Пусть все ключи из множества $\mathcal K$ равновероятны.

Возьмём $c \in \mathcal{C}$ и будем пытаться расшифровывать, используя все ключи

Тогда мы получим $|\mathcal{K}|$ кандидатов на открытый текст

"Типичная" последовательность это тоже самое что "осмысленная"

Знаем долю типичных $\frac{2^{nH_L}}{|\Sigma|^n}$

Тогда вероятность, что случайно выбранный кандидат окажется осмыссленным, это $2^{n(H_L-log(|\Sigma|))}$

В итоге получаем $|\mathcal{K}| \cdot 2^{n(H_L - log(|\Sigma|))}$ - осмысленных текстов

ОПР(Расстояние единственности шифра)

Если $|\mathcal{K}| \cdot 2^{n(H_L - log(|\Sigma|))} \le 1$, то n - это расстояние единственности шифра

• Это такое число $N_0: \forall n>N_0: |\mathcal{K}|\cdot 2^{n(H_L-log(|\Sigma|))}\leq 1$

Его можно посчитать

$$\log(|\mathcal{K}|) + n \cdot H_L - n \cdot \log(|\Sigma|) \leq 0$$

$$n(H_L - log(|\Sigma|)) \leq -log(|\mathcal{K}|)$$

- число $H_L-log(|\Sigma|)<0$ Если на него поделить, то мы должны поменять знак неравенства т.к $H_L=\lim_{n\to\infty}H_n(x);\, H_0=log(|\Sigma|);$
 - по теореме для стационарного источника $H_n(x) \searrow$ с ростом п
- $\bullet \ H_L = (1-R_L) \cdot log(|\Sigma|)$

$$n \geq \frac{-log(|\mathcal{K}|)}{(H_L - log(|\Sigma|))} = \frac{log(|\mathcal{K}|)}{(log(|\Sigma|) - H_L)} = \frac{log(\mathcal{K})}{R_L \cdot log(|\Sigma|)} = N_0$$

Спроси что ещё можно докинуть в билет