Apéndices

- I Causas y Efectos
- II Datos Universales del Molde
- III Procedimiento General para Moldeo UniversalTM
- IV Términos en Inglés al Español
- V Términos en Español al Inglés
- **VI Costos Operacionales**

I -Causas y Efectos

Durante la solución de un problema la experiencia juega un factor importante. En el evento de tener problemas que no pueda resolver, busque ayuda. No sacrifique producción ni calidad; pregunte. Este listado es una referencia; utilícelo juiciosamente.

Partes quebradizas - Las partes se quiebran o se rompen.

Posibles Causas	Remedios
1. Resina demasiada fría	1.a. Aumente contrapresión.
	1.b. Aumente temperaturas del
	fundido.
2. Degradación del material en el barril	2.a. Reduzca temperaturas del
	fundido.
	2.b. Reduzca la contra presión.
	2.c. Reduzca la velocidad de
	inyección.
	2.d. Purgue si es necesario.
3. Contaminación del material	3.a. Verifique material en la tolva.
	3.b. Purgue si es necesario.
4. Material degradado durante el	4. Disminuya tiempo y/o
proceso de secado	temperatura de secadora.
5. Humedad en el material	5. Verifique contenido de humedad,
	seque adecuadamente.

Burbujas (Vacíos) - Aire atrapado dentro de la parte

Posibles Causas	Remedios
1. Humedad en el material	1. Verifique contenido de humedad, seque adecuadamente.
2. Material demasiado caliente	2. Disminuya la temperatura del fundido, ajustando un perfil de temperaturas adecuado del barril.
3. Ventosas inadecuadas	3. Asegure que el molde tiene ventilaciones adecuadas y limpias.
4. Burbujas internas ocasionadas por encogimiento	4.a. Aumente la contrapresión y/o la presión de empaque 4.b. Disminuya la temperatura del fundido.

Unión de flujos - Raya en la pieza formada por el encuentro de dos o más flujos de fundido

Posibles Causas	Remedios
1. Temperatura del molde baja	1. Aumente temperatura de molde.
2. Material demasiado frió	2. Aumente temperaturas del fundido.
3. Velocidad de inyección baja	3. Aumente la velocidad. El tiempo de inyección debe reducir significativamente.
4. Resina húmeda	4. Seque material adecuadamente.

Descoloramiento - Color inadecuado

Posibles Causas	Remedios
1. Material degradado en el barril	1. Purgue el barril.
2. Temperatura de fundido alta	2. Disminuya temperatura del fundido, ajustando un perfil de temperaturas adecuado del barril.
3. Material contaminado	3. Verifique el material.
4. Ventilaciones inadecuadas	4. Limpie las ventosas existentes o ventile molde adecuadamente.

Quemaduras - Marcas en la pieza por degradación

	1 1 0
Posibles Causas	Remedios
1. Velocidad de inyección alta	Disminuya velocidad de
	inyección.
2. Contrapresión alta	2. Disminuya contrapresión.
3. Ventosas inadecuadas	3.a. Asegure que hay ventosas.
	3.b. Limpie ventosas.
4. Problemas en diseño del molde	4.a. Cambie ubicación del bebedero.
(material sufre fricción, ocasionando	4.b. Asegure que la parte tiene
degradación)	radios generosos (sin esquinas
	agudas).
5. Orificio de boquilla demasiado	5. Cambie o limpie la boquilla.
pequeño u obstruido	
6. Rotación rápida del tornillo	6. Disminuya las revoluciones del
	tornillo.
7. Temperatura del fundido alta	7. Disminuya la temperatura del
_	fundido, ajustando un perfil de
	temperaturas adecuado del barril.

Nebulosidad - Aspecto nublado en las piezas (más perceptibles en piezas claras)

Posibles Causas	Remedios
1. Contaminación del material	1. Verifique material y cambie si es
	necesario.
	1.b. Aumente temperatura del fundido.
2. Gases o humedad en la resina	2.a. Seque material adecuadamente.
	2.b. Ventile molde adecuadamente.
3. Material demasiado frío	3. Aumente la temperatura del fundido.
4. Molde demasiado frío	4. Aumente las temperaturas del molde.
5. Líquido desmoldante	5. Elimine el uso de líquido
	desmoldante.

Rebaba - Exceso de plástico alrededor de la pieza en líneas de partición

Posibles Causas	Remedios
1. Presión de empaque alta	1. Disminuya presión de empaque.
2. Molde demasiado caliente	2. Disminuya temperatura del molde.
3. Fuerza de cierre inadecuada	3. Aumente tonelaje.
4. Temperatura del derretido alta	4. Baje la temperatura del derretido.
5. Posición de transferencia a	5. Ajuste una posición de transferencia
empaque tardía	adecuada y compense la misma
	distancia en la posición de
	plastificación.
6. Material con humedad	6. Mejore el secado.

Líneas de flujo - Marcas en la dirección del flujo del fundido

Posibles Causas	Remedios
1. Temperatura del molde baja	1. Aumente la temperatura de molde.
2. Material demasiado frió	2. Aumente la temperatura del
	fundido.
3. Colada / bebedero inadecuado	3. Verifique el tamaño de bebederos
	y coladas, y solicite un rediseño.
4. Velocidad de inyección alta	4. Disminuya velocidad de inyección.
5. Resina humedad	5. Seque material adecuadamente.

Chorreo ("jetting") en forma de gusano en la superficie de la pieza

Posibles Causas	Remedios
Bebederos demasiado pequeños	1. Verifique y solicite un rediseño
	de bebedero.
2. Bebedero mal localizado	2. Solicite un rediseño.
3. Velocidad de inyección demasiado	3. Disminuya la velocidad de
alta	inyección.
4. Orificio de boquilla pequeño	4. Cambie boquilla.

Delaminación de la superficie - Capas en la superficie de las piezas se despegan

1 0	
Posibles Causas	Remedios
1. Material contaminado	1. Verifique el material, y
	reemplácelo si es necesario.
2. Temperatura del fundido baja	2. Ajuste un perfil de temperaturas
	del barril adecuado.
3. Mezcla del fundido no es uniforme	3. Aumente contrapresión.
4. Temperatura de molde baja	4. Aumente temperatura de molde.
5. Velocidad de inyección baja	5. Aumente la velocidad y corrobore.
	El tiempo de inyección debe reducir
	significativamente.

Tiro incompleto - Piezas no quedan completamente llenas

	1
Posibles Causas	Remedios
1. Presión de empaque baja	1. Aumente presión de empaque.
2. Tiempo de empaque corto	2. Aumente tiempo de empaque.
3. Cavidades no balanceadas	3. Balancee el llenado, y rediseñe el molde
	si es necesario.
4. Temperatura del fundido baja	4. Aumente la temperatura del fundido,
	ajustando un perfil de temperaturas
	adecuado.
5. Coladas / bebederos	5. Solicite un rediseño de colada y/o
pequeños	bebedero.
6. Temperatura de molde baja	6. Aumente temperatura de molde.
7. Posición de plastificación	7. Verifique que la posición de transferencia
bajo	sea adecuada, y luego aumente la posición
	de plastificación.

Hundimientos - Depresiones o hundimientos en secciones de la pieza

Remedios
Aumente la velocidad y
corrobore. El tiempo de inyección
debe reducir significativamente.
2. Rediseñe pieza (se necesitan
espesores uniformes de pared).
3. Aumente temperatura del fundido
con un perfil de temperatura
adecuado.
4. Ventile molde adecuadamente.
5. Aumente presión de empaque.
6. Baje la temperatura del molde.
7. Aumente tiempo de empaque
8. Aumente la temperatura del
molde.

Las partes se pegan a la cavidad

ns partes se pegarra a ra cattrada	
Posibles Causas	Remedios
1. Cavidad rayada	1. Pulir en dirección del desmolde.
2. Estática	2. Desmagnetice la cavidad.
3. Presión de empaque alta	3. Disminuya la presión de empaque.
4. Tiempo de enfriamiento corto	4. Aumente el tiempo de
	enfriamiento.
5. Encogimiento en la dirección	5. Ajuste la temperatura del noyo
incorrecta	(core) mayor a la temperatura de la
	cavidad.
6. Insuficiente socavo y/o ángulo de	6. Considere cambios en diseño de
desprendimiento	piezas y/o molde.

Las partes se pegan al noyo ("core")

1 10 1	,
Posibles Causas	Remedios
1. Presión de empaque alta	1. Disminuya la presión de empaque.
2. Temperatura del noyo ("core") alta	2. Ajuste temperatura de molde.
3. Temperatura del fundido alta	3. Baje la temperatura del fundido
	con un perfil de temperaturas
	adecuado.
4. Insuficiente socavo o ángulo de	4. Considere reparación o rediseño
desprendimiento	del molde.
5. Estática	5. Desmagnetice la cavidad.

Gasificación (líneas plateadas) - imperfecciones en la superficie de la pieza

Posibles Causas	Remedios
1. Humedad en la resina	1. Seque el material adecuadamente.
2. Obstrucción en la boquilla	2. Limpie la boquilla.
3. Velocidad de inyección alta	3. Disminuya velocidad de inyección.
4. Temperatura del fundido alta	4. Disminuya la temperatura del
	fundido con un perfil de temperaturas
	de barril adecuado.
5. Boquilla demasiado caliente	5. Disminuya temperatura de la
	boquilla.
6. Resina contaminada	6. Verifique el material; reemplácelo
	si es necesario.
7. Bebederos demasiado pequeños	7. Aumente tamaño del bebedero.

Pandeamiento - Torcimiento o encovado de las partes debido a encogimiento desigual

Posibles Causas	Remedios
1. Partes calientes al expulsar	1. Baje la temperatura del molde, y
_	aumente el tiempo de enfriamiento.
2. Enfriamiento de parte desiguales	2. Ajuste temperatura de las caras del
	molde.
3. Espesor de paredes no uniforme	3. Rediseñe la pieza.
4. Partes sobre empacadas	4. Disminuya la presión de empaque.

II -Datos Universales del Molde

Recuerde que estos parámetros son del molde y el plástico. Para ser utilizados deben ser transferidos o convertidos a parámetros de la máquina de inyección.

- 1. Nombre del molde y número.
- 2. Nombre y tipo de material.
- 3. Tiempo de llenado T para conseguir cerca de un 95% del llenado.
- 4. Peso de las piezas al momento de transferencia, con el empaque apagado.
- 5. Presión plástica al momento de la transferencia.
- 6. Ciclo total.
- 7. Tiempo de empaque E.
- 8. Presión de empaque P_E.
- 9. Peso total o volumen total de inyección.
- 10. Tiempo de enfriamiento te.
- 11. Temperaturas del molde.
- 12. Flujos y de agua al molde.
- 13. Temperaturas del agua entrando al molde.
- 14. Temperaturas del agua saliendo del molde.
- 15. Presiones del agua entrando al molde.
- 16. Presiones del agua saliendo del molde.
- 17. Temperatura del fundido entrando al molde.
- 18. Tiempo en abrir el molde y expulsar las piezas.
- 19. Tiempo en cerrar totalmente el molde.
- 20. Volumen de plastificación

I. Cálculos y Datos Iniciales 1. Determine fuerza cierre → 2. Determine volumen de inyección requerido → ______ 3. Seleccione un ciclo aproximado total → _____ 4. Determine consumo aproximado de resina por hora → 5. Marca y tipo de resina → _____ 6. Marca y tipo de colorante → _____ 7. % de colorante →_____ 8. % de picado →______ II. Equipo Auxiliar 1. Control de temperatura de agua Determine los gpm de agua al molde → _____ Seleccione una temperatura de agua al molde inicial → 2. Secadora Determine el volumen de la tolva → Determine el flujo de aire seco → _____ Temperatura de secado → _____ 3. Dosificador de colorante % de pigmento requerido → _____ Determine consumo de pigmento/h → _____ 4. Dosificador de picado % de picado requerido → _____ Determine consumo de picado/h → _____ III. Datos del Molde y Máquina 1. Medida horizontal → _____ < ___ entre barras 2. Medida vertical → _____< ___ entre barras 3. Medida cerrado → _____> ____ apertura mín. 4. Medida abierto → _____ < ___ apertura máx. 5. Patrón de los expulsores → ____ = ____ IV. Verifique la Máquina Inyectora 1. Unidad de inyección Determine el volumen de invección utilizado en %, U_% → Determine la posición del cambio →

III-Procedimiento General para Moldeo UniversalTM

	Determine el correspondiente perfil de temperatura →
	Determine la contrapresión. Ej: 750 PSI plástica (máquina = plástica/R _i)
	Calcule la posición de plastificación aproximada >
2.	Boquilla
	Largo → Diámetro agujero →
	Diámetro agujero →
•	Radio de contacto →
3.	Casquillo
	Diámetro agujero →
	Radio de contacto →
V Aiı	istes Iniciales del Proceso
•	Encienda y prepare los ajustes de los auxiliares
1.	Secadora
	Controlador de temperatura de agua
	Dosificador de colorante
	Control de temperaturas de la colada caliente
2.	Unidad de Inyección
	Encienda y ajuste las temperaturas del barril
	Ajuste la contrapresión
	Ajuste la velocidad plastificación (ejemplo 30%)
	Ajuste la posición de plastificación aproximada
	Ajuste el tiempo de enfriamiento extendido
3.	\mathbf{J}
	Ajuste las posiciones y velocidades de apertura del molde
	Ajuste la protección del molde
	Ajuste los movimientos de los expulsores
	Ajuste los movimientos de noyos si los tiene
VI D	eterminación de Parámetros de Máquina
	és que los equipos auxiliares estén listos y las temperaturas sean
alcanz	
	Llenado
1.	Determine la presión de inyección limite →
	Encuentre el tiempo de inyección ideal \rightarrow
	Reajuste la unidad de inyección a que llene cerca de un 95%
	Anote la posición de plastificación final →

	Haga el balanceo del flujo
2.	Empaque
	Encuentre la presión de empaque →
	Determine el tiempo de empaque →
3.	Enfriamiento
	Encuentre la temperatura de agua al molde
	Fijo/Movible→/
	Encuentre el tiempo de enfriamiento →
4.	Plastificación
	Ajuste la velocidad de plastificación de acuerdo al tiempo de
	enfriamiento
	Anote el tiempo de plastificación →
5.	Recalcule los equipos auxiliares con el nuevo ciclo total encontrado
VII. C	Convierta a Parámetros Universales
Equip	o Auxiliar
1.	Control de temperatura de agua
	gpm de agua al molde 🗲
	Temperatura de agua al molde Fijo/Movible →/
2.	Secadora
	Volumen de la tolva →
	Flujo de aire seco 🛨
	Temperatura de secado →
3.	Dosificador de colorante % de pigmento →
	Consumo de pigmento/h →
4.	Dosificador de picado % de picado →
	Consumo de picado/h →
Datos	del molde
1.	Medida horizontal →
	Medida vertical →
3.	Medida cerrado →
4.	Medida abierto →
	Patrón expulsores →
6.	Material →
7.	Colorante →
<u>Máqui</u>	ina inyectora – (m) máquina / (u) Universal
1.	Fuerza cierre →

2.	Ciclo total →
3.	Consumo de resina por hora →
4.	Platinas de la prensa
	Espacio horizontal entre barras →
	Espacio vertical entre barras >
	Verifique el patrón de expulsores →
	Apertura máxima →
	Apertura mínima →
5.	•
	Posición de apertura del molde 🗲
	Tiempo de apertura del molde →
6.	Inyección
	Volumen utilizado en % →
	Presión de inyección limite \rightarrow (m) (u)
	Velocidad de inyección ideal \rightarrow (m)(u)
	<i>Posición del cambio</i> → (m) (u)
	Posición de plastificación \rightarrow (m) (u)
	Perfil de temperatura →//
7.	Empaque
	<i>Presión de empaque</i> → (m) (u)
	<i>Tiempo de empaque</i> →
8.	Enfriamiento
	Temperatura de agua al molde Fijo/Movible →/
	 Tiempo de enfriamiento →
9.	* · · · · · · · · · · · · · · · · · · ·
٠.	Velocidad de plastificación →
	Tiempo de plastificación →
	Contrapresión \rightarrow (m) (u)

IV - Términos en Inglés al Español

v - Terminos en Ingles al l	Espanoi
auger	tornillo sin fin
backpressure	contrapresión
barrel	barril
barrier screw	tornillo con barrera
blower	bomba
boost to hold	de inyección a empaque
cavity	cavidad
check ring	anilla
chiller	equipo de refrigeración
cold slugs	pedazos fríos
cores	noyos
cushion	colchón
dew point	temperatura de condensación/
	temperatura de rocío
discharge factor	densidad de plastificación
drying hopper	tolva de secado
eject-on-the-fly	expulsión mientras el molde
	abre
ejector pins	botadores
ejector plates	platos de expulsión
fill time	tiempo de inyección
flash	rebaba
gate	bebedero
gate freeze	endurecimiento de bebederos
hold	empaque
hold pressure	presión de empaque
hold time	tiempo de empaque
hot runner	colada caliente
hot drop/hot tip	punta caliente
injection rate	flujo de llenado
injection screw	tornillo de inyección
injection speed	velocidad de llenado
jetting	chorreo
manifold	distribuidor
melt flow	flujo del fundido
melt flow number	índice de fluidez
melt pressure	presión del fundido
melt temperature	temperatura del fundido

mold protect	protección del cierre del
mold protect	molde
molecular weight	peso molecular
nozzle	boquilla
nozzle tip	punta de la boquilla
pack and hold	empaque y sostén
packing pressure	presión de empaque
packing time	tiempo de empaque
parting line	partición del molde
pellet	gránulo
plastic residence time	C
*	tiempo de residencia plastificación
plasticizing/recovery robot	*
	brazo mecánico
runners	coladas
shear rate	cambio cortante/
1	velocidad cambiante
shear stress	esfuerzo cortante
shear thinning	licuar por fricción
shot size	volumen de llenado/volumen
	de la unidad de inyección
sprue	palo
sprue bushing	casquillo
stack mold	molde doble
stress	esfuerzo
suck-back	rechupe
tie bars	máquina con barras
tiebarless	máquina sin barras
transfer point	posición de transferencia
transfer pressure	presión de transferencia
valve gate	válvulas de bebederos
vents	ventosas

V - Términos en Español al Ingles

anilla	check ring
barril	barrel
bebedero	gate
bomba	blower
boquilla	nozzle
botadores	ejector pins
brazo mecánico	robot
cambio cortante/	shear rate
velocidad cambiante	
casquillo	sprue bushing
cavidad	cavity
chorreo	jetting
colada caliente	hot runner
coladas	runners
colchón	cushion
contrapresión	backpressure
de inyección a empaque	boost to hold
densidad de plastificación	discharge factor
distribuidor	manifold
empaque	hold
empaque y sostén	pack and hold
endurecimiento de bebederos	gate freeze
equipo de refrigeración	chiller
esfuerzo	stress
esfuerzo cortante	shear stress
expulsión mientras el molde	eject-on-the-fly
abre	
flujo de llenado	injection rate
flujo del fundido	melt flow
gránulo	pellet
índice de fluidez	melt flow number
licuar por fricción	shear thinning
máquina con barras	tie bars
máquina sin barras	tiebarless
molde doble	stack mold
noyos	cores
palo	sprue
partición del molde	parting line
pedazos fríos	cold slugs

peso molecular	molocular weight
	molecular weight
plastificación	plasticizing/recovery
platos de expulsión	ejector plates
posición de transferencia	transfer point
presión de empaque	hold pressure
presión de empaque	packing pressure
presión de transferencia	transfer pressure
presión del fundido	melt pressure
protección del cierre del molde	mold protect
punta caliente	hot drop/hot tip
punta de la boquilla	nozzle tip
rebaba	flash
rechupe	suck-back
temperatura de condensación/	dew point
temperatura de rocío	
temperatura del fundido	melt temperature
tiempo de empaque	hold time
tiempo de empaque	packing time
tiempo de inyección	fill time
tiempo de residencia	plastic residence time
tolva de secado	drying hopper
tornillo con barrera	barrier screw
tornillo de inyección	injection screw
tornillo sin fin	auger
válvulas de bebederos	valve gate
velocidad de llenado	injection speed
ventosas	vents
volumen de llenado/volumen	shot size
de la unidad de inyección	

VI - Costos Operacionales

estir	costo oper	Costo operacional por hora, con operador más ganancia (moldeadores Norteamericanos)	or hora, co	n operado	or más gan	ancia (mo	Ideadores	Norteame	ericanos)	
Fuerza en toneladas Norte	<50	20-99	100-299	300-499	100-299 300-499 500-749 750-999	750-999	1000- 1499	1500- 1999	2000-	3000+
Promedio (US\$/hr)	\$33.31		\$35.24 \$41.92	\$52.13	\$68.14	\$83.22	\$83.22 \$110.28 \$119.95 \$181.68	\$119.95	\$181,68	\$230.00
Promedio (US\$/seg.)	\$0.009	\$0.010	\$0.012	\$0.014	\$0.014 \$0.019 \$0.023	\$0.023	\$0.031	\$0.033	\$0.050	\$0.064
Nota: - valores son una referencia, para valores más exactos consulte a su departamento de finanzas.	res son una	a referencia	a, para valo	res más ex	cactos cons	sulte a su d	epartamen	ito de finar	ızas.	
2 - se presume que de un 10 a 15% en ganancias está incluido.	n ap anb ac	ın 10 a 15%	6 en gananc	cias está in	cluido.					

(Utilizar únicamente para estimar mejorías en productividad, en US\$)

Nota: El costo se podría dividir en tres partidas, Básicos, Opcionales y Especiales.

Básicos	Opcionales	Especiales
Depreciación	Robot	Cuarto limpio clase
		8
Edificio	TCU	Inspección o QC
Intereses	Equipo de empaque	Asistencia
		ingenieril
Mantenimiento	Inyectora especial;	Soporte en
	LIM, dos colores,	herramental
	alta velocidad,	
Electricidad	Grúa	Pruebas de material
Agua	Cambio de molde	Equipo de empaque
	rápido	y etiquetado
Misceláneos	Tornillo especial	Manejador de
		producto especial
Labor	Dosificador	Almacenamiento de
		molde
Beneficios		Mantenimiento de
marginales		moldes
Inspección y QC		
Material		
Desperdicios		
Servicios		
secundarios		
Molde		
"Overhead"		
Ganancia		

Bibliografía

A. Brent Strong, 2000, "Plastics Materials and Processing", ISBN: 0-13-021626-7

Application Engineering, 1981, "Application Manual Water Group Products"

Douglas C. Montgomery, 2001, "Design and Analysis of Experiment", Arizona State University, ISBN 0-471-31649-0

Georg Menges and Paul Moren, 1993, "How to Make Injection Molds", Society of Plastics Engineers, ISBN 3-446-16305-0

Hansjurgen Saechtling, 1992, "Saechtling International Plastic Handbook", Society of Plastics Engineers, ISBN 3-46-14924-4

Jay Carender, 1997, "Injection Molding Reference Guide", Advance Process Engineering

John Bozzelli, Jan 1998, "Process Optimization and Setup-card Data Requirements", Cycleset

John Bozzelli, Jan. 1997, "How to Set First-Stage Pressure", Plastics World

Lawrence E. Nielsen and Robert F. Landel, 1994, "Mechanical Properties of Polymers and Composites", ISBN 0-8247-8964-4

Peter Kennedy, 1995 "Flow Analysis of Injection Molds", ISBN:1-56990-181-3

R. J. Young and P. A. Lovell, 1991, "Intruction to Polymers", ISBN: 0-412-30640-9

Shiro Matsuoka, 1992, "Relaxation Phenomena in Polymers", Society of Plastics Engineers

Thermoplastic Troubleshooting Guide, 2000, Ashland Distribution Company

Thomas Pyzdek and Roger W. Berger, 1992, "Quality Engineering Handbook", ISBN: 0-8247-8132-5

Tony Whealan and John Goff, 1994, "The Dynisco Injection Molders Hand Book", Dynisco Instruments

ULF W. Gedde, 1995, "Polymer Physics", ISBN 0-412-62640-3

Contestaciones

II. Parámetros del proceso de inyección

 $1) \ b. \ 2) \ b. \ 3) \ c. \ 4) \ b, \ c. \ 5) \ a. \ 6) \ b. \ 7) \ b, \ d. \ 8) \ a, \ d. \ 9) \ a. \ 10) \ b. \ 11) \ c, \ d.$

12) b, c, d. **13**) a. **14**) b. **15**) b. **16**) b. **17**) a. **18**) b, c, d.

III. Gráficas del proceso

1) b. 2) b. 3) c. 4) b. 5) c. 6) a. 7) c. 8) c. 9) b. 10)

IV. Morfología de plásticos

1) b. 2) c. 3) c. 4) a. 5) c. 6) c. 7) c.

V. Equipos Auxiliares

1) b. 2) c. 3) a, c, e. 4) b. 5) a. 6) b. 7) c. 8) b. 9) b. 10) a. 11) a. 12) b. 13) b. 14) a.

Dosificación y manejo se materiales 1) b. 2) a.

Control de temperatura de agua al molde 1) b. 2) b. 3) c. 4) a. 5) b. 6) a. 7) a.

VI. Moldeo Desde el Escritorio 1) b. 2a) b. 2b) a. 2c) a. 3) d.

Tamaño de la unidad inyección

trayecto más distante = 8.5" + 9.95" = 18.45" grosor más estrecho en el trayecto = 0.08" Pared Fina = 18.45"/0.08" = 230 PF = 230 > 200; el factor de fuerza sería 2.5 ton/in²

- 9c) fuerza de cierre requerida = $173in^2 \times 2.5 \text{ ton/in}^2$ = 433 toneladas de fuerza USA (1 ton = 2000 lb)
- **9d**) consumo = 1100/50s x 3600s/1h x 1 lb/454 gr = **174** lb/h
- 9e) volumen requerido = 1100 gr/0.92 gr/cc = 1196 cc
- **9f**) %U = 1196cc/2480cc = 48%
- **9g**) $ton_{enf.} = 174 lb/h / 50 lb/h/ton =$ **3.5 ton_{enf.}**
- **9h**) GPM = $3.5 \text{ ton}_{enf} \times 24 / 3^{\circ}F = 28 \text{gpm}$
- 9i) U% = 48% y está entre 35% y 65%. La trasferencia estaría entre 12mm y 25mm. transferencia = 25mm - 13mm (0.48-0.65)/0.3 = 17.6mm = 0.69in
- **9j**) posición de plastificación = $1.27 \text{W}/\delta D^2 + \text{transferencia}$ = $1.27*1100 \text{gr/}[0.92 \text{gr/ce*}(9 \text{cm})^2] + 1.76 \text{cm} = 20.51 \text{cm} = 8.07 \text{in}$
- 9k) Iniciar con un 700 psi (47 bar) presión plástica.
- **91**) 5% del llenado = 0.05 * 8.07in = **0.4 in**
- 9m) De la ficha técnica del material = 410^{0} F
- **9n**) De una ficha técnica de un PS genérico:

Injection	Nominal Value	Unit
Rear Temperature	424 to 480	°F
Middle Temperature	424 to 480	°F
Front Temperature	390 to 415	°F
Nozzle Temperature	415 to 469	°F
Mold Temperature	60 to 150	°F

Dado a que el %U es casi 50% utilizar el promedio.

zona de dosificación = zona de compresión = zona de alimentación =

452°F

boquilla ("nozzle") = $(415^{\circ}F + 469^{\circ}F)/2 = 442^{\circ}F$

90)

U%	Tr (# ciclos)
1%	140
2%	70
3%	47
4%	35
5%	28
6%	24
7%	20
8%	18
9%	16
10%	14
11%	13
12%	12
13%	11
14% - 15%	10
16% - 17%	9
18% - 19%	8
20% - 23%	7
24% - 27%	6
28% - 34%	5
35% - 46%	4
47% - 69%	3)
>70%	2

Tiempo de residencia (ciclos) = 3 ciclos Tiempo de residencia (s) = $3 \text{ ciclos } \times 50 \text{ s/ciclos} = 150 \text{ segundos}$

9p) Consumo = 174 lb/hVolumen tolva secadora = 174 lb/h x 2 horas / 35 lb/ft³ $= 9.94 \text{ ft}^3 = 281.5 \text{ litros}$

9q) Flujo de aire seco = 174lb/h x 0.75 cfm/(lb/h) = **130.5** cfm

VII. Reología en máquina

1) b. 2) c. 3) c. 4) b. 5) c. 6) a. 7) a.

VIII. Determinación de la Velocidad de Inyección

1) a. 2) b. 3) b. 4) a. 5) b. 6) a, c. 7) b. 8) b, c. 9) c. 10) d.

IX. Verificación del Balance del Llenado

1) c. 2) b. 3) a. 4) a. 5) d. 6) b. 7) a. 8) b.

X. Determinación de Parámetros en la Etapa de Empaque

1) a. 2) b. 3) b. 4) c. 5) a. 6) a, c. 7) b.

XI. Determinación de Parámetros en la Etapa de Enfriamiento

1) b. 2) b. 3) d. 4) a. 5) a. 6) a. 7) d. 8) b.

9)

$$\frac{\overline{D}_{C} + \beta_{0}T_{M} + \beta_{1}t + \beta_{2}T_{F} + \beta_{3}T_{M}t + \beta_{4}T_{M}T_{F} + \beta_{5}tT_{F} + \beta_{6}T_{M}T_{F}t}{(1)(5)(2)(4)}$$

Glosario

agua entrando, 114 aire seco, 71, 90 aleatorio, 247

amorfos, 55, 240 anilla, 21

apertura máxima, 142 apertura mínima, 142

área proyectada, 125, 134

В

Α

bebederos, 20, 30, 63, 239 bomba, 78 boquilla, 22, 150 burbujas, 69, 261

C

cálculos, 123, 145 calor removido, 103 cambio cortante (shear stress), 173 cargador de resina, 73, 77 casquillo, 147 cavidad, 108, 134, 220, 225 centro de mezclado, 101 chiller, 118 chorreo (jetting), 263 circuito de regeneración, 80 circuito de secado, 77 cojín, 31, 41, 45 colada, 20, 126, 224, 239 colada caliente (hot runner), 44 colchón, 31, 45, 156, 236 comité Universal, 14 consumo de material, 90, 103 contestaciones, 279 contrapresión, 23, 33, 157 core (noyo), 23, 36

D

datos Universales, 267

delaminación, 264 Delta T. 106 densidad, 153 densidad específica, 153 densidad granel, 75 desbalance, 224 descoloramiento, 262 descompresión, 23, 34 desplazamiento de inyección, 157 diagrama PVT, 50 dimensiones de masa, 20, 30, 45 dimensiones térmicas, 21 dosificación, 95, 164 dosificación directa, 95 dosificación gravimétrica, 98 dosificación volumétrica, 95 dosificador, 95

Ε

efecto fuente, 152 empaque, 204, 234, 267 empaque (pack/hold), 19, 29, 64, 200, 232, 236 encogimiento, 18, 20, 61, 266 endurecimiento de bebederos, 20, 45, 236, 240 enfriamiento, 21, 31, 113, 238, 252 esfuerzo, 150 esfuerzo cortante, 173, 174, 175 esfuerzo cortante (shear stress), 174, 179 espacio de la prensa, 139 espacio en platinas, 141 etapa de empaque, 29 etapa de enfriamiento, 20, 243 etapa de plastificación, 24 expulsores, 143

F

filtro, 78 flujo de agua, 106 flujo de inyección, 17, 43, 154, 177, 184 flujo del fundido, 263 fuerza de cierre, 23, 36, 124, 134, 281 fuerza lateral, 135 fuerza resultante, 136

G

gasificación, 266

Н

hold (empaque/pack), 19, 29, 64, 200, 232, 236 hot drops, 226 hot runner, 226 hot runner (colada caliente), 44 humedad, 71 hundimientos, 265

ı

Inyección, 17, 32

ı

jetting (chorreo), 263

L

laboratorio de *Moldeo Universal*™, 198, 220, 231, 253 líneas de flujo, 17, 263 llenado, 156, 203, 220

M

molde doble (stack mold), 138 moldear con gráficas, 41 moldeo desde el escritorio, 137, 166 *Moldeo Universal*TM, 14, 62, 183, 196, 244 moldes de tres platos, 137 movimientos de la prensa, 35 *MU*TM, 14, 189

N

nebulosidad, 263 normalizar, 190 noyo (core), 23, 35 Ρ

pack (empaque/hold), 19, 29, 64, 200, 232, 236 pandeamiento, 266 parámetros de invección, 27 parámetros de máquina, 26 parámetros Universales, 14, 26, 154 paredes, 132 patrón de expulsores, 139, 143 perfil de temperaturas, 164 plastificación, 22, 33, 145 posición de plastificación, 23, 158 posición de transferencia, 28, 41, 158, 162, 200 potencia, 15, 177, 207, 209, 210 potencia pico, 177, 184, 211 preguntas, 37, 52, 66, 91, 102, 120, 144, 169, 193, 217, 228, 241, 257 presión de empaque, 20, 231, 267 presión de transferencia, 28, 182 presión del fundido, 21, 34, 124, 134 presión limitada, 46 presión límite, 17 punta de la boquilla, 147

Q

quebradizas, 261 quemaduras, 17, 198, 262

R

razón de intensificación, 166 rebaba, 18, 47, 263 recámara secante, 79 rechupe, 18 regeneración, 80 reología aproximada, 16, 183, 207, 210 reología completa, 16, 207, 212 reología en máquina, 15, 177 residencia, 159 resistencia de calor, 80, 116 rigidez, 22, 56

S

secado, 69, 71, 86 secadora, 73, 77, 85 secante, 78 semi-cristalinos, 55, 240 shear stress (esfuerzo cortante), 174, 179 sistema gravimétrico, 98 sistemas de secado, 82 stack mold (molde doble), 138

T

tamaño de la unidad de inyección, 145 TCU, 113 temperatura de condensación, 70, 81 temperatura de secado, 70 temperatura del fundido, 23, 50 temperatura del molde, 247 termoestables, 55 termoplásticos, 55, 147 Tg, 56 tiempo de empaque, 239 Tiempo de empaque, 267 tiempo de enfriamiento, 111, 232, 245, 255 tiempo de inyección, 15, 65, 177, 182, 203 tiempo de residencia, 75, 158 tiempo de secado, 72, 75 tiro incompleto, 264 tolva secadora, 73, 85 torcimiento, 266 tornillo, 17, 21, 159 transferencia por posición, 28 transferencia prematura, 47

U

unidad integrada, 84 unidad inyección, 15 unidad portátil, 82 unión de flujos, 262 utilización del barril, 155, 166

V

válvula proporcional neumática, 100 velocidad, 17, 23, 49, 175, 221 velocidad cambiante, 15, 175, 188 velocidad de inyección, 17, 154, 209, 221 velocidad de plastificación, 23, 158 viscosidad, 15, 17, 173, 179 viscosidad aparente, 181, 188 volumen de inyección, 177

Ζ

zona de control de velocidad, 43 zona de empaque, 43 zona de plastificación, 46 zonas de calor del barril, 164

Opiniones de Expertos

"*Moldeo Universal*TM es en República Dominicana una plataforma esencial para el desarrollo de los moldeadores dominicanos y la industrial local se hace eco cada vez más aplicando los conocimientos en el mejoramiento de sus procesos."

Miguel Calcaño, Plastics Consultant HDI Inc., Republica Dominicana

"Uno de los placeres más grandes de Wallyco siempre fue la investigación y desarrollo profesional de jóvenes puertorriqueños. Si no me equivoco fue para el año 2000 que proveímos resina y tiempo de maquina a estudiantes del Phd. Ivan Baiges entre los que recuerdo a Roberto Pastor. Días de más preguntas que respuestas, que sentaron las bases para corroborar o desmentir cuentos de moldeadores y entender la ciencia detrás de la técnica. Si ciencia, no magia, caja negra o arte oscuro. Una vez verificada la técnica, gracias a la ayuda de personas como los PhD. Gregorio Velez e Ivan, se reduce a su esencia mínima y se desarrollaba un proceso, verificado, de mejores prácticas. Escrito al nivel de su usuario, la persona que tiene que mejorar el proceso sin educación formal. Son muchos los cambios del 2000 al día de hoy y seguirán pues *Moldeo Universal*TM todavía tiene mucho que descubrir y enseñar. Es para mí un gran orgullo haber estado en su inicio, haber usado sus procesos y entrenarme como instructor y le deseo a Héctor y a *Moldeo Universal*TM que continúen ayudando a la industria del plástico y a todo aquel joven puertorriqueño que quiera mejorarse y hacer "patria" con su desempeño."

J. Wally Cruz, Empresario e Ingeniero Especialista en Plásticos

"Moldeo UniversalTM es una excelente herramienta, no solo para comprender el proceso de moldeo por inyección, sino también para entender el comportamiento de los diferentes tipos de plásticos de una manera sencilla pero siempre con una base científica. Como estudiante de MU^{TM} y sin ninguna experiencia en el mundo del plástico, logré sentar las bases y fundamentos de moldeo por inyección. Luego como instructor, pude ver como MU^{TM} ayudaba a tantas personas e industrias a optimizar sus procesos de moldeo con resultados asombrosos, no solo en calidad si no también en economía."

Laureano J. Rodríguez, Sr. Account Manager West Contract Manufacturing "A inicios de la primera década del 2000, fui partícipe de la revolución que apenas se gestaba en Costa Rica acerca de cómo establecer proceso científicamente durante mi período laboral en Abbott Laboratories, que luego llegó a ser Hospira, hoy en día ICU Medical. Fue ahí donde se hizo el primer ejercicio de MU^{TM} fuera de Puerto Rico, totalmente en español y por primera vez en Costa Rica, encontrando una mejor manera de obtener evidencia objetiva acerca de dónde venían los parámetros validados en el proceso de moldeo por inyección, convirtiendo a MU^{TM} como el pionero de esta revolución en CR. Después de ahí se abrió el curso a otras compañías de la industria en Costa Rica el cual se ha impartido año tras año hasta el día de hoy. Posteriormente, del 2008 al 2014 tuve el privilegio y placer como miembro de HDI Inc de ser partícipe de seminarios y conferencias al lado de Héctor Dilán como expositor."

Harold Gamboa Calderón, Sr. Account Manager - Distribution PolyOne Corporation (Central America and Andean Region)

"Conocí el *Moldeo Universal*TM cuando apenas comenzaba mi carrera profesional. Gracias a Héctor y al *Moldeo Universal*TM logre que mi curva de aprendizaje en el campo del moldeo por inyección fuera una exponencial. Éste me dio las herramientas necesarias para aplicar la ciencia durante el desarrollo de diferentes procesos de moldeo y fue mi base para el futuro de mi carrera en la ingeniería del plástico.

Durante esos primeros pasos con el *Moldeo Universal*TM, junto a Héctor, logramos desarrollar la Reología por Potencia, la cual se alejaba de la teología por viscosidad, pero a su vez obtenía resultados específicos y en menor tiempo. La Reología por Potencia nos ayuda grandemente a optimizar la etapa de inyección de una manera simple, corta y precisa.

Ya, después de sobre 15 años trabajando en la industria del moldeo por inyección puedo decir que el $Moldeo\ Universal^{TM}$ es la base y la herramienta de aprendizaje más útil para cualquier persona trabajando en esto.

Héctor, gracias por la confianza y la oportunidad de trabajar contigo cuando apenas comenzaba en la industria."

Billy Torres, Technical Services Manager Microsystems UK