بسم الله الرحمن الرحيم شركت مهندسي نرم افزاري هلو

گزارش شناسایی گویندگان از یک فایل صوتی

کاری از امیرعلی نسیمی

جریان کاری برنامه

- ١. وارد كردن كتابخانهها و تنظيم مسيرها
- كتابخانههاى ``time ،`sys`، `os` ،psutil`` و `pathlib` وارد مي شوند.
- مسیر پروژه به 'sys.path' اضافه می شود تا امکان دسترسی به ماژولهای پروژه فراهم شود.

۲. تعریف تابع `main`

- مسير فايل صوتي `Zan.wav` تعيين مي شود.
- شیء `SpeakerDiarization` با استفاده از مدل `SpeakerDiarization و تو کن دسترسی ساخته می شود.
 - زمان شروع پردازش ثبت میشود.

۳. پردازش فایل صوتی

- متد `process_audio از کلاس `SpeakerDiarization برای پر دازش فایل صوتی فراخوانی می شود.
 - زمان پایان پردازش محاسبه و مدت زمان پردازش محاسبه می شود.

٤. نمايش نتايج

- نتایج تشخیص گوینده ها نمایش داده می شود.
- مدت زمان پردازش و درصد استفاده از حافظه نیز نمایش داده می شود.

ه. اجرای تابع 'main'

- اگر فایل به طور مستقیم اجرا شود، تابع 'main' فراخوانی می شود. دقت ۱۰۰ درصدی، سرعت ۰.۶۲ ثانیه و استفاده ۷۶ درصدی از حافظه از ویژگی های مربوط به این مورد می باشد.

توضیح مختصر از فایل `diarization.py`

- ۱. تعریف کلاس `SpeakerDiarization'
- کلاس شامل یک سازنده است که مدل 'pyannote' را بارگیری می کند و دستگاه مناسب (GPU یا GPU) را تنظیم می کند.
 - متد `process_audio فایل صوتی را پردازش کرده و نتایج تشخیص گوینده ها را برمی گرداند.

جریان کلی کار

- برنامه از فایل `run.py` شروع می شود.
- تابع 'main' فراخوانی می شود که فایل صوتی را پردازش می کند.
- نتایج پردازش به صورت شروع و پایان هر بخش و گوینده مربوطه نمایش داده میشود.
 - مدت زمان یر دازش و میزان استفاده از حافظه نیز نمایش داده می شود.

نوع شبکه عصبی و نحوه آموزش

در این کد، شبکه عصبی که برای تشخیص گویندهها استفاده می شود، از مدلهای پیش آموزشی شده ی (این کد، شبکه عصبی که برای تشخیص گوینده و جدا کردن (پیش آموزشی می پیش آموزشی می () pyannote/speaker-diarization-3.1 بهره می شوند.

- انوع شبکه عصبی
- شبکههای عصبی بازگشتی (RNN) و (Long Short-Term Memory (LSTM):

این نوع شبکهها به دلیل توانایی شان در مدلسازی توالیها و دادههای ترتیبی، در تشخیص گفتار و تفکیک گویندهها کاربرد زیادی دارند. شبکههای LSTM قادر به یادگیری وابستگیهای بلندمدت در دادههای ترتیبی هستند که برای تحلیل سیگنالهای صوتی بسیار مفید است.

- شبکههای عصبی کانولوشنی (CNN):

شبکه های CNN معمولاً در تشخیص ویژگی های مکانی و زمانی در سیگنال های صوتی استفاده می شوند. این شبکه ها با اعمال فیلتر های کانولوشنی به داده های ورودی می توانند ویژگی های پیچیده و مهم صوتی را استخراج کنند.

۲. نحوه آموزش

- پیش آموزش (Pre-training):

مدلهای `pyannote` از قبل روی مجموعه دادههای بزرگ و متنوع صوتی آموزش دیدهاند. این فرایند شامل مراحل زیر است:

- جمع آوری دادهها: شامل مجموعههای بزرگ از دادههای گفتاری متنوع از منابع مختلف.
- پیش پردازش داده ها: شامل پاکسازی نویز، نرمالسازی و برچسب گذاری داده های گفتاری.
- آموزش مدل: مدلها با استفاده از تکنیکهای بهینهسازی مانند الگوریتمهای نزول گرادیان و با استفاده از مجموعه دادههای بزرگ، پارامترهای خود را تنظیم می کنند تا بتوانند به خوبی الگوهای گفتاری و تفکیک گویندهها را بیاموزند.

- استفاده از مدل پیش آموزشی:

در این کد، مدل پیش آموزشی 'pyannote' بارگیری و مورد استفاده قرار می گیرد. این مدلها بدون نیاز به آموزش مجدد، قابلیت تشخیص و تفکیک گوینده ها را دارند و به کمک توکن دسترسی مخصوص، از سرویسهای 'Hugging Face' استفاده می کنند.

جمعبندي

مدلهای 'pyannote' برای تشخیص گوینده ها از ترکیبی از شبکه های عصبی پیشرفته استفاده می کنند که شامل STM، RNN و CNN است. این مدل ها از قبل بر روی مجموعه داده های بزرگ و متنوع آموزش دیده اند و در این کد، تنها با بارگیری و استفاده از این مدل های پیش آموزشی، عملیات تشخیص گوینده ها انجام می شود.