Notebook Swag

Sam Grayson

May 20, 2015

4.1 Exercise: Write out the powers of 2 mod 7

```
2^{0} \pmod{7} \equiv 1
2^{1} \pmod{7} \equiv 2
2^{2} \pmod{7} \equiv 4
2^{3} \pmod{7} \equiv 1
2^{4} \pmod{7} \equiv 2
2^{5} \pmod{7} \equiv 4
2^{6} \pmod{7} \equiv 1
```

4.2 Theorem: Coprime numbers raised to any power are still coprime.

Let $a, n \in \mathbb{Z}$ where $\gcd(a, n) = 1$. This proof applies for all $j \in \mathbb{N}$. Show $\gcd(a^j, n) = 1$

Proof: I will begin by using the tools developed in Chapter 2, $\operatorname{pf}(a) \cap \operatorname{pf}(n) = \{\}$. $\min(x \# \operatorname{pf}(a), x \# \operatorname{pf}(b)) = 0$. Since $\min(a, b) = a \vee \min(a, b) = b$, $0 = \operatorname{pf}(a) \vee 0 = \operatorname{pf}(b)$. If $0 = \operatorname{pf}(a)$, then $x \# \operatorname{pf}(a) = 0$, furthermore no matter how many a's, $x \# \operatorname{pf}(a^j) = 0$ (since $x \# \operatorname{pf}(a) = 0 = j(x \# \operatorname{pf}(a)) = x \# \operatorname{pf}(a^j)$). Thus $\min(x \# \operatorname{pf}(a^j), x \# \operatorname{pf}(b)) = 0$. Otherwise $0 = \operatorname{pf}(b)$, then no matter what $x \# \operatorname{pf}(a^j)$ is, $\min(x \# \operatorname{pf}(a^j), x \# \operatorname{pf}(b)) = 0$. Thus $\operatorname{gcd}(a^j, n) = 1$. This conditional proof shows $\operatorname{gcd}(a, n) = 1 \to \operatorname{gcd}(a^j, n) = 1$.

This proof can also be written using 1.43.

4.3 Theorem: If b is congruent to a coprime of the modulo, then b is a coprime to the modulo.

```
Let b \equiv a \pmod{n} and gcd(a, n) = 1. Show gcd(a, b) = 1
```

Proof: Assume for contradiction b = nc for some c. Then $b \equiv a \pmod{n}$ means n | (nc - a). This is problematic because then nj = nc - a, and then n(c - j) = a. Therefore $b \neq nc$. Therefore by definition of greatest common divisor $\gcd(b, n) = 1$. In conclusion $(\gcd(a, n) = 1 \land b \equiv a \pmod{n}) \to \gcd(a, b) = 1$.

4.4 Theorem: All numbers have at least two different exponents that give the same result.

Let $a, n \in \mathbb{N}$. Assume $\neg \exists a^i \not\equiv a^j \pmod{n}$ for contradiction.

Proof: For $i \in \{1, 2, ..., n\}$, $\neg \exists a^i \not\equiv a^j \pmod n$. These n noncongruent integers form a CRS by Theorem 3.17. a^{n+1} must be congruent to something in the CRS by the definition of CRS. Therefore $\exists j (a^{n+1} \equiv a^j \pmod n)$. This can not be the case since it denies the contradictive assumption. Therefore $\exists i, j \in \mathbb{N} (i \neq j \land a^i \equiv a^j \pmod n)$.

4.5 Theorem: The converse of Theorem 1.14 is true if gcd(c, n) = 1.

Let $a, b, c, n \in \mathbb{N}$. Let $ac \equiv bc \pmod{n}$. Show $a \equiv b \pmod{n}$

Proof: The first congruence translates to n|(ac-bc) or n|c(a-b). By Theorem 1.41, n|(a-b) (since $\gcd(a,n)=1$, no factor of c can be divided by n). Therefore $a\equiv b\pmod{n}$. In conclusion $ac\equiv bc \wedge \gcd(c,n)=1 \rightarrow a\equiv b$.

4.6 Theorem: If a number is coprime to the modulo, it has at least one power congruent to one.

Let gcd(a, n) = 1. Show $\exists k \in \mathbb{N}(a^k \equiv 1 \pmod{n})$

Proof: $a^i \equiv a^j \pmod{n}$ Without loss of generality, $i \geq j$. $\frac{a^i}{a^j} \equiv \frac{a^j}{a^j} \pmod{n}$ by Theorem 4.5, or equivalently $a^{i-j} \equiv a^{i-i} \equiv 1 \pmod{n}$. Therefore when k = i - j, $a^k \equiv 1 \pmod{n}$. In conclusion $\gcd(a, n) = 1 \to \exists k \in \mathbb{N} (a^k \equiv 1 \pmod{n})$.

- **4.7 Question:** Compute some orders of numbers.
- **4.8 Theorem:** All powers of a relatively prime a up to $\operatorname{ord}_n(a)$ are pair-wise incongruent modulo n.

Translated: $gcd(a, n) = 1 \land i \le ord(a) \land j \le ord(a) \rightarrow a^i \not\equiv a^j$. All congruences and orders are taken to be mod n.

Proof: Assume $a^i \equiv a^j$. Without loss of generality, i > j. Then $a^{i-j} \cdot a^j \equiv a^j \cdot 1$ which can be simplified via 4.2 and 4.5 to $a^{i-j} \equiv 1$. But since $\operatorname{ord}(a)$ is the smallest integer with this property, $\operatorname{ord}(a) \leq i - j$. Therefore $i > \operatorname{ord}(a)$.

4.9 Theorem: All powers of a relatively prime a past $\operatorname{ord}_n(a)$ will never produce new numbers mod n.

Translated $i > \operatorname{ord}(a) \to \exists r \leq \operatorname{ord}(a)(a^i \equiv a^r)$. All congruences and orders are taken mod n.

Proof: Divide i by $\operatorname{ord}(a)$ such that $i = p \cdot \operatorname{ord}(a) + r$ where $0 \le r < \operatorname{ord}(a)$. $a^i = a^{p \cdot \operatorname{ord}(a) + r} = (a^{\operatorname{ord}(a)})^p \cdot a^r \equiv 1a^r$, or $a^i \equiv 1 \cdot a^r \equiv a^r$. Therefore $i > \operatorname{ord}(a) \to \exists r \le \operatorname{ord}(a)(a^i \equiv a^r)$.

4.10 Theorem: $a^m \equiv 1 \leftrightarrow \operatorname{ord}(a) | m$. All congruences and orders are taken mod n.

Proof: \to Divide m by $\operatorname{ord}(a)$ such that $m = q \cdot \operatorname{ord}(a) + r$ where $0 \le r < \operatorname{ord}(a)$. $a^m = a^{q \cdot \operatorname{ord}(a) + r} = (a^{\operatorname{ord}(a)})^q \cdot a^r \equiv 1 \cdot a^r$. $\gcd(a^r, n) = 1$, so by Theorem 4.5 $a^r \equiv 1$. But $0 \le r < \operatorname{ord}(a)$, so r = 0. Therefore $m | \operatorname{ord}(a)$.

Proof: $\leftarrow \operatorname{ord}(a)|m \text{ implies } j \cdot \operatorname{ord}(a) = m. \ a^m = a^{j \cdot \operatorname{ord}(a)} = (a^{\operatorname{ord}(a)})^j \equiv 1^j = 1.$

In conclusion $\operatorname{ord}(a)|m \leftrightarrow a^m \equiv 1$.

4.11 Theorem: The order of a coprime is less than the modulo.

Translated: $gcd(a, n) = 1 \rightarrow ord(a) < n$. All orders and congruences are taken mod n.

Proof: There can not be more than n unique numbers modulo n by Theorem 3.16. a^i for $0 \le i < \operatorname{ord}(a)$ produces unique numbers modulo n. Therefore there $\operatorname{ord}(a) < n$.

4.12 Exercise: Compute the following expression for several natural numbers a and prime numbers p a^{p-1} (mod p).

I conjecture that ord(a) < n.

```
def mod_exp(a1, r, n):
       # Returns the k in a^r \equiv k \pmod{n} where 0 \le k < r
       # This algorithm is found in 3.6
       # WLOG a < n
       a = cmod(a1, n) # reduce a mod n if possible
       a\_squared = cmod(a * a, n)
       r_halved, remainder = division(r, 2)
       if r == 1:
            # Base case
            return a
10
       if divides(2, r):
            \# (a^2)^{r/2}
12
            k = mod_exp(a_squared, r_halved, n)
            k = cmod(k, n) # reduce k mod n
14
            return k
       else:
16
            # (a^2)^{(r-1)/2} \cdot a
            k = mod_exp(a_squared, r_halved, n)
18
            ka = cmod(k * a, n)
19
            return ka
20
21
   for p in first(10, primes()):
22
       print(r'(pmod \{\{\{p\}\}\}))'.format(**locals()))
23
       print('')
       print(r'\begin{tabular}[t]{1}')
25
       for a in range(0, p):
            # 0 \le a < p
27
            e = p - 1
            c = mod_exp(a, e, p, False)
29
            print(r'${a}^{{{e}}} \equiv {c} \pmod {{{p}}}$ \\'.format(**locals()))
30
       print(r'\end{tabular}')
31
       print('')
32
   Output:
    \pmod{2}
```

```
0^1 \equiv 0 \pmod{2}
 1^1 \equiv 1 \pmod{2}
 \pmod{3}
 0^2 \equiv 0 \pmod{3}
 1^2 \equiv 1 \pmod{3}
 2^2 \equiv 1 \pmod{3}
 \pmod{5}
 0^4 \equiv 0 \pmod{5}
 1^4 \equiv 1 \pmod{5}
 2^4 \equiv 1 \pmod{5}
 3^4 \equiv 1 \pmod{5}
 4^4 \equiv 1 \pmod{5}
Output has been omitted for brevity.
 11^{22} \equiv 1 \pmod{23}
 12^{22} \equiv 1 \pmod{23}
 13^{22} \equiv 1 \pmod{23}
 14^{22} \equiv 1 \pmod{23}
 15^{22} \equiv 1 \pmod{23}
 16^{22} \equiv 1 \pmod{23}
 17^{22} \equiv 1 \pmod{23}
 18^{22} \equiv 1 \pmod{23}
 19^{22} \equiv 1 \pmod{23}
 20^{22} \equiv 1 \pmod{23}
 21^{22} \equiv 1 \pmod{23}
 22^{22} \equiv 1 \pmod{23}
```

What I find interesting is that this program builds off of the one from 3.6. The tools I develop build off of each other. That is the whole idea behind reusable functions in a programming language.

4.13 Theorem: Let $S = \{a, 2a, 3a, \dots, pa\}$ where gcd(a, p) = 1. S is a complete residue system modulo p.

Proof: Let $R = \{1, 2, 3, ..., p\}$. R is the canonical complete residue system modulo p. Therefore all elements of R are pairwise incongruent $\forall i, j (i \neq j \rightarrow i \not\equiv j \pmod{p})$. The contrapositive of theorem 4.5 states that $i \not\equiv j \pmod{n}$ implies $ai \not\equiv aj \pmod{n}$. Therefore the elements of R are also pairwise incongruent. By Theorem 3.17, any set of p pairwise

incongruent integers form a complete residue system modulo p.

4.14 Theorem: Let $p \in \mathbb{P}$ and $a \nmid p$. $a \cdot 2a \cdot 3a \cdot \cdots \cdot (p-1)a \equiv 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (p-1) \pmod{p}$.

Let
$$R = \{a, 2a, 3a, \dots, (p-1)a, pa\}$$
 and $S = \{1, 2, 3, \dots, p-1, p\}$.

Proof: R consitutes a complete residue system by Theorem 3.14. S is the canonical complete residue system. Therefore every element of R is congruent to exactly one thing in S and everything in S is congruent to exactly one thing in R. Therefore there is a one-to-one mapping of congruent elements from S to R. $p|pa \land p|p$, therefore $pa \equiv 0 \equiv p \pmod{p}$. Therefore there is a one-to-one mapping of congruent elements from $R \setminus \{pa\}$ to $S \setminus \{p\}$. For each element pair r_i and s_i in $R \setminus \{pa\}$ and $S \setminus \{p\}$, we can multiply the left-hand side of the equation $1 \equiv 1 \pmod{p}$ by r_i and the right-hand side by s_i . In the end, we will get all of the elements of $R \setminus \{pa\}$ multiplied together are equivalent to all of the elements of $S \setminus \{p\}$. $a \cdot 2a \cdot 3a \cdot \cdots \cdot (p-1)a \equiv 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (p-1) \pmod{p}$.

4.15 Theorem: (Fermat's Little Theorem) In a prime modulo, an integer not divisible by the modulo raised to the (p-1)-th power is congruent to one.

Let $p \in \mathbb{P}$ and $a \in \mathbb{Z} \land p \nmid a$. $a^{p-1} \equiv 1 \pmod{p}$.

Proof: $a \cdot 2a \cdot 3a \cdot \cdots \cdot (p-1)a \equiv 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (p-1) \pmod{n}$ by Theorem 4.13. Then $1 \cdot 2 \cdot 3 \cdot \cdots \cdot (p-1) \cdot a^{p-1} \equiv 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (p-1) \pmod{p}$. Since $p \in \mathbb{P}$, $\forall i < p(\gcd(i, p) = 1)$, we can repeatedly apply Theorem 4.14. Therefore $a^{p-1} \equiv 1 \pmod{n}$.

4.16 Theorem: (Fermat's Little Theorem) In a prime modulo, an integer raised to the power of the modulo is congruent to itself.

Let $p \in \mathbb{P}$ and $a \in \mathbb{Z}$. $a^p \equiv a \pmod{p}$

Proof: Let $p \in \mathbb{P}$ and $a \in \mathbb{Z}$. $a^{p-1} \equiv 1 \pmod{p}$ by Theorem 4.15. If $p \nmid a$, then $a^{p-1} \equiv 1 \pmod{p}$, therefore $a^p \equiv a \pmod{p}$ by Theorem 1.14. On the other hand, if p|a, then $a \equiv 0 \equiv a^p \pmod{p}$. Therefore $a^p \equiv a \pmod{p}$ in both cases.

4.17 Note: 4.15 and 4.16 are equivalent.

Proof that 4.15 implies 4.16: See proof of 4.16 (which relies on 4.15).

Proof that 4.16 implies 4.15: Let $p \in \mathbb{P}$ and $a \in \mathbb{Z} \land p \nmid a$. $a^p \equiv a \pmod{p}$ by Theorem 4.16. Since $p \in \mathbb{P}$ and $p \nmid a$, $\gcd(a, p) = 1$. This lets us apply Theorem 4.5 to the equation $a^{p-1}a \equiv 1a \pmod{p}$, yielding $a^{p-1} \equiv 1 \pmod{p}$.

4.18 In a prime modulo, one less than the modulo divides the order of an integer coprime to that modulo.

Let $p \in \mathbb{P}$ and $a \in \mathbb{Z} \land p \nmid a$. $\operatorname{ord}_p(a)|(p-1)$

Proof: $a^{p-1} \equiv 1 \pmod{p}$ by Theorem 4.15. $(p-1)|\operatorname{ord}_p(a)$ by Theorem 4.10.

4.19 Exercise: Use Fermat's Little Theorem to efficiently raise numbers to large powers in modulo arithmetic.

1.
$$512^{372} = 512^{31 \cdot 12} = (512^{12})^{31} \equiv 1^{31} \pmod{13} = 1$$

2. $3444^{3233} = 3444^{202 \cdot 16 + 1} = (344^{16})^{212} \cdot 344^{1} \equiv 1^{202} \cdot 344 \pmod{17} = 344$
3. $123^{456} \equiv (2^3)^{456} \pmod{23} = 2^{3 \cdot 456} = 2^{62 \cdot 22 + 4} = (2^{22})^{62} \cdot 2^4 \equiv 1^{62} \cdot 2^4 \pmod{23} = 16$

4.20 Exercise: Find the remainder upon division of 314^{159} by 31

$$314^{159} \equiv (2^2)^{159} \pmod{31} = 2^{2 \cdot 159} = 2^{5 \cdot 62 + 3} = (2^5)^{62} \cdot 2^3 \equiv 1^6 \cdot 2 \cdot 2^3 \pmod{31} = 8$$

The remainder upon division is $8.2^{144} = (2^{12})^{12} \equiv 1^{12} \pmod{1} = 1$.

4.21 Theorem: $x \equiv a \pmod{n}$, $x \equiv a \pmod{m}$, and $\gcd(n, m) = 1$ imply $x \equiv a \pmod{mn}$.

Proof: n|(x-a) and m|(x-a). mn|(x-a) by Theorem 2.25.

4.22 Exercise: The remainder of 4^{72} divided by 91 is 8.

$$2^{144} = (2^{12})^{12} \equiv 1^{12} \pmod{13} = 1$$
. Therefore $x \equiv 1 \pmod{13}$ $2^{144} = (2^2)^{72} \equiv 1^{72} \pmod{3} = 1$. Therefore $x \equiv 1 \pmod{3}$.

Therefore $4^{72}=2^{144}\equiv 1\pmod{91}$ by Theorem 4.21.

4.28 Theorem: $gcd(a, b) = 1 \land gcd(a, c) = 1 \to gcd(a, bc) = 1$

Proof:

Let
$$pf(a) = A$$
, $pf(b) = B$, $pf(c) = C$
 $A \cap B = \{\}$
 $j \ A \cap C = \{\}$ Coprime-disjoint theorem
 $gcd(a,bc) = A \cap (pf(bc))$ GCD-intersection theorem
 $= A \cap (B+C)$ pf of product
 $= A \cap B + A \cap C$ Empty-intersection theorem
 $= \{\} + \{\}$ Substitution
 $= \{\}$ Identity
 $gcd(a,bc) = 1$ Coprime-disjoint theorem

4.29 Theorem: Let $b \equiv a \pmod{n}$ and gcd(a, n) = 1. Show gcd(a, b) = 1

Proof: Assume for contradiction b = nc for some c. Then $b \equiv a \pmod{n}$ means n | (nc - a). This is problematic because then nj = nc - a, and then n(c - j) = a, and then n | a, and then $\gcd(a, n) = n$. Therefore $b \neq nc$. Therefore by definition of greatest common divisor $\gcd(b, n) = 1$. In conclusion $(\gcd(a, n) = 1 \land b \equiv a \pmod{n}) \to \gcd(a, b) = 1$.

4.30 Theorem: Let $a, b, c, n \in \mathbb{N}$. Let $ac \equiv bc \pmod{n}$. Show $a \equiv b \pmod{n}$

Proof: The first congruence translates to n|(ac-bc) or n|c(a-b). By Theorem 1.41, n|(a-b)

(since gcd(a, n) = 1, no factor of c can be divided by n). Therefore $a \equiv b \pmod{n}$.

4.31 Theorem: Let $x_1, x_2, \ldots, x_{\phi(n)}$ be the natural numbers relatively prime to n and less than n. Let gcd(a, n) = 1 (but not necessarily $a \leq n$, so not necessarily $\exists i(a = x_i)$). $i \neq j \rightarrow ax_i \not\equiv ax_j$

All congruences are taken modulo n.

Proof: $ax_i \equiv ax_j$ implies $x_i \equiv x_j$ by Theorem 4.30, or equivalently $n|(x_i - x_j)$. Since $0 \le x_j < n$ and without loss of generality $x_j \le x_i < n$, $0 \le x_i - x_j < n$, but $n|(x_i - x_j)$, therefore $x_i - x_j = 0$. Therefore $x_i = x_j$. This contradicts. Therefore $ax_i \ne ax_j$.

4.32 Theorem: (Euler's Theorem) $a^{\phi(n)} \equiv 1 \pmod{n}$

By Theorem 4.31, the members of the set $\{ax_1, ax_2, \dots, x_{\phi(n)}\}$ are pairwise incongruent.

4.33 Theorem: (Fermat's Little Theorem) $a^{(p-1)} \equiv 1 \pmod{n}$.

Proof: If $n \in \mathbb{P}$, then all natural numbers less than n are coprime to n. Therefore $\phi(n)$ counts all numbers from 1 to n-1. Therefore $\phi(n)=n-1$. Therefore $a^{(p-1)}\equiv 1 \pmod n$.

4.34 Exercise:

- 1. $4^{49} \equiv 12^{49} \equiv ? \pmod{15}$
- 2. $139^{112} \equiv ? \pmod{27}$
- **4.35 Exercise:** Find the ones digit of 13⁴⁷⁴

$$13^{174} = (13^4)^{18} \cdot 13^2 \equiv 1^{18} \cdot 3^2 \pmod{10} = 9$$

4.36 Theorem: Every number has a multiplicative inverse in a prime modulo.

Proof: By Fermat's Little Theorem $a^{p-1} \equiv 1$. Since $p \geq 2$, $a^{p-2}a = a^{p-1} \equiv 1$. Therefore reduce a^{p-2} into the CCRS where $a^{p-2} \equiv b$. $\forall 1 < a < p-1 \exists 1 < b < p-1 ab \equiv 1$.

4.37 Theorem: 1 and p-1 are their own multiplicative inverses in a prime modulo p.

Translated: $1 \cdot 1 \equiv 1$ and $(p-1) \cdot (p-1) \equiv 1$. All congruences are taken mod p

Proof:
$$1 \cdot 1 = 1 \equiv 1$$
. $(p-1) \cdot (p-1) = p^2 - 2p + 1 = (p-2) \cdot p + 1 \equiv 1$.

4.38 Theorem: No other number (besides 1 and p-1) is its own inverse in a prime modulo p.

Translated: $0 \le a , where all congruences are taken in a prime modulo <math>p$.

Proof: Let $a^2 \equiv 1$. By the definition of modulo, $p|(a^2-1)$, or equivalently p|(a-1)(a+1). $p \in \mathbb{P}$, therefore $\gcd(p, a-1) = 1$ and $\gcd(p, a+1) = 1$ (unless a+1 was p or a-1 was 0).

By Theorem 4.28, gcd(p, (a-1)(a+1)) = 1. Therefore $p \nmid (a-1)(a+1)$ unless a = p-1 or a = 1. But we know that $p \mid (a-1)(a+1)$ from the premise, so a = p-1 or a = 0.