

Tutorial 2: Distributed Query Processing

+ Q1 Distributed Query Processing

- At the global level, distributed query processing consists of three main steps:
 - Query Decomposition
 - 2. Data Localization
 - 3. Global Optimization
- Discuss these three steps, focusing on the input, output, objectives for each step.

+ Q1 Layers of Query Processing

+ Distributed Query Processor

- From high level query
 - Relational Calculus: $\{t|F(t)\}$
 - $\{t \mid EMPLOYEE(t) \text{ and } t.SALARY > 10000\}$
 - SQL Query:
 - SELECT ... FROM ... WHERE ...
- To a sequence of database operators on fragments
 - Relational Algebra
 - Selection $\sigma_F(R)$ F is a formula: SALARY > 10000
 - Projection $\Pi_{A,B}(R)$ A, B are two attributes of R
 - Union $R \cup S$
 - Difference R S
 - **Cartesian Product** $R \times S$

+ Relational Algebra Operation Complexity

Operation	Complexity
Selection Project (without duplicate elimination)	O(n)
Project (with duplicate elimination) Group by	$O(n \log n)$
Join Semi-Join Division Set Operators	$O(n \log n)$
Cartesian Product	$O(n^2)$

Find a value from a tree takes $O(\log n)$ time

- Optimization Principle
 - Reduce number of operations
 - Reduce size *n*

+ Q1 Layers of Query Processing

+ Q1-1 Query Decomposition

Input: User query on global data expressed in relational calculus.

SELECT ENAME

FROM EMP, ASG

WHERE EMP.ENO = ASG.ENO AND ASG.PNO= "P1"

AND (DUR=12 OR DUR=24)

Output: An algebraic query on global relations

 Π_{ENAME}

- Nothing to do with the distribution of data
 - Same for centralized and distributed system

+ Q1-1 Query Decomposition

Objective:

- Same as centralized DBMS
 - Semantically correct
 - Redundant work is avoided
 - Better query performance

Steps

- Normalization
- 2. Analysis
- 3. Redundancy Removal
- 4. Rewrite

Normalization

- Transform the WHERE clause to normal form
- Conjunctive normal form
 - $(p_{11} \lor p_{12} \lor ... \lor p_{1n}) \land ... \land (p_{11} \lor p_{12} \lor ... \lor p_{1n})$
 - EMP.ENO = ASG.ENO \(\Lambda \) ASG.PNO = "P1" \(\Lambda \) (DUR=12 \(\mathbb{V} \) DUR=24)
- Disjunctive normal form
 - $(p_{11} \land p_{12} \land \dots \land p_{1n}) \lor \dots \lor (p_{11} \land p_{12} \land \dots \land p_{1n})$
 - (EMP.ENO = ASG.ENO ∧ ASG.PNO = "P1" ∧ DUR=12)
 - (EMP.ENO = ASG.ENO \(\Lambda\) ASG.PNO = "P1" \(\Lambda\) DUR=24)
 - Replicated join and select
- One form can be converted to another through transformation rules.

2. Analysis

- Remove impossible or unnecessary normalized queries
- 1. Type Incorrect
 - Attribute or relation name not defined in global schema
 - Operation applied on wrong type
 - Birthdate > 20
- 2. Semantically Incorrect

```
SELECT ENAME, RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND PNAME = "CAD/CAM"
AND DUR \geq 36
AND TITLE = "Programmer"
```


Elimination of Redundancy

```
SELECT TITLE
FROM
         EMP
WHERE (NOT (TITLE = "Programmer")
AND
     (TITLE = "Programmer"
OR TITLE = "Elect. Eng.")
AND
        NOT (TITLE = "Elect. Eng."))
OR
        ENAME = "J. Doe"
                                            (\neg p_1 \land (p_1 \lor p_2) \land \neg p_2) \lor p_3
p_1: TITLE = "Programmer"
                                            = (\neg p_1 \land ((p_1 \land \neg p_2) \lor (p_2 \land \neg p_2)) \lor p_3
p_2: TITLE="Elect.Eng"
                                            = (\neg p_1 \land p_1 \land \neg p_2) \lor (\neg p_1 \land p_2 \land \neg p_2)) \lor p_3
p_3: ENAME="J. Doe"
                                            = (false \land \neg p_2) \lor (\neg p_1 \land false)) \lor p_3
                                            = false \lor false \lor p_3
 SELECT TITLE
                                            = p_3
FROM
            EMP
WHERE ENAME = "J. Doe"
```


Rewriting

- Rewrite to relational algebra
- Operation Tree

SELECT ENAME

FROM PROJ, ASG, EMP

WHERE ASG.ENO = EMP.ENO

AND ASG.PNO = PROJ.PNO

AND ENAME != "J. Doe"

AND PROJ.PNAME = "CAD/CAM"

AND (DUR = 12 OR DUR = 24)

Rewriting

- Separate the unary operations
 - Simplify query expression
- Group unary operation on same relation together
- Commute binary with unary
 - Selection/Projection first
- Reorder binary operations

+ Q1 Layers of Query Processing

+ Q1-2 Data Localization

- Consider the distribution of data
 - Fragments
- Input: Relational algebra query from data decomposition
- Output: An algebraic query expressed on physical fragments
- Objective:
 - Consider the data distribution
 - Localize the query's data using data distribution information in the fragment schema

+ Q1-2 Data Localization

Localized Query

- Replace the leaves of the operator tree with subtrees corresponding to the localization programs
- Not efficient

Reduced Query

- Push unary operation down (Selection and Projection)
- Reduce HF with selection and join
- Reduce VF with Join

(a) Localized query

+ Q1 Layers of Query Processing

+ Q1-3 Global Optimization

- Input: Reduced Queries on fragments
- Output:
 - Query execution plan minimizes the objective cost function
 - Communication operations

+ Q1-3 Global Optimization

Component

- Search Space / Solution Space
 - Set of alternative execution plans
- Cost Model/Function
 - I/O cost + CPU cost + Communication cost
 - Join order
 - Semi-Join
- 3. Search Strategy/Algorithm
 - Dynamic programming, Greedy, Randomized

Objective:

- Find the best (not necessarily optimal) global execution schedule/query plan
- Minimize a cost function

(b) bushy join tree

+ Q2 Localization

■ PROJ2 = $\sigma_{PNO>"P2"}$ PROJ

EMP	EMP			
ENO	ENAME	TITLE		
E1	J. Doe	Elect. Eng		
E2	M. Smith	Syst. Anal.		
E3	A. Lee	Mech. Eng.		
E4	J. Miller	Programmer		
E5	B. Casey	Syst. Anal.		
E6	L. Chu	Elect. Eng.		
E7	R. Davis	Mech. Eng.		
E8	J. Jones	Syst. Anal.		

ASG			
ENO	PNO	RESP	DUR
E1 E2 E2 E3 E3 E4	P1 P1 P2 P3 P4 P2	Manager Analyst Analyst Consultant Engineer Programmer	12 24 6 10 48 18
E5	P2	Manager	24
E6 E7	P4 P3	Manager Engineer	48 36
E8	P3	Manager	40

PAY

PROJ	
PNO	PNAM

PNO	PNAME	BUDGET
P1 P2 P3 P4	Instrumentation Database Develop. CAD/CAM Maintenance	150000 135000 250000 310000

. , ,,	
TITLE	SAL
Elect. Eng.	40000
Syst. Anal.	34000
Mech. Eng.	27000
Programmer	24000

Transform the following query into a reduced query on fragments:

- SELECT ENO, PNAME
- FROM PROJ, ASG
- WHERE

PROJ.PNO = ASG.PNO AND PNO = "P4"

EMP	EMP			
EN	0	ENAME	TITLE	
Е	1	J. Doe	Elect. Eng	
E	2	M. Smith	Syst. Anal.	
E	3	A. Lee	Mech. Eng.	
E	4	J. Miller	Programmer	
E	5	B. Casey	Syst. Anal.	
E	6	L. Chu	Elect. Eng.	
E	7	R. Davis	Mech. Eng.	
Е	8	J. Jones	Syst. Anal.	

ASG			
ENO	PNO	RESP	DUR
E1 E2	P1 P1	Manager Analyst	12 24
E2	P2	Analyst	6
E3	P3	Consultant	10
E3	P4	Engineer	48
E4	P2	Programmer	18
E5	P2	Manager	24
E6	P4	Manager	48
E7	P3	Engineer	36
E8	P3	Manager	40

PROJ

F	PNO	PNAME	BUDGET
F	P1 P2 P3 P4	Instrumentation Database Develop. CAD/CAM Maintenance	150000 135000 250000 310000

F	PA	1
Г		

TITLE	SAL
Elect. Eng.	40000
Syst. Anal.	34000
Mech. Eng.	27000
Programmer	24000

- Localized query
 - SELECT ENO, PNAME
 - FROM PROJ1 U PROJ2, ASG
 - WHERE

+ Q2-1 Reduced Query

- Reduce with selection
 - SELECT ENO, PNAME
 - FROM PROJ, ASG
 - WHERE

$$(PROJ1 = \sigma_{PNO \leq "P2"} PROJ) \land (PNO = "P4") = \Phi$$
 $PROJ2 = \sigma_{PNO \geq "P2"} PROJ$

PROJ1, ASG PROJ2, ASG

+ Q2-1 Reduced Query

- SELECT ENO, PNAME
- FROM PROJ2, ASG
- WHERE

Reduced query

+ Q2.2

■ PROJ2 =
$$\sigma_{PNO>"P2"}$$
 PROJ

$ \wedge$ \bigcirc \wedge	_ ~	A C C
■ AOG I	$= \sigma_{PNO \leq "P2"}$	HOG

■ ASG2 = $\sigma_{\text{"P2"} < \text{PNO} \leq \text{"P3"}}$ ASG

■ ASG3 = $\sigma_{PNO>"P3"}$ ASG

EMP		
ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.

ASG			
ENO	PNO	RESP	DUR
E1	P1	Manager	12
E2	P1	Analyst	24
E2	P2	Analyst	6
E3	P3	Consultant	10
E3	P4	Engineer	48
E4	P2	Programmer	18
E5	P2	Manager	24
E6	P4	Manager	48
E7	P3	Engineer	36
E8	P3	Manager	40

PNO	PNAME	BUDGET
P1 P2 P3	Instrumentation Database Develop. CAD/CAM Maintenance	150000 135000 250000 310000

PAY

TITLE	SAL
Elect. Eng.	40000
Syst. Anal.	34000
Mech. Eng.	27000
Programmer	24000

- Transform the following query into a reduced query on fragments, and determine whether it is better than the localized query:
 - SELECT RESP, BUDGET
 - FROM ASG, PROJ
 - WHERE

ASG.PNO = PROJ.PNO
AND PNAME = "CAD/CAM"

- Localized query:
 - SELECT RESP, BUDGET
 - FROM PROJ1 U PROJ2, ASG1 U ASG2 U ASG3
 - WHERE

ASG.PNO = PROJ.PNO AND PNAME = "CAD/CAM"

- SELECT RESP, BUDGET
- FROM PROJ, ASG
- WHERE

ASG.PNO = PROJ.PNO

AND PNAME = "CAD/CAM"

PROJ1, ASG1 PROJ1, ASG2 PROJ1, ASG3 PROJ2, ASG1 PROJ2, ASG2

PROJ2, ASG3

+ Q2-2 Reduced Query


```
 (PROJ1 = \sigma_{PNO\leq"P2"} PROJ) \land (ASG1 = \sigma_{PNO\leq"P2"} ASG)   (PROJ2 = \sigma_{PNO>"P2"} PROJ) \land (ASG2 = \sigma_{"P2"<PNO\leq"P3"} ASG)   (PROJ2 = \sigma_{PNO>"P2"} PROJ) \land (ASG3 = \sigma_{PNO>"P3"} ASG)
```

+ Q2-2 Reduced Query

- Better?
 - Centralized Computation & Network is slow
 - Same Communication
 - Parallel Computation
 - Compute in parallel
 - Eliminate unnecessary work

Reduced query

+ Q3 Semi-Join

Join

- R and S on the same server
 - From disk to memory
 - Communication Cost: 0

R,S

- R and S on different servers
 - Same join result
 - Send data over network
 - Network is much slower than disk and memory
 - Network Cost dominate
 - Site 1 to Site 2:
 - Send R
 - Cost: 10
 - Or Site 2 to Site 1:
 - Send S
 - Cost: 12

R(A,B)

A	В
1	4
1	5
2	4
2	6
3	7

THE UNIVERSITY

AUSTRALIA

В	C	D
4	5	0
4	7	8
5	0	1
5	2	1

S(B,C,D)

A	В	С	D
1	4	5	0
1	4	7	8
1	5	0	1
1	5	2	1
2	4	5	0

4

 $R \bowtie S$

8

- Network Transfer cost dominates the total cost
- How to reduce the data size sent over network?
- For R
 - Only {(1,4) (1,5) (2,4)} is useful
 - But Site 1 does not know it
- The common attribute B acts as a filter
 - If Site 1 knows S.B has {4,5}
 - No need to send {(2,6)(3,7)} to Site 2
 - Site 2 to Site 1
 - **4**,5
 - Cost: 2
 - Site 1 to Site 2
 - **(**1,4) (1,5) (2,4)}
 - Cost: 6
 - Total Cost: 8

S

+ Q3-1

- 1. $R \propto S$
 - $\blacksquare = \Pi_{R(A,B)}(R \bowtie S)$
 - 1. Select the values of S.B.
 - **4**,5
 - 2. Send S.B from Site 2 to Site 1
 - 3. Join $R \bowtie S.B$
 - Only keeps the left table's attributes

R		
A	В	
1	4	
1	5	
2	4	
2	6	
3	7	

, <u>,</u>		S
В	С	D
4	5	0
4	7	8
5	0	1
5	2	1
п (с)	,	
П _В (S)		

 $\mathsf{R} \propto \mathsf{S}$

Α	В
1	4
1	5
2	4

+ Q3-2

- 2. $S \propto R$
 - $\blacksquare = \Pi_{B,C,D}(S \bowtie R)$
 - Select the values of R.B.
 - **4**,5,6,7
 - Send R.B from Site 1 to Site 2
 - Join S ⋈ R.B

R	
Α	В
1	4
1	5
2	4
2	6
3	7
	П _в (R)

	S		
В	С	D	
4	5	0	
4	7	8	
5	0	1	
5	2	1	

В	С	D
4	5	0
4	7	8
5	0	1
5	2	1

+ Q3-3 Semi-Join for Distributed DB

- Assume R is at site 1 and S is at site 2, and a query R ⋈ S has been issued at site 2.
 - 1. Give steps for a query processing strategy using semi-join,
 - Check if the semi-join is a beneficial option in this case (ignore local processing cost).
- Issue at Site 2
 - Site 2 is responsible to return the query result
 - Join Computation should be on Site 2
 - Otherwise, send results from Site 1 to Site 2
 - Additional useless cost
- Use semi-join to reduce the network cost

Issued at Site 2 Computation on Site 1

+ Q3-3

2

Cost:6

Steps:

- 1. Site 2 sends t1 = $\Pi_B(S)$ to Site 1;
- 2. Site 1 sends $t2 = R \propto t1$ to Site 2;
- 3. Site 2 returns $t2 \bowtie S$ to the user.

		В	С	D	
		4	5	0	
R ∝ S.B	M	4	7	8	ı
		5	0	1	
		5	2	1	

Site 2

Α	В	С	D
1	4	5	0
1	4	7	8
1	5	0	1
1	5	2	1
2	4	5	0
2	4	7	8