Idea

- My project is a wavetable synthesizer that visually represents the mixing of different waveforms.
- The user is given a geometric shape. Each face of the shape represents a waveform.
- The position of the "cursor" adjusts the amplitude of each wave in the mix.
 - The distance between the cursor and face determines the gain.

Fig 1. Two examples of 2D mixers

Fig 2. extending the concept to higher dimensions (cube and tesseract)

Technical details

- I plan to write the code using the <u>libsoundio library</u>.
- I will use the C3 language, which has C ABI to allow use of the library.

Method

- I will use an approach I found on <u>wikipedia</u>: iterating through arrays containing waveforms at a given speed, and using linear interpolation to fill in the gaps.
- I already have a <u>repo up</u> with a working example (440hz sine wave)

Hardware

- If time permits, I want to have a hardware interface.
- I will use a Raspberry Pi and read from plate-mounted potentiometers and buttons.
- I also want midi input. If I have time I want to integrate a keyboard into the device itself, kind of like the Minimoog.
- I will also have a display to show the position of the cursor within the shape.
 - To simplify the design, I will use the builtin HDMI and audio jack.

Fig 3. Architecture

Fig 4. Final enclosure design example (mine will be smaller)

References

The original idea came from Ewan Bristol's Plugdata sketch

- I expanded on it by making it 3d and having hardware

Fig 3. The front panel is from the Moog Minimoog

Fig 3. The headphones are the Sony MDR-7506

Fig 4. This is the Waldorf Music "MK2"