

Kurs:Mathematik für Anwender/Teil I/34/Klausur

Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Punkte 3302332434 4 3 2 0 3 3 5 3 3 53

≡ Inhaltsverzeichnis ∨

Aufgabe * (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

- 1. Der Durchschnitt von Mengen $m{L}$ und $m{M}$.
- 2. Der Real- und der Imaginärteil einer komplexen Zahl z.

- 3. Die Zahl π (gefragt ist nach der analytischen Definition).
- 4. Das *obere Treppenintegral* zu einer oberen Treppenfunktion $m{t}$ zu einer Funktion

$$f:I\longrightarrow \mathbb{R}$$

auf einem beschränkten Intervall $I\subseteq\mathbb{R}$.

- 5. Der i-te Standardvektor im K^n .
- 6. Ein Eigenvektor zu einer linearen Abbildung

$$arphi \colon V \longrightarrow V$$

auf einem K-Vektorraum V.

Aufgabe * (3 Punkte)

Formuliere die folgenden Sätze.

- 1. Der Satz von Euklid über Primzahlen.
- 2. Der Satz über Ableitung und Wachstumsverhalten einer Funktion $f:\mathbb{R} \to \mathbb{R}$.
- 3. Der Satz über die Charakterisierung von invertierbaren Matrizen.

Aufgabe (0 Punkte)

Aufgabe (2 Punkte)

Ersetze im Term $4x^2+3x+7$ die Variable x durch den Term y^3+5 und vereinfache den entstehenden Ausdruck.

Aufgabe * (3 (1+2) Punkte)

Lucy Sonnenschein unternimmt eine Zeitreise. Sie reist zuerst 16 Stunden nach vorne, dann (immer vom jeweiligen erreichten Zeitpunkt aus) 5 Stunden nach vorne, dann 26 Stunden zurück, dann 4 Stunden zurück, dann 8 Stunden nach vorne und dann 12 Stunden zurück.

- 1. Wo befindet sie sich am Ende dieser Zeitreise, wenn die Reise selbst keine Zeit verbraucht?
- 2. Wo befindet sie sich am Ende dieser Zeitreise, wenn eine Zeitreise um eine Stunde, egal ob in die Zukunft oder in die Vergangenheit, immer eine Minute verbraucht?

Aufgabe * (3 Punkte)

Man gebe ein Polynom $P \in \mathbb{Q}[X]$ an, das nicht zu $\mathbb{Z}[X]$ gehört, aber die Eigenschaft besitzt, dass für jede ganze Zahl n gilt: $P(n) \in \mathbb{Z}$.

Aufgabe * (2 Punkte)

Begründe geometrisch, dass die Wurzeln \sqrt{n} , $n\in\mathbb{N}$, als Länge von "natürlichen" Strecken vorkommen.

Aufgabe * (4 Punkte)

Zeige, dass die Reihe

$$\sum_{n=1}^{\infty} \frac{z^n}{n^n}$$

für jedes $z \in \mathbb{R}$ absolut konvergiert.

Aufgabe * (3 Punkte)

Es seien

$$f,g{:}\, \mathbb{R} \longrightarrow \mathbb{R}$$

streng wachsende Funktionen, die auf $\mathbb Q$ übereinstimmen. Folgt daraus f=g?

Aufgabe * (4 Punkte)

Wir betrachten Rechtecke mit dem konstanten Flächeninhalt c. Zeige, dass unter diesen Rechtecken das Quadrat den minimalen Umfang besitzt.

Aufgabe * (4 Punkte)

Wir betrachten die positiven reellen Zahlen \mathbb{R}_+ mit den Verknüpfungen

$$x \oplus y := x \cdot y$$

als neuer Addition und

$$x\otimes y:=e^{(\ln x)(\ln y)}$$

als neuer Multiplikation. Ist \mathbb{R}_+ mit diesen Verknüpfungen (und mit welchen neutralen Elementen) ein Körper?

Aufgabe * (3 Punkte)

Es sei

$$f:\mathbb{R}\longrightarrow\mathbb{R}$$

eine differenzierbare Funktion. Zeige durch Induktion, dass für die n-fache Hintereinanderschaltung ($n \ge 1$)

$$f^{\circ n} = f \circ f \circ \cdots \circ f \ (n \text{ mal})$$

die Beziehung

$$(f^{\circ n})' = f' \cdot \prod_{i=1}^{n-1} \left(f' \circ f^{\circ i}
ight)$$

gilt.

Aufgabe * (2 Punkte)

Bestimme die Ableitung der Funktion

$$\mathbf{ln}: \mathbb{R}_+ \longrightarrow \mathbb{R}.$$

Aufgabe (0 Punkte)

Aufgabe * (3 Punkte)

Zeige, dass das lineare Gleichungssystem

$$5x - 7y - 4z = 0$$

$$2x + y - 3z = 0$$

$$7x + 6y - 2z = 0$$

nur die triviale Lösung (0,0,0) besitzt.

Aufgabe * (3 Punkte)

Es seien $A=(a_{ij})$ und $B=(b_{ij})$ quadratische Matrizen der Länge n. Es gelte $a_{ij}=0$ für $j\leq i+d$ und $b_{ij}=0$ für $j\leq i+e$ für gewisse $d,e\in\mathbb{Z}$. Zeige, dass die Einträge c_{ij} des Produktes AB die Bedingung $c_{ij}=0$ für $j\leq i+d+e+1$ erfüllen.

Aufgabe * (5 Punkte)

Bestimme die Übergangsmatrizen $M^{\mathfrak{u}}_{\mathfrak{v}}$ und $M^{\mathfrak{v}}_{\mathfrak{u}}$ für die Standardbasis \mathfrak{u} und die durch die Vektoren

$$v_1=egin{pmatrix}1\4\5\end{pmatrix},\;v_2=egin{pmatrix}0\1\2\end{pmatrix}\;\mathrm{und}\;v_3=egin{pmatrix}-1\1\0\end{pmatrix}$$

gegebene Basis $\mathfrak v$ im $\mathbb R^3$.

Aufgabe * (3 Punkte)

Man gebe ein Beispiel für einen K-Vektorraum V und eine lineare Abbildung $\varphi:V\to V$, die injektiv, aber nicht surjektiv ist.

Aufgabe * (3 Punkte)

Bestimme die Eigenwerte, Eigenvektoren und Eigenräume zu einer ebenen Drehung $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$ zu einem Drehwinkel α , $0 \le \alpha < 2\pi$, über $\mathbb C$.

Zuletzt bearbeitet vor einem Monat von Bocardodarapti

Wikiversity

Der Inhalt ist verfügbar unter CC BY-SA 3.0 ℃, sofern nicht anders angegeben.

Datenschutz • Klassische Ansicht