Listing of the Claims:

The following is a complete listing of all the claims in the application, with an indication of the status of each:

Claims 1-19 (Cancelled).

1	Claim 20 (Currently Amended). A bus power-supply device in a node for
2	connection to a serial bus, said bus power-supply device structured to
3	supply power from a power-supply voltage of a node of a proceeding stage
4	to a node of a next stage through the serial bus connected to said node by a
5	physical layer and a plurality of connectors conductive to each other of the
6	node, wherein comprising:
7	a power-supply circuit which converts said when a power-supply
8	voltage into of said node of the proceeding stage is not supplied, a DC
9	voltage for said is supplied from said node of the proceeding stage through
10	said serial bus to said physical layer, and when said power-supply voltage
11	is supplied, a DC voltage is supplied from said power-supply voltage to
12	said physical layer by cutting off a path for supplying a DC voltage
13	through said serial bus to said physical layer, communication being
14	maintained between said node and proceeding and next stages through the
15	serial bus whether a power-supply voltage is supplied or not and outputs
16	said DC voltage;
17	a converter which converts a DC voltage output from said power-
18	supply circuit into a DC voltage for said physical layer;
19	a voltage detection unit which detects said power-supply voltage
20	being supplied or not being supplied to said power-supply circuit;
21	a first means connected between said power-supply circuit and said
22	converter for supplying a DC voltage outputted from said power-supply
23	circuit to the serial bus, and for preventing application to said power-
24	supply circuit of a DC voltage from the serial bus;
25	a second means connected between said converter and the serial
26	bus for supplying a DC voltage outputted from said power-supply circuit to
27	the serial bus, and for preventing application to said converter and said

28	power-supply circuit of a DC voltage from said serial bus; and
29	a switch which is connected in parallel with said second means and
30	controlled by an output signal outputted from said voltage detection unit;
31	wherein when an output voltage of said power-supply circuit is
32	detected, said switch is turned off, and when an output voltage of said
33	power-supply circuit is not detected, said switch is turned on.
1	Claim 21 (Canceled)
1	Claim 22 (Previously Presented). The bus power-supply as set forth in
2	claim 20, wherein said serial bus is an IEEE-1394-1995 Standard serial
3	bus.
1	Claim 23 (Currently amended). The bus power-supply device as set forth
2	in claim 20 21, comprising:
3	a first path for supplying power from said power-supply voltage to
4	said physical layer; and
5	a second path for supplying power coming through said serial bus
6	to said physical layer, wherein
7	when power is supplied from said power-supply voltage, said
8	selector cuts off said second path by ON and OFF.
1	Claim 24 (Previously Presented). The bus power-supply device as set forth
2	in claim 21, wherein said selector is a semiconductor switch.
1	Claims 25-34. Canceled
1	Claim 35 (Currently Amended). A node having a bus power-supply device
2	structured to supply power from a power-supply voltage to a node of a next
3	stage through a serial bus connected to said node by a physical layer and a
4	plurality of connectors conductive to each other of the node, comprising:
5	a plurality of connectors each having a power-supply terminal to
6	which a DC voltage is applied from other nodes through said serial bus and

7	a signal terminal to and from which a signal from other nodes is in input
8	and output;
9	a physical layer which outputs a signal input through a signal
10	terminal of one connector to a signal terminal of the other connector,
11	wherein
12	power-supply terminals of said plurality of connectors are rendered
13	conductive to each other,
14	said bus power-supply device comprises
15	a power-supply circuit which converts said power-supply voltage
16	into a DC voltage for said serial bus and outputs said DC voltage;
17	a converter which converts a DC voltage output from said power-
18	supply circuit into a DC voltage for said physical layer;
19	a voltage detection unit which detects said power-supply voltage
20	being supplied or not being supplied to said power-supply circuit;
21	a first means connected between said power-supply circuit and said
22	converter for supplying a DC voltage outputted from said power-supply
23	circuit to the serial bus, and for preventing application to said power-
24	supply circuit of a DC voltage from the serial bus;
25	a second means connected between said converter and the serial
26	bus for supplying a DC voltage outputted from said power-supply circuit to
27	the serial bus, and for preventing application to said converter and said
28	power-supply circuit of a DC voltage from the serial bus; and
29	a switch which is connected in parallel with said second means and
30	controlled by an output signal outputted from said voltage detection unit;
31	wherein when an output voltage of said power-supply circuit is
32	detected, said switch is turned off, and when an output voltage of said
33	power-supply circuit is not detected, said switch is turned on
34	supplies a DC voltage through said serial bus to said physical layer
35	through said power-supply terminal when none of a power-supply voltage
36	of said node is supplied, and
37	supplies a DC voltage from the power-supply voltage to said
38	physical layer by cutting off a path for supplying a DC voltage through
39	said serial bus to said physical layer when said power-supply voltage is

40	supplied, communication being maintained between said node and
4 1	proceeding and next stages through the serial bus whether a power-supply
42	voltage is supplied or not.
1	Claim 36. Canceled
1	Claim 37 (Currently Amended). The node as set forth in claim 35 36,
2	comprising:
3	a first path for supplying power from said power-supply voltage to
4	said physical layer; and
5	a second path for supplying power coming through said serial bus
6	to said physical layer, wherein
7	said switch of said bus power-supply device performs connection
8	and cutting of said second path by ON and OFF when power is supplied
9	from said power-supply voltage, said selector cuts off said second path.
1	Claim 38. Canceled
1	Claim 39 (New). The bus power-supply device as set forth in claim 20,
2	wherein said voltage detection unit detects said power-supply voltage
3	being supplied or not being supplied by detecting an output voltage of said
4	power-supply circuit.
1	Claim 40 (New). The bus power-supply device as set forth in claim 20,
2	wherein said voltage detection unit detects said power-supply voltage
3	being supplied or not being supplied by detecting an output voltage of said
4	power-supply circuit, and wherein said switch is a semiconductor switch.
1	Claim 41 (New). The bus power-supply device as set forth in claim 20,
2	wherein said voltage detection unit is a comparator which detects said
3	power-supply voltage being supplied or not being supplied by comparing
4	an output voltage of said power-supply circuit with a reference voltage.

voltage.

1 Claim 42. (New) The node as set forth in claim 35, wherein said voltage 2 detection unit of said bus power-supply device detects said power-supply 3 device detects said power-supply voltage being supplied or not being 4 supplied by detecting an output voltage of said power-supply circuit. 1 Claim 43. (New) Th node as set forth in claim 35, wherein said switch of 2 said bus power-supply device is a semiconductor switch. Claim 44. (New) The node as set forth in claim 35, wherein said voltage 1 2 detection unit of said bus power-supply device detects said power-supply 3 voltage being suppled or not being supplied by detecting an output voltage 4 of said power-supply circuit, and wherein said switch of said bus power-5 supply device is a semiconductor switch. 1 Claim 45. (New) The node as set forth in claim 35, wherein said voltage 2 detection unti of said bus power-supply device is a comparator which detects said power-supply voltage being supplied or not being supplied by 3 4 comparing an output voltage of said power-supply circuit with a reference 5