Introduction to Machine Learning

Spectral Clustering

Mingchen Gao

Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA mgao8@buffalo.edu Slides Adapted from Varun Chandola

Outline

Spectral Clustering

Graph Laplacian Spectral Clustering Algorithm

2 / 9

Spectral Clustering

- An alternate approach to clustering
- ▶ Let the data be a set of *N* points

$$\mathbf{X} = \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$$

▶ Let **S** be a $N \times N$ similarity matrix

$$S_{ij} = sim(\mathbf{x}_i, \mathbf{x}_j)$$

- ▶ sim(,) is a similarity function
- Construct a weighted undirected graph from S with adjacency matrix, W

$$W_{ij} = \begin{cases} sim(\mathbf{x}_i, \mathbf{x}_j) & \text{if } \mathbf{x}_i \text{ is nearest neighbor of } \mathbf{x}_j \\ 0 & otherwise \end{cases}$$

▶ Can use more than 1 nearest neighbors to construct the graph

Spectral Clustering as a Graph Min-cut Problem

- ightharpoonup Clustering f X into f K clusters is equivalent to finding f K cuts in the graph f W
 - \triangleright A_1, A_2, \ldots, A_K
- Possible objective function

$$cut(A_1, A_2, \ldots, A_K) \triangleq \frac{1}{2} \sum_{k=1}^K W(A_k, \bar{A}_k)$$

• where \bar{A}_k denotes the nodes in the graph which are **not in** A_k and

$$W(A, B) \triangleq \sum_{i \in A, i \in B} W_{ij}$$

Straight min-cut results in trivial solution

Normalized Min-cut Problem

$$normcut(A_1, A_2, \dots, A_K) \triangleq \frac{1}{2} \sum_{k=1}^K \frac{W(A_k, \bar{A}_k)}{vol(A_k)}$$

where $vol(A) \triangleq \sum_{i \in A} d_i$, d_i is the weighted degree of the node i

Mingchen Gao

NP Hard Problem

- ▶ Equivalent to solving a 0-1 knapsack problem
- ▶ Find *N* binary vectors, \mathbf{c}_i of length *K* such that $c_{ik} = 1$ only if point *i* belongs to cluster *k*
- ▶ If we relax constraints to allow c_{ik} to be real-valued, the problem becomes an eigenvector problem
 - ► Hence the name: spectral clustering

6 / 9

The Graph Laplacian

$$L \triangleq D - W$$

▶ D is a diagonal matrix with degree of corresponding node as the diagonal value

Properties of Laplacian Matrix

- 1. Each row sums to 0
- $2.\,\,1$ is an eigen vector with eigen value equal to 0
- 3. Symmetric and positive semi-definite
- 4. Has N non-negative real-valued eigenvalues
- 5. If the graph (**W**) has K connected components, then **L** has K eigenvectors spanned by $\mathbf{1}_{\mathbf{A}_1}, \ldots, \mathbf{1}_{\mathbf{A}_K}$ with 0 eigenvalue.

7 / 9

Spectral Clustering Algorithm

Observation

- ▶ In practice, **W** might not have *K* exactly isolated connected components
- By perturbation theory, the smallest eigenvectors of L will be close to the ideal indicator functions

Algorithm

- Compute first (smallest) K eigen vectors of L
- ▶ Let **U** be the $N \times K$ matrix with eigenvectors as the columns
- Perform kMeans clustering on the rows of U

References

Murphy Book Chapter 21.5