

CS5228: Knowledge Discovery and Data Mining

Lecture 6 — Classification & Regression II

Course Logistics — Update

Assignments 2

- Submission deadline: Oct 23, 11.59 pm
- Honor code: don't cheat, don't copy, don't steal, don't plagiarize, etc.
- Don't forget to check the Discussion and Errata page on Canvas

Midterm

- Check new Canvas page for midterm exam
- Report any issues with the practice exam early enough
- Coming up: survey regarding request for loaner laptop

Project

■ Submission deadline for progress report: Oct 10, 11.59 pm

Quick Recap — Classification & Regression

Pattern of interest

- Matching or function between input features and output
- Goal: use matching to predict outputs for unseed samples
- Categorical output → classification
- Numerical output → regression
- Important: Evaluation of predictions
 - Straightforward for regression
 - Series of metrics for classification (accuracy, recall, precision, f1, AUC-ROC)

Age	Edu- cation	Marital Status	Income Level	Credit Approval	Credit Limit
23	Masters	Single	Mid	No	\$\$5,000
35	College	Married	High	Yes	\$\$7,000
26	Masters	Single	High	No	\$\$9,000
41	PhD	Single	Mid	Yes	\$\$5,000
18	Poly	Single	Low	No	\$\$6,000
55	Poly	Married	High	Yes	\$\$10,000
30	College	Single	High	Yes	\$\$8,000
35	PhD	Married	High	Yes	\$\$10,000
28	Masters	Married	Mid	Yes	\$\$5,000
45	Masters	Married	Mid	???	???

Quick Recap — KNN Algorithm

Intuition behind KNN:

- Label of an unseen data point *x* derives from the labels of the k-nearest neighbors of *x*
- Similar data points → similar labels
- Caveats due to reliance of similarity metric

- Effects of hyperparameter k
 - Tradeoff between (risks of) underfitting and overfitting

Outline

• Decision Trees

- Overview
- Training Decision Trees (CART)
- Overfitting

Tree Ensembles

- Bagging
- Random Forest
- Boosting

Decision Tree

• Example: Decision Tree for classification

Age	Edu- cation	Marital Status	Annual Income	Credit Approval
23	Masters	Single	75k	Yes
35	Bachelor	Married	50k	No
26	Masters	Single	70k	Yes
41	PhD	Single	95k	Yes
18	Bachelor	Single	40k	No
55	Masters	Married	85k	No
30	Bachelor	Single	60k	No
35	PhD	Married	60k	Yes
28	PhD	Married	65k	Yes

Decision Tree

- Decision Tree idea
 - Represent mapping between features and label/value as flowchart-like structure
- Components (a bit simplified at the moment)
 - (Inner) node test on a single feature
 - Branch outcome of a test; corresponds to a feature values or range of values
 - Leaf label (classification) or real value (regression)

Decision Tree — Application to Unseen Data

Decision Tree

- Same dataset, different Decision Tree
 - In general, there are multiple trees that match a dataset

ID	Age	Edu- cation	Marital Status	Annual Income	Credit Approval
1	23	Masters	Single	75k	Yes
2	35	Bachelor	Married	50k	No
3	26	Masters	Single	70k	Yes
4	41	PhD	Single	95k	Yes
5	18	Bachelor	Single	40k	No
6	55	Masters	Married	85k	No
7	30	Bachelor	Single	60k	No
8	35	PhD	Married	60k	Yes
9	28	PhD	Married	65k	Yes

Which Decision Tree is Better?

Age	Edu-	Marital	Annual	Credit
	cation	Status	Income	Approval
50	PhD	Single	70k	Yes

Age	Edu-	Marital	Annual	Credit
	cation	Status	Income	Approval
50	PhD	Single	70k	NO

Quick Quiz

Age	Edu- cation	Marital Status	Annual Income	Credit Approval
50	PhD	Married	70k	???
				-

Age	Edu-	Marital	Annual	Credit
	cation	Status	Income	Approval
50	Poly	Single	70k	???

What to do in case of **unknown values** for a feature?

Decision Tree — **Diversity (Sneak Preview)**

Different branching factors

Different depth

- Leaves can have more than one label or real value
- Required based on dataset or based on choice (→ Pruning)
- Final output: majority label (classification)
 or mean of values (regression)

Outline

- Decision Trees
 - Overview
 - Training Decision Trees (CART)
 - Overfitting
- Tree Ensembles
 - Bagging
 - Random Forest
 - Boosting

Building a Decision Tree

Notations

- D_t set of records that reach node t
- \blacksquare D_0 set of all records at root node

General procedure

- If $|D_t| = 1$ or all records in D_t have the same class or value $\rightarrow t$ is leaf node
- Otherwise, choose test (feature + conditions) to split D_t into smaller subsets (i.e., subtrees)
- Recursively apply procedure to each subtree

ID	Age	Edu- cation	Marital Status	Annual Income	Credit Approval
1	23	Masters	Single	75k	Yes
2	35	Bachelor	Married	50k	No
3	26	Masters	Single	70k	Yes
4	41	PhD	Single	95k	Yes
5	18	Bachelor	Single	40k	No
6	55	Masters	Married	85k	No
7	30	Bachelor	Single	60k	No
8	35	PhD	Married	60k	Yes
9	28	PhD	Married	65k	Yes

ID	Age	Edu- cation	Marital Status	Annual Income	Credit Approval
1	23	Masters	Single	75k	Yes
2	35	Bachelor	Married	50k	No
3	26	Masters	Single	70k	Yes
4	41	PhD	Single	95k	Yes
5	18	Bachelor	Single	40k	No
6	55	Masters	Married	85k	No
7	30	Bachelor	Single	60k	No
8	35	PhD	Married	60k	Yes
9	28	PhD	Married	65k	Yes

ID	Age	Edu- cation	Marital Status	Annual Income	Credit Approval	Education
2	35	Bachelor	Married	50k	No	Bachelor Master, PhD
						2,5,7 1,3,4,6,8,9
5	18	Bachelor	Single	40k	No	
7	30	Bachelor	Single	60k	No	All the same labels → leaf node
						All the same labels Flear flode

1,2,3,4,6,7,8,9

ID	Age	Edu- Marital cation Status		Annual Income	Credit Approval
2	35	Bachelor	Married	50k	No
5	18	Bachelor	Single	40k	No
7	30	Bachelor	Single	60k	No

ID	Age	Edu- cation	Marital Status	Annual Income	1	Credit Approva	al
1	23	Masters	Single	75k		Yes	
3	26	Masters	Single	70k		Yes	
4	41	PhD	Single	95k		Yes	
							M
6	55	Masters	Married	85k		No	П
8	35	PhD	Married	60k		Yes	
9	28	PhD	Married	65k		Yes	

Different labels → split set of records

Here: select feature "age" and threshold "50" (this selection process is the core of DTL and will be defined later)

ID	Age	Edu- cation	Marital Status	Annual Income	Credit Approval
1	23	Masters	Single	75k	Yes
3	26	Masters	Single	70k	Yes
4	41	PhD	Single	95k	Yes
6	55	Masters	Married	85k	No
8	35	PhD	Married	60k	Yes
9	28	PhD	Married	65k	Yes

ID	Age	Edu- cation	Marital Status	Annual Income	Credit Approval
1	23	Masters	Single	75k	Yes
3	26	Masters	Single	70k	Yes
4	41	PhD	Single	95k	Yes
8	35	PhD	Married	60k	Yes
9	28	PhD	Married	65k	Yes

ID	Age	Edu- cation	Marital Status	Annual Income	Credit Approval

All records covered → Done!

How to Split? — **Nominal Attributes**

Binary split

- Partition all d values into two subsets
- \blacksquare $\frac{2^d-2}{2}$ possible splits

Multiway split

- Each value yields on subtree
- In principle, arbitrary splits into
 2 ≤ s ≤ d subtrees possible, but
 number of possible splits explodes

How to Split? — Ordinal Attributes

Binary split

- Partition all d values into two subsets
- Partitions must preserve natural order of values
- lacksquare d-1 possible splits

Multiway split

Each value yields on subtree

Note: Whether "Education" is treated as nominal or ordinal feature is up to interpretation and a design choice of the user

How to Split? — Numerical Values

Binary split

Multiway split

Age
23
35
26
41
18
55
30
35
28

Quick Quiz

A

For the **energy rating** of a building,

what is generally **not** a suitable split?

B

C

D

Finding the Best Splits?

Which feature to use for splitting the training records

Why choose **Age** over **Education**, or vice versa?

How to split the w.r.t. a selected feature?

What makes **{B,M}/{P}** a better split then **{B}/{MP}**, or vice versa — or any other alternative way?

Finding the Best Splits

- Global optimum
 - Best splits = splits that result in a Decision Tree with the highest accuracy
 - Problem: Finding the optimal tree is NP-complete → not practical for large datasets
- Greedy approach
 - Fast(er) heuristics but no guarantees for optimal results
 - Basic approach: Pick the split that minimizes the **impurity** of subtrees (w.r.t. class labels)

Finding the Best Splits

- General procedure
 - lacktriangle Calculate impurity I(t) of node t before splitting
 - For each possible / considered split, calculate impurity of split I_{split} (weighted average of impurities of resulting child nodes)
 - lacksquare Select split with lowest impurity I_{split}
 - $\,\blacksquare\,\,$ Perform split if $I_{split} < I(t)$ (not necessarily always the case)

Impurity of a Node (Classification)

Gini Index

Entropy

$$Gini(t) = 1 - \sum_{c \in C} P(c|t)^2$$

$$Entropy(t) = -\sum_{c \in C} P(c|t) \log P(c|t)$$

0x YES 6x NO

$$1 - (1.0^2 + 0^2) = 0$$

$$-(0\log_2 0 + 1\log_2 1) = 0$$

2x NO

$$1 - ((4/6)^2 + (2/6)^2) = 0.44$$

$$-(4/6\log_2 4/6 + 2/6\log_2 2/6) = 0.92$$

P(c|t) = relative frequency of class c in node t

Impurity of a Node (Classification)

Gini Index vs. Entropy for 2-class problem

Impurity of a Split (Classification)

Assume node t is split into k children

- lacksquare number of records at i-th child
- \blacksquare η number of records at node t
- I(i) impurity of node (e.g., Gini, Entropy)

Information Gain IG

- $\hfill\blacksquare$ Difference between I(t) and I_{split}
- Choose split that minimizes I_{split} = split that maximizes IG
- \blacksquare Required condition: IG > 0

Sum of impurity values of all children, weighted by the number of records at each child.

$$I_{split} = \sum_{i}^{k} \frac{n_i}{n} I(i)$$

$$IG = I(t) - I_{split}$$

Impurity of Split (Classification) — Example

$$Gini(t_{parent}) = 1 - \left(\left(\frac{5}{9}\right)^2 + \left(\frac{4}{9}\right)^2\right) = 0.49$$

$$Gini(t_{single}) = 1 - \left(\left(\frac{3}{5} \right)^2 + \left(\frac{2}{5} \right)^2 \right) = 0.48$$

$$Gini(t_{married}) = 1 - \left(\left(\frac{2}{4}\right)^2 + \left(\frac{2}{4}\right)^2\right) = 0.5$$

$$Gini_{split} = \frac{5}{9} \cdot Gini(t_{single}) + \frac{4}{9} \cdot Gini(t_{married}) = 0.49$$

$$IG = Gini(t_{parent}) - Gini_{split} = 0$$

$$Gini(t_{parent}) = 1 - \left(\left(\frac{5}{9} \right)^2 + \left(\frac{4}{9} \right)^2 \right) = 0.49$$

$$Gini(t_B) = 1 - \left(\left(\frac{0}{3} \right)^2 + \left(\frac{3}{3} \right)^2 \right) = 0$$

$$Gini(t_{M/P}) = 1 - \left(\left(\frac{5}{6}\right)^2 + \left(\frac{1}{6}\right)^2\right) = 0.28$$

$$Gini_{split} = \frac{3}{9} \cdot Gini(t_B) + \frac{6}{9} \cdot Gini(t_{M/P}) = 0.19$$

$$IG = Gini(t_{parent}) - Gini_{split} = 0.3$$

Impurity of a Split (Regression)

Residual Sum of Squares (RSS)

$$RSS_{split} = \sum_{k=1}^{K} \sum_{i \in R_k} (y_i - \mu_{R_k})^2$$

Edu- cation	Annual Income	
Masters	75k	
Bachelor	50k	
Masters	70k	
PhD	95k	
Bachelor	40k	
Master	85k	
Bachelor	60k	
PhD	60k	
PhD	65k	

Impurity of a Split (Regression)

$$RSS_{split} = \sum_{k=1}^{K} \sum_{i \in R_k} (y_i - \mu_{R_k})^2$$

$$= \sum_{i \in R_{Bachelor}} (y_i - \mu_{R_{Bachelor}})^2 + \sum_{i \in R_{Master}} (y_i - \mu_{R_{Master}})^2 + \sum_{i \in R_{PhD}} (y_i - \mu_{R_{PhD}})^2$$

$$= (50 - 50)^2 + (40 - 50)^2 + (60 - 50)^2 + (75 - 76.67)^2 + (70 - 76.67)^2 + (85 - 76.67)^2 + (95 - 73.33)^2 + (60 - 73.33)^2 + (65 - 73.33)^2$$

$$= 1033.34$$

$\mu_{R_{Bachelor}} = 50$	
$\mu_{R_{Master}} = 76.67$	
$\mu_{R_{PhD}} = 73.33$	

Edu- cation	Annual Income	
Masters	75k	
Bachelor	50k	
Masters	70k	
PhD	95k	
Bachelor	40k	
Master	85k	
Bachelor	60k	
PhD	60k	
PhD	65k	

Decision Trees — **Pros & Cons**

Pros

- Inexpensive to train and test
- Easy to interpret (if tree is not too large)
- Can handle categorical and numerical data

Cons

- Sensitive to small changes in the training data (Hierarchical structure: errors early on propagate down)
- Greedy approach does not guarantee optimal tree
- Each decision involves only a single feature
- Does not take interactions between features into account

Decision Trees — Interaction between Features

Optimal decision boundary

Decision Tree boundaries

Outline

- Decision Trees
 - Overview
 - Training Decision Trees (CART)
 - Overfitting
- Tree Ensembles
 - Bagging
 - Random Forest
 - Boosting

Decision Trees — **Underfitting & Overfitting**

Underfitting

Good fit

Overfitting

Decision Trees — **Underfitting & Overfitting**

Decision Trees — **Underfitting & Overfitting**

Decision Trees — Overfitting

- Decision Tree algorithm can always split the training data perfectly*
 - Keep splitting (i.e., increase height of tree)
 until each leaf contains only one data sample
 - One data sample → 100% pure

- Solution: Limit size/height of Decision Tree → Pruning
 - Pre-pruning: Stop splitting nodes ahead of time
 - Post-pruning: Build full tree, but then remove leaves/splits if beneficial
 - ... combination of multiple approaches

Pre-Pruning: Maximum Depth

- Define maximum depth/height of tree
 - Stop splitting if maximum depth is reached

• Example: maximum depth = 3

Pre-Pruning: Minimum Sample Count

- Define minimum number of samples each node must have
 - Stop splitting if node has less than the minimum number of samples

Example: minimum sample count = 16

Post-Pruning: Prune Leaves/Splits using Validation

 $F1_{pruned} > F1_{input}$ \rightarrow Remove split from Decision Tree (and continue checking next split)

Quick Quiz

What is the **maximum** possible **depth** of a Decision Tree given a dataset with *N* data points?

$$\bigcap$$
 $O(N \log N)$

$$O(\log \log N)$$

Quick Quiz

Outline

Decision Trees

- Overview
- Training Decision Trees (CART)
- Overfitting

• Tree Ensembles

- Bagging
- Random Forest
- Boosting

Tree Ensembles

- Aim to address limitations of (single) Decision Trees
 - High variance i.e., sensitivity to small changes in training data
 - Typically not the same accuracy as other approaches
- Countermeasure: Tree Ensembles
 Construct many decision trees and combine their predictions
 - Bagging
 - Random Forests
 - Boosting

Basic trade-off of ensemble methods:

Higher accuracy, lower variance vs.

Lower interpretability, longer training time

Outline

- Decision Trees
 - Overview
 - Training Decision Trees (CART)
 - Overfitting

• Tree Ensembles

- Bagging
- Random Forest
- Boosting

Bagging — Bootstrap Aggregation

- Bagging basic idea (not limited to Decision Trees)
 - Train many models (classifiers/regressors) of different training data
 - Combine predictions of each models for final prediction
 - Increases accuracy and lowers variance
- Where to get more training data from? → Bootstrap Sampling
 - Take repeated samples from a single training dataset *D*
 - Bootstrap sample D_i sampled from D, uniformly and with replacement $(|D_i| = |D|)$
 - Train a model over each bootstrap dataset D_i

Bagging — Bootstrap Aggregation

ID	Age	Edu- cation	Credit Approval				
2	35	Bachelor	No				
2	35	Bachelor	No				
4	41	PhD	Yes				
4	41	PhD	Yes				
•••							

Majority Vote

ample N	ID	
San	1	
	2	
tstr	3	
Bootstrap	4	

Bootstrap Sample 2

_	ID	Age	Edu- cation	Credit Approval
	1	23	Masters	Yes
-	2	35	Bachelor	No
	3	26	Masters	Yes
	4	41	PhD	Yes

Bagging — Bootstrap Aggregation

Limitations

- Assume original dataset *D* has one or more strong predictors features that yield splits with a (very) high information gain
- Bootstrap samples *D*_i are also likely to have those strong predictors

→ Consequences

- Most bagged trees will use strong predictors on top
- Most bagged trees will look very similar
- Predictions of bagges trees will be highly correlated

→ Only limited reduction in variance

Outline

- Decision Trees
 - Overview
 - Training Decision Trees (CART)
 - Overfitting

• Tree Ensembles

- Bagging
- **■** Random Forest
- Boosting

Random Forests

28

PhD

- Random Forest = bootstrap sampling (bagging) + feature sampling
 - Create bootstrap samples *D*, like for bagging
 - Feature sampling: For each D_p , consider only a random subset of features of size m

Edu-**Marital Annual** Credit Age cation **Status** Income **Approval** 23 75k Masters Single Yes 35 Bachelor Married 50k No 26 Sinale 70k Masters Yes 41 PhD Single 95k Yes 18 Bachelor Single 40k No 55 Master Married 85k No 30 Bachelor Single 60k No 35 PhD Married 60k Yes

Married

65k

Yes

d features

Edu- cation	Annual Income	Credit Approval
Masters	75k	Yes
Bachelor	50k	No
Masters	70k	Yes
PhD	95k	Yes
Bachelor	40k	No
Masters	70k	Yes
Masters	75k	Yes
Bachelor	40k	No
Bachelor	40k	No

m features

Random Forests

- Effects of feature sampling
 - Strong predictors in *D* are often absent in *D*,
 - Resulting trees often look very different
 - Predictions of trees much less correlated
- → Higher reduction in variance + typically higher accuracy

Random Forests — Pros & Cons (Compared to Decision Trees)

Pros

- High accuracy fairly close to state of the art
- Sampling and training independent across $D_i \rightarrow$ parallelizable!
- Not much tuning required

Cons

- Less Interpretable
- Slower training and prediction

Outline

- Decision Trees
 - Overview
 - Training Decision Trees (CART)
 - Overfitting

• Tree Ensembles

- Bagging
- Random Forest
- Boosting

Boosting

- Like bagging, boosting combines multiple trees (in general, multiple models)
- So what are the key differences?

	Bagging	Boosting	
Training Trees are trained independently (and can be done in parallel)		Trees are trained in sequence; (the accuracy of the last tree affects the training of the next tree)	
Prediction	All trees have the same amount of say in the final prediction	Trees have different amount of say in the final prediction (depending on their individual accuracy)	

Boosting & Weak Learners

- So far, all models discussed are Strong Learners
 - Goal: perform as best as possible on a given classification or regression task

Weak Learner

- Goal: perform (slightly) better than guessing
- Very common weak learner: Decision Stump (e.g., decision tree of height 1, i.e., only one split)
- Very simple model → very fast training

- Boosting: Combine many weak classifiers into a single strong learner
 - Basic idea: subsequent models try to improve the errors of previous models

AdaBoost — Adaptive Boosting (for Decision Trees)

AdaBoost

- Applicable to many classification/regression algorithms to improve performance
- Very commonly combined with Decision Trees

Basic training algorithm

- Train a Weak Learner over D_i (e.g., Decision Stump)
- Identify all misclassified samples
- Calculate error rate of learner to quantify its amount of say
- Sample D_{i+1} such that misclassified samples are more likely to be picked than correctly classified samples
- Repeat...

• Step 1:

- 1a) Train Decision Stump h_m over sampled dataset D_m (original dataset D in the beginning)
- 1b) Identify all misclassified training samples in D

Sample Weight w
1/9
1/9
1/9
1/9
1/9
1/9
1/9
1/9
1/9

Age	Edu- cation	Marital Status	Annual Income	Credit Approval
23	Masters	Single	75k	Yes
35	Bachelor	Married	50k	No
26	Masters	Single	70k	Yes
41	PhD	Single	95k	Yes
18	Bachelor	Single	40k	No
55	Master	Married	85k	No
30	Bachelor	Single	60k	No
35	PhD	Married	60k	Yes
28	PhD	Married	65k	Yes

- Step 2
 - 2a) Calculate total error $\epsilon_{\rm m}$

$$\epsilon_m = \sum_i^N w_i \cdot \underbrace{\delta(h_m(x_i) \neq y_i)}_{\text{0, if } \textbf{x}_i \text{ is correctly classified 1, if } \textbf{x}_i \text{ is misclassified}}_{\text{1, if } \textbf{x}_i \text{ is misclassified}}$$

2b) Calculate "amount of say" a_m of h_m

$$\alpha_m = \frac{1}{2} \ln \frac{1 - \epsilon_m}{\epsilon_m}$$

$$\epsilon_m = 1/9$$

$$\alpha_m = 1.04$$

- Step 3
 - 3a) Update sample weights

3b) Normalize sample weights

	Credit Approval	Annual Income	Marital Status	Edu- cation	Age
/	Yes	75k	Single	Masters	23
~	No	50k	Married	Bachelor	35
/	Yes	70k	Single	Masters	26
/	Yes	95k	Single	PhD	41
/	No	40k	Single	Bachelor	18
×	No	85k	Married	Master	55
~	No	60k	Single	Bachelor	30
/	Yes	60k	Married	PhD	35
	Yes	65k	Married	PhD	28

$$w_i = w_i \cdot \begin{cases} e^{\alpha_m}, & \text{if } x_i \text{ was misclassified} \\ e^{-\alpha_m}, & \text{if } x_i \text{ was correctly classified} \end{cases}$$

$$w_i = \frac{w_i}{\sum_{i}^{N} w_i}$$

Sum up to 1

Sample Weight w	3a)	3b)		
1/9	0.04	0.0635		
1/9	0.04	0.0635		
1/9	0.04	0.0635		
1/9	0.04	0.0635		
1/9	0.04	0.0635		
1/9	0.31	0.492		
1/9	0.04	0.0635		
1/9	0.04	0.0635		
1/9	0.04	0.0635		

0.0635
0.0635
0.0635
0.0635
0.0635
0.492
0.0635
0.0635
0.0635

Sample

• Step 4

- 4a) Generate new D_i based on sample weights (misclassified samples are much more likely to be picked)
- 4b) With new D_i , go to Step 1 and continue

Sample Weight w		
0.0635		
0.0635		
0.0635		
0.0635		
0.0635		
0.492		
0.0635		
0.0635		
0.0635		

Age	Edu- cation	Marital Status	Annual Income	Credit Approval
23	Masters	Single	75k	Yes
35	Bachelor	Married	50k	No
26	Masters	Single	70k	Yes
41	PhD	Single	95k	Yes
18	Bachelor	Single	40k	No
55	Master	Married	85k	No
30	Bachelor	Single	60k	No
35	PhD	Married	60k	Yes
28	PhD	Married	65k	Yes

New input for Step 1

Age	Edu- cation	Marital Status	Annual Income	Credit Approval	
23	Masters	Single	75k	Yes	
55	Master	Married	85k	No	
26	Masters	Masters Single		Yes	
41	PhD	Single	95k	Yes	
55	Master	Married	85k	No	
55	Master	Married	85k	No	
26	Masters	Single	70k	Yes	
35	PhD	Married	60k	Yes	
55	5 Master Married 85k		No		

AdaBoost Training — Basic Algorithm

Initialization: Dataset D, |D|=N, with initial sample weights

$$w_i = \frac{1}{N}$$

for m = 1 to M do:

Generate D_m by sampling from D w.r.t. sampling weights w

Train Decision Stump h_m over D_m

Apply h_m to all samples in D and identify misclassified samples

Calculate total error

$$\epsilon_m = \sum_{i}^{N} w_i \cdot \delta(h_m(x_i) \neq y_i)$$

Calculate amount of say

$$\alpha_m = \frac{1}{2} \ln \frac{1 - \epsilon_m}{\epsilon_m}$$

Update sample weights

$$w_i = w_i \cdot \begin{cases} e^{\alpha_m}, & \text{if } x_i \text{ was misclassified} \\ e^{-\alpha_m}, & \text{if } x_i \text{ was correctly classified} \end{cases}$$
 & $w_i = \frac{w_i}{\sum_{i=1}^{N} w_i}$

$$\mathbf{k} \quad w_i = \frac{w_i}{\sum_i^N u}$$

end for

AdaBoost Prediction

- Assume 8 boosted Decision Stumps h₁, ..., h₈
 - \blacksquare Each tree has an "amount of say" $\alpha_{\it m}$
 - Let h_1 , h_3 , h_8 say "Yes"; all other trees say "No"

$$\alpha_m = \frac{1}{2} \ln \frac{1 - \epsilon_m}{\epsilon_m}$$

	ı
$h_1 \mid \alpha_1 = 0.34$	
$h_3 = 1.20$	
$h_8 \alpha_8 = 0.97$	
$h_2 = 0.14$	
$h_4 \alpha_4 = 0.58$	
$h_5 = 0.09$	
$h_6 \alpha_6 = 0.62$	
$h_7 \alpha_7 = 0.45$	

$$0.34 + 1.20 + 0.97 = 2.51$$

Final prediction: "Yes"

$$0.14 + 0.58 + 0.09 + 0.62 + 0.45 = 1.88$$

Gradient Boosted Trees

Gradient Boosting

- Mainly applied to regression algorithms to improve performance
- Very commonly combined with Decision Trees (for regression)

Basic training algorithm

- Start with a initial prediction (e.g., mean over all values)
- Calculate residuals = error between true value and current prediction
- Train Decision Stump to predict residuals
- Update predictions based on predicted residuals
- Repeat...

• Step 1:

- 1a) Calculate residuals $r_{i,m} = y_i f_{m-1}(x_i)$
- 1b) Fit Decision Stump h_m to residuals $r_{i,m}$

Age	Edu- cation	Marital Status	Annual Income	Credit Limit y	f _{m-1} (x)	r _m (x)
23	Master	Single	75k	1,400	1,000	400
35	Bachelor	Married	50k	900	1,000	-100
26	Master	Single	70k	1,300	1,000	300
41	PhD	Single	95k	1,500	1,000	500
18	Bachelor	Single	40k	500	1,000	-500
55	Master	Married	85k	1,200	1,000	200
30	Bachelor	Single	60k	800	1,000	-200
35	PhD	Married	60k	800	1,000	-200
28	PhD	Married	65k	600	1,000	-400

Assume m = 1
$$f_0(x_i) = 1000$$

• Step 2:

- 1a) Calculate predicted residuals $h_m(x_i)$ for all training samples
- 1b) Calculate new predictions $f_m(x_i) = f_{m-1} + \eta \cdot h_m(x_i)$ (here: $\eta = 0.1$)
- 1c) Set m = m+1, go to Step 1

Age	Edu- cation	Marital Status	Annual Income	Credit Limit y	f _{m-1} (x)	r _m (x)	h _m (x)	f _m (x)
23	Master	Single	75k	1,400	1,000	400	350	1,035
35	Bachelor	Married	50k	900	1,000	-100	-300	970
26	Master	Single	70k	1,300	1,000	300	350	1,035
41	PhD	Single	95k	1,500	1,000	500	350	1,035
18	Bachelor	Single	40k	500	1,000	-500	-300	970
55	Master	Married	85k	1,200	1,000	200	350	1,035
30	Bachelor	Single	60k	800	1,000	-200	-266	973
35	PhD	Married	60k	800	1,000	-200	-266	973
28	PhD	Married	65k	600	1,000	-400	-266	973

Note: long-term trend

- \bullet The residuals r_m go towards 0
- The predicted values f_m are closer to the true values y

 $f_{m-1}(x)$

1,000

1.000

1,000

1.000

1.000

1,000

1.000

1,000

1.000

Output for after Step 1 & 2 for m+1

Annual

Income

75k

50k

70k

95k

40k

85k

60k

60k

65k

Credit

Limit v

1,400

900

1,300

1.500

500

1,200

800

800

600

Edu-

cation

Master

Bachelor

Master

PhD

Bachelor

Master

Bachelor

PhD

PhD

Age

23

35

26

41

18

55

30

35

28

Marital

Status

Single

Married

Single

Sinale

Single

Married

Single

Married

Married

Gradient Boosting Training — Basic Algorithm

```
Initialization: Dataset D, f_0(x_i) = mean(y) \eta = 0.1
```

for m = 1 to M do:

Calculate residuals $r_{i,m} = y_i - f_{m-1}(x_i)$

Train Decision Stump h_m over D with with $r_{i,m}$ as targets

Predicted residuals $h_m(x_i)$ for all training samples

Calculate new predictions $f_m(x_i) = f_{m-1} + \eta \cdot h_m(x_i)$

end for

Output: M Decision Stumps $h_1, h_2, ..., h_M$

Gradient Boosting Training — Convergence for x_0 and x_1

Gradient Boosting Prediction

Boosting Methods — Pros & Cons (Compared to Decision Trees)

Pros

■ High accuracy — often state of the art

Cons

- Less Interpretable (arguably even less compared to Random Forests)
- Slower training and prediction → sequential processing → not parallelizable

Summary

Decision Trees

- Intuitive model for classification and regression → interpretable!
- Can handle categorical and numerical data (although tricky in practice)
- Typically good but not great results

Tree Ensembles

- Aim to address limitations of single decision trees (particularly high variance)
- Ensembles of independent models: Bagging, Random Forests
- Ensembles of dependent models: AdaBoost, Gradient Boosted Trees
- State of the art in many application contexts

Solutions to Quick Quizzes

