

Big Data Project

Medicare Fraud Detection Using Open Source Data

Xinyu (Max) Liu xinyulrsm@gmail.com

Project link:

http://nbviewer.jupyter.org/github/maxliu/health_care/blob/master/HealthCare_fraud_detection.ipynb

Project overview

- Goal: Build a predictive model for detecting health care fraud
- Data source
 - Part-D and Payment data: cms.gov
 - NPI exclusion data: hhs.gov
- Technology
 - Hadoop/Yarn/Spark/Hive: Part D and Payment data are stored in a five-node cluster.
 - **Pig**: Pig scripts were written for cleaning data and merging tables.
 - **Python/SciKit-learn**: Implemented a data processing pipeline including scaling and modeling. *t*-test is used to select drugs on training set for feature extraction.
- Algorithm and result
 - Five different models: Logistic regression, Gaussian, Random Forest Classifier, Extra Trees Classifier, Gradient Boosting Classifier
 - Average AUC: 0.69 (Random Forest)

Fraudulence in health care industry

Data source: en.Wikipedia.org/wiki/Medicare_fraud

Year	People Charged	False Billings (Million)
2010	94	\$251
2011	91	\$295
2012	2	\$1.9
2013	89	\$223
2014		
2015	243	\$712

Group part_D data by NPI and drug name for future analysis

```
drugs = group partd_raw by (NPI, GENERIC_NAME);

npi_drug_table_2 = foreach drugs {
    specilty = limit partd_raw.SPECIALTY_DESC 1;
    lastname = **— **limit partd_raw.NPPES_PROVIDER_LAST_ORG_NAME 1;
    firstname = limit partd_raw.NPPES_PROVIDER_FIRST_NAME 1;
    city = limit partd_raw.NPPES_PROVIDER_CITY 1;
    state = limit partd_raw.NPPES_PROVIDER_STATE 1;
        generate
        flatten(group),
        COUNT(partd_raw),
        SUM(partd_raw.TOTAL_CLAIM_COUNT),
        SUM(partd_raw.TOTAL_DAY_SUPPLY),
        SUM(partd_raw.TOTAL_DRUG_COST);
    };
rmf /data/to_hadoop/partd_13_npi_drug_all.csv
store_npi_drug_table_2 into '/data/to_hadoop/partd_13_npi_drug_all.csv' using PigStorage('\t');
```

npi_drug.head()

	npi	drug	count	total_claim_count	total_day_supply	total_drug_cost
0	1003000126	LISINOPRIL	1	1.301030	2.756636	2.005909
1	1003000126	SIMVASTATIN	1	1.255273	2.688420	2.013090
2	1003000126	WARFARIN SODIUM	1	1.079181	2.511883	2.221284
3	1003000142	BACLOFEN	1	1.204120	2.654177	2.148633
4	1003000142	MELOXICAM	1	1.505150	2.924796	2.275749

Group Payment data by NPI for future analysis

: ty	claim_min	claim_max	claim_sum	supply_min	supply_max	supply_sum	drug_min	drug_max	drug_sum	payment_count	total_payment
	14	19	33	176	305	481	97.54	162.96	260.500008	0	0
	14	89	188	46	2955	4726	106.12	4346.47	5468.750191	0	0
	12	17	29	141	170	311	37.09	119.95	157.039997	0	0
1	17	87	522	98	410	2107	84.80	377.74	2120.089966	0	0
	11	11	11	78	78	78	59.26	59.26	59.259998	0	0
-											

NPI exclusions database used as target

Merged exclusion data to the table as "is_fraud" column

df.	df.head()										
min	claim_max	claim_sum	supply_min	supply_max	supply_sum	drug_min	drug_max	drug_sum	payment_count	total_payment	is_fraud
	19	33	176	305	481	97.54	162.96	260.500008	0	0	0
	89	188	46	2955	4726	106.12	4346.47	5468.750191	0	0	0
	17	29	141	170	311	37.09	119.95	157.039997	0	0	0
	87	522	98	410	2107	84.80	377.74	2120.089966	0	0	0
	11	11	78	78	78	59.26	59.26	59.259998	0	0	0
4											

The data is highly unbalanced.

- Only 427 positive samples in total 808076 records (0.05%).
- Possible solutions
 - · Down sampling
 - Up sampling
 - Give higher weight for model training (used in this project)

Note that this feature selection was only applied on training set to avoid data leakage.

Five different models used:

Logistic regression, Gaussian, Random Forest Classifier, Extra Trees Classifier, Gradient Boosting Classifier

```
params_0 = {'n_estimators': 100, 'max_depth': 8, 'min_samples_split': 1, 'learning_rate': 0.01}
params_1 = {'n_estimators': 500, 'max_depth': 10, 'min_samples_split': 1, 'class_weight' : {0:1, 1:4000}, 'n_jobs':3}

scaler = StandardScaler()

clfs = [
    LogisticRegression(C=1e5,class_weight={0:1, 1:4000}, n_jobs=3),
    GaussianNB(),
    ensemble.RandomForestClassifier(**params_1),
    ensemble.ExtraTreesClassifier(**params_1),
    ensemble.GradientBoostingClassifier(**params_0)
]
```

Feature importance analysis (from Random Forest)

Findings

- The "drug_score" feature created become the most important feature
- The payment turned out to be trivial or negligible.

AUC (from Random Forest)

Average AUC ~ 0.685 (> 0.5)

This means the predictive model I built can provide useful information on health care fraud detection.

Future work for improvement

- Include more data (e.g., the Part-B dataset)
- Add additional feature (e.g., Page rank)
- Blend multiple model

References

- https://www.versustexas.com/criminal/healthcare-medicare-medicaid-fraud/ PageRank for Anomaly Detection, By Ofer Mendelevitch and Jiwon Seo
- http://www.dataiku.com/blog/2015/08/12/Medicare Fraud.html
 By Pierre Gutierrez @ Dataiku