COMP7990 Quiz

Seat No	
LT:	
Seat:	

Name:	SAMPLE ANSWER	Student ID:	
-------	---------------	-------------	--

- There are 9 questions and 13 pages. The full mark on the quiz is 100.
- Write your answer directly in the designated space provided.
- This is a closed-book quiz. You are allowed to use a calculator to attempt the quiz.
- Quiz time: 90 minutes.

Question 1. You are given the following data about the electricity bills of an apartment. (18 marks)

Month	Average Monthly Temperature (in °C)	Electricity Bill (in \$; assume the bill date
		has been adjusted to that month already)
Jan	15	500
Feb	22	400
Mar	36	720
Apr	27	560
May	33	700
Jun	35	900

- a) Can you suggest a relationship between the average monthly temperature and electricity bill? Please quantify such a relationship. (Precision of your numbers should be in 2 decimal places). (5 marks)
- b) Please create a linear regression using the average monthly temperature to predict the electricity bill without normalizing the data. (7 marks)
- c) If the above is normalized by decimal scaling, do you think the answer obtained in part a) and part b) will be different? Please give reasons to support your argument. No calculation is required. (6 marks)

a) They are (positively) correlated / cause-and-effect. Correlation = 0.821

$$r_{XY} = rac{\sum_{i=1}^{n}(X_{i}-\overline{X})(Y_{i}-\overline{Y})}{\sqrt{\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}}\sqrt{\sum_{i=1}^{n}(Y_{i}-\overline{Y})^{2}}} \sqrt{\sum_{i=1}^{n}(Y_{i}-\overline{Y})^{2}}$$

 $r_{xy} = (-13 * -130 + -6* -230 + 8*90 + -1* -70 + 5*70 + 7*270) /$ sqrt (169 + 36 + 64 + 1 + 25 + 49) sqrt (16900 + 52900 + 8100 + 4900 + 4900 + 72900)= 0.821

b)

 θ 1 =(-13 * -130 + -6*-230 + 8*90+-1*-70+5*70 + 7*270) / (169+36+64+1+25+49) = **17.73**256 θ 2=630-17.73256*28 = 133.48832 = **133.49**

c)

Will the answer in part a) be different?

Reason:

No change. Because the numerator and denominator of correlation will be multiplied by the same decimal scale factor and be canceled out. (Explanation derived from the formula will also be accepted. From lecture notes we say correlation is independent of units. If they quote that statement and somehow be able to relate from "unit" to "scaling", it is also considered as a correct answer).

Will the answer in part b) be different?

Reason:

Yes, it will be different. The regression line represent the linear relationship of the points on the graph. The normalized graph will be plotted in a different scale so as the regression line.

Question 2. You are given the following data about the interview score sheet of some job applicants. (10 marks)

Name	Academic Qualification (0-5, 5 is best)	Entry Test (0-5, 5 is the best)	Result
Alex	5	5	Hire
Bob	2	4	Not Hire
Cathy	4	3	Hire
Dave	5	1	Not Hire
Eva	4	4	?

- a) To predict the interview result for Eva, is it better to apply K-NN algorithm or K-mean algorithm? Explain your reason. **(4 marks)**
- b) With the answer you have provided in part a), run that algorithm with K = 3. Show your steps (6 marks)

	١
\mathbf{a}	
7	

This is a classification problem. K-nn is a classification algorithm while K-mean is a clustering algorithm. Therefore, K-nn is suitable

b)

a) Using Euclidean distatnce Distance from Eva to each person is

Alex: sqrt(1+1) = sqrt(2)Bob: sqrt(4+0) = sqrt(4)Cathy: sqrt(0+1) = sqrt(1)Dave: sqrt(1+9) = sqr(10)2 Hire, 1 not hire. Decision Hire.

Question 3. Answer the following questions. (20 marks)

- a) Describe the motivation of data normalization. (4 marks)
- b) Suppose that you have the following data: [100, 200, 300, 400], normalize the data by min-max normalization by setting new min to 5 and new max to 8. (8 marks)
- c) Suppose we have the following values: [4, 34, 31, 30, 21, 31, 21, 25, 22, 28, 10, 15]. Use smoothing by bin means to smooth the above data using equal-depth binning with 3 bins. Show your steps. (8 marks)
- a) Sample solution: Because the features have different scales and normalization could make them comparable. Especially, the features with wider scale may dominate the Euclidean distance.

b)

Sample solution:

```
{x_i}' = \frac{(x_i - min)}{max - min}(max_{new} - min_{new}) + min_{new}
```

min: 100, max: 400, max-min=300

max(new)=8; min(new)=5

$$\begin{aligned}
& \text{max(new)} = 8; & \text{min(new)} = 3 \\
& x_1 = 100, \ x_1' = \frac{100 - 100}{300} * (8 - 5) + 5 = 5 \\
& x_2 = 200, \ x_2' = \frac{200 - 100}{300} * (8 - 5) + 5 = 6 \\
& x_3 = 300, \ x_3' = \frac{300 - 100}{300} * (8 - 5) + 5 = 7 \\
& x_4 = 400, \ x_4' = \frac{400 - 100}{300} * (8 - 5) + 5 = 8
\end{aligned}$$

$$x_3 = 300, x_3' = \frac{300 - 100}{300} * (8 - 5) + 5 = 7$$

$$x_4 = 400, x'_4 = \frac{400 - 100}{300} * (8 - 5) + 5 = 8$$

c)

Step 1: Sort the list as [4, 10, 15, 21, 21, 22, 25, 28, 30, 31, 31, 34]

Step 2: Compute the number of elements in each bin: 12/3=4

Step 3: Partition data into bins

Bin 1: [4, 10, 15, 21]. The mean is 12.5

Bin 2: [21, 22, 25, 28]. The mean is 24

Bin 3: [30, 31, 31, 34]. The mean is 31.5

Step 4: Smooth each bin by mean

[12.5, 12.5, 12.5, 12.5, 24, 24, 24, 24, 31.5, 31.5, 31.5, 31.5]

Question 4. Answer the following questions. (15 marks)

- a) Consider the following dataset (**Figure 1**), can perceptron separate the points of y=1 and y=-1? Justify your answer. (**5 marks**)
- b) Consider the feed-forward neural network (**Figure 2**). The model weights are shown on the edges. Suppose we use the sigmoid function (i.e., $f(x) = \frac{2}{1 + \exp(-2x)}$) as the activation function in this network. Given a sample with $x_1 = 0$ and $x_2 = 0$, what are the output values of each node. (**10 marks**)

x_1	x_2	y
1	-1	1
1	1	-1
-1	1	1
-1	-1	-1

Figure 1. Dataset for part a)

Figure 2. Feed-forward NN for part b)

a)

Sample solution: No. Perceptron is a linear classifier and it can not solve non-linear problem.

b) Node	Output Value	Output Value	
$h_I^{(1)}$	$2/(1+\exp(-2*(0*1+0*1)))=1$		
$h_2^{(1)}$	$2/(1+\exp(-2*(0*1+0*1)))=1$		
$h_I^{(2)}$	$2/(1+\exp(-2*(1*1+1*-1)))=1$		
$h_2^{(2)}$	$2/(1+\exp(-2*(1*1+1*-1)))=1$		
0	1*1 + 1*(-1) = 0		

Question 5. Categorize the following datasets into qualitative data, quantitative data (discrete), and quantitative data (continuous). Circle the correct answer. **(5 marks)**

Datasets	Answer	
Brand of car	Qualitative / Quantitative Discrete / Quantitative Continuous	
Floor level	Qualitative / Quantitative Discrete / Quantitative Continuous	
Price	Qualitative / Quantitative Discrete / Quantitative Continuous	
Race	Qualitative / Quantitative Discrete / Quantitative Continuous	
Body weight	Qualitative / Quantitative Discrete / Quantitative Continuous	
Number of students	Qualitative / Quantitative Discrete / Quantitative Continuous	
Car speed	Qualitative / Quantitative Discrete / Quantitative Continuous	
Religious	Qualitative / Quantitative Discrete / Quantitative Continuous	
Room number	Qualitative / Quantitative Discrete / Quantitative Continuous	

Question 6. Interprete the following terms. (4 marks)

	Terms	Interpretation
a)	Statistical Inference	Statistical inference is the process of using data from a sample to gain information about the population.
b)	Bias Sampling	Sampling bias occurs when the method of selecting a sample causes the sample to differ from the population in some relevant way.
c)	Outlier	a part of sample data that significantly deviates from the majority of the sample.
d)	Kernel	to transform data points to another dimension so that non-linear separable data become linearly separable.

Question 7. Given a set of sample data, calculate the following statistics. Write your answer up to 2 decimal places. (4 marks)

5, 10, 28, 29, 37, 39, 41, 44, 47, 56, 61, 99

Median	40
Range	94
IQR	23
Outlier(s)	99

Question 8. The table below shows the scores of master students in the mid-exam and final exams. We would like to know if students' final-exam scores are significantly better than their mid-exam scores. Assume Mid-exam and Final-exam scores follow normal distributions. Choose a proper hypothesis test to answer this question. (12 marks)

Student ID	Mid-exam	Final-exam
1	92	86
2	72	77
3	74	76
4	73	85
5	52	83
6	60	71
7	57	72
8	85	78
9	77	72
10	64	73
11	80	74
12	53	79

Show your calculation with 3 decimal places. You are advised to work on a rough paper and tidy your answer below.

Null hypothesis: There is no significant improvement/difference between the two exams' scores

Test method: Paired/Dependent Samples t

Calculation process:

$$t = \frac{\bar{x}_{\text{differences}} - \mu_0}{S_{\text{differences}} / \sqrt{2}}$$

$$S.E = Sdifferences / \sqrt{n} = 12.6212 / \sqrt{12} = 3.643$$

$$t = \frac{7.25 - 0}{3.643} = 1.990$$

Look up the T table: critical value is 1.796 (one tail)

t=1.990 > 1.796 (critical value)

Conclusion: it can reject the null hypothesis at α = .05, so there is a significant improvement in the final exam.

Question 9. The table below shows the accuracy of three recommendation algorithms on 8 tasks. We would like to know if these three algorithms yield significantly different accuracy. Assume the scores of Algorithm 1, Algorithm 2 and Algorithm 3 follow normal distributions. Choose a proper hypothesis test to answer this question. (12 marks)

Task	Algorithm1	Algorithm2	Algorithm3
Task1	0.51	0.69	0.85
Task2	0.46	0.92	0.82
Task3	0.34	0.61	0.74
Task4	0.58	0.63	0.75
Task5	0.66	0.89	0.81
Task6	0.45	0.89	0.84
Task7	0.44	0.84	0.71
Task8	0.58	0.79	0.82

Show your calculation with 3 decimal places. You are advised to work on a rough paper and tidy your answer below.

Null hypothesis: There is no significant difference among the three algorithms regarding the

accuracy

Test method: ANOVA **Calculation process:**

Step-1: Between group variation

$$SST = n_1 (\overline{Y}_1 - \overline{Y})^2 + n_2 (\overline{Y}_2 - \overline{Y})^2 + \dots + n_p (\overline{Y}_p - \overline{Y})^2$$

 $=8\times(0.5025-0.6925)^2+8\times(0.7825-0.6925)^2+8\times(0.7925-0.6925)^2$

=0.434

Step-2: In group variation

$$SSE = (Y_{11} - \overline{Y_1})^2 + (Y_{21} - \overline{Y_1})^2 + \dots + (Y_{51} - \overline{Y_1})^2 + \dots + (Y_{12} - \overline{Y_2})^2 + (Y_{22} - \overline{Y_2})^2 + \dots + (Y_{52} - \overline{Y_2})^2 + \dots + (Y_{13} - \overline{Y_3})^2 + (Y_{23} - \overline{Y_3})^2 + \dots + (Y_{53} - \overline{Y_3})^2$$

```
= (0.51-0.5025)^2 + (0.46-0.5025)^2 + (0.34-0.5025)^2 + (0.58-0.5025)^2 + (0.66-0.5025)^2 + (0.45-0.5025)^2 + (0.44-0.5025)^2 + (0.58-0.5025)^2
```

- $+ (0.69-0.7825)^2 + (0.92-0.7825)^2 + (0.61-0.7825)^2 + (0.63-0.7825)^2 + (0.89-0.7825)^2 + (0.89-0.7825)^2 + (0.84-0.7825)^2 + (0.79-0.7825)^2$
- $+ (0.85 0.7925)^2 + (0.82 0.7925)^2 + (0.74 0.7925)^2 + (0.75 0.7925)^2 + (0.81 0.7925)^2 + (0.84 0.7925)^2 + (0.71 0.7925)^2 + (0.82 0.7925)^2$

=0.197

Step-3: variance between samples MST=SST/p-1 =0.434/2 =0.217 Step-4: variance within samples MSE=SSE/(n-p) =0.197/(24-3) =0.009

Step-5: test statistic F for one way ANOVA test

F=MST/MSE

=0.217/0.009 =23.064

Look up the F table: critical value is 3.47

F=24.111 > 3.47 (critical value)

Conclusion: it can reject the null hypothesis at α = .05, so there is a significant difference among the three algorithms regarding the accuracy.

Appendix

t-Table (for t-tests)

one-tail	0.1	0.05	0.025	0.01	0.005	0.001	0.0005					
two-tails	0.2	0.1	0.05	0.02	0.01	0.002	0.001					
DF												
1	3.078	6.314	12.706	31.821	63.656	318.289	636.578					
2	1.886	2.92	4.303	6.965	9.925	22.328	31.6					
3	1.638	2.353	3.182	4.541	5.841	10.214	12.924					
4	1.533	2.132	2.776	3.747	4.604	7.173	8.61					
5	1.476	2.015	2.571	3.365	4.032	5.894	6.869					
6	1.44	1.943	2.447	3.143	3.707	5.208	5.959					
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408					
8	1.397	1.86	2.306	2.896	3.355	4.501	5.041					
9	1.383	1.833	2.262	2.821	3.25	4.297	4.781					
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587					
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437					
12	1.356	1.782	2.179	2.681	3.055	3.93	4.318					
13	1.35	1.771	2.16	2.65	3.012	3.852	4.221					
14	1.345	1.761	2.145	2.624	2.977	3.787	4.14					
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073					

F-Table (for ANOVA)

$df_{\rm N}$	1	2	3	4	5
1	161.4	199.5	215.7	224.6	230.2
2	18.51	19.00	19.16	19.25	19.30
3	10.13	9.55	9.28	9.12	9.01
4	7.71	6.94	6.59	6.39	6.26
5	6.61	5.79	5.41	5.19	5.05
6	5.99	5.14	4.76	4.53	4.39
7	5.59	4.74	4.35	4.12	3.97
8	5.32	4.46	4.07	3.84	3.69
9	5.12	4.26	3.86	3.63	3.48
10	4.96	4.10	3.71	3.48	3.33
11	4.84	3.98	3.59	3.36	3.20
12	4.75	3.89	3.49	3.26	3.11
13	4.67	3.81	3.41	3.18	3.03
14	4.60	3.74	3.34	3.11	2.96
15	4.54	3.68	3.29	3.06	2.90
16	4.49	3.63	3.24	3.01	2.85
17	4.45	3.59	3.20	2.96	2.81
18	4.41	3.55	3.16	2.93	2.77
19	4.38	3.52	3.13	2.90	2.74
20	4.35	3.49	3.10	2.87	2.71
21	4.32	3.47	3.07	2.84	2.68
22	4.30	3.44	3.05	2.82	2.66
23	4.28	3.42	3.03	2.80	2.64
24	4.26	3.40	3.01	2.78	2.62

Table for U-test

Table 3 Critical values of *U* (5% significance).

n_1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1																				
2								0	0	0	0	1	1	1	1	1	2	2	2	2
3					0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
4				0	1	2	3	4	4	5	6	7	8	9	10	11	11	12	13	13
5			0	1	2	3	5	6	7	8	9	11	12	13	14	15	17	18	19	20
6			1	2	3	5	6	8	10	11	13	14	16	17	19	21	22	24	25	27
7			1	3	5	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
8		0	2	4	6	8	10	13	15	17	19	22	24	26	29	31	34	36	38	41
9		0	2	4	7	10	12	15	17	20	23	26	28	31	34	37	39	42	45	48
10		0	3	5	8	11	14	17	20	23	26	29	33	36	39	42	45	48	52	55
11		0	3	6	9	13	16	19	23	26	30	33	37	40	44	47	51	55	58	62
12		1	4	7	11	14	18	22	26	29	33	37	41	45	49	53	57	61	65	69
13		1	4	8	12	16	20	24	28	33	37	41	45	50	54	59	63	67	72	76
14		1	5	9	13	17	22	26	31	36	40	45	50	55	59	64	67	74	78	83
15		1	5	10	14	19	24	29	34	39	44	49	54	59	64	70	75	80	85	90
16		1	6	11	15	21	26	31	37	42	47	53	59	64	70	75	81	86	92	98
17		2	6	11	17	22	28	34	39	45	51	57	63	67	75	81	87	93	99	105
18		2	7	12	18	24	30	36	42	48	55	61	67	74	80	86	93	99	106	112
19		2	7	13	19	25	32	38	45	52	58	65	72	78	85	92	99	106	113	119
20		2	8	13	20	27	34	41	48	55	62	69	76	83	90	98	105	112	119	127

Table for W-test

Critical Values of the Wilcoxon Signed Ranks Test

	Two-Ta	iled Test	One-Tailed Test				
n	$\alpha = .05$	$\alpha = .01$	$\alpha = .05$	$\alpha = .01$			
5			0				
6	0		2				
7	2		3	0			
8	3	0	5	1			
9	5	1	8	3			
10	8	3	10	5			
11	10	5	13	7			
12	13	7	17	9			
13	17	9	21	12			
14	21	12	25	15			
15	25	15	30	19			
16	29	19	35	23			

