Derived Series and Descending/Ascending Central Series

<u>Def:</u> Given a group $G \& a, b \in G$, the <u>commutator of a and b</u> is $[a, b] = aba^{-1}b^{-1}$. The subgroup $[G, G] \leq G$ generated by all commutators is called the <u>commutator subgroup</u> of G (the book denotes [G, G] instead by G, but the former is a useful notation for us).

Ex: Consider S_3 . We have

$$[(1,3,2),(1,2)] = (1,3,2)(1,2)(1,3,2)^{-1}(1,2)^{-1} = (1,3,2)(1,2)(1,2,3)(1,2) = (1,2,3)$$
 so $A_3 = \langle (1,2,3) \rangle \leq [S_3,S_3]$. Note that $S_3/A_3 \simeq \mathbb{Z}_2$, which is abelian, so we must have $[S_3,S_3] \leq A_3$ (by the theorem proved in class and in the book). Thus $[S_3,S_3] = A_3$.

Ex: Since A_3 is abelian, we have

$$[\sigma, \tau] = \sigma \tau \sigma^{-1} \tau^{-1} = \tau \sigma \sigma^{-1} \tau^{-1} = \iota$$

for all $\sigma, \tau \in A_3$. Therefore, the smallest subgroup of A_3 containing all commutators is $\{\iota\}$. Thus $[A_3, A_3] = \{\iota\}$.

The preceding example illustrates the following proposition.

Prop: If G is an abelian group with identity element e, then $[G, G] = \{e\}$.

So we see that there is a natural sequence of subgroups

$$S_3 \ge [S_3, S_3] = A_3 \ge [A_3, A_3] = \{\iota\}.$$

<u>Def:</u> Let G be a group. We set $G^{(0)} := G$ and inductively define $G^{(n)} := [G^{(n-1)}, G^{(n-1)}]$ for $n \ge 1$, yielding a "series" of subgroups:

$$G = G^{(0)} \ge G^{(1)} \ge G^{(2)} \ge \cdots,$$

where each subgroup is normal in its predecessor (but not necessarily in G). This is called the <u>derived series of</u> G. If $G^{(n)} = \{e\}$ for some $n \ge 0$, then G is said to be <u>solvable</u>.

Ex: S_3 is solvable since $(S_3)^{(2)} = \{\iota\}.$

<u>Def:</u> Given a group G and $H \leq G$, we define [H, G] to be the subgroup of G generated by all commutators of the form [h, g] with $h \in H$ and $g \in G$.

<u>Def:</u> Let G be a group. We set $G_1 := G$ and inductively define $G_n := [G_{n-1}, G]$ for n > 1, yielding a "series" of subgroups:

$$G = G_1 \ge G_2 \ge G_3 \ge \cdots$$

where each subgroup is normal in its predecessor (but not necessarily in G). [Note: can you prove this?] This is called the <u>descending central series of G</u> (or lower central series). If $G_n = \{e\}$ for some $n \geq 1$, then G is said to be nilpotent.

Ex: Consider S_3 . Based on our previous computations, $(S_3)_2 = [S_3, S_3] = A_3$. When we did this computation, we noted that [(1,3,2),(1,2)] = (1,2,3). But since $(1,3,2) \in A_3$ and $(1,2) \in S_3$, this shows that $(1,2,3) \in [A_3,S_3]$. Since $[A_3,S_3] \leq A_3$ and (1,2,3) generates A_3 , this shows that $(S_3)_3 = [A_3,S_3] = A_3$. Similarly, $(S_3)_n = A_3$ for all $n \geq 3$. So the descending central series of S_3 is

$$S_3 \ge A_3 \ge A_3 \ge A_3 \ge \cdots$$
.

It follows that S_3 is not nilpotent.

<u>Def:</u> Let G be a group. We set $Z_0(G) := \{e\}$ (where e is the identity element of G) and inductively define

$$Z_n(G) := \{ g \in G \mid [g, h] \in Z_{n-1}(G) \ \forall h \in G \}$$
$$= \pi_{n-1}^{-1} [Z(G/Z_{n-1}(G))]$$

(where $\pi_{n-1}: G \to G/Z_{n-1}(G)$ is the natural group homomorphism) for n > 1, yielding a "series" of subgroups:

$$\{e\} = Z_0(G) \le Z_1(G) \le Z_2(G) \le \cdots$$

where each subgroup is normal in the group which follows it (but not necessarily in G). [Note: can you prove this?] This is called the <u>ascending central series of G (or upper central series).</u>

It's worth noting here that if G is a group, then $Z_1(G) = Z(G)$, the center of G. It follows that if $Z(G) = \{e\}$, then $Z_n(G) = \{e\}$ for all $n \ge 0$.

Ex: Since the center of S_3 is $Z(S_3) = \{\iota\}$, the ascending central series of S_3 is

$$\{\iota\} \leq \{\iota\} \leq \{\iota\} \leq \cdots$$
.