a mini session on

NETWORK ADDRESSING

NETWORK ADDRESSING

Layer	Application/Example Ce		Central Device/ Protocols	
Application (7) Serves as the window for users and application processes to access the network services.	End User layer Program that opens what was sent or creates what is to be sent Resource sharing • Remote file access • Remote printer access • Directory services • Network management	User Applications SMTP		
Presentation (6) Formats the data to be presented to the Application layer. It can be viewed as the "Translator" for the network.	Syntax layer encrypt & decrypt (if needed) Character code translation • Data conversion • Data compression • Data encryption • Character Set Translation	JPEG/ASCII EBDIC/TIFF/GIF PICT	G	
Session (5) Allows session establishment between processes running on different stations.	Synch & send to ports (logical ports) Session establishment, maintenance and termination • Session support - perform security, name recognition, logging, etc.	RPC/SQL/NFS NetBIOS names	NFS T	
Transport (4) Ensures that messages are delivered error-free, in sequence, and with no	TCP Host to Host, Flow Control Message segmentation • Message acknowledgement • Lessage traffic control • Session multiplexing	TCP/SPX/UDP	E W A	
Network (3) Controls the operations of the subnet, deciding which physical path the data takes.	Packets ("letter", contains IP address) outing • Subnet traffic control • Frame fragmentation • ogical-physical address mapping • Subnet usage accounting	Routers IP/IPX/ICMP	Y Can b	
Provides error-free transfer of data frames from one node to another over the Physical layer.	Frames ("envelopes", contains MAC address) [NIC card — Switch — NIC card] (end to end) Establishes & terminates the logical link between nodes • Frame traffic control • Frame sequencing • Frame acknowledgment • Frame delimiting • Frame error checking • Media access control	Switch Bridge WAP PPP/SLIP	on al layer	
Physical (1) Concerned with the transmission and reception of the unstructured raw bit stream over the physical medium.	Physical structure Cables, hubs, etc. Data Encoding • Physical medium attachment • Transmission technique - Baseband or Broadband • Physical medium transmission Bits & Volts	Hub Laye	1000000	

Media Access Control (MAC) Address

- MAC address of a device is a unique identifier assigned to a network interface controller (NIC) for communication
- Hexadecimal : eg FA-2B-37-68-01-01
- \bullet 48 bits : 2^{48} , approx. 281 trillion addresses
- Hardcoded and unique

Network Switch

- Maintains a list of MAC addresses of the devices in the network
- Initialisation : get all the MAC addresses
- Updating : update list by 'forgetting' inactive MAC addresses

Internet Protocol (IP) Address

- IP address is a numerical label assigned to each device connected to a computer network that uses the Internet Protocol for communication.
- IP address identifies a host or a network interface and provide its with a location addressing
- IPv4 (since 1983): 32 bits, from 0.0.0.0 to 255.255.255.255
- 2^{32} , approx. 4 billion IP addresses
- But we have 6 billion people, so insufficient to have a unique IP address for each person or device.

Public IP Address

- Internet Assigned Number Authority (IANA) www.iana.org
- Each Internet Service Provider (ISP) is given one Public IP address

Domain Name Server, DNS

- https://ipinfo.info/html/ip_checker.php
- singtel.com.sg (203.126.100.199)
- yishunjc.moe.edu.sg (107.154.114.116)
- google.com.sg (172.217.18.163)

Private IP Address

- If a Local Area Network (LAN) can use from 172.16.0.0 to 172.31.255.255, then there are 16 x 2^{16} , which is about 1 million addresses.
- And within the LAN, there is a smaller network which uses from 172.16.0.0 to 172.16.255.255, then there can be 2^{16} , which is 65,536 addresses.

Advantages of hierarchical addressing

- Hierarchical (same subnet for Hosts under the same switch)
- IP vs MAC address

Why "255"?

• in a 8-bit system, 255 = 1111 1111

Router

- Recognises IP addresses
- Uses Dynamic Host Configuration Protocol, DHCP
- assign a local IP for a "leased time"
- DHCP vs Static IP address

Since 1983: IPv4 (32bit)

Mid 2000 : IPv6 (128bit)

www.ping.eu/nslookup

- -> Ping
- -> Trace route
- -> DNS lookup