Module 02: Numerical Methods

Unit 14: Finite Volume Method: Godunov Approach

Anirban Dhar

Department of Civil Engineering Indian Institute of Technology Kharagpur, Kharagpur

National Programme for Technology Enhanced Learning (NPTEL)

Dr. Anirban Dhar NPTEL Computational Hydraulics 1 /

Learning Objective

• To discretize conservation laws using Godunov method.

Dr. Anirban Dhar

Governing Equation

Conservative form (Guinot, 2010)

A form of one-dimensional scalar conservation law can be written as:

$$\frac{\partial \phi}{\partial t} + \frac{\partial \mathcal{F}_{\phi}}{\partial x} = S_{\phi} \tag{1}$$

where

 \mathcal{F}_{ϕ} = Flux function.

 S_{ϕ} = Source term.

Governing Equation

Conservative form (Guinot, 2010)

A form of one-dimensional scalar conservation law can be written as:

$$\frac{\partial \phi}{\partial t} + \frac{\partial \mathcal{F}_{\phi}}{\partial x} = S_{\phi} \tag{1}$$

where

 $\mathcal{F}_{\phi} = \text{Flux function}.$

 S_{ϕ} = Source term.

Let us consider that the flux term can be written as,

$$\mathcal{F}_{\phi} = a\phi$$

where a is constant.

REA Algorithm (LeVeque, 2002)

Reconstruct-Evolve-Average

ullet Reconstruct a piecewise polynomial from cell average value ϕ_P^n as

$$\tilde{\phi}^n(x,t^n) = \phi_P^n \quad \forall x \in [x_w, x_e)$$

REA Algorithm (LeVeque, 2002)

Reconstruct-Evolve-Average

ullet Reconstruct a piecewise polynomial from cell average value ϕ_P^n as

$$\tilde{\phi}^n(x,t^n) = \phi_P^n \quad \forall x \in [x_w, x_e)$$

• Evolve the hyperbolic equation with base condition to obtain $\tilde{\phi}^n(x,t+\Delta t)$ at future time $t+\Delta t$.

REA Algorithm (LeVeque, 2002)

Reconstruct-Evolve-Average

• Reconstruct a piecewise polynomial from cell average value ϕ_P^n as

$$\tilde{\phi}^n(x,t^n) = \phi_P^n \quad \forall x \in [x_w, x_e)$$

- Evolve the hyperbolic equation with base condition to obtain $\tilde{\phi}^n(x, t + \Delta t)$ at future time $t + \Delta t$.
- Average the polynomical function at cell level to obtain cell average value at future time $t+\Delta t$ as

$$\phi_P^{n+1} = \frac{1}{\Delta x} \int_{x_w}^{x_e} \tilde{\phi}(x, t^{n+1}) dx$$

REA Algorithm (LeVeque, 2002)

Reconstruct-Evolve-Average

• Reconstruct a piecewise polynomial from cell average value ϕ_P^n as

$$\tilde{\phi}^n(x,t^n) = \phi_P^n \quad \forall x \in [x_w, x_e)$$

- Evolve the hyperbolic equation with base condition to obtain $\phi^n(x, t + \Delta t)$ at future time $t + \Delta t$.
- Average the polynomical function at cell level to obtain cell average value at future time $t + \Delta t$ as

$$\phi_P^{n+1} = \frac{1}{\Delta x} \int_{x_w}^{x_e} \tilde{\phi}(x, t^{n+1}) dx$$

Steps are repeated at every time level.

Riemann Problem

Conservative Form

Riemann Problem

$$\frac{\partial \phi}{\partial t} + \frac{\partial \mathcal{F}_{\phi}}{\partial x} = 0$$

$$\phi(x, t) = \begin{cases} \phi_P^n & \text{if } x < x_e \\ \phi_E^n & \text{if } x > x_e \end{cases}$$

 $\mathcal{F}_\phi\left(\tilde\phi(x,t)\right)$ at cell face depends on the exact solution $\tilde\phi(x,t)$ of the Riemann problem along the taxis. Considering local coordinates

$$\tilde{\phi}(x,t) = \phi_e\left(\frac{x - x_e}{t - t^n}\right), \quad x_P \le x \le x_E, \quad t^n \le t \le t^{n+1}$$

From Riemann problems:

$$\tilde{\phi}(x_w, t) = \phi_w \left(\frac{x_w - x_w}{t - t^n}\right) = \phi_w(0) \text{ with } t^n \le t \le t^{n+1}$$

From Riemann problems:

$$\tilde{\phi}(x_w, t) = \phi_w \left(\frac{x_w - x_w}{t - t^n} \right) = \phi_w(0) \text{ with } t^n \le t \le t^{n+1}$$

$$\tilde{\phi}(x_e, t) = \phi_e \left(\frac{x_e - x_e}{t - t^n} \right) = \phi_e(0) \text{ with } t^n \le t \le t^{n+1}$$

From Riemann problems:

$$\tilde{\phi}(x_w,t) = \phi_w\left(\frac{x_w - x_w}{t - t^n}\right) = \phi_w(0) \text{ with } t^n \le t \le t^{n+1}$$

$$\tilde{\phi}(x_e,t) = \phi_e\left(\frac{x_e - x_e}{t - t^n}\right) = \phi_e(0) \text{ with } t^n \le t \le t^{n+1}$$

Numerical flux values can be written as

$$\bar{\mathcal{F}}_{\phi}(x_e, t) = \frac{1}{\Delta t} \int_{t^n}^{t^{n+1}} \mathcal{F}_{\phi}\left(\tilde{\phi}(x_e, t)\right) dt = \frac{1}{\Delta t} \int_{t^n}^{t^{n+1}} \mathcal{F}_{\phi}\left(\phi_e(0)\right) dt = \mathcal{F}_{\phi}\left(\phi_e(0)\right)$$

$$\bar{\mathcal{F}}_{\phi}(x_w, t) = \frac{1}{\Delta t} \int_{t^n}^{t^{n+1}} \mathcal{F}_{\phi}\left(\tilde{\phi}(x_w, t)\right) dt = \frac{1}{\Delta t} \int_{t^n}^{t^{n+1}} \mathcal{F}_{\phi}\left(\phi_w(0)\right) dt = \mathcal{F}_{\phi}\left(\phi_w(0)\right)$$

If $\mathcal{F}_{\phi} = a\phi$, then numerical flux can be written as,

$$\mathcal{F}_{\phi}\left(\phi_{e}(0)\right) = a^{-}\phi_{E}^{n} + a^{+}\phi_{P}^{n}$$

$$\mathcal{F}_{\phi}\left(\phi_{w}(0)\right) = a^{-}\phi_{P}^{n} + a^{+}\phi_{W}^{n}$$

where $a^+ = \max(a, 0)$ and $a^- = \min(a, 0)$.

If $\mathcal{F}_{\phi} = a\phi$, then numerical flux can be written as,

$$\mathcal{F}_{\phi}\left(\phi_{e}(0)\right) = a^{-}\phi_{E}^{n} + a^{+}\phi_{P}^{n}$$

$$\mathcal{F}_{\phi}\left(\phi_{w}(0)\right) = a^{-}\phi_{P}^{n} + a^{+}\phi_{W}^{n}$$

where $a^+ = \max(a,0)$ and $a^- = \min(a,0)$.

$$\phi_P^{n+1} = \phi_P^n - \frac{\Delta t}{\Delta x} \left[a^- (\phi_E^n - \phi_P^n) + a^+ (\phi_P^n - \phi_W^n) \right]$$

This is same as first order upwind approach.

Thank You

References

Guinot, V. (2010). Scalar Hyperbolic Conservation Laws in One Dimension of Space, pages 1–53. ISTE. LeVeque, R. J. (2002). Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge.