Trabajo Práctico Nro. 3

Integrales Complejas

- 1. Calcular las siguientes integrales:
 - (a) $\int_{0}^{\pi} (1+it^{2})dt$ (b) $\int_{-\pi}^{\pi/4} te^{-it^{2}}dt$ (c) $\int_{0}^{\pi} (\sin 2t + i\cos 2t)dt$ (d) $\int_{\pi}^{\pi/4} \log(1+it)dt$

- 2. Calcular las siguientes integrales de línea:
 - (a) $\int \text{Re}(z) dz$ a lo largo de las siguientes trayectorias:

- (b) $\int_{C} \frac{1}{z} dz$ C: semicircunf. superior de |z| = 1 desde $z_1 = -1$ hasta $z_2 = 1$.
- (c) $\int (2|z|+3) dz$ C: segmento del eje real que une $z_1 = -1$ y $z_2 = 2$.
- (d) $\int \pi e^{(\pi \overline{z})} dz$ C: borde del cuadrado de vértices $z_1 = 0, z_2 = 1, z_3 = 1 + i$

y $z_4 = i$, recorrido en sentido positivo.

- 3. Mostrar que para $m, n \in \mathbb{Z}$, $\int_{0}^{2\pi} e^{im\theta} e^{-in\theta} d\theta = \begin{cases} 0 & \text{si } m \neq n \\ 2\pi & \text{si } m = n \end{cases}$ y obtener el valor de $\int z^m \bar{z}^n \ dz$ siendo γ la circunferencia centrada en el origen, de radio r, recorrida en sentido antihorario.
- 4. Sea la circunferencia $C: z-a=r_0e^{i\theta}$ donde $r_0>0$ y $0\leqslant\theta\leqslant 2\pi$, recorrida en sentido positivo. Demostrar que $\int\limits_C f(z)\ dz=ir_0\int\limits_0^{2\pi}f(a+r_0e^{i\theta})\,e^{i\theta}\ d\theta$.

- 5. Sea $f: A \to \mathbb{C}$, f = u + iv continua en A y γ una curva simple orientada incluída en A. Demostrar que Re $(\int_{\gamma} f(z)dz)$ y Im $(\int_{\gamma} f(z)dz)$ dan respectivamente, la circulación a lo largo de γ y el flujo del campo vectorial (u, -v) a través de γ .
- 6. Calcular la longitud del arco del cicloide, curva cerrada parametrizada como: $z(t) = a(t \sin t) + a i(1 \cos t), (0 \le t \le 2\pi)$ con a un real positivo.
- 7. Sin calcular la integral, obtener las siguientes acotaciones:

(a)
$$\left| \int_C \frac{1}{z^4} dz \right| \le 4\sqrt{2}$$
 C : segmento que une los puntos $z_1 = i$ y $z_2 = 1$.

- (b) $\left| \int_{C} \frac{\bar{z}}{\bar{z}+1} dz \right| \leq \frac{8}{3}\pi$ C: circunferencia $|z| = \frac{2}{3}$, recorrida en sentido positivo.
- (c) $\left| \int_{C} \frac{1}{z^2 + 1} dz \right| \leqslant \frac{\pi}{3}$ C: circunferencia |z| = 2, en el primer cuadrante.
- 8. Sea γ la semicircunferencia superior de |z|=R. Probar que:

(a)
$$\lim_{R \to +\infty} \int_{\gamma} \frac{e^{iz}}{z^2 + a^2} dz = 0$$
 (b) $\lim_{R \to +\infty} \int_{\gamma} \frac{\log z}{z^2} dz = 0$

- 9. Evaluar (i) $\int_C \frac{z-2}{z} dz$ y (ii) $\int_{-C} |z|^{1/2} \exp(i \operatorname{Arg} z) dz$ donde C es la semicircunferencia $z=2e^{i\theta},\ 0\leqslant \theta\leqslant \pi$.
- 10. Calcular la integral $\int_{\gamma} \frac{dz}{z-c}$ con γ un contorno que encierra a $z_0 = c$, recorrido una vez en sentido antihorario. Analizar en qué varía el resultado si se recorre γ n-veces, $n \in \mathbb{N}$. ¿Contradice la independencia de la parametrización?
- 11. Clasificar a los conjuntos conexos del ejercicio 21 (a) del Trabajo Práctico Nro. 2 en simplemente o multiplemente conexos.
- 12. Denotamos $\mathcal{H}(D) = \{ f : D \to \mathbb{C} \text{ holomorfas en } \mathbb{C} \}$. Decir qué condiciones debe cumplir un conjunto D de \mathbb{C} para que:
 - (a) si $f \in \mathcal{H}(D)$, entonces cualquiera sea el contorno cerrado $\Gamma \subseteq D$, resulta $\int\limits_{\Gamma} f(z) \ dz = 0$, (confrontar con el ejercicio 3)
 - (b) si f es continua en D, y para todo contorno cerrado $\Gamma \subseteq D$, $\int_{\Gamma} f(z) dz = 0$, entonces $f \in \mathcal{H}(D)$.

- 13. (a) Explicar bajo qué condiciones es válido $\int f(z) \ dz = \int f(z) \ dz$, para dos curvas $\gamma:[a,b]\to\mathbb{C},\ \lambda:[a,b]\to\mathbb{C}$ tales que $\gamma(a)=\lambda(a)$ y $\gamma(b)=\lambda(b)$ (independencia del camino).
 - (b) Analizar si es posible utilizar, y cómo, el resultado del ejercicio 2 (b) para calcular:
 - (i) $\int_{C} \frac{1}{z} dz$ C: semicircunf. inferior de |z|=1 desde $z_1=1$ hasta $z_2=-1$. (ii) $\int_{C} \frac{1}{z} dz$ C: curva definida por $x^4+y^4=1$ desde $z_1=-1$ hasta $z_2=1$.
- 14. Calcular, en cada caso, la integral de línea de la función f a lo largo de los contornos C indicados:

(a)
$$f(z) = \frac{1}{z^2 + 2z + 2}$$
 $C = \{z \in \mathbb{C}/ |z| = 1\}.$

- (b) $f(z) = z^3$
- (i) $C = \{ z \in \mathbb{C} / |z| = 1 \},$
- (ii) C: recta que une los puntos z=1 y z=i,
- (iii) C: arco de circunferencia de centro 0 y radio 1 que une los puntos z=1 y z=i,
- (iv) C: un contorno que une los puntos z=1 y z=i.
- (c) $f(z) = z \operatorname{sen}(z^2)$ C: contorno que une los puntos $z = -i\pi$ y $z = i\pi$.
- 15. Sea $D = \{z \in \mathbb{C} : 1 < |z| < 2\}$ y γ la frontera de D, orientada de modo que los puntos de D están a la izquierda de γ . Probar que $\int_{z}^{z} f(z) dz = 0$ para:

(a)
$$f(z) = \frac{e^z}{z^2 + 9}$$
 (b) $f(z) = \operatorname{ctg} z$

- 16. Calcular, si es posible, $\int_C f(z)dz$ siendo $f(z)=z^i$ (valor principal) según sea:
 - (a) C: contorno en el semiplano superior que une los puntos z=1 y z=-1.
 - (b) C: contorno en el semiplano inferior que une los puntos z=1 y z=-1.
 - (c) C: cualquier contorno que une los puntos z=1 y z=-1.
- 17. (a) Sean D y los contornos C, C_1 y C_2 como se indican en la figura que sigue. Probar que si f es holomorfa en D y continua sobre los contornos C, C_1 y C_2 , el valor de la integral de f sobre la frontera de D es cero (o sea que bajo estas condiciones, se puede extender el teorema de Cauchy a dominios múltiplemente conexos). Deducir la relación entre las integrales de f sobre $C, C_1 y C_2$.

(b) Mostrar:

$$\int_{|z|=2} \frac{\sin z}{z^2 - 1} dz = \int_{|z-1|=1/2} \frac{\sin z}{z^2 - 1} dz + \int_{|z+1|=1/2} \frac{\sin z}{z^2 - 1} dz$$

(c) Analizar bajo qué condiciones $\int_{C_1} f(z) dz = \int_{C_2} f(z) dz$ siendo $f(z) = \frac{1}{(z-a)(z-b)} \text{ y } C_1 \text{ y } C_2 \text{ como se indican en el gráfico:}$

18. Aplicando la fórmula integral de Cauchy, integrar la función $f(z) = \frac{2z^2 - 4}{z^2 + 1}$ a lo largo del círculo de radio 1 y recorrido una vez en sentido antihorario, con centro en:

(a)
$$z=i$$
 (b) $z=\frac{1}{2}$ (c) $z=-i$

19. Calcular las siguientes integrales:

(a)
$$\int_{|z|=1}^{z^2+4} \frac{z^2+4}{z} dz$$
 (b) $\int_{|z|=4}^{z} \left(\frac{\cos(\pi z)}{z+1} + \frac{2e^z}{z-3}\right) dz$ (c) $\int_{|z|=\frac{3}{2}}^{z} \frac{\log(z+2)}{(z+1)(z^2+4)} dz$

20. Calcular todos los posibles valores de la integral $\int_{\Gamma} \frac{dz}{z(z^2-1)}$ para diferentes contornos cerrados Γ que no pasen por 0, 1 y -1.

21. Calcular la integral de línea de las siguientes funciones:

(i)
$$f(z) = \frac{z^3 - z}{(z+1)^2}$$
 (ii) $f(z) = \frac{z^4}{(z-1)^2(z-3)}$ (iii) $f(z) = \frac{\sinh z}{(z^2-1)^2}$ (iv) $f(z) = \frac{e^z}{z^n}$ para $n > 0$

sobre el círculo de radio 2 y centro en: (a) z=0, (b) z=2+i.

- 22. Mostrar que si f(z) es holomorfa en $\Gamma \cup \operatorname{int}(\Gamma)$ donde Γ es un contorno cerrado en \mathbb{C} , entonces $\int_{\Gamma} \frac{f(z)}{(z-a)^2} dz = \int_{\Gamma} \frac{f'(z)}{(z-a)} dz$, $\forall a \notin \Gamma$.
- 23. Probar que si f(z) es holomorfa en un dominio D y si el disco cerrado $|z-a|\leqslant R$ está en D, entonces $f(a)=\frac{1}{2\pi}\int\limits_0^{2\pi}f(a+Re^{it})\ dt$.

Este resultado puede interpretarse como un teorema del valor medio que expresa el valor de f en el centro de la circunferencia como un "promedio" de los valores sobre la misma.

- 24. Sea f(z) una función holomorfa en |z-a| < R. Si 0 < r < R, demostrar que $f'(a) = \frac{1}{2\pi r} \int\limits_0^{2\pi} f(a+re^{it}) \, e^{-it} \, dt.$
- 25. Explicar por qué si f = u + iv es holomorfa en un dominio D, existen todas las derivadas parciales de u y de v y son continuas en D.
- 26. Demostrar que si f es holomorfa en $|z-z_0| < R$ y continua en $|z-z_0| = R$ con $|f(z)| \le M$ en $|z-z_0| = R$, entonces

$$|f^{(n)}(z_0)| \le \frac{n!M}{R^n} \quad \forall n \in \mathbb{N}.$$

- 27. Probar que si f(z) es holomorfa y $|f(z)| < \frac{1}{1-|z|}$ en B(0,1) entonces $|f'(0)| \le 4$.
- 28. Justificar que, a excepción de la función nula, no existe función entera que tenga límite 0 en ∞ .
- 29. (a) Hallar el máximo de $|ze^z+z^2|$ y el de $|iz^2-2z|$ sobre el conjunto $\{z\in\mathbb{C}:|z|\leq 1 \text{y Im}(z)\geq 0\}$
 - (b) Hallar el máximo de $|\cos z|$ sobre el cuadrado $\{z\in\mathbb{C}:0\leq {\rm Re}\,z\leq 2\pi,\ 0\leq {\rm Im}\,z\leq 2\pi\}$
- 30. Sea f holomorfa en B(0,1) tal que f(0)=0 y $|f(z)|\leq 1$ si |z|<1. Probar que $|f(z)|\leq |z|$ si |z|<1 y $|f'(0)|\leq 1$. (Sugerencia: considerar $\frac{f(z)}{z}$ en $\bar{B}(0,r)$).

- 31. Mostrar que si f es una función entera tal que f(z) = f(z+1) = f(z+i) para todo z complejo, entonces f es constante.
- 32. Supongamos que f(z) y g(z) son continuas en $\bar{B}(0,r)$ y holomorfas en B(0,r) con $f(z) \neq 0$ y $g(z) \neq 0$ $\forall z \in \bar{B}(0,r)$. Si |f(z)| = |g(z)| en |z| = r, probar que existe una constante c tal que |c| = 1 y f(z) = cg(z) $\forall z \in \bar{B}(0,r)$.

Funciones Armónicas

33. Determinar si las siguientes funciones son armónicas indicando el dominio en que lo son.

(a)
$$u(x, y) = e^{-x} \cos y$$
 (b) $u(x, y)$

(b)
$$u(x,y) = e^x (x \cos y - y \sin y)$$

(c)
$$v(x,y) = x^2 - y^2 + e^x \cos y + x$$
 (d) $v(x,y) = e^{xy} \cos(x^2 - y^2)$

(e)
$$u(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$
 (f) $u(x,y) = \ln(x^2 + y^2)$

(g)
$$v(x,y) = \arctan\left(\frac{y}{x}\right)$$

- 34. Hallar una función holomorfa u + iv tal que su parte real (respectivamente, su parte imaginaria) coincida con la función u (respectivamente, v) de cada ítem del ejercicio 31. Especificar su dominio de holomorfía.
- 35. Establecer las condiciones que deben cumplir a, b y $c \in \mathbb{R}$ para que las siguientes funciones sean armónicas en \mathbb{R}^2 :

(a)
$$u(x,y) = ax + bxy + cy$$
 (b) $u(x,y) = ax^2 + bxy + cy^2$

- 36. Probar que si $\phi(x,y)$ es armónica en un dominio S entonces $\psi = \phi_x i\phi_y$ es holomorfa en S (la función ψ se llama el gradiente conjugado de ϕ).
- 37. Justificar por qué si f(x,y) = u(x,y) + iv(x,y) es holomorfa, la función $3u^2v v^3$ es armónica respecto a (x,y).
- 38. ¿Es la suma de funciones armónicas en un dominio D una función armónica en D? ¿Qué se puede decir respecto al producto?
- 39. (a) ¿Es cierto que si las funciones u(x,y) y v(x,y) son armónicas conjugadas en un dominio D del plano entonces f(z) = u(x,y) + i v(x,y) es holomorfa en D?
 - (b) Explicar por qué una función armónica en un dominio D admite una conjugada armónica local en D.
- 40. Obtener una conjugada armónica de $x^2 y^2 + e^{2\pi(x-1)}\cos(2\pi y)$. Hallar la curva ortogonal a la curva definida por $x^2 y^2 + e^{2\pi(x-1)}\cos(2\pi y) = 1$ en (1,1).

- 41. (a) Probar que la ecuación de Laplace en coordenadas polares es: $r^2u_{rr} + ru_r + u_{\theta\theta} = 0.$
 - (b) Caracterizar las funciones armónicas u = u(r). Lo mismo si $u = u(\theta)$.
 - (c) Para cada $n \in \mathbb{N}$ sea $u_n(r,\theta) = r^n(a_n \cos n\theta + b_n \sin n\theta)$. Probar que $u_n(r,\theta)$ es armónica y hallar su conjugada armónica $\tilde{u}_n(r,\theta)$.
 - (d) Comprobar que $u(x,y) = (x^2+y^2)\cos(2\arctan(y/x))$ es armónica.

Aplicaciones sobre armónicas conjugadas

- 42. En un cierto medio donde la constante de conductividad térmica es igual a 0.1, las componentes del flujo de calor están dadas por $Q_x \equiv 3$ y $Q_y \equiv -4$. Hallar la distribución de temperatura $\phi(x,y)$, suponiendo que $\phi(0,0)=0$ y la función de flujo $\psi(x,y)$ tal que $\psi(0,0)=0$. Describir y graficar las líneas isotérmicas y las líneas de flujo.
- 43. Sea $\phi(x,y) = 2x 6y$ la distribución de temperatura estacionaria de un sólido bidimensional. ¿Cuál es la temperatura compleja? Describir las líneas isotérmicas y las líneas de flujo.
- 44. El potencial complejo de un flujo de fluido está dado por $\Phi(z) = 1/z$ para $z \neq 0$. Hallar la velocidad compleja. Mostrar que la curva equipotencial que pasa por (1,1) es $(x-1)^2+y^2=1$. Obtener la línea de coriente que pasa por (1,1). Graficar ambas curvas.
- 45. Encontrar el potencial complejo de un fluido que se mueve con velocidad constante v_0 y cuya dirección forma un ángulo θ con el semieje real positivo. Hallar las componentes del campo de velocidad. Esbozar las curvas equipotenciales y las líneas de corriente.
- 46. Explicar por qué d(x,y) = y + ix puede ser un flujo eléctrico complejo pero no puede serlo d(x,y) = x + iy. Hallar el potencial electrostático, las curvas equipotenciales y las líneas de corriente asociadas a d(x,y).
- 47. Determinar si las siguientes ecuaciones describen las líneas de corriente de un fluido ideal. En caso afirmativo, calcular el correspondiente potencial complejo:

(i)
$$\arctan\left(\frac{y}{x+1}\right) = cte$$
,
(ii) $\frac{x-y}{x^2+y^2} = cte$,

(ii)
$$\frac{x-y}{x^2+y^2} = cte$$
,

(iii)
$$e^{(x^2-y^2)}$$
 sen $(2xy) + x^2 - y^2 = cte$