Stevens Institute of Technology Department of Electrical and Computer Engineering

Spring Semester 2025

CpE 462 Introduction to Image Processing

Homework 3: Due Feb. 27.

3.1 (1A) Given: $\mathbf{x}_1[\mathbf{n}] = \delta[\mathbf{n}] - 2\delta[\mathbf{n} - 1]$ $\mathbf{x}_2[\mathbf{n}] = 2\delta[\mathbf{n}] + \delta[\mathbf{n} - 1] - \delta[\mathbf{n} - 2]$

- 3.1.1 Compute the linear convolution $\mathbf{x}_1[\mathbf{n}] * \mathbf{x}_2[\mathbf{n}]$
- 3.1.2 Compute 4-point DFT: $X_1[k]=DFT\{x_1[n]\}$ and $X_2[k]=DFT\{x_2[n]\}$.

Note:

- a. DFT should be computed in numbers, not in W_N^{nk} .
- b. You can use Matlab to calculate these W_N^{nk} .
- c. Show all your steps.
- **3.2** (1A) Calculate the 2-D convolution $\mathbf{x}[\mathbf{n},\mathbf{n}]$ ** $\mathbf{h}[\mathbf{n},\mathbf{n}]$, show all the necessary intermediate steps.

- 3.3 (5E) Each project group submits a 1-page project proposal, which should include
 - The problem to solve.
 - Do not try to save the world. Think of something feasible.
 - Your approach to solve this problem.
 - The knowledge you are going to learn by yourselves. Don't wait until I cover the topic in class.
 - The tools you are going to use.
 - Let me know if you need help.
 - The detailed tasks of each group member.