COS3 lektion 9

Nis Sarup

14. november 2010

9 Virtual-Memory Management

9.1 Background

- Most of Chapter 8 unnecessary with Virtual-Memory.
- Dynamic loading eases the restrictions.
- Having routines and data rarely used in a program take up physical memory is wasteful.
- Virtual-Memory allows programs to require much larger memory than what is available as physical memory.
- More programs can be run at one time, increasing CPU usage.
- Faster running of programs as less I/O is needed.
- Virtual-Memory separates logical memory from physical memory.
- Shared Libraries is easy with Virtual-Memory.
- Likewise is Shared Memory easy.

9.2 Demand Paging

- Demand Paging: Load pages only as they are needed.
- Similar to swapping, but with a lazy swapper.
- Valid/Invalid bit in page-table specifies wether a page is in memory or on disk.
- OS traps a request for an invalid page, loads the page into memory and restart the instruction.
- Demand Paging is not as quick as using only physical memory.
- The Effective Access Time depends on the speed of the medias and the probability of page faults.

9.3 Copy-on-Write

- Newly forked processes share pages.
- Pages that might diverge between the processes is marked for copy-onwrite.
- As soon as one process write to one such page, it is copied to a new page and the written to.
- Processes will end up with as many shared pages as possible.

9.4 Page Replacement

 Page faults can also manifest ob over allocated systems, when no free pages are available.

9.4.1 Basic Page Replacement

- One solution is to find a frame not in use and replace it with the one needed by the process.
- The modify bit in a page table can be used to determine if a frame has been written to. If not, it does not need to be saved and the time to free a frame and load the requested frame is halved as the original frame does not need to be saved.

9.4.2 FIFO Page Replacement

- First In First Out: The oldest page is chosen for replacement.
- Belady's anomaly: For some page-replacement algorithms the page-fault rate may increase as the number of allocated frames increases.
- For FIFO the number of page faults at 4 frames is higher than at 3 fames.

9.4.3 Optimal Page Replacement

- Replace the page that will not be used for the longest period of time.
- Does not suffer from Belady's anomaly.
- It is difficult to implement though, as it requires future knowledge of which frame is going to be used.

9.4.4 LRU Page Replacement

- Least Recently Used algorithm.
- Does not suffer from Belady's anomaly.

9.5 Allocation of Frames

• Single-user system most simple.

9.5.1 Minimum number of Frames

- The minimum number of pages needed for a process to function depends on the computer architecture.
- Some instructions is more than two words big and therefor may need two pages.

9.5.2 Allocation Algorithms

- Easiest algorithm is to split m frames equally among n processes.
- Bigger processes probably need more frames than small processes.
- Proportional allocation takes this into account.

9.5.3 Global versus Local Allocation

- Global replacement: Victim frame is chosen among all frames.
- Local replacement: Victim frame is chosen only among the process' own frames.
- Higher priority processes might be able to choose victim frames from it's own frames or frames of lower priority processes.
- Global replacement results in greater system throughput.

9.5.4 Non-Uniform Memory Access

- Some parts of memory is faster to access than others.
- Memory allocation algorithms need to take NUMA into account for best performance.

9.6 Trashing

- A process is trashing if it spends more time paging than executing.
- Can be caused by the frames of the process getting below the number of frames required for executing set by the computer architecture.
- Trashing severely hampers performance.

9.6.1 Cause of Trashing

- If a system has low CPU utilization, the OS starts up additional processes.
- If a process is trashing, it uses little CPU.
- Adding processes only worsens the problem.
- Locality:
 - A set of frames a process needs to function in it's current state.
 - A process trashes if it has less frames than it's current locality needs.

9.6.2 Working-Set Model

- A number Δ is chosen.
- A list of unique frames used by a process in the last Δ -time is saved.
- The length of that list is a good approximation to how many frames it minimum needs to not trash.
- ullet Doing a sum of that number, D, for all processes will give a number for frames currently needed.
- If D is larger than what is available, some processes must be stopped.
- Otherwise new processes can be started.

9.6.3 Page-Fault Frequency

- High PFF equals trashing.
- When PFF is low, start more processes.
- When PFF is high, suspend some processes.

9.7 Memory-Mapped Files

- Files and I/O can be mapped to virtual memory as well as physical memory.
- The first read of the file is as fast as usual.
- Subsequent reads read the file data directly from memory, greatly improving read-speed.
- This can lead to increased performance.

9.9 Other Considerations

9.9.1 Prepaging

• Prepaging attempts to prevent initial high level of paging when a process starts by paging in all the frames needed at on start.

9.9.2 Page Size

- Smaller pages leads to better memory utilization and longer access times.
- Bigger pages leads to smaller page tables and shorter access times.

9.9.3 TLB Reach

- How much of the virtual memory the TLB can map at one point.
- If the TLB is smaller than a process' working set, the process spends a lot of time looking up where to find its data in the slow page table.

9.9.4 Inverted Page Tables

- Inverted Page Tables does not hold information about the complete logical memory space.
- additional information is needed when page faults occur.

9.9.5 Program Structure

• Taking into account the paged structure of memory when programming/compiling/running program, performance can be increased.

9.9.6 I/O Interlock

- Lock Bits in a page table lock the frames so they cannot be replace by other processes.
- \bullet This is handy for I/O-buffers. For example when reading data from a disk-drive.