

SEQUENCE LISTING

<110> Sang-Yup Lee
Ki-Jun Jeong

<120> ESCHERICHIA COLI STRAIN SECRETING HUMAN
GRANULOCYTE COLONY STIMULATING FACTOR (G-CSF)

<130> HYLEE60.001APC

<140> 10/009792
<141> 2001-12-13

<150> PCT/KR01/00549
<151> 2001-03-31

<150> KR 2000/17052
<151> 2000-03-31

<160> 30

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide sequence

<400> 1
Ala Gly Pro His His His His His Ile Glu Gly Arg
1 5 10

<210> 2
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Primer

<400> 2
gcgaattcat ggctggacct gccacccag 29

<210> 3
<211> 32
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 3

gcggatcctt attaggctg ggcaagggtgg cg 32

<210> 4

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 4

tcctcggtt ggcacagctt ttaggtggca cacagctct cctggagcgc 50

<210> 5

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 5

gctgtgccac cccgaggaggc tggtgctgct cggacactct ctgggcatcc 50

<210> 6

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 6

cggctgggg cagctgctca ggggagccc ggggatgcc agagagtgc 50

<210> 7

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 7

agcagctgcc ccagccaggc cctgcagctg gcaggctgct tgagccaa 48

<210> 8

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 8

gaattcatat gaccccccgtg ggccctgcca gc

32

<210> 9

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 9

gaattcatat gactccgtta ggtccagccca gc

32

<210> 10

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 10

ggaattcaca tggtaaggtt taaaaagaaa ttc

33

<210> 11

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 11

ggctggacct aacggagttg cagaggcg

29

<210> 12

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 12

gcaaccgcct ctgcaactcc gtttagtcca gcc

33

<210> 13

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 13

gcgaattctt taaagccacg ttgtgtcctc aaa

33

<210> 14

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 14

gcgaattctt taaatttagaa aaactcatcg agcatc

36

<210> 15

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 15

caccatcaccc atatcgagg ccgtactccg ttaggtcca

39

<210> 16

<211> 41

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 16

gatatggtga tggtgatggt gcggggccagc tgcaagaggcg g

41

<210> 17

<211> 507

<212> DNA

<213> Homo sapiens

<220>

<400> 17

atggctggac ctgccaccca gagccccatg aagctgatgg ccctgcagct gctgctgtgg 60
agtgcactct ggacagtgca ggaagccacc ccccctggcc ctgccagctc cctgccccag 120
agttccctgc tcaagtgtt agagcaagtg aggaagatcc agggcgatgg cgccgcgc 180
caggagaagc tggcaggctg cttagccaa ctccatagcg gcctttcctt ctaccagggg 240
ctccctgcagg ccctggaaagg gatcccccc gagttgggtc ccaccttggaa cacactgcag 300
ctggacgtcg ccgactttgc caccaccatc tggcagcaga tggaaagaact gggaaatggcc 360
cctgcccctgc agccccaccca gggtgccatg cccgccttcg cctctgcattt ccagcgccgg 420
gcaggagggg tccttagttgc ctcccatctg cagagcttcc tggaggtgtc gtaccgcgtt 480
ctacgcccacc ttgcccagcc ctaataa 507

<210> 18
<211> 615
<212> DNA
<213> Homo sapiens

<220>

<400> 18
atggctggac ctgccaccca gagcccatg aagctgatgg ccctgcagct gctgctgtgg 60
agtgcactt ggacagtgc a ggaaggcacc cccctgggccc ctggccagtc cctgccccag 120
agcttcctgc tcaagtgc tt agagaatcc agggcgatgg cgccagcgctc 180
caggagaagc tggccac ctacaagctg tgccaccccg aggagctgt gctgctcgga 240
cactctctgg gcatccccctg ggctccctg agcagctgcc ccagccaggc cctgcagctg 300
gcaggctgt tgagccaact ccatagccgc ctccctt accagggct cctgcaggcc 360
ctggaaggg tctcccccga gtgggtccc acctggaca cactgcagct ggacgtcgcc 420
gacttgcca ccaccaatcg gcagcagatg gaagaactgg gaatggccccc tgccctgcag 480
cccacccagg gtgcatgcc ggccttcgccc tctgcattcc agccgcgggc aggaggggtc 540
ctagttgcct cccatctgc a gagcttcctg gaggtgtcg accgcgttct acgcacccctt 600
gcccagccct aataa 615

<210> 19
<211> 174
<212> PRT
<213> Homo sapiens

<220>

<400> 19
Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys
1 5 10 15
Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln
20 25 30
Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val
35 40 45
Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys
50 55 60
Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser
65 70 75 80
Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser
85 90 95
Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp
100 105 110
Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro
115 120 125
Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe
130 135 140
Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe
145 150 155 160
Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro
165 170

<210> 20
<211> 531

<212> DNA

<213> Homo sapiens

<220>

<400> 20

atgacccttc tggccctgc cagctccctg ccccagagct tcctgctcaa gtgcttagag 60
caagtggaga agatccaggc cgtggcgca gcgctccagg agaagcttg tgccacctac 120
aagctgtgcc accccgagga gctggctg ctccggact ctctggcat cccctggct 180
ccccctgagca gctgccccag ccaggccctg cagctggcag gctgcttag ccaactccat 240
agcggccctt tcctctacca ggggctctg caggccctgg aagggatctc ccccgagtt 300
ggtcccacact tggacacact gcagctggac gtgcggact ttgccaccac catctggcag 360
cagatggaa aactggaaat ggccctgccc ctgcagccca cccagggcgc catgccggcc 420
ttcgccctcg cttccagcg cggggcagga ggggtcctag ttgcctccca tctgcagagc 480
ttccctggagg tgtcgtaaccg cgttctacgc caccttgccc agccctaata a 531

<210> 21

<211> 175

<212> PRT

<213> Homo sapiens

<220>

<400> 21

Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu
1 5 10 15
Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu
20 25 30
Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu
35 40 45
Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser
50 55 60
Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His
65 70 75 80
Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile
85 90 95
Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala
100 105 110
Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala
115 120 125
Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala
130 135 140
Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser
145 150 155 160
Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro
165 170 175

<210> 22

<211> 45

<212> DNA

<213> Homo sapiens

<220>

<400> 22
atgactccgt tagtccagc cagctccctg ccccagagct tcctg 45

<210> 23
<211> 15
<212> PRT
<213> Homo sapiens

<220>

<400> 23
Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu
1 5 10 15

<210> 24
<211> 135
<212> DNA
<213> Homo sapiens

<220>

<400> 24
atgttaagt taaaaagaa attcttagtg ggatataacgg cagcttcat gagtatcagc 60
atgtttctg caaccgcctc tgcaactccg ttaggtccag ccagctccct gccccagagc 120
ttccctgctca agtgc 135

<210> 25
<211> 45
<212> PRT
<213> Homo sapiens

<220>

<400> 25
Met Phe Lys Phe Lys Lys Phe Leu Val Gly Leu Thr Ala Ala Phe
1 5 10 15
Met Ser Ile Ser Met Phe Ser Ala Thr Ala Ser Ala Thr Pro Leu Gly
20 25 30
Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys
35 40 45

<210> 26
<211> 180
<212> DNA
<213> Homo sapiens

<220>

<400> 26
atgttaagt taaaaagaa attcttagtg ggatataacgg cagcttcat gagtatcagc 60
atgtttctg caaccgcctc tgcaactccg ccgcaccatc accatcacca tatcgaggga 120
aggactccgt tagtccagc cagctccctg ccccagagct tcctgctcaa gtgcttagag 180

<210> 27
<211> 60
<212> PRT
<213> Homo sapiens

<220>

<400> 27
Met Phe Lys Phe Lys Lys Phe Leu Val Gly Leu Thr Ala Ala Phe
1 5 10 15
Met Ser Ile Ser Met Phe Ser Ala Thr Ala Ser Ala Ala Gly Pro His
20 25 30
His His His His Ile Glu Gly Arg Thr Pro Leu Gly Pro Ala Ser
35 40 45
Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu
50 55 60

<210> 28
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic oligopeptide sequence

<400> 28
Ile Glu Gly Arg
1

<210> 29
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleic acid sequence

<400> 29
accccccctgg gccctactcc gtaggtcca 30

<210> 30
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide sequence

<400> 30
Ala Gly Pro His His His His His Ile Glu Gly Arg Thr
1 5 10