$y_i = f(x_i) + \varepsilon_i$, f is the regression function $\varepsilon_i \sim (0, \sigma^2)$ (mean zero, variance σ^2) We construct an estimator for f linear in the y_i ,

Ex. 2.7 Suppose we have a sample of N pairs x_i, y_i drawn i.i.d. from the

 $x_i \sim h(x)$, the design density

distribution characterized as follows:

in each of these cases.

 $\hat{f}(x_0) = \sum_{i=1}^{N} \ell_i(x_0; \mathcal{X}) y_i,$

$$f(x_0) = \sum_{i=1}^{l} \epsilon_i(x_0, A)y_i,$$

where the weights $\ell_i(x_0; X)$ do not depend on the y_i , but do depend on the

entire training sequence of x_i , denoted here by X.

(a) Show that linear regression and k-nearest-neighbor regression are members of this class of estimators. Describe explicitly the weights $\ell_i(x_0; \mathcal{X})$

(b) Decompose the conditional mean-squared error $E_{Y|Y}(f(x_0) - \hat{f}(x_0))^2$

into a conditional squared bias and a conditional variance component.

Like X, Y represents the entire training sequence of y_i , (c) Decompose the (unconditional) mean-squared error

 $E_{V,X}(f(x_0) - \hat{f}(x_0))^2$

into a squared bias and a variance component. (d) Establish a relationship between the squared biases and variances in the above two cases.