ECE368: Probabilistic Reasoning

Lab 1: Classification with Multinomial and Gaussian Models

Name:		Student Number:
2 MB)); 2)	ald hand in: 1) A scanned .pdf version of this sheet with your answers (file size should be under one figure for Question 1.2.(c); and 3) Python file classifier.py that contain your code. All these d be uploaded to Quercus.
1]	Na	ïve Bayes Classifier for Spam Filtering
1.	(a)	Write down the estimators for p_d and q_d as functions of the training data $\{\mathbf{x}_n, y_n\}, n = 1, 2, \dots, N$ using the technique of "Laplace smoothing". (1 pt)
	(b)	Complete function learn_distributions in python file classifier.py based on the expressions. (1 pt)
2.	(a)	Write down the MAP rule to decide whether $y=1$ or $y=0$ based on its feature vector \mathbf{x} for a new email $\{\mathbf{x},y\}$. The d -th entry of \mathbf{x} is denoted by x_d . Please incorporate p_d and q_d in your expression. Please assume that $\pi=0.5$. (1 pt)
	(b)	Complete function classify_new_email in classifier.py, and test the classifier on the testing set. The number of Type 1 errors is, and the number of Type 2 errors is (1.5 pt)
	(c)	Write down the modified decision rule in the classifier such that these two types of error can be traded off. Please introduce a new parameter to achieve such a trade-off. (0.5 pt)
		Write your code in file classifier.py to implement your modified decision rule. Test it on the testing

set and plot a figure to show the trade-off between Type 1 error and Type 2 error. In the figure, the x-axis should be the number of Type 1 errors and the y-axis should be the number of Type 2 errors. Plot at least 10 points corresponding to different pairs of these two types of error in your figure. The two end points of the plot should be: 1) the point with zero Type 1 error; and 2) the point with zero Type 2 error. Please save the figure with name **nbc.pdf**. (1 **pt**)

3. Laplace Smoothing do use the maximu	g. Why do we need Lap um likelihood estimators	lace smoothing? Brices in the training proc	efly explain what wo ess.	uld go wrong if we