Matemática Discreta | Clase 15 - Factorización en primos 2 / Congruencia

FAMAF / UNC

6 de mayo de 2021

Proposición

Existen infinitos números primos.

Demostración

Haremos la demostración por el absurdo.

Sean p_1, p_2, \ldots, p_r todos los números primos.

Sea $n = p_1 p_2 \dots p_r + 1$.

Sea p primo tal que $p|n \Rightarrow$ existe i tal que $p = p_i$.

Ahora bien $p_i|n$ y $p_i|p_1p_2 \dots p_r$, luego $p_i|n-p_1p_2 \dots p_r=1$. Absurdo.

Ejemplo

Probemos que si m y n son enteros tales que $m \ge 2$ y $n \ge 2$, entonces $m^2 \ne 2n^2$.

Demostración

Recordemos que

$$(ab)^r = a^r b^r, \quad (a^r)^s = a^{rs}, \quad a \cdot a^r = a^{r+1}.$$

$$n = 2^{x} p_{2}^{e_{2}} \dots p_{r}^{e_{r}}$$
 $(x \ge 0, p_{i} \text{ todos primos diferentes a 2.})$
 $n^{2} = 2^{2x} p_{2}^{2e_{2}} \dots p_{r}^{2e_{r}}$
 $2n^{2} = 2^{2x+1} p_{2}^{2e_{2}} \dots p_{r}^{2e_{r}}.$

$$m=2^yq_2^{f_2}\dots q_s^{f_s}$$
 $(y\geq 0,\ q_i\ \text{todos primos differentes a 2.})$
$$m^2=2^{2y}q_2^{2f_2}\dots q_s^{2f_s} \qquad (**)$$

(*)

Como $2x + 1 \neq 2y$ (el primero es impar y el segundo par), por unicidad de la descomposición, (*) \neq (**), es decir $m^2 \neq 2n^2$.

Observación

El ejemplo anterior nos dice que

$$m^2 \neq 2n^2 \quad \Rightarrow \quad \frac{m^2}{n^2} \neq 2 \quad \Rightarrow \quad \left(\frac{m}{n}\right)^2 \neq 2 \quad \Rightarrow \quad \frac{m}{n} \neq \sqrt{2}.$$

Es decir $\sqrt{2}$ no es un número racional.

Ejercicio

Probar que $\sqrt{15}$ no es un número racional.

Notación

Sean *m* y *n* dos enteros positivos, a veces es conveniente escribir la factorización prima de ambos números usando los mismos primos. Los primos que usamos son los que se encuentran en la factorización prima de ambos:

$$m = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}, \qquad n = p_1^{f_1} p_2^{f_2} \dots p_r^{f_r}.$$

con $e_i, f_i \geq 0$ para $i = 1, \ldots, r$ y e_i o f_i distinto de cero.

Ejemplo

168 y 495. Tenemos que

$$168 = 2^3 \cdot 3^1 \cdot 7^1$$
, $495 = 3^2 \cdot 5^1 \cdot 11^1$

Luego

$$168 = 2^{3} \cdot 3^{1} \cdot 5^{0} \cdot 7^{1} \cdot 11^{0},$$

$$495 = 2^{0} \cdot 3^{2} \cdot 5^{1} \cdot 7^{0} \cdot 11^{1}$$

Veremos ahora un resultado que se puede deducir fácilmente del Teorema Fundamental de la Aritmética (TFA).

Proposición

Sean $m, n \geq 2$ con

$$m = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}, \qquad n = p_1^{f_1} p_2^{f_2} \dots p_r^{f_r}.$$

donde p_i primo y e_i , $f_i \ge 0$ para i = 1, ..., r. Entonces m|n si y sólo si $e_i \le f_i$ para todo i.

Demostración

 (\Rightarrow) Por la descomposición de m es claro que $p_i^{e_i}|m$. Como m|n entonces $p_i^{e_i}|n$. Es decir $n=p_i^{e_i}u$. Es claro por TFA entonces que $e_i \leq f_i$.

 (\Leftarrow) Como $e_i \leq f_i$, tenemos que $p_i^{e_i}|p_i^{f_i}$, para $1 \leq i \leq r$. Luego

$$p_1^{e_1}p_2^{e_2}\dots p_r^{e_r}|p_1^{f_1}p_2^{f_2}\dots p_r^{f_r}.$$

Es decir $m \mid n$.

Ahora veremos que es posible calcular el mcd y el mcm de un par de números sabiendo sus descomposiciones primas.

Proposición

Sean m y n enteros positivos cuyas factorizaciones primas son

$$m = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}, \qquad n = p_1^{f_1} p_2^{f_2} \dots p_r^{f_r}.$$

- a) El mcd de m y n es $d = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ donde, para cada i en el rango $1 \le i \le r$, k_i es el mínimo entre e_i y f_i .
- b) El mcm de m y n es $u = p_1^{h_1} p_2^{h_2} \dots p_r^{h_r}$ donde, para cada i en el rango $1 \le i \le r$, h_i es el máximo entre e_i y f_i .

Demostración

(a) Es claro que $d = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ divide a m y n.

Sea c tal que c|n y c|m, entonces los primos que intervienen en la factorización de c son p_1, \ldots, p_r y por lo tanto

$$c = p_1^{t_1} p_2^{t_2} \dots p_r^{t_r}.$$

Además, como c|n y c|m tenemos que $t_i \leq e_i, f_i$ y por lo tanto $t_i \leq k_i = \min(e_i, f_i)$.

De esto se deduce que $c|p_1^{k_1}p_2^{k_2}\dots p_r^{k_r}=d$.

(b) Se deja como ejercicio.

Ejemplo

Encontremos el mcd y el mcm de 168 y 495.

Ya habíamos visto que

$$168 = 2^{3} \cdot 3^{1} \cdot 5^{0} \cdot 7^{1} \cdot 11^{0},$$

$$495 = 2^{0} \cdot 3^{2} \cdot 5^{1} \cdot 7^{0} \cdot 11^{1}$$

Luego

$$\begin{split} & \mathsf{mcd}\big(168,495\big) = 2^0 \cdot 3^1 \cdot 5^0 \cdot 7^0 \cdot 11^0 = 3, \\ & \mathsf{mcm}\big(168,495\big) = 2^3 \cdot 3^2 \cdot 5^1 \cdot 7^1 \cdot 11^1. \end{split}$$

Congruencia - Definiciones y propiedades básicas

Definición

Sean a y b enteros y m un entero positivo. Diremos que a es congruente a b m'odulo m, y escribimos

$$a \equiv b \pmod{m}$$

si a - b es divisible or m, es decir si m|a - b.

Observar que

$$a \equiv 0 \pmod{m} \Leftrightarrow m|a$$

y que

$$a \equiv b \pmod{m} \Leftrightarrow a - b \equiv 0 \pmod{m}$$
.

Notación

 $a \equiv b \pmod{m}$ también lo denotamos $a \equiv b \pmod{m}$.

Ejemplo

- \circ 7 \equiv 3 (2), pues 2|7-3=4.
- \circ 17 \equiv 8 (3), pues 3|17 8 = 9.
- \circ 8 \equiv 17 (3), pues 3|8-17=-9.
- \circ 35 \equiv 13 (11), pues 11|35 13 = 22 = 2 \cdot 11.

Proposición

Sean a entero y m un entero positivo. Sea r el resto de dividir a por m.

$$a \equiv r \pmod{m}$$
.

Demostración

$$a = mq + r \operatorname{con} 0 \le r < m$$
.

Luego,

$$a-r=mq$$
 \Rightarrow $m|a-r$ \Rightarrow $a\equiv r\pmod{m}$.

Es fácil verificar que la congruencia módulo m verifica las siguientes propiedades

- a) Es reflexiva es decir $x \equiv x \pmod{m}$.
- b) Es simétrica, es decir si $x \equiv y \pmod{m}$, entonces $y \equiv x \pmod{m}$.
- c) Es transitiva, es decir si $x \equiv y \pmod{m}$ e $y \equiv z \pmod{m}$, entonces $x \equiv z \pmod{m}$.

Demostración

- a) m|x-x=0 y por lo tanto $x\equiv x \pmod{m}$.
- b) $x \equiv y$ $(m) \Rightarrow m|x-y \Rightarrow m|-(x-y) \Rightarrow m|y-x \Rightarrow y \equiv x$ (m).
- c) $x \equiv y \ (m) \land y \equiv z \ (m) \Rightarrow m|x y \land m|y z \Rightarrow m|(x y) + (y z) = x z \Rightarrow x \equiv z \ (m).$

Proposición

Sean a y b enteros y m un entero positivo. Entonces $a \equiv b \pmod{m}$ si y sólo si a y b tienen el mismo resto en la división por m.

Demostración

Se deduce por la proposición de la p. 12 y transitividad.

Así como separamos $\mathbb Z$ en los números pares e impares, la propiedad anterior nos permite expresar $\mathbb Z$ como una unión de m subconjuntos.

Es decir si $\mathbb{Z}_{[r]}=\{x\in\mathbb{Z}: \text{el resto de dividir }x\text{ por }m\text{ es }r\},$ entonces,

$$\mathbb{Z} = \mathbb{Z}_{[0]} \cup \mathbb{Z}_{[1]} \cup \cdots \cup \mathbb{Z}_{[m-1]}.$$