Algorithmic Game Theory and Applications

Content

- Algorithmic Game Theory and Applications
 - Content
 - Lecture 1 What is game theory
 - Lecture 2 Mixed Strategies, Expected Payoffs, and Nash Equibrium
 - Lecture4 2-player zero-sum games, and the minimax Theorem
 - Lecture5 Introduction to Linear Programming
 - Lecture6 The Simplex Algorithm
 - Lecture7 LP Duality Theorem

Lecture 1 What is game theory

- 1. Dominant Strategy: No matter what other players do, it is the optimal strategy. For example in Prisoner's dilemma, defection is the dominant strategy.
- 2. Nash Equibria: A profile of stratefies for n players such that no player can benefit by <u>unilaterally</u> deviating from its strategy. E.g., in prisoner's dilemma (defect, defect) is a <u>pure</u> NE. In Rock-Paper-Scissors ((1/3, 1/3, 1/3), (1/3, 1/3)) is a <u>mixed</u> NE.
- 3. Game types:
 - 1. Strategic game: All players make decisions <u>simultaneously</u>, without knowing other players' decisions
 - 2. Extensive game: Players make decisions <u>sequentially</u> with knowledge about others' previous decisions. Extensive game can be represented by a tree.

4. Chance and Information

1. Some nodes in a tree can be chance nodes (probabilistic).

2. Not all information can be available to a player. A player employs a move at a node in a information set.

- 3. A game where every information set has only one node is called a game with perfect information
- 5. Theorem about extensive game: Any finite n-person extensive game of perfect information has an equibrium in pure strategies.

6. Mechanism design

1. Auctions:

- 1. Ascending-bid auctions (English auctions): The seller gradually raises the price. Bidders drop out and the last bidder wing the object at this final price.
- 2. Descending-bid auctions (Dutch auctions): The seller lowers the price from a high initial price until some bidder accepts and pays the current price.
- 3. First-price sealed-bid auctions: Bidders submit sealed bids simultaneously and the highest bidder wins and pays the value of his bid.
- 4. Second-price sealed-bid auctions (Vickrey auctions): Submit simultaneously and the highest bidder wins, but pays the second highest price.

7. Applications

- 1. Games in Al: modeling "rational agents" and their interactions.
- 2. Games in Modeling and analysis of reactive systems: computer-aided verification.
- 3. Games in Algorithms: several GT problems have a very interestion algiorithmic status.
- 4. Games in Logic in CS: GT characterizations of logics, including modal and temporal logics.
- 5. Games in Computational Complexity: Many computational complexity classes are definable in terms oof games.
- 6. Games, the Internet and E-commerce.

Lecture 2 Mixed Strategies, Expected Payoffs, and Nash Equibrium

- 1. A finite strategic game consists of:
 - 1. A set $N = \{1,...,n\}$ players
 - 2. For each $i \in N$, a finite set $S_i = \{1,...,m_i\}$ of (pure) strategies. $S = S_1 \times S_2 \times ... \times S_n$ be the set of possible combinations of (pure) strategies.
 - 3. For each $i \in N$, a payoff (utility) function: $u_i : S \mapsto \mathfrak{R}$, describes the payoff $u_i(s_1,...,s_n)$ to player i under each combination of strategies.
 - 4. The key assumption is that each player wants to maximize its own payoff.

2. Mixed (Randomized) strategies:

- 1. the probability distribution over all pure strategies. For strategies $S = \{1,...,m_j\}$, $x_i(m_j)$ denotes the probability of player i taking strategy m_i . $\Sigma^j x_i(m_i) = 1$.
- 2. Let X_i be the set of mixed strategies for player i. For an n-player game, $X = X_1 \times ... \times X_n$, denote the set of all possible combinations, or **profiles** of mixed strategies.

3. Expected payoffs

1. The expected of a player i is $U_i(x) := \Sigma_{s \in S} X(s) * u_i(s)$, the weighted average of payoff for each strategy over its probability.

4. Some notations

- 1. Given a mixed strategy $x = (x_1, ..., x_n) \in X$, let $x_{-i} = (x_1, ..., x_{i-1}, empty, x_{i+1}, ..., x_n)$
- 2. $(x_{-i}; y_i)$ is the new profile where others' strategies remain the same while the i-th player change his strategy to y_i
- 5. Best response: the best response z_i of player i to other players' strategies, U_i (x_{-i} ; z_i) $\geq U_i$ (x_{-i} ; y_i). If every player employs best response, it is a NE. If every best response is a pure strategy, it is a pure NE.
- 6. Nash's theorem: Every finite n-person strategic game has a mixed Nash Equilibrium.
- 7. Brouwer fixed point theorem: Every continuous function $f: D \to D$ mapping a <u>compact</u> and <u>convex</u>, nonempty subset $D \subseteq \Re^m$ to ites!f has a "fixed point", i.e., there is a $x^* \in D$ such that $f(x^*) = x^*$
- 8. Prove (see Lecture3 page4)
- 9. Pareto optimal (Pareto efficient): Cannot improve any player's payoff without hurting others' payoff. A profile is x ∈ X is **pareto efficient** if there is no other x' such that U_i(x) ≤ U_i(x') for all player i, and U_k(x) < U_k(x') for some player k.
- 10. Evolution helps arrive a NE. As a result, a mixed strategy can be viewed as percentages in a population that exhibit different behaviors.
- 11. Symmetric game: all players can take the same actions and for all $s_1, s_2 \in S$, $u_1(s_1, s_2) = u_2(s_2, s_1)$
- 12. Evolutionarily Stable Strategy (ESS): a mixed strategy x_1^* is an ESS, if:
 - 1. x_1^* is a best response to itself, i.e., $x^* = (x_1^*, x_1^*)$ is a symmetric NE, and
 - 2. If $x_1' \neq x_1^*$ is another best response to x_1^* , then $U_1(x_1', x_1') < U_1(x_1^*, x_1')$
 - 3. Every symmetric game has a symmetric NE, (x_1^*, x_1^*) , but not every symmetric game has a ESS.
 - 4. Examples:
 - 1. In Hawk-Dove game, (5/8, 3/8) is a NE and ESS
 - 2. In Rock-Paper-Scissors, (1/3, 1/3, 1/3) is a NE but not a ESS.
 - 5. Finding a ESS is NP-hard and coNP-hard

Lecture4 2-player zero-sum games, and the minimax Theorem

- 1. 2-person zero-sum games:
 - 1. 对任意一个profile两个player的payoff相加等于0。
 - 2. player1可以采用m₁个strategy, player2可以采用m₂个strategy,则 player i的payoff可以用一个 m₁ × m₂的矩阵来表示。

$$A_1 = egin{bmatrix} u_1(1,1) & \dots & u_1(1,m_2) & dots & do$$

3. $A_2 = -A_1$. Then we assume $u(s_1, s_2)$ is given as one matrix, $A = A_1$.

4. Thus, a 2-player zero-sumgame can be described by a single $m_1 \times m_2$ matrix, where $a_{i,j} = u_1(i,j)$

- 5. Player 1 wants to maximize u(i, j) whereas Player 2 wants to minimize it (cause negative)
- 2. Notation of matrix and vector
 - 1. A > B: 每个值都比他大
 - 2. 矩阵满足乘法结合律, 但是不满足交换律
 - 3. 矩阵转置(transpose): (B^T) _{i, j} = B _{j, i}
- 3. Matrix view of zero-sum game
 - 1. 每一个mixed strategy都用一个column vector表示。
 - 2. $x_1^T A x_2 = U_1(x) = -U_2(x)$
- 4. minmaximizing strategies: 在对方最大化自己payoff的基础上最大化自己的payoff, 也就是让自己的最小收入最大化

Definition: $x_1^* \in X_1$ is a **minmaximizer** for Player 1 if

$$\min_{x_2 \in X_2} (x_1^*)^T A x_2 = \max_{x_1 \in X_1} \min_{x_2 \in X_2} (x_1)^T A x_2$$

Similarly, $x_2^* \in X_2$ is a **maxminimizer** for Player 2 if

$$\max_{x_1 \in X_1} (x_1)^T A x_2^* = \min_{x_2 \in X_2} \max_{x_1 \in X_1} x_1^T A x_2$$

Note that

$$\min_{x_2 \in X_2} (x_1^*)^T A x_2 \le (x_1^*)^T A x_2^* \le \max_{x_1 \in X_1} x_1^T A x_2^*$$

- 5. Minimax theorem(冯诺依曼的):对于一个2p-zs game, 存在一个唯一的值v*, 对于x* = $(x_1*, x_2*) \in X$, 满足:
 - 1. $((x_1^*)^T A)_j \ge v^*$, for $j = 1,...,m_2$
 - 2. $(Ax_2^*)_j \le v^*$, for $j = 1,...,m_1$
 - 3. Thus, $v^* = (x_1^*)^T A x_2^*$, and

$$max_{x_1 \in X_1} min_{x_2 \in X_2} (x_1)^T A x_2 = v^* = min_{x_2 \in X_2} max_{x_1 \in X_1} (x_1)^T A x_2$$

- 4. In face, the above conditions hold when $x^* = (x_{1}^*, x_{2}^*)isaNE.x_{1}^* isandminmaximizerandx_{2}^* is a maxminimizer.$
- 5. 也就是说, x_{1}^{h} 保证了Player1最少获得 v^{h} 0payoff。 x_{2}^{h} 保证了Player2最多损失 v^{h}
- 6. \$x^=(x_{1}^,x_{2}^*)被称为minimax profile
- 7. v^* 被称为minimax value
- 8. Obviously, Player1的最大payoff ≤ Player2的最大损失

- 6. Minimax theorem的证明(see Lecture4 p11)。
- 7. We deal we minimax as an optimization problem
 - 1. Maximize v
 - 2. Subject to constraints:

```
1. (x_{1}^TA)_{i} \setminus geq \ v \ for \ j = 1, ..., m_{2}
2. x_1(1) + ... + x_1(m_1) = 1
```

3.
$$x_1(j) \geq 0 for j = 1, \ldots, m_1$$

3. The optimal solution $(x_{1}^{, v^{}})$ will give the minimax value $v^{, and a minimax imizer x_{1}^{}$ for Player 1

Lecture 5 Introduction to Linear Programming

- 1. A linear program is defined by three parts:
 - 1. A linear objective function
 - 2. An optimization criteria, maximize or minimize
 - 3. A set of m linear constraints or linear inequilities/equalities.
 - 4. K(C) 就是所有constraint的交集。K(C) not empty就是有解,就说C is feasible.
- 2. 可能的情况:
 - 1. K(C)是空的
 - 2. 没有上界,但是你要maximize
 - 3. 找到了optimal solution,这个解一定是有理数解

Lecture 6 The Simplex Algorithm

1. Geometric idea of Simplex: 在feasible area随机选一个顶点,然后沿着edge换到一个能让结果变好的 neighbour vertex

```
While (x has a "neighbour vertex", x', with f(x') > f(x)):
  Pick such a neightbor x'. Let x := x'
  (If the "neighbor" is at "infinity", outpout "Unbounded")
```

Note: 不会stuck in local optimal,因为 K(C) is convex. On a convex region, a "local optimum" of a linear objective is always a "global optimum"

2. Slack Variables: By adding a slack variable y_i to each inequality, we get an equivalent LP with only equalities. LP in this form is called a <u>dictionary</u>: \$\$ Maximize\ c_{1}x_{1}\ +\ c_{2}x_{2}\ +\ ...\ +\ c_{n}x_{n}\ +\ d\ Subject\ to: \ a_{1,1}x_{1}\ +\ a_{1,2}x_{2}\ +\ ...\ +\ a_{1,n}x_{n}\ +\ y_{1}\ =\ b_{1}\ a_{2,1}x_{1}\ +\ a_{2,2}x_{2}\ +\ ...\ +\ a_{2,n}x_{n}\ +\ y_{2}\ =\ b_{2}\ ...\ a_{m,1}x_{1}\ +\ a_{m,2}x_{2}\ +\ ...\ +\ a_{m,n}x_{n}\ +\ y_{m}\ =\ b_{m}\ \

```
x_{1}, ..., x_{n}   0; y_{1}, ..., y_{m}   0 $
```

1. Every equality constraint has at least one variable with coefficient 1 that doesn't appear in any other equality

- 2. Picking one such variable, y_i , for each equality, we obtain a set of m variables B = $\{y_1, \ldots, y_m\}$ called a **Basis**
- 3. Objective f(x) involves only non-Basis variables
- 3. Basic Feasible Solutions (BFS): Rewrite the LP as \$\$ Maximize\ $c_{1}x_{1} + c_{2}x_{2} + ... + c_{n}x_{n} + d \ Subject\ to: \ x_{n+1} = b_{1} a_{1,1}x_{1} a_{1,2}x_{2} ... a_{1,n}x_{n} \ x_{n+2} = b_{2} a_{2,1}x_{1} a_{2,2}x_{2} ... a_{2,n}x_{n} \ ... \ x_{n+m} = b_{m} a_{m,1}x_{1} a_{m,2}x_{2} ... a_{m,n}x_{n} \$
 - $x_{1}, \dots \ x_{n+m} \ge 0$
 - 1. This is a <u>feasible dictionary</u>. $(y_i = x_{n+1} = b_i)$
 - 2. We then have a feasible solution by letting $x_i := 0$ for i = 1, ..., n
 - 3. Then the objective value is f(0) = d
 - 4. This is a BFS, with basis B (different Bases B may yield the same BFS)
 - 5. A BFS corresponds to a vertex

4. Pivoting

- 1. Current feasible dictionary is B = $\{x_{i_1}, \ldots, x_{i_m}\}$, with x_{i_r} is the variable on the left of constraint r.
- 2. Pivoting is to add x_i and remove x_{i_r} from basis B.
 - 1. Assuming C_r involves x_i , rewrite C_r as $x_i = \alpha$ (一个 x_i)的表达式)
 - 2. 把 x_i 的表达式带入到其他有 x_i 的 $constraint <math>C_l$ 中,得到 C_l'
 - 3. The new constraint C', have a new basis B' := $(B \setminus \{x_{i_r}\}) \cup \{x_j\}$.
 - 4. Substitute α for x_j in f(x), so that f(x) again only depends on variables not in the new basis B' (which is a possible neighbor of B). However, not every such basus B' is eligible.
- 5. Sanity check for pivoting (eligibility)
 - 1. The new constraint b'_i remain ≥ 0 , so we retain a "feasible dictionary", and thus B' yields a BFS.
 - 2. The new BFS must improve, or at least must not decrease, the value d' = f(0) of the new objective function. (all non-basic variables are set to 0 in a BFS. f(BFS) = f(0))
 - 3. (a) Suppose all variables in f(x) have negative coefficients. Then any increase from 0 in these variables will decrease the objective. We are then at an optimal BFS x^*
 - (b) Suppose a variable x_j in f(x) has coefficient $c_j > 0$, and coefficient of x_j in every constraint C_r is ≥ 0 . Then we can increase x_j and objective to infinity, without violating the constraints. So it is unbounded.
- 6. Dantzig's Simplex algorithm:
 - 1. Check if we are at an optimal solution. If so, output the solution
 - 2. Check i infinity neighbor. If so, output unbounded.
 - 3. Otherwise, choose an eligible pivot pair of variables, and Pivot
- 7. Problem and solution: we can cycle back to the same basis forever, never strictly improving by pivoting. Solutions include:

1. Choose rules for pivoting. For example, <u>Bland's rule</u>: For all eligible pivot pairs (xi, xj), where xi is being added to the basis and xj is being removed, choose the pair such that, first, i is as small as possible, and second, j is as small as possible.

- 2. Choose randomly among eligible pivots. You will definitely get out.
- 3. Penturb the constraints slightly to make the LP "non-degenerate". (implement this using, e.g., the "lexicographic method")
- 8. Checking feasibility via simplex \$\$ Maximize\ -x_{0}\ \ Subject\ to: \ a_{1,1}x_{1}\ +\ a_{1,2}x_{2}\ +\ ...\ +\ a_{1,n}x_{n}\ -\ x_{0}\ \leq \ b_{1}\ a_{2,1}x_{1}\ +\ a_{2,2}x_{2}\ +\ ...\ +\ a_{2,n}x_{n}\ +\ x_{0}\ \leq \ b_{2}\ ...\ a_{m,1}x_{1}\ +\ a_{m,2}x_{2}\ +\ ...\ +\ a_{m,n}x_{n}\ +\ x_{0}\ \leq \ b_{m}\ \}

```
x_{0}, \dots, x_{n} \neq 0; $
```

- 1. This LP is feasible: let $x_0 = -\min\{b_1, \dots, b_m, 0\}$, $x_j = 0$, for $j = 1, \dots$, n. We can also get a feasible dictionary, and thus initial BFS, for it by adding slack variables.
- 2. The original LP is feasible if and only if in an optimal solution to the new LP, $x_0^* = 0$

9. Complexity

- 1. Each pivoting iteration can be performed in O(mn) arithmetic operations. Also, coefficients stay polynomial-sized, as long as retional coefficients are kept in reduced form (e.g., removing common factors from numerator and denominator). So, each pivot can be done in "polynomial time"
- 2. How many iterations are required to reach the optimal solution? Can be exponentially many.
- 3. The worst case that force exponentially many iterations (e.g., Klee-Minty(1972)). But very efficient in practive, requiring O(m) pivots on typical examples.
- 10. Whether exist a pivoting rule that achieves polynomially many pivots on all LPs?
 - 1. A randomized pivoting rule is known that requires $m^{O(\sqrt{n})}$ expected pivots.
 - 2. In every LP, is there a polynomial-length path via edges from every vertex to every other? The best known bound is $< m^{O(log_n)}$
 - 3. Khachian'79 proved LP has a polynomial time algorithm, using a completely different appraoch, The "Ellopsoid Algorithm". It is theoretically important but not practical.
 - 4. Karmarkar'84 gave a algorithm using the interior-point method.

Lecture 7 LP Duality Theorem

- 1. Matrix notation of LP
 - $\begin{tabular}{ll} 1. Primal Form $$ Maximize: $c_{1}x_{1}\ +\ c_{2}x_{2}\ +\ ...\ +\ c_{n}x_{n}\ Subject\ to: $\ a_{1,1}x_{1}\ +\ a_{1,2}x_{2}\ +\ ...\ +\ a_{1,n}x_{n}\ leq $\ b_{1}\ a_{2,1}x_{1}\ +\ a_{2,2}x_{2}\ +\ ...\ +\ a_{2,n}x_{n}\ leq $\ b_{2}\ ...\ a_{m,1}x_{1}\ +\ a_{m,2}x_{2}\ +\ ...\ +\ a_{m,n}x_{n}\ leq $\ b_{m}\ ...\ +\ a_{m,n}x_{n}\ leq $\ b_{m}\ ...\ +\ a_{m,n}x_{n}\ leq $\ b_{m}\ leq$

```
x_{1}, \dots, x_{n} \neq 0
```

2. By defining: \$\$ (m\times n)matrix\ A:\ (A){i,j}\ =\ a{i.j}\ x = [x_{1},\ ...\ ,\ x_{n}]^{T}\ b = [b_{1},\ ...\ ,\ b_{m}]^{T}\ x = [c_{1},\ ...\ ,\ c_{n}]^{T}\

Maximize: c^Tx\ Subject\ to:\ Ax\leq b\ x\geq 0 \$\$

2. Advesary

- 1. Suppose an adversary comes along with a m-vector $y \in R^m$, y > 0 such that $c^T < y^T A$
- 2. For any solution x, we then have:

$$c^T x \leq (y^T A) x = y^T (Ax) \leq y^T b$$

3. The adversary is then written as: (i.e. to optimize the DUAL LP)

$$Minimize: b^T y \ Subject \ to: \ A^T y \ge c \ y \ge 0$$

if the primal LP is:

$$Maximize: c^T x \ Subject \ to: \ Ax < b \ x > 0$$

- 3. The LP Duality Theorem:
 - 1. Weak Duality: If $x^\pi R^n dy^\pi R^m$ are optimal feasible solutions to the primal and dual LPs, then $c^T x^\ell e^b Ty^s$. When x^* and y^* are optimal, equality holds.
 - 2. Strong Duality: One of the followin situations holds:
 - 1. Both the primal and adual LPs are feasible, and for any optimal solutions x^* of the primal and y^* of the dual: $x^* c^T x^* = b^T y^*$
 - 2. The primal is infeasible and the dual is unbounded
 - 3. The primal is unbounded and the dual is infeasible
 - 4. Both LPs are infeasible
- 4. Complementary Slackness: solutions x^* and y^* to the primal and dual LPs are both optimal if and only if both of the following hold:
 - 1. For each primal constraint, $(Ax)_{i} \le b_{i}, i = 1, ..., m, either (Ax^)_{i} = b_{i} ory_{i}^{-2} = 0$ or both
 - 2. For each dual constraint, $(A^Ty)_{i} \neq c_{i}, i = 1, ..., m, either (A^Ty^)_{i} = c_{i} = 0$ or both
- 5. General recipe for LP duals

if the primal is: \$\$ Maximize: $c^Tx\ Subject\ to:\ (Ax)_{ij\leq b\{i\}\ ,\ i=1,...,d,\ (Ax)_{ij}=b\{i\}\ ,\ i=d+1,...,m\ x\geq 0$

Then the dualis:

Minimize: $b^Ty\ Subject\ to:\ (A^Ty)_{j}\ geq\ c_{j}\ ,\ j=1,...,r,\ (A^Ty)_{j}=c_{j}\ ,\ j=r+1,...,n\ y\geq 0$ \$

6. LP for Minimax in a zero-sum game \$\$ Maximize: v\ Subject\ to:\ v-(x^TA) $\{j\}$ \leq 0\ for\ $j=1,...,m\{2\}$ \ $x_{1}+...+x_{m2}=1$ \ x\geq 0

Then the dualis:

Minimize: u\ Subject\ to:\ u-(Ay){i}\leq 0\ for\ $i=1,...,m{1}$ \ y_{1}+...+y_{m2}=1\ y\geq 0 \$\$ According to minimax Theorem, v and u are exactly the same