AN EFFICIENT METHOD OF SPLINE APPROXIMATION FOR POWER FUNCTION

PETRO KOLOSOV

ABSTRACT. Let P(m, X, N) be an m-degree polynomials in $X \in \mathbb{R}$ having fixed non-negative integers m and N. In this manuscript we discuss approximation properties of polynomial P(m, X, N). In particular, the polynomial P(m, X, N) approximates odd power function X^{2m+1} in some neighborhood of fixed non-negative integer N with percentage error lesser than 1%. Percentage error is free for adjustments, depending on required approximation accuracy. By increasing the value of N the length of convergence interval with odd-power X^{2m+1} increasing as well. Furthermore, above approximation property is generalized for arbitrary non-negative exponent power function, using splines.

CONTENTS

1. Introduction	2
References	6
2. Addendum	8

Date: February 21, 2025.

2010 Mathematics Subject Classification. 26E70, 05A30.

Key words and phrases. Binomial theorem, Binomial coefficients, Faulhaber's formula, Polynomials, Pascal's triangle Finite differences, Interpolation, Polynomial identities.

Sources: https://github.com/kolosovpetro/AnEfficientMethodOfSplineApproximation

1. Introduction

Consider the m-degree polynomial P(m, X, N) having fixed non-negative integers m and N

$$P(m, X, N) = \sum_{r=0}^{m} \sum_{k=1}^{N} \mathbf{A}_{m,r} k^{r} (X - k)^{r}$$

For example

$$P(2, X, 0) = 0$$

$$P(2, X, 1) = 30X^{2} - 60X + 31$$

$$P(2, X, 2) = 150X^{2} - 540X + 512$$

$$P(2, X, 3) = 420X^{2} - 2160X + 2943$$

$$P(2, X, 4) = 900X^{2} - 6000X + 10624$$

where $\mathbf{A}_{m,r}$ is a real coefficient defined recursively, see [1, 2, 3, 4]. For example,

m/r	0	1	2	3	4	5	6	7
0	1							
1	1	6						
2	1	0	30					
3	1	-14	0	140				
4	1	-120	0	0	630			
5	1	-1386	660	0	0	2772		
6	1	-21840	18018	0	0	0	12012	
7	1	-450054	491400	-60060	0	0	0	51480

Table 1. Coefficients $A_{m,r}$. See OEIS sequences [5, 6].

Essentially, the polynomial P(m, X, N) is a result of rearrangement inside Faulhaber's formula. It was inspired by Knuth's *Johann Faulhaber and sums of powers*, see [7]. In particular, the polynomial P(m, X, N) yields an identity for odd powers

$$P(m, X, X) = X^{2m+1}$$

In extended form

$$X^{2m+1} = \sum_{r=0}^{m} \sum_{k=1}^{X} \mathbf{A}_{m,r} k^{r} (X-k)^{r}$$

Precisely, the relation between Faulhaber's formula and P(m, X, N) is shown by [8].

However, apart polynomial identity for odd powers, I've spotted several approximation properties of P(m, X, N). Therefore, in this manuscript we discuss approximation properties of polynomial P(m, X, N). I use a few well-known criteria to measure and estimate error of approximation: Absolute error, Relative error and Percentage error. Assume that function $f_2(x)$ approximates the function $f_1(x)$ then the errors are

Absolute Error =
$$\frac{|f_1(x) - f_2(x)|}{|f_1(x)|}$$
Relative Error =
$$\frac{|f_1(x) - f_2(x)|}{|f_1(x)|}$$
Percentage Error =
$$\frac{|f_1(x) - f_2(x)|}{|f_1(x)|} \times 100\%$$

Diving straight to the point, we switch our focus to already mentioned polynomial $P(2, X, 4) = 900X^2 - 6000X + 10624$ to show the first example of how it approximates the odd power function X^5 . In fact, we approximate the polynomial X^{2m+1} by lower degree polynomial X^m as the following image presents

Figure 1. Polynomial plot P(2, X, 4) with fifth power X^5 . Points of intersection X = 4, X = 4.42472, X = 4.99181. Convergence interval: $4.0 \le X \le 5.1$ with percentage error E < 1%.

As we see, polynomial P(2, X, 4) approximates X^5 in a neighborhood of N = 4 with the convergence interval $4.0 \le X \le 5.1$ that has percentage error lesser than 1% which is quite impressive. To showcase the concrete values of absolute, relative and percentage errors of this approximation, I attach a separate table to addendum.

One more interesting observation can be done by increasing the value of N in P(m, X, N) having fixed m, it follows that by increasing N the length of convergence interval with odd-power X^{2m+1} increasing as well. For instance,

- Having P(2, X, 4) and X^5 the convergence interval with percentage error lesser than 1% is $4.0 \le X \le 5.1$ with length of interval L = 1.1
- Having P(2, X, 20) and X^5 the convergence interval with percentage error lesser than 1% is $18.7 \le X \le 22.9$ with length of interval L = 4.2
- Having P(2, X, 120) and X^5 the convergence interval with percentage error lesser than 1% is $110.0 \le X \le 134.7$ with length of interval L = 24.7

The reason why the length of convergence interval rises as N rise lays beneath the implicit form of polynomial P(m, X, N) meaning that

$$P(m, X, N) = \sum_{r=0}^{m} (-1)^{m-r} U(m, N, r) \cdot X^{r}$$

where U(m, N, r) is a polynomial defined as follows

$$U(m, N, r) = (-1)^m \sum_{k=1}^{N} \sum_{j=r}^{m} {j \choose r} \mathbf{A}_{m,j} k^{2j-r} (-1)^j$$

which rises as N rise.

To wrap up the current state of the manuscript, refresh the key facts and finding we got so far. Therefore, the polynomial P(m, X, N) is an m-degree polynomial in $X \in \mathbb{R}$, having fixed non-negative integers m and N. It approximates odd power function X^{2m+1} in some neighborhood of fixed N. The length L of convergence interval between X^{2m+1} and P(m, X, N) rises as N rise.

For the sake of clear and precise verification of results, I attach mathematica programs to generate plots and data tables, so that reader is able to verify the main results of current part of manuscript, see the link.

So far we have discussed approximation of odd power function X^{2m+1} , now we focus on its even case X^{2m+2} which is quite straightforward. Considering the same example P(2, X, 4) we reach the approximation of even power X^6 by means of K-times multiplication by X, with graphic representation as follows

Figure 2. Polynomial plot $P(2, X, 4) \cdot X$ with sixth power X^6 . Convergence interval: $3.9 \le X \le 5.3$ with percentage error E < 2%.

Therefore, we have reached the statement that the polynomial P(m, X, N) is an m-degree polynomial in X, having fixed non-negative integers m and N. It approximates the power function X^j in some neighborhood of fixed N. The length of convergence interval between power function and P(m, X, N) or $P(m, X, N) \cdot X^K$ rises as N rise.

References

- Alekseyev, Max. MathOverflow answer 297916/113033, 2018. https://mathoverflow.net/a/297916/ 113033.
- [2] Kolosov, Petro. On the link between binomial theorem and discrete convolution. arXiv preprint arXiv:1603.02468, 2016. https://arxiv.org/abs/1603.02468.
- [3] Kolosov, Petro. 106.37 An unusual identity for odd-powers. The Mathematical Gazette, 106(567):509–513, 2022. https://doi.org/10.1017/mag.2022.129.
- [4] Petro Kolosov. History and overview of the polynomial P(m,b,x), 2024. https://kolosovpetro.github.io/pdf/HistoryAndOverviewOfPolynomialP.pdf.
- [5] Petro Kolosov. Entry A302971 in The On-Line Encyclopedia of Integer Sequences, 2018. https://oeis. org/A302971.

AN EFFICIENT METHOD OF SPLINE APPROXIMATION FOR POWER FUNCTION

7

- [6] Petro Kolosov. Entry A304042 in The On-Line Encyclopedia of Integer Sequences, 2018. https://oeis.org/A304042.
- [7] Knuth, Donald E. Johann Faulhaber and sums of powers. *Mathematics of Computation*, 61(203):277–294, 1993. https://arxiv.org/abs/math/9207222.
- [8] Petro Kolosov. Unexpected polynomial identity, 2025. https://kolosovpetro.github.io/pdf/ UnexpectedPolynomialIdentity.pdf.

Version: Local-0.1.0

2. Addendum

Table 2. Comparison of X^5 and $P(2, X, 4) = 900X^2 - 6000X + 10624$

X	X^5	$900X^2 - 6000X + 10624$	ABS	Relative	% Error
3.8	792.352	820.0	27.6483	0.034894	3.4894
3.9	902.242	913.0	10.758	0.0119236	1.19236
4.0	1024.0	1024.0	0.0	0.0	0.0
4.1	1158.56	1153.0	5.56201	0.00480079	0.480079
4.2	1306.91	1300.0	6.91232	0.00528905	0.528905
4.3	1470.08	1465.0	5.08443	0.0034586	0.34586
4.4	1649.16	1648.0	1.16224	0.000704746	0.0704746
4.5	1845.28	1849.0	3.71875	0.00201528	0.201528
4.6	2059.63	2068.0	8.37024	0.00406395	0.406395
4.7	2293.45	2305.0	11.5499	0.00503605	0.503605
4.8	2548.04	2560.0	11.9603	0.00469393	0.469393
4.9	2824.75	2833.0	8.24751	0.00291973	0.291973
5.0	3125.0	3124.0	1.0	0.00032	0.032
5.1	3450.25	3433.0	17.2525	0.00500036	0.500036
5.2	3802.04	3760.0	42.0403	0.0110573	1.10573
5.3	4181.95	4105.0	76.9549	0.0184017	1.84017
5.4	4591.65	4468.0	123.65	0.0269294	2.69294
5.5	5032.84	4849.0	183.844	0.0365288	3.65288
5.6	5507.32	5248.0	259.318	0.047086	4.7086
5.7	6016.92	5665.0	351.921	0.0584885	5.84885
5.8	6563.57	6100.0	463.568	0.0706274	7.06274
5.9	7149.24	6553.0	596.243	0.0833995	8.33995