

Análisis de eficiencia de algoritmos

Algorítmica. Práctica 1

Jose Alberto Hoces Castro Javier Gómez López Moya Martín Castaño

Contenidos

- 1. Introducción
- 2. Análisis de los algoritmos propuestos
- 3. Casos especiales
- 4. Conclusiones

Introducción

Análisis de eficiencia de algoritmos

- Análisis de la eficiencia teórica: estudio de la complejidad teórica de algoritmos.
- Análisis de la eficiencia empírica: ejecución y medición de tiempos de ejecución de los algoritmos estudiados.
- Análisis de la eficiencia híbrida: obtención de las constantes ocultas.

Cálculo de la eficiencia teórica

Consiste en analizar sobre el papel el peor tiempo de ejecución posible en un algoritmo para decidir en qué clase de funciones en notación O se encuentra

Cálculo de la eficiencia empírica

Ejecución de los algortimos en distintos agentes tecnológicos, calculando su tiempo de ejecución con la librería <chrono>.

Cálculo de la eficiencia híbrida

Obtención de las constantes ocultas a través de gnuplot.

propuestos _____

Análisis de los algoritmos

Algoritmos trabajados

Se ha realizado un análisis de los siguientes algoritmos:

- 1. Algoritmo de Inserción
- 2. Algoritmo de Selección
- 3. Algoritmo de Quicksort
- 4. Algoritmo de Heapsort
- 5. Algoritmo de Floyd
- 6. Algoritmos de las torres de Hanoi

Inserción

El código del algoritmo de Inserción es el siguiente:

```
static void insercion_lims(int T[], int inicial, int final)
2 {
    int i, j;
3
    int aux;
    for (i = inicial + 1; i < final; i++) { // 0(n)
      i = i; // 0(1)
6
      while ((T[j] < T[j-1]) \&\& (j > 0)) \{ // 0(n) \}
        aux = T[j]; // 0(1)
8
        T[j] = T[j-1]; // O(1)
9
        T[i-1] = aux; // 0(1)
10
        j--; // 0(1)
11
     };
12
    };
13
14 }
```

Inserción. Eficiencia teórica

En los comentarios del código observamos el análisis de la función.

Son dos bucles, uno for y otro while, los cuales están anidados y por ser cada uno O(n):

$$T(n) \in O(n^2)$$

Inserción. Eficiencia empírica

Intel Core i7-67	00 3.40 GHz	i5-1095G1 1	i5-1095G1 1.00 GHz		r Moya
Elementos (n)	Tiempo (s)	Elementos (n)	Tiempo (s)	Elementos (n)	Tiempo (s)
17600	0.251124	17600	0.35799	17600	0.321303
25200	0.560574	25200	0.609488	25200	0.661228
32800	0.905768	32800	0.998112	32800	1.12508
40400	1.33038	40400	1.52076	40400	1.705
48000	1.87672	48000	2.12746	48000	2.41886
55600	2.51991	55600	2.89747	55600	3.23931
63200	3.29735	63200	3.74891	63200	4.18747
70800	4.08019	70800	4.70754	70800	5.2435
78400	4.98866	78400	6.08267	78400	6.4519
86000	6.08448	86000	6.88299	86000	7.74454
93600	7.17045	93600	8.15529	93600	9.18276
101200	8.36352	101200	9.6372	101200	10.7333
108800	9.71516	108800	10.9647	108800	12.4379
116400	11.0357	116400	12.6405	116400	14.2603
124000	12.5611	124000	14.1936	124000	16.1453
131600	14.1345	131600	16.3756	131600	18.1743
139200	15.7984	139200	18.3599	139200	20.4184
146800	17.6155	146800	20.0244	146800	22.6048
154400	19.5025	154400	22.1302	154400	25.0412
162000	21.4432	162000	24.3748	162000	27.5086
169600	23.5908	169600	26.8462	169600	30.1526
177200	25.7055	177200	30.5882	177200	32.9759
184800	27.9704	184800	30.0598	184800	35.8989
192400	30.2777	192400	32.0387	192400	38.8935
200000	32.8911	200000	34.7391	200000	41.9351

Tabla 1: Experiencia empírica de algoritmo de Inserción sin optimizar

Inserción. Eficiencia híbrida

Inserción. Eficiencia híbrida

- i7-6700 3.40Ghz $\rightarrow T_1(n) = 8.49924 \cdot 10^{-10} x^2 8.57879 \cdot 10^{-6} x + 0.546581$.
- Ordenador José Alberto $\rightarrow T_2(n) = 7.96341 \cdot 10^{-10} x^2 + 2.23563 \cdot 10^{-5} x - 0.592279.$
- Ordenador Manuel $\rightarrow T_3(n) = 1.04394 \cdot 10^{-9} x^2 + 1.58593 \cdot 10^{-6} x 0.0969414.$

Varianza residual:

- $T_1(n) \longrightarrow Var.res = 0.00162352$
- $T_2(n) \longrightarrow Var.res = 0.0050675$
- $T_3(n) \longrightarrow Var.res = 0.00161535$

Selección

El código del algoritmo de Selección es el siguiente:

```
static void seleccion_lims(int T[], int inicial, int final)
2 {
    int i, j, indice_menor;
3
    int menor, aux;
    for (i = inicial; i < final - 1; i++) { // 0(n)
      indice_menor = i; // 0(1)
6
      menor = T[i]: // O(1)
      for (j = i; j < final; j++) // O(n)
8
        if (T[j] < menor) {
9
      indice_menor = j; // 0(1)
10
      menor = T[j]; // O(1)
11
      aux = T[i]; // 0(1)
      T[i] = T[indice\_menor]; // 0(1)
14
      T[indice\_menor] = aux; // 0(1)
15
    };
16
17
```

O(n):

Selección. Eficiencia teórica

En los comentarios del código observamos el análisis de la función. Son dos bucles for, los cuales están anidados y por ser cada uno

$$T(n) \in O(n^2)$$

Selección. Eficiencia empírica

Intel Core i7-67	00 3.40 GHz	i5-1095G1 1.00 GHz		Ordenador Moya	
Elementos (n)	Tiempo (s)	Elementos (n)	Tiempo (s)	Elementos (n)	Tiempo (s)
17600	0.260828	17600	0.391322	17600	0.357489
25200	0.504322	25200	0.76325	25200	0.730079
32800	0.835328	32800	1.27203	32800	1.25708
40400	1.25944	40400	1.92909	40400	1.90694
48000	1.7931	48000	2.71989	48000	2.69298
55600	2.54346	55600	3.65109	55600	3.61969
63200	3.42159	63200	4.71913	63200	4.72056
70800	4.46734	70800	5.91709	70800	6.01156
78400	5.61827	78400	7.25541	78400	7.41941
86000	6.80333	86000	8777	86000	8.98684
93600	8.16667	93600	10.3443	93600	10.7273
101200	9.86304	101200	12.0904	101200	12.5778
108800	11.3351	108800	14.0135	108800	14.6332
116400	12.9138	116400	16.0454	116400	16.8798
124000	14.7895	124000	18.19	124000	19.0523
131600	16.9792	131600	20.5113	131600	21.5316
139200	18.6877	139200	22.8553	139200	24.0439
146800	20629	146800	25.4735	146800	26.9219
154400	23.2312	154400	28141	154400	29.7736
162000	25691	162000	31.0438	162000	32.9393
169600	28.1704	169600	33.9582	169600	36.1122
177200	30.78	177200	37.0641	177200	39.2833
184800	33.7999	184800	40.3583	184800	42.7955
192400	36.3688	192400	43.7206	192400	46.6683
200000	39.5352	200000	47.2209	200000	50.4019

Tabla 2: Experiencia empírica de algoritmo de Selección sin optimizar

Selección. Eficiencia híbrida

Selección. Eficiencia híbrida

- i7-6700 3.40Ghz $\rightarrow T_1(n) = 1.0371 \cdot 10^{-9} x^2 + -9.86278 \cdot 10^{-6} x + 0.0216418.$
- Ordenador José Alberto $\rightarrow T_2(n) = 1.17905 \cdot 10^{-9} x^2 + 3.97249 \cdot 10^{-7} x - 0.00421685.$
- Ordenador Manuel $\rightarrow T_3(n) = 1.29484 \cdot 10^{-9} x^2 - 7.43377 \cdot 10^{-6} x + 0.0733569.$

Varianza residual:

- $T_1(n) \longrightarrow Var.res = 0.0164518$
- $T_2(n) \longrightarrow Var.res = 0.000537586$
- $T_3(n) \longrightarrow Var.res = 0.00387134$

Floyd

El código del algoritmo de Floyd es el siguiente:

```
void Floyd(int **M, int dim)

for (int k = 0; k < dim; k++) //0(n)

for (int i = 0; i < dim;i++) //0(n)

for (int j = 0; j < dim;j++) //0(n)

{
   int sum = M[i][k] + M[k][j];
   M[i][j] = (M[i][j] > sum) ? sum : M[i][j]; //0(1)

//Total 0(n^3)
```

Floyd. Eficiencia teórica

En los comentarios del código observamos el análisis de la función. Son tres bucles for anidados, cada uno O(n) y por tanto,

$$T(n) \in O(n^3)$$

Floyd. Eficiencia empírica

Intel Core i7-67	00 3.40 GHz	i5-1095G1 1.00 GHz		Ordenador Moya	
Elementos (n)	Tiempo (s)	Elementos (n)	Tiempo (s)	Elementos (n)	Tiempo (s)
176	0.0244106	176	0.0274773	176	0.038495
252	0.0721776	252	0.0995705	252	0.111472
328	0.155828	328	0.20657	328	0.244523
404	0.288165	404	0.307902	404	0.45528
480	0.465947	480	0.51806	480	0.761621
556	0.724968	556	0.799187	556	1.17395
632	1.09236	632	1.16729	632	1.73408
708	1.54374	708	1.65895	708	2.4355
784	2.13392	784	2.42549	784	3.29426
860	2.67022	860	3.00331	860	4.35444
936	3.52897	936	3.84788	936	5.64407
1012	4.4074	1012	4.84029	1012	7.16827
1088	5.42559	1088	5.97643	1088	8.91362
1164	6.6698	1164	7.78043	1164	10.9311
1240	8.06967	1240	9.08228	1240	13.2386
1316	9.55022	1316	10.7251	1316	15.8513
1392	11.4197	1392	12.9933	1392	18.7744
1468	13.3942	1468	14.6689	1468	21.9844
1544	15.5	1544	17.2185	1544	25.5768
1620	18.0399	1620	20.2626	1620	29.5543
1696	20.5893	1696	22.9733	1696	33.8275
1772	23.6714	1772	26.0557	1772	38.5849
1848	26.7337	1848	30.2843	1848	43.8038
1924	30.1601	1924	33.4252	1924	49.4368
2000	33.9673	2000	38.5217	2000	55.3965

Tabla 3: Experiencia empírica de algoritmo de Floyd sin optimizar

Una vez estudiados inserción, selección, quicksort y heapsort, procedemos a compararlos gráficamente y sacar conclusiones

Las conclusiones que sacamos son:

- Se verifica que los algoritmos $\in O(n \cdot log(n))$ son más eficientes que los algoritmos $\in O(n^2)$)
- Es tal la diferencia que las gráficas de quicksort y heapsort parecen paralelas al eje X
- Quicksort y Heapsort no pasan del segundo por ejecución, mientras que Inserción y Selección para 2000000 requieren más de 5000 segundos por ejecución

Floyd. Eficiencia híbrida

Floyd. Eficiencia híbrida

- i7-6700 3.4GHz \rightarrow $T_1(n)$ = 4.38237 · 10⁻⁹ x^3 4.33753 · 10⁻⁷ x^2 + 0.000337001x 0.0504332
- i5-1095G1 1.00 GHz $\rightarrow T_2(n) = 5.12922 \cdot 10^{-9} x^3 - 1.11315 \cdot 10^{-6} x^2 + 0.00083571x - 0.134397$
- Ordenador Moya $\rightarrow T_3(n) =$ 6.77297 · 10⁻⁹ x^3 + 5.13099 · 10⁻⁷ x^2 0.000427834x + 0.0714028

Varianza residual:

- $T_1(n) \longrightarrow Var.res = 0.00204522$
- $T_2(n) \longrightarrow Var.res = 0.044778$
- $T_3(n) \longrightarrow Var.res = 0.000855184$

Hanoi

El código del algoritmo de las torres de Hanoi es el siguiente:

```
void hanoi (int M, int i, int j)

if (M > 0)

{
    hanoi(M-1, i, 6-i-j);
    hanoi (M-1, 6-i-j, j);
}
```

Hanoi. Eficiencia teórica

Estamos ante un algoritmo recursivo, cuya ecuación de recurrencia es:

$$T(n) = 2T(n-1) + 1$$

$$(x-2)(x-1)=0$$

$$T(n) = c_1 \cdot 2^n + c_2$$

Por tanto:

$$T(n) \in O(2^n)$$

Hanoi. Eficiencia empírica

Intel Core i7-6700 3.40 GHz		is-1095G	1 1.00 GHz	
Elementos (n)	Tiempo (s)	Elementos (n)	Tiempo (s)	Ordenad
8	0.00000136207	8	0.0000037376	Elementos (n)
9	0.00000267907	9	0.00000737613	8
10	0.00000528653	10	0.0000145867	9
11	0.0000112702	11	0.0000283526	10
12	0.0000234959	12	0.0000460821	11
13	0.0000457819	13	0.0000722887	12
14	0.0000904406	14	0.0000/2200/	13
15	0.000198225	15	0.000100204	14
16	0.000198223	16	0.000213395	15
17	0.000439214	17		16
18			0.000717674	17
	0.00145113	18	0.00142487	18
19	0.00253865	19	0.00278949	19
20	0.00499491	20	0.00534407	20
21	0.0100156	21	0.0101673	21
22	0.0209075	22	0.0238254	22
23	0.0402523	23	0.0555082	23
24	0.0878626	24	0.112827	24
25	0.171153	25	0.207041	25
26	0.339115	26	0.344851	26
27	0.633015	27	0.761311	27
28	1.28649	28	1.41561	28
29	2.60592	29	2.68719	
30	5.05092	30	5.41493	29
31	10.1126	31	9.82069	30
32	20.301	32	20.2358	31
			1 -55-	J

or Mova Tiempo (s) 0.0000017978 0.00000348253 0.00000737093 0.0000137999 0.0000274451 0.0000548052 0.000110116 0.000198426 0.000427075 0.000796963 0.00159355 0.00321857 0.00633508 0.012697 0.0253476 0.0506946 0.101314 0.202542 0.405264 0.809707 1.6195 3.23942 6.47798 12,9623

Tabla 4: Experiencia empírica de algoritmo de Hanoi sin optimizar

Hanoi. Eficiencia híbrida

Hanoi. Eficiencia híbrida

- i7-6700 3.40GHz $\rightarrow T_1(n) = 4.72408 \cdot 10^{-9} \cdot 2^X$.
- i5-1095G1 1.00 GHz $\rightarrow T_2(n) = 4.70707 \cdot 10^{-9} \cdot 2^X$.
- Ordenador Moya $\to T_3(n) = 6.03512 \cdot 10^{-9} \cdot 2^{x}$.

Varianza residual:

- $T_1(n) \longrightarrow Var.res = 0.000302074$
- $T_2(n) \longrightarrow Var.res = 0.0113386$
- $T_3(n) \longrightarrow Var.res = 3.87795 \cdot 10^{-7}$

Casos especiales

Intel i7-6700 3.40 GHz

i5-1095G1 1.00 GHz

Casos especiales. Otros posibles ajustes funcionales

Intel i7-6700 3.40 GHz

i5-1095G1 1.00 GHz

Para el peor caso, tomamos un vector ordenado a la inversa:

```
for (int i = 0; i < n; i++)

{
     T[i] = n - i;
};</pre>
```

Para el mejor caso, tomamos un vector ordenado correctamente:

```
for (int i = 0; i < n; i++)

{
     T[i] = i;
};</pre>
```

Los datasets de los dos casos extremos para inserción fueron:

Peor caso de inserción		
Elementos (n)	Tiempo (s)	
17600	0.604135	
25200	1.23844	
32800	2193	
40400	3.83771	
48000	4.92643	
55600	6.65173	
63200	9.69109	
70800	10.9557	
78400	11.5942	
86000	14.0269	
93600	16.1625	
101200	19.6924	
108800	22.6823	
116400	25.7428	
124000	28.4764	
131600	32.0522	
139200	37.1527	
146800	40.1051	
154400	45.1864	
162000	49014	
169600	56.3554	
177200	58.3219	
184800	69.8676	
192400	75.6931	
200000	81.4641	

Mejor caso	de inserción
Elementos (n)	Tiempo (s)
17600	0.000119171
25200	0.000154839
32800	0.000254579
40400	0.000268849
48000	0.000315367
55600	0.000221064
63200	0.000253476
70800	0.000218935
78400	0.000203775
86000	0.000202846
93600	0.000349709
101200	0.000310166
108800	0.000319687
116400	0.000467919
124000	0.000452129
131600	0.000604762
139200	0.000651269
146800	0.00058346
154400	0.000549033
162000	0.000648826
169600	0.000551999
177200	0.000769622
184800	0.00049894
192400	0.000406281
200000	0.000481777

Casos especiales 000000000

Tabla 5: Datasets de la ejecución del peor y mejor caso para Inserción

Los datasets de los dos casos extremos para selección fueron:

Peor caso de selección			
Elementos (n)	Tiempo (s)		
17600	0.43298		
25200	1.05541		
32800	2.06101		
40400	2.43286		
48000	3.83567		
55600	4.94909		
63200	5.53895		
70800	7.26986		
78400	9.73586		
86000	10.9612		
93600	13.2779		
101200	16.2492		
108800	18.5379		
124000	21.05		
131600	24.3881		
139200	27383		
146800	31.2269		
154400	32.5782		
162000	36.6571		
169600	39.8171		
177200	43.9252		
184800	47.8018		
192400	52.3513		
200000	55.4702		

Mejor caso de selección		
Elementos (n)	Tiempo (s)	
17600	0.280803	
25200	0.583418	
32800	1.09678	
40400	1.68938	
48000	2.4139	
55600	3.26631	
63200	4.24695	
70800	5477	
78400	6.74688	
86000	8.11066	
93600	9.54485	
101200	11.4866	
108800	15.3544	
116400	15.8972	
124000	17.35	
131600	20.0171	
139200	21.5481	
146800	24.2838	
154400	27.0934	
162000	31.5408	
169600	32.8615	
177200	35-3771	
184800	40.99	
192400	51.2152	
200000	53.4133	

Tabla 6: Datasets de la ejecución del peor y mejor caso para Selección

¿A qué se debe este comportamiento?

8 6 1 3 1 5 2 4 6 8 1 3 1 5 2 4

Inserción

Conclusiones

Conclusiones

El análisis híbrido nos confirma nuestro análisis teórico observando el coeficiente de regresión.

Lo que más influye en el tiempo es el orden de eficiencia del algoritmo.

Diversidad de agentes tecnológicos: diferentes computadores y arquitecturas da lugar a resultados distintos.