Statistical Learning HW1 Applied

Yaniv Bronshtein

10/16/2021

- (a). Analysis of Primal Problem Give the feasible set, the optimal value, and the optimal solution Feasible Set: The interval [2,4] $(x-2)(x-4) \le 0$ $x-2 \le 0$ and $x-4 \le 0$ $x \le 2$ and $x \le 4$ Thus, the optimal point is $x^*=2$ The optimal value is $2^2+1=5$
- (b). Lagrangian and dual Function Plot the objective $x^2 + 1$ versus x. On the same plot, show the feasible set, optimal point and value, and plot the Lagrangian $L(x,\lambda)$ versus x for a few positive values of λ . Verify the lower bound property $p* \geq \inf L(x,\lambda)$ for $\lambda \geq 0$. Derive and sketch the Lagrange dual function g.

```
x \leftarrow seq(-5,5, 0.1)
f0 <- x^2+1
f1 \leftarrow (x-2)*(x-4)
par(mfrow=c(1,2))
plot(
  x=x,
  y=f0,
  main="f0 and f1",
  ylab="",
  xlab="x",
  type="1",
  ylim = c(-5, 25),
  col="blue"
lines(x=x, y=f1, col="magenta")
legend(
  "topleft",
  c("f0=x^2+1","f1=(x-2)(x-4)"),
  fill=c("blue", "magenta")
abline(v=2, col='red')
abline(v=4, col='red')
abline(h=0, col='black')
```

f0 and f1


```
plot(x=x,
     y=f0,
     ylab="",
     xlab="x",
     type="1",
     ylim = c(-5, 25),
     col="brown",
     main="The lagrangian for various values of lambda"
lines(x,f0+1.0*f1, col="green")
lines(x,f0+2.0*f1, col="purple")
lines(x,f0+3.0*f1, col="orange")
legend(
  "topleft",
  c("f0+0.0*f1","f0+1.0*f1", "f0+2.0*f1", "f0+3.0*f1"),
 fill=c("brown", "green", "purple", "orange")
)
abline(v=2, col='red')
abline(v=4, col='red')
```

The lagrangian for various values of lambda

X The overlayed plot above demonstrates the Lagrangian with input x and λ as the sum of f_0 and f_1 times a constant λ The minimum value of the Lagrangian is always less than p*. The maximum is reached at a λ value of 2 and decreases after that.

