TD - Kruskal et Dijkstra

I Application des algorithmes

- 1. $a b \rightarrow d f \rightarrow b d \rightarrow$
- 2. Impossible
- 3. b-e $(M = \{be\})$; c-f $(M = \{be, cf\})$; a-f-c-h $(M = \{be, af, ch\})$; d-g $(M = \{be, af, eh, dg\})$

II Plus courts chemin et Dijkstra

III Plus large chemin

Habituellement, le poids d'un chemin est: $W_C = \sum_{e \in C} w(e)$

Ici: $l(C) = \min_{e \in C}(w(e))$

Supposons que C ne soit pas un plus large chemin de u à v. Alors $\exists C'$ chemin de u à v plus large (l(C') > l(C)) et alors

$$\min_{e' \in C'} w(e') > \min_{e \in C} w(e)$$

Soit $e = \{x, y\} \in C$ de poids min, si $\sigma = (V, E_T)$ considérons le graphe $T - e = (V, E_T - e)$ (l'arbre T dans lequelle on enlève e).

T-e contient deux composantes connexes V_x et V_y to $u \in V_x$ et $v \in V_y$.

C' relie $u \in V_u$ à $v \in V_v$, donc $\exists e'$, arrête de C' entre V_u et V_v .

T - e + e' est un arbre couvrant car:

- 1. connexe: car contient une composante connexe
- 2. contient autant d'arrêtes que T (n-1)

$$w(T - e + e') = w(T) - w(e) + w(e') > w(T) \text{ or } -w(e) + w(e') > 0 \text{ car } w(e') \ge \min_{e' \in C} w(e') > \min_{e \in C} w(e) (= w(e))$$

Absurde car T est maximum, d'où le résultat.

IV Questions sur les arbres couvrants de poids minimum

1. Soit T un arbre couvrant de poids minimum, supposons qu'un tel $e \in T$,

 $\exists e' \in C - e \text{ tq } e' \notin T \text{ (sinon } C \text{ serait entièrement dans } T)$

T-e contient deux composantes connexes V_u et V_v . C-e est un chemin de u à v donc possède une arrête e' dont les extremités sont dans V_u et V_v .

T - e + e' est un arbre couvrant (connexe et (n - 1) arrêtes) de poids w(T) - w(e) + w(e') < w(T)

 \implies Absurde

V Mise a jour d'arbre couvrant de poids minimum

VI Hypercube

1.

2. 2^n sommets, deg(v) = n donc $\sum_{v \in V} deg(v) = 2|E| \implies |E| = n2^{n-1}$