Домашнее задание 4

Дедлайн: 2025-05-18, 23:59. Оцениваемые задачи:

1. Величины (y_i) независимы и одинаково непрерывно распределены. Всего есть 1000 наблюдений. Постройте 95%-й интервал для 90%-го квантиля с помощью выборочных квантилей.

Если для вычисления необходимых выборочных квантилей использовался код, то приведите его.

- 2. Есть две выборки: x=(2.7,3.5,4.2,6.7) и y=(1.6,2.9,3.9). Все наблюдения независимы. Величины (x_i) одинаково непрерывно распределены между собой, величины (y_i) одинаково непрерывно распределены между собой. Проверьте гипотезу H_0 об одинаковом законе распределения в двух выборках, против альтернативной $\mathbb{P}(x_i>y_j)>0.5$ на уровне значимости 5%.
 - а) Проведите тест Манна Уитни, используя точное распределение статистики.
 - б) Проведите тест Манна Уитни, используя нормальную аппроксимацию. Укажите p-значение.

Неоцениваемые задачи в удовольствие:

3. Рассмотрим тест знаковых рангов Уилкоксона и связанные пары наблюдений (x_i, y_i) . При верной H_0 разницы $D_i = x_i - y_i$ одинаково непрерывно распределены и независимы.

Рассмотрим сумму знаковых рангов $WSR = \sum_{i=1}^{n} \operatorname{sign}(D_i) \operatorname{rank}(|D_i|)$.

Найдите ожидание $\mathbb{E}(WSR)$ и дисперсию $\mathbb{V}\mathrm{ar}(WSR)$ при верной H_0 .

- 4. Величины (X_i) независимы и одинаково распределены с неизвестными $\mathbb{E}(X_i) = \mu$ и $\mathbb{V}\mathrm{ar}(X_i) = \sigma^2$. По выборке из 1000 наблюдений оказалось, что $\bar{X}=30$, а несмещённая выборочная дисперсия равна 900.
 - а) Постройте асимптотический 95%-й доверительный интервал для μ . Укажите p-значение для гипотезы H_0 : $\mu=35$ против альтернативной H_a : $\mu\neq35$.
 - б) Постройте асимптотический 95%-й предсказательный интервал для X_{1001} .
 - в) Постройте асимптотический 95%-й предсказательный интервал для $(X_{1001} + X_{1002})/2$.
- 5. Бариста Борис заметил, что в последнее время посетители заказывают только капуччино и раф. Предположим, что посетители выбирают напиток независимо друг от друга, а вероятность выбора капуччино постоянна и равна неизвестному числу p.

У Бориса есть только две гипотезы, $H_0: p=1/3$ и $H_a: p=2/3$, в которые он до получения данных верит с вероятностями 0.6 и 0.4, соответственно.

Из первых 100 утренних посетителей S=40 выбрали капуччино. Борис хочет измерить разными способами, насколько этот наблюдаемый результат соотносится с гипотезами.

а) Найдите $\mathbb{P}(H_0 \mid S = 40)$ и $\mathbb{P}(H_a \mid S = 40)$.

Борис решил на следующий день повторить эксперимент и снова посчитать S_{new} , количество клиентов из первых ста, которые выберут капуччино.

б) Найдите $\mathbb{P}(S_{\text{new}} \geq S \mid S=40, H_0)$ и $\mathbb{P}(S_{\text{new}} \geq S \mid S=40, H_a)$.

- в) Какие из вероятностей можно посчитать без мнения Бориса о $\mathbb{P}(H_0)$ и $\mathbb{P}(H_a)$?
- г) Какая из вероятностей называется p-значением для гипотезы H_0 и статистики S?
- 6. По таблице сопряжённости проверьте гипотезу о независимости двух признаков на уровне значимости 5% против альтернативной гипотезы о зависимости признаков. Укажите p-значение.

	X = A	X = B
Y = C	50	60
Y = D	20	30
Y = E	60	50

7. Рассмотрим таблицу сопряжённости

X = A	X = B	X = C	X = D
50	70	80	60

- а) На уровне значимости 5% проверьте гипотезу об одинаковых вероятностях $p_a=p_b=p_c=p_d$ против альтернативной о том, что хотя бы одно из равенств нарушено.
- б) На уровне значимости 5% проверьте гипотезу об одинаковых вероятностях $p_a=p_b=p_c=p_d$ против альтернативной о том, что $p_a\neq p_b=p_c$.
- в) На уровне значимости 5% проверьте гипотезу об одинаковых вероятностях $p_a=p_b=p_c$ против альтернативной о том, что $p_a\neq p_b=p_c$.

В каждом случае укажите p-значение.