The Kolmogorov Superposition Theorem:

A framework for multivariate computation

Jonas Actor

Rice University

7 May 2018

Curse of Dimensionality

Cost of simulation / computation grows **exponentially**

A Question ¹

Do functions of three variables exist at all?

 $^{^{1}}$ Pólya and Szegö, Problems and Theorems of Analysis, 1925 (German), transl. 1945, reprinted 1978

A Question, Restated

Can functions of three variables be expressed using functions of only two variables?

Example:

Cardano's Formula for roots of a cubic equation

A Better Question

Hilbert's 13th Problem (1900)

Can the solution x to the 7th degree polynomial equation

$$x^7 + ax^3 + bx^2 + cx + 1 = 0$$

be represented by a finite number of compositions of bivariate continuous (algebraic) functions using the three variables a, b, c?

Answer: Arnol'd 1957²

Any **continuous** function of three variables can be expressed using **continuous** functions of only two variables.

²Arnol'd, Dokl. Akad. Nauk SSSR 114:5, 1957

The Next Question

Can continuous functions of three variables be expressed using functions of only **one** variable and addition?

Answer: Kolmogorov 1957³

Any continuous $f:[0,1]^n \to \mathbb{R}$ can be written as

$$f(x_1,\ldots,x_n)=\sum_{q=0}^{2n}\chi\left(\sum_{p=1}^n\psi_{p,q}(x_p)\right)$$

³ Kolmogorov, Dokl. Akad. Nauk SSSR 114:5, 1957

$$f(x_1,\ldots,x_n)=\sum_{q=0}^{2n}\chi\left(\sum_{p=1}^n\psi_{p,q}(x_p)\right)$$

$$f(x_1,\ldots,x_n)=\sum_{q=0}^{2n}\chi\left(\sum_{p=1}^n \overline{\psi_{p,q}(x_p)}
ight)$$
 Inner function $\psi_{p,q}:[0,1] o\mathbb{R}$

$$f(x_1,\ldots,x_n) = \sum_{q=0}^{2n} \chi\left(\sum_{p=1}^n \psi_{p,q}(x_p)\right)$$
Outer function $\chi: \mathbb{R} \to \mathbb{R}$

$$f(x_1, \dots, x_n) = \sum_{q=0}^{2n} \chi \left(\sum_{p=1}^n \psi_{p,q}(x_p) \right)$$
Function composition

Implication

$$\Psi^q(x_1,\ldots,x_n) = \sum_{p=1}^m \psi_{p,q}(x_p)$$
 (independent of f)

$$\mathsf{KST} \colon f \longmapsto \chi$$

No Free Lunch...

Traded smoothness for variables:

- No KST⁴ for $\psi_{p,q} \in C^1([0,1])$
- Current $\psi_{p,q} \in \mathsf{H\"{o}Ider}([0,1]) \to \mathsf{bad}$ for computation
- Possible $\psi_{p,q} \in \mathsf{Lip}([0,1])$

⁴Vituskin, DAN, 95:701-704, 1954

Smoothness

Goal: Construct Lipschitz functions $\,\psi_{\mathbf{p},\mathbf{q}}$

Rest of the Talk

- Constructive KST
- 2 The Fridman Strategy
- Reparameterization Approach
- 4 Conclusions and Outstanding Tasks

Table of Contents

- Constructive KST
- 2 The Fridman Strategy
- Reparameterization Approach
- 4 Conclusions and Outstanding Tasks

$$f(x, y) =$$
 elevation of Grand Canyon at (x, y)

$$f(Thor's Temple) = ?$$

Bright Angel Point	A1
Desert View	B2
Grand Canyon Lodge	Α1

Kaibab Nat'l Forest B1 Thor's Temple A2 Walhalla's Overlook A2

Locations real; elevations are not.

Decomposition Process

Strategy

- ullet Leave gaps between squares o gives room to vary continuously
- Duplicate and slightly shift the squares to cover the gaps
- Define functions $\psi_{p,q}$ as we refine squares

Decisions

- How big to make the gaps
- How to assign values to functions

Sprecher's Reduction⁵

Define 1 function instead of $2n^2 + n$ functions:

$$\psi_{p,q}(x_p) = \lambda_p \, \psi(x_p + q\varepsilon)$$

 $\lambda_1, \ldots, \lambda_n$ integrally independent

Sprecher, Trans. AMS, 115:340-355, 1965

Requirements (1/2)

Refinement:

Squares \mathbb{S}^k get smaller as $k \to \infty$

More Than Half:

Each point in at least $\frac{n+1}{2n+1}$ sets of shifted squares

Requirements (2/2)

Disjoint Image:

Image of squares under Ψ^q disjoint

Monotonicity:

Function ψ strictly monotonic increasing

Bounded Slope:

Function ψ Lipschitz

Table of Contents

- Constructive KST
- 2 The Fridman Strategy
- Reparameterization Approach
- 4 Conclusions and Outstanding Tasks

Background

First proof of Lipschitz inner KST functions⁶

Predominant approach for Lipschitz KST functions

Never successfully implemented

⁶Dokl. Akad. Nauk SSR, 177:5:1019–1022, 1967.

Defining our Squares

Squares: Cartesian product of 1D family of intervals

Space Decomposition

5 copies of the same family of intervals, shifted by $\frac{1}{4}$

Cartesian product for each shifted family of intervals

Each refinement level $k \in \mathbb{N}$, break largest intervals roughly in half

$$k = 0$$
 $k = 1$
 $k = 2$
 \vdots
 \vdots
 \vdots
 \vdots
 \vdots

Breaks are copied in **each** shifted family of intervals . . .

... and each shifted family of squares.

Requirements on Breaks

Every $x \in [0,1]$ in at least **All But One** of shifted families

All But One on intervals \iff More Than Half on squares

Choosing Breaks

Keep inserting breaks \longrightarrow lose All But One Condition

Choosing Breaks

Solution: plug the gaps that cause problems

Inner Function ψ

At each refinement level k:

- Assign a value of ψ^k on left endpoint of each interval
- Value is fixed for all future k

Inner Function ψ

 ψ^k constant on intervals, linear on gaps

large plugs $\, o\,$ small gaps $\, o\,$ steep ψ^k

Fixing Values: Disjoint Image Condition

For any two squares
$$S, S' \in \mathbb{S}^k$$
, $\Psi(S) \cap \Psi(S') = \emptyset$.

Disjoint Image Condition

Disjoint Image Condition

Don't know ψ at level k

Can't enforce Disjoint Image Condition without ψ

Two remedies:

- Fridman's Disjoint Image Condition
- Conservative Disjoint Image Condition

For any two squares
$$S,\ S'\in\mathbb{S}^k,$$

$$\Psi^k(S)\cap\Psi^k(S')=\emptyset.$$

For any two squares
$$S, S' \in \mathbb{S}^k$$
, $\Psi^k(S) \cap \Psi^k(S') = \emptyset$.

Not
$$\Psi(S)$$
, $\Psi(S')$

$$\Psi(x) = \sum_{p=1}^{n} \lambda_p \, \psi(x_p + q\varepsilon)$$

 $\lambda_1, \ldots, \lambda_n$ integrally independent

 ψ^k rational values at left endpoints

Fridman's Condition is always met!

Does not enforce disjointness in limit

Use Lipschitz bound to define intervals $\Delta_{\mathbf{i}}^{k}$ that are guaranteed to contain $\Psi(S_{\mathbf{i}}^{k})$

$$\Psi^k(S_{\mathbf{i}}^k) \subseteq \Psi(S_{\mathbf{i}}^k) \subseteq \Delta_{\mathbf{i}}^k.$$

For any two squares $S_{\mathbf{i}}^k$, $S_{\mathbf{i}'}^k \in \mathbb{S}^k$ and corresponding intervals $\Delta_{\mathbf{i}}^k$, $\Delta_{\mathbf{i}'}^k$,

$$\Delta_{\mathbf{i}}^k \cap \Delta_{\mathbf{i}'}^k = \emptyset.$$

Requires removing at least half of each interval

Points not contained in enough shifted copies of \mathbb{S}^k to reconstruct χ

Implications

Choose 2 of 3:

- (Conservative) Disjoint Image Condition
- All But One Condition
- Bounded Slope Condition

Table of Contents

- Constructive KST
- 2 The Fridman Strategy
- Reparameterization Approach
- 4 Conclusions and Outstanding Tasks

KST inner functions are strictly monotonic increasing

KST inner functions are strictly monotonic increasing

... which are of Bounded Variation

KST inner functions are strictly monotonic increasing

... which are of Bounded Variation

...so they define rectifiable curves

KST inner functions are strictly monotonic increasing

... which are of Bounded Variation

... so they define rectifiable curves

... which have Lipschitz reparameterizations.

Approach

- ${\bf 0}$ Find (non-Lipschitz) function $\widehat{\psi}$
- **2** Define reparameterization σ
- f a Create Lipschitz ψ from $\widehat{\psi}$ using σ
- Construct squares S^k that meet conditions

Hölder Continous $\widehat{\psi}$

- Define iteratively: $\widehat{\psi} = \lim_{k \to 0} \widehat{\psi}^k$
- Fix values at points with k digits in base γ expansion
 - Small increase for most points
 - ullet Large increase for expansions ending in $\gamma-1$
- Linearly interpolate between fixed values

Köppen's KST Inner Function $\widehat{\psi^7}$

Lipschitz Reparameterization

Reparameterization $\sigma: [0,1] \rightarrow [0,1]$

$$\sigma(x) = \frac{\text{arclength of } \widehat{\psi} \text{ from 0 to } x}{\text{total arclength of } \widehat{\psi} \text{ from 0 to 1}}$$

$$\psi(x) = \widehat{\psi}(\sigma^{-1}(x))$$

Lipschitz Reparameterization ψ^7

Correct Squares

$$\psi = \widehat{\psi} \circ \sigma^{-1}$$

Intervals for $\widehat{\psi}$ are $\widehat{\mathbb{S}}^k$ Intervals for ψ are $\mathbb{S}^k = \sigma(\widehat{\mathbb{S}}^k)$

 $\widehat{\psi}$ satisfies Disjoint Image Condition on $\widehat{\mathbb{S}}^k$ ψ satisfies Disjoint Image Condition on \mathbb{S}^k

Comparing $\widehat{\mathbb{S}}^k$ and \mathbb{S}^k

Largest Interval Size for S^k

Reparameterized Intervals

Refinement Condition: Intervals shrink at $O(2^{-k})$ not $O(\gamma^{-k})$

All But One Condition: Gaps between intervals get smaller under σ

Takeaway

Function
$$\psi = \widehat{\psi} \circ \sigma^{-1}$$
 is a Lipschitz KST inner function

Squares
$$\mathbb{S}^k = \sigma(\widehat{\mathbb{S}}^k)$$
 are KST squares

Table of Contents

- Constructive KST
- 2 The Fridman Strategy
- 3 Reparameterization Approach
- 4 Conclusions and Outstanding Tasks

Review

- Motivated why KST is interesting, hard
- Illustrated how KST works
- Outlined Fridman Strategy
- Showed where Fridman Strategy fails
- Posed new reparameterization approach
- Justified reparameterization meets requirements

Outstanding Tasks

Complete proofs for reparameterization argument for $\boldsymbol{\psi}$

Framework for computing outer function χ

- Requires squares at each level k
- Requires final Ψ

First Application: Image compression