> restart;

Aufgabe

Im Blockschaltbild sind die Signale x_1 bis x_7 eingezeichnet. Das Signal x_1 ist das Eingangssignal und x_7 ist das Ausgangssignal des Systems. Die Übertragungsglieder sind mit F_1 bis F_5 bezeichnet. Alle Übertragungsglieder arbeiten linear.

_Die Gesamtübertragungsfunktion für das System ist zu berechnen.

Bearbeitung

Gleichungen aus dem Blockschaltbild ablesen:

```
> for i from 1 to 5 do f||i := F[i]; end do:

> for i from 1 to 7 do x||i := x[i]; end do:

> x2 = f1*(x4+x1-x6);

x_2=F_1(x_4+x_1-x_6) (1)
```

$$x_3 = F_2 x_2$$
; (2)

>
$$x4=f3*x3$$
; $x_4=F_3x_3$ (3)

>
$$x_5 = f_4 \times x_2$$
; $x_5 = F_4 x_2$ (4)

>
$$x_6 = f_5 * (x_3 + x_6)$$
; $x_6 = F_5 (x_3 + x_6)$ (5)

>
$$x7=x4+x5$$
; $x_7=x_4+x_5$ (6)

Vorgehen: Aus dem Gleichungssystem (1) bis (6) die Variablen x_2 bis x_6 eliminieren bis x_7 als Funktion von x_2 ausgedrückt ist.

Mit Gleichung (1) die Variable x₂ aus (2) bis (6) eliminieren. Damit es hier übersichtlich bleibt, auch alle unveränderten Gleichungen des Systems wiederholen. (Mit dem Computeralgebraprogramm Maple ist das Kopieren schnell gemacht. Mit Papier und Bleistift kann man die "verbrauchten" Gleichungen markieren.)

> subs ((1),(2));

$$x_3 = F_2 F_1 \left(x_4 + x_1 - x_6 \right) \tag{7}$$

> (3);

$$x_4 = F_3 x_3$$
 (8)

$$x_5 = F_4 F_1 \left(x_4 + x_1 - x_6 \right) \tag{9}$$

$$x_6 = F_5 (x_3 + x_6) ag{10}$$

> (6);

$$x_7 = x_4 + x_5 {(11)}$$

Mit Gleichung (7) die Variable x₃ aus Gleichungen (8) bis (11) eliminieren.

> subs ((7),(8));

$$x_4 = F_3 F_2 F_1 \left(x_4 + x_1 - x_6 \right) \tag{12}$$

$$x_5 = F_4 F_1 \left(x_4 + x_1 - x_6 \right) \tag{13}$$

> subs ((7),(10));

$$x_6 = F_5 \left(F_2 F_1 \left(x_4 + x_1 - x_6 \right) + x_6 \right) \tag{14}$$

$$x_7 = x_4 + x_5 {15}$$

Gleichung (12) nach x_4 auflösen und damit x_4 in den Gleichungen (13) bis (15) eliminieren.

> isolate ((12), x4); simplify (%, size);
$$x_4 = \frac{F_3 F_2 F_1 x_1 - F_3 F_2 F_1 x_6}{1 - F_3 F_2 F_1}$$

$$x_4 = -\frac{F_3 F_2 F_1 (x_1 - x_6)}{-1 + F_2 F_2 F_1}$$
(16)

Mit der Gleichung die Variable x₄ in den Gleichungen (13) bis (15) eliminieren.

> subs((16),(13)); simplify(%,size)

$$x_{5} = F_{4} F_{1} \left(-\frac{F_{3} F_{2} F_{1} (x_{1} - x_{6})}{-1 + F_{3} F_{2} F_{1}} + x_{1} - x_{6} \right)$$

$$x_{5} = -\frac{F_{4} F_{1} (x_{1} - x_{6})}{-1 + F_{3} F_{2} F_{1}}$$
(17)

subs((16),(14)); simplify(%);

$$x_6 = F_5 \left(F_2 F_1 \left(-\frac{F_3 F_2 F_1 (x_1 - x_6)}{-1 + F_3 F_2 F_1} + x_1 - x_6 \right) + x_6 \right)$$

$$x_6 = \frac{F_5 \left(-F_2 F_1 x_1 + F_2 F_1 x_6 - x_6 + F_3 F_2 F_1 x_6 \right)}{-1 + F_3 F_2 F_1}$$
 (18)

> subs ((16),(15));

$$x_7 = -\frac{F_3 F_2 F_1 (x_1 - x_6)}{-1 + F_3 F_2 F_1} + x_5$$
 (19)

Mit der Gleichung (17) die Variable x₅ aus den Gleichungen (18) und (19) eliminieren.

> subs ((17),(18));

$$x_6 = \frac{F_5 \left(-F_2 F_1 x_1 + F_2 F_1 x_6 - x_6 + F_3 F_2 F_1 x_6 \right)}{-1 + F_3 F_2 F_1}$$
 (20)

> subs((17),(19)); simplify(%,size);

$$x_{7} = -\frac{F_{3}F_{2}F_{1}(x_{1} - x_{6})}{-1 + F_{3}F_{2}F_{1}} - \frac{F_{4}F_{1}(x_{1} - x_{6})}{-1 + F_{3}F_{2}F_{1}}$$

$$x_{7} = -\frac{F_{1}(x_{1} - x_{6})(F_{3}F_{2} + F_{4})}{-1 + F_{3}F_{2}F_{1}}$$
(21)

Die Gleichung (18) nach Variable x₆ auflösen.

> isolate((18),x6);

$$x_6 = \frac{F_5 F_2 F_1 x_1}{1 - F_3 F_2 F_1 + F_5 F_2 F_1 - F_5 + F_5 F_3 F_2 F_1}$$
 (22)

Damit die Variable x₆ aus der Gleichung (21) eliminieren.

> subs((22),(21)); simplify(%): sort(%): subs(f5-1=-a,a=1-f5,%);
$$x_7 = -\frac{F_1\left(x_1 - \frac{F_5F_2F_1x_1}{F_1F_2F_3F_5 - F_1F_2F_3 + F_1F_2F_5 - F_5 + 1}\right)(F_2F_3 + F_4)}{-1 + F_1F_2F_3}$$

$$x_7 = \frac{\left(F_2 F_3 + F_4\right) \left(1 - F_5\right) F_1 x_1}{F_1 F_2 F_3 F_5 - F_1 F_2 F_3 + F_1 F_2 F_5 - F_5 + 1}$$
 (23)

Die Gesamtübertragungsfunktion für das System.

> F[ges] = coeff(rhs((23)),x1)

$$F_{ges} = \frac{\left(F_2 F_3 + F_4\right) \left(1 - F_5\right) F_1}{F_1 F_2 F_3 F_5 - F_1 F_2 F_3 + F_1 F_2 F_5 - F_5 + 1}$$
 (24)

Die Gesamtübertragungsfunktion liefert aus dem Eingangssignal x₁ das Ausgangssignal x₇.

$$> x7 = F[ges]*x1;$$

$$x_7 = F_{ges} x_1$$
 (25)