Realizing Multiplexers and Comparators in structural and RTL Verilog

Lab Report No. 2

MV407: IC Design Lab-1 (Digital)

Submitted by:

Full Name Enrollment No.	
--------------------------	--

Abhinav M 23PMMT11(@uohyd.ac.in)

Lab Instructor: Dr. Bhawna Gomber Teaching Assistant: Ms. Bhargavi

Center for Advanced Studies in Electronics Science and Technology
University of Hyderabad
Hyderabad, India
October 4, 2023

Contents

1	Introduction	1
2	4 bit 2:1 Multiplexer 2.1 Objectives	1 1 1 2 2 4 5
_	2.8 Remarks	6
3	4bit, 4:1 Multiplexer by instantiating 2:1 MUX 3.1 Objectives 3.2 Schematic 3.3 Truth table 3.4 Code 3.5 Elaborated design 3.6 Elaborated design 3.7 Timing diagram 3.8 Utilization summary 3.9 Remarks	7 7 7 7 10 10 10 11
4	4 bit 8:1 Multiplexer by instantiating 4:1, 2:1 MUXs 4.1 Objectives 4.2 Schematic 4.3 Truth table 4.4 Code 4.5 Elaborated design 4.6 Timing diagram 4.7 Utilization summary 4.8 Remarks	12 12 12 13 14 14 14 15
5	1 bit comparator 5.1 Objectives 5.2 Schematic 5.3 Truth table 5.4 Code 5.5 Elaborated design 5.6 Timing diagram 5.7 Utilization summary 5.8 Remarks	16 16 16 16 18 19 20 20
6	4 bit comparator using 1 bit comparator 6.1 Objectives 6.2 Logic 6.3 Code 6.4 Elaborated design 6.5 Timing diagram 6.6 Utilization summary 6.7 Remarks	21 21 21 21 22 23 23 23
7	References	24
\mathbf{A}	Appendix A: GitHub Repo	25

1 Introduction

This lab report details the implementation of comparators and multiplexers in Verilog Hardware Description Language(HDL) in structural and Register Transfer Level (RTL) / Dataflow paradigms. The code was written and synthesized on Xilinx Vivado v2020 on a Zynq 7000 xc7c020clg484-1 platform with 53200 Look Up Tables (LUTs) and 400 Input Output Blocks (IOBs). This report is a part of the MV407 course at CASEST, University of Hyderabad (2023).

Figure 1.1: Zedboard: A common FPGA platform powered by the Zynq 7000 family.

2 | 4 bit 2:1 Multiplexer

04-10-2023

2.1 | Objectives

■ To design a 4 bit, 2:1 Multiplexer using structural and RTL Verilog and verify its functionality using a testbench.

2.2 | Schematic

4 bit 2x1 mux works in the same way as its 1 bit counterpart only difference being that the inputs and hence output will be 4 bit words. Fig 2.1 shows the block diagram where A_0 and A_1 are 4-bits each.

Figure 2.1: Block diagram of the 2:1 MUX.

2.3 | Truth table

The truth table can be used to derive the Boolean expression:

Input 1	Input 2	S (Select)	Y (Output)
A_0	A_1	0	A_0
A_0	A_1	1	A_1

2.4 | Code

2.4.1 | Structural Design

```
`timescale 1ns / 1ps
   // Company: CASEST, University of Hyderabad
// Author: Abhinav M
3
6
   // Create Date: 28.09.2023 07:30:18
   // Design Name:
   // Module Name: BS_4_MUX21
8
   // Project Name:
   // Target Devices:
10
   // Tool Versions:
12
   // Description:
13
   // Dependencies:
14
15
   // Revision:
16
   // Revision 0.01 - File Created
18
   // Additional Comments:
19
   \frac{20}{21}
   module BS_4_MUX21(output [3:0]data,input s,input [3:0]a,b);
\frac{25}{26}
   mux_2_1 m[3:0](s,a,b,data); //used 1 bit 2x1 mux to make 4 bit 2x1 mux
27
   endmodule
```

2.4.2 Testbench

```
// Author: Abhinav M
6
   // Create Date: 01.10.2023 22:50:56
   // Design Name:
// Module Name: tb_BS_4_MUX21
8
   // Project Name:
   // Target Devices:
11
   // Tool Versions:
12
   // Description:
13
   // Dependencies:
14
15
   // Revision:
16
   // Revision 0.01 - File Created
// Additional Comments:
18
19
   20
21
23
   module tb_BS_4_MUX21();
^{24}
   wire [3:0] data;
25
26
   reg s;
reg [0:3]a,b;
BS_4_MUX21 uut(data,s,a,b);
27
29
30
      begin
31
32
33
          a=4'b0001;b=4'b1111;
          s=1'b0:
34
       #10 s=1'b1;
35
37
       #10 $finish;
38
       end
```



```
39 | 40 | 41 | endmodule
```

2.4.3 | RTL Design

```
1
3
     Company: CASEST, University of Hyderabad
   // Author: Abhinav M
   // Create Date: 28.09.2023 07:30:46
// Design Name:
6
8
   // Module Name: BR_4_MUX21
   // Project Name:
10
   // Target Devices:
11
   // Tool Versions:
   // Description:
12
13
   // Dependencies:
14
15
16
   // Revision:
   // Revision 0.01 - File Created
18
   // Additional Comments:
19
   20
21
23
   module BR_4_MUX21(output [3:0]data,input s,input [3:0]a,b);
24
25
      assign data=s?a:b;
26
   endmodule
```

2.4.4 | Testbench

```
1
2
      Company: CASEST, University of Hyderabad
3
   // Author: Abhinav M
   // Create Date: 01.10.2023 22:18:47
// Design Name:
6
   // Module Name: tb_BR_4_MUX21
// Project Name:
8
   // Target Devices:
10
   // Tool Versions:
// Description:
11
12
13
   // Dependencies:
14
15
   // Revision:
16
   // Revision 0.01 - File Created
   // Additional Comments:
18
19
   20
21
23
   module tb_BR_4_MUX21();
24
   wire [0:3]data;
25
26
   reg s;
   reg [0:3]a,b;
   BR_4_MUX21 uut(data, s,a,b);
27
28
29
        initial
30
      begin
31
32
33
       a=4'b0001;b=4'b1000;
34
       s=1;
35
       #10 s=0;
36
37
       #10 $finish;
38
       end
39
40
   endmodule
```


2.5 | Elaborated design

2.5.1 | Structural

Figure 2.2: Elaborated design of 4 bit 2x1 mux using 1 bit 2x1 muxes.

2.5.2 | RTL

Figure 2.3: Elaborated design of 4 bit 2x1 mux in RTL style.

2.6 | Timing diagram

2.6.1 | Structural

Figure 2.4: Timing diagram of the 4 bit 2x1 mux obtained after simulating the testbench.

2.6.2 | RTL

Figure 2.5: Timing diagram of the 4 bit 2x1 mux obtained after simulating the testbench.

2.7 | Utilization summary

2.7.1 | Structural

Figure 2.6: Resource utilization summary of the synthesized design.

2.7.2 | RTL

Figure 2.7: Resource utilization summary of the synthesized design.

2.8 | Remarks

The design and testing of 4 bit 2x1 mux in structural (using 1 bit 2x1 mux) and RTL Verilog has been carried out. The device is showing expected behaviour.

3 | 4bit, 4:1 Multiplexer by instantiating 2:1 MUX

04-10-2023

3.1 Objectives

■ To use the designed multiplexer in 2 to design a 4bit, 4:1 Multiplexer by instantiating as well as RTL and verify its functionality using a testbench.

3.2 | Schematic

Figure 3.1: Block diagram of the full adder.

3.3 | Truth table

The truth table of the 4x1 mux is shown below.

Input 1	Input 2	Input 3	Input 4	S_0	S_1	Y (Output)
A_0	A_1	A_2	A_3	0	0	A_0
A_0	A_1	A_2	A_3	0	1	A_1
A_0	A_1	A_2	A_3	1	0	A_2
A_0	A_1	A_2	A_3	1	1	A_3

Table 3.1: Truth table for the 4x1 mux.

3.4 | Code

3.4.1 | Structural Design


```
11 // Tool Versions:
   // Description:
12
13
    // Dependencies:
14
15
    // Revision:
16
    // Revision 0.01 - File Created // Additional Comments:
17
18
19
    20
22
    module BS_4_MUX41(output [3:0]y,input s0, s1,input [3:0]A0,A1,A2,A3);
23
   wire [3:0]y0, y1;
BR_4_MUX21 m1(y1,s1, A2, A3);
BR_4_MUX21 m2(y0, s1, A0,A1);
24
25
26
    BR_4_MUX21 m3(y, s0, y0,y1);
28
29
30
    endmodule
```

3.4.2 | Testbench

```
3
5
   // Create Date: 01.10.2023 22:23:57
   // Design Name:
8
   // Module Name: tb_BS_4_MUX41
   // Project Name:
9
   // Target Devices:
// Tool Versions:
10
11
   // Description:
13
   // Dependencies:
14
15
   // Revision:
16
   // Revision 0.01 - File Created
17
   // Additional Comments:
19
   20
21
22
   module tb_BS_4_MUX41();
23
   reg s0,s1;
reg [3:0] A0,A1,A2,A3;
25
   wire [3:0]data;
26
   BS_4_MUX41 uut(data, s0, s1, A0, A1, A2, A3);
    initial
27
28
      begin
29
30
      A0=4'b0001; A1=4'b0010; A2=4'b0100; A3=4'b1000;
31
       s0=0;s1=0;
32
       #10 s0=0; s1=1;
33
       #10 s0=1;s1=0;
34
       #10 s0=1;s1=1;
35
       #10 $finish;
36
       end
38
   endmodule
```

3.4.3 | RTL Design

```
// Company: CASEST, University of Hyderabad
// Author: Abhinav M
3
4
5
   // Create Date: 01.10.2023 15:01:41
6
   // Design Name:
   // Module Name: BR_4_MUX_41
9
   // Project Name:
   // Target Devices:
10
   // Tool Versions:
11
   // Description:
12
13
   // Dependencies:
15
   // Revision:
// Revision 0.01 - File Created
16
17
```



```
18
  // Additional Comments:
19
20
   22
23
24
25
26
   module BR_4_MUX_41(output [3:0]data,input [1:0]s,input [3:0]A0,A1,A2,A3);
   assign data = (s==2'b00)?A0:
          (s == 2'b01) ? A1 : (s == 2'b10) ? A2 :
27
28
          (s == 2'b11) ? A3 :
29
          2'b00;
30
31
   endmodule
```

3.4.4 | Testbench

```
2
3
4
   // Create Date: 01.10.2023 19:12:50
   // Design Name:
   // Module Name: tb_BR_4_MUX_41
// Project Name:
// Target Devices:
8
9
10
   // Tool Versions:
11
   // Description:
13
14
   // Dependencies:
15
   // Revision:
16
   // Revision 0.01 - File Created
17
   // Additional Comments:
19
\frac{20}{21}
   23
   module tb_BR_4_MUX_41();
   reg [1:0]s;
reg [3:0]AO,A1,A2,A3;
25
26
27
28
   wire [3:0]data;
   BR_4_MUX_41 uut(data,s,A0,A1,A2,A3);
     initial
29
       begin
30
31
       #10 A0=4'b0001; A1=4'b0010; A2=4'b0100; A3=4'b1000;
       #10 s=2'b00;
#10 s=2'b01;
32
33
34
35
       #10 s=2'b10;
       #10 s=2'b11;
36
37
38
39
       #10 $finish;
\frac{40}{41}
       end
42
43
44
45
   endmodule
```


3.5 | Elaborated design

3.5.1 | Structural

Figure 3.2: Elaborated design of the 4 bit 4x1 mux using three 4 bit 2x1 muxes.

3.6 | Elaborated design

3.6.1 | RTL

Figure 3.3: Elaborated design of the 4 bit 4x1 mux in RTL style.

3.7 | Timing diagram

3.7.1 | Structural

Figure 3.4: Timing diagram of the 4 bit 4x1 mux obtained after simulating the testbench.

3.7.2 | RTL

	30.000 ns	40.000 ns	50.000 ns
0	1	2	3
	1		
	2		
	4		
	8		
1	2	4	8
		1 2 4 8	1 2 4 8

Figure 3.5: Timing diagram of the 4 bit 4x1 mux obtained after simulating the testbench.

3.8 | Utilization summary

3.8.1 | Structural

Resource	Utilization	Available	Utilization %
LUT	4	53200	0.01
Ю	22	200	11.00

Figure 3.6: Resource utilization summary of the synthesized design.

3.8.2 | RTL

Figure 3.7: Resource utilization summary of the synthesized design.

3.9 Remarks

The design and testing of 4 bit 4x1 mux in structural (using 4bit 2x1 mux) and RTL Verilog has been carried out. The device is showing expected behaviour.

4 | 4 bit 8:1 Multiplexer by instantiating 4:1, 2:1 MUXs

04-10-2023

4.1 | Objectives

■ To design a 4 bit 8:1 Multiplexer by instantiating earlier designed multiplexers and verify its functionality using a testbench.

4.2 | Schematic

Figure 4.1: Block diagram of the 8x1 mux.

4.3 | Truth table

The truth table of the 8x1 mux:

Input 1	Input 2	Input 3	Input 4	Input 5	Input 6	Input 7	Input 8	S_0	S_1	S_2	Y (Output)
A_0	A_1	A_2	A_3	A_4	A_5	A_6	A_7	0	0	0	A_0
A_0	A_1	A_2	A_3	A_4	A_5	A_6	A_7	0	0	1	A_1
A_0	A_1	A_2	A_3	A_4	A_5	A_6	A_7	0	1	0	A_2
A_0	A_1	A_2	A_3	A_4	A_5	A_6	A_7	0	1	1	A_3
A_0	A_1	A_2	A_3	A_4	A_5	A_6	A_7	1	0	0	A_4
A_0	A_1	A_2	A_3	A_4	A_5	A_6	A_7	1	0	1	A_5
A_0	A_1	A_2	A_3	A_4	A_5	A_6	A_7	1	1	0	A_6
A_0	A_1	A_2	A_3	A_4	A_5	A_6	A_7	1	1	1	A_7

Table 4.1: Truth table for the 8x1 mux.

4.4 | Code

4.4.1 | RTL Design

```
// Company: CASEST, University of Hyderabad
// Author: Abhinav M
3
4
5
   // Create Date: 28.09.2023 07:33:43
   // Design Name:
   // Module Name: BS_4_MUX81
8
   // Project Name:
9
   // Target Devices:
10
   // Tool Versions:
11
   // Description:
13
14
   // Dependencies:
15
   // Revision:
16
   // Revision 0.01 - File Created
17
18
   // Additional Comments:
19
\frac{20}{21}
   22
   module BS_4_MUX81(output [3:0]data, input [2:0]s, input [3:0]AO,A1,A2,A3,A4,A5,A6,A7);
25
   wire [3:0] w1, w2;
26
27
   BR_4_MUX_41 m1(w1,s[1:0],A0,A1,A2,A3);
28
29
   BR_4_MUX_41 m2(w2,s[1:0],A4,A5,A6,A7);
31
   BS_4_MUX21 m3(data,s[2],w1,w2);
32
33
   endmodule
```

4.4.2 | Testbench

```
3
4
5
   // Create Date: 01.10.2023 19:00:53
   // Design Name:
8
   // Module Name: tb_BS_4_MUX81
   // Project Name:
// Target Devices:
9
10
   // Tool Versions:
11
12
   // Description:
13
   // Dependencies:
14
15
   // Revision:
16
   // Revision 0.01 - File Created
17
   // Additional Comments:
19
20
21
   22
23
   module tb_BS_4_MUX81();
       reg [3:0] A0, A1, A2, A3, A4, A5, A6, A7;
24
       wire [3:0]data;
reg [2:0] s;
25
26
27
28
   BS_4_MUX81 uut(data,s,A0,A1,A2,A3,A4,A5,A6,A7);
29
        initial
30
       begin
31
32
       #10 A0=4'b0001; A1=4'b0010; A2=4'b0100; A3=4'b1000; A4=4'b1100; A5=4'b1110; A6=4'b0111; A7=4'b1111;
       #10 s=3'b000;
#10 s=3'b001;
33
34
35
       #10 s=3'b010;
       #10 s=3'b011;
36
37
       #10 s=3'b100;
38
       #10 s=3'b101;
39
       #10 s=3'b110;
40
       #10 s=3'b111;
41
42
43
```



```
44 #10 $finish;

45 end

46

47

48

49 endmodule
```

4.5 | Elaborated design

Figure 4.2: Elaborated design of the 4bit 8x1 mux using two 4bit 4x1 mux and one 4 bit 2x1 mux

4.6 | Timing diagram

Figure 4.3: Timing diagram of 4bit 8x1 mux using 4x1 and 2x1 muxes.

4.7 | Utilization summary

Figure 4.4: Utilization summary of the 4bit 8x1 mux using 4x1 and 2x1 muxes.

4.8 Remarks

The design and testing of 4bit 8x1 mux using 4x1 and 2x1 muxes in structural Verilog has been carried out. The device is showing expected behaviour.

5 | 1 bit comparator

20-09-2023

5.1 Objectives

■ To design a 1 bit comparator in Structural and RTL Verilog and test its functionality.

5.2 | Schematic

Schematic for the 1 bit comparator is given below.

Figure 5.1: 1 bit comparator logic.

5.3 | Truth table

Truth table for 1 bit comparator.

A	В	LT	GT	EQ
0	0	0	0	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	1

Table 5.1: Truth table for a 1-bit comparator.

5.4 | Code

5.4.1 | Structural Design

```
Company: CASEST, University of Hyderabad Author: Abhinav M
3
     Create Date: 28.09.2023 07:34:41
     Design Name:
Module Name: BS_1_comp1
     Project Name:
10
     Target Devices:
     Tool Versions:
12
13
     Description:
     Dependencies:
14
15
16
     Revision:
17
     Revision 0.01 - File Created
18
19
20
21
   // Additional Comments:
   22
23
24
25
   module BS_1_comp1(output LT, EQ, GT, input a,b);
   wire w1, w2;
```



```
26 | not X1(w1, a);

not X2 (w2, b);

28 | and X3 (LT,w1, b);

29 | and X4 (GT,w2, a);

30 | xnor X5 (EQ, a, b);

31 | 32 | endmodule
```

5.4.2 Testbench

```
// Company: CASEST, University of Hyderabad
   // Author: Abhinav M
4
   // Create Date: 01.10.2023 17:00:37
   // Design Name:
8
   // Module Name: tb_BS_comp_1
   // Project Name:
// Target Devices:
9
10
   // Tool Versions:
11
   // Description:
12
13
14
   // Dependencies:
   //
// Revision:
15
16
   // Revision 0.01 - File Created
17
   // Additional Comments:
18
20
   21
22
23
   module tb_BS_comp1();
^{-24}
   reg a,b;
   wire LT, EQ, GT;
26
   BS_1_comp1 uut(LT, EQ, GT,a,b);
27
28
    initial
      begin
29
      #5
30
      a=1;b=0; #10
31
      a=0;b=0; #10
32
      a=0;b=1; #10
33
      a=1;b=1; #10
\frac{34}{35}
36
      #10 $finish;
       end
39
40
   endmodule
```

5.4.3 | RTL Design

```
`timescale 1ns / 1ps
2
   // Company: CASEST, University of Hyderabad // Author: Abhinav M \,
3
4
5
   // Create Date: 28.09.2023 07:34:55
   // Design Name:
8
   // Module Name: BR_1_comp1
   // Project Name:
9
   // Target Devices:
// Tool Versions:
10
11
   // Description:
13
   // Dependencies:
14
15
   // Revision:
16
   // Revision 0.01 - File Created
17
   // Additional Comments:
18
20
21
   22
23
   module BR_1_comp1(output LT,EQ,GT, input a,b);
26
   assign {LT, EQ, GT} = (a < b)? {1'b1, 1'b0, 1'b0} :
                       (a==b) ? {1'b0, 1'b1, 1'b0} :
{1'b0, 1'b0, 1'b1};
27
28
```



```
29 | 30 | endmodule
```

5.4.4 Testbench

```
3
 5
 6
      Create Date: 01.10.2023 22:56:09
      Design Name:
      Module Name: tb_BR_1_comp1
 8
9
      Project Name:
Target Devices:
Tool Versions:
10
11
12
   // Description:
13
\frac{14}{15}
      Dependencies:
16
      Revision:
17
      Revision 0.01 - File Created
      Additional Comments:
19
20
21
22
   .
.
23
24
25
26
27
28
29
   module tb_BR_1_comp1();
   wire LT, EQ, GT;
   reg a,b;
   BR_1_comp1 uut(LT,EQ,GT,a,b);
    initial
       begin
30
31
           a=1;b=0;
32
33
34
35
36
37
       #10 a=1;b=1;
       #10 a=0;b=1;
       #10 $finish;
38
39
       end
40
41
    endmodule
```

5.5 | Elaborated design

5.5.1 | Structural

Figure 5.2: Elaborated design of 1 bit comparator in Structural Verilog.

5.5.2 | RTL

Figure 5.3: Elaborated design of 1 bit comparator in RTL Verilog.

5.6 | Timing diagram

5.6.1 | Structural

Figure 5.4: Timing diagram for 1 bit comparator in Structural Verilog.

5.6.2 | RTL

Figure 5.5: Timing diagram for 1 bit comparator in RTL Verilog.

5.7 Utilization summary

Resource	Utilization	Available	Utilization %
LUT	2	53200	0.00
IO	5	200	2.50

Figure 5.6: Utilization summary of 1 bit comparator in Structural Verilog.

Resource	Utilization	Available	Utilization %
LUT	2	53200	0.00
Ю	5	200	2.50

Figure 5.7: Utilization summary of 1 bit comparator in RTL Verilog.

5.8 Remarks

The design and testing of 1 bit comparator in Structural and RTL Verilog has been carried out. The device is showing expected behaviour.

6 | 4 bit comparator using 1 bit comparator

20-09-2023

6.1 Objectives

■ To design a 4 bit comparator using 1 bit comparator in structural Verilog and test its functionality.

6.2 | Logic

In a 4-bit comparator, the condition of A > B can be possible in the following four cases:

- **1.** If A3 = 1 and B3 = 0
- **2.** If A3 = B3 and A2 = 1 and B2 = 0
- **3.** If A3 = B3, A2 = B2 and A1 = 1 and B1 = 0
- **4.** If A3 = B3, A2 = B2, A1 = B1 and A0 = 1 and B0 = 0

Similarly, the condition for A < B can be possible in the following four cases:

- **1.** If A3 = 0 and B3 = 1
- **2.** If A3 = B3 and A2 = 0 and B2 = 1
- **3.** If A3 = B3, A2 = B2 and A1 = 0 and B1 = 1
- **4.** If A3 = B3, A2 = B2, A1 = B1 and A0 = 0 and B0 = 1

The condition of A = B is possible only when all the individual bits of one number exactly coincide with corresponding bits of another number.

6.3 | Code

6.3.1 | Structural Design

```
// Company: CASEST, University of Hyderabad // Author: Abhinav M \,
   // Create Date: 28.09.2023 07:35:56
      Design Name:
   // Module Name: BS_4_comp4
   // Project Name:
     Target Devices:
Tool Versions:
10
11
12
   // Description:
13
   // Dependencies:
15
16
   // Revision:
      Revision 0.01 - File Created
17
18
     Additional Comments:
20
   21
\frac{22}{23}
   module BS_4_comp4(output LT, EQ, GT, input [3:0]a,b);
24
25
   wire [3:0] LT1, EQ1, GT1;
26
27
28
29
30
   BS_1_comp1 c0(LT1[0],EQ1[0],GT1[0],a[0],b[0]); //bit-wise comparison
   BS_1_comp1 c1(LT1[1],EQ1[1],GT1[1],a[1],b[1]);
   BS_1_comp1 c2(LT1[2],EQ1[2],GT1[2],a[2],b[2]);
BS_1_comp1 c3(LT1[3],EQ1[3],GT1[3],a[3],b[3]);
31
   33
34
35
36
   or o1(GT,GT1[3],(EQ1[3]&GT1[2]), (EQ1[3]&EQ1[2]&GT1[1]),(EQ1[3]&EQ1[2]&EQ1[1]&GT1[0])); //a>b
37
   and a1(EQ, EQ1[0], EQ1[1], EQ1[2], EQ1[3]); //a==b
```


6.3.2 | Testbench

```
2
3
5
6
      Create Date: 01.10.2023 16:32:12
      Design Name:
      Module Name: tb_BS_comp4
8
      Project Name:
9
      Target Devices:
Tool Versions:
10
12
   // Description:
\frac{13}{14}
   // Dependencies:
15
16
      Revision:
17
      Revision 0.01 - File Created
18
      Additional Comments:
19
20
21
22
23
24
25
26
27
28
29
   module tb_BS_comp4();
reg [3:0]a,b;
    wire LT, EQ, GT;
   BS_4_comp4 uut(LT, EQ, GT,a,b);
    initial
       begin
30
       a=4'b1010;b=4'b0100;#10 //g
31
32
33
34
35
       a=4'b0010;b=4'b1100;#10 //1
       a=4'b1110;b=4'b1110;#10 //e
36
       // a=4'b1010;b=4'b0100;#10
37
38
39
40
       // a=4'b0010;b=4'b1100;#10
      // a=4'b1110;b=4'b1110;#10
41
42
43
       #10 $finish;
44
       end
45
46
    endmodule
```

6.4 | Elaborated design

Figure 6.1: Elaborated design of 4 bit comparator using 1 bit comparator.

6.5 | Timing diagram

Figure 6.2: Timing diagram of 4 bit comparator using 1 bit comparator.

6.6 Utilization summary

Resource	Utilization	Available	Utilization %
LUT	5	53200	0.01
IO	11	200	5.50

Figure 6.3: Utilization summary of 4 bit comparator using 1 bit comparator.

6.7 Remarks

The design and testing of 4 bit comparator using 1 bit comparator in Verilog has been carried out. The device is showing expected behaviour.

7 | References

A | Appendix A: GitHub Repo

The GitHub repo referenced below contains the Verilog code and test benches mentioned in this report. $\frac{\text{https://github.com/AbhinavM2000/MV401D/}}{\text{https://github.com/AbhinavM2000/MV401D/}}$