离散无记忆信源的扩展

武汉理工大学

Information theory and Coding

>>> 离散无记忆信源的扩展

>>> 扩展信源的熵

因为是DMS,故 $\{X_1,X_2,\dots,X_N\}$ 独立同分布,所以

$$H(X^{N}) = H(X_{1}X_{2} \cdots X_{N}) = H(X_{1}) + H(X_{2}) + \cdots + H(X_{N}) = NH(X)$$

即: 离散无记忆信源的信源熵为各单个符号的符号熵之和。

当各个符号同分布时信源熵为某个符号的符号熵的N倍。N为序列长度。

>>> 扩展信源的概率空间

例 设有离散无记忆信源 $X = \{x_1, x_2\}, P(x_1) = p$

(1)
$$\Re [X^3, P_{X^3}] [X^2, P_{X^2}]$$

$$(2) 当 $p=1/2$ 时,確算)$$

解 (1) 求2次扩展信源的符号表:

$$X^{2} = \{x_{1}x_{1}, x_{1}x_{2}, x_{2}x_{1}, x_{2}x_{2}\}$$

>>> 例 扩展信源模型的求法(续一)

求概率:

$$X = \{x_1, x_2\}$$
 $P(x_1) = p$ $P(x_2) = q = 1 - p$
 $X^2 = \{x_1x_1, x_1x_2, x_2x_1, x_2x_2\}$

根据信源的无记忆特性,有

$$P(x_1x_1) = P(x_1, x_1) = P(x_1)P(x_1) = p^2$$

$$P(x_1x_2) = P(x_1, x_2) = P(x_1)P(x_2) = pq$$

$$P(x_2x_1) = P(x_2, x_1) = P(x_2)P(x_1) = qp = pq$$

$$P(x_2x_2) = P(x_2, x_2) = P(x_2)P(x_2) = q^2$$

概率空间:

$$\begin{bmatrix} X^2 \\ P_{X^2} \end{bmatrix} = \begin{bmatrix} x_1 x_1 & x_1 x_2 & x_2 x_1 & x_2 x_2 \\ p^2 & pq & pq & q^2 \end{bmatrix}$$

>>> 例 扩展信源模型的求法(续一)

求3次扩展信源的符号表:

$$X^{3} = \{x_{1}x_{1}x_{1}, x_{1}x_{1}x_{2}, x_{1}x_{2}x_{1}, x_{1}x_{2}x_{2}, x_{2}x_{1}x_{1}, x_{2}x_{1}x_{2}, x_{2}x_{2}x_{1}, x_{2}x_{2}x_{2}\}$$

概率空间:

$$\begin{bmatrix} X^{3} \\ P_{X^{3}} \end{bmatrix} = \begin{bmatrix} x_{1}x_{1}x_{1} & x_{1}x_{1}x_{2} & x_{1}x_{2}x_{1} & x_{1}x_{2}x_{2} & x_{2}x_{1}x_{1} & x_{2}x_{1}x_{2} & x_{2}x_{2}x_{1} & x_{2}x_{2}x_{2} \\ p^{3} & p^{2}q & p^{2}q & pq^{2} & p^{2}q & pq^{2} & pq^{2} & q^{3} \end{bmatrix}$$

>>> 例 扩展信源模型的求法(续二)

(2) 当 p=1/2 时,胖算) 。有 两种求法。

方法一:
$$H(X) = H(p, 1-p) = H(\frac{1}{2}, \frac{1}{2}) = \log 2 = 1$$
 Bit/符号 $H(X^3) = 3H(X) = 3 \times 1 = 3$ Bit/三元符号

方法二:
$$p=1/2$$
 $q=1-p=1/2$

$$\begin{bmatrix} X^{3} \\ P_{X^{3}} \end{bmatrix} = \begin{bmatrix} x_{1}x_{1}x_{1} & x_{1}x_{1}x_{2} & x_{1}x_{2}x_{1} & x_{1}x_{2}x_{2} & x_{2}x_{1}x_{1} & x_{2}x_{1}x_{2} & x_{2}x_{2}x_{1} & x_{2}x_{2}x_{2} \\ p^{3} & p^{2}q & p^{2}q & pq^{2} & p^{2}q & pq^{2} & pq^{2} & q^{3} \end{bmatrix}$$

$$\begin{bmatrix} X^3 \\ P_{X^3} \end{bmatrix} = \begin{bmatrix} x_1 x_1 x_1 & x_1 x_1 x_2 & x_1 x_2 x_1 & x_1 x_2 x_2 & x_2 x_1 x_1 & x_2 x_1 x_2 & x_2 x_2 x_1 & x_2 x_2 x_2 \\ 1/8 & 1/8 & 1/8 & 1/8 & 1/8 & 1/8 & 1/8 & 1/8 \end{bmatrix}$$

$$H(X^3) = \log 8 = 3$$
 Bit/三元符号

感谢观看!

and

⑤ 武溪理卫大学