

협업필터링 이해

writer	🔼 최윤서(학부학생/공과대학 도시공학)
∷ 키워드	
Ø Reference	
⊙ 주차	2주차

협업필터링

<u>다른 사용자들로부터 얻은 정보</u>를 바탕으로 컨텐츠 추천

- 협업 필터링에서 데이터
 - Explicit feedback 데이터: 유저가 자신의 선호도를 직접 표현한 데이터 (평점에 대한 정보가 포함됨)
- 작동 방식
 - 사용자가 평가하지 않은 Item에 대한 평점을 예측.
 (다음과 같은 표에서 비어있는 값을 예측해 채워넣는다고 생각하면 됨)

- 2. 높은 평점을 가질 아이템으로 예측되면 해당 상품을 추천.
- 최근접 이웃 vs 잠재요인 기반

최근접이웃기반

- 사용자 기반
 - 나와 <u>취향이 가장 비슷한 사용자들</u>이 선호하는 상품을 추천
 - = 당신과 비슷한 고객들이 다음 상품도 구매했습니다

		다크 나이트	인터스텔라	엣지오브투 모로우	프로메테우 스	스타워즈라 스트제다이
상호간	사용자 A	5	4	4	추천	
유사도 높음	사용자 B	5	3	4	5	3
	사용자 C	4	3	3	2	5

- 아이템 기반
 - 특정 **상품과 가장 유사한 평가를 받은 상품** 추천
 - = 이 상품을 선택한 다른 고객들은 다음 상품도 구매했습니다

		사용자 A	사용자 B	사용자 C	사용자 D	사용자 E
상호간	세탁기 A	5	4	4	추천	
유사도 높음	세제 A	5	3	4	5	3
	세제 B	4	3	3	2	5

비슷한 평가를 받은 상품 → 비슷한 상품으로 간주

- ex) 사용자기반으로 평점을 예측해보자.
- 1. user3과 나머지 user와의 유사도 구하기

	아이템1	아이템2	아이템3	아이템4	아이템5	아이템6	평균	Cosine(i, 3)	Pearson(i, 3)
사용자1	7	6	7	4	5	4	5.5	0.956	0.894
사용자2	6	7	?	4	3	4	4.8	0.981	0.939
사용자3	?	3	3	1	1	?	2	1.0	1.0
사용자4	1	2	2	3	3	4	2.5	0.789	-1.0
사용자5	1	?	1	2	3	3	2	0.645	-0.817

2. 나와 유사한 사용자들을 고려해 user3에서 비어있는 평점 예측 하기

	아이템1	아이템 6	평균	Pearson(i, 3)
사용자1	7	4	5.5	0.894
사용자2	6	4	4.8	0.939
사용자3	3.35	0.86	2	1.0
사용자4	1	4	2.5	-1.0
사용자5	1	3	2	-0.817

원래 평점을 후하게 주는 user인지에 대한 정보를 제거하기 위하여 bias term 제거해준 이후에 평점 예측에 이용

- ex) 아이템기반으로 평점을 예측해보자.
- 1. 평점을 예측하고자 하는 아이템(1, 6번)과의 유사도를 구하기

	아이템1	아이템 2	아이템 3	아이템4	아이템 5	아이템 6
사용자1	7	6	7	4	5	4
사용자2	6	7	?	4	3	4
사용자3	3	3	3	1	1	1
사용자4	1	2	2	3	3	4
사용자5	1	?	1	2	3	3
Cosine(1, j)	1	0.735	0.912	-0.848	-0.813	-0.990
Cosine(6, j)	-0.990	-0.622	-0.912	0.829	0.730	1

2. 유사한 아이템들을 고려해 user3에서 비어있는 평점 예측하기

$$\hat{r}_{31} = \frac{3 * 0.735 + 3 * 0.912}{0.735 + 0.912} = 3$$

$$\hat{r}_{36} = \frac{1 * 0.829 + 1 * 0.730}{0.829 + 0.730} = 1$$

잠재요인기반

- 사용자-아이템 평점 행렬에 잠재 요인이 있다고 가정.
- 원본행렬을 **P와 Q로 분해**한뒤, 예측된 P와 Q를 기반으로 **재결합**하여 몰랐던 평점을 예측할 수 있음.

m = user 수 / n=아이템수 / k=잠재요인의 차원수(임의 설정)

• ex) 사용자들의 영화 평점 행렬에 숨겨져 있는 잠재요인이 '장르'라고 한다면 사용자별 장르 선호도 행렬과 영화(아이템)별 장르 선호도 행 렬을 기반으로 몰랐던 평점을 예측할 수 있는 것임

- 원본 사용자-아이템 평점 행렬에는 비어져 있는 값이 많음. 그렇다면 어떻게 P행렬과 Q 행렬을 구하지?
- 확률적 경사 하강법(SGD)
 - 。 목적함수

$$\min \sum (r_{(u,i)} - p_u q_i)^2 + \lambda (\|q_i\|^2 + \|p_u\|^2)$$

- 원본 행렬 R과 추정한 P,Q를 결합한 R-hat과의 차이가 최소화되도록
- 과적합 제어하기 위하여 L2 규제

- 。 SGD를 통해 구하는 방법
 - 1. P와 Q 행렬을 임의의 값을 가진 행렬로 초기화
 - 2. P, Q를 통해 도출한 R-hat과 R과의 차이를 최소화할 수 있도록(+과적합제어) P와 Q를 업데이트

$$p_{u_{new}} = p_u + \eta(e_{(u,i)} * q_i - \lambda * p_u)$$
$$q_{i_{new}} = q_i + \eta(e_{(u,i)} * p_u - \lambda * q_i)$$

- 3. 특정임계치 아래로 수렴할 수 있도록 P,Q 행렬을 계속해서 업데이트(SGD)
- 。 SGD는 두 개의 행렬을 동시에 최적화

• ALS(Alternating Least Squares)

- 둘 중 하나를 고정시키고 다른 행렬을 최적화 하는 방법.하나를 고정했을떄는 convex 형태로 바뀌기 때문에 수렴된 행렬을 찾을 수 있다는 장점
- how
 - 1. 모르는 정보는 모두 0으로 채워놓고 진행.
 - 2. 아이템 행렬 고정해두고 사용자 행렬 최적화
 - 3. 사용자 행렬 고정해두고 아이템 행렬 최적화
 - 4. 위의 두 과정을 계속 방법