Computing for Medicine

BERT

@Tavpritesh
#Computing4Medicine

Recap

Encoder and Decoder Side by Side

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova Google AI Language

{jacobdevlin, mingweichang, kentonl, kristout}@google.com

BERT and General Language Understanding Evaluation (GLUE) [GLUE] [GLUE]

BERT

Masked Language Model

Bioinformatics, 2019, 1-7

doi: 10.1093/bioinformatics/btz682

Advance Access Publication Date: 10 September 2019

Original Paper

Data and text mining

BioBERT: a pre-trained biomedical language representation model for biomedical text mining

Jinhyuk Lee @ 1,†, Wonjin Yoon @ 1,†, Sungdong Kim @ 2, Donghyeon Kim @ 1, Sunkyu Kim @ 1, Chan Ho So @ 3 and Jaewoo Kang @ 1,3,*

¹Department of Computer Science and Engineering, Korea University, Seoul 02841, Korea, ²Clova Al Research, Naver Corp, Seong-Nam 13561, Korea and ³Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul 02841, Korea

Associate Editor: Jonathan Wren

^{*}To whom correspondence should be addressed.

¹The authors wish it to be known that the first two authors contributed equally.

BioBERT

BERT: Bidirectional Encoder Representations from Transformers

Training

Table 1. List of text corpora used for BioBERT

Corpus	Number of words	Domain	
English Wikipedia	2.5B	General	
BooksCorpus	0.8B	General	
PubMed Abstracts	4.5B	Biomedical	
PMC Full-text articles	13.5B	Biomedical	

Table 2. Pre-training BioBERT on different combinations of the following text corpora: English Wikipedia (Wiki), BooksCorpus (Books), PubMed abstracts (PubMed) and PMC full-text articles (PMC)

Model	Corpus combination
BERT (Devlin et al., 2019)	Wiki + Books
BioBERT (+PubMed)	Wiki + Books + PubMed
BioBERT (+PMC)	Wiki + Books + PMC
BioBERT (+PubMed + PMC)	Wiki + Books + PubMed + PMC

Publicly Available Clinical BERT Embeddings

Emily Alsentzer	John R. Murphy	Willie Boag	Wei-Hung Weng
Harvard-MIT	MIT CSAIL	MIT CSAIL	MIT CSAIL
Cambridge, MA	Cambridge, MA	Cambridge, MA	Cambridge, MA
emilya@mit.edu	jrmurphy@mit.edu	wboag@mit.edu	ckbjimmy@mit.edu

Di Jin	Tristan Naumann	Matthew B. A. McDermott
MIT CSAIL	Microsoft Research	MIT CSAIL
Cambridge, MA	Redmond, WA	Cambridge, MA
jindi15@mit.edu	tristan@microsoft.com	mmd@mit.edu

Model	MedNLI	i2b2 2006	i2b2 2010	i2b2 2012	i2b2 2014
BERT	77.6%	93.9	83.5	75.9	92.8
BioBERT	80.8%	94.8	86.5	78.9	93.0
Clinical BERT	80.8%	91.5	86.4	78.5	92.6
Discharge Summary BERT	80.6%	91.9	86.4	78.4	92.8
Bio+Clinical BERT	82.7%	94.7	87.2	78.9	92.5
Bio+Discharge Summary BERT	82.7%	94.8	87.8	78.9	92.7

UMLS BERT

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

George Michalopoulos1, Yuanxin Wang1, Hussam Kaka1, Helen Chen1, Alex Wong1

University of Waterloo {gmichalo, yuanxin.wang, hussam.kaka, helen.chen, alexander.wong}@uwaterloo.ca

UMLS BERT

Semantic group embeddings Firstly, we introduced a new embedding matrix called $SG \in \mathbb{R}^{d \times D_s}$ into the input embedding of the BERT model, where d is BERT's transformer hidden dimension and $D_s = 6$ is the number of unique UMLS semantic groups that could be identified in the vocabulary of our model. In particular, in this matrix, each row represents the unique semantic group in UMLS that a word can be identified with (for example the word 'heart' is associated with the semantic group 'Anatomy' in UMLS).

Publicly Available Clinical BERT Embeddings

Emily Alsentzer	John R. Murphy	Willie Boag	Wei-Hung Weng
Harvard-MIT	MIT CSAIL	MIT CSAIL	MIT CSAIL
Cambridge, MA	Cambridge, MA	Cambridge, MA	Cambridge, MA
emilya@mit.edu	jrmurphy@mit.edu	wboag@mit.edu	ckbjimmy@mit.edu

Di Jin	Tristan Naumann	Matthew B. A. McDermott
MIT CSAIL	Microsoft Research	MIT CSAIL
Cambridge, MA	Redmond, WA	Cambridge, MA
jindi15@mit.edu	tristan@microsoft.com	mmd@mit.edu

Model	MedNLI	i2b2 2006	i2b2 2010	i2b2 2012	i2b2 2014
BERT	77.6%	93.9	83.5	75.9	92.8
BioBERT	80.8%	94.8	86.5	78.9	93.0
Clinical BERT	80.8%	91.5	86.4	78.5	92.6
Discharge Summary BERT	80.6%	91.9	86.4	78.4	92.8
Bio+Clinical BERT	82.7%	94.7	87.2	78.9	92.5
Bio+Discharge Summary BERT	82.7%	94.8	87.8	78.9	92.7

From NLP to Natural Language Understanding

PEGASUS

PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization

Jingqing Zhang*1 Yao Zhao*2 Mohammad Saleh2 Peter J. Liu2

PEGASUS

Core idea: Gap Sentence Generation Uses self-supervised pre-training objective; complete sentences masked Seq2seq transformer architecture

TRANSFORMER

https://ai.googleblog.com/2020/06/pegasus-state-of-art-model-for.html

Combine MLM with GSG

https://ai.googleblog.com/2020/06/pegasus-state-of-art-model-for.html

Performance

England Regions

Navy frigates in Portsmouth 'to be sunk or scrapped'

3 5 February 2013

Four ships

Five ships

Two ships

Three ships

Six ships

The decommissioned Type 22 frigates

HMS Cumberland, HMS Campbeltown, HMS Chatham and HMS Cornwall

are currently moored in Portsmouth Harbour.

are finalising their bids with viewings set to take place in late Pebruary and March. A final decision is not expected until the spring. The government's Disposal Services Authority, which is handling the sale, wants to award at least one of the frigate, to a UK ship recycler to determine the capacity of the UK's industry in the field. Penny Mordaunt, Conservative MP for Portamouth North, said it was important UK recyclers had the chance to prove themselves in the field but she was also keen to see at least one of them saved from the scrapyard. She added: "For anyone that has served on a ship it's your home, you've literally been through the wars with it ... and you want them to have a noble second Rfe. "My preference is to go for the reef and diving attraction. "We've get to get best value for the budget but a reef would also generate income for part of the country through tourism." The Ministry of Defence has previously said it will "consider all options" for the frightes to ensure "best financial return for the taxpayer". A applicational would not comment on the number or nature of the bids received due to "commercial sensitivity". combatant with substantial anti-surface, anti-submarine and anti-ameral) weapons systems. They were also Burships on deployments, with a complement of about 280 crew. Lust year, the aircraft carrier HMS Ark.

Model Summary: No proposals have been submitted to preserve four Royal Navy frigates for reuse, the BBC has learned. PEGASUS correctly abstracted "four Royal Navy frigates" from an article that mentioned HMS Cumberland, HMS Campbeltown, HMS Chatham and HMS Cornwall...!!!

Reusable Embeddings

Available embeddings for clinical data and concepts. Since ELMo models use character information and BERT models use sub-word information, they can generate a representation for any concept.

Name	Model	Data/Concepts	Terms	Dim.
PubMed-w2v.bin*	word2vec	PubMed	2.4 M	200
PMC-w2v.bin ^b	word2vec	PubMed Central	2.5 M	200
PubMed-and-PMC-w2v.bin	word2vec	PubMed, PubMed Central	4.1 M	200
wikipedia-pubmed-and-PMC-w2v.bin ^d	word2vec	PubMed, PubMed Central, Wikipedia	5.5 M	200
drug word embeddings"	word2vec	PubMed, DrugBank	553,195	420
AWE-CM [49]	word2vec	UMLS CUI (concepts)	265 M	300
claims_codes_hs_300 [55]	word2vec	ICD-9 codes (concepts)	51,327	300
claims_cuis_hs_300 [55]	word2vec	UMLS CUI (concepts)	14,852	300
cui2vec [56]	word2vec/GloVe	UMLS CUI (concepts)	108,477	500
concept embeddings [58]	AiTextML	MeSH ID (concepts)	26,103	100
word embeddings [58]	AiTextML	PubMed	513,196	100
ELMo (PubMed model) [11]	ELMo	PubMed	NA	1024
BioBERT [15]	BERT	PubMed	NA	768/1024
ClinicalBERT [16,17]	BERT	MIMIC III	NA	768

http://evexdb.org/pmresources/ngrams/PubMed/.

b http://evexdb.org/pmresources/ngrams/PMC/.

http://evexdb.org/pmresources/vec-space-models/wikipedia-pubmed-and-PMC-w2v.bin,

d http://evexdb.org/pmresources/vec-space-models/wikipedia-pubmed-and-PMC-w2v.bin.

https://github.com/chop-dbhi/drug_word_embeddings.

Evaluation Tasks

Word embeddings		Evaluation		0
Paper	Corpora	Model	Interiosic	Extrinsia
De Vine et al., 2015 [30]		word2vec		clinical information extraction
Chiu et al., 2016 [72]	PMC, Pubmed, PMC + Pubmed	Word2vec	relatedness, similarity	NER
Dubois et al., 2017 [32]	text notes, OBSUMED	GloVe	·	discuse prediction, mortality prediction
Wang et al., 2018 [29]	Mirro Clinic test notes, Pubbled, Wikipedia,	GloVe	similarity (qualitative),	clinical information extraction, reaction
	Google News		/ PROPERTY # 10 # 10 F 10 F 10 F 10 F 10 F 10 F 10	expection
Huang et al., 2016 (46)	MedHelp online forum, PubMed, Wikipedia		cluster quality evaluation	
Choi et al., 2016 (55)	OHSUMED; medical claims	word2vec	conceptual similarity, medical relatedness	
Yu et al., 2016 (101)	LMLS and McSH terms	LDA	UMES-Similarity	
Mencia et al., 2016 [58]	BioASQ, PultMed	All-in-text	MiniMayoSRS, UMNSRS similarity/relatedness	
Bong et al., 2017 [49]	MINIC-ES	word2vec	similarity	= 1
Patel et al., 2017 [30]	PubMed, mudical claims	word2vec	medical term similarity	medical coding review
Beam et al., 2018 [54]	PubMed, medical claims, UMLS	word2vec, Giree	conorbidity, causative, and drug-conditions relations and	
	somantic types		UMNSRS similarity/relatedness	
Zhao et al., 2018 [43]	PubMed, Drugffank	word2vec	UMNSRS similarity/relatedness	drug name recognition/classification
Coxig et al., 2017 [17]	discharge notes	word2vec (Skipgram)	-	30-day unplanned prediction
Nguyen et al., 2017 (38)	hospital patient records	random init, word2vec	cluster evaluation	unplanned readmission within 6 months prediction
Phom et al., 2016 [39]	hospital patient records	random init + advanced	-	unplanned readmission prediction, high-ris
		techniques		patient prediction
Escudic et al., 2018 [33]	electronic health records from hospital	three-layer stack of denoising autoencoders	-	disease prediction
Gehrmann et al., 2018 [35]	discharge nummaries from MIMIC-III	word2vec	word similarity	plantitype classification
Wang et al., 2016 [29]	rfinical notes from hospital, PMC, Neses, Wikipedin + Gigaword	word2vec (Skip-green)	word/semantic similarity	information extraction, smoking status prediction, fracture detection,
Kholgi et al., 2016 [34]	(2h2/VA 2010 (RL), ShARe/CLOF 2012 eHealth Evaluation Lab (Si2)	word2yec (Skip-gram)	-	disease prediction, term extraction