the H^{\pm} -mediated transition matrix element combined with SM contribution for $\bar{P} \to \ell \bar{\nu}_{\ell}$ is obtained as

$$\mathcal{M}_{\bar{P}\to\ell\bar{\nu}_{\ell}}^{SM+H^{\pm}} = -i\frac{G_F}{\sqrt{2}}V_{ij}m_{\ell}f_P r_P^{\ell}(\bar{\ell}\nu_{\ell})_{S-P}$$
(16)

with

$$r_P^{\ell} = 1 + \frac{\eta_{\ell}^* m_P^2}{m_{H^{\pm}}^2} \frac{\eta_{U_i}^* m_{U_i} - \eta_{D_j} m_{D_j}}{m_{U_i} + m_{D_j}} \,. \tag{17}$$

We learn that the H^{\pm} -mediated contribution is only associated with the factor r_P^{ℓ} and it depends on the species of lepton due to the appearance of η_{ℓ} . Since η_{U_i} , η_{D_j} and η_{ℓ} are all free parameters, in order to make the results be more predictive, we can adopt a simple scenario. As mentioned earlier, η_{U_i} and $\eta_{D_i,\ell}$ play the role of $\cot \beta$ and $\tan \beta$ in the type-II THDM, respectively. If the new H^{\pm} -mediated effects would like to satisfy the constraints of current data such as $b \to s\gamma$, it is plausible to set $|\eta_{U_i}| \ll |\eta_{D_i}| \approx |\eta_{\ell}|$ [25]. As a consequence, r_P^{ℓ} could be simplified by

$$r_P^{\ell} \approx 1 - \frac{m_P^2}{m_{H^{\pm}}^2} \frac{m_{D_j}}{m_{U_i} + m_{D_j}} |\eta_{D_j}|^2 e^{i\phi_{D_j}^{\ell}}$$
 (18)

Intriguingly, in this plain scenario we see that the dependence of lepton flavor in r_P^ℓ can be ascribed to the phase factor $\phi_{D_j}^\ell$. Since $\phi_{D_j}^\ell$ are the new physical phases, in general, they cannot be rotated away. If we enforce $\eta_{D_i} = \tan \beta$, we see that the magnitude of charged Higgs effects is the same as that in type-II THDM. In other words, apart from the new phase factor $\phi_{D_i}^\ell$, we do not introduce a new enhanced factor.

In order to display the new physics effects numerically, we investigate the influence of charged Higgs on R_K for $K_{\ell 2}$, on $f_{D_s}r_{D_s}^{\ell}$ for $D_s \to \ell^+\nu_{\ell}$ decays and on BR for $B \to \ell^+\nu_{\ell}$, respectively. Using Eqs. (9) and (16), the ratio of $\Gamma(K_{e2}^{\pm})$ to $\Gamma(K_{\mu 2}^{\pm})$ can be expressed by

$$R_K = R_K^{\rm SM} \left(1 + \frac{m_K^2}{m_{H^{\pm}}^2} \frac{m_s}{m_u + m_s} \eta_s^2 \Delta c_s^{\mu e} \right)$$
 (19)

with $\Delta c_s^{\mu e} = \cos(\phi_s^{\mu}) - \cos(\phi_s^{e})$, where because of the second term in the brackets being much smaller than unity, we have neglected the terms whose the order is higher than $m_K^2 \eta_s^2 / m_{H^{\pm}}^2$. The resulted numerical values as a function of $\eta_s / m_{H^{\pm}}$ and $\Delta c_s^{\mu e}$ are presented in Fig. 2. The values in the figure denote the ratio $R_K^{\rm Exp} / R_K^{\rm SM}$. We see clearly that due to the lepton flavor dependent phases, H^{\pm} -mediated contributions could modify the SM prediction and be still consistent with current data.