Tarea 1

1. Sección 14

1.1. Ejercicio 9

• Trace un diagrama de dispersión utilizando el precio como la variable independiente.

• ¿Qué indica el diagrama de dispersión del inciso a) acerca de la relación entre las dos variables?

Solución. Indica que tiene una relación positiva.

 Use el método de mínimos cuadrados para desarrollar la ecuación de regresión estimada.

	X	y	xy	XX
	325	72	23400	105625
	350	74	25900	122500
	67	54	3618	4489
	120	54	6480	14400
	85	64	5440	7225
	180	57	10260	32400
	360	66	23760	129600
	156	67	10452	24336
	595	87	51765	354025
	400	77	30800	160000
Suma	2638	672	191875	954600

$$intercepto = \frac{\sum Y \cdot \sum X^2 - \sum X \cdot \sum XY}{n \cdot \sum X^2 - (\sum X)^2} = \frac{672 \cdot 954600 - 2638 \cdot 191875}{10 \cdot 954600 - 2638^2} \approx 52,31$$

$$pendiente = \frac{n \cdot \sum XY - \sum X \cdot \sum Y}{n \cdot \sum X^2 - (\sum X)^2} = \frac{10 \cdot 191875 - 2638 \cdot 672}{10 \cdot 954600 - (2638)^2} \approx 0,056$$
(1)

$$\implies y = mx + b$$

$$\implies y = 0.056x + 52.31$$

 Proporcione una interpretación para la pendiente de la ecuación de regresión estimada.

Solución. Indica que por cada dolar hay un incremento de 0.056.

■ La maleta de la marca Eagle Creek Hovercraft tiene un precio de \$225. Usando la ecuación de regresión estimada desarrollada en el inciso c), prediga la puntuación para esta maleta.

Solución.

$$\implies y = 0.056x + 52.31$$

$$\implies y = 0.056(225) + 52.31$$

$$\implies y = 64.91$$

1.2. Ejercicio 19

■ Calculelas SCE, STC y SCR.

ANOVA					
	df	SS	MS	F	Significance F
Regression	1	2272	2272	106.918	6.60903E-06
Residual	8	170	21.25		
Total	9	2442			

Solución. •
$$SCE = 170$$

•
$$SCR = 2272$$

- STC = 2442
- \blacksquare Calcule el coeficiente de determinación r^2 . Haga un comentario sobre la bondad del ajuste.

Solución. Dado:

$$r^2 = \frac{SCR}{STC} * 100 = \frac{2272}{2442} * 100 = 93,04\%$$

Eso quiere decir que el modelo explica el 93.04 de la variabilidad de x y y.

• ¿Cuál es el valor del coeficiente de correlación muestral?

Soluci'on.

$$r = \sqrt{0.9304} = 0.9646$$

1.3. Ejercicio 27

 Use estos datos para desarrollar la ecuación de regresión estimada a efecto de estimar el precio de las mochilas y las botas para excursionismo con base en el soporte superior.

SUMMAR	Y OUTPUT	Γ						
Regression	Statistics							
Multiple R								
R Square	0.798151							
Adjusted R	0.77292							
Standard E	17.634							
Observatio	10							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	9836.737	9836.737	31.63366	0.000496			
Residual	8	2487.663	310.9579					
Total	9	12324.4						
(Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	Ipper 95.0
Intercept	49.93069	21.27398	2.347031	0.046898	0.872802	98.98858	0.872802	98.9885
Support	31.20792	5.548686	5.624381	0.000496	18.41263	44.00321	18.41263	44.0032

$$y = 31,20792x + 49,93069$$

- Empleando un nivel de significancia de 0.05, determine si hay relación entre soporte superior y precio.
 - Solución. Basándose en el Valor-P, la H_0 se rechaza ya que el Valor-P ≤ 0.05 .

• ¿Confiaría en usar la ecuación de regresión estimada desarrollada en el inciso a) para estimar el precio de las mochilas y las botas con base en la evaluación del soporte superior?

Solución. No, ya que el Valor-P de la pendiente no es significante.

Estime el precio de una mochila que tiene 4 como evaluación del soporte superior.
 Solución.

$$y = 31,20792x + 49,93069$$
$$y = 31,20792(4) + 49,93069$$
$$y = 165,4$$

1.4. Ejercicio 44

• Trace un diagrama de dispersión usando el peso como variable independiente.

• ¿Parece haber alguna relación entre las dos variables?

Solución. Sí, una relación negativa.

• c) Obtenga la ecuación de regresión estimada que pueda utilizarse para predecir el precio de acuerdo con el peso.

SUMMARY OUTPUT								
Regression Statistics								
Multiple R	0.879962							
R Square	0.774333							
Adjusted R Square	0.760228							
Standard Error	91.8098							
Observations	18							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	462761.1	462761.1	54.90082	1.48E-06			
Residual	16	134864.6	8429.04					
Total	17	597625.8						
	Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%
Intercept	2044.381	226.3543	9.031775	1.11E-07	1564.531	2524.231	1564.531	2524.231
Weight	-28.3499	3.826147	-7.40951	1.48E-06	-36.4609	-20.2388	-36.4609	-20.2388

$$y = -28,3499x + 2044,381$$

• Pruebe la significancia de la relación en un nivel de significancia de 0.05.

Solución. Basándose en el Valor-P, la H_0 se rechaza ya que el Valor-P ≤ 0.05 .

• ¿La ecuación de regresión estimada proporciona un buen ajuste? Explique.

Solución.

$$r^2 = \frac{SCR}{STC} * 100 = \frac{462761}{134864} * 100 = 77,43\%$$

Por lo que la regresión proporciona un buen ajuste.

1.5. Ejercicio 49

 Obtenga una ecuación de regresión estimada que pueda utilizarse para pronosticar los precios de venta dada la extensión en pies cuadrados.

SUMMAR	Y OUTPU	JT						
Regression	Statistics							
Multiple R	0.754682							
R Square	0.569546							
Adjusted F	0.545631							
Standard E	19166							
Observatic	20							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	8.75E+09	8.75E+09	23.81627	0.00012			
Residual	18	6.61E+09	3.67E+08					
Total	19	1.54E+10						
(Coefficients	ındard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%
Intercept	22635.95	20460.07	1.106348	0.283144	-20349.1	65620.96	-20349.1	65620.96
Square Fo	58.95954	12.0814	4.880192	0.00012	33.57746	84.34162	33.57746	84.34162

$$y = 58,95954x + 22635,95$$

• Construya una gráfica de residuales estandarizados contra la variable independiente.

• A la luz de la gráfica, ¿los supuestos acerca de los términos del error y de la forma del modelo parecen razonables?

Solución. No, pareciera que la gráfica no tiene una forma definida.

2. Sección 15

2.1. Ejercicio 10

 Desarrolle una ecuación de regresión estimada para predecir la proporción de juegos ganados, dada la proporción de anotaciones de campo del equipo.

SUMMARY	Y OUTPUT	Γ						
Regression	Statistics							
Multiple R	0.448158							
R Square	0.200846							
Adjusted R	0.171247							
Standard E	0.126636							
Observatio	29							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	0.10882	0.10882	6.785719	0.014763			
Residual	27	0.43299	0.016037					
Total	28	0.54181						
(Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%
Intercept	-1.22071	0.661717	-1.84477	0.076069	-2.57845	0.137017	-2.57845	0.137017
FG%	3.957595	1.519265	2.604941	0.014763	0.840321	7.074869	0.840321	7.074869

$$y = 3,957595x - 1,22071$$

• Interprete la pendiente de la ecuación de regresión estimada obtenida con el inciso a).

Solución. Quiere decir que por cada proporción de anotaciones de campo del equipo, hay un incremento de 3,957595 en la proporción de juegos ganados.

Obtenga una ecuación de regresión estimada para predecir la proporción de juegos ganados dada la proporción de anotaciones de campo del equipo, el porcentaje de tiros de tres puntos del equipo contrario y el número de pérdidas de balón del equipo adversario.

$$y = 4,816565x_1 - 2,58947x_2 + 0,034425x_3 - 1,23459$$

Analice las implicaciones prácticas de la ecuación obtenida en el inciso c).

Soluci'on. Es un modelo con un R^2 bastante malo. No predice perfectamente la relaci\'on lineal.

■ Estime la proporción de juegos ganados por un equipo para el que los valores de las tres variables independientes son: FG% = 0.45; Opp 3 Pt %= 0.34, y Opp TO =17.

$$y = 4,816565x_1 - 2,58947x_2 + 0,034425x_3 - 1,23459$$
$$y = 4,816565(0,45) - 2,58947(0,34) + 0,034425(17) - 1,23459$$
$$y = 0,638$$

2.2. Ejercicio 18

a) En el inciso c) del ejercicio 10 se obtuvo una ecuación de regresión estimada que arrojó la proporción de juegos ganados dado el porcentaje de anotaciones de campo del equipo, la proporción de tiros de tres puntos del conjunto contrario y la cantidad de recuperaciones de balón del equipo adversario. ¿Cuáles son los valores de R^2 y R_a^2 ?

$$r^{2} = \frac{SCR}{STC} = \frac{0,3054558}{0,5418099} = 0,564$$

$$R_{a}^{2} = 1 - (1 - R^{2}) \frac{n-1}{n-p-1} = 1 - (1 - 0,564) \frac{29 - 1}{29 - 2 - 1} = 0,564$$

7

b) ¿Esta ecuación de regresión estimada proporciona un buen ajuste a los datos?
 Explique.

Solución. No, ya que R_a^2 es un valor muy alejado a 1. Por lo que no es una buena ecuación.

2.3. Ejercicio 24

 a) Desarrolle la ecuación de regresión estimada para predecir el sueldo del entrenador dados los ingresos generados por el programa y el porcentaje de victorias.

SUMMAI	CY OUTPO	T						
Regression	Statistics							
Multiple R	0.564555							
R Square	0.318723							
Adjusted I	0.280874							
Standard E	0.328622							
Observatio	39							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	1.818792	0.909396	8.420952	0.001			
Residual	36	3.887715	0.107992					
Total	38	5.706508						
	Coefficients	ındard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.09	pper 95.09
Intercept	-0.68204	0.504361	-1.35228	0.184719	-1.70493	0.340853	-1.70493	0.340853
Revenue	0.049828	0.013451	3.704238	0.000708	0.022547	0.077108	0.022547	0.077108
%Wins	0.014683	0.006291	2.333842	0.025303	0.001004	0.027442	0.001024	0.027442

$$y = 0.049828x_1 + 0.014683x_2 - 0.68204$$

■ Use la prueba F para determinar la significancia global de la relación. ¿Cuál es su conclusión empleando 0.05 como nivel de significancia?

Solución. La hipótesis nula se rechaza por el Valor-P, aunque es evidencia que la relación es significante.

■ Utilice la prueba t para determinar la significancia de cada una de las variables indepen- dientes. ¿Cuál es su conclusión con un nivel de significancia de 0.05?

Solución. Dados los valores-P de las dos variables independientes y menores a 0.05, se concluye que son significantes.

2.4. Ejercicio 51

Calcule las entradas que faltan en esta pantalla.

```
The regression equation is
Y = 8.103 + 7.602 X1 + 3.111 X2
Predictor
                                   SE Coef
                      8,103
                                                   3,0382
                                     2.667
Constant
                      7,602
                                                   3,6114
                                     2.105
Х1
X2
                                      0.613
S = 3.335
                R-sq = 92.3%
                                 R-sq(adj) = \frac{91,02}{8}
Analysis of Variance
SOURCE
                                                         F
                                 SS
                                             MS
                                           806
                                                    71,9221
                               1612
Regression
                             134,4789
                    12
Residual Error
                             1746,4789
Total
```

- Use la prueba F y $\alpha = 0.05$ para identificar si existe una relación significativa. Solución. Se rechaza la H_0 y se determina que es significante.
- Utilice la prueba t y α = 0,05 para demostrar H₀: β₁1 = 0 y H₀: β₂ = 0
 Solución. Las variables X₁ y X₂ son significativas debibo a su valor-P mayor a 0.05.
- Calcule R_a^2 .

$$R_a^2 = 1 - (1 - R^2) \frac{n-1}{n-p-1} = 1 - (1 - 0.923) \frac{15-1}{15-2-1} \approx 0.9102 = 91.02\%$$

2.5. Ejercicio 52

Calcule las entradas que faltan en esta pantalla.

```
The regression equation is
Y = -1.41 + .0235 X1 + .00486 X2
Predictor
                               Coef
                                                SE Coef
Constant
                           -1.4053
                                                0.4848
                                                                     2,7117
Х1
                          0.023467
                                             0.008666
                             0,0486
                                              0.001077
                                                                     4,5125
Х2
S = 0.1298 R-sq = 93,73% R-sq(adj) = 91.74%
Analysis of Variance
                                                              MS
                                                                             F

      Regression
      2
      1.76209

      Residual Error
      7
      0,11791

      Total
      9
      1.88000

                                                                        52,3053
                                                          0,8810
```

 Use la prueba F y 0.05 como nivel de significancia para saber si existe una relación significativa.

Solución. Basándose en la prueba F, hay suficiente evidencia para afirmar que la relación es significante.

• Utilice la prueba t y $\alpha = 0.05$ para probar $H_0: \beta_1 = 0$ y $H_a: \beta_2 = 0$.

Solución. Hay evidencia para afirmar que X_2 es significante, mientras que X_1 no lo es.

• ¿La ecuación de regresión estimada proporciona un buen ajuste a los datos? Explique.

Solución. Basándose en R^2 y R_a^2 se puede afirmar que la ecuación de la regresión estimada tiene un buen ajuste. \blacksquare

3. Sección 16

3.1. Ejercicio 11

En un análisis de regresión con 30 observaciones se obtuvo la siguiente ecuación de regresión estimada.

$$\hat{y} = 17.6 + 3.8x_1 - 2.3x_2 + 7.6x_3 + 2.7x_4$$

Para esta ecuación de regresión estimada, STC = 1805ySCR = 1760.

• Con $\alpha = 0.05$, pruebe la significancia de la relación entre las variables. Suponga que las variables x_1 y x_4 se retiran del modelo y se obtiene la siguiente ecuación de regresión estimada.

$$\hat{y} = 11.1 - 3.6x_2 + 8.1x_3$$

Para este modelo, STC = 1805 y SCR = 1705.

Solución.

$$MSE = \frac{SSE}{n-p-1} = \frac{SST - SSR}{n-p-1} = \frac{1805 - 1760}{30 - 4 - 1} = 1,8$$

$$MSR = \frac{SSR}{p} = \frac{1760}{4} = 440$$
(2)

$$F = \frac{MSR}{MSE} = \frac{440}{1.8} = 244,4444$$

Se rechaza la H_0 y se concluye que la relación es significativa.

• Calcule SCE (x_1, x_2, x_3, x_4)

Solución.

$$SSE = SST - SSR = 45$$

• Calcule SCE (x_2, x_3)

Solución.

$$SSE = SST - SSR = 100$$

• Utilice la prueba F y 0.05 como nivel de significancia para determinar si x_1 y x_2 contribuyen significativamente al modelo.

Solución.

$$F = \frac{\frac{\text{SSE}(x_2, x_3) - \text{SSE}(x_1, x_2, x_3, x_4)}{nmerodetrminosextra}}{\frac{\text{SSE}(x_1, x_2, x_3, x_4)}{n - p - 1}}$$

$$= \frac{\frac{100 - 45}{2}}{\frac{45}{30 - 4 - 1}}$$

$$\approx 15,2778$$
(3)

Se concluye que las variables son significativas.

3.2. Ejercicio 12

 Desarrolle una ecuación de regresión estimada para pronosticar la Scoring Avg. de todos los eventos dado el número promedio de putts en los golpes dados en Green in Reg.

SUMMAR	Y OUTPU	JT						
Regression	Statistics							
Multiple F	0.62189							
R Square	0.38675							
Adjusted	0.36485							
Standard 1	0.5106							
Observati	30							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regressio	1	4.60363	4.60363	17.6582	0.00024			
Residual	28	7.29984	0.26071					
Total	29	11.9035						
C	oefficient:	ndard Eri	t Stat	P-value	ower 95%	Jpper 95%	ower 95.05	pper 95.0%
Intercept	46.2774	6.02602	7.6796	2.3E-08	33.9337	58.6211	33.9337	58.6211
Putting A	14.1028	3.35609	4.20216	0.00024	7.22819	20.9775	7.22819	20.9775

$$y = 14,1028x + 46,2774$$

Desarrolle una ecuación de regresión estimada para pronosticar la Scoring Avg. de todos los eventos dado el tiempo promedio en que una jugadora es capaz de golpear el Green in Reg, y el promedio de veces en que consigue "subir y bajar" una vez que se encuentra en la trampa de arena.

SUMMAR	Y OUTPU	JT						
Regression	Statistics							
Multiple I	0.79796							
R Square	0.63675							
Adjusted	0.59483							
Standard 1	0.40781							
Observati	30							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regressio	3	7.57948	2.52649	15.1917	6.5E-06			
Residual	26	4.32399	0.16631					
Total	29	11.9035						
C	oefficient:	ndard Eri	t Stat	P-value	ower 95%	Jpper 95%	ower 95.05	pper 95.0%
Intercept	59.0219	5.77423	10.2216	1.3E-10	47.1528	70.891	47.1528	70.891
Greens in	-10.281	2.87661	-3.5741	0.0014	-16.194	-4.3683	-16.194	-4.3683
Putting A	11.4132	2.75984	4.13547	0.00033	5.74029	17.0861	5.74029	17.0861
	-1.813	0.92103	-1.9685	0.05976	-3.7062	0.08018	-3.7062	0.08018

$$y = -10,281x_1 + 11,4132x_2 - 1,813x_3 + 59,0219$$

■ Con un el nivel de significancia de 0.05, pruebe si las dos variables independientes agregadas en el inciso el porcentaje de veces en que una jugadora consigue llegar al green en regulación y el promedio de veces en que es capaz de "subir y bajar" una vez que se encuentra en la trampa de arena al lado del green, contribuyen significativamente el desarrollo de la ecuación de regresión en el inciso a). Explique.

Solución.

$$F = \frac{\frac{\text{SSE}(x_2) - \text{SSE}(x_1, x_2, x_3)}{\text{número de términos extra}}}{\frac{\text{SSE}(x_1, x_2, x_3)}{n - p - 1}}$$

$$= \frac{\frac{7,2998 - 4,3240}{2}}{\frac{4,3240}{30 - 3 - 1}}$$

$$= 8,9468$$
(4)

Por lo que se concluye, que es una regresión significativa.

3.3. Ejercicio 14

 Desarrolle una ecuación de regresión estimada para predecir el riesgo de fumar dada la edad y el nivel de presión sanguínea.

SUMMAR	Y OUTPU	T						
Regression	Statistics							
Multiple R	0.89801							
R Square	0.80641							
Adjusted 1	0.78364							
Standard I	6.90826							
Observation	20							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	3379.64	1689.82	35.4081	8.7E-07			
Residual	17	811.31	47.7241					
Total	19	4190.95						
(Coefficients	ındard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.05	pper 95.0%
Intercept	-110.942	16.4699	-6.73607	3.5E-06	-145.691	-76.1939	-145.691	-76.1939
Age	1.315	0.17329	7.58847	7.4E-07	0.9494	1.68061	0.9494	1.68061
Blood								
Pressure	0.2964	0.05107	5.80401	2.1E-05	0.18866	0.40415	0.18866	0.40415

$$y = 1,315x_1 + 0,2964x_2 - 110,942$$

Considere la adición de dos variables independientes al modelo desarrollado en el inciso a): una para la interacción entre la edad y el nivel de presión arterial y otra que indique si la persona es fumadora. Desarrolle una ecuación de regresión estimada utilizando estas cuatro variables independientes.

SUMMAR	Y OUTPU	T						
	G							
	1 Statistics							
Multiple R	0.93606							
R Square	0.8762							
Adjusted l	0.84319							
Standard I	5.88127							
Observation	20							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	4	3672.11	918.027	26.5407	1.2E-06			
Residual	15	518.841	34.5894					
Total	19	4190.95						
(Coefficients	ındard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.09	pper 95.0%
Intercept	-123.165	56.9424	-2.16298	0.0471	-244.535	-1.79518	-244.535	-1.79518
Age	1.51298	0.77956	1.94083	0.07131	-0.1486	3.17457	-0.1486	3.17457
Blood								
Pressure	0.44825	0.34573	1.29654	0.21438	-0.28866	1.18516	-0.28866	1.18516
Smoker	8.86555	3.07365	2.88438	0.01135	2.31423	15.4169	2.31423	15.4169
A-B	-0.00276	0.00481	-0.57333	0.57492	-0.013	0.00749	-0.013	0.00749

$$y = -0.00276x_4 + 8.86555x_3 + 0.44825x_2 + 1.51298x_1 - 123.165$$

• Con un nivel de 0.05 de significancia, lleve a cabo una prueba para determinar si la adición del término interacción y la variable fumador contribuyen significativamente a la ecuación de regresión estimada desarrollada en el inciso a).

Solución.

$$F = \frac{\frac{\text{SSE}(x_1, x_2) - \text{SSE}(x_1, x_2, x_3, x_4)}{\text{nmbero de términos extra}}}{\frac{\text{SSE}(x_1, x_2, x_3, x_4)}{n - p - 1}}$$

$$= \frac{\frac{811,3097 - 518,8406}{2}}{\frac{518,8406}{20 - 4 - 1}}$$

$$= 4,2277$$
(5)

Por lo tanto, es significativo.

3.4. Ejercicio 17

The Ladies Professional Golfers Association (LPGA) lleva estadísticas sobre el desempeño y las ganancias de los miembros del LPGA Tour. Las estadísticas de fin de año sobre el papel de las 30 jugadoras que obtuvieron las mejores ganancias totales en la LPGA Tour de 2005 apArecen en el archivo titulado LPGATour2 (sitio web de LPGATour, 2006). Earnings (ganancias) constituyen el resultado total en miles de dólares en todos los eventos de la gira; Scoring Avg. es la puntuación promedio para todos los eventos; Drive Average es la distancia promedio en yardas alcanzada en el drive por la jugadora; Greens in Reg. es el porcentaje de veces que la golfista llega al green en regulación; Putting Avg. es el promedio de putts en el green en regulación, y Sand Saves es el porcentaje de veces que una jugadora es capaz de logra "subir y bajar" (up and down) cuando se encuentra en la trampa de arena al lado del green. Éste se considera un golpe en la regulación si alguna parte de la bola toca la superficie del putting y la diferencia entre el valor del par de hoyos y el número de golpes que lleva a golpear el green es por lo menos de 2. DriveGreens denota una nueva variable independiente que representa la interacción entre la distancia media alcanzada en el drive por la jugadora y el porcentaje de veces que es capaz de alcanzar el green en regulación. Utilice los métodos de esta sección a efecto de desarrollar la mejor ecuación de regresión múltiple estimada para calcular el Scoring Avg. de una jugadora en todos los eventos.

Solución. Matriz de correlación:

	Scoring Avg.	nings (\$10	Drive Average	Greens in Reg.	Putting Avg.	Sand Saves	DriveGreens
Scoring Avg.	1						
Earnings (\$1000)	-0.75393899	1					
Drive Average	-0.303704195	0.267689	1				
Greens in Reg.	-0.574877327	0.565748	0.356147201	1			
Putting Avg.	0.621889954	-0.50675	-0.259380878	-0.232217067	1		
Sand Saves	-0.312977045	0.499926	-0.020079244	0.095130449	-0.0744091	1	
DriveGreens	-0.560227807	0.532741	0.784664141	0.858181299	-0.3017199	0.06280341	1

Por otra parte, la regresión lineal:

SUMMARY O	UTPUT							
Regressio	n Statistics							
Multiple R	0.866000555							
R Square	0.74995696							
Adjusted R Sc	0.684728341							
Standard Error	0.359732932							
Observations	30							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	6	8.92708768	1.487848	11.49736	5.98E-06			
Residual	23	2.976378987	0.129408					
Total	29	11.90346667						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%
Intercept	-49.92520686	48.04436538	-1.03915	0.309537	-149.313	49.46214	-149.313	49.46214
Earnings (\$10	-0.000388424	0.000278775	-1.39332	0.176842	-0.00097	0.000188	-0.00097	0.000188
Drive Average	0.446670187	0.190347095	2.346609	0.027928	0.052907	0.840433	0.052907	0.840433
Greens in Reg	158.6231405	70.02189001	2.265336	0.03322	13.77182	303.4745	13.77182	303.4745
Putting Avg.	7.858943246	2.890027288	2.719332	0.01223	1.880466	13.83742	1.880466	13.83742
Sand Saves	-0.090426931	1.02409938	-0.0883	0.930403	-2.20894	2.028084	-2.20894	2.028084
DriveGreens	-0.656568379	0.278722405	-2.35564	0.02739	-1.23315	-0.07999	-1.23315	-0.07999

Se determinó que el valor-P de la variable Sand Saves es demasiado elevado, por lo que se decidió eliminarlo.

SUMMARY OUTP	PUT							
Regression	Statistics							
Multiple R	0.865951615							
R Square	0.749872199							
Adjusted R Square	0.69776224							
Standard Error	0.352218442							
Observations	30							
ANOVA								
	df		MS	F	gnificance	F		
Regression	5	8.926079	1.785216	14.39019	1.47E-06			
Residual	24	2.977388	0.124058					
Total	29	11.90347						
	Coefficients	ındard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.09	pper 95.0%
Intercept	-50.6641456	46.32165	-1.09375	0.284923	-146.267	44.93904	-146.267	44.93904
Earnings (\$1000)	-0.000400696	0.000237	-1.69346	0.103309	-0.00089	8.76E-05	-0.00089	8.76E-05
Drive Average	0.449773961	0.183166	2.45556	0.02169	0.071739	0.827809	0.071739	0.827809
Greens in Reg.	159.8149892	67.27335	2.375606	0.025851	20.96963	298.6604	20.96963	298.6604
Putting Avg.	7.793844065	2.736034	2.848592	0.008867	2.146948	13.44074	2.146948	13.44074

Por otra parte, también se determinó que la variable Earnings, tiene un Valor-P superior a 0.05, por lo que se decidió eliminarlo.

SUMMAKI OUIF	UI							
Regression Statistics								
Multiple R	0.848518577							
R Square	0.719983775							
Adjusted R Square	0.675181179							
Standard Error	0.365139086							
Observations	30							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	4	8.570303	2.142576	16.07014	1.23E-06			
Residual	25	3.333164	0.133327					
Total	29	11.90347						
	Coefficients	ındard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.09	pper 95.09
Intercept	-88.09849682	42.20023	-2.08763	0.04718	-175.011	-1.18549	-175.011	-1.18549
Drive Average	0.590714727	0.169151	3.492231	0.0018	0.242342	0.939088	0.242342	0.939088
Greens in Reg.	209.1869123	62.8518	3.328256	0.002709	79.7412	338.6326	79.7412	338.6326
Putting Avg.	9.735789766	2.575255	3.780515	0.000869	4.431953	15.03963	4.431953	15.03963
DriveGreens	-0.867656398	0.247815	-3.50123	0.00176	-1.37804	-0.35727	-1.37804	-0.35727

Finalmente, se llegó a un modelo de 4 variables, considerando:

• Drive Average = x_1

- Greens in Reg = x_2
- Putting Avf = x_3
- DriveGreen = x_4

$$\implies y = 0,5907x_1 + 209,1869_2 + 9,7378x_3 - 0,8676x_4 - 88,0984$$

16