A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 1EI

Bookmark

Show all steps: ON

Problem

Let H and K be normal subgroups of a group G, with $H \subseteq k$ Define ϕ : $G/H \to G/K$ by $\phi(Ha) = Ka$. Prove part:

 ϕ is a well-defined function. [That is, if Ha = Hb, then $\phi(Ha) = \phi(Hb)$.]

Step-by-step solution

Step 1 of 3

Suppose that G is any group and let H, K are normal subgroups of G with $H \subseteq K$.

Consider a mapping $\phi: G/H \to G/K$ defined by

$$\phi(Ha) = Ka$$
, for all $a \in G$.

Objective is to prove that function ϕ is well defined. That is, there is a need to show that if two cosets Ha, Hb are equal, then $\phi(Ha) = \phi(Hb)$ for some $a, b \in G$.

Comment

Step 2 of 3

Assume that Ha, $Hb \in G/H$, for some $a, b \in G$, such that

Ha = Hb

By the coset property, the Hx = Hy if and only if $xy^{-1} \in H$, it implies that

$$ab^{-1} \in H$$

Since $H \subseteq K$, therefore

$$ab^{-1} \in K$$

Again by applying the same property as in the previous step, the condition $ab^{-1} \in K$ implies that

$$Ka = Kb$$

Comment			
		Step 3 of 3	
Since <i>Ha</i>	$= Hb$ implies $\phi(Ha) = \phi($	$\mathcal{H}b$, therefore ϕ is well defined mapp	ing.
JIIICE MA	$= H_0 \text{ in piles } \psi(Ha) = \psi($	το), merelore ψιο well defined mapp	mig.

At last by the defined function ϕ , Ka = Kb implies that