ORTSKURVE Unter Ortslurve vorsteht man in der Systemtheorie die graphische
Dorstellung einer von einem reellen Parameter (w) abhängigen hamplexen
Dorstellung einer von einem reellen Parameter (ω) abhängigen hamplexen Syxtomquaße $z=z(\omega)$.
Mothematisch ist die Ortslurve folgenderwaßen /2(a)
définiert: die von einem paraméterabhangigen (2(b)
Systemanisch ist die Ortslurve folgenderwaßen Morthematisch ist die Ortslurve folgenderwaßen definiert: die von einem parameterandvargigen Komplexen Zeiger z = z(w) in der hamplexen Re(z)
Zahlenebeure beschriebeure Bahn leißt ORTSWRVE z=Re(z)+jlm(z
der Parameter (w) ist dalei Element eines halboffenen oder
geschlossenen Intervalls der reelen Zahlen a < w < b.
Beispiel. Zeichnen Sie die Ok der Jobsenden titertagungsfruh
$G(s) = \frac{K}{1+sT}$ $K=10$; $T=0^{1}1s$
K (1- iWT) K KWT
$C_{7}(j\omega) = \frac{\kappa(1-j\omega T)}{1+(\omega T)^{2}} = \frac{\kappa}{1+(\omega T)^{2}} + \frac{-\kappa \omega T}{1+(\omega T)^{2}}$
Re Im
w 0 6 10 20 40 00
Re 10 7'35 5 2 0'59 0
m 0 -4'41 -5 -4 -2'36 0
∫m w=o
OK istein halbkreis im
vierten anadrant.

W=10

1. STABILE MEATRAMISTURGION

wenn Alle Pole im hinken

Halbraum des homplexen

Zahlenraums liegen.

Buskiel: $G(s) = \frac{1}{(47)(43)}$ Pole: $s^* = -2$ $s^* = -3$ Das tüchgehappelte System - [G(s)] ist nach Nignist stabil. Beispiel: $G(s) = \frac{1}{(s+2)(s^2+4s+8)}$ Pole: $s^* = -2$ $s^* = \frac{-4+\sqrt{16-32}}{2}$ $s^* = \frac{-2+2j}{2}$ -2-2

Das rüchgehoppelte System - 1615) frist nach Nygvist stabil.

2. INSTABILE TIBERTHAGUNGS FUNKTION wern zurrindesteinen Polim nechten Halbrann des homplexen Zahlenraumsliegt.

Beispiel: G(s)= (s-1)(s+1) Pole: s*=1; s*=-1

Pole: $G(s) = \frac{1}{(s-1)(s^2+2s+2)}$ -1+j

Pole: $s^* = +1$; $s^* = -2 + 1 - 3 -$

3. KRITISCH. STABILE UBERTRAGUNGSFUNKTION

wenn zuminket einen Pol einen reelen Teil gleich null hat

un d der Rest im linken Halbraum der Vomplexen

Zohlenraums liegen.

Boispiel: $G(s) = \frac{1}{s^2} \rightarrow s^* = 0$ (doppelt)

Das System istnach Mygrist Writisch-stabil.

Beispiel: G(s)= 1 Jas System ist mach Nyguist Unitisch. stabil.