Multiplication

1101 multiplicand

 \times 0101 multiplier

Multiplication

Multiplication

multiplicand

1101

RUNNING PRODUCT

```
0000000
          1101 = 00001101
  +
        00000 = 00001101
     + 110100 = 1000001
     +0000000 = 01000001
multiplier
```

Algorithm

```
prod = 0
N = 32
while (N > 0)
    if (Mier & 1) prod += Mand;
    Mier >>= 1;
    Mand <<= 1;
    N--i
```

Multiplier: Take #1

Multiplier: Take #2

Multiplier: Initial State

Step 1: Add Mand to Prod

Step 1: Shift Prod and Mier

Step 2: Add Mand to Prod

Step 2: Shift Prod and Mier

Step 3: Add Mand to Prod

Step 3: Shift Prod and Mier

Step 4: Add Mand to Prod

Step 4: Shift Prod and Mier

Multiplier Take #2: How it works

Iteration	Step	Carry	Prod	Mier
0	Initial Value	0	0000 0000	0101
1	Add + Mult	0	1101 0000	0101
	Shift	0	0110 1000	0010
2	Add+Mult	0	0110 1000	0010
	Shift	0	0011 0100	0001
3	Add+Mult	1	0000 0100	0001
	Shift	0	1000 0010	0000
4	Add+Mult	0	1000 0010	0000
	Shift	0	0100 0001	0000

Low Prod and Mier can be merged

Multiplier: Take #2

Multiplier Array

Multiplier Array

Multiplier Array

Multipler Array Example

Multiplier Array Critical Path?

Multiplier Array Critical Path

- $\bullet A = 0 1 0 1 (5)$
- $\bullet B = 0 1 1 0 (6)$
- $\bullet C = 0.011(3)$
- \bullet A + B + C = 1110 (14)

Carry Save Adder: A + B

0100

CARRY

No need to propagate Carry

Redudant Representation

- Represent a number with two bits per digit
- (Sum, Carry)

$$-(1,0)(1,0)(1,0)(0,0)$$

$$-1110$$

How about this:

$$-(1,0)(0,0)(1,0)(0,1)$$
?

-1100

Carry Save Adder: (A+B) + C

0011 **SUM** A + BCARRY 0 1 0 0 0011 1000 Which number is this? 0011 1110

Carry Save Adder Multiplier Array

Wallace Tree

- Addition done hierarchically
 - Groups of 3 partial products added in parallel
 - Produce (sum, carry)
 - (sum, carry) + another output

Signed Number Multiplication

```
1101 (-3) Mand
0101 (5) Mier
```

1111101

00000

11101

0000

11110001 (-15)

Signed Number Multiplication

```
111001 (-7) Mand
001110 (14) Mier
```

000000000

1111111001

111111101

11111101

11110011110 (-98)

And now for something different

Recall:

$$-A \times (B + C) = A \times B + A \times C$$

- 14 = 16 2
- 001110 = 010000 000010

$$001110$$
 01000
 00010

Signed Number Multiplication

111001 (-7) Mand

010010 (14) Mier

000000000

000000111

Inverse of -7

00000000

0000000

Skip these and do a shift by 2

1111001

Booth's Multiplication

11110011110 (-98)

Booth Encoding

Booth Encoding Generation

A simple table can be used to generate the booth encoding. As bits in the multiplier are shifted right do:

- Each time there is a transition from a 0 to a 1, the multiplicand is added
- Each time there is a transition from 1 to 0 the inverse of the multiplicand is added
- Otherwise do nothing

Mult	Action at	
Bit i	Bit <i>i-1</i>	position i
0	0	0xM
0	1	1xM
1	0	-1xM
1	1	0xM

2-bit Booth Recoding

• 011000011

2-bit Booth Recoding

10111(-9)

Bit-Pair Booth Recoding Example

Doing the multiplication:

Bit-pair recoding results in fewer additions

Multiplier arrays will benefit from this as well

Generating the bit-pair Recording

Multiplier		Next bit in	Action at	
i+1	i	Multiplier (i-1)	position <i>i</i>	
0	0	0	0xM	
0	0	1	1xM	
0	1	0	1xM	
0	1	1	2xM	
1	0	0	-2xM	
1	0	1	-1xM	
1	1	0	-1xM	
1	1	1	0xM	

Division

Division in binary follows the same process as long division by hand:

- Find the smallest number of digits from the dividend that will be greater than the divisor. For every digit that needs to be taken from the dividend, put a 0 in the quotient.
- When the portion of the dividend is large enough, add a 1 in to the quotient and subtract the divisor
- Repeat until no digits in the dividend are left.

Simple Divisor

Register A holds the current remainder for the division

 The current divisor is compared with the remainder by subtracting it from the remainder and checking the sign of the result.

Divisor Operation

- Steps for restoring division:
- 1. Subtract divisor from current remainder
- 2. Test the new remainder:
 - 1. If positive put a 1 in the quotient
 - 2. If negative put a 0 in the quotient and add the divisor back to the remainder to "restore" it back to its original value.
- 3. Shift the quotient and dividend left by 1 bit
- 4. Repeat until all bits in the dividend are consumed.
- Restoring Division:
 - Divisor is added back when larger than remainder

Restoring Division Example

Example: 1000) 1001010

Operation	Sign	Register A (Remainder)	Quotient
Shift	0	0100	1010
Subtract	1	1100	1010 0
Restore	0	0100	10100
Shift	0	1001	0100
Subtract	0	0001	0100 1
Shift	0	0010	1001
Subtract	1	1010	1001 0
Restore	0	0010	10010
Shift	0	0101	0010
Subtract	1	1101	0 010 0
Restore	0	0101	00100
Shift	0	1010	0100
Subtract	0	0010	0100 1

Non-Restoring Division

- If R is negative we add D to restore value
- Can we avoid this?
- At each step we want to do: R D
- When negative we do: R D + D
- Then shift left: 2 x R
- Then subtract D: 2xR D
- What if we don't restore: R D
- Shift: 2x(R D) = 2xR 2xD
- And we want 2xR D
- What to do? (2xR 2xD) + D

Non-Restoring Division Example

Example: 1000)1001010

Operation	Sign	Register A (Remainder)	Quotient
Shift	0	0100	1010
Subtract	1	1100	1010 0
Shift	1	1001	0100
Add/Restore	0	0001	0100 1
Shift	0	0010	1001
Subtract	1	1010	1001 0
Shift	1	0101	0010
Add/Restore	1	1101	0 010 0
Shift	1	1010	0100
Add/Restore	0	0010	0100 1

SRT Division Pointer

- Sweeney, Robertson, and Tocher Division
- SRT is essentially the same as non-restoring division, but is performed in a higher radix:
 - SRT guesses several digits of the quotient at a time
 - SRT has pre-computed tables that allow it to find the right bits depending on remainder and divisor
 - Like non-restoring, if it overshoots, it makes up for it in following cycles

Prof. Natalie Enright Jerger

On-Chip Networks

Natalie Enright Jerger University of Toronto

Li-Shiuan Peh Princeton University

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #8

