

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

	UI	4 L I	
	по лаборатор	оной работе №2_	
Название: <u>ПЛИС</u>	Проектирование ц	ифровых устройств і	на основе
Дисциплина:	Основы проектир	оования устройств Э	<u>BM</u>
Студент	<u>ИУ6-62Б</u> (Группа)	(Подпись, дата)	И.С. Марчук (И.О. Фамилия)
Преподавател	Ь	(Подпись, дата)	(И.О. Фамилия)

Введение

Цель работы: закрепление на практике теоретических сведений, полученных при изучении методики проектирования цифровых устройств на основе программируемых логических интегральных схем (ПЛИС), получение необходимых навыков работы с системой автоматизированного проектирования ISE WebPack устройств на основе ПЛИС фирмы Xilinx, изучение аппаратных и программных средств моделирования, макетирования и отладки устройств на основе ПЛИС.

Задание:

В лабораторной работе необходимо разработать и реализовать на ПЛИС XC3S200 или XC3E-500 управляющий автомат схемного типа, обрабатывающий входное командное слово $C=\{A,B,C,D,E,F\}$, выдающий сигналы управления $M=\{M0,...,Mk-1\}$ операционному блоку.

Таблица 1 - варианты диаграмм и активных сигналов

Вариан	Диаграмм		Активные сигналы М в состоянии										
Т	a	S1	S2	S3	S4	S5	S6						
	переходов												
37	1	2	0	1,7	5,6	3	4						

Таблица 2 - Условия переходов и наименование отладочной платы («@» - иначе, « X» - НЕ X, «+» - ИЛИ, 1- безусловный переход)

Вариа	Название		Активные сигналы в М состоянии													
HT	платы	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	Y9	Y10	Y11	Y12	Y13	Y14	Y15
37.	Spartan3	@	A	A_	@	E+	F	@	D_F	@	A+_	_A	AB	@	@	1
			BC	В		D					C					

Таблица 3 - активные сигналы для переходов

Вариант		Активные сигналы в М состоянии													
Бариант	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	Y9	Y10	Y11	Y12	Y13	Y14	Y15
37	-	-	-	-	5,6	5,7	-	4	6,7	2	5	-	-	1	-

Ход работы:

На рисунке 1 показана схема отладки устройства управления с помощью отладочного набора XC3S200.

Рисунок 1 - схема отладки устройства управления

Схема переходов/состояний цифрового автомата, лежащего в основе устройства управления, схема отладки устройства управления приведена на рисунке 2.

Рисунок 2 - схема переходов/состояний автомата

Результаты моделирования модуля, реализующего цифровой автомат, приведены на рисунках 3. Из них следует, что он работает корректно.

Рисунок 3 – временная диаграмма тестирования

Исходный код модуля верхнего уровня разрабатываемого устройства приведен в листинге 1.

Листинг 1 – описание устройства

```
LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;
USE IEEE.STD LOGIC ARITH.ALL;
USE IEEE.STD LOGIC UNSIGNED.ALL;
ENTITY control unit IS
PORT (
     C : IN std logic vector (5 DOWNTO 0);
     CLK : IN std logic; RST : IN std logic;
     M : OUT std logic vector (7 DOWNTO 0) );
END control unit;
ARCHITECTURE arch control unit OF control unit IS
     TYPE STATE TYPE IS (s1, s2, s3, s4, s5, s6);
     SIGNAL current state: STATE TYPE := s1;
BEGIN
PROCESS (clk, rst)
BEGIN
     IF (rst='1') THEN
          M \le "00000000";
          current state <= s1;</pre>
```

```
ELSIF (CLK'EVENT AND CLK='1') THEN
     CASE current state IS
     WHEN S1 =>
          M <= "00000100";
          IF (C(0) = '1' \text{ AND } C(1) = '1' \text{ AND } C(2) = '1') THEN
                current state <= S2;
          ELSIF (C(0)='1' AND C(1)='0') THEN
               current state <= S4;
          ELSE
               current state <= S1;
          END IF;
     WHEN S2 =>
          M <= "0000001";
          IF (C(4)='1') OR (C(3)='1') THEN
               M \le "01100000";
               current state <= S3;
          ELSE
               current state <= S2;
          END IF;
     WHEN S3 =>
          M \le "10000010";
          IF (C(0) = '1' \text{ AND } C(1) = '1') THEN
               current state <= S1;</pre>
          ELSIF (C(0) = '0') THEN
               M \le "00100000";
               current state <= S6;
          ELSE
               current state <= S3;
          END IF;
     WHEN S4 =>
          M <= "01100000";
          IF (C(3) = '1' \text{ AND } C(5) = '0') THEN
               M \le "00010000";
               current state <= S5;
          ELSIF (C(5)='1') THEN
```

```
M <= "10100000";
                      current state <= S3;</pre>
                ELSE
                      current state <= S4;</pre>
                END IF;
           WHEN S5 =>
                M <= "00001000";
                IF (C(0)='1') OR (C(2)='0') THEN
                      M <= "00000100";
                      current state <= S6;</pre>
                ELSE
                      M <= "11000000";
                      current state <= S5;</pre>
                END IF;
           WHEN S6 =>
                M <= "00010000";
                current state <= S1;</pre>
           END CASE;
     END IF;
END PROCESS;
END arch control unit;
```

Вывод: в ходе выполнения лабораторной работы были закреплены на практике навыки разработки устройств управления на языке VHDL (в данном случае — устройства управления с жесткой логикой на основе цифровых автоматов).