Design and Analysis of Algorithms Lecture-2: Asymptotic Analysis

Prof. Eugene Chang

Overview

- Asymptotic notations
- Order of growth
- Homework-1
- Lecture materials are shared with Prof K. K. Low
- Slides are based on material from Prof. Jianhua Ruan, The University of Texas at San Antonio

```
InsertionSort(A, n) {
  for j = 2 to n {
     key = A[j]
     i = j - 1;
     while (i > 0) and (A[i] > key) {
          A[i+1] = A[i]
          i = i - 1
     }
     A[i+1] = key
}
How many times will
this line execute?
```

9/19/2015

```
InsertionSort(A, n) {
  for j = 2 to n {
     key = A[j]
     i = j - 1;
     while (i > 0) and (A[i] > key) {
          A[i+1] = A[i]
          i = i - 1
     }
     A[i+1] = key
}

How many times will this line execute?
```

9/19/2015 SVU CS502

```
Statement
                                                           cost time
InsertionSort(A, n) {
  for j = 2 to n {
                                                           C_1
                                                                   n
        key = A[j]
                                                                   (n-1)
                                                           C_2
        i = j - 1;
                                                                   (n-1)
                                                           C_3
        while (i > 0) and (A[i] > key) {
                                                                    S
                                                                   (S-(n-1))
                A[i+1] = A[i]
                                                           C_5
                i = i - 1
                                                                   (S-(n-1))
                                                           C_6
                                                           0
        }
        A[i+1] = key
                                                                   (n-1)
                                                           C_7
                                                           0
```

 $S = t_2 + t_3 + ... + t_n$ where t_j is number of while expression evaluations for the j^{th} for loop iteration

Analyzing Insertion Sort

- $T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 S + c_5 (S (n-1)) + c_6 (S (n-1)) + c_7 (n-1)$ = $c_8 S + c_9 n + c_{10}$
- What can S be?
 - Best case -- inner loop body never executed
 - t_i = 1 **>** S = n 1
 - T(n) = an + b is a linear function
 - Worst case -- inner loop body executed for all previous elements
 - $t_i = j \rightarrow S = 2 + 3 + ... + n = n(n+1)/2 1$
 - T(n) = an² + bn + c is a quadratic function
 - Average case
 - Can assume that on average, we have to insert A[j] into the middle of A[1..j-1], so $t_i = j/2$
 - $S \approx n(n+1)/4$
 - T(n) is still a quadratic function

```
Statement
                                                    cost time
InsertionSort(A, n) {
 for j = 2 to n {
                                                           n
                                                    C_1
       key = A[j]
                                                           (n-1)
                                                    C_2
       i = j - 1;
                                                           (n-1)
       while (i > 0) and (A[i] > key) {
                                                    C_4
                                                           (S-(n-1))
              A[i+1] = A[i]
                                                    C_5
                                                           (S-(n-1))
              i = i - 1
                                                    \mathsf{C}_6
                                                    0
       }
       A[i+1] = key
                                                           (n-1)
                                                    C_7
                                                    0
```

What are the basic operations (most executed lines)?

Statement	cost time		
<pre>InsertionSort(A, n) {</pre>			
for j = 2 to n {	c_1	n	
key = A[j]	C_2	(n-1)	
i = j - 1;	c_3	(n-1)	
while $(i > 0)$ and $(A[i] > key)$ {	C ₄	S	
A[i+1] = A[i]	c ₅	(S-(n-1))	
i = i - 1	c ₆	(S-(n-1))	
}	0		
A[i+1] = key	C ₇	(n-1)	
}	0		
}			

Statement	cost	time
<pre>InsertionSort(A, n) {</pre>		
for j = 2 to n {	C_1	n
key = A[j]	C_2	(n-1)
i = j - 1;	C_3	(n-1)
while $(i > 0)$ and $(A[i] > key)$ {	C_4	S
A[i+1] = A[i]	C ₅	(S-(n-1))
i = i - 1	C ₆	(S-(n-1))
}	0	
A[i+1] = key	C ₇	(n-1)
}	0	
}		

What can S be?

Inner loop stops when A[i] <= key, or i = 0

- $S = \sum_{j=2..n} t_j$
- Best case:
- Worst case:
- Average case:

Best case

Inner loop stops when A[i] <= key, or i = 0

- Array already sorted
- $S = \sum_{j=2..n} t_j$
- $t_j = 1$ for all j
- S = n-1 $T(n) = \Theta(n)$

Worst case

Inner loop stops when i = 0

- Array originally in reverse order sorted
- $S = \sum_{j=2..n} t_j$
- $t_j = j$
- $S = \sum_{j=2..n} j = 2 + 3 + ... + n = (n-1) (n+2) / 2 = \Theta (n^2)$

Average case

Inner loop stops when A[i] <= key

- Array in random order
- $S = \sum_{j=2..n} t_j$
- $t_j = j / 2$ on average
- $S = \sum_{j=2..n} j/2 = \frac{1}{2} \sum_{j=2..n} j = (n-1) (n+2) / 4 = \Theta (n^2)$

What if we use binary search?

Answer: still $\Theta(n^2)$

Asymptotic Analysis

- Running time depends on the size of the input
 - Larger array takes more time to sort
 - T(n): the time taken on input with size n
 - Look at **growth** of T(n) as $n \rightarrow \infty$.

"Asymptotic Analysis"

- Size of input is generally defined as the number of input elements
 - In some cases may be tricky

Asymptotic Analysis

- Ignore actual and abstract statement costs
- *Order of growth* is the interesting measure:
 - Highest-order term is what counts
 - As the input size grows larger it is the high order term that dominates

9/19/2015 SVU CS502 15

Comparison of functions

	log ₂ n	n	nlog ₂ n	n²	n ³	2 ⁿ	n!
10	3.3	10	33	10 ²	10 ³	10 ³	10 ⁶
10 ²	6.6	10 ²	660	104	10 ⁶	1030	10 ¹⁵⁸
10 ³	10	10 ³	104	10 ⁶	109		
10 ⁴	13	104	10 ⁵	108	10 ¹²		
10 ⁵	17	10 ⁵	10 ⁶	10 ¹⁰	10 ¹⁵		
10 ⁶	20	10 ⁶	10 ⁷	10 ¹²	10 ¹⁸		

For a super computer that does 1 trillion operations per second, it will be longer than 1 billion years

Order of growth

 $1 << \log_2 n << n << n \log_2 n << n^2 << n^3 << 2^n << n!$

(We are slightly abusing of the "<<" sign. It means a smaller order of growth).

9/19/2015 SVU CS502

Exact analysis is hard!

 Worst-case and average-case are difficult to deal with precisely, because the details are very complicated

It may be easier to talk about upper and lower bounds of the function.

Asymptotic notations

• O: Big-Oh

• Ω: Big-Omega

• Θ: Theta

• o: Small-oh

• ω: Small-omega

- Informally, O (g(n)) is the set of all functions with a smaller or same order of growth as g(n), within a constant multiple
- If we say f(n) is in O(g(n)), it means that g(n) is an asymptotic upper bound of f(n)
 - Intuitively, it is like $f(n) \le g(n)$
- What is O(n²)?
 - The set of all functions that grow slower than or in the same order as n²

9/19/2015

Big O

```
So:

n \in O(n^2)

n^2 \in O(n^2)

1000n \in O(n^2)

n^2 + n \in O(n^2)

100n^2 + n \in O(n^2)

But:

1/1000 n^3 \notin O(n^2)
```

Intuitively, O is like ≤

- Informally, o (g(n)) is the set of all functions with a strictly smaller growth as g(n), within a constant multiple
- What is o(n²)?
 - The set of all functions that grow slower than n²

So:

 $1000n \in o(n^2)$

But:

 $n^2 \notin o(n^2)$

Intuitively, o is like <

Big Ω

- Informally, Ω (g(n)) is the set of all functions with a larger or same order of growth as g(n), within a constant multiple
- $f(n) \in \Omega(g(n))$ means g(n) is an asymptotic lower bound of f(n)
 - Intuitively, it is like $g(n) \le f(n)$

```
So:
```

```
n^2 \in \Omega(n)
1/1000 n^2 \in \Omega(n)
```

But:

```
1000 \text{ n} \notin \Omega(n^2)
```

Intuitively, Ω is like ≥

small ω

• Informally, ω (g(n)) is the set of all functions with a larger order of growth as g(n), within a constant multiple

So:

```
n^2 \in \omega(n)

1/1000 n^2 \in \omega(n)

n^2 \notin \omega(n^2)
```

Intuitively, ω is like >

Theta (Θ)

- Informally, Θ (g(n)) is the set of all functions with the same order of growth as g(n), within a constant multiple
- $f(n) \in \Theta(g(n))$ means g(n) is an asymptotically tight bound of f(n)
 - Intuitively, it is like f(n) = g(n)
- What is $\Theta(n^2)$?
 - The set of all functions that grow in the same order as n²

9/19/2015

Examples

```
So:
```

```
n^{2} \in \Theta(n^{2})

n^{2} + n \in \Theta(n^{2})

100n^{2} + n \in \Theta(n^{2})

100n^{2} + log_{2}n \in \Theta(n^{2})
```

Intuitively, ⊖ is like =

But:

```
nlog_2 n \notin \Theta(n^2)

1000n \notin \Theta(n^2)

1/1000 n^3 \notin \Theta(n^2)
```

Tricky cases

- How about sqrt(n) and log₂ n?
- How about log₂ n and log₁₀ n
- How about 2ⁿ and 3ⁿ
- How about 3ⁿ and n!?

Big-Oh

8(n) f(n)

• Definition: /

 $O(g(n)) = \{f(n): \exists positive constants c and <math>n_0 \text{ such that } 0 \le f(n) \le cg(n) \forall n \ge n_0\}$

• $\lim_{n\to\infty} g(n)/f(n) > 0$ (if the limit exists.)

There exist

Abuse of notation (for convenience):

f(n) = O(g(n)) actually means $f(n) \in O(g(n))$

Big-Oh

- Claim: $f(n) = 3n^2 + 10n + 5 \in O(n^2)$
- Proof by definition

(Hint: to prove this claim by definition, we need to find some positive constants c and n_0 such that $f(n) \le cn^2$ for all $n \ge n_0$.)

(Note: you just need to find one concrete example of c and n_0 satisfying the condition, but it needs to be correct for all $n \ge n_0$. So do not try to plug in a concrete value of n and show the inequality holds.)

Proof:

$$3n^{2} + 10n + 5 \le 3n^{2} + 10n^{2} + 5, \forall n \ge 1$$

 $\le 3n^{2} + 10n^{2} + 5n^{2}, \forall n \ge 1$
 $\le 18 n^{2}, \forall n \ge 1$

If we let c = 18 and $n_0 = 1$, we have $f(n) \le c n^2$, $\forall n \ge n_0$.

Therefore by definition, $f(n) = O(n^2)$.

9/19/2015

• Definition:

 $\Omega(g(n)) = \{f(n): \exists positive constants c and n_0 such that <math>0 \le cg(n) \le f(n) \forall n \ge n_0\}$

- $\lim_{n\to\infty} f(n)/g(n) > 0$ (if the limit exists.)
- Abuse of notation (for convenience):

```
f(n) = \Omega(g(n)) actually means f(n) \in \Omega(g(n))
```

Big-Omega

• Claim: $f(n) = n^2 / 10 = \Omega(n)$

• Proof by definition:

```
f(n) = n^2 / 10, g(n) = n
Need to find a c and a n_o to satisfy the definition of f(n) \in \Omega(g(n)), i.e., f(n) \ge cg(n) for n \ge n_0
Proof:
n \le n^2 / 10 \text{ when } n \ge 10
If we let c = 1 and n_0 = 10, we have f(n) \ge cn, \forall n \ge n_0.
Therefore, by definition, n^2 / 10 = \Omega(n).
```

Theta

- Definition:
 - $\Theta(g(n)) = \{f(n): \exists positive constants c_1, c_2, and n_0 such that <math>0 \le c_1$ $g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0 \}$
- f(n) = O(g(n)) and $f(n) = \Omega(g(n))$
- Abuse of notation (for convenience):

 $f(n) = \Theta(g(n))$ actually means $f(n) \in \Theta(g(n))$

 $\Theta(1)$ means constant time.

Theta

- Claim: $f(n) = 2n^2 + n = \Theta(n^2)$
- Proof by definition:
 - Need to find the three constants c_1 , c_2 , and n_0 such that $c_1 n^2 \le 2n^2 + n \le c_2 n^2$ for all $n \ge n_0$
 - A simple solution is $c_1 = 2$, $c_2 = 3$, and $n_0 = 1$

More Examples

- Prove $n^2 + 3n + \lg n$ is in $O(n^2)$
- Need to find c and n₀ such that

$$n^2 + 3n + \lg n \le cn^2 \text{ for } n \ge n_0$$

• Proof:

```
n^2 + 3n + \lg n <= n^2 + 3n^2 + n for n \ge 1 <= n^2 + 3n^2 + n^2 for n \ge 1 <= 5n^2 for n \ge 1 Therefore by definition n^2 + 3n + \lg n \in O(n^2). (Alternatively: n^2 + 3n + \lg n <= n^2 + n^2 + n^2 for n \ge 10 <= 3n^2 for n \ge 10)
```

9/19/2015

More Examples

- Prove $n^2 + 3n + \lg n$ is in $\Omega(n^2)$
- Want to find c and n₀ such that

$$n^2 + 3n + \lg n >= cn^2 \text{ for } n \ge n_0$$

$$n^2 + 3n + \lg n >= n^2 \text{ for } n \ge 1$$

$$n^2 + 3n + \lg n = O(n^2)$$
 and $n^2 + 3n + \lg n = \Omega(n^2)$
=> $n^2 + 3n + \lg n = \Theta(n^2)$

9/19/2015

$O, \Omega, \text{ and } \Theta$

The definitions imply a constant n₀ beyond which they are satisfied. We do not care about small values of n.

Using limits to compare orders of growth

logarithms

compare log₂n and log₁₀n

- $log_ab = log_cb / log_ca$
- $\log_2 n = \log_{10} n / \log_{10} 2 \sim 3.3 \log_{10} n$
- Therefore $\lim(\log_2 n / \log_{10} n) = 3.3$
- $\log_2 n = \Theta (\log_{10} n)$

More examples

• Compare 2ⁿ and 3ⁿ

•
$$\lim_{n \to \infty} 2^n / 3^n = \lim_{n \to \infty} (2/3)^n = 0$$

- Therefore, $2^n \in o(3^n)$, and $3^n \in \omega(2^n)$
- How about 2^n and 2^{n+1} ? $2^n / 2^{n+1} = \frac{1}{2}$, therefore $2^n = \Theta(2^{n+1})$

L' Hopital's rule

$$\lim_{n\to\infty} f(n) / g(n) = \lim_{n\to\infty} f(n)' / g(n)'$$

$$\lim_{n\to\infty} f(n) / g(n)'$$
If both $\lim_{n\to\infty} f(n)$ and $\lim_{n\to\infty} g(n)$ are ∞ or 0

 You can apply this transformation as many times as you want, as long as the condition holds

More examples

- Compare n^{0.5} and log n
- $\lim_{n\to\infty} n^{0.5} / \log_n = ?$
- $(n^{0.5})' = 0.5 n^{-0.5}$
- $(\log n)' = 1 / n$
- $\lim_{n \to 0.5} / 1/n = \lim_{n \to 0.5} = \infty$
- Therefore, $\log n \in o(n^{0.5})$
- In fact, log $n \in o(n^{\epsilon})$, for any $\epsilon > 0$

Stirling's formula

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n = \sqrt{2\pi} n^{n+1/2} e^{-n}$$

$$n! \approx \text{(constant)} \ n^{n+1/2} e^{-n}$$

Stirling's formula

• Compare 2ⁿ and n!

$$\lim_{n\to\infty} \frac{n!}{2^n} = \lim_{n\to\infty} \frac{c\sqrt{n}n^n}{2^n e^n} = \lim_{n\to\infty} c\sqrt{n} \left(\frac{n}{2e}\right)^n = \infty$$

- Therefore, $2^n = o(n!)$
- Compare nⁿ and n!

$$\lim_{n\to\infty} \frac{n!}{n^n} = \lim_{n\to\infty} \frac{c\sqrt{n}n^n}{n^n e^n} = \lim_{n\to\infty} \frac{c\sqrt{n}}{e^n} = 0$$

• Therefore, $n^n = \omega(n!)$

How about log (n!)?
 9/19/2015

Answer

$$\log(n!) = \log \frac{c\sqrt{n}n^n}{e^n} = C + \log n^{n+1/2} - \log(e^n)$$

$$= C + n\log n + \frac{1}{2}\log n - n$$

$$= C + \frac{n}{2}\log n + (\frac{n}{2}\log n - n) + \frac{1}{2}\log n$$

$$= \Theta(n\log n)$$

More advanced dominance ranking

$$n! \gg c^n \gg n^3 \gg n^2 \gg n^{1+\epsilon} \gg n \log n \gg n \gg \sqrt{n} \gg \log^2 n \gg \log n \gg \log n / \log \log n \gg \log \log n \gg \alpha(n) \gg 1$$

9/19/2015 SVU CS502 45

Asymptotic notations

• O: Big-Oh

• Ω: Big-Omega

• Θ: Theta

• o: Small-oh

• ω: Small-omega

• Intuitively:

O is like
$$\leq$$
 Ω is like \geq ω is like $>$ Θ is like $=$

f(n) vs g(n)

Summary

- $f(n) = O(g(n)) \rightarrow f(n) \le g(n)$
- $f(n) = o(g(n)) \rightarrow f(n) < g(n)$
- $f(n) = \Omega(g(n)) \rightarrow f(n) >= g(n)$
- $f(n) = \omega(g(n)) \rightarrow f(n) > g(n)$
- $f(n) = \Theta(g(n)) \rightarrow f(n) = g(n)$

Properties of asymptotic notations

- Textbook page 51
- Transitivity

```
f(n) = \Theta(g(n)) and g(n) = \Theta(h(n))
=> f(n) = \Theta(h(n))
(holds true for o, O, \omega, and \Omega as well).
```

Symmetry

```
f(n) = \Theta(g(n)) if and only if g(n) = \Theta(f(n))
```

Transpose symmetry

```
f(n) = O(g(n)) if and only if g(n) = \Omega(f(n))

f(n) = o(g(n)) if and only if g(n) = \omega(f(n))
```

About exponential and logarithm functions

- Textbook page 55-56
- It is important to understand what logarithms are and where they come from.
- A logarithm is simply an inverse exponential function.
- Saying b^x = y is equivalent to saying that x = log_b y.
- Logarithms reflect how many times we can double something until we get to n, or halve something until we get to 1.
- $\log_2 1 = ?$
- $\log_2 2 = ?$

Binary Search

- In binary search we throw away half the possible number of keys after each comparison.
- How many times can we halve n before getting to 1?
- Answer: ceiling (lg n)

Logarithms and Trees

- How tall a binary tree do we need until we have n leaves?
- The number of potential leaves doubles with each level.
- How many times can we double 1 until we get to n?
- Answer: ceiling (lg n)

Logarithms and Bits

- How many numbers can you represent with k bits?
- Each bit you add doubles the possible number of bit patterns
- You can represent from 0 to $2^k 1$ with k bits. A total of 2^k numbers.
- How many bits do you need to represent the numbers from 0 to n?
- ceiling (lg (n+1))

9/19/2015 52

logarithms

- $\lg n = \log_2 n$
- In n = $\log_e n$, e ≈ 2.718
- $\lg^k n = (\lg n)^k$
- $\lg \lg n = \lg (\lg n) = \lg^{(2)} n$
- $\lg(k)$ n = $\lg \lg \lg \ldots \lg n$
- $\lg^2 4 = ?$
- $\lg^{(2)}4 = ?$
- Compare lg^kn vs lg^(k)n?

Functional iteration

- f⁽ⁱ⁾(n) denotes the function f (n) iteratively applied *i* times to an initial value of n
- Formally

$$f^{(i)}(n) = n,$$
 if $i = 0$
 $f(f^{(i-1)}(n))$ if $i > 0$

• f(n) = 2n, then $f^{(i)}(n) = 2^i n$

The iterated logarithm function

- Ig* n (read "log star of n") denotes the iterated logarithm
- $\lg^* n = \min \{i >= 0 : \lg^{(i)}(n) <= 1\}$
- Examples
 - $\lg^* 2 = 1$
 - $\lg * 4 = 2$
 - $\lg * 16 = 3$
 - $\lg* 2^{16} = 4$
 - $\lg^* 2^{65536} = 5$

Useful rules for logarithms

For all a > 0, b > 0, c > 0, the following rules hold

•
$$\int_{b}^{\log_{b} a} = a$$

•
$$\log (a/b) = \log (a) - \log(b)$$

•
$$\lg (n/2) = ?$$

•
$$\lg (1/n) = ?$$

•
$$\log_b a = 1 / \log_a b$$

Useful rules for exponentials

- For all a > 0, b > 0, c > 0, the following rules hold
- $a^0 = 1 (0^0 = ?)$
- $a^1 = a$
- a⁻¹ = 1/a
- (a^m)ⁿ = a^{mn}
- (a^m)ⁿ = (aⁿ)^m
- a^maⁿ = a^{m+n}

More advanced dominance ranking

$$n^{n} >> n! >> 3^{n} >> 2^{n} >> n^{3} >> n^{2} >> n^{1+\varepsilon} >> n \log n \sim \log n!$$

>> $n >> n / \log n >> \sqrt{n} >> n^{\varepsilon} >> \log^{3} n >> \log^{2} n >> \log n$
>> $\log n / \log \log n >> \log \log n >> \log^{(3)} n >> \alpha(n) >> 1$

9/19/2015 58

Analyzing the complexity of an algorithm

Kinds of analyses

- Worst case
 - Provides an upper bound on running time
- Best case not very useful, can always cheat
- Average case
 - Provides the expected running time
 - Very useful, but treat with care: what is "average"?

Plan for analyzing time efficiency of non-recursive algorithms

- Decide parameter (input size)
- Identify most executed line (basic operation)
- worst-case = average-case?
- $T(n) = \sum_{i} t_{i}$
- $T(n) = \Theta(f(n))$

Example

```
repeatedElement (A, n)

// determines whether all elements in a given
// array are distinct

for i = 1 to n-1 {
    for j = i+1 to n {
        if (A[i] == A[j])
            return true;
    }
}

return false;
```

9/19/2015 62

Example

```
repeatedElement (A, n)

// determines whether all elements in a given
// array are distinct

for i = 1 to n-1 {
    for j = i+1 to n {
        if (A[i] == A[j])
            return true;
    }
}

return false;
```

Answers

- Best case
 - A[1] = A[2]
 - $T(n) = \Theta(1)$
- Worst-case
 - No repeated elements
 - $T(n) = (n-1) + (n-2) + ... + 1 = n (n-1) / 2 = \Theta(n^2)$
- Average case?
 - What do you mean by "average"?
 - Need more assumptions about data distribution.
 - How many possible repeats are in the data?
 - Average-case analysis often involves probability.

Find the order of growth for sums

•
$$T(n) = \sum_{i=1..n} i = \Theta(n^2)$$

•
$$T(n) = \sum_{i=1..n} log(i) = ?$$

•
$$T(n) = \sum_{i=1...n} n / 2^i = ?$$

•
$$T(n) = \sum_{i=1..n} 2^i = ?$$

•

- How to find out the actual order of growth?
 - Math...
 - Textbook Appendix A.1 (page 1058-60)

Arithmetic series

• An arithmetic series is a sequence of numbers such that the difference of any two successive members of the sequence is a constant.

• In general:

$$a_i = a_{i-1} + d \qquad \qquad \text{Recursive definition}$$
 Or:
$$a_i = a_1 + (i-1)d \qquad \qquad \text{Closed form, or explicit formula}$$

Sum of arithmetic series

If a_1 , a_2 , ..., a_n is an arithmetic series, then

$$\sum_{i=1}^{n} a_i = \frac{n(a_1 + a_n)}{2}$$

e.g.
$$1 + 3 + 5 + 7 + ... + 99 = ?$$

(series definition: $a_i = 2i-1$) This is $\sum_{i=1 \text{ to } 50} (a_i) = 50 * (1 + 99) / 2 = 2500$

67

Geometric series

• A geometric series is a sequence of numbers such that the ratio between any two successive members of the sequence is a constant.

• In general:

$$a_i = ra_{i-1} \qquad \qquad \text{Recursive definition}$$
 Or:
$$a_i = r^i a_0 \qquad \qquad \text{Closed form, or explicit formula}$$

Sum of geometric series

$$\sum_{i=0}^{n} r^{i} = \begin{cases} (1-r^{n+1})/(1-r) & \text{if } r < 1\\ (r^{n+1}-1)/(r-1) & \text{if } r > 1\\ n+1 & \text{if } r = 1 \end{cases}$$

$$\sum_{i=0}^{n} 2^{i} = ?$$

$$\lim_{n \to \infty} \sum_{i=0}^{n} \frac{1}{2^{i}} = ?$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{2^{i}} = ?$$

Sum of geometric series

$$\sum_{i=0}^{n} r^{i} = \begin{cases} (1-r^{n+1})/(1-r) & \text{if } r < 1\\ (r^{n+1}-1)/(r-1) & \text{if } r > 1\\ n+1 & \text{if } r = 1 \end{cases}$$

$$\sum_{i=0}^{n} 2^{i} = \frac{2^{n+1} - 1}{2 - 1} = 2^{n+1} - 1 \approx 2^{n+1} \in \Theta(2^{n})$$

$$\lim_{n\to\infty} \sum_{i=0}^{n} \frac{1}{2^{i}} = \lim_{n\to\infty} \sum_{i=0}^{n} (\frac{1}{2})^{i} = \frac{1}{1 - \frac{1}{2}} = 2$$

$$\lim_{n\to\infty} \sum_{i=1}^{n} \frac{1}{2^{i}} = \lim_{n\to\infty} \sum_{i=0}^{n} \left(\frac{1}{2}\right)^{i} - \left(\frac{1}{2}\right)^{0} = 2 - 1 = 1$$

Important formulas

$$\sum_{i=1}^{n} 1 = n \in \Theta(n)$$

$$\sum_{i=1}^{n} i^{2} \approx \frac{n^{3}}{3} \in \Theta(n^{3})$$

$$\sum_{i=1}^{n} i^{k} \approx \frac{n^{k+1}}{k+1} \in \Theta(n^{k+1})$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \in \Theta(n^{2})$$

$$\sum_{i=1}^{n} i^{2} \approx \frac{n^{k+1}}{k+1} \in \Theta(n^{k+1})$$

Sum manipulation rules

$$\sum_{i} (a_i + b_i) = \sum_{i} a_i + \sum_{i} b_i$$

$$\sum_{i} ca_i = c \sum_{i} a_i$$

$$\sum_{i=m}^{n} a_i = \sum_{i=m}^{x} a_i + \sum_{i=x+1}^{n} a_i$$

Example:

$$\sum_{i=1}^{n} (4i + 2^i) = ?$$

Sum manipulation rules

$$\sum_{i} (a_i + b_i) = \sum_{i} a_i + \sum_{i} b_i$$

$$\sum_{i} ca_i = c \sum_{i} a_i$$

$$\sum_{i=m}^{n} a_i = \sum_{i=m}^{x} a_i + \sum_{i=x+1}^{n} a_i$$

Example:

$$\sum_{i=1}^{n} (4i + 2^{i}) = 4 \sum_{i=1}^{n} i + \sum_{i=1}^{n} 2^{i} = 2n(n+1) + 2^{n+1} - 2$$
$$\sum_{i=1}^{n} \frac{n}{2^{i}} = n \sum_{i=1}^{n} \frac{1}{2^{i}} \approx n$$

More series

•
$$\sum_{i=1..n} n / 2^i = n * \sum_{i=1..n} (\frac{1}{2})^i = ?$$

• using the formula for geometric series:

$$\sum_{i=0..n} (1/2)^i = 1 + 1/2 + 1/4 + ... (1/2)^n = 2$$

• Application: algorithm for allocating dynamic memories

More series

```
• \sum_{i=1..n} \log (i) = \log 1 + \log 2 + ... + \log n
= \log 1 \times 2 \times 3 \times ... \times n
= \log n!
= \Theta(n \log n)
```

Application: algorithm for selection sort using priority queue

Recursive definition of sum of series

Recursive definition is often intuitive and easy to obtain. It is very useful in analyzing recursive algorithms, and some non-recursive algorithms too.

Recursive definition of sum of series

 How to solve such recurrence or more generally, recurrence in the form of:

- T(n) = aT(n-b) + f(n) or
- T(n) = aT(n/b) + f(n)