AMATH 483 / 583 (Roche) - Homework Set 8

Due Friday June 6, 5pm PT

May 30, 2025

Homework 8 (80 points)

1. (+20) Fourier transforms. Evaluate the Fourier transform of the following functions by hand. Use the definitions I provided (includes $\frac{1}{\sqrt{2\pi}}$, this is common in physics but also now the default used in WolframAlpha - a powerful math AI tool) as well as the definition for Dirac delta I used if needed.

(a)
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

(b)
$$f(t) = sin(\omega_0 t)$$
, ω_0 constant

(c)
$$f(x) = e^{-a|x|}$$
 and $a > 0$

(d) (distribution)
$$f(t) = \delta(t)$$

2. (+10) Correlation. By definition, correlation is $p \odot q = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} p^*(\tau) q(t+\tau) d\tau$, and measures how similar one signal or data function is to another. Let $p(\tau) = \langle p \rangle + \delta_p(\tau)$ and $q(\tau) = \langle q \rangle + \delta_q(\tau)$, where $\langle \rangle$ and $\delta()$ denote the mean values and fluctuation functions (deviations about the mean). Two functions are defined to be uncorrelated when $p \odot q = \langle p \rangle \langle q \rangle$. Evaluate $p \odot q$ of the following functions:

$$p(t) = \begin{cases} 0 & t < 0 \\ 1 & 0 < t < 1 \\ 0 & t > 1 \end{cases}, \ q(t) = \begin{cases} 0 & t < 0 \\ 1 - t & 0 < t < 1 \\ 0 & t > 1 \end{cases}$$

3. (+10) **Autocorrelation**. Aside, periodic functions exhibit pronounced *autocorrelations* as shifting such functions by their period puts the function directly on itself. Alternatively, random functions or noise is characterized as being uncorrelated. Evaluate the autocorrelation $p \odot p$ of the following function:

$$p(t) = \begin{cases} 0 & t < 0 \\ 1 & 0 < t < 1 \\ 0 & t > 1 \end{cases}$$

- 4. (+20) Fourier transform diffusion equation solve. Consider the diffusion equation $\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2}$ where T(x,t) describes the temperature profile of a long metal rod.
 - (a) Assume you know T(x,0) and define the Fourier transform of T(x,t) to be $\tau(k,t)$. Transform the original equation and initial conditions into k-space. Solve the resulting equation. Inverse transform the result to obtain the solution in terms of the original variables.
 - (b) Find the temperature in the rod given initial conditions $\kappa = 10^3 \frac{m^2}{s}$ and

$$T(x,0) = \begin{cases} 0 & |x| > 1m \\ 100^{o} \text{ C} & |x| \le 1m \end{cases}.$$

5. (+20) Compare FFTW to CUFFT on HYAK. Measure and plot the performance of calculating the gradient of a 3D double complex plane wave defined on cubic lattices of dimension n^3 from 16^3 to $n=256^3$, stride n*=2 for both the FFTW and CUDA FFT (CUFFT) implementations on HYAK. Let each n be measured n times and plot the average performance for each case versus n, n trial ≥ 3 . Submit your performance plot and C++ test code. Your plot will have 'flops' on the y-axis (or some appropriate unit of FLOPs) and the dimension of the cubic lattices (n) on the x-axis. You will need to estimate the operation count of computing the derivative using FFT on a lattice.

1