Zadanie 1.

W urnie jest biała kula. Przeprowadzamy dwuetapowe doświadczenie:

- 1. Rzucamy kostką i dorzucamy do urny tyle czarnych kul ile oczek wypadło na kostce.
- 2. Losujemy z urny kulę.

Jakie jest prawdopodobieństwo, że w pierwszym etapie na kostce była dwójka, jeśli wiemy, że w drugim etapie wylosowaliśmy białą kulę?

- (A) 14,9%
- (B) 16,4%
- (C) 17,9%
- (D) 19,4%
- (E) 20,9%

Zadanie 2.

Jabłko upada od jabłoni w odległości, która jest zmienną losową o rozkładzie wykładniczym o gęstości $f(x) = 2e^{-2x}$ (pomijamy średnicę pnia i średnicę jabłka). Jabłko może spadać w każdym kierunku z tym samym prawdopodobieństwem. Jaka jest wartość oczekiwana odległości dwóch jabłek, które spadły niezależnie pod warunkiem, że obydwa upadły w tej samej odległości od jabłoni?

- (A) 0,637
- (B) 0,785
- (C) 1,047
- (D) 1,273
- (E) 1,571

Zadanie 3.

W urnie jest 6 białych kul i 2 czarne. Losujemy kolejno, bez zwracania 6 kul. Niech B_i oznacza zdarzenie polegające na wyciągnięciu w i-tym losowaniu białej kuli, C_i na wyciągnięciu w i-tym losowaniu czarnej kuli.

Wybierz zdanie prawdziwe:

- (A) zdarzenia $B_1 \cap C_2 \cap B_3 \cap B_4$ oraz B_6 są niezależne
- (B) zdarzenia $B_1 \cap C_2$ oraz $B_3 \cap C_4$ są niezależne
- (C) zdarzenia $B_1 \cap C_2 \cap B_3 \cap B_4$ oraz $C_5 \cap B_6$ są niezależne
- (D) $\Pr(B_1 \cap C_2 \cap B_3 \cap C_4) > \Pr(B_1 \cap C_2) \cdot \Pr(B_3 \cap C_4)$
- (E) $\Pr(B_1 \cap C_2 \cap B_3 \cap B_4 \cap C_5 \cap B_6) <$ $< \Pr(B_1 \cap C_2 \cap B_3 \cap B_4) \cdot \Pr(C_5 \cap B_6)$

Zadanie 4.

Macierz kowariancji wektora losowego X_1, X_2, \dots, X_n jest postaci:

$$\sigma^2 \cdot (I \cdot (1-\rho) + \rho \cdot E),$$

gdzie macierze I oraz E to, odpowiednio, macierz jednostkowa i macierz złożona z samych jedynek, a obie są oczywiście wymiarów $n \times n$. Zakładamy, że macierz ta jest rzędu n. Zbiór dopuszczalnych wartości parametru ρ to:

- (A) $\left(-\infty, 1\right)$
- (B) $\begin{pmatrix} -1, & 1 \end{pmatrix}$
- (C) $\left(-\frac{1}{n-1}, 1\right)$
- (D) $\left(-\frac{1}{n}, 1\right)$
- (E) $\begin{bmatrix} 0, & 1 \end{bmatrix}$

Zadanie 5.

Załóżmy, że zmienne losowe $X_1,\ldots,X_5,X_6,\ldots,X_{20}$ są niezależne, o jednakowym rozkładzie $N(\mu,\sigma^2)$, oraz przyjmijmy oznaczenia:

$$S_5 = X_1 + \ldots + X_5$$
,

$$S_{20} = X_1 + \ldots + X_{20}$$
.

Który z wzorów na warunkową wartość oczekiwaną $E(S_5^2|S_{20})$ jest poprawny?

(A)
$$5\mu^2 + \frac{1}{16}\sigma^2$$

(B)
$$25\mu^2 + 5\sigma^2$$

(C)
$$5\mu^2 + \frac{15}{4}\sigma^2$$

(D)
$$\frac{1}{16}S_{20}^2 + 5\sigma^2$$

(E)
$$\frac{1}{16}S_{20}^2 + \frac{15}{4}\sigma^2$$

Zadanie 6.

Niech X będzie zmienną losową o rozkładzie wykładniczym o gęstości:

$$f(x) = \begin{cases} e^{-x} & dla & x > 0 \\ 0 & dla & x \le 0 \end{cases}$$

Niech:

 $\lfloor x \rfloor$ - oznacza część całkowitą x (największą liczbę całkowitą n taką, że $n \le x$)

$$\langle x \rangle = x - \lfloor x \rfloor$$
 - oznacza część ułamkową liczby x .

Współczynnik korelacji liniowej: Corr(X) wynosi:

- (A) 1
- (B) 0.5
- (C) nie istnieje, ponieważ $E(X) = \infty$
- (D) 0
- (E) -0.5

Zadanie 7.

Załóżmy, że $X_1, X_2, ..., X_{10}$ jest próbką z rozkładu normalnego $N(\mu, \sigma^2)$ ze znaną średnią μ i nieznaną wariancją σ^2 . Rozważmy test jednostajnie najmocniejszy hipotezy:

$$H_0: \sigma^2 \leq 1$$

przeciw alternatywie:

$$H_1$$
: $\sigma^2 > 1$,

na poziomie istotności $\alpha = 0.05$.

Rozważmy moc tego testu (prawdopodobieństwo odrzucenia H_0 przy założeniu, że prawdziwa jest H_1).

Moc testu przekracza 0.9 wtedy i tylko wtedy, gdy:

(A)
$$\sigma^2 \ge \mu^2$$

(B)
$$\sigma^2 \ge 3.7628$$

(C)
$$\frac{\sigma^2}{\mu^2} \ge 3.7628$$

- (D) nigdy: moc testu jest zawsze mniejsza od 0.9
- (E) $\sigma^2 \ge 4.0591$

Zadanie 8.

W urnie jest r czarnych kul. O liczbie r wiemy tylko tyle, że jest większa od zera. Powtarzamy trzy razy następujące czynności:

- losujemy jedną kulę z urny i odkładamy ją na bok (nie zwracamy)
- wrzucamy do urny 1 kule biała.

Wynikiem doświadczenia jest sekwencja trzech liter – C lub B – na przykład CBB oznacza, iż wylosowaliśmy po kolei kulę czarną, potem białą, i znowu białą). Obliczamy estymator \hat{r} największej wiarogodności nieznanej liczby r. Wybierz zdanie prawdziwe:

- (A) Jeśli wynik jest CBC to $\hat{r} = 2$
- (B) Jeśli wynik jest CCB to $\hat{r} = 3$
- (C) Jeśli wynik jest CCC to $\hat{r} = 3$
- (D) Jeśli wynik jest CBB to $\hat{r} = 2$
- (E) Wyniki CBC i CCB dają dwie różne wartości estymatora \hat{r}

Zadanie 9.

Zmienne losowe $X_1, X_2, ..., X_n, ...$ są niezależne i mają identyczny rozkład dany gęstością:

$$f(x) = \begin{cases} 0.5 & dla & 0 < x < 2 \\ 0 & dla & x \notin (0, 2) \end{cases}$$

Niech
$$\Pi_n = X_1 \cdot \ldots \cdot X_n$$
.

Które z poniższych stwierdzeń jest prawdziwe?

(A)
$$\lim_{n\to\infty} \Pr(\Pi_n \le 1) = 0.5$$

(B)
$$\lim_{n\to\infty} \Pr(\Pi_n \ge 1.5) = 1$$

(C)
$$\lim_{n\to\infty} \Pr(\Pi_n \le 0.5) = 1$$

(D)
$$\lim_{n \to \infty} \Pr(0.5 \le \Pi_n \le 1.5) = 1$$

(E)
$$\lim_{n\to\infty} E(e^{t\cdot \Pi_n}) = e^t$$
, dla każdego t

Zadanie 10.

Niech $X_1, ..., X_n, ..., X_{n+m}$ będzie próbką prostą z rozkładu normalnego $N(\mu, \sigma^2)$, gdzie m, n > 1.

Bezpośrednio dostępne są tylko obserwacje X_1, \dots, X_n , ale znamy średnią:

$$\overline{X}_{n+m} = \frac{1}{n+m} \sum_{i=1}^{n+m} X_i$$

Który z estymatorów wariancji σ^2 jest nieobciążony?

(A)
$$\frac{1}{n-1} \cdot \sum_{i=1}^{n} \left(X_i - \overline{X}_{n+m} \right)^2$$

(B)
$$\frac{1}{n} \cdot \frac{m}{m-1} \cdot \sum_{i=1}^{n} \left(X_i - \overline{X}_{n+m} \right)^2$$

(C)
$$\frac{n}{n-1} \cdot \frac{m}{n+m} \cdot \sum_{i=1}^{n} \left(X_i - \overline{X}_{n+m} \right)^2$$

(D)
$$\frac{1}{n} \cdot \frac{n+m}{n+m-1} \cdot \sum_{i=1}^{n} \left(X_i - \overline{X}_{n+m} \right)^2$$

(E) żaden z estymatorów podanych w punktach A, B, C, D

Egzamin dla Aktuariuszy z 15 stycznia 2000 r.

Prawdopodobieństwo i statystyka

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	KLUCZ ODPOWIEDZI	
Pesel		

Zadanie nr	Odpowiedź	Punktacja*
1	Е	
2	A	
3	A	
4	С	
5	Е	
6	D	
7	В	
8	A	
9	С	
10	D	
_		

11

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypelnia Komisja Egzaminacyjna.