CIS 6930 Topics in Computing for Data Science Week 9: Pre-trained Language Models (2)

10/28/2021 Yoshihiko (Yoshi) Suhara

2pm-3:20pm

Week 9: Pre-trained Language Models

- Week 8: Transformers
- Week 9: Pre-trained Language Models
- Week 10: More Machine Learning Techniques
- Week 11: More Deep Learning Techniques for NLP (Text generation, Text summarization, Information Extraction etc.)
- Week 12: Advanced Techniques and Challenges
- Week 13: Final project presentations

Today's Goal

- Pre-trained Language Models
- BERT
 - Basic Architecture
 - Pre-training
 - Fine-tuning
- Hands-on session: Fine-tuning BERT for text classification

Recap: Pre-training & Fine-tuning Framework + BERT Basic Architecture

Pre-training & Fine-tuning: Intuition

Pre-training & Fine-tuning Framework

Knowledge **Pre-training Training** data

What is BERT? Why BERT?

- **BERT**: <u>B</u>idirectional <u>E</u>ncoder <u>R</u>epresentations from <u>T</u>ransformers
 - The most popular pre-trained language model in NLP

 A pre-trained Transformer Encoder model, which can be fine-tuned for a variety of NLP tasks

BERT = (pre-trained) Transformer Encoder (= Stacked Transformer Encoder Blocks)

Key Point: Self-Attention

Any input tokens attend all input tokens (i.e., "full" attention)

Dummy Symbols: [CLS] & [SEP]

- [CLS]: A class label
- [SEP]: A separator between two sequences

BERT Input Embeddings

Summation of 3 different embeddings

BERT Input Embeddings: (1) Token Embeddings

Token IDs → Dense vectors


```
1 from transformers import AutoTokenizer
2 import torch.nn as nn
     3
     4 tokenizer = AutoTokenizer.from pretrained("bert-base-uncased")
0
     1 embedding layer = nn.Embedding(num embeddings=len(tokenizer.vocab),
                                     embedding dim=512)
     3 embedding layer
   Embedding(30522, 512)
    1 token ids = tokenizer.encode("Hello, world!", return tensors="pt")
[4]
     2 token ids
    tensor([[ 101, 7592, 1010, 2088, 999, 102]])
                    Theoretically, one-hot vectors
[5] 1 embedding layer(token ids)
    tensor([[[-0.0346, -0.4729, 0.1617, ..., -0.2492, -2.0112, 0.8898],
             [1.5803, 0.6044, -1.5162, ..., 1.0122, 0.7147, 0.1837],
             [0.3189, 0.3362, -0.2465, ..., -0.6314, 0.3010, 1.9631],
             [0.0568, 1.3271, 1.1248, ..., -0.1465, 0.0732, -0.7537],
             [-0.2657, 0.4876, -0.8247, ..., -0.5379, -1.6721, 1.8140],
             [-1.0884, -0.4764, 0.3577, ..., 1.5978, -0.4875, -0.1534]
           grad fn=<EmbeddingBackward>)
     1 embedding layer(token ids).shape
```

torch.Size([1, 6, 512])

13

Recap: BERT Input Embeddings

Summation of 3 different embeddings

Recap: BERT Input Embeddings

Summation of 3 different embeddings

```
1 token_embedding_layer = nn.Embedding(num_embeddings=len(tokenizer.vocab),
                                                                    embedding dim=512)
                                 3 segment embedding layer = nn.Embedding(num embeddings=2,
                 Input
                                                                            embedding dim=512)
                                 5 position embedding layer = nn.Embedding(num embeddings=512,
                                                                             embedding dim=512)
                                 6
                Token
\mathbb{R}^{|V|} \to \mathbb{R}^d
                 Embeddings
                                 8 token emb = token embedding layer(token ids)
                                 9 segment emb = segment embedding layer(torch.ones like(token ids))
                Segment
                                10 position emb = position embedding layer(torch.arange(token ids.shape[1]).unsqueeze(0))
  \mathbb{R}^2 \to \mathbb{R}^d
                 Embeddings
                                11
                                12 token emb + segment emb + position emb
                Position
                                tensor([[[ 4.5849, 1.8874, -2.1406, ..., 3.8009, 4.4695, 0.6101],
\mathbb{R}^{512} \to \mathbb{R}^d
                 Embeddings
                                         [-0.7155, 3.2652, 0.9677, ..., -0.2787, 2.3750, -1.5067],
                                         [0.9926, -1.4188, -2.0189, \ldots, 1.3811, 0.0056, 0.2420],
                                         [-1.4637, 0.6328, 0.6636, ..., 3.0259, 1.0696, 0.7773],
                                         [3.0965, 0.0137, -0.2175, ..., -0.4382, 1.5621, 0.1593],
                                         [-0.1593, 0.0458, -1.4924, ..., 0.2568, -1.0519, -1.3819]]],
                                       grad fn=<AddBackward0>)
```

BERT Tokenizer: WordPiece

- A <u>subword tokenizer</u> that initializes the vocabulary with <u>individual</u> characters and then <u>iteratively adds the most frequent combinations</u> of symbols in the vocabulary
 - No out-of-vocabulary issue!
 - Basically the same as Byte Pair Encoding (BPE)

- Word: Jet makers feud over seat width with big orders at stake
- wordpieces: _J et _makers _fe ud _over _seat _width _with _big _orders _at _stake

(*) A whitespace is now considered one character

Tokenizers for BERT (Pre-trained LMs): Takeaway

- A subword tokenizer (i.e., No out-of-vocabulary issue)
- [important!] Need to be "trained" on text data
 - → Pre-trained language model & pre-trained tokenizer model are coupled

```
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```

Questions?

Pre-training BERT

Recap: Pre-training & Fine-tuning

Pre-training = (A) Pre-training Method(s) + (B) Corpus

- (A) How to learn: Pre-training method(s)
- (B) What to learn from: Textual corpora

BERT Pre-training

- Pre-training Methods
 - 1) Masked Language Model
 - 2) Next Sentence Prediction

Pre-training corpus

BERT Pre-training

- Pre-training Methods
 - 1) Masked Language Model
 - 2) Next Sentence Prediction

Why those two?

Pre-training corpus Why th

Why those two?

BooksCorpus (800M words)

English Wikipedia (2,500M words)

- Step 1: Replace randomly selected tokens with [MASK] tokens
- Step 2: Train the model to reconstruct the original token

- Step 1: Replace randomly selected tokens with [MASK] tokens
- Step 2: Train the model to reconstruct the original token

- Step 1: Replace randomly selected tokens with [MASK] tokens
- Step 2: Train the model to reconstruct the original token

- Step 1: Replace randomly selected tokens with [MASK] tokens
- Step 2: Train the model to reconstruct the original token

Autoencoders: Training (self-reconstruction)

Simply use input data as the target data

Next Sentence Prediction (NSP)

- Step 1) Sample sentences A and B such that
 - 50%: B is actual next sentence that follows A
 - 50%: random sentence from the corpus
- Step 2) Train the model to predict the correct label

Self-supervised Learning for Pre-training

- Both Masked Language Model and Next Sentence Prediction do NOT require any additional labels
- This type of learning process is often called self-supervised learning

- BERT variants essentially
 - (1) use different (self-supervised) pre-training methods and/or
 - (2) use different pre-training corpora and/or
 - o (3) use different model architectures
 - ... and claim that they are better than BERT

Fine-tuning BERT

Recap: Pre-training & Fine-tuning

Single-sentence Classification

Text classification tasks

Sentence-pair Classification

Textual entailment recognition and duplicate question detection tasks

Recognizing Textual Entailment (RTE) aka Natural Language Inference

Give two texts, judge if one text is entailed by the other

Gold-standard label

Text (premise)	Judgments	Hypothesis
A man inspects the uniform of a figure in some East Asian country	contradiction	The man is sleeping
An older and younger man smiling.	neutral N N E N N	Two men are smiling and laughing at the cats playing on the floor.
A black race car starts up in front of a crowd of people.	contradiction C C C C C	A man is driving down a lonely road.
A soccer game with multiple males playing.	entailment E E E E E	Some men are playing a sport.
A smiling costumed woman is holding an umbrella.	neutral N N E C N	A happy woman in a fairy costume holds an umbrella.

Token Classification

Sequential tagging problems (e.g., Named Entity Recognition)

Question Answering

(Extractive) Question Answering

Example: SQuAD v1.1

Input: Question & Passage

Output: Answer span

Question: Which team won Super Bowl 50?

Passage

Super Bowl 50 was an American football game to determine the champion of the National Football League (NFL) for the 2015 season. The American Football Conference (AFC) champion Denver Broncos defeated the National Football Conference (NFC) champion Carolina Panthers 24–10 to earn their third Super Bowl title. The game was played on February 7, 2016, at Levi's Stadium in the San Francisco Bay Area at Santa Clara, California.

Question Answering

the B embedding. We only introduce a start vector $S \in \mathbb{R}^H$ and an end vector $E \in \mathbb{R}^H$ during fine-tuning. The probability of word i being the start of the answer span is computed as a dot product between T_i and S followed by a softmax over all of the words in the paragraph: $P_i = \frac{e^{S \cdot T_i}}{\sum_j e^{S \cdot T_j}}$. The analogous formula is used for the end of the answer span. The score of a candidate span from position i to position j is defined as $S \cdot T_i + E \cdot T_j$, and the maximum scoring span where $j \geq i$ is used as a prediction. The training objective is the

BERT Established New SoTA Performance on the GLUE Benchmark

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

GLUE Leaderboard

https://gluebenchmark.com/

erGLUE				🏲 Paper Code 🚟 Tasks 🌪					Leade		i FA	IQ ∰	👚 Diagnostics		
Rank Name	Model	URL	Score	CoLA	SST-2	MRPC	STS-B	QQP	MNLI-m MN	ILI-mm	QNLI	RTE	WNLI	AX	
1 ERNIE Team - Baid	du ERNIE	ď	91.1	75.5	97.8	93.9/91.8	93.0/92.6	75.2/90.9	92.3	91.7	97.3	92.6	95.9	51.7	
2 AliceMind & DIRL	StructBERT + CLEVER	<u>C</u>	91.0	75.3	97.7	93.9/91.9	93.5/93.1	75.6/90.8	91.7	91.5	97.4	92.5	95.2	49.1	
3 DeBERTa Team - N	dicrosoft DeBERTa / TuringNLRv4		90.8	71.5	97.5	94.0/92.0	92.9/92.6	76.2/90.8	91.9	91.6	99.2	93.2	94.5	53.2	
4 liangzhu ge	DeBERTa + CLEVER		90.8	73.4	97.5	92.8/90.4	93.2/92.9	76.3/90.8	92.1	91.7	96.5	92.8	96.6	35.2	
5 HFL IFLYTEK	MacALBERT + DKM		90.7	74.8	97.0	94.5/92.6	92.8/92.6	74.7/90.6	91.3	91.1	97.8	92.0	94.5	52.6	
+ 6 PING-AN Omni-Sir	nitic ALBERT + DAAF + NAS		90.6	73.5	97.2	94.0/92.0	93.0/92.4	76.1/91.0	91.6	91.3	97.5	91.7	94.5	51.2	
7 T5 Team - Google	Т5	<u>C</u>	90.3	71.6	97.5	92.8/90.4	93.1/92.8	75.1/90.6	92.2	91.9	96.9	92.8	94.5	53.1	
8 Microsoft D365 AI	& MSR AI & GATECH MT-DNN-SMART	区	89.9	69.5	97.5	93.7/91.6	92.9/92.5	73.9/90.2	91.0	90.8	99.2	89.7	94.5	50.2	
+ 9 Huawei Noah's Ark	Lab NEZHA-Large		89.8	71.7	97.3	93.3/91.0	92.4/91.9	75.2/90.7	91.5	91.3	96.2	90.3	94.5	47.9	
+ 10 Zihang Dai	Funnel-Transformer (Ensemble B10-10-10H1024)	<u>C</u>	89.7	70.5	97.5	93.4/91.2	92.6/92.3	75.4/90.7	91.4	91.1	95.8	90.0	94.5	51.6	
+ 11 ELECTRA Team	ELECTRA-Large + Standard Tricks		89.4	71.7	97.1	93.1/90.7	92.9/92.5	75.6/90.8	91.3	90.8	95.8	89.8	91.8	50.7	
+ 12 Microsoft D365 AI	& UMD FreeLB-RoBERTa (ensemble)	<u>C</u>	88.4	68.0	96.8	93.1/90.8	92.3/92.1	74.8/90.3	91.1	90.7	95.6	88.7	89.0	50.1	
13 Junjie Yang	HIRE-RoBERTa	<u>C</u>	88.3	68.6	97.1	93.0/90.7	92.4/92.0	74.3/90.2	90.7	90.4	95.5	87.9	89.0	49.3	
14 Facebook AI	RoBERTa	<u>C</u>	88.1	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2	90.8	90.2	95.4	88.2	89.0	48.7	
+ 15 Microsoft D365 AI	& MSR AI MT-DNN-ensemble	♂	87.6	68.4	96.5	92.7/90.3	91.1/90.7	73.7/89.9	87.9	87.4	96.0	86.3	89.0	42.8	

Hugging Face's Transformers Library

https://github.com/huggingface/transformers

 You can use a variety of pre-trained language models just with a few lines of Python code

```
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```

Hands-on: BERT Fine-tuning Example (20 min)

Google Colab

Assignment 4 (due Friday 11/5)

• https://colab.research.google.com/github/suhara/cis6930-fall2021/blob/main/notebooks/cis6930 week9b pretrained Im assignment.ipynb

Summary

- Pre-training & Fine-tuning framework
- Pre-trained language models
 - =~ Pre-trained Transformer models (in NLP)
- BFRT
 - A pre-trained Transformer Encoder-only model
 - Dummy symbols: [CLS], [SEP]
 - Input embeddings
 - 4 Fine-tuning patterns
 - Single-sentence classification
 - Sequence-pair classification
 - Token classification (i.e., sequential labeling)
 - Question Answering
 - Pre-training methods
 - Masked Language Model
 - Next Sentence Prediction

Pre-trained Language Models: Categorization

- Most pre-trained LMs can be categorized into the following 3 patterns
 - 1) Transformer Encoder-only Models (e.g., BERT, RoBERTa, ALBERT)

Next →

- 2) Transformer Decoder-only Models (e.g., GPT-2/3)
- 3) Transformer Encoder-Decoder Models (e.g., BART, T5)

Week 10: More Transformers!

- Week 8: Transformers
- Week 9: Pre-trained Language Models
- Week 10: Pre-trained Language Models
 - More pre-trained Language Models (Decoder-only models, Encoder-decoder models)
 - Transformers for Computer Vision
- Week 11: More Deep Learning Techniques for NLP (Text generation, Text summarization, Information Extraction etc.)
- Week 12: Advanced Techniques and Challenges
- Week 13: Final project presentations