Nome/coanome	N. di matricola (10 cifre)	Posizione: Riga	Col

UNIVERSITA' DI BOLOGNA - CORSO DI LAUREA IN INFORMATICA CORSO DI SISTEMI OPERATIVI - ANNO ACCADEMICO 2004/2005 COMPITO PARTE GENERALE – 10 Giugno 2005

Esercizio -1: essersi iscritti correttamente per svolgere questa prova.

Esercizio 0: Su entrambi i fogli, scrivere correttamente nome, cognome, matricola e posizione prima di svolgere ogni altro esercizio.

Esercizio 1

Siano dati i seguenti processi real-time periodici, con i rispettivi valori di periodicità e costo:

Process Id.	T	C
P1	20	5
P2	12	6
P3	10	2

- (a) Usando l'algoritmo rate-monotonic, i processi P1-P3 sono schedulabili secondo la condizione associata? Tale condizione è necessaria e sufficiente? Spiegare concisamente.
- (b) Mostrate lo schedule prodotto dall'algoritmo (lo schedule deve essere <u>completo</u>, anche se l'insieme di processi non è schedulabile). Spiegate concisamente l'algoritmo seguito e commentate lo schedule ottenuto rispetto alla risposta (a).

Esercizio 2

Mostrare, se possibile, un esempio (non banale) in cui, fissato il numero di frame, l'algoritmo dell'orologio compia meno page fault dell'algoritmo LRU. Altrimenti, spiegare perchè non è possibile.

Esercizio 3

Si consideri il seguente frammento di FAT:

Blocco Fisico	-	valore nella FAT
30		16
31		35
32		33
33		34
34		36
35		40
36		37
37		39
38		29
39		30
40		39

e di directory "D1": nome file - primo blocco

A 32 B 31

- a) Nell'ipotesi che i blocchi abbiano dimensione 1KB (1024 byte), dire in quali blocchi fisici sono memorizzati i seguenti byte dei file A e B della directory "D1":
- a- byte 12239 di A
- b- byte 1025 di A
- c- byte 2048 di B
- d- byte 2047 di B
- b) La FAT così rapprentata è coerente? Se sì, spiegare perchè. Se no, spiegare come potrebbe essere resa coerente.

Esercizio 5

Sia x la vostra penultima cifra e y l'ultima cifra del vostro numero di matricola. Rispondete alla domanda (y*10+x)%7

- 0) Illustrate, anche con un esempio, i concetti di scheduling preemptive e di scheduling cooperativo.
- 1) Illustrate il concetto di algoritmo a stack. Portate esempi di algoritmi a stack e algoritmi non a stack.
- 2) Descrivete concisamente l'algoritmo di scheduling SJF, inclusa la formula per il calcolo approssimato dei CPU burst.
- 3) Descrivete il concetto di working set.
- 4) Descrivete le tecniche per verificare la coerenza di un file system.
- 5) Descrivete concisamente il concetto di MFT di Windows.
- 6) Descrivete i principali meccanismi per la realizzazione di directory basate su grafi aciclici.