Carbon counting

(n=50)

How many carbon atoms are in the molecule [SMILES]

SAR Analysis

(n=40)

Given [molecular data] determine the score of [SMILES]

Ring counting

(n=48)

How many rings are in the molecule [SMILES]

SMILES to IUPAC

(n=200*)

Write the IUPAC name of the molecule [SMILES]

Shortest path

(n=108*)

Count bonds between the dummy atoms [SMILES]

Product of reaction

(n=90*)

Write the product of reaction [SMILES 1] + [SMILES 2] as a SMILES string

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Atom mapping

(n=184*)

Map the atoms from [SMILES 1] to [SMILES 2]

$$\begin{array}{c}
3 & 6 \\
0 & 2 \\
4 & 5 \\
\hline
 & 1 \\
0 \\
c1c2c(occ2)ccc1
\end{array}$$

 \longrightarrow [(0,3),(1,4),(2,5),(3,1),(4,0),(5,8),(6,7),(7,6),(8,2)]

NMR Elucidation

(n=76)

Write the SMILES string of the molecule consistent with this data [Formula] [¹H NMR] [¹³C NMR]

		-
<u>Formula</u>	1H NMR	<u>13C NMR</u>
C7H7NO2	δ 6.89 (2H, ddd, J	δ 114.3 (2C, s), 118.7
	= 8.5, 1.1, 0.4 Hz),	(1C, s), 132.8 (2C, s),
	7.73 (2H, ddd, J =	151.4 (1C, s), 167.1
	8.5, 1.7, 0.4 Hz).	(1C, s).
HO		
\longrightarrow		