1.6.17

EE24BTECH11058 - P.Shiny Diavajna

Question: Using vectors, find the value of k such that points $\begin{pmatrix} k & -10 & 3 \end{pmatrix}$, $\begin{pmatrix} 1 & -1 & 3 \end{pmatrix}$ and $\begin{pmatrix} 3 & 5 & 3 \end{pmatrix}$ are collinear.

Solution:

Variable	Description
$\begin{pmatrix} k & -10 & 3 \end{pmatrix}$	Point A
$\begin{pmatrix} 1 & -1 & 3 \end{pmatrix}$	Point B
(3 5 3)	Point C
k	x coordinate of A

TABLE 0: Variables Used

$$\begin{pmatrix} C - B & B - A \end{pmatrix}^{\top} = \begin{pmatrix} 2 & 6 & 0 \\ 1 - k & 9 & 0 \end{pmatrix}$$

$$\xrightarrow{R_2 = R_1 - \frac{6}{9}R_1} \begin{pmatrix} 2 & 6 & 0 \\ \frac{4 + 2k}{3} & 0 & 0 \end{pmatrix}$$

$$\frac{4+2k}{3} = 0$$
$$k = -2$$

l

3D Plot of Points and Lines

Fig. 0.1: Plot for points A, B and C