Integrated Electronics & Design

IC Fabrication Techniques II

Gary Chun Zhao, PhD

Chun.Zhao@xjtlu.edu.cn

May 2024

IC Fab.Tech. OUTLINE

Thin Film Formation Photolithography and Ecthing Doping **IC** Resistor **Sheet Resistance Diode** nMOSFET: Process Flow nMOSFET: Fab. and Layout nMOSFET: Layout Rules

IC Fabrication Techniques

OUTLINE

IC Resistor

- Sheet Resistance
- Diode

 $< 10 \mu m \times 1 \mu m$ (10^{-7} cm^2)

Integrated R

Lecture 7 Page 18

Patterns transfer to wafer:

Three-mask process:

Starting material: p-type wafer with $N_A = 10^{16}$ cm⁻³

Step 1: grow 500 nm of SiO₂

Step 2: pattern oxide using the oxide mask (dark field)

Step 3: implant phosphorus and anneal to form an n-type

layer with $N_D = 10^{20}$ cm⁻³ and depth 100 nm

Step 4: deposit oxide to a thickness of 500 nm

Step 5: pattern deposited oxide using the contact mask (dark field)

Step 6: deposit aluminum to a thickness of 1 μm

Step 7: pattern using the aluminum mask (clear field)

Contact mask (dark field) Al mask (clear field)

A-A Cross-Section: oxidation, photolithography & etching

A-A Cross-Section: oxidation, photolithography & etching

A-A Cross-Section: doping & annealing

Step 3: implant phosphorus and **anneal** to form an n-type layer with $N_D = 10^{20}$ cm⁻³ and depth 100 nm

after **anneal** of phosphorus implant:

Step 5: pattern deposited oxide using the contact mask (dark field)

Mask #2

deposition, photolithography & etching

A-A Cross-Section: metallization

Summary

After 7 steps

Slide 21

Layer-to-Layer Alignment

Importance of Layer-to-Layer Alignment

Example: metal line to contact hole

→ marginal contact

→ no contact!

Example of Design Rule:

If the minimum feature size is 2λ , then the safety margin for overlay error is λ .

 \leftarrow safety margin to allow for misalignment

- Interface between designer & process engineer
- Guidelines for designing masks

Registration of Each Mask

Registration of mask patterns is critical: show separate layouts to avoid ambiguity

Registration of one mask to the next (also called "alignment" and "overlay") is a crucial aspect of lithography

Same Layout but with registration (alignment)

Same Layout but with misregistration (misalignment)

Example of Design Rule: MOSIS Implementation System

A minimum feature size is

Using 2λ to stand for the minimum feature size

the smallest dimension that can be produced.

Intel & IBM: $2\lambda = 32$ nm $\rightarrow 22$ nm

 $2\lambda = 14$ nm SMIC:

TSMC: $2\lambda = 7$ nm $\rightarrow 5$ nm • If the minimum feature size is 2λ , then the minimum active area width is 3λ , the minimum metal width is 3λ , and the safety margin for overlay error is λ .

 \leftarrow safety margin to allow for misalignment λ

 2λ is the smallest dimension that can be produced.

the minimum active area width is 3λ . For IC resistors, the width can be 2λ .

A

the minimum metal width is 3λ .

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. MOSIS Layout Design Rules (sample set)

	Active area rules	
R	Minimum active area width	33
R2	Minimum active area spacing	37
	Polysilicon rules	
R3	Minimum poly width	23.
R4	Minimum poly spacing	27
R5	Minimum gate extension of poly over active	27
R6	Minimum poly-active edge spacing	7
	(poly outside active area)	100
R7	Minimum poly-active edge spacing (poly inside active area)	37
	Metal rules	
R8	Minimum metal width	37
R9	Minimum metal spacing	37
	Contact rules	
R10	Poly contact size	23,
R11	Minimum poly contact spacing	27
R12	Minimum poly contact to poly edge spacing	17
R13	Minimum poly contact to metal edge spacing	71
R14	Minimum poly contact to active edge spacing	37
R15	Active contact size	23
R16	Minimum active contact spacing	27
R17	Minimum active contact to active edge spacing	17
R18	Minimum active contact to metal edge spacing	17
R19	Minimum active contact to poly edge spacing	37
R20	Minimum active contact spacing	63

MOSIS layout design rules

Slide 29

MOSIS layout design rules

IC Fabrication Techniques

OUTLINE

- IC Resistor
- Sheet Resistance

Diode

Using Sheet Resistance (Rs)

Ion-implanted (or "diffused") IC resistor

Electrical Resistance

Resistance
$$R \equiv \frac{V}{I} = \frac{\rho L}{A} = \frac{\rho L}{tW} = \left(\frac{\rho}{t}\right) \left(\frac{L}{W}\right)$$
 (Unit: ohms) where ρ is the resistivity (Ω •cm)

Sheet Resistivity (R_s) Ω/sq or Sheet Resistance

Using Sheet Resistance (Rs)

Ion-implanted (or "diffused") IC resistor

Concept of Sheet Resistivity

$$R = \rho L/A = (\rho/t) (L/W)$$
Sheet Resistivity (R_s) Ω /sq
or Sheet Resistance
of Squares

Number of Squares

$$R = 2R_S$$

$$R = R_S/2$$

$$R = Rs/3$$

$$R \approx 6.5R_{\rm S}$$

Using Sheet Resistance (Rs)

$$R = \left(\frac{\rho}{t}\right) \left(\frac{L}{W}\right) = R_S \frac{L}{W} \approx 9R_S$$

Integrated-Circuit Resistors

The resistivity ρ and thickness t are fixed for each layer in a given manufacturing process

A circuit designer specifies the length \boldsymbol{L} and width \boldsymbol{W} , to achieve a desired resistance \boldsymbol{R}

$$R = R_s \left(\frac{L}{W}\right)$$
 fixed designable

Example: Suppose we want to design a 5 k Ω resistor using a layer of material with $R_{\rm s}$ = 200 Ω/\Box Space-efficient layout

Resistor layout (top view)

W/L = 25

IC Fabrication Techniques

OUTLINE

- IC Resistor
- Sheet Resistance
- Diode

Process Flow Example #1: Resistor

Process Flow Example #2: diode

Process Flow Example #1: Diode

Three-mask process:

Starting material: p-type wafer with $N_A = 10^{16}$ cm⁻³

Step 1: grow 500 nm of SiO₂

Step 2: pattern oxide using the oxide mask (dark field)

Step 3: implant phosphorus and anneal to form an n-type

layer with $N_D = 10^{20}$ cm⁻³ and depth 100 nm

Step 4: deposit oxide to a thickness of 500 nm

Step 5: pattern deposited oxide using the contact mask (dark field)

Step 6: deposit aluminum to a thickness of 1 μm

Step 7: pattern using the aluminum mask (clear field)

Contact mask (dark field) Al mask (clear field)

A-A Cross-Section: oxidation, photolithography & etching

Step 1:

Grow oxide

A-A Cross-Section: oxidation, photolithography & etching

A-A Cross-Section: doping & annealing

after anneal of phosphorus implant:

A-A Cross-Section: Metal contact

Step 4: Deposit 500 nm oxide

Open holes for metal contacts

Step 5:

Pattern oxide (contact mask)

deposition, photolithography & etching

A-A Cross-Section: metallization

deposition, photolithography & etching

Step 6: Al deposition

Step 7:
Pattern metal
(Metal mask)

Example of Design Rule: MOSIS

- R1: the minimum feature size is 2λ,
- R2: the minimum active area width is 3λ,
- R3: the minimum metal width is 3λ,
- R4: the safety margin for overlay error is λ ,
- R5: the minimum active contact spacing on different active regions is 6λ.

Layout:

IC Fabrication Techniques

- nMOSFET: Process Flow
- nMOSFET: Layout Rule

- The cleaned Si slice is oxidized (oxide1)
- A window is opened in the oxide (mask1).
- The sides of the mask

 1 must be equal in
 size to a multiple of
 the minimum feature
 size (design rules).

Mask 1: Active region

Keep gate oxide

Oxide etching (Patterning)

Oxide and polysilicon are photoengraved in the shape. of the gate stripe after mask (mask2) for the etching of polysilicon gate electrode.

 The slice of silicon is reoxidized (oxide2).

It fills the window with new thinner oxide. polysilicon covers the entire surface.

- The oxide is etched from the source and drain regions.
- The implant creates the source and drain regions and dopes the polysilicon to make it very conducting.

- Oxide is deposited on the surface (oxide 3)
 - The contact or via holes are opened (mask 3).
- Each of these holes must have dimensions that are equal to the minimum feature size.

- Al is evaporated to cover the whole slice and is then covered with photoresist.
- Al is patterned into the shape of the conductor patterns across the chip (mask 4). It makes contact to the source and drain down the contact holes.
- The width of the Al stripes must cover the contact holes with an allowance on either side of an amount equal to the minimum alignment accuracy.

IC Fabrication Techniques

- nMOSFET: Process Flow
- nMOSFET: Layout Rule

Layout rules to minimise MOST size

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display. MOSIS Layout Design Rules (sample set)

	rrea width rrea spacing		dth	acing	Minimum gate extension of poly over active	tive edge spacing	Minimum poly-active edge spacing	e area)		vidth	pacing			intact spacing	Minimum poly contact to poly edge spacing	Minimum poly contact to metal edge spacing	Minimum poly contact to active edge spacing	9	contact spacing	ve region)	Minimum active contact to active edge spacing	Minimum active contact to metal edge spacing	Minimum active contact to poly edge spacing	contact spacing
Active area rules	Minimum active area width Minimum active area spacing	Polysilicon rules	Minimum poly width	Minimum poly spacing	Minimum gate ext	Minimum poly-active edge spacing (noly outside active area)	Minimum poly-ac	(poly inside active area)	Metal rules	Minimum metal width	Minimum metal spacing	Contact rules	Poly contact size	Minimum poly contact spacing	Minimum poly co	Minimum poly co	Minimum poly co	Active contact size	Minimum active contact spacing	(on the same active region)	Minimum active of	Minimum active c	Minimum active of	Minimum active contact spacing

Layout rules to minimise MOST size

The Design of a MOSFET

Example: if we need a MOSFET with W/L = 12, design its layout.

The Design of a MOSFET

Example: if we need a MOSFET with W/L = 0.5, design its layout.

Mask Sequence for a Polysilicon-Gate Transistor

Mask Sequence for a Polysilicon-Gate Transistor

Mask Sequence for a Polysilicon-Gate Transistor

Mask 1: Defines active area or thin oxide region of transistor

Mask 2: Defines polysilicon gate of transistor, aligns to mask 1

Mask 3: Delineates the contact window, aligns to mask 2 & 1.

Mask 4: Delineates the metal pattern, aligns to mask 3.

Channel region of transistor formed by intersection of first two mask layers. Source and Drain regions formed wherever mask 1 is not covered by mask 2