## HW#4 Due:4/19/2022 110598095 歐俊杰

 Plot a decision tree for the following data points. If you carefully design your tree, you will just need to use one ">" or "<" in a vertex.</li>





2. We have G = 0.048 for  $H_0 = 65$  and G = 0.102 for  $H_0 = 80$  on pp. 46 of the decision-tree PPT file. Confirm these G values are correct by hand calculation.

| Outlook  | Temperature | Humidity | Windy | Play       |
|----------|-------------|----------|-------|------------|
| Sunny    | 85          | 85       | false | Don't Play |
| Sunny    | 80          | 90       | true  | Don't Play |
| Overcast | 83          | 78       | false | Play       |
| Rainy    | 70          | 96       | false | Play       |
| Rainy    | 68          | 80       | false | Play       |
| Rainy    | 65          | 70       | true  | Don't Play |
| Overcast | 64          | 65       | true  | Play       |
| Sunny    | 72          | 95       | false | Don't Play |
| Sunny    | 69          | 70       | false | Play       |
| Rainy    | 75          | 80       | false | Play       |
| Sunny    | 75          | 70       | true  | Play       |
| Overcast | 72          | 90       | true  | Play       |
| Overcast | 81          | 75       | false | Play       |
| Rainy    | 71          | 80       | true  | Don't Play |

$$E_n(S) = -\frac{5}{14} * log_2 \frac{5}{14} - \frac{9}{14} * log_2 \frac{9}{14} \approx 0.94$$

$$H_0 = 65$$

$$\begin{split} E_n(H \leq H_0) &= -\frac{1}{1} * \log_2 \frac{1}{1} - \frac{0}{1} * \log_2 \frac{0}{1} = 0 , \ P_{H \leq H_0} = \frac{1}{14} \\ E_n(H > H_0) &= -\frac{8}{13} * \log_2 \frac{8}{13} - \frac{5}{13} * \log_2 \frac{5}{13} \cong 0.961 , \ P_{H > H_0} = \frac{13}{14} \\ G(S, H) &= 0.94 - (\frac{1}{14} * 0 + \frac{13}{14} * 0.961) \cong 0.048 \end{split}$$

$$H_0 = 80$$

$$\begin{split} E_n(H \leq H_0) &= -\frac{7}{9} * \log_2 \frac{7}{9} - \frac{2}{9} * \log_2 \frac{2}{9} \cong 0.764 , \ P_{H \leq H_0} = \frac{9}{14} \\ E_n(H > H_0) &= -\frac{2}{5} * \log_2 \frac{2}{5} - \frac{3}{5} * \log_2 \frac{3}{5} \cong 0.971 , \ P_{H > H_0} = \frac{5}{14} \\ G(S, H) &= 0.94 - (\frac{9}{14} * 0.764 + \frac{5}{14} * 0.971) \cong 0.102 \end{split}$$

3. We have a dataset  $S = \{\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}\}$ . Follow the k-means algorithm to complete the assignment step and the update step for one run. Use k = 2, initial  $\mu_1 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$  and  $\mu_2 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$  in the computation.

$$s = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}$$
$$\mu_1 = \begin{bmatrix} -1 \\ -1 \end{bmatrix} , \mu_2 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

$$\begin{aligned} \|x_1 - \mu_1\| &= \sqrt{2} \cdot \|x_1 - \mu_2\| = \sqrt{18} \Rightarrow b(1,1) = 1 \\ b(1,2) &= 0 \\ \|x_2 - \mu_1\| &= \sqrt{18} \cdot \|x_2 - \mu_2\| = \sqrt{2} \Rightarrow b(2,1) = 0 \\ b(2,2) &= 1 \end{aligned}$$

$$\|x_3 - \mu_1\| &= \sqrt{5} \cdot \|x_3 - \mu_2\| = \sqrt{13} \Rightarrow b(3,1) = 1 \\ b(3,2) &= 0 \end{aligned}$$

$$\|x_4 - \mu_1\| &= \sqrt{8} \cdot \|x_4 - \mu_2\| = \sqrt{8} \Rightarrow b(4,1) = 1 \\ b(4,2) &= 1 \end{aligned}$$

$$= \Rightarrow \mu_1 = \frac{x_1 + x_3 + x_4}{3} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} \cdot \mu_2 = \frac{x_2 + x_4}{2} = \begin{bmatrix} \frac{3}{2} \\ \frac{1}{3} \\ \frac{1}{2} \end{bmatrix}$$

$$\|x_1 - \mu_1\| &= \sqrt{\frac{5}{9}} \cdot \|x_1 - \mu_2\| = \sqrt{\frac{1}{2}} \Rightarrow b(2,1) = 1 \\ b(1,2) &= 0 \end{aligned}$$

$$\|x_2 - \mu_1\| &= \sqrt{\frac{41}{9}} \cdot \|x_2 - \mu_2\| = \sqrt{\frac{1}{2}} \Rightarrow b(2,1) = 0 \\ b(2,2) &= 1 \end{aligned}$$

$$\|x_3 - \mu_1\| &= \sqrt{\frac{2}{9}} \cdot \|x_3 - \mu_2\| = \sqrt{\frac{5}{2}} \Rightarrow b(3,1) = 1 \\ b(3,2) &= 0 \end{aligned}$$

$$\|x_4 - \mu_1\| &= \sqrt{\frac{5}{9}} \cdot \|x_4 - \mu_2\| = \sqrt{\frac{1}{2}} \Rightarrow b(4,1) = 0 \\ b(4,2) &= 1 \end{aligned}$$

$$= \Rightarrow \mu_1 = \frac{x_1 + x_3}{2} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \cdot \mu_2 = \frac{x_2 + x_4}{2} = \begin{bmatrix} \frac{3}{2} \\ \frac{3}{2} \\ \frac{3}{2} \end{bmatrix}$$

$$\|x_1 - \mu_1\| &= \sqrt{\frac{1}{4}} \cdot \|x_1 - \mu_2\| = \sqrt{\frac{1}{4}} \Rightarrow b(1,1) = 1 \\ b(1,2) &= 0 \end{aligned}$$

$$\|x_2 - \mu_1\| = \sqrt{\frac{1}{4}} \cdot \|x_1 - \mu_2\| = \sqrt{\frac{1}{2}} \Rightarrow b(2,1) = 0 \\ b(2,2) &= 1 \end{aligned}$$

$$\|x_2 - \mu_1\| &= \sqrt{\frac{1}{4}} \cdot \|x_2 - \mu_2\| = \sqrt{\frac{1}{2}} \Rightarrow b(2,1) = 0 \\ b(2,2) &= 1 \end{aligned}$$

$$\|x_3 - \mu_1\| = \sqrt{\frac{1}{4}} \cdot \|x_3 - \mu_2\| = \sqrt{\frac{5}{2}} \Rightarrow b(3,1) = 1 \\ b(3,2) &= 0 \end{aligned}$$

$$\|x_4 - \mu_1\| = \sqrt{\frac{5}{4}} \cdot \|x_4 - \mu_2\| = \sqrt{\frac{1}{2}} \Rightarrow b(4,1) = 0 \\ b(2,2) &= 1 \end{aligned}$$

$$\|x_4 - \mu_1\| = \sqrt{\frac{5}{4}} \cdot \|x_4 - \mu_2\| = \sqrt{\frac{1}{2}} \Rightarrow b(4,1) = 0 \\ b(4,2) &= 1 \end{aligned}$$

$$\Rightarrow \mu_1 = \frac{x_1 + x_3}{2} = \begin{bmatrix} 0 \\ 1 \\ 4 \end{bmatrix} \cdot \|x_4 - \mu_2\| = \sqrt{\frac{1}{2}} \Rightarrow b(4,1) = 0 \\ b(4,2) &= 1 \end{aligned}$$

$$\Rightarrow \mu_1 = \frac{x_1 + x_3}{2} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \cdot \mu_2 = \frac{x_2 + x_4}{2} = \begin{bmatrix} \frac{3}{2} \\ \frac{3}{2} \end{bmatrix}$$

4. Write a program by using the sklearn to construct a CART tree for the play/no\_play data on the lecture notes (16\_decison\_trees). You need to think a way to deal with the categorical data. If a particular day is sunny, high temperature, low humidity, and no wind, what is the decision based on your plotted tree?



valuė = [1, 0]

class = Play

value = [0, 1] class = Dont't Play

```
from sklearn import tree
from six import StringIO
import numpy as np
import pydot
import os
```

```
os.environ['PATH'] += os.pathsep + 'C:/Program Files/Graphviz/bin'
```

5. Repeat the classification of the Iris dataset by using the random forest method with K = 50. To simplify the problem, just do 7:3 splitting for training and testing sets. Remember to repeat the trials 10 times to calculate the average. Of the methods you used in HW1, HW2, HW 3 and this HW, which method seems the best?

KNN's Accuracy is the best => KNN model seems best.

```
from sklearn import datasets
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

iris_data = datasets.load_iris()

data = iris_data.data
target = iris_data.target

accuracy = 0

for times in range(10):
    rfc_data = RandomForestClassifier(n_estimators = 50, random_state = 42)
    x_train, x_test, y_train, y_test = train_test_split(data, target, test_size = 0.3)
    rfc_data.fit(x_train, y_train)
    pre = rfc_data.predict(x_test)
    accuracy = accuracy + accuracy_score(y_test, pre)
```

Accuracy: 0.95

print("Accuracy : %.2f" % round(accuracy \* 0.1, 2))