MATH-331 Introduction to Real Analysis	
Homework 02	

Pierre-Olivier Parisé Fall 2021

Due date: 20-09-2021 1:20pm Total: /70.

Exercise	1	2	3	4	5	6	7	8	9	10
	(10)	(5)	(5)	(5)	(5)	(10)	(5)	(10)	(5)	(10)
Score										

Table 1: Scores for each exercises

Instructions: You must answer all the questions below and send your solution by email (to parisepo@hawaii.edu). If you decide to not use LaTeX to hand out your solutions, please be sure that after you scan your copy, it is clear and readable. Make sure that you attached a copy of the homework assignment to your homework. No late homework will be accepted. No format other than PDF will be accepted. Name your file as indicated in the syllabus.

WRITING PROBLEMS

For each of the following problems, you will be asked to write a clear and detailed proof. You will have the chance to rewrite your solution in your semester project after receiving feedback from me.

Exercise 1. (10 pts)

- a) Let $\{[a_n, b_n] : n \ge 1\}$ be a family of closed intervals such that $[a_1, b_1] \supset [a_2, b_2] \supset [a_3, b_3] \supset \cdots$. Show that there is a $c \in \mathbb{R}$ such that $c \in [a_n, b_n]$ for all $n \ge \mathbb{N}$. Follow the following steps to prove it:
 - (i) Prove that for any $n, m \ge 1$, $a_n \le b_m$. [hint: put $M := \max\{n, m\}$.]
 - (ii) Show that $\sup\{a_n : n \ge 1\}$ exists.
 - (iii) Show that $c = \sup\{a_n : n \ge 1\}$ satisfies the requirement.
- b) Use this last result to prove that the set \mathbb{R} is uncountable. [Hint: Show that any function $f: \mathbb{N} \to \mathbb{R}$ can't be surjective. To do so, construct a sequence of closed intervals such that $f(n) \notin [a_n, b_n]$ with $a_n < b_n$.]

Exercise 2. (5 pts) Prove that if $a_n \to A$, then $|a_n| \to |A|$.

Exercise 3. (5 pts) Let (a_n) , (b_n) , and (c_n) be sequences of real numbers. Prove that if $a_n \to L$, $b_n \to L$, and $a_n \le c_n \le b_n$, then $c_n \to L$.

Exercise 4. (5 pts) Prove that if $a_n \to A$ and $a_n \ge 0$ for all $n \ge 1$, then $\sqrt{a_n} \to \sqrt{A}$. Follow the following steps to prove it:

- 1. Consider the case A = 0.
- 2. Suppose that $A \neq 0$. Show that there is a $N_1 \in \mathbb{N}$ such that if $n \geq N_1$, then $\sqrt{a_n} \geq \sqrt{|A|/2}$. [Hint: use the definition of convergence of $(a_n)_{n\geq 0}$ with a clever choice of ε and use the properties of the absolute value.]
- 3. Use the convergence of (a_n) again to find a N_2 such that $|a_n A| < \frac{3}{4} \frac{\varepsilon}{\sqrt{|A|}}$.
- 4. Express $\sqrt{a_n} A$ as $\frac{a_n A}{\sqrt{a_n} + \sqrt{A}}$ and put $N = \max\{N_1, N_2\}$. Conclude.

Exercise 5. (5 pts) For each sequence $(a_n)_{n=1}^{\infty}$, define the sequence $(\sigma_n)_{n=1}^{\infty}$ by

$$\sigma_n := \frac{a_1 + a_2 + \dots + a_n}{n} \quad (n \ge 1).$$

Prove that if $a_n \to A$, then $\sigma_n \to A$. Find an example of a divergent sequence (a_n) such that $(\sigma_n)_{n=1}^{\infty}$ converges.

Homework problems

Exercise 6. (10 pts) Use the definition of convergence to prove that each of the following sequences converges.

- a) $(a_n)_{n=1}^{\infty}$ given by $a_n = 5 + 1/n$ for $n \ge 1$.
- **b)** $(a_n)_{n=1}^{\infty}$ given by $a_n = \frac{3n}{2n+1}$ for $n \ge 1$.

Exercise 7. (5 pts) Prove that the sequence $(a_n)_{n=1}^{\infty} = \left(\frac{2n+1}{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence.

Exercise 8. (10 pts) Prove that each of the following sequence diverges.

- a) $(a_n)_{n=1}^{\infty} = ((-1)^n)_{n=1}^{\infty}$.
- **b)** $(a_n)_{n=1}^{\infty} = (\sin(\frac{4n+1}{2}\pi))_{n=1}^{\infty}.$

Exercise 9. (5 pts) Give an examples of two sequences (a_n) and (b_n) such that (a_n) and (b_n) don't converge, but $(a_n + b_n)$ converge.

Exercise 10. (10 pts) With the limit operations and the writing problems, find the limit of the following sequence with general term

- a) $\frac{n^2+4n}{n^2-5}$.
- b) $\frac{n}{n^2-3}$.
- c) $\frac{\cos n}{n}$. [You can use what you know on the cosine function.]
- **d**) $\left(\sqrt{4-\frac{1}{n}}-2\right)n$.

Math 331: Homework 2 0 2. It is given that an > A, so for every ε >0, there exists δ >0, such that lan-N/LE, for all neM. To prove the sequence (and converges to |A|. That means | Ian - IAI | < & for all new | Ian - IAI = | an - A | < & for all new | Given that the sequence an converges to A. Hence, the sequence | Ian | also converges. 3. We say that sequence an>L as n>∞ if given any \$>0, there exists a positive integer m such that lan-L/c & V n 2 m. Given three sequences and, bn, cn of reals, an>L, bn>L as n>0 and an & cn & bn Vn. Since an>L and bn>L as n>0, let &>0 be 0 given, then by above definition 3 positive integers m., m2 such that 1an-21 LE ¥n≥m, +(1) 16n-L/LE V n=m2+2) Let m=max & m., m23. Now Q@ holds for nzm Thus lan-LILE V n > m > 3) | bn-1128 ynzm>4) From 3 and 4 we have L-& < an < L+& Yn > m . (5) L-& < bn < L + & Yn > m . (6) Now given that ancench yna) So for all n > M, using 5, 6 and 7 L-Ecan & Cn & bn & L+E Yn > m L-E+Cn L+E V nzm => Cn -> L as n -> 00 1

Math 331: Homework 2 0 4. An > A and an ≥ O for all nzl, 10 -((0

Math 331: Homework 2 5. $\sigma_n := \underline{\alpha_1 + \alpha_2 + ... + \alpha_n} \quad (n \ge 1)$ $\sigma_n : \underline{\alpha_n}$ Prove that if an >A, then on >A Def: A is the limit of Earl if the following condition is satisfied for every positive number &, there exists natural number N, such that a natural number IN, IF hz N, thun I an-L/2E Let "> an > A exists Giren on = a, +az+ ... +an => non = a, +az+...tan (3) Replace n → (n-1) we set (n-1) 6n-1 = a1+a2+...+an-1+an $(3) - (1) = > n \cdot 6n - (n-1) \cdot 6n - 1 = 0n$ => 100 Non - Non-1 + 6n-1 = 1100 an= A When N=00 On-1 = On => 1500 Non - Non + 6n = A => 1100 On = A = 1100 an Because both the 1000 00 = A and 1500 an = A then both an 3A and on -> A -01 -1

Math 33|: Homework 2

6. a)
$$0n = 5 + h$$

Claim: $0n \to 5$

10n-A|= $|5+h-5|=h < \epsilon$ by Aramedian choose $|n| > h > \epsilon$
 $|n| > 5$

b) $|n| = 3h$

Claim: $|n| > 3/2$
 $|n| = |3n| - 3| = |6n - 6n| - 3$
 $|n| = |3n| - 3| = |6n - 6n| - 3$
 $|n| = |3n| - 3| = |3n| - 3$

=> Qn + 3/2

2(20+1)	
=> 3 > 2n+1	The Strate I
28	
=> 3 -1 < N	Control of the
28	18
choose	(F)
N' > N > 3 - 28	Lan

0

Math 331: Homework 2 7. $(0n)_{n=1}^{\infty} = (2n+1)_{n=1}^{\infty}$ Let & >0 be given and if n>m; Consider $|a_n - a_m| = |2n+1 - 2m+1$ = m(2n+1) - n(2m+1)2mn+m-2mn-n $n \cdot m$ Let m be a positive integer greater than $-1/\xi$. Then $1an-am1/2\xi$ $\forall n \ge m$.

Hence $(an)_{n=1}^{\infty} = (2n+1)_{n=1}^{\infty}$ is a cauchy sequence 1

Math 331: Homework 2 8_0 a) $(a_n)_{n=1}^{\infty} = ((-1)_n)_{n=1}^{\infty}$ Therefore $(an)_{n=1}^{\infty} = (a_1, a_2, a_3, ...)$ Therefore the sequence (an) and OS cillates infinitely between -1 and 1,50 lim f(h) does not exist There fore, (an) is a divergent sequence. b) (an) == (Sin/4n+1 1) lim an= lim sin (4n+17) Now the limit depends on an n value so the limit does not exist and the sequence diverges

both of these diverge

$$(a_n + b_n) = (n - n) = (0)$$
 is convergent

 $(0, a) \frac{n^2 + 4n}{n^2 + 5} = \lim_{n \to \infty} \frac{n^2(1 + \frac{4n}{n^2})}{n^2 + 5}$

1im = 1 n-100

 $\frac{\cos n}{n} = \lim_{n \to \infty} \left(\frac{\cos n}{n} \right)$

lim 1700

apply the squeeze theorem: so

n=lim

$$(a_n + b_n) = 1$$
10. a) $\frac{n^2 + 4n}{n^2 + 5}$

50

0>00 = 1im

50

(0)

0

0

$$(a_n + b_n) =$$

$$10. a) n^2 + 4n$$

$$= (N - N) = (0)$$

$$\frac{1}{1} = \frac{1}{1} \ln \left(\frac{n^2 + 4n}{n^2 - 5} \right)$$

$$\frac{4n = 1 \text{ lim}}{5} \left(\frac{n^2 + 4n}{n^2 - 5} \right)$$

$$\frac{4n = 1 \text{ lim}}{5} \left(\frac{n^2 + 4n}{n^2 - 5} \right)$$

$$\frac{a) n^{2} + 4n \Rightarrow \lim_{n \to \infty} (n^{2} + 4n) = \lim_{n \to \infty} (n^{2} (1 + \frac{4n}{n^{2}}) = \lim_{n \to \infty} (n^{2} (1 + \frac{4$$

= lim

lim 17-300

$$=\frac{100}{100}$$

n=00

n-100

$$\left(\frac{1}{1} - \frac{3}{10^2}\right)$$

lim cosn = 0