

#### Universidad Mayor de San Simón Facultad de Ciencias y Tecnología Carrera de Ingeniería de Sistemas



#### DESARROLLO DE UN SISTEMA DE BLA BLA USANDO OPENCV

MODALIDAD: Proyecto de Grado

ELABORADO POR: Ronald Alejandro Oquendo Muñoz

TUTOR: Lic. Juan

COCHABAMBA - BOLIVIA

PERIODO I - 2014

Dedicado a mi familia

# Índice general

| Lis | Lista de figuras |                                                                   |    |  |
|-----|------------------|-------------------------------------------------------------------|----|--|
| Lis | sta de           | e tablas                                                          | VI |  |
| 1.  | Intro            | oducción                                                          | 1  |  |
|     | 1.1.             | Antecedentes                                                      | 1  |  |
|     | 1.2.             | Identificación del problema                                       | 1  |  |
|     |                  | 1.2.1. Definición del problema                                    | 1  |  |
|     | 1.3.             | Objetivos                                                         | 1  |  |
|     |                  | 1.3.1. Objetivos de la aplicación                                 | 1  |  |
|     |                  | 1.3.2. Objetivos metodológicos                                    | 1  |  |
|     | 1.4.             | Alcance                                                           | 2  |  |
|     | 1.5.             | Justificación                                                     | 2  |  |
| 2.  | Marc             | co Teórico                                                        | 3  |  |
|     | 2.1.             | OpenCV (Open Source Computer Vision)                              | 3  |  |
|     | 2.2.             | Raspberry Pi                                                      | 3  |  |
|     |                  | 2.2.1. Componentes                                                | 3  |  |
|     |                  | 2.2.2. Modulo de Cámara                                           | 4  |  |
|     |                  | 2.2.3. Software                                                   | 5  |  |
|     | 2.3.             | Componentes eléctricos, electrónicos y electromecánicos del Robot | 5  |  |
|     |                  | 2.3.1. Actuadores                                                 | 5  |  |
|     |                  | 2.3.2. Celdas 18650                                               | 5  |  |
|     |                  | 2.3.3. Regulador de voltaje                                       | 5  |  |
|     |                  | 2.3.4. Controlador de motores DC                                  | 5  |  |
|     | 2.4.             | Partes mecánicas del Robot                                        | 6  |  |
|     |                  | 2.4.1. Tractor oruga                                              | 6  |  |
|     |                  | 2.4.2 Chasis del Bobot                                            | 6  |  |

| IV ÍNDICE G | ENERAL |
|-------------|--------|
|-------------|--------|

| 2.4.3. Caja para celdas 18650     | 6  |
|-----------------------------------|----|
| 3. Area de aplicacion             | 7  |
| 4. Metodologia                    | 9  |
| 5. Conclusiones y Recomendaciones | 11 |

# Índice de figuras

| 2.1. | Ubicación de los componentes de Raspberry Pi    | 3 |
|------|-------------------------------------------------|---|
| 2.2. | Modulo de cámara de Raspberry Pi                | 4 |
| 2.3. | H-Bridge controlando un motor adelante y atras. | 5 |
| 2.4. | Empaquetado del circuito integrado L298         | 6 |
| 2.5. | Ruedas y orugas Tamiya                          | 6 |

VI ÍNDICE DE FIGURAS

# Índice de cuadros

| 2.1. | Modulos de OpenCV                | 4 |
|------|----------------------------------|---|
| 2.2. | Descripción de los pines de GPIO | Ę |

## **Abstract**

Ficha resumen del trabajo

X ÍNDICE DE CUADROS

### Introducción

#### 1.1. Antecedentes

Los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los antecedentes los an

#### 1.2. Identificación del problema

#### 1.2.1. Definición del problema

#### 1.3. Objetivos

#### 1.3.1. Objetivos de la aplicación

- Objetivo 1
- Objetivo 2
- Objetivo 3
- Objetivo 4
- Objetivo 5

#### 1.3.2. Objetivos metodológicos

Los objetivos a cumplir durante el desarrollo del proyecto son:

Objetivo 1

- Objetivo 2
- Objetivo 3
- Objetivo 4
- Objetivo 5

#### 1.4. Alcance

El proyecto tendrá el siguiente alcance:

- Alcance 1
- Alcance 2
- Alcance 3
- Alcance 4
- Alcance 5

#### 1.5. Justificación

Justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación justificación ju

### **Marco Teórico**

#### 2.1. OpenCV (Open Source Computer Vision)

OpenCV Op

#### 2.2. Raspberry Pi

#### 2.2.1. Componentes

■ Broadcom BCM2835, SoC que contiene memoria, microprocesador y procesador gráfico.



Figura 2.1: Ubicación de los componentes de Raspberry Pi.

| Modulo     | Funcionalidad                                                                                       |
|------------|-----------------------------------------------------------------------------------------------------|
| Core       | Estructuras de datos, tipos de datos, y manejo de memoria.                                          |
| Imgproc    | Filtros de imagenes, transformacion geometrica de imagenes, analisis de formas.                     |
| Highgui    | GUI, lectura y escritura de imagenes y video.                                                       |
| Video      | Analisis de movimiento y rastreo de objectos en video.                                              |
| Calib3d    | Calibracion de camara y recostruccion 3D de multi-<br>ples vistas.                                  |
| Features2d | Extraccion de caracteristicas, descripcion y macheo.                                                |
| Objdetect  | Object detection using cascade and histogram-of-gradient classifiers.                               |
| ML         | Modelos estadisticos y algoritmos de clasificacion para usarlos en aplicacion de vision artificial. |
| Flann      | Fast Library for Approximate Nearest Neighbors-fast para busquedas en espacios de alta-dimension.   |
| GPU        | Paralelizacion de algoritmos seleccionados para la rapida ejecucion en GPUs.                        |
| Stitching  | Deformacion, mezcla, y ajuste de paquete para stitching de imagenes.                                |
| Nonfree    | Implementacion de algoritmos que estan patentados en algunos paises.                                |

Cuadro 2.1: Modulos de OpenCV

#### Broadcom BCM2835 CPU y GPU

#### Memoria

GPIO (Entradas y salidas de propósito general)

#### 2.2.2. Modulo de Cámara



Figura 2.2: Modulo de cámara de Raspberry Pi.

| Pin | Descripción | Pin | Descripción |
|-----|-------------|-----|-------------|
| 1   | 3.3v        | 2   | 5v          |
| 3   | SDA0*       | 4   | 5v          |
| 5   | SCL0*       | 6   | GND         |
| 7   | GPIO_GCLK   | 8   | TXD0*       |
| 9   | GND         | 10  | RXD0*       |
| 11  | GPIO_GENO   | 12  | GPIO_GEN1   |
| 13  | GPIO_GEN2   | 14  | GND         |
| 15  | GPIO_GEN3   | 16  | GPIO_GEN4   |
| 17  | 3.3v        | 18  | GPIO_GEN5   |
| 19  | SPI_MOSI*   | 20  | GND         |
| 21  | SPI_MISO*   | 22  | GPIO_GEN6   |
| 23  | SPI_SCLK*   | 24  | SPI_CEO_N*  |
| 25  | GND         | 26  | SPI_CE1_N*  |

Cuadro 2.2: Descripción de los pines de GPIO

#### 2.2.3. Software

# 2.3. Componentes eléctricos, electrónicos y electromecánicos del Robot

#### 2.3.1. Actuadores

**Motores DC** 

#### 2.3.2. Celdas 18650

Celdas Li-Ion

#### 2.3.3. Regulador de voltaje

#### 2.3.4. Controlador de motores DC

Un ejemplo de funcionamiento del puente-en-H se muestra en la Figura 2.3, los interruptores S1, S2, S3 y S4 estan situados de tal manera que forman una letra H.

Figura 2.3: H-Bridge controlando un motor adelante y atras.



#### Puente-en-H dual L298

El L298 es un circuito integrado que contiene dos puentes-en-H, es decir que puede controlar dos motores al mismo tiempo. Este C.I. es capaz de controlar motores de alto voltaje y alta corriente, y acepta como entrada niveles logicos TTL.

Figura 2.4: Empaquetado del circuito integrado L298

#### 2.4. Partes mecánicas del Robot

#### 2.4.1. Tractor oruga



Figura 2.5: Ruedas y orugas Tamiya.

#### 2.4.2. Chasis del Robot

#### 2.4.3. Caja para celdas 18650

# Area de aplicacion

# Metodologia

## **Conclusiones y Recomendaciones**

### Bibliografía

- [1] Robótica Wikipedia: http://es.wikipedia.org/wiki/Robótica. 25 de Marzo de 2014
- [2] OpenCV Wikipedia: http://en.wikipedia.org/wiki/OpenCV. 25 de Marzo de 2014
- [3] Scrum Wikipedia: https://en.wikipedia.org/wiki/Scrum\_(software\_development). 26 de Marzo de 2014
- [4] Página oficial de OpenCV: http://opencv.org/. 27 de Marzo de 2014
- [5] Página oficial de Raspberry Pi: http://www.raspberrypi.org/. 27 de Marzo de 2014
- [6] Raspberry Pi Wikipedia: https://en.wikipedia.org/wiki/Raspberry\_Pi. 27 de Marzo de 2014
- [7] Single board computer Wikipedia: https://en.wikipedia.org/wiki/Single-board\_computer. 27 de Marzo de 2014
- [8] Regulador de tensión: https://es.wikipedia.org/wiki/Regulador\_de\_tensi%C3%B3n. 11 de Septiembre de 2014
- [9] Batería de ion de litio https://es.wikipedia.org/wiki/Bater%C3%ADa\_de\_ion\_de\_litio.11 de Septiembre de 2014
- [10] Raspberry Pi camera module: http://www.raspberrypi.org/products/camera-module/. 11 de Septiembre de 2014
- [11] Laganière, Robert.OpenCV 2 Computer Vision Application Programming Cookbook.Packt Publishing.2011.Página 1
- [12] Norris, Donald.Raspberry Pi Projects for the Evil Genius.Mc Graw Hill.2014 . Página 22
- [13] Sahin, Ferat; Kachroo, Pushkin . Practical and Experimental Robotics . CRC Press . 2008 . Página 43
- [14] STMicroelectronics . L298 DUAL FULL-BRIDGE DRIVER Datasheet. STMicroelectronics . 2000 . Página 2