

Prof. Jessen Vidal

III - CORRELAÇÃO E REGRESSÃO

Profa. Dra. Nanci de Oliveira nanci.oliveira@fatec.sp.gov.br

CORRELAÇÃO E REGRESSÃO

- São duas técnicas que envolvem uma forma de estimação.
- Vamos estudar situações que envolvem apenas duas variáveis.

CORRELAÇÃO LINEAR

O termo correlação significa, literalmente, correlacionamento, pois indica até que ponto os valores de uma variável estão relacionados com os da outra.

Coeficiente r de Pearson

O grau de relacionamento entre duas variáveis contínuas é sintetizado pelo coeficiente de correlação conhecido como "r" de Pearson (1857-1936), que desenvolveu a técnica:

$$r = \frac{\left[n(\sum xy) - (\sum x \sum y)\right]}{\sqrt{\left[n(\sum x^2) - (\sum x)^2\right]\left[n\sum y^2 - (\sum y)^2\right]}}$$

onde

<u>n</u> = número de observações, <u>x</u> e <u>y</u> são as variáveis

O valor de r varia de -1 a +1, ou seja, $-1 \le r \le 1$

Classificação da correlação ou Grau de correlação

A correlação pode ser classificada em:

Forte:
$$0.6 \le |\mathbf{r}| \le 1$$

Fraca: $0.3 \le |\mathbf{r}| < 0.6$
Muito fraca: $0 \le |\mathbf{r}| < 0.3$

- Se r = 1 a correlação é *positiva perfeita*.
- Se r= 0 a correlação é nula (não tem correlação entre as variáveis).
- Se r= -1 a correlação é negativa perfeita.

REGRESSÃO LINEAR

- A regressão linear estabelece uma equação linear (equação de regressão) que descreva o relacionamento entre duas variáveis.
- A finalidade de uma equação de regressão é estimar valores de uma variável com base em valores conhecidos da outra.

Equação linear

Tem a forma y = ax + b, onde a e b são valores que se determinam com base nos dados amostrais.

a = coeficiente angular da reta

b = coeficiente linear da reta

O método dos mínimos quadrados

- É método mais usado para ajustar um conjunto de pontos a uma reta.
- Nesse método, a soma dos desvios verticais dos pontos em relação à reta é igual a zero e a soma dos quadrados desses desvios é mínima.

O método dos mínimos quadrados

Este método consiste em resolver o sistema abaixo, em relação a *a* e *b*: onde *n* é o número de observações.

$$\begin{cases} a\sum X^2 + b\sum X = \sum XY \\ a\sum X + nb = \sum Y \end{cases}$$

As equações acima podem ser removidas algebricamente em relação a $a \in b$, resultando em duas fórmulas:

$$a = \frac{n\sum XY - \sum X\sum Y}{n\sum X^2 - (\sum X)^2}$$

$$b = \frac{\sum Y - a \sum X}{n}$$

Erro padrão ou desvio padrão da estimativa

- A precisão das estimativas de regressão depende da dispersão (desvio padrão): quanto maior a dispersão, menor a precisão das estimativas.
- Essa dispersão é dada pela seguinte fórmula:

$$S_e = \sqrt{\frac{\sum Y^2 - b \sum Y - a \sum XY}{n - 2}}$$

EXEMPLO

A tabela abaixo apresenta as notas de Matemática e de Estatística de 10 alunos de uma turma de um colégio.

- 1) Faça o Diagrama de Dispersão.
- 2) Calcule o coeficiente de correlação linear (r de Pearson) entre as duas variáveis.
- 3) Classifique ou dê o grau de correlação linear.
- 4) Se a correlação for forte, encontre a equação da reta de regressão linear.
- 5) Se um aluno dessa turma tivesse nota 1 em Matemática, qual seria sua nota em Estatística?
- 6) Se um aluno dessa classe tivesse nota 4 em Matemática, qual seria sua nota de Estatística?

Alunos	Notas	Notas
	Mat. (X)	Estat. (Y)
A	5	6
В	8	9
C	7	8
D	10	10
Е	6	5
F	7	7
G	9	8
H	3	4
I	8	6
J	2	2
	$\Sigma X = 65$	$\Sigma y = 65$

Alunos	Notas	Notas	XY	X^2	Y^2
	Mat. (X)	Estat. (Y)			
A	5	6	30	25	36
В	8	9	72	64	81
С	7	8	56	49	64
D	10	10	100	100	100
E	6	5	30	36	25
F	7	7	49	49	49
G	9	8	72	81	64
Н	3	4	12	9	16
I	8	6	48	64	36
J	2	2	4	4	4
	$\Sigma X = 65$	$\Sigma y = 65$	$\sum xy = 473$	$\sum x^2 = 481$	$\Sigma y^2 = 475$

$$r = \frac{\left[n(\sum xy) - (\sum x \sum y)\right]}{\sqrt{\left[n(\sum x^2) - (\sum x)^2\right]\left[n\sum y^2 - (\sum y)^2\right]}}$$

$$n = 10$$
 alunos

$$\Sigma x = 65$$
 $\Sigma y = 65$ $\Sigma xy = 473$ $\Sigma x^2 = 481$ $\Sigma y^2 = 475$

$$r = \frac{(10)(473) - (65)(65)}{\sqrt{[(10)(481) - (65)^2][(10)(475) - (65)^2]}} = \frac{4730 - 4225}{\sqrt{[4810 - 4225][4750 - 4225]}}$$

$$r = \frac{505}{\sqrt{585.525}} = \frac{505}{\sqrt{307125}} = 0.9112$$

Logo, r=0,9.

CLASSIFICAÇÃO: A correlação é positiva, forte.

4) Solução Algébrica

$$\Sigma x = 65$$
 $\Sigma y = 65$ $\Sigma xy = 473$ $\Sigma x^2 = 481$ $\Sigma y^2 = 475$

$$a = \frac{n\sum XY - \sum X\sum Y}{n\sum X^2 - (\sum X)^2}$$

$$a = \frac{n\sum XY - \sum X\sum Y}{n\sum X^2 - (\sum X)^2}$$
 $\Rightarrow a = \frac{(10)\cdot(473) - (65)\cdot(65)}{(10)\cdot(481) - (65)^2} \Rightarrow a = \frac{4730 - 4225}{4810 - 4225} = \frac{505}{585} = 0,8632$

$$b = \frac{\sum Y - a \sum X}{n}$$

$$b = \frac{\sum Y - a \sum X}{10} \qquad b = \frac{(65) - (0,8632) \cdot (65)}{10} \Rightarrow a = \frac{65 - 56,108}{10} = \frac{8,892}{10} = 0,8892$$

Logo,
$$y = ax + b \Rightarrow y = 0,8632x + 0,8892$$

Para x=1, temos:

$$y = 0.8632x + 0.8892$$

 $\Rightarrow y = 0.8632 \cdot (1) + 0.8892$
 $\Rightarrow y = 0.8632 + 0.8892$
 $\Rightarrow y = 1.7524$

Portanto, se a nota de Matemática for 1, a nota de Estatística será 1,7524 ou 2 (arredondando para inteiro).

▶ Para x=4, temos:

$$y = 0.8632x + 0.8892$$

 $\Rightarrow y = 0.8632 \cdot (4) + 0.8892$
 $\Rightarrow y = 3.4528 + 0.8892$
 $\Rightarrow y = 4.342$

Portanto, se a nota de Matemática for 4, a nota de Estatística será 4,342 ou 4 (arredondando para inteiro).

RESOLVA O EXEMPLO ANTERIOR UTILIZANDO EXCEL

Argumentos da função							
CORREL							
Matriz1	A2:A11	1 = {5;8;7;10;6;7;9;3;	8;2}				
Matriz2	B2:B11	1 = {6;9;8;10;5;7;8;4;);8;10;5;7;8;4;6;2}				
		= 0,911242136					
Retorna o coeficiente de correlação entre dois conjuntos de dados.							
Matriz1 é um intervalo de células de valores. Os valores devem ser números, nomes, matrizes ou referências que contenham números.							
Resultado da fórmula = (,911242136						
Ajuda sobre esta função		OF	Cancelar				

FATEC - Correlação e Regressão Prof^a Dra. Nanci de Oliveira

Notas de Matemática e Estatística de 10 alunos de uma turma de um Colégio

REFERÊNCIAS BIBLIOGRÁFICAS

- BUSSAB, Wilson O. & MORETTIN, Pedro A. Estatística Básica (Métodos Quantitativos), 4ª Edição, São Paulo: Atual Editora, 1987.
- SPINELLI, Walter & SOUSA, Maria Helena S. de. Introdução à Estatística. São Paulo: Editora Ática, 1990, cap. 9, p. 122-139.