School of Engineering

Chemical and Petroleum Engineering Department Petroleum Refining Engineering (CHEN 462) & Process Dynamic and Control (CHEN 482)

Instructor: Dr. Sara Faiz

Project

This project is collaborative project that integrate skills and knowledge obtain in two chemical engineering courses (CHEN 462 & CHEN 482).

Students are required to select one of the crude oil feedstock data provided in the following appendix to design one of the following refinery processes in a group consist of two members:

- 1. Crude Distillation Unit (CDU) (Team A: Ruwda & Khalid)
- 2. Fluid Catalytic Cracking (FCC) (Team B: Mohammed & Tasnim)

The report must consist of the following:

- The main hypotheses and design steps (Material & Energy balance)
- Design specification
- Design standards and constrains
- Design of control system (including dynamic model, selection of controller, identifying type of control loop and system block diagram)
- Steps for optimization
- Operation procedures
- Expected products

Appendix A

Arabian medium, Saudi Arabia

Gravity, "API: 30.8 Sulfur, wt %: 2.40 Pour point, "F.: +5 RVP, psi: 3.2 Viscosity Kin. cSt @ 70° F.: 16.2 Kin. cSt @ 100° F.: 9.41

Light naphtha Range, °FVT: 68-212 Yield, vol %: 8.9 Gravity, OAPI: 77.7 Sulfur, wt %: 0.043

> RVP, psi: 7.9 Paraffins, vol %: 85.3 Naphthenes, vol %: 12.3 Aromatics, vol %: 2.4 RON, clear 54.5

Heavy naphtha

Range, °FYT: 212-302 Yield, vol %: 7.7 Gravity, °API: 59.1 Sulfur, wt %: 0.050 Paraffins, vol %: 68.5 Naphthenes, vol %: 18.7 Aromatics, vol %: 12.7

Kerosine

Range, °FVT: 302-455 Yield, vol %: 14.5 Gravity, °API: 48.0 Sulfur, wt %: 0.14 Paraffins, vol %: Naphthenes, vol %: Aromatics, vol %: 20.6 Freeze point, °F: -62 Smoke point, mm: 23 Luminometer No.: 52 Aniline point, °F.: 136 Viscosity Kin., cSt @ −30° F.: 5.10 Kin., cSt @ 100° F.: 1.13

Light gas oil Range, °FVT: 455-650 Yield, vol %: 18.1 Gravity, °API: 36.0 Sulfur, wt %: 1.24 Pour point, F.: 15 Aniline point, °F.: 157 Viscosity Kin., cSt @ 100° F.: 3.53 Kin., cSt @ 210° F.: 1.32

Heavy gas oil Range, °FVT: 650-1,049 Yield, vol %: 30.9 Gravity, "API: 21.9 Sulfur, wt %: 2.91 Pour point, "F.: 100 Aniline point, "F.: 176 Viscosity Kin., cSt @ 100° F.: 49.2 Kin., cSt @ 210° F.: 6.40

Arabian medium

Residual oil

Range, °FVT: 650+ Yield, vol %: 49.6 Gravity, °API: 15.0 Sulfur, wt %: 3.90 Pour point, °F.: 55 Con carbon, wt %: 9.9 Viscosity

Kin., cSt @ 100° F.: 850 Kin., cSt @ 210° F.: 36.0

Residual pil Range, °FVT: 1,049+ Yield, vol %: 18.7 Gravity, °API: 4.9 Sulfur, wt %: 5.35 Pour point, °F.: 115

Con carbon, wt %: 23.3 Viscosity Kin., cSt @ 210° F.: 3,847 Furor, sec @ 275° F.: 226 Metals Vanadium, ppm: 96 Nickel, ppm: 32 fron, ppm: 30

Kuwait crude, Kuwait

Crude Gravity, °API: 31.2 Sulfur, wt %: 2.50 Viscosity, SUS at 100° F.: 58.7 Peur point, °F.: 0 C- and lighter, vol %: 2.46 Reid vapor pressure, lb.: 5.4 Vanadium, ppm: 31 Nickel, ppm: 9.6 Con. carbon residue, wt %: 5.3 Salt, lb/1,000 bbl: 3 ASTM, 50% point, °F.: >590

Light naphthas TBP range, °F.: IBP-140* Yield, vol %: 5.49 Gravity, "API: 94.6 Sulfur, wt %: 0.01 Paraffins, vol %: 98.5 Naphthenes, vol %: 1.4 Aromatics, vol % 0.1 Res. octane, clear: 78.5 Res. octane, +3 ml TEL: 92.0 ASTM, 50% point, °F.: 96

Light naphthas TBP range, °F.: 140-170 Yield, vol %: 1.85 Gravity, °API: 78.2 Sulfur, wt %: 0.02 Paraffins, vol %: 86.2 Naphthenes, vol %: 12.5 Aromatics, vol %: 1.3 Res. cotane, clear: 58.8 Res. cotane, +3 ml TEL: 76.3 ASIM, 50% point, °F.: 156

Heavy naphtha TBP range. °F.: 170-310 Yield, vol %: 12.03 Gravity, °API: 62.2 Sulfur, wt %: 0.02 Paraffins, vol %: 67.9 Naphthenes, vol %: 22.1 Aromatics, vol %: 10.0 Aniline point, °F.: 132.8 ASTM, 50% point, °F.: 244

Kerosine

TBP range, °F.: 310-520
Yield, vol %: 18.20
Gravity, °API: 45.9
Sulfur, wt %: 0.28
Aromatics, vol %: 19.5
Freezing point, °F.: -46
Aniline point, °F.: 143
Cetane Index: 52.3
Smcke point (ASTM), mm: 24
ASTM, 50% point, °F.: 403

Appendix B

Kuwait crude

Light gas oil
TBP range, °F.: 520-680
Yield, vol %: 14.11
Gravity, °API: 33.7
Viscosity, SUS at 100° F.: 41.3
Sulfur, wt %: 1.66
Pour point, °F.: +20
Diesel index: 53.6
Cetane index: 55
ASTM, 50% point, °F.: 573

Heavy gas oil
TBP to EFV range, °F.: 680-1,000
Yield, vol %: 26.59
Gravity, °API: 21.7
Viscosity, SUS at 210° F.: 53.9
Sulfur, wt %: 2.91
Nitrogen (total), ppm: 950
Pour point, °F.: +100
Aniline point, °F.: 178
Vanadium, ppm: 0.4
Nickel, ppm: 0.1
ASTM, 50% point, °F.: 850

Residual oils TBP or EFV, °F.: 680+ Yield, vol %: 47.53 Gravity, °API: 14.0 Viscosity, SUS at 210° F.: 267 Sulfur, wt %: 4.14 Con. carbon residue, wt %: 9.37 Pour point, °F.: +70 Vanadium, ppm: 59 Nickel, ppm: 18 **Does not include uncondensed gases of 0.72 vol % to enude.**

Appendix C

Murban, Abu Dhabi

Crude Gravity, "API: 39.4 Sulfur, wt %: 0.74

Rvp, psi: 5 NVP, psi: 5 Pour point, °C.: -15 Wax content, wt %: 8.0 Vis., cSt @ 21° C.: 5.0 Salt content, lb/1,000 bbl:<5 V/Ni, ppm: 0.8/0.58

Straight-run gasoline Range, °C.: C_F-75 Yield, vol %: 6.78 Gravity. °API: 82.2 Sulfur, wt %: 0.012 Rvp, psi: 10.1 RON, clear: 69 RON + 0.5 ml TEL/liter: 84

Naphtha Range, °C.: 75-175 Yield, vol %: 21.22 Gravity, °API: 56.9 Sulfur wt %: 0.013 Paraffins, wt %: 63 Naphthenes, wt %: 20 Aromatics, wt %: 17 Aniline point, °C.: 51.3

Kerosine

Range, °C.: 175-250 Yield, vol %: 16.14 Gravity, "API: 45.4 Sulfur, wt %: 0.058 Aniline point, "C.: 61.8 Diesel index: 65 Smoke point, mm: 24

Freezing point, Cc.: -43 Vis., cSt @ 20° C.: 1.8

Range, °C.: 250-300 Yield, vol %: 10.40 Gravity, °API: 37.8 Sulfur, wt %: 0.47 Diesel index: 59 Cetane index: 54 Pour point, °C.: -18 Vis., cSt @ 20° C.: 4.2

Gas oil

Range, °C.: 300-350 Yield, vol %: 9.24 Gravity, OAPI: 33.6 Sulfur, wt %: 1.06 Diesel index: 58 Wax content, wt %: 17.5 Pour point, °C.: +4 Vis., cSt @ 20° C.: 9.5

Murban

Residual oil Range, °C.: 350+ Yield, vol %: 34.51 Gravity, °API: 22.6 Sulfur, wt %: 1.49 Pour point, °C.: +35 Wax content, wt %: 19.5 Conradson carbon, wt %: 3.6 Vis., cSt @ 37.8° C.: 104

V/Ni, ppm 2/2

Project Data Sheet

CDU Data Sheet

Table 1. Properties of Crude Oil

Sample	Density of crude oil	Specific Gravity	Wax content	Pour point	Total acid number (TAN)	water content	sulfur content	Asphalting content
type	Density @15C°	s.G	Wax content%	Pour point C°	TAN mg KoH/g	Water content wt%	sulfur content wt%	Asphalting content wt%
Dar blend	913.6	914.5	19.28	39	4.47	0.4	0.1272	0.12
Fulla light	881.3	882.1	21.68	12	0.35	3.0	0.0813	0.1
Sargas	927.8	928.6	20.99	12	1.64	0.05	0.1227	0.08
Nile blend	878.4	872.9	29.95	30	0.66	0.20	0.0745	0.14
B.of fulla+staroil	836.3	836.9	36.88	42	0.12	2.8	0.0885	0.04

Table 2. The Kinematic viscosity

Sample type	k. Viscosity @50C°	k. Viscosity @60C°	k. Viscosity @70C°		
Dar blend	440.5	233.4	139.8		
Fulla light	32.54	21.34	16.06		
Sargas	499.4	278.7	170.6		
Nile blend	39.03	25.06	17.88		
B.of fulla+staroil	12.97	7.761	6.696		

Table 3. Crude oil & products properties

Stream	Mass flow	Temp.	Ср	Latent heat
Stream	Kg/h	°C	Kj/kg.°C	Kj/kg
Feed crude	312500.00	365	1.861	
Naphtha	20281.25	123	2.38	262.838
Kerosene	26093.75	170	2.68	232.600
Light diesel	45437.5	260	2.8	209.340
Heavy diesel	11593.75	340	2.88	198.240
Residue	208468.75	355	3.2	

FCC Unit data sheet

No.	Item	
1	1 st regen big ring air flow	1577
2	1 st regen small ring air flow	313
3	Cat cooler air flow	97.4
4	2 nd regen air flow	752
5	Transfer air from 1 st regen to 2 nd regen flow.	513
6	Degaser air flow	8.8
7	1^{st} regen flue gas outlet temp $^{\circ}$ C	647.4
8	$2^{\rm nd}$ regen flue gas outlet temp, °C	699. 1
9	1^{st} regen dense phase temp $^{\circ}\mathbb{C}$	674
10	2^{nd} regen dense phase temp, °C	716.6
11	Main air temp. $^{\circ}\mathbb{C}$	202
12	Boost air temp ℃	262
13	Injection steam temp to reaction, $^{\circ}$ C	281
14	Atomization steam for fresh feed ,t/h	4. 95
15	Atomization steam for fresh feed ,t/h	4. 87
16	Atomization steam for fresh feed ,t/h	4.94
17	Atomization steam for fresh feed ,t/h	1.79
18	Atomization steam for recycle oil ,t/h	1.38
19	Atomization steam for recycle oil ,t/h	1.36
20	Lifting dry gas for riser, nm ³ /h	_
21	Lifting steam for riser, t/h	0.613
22	Striping steam for settler, t/h	0.531
23	Striping steam for settler, t/h	1.08
24	Striping steam for settler, t/h	1.02
25	Striping steam for settler, t/h	4. 96
26	Striping steam for settler, t/h	1. 1
27	Settler bottom outlet temp $^{\circ}\mathbb{C}$	513
28	Settler top outlet temp $^{\circ}\mathbb{C}$	463

American University of Ras Al Khaimah

29	1.0 MPa steam temp, ℃	263
30	3.6 MPa steam temp, °C	432
31	Cat cooler blowdown quantity,t/h	2.74
32	Cat from cat cooler temp, ℃	448.8
33	Cat cooler generated steam flow, t/h	48. 14
34	Cat cooler generated steam temp, °C	246. 2
35	Cat cooler feed water flow,t/h	50.88
36	Cat cooler feed water temp, °C	189. 7
37	Fresh feed flow t/h	74. 14
38	Fresh feed flow t/h	73.8
39	Fresh feed flow t/h	72.7
40	Recycle oil flow t/h	12. 43
41	Recycle oil flow t/h	11.2
42	Slurry oil flow t/h	-
43	Tops oil flow t/h	15. 7
44	Feed oil entering reactor temp, ℃	205
45	Recycle oil entering reactor temp, °C	325
46	Recycle slurry entering reactor temp, ℃	347
47	Thriller oil entering reactor temperature, °C	45
48	Stabilized gasoline, t/h	93/120
49	LPG off-unit, t/h	34//36
50	Diesel off-unit	48/54
51	Slurry off-unit	3. 16
52	Dry gas off-unit	14. 43
53	Dry gas to boiler	353
54	1 st regen top press,MPa	0. 257
55	2 nd regen top press,MPa	0.26
56	Reactor top press,MPa	0. 214
57	Dry gas off-unit press,MPa	0.878
58	Dry gas off-unit temp °C	34

American University of Ras Al Khaimah Spring 2024

59	Dry gas to boiler press,MPa	0.032
60	temp of dry gas to boiler oC	36
61	Top reflux outlet temp, ℃	11
62	Cold reflux inlet temp, ℃	45
63	Cold reflux flow,t/h	40
64	Top reflux outlet temp, ℃	142
65	Top reflux inlet temp, ℃	83
66	Top reflux flow,t/h	426
67	1 st reflux outlet temp, ℃	262
68	1 st reflux inlet temp, ℃	191
69	1 st reflux flow,t/h	279
70	2^{nd} reflux outlet temp, $^{\circ}\mathrm{C}$	323
71	2 nd reflux inlet temp, ℃	257
72	2 nd reflux flow,t/h	204
73	Lean absorb oil from column outlet temp, °C	217
74	Rich absorb oil from column inlet temp, °C	131
75	Lean absorb oil from column flow ,t/h	36
76	Fractionator bottom stiring steam flow,t/h	1. 26
77	Light diesel stripping steam flow,t/h	0. 45
78	Heavy diesel stripping steam flow ,t/h	1.08
79	Light diesel drawing temp,℃	190
80	Heavy diesel flow	48
81	Heavy diesel drawing temp, ℃	218
82	Recycle oil return column flow	54
83	Recycle oil return column temp, °C	359
84	Upper return slurry flow	173
85	Upper return slurry temp, ℃	286
86	Bottom return slurry flow	480
87	Bottom return slurry temp, °C	286
88	Slurry out of column temp, ℃	347
89	Oil and gas temp below 1st column trap , $^{\circ}\mathbb{C}$	359

School of Engineering

Department of Chemical and Petroleum Engineering

Chemical Engineering Program

Petroleum Refining Engineering (CHEN 462) & Chemical Process Dynamic and Control (CHEN 482)

Project Evaluation Rubrics

Name/ID:

Rubric	Student Project Assessment Criteria	Excellent	Very	Good	Medium	Unsatisfactory
		(5)	good (4)	(3)	(2)	(1)
Research skills	Identify the problem [1]					
	Ability to address potential conceptual constraints [2]					
	Collect & Analyse data with supporting methodology and generate results [6]					
	Present conclusions and applications of research findings [3]					
Interdisciplinary	Identify & Discuss problem from multiple perspectives [6]					
Curriculum	Link the theoretical to the practical applications [1]					
Entrepreneurship	Acquire new knowledge in the area of chemical engineering processes [7]					
	Apply critical and creative thinking to design selected process [2 & 6]					
	Verify the use of moderate chemical engineering research tool or software [7]					
Communicate	Uses logical organizational pattern which enhances understanding [3]					
effectively	Identify and cite credible sources [3]					
	Delivers effective oral presentations on technical topics [3]					
Total (60 Marks)						