Numerical Analysis, FMN011

Carmen Arévalo
Lund University
carmen@maths.lth.se

Piecewise interpolation, Splines

Single vs. Piecewise interpolation polynomials

Interpolate the following 7 points.

x_i	0.0	0.5	1.2	2.6	3.0	3.5	5
$\overline{y_i}$	1	1	4	4.2	3	4	5

Interpolation with $p \in \Pi_6$

When the number of data points is large, it is often unsuitable to use polynomials of high degree

Linear piecewise polynomials

Instead of a single interpolating polynomial, we can use several low degree polynomials over subintervals.

Here a different linear polynomial is used in each $[x_{i-1}, x_i]$

$$S(x) = \begin{cases} S_1(x) &= a_1 + b_1(x - 0.0) & x \in [0.0, 0.5] \\ S_2(x) &= a_2 + b_2(x - 0.5) & x \in [0.5, 1.2] \\ \vdots &\vdots &\vdots \\ S_6(x) &= a_6 + b_6(x - 3.5) & x \in [3.5, 5.0] \end{cases}$$

The coefficients a_j and b_j are computed from the interpolation conditions:

$$S_j(x_{j-1}) = y_{j-1}; \quad S_j(x_j) = y_j$$

Interpolation with a piecewise linear polynomial (6 pieces)

Splines

Polynomial pieces joined together with certain smoothness conditions.

• S is a piecewise polynomial of degree m:

$$S(x) = \begin{cases} S_1(x) & x \in [x_1, x_2] \\ S_2(x) & x \in [x_2, x_3] \\ \vdots & \vdots \\ S_{n-1}(x) & x \in [x_{n-1}, x_n] \end{cases}$$

The points x_i are the knots. The functions S_i are polynomials of degree m.

• S has m-1 continuous derivatives.

Cubic splines

Data points: $\{(x_1, y_1), ..., (x_n, y_n)\}$

$$S_1(x) = a_1 + b_1(x - x_1) + c_1(x - x_1)^2 + d_1(x - x_1)^3,$$

$$for \ x \in [x_1, x_2]$$

$$S_2(x) = a_2 + b_2(x - x_2) + c_2(x - x_2)^2 + d_2(x - x_2)^3,$$

$$for \ x \in [x_2, x_3]$$

:

$$S_{n-1}(x) = a_{n-1} + b_{n-1}(x - x_{n-1}) + c_{n-1}(x - x_{n-1})^{2} + d_{1}(x - x_{n-1})^{3}, \quad \text{for } x \in [x_{n-1}, x_{n}]$$

Properties of cubic splines

- $S \in \Pi_3$ on each $[x_i, x_{i+1}], \quad i = 1, ..., n-1$
- $S(x_k) = y_k, \quad i = 1, \dots, n$
- S, S' and S'' continuous on [a,b].

Existence of cubic splines

Interpolation conditions:

$$S_i(x_i) = y_i, (i = 1, ..., n-1)$$

 $S_{n-1}(x_n) = y_n$

Continuity conditions:

$$S_{i}(x_{i+1}) = S_{i+1}(x_{i+1})$$

$$S'_{i}(x_{i+1}) = S'_{i+1}(x_{i+1})$$

$$S''_{i}(x_{i+1}) = S''_{i+1}(x_{i+1}), (i = 1, ..., n-2)$$

Total number of conditions to be fulfilled: 4n-6 Constructing a spline means finding the coefficients a_i,b_i,c_i,d_i $(i=1,\ldots,n-1)$

Total number of coefficients to be determined:

 $4n-4 \Rightarrow 2$ free conditions or degrees of freedom.

Some types of Cubic Splines

Natural cubic spline:

$$S''(x_1) = 0$$
 and $S''(x_n) = 0$

Clamped cubic spline:

$$S'(x_1) = v_1$$
 and $S'(x_n) = v_n$

Curvature-adjusted cubic spline:

$$S''(x_1) = v_1$$
 and $S''(x_n) = v_n$

Not-a-knot cubic spline:

$$S_1'''(x_2) = S_2'''(x_2)$$
 and $S_{n-2}'''(x_{n-1}) = S_{n-1}'''(x_{n-1})$

(this is MATLAB's default when using the spline command)

Determining the a_i coefficients of a cubic spline

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3, \quad x \in [x_i, x_{i+1}], \quad (i = 1 : n-1)$$

From the interpolation conditions

$$S_i(x_i) = y_i,$$
 $(i = 1, ..., n - 1),$ $a_i = y_i,$ $(i = 1, ..., n - 1)$

Determining b_i and d_i

Define: $h_i = x_{i+1} - x_i$ and $c_n = S''_{n-1}(x_n)$

$$S_i''(x) = 2c_i + 6d_i(x - x_i)$$

$$S_i''(x_{i+1}) = S_{i+1}''(x_{i+1}) \Rightarrow 2c_i + 6d_ih_i = c_{i+1} \Rightarrow d_i = \frac{c_{i+1} - c_i}{3h_i}$$

$$y_{i+1} = y_i + b_ih_i + c_ih_i^2 + d_ih_i^3 \Rightarrow b_i = \frac{y_{i+1} - y_i}{h_i} - \frac{h_i}{3}(c_{i+1} + 2c_i)$$

Determining c_i for the natural spline

$$S'_{i}(x_{i+1}) = S'_{i+1}(x_{i+1}) \Rightarrow$$

$$h_1c_1 + 2(h_1 + h_2)c_2 + h_2c_3 = 3\left(\frac{\Delta_2}{h_2} - \frac{\Delta_1}{h_1}\right)$$

:

$$h_{n-2}c_{n-2} + 2(h_{n-2} + h_{n-1})c_{n-1} + h_{n-1}c_n = 3\left(\frac{\Delta_{n-1}}{h_{n-1}} - \frac{\Delta_{n-2}}{h_{n-2}}\right)$$

where $\Delta_i = y_{i+1} - y_i$

For the natural spline:

$$S_1''(x_1) = S_{n-1}''(x_n) = 0 \Rightarrow c_1 = 0, c_n = 0$$

Matrix form of equations for c_i

$$\begin{bmatrix} 1 & 0 & 0 & & & \\ h_1 & u_2 & h_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & h_{n-2} & u_{n-2} & h_{n-1} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_{n-1} \\ c_n \end{bmatrix} = \begin{bmatrix} 0 \\ w_2 \\ \vdots \\ w_{n-1} \\ 0 \end{bmatrix}$$

where
$$u_i = 2(h_i + h_{i-1})$$
 and $w_i = 3\left(\frac{\Delta_i}{h_i} - \frac{\Delta_{i-1}}{h_{i-1}}\right)$.

The matrix is strictly diagonally dominant, so the system has a unique solution.

Example

Use cubic splines to represent the following data:

x_i	0.0	0.5	1.2	2.6
y_i	1	1	4	4.2

Of all twice differentiable functions that interpolate a given set of data points, the cubic spline has less wiggle!

End Conditions

The top and bottom rows of the system must be replaced

Curvature-adjusted spline: $2c_1 = v_1, 2c_n = v_n$

Clamped spline: $S'(x_1) = v_1$ and $S'(x_n) = v_n$

$$\begin{bmatrix} 2h_1 & h_1 & 0 & \dots & 0 & 0 & | & 3(\Delta_1/h_1 - v_1) \\ 0 & 0 & 0 & \dots & h_{n-1} & 2h_{n-1} & | & 3(v_n - \Delta_{n-1}/h_{n-1}) \end{bmatrix}$$

Not-a-knot spline: $d_1 = d_2$ and $d_{n-2} = d_{n-1}$

$$\begin{bmatrix} h_2 & -(h_1+h_2) & h_1 & \dots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & h_{n-1} & -(h_{n-2}+h_{n-1}) & h_{n-2} & | & 0 \end{bmatrix}$$

Splines in MATLAB

If we use the commands

dim: 1

> sp=spline(x,y) % this creates the spline structure

This says that we have 9 cubic polynomials, and we can get their coefficients:

```
>> [breaks,coeff,L,K]=unmkpp(sp)
breaks =
  Columns 1 through 4
          0.97
                        1.12
                                      2.92
                                                    3.00
 Columns 5 through 8
          3.33
                        3.97
                                      6.10
                                                    8.39
 Columns 9 through 10
          8.56
                        9.44
coeff =
         16.67
                     -27.30
                                    -11.10
                                                    2.58
         16.67
                      -19.99
                                    -18.02
                                                    0.43
      -1276.96
                      69.75
                                    71.30
                                                    0.06
                                    56.34
        287.09
                     -249.36
                                                    5.74
        -23.26
                       38.48
                                    -14.13
                                                    7.44
```

Here we read that the sixth cubic polynomial in our spline is coeff(6,:):

$$1.33(x - 3.97)^3 - 6.27(x - 3.97)^2 + 6.53(x - 3.97) + 8.07$$

Arévalo FMN011

K =

4

Example: solution with a single interpolating polynomial

U.S.A. population (millions)

1920	1930	1940	1950	1960	1970	1980	1990
106.5	123.1	132.1	152.3	180.7	205.0	227.2	249.5

Let's solve the extrapolation problem to estimate the U.S.A. population in 2000:

Interpolate with a 7th degree polynomial: p(2000) = 173.7

Seventh order polynomial gives wrong prediction (extrapolation) for 2000!!!

Solution with cubic spline interpolation

