```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
```

Exploratory Data Analysis

```
In [2]: data=pd.read_csv("/home/placement/Downloads/Advertising.csv")
```

In [3]: data.describe()

Out[3]:

sales	newspaper	radio	TV	Unnamed: 0	
200.000000	200.000000	200.000000	200.000000	200.000000	count
14.022500	30.554000	23.264000	147.042500	100.500000	mean
5.217457	21.778621	14.846809	85.854236	57.879185	std
1.600000	0.300000	0.000000	0.700000	1.000000	min
10.375000	12.750000	9.975000	74.375000	50.750000	25%
12.900000	25.750000	22.900000	149.750000	100.500000	50%
17.400000	45.100000	36.525000	218.825000	150.250000	75%
27.000000	114.000000	49.600000	296.400000	200.000000	max

```
In [4]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 200 entries, 0 to 199
        Data columns (total 5 columns):
                         Non-Null Count Dtype
             Column
             Unnamed: 0 200 non-null
                                         int64
                         200 non-null
                                         float64
             TV
             radio
                         200 non-null
                                         float64
                         200 non-null
                                         float64
             newspaper
             sales
                         200 non-null
                                         float64
        dtypes: float64(4), int64(1)
```

memory usage: 7.9 KB

In [5]: data.head(10)

Out[5]:

	Unnamed: 0	TV	radio	newspaper	sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9
5	6	8.7	48.9	75.0	7.2
6	7	57.5	32.8	23.5	11.8
7	8	120.2	19.6	11.6	13.2
8	9	8.6	2.1	1.0	4.8
9	10	199.8	2.6	21.2	10.6

In [6]: data.shape

Out[6]: (200, 5)

```
In [7]: data.isna().sum()
Out[7]: Unnamed: 0
                         0
         TV
                         0
         radio
                         0
         newspaper
         sales
         dtype: int64
In [8]: data1=data.drop(['Unnamed: 0'],axis=1)
         data1
Out[8]:
                 TV radio newspaper sales
            0 230.1
                     37.8
                               69.2
                                     22.1
                     39.3
                                     10.4
                44.5
                                45.1
                                      9.3
               17.2
                     45.9
                                69.3
            3 151.5
                     41.3
                               58.5
                                     18.5
            4 180.8
                     10.8
                                58.4
                                     12.9
          195
                38.2
                      3.7
                                13.8
                                      7.6
               94.2
                                8.1
                                      9.7
          196
                      4.9
          197 177.0
                                     12.8
                      9.3
                                6.4
              283.6
                     42.0
                               66.2
                                     25.5
          198
          199 232.1
                                8.7 13.4
                      8.6
         200 rows × 4 columns
In [9]: y=data1['sales']
         x=data1.drop('sales',axis=1)
```

```
In [10]: y
Out[10]: 0
                    22.1
                    10.4
           2
                     9.3
                    18.5
            4
                    12.9
                     . . .
           195
                     7.6
           196
                     9.7
           197
                    12.8
           198
                    25.5
           199
                    13.4
           Name: sales, Length: 200, dtype: float64
In [11]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
In [12]: x_test.head(5)
Out[12]:
```

	TV	radio	newspaper
95	163.3	31.6	52.9
15	195.4	47.7	52.9
30	292.9	28.3	43.2
158	11.7	36.9	45.2
128	220.3	49.0	3.2

```
In [13]: y_test.head(5)
Out[13]: 95
                 16.9
          15
                 22.4
          30
                 21.4
                 7.3
          158
          128
                 24.7
          Name: sales, dtype: float64
In [14]: x_train.head(5)
Out[14]:
                 TV radio newspaper
           42 293.6
                     27.7
                               1.8
               18.7
           189
                    12.1
                               23.4
           90 134.3
                               9.3
                      4.9
           136
               25.6
                     39.0
                               9.3
           51 100.4
                      9.6
                               3.6
In [15]: y_train.head(5)
Out[15]: 42
                 20.7
                  6.7
          189
          90
                 11.2
          136
                  9.5
          51
                 10.7
          Name: sales, dtype: float64
```

```
In [16]: | from sklearn.model selection import GridSearchCV
         from sklearn.linear model import Lasso
         lasso=Lasso()
         parameters={'alpha':[1e-15,1e-10,1e-8,1e-4,1e-3,1e-2,1,5,10,20,30]}
         lasso regressor=GridSearchCV(lasso,parameters)
         lasso regressor.fit(x train,y train)
Out[16]: GridSearchCV(estimator=Lasso(),
                      param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                            5, 10, 20, 301})
In [17]: lasso regressor.best params
Out[17]: {'alpha': 1}
In [18]: lasso=Lasso(alpha=1)
         lasso.fit(x train,y train)
         y pred lasso=lasso.predict(x test)
In [19]: from sklearn.metrics import r2 score
         r2 score(y test,y pred lasso)
Out[19]: 0.8589079527148957
In [20]: from sklearn.metrics import mean squared error
         Lasso Error=mean squared error(y pred lasso, y test)
         Lasso Error
Out[20]: 3.641439660278575
In [ ]:
```