Meeting 6

10/14/21

Rolando Martinez

Deliverables

- Explain Fourier Transform
- Expand application of welch function to all 64 electrodes

Methodology and Learnings

How did I do it?

Online research

What did I learn on the way?

Fourier transform

Fourier transform

- Another way to represent a waveform
- Multiple applications
- Useful with EEG signals

How it relates

- Interpret data easier
- Patterns become visible

Frequency band	Frequency	Brain states
Gamma (γ)	>35 Hz	Concentration
Beta (β)	12–35 Hz	Anxiety dominant, active, external attention, relaxed
Alpha (α)	8–12 Hz	Very relaxed, passive attention
Theta (θ)	4–8 Hz	Deeply relaxed, inward focused
Delta (δ)	0.5–4 Hz	Sleep

Results

Results – cont.

```
# Read data
data = read_eeg("./2020_06_04_T05_U00T_EEG01.vhdr")
df = data.iloc[:, 0:64]
# plot data
row = 8
col = 8
count = 1
fig = plt.figure(figsize=(8, 8))
fig.subplots_adjust(hspace=.9, wspace=.9)
# Traverse the dataframe and create a plot for each EEG signal
for i in df.columns:
    freq_array, psd = signal.welch(df[i], fs=500) # store frequency and power spectrum of signals
    plt.subplot(row, col, count) # create subplot
    plt.semilogy(freq_array, psd) # plot the semilogy graph
    plt.title(i) # title of graph
    count = count + 1  # increment plot counter
plt.show()
```