Tecnología Industrial II.

Nombre y Apellidos : _____

Ejercicio 1

Dada la función de salida combinacional de tres variables ya simplificada como suma de productos s = a + b c'

- A. Rellenar su tabla de la verdad y su mapa de Karnaugh (0.6 puntos)
- B. Dar la expresión de la primera forma canónica sin simplificar. (0.6 puntos)
 - 1. Indicando todos y cada uno de los mintérminos como productos de todas sus variables, y suma de todos esos productos (expresión larga)
 - 2. Como sumatorio o indicando los mintérminos abreviadamente como **m**_i (expresión corta)
- C. Dar una expresión *simplificada como producto de sumas* (0.6 puntos)
- D. Dibujar el circuito lógico simplificado (**el del enunciado**, simplificado como suma de productos) con puertas lógicas. (0.6 puntos)
- E. Estima el ahorro (puertas de dos entradas) del circuito simplificado y sin simplificar. (0.6 puntos)
- F. Expresa el circuito simplificado con puertas NAND. (0.6 puntos)

	а	b	С	s
0				
1				
2				
3				
4				
5				
6				
7				

ab \ c	0	1
00		
01		
11		
10		

Ejercicio 2

Tengo un microchip que hace lo siguiente: acepta una combinación de tres entradas (a, b, c) y calcula a la salida la combinación de 4 bits (S3-S2-S1-S0) que es el producto del **número abc** en base diez por **dos**. Calcula por cada combinación a-b-c cada salida S3-S2-S1-S0 (la salida S0 es la menos significativa y la S3 la más significativa). ¿Cuántas puertas lógicas tiene este circuito? Explica bien el resultado. (1.5 puntos)

Ejercicio 3

Pasar el número 257 en base 10, a binario, hexadecimal y binario BCD natural (4 bits) (1.5 puntos)

Tecnología Industrial II.

Nombre y Apellidos : _____

Ejercicio 4

Selectividad 2012 (Examen 3). Una puerta de corredera se mueve mediante dos motores: MA para la apertura y MC para el cierre (salidas). Se controla mediante un pulsador para abrirla PA y otro para cerrarla PC, un final de carrera de apertura FA y otro para el cierre FC. Si se mantiene pulsado PA o PC, la puerta se abre o se cierra hasta el final, dejando el motor de funcionar cuando se activa el final de carrera correspondiente. Si se pulsan PA y PC simultáneamente, la puerta se detiene. Se pide:

- a) Obtener la tabla de verdad de MA y de MC. **Comentar razonadamente cada combinación.** (1.4 puntos)
- b) Simplificar por Karnaugh las funciones e implementarlas con puertas lógicas. (2 puntos)

			MA	MC
0				
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

Tecnología Industrial II.

\	MA (Motor ape	
,		

MC (Motor cierre)

	\		
Ī			
Ī			