I am working on customer churn project where we need to predict if the customer will leave or stay with the company in future based on the features provided. This is a clssification problem as the outcome is binary.

We learned how to read any unknown data with different visualization skills. We learned how to make prediction model whether it may be a classification problem or a regression problem. As a student in Big data analytics I believe the knowledge I gained is a vary good starting point and base to learn everyting in more detail in other subjects.

```
In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
                                                                                                In [2]:
df = pd.read csv('ppg churn.csv')
                                                                                                In [3]:
df.shape
                                                                                               Out[3]:
(5000, 20)
                                                                                                In [4]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 20 columns):
```

| #    | Column   | Non-Null Count   | Dtype       |
|------|----------|------------------|-------------|
|      |          |                  |             |
| 0    | state    | 5000 non-null    | object      |
| 1    | X02      | 5000 non-null    | int64       |
| 2    | X03      | 5000 non-null    | object      |
| 3    | X04      | 5000 non-null    | object      |
| 4    | X05      | 5000 non-null    | object      |
| 5    | X06      | 5000 non-null    | int64       |
| 6    | X07      | 5000 non-null    | float64     |
| 7    | X08      | 5000 non-null    | int64       |
| 8    | X09      | 5000 non-null    | float64     |
| 9    | X10      | 5000 non-null    | float64     |
| 10   | X11      | 5000 non-null    | int64       |
| 11   | X12      | 5000 non-null    | float64     |
| 12   | X13      | 5000 non-null    | float64     |
| 13   | X14      | 5000 non-null    | int64       |
| 14   | X15      | 5000 non-null    | float64     |
| 15   | X16      | 5000 non-null    | float64     |
| 16   | X17      | 5000 non-null    | int64       |
| 17   | X18      | 5000 non-null    | float64     |
| 18   | X19      | 5000 non-null    | int64       |
| 19   | churn    | 5000 non-null    | object      |
| dtyp | es: floa | t64(8), int64(7) | , object(5) |
| memo | ry usage | : 781.4+ KB      |             |

In [5]:

df.describe()

|                                                                                                                                                        |                                                                              |             |             |             |             |             |             |             | Out[5]:     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                                                                                                                                        | X02                                                                          | X06         | X07         | X08         | X09         | X10         | X11         | X12         | <b>X</b> 1: |
| count                                                                                                                                                  | 5000.00000                                                                   | 5000.000000 | 5000.000000 | 5000.000000 | 5000.000000 | 5000.000000 | 5000.000000 | 5000.000000 | 5000.00000  |
| mean                                                                                                                                                   | 100.25860                                                                    | 7.755200    | 180.288900  | 100.029400  | 30.649668   | 200.636560  | 100.191000  | 17.054322   | 200.39162   |
| std                                                                                                                                                    | 39.69456                                                                     | 13.546393   | 53.894699   | 19.831197   | 9.162069    | 50.551309   | 19.826496   | 4.296843    | 50.52778    |
| min                                                                                                                                                    | 1.00000                                                                      | 0.000000    | 0.000000    | 0.000000    | 0.000000    | 0.000000    | 0.000000    | 0.000000    | 0.00000     |
| 25%                                                                                                                                                    | 73.00000                                                                     | 0.000000    | 143.700000  | 87.000000   | 24.430000   | 166.375000  | 87.000000   | 14.140000   | 166.90000   |
| 50%                                                                                                                                                    | 100.00000                                                                    | 0.000000    | 180.100000  | 100.000000  | 30.620000   | 201.000000  | 100.000000  | 17.090000   | 200.40000   |
| 75%                                                                                                                                                    | 127.00000                                                                    | 17.000000   | 216.200000  | 113.000000  | 36.750000   | 234.100000  | 114.000000  | 19.900000   | 234.70000   |
| max                                                                                                                                                    | 243.00000                                                                    | 52.000000   | 351.500000  | 165.000000  | 59.760000   | 363.700000  | 170.000000  | 30.910000   | 395.00000   |
|                                                                                                                                                        |                                                                              |             |             |             |             |             |             |             | In [6]:     |
| df.is                                                                                                                                                  | na().sum(                                                                    | ( )         |             |             |             |             |             |             | 2 3         |
|                                                                                                                                                        |                                                                              |             |             |             |             |             |             |             | Out[6]:     |
| state<br>X02<br>X03<br>X04<br>X05<br>X06<br>X07<br>X08<br>X09<br>X10<br>X11<br>X12<br>X13<br>X14<br>X15<br>X16<br>X17<br>X18<br>X19<br>churn<br>dtype: | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |             |             |             |             |             |             |             |             |
| df.is                                                                                                                                                  | na().sum(                                                                    | ()          |             |             |             |             |             |             | In [7]:     |
| state<br>X02<br>X03<br>X04<br>X05<br>X06                                                                                                               | 0<br>0<br>0<br>0<br>0                                                        |             |             |             |             |             |             |             | Out[7]:     |

```
Final Report
  X07
             0
  X08
             0
  X09
             0
  X10
             0
             0
  X11
  X12
             0
  X13
             0
  X14
             0
  X15
             0
  X16
             0
  X17
             0
  X18
             0
  X19
  churn
             0
  dtype: int64
                                                                                                                  In [8]:
  df.X03.value counts()
                                                                                                                 Out[8]:
  AA
         2495
         1259
  BB
         1246
  CC
  Name: X03, dtype: int64
                                                                                                                  In [9]:
  df.X04.value counts()
                                                                                                                 Out[9]:
         4527
  z_1
  Ζ2
           473
  Name: X04, dtype: int64
                                                                                                                 In [10]:
  df.X05.value counts()
                                                                                                                Out[10]:
  V2
         3677
         1323
  V1
  Name: X05, dtype: int64
                                                                                                                 In [11]:
  df.churn.value counts()
                                                                                                                Out[11]:
           4293
  no
            707
  yes
  Name: churn, dtype: int64
  The state variable is an object data type. This it is an categorical variable even though it has 51 unique values
  The x03, x04, x05 have less than 4 unique values and the .info() method revealed these variables are also object data
  type. So they can also be assumed as categorical variables
  The variables x17 and x19 have less than 25 unique values and both are integer data types.
                                                                                                                 In [12]:
   sns.catplot(data=df, x='X17', kind='count', height=7, aspect=2.0)
```

```
plt.show()
```



sns.catplot(data=df, x='X17', hue='churn', kind='count')
plt.show()



We can see that the values greater than 7 have very low frequencies.

In [14]:

sns.catplot(data=df, x='X19', kind='count', height=7, aspect=2)

plt.show()



sns.catplot(data=df, x='X19', hue='churn', kind='count')

plt.show()



We can either take X17 and X19 as continuos or categorical.

If we want then to be continuous we dont have to change anything.

If we want them to be categorical we can lump then.

### Final Report.html[2/10/23, 11:04:31 AM]

```
ln [16]:
df['lump_19'] = np.where(df.X19 > 3, 'Other', df.X19.astype('str'))
ln [17]:
```

sns.catplot(data=df, x='lump\_19', kind='count')
plt.show()



sns.catplot(data=df, x='lump\_19', hue='churn', kind='count')
plt.show()

In [18]:



### For continuous inputs

```
In [19]:
num inputs = df.select dtypes('number').copy().columns.to list()
                                                                                                    In [20]:
num inputs
                                                                                                   Out[20]:
['X02',
 'X06',
 'X07',
 'X08',
 'X09',
 'X10',
 'X11',
 'X12',
 'X13',
 'X14',
 'X15',
 'X16',
 'X17',
 'X18',
 'X19']
                                                                                                    In [21]:
lf num = df.melt(id vars=['churn'], value vars = num inputs, ignore index=True)
                                                                                                    In [22]:
lf_num
                                                                                                   Out[22]:
```

Final Report.html[2/10/23, 11:04:31 AM]

churn variable value

```
0
              X02 128.0
              X02 107.0
   1
         no
              X02 137.0
               X02 84.0
   3
         no
   4
         no
               X02
                    75.0
               X19
                     2.0
74995
        no
                    3.0
74996
        yes
               X19
74997
               X19
                    1.0
        no
74998
               X19
        no
74999
               X19
        no
```

75000 rows × 3 columns

```
g = sns.FacetGrid(data= lf_num, col='variable', col_wrap=4, sharex=False, sharey=False)
g.map_dataframe(sns.histplot, x='value', bins=25)
plt.show()
```

In [23]:



g = sns.FacetGrid(data= lf\_num, col='variable', col\_wrap=4, sharex=False, sharey=False)
g.map\_dataframe(sns.kdeplot, x='value', hue='churn', common\_norm=False)
plt.show()



The x06 distribution is odd!

In [25]:

```
sns.pairplot(data=df, hue='churn', diag_kind = 'kde', plot_kws = {'alpha':0.6, 's':30,
   'edgecolor':'k'})
plt.show()
```



In x07 and x09 we can distinguish that the no responses are on the right side

### Correlation

In [26]:

ax=ax)

plt.show()



- 0.75

0.50

- 0.25

-0.25

From the above figure we can observe that

- X07 and X09
- X10 and X12

- X13 and X15
- X16 and X18

are in perfect correlation. That is they move in same direction together.

## **Clustering**

```
In [27]:
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from scipy.cluster import hierarchy
Converting the variable x19 into categorical and treating x06 and x17 continuous
                                                                                                In [28]:
df['lump x19'] = np.where(df.X19 > 3, 'Other', df.X19.astype('str'))
                                                                                                In [29]:
df['X06 trans'] = np.log(df.X06 + 0.001)
                                                                                                In [30]:
df = df.drop(columns=['X06', 'X19', 'lump 19'])
                                                                                                In [31]:
df clean = df.select dtypes('number').copy()
                                                                                                In [32]:
X = StandardScaler().fit transform(df clean)
                                                                                                In [33]:
df stand = pd.DataFrame(X, columns=df clean.columns)
                                                                                                In [34]:
sns.catplot(data = pd.DataFrame(X, columns=df clean.columns), kind='box', aspect=2)
plt.show()
```



In [35]:

```
sns.catplot(data = pd.DataFrame(X, columns=df_clean.columns), kind='violin', aspect=4)
plt.show()
```



In [36]:

```
tots_within = []
K = range(1, 26)
```

```
for k in K:
```

```
km = KMeans(n_clusters=k, random_state=121, n_init=25, max_iter=500)
km = km.fit(X)
tots within.append(km.inertia)
```

In [37]:

```
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(K, tots_within, 'bo-')
ax.set_xlabel('number of clusters')
ax.set_ylabel('total within sum of squares')
```

```
plt.show()
```



from sklearn.metrics import silhouette score

```
sil_coef = []

K = range(2, 31)

for k in K:
    k_label = KMeans(n_clusters=k, random_state=121, n_init=25, max_iter=500).fit_predict(
X)
    sil_coef.append( silhouette_score(X, k_label) )

h [40]:

fig, ax = plt.subplots(figsize=(12, 8))
```

ax.plot(K, sil coef, 'o-')

plt.show()

ax.set xlabel('number of clusters')

ax.set ylabel('average silhouette coefficient')



From this we cannot confirm how many clusters we have to take.

### **PCA**

```
from sklearn.decomposition import PCA

In [42]:

churn_pcs = PCA(n_components=2).fit_transform( X )

In [43]:

churn_pcs_df = pd.DataFrame( churn_pcs, columns=['pc_01', 'pc_02'])

In [44]:

churn_pcs_df['churn'] = df.churn

In [45]:

sns.set_style('whitegrid')

sns.relplot(data = churn_pcs_df, x='pc_01', y='pc_02', s=100, height=8)

plt.show()
```



In [46]:

sns.relplot(data = churn\_pcs\_df, x='pc\_01', y='pc\_02', hue='churn', s=100, height=8)
plt.show()



### **Hierarchical clustering**

### Ward method

plt.show()

```
hclust_ward = hierarchy.ward( X )

hclust_ward = hierarchy.ward( X )

in [48]:

fig = plt.figure(figsize=(16,8))

dn = hierarchy.dendrogram( hclust_ward, no_labels=True )
```



Form this we can confirm that we have to take 5 clusters.

```
Cut the tree
```

```
ward_cut_5 = hierarchy.cut_tree( hclust_ward, n_clusters=5 )

In [50]:
churn_pcs_df['hclust_5'] = pd.Series( ward_cut_5.ravel(), index=churn_pcs_df.index)

churn_pcs_df['hclust_5'] = churn_pcs_df.hclust_5.astype('category')

In [51]:
sns.relplot(data = churn_pcs_df, x='pc_01', y='pc_02', hue='hclust_5', s=100, height=8)

plt.show()
```



## **Elastic Net**

```
from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.linear_model import LogisticRegression

In [53]:
from sklearn.pipeline import Pipeline

In [54]:
from sklearn.model_selection import cross_val_score

In [55]:

my_cv = RepeatedStratifiedKFold(n_splits=5, n_repeats=3, random_state=101)

Case: When Treating x19 as categorical and x17 and x06 as continuous

In [56]:
```

```
df 6 = pd.read csv('ppg churn.csv')
                                                                                            In [57]:
df 6['lump x19'] = np.where( df 6.X19 > 3, 'Other', df 6.X19.astype('str'))
                                                                                            In [58]:
df 6['X06 trans'] = np.log(df 6.X06 + 0.001)
                                                                                            In [59]:
df 6 = df 6.drop(columns=['X06', 'X19'])
                                                                                            In [60]:
xinputs 6 = df 6.select dtypes('number').copy()
youtput 6 = df 6.loc[:, ['churn']].copy()
X train 6 = xinputs 6.to numpy()
y train 6 = youtput 6.churn.to numpy().ravel()
                                                                                            In [61]:
enet default 6 = LogisticRegression(penalty='elasticnet', solver='saga', random state=101,
max iter=10001,
                                    C=1.0, l1 ratio=0.5)
default enet wflow 6 = Pipeline( steps=[('std inputs', StandardScaler()),
                                        ('enet', enet default 6)] )
enet default cv 6 = cross val score(default enet wflow 6, X train 6, y train 6, cv=my cv)
enet default cv 6
enet default cv 6.mean()
                                                                                           Out[61]:
0.86613333333333333
                                                                                            In [62]:
from sklearn.model selection import GridSearchCV
                                                                                             In []:
```

From the Eastic net results we get the beset result when we treat the x19 variable as categorical and x17 and x06 as continuous

## **Models Interpretation**

```
df_mod = df.copy()
In [64]:
```

In [63]:





In [69]:



In [71]:

```
df_main['churn'] = df_mod.churn.copy()
df_main['state'] = df.state.copy()
df_main['X03'] = df.X03.copy()
df_main['X04'] = df.X04.copy()
df_main['X05'] = df.X05.copy()
df_main['lump_X19'] = df.lump_x19.copy()
```

df\_main = df\_stand.copy()

```
df main.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 20 columns):

| #     | Column       |       |           |           |
|-------|--------------|-------|-----------|-----------|
|       |              |       |           |           |
| 0     | X02          | 5000  | non-null  | float64   |
| 1     | X07          | 5000  | non-null  | float64   |
| 2     | X08          | 5000  | non-null  | float64   |
| 3     | X09          | 5000  | non-null  | float64   |
| 4     | X10          | 5000  | non-null  | float64   |
| 5     | X11          | 5000  | non-null  | float64   |
| 6     | X12          | 5000  | non-null  | float64   |
| 7     | X13          | 5000  | non-null  | float64   |
| 8     | X14          | 5000  | non-null  | float64   |
| 9     | X15          | 5000  | non-null  | float64   |
| 10    | X16          | 5000  | non-null  | float64   |
| 11    | X17          | 5000  | non-null  | float64   |
| 12    | X18          | 5000  | non-null  | float64   |
| 13    | X06_trans    | 5000  | non-null  | float64   |
| 14    | churn        | 5000  | non-null  | int32     |
| 15    | state        | 5000  | non-null  | object    |
| 16    | X03          | 5000  | non-null  | object    |
| 17    | X04          | 5000  | non-null  | object    |
| 18    | X05          | 5000  | non-null  | object    |
| 19    | lump_X19     | 5000  | non-null  | object    |
| dtype | es: float64  | (14), | int32(1), | object(5) |
| memoi | ry usage: 70 | 61.8+ | KB        |           |
|       |              |       |           |           |

In [73]:

In [74]:

### $\textbf{import} \ \texttt{statsmodels.formula.api} \ \textbf{as} \ \texttt{smf}$

```
formula_1 = 'churn ~ X02 + X07 + X08 + X09 + X10 + X11 + X12 + X13 + X14 + X15 + X16 + X17 + X18 + X06_trans'
```

formula\_2 = 'churn ~ (X02 + X07 + X08 + X09 + X10 + X11 + X12 + X13 + X14 + X15 + X16 + X17 + X18 + X06\_trans) \*\* 2'

formula\_3 = 'churn ~ state + X03 + X04 + X05 + lump\_X19'

formula\_5 = 'churn  $\sim$  (X02 + X07 + X08 + X09 + X10 + X11 + X12 + X13 + X14 + X15 + X16 + X17 + X18 + X06\_trans) \* (state + X03 + X04 + X05 + lump\_X19)'

formula\_6 = 'churn ~ np.power(X02, 2) + np.power(X07, 2) + np.power(X08, 2) +
np.power(X09, 2) + np.power(X10, 2) + np.power(X11, 2) + np.power(X12, 2) + np.power(X13, 2) + np.power(X14, 2) + np.power(X15, 2) + np.power(X16, 2) + np.power(X17, 2) +
np.power(X18, 2) + np.power(X06\_trans, 2) '

formula\_7 = 'churn  $\sim$  np.power(X02, 4) + np.power(X07, 4) + np.power(X08, 4) +

```
np.power(X09, 4) + np.power(X10, 4) + np.power(X11, 4) + np.power(X12, 4) + np.power(X13,
4) + np.power(X14, 4) + np.power(X15, 4) + np.power(X16, 4) + np.power(X17, 4) +
np.power(X18, 4) + np.power(X06 trans, 4)'
formula 8 = 'churn \sim np.power(X02, 2) + np.power(X07, 2) + np.power(X08, 2) +
np.power(X09, 2) + np.power(X10, 2) + np.power(X11, 2) + np.power(X12, 2) + np.power(X13,
2) + np.power(X14, 2) + np.power(X15, 2) + <math>np.power(X16, 2) + np.power(X17, 2) +
np.power(X18, 2) + np.power(X06 trans, 2) + (X02 + X07 + X08 + X09 + X10 + X11 + X12 + X13)
+ X14 + X15 + X16 + X17 + X18 + X06 trans ) * (state + X03 + X04 + X05 + lump X19)'
                                                                                      In [75]:
def my coefplot (model object, figsize use=(10,5)):
    fig, ax = plt.subplots(figsize=figsize use)
    ax.errorbar(y = model object.params.index,
                x = model object.params,
                xerr = 2 * model object.bse,
                fmt='o', color='black', ecolor='black',
                elinewidth=3, ms=10)
    ax.axvline(x=0, linestyle='--', linewidth=5, color='grey')
    ax.set xlabel('coefficient value')
    plt.show()
                                                                                      In [76]:
fit 01 = smf.logit(formula = formula 1, data = df main).fit()
Optimization terminated successfully.
        Current function value: 0.368005
         Iterations 9
                                                                                      In [77]:
print( fit 01.summary() )
                         Logit Regression Results
______
                               churn No. Observations:
Dep. Variable:
                                                                         5000
                               Logit Df Residuals:
Model:
                                                                         4985
Method:
                                MLE Df Model:
                                                                          14
                 Tue, 14 Dec 2021 Pseudo R-squ.:
                                                                    0.09691
Date:
                      19:42:22 Log-Likelihood:
Time:
                                                                     -1840.0
converged:
                               True LL-Null:
                                                                      -2037.5
Covariance Type: nonrobust LLR p-value:
______
             coef std err z P>|z| [0.025 0.975]
______
Intercept -2.0569
                         0.050 -41.536 0.000
                                                           -2.154
                                                                      -1.960

      0.0659
      0.042
      1.559
      0.119
      -0.017
      0.149

      188.8316
      135.603
      1.393
      0.164
      -76.946
      454.609

      0.0413
      0.042
      0.976
      0.329
      -0.042
      0.124

      -188.1769
      135.603
      -1.388
      0.165
      -453.954
      77.600

X02
X07
X08
X09
            25.8932 63.370 0.409 0.683 -98.311 150.097
-0.0248 0.043 -0.582 0.561 -0.108 0.059
X10
X11
```

| X12       | -25.5904 | 63.370 | -0.404 | 0.686 | -149.793 | 98.613 |
|-----------|----------|--------|--------|-------|----------|--------|
| X13       | 5.8066   | 33.721 | 0.172  | 0.863 | -60.286  | 71.899 |
| X14       | -0.0285  | 0.042  | -0.675 | 0.500 | -0.111   | 0.054  |
| X15       | -5.6627  | 33.721 | -0.168 | 0.867 | -71.754  | 60.429 |
| X16       | 3.0517   | 11.083 | 0.275  | 0.783 | -18.671  | 24.774 |
| X17       | -0.1633  | 0.046  | -3.555 | 0.000 | -0.253   | -0.073 |
| X18       | -2.8320  | 11.083 | -0.256 | 0.798 | -24.555  | 18.891 |
| X06_trans | -0.4102  | 0.051  | -8.063 | 0.000 | -0.510   | -0.310 |
|           |          |        |        |       |          |        |

In [78]:

my coefplot(fit 01)



In [79]:

fit\_03 = smf.logit(formula = formula\_3, data = df\_main).fit()

Optimization terminated successfully.

Current function value: 0.328347

Iterations 7

In [80]:

print( fit 03.summary() )

Logit Regression Results

| =============    |            |         |               |       |          | ==      |
|------------------|------------|---------|---------------|-------|----------|---------|
| Dep. Variable:   | churn      |         | No. Observati | lons: | 5000     |         |
| Model:           |            | Logit   | Df Residuals: | :     | 49       | 41      |
| Method:          |            | MLE     | Df Model:     |       |          | 58      |
| Date:            | Tue, 14 De | ec 2021 | Pseudo R-squ. | :     | 0.19     | 42      |
| Time:            | 19         | 9:42:23 | Log-Likelihoo | od:   | -1641    | . 7     |
| converged:       |            | True    | LL-Null:      |       | -2037    | .5      |
| Covariance Type: | noi        | nrobust | LLR p-value:  |       | 2.535e-1 | 29      |
|                  | ========   | ======= |               |       | ======== | ======= |
|                  | coef       | std err | Z             | P> z  | [0.025   | 0.975]  |
| Intercept        | -3.9189    | 0.514   | <br>-7.618    | 0.000 | -4.927   | -2.911  |
| state[T.AL]      | 0.4004     | 0.588   | 0.681         | 0.496 | -0.751   | 1.552   |

| state[T.AR]                  | 0.8905  | 0.588 | 1.514  | 0.130 | -0.262 | 2.043 |
|------------------------------|---------|-------|--------|-------|--------|-------|
| state[T.AZ]                  | 0.2674  | 0.624 | 0.428  | 0.668 | -0.956 | 1.491 |
| state[T.CA]                  | 1.4322  | 0.606 | 2.364  | 0.018 | 0.245  | 2.620 |
| state[T.CO]                  | 0.2016  | 0.603 | 0.334  | 0.738 | -0.981 | 1.384 |
| state[T.CT]                  | 0.8350  | 0.577 | 1.448  | 0.148 | -0.295 | 1.965 |
| state[T.DC]                  | 0.2871  | 0.620 | 0.463  | 0.643 | -0.929 | 1.503 |
| state[T.DE]                  | 0.7295  | 0.584 | 1.250  | 0.211 | -0.415 | 1.874 |
| state[T.FL]                  | 0.6655  | 0.595 | 1.119  | 0.263 | -0.500 | 1.831 |
| state[T.GA]                  | 0.4288  | 0.618 | 0.694  | 0.488 | -0.783 | 1.641 |
| state[T.HI]                  | -0.3643 | 0.691 | -0.527 | 0.598 | -1.718 | 0.989 |
| state[T.IA]                  | 0.3670  | 0.641 | 0.572  | 0.567 | -0.890 | 1.624 |
| state[T.ID]                  | 0.4467  | 0.582 | 0.767  | 0.443 | -0.695 | 1.588 |
| state[T.IL]                  | -0.2440 | 0.653 | -0.373 | 0.709 | -1.524 | 1.036 |
| state[T.IN]                  | 0.6891  | 0.587 | 1.174  | 0.240 | -0.461 | 1.839 |
| state[T.KS]                  | 1.0360  | 0.572 | 1.811  | 0.070 | -0.085 | 2.157 |
|                              | 0.9150  | 0.577 | 1.586  | 0.113 | -0.216 | 2.137 |
| state[T.KY]                  |         |       |        |       |        |       |
| state[T.LA]                  | 0.2357  | 0.648 | 0.364  | 0.716 | -1.034 | 1.506 |
| state[T.MA]                  | 0.9552  | 0.575 | 1.662  | 0.097 | -0.171 | 2.082 |
| state[T.MD]                  | 0.9109  | 0.565 | 1.612  | 0.107 | -0.197 | 2.018 |
| state[T.ME]                  | 0.9973  | 0.570 | 1.749  | 0.080 | -0.120 | 2.115 |
| state[T.MI]                  | 0.9857  | 0.568 | 1.735  | 0.083 | -0.128 | 2.099 |
| state[T.MN]                  | 0.8779  | 0.561 | 1.565  | 0.118 | -0.221 | 1.977 |
| state[T.MO]                  | 0.4468  | 0.595 | 0.750  | 0.453 | -0.720 | 1.614 |
| state[T.MS]                  | 0.8592  | 0.574 | 1.496  | 0.135 | -0.266 | 1.985 |
| state[T.MT]                  | 1.4484  | 0.560 | 2.588  | 0.010 | 0.352  | 2.545 |
| state[T.NC]                  | 0.4520  | 0.601 | 0.752  | 0.452 | -0.725 | 1.629 |
| state[T.ND]                  | 0.4932  | 0.610 | 0.809  | 0.419 | -0.702 | 1.688 |
| state[T.NE]                  | -0.0566 | 0.663 | -0.085 | 0.932 | -1.355 | 1.242 |
| state[T.NH]                  | 0.5911  | 0.601 | 0.984  | 0.325 | -0.587 | 1.769 |
| state[T.NJ]                  | 1.4058  | 0.549 | 2.561  | 0.010 | 0.330  | 2.482 |
| state[T.NM]                  | 0.4205  | 0.613 | 0.686  | 0.492 | -0.780 | 1.621 |
| state[T.NV]                  | 1.1188  | 0.572 | 1.955  | 0.051 | -0.003 | 2.241 |
| state[T.NY]                  | 0.8248  | 0.564 | 1.462  | 0.144 | -0.281 | 1.931 |
| state[T.OH]                  | 0.6950  | 0.575 | 1.209  | 0.227 | -0.432 | 1.822 |
| state[T.OK]                  | 0.9122  | 0.581 | 1.570  | 0.116 | -0.226 | 2.051 |
| state[T.OR]                  | 0.8625  | 0.565 | 1.526  | 0.127 |        | 1.971 |
| state[T.PA]                  | 0.3147  | 0.645 |        |       |        | 1.578 |
| state[T.RI]                  | -0.4112 | 0.662 |        | 0.534 |        | 0.886 |
| state[T.SC]                  | 1.1549  | 0.574 | 2.012  |       | 0.030  | 2.280 |
| state[T.SD]                  |         | 0.596 | 1.415  |       |        |       |
| state[T.TN]                  | 0.7499  |       | 1.279  |       |        |       |
| state[T.TX]                  |         | 0.552 |        |       |        |       |
| state[T.UT]                  | 0.7532  |       | 1.316  |       |        | 1.875 |
| state[T.VA]                  | -0.4624 |       |        | 0.481 | -1.747 | 0.823 |
| state[T.VT]                  | -0.0598 | 0.624 | -0.096 | 0.924 | -1.282 | 1.163 |
| state[T.WA]                  | 1.4919  | 0.554 | 2.693  | 0.007 | 0.406  | 2.578 |
| state[T.WI]                  | -0.0952 | 0.634 | -0.150 | 0.881 | -1.338 | 1.148 |
| state[T.WV]                  | 0.6185  | 0.552 | 1.120  | 0.263 | -0.464 | 1.701 |
| state[T.WY]                  | 0.0587  | 0.602 | 0.098  |       |        |       |
| X03[T.BB]                    | 0.0247  | 0.112 | 0.221  |       |        |       |
| X03[T.CC]                    | 0.0169  | 0.111 | 0.152  |       |        |       |
| X04[T.Z2]                    | 2.0748  | 0.118 |        |       | 1.844  | 2.306 |
| X05[T.V2]                    | 1.0460  | 0.125 | 8.354  | 0.000 | 0.801  | 1.291 |
| lump_X19[T.1]                | -0.0611 | 0.133 |        | 0.645 | -0.321 | 0.199 |
| lump_X19[T.2]                |         |       | -0.485 | 0.628 | -0.357 | 0.216 |
| <del></del>                  | -0.0706 |       |        |       | -0.402 |       |
| <pre>lump_X19[T.Other]</pre> | 2.3020  | 0.153 | 15.035 | 0.000 | 2.002  | 2.602 |
|                              |         |       |        |       |        |       |

In [81]:

```
my_coefplot(fit_03, figsize_use=(16, 12))
```



fit 04 = smf.logit(formula = formula 4, data = df main).fit()

Optimization terminated successfully.

Current function value: 0.290285

Iterations 10

In [83]:

print( fit 04.summary() )

#### Logit Regression Results

| ================ |                  |                   | ========   |
|------------------|------------------|-------------------|------------|
| Dep. Variable:   | churn            | No. Observations: | 5000       |
| Model:           | Logit            | Df Residuals:     | 4927       |
| Method:          | MLE              | Df Model:         | 72         |
| Date:            | Tue, 14 Dec 2021 | Pseudo R-squ.:    | 0.2876     |
| Time:            | 19:42:24         | Log-Likelihood:   | -1451.4    |
| converged:       | True             | LL-Null:          | -2037.5    |
| Covariance Type: | nonrobust        | LLR p-value:      | 2.337e-198 |

|             | coef     | std err | z<br>  | P> z  | [0.025  | 0.975] |
|-------------|----------|---------|--------|-------|---------|--------|
| Intercept   | -13.9097 | 3.575   | -3.891 | 0.000 | -20.917 | -6.903 |
| state[T.AL] | 0.2382   | 0.605   | 0.394  | 0.694 | -0.948  | 1.424  |
| state[T.AR] | 0.9523   | 0.611   | 1.558  | 0.119 | -0.246  | 2.150  |
| state[T.AZ] | 0.1146   | 0.650   | 0.176  | 0.860 | -1.159  | 1.388  |
| state[T.CA] | 1.5372   | 0.636   | 2.415  | 0.016 | 0.290   | 2.785  |
| state[T.CO] | -0.0836  | 0.643   | -0.130 | 0.897 | -1.344  | 1.177  |
| state[T.CT] | 0.6306   | 0.597   | 1.057  | 0.291 | -0.539  | 1.800  |
| state[T.DC] | 0.3102   | 0.641   | 0.484  | 0.628 | -0.946  | 1.566  |
| state[T.DE] | 0.5198   | 0.601   | 0.865  | 0.387 | -0.659  | 1.698  |
| state[T.FL] | 0.6187   | 0.610   | 1.014  | 0.311 | -0.577  | 1.815  |
| state[T.GA] | 0.1999   | 0.652   | 0.307  | 0.759 | -1.078  | 1.478  |
| state[T.HI] | -0.5561  | 0.714   | -0.779 | 0.436 | -1.955  | 0.843  |
| state[T.IA] | 0.3028   | 0.678   | 0.447  | 0.655 | -1.025  | 1.631  |
| state[T.ID] | 0.4042   | 0.600   | 0.673  | 0.501 | -0.773  | 1.581  |
| state[T.IL] | -0.4258  | 0.693   | -0.614 | 0.539 | -1.785  | 0.933  |
| state[T.IN] | 0.3228   | 0.618   | 0.522  | 0.602 | -0.889  | 1.535  |
| state[T.KS] | 0.7037   | 0.595   | 1.183  | 0.237 | -0.462  | 1.869  |
| state[T.KY] | 0.8091   | 0.593   | 1.363  | 0.173 | -0.354  | 1.972  |
| state[T.LA] | 0.4107   | 0.667   | 0.615  | 0.538 | -0.897  | 1.719  |
| state[T.MA] | 0.8718   | 0.594   | 1.468  | 0.142 | -0.292  | 2.036  |
| state[T.MD] | 0.6656   | 0.589   | 1.130  | 0.258 | -0.489  | 1.820  |
| state[T.ME] | 0.8876   | 0.589   | 1.507  | 0.132 | -0.267  | 2.042  |
| state[T.MI] | 1.0276   | 0.586   | 1.753  | 0.080 | -0.121  | 2.176  |
| state[T.MN] | 0.8268   | 0.576   | 1.436  | 0.151 | -0.302  | 1.955  |
| state[T.MO] | 0.3909   | 0.621   | 0.629  | 0.529 | -0.827  | 1.609  |
| state[T.MS] | 0.8050   | 0.593   | 1.357  | 0.175 | -0.358  | 1.968  |
| state[T.MT] | 1.4991   | 0.576   | 2.601  | 0.009 | 0.369   | 2.629  |
| state[T.NC] | 0.2659   | 0.627   | 0.424  | 0.671 | -0.963  | 1.495  |
| state[T.NC] | 0.2317   | 0.639   | 0.363  | 0.717 | -1.020  | 1.484  |
| state[T.NE] | -0.1096  | 0.681   | -0.161 | 0.717 | -1.445  | 1.226  |
| state[T.NH] | 0.5075   | 0.625   | 0.812  | 0.417 | -0.717  | 1.732  |
| state[T.NJ] | 1.1691   | 0.568   | 2.058  | 0.040 | 0.056   | 2.282  |
|             | 0.2894   | 0.634   | 0.456  | 0.648 | -0.953  | 1.532  |
| state[T.NM] | 0.9231   | 0.594   | 1.555  | 0.048 | -0.240  | 2.087  |
| state[T.NV] |          | 0.583   |        |       |         |        |
| state[T.NY] | 0.8819   |         | 1.513  | 0.130 | -0.261  | 2.025  |
| state[T.OH] | 0.5097   | 0.599   | 0.852  | 0.394 | -0.663  | 1.683  |
| state[T.OK] | 0.7195   | 0.603   | 1.192  | 0.233 | -0.463  | 1.902  |
| state[T.OR] | 0.8234   | 0.585   | 1.408  | 0.159 | -0.323  | 1.970  |
| state[T.PA] | 0.1136   | 0.671   | 0.169  | 0.865 | -1.201  | 1.428  |
| state[T.RI] | -0.7577  | 0.700   | -1.082 | 0.279 | -2.131  | 0.615  |
| state[T.SC] | 1.0246   | 0.602   | 1.702  | 0.089 | -0.155  | 2.204  |
| state[T.SD] | 0.6562   | 0.620   | 1.059  | 0.290 | -0.558  | 1.870  |
| state[T.TN] | 0.7045   | 0.605   | 1.164  | 0.245 | -0.482  | 1.891  |
| state[T.TX] | 1.1025   | 0.571   | 1.931  | 0.054 | -0.017  | 2.222  |
| state[T.UT] | 0.6559   | 0.594   | 1.104  | 0.270 | -0.509  | 1.821  |
| state[T.VA] | -0.7192  | 0.682   | -1.054 | 0.292 | -2.056  | 0.618  |
| state[T.VT] | -0.4039  | 0.653   | -0.619 | 0.536 | -1.684  | 0.876  |
| state[T.WA] | 1.3605   | 0.577   | 2.359  | 0.018 | 0.230   | 2.491  |
| state[T.WI] | -0.1493  | 0.661   | -0.226 | 0.821 | -1.444  | 1.145  |
| state[T.WV] | 0.5356   | 0.574   | 0.933  | 0.351 | -0.590  | 1.661  |
| state[T.WY] | -0.2739  | 0.633   | -0.433 | 0.665 | -1.514  | 0.967  |
| X03[T.BB]   | 0.0641   | 0.120   | 0.536  | 0.592 | -0.170  | 0.298  |
| X03[T.CC]   | 0.1083   | 0.118   | 0.915  | 0.360 | -0.124  | 0.340  |
| X04[T.Z2]   | 2.2827   | 0.130   | 17.598 | 0.000 | 2.028   | 2.537  |

### Final Report

| X05[T.V2]                    | 14.1432   | 4.798   | 2.948  | 0.003 | 4.739    | 23.548  |
|------------------------------|-----------|---------|--------|-------|----------|---------|
| lump_X19[T.1]                | 0.0074    | 0.142   | 0.052  | 0.959 | -0.271   | 0.285   |
| lump_X19[T.2]                | 0.0599    | 0.155   | 0.387  | 0.699 | -0.244   | 0.363   |
| lump_X19[T.3]                | -0.0372   | 0.179   | -0.208 | 0.835 | -0.387   | 0.313   |
| <pre>lump_X19[T.Other]</pre> | 2.7392    | 0.169   | 16.233 | 0.000 | 2.408    | 3.070   |
| X02                          | 0.0714    | 0.048   | 1.483  | 0.138 | -0.023   | 0.166   |
| X07                          | 192.8078  | 154.338 | 1.249  | 0.212 | -109.690 | 495.306 |
| X08                          | 0.0447    | 0.048   | 0.929  | 0.353 | -0.050   | 0.139   |
| X09                          | -192.0175 | 154.337 | -1.244 | 0.213 | -494.513 | 110.478 |
| X10                          | 29.3703   | 72.764  | 0.404  | 0.686 | -113.244 | 171.985 |
| X11                          | -0.0418   | 0.049   | -0.850 | 0.395 | -0.138   | 0.055   |
| X12                          | -28.9727  | 72.764  | -0.398 | 0.691 | -171.587 | 113.642 |
| X13                          | 7.9402    | 38.536  | 0.206  | 0.837 | -67.588  | 83.469  |
| X14                          | -0.0317   | 0.048   | -0.654 | 0.513 | -0.127   | 0.063   |
| X15                          | -7.6965   | 38.535  | -0.200 | 0.842 | -83.224  | 67.831  |
| X16                          | 3.2364    | 12.722  | 0.254  | 0.799 | -21.698  | 28.171  |
| X17                          | -0.1743   | 0.052   | -3.336 | 0.001 | -0.277   | -0.072  |
| X18                          | -2.9848   | 12.722  | -0.235 | 0.815 | -27.919  | 21.949  |
| X06_trans                    | 5.6913    | 2.101   | 2.708  | 0.007 | 1.573    | 9.810   |

In [84]:

my\_coefplot(fit\_04, figsize\_use=(16, 12))



In [85]:

```
fit_06 = smf.logit(formula = formula_6, data = df_main).fit()
```

Optimization terminated successfully.

Current function value: 0.375739

Iterations 8

In [86]:

print( fit 06.summary() )

Logit Regression Results

| Dep. Variable: Model: Method: Date: Time: converged: Covariance Type: | Logit<br>MLE<br>Tue, 14 Dec 2021<br>19:42:25<br>True | churn No. Observations: Logit Df Residuals: MLE Df Model: c 2021 Pseudo R-squ.: :42:25 Log-Likelihood: True LL-Null: robust LLR p-value: |                   |                | 5000<br>4985<br>14<br>0.07793<br>-1878.7<br>-2037.5<br>2.535e-59 |                  |  |  |
|-----------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|------------------------------------------------------------------|------------------|--|--|
| ==============                                                        | coef                                                 |                                                                                                                                          | z                 |                |                                                                  |                  |  |  |
| <pre>Intercept np.power(X02, 2)</pre>                                 | -2.0577                                              | 0.101                                                                                                                                    | -20.309<br>-0.202 | 0.000          | -2.256                                                           |                  |  |  |
| np.power(X07, 2)                                                      | -41.6645<br>0.0202                                   |                                                                                                                                          | -0.743<br>0.703   |                | -151.555<br>-0.036                                               |                  |  |  |
| np.power(X08, 2)<br>np.power(X09, 2)                                  | 42.0464                                              |                                                                                                                                          | 0.703             |                |                                                                  |                  |  |  |
| np.power(X10, 2)                                                      | 15.9449                                              | 30.716                                                                                                                                   | 0.519             |                | -44.258                                                          | 76.148           |  |  |
| np.power(X11, 2)<br>np.power(X12, 2)                                  | -0.0109<br>-15.9052                                  | 0.030                                                                                                                                    | -0.367<br>-0.518  | 0.605          | -0.069<br>-76.110                                                | 44.300           |  |  |
| <pre>np.power(X13, 2) np.power(X14, 2)</pre>                          | -4.4132<br>-0.0166                                   | 16.938<br>0.029                                                                                                                          | -0.261<br>-0.565  | 0.794<br>0.572 | -37.612<br>-0.074                                                | 28.785<br>0.041  |  |  |
| np.power(X15, 2)<br>np.power(X16, 2)                                  | 4.4089<br>4.0894                                     |                                                                                                                                          | 0.260<br>0.722    | 0.795<br>0.470 | -28.789<br>-7.006                                                | 37.607<br>15.185 |  |  |
| np.power(X17, 2)                                                      | 0.0185<br>-4.0634                                    | 0.017                                                                                                                                    | 1.095<br>-0.718   | 0.273          | -0.015                                                           | 0.052            |  |  |
| np.power(X06_trans,                                                   |                                                      |                                                                                                                                          | -7.239            |                | -0.434                                                           |                  |  |  |

\_\_\_\_\_\_

In [87]:

my\_coefplot(fit\_06)



In [88]:

fit 07 = smf.logit(formula = formula 7, data = df main).fit()

Optimization terminated successfully.

Current function value: 0.386547

Iterations 6

In [89]:

5000

4985

-0.131

-0.073

14

print( fit 07.summary() )

Dep. Variable:

Model:

Method:

# Logit Regression Results

Logit Df Residuals:

MLE Df Model:

churn

-0.1022

| Date: Time: converged: Covariance Type: | Tue, 14 Dec 2021 Pseudo R-squ.: 19:42:25 Log-Likelihood: True LL-Null: nonrobust LLR p-value: |       | kelihood: | 0.05141<br>-1932.7<br>-2037.5<br>6.280e-37 |         |        |
|-----------------------------------------|-----------------------------------------------------------------------------------------------|-------|-----------|--------------------------------------------|---------|--------|
|                                         | coef                                                                                          |       | z         |                                            | [0.025  |        |
| Intercept                               | -1.7845                                                                                       | 0.059 | -30.478   | 0.000                                      |         |        |
| np.power(X02, 4)                        | 0.0006                                                                                        | 0.005 | 0.133     | 0.894                                      | -0.009  | 0.010  |
| np.power(X07, 4)                        | -1.2066                                                                                       | 7.303 | -0.165    | 0.869                                      | -15.521 | 13.108 |
| np.power(X08, 4)                        | -0.0030                                                                                       | 0.003 | -1.028    | 0.304                                      | -0.009  | 0.003  |
| np.power(X09, 4)                        | 1.2524                                                                                        | 7.303 | 0.171     | 0.864                                      | -13.061 | 15.566 |
| np.power(X10, 4)                        | 0.4911                                                                                        | 3.820 | 0.129     | 0.898                                      | -6.996  | 7.978  |
| np.power(X11, 4)                        | -0.0035                                                                                       | 0.004 | -0.813    | 0.416                                      | -0.012  | 0.005  |
| np.power(X12, 4)                        | -0.4882                                                                                       | 3.820 | -0.128    | 0.898                                      | -7.976  | 6.999  |
| np.power(X13, 4)                        | -0.7202                                                                                       | 2.026 | -0.356    | 0.722                                      | -4.690  | 3.250  |
| np.power(X14, 4)                        | -0.0051                                                                                       | 0.005 | -1.079    | 0.281                                      | -0.014  | 0.004  |
| np.power(X15, 4)                        | 0.7203                                                                                        | 2.026 | 0.356     | 0.722                                      | -3.250  | 4.690  |
| np.power(X16, 4)                        | 0.9411                                                                                        | 0.747 | 1.260     | 0.208                                      | -0.523  | 2.405  |
| np.power(X17, 4)                        | 0.0008                                                                                        | 0.001 | 1.145     | 0.252                                      | -0.001  | 0.002  |
| np.power(X18, 4)                        | -0.9420                                                                                       | 0.747 | -1.261    | 0.207                                      | -2.406  | 0.522  |

0.015

-6.981

0.000

No. Observations:

np.power(X06 trans, 4)

\_\_\_\_\_\_

In [90]:

```
my_coefplot(fit_07)
```



```
coefficient value
                                                                                             In [91]:
mod list = [fit 01, fit 03, fit 04, fit 06, fit 07]
                                                                                             In [92]:
df copy b = df main.copy()
                                                                                             In [93]:
for i, mod in enumerate(mod list):
    df copy b['pred probability '+str(i+1).zfill(2)] = mod.predict(df main)
                                                                                             In [94]:
for i in range(len(mod list)):
    df_{copy_b['pred_class_'+str(i+1).zfill(2)] = np.where(
df_{copy_b['pred_probability_'+str(i+1).zfill(2)]} > 0.5, 1, 0)
                                                                                             In [95]:
model accuracy = []
for i in range(len(mod list)):
    model accuracy.append( df copy b.loc[ df copy b.churn ==
df_copy_b['pred_class_'+str(i+1).zfill(2)] ].shape[0] / df_copy_b.shape[0])
                                                                                             In [96]:
model accuracy
```

[0.8668, 0.8706, 0.8604, 0.8592, 0.859]

Out[96]:

In [97]:

```
fig, ax = plt.subplots(figsize=(8,7))
sns.heatmap(pd.crosstab(df copy b.churn, df copy b.pred class 01, margins=True),
            annot=True, annot kws={'size': 25},
            ax=ax)
plt.show()
                                                    - 5000
     4.3e+03
                        0
                                  4.3e+03
                                                     4000
                                                     3000
     6.7e+02
                                  7.1e+02
                       41
                                                    - 2000
                                                     1000
      5e+03
                       41
                                   5e + 03
                     pred_class_01
```

#### **ROC Curve**

```
In [98]:
from sklearn.metrics import roc curve
                                                                                           In [99]:
def roc values(mod id, df object):
    fpr, tpr, threshold = roc_curve(df_object.churn.to_numpy(),
df object['pred probability '+str(mod id+1).zfill(2)].to numpy())
    res = pd.DataFrame({'fpr': fpr, 'tpr': tpr, 'threshold': threshold})
    res['model name'] = 'fit '+str(mod id+1).zfill(2)
    return res
                                                                                           In [100]:
all roc curves = []
for i in range(len(mod list)):
    all_roc_curves.append( roc_values(i, df_copy_b) )
                                                                                          In [101]:
```

plt.show()



## **Model Performance and Validation**

In [103]:

from patsy import dmatrices

```
from sklearn.linear model import LogisticRegression
                                                                                           In [104]:
from sklearn.model selection import cross val score
                                                                                           In [105]:
y 07, \times 07 = dmatrices(formula 7 + ^{\prime} - 1^{\prime}, data = df main)
                                                                                           In [106]:
from sklearn.linear model import LogisticRegressionCV
                                                                                           In [107]:
ridge tune results = LogisticRegressionCV(penalty='12', Cs=101, cv=my cv, solver='lbfgs',
max iter=5001, fit intercept=False).\
fit(X 07, y 07.ravel())
                                                                                           In [108]:
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(np.log(ridge tune results.Cs), ridge tune results.scores [1.0].T, color='grey')
ax.plot(np.log(ridge tune results.Cs ), ridge tune results.scores [1.0].mean(axis=0),
color='blue', linewidth=4)
ax.axvline(x=np.log(ridge tune results.C), color='red', linestyle='dashed')
ax.set xlabel('log(C)')
ax.set ylabel("cross-validation accuracy")
```





In [109]:

lasso tune results = LogisticRegressionCV(penalty='11', Cs=101, cv=my cv, solver='saga',

```
max iter=5001, fit intercept=False).\
fit(X 07, y 07.ravel())
                                                                                               In [110]:
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(np.log(lasso tune results.Cs ), lasso tune results.scores [1.0].T, color='grey')
ax.plot(np.log(lasso tune results.Cs), lasso tune results.scores [1.0].mean(axis=0),
color='blue', linewidth=4)
ax.axvline(x=np.log(lasso tune results.C ), color='red', linestyle='dashed')
ax.set xlabel('log(C)')
ax.set ylabel("cross-validation accuracy")
ax.set title("Lasso")
plt.show()
                                                Lasso
  0,870
  0.865
cross-validation accuracy
  0.860
  0.855
  0.850
    -10.0
                -7.5
                            -5.0
                                      -2.5
                                                  0.0
                                                            25
                                                                      5.0
                                                                                  7.5
                                                                                             10,0
                                                 log(C)
                                                                                               In [111]:
print( ridge tune results.coef )
 [[-0.05411725 \quad 0.00833876 \quad -0.01402398 \quad 0.00996263 \quad -0.0187401 \quad -0.0571266 ] 
 -0.01910932 -0.025187 -0.05939367 -0.02432039 -0.00739607 -0.00144733
 -0.01872073 -0.25064314]]
                                                                                               In [112]:
print( lasso tune results.coef )
                                                     -0.01863751 -0.05632129
[[-0.05363926  0.00853042  -0.0139784  0.008941
 -0.01870365 -0.02478074 -0.05858329 -0.02406857 -0.00782969 -0.00145634
 -0.01795627 -0.24481768]]
                                                                                               In [113]:
y 06, X 06 = dmatrices(formula 6 + ' - 1', data = df main)
```

```
In [114]:
```

```
ridge_tune_results_6 = LogisticRegressionCV(penalty='12', Cs=101, cv=my_cv,
solver='lbfgs', max_iter=5001, fit_intercept=False).\
fit(X_06, y_06.ravel())

h[115]:

fig, ax = plt.subplots(figsize=(12, 6))

ax.plot(np.log(ridge_tune_results_6.Cs_), ridge_tune_results_6.scores_[1.0].T,
color='grey')
ax.plot(np.log(ridge_tune_results_6.Cs_), ridge_tune_results_6.scores_[1.0].mean(axis=0),
color='blue', linewidth=4)
ax.axvline(x=np.log(ridge_tune_results_6.C_), color='red', linestyle='dashed')
ax.set_xlabel('log(C)')
ax.set_ylabel("cross-validation accuracy")
```





In [116]:

```
lasso_tune_results_6 = LogisticRegressionCV(penalty='l1', Cs=101, cv=my_cv, solver='saga',
max_iter=5001, fit_intercept=False).\
fit(X_06, y_06.ravel())
```

- C:\Users\Vedant\anaconda3\envs\cmpinf2100\lib\site-packages\sklearn\linear\_model\\_sag.py:328
- : ConvergenceWarning: The max\_iter was reached which means the coef\_ did not converge warnings.warn("The max iter was reached which means "
- C:\Users\Vedant\anaconda3\envs\cmpinf2100\lib\site-packages\sklearn\linear model\ sag.py:328
- : ConvergenceWarning: The max\_iter was reached which means the coef\_ did not converge warnings.warn("The max\_iter was reached which means "

ln [117]:

```
fig, ax = plt.subplots(figsize=(12, 6))
```

0.8600

0.8575

```
ax.plot(np.log(lasso tune results 6.Cs), lasso tune results 6.scores [1.0].T,
color='grey')
ax.plot(np.log(lasso tune results 6.Cs ), lasso tune results 6.scores [1.0].mean(axis=0),
color='blue', linewidth=4)
ax.axvline(x=np.log(lasso tune results 6.C), color='red', linestyle='dashed')
ax.set xlabel('log(C)')
ax.set ylabel("cross-validation accuracy")
plt.show()
  DB700
  0.8675
  0.8650
cross-validation accuracy
  0.8625
```

0.8550 0.8525 -10.0-7.5 -5.00.0 25 7.5 10.0 -2.55.0 log(C) In [118]: print( ridge tune results.coef )  $\lceil -0.05411725 \quad 0.00833876 \quad -0.01402398 \quad 0.00996263 \quad -0.0187401 \quad -0.0571266$ -0.05939367 -0.02432039 -0.00739607 -0.00144733 -0.01910932 -0.025187 -0.01872073 -0.25064314]] In [119]: print( lasso tune results.coef ) [[-0.05363926 0.00853042 -0.0139784 0.008941 -0.01863751 -0.05632129  $-0.01870365 \ -0.02478074 \ -0.05858329 \ -0.02406857 \ -0.00782969 \ -0.00145634$ -0.01795627 -0.24481768]] In [120]: y 03, X 03 = dmatrices(formula 3 + ' - 1', data = df main) In [121]: ridge tune results 3 = LogisticRegressionCV(penalty='12', Cs=101, cv=my cv, solver='lbfgs', max iter=5001, fit intercept=False).\ fit(X 03, y 03.ravel())

In [122]:

```
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(np.log(ridge_tune_results_3.Cs_), ridge_tune_results_3.scores_[1.0].T,
color='grey')
ax.plot(np.log(ridge_tune_results_3.Cs_), ridge_tune_results_3.scores_[1.0].mean(axis=0),
color='blue', linewidth=4)
ax.axvline(x=np.log(ridge_tune_results_3.C_), color='red', linestyle='dashed')
ax.set_xlabel('log(C)')
ax.set_ylabel("cross-validation accuracy")
plt.show()
```



lasso\_tune\_results\_3 = LogisticRegressionCV(penalty='l1', Cs=101, cv=my\_cv, solver='saga',
max\_iter=5001, fit\_intercept=False).\
fit(X\_03, y\_03.ravel())

fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(np.log(lasso\_tune\_results\_3.Cs\_), lasso\_tune\_results\_3.scores\_[1.0].T,

ax.plot(np.log(lasso\_tune\_results\_3.Cs\_), lasso\_tune\_results\_3.scores\_[1.0].T,
color='grey')
ax.plot(np.log(lasso\_tune\_results\_3.Cs\_), lasso\_tune\_results\_3.scores\_[1.0].mean(axis=0),
color='blue', linewidth=4)
ax.axvline(x=np.log(lasso\_tune\_results\_3.C\_), color='red', linestyle='dashed')
ax.set\_xlabel('log(C)')
ax.set\_ylabel("cross-validation accuracy")
plt.show()



In [125]:

```
print( ridge_tune_results.coef_)
```

In [126]:

### print( lasso\_tune\_results.coef\_ )

As the variables are highly correlated the lasso penalty does not work properly. We can also validate this result from the result of elastic net where we get the best result when lasso penalty is set to zero.

In []: