Course Syllabus

Course	CISC 7026 Fall 2025
Time	19:00-22:00, Fridays
Location	Room E6-1102C
Description	This course introduces the theory and application of deep neural networks
Instructor	Steven Morad <smorad at="" um.edu.mo=""></smorad>
Office Hours	14:00-16:00 Friday
Grading	• Assignments: 30%
	• Exams: 30%
	• Final Project: 30%
	Participation: 10%
Cheating Policy	Any students caught cheating will fail the entire course
Exam Policy	Lowest exam score dropped
Late Work Policy	• –25% 0-1 days late
	• -50% 1-2 days late
	• -75% 2-3 days late
	• -100% 3+ days late
Prerequisites	Linear Algebra
	Multivariable Calculus
	Programming in Python
Preliminary	Week 1 (08.22): Course Introduction
Lecture Schedule	• Week 2 (08.29): Linear Regression (D2L 3.1, 3.6)
	• Week 3 (09.05): Neural Networks (D2L 5.1, 5.2, 6.1)
	• Week 4 (09.12): Backpropagation and Optimization (D2L 5.3, 12.1, 12.3-12.5)
	• Week 5 (09.19): Exam 1
	• Week 6 (09.26): Classification (D2L 4.1, 4.2, 4.4)
	• Week 7 (10.03): Training Tricks (D2L 5.1-5.5, 6.1-6.3, 12.1-12.10) Week 8 (10.10): Convenience Neural Networks (D2L 7)
	 Week 8 (10.10): Convolutional Neural Networks (D2L 7) Week 9 (10.17): Exam 2
	• Week 9 (10.17). Exam 2 • Week 10 (10.24): Recurrent Neural Networks (D2L 9-10)
	• Week 11 (10.31): Autoencoders and Generative Models
	• Week 12 (11.07): Diffusion Models
	• Week 13 (11.14): Attention and Transformers (D2L 11.1-11.7)
	• Week 14 (11.21): Exam 3
	• Week 15 (11.28): Foundation Models (D2L 11.8-11.9)
Preliminary	• Week 1-2 (08.22 - 08.29): (Optional) Array Programming
Assignment	• Week 2-4 (08.29 - 09.12): Linear Regression
Schedule	Week 4-6 (09.12 - 09.26): Neural Networks and Backpropagation
	• Week 6-8 (09.26 - 10.10): MLP Regression
	Week 8-10 (10.10 - 10.24): Convolutional MNIST Classification
	• Week 10-12 (10.24 - 11.07): RNN Stock Market Prediction
	• Week 11-12 (10.31 - 11.07): Final Project Plan
	• Week 12-16 (11.07 - 12.05): Final Project