	09/07/13
	Atiyah-Singer Index Theorem Seminar.
	Spin groups III. Beyond Thunderdome.
	(Rahul Shah)
	Characteristic classes: Spin bundles.
	I. Chen-Weil approach.
-	Def: P:ojln -> C is invaint if P(XY)=P(YX) for all X, Ye gln.
-	Prop: P is invariant $\Leftrightarrow P(XYX^{-1}) = P(Y) \forall X \in GL_n, Y \in gl_n$.
	Examples:
	P=det, tr P=tr(NhX); (NhX)(V, nnvk)=(XV, nnx).
	Now: Let E v.b. with con \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	M
	$\operatorname{Deline} \widetilde{P}(E) := P(K) = \widetilde{P}(E, \nabla)$.

Th=: 1) P(K) is closed.
2) If V' is a different conn., K' is curv., then P(K')-P(K) Under pullbacks: P(f*E)=f*P(E). Example: Let E be a C v.b., and let $C(E) = det(I + \frac{1}{2\pi}K) = \sum_{k=1}^{\infty} \frac{1}{2\pi} \frac{1}{2$ Exercise: $C_i(det(E)) = C_i(E)$ What about Rv.b. ?

Let E be a R v.b. with complexification Ec, and let Ph(E) = (-1) Czh(Ec) (Ph are Portriggin classes). Note: C2L+1(EC)=O since (-1)+r(1/4K)=+r(1/4K) in this case. Let E be a C v.b., f(z) be any formal power series (hol. from rear z=0). $\mathbb{D}_{\ell}f^{-1}$: Chern f-genus: $TT_{f}(E) = det(f(\frac{i}{2\pi}K))$. We have: • TTr(E, OEz) = TTr(E,)TTr(Ez). of K has eigenvalues [>js=52, then T,(E)=Tf(x). Now: Let Ebea Rv.b., g(z) a hol. fee s.f. g(0)=1. Let $f(z) := \sqrt{g(z^2)}, f(0) = 1.$ Def: The Portrjagin g-ganus of E is Tr(Ec). Zenna: g-genus = TTg(y;), y; are formal variables s.t.
p;(E)= ith symm. fin y; Finally: Let $ch(E) = tr(exp(\frac{i}{2\pi}K))$. Then $ch(E, \oplus E_2) = ch(E,) + ch(E_2)$. $ch(E, \otimes E_2) = ch(E,) + ch(E_2)$

Associated bundles.
PRG V Raincipul p:G-Aut(F) M bindle CG-rep
Lerincipal, p:G->Aut(F)
M bridle 1 CG-rep
Def: PxoF is PxF/~, (p,f)~(p,g,gif). Rassociated Marthe
E associated
191
If Hacts on F and the action commutes with the G-action then PXF carries an H-action h.(p, f) = (p, h.f).
Pxt carries an H-action h.(p, f) = (p, h.f).
If Fis a right torsor (and action commutes w/a left G-action), then PXF is a principal H-bundle.
then 1xt is a principal H-bundle.
O(1, 1) $A(1, 1)$
Reduction of structure groups.
Pac
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
M J / C I
~
Def: A reduction of structure aroun of Pto P2G
Def: A reduction of structure group of P to PDG is an iso. 9:Px,G=P.
M
fore landle
Example: TM=\(\tilde{\mathbb{P}}\)\(\tilde{\mathbb{N}}\), id: GL_n \to GL_n = Aut(\(\mathbb{R}^n\)), \(\mathbb{P}_{\tilde{\mathbb{Z}}}\)\(\mathbb{P}_{\tilde{\mathbb{N}}}\)\(\mathbb{P}_{\tilde
P _x ={e: R ¹ → T ₂ M},
$(e, \nabla \epsilon r) \mapsto e(\nabla)$

_	Example: Choose a Rieno metric on TM. This is a reduction of structure group from the face bundle to Oth. frame bundle
	PPO(n), orth frame bundle
	M
	P 2 GLn, frame bundle
	1
	$i \cdot (\nabla_{\alpha}) \subset \mathcal{A} \subset \mathcal{A}(\alpha)$
	$i: O(n) \longrightarrow GL(n)$
	P: P×;GL~→P (ε,g) → ε·g.
	$(\widetilde{e}, \mathbf{a}) \longmapsto \widetilde{e}_{0} \mathbf{a}$
	GC/ J).

	Spin bundles
Č	Let M be a spin mfld of even dimension (in particular, Missociented, Riemanian).
	Def: A spin structure on M is a reduction of structure group for the oriented or the frame bundle to a principal Spin(n) bundle.
	Paso(n) Paspin(n)
	M M
	p: Spin(n) → SO(n)
	P: P×: R ² → TM Lidining rep (So(NΩ 12°) P× SO(n) → P.
	$TM \simeq (\widetilde{p} \times_{p} SO(n)) \times_{i} \mathbb{R}^{n}$
	Recall: There is a unique CL(IR1) C irrep (.
	D has a herritian structure under which Spin(n) acts unitarily.
	En= { = eiei2ein in=0,1} on which -1 acts as -id.
	δ(e;)=δ(-e;*).

	Bach from break, to calculate!
	Recall that M is an even dim spin manifold (oriented, Rien., $\omega/spin$ structure). $CL(TM)$ $CL(\Delta)$ (and $CL(V)$ (a $\Delta(V)$).
	Structure). (1(1)00 (and (1(V)0)).
	Theorem:
-	
	$ch(\Delta) = 2^{\infty}G(TM)$, where $G(V)$ is the Pontrjagin g-genus associated to $g(z) = \cosh(\frac{1}{2}\sqrt{z})$.
	g-genus associated to g(Z)=cosh(\frac{1}{2})?
	Warning: Roe says that if K=(50) is show self-adjoint than the
	Warning: Roe says that if K-(5,) is shew self-adjoint then there is a basis in which
	K=(-ω, ο'οω,) — this in not true when the entries are 2-forms
	are 2-forms
	How to fix this: Splitting principal.
	(1) Complex v.b. injective Z cohom. (2) IR v.b inj. on 2/22 cohom. (3) oriented IR even rank v.b.; thenyan can pull back to a direct sum of 2-plane bundles, injective on Z cohom.
	(2) IR v.b. inj. on 2722 cohan.
	(3) ortented IR even rock v.b., thenyan can pull back to a
	direct sum of 2-plane bundles, injective on 2 cohom.
	We will use vorsion (3) of the splitting pincipal.
	WE DIT WE VESTER (STOT) WE Sprinning pincipal.

Proof of Jim: W.I.o.g. assume V is a rank 2 bundle (use splitting principle). Can do this and notice that them if V=V, &Vz, $\Delta(V) = \Delta(V_1) \otimes \Delta(V_2)$ $ch(\Delta(V_1)) = ch(\Delta(V_1))ch(\Delta(V_2)).$ V is an oriented ON 2-plane bundle, so V carriers a complex structure given by X, and $\bigvee \simeq_{\mathbb{R}} \bigvee$ imw∈Cl(V), & imu splits A into 2 Spin(n) thraziant subspaces $\triangle_{+} \oplus \triangle_{-} = \triangle_{-}$ Lerma (prod-delayed): $\triangle^{\dagger} \otimes \triangle^{\dagger} = V^{\star}$ Sas Spin(2) bundles. Assuming le lemna, $C_{1}(\widetilde{V} \oplus \widetilde{V}^{*}) = C_{1}(\widetilde{V} \oplus \overline{\widetilde{V}}) = C_{1}(V_{\mathbb{C}}) = 0$ $C_{1}(\Delta^{\dagger} \otimes \Delta^{\dagger}) + C_{1}(\Delta^{-} \otimes \Delta^{-}) = 2C_{1}(\Delta^{\dagger}) + 2C_{1}(\Delta^{-}).$

Now, ie,e, =
$$\binom{\circ}{i}$$
, so
$$\Delta_{+} = \binom{\times}{(ix)} |_{x \in C}, \quad \Delta_{-} = \binom{\times}{(ix)} |_{x \in C},$$
Spin(2) Ω Δ_{+} ,
$$\binom{(\cos\theta : \sin\theta)x}{(\cos\theta : \sin\theta)x} \text{ als by rot by } \theta; \text{ so } \Delta_{+} \otimes \Delta_{+} \text{ acts by } 2\theta,$$
and the lemma is proved.

Let
$$S = \Delta \otimes V$$
, recall $R^{S}(X,Y) = \sum_{i,j} e_{i}e_{j}R(X,Y)$.

The K of S can be written as $K = R^{S} + F^{S}$, $[F^{S}, c] = 0$.

Let $ch(S/\Delta) := +r^{S}(e^{i}xp(\frac{i}{2\pi}F^{S}))$.

The $ch(S) = ch(\Delta \otimes V) = ch(\Delta) \cdot ch(V)$

$$= 2^{C}G(TM) \cdot ch(S/\Delta)$$
.