CSE 5243 Autumn'22 Assignment #4 – Intr Data Mining

Neng Shi

2022/11/15

1 Problem 1.

$$\begin{split} &P(Class = N) = 4/9 \\ &P(Class = Y) = 5/9 \\ &P(a1 = T|Class = N) = 3/4 \\ &P(a1 = T|Class = Y) = 1/5 \\ &P(a2 = F|Class = N) = 2/4 \\ &P(a2 = F|Class = Y) = 2/5 \end{split}$$

For
$$a3$$
, when $Class=N$, $\mu=5.00$ and $\sigma^2=2.00$, so $P(a3=2.0|Class=N)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(2.0-5.0)^2}{2\times 2}}=0.030$. And when $Class=Y$, $\mu=5.00$ and $\sigma^2=6.00$, so $P(a3=2.0|Class=Y)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(2.0-5.0)^2}{2\times 6}}=0.077$.

$$X = (a1 = T, a2 = F, a3 = 2.0)$$

$$P(X|Class = N) = P(a1 = T|Class = N) \times P(a2 = F|Class = N) \times P(a3 = 2.0|Class = N) = 0.011$$

$$P(X|Class = Y) = P(a1 = T|Class = Y) \times P(a2 = F|Class = Y) \times P(a3 = 2.0|Class = Y) = 0.006$$

$$\begin{split} P(X|Class = N) \times P(Class = N) &= 0.005 \\ P(X|Class = Y) \times P(Class = Y) &= 0.003, \\ \text{So the new point } (T, F, 2.0) \text{ should be classified as N.} \end{split}$$

2 Problem 2.

$$Info(D) = -\frac{4}{8} \times log_2(\frac{4}{8}) - \frac{4}{8} \times log_2(\frac{4}{8}) = 1$$

After the partition, D1 contains x1, x2, x4, x5, x7 and D2 contains x3, x6, x8.

$$Info(D1) = -\frac{3}{5} \times log_2(\frac{3}{5}) - \frac{2}{5} \times log_2(\frac{2}{5}) = 0.97$$

$$Info(D2) = -\frac{1}{3} \times log_2(\frac{1}{3}) - \frac{2}{3} \times log_2(\frac{2}{3}) = 0.92$$

$$Info_{AB-B^2 \le 0}(D) = \frac{5}{8} \times Info(D1) + \frac{3}{8} \times Info(D2) = 0.95$$
So $Gain(AB - B^2 \le 0) = 1 - 0.95 = 0.05$

3 Problem 3.

First, we cluster A and B since they have the minimum distance.

Then the updated distance matrix is

	${A,B}$	С	D	E
{A, B}	0	3	2	3
С		0	1	3
D			0	5
E				0

Second, we cluster C and D since they have the minimum distance in the updated matrix.

Then the updated matrix is

	${A,B}$	{C, D}	E
{A, B}	0	2	3
С		0	3
D			0

Third, we cluster $\{A, B\}$ and $\{C, D\}$ since they have the minimum distance in the updated matrix. Finally, we cluster $\{A, B, C, D\}$ and E.

4 Problem 4.

Proof. For an item $m \in M$, since it is an max-pattern, it is frequent and there is no frequent super-pattern. Then, obviously, there is no super-pattern with the same support as m, which means $m \in C$. Thus, we prove that $M \subset C$. \square

5 Problem 5.

(a)

Proof. If an itemset s appears in one transaction, then any of its non-empty subset would appear in the transaction. Thus, the support of any nonempty subset s' of itemset s must bet at least as great as the support of s.

(b)

Proof. If an itemset s is frequent, it means that the support of s is larger or equal to a minsup threshold σ . Then, according to the prove in (a), the support of any nonempty subset s' of itemset s is also larger or equal to σ , which means they are also frequent.

(c)

$$\begin{aligned} &\textit{Proof. } confidence(s' => (l-s')) = \frac{support_count(l)}{support_count(s')}, \\ &\text{and } confidence(s => (l-s)) = \frac{support_count(l)}{support_count(s)}. \end{aligned}$$

Since according to the prove in (a), $support_count(s') \ge support_count(s)$, $confidence(s' => (l - s')) \le confidence(s => (l - s))$.

(d)

Proof. Prove by contradiction.

Denote the *n* non-overlapping partitions as D_i , $i \in \{0, ..., n-1\}$, the itemset as s, the support of s in these partitions as $support_i(s)$, $i \in \{0, ..., n-1\}$, and the minsup threshold as σ .

Assume that an itemset s is not frequent in all the partitions, which mean $support_i(s) < \sigma$ for all the i. In that case, the support for s in D would also be less than the minsup threshold σ because it comes from the weighted average of $support_i(s)$, meaning that s is not frequent in D.

6 Problem 6.

Table 1: C_1		
Itemset	sup	
{A}	5	
{B}	4	
{C}	5	
{D}	6	
{E}	1	
{F}	4	
{G}	5	

 $\begin{array}{c|ccc} \text{Table 2: } F_1 \\ \text{Itemset} & \text{sup} \\ \hline \{A\} & 5 \\ \hline \{B\} & 4 \\ \hline \{C\} & 5 \\ \hline \{D\} & 6 \\ \hline \{F\} & 4 \\ \hline \{G\} & 5 \\ \end{array}$

Table 3: C_2		
Itemset	sup	
{A, B}	3	
{A, C}	3	
{A, D}	4	
$\{A, F\}$	2	
$\{A, G\}$	2	
{B, C}	2	
{B, D}	2	
{B, F}	1	
{B, G}	2	
{C, D}	4	
{C, F}	2	
{C, G}	3	
{D, F}	4	
{D, G}	3	
{F, G}	2	

Table 4: F_2		
Itemset	sup	
{A, B}	3	
$\{A, C\}$	3	
A, D	4	
{C, D}	4	
{C, G}	3	
{D, F}	4	
{D, G}	3	

Table 6:
$$F_3$$
Itemset sup

{A, C, D} 3

All frequent patterns are $F_1 \cup F_2 \cup F_3$.

7 Problem 7.

Table 7: C_1		
Itemset	sup	
{A}	4	
{B}	5	
{C}	5	
{D}	3	
{E}	4	

 $\begin{array}{c|cccc} {\rm Table \ 8: \ } F_1 \\ {\rm Itemset} & {\rm sup} \\ \hline \{A\} & 4 \\ \hline \{B\} & 5 \\ \hline \{C\} & 5 \\ \hline \{D\} & 3 \\ \hline \{E\} & 4 \\ \end{array}$

Table 9: C_2		
Itemset	sup	
{A, B}	3	
$\overline{\{A, C\}}$	4	
{A, D}	2	
A, E	2	
{B, C}	4	
{B, D}	2	
{B, E}	4	
{C, D}	2	
{C, E}	3	
{D, E}	1	

 $\begin{array}{c|c|c} \text{Table 10: } F_2 \\ \text{Itemset} & \text{sup} \\ \hline \{A, B\} & 3 \\ \{A, C\} & 4 \\ \{A, D\} & 2 \\ \hline \{A, E\} & 2 \\ \hline \{B, C\} & 4 \\ \hline \{B, D\} & 2 \\ \hline \{B, E\} & 4 \\ \hline \{C, D\} & 2 \\ \hline \{C, E\} & 3 \\ \end{array}$

Table 11: C_3		
Itemset	\sup	
{A, B, C}	3	
{A, B, D}	1	
{A, B, E}	2	
{A, C, D}	2	
{A, C, E}	2	
{B, C, D}	1	
{B, C, E}	3	

Table 12: F_3		
Itemset	\sup	
{A, B, C}	3	
{A, B, E}	2	
$\{A, C, D\}$	2	
$\{A, C, E\}$	2	
{B, C, E}	3	

Table 13:
$$C_4$$
Itemset sup
$$\{A, B, C, E\} = 2$$

All frequent itemsets are $F_1 \cup F_2 \cup F_3 \cup F_4$.

All closed itemsets are $\{A,B,C,E\}: 2, \{A,B,C\}: 3, \{A,C,D\}: 2, \{B,C,E\}: 3, \{A,C\}: 4, \{B,C\}: 4, \{B,D\}: 2, \{B,E\}: 4, \{B\}: 5, \{C\}: 5, \text{ and } \{D\}: 3.$ All maximal itemsets are $\{A,B,C,E\}: 2, \{A,C,D\}: 2, \text{ and } \{B,D\}: 2.$