Let a be a not decreasing list of non-negative floats, with n items, and your task is to find a count of all couples of items of a for which applies this condition $a[i] \cdot a[j] \ge a[i] + a[j]$ where $i,j \in 0... n-1$

Create an algorithm solving this problem. There is one limitation, you need to solve it in complexity O(n) (or better) for both CPU and memory usage.

Example:

$$\mathbf{a} = (0.5, 1.2, 2, 5, 8.5, 100)$$

Let's show how it works for i = 3 so number 5.

a[j]	$5 \cdot a[j]$	5 + a[j]
0.5	2.5	5.5
1.2	6	6.2
2	10	7
5	25	10
8.5	42.5	13.5
100	500	105

So the condition is valid in 4 cases. When we do the same with the rest of the numbers we find that the final result for this example is 20.