11.9 Sum-of-products form

Sum-of-products

 $Circuits \ are \ commonly \ designed \ by \ creating \ a \ simplified \ expression \ in \ sum-of-products \ form, \ then \ converting \ to \ a \ simple \ circuit.$

A **product term** is an ANDing of (one or more) variables, like ab'c. A product term is sometimes called just a *product* or just a *term*. An expression in **sum-of-products** form consists solely of an ORing of product terms, like ab'c + ab.

Due to similarities with regular algebra, convention uses the word "product" for AND and "sum" for OR; hence the name "sum-of-products". But AND is not really multiplication (product), and OR is not really addition (sum).

PARTICIPATION ACTIVITY	11.9.1: Products.	
Choose Yes if	the item is a product term.	
1) abc		
O Yes		
O No		
2) a'b'cd		
O Yes		
O No		
3) a + bc O Yes		U
O No		
4) a		
O Yes		
O No		
PARTICIPATION		
ACTIVITY	11.9.2: Sum-of-products form.	
Choose Yes if	the expression is in sum-of-products form.	
1) abc' + abc	+ ab'c	
O Yes		
O No		
2) abc'+c		
O Yes		
3) a + c O Yes		Ų
O No		
4) ab		
O Yes		0
O No		
5) a		
O Yes		
O No		
6) a(b + c)		
O Yes		
O No		_
7) (a + b)(b' +	c)	Ų
O Yes		

Converting sum-of-products to a circuit

A sum-of-products equation can be easily converted to a circuit, consisting of a column of AND gates (one gate per product term), followed by an OR gate, which is known as a **two-level circuit**. (The NOT gates preceding the AND gates aren't considered a level).

(c) (b) (d) (a)		
	y = fg + e'	
	y = efg + e'f	
	y = e'f' + ef	
	y = f + g	
		Reset

Converting to sum-of-products before creating a circuit

Circuits are commonly created by multiplying out an initial expression into sum-of-products form, then creating a two-level circuit.

PARTICIPATION ACTIVITY	$11.9.4: \mbox{Multiplying out an expression to sum-of-products, before creating a circuit.} \label{eq:multiplying}$	
AN y =	_	

PARTICIPATION ACTIVITY 11.9.5: Multiplying out expressions to convert to sum-of-products for	rm.
Transform to sum-of-products form. Simplify when possible. Type only the ? part.	
1) y = a(b + b'c) y = ab + ?	
Check Show answer	
2) y = c(a + b) y = ac +?	
Check Show answer	
3) y = ab(c + d) y = abc + ?	
Check Show answer	
4) y = ac(b + a) y = abc + ?	
Check Show answer	
5) $y = a + c(b + ab')$ y = ? + bc + ab'c	
Check Show answer	
6) y = a'(b + b'c) y = a'b + ?	
Check Show answer	
7) $y = (a' + b)(c + d)$ y = a'c + a'd + ?	

Check

Example: Interrupt logic component

A processor executes computer programs. Various devices (like keyboards or USB ports) surrounding a processor may request the processor to execute a sub-program on behalf of that device, a request known as an interrupt. Devices may be in two categories, lowpriority and high-priority, and the processor may disable either category or both.

- Low-priority: keyboard (k = 1), mouse (m = 1), USB port (u = 1). Disable all: p = 1.
- High-priority: network interface (n = 1), battery backup (b = 1). Disable all: q = 1.

