Logistic Regressia

Given
$$x$$
, went \Rightarrow

$$\hat{y} = P(y = 1 \mid x)$$

$$0 \leq \hat{y} \leq 1x \qquad x \in \mathbb{R}^{n_x}$$
Parameters: $w \in \mathbb{R}^{n_x}$ $b \in \mathbb{R}^n$

$$\hat{y} = \sigma(w^T_x + b)$$

$$\hat{y} = \sigma(w^T_$$

Logistic Regressia, Cost Function

Given
$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$$
 $z^{(i)} = \frac{1}{1 + e^{-z^{i}}}$ $\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$ $z^{(i)} = w^{(i)} + b$ where $\sigma(z^{(i)}) = w^{(i)} + b$ where $\sigma($