

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree in Applied Sciences Second Year – Semester II Examination – April / May 2016

PHY 2106 - ATOMIC & NUCLEAR PHYSICS

Answer All Questions.	Time allowed: 1½ hours
Electron Charge (e) -1.6×10^{-19} C,	$1 \text{ C}^2 = 931.5 \text{ Mev/u}$
Electron Mass $(m_e) - 9.1 \times 10^{-31} \text{ kg}$	Mass of ${}_{1}^{3}H = 3.016050 \text{ u}$
Reduced Plank Constant $\hbar = 1.054 \times 10^{-34} \text{ J.s}$	Mass of ${}_{2}^{3}He = 3.016030 \text{ u}$
Speed of Light C = $3.0 \times 10^8 \text{ ms}^{-1}$	

- 1. Normal Zeeman effect can be observed by placing atoms inside an external magnetic field.
 - a. If the energy of a photon is $E = \frac{hc}{\lambda}$, show that the change in wavelength is given by $d\lambda = \frac{\lambda^2 |dE|}{hc}$
 - b. If Cadmium atoms are placed inside a 0.009 T magnetic field find the energy shift (dE) due to the Zeeman Effect.
 - c. Determine the normal Zeeman splitting $(d\lambda)$ of the Cadmium red line of 6438 Å in the above magnetic field.
 - d. What is the magnetic flux density B required to observe the normal Zeeman effect, if a spectrometer can resolve spectral lines separated by 0.5 Å at 5000 Å?
 - e. In a normal Zeeman effect experiment the Calcium 4226 Å line splits into three lines separated by 0.25 Å in a magnetic field of 3 T. Determine e/m ratio for the electron from these data.

(35 Marks)

- 2. The rapidity of decay of a particular radioactive sample is usually measured by the *half-life*.
 - a. Starting from the equation $dN = -\lambda N dt$, Show that the half-life of a radioactive sample is given by the equation, $T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$ (Terms have their usual meaning)
 - b. If the half-life of ²²Na is 2.60 years, find the time required to reduce 5 mg of ²²Na to 1 mg.
 - c. Following is a ln(Activity) Vs Time graph of a radioactive sample of $^{55}_{24}Cr$.

Using the above graph find the half-life of $^{55}_{24}Cr$.

d. What is the **maximum energy** of the electron emitted in the β decay of ${}_{1}^{3}H$?

$${}_{1}^{3}H \rightarrow {}_{2}^{3}He + e^{-} + \bar{v}$$

e. Following equations show radioactive decay of ¹⁶⁸₇₇Ir, ⁴⁶₂₀Ca and ⁴⁰₁₉K. Identify A, B, C, D and E particles.

$$^{168}_{77}Ir \rightarrow ^{164}_{75}Re + A$$

$$^{46}_{20}Ca \rightarrow ^{46}_{21}Sc + B + C$$

$$^{40}_{19}K \rightarrow ^{40}_{18}Ar + D + E$$

(35 Marks)

- 3. Consider an atomic electron in the n = 3 state.
 - a. Write down all possible angular momentum (l) and magnetic (m_l) quantum numbers.
 - b. Calculate the magnitude |L| of the orbital angular momentum and the allowed values of L_z and θ .
 - c. The magnetic energy of an atom placed inside an external magnetic field **B** is given by the equation $U = \mu_B B(m_l + g m_s)$, where g and m_s are the gyromagnetic coefficient and spin quantum number respectively. Write down all possible energies in terms of \hbar , ω and E_2 for l = 1 level. (Assume g = 2)
 - d. Draw the split in l = 1 level on an energy diagram.

(30 Marks)

Important Equations,

$$\omega_L = \frac{e}{2m_e}B$$

$$E = \hbar \omega_L$$

$$|L| = \sqrt{l(l+1)} \,\hbar$$

$$L_z = m_l \hbar$$

$$A = A_0 e^{-\lambda t}$$