Primer on Machine Learning

attilagk

Lazy8

Contents

Overview

Concepts

Demo: NY/SF Home

Machine Learning is Everywhere

- ▶ pattern detection and recognition (iphone touch ID, face ID, word autocomplete, speech to text)
- history based recommendation (youtube, facebook, google search, amazon,...)
 - products for customers
 - customers for providers
- email filtering and classification (gmail)

Machine Learning and Artificial Intelligence

1950s

[getting] machines to exhibit behavior, which if done by humans, would be assumed to involve the use of intelligence¹ computational methods to automatically learn and to improve with experience²

now

ML³ statistical ("statistical learning") Al analytical (knowledge, logic)

¹Arthur Samuel, 1983

²http://www.mlplatform.nl/what-is-machine-learning/

³may mean Maximum Likelihood: abbrev. not widely used → ← ≥ → ← ≥ → へ ?

Machine Learning Now

- ▶ big data
 - data science, data mining, ...
 - myth: machine learning needs big data⁴
- fast computers
- emerging new methods
 - deep learning, reinfocement learning, ...

General Outline

- 1. formulate task (EN, ST)
- 2. collect data (EN, ST)
- 3. "engineer" data (EN, PR, DSS, HPC)
- 4. modeling (ST, EN)
- fit/learn/train model(s) on data (LIB, PR, HPC)
- 6. validate, select (LIB, ST, PR, HPC)
- 7. apply model to test data (LIB)
- 8. interpret results (EN, ST)
- 9. report (DOC)

skill set	
EN	expert knowledge
ST	statistics
PR	programming
DSS	domain spec. software
HPC	high performance computing
LIB	ML libraries ^a
DOC	LAT⊨X, Web

^aPython, R, Java, Julia, Scala, Matlab

My Story with Machine Learning

Myth: it's like cooking

skill	2006	2017
expert knowledge	?	?
statistics	-	+
programming	-	+
domain spec. softw.	-	+
high perform. comp.	-	?
ML libraries	-	?
L ^A TEX, Web.	-	+

PLoS One. 2012;7(5):e36546.

Contents

Overview

Concepts

Demo: NY/SF Home

Tasks

- 1. supervised learning: training and test data
 - prediction, classification
 - pattern recognition
 - business, medical, ... predictions & decisions
- 2. unsupervised learning: only training data
 - structure discovery
 - social, biol., tech. networks, associations,...
 - probabilistic expert systems
 - hypothesis testing, feature subset selection
 - research, marketing
 - matrix completion (imputation)
 - recommendation systems

The "Home" Data for Classification

Useless except for demonstration

observation	input features / variables				output		
i	x_{i1}	<i>x</i> _{<i>i</i>2}		X_{ip}	Уi		
home	price/sqft	elevation		beds	city		
training data							
1	999	10		2	NY		
2	1939	0		2	NY		
:	:	:	:	:	:		
491	764	163		1	SF		
492	762	216		3	SF		
test data							
493	1196	40		2	?		
:	:	:	:	:	:		

Home Data Overview

Informative Features

2 input features: 2D plots

Models for Classification

K-means classifier

support vector machine

generalized linear regression

decision tree (poor perform.)

 X_1

Which Model to Select? The One That Fits the Best!5

Information theory, optimality, model ensemble

Contents

Overview

Concepts

Demo: NY/SF Home

Building on "Visual Intro..." 6

what we will address in addition to "Visual Intro..."

- model validation/selection
- prediction

what we won't

- real World task
- data collection/engineering
- model selection
- validation, performance

Home Data Overview

Decision Tree is Ideal for Demo

Tree Grows as We Partition Recursively

Demo with "Visual Intro" 7

Observe progressive growth of tree!

 $^{^{7}}$ http://www.r2d3.us/visual-intro-to-machine-learning-part- $1/\sqrt{2}$ ~ 2 ~ 2

Our Analysis; Why R?

- created by and for biostatisticians
- functional language (like JavaScript)
- open source
- mature
- ▶ lots of machine learning packages
- ► R2D3⁸

Fitting Decision Trees

Using the rpart R library

a complex tree

Avoiding Overfitting (Too Much Complexity)

Fitting Decision Trees

Using the rpart R library

a complex tree

the optimal tree

at "the average of traning data"

at varying elevation

at varying price/sqft and 30m elevation

at varying price/sqft and average (40m) elevation

Conclusion: Machine Learning and You

- 1. doing it
 - ▶ Hello World! is easy but useless
 - obtaining skills takes years
 - rewarding
- 2. understanding it
 - ▶ learn concepts not cooking
 - collaboration, interpretation