Übersicht

Dienste, QoS

Sicherheit in Rechnernetzen (Security)

- Begriffe, Ziele und Maßnahmen (konzeptuell)
- Kryptographische Hashverfahren

QoS – Quality of Service / Dienstegüte

Was versteht man unter dem Begriff Dienste?

QoS – Quality of Service / Dienstegüte

Was versteht man unter dem Begriff Dienste?

Def: Ein Dienst ist eine Menge von Funktionen, die einem Nutzer von einem Erbringer zur Verfügung gestellt werden.

QoS – Quality of Service / Dienstegüte

Was versteht man unter dem Begriff Dienste?

Def: Ein Dienst ist eine Menge von Funktionen, die einem Nutzer von einem Erbringer zur Verfügung gestellt werden.

Was versteht man unter dem Begriff Dienstegüte (Quality of Service)?

QoS – Quality of Service / Dienstegüte

Was versteht man unter dem Begriff Dienste?

Def: Ein Dienst ist eine Menge von Funktionen, die einem Nutzer von einem Erbringer zur Verfügung gestellt werden.

Was versteht man unter dem Begriff Dienstegüte (Quality of Service)?

Def: Dienstegüte bezeichnet eine Menge quantitativer Kenngrößen, die die Eigenschaften eines Dienstes beschreiben.

QoS – Quality of Service / Dienstegüte

Nennen und erklären Sie QoS-Parameter für Verkehrscharaktersistik und Zuverlässigkeit eines Dienstes.

Verkehrscharakteristik:

QoS – Quality of Service / Dienstegüte

- Verkehrscharakteristik:
 - Durchsatz (throughput)

QoS – Quality of Service / Dienstegüte

- Verkehrscharakteristik:
 - Durchsatz (throughput)
 - Verhältnis der Größe einer PDU zu der Zeit bis die nächste PDU übertragen wird
 - Abhängig von Leitung, Puffer, Protokoll...

QoS – Quality of Service / Dienstegüte

- Verkehrscharakteristik:
 - Durchsatz (throughput)
 - Verzögerung (delay)

QoS – Quality of Service / Dienstegüte

- Verkehrscharakteristik:
 - Durchsatz (throughput)
 - Verzögerung (delay)
 - Zeit von der Übergabe einer PDU an den Dienst bis zur Ablieferung beim Epfänger (Ende-zu-Ende-Verzögerung)
 - · Zeit, die eine PDU ,im' Dienst verweilt

QoS – Quality of Service / Dienstegüte

- Verkehrscharakteristik:
 - Durchsatz (throughput)
 - Verzögerung (delay)
 - Verzögerungsschwankung (jitter)

QoS – Quality of Service / Dienstegüte

- Verkehrscharakteristik:
 - Durchsatz (throughput)
 - Verzögerung (delay)
 - Verzögerungsschwankung (jitter)
 - Varianz der Verzögerung
 - Pakete eines Paketstroms werden in (annähernd) gleichen Zeitabständen beim Sender abgeschickt, kommen aber in paketvermittelten Netzen selten mit identischer Verzögerung beim Empfänger an.

QoS – Quality of Service / Dienstegüte

Nennen und erklären Sie QoS-Parameter für Verkehrscharaktersistik und Zuverlässigkeit eines Dienstes.

• Zuverlässigkeit:

QoS – Quality of Service / Dienstegüte

- Zuverlässigkeit:
 - Unter Zuverlässigkeit eines Kommunikationsnetzes versteht man die Häufigkeit mit der bei einer Übertragung keine Fehler auftreten. Die Angabe der Zuverlässigkeit erfolgt für gewöhnlich in Prozent.
 - Beispiele für Fehler:

QoS – Quality of Service / Dienstegüte

- Zuverlässigkeit:
 - Unter Zuverlässigkeit eines Kommunikationsnetzes versteht man die Häufigkeit mit der bei einer Übertragung keine Fehler auftreten. Die Angabe der Zuverlässigkeit erfolgt für gewöhnlich in Prozent.
 - Beispiele für Fehler:
 - Bitfehler
 - Burstfehler
 - Paketverlust

QoS – Quality of Service / Dienstegüte

- Zuverlässigkeit:
 - Unter Zuverlässigkeit eines Kommunikationsnetzes versteht man die Häufigkeit mit der bei einer Übertragung keine Fehler auftreten. Die Angabe der Zuverlässigkeit erfolgt für gewöhnlich in Prozent.
 - Eine Verbindung zu n Empfängern ist k-zuverlässig ($0 \le k \le n$), falls für jede PDU gilt, dass sie bei mindestens k Empfängern ankommt.

QoS – Quality of Service / Dienstegüte

QoS – Quality of Service / Dienstegüte

- Deterministische DG
- Statistische DG
- Bestmögliche Dienstegüte (best effort)

QoS – Quality of Service / Dienstegüte

- Deterministische DG
 - Vorgegebene Schranken der QoS-Parameter werden exakt eingehalten
 - Ressourcen stehen dem Dienstnutzer exklusiv zur Verfügung
 - Keine Konflikte möglich (außer "Besetztfall")
 - Pessimistische Annahme des Systems

QoS – Quality of Service / Dienstegüte

- Statistische DG
 - Vorgegebene Schranken der QoS-Parameter müssen mit einer gewissen Wsk. eingehalten werden
 - zB.: Verzögerung muss für 90% der Pakete unter 100ms liegen
 - Ressourcen werden bis zu einem gewissen Grad überbelegt
 - Konflikte möglich!

QoS – Quality of Service / Dienstegüte

- best effort.
 - Keinerlei Garantie für Dienstegüteparameter
 - Keine Ressourcenreservierung
 - Immer Konflikte!

Security - Ziele

Vertraulichkeit

Security - Ziele

Control of the second s

Vertraulichkeit

- Speicherung der Daten
- Übertragung der Daten
- Lesen von Daten nur durch autorisierte Personen

Maßnahmen

Security - Ziele

Vertraulichkeit

- Speicherung der Daten
- Übertragung der Daten
- Lesen von Daten nur durch autorisierte Personen

Maßnahmen

• (symmetrische/asymmetrische) Verschlüsselung von Daten

Security - Ziele

Integrität

Security - Ziele

Integrität

- keine unbemerkte Manipulation von Daten
- Änderungen an Daten müssen immer nachvollziehbar sein

Maßnahmen

Security - Ziele

Integrität

- keine unbemerkte Manipulation von Daten
- Änderungen an Daten müssen immer nachvollziehbar sein

Maßnahmen

• Hashverfahren (u.a. Prüfsummen)

Security - Ziele

Authentizität

Security - Ziele

Authentizität

- Echtheit, Überprüfbarkeit
- Hier: Datenursprung, Sender

Security - Ziele

Authentizität

- Echtheit, Überprüfbarkeit
- Hier: Datenursprung, Sender

Verbindlichkeit (non repudiation)

Security - Ziele

Authentizität

- Echtheit, Überprüfbarkeit
- Hier: Datenursprung, Sender

Verbindlichkeit (non repudiation)

- "Unabstreitbarkeit" einer Nachricht
- Bsp. Abschluss eines (Kauf)-Vertrages

Maßnahmen

Security - Ziele

Authentizität

- Echtheit, Überprüfbarkeit
- Hier: Datenursprung, Sender

Verbindlichkeit (non repudiation)

- "Unabstreitbarkeit" einer Nachricht
- Bsp. Abschluss eines (Kauf)-Vertrages

Maßnahmen

• digitale Signatur (z.B. Updates, Pakete aus Paketquellen)

Krypt. Hashfunktion

HASHEN!= VERSCHLÜSSELN

Krypt. Hashfunktion

HASHEN!= VERSCHLÜSSELN

SHA-3 (Keccak) Sponge-Konstruktion

Skein, BLAKE, Grøstl...

Krypt. Hashfunktion

$$h: \{0,1\}^m \to \{0,1\}^n \ mit \ m \ge n$$

Krypt. Hashfunktion

$$h: \{0,1\}^m \to \{0,1\}^n \text{ mit } m \ge n$$

Eigenschaften

• Einwegfunktion y = f(x) "einfach", $f^{-1}(y) = x$ "schwer"

Krypt. Hashfunktion

$$h: \{0,1\}^m \to \{0,1\}^n \ mit \ m \ge n$$

- **Einwegfunktion** y = f(x) "einfach", $f^{-1}(y) = x$ "schwer"
- nicht injektiv → Kollisionen möglich aber unerwünscht (Kollisionsresistenz)

Krypt. Hashfunktion

$$h: \{0,1\}^m \to \{0,1\}^n \ mit \ m \ge n$$

- **Einwegfunktion** y = f(x) "einfach", $f^{-1}(y) = x$ "schwer"
- nicht injektiv → Kollisionen möglich aber unerwünscht (Kollisionsresistenz)
 - Schwache Kollisionsresistenz \rightarrow finde kein x' zu x mit h(x) = h(x')
 - Starke Kollisionsresistenz \rightarrow finde keine x, x' mit h(x) = h(x')

Krypt. Hashfunktion

$$h: \{0,1\}^m \to \{0,1\}^n \text{ mit } m \ge n$$

- **Einwegfunktion** y = f(x) "einfach", $f^{-1}(y) = x$ "schwer"
- nicht injektiv → Kollisionen möglich aber unerwünscht (Kollisionsresistenz)
- (wünschenswert) surjektiv $\forall y \in Y \ \exists x \in X : f(x) = y$

Krypt. Hashfunktion

$$h: \{0,1\}^m \to \{0,1\}^n \text{ mit } m \ge n$$

- **Einwegfunktion** y = f(x) "einfach", $f^{-1}(y) = x$ "schwer"
- nicht injektiv → Kollisionen möglich aber unerwünscht (Kollisionsresistenz)
- (wünschenswert) surjektiv $\forall y \in Y \ \exists x \in X : f(x) = y$
- Effizienz

Krypt. Hashfunktion

$$h: \{0,1\}^m \to \{0,1\}^n \text{ mit } m \ge n$$

- **Einwegfunktion** y = f(x) "einfach", $f^{-1}(y) = x$ "schwer"
- nicht injektiv → Kollisionen möglich aber unerwünscht (Kollisionsresistenz)
- (wünschenswert) surjektiv $\forall y \in Y \ \exists x \in X : f(x) = y$
- Effizienz
- Lawineneffekt/Chaoseffekt

Krypt. Hashfunktion

Geburtstagsparadox

Krypt. Hashfunktion

Geburtstagsparadox

 $p(n) \rightarrow$ Wahrscheinlichkeit dafür, dass mind. 2 Personen am gleichen Tag Geburtstag haben.

 $\mathbf{q}(n) \rightarrow$ Wahrscheinlichkeit dafür, dass mind. 2 Personen an einem bestimmten gleichen Tag Geburtstag haben.

Wie muss groß muss n sein,

damit p, q > 0.5 ?

Krypt. Hashfunktion

Geburtstagsparadox

 $p(n) \rightarrow$ Wahrscheinlichkeit dafür, dass mind. 2 Personen am gleichen Tag Geburtstag haben.

 $\mathbf{q}(n) \rightarrow$ Wahrscheinlichkeit dafür, dass mind. 2 Personen an einem bestimmten gleichen Tag Geburtstag haben.

Wie muss groß muss n sein, damit p, q > 0.5?

Krypt. Hashfunktion

Geburtstagsparadox

 $p(n) \rightarrow$ Wahrscheinlichkeit dafür, dass mind. 2 Personen am gleichen Tag Geburtstag haben.

 $q(n) \rightarrow$ Wahrscheinlichkeit dafür, dass mind. 2 Personen an einem bestimmten gleichen Tag Geburtstag haben.

ag Geburtstag naben. n = 253

Wie muss groß muss n sein, damit p, q > 0.5?

Krypt. Hashfunktion

Verwendung

- (nicht krypto.) Hashmaps/Hashtabellen
- (nicht zwangsläufig krypto.) Prüfsummen
- Signieren von Nachrichten, Nachrichten-Headern
- Integritätsprüfung
- Passwörter hashen
- Pseudozufallsgeneratoren

Krypt. Hashfunktion

Programmieraufgabe:

Untersuchen Sie mit Hilfe von C oder C++ das MD5-Hashverfahren hinsichtlich der **schwachen** und **starken** Kollisionsresistenz.

Beschränken Sie sich dabei auf die ersten 4-8 Zeichen des Hashes.

Idee schwache Kollisionsresistenz:

Erstellen Sie einen Target-String (random oder per Eingabe). Generieren Sie einen Target-Hash zu diesem String. Erzeugen Sie anschließend solange zufällige Zeichenketten und deren Hash, bis ein Hash mit dem Target-Hash übereinstimmt.

Idee schwache Kollisionsresistenz:

Erzeugen Sie solange zufällige Zeichenketten und deren Hash, bis ein Hash mit einem bereits erzeugten Hash übereinstimmt. Verwenden Sie eine möglichst zugriffseffiziente Datenstruktur, um die bekannten Hashes zu speichern und auf Kollision zu prüfen. Welche Datenstruktur könnte sich hier anbieten?