/*-----*/
(or, Zero Trust Networks)

/*----*/
Problem
Solution

"The millions of dollars that people are spending, all the hype and the sexy marketing and the AI and the anomaly-behavioral... whatever buzzword you want to use, it's a bunch of smoke and mirrors, and I won't call it useless, but it's on the periphery of the issue when people still aren't

doing the basics."

Tenable CEO Amit Yoran RSA 2019

- It's not always who you think
- Facilitates the Insider Threat
- Multiple entry points. (Cloud?)
- Security is allow all, or deny all

Do the basics

- Flat Networks fail catastrophically
 - (Eric Conrad SANS)
- Reconfigure what you already have
- No need to buy shiny new tools (usually)
- Define system group
 - Servers
 - Normal clients
 - IT clients
- Block the following apps in normal clients using Windows firewalls
 - e.g. psexec, Powershell, WMIC, etc.
- Configure logging (sysmon)
- Restrict workstation to workstation communications (VLAN)

- User Access (username/password)
- Machine Access (IP Address)

Does not guarantee access to asset

- Access is based on identity (Network Agent)
- Encrypted and digitally signed communications

(Mutual TLS) Like the Internet

/*
The goal ISN'T: Defend against ALL threats
The goal IS: Defend against most common internal threats
*

- Given enough time and resources, any attack will be successful
- The network is always assumed to be hostile.
- External and internal threats exist on the network at all times.
- Network locality is not sufficient for deciding trust in a network.
- Every device, user, and network flow is authenticated and authorized.
- Policies must be dynamic and calculated from as many sources of data as possible.
- Automation is critical
- Leverage Existing Technology

```
/*----*/
```

- RFC 3552 the Internet Threat Model
- The Internet environment has a fairly well understood threat model
- Assume that the attacker has nearly complete control of the communications channel over which the end-systems communicate
- This means that the attacker can read any PDU (Protocol Data Unit) on the network and undetectably remove, change, or inject forged packets onto the wire
- This includes being able to generate packets that appear to be from a trusted machine
- The Internet provides no assurance that packets which claim to be from that system in fact are

```
/*----*/
```

- 1st Harden systems proactively against compromised peers
- 2nd Facilitate detection of those compromises
- 3rd Detection is aided by scanning devices and behavioral analysis of the activity from each device
- 4th Mitigation of endpoint compromise is achieved by:
 - Frequent upgrades to software on devices
 - Frequent and automated credential rotation
 - Frequent device rotation

- Strong Authentication
- Mutual TLS (X.509 bi-directional)
- Certificate Rotation
- Certificate Revocation

Hashicorp Consul Client pushes Certificate Signing Request (CSR)

Generates Key Pair Can act as CA

Push Short TTL certs (<72 hours

- Devices
- Users
- Applications

Trust variance and invalidation - CRITICAL

Private PKI is preferred in a ZT implementation

- Private is cheaper
- Hard to FULLY trust third party CAs
- The Public CA might not have an API hard to automate
- Key management is . . . Well, key!

The importance of Secrets management cannot be over stated

```
/*----*/
```

- Least privilege
 - Elevate late
 - Drop early
- Variable (not binary) Trust (compute a trust score)
- Prompt for password, second factor auth, or out of band confirmation
- Privilege is dynamic few static policies
- No privilege creep
- Temporal
- Geographical
- Behavioral
- Control/Data Plane (CP/DP)

What about SSO?

- Critical to ZT realization
- Ephemeral
- User
- Application (services)
- Device/Location
- Volatility
- Network Agent (NA) purpose
 - AuthZ NOT AuthN
 - Revoke AuthZ first then revoke creds
- NA details reside in CP
 - CP enforces AuthZ based on NA
- No NA standards yet
- NA used for AuthZ decisions

/*-----*/
Ensure AuthZ

Enforcement Widely Distributed Control Plane Client to the Access Request Data Load Balancer **Decision Enforcement** Proxy Plane Collocated But Separate Firewall Close to end points **Processes Policy Engine** • Reviews context of the request Services to the Data Plane Makes the Decision Hashicorp Consul **Network Services Endpoint Classes** Control Plane **User Roles Trust Engine** Ad-hoc Machine Learning Risk Assessment/Risk Score Centralized Data Stores (database) Source of all truth Chef User metadata Inventory **Endpoint configuration Files** Puppet Device metadata Historical NA metadata Ansible

- Configuration Management Database (CMDB) (e.g. Puppet, Chef)
- Hashicorp Consul (dynamic state and service discovery tool)
- Metadata
 - Device Type
 - Role
 - Client workstation
 Webserver
 FTP server

 Restrict Write Access
 For metadata in
 CMDB
 Least Privilege
 CMDB
 - IP address
- Authentication

User experience is critical to ZT acceptance

User AuthN

Group AuthN

Revoke tokens when trust levels erode or fluctuate

Monitor running instances

The importance of Secrets management cannot be over stated

- Zero trust networks require
 - Encryption
 - Authentication

- Encrypt all traffic
- Modern authentication systems large surface area for attacks Hide services behind SPA

- TLS Resides around OSI Layer 5 and 6 and is most common
- IKE and IPsec Resides around OSI Layer 3 and 4

Server to server Legacy software benefits No IPsec on AWS Few public hotspots

IPsec inside the datacenter where Network Address Translation is absent

- Mutually authenticated TLS (turnkey solution these days)
 - Client/server interactions
 - Heterogeneous environments
- Packet filtering capabilities deployed throughout the network
 - Host-based | Iptables | Windows Firewall service |
 - Bookended Apply policy at TX and RX of packet Programmatic implementation
 - Intermediary The network fabric applies firewall rules
 Dynamically pro

Dynamically program the network. Results in software defined network

```
/*----*/
```

- ZT is an architectural ideal
- Transition over time
- Decentralized Access control

Chef or LDAP

- Authentication Proxies to cover incompatible systems
- Begin with server<->server comms
- Define network policy
- Deploy in test network first
- Collect logs/metrics for inspection
- Ensure desired behavior
- Slowly roll out the policy in production

```
/*----*/
```

- Architecture mitigates some attacks
 - Identity theft
 - DDoS
 - Endpoint enumeration
 - ZT guarantees confidentiality not privacy. Packet payloads are encrypted.
 - Untrusted computing platform
 - Social engineering
 - Physical coercion
 - Invalidating actions once trusted
- Others can only be detected
- Reality Every system can be compromised
- Advanced threats efficient and accurate detection
- Zero-trust model needs to replace the perimeter model

Conclusion