

TECH!	NICAL
AD	

MEMORANDUM REPORT ARBRL-MR-03361

THE COMPETITION BETWEEN TUBE HEATING AND MUZZLE VELOCITY IN STICK PROPELLANT GUN CHARGES

George E. Keller

July 1984

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

DTIC QUALITY INSPECTED 3

Destroy this report when it is no longer needed. Do not return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
	3. RECIPIENT'S CATALOG NUMBER	
MEMORANDUM REPORT ARBRL-MR-03361		
4. TITLE (and Subtitle)	s. Type of Report & PERIOD COVERED Memorandum Report	
THE COMPETITION BETWEEN TUBE HEATING AND MUZZLE	Apr 83 - Oct 83	
VELOCITY IN STICK PROPELLANT GUN CHARGES	6. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR(6)	8. CONTRACT OR GRANT NUMBER(s)	
George E. Keller		
9. PERFORMING ORGANIZATION NAME AND ADDRESS US Army Ballistic Research Laboratory	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
ATTN: DRXBR-IBD	N/A (Navy)	
Aberdeen Proving Ground, MD 21005-5066		
11. CONTROLLING OFFICE NAME AND ADDRESS US Army Ballistic Research Laboratory	12. REPORT DATE	
ATTN: DRXBR-OD-ST	July 1984	
Aberdeen Proving Ground, MD 21005-5066	13. NUMBER OF PAGES 51	
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	1S. SECURITY CLASS. (of this report)	
v	UNCLASSIFIED	
	15. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimite	.3	
Approved for public release, discribution diffilitie	ed	
,		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
The state of the s		
18. SUPPLEMENTARY NOTES		
Presented in part at the 20th JANNAF Combustion Meeting.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
Stick Propellants Gun Tube Erosion Interior Ballistics Gun Tube Heating		
Interior Ballistics Gun Tube Heating Artillery Propelling Charges		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) In this report. NOVA a one-dimensional two phase	flow interior halling	
In this report, NOVA, a one-dimensional, two-phase-flow, interior ballistic code, is used to examine in detail the trade-offs between one- and multi-		
bundle stick configurations and between calculated heating of the chamber and		
tube walls and calculated muzzle velocity. The system chosen for these		
calculations is a Navy 5-inch, 54-caliber gun firing the HIFRAG projectile and using a charge made up of nominal M31 propellant. The results provide the		
change designed and appearing that have properly	ine results provide the	
charge designer an appreciation of the tradeoffs be	etween the hydrodynamic	

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE effects which on one hand increase muzzle velocity and on the other hand may seriously alter heat transfer processes.

The tradeoffs between using a single bundle of slotted stick propellant compared with several (two through five) bundles were studied. It was anticipated that more bundles might lead to more movement of the propellant down the gun tube, in the manner of granular propellant. That would dissipate the anticipated heat over more of the chamber and gun tube. Thus, heating of the chamber at the origin of rifling would be reduced, and that would reduce critical barrel erosion. NOVA predicts that the sticks will move away from the breech as they burn, and that the multiple-bundle charges will spread out well past the origin of rifling before burnout. Nonetheless, as one goes from one long bundle of sticks to 5 short bundles, the maximum gun bore surface temperature at the origin of rifling is predicted to drop only 20 K. If one adds a bit more propellant to the five-bundle charge in order to regain the ballistic performance of the one-bundle charge the heating at the origin of rifling rises. In the end, going from one long bundle to five reduces the predicted peak temperature at the origin of rifling only 11 K.

TABLE OF CONTENTS

			Page
I.	INTRODUCTION	• • • • • • • • • • • • • • • • • • • •	. 5
II.	NOVA CALCULA	TIONS	. 5
	A. Charge Mo	otion and Ballistics	. 6
	B. Heating a	at the Origin of Rifling	. 8
III.	PREVIOUS CAL	CULATIONS	. 10
	ACKNOWLEDGMEN	VTS	11
	REFERENCES	• • • • • • • • • • • • • • • • • • • •	12
	APPENDIX A.	JCL AND DATA FOR ONE BUNDLE OF STICK PROPELLANT	13
	APPENDIX B.	JCL AND DATA FOR TWO BUNDLES OF STICK PROPELLANT	17
	APPENDIX C.	JCL AND DATA FOR THREE BUNDLES OF STICK PROPELLANT	21
	APPENDIX D.	JCL AND DATA FOR FOUR BUNDLES OF STICK PROPELLANT	25
	APPENDIX E.	JCL AND DATA FOR FIVE BUNDLES OF STICK PROPELLANT	29
	APPENDIX F.	JCL, DATA, AND NOVA INPUT ECHO FOR FIVE BUNDLES OF STICK PROPELLANT WITH PROPELLANT WEIGHT INCREASED TO MATCH BALLISTICS OF ONE-BUNDLE CASE	33
	DISTRIBUTION	LIST	43

I. INTRODUCTION

The solution to several of the problems associated with the use of conventional solid propellants seems to lie with the use of stick propellants. Sticks lead to much lower flow resistance, so that possible pressure waves are minimized. Sticks permit tighter packing, which should permit the use of more, cooler-burning propellant, retaining ballistic performance even in volume-limited guns. There is some evidence that sticks are more forgiving of igniter variability. Finally, muzzle velocities achieved with sticks are somewhat higher than those predicted by interior-ballistic models, for reasons that are only beginning to be understood. On the other hand, it has been shown that the lower gas flow resistance associated with stick propellants can lead to their staying in the chamber while they are burning, so that the heat from the combustion process is preferentially deposited in the chamber walls, perhaps leading to decreased tube life.

The concern pointed out by Horst in his recent report¹ is that heating of the origin of rifling could be greater for stick propellants than for conventional granular propellant charges of the same composition. Such localized heating could make up for, or even more than make up for, the reduced heating expected to result from using cooler stick propellants. In this report, we seek to find out if the use of multiple propellant bundles of shorter sticks could distribute the tube heating enough to reduce the heating at the origin of rifling appreciably.

II. NOVA CALCULATIONS

The point of departure for these calculations was a Navy 5-inch, 54-caliber gun with a HIFRAG projectile and one bundle of 9.53 kg (21 lb) of nominal M31 slotted stick propellant with a perf diameter of 2.54 mm (0.1 in.), a web thickness of 2.03 mm (0.08 in.), and a length of 762 mm (30 in.). We used our work-horse single-precision NOVA 2 with its new solution method. We recognize that the peak chamber pressure that was predicted for this calculation was a bit higher than is desired for this weapon system. The other calculations of the set were for 2, 3, 4, and 5 bundles of propellant, for which all the grain dimensions were maintained except the length; and the total initial length of the end-to-end bundles remained 762 mm (30 in.).

Heat loss to the walls and the resulting wall temperature were calculated as described by Horst. First, convective heat transfer to the tube was calculated using a simple turbulent pipe flow correlation based on a hydraulic Reynolds Number to account for the presence of the solid phase. Then the local temperature at the inside surface of the tube was determined, using an approximate cubic profile integral solution to the one-dimensional

^{1.} A. W. Horst, "A Comparison of Barrel-Heating Processes for Granular and Stick Propellant Charges," ARBRL-MR-03193, USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, August 1982 (AD A118 394).

^{2.} P. S. Gough, "Extensions to NOVA Flamespread Modeling Capacity," PGA-TR-81-2, Paul Gough Associates, Inc., Portsmouth, NH, April 1981.

^{3.} J. P. Holman, <u>Heat Transfer</u>, McGraw-Hill, 1968.

heat conduction equation. This approximation has previously been shown $^{\text{II}}$ to produce a 2% error in predicting temperature change for a constant heat flux and 6% for a linearly increasing flux.

These calculated wall temperatures are not presented to be correct in an absolute sense; for that, we must wait for a much better representation of the processes that lead to gun tube wall heating. However, the calculated temperatures should be relatively correct, so that relative increases or decreases in calculated tube wall temperatures should be meaningful.

A. Charge Motion and Ballistics

The big change that one expects when going from one bundle of long sticks to many bundles of shorter sticks is that the charge will spread out in the chamber and the gun tube, after the manner of granular charges, so that the heating of the gun tube is distributed over more surface area. Figure 1 illustrates the NOVA calculations for charge positions for 0%-, 25%-, 50%-, 75%-, and (nearly) fully-burned propellant. Note how quickly the several propellant bundles spread out, moving out to the origin of rifling by the time the propellant was half burned and extending well into the tube by the time all the propellant has burned. The spreading was driven by the difference in the pressure difference which was working on the front bundle versus that applied to the rear bundle. For example, for five bundles, at the time when about 50% of the propellant had burned, the end-to-end pressure difference across the front bundle was 15.2 MPa, while that across the rear bundle was only 1.76 MPa. Thus, the front bundle was accelerated forward faster than the rear bundle, leaving the rear bundle behind.

The calculations showed that a principal effect of adding multiple bundles was a decrease in the peak chamber pressure and the muzzle velocity, apparently because the spreading out of the bundles permits the propellant to burn in a larger effective free volume. We used an earlier version of NOVA5 to perform a test to examine this effect. In this earlier version of NOVA, the amount of interphase friction which contributes to interphase drag could be independently set. By using several values for the amount of friction, ranging from one that was the right order of magnitude for sticks to one that was about right for granular propellant - greater by two orders of magnitude - we could influence the amount of the spreading of the bundles. While we could not use slotted sticks for these calculational experiments, we did use five bundles of 152.4-mm-long single-perforated grains. As expected, as the drag increased, the spreading of the bundles increased. More importantly, as the spreading of the bundles increased, the predicted peak pressure declined modestly.

During these calculations, a question arose about whether the tapers at the ends of the chamber of the 5-inch, 54-caliber gun significantly affected the predicted pressure differences and therefore stick motions as well. Thus,

^{4.} C. W. Nelson, "On Calculating Ignition of a Propellant Bed," ARBRL-MR-02864, USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, September 1978 (AD A062 266).

^{5.} P. S. Gough, "The NOVA Code: A User's Manual. Volume I. Description and Use," IHCR 80-8, Naval Ordnance Station, Indian Head, MD, December 1980.

Stick Motion Down the Gun Tube. For One, Three, and Five Bundles of Propellant, at Several Times in the Ballistic Cycle. Figure 1.

separate calculations were performed with a straight chamber (just the same diameter as the gun tube, in fact), and the pressure differences which cause the front bundle to move more rapidly than the rear one were still evident and operative.

Table 1 charts the loss of peak pressure and muzzle velocity that was obtained for an increase in the number of propellant bundles. For the calculation marked with a "+," the charge was increased to 9.64 kg (21.24 lb), an amount selected to restore the maximum chamber pressure to that predicted for one bundle. The job control language (JCL) and data for each of these six cases are included as Appendices A through F. For the last case, the NOVA input echo is also included, so one can see how NOVA uses the input data.

TABLE 1. THE TRADE-OFFS BETWEEN THE NUMBER OF STICK PROPELLANT BUNDLES, WALL HEATING, AND BALLISTIC PERFORMANCE

Bundles	Peak Pressure (MPa)	Maximum Wall Temperature (K)	Muzzle Velocity (m/s)
1	384	1212	857
2	381	1187	859
3	378	1178	856
4	377	1170	852
5	375	1165	847
5+	384	1172	856

Note that the maximum temperature at any location along the wall was predicted to decline only 47 K as one goes from one bundle to five. However, the peak chamber pressure also declined slowly, so that if one were to use multiple bundles, one could increase the charge weight somewhat. Under those circumstances, a predicted reduction of 40 K is achieved, at a cost of only 1 m/s muzzle velocity.

The fact that the muzzle velocity increases as one goes from one bundle to two is a real feature of the calculations, but it is not explained. Close examination of the calculations shows that the projectile in the two-bundle case "catches up and passes" the projectile in the one-bundle case rather late in the ballistic cycle.

B. Heating at the Origin of Rifling

The heating of the tube at the origin of rifling is perhaps even more important. Figure 2 examines the temperature versus time at the origin of rifling. Each curve starts at the time at which the front ends of the burning sticks passed the origin of rifling (and the calculated temperature jumps up into the range displayed on the figure). We see that there is a modest decline in the peak temperature as the number of bundles increases, and that only a 20 K decrease results from changing from one bundle of propellant sticks to five bundles. Worse, only a 11 K decrease results once one has increased the weight of the five-bundle charge to recoup ballistic performance. It appears that there is "no free lunch;" if performance is desired, these calculations suggest that heating is inevitable.

The Temperature at the Origin of Rifling. For One, Three, and Five Bundles of Propellant. The Maximum Temperature for Each Situation Bundles of Propellant. is Noted. Figure 2.

III. PREVIOUS CALCULATIONS

We had previously reported to the Navy⁶ that increasing the number of bundles would increase the maximum chamber pressure. Those results were an artifact of the calculations peculiar to multiple bundles of sticks. For sticks, regions of ullage smaller than some user-definable threshold at the ends of the sticks are neglected in the calculation; the parameter that defines this threshold length for the ullage that may be neglected was too large. For multiple bundles, the total neglected ullage was non-negligible. The free volume in the calculation thus decreased significantly (several percent), and the chamber volume (predictably, in hindsight) increased. The calculations in this report supercede those earlier results.

^{6.} Letter to NOS/IH dated 10 June 1983, subject: Stick Propellant Technology for Naval Guns.

ACKNOWLEDGMENTS

This work has benefited from helpful conversations with and suggestions from A. W. Horst, P. S. Gough, F. W. Robbins, J. A. Birkett, S. E. Mitchell, and colleagues in the Interior Ballistics Division of the BRL.

REFERENCES

- 1. A. W. Horst, "A Comparison of Barrel-Heating Processes for Granular and Stick Propellant Charges," ARBRL-MR-03193, USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, August 1982 (AD A118 394).
- 2. P. S. Gough, "Extensions to NOVA Flamespread Modeling Capacity," PGA-TR-81-2, Paul Gough Associates, Inc., Portsmouth, NH, April 1981.
- 3. J. P. Holman, Heat Transfer, McGraw-Hill, 1968.
- 4. C. W. Nelson, "On Calculating Ignition of a Propellant Bed," ARBRL-MR-02864, USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, September 1978 (AD A062 266).
- 5. P. S. Gough, "The NOVA Code: A User's Manual. Volume I. Description and Use," IHCR 80-8, Naval Ordnance Station, Indian Head, MD, December 1980.
- 6. Letter to NOS/IH dated 10 June 1983, subject: Stick Propellant Technology for Naval Guns.

APPENDIX A JCL AND DATA FOR ONE BUNDLE OF STICK PROPELLANT

GEK, STMFZ, T119, P1, MS300000. N554ONE, INCREMENTAL STUDY ACCOUNT, XXXXXX. 1 INCREMENT, 30" LONG, 21.0# WT. RFL(300000) ATTACH, N, NUCPTSB, ID=GEK. N, PL=20000. *EOR 5/54 SLOTTED STICK CHARGE, 21.0# TOTAL CHARGE WT, ONE BUNDLE TFFFTTT 1 1 1 01 25 200 0 3000 0. 234.75 1.0 0.0001 2.0 0.20 0.1 0.0002 0.0002 2 2 5 0 2 1 1 0 0 5 0 0 0 0 0 28.896 14.7 550. 1.4 550. M31A1E1, RADPE472129B1.0 31.0 21.0 0.060 1.0 .01 3.260 .100 30.0 50000. 1.0 50000. 0.5 100000. .00290 .70 0.0 783. 0.0277 .0001345 .6 15446095. 22.187 1.2566 31.28 6303000. 1.25 36.13 0. 0.01 0. 0.99 10. 10. 10. 10. 0.0 2.552 1.754 2.688 5.80 2.742 32.52 2.61 35.09 2.53 300. 2.53 35.09 1000. 37.17 1700. 39.12 3250. 40.09 1000. 300. 300. 4.102 0.0086 0.7 550. 35.09 70. 14.0 7.163 31.27 1.179 0.0 9 34.52 0.0 0.0 0.0 .09 .05 530. 735. .2 850. 0.312 .4 870. 970. •504 1210. .617 1870. 0.8 100000. 2. 17. 23.5 27. 35.

JCL AND DATA FOR TWO BUNDLES OF STICK PROPELLANT

GEK, STMFZ, T119, P1, MS300000. N554TWO, INCREMENTAL STUDY ACCOUNT, XXXXXX. 2 INCREMENTS, 15" LONG, 10.5# EA RFL(300000) ATTACH, N. NUCPTSB, ID=GEK. N.PL=20000. *EOR 5/54 SLOTTED STICK CHARGE, 21.0# TOTAL CHARGE WT, TWO BUNDLES TFFFTTT 1 1 1 01 0 3000 25 5 .0001 234.75 0.01 0.0002 0.0002 1.0 0.0001 2.0 0.20 5 2 1 1 0 0 0 5 0 0 0 1 6 2 2 0 1.4 550. 14.7 28.896 550. M31A1E1, RADPE472129B1.0 16.0 10.5 0.060 31.0 10.5 3 .260 15.0 1.0 .01 .100 0.5 50000. 1.0 50000. .00290 0.0 783. 0.0277 .0001345 .6 100000. .70 15446095. 22.187 1.2566 31.28 6303000. 36.13 1.25 0. 0.01 0. 0.99 10. 10. 10. 10. 2.688 5.80 0.0 2.552 1.754 2.742 32.52 2.61 300. 2.53 35.09 2.53 35.09 1000. 37.17 1700. 39.12 3250. 40.09 1000. 300. 300. 0.0086 4.102 0.7 550. 7.163 35.09 70. 14.0 0.0 9 31.27 1.179 34.52 0.0 0.0 0.0 .05 530. .09 735. .2 850. 870. .4 970. .504 1210. .617 1870. 0.312 100000. 0.8 17. 23.5 27. 35. 2.

APPENDIX C JCL AND DATA FOR THREE BUNDLES OF STICK PROPELLANT

N554THR, INCREMENTAL STUDY GEK, STMFZ, T119, P1, MS300000. ACCOUNT.XXXXXX. 3 INCREMENTS, 10" LONG, 7.0# EA RFL(300000) ATTACH, N, NUCPTSB, ID=GEK. N.PL=20000. *EOR 5/54 SLOTTED STICK CHARGE, 21.0# TOTAL CHARGE WT, THREE BUNDLES TFFFTTT 1 1 1 01 .0001 0 3000 25 200 0.20 234.75 0.0001 0.0002 0.0002 1.0 2.0 0.01 2 1 1 0 0 0 5 0 0 0 2 2 5 0 6 2 28.896 1.4 14.7 550. 550. 0.060 11.0 7.00 M31A1E1, RADPE472129B1.0 21.0 7.00 11.0 21.0 31.0 7.00 10.0 1.0 3 .260 .100 .01 50000. 1.0 50000. 0.5 .00290 783. 100000. .70 0.0 0.0277 .0001345 .6 15446095. 22.187 1.2566 31.28 6303000. 1.25 36.13 0. 0.01 0. 0.99 10. 10. 10. 10. 2.688 5.80 2.552 1.754 2.742 2.61 0.0 32.52 35.09 2.53 300. 2.53 1000. 37.17 1700. 39.12 3250. 40.09 1000. 35.09 300. 300. 4.102 0.0086 0.7 550. 7.163 35.09 70. 14.0 31.27 1.179 0.0 9 34.52 0.0 850. 530. .09 0.0 0.0 .05 735. .2 .504 .617 1870. .4 1210. 0.312 870. 970. 0.8 100000. 23.5 27. 2. 17. 35.

APPENDIX D

JCL AND DATA FOR FOUR BUNDLES OF STICK PROPELLANT

GEK, STMFZ, T119, P1, MS300000. N554FOU. INCREMENTAL STUDY ACCOUNT, XXXXXX. 4 INCREMENTS, 7.5" LONG, 5.25# EA RFL(300000) ATTACH, N, NUCPTSB, ID=GEK. N, PL=20000. *EOR 5/54 SLOTTED STICK CHARGE, 21.0# TOTAL CHARGE WT, FOUR BUNDLES TFFFTTT 1 1 1 01 0 3000 30 5 1.0 234.75 0.0001 2.0 0.20 0.1 0.0002 0.0002 6 2 5 2 1 1 0 0 0 0 0 0 3 14.7 550. 28.896 1.4 550. M31A1E1, RADPE472129B1.0 8.50 5.25 0.060 8.50 16.0 5.25 16.0 23.5 5.25 23.5 31.0 5.25 3 .260 .100 7.50 1.0 .01 50000. 1.0 50000. 0.5 100000. .00290 .70 783. 0.0 0.0277 .0001345 .6 15446095. 22.187 1.2566 31.28 6303000. 36.13 1.25 0. 0.01 0. 0.99 10. 10. 10. 10. 0.0 2.552 1.754 2.688 5.80 2.742 32.52 2.61 35.09 2.53 300. 2.53 35.09 1000. 37.17 1700. 39.12 3250. 40.09 1000. 300. 300. 4.102 0.0086 0.7 550. 35.09 31.27 70. 14.0 7.163 1.179 0.0 9 34.52 0.0 0.0 0.0 .05 530. .09 735. .2 850. 0.312 870. .4 970. .504 1210. .617 1870. 0.8 100000. 2. 17. 23.5 27. 35.

APPENDIX E JCL AND DATA FOR FIVE BUNDLES OF STICK PROPELLANT

```
GEK, STMFZ, T119, P1, MS300000.
                                   N554FIV, INCREMENTAL STUDY
 ACCOUNT, XXXXXX.
                                   5 INCREMENTS, 6" LONG, 4.2# EA
 RFL(300000)
 ATTACH, N, NUCPTSB, ID=GEK.
 N, PL=20000.
 *EOR
  5/54 SLOTTED STICK CHARGE, 21.0# TOTAL CHARGE WT, FIVE BUNDLES
 TFFFTTT 1
                1 1
                          01
               0 3000
    25 200
 1.0
           234.75
                      0.0001
                                2.0
                                           0.20
                                                      0.1
                                                                 0.0002
                                                                           0.0002
    6
          2
               2
                     5
                               2 1
                          0
                                          1 0
                                                     0
                                                          0
                                                                5
                                                                     0
                                                                          0
                                                                              0
                                                                                     4
                      28.896
550.
           14.7
                                1.4
550.
M31A1E1, RADPE472129B1.0
                                7.00
                                           4.20
                                                      0.060
7.0
           13.0
                      4.20
13.0
           19.0
                      4.20
19.0
           25.0
                      4.20
25.0
           31.0
                      4.20
    3 .260
                .100
                           6.0
                                      1.0
                                                .01
50000.
           1.0
                      50000.
                                           0.5
100000.
           .00290
                      .70
                                0.0
                                           783.
                                                     0.0277
                                                                .0001345
                                                                            .6
15446095. 22.187
                     1.2566
                                31.28
6303000.
           36.13
                     1.25
0.
           0.01
0.
           0.99
10.
           10.
           10.
10.
0.0
            2.552
                      1.754
                                 2.688
                                            5.80
                                                      2.742
                                                                 32.52
                                                                            2.61
 35.09
            2.53
                      300.
                                  2.53
35.09
            1000.
                      37.17
                                 1700.
                                           39.12
                                                     3250.
                                                                40.09
                                                                           1000.
300.
             300.
4.102
           0.0086
                     0.7
                                550.
35.09
           70.
                     14.0
                                7.163
31.27
           1.179
                      0.0
                                         9
34.52
          0.0
0.0
           0.0
                       .05
                                  530.
                                             .09
                                                                  .2
                                                       735.
                                                                              850.
0.312
           870.
                       .4
                                  970.
                                             .504
                                                       1210.
                                                                  .617
                                                                             1870.
0.8
           100000.
2.
           17.
                      23.5
                                 27.
                                           35.
```

APPENDIX F

JCL AND DATA FOR FIVE BUNDLES OF STICK PROPELLANT WITH PROPELLANT WEIGHT INCREASED TO MATCH BALLISTICS OF ONE-BUNDLE CASE

```
GEK, STMFZ, T119, P1, MS300000.
                                   N554FIX. INCREMENTAL STUDY
ACCOUNT, XXXXXX.
                                   5 INCREMENTS, 4" LONG, 4.2485# EA
RFL(300000)
ATTACH, N, NUCPTSB, ID=GEK. N, PL=20000.
*EOR
 5/54 SLOTTED STICKS, 21.2425# TOTAL, 5 BUNDLES, 4" LONG
TFFFTTT 1
                1 1
                          01
   25 200
               0 5000
                                 .001
           234.75
1.0
                      0.0001
                                 2.0
                                            0.20
                                                       0.01
                                                                 0.0002
                                                                             0.0002
    6
          2
               2
                                2 1
                                           1 0
                                                          0
                                                                 5
                                                                                      4
                          0
                                                      0
                                                                      0
                                                                           0
                                                                                 0
           14.7
                      28.896
                                 1.4
550.
550.
M31A1E1, RADPE472129B1.0
                                            4.2485
                                 5.00
                                                       0.060
5.0
            9.0
                      4.2485
9.0
           13.0
                      4.2485
13.0
           17.0
                      4.2485
17.0
           21.0
                      4.2485
                .100
                           4.0
    3.260
                                      1.0
                                                 .01
                      50000.
                                           0.5
50000.
           1.0
100000.
           .00290
                                 0.0
                      .70
                                            783.
                                                      0.0277
                                                                  .0001345
                                                                              .6
15446095. 22.187
                      1.2566
                                 31.28
6303000.
           36.13
                      1.25
0.
           0.01
0.
           0.99
10.
           10.
10.
           10.
0.0
            2.552
                       1.754
                                  2.688
                                             5.80
                                                       2.742
                                                                   32.52
                                                                             2.61
 35.09
            2.53
                       300.
                                   2.53
35.09
            1000.
                        37.17
                                   1700.
                                             39.12
                                                        3250.
                                                                  40.09
                                                                             1000.
300.
             300.
4.102
           0.0086
                      0.7
                                550.
35.09
                      14.0
           70.
                                7.163
31.27
           1.179
                      0.0
                                          9
34.52
           0.0
0.0
            0.0
                        .05
                                   530.
                                              .09
                                                         735.
                                                                    .2
                                                                                850.
0.312
            870.
                        .4
                                   970.
                                              .504
                                                         1210.
                                                                    .617
                                                                               1870.
0.8
            100000.
2.
            17.
                      23.5
                                  27.
                                             35.
```

5/54 SLOTTED STICKS, 21.2425# TOTAL, 5 BUNDLES, 4" LONG

NUCPTS VERSION NUMBER 2.25

INITIAL TEMPERATURE (DEG.R)

MOLECULAR WEIGHT (LBM/LBMOL)

INITIAL PRESSURE (PSI)

RATIO OF SPECIFIC HEATS

```
CONTROL OATA
LOGICAL VARIABLES:
PRINT T GRAPH F
                               DISK WRITE F
                                                    DISK READ F
I.B. TABLE T FLAME TABLE T PRESSURE TABLE(S) TEROSIVE EFFECT O DYNAMIC EFFECT O
                         DYNAMIC EFFECT O WALL TEMPERATURE CALCULATION 1
LEFT HAND BOUNDARY CONDITION O RIGHT HAND BOUNDARY CONDITION O LEFT HAND RESERVOIR O
                               BED PRECOMPRESSEO O
RIGHT HAND RESERVOIR O
HEAT LOSS CALCULATION 1
                                  INSULATING LAYER O
SORE RESISTANCE FUNCTION 1
EXPLICIT COMPACTION WAVE O MUZZLE BLOWDOWN ANALYSIS O
CALCOMP PLOTS, OPTION O
SOLUTION METHOD 1
                        INTEGRATION PARAMETERS
NUMBER OF STATIONS AT WHICH DATA ARE STORED NUMBER OF STEPS BEFORE LOGOUT
                                                                 25
                                                                  1
TIME STEP FOR DISK START
                                                                  0
MUMBER OF STEPS FOR TERMINATION
                                                                 5000
TIME BEFORE PRINTOUT
                                                                .1000E-02
PRESSURE RATIO FOR LP ANALYSIS OF LARGE ULLAGE
REGION (N.B., DEFAULT IS 0.2, TEST SUPPRESSED FOR
VALUES LARGER THAN 10)
                                                                    .2000
TIME FOR TERMINATION (SEC)
                                                               1.000
PROJECTILE TRAVEL FOR TERMINATION (INS)
MAXIMUM TIME STEP (SEC)
                                                                  234.75
                                                               .1000E-03
STABILITY SAFETY FACTOR
                                                                    2.00
SOURCE STABILITY FACTOR
                                                                    .2000
SPATIAL RESOLUTION FACTOR
                                                                    .0100
TIME INTERVAL FOR I.B. TABLE STORAGE(SEC)
                                                               .2000E-03
TIME INTERVAL FOR PRESSURE TABLE STORAGE (SEC)
                                                               -2000F-03
                              FILE COUNTERS
NUMBER OF STATIONS TO SPECIFY TUBE RADIUS
NUMBER OF TIMES TO SPECIFY PRIMER DISCHARGE
NUMBER OF POSITIONS TO SPECIFY PRIMER DISCHARGE
NUMBER OF ENTRIES IN BORE RESISTANCE TABLE
NUMBER OF ENTRIES IN WALL TEMPERATURE TABLE NUMBER OF ENTRIES IN FILLER ELEMENT TABLE NUMBER OF TYPES OF PROPELLANTS
NUMBER OF BURN RATE DATA SETS
                                                                  1
NUMBER OF ENTRIES IN VOID FRACTION TABLE(S)
                                                                  O
                                                                        n
                                                                              0
NUMBER OF ENTRIES IN PRESSURE HISTORY TABLES
NUMBER OF ENTRIES IN LEFT BOUNDARY SOURCE TABLE NUMBER OF ENTRIES IN RIGHT BOUNDARY SOURCE TABLE NUMBER OF WALL STATIONS FOR INVARIANT EMBEDDING
                                                                  0
NUMBER OF BED STATIONS FOR INVARIANT EMBEDDING
            GENERAL PROPERTIES OF INITIAL AMBIENT GAS
```

550.0

28.896

1.4000

14.7

GENERAL PROPERTIES OF PROPELLANT BEO

INITIAL TEMPERATURE (OEG.R) VIRTUAL MASS COEFFICIENT FOR MOMENTUM TRANSFER (-) VIRTUAL MASS COEFFICIENT FOR ENERGY OISSIPATION VOIO FRACTION PACKING COEFFICIENTS MINIMUM IMPACT VELOCITY FOR EXPLICIT COMPACTION	550.0 0.000 0.000 0.000	0.0000	0.0000
WAVE (IN/SEC)	100000000.		

PROPERTIES OF PROPELLANT 1

M31A1E1,RADPE472129B 21.2425 .0600 3 .2600 .1000 4.0000

RHEOLOGICAL PROPERTIES

SPEED OF COMPRESSION WAVE IN SETTLED BED (IN/SEC) SETTLING POROSITY	50000.
	1.0000
SPEED OF EXPANSION WAVE (IN/SEC)	50000 .
POISSON RATIO (-)	
COLOUR KATTO ()	•5000

SOLID PHASE THERMOCHEMISTRY

MAXIMUM PRESSURE FOR BURN PATE DATA (LBF/IN**2) GURNING RATE PRE-EXPONENTIAL FACTOR	100000.
(IN/SEC/PSI++BN) BURNING RATE EXPONENT	•2900E-02 •7000
BURNING RATE CONSTANT (IN/SEC) LIGHTION TEMPERATURE (DEG.R)	0.0000 783.0
ARRHENIUS ACTIVATION ENERGY (LBF-IN/LBMOL) FREQUENCY FACTOR (SEC++-1)	•0
THERMAL CONDUCTIVITY (LBF/SEC/DEG.R) THERMAL DIFFUSIVITY (IN**2/SEC)	•2770E-01 •1345E-03
EMISSIVITY FACTOR	•13456-03

GAS PHASE THERMOCHEMISTRY

CHEMICAL ENERGY RELEASED IN BURNING(LBF-IN/LBM)	.15446E+08
MOLECULAR WEIGHT (LBH/LBMOL)	22.1870
RATIO OF SPECIFIC HEATS	1.2566
CONOLUME	31.2800
FLAME TEMPERATURE [BACK-CALCULATED]	2640.
IMPETUS (FT-LB/LB)	330289.

LOCATION OF PACKAGE(S)

PACK AGE	LEFT BODY (INS)	RIGHT BDDY(INS)	MASS(LBM)
1	1.000	5.000	4.249
2	5.000	9.000	4.249
3	9.000	13.000	4.249
4	13.000	17.000	4.249
5	17.000	21.000	4.249

PROPERTIES OF PRIMER

CHEMICAL ENERGY RELEASED IN BURNING(LBF-IN/LBM) MOLECULAR WEIGHT (LBM/LBMOL) RATIO OF SPECIFIC HEATS SPECIFIC VOLUME OF SOLID(IN*+3/LBM) FLAME TEMPERATURE (BACK-CALCULATED)	.6303E+07 36.1300 1.2500 0.0000
IMPETUS (FT-LB/LB)	1709. 131313.

PRIMER DISCHARGE FUNCTION (LBM/IN/SEC)

POS.(INS) 0.00 .99 TIME(SEC) 0. 10.00 10.00 .100E-01 10.00 10.00

PARAMETERS TO SPECIFY TUBE GEOMETRY

ISTANCE(IN)	RADIUS (IN
0.000	2.552
1.754	2.688
5.800	2.742
32.520	2.610
35.090	2.530
300.000	2.530

CHAMBER VOLUME (IN**3) 786.101

BORE RESISTANCE TABLE

POSITION (INS)		RESISTANCE (PSI)	
REL TO	BREECH	REL TO TRAVEL	
	35.090 37.170 39.120 40.090	0.000 2.080 4.030 5.000	1009. 1700. 3250.
	300.000	264.910	1000. 300.

THERMAL PROPERTIES OF TUBE

THERMAL CONDUCTIVITY THERMAL DIFFUSIVITY EMISSIVITY FACTOR	(LBF/SEC/DEG.R) (IN++2/SEC)	4.102 .8600E-02
INITIAL TEMPERATURE	(DEG.R)	•700 550•00

PROJECTILE AND RIFLING DATA

INITIAL POSITION OF BASE OF PROJECTILE(INS) MASS OF PROJECTILE (LBM) POLAR MOMENT OF INERTIA (LBM-IN**2) ANGLE OF RIFLING (OEG)	35.090 70.000 14.000 7.163
---	-------------------------------------

FILLER ELEMENT DATA

ELEMENT	POSITION INS	MASS LBM	RESISTANCE LBF	TYPE	NO.DATA
1 2	31.270 34.520	1.179 0.000	0.000 0.000	0	9

STRESS-STRAIN DATA FOR ELEMENT NO. 1

STRAIN	PRESSURE
IN/IN	LBF/IN++2
0.000	0.000
.050	530.000
.090	735.000
. 200	850.000
.312	870.000
.400	970.000
. 504	1210.000
.617	1870.000
.800	100000.000

POSITIONS FOR PRESSURE TABLE STORAGE 2.0000 17.0000 23.5000

2.0000 17.0000 23.5000 27.0000 35.0000
NOVSUB ERROR MESSAGE... SETTLING PORDSITY AT REFERENCE COMPOSITION HAS BEEN DEFAULTED TO

.18508 TO AVOID INITIAL BED COMPACTION

OF PROPELLANT TYPE 1

No. Of		No. Of	
Copies	Organization	Copies	
12	Administrator	1	Commander
	Defense Technical Info Center ATTN: DTIC-DDA		US Army Materiel Development
	Cameron Station		and Readiness Command
	Alexandria, VA 22314		ATTN: DRCSF-E, Safety Office
			5001 Eisenhower Avenue
1	Office of the Under Secretary		Alexandria, VA 22333
	of Defense	1	Commander
	Research & Engineering	•	US Army Materiel Development
	ATTN: R. Thorkildsen		and Readiness Command
	Washington, DC 20301		ATTN: DRCDRA-ST
1	Commondan		5001 Eisenhower Avenue
1	Commander USA Concepts Analysis Agency		Alexandria, VA 22333
	8120 Woodmont Avenue	•	
	ATTN: D. Hardison	1	Commander
	Bethesda, MD 20014		US Army Materiel Development and Readiness Command
			ATTN: DRCDE-DW
1	HQDA/DAMA-ZA		5001 Eisenhower Avenue
	Washington, DC 20310		Alexandria, VA 22333
1	HQDA, DAMA-CSM, E. Lippi	_	
	Washington, DC 20310	5	Project Manager
	, 20 20010		Cannon Artillery Weapons System, ARDC, AMCCOM
1	HQDA/SARDA		ATTN: DRCPM-CW,
	Washington, DC 20310		F. Menke
1	C		DRCPM-CWW
	Commandant US Army War College		DRCPM-CWS
	ATTN: Library-FF229		M. Fisette
	Carlisle Barracks, PA 17013		DRCPM-CWA
	,		R. DeKleine H. Hassmann
1	US Army Ballistic Missile		Dover, NJ 07801
	Defense Systems Command		
	Advanced Technology Center P. O. Box 1500	2	Project Manager
	Huntsville, AL 35807		Munitions Production Base
	nanesville, no 55007		Modernization and Expansion
1	Chairman		ATTN: DRCPM-PBM, A. Siklosi SARPM-PBM-E, L. Laibson
	DOD Explosives Safety Board		Dover, NJ 07801
	Room 856-C		20 ver, 110 07 00 1
	Hoffman Bldg. 1	3	Project Manager
	2461 Eisenhower Avenue		Tank Main Armament System
	Alexandria, VA 22331		ATTN: DRCPM-TMA, K. Russell
			DRCPM-TMA-105
			DRCPM-TMA-120
			Dover, NJ 07801

No. Of Copies		No. Of Copies	Organization
24	Commander	1	Commander
	US Army ARDC, AMCCOM ATTN: DRSMC-TSS (D) DRSMC-TDC (D) D. Gyorog	•	US Army Watervliet Arsenal ATTN: SARWV-RD, R. Thierry Watervliet, NY 12189
	DRSMC-LC, (D) LTC N. Barron DRSMC-LCA (D) J. Lannon A. Beardell D. Downs	1	Director US Army AMCCOM Benet Weapons Laboratory ATTN: DRSMC-LCB-TL Watervliet, NY 12189
	S. Einstein S. Westley S. Bernstein P. Kemmey A. Bracuti J. Rutkowski DRSMC-LCB-I (D),D.Spring	. 1	Commander US Army Aviation Research and Development Command ATTN: DRDAV-E 4300 Goodfellow Blvd. St. Louis, MO 63120
	DRSMC-LCE (D) R.Walker DRSMC-LCM-E (D) S. Kaplowitz DRSMC-LCS (D) DRSMC-LCU-CT (D)	1	Commander US Army TSARCOM 4300 Goodfellow Blvd. St. Louis, MO 63120
	E. Barrieres R. Davitt DRSMC-LCU-CV (D) C. Mandala W. Joseph DRSMC-LCW-A (D)	1	Director US Army Air Mobility Research And Development Laboratory Ames Research Center Moffett Field, CA 94035
	M. Salsbury DRSMC-SCA (D) L. Stiefel B. Brodman Dover, NJ 07801	1	Commander US Army Communications Research and Development Command ATTN: DRSEL-ATDD Fort Monmouth, NJ 07703
5	Commander US Army Armament Munitions and Chemical Command ATTN: DRSAR-LEP-L (R) Tech Lib DRSAR-LC (R) L.Ambrosini DRSAR-IRC (R) G. Cowan DRSAR-LEM (R) W. Fortune R. Zastrow	1	Commander US Army Electronics Research and Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703
1	Rock Island, IL 61299 HQDA/DAMA-ART-M Washington, DC 20310	1	Commander US Army Harry Diamond Lab. ATTN: DRXDO-TI 2800 Powder Mill Road Adelphi, MD 20783

No. Of		No. Of	
Copies	Organization	Copies	Organization
		SOPIUS	organization
1	Commander		
	US Army Missile Command	1	President
	ATTN: DRSMI-R		US Army Armor & Engineer
			Board
	Redstone Arsenal, AL 35898		ATTN: STEBB-AD-S
-			Fort Knox, KY 40121
1	Commander		,
	US Army Missile Command	1	Project Manager
	ATTN: DRSMI-YDL	_	M-60 Tank Development
	Redstone Arsenal, AL 35898		ATTN: DRCPM-M60TD
1	Commandant		Warren, MI 48090
_	US Army Aviation School	_	
	ATTN: Aviation Agency		Director
			US Army TRADOC Systems
	Fort Rucker, AL 36360		Analysis Activity
			ATTN: ATAA-SL
1	Commander		White Sands Missile Range,
	US Army Tank Automotive		NM 88002
	Command		
	ATTN: DRSTA-TSL	1	Commander
	Warren, MI 48090	_	
			US Army Training & Doctrine
1	US Army Tank Automotive		Command
	Command		ATTN: ATCD-MA/ MAJ Williams
	ATTN: DRSTA-CG		Fort Monroe, VA 23651
	Warren, MI 48090		
	warren, 111 40090		Commander
1	Project Manager		US Army Materials and
1			Mechanics
	Improved TOW Vehicle		Research Center
	ATTN: DRCPM-ITV		ATTN: DRXMR-ATL
•	US Army Tank Automotive		Tech Library
	Command		Watertown, MA 02172
	Warren, MI 48090		, 021,2
		1	Commander
2	Program Manager	_	US Army Research Office
	Ml Abrams Tank System		
	ATTN: DRCPM-GMC-SA,		ATTN: Tech Library
	T. Dean		P. O. Box 12211
	Warren, MI 48090		Research Triangle Park, NC
	, marron, 111 40070		27709
1	Project Manager		
1		1	Commander
	Fighting Vehicle Systems		US Army Mobility Equipment
	ATTN: DRCPM-FVS		Research & Development
	Warren, MI 48090		Command
			ATTN: DRDME-WC
1	Commander		Fort Belvoir, VA 22060
	US Army Development & Employment	•	TOTE BELVOIT, VA 22000
	Agency		
	ATTN: MODE-TED-SAB		
	Fort Lewis, WA 98433		
	LCW10, WA J0433		

No. Of Copies	Organization	No. Of Copies	
1	Commander US Army Logistics Mgmt Ctr Defense Logistics Studies Fort Lee, VA 23801	1	Office of Naval Research ATTN: Code 473, R. S. Miller 800 N. Quincy Street Arlington, VA 22217
1	Commandant US Army Infantry School ATTN: ATSH-CD-CSO-OR Fort Benning, GA 31905	3	Commandant US Army Armor School ATTN: ATZK-CD-MS M. Falkovitch
1	Commandant Command and General Staff College	0	Armor Agency Fort Knox, KY 40121
	Fort Leavenworth, KS 66027	2	Commander Naval Sea Systems Command ATTN: SEA-62R2,
1	Commandant US Army Special Warfare School ATTN: Rev & Tng Lit Div Fort Bragg, NC 28307		R. Beauregard C. Christensen National Center, Bldg. 2 Room 6E08 Washington, DC 20362
1.	Commandant US Army Engineer School ATTN: ATSE-CD Ft. Belvoir, VA 22060	1	Commander Naval Air Systems Command ATTN: NAIR-954-Tech Lib Washington, DC 20360
1	Commander US Army Foreign Science & Technology Center ATTN: DRXST-MC-3 220 Seventh Street, NE Charlottesville, VA 22901	1	Director Navy Strategic Systems Project Office Dept. of the Navy Rm. 901 ATTN: J. F. Kincaid
1	President US Army Artillery Board Ft. Sill, OK 73503	1	Assistant Secretary of the Navy (R, E, and S)
2	Commandant US Army Field Artillery School ATTN: ATSF-CO-MW, B. Willis Ft. Sill, OK 73503	1	ATTN: R. Reichenbach Room 5E787 Pentagon Bldg. Washington, DC 20350 Naval Research Lab
	Chief of Naval Materiel Department of the Navy ATTN: J. Amlie Arlington, VA 22217		Tech Library Washington, DC 20375

No. Of No. Of Copies Organization Copies Organization Commander Program Manager US Naval Surface Weapons AFOSR/(SREP) Center Directorate of Aerospace ATTN: J. P. Consaga Sciences C. Gotzmer ATTN: L. H. Caveny Silver Spring, MD 20910 Bolling AFB, DC 20332 5 Commander 5 Commander Naval Surface Weapons Center Naval Ordnance Station ATTN: Code G33, J. L. East ATTN: P. L. Stang W. Burrell J. Birkett J. Johndrow S. Mitchell Code G23, D. McClure D. Brooks Code DX-21 Tech Lib Tech Library Dahlgren, VA 22448 Indian Head, MD 20640 Commander AFSC/SDOA Naval Surface Weapons Center Andrews AFB, MD 20334 ATTN: S. Jacobs/Code 240 Code 730 AFRPL (DYSC) K. Kim/Code R-13 ATTN: D. George R. Bernecker J. N. Levine Silver Spring, MD 20910 B. Goshgarian D. Thrasher Commander N. Vander Hyde Naval Underwater Weapons Tech Library Research and Engineering Edwards AFB, CA 93523 Station Energy Conversion Dept. AFFTC ATTN: CODE 5B331, R. S. Lazar ATTN: SSD-Tech LIb Tech Lib Edwards AFB, CA 93523 Newport, RI 02840 AFATL/DLYV Commander Eglin AFB, FL 32542 Naval Weapons Center ATTN: Code 388, R. L. Derr AFATL/DLXP C. F. Price ATTN: W. Dittrich T. Boggs Eglin AFB, FL 32542 Info. Sci. Div. China Lake, CA 93555 AFATL/DLDL ATTN: O. K. Heiney 2 Superintendent Eglin AFB, FL 32542 Naval Postgraduate School Dept. of Mechanical Engineering ATTN: A. E. Fuhs Code 1424 Library Monterey, CA 93940

	DISTRIBUTI	ON LIST	
No. Of		No. Of	
	Organization	Copies	
		oopies	Organization
1	AFATL/DLODL	1	Conoral Floated a Company
	ATTN: Tech Lib	1	General Electric Company
	Eglin AFB, FL 32542		Armament Systems Dept.
			ATTN: M. J. Bulman, Room 1311
1	AFWAL/FIBC		Lakeside Avenue
	ATTN: TST-Lib		Burlington, VT 05401
	Wright-Patterson AFB, OH		bullington, vi 03401
	45433	1	IITRI
		-	ATTN: M. J. Klein
1	AFWL/SUL		10 W. 35th Street
	Kirtland AFB, NM 87117		Chicago, IL 60616
			Chicago, il 00010
1	General Applied Sciences Lab	1	Hercules Powder Co.
	ATTN: J. Erdos	•	Allegheny Ballistics
	Merrick & Stewart Avenues		Laboratory
	Westbury, NY 11590		ATTN: R. B. Miller
			P. O. Box 210
1	Aerodyne Research, Inc.		Cumberland, MD 21501
	Bedford Research Park		oumberraine, 115 21501
	ATTN: V. Yousefian	1	Hercules, Inc
	Bedford, MA 01730		Bacchus Works
			ATTN: K. P. McCarty
1	Aerojet Solid Propulsion Co.		P. O. Box 98
	ATTN: P. Micheli		Magna, UT 84044
	Sacramento, CA 95813		
1	Atlanta B	1	Hercules, Inc.
1	Atlantic Research Corporation		Eglin Operations
	ATTN: M. K. King		AFATL DLDL
	5390 Cheorokee Avenue		ATTN: R. L. Simmons
	Alexandria, VA 22314		Eglin AFB, FL 32542
1	AVCO Everett Rsch Lab	-	
	ATTN: D. Stickler	1	Lawrence Livermore
	2385 Revere Beach Parkway		National Laboratory
	Everett, MA 02149		ATTN: M. S. L-355,
	1.0200t, III 02147		A. Buckingham
2	Calspan Corporation		P. O. Box 808
	ATTN: Tech Library		Livermore, CA 94550
	P. 0. Box 400	•	
	Buffalo, NY 14225	1	Lawrence Livermore
	,		National Laboratory
1	Foster Miller Associates		ATTN: M. S. L-355
	ATTN: A. Erickson		M. Finger
	135 Second Avenue		P. O. Box 808
	Waltham, MA 02154		Livermore, CA 94550
	,		

No. Of No. Of Copies Organization Copies Organization Olin Corporation 1 Scientific Research Badger Army Ammunition Plant Assoc., Inc. ATTN: R. J. Thiede ATTN: H. McDonald Baraboo, WI 53913 P.O. Box 498 Glastonbury, CT 06033 Olin Corporation Smokeless Powder Operations Thickol Corporation ATTN: R. L. Cook Wasatch Division P.O. Box 222 ATTN: J. Peterson St. Marks, FL 32355 Tech Library P. O. Box 524 Paul Gough Associates, Inc. Brigham City, UT 84302 ATTN: P. S. Gough P. O. Box 1614 Thickol Corporation 1048 South St. Elkton Division Portsmouth, NH 03801 ATTN: R. Biddle Tech Lib. 1 Physics International P. O. Box 241 2700 Merced Street Elkton, MD 21921 Leandro, CA 94577 United Technologies Princeton Combustion Research Chemical Systems Division Lab., Inc. ATTN: R. Brown ATTN: M. Summerfield Tech Library 475 US Highway One P. O. Box 358 Monmouth Junction, NJ 08852 Sunnyvale, CA 94086 Rockwell International Universal Propulsion Company Rocketdyne Division ATTN: H. J. McSpadden ATTN: BA08 J. E. Flanagan Black Canyon Stage 1 J. Gray Box 1140 6633 Canoga Avenue Phoenix, AZ 85029 Canoga Park, CA 91304 Veritay Technology, Inc. Science Applications, Inc. ATTN: E. B. Fisher ATTN: R. B. Edelman P. O. Box 22 23146 Cumorah Crest Bowmansville, NY 14026 Woodland Hills, CA 91364 Battelle Memorial Institute Thickol Corporation ATTN: Tech Library Huntsville Division 505 King Avenue ATTN: D. Flanigan Columbus, OH 43201 R. Glick Tech Library Brigham Young University Huntsville, AL 35807 Dept. of Chemical Engineering ATTN: M. Beckstead Provo, UT 84601

No. Of		No. Of	
Copies	Organization	Copies	
1	California Institute of Tech 204 Karman Lab Main Stop 301-46 ATTN: F. E. C. Culick 1201 E. California Street Pasadena, CA 91109	1	Institute of Gas Technology ATTN: D. Gidaspow 3424 S. State Street Chicago, IL 60616 Johns Hopkins University
	California Institute of Tech Jet Propulsion Laboratory ATTN: L. D. Strand 4800 Oak Grove Drive Pasadena, CA 91103		Applied Physics Laboratory Chemical Propulsion Information Agency ATTN: T. Christian Johns Hopkins Road Laurel, MD 20707
	University of Illinois AAE Department ATTN: H. Krier Transportation Bldg., Rm 105 Urbana, IL 61801	1	Massachusetts Institute of Technology Dept of Mechanical Engineering ATTN: T. Toong 77 Massachetts Avenue
	University of Massachusetts Dept. of Mechanical Engineering ATTN: K. Jakus Amherst, MA 01002		Cambridge, MA 02139 Pennsylvania State College Applied Research Lab ATTN: G. M. Faeth P. O. Box 30 State College, PA 16801
	University of Minnesota Dept. of Mechanical Engineering ATTN: E. Fletcher Minneapolis, MN 55455 Case Western Reserve		Pennsylvania State University Dept. Of Mechanical Engineering ATTN: K. Kuo University Park, PA 16802
	University Division of Aerospace Sciences ATTN: J. Tien Cleveland, OH 44135 Georgia Institute of Tech		Purdue University School of Mechanical Engineering ATTN: J. R. Osborn TSPC Chaffee Hall West Lafayette, IN 47906
	School of Aerospace Eng. ATTN: B. T. Zinn E. Price W. C. Strahle Atlanta, GA 30332		SRI International Propulsion Sciences Division ATTN: Tech Library 333 Ravenswood Avenue Menlo Park, CA 94025

No. Of		No. Of
Copies	Organization	<u>Copies</u> <u>Organization</u>
1	Rensselaer Polytechnic Inst. Department of Mathematics Troy, NY 12181	Aberdeen Proving Ground Dir, USAMSAA ATTN: DRXSY-D
2	Director Los Alamos Scientific Lab ATTN: T3, D. Butler M. Division, B. Craig P. O. Box 1663 Los Alamos, NM 87545	DRXSY-MP, H. Cohen Cdr, USATECOM ATTN: DRSTE-TO-F STEAP-MT, S. Walton G. Rice D. Lacey C. Herud
1	Stevens Institute of Technology Davidson Laboratory ATTN: R. McAlevy, III Castle Point Station Hoboken, NJ 07030	Dir, HEL ATTN: J. Weisz Cdr, CRDC, AMCCOM ATTN: DRSMC-CLB-PA DRSMC-ACW DRSMC-CLN DRSMC-CLJ-L
1	Rutgers University Dept. of Mechanical and Aerospace Engineering ATTN: S. Temkin University Heights Campus New Brunswick, NJ 08903	DRSHO-GL)-L
1	University of Southern California Mechanical Engineering Dept. ATTN: OHE200, M. Gerstein Los Angeles, CA 90007	
2	University of Utah Dept. of Chemical Engineering ATTN: A. Baer G. Flandro Salt Lake City, UT 84112	
1	Washington State University Dept. of Mechanical Engineering ATTN: C. T. Crowe	

Pullman, WA 99163

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. BRL Rep	ort Number	Date of Report
2. Date Re	port Received	
3. Does th	is report satisfy a need? of interest for which the	? (Comment on purpose, related project, or e report will be used.)
4. How spe data, proce	cifically, is the report dure, source of ideas, et	being used? (Information source, design
as man-hour	s or dollars saved, opera	ort led to any quantitative savings as far ating costs avoided or efficiencies achieved,
		chink should be changed to improve future aization, technical content, format, etc.)
= 0	Name	
CURRENT ADDRESS	Organization	
	Address	
	City, State, Zip	
7. If indic New or Corre	ating a Change of Address ct Address in Block 6 abo	s or Address Correction, please provide the ove and the Old or Incorrect address below.
	Name	•
OLD ADDRESS	Organization	
	Address	
	City, State, Zip	

(Remove this sheet along the perforation, fold as indicated, staple or tape closed, and mail.)