Ensemble of Code Tables (Master Thesis Defense)

Jaspreet Singh

Utrecht University

July 10th 2018

Outline

Introduction

Preliminaries

Problem Description and Research Questions

Algorithms

Experiments

Discussion

Conclusion

Introduction: Machine Learning Models

- ► Goal: Give a description of the database by using some model
- ... by approximating the underlying data distribution.
- Example: Find interesting patterns in the data.
- Example: Find groups of transactions that are similar.
- Example: Detect anomalies in the data.

Introduction

- ▶ **Goal**: *Cluster* the data such that *overlap* is allowed between the clusters.
- ▶ **How**: Use a *series of code tables*, such that each code table captures *a certain aspect* of the data.

Introduction: Clustering

- ▶ A group of data points which are similar in some sense.
- Is an unsupervised machine learning method.
- Performed in exploratory data analysis.
- Different types of clustering methods:

Introduction: Code Tables

- A code table is used to encode (compress) all the transactions in a dataset.
- ► A code table alone is not very useful, an algorithm which uses a code table is required.
- ► This algorithm is called the Cover algorithm

Introduction: Code Tables

Introduction: Code Tables

Preliminaries

- Basic Definitions
- ► Minimum Description Length Principle (MDL)
- ► Compression and Machine Learning
- Clustering

Preliminaries: Basic Definitions

- ▶ A dataset \mathcal{D} is represented as a $N \times M$ binary matrix.
- N denotes the number of rows (transactions).
- M denotes the number of columns (items).
- (t, i) = 1 denotes that item i is used in transaction t.
- ▶ The set of items I make up the 'alphabet' of the dataset.
- ▶ An itemset I is an element of $\mathcal{P}(\mathcal{I})$: $I \in \mathcal{P}(\mathcal{I})$.

Preliminaries: Basic Definitions

► The support of an itemset supp_D(I), is the number of transactions in which I occurs:

$$supp_{\mathcal{D}}(I) = |\{t \in \mathcal{D} \mid I \subseteq t\}|$$

- Itemsets are frequent with respect to some minimum support θ .
- ▶ This restricts the number of possible itemsets.
- ▶ Given a minimum support θ , the set of all frequent itemsets \mathcal{F} is defined as:

$$\{I \in \mathcal{F} \mid supp_{\mathcal{D}}(I) \geq \theta\}$$

Preliminaries: Minimum Description Length Principle

Given a set of models \mathcal{H} , the best model $H \in \mathcal{H}$ is the model that minimises

$$L(H) + L(D \mid H)$$

- \blacktriangleright L(H) is the length of the description of H in bits.
- ▶ $L(D \mid H)$ is the length of the description of the data in bits, encoded by using H.

Preliminaries: Minimum Description Length Principle

- ▶ MDL is a practical version of the Kolmogorov Complexity.
- ► The Kolmogorov Complexity cannot be computed.
- ► The Kolmogorov Complexity of an object is the length of the shortest program that produces the object as output.
- ► Example: The string 'abababab' can be described as: 4× 'ab'

MDL applied to item sets: Code Tables!

▶ Use item sets to describe the data through code tables

Definition: Code Table

Let $\mathcal I$ be a set of items and $\mathcal C$ be a set of codes. A code table CT over $\mathcal I$ and $\mathcal C$ is a table with two columns such that: The first column contains subsets over $\mathcal I$, all singleton item sets must be present. The second column contains codes from $\mathcal C$ and every code is allowed to occur at most once.

► The standard code table *CT_{ST}* only contains the singleton item sets.

Input: Transaction $t \in \mathcal{D}$ and code table CT, with CT and \mathcal{D} over a set of items \mathcal{I} . **Output:** A cover of t using non-overlapping elements of CT.

- 1: $S \leftarrow$ smallest element X of CT in **Standard Cover Order** for which $X \subseteq t$
- 2: **if** $t \setminus S = \emptyset$ **then**
- 3: $Res \leftarrow \{S\}$
- 4: else
- 5: $Res \leftarrow \{S\} \cup STANDARDCOVER(t \setminus S, CT)$
- 6: end if
- 7: return Res

- ► The item sets in the code tables are sorted to avoid trying all combinations to cover a transaction
- ► The sorting order is called: **Standard Cover Order**
 - 1. Sort descending on item set size |I|
 - 2. Sort descending on support
 - 3. Sort ascending lexicographically

- Actual codes are not needed, code lengths are used to compute the compressed size.
- ▶ The more an item set is used, the shorter its code length is.
- ▶ The usage count of an item set *I* is

$$usage(I) = |\{t \in \mathcal{D} \mid I \in cover(CT, t)\}|$$

► This implies a probability distribution of I ∈ CT

$$\mathbb{P}(I \mid \mathcal{D}) = \frac{usage(I)}{\sum_{Y \in CT} usage(Y)}$$

▶ The code length $L(code_{CT}(I))$ then is

$$L(code_{CT}(I)) = -log(\mathbb{P}(I \mid \mathcal{D}))$$

Lemma 1

For any $t \in \mathcal{D}$ its encoded size in bits $L(t \mid CT)$ is:

$$L(t \mid CT) = \sum_{I \in cover(CT,t)} L(code_{CT}(I))$$

The encoded size of \mathcal{D} when encoded by CT, $L(\mathcal{D} \mid CT)$, is:

$$L(\mathcal{D} \mid CT) = \sum_{t \in \mathcal{D}} L(t \mid CT)$$

The length of a code table $L(CT \mid D)$ is:

$$L(CT \mid D) = \sum_{I \in CT} L(code_{ST}(I)) + L(code_{CT}(I))$$

The total encoded length $L(\mathcal{D}, CT)$ then is:

$$L(\mathcal{D}, CT) = L(\mathcal{D} \mid CT) + L(CT \mid \mathcal{D})$$

- ightharpoonup Many algorithms use a pre-mined set of candidate item sets \mathcal{F} .
- ▶ F is traversed in **Standard Candidate Order**
 - 1. Sort descending on support
 - 2. Sort descending on item set size |I|
 - 3. Sort ascending lexicographically

```
1 Function Krimp(\mathcal{D}, \mathcal{F})
         Data: Dataset \mathcal{D}, candidate set \mathcal{F}, both over a set of items \mathcal{I}
         Result: Code table CT
         CT \leftarrow Standard Code Table(\mathcal{D});
         \mathcal{F}_0 \leftarrow \mathcal{F} in Standard Candidate Order;
 3
         for F \in \mathcal{F}_0 \backslash \mathcal{I} do
              CT_c \leftarrow (CT \cup F) in Standard Cover Order;
              if L(\mathcal{D}, CT_c) < L(\mathcal{D}, CT) then
 6
                 CT \leftarrow CT_c;
              end
         end
 9
         return CT;
10
```

- ▶ Mining a set of (frequent) item sets can take a lot of time.
- ▶ When dropping the the minimum support θ , the number of frequent item sets explode.
- ▶ It is possible to generate candidates more efficiently!
- ▶ **Insight**: Every item set is the union of two other item sets.
- Generate candidate item sets directly from code tables.

```
1 Function Slim(\mathcal{D})
       Data: Dataset \mathcal{D}
       Result: Code table CT
      CT \leftarrow Standard Code Table(\mathcal{D});
2
      for F \in \{X \cup Y : X, Y \in CT\} in Gain Order do
3
           CT_c \leftarrow (CT \oplus F) in Standard Cover Order;
4
           if L(\mathcal{D}, CT_c) < L(\mathcal{D}, CT) then
5
           CT \leftarrow post - prune(CT_c);
6
           end
      end
8
      return CT;
9
```

- Use a number of code tables to gain insight in the data from different aspects.
- All output code tables contain the same number of non-singleton item sets.
- ▶ This produces a structure function $\kappa_{\mathcal{D}}$
- Allows for the study of the correlation structure at different levels of granularity.

```
1 Function Groei(\mathcal{D}, b)
             Data: Dataset \mathcal{D}, Beam-width b
            Result: Code tables \mathcal{CT} = \{CT_i, \dots, CT_k\}
            k \leftarrow 1:
           \mathcal{CT}_1^{cand} \leftarrow \text{Generate}(CT_n^{\mathcal{D}});
           \mathcal{CT}_{1}^{best} \leftarrow \{CT \mid \text{best } b \text{ tables from } \mathcal{CT}_{1}^{cand}\};
            repeat
 5
                   k \leftarrow k + 1;
                  \mathcal{CT}_{k}^{cand} \leftarrow \mathtt{Generate}(\mathcal{CT}_{k-1}^{best});
                   \mathcal{CT}_{k}^{best} \leftarrow \{CT \mid \text{best } b \text{ tables from } \mathcal{CT}_{k}^{cand}\};
            until L(\mathcal{D} \mid \mathcal{CT}_{k}^{best}) > L(\mathcal{D} \mid \mathcal{CT}_{k-1}^{best});
 9
            return \mathcal{CT}_{k}^{best};
10
```

Preliminaries: Summary

- ► The Cover algorithm allows to compress the data by using code tables.
- Krimp uses a pre-mined set of item sets.
- The number of candidates explodes when the minimum support is lowered.
- ► Slim avoids this explosion by directly generating candidates from the code table.
- Groei outputs a number of code tables which together produce a structure function.

Preliminaries: Clustering: Hard

Let \mathcal{D} denote the dataset, K the number of clusters and $\mathcal{D}_i \subseteq \mathcal{D}$ a cluster. A hard partitioning of data set \mathcal{D} tries to find K partitions such that:

- 1. $\forall i \in [1, K] : \mathcal{D}_j \neq \emptyset$ All partitions must be non-empty.
- 2. $\bigcup_{i=1}^{K} \mathcal{D}_i = \mathcal{D}$ All partitions together must contain all transactions.
- 3. $\forall i, j \in [1, K] : i \neq j \Rightarrow \mathcal{D}_i \cap \mathcal{D}_j = \emptyset$ There is no overlap between the partitions.

Problem Description and Research Questions

- Observations and Definitions
- ▶ Problem Description
- Research Questions

Problem Description: Observations

- Groei produces a number of code tables.
- ► However, all code tables are of the same complexity and are not the best compressing tables.
- ► Get rid of the structure function and make candidate generation more efficient.
- We do not want a disjoint clustering, a non-disjoint clustering is required.
- Each code table corresponds to a cluster.
- It is also possible for a transaction to belong to all clusters with a degree of membership $u_{i,j} \in [0,1]$, the membership coefficient of the jth object in the ith cluster.
- ► The membership coefficient must satisfy the following two constraints:

$$orall j: \sum_{i=1}^K u_{i,j} = 1$$
 and $orall i: \sum_{j=1}^N u_{i,j} < N$

Problem Description: Definitions

The Membership Coefficient is the probability that tuple $d_j \in \mathcal{D}$ belongs to cluster C_i :

$$\mathbb{P}(d_j \in C_i) = \frac{2^{-CT_i(d_j)}}{\sum\limits_{l} 2^{-CT_l(d_j)}}$$

The Encoded Cluster Length of a cluster C_i is determined by its code table CT_i , and is the Code Table Encoded Length over all the transactions in the database \mathcal{D} :

$$L(C_i \mid CT_i) = \sum_{j=1}^{N} L(d_j \mid CT_i)$$

Problem Description

Let $\mathcal D$ denote a database, and let $\mathcal I$ denote the set of items in the database. The database $\mathcal D$ is then a subset of $\mathcal P(\mathcal I)$, $\mathcal D\subseteq \mathcal P(\mathcal I)$. So, every tuple $t\in \mathcal D$ is also an element of $\mathcal P(\mathcal I)$. The goal is then to find the code table $\mathcal C\mathcal T$ that best compresses $\mathcal D$.

 $\min \mathit{CT}(\mathcal{D})$

Problem Description

Let \mathcal{D} denote a database, and let \mathcal{CT} denote a set of code tables such that $CT_1, CT_2 \in \mathcal{CT}$. Then either:

- ▶ $CT_1, CT_2 \in \mathcal{CT}$ form an antichain;
- ▶ or, $\exists \mathcal{D}_1, \mathcal{D}_2 \subset \mathcal{D}$ given both partitions are large enough that:

$$\textit{CT}_1(\mathcal{D}_1) \leq \textit{CT}_1(\mathcal{D}_2) \qquad \text{and} \qquad \textit{CT}_2(\mathcal{D}_2) \leq \textit{CT}_2(\mathcal{D}_1)$$

Problem Description

let $\mathcal D$ denote a database, let $\mathcal C\mathcal T$ denote a set of code tables, let Q denote some quality threshold, and let C denote the number of code tables possible for $\mathcal D$

$$\forall i \in [1, C] : [CT_i(\mathcal{D}) > Q \Rightarrow CT_i \notin \mathcal{CT}]$$

Research Questions

- Do the obtained clusters capture the characteristics of the underlying data distribution?
- ► Are the clusters dissimilar enough to each describe a specific characteristic of the database?
- Are the obtained clusters able to identify a multi-valued relationship, if present?
- Is the runtime low enough for interactive usage?

Clustering Algorithms

- ▶ GroeiNoS
- Candidate Generation
- Slim Candidate Generation (GroeiSlimNoS)

Clustering Algorithms: GroeiNoS

```
1 Function GroeiNoS(\mathcal{D},b)
             Data: Dataset \mathcal{D}, Beam-width b
             Result: Code tables \mathcal{CT} = \{CT_i, \dots, CT_k\}
            k \leftarrow 1:
          \mathcal{CT}_{1}^{cand} \leftarrow \mathtt{Generate}(CT_{\alpha}^{\mathcal{D}});
           \mathcal{CT}_1^{best} \leftarrow \{CT \mid \text{best } b \text{ tables from } \mathcal{CT}_1^{cand}\};
            repeat
 5
                   k \leftarrow k + 1:
                  \mathcal{CT}_{k}^{cand} \leftarrow \text{Generate}(\mathcal{CT}_{k-1}^{best});
                   \mathcal{CT}_{k}^{best} \leftarrow \{CT \mid \text{best } b \text{ tables from } \mathcal{CT}_{k}^{cand} \cup \mathcal{CT}_{k-1}^{best} \};
            until L(\mathcal{D} \mid \mathcal{CT}_{k}^{best}) > L(\mathcal{D} \mid \mathcal{CT}_{k-1}^{best});
 9
             return \mathcal{CT}_{k}^{best};
10
```

Clustering Algorithms: Candidate Generation

```
1 Function Generate<sub>hasic</sub> (\mathcal{CT})
         Data: Code tables \mathcal{CT} = \{CT_1, \dots, CT_n\}
         Result: Code tables CT = \{CT_1, ..., CT_k\}
         \mathcal{CT}^{cand} = \{\};
 2
         for I \in \mathcal{F} do
 3
              for CT \in \mathcal{CT} do
 4
 5
                   if I \notin CT then
                      \mathcal{CT}^{cand} = \mathcal{CT}^{cand} \cup \{(CT \cup I) \text{ Standard Cover Order } \};
 6
 7
                   end
              end
 8
         end
 9
         return \mathcal{CT}^{cand};
10
```

Clustering Algorithms: Candidate Generation

```
1 Function Generate<sub>slim</sub> (\mathcal{CT})

Data: Code tables \mathcal{CT} = \{CT_1, ..., CT_n\}

Result: Code tables \mathcal{CT} = \{CT_1, ..., CT_k\}

2 \mathcal{CT}^{cand} = \{\};

3 for CT \in \mathcal{CT} do

4 | for F \in \{X \cup Y : X, Y \in CT\} do

5 | \mathcal{CT}^{cand} = \mathcal{CT}^{cand} \cup \{(CT \cup F) \text{ Standard Cover Order }\};

6 end

7 end

8 return \mathcal{CT}^{cand};
```

Experiments

- Setup
- Datasets
- Compression
- ▶ Clustering
- Classification
- Multi-Valued Dependencies

Experiments: Setup

- Maximum iterations: 250
- Cut-off time: 12 hours
- ▶ All experiments performed on same machine
- ▶ Default beam-width = 10
- ► Default algorithm: GroeiSlimNoS

Experiments: Datasets

\mathcal{D}	$ \mathcal{D} $	$\mid \mathcal{I} \mid$	ρ	θ	$\mid \mathcal{F} $
anneal	898	71	20.1%	100	2.55×10^{4}
breast	699	16	62.4%	1	9.92×10^{3}
chess	3196	75	49.3%	2500	1.15×10^{4}
ionosphere	351	157	22.3%	125	1.03×10^{4}
iris	150	19	26.3%	1	5.43×10^{3}
led7	3200	24	33.3%	1	1.53×10^{4}
mushroom	8124	119	19.3%	2500	2.37×10^{3}
mammals	2183	121	20.5%	850	9.26×10^{3}
pageblocks	5473	44	25.0%	1	6.36×10^{4}
pima	768	38	23.7%	1	2.88×10^{4}
wine	178	68	20.6%	10	8.81×10^{3}
wine	178	68	20.6%	20	1.45×10^{3}
wine	178	68	20.6%	30	3.99×10^{2}

Experiments: Compression

- General Compression
- ► Runtime
- Lowering the support
- ▶ Beam-width

Experiments: Compression

Measure the relative compression by the best compressing code table:
(2) (7)

$$L\% = \frac{L(\mathcal{D}, CT)}{L(\mathcal{D}, ST)} \times 100\%$$

▶ The lower the value of L%, the more structure is captured.

Experiments: Compression

$\mathcal D$	θ	Groei-F	Groei	GroeiNoS	GroeiSlim	GroeiSlimNoS
anneal	100	51,3%	45,2%	45,2%	43,0%	43,0%
breast	1	23,2%	16,5%	16,5%	15,6%	15,6%
chess	2500	65,4%	65,1%	65,1%	65,1%	65,1%
ionosphere	125	78,3%	71,8%	71,8%	71,1%	71,1%
iris	1	46,4%	45,5%	45,5%	45,5%	45,5%
led7	1	39,6%	28,3%	28,3%	27,4%	27,4%
mammals	850	66,7%	65,3%	65,3%	65,0%	65,0%
mushroom	2500	66,1%	65,7%	65,7%	66,2%	66,2%
pageblocks	1	7,3%	5,0%	5,0%	5,0%	5,0%
pima	1	39,1%	33,9%	33,9%	31,0%	31,0%
wine	10	71,7%	72,2%	72,2%	73,0%	73,0%
wine	20	74,7%	75,3%	75,3%	75,1%	75,1%
wine	30	76,8%	77,5%	77,5%	77,6%	77,6%

Experiments: Compression: Runtime

Experiments: Compression: Lower Support

\mathcal{D}	$ \mathcal{D} $	$ \mathcal{I} $	ρ	θ	$\mid \mathcal{F} $
chess	3196	75	49.3%	500	8.46×10^{9}
ionosphere	351	157	22.3%	35	2.26×10^{9}
mushroom	8124	119	19.3%	1	1.56×10^{10}
mammals	2183	121	20.5%	200	9.38×10^{7}

Experiments: Compression: Lower Support

		GroeiS	limNoS
\mathcal{D}	θ	b = 1	b = 3
chess*	500	27,0%	27,0%
mushroom**	1	23,5%	23,7%
ionosphere	35	56,8%	56,9%
mammals*	200	47,0%	46,8%

- (*) Terminated because of iteration limit.
- (**) Terminated because of time limit.

Experiments: Compression: Beam-width

Experiments: Clustering

- Entropy of transactions
- Dissimilarity between code tables
- Probability distribution

Experiments: Clustering: Entropy

- Measures the homogeneity of transactions with respect to all clusters.
- ► The higher the entropy, the more uniformly the transaction is compressed by all code tables.

$$E = -\sum_{i=1}^{C} \mathbb{P}(t \in D_i) \log_b \mathbb{P}(t \in D_i),$$

Experiments: Clustering: Entropy

(a) ionosphere-125

(b) pima-1

Experiments: Clustering: Entropy

(a) mammals-850

(b) anneal-100

Experiments: Clustering: Dissimilarity

- Measure the pairwise relative dissimilarity in compressed cluster size.
- Code tables are ranked from best compressing to worst compressing.

$$DS(CT_x, CT_y, \mathcal{D}) = \max \left\{ \frac{CT_y(\mathcal{D}) - CT_x(\mathcal{D})}{CT_x(\mathcal{D})}, \frac{CT_x(\mathcal{D}) - CT_y(\mathcal{D})}{CT_y(\mathcal{D})} \right\}$$

Experiments: Clustering: Dissimilarity

Experiments: Clustering: Dissimilarity

Experiments: Clustering: Distribution

- It also possible to look at a few code tables and the transactions.
- ► This will highlight the differences between the code tables on the level of transactions.

Experiments: Clustering: Distribution: Ionosphere-125

Experiments: Clustering: Distribution: Anneal-100

Experiments: Classed Datasets

- Classification
- Purity

Experiments: Classed Datasets: Classification

$Dataset\ \mathcal{D}$	Number of classes cl
ionosphere	2
letterrecognition	26
mushroom	2
pendigits	10
wine	3

Experiments: Classed Datasets: Classification

- ▶ 10-fold cross validation is used for the experiments.
- ▶ 1 fold for validation, 9 folds for training.
- ▶ Training: run the algorithm on each class for each fold.
- ▶ Assign to the class that compresses the transaction the best.

$$\mathbb{P}(d \in \mathcal{D}_i) \propto \frac{1}{CT_i(d)}$$

$$C(d) = rg \max_{D_i \in \mathcal{D}} \mathbb{P}(d \in \mathcal{D}_i) = rg \max_{D_i \in \mathcal{D}} \frac{1}{CT_i(d)}$$

Experiments: Classed Datasets: Classification

- Measure the ratio of cases that have been classified correctly.
- ▶ Baseline: accuracy when assigning to majority class.

$$A = \frac{\text{Number of cases classified correctly}}{\text{Total number of cases}}$$

Experiments: Classed Datasets: Purity

- ▶ How well do the obtained clusters characterise the classes?
- ▶ Let $\mathscr{D} = \{\mathcal{D}_1, \dots, \mathcal{D}_k\}$ the set of clusters, and $\mathscr{C} = \{c_1, \dots, c_m\}$ denote the set of classes where each class c_j is the set of all cases which belong to c_j , then the purity is:

$$purity(\mathscr{D},\mathscr{C}) = \frac{1}{N} \sum_{i=1}^{k} \max_{j} |\mathcal{D}_{i} \cap c_{j}|$$

- Baseline is ratio of classes belonging to the majority class.
- beam-width = number of classes

Experiments: Classed Datasets: Purity

Experiments: Multi-Valued Dependencies

(eta,γ,ψ)	Number of occurrences
$\overline{(A,J,*)}$	4
(B, K, *)	4
(C,K,*)	4
(D, L, *)	4
(E, M, *)	2
(F,K,*)	2
(G,J,*)	2
(H, L, *)	2
(I,J,*)	1

Experiments: Multi-Valued Dependencies

Discussion

- Compression is on-par or better than Groei-F in most cases.
- Big improvement in runtime.
- Is able to handle item sets with lower support settings but this can still be improved.
- All code tables capture the general patterns
- ▶ The code tables also capture specific patterns
- Classification experiments show that further lowering of the support is required to better capture the structure.
- ▶ The algorithm is able to identify multi-valued dependencies.

Conclusion

- Non-disjoint clustering sheds light on the data from different perspectives.
- Both commonalities and differences are identified.
- ► Future work: Further improve candidate generation (USE THE GAIN ORDER!)