

Regularized Regression

- Want to build a parsimonious but interpretable model Shrink the number of predictors and/or size by imposing penalties on the estimated coefficients (L1, L2)
 - O LASSO: • picks one correlated variable, others discarded. Sparse.
 - Ridge:
 - correlated variables coefficients are pushed to the same value
 - Elastic Net: • sparse solution, correlated variables grouped, enter/ leave the model together

$$\min_{\beta_0,\beta} \left\{ \frac{1}{N} \sum_{i=1}^{N} (y_i - \beta_0 - x_i^T \beta)^2 \right\} \text{ subject to } \sum_{j=1}^{p} |\beta_j| \le t.$$

minimize
$$\sum_{i=1}^{n} (y_i - \beta^T \mathbf{z}_i)^2$$
 s.t. $\sum_{i=1}^{p} \beta_j^2 \le t$

$$\arg\min_{\beta} \|\mathbf{y} - \mathbf{X}\beta\|^2 + \lambda_2 \|\beta\|^2 + \lambda_1 \|\beta\|_1$$

Constraints for L1, L2 and L1&L2

LASSO Regression vs. Ridge Regression

Regularized Regression

- Want to build a parsimonious but interpretable model
- Shrink the number of predictors and/or size by imposing penalties on the estimated coefficients (L1, L2)
 - LASSO: $\min_{\beta_0,\beta} \left\{ \frac{1}{N} \sum_{i=1}^N (y_i \beta_0 x_i^T \beta)^2 \right\}$ subject to $\sum_{j=1}^p |\beta_j| \le t$. picks one correlated variable, others discarded. Sparse.

 - O Ridge: $\sum_{i=1}^{n} (y_i \beta^T \mathbf{z}_i)^2$ s.t. $\sum_{j=1}^{p} \beta_j^2 \le t$ correlated variables coefficients are pushed to the same value
 - \circ Elastic Net: $\arg\min_{\alpha} \|\mathbf{y} \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda_2 \|\boldsymbol{\beta}\|^2 + \lambda_1 \|\boldsymbol{\beta}\|_1$
 - sparse solution, correlated variables grouped, enter/leave the model together

