What is the resolution along x, i.e. what is Δx

The resolution along x is given by the FOV divided by the Base Resolution:

$$\Delta x = \frac{FOV}{Base\ Resolution} = \frac{250\ mm}{256\ pixels} = 0.977\ mm/pixel$$

What is the readout bandwidth?

The readout bandwidth is given by the Sampling Bandwidth per Pixel multiplied by the Base Resolution:

$$\begin{aligned} Readout \ Bandwidth = & (Sampling \ Bandwidth \ per \ Pixel) * (Base \ Resolution) \\ & = & (320 \ Hz/pixel) * (256 \ pixels) = 81920 \ Hz = 81.92 \ kHz \end{aligned}$$

What is the sampling period, i.e. what is Δt ?

The sampling period is given by the inverse of the Readout Bandwidth:

$$Sampling\ Period = \frac{1}{Readout\ Bandwidth} = \frac{1}{81.92\ kHz} = 0.0122\ ms = 12.2\ \mu s$$

What is the value of N_1 in the Fourier Transform equation?

 N_1 is equal to the Base Resolution, so $N_1 = 256$ pixels.

Given that we will be collecting all N_1 measurements, $F[k_1]$, in a single readout, what should be the value of G_x ?

First we solve for Δk_x :

$$\Delta k_x = \frac{1}{FOV_x} = \frac{1}{250 * 10^{-3} m} = 4 m^{-1}$$

Now that we have Δk_x , we can solve for G_x :

$$\begin{split} \Delta k_x &= \bar{\gamma} G_x \Delta t \to G_x = \frac{\Delta k_x}{\bar{\gamma} \Delta t} \\ G_x &= \frac{4 \ m^{-1}}{(42.577*10^6 \ Hz/T)(12.2*10^{-6} \ s)} = 0.0077 \ T/m = 7.7 \ mT/m \end{split}$$