嵌入式系统原理及应用

第四章 Linux系统的定制

本章内容

Linux内核与GNU/Linux操作系统 Linux内核的配置与编译 Linux根文件系统的定质 Linux启动加载器Uboot的配置与 编译

Linux内核与 GNU/Linux操作系统

>>> Linux内核与GNU/Linux的关系 GNU/Linux操作系统与发行版 用户态与核心态

什么是Linux (1)

什么是Linux (2)

什么是Linux(3)

什么是Linux(4)

操作系统的用户态与内核态

宏内核与内核模块

通过可以动态加载和卸载的内核模块解决宏 内核内部功能耦合性增高、复杂度过高造成 维护困难、冗余功能太多导致性能下降和空 间开销过大等问题

内核源码的获取

>> 四种基本方式

内核源码的获取

- > 四种基本途径:
 - 。通过下载链接
 - 特殊情况
 - ・ 不推荐 (菜鸟)
 - http://www.kernel.org下载源码tarball(压缩包)
 - 官方权威发布 (新手/需要最原始源码)
 - 推荐
 - 。 通过发行版的包管理器:
 - Apt-get install linux-source
 - ・推荐
 - · 一般存放在 /usr/src
 - \$ git clone
 - git://git.kernel.org/pub/scm/linux/kernel/git/stable/lin ux-stable.git
 - · 直接同步Linux内核源码树的git代码仓库
 - 开发者使用,不推荐

内核源码的结构

>> 内核源码树 内核编译系统Kbuild

内核源码树

除了以上目录外,还 有几个重要文件:

- Kbuild
- Kconfig
- Makefile (Top Makefile)

目录	描述	
arch	特定架构的源代码	
block	块I/0层	
crypto	加密API	
Documentation	内核源代码文档	
drivers	设备驱动	
firmware	使用某个驱动需要的设备固件	
fs	VFS和独立文件系统	
include	内核头	
init	内核启动和初始化	
ipc	进程间通信	
kernel	核心子系统,如调度器	
lib	助手例行程序	
mm	内存管理子系统和VM	
net	网络子系统	
samples	示例 , 示范代码	
scripts	用于生成内核的脚本	
security	Linux安全模块	
sound	声音子系统	
usr	早期的用户空间代码(叫做initranfs)	Ť
tools	辅助Linux开发的工具	
virt	虚拟化基础设施	

内核编译的Kbuild 系统

Kbuild

- 。2.6开始引入Kbuild系统
- "This file takes care of the following:
 - 1. Generate bounds.h
 - 2. Generate asm-offsets.h (may need bounds.h)
 - 3. Check for missing system calls
- 每级目录内都有一个Kconfig与Kbuild Makefile
- Kbuild Makefile:
 - 源代码某目录中有一个foo.c,要编译成一对象,那么该目录中的Kbuild Makefile其中必有一行形式如下: obj-\$(CONFIG_FOO) += foo.o

•

 \$(CONFIG_FOO)来自.config内核配置文件,可以为y(编译进内核)或m(编译成模块)。如果CONFIG_FOO不是y和m, 那么该文件就不会被编译联接了。

Kconfig

- 内核配置程序的操作对象,记录了每一个配置项允许的取值类型
- ▶ 格式:
 - config FEATURE_XXX
 - <允许的取值类型>
 - <该配置选项的帮助说明>
 - 允许的取值类型:
 - Y —— 编译进内核
 - · N —— 不编译
 - M ——编译成内核模块(有些功能不允许编译成模块)
- ▶ 配置结果被保存到.config文件中

Makefile

Makefile 顶层Makefile arch/\$(ARCH)/Makefile 具体架构的Makefile scripts/Makefile.*

I 通用的规则等,面向所有的Kbuild Makefiles。

Kbuild Makefiles 内核源代码中大约有500个这样的文件

Kbuild系统中的Makefile类型

顶层Makefile支持的Make目标:

- •内核配置: make menuconfig/xconfig/oldconfig
- •内核及模块的生成:make/make modules
- •内核安装: make
- install/modules_install/headers_install
- •准备工作: make scripts/prepare
- ·清理工作: make mrproper/clean

内核的编译过程

一般步骤内核模块的单独编译内核的交叉编译

内核编译过程

▶ 一般的步骤

下载源码并解压→ 清理源码目录→ 引入配置文件

 (.config进行裁切或重新配置生成.config文件)→准备阶段→编译内核(vmlinux.o)→编译内核模块→生成压缩度不同的内核启动镜像文件(vmlinuz/zlmage/bzlmage)→安装内核模块→安装内核启动镜像→<更新Bootloader>

内核模块的单独编译

- 很多时候,内核和内核模块是分开提供的,这也是 内核模块存在的意义
- \$(MAKE) -C \$(KERNELDIR) M=\$(PWD) modules
 - 。-C 指定模块所要插入的运行时(当前)内核所对应的源码目录
 - M= 指定所要编译的内核模块源码所在的目录

内核的交叉编译

- CC = arm-linux-musleabihf-gcc
 - 。使用我们制作的交叉编译gcc工具链
- ▶ ARCH =ARM
 - 指定Target的CPU架构是ARM

实验

▶ 下载Linux内核源码并编译安装,使用自制的内核 启动系统

Backup

>>> UNIX族谱 开源软件运动与开源文化 Linux应用领域 Linux生态系统 如何学习Linux

开源文化介绍

- Richard Stallman, GNU与FSF
 - GNU is Not Unix
- Open Source Software V.S. Free Software
- 开源软件与开源许可证授权
 - "Copyleft"与GPL
 - BSD, Apache License, LGPL
- 开源与黑客文化

Linux应用领域

Web server solution stacks (LAMP) Distributed Computing Routing daemons Software Development Package management systems CAD, CAM & CAE Software Office Image Processing Desktop Publishing (DTP) Desktop UI Touch UI **Wearable UI** Video processing software 3D computer graphics Computer animation Motion graphics Digital Audio Workstation DJ Mixing Software Video games Home cinema solutions Deblan software archives: 37,000

software packages

Linux应用领域 — 服务器领域

Source: IDC Server Tracker, March 2011; IDC System Software Research, October 2011

Linux应用领域 — 嵌入式

Android Stack

WE ARE HIRING

for our Open Source Group

..and many more!

Linux生态系统(2)

Linux发行版

Linux根文件系统

1001091520dedb0bff2f721784.jpg

如何学习Linux (1)

- Mailing List
- Git
- Community
- Sourceforge
- StackOverflow

Q&A

学习Linux最好的方法就是使用Linux >>