01. Datové formáty

Bit

• Základní a nejmenší jednotka informace; 2 hodnoty (0,1)

Byte

- "Bajt"
- 8 bitů
- Rozsah je od 00000000-11111111 → lze uložit maximálně 256 čísel

Datový formát

- Způsob, jakým jsou (zpravidla v nějakém souboru) organizována data
- Veškeré obsažené informace a způsob reprezentace dat a jejich následná interpretace

Znakové sady

ASCII

- Základní znaková sada (American Standard Code of Information Iterchange)
- Znaky jsou uložené pomocí bytu (256 znaků)
- V ASCII jsou uložené písmena, číslice, tisknutelné i netisknutelné znaky
- Původní velikost ASCII byla 128 znaků, poté rozšířena na 256

UNICODE

- Tabulka znaků všech existujících abeced
- Obsahuje více než 110 000 znaků
- Založena na ASCII
- Využívá se ve Windows, Linuxu, HTML...
- Jednoduchý; univerzální; jednoznačný

UTF-8

- Způsob kódování řetězců znaků Unicode/UCS do sekvencí bajtů
- Navržen pro zpětnou kompatibilitu s ASCII

Windows 1250 (CP-1250)

- Navržen pro střední Evropu Microsoftem
- Využívá latinku

Soubor

- Pojmenovaná sada dat, uložená na datovém médiu
- Obsahem mohou být různá data.
- Podle toho, jak má být obsah souboru interpretován lze soubory rozdělit na textové a binární

Vlastnosti souborů:

- Jméno
- Typ
- Lokace
- Velikost
- Ochrana
- Datum
- Uživatelská identifikace

Komprese dat

Používá se za účelem zmenšení objemu dat

Ztrátová

Tam, kde je možné ztrátu některých informací tolerovat. (mp3, jpg...)

Bezeztrátová

Tam, kde ztráta jednoho znaku by mohla znamenat nenávratné poškození dat. (wmv, bmp, flac...)

True-Type

- Standart pro popis vektorových počítačových písem
- Vyvinutý koncem 80. let společností Apple
- Využívá i MS Windows a Gnu/Linux.
- Příponu TTF

Open-Type

- Standard pro popis vektorových počítačových písem
- Vyvinutý společností Microsoft
- Nástupce standardu True-Type
- Využití v MS Windows, Mac OS X a Linux
- Přípona OTF lze použít i starší TTF

Atributy:

- R Read pro čtení
- S System systémový soubor
- H Hidden skrytý
- A Archive

02. Rastrová grafika

Existují 2 způsoby ukládání obrázků = Vektorově a Rastrově.

Rastrová / bitmapová grafika

- Celý obrázek je popsán pomocí jednotlivých barevných bodů (pixelů)
- Body jsou uspořádány do mřížky
- Každý bod má určen svou přesnou polohu a barvu (např. RGB)
- Tento způsob popisu obrázků používá také např. televize nebo digitální fotoaparát
- Kvalitu záznamu obrázku ovlivňuje především rozlišení a barevná hloubka

DPI

- Dots per inch, počet obrazových bodů na délku jednoho palce (2.24 cm)
- Popisuje potřebné rozlišení pro výstupní zařízení, které se použije pro zobrazení

Barevná hloubka

- Určuje kolik barev je použito na jeden bod
- Podle počtu barev se dají rozdělit obrázky na monochromatické (černá a bílá), stupně šedi a barevné

Výhody

- Optické uchování snímku
- Velmi jednoduché pořízení snímku
- Jednoduché zobrazení a programová podpora
- Možnost používání grafických efektů

Nevýhody

- Při zvětšení je patrný rastr
- Zvětšování a zmenšování obrázku vede ke zhoršení obrazové kvality

Rastrové soubory

Nekomprimované

BMP, TIFF...

Komprimované

Bezeztrátové – GIF, PNG... **Ztrátové** – JPEG...

Barevné modely

Používá základní barvy a mísení těchto základních barev do výsledné barvy.

- RGB Red, Green, Blue
- CMYK Cyan, Magenta, Yellow, Key (nejčastěji černá)
- HSL Hue, Saturation, Lightness
- HSV Hue, Saturation, Value
- HSB Hue, Saturation, Brightness

Histogram

Graf, který říká, jaké je rozložení jasů v obraze.

- Podexponování příliš stínů
- Dobrá expozice
- Přeexpozivání přesvícené

Formáty

- Animated Portable Network Graphics (.apng)
 - o Rozšiřující formát PNG s podporou animací
- Windows Bitmap (.bmp)
 - Nepoužívá žádnou kompresi
 - Velmi velká velikost souboru
 - Velikost se dá snadno vypočítat (šířka v pixelech * výška v pixelech * bitů na pixel / 8).
- Graphics Interchange Format (.gif)
 - o Bezeztrátovou komprese
 - o Hlavní využití našel ve webové grafice a na Internetu
 - Použití pro loga
 - Obsahuje nízký počet barev
- Joint Photographic Experts Group (.jpg, .jpeg)
 - o Ztrátovou komprese
 - o Používá se především pro ukládání fotografií na Web
 - Není vhodný pro zobrazení textu, ikon a perokresby
- Multiple-image Network Graphics (.mng)
 - o Grafický formát pro animované obrázky, který byl vyvinut jako doplněk PNG
 - o Internetové prohlížeče tento formát často nepodporují.
- Portable Network Graphics (.png)
 - o Bezeztrátovou komprese
 - o Byl vyvinut jako náhrada a zdokonalení formátu GIF
 - Největší využití na Internetu
 - o Nevýhodou je nedostupnost animace, což vyřešily jiné formáty jako doplňky
- Tagged Image File Format (.tiff)
 - o Považován za neoficiální standard ukládání snímku pro tisk. Dále je používán pro ukládání faxů

Vektorizace

- Převod rastru na vektor
- Vytváří se digitální vektorová reprezentace vybraných prostorových prvků (např.: geologických jednotek, dokumentačních bodů, zlomů, vodních toků, komunikací, měst a obcí)
- Jednotlivé prvky mohou být vektorově reprezentovány pomocí: bodů, linií a ploch (polygonů)

03. Vektorová grafika

Jeden z **2** základních způsobů reprezentace obrazových informací v počítačové grafice.

- Celý obrázek je zaznamenán matematicky pomocí geometrických útvarů (body, přímky, mnohoúhelníky, kružnice nebo křivky)
- Všechny tvary na obrázku jsou uloženy jako matematické vzorce jednotlivých křivek, ze kterých se skládají
- Ty jsou doplněny o další informace (barva, styl, tloušťka čáry...)

Beziérova křivka

- Pojmenovaná po inženýru Pierru Bézierovi
- Vyvinul metodu pro popsání libovolného úseku křivky pomocí čtyř bodů
- Křivka je definována dvěma kotevními body, které značí její začátek a konec, a dvěma kontrolními body, které udávají její tvar

Výhody

- Libovolného zmenšování a zvětšování obrázku bez ztráty kvality
- S každým objektem je možno pracovat odděleně
- Výsledná paměťová náročnost obrázku je u jednolitých barevných obrázků menší, než při použití rastrového zápisu

Nevýhody

- Složitější způsob pořízení obrázku oproti rastrové grafice
- U velmi složitých obrázků náročná na výkon procesoru a operační paměť
- Nehodí se na zápis složitých barevných ploch (např. fotografie)

Využití

- Fonty
- Loga
- Diagramy

- Plány
- Výkresy

Formáty

- Postscript (.ps) Adobe; nezávislý na HW
- Portale Document Format (.pdf) Adobe; vychází z postscriptu
- Scalable Vector Graphics W3C; vychází z XML

Rasterizace

- Proces, při kterém se vektorově definovaná grafika konvertuje na rastrově definované obrazy
- Při zobrazení reálného modelu ve světových souřadnicích na výstupní zařízení je zapotřebí zajistit, co nejvěrnější podobnost reálného a zobrazovaného modelu
- Nejjednodušší prvek rastrové grafiky je **bod**
- Složitější objekty jsou jen skládankou z jednodušších objektů

04. Video

Pojem video společně označuje digitální a analogové způsoby ukládání obrazových záznamů.

Kvalita

- Kvalita videa je závislá na metodě zachycování a ukládání obrazu
- Nejdůležitějším kritériem je formát uložení
 - Různé formáty mají různý poměr kvalita/objem

Hlavní faktory ovlivňující kvalitu videa jsou:

Frame Rate

- Frames per Second (FPS), počet snímků za sekundu
- Technologie zobrazení začínali na 6 či 8 snímkách
- V dnešní době se nejčastěji vyskytuje 24FPS (23,976), 25FPS, 30FPS (29,97) a snahy o zvýšení plynulosti
 v některých nových filmech za pomocí 45FPS a 48FPS (Hobbit)

Prokládání

- Video může být prokládané (interlaced) nebo progresivní (progressive)
- Prokládání bylo zavedeno pro dosažení lepší vizuální kvality v limitech pásma
- Každý snímek je rozdělen na dva půlsnímky trvající polovinu doby celého snímku
 - První obsahuje liché, druhý pak jen sudé řádky
- Progresivní video půlsnímky neobsahuje

Rozlišení

- Analogové formáty udávají rozlišení v řádcích a Digitální formáty v pixelech
- Rozlišení pro 3D video se udává ve voxelech
 - Množství obrázkových prvků reprezentující hodnotu v trojrozměrném prostoru

Poměr stran

- Popisuje poměr vodorovné a svislé strany
- Nejčastěji používané poměry jsou 4:3 (starší televize) a 16:9 (snad všechno)

Datový tok

- Množství digitálních dat přenesené za určitou časovou jednotku
- Nejčastěji v Megabitech za sekundu (Mbit/s)

VBR - Variable bit rate

- Způsob maximalizace kvality videa a zároveň co nejnižší množství přenesených dat
- Ve scénách s rychlými pohyby je datový tok daleko vyšší, než ve scénách bez pohybu
- Není-li třeba pro popsání obrazu tolik bitů, nepřenesou se, naopak je-li jich potřeba více, přenáší se jich více

CBR - Constant bit rate

- Po celou dobu nahrávání obrazu bude datový tok konstantní
- Lze snadno určit výslednou velikost

Formáty obrazu

- 720x576 DVD formát
- 1024x720 HD DVD formát 4:3
- 1280x720 720p; HD 16:9
- 1920x1080 1080p; FULL HD 16:9
- 3840x2160 2160p; 4K ULTRA HD 16:9

Kódování

Video kodek

Kóduje a dekóduje video do/z určitého formátu. Zpravidla za účelem zmenšení objemu dat.

- Bezeztrátové kodeky (HuffYUV, Lagarith)
- Ztrátové kodeky (DivX, Xvid, Quick Time)

Televizní normy

Souhrn standardů kódování signálu pro televizní vysílání.

- PAL
 - Phase Alternating Line
 - o Evropa, Austrálie, část jižní Ameriky
- NTSC
 - o National Television System(s) Committee
 - o Amerika, Japonsko, Jižní Korea
- SECAM
 - o Séquentiel couleur à mémoire
 - o Postoupení barevné informace do paměti
 - o První evropský systém barevné televize
 - o Používá barevný model velmi podobný YUfu

Střih videa

- Linerární
 - Přímé stříhání a slepování filmové pásky
- Nelinerání
 - o Moderní přístup
 - PC úpravy ve střihovém formátu → render

Formáty

- AVI
 - o Microsoft
 - o Nejstarší, Nejrozšířenější
- MP4
- MKV
 - o Ruský; Matroska
 - o Kontejner
 - Umožňuje nést více audio, video stop, titulků, kapitol...

- OGG
- WMV
 - Windows
 - o Komprimovaný

Média

- VHS
 - o Firma JVC
 - o Nahrávání na pásku
 - o 576x240
 - o 240 minut
- Laserdisc
 - o Philips, Pioneer
 - o Oboustrané
- CD
 - o Philips, Sony
 - o MPEG-1
 - o 1150 kb/s
 - o 80 minut
 - o 700MiB
- DVD
 - o Philips, Sony, Toshiba
 - o MPEG-2
 - PAL odlišný od televizního standardu
 - o 720x576
 - o 4:3, 16:9

- HD DVD
 - o Toshiba
 - o VC-1, H.264, MPEG-2
 - o 1920x1080
 - o 15GiB, 30GiB
- Blu-ray disc
 - o LG, Samsung, Sony
 - H.262/MPEG-2, H.264/MPEG-4 AVC, VC-1
 - o 1920x1080
 - o 25GiB, 50GiB

05. Zvuk

Mechanické vlnění vzduchu (přesněji: látkového prostředí) v rozsahu od 10^2 Pa – 10^5 Pa. Frekvence tohoto vlnění každý člověk vnímá individuálně (obvykle v intervalu 16 Hz – 20 kHz).

Tón

Hudební. Zvuk se stálou frekvencí.

Hluk

Nehudební. Zvuk, který má rušivý charakter.

Vlastnosti zvuku

Výška

- Výšku udává Frekvence, ↑frekvence = ↑výška
- S výškou souvisí slyšitelné a neslyšitelné frekvence.
- Slyšitelné = 16 (20) Hz 20 kHz. Neslyšitelné = infrazvuk (<16 Hz), ultrazvuk (>20 kHz)
- Při hodnocení zvuku se používá "relativní výška tónu" (frekvence tónu (frekvence referenčního tónu)
- Hudební akustika (vědní obor; zabývá se zvukem) udává jako referenční tón 440 Hz
- V praxi se spíše používají jiné referenční napětí
- Při prvotním nastavování převážně 1 kHz

Barva

- Existují zvuky o stejném tónu, které se od sebe liší přítomností "vyšších harmonických frekvencí" >
 Obsahují stejnou základní frekvenci a zároveň její celočíselné násobky (2f, 3f, 4f)
- Liché násobky základní frekvence zvuk zostřují a sudé ho zjemňují

 určují výslednou barvu

Hlasitost

- Veličina závislá na velikosti akustického tlaku ($L_p=20~\log \frac{P}{P_0}\,\mathrm{dB};\,\mathrm{P_0}=20\mu\mathrm{Pa}-\mathrm{Práh}\,\mathrm{slyšení})$
- Aby bylo možné přiblížit hlasitost bez závislosti na frekvenci, vznikly 4 křivky, které slouží jako normy (A,B,C a D)
 - Křivka A udává, že frekvence 1 kHz odpovídá 0db (250 Hz = -10 db)

Intenzita

- Zvuková energie dopadající na plochu za čas; akustický výkon na plochu ($I=rac{E}{S*t}$)
- Hladina intenzity = udává intenzitu zvuku v dB ($L=10~\log rac{I}{I_0}$)

Zvuk z pohledu techniky

• Při digitalizaci se využívá "**Shannonův-Nyquistův-Kotělnikovův teorém**". \rightarrow Udává, že "*Přesná rekonstrukce spojitého, frekvenčně omezeného signálu z jeho vzorků je možná tehdy, pokud byla vzorkovací frekvence vyšší než dvojnásobek nejvyšší harmonické složky vzorkovaného signálu."*

Úpravy zvuku

- Frekvenční
 - o Změna barvy
- Amplitudové
 - o Změna hlasitosti
- Modulační
 - o Přidání dalšího signálu
- Kvalitativní
 - o Komprese
 - o Resampling
- Efektové

Formáty

MP3

- Komprimovaný, ztrátový
- Odstraňuje redundantní zvukové signály na základě psychoakustiky
 - o Ze vstupního signálu se odeberou informace, jež člověk neslyší, nebo si je neuvědomuje
 - o Časové a frekvenční maskování

AAC

Následník MP3 při vyšších bitratech. Existuje ve spoustě profilů (FAAC...)

FLAC

Beztrátový

Stopy

- Mono
- Stereo
- Quadro
- 2:1
- 5:1
- 7:1

06. Textový procesor

• Aplikace určená ke zpracování, úpravě nebo tisku textu

Textový editor X procesor

- Editor umožňuje uchovat pouze plain text
- Procesor umožňuje měnit vzhled dokumentu (formát, font...)

Karty

- Domů (písmo, odstavec, styly)
- Vložení (stránky, ilustrace, tabulky, odkazy, záhlaví a zápatí, text, symboly)
- Rozložení stránky (motivy, vzhled, pozadí, odstavce, uspořádání)
- Reference (obsah, poznámky, citace, titulky, rejstřík)
- Korespondence (hromadná korespondence)
- Revize (kontrola pravopisu, sledování změn, komentář, uzamčení)
- Zobrazení (lupa, okna, zobrazení dokumentů)
- Vývojář (kód, ovládací prvky)

Formátování textu

- Font
- Velikost písma
- Varva písma
- Řez písma
- Efekty, Styly

Formátování odstavce

- Zarovnání
- Řádkování
- Stínování
- Ohraničení
- Odsazení
- Mezery
- Tabulátory

Reference

- Vytvoření obsahu
- Poznámky pod čarou
- Citace
- Bibliografie

Vložení

- Tabulky
- Ilustrace
- Multimédia
- Odkazy
- Komentář
- Záhlaví a zápatí
- Text
- Symboly

Rozložení stránky

- Vzhled stránky
- Odstavec
- Uspořádat

Odkazem může být:

- Hypertextový odkaz
- Křížový odkaz
- Záložka

07. Tabulkový kalkulátor – vzorce, funkce

Tabulkový kalkulátor

- Program sloužící k matematickým operacím s číselnými údaji
- Soubor = sešit
- List maximálně 256 listů v sešitu
- Řádky se označují číslicemi (lze přenastavit na R1, R2...)
- Sloupce se označují písmenami (lze přenastavit na C1, C2...)
- Buňka = průsečík sloupce a řádku

Formát buněk

- Číslo
- Zarovnání
- Písmo
- Ohraničení
- Výplň
- Vlastní

Buňky

- První Buňka má adresu A1 (R1C1)
- Poslední adresa je XFD1048576
- Pravý dolní "úchyt" vyplnění řady

Vzorce

- Zapisují se do buňky stejně jako klasický text
- Zápis musí začínat znakem =
- Výsledky se zobrazují klasicky v buňce a vzorce v poli vzorců

Funkce

- Datum a čas (DATUM, DNES, DENTYDEN...)
- Logické (A, KDYŽ, NEBO...)
- Matematické (ZAOKROUHLIT, SUMA...)
- Text (ČÁST, HODNOTA.NA.TEXT...)
- Vyhledávání (VYHLEDAT...)
- Databáze; Finanční; Informační; Kompatibilita; Statické

Vnořené funkce

Používají funkci jako jeden z argumentů jiné funkce.

Grafy

- Sloupcový
- Spojnicový
- Výsečový

Prvky grafu

- 1. Oblast grafu
- 2. Zobrazovaná oblast
- 3. Datové body v Datová řadě, které jsou graficky znázorněny v grafu
- 4. Vodorovná (kategorie) a svislá (hodnota) Osa, podél které jsou data graficky znázorněna v grafu
- 5. Legenda grafu
- 6. Název grafu a osy, který je možné použít v grafu
- 7. Popisek dat, který lze použít k identifikaci detailů datového bodu v datové řadě

Vytvoření grafu

- Označení dat → Vložení → Graf (vybrat typ grafu)
- Dále lze přidat obrázky, popisky...

- Pruhový
- Plošný
- Bodový

08. Tabulkový kalkulátor - filtry, souhrny, kontingenční tabulky

Import dat

- Data, která se mají analyzovat v aplikaci Excel, není třeba znovu zadávat, stačí je importovat
- Import dat z databází a souborů
- Import dat pomocí aplikace Microsoft Query
- Import dat z webu
- Import dat pomocí VBA

Řazení dat

- Nedílná součást analýzy dat
- Seřazení textu od A do Z a naopak
- Seřazení čísel od nejnižšího po nejvyšší a naopak
- Seřazení podle data od nejnovějšího po nejstarší a naopak
- Vlastní řazení barvy buněk, barva písma, ikony...

Filtrování

- Rychlý a snadný způsob vyhledávání a práce s podmnožinou dat
- Po filtrování jsou zobrazeny jenom řádky, které splňují zadaná kritéria
- Zbylé řádky jsou skryty

Ověření dat

• Funkce, kterou lze použít k definici omezení dat, která mohou být nebo by měla být zadána do buňky

Souhrny

- Rozsáhlejší tabulku lze zpřehlednit a doplnit ji o součty sloupců, které jsou požadovány (cena, prodané kusy)
- Tyto součty budou provedeny na základě seskupení shodných dat v dalších sloupcích (roční období, lokalita)
- Místo souhrnu lze využít i jiné možnosti (Kontingenční tabulku nebo VBA)

Makra

Posloupnost akcí, funkcí nebo příkazů, které usnadňují určitou činnost

Kontingenční tabulka

|Celk. součet | 126000 Kč |85000 Kč

79300Kč 20000Kč 46700Kč 65000Kč

- 1. Zdrojová data, v tomto případě z listu
- 2. Zdrojové hodnoty pro souhrn Golf za Čtv3 v sestavě kontingenční tabulky
- 3. Celá sestava kontingenční tabulky
- 4. Souhrn zdrojových hodnot v buňkách C2 a C8 ze zdrojových dat

- Základní nástroj pro práci a vyhodnocování dat
- Vizualizace vzájemného vztahu dvou nebo více statistických znaků
- Analýza dat, souhrny, třídění, výpočty...
- Snadné pochopení prezentovaných dat

Vytvoření kontingenční tabulky

Kliknutí do tabulky → Vložení → Kontingenční tabulka

09. Prezentační software

 Počítačový program, který umožňuje vytvořit prezentaci (sérii stránek s přehledně zobrazenými informacemi)

Microsoft Office PowerPoint

- Nejpoužívanější
- Přípony .ppt, .pptx

Přechody

• Mezi jednotlivými snímky

Pravidla pro prezentéra

- Vhodné oblečení
- Nedávat ruce do kapes
- Artikulovat, klidně, hlasitě mluvit
- Neotáčet se zády
- Udržovat pozornost
- Komunikace s publikem
- Věnovat se pouze prezentaci

Pravidla pro prezentace

- Psát v bodech
- Nedávat zbytečné animace, přechody
- Vyhýbat se zbytečným přechodům, moc obrázků, křiklavé barvy...)

Animace

• Mezi jednotlivými objekty daného snímku

10. Databázový procesor - teorie, pojmy

Databáze

- Uspořádaná množina dat (informací) uložena na paměťovém mediu
- Součástí databáze jsou softwarové prostředky pro manipulaci s daty + přístup k datům

Rozdělení

- Systémy sálových počítačů (Mainframe)
- dBase
 - o Souborově orientované databáze s indexsekvenční metodou přístupu
 - o Každá tabulka má samostatný .dbf soubor
 - o Software: dBase, FoxPro, Paradox, Access
- Relační databázové systémy (lepší datová integrita, bezpečnost...)
- Objektově orientované databáze (specializované uplatnění, data se ukládají jako objekt s vlastnostmi)

Databázový procesor

- Nástroj, který slouží pro práci s velkým množstvím dat; MS Access, Firebird, Oracle
- V databázi se data upravují, ukládají, získávají
- Obsahuje jednotlivé akce moduly:

o Tabulka	 Formuláře
o Dotazy	○ Sestavy

SŘBD; DBSŘ; DBMS

- Systém řízení báze dat; Databázový systém řízení; Database management system
- Softwarové vybavení, které zajišťuje práci s databází (tvoří rozhraní mezi aplikačními programy a uloženými daty)
- **Databázová aplikace** je program, který umožňuje vybírat, prohlížet a aktualizovat informace uložené prostřednictvím SŘBD
- SŘBD musí být schopen efektivně pracovat s velkým množstvím dat a také musí být schopný řídit data (vkládat, modifikovat, mazat) a definovat strukturu těchto dat

Služby

- Definice dat (definování a uchovávání datové entity)
- Údržba dat (každému členu entity vyhrazuje záznam skládající se z položek)
- Manipulace s daty (služby umožňující vkládání, aktualizaci, rušení a třídění dat)
- Zobrazování dat (poskytuje metody prezentace dat uživateli)
- Integrita dat (metody pro zajištění správnosti dat nepovolením vložení duplicitního řádku s unikátním klíčem)

Architektury DB

Centrální

Tato architektura je typická pro terminálovou síť, kdy se po síti přenáší vstupní údaje z terminálu na centrální počítač do příslušné aplikace, výstupy z této aplikace se přenáší na terminál. Protože aplikační program i vlastní zpracování probíhá na centrálním počítači, který může

zpracovávat více úloh, mají odezvy na dotazy určité zpoždění.

• Data i SŘBD jsou v centrálním počítači

File-Server

Tato metoda souvisí zejména s rozšířením osobních počítačů a sítí LAN.

- SŘBD a databázové aplikace jsou na jednotlivých počítačích
- Data jsou na File-Serveru

Komunikace uživatele se systémem:

- Uživatel zadá dotaz
- SŘBD přijme dotaz, zasílá požadavky na data file-serveru
- File-server posílá bloky dat na lokální počítač, kde jsou data zpracovávána podle zadaného dotazu (vyhledávání, setřídění...)
- Výsledek dotazu se zobrazí uživateli

Klient-Server

V podstatě je založena na lokální síti (LAN), personálních počítačích a databázovém serveru. Na počítačích běží program pro komunikaci se serverem.

LAN

PC

PC

SQL dotazy

Data (výsledky dotazů)

 Redukuje množství přenesených dat (v porovnání s File-Serverem)

Komunikace:

- Uživatel zadává dotaz (buď přímo v SQL, nebo musí být do tohoto jazyka přeložen)
- Dotaz je odeslán na server
- Server vykoná dotaz
- Výsledek dotazu je poslán zpět na vysílací počítač, kde je zobrazen

Databázový server

Báze dat

SŘBD

Distribuované

Množina databází, která je uložena na několika počítačích. Uživateli se však jeví jako jedna velká databáze.

• Funkční

Objektové

Vertikální členění

Horizontální členění

Návrh DB

- Určení účelu DB
- Vyhledání a uspořádání požadovaných informací
- Rozdělení informací do tabulek
- Převod jednotlivých informací do sloupců
- Zadání primárních klíčů
- Vytvoření relací mezi tabulkami
- Úprava návrhu
- Použití normalizačních pravidel
 - Sémantické modelování analyzuje požadavky a zobrazuje tyto požadavky určitými grafickými prostředky
 - o Entitně relační modelování (E/R diagram)

E/R Diagram

- Entita
 - o Subjekt, o němž se bude v databázi uchovávat informace
- Relace
 - Propojení tabulek
- Tabulky
 - o Slouží k uložení dat
- Sloupce, atributy
 - o Popisuje určitou část dat, kterou má každý záznam
 - Sloupec představuje část tabulky
 - o Atribut se vztahuje k reálné entitě
- Domény
 - Popisují typ dat, obor hodnot
- Řádky, záznamy, n-tice
 - o Každý řádek v tabulce představuje záznam o jedné entitě

Klíče

Databázová konstrukce, sloužící ke zrychlení vyhledávacích a dotazovacích procesů v databázi, definování unikátní hodnoty sloupce tabulky

- Primární klíč
 - o Svou hodnotou jednoznačně identifikuje každý záznam
- Unikátní klíč
 - Nemusí být jediný
- Cizí klíč
 - Odkaz mezi tabulkami

Kardinalita

Vyjadřuje, kolik entit jednoho typu může být ve vztahu s kolika entitami z druhého typu entit

- 1:1
 - o Používá se, pokud záznamu odpovídá právě jeden záznam v jiné tabulce
- 1:N
 - o Přiřazuje jednomu záznamu více záznamů z jiné tabulky
- N: M
 - o Umožňuje několika záznamům z jedné tabulky přiřadit několik záznamů z tabulky druhé
 - o V praxi se spíše používá 1:N a M:1 pomocí jedné propojovací tabulky

Relační Algebra

- Základní prostředek pro manipulaci s daty
- Teoretický základ dotazovacích jazyků (SQL, LINQ, DMX, MDX, Datalog)
- Je dána operátory, které se aplikují na relace a výsledkem jsou opět další relace
- R({A₁, A₂, ..., A_n}); S({B₁, B₂, ..., B_m})

Základní operace

- Sjednocení (Union) R
 - o Vytvoření relace obsahující všechny řádky (prvky) obou relací, ale shodné řádky se neopakují
 - o Relace S, R musí být kompatibilní
 - Mají stejný počet atributů, v některých případech musí mít atributy stejný název a datový typ
- Průnik (Intersection)
 - Vytvoření relace obsahující společné řádky obou relací, ale společné řádky se neopakují
 - o Relace S, R musí být kompatibilní

- **Rozdíl** (Diference)
 - o Vytvoření relace obsahující jen ty řádky první relace, které nejsou obsaženy v druhé relaci
 - o Relace S, R musí být kompatibilní
- Kartézský součin (Cartesian product)
 - Vytváří relaci obsahující všechny řádky první relační tabulky zřetězené postupně se všemi řádky druhé relační tabulky

Speciální operace

- **Projekce** (Projection)
 - \circ Projekce R[C] na relaci se schématem R({A₁, A₂, ... A_n }) na množinu C, kde C je menší, nebo rovno množině { A₁, A₂, ... A_n }
 - Odstraní se i duplicitní řádky
- Selekce, Restrikce (Selection, Restriction)
 - \circ Je relace se schématem R({A₁, A₂, ... A_n}) podle logické podmínky ϕ (ϕ je jednoznačně true/false)
 - o Projekce a selekce jsou operace s jednou relací **unární** operace
- Spojení (Join)
 - o Slouží pro spojení množin na základě společných prvků zvoleného atributu
 - Natural join
 - Podmínka je určována automaticky, ne často se používá
 - o Inner join
 - Kartézský součin
 - o Full outer join
 - Stejné jako inner join
 - o Left outer join
 - Výsledek uzná, pokud existuje levá část vazby a pravá neexistuje
 - Do hodnot sloupců z připojované části se vloží NULL
 - Right outer join
 - Pokud bude existovat pravá, připojovaná část a nebude k ní levá část, bude stejně ve výpisu zahrnut

Relační kalkul

- Formální neprocedurální jazyk
- N-ticově a doménově orientovaný

Zápis:

• Termy	Predikáty
o Proměnné	o >
 Jejich komponenty 	o <
Konstanty	o >=
	o <=
	o <>
	o =

• Atomické formule

- Konjunkce &
- o Disjunkce V
- Negace ¬
- Implikace ⇒
- \circ Ekvivalence \Leftrightarrow

• Kvantifikátory

- Univerzální (∀) "pro každý "
- o Existenční (∃) "existuje

11. Databázový procesor - dotazy, formuláře, sestavy

Ms Access

- Nástroj k vytváření databázových aplikací, databází
- Skládá se z:

Tabulky Dotazy Makra

o Formuláře o Moduly

Dotazy

• Na základě zadaných argumentů (podmínek) lze pracovat s daty

FiltraceVytvářet souhrny

o Agregace

Typy dotazů

- Výběrový
 - Nejběžnější
 - Zobrazuje data z tabulky/tabulek
- Parametrický
 - o Po spuštění zobrazí dialogové okno pro zadání argumentů
- Křížový
 - Usnadňuje analýzu dat
 - Seskupuje data a umožňuje použití agregačních funkcí
- Akční
 - Odstranit; Vytvářecí; Aktualizační; Přidávací; Sjednocovací; Předávací; Definiční

Sestavy

- Oddělený a přehledný vzhled záznamů z tabulky nebo dotazu
- Největší využití je na vizitkách, štítcích nebo přehledech

Formuláře

- Prostředník mezi tabulkou a uživatelem
- Snadnější forma zadávání dat pro uživatele
- Labely; text fieldy; buttony; checkboxy; listy

Makra

- Pro vytvoření akce bez potřeby znát VBA
- Makro se postupně tvoří pomocí slovy definovaných modulů, jsou zde hlavně ty nejčastější, aby se nemuseli pokaždé psát v VBA znovu
- Nejčastější úkoly pro makra jsou HledatZáznam, OknoSeZprávou, ZavřítDatabázi

12. Databázový procesor – VBA

- Visual Basic for Application
- 1993; Microsoft

- Programovací jazyk zaměřený na události a objekty
- Neobjektový

Moduly

• Standardní modul

- o Deklarace globálních proměnných, konstant a procedur
- o Ukládá se jako objekt (modul)

• Modul třídy

- o Deklarace globálních proměnných, konstant a procedur
- o Ukládá se jako objekt (modul)

Modul procedury

- o Pro deklaraci lokálních proměnných, konstant a procedur
- o Je přidružen k formulářům a sestavám Accessu

Datové typy

Datový typ	Uloženo v Byte	Rozsah	
Byte	1	0 až 255	
Boolean	2	True, False	
Integer	2	-32 768 až 32 767	
Long (long integer)	4	-2 147 483 648 až 2 147 483 647	
Single (jednoduchá přesnost, plovoucí desetinná čárka)	4	-3,402823 * 10 ³⁸ až 3,402823 * 10 ³⁸	
Double (dvojitá přesnost,	8	-1,79769313486231 * 10 ³⁰⁸ až	
plovoucí desetinná. čárka)	0	$1,79769313486232 * 10^{308}$	
Currency	8		
Decimal	14		
Date	8	1. 1. 100 až 31. 12. 9999	
Object	4		
String,(proměnné délky)	10 + počet znaků řetězce	0 až 2 * 10 ⁹	
String (pevné délky)	počet znaků řetězce	1 až 65 400	
Variant (čísla)	16	Stejné jako Double	
Variant (znaky)	22 + počet znaků řetězce	Stejné jako String	
User defined (uživatelem definovaný)	počet podle prvků	Podle datových typů prvků	

Operátory

Matematické	Logické	Porovnávací
• +	• AND	• ==
• -	• OR	• <>
• *	• NOT	• <
• /	• XOR	• >
• %		• <=
• ^		• >=

Cykly

- For
- For Each
- While Wend
- Do While
- Do Until

Podmínky

- If
- If else
- If elseif
- Select Case

Funkce

Funkce

- Blok kódu, který je znovu využitelný a může být volaný kdekoli v programu
- Většinou vrací hodnotu
- Volání:
 - o MsgBox (cosi) **Název funkce, argumenty v závorkách**
 - o Call MsgBox

Procedury

- Nevrací hodnotu (odlišné od funkce)
- Volání:
 - o MsgBox cosi Název funkce, argumenty bez závorek
 - o MsgBox (cosi) Volá se jako funkce; Využije se návratový typ
 - o Call MsgBox(cosi) Call název_funkce, argumenty v závorce

Modifikátory přístupu

- Public
 - o Ve všech modulech a procedurách lze zavolat
- Private
 - o Dostupné pouze pro modul

13. Internet a elektronická komunikace

Internet

- Celosvětový systém navzájem propojených sítí
- Slouží ke vzájemné komunikaci jednotlivých počítačů
- Cílem je přenos dat
- TCP/IP protokol

ARPANET (Advanced Research Project Agency)

- Projekt amerického ministerstva obrany z 60. let
- Měl prozkoumat možnosti výměny dat mezi vzdálenými "super" počítači
- V 70. letech vzniká první e-mailový program a vznikají protokoly TCP/IP
- Síť je rozdělena pro výzkum a armádu
- Dostává se do komerční oblasti a přesahuje hranice USA
- V roce 1987 vzniká pojem Internet
- V roce 1991 vzniká WWW

World Wide Web

- Světová rozsáhlá síť
- Autorem Webu je Tim Berners-Lee
- Aplikace pro protokol HTTP
- Pracuje na principu Client-Server

Internetové služby

- Dostupnost množství informací
- Umožňuje komunikaci (elektronická pošta)
- Sociální sítě
- Bankovnictví, obchody...

Internetová Doména

- Označení jednoznačného jména počítače nebo počítačové sítě
- Doména se skládá z několika úrovní

Připojení k internetu

- Telefonní linka modem
- ISDN digitální telefonní linka
- Kabelová televize síťová karta a kabelový modem
- Bezdrátové připojení lokálních sítí
- Wi-Fi nejznámější standard pro bezdrátové sítě

Webový prohlížeč

- Program sloužící k prohlížení WWW
- Komunikuje pomocí HTTP protokolu s webovým serverem a přijatá data zformátuje a zobrazí na obrazovce počítače
- Textové Links, Lynx
- Grafické Google Chrome, Internet Explorer, Mozilla Firefox, Safari

Internetový vyhledávač a katalog

Vyhledávač

- Slouží pro vyhledávání uživatelem požadovaných informací a dat na Internetu
- Pracují ve čtyřech krocích
 - o Procházení webových stránek
 - Vytvoření databáze výskytu slov
 - Indexování
 - Poskytování odpovědí na dotazy

Katalog

Seznam odkazů na webové stránky, které jsou setříděny do stromu kategorií a podkategorií.

Elektronická pošta (Email)

- E-mailové služby se poprvé rozšířily mezi veřejnost, až díky vzniku jedné z prvních volných e-mailových služeb Hotmail v roce 1996
- Termín e-mail se používá jak pro internetový systém elektronické pošty založený na protokolu SMTP, tak i pro intranetové systémy

Historie

- Starší než internet
- Elektronická pošta vznikla v roce 1965
- E-mail se rychle rozšířil a stal se síťovým e-mailem
- Tehdy nebyly všechny počítače nebo sítě navzájem síťově propojené, e-mailové adresy musely obsahovat "cestu" pro zprávu

Komunikační protokoly

- SMTP (Simple Mail Transfer Protocol)
- POP3
 - o Pošta je při tomto protokolu stažena na lokální disk
- IMAP
 - o E-maily jsou uloženy na serveru a je k nim možno přistupovat odkudkoliv
 - o Stahuje pouze hlavičky e-mailů na rozdíl od POP3, kde se stahují celé zprávy