## **Udaan 2025**

# **Mathematics Polynomials**

**DHA: 3** 

**Q 1** The zeroes of the quadratic polynomial  $4x^2 - 4x - 3$ 

Also, verify the relation between the zeroes and the coefficients.

- (A)  $\frac{-3}{2}, \frac{1}{2}$
- (C)  $\frac{3}{2}, \frac{1}{2}$
- **Q** 2 If k is any no-zero constant, then the quadratic polynomial whose zeroes are 2 and -6 is
- (A)  $k[x^2 + 4x + 12]$  (B)  $k[x^2 4x 12]$  (C)  $k[x^2 + 4x 12]$  (D)  $k[x^2 4x + 12]$
- **Q** 3 If  $\alpha$  and  $\beta$  are the zeroes of the quadratic polynomial  $f(x) = x^2 - 5x + 4$ , then the value of  $rac{1}{lpha}+rac{1}{eta}-2lphaeta$  is

- **Q 4** If  $\alpha$  and  $\beta$  are the zeroes of the quadratic polynomial  $f(t)=t^2-5t+3$  , then the value of  $lpha^4eta^3+lpha^3eta^4$  is
  - (A) 54
- **(B)** 55

Important question do again.

- (C) 135
- (D) 41

- **Q** 5 If  $\alpha$  and  $\beta$  are the zeroes of the polynomial  $x^2 + 7x +$ 
  - 3 , then the value of  $(\alpha \beta)^2$  is
  - (A) 34

then the value of c is

(B) 37

- (C) 39
- (D) 41

Important question do again.

**Q 6** If  $\alpha$  and  $\beta$  are zeroes of the polynomial  $x^2-p(x+1)+c$  such that  $(\alpha+1)(\beta+1)=0$ ,

- (B) 2
- (A) -2(C) -1
- (D) 1
- **Q** 7 The zeroes of the quadratic polynomial  $x^2 + 99x +$ 
  - (A) Both positive
- (B) Both negative
- (C) One positive and negative.
- (D) Both equal
- **Q 8** If  $\alpha$ ,  $\beta$  are the zeros of the polynomial

$$f(x)=x^2+x+1$$
, then  $rac{1}{lpha}+rac{1}{eta}=$ 

- (A) 1
- (B) -1
- (C) 0
- (D) None of these
- **Q 9** If one zero of the polynomial

$$fig(xig) = ig(k^2+4ig)x^2+13x+4k$$
 is reciprocal of the other, then ' k ' =

- (A) 2
- (B) -2
- (C) 1
- (D) -1
- **Q 10** If  $\alpha$  and  $\beta$  are the zeros of the **polynomial**

 $f(x)=x^2+px+q$  , then a polynomial having  $rac{1}{lpha}$ and  $\frac{1}{\beta}$  is its zeros is

- (A)  $x^2 + qx + p$  (B)  $x^2 px + q$  (C)  $qx^2 + px + 1$  (D)  $px^2 + qx + 1$
- **Q 11** A quadratic polynomial, the sum of whose zeroes is 0 and one zero is 3, is
  - (A)  $x^2 9$
- (B)  $x^2 + 9$
- (C)  $x^2 + 3$
- (D)  $x^2 3$

|               |              |  | <b>Answer Key</b> |            |              |
|---------------|--------------|--|-------------------|------------|--------------|
| Q1            | В            |  |                   | <b>Q</b> 7 | В            |
| $\mathbf{Q}2$ | $\mathbf{C}$ |  |                   | Q8         | В            |
| $\mathbf{Q3}$ | A            |  |                   | Q9         | A            |
| Q4            | C            |  |                   | Q10        | $\mathbf{C}$ |
| $\mathbf{Q}5$ | В            |  |                   | Q11        | A            |
| $\mathbf{Q6}$ | C            |  |                   |            |              |



## **Hints & Solutions**

## Q 1 Text Solution:

Use the formula for sum of zero and Product of Zero

#### **Video Solution:**



#### Q 2 Text Solution:

Use the formula for sum of zero and Product of Zero

$$If \ lpha=2, \ eta=-6 \ Required \ quadratic \ polynomial \ is \ kig[x^2-ig(lpha+eta)x+lphaetaig], \ where \ \prime k\prime \ is \ any \ number. \ \Rightarrow kig(x^2-ig(2+ig(-6ig))x+2ig(-6ig) \ \Rightarrow kig[x^2-ig(-4ig)x-12ig] \ \Rightarrow kig[x^2+4x-12ig]$$

#### **Video Solution:**



#### Q 3 Text Solution:

Use the formula for sum of zero and Product of Zero

$$egin{aligned} lpha+eta=rac{-b}{a}=rac{-(-5)}{1}=5\ lphaeta=rac{c}{a}=rac{4}{1}=4\ rac{1}{lpha}+rac{1}{eta}-2lphaeta=rac{lpha+eta}{lphaeta}-2lphaeta\ &\Rightarrowrac{5}{4}-2\Big(4\Big)\ &\Rightarrowrac{5-32}{4}=rac{-27}{4} \end{aligned}$$

## **Video Solution:**



#### Q 4 Text Solution:

Given polynomial is 
$$f\left(t\right)=t^2-5t+3$$
  
Let  $\alpha, \beta$  are the zeroes of the polynomial  $\alpha+\beta=\frac{-b}{a}=5$   
 $\alpha\beta=\frac{c}{a}=3$   
 $\alpha^4\beta^3+\alpha^3\beta^4=(\alpha\beta)^3\Big(\alpha+\beta\Big)=3^3\times 5=27\times 5$   
 $=135$ 

## **Video Solution:**



#### Q 5 Text Solution:

Given polynomial  $p(x)=x^2+7x+3$ 

$$Sum\ of\ the\ zeroes = lpha + eta = rac{-b}{a} = rac{-7}{1} = -7$$
 $Product\ of\ zeroes = lpha eta = rac{c}{a} = rac{3}{1} = 3$ 
 $(lpha - eta)^2 = (lpha + eta)^2 - 4lpha eta$ 
 $\Rightarrow (lpha - eta)^2 = (-7)^2 - 4ig(3ig) = 49 - 12 = 37$ 

## **Video Solution:**



#### Q 6 Text Solution:

Given polynomial is 
$$x^2-p(x+1)+c=$$
 
$$x^2-px-p+c$$
 
$$sumofthezeroes=\alpha+\beta=\frac{-b}{a}=\frac{-[-p]}{1}=p$$
 
$$product\ of\ the\ zeroes=\frac{c}{a}=\frac{-p+c}{1}=-p+c$$
 
$$(\alpha+1)\left(\beta+1\right)=\alpha\beta+\alpha+\beta+1=0$$
 
$$=-p+c+p+1=0\Rightarrow c=-1$$

## **Video Solution:**



#### Q 7 Text Solution:

Both negative

## **Video Solution:**



#### Q 8 Text Solution:

$$egin{aligned} p\Big(x\Big) &= x^2 + x + 1 \ Sum \ of \ the \ zeroes &= lpha + eta = rac{-b}{rac{g}{a}} = -1 \ Product \ of \ the \ zeroes &= lpha eta = rac{1}{a} = 1 \ rac{1}{lpha} + rac{1}{eta} = rac{lpha + eta}{lpha eta} = rac{-1}{1} = -1 \end{aligned}$$

## **Video Solution:**



## Q 9 Text Solution:

Given polynomial is 
$$p(x) = (k^2 + 4)x^2 + 13x + 4k$$
Let the two zeroes are '\alpha' and '\frac{1}{\alpha}'.

Product of the zeroes =  $\frac{c}{a} = \frac{4k}{k^2+4}$ 

$$\Rightarrow \alpha \times \frac{1}{\alpha} = \frac{4k}{k^2+4}$$

$$\Rightarrow k^2 + 4 = 4k$$

$$\Rightarrow k^2 + 4 - 4k = 0$$

$$\Rightarrow (k-2)^2 = 0$$

$$\Rightarrow k = 2$$

## **Video Solution:**



#### Q 10 Text Solution:

Given polynomial is  $p\left(x\right) = x^2 + px + q$   $sum\ of\ the\ zeroes = \alpha + \beta = \frac{-b}{q} = -p$   $product\ of\ the\ zeroes = \alpha\beta = \frac{q}{a} = q$   $Required\ polynomial\ has\ zeroes\ \frac{1}{\alpha}\ and\ \frac{1}{\beta}$   $sum\ of\ the\ zeroes = \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha+\beta}{\alpha\beta} = \frac{-p}{q}$   $product\ of\ the\ zeroes = \frac{1}{\alpha} \times \frac{1}{\beta} = \frac{1}{\alpha\beta} = \frac{1}{q}$   $Required\ polynomial\ is\ k\left[x^2 - \left(sum\ of\ the\ zeroes\right)\right]$   $\Rightarrow k\left[x^2 - \left(\frac{-p}{q}\right)x + \frac{1}{q}\right]$   $when\ k = q$  $The\ required\ polynomial\ is\ qx^2 + px + 1$ 

## Video Solution:



#### Q 11 Text Solution:

Given one zero of the polynomial is  $\alpha=3$  sum of the zeroes  $=\alpha+\beta=0 \Rightarrow 3+\beta=0 \Rightarrow \beta=-3$  Required polynomial is  $(x-\alpha)(x-\beta) \Rightarrow (x-3)(x+3) \Rightarrow x^2-9$ 

## **Video Solution:**



