Synthesealgorithmus

Überführen Sie das Relationenschema mit Hilfe des Synthesealgorithmus in die 3. Normalform!

$$FA = \left\{ \begin{cases} \{F\} \to \{E\}, \\ \{A\} \to \{B, D\}, \\ \{A, E\} \to \{D\}, \\ \{A, E\} \to \{E, F\}, \\ \{A, G\} \to \{H\}, \end{cases} \right.$$

(a) Kanonische Überdeckung

(i) Linksreduktion

— Führe für jede funktionale Anhängigkeit $\alpha \to \beta \in F$ die Linksreduktion durch, überprüfe also für alle $A \in \alpha$, ob A überflüssig ist, d. h. ob $\beta \subseteq A$ ttrHülle $(F, \alpha - A)$.

Wir betrachten nur die zusammengesetzten Attribute:

(ii) Rechtsreduktion

— Führe für jede (verbliebene) funktionale Abhängigkeit $\alpha \to \beta$ die Rechtsreduktion durch, überprüfe also für alle $B \in \beta$, ob $B \in AttrH\"{u}lle(F - (\alpha \to \beta) \cup (\alpha \to (\beta - B)), \alpha)$ gilt. In diesem Fall ist B auf der rechten Seite überflüssig und kann eleminiert werden, d. h. $\alpha \to \beta$ wird durch $\alpha \to (\beta - B)$ ersetzt.

Nur die Attribute betrachten, die rechts doppelt vorkommen:

Ε

AttrHülle(
$$F \setminus \{F\} \to \{E\}, \{F\}) = \{F\}$$

AttrHülle($F \setminus \{A\} \to \{E, F\} \cup \{A\} \to \{E\}, \{A\}) = \{A, B, D, F, E\}$

D

 $AttrH\"ulle(F \setminus \{A\} \rightarrow \{D\}, \{A\}) = \{A, B, D, F, E\}$

 $\{A\} \to \{D\}$ kann wegen der Armstrongschen Dekompositionsregel weggelassen werden. Wenn gilt $\{A\} \to \{B,D\}$, dann gilt auch $\{A\} \to \{B\}$ und $\{A\} \to \{D\}$

$$FA = \left\{ \begin{array}{c} \{F\} \rightarrow \{E\}, \\ \{A\} \rightarrow \{B, D\}, \\ \{A\} \rightarrow \{\emptyset\}, \\ \{A\} \rightarrow \{\emptyset\}, \\ \{A\} \rightarrow \{F\}, \\ \{A, G\} \rightarrow \{H\}, \end{array} \right.$$

(iii) Löschen leerer Klauseln

— Entferne die funktionalen Abhängigkeiten der Form $\alpha \to \emptyset$, die im 2. Schritt möglicherweise entstanden sind.

$$FA = \left\{ \begin{array}{c} \{F\} \rightarrow \{E\}, \\ \{A\} \rightarrow \{B, D\}, \\ \{A\} \rightarrow \{F\}, \\ \{A, G\} \rightarrow \{H\}, \end{array} \right.$$

(iv) Vereinigung

— Fasse mittels der Vereinigungsregel funktionale Abhängigkeiten der Form $\alpha \to \beta_1, \dots, \alpha \to \beta_n$, so dass $\alpha \to \beta_1 \cup \dots \cup \beta_n$ verbleibt.

$$FA = \left\{ \begin{cases} \{F\} \to \{E\}, \\ \{A\} \to \{B, D, F\}, \\ \{A, G\} \to \{H\}, \end{cases} \right\}$$

(b) Relationsschemata formen

— Erzeuge für jede funktionale Abhängigkeit $\alpha \to \beta \in F_c$ ein Relationenschema $\mathcal{R}_\alpha := \alpha \cup \beta$.

$$R_1(\underline{F}, E)$$

 $R_2(\underline{A}, B, D, F)$
 $R_3(\underline{A}, \underline{G}, H)$

(c) Schlüssel hinzufügen

— Falls eines der in Schritt 2. erzeugten Schemata R_{α} einen Schlüsselkandidaten von \mathcal{R} bezüglich F_c enthält, sind wir fertig, sonst wähle einen Schlüsselkandidaten $\mathcal{K} \subseteq \mathcal{R}$ aus und definiere folgendes zusätzliche Schema: $\mathcal{R}_{\mathcal{K}} := \mathcal{K}$ und $\mathcal{F}_{\mathcal{K}} := \emptyset$

 $R_{1}(\underline{F}, E)$ $R_{2}(\underline{A}, B, D, F)$ $R_{3}(\underline{A}, \underline{G}, H)$ $R_{4}(\underline{A}, \underline{C}, \underline{G})$

(d) Entfernung überflüssiger Teilschemata

— Eliminiere diejenigen Schemata R_{α} , die in einem anderen Relationenschema $R_{\alpha'}$ enthalten sind, d. h. $R_{\alpha} \subseteq R_{\alpha'}$.

Ø Nichts zu tun