Korea Income Distribution

coop711 2018-04-29

Data

자류 입력

⟨표2⟩ 급여규모별 인원과 근로소득 총액 비즛(연말정산 신고기준, 2009-10년, 단위:%)

(112) 111111				10/65	01. 1.1		00 10 1.,	E 11.707
급여규모별	2009년				2010년			
871175	인원		근로소득 총액		인원		근로소득 총액	
전체	비중	누적비	비중	누적비	비중	누적비	비중	누적비
5백만원 이하	18.6	18.6	1.8	1.8	19.1	19.1	1.7	1.7
5백~1천만원	13.0	31.6	3.9	5.7	12.3	31.4	3.6	5.3
1천~2천만원	23.1	54.6	13.3	19.0	22.8	54.3	12.8	18.1
2천~3천만원	14.7	69.3	14.3	33.3	14.4	68.7	13.6	31.7
3천~4천만원	10.1	79.4	13.9	47.1	9.8	78.5	13.0	44.7
4천~6천만원	12.0	91.4	23.3	70.4	12.0	90.5	22.5	67.2
6천~8천만원	5.3	96.7	14.3	84.7	5.4	95.9	14.1	81.3
8천만~1억원	1.9	98.6	6.6	91.3	2.3	98.2	7.8	89.0
1~2억원 이하	1.2	99.8	5.9	97.2	1.6	99.8	7.7	96.7
2~3억원 이하	0.1	99.9	0.9	98.1	0.1	99.9	1.2	97.9
3~5억원 이하	0.0	100.0	0.7	98.8	0.1	100.0	0.8	98.7
5~10억원 이하	0.0	100.0	0.6	99.4	0.0	100.0	0.6	99.4
10억원 초과	0.0	100.0	0.6	100.0	0.0	100.0	0.6	100.0
상위10%	10.0		32.9		10.0		33.9	

자료: 국세청, 국세통계연보 2010-11년

```
income_kr <- "../data/labor_income_kor.txt" %>%
  read.table(header = TRUE, row.names = 1)
income_kr %>% str
```

```
## 'data.frame': 13 obs. of 2 variables:

## $ Earners...: num 19.1 12.3 22.8 14.4 9.8 12 5.4 2.3 1.6 0.1 ...

## $ Income...: num 1.7 3.6 12.8 13.6 13 22.5 14.1 7.8 7.7 1.2 ...
```

변수명을 조정하고, 다시 확인.

```
names(income_kr) <- c("Earners(%)", "Income(%)")
income_kr %>% kable
```

	Earners(%)	Income(%)
0-5	19.1	1.7
5-10	12.3	3.6
10-20	22.8	12.8

	Earners(%)	Income(%)
20-30	14.4	13.6
30-40	9.8	13.0
40-60	12.0	22.5
60-80	5.4	14.1
80-100	2.3	7.8
100-200	1.6	7.7
200-300	0.1	1.2
300-500	0.1	0.8
500-1000	0.0	0.6
1000-	0.0	0.6

```
rownames(income_kr) %<>%
  sub(pattern = "-", replacement = " - ", x = .)
# income_kr %>% kable
```

barplot() 을 그리기 위하여 height 를 설정하려면 width 를 파악하여야 함. 그러기 위해서 소득 구간을 rownames 의 구간으로부터 설정. strsplit() 의 활용방법 확인, anonymous function 과 sapply() 를 이용하여 긴 character list의 앞 원소만 추출하는 방법을 살필 것.

```
(income_breaks <- rownames(income_kr) %>%
  strsplit(split = " - ") %>%
  sapply(`[`, 1) %>%
  as.numeric %>%
  c(2000))
```

```
## [1] 0 5 10 20 30 40 60 80 100 200 300 500 1000 2000
```

width 에 해당하는 각 소득구간의 폭을 계산

```
income_widths <- income_breaks %>% diff
```

각 기둥의 면적이 해당 소득구간의 퍼센티지와 같게 해주려면 각 퍼센티지를 width 로 나눠줘야 함. 다음 각 경우를 비교 (results = 'hide' 를 지우고 실행).

```
options(digits = 3)
(height_earners <- income_kr[, 1] %>%`/`(income_widths))
```

```
## [1] 3.8200 2.4600 2.2800 1.4400 0.9800 0.6000 0.2700 0.1150 0.0160 0.0010 ## [11] 0.0005 0.0000 0.0000
```

Probability Historam with barplot()

아무런 argument 도 설정하지 않고 barplot() 을 그리면

```
height_earners %>%
barplot(width = income_widths)
```


막대의 이름을 넣어 다시 그리되, 막대 사이의 공간을 없애면

```
height_earners %>%
barplot(width = income_widths,
    space = 0,
    names.arg = rownames(income_kr))
```


실제 인원은 거의 없는 것처럼 보이는 5억원 이상의 구간을 합쳐야 할 필요. 자료를 재구성하면,

```
income_kr_2 <- income_kr[1:11, ]
income_kr_2[11, ] <- income_kr[11:13, ] %>%
    apply(MARGIN = 2, FUN = sum)
income_kr_2
```

```
Earners(%) Income(%)
## 0 - 5
                  19.1
## 5 - 10
                  12.3
                            3.6
## 10 - 20
                  22.8
                           12.8
## 20 - 30
                  14.4
                           13.6
## 30 - 40
                  9.8
                           13.0
## 40 - 60
                  12.0
                           22.5
## 60 - 80
                  5.4
                           14.1
## 80 - 100
                            7.8
                   2.3
## 100 - 200
                            7.7
## 200 - 300
                            1.2
## 300 - 500
```

rownames(income_kr_2)

```
rownames(income_kr_2)[11] <- "300 - "
income_kr_2</pre>
```

```
Earners(%) Income(%)
## 0 - 5
                 19.1
## 5 - 10
                 12.3
                           3.6
## 10 - 20
                 22.8
                          12.8
## 20 - 30
                14.4
                          13.6
## 30 - 40
                 9.8
                          13.0
## 40 - 60
                12.0
                          22.5
## 60 - 80
                          14.1
                 5.4
## 80 - 100
                  2.3
                          7.8
## 100 - 200
                  1.6
                           7.7
## 200 - 300
                  0.1
                           1.2
## 300 -
                  0.1
```

```
income_breaks_2 <- income_breaks[1:12]
income_widths_2 <- income_breaks_2 %>% diff
height_earners_2 <- income_kr_2[, 1] %>% `/`(income_widths_2)
names_bar_2 <- rownames(income_kr_2)</pre>
```

다시 barplot() 을 작동시키되 회색 대신 흰색을 넣고, 막대 사이의 공간을 없애고 제목과 축이름을 붙이면

```
title_1 <- "Korea Income Wage Earners' Distribution"
xlab_1 <- "Income Class (Million Won)"
ylab_1 <- "% per Million Won"
height_earners_2 %>%
barplot(width = income_widths_2, names.arg = rownames(income_kr_2), space = 0, col =
"white")
title(main = title_1, xlab = xlab_1, ylab = ylab_1)
```

Korea Income Wage Earners' Distribution

1억 이상의 구간을 합치기 위하여 자료를 다시 손보면.

```
income_kr_3 <- income_kr_2[1:9, ]
income_kr_3[9, ] <- income_kr_2[9:11, ] %>%
    apply(MARGIN = 2, FUN = sum)
rownames(income_kr_3)[9] <- "100 - "
income_breaks_3 <- income_breaks_2[-(11:12)]
income_widths_3 <- income_breaks_3 %>% diff
height_earners_3 <- income_kr_3[, 1] %>% `/`(income_widths_3)
names_bar_3 <- rownames(income_kr_3)</pre>
```

1억 이상의 구간을 합쳐 barplot을 그리면,

```
height_earners_3 %>%
  barplot(width = income_widths_3, names.arg = rownames(income_kr_3), space = 0, col =
"white")
title(main = title_1, xlab = xlab_1, ylab = ylab_1)
```

Korea Income Wage Earners' Distribution

같은 방법으로 소득규모에 대하여 세 개의 barplot 을 그리려면, 우선 자료를 정리하고.

```
height_income <- income_kr[, 2] %>% `/`(income_widths)
height_income_2 <- income_kr_2[, 2] %>% `/`(income_widths_2)
height_income_3 <- income_kr_3[, 2] %>% `/`(income_widths_3)
```

세 개의 barplot을 한 화면에 연속적으로 그리기 위하여 par(mfrow = c(3, 1)) 설정

```
par(mfrow = c(3, 1))
height_income %>%
barplot(width = income_widths, names.arg = rownames(income_kr), space = 0, col = "white")
height_income_2 %>%
barplot(width = income_widths_2, names.arg = rownames(income_kr_2), space = 0, col = "white")
height_income_3 %>%
barplot(width = income_widths_3, names.arg = rownames(income_kr_3), space = 0, col = "white")
```


Cumulative distribution

barplot 보다 누적도표가 분포의 윤곽을 살피는 데 더 낫다는 점을 상기하면, 누적분포를 구하는 일부터 시작하여야 함. 누적도 표를 그리려면 첫 좌표는 (0, 0) 이어야 함에 유의. 마침 income_breaks 와 맞춰보면 income_kr_cum 의 첫 행을 0으로만 추가해 주면 되는 일임. 자료로부터 이미 아는 사실이지만, cumsum() 함수의 활용경 확인차 계산해보면

```
income_kr_cum <- income_kr %>%
  apply(MARGIN = 2, FUN = cumsum) %>%
  rbind(c(0, 0), .)
```

누적분포의 각 계급은 10 - 20 의 열리고 닫힌 구간이 아니라 한 쪽으로 열린 구간이어야 하고, 누적백분률임을 명시하려면

```
rownames(income_kr_cum) %<>%
    strsplit(., split = " - ") %>%
    sapply(., function(.)^[^(., 2)) %>%
    paste("0 ~", .) %>%
    ^[<-^(., c(1, 14), c("0 ~ 0", "0 ~ 2000"))
colnames(income_kr_cum) <- c("Cumulated Wage Earners (%)", "Cumulated Income (%)")
income_kr_cum %>% kable
```

	Cumulated Wage Earners (%)	Cumulated Income (%)
0 ~ 0	0.0	0.0
0 ~ 5	19.1	1.7
0 ~ 10	31.4	5.3
0 ~ 20	54.2	18.1
0 ~ 30	68.6	31.7
0 ~ 40	78.4	44.7
0 ~ 60	90.4	67.2
0 ~ 80	95.8	81.3
0 ~ 100	98.1	89.1
0 ~ 200	99.7	96.8
0 ~ 300	99.8	98.0
0 ~ 500	99.9	98.8
0 ~ 1000	99.9	99.4
0 ~ 2000	99.9	100.0

```
earners_kor_cum_df <- data.frame(x = income_breaks, y = income_kr_cum[, 1])
income_kr_cum_df <- data.frame(x = income_breaks, y = income_kr_cum[, 2])</pre>
```

xlim 을 좁혀가면서 분포 윤곽 파악.

```
par(mfrow = c(2, 2))
title_2 <- "Cumulative Income Earners' Distribution"
xlab_2 <- "Income (Million Won)"
ylab_2 <- "Cumulative % of Wage Earners"
earners_kor_cum_df %>% plot(type = "b", ann = FALSE)
title(main = title_2, xlab = xlab_2, ylab = ylab_2)
earners_kor_cum_df %>% plot(type = "b", xlim = c(0, 500), ann = FALSE)
title(main = title_2, xlab = xlab_2, ylab = ylab_2)
earners_kor_cum_df %>% plot(type = "b", xlim = c(0, 200), ann = FALSE)
title(main = title_2, xlab = xlab_2, ylab = ylab_2)
earners_kor_cum_df %>% plot(type = "b", xlim = c(0, 200), ann = FALSE)
title(main = title_2, xlab = xlab_2, ylab = ylab_2)
earners_kor_cum_df %>% plot(type = "b", xlim = c(0, 100), ann = FALSE)
title(main = title_2, xlab = xlab_2, ylab = ylab_2)
```


한가지 기억해 둘 사실은 누적분포의 윗 부분 면적이 바로 평균이라는 점. 누적분포가 히스토그램보다 나은 점 중의 하나가 분위를 찾기 쉬울 뿐 아니라 평균을 비교하는 것도 용이하다는 것임. 중위소등은 바로 y축에서 50%에 해당하는 값을 수평으로 그은 후 누적도표와 만나는 점의 x좌표이다. 여기서 계산해 보면 $\frac{x-10}{50-10}$ 로부터 x=18.2가 계산된다.

```
earners_kor_cum_df %>%
  plot(type = "b", xlim = c(0, 200), ann = FALSE, xaxt = "n", yaxt = "n")
axis(side = 1, at = income_breaks, labels = income_breaks)
axis(side = 2, at = seq(0, 100, by = 25), labels = seq(0, 100, by = 25), las = 1)
poly_df <- earners_kor_cum_df %>%
  rbind(., c(0, 100))
polygon(poly_df, density = 15, angle = 135)
earners_kor_cum_df %>% points(pch = 21, col = "black", bg = "white")
lines(x = c(0, 18.2), y = rep(50, 2), col = "red", lwd = 2)
arrows(x0 = 18.2, y0 = 50, x1 = 19, y1 = 0, length = 0.15, col = "red", lwd = 2)
text(x = 48, y = 25, labels = "Median Income", srt = 30, col = "red")
title(main = title_2, xlab = xlab_2, ylab = ylab_2)
```

Cumulative Income Earners' Distribution

소득 자체의 누적분포에 대해서도 같은 방법으로 그려보면

```
par(mfrow = c(2, 2))
title_3 <- "Cumulative Income Distribution"
ylab_3 <- "Cumulative % of Income"
income_kr_cum_df %>% plot(type = "b", ann = FALSE)
title(main = title_3, xlab = xlab_2, ylab = ylab_3)
income_kr_cum_df %>% plot(type = "b", ann = FALSE, xlim = c(0, 500))
title(main = title_3, xlab = xlab_2, ylab = ylab_3)
income_kr_cum_df %>% plot(type = "b", ann = FALSE, xlim = c(0, 200))
title(main = title_3, xlab = xlab_2, ylab = ylab_3)
income_kr_cum_df %>% plot(type = "b", ann = FALSE, xlim = c(0, 200))
title(main = title_3, xlab = xlab_2, ylab = ylab_3)
income_kr_cum_df %>% plot(type = "b", ann = FALSE, xlim = c(0, 100))
abline(h = 89.1, lty = 3, col = "red")
axis(side = 2, at = 89.1, label = 89.1, las = 1)
title(main = title_3, xlab = xlab_2, ylab = ylab_3)
```


Lorenz Curve

이제 두 누적분포를 한 장의 도표로 살피는 방법을 생각해보자. x 축을 사람, y 축을 소득으로 하여 두 점을 이어주면 어떤 결과가 나오는 지 살펴 보자.

```
earners <- income_kr_cum[, 1]
income <- income_kr_cum[, 2]
earners_income_df <- data.frame(Earners = earners, Income = income)
earners_income_df %>% plot(type = "b", ann = FALSE, xaxt = "n", yaxt = "n")
# abline(a = 0, b = 1, xlim = c(0, 100), ylim = c(0, 100))
lines(x = c(0, 100), y = c(0, 100), type = "l")
axis(side = 1, at = earners, labels = earners)
axis(side = 2, at = income, labels = income)
abline(h = c(0, 100), lty = 3)
abline(v = c(0, 100), lty = 3)
title_4 <- "Lorenz Curve of Korea Wage Earners' Income"
xlab_4 <- "Wage Earners Cumulated (%)"
ylab_4 <- "Income Cumulated (%)"
title(main = title_4, xlab = xlab_4, ylab = ylab_4)</pre>
```

Lorenz Curve of Korea Wage Earners' Income

초승달 부분에 빗금을 치고, 각 축의 눈금을 가능한 많이 표시하려면 polygon() 과 axis(..., las =)을 이용하게 되는 데이 때 다각형을 구성하는데 필요한 좌표들은 이미 earners income df에 모두 나와 있음.

```
earners_income_df %>% plot(type = "b", ann = FALSE, xaxt = "n", yaxt = "n")
# abline(a = 0, b = 1, xlim = c(0, 100), ylim = c(0, 100))
lines(x = c(0, 100), y = c(0, 100), type = "l")
axis(side = 1, at = earners, labels = format(earners, nsmall = 1))
axis(side = 2, at = income[c(1:10, 14)],
    labels = format(income[c(1:10, 14)], nsmall = 1), las = 1)
abline(h = c(0, 100), lty = 3)
abline(v = c(0, 100), lty = 3)
title(main = title_4, xlab = xlab_4, ylab = ylab_4)
earners_income_df %>%
polygon(density = 10, angle = 135)
earners_income_df %>%
points(pch = 21, col = "black", bg = "white")
```

Lorenz Curve of Korea Wage Earners' Income

이 곡선의 이름은 무엇인가요? Lorenz Curve (https://en.wikipedia.org/wiki/Lorenz_curve) 참조.

Gini coefficient

지니계수는 완전평등선과 로렌츠 곡선 사이의 면적을 완전불평등 상황에서의 면적, 즉 1/2로 나눠 준 값이다. 이 값이 클수록 불평등이 심한 것으로 간주할 수 있다. 이 초승달 모양 면적은 삼각형 면적에서 로렌츠 곡선 아래 면적을 뺀 것과 같아지므로 이전에 작성한 arae • R 함수를 이용할 수 있다.

```
source("area.R")
gini <- 2 * (1/2 - area_R(x = earners, y = income)/10000)</pre>
```

계산된 지니계수를 그림 안에 텍스트로 넣어주려면 paste()를 이용하여 입력토록한다.

Lorenz Curve of Korea Wage Earners' Income

ggplot

단계별로 결과물을 저장하면서 작업할 수 있도록 구성하였으니 fig.keep = 'none' 를 fig.keep = 'all' 로 바꿔서 실행 시켜보면 각 단계에서 어떤 점이 추가되는 지 살핌 수 있다.

Cumulative Distribution

```
library(ggplot2)
(c1 <- ggplot() +
  geom line(data = earners kor cum df,
           mapping = aes(x = x, y = y), na.rm = TRUE))
(c2 <- c1 +
  scale_x_continuous(breaks = earners_kor_cum_df$x,
                     labels = earners_kor_cum_df$x,
                    limits = c(0, 200))
(c3 <- c2 +
 geom hline(yintercept = c(0, 100), linetype = "dotted"))
(c4 <- c3 +
 geom_vline(xintercept = c(0, 200), linetype = "dotted"))
(c5 <- c4 +
  geom polygon(data = poly df[-(11:14), ],
               mapping = aes(x = x, y = y),
               alpha = 0.5, fill = "grey"))
(c6 <- c5 +
  geom_point(data = earners_kor_cum_df,
             mapping = aes(x = x, y = y),
             shape = 21, fill = "white", size = 3,
             na.rm = TRUE))
(c7 <- c6 +
 ggtitle(title_2) + xlab(xlab_2) + ylab(ylab_2))
(c8 < - c7 +
  scale y continuous(breaks = seg(0, 100, by = 25), labels = seg(0, 100, by = 25)))
    annotate("segment", x = 0, xend = 18.2, y = 50, yend = 50, colour = "red", size =
1))
(c10 <- c9 +
    geom_segment(data = data.frame(x1 = 18.2, x2 = 18.2, y1 = 50, y2 = 0),
                 aes(x = x1, y = y1, xend = x2, yend = y2),
                 arrow = arrow(),
                colour = "red",
                 size = 1))
(c11 <- c10 +
  annotate("text", x = 55, y = 25, label = "Median Income", size = 5, color = "red", srt
= 15))
(c12 <- c11 +
    theme(plot.title = element_text(hjust = 0.5, size = 15)))
```

c12

Cumulative Income Earners' Distribution

ggsave("../pics/cumulative_plot_wage_kr.png", width = 9, height = 9)

Lorenz Curve

```
(g1 <- ggplot() +
 geom_line(data = earners_income_df,
           mapping = aes(x = earners, y = income)))
(g2 <- g1 +
 geom line(data = data.frame(x = c(0, 100), y = c(0, 100)),
           mapping = aes(x = x, y = y))
(g3 <- g2 +
 geom hline(yintercept = c(0, 100), linetype = "dotted"))
 geom vline(xintercept = c(0, 100), linetype = "dotted"))
(g5 <- g4 +
 geom_polygon(data = earners_income_df,
              mapping = aes(x = earners, y = income),
              alpha = 0.5, fill = "grey"))
(g6 <- g5 +
 geom_point(data = earners_income_df,
            mapping = aes(x = earners, y = income),
            shape = 21, fill = "white", size = 3))
(q7 < - q6 +
 labs(title = title 4, x = xlab 4, y = ylab 4))
(a8 <- a7 +
 scale x continuous(breaks = earners[c(1:8, 14)],
                    labels = format(earners[c(1:8, 14)], nsmall = 1)))
(g9 <- g8 +
 scale_y_continuous(breaks = income[c(1:8, 14)],
                    labels = format(income[c(1:8, 14)], nsmall = 1)))
# scale_y_continuous(breaks = seq(0, 100, by = 25)))
(g10 <- g9 +
 annotate("text", x = 30, y = 60,
          label = paste("Gini = ", format(gini, digits = 3, nsmall = 2)),
          size = 9, color = "red", srt = 15))
(g11 <- g10 +
 annotate("text", x = 80, y = 20,
          label = "15 Million",
          size = 9, color = "blue"))
(g12 <- g11 +
 theme bw() +
   theme(plot.title = element_text(hjust = 0.5, size = 15)))
```

g12

Lorenz Curve of Korea Wage Earners' Income

ggsave("../pics/lorenz_curve_wage_kr.png", width = 9, height = 9)