Cenerate Collection Print

L8: Entry 38 of 159 File: USPT Nov 5, 2002

S-PAT-NO: 6475789

OCUMENT-IDENTIFIER: US 6475789 B1

ITLE: Human telomerase catalytic subunit: diagnostic and therapeutic methods

ATE-ISSUED: November 5, 2002

NVENTOR-INFORMATION:

AME	CITY	STATE	ZIP CODE	COUNTRY
ech; Thomas R.	Boulder	CO		
ingner; Joachim	Epalinges			СН
akamura; Toru	Boulder	CO		
hapman; Karen B.	Sausalito	CA		
orin; Gregg B.	Palo Alto	CA		
arley; Calvin B.	Palo Alto	CA		
ndrews; William H.	Richmond	CA		

S-CL-CURRENT: $\underline{435}/\underline{366}$; $\underline{424}/\underline{94.1}$, $\underline{435}/\underline{320.1}$, $\underline{435}/\underline{69.1}$, $\underline{536}/\underline{23.2}$

LAIMS:

What is claimed is:

- 1. A mammalian cell that contains a recombinant polynucleotide comprising a nucleic acid sequence that encodes a <u>telomerase</u> reverse transcriptase protein, variant, or fragment having <u>telomerase catalytic</u> activity when complexed with a <u>telomerase</u> RNA, wherein said recombinant polynucleotide hybridizes to a DNA having a sequence complementary to SEQ ID NO: 1 at 5.degree. C. to 25.degree. C. below T.sub.m in aqueous solution at 1 M NaCl, wherein T.sub.m is the melting temperature of a complementary polynucleotide hybridized to said DNA in aqueous solution at 1M NaCl, wherein the complementary polynucleotide is exactly complementary to SEQ ID NO: 1 and is the same length as the recombinant polynucleotide.
- 2. The mammalian cell of claim 1, wherein the recombinant polynucleotide encodes a full-length naturally occurring https://doi.org/10.1001/journal.org/https://doi.org/10.1001/journal.org/https://doi.org/10.1001/journal.org/https://doi.org/<a href="https://doi.org/
- 3. The mammalian cell of claim 2, which expresses said encoding sequence at the mRNA level, as measured by PCR amplification.
- 4. The mammalian cell of claim 1, which expresses said encoding sequence at the protein level, as measured by immunoassay.

- 5. The mammalian cell of claim 1, which has telomerase activity, as measured in a primer elongation assay.
- 6. The mammalian cell of claim 1, which is a human cell.
- 7. The mammalian cell of claim 6, which is a stem cell.
- 8. The mammalian cell of claim 1, which is a stem cell.