Chapter I

Galois theory

§ 1 Algebraic field extensions

Notations 1.1

If \mathbb{K}, \mathbb{L} are fields and $\mathbb{K} \subseteq \mathbb{L}, \mathbb{L}/\mathbb{K}$ is called a *field extension*.

The dimension $[\mathbb{L} : \mathbb{K}] := \dim_{\mathbb{K}} \mathbb{L}$ of \mathbb{L} considered as a \mathbb{K} -vector space, is called the degree of the field extension of \mathbb{L} over \mathbb{K} .

A field extension \mathbb{L}/\mathbb{K} is called *finite*, if $[\mathbb{L} : \mathbb{K}] < \infty$.

The polynomial ring over \mathbb{K} is defined as

$$\mathbb{K}[X] := \left\{ f = \sum_{i=0}^{n} a_i X^i \mid n \geqslant 0, a_i \in \mathbb{K} \ \forall i \in \{0, ..., n\}, a_n \neq 0 \right\} \cup \{0\}$$

Reminder 1.2

Let \mathbb{L}/\mathbb{K} a field extension, $\alpha \in \mathbb{L}$, $f \in \mathbb{K}[X]$.

- (i) $f(\alpha)$ is well defined.
- (ii) $\phi_{\alpha} : \mathbb{K}[X] \to \mathbb{L}, f \mapsto f(\alpha)$ is a homomorphism.
- (iii) $\operatorname{im}(\phi_{\alpha}) := \mathbb{K}[\alpha]$ is the smallest subring of \mathbb{L} containing \mathbb{K} and α .
- (iv) $\ker(\phi_{\alpha}) = \{ f \in \mathbb{K}[\alpha] \mid f(\alpha) = 0 \} \triangleleft \mathbb{K}[X] \text{ is a prime ideal.}$
- (v) $\ker(\phi_{\alpha})$ is a principle ideal.
- (vi) If $f_{\alpha} \neq 0$ and the leading coefficient of f_{α} is 1, f_{α} is called the *minimal polynomial* of α , i.e. $f_{\alpha}(\alpha) = 0$ and f_{α} is the polynomial of smallest degree with this property. In this case, f_{α} is irreducible and $\ker(\phi_{\alpha}) = \langle f_{\alpha} \rangle$ is a maximal ideal.
- (vii) Then $L_{\alpha} := \mathbb{K}[X] / \ker(\phi_{\alpha}) = \mathbb{K}[X] / \langle f_{\alpha} \rangle$ is a field.
- (viii) We have $\mathbb{K}[\alpha] = \operatorname{im}(\phi_{\alpha}) \cong \mathbb{K}[X] / \operatorname{ker}(\phi_{\alpha}) = \mathbb{L}_{\alpha}$, if $f_{\alpha} \neq 0$. Moreover $\mathbb{K}[\alpha] = \mathbb{K}(\alpha)$, where $\mathbb{K}(\alpha)$ is the smallest field containing \mathbb{K} and α . In particular, $\frac{1}{\alpha} \in \mathbb{K}[\alpha]$.
- (ix) The degree of the field extension $\mathbb{K}[\alpha]/\mathbb{K}$ is $[\mathbb{K}[\alpha] : \mathbb{K}] = \deg(f_{\alpha})$.

proof.

(ii) For $f, f_1, f_2 \in \mathbb{K}[X], \lambda \in \mathbb{K}$ we have

$$(f_1 + f_2)(\alpha) = f_1(\alpha) + f_2(\alpha) \text{and}(\lambda f)(\alpha) = \lambda f(\alpha)$$

- (iii) Clear.
- (iv) Let $f, g \in \mathbb{K}[X]$ such that $f \cdot g \in \ker(\phi_{\alpha})$: Then

$$0 = (f \cdot g)(\alpha) = f(\alpha) \cdot g(\alpha)$$

and since \mathbb{L} has no zero divisors, $f(\alpha) = 0$ or $g(\alpha) = 0$ and hence $f \in \ker(\phi_{\alpha})$ or $g \in \ker(\phi_{\alpha})$

(v) Remember that the polynomial ring is euclidean. Take $f_{\alpha} \in \ker(\phi_{\alpha})$ of minimal degree. We will show, that $\ker(\phi_{\alpha})$ is generated by f_{α} . Let $g \in \ker(\phi_{\alpha})$ arbitrary and write

$$g = q \cdot f_{\alpha} + r \text{ with } q, r \in \mathbb{K}[X], \operatorname{deg}(r) < \operatorname{deg}(f_{\alpha}) \text{ or } r = 0.$$

Since $r = q \cdot f_{\alpha} \in \ker(\phi_{\alpha})$ and the choice of f_{α} , $\deg(r) \not< \deg(f_{\alpha})$, hence $r = 0 \Rightarrow g \in \langle f_{\alpha} \rangle$.

(vi) If $f_{\alpha} = g \cdot h$, either $g(\alpha) = 0$ or $h(\alpha) = 0$. As above, this implies $g \in \mathbb{K}$ or $h \in \mathbb{K}^{\times}$, i.e. f or g is irreducible.

Now assume, there is and ideal $I \leq \mathbb{K}[X]$ satisfying $\langle f_{\alpha} \rangle \subsetneq I \subsetneq \mathbb{K}[K]$.

Let $g \in I \setminus \langle f_{\alpha} \rangle$, such that $\langle g \rangle = I$. Such a g exists by proof of (v). Then $f_{\alpha} = g \cdot h$, $h \in \mathbb{K}[X]$. This implies, that either g or h is a constant polynomial, hence a unit. In the first case, $I = \mathbb{K}[X]$ and in the second one $I = \langle f_{\alpha} \rangle$, which implies the claim.

(vii) We show the more general argument: If R is a ring, $\mathfrak{m} \triangleleft R$ a maximal ideal, then R/\mathfrak{m} is a field. Let $\overline{a} \in R/\mathfrak{m}$ for some $a \in R$, $\overline{a} \neq 0$. Let $I := \langle \mathfrak{m}, a \rangle$ the smallest ideal in R containing \mathfrak{m} and a. Since $\overline{a} \neq 0$, hence $a \notin \mathfrak{m}$ we have $\mathfrak{m} \subsetneq I$ and since \mathfrak{m} is a maximal ideal, I = R. Hence $1 \in I$, so we can write 1 = x + ab for some $x \in \mathfrak{m}$ and $b \in R$. Then we get

 $\overline{1} = \overline{x + ab} = \overline{x} + \overline{ab} = \overline{ab}$, hence \overline{a} is invertible in R/\mathfrak{m} .

(viii) Let

$$f_{\alpha} = \sum_{i=0}^{n} a_i X^i$$

Note, that $a_n=1$ and $a_0\neq 0$, since f_α is irreducible. We get

$$\implies 0 = f_{\alpha}(\alpha) = \sum_{i=0}^{n} a_{i} \alpha^{i} = a_{0} + a_{1} \alpha + \dots + a_{n} \alpha^{n}$$

$$\implies a_{0} = -\alpha \cdot \left(a_{1} + a_{2} \alpha + \dots + a_{n-2} \alpha^{n-2} + \alpha^{n-1}\right)$$

$$\implies 1 = -\alpha \cdot \left(\frac{a_{1}}{a_{0}} + \frac{a_{2}}{a_{0}} \alpha + \dots + \frac{a_{n-2}}{a_{0}} \alpha^{n-2} + \frac{1}{a_{0}} \alpha n - 1\right)$$

$$\implies \frac{1}{\alpha} = -\frac{a_{1}}{a_{0}} - \frac{a_{2}}{a_{0}} \alpha - \dots - \frac{a_{n-2}}{a_{0}} \alpha^{n-2} - \frac{1}{a_{0}} \alpha^{n-1}$$

Hence $\frac{1}{\alpha} \in \mathbb{K}[X]$ and $\mathbb{K}[X]$ is a field.

(ix) The family $\{1,\alpha,\ldots,\alpha^{n-1}\}$ forms a basis of $\mathbb{K}[\alpha]$ as a \mathbb{K} -vector space.

Example

Let $\mathbb{K} = \mathbb{Q}$, $\mathbb{L} = \mathbb{C}$, $\alpha = 1 + i$, $\beta = \sqrt{2}$. Then the minimal polynomials of α and β are

$$f_{\alpha} = (X-1)^2 + 1, \quad f_{\beta} = X^2 - 2.$$

Proposition 1.3 (Kronecker)

Let \mathbb{K} be a field, $f \in \mathbb{K}[X]$, $\deg(f) \geqslant 1$.

Then there exists a finite field extension \mathbb{L}/\mathbb{K} and $\alpha \in \mathbb{L}$, such that $f(\alpha) = 0$. proof.

W.l.o.g. we may assume, that f is irreducible, since $f = g \cdot h = 0 \Rightarrow g = 0$ or h = 0. Then by 1.2 $\langle f \rangle = \{ f \cdot g \mid g \in \mathbb{K}[X] \}$ is a maximal ideal and $\mathbb{L} := \mathbb{K} / \langle f \rangle$ is a field.

Clearly \mathbb{K} is a subfield of \mathbb{L} , since $\langle f \rangle$ does not contain any constant polynomial, i.e., if

$$\pi: \mathbb{K}[X] \longrightarrow \mathbb{K}[X] / \langle f \rangle$$

denotes the residue map, we have $\ker(\pi) \cap \mathbb{K} = \{0\}$, hence $\pi|_{\mathbb{K}}$ is injective.

Write

$$f = \sum_{i=0}^{n} a_i X^i$$

Then we have

$$f(\pi(X)) = \sum_{i=0}^{n} a_i \pi(X)^i = \sum_{i=0}^{n} \pi(a_i) \pi(X)^i = \pi\left(\sum_{i=0}^{n} a_i X^i\right) = \pi(f) = 0$$

Hence $\alpha := \pi(X)$ is a zero of f in \mathbb{L} .

Moreover \mathbb{L}/\mathbb{K} is finite with degree $[\mathbb{L} : \mathbb{K}] = \deg(f) = n$, since $\{1, \alpha, \dots, \alpha^{n-1}\}$ is basis of \mathbb{L} as a \mathbb{K} -vector space.

For the independence write

$$\sum_{i=0}^{n-1} \lambda_i \alpha^i = 0$$

Assume, there is $0 \le j \le n-1$ with $\lambda_j \ne 0$. Then the polynomial

$$g = \sum_{i=0}^{n-1} \lambda_i X^i$$

satisfies $g(\alpha) = 0$ with $\deg(g) < \deg(f)$, which is not possible by irreducibility of f.

It remains to show, that \mathbb{L} is generated by the powers of α . We have $\alpha^n + a_{n-1}\alpha^{n-1} + \cdots + a_1\alpha + a_0 = 0$, hence we write

$$\alpha^{n} = -\left(a_{n-1}\alpha^{n-1} + \dots + a_{1}\alpha + a_{0}\right) \in \langle 1, \dots, \alpha^{n-1} \rangle$$

By induction on n, we get $\alpha^k \in \langle 1, \dots, \alpha^{n-1} \rangle$ for all $k \ge n$.

Example

Let $\mathbb{K} = \mathbb{Q}$, $f = X^n - a$ for some $a \in \mathbb{Q}$. For now we assume that f is irreducible (we may be able to prove this later). Then

$$\mathbb{L} := \mathbb{Q}[X] / \langle f \rangle = \mathbb{Q}[X] / \langle X^n - a \rangle \cong \mathbb{Q}[\sqrt[n]{a}] = \mathbb{Q}(\sqrt[n]{a})$$

Definition 1.4

Let \mathbb{L}/\mathbb{K} a field extension, $\alpha \in \mathbb{L}$.

- (i) α is called algebraic over \mathbb{K} , if there exists $f \in \mathbb{X}[X] \setminus \{0\}$, such that $f(\alpha) = 0$.
- (ii) Otherwise α is called transcendental.
- (iii) \mathbb{L}/\mathbb{K} is called an algebraic field extension, if every $\alpha \in \mathbb{L}$ is algebraic over \mathbb{K} .

Proposition 1.5

Every finite field extension \mathbb{L}/\mathbb{K} is algebraic.

proof.

Let $\alpha \in \mathbb{L}$, $n := [\mathbb{L} : \mathbb{K}]$ the degree of \mathbb{L}/\mathbb{K} . Then $1, \alpha, \dots \alpha^n$ are linearly dependant over \mathbb{K} , i.e. there exist $\lambda_0, \dots, \lambda_n \in \mathbb{K}$, $\lambda_j \neq 0$ for at least one $0 \leq j \leq n$, such that

$$\sum_{i=0}^{n} \lambda_i \alpha^i = 0$$

Hence the polynomial

$$f = \sum_{i=0}^{n} \lambda_i X^i \neq 0$$

satisfies $f(\alpha) = 0$, thus α is algebraic over \mathbb{K} . Since α was arbitrary, \mathbb{L}/\mathbb{K} is algebraic.

Proposition 1.6

Let \mathbb{L}/\mathbb{K} a field extension, $\alpha, \beta \in \mathbb{L}$.

- (i) If α, β are algebraic over \mathbb{K} , then $\alpha + \beta$, $\alpha \beta$, $\alpha \cdot \beta$ are also algebraic over \mathbb{K} .
- (ii) If $\alpha \neq 0$ is algebraic over \mathbb{K} , then $\frac{1}{\alpha}$ is also algebraic over \mathbb{K} .
- (iii) $\mathbb{K}_{\mathbb{L}} := \{ \alpha \in \mathbb{L} | \alpha \text{ is algebraic over } \mathbb{K} \} \subseteq \mathbb{L} \text{ is a subfield of } \mathbb{L}.$
 - (i) Since $\alpha \in \mathbb{L}$ is algebraic over $\mathbb{K} \Rightarrow \mathbb{K}[\alpha] = \mathbb{K}(\alpha)$ is a finite field extension of \mathbb{K} . Since β is algebraic over $\mathbb{K} \Rightarrow \beta$ is algebraic over $\mathbb{K}[\alpha]$, hence $(\mathbb{K}[\alpha])[\beta]/\mathbb{K}[\alpha]$ is a finite field extension. Further, we have

$$\mathbb{K}\subseteq\mathbb{K}[a]\subseteq\left(\mathbb{K}[\alpha]\right)[\beta]=\mathbb{K}[\alpha,\beta]$$

 $\Rightarrow \mathbb{K}[\alpha, \beta]/\mathbb{K}$ is algebraic with Proposition 1.5. This implies the claim, as $\alpha + \beta$, $\alpha - \beta$, $\alpha \cdot \beta \in \mathbb{K}[\alpha, \beta]$.

- (ii) If $\alpha \neq 0$, $\frac{1}{\alpha}$ is algebraic over \mathbb{K} with part (i).
- (iii) Follows from (i) and (ii).

Definition + Proposition 1.7

Let \mathbb{K} be a field, $f \in \mathbb{K}[X]$, $\deg(f) = n$.

- (i) A field extension \mathbb{L}/\mathbb{K} is called a *splitting field of* f, if \mathbb{L} is the smallest field in which f decomposes into linear factors.
- (ii) A splitting field $\mathbb{L}(f)$ exists.
- (iii) The field extension $\mathbb{L}(f)/\mathbb{K}$ is algebraic over \mathbb{K} .
- (iv) For the degree we have $[\mathbb{L}(f) : \mathbb{K}] \leq n!$.
 - (ii) Do this by induction on n.

n=1 Clear.

n>1 Write $f = f_1 \cdots f_r$ with irreducible polynomials $f_i \in \mathbb{K}[X]$. Then f splits if and only every f_i splits. Hence we may assume that f is irreducible

Consider $\mathbb{L}_1 := \mathbb{K} / \langle f \rangle$. Then f has a zero in \mathbb{L}_1 ; say α . Then we have $\mathbb{L}_1 = \mathbb{K}[\alpha]$. Now we can write $f = (X - \alpha) \cdot g$ for some $g \in \mathbb{K}[X]$ with $\deg(g) = n - 1$. By induction hypothesis, there exists a splitting field $\mathbb{L}(g)$ for g. Then f splits over $\mathbb{L}(g)[\alpha]$.

- (iii) Follows by part (iv) and Proposition 1.5
- (iv) Do this again by induction.

n=1 Clear.

n>1 In the notation of part (ii) we have $[\mathbb{K}[\alpha] : \mathbb{K}] = \deg(f) = n$. By the multiplication formula for the degree and induction hypothesis we have

$$[\mathbb{L}(f) : \mathbb{K}] = [\mathbb{L}(g)[\alpha] : \mathbb{K}] = [\mathbb{L}(g)[\alpha] : \mathbb{L}(g)] \cdot [\mathbb{L}(g) : \mathbb{K}] \leqslant n \cdot (n-1)! = n!$$

Definition + Proposition 1.8

Let \mathbb{K} be a field.

- (i) \mathbb{K} is called algebraically closed, if every $f \in \mathbb{K}[X]$ splits over \mathbb{K} .
- (ii) The following statements are equivalent:
 - (1) K is algebraically closed
 - (2) Every nonconstant polynomial $f \in \mathbb{K}[X]$ has a zero in \mathbb{K} .
 - (3) There is no proper algebraic field extension of \mathbb{K} .
 - (4) If $f \in \mathbb{K}[X]$ is irreducible, then $\deg(f) = 1$.

proof.

 $(1) \Rightarrow (2)$ Let $f \in \mathbb{K}[X]$ be a non-constant polynomial of degree n. Then f splits over \mathbb{K} , i.e.

$$f = \prod_{i=0}^{n} (X - \lambda_i)$$

with $\lambda_i \in \mathbb{K}$ for $1 \leq i \leq n$. Every λ_i is a zero. Since $n \geq 1$, we find a zero for any nonconstant polynomial.

'(2) \Rightarrow (3)' Assume \mathbb{L}/\mathbb{K} is algebraic, $\alpha \in \mathbb{L}$. Let f_{α} be the minimal polynomial of α . By assumption, f_{α} has a zero in \mathbb{K} . Since f_{α} is irreducible, we must have $f_{\alpha} = X - \alpha$, hence $\alpha \in \mathbb{K}$, since $f \in \mathbb{K}[X]$.

- $(3) \Rightarrow (4)'$ Let $f \in \mathbb{K}[X]$ irreducible. Then $\mathbb{L} := \mathbb{K}[X] / \langle f \rangle$ is an algebraic field extension. By (3), $\mathbb{L} = \mathbb{K}$, hence $1 = [\mathbb{L} : \mathbb{K}] = \deg(f)$.
- $(4) \Rightarrow (1)$ For $f \in \mathbb{K}[X]$ write $f = f_1 \cdots f_r$ with irreducible polynomials f_i for $1 \leq i \leq r$. With (4), $\deg(f_i) = 1$ for any i, hence f splits.

Lemma 1.9

Let \mathbb{K} be a field. Then there exists an algebraic field extension \mathbb{K}'/\mathbb{K} , such that every $f \in \mathbb{K}[X]$ has a zero in \mathbb{K}' .

proof.

For every irreducible polynomial $f \in \mathbb{K}[X]$ introduce a symbol X_f and consider

$$R := \mathbb{K}[\{X_f | f \in \mathbb{K}[X] \text{ irreducible}\}] \supseteq \mathbb{K}$$

Monomials in R look like

$$g = \lambda \cdot X_{f_1}^{n_1} X_{f_2}^{n_2} \cdots X_{f_k}^{n_k}$$

with $\lambda \in \mathbb{K}$, $n_i \in \mathbb{N}$. Let $I \leq R$ be the ideal generated by the $f(X_f)$, $f \in \mathbb{K}[X]$ irreducible.

The following claims prove the lemma:

Claim (a) $I \neq R$

Claim (b) There exists a maximal ideal $\mathfrak{m} \leq R$ containing I.

Claim (c) \mathbb{K} ? = R/\mathfrak{m}

To finish the proof, it remains to show the claims.

(a) Assume I = R. Then $1 \in I$, i.e.

$$1 = \sum_{i=1}^{k} g_{f_i} f_i \left(X_{f_i} \right)$$

for suitable $g_{f_i} \in R$.

Let \mathbb{L}/\mathbb{K} be a field extension in which all f_i have a zero α_i . Define a ring homomorphism

$$\pi: R \longrightarrow \mathbb{L}, X_f \mapsto \begin{cases} \alpha_i, & f = f_i \\ 0, & \text{otherwise} \end{cases}$$

Then we obtain

$$1 = \pi(1) = \pi\left(\sum_{i=1}^{k} g_{f_i} f_i\left(X_{f_i}\right)\right) = \sum_{i=1}^{k} \pi(g_{f_i}) f_i\left(\pi(X_{f_i})\right) = \sum_{i=1}^{k} \pi(g_{f_i}) f_i\left(\alpha_i\right) = 0$$

Hence our assumption was false and we have $I \neq R$.

(b) Let S be the set of all proper ideals of R containing I. By claim 2, $I \in S$. Let now

$$S_1 \subseteq S_2 \subseteq S_3 \subseteq \dots$$

be elements of \mathcal{S} . More generally let N be a totally ordered subset of \mathcal{S} and

$$S := \bigcap_{J \in N} J$$

Then $S \in \mathcal{S}$, hence \mathcal{S} is nonempty. By Zorn's Lemma we know that \mathcal{S} contains a maximal element $\mathfrak{m} \neq R$. Then \mathfrak{m} is maximal ideal of R, since an ideal $J \leq R$ satisfying $\mathfrak{m} \subsetneq J \subsetneq R$ is contained in \mathcal{S} , which is a contradiction considering the choice of \mathfrak{m} .

(c) Clearly \mathbb{K}' is a field extension of \mathbb{K} . Let $f \in \mathbb{K}[X]$ be irreducible and $\pi: R \longrightarrow \mathbb{K}/\mathfrak{m}$ denote the residue map. Then

$$f(X_f) \in I \subseteq \mathfrak{m}$$

i.e. we have

$$\pi(X_f) = 0$$

and thus $f(\pi(X_f)) = 0$. Hence $\pi(X_f)$ is algebraic over \mathbb{K} .

Since \mathbb{K} ? is generated by the $\pi(X_f)$, \mathbb{K} ?/ \mathbb{K} is algebraic, which finishes the proof.

Theorem 1.10

Let \mathbb{K} be a field. Then there exists an algebraic field extension $\overline{\mathbb{K}}/\mathbb{K}$ such that $\overline{\mathbb{K}}$ is algebraically closed. $\overline{\mathbb{K}}$ is called the *algebraic closure* of \mathbb{K} .

proof.

By Lemma 1.9 there is an algebraic field extension \mathbb{K}'/\mathbb{K} , such that every $f \in \mathbb{K}[X]$ has a zero in \mathbb{K}' . Then let

$$\mathbb{K}_0 := \mathbb{K}, \mathbb{K}_1 = \mathbb{K}'_0, \mathbb{K}_2 = \mathbb{K}'_1, \mathbb{K}_{i+1} = \mathbb{K}'_i \quad \text{for } i \geqslant 1$$

Clearly \mathbb{K}_i is algebraic over \mathbb{K} for all $i \in \mathbb{N}_0$ and $\mathbb{K}_i \subseteq \mathbb{K}_{i+1}$. Define

$$\overline{\mathbb{K}}:=igcup_{i\in\mathbb{N}_0}\mathbb{K}_i$$

Then $\overline{\mathbb{K}}/\mathbb{K}$ is an algebraic field extension. For $f \in \overline{\mathbb{K}}[X]$ we find $i \in \mathbb{N}_0$ with $f \in \mathbb{K}_i[X]$, hence f has a zero in \mathbb{K}_i . With proposition 1.8, $\overline{\mathbb{K}}$ is algebraically closed.

§ 2 Simple field extensions

Definition 2.1

A field extension \mathbb{L}/\mathbb{K} is called *simple*, if there exists some $\alpha \in \mathbb{L}$ such that $\mathbb{L} = \mathbb{K}[\alpha]$

Example

Let $f \in \mathbb{K}[X]$ be irreducible, $\mathbb{L} := \mathbb{K}[X] / \langle f \rangle$.

Then $\mathbb{L} = \mathbb{K}[\alpha]$ where $\alpha = \pi(X) = \overline{X}$ and $\pi : \mathbb{K}[X] \longrightarrow \mathbb{L}$ denotes the residue map.

Conversely, if \mathbb{L}/\mathbb{K} is simple and algebraic, then $\mathbb{L} = \mathbb{K}[\alpha]$ for some algebraic $\alpha \in \mathbb{L}$. Let $f \in \mathbb{K}[X]$ be the minimal polynomial of α over \mathbb{K} , then

$$\mathbb{L} = \mathbb{K}[\alpha] = \mathbb{K}(\alpha) = \mathbb{K}[X] / \langle f \rangle$$

Proposition 2.2

Let \mathbb{L} be a field. Then any finite subgroup G of the multiplicative group \mathbb{L}^{\times} is cyclic. *proof.*

Let $\alpha \in G$ be an element of maximal order, $n := \operatorname{ord}(\alpha)$. Define

$$G' := \{ \beta \in G : \operatorname{ord}(\beta) | n \}$$

We first show G' = G and then $G' = \langle \alpha \rangle$.

Let $\beta \in G$, $m := \operatorname{ord}(\beta)$. Then

$$ord(\alpha\beta) = lcm(m, n) \leq n$$

by the property of n. Thus $m \mid n$ and $\beta \in G'$ and hence $G \subseteq G'$. Since $G' \subseteq G$ by definition, we have G' = G.

Let now $\gamma \in G'$. We have $\gamma^n = 1$, hence γ is zero of

$$f = X^n - 1$$

f has at most n zeros, but since $|\langle \alpha \rangle| = n$, we have $\langle \alpha \rangle = G'$ which finishes the proof.

Corollary 2.3

Let \mathbb{K} be a finite field. Then every finite field extension \mathbb{L}/\mathbb{K} is simple. *proof.*

We have $|\mathbb{L}| = |\mathbb{K}|^{[\mathbb{L}:\mathbb{K}]}$ and thus \mathbb{L} is also finite. With proposition 2.2 there exists some $\alpha \in \mathbb{L}$ such that $\mathbb{L}^{\times} = \mathbb{L} \setminus \{0\} = \langle \alpha \rangle$, hence

$$\mathbb{L} = \mathbb{K}[\alpha]$$

Remark 2.4

Let \mathbb{L}/\mathbb{K} be a finite field extension, $f \in \mathbb{K}[X]$ and $\alpha \in \mathbb{L}$ a zero of f. Let $\overline{\mathbb{K}}$ be an algebraic closure of \mathbb{K} and $\sigma : \mathbb{L} \longrightarrow \overline{\mathbb{K}}$ a homomorphism of field such that $\sigma|_{\mathbb{K}} = \mathrm{id}_{\mathbb{K}}$.

Then $\sigma(\alpha)$ is a zero of f.

proof.

Write

$$f = \sum_{i=0}^{n} a_i X^i$$

with coefficients $a_i \in \mathbb{K}$, hence we have $\sigma(a_i) = a_i$ for $0 \leq i \leq n$. We obtain

$$f(\sigma(\alpha)) = \sum_{i=0}^{n} a_i (\sigma(\alpha))^i = \sum_{i=0}^{n} \sigma(a_i) (\sigma(\alpha))^i = \sigma\left(\sum_{i=0}^{n} a_i \alpha^i\right) = \sigma(f(\alpha)) = \sigma(0) = 0$$

Theorem 2.5

Let \mathbb{L}/\mathbb{K} be a finite field extension of degree $n := [\mathbb{L} : \mathbb{K}]$ and $\overline{\mathbb{K}}$ an algebraic closure of \mathbb{K} . If there exist n different field homomorphisms $\sigma_1, \ldots \sigma_n : \mathbb{K} \longrightarrow \mathbb{L}$ such that $\sigma_i|_{\mathbb{K}} = \mathrm{id}_{\mathbb{K}}$, then \mathbb{L}/\mathbb{K} is simple.

proof.

Let $\mathbb{L} = \mathbb{K}[\alpha_1, ..., \alpha_r]$ for some $r \ge 1$ and $\alpha_i \in \mathbb{L}$. Prove the statement by induction on r.

 $\mathbf{r}=\mathbf{1} \ \mathbb{L} = \mathbb{K}[\alpha_1]$, hence \mathbb{L} is simple.

r>1 Let now $\mathbb{L}'=\mathbb{K}[\alpha_1,\ldots\alpha_{r-1}]$. By hypothesis, \mathbb{L}'/\mathbb{K} is simple, say $\mathbb{L}=\mathbb{K}[\beta]$. Then we have

$$\mathbb{L} = \mathbb{K}[\alpha_1, \dots \alpha_r] = \mathbb{L}'[\alpha_r] = \mathbb{K}[\alpha, \beta]$$

with $\alpha := \alpha_r$.

For $\lambda \in \mathbb{K}$ consider

$$\gamma := \gamma_{\lambda} = \alpha + \lambda \beta$$

By remark 2.4 it suffices to show

$$\sigma_i(\gamma) \neq \sigma_j(\gamma) \text{ for } i \neq j$$

Assume there are $i \neq j$ such that $\sigma_i(\gamma) = \sigma_i(\gamma)$.

Then

$$\sigma_i(\alpha) + \lambda \sigma_i(\beta) = \sigma_j(\alpha) + \lambda \sigma_j(\beta),$$

so we get

$$\sigma_i(\alpha) - \sigma_j(\alpha) + \lambda \left(\sigma_i(\beta) - \sigma_j(\beta)\right) = 0$$

Consider the polynomial

$$g := \prod_{1 \le i \ne j \le n} \sigma_i(\alpha) - \sigma_j(\alpha) + X \cdot (\sigma_i(\beta) - \sigma_j(\beta))$$

By proposition 2.2 we may assume, that \mathbb{K} is infinite. Note that g is not the zero polynomial: If g = 0, we find $i \neq j$ such that $\sigma_i(\alpha) = \sigma_j(\alpha)$ and $\sigma_i(\beta) = \sigma_j(\beta)$. Since α, β generate \mathbb{L} , σ_i and σ_j must be equal on \mathbb{L} , which is a contradiction.

Therefore we find $\lambda \in \mathbb{K}$, such that $g(\lambda) \neq 0$. Hence the minimal polynomial $m_{\gamma_{\lambda}}$ of $\gamma_{\lambda} = \alpha + \lambda \beta$ has at least n zeroes, i.e.

$$deg(m_{\gamma_{\lambda}}) \geqslant n \Rightarrow [\mathbb{K}[\gamma_{\lambda}] : \mathbb{K}] \geqslant n$$

and hence $\mathbb{K}[\gamma_{\lambda}] = \mathbb{L}$.

Proposition 2.6

Let $\mathbb{L} = \mathbb{K}[\alpha]$ be a simple, finite field extension, $\overline{\mathbb{K}}$ an algebraic closure of \mathbb{K} . Let $f \in \mathbb{K}[X]$ the minimal polynomial of α . Then for every zero β of f in $\overline{\mathbb{K}}$ there exists a unique homomorphism of fields

$$\sigma: \mathbb{L} \longrightarrow \overline{\mathbb{K}}$$

such that $\sigma(\alpha) = \beta$

proof.

The uniqueness is clear. It remains to show the existence.

Define

$$\phi_{\beta} : \mathbb{K}[X] \longrightarrow \overline{\mathbb{K}}, \qquad g \mapsto g(\beta)$$

We have

$$f(\beta) = 0 \implies \langle f \rangle \subseteq ker(\phi_{\beta})$$

hence ϕ_{β} factors to a homomorphism

$$\overline{\phi_{\beta}}: \mathbb{L} \cong \mathbb{K}[X] / \langle f \rangle \longrightarrow \overline{\mathbb{K}}$$

such that $\phi_{\beta} = \overline{\phi_{\beta}} \circ \pi$ where $\pi : \mathbb{K}[X] \longrightarrow \mathbb{K}[X] / \langle f \rangle$ denotes the residue map. Let

$$\tau: \mathbb{L} \longrightarrow \mathbb{K}[X] / \langle f \rangle$$

be an isomorphism. Then

$$\sigma := \overline{\phi_{\beta}} \circ \tau : \mathbb{L} \longrightarrow \overline{\mathbb{K}}$$

satisfies

$$\sigma(\alpha) = \left(\overline{\phi_{\beta}} \circ \tau\right)(\alpha) = \overline{\phi_{\beta}}\left(\tau(\alpha)\right) = \overline{\phi_{\beta}}(\overline{X}) = \overline{\phi_{\beta}}\left(\pi(X)\right) = \phi_{\beta}(X) = \beta$$

Corollary 2.7

Let $f \in \mathbb{K}[X]$ be a nonconstant polynomial. Then the splitting field of f over \mathbb{K} is unique, i.e. any two splitting fields \mathbb{L}, \mathbb{L}' of f over \mathbb{K} are isomorphic.

proof.

Let
$$\mathbb{L} = \mathbb{K}[\alpha_1, \dots \alpha_n], \mathbb{L}' = \mathbb{K}[\beta_1, \dots \beta_m].$$

Assume that f is irreducible. W.l.o.g. we have $f(\alpha_1) = f(\beta_1) = 0$. By Proposition 2.6 we find field homomorphisms

$$\sigma_1: \mathbb{K}[\alpha_1] \longrightarrow \mathbb{K}[\beta_2]$$
 such that $\sigma_1|_{\mathbb{K}} = \mathrm{id}_{\mathbb{K}}$ and $\alpha_1 \mapsto \beta_1$

$$\tau_1: \mathbb{K}[\beta_1] \longrightarrow \mathbb{K}[\alpha_1]$$
 such that $\tau_1|_{\mathbb{K}} = \mathrm{id}_{\mathbb{K}}$ and $\beta_1 \mapsto \alpha_1$

Hence, since $\sigma_1 \circ \tau_1 = \mathrm{id}_{\mathbb{K}[\beta_1]}$ and $\tau_1 \circ \sigma_1 = \mathrm{id}_{\mathbb{K}[\alpha_1]}$, σ_1 and τ_1 are isomorphisms, i.e $\mathbb{K}[\alpha_1] \cong \mathbb{K}[\beta_1]$. By induction on n the corollary follows.

Definition + Proposition 2.8

Let \mathbb{L}/\mathbb{K} , \mathbb{L}'/\mathbb{K} be field extension.

(i) We define

$$\operatorname{Hom}_{\mathbb{K}}(\mathbb{L},\mathbb{L}'):=\{\sigma:\mathbb{L}\longrightarrow\mathbb{L}' \text{ field homomorphism s.t. } \sigma|_{\mathbb{K}}=\operatorname{id}_{\mathbb{K}}\}$$

$$\operatorname{Aut}_{\mathbb{K}}(\mathbb{L}) := \{ \sigma : \mathbb{L} \longrightarrow \mathbb{L} \text{ field automorphism s.t. } \sigma|_{\mathbb{K}} = \operatorname{id}_{\mathbb{K}} \}$$

(ii) If \mathbb{L}/\mathbb{K} is finite, $\overline{\mathbb{K}}$ an algebraic closure of \mathbb{K} , then

$$|\mathrm{Hom}_{\mathbb{K}}(\mathbb{L}, \mathbb{L}')| \leqslant [\mathbb{L} : \mathbb{K}]$$

proof.

Assume first $\mathbb{L} = \mathbb{K}[\alpha]$ for some algebraic $\alpha \in \mathbb{L}$.

Let f be the minimal polynomial of α over \mathbb{K} , i.e. $f \in \mathbb{K}[X]$, $\deg(f) = [\mathbb{L} : \mathbb{K}]$.

By 2.4 and 2.6, the elements of $\mathrm{Hom}_{\mathbb{K}}(\mathbb{L},\overline{\mathbb{K}})$ correspond bijectively to the zeroes of f. Then we get

$$|\mathrm{Hom}_{\mathbb{K}}(\mathbb{L},\overline{\mathbb{K}})| = |\{\mathrm{zeroes} \ \mathrm{of} \ \mathrm{fin} \ \overline{\mathbb{K}}\}| \leqslant \mathrm{deg}(\mathrm{f}) = [\mathbb{L}:\mathbb{K}]$$

Now consider the general case. Let $\mathbb{L} = \mathbb{K}[\alpha_1, \dots \alpha_n]$ and $\mathbb{L}' = \mathbb{K}[\alpha_1, \dots \alpha_{n-1}] \subseteq \mathbb{L} = \mathbb{L}'[\alpha_n]$. By induction on n we have $|\text{Hom}_{\mathbb{K}}(\mathbb{L}', \overline{\mathbb{K}}) \leqslant [\mathbb{L}' : \mathbb{K}]$. Let now

$$f = \sum_{i=0}^{d} a_i X^i \in \mathbb{L}'[X]$$

with coefficients $a_i \in \mathbb{L}'$ be the minimal polynomial of α_n over \mathbb{L}' . Let $\sigma \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{L}, \overline{\mathbb{K}})$ and $\sigma' = \sigma|_{\mathbb{L}'} \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{L}', \overline{\mathbb{K}})$, $f^{\sigma'} := \sum_{i=0}^{d} \sigma'(a_i) X^i$. Then

$$f^{\sigma'}(\sigma(\alpha_n)) = \sum_{i=0}^d \sigma'(a_i) (\sigma(\alpha_n))^i = \sum_{i=0}^d \sigma(a_i) (\sigma(\alpha_n))^i = \sigma\left(\sum_{i=0}^d a_i \alpha_n^i\right) = 0$$

Thus

$$|\{\operatorname{Hom}_{\mathbb{L}'}(\mathbb{L},\overline{\mathbb{K}})\}| = |\{\sigma \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{L},\overline{\mathbb{K}}) \big| \sigma|_{\mathbb{L}'} = \operatorname{id}_{\mathbb{L}'}\}| \leqslant \operatorname{deg}(f^{\sigma'}) = \operatorname{deg}(f) = [\mathbb{L}':\mathbb{L}]$$

So all in all we have

$$|\mathrm{Hom}_{\mathbb{K}}(\mathbb{L},\overline{\mathbb{K}})| \leqslant |\mathrm{Hom}_{\mathbb{K}}(\mathbb{L}',\overline{\mathbb{K}})| \cdot [\mathbb{L}:\mathbb{L}'] \leqslant [\mathbb{L}:\mathbb{L}'] \cdot [\mathbb{L}':\mathbb{K}] = [\mathbb{L}:\mathbb{K}]$$

Definition 2.9

Let \mathbb{K} be a field, $f = \sum_{i=0}^{d} a_i X^i \in \mathbb{K}[X]$, $\overline{\mathbb{K}}$ an algebraic closure of \mathbb{K} , \mathbb{L}/\mathbb{K} an algebraic field extension.

- (i) f is called *separable* over \mathbb{K} , if f has $\deg(f)$ different roots in $\overline{\mathbb{K}}$, i.e. there are no multiple roots.
- (ii) $\alpha \in \mathbb{L}$ is called *separable* over \mathbb{K} , if the minimal polynomial of α over \mathbb{K} is separable.
- (iii) \mathbb{L}/\mathbb{K} is called *separable*, if any $\alpha \in \mathbb{L}$ is separable over \mathbb{K} .
- (iv) We define the formal derivative of f by

$$f' := \sum_{i=1}^{d} i \cdot a_i X^{i-1}$$

We have well known properties of the derivative:

$$(f+g)' = f' + g',$$
 $1' = 0,$ $(f \cdot g)' = f \cdot g' + f' \cdot g$

Proposition 2.10

Let

$$f = \prod_{i=1}^{n} (X - \alpha_i) \in \mathbb{K}[X], \quad a_i \in \overline{\mathbb{K}} \text{ for } 1 \leqslant i \leqslant n$$

Then the following statements are equivalent:

- (i) f is separable.
- (ii) $(X \alpha_i) \nmid f'$ for $1 \leq i \leq n$.
- (iii) gcd(f, f') = 1 in $\mathbb{K}[X]$.

proof.

'(i) ⇔ (ii)' We have

$$f' = \sum_{i=1}^{n} \prod_{j \neq i} (X - \alpha_j)$$

Then we get

$$(X - \alpha_i) \mid f' \Leftrightarrow (X - \alpha_i) \mid \prod_{j \neq i} (X - \alpha_j) \Leftrightarrow \alpha_i = \alpha_j \text{ for some } i \neq j$$

'(ii) \Rightarrow (iii)' Assume $(X - \alpha_i) \nmid f'$ for all $1 \leqslant i \leqslant n$. Then

$$\gcd(f, f') = 1 \text{ in } \overline{\mathbb{K}}[X] \Longrightarrow \gcd(f, f') = 1 \text{ in } \mathbb{K}[X]$$

'(iii) \Rightarrow (ii)' Let now $\gcd(f, f') = 1$ in $\mathbb{K}[X]$. Then we can write

$$1 = af + bf', \ a, b \in \mathbb{K}[X]$$

Since again $\mathbb{K}[X] \subseteq \overline{\mathbb{K}}[X]$, we can write 1 = af + bf' for $a, b \in \overline{\mathbb{K}}[X]$ an hence we obtain $\gcd(f, f') = 1$ in $\overline{\mathbb{K}}[X]$. This implies

$$(X - \alpha_i) \nmid f'$$
 for all $1 \leqslant i \leqslant n$

Corollary 2.11

- (i) An irreducible polynomial $f \in \mathbb{K}[X]$ is separable if and only if $f' \neq 0$.
- (ii) Any algebraic field extension in characteristic 0 is separable.

Example

Let $char(\mathbb{K}) = p > 0$. Then

$$X^p - 1 = (X - 1)^p$$

Let $\mathbb{K} = \mathbb{F}_p(t)$ and $f = X^p - t \in \mathbb{F}_p(t)[X]$.

Then f' = 0, hence f is not separable, but f is irreducible in $\mathbb{F}_p(t)[X]$.

Definition + Proposition 2.12

Let \mathbb{L}/\mathbb{K} be a finite field extension, $\overline{\mathbb{K}}$ an algebraic closure of \mathbb{K} and \mathbb{L} .

- (i) $[\mathbb{L} : \mathbb{K}]_s := |\text{Hom}_{\mathbb{K}}(\mathbb{L}, \overline{\mathbb{K}})|$ is called the degree of separability of \mathbb{L}/\mathbb{K} .
- (ii) If $\mathbb{L} = \mathbb{K}[\alpha]$ for some separable $\alpha \in \mathbb{L}$ with minimal polynomial m_{α} over \mathbb{K} , then

$$[\mathbb{L}:\mathbb{K}]_s = \deg(m_\alpha) = [\mathbb{L}:\mathbb{K}]$$

(iii) If $\mathbb{L} = \mathbb{K}[\alpha]$ for some $\alpha \in \mathbb{L}$, $\operatorname{char}(\mathbb{K}) = p > 0$, then there exists $n \geq 0$, such that

$$[\mathbb{L}:\mathbb{K}] = p^n \cdot [\mathbb{L}:\mathbb{K}]_s$$

(iv) If $\mathbb{K} \subseteq \mathbb{F} \subseteq \mathbb{L}$ is an intermediate field extension, then

$$[\mathbb{L}:\mathbb{K}]_s = [\mathbb{L}:\mathbb{F}]_s \cdot [\mathbb{F}:\mathbb{K}]_s$$

proof.

(i) This follows from Propoition 2.6:

$$[\mathbb{L}:\mathbb{K}]_s = |\mathrm{Hom}_{\mathbb{K}}(\mathbb{L},\overline{\mathbb{K}})| = |\{ \text{ different zeroes of } f\}| = n = [\mathbb{L}:\mathbb{K}]$$

(iii) Write

$$f = \sum_{i=0}^{n} a_i Xi$$

If α is separable over \mathbb{K} , we are done with part (ii). Otherwise by Corollary 2.11 we have

$$f? = \sum_{i=1}^{n} i \cdot a_i \cdot X^{i-1} \stackrel{!}{=} 0 \iff i \cdot a_i \equiv 0 \mod p \text{ for all } 0 \leqslant i \leqslant n$$

Thus we can write $f = g(X^p)$ for some $g \in \mathbb{K}[X]$.

Continue this until we can write $f = g(X^{p^n})$ for some $n \in \mathbb{N}_0$ and separable g. Then

$$[\mathbb{K}[\alpha] : \mathbb{K}]_s = |\{ \text{ zeroes of } g \text{ in } \overline{\mathbb{K}} \}| = \deg(g)$$

and thus we obtain

$$[\mathbb{K}[\alpha]:\mathbb{K}] = \deg(f) = \deg(g) \cdot p^n = p^n \cdot [\mathbb{K}[\alpha]:\mathbb{K}]_s$$

(iv) Consider first the simple case $\mathbb{L} = \mathbb{K}(\alpha)$. Let

$$f = \sum_{i=0}^{n} a_i X^i \in \mathbb{F}[X]$$

be the minimal polynomial of α over \mathbb{F} . Let $\tau \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{F}, \overline{\mathbb{K}})$ and let

$$f^{\tau} = \sum_{i=0}^{n} \tau(a_i) X^i$$

Given $\sigma \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{L}, \overline{\mathbb{K}})$ with $\sigma|_{\mathbb{F}} = \tau$, notice that $\sigma(\alpha)$ is a zero of f^{τ} . Moreover by Proposition 2.6, every zero β of f^{τ} determines a unique σ such that $\sigma(\alpha) = \beta$.

Thus we have

$$\begin{split} \left| \left\{ \sigma \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{L}, \overline{\mathbb{K}}) \mid \sigma|_{\mathbb{F}} = \tau \right\} \right| &= \left| \left\{ \beta \in \overline{\mathbb{K}} \mid f^{\tau}(\beta) = 0 \right\} \right| \\ &= \left| \left\{ \beta \in \overline{\mathbb{K}} \mid f(\beta) = 0 \right\} \right| \stackrel{2.6}{=} [\mathbb{L} : \mathbb{F}]_{s} \end{split}$$

We conclude

$$\begin{split} [\mathbb{L} : \mathbb{K}]_{s} &= \left| \operatorname{Hom}_{\mathbb{K}}(\mathbb{L}, \overline{\mathbb{K}}) \right| = \left| \bigcup_{\tau \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{F}, \overline{\mathbb{K}})} \left\{ \sigma \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{L}, \overline{\mathbb{K}}) \mid \sigma|_{\mathbb{F}} = \tau \right\} \right| \\ &= \left| \left\{ \sigma \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{L}, \overline{\mathbb{K}}) \mid \sigma|_{\mathbb{F}} = \tau \right\} \right| \cdot \left| \operatorname{Hom}_{\mathbb{K}}(\mathbb{F}, \overline{\mathbb{K}}) \right| \\ &= [\mathbb{L} : \mathbb{F}]_{s} \cdot [\mathbb{F} : \mathbb{K}]_{s} \end{split}$$

For the general case we can write $\mathbb{L} = \mathbb{F}(\alpha_1, \dots, \alpha_n)$. Define $\mathbb{L}_i := \mathbb{F}(\alpha_1, \dots, \alpha_i)$, $\mathbb{L}_0 := \mathbb{F}$ and $\mathbb{L}_n = \mathbb{L}$. Then $\mathbb{L}_i/\mathbb{L}_{i-1}$ is simple and by the special case above we get

$$[\mathbb{L} : \mathbb{K}]_{s} = [\mathbb{L}_{n} : \mathbb{L}_{n-1}]_{s} \cdot [\mathbb{L}_{n-1} : \mathbb{K}]_{s}$$

$$\vdots$$

$$= [\mathbb{L}_{n} : \mathbb{L}_{n-1}]_{s} \cdot \cdots [\mathbb{L}_{2} : \mathbb{L}_{1}]_{s} \cdot [\mathbb{L}_{1} : \mathbb{L}_{0}]_{s} \cdot [\mathbb{L}_{0} : \mathbb{K}]_{s}$$

$$= [\mathbb{L}_{n} : \mathbb{L}_{n-1}]_{s} \cdot \cdots [\mathbb{L}_{2} : \mathbb{L}_{1}]_{s} \cdot [\mathbb{L}_{1} : \mathbb{F}]_{s} \cdot [\mathbb{F} : \mathbb{K}]_{s}$$

$$= [\mathbb{L}_{n} : \mathbb{L}_{n-1}]_{s} \cdot \cdots [\mathbb{L}_{2} : \mathbb{F}]_{s} \cdot [\mathbb{F} : \mathbb{K}]_{s}$$

$$\vdots$$

$$= [\mathbb{L}_{n} : \mathbb{F}]_{s} \cdot [\mathbb{F} : \mathbb{K}]_{s}$$

$$= [\mathbb{L} : \mathbb{F}]_{s} \cdot [\mathbb{F} : \mathbb{K}]_{s}$$

Proposition 2.13

A finite field extension \mathbb{L}/\mathbb{K} is separable if and only if $[\mathbb{L} : \mathbb{K}] = [\mathbb{L} : \mathbb{K}]_s$.

proof.

' \Rightarrow ' Let $\mathbb{L} = \mathbb{K}[\alpha_1, \dots \alpha_n]$. Prove this by induction on n.

n=1 This is proposition 12.2(ii)

 $\mathbf{n} > \mathbf{1}$ Let $\mathbb{L}' = \mathbb{K}[\alpha_1, \dots \alpha_{n-1}]$. Then by induction hypothesis $[\mathbb{L}' : \mathbb{K}]_s = [\mathbb{L}' : \mathbb{K}]$. Moreover $[\mathbb{L} : \mathbb{L}']_s = [\mathbb{L} : \mathbb{L}']$, since \mathbb{L}/\mathbb{L}' is simple by $\mathbb{L} = \mathbb{L}'[\alpha_n]$. By proposition 12.2 (iv) we get

$$[\mathbb{L}:\mathbb{K}]_s = [\mathbb{L}:\mathbb{L}']_s \cdot [\mathbb{L}':\mathbb{K}]_s = [\mathbb{L}:\mathbb{L}'] \cdot [\mathbb{L}'.\mathbb{K}] = [\mathbb{L}:\mathbb{K}]$$

'\(\infty\) Let $\alpha \in \mathbb{L}$ and $f = m_{\alpha} \in \mathbb{K}[X]$ its minimal polynomial. If $\operatorname{char}(\mathbb{K}) = 0$, f is separable, so α is separable by corollary 2.11. Let now $\operatorname{char}(\mathbb{K}) = p > 0$.

By proposition 12.2 there exists $n \ge 0$ such that

$$[\mathbb{K}[\alpha] : \mathbb{K}] = p^n \cdot [\mathbb{K}[\alpha] : \mathbb{K}]_s$$

We find

$$[\mathbb{L}:\mathbb{K}] = [\mathbb{L}:\mathbb{K}[\alpha]] \cdot [\mathbb{K}[\alpha]:\mathbb{K}] \geqslant [\mathbb{L}:\mathbb{K}[\alpha]]_s \cdot p^n [\mathbb{K}[\alpha]:\mathbb{K}]_s = p^n [\mathbb{L}:\mathbb{K}]_s = p^n [\mathbb{L}:\mathbb{K}]$$

Hence we must have n=0, i.e. $[\mathbb{K}[\alpha]:\mathbb{K}]=[\mathbb{K}[\alpha]:\mathbb{K}]_s$. Thus α is separable over \mathbb{K} .

§ 3 Galois extensions

Definition 3.1

A field extension \mathbb{L}/\mathbb{K} is called *normal*, if there is a subset $\mathcal{F} \subseteq \mathbb{K}[X]$ such that \mathbb{L} is the smallest field which any $f \in \mathcal{F}$ splits over.

Remark 3.2

Let \mathbb{L}/\mathbb{K} be a normal field extension, $\overline{\mathbb{K}}$ an algebraic closure of \mathbb{K} . Then

$$\operatorname{Hom}_{\mathbb{K}}(\mathbb{L}, \overline{\mathbb{K}}) = \operatorname{Aut}_{\mathbb{K}}(\mathbb{L})$$

proof.

'⊃' Clear.

 \subseteq Let \mathbb{L} be the splitting field of \mathcal{F} . Let

$$f = \sum_{i=0}^{d} a_i X^i \in \mathcal{F}$$

and $\alpha \in \mathbb{L}$ such that $f(\alpha) = 0$. Let $\sigma \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{L}, \overline{\mathbb{K}})$. Then

$$f(\sigma(\alpha)) = \sum_{i=0}^{d} a_i \sigma(\alpha)^i = \sum_{i=0}^{d} \sigma(a_i) \sigma(\alpha)^i = \sigma\left(\sum_{i=0}^{d} a_i \alpha^i\right) = \sigma\left(f(\alpha)\right) = 0$$

hence $\sigma(\alpha)$ is zero of f. Since f splits over \mathbb{L} , i.e. all zeroes of f are in \mathbb{L} , we have $\sigma(\alpha) \in \mathbb{L}$. Moreover \mathbb{L} is generated over \mathbb{K} by the zeroes of $f \in \mathcal{F}$, thus $\sigma(\mathbb{L}) \subseteq \mathbb{L}$ and hence we get $\sigma \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{L}, \mathbb{L})$. It remains to show bijectivity. σ is clearly injective. For the surjectivity consider that σ permutes all the zeroes of any $f \in \mathcal{F}$. Finally $\sigma \in \operatorname{Aut}_{\mathbb{K}}(\mathbb{L})$.

Definition 3.3

An algebraic field extension \mathbb{L}/\mathbb{K} is called *Galois extension* or *Galois*, if it is normal and separable. In this case, the *Galois group* of \mathbb{L}/\mathbb{K} is defined as

$$Gal(\mathbb{L}, \mathbb{K}) := Aut_{\mathbb{K}}(\mathbb{L})$$

Proposition 3.4

A finite field extension \mathbb{L}/\mathbb{K} is Galois if and only if $|\operatorname{Aut}_{\mathbb{K}}(\mathbb{L})| = [\mathbb{L} : \mathbb{K}]$. proof.

'⇒' We have

$$|\mathrm{Aut}_{\mathbb{K}}(\mathbb{L})| = |\mathrm{Hom}_{\mathbb{K}}(\mathbb{L}, \overline{\mathbb{K}})| = [\mathbb{L} : \mathbb{K}]_s = [\mathbb{L} : \mathbb{K}]$$

' \Leftarrow ' We have to show that \mathbb{L}/\mathbb{K} is separable and normal. First we see

$$[\mathbb{L}:\mathbb{K}] = |\mathrm{Aut}_{\mathbb{K}}(\mathbb{L})| \leqslant |\mathrm{Hom}_{\mathbb{K}}(\mathbb{L},\overline{\mathbb{K}})| = [\mathbb{L}:\mathbb{K}]_{s} \leqslant [\mathbb{L}:\mathbb{K}]$$

Hence we have equality on each inequality, i.e. $[\mathbb{L} : \mathbb{K}] = [\mathbb{L} : \mathbb{K}]_s$ and \mathbb{L}/\mathbb{K} is separable.

By Theorem 2.5 we know that \mathbb{L}/\mathbb{K} is simple, say $\mathbb{L} = \mathbb{K}[\alpha]$ for some $\alpha \in \mathbb{L}$.

Let $m_{\alpha} \in \mathbb{K}[X]$ be the minimal polynomial of α over \mathbb{K} . Moreover let $\beta \in \overline{\mathbb{K}}$ be another zero of m_{α} . Then there exists $\sigma \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{L}, \overline{\mathbb{K}})$ such that $\sigma(\alpha) = \beta$. By the (in-)equality above we know $\operatorname{Aut}_{\mathbb{K}}(\mathbb{L}) = \operatorname{Hom}_{\mathbb{K}}(\mathbb{L}, \overline{\mathbb{K}})$, hence $\sigma(\beta) \in \mathbb{L}$. Since β was an arbitrary zero of m_{α} , f splits over \mathbb{L} , i.e. \mathbb{L} is the splitting field of f over \mathbb{K} . Thus \mathbb{L}/\mathbb{K} is normal and finally Galois.

Example

All quadratic field extensions are normal. Moreover, if $\operatorname{char}(\mathbb{K}) \neq 2$, then all quadratic field extensions of \mathbb{K} are Galois.

Remark 3.5

Let \mathbb{L}/\mathbb{K} be a Galois extension and $\mathbb{K} \subseteq \mathbb{E} \subseteq \mathbb{L}$ an intermediate field.

(i) Then \mathbb{L}/\mathbb{E} is Galois and

$$Gal(\mathbb{L}/\mathbb{E}) \leqslant Gal(\mathbb{L}/\mathbb{K})$$

(ii) If \mathbb{E}/\mathbb{K} is Galois, then $\operatorname{Gal}(\mathbb{L}/\mathbb{E}) \leq \operatorname{Gal}(\mathbb{L}/\mathbb{K})$ is a normal subgroup and

$$\operatorname{Gal}(\mathbb{L}/\mathbb{K}) / \operatorname{Gal}(\mathbb{L}/\mathbb{E}) \cong \operatorname{Gal}(\mathbb{E}/\mathbb{K})$$

proof.

- (i) Clearly \mathbb{L}/\mathbb{E} is normal, since \mathbb{L} is the splitting field for the same polynomials as in \mathbb{L}/\mathbb{K} . Let now $\alpha \in \mathbb{L}$. Then the minimal polynomial m_{α} of α over \mathbb{E} divides the minimal polynomial m'_{α} of α over \mathbb{K} , since $\mathbb{K} \subseteq \mathbb{E}$. Since m'_{α} has no multiple roots, m_{α} does not either and hence \mathbb{L}/\mathbb{E} is separable and thus Galois.
- (ii) Define

$$\rho: \operatorname{Gal}(\mathbb{L}/\mathbb{K}) \longrightarrow \operatorname{Gal}(\mathbb{E}/\mathbb{K}), \ \sigma \mapsto \sigma|_{\mathbb{E}}$$

 ρ is well defined since $\sigma|_{\mathbb{E}} \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{E}, \overline{\mathbb{K}}) = \operatorname{Aut}_{\mathbb{K}}(\mathbb{E}) = \operatorname{Gal}(\mathbb{E}/\mathbb{K})$ as \mathbb{E}/\mathbb{K} is Galois:

$$[\mathbb{E}:\mathbb{K}] = |\mathrm{Aut}_{\mathbb{K}}(\mathbb{E})| \leqslant |\mathrm{Hom}_{\mathbb{K}}(\mathbb{E},\overline{\mathbb{K}})| \leqslant [\mathbb{E}:\mathbb{K}]$$

Moreover ρ is surjective. For the kernel we get

$$\ker(\rho) = \{\sigma \in \operatorname{Gal}(\mathbb{L}/\mathbb{K}) \mid \sigma|_{\mathbb{E}} = \operatorname{id}_{\mathbb{E}}\} = \operatorname{Gal}(\mathbb{L}/\mathbb{E})$$

$$\Longrightarrow \operatorname{Gal}(\mathbb{L}/\mathbb{K}) / \operatorname{Gal}(\mathbb{L}/\mathbb{E}) \cong \operatorname{Gal}(\mathbb{E}/\mathbb{K})$$

Theorem 3.6 (Main Theorem of Galois theory)

Let \mathbb{L}/\mathbb{K} be a finite Galois extension and $G := \operatorname{Gal}(\mathbb{L}/\mathbb{K})$. Then the subgroups $H \leqslant G$ correspond bijectively to the intermediate fields $\mathbb{K} \subseteq \mathbb{E} \subseteq \mathbb{L}$. Explicitly we have inverse maps

$$\mathbb{E} \mapsto \operatorname{Gal}(\mathbb{L}/\mathbb{E}) \leqslant G$$

$$H \mapsto \mathbb{L}^H := \{ \alpha \in \mathbb{L} \mid \sigma(\alpha) = \alpha \text{ for all } \sigma \in H \}$$

proof.

Clearly \mathbb{L}^H is a field for any $H \leqslant G$. We now have to show

- (i) $\operatorname{Gal}(\mathbb{L}/\mathbb{L}^H) = H$ for any $H \leqslant G$.
- (ii) $\mathbb{L}^{Gal(\mathbb{L}/\mathbb{E})} = \mathbb{E}$ for any intermediate field $\mathbb{K} \subseteq \mathbb{E} \subseteq \mathbb{L}$.

Theese prove the theorem.

- (i) We show both inclusion.
 - '⊇' Clear by definition.

'\(\sigma'\) It suffices to show $|\operatorname{Gal}(\mathbb{L}/\mathbb{L}^H)| \leq |H|$. By 3.4(i) we have

$$|\mathrm{Gal}(\mathbb{L}/\mathbb{L}^H)| = [\mathbb{L} : \mathbb{L}^H]$$

By theorem 2.5 \mathbb{L}/\mathbb{L}^H is simple, say $\mathbb{L} = \mathbb{L}^H[\alpha]$. Define

$$f = \prod_{\sigma \in H} (X - \sigma(\alpha))$$

with deg(f) = |H|. Further, since $id \in H$, we have $f(\alpha) = 0$. Clearly $f \in \mathbb{L}[X]$. We want to

show that $f \in \mathbb{L}^H[X]$. Therefore for $\tau \in H$ define

$$g^{\tau} := \sum_{i=0}^{n} \tau(a_i) X^i \text{ for } g = \sum_{i=0}^{n} a_i X^i$$

Then for f as defined above we have

$$f^{\tau} = \prod_{\sigma \in H} (X - \tau(\sigma(\alpha))) = \prod_{\sigma \in H} (X - \sigma(\alpha)) = f$$

hence $f \in \mathbb{L}^H[X]$. From $f(\alpha) = 0$ we know that the minimal polynomial m_{α} of α over \mathbb{L}^H divides f, thus

$$|\operatorname{Gal}(\mathbb{L}/\mathbb{L}^H)| = [\mathbb{L} : \mathbb{L}^H] = \deg(m_\alpha) \leqslant \deg(f) = |H|$$

(ii) Again we show both inclusions.

'⊇' Clear by definition.

' \subseteq ' Let $H := \operatorname{Gal}(\mathbb{L}/\mathbb{E})$. Since $\mathbb{E} \subseteq \mathbb{L}^H$ it suffices to show $[\mathbb{L}^H : \mathbb{E}] = 1$. Since \mathbb{L}^H/\mathbb{E} is separable, this is equivalent to $[\mathbb{L}^H : \mathbb{E}]_s = 1$.

Let now $\sigma \in \operatorname{Hom}_{\mathbb{E}}(\mathbb{L}^H, \overline{\mathbb{K}})$. By proposition 2.6 we can extend σ to some

$$\tilde{\sigma}: \mathbb{L} \longrightarrow \overline{\mathbb{K}}$$

with $\tilde{\sigma}|_{\mathbb{L}^H} = \sigma$. Explicitly: Let $\mathbb{L} = \mathbb{L}^H[\alpha]$ and $f \in \mathbb{L}^H[X]$ its minimal polynomial. Choose a zero $\beta \in \overline{\mathbb{K}}$ of f^{σ} . Then by 2.6 there exists $\tilde{\sigma} : \mathbb{L} \longrightarrow \overline{\mathbb{K}}$ with $\tilde{\sigma}(\alpha) = \beta$ and $\tilde{\sigma}|_{\mathbb{L}^H} = \sigma$. We get $\tilde{\sigma} \in \operatorname{Gal}(\mathbb{L}/\mathbb{E}) = H$ and $\sigma = \tilde{\sigma}|_{\mathbb{L}^H} = \operatorname{id}_{\mathbb{E}}$ and hence $[\mathbb{L}^H : \mathbb{E}] = 1$.

Remark 3.7

An intermediate field $\mathbb{K} \subseteq \mathbb{E} \subseteq \mathbb{L}$ is Galois over \mathbb{K} if and only if $Gal(\mathbb{L}/\mathbb{E}) \leq Gal(\mathbb{L}/\mathbb{K})$ is a normal subgroup.

proof.

 \Rightarrow If \mathbb{E}/\mathbb{K} is Galois, then $\operatorname{Gal}(\mathbb{L}/\mathbb{E}) = \ker(\rho)$ is a normal subgroup by 3.5.

'\(\infty\) Conversely let $Gal(\mathbb{L}/\mathbb{E}) =: H \leq Gal(\mathbb{L}/\mathbb{K})$ be a normal subgroup. By 3.4 it suffices to show $Hom_{\mathbb{K}}(\mathbb{E}, \overline{\mathbb{K}}) = Aut_{\mathbb{K}}(\mathbb{E})$. Let now $\sigma \in Hom_{\mathbb{K}}(\mathbb{E}, \overline{\mathbb{K}})$ and $\alpha \in \mathbb{E}$. Extend σ to $\tilde{\sigma} : \mathbb{L} \longrightarrow \overline{\mathbb{K}}$. Then $\tilde{\sigma} \in Gal(\mathbb{L}/\mathbb{K})$. By the theorem it suffices to show that $\sigma(\alpha) \in \mathbb{L}^{Gal(\mathbb{L}/\mathbb{E})} = \mathbb{E}$, i.e. $\sigma(\mathbb{E}) \subseteq \mathbb{E}$. Let $\tau \in Gal(\mathbb{L}/\mathbb{L}^{H})$. Then by using the properties of normal subgroups we obtain

$$\tau\left(\sigma(\alpha)\right) = \tau\left(\tilde{\sigma}(\alpha)\right) = \left(\tilde{\sigma} \circ \tau'\right)\left(\alpha\right) = \tilde{\sigma}(\alpha) = \sigma(\alpha)$$

Example 3.8

Let $\mathbb{K} = \mathbb{Q}$, $f = X^5 - 4X + 2 \in \mathbb{Q}[X]$. Further let $\mathbb{L} = \mathbb{L}(f)$ be the splitting field of f over \mathbb{Q} . What is $Gal(\mathbb{L}/\mathbb{Q})$?.

We first want to show that f is irreducible. But this immediately follows by By Eisenstein's criterion for

irreducibility with p = 2.

Thus \mathbb{L} is an extension of $\mathbb{Q}/\langle f \rangle$. Therefore $[\mathbb{L}:\mathbb{Q}]$ is multiple of $[\mathbb{Q}/\langle f \rangle] = 5$, hence $|\operatorname{Gal}(\mathbb{L}/\mathbb{Q})|$ is divisible by 5. By Lagrange's theorem we know that $\operatorname{Gal}(\mathbb{L}/\mathbb{Q})$ contains an element of order 5. Further note that f has exactly 3 zeroes in \mathbb{R} . With

$$\lim_{x \to \infty} f(x) = -\infty < 0, \ f(0) = 2 > 0 \ f(1) = -1 < 0 \ \lim_{x \to -\infty} f(x) = \infty > 0$$

we see by the intermediate value theorem that f has at least 3 zeroes. Moreover

$$f' = 5X^4 - 4 = 5 \cdot \left(X^4 - \frac{4}{5}\right) = 5 \cdot \left(X^2 - \frac{2}{\sqrt{5}}\right) \cdot \left(X^2 + \frac{2}{\sqrt{5}}\right)$$

Obviously, since the second factor has not real zeroes, the derivative of f has 2 zeroes, hence f has at most 3 zeroes. Together we obtain that f has exactly 3 zeroes. Since f splits over \mathbb{C} , f has two more conjugate zeroes in \mathbb{C} , say β , $\overline{\beta}$. Hence we know that the conjugation in \mathbb{C} must be an element of $Gal(\mathbb{L}/\mathbb{Q})$.

To sum it up, we know: $Gal(\mathbb{L}/\mathbb{Q})$ is isomorphic to a subgroup of S_5 , contains the conjugation, which corresponds to a transposition and moreover an element of order 5, i.e. a 5-cycle. But these two elements generate the whole group S_5 . Hence we have $Gal(\mathbb{L}/\mathbb{Q}) \cong S_5$.

Proposition 3.9 (Cyclotomic fields)

Let \mathbb{K} be a field, $n \in \mathbb{N}$, $\operatorname{char}(\mathbb{K}) \nmid n$ and \mathbb{L}_n the splitting field of the polynomial $f = X^n - 1$. Then \mathbb{L}_n/\mathbb{K} is Galois and $\operatorname{Gal}(\mathbb{L}_n/\mathbb{K})$ is isomorphic to a subgroup of $(\mathbb{Z}/n\mathbb{Z})^{\times}$. proof.

We have f_n ? = nX^{n-1} and f? = $0 \Leftrightarrow X = 0$ but $f_n(0) \neq 0$, hence f_n ? and f_n are coprime. Thus f_n is separable. Since \mathbb{L}_n is the splitting field of f_n by definition, \mathbb{L}_n/\mathbb{K} is normal, thus Galois.

The zeroes of f_n form a group $\mu_n(\mathbb{K})$ under multiplication. By proposition 2.3 $\mu_n(\mathbb{K})$ is cyclic. Let ζ_n be a generator of $\mu_n(\mathbb{K})$. Define a map

$$\chi_n: \operatorname{Gal}(\mathbb{L}_n/\mathbb{K}) \longrightarrow \left(\mathbb{Z}/n\mathbb{Z}\right)^{\times} \ \sigma \mapsto k \ \text{if} \ \sigma(\zeta_n) = \zeta_n^k$$

where k is relatively coprime to n. We obtain that χ_n is a homomorphism of groups since for $\sigma_1.\sigma_2 \in \operatorname{Gal}(\mathbb{L}_n/\mathbb{K})$ we have $\sigma_2\sigma_1(\zeta_n) = \sigma_2\left(\zeta_n^{k_1}\right) = \left(\zeta_n^{k_1}\right)^{k_2} = \zeta_n^{k_1k_2}$ and hence

$$\chi_n(\sigma_1\sigma_2) = k_1 \cdot k_2 = \chi_n(\sigma_1) \cdot \chi_n(\sigma_2)$$

Moreover χ_n is injective, since

$$\chi_n(\sigma) = 1 \Leftrightarrow \sigma(\zeta_n) = \zeta_n \Leftrightarrow \sigma = id$$

This proofs the proposition. Recall that $|(\mathbb{Z}/n\mathbb{Z})^{\times}| = \phi(n)$ Where ϕ is Euler's ϕ -function.

§ 4 Solvability of equations by radicals

Definition + Remark 4.1

Let \mathbb{K} be a field, $f \in \mathbb{K}[X]$ separable.

(i) Let $\mathbb{L}(f)$ be the splitting field of f over \mathbb{K} . The Galois group of the equation f=0 is defined by

$$Gal(f) := Gal(\mathbb{L}(f)/\mathbb{K})$$

- (ii) There exists an injective homomorphism of groups $Gal(f) \longrightarrow S_n$ where n := deg(f).
- (iii) If \mathbb{L}/\mathbb{K} is a finite, separable field extension, the $\mathrm{Aut}_{\mathbb{K}}(\mathbb{L})$ is isomorphic to a subgroup of S_n , where $n = [\mathbb{L} : \mathbb{K}]$.

proof.

- (ii) Clear, since the automorphisms permute the zeroes of f, of which we have at most n.
- (iii) We know \mathbb{L}/\mathbb{K} is simple, say $\mathbb{L} = \mathbb{K}[\alpha]$ for some $\alpha \in \mathbb{L}$. Let m_{α} be the minimal polynomial of α over \mathbb{K} . Then $\deg(f) = n$. Every $\sigma \in \operatorname{Aut}(\mathbb{L}/\mathbb{K})$ maps α to a zero of f and the same for every zero of f. Hence the claim follows.

Definition 4.2

- (i) A simple field extension $\mathbb{L} = \mathbb{K}[\alpha]$ of a field \mathbb{K} is called an *elementary radical extension* if either
 - (1) α is a root of unity, i.e. a zero of the polynomial $X^n 1$ for some $n \in \mathbb{N}$.
 - (2) α is a root of $X^n \gamma$ for some $\gamma \in \mathbb{K}, n \in \mathbb{N}$ such that $\operatorname{char}(\mathbb{K}) \nmid n$.
 - (3) α is a root of $X^p X \gamma$ for somme $\gamma \in \mathbb{K}$ where $p = \operatorname{char}(\mathbb{K})$.

In the following, we will denote (1), (2) and (3) as the three types of elementary radical extensions.

(ii) A finite field extension \mathbb{L}/\mathbb{K} is called a *radical extension*, if there is a field extension \mathbb{L}'/\mathbb{L} and a chain of field extension

$$\mathbb{K} = \mathbb{L}_0 \subseteq \mathbb{L}_1 \subseteq \cdots \subseteq \mathbb{L}_m = \mathbb{L}'$$

such that $\mathbb{L}_i/\mathbb{L}_{i-1}$ is an elementary radical extension for every $1 \leq i \leq m$.

Example 4.3

Let
$$\mathbb{K} = \mathbb{Q}$$
, $f = X^3 - 3X + 1$.

The zeroes of f (in \mathbb{C}) are

$$\alpha_1 = \zeta + \zeta^{-1} \in \mathbb{R}, \ \alpha_2 = \zeta^2 + \zeta^{-2} \text{ and } \alpha_3 = \zeta^4 + \zeta^{-4}$$

where $\zeta = e^{\frac{2\pi i}{9}}$ is a primitive ninth root of unity. We show this exemplarily for α_1 . We have

$$f(\alpha_1) = (\alpha_1^3 - 3\alpha_1 + 1) = \zeta^3 + 3\zeta + 3\zeta^{-1} + \zeta^{-3} - 3\zeta - 3\zeta^{-1} + 1 = \zeta^3 + \zeta - 3 + 1 = 0$$

where we use $\zeta^{-3} = \overline{\zeta^{-3}}$ and since $z + \overline{z} = 2 \cdot \Re \mathfrak{e}(z)$ for any $z \in \mathbb{C}$ we have

$$\zeta^3 + \zeta^{-3} \ = \ 2 \cdot \mathfrak{Re} \left(\zeta^3 \right) \ = \ 2 \cdot \mathfrak{Re} \left(e^{\frac{2\pi i}{3}} \right) \ = \ 2 \cdot \mathfrak{Re} \left(\cos \frac{2\pi}{3} + i \cdot \sin \frac{2\pi}{3} \right) \ = \ 2 \cdot \cos \frac{2\pi}{3} \ = \ 2 \cdot \left(-\frac{1}{2} \right) \ = \ -1$$

Further we have

$$\alpha_1^2 = \zeta^2 + 2\zeta^{-2} + 2 = \alpha_2 + 2,$$

hence $\alpha_2 \in \mathbb{Q}(\alpha_1)$ and $\alpha_1 + \alpha_2 + \alpha_3 = 0$, hence $\alpha_3 \in \mathbb{Q}(\alpha_1, \alpha_2) = \mathbb{Q}(\alpha_1)$.

This means that $\mathbb{Q}(\alpha_1)$ contains all the zeroes of f, i.e. is a splitting field of f. We conclude

$$\mathbb{Q}(\alpha_1) \cong \mathbb{Q} / \langle f \rangle, \qquad [\mathbb{Q}(\alpha_1) : \mathbb{Q}] = 3.$$

From the f we see that $\mathbb{Q}(\alpha_1)/\mathbb{Q}$ is not an elementary radical extension, but a radical extension, since for $\mathbb{Q}(\zeta)$ we have $\mathbb{Q}(\alpha_1) \subseteq \mathbb{Q}(\zeta)$ and $\mathbb{Q}(\zeta)/\mathbb{Q}$ is an elementary radical extension.

Definition 4.4

Let \mathbb{K} be afield, $f \in \mathbb{K}[X]$ a separable, non-constant polynomial. We say f is solvable by radicals, if the splitting field $\mathbb{L}(f)$ is a radical extension.

Remark 4.5

Let \mathbb{L}/\mathbb{K} be an elementary field extension, referring to Definition 4.1 of type

(i) $\mathbb{L} = \mathbb{K}[\zeta]$ for some root of unity ζ (primitive for some suitable $n \in \mathbb{N}$, char(\mathbb{K}) $\nmid n$). Then \mathbb{L}/\mathbb{K} is Galois with abelian Galois group

$$\operatorname{Gal}(\mathbb{L}/\mathbb{K}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$$

- (ii) $\mathbb{L} = \mathbb{K}[\alpha]$ where α is a root of $X^n \gamma$ for some $\gamma \in \mathbb{K}, n \in \mathbb{N}$, $\operatorname{char}(\mathbb{K}) \nmid n$. If \mathbb{K} contains the n-th roots of unity, i.e. $\mu_n(\overline{\mathbb{K}})$, then \mathbb{L}/\mathbb{K} is Galois with cyclic Galois group.
- (iii) $\mathbb{L} = \mathbb{K}[\alpha]$, where α is a root of $X^p X \gamma$ for some $\gamma \in \mathbb{K}^{\times}$. Then \mathbb{L}/\mathbb{K} is Galois with Galois group

$$\operatorname{Gal}(\mathbb{L}/\mathbb{K}) \cong \mathbb{Z}/p\mathbb{Z}$$

proof.

- (i) We proved this in proposition 3.9.
- (ii) Let $\zeta \in \mathbb{K}$ be a primitive *n*-th root of unity. Then $\zeta^i \cdot \alpha$ is a zero of $X^n \gamma$, where we assume *n* to be minimal such that $X^n \gamma$ is irreducible. Then \mathbb{L} contains all roots of $X^n \gamma$, i.e. \mathbb{L}/\mathbb{K} is normal and thus Galois with

$$|\operatorname{Gal}(\mathbb{L}/\mathbb{K})| = [\mathbb{L} : \mathbb{K}] = \deg(X^n - \gamma) = n$$

Since the automorphism $\sigma \in \operatorname{Gal}(\mathbb{L}/\mathbb{K})$ that maps $\alpha \mapsto \zeta \cdot \alpha$ has order n, $\operatorname{Gal}(\mathbb{L}/\mathbb{K})$ is cyclic.

(iii) $f = X^p - X - \gamma$ has p zeroes in $\mathbb{L} = \mathbb{K}[\alpha]$. Since $f(\alpha) = 0$, we have

$$f(\alpha + 1) = (\alpha + 1)^{p} - (\alpha + 1) - \gamma = \alpha^{p} + 1 - \alpha - 1 - \gamma = \alpha^{p} - \alpha - \gamma = f(\alpha) = 0$$

Hence \mathbb{L} is the splitting field of f and \mathbb{L}/\mathbb{K} is normal. Moreover $f' = -1 \neq 0$, hence \mathbb{L}/\mathbb{K} is separable and thus Galois with

$$|\operatorname{Gal}(\mathbb{L}/\mathbb{K})| = [\mathbb{L} : \mathbb{K}] = \deg(f) = p$$

Further we obtain that $Gal(\mathbb{L}/\mathbb{K}) \ni \sigma : \alpha \mapsto \alpha + 1$ has order p, hence $Gal(\mathbb{L}/\mathbb{K})$ is cyclic and thus

$$\operatorname{Gal}(\mathbb{L}/\mathbb{K}) \cong \mathbb{Z}/p\mathbb{Z}$$

Remark 4.6

Let \mathbb{L}/\mathbb{K} be an elementary radical extension of type (ii), i.e. $\mathbb{L} = \mathbb{K}[\alpha]$, where α is the root of $f = X^n - \gamma$ for some $\gamma \in \mathbb{K}$, $n \ge 1$, char(\mathbb{K}) \nmid n. $X^n - \gamma$ is irreducible

Let \mathbb{F} be a splitting field of $X^n - 1$ over \mathbb{K} and $\mathbb{LF} = \mathbb{K}(\alpha, \zeta)$ be the *compositum* of \mathbb{L} and \mathbb{F} , i.e. the smallest subfield of $\overline{\mathbb{K}}$ containing \mathbb{L} and \mathbb{F} .

 $\tilde{\mathbb{L}}$ is a splitting field of $X^n - \gamma$ over \mathbb{F} , hence $\tilde{\mathbb{L}}/\mathbb{F}$ is Galois and by 4.4(ii), $\operatorname{Gal}(\tilde{\mathbb{L}}/\mathbb{F})$ is cyclic. Moreover \mathbb{F}/\mathbb{K} is Galois and $\operatorname{Gal}(\mathbb{F}/\mathbb{K})$ is abelian. Hence $\tilde{\mathbb{L}}/\mathbb{K}$ is Galois and

$$\operatorname{Gal}(\tilde{\mathbb{L}}/\mathbb{K}) / \operatorname{Gal}(\tilde{\mathbb{L}}/\mathbb{F}) \cong \operatorname{Gal}(\mathbb{F}/\mathbb{K})$$

i.e. we have a short exact sequence

$$1 \longrightarrow \underbrace{\operatorname{Gal}(\tilde{\mathbb{L}}/\mathbb{F})}_{cyclic} \xrightarrow{\operatorname{inj.}} \operatorname{Gal}(\tilde{\mathbb{L}}/\mathbb{K}) \xrightarrow{\operatorname{surj.}} \underbrace{\operatorname{Gal}(\mathbb{F}/\mathbb{K})}_{abelian} \longrightarrow 1$$

Example

Let $\mathbb{K} = \mathbb{Q}$, $f = X^3 - 2$. Then $\mathbb{L} = \mathbb{Q}[\alpha]$ with $\alpha = \sqrt[3]{2}$ and $\mathbb{F} = \mathbb{Q}[\zeta]$ with $\zeta = e^{\frac{2\pi}{3}}$. Then $\tilde{\mathbb{L}} = \mathbb{L}(f)$ with $[\tilde{\mathbb{L}} : \mathbb{Q}] = 6$ We have

$$\operatorname{Gal}(\tilde{\mathbb{L}}/\mathbb{F}) \cong \mathbb{Z}/3\mathbb{Z}, \ \operatorname{Gal}(\mathbb{F}/\mathbb{K}) \cong \mathbb{Z}/2\mathbb{Z}, \ \operatorname{Gal}(\tilde{\mathbb{L}}/\mathbb{Q}) \cong S_3$$

Definition 4.7

A group G is called *solvable*, if there exists a chain of subgroups

$$1 = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_n = G$$

where $G_{i-1} \triangleleft G_i$ is a normal subgroup and G_i / G_{i-1} is abelian for all $1 \leqslant i \leqslant n$.

Example

- (i) Every abelian group is solvable.
- (ii) S_4 is solvable by

$$1 \triangleleft V_4 \triangleleft A_4 \triangleleft S_4$$

where $V_4 = \{id, (12)(34), (13)(24), (14)(23)\}$. For the quotients we have

$$V_4/\{1\} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \qquad A_4/V_4 \cong \mathbb{Z}/3\mathbb{Z}, \qquad S_4/A_4 \cong \mathbb{Z}/2\mathbb{Z}$$

- (iii) S_5 is not solvable, since A_5 is simple (EAZ 6.6) but the quotient $A_5 / \{1\}$ is not abelian.
- (iv) If G, H are solvable groups, then the direct product $G \times H$ is solvable.

Proposition 4.8

- (i) Let G be a solvable group. Then
 - (1) Every subgroup $H \leq G$ is solvable.
 - (2) Every homomorphic image of G is solvable.
- (ii) Let

$$1 \longrightarrow G' \longrightarrow G \longrightarrow G'' \longrightarrow 1$$

be a short exact sequence. Then G is solvable if and only if G' and G'' are solvable. proof.

(i) (1) Let G be solvable, i.e. we have a chain $1 = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G$. Let $G' \leqslant G$ a subgroup. Then

$$1 \triangleleft G_1 \cap G' \triangleleft \ldots \triangleleft G_n \cap G' = G'$$

is a chain of subgroups of G' and we have $G_i \cap G' \triangleleft G_{i+1} \cap G'$ and moreover

$$(G_{i+1} \cap G')/(G_i \cap G') \cong G_i(G_{i+1} \cap G')/G_i \leqslant G_{i+1}/G_i$$

Hence we have abelian quotients and G' is solvable.

(2) Let H be a group and $\phi: G \longrightarrow H$ be a surjective homomorphism of groups. Let

$$1 \triangleleft G_1 \triangleleft \ldots \triangleleft G_n = G$$

Let $H_i := \phi(G_i)$. Then H_i is normal in H_{i+1} . It remains to show that the quotients are abelian. Consider

(We have $G_i \subseteq \ker(\tilde{\phi})$, since $\phi(G_i) = H_i = \ker(\pi_H)$. Hence $\tilde{\phi}$ factors to

$$\overline{\phi}: \underbrace{G_{i+1}/G_i}_{abelian} \xrightarrow{\Rightarrow} \underbrace{H_{i+1}/H_i}_{abelian!}$$

And we get $\overline{\phi}(a)\overline{\phi}(b) = \overline{\phi}(ab) = \overline{\phi}(ba) = \overline{\phi}(b)\overline{\phi}(a)$, hence the quotient is abelian and $H = \phi(G)$ is solvable.

(ii) \Rightarrow Clear.

'←' Let

$$1 \triangleleft G_1 \triangleleft \cdots \triangleleft G_m = G'$$

and

$$1 \triangleleft H_{m+1} \triangleleft \cdots \triangleleft H_{m+k} = G''$$

chains of subgroups with abelian quotients. Define

$$G_i := \pi^{-1} (H_i)_{m+1 \le i \le m+k}, \ \pi : G \longrightarrow G''$$

Then G_i is normal in G_{i+1} and we have

$$G_{m+0} = \pi^{-1}(\{1\}) = G' = G_m$$

For $m+1 \leqslant i \leqslant m+k$ we have

$$G_{i+1}/G_i = \pi^{-1} \left(H_{i+1}/H_i \right) \cong H_{i+1}/H_i$$

and hence the chain

$$1 \triangleleft G_1 \triangleleft \cdots \triangleleft G_m = G' \triangleleft G_{m+1} \triangleleft \cdots \triangleleft G_{m+k} = G$$

reveals the solvability of G.

Lemma 4.9

A finite separable field extension \mathbb{L}/\mathbb{K} is a radical extension if and only if there exists a finite Galois extension \mathbb{L}'/\mathbb{K} , $\mathbb{L} \subseteq \mathbb{L}'$ such that $\operatorname{Gal}(\mathbb{L}'/\mathbb{K})$ is solvable. *proof.*

 \Rightarrow ' Let

$$\mathbb{K} = \mathbb{K}_0 = \mathbb{L}_0 \subseteq \mathbb{L}_1 \subseteq \cdots \subseteq \mathbb{L}_n$$

a chain as in definition 4.7 with $\mathbb{L} \subseteq \mathbb{L}_n$. we prove the statement by induction.

- n=1 This is exactly remark 4.5, 4.6
- n>1 By induction hypothesis $\mathbb{L}_{n-1}/\mathbb{K}$ is solvable. Moreover $\mathbb{L}_n/\mathbb{L}_{n-1}$ is solvable, too. This is equivalent to the fact, that

 \mathbb{L}_{n-1} is contained in a Galois extension $\tilde{\mathbb{L}}_{n-1}/\mathbb{K}$ such that $\operatorname{Gal}(\tilde{\mathbb{L}}/\mathbb{K})$ is solvable and \mathbb{L}_n is contained in a Galois extension $\tilde{\mathbb{L}}/\mathbb{L}_{n-1}$ such that $\operatorname{Gal}(\tilde{\mathbb{L}}/\mathbb{L}_{n-1})$ is solvable. We have a diagramm

We obtain, that M is Galois over \mathbb{L}_{n-1} , since $\tilde{\mathbb{L}}, \tilde{\mathbb{L}}_{n-1}$ are Galois over \mathbb{L}_{n-1} , hence by

$$\iota: \operatorname{Gal}(\mathbb{M}/\tilde{\mathbb{L}}_{n-1}) \longrightarrow \operatorname{Gal}(\tilde{\mathbb{L}}/\mathbb{L}_{n-1}), \ \sigma \mapsto \sigma|_{\tilde{\mathbb{L}}}$$

an injective homomorphism of groups is given, hence

$$\operatorname{Gal}(\mathbb{M}/\tilde{\mathbb{L}}_{n-1}) \leqslant \operatorname{Gal}(\tilde{\mathbb{L}}/\mathbb{L}_{n-1})$$

is solvable as a subgroup of a solvable group.

Let now M/M be a minimal extension, such that M/K is Galois. Explicitly, M is defined as the *normal hull* of M, i.e. the splitting field of the minimal polynomial of a primitive element of M/K.

Now we want to show that $\operatorname{Gal}(\mathbb{M}/\mathbb{K}$ is solvable. This finishes the proof of the sufficiency of our Lemma. Consider the short exact sequence

$$1 \longrightarrow \operatorname{Gal}(\tilde{\mathbb{M}}/\tilde{\mathbb{L}}_{n-1}) \longrightarrow \operatorname{Gal}(\mathbb{M}/\mathbb{K}) \longrightarrow \operatorname{Gal}(\tilde{\mathbb{L}}_{n-1}/\mathbb{K}) \longrightarrow 1$$

By proposition 4.8 and our induction hypothesis it suffices to show that $Gal(\widetilde{\mathbb{M}}/\widetilde{\mathbb{L}}_{n-1})$ is solvable. Therefore observe that $\widetilde{\mathbb{M}}$ is generated over \mathbb{K} by the $\sigma(\mathbb{K})$ for $\sigma \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{M}, \overline{\mathbb{K}})$, where $\overline{\mathbb{K}}$ denotes an algebraic closure of \mathbb{K} . For any $\sigma \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{M}, \overline{\mathbb{K}})$, $\sigma(\mathbb{M})/\sigma(\mathbb{L}_{n-1}) = \sigma(\mathbb{M})/\widetilde{\mathbb{L}}_{n-1}$ is Galois. Hence

$$\Phi: \mathrm{Gal}(\tilde{\mathbb{M}}/\tilde{\mathbb{L}}_{n-1}) \longrightarrow \prod_{\sigma \in \mathrm{Hom}_{\mathbb{K}}(\mathbb{M},\overline{\mathbb{K}})} \mathrm{Gal}\left(\sigma(\mathbb{M})/\tilde{\mathbb{L}}_{n-1}\right), \ \tau \mapsto \left(\tau|_{\sigma(\mathbb{M})}\right)_{\sigma}$$

is injective.

Hence $Gal(\tilde{\mathbb{M}}/\tilde{\mathbb{L}}_{n-1})$ is solvable as a subgroup of a product of solvable groups.

' \Leftarrow ' Let now $\tilde{\mathbb{L}}/\mathbb{L}$ finite such that $\mathrm{Gal}(\tilde{\mathbb{L}}/\mathbb{K})$ is solvable. Let

$$1 \triangleleft G_1 \triangleleft \ldots \triangleleft G_n = G$$

be a chain of subgroups as in definition 4.7. By the main theorem we have bijectively correspond intermediate fields

$$\tilde{\mathbb{L}} = \mathbb{L}_n \supseteq \mathbb{L}_{n-1} \supseteq \cdots \supseteq \mathbb{L}_0 = \mathbb{K}$$

where $\mathbb{L}_{i+1}/\mathbb{L}_i$ is Galois and $\operatorname{Gal}(\mathbb{L}_{i+1}/\mathbb{L}) \cong \mathbb{Z}/p\mathbb{Z}$ for all $1 \leqslant i \leqslant n-1$. We now have to differ between three cases.

case 1 $p_i = \text{char}(\mathbb{K})$. Then $\mathbb{L}_{i+1}/\mathbb{L}_i$ is an elementary radical extension of type (iii), i.e. \mathbb{L}/\mathbb{K} is a radical extension.

case 2 $p_i \neq \text{char}(\mathbb{K})$ and \mathbb{L}_i contains a primitive p_i -th root of unity. Then $\mathbb{L}_{i+1}/\mathbb{L}_i$ is an elementary radical extension of type (ii), i.e. \mathbb{L}/\mathbb{K} is a radical extension.

case 3 $p_i \neq \text{char}(\mathbb{K})$ and \mathbb{L}_i does not contain any primitive p_i -th root of unity. Then define

$$d := \prod_{p \in \mathbb{P}, p \mid |G|} p$$

And let \mathbb{F} be the splitting field of $X^d - 1$ over \mathbb{K} . Then \mathbb{F}/\mathbb{K} is an elementary radical extension of type (i).

Let $\mathbb{L}' := \tilde{\mathbb{L}}\mathbb{F}$ be the composite of $\tilde{\mathbb{L}}$ and \mathbb{F} in $\overline{\mathbb{K}}$. Then \mathbb{L}'/\mathbb{F} is Galois by remark 4.5. Let $G' = \operatorname{Gal}(\mathbb{L}'/\mathbb{F})$. Consider the map

$$\Psi: \operatorname{Gal}(\mathbb{L}'/\mathbb{F}) \longrightarrow \operatorname{Gal}(\tilde{\mathbb{L}}/\mathbb{K}), \ \sigma \mapsto \sigma|_{\tilde{\mathbb{L}}}$$

 Ψ is a well defined injective homomorphism of groups, hence $\operatorname{Gal}(\mathbb{L}'/\mathbb{F}) \leqslant \operatorname{Gal}(\tilde{\mathbb{L}}/\mathbb{K})$ is solvable as a subgroup of a solvable group. Let

$$1 \triangleleft G_1 \triangleleft \ldots \triangleleft G_n = G'$$

a chain of subgroups as in definition 4.7. Let further be

$$\mathbb{K} \subset \mathbb{F} = \mathbb{L}_0 \subset \mathbb{L}_1 \subset \cdots \subset \mathbb{L}_n = \mathbb{L}'$$

be the corresponding chain of intermediate fields, i.e $\mathbb{L}_i/\mathbb{L}_{i-1}$ is Galois and $\operatorname{Gal}(\mathbb{L}_i/\mathbb{L}_{i-1}) \cong \mathbb{Z}/p\mathbb{Z}$ for $1 \leq i \leq n$. Hence, $\mathbb{L}_i/\mathbb{L}_{i-1}$ is a radical extension of type (ii). Thus \mathbb{L}/\mathbb{K} is a radical extension, which finishes the proof.

Theorem 4.10

Let $f \in \mathbb{K}[X]$ be a separable non-constant polynomial. Then f is solvable by radicals if and only if $Gal(f) = Gal(\mathbb{L}(f)/\mathbb{K})$ is solvable.

proof.

Let f be solvable by radicals, i.e. $\mathbb{L}(f)/\mathbb{K}$ be a radical field extension.

 $\iff \mathbb{L}(f)$ is contained in some Galois extension $\tilde{\mathbb{L}}/\mathbb{K}$ and $\mathrm{Gal}(\tilde{\mathbb{L}}/\mathbb{K})$ is solvable.

 \iff In $\mathbb{K} \subseteq \mathbb{L}(f) \subseteq \tilde{\mathbb{L}}$ all extensions are Galois.

 $\overset{3.5}{\iff} \operatorname{Gal}(\mathbb{L}(f)/\mathbb{K}) \cong \operatorname{Gal}(\tilde{\mathbb{L}}/\mathbb{K}) / \operatorname{Gal}(\tilde{\mathbb{L}}/\mathbb{L}(f))$

 $\stackrel{4.8}{\iff}$ Gal($\mathbb{L}(f)/\mathbb{K}$) is solvable.

Theorem 4.11

Let G be a group, \mathbb{K} a field. Then the subset $\text{Hom}(G, \mathbb{K}^{\times}) \subseteq \text{Maps}(G, \mathbb{K})$ is linearly independent in the \mathbb{K} -vector space $\text{Maps}(G, \mathbb{K})$.

proof.

Suppose $\operatorname{Hom}(G, \mathbb{K}^{\times})$ is linearly dependant. Then let n > 0 minimal, such that there exist distinct elements $\chi_1, \ldots, \chi_n \in \operatorname{Hom}(G, \mathbb{K}^{\times})$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{K}^{\times}$ such that

$$\sum_{i=0}^{n} \lambda_i \chi_i = 0.$$

The χ_i are called *characters*. Clearly we have $n \ge 2$. Choose $g \in G$ such that $\chi_1(g) \ne \chi_2(g)$. For any $h \in G$ we have

$$0 = \sum_{i=0}^{n} \lambda_i \chi_i(gh) = \sum_{i=0}^{n} \underbrace{\lambda_i \chi_i(g)}_{=:\mu_i} \chi_i(h) = \sum_{i=0}^{n} \mu_i \chi_i(h)$$

Then we get

$$0 = \sum_{i=0}^{n} \mu_i \chi_i(h) = \sum_{i=0}^{n} \lambda_i \chi_i(g) \chi_i(h) \implies \sum_{i=0}^{n} \underbrace{(\mu_i - \lambda_i \chi_1(g))}_{=:\nu_i} \chi_i(h) = 0$$

Consider

$$\nu_{1} = \mu_{1} - \lambda_{1}\chi_{1}(g) = \lambda_{1}\chi_{1}(g) - \lambda_{1}\chi_{1}(g) = 0$$

$$\nu_{2} = \mu_{2} - \lambda_{2}\chi_{1}(g) = \lambda_{2}\chi_{2}(g) - \lambda_{2}\chi_{1}(g) = \underbrace{\lambda_{2}}_{\neq 0} \cdot \underbrace{(\chi_{2}(g) - \chi_{1}(g))}_{\neq 0} \neq 0$$

Hence $\chi_2, \ldots \chi_n$ are linearly dependent. This is a contradiction to the minimality of n.

Proposition 4.12

Let \mathbb{L}/\mathbb{K} be a Galois extension such that $G := \operatorname{Gal}(\mathbb{L}/\mathbb{K}) = \langle \sigma \rangle$ is cyclic of order d for some $\sigma \in G$, where $\operatorname{char}(\mathbb{K}) \nmid d$. Let $\zeta_d \in \mathbb{K}$ be a primitive d-th root of unity.

Then there exsits $\alpha \in \mathbb{L}^{\times}$ such that $\sigma(\alpha) = \zeta \cdot \alpha$.

proof.

Let

$$f: \mathbb{L} \longrightarrow \mathbb{L}, \qquad f(X) = \sum_{i=0}^{d-1} \zeta^{-i} \cdot \sigma^{i}(X)$$

Applying Theorem 4.10 on $G = \mathbb{L}^{\times}$ and $\mathbb{K} = \mathbb{L}$ shows $f \neq 0$. Then let $\gamma \in \mathbb{L}$ such that $\alpha := f(\gamma) \neq 0$. Then we have

$$\sigma(\alpha) = \sigma\left(f(\gamma)\right) = \sigma\left(\sum_{i=0}^{d-1} \zeta^{-i} \cdot \sigma^{i}(\gamma)\right) = \sum_{i=0}^{d-1} \zeta^{-i} \cdot \sigma^{i+1}(\gamma) = \zeta \cdot \sum_{i=0}^{d-1} \zeta^{-(i+1)} \cdot \sigma^{i+1}(\gamma)$$

$$= \zeta \cdot \sum_{i=1}^{d} \zeta^{-i} \cdot \sigma^{i}(\gamma) = \zeta \left(\left(\sum_{i=1}^{d-1} \zeta^{-i} \cdot \sigma^{i}(\gamma)\right) + \gamma\right)$$

$$= \zeta \cdot f(\gamma) = \zeta \cdot \alpha$$

Remark: The claim follows from Proposition 5.2 by insertig $\beta = \zeta$.

Corollary 4.13

Let \mathbb{L}/\mathbb{K} be a Galois extension, such that $G := \operatorname{Gal}(\mathbb{L}/\mathbb{K}) = \langle \sigma \rangle$ is cyclic of order d for some $\sigma \in G$, where $\operatorname{char}(\mathbb{K}) \nmid d$. Assume \mathbb{K} contains a primitive d-th root of unity.

Then \mathbb{L}/\mathbb{K} is an elementary radical extension of type (ii).

proof.

Let $\zeta_d \in \mathbb{K}$ be a primitive d-th root of unity and $\alpha \in \mathbb{L}^{\times}$ such that $\sigma(\alpha) = \zeta \cdot \alpha$.

We have

$$\sigma^i(\alpha) = \zeta^i \cdot \alpha$$
 for $1 \leqslant i \leqslant d$

The minimal polynomial of α over \mathbb{K} has at least d zeroes, namely $\alpha, \sigma(\alpha), \dots \sigma^{d-1}(\alpha)$. Thus $\mathbb{L} = \mathbb{K}[\alpha]$. Moreover we have

$$\sigma(\alpha^d) = (\sigma(\alpha))^d = (\zeta \cdot \alpha)^d = \alpha^d,$$

hence

$$\alpha^d \in \mathbb{L}^{\langle \sigma \rangle} = \mathbb{L}^{\operatorname{Gal}(\mathbb{L}/\mathbb{K})} = \mathbb{K}$$

where the last equation follows by the main theorem.

Define $\gamma := \alpha^d$. Then the minimal polynomial of α over \mathbb{K} is $X^d - \gamma \in \mathbb{K}[X]$, which proves the claim.

Proposition 4.14

Let \mathbb{L}/\mathbb{K} be a Galois extension of degree $p = \operatorname{char}(\mathbb{K})$ with cyclic Galois group $\operatorname{Gal}(\mathbb{L}/\mathbb{K}) \cong \mathbb{Z}/p\mathbb{Z} = \langle \sigma \rangle$. Then there exists $\alpha \in \mathbb{L}^{\times}$ such that $\sigma(\alpha) = \alpha + 1$. proof.

The proof follows by Proposition 5.4 by setting $\beta = -1$.

Corollary 4.15

Let \mathbb{L}/\mathbb{K} be a Galois extension of degree $p = \operatorname{char}(\mathbb{K})$ with cyclic Galois group $\operatorname{Gal}(\mathbb{L}/\mathbb{K}) \cong \mathbb{Z}/p\mathbb{Z} = \langle \sigma \rangle$. Then \mathbb{L}/\mathbb{K} is an elementary radical extension of type (iii).

proof.

Let $\alpha \in \mathbb{L}^{\times}$ such that $\sigma(\alpha) = \alpha + 1$.

We have

$$\sigma^i(\alpha) = \alpha + i$$
 for $1 \le i \le p$

Thus we have $\mathbb{L} = \mathbb{K}[\alpha]$.

Moreover we have

$$\sigma(\alpha^p - \alpha) = \sigma^p(\alpha) - \sigma(\alpha) = (\alpha + 1)^p - (\alpha + 1) = \alpha^p + 1 - \alpha - 1 = \alpha^p - \alpha$$

Thus again we have $\alpha^p \in \mathbb{K}$. Define $\gamma := \alpha^p - \alpha$. Then the minimal polynomial of α over \mathbb{K} is $X^p - X - \gamma$, which proves the claim.

§ 5 Norm and trace

Definition + Remark 5.1

Let \mathbb{L}/\mathbb{K} be a finite separable field extension, $[\mathbb{L} : \mathbb{K}] = n$. Let $\operatorname{Hom}_{\mathbb{K}}(\mathbb{L}, \overline{\mathbb{K}}) = \{\sigma_1, \dots \sigma_n\}$.

(i) For $\alpha \in \mathbb{L}$ we define the *norm* of α over \mathbb{K} by

$$N_{\mathbb{L}/\mathbb{K}}(\alpha) := \prod_{i=1}^{n} \sigma_i(\alpha)$$

- (ii) $N_{\mathbb{L}/\mathbb{K}} \in \mathbb{K}$ for all $\alpha \in \mathbb{L}$.
- (iii) $N_{\mathbb{L}/\mathbb{K}}: \mathbb{L}^{\times} \longrightarrow \mathbb{K}^{\times}$ is a homomorphism of groups. *proof.*
 - (ii) Let $\alpha \in \mathbb{L}$. Assume first that \mathbb{L}/\mathbb{K} is Galois. Then $\operatorname{Hom}_{\mathbb{K}}(\mathbb{L}, \overline{\mathbb{K}}) = \operatorname{Aut}_{\mathbb{K}}(\mathbb{L}) = \operatorname{Gal}(\mathbb{L}/\mathbb{K})$. For $\tau \in \operatorname{Gal}(\mathbb{L}/\mathbb{K})$ we have

$$\tau\left(N_{\mathbb{L}/\mathbb{K}}\right) = \tau\left(\prod_{i=1}^{n} \sigma_{i}(\alpha)\right) = \prod_{i=1}^{n} \underbrace{\left(\tau\sigma_{i}\right)}_{\in \operatorname{Gal}(\mathbb{L}/\mathbb{K})}(\alpha) = N_{\mathbb{L}/\mathbb{K}}$$

Hence $N_{\mathbb{L}/\mathbb{K}} \in \mathbb{L}^{Gal(\mathbb{L}/\mathbb{K})} = \mathbb{K}$. Now consider the general case. Let $\tilde{\mathbb{L}} \supseteq \mathbb{L}$ be the normal hull of \mathbb{L} over \mathbb{K} . Recall that $\tilde{\mathbb{L}}$ is the composition of the $\sigma_i(\mathbb{L})$, i.e.

$$\tilde{\mathbb{L}} = \prod_{i=1}^n \sigma_i(\mathbb{L})$$

Then $\tilde{\mathbb{L}}/\mathbb{K}$ is Galois an for $\tau \in \operatorname{Gal}(\tilde{\mathbb{L}}/\mathbb{K})$ we have

$$\tau\left(N_{\mathbb{L}/\mathbb{K}}(\alpha)\right) = \prod_{i=1}^{n} \underbrace{\left(\tau\sigma_{i}\right)}_{\in \operatorname{Hom}_{\mathbb{K}}(\mathbb{L},\overline{\mathbb{K}})} (\alpha) = \prod_{i=1}^{n} \sigma_{i}(\alpha) = N_{\mathbb{L}/\mathbb{K}}(\alpha)$$

Hence $N_{\mathbb{L}/\mathbb{K}}(\alpha) \in \tilde{\mathbb{L}}^{\mathrm{Gal}(\tilde{\mathbb{L}}/\mathbb{K})} = \mathbb{K}$.

(iii) We have $N_{\mathbb{L}/\mathbb{K}}(\alpha) = 0 \iff \sigma_i(\alpha) = 0$ for some $1 \leqslant i \leqslant n \Leftrightarrow \alpha = 0$. Moreover

$$N_{\mathbb{L}/\mathbb{K}}(\alpha \cdot \beta) = \prod_{i=1}^{n} \sigma_{i}(\alpha\beta) = \prod_{i=1}^{n} \sigma_{1}(\alpha)\sigma_{i}(\beta) = \left(\prod_{i=1}^{n} \sigma_{i}(\alpha)\right) \cdot \left(\prod_{i=1}^{n} \sigma_{i}(\beta)\right)$$
$$= N_{\mathbb{L}/\mathbb{K}}(\alpha) \cdot N_{\mathbb{L}/\mathbb{K}}(\beta)$$

Example

(i) Let $\alpha \in \mathbb{K}$. Then

$$N_{\mathbb{L}/\mathbb{K}}(\alpha) = \prod_{i=1}^{n} \sigma_i(\alpha) = \prod_{i=1}^{n} \alpha = \alpha^n.$$

(ii) Let $\mathbb{K} = \mathbb{R}$, $\mathbb{L} = \mathbb{C}$. Then $\Rightarrow \operatorname{Hom}_{\mathbb{R}}(\mathbb{C}, \overline{\mathbb{R}}) = \operatorname{Gal}(\mathbb{C}/\mathbb{R}) = \{\operatorname{id}, z \mapsto \overline{z}\}$ And thus $N_{\mathbb{L}/\mathbb{K}}(z) = z\overline{z} = |z|^2$.

(iii) Let $\mathbb{K}=\mathbb{Q}, \mathbb{L}=\mathbb{Q}[\sqrt{d}]$ for $d\in\mathbb{Z}$ squarefree. We have $[\mathbb{Q}[\sqrt{d}]:\mathbb{Q}]=2$ and

$$\operatorname{Gal}(\mathbb{Q}[\sqrt{d}]/\mathbb{Q}) = \{\operatorname{id}, \sqrt{d} \mapsto -\sqrt{d}\} = \{\operatorname{a} + \operatorname{b}\sqrt{d} \mapsto \operatorname{a} + \operatorname{b}\sqrt{d}, \operatorname{a} + \operatorname{b}\sqrt{d} \mapsto \operatorname{a} - \operatorname{b}\sqrt{d}\}$$

Then we have

$$N_{\mathbb{Q}[\sqrt{d}]/\mathbb{Q}}(a+b\sqrt{d}) = \left(a+b\sqrt{d}\right)\left(a-b\sqrt{d}\right) = a^2 - db^2$$

- d < 0: $d = -\tilde{d}$, hence $a^2 + \tilde{d}b^2 \stackrel{!}{=} 1 \Rightarrow$ either $a = \pm 1, b = 0$ or $a = 0, b = \pm 1, \tilde{d} = 1$.
- d > 0: Infinitely many solutions for $a^2 bd^2 = 1$.

Proposition 5.2 (Hilbert's theorem 90 - multiplicative version)

Let \mathbb{L}/\mathbb{K} a finite Galois extension with cyclic Galois group $\operatorname{Gal}(\mathbb{L}/\mathbb{K}) = \langle \sigma \rangle$, $n = [\mathbb{L} : \mathbb{K}]$. Let $\beta \in \mathbb{L}$ with $N_{\mathbb{L}/\mathbb{K}}(\beta) = 1$.

Then there exists $\alpha \in \mathbb{L}^{\times}$ such that $\beta = \frac{\alpha}{\sigma(\alpha)}$. proof.

Define

$$f = \mathrm{id}_{\mathbb{L}} + \beta \sigma + \beta \sigma(\beta) \sigma^2 + \ldots + \beta \sigma(\beta) \sigma^2(\beta) \cdots \sigma^{n-2}(\beta) \sigma^{n-1} = \sum_{i=0}^{n-1} \sigma^i \prod_{i=1}^{J} \sigma^{i-1}(\beta)$$

Then by Theorem 4.10 $f \neq 0$. Choose $\gamma \in \mathbb{L}$ such that $\alpha := f(\gamma) \neq 0$. Then we have

$$\beta \cdot \sigma(\alpha) = \beta \cdot \sigma(f(\gamma)) = \beta \cdot \left(\sigma\left(\gamma + \beta\sigma(\gamma) + \dots + \prod_{i=0}^{n-2} \sigma^{i}(\beta)\sigma^{n-1}(\gamma)\right)\right)$$

$$= \beta \cdot \left(\sigma(\gamma) + \sigma(\beta)\sigma^{2}(\gamma) + \dots + \prod_{i=0}^{n-2} \sigma^{i+1}(\beta)\sigma^{n}(\gamma)\right)$$

$$= \beta \cdot \left(\sigma(\gamma) + \sigma(\beta)\sigma^{2}(\gamma) + \dots + \frac{1}{\beta}N_{\mathbb{L}/\mathbb{K}}(\beta) \cdot \gamma\right)$$

$$= \beta \cdot \left(\sigma(\gamma) + \sigma(\beta)\sigma^{2}(\gamma) + \dots + \gamma\right)$$

$$= \gamma + \beta\sigma(\gamma) + \beta\sigma(\beta)\sigma^{2}(\gamma) + \dots + \beta \cdot \prod_{i=1}^{n-2} \sigma^{i}(\beta)\sigma^{n-1}(\gamma)$$

$$= f(\gamma) = \alpha$$

Definition + Remark 5.3

Let \mathbb{L}/\mathbb{K} be a finite separable field extension, $[\mathbb{L} : \mathbb{K}] = n$. Let $\operatorname{Hom}_{\mathbb{K}}(\mathbb{L}, \overline{\mathbb{K}}) = \{\sigma_1, \dots \sigma_n\}$.

(i) For $\alpha \in \mathbb{L}$,

$$tr_{\mathbb{L}/\mathbb{K}}(\alpha) := \sum_{i=0}^{n} \sigma_i(\alpha)$$

is called the trace of α over \mathbb{K} .

- (ii) $tr_{\mathbb{L}/\mathbb{K}}(\alpha) \in \mathbb{K}$ for all $\alpha \in \mathbb{L}$.
- (iii) $tr_{\mathbb{L}/\mathbb{K}} : \mathbb{L} \longrightarrow \mathbb{K}$ is \mathbb{K} -linear.

proof.

- (ii) As in proof 5.1, $tr_{\mathbb{L}/\mathbb{K}}(\alpha)$ is invariant under $Gal(\tilde{\mathbb{L}}/\mathbb{K})$.
- (iii) Clear.

Examples

(i) Let $\alpha \in \mathbb{K}$. Then

$$tr_{\mathbb{L}/\mathbb{K}}(\alpha) = \sum_{i=0}^{n} \sigma_i(\alpha) = \sum_{i=0}^{n} \alpha = n \cdot \alpha.$$

(ii) Let $\mathbb{K} = \mathbb{R}$, $\mathbb{L} = \mathbb{C}$. Then $tr_{\mathbb{C}/\mathbb{R}}(z) = z + \overline{z} = 2 \cdot \mathfrak{Re}(z)$.

Proposition 5.4 (Hilbert's theorem 90 - additive version)

Let \mathbb{L}/\mathbb{K} be a Galois extension with cyclic Galois group $\operatorname{Gal}(\mathbb{L}/\mathbb{K}) = \langle \sigma \rangle$ and $[\mathbb{L} : \mathbb{K}] = \operatorname{char}(\mathbb{K}) = p \in \mathbb{P}$.

Then for every $\beta \in \mathbb{L}$ with $tr_{\mathbb{L}/\mathbb{K}}(\beta) = 0$ there exists $\alpha \in \mathbb{L}$ such that $\beta = \alpha - \sigma(\alpha)$. proof.

Define

$$g = \beta \cdot \sigma + (\beta + \sigma(\beta)) \cdot \sigma^2 + \ldots + \left(\sum_{i=0}^{p-2} \sigma^i(\beta)\right) \cdot \sigma^{p-1} = \sum_{i=0}^{p-2} \left(\sum_{j=0}^i \sigma^j(\beta)\right) \cdot \sigma^{i+1}$$

Let now $\gamma \in \mathbb{L}$ such that $tr_{\mathbb{L}/\mathbb{K}}(\gamma) \neq 0$ (existing by 4.11). Then for

$$\alpha := \frac{1}{tr_{\mathbb{L}/\mathbb{K}}(\gamma)} \cdot g(\gamma)$$

we have

$$\begin{split} \alpha - \sigma(\alpha) &= \frac{1}{tr_{\mathbb{L}/\mathbb{K}}(\gamma)} \cdot (g(\gamma) - \sigma\left(g(\gamma)\right)) \\ &= \frac{1}{tr_{\mathbb{L}/\mathbb{K}}(\gamma)} \left(\left(\sum_{i=0}^{p-2} \left(\sum_{j=0}^{i} \sigma^{j}(\beta) \right) \sigma^{i+1}(\gamma) \right) - \left(\sum_{i=0}^{p-2} \left(\sum_{j=0}^{i} \sigma^{j+1}(\beta) \right) \sigma^{i+2}(\gamma) \right) \right) \\ &= \frac{1}{tr_{\mathbb{L}/\mathbb{K}}(\gamma)} \left(\left(\sum_{i=0}^{p-2} \left(\sum_{j=0}^{i} \sigma^{j}(\beta) \right) \sigma^{i+1}(\gamma) \right) - \left(\sum_{i=1}^{p-1} \left(\sum_{j=1}^{i} \sigma^{j}(\beta) \right) \sigma^{i+1}(\gamma) \right) \right) \\ &= \frac{1}{tr_{\mathbb{L}/\mathbb{K}}(\gamma)} \cdot \left(\sum_{i=0}^{p-1} \beta \cdot \sigma^{i}(\gamma) \right) = \beta \end{split}$$

Proposition 5.5

Let \mathbb{L}/\mathbb{K} be a finite separable extension, $\alpha \in \mathbb{L}$. Consider the K-linear map

$$\phi_{\alpha}: \mathbb{L} \longrightarrow \mathbb{L}, \quad x \mapsto \alpha \cdot x$$

Then

(i) $N_{\mathbb{L}/\mathbb{K}}(\alpha) = \det(\phi_{\alpha})$.

(ii)
$$tr_{\mathbb{L}/\mathbb{K}}(\alpha) = \operatorname{tr}(\phi_{\alpha}).$$

proof.

Let

$$f = \sum_{i=0}^{d} a_i X^i$$

be the minimal polynomial of α over \mathbb{K} . Then

$$(f \circ \phi_{\alpha})(x) = f(\phi_{\alpha}(x)) = \sum_{i=0}^{d} a_i \phi_{\alpha}^i(x) = \sum_{i=0}^{d} a_i \alpha^i \cdot x = x \cdot \sum_{i=0}^{d} a_i \alpha^i = x \cdot f(\alpha) = 0$$

For arbitrary $x \in \mathbb{L}$, hence $f(\phi_{\alpha}) = 0$.

case 1.1 Assume first $\mathbb{L} = \mathbb{K}[\alpha]$ for some $\alpha \in \mathbb{K}$. Then $[\mathbb{L} : \mathbb{K}] = \deg(f) = d$, so $\{1, \alpha, \dots, \alpha^{d-1}\}$ is a \mathbb{K} -basis of \mathbb{L} . Then we have a transformation matrix of ϕ_{α} with respect to the basis $\{1, \alpha, \dots, \alpha^{d-1}\}$

$$D = \begin{pmatrix} 0 & 0 & 0 & 0 & a_0 \\ 1 & 0 & \vdots & -a_1 \\ 0 & 1 & \vdots & \vdots \\ \vdots & \vdots & \ddots & 0 & \vdots \\ 0 & \dots & 0 & 1 & -a_{d-1} \end{pmatrix}$$

So we have $\operatorname{tr}(\phi_{\alpha}) = -a_{d-1}$ and $\operatorname{det}(\phi_{\alpha}) = (-1)^d \cdot a_0$.

We know that f splits over $\overline{\mathbb{K}}$, say

$$f = \prod_{i=1}^{d} (X - \lambda_i) = \prod_{i=1}^{d} (X - \sigma_i(\alpha))$$

Then we easily see

$$\det(\phi_{\alpha}) = (-1)^d \cdot a_0 = (-1)^d \cdot f(0) = (-1)^d \cdot \prod_{i=1}^d (0 - \sigma_i(\alpha)) = \prod_{i=1}^d \sigma_i(\alpha) = N_{\mathbb{L}/\mathbb{K}}(\alpha)$$
$$\operatorname{tr}(\phi_{\alpha}) = -a_{d-1} = tr_{\mathbb{L}/\mathbb{K}}(\alpha)$$

case 1.2 For the case $\alpha \in \mathbb{K}$, ϕ_{α} is represented by the diagonal matrix $\begin{pmatrix} \alpha & 0 \\ & \ddots & \\ 0 & \alpha \end{pmatrix} \in \mathbb{K}^{d \times d}$.

We obtain

$$\operatorname{tr}(\phi_{\alpha}) = d \cdot \alpha = tr_{\mathbb{L}/\mathbb{K}}(\alpha) \qquad \det(\phi_{\alpha}) = \alpha^{d} = tr_{\mathbb{L}/\mathbb{K}}(\alpha)$$

case 2 For the general case we have $\mathbb{K} \subseteq \mathbb{K}(\alpha) \subseteq \mathbb{L}$.

Claim (a) We have

$$N_{\mathbb{L}/\mathbb{K}}(\alpha) = N_{\mathbb{K}(\alpha])\mathbb{K}} \left(N_{\mathbb{L}/\mathbb{K}(\alpha)}(\alpha) \right), \qquad tr_{\mathbb{L}/\mathbb{K}}(\alpha) = tr_{\mathbb{K}(\alpha)/\mathbb{K}} \left(tr_{\mathbb{L}/\mathbb{K}(\alpha)}(\alpha) \right)$$

Claim (b) We have

$$\det(\phi_{\alpha}) = \left(\det\left(\phi_{\alpha}|_{\mathbb{K}(\alpha)}\right)\right)^{[\mathbb{L}:\mathbb{K}(\alpha)]} \qquad \operatorname{tr}(\phi_{\alpha}) = \left[\mathbb{L}:\mathbb{K}(\alpha)\right] \cdot \operatorname{tr}\left(\phi_{\alpha}|_{\mathbb{K}(\alpha)}\right).$$

Assuming Claim (a) and (b), we get

$$\det(\phi_{\alpha}) = \left(\det\left(\phi_{\alpha}|_{\mathbb{K}(\alpha)}\right)\right)^{[\mathbb{L}:\mathbb{K}(\alpha)]} \stackrel{1.1}{=} \left(N_{\mathbb{K}(\alpha)/\mathbb{K}}\right)^{[\mathbb{L}:\mathbb{K}(\alpha)]} = N_{\mathbb{K}(\alpha)/\mathbb{K}}\left(\alpha^{[\mathbb{L}:\mathbb{K}(\alpha)]}\right)$$

$$\stackrel{1.2}{=} N_{\mathbb{K}(\alpha)/\mathbb{K}}\left(N_{\mathbb{L}/\mathbb{K}(\alpha)}(\alpha)\right)$$

$$\stackrel{(a)}{=} N_{\mathbb{L}/\mathbb{K}}(\alpha)$$

And analogously $\operatorname{tr}(\phi_{\alpha}) = tr_{\mathbb{L}/\mathbb{K}}(\alpha)$.

Let's now proof the claims.

(b) Let $x_1, \ldots x_d$ be a basis of $\mathbb{K}(\alpha)$ / as a \mathbb{K} -vector space and $y_1, \ldots y_m$ a basis of \mathbb{L} as a $\mathbb{K}(\alpha)$ -vector space.

Then the $x_i y_j$ for $1 \leq i \leq d$, $1 \leq j \leq m$ form a K-basis for L.

Let now $D \in \mathbb{K}^{d \times d}$ be the matrix representing $\phi_{\alpha}|_{\mathbb{K}(\alpha)}$. Then we have

$$\alpha x_i y_j = \underbrace{(\alpha x_i)}_{\in \mathbb{K}(\alpha)} y_j = (D \cdot x_i) y_j$$

Hence ϕ_{α} is represented by

$$\tilde{D} = \begin{pmatrix} A & 0 & \dots & 0 \\ 0 & A & & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A \end{pmatrix}$$

(a) This is an exercise.

Definition + Remark 5.6

Let \mathbb{L}/\mathbb{K} be a finite field extension, $r = [\mathbb{L} : \mathbb{K}]_s = |\mathrm{Hom}_{\mathbb{K}}(\mathbb{L}, \overline{\mathbb{K}})|$. Let $q = \frac{[\mathbb{L} : \mathbb{K}]_s}{[\mathbb{L} : \mathbb{K}]_s}$.

(i) For $\alpha \in \mathbb{L}$ define

$$N_{\mathbb{L}/\mathbb{K}}(\alpha) = \det(\phi_{\alpha})$$
 $tr_{\mathbb{L}/\mathbb{K}}(\alpha) = \operatorname{tr}(\phi_{\alpha})$

(ii) Let $\operatorname{Hom}_{\mathbb{K}}(\mathbb{L}, \overline{\mathbb{K}}) = \{\sigma_1, \dots, \sigma_r\}$. Then

$$N_{\mathbb{L}/\mathbb{K}}(\alpha) = \left(\prod_{i=1}^r \sigma^i(\alpha)\right)^q, \qquad tr_{\mathbb{L}/\mathbb{K}}(\alpha) = \left(\sum_{i=1}^r \sigma_i(\alpha)\right) \cdot q$$

proof.

Copy the proof of 5.5. Recall that the minimal polynomial of α over \mathbb{K} is

$$m_{\alpha} = \prod_{i=1}^{r} (X - \sigma_i(\alpha))^q$$

§ 6 Normal series of groups

Defintion 6.1

Let G be a group.

(i) A series

$$G = G_0 \triangleright G_1 \triangleright \ldots \triangleright G_n$$

of subgroups is called a *normal series* for G, if $G_i \triangleleft G_{i-1}$ is a normal subgroup in G_{i-1} and $G_i \neq G_{i-1}$ for $1 \leq i \leq n$. The groups $H_i := G_{i-1}/G_i$ are called *factors* of the series.

(ii) A normal series as above is called a *composition series* for G, if all its factors are simple groups and $G_n = \{e\}.$

Example

(i) For $G = S_4$ we have a composition series

$$G = S_4 \triangleright A_4 \triangleright V_4 \triangleright T_4 \triangleright \{e\}$$

where $T_4 = \{ id, \sigma \} \cong \mathbb{Z} / 2\mathbb{Z}$ for some transposition $\sigma \in S_4$.

We have quotients

$$S_4/A_4 = \mathbb{Z}/2\mathbb{Z}, \quad A_4/V_4 = \mathbb{Z}/3\mathbb{Z}, \quad V_4/T_4 = \mathbb{Z}/2\mathbb{Z}, \quad T_4/\{e\} = \mathbb{Z}/2\mathbb{Z}$$

- (ii) \mathbb{Z} has no composition series.
- (iii) Every normal series is a composition series.
- (iv) Every finite group has a composition series.

Remark 6.2

If $G = G_0 \triangleright G_1 \triangleright \ldots \triangleright G_n = \{e\}$ is a normal composition series for a finite group G, then we have

$$|G| = \prod_{i=1}^{n} |G_{i-1}/G_i|$$

Definition + Remark 6.3

Let G be a group.

(i) For subgroups $H_1, H_2 \leq G$ let $[H_1, H_2]$ denote the subgroup of G generated by all commutators

$$[h_1, h_2] = h_1 h_2 h_1^{-1} h_2^{-1}$$
 with $h_i \in H_i$ for $i \in \{1, 2\}$

- (ii) [G,G] = G' is called the *derived* or *commutator subgroup* of G.
- (iii) $G' \triangleleft G$ and $G^{ab} := G/G'$ is abelian.
- (iv) Let A be an abelian group and $\phi: G \longrightarrow A$ a homomorphism of groups. Let $\pi: G \longrightarrow G^{ab}$ denote the residue map. Then $G' \subseteq \ker(\phi)$, thus ϕ factors to a unique homomorphism

$$\overline{\phi}: G^{\mathrm{ab}} \longrightarrow A$$
 such that $\phi = \overline{\phi} \circ \pi$

(v) The chain

$$G \triangleright G' \triangleright G'' = [G', G'] \triangleright \dots \triangleright G^{(n+1)} = [G^n, G^n]$$

is called the *derived series* of G.

- (vi) G is solvable if and only if its derived series stops at $\{e\}$. proof.
- (iii) For $g \in G$, $a, b \in G$ we have

$$g[ab]g^{-1} = gaba^{-1}b^{-1}g^{-1} = ga\underbrace{g^{-1}g}_{=e}b\underbrace{g^{-1}g}_{=e}a^{-1}\underbrace{g^{-1}g}_{=e}b^{-1}g^{-1} = [gag^{-1}, gbg^{-1}] \in G'$$

Moreover

$$e = [\overline{a}, \overline{b}] = \overline{[a, b]} = \overline{aba^{-1}b^{-1}} \quad \Longleftrightarrow \quad \overline{ab} = \overline{a}\overline{b} = \overline{b}\overline{a} = \overline{ba}$$

(iv) Let A be an abelian group, $\phi: G \longrightarrow A$ a himomorphism. For $x, y \in G$ we have

$$\phi([x,y]) = \phi(xyx^{-1}y^{-1}) = \phi(x) = \phi(y)\phi(x)^{-1}\phi(y)^{-1} = e \implies G' \subseteq \ker(\phi)$$

- (vi) ' \Leftarrow ' If the derived series of G stops at $\{e\}$, G has a normal series with abelian factors and is solvable.
 - ' \Rightarrow ' Let now $G = G_0 \triangleright \ldots \triangleright G_n = \{e\}$ be a normal series with abelian factors. We have to show that $G^{(n)} = \{e\}$.

Claim (a) We have $G^{(i)} \subseteq G_i$ for $0 \le i \le n$.

Then we see $G^{(n)} \subseteq G_n = \{e\}$ an hence the derived series of G stops at $\{e\}$.

It remains to prove the claim.

(a) We have $\pi_i: G_i \longrightarrow G_i / G_{i+1}$ is a homomorphism from G to an abelian group. Then by part (iv), we have $G_i^{(1)} = G_i' \subseteq \ker(\pi_i) = G_{i+1}$.

By induction on n we have $G^{(i)} = (G^{(i-1)})' \subseteq G_i$, hence $(G^{(i)})' \subseteq G_i$?.

Thus we get

$$G^{(i+1)} = (G^{(i)})' \subseteq G_i' \subseteq \ker(\pi_I) = G_{i+1}$$

Proposition 6.4

A finite group G is solvable if and only if the factors of its composition series are cyclic of prime order. proof.

'⇒' Let

$$G = G_1 \triangleright G_2 \triangleright \ldots \triangleright G_m = \{1\}$$

be a normal series of G with abelian quotients $G_i - 1/G_i$ for $1 \le i \le m$. Refine it to a composition series

$$G = G_0 = H_{0,0} \triangleright H_{0,1} \triangleright \ldots \triangleright H_{0,d_0} = G_1 = H_{1,0} \triangleright \ldots \triangleright H - 1, d_1 = G_2 \triangleright \ldots \triangleright G_m = \{1\}$$

Then we have

$$H_{i,j}/H_{i,j+1} \cong H_{i,j}/G_{i+1}/H_{i,j+1}/G_{i+1} \subseteq G_i/G_{i+1}/H_{i,j+1}/G_{i+1}$$

hence $H_{i,j}/H_{i,j+1}$ is isomorphic to a subgroup of a factor group of an abelian group, thus abelian. ' \Leftarrow ' Since the factor groups of the composition series are isomorphic to $\mathbb{Z}/p\mathbb{Z}$ for some primes p, the quotients are abelian, thus G is solvable.

Theorem 6.5 (Jordan- $H\tilde{A}\P lder$)

Let G be a group and

$$G = G_0 \triangleright G_1 \triangleright \ldots \triangleright G_n = \{e\}$$

$$G = H_0 \triangleright H_1 \triangleright \dots \triangleright H_m = \{e\}$$

be two composition series of G.

Then n = m and there ist $\sigma \in S_n$ such that

$$H_i/H_{i+1} \cong G_{\sigma(i)}/G_{\sigma(i)+1}$$
 for $0 \leqslant i \leqslant n-1$

proof.

We prove the statement by induction on n.

n=1 G is simple and thus $H_1 = \{e\}$.

n>1 Let $\overline{G}:=G/G_1$ and $\pi:G\longrightarrow \overline{G}$ be the residue map.

Then $\overline{H}_i = \pi(H_i) \leq \overline{G}$ is a normal subgroup. Since \overline{G} is simple, hence we have $\overline{H}_i \in \{\{e\}, \overline{G}\}$. If $\overline{H}_1 = \overline{G}$, then \overline{H}_2 is a normal subgroup of $\overline{H}_1 = \overline{H}$, and so on. Hence we find $j \in \{1, \ldots m\}$ such that

$$\overline{H}_i = \overline{G} \text{ for } 0 \leqslant 1 \leqslant j \text{ and } \overline{H}_i = \{e\} \text{ for } j+1 \leqslant i \leqslant m.$$

Define $C_i := H_i \cap G_1 < G_1$ for $0 \le i \le m$.

Claim (a) If $j \leq m-2$, then we have a composition series for G_1 :

$$G_1 = C_0 \triangleright C_1 \triangleright \ldots \triangleright C_j \triangleright C_{j+2} \triangleright \ldots \triangleright C_m = \{e\}$$

If j = m - 1, we have a composition series for G_1 :

$$G_1 = C_0 \triangleright C_1 \triangleright \ldots \triangleright C_{m-1} = \{e\}$$

Clearly $G_1 \triangleright G_2 \triangleright \ldots \triangleright G_n = \{e\}$ is a composition series, too.

By induction hypothesis we have n-1=m-1, hence n=m. Moreover we have for $i\neq j$

$$\begin{pmatrix}
C_i / C_{i+1} \cong G_{\sigma(i)} / G_{\sigma(i)+1} \\
C_j / C_{j+2} \cong G_{\sigma(j)} / G_{\sigma(j)+1}
\end{pmatrix} (*)$$

For some $\sigma:\{0,1,\ldots,j,j+2,j+3,\ldots,n-1\}\longrightarrow\{1,\ldots,n-1\}$

Claim (b) We have

- (1) $C_{j+1} = C_j$
- (2) $C_i / C_{i+1} \cong H_i / H_{i+1}$ for $i \neq j$.
- (3) $H_j/H_{j+1} \cong \overline{G} = G/G_1$.

By (*) and Claim (a),(b) the theorem is proved.

It remains to show the Claims.

(a) C_{i+1} is a normal subgroup of C_i , $C_{i+1} = H_{i+1} \cap G_1$.

 C_{j+1} is normal in $C_j = C_{j+1}$ by Claim (b)(2).

 $C_i/C_{i+1} \cong H_i/H_{i+1}$ for $i \neq j$ is simple by Claim (b)(2).

 $C_j/C_{j+2} = C_j/C_{j+1} = H_j/H_{j+1}$ is simple, too.

- (b) (1) We have $H_{j+1} \subseteq G_1$, hence $H_{j+1} \cap G_1 = H_{j+1} = C_{j+1}$. $C_j = H_j \cap G_1$ is normal subgroup of H_j . Thus $H_j \triangleright C_j \triangleright C_{j+1} = H_{j+1}$. Since H_i / H_{i+1} is simple, we must have $C_j = C_{j+1}$.
 - (2) **i**>**j** Then $C_i = H_i \cap G_1 = H_i$ since $H_i \subseteq G_1$.

$$\mathbf{i} < \mathbf{j}$$
 We have $\overline{H}_i = \overline{G} = G/G_1$.

Then we have $G_1H_i=G$ (*), since:

'⊂' Clear.

' \supseteq ' For $g \in G, \overline{g} \in \overline{G}$ its image there exists $h \in H_i$ such that

$$\overline{h} = \overline{g} \Longrightarrow \overline{h}^{-1}\overline{g} \in G_1 \longleftarrow \overline{h}^{-1}\overline{g} = g_1 \in G_1 \Longrightarrow g = hg_1 \in H_iG_1$$

With the isomorphism theorem we obtain

$$C_i/C_{i+1} = C_i/H_{i+1} \cap G_i = C_i/H_{i+1} \cap C_i \cong C_iH_{i+1}/H_{i+1}$$

Therefore it remains to show that $C_iH_{i+1} = H_i$.

 \subseteq Since $C_i, H_{i+1} \subseteq H_i$ we also have $C_i H_{i+1} \subseteq H_i$

' \supseteq ' Let $x \in H_i$. by (*) we have $H_{i+1}G_i = G$.

Hence there exists $g \in G_1, h \in H_{i+1}$ such that x = gh.

Then we have $g = xh^{-1} \in H_iH_{i+1} = H_i$, i.e. $g \in G_i \cap H_i = C_1$ and thus $x \in C_iH_{i+1}$.

(3) We have

$$H_i/H_{i+1} = H_i/C_{j+1} = H_j/C_j = H_j/H_j \cap G_1 = G_1H_j/G_1 \stackrel{(*)}{=} G/G_1$$