ADER and DeC: arbitrarily high order (explicit) methods for PDEs and ODEs

Davide Torlo

*MathLab, Mathematics Area, SISSA International School for Advanced Studies, Trieste, Italy davidetorlo.it

Based on: Han Veiga, M., Öffner, P. & Torlo, D. DeC and ADER: Similarities, Differences and a Unified Framework. J Sci Comput 87, 2 (2021). https://doi.org/10.1007/s10915-020-01397-5

Outline

- Motivation
- 2 DeC
- 3 ADER
- 4 Similarities
- **5** ADER stability and accuracy
- **6** Simulations
- 7 Efficient DeC (ADER)
- 8 An efficient Deferred Correction
- 9 Summary

Outline

- Motivation
- 2 DeC
- ADER
- 4 Similarities
- **5** ADER stability and accuracy
- **6** Simulations
- Efficient DeC (ADER)
- An efficient Deferred Correction

Motivation: high order accurate explicit method

Methods used to solve a hyperbolic PDE system for $u: \mathbb{R}^+ \times \Omega \to \mathbb{R}^D$

$$\partial_t u + \nabla_{\mathsf{x}} \mathcal{F}(u) = 0. \tag{1}$$

Or ODE system for
$${\it m u}: \mathbb{R}^+ o \mathbb{R}^{\it S}$$

$$\underbrace{\partial_t \mathbf{u} = F(\mathbf{u})}.$$
(2)

Applications:

- Fluids/transport
- Chemical/biological processes

How?

- Arbitrarily high order accurate

Motivation: high order accurate explicit method

10⁰

Methods used to solve a hyperbolic PDE system for $u: \mathbb{R}^+ imes \Omega o \mathbb{R}^D$

Or ODE system for u:

Fluids/transportChemical/biologica

Applications:

10⁻⁸ 10⁻⁸ 10⁻⁸ - - order 1 - order 2 - order 3 - order 4 - order 5 - order 6 - Threshold

Discretization Scale

10⁰

10⁻¹

(1)

(2)

How?

• Arbitrarily high orc

•

Motivation: high order accurate explicit method

Methods used to solve a hyperbolic PDE system for $u:\mathbb{R}^+ imes\Omega o\mathbb{R}^D$

$$\partial_t u + \nabla_{\mathsf{x}} \mathcal{F}(u) = 0. \tag{1}$$

Or ODE system for $\boldsymbol{u}: \mathbb{R}^+ o \mathbb{R}^S$

$$\partial_t \mathbf{u} = F(\mathbf{u}). \tag{2}$$

Applications:

- Fluids/transport
- Chemical/biological processes

How?

- Arbitrarily high order accurate
- Explicit (if nonstiff problem)

Classical time integration: Runge-Kutta

$$\boldsymbol{u}^{(1)} := \boldsymbol{u}^n, \tag{3}$$

$$\mathbf{p}^{(k)} := \mathbf{u}^n + \Delta t \sum_{s}^{N} a_{ks} F\left(t^n + c_s \Delta t, \mathbf{u}^{(s)}\right), \quad \text{for } k = 2, \dots, K,$$
 (4)

$$\mathbf{u}^{(k)} := \mathbf{u}^n + \Delta t \sum_{s=1}^K a_{ks} F\left(t^n + c_s \Delta t, \mathbf{u}^{(s)}\right), \quad \text{for } k = 2, \dots, K,$$

$$\mathbf{u}^{n+1} := \mathbf{u}^n + \Delta t \sum_{s=1}^K b_s F\left(t^n + c_s \Delta t, \mathbf{u}^{(s)}\right).$$
(5)

Classical time integration: Explicit Runge-Kutta

$$oldsymbol{u}^{(k)} := oldsymbol{u}^n + \Delta t \sum_{s=1}^{k-1} \mathsf{a}_{ks} \mathsf{F}\left(t^n + \mathsf{c}_s \Delta t, oldsymbol{u}^{(s)}
ight), \quad \mathsf{for} \ k = 1, \dots, \mathsf{K}.$$

- Easy to solve
- High orders involved:
 - 2. Order conditions: system of many equations
 - **1.** Stages $K \ge d$ order of accuracy (e.g. RK44, RK65)

Classical time integration: Implicit Runge-Kutta

$$oldsymbol{u}^{(k)} := oldsymbol{u}^n + \Delta t \sum_{s=1}^K oldsymbol{a}_{ks} oldsymbol{F} \left(t^n + c_s \Delta t, oldsymbol{u}^{(s)}
ight), \quad ext{for } k = 1, \ldots, K.$$

- More complicated to solve for nonlinear systems
- High orders easily done:

- \circ Take a high order quadrature rule on $[t^n, t^{n+1}]$
- o Compute the coefficients accordingly, see Gauss-Legendre or Gauss-Lobatto polynomials
- Order up to d = 2K

ADER and DeC

Two iterative explicit arbitrarily high order accurate methods.

- DF SPACE-TIME • ADER¹ for hyperbolic PDE, after a first analytic more complicated approach.
- Deferred Correction (DeC): introduced for explicit ODE², extended to implicit ODE³ and to hyperbolic PDE⁴.

¹M. Dumbser, D. S. Balsara, E. F. Toro, and C.-D. Munz. A unified framework for the construction of one-step finite volume and discontinuous galerkin schemes on unstructured meshes. Journal of Computational Physics, 227(18):8209-8253, 2008.

²A. Dutt, L. Greengard, and V. Rokhlin. Spectral Deferred Correction Methods for Ordinary Differential Equations. BIT Numerical Mathematics, 40(2):241-266, 2000.

³M. L. Minjon. Semi-implicit spectral deferred correction methods for ordinary differential equations. Commun. Math. Sci., 1(3):471-500, 09 2003.

⁴R. Abgrall. High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices. Journal of Scientific Computing, 73(2):461-494. Dec 2017.

Outline

- Motivation
- 2 DeC
- ADER
- 4 Similarities
- **5** ADER stability and accuracy
- **6** Simulations
- Efficient DeC (ADER)
- An efficient Deferred Correction

DeC high order time discretization: (\mathcal{L}^2)

$$u(t) = \sum_{i=0}^{1} \varphi_{i}(t) \cdot u^{i} \qquad \frac{\text{left}_{i}}{\text{for } i}$$

$$\varphi_{i}(t^{2}) = \delta_{i}$$

High order in time: we discretize our variable on $[t^n, t^{n+1}]$ in M substeps (\boldsymbol{u}^m) .

$$\partial_t \mathbf{u} = F(\mathbf{u}(t)).$$

Thanks to Picard-Lindelöf theorem, we can rewrite

and if we want to reach order r+1 we need M=r.

More precisely, for each σ we want to solve $\mathcal{L}^2(\boldsymbol{u}^{n,0},\ldots,\boldsymbol{u}^{n,M})=0$, where

$$\mathcal{L}^{2}(\boldsymbol{u}^{0},\ldots,\boldsymbol{u}^{M}) = \begin{pmatrix} \boldsymbol{u}^{M} - \boldsymbol{u}^{0} + \sum_{r=0}^{M} \int_{t^{0}}^{t^{M}} \underline{F(\boldsymbol{u}^{r})} \varphi_{r}(s) ds \\ \vdots \\ \boldsymbol{u}^{1} - \boldsymbol{u}^{0} + \sum_{r=0}^{M} \int_{t^{0}}^{t^{1}} F(\boldsymbol{u}^{r}) \varphi_{r}(s) ds \end{pmatrix}$$

- $\mathcal{L}^2 = 0$ is a system of $M \times S$ coupled (non)linear equations
- \mathcal{L}^2 is an implicit method (collocation method: Gauss, LobattoIIIA)
- Not easy to solve directly $\mathcal{L}^2(\boldsymbol{u}^*) = 0$
- High order (equispaced M+1, Gauss-Lobatto 2M), depending on points distribution

DeC high order time discretization:
$$\mathcal{L}^2$$

$$\mathcal{L} = \mathcal{L}^{M} = \mathcal$$

- $\mathcal{L}^2 = 0$ is a system of $M \times S$ coupled (non)linear equations
- \mathcal{L}^2 is an implicit method (collocation method: Gauss, LobattoIIIA)
- Not easy to solve directly $\mathcal{L}^2(\boldsymbol{u}^*) = 0$
- High order (equispaced M + 1, Gauss-Lobatto 2M), depending on points distribution NEW TOW - COTES FORMULAS

DeC low order time discretization: \mathcal{L}^1

Instead of solving the implicit system directly (difficult), we introduce a first order scheme $\mathcal{L}^1(\boldsymbol{u}^{n,0},\ldots,\boldsymbol{u}^{n,M})$:

$$\mathcal{L}^{1}(\boldsymbol{u}^{0},\ldots,\boldsymbol{u}^{M}) = \begin{pmatrix} \boldsymbol{u}^{M} - \boldsymbol{u}^{0} + \Delta t \underline{\beta}^{M} F(\boldsymbol{u}^{0}) \\ \vdots \\ \boldsymbol{u}^{1} - \boldsymbol{u}^{0} + \Delta t \underline{\beta}^{1} F(\boldsymbol{u}^{0}) \end{pmatrix} \qquad \begin{cases} t^{n} \\ t^{n} \\ t^{m} \end{cases} \cdot dt = \begin{cases} t^{m} \\ t^{m} \end{cases}$$

- First order approximation
- Explicit Euler
- Easy to solve $\mathcal{L}^1(\underline{\boldsymbol{u}}) = 0$

(EXPLICIT)

How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$egin{aligned} oldsymbol{u}^{0,(k)} &:= oldsymbol{u}(t^n), \quad k = 0, \dots, K, \ oldsymbol{u}^{m,(0)} &:= oldsymbol{u}(t^n), \quad m = 1, \dots, M \ \mathcal{L}^1(oldsymbol{\underline{u}}^{(k)}) &= \mathcal{L}^1(oldsymbol{\underline{u}}^{(k-1)}) - \mathcal{L}^2(oldsymbol{\underline{u}}^{(k-1)}) \ ext{with} \ k = 1, \dots, K. \end{aligned}$$

- $\mathcal{L}^2(u^*) = 0$
- If L¹ coercive with constant C₁
- If $\mathcal{L}^1 \mathcal{L}^2$ Lipschitz with constant $C_2\Delta t$

Then
$$\|\underline{\boldsymbol{u}}^{(K)} - \underline{\boldsymbol{u}}^*\| \leq C(\Delta t)^K$$

- $\mathcal{L}^1(\mathbf{u}) = 0$, first order accuracy, easily invertible.
- $\mathcal{L}^2(\underline{m{u}})=0$, high order M+1. $(\gt{n+l})$

⁵A. Dutt, L. Greengard, and V. Rokhlin. BIT Numerical Mathematics, 40(2):241–266, 2000.

How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$egin{aligned} oldsymbol{u}^{0,(k)} &:= oldsymbol{u}(t^n), \quad k = 0, \dots, K, \ oldsymbol{u}^{m,(0)} &:= oldsymbol{u}(t^n), \quad m = 1, \dots, M \ \mathcal{L}^1(oldsymbol{\underline{u}}^{(k)}) &= \mathcal{L}^1(oldsymbol{\underline{u}}^{(k-1)}) - \mathcal{L}^2(oldsymbol{\underline{u}}^{(k-1)}) \ ext{with} \ k = 1, \dots, K. \end{aligned}$$

- $\mathcal{L}^2(u^*) = 0$
- If L¹ coercive with constant C₁
- If $L^1 L^2$ Lipschitz with constant $C_2 \Delta t$

Then
$$\|\underline{\boldsymbol{u}}^{(K)} - \underline{\boldsymbol{u}}^*\| \leq C(\Delta t)^K$$

- $\mathcal{L}^1(\mathbf{u}) = 0$, first order accuracy, easily invertible.
- $\mathcal{L}^2(\mathbf{u}) = 0$, high order M+1.

⁵A. Dutt, L. Greengard, and V. Rokhlin. BIT Numerical Mathematics, 40(2):241–266, 2000.

How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$\begin{split} & \boldsymbol{u}^{0,(k)} := \boldsymbol{u}(t^n), \quad k = 0, \dots, K, \\ & \boldsymbol{u}^{m,(0)} := \boldsymbol{u}(t^n), \quad m = 1, \dots, M \\ & \mathcal{L}^1(\underline{\boldsymbol{u}}^{(k)}) = \mathcal{L}^1(\underline{\boldsymbol{u}}^{(k-1)}) - \mathcal{L}^2(\underline{\boldsymbol{u}}^{(k-1)}) \text{ with } k = 1, \dots, K. \end{split}$$

- $\mathcal{L}^2(u^*) = 0$
- If L¹ coercive with constant C₁
- If $L^1 L^2$ Lipschitz with constant $C_2 \Delta t$

Then
$$\|\underline{\boldsymbol{u}}^{(K)} - \underline{\boldsymbol{u}}^*\| \leq C(\Delta t)^K$$

- $\mathcal{L}^1(\mathbf{u}) = 0$, first order accuracy, easily invertible.
- $\mathcal{L}^2(\mathbf{u}) = 0$, high order M+1.

⁵A. Dutt, L. Greengard, and V. Rokhlin. BIT Numerical Mathematics, 40(2):241–266, 2000.

How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$\begin{array}{ll} & \underline{\boldsymbol{u}}^{0,(k)} := \underline{\boldsymbol{u}}(\underline{\boldsymbol{t}}^n), & k = 0, \dots, K, \\ & \underline{\boldsymbol{u}}^{m,(0)} := \underline{\boldsymbol{u}}(\underline{\boldsymbol{t}}^n), & m = 1, \dots, M \\ & \underline{\boldsymbol{\mathcal{L}}^1(\underline{\boldsymbol{u}}^{(k)})} = \underline{\boldsymbol{\mathcal{L}}^1(\underline{\boldsymbol{u}}^{(k-1)})} - \underline{\boldsymbol{\mathcal{L}}^2(\underline{\boldsymbol{u}}^{(k-1)})} \text{ with } k = 1, \dots, K. \end{array}$$

Theorem (Convergence DeC)

- $\mathcal{L}^2(u^*) = 0$
- If \mathcal{L}^1 coercive with constant C_1
- If $\mathcal{L}^1 \mathcal{L}^2$ Lipschitz with constant $C_2 \Delta t$

Then $\|\underline{\underline{u}}^{(K)} - \underline{\underline{u}}^*\| \leq C(\Delta t)^K$

- $\mathcal{L}^1(\boldsymbol{u}) = 0$, first order accuracy, easily invertible.
- $\mathcal{L}^2(\mathbf{u}) = 0$, high order M+1.

⁵A. Dutt, L. Greengard, and V. Rokhlin. BIT Numerical Mathematics, 40(2):241–266, 2000.

How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$m{u}^{0,(k)} := m{u}(t^n), \quad k = 0, \dots, K,$$
 $m{u}^{m,(0)} := m{u}(t^n), \quad m = 1, \dots, M$
 $m{v} \quad \mathcal{L}^1(m{u}^{(k)}) = \mathcal{L}^1(m{u}^{(k-1)}) - \mathcal{L}^2(m{u}^{(k-1)}) \text{ with } k = 1, \dots, K.$

- $\mathcal{L}^2(u^*) = 0$
- If L¹ coercive with constant C₁
- If $\mathcal{L}^1 \mathcal{L}^2$ Lipschitz with constant $C_2\Delta t$

Then
$$\|\underline{\boldsymbol{u}}^{(K)} - \underline{\boldsymbol{u}}^*\| \leq C(\Delta t)^K$$

- $\mathcal{L}^1(\mathbf{u}) = 0$, first order accuracy, easily invertible.
- $\mathcal{L}^2(\mathbf{u}) = 0$, high order M + 1.

⁵A. Dutt, L. Greengard, and V. Rokhlin. BIT Numerical Mathematics, 40(2):241–266, 2000.

v~ (0) = U(t~) (1 (K), e = ulf) 1 ((("))=1 ((("))-12((")) DeC - Proof

Proof

Let f^* be the solution of $\mathcal{L}^2(\underline{u}^*) = 0$. We know that $\mathcal{L}^1(\underline{u}^*) = \mathcal{L}^1(\underline{u}^*) - \mathcal{L}^2(\underline{u}^*)$, so that

P¹ Order 15
$$\frac{(\underline{u}) = 0}{|1| + |1|}$$
 we know that $2(\underline{u}) = 2(\underline{u}) = 2(\underline{u})$, so

$$\frac{1}{2} \int_{-1}^{2} \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \int_{-1}^{$$

$$\| \underline{u}^{(k)} - \underline{u}^* \| \leq \frac{1}{2} \| \underline{x}^2(\underline{u}^{(k)}) - \underline{x}^2(\underline{u}^*) - \underline{x}^2(\underline{u}^{(k-1)}) - \underline{x}^2(\underline{u}^{(k$$

$$\| \underline{u}^{(k)} - \underline{u}^* \| \leq \frac{1}{C_1} \| \underline{L}^2(\underline{u}^{(k)}) - \underline{L}^2(\underline{u}^*) \| \underline{Dec} \| \underline{L}^2(\underline{u}^{(k-1)}) - \underline{L}^2(\underline{u}^{(k-1)}) - \underline{L}^2(\underline{u}^*) + \underline{L}^2(\underline{u}^*) \|$$

$$\leq \frac{C_z \, \Delta t}{C_1} \, || \, \underline{u}^{(k-1)} - \underline{v}^* || \leq \left(\frac{C_z \, \Delta t}{C_1} \right)^k \, || \, \underline{u}^{(v)} - \underline{v}^* || \qquad \boxtimes$$

$$\left|\frac{C_{z} \, \delta t}{C_{1}} \, \left| \left| \, \underline{u}^{(k-1)} - \underline{v}^{*} \right| \right| \leq \left(\, \frac{C_{z} \, \delta t}{C_{1}} \right)^{k} \, \left| \left| \, \underline{u}^{(0)} - \underline{v}^{*} \right| \right|$$

DeC - Proof

Proof.

Let f^* be the solution of $\mathcal{L}^2(\underline{u}^*) = 0$. We know that $\mathcal{L}^1(\underline{u}^*) = \mathcal{L}^1(\underline{u}^*) - \mathcal{L}^2(\underline{u}^*)$, so that

$$\begin{split} \mathcal{L}^{1}(\underline{\boldsymbol{u}}^{(k+1)}) - \mathcal{L}^{1}(\underline{\boldsymbol{u}}^{*}) &= \left(\mathcal{L}^{1}(\underline{\boldsymbol{u}}^{(k)}) - \mathcal{L}^{2}(\underline{\boldsymbol{u}}^{(k)})\right) - \left(\mathcal{L}^{1}(\underline{\boldsymbol{u}}^{*}) - \mathcal{L}^{2}(\underline{\boldsymbol{u}}^{*})\right) \\ & \frac{\boldsymbol{C}_{1}||\underline{\boldsymbol{u}}^{(k+1)} - \underline{\boldsymbol{u}}^{*}|| \leq ||\mathcal{L}^{1}(\underline{\boldsymbol{u}}^{(k+1)}) - \mathcal{L}^{1}(\underline{\boldsymbol{u}}^{*})|| = \\ &= ||\mathcal{L}^{1}(\underline{\boldsymbol{u}}^{(k)}) - \mathcal{L}^{2}(\underline{\boldsymbol{u}}^{(k)}) - (\mathcal{L}^{1}(\underline{\boldsymbol{u}}^{*}) - \mathcal{L}^{2}(\underline{\boldsymbol{u}}^{*}))|| \leq \\ &\leq \frac{\boldsymbol{C}_{2}\Delta||\underline{\boldsymbol{u}}^{(k)} - \underline{\boldsymbol{u}}^{*}||.} \\ & ||\underline{\boldsymbol{u}}^{(k+1)} - \underline{\boldsymbol{u}}^{*}|| \leq \left(\frac{\boldsymbol{C}_{2}}{C_{1}}\Delta\right)||\underline{\boldsymbol{u}}^{(k)} - \underline{\boldsymbol{u}}^{*}|| \leq \left(\frac{\boldsymbol{C}_{2}}{C_{1}}\Delta\right)^{k+1}||\underline{\boldsymbol{u}}^{(0)} - \underline{\boldsymbol{u}}^{*}||. \end{split}$$

After K iteration we have an error at most of $\left(\frac{c_2}{c_1}\Delta\right)^K||\underline{\boldsymbol{u}}^{(0)}-\underline{\boldsymbol{u}}^*||.$

DeC: Coercivity and Lipschitz continuity (sketch) @ 112 (4) - 2 (v) 1 2 C, 114-V1 | uⁿ-y^o + Δ+ β¹ F(v^o) - (vⁿ-y^o+ δ+ βⁿ F(v_o)) | | U¹-y^o+ Δ+ β¹ F(v^o) - (v¹-y^o+ δ+ β' F(v_o)) | | (F/6)-F(V) | , < C/10-V | Fro > vay 4°, 1° = 4° = 4(1) L'(u)=0 p-th order express of yex @ 21(4)=01st orde approx of 4ex I'(4) ~ I1(40)+0(D) L2(4) = L2(4ex) +0(Df) F/4)=2 4 || It (w) - L2(w) || ≤ || L'(w) + O(Ot) - L'(w) + O(Ot) || = O(Ot) (ν'- νο'- ο β F(νο) - ν+νο + δερ F(να) | = + | Σεπ (F(να)-F(νο)) | Σεπ =β ε c. Δ+. | F(ν)+F(νο)|| ε C. E C.St. 11 FULT(U) lis Cz of 114-vol

DeC: Second order example us(1) (2,(1) (1,(2) Onit of product of On= (1 1) negz Kod ft(u(17)= ft(u(0))- f(u(0)) u(11),1-10+ st B' F(00) = u(0), 1-00 + st p' F(00) - (u(0)) - (v(0)) = 00 - st F(00) U(1), - vo + At 8' F(vo) = (1), - vo + At 8' F(vo) - [vo + At 8' F(vo) + F(vo), o) = 00 - A [F(v0)+F(v(1),1)]

DeC: Second order example

DeC: Second order example

In practice

For
$$m = 1, \ldots, M$$

$$\mathcal{L}^{1}(\underline{\boldsymbol{u}}^{(k)}) = \mathcal{L}^{1}(\underline{\boldsymbol{u}}^{(k-1)}) - \mathcal{L}^{2}(\underline{\boldsymbol{u}}^{(k-1)}), \qquad k = 1, \dots, K,$$

$$\underline{\boldsymbol{u}^{(k), m}} \quad \underline{\boldsymbol{\mu}^{0} - \beta^{m} \Delta t F(\boldsymbol{u}^{0})} - \underline{\boldsymbol{u}^{(k-1), m}} + \underline{\boldsymbol{\mu}^{0} + \beta^{m} \Delta t F(\boldsymbol{u}^{0})}$$

$$+ \underline{\boldsymbol{u}^{(k-1), m}} - \underline{\boldsymbol{u}^{0} - \Delta t} \sum_{r=0}^{M} \theta_{r}^{m} F(\underline{\boldsymbol{u}^{(k-1), r}}) = 0$$

In practice

$$\mathcal{L}^1(\underline{\boldsymbol{u}}^{(k)}) = \mathcal{L}^1(\underline{\boldsymbol{u}}^{(k-1)}) - \mathcal{L}^2(\underline{\boldsymbol{u}}^{(k-1)}), \qquad k = 1, \dots, K,$$

For $m = 1, \ldots, M$

$$\boldsymbol{u}^{(k),m} \underline{\boldsymbol{u}^{0} - \beta^{m} \Delta t F(\boldsymbol{u}^{0})} - \boldsymbol{u}^{(k-1),m} + \underline{\boldsymbol{u}^{0} + \beta^{m} \Delta t F(\boldsymbol{u}^{0})}$$
$$+ \boldsymbol{u}^{(k-1),m} \underline{\boldsymbol{u}^{0} - \Delta t} \sum_{r=0}^{M} \theta_{r}^{m} F(\boldsymbol{u}^{(k-1),r}) = 0$$

In practice

$$\mathcal{L}^1(\underline{\boldsymbol{u}}^{(k)}) = \mathcal{L}^1(\underline{\boldsymbol{u}}^{(k-1)}) - \mathcal{L}^2(\underline{\boldsymbol{u}}^{(k-1)}), \qquad k = 1, \dots, K,$$

For $m = 1, \ldots, M$

$$\mathbf{u}^{(k),m} \underline{\mathbf{u}^{0}} - \underline{\mathbf{u}^{0}} + \underline$$

In practice

$$\mathcal{L}^1(\underline{m{u}}^{(k)}) = \mathcal{L}^1(\underline{m{u}}^{(k-1)}) - \mathcal{L}^2(\underline{m{u}}^{(k-1)}), \qquad k = 1, \dots, K,$$

For $m = 1, \ldots, M$

$$\mathbf{u}^{(k),m} = \underline{\mathbf{u}^{0} - \beta^{m} \Delta t F(\mathbf{u}^{0})} - \underline{\mathbf{u}^{(k-1),m}} + \underline{\mathbf{u}^{0} + \beta^{m} \Delta t F(\mathbf{u}^{0})}$$

$$+ \underline{\mathbf{u}^{(k-1),m}} - \mathbf{u}^{0} - \Delta t \sum_{r=0}^{M} \theta_{r}^{m} F(\mathbf{u}^{(k-1),r}) = 0$$

$$\mathbf{u}^{(k),m} - \underline{\mathbf{u}^{0}} - \Delta t \sum_{r=0}^{M} \theta_{r}^{m} F(\underline{\mathbf{u}^{(k-1),r}}) = 0.$$

DeC and residual distribution

Deferred Correction + Residual distribution

- Residual distribution (FV \Rightarrow FE) \Rightarrow High order in space
- Prediction/correction/iterations ⇒ High order in time
- Subtimesteps ⇒ High order in time

$$U_{\xi}^{m,(k+1)} = U_{\xi}^{m,(k)} - |C_p|^{-1} \sum_{\mathrm{E}|\xi \in \mathrm{E}} \left(\int_{\mathrm{E}} \Phi_{\xi} \left(U^{m,(k)} - U^{n,0} \right) \mathrm{d}\mathbf{x} + \Delta t \sum_{r=0}^{M} \theta_r^m \mathcal{R}_{\xi}^{\mathrm{E}} (U^{r,(k)}) \right),$$

with

$$\sum_{\xi \in \mathbf{E}} \mathcal{R}^{\mathbf{E}}_{\xi}(u) = \int_{\mathbf{E}} \nabla_{\mathbf{x}} F(u) d\mathbf{x}.$$

- The \mathcal{L}^2 operator contains also the complications of the spatial discretization (e.g. mass matrix)
- \mathcal{L}^1 operator further simplified up to a first order approximation (e.g. mass lumping)

 \mathcal{L}^1 with mass lumping

Define
$$\mathcal{L}^1$$
 as

Define
$$\mathcal{L}^{1}$$
 as
$$\mathcal{L}^{1}(u^{0},...,u^{M}) = \begin{pmatrix} u^{M} - u^{0} - \Delta t \beta^{M} F(u^{0}) \\ \vdots \\ u^{1} - u^{0} - \Delta t \beta^{1} F(u^{0}) \end{pmatrix}$$

$$= \underbrace{1 \text{ IMPLICIT EULER}}_{F(U^{1})}$$

$$= \underbrace{1 \text{ IMPLICIT EULER}}_{F(U^{1})} + \underbrace{1 \text{ IMPLICIT EULER}$$

UNCOUPLING THE SUBTINESTEPS WET \$2=0 FULLY INALICIT

Define \mathcal{L}^1 as

$$\mathcal{L}^{1}(\boldsymbol{u}^{0},\ldots,\boldsymbol{u}^{M}) = \begin{pmatrix} \boldsymbol{u}^{M} - \boldsymbol{u}^{0} - \Delta t \beta^{M} \left(F(\boldsymbol{u}^{0}) + \partial_{\boldsymbol{u}} F(\boldsymbol{u}^{0}) \left(\boldsymbol{u}^{M} - \boldsymbol{u}^{0} \right) \right) \\ \vdots \\ \boldsymbol{u}^{1} - \boldsymbol{u}^{0} - \Delta t \beta^{1} \left(F(\boldsymbol{u}^{0}) + \partial_{\boldsymbol{u}} F(\boldsymbol{u}^{0}) (\boldsymbol{u}^{1} - \boldsymbol{u}^{0}) \right) \end{pmatrix}$$

$$= \begin{pmatrix} \boldsymbol{u}^{M} - \boldsymbol{u}^{0} - \Delta t \beta^{M} \partial_{\boldsymbol{u}} F(\boldsymbol{u}^{0}) \boldsymbol{u}^{M} \\ \vdots \\ \boldsymbol{u}^{1} - \boldsymbol{u}^{0} - \Delta t \beta^{1} \partial_{\boldsymbol{u}} F(\boldsymbol{u}^{0}) \boldsymbol{u}^{1} \end{pmatrix}$$

$$\mathcal{L}^{1,m}(\mathbf{u}^{0},\ldots,\mathbf{u}^{M}) = \mathbf{u}^{m} - \mathbf{u}^{0} - \Delta t \beta^{m} \partial_{\mathbf{u}} F(\mathbf{u}^{0}) \mathbf{u}^{m}$$

$$\mathcal{L}^{2,m}(\mathbf{u}^{0},\ldots,\mathbf{u}^{M}) = \mathbf{u}^{m} - \mathbf{u}^{0} - \Delta t \sum_{r} \theta_{r}^{m} F(\mathbf{u}^{r})$$

$$\int_{t_{r}}^{t_{r}} (\underline{U}^{(K)}) - \int_{t_{r}}^{t_{r}} (\underline{U}^{(K-1)}) + \int_{t_{r}}^{t_{r}} (\underline{U}^{(K-1)}) dt = \int_{t_{r}}^{t_{r}} (\underline{U}^{(K)}) - \int_{t_{r}}^{t_{r}} (\underline{U}^{(K)}) + \int$$

$$\boldsymbol{u}^{(k),m} - \boldsymbol{u}^0 - \Delta t \sum_{r=0}^{M} \theta_r^m F(\boldsymbol{u}^{(k-1),r}) = 0$$

DeC as RK

$$U^{n(k)} = U^{0} + D^{+} \sum_{n=0}^{n} F(U^{n(k-1)})$$

$$+ D^{+} O^{n} F(U^{0}) + D^{+} \sum_{n=1}^{n} O^{n}_{n} F(U^{n(k-1)})$$

$$U^{(k)} = U^{0} \cdot \underline{1} + D^{+} O^{n}_{0} F(U^{0}) + D^{+} O^{n}_{0} F(U^{n(k-1)})$$

$$U^{(k)} = U^{0} \cdot \underline{1} + D^{+} O^{n}_{0} F(U^{0}) + D^{+} O^{n}_{0} F(U^{n(k-1)})$$

$$U^{(k)} = U^{0} \cdot \underline{1} + D^{+} O^{n}_{0} F(U^{0}) + D^{+} O^{n}_{0} F(U^{n(k-1)})$$

$$U^{(k)} = U^{0} \cdot \underline{1} + D^{+} O^{n}_{0} F(U^{0}) + D^{+} O^{n}_{0} F(U^{n(k-1)})$$

$$U^{(k)} = U^{(k)} = U^{(k)} + D^{+} O^{n}_{0} F(U^{n(k-1)})$$

$$U^{(k)} = U^{(k)} + D^{+} O^{n}_{0} F(U^{0}) + D^{+} O^{n}_{0} F(U^{n(k-1)})$$

$$U^{(k)} = U^{(k)} = U^{(k)} + D^{+} O^{n}_{0} F(U^{n(k-1)})$$

$$U^{(k)} = U^{(k)} = U^{(k)} + D^{+} O^{n}_{0} F(U^{n(k-1)})$$

$$U^{(k)} = U^{(k)} = U^{(k)} + D^{+} O^{n}_{0} F(U^{n(k-1)})$$

$$U^{(k)} = U^{(k)} = U^{(k)} + D^{+} O^{n}_{0} F(U^{n(k-1)})$$

$$U^{(k)} = U^{(k)} = U^{(k)} + D^{+} O^{n}_{0} F(U^{n(k-1)})$$

$$U^{(k)} = U^{(k)} = U^{(k)} + D^{+} O^{n}_{0} F(U^{n(k-1)})$$

$$U^{(k)} = U^{(k)} = U^{(k)} + D^{+} O^{n}_{0} F(U^{n(k-1)})$$

$$U^{(k)} = U^{(k)} = U^{(k)} + D^{+} O^{n}_{0} F(U^{n(k-1)})$$

$$U^{(k)} = U^{(k)} = U^{(k)} + D^{+} O^{n}_{0} F(U^{n(k-1)})$$

$$U^{(k)} = U^{(k)} = U^{(k)} + D^{+} O^{n}_{0} F(U^{n(k-1)})$$

$$U^{(k)} = U^{(k)} = U^{(k)} + D^{+} O^{n}_{0} F(U^{n(k-1)})$$

$$U^{(k)} = U^{(k)} = U^{(k)} + D^{+} O^{n}_{0} F(U^{n(k-1)})$$

$$U^{(k)} = U^{(k)} + D^{+} O^{n}_{0} F(U^{n(k)})$$

DeC as RK

We can write DeC as RK defining $\underline{\theta}_0 = \{\theta_0^m\}_{m=1}^M$, $\underline{\theta}^M = \theta_r^M$ with $r \in 1, \ldots, M$, denoting the vector $\underline{\theta}_r^{M,T} = (\theta_1^M, \ldots, \theta_M^M)$. The Butcher tableau for an arbitrarily high order DeC approach is given by:

Stability of (explicit) DeC

Idea: study the RK version!

$$-\Im u_{n+1} = R(\lambda \Delta t)u_n, \quad -\Re(z) = 1 + zb^T (I - zA)^{-1}\mathbf{1}, \qquad z = \lambda \Delta t \tag{8}$$

Goal: find $z \in \mathbb{C}$ such that |R(z)| < 1.

Recall: stability function for explicit RK methods is a polynomial, indeed the inverse of (I - zA) can be written in Taylor expansion as

$$(I-zA)^{-1} = \sum_{r=0}^{\infty} z^r A^s = I + zA + z^2 A^2 + \dots,$$
 (9)

and, since A is strictly lower triangular, it is nilpotent. Hence, R(z) is a polynomial in z with degree at most equal to S.

Stability of (explicit) DeC

Theorem

If the RK method is of order P, then

$$R(z) = 1 + z + \frac{z^2}{2!} + \dots + \frac{z^P}{P!} + O(z^{P+1}).$$
 (10)

The first P+1 terms of the stability functions $R(\cdot)$ for explicit DeCs of order P are known.

Theorem

The stability function of any explicit DeC of order P (with P iterations) is

$$R(z) = \sum_{r=0}^{P} \frac{z^r}{r!} = 1 + z + \frac{z^2}{2!} + \dots + \frac{z^P}{P!}$$
(11)

and does not depend on the distribution of the subtimenodes.

Proof (1/3)

$$A = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 0 \\ \star & 0 & 0 & \dots & 0 & 0 \\ \star & \star & 0 & \dots & 0 & 0 \\ \star & 0 & \star & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \star & 0 & 0 & \dots & \star & 0 \end{pmatrix}$$

Block structure of the matrix A

 \star are some non-zero block matrices and the 0 are some zero block matrices.

The number of blocks in each line and row of these matrices is P, the order of the scheme.

Stability of (explicit) DeC

Proof (2/3)

By induction, A^k has zeros in the upper triangular part, in the main block diagonal, and in all the k-1block diagonals below the main diagonal, i.e.,

$$(A^k)_{i,j} = 0$$
 , if $i < j + k$,

where the indexes here refer to the blocks. Indeed, it is true that $A_{i,j} = 0$ if i < j + 1. Now, let us consider the entry $(A^{k+1})_{i,j}$ with i < j + k + 1, i.e., i - k < j + 1. It is defined as

$$(A^{k+1})_{i,j} = \sum_{w} (A^k)_{i,w} A_{w,j}.$$
 (12)

Now, we can prove that all the terms of the sum are 0. Let w < j + 1, then $A_{w,j} = 0$ because of the structure of A: while, if w > i + 1 > i - k, we have that i < w + k, so $(A^k)_{i,w} = 0$ by induction.

Proof (3/3)

In particular, this means that $A^P = \underline{\underline{0}}$, because i is always smaller than j + P as P is the number of the block matrices that we have. Hence,

$$\underbrace{(I-zA)^{-1}}_{r=0} = \sum_{r=0}^{\infty} z^r A^s = \sum_{r=0}^{P-1} z^r A^s = I + zA + z^2 A^2 + \dots + z^{P-1} A^{P-1}.$$
 (13)

Plugging this result into $R(z) = 1 + zb^T(I - zA)^{-1}\mathbf{1}$, the stability function R(z) is a polynomial of degree P, the order of the scheme. All terms of order lower or equal to P must agree with the expansion of the exponential function, so it must be

$$R(z) = \sum_{r=0}^{P} \frac{z^r}{r!} = 1 + z + \frac{z^2}{2!} + \dots + \frac{z^P}{P!}.$$
 (14)

Note: no assumption on the distribution of the subtimenodes.

CODE

- Choice of iterations (P) and order
- Choice of point distributions t^0, \ldots, t^M
- Computation of θ
- Loop for timesteps
- Loop for correction
- Loop for subtimesteps

Outline

- Motivation
- - 3 ADER
 - 4 Similarities
 - **5** ADER stability and accuracy
 - **6** Simulations
 - Efficient DeC (ADER)
 - An efficient Deferred Correction
 - Summary

←▲ Cauchy–Kovalevskaya theorem

- Modern automatic version
- Space/time DG
- Prediction/Correction

Fixed-point iteration process Prediction: iterative procedure

Modern approach is DG in space time for hyperbolic problem

$$\underbrace{\partial_t u(x,t) + \nabla_{\!\!\!\!x} \cdot F(u(x,t))}_{\text{cut}} = 0, \ x \in \Omega \subset \mathbb{R}^d, \ t > 0. \ (19)$$

rediction/Correction
$$\underbrace{\partial_{t}u(x,t) + \nabla_{x} \cdot F(u(x,t))}_{\text{ixed-point iteration process}} = \underbrace{\partial_{t}u(x,t) + \nabla_{x} \cdot F(u(x,t))}_{\text{ton: iterative procedure}} = \underbrace{\partial_{t}u(x,t) + \partial_{t}u(x,t)}_{\text{ton: iterative procedure}} = \underbrace{\partial_{t}u(x,t) + \partial_{t}u(x,t)}_{\text{ton: iterative procedure}} = \underbrace{\partial_{t}u(x,t) + \partial_{t}u(x,t)}_{\text{ton: iterative procedure}} = \underbrace{\partial_{t}u(x,t) + \partial_{t}u(x,t)$$

Correction step: communication between cells

ADER: space-time discretization

Defining $\theta_{rs}(x,t) = \Phi_r(x)\phi_s(t)$ basis functions in space and time

$$\int_{T^n \times V_i} \theta_{rs}(x,t) \partial_t \theta_{pq}(x,t) u^{pq} dx dt + \int_{T^n \times V_i} \theta_{rs}(x,t) \nabla \cdot F(\theta_{pq}(x,t) u^{pq}) dx dt = 0.$$
 (16)

ADER: space-time discretization

Defining $\theta_{rs}(x,t) = \Phi_r(x)\phi_s(t)$ basis functions in space and time

$$\int_{T^{n}\times V_{i}} \theta_{rs}(x,t) \partial_{t} \theta_{pq}(x,t) u^{pq} dx dt + \int_{T^{n}\times V_{i}} \theta_{rs}(x,t) \nabla \cdot F(\theta_{pq}(x,t) u^{pq}) dx dt = 0.$$

$$\sum_{\mathbf{pq}} \underbrace{\underline{\underline{\underline{\mathbf{q}}}}}_{rspq} u^{pq} = \underline{\underline{\underline{\mathbf{r}}}}(\underline{\underline{\mathbf{u}}})_{rs}, \qquad \forall \mathbf{q}, \mathbf{s}$$

$$(17)$$

This leads to

$$\sum_{\mathbf{P} \mid \mathbf{N}} \underline{\underline{\underline{M}}}_{rspq} u^{pq} = \underline{\underline{\underline{r}}}(\underline{\underline{\mathbf{u}}})_{rs}, \qquad \forall \gamma, \mathbf{S} \tag{17}$$

solved with fixed point iteration method.

+ Correction step where cells communication is allowed (derived from (16)).

Simplify! Take
$$\mathbf{u}(t) = \sum_{m=0}^{M} \underline{\phi_m}(t) \underline{\mathbf{u}}^m = \underline{\phi}(t)^T \underline{\mathbf{u}}$$

$$\partial_t \mathbf{u} = \widehat{F}(\mathbf{u})$$

$$\int_{T^n} \underline{\psi}(t) \partial_t \mathbf{u}(t) dt - \int_{T^n} \underline{\psi}(t) F(\underline{u}(t)) dt = 0, \quad \forall \psi : T^n = [t^n, t^{n+1}] \to \mathbb{R}.$$

$$\mathcal{L}^2(\underline{\mathbf{u}}) := \int_{T^n} \underline{\phi}(t) \partial_t \underline{\phi}(t)^T \underline{\mathbf{u}} dt - \int_{T^n} \underline{\phi}(t) F(\underline{\phi}(t)^T \underline{\mathbf{u}}) dt = 0$$

$$\underline{\phi}(t) = (\phi_0(t), \dots, \phi_M(t))^T$$

Quadrature. . .

$$\mathcal{L}^{2}(\underline{\boldsymbol{u}}) := \underbrace{\boxed{\underline{\underline{M}}\boldsymbol{u}} - \underline{r}(\underline{\boldsymbol{u}}) = 0} \Longleftrightarrow \underline{\underline{\underline{M}}\boldsymbol{u}} = \underline{r}(\underline{\boldsymbol{u}}). \tag{18}$$

Nonlinear system of $M \times S$ equations

ADER: Mass matrix

What goes into the mass matrix? Use of the integration by parts

$$\underline{\mathcal{L}^{2}(\underline{\boldsymbol{u}})} := \int_{T^{n}} \underline{\phi}(t) \partial_{t} \underline{\phi}(t)^{T} \underline{\boldsymbol{u}} dt + \int_{T^{n}} \underline{\phi}(t) F(\underline{\phi}(t)^{T} \underline{\boldsymbol{u}}) dt = \underbrace{\sum_{T^{n}} \underline{\phi}(t)^{T} \underline{\boldsymbol{u}} dt}_{\underline{\boldsymbol{u}}} + \int_{T^{n}} \underline{\phi}(t) F(\underline{\phi}(t)^{T} \underline{\boldsymbol{u}}) dt = \underbrace{\sum_{T^{n}} \underline{\phi}(t)^{T} \underline{\boldsymbol{u}}}_{\underline{\boldsymbol{u}}} + \underbrace{\int_{T^{n}} \underline{\phi}(t) F(\underline{\phi}(t)^{T} \underline{\boldsymbol{u}}) dt}_{\underline{\boldsymbol{u}}} + \underbrace{\int_{T^{n}} \underline{\phi$$

 $U(t) = \sum \Phi_{\nu}(t) U^{\nu}$

ADER: Fixed point iteration

Iterative procedure to solve the problem for each time step

$$\underline{\underline{\boldsymbol{u}}}^{(k)} = \underline{\underline{\underline{M}}}^{-1}\underline{\underline{r}}(\underline{\boldsymbol{u}}^{(k-1)}), \quad k = 1, \dots, \text{convergence}$$

(19)

with $u^{(0)} = u(t^n)$. Reconstruction step

$$\underline{u(t^{n+1})} = \underline{u(t^n)} - \int_{T^n} F(\underline{u^{(K)}}(t)) dt.$$

$$\underline{u(t^{n+1})} = \underline{v(t^n)} - \int_{T^n} F(\underline{u^{(K)}}(t)) dt.$$

$$\underline{u(t^{n+1})} = \sum_{\Lambda} \varphi_{\Lambda}(t^{n+1}) \cdot U^{\Lambda}$$

- Convergence?
 How many steps K?
 Accuracy \mathcal{L}^2 ?

ADER as a DeC

Example with 2 <u>Gauss Legendre</u> points, Lagrange polynomials and 2 iterations Let us consider the timestep interval $[t^n, t^{n+1}]$, rescaled to [0,1]. Gauss-Legendre points quadrature and interpolation (in the interval [0,1])

$$\underline{t}_q = \begin{pmatrix} t_q^0, t_q^1 \end{pmatrix} = \begin{pmatrix} t^0, t^1 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}-1}{2\sqrt{3}}, \frac{\sqrt{3}+1}{2\sqrt{3}} \end{pmatrix}, \quad \underline{w} = (1/2, 1/2).$$

$$\underline{\phi}(t) = (\phi_0(t), \phi_1(t)) = \begin{pmatrix} \frac{t-t^1}{t^0-t^1}, \frac{t-t^0}{t^1-t^0} \end{pmatrix}. \quad \varphi_{\ell}(t') = \mathcal{S}_{\ell k}$$
 Then, the mass matrix is given by
$$\underline{\underline{\psi}}_{m,l} = \phi_m(1)\phi_l(1) - \underbrace{\phi_m'(t')w_l}_{l}, \quad m, l = 0, 1,$$

$$\underline{\underline{\underline{M}}} = \begin{pmatrix} 1 & \frac{\sqrt{3}-1}{2} \\ -\frac{\sqrt{3}+1}{2} & 1 \end{pmatrix}.$$

ADER 2nd order

The right hand side is given

$$egin{align} r(\underline{oldsymbol{u}})_m &= oldsymbol{u}(0)\phi_m(0) + \Delta t F(lpha(t^m))w_m, \quad m=0,1. \ & \underline{r}(\underline{oldsymbol{u}}) &= oldsymbol{u}(0)\underline{\phi}(0) + \Delta t \left(egin{align} F(lpha(t^1))w_1 \ F(lpha(t^2))w_2. \end{array}
ight). \end{split}$$

Then, the coefficients $\underline{\boldsymbol{u}}$ are given by

$$\underline{\underline{\underline{u}}}^{(k+1)} = \underline{\underline{\underline{\underline{M}}}}^{-1} \underline{\underline{r}}(\underline{\underline{u}}^{(k)}).$$

Finally, use $\underline{u}^{(k+1)}$ to reconstruct the solution at the time step t^{n+1} :

$$\underline{\boldsymbol{u}}^{n+1} = \underline{\phi}(1)^T \underline{\boldsymbol{u}}^{(k+1)} = \underline{\boldsymbol{u}}^n + \int_{T^n} \underline{\phi}(t)^T dt \, F(\underline{\boldsymbol{u}}^{(k)}).$$

CODE

- ullet Choice: ϕ Lagrangian basis functions
- Different subtimesteps: Gauss-Legendre, Gauss-Lobatto, equispaced
- ullet Precompute \underline{M}
- Precompute the rhs vector part using quadratures after a further approximation

$$\widetilde{\phi_i}(s) = \phi_i(\underbrace{\xi - \xi^2}_{\Delta i})$$

$$\underline{r}(\underline{\boldsymbol{u}}) = \underline{\phi}(t^n)\boldsymbol{u}^n + \int_{T^n} \underline{\phi}(t)F(\underline{\phi}(t)^T\underline{\boldsymbol{u}})dt \approx \underbrace{\underline{\phi}(t^n)\boldsymbol{u}^n}_{\text{Can be stored}} + \underbrace{\int_{T^n} \underline{\phi}(t)\underline{\phi}(t)^Tdt}_{\text{Can be stored}}F(\underline{\boldsymbol{u}})$$

• Precompute the reconstruction coefficients $\phi(1)^T$

- Motivation
- 2 DeC
- 3 ADER
- 4 Similarities
- **5** ADER stability and accuracy
- **6** Simulations
- Efficient DeC (ADER)
- 8 An efficient Deferred Correction

ADER⁶ and DeC⁷: immediate similarities

- High order time space discretization
- Start from a well known space discretization ($\underline{\mathsf{FE}}/\mathsf{DG}/\mathsf{FV}$)
- FE reconstruction in time
- System in time, with M equations (NH)
- Iterative method / K corrections

⁶M. Dumbser, D. S. Balsara, E. F. Toro, and C.-D. Munz. A unified framework for the construction of one-step finite volume and discontinuous galerkin schemes on unstructured meshes. Journal of Computational Physics, 227(18):8209-8253, 2008.

⁷R. Abgrall. High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices. Journal of Scientific Computing, 73(2):461-494, Dec 2017.

ADFR⁶ and DeC⁷ immediate similarities

- High order time-space discretization
- Start from a well known space discretization (FE/DG/FV)
- FF reconstruction in time
- System in time, with M equations
- Iterative method / K corrections
- Both high order explicit time integration methods (neglecting spatial discretization)

⁶M. Dumbser, D. S. Balsara, E. F. Toro, and C.-D. Munz. A unified framework for the construction of one-step finite volume and discontinuous galerkin schemes on unstructured meshes. Journal of Computational Physics, 227(18):8209-8253, 2008.

⁷R. Abgrall. High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices. Journal of Scientific Computing, 73(2):461-494. Dec 2017.

ADER as DeC 1 y ω ω + ν Ε · F (υ (ω ·)) 12(U) = [U - p(0)-U, - A[F(U)]-1 $\int_{\Sigma} (\nabla) = \overline{U} - \overline{\Phi}(0) \cdot \overline{\Omega} - \text{Re} \underline{F}(\overline{\Omega})$ 2 (0)= 4-1-1 - Pt II-1 K E(A) 21(4)=4-1-m-D+11-1/2 F(4).1 Dec 14, 12 21(4(x))=11(4(2-1))- 12(4(x-1)) 1 4 (M) - \$ (O) (M) - A R F(O) 1 = 1 4 (M) - \$ (O) (M) - A) R F(O) 1 - 10(1) + \$ (0) 4 + St RF (U/41) | U ning = 南(のハナみ (L (ning))

45/88

. Torlo 🔒

DER vs De0

ADER as DeC

$$\mathcal{L}^{2}(\underline{\boldsymbol{u}}) := \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{u}} - r(\underline{\boldsymbol{u}}),$$

$$\mathcal{L}^{1}(\underline{\boldsymbol{u}}) := \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{u}} - r(\boldsymbol{u}(t^{n})).$$

$$\mathcal{L}^{1}(\underline{\boldsymbol{u}}^{(k)}) = \mathcal{L}^{1}(\underline{\boldsymbol{u}}^{(k-1)}) - \mathcal{L}^{2}(\underline{\boldsymbol{u}}^{(k-1)}), \qquad k = 1, \dots, K,$$

$$\underline{\underline{\mathbf{M}}}\underline{\boldsymbol{u}}^{(k)} - r(\boldsymbol{u}^{(k),0}) - \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{u}}^{(k-1)} + r(\boldsymbol{u}^{(k-1),0}) + \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{u}}^{(k-1)} - r(\underline{\boldsymbol{u}}^{(k-1)}) = 0$$

$$\mathcal{L}^{2}(\underline{\boldsymbol{u}}) := \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{u}} - r(\underline{\boldsymbol{u}}),$$

$$\mathcal{L}^{1}(\underline{\boldsymbol{u}}) := \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{u}} - r(\boldsymbol{u}(t^{n})).$$

$$\mathcal{L}^{1}(\underline{\boldsymbol{u}}^{(k)}) = \mathcal{L}^{1}(\underline{\boldsymbol{u}}^{(k-1)}) - \mathcal{L}^{2}(\underline{\boldsymbol{u}}^{(k-1)}), \qquad k = 1, \dots, K,$$

$$\underline{\underline{\mathbf{M}}}\underline{\boldsymbol{u}}^{(k)} - r(\underline{\boldsymbol{u}}^{(k),0}) - \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{u}}^{(k-1)} + r(\underline{\boldsymbol{u}}^{(k-1),0}) + \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{u}}^{(k-1)} - r(\underline{\boldsymbol{u}}^{(k-1)}) = 0$$

$$\mathcal{L}^{2}(\underline{\boldsymbol{u}}) := \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{u}} - r(\underline{\boldsymbol{u}}),$$

$$\mathcal{L}^{1}(\underline{\boldsymbol{u}}) := \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{u}} - r(\boldsymbol{u}(t^{n})).$$

$$\mathcal{L}^{1}(\underline{\boldsymbol{u}}^{(k)}) = \mathcal{L}^{1}(\underline{\boldsymbol{u}}^{(k-1)}) - \mathcal{L}^{2}(\underline{\boldsymbol{u}}^{(k-1)}), \qquad k = 1, \dots, K,$$

$$\underline{\underline{\mathbf{M}}}\underline{\boldsymbol{u}}^{(k)} - r(\underline{\boldsymbol{u}}^{(k),0}) - \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{u}}^{(k-1)} + r(\underline{\boldsymbol{u}}^{(k-1),0}) + \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{u}}^{(k-1)} - r(\underline{\boldsymbol{u}}^{(k-1)}) = 0$$

$$\mathcal{L}^{2}(\underline{\boldsymbol{u}}) := \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{u}} - r(\underline{\boldsymbol{u}}),$$

$$\mathcal{L}^{1}(\underline{\boldsymbol{u}}) := \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{u}} - r(\boldsymbol{u}(t^{n})).$$

$$\mathcal{L}^{1}(\underline{\boldsymbol{u}}^{(k)}) = \mathcal{L}^{1}(\underline{\boldsymbol{u}}^{(k-1)}) - \mathcal{L}^{2}(\underline{\boldsymbol{u}}^{(k-1)}), \qquad k = 1, \dots, K,$$

$$\underline{\underline{\mathbf{M}}}\underline{\boldsymbol{u}}^{(k)} - r(\underline{\boldsymbol{u}}^{(k),0}) - \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{u}}^{(k-1)} + r(\underline{\boldsymbol{u}}^{(k-1),0}) + \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{u}}^{(k-1)} - r(\underline{\boldsymbol{u}}^{(k-1)}) = 0.$$

$$\Pi_{ij} = \varphi_{i}(1) \varphi_{j}(1) - \int_{a}^{b} \partial_{\xi} \varphi_{i}(\theta) \varphi_{j}(\theta) d\xi$$

$$\mathcal{L}^{2}(\underline{u}) := \underline{\underline{\mathbf{M}}}\underline{u} - r(\underline{u}),$$

$$\mathcal{L}^{1}(\underline{u}) := \underline{\mathbf{M}}\underline{u} - r(\underline{u}(t^{n})).$$

Apply the DeC Convergence theorem!

- \mathcal{L}^1 is coercive because $\underline{\mathbf{M}}$ is always invertible
- ullet $\mathcal{L}^1-\mathcal{L}^2$ is Lipschitz with constant $C\Delta t$ because they are consistent approx of the same problem

 $\mathcal{L}^2(\underline{\boldsymbol{u}}) := \underline{\mathbf{M}}\underline{\boldsymbol{u}} - r(\underline{\boldsymbol{u}}),$

• Hence, after K iterations we obtain a Kth order accurate approximation of u^*

$$\mathcal{L}^{2}(\boldsymbol{u}^{0},\ldots,\boldsymbol{u}^{M}):=\begin{cases} \boldsymbol{u}^{M}-\boldsymbol{u}^{0}-\sum_{r=0}^{M}\int_{t^{0}}^{t^{M}}F(\boldsymbol{u}^{r})\varphi_{r}(s)\mathrm{d}s\\ \ldots\\ \boldsymbol{u}^{1}-\boldsymbol{u}^{0}-\sum_{r=0}^{M}\int_{t^{0}}^{t^{1}}F(\boldsymbol{u}^{r})\varphi_{r}(s)\mathrm{d}s \end{cases}.$$

DeC as ADER

DeC as ADER

$$\mathcal{L}^2(oldsymbol{u}^0,\ldots,oldsymbol{u}^M) := egin{cases} oldsymbol{u}^M - oldsymbol{u}^0 - \sum_{r=0}^M \int_{t^0}^{t^M} F(oldsymbol{u}^r) arphi_r(s) \mathrm{d}s \ \ldots \ oldsymbol{u}^1 - oldsymbol{u}^0 - \sum_{r=0}^M \int_{t^0}^{t^1} F(oldsymbol{u}^r) arphi_r(s) \mathrm{d}s \end{cases}$$

$$\mathcal{L}^2(oldsymbol{u}^0,\ldots,oldsymbol{u}^M) := egin{cases} oldsymbol{u}^M - oldsymbol{u}^0 - \sum_{r=0}^M \int_{t^0}^{t^M} F(oldsymbol{u}^r) arphi_r(s) \mathrm{d}s \ \ldots \ oldsymbol{u}^1 - oldsymbol{u}^0 - \sum_{r=0}^M \int_{t^0}^{t^1} F(oldsymbol{u}^r) arphi_r(s) \mathrm{d}s \end{cases}.$$

$$\chi_{[t^0,t^m]}(t^m)\boldsymbol{u}^m - \chi_{[t^0,t^m]}(t_0)\boldsymbol{u}^0 - \int_{t^0}^{t^m} \chi_{[t^0,t^m]}(t) \sum_{r=0}^M F(\boldsymbol{u}^r)\varphi_r(t) dt = 0$$

$$\int_{t^0}^{t^M} \chi_{[t^0,t^m]}(t)\partial_t(\boldsymbol{u}(t)) dt - \int_{t^0}^{t^M} \chi_{[t^0,t^m]}(t) \sum_{r=0}^M F(\boldsymbol{u}^r)\varphi_r(t) dt = 0,$$

$$\int_{T^0} \psi_m(t)\partial_t \boldsymbol{u}(t) dt - \int_{T^0} \psi_m(t)F(\boldsymbol{u}(t)) dt = 0.$$

Runge Kutta vs DeC-ADER

Classical Runge Kutta (RK)

- One step method
- Internal stages

Explicit Runge Kutta

- + Simple to code
- Not easily generalizable to arbitrary order
- Stages > order

Implicit Runge Kutta

- + Arbitrarily high order
- Require nonlinear solvers for nonlinear systems
- May not converge

DeC - ADER

- One step method
- Internal subtimesteps
- Can be rewritten as explicit RK (for ODE)
- + Explicit
- + Simple to code
- + Iterations = order
- + Arbitrarily high order
 - Large memory storage

Outline

- Motivation
- 2 DeC
- ADER
- 4 Similarities
- **5** ADER stability and accuracy
- **6** Simulations
- Efficient DeC (ADER)
- An efficient Deferred Correction
- Summary

Stability Give Un - of I'll F(U(K41))

Since ADER can be written as a DeC, the stability functions are given by the same formula as for DeC and the stability regions are the following.

Figure: Stability region

Accuracy of ADER \mathcal{L}^2 operators

The two things that determine the accuracy of the ADER method are the iterations P and the accuracy of \mathcal{L}^2 .

Accuracy of ADER \mathcal{L}^2 for different distributions

- Equispaced: boring, minimum accuracy possible M+1 nodes p=M+1
- Guass-Lobatto: this generates the LobattoIIIC methods, M+1 nodes p=2M
- Gauss–Legendre: this does not generate Gauss methods, M+1 nodes $p=2\underline{M}+1$

DOE
$$L_{(y)}^2$$
 COLCOCATION NETHOD $\left\{\begin{array}{c} \text{EQUISPACED} \\ \text{C. LEGENONE} \\ \text{C. LEGENONE} \\ \text{C. LEGENONE} \\ \text{C. LEGENONE} \\ \text{COLDEN OF QUED FEXALULA} \end{array}\right\}$

$$\begin{array}{c} \text{DILTS} \\ \text{DILTS} \\$$

\mathcal{L}^2 ADER as RK

Here, we see \mathcal{L}^2 as an implicit RK

$$\mathcal{L}^{2,m}(\underline{\boldsymbol{u}}) = \underline{\underline{\mathbb{H}}}_{j}^{m} \boldsymbol{u}^{(j)} - \underline{\phi}^{m}(t^{n}) \boldsymbol{u}^{n} - \underbrace{\int_{T^{n}} \underline{\phi}^{m}(t) \underline{\phi}(t)_{j} dt}_{\Delta t \underline{\mathbb{R}}_{j}^{m}} F(\boldsymbol{u}^{(j)}) = 0$$

$$\tilde{\mathcal{L}}^{2,z}(\underline{\boldsymbol{u}}) = \boldsymbol{u}^{(z)} - (\underline{\underline{\mathbb{M}}}^{-1})_{m}^{z} \underline{\phi}^{m}(t^{n}) \boldsymbol{u}^{n} - \Delta t (\underline{\underline{\mathbb{M}}}^{-1})_{m}^{z} \underline{\underline{\mathbb{R}}}_{j}^{m} F(\boldsymbol{u}^{(j)}) = 0$$

$$\boldsymbol{u}^{(z)} = \boldsymbol{u}^{n} + \Delta t a_{z,j} F(\boldsymbol{u}^{(j)})$$

- $a_{mj} = (\underline{\underline{\mathbf{M}}}^{-1})_m^z \underline{\underline{\mathbf{R}}}_j^m$
- ullet Prove that $(\underline{\underline{\mathrm{M}}}^{-1})_m^z \underline{\phi}^m(t^n) = 1$ for every z
- $c^m = \sum_r a_{mr} = t^m$
- $b_r = \frac{1}{\Delta t} \int_{T^m} \phi_r(t) dt = w_r$ quadrature weights

BCD conditions (Butcher 1964) $C_3 = Z \alpha_{j}$ $U = U \cdot 1 + b + E \cdot F(U)$ Define the conditions $U^{(k)} = U_A + b + \sum_{j=1}^{s} \alpha_{k} F(u^{(5)})$ $U^{(k)} = U_A + b + \sum_{j=1}^{s} b_j F(U^{(5)})$ $U^{(k)} = U_A + b + \sum_{j=1}^{s} b_j F(U^{(5)})$ $U^{(k)} = U_A + b + \sum_{j=1}^{s} b_j F(U^{(5)})$

$$B(p): \sum_{i=1}^{s} b_{i} c_{i}^{z-1} = \frac{1}{z}, \qquad \qquad V^{2+1} - U_{1} + O + \sum_{j=1}^{s} b_{j} F_{j}^{(j)} F_{j}^{(j)}$$
(20)

$$C(\eta): \qquad \sum_{i=1}^{s} a_{ij} c_{j}^{z-1} = \frac{c_{i}^{z}}{z}, \qquad i = 1, \dots, s, \ z = 1, \dots, \eta; \tag{21}$$

$$D(\zeta): \qquad \sum_{i=1}^{s} b_{i} c_{i}^{z-1} a_{ij} = \frac{b_{j}}{z} (1 - c_{j}^{z}), \qquad \qquad j = 1, \dots, s, \ z = 1, \dots, \zeta. \tag{22}$$

$$\underline{A} = \underbrace{\boldsymbol{\xi}}_{i} = \underbrace{\boldsymbol{\zeta}}_{i} \underbrace{\boldsymbol{\xi}}_{i} = \underbrace{\boldsymbol{\xi}}_{i} = \underbrace{\boldsymbol{\zeta}}_{i} \underbrace{\boldsymbol{\xi}}_{i} = \underbrace{\boldsymbol{\xi}}$$

Theorem (Butcher 1964)

If the coefficients b_i , c_i , a_{ii} of a RK scheme satisfy B(p), $C(\eta)$ and $D(\zeta)$ with $p < \eta + \zeta + 1$ and $p < 2\eta + 2$, then the method is of order p.

$$\frac{C(s-1) D(s-1)}{A} = \frac{1}{2} C_s^{2} + \frac{1}{2$$

Lemma

 \mathcal{L}^2 operator of ADER defined by Gauss-Lobatto or Gauss-Legendre points and quadrature (they coincide) with s = M + 1 stages satisfies C(s - 1) and D(s - 1).

Proof (1/4).

Interpolation with ϕ^j is exact for polynomials of degree $\underline{s-1}$.

The quadrature is exact for polynomials of degree 2s-3. (c.c.) (c.c.)

Recall that $\underline{A} = \underline{MR}$, Condition C(s-1) reads

$$\underbrace{\underline{\underline{A}}\underline{c^{z-1}}}_{\underline{\underline{z}}} = \underbrace{\frac{1}{z}\underline{c^{z}}}_{\underline{\underline{z}}} \iff \underline{\underline{\underline{R}}}\underline{c^{z-1}}_{\underline{\underline{z}}} = \underbrace{\frac{1}{z}\underline{\underline{\underline{M}}}\underline{c^{z}}}_{\underline{\underline{z}}} \iff \underline{\underline{\mathcal{X}}} := \underline{\underline{\underline{\underline{R}}}}\underline{c^{z-1}}_{\underline{\underline{z}}} - \underbrace{\frac{1}{z}\underline{\underline{\underline{M}}}\underline{c^{z}}}_{\underline{\underline{z}}} \stackrel{?}{=} \underline{\underline{0}}, \qquad \underbrace{\underline{\underline{z}}}_{\underline{\underline{z}}} = \underline{\underline{1}}, \dots, \underbrace{\underline{\underline{s}}}_{\underline{\underline{z}}}.$$

Recall $\underline{b_m} = \underline{w_m}$, $\underline{c_m} = \underline{t}^m$, $\underline{\underline{R}}_{i,j} = \delta_{i,j} \underline{w_i}$ and the definition of $\underline{\underline{M}} = \underline{\Phi}(1) \underline{\Phi}^T U - \underline{\int} \underline{\Phi}^T U - \underline{\int} \underline{\Phi}^T U + \underline{\partial} \underline{\Phi}^T$

$$\underline{\mathcal{X}_{m}} := w_{m}(t^{m})^{z-1} - \frac{1}{z} \left(\phi^{m}(1)\phi^{j}(1)(t^{j})^{z} - \int_{0}^{1} \frac{d}{d\xi} \phi^{m}(\xi)\phi^{j}(\xi)(t^{j})^{z} d\xi \right).$$

$$\underbrace{\mathcal{X}_{m}}_{\xi} := w_{m}(t^{m})^{z-1} - \frac{1}{z} \left(\phi^{m}(1)\phi^{j}(1)(t^{j})^{z} - \int_{0}^{1} \frac{d}{d\xi} \phi^{m}(\xi)\phi^{j}(\xi)(t^{j})^{z} d\xi \right).$$

$$\underbrace{\mathcal{X}_{m}}_{\xi} := w_{m}(t^{m})^{z-1} - \frac{1}{z} \left(\phi^{m}(1)\phi^{j}(1)(t^{j})^{z} - \int_{0}^{1} \frac{d}{d\xi} \phi^{m}(\xi)\phi^{j}(\xi)(t^{j})^{z} d\xi \right).$$

$$C(s-1) D(s-1)$$

Proof (2/4).

Now, the interpolation of t^z with $z \le s - 1$ with basis functions ϕ^j is exact. Hence, we can substitute $\phi^j(\xi)(t^j)^z = \xi^z$ for all $z = 1, \dots, s - 1$, obtaining

$$-\int_{0}^{1} \varphi_{\Lambda}^{1} \cdot \xi^{\frac{1}{4}} = -\frac{\varphi(i) 1^{\frac{1}{4}}}{\varphi(i) 0^{\frac{1}{4}}} \chi_{m} = w_{m}(t^{m})^{z-1} - \frac{1}{z} \left(\underbrace{\phi^{m}(1) 1^{z}}_{z} - \int_{0}^{1} \underbrace{\frac{d}{d\xi} \phi^{m}(\xi) \xi^{z} d\xi}_{d\xi} \right) \cdot \underbrace{1}_{2.3-3}$$

Using the exactness of the quadrature for polynomials of degree 2s-3, both true for Gauss-Lobatto and Gauss-Legendre, we know that the previous integral is exactly computed as $\frac{d}{d\xi}\phi^m(\xi)$ is of degree at most s-2 and ξ^z is at most s-1. So, we can use integration by parts and obtain

$$\mathcal{X}_{m} = w_{m}(t^{m})^{z-1} - \frac{1}{z} \left(\phi^{m}(0) 0^{z} + \int_{0}^{1} \phi^{m}(\xi) \frac{d}{d\xi} \xi^{z} d\xi \right) = w_{m}(t^{m})^{z-1} - \int_{0}^{1} \phi^{m}(\xi) \xi^{z-1} d\xi = 0$$

$$(t^{2})^{z-1} d\xi = 0$$

by the exactness of the quadrature rule and the definition of w_m . Note that the condition is sharp, since the interpolation is not anymore exact for z = s, hence C(s) is not satisfied.

$$C(s-1) D(s-1)$$
 $C = \int \varphi_s ds$

Proof (3/4).

To prove D(s-1), we write explicitly the condition in matricial form, for all $z=1,\ldots,s-1$

$$\underline{bc^{z-1}}\underline{\underline{A}} = \frac{1}{z}\underline{b(1-c^z)} \iff \underline{bc^{z-1}}\underline{\underline{\underline{M}}}^{-1}\underline{\underline{\underline{R}}} = \frac{1}{z}\underline{b(1-c^z)} \iff \underline{bc^{z-1}} = \frac{1}{z}\underline{b(1-c^z)}\underline{\underline{\underline{R}}}^{-1}\underline{\underline{\underline{M}}}.$$

Note that $\underline{b}^m = \underline{w}_m$ and $\underline{\underline{R}}_r^m = \underline{w}_m \delta_r^m$, so $\underline{b}(1-c^z) \underline{\underline{R}}^{-1} = \underline{(1-c^z)}$. It is left to prove that

$$\mathcal{Y} := \underline{bc^{z-1}} - \frac{1}{z} \underbrace{(1 - c^z)\underline{M}}_{s} = \underline{0}.$$

$$\mathcal{Y}_m = w_m(t^m)^{z-1} - \frac{1}{z} \sum_{j=1}^{s} (1 - (t^j)^z) \left(\phi^j(1)\phi^m(1) - \int_0^1 \frac{d}{d\xi} \phi^j(\xi)\phi^m(\xi)d\xi\right).$$

$$C(s-1) D(s-1)$$

Proof (4/4).

Let us observe that, since $z \leq s-1$, the polynomial is exactly represented by the Lagrangian interpolation $t^z = \sum_{j=1}^s \phi(t) (t^m)^z$. Hence, using the exactness of the quadrature for polynomials of degree at most 2s-3, we have

$$\mathcal{Y}_{m} = w_{m}(t^{m})^{z-1} - \frac{1}{z} (1 - (1)^{z}) \phi^{m}(1) + \frac{1}{z} \int_{0}^{1} \frac{d}{d\xi} (1 - (\xi)^{z}) \phi^{m}(\xi) d\xi$$
$$= w_{m}(t^{m})^{z-1} - \frac{1}{z} \int_{0}^{1} z \, \xi^{z-1} \phi^{m}(\xi) d\xi = w_{m}(t^{m})^{z-1} - w_{m}(t^{m})^{z-1} = 0.$$

Hence, ADER-Legendre and ADER-Lobatto satisfy D(s-1). Note that the condition is sharp, since the interpolation is not anymore exact for z=s, hence D(s) is not satisfied.

64/88

D. Torlo ADER vs DeC

ADER Gauss-Legendre \mathcal{L}^2

Remark (ADER-Legendre is no collocation method)

From the proof of previous Lemma, we can observe that ADER-Legendre methods do not satisfy C(s), hence, the methods are not collocation methods and they do not coincide with Gauss-Legendre implicit RK methods.

Theorem

 \mathcal{L}^2 of ADER with Gauss–Legendre is of order 2s-1.

Proof.

ADER-Legendre with s=M+1 stages satisfies B(2s) for the quadrature rule and, hence, it satisfies B(2s-1). For previous Lemma it also satisfies C(s-1) and D(s-1). Hence, Butcher's (1964) Theorem $(p \le \eta + \zeta + 1)$ and $p \le 2\eta + 2$ guarantees that the method is of order 2s-1, since it is satisfied with p=2s-1 and $q=\zeta=s-1$.

satisfied with
$$p = 2s - 1$$
 and $\eta = \zeta = s - 1$.

 $P = 2S - 1$
 $P = 2S$

ADFR Gauss-Lobatto \mathcal{L}^2

Theorem

 \mathcal{L}^2 of ADER with Gauss-Lobatto is of order 2s-2.

Proof.

The condition for B(2s-2) is satisfied as (c,b) is the Gauss-Lobatto quadrature with order 2s-2. Previous Lemma guarantees that ADER-Lobatto satisfies B(2s-2), C(s-1) and D(s-1), so Butcher's (1964) Theorem ($p \le \eta + \zeta + 1$ and $p \le 2\eta + 2$) is satisfied for order p = 2s - 2 and $n=\zeta=s-1$.

ADER Gauss-Lobatto \mathcal{L}^2

Theorem

 \mathcal{L}^2 of ADER with Gauss-Lobatto is LobattoIIIC.

The Lobatto IIIC method is defined using the condition

$$lacksquare$$
 $egin{aligned} a_{i1} = b_1 & ext{ for } i = 1, \ldots, s. \end{aligned}$

Lemma

 \mathcal{L}^2 of ADER with Gauss-Lobatto satisfies (23).

Theorem (Chipman 1971)

Lobatto IIIC schemes (in particular RK aii) are uniquely determined by Gauss-Lobatto quadrature rule (c, b), condition (23) and by C(s-1).

Lemma

 \mathcal{L}^2 of ADER with Gauss-Lobatto satisfies (23).

Proof.

$$a_{i1} = \sum_{j} (\underline{\underline{\mathbf{M}}}^{-1})_{ij} \mathbb{R}_{j1} = b_1 = w_1 \iff$$

$$\sum_{i,j} \underline{\underline{\mathbf{M}}}_{ki} (\underline{\underline{\mathbf{M}}}^{-1})_{ij} \mathbb{R}_{j1} = \sum_{i} \underline{\underline{\mathbf{M}}}_{ki} w_1 \iff$$

$$\underline{\delta_{k1} w_1} = \mathbb{R}_{k1} = \sum_{i} \underline{\underline{\mathbf{M}}}_{ki} w_1$$

$$\sum_{i} \underline{\underline{\mathbf{M}}}_{ki} w_1 = \phi^m(1) w_1 - \int_0^1 \frac{d}{dt} \phi^m(\xi) w_1 dt = \underbrace{w_1} \phi^m(0) = w_1 \delta_{m,1}.$$

Summary of results on $\mathcal{L}^2 = 0$

Method		DeC	ADER			
Nodes	Equispaced	Gauss–Lobatto	Equispaced	Equispaced Gauss-Lobatto Gau		
Order		2 <i>M</i>	M+1	2M 🗸	$2M + 1^8$	
Known method	Collocation	Lobatto IIIA		Lobatto IIIC 🗸		
A–stability	<u> </u>		???	√	9	
			7	L-ST +5 LE		
			(?)			

⁸M. Han Veiga, L. Micalizzi and D. T.. "On improving the efficiency of ADER methods." AMC, 466, page 128426, (2024) ⁹P. Öffner, L. Petri, D.T.. "Analysis for Implicit and Implicit-Explicit ADER and DeC Methods for Ordinary Differential

Equations, Advection-Diffusion and Advection-Dispersion Equations" (2024)

Outline

- Motivation
- 2 DeC
- ADER
- 4 Similarities
- **5** ADER stability and accuracy
- **6** Simulations
- Efficient DeC (ADER)
- An efficient Deferred Correction

Applications

Usages

- Hyperbolic PDEs as explicit iterative methods (ADER: Toro, Dumbser, Klingenberg, Boscheri; DeC: Abgrall, Ricchiuto)
- IMEX solvers for hyperbolic with stiff sources (ADER: Dumbser, Boscheri; DeC: Abgrall, Torlo)
- IMEX solvers for hyperbolic with viscosity (treated implicitly) as compressible Navier Stokes (DeC: Minion, Dumbser, Zeifang)

IMEX

$$\partial_t u = F(u) + S(u)$$

 $S(u)$ stiff to be treated implicitly

Advantages

- Arbitrary high order
- Unique framework to have matching between implicit and explicit terms
- Easy to code
- Iterative solver automatically included

Disadvantages

- Explicit solver: many many stages
- Implicit: many stages
- Explicit: not amazing stability property (wrt SSP RK e.g.)

Convergence

$$y'(t) = -|y(t)|y(t),$$

 $y(0) = 1,$
 $t \in [0, 0.1].$ (24)

Convergence curves for ADER and DeC, varying the approximation order and collocation of nodes for the subtimesteps for a scalar nonlinear ODE

Lotka-Volterra

Figure: Numerical solution of the Lotka-Volterra system using ADER (top) and DeC (bottom) with Gauss-Lobatto nodes with timestep $\Delta T=1$.

PDE: Burgers with spectral difference

Convergence error for Burgers equations: Left ADER right DeC. Space discretization with spectral difference

Outline

- Motivation
- 2 DeC
- ADER
- 4 Similarities
- **5** ADER stability and accuracy
- **6** Simulations
- 7 Efficient DeC (ADER)
- An efficient Deferred Correction

Reduce computational cost for explicit DeC

Literature

- L. Micalizzi and D. Torlo. "A new efficient explicit Deferred Correction framework: analysis and applications to hyperbolic PDEs and adaptivity." Commun. Appl. Math. Comput. (2023). arxiv.org/abs/2210.02976
- L. Micalizzi, D. Torlo and W. Boscheri. "Efficient iterative arbitrary high order methods: an adaptive bridge between low and high order." Commun. Appl. Math. Comput. (2023) arxiv.org/abs/2212.07783
- M. Han Veiga, L. Micalizzi and D. Torlo. "On improving the efficiency of ADER methods." Applied Mathematics and Computation, 466, page 128426, 2024. arxiv.org/abs/2305.13065

Goal

Reduce computational costs of explicit DeC/ADER.

$$\mathcal{L}^{1}(\underline{\boldsymbol{u}}^{(p)}) = \mathcal{L}^{1}(\underline{\boldsymbol{u}}^{(p-1)}) - \mathcal{L}^{2}(\underline{\boldsymbol{u}}^{(p-1)}) \text{ with } p = 1, \dots, P.$$

$$\boldsymbol{u}^{m,(p)} = \boldsymbol{u}^{0} + \sum_{r=0}^{M} \theta_{r}^{m} F(t^{r}, \boldsymbol{u}^{r,(p-1)}), \qquad \forall m = 1, \dots, M, \ p = 1, \dots, P$$

$$\mathcal{L}^1(\underline{m{u}}^{(p)}) = \mathcal{L}^1(\underline{m{u}}^{(p-1)}) - \mathcal{L}^2(\underline{m{u}}^{(p-1)}) \text{ with } p = 1, \dots, P.$$

$$m{u}^{m,(p)} = m{u}^0 + \sum_{r=0}^M heta_r^m F(t^r, m{u}^{r,(p-1)}), \qquad \forall m = 1, \dots, M, \ p = 1, \dots, P$$

$$\mathcal{L}^1(\underline{\boldsymbol{u}}^{(p)}) = \mathcal{L}^1(\underline{\boldsymbol{u}}^{(p-1)}) - \mathcal{L}^2(\underline{\boldsymbol{u}}^{(p-1)}) \text{ with } p = 1, \dots, P.$$

$$\boldsymbol{u}^{m,(p)} = \boldsymbol{u}^0 + \sum_{r=0}^M \theta_r^m F(t^r, \boldsymbol{u}^{r,(p-1)}), \qquad \forall m = 1, \dots, M, \ p = 1, \dots, P.$$

$$\mathcal{L}^1(\underline{m{u}}^{(p)}) = \mathcal{L}^1(\underline{m{u}}^{(p-1)}) - \mathcal{L}^2(\underline{m{u}}^{(p-1)}) \text{ with } p = 1, \dots, P.$$
 $m{u}^{m,(p)} = m{u}^0 + \sum_{r=0}^M heta_r^m F(t^r, m{u}^{r,(p-1)}), \qquad orall m = 1, \dots, M, \; p = 1, \dots, P$

<u>c</u>	u ⁰	$u^{(1)}$	u ⁽²⁾	u ⁽³⁾		$u^{(M-1)}$	$\mathbf{u}^{(M)}$	Α
0	0	a	_					u°
$\beta_{1:}$	$\beta_{1:}$? 0 0	₽ 🗑					u ⁽¹⁾
β .	$\Theta_{1:,0}$	$\Theta_{1:,1:}^-$	~ <u>-</u> 0					u ⁽²⁾
$\frac{\beta_{1:}}{\beta_{1:}}$	Θ _{1:,0}	<u>o</u>	$\Theta_{1:,1:}^{=}$	<u>0</u>				u ⁽³⁾
<u>1:</u>	- 1.,0	=	- 1.,1.	=				
	:	:		٠.	٠.			:
	:	:			٠.	٠.		:
$\beta_{1:}$	Θ _{1:,0}	<u>0</u>			<u>0</u>	$\Theta_{1:,1:}$	<u>0</u>	u ^(M)
<u>b</u>	Өм,0	<u>0</u>				<u>0</u>	Өм,1:	$\mathbf{u}^{M,(M+1)}$

Costs

Large costs!

Large costs!

• DeC
$$S=M\cdot (P-1)+1$$

• DeC equi $S=(P-1)^2+1$
• DeC GLB $S=\left\lceil\frac{P}{2}\right\rceil (P-1)+1$

JE	Equispaced								
P	М	DeC							
2	1	2							
3	2	_5							
4_5	3	10							
5	4	17							
6	5	26							
7	6	37							
8	7	50							
9	8	65							
10	9	82							

Gau	Gauss-Lobatto								
Р	М	DeC							
2	1	2							
3	2	5							
4	2	7							
5	3	13							
6	3	16							
7	4	25							
8	4	29							
9	5	41							
10	5	46							

Large costs!

• DeC
$$S=M\cdot (P-1)+1$$

• DeC equi $S=(P-1)^2+1$
• DeC GLB $S=\left\lceil \frac{P}{2}\right\rceil (P-1)+1$

Equispaced							
P	М	DeC					
2	1	2					
3	2	5					
4	3	10					
5	4	17					
6	5	26					
7	6	37					
8	7	50					
9	8	65					
10	9	82					

Fauispaced

Gauss-Lobatto							
Р	M	DeC					
2	1	2					
3	2	5					
4	2	7					
5	3	13					
6	3	16					
7	4	25					
8	4	29					
9	5	41					
10	5	46					

How can we save computational time?

Outline

- Motivation
- 2 DeC
- ADER
- 4 Similarities
- **5** ADER stability and accuracy
- **6** Simulations
- Efficient DeC (ADER)
- 8 An efficient Deferred Correction
- Summary

Idea for reduction of stages

Idea for reduction of stages

Idea for reduction of stages

DeC

$$\underline{\boldsymbol{u}}^{(p)} = \underline{\boldsymbol{u}}^0 + \Delta t \Theta F(\underline{\boldsymbol{u}}^{(p-1)})$$

DeCu

$$\underline{\boldsymbol{u}}^{(\rho)} = \underline{\boldsymbol{u}}^0 + \Delta t \Theta^{(\rho)} F(H^{(\rho)} \underline{\boldsymbol{u}}^{(\rho-1)})$$

$$H_{ij}^{(p)} = \phi_j^{(p-1)}(t^{i,(p)})$$

$$\begin{split} \mathbf{\underline{\boldsymbol{\upsilon}}}^{(p)} &= \underline{\boldsymbol{\upsilon}}^0 + \Delta t \Theta F(\underline{\boldsymbol{\upsilon}}^{(p-1)}) \\ \mathbf{\underline{\boldsymbol{\upsilon}}}^{(p)} &= \boldsymbol{\upsilon}^0 + \Delta t \Theta^{(p)} F(H^{(p)} \boldsymbol{\upsilon}^{(p-1)}) \end{split}$$

$$\underline{\boldsymbol{u}}^{(\rho)} = \underline{\boldsymbol{u}}^0 + \Delta t \Theta^{(\rho)} H^{(\rho)} F(\underline{\boldsymbol{u}}^{(\rho-1)})$$

$$H_{ij}^{(p)} = \phi_j^{(p-1)}(t^{i,(p)})$$

DeC

$$\underline{\boldsymbol{u}}^{(p)} = \underline{\boldsymbol{u}}^0 + \Delta t \Theta F(\underline{\boldsymbol{u}}^{(p-1)})$$

DeCu

$$\underline{\underline{\boldsymbol{u}}}^{(p)} = \underline{\underline{\boldsymbol{u}}}^{0} + \Delta t \Theta^{(p)} F(H^{(p)} \underline{\underline{\boldsymbol{u}}}^{(p-1)})
\underline{\underline{\boldsymbol{u}}}^{*(p)} = \underline{\underline{\boldsymbol{u}}}^{0} + \Delta t H^{(p)} \Theta^{*(p-1)} F(\underline{\underline{\boldsymbol{u}}}^{*(p-1)})$$

DeCdu

$$\underline{\underline{\textit{u}}}^{(\rho)} = \underline{\underline{\textit{u}}}^0 + \Delta t \Theta^{(\rho)} \underline{\textit{H}}^{(\rho)} F(\underline{\underline{\textit{u}}}^{(\rho-1)})$$

$$H_{ij}^{(p)} = \phi_j^{(p-1)}(t^{i,(p)})$$

Efficient DeC into RK framework

$$DeC S = M \cdot (P-1) + 1$$

<u>c</u>	u ⁰	$u^{(1)}$	u ⁽²⁾	u ⁽³⁾		$\mathbf{u}^{(M-1)}$	$\mathbf{u}^{(M)}$	А	dim
0	0							u ⁰	1
β_1	$\underline{\beta}_{1:}$	<u>0</u>						$u^{(1)}$	М
$\frac{\overline{\beta}_{1}}{\beta}$	$\Theta_{1:,0}$	$\Theta_{1:,1:}^-$	<u>o</u>					u ⁽²⁾	М
$\frac{\underline{\beta}_{1:}}{\underline{\beta}_{1:}}$ $\underline{\underline{\beta}_{1:}}$	$\Theta_{1:,0}$	<u>0</u>	$\Theta_{1:,1:}^-$	<u>0</u>				u ⁽³⁾	М
	:	:		٠	٠.			:	М
	:	:			٠.	٠		:	М
$\beta_{1:}$	$\Theta_{1:,0}$	<u>0</u>			<u>0</u>	$\Theta_{1:,1:}$	<u>o</u>	u ^(M)	М
<u>b</u>	$\Theta_{M,0}$	<u>0</u>				<u>0</u>	$\Theta_{M,1:}$	$\mathbf{u}^{M,(M+1)}$	

Efficient DeC into RK framework

DeCu
$$S = M \cdot (P-1) + 1 - \frac{(M-1)(M-2)}{2}$$

<u>c</u>	u ⁰	$\mathbf{u}^{*(1)}$	u* ⁽²⁾	u* ⁽³⁾		$u^{*(M-2)}$	$\mathbf{u}^{*(M-1)}$	$\mathbf{u}^{(M)}$	А	dim
0	0								u ⁰	1
$\beta_1^{(2)}$	$\beta_1^{(2)}$	<u>O</u>							$\mathbf{u}^{*(1)}$	2
$\beta_{1}^{(3)}$	$W_{1:,0}^{(2)}$	$W_{1:,1:}^{\underline{\underline{\underline{\sigma}}}}$	<u>0</u>						u *(2)	3
$ \frac{\beta_{1:}^{(2)}}{\beta_{1:}^{(3)}} \\ \frac{\beta_{1:}^{(4)}}{\beta_{1:}^{(4)}} $	$W_{1:,0}^{(2)} \ W_{1:,0}^{(3)}$	<u>o</u>	$W_{1:,1:}^{\underline{\underline{0}}}$	<u>o</u>					u*(3)	4
	:	:			٠.				:	:
		•								.
	:	:			٠	•			:	:
$\beta_{1:}^{(M)}$	$W_{1:,0}^{(M-1)}$	<u>o</u>			<u>o</u>	$W_{1:,1:}^{(M-1)}$	<u>0</u>	<u>0</u>	$\mathbf{u}^{*(M-1)}$	M
$\frac{\underline{\beta}_{1:}^{(M)}}{\underline{\beta}_{1:}^{(M)}}$	$W_{1:,0}^{(M)}$	<u>0</u>				<u>0</u>	$W_{1:,1:}^{\underline{\overline{C}}(M)}$	<u>0</u>	u ^(M)	М
<u>b</u>	$W_{M,0}^{(M+1)}$	<u>0</u>				• • •	<u>0</u>	$W_{M,1:}^{(M+1)}$	$\mathbf{u}^{M,(M+1)}$	

$$W^{(p)} := \begin{cases} H^{(p)} \Theta^{(p)} \in \mathbb{R}^{(p+2) \times (p+1)}, & \text{if } p = 2, \dots, M-1, \\ \Theta^{(M)} \in \mathbb{R}^{(M+1) \times (M+1)}, & \text{if } p \geq M. \end{cases}$$

Efficient DeC into RK framework

DeCdu
$$S = M \cdot (P - 1) + 1 - \frac{M(M - 1)}{2}$$

<u>c</u>	u ⁰	$u^{(1)}$	u ⁽²⁾	$u^{(3)}$		u ^(M-2)	$u^{(M-1)}$	$\mathbf{u}^{(M)}$	А	dim
0	0								u ⁰	1
$\beta_1^{(1)}$	$\beta_1^{(1)}$	<u>0</u>							$\mathbf{u}^{(1)}$	1
$\beta^{(2)}$	$Z_{1:,0}^{(2)}$	$Z_{1:,1:}^{\underline{\underline{0}}}$	0						u ⁽²⁾	2
$ \frac{\beta_{1}}{\beta_{1}^{(2)}} $ $ \frac{\beta_{1}}{\beta_{1}^{(3)}} $	$Z_{1:,0}^{(3)}$	<u>0</u>	$Z_{1:,1:}^{\underline{\underline{0}}}$	<u>o</u>					u ⁽³⁾	3
-1:		-	1.,1.							
	:	:		•	٠.				:	:
	:	:			٠	٠			:	:
$\underline{\beta}_{1:}^{(M-1)}$	$Z_{1:,0}^{(M-1)}$	<u>0</u>			<u>0</u>	$Z_{1:,1:}^{(M-1)}$	<u>0</u>	<u>0</u>	$\mathbf{u}^{(M-1)}$	M-1
$\underline{\beta}_{1:}^{(M)}$	$Z_{1:,0}^{(M)}$	<u>0</u>				<u>0</u>	$Z_{1:,1:}^{\overline{(M)}}$	<u>o</u>	u ^(M)	М
<u>b</u>	$Z_{M,0}^{(M+1)}$	<u>0</u>				• • •	<u>0</u>	$Z_{M,1:}^{(M+1)}$	$\mathbf{u}^{M,(M+1)}$	

$$Z^{(p)} := \begin{cases} \Theta^{(p)} H^{(p-1)} \in \mathbb{R}^{(p+1) \times p}, & \text{if } p = 1, \dots, M, \\ \Theta^{(M)} \in \mathbb{R}^{(M+1) \times (M+1)}, & \text{if } p > M. \end{cases}$$

Computational costs reduction: RK stages

Equispaced

Γ	Р	М	DeC	DeCu_	DeCdu
ŀ		1		2	2
	2	2	2 5	5	4
	4	3	10	9	7
	5	4	1		11
	6	5	<u>17</u> 26	14 20	16
	7	6	37	27	22
	8	7	50	35	29
	9	8	65	44	37
	10	9	82	54	46
	11	10	101	65	56
	12	11	122	77	67
	13	12	145	90	79

Gauss-Lobatto

Р	М	DeC	DeCu	DeCdu
2 3	1	2	2	2
3	2	5	5	4
4	2	7	7	6
<u>5</u>	3	<u>13</u>	12 15	<u>10</u>
6	3	16	15	13
7	4	25	22	19
8	4	29	26	23
9	5	41	35	31
10	5	46	40	36
11	6	61	51	46
12	6	67	57	52
13	7	(85)	70	(64)

Stability Properties

DeC-DeCu-DeCdu

The stability function of DeC, DeCu, DeCdu of order P for any nodes distribution is

$$R(z) = 1 + z + \frac{z^2}{2!} + \cdots + \frac{z^P}{P!}.$$

DeC. DeCu. DeCdu

Exercise

Efficient DeC

- Code DeCu or DeCdu
- Check order of accuracy
- Write a code to obtain its RK matrix
- Check the stability function with nodepy
- Compare computational costs with original DeC

Outline

- Motivation
- 2 DeC
- ADER
- 4 Similarities
- **5** ADER stability and accuracy
- **6** Simulations
- Efficient DeC (ADER)
- An efficient Deferred Correction
- Summary

Summary: ADER/DeC

DeC

Integral form

- Collocation methods
- Order (M + 1) equispaced, 2M GLB)
- Stability (A-stability for GLB: Lobatto II)(1)

2 explicit suler

ADER

/R(2)

- Weak form
- ∫Φu-¢FW
- Not collocation methods
- Order (M + 1 equispaced, 2M GLB, 2M + 1)GLG)
- Stability (A-stability for GLB GLG, I don't know for equi)

Summary: ADER/DeC iterative