Graphing Fleas

Daniel Grazian, Michael Mekonnen, Justin Venezuela

Massachusetts Institute of Technology

October 22nd, 2012

$$\dots | 1 | 0 | 2 | \overrightarrow{1} | 0 | 0 | 1 | \dots$$

$$\dots \mid 1 \mid 0 \mid 2 \mid 1 \mid \overrightarrow{0} \mid 0 \mid 1 \mid \dots$$

State of point where flea is located determines:

State of point where flea is located determines:

- what state the point changes to when the flea steps off.
- whether the flea changes direction before stepping off.

State of point where flea is located determines:

- what state the point changes to when the flea steps off.
- whether the flea changes direction before stepping off.
 - Many possible rules
 - We focus on particularly interesting ones.
 - Can a rule produce every sequence of states?

A rule consists of a series of statements of the form:
 'When the flea steps off a point in state X, the point changes to state Y, and the flea does/doesn't reverse direction before stepping off.'

- A rule consists of a series of statements of the form:
 'When the flea steps off a point in state X, the point changes to state Y, and the flea does/doesn't reverse direction before stepping off.'
- One such statement for every possible state.

- A rule consists of a series of statements of the form:
 'When the flea steps off a point in state X, the point changes to state Y, and the flea does/doesn't reverse direction before stepping off.'
- One such statement for every possible state.
- $(2k)^k$ possible rules, where k is the number of allowed states.

$$\dots \mid 1 \mid 0 \mid 1 \mid \overrightarrow{1} \mid 0 \mid 0 \mid 1 \mid \dots$$

$$\dots \mid 1 \mid 0 \mid 1 \mid \overrightarrow{1} \mid 0 \mid 0 \mid 1 \mid \dots$$

$$\dots | 1 | 0 | 1 | 1 | \overrightarrow{0} | 0 | 1 | \dots$$

'When the flea steps off a point in state 1, the point changes to state 1, and the flea doesn't reverse direction before stepping off.'

$$\dots \mid 1 \mid 0 \mid 1 \mid \overrightarrow{1} \mid 0 \mid 0 \mid 1 \mid \dots$$

$$\dots \mid 1 \mid 0 \mid 1 \mid 1 \mid \overrightarrow{0} \mid 0 \mid 1 \mid \dots$$

'When the flea steps off a point in state 1, the point changes to state 1, and the flea doesn't reverse direction before stepping off.'

$$\dots \mid 1 \mid 0 \mid 1 \mid 1 \mid 1 \mid 0 \mid 1 \mid \dots$$

'When the flea steps off a point in state 0, the point changes to state 1, and the flea reverses direction before stepping off.'

Formally, a rule is a function from state to state and direction change

Formally, a rule is a function from state to state and direction change

$$r: \{0,\ldots,k-1\} \to (\{0,\ldots,k-1\},\{-1,1\})$$

where k is the number of allowed states.

Formally, a rule is a function from state to state and direction change

$$r: \{0,\ldots,k-1\} \to (\{0,\ldots,k-1\},\{-1,1\})$$

where k is the number of allowed states.

$$r: \begin{array}{ccc} 0 & \rightarrow & (1,-1) \\ 1 & \rightarrow & (1,1) \end{array}$$

• A world describes the state at every point and gives the location and direction of the flea.

 $W_0: \ldots 0 0 0 0 | \overrightarrow{0} 0 0 0 \ldots$

 A world describes the state at every point and gives the location and direction of the flea.

$$W_0: \ldots 0 0 0 0 | \overrightarrow{0} 0 0 0 \ldots$$

• The evolution E(r) of a rule r is the infinite sequence (W_0, W_1, W_2, \ldots) of worlds produced by iteratively applying r to W_0 :

 A world describes the state at every point and gives the location and direction of the flea.

$$W_0: \ldots 0 0 0 0 | \overrightarrow{0} 0 0 0 \ldots$$

- The evolution E(r) of a rule r is the infinite sequence (W_0, W_1, W_2, \ldots) of worlds produced by iteratively applying r to W_0 :
- A world *contains* a finite sequence $(s_0, s_1, \ldots, s_{n-1})$ of states if points $0, 1, \ldots, n-1$ are in states $s_0, s_1, \ldots, s_{n-1}$ respectively.

 A world describes the state at every point and gives the location and direction of the flea.

$$W_0: \ldots 0 0 0 0 | \overrightarrow{0} 0 0 0 \ldots$$

- The evolution E(r) of a rule r is the infinite sequence (W_0, W_1, W_2, \ldots) of worlds produced by iteratively applying r to W_0 :
- A world *contains* a finite sequence $(s_0, s_1, \ldots, s_{n-1})$ of states if points $0, 1, \ldots, n-1$ are in states $s_0, s_1, \ldots, s_{n-1}$ respectively.
- An evolution E(r) accepts a sequence of states if any world in E(r) contains the sequence.

$$r:\begin{array}{ccc} 0 & \rightarrow & (1,-1) \\ 1 & \rightarrow & (1,1) \end{array}$$

- The first four worlds of the evolution E(r) of r are shown above.
- W₂ contains (1,0) and (1,0,0)
- Therefore E(r) accepts (1,0) and (1,0,0).

A rule r is k-complete if the evolution of r accepts every finite sequence of the states $0, \ldots, k-1$.

A rule r is k-complete if the evolution of r accepts every finite sequence of the states $0, \ldots, k-1$.

For example, a 2-complete rule must accept:

A rule r is k-complete if the evolution of r accepts every finite sequence of the states $0, \ldots, k-1$.

For example, a 2-complete rule must accept:

- (0)
- (1)

A rule r is k-complete if the evolution of r accepts every finite sequence of the states $0, \ldots, k-1$.

For example, a 2-complete rule must accept:

- (0)
- (1)
- (0,1)
- (1,0)
- (0,1)
- (1, 1)

A rule r is k-complete if the evolution of r accepts every finite sequence of the states $0, \ldots, k-1$.

For example, a 2-complete rule must accept:

```
(0)
```

(1)

(0,1)

(1,0)

(0,1)

(1, 1)

(0,0,0)

. . .

(1, 1, 1)

. . .

Our Main Result

Our Main Result

Theorem

We can construct a k-complete rule over k+1 states for all $k \in \mathbb{Z}^+$.

Our Main Result

Theorem

We can construct a k-complete rule over k+1 states for all $k \in \mathbb{Z}^+$.

In this talk, we'll give a 2-complete rule over 3 states.

Our Main Result

Theorem

We can construct a k-complete rule over k+1 states for all $k \in \mathbb{Z}^+$.

In this talk, we'll give a 2-complete rule over 3 states.

We will then show how 'fast' this rule is in generating every possible sequence of 0's and 1's.

Example of a 2-complete rule

Example of a 2-complete rule

$$\begin{array}{cccc} 0 & \to & (1,-1) \\ R: & 1 & \to & (2,1) \\ & 2 & \to & (0,1) \end{array}$$

$$\begin{array}{cccc} 0 & \to & (1,-1) \\ R: & 1 & \to & (2,1) \\ & 2 & \to & (0,1) \end{array}$$

Demo!

Claim

Claim

Theorem

R is 2-complete.

Claim

Theorem

R is 2-complete.

Key observation:

E(R) accepts all sequences of length n before the flea leaves [-n, n-1].

E(R) in [-1, 0]

$$E(R)$$
 in $[-1, 0]$

$$\dots$$
 0 | $\overrightarrow{0}$ \dots

E(R) in [-1, 0]

$$\begin{array}{c|cccc} \dots & 0 & | & \overrightarrow{0} & \dots \\ \dots & \overleftarrow{0} & | & 1 & \dots \end{array}$$

E(R) in [-1, 0]

$$\begin{array}{c|cccc} \dots & 0 & | & \overrightarrow{0} & \dots \\ \dots & 0 & | & 1 & \dots \\ \dots & 1 & | & \overrightarrow{1} & \dots \end{array}$$

 $\dots \quad 0 \quad \mathbf{0} \quad | \quad \overrightarrow{\mathbf{0}} \quad 0 \quad \dots$

19 / 1

19 / 1

 $\dots \quad 0 \quad \boldsymbol{0} \quad \boldsymbol{0} \quad | \quad \overrightarrow{\boldsymbol{0}} \quad \boldsymbol{0} \quad 0 \quad \dots$

20 / 1

E(R) in [-3, 2]

By induction.

$$\bullet \ 0^{n}\overrightarrow{0}0^{n-1} \to 1^{n}2^{n-1}\overrightarrow{1}$$

- $0^{n\overrightarrow{0}}0^{n-1} \rightarrow 1^{n}2^{n-1}\overrightarrow{1}$
- ... while staying within these columns

- $0^{n}\overrightarrow{0}0^{n-1} \rightarrow 1^{n}2^{n-1}\overrightarrow{1}$
- ... while staying within these columns
- ... while accepting all sequences of length n

•
$$0^{n}\overrightarrow{0}0^{n-1} \rightarrow 1^{n}2^{n-1}\overrightarrow{1}$$

- ... while staying within these columns
- ullet ... while accepting all sequences of length n

By induction. Induction hypothesis:

- $0^{n}\overrightarrow{0}0^{n-1} \rightarrow 1^{n}2^{n-1}\overrightarrow{1}$
- ... while staying within these columns
- ... while accepting all sequences of length n

Corollary

We can similarly define the notions of $\underline{\text{negative containment}}$ and $\underline{\text{negative acceptance}}$.

By induction. Induction hypothesis:

- $0^{n\overrightarrow{0}}0^{n-1} \rightarrow 1^{n}2^{n-1}\overrightarrow{1}$
- ... while staying within these columns
- ullet ... while accepting all sequences of length n

Corollary

We can similarly define the notions of $\underline{\text{negative containment}}$ and $\underline{\text{negative acceptance}}$.

Every sequence accepted by E(R) is also negatively contained.

E(R) accepts and negatively accepts every finite binary sequence.

Example

b = 01

Example

$$b = 01$$

 $\dots \quad 0 \quad 0 \quad 0 \quad | \quad \overrightarrow{0} \quad 0 \quad 0 \quad \dots$

$$b = 01$$

Example

$$b = 01$$

How fast is R?

After how many worlds do we see all binary sequences of length n?

How fast is R?

After how many worlds do we see all binary sequences of length n?

Surely $\Omega(2^n)$.

How fast is R?

Definition

 T_n : minimum number worlds to see all finite binary sequences of length n.

Example

 $T_1 = ?$

Looking for 0 and 1.

26 / 1

$$\dots$$
 0 0 0 | $\overrightarrow{0}$ 0 0 \dots

```
 \dots \  \  \, 0 \  \  \, 0 \  \  \, 0 \  \  \, | \  \  \, \overrightarrow{0} \  \  \, 0 \  \  \, 0 \  \  \, \dots   \dots \  \  \, 0 \  \  \, 0 \  \  \, \overleftarrow{0} \  \  \, | \  \  \, \mathbf{1} \  \  \, 0 \  \  \, 0 \  \  \, \dots
```

$$T_1 = 2$$

Example

 $T_2 = ?$

Looking for 00, 01, 10, and 11.

Example

... $0 \ \mathbf{0} \ \mathbf{0} \ | \ \overrightarrow{\mathbf{0}} \ \mathbf{0} \ 0 \ ...$

29 / 1

Example

29 / 1

T_2

Example

T_2

Example

T_2

Example

```
0
            0
                1
                1
```

 $T_2 = 10$

 T_n

Goal: a recurrence for T_n .

 T_n

Goal: a recurrence for T_n .

Method: study the progression from W_0 to W_{T_n} in E(R).

Describing W_{T_n}

Lemma

• The world W_{T_n} has the form: $\dots 01^n | \overrightarrow{1} 1^{n-1} 0 \dots$

Describing W_{T_n}

Lemma

- The world W_{T_n} has the form: $\dots 01^n |\overrightarrow{1}1^{n-1}0 \dots$
- ② The progression from W_0 to W_{T_n} does not step outside of the locations between -n and n-1.

 W_{T_1}

W_{T_2}

Proof of Lemma: Base Case

Proof.

By induction on n.

Proof of Lemma: Base Case

Proof.

By induction on n.

Base case: we have already seen W_{T_1} (and W_{T_2}).

Proof of Lemma: Inductive Step

Assume:

- **1** The world $W_{T_{n-1}}$ has the form: $\dots 01^{n-1} |\overrightarrow{1}1^{n-2}0 \dots$
- ② The progression from W_0 to $W_{T_{n-1}}$ does not step outside of the locations between -(n-1) and n-2.

$$W_0: \qquad \ldots \quad 0 \quad 0 \quad 0^{n-1} \mid \overrightarrow{0} \quad 0^{n-2} \quad 0 \quad 0 \quad \ldots$$

$$W_0:$$
 ... 0 0 $0^{n-1} \mid \overrightarrow{0} \quad 0^{n-2} \quad 0 \quad 0 \quad \dots$
 \downarrow
 $W_{T_{n-1}}:$... 0 0 $1^{n-1} \mid \overrightarrow{1} \quad 1^{n-2} \quad 0 \quad 0 \quad \dots$

Proof.

36 / 1

Recurrence for T_n

Corollary

$$T_n = 2T_{n-1} + 4n - 2.$$

Solving the Recurrence

$$T_n = 2T_{n-1} + 4n - 2$$

Solving the Recurrence

$$T_n = 2T_{n-1} + 4n - 2$$

Assume $T_n = x \cdot 2^n + yn + z$ for some x, y, z and solve.

Solving the Recurrence

$$T_n = 2T_{n-1} + 4n - 2$$

Assume $T_n = x \cdot 2^n + yn + z$ for some x, y, z and solve.

$$T_n = 6 \cdot 2^n - 4n - 6$$
$$T_n = \Theta(2^n).$$

Other complete rules

- Other complete rules
 - *k*-complete *k*-rule?

- Other complete rules
 - *k*-complete *k*-rule?
- Boundedness

- Other complete rules
 - *k*-complete *k*-rule?
- Boundedness

