NMB - Oefenzitting 4: Iteratieve methoden

Hendrik Speleers

Overzicht Krylov deelruimten Arnoldi CG

Nota's			
Nota's			

Krylov deelruimten

- ▶ Krylov deelruimten $\mathcal{K}_n = \langle b, Ab, \dots, A^{n-1}b \rangle$
 - ▶ Slechte basis (cfr. $\langle 1, x, x^2, \ldots \rangle$) ▶ Orthonormale basis $\langle q_1, \ldots, q_n \rangle$

- ► Andere iteratieve methodes
 - ► Splitsingsmethodes : Jacobi, Gauss-Seidel
 - Multigrid

Arnoldi

- ▶ Analoog aan GGS : $A = QHQ^T$ (Hessenberg)
 - \vdash $H_n = Q_n^T A Q_n$
 - $ightharpoonup K_n = Q_n R_n$
- ► Orthogonale projectie op Krylov deelruimte
- ► Berekening :
 - $AQ = QH \rightsquigarrow AQ_n = Q_{n+1}\tilde{H}_n$
 - ▶ iteratief, tussenstappen geven al info
- ightharpoonup Ritz-waarden : ew van H_n
 - ▶ benadering spectrum *A*
 - extreme ew worden snel gevonden

lota's			
lota's			
Jota's			
Jota's			
lota's			
lota's			
Nota's			

Arnoldi iteratie

- ▶ $q_1 = b/\|b\|$
- ▶ for n = 1, 2, ...
 - $V = Aq_n$
 - for j = 1 to n
 - $h_{jn} = q_i^T v$
 - $v = v h_{jn}q_j$
 - ▶ $h_{n+1,n} = ||v||$
 - $prod q_{n+1} = v/h_{n+1,n}$

CG

- ► Conjugate Gradients (Toegevoegde Gradiënten)
- ▶ SPD matrices
- lacksquare Fout $\|e_n\|_{\mathcal{A}}=\|x_*-x_n\|_{\mathcal{A}}$ minimaliseren, $x_n\in\mathcal{K}_n$
- ▶ Minimalisatie met slimme keuze van zoekrichtingen
- ► Eigenschappen :
 - $\mathcal{K}_n = \langle x_1, \dots, x_n \rangle = \langle p_0, \dots, p_{n-1} \rangle = \langle r_0, \dots, r_{n-1} \rangle$ $r_n^T r_j = 0 \quad \rightarrow \quad r_m = 0$ $p_n^T A p_j = 0 \quad \leftarrow \quad A\text{-toegevoegde zoekrichting}$

·ota s				
loto'o				
Nota's				
lota's				
Jota's				
lota's				
lota's				
Jota's				
Jota's				
Nota's				
lota's				
lota's				
Jota's				
Jota's				

Nota's

CG iteratie

 $x_0 = 0$, $r_0 = b$, $p_0 = r_0$

• for n = 1, 2, ...

$$\alpha_n = (r_{n-1}^T r_{n-1})/(p_{n-1}^T A p_{n-1})$$

$$ightharpoonup r_n = r_{n-1} - \alpha_n A p_{n-1}$$

$$\begin{array}{l}
r_{n} = r_{n-1} + \alpha_{n} \rho_{n-1} \\
r_{n} = r_{n-1} - \alpha_{n} A \rho_{n-1} \\
\rho_{n} = (r_{n}^{T} r_{n})/(r_{n-1}^{T} r_{n-1}) \\
\rho_{n} = r_{n} + \beta_{n} \rho_{n-1}
\end{array}$$

$$p_n = r_n + \beta_n p_{n-1}$$

staplengte

benadering residu

zoekrichting

CG convergentie

Convergentie . . .

schatting via veeltermen :

$$\frac{\|e_n\|_A}{\|e_0\|_A} \leq \max_{z \in \Lambda(A)} |p_n(z)|$$

▶ schatting via conditiegetal van *A* :

$$\frac{\|e_n\|_{\mathcal{A}}}{\|e_0\|_{\mathcal{A}}} \le 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^n$$

▶ in *n* stappen als $n \neq$ eigenwaarden

Nota's			
Nota's			
Nota's			