中华人民共和国海事局 船舶与海上设施法定检验规则

国内航行海船法定检验技术规则

2020

第2篇 吨位丈量

目 录

第	1章	通	则		2-1
	第	1节	适用范围		2-1
	第	2 节	一般规定		2-1
第					
	第	1节	船长大于等	F于 24m 的船舶	2-2
				24m 的船舶	
				5规定	

第1章 通 则

第1节 适用范围

- 1.1.1 本篇适用于下列国内航行的海船,但旧式木帆船除外:
- (1) 自本法规生效之日起新建的船舶;
- (2) 自本法规生效之日起经改装或改建,影响到吨位变更^①的船舶。

第2节 一般规定

- 1.2.1 船舶吨位丈量的目的是核定船舶总吨位和净吨位。总吨位是表示丈量确定的船舶总容积; 净吨位是表示丈量确定的船舶有效容积。
 - 1.2.2 船舶吨位丈量均以 m 为计算单位,精确至小数点以下两位。
- 1.2.3 船舶国内航行海船安全与环保证书中的总吨位和净吨位的数值应采用整数,不计小数点以下的数值,只填写数字,后面没有单位"吨"。
- 1.2.4 列入总吨位和净吨位计算中的所有容积,对金属结构的船舶应量到船外板内表面或结构的边界板内表面,对其他材料结构的船舶,应量到船舶外板的外表面或结构的边界板外表面。
 - 1.2.5 本篇的名词、定义与本局《国际航行海船法定检验技术规则》第2篇的规定相同。

① 原有总吨位超过2%的增加或减少。

第2章 吨位计算

第1节 船长大于等于24m的船舶

2.1.1 总吨位

2.1.1.1 总吨位(*GT*)应按下式计算:

$$GT = K_1(V_1 + V_2)$$

式中: K_1 ——系数, K_1 =0.2+0.02 Log_{10} V,或由表 2.1.1 查得;

 V_1 ——上甲板以下所有围蔽处所的型容积, m^3 ;

 V_2 ——上甲板以上所有围蔽处所的型容积, m^3 。

- 2.1.1.2 上甲板以下所有围蔽处所的型容积(V_1),根据所提供的图纸可用下述任一方法进行量计:
 - (1) 用排水容积曲线求 V_1 ,此时所用型深应为按下式修正的型深D':

$$D' = D + \frac{h}{2} + \frac{1}{6}(h_s + h_w)$$
 m

式中: D ——型深, m;

h。——船首舷弧, m;

h... — 船尾舷弧, m;

h ——梁拱高度,m。梁拱高度取设计数值,如无设计数值,取 $h = \frac{B}{50}$,其中 B 为型宽,m。

- (2) 用邦氏曲线求甲板边线下的容积,加上梁拱容积及船首尾垂线以外部分的容积,即得上甲板下容积。
 - ① 梁拱容积(火)按下式计算:

$$v_1 = \frac{h}{2}BLa$$
 m³

式中: B ——型宽, m:

L ——上甲板长度, m:

a ——上甲板型深处水线面系数;

h ——梁拱高度, m, 见本章 1.1.2(1)。

② 船首、尾垂线以外部分的容积()可分别用下式计算:

$$v_2 = \frac{2}{3} A l_1 \qquad m^3$$

式中: A——邦氏曲线 0 站或末站的面积, m^2 ;

【──船首垂线前或船尾垂线后部分的最大水平长度(按型线图量计), m。

- (3) 用本局《国际航行海船法定检验技术规则》第2篇所规定的方法进行量计。
- 2.1.1.3 如有球鼻首等突出体部分,其量计方法与本局《国际航行海船法定检验技术规则》第 2 篇第 2 章 1.5 规定的丈量方法相同。
- 2.1.1.4 上甲板以上围蔽处所容积()的量计与本局《国际航行海船法定检验技术规则》第2篇第2章1.6、1.7 和1.9 所述丈量方法相同。

2.1.2 净吨位

2.1.2.1 净吨位(NT)应按下式计算:

$$NT = K_2GT$$

式中: GT ——按本章 2.1.1 量计所得(取整后)的总吨位; K_2 ——按表 2.2.2.1 选取。

第2节 船长小于24m的船舶

2.2.1 总吨位

2.2.1.1 对船长小于 24m 的船舶, 其总吨位按下式计算:

$$GT = K_1(V_1 + V_2)$$

式中: K_1 ——系数, K_1 =0.2+0.02 Log_{10} V,或由表 2.2.1.1 查得;

 V_1 ——上甲板以下所有围蔽处所的容积, m^3 ;

 V_{2} ——上甲板以上所有围蔽处所的容积, \mathbf{m}^{3} 。

2.2.1.2 上甲板以下围蔽处所的容积 V_1 按下式计算:

$$V_1 = CLBD$$
 m³

式中: L ——上甲板长度, m;

B ——型宽, m;

D ——型深, m;

C ——系数,按表 2.2.1.2 选取首型、尾型、底型的系数,三者相乘即得。

2.2.1.3 上甲板以上围蔽处所的容积 V_2 的计算方法与 24m 以上的船舶相同。

系数 K₁ 表 2.2.1.1

	71271						
V_1+V_2	K_I	V_1+V_2	K_I	$V_1 + V_2$	K_I	$V_1 + V_2$	K_I
10	0.2200	45000	0.2931	330000	0.3104	670000	0.3165
20	0.2260	50000	0.2940	340000	0.3106	680000	0.3166
30	0.2295	55000	0.2948	350000	0.3109	690000	0.3168
40	0.2320	60000	0.2956	360000	0.3111	700000	0.3169
50	0.2340	65000	0.2963	370000	0.3114	710000	0.3170
60	0.2356	70000	0.2969	380000	0.3116	720000	0.3171
70	0.2369	75000	0.2975	390000	0.3118	730000	0.3173
80	0.2381	80000	0.2981	400000	0.3120	740000	0.3174
90	0.2391	85000	0.2986	410000	0.3123	750000	0.3175
100	0.2400	90000	0.2991	420000	0.3125	760000	0.3176
200	0.2460	95000	0.2996	430000	0.3127	770000	0.3177
300	0.2495	100000	0.3000	440000	0.3129	780000	0.3178
400	0.2520	110000	0.3008	450000	0.3131	790000	0.3180
500	0.2540	120000	0.3016	460000	0.3133	800000	0.3181

V_1+V_2	<i>K</i> ₁	V_1+V_2	K_I	V_1+V_2	K_I	$V_1 + V_2$	<i>K</i> ₁
600	0.2556	130000	0.3023	470000	0.3134	810000	0.3182
700	0.2569	140000	0.3029	480000	0.3136	820000	0.3183
800	0.2581	150000	0.3035	490000	0.3138	830000	0.3184
900	0.2591	160000	0.3041	500000	0.3140	840000	0.3185
1000	0.2600	170000	0.3046	510000	0.3142	850000	0.3186
2000	0.2660	180000	0.3051	520000	0.3143	860000	0.3187
3000	0.2696	190000	0.3056	530000	0.3145	870000	0.3188
4000	0.2720	200000	0.3060	540000	0.3146	880000	0.3189
5000	0.2740	210000	0.3064	550000	0.3148	890000	0.3190
6000	0.2756	220000	0.3068	560000	0.3150	900000	0.3191
7000	0.2769	230000	0.3072	570000	0.3151	910000	0.3192
8000	0.2781	240000	0.3076	580000	0.3153	920000	0.3193
9000	0.2791	250000	0.3080	590000	0.3154	930000	0.3194
10000	0.2800	260000	0.3083	600000	0.3156	940000	0.3195
15000	0.2835	270000	0.3086	610000	0.3157	950000	0.3196
20000	0.2860	280000	0.3089	620000	0.3158	960000	0.3196
25000	0.2880	290000	0.3092	630000	0.3160	970000	0.3197
30000	0.2895	300000	0.3095	640000	0.3161	980000	0.3198
35000	0.2909	310000	0.3098	650000	0.3163	990000	0.3199
40000	0.2920	320000	0.3101	660000	0.3164	1000000	0.3200

注: (1) V₁+V₂——容积, m³;

(2) 对于 V_1+V_2 的中间值, K_1 系数应用内插法求得。

系数 C 表 2.2.1.2

船首型 (俯视、侧视)	系数	船尾型 (俯视、侧视)	系数	船底型 (船中横剖面)	系数
_{尖头} シ フ	0.80	雪橇型	0.80	尖底	0.94
失 <u></u> 例头 -) フ	0.85	巡洋舰型	0.90	圆底 →	0.96
平头 ラ -コ	0.90	方型 ← て	0.95	平底	0.98

注:(1) 对船首型及船尾型的系数,还可按实船的俯视及侧视来插入选取。如某船船首型侧视为 ,而俯视为 ,而俯视为 ,,则船首型系数可取为 $\frac{0.80+0.90}{2}$ =0.85;对船尾型系数也同样选取。

(2) 对于船尾有轴隧凹穴的船尾型系数,可按尾部肥瘦情况取 0.7 或 0.75。

2.2.2 净吨位

2.2.2.1 对船长小于 24m 的船舶, 其净吨位 NT 按下式计算:

$$NT = K_2GT$$

式中: K_2 ——按表 2.2.2.1 选取;

GT——按本章 2.2.1.1 计算所得的总吨位。

系数 K₂

表 2.2.2.1

船舶种类	K_2	船舶种类	K_2	
货、油船	0.56	驳船	0.84	
客货船	0.52	不载客货的船舶	0.30	
客船	0.50	客滚船	0.54	
浮船坞	0.30			

注: 表中不载客货的船舶: 系指不从事海上运输业务的船舶,包括工程船(含非机动工程船)、工作船、破冰船、拖船和任何海上执法救助等业务的船舶。

第3节 滚装船补充规定

2.3.1 客滚船的总吨位计算

2.3.1.1 滚装船在计算总吨位时,具有顶盖的滚装处所也应计入。