(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 12 December 2002 (12.12.2002)

PCT

(10) International Publication Number WO 02/099040 A2

(51) International Patent Classification7:

(21) International Application Number: PCT/US02/17313

(22) International Filing Date: 3 June 2002 (03.06.2002)

(25) Filing Language:

English

C12N

(26) Publication Language:

English

(30) Priority Data:

60/296,076	5 June 2001 (05.06.2001)	US
60/328,605	10 October 2001 (10.10.2001)	US
60/338,733	22 October 2001 (22.10.2001)	US
60/357,253	15 February 2002 (15.02.2002)	US
60/357,600	15 February 2002 (15.02.2002)	US

(71) Applicant (for all designated States except US): EX-ELIXIS, INC. [US/US]; P.O. Box 511, 170 Harbor Way, South San Francisco, CA 94083-0511 (US).

(72) Inventors; and

(75) Inventors, and
(76) Inventors/Applicants (for US only): FRIEDMAN, Lori [US/US]; One Bayside Village Place, Unit 212, San Francisco, CA 94107 (US). PLOWMAN, Gregory, D. [US/US]; 35 Winding Way, San Carlos, CA 94070 (US). BELVIN, Marcia [US/US]; 921 Santa Fe Avenue, Albany, CA 94706 (US). FRANCIS-LANG, Helen [GB/US]; 1782 Pacific Avenue, Apt. 2, San Francisco, CA 94109 (US). LI, Danxi [CN/US]; 90 Behr Avenue, #302, San Francisco, CA 94131 (US). FUNKE, Roel, P. [NL/US];

343 California Avenue, South San Francisco, CA 94080 (US). **LIOUBIN, Mario, N.** [US/US]; 3014 Los Prados, #A310, San Mateo, CA 94403 (US).

- (74) Agents: BRUNELLE, Jan et al.; Exelixis, Inc., P. O. Box 511., 170 Harbor Way, South San Francisco, CA 94083-0511 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

2/099040 A2

(54) Title: IGS AS MODIFIERS OF THE P53 PATHWAY AND METHODS OF USE

(57) Abstract: Human IG genes are identified as modulators of the p53 pathway, and thus are therapeutic targets for disorders associated with defective p53 function. Methods for identifying modulators of p53, comprising screening for agents that modulate the activity of IG are provided.

IGS AS MODIFIERS OF THE p53 PATHWAY AND METHODS OF USE

REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. provisional patent applications 60/296,076 filed 6/5/2001, 60/328,605 filed 10/10/2001, 60/338,733 filed 10/22/2001, 60/357,253 filed 2/15/2002, and 60/357,600 filed 2/15/2002. The contents of the prior applications are hereby incorporated in their entirety.

BACKGROUND OF THE INVENTION

The p53 gene is mutated in over 50 different types of human cancers, including familial and spontaneous cancers, and is believed to be the most commonly mutated gene in human cancer (Zambetti and Levine, FASEB (1993) 7:855-865; Hollstein, et al., Nucleic Acids Res. (1994) 22:3551-3555). Greater than 90% of mutations in the p53 gene are missense mutations that alter a single amino acid that inactivates p53 function.

Aberrant forms of human p53 are associated with poor prognosis, more aggressive tumors, metastasis, and short survival rates (Mitsudomi et al., Clin Cancer Res 2000 Oct; 6(10):4055-63; Koshland, Science (1993) 262:1953).

20

25

30

The human p53 protein normally functions as a central integrator of signals including DNA damage, hypoxia, nucleotide deprivation, and oncogene activation (Prives, Cell (1998) 95:5-8). In response to these signals, p53 protein levels are greatly increased with the result that the accumulated p53 activates cell cycle arrest or apoptosis depending on the nature and strength of these signals. Indeed, multiple lines of experimental evidence have pointed to a key role for p53 as a tumor suppressor (Levine, Cell (1997) 88:323-331). For example, homozygous p53 "knockout" mice are developmentally normal but exhibit nearly 100% incidence of neoplasia in the first year of life (Donehower *et al.*, Nature (1992) 356:215-221).

The biochemical mechanisms and pathways through which p53 functions in normal and cancerous cells are not fully understood, but one clearly important aspect of p53 function is its activity as a gene-specific transcriptional activator. Among the genes with known p53-response elements are several with well-characterized roles in either regulation of the cell cycle or apoptosis, including GADD45, p21/Waf1/Cip1, cyclin G, Bax, IGF-BP3, and MDM2 (Levine, Cell (1997) 88:323-331).

The cell-cell adhesion system at cadherin-based cell-cell adherens junctions (AJs) consists of at least one nectin and an l-afadin. Nectin is a Ca(2+)-independent homophilic

immunoglobulin-like adhesion molecule, and l-afadin is an actin filament-binding protein connecting the cytoplasmic region of nectin to the actin cytoskeleton (Tachibana, K. et al. (2000) J Cell Biol; 150(5): 1161-76). The trans-interaction of both nectin and the interaction of nectin with l-afadin are required for their colocalization with E-cadherin and catenins at Ajs (Tachibana, K. et al. (2000) *supra*). Nectin and cadherin interact through their cytoplasmic domain-associated proteins and possibly these two cell-cell adhesion systems cooperatively organize cell-cell Ajs (Tachibana, K. et al. (2000) *supra*). Nectins are also part of the immunoglobulin superfamily, are homologues of the poliovirus receptor, and are also named poliovirus receptor-related (PRR) proteins (Reymond, N. et al. (2001) J Biol Chem; 276(46): 43205-15). The poliovirus receptor (PVR) is an integral membrane glycoprotein, which plays an important role in allowing the poliovirus to enter a cell. Its extracellular region contains 3 immunoglobulin-like domains. Two integral forms, PVR-alpha and PVR-delta, and 2 soluble forms, PVR-beta and PVR-gamma, lack a transmembrane domain generated by alternative splicing of mRNA. The normal cellular function of PVR is unclear (Eberle, F. et al. (1995) Gene 159: 267-272).

5

10

15

20

25

30

Poliovirus receptor-related 1 (PVRL1 or Nectin1) is an immunoglobulin-related cell adhesion molecule, which mediates cellular entry for many alpha herpes viruses (Reymond, N.et al. (2001) *supra*). Autosomal recessive mutation in the corresponding gene is linked to cleft lip/palate-ectodermal dysplasia (Tachibana, K. et al. (2000) *supra*).

Poliovirus receptor-related 2 (PVRL2 or Nectin2) is a transmembrane glycoprotein and member of the nectin family that shows cell-cell adhesion activity (Eberle, F. et al. (1995) *supra*). It may function as a coreceptor for mutant herpes simplex virus types 1 and 2 and pseudorabies virus (Reymond, N.et al. (2001) *supra*). The PVRL2 gene encodes 2 glycoproteins, PVRL2-alpha (short form) and PVRL2-delta (long form), both of which are ubiquitously present in various normal human tissues (Eberle, F. et al. (1995) *supra*). It is believed that the two isoforms are generated by alternative splicing from a primary transcript (Morrison, M. and Racaniello, V. (1992) J. Virol. 66: 2807-2813).

Nectin-3 (poliovirus receptor-related 3) is also a putative cell adhesion molecule that associates with afadin (Reymond, N. et al. (2000) Gene; 255(2): 347-55). Nectin3/PRR3 is a transmembrane protein, whose extracellular region contains three Ig-like domains (V, C and C) and is approximately 30% identical to other members of this family (Reymond, N. et al. (2000) *supra*). It is mainly expressed in testis and placental tissues. Nectin1, nectin2, and nectin 3 are specifically expressed at the intercellular junctions (Reymond, N. et al. (2000) *supra*).

LNIR is a protein containing three immunoglobulin (Ig) domains, may play a role in protein-protein and protein-ligand interactions, and has low similarity to poliovirus receptor-related 3 (nectin-3), which is a cell adhesion molecule (Reymond, N.et al. (2001) *supra*).

Tumor-associated glycoprotein pE4 (Tage4) is a tumor antigen and member of the immunoglobulin gene superfamily (Baury, B. et al. (2001) Gene; 265(1-2): 185-94). It has three immunoglobulin-like domains and may function in cell-cell adhesion, cell recognition, or viral entry (Baury, B. et al. (2001) *supra*). Tage4 is expressed in rat carcinoma cell Lines and upregulated in rat colon/large intestine tumors (Chadeneau, C., et al (1994) J Biol Chem 269:15601-5; Lim, Y. P., et al. (1996) Cancer Res 56:3934-40; Baury, B., et al. (2001) Gene 265:185-94).

5

10

15

20

25

30

In the central nervous system, many cell adhesion molecules are known to play a role in the establishment and remodeling of the neural circuit. Some of the cell adhesion molecules are known to be anchored to the membrane by the glycosylphosphatidylinositol (GPI) inserted to their C termini, and many GPI-anchored proteins are known to be localized in a Triton-insoluble membrane fraction of low density or so-called "raft" (Nobuo, F. et al. (1999) J Biol Chem; 274(12):8224-30).

Neurotrimin (HNT) is a GPI-anchored protein and a member of the IgLON subfamily of immunoglobulins (Struyk, A. et al. (1995) J Neurosci (3 Pt 2): 2141-56). Neurotrimin contains three immunoglobulin-like domains and is differentially expressed during development (Struyk, A. et al. (1995) *supra*). Neurotrimin is highly expressed in several developing projection systems: in neurons of the thalamus, subplate, and lower cortical laminae in the forebrain and in the pontine nucleus, cerebellar granule cells, and Purkinje cells in the hindbrain. Neurotrimin is also highly expressed in the olfactory bulb, neural retina, dorsal root ganglia, spinal cord, and in a graded distribution in the basal ganglia and hippocampus (Struyk, A. et al. (1995) *supra*).

Opioid-binding protein-cell adhesion molecule-like (OPCML or OBCAM) is a protein that binds opioid alkaloids in the presence of acidic lipids, showing selectivity for mu ligands (Shark, K. Lee, N. (1995) Gene 155: 213-217). It shares structural homology with members of the immunoglobulin protein superfamily, especially with cell-adhesion molecules. It is an extracellular molecule, and the presence of a hydrophobic C terminus suggests that it may be inserted into the cell membrane through phosphatidylinositol linkage (Shark, K. Lee, N. (1995) *supra*). Due to the lack of transmembrane domains necessary for signal transduction, it is not likely that OBCAM acts independently as an

opioid receptor; but probably plays an important accessory role in opioid receptor function (Shark, K. Lee, N. (1995) *supra*).

KIAA1867 is a protein containing five immunoglobulin (Ig) domains, which may play a role in protein-protein and protein-ligand interactions (Nagase, T. et al. (2001) DNA Res;8(2): 85-95). It has a region of low similarity to a region of nephrosis 1 which may have a role in cell-cell interactions (Nagase, T. et al. (2001) *supra*).

5

10

15

20

25

30

Limbic system-associated membrane protein (LAMP or LSAMP) is also a member of the immunoglobulin superfamily that may be involved in the function and development of the limbic system (Pimenta, A. et al. (1996) Gene 170: 189-195). During limbic development, LAMP is found on the surface of axonal membranes and growth cones, where it modulates selective homophilic adhesion molecule, and controls the development of specific patterns of neuronal connections (Pimenta, A. et al. (1996) *supra*). The gene contains a secretory signal sequence, a hydrophobic C-terminus typical of proteins linked by GPI-membrane anchors, 8 putative N-linked glycosylation sites, 3 Ig domains, and several putative phosphorylation sites.

Kilon is another GPI-anchored protein and an immunoglobulin superfamily member that may be involved in the construction and remodeling of the nervous system by facilitating rearrangement of the dendritic connectivity of magnocellular neurons (Nobuo, F. et al. (1999) *supra*). Expression of Kilon is exculsive to the brain.

The ability to manipulate the genomes of model organisms such as *Drosophila* provides a powerful means to analyze biochemical processes that, due to significant evolutionary conservation, have direct relevance to more complex vertebrate organisms. Due to a high level of gene and pathway conservation, the strong similarity of cellular processes, and the functional conservation of genes between these model organisms and mammals, identification of the involvement of novel genes in particular pathways and their functions in such model organisms can directly contribute to the understanding of the correlative pathways and methods of modulating them in mammals (see, for example, Mechler BM et al., 1985 EMBO J 4:1551-1557; Gateff E. 1982 Adv. Cancer Res. 37: 33-74; Watson KL., et al., 1994 J Cell Sci. 18: 19-33; Miklos GL, and Rubin GM. 1996 Cell 86:521-529; Wassarman DA, et al., 1995 Curr Opin Gen Dev 5: 44-50; and Booth DR. 1999 Cancer Metastasis Rev. 18: 261-284). For example, a genetic screen can be carried out in an invertebrate model organism having underexpression (e.g. knockout) or overexpression of a gene (referred to as a "genetic entry point") that yields a visible phenotype. Additional genes are mutated in a random or targeted manner. When a gene

mutation changes the original phenotype caused by the mutation in the genetic entry point, the gene is identified as a "modifier" involved in the same or overlapping pathway as the genetic entry point. When the genetic entry point is an ortholog of a human gene implicated in a disease pathway, such as p53, modifier genes can be identified that may be attractive candidate targets for novel therapeutics.

All references cited herein, including sequence information in referenced Genbank identifier numbers and website references, are incorporated herein in their entireties.

SUMMARY OF THE INVENTION

We have discovered genes that modify the p53 pathway in *Drosophila*, and identified their human orthologs, hereinafter referred to as IG. The invention provides isolated nucleic acid molecules that comprise nucleic acid sequences encoding IG protein as well as fragments and derivatives thereof. Vectors and host cells comprising the IG nucleic acid molecules are also described.

15

20

25

30

The invention provides methods for utilizing these p53 modifier genes and polypeptides to identify candidate therapeutic agents that can be used in the treatment of disorders associated with defective p53 function. Preferred IG-modulating agents specifically bind to IG polypeptides and restore p53 function. Other preferred IG-modulating agents are nucleic acid modulators such as antisense oligomers and RNAi that repress IG gene expression or product activity by, for example, binding to and inhibiting the respective nucleic acid (i.e. DNA or mRNA).

IG-specific modulating agents may be evaluated by any convenient *in vitro* or *in vivo* assay for molecular interaction with an IG polypeptide or nucleic acid. In one embodiment, candidate p53 modulating agents are tested with an assay system comprising an IG polypeptide or nucleic acid. Candidate agents that produce a change in the activity of the assay system relative to controls are identified as candidate p53 modulating agents. The assay system may be cell-based or cell-free. IG-modulating agents include IG related proteins (e.g. dominant negative mutants, and biotherapeutics); IG-specific antibodies; IG-specific antisense oligomers and other nucleic acid modulators; and chemical agents that specifically bind IG or compete with IG binding target. In one specific embodiment, a small molecule modulator is identified using a binding assay. In specific embodiments, the screening assay system is selected from a binding assay, an apoptosis assay, a cell proliferation assay, an angiogenesis assay, and a hypoxic induction assay.

In another embodiment, candidate p53 pathway modulating agents are further tested using a second assay system that detects changes in the p53 pathway, such as angiogenic, apoptotic, or cell proliferation changes produced by the originally identified candidate agent or an agent derived from the original agent. The second assay system may use cultured cells or non-human animals. In specific embodiments, the secondary assay system uses non-human animals, including animals predetermined to have a disease or disorder implicating the p53 pathway, such as an angiogenic, apoptotic, or cell proliferation disorder (e.g. cancer).

5

10

15

20

25

30

The invention further provides methods for modulating the p53 pathway in a mammalian cell by contacting the mammalian cell with an agent that specifically binds an IG polypeptide or nucleic acid. The agent may be a small molecule modulator, a nucleic acid modulator, or an antibody and may be administered to a mammalian animal predetermined to have a pathology associated the p53 pathway.

DETAILED DESCRIPTION OF THE INVENTION

Genetic screens were designed to identify modifiers of the p53 pathway in *Drosophila* in which p53 was overexpressed in the wing (Ollmann M, et al., Cell 2000 101: 91-101). The CG14372 gene was identified as a modifier of the p53 pathway. Accordingly, vertebrate orthologs of these modifiers, and preferably the human orthologs, immunoglobulin superfamily member (IG) genes (i.e., nucleic acids and polypeptides) are attractive drug targets for the treatment of pathologies associated with a defective p53 signaling pathway, such as cancer.

In vitro and in vivo methods of assessing IG function are provided herein. Modulation of the IG or their respective binding partners is useful for understanding the association of the p53 pathway and its members in normal and disease conditions and for developing diagnostics and therapeutic modalities for p53 related pathologies. IG-modulating agents that act by inhibiting or enhancing IG expression, directly or indirectly, for example, by affecting an IG function such as binding activity, can be identified using methods provided herein. IG modulating agents are useful in diagnosis, therapy and pharmaceutical development.

Nucleic acids and polypeptides of the invention

Sequences related to IG nucleic acids and polypeptides that can be used in the invention are disclosed in Genbank (referenced by Genbank identifier (GI) number) as

GI#s 12310958 (SEQ ID NO:1), 11386198 (SEQ ID NO:4), 14738423 (SEQ ID NO:5), 3451333 (SEO ID NO:6), 20545425 (SEO ID NO:7), 15789228 (SEO ID NO:8), 5457320 (SEQ ID NO:11), 11056045 (SEQ ID NO:14), 15636797 (SEQ ID NO:15), 7705412 (SEQ ID NO:16), 18547571 (SEQ ID NO:20), 14017950 (SEQ ID NO:21), 16182763 (SEQ ID NO:22), 9049507 (SEQ ID NO:23), 16716338 (SEQ ID NO:26), 11067408 (SEQ ID NO:27), 4505024 (SEQ ID NO:28), 18598901 (SEQ ID NO:31), 13518022 (SEQ ID NO:32), 4505504 (SEQ ID NO:35), 11602905 (SEQ ID NO:36), 1524087 (SEQ ID NO:38), 5360209 (SEQ ID NO:41), 18589873 (SEQ ID NO:42), and 8394410 (SEQ ID NO:43) for nucleic acid, and GI#s 12310959 (SEO ID NO:44), 11386199 (SEO ID NO:45), 3451335 (SEO ID NO:46), 5918159 (SEO ID NO:49), 7705413 (SEO ID NO:50), 14728132 (SEO ID NO:51), 14017951 (SEQ ID NO:52), 16182764 (SEQ ID NO:53), 9049508 (SEQ ID NO:54), 16716339 (SEQ ID NO:55), 8134522 (SEQ ID NO:56), 11067409 (SEO ID NO:57), 4505025 (SEO ID NO:58), 4505505 (SEO ID NO:59), 11602906 (SEQ ID NO:60), 12643789 (SEQ ID NO:61), 5360210 (SEQ ID NO:62), and 8394411 (SEQ ID NO:63) for polypeptides. Novel nucleic acid sequences of SEQ ID NOs:2, 3, 9, 10, 12, 13, 17, 18, 19, 24, 25, 29, 30, 33, 34, 37, 39, 40, and novel polypeptide sequences of SEO ID NOs:47 and 48 can also be used in the invention. Sequence of GI#15789228 (SEO ID NO:8) was used to deduce full length FLF22162 cDNA (SEQ ID NO:9) and polypeptide (SEQ ID NO:47), as described in Example VI. IGs are proteins with immunoglobulin domains. The term "IG polypeptide" refers to a full-length IG protein or a functionally active fragment or derivative thereof. A "functionally active" IG fragment or derivative exhibits one or more functional activities associated with a full-length, wild-type IG protein, such as antigenic or immunogenic activity, ability to bind natural cellular substrates, etc. The functional activity of IG proteins, derivatives and fragments can be assayed by various methods known to one

10

15

20

25

30

"functionally active" IG fragment or derivative exhibits one or more functional activities associated with a full-length, wild-type IG protein, such as antigenic or immunogenic activity, ability to bind natural cellular substrates, etc. The functional activity of IG proteins, derivatives and fragments can be assayed by various methods known to one skilled in the art (Current Protocols in Protein Science (1998) Coligan et al., eds., John Wiley & Sons, Inc., Somerset, New Jersey) and as further discussed below. For purposes herein, functionally active fragments also include those fragments that comprise one or more structural domains of an IG, such as a binding domain. Protein domains can be identified using the PFAM program (Bateman A., et al., Nucleic Acids Res, 1999, 27:260-2; http://pfam.wustl.edu). For example, the immunoglobulin domains (PFAM 00047) of IG from GI# 12310959 (SEQ ID NO:44) is located at approximately amino acid residues 46 to 115, 148 to 214, and 250 to 307. Methods for obtaining IG polypeptides are also further described below. In some embodiments, preferred fragments are functionally

active, domain-containing fragments comprising at least 25 contiguous amino acids, preferably at least 50, more preferably 75, and most preferably at least 100 contiguous amino acids of any one of SEQ ID NOs:44-63 (an IG). In further preferred embodiments, the fragment comprises the entire immunoglobulin (functionally active) domain.

5

20

25

30

IG protein derivatives typically share a certain degree of sequence identity or sequence similarity with SEQ ID NOs:47 or 48 or a fragment thereof. IG derivatives can be produced by various methods known in the art. The manipulations which result in their production can occur at the gene or protein level. For example, a cloned IG gene sequence can be cleaved at appropriate sites with restriction endonuclease(s) (Wells et al., Philos. 10 Trans. R. Soc. London SerA (1986) 317:415), followed by further enzymatic modification if desired, isolated, and ligated in vitro, and expressed to produce the desired derivative. Alternatively, an IG gene can be mutated in vitro or in vivo, to create and/or destroy translation, initiation, and/or termination sequences, or to create variations in coding regions and/or to form new restriction endonuclease sites or destroy preexisting ones, to 15 facilitate further in vitro modification. A variety of mutagenesis techniques are known in the art such as chemical mutagenesis, in vitro site-directed mutagenesis (Carter et al., Nucl. Acids Res. (1986) 13:4331), use of TAB® linkers (available from Pharmacia and Upjohn, Kalamazoo, MI), etc.

At the protein level, manipulations include post translational modification, e.g. glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc. Any of numerous chemical modifications may be carried out by known technique (e.g. specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH4, acetylation, formylation, oxidation, reduction, metabolic synthesis in the presence of tunicamycin, etc.). Derivative proteins can also be chemically synthesized by use of a peptide synthesizer, for example to introduce nonclassical amino acids or chemical amino acid analogs as substitutions or additions into the IG protein sequence.

Chimeric or fusion proteins can be made comprising an IG protein or fragment thereof (preferably comprising one or more structural or functional domains of the IG protein) joined at its amino- or carboxy-terminus via a peptide bond to an amino acid sequence of a different protein. Chimeric proteins can be produced by any known method, including: recombinant expression of a nucleic acid encoding the protein (comprising a IG-coding sequence joined in-frame to a coding sequence for a different protein); ligating the

appropriate nucleic acid sequences encoding the desired amino acid sequences to each other in the proper coding frame, and expressing the chimeric product; and protein synthetic techniques, e.g. by use of a peptide synthesizer.

The subject IG polypeptides also encompass minor deletion mutants, including N-, and/or C-terminal truncations. Such deletion mutants are readily screened for IG competitive or dominant negative activity.

5

10

15

20

25

30

The term "IG nucleic acid" refers to a DNA or RNA molecule that encodes an IG polypeptide. In preferred embodiments, the nucleic acid encodes a polypeptide selected from the group consisting of SEQ ID NOs:47 and 48. In some embodiments, the nucleic acid comprises a sequence selected from the group consisting of SEQ ID NOs:9 and 10. In a specific embodiment, the invention provides an isolated nucleic acid which encodes a human IG as shown in SEQ ID NOs:47 or 48.

The invention includes a fragment of a nucleic acid, such as a fragment that encodes a binding domain of one of the full-length sequences of the invention. Fragments of an IG nucleic acid sequence can be used for a variety of purposes. As an example, interfering RNA (RNAi) fragments, particularly double-stranded (ds) RNAi, can be used to generate loss-of-function phenotypes; which can, in turn, be used, among other uses, to determine gene function. Certain "antisense" fragments, i.e. that are reverse complements of portions of the coding and/or untranslated regions (e.g. 5' UTR) have utility in inhibiting the function of IG proteins. The fragments are of length sufficient to specifically hybridize with the corresponding IG sequence. The fragments consist of or comprise at least 12, preferably at least 24, more preferably at least 36, and more preferably at least 96 contiguous nucleotides of IG. When the fragments are flanked by other nucleic acid sequences, the total length of the combined nucleic acid sequence is less than 15 kb, preferably less than 10 kb or less than 5kb, more preferably less than 2 kb, and in some cases, preferably less than 500 bases.

In other specific embodiments, preferred fragments of SEQ ID NO:9 encode extracellular or intracellular domains which are located at approximately nucleotides 3-999 and 1059-1167. Additional preferred fragments of SEQ ID NO:9 encode Immunoglobulin domains which are located approximately at nucleotides 90-366, 393-666, and 693-930. These domains may be useful to locate the function and/or binding partners of a protein. For example, a nucleic acid that encodes an extracellular or intracellular domain of a protein may be used to screen for binding partners related to the protein.

The subject nucleic acid sequences may consist solely of the IG nucleic acid or fragments thereof. Alternatively, the subject nucleic acid sequences and fragments thereof may be joined to other components such as labels, peptides, agents that facilitate transport across cell membranes, hybridization-triggered cleavage agents or intercalating agents.

5

10

15

20

25

30

The subject nucleic acid sequences and fragments thereof may also be joined to other nucleic acid sequences (i.e. they may comprise part of larger sequences) and are of synthetic/non-natural sequences and/or are isolated and/or are purified, i.e. unaccompanied by at least some of the material with which it is associated in its natural state. Preferably, the isolated nucleic acids constitute at least about 0.5%, and more preferably at least about 5% by weight of the total nucleic acid present in a given fraction, and are preferably recombinant, meaning that they comprise a non-natural sequence or a natural sequence joined to nucleotide(s) other than that which it is joined to on a natural chromosome.

The subject nucleic acids find a wide variety of applications including use as translatable transcripts, hybridization probes, PCR primers, diagnostic nucleic acids, etc.; use in detecting the presence of IG genes and gene transcripts and in detecting or amplifying nucleic acids encoding additional IG homologs and structural analogs. In diagnosis, IG hybridization probes find use in identifying wild-type and mutant IG alleles in clinical and laboratory samples. Mutant alleles are used to generate allele-specific oligonucleotide (ASO) probes for high-throughput clinical diagnoses. In therapy, therapeutic IG nucleic acids are used to modulate cellular expression or intracellular concentration or availability of active IG.

In one preferred embodiment, the derivative nucleic acid encodes a polypeptide comprising an IG amino acid sequence of SEQ ID NOs:47 or 48, or a fragment or derivative thereof. A derivative IG nucleic acid sequence, or fragment thereof, may comprise 100% sequence identity with SEQ ID NOs:9 or 10, but be a derivative thereof in the sense that it has one or more modifications at the base or sugar moiety, or phosphate backbone. Examples of modifications are well known in the art (Bailey, Ullmann's Encyclopedia of Industrial Chemistry (1998), 6th ed. Wiley and Sons). Such derivatives may be used to provide modified stability or any other desired property.

Preferably, the IG polypeptide or nucleic acid or fragment thereof is from a human, but can also be an ortholog, or derivative thereof with at least 70% sequence identity, preferably at least 80%, more preferably 85%, still more preferably 90%, and most preferably at least 95% sequence identity with IG. Normally, orthologs in different species retain the same function, due to presence of one or more protein motifs and/or 3-

dimensional structures. Orthologs are generally identified by sequence homology analysis, such as BLAST analysis, usually using protein bait sequences. Sequences are assigned as a potential ortholog if the best hit sequence from the forward BLAST result retrieves the original query sequence in the reverse BLAST (Huynen MA and Bork P, Proc Natl Acad Sci (1998) 95:5849-5856; Huynen MA et al., Genome Research (2000) 5 10:1204-1210). Programs for multiple sequence alignment, such as CLUSTAL (Thompson JD et al., 1994, Nucleic Acids Res 22:4673-4680) may be used to highlight conserved regions and/or residues of orthologous proteins and to generate phylogenetic trees. In a phylogenetic tree representing multiple homologous sequences from diverse 10 species (e.g., retrieved through BLAST analysis), orthologous sequences from two species generally appear closest on the tree with respect to all other sequences from these two species. Structural threading or other analysis of protein folding (e.g., using software by ProCeryon, Biosciences, Salzburg, Austria) may also identify potential orthologs. In evolution, when a gene duplication event follows speciation, a single gene in one species, 15 such as Drosophila, may correspond to multiple genes (paralogs) in another, such as human. As used herein, the term "orthologs" encompasses paralogs. As used herein, "percent (%) sequence identity" with respect to a subject sequence, or a specified portion of a subject sequence, is defined as the percentage of nucleotides or amino acids in the candidate derivative sequence identical with the nucleotides or amino acids in the subject 20 sequence (or specified portion thereof), after aligning the sequences and introducing gaps, if necessary to achieve the maximum percent sequence identity, as generated by the program WU-BLAST-2.0a19 (Altschul et al., J. Mol. Biol. (1997) 215:403-410; http://blast.wustl.edu/blast/README.html) with all the search parameters set to default values. The HSP S and HSP S2 parameters are dynamic values and are established by the 25 program itself depending upon the composition of the particular sequence and composition of the particular database against which the sequence of interest is being searched. A % identity value is determined by the number of matching identical nucleotides or amino acids divided by the sequence length for which the percent identity is being reported. "Percent (%) amino acid sequence similarity" is determined by doing the same calculation as for determining % amino acid sequence identity, but including conservative amino acid 30 substitutions in addition to identical amino acids in the computation.

A conservative amino acid substitution is one in which an amino acid is substituted for another amino acid having similar properties such that the folding or activity of the protein is not significantly affected. Aromatic amino acids that can be substituted for each other

are phenylalanine, tryptophan, and tyrosine; interchangeable hydrophobic amino acids are leucine, isoleucine, methionine, and valine; interchangeable polar amino acids are glutamine and asparagine; interchangeable basic amino acids are arginine, lysine and histidine; interchangeable acidic amino acids are aspartic acid and glutamic acid; and interchangeable small amino acids are alanine, serine, threonine, cysteine and glycine.

5

10

15

Alternatively, an alignment for nucleic acid sequences is provided by the local homology algorithm of Smith and Waterman (Smith and Waterman, 1981, Advances in Applied Mathematics 2:482-489; database: European Bioinformatics Institute http://www.ebi.ac.uk/MPsrch/; Smith and Waterman, 1981, J. of Molec.Biol., 147:195-197; Nicholas et al., 1998, "A Tutorial on Searching Sequence Databases and Sequence Scoring Methods" (www.psc.edu) and references cited therein.; W.R. Pearson, 1991, Genomics 11:635-650). This algorithm can be applied to amino acid sequences by using the scoring matrix developed by Dayhoff (Dayhoff: Atlas of Protein Sequences and Structure, M. O. Dayhoff ed., 5 suppl. 3:353-358, National Biomedical Research Foundation, Washington, D.C., USA), and normalized by Gribskov (Gribskov 1986 Nucl. Acids Res. 14(6):6745-6763). The Smith-Waterman algorithm may be employed where default parameters are used for scoring (for example, gap open penalty of 12, gap extension penalty of two). From the data generated, the "Match" value reflects "sequence identity."

20 Derivative nucleic acid molecules of the subject nucleic acid molecules include sequences that hybridize to the nucleic acid sequence of any of SEQ ID NOs:1-43. The stringency of hybridization can be controlled by temperature, ionic strength, pH, and the presence of denaturing agents such as formamide during hybridization and washing. Conditions routinely used are set out in readily available procedure texts (e.g., Current 25 Protocol in Molecular Biology, Vol. 1, Chap. 2.10, John Wiley & Sons, Publishers (1994); Sambrook et al., Molecular Cloning, Cold Spring Harbor (1989)). In some embodiments, a nucleic acid molecule of the invention is capable of hybridizing to a nucleic acid molecule containing the nucleotide sequence of any one of SEO ID NOs:1 - 43 under stringent hybridization conditions that comprise: prehybridization of filters containing nucleic acid for 8 hours to overnight at 65° C in a solution comprising 6X single strength 30 citrate (SSC) (1X SSC is 0.15 M NaCl, 0.015 M Na citrate; pH 7.0), 5X Denhardt's solution, 0.05% sodium pyrophosphate and 100 µg/ml herring sperm DNA; hybridization for 18-20 hours at 65° C in a solution containing 6X SSC, 1X Denhardt's solution, 100

 μ g/ml yeast tRNA and 0.05% sodium pyrophosphate; and washing of filters at 65° C for 1h in a solution containing 0.2X SSC and 0.1% SDS (sodium dodecyl sulfate).

In other embodiments, moderately stringent hybridization conditions are used that comprise: pretreatment of filters containing nucleic acid for 6 h at 40° C in a solution containing 35% formamide, 5X SSC, 50 mM Tris-HCl (pH7.5), 5mM EDTA, 0.1% PVP, 0.1% Ficoll, 1% BSA, and 500 μ g/ml denatured salmon sperm DNA; hybridization for 18-20h at 40° C in a solution containing 35% formamide, 5X SSC, 50 mM Tris-HCl (pH7.5), 5mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 μ g/ml salmon sperm DNA, and 10% (wt/vol) dextran sulfate; followed by washing twice for 1 hour at 55° C in a solution containing 2X SSC and 0.1% SDS.

5

10

15

20

25

30

Alternatively, low stringency conditions can be used that comprise: incubation for 8 hours to overnight at 37° C in a solution comprising 20% formamide, 5 x SSC, 50 mM sodium phosphate (pH 7.6), 5X Denhardt's solution, 10% dextran sulfate, and 20 μ g/ml denatured sheared salmon sperm DNA; hybridization in the same buffer for 18 to 20 hours; and washing of filters in 1 x SSC at about 37° C for 1 hour.

<u>Isolation, Production, Expression, and Mis-expression of IG Nucleic Acids and Polypeptides</u>

IG nucleic acids and polypeptides, useful for identifying and testing agents that modulate IG function and for other applications related to the involvement of IG in the p53 pathway. IG nucleic acids and derivatives and orthologs thereof may be obtained using any available method. For instance, techniques for isolating cDNA or genomic DNA sequences of interest by screening DNA libraries or by using polymerase chain reaction (PCR) are well known in the art. In general, the particular use for the protein will dictate the particulars of expression, production, and purification methods. For instance, production of proteins for use in screening for modulating agents may require methods that preserve specific biological activities of these proteins, whereas production of proteins for antibody generation may require structural integrity of particular epitopes. Expression of proteins to be purified for screening or antibody production may require the addition of specific tags (e.g., generation of fusion proteins). Overexpression of an IG protein for assays used to assess IG function, such as involvement in cell cycle regulation or hypoxic response, may require expression in eukaryotic cell lines capable of these cellular activities. Techniques for the expression, production, and purification of proteins are well known in the art; any suitable means therefore may be used (e.g., Higgins SJ and Hames

BD (eds.) Protein Expression: A Practical Approach, Oxford University Press Inc., New York 1999; Stanbury PF et al., Principles of Fermentation Technology, 2nd edition, Elsevier Science, New York, 1995; Doonan S (ed.) Protein Purification Protocols, Humana Press, New Jersey, 1996; Coligan JE et al, Current Protocols in Protein Science (eds.), 1999, John Wiley & Sons, New York). In particular embodiments, recombinant IG is expressed in a cell line known to have defective p53 function (e.g. SAOS-2 osteoblasts, H1299 lung cancer cells, C33A and HT3 cervical cancer cells, HT-29 and DLD-1 colon cancer cells, among others, available from American Type Culture Collection (ATCC), Manassas, VA). The recombinant cells are used in cell-based screening assay systems of the invention, as described further below.

5

10

15

20

25

30

The nucleotide sequence encoding an IG polypeptide can be inserted into any appropriate expression vector. The necessary transcriptional and translational signals, including promoter/enhancer element, can derive from the native IG gene and/or its flanking regions or can be heterologous. A variety of host-vector expression systems may be utilized, such as mammalian cell systems infected with virus (e.g. vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g. baculovirus); microorganisms such as yeast containing yeast vectors, or bacteria transformed with bacteriophage, plasmid, or cosmid DNA. A host cell strain that modulates the expression of, modifies, and/or specifically processes the gene product may be used.

To detect expression of the IG gene product, the expression vector can comprise a promoter operably linked to an IG gene nucleic acid, one or more origins of replication, and, one or more selectable markers (e.g. thymidine kinase activity, resistance to antibiotics, etc.). Alternatively, recombinant expression vectors can be identified by assaying for the expression of the IG gene product based on the physical or functional properties of the IG protein in in vitro assay systems (e.g. immunoassays).

The IG protein, fragment, or derivative may be optionally expressed as a fusion, or chimeric protein product (i.e. it is joined via a peptide bond to a heterologous protein sequence of a different protein), for example to facilitate purification or detection. A chimeric product can be made by ligating the appropriate nucleic acid sequences encoding the desired amino acid sequences to each other using standard methods and expressing the chimeric product. A chimeric product may also be made by protein synthetic techniques, e.g. by use of a peptide synthesizer (Hunkapiller et al., Nature (1984) 310:105-111).

Once a recombinant cell that expresses the IG gene sequence is identified, the gene product can be isolated and purified using standard methods (e.g. ion exchange, affinity,

and gel exclusion chromatography; centrifugation; differential solubility; electrophoresis, cite purification reference). Alternatively, native IG proteins can be purified from natural sources, by standard methods (e.g. immunoaffinity purification). Once a protein is obtained, it may be quantified and its activity measured by appropriate methods, such as immunoassay, bioassay, or other measurements of physical properties, such as crystallography.

The methods of this invention may also use cells that have been engineered for altered expression (mis-expression) of IG or other genes associated with the p53 pathway. As used herein, mis-expression encompasses ectopic expression, over-expression, under-expression, and non-expression (e.g. by gene knock-out or blocking expression that would otherwise normally occur).

Genetically modified animals

5

10

15

20

25

30

Animal models that have been genetically modified to alter IG expression may be used in in vivo assays to test for activity of a candidate p53 modulating agent, or to further assess the role of IG in a p53 pathway process such as apoptosis or cell proliferation. Preferably, the altered IG expression results in a detectable phenotype, such as decreased or increased levels of cell proliferation, angiogenesis, or apoptosis compared to control animals having normal IG expression. The genetically modified animal may additionally have altered p53 expression (e.g. p53 knockout). Preferred genetically modified animals are mammals such as primates, rodents (preferably mice), cows, horses, goats, sheep, pigs, dogs and cats. Preferred non-mammalian species include zebrafish, C. elegans, and Drosophila. Preferred genetically modified animals are transgenic animals having a heterologous nucleic acid sequence present as an extrachromosomal element in a portion. of its cells, i.e. mosaic animals (see, for example, techniques described by Jakobovits, 1994, Curr. Biol. 4:761-763.) or stably integrated into its germ line DNA (i.e., in the genomic sequence of most or all of its cells). Heterologous nucleic acid is introduced into the germ line of such transgenic animals by genetic manipulation of, for example, embryos or embryonic stem cells of the host animal.

Methods of making transgenic animals are well-known in the art (for transgenic mice see Brinster et al., Proc. Nat. Acad. Sci. USA 82: 4438-4442 (1985), U.S. Pat. Nos. 4,736,866 and 4,870,009, both by Leder et al., U.S. Pat. No. 4,873,191 by Wagner et al., and Hogan, B., Manipulating the Mouse Embryo, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1986); for particle bombardment see U.S. Pat. No., 4,945,050,

by Sandford et al.; for transgenic Drosophila see Rubin and Spradling, Science (1982) 218:348-53 and U.S. Pat. No. 4,670,388; for transgenic insects see Berghammer A.J. et al., A Universal Marker for Transgenic Insects (1999) Nature 402:370-371; for transgenic Zebrafish see Lin S., Transgenic Zebrafish, Methods Mol Biol. (2000);136:375-3830); for microinjection procedures for fish, amphibian eggs and birds see Houdebine and Chourrout, Experientia (1991) 47:897-905; for transgenic rats see Hammer et al., Cell (1990) 63:1099-1112; and for culturing of embryonic stem (ES) cells and the subsequent production of transgenic animals by the introduction of DNA into ES cells using methods such as electroporation, calcium phosphate/DNA precipitation and direct injection see, e.g., Teratocarcinomas and Embryonic Stem Cells, A Practical Approach, E. J. Robertson, ed., IRL Press (1987)). Clones of the nonhuman transgenic animals can be produced according to available methods (see Wilmut, I. et al. (1997) Nature 385:810-813; and PCT International Publication Nos. WO 97/07668 and WO 97/07669).

In one embodiment, the transgenic animal is a "knock-out" animal having a 15 heterozygous or homozygous alteration in the sequence of an endogenous IG gene that results in a decrease of IG function, preferably such that IG expression is undetectable or insignificant. Knock-out animals are typically generated by homologous recombination with a vector comprising a transgene having at least a portion of the gene to be knocked out. Typically a deletion, addition or substitution has been introduced into the transgene 20 to functionally disrupt it. The transgene can be a human gene (e.g., from a human genomic clone) but more preferably is an ortholog of the human gene derived from the transgenic host species. For example, a mouse IG gene is used to construct a homologous recombination vector suitable for altering an endogenous IG gene in the mouse genome. Detailed methodologies for homologous recombination in mice are available (see 25 Capecchi, Science (1989) 244:1288-1292; Joyner et al., Nature (1989) 338:153-156). Procedures for the production of non-rodent transgenic mammals and other animals are also available (Houdebine and Chourrout, supra; Pursel et al., Science (1989) 244:1281-1288; Simms et al., Bio/Technology (1988) 6:179-183). In a preferred embodiment, knock-out animals, such as mice harboring a knockout of a specific gene, may be used to produce antibodies against the human counterpart of the gene that has been knocked out 30 (Claesson MH et al., (1994) Scan J Immunol 40:257-264; Declerck PJ et al., (1995) J Biol Chem. 270:8397-400).

In another embodiment, the transgenic animal is a "knock-in" animal having an alteration in its genome that results in altered expression (e.g., increased (including

ectopic) or decreased expression) of the IG gene, e.g., by introduction of additional copies of IG, or by operatively inserting a regulatory sequence that provides for altered expression of an endogenous copy of the IG gene. Such regulatory sequences include inducible, tissue-specific, and constitutive promoters and enhancer elements. The knockin can be homozygous or heterozygous.

5

10

15

20

25

Transgenic nonhuman animals can also be produced that contain selected systems allowing for regulated expression of the transgene. One example of such a system that may be produced is the cre/loxP recombinase system of bacteriophage P1 (Lakso *et al.*, PNAS (1992) 89:6232-6236; U.S. Pat. No. 4,959,317). If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase. Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae (O'Gorman et al. (1991) Science 251:1351-1355; U.S. Pat. No. 5,654,182). In a preferred embodiment, both Cre-LoxP and Flp-Frt are used in the same system to regulate expression of the transgene, and for sequential deletion of vector sequences in the same cell (Sun X et al (2000) Nat Genet 25:83-6).

The genetically modified animals can be used in genetic studies to further elucidate the p53 pathway, as animal models of disease and disorders implicating defective p53 function, and for *in vivo* testing of candidate therapeutic agents, such as those identified in screens described below. The candidate therapeutic agents are administered to a genetically modified animal having altered IG function and phenotypic changes are compared with appropriate control animals such as genetically modified animals that receive placebo treatment, and/or animals with unaltered IG expression that receive candidate therapeutic agent.

In addition to the above-described genetically modified animals having altered IG function, animal models having defective p53 function (and otherwise normal IG function), can be used in the methods of the present invention. For example, a p53 knockout mouse can be used to assess, *in vivo*, the activity of a candidate p53 modulating agent identified in one of the *in vitro* assays described below. p53 knockout mice are described in the literature (Jacks et al., Nature 2001;410:1111-1116, 1043-1044; Donehower *et al.*, supra). Preferably, the candidate p53 modulating agent when

administered to a model system with cells defective in p53 function, produces a detectable phenotypic change in the model system indicating that the p53 function is restored, i.e., the cells exhibit normal cell cycle progression.

5 **Modulating Agents**

10

15

20

25

30

The invention provides methods to identify agents that interact with and/or modulate the function of IG and/or the p53 pathway. Such agents are useful in a variety of diagnostic and therapeutic applications associated with the p53 pathway, as well as in further analysis of the IG protein and its contribution to the p53 pathway. Accordingly, the invention also provides methods for modulating the p53 pathway comprising the step of specifically modulating IG activity by administering an IG-interacting or -modulating agent.

In a preferred embodiment, IG-modulating agents inhibit or enhance IG activity or otherwise affect normal IG function, including transcription, protein expression, protein localization, and cellular or extra-cellular activity. In a further preferred embodiment, the candidate p53 pathway- modulating agent specifically modulates the function of the IG. The phrases "specific modulating agent", "specifically modulates", etc., are used herein to refer to modulating agents that directly bind to the IG polypeptide or nucleic acid, and preferably inhibit, enhance, or otherwise alter, the function of the IG. The term also encompasses modulating agents that alter the interaction of the IG with a binding partner or substrate (e.g. by binding to a binding partner of an IG, or to a protein/binding partner complex, and inhibiting function).

Preferred IG-modulating agents include small molecule compounds; IG-interacting proteins, including antibodies and other biotherapeutics; and nucleic acid modulators such as antisense and RNA inhibitors. The modulating agents may be formulated in pharmaceutical compositions, for example, as compositions that may comprise other active ingredients, as in combination therapy, and/or suitable carriers or excipients. Techniques for formulation and administration of the compounds may be found in "Remington's Pharmaceutical Sciences" Mack Publishing Co., Easton, PA, 19th edition.

Small molecule modulators

Small molecules, are often preferred to modulate function of proteins with enzymatic function, and/or containing protein interaction domains. Chemical agents, referred to in the art as "small molecule" compounds are typically organic, non-peptide molecules,

having a molecular weight less than 10,000, preferably less than 5,000, more preferably less than 1,000, and most preferably less than 500. This class of modulators includes chemically synthesized molecules, for instance, compounds from combinatorial chemical libraries. Synthetic compounds may be rationally designed or identified based on known or inferred properties of the IG protein or may be identified by screening compound libraries. Alternative appropriate modulators of this class are natural products, particularly secondary metabolites from organisms such as plants or fungi, which can also be identified by screening compound libraries for IG-modulating activity. Methods for generating and obtaining compounds are well known in the art (Schreiber SL, Science (2000) 151: 1964-1969; Radmann J and Gunther J, Science (2000) 151:1947-1948).

Small molecule modulators identified from screening assays, as described below, can be used as lead compounds from which candidate clinical compounds may be designed, optimized, and synthesized. Such clinical compounds may have utility in treating pathologies associated with the p53 pathway. The activity of candidate small molecule modulating agents may be improved several-fold through iterative secondary functional validation, as further described below, structure determination, and candidate modulator modification and testing. Additionally, candidate clinical compounds are generated with specific regard to clinical and pharmacological properties. For example, the reagents may be derivatized and re-screened using *in vitro* and *in vivo* assays to optimize activity and minimize toxicity for pharmaceutical development.

Protein Modulators

5

10

15

20

25

30

Specific IG-interacting proteins are useful in a variety of diagnostic and therapeutic applications related to the p53 pathway and related disorders, as well as in validation assays for other IG-modulating agents. In a preferred embodiment, IG-interacting proteins affect normal IG function, including transcription, protein expression, protein localization, and cellular or extra-cellular activity. In another embodiment, IG-interacting proteins are useful in detecting and providing information about the function of IG proteins, as is relevant to p53 related disorders, such as cancer (e.g., for diagnostic means).

An IG-interacting protein may be endogenous, i.e. one that naturally interacts genetically or biochemically with an IG, such as a member of the IG pathway that modulates IG expression, localization, and/or activity. IG-modulators include dominant negative forms of IG-interacting proteins and of IG proteins themselves. Yeast two-hybrid and variant screens offer preferred methods for identifying endogenous IG-interacting

proteins (Finley, R. L. et al. (1996) in DNA Cloning-Expression Systems: A Practical Approach, eds. Glover D. & Hames B. D (Oxford University Press, Oxford, England), pp. 169-203; Fashema SF et al., Gene (2000) 250:1-14; Drees BL Curr Opin Chem Biol (1999) 3:64-70; Vidal M and Legrain P Nucleic Acids Res (1999) 27:919-29; and U.S.

Pat. No. 5,928,868). Mass spectrometry is an alternative preferred method for the elucidation of protein complexes (reviewed in, e.g., Pandley A and Mann M, Nature (2000) 405:837-846; Yates JR 3rd, Trends Genet (2000) 16:5-8).

An IG-interacting protein may be an exogenous protein, such as an IG-specific antibody or a T-cell antigen receptor (see, e.g., Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory; Harlow and Lane (1999) Using antibodies: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press). IG antibodies are further discussed below.

In preferred embodiments, an IG-interacting protein specifically binds an IG protein. In alternative preferred embodiments, an IG-modulating agent binds an IG substrate, binding partner, or cofactor.

Antibodies

10

15

20

25

30

In another embodiment, the protein modulator is an IG specific antibody agonist or antagonist. The antibodies have therapeutic and diagnostic utilities, and can be used in screening assays to identify IG modulators. The antibodies can also be used in dissecting the portions of the IG pathway responsible for various cellular responses and in the general processing and maturation of the IG.

Antibodies that specifically bind IG polypeptides can be generated using known methods. Preferably the antibody is specific to a mammalian ortholog of IG polypeptide, and more preferably, to human IG. Antibodies may be polyclonal, monoclonal (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab').sub.2 fragments, fragments produced by a FAb expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above. Epitopes of IG which are particularly antigenic can be selected, for example, by routine screening of IG polypeptides for antigenicity or by applying a theoretical method for selecting antigenic regions of a protein (Hopp and Wood (1981), Proc. Nati. Acad. Sci. U.S.A. 78:3824-28; Hopp and Wood, (1983) Mol. Immunol. 20:483-89; Sutcliffe et al., (1983) Science 219:660-66) to the amino acid sequence shown in any of SEQ ID NOs:44 - 63. Monoclonal antibodies with affinities of 10⁸ M⁻¹ preferably 10⁹ M⁻¹ to 10¹⁰ M⁻¹, or

stronger can be made by standard procedures as described (Harlow and Lane, *supra*; Goding (1986) Monoclonal Antibodies: Principles and Practice (2d ed) Academic Press, New York; and U.S. Pat. Nos. 4,381,292; 4,451,570; and 4,618,577). Antibodies may be generated against crude cell extracts of IG or substantially purified fragments thereof. If IG fragments are used, they preferably comprise at least 10, and more preferably, at least 20 contiguous amino acids of an IG protein. In a particular embodiment, IG-specific antigens and/or immunogens are coupled to carrier proteins that stimulate the immune response. For example, the subject polypeptides are covalently coupled to the keyhole limpet hemocyanin (KLH) carrier, and the conjugate is emulsified in Freund's complete adjuvant, which enhances the immune response. An appropriate immune system such as a laboratory rabbit or mouse is immunized according to conventional protocols.

5

10

15

The presence of IG-specific antibodies is assayed by an appropriate assay such as a solid phase enzyme-linked immunosorbant assay (ELISA) using immobilized corresponding IG polypeptides. Other assays, such as radioimmunoassays or fluorescent assays might also be used.

Chimeric antibodies specific to IG polypeptides can be made that contain different portions from different animal species. For instance, a human immunoglobulin constant region may be linked to a variable region of a murine mAb, such that the antibody derives its biological activity from the human antibody, and its binding specificity from the 20 murine fragment. Chimeric antibodies are produced by splicing together genes that encode the appropriate regions from each species (Morrison et al., Proc. Natl. Acad. Sci. (1984) 81:6851-6855; Neuberger et al., Nature (1984) 312:604-608; Takeda et al., Nature (1985) 31:452-454). Humanized antibodies, which are a form of chimeric antibodies, can be generated by grafting complementary-determining regions (CDRs) (Carlos, T. M., J. M. 25 Harlan. 1994. Blood 84:2068-2101) of mouse antibodies into a background of human framework regions and constant regions by recombinant DNA technology (Riechmann LM, et al., 1988 Nature 323: 323-327). Humanized antibodies contain ~10% murine sequences and ~90% human sequences, and thus further reduce or eliminate immunogenicity, while retaining the antibody specificities (Co MS, and Queen C. 1991 30 Nature 351: 501-501; Morrison SL. 1992 Ann. Rev. Immun. 10:239-265). Humanized antibodies and methods of their production are well-known in the art (U.S. Pat. Nos. 5,530,101, 5,585,089, 5,693,762, and 6,180,370).

IG-specific single chain antibodies which are recombinant, single chain polypeptides formed by linking the heavy and light chain fragments of the Fv regions via an amino acid

bridge, can be produced by methods known in the art (U.S. Pat. No. 4,946,778; Bird, Science (1988) 242:423-426; Huston et al., Proc. Natl. Acad. Sci. USA (1988) 85:5879-5883; and Ward et al., Nature (1989) 334:544-546).

Other suitable techniques for antibody production involve in vitro exposure of lymphocytes to the antigenic polypeptides or alternatively to selection of libraries of antibodies in phage or similar vectors (Huse et al., Science (1989) 246:1275-1281). As used herein, T-cell antigen receptors are included within the scope of antibody modulators (Harlow and Lane, 1988, *supra*).

10

15

20

25

30

The polypeptides and antibodies of the present invention may be used with or without modification. Frequently, antibodies will be labeled by joining, either covalently or non-covalently, a substance that provides for a detectable signal, or that is toxic to cells that express the targeted protein (Menard S, et al., Int J. Biol Markers (1989) 4:131-134). A wide variety of labels and conjugation techniques are known and are reported extensively in both the scientific and patent literature. Suitable labels include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent moieties, fluorescent emitting lanthanide metals, chemiluminescent moieties, bioluminescent moieties, magnetic particles, and the like (U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241). Also, recombinant immunoglobulins may be produced (U.S. Pat. No. 4,816,567). Antibodies to cytoplasmic polypeptides may be delivered and reach their targets by conjugation with membrane-penetrating toxin proteins (U.S. Pat. No. 6,086,900).

When used therapeutically in a patient, the antibodies of the subject invention are typically administered parenterally, when possible at the target site, or intravenously. The therapeutically effective dose and dosage regimen is determined by clinical studies. Typically, the amount of antibody administered is in the range of about 0.1 mg/kg –to about 10 mg/kg of patient weight. For parenteral administration, the antibodies are formulated in a unit dosage injectable form (e.g., solution, suspension, emulsion) in association with a pharmaceutically acceptable vehicle. Such vehicles are inherently nontoxic and non-therapeutic. Examples are water, saline, Ringer's solution, dextrose solution, and 5% human serum albumin. Nonaqueous vehicles such as fixed oils, ethyl oleate, or liposome carriers may also be used. The vehicle may contain minor amounts of additives, such as buffers and preservatives, which enhance isotonicity and chemical stability or otherwise enhance therapeutic potential. The antibodies' concentrations in such vehicles are typically in the range of about 1 mg/ml to about 10 mg/ml.

Immunotherapeutic methods are further described in the literature (US Pat. No. 5,859,206; WO0073469).

Specific biotherapeutics

In a preferred embodiment, an IG-interacting protein may have biotherapeutic applications. Biotherapeutic agents formulated in pharmaceutically acceptable carriers and dosages may be used to activate or inhibit signal transduction pathways. This modulation may be accomplished by binding a ligand, thus inhibiting the activity of the pathway; or by binding a receptor, either to inhibit activation of, or to activate, the receptor. Alternatively, the biotherapeutic may itself be a ligand capable of activating or inhibiting a receptor. Biotherapeutic agents and methods of producing them are described in detail in U.S. Pat. No. 6,146,628.

IG ligand(s), antibodies to the ligand(s) or the IG itself may be used as biotherapeutics to modulate the activity of IG in the p53 pathway.

15

20

25

30

10

5

Nucleic Acid Modulators

Other preferred IG-modulating agents comprise nucleic acid molecules, such as antisense oligomers or double stranded RNA (dsRNA), which generally inhibit IG activity. Preferred nucleic acid modulators interfere with the function of the IG nucleic acid such as DNA replication, transcription, translocation of the IG RNA to the site of protein translation, translation of protein from the IG RNA, splicing of the IG RNA to yield one or more mRNA species, or catalytic activity which may be engaged in or facilitated by the IG RNA.

In one embodiment, the antisense oligomer is an oligonucleotide that is sufficiently complementary to an IG mRNA to bind to and prevent translation, preferably by binding to the 5' untranslated region. IG-specific antisense oligonucleotides, preferably range from at least 6 to about 200 nucleotides. In some embodiments the oligonucleotide is preferably at least 10, 15, or 20 nucleotides in length. In other embodiments, the oligonucleotide is preferably less than 50, 40, or 30 nucleotides in length. The oligonucleotide can be DNA or RNA or a chimeric mixture or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone. The oligonucleotide may include other appending groups such as peptides, agents that facilitate transport across the cell membrane, hybridization-triggered cleavage agents, and intercalating agents.

In another embodiment, the antisense oligomer is a phosphothioate morpholino oligomer (PMO). PMOs are assembled from four different morpholino subunits, each of which contain one of four genetic bases (A, C, G, or T) linked to a six-membered morpholine ring. Polymers of these subunits are joined by non-ionic phosphodiamidate intersubunit linkages. Details of how to make and use PMOs and other antisense oligomers are well known in the art (e.g. see WO99/18193; Probst JC, Antisense Oligodeoxynucleotide and Ribozyme Design, Methods. (2000) 22(3):271-281; Summerton J, and Weller D. 1997 Antisense Nucleic Acid Drug Dev. :7:187-95; US Pat. No. 5,235,033; and US Pat No. 5,378,841).

Alternative preferred IG nucleic acid modulators are double-stranded RNA species mediating RNA interference (RNAi). RNAi is the process of sequence-specific, post-transcriptional gene silencing in animals and plants, initiated by double-stranded RNA (dsRNA) that is homologous in sequence to the silenced gene. Methods relating to the use of RNAi to silence genes in *C. elegans*, *Drosophila*, plants, and humans are known in the art (Fire A, et al., 1998 Nature 391:806-811; Fire, A. Trends Genet. 15, 358-363 (1999); Sharp, P. A. RNA interference 2001. Genes Dev. 15, 485-490 (2001); Hammond, S. M., et al., Nature Rev. Genet. 2, 110-1119 (2001); Tuschl, T. Chem. Biochem. 2, 239-245 (2001); Hamilton, A. et al., Science 286, 950-952 (1999); Hammond, S. M., et al., Nature 404, 293-296 (2000); Zamore, P. D., et al., Cell 101, 25-33 (2000); Bernstein, E., et al., Nature 409, 363-366 (2001); Elbashir, S. M., et al., Genes Dev. 15, 188-200 (2001); WO0129058; WO9932619; Elbashir SM, et al., 2001 Nature 411:494-498).

Nucleic acid modulators are commonly used as research reagents, diagnostics, and therapeutics. For example, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used to elucidate the function of particular genes (see, for example, U.S. Pat. No. 6,165,790). Nucleic acid modulators are also used, for example, to distinguish between functions of various members of a biological pathway. For example, antisense oligomers have been employed as therapeutic moieties in the treatment of disease states in animals and man and have been demonstrated in numerous clinical trials to be safe and effective (Milligan JF, et al, Current Concepts in Antisense Drug Design, J Med Chem. (1993) 36:1923-1937; Tonkinson JL et al., Antisense Oligodeoxynucleotides as Clinical Therapeutic Agents, Cancer Invest. (1996) 14:54-65). Accordingly, in one aspect of the invention, an IG-specific nucleic acid modulator is used in an assay to further elucidate the role of the IG in the p53 pathway, and/or its relationship to other members of the pathway. In another aspect of the invention, an IG-

specific antisense oligomer is used as a therapeutic agent for treatment of p53-related disease states.

Assay Systems

5

10

15

20

30

The invention provides assay systems and screening methods for identifying specific modulators of IG activity. As used herein, an "assay system" encompasses all the components required for performing and analyzing results of an assay that detects and/or measures a particular event. In general, primary assays are used to identify or confirm a modulator's specific biochemical or molecular effect with respect to the IG nucleic acid or protein. In general, secondary assays further assess the activity of an IG modulating agent identified by a primary assay and may confirm that the modulating agent affects IG in a manner relevant to the p53 pathway. In some cases, IG modulators will be directly tested in a secondary assay.

In a preferred embodiment, the screening method comprises contacting a suitable assay system comprising an IG polypeptide with a candidate agent under conditions whereby, but for the presence of the agent, the system provides a reference activity (e.g. binding activity), which is based on the particular molecular event the screening method detects. A statistically significant difference between the agent-biased activity and the reference activity indicates that the candidate agent modulates IG activity, and hence the p53 pathway.

Primary Assays

The type of modulator tested generally determines the type of primary assay.

25 Primary assays for small molecule modulators

For small molecule modulators, screening assays are used to identify candidate modulators. Screening assays may be cell-based or may use a cell-free system that recreates or retains the relevant biochemical reaction of the target protein (reviewed in Sittampalam GS et al., Curr Opin Chem Biol (1997) 1:384-91 and accompanying references). As used herein the term "cell-based" refers to assays using live cells, dead cells, or a particular cellular fraction, such as a membrane, endoplasmic reticulum, or mitochondrial fraction. The term "cell free" encompasses assays using substantially purified protein (either endogenous or recombinantly produced), partially purified or crude cellular extracts. Screening assays may detect a variety of molecular events, including

protein-DNA interactions, protein-protein interactions (e.g., receptor-ligand binding), transcriptional activity (e.g., using a reporter gene), enzymatic activity (e.g., via a property of the substrate), activity of second messengers, immunogenicty and changes in cellular morphology or other cellular characteristics. Appropriate screening assays may use a wide range of detection methods including fluorescent, radioactive, colorimetric, spectrophotometric, and amperometric methods, to provide a read-out for the particular molecular event detected.

5

10

15

20

25

30

Cell-based screening assays usually require systems for recombinant expression of IG and any auxiliary proteins demanded by the particular assay. Appropriate methods for generating recombinant proteins produce sufficient quantities of proteins that retain their relevant biological activities and are of sufficient purity to optimize activity and assure assay reproducibility. Yeast two-hybrid and variant screens, and mass spectrometry provide preferred methods for determining protein-protein interactions and elucidation of protein complexes. In certain applications, when IG-interacting proteins are used in screens to identify small molecule modulators, the binding specificity of the interacting protein to the IG protein may be assayed by various known methods such as substrate processing (e.g. ability of the candidate IG-specific binding agents to function as negative effectors in IG-expressing cells), binding equilibrium constants (usually at least about 10⁷ M⁻¹, preferably at least about 10⁸ M⁻¹, more preferably at least about 10⁹ M⁻¹), and immunogenicity (e.g. ability to elicit IG specific antibody in a heterologous host such as a mouse, rat, goat or rabbit). For enzymes and receptors, binding may be assayed by, respectively, substrate and ligand processing.

The screening assay may measure a candidate agent's ability to specifically bind to or modulate activity of an IG polypeptide, a fusion protein thereof, or to cells or membranes bearing the polypeptide or fusion protein. The IG polypeptide can be full length or a fragment thereof that retains functional IG activity. The IG polypeptide may be fused to another polypeptide, such as a peptide tag for detection or anchoring, or to another tag. The IG polypeptide is preferably human IG, or is an ortholog or derivative thereof as described above. In a preferred embodiment, the screening assay detects candidate agent-based modulation of IG interaction with a binding target, such as an endogenous or exogenous protein or other substrate that has IG—specific binding activity, and can be used to assess normal IG gene function.

Suitable assay formats that may be adapted to screen for IG modulators are known in the art. Preferred screening assays are high throughput or ultra high throughput and thus

provide automated, cost-effective means of screening compound libraries for lead compounds (Fernandes PB, Curr Opin Chem Biol (1998) 2:597-603; Sundberg SA, Curr Opin Biotechnol 2000, 11:47-53). In one preferred embodiment, screening assays uses fluorescence technologies, including fluorescence polarization, time-resolved

fluorescence, and fluorescence resonance energy transfer. These systems offer means to monitor protein-protein or DNA-protein interactions in which the intensity of the signal emitted from dye-labeled molecules depends upon their interactions with partner molecules (e.g., Selvin PR, Nat Struct Biol (2000) 7:730-4; Fernandes PB, supra; Hertzberg RP and Pope AJ, Curr Opin Chem Biol (2000) 4:445-451).

5

- A variety of suitable assay systems may be used to identify candidate IG and p53 pathway modulators (e.g. U.S. Pat. Nos. 5,550,019 and 6,133,437 (apoptosis assays); U.S. Pat. No. 6,020,135 (p53 modulation), among others). Specific preferred assays are described in more detail below.
- 15 Apoptosis assays. Assays for apoptosis may be performed by terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labeling (TUNEL) assay. The TUNEL assay is used to measure nuclear DNA fragmentation characteristic of apoptosis (Lazebnik et al., 1994, Nature 371, 346), by following the incorporation of fluorescein-dUTP (Yonehara et al., 1989, J. Exp. Med. 169, 1747). Apoptosis may further 20 be assayed by acridine orange staining of tissue culture cells (Lucas, R., et al., 1998, Blood 15:4730-41). An apoptosis assay system may comprise a cell that expresses an IG, and that optionally has defective p53 function (e.g. p53 is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the apoptosis assay system and changes in induction of apoptosis relative to controls where no test agent is added, identify 25 candidate p53 modulating agents. In some embodiments of the invention, an apoptosis assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using a cell-free assay system. An apoptosis assay may also be used to test whether IG function plays a direct role in apoptosis. For example, an apoptosis assay may be performed on cells that over- or under-express IG relative to wild type cells. Differences in apoptotic response compared to wild type cells suggests that the IG plays a direct role in the apoptotic response. Apoptosis assays are described further in US Pat. No. 6,133,437.

Cell proliferation and cell cycle assays. Cell proliferation may be assayed via bromodeoxyuridine (BRDU) incorporation. This assay identifies a cell population undergoing DNA synthesis by incorporation of BRDU into newly-synthesized DNA. Newly-synthesized DNA may then be detected using an anti-BRDU antibody (Hoshino *et al.*, 1986, Int. J. Cancer 38, 369; Campana *et al.*, 1988, J. Immunol. Meth. 107, 79), or by other means.

5

10

15

20

25

30

Cell Proliferation may also be examined using [³H]-thymidine incorporation (Chen, J., 1996, Oncogene 13:1395-403; Jeoung, J., 1995, J. Biol. Chem. 270:18367-73). This assay allows for quantitative characterization of S-phase DNA syntheses. In this assay, cells synthesizing DNA will incorporate [³H]-thymidine into newly synthesized DNA. Incorporation can then be measured by standard techniques such as by counting of radioisotope in a scintillation counter (e.g., Beckman LS 3800 Liquid Scintillation Counter).

Cell proliferation may also be assayed by colony formation in soft agar (Sambrook et al., Molecular Cloning, Cold Spring Harbor (1989)). For example, cells transformed with IG are seeded in soft agar plates, and colonies are measured and counted after two weeks incubation.

Involvement of a gene in the cell cycle may be assayed by flow cytometry (Gray JW et al. (1986) Int J Radiat Biol Relat Stud Phys Chem Med 49:237-55). Cells transfected with an IG may be stained with propidium iodide and evaluated in a flow cytometer (available from Becton Dickinson).

Accordingly, a cell proliferation or cell cycle assay system may comprise a cell that expresses an IG, and that optionally has defective p53 function (e.g. p53 is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the assay system and changes in cell proliferation or cell cycle relative to controls where no test agent is added, identify candidate p53 modulating agents. In some embodiments of the invention, the cell proliferation or cell cycle assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using another assay system such as a cell-free assay system. A cell proliferation assay may also be used to test whether IG function plays a direct role in cell proliferation or cell cycle. For example, a cell proliferation or cell cycle assay may be performed on cells that over- or under-express IG relative to wild type cells. Differences in proliferation or cell cycle compared to wild type cells suggests that the IG plays a direct role in cell proliferation or cell cycle.

Angiogenesis. Angiogenesis may be assayed using various human endothelial cell systems, such as umbilical vein, coronary artery, or dermal cells. Suitable assays include Alamar Blue based assays (available from Biosource International) to measure proliferation; migration assays using fluorescent molecules, such as the use of Becton Dickinson Falcon HTS FluoroBlock cell culture inserts to measure migration of cells through membranes in presence or absence of angiogenesis enhancer or suppressors; and tubule formation assays based on the formation of tubular structures by endothelial cells on Matrigel® (Becton Dickinson). Accordingly, an angiogenesis assay system may comprise a cell that expresses an IG, and that optionally has defective p53 function (e.g. p53 is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the angiogenesis assay system and changes in angiogenesis relative to controls where no test agent is added, identify candidate p53 modulating agents. In some embodiments of the invention, the angiogenesis assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using another assay system. An angiogenesis assay may also be used to test whether IG function plays a direct role in cell proliferation. For example, an angiogenesis assay may be performed on cells that over- or under-express IG relative to wild type cells. Differences in angiogenesis compared to wild type cells suggests that the IG plays a direct role in angiogenesis.

10

15

20

25

30

Hypoxic induction. The alpha subunit of the transcription factor, hypoxia inducible factor-1 (HIF-1), is upregulated in tumor cells following exposure to hypoxia in vitro. Under hypoxic conditions, HIF-1 stimulates the expression of genes known to be important in tumour cell survival, such as those encoding glyolytic enzymes and VEGF. Induction of such genes by hypoxic conditions may be assayed by growing cells transfected with IG in hypoxic conditions (such as with 0.1% O2, 5% CO2, and balance N2, generated in a Napco 7001 incubator (Precision Scientific)) and normoxic conditions, followed by assessment of gene activity or expression by Taqman®. For example, a hypoxic induction assay system may comprise a cell that expresses an IG, and that optionally has a mutated p53 (e.g. p53 is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the hypoxic induction assay system and changes in hypoxic response relative to controls where no test agent is added, identify candidate p53 modulating agents. In some embodiments of the invention, the hypoxic induction assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using another assay system. A hypoxic induction assay

may also be used to test whether IG function plays a direct role in the hypoxic response. For example, a hypoxic induction assay may be performed on cells that over- or underexpress IG relative to wild type cells. Differences in hypoxic response compared to wild type cells suggests that the IG plays a direct role in hypoxic induction.

5

10

15

20

25

30

Cell adhesion. Cell adhesion assays measure adhesion of cells to purified adhesion proteins, or adhesion of cells to each other, in presence or absence of candidate modulating agents. Cell-protein adhesion assays measure the ability of agents to modulate the adhesion of cells to purified proteins. For example, recombinant proteins are produced, diluted to 2.5g/mL in PBS, and used to coat the wells of a microtiter plate. The wells used for negative control are not coated. Coated wells are then washed, blocked with 1% BSA, and washed again. Compounds are diluted to 2× final test concentration and added to the blocked, coated wells. Cells are then added to the wells, and the unbound cells are washed off. Retained cells are labeled directly on the plate by adding a membrane-permeable fluorescent dye, such as calcein-AM, and the signal is quantified in a fluorescent microplate reader.

Cell-cell adhesion assays measure the ability of agents to modulate binding of cell adhesion proteins with their native ligands. These assays use cells that naturally or recombinantly express the adhesion protein of choice. In an exemplary assay, cells expressing the cell adhesion protein are plated in wells of a multiwell plate. Cells expressing the ligand are labeled with a membrane-permeable fluorescent dye, such as BCECF, and allowed to adhere to the monolayers in the presence of candidate agents. Unbound cells are washed off, and bound cells are detected using a fluorescence plate reader.

High-throughput cell adhesion assays have also been described. In one such assay, small molecule ligands and peptides are bound to the surface of microscope slides using a microarray spotter, intact cells are then contacted with the slides, and unbound cells are washed off. In this assay, not only the binding specificity of the peptides and modulators against cell lines are determined, but also the functional cell signaling of attached cells using immunofluorescence techniques in situ on the microchip is measured (Falsey JR et al., Bioconjug Chem. 2001 May-Jun;12(3):346-53).

Primary assays for antibody modulators

For antibody modulators, appropriate primary assays test is a binding assay that tests the antibody's affinity to and specificity for the IG protein. Methods for testing antibody affinity and specificity are well known in the art (Harlow and Lane, 1988, 1999, supra).

The enzyme-linked immunosorbant assay (ELISA) is a preferred method for detecting IG-specific antibodies; others include FACS assays, radioimmunoassays, and fluorescent assays.

Primary assays for nucleic acid modulators

10

15

20

25

30

For nucleic acid modulators, primary assays may test the ability of the nucleic acid modulator to inhibit or enhance IG gene expression, preferably mRNA expression. In general, expression analysis comprises comparing IG expression in like populations of cells (e.g., two pools of cells that endogenously or recombinantly express IG) in the presence and absence of the nucleic acid modulator. Methods for analyzing mRNA and protein expression are well known in the art. For instance, Northern blotting, slot blotting, ribonuclease protection, quantitative RT-PCR (e.g., using the TaqMan®, PE Applied Biosystems), or microarray analysis may be used to confirm that IG mRNA expression is reduced in cells treated with the nucleic acid modulator (e.g., Current Protocols in Molecular Biology (1994) Ausubel FM et al., eds., John Wiley & Sons, Inc., chapter 4; Freeman WM et al., Biotechniques (1999) 26:112-125; Kallioniemi OP, Ann Med 2001, 33:142-147; Blohm DH and Guiseppi-Elie, A Curr Opin Biotechnol 2001, 12:41-47). Protein expression may also be monitored. Proteins are most commonly detected with specific antibodies or antisera directed against either the IG protein or specific peptides. A variety of means including Western blotting, ELISA, or in situ detection, are available (Harlow E and Lane D, 1988 and 1999, supra).

Secondary Assays

Secondary assays may be used to further assess the activity of IG-modulating agent identified by any of the above methods to confirm that the modulating agent affects IG in a manner relevant to the p53 pathway. As used herein, IG-modulating agents encompass candidate clinical compounds or other agents derived from previously identified modulating agent. Secondary assays can also be used to test the activity of a modulating agent on a particular genetic or biochemical pathway or to test the specificity of the modulating agent's interaction with IG.

Secondary assays generally compare like populations of cells or animals (e.g., two pools of cells or animals that endogenously or recombinantly express IG) in the presence and absence of the candidate modulator. In general, such assays test whether treatment of cells or animals with a candidate IG-modulating agent results in changes in the p53 pathway in comparison to untreated (or mock- or placebo-treated) cells or animals. Certain assays use "sensitized genetic backgrounds", which, as used herein, describe cells or animals engineered for altered expression of genes in the p53 or interacting pathways.

Cell-based assays

10

15

20

25

30

Cell based assays may use a variety of mammalian cell lines known to have defective p53 function (e.g. SAOS-2 osteoblasts, H1299 lung cancer cells, C33A and HT3 cervical cancer cells, HT-29 and DLD-1 colon cancer cells, among others, available from American Type Culture Collection (ATCC), Manassas, VA). Cell based assays may detect endogenous p53 pathway activity or may rely on recombinant expression of p53 pathway components. Any of the aforementioned assays may be used in this cell-based format. Candidate modulators are typically added to the cell media but may also be injected into cells or delivered by any other efficacious means.

Animal Assays

A variety of non-human animal models of normal or defective p53 pathway may be used to test candidate IG modulators. Models for defective p53 pathway typically use genetically modified animals that have been engineered to mis-express (e.g., over-express or lack expression in) genes involved in the p53 pathway. Assays generally require systemic delivery of the candidate modulators, such as by oral administration, injection, etc.

In a preferred embodiment, p53 pathway activity is assessed by monitoring neovascularization and angiogenesis. Animal models with defective and normal p53 are used to test the candidate modulator's affect on IG in Matrigel® assays. Matrigel® is an extract of basement membrane proteins, and is composed primarily of laminin, collagen IV, and heparin sulfate proteoglycan. It is provided as a sterile liquid at 4°C, but rapidly forms a solid gel at 37°C. Liquid Matrigel® is mixed with various angiogenic agents, such as bFGF and VEGF, or with human tumor cells which over-express the IG. The mixture is then injected subcutaneously(SC) into female athymic nude mice (Taconic, Germantown, NY) to support an intense vascular response. Mice with Matrigel® pellets

may be dosed via oral (PO), intraperitoneal (IP), or intravenous (IV) routes with the candidate modulator. Mice are euthanized 5 - 12 days post-injection, and the Matrigel® pellet is harvested for hemoglobin analysis (Sigma plasma hemoglobin kit). Hemoglobin content of the gel is found to correlate the degree of neovascularization in the gel.

In another preferred embodiment, the effect of the candidate modulator on IG is assessed via tumorigenicity assays. In one example, xenograft human tumors are implanted SC into female athymic mice, 6-7 week old, as single cell suspensions either from a pre-existing tumor or from in vitro culture. The tumors which express the IG endogenously are injected in the flank, 1 x 10⁵ to 1 x 10⁷ cells per mouse in a volume of 100 µL using a 27gauge needle. Mice are then ear tagged and tumors are measured twice weekly. Candidate modulator treatment is initiated on the day the mean tumor weight reaches 100 mg. Candidate modulator is delivered IV, SC, IP, or PO by bolus administration. Depending upon the pharmacokinetics of each unique candidate modulator, dosing can be performed multiple times per day. The tumor weight is assessed by measuring perpendicular diameters with a caliper and calculated by multiplying the measurements of diameters in two dimensions. At the end of the experiment, the excised tumors maybe utilized for biomarker identification or further analyses. For immunohistochemistry staining, xenograft tumors are fixed in 4% paraformaldehyde, 0.1M phosphate, pH 7.2, for 6 hours at 4°C, immersed in 30% sucrose in PBS, and rapidly frozen in isopentane cooled with liquid nitrogen.

Diagnostic and therapeutic uses

5

10

15

20

25

Specific IG-modulating agents are useful in a variety of diagnostic and therapeutic applications where disease or disease prognosis is related to defects in the p53 pathway, such as angiogenic, apoptotic, or cell proliferation disorders. Accordingly, the invention also provides methods for modulating the p53 pathway in a cell, preferably a cell predetermined to have defective p53 function, comprising the step of administering an agent to the cell that specifically modulates IG activity. Preferably, the modulating agent produces a detectable phenotypic change in the cell indicating that the p53 function is restored, i.e., for example, the cell undergoes normal proliferation or progression through the cell cycle.

The discovery that IG is implicated in p53 pathway provides for a variety of methods that can be employed for the diagnostic and prognostic evaluation of diseases and

disorders involving defects in the p53 pathway and for the identification of subjects having a predisposition to such diseases and disorders.

Various expression analysis methods can be used to diagnose whether IG expression occurs in a particular sample, including Northern blotting, slot blotting, ribonuclease protection, quantitative RT-PCR, and microarray analysis. (e.g., Current Protocols in Molecular Biology (1994) Ausubel FM et al., eds., John Wiley & Sons, Inc., chapter 4; Freeman WM et al., Biotechniques (1999) 26:112-125; Kallioniemi OP, Ann Med 2001, 33:142-147; Blohm and Guiseppi-Elie, Curr Opin Biotechnol 2001, 12:41-47). Tissues having a disease or disorder implicating defective p53 signaling that express an IG, are identified as amenable to treatment with an IG modulating agent. In a preferred application, the p53 defective tissue overexpresses an IG relative to normal tissue. For example, a Northern blot analysis of mRNA from tumor and normal cell lines, or from tumor and matching normal tissue samples from the same patient, using full or partial IG cDNA sequences as probes, can determine whether particular tumors express or overexpress IG. Alternatively, the TaqMan® is used for quantitative RT-PCR analysis of IG expression in cell lines, normal tissues and tumor samples (PE Applied Biosystems).

Various other diagnostic methods may be performed, for example, utilizing reagents such as the IG oligonucleotides, and antibodies directed against an IG, as described above for: (1) the detection of the presence of IG gene mutations, or the detection of either overor under-expression of IG mRNA relative to the non-disorder state; (2) the detection of either an over- or an under-abundance of IG gene product relative to the non-disorder state; and (3) the detection of perturbations or abnormalities in the signal transduction pathway mediated by IG.

Thus, in a specific embodiment, the invention is drawn to a method for diagnosing a disease in a patient, the method comprising: a) obtaining a biological sample from the patient; b) contacting the sample with a probe for IG expression; c) comparing results from step (b) with a control; and d) determining whether step (c) indicates a likelihood of disease. Preferably, the disease is cancer, most preferably a cancer as shown in TABLE 2. The probe may be either DNA or protein, including an antibody.

30

5

10

15

20

25

EXAMPLES

The following experimental section and examples are offered by way of illustration and not by way of limitation.

I. Drosophila p53 screen

10

15

20

25

30

The Drosophila p53 gene was overexpressed specifically in the wing using the vestigial margin quadrant enhancer. Increasing quantities of Drosophila p53 (titrated using different strength transgenic inserts in 1 or 2 copies) caused deterioration of normal wing morphology from mild to strong, with phenotypes including disruption of pattern and polarity of wing hairs, shortening and thickening of wing veins, progressive crumpling of the wing and appearance of dark "death" inclusions in wing blade. In a screen designed to identify enhancers and suppressors of Drosophila p53, homozygous females carrying two copies of p53 were crossed to 5663 males carrying random insertions of a piggyBac transposon (Fraser M *et al.*, Virology (1985) 145:356-361). Progeny containing insertions were compared to non-insertion-bearing sibling progeny for enhancement or suppression of the p53 phenotypes. Sequence information surrounding the piggyBac insertion site was used to identify the modifier genes. Modifiers of the wing phenotype were identified as members of the p53 pathway. CG14372 was an enhancer of the wing phenotype. Human orthologs of the modifiers are referred to herein as IG.

BLAST analysis (Altschul et al., *supra*) was employed to identify Targets from Drosophila modifiers. For example, representative sequences from IG, GI#s 12310959, 3451335, 7705413, 16182764, 5918159, and 11067409, (SEQ ID NOs: 44, 46, 50, 53, 49, 57, respectively), share 22%, 26%, 33%, 23%, 31%, and 29% amino acid identity, respectively, with the *Drosophila* CG14372.

Various domains, signals, and functional subunits in proteins were analyzed using the PSORT (Nakai K., and Horton P., Trends Biochem Sci, 1999, 24:34-6; Kenta Nakai, Protein sorting signals and prediction of subcellular localization, Adv. Protein Chem. 54, 277-344 (2000)), PFAM (Bateman A., et al., Nucleic Acids Res, 1999, 27:260-2;

http://pfam.wustl.edu), SMART (Ponting CP, et al., SMART: identification and annotation of domains from signaling and extracellular protein sequences. Nucleic Acids Res. 1999 Jan 1;27(1):229-32), TM-HMM (Erik L.L. Sonnhammer, Gunnar von Heijne, and Anders Krogh: A hidden Markov model for predicting transmembrane helices in protein sequences. In Proc. of Sixth Int. Conf. on Intelligent Systems for Molecular Biology, p 175-182 Ed J. Glasgow, T. Littlejohn, F. Major, R. Lathrop, D. Sankoff, and C. Sensen Menlo Park, CA: AAAI Press, 1998), and clust (Remm M, and Sonnhammer E.

Classification of transmembrane protein families in the Caenorhabditis elegans genome and identification of human orthologs. Genome Res. 2000 Nov;10(11):1679-89) programs.

Representative immunoglobulin, immunoglobulin-like, and transmembrane domains of various IGs are outlined in Table 1.

Table 1

Target	SEQ	Immunoglobulin	Immunoglobulin-like	Transmembrane
GI#	ID	domain	domain	domain start/end
	NO	(PFAM00047)	(SMART SM0410)	(TM-HMM)
12310959	44	46 to 115, 148 to 214,	38 to 130, 242 to 323	(336,358)
		250 to 307		
11386199	45	71 to 150, 186 to 248,	63 to 167	(404,426)
		284 to 340		
3451335	46	15 to 84, 116 to 179,	7 to 99, 108 to 199,	(317,339)
		216 to 271	208 to 287	
7705413	50	50 to 117, 150 to 203,	42 to 133, 142 to 220,	No TMs
		236 to 297	228 to 320	
16182764	53	63 to 130, 164 to 230,	55 to 145, 156 to 248,	(537,559)
		265 to 317, 350 to 401,	342 to 418, 426 to	
		434 to 502	518	
16716339	55	45 to 129, 162 to 225,	37 to 146, 257 to 333	(350,372)
		263 to 317		
5918159	49	77 to 146, 179 to 245,	69 to 161, 171 to 264,	(364,386)
	,	281 to 335	273 to 351	·
11067409	57	47 to 114, 147 to 199,	39 to 130, 139 to 216,	No TMs
		232 to 293	224 to 309	·
4505025	58	46 to 113, 146 to 199,	38 to 129, 138 to 216,	(313,335)
		232 to 292	224 to 308	
4505505	59	50 to 104, 137 to 198	42 to 121, 129 to 214	No TMs
11602906	60	41 to 123, 259 to 315	33 to 140, 154 to 241,	(353,375)
			251 to 331	
5360210	62	47 to 142, 176 to 240,	39 to 159, 270 to 347	(361,383)
		276 to 331		
8394411	63	48 to 132, 266 to 323	40 to 149, 260 to 339	(353,375)
	47	29 to 121, 130 to 221,	29 to 121, 130 to 221,	(332,352)
	ļ	230 to 309	230 to 309	

II. High-Throughput In Vitro Fluorescence Polarization Assay

Fluorescently-labeled IG peptide/substrate are added to each well of a 96-well microtiter plate, along with a test agent in a test buffer (10 mM HEPES, 10 mM NaCl, 6 mM magnesium chloride, pH 7.6). Changes in fluorescence polarization, determined by using a Fluorolite FPM-2 Fluorescence Polarization Microtiter System (Dynatech Laboratories, Inc), relative to control values indicates the test compound is a candidate modifier of IG activity.

III. High-Throughput In Vitro Binding Assay.

5

10

15

30

³³P-labeled IG peptide is added in an assay buffer (100 mM KCl, 20 mM HEPES pH 7.6, 1 mM MgCl₂, 1% glycerol, 0.5% NP-40, 50 mM beta-mercaptoethanol, 1 mg/ml BSA, cocktail of protease inhibitors) along with a test agent to the wells of a Neutralite-avidin coated assay plate and incubated at 25°C for 1 hour. Biotinylated substrate is then added to each well and incubated for 1 hour. Reactions are stopped by washing with PBS, and counted in a scintillation counter. Test agents that cause a difference in activity relative to control without test agent are identified as candidate p53 modulating agents.

IV. Immunoprecipitations and Immunoblotting

For coprecipitation of transfected proteins, 3 × 10⁶ appropriate recombinant cells containing the IG proteins are plated on 10-cm dishes and transfected on the following day with expression constructs. The total amount of DNA is kept constant in each transfection by adding empty vector. After 24 h, cells are collected, washed once with phosphate-buffered saline and lysed for 20 min on ice in 1 ml of lysis buffer containing 50 mM Hepes, pH 7.9, 250 mM NaCl, 20 mM -glycerophosphate, 1 mM sodium orthovanadate, 5 mM p-nitrophenyl phosphate, 2 mM dithiothreitol, protease inhibitors (complete, Roche Molecular Biochemicals), and 1% Nonidet P-40. Cellular debris is removed by centrifugation twice at 15,000 × g for 15 min. The cell lysate is incubated with 25 μl of M2 beads (Sigma) for 2 h at 4 °C with gentle rocking.

After extensive washing with lysis buffer, proteins bound to the beads are solubilized by boiling in SDS sample buffer, fractionated by SDS-polyacrylamide gel electrophoresis, transferred to polyvinylidene difluoride membrane and blotted with the indicated antibodies. The reactive bands are visualized with horseradish peroxidase coupled to the appropriate secondary antibodies and the enhanced chemiluminescence (ECL) Western blotting detection system (Amersham Pharmacia Biotech).

V. Expression analysis

5

10

15

20

25

30

All cell lines used in the following experiments are NCI (National Cancer Institute) lines, and are available from ATCC (American Type Culture Collection, Manassas, VA 20110-2209). Normal and tumor tissues were obtained from Impath, UC Davis, Clontech, Stratagene, and Ambion.

TaqMan analysis was used to assess expression levels of the disclosed genes in various samples.

RNA was extracted from each tissue sample using Qiagen (Valencia, CA) RNeasy kits, following manufacturer's protocols, to a final concentration of 50ng/µl. Single stranded cDNA was then synthesized by reverse transcribing the RNA samples using random hexamers and 500ng of total RNA per reaction, following protocol 4304965 of Applied Biosystems (Foster City, CA, http://www.appliedbiosystems.com/).

Primers for expression analysis using TaqMan assay (Applied Biosystems, Foster City, CA) were prepared according to the TaqMan protocols, and the following criteria: a) primer pairs were designed to span introns to eliminate genomic contamination, and b) each primer pair produced only one product.

Taqman reactions were carried out following manufacturer's protocols, in 25 µl total volume for 96-well plates and 10 µl total volume for 384-well plates, using 300nM primer and 250 nM probe, and approximately 25ng of cDNA. The standard curve for result analysis was prepared using a universal pool of human cDNA samples, which is a mixture of cDNAs from a wide variety of tissues so that the chance that a target will be present in appreciable amounts is good. The raw data were normalized using 18S rRNA (universally expressed in all tissues and cells).

For each expression analysis, tumor tissue samples were compared with matched normal tissues from the same patient. A gene was considered overexpressed in a tumor when the level of expression of the gene was 2 fold or higher in the tumor compared with its matched normal sample. In cases where normal tissue was not available, a universal pool of cDNA samples was used instead. In these cases, a gene was considered overexpressed in a tumor sample when the difference of expression levels between a tumor sample and the average of all normal samples from the same tissue type was greater than 2 times the standard deviation of all normal samples (i.e., Tumor – average(all normal samples) > 2 x STDEV(all normal samples)).

Results are shown in Table 2. Data presented in bold indicate that greater than 50% of tested tumor samples of the tissue type indicated in row 1 exhibited over expression of the

gene listed in column 1, relative to normal samples. Underlined data indicates that between 25% to 49% of tested tumor samples exhibited over expression. A modulator identified by an assay described herein can be further validated for therapeutic effect by administration to a tumor in which the gene is overexpressed. A decrease in tumor growth confirms therapeutic utility of the modulator. Prior to treating a patient with the modulator, the likelihood that the patient will respond to treatment can be diagnosed by obtaining a tumor sample from the patient, and assaying for expression of the gene targeted by the modulator. The expression data for the gene(s) can also be used as a diagnostic marker for disease progression. The assay can be performed by expression analysis as described above, by antibody directed to the gene target, or by any other available detection method.

Table 2

5

10

20

	breast	<u>.</u>		colon	<u>د</u>	<u>.</u>	<u>kidney</u>	<u>.</u>	Ė	lung	<u>.</u>		ovary	-
GI#12310958 (SEQ ID NO:1)	1	3		1	26	ŀ	11	19	ŀ	0	14	ŀ	0	4
GI#11386198 (SEQ ID NO:4)	0	12	ŀ	4	30	ŀ	0	0		1	14	ŀ	3	7
GI#3451333 (SEQ ID NO:6)	0	3		7	<u>26</u>		2	19	ŀ	7	14	ŀ	2	4
GI#7705412 (SEQ ID NO:16)	1	3	ŀ	11	<u>26</u>	ŀ	2	19	ŀ	2	14		0	4
GI#9049507 (SEQ ID NO:23)	1	3		<u>15</u>	<u>26</u>		2	19		9	14		3	4
GI#5457320 (SEQ ID NO:11)	0	3		3	26		14	19	ŀ	1	14	ŀ	0	4
GI#4505024 (SEQ ID NO:28)	4	12		6	30		0	0		0	14		0	7
GI#4505504 (SEQ ID NO:35)	1	12		<u>10</u>	<u>26</u>		0	0		<u>5</u>	<u>13</u>		0	5
GJ#11602905 (SEQ ID NO:36)	6	12		15	30		0	0	ŀ	11	14		2	7
GI#1524087 (SEQ ID NO:38)	7	12		7	30		0	0		1	14		3	7

VI. Full length cloning of F22162

The genomic fragment GI#15789228 (SEQ ID NO:8) was identified as the human F22162 target sequence. The cDNA sequence corresponding to the translation product for the F22162, GI#3451335 (SEQ ID NO:46) was blasted at the nucleotide level against all the available EST databases. This approach identified a number of ESTs that span the entire length of the F22162 ref seq and extended the sequence towards the N-terminus (5' end). When all of the ESTs were assembled, an extended open reading frame was obtained containing a good Kozak consensus sequence for translational initiation. Based

on the predicted cDNA sequence, several PCR primers were synthesized and used for amplification reactions to obtain the full-length sequences. The mRNA from 26 different normal tissues and total RNA from 8 tumor sources purchased from Clontech was used to generate single stranded cDNA in a Reverse Transcription reaction. The pooled single-stranded cDNA was used as template for PCR amplification reactions. PCR products were subcloned into the vector pCRII-topo from Invitrogen. Colonies were picked and the inserted DNA was sequenced both directions. Two forms of the gene were identified: a long form (SEQ ID NO:9), and a short form (SEQ ID NO:10). The transmembrane domain in missing in the short form, and thus this variant may be soluble.

WHAT IS CLAIMED IS:

1. A method of identifying a candidate p53 pathway modulating agent, said method comprising the steps of:

- (a) providing an assay system comprising a purified IG polypeptide or nucleic acid or a functionally active fragment or derivative thereof;
 - (b) contacting the assay system with a test agent under conditions whereby, but for the presence of the test agent, the system provides a reference activity; and
- (c) detecting a test agent-biased activity of the assay system, wherein a difference between the test agent-biased activity and the reference activity identifies the test agent as a candidate p53 pathway modulating agent.
 - 2. The method of Claim 1 wherein the assay system comprises cultured cells that express the IG polypeptide.

15

5

- 3. The method of Claim 2 wherein the cultured cells additionally have defective p53 function.
- 4. The method of Claim 1 wherein the assay system includes a screening assay20 comprising an IG polypeptide, and the candidate test agent is a small molecule modulator.
 - 5. The method of Claim 4 wherein the assay is a binding assay.
- 6. The method of Claim 1 wherein the assay system is selected from the group consisting of an apoptosis assay system, a cell proliferation assay system, an angiogenesis assay system, and a hypoxic induction assay system.
 - 7. The method of Claim 1 wherein the assay system includes a binding assay comprising an IG polypeptide and the candidate test agent is an antibody.

30

8. The method of Claim 1 wherein the assay system includes an expression assay comprising an IG nucleic acid and the candidate test agent is a nucleic acid modulator.

9. The method of claim 8 wherein the nucleic acid modulator is an antisense oligomer.

10. The method of Claim 8 wherein the nucleic acid modulator is a PMO.

5

- 11. The method of Claim 1 additionally comprising:
- (d) administering the candidate p53 pathway modulating agent identified in (c) to a model system comprising cells defective in p53 function and, detecting a phenotypic change in the model system that indicates that the p53 function is restored.

10

25

- 12. The method of Claim 11 wherein the model system is a mouse model with defective p53 function.
- 13. A method for modulating a p53 pathway of a cell comprising contacting a cell defective in p53 function with a candidate modulator that specifically binds to an IG polypeptide comprising an amino acid sequence selected from group consisting of SEQ ID NOs:44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, and 63, whereby p53 function is restored.
- 20 14. The method of claim 13 wherein the candidate modulator is administered to a vertebrate animal predetermined to have a disease or disorder resulting from a defect in p53 function.
 - 15. The method of Claim 13 wherein the candidate modulator is selected from the group consisting of an antibody and a small molecule.
 - 16. The method of Claim 1, comprising the additional steps of:
 - (d) providing a secondary assay system comprising cultured cells or a non-human animal expressing IG,
- 30 (e) contacting the secondary assay system with the test agent of (b) or an agent derived therefrom under conditions whereby, but for the presence of the test agent or agent derived therefrom, the system provides a reference activity; and
 - (f) detecting an agent-biased activity of the second assay system,

wherein a difference between the agent-biased activity and the reference activity of the second assay system confirms the test agent or agent derived therefrom as a candidate p53 pathway modulating agent,

and wherein the second assay detects an agent-biased change in the p53 pathway.

5

- 17. The method of Claim 16 wherein the secondary assay system comprises cultured cells.
- 18. The method of Claim 16 wherein the secondary assay system comprises a non-10 human animal.
 - 19. The method of Claim 18 wherein the non-human animal mis-expresses a p53 pathway gene.
- 15 20. A method of modulating p53 pathway in a mammalian cell comprising contacting the cell with an agent that specifically binds an IG polypeptide or nucleic acid.
 - 21. The method of Claim 20 wherein the agent is administered to a mammalian animal predetermined to have a pathology associated with the p53 pathway.

20

- 22. The method of Claim 20 wherein the agent is a small molecule modulator, a nucleic acid modulator, or an antibody.
- 23. A method for diagnosing a disease in a patient comprising:
- 25 (a) obtaining a biological sample from the patient;
 - (b) contacting the sample with a probe for IG expression;
 - (c) comparing results from step (b) with a control;
 - (d) determining whether step (c) indicates a likelihood of disease.
- 30 24. The method of claim 23 wherein said disease is cancer.
 - 25. The method according to claim 24, wherein said cancer is a cancer as shown in Table 2 as having >25% expression level.

26. A purified nucleic acid molecule that encodes a polypeptide comprising an amino acid sequence as set forth in SEQ ID NO:47, or reverse complement thereof.

- The nucleic acid molecule of Claim 26 which is capable of hybridizing to a nucleic
 acid sequence of SEQ ID NO:9 using high stringency hybridization conditions.
 - 28. A recombinant expression system comprising a DNA or RNA molecule, wherein said expression system is capable of producing an IG polypeptide comprising the amino acid sequence of SEQ ID NO:47 when said expression system is present in a compatible host cell.
 - 29. A host cell comprising the expression system of claim 28.

10

20

- 30. A process for producing an IG protein comprising culturing the host cell of Claim
 15 29 under conditions suitable for expression of said IG protein and recovering said protein.
 - 31. A process for producing a cell which produces an IG protein comprising the transformation or transfection of a host cell with the expression system of claim 28 such that the host cell, under appropriate culture conditions, produces an IG protein.
 - 32. A recombinant host cell expressing the protein produced by the method of claim 31.

SEQUENCE LISTING

<110>	EXELIXIS, INC.					
<120>	IGs AS MODIFIER	S OF THE p5	3 PATHWAY A	ND METHODS	OF USE	
<130>	EX02-097C-PC					
<150> <151>	US 60/296,076 2001-06-05					
	US 60/328,605 2001-10-10	·				
<150> <151>	US 60/338,733 2001-10-22					
<150> <151>	US 60/357,253 2002-02-15					
<150> <151>	US 60/357,600 2002-02-15					
<160>	63					
<170>	PatentIn version	on 3.1				
<210> <211> <212> <213>						
<400> cactat	1 aggg ctcgagcggc	cgcccgggca	ggtccaggac	cccgagacac	cccgggcgcg	60
agcggc	agtg ctgcttgctt	getectecte	tcccccagcc	cttcccctcc	gtgacctacc	120
cactco	ttgc agccctcgcc	cgcaccttct	ccaacacccc	ggcatccctg	caccacctgc	180
teggge	agcc ccggcgggct	ctgggacttg	ctgtgcgcgc	cgagaggaag	gcaagctcca	240
aacccc	tgcc tggaagacgg	gctgtcgcgg	ctgcaccacc	agcaggagga	ggaggagaag	300
aaacta	tttc gcgatacccc	attctgcggg	tgctttgccg	ctgccgcttc	tgctgccgcc	360
gatccg	agtc cgcgggttcg	aacaccgcag	cggtggggac	ggtgggtccg	gcgggcgccg	420
ggagga	ggac accagcggag	ccctgcactc	tcgtgccccg	ctcaccagca	tctacttgcc	480
ccctcg	ttcc ttccccagec	ctttagagaa	gggaccatga	tttggaaacg	cagcgccgtt	540
ctccgc	ttct acagtgtctg	cgggctcctg	ctacaagcgg	ctgcttcaaa	gaataaagtt	600
aaaggo	agcc aagggcagtt	tccactaaca	cagaatgtaa	ccgttgttga	aggtggaact	660
gcaatt	ttga cctgcagggt	tgatcaaaat	gataacacct	ccctccagtg	gtcaaatcca	720

~~*~~~~		+~~~~~~~		~~~~	~~~~~~	700
geteaacaga	ctctgtactt	tgacgacaag	aaagetttaa	gggacaatag	gategagetg	780
gttcgcgctt	cctggcatga	attgagtatt	agtgtcagtg	atgtgtctct	ctctgatgaa	840
ggacagtaca	cctgttcttt	atttacaatg	cctgtcaaaa	cttccaaggc	atatctcacc	900
gttctgggtg	ttcctgaaaa	gcctcagatt	agtggattct	catcaccagt	tatggagggt	960
gacttgatgc	agctgacttg	caaaacatct	ggtagtaaac	ctgcagctga	tataagatgg	1020
ttcaaaaatg	acaaagagat	taaagatgta	aaatatttaa	aagaagagga	tgcaaatcgc	1080
aaģacattca	ctgtcagcag	cacactggac	ttccgagtgg	accggagtga	tgatggagtg	1140
gcggtcatct	gcagagtaga	tcacgaatcc	ctcaatgcca	cccctcaggt	agccatgcag	1200
gtgctagaaa	tacactatac	accatcagtt	aagattatac	catcgactcc	ttttccacaa	1260
gaaggacagc	ctttaatttt	gacttgtgaa	tccaaaggaa	aaccactgcc	agaacctgtt	1320
ttgtggacaa	aggatggcgg	agaattacca	gatcctgacc	gaatggttgt	gagtggtagg	1380
gagctaaaca	ttcttttcct	gaacaaaacg	gataatggta	catatcgatg	tgaagccaca	1440
aacaccattg	gccaaagcag	tgcggaatat	gttctcattg	tgcatgatcc	taatgctttg	1500
gctggccaga	atggccctga	ccatgctctc	ataggaggaa	tagtggctgt	agttgtattt	1560
gtcacgctgt	gttctatctt	tctgcttggt	cgatatctgg	caaggcataa	aggaacgtat	1620
ttaacaaatg	aagctaaagg	agctgaagat	gcaccagatg	ctgatacagc	cattatcaat	1680
gctgaaggca	gccaagtcaa	tgctgaagag	aaaaaagagt	atttcattta	agatgcaggc	1740
caagattctg	agttttacta	ccaggctgaa	tgctggagaa	aactggctat	catctttcag	1800
aagtcatttc	taccatcgtc	tgctaccctt	attaactccc	atactgtact	gctatcagta	1860
gccagtgtat	accaacaatc	agctgttgaa	agcatcattc	tttaattact	gtaccatcca	1920
taatgcagga	catttcttac	tgcctaaatt	tcacaccatt	gctcttttaa	catacagtgc	1980
ttgaatatac	agccttaaca	atgttaatca	tctccttgga	tcattatatt	gagtggtttt	2040
tatacattaa	aaaatgtatg	cagagttttt	ttcccccatt	ttttcccctt	taagtcatag	2100
accttatcag	tttgcc					2116

<400> 2

gagggaccat gatttggaaa cgcagcgccg ttctccgctt ctacagtgtc tgcgggctcc 60

<210> 2
<211> 1242
<212> DNA
<213> Homo sapiens

tgctacaagc	ggctgcttca	aagaataaag	ttaaaggcag	ccaagggcag	tttccactaa	120
cacagaatgt	aaccgttgtt	gaaggtggaa	ctgcaatttt	gacctgcagg	gttgatcaaa	180
atgataacac	ctccctccag	tggtcaaatc	cagctcaaca	gactctgtac	tttgacgaca	240
agaaagcttt	aagggacaat	aggatcgagc	tggttcgcgc	ttcctggcat	gaattgagta	300
ttagtgtcag	tgatgtgtct	ctctctgatg	aaggacagta	cacctgttct	ttatttacaa	360
tgcctgtcaa	aacttccaag	gcatatctca	cegttetggg	tgttcctgaa	aagcctcaga	420
ttagtggatt	ctcatcacca	gttatggagg	gtgacttgat	gcagctgact	tgcaaaacat	480
ctggtagtaa	acctgcagct	gatataagat	ggttcaaaaa	tgacaaagag	attaaagatg	540
taaaatattt	aaaagaagag	gatgcaaatc	gcaagacatt	cactgtcage	agcacactgg	600
acttccgagt	ggaccggagt	gatgatggag	tggcggtcat	ctgcagagta	gatcacgaat	660
ccctcaatgc	cacccctcag	gtagccatgc	aggtgctaga	aatacactat	acaccatcag	720
ttaagattat	accatcgact	ccttttccac	aagaaggaca	gcctttaatt	ttgacttgtg	780
aatccaaagg	aaaaccactg	ccagaacctg	ttttgtggac	aaaggatggc	ggagaattac	840
cagatcctga	ccgaatggtt	gtgagtggta	gggagctaaa	cattcttttc	ctgaacaaaa	900
cggataatgg	tacatatcga	tgtgaagcca	caaacaccat	tggccaaagc	agtgcggaat	960
atgttctcat	tgtgcatgat	cctaatgctt	tggctggcca	gaatggccct	gaccatgctc	1020
tcataggagg	aatagtggct	gtagttgtat	ttgtcacgct	gtgttctatc	tttctgcttg	1080
gtcgatatct	ggcaaggcat	aaaggaacgt	atttaacaaa	tgaagctaaa	ggagctgaag	1140
atgcaccaga	tgctgataca	gccattatca	atgctgaagg	cagccaagtc	aatgctgaag	1200
agaaaaaaga	gtatttcatt	taagatgcag	gccaagattc	tg		1242

<210> 3

<400> 3

gaagggacca tgatttggaa acgcagcgcc gttctccgct tctacagtgt ctgcgggctc 60
ctgctacaag gcagccaagg gcagtttcca ctaacacaga atgtaaccgt tgttgaaggt 120
ggaactgcaa ttttgacctg cagggttgat caaaatgata acacctccct ccagtggtca 180
aatccagctc aacagactct gtactttgac gacaagaaag ctttaaggga caataggatc 240
gagctggttc gcgcttcctg gcatgaattg agtattagtg tcagtgatgt gtctctctct 300

<211> 1216

<212> DNA

<213> Homo sapiens

gatgaaggac	agtacacctg	ttctttattt	acaatgcctg	tcaaaacttc	caaggcatat	. 360
ctcaccgttc	tgggtgttcc	tgaaaagcct	cagattagtg	gattctcatc	accagttatg	420
gagggtgact	tgatgcagct	gacttgcaaa	acatctggta	gtaaacctgc	agctgatata	480
agatggttca	aaaatgacaa	agagattaaa	gatgtaaaat	atttaaaaga	agaggatgca	540
aatcgcaaga	cattcactgt	cagcagcaca	ctggacttcc	gagtggaccg	gagtgatgat	600
ggagtggcgg	tcatctgcag	agtagatcac	gaatccctca	atgccacccc	tcaggtagcc	660
atgcaggtgc	tagaaataca	ctatacacca	tcagttaaga	ttataccatc	gactcctttt	720
ccacaagaag	gacagccttt	aạttttgact	tgtgaatcca	aaggaaaacc	actgccagaa	780
cctgttttgt	ggacaaagga	tggcggagaa	ttaccagatc	ctgaccgaat	ggttgtgagt	840
ggtagggagc	taaacattct	tttcctgaac	aaaacggata	atggtacata	tcgatgtgaa	900
gccacaaaca	ccattggcca	aagcagtgcg	gaatatgttc	tcattgtgca	tgatcctaat	960
gctttggctg	gccagaatgg	ccctgaccat	gctctcatag	gaggaatagt	ggctgtagtt	1020
gtatttgtca	cgctgtgttc	tatctttctg	cttggtcgat	atctggcaag	gcataaagga	1080
acgtatttaa	caaatgaagc	taaaggagct	gaagatgcac	cagatgctga	tacagccatt	1140
atcaatgctg	aaggcagcca	agtcaatgct	gaagagaaaa	aagagtattt	catttaagat	1200
gcaggccaag	attctg					1216
.010. 4						

<210> 4

<211> 1650

<212> DNA

<213> Homo sapiens

<400> 4

atggcgcgga ccctgcggcc gtccccgctg tgtcctggag gcggcaaagc acaactttcc 60 teegettete teeteggage egggeteetg etgeageeee egaegeeaee teegetgetg 120 180 ctgctgctct tcccgctgct gctcttctcc aggctctgtg gtgccttagc tggaccaatt 240 attgtggagc cacatgtcac agcagtatgg ggaaagaatg tttcattaaa gtgtttaatt gaagtaaatg aaaccataac acagatttca tgggagaaga tacatggcaa aagttcacag 300 actgttgcag ttcaccatcc ccaatatgga ttctctgttc aaggagaata tcagggaaga 360 420 gtettgttta aaaattacte acttaatgat gcaacaatta etetgeataa cataggatte tctgattctg gaaaatacat ctgcaaagct gttacattcc cgcttggaaa tgcccagtcc 480 540 tctacaactg taactgtgtt agttgaaccc actgtgagcc tgataaaagg gccagattct

ttaattgatg	gaggaaatga	aacagtagca	gccatttgca	tcgcagccac	tggaaaaccc	600
gttgcacata	ttgactggga	aggtgatctt	ggtgaaatgg	aatccactac	aacttcttt	660
ccaaatgaaa	cggcaacgat	tatcagccag	tacaagctat	ttccaaccag	atțtgctaga	720
ggaaggcgaa	ttacttgtgt	tgtaaaacat	ccagccttgg	aaaaggacat	ccgatactct	780
ttcatattag	acatacagta	tgctcctgaa	gtttcggtaa	caggatatga	tggaaattgg	840
tttgtaggaa	gaaaaggtgt	taatctcaaa	tgtaatgctg	atgcaaatcc	accacccttc	900
aaatctgtgt	ggagcaggtt	ggatggacaa	tggcctgatg	gtttattggc	ttcagacaat	960
actcttcatt	ttgtccatcc	attgactttc	aattattctg	gtgtttatat	ctgtaaagtg	1020
accaattccc	ttggtcaaag	aagtgaccaa	aaagtcatct	acatttcaga	tcctcctact	1080
actaccaccc	ttcagcctac	aattcagtgg	catccctcaa	ctgctgacat	cgaggatcta	1140
gcaacagaac	ctaaaaaatt	gcccttccca	ttgtcaactt	tggcaacaat	taaggatgac	1200
acaattgcca	cgatcattgc	tagtgtagtg	ggtggggctc	tcttcatagt	acttgtaagt	1260
gttttggctg	gaatattctg	ctataggaga	agacggacgt	ttcgtggaga	ctactttgcc	1320
aagaactaca	ttccaccatc	agatatgcaa	aaagaatcac	aaatagatgt	tcttcaacaa	1380
gatgagcttg	attcttaccc	agacagtgta	aaaaaagaaa	acaaaaatcc	agtgaacaat	1440
ctaatacgta	aagactattt	agaagagcct	gaaaaaactc	agtggaacaa	tgtagaaaat	1500
ctcaataggt	ttgaaagacc	aatggattat	tatgaagatc	taaaaatggg	aatgaagttt	1560
gtcagtgatg	aacattatga	tgaaaacgaa	gatgacttag	tttcacatgt	agatggttcc	1620
gtaatttcca	ggagggagtg	gtatgtttag				1650

```
<210> 5
 <211> 1644
 <212> DNA
```

<213> Homo sapiens

<220>

<221> misc_feature <222> (838)..(911) <223> "n" is A, C, G, or T

<400> 5 atggcgcgga ccctgcggcc gtccccgctg tgtcctggag gcggcaaagc acaactttcc 60 tecgettete tecteggage egggeteetg etgeageece egacgeeace tecgetgetg 120 ctgctgctct tcccgctgct gctcttctcc aggctctgtg gtgccttagc tggaccaatt 180

attgtggagc	cacatgtcac	agcagtatgg	ggaaagaatg	tttcattaag	gttttattga	240
agtaaagaac	ccttacccag	tttcatggga	gaagatacag	ggcaaaagtt	cccagactgt	300
gcagttccac	catccccaat	atggattctc	tgttcaagga	gaatatcagg	gaagagtctt	360
gtttaaaaat	tactcactta	atgatgcaac	aattactctg	cataacatag	gattctctga	420
ttctggaaaa	tacatctgca	agctgttaca	ttcccgcttg	gaaatgccca	gtcctctaca	480
actgtaactg	tgttagttga	acccactgtg	agcctgataa	aagggccaga	ttctttaatt	540
gatggaggaa	atgaaacagt	agcagccatt	tgcatcgcag	ccactggaaa	acccgttgca	600
catattgact	gggaaggtga	tcttggtgaa	atggaatcca	ctacaacttc	ttttccaaat	660
gaaacggcaa	cgattatcag	ccagtacaag	ctatttccaa	ccagatttgc	tagaggaagg	720
cgaattactt	gtgttgtaaa	acatccagcc	ttggaaaagg	acatccgata	ctctttcata	780
ttagacatac	agtatgctcc	tgaagtttcg	gtaacaggat	atgatggaaa	ttggtttnnn	840
nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnn	900
nnnnnnnnn	ngttggatgg	acaatggcct	gatggtttat	tggcttcaga	caatactctt	960
cattttgtcc	ațccattgac	tttcaattat	tctggtgttt	atatctgtaa	agtgaccaat	1020
tcccttggtc	aaagaagtga	ccaaaaagtc	atctacattt	cagatcctcc	tactactacc	1080
acccttcagc	ctacaattca	gtggcatccc	tcaactgctg	acatcgagga	tctagcaaca	1140
gaacctaaaa	aattgccctt	cccattgtca	actttggcaa	caattaagga	tgacacaatt	1200
gccacgatca	ttgctagtgt	aġtgggtggg	gctctcttca	tagtacttgt	aagtgttttg	1260
gctggaatat	tctgctatag	gagaagacgg	acgtttcgtg	gagactactt	tgccaagaac	1320
tacattccac	catcagatat	gcaaaaagaa	tcacaaatag	atgttcttca	acaagatgag	1380
cttgattctt	acccagacag	tgtaaaaaaa	gaaaacaaaa	atccagtgaa	caatctaata	1440
cgtaaagact	atttagaaga	gcctgaaaaa	actcagtgga	acaatgtaga	aaatctcaat	1500
aggtttgaaa	gaccaatgga	ttattatgaa	gatctaaaaa	tgggaatgaa	gtttgtcagt	1560
gatgaacatt	atgatgaaaa	cgaagatgac	ttagtttcac	atgtagatgg	ttccgtaatt	1620
tccaggaggg	agtggtatgt	ttag				1644

<210> 6 <211> 35465 <212> DNA <213> Homo sapiens

<400> 6

gatcttggct	cactgcaacc	tccgcctcca	aggttcaagc	gatcctccca	cctcagcctc	60
ccaagtagct	gggattacaa	gcgtgtgcta	tcacacctgg	ctaatttta	tatttttggt	120
agagatgggg	tttcaccttg	ttggttaggc	tggtcttgaa	ctcctgacct	caggtgatct	180
gcctgcctca	gcctcccaaa	gtgctgggat	tacaggtgtg	agccaccgcg	cccagcctga	240
ccctttcttt	ctctactggc	aaaactcctg	ctccttttta	aagccaagct	catgtcacct	300
cctctgtgaa	gtcctcgctg	actccccaag	cggtcagtgt	ctctctcgta	tgggctcccc	360
ggcccctgca	ctgctctcca	tcacaccctg	accactctgg	gcagtggccc	ccctccccac	420
ccactgacta	tgggctcctt	gaaggcaggg	cctgggtctg	ccccatctct	gtgtccccag	480
caatgctggg	catgagtcag	cctcagaaga	catctgctga	atggctgcaa	accagaggaa	540
atatctccag	cctcaggctg	ggacccctcc	cctctctcct	cccacctctg	acttcatacc	600
actcaccctc	cagagtcttc	aatgcccact	attacttcac	acagttggcc	tgtgacaggc	660
aatcaggtca	tegtecaegg	ctaccaggtg	tttcatgtct	actgtgactt	ccaggaccac	720
aagccctttt	gcgcccacca	tgtcttcacc	taagagatct	tcaaagccca	gtatgtctct	780
ggcacccagt	ggatcctcca	tgcccactgc	ggatcccaag	cctcctgcct	ccttgaagtc	840
caccaaatca	gcaacaccca	acagateett	agtgcccacc	aaaccagcga	catcccgtaa	900
ctcagtcatg	agcccaagca	gttccaagtc	caccaaatcg	accagtacaa	aaagagcccc	960
ttctaaccgg	cccagcagca	ggtcccgagt	ccgcagcaaa	gcaagaacac	ccagcagggt	1020
gagcaccgac	accaggacca	gcaaagccag	caaggccagc	gacgtgagat	gccaccagcg	1080
gaggggcaca	cacagccggg	gtaggacacc	tggcagaagg	ggaagccgca	gctccaagag	1140
gtcacccagc	agggccagca	ctcctggcag	gataagaact	catggtgcca	gaccaggcat	1200
ggccagcagg	gtgagaactc	ccacttcaca	gcaaaaaggg	agccggggaa	agagttacgg	1260
ccggcctaga	accagcaaca	gggaaaggag	tgacagccag	cctagaaatc	tgagcaagaa	1320
gagttaccgc	ccaccaggag	gctcaggtat	agggaggagt	tccgagctgg	ctgtaactcc	1380
cagtacagcc	aagtgtcaaa	ccccgactgg	aattccctcc	aaggagaaga	gtgacaaccc	1440
atctccatcc	tcatcaagga	aggtgaagag	ctacggtcag	atgatcatcc	ccagtaggga	1500
aaagagttac	ageceeactg	aaatgtccag	cagggtcaag	agttataacc	aggccagcac	1560
ccgcagcagg	ccgcaaagtc	acagccaatc	tagaagcccc	agaaggtcaa	gaagtggcag	1620
tcagaagagg	acgcacagca	gagtgagaag	tcacagttgg	aagagaaacc	atagcagggc	1680
aagaagtcgc	acccggaagg	gaattctgag	ccagatggga	agacacagcc	agtctagaag	1740

ccacagcaag	gggaaaagtc	aaaaccaatc	tagaaccccc	agaagaggaa	gaagtcacaa	1800
ctggtctaga	aaccccagca	aggaaagaag	tcatagccat	tccagaagct	ccagcaaaga	1860
gagagatcac	aggggatcta	gcagccccag	gaaggagagt	ggtcgcagtc	aatcaggaag	1920
ccccaacaag	cagagagatc	acagccgatc	tagaagtccc	aacaaggcga	gagatcgcag	1980
ccgatctaga	agtccctaca	aggcgagaga	tcgcagccga	tctagaagtc	ccaacaaggc	2040
gagagattgc	agccgatcta	gaagtcccta	caaggcgaga	gatcgcagcc	gatctagaag	2100
tcccaacaag	gcaagagatc	atagecgate	tagaagtccc	aacaaggcga	gagatcgcag	2160
ccgatctaga	agccccagca	aggaaagaga	tcacagccaa	cttggaagcc	ccagcaaaga	2220
gagagatcac	agacgatcta	gaagccccag	caaggagaga	cagtgcagac	aatctagaag	2280
ctccagcaaa	gagagagatc	acagacgatc	tagaagcccc	agcaaggaga	gacagcgcag	2340
acaatctaga	agccccaaca	aggagagaga	tcgcagccaa	tctagaagcc	ccagcgagga	2400
gagagagcac	agacaatcca	gaagccccag	caaagagaga	gatcgcagac	gatggagaag	2460
ccccagcaag	gagagagagc	gcagacaatc	tagaagetee	agcgaggaga	gagatcacag	2520
ccgatctaga	agccccaata	agcagagtgg	ttacagtcga	cctagagcct	ccagcaagga	2580
gaaagctcat	agccgatcta	gaacccccag	caaagaagga	aatcatagcc	aatctagaac	2640
ctctagcaag	gagagcgacc	ccagtcaatc	tacagtcccc	agaagtcccg	actggaagag	2700
atcccctact	aggacaagca	gtctcagtca	gaatagaacc	cctagcaaga	caagcagcca	2760
ctccccatca	acatttccca	gtgggggcca	aaccctaagc	caggatgaca	gtcaagccga	2820
cgccaccacc	tctaaggcca	ccttacctgg	ggaaaggtct	tcatcatctt	cttccaagct	2880
ggcgtagccc	ccagtctcag	ctggctcacg	ggtctctgtc	atgaccgggg	gaggggacag	2940
gagacaggag	cagagcagca	gctgagcagc	gtccctcccc	ggccagctct	ccacagccac	3000
acctccggcc	acaagttctc	taatacagga	tgttggcagg	tagagaggga	tgctggatag	3060
ggggaaagga	aagacctgtg	atgattcaat	aaattttac	atagcaccca	tccccaccaa	3120
gcccaactgt	gtgctcactg	ctggcatggg	gcacagagga	ccccagctct	gtccctgact	3180
gtctacaggg	tcttgactgc	aagccctgcc	cctctctagg	tettttttt	ttttgagaca	3240
gagtctctct	ctgttgccca	ggctggagtg	cagtggtgtg	atctcagctc	actgcaacct	3300
ccacctccca	ggctcaagca	attctcctac	ctcagcttcc	cgagtagctg	gaactacaag	3360
tgtgcgtcct	cacgcccggc	taattttgta	tttttagtag	agatggggct	tcaccatgtt	3420

ggccaggctg	ggctcgaact	cctgacctca	ggtgatccac	atgcctcaac	ctcgcaaagt	3480
gctgggatta	taggcatgag	ccaccgcacc	cgtcccctc	tctaggtctt	aatttccgca	3540
tgtgggcaac	aaggctgcct	tctggttctt	attcagtggg	gtagggagag	gtgacactcc	3600
aaatattcaa	cagtggggac	tggtgtgggc	accaatcaga	actgagagtg	gagcgggacg	3660
gataccaggc	cttaaccctt	tagttgctgg	accatgggga	ggtctggggt	tggggaagtg	3720
ttatggggaa	aaaaaaccct	caaactgtgt	ttttcctcta	ctctcacact	atcacaacaa	3780
tcatcaacac	agaattctgt	gaccaaatgt	gtggggcttt	ttccccacac	actacacagc	3840
agacaacagc	taggtgtccc	ctccgattcc	attccaacgc	tgtccccaca	cccagctaat	3900
ttttgtattt	ttggaagaga	cagggtttca	ccatgttgcc	cagagctcaa	gcaatctgcc	3960
cacttcagcc	ctccaaagtg	ctgggattac	aggcgtgagc	caccacaccc	gactttttta	4020
aaaaaataaa	aataaggccg	ggcgċagtga	cccatgcctg	taatcccagc	actttgggag	4080
gccgaggtgg	gcagatcacc	tgagctcagg	agtttgacac	cagcctaggc	aacatggcaa	4140
acttgtctct	aaaaaaaaa	aaaaaattac	aaaagttagc	cggtgtggtg	gcatgtgctt	4200
atagtcccag	ctacctgaga	ggctgaggca	ggaggataaa	ttgagcctgg	aaggtcaagg	4260
ctgcagtgag	ccgtgacctt	gccactgcac	tcaagcctgg	atgacccatc	ttacaaaaaa	4320
aaaatttttg	ctggagctgc	tcacagaact	caaggaaatg	cttacttaga	tttactggtt	4380
tattatagag	gatattgcaa	agaacaaaga	tgaagagatg	tgtagggcaa	ggtataaggg	4440
aaggggcagg	gagcttcacg	ccctccctgg	ggtgctaccc	tacaggaacc	ctcaggtggt	4500
tagctatgcg	gaagctctcc	aaacccagtc	ctcttgggtt	tttacggagg	ctttaagaca	4560
gcagcattgg	gcatggactt	ctctgaaaag	tgtcttaaga	ccaacaatca	agaaggtggg	4620
gaagattaga	gtcttgccct	ggggcaggaa	atggagggca	ggaggaggtc	agagagattc	4680
tgtttcttca	gacctgcccc	aggcctaagg	tacacaacat	tataacaaga	gactgtaaca	4740
aaggctgtag	gagttaccag	ccaggaactg	tggatgaaaa	ccaatatatt	tatatatata	4800
ataccacaag	gggggtccaa	agtggcagtt	agggacaggg	agtacttgtg	tagcagtgac	4860
acaccaaccc	atctggaagt	attttaatat	ttaaacaatt	ggtatggcta	tactagtttg	4920
tgattatcag	ccttagttct	gtatcaattg	gcaagatagt	gtctaggttt	gccacactct	4980
agctgtgtag	caccaagcaa	agaacttaac	ttctctagcc	tgtttccttc	tctggaagaa	5040
aggggcttcc	aggccttaac	tcacgtactc	cccataacta	gactgggaat	tatctccttt	5100
gtacagatga	ggaaacagac	acagaggtga	taagtgagta	gcccaaggtc	accatctggt	5160

	aagtggatga	actaggattg	gaagccagac	ctttcataaa	atgatttctc	agctcaaaag	5220
	gtttttctga	agattcagta	ggctcactga	tagaaattgc	tggtgtgtgg	ctggtattcc	5280
	atcaagagtg	gccattacta	ctcccacccc	tgcccctcta	taaactccag	atgttccaga	5340
	cctctcatct	ctccctgtgc	acacaaggcc	ttttcacatc	tgtgggtctt	agtacaccca	5400
	ctgttgctgt	caagaatgtc	ctcctcctcc	tttttttt	tttttttgag	atggagtctc	5460
	actttgttgc	ccaggctgga	gtacagtagc	gcgatctcag	ctcactgcaa	cctctaccct	5520
	gcatcagcct	ccctagtagc	tgggattaca	ggcagccacc	accaccatgc	ccggctaatt	5580
	ttttggtatt	tttagtagag	acagggtttc	attatgtcag	ccaggctggt	ctcaaactcc	5640
-	tgacctcagg	tgatccattt	accttggcct	cccagagtgc	tgggattaca	ggcaagagcc	5700
	accacgccca	gccctccttc	ccccttttg	gcctggagaa	ctccttttca	cccttcaaag	5760
	cccaccacaa	acataagaac	ctctatactt	cttgcccgct	gaaatactgc	ctctgccagg	5820
	aagccttctg	tgacttctct	ctctccctct	tcaccaacgg	accgcccccg	cccccacca	5880
	accccaccac	acacacacac	cactactgtc	ttccactgta	ctccctgaca	gtagagaacc	5940
	aagcagggcc	agttgatgca	gcctcagcta	tatctcttac	atgccaaggc	ccatgcactg	6000
	gggatacaat	ggtggáaaat	acatggtccc	ttcaaagtct	ggatgtcaag	tttaatgctg	6060
	gggactaaag	agaaaagctt	cagattgaaa	cctggaggtg	gctggggcaa	aggaccattg	6120
	gcatcattgg	cagggcaact	tcctaaagaa	agcacctaaa	tcttggcttt	taaagacaga	6180
	tttcataatt	ggcagaggag	aattctaatg	ataccctatt	gcctacaggg	ccccatctaa	6240
	tttgggaatt	ctactttata	ccaagataag	attgccagat	ttagcaaata	aaaacagaag	6300
	acatccaatt	aattttttg	tttgtttttg	ggtttttgtt	gcggagatgg	tgtctcacta	6360
	tgttgcgaag	gctgctgtca	aattcctggc	tcaaacaatc	ctcctgcctt	ggcctcccac	6420
	ttcccaaagt	gctgggatta	caggcatgag	ctaccacacc	tggcccttat	ttatttattt	6480
	atttaatttt	cttttttggg	acggagtgtc	actctgtcgc	ccaggttgga	gcgcagtagc	6540
	gcgatctcgg	ctcactgcaa	cctctgcctc	ctgggttcaa	gcgattatcc	tgccccagcc	6600
	tcccaagtag	ctgggactac	aggcgcgtgc	caccatgccc	ggctttttt	tttttttt	6660
	tttttttt	gagacggagt	cttgctctgt	cgcccaggct	ggagtgcagt	ggcacgatct	6720
	cggctcactg	caagctccgc	ctcctgggtt	cacgccattc	tcctgcctca	gccttccgag	6780
	tagctgggac	tacaggcgcc	tgccaccacg	cccgactatt	ttttgtattt	ttagtagaga	6840

tggggtttca	ccgtgttagc	caggatgatc	tcgatctcct	gacctcgtga	tccacccgcc	6900
teggeeteee	aaagtgctgg	gattacaggc	gtgagccacc	gcgcccagcc	tacttattta	6960
tattttttaa	gagacagggt	ctcgctcagt	tgcccaggct	ggagtgcagt	agggtgatct	7020
gtaggaaagg	ggcttccagg	ccttaactca	tgtactcccc	cataaccagg	ttgggaggtt	7080
agctcactgt	aacctcaaac	tcctgtgctc	aaggtaccct	actageceet	aggagagcag	7140
ctgggactac	aggtatgcgc	caccatgcca	ggcttaattt	ttacttttt	tttttttt	7200
tttttttgta	gagacggggg	tctcactata	ttgcccaggc	tggtcttgaa	ctcctggtct	7260
caagcgatcc	tcctgcctta	gcctcccaaa	gtattggtat	cactgcaact	agcccaaaga	7320
attaatatag	ctatgttcca	tgtgatattt	gggacatact	tttctaaaag	gttgtatctt	7380
ttggatataa	ttgtttatct	gaaattcaaa	tttaactaga	cattgtatat	tttatacggc	7440
aaccacacac	ctgggacaat	caagacattc	cctgaagtta	ccaggagaca	atgcccatca	7500
gcctacactt	ttccaagccc	acgtcacaca	aggeceette	cagagtattc	cagacgtcag	7560
gtagggccat	cccttggttc	acaagtccca	ctcctaccac	gcctatggca	gccaaactga	7620
aaggcaaaca	cagtgctgga	gaccccacaa	tgccctgggc	ctatagcagt	caattcccaa	7680
gatgccccgc	gtgaacacaa	taggcacccg	ttccaatgct	cgagcaaaga	gaccagggca	7.740
aaaccttcca	ctacgggaca	ataacggcca	gttcccacaa	ttcgttgtgg	cagttcttcc	7800
caggatgcct	taggcctata	gcgaccacct	tcccagactc	cccgtgtgga	agcgctccaa	7860
gcctccagga	cggtcagcgg	caggtgtggg	ataaaaggaa	ccggtctcga	caaggatctg	7920
ggacactctt	tcccaggatg	caccaggcct	acgactagcg	gaccgactcc	cacagcgctt	7980
caaggcggag	cgctcggttc	tcccaggatg	ccccagggcg	gcacaaacgc	gtagggggag	8040
aaaaagaagc	cctcgggtca	ccacggcccc	agaccgccgg	ctccccggtg	acgggagtcg	8100
tegeteceat	catgcagcgg	ggccgtagcg	cccgcttccc	ggcatgcctc	gcgcacccct	8160
gcccgggaca	ctcaccggcg	ccggcggccc	ccgctccggc	tctgcggcgg	cggctgcacg	8220
cccagcctct	gcgcctgcgt	cgcaagtagg	gtaggacagc	gcgcaggggg	cgtgaagagc	8280
ctagggcgct	tgcgcggcga	gacggactag	tcctgtagcg	ctgtgggaag	aggggctatg	8340
cgcgtcgggc	cgtcgacgag	acccgcgcgg	ggggcgccgt	gctttgcccc	tegetgeetg	8400
ggtttacttg	gtacagcccg	cggcccaaag	gaacaagaag	ctgaagggtt	cgcgcgtgcg	8460
tgtgcggggc	aggaacgcgc	cttacaaaac	tgggatgcgc	tgggggtgga	gggcgctagt	8520
tcggactgga	tectgggeee	gaggcctgct	tatttgcata	atcctagcgc	gggacaatga	8580

aaggcctccc	gcactggaag	gagtgatttg	catattcccc	ggaggggcct	tactccagag	8640
cgcagtgatt	agcatatggc	gggggcaacc	tgagcaaagc	gcatgcgcgc	agggactgca	8700
gactgacgcg	aagtgggtag	ccttgtcttc	gtaggggatc	agtttgcatc	ctgagagagg	8760
gcacgagggc	caggacccct	cccaaccagg	ataaaggttt	attgatctcc	taggtgtcag	8820
gccccatgct	ggcggattct	gtggtttctg	cagtgaacca	tactcctgta	ctcacggcac	8880
cccagtcgaa	ggagatacgc	acctaattag	acaactacta	cccagaaggt	cagacctgga	8940
gtgaggaaca	cagggggctg	tgggagccta	agaggcgctt	gccccggcct	ctggttctag	9000
aaagacttcc	aggaggtggt	gatccttaag	ccaagtacga	ataggagcca	actagaatgg	9060
gaatgggtct	ggcagaatga	actgcaagcg	ccaaggccca	gaggccaaaa	aaaaaaaaa	9120
aaaaatagaa	gcgcatgttt	tgattgagga	agcaagagca	gcttagtatg	cctagaacct	9180
aactggagac	gggaaatggt	tctatagacg	atgttagagt	tcaactatgg	ctacattcca	9240
gtetteetgt	aagtgacttt	gtcacattct	ggcttaaaac	tcccccaaag	ggatcccatt	9300
aggaaaaaaa	aaaaatccaa	aaatctttat	catggcctca	gggctataca	cctggtctgg	9360
ccgtgcttat	ctttctgacc	ccacctactt	catactacat	ccatttctgt	ccagctccac	9420
cttaccccaa	actctttacc	agctcgggcc	tctgctcttg	ccgttccctc	cgcctgaaaa	9480
tgcttttccc	tctgaccttt	gaatacctac	tcttgtgctc	accattcata	tcttggtaca	9540
gatgtcaatc	tgagaggctt	ttcctgatct	ctccataata	gcacttacac	atttgactgg	9600
agttatggat	aaatcgggat	tggccatgag	ttggtggtgg	ttgtaactgg	catgaagagt	9660
acatggggct	gggcgcggtg	gctcacgccc	gtaatcccag	cactttggga	ggccgaggct	9720
ggtgtatcac	ctgaggtcag	gagcttgaga	ccagcctggg	caacatggtg	aaaccctgcc	9780
tctattaaaa	ctacaaaaat	tagccagggg	ttatgggggg	tgcctgtaat	ccttgctact	9840
tgggaggctg	aggcacgaag	atcacttgaa	ccctggaggc	agaggttgca	ttgagtcgag	9900
attgagccac	tgcactccag	cctgggccac	ccagcgagac	tctgggtctc	gcctgtaatc	9960
ccagcacttt	gggaggccga	ggcgggcgga	tcacgtcaga	agatcgagac	catectggee	10020
atcctagacc	atttctacta	aaaatacaaa	aaaaaaaaa	aaaaaattag	ccgggcgtgg	10080
tggcaggcgc	ctgtagtccc	agctactcgg	gaggctgagg	caggagaatg	gcgtgaacac	10140
gggaggcgga	gcttgcagtg	atccgagatg	gcgctactgc	actccagcct	gggcgacaga	10200
gcgagacttg	gtctcaaaaa	aaagagtaca	tgggacgtta	ttgtcctgtc	tactcctgtg	10260

ggtttgaagt	tttccataat	gacaatggca	taccacatca	ccatactctg	catttatatt	10320
aatagttctt	atcacaatct	gaactttctt	tgcttccttg	ttttgagtgt	tttcctcatg	10380
aaagcttcat	gagggtaaga	atggagtcgc	cctttttcac	tttgggttct	caatgcttag	10440
agcaggatca	gatttcagat	tagtgtagcg	ctgtctttaa	cacttaacat	ttgcctgttt	10500
tattcaccat	ggactctaga	actttgagca	gcacctggca	catcgtaaga	ggttatttt	10560
taaagttaga	ataatacatc	taaaatgtac	atgaatgaat	gagaggcctg	ggatgccaga	10620
ctaaagagct	ttgacttggt	ctaaaggtga	tggggagcta	ggcaaaggtt	ttgagagttt	10680
aactttaatt	caaagttccc	ttggagacta	atgtctgggg	tagggggaag	ccagggtaag	10740
ggtccgggcc	atggaatggg	gtagctcagt	cgctatcaaa	aagacaagac	tgtgactatt	10800
tggctgaaga	aatggccaaa	cccaggtttc	tggggaggtc	gaggtaccct	cagtgaggtc	10860
aggacettet	cctggcctat	actgtccacc	agcaaccatc	acactcctcc	ctcccctctc	10920
ccttagttcc	cctcccaatg	gtacagccct	tgacagcagg	acagacacac	agccacccca	10980
aacacttgtt	ctctcctcag	tttaatggtg	gttagtgaga	ttgccaaacc	ccctccccat	11040
tcccctcccc	accccgtaca	aaatgtgtgt	gtggttttt	gttttttgtt	ttttgtttt	11100
taacaagaaa	aagggggcaa	aagccaggaa	tggggagagg	ggggtgcaat	ctgatatttt	11160
catacagact	tttgattttt	taatatatta	tatataaaac	catgaagacc	acgaatcctc	11220
cccaaactcc	tttccccctc	cccggggggc	ctggaggaga	gatggggaag	gccccccag	11280
gagtgggtgg	acagagagac	aaatatggat	gggacagacg	ttgggggaga	aggtagagag	11340
aaggggagcc	caggaacctg	gggaaggggg	attggagaaa	agggttgggg	ctgtctccct	11400
cactgccccc	atcaaagtta	tgacacaaag	acacagaatc	cctatttcca	cgccctcccc	11460
ccacccatcc	ccccaccgtg	caaacatggc	tttgcaaaga	agtgcccaga	gctctgtgga	11520
actcttacaa	tggctggcat	ggggtctagg	acccccaaag	aaatctgtgt	teceettece	11580
tgccccccc	accettecea	gaaactgacc	ccctccccac	aagacctggt	tttgtagcct	11640
aggggccctg	gccttccccc	agttatcttc	ccccaaccca	atccctactg	ccctcactgg	11700
acttgggggg	tctggacctt	tggcccctgc	cccctggggg	acccagacct	ctgggccctc	11760
acttctggcc	cttacagaga	tccaggcatc	caacaccccc	atccctgccc	aagcgtctga	11820
ggtgttagtg	gtggggggag	aagcccacca	tcccagactc	tggtaaatgt	ctttgctggt	11880
tccttgcagc	tggcagtggg	ggggacccca	gcccaggccc	aggcctaggc	ctggggtggg	11940
gatagggtca	gatgaagaat	tcctctttcc	tcttgtgtcc	gtcgctgcca	ttgaggaagg	12000

cttctcttgc	ttctccctgt	tcatccaagc	cactggcttc	gtgggtcaga	taggaacctg	12060
agggggtgac	agacccccgg	ggcagggggg	acatatttgt	ggatccagga	gttggacaga	12120
agtataaggg	aagagggaga	cagacaagac	acatgccagg	cgaaggaaga	gggagaaacg	12180
gaacacacag	ggagaggcag	agaaagaggt	aaacagtggc	agagaaagag	gtaaaagcag	12240
aattaggaag	actccaaaag	ctcaccgaaa	gtgccaccct	tatcctttct	cttggaggta	12300
tttccttgcc	ctgctcccag	cgaattcagc	aattaggaaa	ataaattgtt	ttattcaaat	12360
ccatgctctt	tttttcccct	aattttttgt	atttttagta	gaaaaggggc	tgcgccatgg	12420
tgcccaggct	ggtctcgacc	tcctagcttc	tcaagtgctt	tatccgcctt	ggcctcccaa	12480
cgtgctggga	ttacaggcgt	gagccaccgc	gcccaaccgc	aaatctatgc	ttttaattca	12540
gcttctaaat	tctacccctt	ttcgagtatt	gtgccgaaag	cecegeeeee	tttgtcatct	12600
ccgcccccgg	tgcągcggga	tttggaatcc	agagcctagg	ctccgccctc	tcgttaccct	12660
ggctctaggc	cccgcctctt	teegageeet	acaaccaacc	aaccgtagag	tccaggcccc	12720
gtcccactca	cccttctgcc	gtaccgagca	ccagaccatg	cccactagca	cacatatgat	12780
cagaaacacc	agcagcgcca	ggatgccgcc	cacaatggca	tagggaaccg	acgtctgagc	12840
ctctaccacc	gcaccagggt	ctgccagagg	gacacggcac	aggaccaggt	catcagagga	12900
cgatcccagt	ctggccccat	cgctgccaag	cttttaagcc	attctgcaca	cgtctaaccg	12960
tgccctttta	tgtgccacac	ccctcaaaaa	ttactgccac	cttgtagtct	cttctctttc	13020
cagatgcttg	ttggtttgta	cactgcccga	cccctcccct	gagtcatgtt	acattttcct	13080
tttcttttc	ttgttttctt	ttgcagagac	gggggtctca	ctatgtggcc	caggctgatc	13140
ttaaactcct	gggctcaagc	gatecteegg	cctaggcctc	ccaaagtact	gggattagag	13200
gcgtgagcga	ccgcacccag	ccatcccttt	tcttttgact	caagtttctt	cctccactaa	13260
gaaacagagt	ccaagaaaca	ggtccaagtc	ccttcccacc	ttgtctaaaa	cgctccaagt	13320
atttaaagtg	ctgggcccaa	ctaccaaaat	ttctgcccca	ccgtcataga	gctaaacaca	13380
gaacagctgt	gtgctagagc	ccattccaac	caccttacat	atttagttca	cataatcttc	13440
acaacagcct	tgttatatag	gtgctattgt	ttatttccac	tttactgatg	ggtaaactga	13500
ggcgcagaca	ggttcggtta	cctgcaatag	aatgcagcca	acccgaattt	gagccccgcg	13560
ggccagtctg	gtcccaaaac	aaaaagaact	ctgttggctg	ccgaacccct	gagttatgtg	13620
gcetctttgc	tcaagccccg	ccccgccac	ctggcgcccc	gccccgccc	tcagtcggcc	13680

gcagcctgct ctcaccgtag accacaagta cgtagagcgc cctcgcatgg ccgtgcttat 13740 tggacgcctc gcaagtgtag gtgccgttat ccgcggatac cagacccggc agcgtgagcg 13800 teteteceae ggcetecgce etetecggca aagacteatt eeegeggtte cageggatet 13860 ggtttggcct gggtggggat aaagtatagt gagagttagg aaccgaggtg ccagcaccca 13920 attetgaett gteaagaate tagaeatgea aeteteatee egeagggaee teeaaataag 13980 aggetteetg etatetettt cetttetgga aaaccaacag teetgggeet aetteeacec 14040 atcaccaagg tctcaggaat tctagcccag gctgaacatg gtggcttatg cctgcaatcc 14100 cagcacttta ggaggetgag acgggaggac tgettaagge cagcagttee agaccageet 14160 gggcaacaca gggagacccc gtcactacaa ttaaaaaata ataataataa taataataat 14220 tetageeete eeaegeeatt eeateeteag eaaceaggag tetgaggetg eaeagettea 14280 gtattgggga gtctgagcct ccagattcct cctccctcag gatccaggag tccaggtccc 14340 agatecetat tegtecaggt ecceagetet etecteetea ggacecagga atceaggtee 14400 tageteeetg titigteeagg teeteagete teteeteett aggaceeagg agteeaagte 14460 cctggtccct gttcttccag gtccccagct ttctcctcct gaggacgcag gaggccccca 14520 gageteacet ggggtteece gtgacageae aegteaacae eagegtgtet eecteeetea 14580 ccacagcttg ggaggcatga atccgggccg tgggggagtc tgttaggcaa aagtaagagg 14640 agagagtagt ttccaagcca tcacgcagga caagggggac cctcgcgggt gcgggtggct 14700 ggcgttggga tcccttgggt cctggcccgc cggtcactta cactgcacat ccagcacgta 14760 etgegtetge ttgetgtgte eggagggeag egeetggtte tgegeeteae agatgatgat 14820 accaccgtcg tccttacggt ccacacgaaa ccgtactgtg cttgccacgc tccagacctt 14880 gccattttcc tggctgctgc tcactcctgc cacaccccgg tcagacactg tcaggccaca 14940 attccggctc catccaccca cccacccgag ccaacgccaa agcaggctat ttgccaagct 15000 ccaccctta cccacaggcc ccgcctcttg tcctccaagc tacgcccctc ccctaaccaa 15060 gcccacgtgc ctcctcccaa agctcttccc tctttcacgc tcatgctttc tcgtctatca 15120 atccatttaa ttgctatata tataaaaaca taaatttata tatatactta gagacagggt 15180 ctcacaatgt tgggcaggtt gaactcctga cctcaagcaa tcctcccatc tcagcctccc 15240 aaagtgctag gactacaggc gtgagccacc gcgctcgaca tcaaccacta catattgaat 15300 gtccagtgtc tgtgaaaacc tgtggctcct ctccacatat aaacaacctc tcctaagtcc 15360 cacctectec ceatecettg teageacteg geocagggta cettteaget cettgeggte 15420

ccggtaccag	cgcagggtgg	cagccggacg	ggaccgcgga	acgaggcagc	tgagctccac	15480
ctcgccgccc	tctaccgcct	gctcccggac	ctccaccaca	ggattctctg	gggccactgc	15540
cgcagggaga	agggaagtaa	ggggttaaag	aaggcacgaa	cgtgggctca	aagcgatcga	15600
gctgcctgtt	cccagcgacc	atagggaacc	agggtcccag	gtggcagggg	tcaaagggga	15660
gaggtcagga	gccagatgcc	catccaggat	gttaaaaata	gccatggtct	gaaagtctca	15720
ggagaagaga	gaagcagaga	agaaaggagg	agaggatgcg	tctgacaagg	gggagggcgt	15780
tacctagtac	cgtgagcgtg	gcaatctggt	ggtgggtgtc	ttctgtgtag	agctggcaga	15840
aatagccccc	ctcgtcctcc	aggcgggcat	ctgagagccg	gateegeace	cggcgtgggg	15900
agaactcctc	aagctggaaa	cgctcatcct	tcaaggctag	agagagtgag	ggggaaggtg	15960
tgaatttcgg	gagtcctggc	ctcacaagtc	ccacccttcc	gacaggagct	tagagtccag	16020
ccctctgcct	cttttctcca	gccatatcta	tgagtctgag	gtgtccaact	atttactccc	16080
ttgaggaccc	agcattattc	aagtcctcct	gcctgcagga	ccagcagtcc	gggaccccag	16140
ccctttcttc	tccgagaccc	aggagaccaa	actctcaggt	gtgtcctctt	tcaggacatg	16200
ggagcctggg	ccccagccct	ctcttccttt	aagactcctg	agtctggtcc	ccagcactca	16260
ccacgggtgc	cattgaagaa	gagggtctgc	cgggctgggt	tctggatgac	aactatggac	16320
ccatcatacț	ggtgcagacg	gcaggtgatc	tcagccaccc	caccctcagc	cactgtcacg	16380
ttctctgtct	gtacttcctg	teetgeeect	ggacgattag	acaaagagac	aggatagaag	16440
acttactgag	agctgcaatt	caatttttc	tttctccctc	ttccccatcc	aaacctccaa	16500
tccctctctt	tcccctcatt	cattccattg	cactgaacat	ttcctgcagg	ctagagtcca	16560
ggacagggag	gaaatctgct	ccctactcta	aaagagctgc	agtcaagatt	tagtagaata	16620
tgctctaatg	agggcagcac	agggcacact	aggagcccag	agcaagggag	gactattata	16680
gaattgccta	gagagatggg	tagccagaga	gggctctgca	agaaagctcc	attggatctg.	16740
gatcttaaag	agtaagcagg	aggctgagcg	cggtggctca	tgcctgtaat	cccagcactt	16800
tgagaggccg	aggtgggcgg	atcgcaaggt	caagagatag	agaccatcct	ggccaacatg	16860
gtgaaaccct	gtcactacta	aaaatacaaa	aaaaaaaaa	aaattagctg	ggtgtggtgg	16920
tgcgcacctg	tagtcccagc	tactcgggag	gctgaggcag	gggaatcgct	tgaacccggg	16980
agttggaagt	tgcagtgagc	cgagatggag	ccactgcact	ccaggctggg	cgacagagcg	17040
agactctgtc	tcaaaaaaaa	aaagaaagaa	aaaaaagagt	aagcaggagt	tcacaaggtg	17100

tgggagactg	ctgtgtgttc	accaagcctc	atctttcaca	cctgggcaca	tgttgtagcc	17160
cgtttgcaaa	gatagccgta	atattctcct	gtccctggac	atgccctttg	caagttgatt	17220
ttgccattcc	tcccattgag	aaggcacttt	gtcccctact	agtctgggta	agccttgaga	17280
gttgctttga	ccaatagaat	ttgctagaag	tgatattgag	cctaggcctg	aagaggcctt	17340
gtagcttcca	ctcctgccct	aagactgttg	catgaagata	cccagactag	tgtctttgca	17400
gatgaacaat	catggtgaaa	gagaagccca	gccggcagcc	agcaccaatc	gccagctgtg	17460
tgagtgtggc	catcctggat	catccagccc	cagctgcccc	accagctgac	agcagccaca	17520
caagtgaccc	cagttgagac	caataaaaga	tctgcccatc	tgatacagcc	caaactgctg	17580
aaccccagaa	tcatgaacaa	ataaggtggt	ggttgtttta	agctcctaag	ttgtgggtga	17640
tctgttctac	tgctaaagtt	aactgataca	atacataatt	aggctatact	tcccagcatc	17700
ctttatagtt	aggtggggcc	atgtgaccaa	ttctggccaa	tgggatgtag	gtggaagaga	17760
aacacctctt	gcagcctgac	ccatctccct	cataatcctt	cacactggct	gaacagagag	17820
gactccaagg	agcctagagg	agggcagaat	cacaagccag	aaggaacctg	ggtctctaac	17880
tgactgtccc	ccatgacccg	cctgtatagg	actgtgatat	gagcaagaaa	tatacctttt	17940
tgttaagcca	ttgagatttc	aggggtgtct	gttacagcct	ttaacctacc	ctgattaatc	18000
catcagaaaa	acaaggtggg	gaatctagaa	ccatcagaga	aaagcattta	ggaaagctga	18060
aagccaagac	taatcatcag	cattaatatc	atcatctgtt	gtcttcaaaa	taacaataac	18120
ccccatagct	accaattatt	aggtacttgc	agtgttagtc	cctgtgctaa	gggcattacc	18180
catataactt	acctttaatc	ctcacaatcc	ctgtgtaagg	tagacatgat	tattatcatt	18240
attattatta	ttttgggaca	gagtattgct	ctgttgccca	ggctggagtg	cagtggtĝtg	18300
atctcagctc	attgaaacct	ccacctccca	agttcaagcg	attcttcagc	ctcagcctcc	18360
caagtagctg	gaattacagg	catgcaccac	catgccgggc	taatttttat	ttttagtaga	18420
gacagagttt	agccatattg	gcctggctgg	tctcgaactc	ctggcctcaa	gtgatccgcc	18480
tgcctcagcc	tcccaaagtc	cagggattac	aggtgcgacc	caccgcgcct	ggccaattat	18540
tattattatt	tttaatttga	gacaaggtca	ggctggagtg	cagtggcacg	atctcagctc	18600
actgcaatgt	ctgcctccca	ggctcgagtg	atcccacctc	agcctcccca	gtagctggaa	18660
ctacaggtgc	acaacatcac	acctggctaa	cttttgtatt	tttttagaga	cggagtttca	18720
ccgtgttgcc	caggctggtc	ttgaacttgc	gageteaagt	gaactgcctg	cttcggcctc	18780
ccaaagtgct	gggattacag	gcatgagcca	ctgtgcccgg	cctgcgctat	tattatcccc	18840

attttgcccg	gcctgcgcta	ctattatccc	cattttcccc	catttccatt	tttcttttct	18900
tttttttt	tttttttt	tgagacattg	tcttgctctg	tcgcccaggc	tagagtgcag	18960
tggtacgatc	tcggctcact	gcaacctcca	cttcccgggt	tcaagcaatt	ctcctgcctc	19020
agcctcccaa	gtagctggga	ttataggcac	ctgccactgc	acttggctaa	tctttgtgtt	19080
tttagtaaag	acggggtctc	accatcttgg	ccaggctggt	ctggaactcc	tgacctcgtg	19140
atccacccgc	ctcggcctcc	caaagtgctg	ggattacagg	cttgagctat	cgtgtcctgc	19200
teccattece	attttatagg	tgagaaaatt	ggcccacaga	gatgaaatga	cttgcccaag	19260
ttcacagcca	agagtggcag	tgccaaaatc	ttcgtccaaa	tctctgattc	tgtatcctga	19320
atctgtatat	ccactcctgg	ctgtctggat	taagtgtcca	tcattggcag	ggggttgtga	19380
gagccgcttg	tgatgggcct	cgaatgccaa	cctaggagat	ttgctttcat	cctaagggcc	19440
agtgaaggtt	ttgaagcagg	aatatgccat	gattagatct	ggctatttgt	ctttaagtgc	19500
tggataacta	tccatgtctt	ttacattcag	gtgctgggtt	gcattcattc	aggagtattt	19560
cctgagcatc	acgtaggttt	tcaggggctg	agtagtcaga	gatgagttag	atgaggtccc	19620
tgccctttaa	gatttatggg	aaggtaggaa	ccaatcacgg	taatcaaaag	tgttatgtgg	19680
ctgggcacgg	tggctcacac	ctgtaatccc	agcactttgg	gaggccgagg	tgggcggatc	19740
acaaggtcag	gagttcgaga	ccagcctgac	caacatggtg	aaaccccgtc	tgtactaaaa	19800
atacaaaaat	tagccaggtg	tggtggtggg	tgcttgtaat	tccagctact	caggaggctg	19860
aggcataaga	atcgcttgaa	cctgggaggc	agaggttgca	gtgagccaag	atcgcgccac	19920
tgcagtccag	cctgggtgac	agagcaagac	tccgtttcaa	aaaagaaaaa	aaaaaaagaa	19980
ataaataaaa	gaaagtgtta	tgttttctgt	aagagggtag	gtaacctaat	ttggaagttg	20040
aggggtagaa	aagattattt	ctgggggatg	gagacagaga	cttctggctt	cctattctga	20100
catccatttt	tecetttete	ctcagtaaaa	gaaaagaaca	ctggttgtat	tttatggttg	20160
cactatgtcc	agcagaaaaa	ggcattcctc	agtctccttg	cagcaaggta	aagccatctg	20220
ataaaatttt	gtccagttgg	atataagcca	aaatgttgcg	tgacaatttt	gggaggactt	20280
cctgaaacag	gtggacaaac	cctttttcta	ctgagtcacc	tttgtgccac	ctggaactaa	20340
cagtgtgacg	cgtggaattt	aggcagccat	attgaaccat	gaggacaaga	gcagtgggga	20400
tggcggaacc	aagagctgga	aggtgcctga	gtctctggtg	aagatgtgga	gctgctgtaa	20460
cagccctcaa	ctcctagttc	tggacttctt	ttatgtttta	gtgtaacgct	ttgggtattt	20520

ttatttttt	aatttatttt	agagatgagg	tctcactatg	ttgcctaggc	tggactcaaa	20580
ctcttatgct	caagcagtcc	tcctgcctca	gcttcatgag	tagctgaaac	tatagcactt	20640
tgggtatttc	agccactgtt	tgaggttttt	ctagcacctc	ctggaatatc	aagcttaaca	20700
tgtccaatcc	ttgccccaga	tattttcctc	cccaaatttt	ctcaatctca	ataaatgtca	20760
ccaccatcca	cctggttgct	caggtcaaaa	acctagaaat	cattcaagtt	ctctcccttt	20820
ccctcatccc	caatatccat	tccatcagca	acatctgtcc	attctacctc	caagacatat	20880
cccagatctc	atcacctttg	tctgcctctc	ctaccctcac	tctcatccag	catcatccct	20940
cacctggact	ctgcaaaagc	ctactcgtgg	gtctgtctgc	atccctgtct	gcctcctcca	21000
gggccattct	ccacccagtg	gccggatcga	tttttcaaag	aggtaaatca	gatcaattca	21060
cctttctgct	taaaaccctc	cgagggctgc	ccgtaacatg	tagaataaaa	tagagacccc	21120
ttcccgggga	cttcaaggtg	ctatatggcc	tggccccttg	ctgaccttac	ttcactctgg	21180
gctcgctagc	cttgctgtcc	ctcaaacatg	ctgagctcgc	tcccaccaca	gggccttttc	21240
ccttttcttc	cttctgcctg	gaatgttctt	ctccccacct	cccaagcccc	atcttcccag	21300
ggctgactcc	tgttcccatt	tgggtctcaa	atcatatcag	taccttctca	gagaggcctt	21360
ccctcactgc	tcatcccttc	acctttagaa	cactttcttt	tcttttaaga	gacaaagtca	21420
gcccagtgcg	gtggctcacg	cctgtaatac	cagcactttt	gagaggccaa	ggcgggcaga	21480
tcacctcagg	tcaggagttc	aagaccagcc	tggccaacgt	ggcgaaaccc	cgtctctact	21540
aaaaaaatac	aaaaattagc	taggcagtgg	tagcccgggc	tactcaggag	gctgaggcag	21600
aattgcttga	acccaggagg	cagaggttgc	agtgagccga	gattgagcca	ctgcacccca	21660
acctgggtga	cagagagaga	ctctgtctca	aaaaaaaaa	aaaaaaaag	agacagggta	21720
ttgctctgtc	acccaggctg	gaġtgcagtg	gtgcaatcat	ggctcactgc	agcctcgaac	21780
teetgggete	aagccatcct	cccacctcag	cctcctaagt	agctgagatt	ataggctcct	21840
cccaccacac	ctggctaatt	tttgtgcttt	ttgtggagac	acagattctc	catgttgccc	21900
aggctggtct	ccaactcctg	gggtcaaagg	atcctcctgc	ctcggcttcc	caaagtgctg	21960
ggattacagg	cgtgagccac	tgcgcctggc	ccagaacact	tgctatttcc	tcaccattgc	22020
tttatttctt	ctatgaagat	ttcactggaa	ttatcagatt	aatttgctta	tttgtttact	22080
gtctgtttgt	cacccatgac	tggaatgtat	actctaggaa	ggcagggata	taatccaatg	22140
ggtttactgo	: tgcaccccta	gtacccagaa	gagtgcttgg	cacctgataa	gtgtctgggg	22200
aacttgctac	: atgaattaca	. tgtgtcagat	gggatatctg	ttcgtctttc	ttctctcttt	22260

tttctttctc	tctttctctc	tctctttctt	tctctttctt	tctttttct	ttttttgaga	22320
taaggtctcg	ctctgtcacc	caggctagag	tgcagtggtg	caatcatggc	tcactgcaac	22380
cttgaacatg	tgggctcaag	cgatcctccc	acctcaggct	accaaatagc	taagactaca	22440
gaggtgcgta	gctatgccca	gctaattaaa	aaaaaaaaa	tttttttt	tttttagaga	22500
tgggggtctc	aatatcttgc	ccaggttggt	cttgaactcc	taggctcaag	caatccccct	22560
gccttggcct	cccaaagtgc	tgggattata	ggcatgagcc	attgcagctg	gcccagacag	22620
aatctcattt	cagcccgaca	actttgtgac	atcattattt	tcatcttaaa	cacctaggtt	22680
gatcccagct	caaccacttg	ccatctgtgt	gacctgtggg	caagtgacct	tacctttcgg	22740
agcctcagtt	gccccatcta	taaaatggga	atgatgccag	tgcctgcctc	ataaggatga	22800
gccccgctcc	tgaagctcag	ggagccctct	ctgcaaggct	gttttagtgc	aacctccgga	22860
aacatgccca	tgcatgtgaa	aactggcatg	cacattctgg	tgcttttaaa	aacatctcga	22920
agcctatcca	cagatcctgg	acctcaagac	tggttcagtg	ctagcccccc	attttacaga	22980
tgtggagaat	gaggcttagc	gggtcccagg	caagtcagtg	gcaaaactca	ccatctcctg	23040
ggagccatca	ggttcctctg	gatctgcccc	caccaaattt	atcccctgct	ctctgcttga	23100
gggtgcacat	ggggtgaggg	tgggggtctt	ttgttttact	ccctcccct	cctgaggagt	23160
cagtaaccaa	cagtgtctgt	gcctggaata	ttaatgtctc	agcagctttt	gtttgggggg	23220
ttgggggtgg	tgggggcggg	actttctggt	cagagagggg	ctgagctttg	gggactgagg	23280
cactggccct	ttaaactgtg	ttgacagcca	ggagtcgtca	tggggatggt	gcttggaaaa	23340
ggggacaggg	agggtttggg	aaagagtggc	ggagcaggta	atgcgtaaga	cccaggaatc	23400
cagcccccaa	ctacctcctc	tcccaggacc	caggagtcta	ggctcccagc	ccctcctcca	23460
tcaggttcca	ggagtctgga	accccggctt	ctttccgcct	tagacccagg	aattcagccc	23520
ccaaccacct	cctctctcag	gttcccgaaa	tccagacccc	tageceectt	ctcgatcagg	23580
acccaggagt	ctgggctgtc	agcagcccct	tccttcaaac	ctaggagtca	gagcccccag	23640
ccctctccta	gcttagacac	aggagtctgg	gcctccagcc	ccctcctcct	tcaggaccca	23700
ggagccaggg	gtccagagta	cacagetggt	ggatgtttcc	acggagacta	agcagggtgg	23760
ggggagcgct	tcctgggtcc	tgagtcagcg	aatacccaag	ggagtctcaa	ggtcatagtt	23820
ccgggaaggt	caccaccacc	ccctctgtat	ccgctcccca	gggggctcct	ggcatcctgc	23880
ctccttcccc	cttcctccct	tagggaggtg	gtacatccct	gcgtcctgac	tgaacccccc	23940

tcagcccccc	atcaatggcg	gagtccgaac	atcctcgcac	aaagcgtcaa	ttcttcccca	24000
gctcagcctt	gtgaaggcgc	ctgtattcgc	aggacctagg	cgtcagggtc	tcagcccctc	24060
ctccctcaga	aacctgcagt	ggaatccccc	gcctccagcc	ccttcctccc	tcaggaccca	24120
ggagtctgta	tcctcatccc	ttcctccctc	aagacctagg	agtgtggact	cccagccccc	24180
ttttccttcc	ggacacagga	gttccagccc	teggecetet	cctctcttaa	acccaggggt	24240
ctaagacccc	agcctcctcc	tccctcaaac	tcaggagtct	aagatcccag	gccctcctc	24300
cctcagactc	aggagtctaa	gatcccaggc	ccctcctccc	tcagactcag	gagtctaaga	24360
ccccaggccc	ctcctccctc	agactcagga	gtctaagatc	ccaggcccct	cctccctcag	24420
acccaggagt	ctaagacccc	agcccctcct	ccctcagact	caggagtcta	agaccccagc	24480
ccctcctccc	tcagactcag	gagtctaaga	ccccagcccc	ctcctccctg	gacccaggag	24540
cctaagacct	cagccccctc	ctccttgaga	cccaggagtc	taagacccta	gctccctcct	24600
cctttagacc	cattagtcca	ggcccccaga	ccctcctcca	tcagacccag	gagtccaggc	24660
ccccagcccc	tcctccatca	gatecagece	ctcctctcct	gaaaactttt	gactctaact	24720
ccccagtcct	caacccctag	aagcacagtc	ctgcctttcc	tcaatcctct	gtccctccc	24780
atctggggac	ctaggcatca	ggtggggggg	taggggtgag	tcagcaacct	cacacacaa	24840
gtccccgctg	tggccccac	attcctggga	tattcgggac	tccctggatt	ccaggcctca	24900
ggcccagcca	gggagtgggg	agtcccccag	aggtcctccc	tgggtgtggg	gtacgagagg	24960
aattcctgct	ccgggaaggg	tgcaggcctg	cactgagctc	cctctgtccg	aacctccacg	25020
cccagtgccc	tctattcacc	ccctcttccc	agaagagccc	aggctcagca	cctgcccctt	25080
gccccactgg	gtgcccacgg	aggagcctgc	gtgcctgctc	cctatgggcc	tggggtctgc	25140
acaggcggaa	atcagtgggt	gcttccgttc	tgatgccaca	ggccattgga	tgctggcggg	25200
tctgactgtc	tccaggccac	ccccacccc	tcccagagag	agaaagctgc	ctttgtgttc	25260
tccaagatgg	ggacaggcca	ggctcgcacg	acattaaccc	agccttaggc	cccagccctg	25320
ctgtgtctaa	ggtcttggaa	tccactgcag	aacctgaccc	ccacccccag	gctctgggga	25380
cacaggcgcc	tggctcatgg	gtgggtgggt	gggggggtca	gtgatagaaa	cctccaaaac	25440
ctgttccttg	gggtgactca	caatggaggg	agggtccccc	tattctcaag	agtggctggt	25500
cagaatttta	gcaggaaaaa	gtgagtcacc	ctgggaagga	aacattattt	agggaccaac	25560
aactgcccc	tccacaagac	ccctcaactc	ctaatagcct	ctctattctt	tctttgtatt	25620
ggatatctgt	ttcctctcct	cctttctgtt	ctacccagtt	tctggctgcg	ggtcccattt	25680

ctgcctgggt	gcatccctgg	gcaggcaacc	catccctccc	tcttgctttc	tctcctctgc	25740
ccaccctgga	tccttctttg	ggcataaatc	tcatcttctt	ctgctatgct	cagaagatga	25800
atgaaccagg	agagagagaa	catgttttta	aaatggcgca	aatgcacccc	atctcccccg	25860
attcctgctg	gctgggcaag	gtgagagagg	aagaagtgac	taagagagaa	atgtgggaac	25920
aacagatacc	ccctaaaatg	tggtagccaa	ggccactgag	aaatatccaa	tggaaaggag	25980
agcaggaagg	gccctccaag	accacatgct	acagcctcct	accccatgct	ttacagaacg	26040
ggaaagtaag	gcccagagag	ggacaaggac	tgatgcaaaa	ttatactaaa	gggtcctggg	26100
taaggcttgg	acccaagttc	cttagctccc	agctgagagc	tcttcccatg	acaccaagct	26160
cagtttctac	tggtaaaagc	cacatactat	ttactttaga	gaaagtttac	agagagggtt	26220
agggtgccag	gaagcagtga	cttggaaatc	aaacgaggga	cagggctgta	gacctaactc	26280
ccagaagcac	cagagaaagg	cttttgcacg	gggcgggtgg	tcaccttaag	ctatattctg	26340
atcctgagaa	ttcaaagtct	gatgattcta	agctgtcagg	attctaaatg	tcatagatgt	26400
caagatccag	gaactccaag	acatcaagat	ttcacgattt	ttaagacgtc	aagatgctag	26460
cațgctaaca	ccatcacggt	tctagaactt	taaaggtgtc	aagattctaa	agccttctgg	26520
attctagaat	cctgtagatg	tcagcattct	aaagtaccat	caggttcttt	atttactgga	26580
ttcattagtt	ccaggattct	atgagcctgg	tgtttagcct	aaaaaataaa	gataaattaa	26640
aattgatgga	aatgtcactg	aggtaccaaa	gttctcatct	gggaaattgt	ggçatgtctg	26700
ttgtaaagaa	aggaggtaat	gatgcaagtt	ctaaagcagt	cacagaagac	tagagaagaa	26760
agaaagacag	tgagaggaca	gctttgcccc	tcatcctggc	cgaggtgagg	atggctctgc	26820
ctcaaaccct	ggagtgggga	acatgtaacc	gcactcaact	tgccagaaac	cccttcacgg	26880
tctgagctgg	cgttcccttt	catgtcactg	agttcaacat	cctcacttta	cagaaagaga	26940
aacagaagcc	tggagagagg	aaggtgttta	ccattggctg	cgatggcaaa	tggcaagagc	27000
caagatttaa	gcccaggccg	ccagccccat	gccacctggt	tataactcct	ctcaccaatc	27060
tctgccgaac	acccagccct	cctgcttctg	cctagccacc	ttccaatcct	ctgttccttc	27120
caaaagtggc	cttatccacc	agggaggggt	gacccgtggc	aggttcaaga	cttacacagt	27180
gtgagagtgt	gtgtgggtga	catttcctga	ccttgtcccc	attctcaggg	tcacccaacc	27240
tegggggtet	ccagcttctc	acagtgtgtg	atgagggtat	gtggatggct	ccctggatgt	27300
cctggacagg	ggcttctctg	tgagtcaagc	ctgggtgtgt	gaatgggtga	gcagggtttg	27360

gagaggcatt	cgctgaatcc	acgtgtgtgc	ctacacgcca	aggtccccca	ttctcacttc	27420
cccacacaca	tgcacacaga	tgttcccctc	cagggctctt	tagaatgccc	tgcctgactg	27480
aattcctctt	caggggcaca	gagggataga	gagagggagg	aaggtaggat	gggaatggga	27540
gatcccggga	tggaggctgt	aagcgtagag	agaggaggca	cagcagaaag	acagggatgg	27600
agatagtggg	acagagaagg	gggaaagaga	caggtgacag	aaagggttag	agaaacgagt	27660
gacagaaaga	caggggacag	agacaagggg	atggggcaga	taggggacag	agaaaaaggg	27720
acagaaaaac	aagggtgaca	gcgagacaga	gacagggacc	aagaataggg	gcagagaggg	27780
agggcagaaa	tccgggggaa	agagaataga	caggatgatg	gaggggacag	agtgacccag	27840
gaaaagggga	cagagaccag	gggacagagg	taggggacaa	agacagaata	gatgaggaac	27900
accgaggcaa	gaagagaggg	agacagacag	aaggagggac	aggacttcga	gactgaggga	27960
tagaggacaa	gggtaggggg	acgaggagcc	agacgggggg	gttcagagac	gggcggacag	28020
agggacgcag	agactggaca	gaaggacagc	gggaccggcc	tggggagggc	ggacttgtgt	28080
gtgtaggggg	gtctcgggcc	ctttgtcccc	gccgggatcc	agcctgcgcg	ggtgggggg	28140
ctgcggcacg	gcggccgggc	cccgcgcccc	ctcccccgct	cgtcgctccc	ggctcccggc	28200
ccgcgctgcg	ctttgtcccg	gggaggggc	ccggcccggc	cccgcgcgca	ttgttcggcc	28260
tctgcggccc	cgaggctgcc	gggctgtcac	cacagcgcgc	ccccgcccc	agcccggccg	28320
gccgaccccg	gcccccgacc	ctacctggcc	ccgccgcggc	cgcccacagc	agcagcagcg	28380
gccactggaa	gegeegggee	cggcccatgg	tgccgccgcc	gccgccgccg	ccgctcgctc	28440
ccggcccggc	acctgcaccg	cccgcgccgc	ccgccccgcc	ccccgcgccc	cgcccctgc	28500
ccgcccgggg	geggggegee	gaggccgggg	cggggccggg	gaggggaggg	ggagacggag	28560
gagaggcccg	gagacaatcg	gggggacggc	acggtggggg	aacggtgcgg	ggtgcgaaag	28620
ctggagagga	gaggggtgag	gagggcggga	aggggtgcgc	gggagggcga	cagcggcgtg	28680
ggagcaggtg	ggggatctcg	gtgagcgcgg	gaaatggagg	gtgttgggtg	agggtgctgc	28740
gtgcgggccc	aggtgctgcg	cgcgagggtg	cggagttgct	ggcatgcagg	gtgcttgcgc	28800
tgcgcggagg	ggagggtggc	agggtgttgc	tggaggctgt	gcgagggtgg	gggcgcgggc	28860
gtcgtggggt	gcggtgtgtg	cgaagggaga	gcgtggccag	cgtgacgggg	gagcgtaagg	28920
gagggagtgc	gacgtgggaa	aggtgagtgt	gagaggcgtg	ctgcgggcag	gtgggtgtct	28980
ggagtctagc	gagaggctgt	gagctgagcc	accgggacag	gggaggctgc	agctggaggt	29040
ccggagggtc	cggaggtcga	ggcaggtcaa	ggatctccca	gggcagggcg	aggctggggc	29100

tcaggagtgg	ggtggggtca	gttccctccc	tccctctctc	ctgtcctgac	ctgaaaaccc	29160
cgtgtttccg	cgtcattctc	cgggaggggc	cccctgaaag	tgaactaact	ggaaggaagc	29220
ctgaatcctg	ggtcccagga	gggagaggct	cctgtgaaca	ccttccaagc	cctggcgtcc	29280
cctctcctcc	ctgctgtctc	cctgccccag	cctctctccc	tctctctgca	tgtatttgcc	29340
tctgcccttc	ctctctcccc	atctttgagg	gtgactcacc	cctccagact	taggtccctt	29400
ctccctcctg	ggagtgggtt	tccctgagcc	cacttctgtg	acaccctgta	gacctgatgc	29460
gggatcatta	cctatgggac	ccagaaagag	tgagaaacca	tggaaagaag	gcctcgacct	29520
ctctcatgcc	catttgtcag	gcaaactgag	gtccagaagt	gccaattatg	aacatctttc	29580
cttcccccct	ccccctccc	cgcccagacg	gagtctcgct	ctgttgccca	ggctggagtg	29640
cagtggcaċg	atctcgactc	actgcaacct	ctgcctccca	ggttccagtg	attctcctgc	29700
ctcagcctcc	cgagtagctg	agattacagg	cgcccgccac	catgcctagc	taatttttat	29760
atttttagta	gagacggagt	tttgccatgc	tggccaggct	ggtcttgaac	tccttacctc	29820
aggtgatcca	tetgtetgge	ctcccaaagt	gctggattac	aggcgtgagc	caccatgcct	29880
ggctgaaaat	ccttactttt	tattccgact	aaaaaatttt	acatccagtc	ccacaaggga	29940
cttcagcttc	acacaccctt	tctgtcctca	gtacccagct	cccagtatcc	tttctgacct	30000
caaaaccata	gctaccatca	acccttgtgt	cccaggacca	tggctcccag	tgtcttctct	30060
gtcctcaggg	tccaagctcc	catcaactcc	tgtgtcctca	ggaccacggc	tcccagcatc	30120
ctctctgtcc	ttcaggtcca	agctcccatc	aacccctgtg	aagcaggacc	atggctccca	30180
gcatcctctc	tgtcctcagg	gtccaagctc	ctatcaactc	ctgtgtcccc	aggacgatgg	30240
ctccagcaat	cctctctgtc	ctgagagccc	aagcttctaa	ctgcccctgt	gtccccagat	30300
ccatagccct	gagcaacttc	cttcttttc	agtcctcagc	ttcccagctt	ctgtagactt	30360
gggaagagat	agtctctaat	cctctttcca	gggctcacat	tctgtgactt	ttgctagatg	30420
ggagaggaat	gtttgatctg	cctttggaat	actggtccaa	ggggtaacta	gtagttgcct	30480
tttcccgcag	gagccaatag	gcccgctcac	tctgtgctct	gacagatgtc	tcctgctcca	30540
gctgaagggg	aaccttggga	gatgttggtt	tggttctcac	ctgtcatcct	taagtcccac	30600
cattccatgt	gaagacatca	caagagtagt	ggtcctgacg	ggcgcgttgg	ctcacacctg	30660
taatcccagc	actttgggag	gccaaggtgg	gccgatcact	tgaggtcagg	agtttgagac	30720
cagcctgacc	aaccggccaa	catggtgaaa	caccatcttt	accaaaaaaa	aaaaaaaaa	30780

ttagcaaggc	gtggtggcac	gtgcctgtaa	tcccagctgg	tcggaaggct	gaggcatgag	30840
aatcccctga	acttgggagg	cagaggttgc	agtgagctaa	gatcatgcca	ctgcactcca	30900
gcctgggtga	cagaatgaga	ctcagtctaa	ataataataa	taataataat	aataataata	30960
ataataataa	taaatagaat	agtggtcctg	tccccatcct	acttcagggt	accctgtcca	31020
ttagggattt	agtgcaagtg	acagcaagtg	caacccaact	ggtttgagag	aaagagaact	31080
ggttcacaca	taacaaaaag	tccttctatg	gctggctttg	gcgaggtctg	tcaatctctg	31140
tcctaaggat	gcatggctcc	cctcctgtag	caagatggct	ggcagatacc	cctggggcca	31200
gattcatatt	tggggtgatt	aagattctgc	aagagagaga	caacctttat	ttcacacagc	31260
ttttcaattg	ttgcctgtcc	ctggtgagac	tcggagacct	agctcttgcc	tggtttctaa	31320
actttcaata	acaccgtttt	tgcttaagtc	agcacaaaca	gattttattt	cttgcaagca	31380
aagattcctg	aacaacaact	tcagagccgt	taacaatgag	gtcctgatca	caagctatgg	31440
tataggacgt	gagaaatttg	tccctagcct	caatatctgc	tggagggcat	catggaataa	31500
gtatttctat	cctctgatcc	ccactgtagg	gcatcatggg	atatataatc	ctaaccttca	31560
atctctgcca	tagagtttca	taggcaatgc	agtcctagcc	tcaatatgtt	gtagggaatt	31620
atgggaaagg	tgaaattatc	ctcaattata	atacagagca	tctcagaaaa	tgtcgtttta	31680
gcctcatctc	tgctgtaggg	catcatggga	gatatacttc	tggcccaatt	tttgttgtaa	31740
gttgccatag	aagatgcagt	ctttccttcc	ttcccttttt	tcttttcttt	ctttctttct	31800
tttttttt	ttttattatg	tagagacagg	gtctctcgct	atgttgccca	ggctggtcct	31860
gaactcctgg	gctcaagcag	ttctcctgcc	ttggcctccc	aaagtgctgg	gattacaggc	31920
aagagccatt	gcacccagtc	ccttctctcc	tttctttctt	catcacctgc	catattccag	31980
gcactaggaa	taaatcatca	agtaaataaa	cggccttacc	ctccctggca	attataatgg	32040
ggaaagttag	ctaaaaacaa	acaaaaatta	ctgttccatt	taaccatcgc	tgaataacaa	32100
aataccccag	aacgtagtgg	tgtgaaacaa	caacctttta	attttatgat	tctgtgagtc	32160
aggaattgga	gcaggattgg	tgtgtatctg	cttcatgatg	aactggagcc	aaaaatgaac	32220
tagctggaac	agctggagat	ggaggggagg	ggcatcaagg	gccatatatc	taaggctggt	32280
ggttggtgtt	gtgggttttg	aatagtgtcc	tccaagtaaa	atatatgttg	aagttctagc	32340
ccctggtatc	tgtacatgtg	accttatttg	gaaataaaat	ctttgcaaat	gtaattcact	32400
tttttgtttg	tttgtttgtt	tgctcgagac	tgagtctcgc	tctgtcaccc	aggctggagt	32460
gcagtggcat	gatctcggct	cactgtaacc	ttcacctcct	gggttcaagc	gattctcctg	32520

cctcagcc	tc	ccaagtagct	gggattatag	gcacgtgtca	ccatgcccag	ctaatttttg	32580
tattttca	gt	agggacgggg	tttcaccatg	ttggccaggc	tggtctcgaa	ctcctgacct	32640
caaatgat	ct	gccacctcag	cctcccaaag	tgctgggatt	ataggcatgg	ggcactgcat	32700
cctgccca	ga.	tgtgattaac	ttctaacccc	tggtatcttt	gcatgtgact	ttatttggaa	32760
ataaggtg	gg	ttttttttt	gtttttttt	tttttttga	gacagtttca	ctttgtcgct	32820
caggctgg	ag	ttcagttgca	taatctcagc	tcactgaaac	ctctgcctcc	gaggctcaag	32880
cgatcctc	cc	gcctcagtct	cccgagtcac	tgggactacg	ggcaagcgcc	accacacccg	32940
gctaattg	tt	gcagtttttg	tagagatggg	gttttgccat	gttgcccagg	cggtctccaa	33000
ttgccacc	ct	caagcaattc	atccgcctcg	gcctcccaga	gtgctggaat	tataggtgtg	33060
agccatgg	cg	cccggccaga	aagtctttgc	agatttagtt	gaattaatga	ctaaatgttt	33120
ccatgctg	ag	ttagagtggg	ctctaaatcc	aatgattgat	atggggttat	aaggagagat	33180
atttggag	ac	atagccacag	tcccagggaa	ggtggacatt	ggaagacaga	ggtagggatt	33240
agagtgat	gc	agctacaagc	caaggaatgg	caaagattgc	tggcagtccc	tcagaagcaa	33300
aggagagg	ca	aggaagggtt	cttcccctga	gactttttt	ttttttttg	agacggagtc	33360
tcactgct	gt	cagcctcagc	tggagtgcaa	tggcgcgatc	tcggctcact	gcaacctctg	33420
cctcccag	gt	tccagcaatt	ctcctgcctc	agcctcccga	gtaactgaga	ttacaggcac	33480
ccgccacc	at	gcctggctag	tttttgcatt	tttagtagag	atgggatttc	accctgttgg	33540
ccaggctg	gt	ctcgaactcc	tgacctcagg	tgatccaccc	gcctcggcct	cccaaagtgc	33600
tgggatta	ca	ggtgtcagcc	ccggagactt	taaaagcatg	getetteece	tgacgcttta	33660
aaagcgtg	ıgc	tcttcccgtg	agacttcaac	accttggttt	tggacattta	gcattcagaa	33720
ctgtgaga	ıga	acaagtttct	agtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	33780
tgtgtgtg	rta	tgtgttttag	acagaggctc	attctgttgc	ccaggctgga	gtgcagtggt	33840
tcaatctc	gg	ctcactgcaa	actccgcttc	tcagattcaa	gtgattctta	tgcctcagcc	33900
tcccaagt	ag	ctggaattac	agaggagcgc	catcacagcc	ggctatttt	tttttttt	33960
tttgtact	:tt	tagtagagac	agggtttcac	tgtgttggcc	aggctggtct	caaattcctg	34020
gcctcaag	ıtg	atatgcctgc	cttggcctcc	caaagtgctg	ggattacagg	tgtaagccac	34080
cacacctg	gc	ctaagtttct	gtgtgtgtgt	gtgtgtgttt	tgttttgttt	tttttttt	34140
tttgagtg	ga	gtctcgctct	gttgcccagg	ctggagtgca	gtggcatgat	ctcgactcac	34200

tgcaagctcc gcctcccggg	ttcacgccat	tctcctgcct	cagcctcccg	agtagctggg	34260
actacaggca cccaccacca	cgcccagtta	attttttgta	tttttaatag	tgacagggtt	34320
tcatcatgtt agccaggatg	gtctcgatct	cctgacctcg	tgatccgccc	gcctcagcct	34380
cccgaattgc tgggattaca	ggcatgagcc	accaaacccg	gccaagtttc	tgtggtttta	34440
agccaccttg cttgtaagat	ttgtgtgtgt	gtgtttttaa	ttttttattt	ttaagtatta	34500
tgaatacata atagtggtgt	atatttacag	gacatatgta	atatggtttt	gggttttagt	34560
gtttttttt tggagacaga	gtctggctct	gttgcccagg	ctggagtaca	gtggtgggat	34620
catggctcac tgcagccttg	acctcccggg	ctcaagggat	cctcctgcct	cagcctccca	34680
tgtaactagg accacaggca	tgccccacca	catccagcca	attttttt	atttttagtg	34740
gagatgaggt ctcactgtgt	tgcccaggct	gatcttgaac	tcctgagctc	aagagatctt	34800
cctttctcac cctcccaaag	tgctaggact	acaggcatga	gccactgtgc	ctgtccttcc	34860
atgatgtttt gatataggca	cacaatgtgt	tagtttataa	agtttgtaat	aatttatcac	34920
aggcagccct aggaaactaa	tatagccaag	tttcctgttt	cttctctata	tcacatctgc	34980
tggggctaca tgtccaaggt	ggcttcttca	cccacttgtc	tggtgcctgg	gctgagatgg	35040
ctgaaacatc tggggctcta	tctccacatg	gcatttatac	atgagtagct	tgggcttcct	35100
cacagcatgg tggtctcagg	gcagtagtac	ttttacatgg	caaccagctt	ccccagagtg	35160
agcgttctaa gattcagaaa	gtgaaaaatg	aaagtttctt	aaaacttggt	tccagaacat	35220
agcacagcaa aacttccacc	acattctact	ggtcaaagca	gtcacagagt	cactcatatt	35280
caagaggcag aagtacagac	ctcacttctt	taagccacta	cagtgacagg	tggtgatatg	35340
tcattagaga aagccctaaa	caagaacctt	gtccctcacc	tgcccccaaa	taccatggaa	35400
gatgtctttt tttttttt	ttttttttg	gggatagtct	cactgtgtca	tgcagtggtg	35460
tgatc					35465

<210> 7 <211> 1419 <212> DNA

<213> Homo sapiens

<400> 7

geggeggegg eggeggegge ggeaccatgg geegggeeeg gegetteeag tggeegetge 60 tgctgctgtg ggcggccgcg gcggggccag caggggcagg acaggaagta: cagacagaga 120 acgtgacagt ggctgagggt ggggtggctg agatcacctg ccgtctgcac cagtatgatg 180

ggtccatagt tgtcatccag aacccagccc ggcag	accet ettetteaat ggeaccegtg 240
ccttgaagga tgagcgtttc cagcttgagg agttc	tcccc acgccgggtg cggatccggc 300
tctcagatgc ccgcctggag gacgaggggg gctat	ttetg ccagetetae acagaagaca 360
cccaccacca gattgccacg ctcacggtac tagtg	gcccc agagaatcct gtggtggagg 420
tccgggagca ggcggtagag ggcggcgagg tggag	ctcag ctgcctcgtt ccgcggtccc 480
gtccggctgc caccctgcgc tggtaccggg accgc	aagga gctgaaagga gtgagcagca 540
gccaggaaaa tggcaaggtc tggagcgtgg caagc	acagt acggtttcgt gtggaccgta 600
aggacgacgg tggtatcatc atctgtgagg cgcag	aacca ggcgctgccc tccggacaca 660
gcaagcagac gcagtacgtg ctggatgtgc agtac	tcccc cacggcccgg attcatgcct 720
cccaagctgt ggtgagggag ggagacacgc tggtg	ttgac gtgtgctgtc acggggaacc 780
ccaggccaaa ccagateege tggaacegeg ggaat	gagtc tttgccggag agggcggagg 840
ccgtgggaga gacgeteacg ctgccgggte tggta	teege ggataaegge acetacaett 900
gcgaggcgtc caataagcac ggccatgcga gggcg	ctcta cgtacttgtg gtctacgacc 960
ctggtgcggt ggtagaggct cagacgtcgg ttccc	tatgc cattgtgggc ggcatcctgg 1020
cgctgctggt gtttctgatc atatgtgtgc tagtg	ggcat ggtctggtgc tcggtacggc 1080
agaagggttc ctatctgacc cacgaagcca gtggc	ttgga tgaacaggga gaagcaagag 1140
aageetteet caatggeage gaeggaeaca agagg	aaaga ggaattette atetgaceet 1200
atececacee caggeetagg cetgggeetg ggetg	gggte ecceecactg ecagetgeaa 1260
ggaaccagca aagacattta ccagagtctg ggatg	gtggg cttctccccc caccactaac 1320
acetcagacg cttgggcagg gatgggggtg ttgga	tgcct ggatctctgt aagggccaga 1380
agtgagggcc cagaggtctg ggtcccccag ggggc	aggg 1419
<210> 8 <211> 36991 <212> DNA <213> Homo sapiens <400> 8	
gatettgget caetgeaace teegeeteea aggtt	caage gatecteeca ecteageete 60

ccaagtagct gggattacaa gcgtgtgcta tcacacctgg ctaattttta tatttttggt 120

agagatgggg tttcaccttg ttggttaggc tggtcttgaa ctcctgacct caggtgatct 180

gcctgcctca gcctcccaaa gtgctgggat tacaggtgtg agccaccgcg cccagcctga 240

ccctttcttt	ctctactggc	aaaactcctg	ctccttttta	aagccaagct	catgtcacct	300
cctctgtgaa	gtcctcgctg	actccccaag	cggtcagtgt	ctctctcgta	tgggctcccc	360
ggcccctgca	ctgctctcca	tcacaccctg	accactctgg	gcagtggccc	ccctccccac	420
ccactgacta	tgggctcctt	gaaggcaggg	cctgggtctg	ccccatctct	gtgtccccag	480
caatgctggg	catgagtcag	cctcagaaga	catctgctga	atggctgcaa	accagaggaa	540
atatctccag	cctcaggctg	ggacccctcc	cctctctcct	cccacctctg	acttcatacc	600
actcaccctc	cagagtcttc	aatgcccact	attacttcac	acagttggcc	tgtgacaggc	660
aatcaggtca	tcgtccacgg	ctaccaggtg	tttcatgtct	actgtgactt	ccaggaccac	720
aagccctttt	gcgcccacca	tgtcttcacc	taagagatct	tcaaagccca	gtatgtctct	780
ggcacccagt	ggatcctcca	tgcccactgc	ggatcccaag	cctcctgcct	ccttgaagtc	840
caccaaatca	gcaacaccca	acagatcctt	agtgcccacc	aaaccagcga	catcccgtaa	900
ctcagtcatg	agcccaagca	gttccaagtc	caccaaatcg	accagtacaa	aaagagcccc	960
ttctaaccgg	cccagcagca	ggtcccgagt	ccgcagcaaa	gcaagaacac	ccagcagggt	1020
gagcaccgac	accaggacca	gcaaagccag	caaggccagc	gacgtgagat	gccaccagcg	1080
gaggggcaca	cacageeggg	gtaggacacc	tggcagaagg	ggaagccgca	gctccaagag	1140
gtcacccagc	agggccagca	ctcctggcag	gataagaact	catggtgcca	gaccaggcat	1200
ggccagcagg	gtgagaactc	ccacttcaca	gcaaaaaggg	agccggggaa	agagttacgg	1260
ccggcctaga	accagcaaca	gggaaaggag	tgacagccag	cctagaaatc	tgagcaagaa	1320
gagttaccgc	ccaccaggag	gctcaggtat	agggaggagt	tccgagctgg	ctgtaactcc	1380
cagtacagcc	aagtgtcaaa	ccccgactgg	aattccctcc	aaggagaaga	gtgacaaccc	1440
atctccatcc	tcatcaagga	aggtgaagag	ctacggtcag	atgatcatcc	ccagtaggga	1500
aaagagttac	agccccactg	aaatgtccag	cagggtcaag	agttataacc	aggccagcac	1560
ccgcagcagg	ccgcaaagtc	acagccaatc	tagaagcccc	agaaggtcaa	gaagtggcag	1620
tcagaagagg	acgcacagca	gagtgagaag	tcacagttgg	aagagaaacc	atagcagggc	1680
aagaagtcgc	acccggaagg	gaattctgag	ccagatggga	agacacagcc	agtctagaag	1740
ccacagcaag	gggaaaagtc	aaaaccaatc	tagaaccccc	agaagaggaa	gaagtcacaa	1800
ctggtctaga	aaccccagca	aggaaagaag	tcatagccat	tccagaagct	ccagcaaaga	1860
gagagatcac	aggggatcta	gcagccccag	gaaggagagt	ggtcgcagtc	aatcaggaag	1920
ccccaacaag	cagagagatc	acagccgatc	tagaagtccc	aacaaggcga	gagatcgcag	1980

ccgatctaga	agtccctaca	aggcgagaga	tcgcagccga	tctagaagtc	ccaacaaggc	2040
gagagattgc	agccgatcta	gaagtcccta	caaggcgaga	gatcgcagcc	gatctagaag	2100
tcccaacaag	gcaagagatc	atagccgatc	tagaagtccc	aacaaggcga	gagatcgcag	2160
ccgatctaga	agccccagca	aggaaagaga	tcacagccaa	cttggaagcc	ccagcaaaga	2220
gagagatcac	agácgatcta	gaagccccag	caaggagaga	cagtgcagac	aatctagaag	2280
ctccagcaaa	gagagagatc	acagacgatc	tagaagcccc	agcaaggaga	gacagcgcag	2340
acaatctaga	agccccaaca	aggagagaga	tcgcagccaa	tctagaagcc	ccagcgagga	2400
gagagagcac	agacaatcca	gaagccccag	caaagagaga	gatcgcagac	gatggagaag	2460
ccccagcaag	gagagagagc	gcagacaatc	tagaagctcc	agcgaggaga	gagatcacag	2520
ccgatctaga	agccccaata	agcagagtgg	ttacagtcga	cctagagcct	ccagcaagga	2580
gaaagctcat	agccgatcta	gaacccccag	caaagaagga	aatcatagcc	aatctagaac	2640
ctctagcaag	gagagcgacc	ccagtcaatc	tacagtcccc	agaagtcccg	actggaagag	2700
atcccctact	aggacaagca	gtctcagtca	gaatagaacc	cctagcaaga	caagcagcca	2760
ctccccatca	acatttccca	gtgggggcca	aaccctaagc	caggatgaca	gtcaagccga	2820
cgccaccacc	tctaaggcca	ccttacctgg	ggaaaggtct	tcatcatctt	cttccaagct	2880
ggcgtagccc	ccagtctcag	ctggctcacg	ggtctctgtc	atgaccgggg	gaggggacag	2940
gagacaggag	cagagcagca	gctgagcagc	gtccctcccc	ggccagctct	ccacagccac	3000
acctccggcc	acaagttctc	taatacagga	tgttggcagg	tagagaggga	tgctggatag	3060
ggggaaagga	aagacctgtg	atgattcaat	aaatttttac	atagcaccca	tccccaccaa	3120
gcccaactgt	gtgctcactg	ctggcatggg	gcacagagga	ccccagctct	gtccctgact	3180
gtctacaggg	tcttgactgc	aagccctgcc	cctctctagg	tcttttttt	ttttgagaca	3240
gagtctctct	ctgttgccca	ggctggagtg	cagtggtgtg	atctcagctc	actgcaacct	3300
ccacctccca	ggctcaagca	attctcctac	ctcagcttcc	cgagtagctg	gaactacaag	3360
tgtgcgtcct	cacgcccggc	taattttgta	tttttagtag	agatggggct	tcaccatgtt	3420
ggccaggctg	ggctcgaact	cctgacctca	ggtgatccac	atgcctcaac	ctcgcaaagt	3480
gctgggatta	taggcatgag	ccaccgcacc	cgtcccctc	tctaggtctt	aatttccgca	3540
tgtgggcaac	aaggctgcct	tctggttctt	attcagtggg	gtagggagag	gtgacactcc	3600
aaatattcaa	cagtggggac	tggtgtgggc	accaatcaga	actgagagtg	gagcgggacg	3660

gataccaggc	cttaaccctt	tagttgctgg	accatgggga	ggtctggggt	tggggaagtg	3720
ttatggggaa	aaaaaaccct	caaactgtgt	ttttcctcta	ctctcacact	atcacaacaa	3780
tcatcaacac	agaattctgt	gaccaaatgt	gtggggcttt	ttccccacac	actacacagc	3840
agacaacagc	taggtgtccc	ctccgattcc	attccaacgc	tgtccccaca	cccagctaat	3900
ttttgtattt	ttggaagaga	cagggtttca	ccatgttgcc	cagageteaa	gcaatctgcc	3960
cacttcagcc	ctccaaagtg	ctgggattac	aggcgtgagc	caccacaccc	gactttttta	4020
aaaaaataaa	aataaggccg	ggcgcagtga	cccatgcctg	taatcccagc	actttgggag	4080
gccgaggtgg	gcagatcacc	tgagctcagg	agtttgacac	cagcctaggc	aacatggcaa	4140
acttgtctct	aaaaaaaaa	aaaaaattac	aaaagttagc	cggtgtggtg	gcatgtgctt	4200
atagtcccag	ctacctgaga	ggctgaggca	ggaggataaa	ttgagcctgg	aaggtcaagg	4260
ctgcagtgag	ccgtgacctt	gccactgcac	tcaagcctgg	atgacccatc	ttacaaaaaa	4320
aaaatttttg	ctggagctgc	tcacagaact	caaggaaatg	cttacttaga	tttactggtt	4380
tattatagag	gatattgcaa	agaacaaaga	tgaagagatg	tgtagggcaa	ggtataaggg	4440
aaggggcagg	gagcttcacg	ccctccctgg	ggtgctaccc	tacaggaacc	ctcaggtggt	4500
tagctatgcg	gaagctctcc	aaacccagtc	ctcttgggtt	tttacggagg	ctttaagaca	4560
gcagcattgg	gcatggactt	ctctgaaaag	tgtcttaaga	ccaacaatca	agaaggtggg	4620
gaagattaga	gtcttgccct	ggggcaggaa	atggagggca	ggaggaggtc	agagagattc	4680
tgtttcttca	gacctgcccc	aggcctaagg	tacacaacat	tataacaaga	gactgtaaca	4740
aaggctgtag	gagttaccag	ccaggaactg	tggatgaaaa	ccaatatatt	tatatatata	4800
ataccacaag	gggggtccaa	agtggcagtt	agggacaggg	agtacttgtg	tagcagtgac	4860
acaccaaccc	atctggaagt	attttaatat	ttaaacaatt	ggtatggcta	tactagtttg	4920
tgattatcag	ccttagttct	gtatcaattg	gcaagatagt	gtctaggttt	gccacactct	4980
agctgtgtag	caccaagcaa	agaacttaac	ttetetagee	tgtttccttc	tctggaagaa	5040
aggggcttcc	aggccttaac	tcacgtactc	cccataacta	gactgggaat	tatctccttt	5100
gtacagatga	ggaaacagac	acagaggtga	taagtgagta	gcccaaggtc	accatctggt	5160
aagtggatga	actaggattg	gaagccagac	ctttcataaa	atgatttctc	agctcaaaag	5220
gtttttctga	agattcagta	ggctcactga	tagaaattgc	tggtgtgtgg	ctggtattcc	5280
atcaagagtg	gccattacta	ctcccacccc	tgcccctcta	taaactccag	atgttccaga	5340
cctctcatct	ctccctgtgc	acacaaggcc	ttttcacatc	tgtgggtctt	agtacaccca	5400

ctgttgctgt	caagaatgtc	ctcctcctcc	tttttttt	tttttttgag	atggagtctc	5460
actttgttgc	ccaggctgga	gtacagtagc	gcgatctcag	ctcactgcaa	cctctaccct	5520
gcatcagcct	ccctagtagc	tgggattaca	ggcagccacc	accaccatgc	ccggctaatt	5580
ttttggtatt	tttagtagag	acagggtttc	attatgtcag	ccaggctggt	ctcaaactcc	5640
tgacctcagg	tgatccattt	accttggcct	cccagagtgc	tgggattaca	ggcaagagcc	5700
accacgccca	gccctccttc	ccccttttg	gcctggagaa	ctccttttca	cccttcaaag	5760
cccaccacaa	acataagaac	ctctatactt	cttgcccgct	gaaatactgc	ctctgccagg	5820
aagccttctg	tgacttctct	ctctccctct	tcaccaacgg	accgcccccg	cccccacca	5880
accccaccac	acacacacac	cactactgtc	ttccactgta	ctccctgaca	gtagagaacc	5940
aagcagggcc	agttgatgca	gcctcagcta	tatctcttac	atgccaaggc	ccatgcactg	6000
gggatacaat	ggtggaaaat	acatggtece	ttcaaagtct	ggatgtcaag	tttaatgctg	6060
gggactaaag	agaaaagctt	cagattgaaa	cctggaggtg	gctggggcaa	aggaccattg	6120
gcatcattgg	cagggcaact	tcctaaagaa	agcacctaaa	tcttggcttt	taaagacaga	6180
tttcataatt	ggcagaggag	aattctaatg	ataccctatt	gcctacaggg	ccccatctaa	6240
tttgggaatt	ctactttata	ccaagataag	attgccagat	ttagcaaata	aaaacagaag	6300
acatccaatt	aattttttg	tttgtttttg	ggtttttgtt	gcggagatgg	tgtctcacta	6360
tgttgcgaag	gctgctgtca	aattcctggc	tcaaacaatc	ctcctgcctt	ggcctcccac	6420
ttcccaaagt	gctgggatta	caggcatgag	ctaccacacc	tggcccttat	ttatttattt	6480
atttaatttt	cttttttggg	acggagtgtc	actctgtcgc	ccaggttgga	gcgcagtagc	6540
gcgatctcgg	ctcactgcaa	cctctgcctc	ctgggttcaa	gcgattatcc	tgccccagcc	6600
tcccaagtag	ctgggactac	aggegegtge	caccatgccc	ggctttttt	tttttttt	6660
ttttttttt	gagacggagt	cttgctctgt	cgcccaggct	ggagtgcagt	ggcacgatct	6720
cggctcactg	caagctccgc	ctcctgggtt	cacgccattc	tcctgcctca	gccttccgag	6780
tagctgggac	tacaggcgcc	tgccaccacg	cccgactatt	ttttgtattt	ttagtagaga	6840
tggggtttca	ccgtgttagc	caggatgatc	tcgatctcct	gacctcgtga	tccacccgcc	6900
tcggcctccc	aaagtgctgg	gattacaggc	gtgagccacc	gcgcccagcc	tacttattta	6960
tattttttaa	gagacagggt	ctcgctcagt	tgcccaggct	ggagtgcagt	agggtgatct	7020
gtaggaaagg	ggcttccagg	ccttaactca	tgtactcccc	cataaccagg	ttgggaggtt	7080

agctcactgt	aacctcaaac	tcctgtgctc	aaggtaccct	actagcccct	aggagagcag	7140
ctgggactac	aggtatgcgc	caccatgcca	ggcttaattt	ttactttttt	tttttttt	7200
tttttttgta	gagacggggg	tctcactata	ttgcccaggc	tggtcttgaa	ctcctggtct	7260
caagcgatcc	tcctgcctta	gcctcccaaa	gtattggtat	cactgcaact	agcccaaaga	7320
attaatatag	ctatgttcca	tgtgatattt	gggacatact	tttctaaaag	gttgtatctt	7380
ttggatataa	ttgtttatct	gaaattcaaa	tttaactaga	cattgtatat	tttatacggc	7440
aaccacacac	ctgggacaat	caagacattc	cctgaagtta	ccaggagaca	atgcccatca	7500
gcctacactt	ttccaagccc	acgtcacaca	aggccccttc	cagagtattc	cagacgtcag	7560
gtagggccat	cccttggttc	acaagtccca	ctcctaccac	gcctatggca	gccaaactga	7620
aaggcaaaca	cagtgctgga	gaccccacaa	tgccctgggc	ctatagcagt	caattcccaa	7680
gatgccccgc	gtgaacacaa	taggcacccg	ttccaatgct	cgagcaaaga	gaccagggca	7740
aaaccttcca	ctacgggaca	ataacggcca	gttcccacaa	ttcgttgtgg	cagttcttcc	7800
caggatgcct	taggcctata	gcgaccacct	tcccagactc	cccgtgtgga	agcgctccaa	7860
gcctccagga	cggtcagcgg	caggtgtggg	ataaaaggaa	ccggtctcga	caaggatctg	7920
ggacactctt	tcccaggatg	caccaggcct	acgactagcg	gaccgactcc	cacagcgctt	7980
caaggcggag	cgctcggttc	tcccaggatg	ccccagggcg	gcacaaacgc	gtagggggag	8040
aaaaagaagc	cctcgggtca	ccacggcccc	agaccgccgg	ctccccggtg	acgggagtcg	8100
tcgctcccat	catgcagcgg	ggccgtagcg	cccgcttccc	ggcatgcctc	gcgcacccct	8160
gcccgggaca	ctcaccggcg	ccggcggccc	ccgctccggc	tctgcggcgg	cggctgcacg	8220
cccagcctct	gcgcctgcgt	cgcaagtagg	gtaggacagc	gcgcaggggg	cgtgaagagc	8280
ctagggcgct	tgcgcggcga	gacggactag	tcctgtagcg	ctgtgggaag	aggggctatg	8340
cgcgtcgggc	cgtcgacgag	acccgcgcgg	ggggcgccgt	gctttgcccc	tegetgeetg	8400
ggtttacttg	gtacagcccg	cggcccaaag	gaacaagaag	ctgaagggtt	cgcgcgtgcg	8460
tgtgcggggc	aggaacgcgc	cttacaaaac	tgggatgcgc	tgggggtgga	gggcgctagt	8520
tcggactgga	tcctgggccc	gaggcctgct	tatttgcata	atcctagcgc	gggacaatga	8580
aaggcctccc	gcactggaag	gagtgatttg	catattcccc	ggaggggcct	tactccagag	8640
cgcagtgatt	agcatatggc	gggggcaacc	tgagcaaagc	gcatgcgcgc	agggactgca	8700
gactgacgcg	aagtgggtag	ccttgtcttc	gtaggggatc	agtttgcatc	ctgagagagg	8760
gcacgagggc	caggacccct	cccaaccagg	ataaaggttt	attgatctcc	taggtgtcag	8820

gccccatgct	ggcggattct	gtggtttctg	cagtgaacca	tactcctgta	ctcacggcac	8880
cccagtcgaa	ggagatacgc	acctaattag	acaactacta	cccagaaggt	cagacctgga	8940
gtgaggaaca	cagggggctg	tgggagccta	agaggcgctt	gccccggcct	ctggttctag	9000
aaagacttcc	aggaggtggt	gatccttaag	ccaagtacga	ataggagcca	actagaatgg	9060
gaatgggtct	ggcagaatga	actgcaagcg	ccaaggccca	gaggccaaaa	aaaaaaaaa	9120
aaaaatagaa	gcgcatgttt	tgattgagga	agcaagagca	gcttagtatg	cctagaacct	9180
aactggagac	gggaaatggt	tctatagacg	atgttagagt	tcaactatgg	ctacattcca	9240
gtcttcctgt	aagtgacttt	gtcacattct	ggcttaaaac	teccccaaag	ggatcccatt	9300
aggaaaaaaa	aaaaatccaa	aaatctttat	catggcctca	gggctataca	cctggtctgg	9360
ccgtgcttat	ctttctgacc	ccacctactt	cetectecet	ccatttctgt	ccagctccac	9420
cttaccccaa	actctttacc	agctcgggcc	tetgetettg	ccgttccctc	cgcctgaaaa	9480
tgcttttccc	tctgaccttt	gaatacctac	tettgtgete	accattcata	tettggtaca	9540
gatgtcaatc	tgagaggctt	ttcctgatct	ctccataata	gcacttacac	atttgactgg	9600
agttatggat	aaatcgggat	tggccatgag	ttggtggtgg	ttgtaactgg	catgaagagt	9660
acatggggct	gggcgcggtg	gctcacgccc	gtaatcccag	cactttggga	ggccgaggct	9720
ggtgtatcac	ctgaggtcag	gagcttgaga	ccagcctggg	caacatggtg	aaaccctgcc	9780
tctattaaaa	ctacaaaaat	tagccagggg	ttatgggggg	tgcctgtaat	ccttgctact	9840
tgggaggctg	aggcacgaag	atcacttgaa	ccctggaggc	agaggttgca	ttgagtcgag	9900
attgagccac	tgcactccag	cctgggccac	ccagcgagac	tctgggtctc	gcctgtaatc	9960
ccagcacttt	gggaggccga	ggcgggcgga	tcacgtcaga	agatcgagac	catcctggcc	10020
atcctagacc	atttctacta	aaaatacaaa	aaaaaaaaaa	aaaaaattag	ccgggcgtgg	10080
tggcaggcgc	ctgtagtccc	agctactcgg	gaggctgagg	caggagaatg	gcgtgaacac	10140
gggaggcgga	gcttgcagtg	atccgagatg	gcgctactgc	actccagcct	gggcgacaga	10200
gcgagacttg	gtctcaaaaa	aaagagtaca	tgggacgtta	ttgtcctgtc	tactcctgtg	10260
ggtttgaagt	tttccataat	gacaatggca	taccacatca	ccatactctg	catttatatt	10320
aatagttctt	atcacaatct	gaactttctt	tgcttccttg	ttttgagtgt	tttcctcatg	10380
aaagcttcat	gagggtaaga	atggagtcgc	cctttttcac	tttgggttct	caatgcttag	10440
agcaggatca	gatttcagat	tagtgtagcg	ctgtctttaa	cacttaacat	ttgcctgttt	10500

tattcaccat	ggactctaga	actttgagca	gcacctggca	catcgtaaga	ggttattttt	10560
taaagttaga	ataatacatc	taaaatgtac	atgaatgaat	gagaggcctg	ggatgccaga	10620
ctaaagagct	ttgacttggt	ctaaaggtga	tggggagcta	ggcaaaggtt	ttgagagttt	10680
aactttaatt	caaagttccc	ttggagacta	atgtctgggg	tagggggaag	ccagggtaag	10740
ggtccgggcc	atggaatggg	gtagctcagt	cgctatcaaa	aagacaagac	tgtgactatt	10800
tggctgaaga	aatggccaaa	cccaggtttc	tggggaggtc	gaggtaccct	cagtgaggtc	10860
aggaccttct	cctggcctat	actgtccacc	agcaaccatc	acactcctcc	ctcccctctc	10920
ccttagttcc	cctcccaatg	gtacagccct	tgacagcagg	acagacacac	agccacccca	10980
aacacttgtt	ctctcctcag	tttaatggtg	gttagtgaga	ttgccaaacc	ccctccccat	11040
teccetecce	accccgtaca	aaatgtgtgt	gtggttttt	gttttttgtt	ttttgtttt	11100
taacaagaaa	aagggggcaa	aagccaggaa	tggggagagg	ggggtgcaat	ctgatatttt	11160
catacagact	tttgattttt	taatatatta	tatataaaac	catgaagacc	acgaatcctc	11220
cccaaactcc	tttccccctc	cccggggggc	ctggaggaga	gatggggaag	gccccccag	11280
gagtgggtgg	acagagagac	aaatatggat	gggacagacg	ttgggggaga	aggtagagag	11340
aaggggagcc	caggaacctg	gggaaggggg	attggagaaa	agggttgggg	ctgtctccct	11400
cactgcccc	atcaaagtta	tgacacaaag	acacagaatc	cctatttcca	cgccctcccc	11460
ccacccatcc	ccccaccgtg	caaacatggc	tttgcaaaga	agtgcccaga	gctctgtgga	11520
actcttacaa	tggctggcat	ggggtctagg	acccccaaag	aaatctgtgt	tccccttccc	11580
tgccccccc	acccttccca	gaaactgacc	ccctccccac	aagacctggt	tttgtagcct	11640
aggggccctg	gccttccccc	agttatcttc	ccccaaccca	atccctactg	ccctcactgg	11700
acttgggggg	tctggacctt	tggeccctgc	cccctggggg	acccagacct	ctgggccctc	11760
acttctggcc	cttacagaga	tccaggcatc	caacaccccc	atccctgccc	aagcgtctga	11820
ggtgttagtg	gtgggggag	aagcccacca	tcccagactc	tggtaaatgt	ctttgctggt	11880
tccttgcago	tggcagtggg	ggggacccca	gcccaggccc	aggectagge	ctggggtggg	11940
gatagggtca	gatgaagaat	tcctctttcc	tcttgtgtcc	ġtcgctgcca	ttgaggaagg	12000
cttctcttgc	ttctccctgt	tcatccaagc	cactggcttc	gtgggtcaga	taggaacctg	12060
agggggtgac	agacccccgg	ggcaggggg	acatatttgt	ggatccagga	gttggacaga	12120
agtataaggg	aagagggaga	cagacaagac	acatgccagg	cgaaggaaga	gggagaaacg	12180
gaacacacag	ggagaggcag	agaaagaggt	aaacagtggc	agagaaagag	gtaaaagcag	12240

aattaggaag	actccaaaag	ctcaccgaaa	gtgccaccct	tatcctttct	cttggaggta	12300
tttccttgcc	ctgctcccag	cgaattcagc	aattaggaaa	ataaattgtt	ttattcaaat	12360
ccatgctctt	tttttcccct	aattttttgt	atttttagta	gaaaaggggc	tgcgccatgg	12420
tgcccaggct	ggtctcgacc	tcctagcttc	tcaagtgctt	tatccgcctt	ggcctcccaa	12480
cgtgctggga	ttacaggcgt	gagccaccgc	gcccaaccgc	aaatctatgc	ttttaattca	12540
gcttctaaat	tctacccctt	ttcgagtatt	gtgccgaaag	cccgcccc	tttgtcatct	12600
ccgccccgg	tgcggcggga	tttggaatcc	agagcctagg	ctccgccctc	tcgttaccct	12660
ggctctaggc	cccgcctctt	tccgagccct	acaaccaacc	aaccgtagag	tccaggcccc	12720
gtcccactca	cccttctgcc	gtaccgagca	ccagaccatg	cccactagca	cacatatgat	12780
cagaaacacc	agcagcgcca	ggatgccġcc	cacaatggca	tagggaaccg	acgtctgagc	12840
ctctaccacc	gcaccagggt	ctgccagagg	gacacggcac	aggaccaggt	catcagagga	12900
cgatcccagt	ctggccccat	cgctgccaag	cttttaagcc	attctgcaca	cgtctaaccg	12960
tgccctttta	tgtgccacac	ccctcaaaaa	ttactgccac	cttgtagtct	cttctcttc	13020
cagatgcttg	ttggtttgta	cactgcccga	cccctcccct	gagtcatgtt	acattttcct	13080
tttcttttc	ttgttttctt	ttgcagagac	gggggtctca	ctatgtggcc	caggctgatc	13140
ttaaactcct	gggctcaagc	gatcctccgg	cctaggcctc	ccaaagtact	gggattagag	13200
gcgtgagcga	ccgcacccag	ccatcccttt	tcttttgact	caagtttctt	cctccactaa	13260
gaaacagagt	ccaagaaaca	ggtccaagtc	ccttcccacc	ttgtctaaaa	cgctccaagt	13320
atttaaagtg	ctgggcccaa	ctaccaaaat	ttctgcccca	ccgtcataga	gctaaacaca	13380
gaacagctgt	gtgctagagc	ccattccaac	caccttacat	atttagttca	cataatcttc	13440
acaacagcct	tgttatatag	gtgctattgt	ttatttccac	tttactgatg	ggtaaactga	13500
ggcgcagaca	ggttcggtta	cctgcaatag	aatgcagcca	acccgaattt	gagccccgcg	13560
ggccagtctg	gtcccaaaac	aaaaagaact	ctgttggctg	ccgaacccct	gagttatgtg	13620
gcctctttgc	tcaagccccg	ccccgccac	ctggcgcccc	gccccgccc	tcagtcggcc	13680
gcagcctgct	ctcaccgtag	accacaagta	cgtagagcgc	cctcgcatgg	ccgtgcttat	13740
tggacgcctc	gcaagtgtag	gtgccgttat	ccgcggatac	cagacccggc	agcgtgagcg	13800
teteteceae	ggcctccgcc	ctctccggca	aagactcatt	cccgcggttc	cagcggatct	13860
ggtttggcct	gggtggggat	aaagtatagt	gagagttagg	aaccgaggtg	ccagcaccca	13920

attctgactt	gtcaagaatc	tagacatgca	actctcatcc	cgcagggacc	tccaaataag	13980
aggcttcctg	ctatctcttt	cctttctgga	aaaccaacag	tcctgggcct	acttccaccc	14040
atcaccaagg	tctcaggaat	tctagcccag	gctgaacatg	gtggcttatg	cctgcaatcc	14100
cagcacttta	ggaggctgag	acgggaggac	tgcttaaggc	cagcagttcc	agaccagcct	14160
gggcaacaca	gggagacccc	gtcactacaa	ttaaaaaata	ataataataa	taataataat	14220
tctagccctc	ccacgccatt	ccatcctcag	caaccaggag	tctgaggctg	cacagcttca	14280
gtattgggga	gtctgagcct	ccagattcct	cctccctcag	gatccaggag	tccaggtccc	14340
agatccctat	tcgtccaggt	ccccagctct	ctcctcctca	ggacccagga	atccaggtcc	14400
tagctccctg	tttgtccagg	tcctcagctc	tetectectt	aggacccagg	agtccaagtc	14460
cctggtccct	gttcttccag	gtccccagct	ttctcctcct	gaggacgcag	gaggccccca	14520
gagctcacct	ggggttcccc	gtgacagcac	acgtcaacac	cagcgtgtct	ccctccctca	14580
ccacagettg	ggaggcatga	atccgggccg	tgggggagtc	tgttaggcaa	aagtaagagg	14640
agagagtagt	ttccaagcca	tcacgcagga	caagggggac	cctcgcgggt	gcgggtggct	14700
ggcgttggga	tecettgggt	cctggcccgc	cggtcactta	cactgcacat	ccagcacgta	14760
ctgcgtctgc	ttgctgtgtc	cggagggcag	cgcctggttc	tgcgcctcac	agatgatgat	14820
accaccgtcg	tccttacggt	ccacacgaaa	ccgtactgtg	cttgccacgc	tccagacctt	14880
gccattttcc	tggctgctgc	tcactcctgc	cacaccccgg	tcagacactg	tcaggccaca	14940
attccggctc	catccaccca	cccacccgag	ccaacgccaa	agcaggctat	ttgccaagct	15000
ccacccctta	cccacaggcc	ccgcctcttg	tcctccaagc	tacgcccctc	ccctaaccaa	15060
gcccacgtgc	ctcctcccaa	agctcttccc	tctttcacgc	tcatgctttc	tcgtctatca	15120
atccatttaa	ttgctatata	tataaaaaca	taaatttata	tatatactta	gagacagggt	15180
ctcacaatgt	tgggcaggtt	gaactcctga	cctcaagcaa	tcctcccatc	tcagcctccc	15240
aaagtgctag	gactacaggc	gtgagccacc	gegetegaca	tcaaccacta	catattgaat	15300
gtccagtgtc	tgtgaaaacc	tgtggctcct	ctccacatat	aaacaacctc	tcctaagtcc	15360
cacctcctcc	ccatcccttg	tcagcactcg	gcccagggta	cctttcagct	ccttgcggtc	15420
ccggtaccag	cgcagggtgg	cagccggacg	ggaccgcgga	acgaggcagc	tgagctccac	15480
ctcgccgccc	tctaccgcct	gctcccggac	ctccaccaca	ggattctctg	gggccactgc	15540
cgcagggaga	agggaagtaa	ggggttaaag	aaggcacgaa	cgtgggctca	aagcgatcga	15600
gctgcctgtt	cccagcgacc	atagggaacc	agggtcccag	gtggcagggg	tcaaagggga	15660

gaggtcagga	gccagatgcc	catccaggat	gttaaaaata	gccatggtct	gaaagtctca	15720
ggagaagaga	gaagcagaga	agaaaggagg	agaggatgcg	tctgacaagg	gggagggcgt	15780
tacctagtac	cgtgagcgtg	gcaatctggt	ggtgggtgtc	ttctgtgtag	agctggcaga	15840
aatagccccc	ctcgtcctcc	aggcgggcat	ctgagagccg	gatccgcacc	cggcgtgggg	15900
agaactcctc	aagctggaaa	cgctcatcct	tcaaggctag	agagagtgag	ggggaaggtg	15960
tgaatttcgg	gagtcctggc	ctcacaagtc	ccaccettcc	gacaggagct	tagagtccag	16020
ccctctgcct	cttttctcca	gccatatcta	tgagtctgag	gtgtccaact	atttactccc	16080
ttgaggaccc	agcattattc	aagtcctcct	gcctgcagga	ccagcagtcc	gggaccccag	16140
ccctttcttc	tccgagaccc	aggagaccaa	actctcaggt	gtgtcctctt	tcaggacatg	16200
ggagcctggg	ccccagccct	ctcttccttt	aagactcctg	agtctggtcc	ccagcactca	16260
ccacgggtgc	cattgaagaa	gagggtctgc	cgggctgggt	tctggatgac	aactatggac	16320
ccatcatact	ggtgcagacg	gcaggtgatc	tcagccaccc	cacceteage	cactgtcacg	16380
ttctctgtct	gtacttcctg	tcctgcccct	ggacgattag	acaaagagac	aggatagaag	16440
acttactgag	agctgcaatt	caatttttc	tttctccctc	ttccccatcc	aaacctccaa	16500
tccctctctt	tcccctcatt	cattccattg	cactgaacat	ttcctgcagg	ctagagtcca	16560
ggacagggag	gaaatctgct	ccctactcta	aaagagctgc	agtcaagatt	tagtagaata	16620
tgctctaatg	agggcagcac	agggcacact	aggagcccag	agcaagggag	gactattata	16680
gaattgccta	gagagatggg	tagccagaga	gggctctgca	agaaagctcc	attggatctg	16740
gatcttaaag	agtaagcagg	aggctgagcg	cggtggctca	tgcctgtaat	cccagcactt	16800
tgagaggccg	aggtgggcgg	atcgcaaggt	caagagatag	agaccatcct	ggccaacatg	16860
gtgaaaccct	gtcactacta	aaaatacaaa	aaaaaaaaa	aaattagctg	ggtgtggtgg	16920
tgcgcacctg	tagtcccagc	tactcgggag	gctgaggcag	gggaatcgct	tgaacccggg	16980
agttggaagt	tgcagtgagc	cgagatggag	ccactgcact	ccaggctggg	cgacagagcg	17040
agactctgtc	tcaaaaaaaa	aaagaaagaa	aaaaaagagt	aagcaggagt	tcacaaggtg	17100
tgggagactg	ctgtgtgttc	accaagcctc	atctttcaca	cctgggcaca	tgttgtagcc	17160
cgtttgcaaa	gatagccgta	atattctcct	gtccctggac	atgccctttg	caagttgatt	17220
ttgccattcc	tcccattgag	aaggcacttt	gtcccctact	agtctgggta	agccttgaga	17280
gttgctttga	ccaatagaat	ttgctagaag	tgatattgag	cctaggcctg	aagaggcctt	17340

gtagcttcca	ctcctgccct	aagactgttg	catgaagata	cccagactag	tgtctttgca	17400
gatgaacaat	catggtgaaa	gagaagccca.	gccggcagcc	agcaccaatc	gccagctgtg	17460
tgagtgtggc	catcctggat	catccagccc	cagctgcccc	accagctgac	agcagccaca	17520
caagtgaccc	cagttgagac	caataaaaga	tctgcccatc	tgatacagcc	caaactgctg	17580
aaccccagaa	tcatgaacaa	ataaggtggt.	ggttgtttta	agctcctaag	ttgtgggtga	17640
tctgttctac	tgctaaagtt	aactgataca	atacataatt	aggctatact	tcccagcatc	17700
ctttatagtt	aggtggggcc	atgtgaccaa	ttctggccaa	tgggatgtag	gtggaagaga	17760
aacacctctt	gcagcctgac	ccatctccct	cataatcctt	cacactggct	gaacagagag	17820
gactccaagg	agcctagagg	agggcagaat	cacaagccag	aaggaacctg	ggtctctaac	17880
tgactgtccc	ccatgacccg	cctgtatagg	actgtgatat	gagcaagaaa	tatacctttt	17940
tgttaagcca	ttgagatttc	aggggtgtct	gttacagcct	ttaacctacc	ctgattaatc	18000
catcagaaaa	acaaggtggg	gaatctagaa	ccatcagaga	aaagcattta	ggaaagctga	18060
aagccaagac	taatcatcag	cattaatatc	atcatctgtt	gtcttcaaaa	taacaataac	18120
ccccatagct	accaattatt	aggtacttgc	agtgttagtc	cctgtgctaa	gggcattacc	18180
catataactt	acctttaatc	ctcacaatcc	ctgtgtaagg	tagacatgat	tattatcatt	18240
attattatta	ttttgggaca	gagtattgct	ctgttgccca	ggctggagtg	cagtggtgtg	. 18300
atctcagctc	attgaaacct	ccacctccca	agttcaagcg	attcttcagc	ctcagcctcc	18360
caagtagctg	gaattacagg	catgcaccac	catgccgggc	taatttttat	ttttagtaga	18420
gacagagttt	agccatattg	gcctggctgg	tctcgaactc	ctggcctcaa	gtgatccgcc	18480
tgcctcagcc	teccaaagte	cagggattac	aggtgcgacc	caccgcgcct	ggccaattat	18540
tattattatt	tttaatttga	gacaaggtca	ggctggagtg	cagtggcacg	atctcagctc	18600
actgcaatgt	ctgcctccca	ggctcgagtg	atcccacctc	agcctcccca	gtagctggaa	18660
ctacaggtgc	acaacatcac	acctggctaa	cttttgtatt	tttttagaga	cggagtttca	18720
ccgtgttgcc	caggctggtc	ttgaacttgc	gagctcaagt	gaactgcctg	cttcggcctc	18780
ccaaagtgct	gggattacag	gcatgagcca	ctgtgcccgg	cctgcgctat	tattatcccc	18840
attttgcccg	gcctgcgcta	ctattatccc	cattttcccc	catttccatt	tttctttct	18900
tttttttt	tttttttt	tgagacattg	tcttgctctg	tcgcccaggc	tagagtgcag	18960
tggtacgatc	teggeteact	gcaacctcca	cttcccgggt	tcaagcaatt	ctcctgcctc	19020
agcctcccaa	gtagctggga	ttataggcac	ctgccactgc	acttggctaa	tctttgtgtt	19080

tttagtaaag	acggggtctc	accatcttgg	ccaggctggt	ctggaactcc	tgacctcgtg	19140
atccacccgc	ctcggcctcc	caaagtgctg	ggattacagg	cttgagctat	cgtgtcctgc	19200
tcccattccc	attttatagg	tgagaaaatt	ggcccacaga	gatgaaatga	cttgcccaag	19260
ttcacagcca	agagtggcag	tgccaaaatc	ttcgtccaaa	tctctgattc	tgtatcctga	19320
atctgtatat	ccactcctgg	ctgtctggat	taagtgtcca	tcattggcag	ggggttgtga	19380
gagecgettg	tgatgggcct	cgaatgccaa	cctaggagat	ttgctttcat	cctaagggcc	19440
agtgaaggtt	ttgaagcagg	aatatgccat	gattagatct	ggctatttgt	ctttaagtgc	19500
tggataacta	tccatgtctt	ttacattcag	gtgctgggtt	gcattcattc	aggagtattt	19560
cctgagcatc	acgtaggttt	tcaggggctg	agtagtcaga	gatgagttag	atgaggtccc	19620
tgccctttaa	gatttatggg	aaggtaggaa	ccaatcacgg	taatcaaaag	tgttatgtgg	19680
ctgggcacgg	tggctcacac	ctgtaatccc	agcactttgg	gaggccgagg	tgggcggatc	19740
acaaggtcag	gagttcgaga	ccagcctgac	caacatggtg	aaaccccgtc	tgtactaaaa	19800
atacaaaaat	tagccaggtg	tggtggtggg	tgcttgtaat	tccagctact	caggaggctg	19860
aggcataaga	atcgcttgaa	cctgggaggc	agaggttgca	gtgagccaag	atcgcgccac	19920
tgcagtccag	cctgggtgac	agagcaagac	tccgtttcaa	aaaagaaaaa	aaaaaaagaa	19980
ataaataaaa	gaaagtgtta	tgttttctgt	aagagggtag	gtaacctaat	ttggaagttg	20040
aggggtagaa	aagattattt	ctgggggatg	gagacagaga	cttctggctt	cctattctga	20100
catccatttt	tecetttete	ctcagtaaaa	gaaaagaaca	ctggttgtat	tttatggttg	20160
cactatgtcc	agcagaaaaa	ggcattcctc	agtctccttg	cagcaaggta	aagccatctg	20220
ataaaatttt	gtccagttgg	atataagcca	aaatgttgcg	tgacaatttt	gggaggactt	20280
cctgaaacag	gtggacaaac	cctttttcta	ctgagtcacc	tttgtgccac	ctggaactaa	20340
cagtgtgacg	cgtggaattt	aggcagccat	attgaaccat	gaggacaaga	gcagtgggga	20400
tggcggaacc	aagagctgga	aggtgcctga	gtctctggtg	aagatgtgga	gctgctgtaa	20460
cagccctcaa	ctcctagttc	tggacttctt	ttatgtttta	gtgtaacgct	ttgggtattt	20520
ttatttttt	aatttatttt	agagatgagg	tctcactatg	ttgcctaggc	tggactcaaa	20580
ctcttatgct	caagcagtcc	tectgeetea	gcttcatgag	tagctgaaac	tatagcactt	20640
tgggtatttc	agccactgtt	tgaggttttt	ctagcacctc	ctggaatatc	aagcttaaca	20700
tgtccaatcc	ttgccccaga	tattttcctc	cccaaatttt	ctcaatctca	ataaatgtca	20760

ccaccatcca	cctggttgct	caggtcaaaa	acctagaaat	cattcaagtt	ctctcccttt	20820
ccctcatccc	caatatccat	tccatcagca	acatctgtcc	attctacctc	caagacatat	20880
cccagatctc	atcacctttg	tctgcctctc	ctaccctcac	tctcatccag	catcatccct	20940
cacctggact	ctgcaaaagc	ctactcgtgg	gtctgtctgc	atccctgtct	gcctcctcca	21000
gggccattct	ccacccagtg	gccggatcga	tttttcaaag	aggtaaatca	gatcaattca	21060
cctttctgct	taaaaccctc	cgagggctgc	ccgtaacatg	tagaataaaa	tagagacccc	21120
ttcccgggga	cttcaaggtg	ctatatggcc	tggccccttg	ctgaccttac	ttcactctgg	21180
gctcgctagc	cttgctgtcc	ctcaaacatg	ctgagetege	tcccaccaca	gggccttttc	21240
ccttttcttc	cttctgcctg	gaatgttctt	ctccccacct	cccaagcccc	atcttcccag	21300
ggctgactcc	tgttcccatt	tgggtctcaa	atcatatcag	taccttctca	gagaggcctt	21360
ccctcactgc	tcatcccttc	acctttagaa	cactttcttt	tcttttaaga	gacaaagtca	21420
gcccagtgcg	gtggctcacg	cctgtaatac	cagcactttt	gagaggccaa	ggcgggcaga	21480
tcacctcagg	tcaggagttc	aagaccagcc	tggccaacgt	ggcgaaaccc	cgtctctact	21540
aaaaaaatac	aaaaattagc	taggcagtgg	tagcccgggc	tactcaggag	gctgaggcag	21600
aattgcttga	acccaggagg	cagaggttgc	agtgagccga	gattgagcca	ctgcacccca	21660
acctgggtga	cagagagaga	ctctgtctca	aaaaaaaaa	aaaaaaaag	agacagggta	21720
ttgctctgtc	acccaggctg	gagtgcagtg	gtgcaatcat	ggctcactgc	agcctcgaac	21780
tcctgggctc	aagccatcct	cccacctcag	cctcctaagt	agctgagatt	ataggctcct	21840
cccaccacac	ctggctaatt	tttgtgcttt	ttgtggagac	acagattctc	catgttgccc	21900
aggctggtct	ccaactcctg	gggtcaaagg	atcctcctgc	ctcggcttcc	caaagtgctg	21960
ggattacagg	cgtgagccac	tgcgcctggc	ccagaacact	tgctatttcc	tcaccattgc	22020
tttatttctt	ctatgaagat	ttcactggaa	ttatcagatt	aatttgctta	tttgtttact	22080
gtctgtttgt	cacccatgac	tggaatgtat	actctaggaa	ggcagggata	taatccaatg	22140
ggtttactgc	tgcaccccta	gtacccagaa	gagtgcttgg	cacctgataa	gtgtctgggg	22200
aacttgctac	atgaattaca	tgtgtcagat	gggatatctg	ttcgtctttc	ttctctcttt	22260
tttctttctc	tctttctctc	tctctttctt	tetetttett	tctttttct	ttttttgaga	22320
taaggtctcg	ctctgtcacc	caggctagag	tgcagtggtg	caatcatggc	tcactgcaac	22380
cttgaacatg	tgggctcaag	cgatcctccc	acctcaggct	accaaatagc	taagactaca	22440
gaggtgcgta	gctatgccca	gctaattaaa	aaaaaaaaa	tttttttt	tttttagaga	22500

tgggggtete	aatatcttgc	ccaggttggt	cttgaactcc	taggctcaag	caatccccct	22560
gccttggcct	cccaaagtgc	tgggattata	ggcatgagcc	attgcagctg	gcccagacag	22620
aatctcattt	cagcccgaca	actttgtgac	atcattattt	tcatcttaaa	cacctaggtt	22680
gatcccagct	caaccacttg	ccatctgtgt	gacctgtggg	caagtgacct	tacctttcgg	22740
agcctcagtt	gccccatcta	taaaatggga	atgatgccag	tgcctgcctc	ataaggatga	22800
gccccgctcc	tgaagctcag	ggagccctct	ctgcaaggct	gttttagtgc	aacctccgga	22860
aacatgccca	tgcatgtgaa	aactggcatg	cacattctgg	tgcttttaaa	aacatctcga	22920
agcctatcca	cagatcctgg	acctcaagac	tggttcagtg	ctagcccccc	attttacaga	22980
tgtggagaat	gaggcttagc	gggtcccagg	caagtcagtg	gcaaaactca	ccatctcctg	23040
ggagccatca	ggttcctctg	gatctgcccc	caccaaattt	atcccctgct	ctctgcttga	23100
gggtgcacat	ggggtgagġg	tgggggtctt	ttgttttact	ccctccccct	cctgaggagt	23160
cagtaaccaa	cagtgtctgt	gcctggaata	ttaatgtctc	agcagctttt	gtttgggggg	23220
ttgggggtgg	tgggggcggg	actttctggt	cagagagggg	ctgagctttg	gggactgagg	23280
cactggccct	ttaaactgtg	ttgacagcca	ggagtcgtca	tggggatggt	gcttggaaaa	23340
ggggacaggg	agggtttggg	aaagagtggc	ggagcaggta	atgcgtaaga	cccaggaatc	23400
cagcccccaa	ctacctcctc	tcccaggacc	caggagtcta	ggctcccagc	ccctcctcca	23460
tcaggttcca	ggagtctgga	accccggctt	ctttccgcct	tagacccagg	aattcagccc	23520
ccaaccacct	cctctctcag	gttcccgaaa	tccagacccc	tagccccctt	ctcgatcagg	23580
acccaggagt	ctgggctgtc	agcagecect	tecttcaaac	ctaggagtca	gagcccccag	23640
ccctctccta	gcttagacac	aggagtctgg	gcctccagcc	ccctcctcct	tcaggaccca	23700
ggagccaggg	gtccagagta	cacagctggt	ggatgtttcc	acggagacta	agcagggtgg	23760
ggggagcgct	tectgggtee	tgagtcagcg	aatacccaag	ggagtctcaa	ggtcatagtt	23820
ccgggaaggt	caccaccacc	ccctctgtat	ccgctcccca	gggggctcct	ggcatcctgc	23880
ctccttcccc	cttcctccct	tagggaggtg	gtacatccct	gcgtcctgac	tgaacccccc	23940
tcagcccccc	atcaatggcg	gagtccgaac	atcctcgcac	aaagcgtcaa	ttcttcccca	24000
gctcagcctt	gtgaaggcgc	ctgtattcgc	aggacctagg	cgtcagggtc	tcagcccctc	24060
ctccctcaga	aacctgcagt	ggaatccccc	gcctccagcc	ccttcctccc	tcaggaccca	24120
ggagtctgta	tcctcatccc	ttcctccctc	aagacctagg	agtgtggact	cccagccccc	24180

ttttccttcc ggacacagga	gttccagccc	teggeeetet	cctctcttaa	acccaggggt	24240
ctaagacccc agcctcctcc	tccctcaaac	tcaggagtct	aagatcccag	gcccctcctc	24300
cctcagactc aggagtctaa	gatcccaggc	ccctcctccc	tcagactcag	gagtctaaga	24360
ccccaggece etectecete	agactcagga	gtctaagatc	ccaggcccct	cctccctcag	24420
acccaggagt ctaagaccc	agcccctcct	ccctcagact	caggagtcta	agaccccagc	24480
ccctcctccc tcagactcag	gagtctaaga	ccccagcccc	ctcctccctg	gacccaggag	24540
cctaagacct cagccccctc	ctccttgaga	cccaggagtc	taagacccta	gctccctcct	24600
cctttagacc cattagtcca	ggcccccaga	ccctcctcca	tcagacccag	gagtccaggc	24660
ccccagcccc tcctccatca	gatccagccc	ctcctctcct	gaaaactttt	gactctaact	24720
ccccagtcct caacccctag	aagcacagtc	ctgcctttcc	tcaatcctct	gtcccctccc	24780
atctggggac ctaggcatca	ggtgggggg	taggggtgag	tcagcaacct	cacacacaaa	24840
gteceegetg tggcccccae	: attcctggga	tattcgggac	tccctggatt	ccaggcctca	24900
ggcccagcca gggagtgggg	agtcccccag	aggtcctccc	tgggtgtggg	gtacgagagg	24960
aattcctgct ccgggaaggg	, tgcaggcctg	cactgagete	cctctgtccg	aacctccacg	25020
cccagtgccc tctattcacc	ccctcttccc	agaagagccc	aggctcagca	cctgcccctt	25080
gccccactgg gtgcccacgg	g aggagcetge	gtgcctgctc	cctatgggcc	tggggtctgc	25140
acaggcggaa atcagtggg	gcttccgttc	tgatgccaca	ggccattgga	tgctggcggg	25200
tctgactgtc tccaggccad	ccccacccc	tcccagagag	agaaagctgc	ctttgtgttc	25260
tccaagatgg ggacaggcca	ggctcgcacg	acattaaccc	agccttaggc	cccagccctg	25320
ctgtgtctaa ggtcttggaa	tccactgcag	aacctgaccc	ccacccccag	gctctgggga	25380
cacaggcgcc tggctcatgg	g gtgggtgggt	gggggggtca	gtgatagaaa	cctccaaaac	25440
ctgttccttg gggtgactca	a caatggaggg	agggtccccc	tattctcaag	agtggctggt	25500
cagaatttta gcaggaaaaa	gtgagtcacc	ctgggaagga	aacattattt	agggaccaac	25560
aactgccccc tccacaagad	ccctcaactc	ctaatagcct	ctctattctt	tctttgtatt	25620
ggatatetgt tteetetee	cctttctgtt	ctacccagtt.	tctggctgcg	ggtcccattt	25680
ctgcctgggt gcatccctgg	g gcaggcaacc	catccctccc	tcttgctttc	tctcctctgc	25740
ccaccctgga tccttcttt	g ggcataaatc	tcatcttctt	ctgctatgct	cagaagatga	25800
atgaaccagg agagagaga	a catgtttta	aaatggcgca	aatgcacccc	atctcccccg	25860
attectgetg getgggeaag	g gtgagagagg	aagaagtgac	taagagagaa	atgtgggaac	25920

aacagatacc	ccctaaaatg	tggtagccaa	ggccactgag	aaatatccaa	tggaaaggag	25980
agcaggaagg	gccctccaag	accacatgct	acagcctcct	accccatgct	ttacagaacg	26040
ggaaagtaag	gcccagagag	ggacaaggac	tgatgcaaaa	ttatactaaa	gggtcctggg	26100
taaggcttgg	acccaagttc	cttagctccc	agctgagagc	tcttcccatg	acaccaagct	26160
cagtttctac	tggtaaaagc	cacatactat	ttactttaga	gaaagtttac	agagagggtt	26220
agggtgccag	gaagcagtga	cttggaaatc	aaacgaggga	cagggctgta	gacctaactc	26280
ccagaagcac	cagagaaagg	cttttgcacg	gggcgggtgg	tcaccttaag	ctatattctg	26340
atcctgagaa	ttcaaagtct	gatgattcta	agctgtcagg	attctaaatg	tcatagatgt	26400
caagatccag	gaactccaag	acatcaagat	ttcacgattt	ttaagacgtc	aagatgctag	26460
catgctaaca	ccatcacggt	tctagaactt	taaaggtgtc	aagattctaa	agccttctgg	26520
attctagaat	cctgtagatg	tcagcattct	aaagtaccat	caggttcttt	atttactgga	26580
ttcattagtt	ccaggattct	atgagcctgg	tgtttagcct	aaaaaataaa	gataaattaa	26640
aattgatgga	aatgtcactg	aggtaccaaa	gttctcatct	gggaaattgt	ggcatgtctg	26700
ttgtaaagaa	aggaggtaat	gatgcaagtt	ctaaagcagt	cacagaagac	tagagaagaa	26760
agaaagacag	tgagaggaca	gctttgcccc	tcatcctggc	cgaggtgagg	atggctctgc	26820
ctcaaaccct	ggagtgggga	acatgtaacc	gcactcaact	tgccagaaac	cccttcacgg	26880
tctgagctgg	cgttcccttt	catgtcactg	agttcaacat	cctcacttta	cagaaagaga	26940
aacagaagcc	tggagagagg	aaggtgttta	ccattggctg	cgatggcaaa	tggcaagagc	27000
caagatttaa	gcccaggccg	ccagccccat	gccacctggt	tataactcct	ctcaccaatc	27060
tctgccgaac	acccagccct	cctgcttctg	cctagccacc	ttccaatcct	ctgttccttc	27120
caaaagtggc	cttatccacc	agggaggggt	gacccgtggc	aggttcaaga	cttacacagt	27180
gtgagagtgt	gtgtgggtga	catttcctga	ccttgtcccc	attctcaggg	tcacccaacc	27240
tcgggggtct	ccagcttctc	acagtgtgtg	atgagggtat	gtggatggct	ccctggatgt	27300
cctggacagg	ggcttctctg	tgagtcaagc	ctgggtgtgt	gaatgggtga	gcagggtttg	27360
gagaggcatt	cgctgaatcc	acgtgtgtgc	ctacacgcca	aggtccccca	ttctcacttc	27420
cccacacaca	tgcacacaga	tgttcccctc	cagggctctt	tagaatgccc	tgcctgactg	27480
aattcctctt	caggggcaca	gagggataga	gagagggagg	aaggtaggat	gggaatggga	27540
gateceggga	tggaggctgt	aagcgtagag	agaggaggca	cagcagaaag	acagggatgg	27600

agatagtggg	acagagaagg	gggaaagaga	caggtgacag	aaagggttag	agaaacgagt	27660
gacagaaaga	caggggacag	agacaagggg	atggggcaga	taggggacag	agaaaaaggg	27720
acagaaaaac	aagggtgaca	gcgagacaga	gacagggacc	aagaataggg	gcagagaggg	27780
agggcagaaa	tccgggggaa	agagaataga	caggatgatg	gaggggacag	agtgacccag	27840
gaaaagggga	cagagaccag	gggacagagg	taggggacaa	agacagaata	gatgaggaac	27900
accgaggcaa	gaagagaggg	agacagacag	aaggagggac	aggacttcga	gactgaggga	27960
tagaggacaa	gggtaggggg	acgaggagcc	agacgggggg	gttcagagac	gggcggacag	28020
agggacgcag	agactggaca	gaaggacagc	gggaccggcc	tggggagggc	ggacttgtgt	28080
gtgtaggggg	gtctcgggcc	ctttgtcccc	gccgggatcc	agcctgcgcg	gataagaaga	28140
ctgcggcacg	geggeeggge	cccgcgcccc	ctcccccgct	cgtcgctccc	ggctcccggc	28200
ccgcgctgcg	ctttgtcccg	gggagggggc	ccggcccggc	cccgcgcgca	ttgttcggcc	28260
tetgeggeee	cgaggctgcc	gggctgtcac	cacagcgcgc	cccccgcccc	agcccggccg	28320
gccgaccccg	geceeegace	ctacctggcc	ccgccgcggc	cgcccacagc	agcagcagcg	28380
gccactggaa	gegeegggee	cggcccatgg	tgccgccgcc	geegeegeeg	ccgctcgctc	28440
ccggcccggc	acctgcaccg	cccgcgccgc	ccgccccgcc	ccccgcgccc	cgccccctgc	28500
ccgcccgggg	gcggggcgcc	gaggccgggg	cggggccggg	gaggggaggg	ggagacggag	28560
gagaggcccg	gagacaatcg	gggggacggc	acggtggggg	aacggtgcgg	ggtgcgaaag	28620
ctggagagga	gaggggtgag	gagggcggga	aggggtgcgc	gggagggcga	cagcggcgtg	28680
ggagcaggtg	ggggatctcg	gtgagcgcgg	gaaatggagg	gtgttgggtg	agggtgctgc	28740
gtgcgggccc	aggtgctgcg	cgcgagggtg	cggagttgct	ggcatgcagg	gtgcttgcgc	28800
tgcgcggagg	ggagggtggc	agggtgttgc	tggaggctgt	gcgagggtgg	gggcgcgggc	28860
gtcgtggggt	gcggtgtgtg	cgaagggaga	gcgtggccag	cgtgacgggg	gagcgtaagg	28920
gagggagtgc	gacgtgggaa	aggtgagtgt	gagaggcgtg	ctgcgggcag	gtgggtgtct	28980
ggagtctagc	gagaggctgt	gagctgagcc	accgggacag	gggaggctgc	agctggaggt	29040
ccggagggtc	cggaggtcga	ggcaggtcaa	ggatctccca	gggcagggcg	aggctggggc	29100
tcaggagtgg	ggtggggtca	gttccctccc	tccctctctc	ctgtcctgac	ctgaaaaccc	29160
cgtgtttccg	cgtcattctc	cgggagggc	cccctgaaag	tgaactaact	ggaaggaagc	29220
ctgaatcctg	ggtcccagga	gggagaggct	cctgtgaaca	ccttccaagc	cctggcgtcc	29280
cetetectee	ctgctgtctc	cctgccccag	cctctctccc	tctctctgca	tgtatttgcc	29340

tctgcccttc	ctctctcccc	atctttgagg	gtgactcacc	cctccagact	taggtccctt	29400
ctccctcctg	ggagtgggtt	tecetgagee	cacttctgtg	acaccctgta	gacctgatgc	29460
gggatcatta	cctatgggac	ccagaaagag	tgagaaacca	tggaaagaag	gcctcgacct	29520
ctctcatgcc	catttgtcag	gcaaactgag	gtccagaagt	gccaattatg	aacatctttc	29580
cttccccct	ccccctccc	cgcccagacg	gagtctcgct	ctgttgccca	ggctggagtg	29640
cagtggcacg	atctcgactc	actgcaacct	ctgcctccca	ggttccagtg	attctcctgc	29700
ctcagcctcc	cgagtagctg	agattacagg	cgcccgccac	catgcctagc	taatttttat	29760
atttttagta	gagacggagt	tttgccatgc	tggccaggct	ggtcttgaac	tccttacctc	29820
aggtgatcca	tctgtctggc	ctcccaaagt	gctggattac	aggcgtgagc	caccatgcct	29880
ggctgaaaat	ccttactttt	tattccgact	aaaaaatttt	acatccagtc	ccacaaggga	29940
cttcagcttc	acacaccctt	tctgtcctca	gtacccagct	cccagtatcc	tttctgacct	30000
caaaaccata	gctaccatca	acccttgtgt	cccaggacca	tggctcccag	tgtcttctct	30060
gtcctcaggg	tccaagctcc	catcaactcc	tgtgtcctca	ggaccacggc	tcccagcatc	30120
ctctctgtcc	ttcaggtcca	agctcccatc	aacccctgtg	aagcaggacc	atggctccca	30180
gcatcctctc	tgtcctcagg	gtccaagctc	ctatcaactc	ctgtgtcccc	aggacgatgg	30240
ctccagcaat	cctctctgtc	ctgagagccc	aagcttctaa	ctgcccctgt	gtccccagat	30300
ccatagccct	gagcaacttc	cttcttttc	agtcctcagc	ttcccagctt	ctgtagactt	30360
gggaagagat	agtctctaat	cctctttcca	gggctcacat	tctgtgactt	ttgctagatg	30420
ggagaggaat	gtttgatctg	cctttggaat	actggtccaa	ggggtaacta	gtagttgcct	30480
tttcccgcag	gagccaatag	gcccgctcac	tctgtgctct	gacagatgtc	tcctgctcca	30540
gctgaagggg	aaccttggga	gatgttggtt	tggttctcac	ctgtcatcct	taagtcccac	30600
cattccatgt	gaagacatca	caagagtagt	ggtcctgacg	ggcgcgttgg	ctcacacctg	30660
taatcccagc	actttgggag	gccaaggtgg	gccgatcact	tgaggtcagg	agtttgagac	30720
cagcctgacc	aaccggccaa	catggtgaaa	caccatcttt	accaaaaaaa	aaaaaaaaa	30780
ttagcaaggc	gtggtggcac	gtgcctgtaa	tcccagctgg	tcggaaggct	gaggcatgag	30840
aatcccctga	acttgggagg	cagaggttgc	agtgagctaa	gatcatgcca	ctgcactcca	30900
gcctgggtga	cagaatgaga	ctcagtctaa	ataataataa	taataataat	aataataata	30960
ataataataa	taaatagaat	agtggtcctg	tccccatcct	acttcagggt	accctgtcca	31020

ttagggattt	agtgcaagtg	acagcaagtg	caacccaact	ggtttgagag	aaagagaact	31080
ggttcacaca	taacaaaaag	tccttctatg	gctggctttg	gcgaggtctg	tcaatctctg	31140
tcctaaggat	gcatggctcc	cctcctgtag	caagatggct	ggcagatacc	cctggggcca	31200
gattcatatt	tggggtgatt	aagattctgc	aagagagaga	caacctttat	ttcacacagc	31260
ttttcaattg	ttgcctgtcc	ctggtgagac	tcggagacct	agctcttgcc	tggtttctaa	31320
actttcaata	acaccgtttt	tgcttaagtc	agcacaaaca	gattttattt	cttgcaagca	31380
aagattcctg	aacaacaact	tcagagccgt	taacaatgag	gtcctgatca	caagctatgg	31440
tataggacgt	gagaaatttg	tccctagcct	caatatctgc	tggaggģcat	catggaataa	31500
gtatttctat	cctctgatcc	ccactgtagg	gcatcatggg	atatataatc	ctaaccttca	31560
atctctgcca	tagagtttca	taggcaatgc	agtcctagcc	tcaatatgtt	gtagggaatt	31620
atgggaaagg	tgaaattatc	ctcaattata	atacagagca	tctcagaaaa	tgtcgtttta	31680
gcctcatctc	tgctgtaggg	catcatggga	gatatacttc	tggcccaatt	tttgttgtaa	31740
gttgccatag	aagatgcagt	ctttccttcc	ttcccttttt	tcttttcttt	ctttcttct	31800
tttttttt	ttttattatg	tagagacagg	gtctctcgct	atgttgccca	ggctggtcct	31860
gaactcctgg	gctcaagcag	ttctcctgcc	ttggcctccc	aaagtgctgg	gattacaggc	31920
aagagccatt	gcacccagtc	cattetatea	tttctttctt	catcacctgc	catattccag	31980
gcactaggaa	taaatcatca	agtaaataaa	cggccttacc	ctccctggca	attataatgg	32040
ggaaagttag	ctaaaaacaa	acaaaaatta	ctgttccatt	taaccatcgc	tgaataacaa	32100
aataccccag	aacgtagtgg	tgtgaaacaa	caacctttta	attttatgat	tctgtgagtc	32160
aggaattgga	gcaggattgg	tgtgtatctg	cttcatgatg	aactggagcc	aaaaatgaac	32220
tagctggaac	agctggagat	ggaggggagg	ggcatcaagg	gccatatatc	taaggctggt	32280
ggttggtgtt	gtgggttttg	aatagtgtcc	tccaagtaaa	atatatgttg	aagttctagc	32340
ccctggtatc	tgtacatgtg	accttatttg	gaaataaaat	ctttgcaaat	gtaattcact	32400
tttttgtttg	tttgtttgtt	tgctcgagac	tgagtctcgc	tctgtcaccc	aggctggagt	32460
gcagtggcat	gatctcggct	cactgtaacc	ttcacctcct	gggttcaagc	gattctcctg	32520
cctcagcctc	ccaagtagct	gggattatag	gcacgtgtca	ccatgcccag	ctaatttttg	32580
tattttcagt	agggacgggg	tttcaccatg	ttggccaggc	tggtctcgaa	ctcctgacct	32640
caaatgatct	gccacctcag	cctcccaaag	tgctgggatt	ataggcatgg	ggcactgcat	32700
cctgcccaga	tgtgattaac	ttctaacccc	tggtatcttt	gcatgtgact	ttatttggaa	32760

ataaggtggg	ttttttttt	gtttttttt	tttttttga	gacagtttca	ctttgtcgct	32820
caggctggag	ttcagttgca	taatctcagc	tcactgaaac	ctctgcctcc	gaggctcaag	32880
cgatcctccc	gcctcagtct	cccgagtcac	tgggactacg	ggcaagcgcc	accacacccg	32940
gctaattgtt	gcagtttttg	tagagatggg	gttttgccat	gttgcccagg	cggtctccaa	33000
ttgccaccct	caagcaattc	atccgcctcg	gcctcccaga	gtgctggaat	tataggtgtg	33,060
agccatggcg	cccggccaga	aagtctttgc	agatttagtt	gaattaatga	ctaaatgttt	33120
ccatgctgag	ttagagtggg	ctctaaatcc	aatgattgat	atggggttat	aaggagagat	33180
atttggagac	atagccacag	tcccagggaa	ggtggacatt	ggaagacaga	ggtagggatt	33240
agagtgatgc	agctacaagc	caaggaatgg	caaagattgc	tggcagtccc	tcagaagcaa	33300
aggagaggca	aggaagggtt	cttcccctga	gactttttt	ttttttttg	agacggagtc	33360
tcactgctgt	cagcctcagc	tggagtgcaa	tggcgcgatc	tcggctcact	gcaacctctg	33420
cctcccaggt	tccagcaatt	ctcctgcctc	agcctcccga	gtaactgaga	ttacaggcac	33480
ccgccaccat	gcctggctag	tttttgcatt	tttagtagag	atgggatttc	accctgttgg	33540
ccaggctggt	ctcgaactcc	tgacctcagg	tgatccaccc	gcctcggcct	cccaaagtgc	33600
tgggattaca	ggtgtcagcc	ccggagactt	taaaagcatg	gctcttcccc	tgacgcttta	33660
aaagcgtggc	tettecegtg	agacttcaac	accttggttt	tggacattta	gcattcagaa	33720
ctgtgagaga	acaagtttct	agtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	33780
tgtgtgtgta	tgtgttttag	acagaggctc	attctgttgc	ccaggctgga	gtgcagtggt	33840
tcaatctcgg	ctcactgcaa	actccgcttc	tcagattcaa	gtgattctta	tgcctcagcc	33900
tcccaagtag	ctggaattac	agaggagcgc	catcacagcc	ggctattttt	tttttttt	33960
tttgtacttt	tagtagagac	agggtttcac	tgtgttggcc	aggctggtct	caaattcctg	34020
gcctcaagtg	atatgcctgc	cttggcctcc	caaagtgctg	ggattacagg	tgtaagccac	34080
cacacctggc	ctaagtttct	gtgtgtgtgt	gtgtgtgttt	tgttttgtt	tttttttt	34140
tttgagtgga	gtetegetet	gttgcccagg	ctggagtgca	gtggcatgat	ctcgactcac	34200
tgcaagctcc	gcctcccggg	ttcacgccat	tctcctgcct	cagcctcccg	agtagctggg	34260
actacaggca	cccaccacca	cgcccagtta	attttttgta	tttttaatag	tgacagggtt	34320
tcatcatgtt	agccaggatg	gtctcgatct	cctgacctcg	tgatccgccc	gcctcagcct	34380
cccgaattgc	tgggattaca	ggcatgagcc	accaaacccg	gccaagtttc	tgtggtttta	34440

agccaccttg	cttgtaagat	ttgtgtgtgt	gtgtttttaa	ttttttattt	ttaagtatta	34500
tgaatacata	atagtggtgt	atatttacag	gacatatgta	atatggtttt	gggttttagt	34560
gtttttttt	tggagacaga	gtctggctct	gttgcccagg	ctggagtaca	gtggtgggat	34620
catggctcac	tgcagccttg	acctcccggg	ctcaagggat	cctcctgcct	cagcctccca	34680
tgtaactagg	accacaggca	tgccccacca	catccagcca	atttttttt	atttttagtg	34740
gagatgaggt	ctcactgtgt	tgcccaggct	gatcttgaac	tcctgagctc	aagagatctt	34800
cctttctcac	cctcccaaag	tgctaggact	acaggcatga	gccactgtgc	ctgtccttcc	34860
atgatgtttt	gatataggca	cacaatgtgt	tagtttataa	agtttgtaat	aatttatcac	34920
aggcagccct	aggaaactaa	tatagccaag	tttcctgttt	cttctctata	tcacatctgc	34980
tggggctaca	tgtccaaggt	ggcttcttca	cccacttgtc	tggtgcctgg	gctgagatgg	35040
ctgaaacatc	tggggctcta	tctccacatg	gcatttatac	atgagtagct	tgggcttcct	35100
cacagcatgg	tggtctcagg	gcagtagtac	ttttacatgg	caaccagctt	ccccagagtg	35160
agcgttctaa	gattcagaaa	gtgaaaaatg	aaagtttctt	aaaacttggt	tccagaacat	35220
agcacagcaa	aacttccacc	acattctact	ggtcaaagca	gtcacagagt	cactcatatt	35280
caagaggcag	aagtacagac	ctcacttctt	taagccacta	cagtgacagg	tggtgatatg	35340
tcattagaga	aagccctaaa	caagaacctt	gtccctcacc	tgcccccaaa	taccatggaa	35400
gatgtctttt	tttttttt	ttttttttg	gggatagtct	cactgtgtca	tgcagtggtg	35460
tgatcttggc	tcactacaac	ctcctcctcc	tgggttcaag	cgattctcct	gcctcagcct	35520
tccgagtagc	tggagttaca	ggcacccacc	accttacccg	gttaattttt	gtaattttag	35580
tagagacggg	gttttgccaa	attggccagg	ctggtctcaa	actcctgcct	caagtgatct	35640
gcccacctcg	gcctcccaaa	gtgctgggat	tacaggcgtg	aaccaccaca	gccagccgaa	35700
gatatcttat	tttttcttca	ttagccacaa	gatttgatgg	ggaatgtaat	ttttgtctcc	35760
atgggttgcc	ttagcaaatg	atgagaagaa	catgaatttt	tcaatattgt	gctcctagag	35820
tgccattgaa	atggtagttc	tgtctctttt	tctgacagtc	ctgaggcatc	ccgggaaata	35880
gagcccagcc	tttatccccg	gtccccagca	catcagggga	agtgcactcc	tgtccttatt	35940
cctcactgca	gtgcatgcag	ggagttctgg	ccatcaggtt	atcttctatc	cgtctccttt	36000
cccaaagcat	gctgggaaat	gtggggatgt	ctccttagaa	caacaaaata	gttgcaacct	36060
ttgaagttta	ggagaagact	agaaggttag	tgttcagtgt	gtgatctgga	agcttgcatt	36120
tgtaagaatt	aaagaaagag	gaggccaggc	acggtggctc	atgcctgtaa	tcctagcact	36180

ttgggaggcc	aaggtgggca	gatcacctga	ggttgggagt	ttgagaccag	cctgaacaac	36240
atggagaaac	cctgtctcta	ctaaaaatac	aaaattagcc	gggtgtggtg	gtgcatgcct	36300
gtaatcccag	ctacttggga	ggctgaggca	ggagaatccc	ttgaactagg	aggtggaggt	36360
tgtggtgagc	tgagattgtg	tcattgcact	ccagcctggg	caacaagagt	gaaactccat	36420
ctcaaaaaaa	gaaaagaaaa	gaaaagaaaa	aggaaaagga	aagaaacatg	aaatgtggct	36480
tgacggtgaa	ggacaggttt	attttagaga	aaaccaacct	gaggggggct	tttggctgag	36540
ttaggttaga	gagccctttt	tttttttt.	ttttacagac	taaggatatt	taagagtttt	36600
ggaagggggt	gcttatctag	gttcggaatg	ttttcatgtg	aggaaaagtt	tattgtgggg	36660
ttggaaagtc	tctggtcgga	agggaggcta	tctgggggtt	ggcatgtttc	tggtcagaga	36720
ggggtttatc	ttagggttgg	aatgtttctg	gttatgctga	tggtagccat	taggctgatg	36780
ttttggggct	ggatttagct	gattttttt	tgagacagag	tcttgctctg	tcacccaggc	36840
tggagtgcag	tggtgcaatc	tcggctcact	gcaagctcca	cctcccggat	tgacgccatt	36900
ctcctgcctc	agcctcccga	atagctggga	ctacaggcac	ccgccaccac	gtccggattt	36960
agccgatttt	taatcaagag	gaactaagaa	t			36991

<210> 9 <211> 1193 <212> DNA

<213> Homo sapiens

<400> 9

accatgggcc gggcccggcg cttccagtgg ccgctgctgc tgctgtgggc ggccgcggcg 60 120 gctgagatca cctgccgtct gcaccagtat gatgggtcca tagttgtcat ccagaaccca 180 gcccggcaga ccctcttctt caatggcacc cgtgccttga aggatgagcg tttccagctt 240 gaggagttct ccccacgccg ggtgcggatc cggctctcag atgcccgcct ggaggacgag 300 360 gggggctatt tctgccagct ctacacagaa gacacccacc accagattgc cacgctcacg 420 gtactagtgg ccccagagaa tcctgtggtg gaggtccggg agcaggcggt agagggcggc gaggtggagc tcagctgcct cgttccgcgg tcccgtccgg ctgccaccct gcgctggtac 480 cgggaccgca aggagctgaa aggagtgagc agcagccagg aaaatggcaa ggtctggagc 540 gtggcaagca cagtacggtt tcgtgtggac cgtaaggacg acggtggtat catcatctgt 600 gaggegeaga accaggeget geeeteegga cacageaage agaegeagta egtgetggat 660

gtgcagtact cccccacggc ccggattcat gcctcccaag ctgtggtgag ggagggagac	720
acgctggtgt tgacgtgtgc tgtcacgggg aaccccaggc caaaccagat ccgctggaac	780
cgcgggaatg agtctttgcc ggagagggcg gaggccgtgg gagagacgct cacgctgccg	840
ggtctggtat ccgcggataa cggcacctac acttgcgagg cgtccaataa gcacggccat	900
gcgagggcgc tctacgtact tgtggtctac gaccctggtg cggtggtaga ggctcagacg	960
teggtteect atgecattgt gggeggeate etggegetge tggtgtttet gateatatgt	1020
gtgctagtgg gcatggtctg gtgctcggta cggcagaagg gttcctatct gacccacgaa	1080
gccagtggct tggatgaaca gggagaagca agagaagcct tcctcaatgg cagcgacgga	1140
cacaagagga aagaggaatt cttcatctga ccctatcccc accccaggcc tag	1193
<210> 10 <211> 1064 <212> DNA <213> Homo sapiens <400> 10	
accatgggcc gggcccggcg cttccagtgg ccgctgctgc tgctgtgggc ggccgcggcg	60
gtgccagggg caggacagga agtacagaca gagaacgtga cagtggctga gggtggggtg	120
gctgagatca cctgccgtct gcaccagtat gatgggtcca tagttgtcat ccagaaccca	180
gcccggcaga ccctcttctt caatggcacc cgtgccttga aggatgagcg tttccagctt	240
gaggagttet ecceaegeeg ggtgeggate eggeteteag atgeeegeet ggaggaegag	300
gggggctatt tetgecaget etacacagaa gacacccacc accagattge cacgetcacg	360
gtactagtgg ccccagagaa tcctgtggtg gaggtccggg agcaggcggt agagggcggc	420
gaggtggagc tcagctgccc cgttccgcgg tcccgtccgg ctgccaccct gcgctggtac	480
cgggaccgca aggagctgaa aggagtgagc agcagccagg aaaatggcaa ggtctggagc	540
gtggcaagca cagtacggtt tcgtgtggac cgtaaggacg acggtggtat catcatctgt	600
gaggcacaga accaggcgct gccctccgga cacagcaagc agacgcagta cgtgctggat	660
gtgcagtact cccccacggc ccggattcat gcctcccaag ctgtggtgag ggagggagac	720
acgctggtgt tgacgtgtgc tgtcacgggg aaccccaggc caaaccagat ccgctggaac	780
cgcgggaatg agtctttgcc ggagagggcg gaggccgtgg gagagacgct cacgctgccg	840
ggtctggtat ccgcggataa cggcacctac acttgcgagg cgtccaataa gcacggccat	900
gcgagggcgc tctacgtact tgtggtctac ggttcctatc tgacccacga agccagtggc	960

ttaastassa	200000000	2202022000	ttaataasta	aceacaeaa	20202200	1020
ttggatgaac	agggagaagc	aayayaaycc	cccccaacy	gcagcgacgg	acacaayayy	
aaagaggaat	tcttcatctg	accctatccc	caccccaggc	ctag		1064
<210> 11 <211> 118: <212> DNA <213> Home	951 o sapiens				·	
<400> 11						
aagcttgttc	agaggagtga	aaatctgctt	acatcttgac	cttgattttg	gacttctggg	60
ttccaaaact	ttgacagaat	aaatctctgt	aatttctgag	gcacccagtt	tggggaaatt	120
tgttatggca	tctctagaaa	attcatgatg	ctaactaagc	tgacaactgc	atttgtacct	180
gctctatcca	ccttctcttc	agttacagta	ctaagggttg	agtctacagc	caggttgtga	240
acccaacaat	aggacactgt	ggttaatggt	gcaagtctca	agctagattg	actgggtatc	300
aatgctgtct	ccaccactta	ctatgtgatg	ttggttactc	agagtaccat	tctatgcctc	360
agtttcctta	tctcaaaaaa	acaggataac	aataaaaagt	acctctgtag	gagaggctgt	420
gtaggaatta	aatggaatca	tgccctcaga	acagttactg	aataagaggg	gaacaacttt	480
cattactact	attatcatta	tctctgactg	cctcctcaaa	tactaaacta	tctattgatt	540
actcctctct	cttgttcctt	caatgtttgt	ctttatgaga	taacttccat	gagcatttaa	600
acattcacta	ccattccctg	tcaaacaaac	cactccctaa	accacacact	tctccctcca	660
gctcccatcc	catccactaa	ctccatttca	caacaaatgt	tttaattgta	tacactcctt	720
gcttctcctt	cctcacttct	cactcacttg	ggaactcact	aatgtccact	tctgtcactc	780
cactgaagct	tcccttgaca	acccatgtat	taccaaatcc	taaaggaaac	gtcggccctt	840
atcagcaaca	tttgacacta	tggctcgtgc	accettttt	aaaagcatct	gttcattgat	900
tctggcccca	gccctcctag	ttttcttcct	gcctatctgg	ccagtctcat	ttgctcgctt	960
ctacctcctc	tgatgattcc	ttaaatgatg	ggttcctcag	ggcttcttct	tagccattct	1020
tcttttctta	tttaccttc	tatgagatat	tgaccactcc	caagacatca	atttactcac	1080
aacagactga	tcattcctaa	cttgtatttc	tgacctagat	ttctcttcac	agttccaggc	1140
tcatatatct	agctgcccat	tagacatatc	tactggtaca	tatttgacac	ctcaaattca	1200
acatgtctaa	agtggaaata	ctcatcttcc	ctggcctttt	tgagaatcta	cttccactac	1260
ctatcccctt	tctcattaaa	aggcacttcc	attcactcat	ttgctcaagc	cagaaagccg	1320
ggaatcatco	tgggctctcc	ttttcccttt	gcctcttaca	gctgatttcc	actgagtctt	1380

attcatttga	tatattaaat	gaccctcagt .	tttatcctct	tctctctt	tctctccact	1440
tctctaatac	aagccaacac	catatcacat	ataccctcaa	actgtctcca	acctagcttc	1500
ccttcagtct	ttctccaaat	tcttctggaa	taatcttttc	aaactgtatt	ccaaactata	1560
aatctaagcc	tggtcaccac	acacacacac	acacacacac	acacacacac	acacacac	1620
gcacgcactc	ttcaaatctg	tcattggctg	gtattttctc	ttaggataaa	atcctaactc	1680
cttaagaagg	tttatcagtt	cctccacaat	ctggctctcg	gcattagatg	tcagtctcac	1740
agactgcctg	gagtgctttt	tttctctcct	tccttcacag	cttaatgcca	cttcttccag	1800
gaagccctga	tgatcctcca	gcttccagat	gttccatggt	gttctctgta	cttcccctaa	1860
gagtgaaccc	tccataatgt	gttgggatga	cctaatcaat	gtctgtcttc	cacactccag	1920
agcaagcagt	ttaagaccca	gaaccatgcc	tgtcttattc	ccaatgcatc	tccagtgcct	1980
ctcaaagttc	cggacccaca	gcaggcactt	cataaagact	ggatgagtag	atgaactaat	2040
gctattttcc	ttggggaatg	attcggtaca	ctttatactg	tgtttctcta	aattctgtgt	2100
gtatcatgac	tgaatttgtg	catatatata	tgtatatgta	tacatatgtg	tgtgtataca	2160
tatataatga	tcataattaa	gagtttttga	attacaggag	aagtaattag	aataatttat	2220
ctctgaactt	tgtcatacag	tacatttgaa	ggaaagaaat	tatttaatga	aaatctagaa	2280
attgggagca	gtttagtagc	gtgatgcaag	gatcttagag	gaaaagtttt	aaaggacact	2340
atactcaggt	taagacaaga	ctatttaaaa	aaataatttg	tagcagatta	gattccttag	2400
agatcagctt	ggaaactatg	aagacatatt	catttcagtt	ggagaaccta	gaggagaata	2460
acttgggata	gaaagtgggc	ggacaacaaa	atccaaattt	taggagactg	ttcaataata	2520
ctgctcaatc	tacacagttg	gatcatctgt	actttaaaca	cctttaacag	ataatctatt	2580
tcttattaat	ggtatttcag	ataaaagtct	gaaattttat	ttctcttctt	gaatatatag	2640
atcatggatg	agatttacag	acaacacatg	catttaaaca	ggcaagacgt	ggtatttcac	2700
caaaagacca	aaatcaagtc	gggaaagaac	gtattttaat	gttcctgctt	tgaccccaaa	2760
atacagaaaa	taaaatagta	tctgaaaaac	atgaaactca	aacttcatgg	gggcaaatgc	2820
tgtgtgtgca	aaatcactga	cttgccaggc	gtggtggctc	acgcctgtaa	tcccagcact	2880
ttgggaggct	gagtcaggtg	gatcaactga	agtcaggagt	tcaagaccat	cctggccaac	2940
atggtgaaac	tccatctcta	ctagaaatac	caaaaaaaaa	aaaaaaaaa	agaaaatagc	3000
tgggagtggt	ggcgggtacc	tgtaatccca	gctactcagg	aggctgaggc	aggataatca	3060

cttgaacccg	ggaggcggag	gttgtagtca	gtggagattg	cagtgagcgg	agattgcgcc	3120
atcgtactcc	agcctggaca	acaagaacaa	aactctgtct	caaagaaaaa	aaaatgactt	3180
taccaagaaa	aaagatattt	tatttagagt	ttgcattgga	aaagctggct	ggtgacattg	3240
tgcaagcctc	ccagcaggtg	gcgccctgaa	ccaatgaatg	tgaaaaagaa	cggactcaga	3300
cacacccaca	tttcaagaat	taaaatcatc	tcttttgcga	tatatatatt	ctgaccatac	3360
attcagtaga	ttgtggaatc	catataccct	tgccctctgt	acaacacaca	tatacacatg	3420
cgtgtggaca	cattcctcca	ccagagaata	gagtaacacc	ctgtattatg	acggcaaaca	3480
ttggcgagct	ggacatacaa	attaaataga	cacctattaa	tatatgtatg	tgaattgcat	3540
ctgtttataa	gaggcagtcc	agtacctcca	aatgggtcct	taacaccgcc	tagtaaatat	3600
tctgcatttc	tctgctatat	tattatcatc	ctctcactct	ccacagtaac	taatccaaat	3660
ttctctgttg	ttttcaaaca	tccaacacct	tetetttte	tcagttattc	tctgttcaag	3720
acatggctac	ttactttaaa	agaagaagga	tagccactgt	catcagatgg	aatttcctca	3780
tcttccagat	atcaacatgc	aaatcttcat	ctaaacatct	accttctttc	cttccaaggg	3840
tcacggagga	gctggccctc	cagctaccca	ctgctaatgc	cttctctggc	actctgatcc	3900
cctatcacat	tcccaaaaac	cttggcttct	atttatgtac	ttgctcttgt	tctctctc	3960
tctctctctt	tetetetete	ttaatgattt	ccttcccaat	agctttcaca	gaaactcaag	4020
tatctcccac	taaaaaaaca	attaagatgt	gtggaactac	agatacaagt	ttggtcacga	4080
gttgatcact	gttgaaactg	agtggtgggt	aaatgaggat	tcataatgct	attctctctc	4140
attttattta	tgttggagag	ttaccataac	gaaaagtttt	aaagtaaggg	aaaaaaagat	4200
atttttgttt	gactcctcat	agcttcctca	ccaccctctc	ttcatgtctt	catgcccaca	4260
cttctaaaag	ttgcctatat	gcattctttg	tttccttacc	tcccactccc	tctgcaactc	4320
cctccatctg	ctttttttac	ctaacactcc	agagaaatta	aaacagctat	cacccttgac	4380
ttccatgtca	cataatctag	tggatacatt	ttagttatca	tcactactga	cttctcagca	4440
gcataggata	ctcaaacaag	tttcttctta	tatacttctt	tecetggget	tcagaaatta	4500
taatattctg	ctttttcttc	tacctctccc	cactacttct	ccgactcctc	ttactctgtt	4560
attaaatgct	gaagttcctc	ttagctcatt	cttaggccct	ttctcttctc	accctgtact	4620
ttttcctatg	tgatcttatt	catactcttg	gcattaaatt	ccaccaacat	gcatatgact	4680
tccaaaatta	aatcagcagt	tcagacctga	cctgactctc	accttcatac	gtgtgtgaca	4740
tetectetae	tatatctcaa	aagcacctca	aaattagaag	ctccaaactg	aactcaccat	4800

tttctcccc	aaacttggcc	ttcttcaagt	gtttctgatc	ttagcgaatg	gtgtgcaaac	4860
cagaaatctt	agagcctttc	ttgtcaactc	tttccccttt	gtaccatttc	taatccatca	4920
acaaatcctg	catgttttag	ctcataaata	cttctaaaac	cctttttctt	ctatatctac	4980
cattaccacc	accagcacca	ttatcacccc	cttaatcctg	gctaatattg	cttttcacaa	5040
caacctctgg	tggtaacttc	taatttagct	caagcatcta	tcctggcagc	cttccactct	5100
gtcctctgag	cagcagctgg	agtaatcttt	ccaaaatgca	aatccaatca	tgttattctt	5160
tggcttaaaa	tctttcagtg	gttttccatt	gtttttagga	taaggagaga	aaaagcttac	5220
agggaataca	aggccctttg	gggccttgtc	tctccaattt	cacttcatgc	ggccttctcc	5280
ctcactctct	attgtgaaac	caaactcgct	ttacagtcct	tcatccggcc	gagtgcggtg	5340
gctcacacct	gtaatcccat	cactttggga	ggcggaggcg	ggtggattac	ctgaggtcag	5400
gagttcaaga	ccagcctgga	caacagggtg	aaacccggtc	tctactaaaa	atacaaaaat	5460
tagctgggca	tggtggcaga	tgcctgtaat	cccagttact	cgggaggctg	aggcaggaga	5520
atcacttgag	cccgagaggc	ggaggttgca	gtgagctgag	atcgcgacat	tgcactccag	5580
cctgggaaac	ggggcaagac	tctgttgaaa	aaaagaaaga	aagaaaaaaa	gcccttcatg	5640
cacggcattc	tecetecete	tacaaaagct	tcatttatgc	tgtctcttta	tagaaagccc	5700
tttccttcat	tctttgccta	gttatttcct	tatctttcag	attcaagtca	agagacactt	5760
cctgggggaa	gctgtccttg	atcttcctga	agaggtcaac	tctcccagcc	acagaacttc	5820
tttgctccat	ggatctctcc	ttcatttacc	attgcagctt	tacatgtttt	tctgtgatca	5880
cetetgtete	atttgttcat	cattgtacct	cgctcagttc	ttagcacaca	gcaggtacta	5940
taagcatttg	ttgagtgagt	aaatgaatta	atgattatta	ttcattcaac	tctgtcagtt	6000
ttccctctat	ttaacctgtc	tctagattac	tttcaccttc	atctctgagt	ggataatcag	6060
ggactacccc	tcatttttaa	tattaatata	gttctgtgct	tttataattt	atgcatgcca	6120
ggatcccata	tgtggggcat	gccaggcatc	acttttactc	taatatttgg	agccagatta	6180
ttatttttgt	attttaaaaa	tgcagacata	atgaaataga	accctaaatc	tagaatgtag	6240
cataaagtct	acgacttcag	agaaatgctg	tgcttagtac	aggccacttg	aggcccggct	6300
tcctgaacct	ggaagtaagc	catcactctc	ctcagccatt	agagacatgc	ttaagcacaa	6360
accttaaaaa	gcaccgttag	aagtttatac	ataatagaaa	attttttaa	gtttcatgct	6420
ccctcaaaat	aatataactt	gttctaagca	gtcggatatt	ttggatggta	ccatttcctt	6480

atttaaaagt	ggtctataga	tgtagcaaag	gaagacaagt	tatcagcaat	tgttagtgat	6540
tgccagaaga	tgctcccttc	agattcagga	ctgagctggg	tccacagcaa	ggaattcacc	6600
cagaaaaaga	tttgtcctgg	aatacaacag	ccaagccctc	gtctcctgtc	tcttcccagc	6660
tccccaggca	tttgttttta	gtctaattcc	atctctgtag	acaccaacct	gccttctcaa	6720
aatagacaca	ctcgccctca	tcccaggctt	taaagcccgg	cattgcccca	cgcagagaag	6780
tcctaacacg	accctttcca	cggggactag	aatctgagga	ttgttgtagg	acttctctgc	6840
tcgtagccct	agagaaaaat	ctaggccttt	tacagtgatc	actatgggca	gaacgtactc	6900
ttggagggta	actactattt	aaaatacatt	atgcatgtct	tgacttccac	taggactccg	6960
cttgaagaag	aagatggtta	gaaacatggg	ccacagataa	aatctctcaa	gtcctcacgc	7020
acagcctcca	agaaactagc	ttgatccata	caatctgaag	gtttagaaag	aataactaca	7080
aacaaggagg	ttagcatttg	tgtttgcacc	tcctatgtat	ctacctcgac	aattttacag	7140
cttaccctat	ttaattctag	gtattagtta	gatcatttac	tagatgagaa	aatcaaggga	7200
cttagactta	gtgcatgtct	acattcatac	aagtaaatag	cgagacctca	gattcagact	7260
cagatctgtg	tcattaccat	gaagttgctg	cttctactat	gctcatggtt	atcaacttcc	7320
cttatcataa	tacgccattt	ctcaccattc	attctctcaa	aagaatcatc	actgaacaat	7380
attaccacca	tggaagcaaa	gagatccaac	taacttccaa	ggagcacata	gttcaaagat	7440
attctattcc	attataattt	atagcaagta	ctaaggacat	aaacactgca	atcatgtttt	7500
ctgggataag	gtctatttgc	tacagcttta	catataagca	aaatgaacat	ttttaccatt	7560
aggtaataac	tattgtaatg	acaataaata	aaaataacta	gtttaaaaat	aagtgatctc	7620
ggccaggtaa	gctctccaga	gatgataaat	cacttttgta	ggtggactgt	tacaaaaccc	7680
tccacctctg	gtggtacagc	actacggctt	gggaatcacc	gtgccacagc	ttgctgcttc	7740
taaaggcttt	gggcccagga	gacctctaaa	cctgcctaca	tatctgactc	tattctctac	7800
ctgtctattc	tatctctgtc	tgttctctac	caacagataa	aatttgcctt	ttaacataga	7860
aaccagaacc	tccactcaaa	ctcatcagtg	gtgctcacta	acatttagaa	aagcctcacc	7920
tccaagcctt	atgtcagtga	ttgccagtgg	cactagaatt	gcccctcaga	agtggtttga	7980
aaatttgatg	gaatagtttt	tgttgttata	atgattgggg	gccacggtta	gctgtagaga	8040
ggaagagcat	gctggactta	agagtcccag	aatgtgtaag	ggcatctctc	acaaagagga	8100
attgacccat	gatgtatact	cctgaatgac	ctattaaaac	ctacgtgctg	gggctgggcg	8160
tggtggctca	cacctgtaat	cccagcactt	tgggaggctg	aggcgggtgg	atcacttgat	8220

ctaaggagtt	caagaccagc	ctggccaaca	tggtgaaacc	ccatctctac	taaaaataca	8280
aaaattagcc	gggcatgttg	gtgcgcgtct	gtactcccag	ctactcagga	ggctgaggca	8340
ggagaatggc	ttgaacccag	gaggtggagg	ttgcagtgag	ctgagatcat	gccactgcac	8400
tccagcctgg	gtgacagagc	gagactccat	ctcaaacaaa	cgaacaaaaa	taaaacctat	8460
gtgttggtat	ctgagcttag	agtctaactt	gtttttatat	gttagagagt	tttctgcatg	8520
atttaaaact	tcctaaattt	tccaggaatg	caaagtactg	cgcattttgc	aagaagactt	8580
actttgcttt	gatcaaaaat	gtatccaaaa	gtgttcacca	gtctggaaaa	ccaggacgct	8640
gctggtgaac	gacatccctc	atgagattta	agtcagcagt	gcagcatgcc	tgcactggtc	8700
tgcatatgta	gctgttgcgt	tcagggtggg	tcttcatata	ggtgcaaggg	tgctggtatg	8760
gcatttatgt	actaaaatgt	atactattta	ttataagttt	atttctttt	attcctctct	8820
tacattacaa	ttagggtatt	atattgatta	gttttcatta	tgggcatggg	aaagttatgt	8880
tatctatgaa	tttcattgca	ggttagtaga	gaagaattga	agaaataatg	gacctaacaa	8940
ggcagagttg	gatgtcatag	ggttgagaac	attgtcctag	atggtgtgcc	ctgtatcaaa	9000
ctctaatccc	aactcttccc	atcactccct	cccactccac	cacactgacc	tgtcagcttt	9060
ccaatcaggc	tggtgcccac	atcagagtct	ctgctcttgc	tgtttctctg	tttgaaatgc	9120
ccatccccta	aatctcattg	ccctcacttc	actcaggtct	tcactcaaaa	gccacctcct	9180
ctgagaggtc	ttccacaacc	atcattcatc	acatcactct	ccatccccaa	gcatccttta	9240
aattcctcca	tagtacatat	cactacctaa	aatgctatta	gctattataa	tatttattta	9300
cctgtctgtc	atttgtcttc	atcatgggaa	tatgtattcc	atgaagaagg	tggaatctac	9360
tattttggtg	cctggaataa	tgggaagtgg	catgaagtgg	gtgcttgatg	aatatttgtt	9420
aaataagtga	attaatgcct	gaagatactg	tctgtgctcc	tgctccctgg	aagctaggag	9480
taatctcttt	ctctttccta	tctatataat	ttatagtcaa	ttgaagtcag	cattaattct	9540
ttcaaatata	tccatcaaat	gcctaccata	tttcaggcac	tgagaataca	ataataaata	9600
acacatatcc	tgcccgcata	cttttcaatt	aatgatcagc	tccagcatct	ctgaagtatt	9660
tgagtcctac	agtgaagtga	cttcataaaa	aacacaccca	tttctatttt	acattctgag	9720
tatctttaaa	atacagtaat	tatgatattc	ataaattagg	agatatccct	tatgtattca	9780
gaagaaaatt	gttatcacac	acagaagaat	ttttactcat	gtggaaaatc	ttttccccag	9840
tcctggtgat	atccttcaag	tctccaaaac	accacccctc	aggatgaaga	gagttgaagg	9900

ctaggcaata	gttaaataag	cagaagcttc	tagttccctt	gagtggggta	gccaggagga	9960
ccctctacct	acttggctga	gataaagtct	cctatctaag	gcacagaggg	accacatgct	10020
ctctgaagga	tcctgccagc	tagaaaactc	caatcagacc	tcttagggta	gcacagggtg	10080
gcatctgccc	ctgctgatga	cacacagcca	ccctggatgt	tccaggcagg	ggctgagcat	10140
tcagaccctt	tcctttccct	attttgtgtc	caggtaccct	ccccgtatgc	ttaggagaaa	10200
gacaaaagca	acttgaaaac	taacatagcc	tctatatttg	cacagtgctg	tacaacaaac	10260
ttttcatcca	ttttttacac	ttgtaggaaa	gacaatatac	tetttttt	aatacataag	10320
caaattaaag	tgcagatgtt	cggcaacttg	gcaaagctgc	ttcttatacc	gaggtcttct	10380
gattccaaga	tagggaatag	aaatgacaag	acaaaatcag	gcttggggaa	ttatctgtgg	10440
attttaattc	tcacaggtat	agagcttcac	ataaagagct	ggctctatca	aattctgatc	10500
aaacatttaa	acaaatccca	acacactgtc	tatttgggca	cacatacccg	ccctgtttcc	10560
acctcatccc	cagccctcac	aattccatga	agtctgatca	ttatttccag	aaagactcta	10620
gaaatgagca	aaccatcgag	tgggcccttg	ccccgaattt	taacagtgat	atagaaataa	10680
tatccttacc	ttctcggaat	tctcatggtt	aagcacctcc	attaccatgc	tatgatggag	10740
ggagaatcag	gaagatgtat	gcagtattct	agactatggt	ggaaaaatgt	gacatacccc	10800
tttcctgaac	tcccttcccc	ttccccttcc	cccaccacta	ccacacacta	atgtttcctt	10860
tcaggcgagg	gcttaaagca	aaaatatcta	ggataggctg	agttaacaat	aaacaaaagg	10920
ctccaggaaa	gaatgcccag	gaacttctgg	tccacaccat	gtcctccaaa	gggcatatct	10980
atgggaccag	tgggagagag	ataacatctg	aattggcctt	ccaccaaggt	aacccagaaa	11040
tgtaaagcta	tgttagctct	tactagaaga	attttaagtc	tttaaagtac	catactactt	11100
caagagaatt	tcaaaagttt	ccatttgcta	taaacatgca	cacatggaag	cagcaaacat	11160
caatctccct	ccagggtcct	cctatctaca	ctgtcaattc	cccttacctt	ttggcatggc	11220
tgctttaaac	tcctctgtgg	actttcccgc	ctccccacc	tcagcttcct	tagagtgcaa	11280
gtgcacagct	gtgtcctctg	gtcgcccgtc	cagagtcccg	catgggagag	atgctgagtc	11340
tececageag	tcctgggaca	cgtatcttct	caggtttcct	gggttcacct	gaggtggagg	11400
teggtteetg	gcaggggcag	ctccctctag	ctaataagct	agaggtagca	atatgcaagg	11460
gagagagcca	gaccagccca	aaatagaaat	ccaagctaca	tcacacaatc	tgaccaagct	11520
cccaatctgg	ctaaatgtgg	cccattagac	aagacaagga	gacagcaaaa	atgaacgcgg	11580
gaggagagag	gtggtgagaa	catggctttt	tgaaaatcag	gaattatgga	aataacattc	11640

agatacaaca	cttgaagtct	gtcctacaaa	cagaaagggg	tacaaacttt	tcacagtaaa	11700
tagcatttaa	gtataaaacc	ttcgagtttc	tggggacaag	ctcatccagc	ttgctgctgg	11760
taattagtgt	gttgctctgt	ggtttattcc	actgagacaa	agagcaatga	ttacatttca	11820
cctgacagat	cagaaagtga	gtgatgagct	tgagcgcaaa	aagcctcagg	aatgaaaaag	11880
tgtagctgac	agacagtgca	agaaactacc	ctctgcatga	ccgtgtcagg	cagagacatc	11940
ctgacatcca	ccaaatgata	accctggtca	aggaaggtgt	tacctcagag	gacagttgga	12000
cattttctca	ttggcatatg	ggacaatctg	cctttttgtg	gtctcagagg	tcaaaggagg	12060
gaatcagagt	ggttccaaaa	cctgtgactt	tccgtcttgg	tcactatgtg	ccaattatct	12120
aactgtgaag	taaaggattc	aaatgctatg	tcagtcgggc	tgaacagaga	gaagcagcag	12180
acatctgagc	ctctactaga	caatgaaaat	ctgtaagaga	ggaatacaga	aagaatgaag	12240
agggagggga	cacaaaaaga	gagaaggtcc	aggattctca	aggaaaaggg	tttcctttct	12300
ctcccctata	gcctccaggg	aggagtaaat	ataattatca	acctagcatg	acagtagtca	12360
aaataaaaga	ggcacctgcc	aggtgaccat	ctctgccggg	actcgaaccc	ggaacctctg	12420
gattagaagt	ccagcgcgct	cgtccattgc	gccacagaga	cctcaccaca	cacacagcat	12480
cagcaccaga	actgaaaaag	cacatacctt	ctgcatcacc	gagccatctc	agcatċctgc	12540
tctctgagcg	araaaaaaa	acagggacag	ctggaaaatc	tggagtggag	atccaccagc	12600
cggcttcatc	aaagcttttc	tcaatactct	gggtccgatg	gtccccagag	gattggggga	12660
atgtgacagc	agtcaatttc	ccagactcag	aatccctgat	ggaacaggac	agaactagag	12720
cctttgctct	cctttcctct	ccatccctta	gggatgatac	gaaaatctct	cgattctcat	12780
gctaattaag	cagagtgcac	ccaaccctgc	agaaaacgca	gaagccatct	ctacctccac	12840
ccccactccc	tcactgtggt	ttcatcccag	tccagctatt	ctcagacagg	ggctgggcaa	12900
cgcttgggga	ttcaggaaaa	ccctcgatcc	cagagacaaa	ggagctgctt	ccgtaaagga	12960
acactgtgaa	caacggcagc	agagaatggc	agctgagttc	taagagactg	gtctggttct	13020
cagcaataag	aactgtatct	gtcaagccca	ggcaagaggt	acagggagtc	tgatgtgatg	13080
ttccttcagc	atcttcacta	gaattaagca	tgggagtgaa	gaaaaaacag	tgttcagtgt	13140
gtgtgttcag	tgtgtaagta	tgtgtgaacg	tatatgtgtg	agagagtgtg	tgtatgagag	13200
atagagggag	gaagagtggg	tgtgtacaca	tagggttgga	gggtgagagt	ggcagatctc	13260
tgatgaagta	gatgtcctca	cacagecete	ctgtatctct	ttcccccacc	ttgctcagcc	13320

cggaatccct	gacagccttt	ttccccaggg	ctacctactt	tgaagaacaa	ggatttctca	13380
gctgtctgtg	ctttttacaa	ctatcctagt	acaatcaaag	tgaccaaccc	tccataacca	13440
tatataaaga	cctctatacc	cagctcagat	ccaagaaaat	gatttctatt	tttagaagcc	13500
tctcatagaa	gacaattcca	taatcaccgt	tgtttataat	ttccactgag	cccatttttc	13560
tgaatgtcta	atccaaatcc	ttcttacctc	actttcagct	cattttctcc	tatttggttc	13620
ccagacacat	gggaataatt	ggattctatg	ctcccgatga	caatgcattg	atttaaagac	13680
tgattgtgtt	caccacccca	ctcctcatca	aaaggttaca	ataaaagcag	ggagccaact	13740
cagatatccc	tecttetece	tcactgtgtg	tctccacagc	ccccagctct	ggacactgcc	13800
agccaactcc	aatcatacaa	gatagttatt	tctaacctgt	gaggccaggt	gatggccaag	13860
taaagaaaca	atatgactaa	atgaaacaat	tagattagaa	aacccttaag	ggctttccga	13920
ctctaagaat	acaattacaa	catctcccac	ttccctaccc	attcatatag	ccctaggaat	13980
gagacatggc	agagaacata	accaaggcaa	ttcagtcaga	tcaggaatat	aagcaaaagg	14040
ctctttctaa	cacaaggggg	aaagcagcta	ctccaaccag	gcttgccttc	catctacgac	14100
ctagagatgg	gagctcagaa	aaatgagact	gattgtgtct	attatagact	tgaaacaaga	14160
aggcacagaa	tagacctttc	tatccagaga	ctgtattact	ctgagtggct	agtaacaagg	14220
tgctgatgaa	. cgagttagtc	aaggggacta	tatggttgta	aagggcaggt	taacagcaca	14280
ggctagcaag	gaaccattcc	agtgtaaggg	aaaggaaaag	ctagactctc	aagatactta	14340
ctgccaggct	cagtgtgtac	acacacacac	acacacacac	acacacacac	acacacacac	14400
acacacacto	ctcttcataa	atatattgtc	ctatatccaa	gaaatctatc	agccccctga	14460
gtgacgtcca	aagtatcact	gcttcttata	agatcatgtg	ttgtctacaa	cctgaataaa	14520
gagtcccago	tctccaactc	cctccaggag	cttcattcat	tatctgtaat	gttcccactt	14580
gctgctggga	atacaatgat	ggagagatat	atcatggcat	ggttctactc	tcgagaatcc	14640
cataggcaaa	ttccaacgta	ggaatgaccc	tgaaacatgt	atgggagaaa	agaaggaatc	14700
aatctttta	ctcaccaaat	aaaataacaa	tttgcaagtc	cacacaaagg	ctataaccct	14760
gggagcagaa	agatccatct	tcataggaag	ttgtataact	tacttggttt	gagactctga	14820
gaaaattgct	taactctgat	cttccatttc	tttattataa	actaggggca	ctaacatatg	14880
ctactgataa	agatcagctg	agatttcatg	aggcagagtg	tttgtcccct	ttcttcctct	14940
attccatgag	, ttaattctca	actctattga	ctggattgct	tctttccctt	tgaataccct	15000
tccttcatct	tcctctcacc	actccacaga	catctcttca	ttccagcaaa	aatgcccccc	15060

accaacaagt	gtctccttat	acttataatg	tatatcaaca	aaagtactct	ggactttgtc	15120
tgaggacttt	tttcaaataa	gagatgtctc	tctgacatct	cattttgctt	tatcatccat	15180
aaaacagaca	aagcctcttg	atagtgtcga	taatgtcttt	aaactaggtt	ttaatttaaa	15240
ataagaagag	aaacaatcaa	ataaatctac	agttttaaag	ggcaggaagg	gtgaagtcaa	15300
gtcactcaaa	atgattgaag	ccagtacatc	tttttcttct	tttaaactgg	ctgtatgtca	15360
ttcatgttta	cgtaaactct	ctggaagaaa	agtacattca	ccttccaaaa	aaaaaatctg	15420
tattgattta	attctccaaa	gatctgtgac	tcaaacatta	ctcatacctc	taattgaata	15480
ccactttgtg	accctacaga	caaactagtg	atgctcatac	actatttcat	tcacaaggtg	15540
ttgctgggat	acatatgata	aatgcccttc	aaattttccc	tttggtccaa	ttaaatccta	15600
catcctactg	tggtcttact	tacagettet	ctaaaggttc	ctataccaac	tagtccgtat	15660
tttaaattct	aagggctatc	gcatggagta	agacagtgaa	tttgtcattc	agatagcaca	15720
gcccttacat	actatacttt	catctcccag	gccctatgat	gccgtaaacc	ttattaatcc	15780
acatctattg	tgagcacaac	ttctagaagt	gttaccatat	accatcttct	catgttccta	15840
cctgctatca	gctccctctt	actatctcac	ccctaaggag	ctagcccagg	tettteetee	15900
tgtgagtacc	tcccaggaag	gctggaaaag	gtgctttgca	atgtcaggcc	tatagagtga	15960
gacctactgt	gcagatgttc	aggtcataac	tectaceect	taaggaaggg	taaaatggac	16020
atacataccc	acaatgcaaa	agcccttcag	tccttttcca	gacacttcat	cttcaggagg	16080
tcttgcccca	tattcatttc	tccatgccta	ttatgcattt	tctgacccat	cataataaag	16140
catttatgtt	cccaagtcta	tettteetee	ctcctagcct	gtcagcctga	ctgcagattg	16200
ttectttete	ctcagtcccc	tttctcatac	ttgaagaggg	aagaaatgag	ataatccagg	16260
taacaattca	gcatgagaat	caagccaagg	aaagacaaat	acggagcaaa	ttatcctttc	16320
atcatcccat	ccaactttca	gaaaccattc	caagtctagc	ccagtcaaac	tgagctattg	16380
aggcctctca	agcctttcca	aaagtagacc	cagaaccaat	ctatcttaac	aatgggctgg	16440
acctccaggg	ctagtcaagg	tcacaagaaa	gtccatacag	aggtcaactc	cctaagggag	16500
tctgagaaat	gctgagaaat	ctggaggtag	aatctccctt	tccttattac	ctcccaccca	16560
cctctgacag	attctccagg	aagccattta	aagagttcta	gaggccaggc	atggtggctt	16620
atgcctgtaa	tcccagcact	ttgggaggcc	aagacaggca	gatcacgagg	tcaagagatc	16680
aaggccatcc	tggccaatat	ggtgaaaccc	catctctact	aaaaatataa	aaagtagctg	16740

ggcatggtgg	tgcgtgcctg	tagtcccagc	tactcgggag	gctgaggcag	gagaatcact	16800
tgaacctggg	aagtagaggt	tgcagtgaag	caagatcacg	ccactgcact	ccagcctggt	16860
gacagagtga	gacactgtcc	cctcaaaaaa	aaaaaaaag	aattctagag	agtgtgtctc	16920
taaggacatg	aagtatctct	ttggtcaaga	aggatgagga	aactagtagt	gttcaacaaa	16980
tgggagggca	gtaggttgtc	atgtcccatc	agatctttct	gggaagtttg	ggggaaaact	17040
ttctgcttca	cccaaaccca	agaaataaga	tgattcctgg	tgctaacttt	ctagctcact	17100
ctcccttatc	ctccttagaa	tcaggaccct	ctatcctgct	gtttctaacc	ccaagccatc	17160
acctgcttgt	gtagattccc	agtcctgtct	tcttacattt	tcttcttgcc	atccccatca	17220
atgtctcctt	cttccttggg	gtatataacc	cttagtcatt	tcctgcttta	aaatgttctt	17280
ctcacctctg	tccacgcctt	tgctcatttc	tgtccatttc	actttcccca	ctttctgcaa	17340
ctggcattcc	ctaatacttt	actgtgtaat	ctctataatg	cccaatttat	tggccaagtc	17400
attatctgtt	ctcatctgcc	ctaggatcca	tctacaccaa	acacattggc	caaactcatt	17460
gttcccagtc	ttccctagat	tcagcccact	gctcttctct	gtctctgccc	cccttagcca	17520
tcaacctcaa	ggcactctga	gcttcccagg	cctctaaatt	ccgctgtcgt	taaaatctac	17580
tgcttggact	tagagtcttt	gttattgtca	gcccttcatc	ctcaggcctt	ctttttcttt	17640
tcaccagatt	tcattcttca	gaccacttta	cttgcccacc	atccttttag	tctttatctc	17700
atctccttaa	atcttcaact	tgtagtaccc	atccttctaa	atctccttcc	atcccatcca	17760
tacagcacca	gattcctgag	gcttacctgg	aagaacttgc	tggtccttcc	ttcttcccta	17820
cattcatctc	cagacgttct	gggttctgcc	tgactctaca	acacacctat	atttgtttta	17880
cttctttgcc	tgggactgcg	tgtgccactg	gctttaaaac	tgggaggccc	tgaatagggc	17940
cctgctaatc	cccatggcac	tgagttgcca	tgggaatgga	ctggcaaccg	ggcttcttaa	18000
tctttagcca	ctatggggcc	cctgatcctt	aaagggccag	ataccctagg	ccagatgcca	18060
aagaattaga	aaagagatcc	ttaaagggtc	aaggattcta	tgattatagg	ccaagggatt	18120
caagaacatt	gctttttgcc	taatattata	agtaaattag	gcttttgcta	tttgtcccct	18180
acttcagccc	cacttcccat	tcagcctgga	aaaagccttg	agggttacat	agtgaggcag	18240
actcctcggc	aatggcaaga	gaagaaagġt	gttcatcttt	cacagtccat	cactttaatt	18300
aaaccaaaga	gcgtgaccat	gaaagtttca	atcctagaga	ctaaacttgt	ccttacacaa	18360
gaaccttacg	tctgacaaat	tacagaaggg	tctgtacatg	gtccttatac	agcagaagtg	18420
gctcttttca	agtctgtccc	tgaagaacat	caagtcccca	cacggaagac	agggtccagg	18480

ggaagcattt	taccttgagt	tggccagctc	atctccttca	tgttctcctc	ctttagaagg	18540
tagtagctga	atttccaagg	gcttctcatg	ctacctatga	ttctaagaaa	cagtatcaat	18600
gatagtaata	atgataataa	agatattttg	aattgtctca	ttttatcatc	agaactttcc	18660
tagattgttg	gaagagtgat	catcattatt	tttcttttac	aaaagaagaa	ccttaatcaa	18720
agacattagg	tggcttgccc	taagtacctc	agcttgtaag	aggtgggact	agggtgagct	18780
accatacagt	gtcctgactt	ctgtgacctc	tacagggagg	cctcaacaga	aggtgtctgc	18840
taagaggcac	cagctgcctt	cattacaatt	tgttccagga	aacaaaattc	tgagaccttt	18900
ccccaactt	tcttcccagt	ctttgcaacc	atcgaagagt	gccctaagca	taggacagga	18960
tggccagcca	gccctgagaa	gggccacaga	gtgaggtcaa	aggttgtcct	gcttaaaaga	19020
gaacaaacag	cacaggcagg	tgagtaagag	agctctctat	gggttcttct	ttagtgctca	19080
ttctcctccc	agctacctta	agacataaga	aactgatttc	cagattaaat	aaaacaactt	19140
gctcaagatc	agtcagcttg	gcattcacaa	atctggtcct	ccattccagg	ttttccaact	19200
cctaatttgg	tgctttttaa	aatttcacta	cagtgttact	gagtcactct	tcttaaattt	19260
ttatttttat	ttttttaatt	gacctataat	attgtatgtt	tttactatgc	acaacatggt	19320
actttgaagt	acatatacat	tgtggaatgg	ttaactctag	ctagccgtta	tggaaaacag	19380
tatgaaggtt	cttaagacat	ttaaaaatag	agctaccatg	ggatccggca	atcccactac	19440
tgggtatata	tccaaggaaa	taaaatcagt	atgttgagat	aattgcttgg	aatccccaac	19500
ataatctttt	ttttaaatta	ttatacttta	agttctggga	tacatgtcca	gaacatgcag	19560
gtttgttaca	taggtataca	tgtgccatgg	tggtttgctg	cacccatcaa	cccgtcatct	19620
accttaggta	tttctcctaa	tgctattcct	cccettgccc	cccacccccc	aacaggctcc	19680
agtgtgtgat	gttcctctcc	ctgtgcccat	atgtcctcat	tgttcaactc	ccacttatta	19740
gtgagaagat	gtggtgtttg	gttttctgtt	cctgtgttaa	tttgctgaga	atgatggttt	19800
ccagcttctt	ccatgtccct	gcaaaggact	tgaattcatt	cttttttata	gctgcacagt	19860
attccgtggt	gtatatgtgc	cacattttct	tcatacagtc	taacactgat	ggacatttga	19920
gttggttcca	agtcttcgct	attgtgaata	gtgctgcaat	aaacatatgt	gtgcatgtgt	19980
ctttatagta	gaatgattta	taatcttttg	ggtatatatc	cagtaatggg	attgctcggt	20040
caaatggtat	ttctaattct	agatacttga	ggaatcgcca	ccttgtcttc	cacaatggtt	20100
gaactaattt	acactcccac	caacagtgta	aaagtgttcc	tatttttcca	catcctctcc	20160

aacatctgtt	gtttcctgac	ttttaaattc	taactggcat	gagacggtat	ctcattgttg	20220
ttttgatttg	cacttctcta	acgaccagtg	atgatgagct	ttctttcata	tgtttgttgg	20280
ctgcataaat	ggcttctttt	gaaaagtgtc	tgtgcatata	cttcatccac	tttttgatga	20340
gcttgttttt	ttcttgtaaa	tttgtttaag	ttccctgtag	attctggata	ttagcccttt	20400
gtcagatgag	tagattgcaa	aaattttctc	ccattctgta	ggttgcctgt	tcactctgat	20460
ggtagtttct	tttgctgtgc	agaagctctt	gagtttaatt	agatcccatt	tgtcaattct	20520
ggcttttgtt	gccattgctt	ttggtgtttc	agtcatgaag	tctttgccca	tgcctatgtc	20580
ctgaatggta	ttgcctagat	tttcttctag	ggtttttatg	gttttgggtc	ttatgtttaa	20640
gtctttaatc	catcttgggt	taatttttgt	ataaggtgta	aggaaggggt	ccagtttcag	20700
ttttctgcat	atggctagcc	agttttccca	acatcatttg	ttgaataggg	aatcctttcc	20760
ccattgcttg	tttttgtcag	gtttgccaaa	gatcagatgg	ttgtagatgt	gtggcattat	20820
ttctgaggcc	tctgttctgt	tcctttggtc	tatgtatctg	ttttggtatc	agtaccatgc	20880
tgttttggtt	actgtagcct	tgtaatatag	tttgaagtca	ggtagcgtga	tgcctccagc	20940
tttgttcttt	ttgcttagga	ttgtcttggc	aatgcgggct	ctttttcggt	tccatgtgaa	21000
attaaagtag	ttctttctaa	atctgtgaag	aaagtcaatg	gtagcttgag	gggaatagca	21060
ttgaatctat	aaattacttc	aggcagtatg	gccattttca	cgatattgat	tcttcctatc	21120
catgagcaag	gaatgttttc	acatttgttt	gtgtcctctt	ttatttcgtt	gagcagtggt	21180
ttgtagttct	ccttgaagag	gtccttcatg	tcccttgtaa	gctggattcc	taggtatttt	21240
attctctttg	tagcaattgt	gaatgggagt	tcactcatga	tttggttctc	tgtttgtctg	21300
ttattggtgt	ataggaatgc	ttgtgatttt	tgcacattga	ttttgtatcc	tgagactttg	21360
ctgaagttgc	ttatcagctt	aagttttggg	gctgagacga	tggggttttc	taaatataca	21420
atcatgtcat	ctgcaaacag	agataatttg	acttcctctc	ttcctatttg	aatatgcttt	21480
atttctttct	cttgcctgat	ttccctggcc	agaatttcca	atactatgtt	gaataggagt	21540
ggtgagagag	agcacccttg	tcttgtgcca	gttttcaaag	ggaatgcttg	cagcttttgc	21600
ccactcagtg	tgatattggc	tgtgggtttg	tcataaatag	ctcttattat	tttgagatat	21660
gttccatcag	tacctagttt	attgagtgtt	tgtagcttga	agggatgttg	aattttatcg	21720
aaggccttgt	ctgcatctat	tcagataatc	atatggtttt	tgtcattggg	tctgtttatg	21780
tgatggatta	tgtttattga	tttgcatatg	ttgaatccat	ctcaaggatg	aagccgactt	21840
gatcgtggtg	aataaccttt	ttgaggtgct	gctggatttg	ctttgccatt	attttattga	21900

ggggaatccc	caacataatc	tttacacaaa	gagtgcaggg	aagggaagag	cagaatgctt	21960
tgcatttatt	cttaactggt	aaactagaaa	atcaaaagca	tcaaataacc	tcttattgga	22020
atcacagaat	gctcaaaatg	gaaaagggtt	ttaaaataat	caagtctctt	ttattcatgg	22080
atcagctgaa	tttttgtcac	atattcttat	tacttttata	aatttagaga	aaaactaatt	22140
tgaagatcaa	accgataatg	ctaagtgggt	gaatgtttgc	tctttatact	ctatatttct	22200
gtagtctgta	atttttgtca	agcctctcca	tctgtaatta	catagattaa	taaactcaga	22260
accacagaaa	ttaaatcatg	tatccaatat	cacaaaaata	gacaaacagt	tatgatccaa	22320
ttagaaaact	atagactttc	aagttgggat	acccagggtt	tgaatctcag	ctgtgtatga	22380
tgatggacac	ctaaaggcac	ctaaatgatc	tctgagattc	aaattactta	tctgatttta	22440
aaaatccata	gaagtggccg	ggcgcagtag	ctcacacttg	taatcccagc	actttgggag	22500
gccaaggcgg	gcagatcact	aggttaggag	ttcgagacca	gcctggccaa	tacagtgaaa	22560
ccccatctct	actaaaaata	caaaaaatta	gccaggtgtg	gtggtggacg	cctgtaatcc	22620
cagctacttg	ggaggctgag	gcaggagaat	cgcttgaacc	tgggaggcag	aggttgcagt	22680
gagccgagat	cgtgccactg	cactccagcc	caggtgacag	tgtgagattc	catctcaaaa	22740
aaaaaaaat	ttacagaagt	aataatatct	atcttgtaaa	gtcattataa	gaaataagtg	22800
tgataaagaa	agagaaaatc	tttagtagac	tagcaccgaa	cggtctttat	ttttaggaag	22860
aatagttaat	gctttggttc	tttccccttt	accccatcca	ttcctcaact	gactccactc	22920
tagcaactgt	taaatgtcct	cactaaagtc	actaatggct	tgttgctaat	tgtcaaattc	22980
aatagtttca	cttcacgttt	ctgcagcatt	ccacactagt	gaccccatct	tcacccttag	23040
aaatgctgac	tcctcttgct	tetggggcat	gccactctct	tctcattcac	ctcctatccc	23100
tcagtccctc	cttctcaatc	tctttcacca	gctcctcctc	ttccttctta	aatatcagtg	23160
ttccaaagag	tgacacttat	cagattgcaa	gccagaaggt	tagcagtact	tttatattat	23220
taaatagcag	agaaaagaga	tgatagaata	ggatatgaca	gaatagaaaa	gaaaatagcc	23280
gagggtatca	ccctctaaaa	aaaccatgta	ttgtttcatg	aaatctttgt	atcagctaca	23340
tatgaatgta	tatatatagg	tatatgagtt	gtggtcaaaa	acactgccat	acattgtacc	23400
ttggtgctct	tctttatatc	ttcttcctgg	gtgattgtaa	acggcatatg	taccatatgt	23460
actaccaget	atgagctgaa	aacccttaaa	tctctatctt	aaaatcagac	atatcacgtg	23520
aaatccagat	tgggatactc	agctgccttt	agattgccat	ccctatgtga	ctcacagtga	23580

tctcaactgc aaaatgtaca aataagaact tatatttccc cataaacctg ttcttcataa 23640 tccactagtt tattcatttt ttttttttt gagacggaat ctcgctctgt cacccaggct 23700 ggagtgcagt ggtgcagtct cagcccacta caacctctgc ctcctgggct aagcaattct 23760 totgootcag cotcoctagt agotgggatt acaggoacct gocaccatgo coagctaatt 23820 tttgtatttt agcagagaca gggtttcacc atgttggctg ggcaggtctc gaactcctga 23880 cctcaggtga tccgcccgcc tcggcctcca aaagtgctgg gattacaggg gtgagccaca 23940 acacceggee taatecacta gtttaattaa tggttaccat catecaccta etcatttatt 24000 aatttatttg ctccataaat ccataaatac ctactgtata ataagaaatg tgctgagtat 24060 tggagatata aagataatga tgatatgtct attctgaata aaaatcacag tcaaaaacag 24120 aaaaataaac aaagtcatga aacaaagttg cccaactcta gaaatcatat gtccagcatg 24180 ctacaaaaac aaaaatgggc aaatgaatcc agtctgagga gtctaagaac gttttctaga 24240 gctgcagacc taagctgagg ttcaaagtaa gaatagctgt aaacagagca aaagaagagg 24300 tgtgtgtgtg ttgggggagc caaggagata agacaggaaa gcatgagtaa aaatacagca 24420 aaaaccatct tgtctgtgta agaaactaca agaaatgaga gatattgctg aagttcaaaa 24480 tcccaggcag gaagtgacaa ggcatgtgga aacaaaaatc agaccatgca gatcgacata 24540 24600 tgtcatgtta aaggtcaact gtaatcctgt aggagatgca gaggcagtga agggttttaa gtaagggaga acgatgattt gatttgcatt ttagaaagat cactctggct gtagcagata 24660 atttcaagag tgcacagtga agaggctttt tcagtagtca aggtaagata taatggagat 24720 ctgaaccaca gtaatagaat tggctacata acagtaaatt gaaggaagat tgatttgata 24780 aaaacagttt tggggagaca aaactggcca tccagtctct taagccagaa atgtggagtg 24840 agtcaaggct cctctcccta aaactttatc ttccaaattt aatcagctac taaggtctat 24900 ccactctgtc tctttaatag ctctcaaatg tatgcctcac tttccattcc cactgctctt 24960 ggcttagttc agatagttta tcctctgtag ccaggactat ttgtttgttt atttatttat 25020 ttagttattt tgttttttt attagagttt aagttctagg gtacatgtgc acaatgtgca 25080 ggtttgttac ataggtatac atgtgccatg ttggtttgct gcacccatca actcatcatt 25140 tacgttaggt atttctccta atgctatccc tcccccagct ccccaccctc tgacaggcac 25200 cagtgtgtga tgttccctgc tctgtgtcca agtgttctta ttgttcaatt cccacctatg 25260 agtgagaaca tgcggtgttt ggttttctgt ccttgtgata gtttgctgag aatgatgatt 25320

tccagcttca ttcatgtccc tgcaaaggac atgaactcat cctttttatg gctgcatagt 25380 attccatggt atatatgtgc cacattttct taatccagtc tatcatcaat gcttatttgg 25440 gttggttcca agtctttgct attgtgaata acgccacaat aaacatacat gtgcatgtgt 25500 ctttatagta gcatgattta taatcetttg ggtatatacc agtaatggga ttgctgggtc 25560 aaatggtatt tetagtteta gateetegag gaategeeac aetgtettee acaatggtta 25620 aactaateta cacteteace aacagggtaa aagettteet aatteteeac ateeteteea 25680 gcatcttttq tttcctqact ttttaatgat cgccattctg actgatgtga gatggtatct 25740 cattgtggtt ttgatttgca tttctctgat gaccagcgat gatgaacatt ttttcatgtg 25800 tetgttgget gegtaaatgt ettettttga gaagtgtetg tteatateet ttgcccaett 25860 tttgaggggg ttatttttt cttgtaaatt tgtttgagtt ctttgtagat tctggatatt 25920 agccctttgt cagatgggta gactgcaaaa atttttctcc cattctgtag gttgcctgtt 25980 cactctgatg atagtttctt ttgctgtgca gaagctcttg agtttaatta gatcccattt 26040 gtctatttgg gcttttgttg ccattgcttt tggtgtttta gtcatgaagt ccctgcccat 26100 acctatgtcc tgaatggtat tgcctaggtt ttcttctagg gtttttatgg ttttaggtct 26160 tatgtttaag tettttaate eatettgaat taatttttgt aaaaggtgta aggaagggat 26220 ccagtttcag ctttctacac atggctagcc agttttccca ataccactta ttaaataggg 26280 aatcttttcc ccatttcttg tttttgtcag gtttgtcaaa gatcagatgg ttgtagatgc 26340 gtggtgttat ttctgaggcc tctgttctgt ttcattggtc tatatatctg atttggtacc 26400 agtaccatgc tgttttggtt actgtatctt tgtagtatag tttgaagtca ggtagcgtta 26460 tgcctccagc tttgttcttt tggcttagga ttgtcttggc aatgcgggct cttttttggt 26520 tccatatgaa ctttagtttt ctccaattct gtgaagaaag tcattggtag cttgatgggg 26580 atggcattga atctataaat tacttcaggc agtatggcca ttttcacgat attgattctt 26640 cctatccatg agcaaggaat gtttttacat ttgtttgtgt cctcttttat ttccttgagc 26700 agtgctttgc agttctcctt gaagaggtcc ttcacatccc ttgtaagttg gattcctagg 26760 tattttattc tctttgaagc aattgtgaat gggagttcac tcatgttttg gctctctgtc 26820 tgttattggt ggagaatagg aatgettatg atttttgcac attgattttg tatcetgaga 26880 ctttgctgaa gttgcttatc agcttaagag ttttggggct gagaagatgg ggttttctaa 26940 gtatacaatc ttgtcatctg caaacaggga caatttgact tcctcttttc ctaattgaat 27000

accetttatt	teetteteet	gcctgattgc	cctggccaga	acttccaata	caatgttgaa	27060
taggagtgat	gagagagggc	atccttgtct	ggtgccagtt	ttataaggga	atgcttccag	27120
tttttgccca	ttcagtatga	tattggctgt	gggtttgtca	taaatagctc	ttattatttt	27180
gagatacctt	ccatcaatac	ctagtttatt	gagagttttt	agcttgaagg	ggtgttgaat	27240
tttgtcaaag	gccttctctg	catctattga	gataatcatg	tggtttttgt	cgttggatct	27300
gttcatgtga	tggattacgt	ttattgattt	gtgtatgttg.	aaccagcctt	gcatcccagg	27360
gatgaagctg	acttgatcat	ggtgggtaag	ctttttgatg	tgctgctgga	tttggattgc	27420
cagtatttta	ttgaggattt	tcacatcaat	gttcatcagg	gatattggtc	taaaattctc	27480
tttttttgtt	gtgtttctgc	caggctttgg	tatcaggatg	atgcagccag	gactatttga	27540
tatgttaata	atccctcact	tgtctacgtg	taaccatccc	tgctgccttt	ctgccaatca	27600
gctacaccac	caacagagca	attataattt	ttcttgaagg	caaaacccct	taaagttctc	27660
tcttgtctaa	agaagagact	aaaagccatc	tgtgatctga	ttcccgtcca	tttttgcaac	27720
atcagttact	attatccccc	agcctcccct	ctcagettac	attttacaat	aagtacttag	27780
agttctcaaa	atgaaaaaaa	aaaggttcgt	tttccatact	aatatgactt	ggtatgctgc	27840
aatggtttct	ctttttggaa	tgcctttctc	ctgtctccac	cctcacatct	gtctggaaga	27900
ctgttcctcc	tctttgaaga	ctcagtttca	atcacctcat	tttttataat	atcttccctg	27960
acatccacca	caaccccaag	cagactggat	cacacccatc	ttcacaccat	tactgcaccc	28020
tgtgcatatg	gctatcggag	gactgagcac	tctgtaacgt	actcaatttt	gtgaatctct	28080
gttcctacca	gagagagaga	aacttgagtt	tttttaccct	tgatagtctg	ggcagtgcct	28140
ggcacatggt	agttgttcaa	tgtatgttta	ccaaagaaaa	agaatcaaca	atcaaaacca	28200
ctagaacagg	tctttgtcct	cctagacaca	tatcatccta	taataccaca	gttcttgatt	28260
tttgtaatgc	aagtattaga	tgggaactct	taaaatgaca	ctgagaactt	taggcttctt	28320
ctgctggtct	acttcaaagt	ggtagaacgt	tcaactttct	ccagagetee	agttttcata	28380
tccagtctat	tcaatatttc	ctacttgatg	ggttgccctc	agcttaaact	caatgtaatc	28440
taacaaaatt	gttacaaatt	gattatgtct	cctgcaaatt	tagatgttaa	cactctaatc	28500
cctcatgtat	ttagatgtga	gtcctatgag	aggtgatttg	gtcatgaagg	tggaactcta	28560
ataaatggaa	ttagtgtcat	tataagaaga	gacacaggga	gacaatctct	ttttccacca	28620
tgtgaagaca	cattgagaag	gtggctgtct	gcaaaccacg	aagaggacac	tcaacaggaa	28680
tcaaatccac	cagtaccttg	atcttggact	tcccagcctc	cagaactgtg	agaaaccaaa	28740

gtctgttgtt	taagccacat	agtttatggt	attctgtttt	agcagcctca	agtaagacac	28800
taatcctcct	tcattccaaa	atactaaacc	ccacaaaaag	cttctcctaa	ttccactatt	28860
tcttttcatg	gttcagcatt	ttccaagtca	ctcaaaagcc	aaaactgaga	gctgcctcag	28920
ccttctccct	ctgtcttgct	tcccataacc	aacaccaaac	gtagcacctc	ttttccattc	28980
ccaattccac	tgcccttgct	caggactctt	ttactttgtt	cctggatttc	tataatcatc	29040
ttttaactca	tattcttaga	ataagcattt	aatttaaaaa	aaattaatca	ttcaatacat	29100
aggcacacat	tataaaaata	tgaagtatat	aatatggaca	attatagtcc	cccttatgac	29160
ttaagtctca	ctcctggccc	agaaaataat	tttccaagtt	taatatgcat	ctgaacaata	29220
gaaacactca	agtgcctact	atgtgccagg	cgctatttaa	agcaatttaa	atagattaat	29280
ttatttaatt	ttcacatcat	accaccctag	gggtcatgta	aaattatctc	tattttccac	29340
acaatgaaaa	aaaatgctga	ggcggttaag	tatcttgcct	gaagtcacac	agccagtaag	29400
taactattca	tttacttaaa	cacatattta	tatgcatata	agattttaca	tacacatatg	29460
tatatgtttt	atgcttttt	cccattttac	acaaaaggga	tagcagtatg	tgtattttct	29520
ttgtattttc	actgaacaac	ataccttctg	tatctttcta	tgttggtaga	tataaattta	29580
cctcattctt	tttaactgca	atgtgttatt	acaaagtatg	atatagcata	atctatttat	29640
ccaattcact	attgatgaat	atttatgttg	tcttcaattt	ttcactactg	gaaaaaaatg	29700
atgtgatgca	tatctctgca	cataaatcag	agcactcatg	tgtgaacaga	tctatagcat	29760
aatttgtaga	aatagcactg	ctggtatttc	tatttttaat	tctgatgcat	tctgccaaaa	29820
tatctccaaa	aaggctgtgc	caatttacat	cctccctaac	aatatataaa	ggtgcctatt	29880
tccctaagca	cttgccaaca	ctgagtatta	tccatcattt	taattttta	acaatctgat	29940
gggttctttg	atgcttttta	acagtctagg	atctctttgg	tgctataact	tgtatttctc	30000
aaaatccaaa	tgccgttgat	catcttttca	aatgtttatt	agacaactgt	atttttttc	30060
tgagaattca	tactcatatc	ctttgcccaa	ttttctcttg	gactgtttgt	cttttttatg	30120
tttatttgct	gactattttg	catgttagca	attttgatac	tttggcatat	atattgcaaa	30180
taaaatcttc	ccagtctgtg	acttactttt	acattttgtc	tatgggtctg	caattatatc	30240
agttttaaaa	attatgcagt	aaatcttatc	ggtcctttcc	tttatcgact	ctaggtgttg	30300
tgtcttgctt	aggaaggtct	ttcccactct	aagattaagt	atatttttcg	acagtttttg	30360
caaacatttt	tagtgttgtt	tggtttataa	aatttagcac	aagtccacct	gaaatatatt	30420

gtcgtatatg	gcataaggaa	aggctaaacc	tatcccatac	caactgacaa	acagataacc	30480
aattattcta	atgtctttaa	acagtacaac	cctctagtca	ctgattagaa	gtgtagtata	30540
taatgaaggt	agcactcttc	atacactaaa	tttccaagtt	ggtttgtaac	tacactctct	30600
cttctgctcc	atggttctat	ttatgtattc	ctgtgccaag	atttcatgtt	ttaattgcta	30660
taattttaaa	gttgcttagg	atagctagaa	aatcatcctc	ccccttagcc	ccatgtgttt	30720
aaaaaattat	ggctatttac	tcttgacttt	atcttccaag	ggaatgttag	aataggctag	30780
tcaagttcca	taaaatatct	tattggaatt	tagcatagta	ttgcatcaaa	tttataaatt	30840
aaaaattacc	atctttacca	caatgaatct	tagaattaat	atttaaatac	caattcaaca	30900
acataacgtc	ctgctacaat	ttttttcca	actgacattg	ggataaagat	aaagctcttc	30960
agtgtctagt	tttcaaatcc	cacctcccaa	atttggttta	aactagccat	ctcatcaaat	31020
tgatttccct	tatttttcat	ccacaaagct	tttcaaacca	gtatactgat	tctatcctaa	31080
ataatccttc	attccctgtg	ctagagatgc	catgcaatta	ggaaagggat	aaagcagtta	31140
tattctttgt	ctacacatcc	tcactttgaa	gtgctaacat	tctgggtcta	tccaagatcc	31200
atcattaccc	tttaacaagg	caagaatagg	tatacttttc	cttattaact	taaacagatt	31260
tgagtttgca	gggggaaaaa	tagagctttt	tatgattaaa	taatctacga	caatacagtc	31320
atccctcagt	atctgctggg	gattggctgc	aggacgccca	cacccttgcc	acaggatacc	31380
aaaatctgca	catactcaag	atctacaatt	gaccctgtga	aaacagcgga	accagcagaa	31440
ccaggaaact	ggcatataga	aaaagtctgc	cctccctatc	tgcagtttgc	ccatccggag	31500
aatattgttt	ggttgcagat	atggagcctg	gagatacaga	gggcaaactg	tatttattga	31560
aaaaaaaatc	catgtataag	tggatccaca	cagttcaaat	ccatgttgtt	caagggtcaa	31620
cttgttttt	cgtcattcat	gggaaagaga	acttggtgtt	gagcaaggaa	acagataatg	31680
tgatctgaag	cttgaggaga	cctcactggg	tccaaactct	caacatgcag	gaaagaattc	31740
atgcagtctt	tgacagatcg	gtaaatatta	aaaagaagtg	agaaaaggtt	agaagaactg	31800
agataacact	acctgagaag	agaagactaa	aattaaactg	aaaaatgttt	caagtgtgtg	31860
ttaaaacttg	gaggaggtgg	gagttgggtc	tgccaagaag	tctgggagag	gctgcattac	31920
agcaaagtca	ccacactgag	ggagcagagg	atcaggaatg	acaaagggtc	agggtggcca	31980
cacgagggta	gcagagagca	ggttaacaga	gagaccttgg	cgaaagtgaa	aaaagttatt	32040
ggaactgaaa	atctagatcc	aagcagtgct	ttatactcgg	acagtgaaca	cagggcaaga	32100
ttctatggta	cactcagaga	aacagaggaa	catctccctg	ctctagggtg	aagaggtcac	32160

agagaaaggt	aactaacaaa	catgtattgg	gttctatgct	aggagtttta	cataaatgtc	32220
ctcatttaat	aatctttata	agcctacaag	atagacaata	acaatgtctg	atgtttaaca	32280
catgaaaaga	ctgatctcaa	atgacataag	tggcacagct	ggtatttaag	cccagatgag	32340
tccactttct	aaatccaggc	tttctcactc	tcctgcactc	ttctgccttt	ccaatgagtc	32400
agaagtgtct	ccttggagct	gggcccagaa	cctggttaac	tttctcaaag	cagcacacac	32460
agtcgttcct	aggccttcac	agtccacatg	aaaaaagct	atggcctttt	gtgaacatgg	32520
tgagaacacc	aaatgtatct	gcatccattc	ttggcttagc	cacaaggaat	agcagcagca	32580
gtcatcagcc	tgacaggtat	gggcacacag	gcacagcggt	ccacaaggaa	gccctgggac	32640
tggaaactgg	tggcaaacct	caacagatgt	caccttgcta	gggcatacta	ctttcagtaa	32700
tagcaagctc	tgggatttta	gggtttaaaa	agattttaag	accaaaatgc	accacaagaa	32760
acagattaaa	aataatctga	aaagaaacag	gttaaaaata	aagaacagta	aaaaacatac	32820
aagagggcat	ggaatagcat	atcatagctt	atcatgttca	actcatgacc	atcagccata	32880
gcctcactca	cctactggac	ctgtcctgaa	caaaactatt	taagtgaaaa	ggatcagaga	32940
aaaagtacta	aaatgataaa	agaaatggca	gaaggttaag	aattaggaca	tttcacctaa	33000
tgtagaggag	gttaaggggc	aatttaataa	cagtcttaaa	tcctctagag	ggacattata	33060
tagaggetea	taaaaagaaa	gagatatctt	atttcatgaa	ccagaggaaa	aaagtcttaa	33120
atggcagtag	gaggtttact	ttggacctaa	gacaaaagtt	cttgcttgta	aaaatcaaag	33180
tgtaaaatca	aagaatgtga	acgctcttct	ctaaataaac	cagcatttaa	taagcaccta	33240
ttatgtgcca	gctactgtta	tgtgcaatat	cccctaagtt	cctggcaact	cgactttgat	33300
caaagttgac	agggtttgtt	tcctcatgga	atttacattt	actgggagaa	ggaataaaga	33360
caataataaa	caaaagataa	attattagga	aaatagaaga	aaatgacaag	tgattgcaag	33420
ggaatgagat	ggcctttttg	aggaagttaa	tttaggctga	gatgtaaaag	cagaagtggc	33480
ttagcatgaa	gcagggcagg	agcgttctgg	ttcagaagga	agagccagtg	caatggcata	33540
gaatgggaat	gggcttgatg	tggtggagat	acaaaaaaca	aacaaacaaa	caaaaaacag	33600
atactgtggc	catggggtta	catgaggtta	gagagatagg	gaaacgccag	attacacagg	33660
atcttacaaa	caaggtcagc	aattgctgga	gaggaagagt	caagaaaatt	tgttgaaaga	33720
ctcagtgata	ttttttggtt	ttacacctta	acacaactgt	gttctaatga	gctacttaca	33780
cgtatggttc	cctcaggagc	taatgagctc	ttgtcagtag	acccaggcta	tggtgagtca	33840

tttctcaggc	ttgtcagggc	ataggaatca	cctgggagca	cctgttagca	ctatggtcag	33900
caatctttat	tgttaaccta	gaaccgaaat	atcctaagca	tctgtatcat	ttgtaacagg	33960
tggctccagg	taactgtttg	gatcaggcac	agatgggtat	gctggtttac	tggcatgacc	34020
aagttttaga	gacacaccta	aattaagatc	tcagccccac	cagttaaggt	gtgacttgta	34080
ggaagttaca	aaattcctgt	gcctcatttt	cctcatctgt	aaaatgagaa	taatactacc	34140
tacaagtcat	gtggttgtgc	ataagactaa	atgatagagc	ataagcaagg	tgccaagtgc	34200
atagtaggca	ctccattaat	gctgaataca	taaatacatg	catgaacata	tgaaacctat	34260
gggtaaataa	aaagctaaat	atattcacat	tcactctttg	taatgcttgc	tgttttgagc	34320
ctgcaatgtt	ccttaccacc	agaaagagcc	caagatctca	gataatgaag	gtaggatect	34380
ggataagaaa	aaaaacctcc	acattctgcc	tcctacttag	cctttcttct	teteteteet	34440
cccattcaat	tggcctagct	attctgactc	accaccccct	acccctttcc	cacctctacc	34500
ctcccctgaa	acggaaaaaa	aaaaaacctc	acttggcttt	cctcccctc	caatctgccc	34560
tagagatgac	ccccagctcg	ttgccaggga	gatggtctgg	gtaacaggtg	ctactgaggg	34620
aaggcttttt	ctgtcaggaa	ctgcttaggg	tgaccaacca	tcccagtttg	ctcaggactt	34680
tcccgatgtt	agcactgaaa	gtcctgaaaa	acgactcagt	ccctggcaaa	ctgggacagt	34740
gctcataatc	cttcacgctt	tactctacaa	aaccttatgt	cgctgcacac	agttgtcagc	34800
atctgtgtgc	cctacagcac	tgtccaccct	gcgtattggt	gtetgggtee	tgtaacagtg	34860
ttctgcgtgc	tatctctacc	ttacccatag	gagctaagac	aggaccacac	tcactgggtc	34920
ctatttaatc	tcatggtact	ggatttgggt	ctccagaagg	gtcaggcttc	tgtatcaaat	34980
gatgcgtatc	cctccaatcc	atccatccac	tactgccaga	gttatcgctc	taaaatgtaa	35040
atctggcact	gacatttccc	tgcttaaaat	ccttccttga	ctccttgtct	gcagaataaa	35100
gagcaatctc	tagcataaat	tcctttcaaa	atttagccac	aactaaccat	gctgcttcct	35160
gttttagtgt	ttttgcatat	gccataccct	cttttgtaat	gtctttcatc	ccttaacctg	35220
ccccacacct	agtcttaagg	tttttcacaa	atttactctt	tgcctcctct	cttctctcac	35280
tgtgccttat	acataatttt	actgtagcac	ttatcacatg	atgtagtgat	tgtgtgttcg	35340
caagcctatc	ttctctactg	aactatgagt	tccttgaagg	tagatttcat	gacttactca	35400
tctttgtgtt	ctcaagtgac	tagcaccaga	cgttgacatt	ttgttgtagc	attttttaac	35460
atccacttct	attttatgat	tctgaaaaga	aaaccatgac	tgtcagattg	gtcttaatta	35520
ccaagtattt	tgcatcccca	aatattatcc	tatccccaac	cctcgcatta	tccttcacag	35580

ctaaaatgag	tctcaaaaat	ggggtggtaa	ttgggaataa	gggtaagacc	acccgctgaa	35640
tgttttattc	tatatatttt	taaaagctag	gagcttataa	attttttaat	aggctgcaac	35700
aaaacatcca	ggtcaaaaca	atttcaacta	gcattgtgca	ggcacataga	cacgcaaaaa	35760
ataaaatgaa	ataaatcgcc	aggcgtgttg	actcactcct	gtaatcccag	cactttggga	35820
ggctgaggca	agtggatcgc	ttgatgtcag	gagtttgaga	ccagcctgac	caacatggtg	35880
aaaccccctc	tctactaaaa	atacaaaaat	tagccctgcg	tggtggcatc	catgtgtaat	35940
cccagctact	cgggaggttg	aggcaggaga	atcgcttgaa	tccagggggg	caggagttgt	36000
agtgagtcga	gattgcacca	ctgcacttca	gcctgggcaa	cagagtgaga	ctcatctcaa	36060
aaatgataat	aataataaat	taatatttt	agtaagtaaa	tagtaaataa	taaataaaat	36120
aaaactataa	atgaatgaat	aaatgatcaa	gaagttctct	tctggacata	ataactttt	36180
gtgttcttat	acacaaacac	atttgtttcc	caggcatgat	ataaaattat	aagacttttg	36240
cttgattttg	tttatactaa	caaatatacc	agaatgacgc	tgctcggaaa	ctttctagaa	36300
ctcctatttg	gtaactgcct	taagaaccaa	caaataagtt	agcttataag	tcatttacta	36360
ttactttaca	gccaagtctt	atttgttaat	attacacaac	acgaaccacc	aacttatcca	36420
taaggcttga	atctcaaaga	tgtctggcta	tttattaaat	taaaagccag	actcaaagga	36480
taaacattct	ccacaactga	agtcatgcaa	aaggctgtgg	caggttctaa	aatcaattcc	36540
aaaaattata	aaacgtactt	caggtaagtg	gatgaaaata	tttgtatatt	aggatcagtt	36600
actttatttt	ggggcatatt	atatcaatgt	gatcacatgc	atatatagct	gcagggggta	36660
tgccaatgaa	gtgtagttat	atgcatgtat	gtgcttctgg	gaataaaatg	atttgtcaag	36720
cctatgtatt	tacagacata	tcatttggga	ttacctcaga	attaactaag	aatctatact	36780
ttttcagttt	ctacacaaag	cactcggata	aatgagattc	acaaaatatc	attcctgccc	36840
tcaaagagca	catggaggag	aaaaacatag	acaaatcact	gcaacacaaa	gaagtgtaac	36900
agtggagata	tatattcaat	acagtggtag	cacctagcaa	ggagtgatta	tatgtagata	36960
ggaagcttca	aagagaggca	acacctcatc	aaagtttgga	tggataaaca	tgagcacaag	37020
tttcatcagg	cttaatgaga	tgggcaatcc	aggtatagaa	aatagtatgt	gcaaagacac	37080
tgaggcatga	aacaacatag	tgtgtttggg	'aaattacaag	ccatttgata	ttgctggagc	37140
acagaatcta	agggaaagaa	tacagagata	tttcgttgga	gaagcgactg	atagccatgt	37200
aactgaaaat	gtgtattttg	gtttgcagat	gattatgtgt	gtctactgtc	tttccatagt	37260

acatcaatca	gcctgtagct	ggaggaacag	tgacacattt	atttattaca	tgattttatt	37320
tttgcctgaa	tttatcacaa	aaaaatgtcc	ctggtctctg	ctcatatttg	ttttactccc	37380
ccattactct	ctcaactttt	actcatttcc	ctctgcaatc	tagtttctag	ctccctttcc	37440
ccttggagta	tctccttcca	tattgatctg	agttcatcta	cagtctcata	ggccattctc	37500
ttttctagta	tcatgcaact	cccatctttc	cttcagaacc	aaacttatat	gacctcttct	37560
ctgagaagcc	ttcttggcta	agtgtaatga	ctgaaaattt	agagtttgca	gtaagacaac	37620
ctgtatttga	aacctgagtc	tgtcatttac	catctttgtg	ctcttgtacc	agtcattttg	37680
cctcttcaag	cctcactgtc	atcatctgta	aaatagggta	atgaatactg	accagcatgc	37740
ttgtgaatat	taagacggat	aataaatgta	aagaacttag	tatataattt	gacccttaat	37800
agttattgct	aataataaat	ttaacttgtc	tagaaattct	catgcctaag	tcatatgtat	37860
atatagggtg	atttaatttg	gtagatattt	accttgactt	tatctgcttt	ctggtaagcc	37920
gtgggaggca	gtgctgctgc	tttgcacaac	tccaatttga	acaatgcccc	ctggagttgt	37980
gcaatatggc	aactctggga	aagaggaggg	ttttcagttt	gtttccattt	atagtttgaa	38040
tattttaact	ttataaataa	attaatgtct	taaaagtgtc	agtggggtct	ctgggccaga	38100
agatttgggg	gcttttgttg	ggttggtttg	tattttgtat	cactatttaa	aaagaaaaaa	38160
aagactaaac	caataataac	atgctttgaa	gaaactcagt	cttttagaag	tcattccaat	38220
cagtattagt	ttttagtaga	agttcaatta	aaaagtattt	attgacagaa	agaagaatga	38280
gcacaagcct	tcaggtcaag	tagacctgga	tttggattca	ctatttacaa	actacataat	38340
cttgttaaac	ctttgtttcc	ttgatttggt	aagggagcta	atcattccag	acacactcag	38400
gtactttctg	gtacttaagt	gagctactgt	gtacataaag	tacccagcac	aaaatctggc	38460
atttgatggg	ttctcaataa	tggtacctat	gatcattttt	attatgtgca	agttgctgct	38520
ctggttgctg	gtttaaaact	ggttagaacc	aagatgctgg	ttaaaattgg	tgattaaatt	38580
caggttggta	ttaggattaa	tagtcagagc	ctataataga	ttaggattag	gactgaaatt	38640
acaattcaat	taaggttaca	attgtaatgc	atacaggggt	tattattaag	gttggtgtta	38700
attaaaactg	gataatagaa	gtaagaagca	gtatgaggag	tactggttta	gctgggtaga	38760
aaattgaaga	ggaaagcaat	gtggaaacct	atgtagaatt	tactgataca	gaaaactcat	38820
agaggagaaa	aaagggttag	agtacaaagc	agaatctgaa	tggatattaa	gccttcttaa	38880
tttttttccc	tacaggtgct	gtcatcttct	ccctgatgaa	tatgtaaaat	tcacccactc	38940
aggctgagtt	ctttcccttt	tccctcccgg	gcaggagcag	catggggaaa	ggaatgccca	39000

gtgcccacac	agctgcgttt	agtccagcac	cagtgccagc	atcacattcc	acacccccag	39060
ctacccaggc	tgttgctgag	tggacagggg	cacctaggag	gcaaaacccg	ccttctcttc	39120
cctccccttc	cctgcttcct	cagattttca	ctgtagctac	cagctttgta	atcccacaga	39180
caacctactc	cagactitgt	gcacgtctct	gggaaatgca	tattgtatgt	cacagcgttc	39240
agagtggaaa	gtaaccatag	agatcacaat	ccaacatgga	tacttttatt	ttacctattt	39300
tcatgatggg	gttcatcctt	gtaggtcaat	ctttctttgt	aaaactatat	tcctagtgag	39360
tacggtgggc	acctgtagga	tgctgggtgc	acatgtaaaa	agggcattag	aatgactaca	39420
ggcaagaagt	tattccaaat	gctaacatcc	acatcagtag	gagaaactac	cctttcactc	39480
tgaaatatgc	aagggtgagg	aattcctcaa	attggacacc	gctccagagt	tttgggaatg	39540
attcctctta	tccttcctgc	ctccaagggt	actatctccc	attccccacc	cagtggtggc	39600
aacccttcta	ccagctagcc	gtatgaacac	agaaagtcat	ttagcttctc	tgagtttcat	39660
tttcctcatc	tgttcaacaa	gcggtattaa	ttagataatc	ttgaaggtcc	catacaactc	39720
taacattctt	ttattctata	attctaaaag	ccagtgactg	tttcctattc	ccaggactta	39780
aactgttgcc	aaactgatgc	tgatgatgca	gaaaggagaa	gaggagccag	taggaaaaga	39840
gcattccaga	gtctcatttg	ctaactctta	atactctctc	caaaacagct	ttcctcctta	39900
cctctcaccc	ttggttcttg	tcccatgcag	ttacagtaga	gagtagggcc	agaccagcaa	39960
gtatttcaga	attaaggggg	tcaggcagaa	ggggatcact	gcagagcagc	agatggaaaa	40020
gacagattaa	ttagaagact	atgagaccta	atcctacatc	ctgccctccc	tatcccaccc	40080
atccccactc	tcactcccct	acccctgcat	taacctgttc	tctcttaagc	ccacttagat	40140
gatctctaag	atgtcttcta	gctgcaaaga	taatactctt	tatccactaa	gacgctttaa	40200
ctagggtagt	ctgatctttc	tcttctgaag	ctgatttgtt	ttgaaaacac	ccacattact	40260
gcctgctctc	tgcataacta	acttcatgcc	aacatggccc	cacctctgtg	ggaaagttca	40320
atctttccta	tatctctccc	ccactcccta	gcccagcctc	ttctctctct	tacatccagg	40380
tttccacacc	cctcaaatat	agtaccccct	ttattttcac	tttttggaga	ttccaagata	40440
tcaacaaacc	ctaggagaca	gaatggtctg	gagtcactga	gatatatċaa	gtcaggcaag	40500
tcagacagcc	aaagatggtc	aacacttccc	tgcaagaaaa	tcttaactat	ccaggcactc	405,60
aagaaatgtc	caagaggcag	gcagaactct	tctcccagaa	accatcaact	ctaacaaccc	40620
taagagaaaa	actgtggggc	agcatcctga	caatccagaa	ggatttccct	ggggaatatt	40680

tcccctgacc	tctccatcat	tgcttgtaat	ttatatagga	ctttactggt	aaccaagtac	40740
tttccacacc	cctgcccgtg	agtttctggg	tgacagagac	attaactaca	tcacagaggg	40800
ctgaaaaact	ctgttttcaa	gaaggaaaga	ttacccaaac	attaaggatt	agcccagtga ,	40860
gacagtcatt	agcagacaaa	gagagctggt	ctaagagtta	gaagacatgc	acccaaatcc	40920
ctcatctagg	gataaaatat	tagcctcaca	ggattggaag	acactttaaa	atcatattgt	40980
tgcacatccc	agccaacact	tgtgtcttct	actattaact	gtcagtgtaa	ccttggttca	41040
gttagcctcc	tttgagcctc	agttgtacct	atataattaa	ggggttggaa	tagacatttt	41100
ctaagaattc	ttagatatct	aatatcattt	tattctagaa	ttctaacatt	tagaaatgta	41160
tttccaaaag	ctaagtttca	gtaaaactga	tttagaaaga	tccctttctg	agatatatca	41220
agactcggag	atactcagtc	acaaagaatg	gcaaacacca	gggacttggg	acacttaagc	41280
caagaccaag	tacaaacacc	ctgcatctct	catcttgtta	tatctggcct	caggattgac	41340
agcagctttg	gtcacagacg	caggggtcct	tggagggttt	ctagatcaga	ctcttcatcc	41400
atgaacctta	ctaactcaaa	cttgagatgg	gcgagatctg	caaaagaaca	agaaagaaga	41460
aaacgtattg	gagaaaggga	ccgggggtta	aagagatgta	atagggaggg	ttaagaaaga	41520
aaacgactga	gttgctttgt	taggctgcca	gattgggcaa	gagtctgggg	tgaaatcatg	41580
ttttcagagg	gtgagttatt	tccttgacat	gagattgagg	gagacattgg	ttcccaaggc	41640
ctgggagttt	gttggaaaat	gcctttcaag	ggagattgcc	tggggccacg	aattgttgct	41700
ggacagataa	ctatgggctc	ttgggtaaga	ggaatcaggg	atgttagggt	ttaggaaaat	41760
gatgagagtt	agcaattatc	cactggacag	gtgtccctgg	gtacactgtt	gataggggga	41820
ccccagggct	taaggccagg	ggccacaaat	tgttgctgga	cagataacta	tgggctcttg	41880
ggtaagagga	attagggatg	ttagcgttta	ggagaaggct	gagagttagt	agttatccac	41940
tggagagatg	tccctgggta	catggttggt	gggggacccc	agggcttaag	gggatcccca	42000
gttgccaaag	gatggagggc	ggagctggag	gacctcaggc	tagtgagcac	gcccttgccc	42060
aggcctgcag	tggctgcact	cgccagctgg	cccatggccc	tgtccgactc	ccctccctcc	42120
accccaagcc	taagaggggt	gagcgcaggg	tcccactgct	gagccagctc	cctccctctg	42180
atccacaccc	gagecegget	ggccgagctc	ccgggggaga	gggtggaagg	caccacgaag	42240
gcaaggaggg	ggtgtgggag	gcggggggtg	tggggaatgc	ggcagcctgg	ccccccgcg	42300
accagcccag	ccccccgcca	aaccccctcc	acctccaacc	aaatggtttg	ctccgagcgc	42360
cctatttaat	ccccgcgact	gcagcagcgc	cggctccctc	ccggtcccca	cctcggcccc	42420

	gggctccgaa	gcggctcggg	ggcgcccttt	cggtcaacat	cgtagtccac	cccctcccca	42480
	tccccagccc	ccggggattc	aggctcgcca	gcgcccagcc	agggagccgg	ccgggaagcg	42540
	cgatgggggc	cccagccgcc	tegeteetge	tcctgctcct	gctgttcgcc	tgctgctggg	42600
	cgcccggcgg	ggccaacctc	tcccaggacg	gtgagtgagg	gaggggcgg	cgcctgggga	42660
	ggtggggagt	gacccgaggc	gggggctggg	atcgggagtc	tcgcggaagg	agcctgttgg	42720
	ctttgtttgg [.]	aaccggggtt	aaagtcacca	gccgctgcta	atacccttgt	gtctgtctct	42780
	gagcatccgt	gtctctgtgg	actgtgggtg	tgccggtgtg	tgcacccttc	tgtgtacacc	42840
	actgagcgtg	tgtctgcgtg	tgcaccgggg	tttggctctc	ggggctgatg	tccgttagga	42900
	gcagcccggg	gtctggatgt	gttgctgtcc	gtgtgcgcgc	gcgtctgtgt	tggtgtctgg	42960
	ctctgcgttt	ctgtgtcagt	atctgtgtgt	atgtctgtgt	cagtgtgtgt	tgggggcgga	43020
į	gtgagatttg	tegetgttte	agtcagggcg	tgtgtcgggt	gtttgtgtat	gtatgtctgt	43080
	aggggttggg	tagccagtgc	aatcccccaa	actgctgtat	gcaaacattt	ctgctcccc	43140
	gcccgtcccc	caccacccgc	ggcgcagctc	cgagtgggca	gagaaggggg	cctgggtgag	43200
	gctgctgaag	ggggcgtggg	caaagaagag	ggcccttatc	cttggagcaa	aacaacaaca	43260
	cagggcggag	ggggcccagg	atggcaatat	ccctggcagt	ggtagaagct	gggaaaagaa	43320
	atccgacagg	agcagaggcg	gggtgggggt	aggggggagc	gcaaaagaaa	gaatcaagat	43380
	atttggggag	gaggatgcat	gagaaaccca	aagctttcct	gggctaagca	ctgattttcc	43440
	caaatttggg	atggggtagc	atacctagcc	cctttgcccc	agtctggaac	tcaaaccttc	43500
	gctggttcct	aatggtagag	agatgaagga	agggagtcgg	gggagaaagg	aggcggggcc	43560
	aggggtgagg	ggacttgggg	aagagcccct	cccgccctgg	gccgggctat	gtaggtcagc	43620
	gctgtggggg	cacctcagct	ttcttaaagg	ctactaacgg	ttagtgggat	gccagagggg	43680
	cagcctgtag	ggaaacccgg	aaggggtcca	cagctccgag	cctcaggtcc	ctgaggaggg	43740
	agggcaggct	gtgaagagac	tgaaggaatg	catcctcctc	ccccaccgc	cctgtcggaa	43800
	gaggaggagg	gctgggatgg	aggaaggggg	agagggaaca	ggacctctgt	ggagcaaagg	43860
	gaagtgggga	gagtgaaggg	ggagggtggt	ggctatgccc	ggccagatgc	caacgaaaaa	43920
	cagaaagaac	cgcaggggag	gagaaagggg	aggtggctcc	tgggcgatgg	acccagtggc	43980
	cagcagggat	gggcacaggg	cggggcgggg	gtggagaggg	gaggggttga	aactgggaag	44040
	gatgatgtag	agaatttcat	ctgaggaaaa	caggcgaaga	gccagggtgc	tggaggaata	44100

atcgctccac	ctcgcctgac	ctccccatc	cctgtctcca	tcgtgataaa	ggagcttccc	44160
ctggtatggg	gaccctgggg	atcccctccc	tatagttggc	tggctggctt	actccttctg	44220
cċctctaccc	atcaaactcc	ccaaagggag	ttcccgccct	agtcaccaca	gagacagcag	44280
cctctccttt	cccctacgtg	gaatcccctt	ccccagagga	ctgcactgat	gaccccactc	44340
actgaggagc	tgaagggagt	ccttggggag	agcaggctaa	gtgcacgaca	gagaggctgc	44400
tgggtgtttg	tgcttcatta	atgaccctgc	tactaggcct	tgactttcaa	ctgcagcccc	44460
tggccttcct	aacctgctga	gttttatgac	gagaggcaaa	tatgatccaa	actgcaactg	44520
ttcagcaatg	ggaactgatg	gtgctaggct	gggccccaaa	aagagagaaa	gacgtcatcc	44580
agaaagctgt	gagctcttct	actctaagat	gtaaaaaaaa	actatagact	agagtaaatc	44640
agtatactag	ccaagtcttt	cttcaccaac	tacactcttc	tttcttggtc	ctcaaactgg	44700
gggttcagcc	cctattcagg	cttaaagttg	agaggaagag	aaatgttaca	tcctcatatt	44760
tagaaatatg	cttcagagca	gtggcctgag	agaaacagtg	gaaagcagta	acttctgaat	44820
ggggaatttc	tagagaagag	gtggggaagt	gggagatgaa	caggaggggt	ctgtttccaa	44880
agaagagtca	aaccaagcat	cattttcctt	gaagagcatt	atctttacag	ataatggaca	44940
tctgtctggt	gtgcagtatc	tcaggacaca	ctgatgcatg	agacataacc	accatatctt	45000
ctgtcttaaa	ttaattctat	cttttagttt	ctggatctaa	gaaggccagt	gctgatggtg	45060
ggaggtaaat	gcatagattt	aatgctcacg	gacagtaatc	ctgaagacta	ttttgcacac	45120
aatcatggac	atgtgtttcg	tacccctgag	ttggcctggg	gcccctagga	agagaactag	45180
gcaatatgta	tatgtatctt	aactggtaat	gtttgaccaa	aactatgaga	gatgtggtgg	45240
gaaggtttaa	ggacaagata	ctcttatggt	gatgtttgaa	ttgtcaaggg	tgttgtggta	45300
gcatacctat	tcccatttaa	aataaggaaa	acaaacttaa	tgtgctgctg	gggcatatca	45360
ttccctggag	cacagcataa	attttttaag	cttcataagg	ctgaacaggg	attgagaggg	45420
caagcagctg	ataactaaga	ctggccatga	gtgttgtggc	tagaagttca	ggaacaggta	45480
agacatttag	aatgtcccat	ctgcccttcc	ttctcacatt	tecceactag	ttttcacagt	45540
ggttgacaat	tctgggtttg	gaggacataa	gtcctgtgaa	cttaatgtgt	cctctctctg	45600
gtgagcagct	caatattcaa	cactgtgacc	agctttcttg	ggctcttcct	tctgaagtta	45660
tttccagcac	tctgtgactt	ggcctagggt	aaagatagat	agacggatag	cctctctttg	45720
tttcagataa	ggttatagca	atttaacctt	gtactgcact	gccccacaca	tgaacatcta	45780
tttcttctca	atgacctctg	tccactacca	ttcattctac	agccccctgg	ccagatgccc	45840

agtgaggaca	tcatgcccaa	tgtgccacag	aagtccagca	ggcattcact	ctagtgctgt	45900
ccacagatct	gtttggcaga	tcaactccat	ccagtttctg	ttcctagttg	cagctgtaac	45960
tgttctgttg	ctgttcctgt	tctcctccta	gttgcagctg	taactcttgg	gaaggatatg	46020
ctctcctttt	agacatgtgc	attttctggc	acagaaaagt	taagaccatc	acagagacac	46080
ttgcatagca	gagtttagtt	aattccatga	agaatcagtg	tgtttcatgt	aggtcctaat	46140
gtatgtaacg	tcaactgcct	acccagcagt	tatgccattc	tattctaagc	ttctccatag	46200
atctggatag	cactgttagt	tttaatagtt	tcctctaggg	cagcagtttt	ctcatttgtt	46260
tttaaaacaa	agatgtgaga	catttttaac	aaatgaggaa	aacatatcaa	aggagaatgc	46320
tgttgttgaa	atggtgaagt	aagacctata	tcccttttcc	ctgtcttact	ggcttttaca	46380
cattcttata	atccttaagg	aactacctgg	ggttctacca	cacagttcaa	aatcctctgt	46440
cctagactga	tagaatgagc	cagcttacta	cccttaggct	ctttctcttt	cctcttccaa	46500
ctgaagaaga	aagaaggtcc	aaatctaatt	gcaagagtgc	cttgttggag	atattcacta	46560
ttcacttgga	gagagtgact	catagttctg	cagccataaa	attccagaga	cagcatcgct	46620
ttggcgttct	ggttactttg	aaataacaaa	ctgagaggtt	gtgccattgc	tctgtaaatt	46680
cttagatttg	attttggtac	ttcttgatgt	tactactttc	ttgcagtcca	aataatatgt	46740
aaaacaggat	caaaagttta	ttttccttaa	atcacttggt	aggaaaaaat	atcaccagag	46800
aaagaaaacc	cctggggctg	tgactagtct	tattctttgt	tgtttcctac	tccagtggaa	46860
ctgcatactg	gctcaacaat	ccctttttg	tcatctaatt	ctcagtaatg	gaattttacc	46920
taaggatggt	gatctaggtt	ccagattctt	gttgaaagca	agctgtggat	tggaccagct	46980
acttactgac	tactgagtga	aaaattcaaa	gttattataa	agttttggta	attatatttt	47040
cttttatttt	tcatgttaga	atgtaatgtt	tcatgtttaa	cactgactat	aggcccatgt	47100
actagaacat	tttgtttcct	gtatggggtc	ttgttttaga	ggtccaccct	taatctctga	47160
gaatagcaat	ccccatggaa	atgcttacaa	aagacagaga	gaaacaaacc	atcagaaaag	47220
gaccctggag	aagcaagcca	tcagaaaaag	attctgtttc	taagaacttg	ctccgattaa	47280
gtataaatac	ttcaggtcat	cataaaatga	agaagaacaa	gtttccaggg	ctagagacct	47340
gtttctgcct	ctgggatcag	cagtagtgat	gatttttac	aaggtcagaa	ccagctggtg	47400
cccagggctc	caataactac	ccaagtaaaa	acccagtcca	attctgttat	atatgacaag	47460
aagatccatc	ccttctagta	cagagaagtc	gagctctcaa	gaggcttgaa	cgcatgaatc	47520

tgttgagatt	tttacacaat	agaagctaag	atgctaagaa	gtaaaggtac	atattcttca	47580
ctgaagcagc	aactactaaa	gaatcatttc	tttctttacc	aaaattttcc	taagccttaa	47640
ggccgtcatc	aaattcctca	actaacagag	aaacttctaa	atcctgagaa	caatactctt	47700
cttaagaggc	atgattccat	acctctcttc	tagtgtgatt	gtctgaacta	cttacagcaa	47760
ttttggatac	attgggacat	tctgagtctg	atacgtctca	taccctacct	gacgaaaata	47820
catattttga	ctttcttgca	tcctactgtc	tctgaggggg	cacaggctct	ctgttccctc	47880
tttagaagat	aggcctaatt	ttactcacgg	taagttgtag	cacattaaaa	gcccctccat	47940
caccactaat	atctaggtat	ttaacataat	cacagaagat	catgttgaca	aactgagtct	48000
ggtggtggtc	ctcatttttc	agcacagtct	cttgactgtg	tatcaaccag	acaggttcaa	48060
ataaagcact	tcaggaggcc	ttatagagca	agtgatgagc	gtagagtgat	cctaatagaa	48120
gccatgatgt	ctgttcttt	agttcctgtg	cttgagagct	ggctgcctta	ccccgtgatc	48180
ccagttcccc	tgttctttat	ggagcaaact	attatacctg	tgctttgagc	tctccatggt	48240
gctagcccct	gacagtgaca	ctccaggctt	ttcttgttgc	tctccatggt	cctgttttac	48300
ctccaagttt	cataatctcc	ttattctcca	cagtgcagtc	cccagaacag	ggctgaaatc	48360
tccctccctg	ccaccacaaa	cacacaggtt	cttggttatg	ctccccgacc	tgttccacca	48420
caaacacatg	acaaaactct	gagatataga	tctagaaagt	cctcacagcc	atctgatcaa	48480
ctgcagaaag	ggaacagaag	ggcaagcaat	tcttaggtta	aaaaagaagt	gctagaaggt	48540
ttttgtaaga	tgctcaggaa	attgtggcct	acagtgacct	caaatggcct	caaaagaact	48600
gaatgttttg	tcatatctgg	attcatagat	taaaaataca	actatatata	gttctgtttt	48660
agattgagat	agtattgctc	ttatatgata	acaatataca	gttgtacttt	ggtatccatg	48720
aaggattggt	tccaggacct	cccacagata	ctaaaatctg	cagatgcaca	agtccttgat	48780
atcaaatgga	gtggcatttg	catataacct	atgcacattc	tcctgtatac	ttcgttatct	48840
ctagattact	tataatacca	tatacaatct	aaatgctatg	taaatagttg	ttttactgta	48900
ttgtttaggc	aataacgaca	ggggaaaatg	tctatacaag	tttagtactg	gcacagcttt	48960
taaaaatatt	ttcaatctgc	aattgattga	atctatggag	gtggaaccca	tgtatatgca	49020
ggattgactg	tatacactat	aagtgtggaa	tgtaaaatga	atcctaccca	gtttataaac	49080
atgtacctct	taatagcact	ctgagcatga	caaccaactc	taactttcct	gtcatggtgc	49140
ttttttaccc	ttttccctca	accttagcaa	agacaataca	taacaatggg	ttatcagaat	49200
agataatgga	ggaatccagt	aaatgagagg	catagaaagc	aagtatcaag	tgtacatcca	49260

taccgtcctg	aacgcaccgg	ctcttgtctg	atctcggaag	ctaagcaggg	ttaggcctgg	49320
ttagtacatg	tataggagaa	aacaaatatc	aaaatcttga	cttaacttcc	ccacctttat	49380
aaccaccttg	tacaaaacta	aatggcttta	aatataacca	tcttctccca	gagcacaggt	49440
ccttggccat	atctcagtag	atgcatcttt	aaactctact	ctgctatgct	ttaagggtac	49500
cttccaataa	gctgatgata	tcaaacggcg	tagggagctg	agagtgctca	gcccgtcagt	49560
cttagattag	ccagcctgtt	cttcacatcg	catcagaact	acacaagctt	ctcatcccct	49620
aaatgctgat	tttcccatgt	caatttatgg	ataagagtta	atataatagt	taatacttat	49680
gagtgaccta	cagcagagtc	tagttggaga	ggcaggcttc	caggatgaat	ttccaggact	49740
cctctttcat	ttcttcattt	gaaacaagga	gaaacttcat	tcctcaagga	caggtaatga	49800
gagtgattta	tctctatgag	cgaggcttca	gcaagacaga	attagggtta	tagtaacagc	49860
tggagtgtct	cccatctact	catcttccta	agccccctgt	tctcatgaag	agcaggcagg	49920
tttcagaaag	gactcaaata	cagaaatctc	aacatatttt	tcagcacata	tatcattctt	49980
taatgtgaac	tcttacccct	gggattette	aagattctct	tctctctctc	tctttctctt	50040
ggaagtetee	aagagaacaa	taagaaagct	aaataactta	aagaacaaac	taaaatgttg	50100
tcttctctaa	ggatttattt	tecetttece	cagctagact	tacactaact	gtgtattgat	50160
tgctaattat	aagcaccttt	ggctcattta	cttctagttc	agggtcaaga	aggtcaggtg	50220
catcaccttg	ctctagagag	aaaaaagaaa	aagtaatgaa	ggctgatgtc	tcaggcactc	50280
atctgtaggc	tagccattat	tcatttctcc	cctttcttca	tatactccca	aatactggca	50340
aggtaggatg	['] aagaactagt	acttctgaca	acagatttta	ttggaaatat	gcagattctt	50400
gtttcatatt	ttacttttac	ccttctatga	cctggcgctt	tgcttccaat	tctgatttca	50460
gtaagtatat	caatgagagg	taacttggaa	cttagcatag	cagtcagtca	gtctgaagag	50520
cctggagctg	agttcttgag	ttattataaa	atgagaagcc	agttttacca	tctgctccta	50580
atcattttt	ttttgcccag	caaatgcaaa	aattacagtg	aaacaattgc	actcactagt	50640
tcttgctgta	gttcttaagg	atgagatctt	tccaaataca	tattatatgt	ttcttcccat	50700
aacttctatc	tgctaatctc	acacaaatat	aaaaattacc	accactaagc	ccctgagcct	50760
cccatatttt	gatttatcct	caattgccac	ttaatgccaa	ctcttttctg	gtttccaagc	50820
cctggagtcc	aatgtcagtg	acagatggac	tgagcctcaa	ccctggagag	gagaggattc	50880
tggccctctc	ctggggagtt	tgagcagaag	agagagcctg	aattctgctt	tggggagaat	50940

ctctgagttt	aagccatatg	gtattctgga	agtaaggggt	tctgattaat	atgggcatgt	51000
gaaaagggct	ctgtatctgg	gtcataataa	aatctgtgtg	ttcatgtcag	aaaaaaaccc	51060
cagaaatatg	attagtgaga	atcagagtgt	cttgtgtgtg	tgtattgagg	ggcacatgtc	51120
aaaatatgca	tctatcttag	ggaacaaaaa	tgtgtgtttg	ccccatcaa	ataagagaca	51180
ctcaatggag	atttaagaag	agagataaga	gttctttatg	tcagaacaat	attattttcc	51240
atttcgggga	ctgtgagatc	tgtggacttg	ggagaatgta	tctatttcac	agaagagtga	51300
aattctcaca	aagtgaggct	aatgcgaaca	atgtaccgca	attttaaaaa	tacagatttt	51360
tttttttta	agtgagaaga	gtgcagggag	actaaatagc	agttaggatt	gggggaatca	51420
gtgaaactag	agtagtgtgg	gtgtgtagag	cagaacacat	ttttcttcat	gtaatgctcc	51480
taaccattgc	cctgaacctg	tcatccacac	ccagactctg	atcatccagt	gaagggaaac	51540
agtaaaaaca	agtcaggaaa	atcagaacca	gcagagatga	gtgctttctt	gcttgacttc	51600
taacaaatta	aacttttcca	cagcattgtt	atcccaccac	accaagccat	cagcctgtaa	51660
tatctaaagt	gcaacataag	gagcatagga	gaataagaca	gagcccactg	agaaagggaa	51720
ttcatccatg	ccctcagaca	ggtattgggg	cactgggatg	ggtagtgcag	agtatgagca	51780
agttgttgga	acctgggctg	agatttttca	tctccagaga	atatattctt	tacttctgat	51840
tttctgggat	ttctggccca	ttcccagtct	ctattttccc	atacccttcc	aatgagctaa	51900
attgaattct	gcgtttgact	ctgttatgtt	tcctttctca	agtactttcc	taagatgagg	51960
aactttttcc	ccccagtttt	attacatatg	tgtgaaaaca	gcaagataaa	ttgggggaaa	52020
gggtataaaa	tccctctact	tagtttaaga	ggacaactaa	gagttcaaag	tctggcctcc	52080
tgactgtatt	gcattagaat	gcagatttca	agtcatacct	gtccgtatgt	ctaaagtgtt	52140
tgatcatagt	gagaagggaa	tgaggagatg	ggataaacag	acactcctaa	aatggctcag	52200
ggctgttatc	atcctgtctt	caggggccta	ctccaaaaca	actgaagaca	gtcagtacct	52260
gcacagaatc	tgtgctctag	aggtcctcac	tgagccctcc	cccgtgctca	gtttcacctc	52320
accctctcat	cctcttcagg	cagaacacta	gatgcttgtc	tagagcacac	agcccagtcc	52380
cagaaggaag	cagctaaggc	aaggaagaga	ctctttcggg	atcaaatccc	ctcccttttt	52440
gtctctcaac	tgcagttctc	cttgctacaa	ctcagtattg	gctacagagg	ggcttgtttt	52500
ggttgggggc	cagcccaggg	ctccctcctg	gtgctaatgc	accaagaaca	ctgactcaat	52560
agcaaatcaa	agcaacagct	gtccccacct	ccttccctgc	cacccacttc	ccagtctctg	52620
ctcctcggaa	tcttaactaa	gtctctgaag	gccccctca	gcctaccaca	agcccacttc	52680

tgcctccaga	ttttttctct	ctccagctca	agaataggac	atgttcctct	gcttttttc	52740
ttctcttctc	ttctggcccc	tgtctcctgc	ttcacaatca	ggttagcatt	ccctcagetc	52800
ttcaccttgc	agatgccagc	aagcacacag	acagacacac	acacacacac	acacacacac	52860
acacgcacac	acacatgcca	cctgtcctca	cagtcaccct	ttttagctcc	aaagggcatg	52920
gcagtgactt	ctgcccaatg	gcctcttctt	ctgtgtgaac	tggaacctgc	cggtaaagcc	52980
ctgaagtgta	agaagatgcc	atccgcccca	tcttcaggga	ctccctcttc	atcataacca	53040
aacttctcca	acctactggg	catttagtag	acttacttct	cttaaggtcc	acggtcctgg	53100
agttcctcag	tatcatgcac	aggagatgag	gcataggaag	agtgggtgtc	agcggaaata	53160
tttgacactt	agtgtcaaat	taaccactga	attagccagt	ccacaaggac	tgctataaac	53220
tatcaatgag	tacaggtete	actcactgcc	tgtgtgacca	tgctcaagtt	ccțaaacctc	53280
tctgagcctt	ggttcctcat	ctttaaaata	agaggattgg	accagatgat	acttaatatc	53340
ttgtcaacta	taaaaatcta	cacttctaag	aatcatagag	gggagaatat	tttgggcaga	53400
attaggtgca	acagaaagaa	aaaaggaatt	actgaacttg	gacaatagag	agtcagaaag	53460
ggcattagtt	ccatccttct	gtaaaatcaa	aaggatctta	gaaataacca	cctctgaccc	53520
ttaggattca	gtaggctatg	accagatacg	caagttggct	gcaaggtttt	aggaactatg	53580
taaaatatat	gtattcataa	taccttaaag	tttggatagg	ggaaaacatt	tgaattttct	53640
cttaaacttt	ggatattaaa	aaatgttaag	aataattgtt	tttcagtgag	aaccaagggt	53700
taactctaag	ataagctttt	cattttaacc	ccaccttaac	acccaccaca	ggcaagctag	53760
ctaactatct	caaagattcc	ctcctcattc	agcctggaaa	agcctagcca	cacaccattc	53820
ccaaagcaga	aaacaaaagc	ctttcatttt	taacctgctt	aggatggaac	caaaagatgt	53880
ctgccaaggt	gtaataataa	acctgtttga	gcccagattg	ggtacaggtt	ccttccaaat	53940
ctaaatctct	tagataatct	aatagtgtag	gacccctggg	tccataaatc	ctggatctct	54000
ggcccaggct	ttaccaagct	aagcagctaa	tacacatgtt	aggacttctt	atagtgaaga	54060
ttctgttctc	cattcctact	gaccatctat	cttcactcat	atcctgtatg	cctcctagga	54120
gagtaaagca	aagctgggac	agagtagttt	atcaagaggc	tgcttgataa	acaagactat	54180
aggaggaaaa	accagacagc	aacagaaata	atagagagag	gaaacaagga	ggagcaaggt	54240
ctcagtagcc	cagccagaaa	gagggtggat	ggggcagtga	ggtggagaga	aggcctagat	54300
cagggaggta	ggcagctgaa	gcgtgactga	gctctgaagt	tccaaagtgg	atgtgagctg	54360

gaacgcattg	gaactaagga	aaggagatcc	tttaggagac	tgctgcttgt	gaggggacaa	54420
gaggcctttc	cctgaggagc	aatgaaaaag	gaaaaaatag	tatctggaaa	gaaagagggt	54480
accagatgac	agaataactc	ccaccccgta	tggctcagct	tctatttgac	tacactatta	54540
tatcgtggcc	attagggaat	taggaattta	atgggggaca	gacagagtta	gaaaggaatg	54600
gagggtagga	agtaagagaa	tattttgaca	ttcaggcaaa	gccttagatt	aggaaattac	54660
aaagtgactt	cagtagatgt	gacatcgctg	ctggctgccc	aagaacaacc	gaaggaagtt	54720
aactgtacag	agttccttct	gaccagcgtt	ttgtgctcta	aagtcaaagc	aactccccca	54780
aattttgaag	ttttcagcta	aatcagaatt	cagatagaag	tggtctgatt	tcttccaaat	54840
gcacaaccaa	atattcactg	tcaaagaaaa	ctgtcactct	gagcataaag	aaaagctcca	54900
ggggctgagt	tctaatcctg	attttgctat	ggccagtctc	ttgtgcatgt	gatccaactg	54960
tacatagaat	tcactaagaa	gctggggtta	gggaaaaatg	agaatgacat	aatctggaca	55020
aggagcccag	caatggatgt	agataaacca	ttctaaaagt	gggtcccttc	agtattctgg	55080
gccgcagccc	ccaatatgtt	tttcccttgg	agataacact	cctccaccca	cctgtcatgg	55140
tagtcgtgag	gaataacaag	taggctggga	tgaacagtat	ttttaactct	ggagttagag	55200
aaatgctgag	tcatcatcat	catcatcacc	atcatcatca	actcctactc	agggagcttt	55260
ttttttctac	agtcagggaa	gtgggactct	ggactcaagc	actggcaagg	ccagcagcag	55320
ttattcagga	gagctctgtc	ctcctgttcc	accatctgac	ctgtgcacct	gtgaccctgt	55380
ttatggctgt	aaggccaata	tgttataggt	ccccaaaaca	gacacggcag	ggacaatata	55440
taaaccaagc	aatccggggt	tatactggca	gactttcata	gactttccac	taaagttgct	55500
taaattcaag	acaatacatt	tttatttatt	tgagttactc	atttatttat	tcaataaata	55560
tttattgagc	acttattatg	tgtgagactc	tgtgctatga	gtgaaaaact	gaataacagg	55620
tgctttaaag	aagcacatta	gtaattctcc	aattcccacc	tctgccactc	ttaatatgaa	55680
caatcaataa	gaagaaaatc	agtgggtgaa	agggctactt	tgtcctttaa	aatgctggaa	55740
atcctaaaga	tactagaacc	catgagcaaa	taaagcaaga	gttaagaaac	ctccaaagca	55800
attcagaaca	gacaagaaga	taattcttta	gttttcagcc	tagctgctag	agtgctatga	55860
aaacacaagg	agatttttt	ttaactagac	atgccatttg	cttggttatc	tgaagagtcc	55920
cacacggtaa	ggcacttagg	ggtccatgaa	atagtcccaa	aggtataggt	gcaggcacat	55980
taaggcatcc	aagtaaaaat	gtacattcaa	tgggtacaaa	ccacaggacc	gtcaacacca	56040
caggtgcgca	tttccaattt	gctatactgt	cgttttcatc	atactgcagg	tgaatgttgt	56100

aaatattgtt	taggtgagtc	acccctggcc	acaatgcaac	aaggaatctt	tcccagttta	56160
cgctctaccc	taccaccaca	cacacaaaat	acatgettet	gcagaggggg	acagtgtagt	56220
aaagatgtgc	agaaagcctg	ggctttgtgg	tcagagaggt	ctaagtttaa	agtccatcct	56280
atcccagtac	ttattagata	catcataagg	acaagtttct	taactcggct	ttaacgtgtg	56340
tgtaataata	tctagctatt	aaaaggttgt	tctggaataa	tgaatataca	gcaactaatt	56400
tggatcctga	catatagaaa	ctgttgataa	ataccaattt	cttctgtctt	atagttttct	56460
gggtagtcta	ccatctccct	tggcctgttt	cttcatctcc	tgtttggttt	gctatttcct	56520
ctctaccggc	agattttgaa	cctaactctt	acagtagaag	atgcttagta	tctgattcat	56580
ttaataaaga	aatatttatt	aagcaccttc	tataagcaat	atgctatatt	agggccaata	56640
ctggatgcaa	aatgcatcag	accctaccta	tggaatcgtt	ataatttggg	aggaaagtca	56700
aacttgcagt	acaaagtaga	aagaaatgca	taatttaaga	aaaagcagat	aaagtgtgta	56760
actcagagaa	gtggggaatt	atttcaatct	gggacaatca	gggaagactt	ctggaaagat	56820
atgccacaaa	atgtaggctt	tattcataga	taaagtttag	acatgtgaag	atgggtgaag	56880
ggcattatca	gcaaagttat	tgcaggcaaa	ggaacggatg	cagaaaaaca	aagcgttcat	56940
agagagaatt	ccaaaaggct	tcacatgcct	ggaatgcagg	gtgagtggag	tagagaaaac	57000
acaaaactga	aatgaagctc	ggcatcagac	tgtacaggac	cttgaaggct	aggctgacaa	57060
ctctgggtat	tatctgcaga	gagtggagag	tcagtgacgg	tttctaagca	gggaaagaat	57120
atgaccgata	tgactgaaac	tctcttcatc	tgttcttcta	cctgagcaac	ctgggccttc	57180
tctcactaat	ggttgtatgg	tctcaatgac	agaagctcct	teegagetee	tatttccacc	57240
tcaaattcca	taccacccat	tcagagtact	cctaagtttt	cccttccagt	ctgcattcat	57300
tgagagaatt	catgctgatg	tcataaatga	ctgacacaat	ctgaatccaa	agaaggtaca	57360
agtctttcac	aacccaggtt	ataatttctg	ctacttatcc	atgtttctgt	tgatagcatt	57420
ataatcactc	atccactccc	tggggagtgg	ccattcggaa	tttattatac	aggcttacaa	57480
ttttataaaa	tgacaggata	actttcaagc	gtattaagag	acagttctca	agagaagaca	57540
tgagattata	agtgcatttc	aaacttagag	ggagaaatgt	cacccctggg	ggaagaaaaa	57600
aaaagccacc	tcttacacag	tttcttaaga	caccacaaac	cagagtgagt	gctctgtaaa	57660
cccatagagg	caatacatca	tgtacatccc	aaatatgaca	tttattggag	atcatttggt	57720
tatcagtcct	ctgatctgaa	caattcagtt	tggtttgaat	gatctacatc	actatttcac	57780

ttattcatcc	tatgcagaaa	aaagatgcct	gtgaaatgca	ggaggagggg	agggatgaaa	57840
gaaatatgag	caaggagaaa	agcaactgag	gaggatgcag	aaaaaagcac	agatgaaaga	57900
agaagcagca	gagtgaagac	taagcccatg	ctgttggaca	gaatacatgc	tctgcctgat	57960
taacaatata	catagcacag	tgccaagtgt	ggctgaatga	attaccagag	ccaattaaat	58020
gtaccgagag	cccactaggg	gctaagtgct	aacgacacaa	cggtgaataa	cttaaggctc	58080
ctgctcttaa	ccagctcaaa	gtttagatga	ggagactgat	aactaaacaa	gtaaatcaca	58140
ctggaatgcc	ataagaaaca	cagaatgtca	aaaaagcccc	caaagcacca	tcagaggcag	58200
aagggattct	ggagaggtat	gctatttgtg	tgcctttagg	taagtaattg	aacctcattg	58260
taaaaagcag	ttctatctgg	ctgcctatct	cttgagtttg	ttttgagatt	aaatgaattc	58320
gtggttgaaa	atccactctg	caaactgaaa	gtcctatact	atggtatgag	acggctattt	58380
cctccactca	tttgagcaaa	ggcctattta	gtactcactg	tgcactggat	accaataccg	58440
agggactgag	tgtgagtcct	ctctgtcttc	tccctgtccc	tetgeegtee	cacaccttgg	58500
cacaaccaat	ttggttccct	actgtgtgtt	gacgttgaca	cagtgcaccc	acgaacacac	58560
aaccggaaaa	acaatatgag	cactcaccac	cttcaggttg	cctccatcct	ccatgtgcac	58620
agaaggtagt	agggtgagtg	tggggcactc	agggagagcc	cctgctggat	gtgacagtcc	58680
tggccctctc	cccagccccc	tttccttctc	tcattctcat	cctgcttgcc	tctcttttat	58740
cgacagttcc	ctttcccgcc	tttcctgcct	acttctctct	atttgtgact	gtttttctct	58800
gttttctccg	ctttactcct	tctcagcatt	tgggcattag	cgcttctccc	atttaagaac	58860
agagtaattc	ctaaaatctc	ctggaagctg	tctgtgagga	gcagagaaga	ggggaggtgc	58920
ctccatggag	gccagggaac	ctccgcagct	gtctcagagt	cccattccca	tgctaggact	58980
ctctaacgct	gcctgcttcc	tgcctgactc	cctccctct	ccggcctccc	attctctccc	59040
ttccctctcc	acccctctt	tatcctgtac	ccctcctctt	ctccctcccc	tctcccctct	59100
cctctcgccc	ctcgcctctc	tttccctttg	cttctgatta	ggcaattctc	tccctagtcc	59160
tgtccttttc	ttcctcaggg	accctaagcc	cacgtcccac	ttttctttgt	aatctcgacc	59220
teeeggeeee	cgcgcgccct	ctctcggtcc	tagcgcccct	ttctcccctc	tcctccccca	59280
cctgcctctc	cccagctggc	tctgagtcgc	gctgggacga	ctggcgaagt	tcacccggga	59340
ctccaaagcc	cggacacgta	gcagctctgg	gctctgctca	gcagcggatg	agctcactga	59400
attttgcgca	cttgattggc	tacttcgggg	cgctgcggcg	ggagaccctg	aaaagattcg	59460
caaggccggt	ttctttgtcc	ctccgcctct	tcaggttggg	ctagggactt	aggccattgg	59520

gtatttcttg	gaaatggaat	tccagtaacc	aagaaaggaa	taggcagaca	ggtaggggta	59580
aggtaggtgc	caaagggagc	atggaattga	tttaaaattg	tctgcagggg	gatgtaggaa	59640
gtaagtttct	tggtttcctt	agttttcctt	gcaatacctc	aagaaaggcg	ttaggagcca	59700
ccttatagga	agagaggtga	ggaggtgacg	caggccctgg	aaaaggggtt	tgttgtccca	59760
gaggaaggag	cagactcagt	catttagagg	ggctaagggt	agagtaggga	aaaaagataa	59820
tttgagtagc	ccatagaagg	tagcaatctg	ggaagacatg	gtacaacttt	cagccctaac	59880
catgatctgt	ttcttcaatg	gtgggagtct	cacattgaaa	caaatagagc	tttgtattta	59940
aaatcaggca	ttgaatttct	agtcttcatc	tcctatttgt	atgaccctgg	gcgagtcatt	60000
tcattctatt	tccactctgc	aaaataggaa	tgataatgtc	cttgtactta	ttttacaggt	60060
ttattaagag	ggttacatgt	gaaagtattt	tctaattatt	aaatgtgtag	taattttagt	60120
gaatcatatg	gtggagcaga	aagaattctg	gataaggaat	gagaaatctt	tggtggtctt	60180
tcatttttct	ctagtgaact	tcaccaagtc	acttttaacc	tttaagggtt	tcattgtcct	60240
catctgcgaa	gtgggagaac	tagactggat	gaactcttaa	gatctctttg	gcactaacat	60300
tctatgactg	actgataaaa	gttagcatcc	tcctttaatt	caccccttca	gagaaaaagt	60360
cacttccttt	ttcagaactc	tagttaattt	cgccccttgg	taagaaccct	accttctctt	60420
aggtatcctg	gtgaacctat	ttttcacagg	gacctagcct	ttcccacatg	cccagcaatg	60480
aaagtagagc	cccacactgt	agcaggatac	atgtagggct	catgcttgat	ggagattctc	60540
tccccaggct	actggcagga	gcaggatttg	gagctgggaa	ctctggctcc	actcgacgag	60600
gccatcagct	ccacagtctg	gagcagccct	gacatgctgg	ccagtcaagg	tgagaatcca	60660
ggccccctca	tctcaatgtc	cctcagttcc	ctcactcatc	ctcacatcct	cteccactca	60720
tgttgccttc	accacatgtt	ctcactcctc	tcattaccac	acagcacttt	ctcctttcca	60780
tctgacattt	tagttcttag	tctgcaccac	caaattctgt	tgcacctact	ccttcttccc	60840
ttactccagt	acagagacct	ctgtacaccc	tacacttctt	tccaaaaata	aaatgattcc	60900
aggggaatat	attactcaga	ataaagaggt	tctgggaaga	cacaatcagg	tagaattctt	60960
caaagggaac	cagggacaaa	gggatgactg	gtcaaaaatt	ggcacgtggc	tatggtaaat	61020
gaaaggtttc	tcaaaccatt	tgagaggttt	taggaatata	tcactttcag	ctttactcag	61080
ccagetcagt	ccatggtaca	ctaatctcaa	aatcatagtt	ttaatgctca	atttagatga	61140
tgacttgaga	agcatttcaa	tgtaaagggc	accttattga	aagacacagg	aacagagttc	61200

tagttctaac tcagattagt acagtgagct taggcaatca ttgcatctcc attgcctcat 61260 tgcctacatt tgtaaaatga gggattccat gatcccaaag atctcactca gttctactaa 61320 tttttacaat tcttaatget gaaactaace accaggettg tgeteeaatt tgggaacagt 61380 caccctgaac agtcgatgct atcagtcaat agcatcaact ccagcacgca catcttcatt cctcagggcc tctgctctgc tgggagcacc cattggctat ttcttggaaa tggaattcca 61500 gtaaccaaga aaggaataag cagacaggca ggggtaaggt aggtgccaaa gggagcatgg 61560 aattgtttta aagtteteta eaggggaatg taggaaataa gtttettagt tteetattea 61620 gacataagca atgttggtga aacaatttag tgtcaaagaa cagatttttg tggatgcatt 61680 agaatcagac ctggaaggtg ttgtctattt tagatttgtt cggtggggat cagtgctact 61740 gagtcacaga gagtcagttc tgaagatgag ggaatcagta caggaaatca gaatccatgc 61800 tgtggggaac aaggaacaac aggaatagtg tcatggagcc tgaggggctc cccggtaggc 61860 gtgaccagaa ggcacagttg agatttaaat gcctcatcca taagatatct tcctagtcct 61920 ttttgttttg ttttgttttg tttaacttga ctaaggagag aaggattaga aagcatgttt 61980 tcatcacatt gaagagaaaa ccttaatcct tccctcttta aaatgacaac atcaggatgg 62040 tgatttgggt tgtgtgttgg gaggcgggta acactaatac cacggggaat atgctaaggg 62100 ccttgactga agggaagtta ttgttagacg aattgaaatg tatgtaaaaa tgtttcactt tttaaaatat tttgttttgtt ttgcagtttt ctaccagcta cctcttgtgt aaatgaatgt gcaatccaag agctggttta gccttttccc cattttagtt ttaggattat tagtcacaac tgcttctcct gttcttgttc ttatatgtag gtggtggcag gaaggccaaa cgtagaacaa 62340 62400 cagatatgtc tgtgtgtttt cagaggtaaa tggtagaacc atatcagaaa agacacatgt ggagtggtat gtgcagattt ggggtgcctt tactcctcta aatgttcgtg gccctgtcag 62460 ttcattcagg aaacatttaa caagtgacta tttgtttttc tgtgtattca aagtaagtaa 62520 aactaagate tgtettteee teeacegeea ceaceacete tttteettee eecatgaaae cttacgggta cacagagacc ttgtgtacac aagggccttg gatggtctga actagatgag 62640 gtgtactttg gctcagaaat gggaggaggg gctaggggtc ctcaggaaac taacactctt 62700 ctactcctgc agacagccag ccctggacat ctgatgaaac agtggtggct ggtggcaccg 62760 tggtgctcaa gtgccaagtg aaagatcacg aggactcatc cctgcaatgg tctaaccctg 62820 ctcagcagac tctctacttt ggggagaaga gaggtagtat ctcatgagtt atctttctcc 62880 gtgaaaacca tgggctagag aaggggactg cagacaccga ggggaactgt tcctgtcatc 62940

cagaggctga	gaaacatggt	ggtctgctgt	ttgaggatgt	aacaagccat	gagttcccca	63000
actggttcca	gtattgcagc	tctgatttac	agcatgcata	atcttacagg	gttctggagt	63060
gacttcaccc	cacaggagga	actctaacag	gaagctgaag	tcagtgttgc	cctaggtatc	63120
tgacaatgaa	gctcacgaaa	tccaaactat	tttctgagta	gctcttaggc	tactatgtct	63180
aatgacccag	aaaagtgatt	gaataactta	aagactgctt	aaactcagga	gcagttattt	63240
tttccccacc	caccatacta	gaccccttcc	cccaaagaag	ctggcctggg	attggaaggt	63300
aaacatgaaa	ggtgccagta	aaatcctagc	tttccattct	cttgatttcc	ccagcccttc	63360
gagataatcg	aattcagctg	gttacctcta	cgcccacga	gctcagcatc	agcatcagca	63420
atgtggccct	ggcagacgag	ggcgagtaca	cctgctcaat	cttcactatg	cctgtgcgaa	63480
ctgccaagtc	cctcgtcact	gtgctaggtg	agactcccaa	accccagtgt	ctctacagca	63540
tgcttccttg	caaacaaacc	tccctagatg	ggtccctgaa	gcagctggga	gccaggcaag	63600
tctccaagca	ctttaggaaa	gttcagcctg	tgttcccctg	gcaatgggat	aaaatgtaaa	63660
aagaaatggg	ttttaatcct	ttgtgctcta	cttgctgttt	gatctaggac	aaggttctta	63720
ctctctttga	gtctgaattt	tctcttataa	cagagagatg	atcatacccc	ttctacttac	63780
ctcccaagat	ggtgtgagga	aaacacaaga	catgcatgtg	ttataatttc	caaaataagt	63840
accccagttg	cttacatgct	ctcatcttca	tcctatattt	catcctatat	ttcaacttcc	63900
ttctttgcgt	ctctgagact	cacactattt	ctgtggccac	ccaattgtgc	tgtaagtgga	63960
gggtcatata	tcatgcctgt	gctatggcat	tgctcctcac	tgccatgctg	tctcccgcag	64020
gccttccttt	ctggtcctca	gggaggagat	caaaaagaaa	gatgatttat	ctagtcttct	64080
acccatcaga	aattatagta	gaacccaggt	acgcagagaa	gccatctcca	cagggagagc	64140
agaagtgtga	ccccatgggg	cctctccttc	ctatcctggc	catcccctat	ccatggcagg	64200
aattccacag	aagcccatca	tcactggtta	taaatcttca	ttacgggaaa	aagacacagc	64260
caccctaaac	tgtcagtctt	ctgggagcaa	gcctgcagcc	cggctcacct	ggagaaaggg	64320
tgaccaagaa	ctccacggtg	agtacctcct	gccttggggt	tacaggagaa	agtggtgctg	64380
gaaagagaga	gaagtgcctg	tctgtgaacg	tacacaggag	gcatggtatg	gaagagaaaa	64440
ggggaatgac	atatattttg	tgtgcactca	agtgcctatg	tgtgtgttgg	ggcctacatt	64500
ctccctgcca	caactttcta	agtttatcta	ggttgagact	caccatctgt	acgtctacaa	64560
tgaggcccac	atgatatctg	tatgttaggt	ttactctgtg	tctctctctg	tgtgtttgtg	64620

tgtgtgccac	tgtttctgca	ctctaggaga	accaacccgc	atacaggaag	atcccaatgg	64680
taaaaccttc	actgtcagca	gctcggtgac	attccaggtt	acccgggagg	atgatggggc	64740
gagcatcgtg	tgctctgtga	accatgaatc	tctaaaggga	gctgacagat	ccacctctca	64800
acgcattgaa	gttttatgta	tgtcatgggc	ttggggatga	agaaggatga	ggtatgagat	64860
gaggaccagg	gagaaagaga	atgcaggtga	ctgtgcatga	aacaacacgc	acagttaagt	64920
gaataggtaa	aaaatgaaac	aaagactgcc	aggactaggc	cagggttggc	aaactcttta	64980
cagagggccc	agtaatgaat	attttaggct	ttgagaccca	tacagcctct	gtgtcaacta	65040
cttaattctc	cgttgttgta	gggacgcagt	catagacaat	atgtaaacaa	acgagctggg	65100
ctgtgttcca	gtaaaacttt	atttacaaaa	gaatgcaggt	ggcaggattt	ggtccaaggg	65160
gataccaacc	cgtggtctag	gccagtataa	tgtagccagg	ctgcaaactg	ttgtcgtaac	65220
tgtggtaact	caggattccc	aggaagtagt	ttctagtctg	cactccacca	cttactagct	65280
gtgtgatatt	cagaagatta	ctttacccca	ctgagcttga	ttctatattt	gctaagtgaa	65340
agagatgagc	gtggggatca	ctacagtttt	atcttggttt	aacaatttat	gatttcaaga	65400
aaatatgggt	ggtaggaaag	cacagtttcc	ctggcatcat	tattcccaga	tetttteett	65460
actgactgct	cttctatttg	ccccagctcc	atgtattttc	ctgggattct	gacctgaaat	65520
ggccactgtc	actgtcatta	ctcctggccc	ttcccaggac	actcacaccc	tctgtggaat	65580
ttgcctttag	tatggttagg	acacttctga	ggaagtttgg	aaacgggaat	ttctcatctg	65640
aggaaattca	gaaatttgta	aagaacagcc	tctctgggtg	gaggaaccaa	agggaaaaga	65700
atcagctaaa	gtccaatggg	agaagttaga	gttaggaaat	ggtgtatttc	ttgtcctaac	65760
ttacctaaaa	gttgggcagt	tttcaaaata	accaaagccc	ttcatcctct	tcttgtggag	65820
tcgacctagg	cccaattatt	ttcctaactt	cagtgttatt	taatcatatc	ttagacccat	65880
tactcaaact	ttaacctgag	gtaggtttag	ggtgcatcac	tattcatttg	gcagactcaa	65940
tccacaggcc	gacaatccgg	actctagccg	cagtgctgcc	gcttactagc	tgtgctcctt	66000
tggccaaagc	atttcatctt	tctgtggctc	ctgcttactt	tgctgagtta	ttgtgaggat	66060
aaataaaaca	atgcatgtga	aagaactttg	taaatgtcaa	agttctatat	tcctataagg	66120
tgcttctctg	attattagtt	cctagtgtga	ggccctgacc	tggagctttt	cccccgccc	66180
cttggtccct	ggccagagct	aaagccttgg	teceetgeet	gagccccaaa	gactcctctg	66240
ttagatacca	gaccatctgg	cagttactcg	ccagggaccc	ttttagccca	actgtgatca	66300
gcagtcagtc	aacaaatgct	atgctccagg	cactgtgcta	gaggtttcta	tggccatggg	66360

gtcccagaac	gcctattctt	tcacctggcc	tgattctcta	tgtcccattt	gatttggctg	66420
aaacacgttc	attaactggt	tgttaaagtt	ggctctatcc	ttaggggaag	ctcagcctct	66480
ttatctgttg	ttctcgacca	gcatctggtt	gtattgttct	gagcggccat	ctggacctag	66540
cctcctaagc	agecettegg	cgtcaatggc	agatgccatt	cttccttcac	agagcccttc	66600
tatattgtgt	cagtgccttt	ttgcagccaa	aatatgaccc	tggtctcttg	ctgtttcaaa	66660
gctctcactt	cgtgtttgca	ctgaccattc	aaaatgatgt	tttgtgttca	agcattgctt	66720
ccagttctaa	gctcccttgc	agagcagaga	gaactgagaa	gttgtgagct	caatatgtga	66780
caagttcaac	tttatttgtt	ctgtaaaaaa	tatgtattag	gtctttccta	tgtgctagga	66840
ggtttgctag	gcacaggtaa	accactcatt	tcccttctca	gctttctgtt	aagacatctc	66900
ttagggccca	ccaaggacag	accttccaga	atcctatcac	acaaggttgc	aagagaagtt	66960
gctcacatat	tcaatagcaa	taatggtcct	tgttcatgag	aagtaggaga	aggaaggtct	67020
ttgttgcact	tcttgagctg	cggaaacatt	tagaggtaga	agctgtagtg	tgcaactaag	67080
tgagggaatc	tcctaagccg	tgtggggagg	tattcattga	taccatttcc	ttctccacag	67140
acacaccaac	tgcgatgatt	aggccagacc	ctccccatcc	tcgtgagggc	cagaagctgt	67200
tgctacactg	tgagggtcgc	ggcaatccag	tgtaagaaga	tccatttcct	ggtctcctcc	67260
ttactctcca	cattctcaga	ttgccttctt	cacataacag	ctccttccta	tctcctctgt	67320
attgtctgac	ctgagcctct	catttccctg	actgtccaat	aatgtccgcc	tgcaattagt	67380
tcttctgcaa	agcagcacaa	atgggaaggg	gccactccct	aactcagtcc	ctgagtttcc	67440
cacaaaggcc	aagttaaagt	aagatacaag	tctggagatc	tacagettee	ccagaacgaa	67500
ccccaagagg	ccacctggcg	tatagcagct	ccagtgtctc	tggccccgat	aatttctcca	67560
gcctcatcaa	acagtccttg	acatccctgc	tcccagttat	tttttttt	cttttagctc	67620
cctggcctat	gctctcctga	gctcttctga	tttgtctgcc	tcgacagccc	ccagcagtac	67680
ctatgggaga	aggagggcag	tgtgccaccc	ctgaagatga	cccaggagag	tgccctgatc	67740
ttccctttcc	tcaacaagag	tgacagtggc	acctacggct	gcacagccac	cagcaacatg	67800
ggcagctaca	aggcctacta	caccctcaat	gttaatggta	agccctcctc	agttctcttc	67860
ctccagaatc	teetttetet	gtccatctta	ttcccttttt	taaaatgctt	cctgataaca	67920
tccccaaact	gtgacgggga	gtggagtaaa	ggaaaaccag	cccaccactg	gggtccctga	67980
gggcttaggt	cccaggtcca	ctctagaatg	tgtaatggcc	gcttagtgaa	aaaacattag	68040

aagggtgggc tctcatctgc ctttctttgg tagtggtggc ctgggtgaca ccatcttcca 68100 tecectgeae ttgtetgaca acaagaacaa taattetgtg tgeagaggee ceaaageete 68160 tcaagtgcag gcgcaggtgc atttccttct ctaactggct cttctcagag ttgcttctcc 68220 taagactagg tattgggtgc atgcaactgc tgtcattttt ttttctgccc accttaagca 68280 cagtgtactg ggtctggaca gaaaatagag agaagcttgt actatgccaa gagacagaat 68340 cttttctcag atgccatatc ttctagaagg accaggtgat gctccttctc tgaagttctt 68400 ctcaaagctg tgaccacaaa acccagcttc aggagtagtg acagggtgac acagaggccc 68460 ctttatggag agttgacggg cgatttttt gaagatccca atggctgtgg gtcccgccag 68520 aaagtettat ettteeteag aataggggaa atgeattgte ggggaaacat cagaggetee cttacttgag acactcatta aaacagttga ggggataaga gccaggcctc ccagcgataa 68640 gaggtctgag ttcttgggat cagaatgtct ggatgggtga ttcccactcc aggggcagac 68700 ctcagcatgt gggagctgcc tcagcacaac aaggctattg taggatgcca agagcaagga 68760 caatgcactg agctccggtc tctgccccca gatctctcca gaccaatctg atgatgattg 68820 gcagtgagag aaagttettg tgcccttgtg gttggtatet tgctgatete ccctctgett 68880 tgtgctcaac agccaggcag agggagtcct gttggactgc gtctgtttcc agtgctgacg 68940 cctggtggta gaaggagcta ctgcatcttc ttccaggaat atccttaagt gggcgggact 69000 ggaacgaaat taaatgcagt tctacctaga gacaggggcc tgtaattgat gaccccagag 69060 gtcgtttggc catggaaacc tgtgcttttc taaggaactg ccatttccat agcctgtgga 69120 ataagtatcc aggattgatt ttccatgtgg actgtctcgc atactccctg agagagagac 69180 agcaggtaac tcactctgct tcctccaagt tacaccatca cctccacccc aatcatatca 69240 tagatttcct ggactcatcc tctcccttcc tcccaagcag ggcataaaaa accagaacac 69300 aaatgttttc ttttcaaata aggtgtagac aggcaaggaa ctgaaacgcg ggcccagcca 69360 agcctgagga gacataaggt aggaaagaca aaatatgtaa ggagtcaatg aggcattaag 69420 actcaagctg agtccatgga aaacagcagc tctcccatgg gtgggagagt tatgtctatg 69480 gctacatcag aaccgtgtgc tgggcccgtg cgagtcctca gatatttggg actctggctg 69540 tggctgctga tgtctttgcc acacceggcc cagtctgtgc tgttgatcct ctatacaggt 69600 tgtcaatcct ctacataggt tgccaatcct ctacctaggt tgccatggag gacagatgct 69660 atatattcag tggcagagac atccactagc atgagagaaa gcatcttttc ctttgcacaa 69720 acactttgag ggtggcaaag tgaagacgga gtcccaggcc tcctccttgg gaaagactag

aggcttgggg	tttcactgga	acactaaact	cacctgccac	aaaggaacag	tgttctttac	69840
atagatgata	gattgtggcc	ccttacatct	atcatctttc	gtaaggtgct	gtcaaagtgc	69900
ctaattcttg	gctctatcag	gttttactgt	tccttcccta	tctgatctta	gggcagtggg	69960
tgaataggct	gagaaggccc	ttagagctag	gggagctggc	tcagaatatc	aagcagacag	70020
gagggtaaga	gggaatgggg	acagagaagg	aacactctga	taacccagaa	attaaaaaga	70080
aaaagaggga	gaaaagaaag	aaggaaacag	ggcaggagga	gagaggaaag	aaggaagaga	70140
ggcaggaaga	aggaaggaaa	agaagaggcg	gagggaggga	ggaaggaagg	aaggaaggaa	70200
ggaagaaatg	gagggaggga	gggaaggaag	gagaggcatt	aaagcaatga	tctttgacca	70260
aggccaagct	tcagtgccaa	gaactcaact	tagatgacta	ggtatgggca	gatttattta	70320
ttcattaatc	catcaatttg	ttttaacaaa	tactataata	caggtgtggc	gtataagcac	70380
aagataaggc	atgatgaatg	acactgctcc	attttcctga	tgttagtacc	tgttccctgc	70440
tgtgtaagac	tattcatggc	caagttggaa	tgctataaga	taagggctct	ccccagatct	70500
gactgtgtgt	gttgcccttt	cttccagacc	ccagtccggt	gccctcctcc	tccagcacct	70560
accacgccat	catcggtggg	atcgtggctt	tcattgtctt	catgatgata	atcatgctca	70620
tcttccťtgg	ccactacttg	atccggcaca	aaggtcagag	gcacaaagag	agcatcagca	70680
gaacttggga	ggggcaggga	gaccaatcag	aggcaggcac	gaggagaagc	agacagtgga	70740
aagggccttc	agagacttgt	cagccctttg	gagtgtttag	ggaattaaaa	atggagccaa	70800
ccctatcatt	gccaaccctg	tgataactga	gcaccaccaa	ccccgcagta	aagcctgatc	70860
acttggggat	cgtccaagtg	aaatcaaacc	ttcccactca	gtcagcggtt	gctcccatgc	70920
tgctctacct	ccaggtctcc	tgctgcaaga	cagagagete	ctgaaactgc	atctccatct	70980
cattgcttcc	tgcgctttct	tcctttctgt	ctgtttaacc	tcattttctt	tctcctttga	71040
tctcattgcc	tttctttcct	ctccccttt	tctaccttct	ctcttatatc	catgccttct	71100
ctctaccctc	ttctcacatt	ccttcctctc	agacttcctg	ctctgctatt	aattctagcc	71160
agcggcctga	ctccataggc	tggtcataca	taagccagat	ctcaattgct	ttgctcatga	71220
agctgacata	gcagatcccc	cgtcaccaag	ttgcgtgcac	acgcatgcat	acacacacac	71280
acgcatgcgt	gcaagcacac	acacacacac	acacacacac	acacacacac	acttctcttt	71340
cttgctttgt	attatagatg	agattctact	taggggtagg	attcattatt	catgaagggt	71400
gtggtcaggt	gaggcatgtt	ggaagcaaaa	tgcgaattag	gtaaggtgga	gtagaagaga	71460

gctattggca	agagaaaaat	tacttgagca	gtgtgtgagt	gggtgggtga	gaaagtgggc	71520
agggtggact	cagaggttgg	gaagctgctc	ctgagaggag	aagcctctgt	ctctacacag	71580
gaacctacct	gacacatgag	gcaaaaggct	ccgacgatgc	tccagacgcg	gacacggcca	71640
tcatcaatgc	agaaggcggg	cagtcaggag	gggacgacaa	gaaggaatat	ttcatctaga	71700
ggcgcctgcc	cacttcctgc	gcccccagg	ggccctgtgg	ggactgctgg	ggccgtcacc	71760
aacccggact	tgtacagagc	aaccgcaggg	ccgcccctcc	cgcttgctcc	ccagcccacc	71820
caccccctg	tacagaatgt	ctgctttggg	tgcggttttg	tactcggttt	ggaatgggga	71880
gggaggaggg	cggggggagg	ggagggttgc	cctcagccct	ttccgtggct	tctctgcatt	71940
tgggttatta	ttatttttgt	aacaatccca	aatcaaatct	gtctccaggc	tggagaggca	72000
ggagccctgg	ggtgagaaaa	gcaaaaaaca	aacaaaaaac	aaaaccctgg	agtgttagga	72060
ggagagtgaa	ggtagagggg	tgaggaaggg	taaggggcag	ggctggtttc	agctgggggc	72120
tctcaccagc	cctcctttca	gcctctacaa	cagagcagct	tcccagactt	ctccaggaac	72180
ccagaaacgg	gatggttgtc	ggcaaaggtt	gggagtggct	tttcctctgg	tagccacaca	72240
cctgagcact	acggacaggg	aggcaggtgc	caccttgaca	cctctcttcc	atagcaatgg	72300
gaaagtgatg	agtgcgggag	tcctgaggag	atgtggcctg	cagacaacat	gcagccatgc	72360
agggacccag	gactgtaacc	tggggaggac	gcgggtccct	gcaaggaaga	gtagatttgg	72420
agaggaagga	tggaggtgga	ctctcacccc	attccccccg	gaaatgaaca	aagccgggcc	72480
ctttccatag	gaactgccct	tggagatagc	agagtgtggc	tgcccctcct	tgctccagca	72540
gcagtgggag	aggcactgct	ctggggcctg	aactgcctct	gcttccccc	ctgaggggcc	72600
cctcactctt	acccaagact	ctggattgtt	gcacggcaac	cactcctccc	atggcattgc	72660
tcagcaacta	cttctccctt	cccggccacc	ctgtgccccc	ttcctggtcc	caacgccagc	72720
ccttcatcct	tcctccctca	gcagccaggc	agacataaca	acaaaactac	taaaaggagc	72780
ttcactgcag	tgagctgttt	cctgcccaaa	ctaagggaat	aatgtgaact	gtgtgcatgt	72840
gtgtggtgtg	tatgcatgtg	tgcatgtgtg	tgtgtgtgtg	tgcatgtgtg	tgagtgagtg	72900
agaggcagag	cgaggaactg	aggaggaggg	ctaagagcca	ggggtcctgg	gcaagtggac	72960
agggctgtgg	gacatgttgg	ggaggctttg	ggaatggggt	attcctagtc	agggttcaca	73020
cctcacctgg	gatgttgttc	catgctggta	tttcctctgc	cacccccaat	gcccatcggt	73080
cttggagaaa	ggagtccccg	ggtgtgtgtt	tgcccagctg	tccattctat	ctctccctta	73140
aacacagagc	attcagccct	tccctggatt	tccctcctct	gagccatgga	gtcagtgcca	73200

cagcctttgc	tatgcacctc	tcaggcctct	ccttggcgtt	gaccctggaa	agacctacca	73260
ccacctattt	tttcccatag	tctgtaccca	gtgagttgaa	ggctgggtcc	ccacccttcc	73320
ttttgatttc	ctgtcttcct	tctcgtggcc	ccagctggtt	gctgtggaga	tgaggttcct	73380
ggtcctccct	gtcctggctg	gactgccccg	cctcagatcc	aggatgccct	tggcatcgct	73440
cccaccctcc	cccagctttt	cctccctggt	ctgacaatgg	gcatgcaaaa	aggggcagct	73500
gcaatctagc	aggcctgccc	accccttca	gttcaggtaa	tacagttgtg	aatcttccag	73560
ccgctggtta	gggccttggg	caccacaggc	agcccctcac	ctaagccggg	gcctactcct	73620
cttacaacag	caagagagcc	ctggggcccc	aggcctgttg	agcttcttgt	ctcccagcac	73680
ccgcttttgg	gaaaatgact	tttcctcttc	aagctgaacc	actctgtcca	tattacacag	73740
aagccatatt	tgtacggggg	ggtgggaggg	agaggggctg	ttgtgctgtg	tgtgtctgtc	73800
caggggtggg	ggggtggggg	aagggagcag	ggaggggacc	gtgtatcttt	ataatctttc	73860
taactctcct	gtgctaatct	cagaggggtc	accctcaata	tatctggatt	atccgtgtca	73920
ttcagctgcc	tcctttctgg	tcctcttgct	gctgctggga	tgtgtgtatg	tgagggtctt	73980
cttcccatac	cccttgcacc	tggtgcctgg	tgcctcaaaa	ggtggtgtgt	cccttgccag	74040
gccactctca	agaatatcta	tgtacagcaa	caatataact	ctacaaggga	gagaagtgtg	74100
ttcacttcct	tttgctaagc	ccttcctttc	cagagagtgt	cttggggggc	atctgactgc	74160
ttccccccac	cctctgccag	gcattgctgg	agaatgttaa	gacggcgatg	gagatgccat	74220
caaccccacc	ctgcagagca	tcaccagaca	ccaccagacc	aaattcactt	tccagcccct	74280
tcatgttgaa	cctgaaactt	gagctagtgt	cttgggagaa	aagggggaaa	tctctacgag	74340
gtacccatcc	ttctgcacct	taggtctgag	gtgcttggcc	ccctaggaag	ccctacatga	74400
atgggacaga	aggtccttaa	caacactgga	gatgaagcag	ccgatgctgt	tttggacaaa	74460
tgaaacagcg	tcccctaacc	agccctttct	atctcattgt	tctgacttgg	acacgccatg	74520
gctcaccgct	cccaaagtcc	ccactatgtc	tecctagetg	aggaaataaa	agcagagagg	74580
ggtgatgaaa	cagtgacgat	cctggggaaa	cagctgagga	ggggagggag	ggggaagaag	74640
ccactaaaaa	agtgaaatgt	gcttgggaga	atcggcctgc	ctgcagggta	gatgcccttt	74700
ctctctgctg	gccagctctg	cccctcagtg	agaaacttta	catattgcta	agatgcctgg	74760
ccaatgaaac	agttccagag	actttatgtc	ccccagtaga	aatatgaata	gaaatcaccc	74820
tgtgggcaat	ggtcccattt	taaaatatgc	tgtcccattg	tcccctagag	cctactttaa	74880

cttgtcagac	catgtattcc	acttcatatg	caagaggcat	gcactgagcc	cataggtggc	74940
taggcaaaca	cccaatagct	ccctgaaatg	gcttcattat	gcagcctcga	cagccacccc	75000
aaccctccca	ctctcacact	gaaacaccca	gacctagaga	tagctagaca	cacccagaca	75060
cccgccaagc	ccctcacata	cagatatgtg	cacaatgata	cacagcaaac	gtacacagag	75120
ttcagtacac	acaaagagct	cacgcccacg	tgcacacacc	cctcagttgg	gacagagttg	75180
accaccacca	cctttctccc	aaacacatgg	cttttgaact	gcctttcctt	ggatccagtt	75240
caaggggatg	gaggagcagt	gagagtcagc	cgcccttcca	ctccaatttc	ccagcacctc	75300
ccttatctct	gcctcacaag	tcacccagcc	cccctctctt	ccttccttgt	gcttgaagaa	75360
tctctccttg	ctggaaagcc	ccctgttttc	tcaatctccc	tttccacttc	ggtaaaatct	75420
ctacttgctg	gaaagccccc	tgttttctca	atctcccttt	ccacttcggt	aaaatgccca	75480
ctttctggtc	cccacctttt	tcctgagtgt	agtcccaacc	agccaaatcc	aacctcaaaa	75540
caggaagacc	caaggccagt	gacccccata	ggcctgaggc	ttgtgcaggc	agtgggcgtg	75600
gggtaaggct	tcctgatgcc	ccctgtccct	gcccagaacc	tgatggccct	cattagtcct	75660
tggctcttat	cttggaagca	caggcgctga	cagccgtccc	agcccttctg	tetgegggee	75720
tgaaccaaac	ggtgccatgg	ggaactgtct	gcacagggtg	agtatggggc	caggccccag	75780
agtcccttat	ccctatgccc	ctcatttccc	gtgctgtttg	cccctcagtc	tttatatctc	75840
ttccttttcc	tcctcatctt	ttetecette	ctgcttttt	cctcttcctt	caaagtcttt	75900
ttccttctct	ccttcctatg	ctagcctcct	agctccctct	tgtgtccctc	cctttgcctt	75960
tgagtcagtt	ccatcctggt	ctcttggtgc	cttttccttc	tgaccttgca	ctgctcctcc	76020
agccccagct	gccctggctt	ccccaggact	gttcctgctc	cggctcttca	ggctccctgc	76080
tttgtccttt	tecaetgtee	gcactgcatc	tgactcctgc	agagaccttg	ttctcccacc	76140
cgaccttcct	ctctgtcctc	ccctcccacc	tgcccctcaa	ttcccaggag	actcttccgg	76200
tgtaactctg	atggcctcct	ctgggtatgt	cctccaggcg	gagctctccc	cctcaactga	76260
gaactcaagt	cagetggaet	tcgaagatgt	atggaattct	tcctatggtg	tgaatgattc	76320
cttcccagat	ggagactatg	gtgccaacct	ggaagcagct	gccccctgcc	actcctgtaa	76380
cctgctggat	gactctgcac	tgcccttctt	catcctcacc	agtgtcctgg	gtatcctagc	76440
tagcagcact	gtcctcttca	tgcttttcag	acctctcttc	cgctggcagc	tctgccctgg	76500
ctggcctgtc	ctggcacage	tggctgtggg	cagtgccctc	ttcagcattg	tggtgcccgt	76560
cttggcccca	gggctaggta	gcactcgcag	ctctgccctg	tgtagcctgg	gctactgtgt	76620

ctggtatggc	tcagcctttg	cccaggcttt	gctgctaggg	tgccatgcct	ccctgggcca	76680
cagactgggt	gcaggccagg	tcccaggcct	caccetgggg	ctcactgtgg	gaatttgggg	76740
agtggctgcc	ctactgacac	tgcctgtcac	cctggccagt	ggtgcttctg	gtggactctg	76800
caccctgata	tacagcacgg	agctgaaggc	tttgcaggcc	acacacactg	tagcctgtct	76860
tgccatcttt	gtcttgttgc	cattgggttt	gtttggagcc	aaggggctga	agaaggcatt	76920
gggtatgggg	ccaggcccct	ggatgaatat	cctgtgggcc	tggtttattt	tctggtggcc	76980
tcatggggtg	gttctaggac	tggatttcct	ggtgaggtcc	aagctgttgc	tgttgtcaac	77040
atgtctggcc	cagcaggctc	tggacctgct	gctgaacctg	gcagaagccc	tggcaatttt	77100
gcactgtgtg	gctacgcccc	tgctcctcgc	cctattctgc	caccaggcca	cccgcaccct	77160
cttgccctct	ctgcccctcc	ctgaaggatg	gtcttctcat	ctggacaccc	ttggaagcaa	77220
atcctagttc	tcttcccacc	tgtcaacctg	aattaaagtc	tacactgcct	ttgtgaagcg	77280
ggtggtttct	tattttgtct	ggggagaaga	aggagaatgg	agagagagac	atttttatgt	77340
cagactttct	tgccagtgtc	tgcttctata	gctggcttgg	gaagaaggtg	aatgatgaat	77400
aaataccctc	agggtacaca	gatgttctct	tgaggtgtgg	ggtcacggcc	atctcaaggg	77460
agaagagaag	aggaaccaga	gcatgagggg	agtcattaaa	ccaaaaaaaa	cagaagggat	77520
ggcttagctg	gaaaaaaagc	tgttctggga	agcaaatgga	ataggaactc	aaactgagag	77580
ataaacagtg	aagagtgatg	acaaagccca	gagcaatacc	acctccccct	gtccaacctg	77640
cccagcctct	gtettetgte	tcctctctgg	ctttgtttag	tgattaggac	agtggtgggg	77700
aaggtgaaag	aagcatccca	ggggatgtta	ctcagttcag	ggaacatatc	aaggtaattt	77760
aaaaagccac	ttcctgggag	tcatctctcc	caggttcctc	agcatgacct	gaatgtgcgt	77820
gcgtgtgtgt	gtgtgtgtgt	gtgtacacat	ctgtttctcg	atctgttaga	atctaccttt	77880
atgttagatg	tatgcatgta	aaaacatatg	tccacccatg	agcttgcatc	tctgtcagca	77940
cctgaactgc	gcacacctgt	gcgtgtgcac	tgacttttct	caggacccaa	accccactc	78000
aattctgcac	tcatccctgt	tcacaggata	tagaatcggg	atttatgact	cactccttac	78060
ccaaatgagt	tttctttacc	ctggttttta	agcctagtct	tttctgtgta	ggatgtgtgg	78120
agggaagaaa	agatcaagaa	gttgtgaagg	gtggagaaac	ttgaaggggg	aggccctgat	78180
ttgattcatc	ttctgcttgg	aattccccga	atttcccttt	cagaatctca	gcttttgaaa	78240
taaaccttta	tttcccacat	acatctttcc	ttccaccttc	cacacaatac	cccaatcccc	78300

tgggcacctt	tttcccaacc	cctgattctc	tggctgctta	atcatgacct	ttgagatttt	78360
tctcagtctc	tacctaccca	agtttagatg	gctggaagga	cagaaacccc	tcctcatcag	78420
gggcacagct	tttaccacca	agagcaaatt	caccctctac	ccaagaggct	acaaaacagt	78480
tagttcctac	ctctaaccca	actaaaggct	ggggaaactt	gagcagatac	gttctatcag	78540
tttgaaccca	attaccatct	taccattttc	caaagatatg	ctatacctgg	tttctttact	78600
aaaatgtttc	tgcttgactc	tctgggcttg	ggaatagtag	gcgagtgcgg	gagaggtgca	78660
gagatgagtt	agaatagctt	aggcaggagg	gtgcaaaagg	cttagggaat	tttcctgggt	78720
gggtgccacg	acaaggcctc	taaatctccc	acctcctgtc	tcttagcaac	caccaggtta	78780
gctcctgatt	ggttcgtcct	caattgaaag	gcgggattta	gggaccgatt	gagacgcggg	78840
agacattctg	aaacagaaag	gaagggagag	aaaatgaaga	gaaaggaaat	aatttacaaa	78900
cctaaattat	gctctggttt	ccaaccacag	ttcatgaatg	tgttctagta	tttttcccc	78960
cgctttttt	tttccaggct	tctctcaata	teccetece	gtccttgacc	actcttgcaa	79020
ttctaccaga	tgttgctgtc	ctcccttaca	aggtactgat	ttggaagctg	acctagttga	79080
gggggaggag	agggcgtttt	tgactccctg	aatcttccag	tgtcaacctg	atgcaaggga	79140
ggcttaattt	aagaccagta	ggcttgtctt	atctgccccc	aaccctgtgc	ctctggatag	79200
aaatccctgg	tcagtcagtc	cagttagaga	gaaccccaga	ctcctgggta	atagcttggc	79260
agctctcatg	gctttcacaa	gggaaaggca	gctgcagaag	cccgaagctg	ctaagaggtt	79320
agggtgggct	ggagacagtg	ccctaccccc	gcccctgct	acatcctcct	catccccacc	79380
cccaccggga	ttgctccagg	ccttttgggc	tgccctttcc	ctgccattac	ctaggcagca	79440
cttggagagc	tcctccttaa	gtctaacccg	gacctcagtc	atttctttaa	agctttcttg	79500
gggacctgcc	accccatgca	tttaacccac	tgcatgccat	caaccactct	aaaattggtc	79560
tgagtctggc	atcttttctg	caacccttca	ggaatacaaa	tcctgtctcc	ttaaagccct	79620
taagaattta	atcttagggt	tggcagggac	tttagctgtg	tatgagatat	tgggcatcct	79680
agctaaagaa	aaaaatcctc	tcagaaagat	gagagccagg	gaagcaagct	cttgggaaaa	79740
cacaggaccc	tgaggaaggt	cagtttgctt	tgctttctaa	aggagagaga	tctattattc	79800
aagggaagtt	tgaacatcac	attgacgctc	atagttcatt	tattccaagc	tgaggcccct	79860
cccttaggat	ttagaaaaca	aatacttggt	cctcacaccc	tttttccatt	cctatttccc	79920
tatcccccaa	ccccatcacc	accttcctcc	ctcagaggaa	ttctgattga	gaacttcact	79980
gggatttcaa	acccaattca	tcgccaactc	taattgccag	agatttgcat	gaaaaccatc	80040

gtatgctatc	taattattct	gacaacagca	gcccgccgtc	tgggcacaag	gagaatcgga	80100
gttttaatta	acaataatgc	accttgctga	cgaatgcgac	tgtttaggtt	aattaacaag	80160
tccaagtcct	tccaaatcat	ctctagacat	ctaggtgatt	tgggcaggaa	gggtgtgggg	80220
aacacaggga	gggatgggga	gtgtttaagc	atcatttctg	caaaaatgca	cgttagcttt	80280
cttctttcct	gtaactattt	ggtgaaggga	agagaaactc	tctaagagac	tggctctgga	80340
aaattggttg	ggggattttg	agaacatctt	ctttttttt	tttttttt	gagacagagt	80400
ctcactctgt	tgcccaggct	ggagtgtagt	ggtgcaatct	tggctcactg	caacctccgc	80460
ctcccaggtt	caagtgattc	tcctgcctca	gcctcctgag	tagctgggat	tacaggtgtg	80520
caccaccacg	ccaggctaat	tttttgtatt	tttagtagag	acgggggggt	ctcaccagtt	80580
tggccagcct	ggtctcgaac	tctgacttca	ggtgatccac	ctgcctcagc	ctcccaaagt	80640
gctgggatca	caggcgtgag	ccaccgcgcc	cggcgggaac	atcattttaa	ggggatgtat	80700
cagacatctt	tatgttgcac	ttagatttag	gaaatctttt	ggatacattt	ttataaatga	80760
gaagattaag	ttcttatagc	tctctagtat	ctcaaaatca	ttgcctgatt	gtttgcaaac	80820
ttggtttcta	gcatgaaagt	ctcaacttcc	ccatcaatgc	catttgtcct	cagctttctc	80880
tatatgttcc	taccacatct	gtggtcattt	aaagttgcct	actgcttgtg	aacccgggag	80940
gtggagcttg	cagtaagccg	agategegee	actgcactcc	agcctgagcg	acagagtgag	81000
actccatctc	aaaaaaaaa	aaaaaaaag	ttgcctactg	cctttggttt	cccagataac	81060
gtgtcaagtt	tcacccttgc	cctcttcaaa	gataactgta	tttttttc	ctgggtagtt	81120
ctccgtatca	tgcaaaaata	cattgtatgt	agctccaaac	tgtacctttc	atctttctag	81180
tctttctaag	agcatggacc	tagtcttttt	cctctaaata	gggtattgct	aatgtttacg	81240
ggataggagg	agggttatag	gcctcttaga	aaatccagtg	atagtaataa	acttactctt	81300
tacaaaaatc	caatattata	ccctaaattt	ggcatctagt	tcttcgctac	tgcatttaag	81360
ttaatcctga	gtgtttctgt	accetetgae	agcacttcca	cgattagctg	gtggccttgt	81420
ctccccacag	ctcaagaagc	tttatgctca	cgggtgaatt	ttgttctttg	aaggagcaaa	81480
tctgttttcc	actctaagag	tetttgcact	tgatatctct	tctgccccaa	aagctccttc	81540
ctgtgctctt	tatatgacca	acaacttctc	gtccttgggg	tctctgtgca	aatatcacct	81600
ccctcaagag	tgaccttccc	tgacatccag	tggaatgtag	cctggccatg	ccacacccaa	81660
ttattctcta	ccagttcacc	tcggatgttt	ccactgtagc	atttatcaca	tgttaaaatt	81720

ttatttattc	gtttatttgc	ttatcagttt	actgctcgtc	tacctcctcc	ctccaacact	81780
agaaaagaaa	cttcaaccat	gcaagagtcc	tttcgctgac	tggcacatga	tcagagctca	81840
ggaaacatct	actaaatacc	caagttaatt	tcatgaataa	agattcattg	gccacactgg	81900
aacattcaca	gtccagagag	ggaagaggaa	caagtaagca	aataattgat	gcagaaaact	81960
gacctcttct	ccctaagtcc	tccagagcct	ctcccatgtc	attccagtgt	ctgggggctg	82020
aagaggctgg	agaatcttct	gtagatttcc	ggcctgtgaa	cctgttttt	tgtgtcaatt	82080
catggctgac	tggagctgag	gacttcacca	cagttcctga	accacgcatt	aaagaaacaa	82140
tgcttccttt	cctttgggat	actgccgggt	ttttggccag	caggggaaaa	ctgggaaagg	82200
ttgtcatttt	tcatctttgc	ttgaggaaaa	gtgagtcact	gagactcccc	cagagttctg	82260
ggagacaaag	tccttcactg	gctcggaatc	aaattcatag	tccagccacc	tcctcagatt	82320
gcatcattct	cagggagagc	ccactacccc	ccttggaccg	aaaagtcacc	atgctgattt	82380
tttttttctt	cggtcttctc	tecttecttt	tagtttcaac	ttagctcccc	ttccaaccct	82440
accccttccc	cacctgtgaa	cgctggttcc	tactctcacc	ttctggcctc	tgtcgccccc	82500
ctgtggcaat	tgatgtctct	gcagttttgg	gaacaggatc	gccctttaag	gcacttaggg	82560
gtgtataatt	aatttcattt	aaagaatttg	ttgagtatcc	actacattca	agatgctagt	82620
gaaagtactg	gaatacttgg	aaatgaatca	tacacaatta	ttggcatcag	aatctctctg	82680
ggcccacctg	gtcccccatc	cccttccttc	cttccttcct	tcctcgtttc	tcaaaatttc	82740
ccagtcctct	cccaaacaac	cttgaacaaa	tttggatccc	agaacacata	gaagatccac	82800
aaatccctca	gtcacctaga	cttctcagag	caaacttcta	tttcacagtc	aaaggtccgt	82860
agcaaatcgc	acagcctcta	gtcagtgagt	gttcctgtct	cagtgtcatg	ttcagaagtg	82920
ttccttacat	gcagacacac	agaagataca	agagcaagaa	gctcttgccc	tttcacactc	82980
ctccagggtg	gttgcggtgg	attctggaag	ccaacgcact	gaaagacaat	tgcccagagt	83040
agagggaatg	ggtgtggagc	cttggagaag	aaagttcttt	acaaattagt	tggccctttc	83100
ctgtctgtga	cctgatgaag	aggggaggaa	gaagtggact	gtctgtgcga	tctgcctgga	83160
tgcttccaaa	aacacgacca	tgcttctcct	cctcccatca	tctccctcaa	gccccagaac	83220
agggttgttc	ccttcacata	ctgggttgat	tgacggggga	cttccatgga	atgctttggg	83280
gaatgtgaca	agagcaagtg	aagggaaggt	cactgggata	gcaaacatat	gcagaaatta	83340
aataaagtat	tatagggatt	atgcaaaacc	tgcgtttaaa	aatcaattgc	acaaaaacag	83400
gatggaagat	acctggctca	acagaagttc	ttgtaaaaaa	aaattttaa	agacttagag	83460

gtttcacttg	gctacaagct	aaagatgatt	caatagtgca	tgtggtagcc	aaaacactaa	83520
tgcagactca	actgcattaa	gagacaaagt	gtacaggacg	agggagtgca	caggaccacc	83580
cctgccctgg	acaggccata	gttagaatag	agggcttggc	tctgggtact	gcatgtttaa	83640
aggccactaa	caaatgagag	ttcttaaaaa	gggggtggcc	aggctgggtg	cagctgccac	83700
gcttataatc	gtaacattct	ggaaggctga	ggtgggcaga	ttgcttaagc	ccaggagttc	83760
cagagcagtc	tggtcaacag	gattaaaccc	catctgaaaa	cacacacaca	cacacacaca	83820
cacacacaca	cacacacaca	cacacaaata	atacaaaaat	tagctgggca	tggcggtgtg	83880
tgcccgcagt	cccaactaca	cagggggctg	aggtgggagg	atccctggat	tctgggaggt	83940
cgaggctgca	gtgagccgtg	atcgtgtcac	tgcactccag	cctgggcgac	agagtgagac	84000
cttgtctggg	aaaaaaaaaa	aaaaaagtga	agacaaggca	gagggagcta	gtggccaaaa	84060
tgttgacaat	ctagagacca	tgttacttct	acatggagag	actaaaggtg	caagggggtc	84120
aggggtgggg	gagatttaca	ctggaaatgt	gtagaa'aata	tatagttgtc	tttaactcaa	84180
cagttgtgct	gttcaaaaag	cattaggcat	gtatgtagct	tcagaattag	aaacactgaa	84240
tgagaagaag	taacagggag	gctggttttg	gctgaatgtt	aggaagagct	tttgacaatt	84300
caatctgagc	cacagagatg	gctgtcacat	tctggaggga	gggagggaag	aagtggaggg	84360
aggaaggaaa	tgtgtatgag	cagaccgtgt	gttatgcact	gctctgtgtt	cttgttttac	84420
agtggtgagc	atatcagatg	tgggccttgc	ctttgtggtg	tttggagact	aaagtgaaag	84480
gcagtaatta	gacacataaa	cacacaaata	aattacaaat	gctgttatga	gataacagca	84540
tttaagagaa	atgcaaataa	aaaaattttc	atctctggtg	caaataagag	aaagaaaata	84600
agaaggtaaa	agcaatttga	gttatgagtt	catagctaca	gaaaggatcc	aagctgtggc	84660
ttgacggtaa	taaattatca	aaatgtcaca	gaaagcattc	cctgaattgg	gttaaagctg	84720
ggaccagtcc	agctgctttc	tttcaaattg	gcaatacatt	ggaatcacct	agaggaagat	84780
tttcaatagt	ccttgatcta	atccaagata	ccattaatca	taatttttgg	aactagaaga	84840
ctctgaaact	ctgtgataat	atgttaagtg	aaagaactag	actaaaatgc	ataatctttg	84900
attctggtgt	ctgggtttca	cttgtgatga	ctttaatctc	tttgcttgcg	ttatggaact	84960
aaattcctct	gattcagagc	taggatacct	tttctcttca	ggagaccaaa	caacgaaggg	85020
attcctagcc	agatatgcac	ctgacctgaa	tttttccaag	aggtgggtac	cattccaggc	85080
actagctgct	gcagagaaat	tgtagctggt	gcctggggtc	cctctagtgg	tcagaagctg	85140

tcacttcaat	tcgcttctct	ggcccaggtt	tggccagaga	attagaggga	tgcaggagtc	85200
ccgcaaaaag	caggcaaaga	aacctaaata	catgtatatt	tcagaaggtt	cttctttata	85260
attaacacta	aaaatagagg	tgacataact	cacgaatttc	tttccaaatt	tttcctgacc	85320
ctttttacct	tgtcttggct	aatttaaatt	tagagaaaga	agggagttga	gagagataca	85380
acttttagaa	accagagtag	acagctcccc	aggataccag	gccatcagtt	aggtattcca	85440
agtttcattt	tcattccctg	gcaaaatgca	aaacatatca	gagttgggtg	gtcagataga	85500
gcactgggtt	gagtagggag	acatgagttg	tgcattctga	gccgtagcac	ttcgcagctt	85560
tctaagtttc	taagagaaaa	agcaggtaat	gacaccttcc	ttgcctggct	cacaggtctg	85620
atgtaaagat	taaatgggat	gactgacaga	tgtggaagct	ctgaaatcag	ttacagctgg	85680
gaggaaatac	actgcaatta	gtattaaaga	agagtttgcc	ctgcaggcaa	ttcgaaaaat	85740
gtccattgcc	ttttggggtc	acttcaccct	aaacacaagt	tcttacaaag	gcaggagcac	85800
atgggagctg	gactgctagg	agttagcctt	ccagctctgt	ctttgggtgt	gttctcagcc	85860
ctgtgaccaa	aggactcacg	gaatctgcct	aaaacagtgt	ttcacaggga	cctctaagga	85920
agaattccct	tacaacaggg	gtcaacaggg	ggcaagggaa	gggagcaggt	gatagtagtg	85980
atggtaatgg	gagctgttgg	tgggtatttt	aatggcattt	gggctggctt	ttctgcatta	86040
tagtattgtt	tagagaaggg	cttaaaatgc	tcttgaattg	ccacaaaatc	tttgatcata	86100
cttaacctta	tacagggacc	ctcaaatgac	cacattgcaa	cttttctcac	aaccctctcc	86160
tgtgggttat	gttccttggt	gtcctttgga	agctccttgt	tgtgggaagg	tggagcggtt	86220
gggagaactc	atctgcttat	cagccacgga	gctcccccaa	ctcattggaa	atacattaac	86280
atcacgtcat	ctactaatgc	cattcaagtt	gtgggctatg	gatcaatatt	ggcatcactg	86340
gggagcttgt	aggaaatgca	gactttcaag	ttccatccca	gatctgctgc	tgaatcagaa	86400
gccgcacttt	cacaacatcc	taagtgattc	gtttgcacac	tgcagtttaa	gaagcacccc	86460
acattttgtt	ggatattcaa	aaaaatgaga	acctgacttt	agggtctcct	ctctcccacc	86520
ctaccactac	ctccagcagt	ctccttgtct	tccagattcc	accttaaaat	tcaggaatca	86580
ccatgcactg	aggacagece	tgcacaaaca	tctagttccc	atgctttagg	aaaagtgaca	86640
aaaacccaca	ccgccttcct	ttcccaggct	ccctctgccc	cagaaaaata	gaacttcctc	86700
aaatcttccc	ccaaggccgg	gtgcagtggc	tcacacctgt	aatcccagca	ctttgggagg	86760
ctgaagcagg	aggatcacct	gaggtcagga	gttcaagacc	agcctggccg	acatggtgaa	86820
accccatctc	tacaaaagta	caaaaattag	ctgagcgtgg	ggtggtgcct	gtagccccag	86880

ctactcggga	ggctgaggga	ggagaatcgc	ttgaacctgg	gaggcagagg	ttacagtgag	86940
ctgggattgc	gccactgcac	tccagcctgg	gtaacagaga	gagactcttc	ttaaaataaa	87000
taaataaata	aatcttcccc	taaatggcac	aggtctgagc	gctgtgtggt	aatgggggac	87060
acaacctttc	tacctgtctt	tetttetect	cctctgggtg	ggaggggcct	ctggaaagaa ·	87120
aggtgactgt	ggggagccat	cactatgtca	ggtgtgatgc	aaaagtaagg	tcagaagtga	87180
gtgctgaggg	gtgccaaaga	gctgggcata	ggatggagga	atgtgcccct	ggaaggtagc	87240
agagagacca	cacagagtca	cgaggcatgt	ggggtctcag	gctgtgcacc	cccagacaac	87300
aggacaagtg	ggcacactca	catgcacatg	tgtacacagc	cacgcatggt	ctactgcttc	87360
tggactctgt	gtccaggtac	acatcgcaga	aggcaggtgg	aggccatgcc	accccattcc	87420
cagtggccag	accttgtctg	tgctcagtgg	cacagacacc	ttatagccca	atccccacac	87480
tctgtacaca	ctctgctgat	gcctgaaatg	actgcgacga	gagatetete	tccttggcaa	87540
acattgtccg	ctctctgtgc	tcctctttta	acacagacat	tțctccaaga	ggggcaatgg	87600
attaaataac	agacactact	tgtaagttaa	tgaatcagaa	atgttgccgc	agggagggtc	87660
gagggcaaca	ggagaaaaac	aggcagctga	ggagggacaa	ggagctgaat	gaaagaagga	87720
acaggggcac	ggcagccgga	agacagattt	tacctgcatc	acaattacgc	caaggatcag	87780
tgctggcctg	tagtgcagga	tgggggcctg	gattacacag	atctgacttc	tcagggatgt	87840
atgggggaac	tagcatttcc	aggcttctga	tggtcctcct	gggctccagc	cagactcacc	87900
tcaaagcaat	tccacctgca	gtcacagtca	attacacctc	aaaacaattc	cacctgccaa	87960
tctatcccta	tcactcctgc	aagtatccgt	ggcttcccca	tcatcctagt	gtaaagccaa	88020
gcttagcaca	gctcccaagg	tcctcccgaa	acttccccaa	acctgtctct	ccagcctcat	88080
caatcatgct	aacttttaga	catgatgaat	gactagtggt	tcccccaaag	caagccacct	88140
tccctcaggc	ctctgtgcct	tagtgtgggg	ctgctccatt	ggcctggaaa	gctctcaaca	88200
cctccccttc	atctagctaa	tgcctacatg	ttcgagactt	agctctggtg	tttcctgacc	88260
tgagcccatc	ctctctgtcc	ccgcaagctg	ggttggtgag	gtaggtgtga	ctgctctgtg	88320
ctcctgaagc	acactgggcg	taataatgac	tatcgtgtat	tatttaacct	ctgtccttat	88380
gtgtttgttg	gtcccgctaa	ccgggtttct	taaggacaaa	ggttgtggct	tccttttact	88440
ttccagaaca	tagcccagtg	ctggacagat	agtatgcatt	ccaaatgtct	gttgtgtatg	88500
ttaatgtatg	tattgaggat	agaagttaag	tacaaaaccc	tttgggagct	aatggactct	88560

1	tttactaag	gagaaaaatg	gggctctcca	atcagaagct	atgcagcttg	tccaagtatc	88620
i	aactgttaga	aaccagaaaa	ttctgagatt	tgaacccagg	tctatgttcc	agatgaattt	88680
į	aaggteettg	ttcccttttc	tcttatgtgc	tcagctggtg	ataagtcata	acagcactgc	88740
(cctgttgctg	catttcccat	cataaactca	agacattcag	atctaacctt	ccaggaggga	88800
	ccttaaagcg	aaccagattt	tgcttttgtg	tttctatttt	attatttatt	tatttattta	88860
•	gtgtttttt	tttttgtttt	ttttttgagt	atgcagtctc	actctgtcgc	ccaggctgga	88920
	gtacagtgtc	acgatctcag	ctcactgcaa	cttccacctc	cggggtttaa	gcgattctcc	88980
	tgcctcaggc	ttccgagtag	ctgggactac	aggcatacgc	cactatgcct	ggctaatttt	89040
	tgtattttta	gtagagatgg	ggtttcacct	tgttagccag	gttggtctca	aactactgac	89100
	ttcaggtgat	cttctggcct	tggcctccca	aagtgctggg	attacaggcg	tgagccaccg	89160
	ctcccggcct	gcctgcttgt	tttacagatg	gtggctgagg	ctcagggatg	tggaacgttc	89220
	ccacattact	gtaatactca	cagcaatatg	ataatgttat	catgttatta	catcatggtg	89280
	gggccaaaat	gggatggcag	gcactgggca	tgaggcaggg	gacaaggatg	agacaggetg	89340
	gtttttctac	atcagcccag	aataaatcaa	agcaatgtat	atttattgac	cgtgagctta	89400
	tctgggtgcc	cgagccccct	cccaaacccc	agcaatagga	gaaaggtgac	caggagaaca	89460
	aaggcggatg	tttctccagc	taccctctca	ggttagaggg	agaactggac	ggaatccatc	89520
	acttggagac	tgcttccttc	tggcctcacc	acaaggggcc	acatccagat	ggagaaaata	89580
	gttaggaggg	tegeacatit	gcatacattt	gcatgtgttt	gcatattcac	acagaacatg	89640
	cagctcattc	tcaggcaatt	ttcaagtaaa	tgtgattatt	gccaccttca	ggttgtcaag	89700
	gatagatttt	gctcttctca	ctttcattct	cacccaccca	cggtctctgg	gccctgatac	89760
	aggacgagcc	agtgtgtgcg	tgtcggggaa	ggggatacgt	gaaggcgcag	gagcaccagc	89820
	accaaggaga	ggtggcacct	ggggccaggc	acaagggcag	cacagcagcc	tctccttagg	89880
	ctgaatcctc	aaagcacgcc	atgccggctg	ctaggtgaca	tctgctgtgt	tcctgctaac	89940
	aactatgctg	attggaatgg	acattctcag	caagttacat	gctttttcac	tggtgaggtg	90000
	gcagtgcaag	acaaaaatct	ctttggcaca	taggacagtg	ggcagatgat	gaacattata	90060
	tgaatataag	ctgtgaagtc	aaacatcaag	ctcccagtcc	cttgagactc	ttttcctcta	90120
	gagtgtatta	cccccaatc	cgccttttct	tatagaacct	gctttcccta	ctgtttggct	90180
	cacagtaggt	gcttcccaac	agccttttaa	tggttcaggg	gctcaaaagg	cccagagggg	90240
	agcctgtttg	ttcttgcagg	ctgccagaca	gtgggcaggc	acagctatgt	gcatggagaa	90300

cagaggaaat	aaagaacaag	cctgatcatt	gctgttctgc	ctggcgctga	gaggagagtc	90360
tcagaagcaa	caggacgtca	gggtgttcct	tctttgactt	attaagtcag	agaaaagact	90420
cccctggctg	atgattcctg	tgagtttgaa	tactgagata	gcatatgagt	taaatgagag	90480
aactgtttta	ctaatcatag	attcaaaatt	ctcctatatg	aatttgctga	ccaactaatc	90540
aacaaatacc	ttctgtgtgc	ctcagccaag	ctgagtagct	gaactctagt	aggcattcag	90600
taaacatctt	aattttttt	tatttattat	attttaagtt	ttagggtaca	atgcagtgta	90660
gatattgtac	tgttattgtg	gaattcagaa	atgaaaaaca	tacagacctt	ggtttctacg	90720
aactcagagt	ctataaaaat	tttaatactt	gaaatatttt	attaatatta	ataatataat	90780
agaaggcata	taacacagtt	gtcttagtct	cttcagactg	ctataacaaa	atgccatagg	90840
ccgggtggct	tatgaacaac	aaacatccat	ttctcacagt	tctccatgct	ggaaagtcct	90900
agatcaaagt	gctggcagat	teggeateeg	gtgaggtcca	gtttcctggt	tcttagacag	90960
ttgccttctt	tcatgtcctc	atgtggcaga	agggacaagg	ggagtctctg	gggtctcttt	91020
tataatggca	cttaagcctt	catgacctaa	tcttgctcca	aaggccccac	ctcctaacca	91080
ttatattggg	ggttaggatt	tcaacatatg	aattttgatg	ggacacaaac	attcgctctt	91140
acagcagtcg	ttaaaagtag	aggcactgaa	gttagatatc	aaagttcaat	tcagctgtgc	91200
aacctgagac	aagtcacaga	acttctctga	gtcttagttt	ccaatgaaag	tagaccagca	91260
gtatctttta	cattgggtta	tttggagcat	taaattgact	gacatgtaca	gaacttaaca	91320
cattgcttgg	cactgagtaa	gctttcaaga	tgttagctaa	aatttaagaa	aggcataatt	91380
aagtaccaaa	atacatgatt	taaagtcgta	ctatttttaa	aattagaaag	aaccttaaaa	91440
actctctaat	ccaatgtttc	ccaaataatg	gtctgtggat	tgttgccaat	ttgtgacttt	91500
tttttttt	ttttaaccag	tctgtagcaa	aatggaatac	agaaaggcag	tgtggcagta	91,560
agctgttctt	tccttgctgt	tcagtttctt	tttttttcag	tgagctgaca	aaaggtaggt	91620
ggtaaaattg	ttaatcccat	gtaagttctc	catttattat	tgttgttgtt	ttgttcatga	91680
aatgtagaag	tctgagaacc	actgctctaa	tagactaaat	ttcccatcag	tggaataact	91740
ttatgtgtca	tcctgttggc	tccatttgaa	cagggtcagg	gtgctgaaaa	gttatttata	91800
ctttagagct	cagatagagc	taagaggaca	atctaacccc	tcttctacat	gattgtcttt	91860
cagatctttg	aagacagcaa	caataaggga	gcttggttat	agtgagcaga	gcctttggct	91920
taaactcagt	tccagttctg	ctaccatctt	gatttcctcc	tctgaacttt	tgttaaatgg	91980

gctaggagta	tttactggtg	aagaatgttg	ttgggatcaa	ggaaaataat	gcctgtgaaa	92040
gcactttgta	aatagtgaat	taccattcaa	atgttatacc	tatggtttta	ttgttcttgt	92100
tgttgttgct	cgagttggag	ttttgctctt	gttgcccggg	ctagagtgca	atggcacgac	92160
tttggctcac	tgaagcctcc	cctcctgggt	tggagcgatt	ctcctgcctc	agcctccaga	92220
gtagctggga	ttacaggcgt	ctgctgccac	tcccggctca	tttttttt	ctttggtatt	92280
tttagtagag	acggggtttc	accatgttgg	ccaggctggt	ctcgaactcc	tgacctcagg	92340
tgatccaccc	acttcagcct	cccaaagtgc	tgggattaca	ggcatgagcc	accgcacctg	92400
acctacacct	atagtgataa	gacagcccca	tttccaccaa	gagatctcca	cacagcacag	92460
tacctattgt	ttaccattgg	tttttacttc	tctggacatg	ggtggagtaa	tgattagtca	92520
atactctcca	caaaacgtga	tacccagaac	tgagcataaa	cttcagatct	agttggtaac	92580
atggagtaaa	atgggacaaa	gcgctggcct	gcgtggtctt	tagggtcttg	gcttccatga	92640
tatttccctt	ttataccttc	tgacctgagc	tctctacttt	tatgctacaa	tcacagcaca	92700
aatgtgtctt	atttcccttt	gggccagtta	atatcttcaa	aatcctaaaa	ccactaatat	92760
tttagagcaa	actggaagct	ttgccttctt	aatttggctt	aaagactaca	atatttaatc	92820
taccttttcc	aacttaaaaa	cctctctgga	gaacatggca	agaatttaag	agtttattag	92880
ggttgctttt	tctttgccat	gtttccattt	tatcacctcc	attttattct	atcatttctt	92940
cttcctttta	catggaatat	cccctttgaa	agctatttga	aactatattt	tgccaaagcc	93000
ctatgcattc	tgctctgact	tgccatacaa	tgtcctgagg	agtattgcga	aatcgataga	93060
aggagagcat	agaggttaag	agtgtcaact	cttggaccag	cttatttaga	ttaaaatccc	93120
aactctgcta	cttattgggt	ttttggcctt	gggtcagtaa	cttaaccact	ttgtttctta	93180
gatctttcat	ctataacaag	aagataaata	tgacatcgac	tttgtcatgc	tcttctgagg	93240
aatcagtttg	ttaatatatg	caaaagtgct	gagcacagtt	cctggcacat	agtgaatcct	93300
cagtgtatcg	tgagcattag	tcttattatt	gtccttacag	gaccatgtga	agttttggat	93360
ttgttctgct	atgttctcct	ccttatatct	tttgtgcaag	cctttattca	atctgagctc	93420
atcaaagagc	tctttatgaa	gccccatggg	ttttgttagc	tgctttctcc	tttttttt	93480
tatcaggatg	actcatgatt	attttatttg	aatttcattt	cttagaaggg	cccatcctgt	93540
tagaggttgg	ggctccatta	ttaattttgc	atcataggtc	acaagatcgt	aatcttttgc	93600
tctgaactat	tagacatttg	ttctcctggt	gtctgggaag	tactgatcta	aatatttttg	93660
ttaatttatt	catgcactgc	ttgtttccca	aaaggaattg	agatagttgc	catattttat	93720

tataataagg	ggccacccta	tcatttatta	tcagtttttg	gaaatgtcac	agtcactttc	93780
ctcccagttt	cttataacac	acacatcatt	atccaggtct	tccttactgg	tcataattaa	93840
gccttgacta	gcagtttcct	ctcattactt	tttctgccta	ctgagagatg	aagttgtcag	93900
caaggccagg	taaatattca	tcagatgttc	tgcatgagac	ttccagcaga	tgtcctgcta	93960
gttgaagtcc	ctcgtcacca	ctagatcttg	cctctgccaa	tttttgcaat	tcagagaaaa	94020
gcaactagaa	agatatctgt	gtaccaattg	cacatgcacg	tgccttatct	cctctgtaag	94080
aataaaagtt	cctggaagac	tccctattgt	aaatgccttt	catatgtgcc	tagggctctg	94140
ctggattatt	attattttta	aaataaatta	ttatctagac	tgtaggatta	ttgcttaata	94200
tgaagttctc	ttgaaagaaa	taaccgttaa	agaccttttg	ggatttgatt	ctgtgtgcta	94260
tcggtcagag	tacccgccac	ccttccgcaa	agtgtgcccc	tcctccagaa	acctgaggga	94320
aaatgtaaaa	tacccttact	tcttgtaaac	ttcttaccag	agacatctaa	ctgacttaaa	94380
tcatcacacc	tetggetgge	cattcagcca	gtctgagctg	tttgttgttg	gtgtgctaga	94440
catatttctt	tttcttttct	ttccttctta	tttatttatt	tatttgtttg	tttgtttatt	94500
tatttttgag	atggagtctc	actctgtcgc	ccaggctgga	gtgcaatggt	gtgattttgg	94560
ctcactgcaa	cctccacctc	ccaggttcaa	gagattctcc	tgcctcagcc	tcccgagtag	94620
ctgggactac	aggcatgcac	caccatgcca	ggctaatctt	ttgtattttt	agtagagatg	94680
gggtttcacc	gtgttggcca	ggctggtctc	aaactcttga	cctcaggtga	tccatccgcc	94740
ttggcctccc	aaagtgctgg	gattacaggc	gtgagccact	gcacccggcc	tgctagacac	94800
atttctatgt	atcgttcatc	tgcatagtaa	ttcttggtgc	ctcatctagg	aggcaccttc	94860
ctaggaggca	tcagaaaaga	acceteagaa	aaggatggct	ctttgccata	ctaataacaa	94920
ggttaaattg	tatataactt	tcctgaggga	agaggtcagc	tctctgattt	actccagcta	94980
tcaaaggaag	tcagtgaaat	acagtaagac	aattacttat	tgagcatcta	ctttgtgtca	95040
gacactgttg	ttaggataaa	aaatgtaaag	atgaataaga	tctcccctgc	tatcaaaaag	95100
ctcacagata	tggtggaaac	aggtgtataa	acagatcatt	gcaacacaat	gtggtcagca	95160
cagtgatgga	gatattggtc	tgcttattac	aaggcacaga	gtgaaggcac	tcagcccaga	95220
cagagaggag	tgggggaaga	cctgcttgtc	agagtggctt	catgtcagca	gtgatgctga	95280
actaagtctt	aaagcttcat	aagaacaccc	tgttgtaaat	gaatgtcatc	caatttcatt	95340
tttattggag	aaatatcatt	ttggtgcaaa	atgaaccctt	atttccgctt	actgggaaca	95400

tgatcagcct	ttgggtttaa	aggctggacg	ggaaattgct	aggtagctgt	ggttggccta	95460
tgcaatcaca	tgtaaatagg	ctttggggca	aatatctggt	tcccagtaga	ccaacacccc	95520
tattatgtaa	ggaggctgga	ctcagttctt	gttgggagaa	gtctgagagg	atctcagggg	95580
aacacaggag	aaaaaaagc	tgttagggtc	atgagtccct	gaagaagcca	tttaaagagc	95640
taggcaggac	actggaccat	aagaggtaaa	ggttggtgga	caagagagca	ggctgcttgg	957Ó0
aagcagtgcc	tacactagag	gatcattcca	gcagtggctt	ctagggacaa	tcttcctaga	95760
agggcagctg	gccagtcaac	atctcaagct	ctgaccattc	ctgttctcta	gggacacagt	95820
tatcacatgc	agtccgatct	ctgcctcaga	tacgtatcaa	ttcttcagtc	aatgcaatgg	95880
gtccagttat	atcatggatt	ctctgatttg	actcactcaa	gtaatgctcc	tggacatact	95940
aagattttag	aaaatccctg	gtcacctaat	agggtagtgg	aaaaattgtt	ttgagttctt	96000
ttctatcacc	atctagtgaa	taaagagcta	aaaaaacctc	ttctcaggag	ccagactgaa	96060
gcaacataga	gacagaggga	agtggatacc	tctgttacca	aaggacaaat	aggacctagg	96120
caggtgagct	gagaacggag	gtgggcactt	cagagagagg	tgagaatgtg	agctagaaga	96180
gggaggaaaa	atatcatggt	cgagcagaga	atggcaagca	ggtctgtatt	gtcattgctt	96240
gaagtgggag	gcggggagtg	acaggggagg	cgcacaggca	gtagacaatg	gagaactttg	96300
tagaacaagt	tagggagcct	gcatttcatc	tggtaggcaa	agtggactca	tatgaaagtt	96360
ctaagcagag	aaatgtaatg	atatagtttg	tttcttaaat	gtcatacata	gatcactttg	96420
gaggttctag	agacaaagga	cttgggagag	caaactggga	agctgctgta	attggccaga	96480
taagagagga	agtgacctta	actaaaaaag	tgatggtaga	gttggggaga	agaggatgga	96540
tcagaggaat	atagaagtag	taaaatcagc	agaatgtaaa	tcaaagaggg	cagaggaagg	96600
agaggatcgt	caaggatggt	gctttgggta	aaaaggcatt	tgcacagtct	gccacataat	96660
ggacatttga	taaatattta	cacaagtaca	gttccctgtc	gtgatgattg	cttttctatt	96720
actactactg	agtgttgcta	aaatgagaat	tctagtttca	gcttactcac	tgtgtgatct	96780
taggaaagtc	atactgtctc	ttctataaaa	tgagaagctt	tgagtagata	aattctaaag	96840
tccttcccat	ctttgacttt	tctggcaaaa	tattgtggac	caatattgga	aacatattat	96900
aaagctgatg	acaatgtttt	catagataga	gttactccaa	acttcaaaca	accaacttaa	96960
atgaatttt	ggaagaacat	tctaatttga	ggactgccag	tactctctta	cctcatttcc	97020
attttccccc	cgcaggtata	atttcttcat	gagtataagt	cttgcctgtc	caaaaaagct	97080
taagagacta	tgacatatgt	tttgggtctc	ctataatggt	atatatggta	tagtgccagg	97140

tacatttcat	cattcaaaat	ttacttgagt	tgaattcaat	tatgtctctc	tgcaggggct	97200
tgatcctaaa	tacttcaagt	atacactcat	tcattcttct	cttcaatcag	cagatactta	97260
tagagtgcat	aaccaggtgc	aaactgaata	agacatcaac	agttcactca	aggagtgaag	97320
agtgtagcag	agtaaataag	atgtttatgt	aggaagccat	agtgtgtgct	gggaagtgaa	97380
tgatggtatg	gactcttata	tggactctta	tggacactat	aaagtgatgt	ggctgctaaa	97440
agaagacagt	aattacttcc	agtgaaaagg	aagtgaagga	agatgtetet	gggagatatt	97500
ataatggctt	gtgccccaca	ctgaaagtga	tgtagctatt	agcactgtct	gctggtcatt	97560
aagatgaaga	cttaaagatg	aatggctgag	cactggggtg	cactctcact	aggaggcaga	97620
gttcggctgg	gatgaatctc	atcagaccag	tcaatggtga	aattccagcc	attggcttca	97680
cagggaaagc	agagtgtatg	gagagatcac	tagacttgaa	attagaatgc	ctaggttcca	97740
ttctcatgac	ccaactttct	gaattgcgcg	acctttgaca	atcagtgcaa	cttgtcttat	97800
cctccagttg	cttcatctga	agggtcacta	gaaatgactg	tttagctttg	tgaagatcaa	97860
tggatatgat	agttgtaatt	aacattgtag	ctaatggtca	ctgagtgctt	gctatgggct.	97920
gtgcaactgt	ctgaaacact	ttaatgtatt	aattcattta	atcctcacaa	taatcctatt	97980
aagcaggtac	tcttgtatcc	ctttttcgta	taggtaatgt	tggagcacca	gtaactatcc	98040
caagggcatg	caggtaagaa	gcagtgaaga	aggtatcaaa	cccagtcagt	caggctcttg	98100
agcccacact	ctctgatcat	tatgccctat	tgcctgtctt	ctagcatgac	actttgtaaa	98160
ctgtaatatg	atatctaata	ggaacaataa	tattcctcta	atgaagtacc	ccagttggtc	98220
cagactaaag	gtaaatagaa	acagtagcaa	aatttaatag	gaaaagatgc	acattatatt	98280
atataaagct	taaaaattgg	aaccagttct	cttatagtag	cttctggata	tgttgtctgc	98340
ccaggagatt	aaattacaaa	tgatataatt	tacagaaaag	tttagcacct	gaaagaaaca	98400
tagtgattat	gtagcctagc	cttttcattg	tgctgttaaa	gacatgcctc	agaagtttaa	98460
gtgacgtgac	taaggtcaca	caattggcaa	agtggagaat	caaaaactat	ttagtaattg	98520
tagaatttag	aattaaagga	gtgggatgtt	aggtgcacaa	aattaccttc	cttttttagc	98580
cttctgtctt	gtcaccaatc	attcctactt	ggtggccata	tacttggaaa	aaaagccgca	98640
tgatctttct	tgccccactc	aatgtctaag	acaccctgct	tcctttgctt	gcatcccaca	98700
gactatttcc	cttatcctat	ttactacagc	aaatctctcc	ttagttgatg	agactgtgtt	98760
tctcgctctt	taaaacccta	cctatcctga	atggtttgtc	attgtctgcc	ttgaaaatcc	98820

ctcctcttc	tcttcctcta	ttctctaaat	aaggatgggg	ctaagttata	cccaaagctc	98880
actttacaaa	atatttcctc	ggtactttgc	agaaaacacc	gaaaaaaatg	ccgttttaaa	98940
agaggtgtat	ttttcttt	agaatgtgag	ctcctcaaga	gcagggacaa	tgttttctgt	99000
atgttctgtt	gtgcctagta	cactgtaaat	gctcagcaaa	tactgatgat	aggaaaaaaa	99060
gttatgccat	aaaatttctg	ttgattgata	agttgacctt	atcctgtcaa	agtatatttc	99120
tccacaattg	aattgcttct	ctaagttaat	gctagagaca	tacactctta	atttgtaatg	99180
cttcctgtag	aagatatcat	aaagtagaaa	cttattgctc	tgtttgtatt	ctatcagttg	99240
cattatgcca	tacaaagtct	aggaatgtgt	cttgttttt	ttttttacat	tcacatttaa	99300
aggtagctac	ttcctccaaa	tgtgtaagaa	gaaaatttat	ccactatgag	tggactctag	99360
tttttctgtt	acatttattc	aaagtatttg	tcttttttag	accaggaaat	ttgagcctct	99420
tacaagcact	gttttgaata	ctctgcattt	tggaggccag	gaaacctcta	tttatttact	99480
gggctccagg	gttctgttac	tttggtctct	gttaaatgag	tgaagccaat	ctgataaact	99540
aatttaagct	gtgttcctag	ctgttaatgg	ctttctgtgc	gattcagata	agatgtgtgc	99600
tttgacagga	gctttcagaa	atagatttta	gggttttggg	acagageeee	tgtagagata	99660
ggaacttggg	gaggggcttg	taaaataaaa	caacaataaa	ttgaaaataa	taataataat	99720
aataatatcg	caagcaaaac	tgctatctat	gaaatgcttg	ctctgtgcca	ggaatgttgt	99780
gctttctgaa	tgggattccc	ctaaatgttc	tttgagggca	tcaaagatca	aacttatttg	99840
aattattttc	tgttttcaga	gtatctataa	atgcaagctg	gagacaggac	tcggtcacat	99900
agggcttcag	gatgtatacg	tggtattata	ttttctcaag	gcattttgaa	tttgggagaa	99960
aaggaaacct	tatttttagg	tgagctaggc	taaacatagg	cctaaatctt	tcttacagga	100020
gccaaacatt	aagtttagaa	gcaacctttt	aattcattaa	ctagtcaatg	atttgactct	100080
gtaaccagat	cttcattata	cattttcaag	ataccagtca	tcgagaagga	tatgttcaaa	100140
agaaggccag	tcccttctct	ggatgagacg	ctatcctggc	tcagtcctgg	atatgcctga	100200
gagcagggag	gtattggttt	ttgcctatga	gtgcctgggc	tgtgggccca	tctccacaca	100260
cagagagaat	caaaggcgta	gagaaatgtg	tttagttcga	tgacagggct	aaggcccaca	100320
gctacaattt	agtcaggaca	ttgccctttg	getgeegete	agtgcccaca	aattcaggat	100380
gttggcacag	aaacaggtgg	tgtccatctg	ggctggtgaa	agcacatgat	cttctcttaa	100440
catgtgatga	agcaggcacc	cagagcagct	cccaaacagc	aggctctgtg	gccgccttca	100500
ctgctgattc	cattaccact	ccaccacaag	aggtgaggag	cagctgcccc	tccgaaggcc	100560

gtgccccagg acccacttgc tttcaccttc acttctcagc tccagccctc ccccacagct 100620 gtttcagagg acaaagacac tttattgcaa tatgcaaagc tctcaggatg caaactatat 100680 ctggattaac aactataagt acagttttat tacttcagct tggcatttgc tgacacagaa 100740 agcaagtatt tattgtcatc tccatcctgc ttcccagttt taacttttgt tctcctgcca 100800 tccaactcca attccagagt tattttcttt gcttcctcag attactgagg agataatgtc 100860 ctttctattt gccctcaggt ccacacctcg ttttaaagcc aaagctatca ccctgactac 100920 tggattccaa tctgatgagt gcttagttac taccccaaga tttccatgaa gaagctgata 100980 aatgacacat gtttgagaaa gctttagggg tcttgcaagc acaaaggagt caactcctga 101040 ttagatgaga aagctaacta tgcaaaagga aggtggccag tctttgtgat atttcattgg 101100 tcatattccc cctgaaatgt tgtttaaaag caaggaacat tatcaaacca gcatgtatgg 101160 agaggttagg aacaagaata gtgaaggtca ggaaactaca actagatcgt ttaaaaatat 101220 ttattgaagg cctgataata attttgaagg catttttgag tgctatgtgc ccatcattat 101280 gctaaacact ttctatgaac tacctaactt aattttcaca atgaatattt gagataggaa 101340 tgactggtat ccacttaaaa acaaaactat caaggctatg ggaattatgt ggcttgatct 101400 atgagagttt gcatattata gagtgatcca ggatttgaac taacgtagtc taactttaag 101460 cctataggct tcacaccagg tgcagggtca tgtgttttat acttgacatt caaaaaaatt 101520 aacaaacaag acaaatagtg tgcctgcact tatggaattt acagtctaat agtagtgaaa 101580 aataaataat tgtcgtgtta tggtaagggc catgaaaagc tcatggctta ttcctgtgat 101640 agaacaccac tggtcatttt cctttctctt tttcctctta ccaacctgta cataaatatc 101700 aaagtaatet teetaagaaa attgteette atatteataa gaetgeaata aeetaaacee 101760 tcctcaactg aaacatgttt ataaggaaga actgaaagga ttaaggaagt ctcttttaga 101820 aaaaagaaga ctcaggaaca cagtagttat tttttcatat agtcaaggag caagtaatca 101880 aaggttcaaa gaattettet gtageetgea geacetacta tgtggeaggg tgtgtgettg 101940 gtgctgaaga tactaagaag aatcataaaa atgctaagaa gaagtccaaa agtcaaacat 102000 gagaatcact acttattaaa ctaattgatt tgcagacact ggggagacat caatgatctc 102060 tttgggggaa gtacgtgaag agatatgcta agcaaagaga atcatggaac cgctaagaga 102120 caggcaactg ggagataact tgatttagag tatcttaagc aaacaaataa tccaacaaca 102180 ctattttcgt tactggtgat tcattgagga gggagaaaag gtttaggttt ttaagtcagt 102240

cagtccaggc tetgaattet geeccagttg etagetaget attgattgtg ggeaagaaac 102300 ataaacttta tgagcaaatt tttcctcatt tgtaaacatg aaaataatac acatatcaaa 102360 gaagtaaatg acagatgtga taagtacttc tgaatgtagg aaaaagcagt aagtcattgt 102420 tagetteatt catteattta tteagtgtea cagagaettg aatgggaaag teatgteaaa 102480 tgctgaagta cataaaagaa caataccaga aggcaggtag gaggaaggtt gtgtattatt 102540 tggaagacat tcattataaa tgacaaaatt taacaagaag tagataaaaa agaaaagacg 102600 agaataaaag gatgtgattg ctcatgtaac tcaaaaaatcc acaataagtg aggttggatc 102660 caggggctca agtgaaatca tcagatgcca ttctctcagt cttctggctc ttgctcttct 102720 gtgttgtttt ttttttttc ctcaggtatg cagtctctag ttcacagcaa aaatagattg 102780 tggcctctct aggcttacat ggtcttttgt ttttgttttt gttttttga gacggagtct 102840 ccctctgtcg cccaggctgg agtgcagtgg cgcgatctcg gctcactgca agctccgcct 102900 cccgggttca agtcattctc ctgcctcagt ctccggagta gctgggacta cgggcgcccg 102960 ccacaacgcc cagctaattt tttgtatttt tagtagagac ggggtttcac cgtgttaacc 103020 aggatggtet egateteetg atetegtgat eegeeegeet cateeteeet aagtgetggg 103080 attacaggcg tgagccaccg cgcccagccg acatggtctt gtgtttacaa ttttgaagta 103140 gaaaagtett agagateata teaateeeee eeaaaaeeea gteettgetg gegeeatagg 103200 cccatctctg acctaatcat catgtctagg gtggggaaag caactttgat ggaccatcct 103260 gtactacatg cccacccage geagtgggtg ggaceteate teteceaaga etgteatgag 103320 cagatgatcc aggttggcca atcagaaaat tccaacccct ggcacaccac ccagaggaag 103380 tacagttact agaatagcag actttttggt tttttgtttg tttattttac cagagaagga 103440 gaaaaggatg aagaaaaaa aaagccatca atgtccacaa ctggaaagga tattgaaatt 103500 caagatatat aattagacta ctgataaatg ttattgataa catttgagac acaggtaaaa 103560 agggaataag acttctcatc accaatgtgc atattaataa gctaaactta tggcatttta 103620 ttaccatgaa agtatttaaa acaattgcta gtatcagtaa cactctttga tttgggcaag 103680 gaaatcctgc cttaggcctc acattggaga gggaccactg tattataaac acagccaaaa 103740 ctaaatttat taaaaaaccc aaagtggggc cgggcactgt ggcacacgcc tgtaatccca 103800 acactttggg aggctgaggc gggtgggtca cccgaggtca ggagtttgag accagcctgt 103860 tcaatatggt gaaactcggt ctctactaaa aatacaaaaa ttagccagtc atggtggcac 103920 atgcctgtaa ttccaactac ttgggatgct gaggcaggag aatcgcttga acccgggagg 103980

tggaggttgc agtgagccaa gatcatgcca ctgcactcca gcctgagcaa cagagtgaga 104040 ctctgcttca aaaagaataa ataaataaat aaataaaaat ataaaaaaat taaaataaaa 104100 acceaaaggg gtttctgccc cgaggatcca ttgtccagtg ctggcttaag gacatataac 104160 ccttacatct gccctaacac ctttcattcc cccagagaaa tgcttctcca catctcttgt 104220 cctttgtcct caaaatgaaa gacaattatg agaagagagg attttaaatg ttcccaacac 104280 aaaaaaagga taagtgtttt gaggtgatat atatgctaat taccatgatt tgatcattac 104340 acatggtata actgtatcaa agtatcattc agtaccccat aaatatgtat aattattatg 104400 tgtcaattaa taataaagtt aatttaagaa gcaattgtat ccaaatacca ttaagttggt 104460 ggattgtggc gctaggagat ggatacaccc tggcactagg aggggtttga atggcagaag 104520 ctattaggac agaaaaaaac aaattaatta acttgtcaaa tttgtcctct aggataacat 104580 gaatatatca cattcttgta taaaagatta tcattcccca gtagtgccaa ttgtccattt 104640 tettgettet etttgeatte caatttgeag ttteacagag aateateaac tageacaggt 104700 tacacatggc agatgagaaa tgttttgcaa tgttaaacag tttatataac tcttaacttt 104760 agacatttgt ggccaacata atatgcgtaa tattagaaag gtatggccct gattctttac 104820 attggcaggt acaaagaaat tgaactctag aattgtgaac aaattaattt tgtaaaaata 104880 tttgagtttt aagtaaatat tgagatttaa gtaaagctta aaaaataaaa ctttagctta 104940 aaataatett gaatteatga tatttattaa atacaattea tatttgeett tttatttgaa 105000 cacatttaag tacttaaaaa aactttctta aaaacataca tgttattttg tttataaaat 105060 ctttcatatt tattttaatt tgaattttaa tgagaatata ctcaaatctt gtacactttt 105120 acagctattt ttaaaatccc ttaaatgaga atgagtacaa gattgtgata tacacattaa 105180 gaaatttgag ctcatgaaag aaaagaagct gtaaagaaaa aagaaaaaaa aagatgagca 105240 atttagaatt ataaacaatg aaagtaacca tacttctgaa atgcaatacc cagataaaat 105300 gtgtgattat tacattacaa atgttttatt acataaataa ttatttatga aaacaatgca 105360 catgggcaag aaaattattc ctactaaatc ttcaacttga acaggtgaaa ggaaatgcct 105420 gcaacttcat atcccttact aaataaaaac ttaattacca ataaaaacaa tgagaatgaa 105480 aaagagaatt ttcttttgtg tgtatgtgac ctttattatt attattatac tttaagttct 105540 agggtacatg tgcacaacat gcagatttgt tacacaggta tacatgtgcc atgttggttt 105600 gctgcaccca tcaacttgtc atttacatta ggtatttctc ctaatgctat cccttgcccc 105660

aagcccctca gcccccaaaa ggccctggtg tgtgatgttc ccctccctgt gtccatgtgt 105720 tctcattgtt caactcccac ttatgagtga gaacatacgg tgtttggctt tctgtccctg 105780 tgatattttg ctgagaatga tggtttccag cttcatccat gtctctgcaa aggacatgaa 105840 ctcatccttt tttatggctg catattattc catggtgtac atgtgccaca ttttctttat 105900 ccagtctatt attgatggac atttgggttg gttccaagtc tttgctattg tgaatagtgc 105960 cacaataaac atacatgtgc atgtgtcttt atagtagcat gatttataat cctttgggta 106020 tataccccgt aaggggattg ctgagtcaaa tggtatttct agttctagat ccttgaggaa 106080 tegecacact gactaceaca atggttgaac tagtttacag teccaceaac agtgtaaaag 106140 tgttcctatt tctccatatc ctctccagca tctgtcgttt cctgactttt taatgatcgc 106200 cattctaact ggcatgagat ggtatctcat tgtggttttg atttgcattt ctctgatgac 106260 aagttatgat gaccattttt tcatgtctgt tggctgcata aatgtctttt tttgagaagt 106320 atctgttcat atcctttgcc cactttttga tgggattttt tttcttgtaa atttgtttaa 106380 gttctttgta gattctagat attagccctt tgtcagatgg atagattgca aacattttct 106440 cccattctgt aggttgcttg ttcactctga tggtagtttc ttttgctgtg cagaagctct 106500 ttagtttaat tagatcccat tcatcaattt tggcttttgt tgccattgct tttggtgttt 106560 tagtcatgaa gtctttgccc acgcctatgt cctgaatggt attgcctagg ttttcttcta 106620 gggtttttat ggttttaggt ctaacattta agtcattaat ccatcttgag ttaatttttg 106680 tataaagtgt aaggaaggga tocagtttca gotttgcaca tatggctagc' cagttttccc 106740 agcaccattt attaaatagg gaatcctttc ctcattgctt gcttttgtca agtttgtcaa 106800 agatcagatg attgtagatg tgtggtgtta tttctgaggc ctctgttctg ttccattggt 106860 ctatatatct gttttggtac cagtaccatg ctgttttggt tactgtagcc ttgtagtata 106920 gtttgaagac aggtagcgtg atgcctccag ctttgttctt tttgcttagg attgtcttgg 106980 ctatgggggc ttgaaaaaaa gaattattaa cagcaaattt gcaatttgga aacgtcaaac 107040 acaattttga cctgctcatt gaaagataaa gaaagttaca tttataaaat tggcaaattc 107100 catgactaaa gaagaagcta ttagctttat tatcttgggc tttattaggt gaagatatta 107160 gaaaatggtc atgatatcct tttgacattg tatgaatagt ttgagcaaaa cagaattcaa 107220 ttcaaatcaa tatatctatc ccaaaatttt agccaaaaat tcagcagact ttttggtgcc 107280 atatacattg catagtttaa atttgtcact agaggacgta gtcacaacta tgccaataga 107340 tgcgatattc tttgaaacaa cttaaacatt acatacaata ttttctgaat ctaccaagga 107400

tagaataata gaatattttg atgtaagaca tatcaaattt gaccttacaa caactgttag 107460 acacctgatg ggaatgccaa ccaaatggtg ttagaaacaa ttaaatttat attaaacaag 107520 gtaagagaag atccttaaaa atgtcgtaag ttatggtctt tagcagaaaa caaaattaag 107580 tttaatttgt gttatccaca gtcatttatt aagaaatgtt gcttgctatt aataatgcta 107640 gcaaaagctt atgaacacca ctaccaacat caaatgaata tattttttaa agggtaaagg 107700 ggctgggtgc ggtggctcat gcctgtaatt ccagcacttt gggaggcaga ggcaggtgga 107760 tcacaaggtc aggagttcaa gaccagcctg accaatatgg tgaaacccca tctctactaa 107820 aaatacaaaa attagtcagg catggtggtg tgtgcctgta gtcccagcta cctgggagac 107880 tgaggcagga gaatttgctt gaacctggaa ggtggagatt gcagtgagcc acggttgtgc 107940 tgctgcgctc cagcctgggt gacagagtga gactctgtct caaaaaaaaa aaaaaaaaa 108000 aaaaaaaca aaaaaaaggg gtaaagagat attgctcaag cttttagaga aagtgttttt 108060 acatatatat ttacaatgta ttcatatgta agtatatata tataaaactt gtcattgact 108120 tgaagctgag agaaaatgtt tctaagttaa aagaaactgc atatgaaaac acaacaaaag 108180 tgacattaaa ataaaataaa ataaacgaga aagaaatgaa gagaacattt ttataactct 108240 gaaggaaaga attcatacac aaaaattttg gtattaattt ctatataggc tatttttaag 108300 accagtagag ataatagtat actctcaatt aaacagagat aactagatat ggccgttttt 108360 tttctttata atgttccagc attgaaattt tgaaagaaga acttaagtaa tactgtatgt 108420 atctatatat tgctgctaga aatggtaaag aattgagata taagtgatag taatttatat 108480 gactaaattt atatattttg taacatactc tgtgataaag gtaatttctt acatttgacc 108540 ctattacaat gtttgaacat actatgcaag atttatggtc catttacatt ttaaacatta 108600 ctttaaatat tattttcttg tcagttccta ttgctattgc ctcagaaagc aaattttcta 108660 caaattgaaa ataacaaaaa tggccaggca caatggctca ggactgtaat cccagcactt 108720 tgggaggcgg aggtgggcgg atctcttgat ctcaggagtt ggaaaccagc ctggacaacg 108780 tggcaaaatc ccatttctac tattaacaaa atacaaaaaa ttaggccagg ccctgtggct 108840 tatgcttgta atcccagcac tttgggaggc caaggcggga ggatcacgag gtcaggagtt 108900 tgcgaccagc ctggccaaca tggtgaaact ccgtctctac taaagataca aagaattagc 108960 tgggcgtggt ggtgcacgcc cgtaatccca gctactcggg aggctgaggc aggagaatcg 109020 cttgcgccca ggaggtggag gttgcagtga gcagagatcg cgccattgca ctccagcttg 109080

ggcaacaggg caagactcca tttcaaaaca aacaaacaaa cacatacacc ccacgccccc 109140 acccccggcc aaaaaaaaa aaaaaatagc caggtatggt gttgcacacc tgtggtgcca 109200 gctacctggg tggctgaggt gggagaatca cctgagcatg gaagtcaagg ctgcagtgag 109260 ccaagatett gecaetgeae tecaeteeag cetgatetae atagtgagae cetgteteaa 109320 aaaaaaaaa agaaaataac aaaaactatc cagaccccat aataattcaa ggaaaatgat 109380 ctaattctaa ttgagcattg ctttctatga ggcaaatatt atgtgaaaat attgattaaa 109440 ggaataagag atttttctga aatgaaggca aggaaataag tgtcttggaa taaatagata 109500 tcttatgaat catgtgtcca ttttatttct taaccaaatg tagccagctt ataaacagaa 109560 caccaggaca tatgcaacaa tagataattt cagacatctt tgatgttttg acaactttca 109620 gtcatatcaa aaccataact ttatccatat tttaagtttt gatattatga agatatattt 109680 gcctaagatt ttagaacata ttttatctac caattttttt cacttgactt atattgtata 109740 ttgatacaaa tatactcaat ttgtacttcc cagtaactca cacatgttag gagcagtcat 109800 tgctagtaca teteagtgtt tagetggagt aaccattett taegaaacce caattteaca 109860 acttactgga aggccaatgc ctgcccatac tttctttgaa tgctcagagg tttatattct 109920 catacttgcc tettgeteet getgeattag ttgagtttet agaetgette aagteeaaaa 109980 catacgtccc cattcatgtg ttcaccttgg tgtggagact gcattttttc tgcttccaat 110040 ttctcacatg tggcatccat cagactttac tacaagtttg aaaagatgat ttgcatgttg 110100 gtcgtccctg ccctaggtta ttgtagccac actgccttga aaagtagttc ctttgtggca 110160 cctaatggat tgcaaaggct tttccctgtt tcaagctcct tttccttcct atctttcttc 110220 ccatctcgtt ctcactcatt tctctgccat atccgccctc actcttatgg gctctgaatt 110280 cttcccatac tataatacag agcagagete tetetagtee etactecaaa acteegttee 110340 aggcccatag tggttgcacc aaaatccatt aaggtgaagt caacattgca gcagaaaaga 110400 ccagcagagt ccccaagact atttttaaca agatccgtcc cccagtcccc tttagaaggc 110460 agetgetgtt ttaaatagea gtatteaett tttttteteg gttteaecag aaatggttte 110520 ataatcacaa gaatataggc ttgtgaccca tcaggaccta agcataacag catggctgct 110580 gctagtgggt gttgtattca ttcagaatca cacaataatt agatggatag catagcttta 110640 ttcagagtga aaccttcctt tcacagaaga atgaataaag gtaaaataga ggtactcttg 110700 tagatetgaa aaacaaettt catgggetag eecaggggga ataaceaetg ggaggagggg 110760 tgcttacctg agtgttagga tgccggatgc ccttgtctga gattgcagtg tgactcattt 110820

cctcccagag agctgctaga gattaggata tgggtgacag gaaagctaat tgcctcagct 110880 taccaagtgg ctccccttaa aggaacactt atggcagaca agatcacttt ggggaacaat 110940 agatetttee caettateea caecatettg aggaaaggea agaatettet ggggaecatg 111000 catctatect getacecett ceatecteaa gaagaetett actggeeete atgaaagtee 111060 tcccttgttc tcgatgcaga gaagtgtctg cagacattta ttcctgtagt cttctgcttc 111120 ctgctcaccc tctggaacca gagtcagggg ctattcagat tggcacagcc aatgtgttct 111180 actgaagagc teetetgetg etgtgttttg aacceatgac ceteaceetg agcacaacea 111240 attqqccag qtaagggtgg tgctgatgca aatgcagcat caaaaggctg tccagtcacc 111300 tctcacctac agatattagg ttggtgcaaa agcaattgtg gtttttttca attactgcaa 111360 gtacttttgc accagcctaa cataatcagt cctaagcctg agcaattcta cttcctaagt 111420 atttctccct cttttctgtt cacatctctt cttttatagc tcttacttgg attggtggaa 111480 tagctcaata acaagcctct ttggatcaag ggttattcct cttcttccaa ctgttcaaag 111540 agtgatattt ctaaaatacc aattggatca catcatttct atagttgaaa gcctccagtg 111600 tcttccctcc aggagcactt agggtaaagt tcatacttat tggcataatt aaattgtctt 111660 tataagetgg accetgetta tettgaagge attatattte tgtattteea caageteett 111720 cctgctgccc atcatcctgt actctacact ctacttatac caaactattt ttggttttcc 111780 taacactatg gtatccctct aggcccttgt gcatattatc ccttttgcct gtaacaaaga 111840 cttgccacaa tcaccctgct ggtaaagtct tccttttcat ttacttctca ttttgggtgt 111900 tacttcctac aagaagattt tcttgacccc ctaggctgga ttaaatactt cttctatgtg 111960 ttcccataat tatttcttaa cttgtcttcc ttggctatga attctctgtg caagaaattt 112020 tgcttccttt atttccaaag ccctgctgaa ggctgagcat acagggagca ctcattacaa 112080 ctttttaaaa aattcattta tattggatat tgataaatta tacttgtata tatttatgtg 112140 gtacaaagtg atgcgatgat atatgtatgt aatgtggaat gattgaatca agctaattaa 112200 catattcatc acctcaaata cttatttatt cctcctgtgt aactgcaaca ttgtcccctt 112260 cgaccaacgt ctcccctttt ccctcatttc ccagcctctg gtgaccacca ttctgctctt 112320 tgatgctatg tgtttgacct tttagatttc acatgtaagt agaacatgta gtatttatct 112380 gtctgtgcct ggcttatttc acgtggcata atgtcctcca ggttcatcta tgttgccgtg 112440 aatgataatt teeetetttt taaaggeaaa ataatattee aetgtgtgtg tgtgtgtgtg 112500

tgtgtgtatc ttttttactc attcatcagt tgatgggcac ttaactgaca caatagtcat 112560 aacttggcta ttgtgaataa tgctgcaata aacatgggag tgcagatatc tccacaacat 112620 actgatttca aatcctttgg atgtataacc agaagtggga ctactggatc atatgttaac 112680 tctattttta gttttttgag gaactttcat actgttttcc ataatggctg tattagttaa 112740 ctttcccatc aacagcatgc tagggttccc ttttctccac atcctcatca acatttatca 112800 tcctttgtca ttttaaaaat agccattctg agaggattga ggtgatatct tattgtcgtt 112860 ttaatatgaa tttctccaat aattggaaat attgagcagt tcttcatgta tctgttggcc 112920 gtttctatga gttcttttga aaatgtctat ttcaggttca gtgcccattt taatatggtt 112980 atttgttttc tactgagttg tttgagttcc ttatatattt taaattttaa ccccttatca 113040 tatacatagt ttacaaacat tttctttcat tccataggtt gcttcttcac tttgttaatt 113100 gctttctttg ctgtgcagaa actttttagt ttgatgtaat tccatttgtc tatttttggt 113160 tttgttgcct gagcttttgg ggtcatatct aaaaaatcat tgcctagaca tatatcatat 113220 agtttttaac ctatgttttc atctagtaga tttacagttt caggtcttac atttaagtct 113280 ttaatccatt ttgacttaat ttttgtacat gatatgagat aaaggtccaa ttttattctt 113340 taacatgtgg atatccagtt ttcccaatat cctttattga agagactgtc cttttcccat 113400 tgtgtattct gggacccttt ctgaaaatta attgaccata atttcatgag ttcattttt 113460 gggctatcta ttctgttctt ttttatgtgt ctatttttat ggtgatacca tgttgtttta 113520 attactatag tittgtcatg tagtitaaag totggtagta tgacacctcc agctitgtcc 113580 tttttatgca caattggttt ggttattcag ggttttctgt ggttcaaaca attttagaat 113640 tttttctatt tctgtgaaaa atcacattgg agttttgata gggattccat tacatctgta 113700 gatcactttg tgtagtataa acattttaac aacattaatc ttccaaacca taaacatcat 113760 atatetttee atttatttgt ttettettea acttetttea teaaagtttt gtaaatttta 113820 gtgtacagat ctttcatctc tttaattaat tgtattccta ttttaatttt ctacctattg 113880 taaatgggat tttaaaaaatc tcttcttcag atagtttgtt gatagtatta tagaagcact 113940 actgattttt gcttattgat tttgtatcct aaaactgtaa tgtatttgtt tagtagttct 114000 gacttttttt tttttgagac cgagtcttgc tctggcatcc aggctgtagt gcagtggtgt 114060 gatctcagct cactgcaact gctgcctccc gggttcaagg aattctcctg tctcagcctc 114120 ttgagtagtt aggattacag gcgcatgcca ccacaccagg ctaatttttg tattttagt 114180 agagacagag tttcactatg ttgatcaggc tggtcttgaa ctcctgacct aatgatcctc 114240

ccacctcagc ctcccaaagt gtagttctga catttttttg atggagtctt tagagtttct 114300 ctatataaaa tcttatcatc aataaacagc aacaatttcc cttgttcctt tccaatttgg 114360 atgcctttta tatctttctc ttgcctaatt gctctggcaa ggactgacaa tactataatg 114420 aatagaagtg ggcatcctcg ttttatttct ggttttagag aaaaagcttt caactttcat 114480 tgttgagtac aatgttaact gttctcttgt catatatgct tttattatgt ggagaaacat 114540 tctttttatc ctaatctgtt gagaattttt attataaaag aatgttcgca tttgtcaaat 114600 actttttcct ccatcactcc atcaatagga ggactacatg gtttttgtct ttcattctgt 114660 taaagtggtg tatcacattt atagatttgc acatgttgaa ctatcctttc atccctggga 114720 taaatcccac ttgatcatgt gaataatact tttaatgtaa tgttgaattt aattttctag 114780 tattttgttg aggagtttta catctacatt caacaaggat attgacatgt aatttttttt 114840 ctgtaatgtt cttgcctggt tttggtatca gggtgatttt agctttgtaa aaagagtttg 114900 aaagtaattt ttcttctttg actttggaaa agtttgagaa gaactagtat ttgttcttga 114960 aatgtttggt agaattcagc aggaaagtca tcagatcctg gaattttttg atgggtgact 115020 ttttattatt gattcaatct ctttattcag tattggtctg tttgcatttt ctgtttcttc 115080 attattgtgt cttgggtgtt atgtgtttga gaatttacac attttctagg ttatctaatt 115140 tggtgttgtg taatagttca tagtaatatg ttatgatcct ttgtattttt gtagcagcag 115200 ttgcaatttc tcctctttca tttctgattc tccttatttg agtcttcgct ctttcttctt 115260 agtgtagcta acagtttgtt gattttgttt aacttttcaa aaaaacaact cttggtttca 115320 ttgacttttt tctgttgttt ttcaagtctc tgtttcattt atttctgctc tagtctttgt 115380 tattttcttt cttttgttaa ctttgagttt agtttgctct tctttttagt tccttgagat 115440 gtatcactag gttatttgag atggttcttc aaaaaaatag gcattatttg ctataaattt 115500 ttctctcaga actgcttttg ctatacccaa aaagtgttgt atgttgtatt ttcattacca 115560 tttgtcttaa gatttttctt atttcctttt tgattttttc tctttgaccc attggttgct 115620 caggagcatg ttgtttaatt tccacatatt tgtgtgtttt ccaagatttt cttgttatcg 115680 tttactagtt tcatgacatt gaagttagaa aagacagttg atatgatttt aattctctta 115740 catttataca gacttgtttc atgacctacc atatgatata tcctggagaa tgtttcaggt 115800 gtgcttgaaa acaatgtatt ttgttgcttt tggatgaaaa gttttctata tatcttttag 115860 tactgtttgg tctaaagtgt agttcaaatc ctatgattgt ttaataattt cctgtctgaa 115920

taatctgtct attgttgaaa atgagttatt gaaatatcct actattattg tattgcaatt 115980 gctctctccc ttcagatcct ttagtatttc ctttatgtat ttacatgctc taatatttgg 116040 tgtatatgtc tgtacatgta tgtacaattg ttatatcccc ttgattaatt gacatttcaa 116100 tcattatata atgacctttg taatctcttt ttacagtttt taacttaaat actattttgt 116160 ctgatatgag tgtagctacg ccttctacct ttttgttttc ctttacatag aatatctttt 116220 tctatccctt tactttcagt ctgtgtgtat ccttaaaggt gagacaagtc tctcgtagac 116280 agcatatatt tgggttttaa aaagttacat tccatcattt tatgtctttt tattgaatta 116340 tttaatttat ttacactcaa ggtaactgtt cgtaggtaag aacttactac tatcatttta 116400 taacttgttt gcttattgtt tgtatatact ttctttcttt ccctgttgct gtcttccttt 116460 ttggtttgat ggttttctat aatagtatgg tttgaatcct ttttatttgt gttttataca 116520 tctagtataa taacttttta ctttttattt accatgaact ttttactttc tatttaccat 116580 gaggetttat tagtataaaa catettatae taatageagt etattteatg etgaagaaaa 116640 caactttgac tgcatacaac aactctatgc ttttacttct ttccactata tgtttttaat 116700 gtcaaaattt atattatttt gtaattttta ttccctgaca actaatttca gttataattg 116760 ttttaataga tatatctatt aagcatcata ctggaggtaa catttattta cacatcacca 116820 tttcagtcca aagtattctg aaatatgact ctggcttact taatcattga gttttgtgct 116880 tttatatggt ttgtgttact aattagtggc cttttgacac agcttaaaga attcccttta 116940 gtaattcctg tcaggcaggt ctagtggtgg tgaatttctt atttctgaag gatagcttag 117000 ctgggtaaaa tattcctgtt tttgtttgtt tgtttgtttt tgttttgttt tgttttccct 117060 tragcacttt aaatatatra tricattett teetggeetg ragegttiet aetgagaaat 117120 ctgtgaagtg ttgtattggg actcccttgt atgtgtttcc tatctgttgc tgcttttaga 117180 attititett tgtettttat ttttgatagt ttgattatta tgtgtettgg tgaacetttt 117240 tatgggttta atttgttagt ttatttgggt gatgccatga atttctgatt atttttaatt 117300 cttgtgccct tatgttggtg tctgcacatt tgaagagaca accacctctt ccagatttta 117360 caagaattct ttgacaggga tagacttttc cttatttagt ctaacctgtg attttgaatg 117420 gaccagctgg taataatctt gtgcagacag agcttgtttt tgagttctct aggtagctgc 117480 ttggattttg ggtgtggctg ctggttgggc taatctgtca ggagagacca ctggctgaga 117540 catgcaatca gacagatctg ctggatgtac attgcaatga tctcagatca gcctgggcca 117600 caaggtgtat tetetggeea agtggtaetg ttgtttgaga tetgeagetg gatggggttt 117660

caggettgge tetgaggtta ggeagagtag etgeteaaat ggageatget tgagtgtgge 117720 agaactagec actgeaettt getgaagtgt tetgtttggt tgteteeate eetggacagg 117780 gtcttgggca agctttgagg ctgtgctaaa tgctgtataa actggatccc actcttttcc 117840 aaattgtgct gggacaagca teteteteee tgggttgagg geettgtggt agggtetgag 117900 actaagcctg gaggctcgcc atctagggat tcaagctagg taggactttc catcacttct 117960 gggagtgacc agctcagctt tgtgggtagg tgatgctgtt ggcttgtatc tctgatcagg 118020 taccaccact ggaaggtaca cagagctatc agcaaggttt gttcagtgtt catgctgtta 118080 cccgctgtac tccttgtgag gtgagaccac agcgggcttc ctgggaagcg tctcagaatt 118140 ctagggaagc tggatgtcca actccagttc tcttttccca ctgttgaaac tgagccttgg 118200 ggaatcetet etgtgtggta etttgetgae teatggaatg ggeaggggtg atggggtgat 118260 gcaatcagtg aggccatttt acttaacccc ttttgtggtc tttatttagt tctgttgtcc 118320 acactgtttt ctcaagctta ttctcaagta ctggagtttt cacaaaggca tccttgtctg 118380 tggataattg ttagttgaac tttctatggg gggtagtgaa gcctgtgacc tcttattctg 118440 ctatcttgct gatgtcacca gctaaatctt tattaattaa tcaatgaata aaatatatac 118500 agagtgagac aaagggaaaa aattaagcag aaagtatgta gtgaggggag aagcaaagag 118560 ggaagagttg agttgcccac atggaagact tatagaactg ctattagttt atcgcaccta 118620 ctttgaaatg agtacgtttg ttgttgtatt ttgaagtagt aatgaataat gtgtcagcca 118680 ctcgtggggt ccaaatgttt ggctgcttta tcctcttctt ccttctcacc tattcttaaa 118740 ataataatct ataaattgag gtgatccaga catacctctg tcctgaaaac ctgatgaagc 118800 ctcactatcg tccaaaaaaa aaaaaaattg caaaacttgg accaccctaa gtatttaatt 118860 taatattccc catttgtcta gtatacagat atgatagcac aactagggat acgatggttg 118920 118951 tataaaatat tttgcctccc atgaaaagct t

```
<210> 12
<211> 1274
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1261)..(1261)
```

<223> "n" is A, C, G, or T

```
<400> 12
cageceegg ggatteagge tegecagege ceagecaggg agecggeegg gaagegegat
                                                                      60
gggggcccca gccgcctcgc tcctgctcct gctcctgctg ttcgcctgct gctgggcgcc
cggcggggcc aacctctccc aggacgacag ccagccctgg acatctgatg aaacagtggt
                                                                     180
                                                                     240
ggctggtggc accgtggtgc tcaagtgcca agtgaaagat cacgaggact catccctgca
atggtctaac cctgctcagc agactctcta ctttggggag aagagagccc ttcgagataa
                                                                     300
togaattcag ctggttacct ctacgcccca cgagctcagc atcagcatca gcaatgtggc
                                                                     360
cctggcagac gagggcgagt acacctgctc aatcttcact atgcctgtgc gaactgccaa
                                                                     420
                                                                     480
gtccctcgtc actgtgctag gaattccaca gaagcccatc atcactggtt ataaatcttc
attacgggaa aaagacacag ccacctaaa ctgtcagtct tctgggagca agcctgcagc
                                                                     540
                                                                     600
ccggctcacc tggagaaagg gtgaccaaga actccacgga gaaccaaccc gcatacagga
                                                                     660
agateceaat ggtaaaacet teaetgteag eageteggtg acattecagg ttaceeggga
                                                                     720
ggatgatggg gcgagcatcg tgtgctctgt gaaccatgaa tctctaaagg gagctgacag
                                                                     780
atccacctct caacgcattg aagttttata cacaccaact gcgatgatta ggccagaccc
tccccatcct cgtgagggcc agaagctgtt gctacactgt gagggtcgcg gcaatccagt
                                                                     840
                                                                     900
cccccagcag tacctatggg agaaggaggg cagtgtgcca cccctgaaga tgacccagga
gagtgccctg atcttccctt tcctcaacaa gagtgacagt ggcacctacg gctgcacagc
                                                                     960
                                                                    1020
caccagcaac atgggcagct acaaggccta ctacaccctc aatgttaatg accccagtcc
                                                                    1080
ggtgccctcc tcctccagca cctaccacgc catcatcggt gggatcgtgg ctttcattgt
cttcctgctg ctcatcatgc tcatcttcct cggccactac ttgatccggc acaaaggaac
                                                                    1140
ctacctgaca catgaggcaa aaggctccga cgatgctcca gacgcggaca cggccatcat
                                                                    1200
caatgcagaa ggcgggcagt caggagggga cgacaagaag gaatatttca tctagaggcg
                                                                    1260
nctgcccact tcct
                                                                    1274
```

<210> 13 <211> 1376

<212> DNA <213> Homo sapiens

<220>

<221> misc_feature

<222> (1375)..(1375)

<223> "n" is A, C, G, or T

<400> 13 cagcccccgg	ggattcaggc	tcgccagcgc	ccagccaggg	agccggccgg	gaagcgcgat	60
gggggcccca	gccgcctcgc	tcctgctcct	gctcctgctg	ttcgcctgct	gctgggcgcc	120
cggcggggcc	aacctctccc	aggacggcta	ctggcaggag	caggatttgg	agctgggaac	180
tctggctcca	ctcgacgagg	ccatcagctc	cacagtctgg	agcagccctg	acatgctggc	240
cagtcaagac	agccagccct	ggacatctga	tgaaacagtg	gtggctggtg	gcaccgtggt	300
gctcaagtgc	caagtgaaag	atcacgagga	ctcatccctg	caatggtcta	accctgctca	360
gcagactctc	tactttgggg	agaagagagc	ccttcgagat	aatcgaattc	agctggttac	420
ctctacgccc	cacgagetea	gcatcagcat	cagcaatgtg	gccctggcag	acgagggcga	480
gtacacctgc	tcaatcttca	ctatgcctgt	gcgaactgcc	aagtccctcg	tcactgtgct	540
aggaattcca	cagaagccca	tcatcactgg	ttataaatct	tcattacggg	aaaaagacac	600
agccacccta	aactgtcagt	cttctgggag	caagcctgca	gcccggctca	cctggagaaa	660
gggtgaccaa	gaactccacg	gagaaccaac	ccgcatacag	gaagatccca	atggtaaaac	720
cttcactgtc	agcagctcgg	tgacattcca	ggttacccgg	gaggatgatg	gggcgagcat	780
cgtgtgctct	gtgaaccatg	aatctctaaa	gggagctgac	agatccacct	ctcaacgcat	840
tgaagtttta	tacacaccaa	ctgcgatgat	taggccagac	cctccccatc	ctcgtgaggg	900
ccagaagctg	ttgctacact	gtgagggtcg	cggcaatcca	gtcccccagc	agtacctatg	960
ggagaaggag	ggcagţgtgc	cacccctgaa	gatgacccag	gagagtgccc	tgatcttccc	1020
tttcctcaac	aagagtgaca	gtggcaccta	cggctgcaca	gccaccagca	acatgggcag	1080
ctacaaggcc	tactacaccc	tcaatgttaa	tgaccccagt	ccggtgccct	cctcctccag	1140
cacctaccac	gccatcatcg	gtgggatcgt	ggctttcatt	gtcttcctgc	tgctcatcat	1200
gctcatcttc	ctcggccact	acttgatccg	gcacaaagga	acctacctga	cacatgaggc	1260
aaaaggctcc	gacgatgctc	cagacgcgga	cacggccatc	atcaatgcag	aaggcgggca	1320
gtcaggaggg	gacgacaaga	aggaatattt	catctagagg	cgcctgccca	cttcnt	1376
<210> 14 <211> 129 <212> DNA <213> Hom <400> 14						

<400> 14
atgggggccc cagccgcctc gctcctgctc ctgctcctgc tgttcgcctg ctgctgggcg 60
cccggcgggg ccaacctctc ccaggacggc tactggcagg agcaggattt ggagctggga 120

actctggctc	cactcgacga	ggccatcagc	tccacagtct	ggagcagccc	tgacatgctg	180
gccagtcaag	acagccagcc	ctggacatct	gatgaaacag	tggtggctgg	tggcaccgtg	240
gtgctcaagt	gccaagtgaa	agatcacgag	gactcatccc	tgcaatggtc	taaccctgct	300
cagcagactc	tctactttgg	ggagaagaga	gcccttcgag	ataatcgaat	tcagctggtt	360
acctctacgc	cccacgagct	cagcatcagc	atcagcaatg	tggccctggc	agacgagggc	420
gagtacacct	gctcaatctt	cactatgcct	gtgcgaactg	ccaagtccct	cgtcactgtg	480
ctaggaattc	cacagaagcc	catcatcact	ggttataaat	cttcattacg	ggaaaaagac	540
acagccaccc	taaactgtca	gtcttctggg	agcaagcctg	cagcccggct	cacctggaga	600
aagggtgacc	aagaactcca	cggagaacca	acccgcatac	aggaagatcc	caatggtaaa	660
accttcactg	tcagcagctc	ggtgacattc	caggttaccc	gggaggatga	tggggcgagc	720
atcgtgtgct	ctgtgaacca	tgaatctcta	aagggagctg	acagatccac	ctctcaacgc	780
attgaagttt	tatacacacc	aactgcgatg	attaggccag	accetececa	tcctcgtgag	840
ggccagaagc	tgttgctaca	ctgtgagggt	cgcggcaatc	cagtccccca	gcagtaccta	900
tgggagaagg	agggcagtgt	gccacccctg	aagatgaccc	aggagagtgc	cctgatcttc	960
cctttcctca	acaagagtga	cagtggcacc	tacggctgca	cagccaccag	caacatgggc	1020
agctacaagg	cctactacac	cctcaatgtt	aatgacccca	gtccggtgcc	ctcctcctcc	1080
agcacctacc	acgccatcat	cggtgggatc	gtggctttca	ttgtcttcct	gctgctcatc	1140
atgctcatct	tccttggcca	ctacttgatc	cggcacaaag	gaacctacct	gacacatgag	1200
gcaaaaggct	ccgacgatgc	tccagacgcg	gacacggcca	tcatcaatgc	agaaggcggg	1260
cagtcaggag	gggacgacaa	gaaggaatat	ttcatctag			1299
<210> 15 <211> 124: <212> DNA <213> Homo <400> 15	2 o sapiens					
ttcaggctcg	ccagcgccca	gccagggagc	cggccgggaa	gcgcgatggg	ggccccagcc	60
gcctcgctcc	tgctcctgct	cctgctgttc	gcctgctgct	gggcgcccgg	cggggccaac	120
ctctcccagg	acgacagcca	gccctggaca	tctgatgaaa	cagtggtggc	tggtggcacc	180
						040

240

300

gtggtgctca agtgccaagt gaaagatcac gaggactcat ccctgcaatg gtctaaccct

. gctcagcaga ctctctactt tggggagaag agagcccttc gagataatcg aattcagctg

gttacctcta	cgccccacga	gctcagcatc	agcatcagca	atgtggccct	ggcagacgag	360
ggcgagtaca	cctgctcaat	cttcactatg	cctgtgcgaa	ctgccaagtc	cctcgtcact	420
gtgctaggaa	ttccacagaa	gcccatcatc	actggttata	aatcttcatt	acgggaaaaa	480
gacacagcca	ccctaaactg	tcagtcttct	gggagcaagc	ctgcagcccg	gctcacctgg	540
agaaagggtg	accaagaact	ccacggagaa	ccaacccgca	tacaggaaga	tcccaatggt	600
aaaaccttca	ctgtcagcag	ctcggtgaca	ttccaggtta	cccgggagga	tgatggggcg	660
agcatcgtgt	gctctgtgaa	ccatgaatct	ctaaagggag	ctgacagatc	cacctctcaa	720
cgcattgaag	ttttatacac	accaactgcg	atgattaggc	cagaccctcc	ccatcctcgt	780
gagggccaga	agctgttgct	acactgtgag	ggtcgcggca	atccagtccc	ccagcagtac	840
ctatgggaga	aggagggcag	tgtgccaccc	ctgaagatga	cccaggagag	tgccctgatc	900
ttccctttcc	tcaacaagag	tgacagtggc	acctacggct	gcacagccac	cagcaacatg	960
ggcagctaca	aggcctacta	caccctcaat	gttaatgacc	ccagtccggt	gccctcctcc	1020
tccagcacct	accacgccat	catcggtggg	atcgtggctt	tcattgtctt	cctgctgctc	1080
atcatgctca	tcttcctcgg	ccactacttg	atccggcaca	aaggaaccta	cctgacacat	1140
gaggcaaaag	gctccgacga	tgctccagac	gcggacacgg	ccatcatcaa	tgcagaaggc	1200
gggcagtcag	gaggggacga	caagaaggaa	tatttcatct	ag		1242
<210> 16 <211> 1839 <212> DNA <213> Homo <400> 16) o sapiens					
	cgaggaggga	gcccctttg	gccgtcctcc	gtggaaccgg	ttttccgagg	60
ctggcaaaag	ccgaggctgg	atttggggga	ggaatattag	actcggagga	gtctgcgcgc	120
ttttctcctc	cccgcgcctc	ccggtcgccg	cgggttcacc	gctcagtccc	cgcgctcgct	180
ccgcacccca	cccacttcct	gtgctcgccc	ggggggcgtg	tgccgtgcgg	ctgccggagt	240
tcggggaagt	tgtggctgtc	gagaatgggg	gtctgtgggt	acctgttcct	gccctggaag	300
tgcctcgtgg	tegtgtetet	caggctgctg	ttccttgtac	ccacaggagt	gcccgtgcgc	360
agcggagatg	ccaccttccc	caaagctatg	gacaacgtga	cggtccggca	gggggagagc	420
gccaccctca	ggtgcactat	tgacaaccgg	gtcacccggg	tggcctggct	aaaccgcagc	480

540

accatectet atgetgggaa tgacaagtgg tgeetggate etegegtggt cettetgage

aacacccaaa cgcagtacag	catcgagatc	cagaacgtgg	atgtgtatga	cgagggccct	600
tacacctgct cggtgcagac	agacaaccac	ccaaagacct	ctagggtcca	cctcattgtg	660
caagtatctc ccaaaattgt	agagatttct	tcagatatct	ccattaatga	agggaacaat	720
attagectca cetgeatage	aactggtaga	ccagagccta	cggttacttg	gagacacatc	780
tctcccaaag cggttggctt	tgtgagtgaa	gacgaatact	tggaaattca	gggcatcacc	840
cgggaacagt caggggacta	cgagtgcagt	gcctccaatg	acgtggccgc	gcccgtggta	900
cggagagtaa aggtcaccgt	gaactatcca	ccatacattt	cagaagccaa	gggtacaggt	960
gtccccgtgg gacaaaaggg	gacactgcag	tgtgaagcct	cagcagtccc	ctcagcagaa	1020
ttccagtggt acaaggatga	caaaagactg	attgaaggaa	agaaaggggt	gaaagtggaa	1080
aacagacctt tcctctcaaa	actcatcttc	ttcaatgtct	ctgaacatga	ctatgggaac	1140
tacacttgcg tggcctccaa	caagctgggc	cacaccaatg	ccagcatcat	gctatttggt	1200
ccaggcgccg tcagcgaggt	gagcaacggc	acgtcgagga	gggcaggctg	cgtctggctg	1260
ctgcctcttc tggtcttgca	cctgcttctc	aaattttgat	gtgagtgcca	cttccccacc	1320
cgggaaaggc tgccgccacc	accaccacca	acacaacagc	aatggcaaca	ccgacagcaa	1380
ccaatcagat atatacaaat	gaaattagaa	gaaacacagc	ctcatgggac	agaaatttga	1440
gggaggggaa caaagaatac	tttgggggga	aaagagtttt	aaaaaagaaa	ttgaaaattg	1500
ccttgcagat atttaggtac	aatggagttt	tcttttccca	aacgggaaga	acacagcaca	1560
cccggcttgg acccactgca	agctgcatcg	tgcaacctct	ttggtgccag	tgtgggcaag	1620
ggctcagcct ctctgcccac	agactgcccc	cacgtggaac	attctggagc	tggccatccc	1680
aaattcaatc agtccataga	gacgaacaga	atgagacctt	ccggcccaag	cgtggcgctt	1740
ccggcccaag cgtggcgctg	cgggcacttt	ggtagactgt	gccaccacgg	cgtgtgttgt	1800
gaaacgtgaa ataaaaagag	caaaaaaaaa	aaaaaaaa			1839
<210> 17 <211> 1094 <212> DNA <213> Homo sapiens			,		
<pre><400> 17 gtcgagaatg ggggtctgtg</pre>	ggtacctgtt	cctgccctgg	aagtgcctcg	tggtcgtgtc	60
tctcaggctg ctgttccttg	tacccacagg	agtgcccgtg	cgcagcggag	atgccacctt	120

180

ccccaaagct atggacaacg tgacggtccg gcagggggag agcgccaccc tcaggtgcac

tattgacaac	cgggtcaccc	gggtggcctg	gctaaaccgc	agcaccatcc	tctatgctgg	240
gaatgacaag	tggtgcctgg	atcctcgcgt	ggtccttctg	agcaacaccc	aaacgcagta	300
cagcatcgag	atccagaacg	tggatgtgta	tgacgagggc	ccttacacct	gctcggtgca	360
gacagacaac	cacccaaaga	cctctagggt	ccacctcatt	gtgcaagtat	ctcccaaaat	420
tgtagagatt	tcttcagata	tctccattaa	tgaagggaac	aatattagcc	tcacctgcat	480
agcaactggt	agaccagagc	ctacggttac	ttggagacac	atctctccca	aagcggttgg	540
ctttgtgagt	gaagacgaat	acttggaaat	tcagggcatc	acccgggagc	agtcagggga	600
ctacgagtgc	agtgcctcca	atgacgtggc	cgcgcccgtg	gtacggagag	taaaggtcac	660
cgtgaactat	ccaccataca	tttcagaagc	caagggtaca	ggtgtccccg	tgggacaaaa	720
ggggacactg	cagtgtgaag	cctcagcagt	cccctcagca	gaattccagt	ggtacaagga	780
tgacaaaaga	ctgattgaag	gaaagaaagg	ggtgaaagtg	gaaaacagac	ctttcctctc	840
aaaactcatc	ttcttcaatg	tctctgaaca	tgactatggg	aactacactt	gcgtggcctc	900
caacaagctg	ggccacacca	atgccagcat	catgctattt	gaagtgaaaa	ctacagecet	960
gaccccttgg	aaaggtccag	gcgccgtcag	cgaggtgagc	aacggcacgt	cgaggagggc	1020
aggctgcgtc	tggctgctgc	ctcttctggt	cttgcacctg	cttctcaaat	tttgatgtga	1080
gtgccacttc	ccca	٠				1094
<210> 18 <211> 113 <212> DNA <213> Home <400> 18						
	ggggtctgtg	ggtacctgtt	cctgccctgg	aagtgcctcg	tggtcgtgtc	60
tctcaggctg	ctgttccttg	tacccacagg	agtgcccgtg	cgcagcggag	atgccacctt	120
ccccaaagct	atggacaacg	tgacggtccg	gcagggggag	agcgccaccc	tcaggtgcac	180
tattgacaac	cgggtcaccc	gggtggcctg	gctaaaccgc	agcaccatcc	tctatgctgg	240
gaatgacaag	tggtgcctgg	atcctcgcgt	ggtccttctg	agcaacaccc	aaacgcagta	300
cagcatcgag	atccagaacg	tggatgtgta	tgacgagggc	ccttacacct	gctcggtgca	360
gacagacaac	cacccaaaga	cctctagggt	ccacctcatt	gtgcaagtat	ctcccaaaat	420
tgtagagatt	tcttcagata	tctccattaa	tgaagggaac	aatattagcc	tcacctgcat	480
agcaactggt	agaccagagc	ctaccottac	ttogagagag	atctctccca	aadcddttdd	540

ctttgtgagt gaagacgaat	acttggaaat	tcagggcatc	accagggagc	agtcagggga	600
ctacgagtgc agtgcctcca	atgacgtggc	cgcgcccgtg	gtacggagag	taaaggtcac	660
cgtgaactat ccaccataca	tttcagaagc	caagggtaca	ggtgtccccg	tgggacaaaa	720
ggggacactg cagtgtgaag	cctcagcagt	cccctcagca	gaattccagt	ggtacaagga	780
tgacaaaaga ctgattgaag	gaaagaaagg	ggtgaaagtg	gaaaacagac	ctttcctctc	840
aaaactcatc ttcttcaatg	tctctgaaca	tgactatggg	aactacactt	gcgtggcctc	900
caacaagctg ggccacacca	atgccagcat	catgctattt	gaactaaatg	agcctacgag	960
ctcaactttg ttgcaagaag	tgaaaactac	agccctgacc	ccttggaaag	gtccaggcgc	1020
cgtcagcgag gtgagcaacg	gcacgtcgag	gagggcaggc	tgcgtctggc	tgctgcctct	1080
tctggtcttg cacctgcttc	ttaaattttg	atgtgagtgc	cacttcccca		1130
<210> 19 <211> 1061 <212> DNA <213> Homo sapiens <400> 19					
gtcgagaatg ggggtctgtg	ggtacctgtt	cctgccctgg	aagtgcctcg	tggtcgtgtc	60
tctcaggctg ctgttccttg	tacccacagg	agtgcccgtg	cgcagcggag	atgccacctt	120
ccccaaagct atggacaacg	tgacggtccg	gcagggggag	agcgccaccc	tcaggtgcac	180
tattgacaac cgggtcaccc	gggtggcctg	gctaaaccgc	agcaccatcc	tctatgctgg	240
gaatgacaag tggtgcctgg	atcctcgcgt	ggtccttctg	agcaacaccc	aaacgcagta	300
cagcatcgag atccagaacg	tggatgtgta	tgacgagggc	ccttacacct	gctcggtgca	360
gacagacaac cacccaaaga	cctctagggt	ccacctcatt	gtgcaagtat	ctcccaaaat	420
tgtagagatt tcttcagata	tctccattaa	tgaagggaac	aatattagcc	tcacctgcat	480
agcaactggt agaccagagc	ctacggttac	ttggagacac	atctctccca	aagcggttgg	540
ctttgtgagt gaagacgaat	acttggaaat	tcagggcatc	acccgggagc	agtcagggga	600
ctacgagtgc agtgcctcca	atgacgtggc	cgcgcccgtg	gtacggagag	taaaggtcac	660
cgtgaactat ccaccataca	tttcagaagc	caagggtaca	ggtgtccccg	tgggacaaaa	720
ggggacactg cagtgtgaag	cctcagcagt	ccctcagca	gaattccagt	ggtacaagga	780
tgacaaaaga ctgattgaag	gaaagaaagg	ggtgaaagtg	gaaaacagac	ctttcctctc	840
aaaactcatc ttcttcaatg	tctctgaaca	tgactatggg	aactacactt	gcgtggcctc	900

caacaagctg ggccacacca atgo	cagcat catgctattt	ggtccaggcg	ccgtcagcga	960
ggtgagcaac ggcacgtcga ggag	gggcagg ctgcgtctgg	ctgctgcctc	ttctggtctt	1020
gcacctgctt ctcaaatttt gatg	stgagtg ccacttcccc	a		1061
<210> 20 <211> 4045 <212> DNA <213> Homo sapiens				
<pre><400> 20 gtggagccga gcggtgcgga gcag</pre>	gatetgg tggtteteeg	gagagcagct	tcctcgggtg	60
ttacatgagc caagccctca ctgt	cacagaa gagtgagagc	tgaaacctgt	tccctgagct	120
gatcagaagg acatecettg geed	cctccat ctgggctcct	gtggatagga	ggggctgggt	180
gagcaggcca gctgggctat ggtg	gtggtgc ctcggcctgg	ccgtcctcag	cctggtcatc	240
agccaggggg ctgacggtcg aggg	gaagcct gaggtggtat	cggtggtggg	ccgggctggg	300
gagagtgtgg tgctgggctg tgac	cetgetg ecceeggeeg	gccggccccc	cctgcatgtc .	360
atcgagtggc tgcgctttgg attc	cctgctt cccatcttca	tccagttcgg	cctctactct	420
ccccgaattg accctgatta cgtg	gggacga gtccggctgc	agaagggggc	ctctctccag	480
attgagggtc tccgggtgga agad	ccagggc tggtacgagt	gccgcgtgtt	cttcctggac	540
cagcacatcc ctgaagacga ttt	tgctaac ggctcctggg	tgcatctgac	agtcaattca	600
cccctcaat tccaggagac acct	tcctgct gtgttggaag	tgcaggaact	ggagcctgtg	660
accetgegtt gtgtggeeeg tgg	cagecee etgeeteatg	tgacgtggaa	gctccgagga	720
aaggaccttg gccagggcca ggg	ccaggtg caagtgcaga	acgggacgct	geggateege	780
cgggtagagc gaggcagctc tgg	ggtctac acctgccaag	cctccagcac	tgagggcagc	840
gccacccacg ccacccaget gcta	agtgcta ggacccccag	tcatcgtggt	gcccccaag	900
aacagcacag tcaatgcctc cca	ggatgtt tcattggcct	gccatgctga	ggcataccct	960
gctaacctca cctacagctg gtt	ccaggac aacatcaatg	tcttccacat	tagccgcctg	1020
cageceeggg tgeggateet ggt	ggacggg agcctgcggc	tgctggccac	ccagcctgat	1080
gatgccggct gctacacctg tgt	gcccagc aatggcctcc	tgcatccacc	ctcagcctct	1140
gcctacctca ctgtgctcta ccc	agcccag gtgacagcta	tgcctcctga	gacacccctg	1200
cccataggca tgccgggggt gat	ccgctgc ccggttcgtg	ccaaccccc	actgctcttt	1260
gtcagctgga ccaaggatgg aaa	ggccctg cagctggaca	agttccctgg	ctggtcccag	1320

ggcacagaag	gctcactgat	categeeetg	gggaacgagg	atgccctggg	agaatactcc	1380
tgcaccccct	acaacagtct	tggtaccgcc	gggccctctc	ctgtgacccg	cgtgctgctc	1440
aaggctcccc	cagcttttat	agagcggccc	aaggaagaat	atttccaaga	agtagggcgg	1500
gagctgctca	teceetgete	cgcccaaggg	gaccctcctc	ctgttgtctc	ttggaccaag	1560
gtgggccggg	ggctgcaagg	ccaggcccag	gtggacagca	acageageet	catcctgcga	1620
ccattgacca	aggaggccca	cgggcactgg	gaatgcagtg	ccagcaatgc	tgtggcccga	1680
gtggccacct	ccacgaacgt	ctacgtgctg	ggcactagcc	ctcatgttgt	caccaatgtg	1740
tccgtggtgg	ctttgcccaa	gggtgccaat	gtctcctggg	agcctggctt	tgatggtggt	1800
tatctgcaga	gattcagtgt	ctggtacacc	ccactggcca	agcgtcctga	ccgaatgcac	1860
catgactggg	tgtccttggc	agtgcctgtg	ggggctgctc	acctcctagt	gccagggctg	1920
cagccccaca	cccagtacca	gttcagcgtg	ctagctcaga	acaagctggg	gagtggtccc	1980
ttcagcgaaa	tcgtcttgtc	tgctccggaa	gggcttccta	ccacgccagc	tgcacccggg	2040
cttcccccaa	cagagatacc	gcctcccctg	tecceteege	ggggtctggt	ggcagtgagg	2100
acaccccggg	gggtactcct	gcattgggat	ccccagagc	tggtccctaa	gagactggat	2160
ggctacgtct	tggaaggccg	gcaaggetee	cagggctggg	aggtgctgga	cccggctgtg	2220
gcaggcacag	aaacagagct	gctggtgcca	ggcctcatca	aggtatgttc	tctacgagtt	2280
ccgcctcgtg	gccttcgcgg	gcagcttcgt	cagcgacccc	agcaacacgg	ccaacgtctc	2340
cacttccggt	ctggaggtct	acccttcgcg	cacgcagctg	ccgggcctcc	tgcctcagcc	2400
cgtgctggcc	ggcgtggtgg	gcggagtctg	ctttctggga	gtggccgtcc	ttgtgagcat	2460
cctggccggc	tgcctcctga	accggcgcag	ggctgcccgc	cgccgccgca	agcgcctccg	2520
ccaagatcca	cctcttatct	tctctccgac	cgggaagtca	gctgcaccct	ctgctctggg	2580
ctcaggcagt	cctgacagcg	tggcgaagct	gaagctccag	ggatccccag	tccccagcct	2640
gcgccagagt	ctgctctggg	gggatcctgc	cggaactccc	agcccccacc	cggatcctcc	2700
atctagccgg	ggacccttac	ctctggagcc	catttgccgg	ggcccagacg	ggcgctttgt	2760
gatggggccc	actgtggcgg	cccccagga	aaggtcaggc	cgggagcagg	cagaacctcg	2820
gactccagcc	cagegtetgg	cccggtcctt	tgactgtagc	agcagcagcc	ccagtggggc	2880
accccagccc	ctctgcattg	aagacatcag	ccctgtggca	cccctccag	cagccccacc	2940
cagtcccttg	ccaggtcctg	gacccctgct	ccagtacctg	agcctgccct	tcttccgaga	3000

gatgaatgtg gatggggact g	gcccccgct	tgaggagccc	agccctgctg	cacccccaga	3060
ttacatggat acccggcgct g	tcccacctc	atctttcctt	cgttctccag	aaacccctcc	3120
tgtatccccc agggaatcac t	tcctggggc	tgtggtaggg	gctggggcca	ctgcagagcc	3180
cccttacaca gccctggctg a	actggacact	gagggagcgg	ctgctgccag	gccttctccc	3240
tgctgcccct cgaggcagcc t	caccagcca	gagcagtggg	cgaggcagcg	cttcgttcct	3300
gcggcccccc tccacagccc c	ctctgcagg	aggcagctac	ctcagccctg	ctccaggaga	3360
caccagcagc tgggccagtg g	gccctgagag	atggccccga	agggagcatg	tggtgacagt	3420
cagcaagagg aggaacacat c	ctgtggacga	gaactatgag	tgggactcag	aattccctgg	3480
ggacatggaa ttgctggaga c	etttgcacct	gggcttggcc	agctcccggc	tcagacctga	3540
agctgagcca gagctaggtg t	gaagactcc	agaggagggc	tgcctcctga	acactgccca	3600
tgttactggc cctgaggccc g	gctgtgctgc	ccttcgggag	gaattcctgg	ccttccgccg	3660
ccgccgagat gctactaggg c	ctcggctacc	agcctatcga	cagccagtcc	cccaccccga	3720
acaggecact ctgctgtgaa c	catccctgat	gtgaggctgt	gaaaaggcat	atggacctgc	3780
aaaggaggcc cccaaccaga c	cagacctagt	ttcaaacgag	ggcactgccc	ctgcctgccc	3840
ctttggtgcc caggcacaga c	cctgatagt	gggtttgggt	caccttggta	tggaatgtat	3900
gtgctgaccc cctaggtgag t	cctggggatt	ggaacaggga	tcttaggtct	gcctctctct	3960
ctctctctct ctctctctct	ctctctgtgt	gtgtgtgtgt	gtgtgtgaag	ttttttacag	4020
gtgaataaac aaagtttgaa a	agatg				4045
<210> 21 <211> 3808 <212> DNA <213> Homo sapiens					
<400> 21 cttctccgag tggggacatt g	gctgacaatc	ccggcttccc	gaggcggcta	agaacaggca	60
gtttgtgtcg gctggctgca g	gatacccaga	ggcacaaaga	gaccgaagcc	acccggaggg	120
acccacggac ggacagatgg t	taggcgcgaa	cccgagagga	ccggcggagg	ctgagcaccg	180
agagccgcca aggaagagaa a	actaaccaca	gccaagttac	cccgccggct	ttccttcgct	240
gcgctaagga atgaaaccct t	tccagctcga	tctgctcttc	gtctgcttct	tcctcttcag	300

360 420

tcaagagctg ggcctccaga agagaggatg ctgtctggtg ctgggctaca tggccaagga

caagtttcgg agaatgaatg aaggccaagt ctattccttc agccagcagc cccaggacca

ggtggtggtg	tcgggacagc	cagtgacgct	actttgcgcc	atccccgaat	acgatggctt	480
cgttctgtgg	atcaaggacg	gcttggctct	gggtgtgggc	agggacctct	caagttaccc	540
acagtacctg	gtggtaggga	accacctgtc	aggggagcac	cacctgaaga	tcctgagggc	600
agagctgcaa	gacgatgcgg	tgtacgagtg	ccaggccatc	caggccgcca	tccgctcccg	660
ccccgcacgc	ctcacagtcc	tggtgccgcc	tgatgacccc	gtcatcctgg	ggggccctgt	720
gatcagcctg	cgtgcggggg	accctctcaa	cctcacctgc	cacgcagaca	atgccaagcc	780
tgcagcctcc	atcatctggt	tgcgaaaggg	agaggtcatc	aatggggcca	cctactccaa	840
gaccctgctt	cgggacggca	agcgggagag	catcgtcagc	accctcttca	tctcccctgg	900
tgacgtggag	aatggccaga	gcatcgtgtg	tcgtgccacc	aacaaagcca	tccccggagg	960
aaaggagacg	tcggtcacca	ttgacatcca	gcaccctcca	ctggtcaacc	tctcggtgga	1020
gccacagcca	gtgctggagg	acaacgtcgt	cactttccac	tgctctgcaa	aggccaaccc	1080
agctgtcacc	cagtacaggt	gggccaagcg	gggccagatc	atcaaggagg	catctggaga	1140
ggtgtacagg	accacagtgg	actacacgta	cttctcagag	cccgtctcct	gtgaggtgac	1200
caacgccctg	ggcagcacca	acctcagccg	cacggttgac	gtctactttg	ggccccggat	1260
gaccacagaa	ccccaatcct	tgctcgtgga	tctgggctct	gatgccatct	tcagctgcgc	1320
ctggaccggc	aacccatccc	tgaccatcgt	ctggatgaag	cggggctccg	gagtggtcct	1380
gagcaatgag	aagaccctga	ccctcaaatc	cgtgcgccag	gaggacgcgg	gcaagtacgt	1440
gtgccgggct	gtggtgcccc	gtgtgggagc	cggggagaga	gaggtgaccc	tgaccgtcaa	1500
tggaccccc	atcatctcca	gcacccagac	ccagcacgcc	ctccacggcg	agaagggcca	1560
gatcaagtgc	ttcatccgga	gcacgccgcc	gccggaccgc	atcgcctggt	cctggaagga	1620
gaacgttctg	gagtcgggca	catcggggcg	ctatacggtg	gagaccatca	gcaccgagga	1680
gggcgtcatc	tccaccctga	ccatcagcaa	catcgtgcgg	gccgacttcc	agaccatcta	1740
caactgcacg	gcctggaaca	gcttcggctc	cgacactgag	atcatccggc	tcaaggagca	1800
aggttcggaa	atgaagtcgg	gagccgggct	ggaagcagag	tctgtgccga	tggccgtcat	1860
cattggggtg	gccgtaggag	ctggtgtggc	cttcctcgtc	cttatggcaa	ccatcgtggc	1920
gttctgctgt	gcccgttccc	agagaaatct	caaaggtgtt	gtgtcagcca	aaaatgatat	1980
ccgagtggaa	attgtccaca	aggaaccagc	ctctggtcgg	gagggtgagg	agcactccac	2040
catcaagcag	ctgatgatgg	accggggtga	attccagcaa	gactcagtcc	tgaaacagct	2100
ggaggtcctc	aaagaagagg	agaaagagtt	tcagaacctg	aaggacccca	ccaatggcta	2160

ctacagcgtc aacaccttca	aagagcacca	ctcaaccccg	accatctccc	tctccagctg	2220
ccagcccgac ctgcgtcctg	cgggtaagca	gcgtgtgccc	acaggcatgt	ccttcaccaa	2280
catctacage accetgageg	gccagggccg	cctctacgac	tacgggcagc	ggtttgtgct	2340
gggcatgggc agctcgtcca	tcgagctttg	tgagcgggag	ttccagagag	gctccctcag	2400
cgacagcagc tccttcctgg	acacgcagtg	tgacagcagc	gtcagcagca	gcggcaagca	2460
ggatggctat gtgcagttcg	acaaggccag	caaggcttct	gcttcctcct	cccaccactc	2520
ccagtcctcg tcccagaact	ctgaccccag	tcgacccctg	cagcggcgga	tgcagactca	2580
cgtctaagga tcacacaccg	cgggtgggga	cgggccaggg	aagaggtcag	ggcacgttct	2640
ggttgtccag ggacgagggg	tactttgcag	aggacaccag	aattggccac	ttccaggaca	2700
gcctcccagc gcctctgcca	ctgccttcct	tcgaagctct	gatcaagcac	aaatctgggt	2760
ccccaggtgc tgtgtgccag	aggtgggcgg	gtggggagac	agacagaggc	tgcggctgag	2820
tgcgctgtgc ttagtgctgg	acacccgtgt	ccccggccct	ttcctggagg	cccctctacc	2880
acctgctctg cccacaggca	caagtggcag	ctataactct	gctttcatga	aactgcggtc	2940
cactetetgg tetetetgtg	ggctctaccc	ctcactgacc	acaagctcta	cctacccctg	3000
tgcctgtgct cccatacagc	cctggggaga	aggggatgac	gtcttcccag	cactgagctg	3060
ccccagaaac cccggctccc	cactgctgct	catagcccat	accctggagg	ttgacaagcc	3120
agaaatggcc ttggctaaag	gagcctctct	ctcaccaggc	tġgccgggag	cccaccccca	3180
atttgtttgg tgttttgtgt	ccatactctt	gcagttctgt	ccttggactt	gatgccgctg	3240
aactctgcgg tgggaccggt	cccgtcagag	cctggtgtac	tggggggagg	gagggaggag	3300
ggagcctgtg ctgacggagc	acctcgccgg	gtgtgcccct	cctgggctgt	gtgaccccag	3360
cetececace caceteetge	tttgtgtact	cctcccctcc	ccctcagcac	aatcggagtt	3420
catataagaa gtgcgggagc	ttctctggtc	agggttctct	gaacacttat	ggagagagtg	3480
cttcctggga agtgtggcgt	ttgaaggggc	tggagggcag	gtctttaaga	tggcgagact	3540
gcccttctca gctgataaac	acaagaacgg	cgatcctgtc	ttcagtaagg	ctccacgaga	3600
agagaggaag tatatctaca	cctcaaccct	cctagtcacc	acctgaaata	aatgttaggg	3660
acactactcc aacatgtttg	ttctgttctt	ttgttcctac	aaagccacag	gaagaaccca	3720
agagctcata gaatgcgttg	ggaacccaag	gttctctgcc	ctcctttgat	tcaatcatcc	3780
tagacaataa aggcagttga	tagctctg				3808

<210> 22 <211> 3425 <212> DNA <213> Homo sapiens

<400> 22 gccaagtcta ttccttcagc cagcagcccc aggaccaggt ggtggtgtcg ggacagccag 60 tgacgctact ttgcgccatc cccgaatacg atggcttcgt tctgtggatc aaggacggct 120 tggctctggg tgtgggcagg gacctctcaa gttacccaca gtacctggtg gtagggaacc 180 acctgtcagg ggagcaccac ctgaagatcc tgagggcaga gctgcaagac gatgcggtgt 240 acgagtgcca ggccatccag gccgccatcc gctccgccc cgcacgcctc acagtcctgg 300 tgccgcctga tgaccccgtc atcctggggg gccctgtgat cagcctgcgt gcgggggacc 360 ctctcaacct cacctgccac gcagacaatg ccaagcctgc agcctccatc atctggttgc 420 gaaagggaga ggtcatcaat ggggccacct actccaagac cctgcttcgg gacggcaagc 480 gggagagcat cgtcagcacc ctcttcatct cccctggtga cgtggagaat ggccagagca 540 tcgtgtgtcg tgccaccaac aaagccatcc ccggaggaaa ggagacgtcg gtcaccattg 600 acatccagca ccctccactg gtcaacctct cggtggagcc acagccagtg ctggaggaca 660 acgtcgtcac tttccactgc tctgcaaagg ccaacccagc tgtcacccag tacaggtggg 720 ccaagegggg ccagateate aaggaggeat etggagaggt gtacaggaee acagtggaet 780 acacgtactt ctcagagccc gtctcctgtg aggtgaccaa cgccctgggc agcaccaacc 840 900 tcagccgcac ggttgacgtc tactttgggc cccggatgac cacagaaccc caatccttgc tegtggatet gggetetgat gecatettea getgegeetg gaeeggeaac ceatecetga 960 ccatcgtctg gatgaagcgg ggctccggag tggtcctgag caatgagaag accctgaccc 1020 tcaaatccgt gcgccaggag gacgcgggca agtacgtgtg ccgggctgtg gtgccccgtg 1080 tgggagccgg ggagagagag gtgaccctga ccgtcaatgg accccccatc atctccagca 1140 cccagaccca gcacgccctc cacggcgaga agggccagat caagtgcttc atccggagca 1200 cgccgccgcc ggaccgcatc gcctggtcct ggaaggagaa cgttctggag tcgggcacat 1260 cggggcgcta tacggtggag accatcagca ccgaggaggg cgtcatctcc accctgacca 1320 tcagcaacat cgtgcgggcc gacttccaga ccatctacaa ctgcacggcc tggaacagct 1380 tcggctccga cactgagatc atccggctca aggagcaagg ttcggaaatg aagtcgggag 1440 ccgggctgga agcagagtct gtgccgatgg ccgtcatcat tggggtggcc gtaggagctg 1500

gtgtggcctt	cctcgtcctt	atggcaacca	tcgtggcgtt	ctgctgtgcc	cgttcccaga	1560
gaaatctcaa	aggtgttgtg	tcagccaaaa	atgatatccg	agtggaaatt	gtccacaagg	1620
aaccagcctc	tggtcgggag	ggtgaggagc	actccaccat	caagcagctg	atgatggacc	1680
ggggtgaatt	ccagcaagac	tcagtcctga	aacagctgga	ggtcctcaaa	gaagaggaga	1740
aagagtttca	gaacctgaag	gaccccacca	atggctacta	cagcgtcaac	accttcaaag	1800
agcaccactc	aaccccgacc	atctccctct	ccagctgcca	gcccgacctg	cgtcctgcgg	1860
gcaagcagcg	tgtgcccaca	ggcatgtcct	tcaccaacat	ctacagcacc	ctgagcggcc	192Ó
agggccgcct	ctacgactac	gggcagcggt	ttgtgctggg	catgggcagc	tcgtccatcg	1980
agctttgtga	gcgggagttc	cagagaggct	ccctcagcga	cagcagctcc	ttcctggaca	2040
cgcagtgtga	cagcagcgtc	agcagcagcg	gcaagcagga	tggctatgtg	cagttcgaca	2100
aggccagcaa	ggcttctgct	tcctcctccc	accactccca	gtcctcgtcc	cagaactctg	2160
accccagtcg	acccctgcag	cggcggatgc	agactcacgt	ctaaggatca	cacaccgcgg	2220
gtggggacgg	gccagggaag	aggtcagggc	acgttctggt	tgtccaggga	cgaggggtac	2280
tttgcagagg	acaccagaat	tggccacttc	caggacagcc	tcccagcgcc	tctgccactg	2340
ccttccttcg	aagctctgat	caagcacaaa	tctgggtccc	caggtgctgt	gtgccagagg	2400
tgggcgggtg	gggagacaga	cagaggctgc	ggctgagtgc	gctgtgctta	gtgctggaca	2460
cccgtgtccc	cggccctttc	ctggaggccc	ctctaccacc	tgctctgccc	acaggcacaa	∙2520
gtggcagcta	taactctgct	ttcatgaaac	tgcggtccac	tctctggtct	ctctgtgggc	2580
tctacccctc	gctgaccaga	agctctacct	acccctgtgc	ctgtgctccc	atacagccct	2640
ggggagaagg	ggatgacgtc	ttcccagcac	tgagctgccc	cagaaacccc	ggctccccac	2700
tgctgctcat	agcccatacc	ctggaggctg	acaagccaga	aatggccttg	gctaaaggag	2760
cctctctctc	accaggctgg	ccgggagccc	acccccaatt	tgtttggtgt	tttgtgtcca	2820
tactcttgca	gttctgtcct	tggacttgat	gccgctgaac	tctgcggtgg	gaccggtccg	2880
gtcagagcct	ggtgtactgg	ggggagggag	ggaggaggga	gcctgtgctg	acggagcacc	2940
tcgccgggtg	tgcccctcct	gggctgtgtg	accccagcct	ccccacccac	ctcctgcttt	3000
gtgtactcct	cccctcccc	tcagcacaat	cggagttcat	ataagaagtg	cgggagcttc	3060
tctggtcagg	gttctctgaa	cacttatgga	gagagtgctt	cctgggaagt	gtggcgtttg	3120
aaggggctgg	agggcaggtc	tttaagatgg	cgagactgcc	cttctcagct	gataaacaca	3180
agaacggcga	tcctgtcttc	agtaaggctc	cacgagaaga	gaggaagtat	atctacacct	3240

caaccctcct agtcaccacc	tgaaataaat	gttagggaca	ctactccaac	atgtttgttc	3300
tgttcttttg ttcctacaaa	gccacaggaa	gaacccaaga	gctcatagaa	tgcgttggga	3360
acccaaggtt ctctgccctc	ctttgattca	atcttcctag	acaataaagg	cagttgatag	3420
ctctg					3425
<210> 23					
<210> 25 <211> 2642 <212> DNA					
<213> Homo sapiens					
<400> 23			+ + - + - +		60
gggtcgaccc acgcgtccgg					60
tattcaagtc tgcagccggc	tcccagggag	atctcggtgg	aacttcagaa	acgctgggca	120
gtctgccttt caaccatgcc	cctgtccctg	ggagccgaga	tgtgggggcc	tgaggcctgg	180
ctgctgctgc tgctactgct	ggcatcattt	acaggccggt	gccccgcggg	tgagctggag	240
acctcagacg tggtaactgt	ggtgctgggc	caggacgcaa	aactgccctg	cttctaccga	300
ggggactccg gcgagcaagt	ggggcaagtg	gcatgggctc	gggtggacgc	gggcgaaggc	360
gcccaggaac tagcgctact	gcactccaaa	tacgggcttc	atgtgagccc	ggcttacgag	420
ggccgcgtgg agcagccgcc	gccccacgc	aaccccctgg	acggctcagt	gctcctgcgc	480
aacgcagtgc aggcggatga	gggcgagtac	gagtgccggg	tcagcacctt	cccgccggc	540
agettecagg egeggetgeg	gctccgagtg	atggtgcctc	ccctgccctc	actgaatcct	600
ggtccagcac tagaagaggg	ccagggcctg	accctggcag	cctcctgcac	agctgagggc	660
agcccagccc ccagcgtgac	ctgggacacg	gaggtcaaag	gcacaacgtc	cagccgttcc	720
ttcaagcact cccgctctgc	tgccgtcacc	tcagagttcc	acttggtgcc	tagccgcagc	780
atgaatgggc agccactgac	ttgtgtggtg	tcccatcctg	gcctgctcca	ggaccaaagg	840
atcacccaca tcctccacgt	gtccttcctt	gctgaggcct	ctgtgagggg	ccttgaagac	900
caaaatctgt ggcacattgg	cagagaagga	gctatgctca	agtgcctgag	tgaagggcag	960
cccctccct catacaactg	gacacggctg	gatgggcctc	tgcccagtgg	ggtacgagtg	1020
gatggggaca ctttgggctt	tcccccactg	accactgagc	acagcggcat	ctacgtctgc	1080
catgtcagca atgagttctc	ctcaagggat	tctcaggtca	ctgtggatgt	tcttgacccc	1140
caggaagact' ctgggaagca	ggtggaccta	gtgtcagcct	cggtggtggt	ggtgggtgtg	1200
ategeegeae tettgttetg	ccttctggtg	gtggtggtgg	tgctcatgtc	ccgataccat	1260

cggcgcaagg	cccagcagat	gacccagaaa	tatgaggagg	agctgaccct	gaccagggag	1320
aactccatcc	ggaggctgca	ttcccatcac	acggacccca	ggagccagcc	ggaggagagt	1380
gtagggctga	gagccgaggg	ccaccctgat	agtctcaagg	acaacagtag	ctgctctgtg	1440
atgagtgaag	agcccgaggg	ccgcagttac	tccacgctga	ccacggtgag	ggagatagaa	1500
acacagactg	aactgctgtc	tccaggctct	gggcgggccg	aggaggagga	agatcaggat	1560
gaaggcatca	aacaggccat	gaaccatttt	gttcaggaga	atgggaccct	acgggccaag	1620
cccacgggca	atggcatcta	catcaatggg	cggggacacc	tggtctgacc	caggcctgcc	1680
tcccttccct	aggcctggct	ccttctgttg	acatgggaga	ttttagctca	tcttgggggc	1740
ctccttaaac	acccccattt	cttgcggaag	atgctcccca	tcccactgac	tgcttgacct	1800
ttacctccaa	cccttctgtt	catcgggagg	gctccaccaa	ttgagtctct	cccaccatgc	1860
atgcaggtca	ctgtgtgtgt	gcatgtgtgc	ctgtgtgagt	gttgactgac	tgtgtgtgtg	1920
tggaggggtg	actgtccgtg	gaggggtgac	tgtgtccgtg	gtgtgtatta	tgctgtcata	1980
tcagagtcaa	gtgaactgtg	gtgtatgtgc	cacgggattt	gagtggttgc	gtgggcaaca	2040
ctgtcagggt	ttggcgtgtg	tgtcatgtgg	ctgtgtgtga	cctctgcctg	aaaaagcagg	2100
tattttctca	gaccccagag	cagtattaat	gatgcagagg	ttggaggaga	gaggtggaga	2160
ctgtggctca	gacccaggtg	tgcgggcata	getggagetg	gaatctgcct	ccggtgtgag	2220
ggaacctgtc	tcctaccact	tcggagccat	gggggcaagt	gtgaagcagc	cagtccctgg	2280
gtcagccaga	ggcttgaact	gttacagaag	ccctctgccc	tctggtggcc	tctgggcctg	2340
ctgcatgtac	atattttctg	taaatataca	tgcgccggga	gcttcttgca	ggaatactgc	2400
tccgaatcac	tttaatttt	tttcttttt	ttttcttgcc	ctttccatta	gttgtatttt	2460
ttatttattt	ttatttttat	tttttttag	agatggagtc	tcactatgtt	gctcaggctg	2520
gccttgaact	cctgggctca	agcaatcctc	ctgcctcagc	ctccctagta	gctgggactt	2580
taagtgtaca	ccactgtgcc	tgctttgaat	cctttacgaa	gagaaaaaaa	aaaaaaaaaa	2640
aa						2642

<210> 24 <211> 1558 <212> DNA

<400> 24 cctttcaacc atgecectgt ccctgggage cgagatgtgg gggeetgagg cctggetget 60

<213> Homo sapiens

gctgctgcta	ctgctggcat	catttacagg	ccggtgcccc	gcgggtgagc	tggagacctc	120
agacgtggta	actgtggtgc	tgggccagga	cgcaaaactg	ccctgcttct	accgagggga	180
ctccggcgag	caagtggggc	aagtggcatg	ggctcgggtg	gacgcgggcg	aaggcgccca	240
ggaactagcg	ctactgcact	ccaaatacgg	gcttcatgtg	agcccggctt	acgagggccg	300
cgtggagcag	ccgccgcccc	cacgcaaccc	cctggacggc	tcagtgctcc	tgcgcaacgc	360
agtgcaggcg	gatgagggcg	agtacgagtg	ccgggtcagc	accttccccg	ccggcagctt	420
ccaggcgcgg	ctgcggctcc	gagtgctggt	gcctcccctg	ccctcactga	atcctggtcc	480
agcactagaa	gagggccagg	gcctgaccct	ggcagcctcc	tgcacagctg	agggcagccc	540
agcccccagc	gtgacctggg	acacggaggt	caaaggcaca	acgtccagcc	gttccttcaa	600
gcactcccgc	tetgetgeeg	tcacctcaga	gttccacttg	gtgcctagcc	gcagcatgaa	660
tgggcagcca	ctgacttgtg	tggtgtccca	tectggeetg	ctccaggacc	aaaggatcac	720
ccacatcctc	cacgtgtcct	tccttgctga	ggcctctgtg	aggggccttg	aagaccaaaa	780
tctgtggcac	attggcagag	aaggagctat	gctcaagtgc	ctgagtgaag	ggcagccccc	840
tccctcatac	aactggacac	ggctggatgg	gcctctgccc	agtggggtac	gagtggatgg	900
ggacactttg	ggctttcccc	cactgaccac	tgagcacagc	ggcatctacg	tctgccatgt	960
cagcaatgag	ttctcctcaa	gggattctca	ggtcactgtg	gatgttcttg	acccccagga	1020
agactctggg	aagcaggtgg	acctagtgtc	agcctcggtg	gtggtggtgg	gtgtgatcgc	1080
cgcactcttg	ttctgccttc	tggtggtggt	ggtggtgctc	atgtcccgat	accatcggcg	1140
caaggcccag	cagatgaccc	agaaatatga	ggaggagctg	accctgacca	gggagaactc	1200
catccggagg	ctgcattccc	atcacacaga	ccccaggagc	cagccggagg	agagtgtagg	1260
gctgagagcc	gagggccacc	ctgatagtct	caaggacaac	agtagctgct	ctgtgatgag	1320
tgaagagccc	gagggccgca	gttactccac	gctgaccacg	gtgagggaga	tagaaacaca	1380
gactgaactg	ctgtctccag	gctctgggcg	ggccgaggag	gaggaagatc	aggatgaagg	1440
catcaaacag	gccatgaacc	ättttgttca	ggagaatggg	accctacggg	ccaagcccac	1500
gggcaatggc	atctacatca	atgggcgggg	acacctggtc	tgacccaggc	ctgcctcc	1558

<210> 25 <211> 1483 <212> DNA <213> Homo sapiens

<400> 25 cctttcaacc atgcccctgt	ccctgggagc	cgagatgtgg	gggcctgagg	cctggctgct	60
gctgctgcta ctgctggcat	catttacagg	ccggtgcccc	gcgggtgagc	tggagacctc	120
agacgtggta actgtggtgc	tgggccagga	cgcaaaactg	ccctgcttct	accgagggga	180
ctccggcgag caagtggggc	aagtggcatg	ggctcgggtg	gacgcgggcg	aaggcgccca	240
ggaactagcg ctactgcact	ccaaatacgg	gcttcatgtg	agcccggctt	acgagggccg	300
cgtggagcag ccgccgccc	cacgcaaccc	cctggacggc	tcagtgctcc	tgcgcaacgc	360
agtgcaggcg gatgagggcg	agtacgagtg	ccgggtcagc	acctteceeg	ccggcagctt	420
ccaggcgcgg ctgcggctcc	gagtgctggt	gcctcccctg	ccctcactga	atcctggtcc	480
agcactagaa gagggccagg	gcctgaccct	ggcagcctcc	tgcacagetg	agggcagccc	540
agcccccagc gtgacctggg	acacggaggt	caaaggcaca	acgtccagcc	gttccttcaa	600
gcactcccgc tctgctgccg	tcacctcaga	gttccacttg	gtgcctagcc	gcagcatgaa	660
tgggcagcca ctgacttgtg	tggtgtccca	tectggeetg	ctccaggacc	aaaggatcac	720
ccacatcete caegtgteet	tccttgctga	ggcctctgtg	aggggccttg	aagaccaaaa	780
tctgtggcac attggcagag	aaggagctat	gctcaagtgc	ctgagtgaag	ggcagccccc	840
teceteatae aactggacae	ggctggatgg	gcctctgccc	agtggggtac	gagtggatgg	900
ggacactttg ggctttcccc	cactgaccac	tgagcacagc	ggcatctacg	tctgccatgt	960
cagcaatgag ttctcctcaa	gggattctca	ggtcactgtg	gatgttcttg	acccccagga	1020
agactctggg aagcaggtgg	acctagtgtc	agcctcggtg	gtggtggtgg	gtgtgatcgc	1080
cgcactcttg ttctgccttc	tggtggtggt	ggtggtgctc	atgtcccgat	accatcggcg	1140
caaggcccag cagatgaccc	agaaatatga	ggaggagctg	accctgacca	gggagaactc	1200
cateeggagg etgeatteed	atcacacgga	ccccaggagc	cagagtgaag	agcccgaggg	1260
ccgcagttac tccacgctga	ccacggtgag	ggagatagaa	acacagactg	aactgctgtc	1320
tecaggetet gggegggeeg	aggaggagga	agatcaggat	gaaggcatca	aacaggccat	1380
gaaccatttt gttcaggaga	atgggaccct	acgggccaag	cccacgggca	atggcatcta	1440
catcaatggg cggggacacc	tggtctgacc	caggcctgcc	tcc		1483

<210> 26 <211> 2744 <212> DNA <213> Homo sapiens

60	atcacggctt	ggagctcccg	gggggagctc	aagcagctct	acagcgtggg	<400> 26 gttgttggcc
120	gggtccccta	ggctggggct	acggggccgg	ggtgtgtaga	gctacggctg	cttgggggta
180	ggtcagttcc	ctgccttctg	ctgcagcttc	ggcaagaact	aagtgcgaga	gtggagaccc
240	aacgctgggc	gaacttcaga	gatctcggtg	ctcccaggga	ctgcagccgg	ttattcaagt
300	ctgaggcctg	atgtgggggc	gggagccgag	ccetgtccct	tcaaccatgc	agtctgcctt
360	gtgagctggg	tgccccgcgg	tacaggccgg	tggcatcatt	ctgctactgc	gctgctgctg
420	gcttctaccg	aaactgccct	ccaggacgca	tggtgctggg	gtggtaactg	gacctcagac
480	cgggcgaagg	cgggtggacg	ggcatgggct	tggggcaagt	ggcgagcaag	aggggactcc
540	cggcttacga	catgtgagcc	atacgggctt	tgcactccaa	ctagcgctac	cgcccaggaa
600	tgctcctgcg	gacggctcag	caaccccctg	cgccccacg	gagcagccgc	gggccgcgtg
660	tccccgccgg	gtcagcacct	cgagtgccgg	agggcgagta	caggcggatg	caacgcagtg
720	cactgaatcc	cccctgccct	gctggtgcct	ggctccgagt	gcgcggctgc	cagcttccag
780	cagctgaggg	gcctcctgca	gaccctggca	gccagggcct	ctagaagagg	tggtccagca
840	ccagccgttc	ggcacaacgt	ggaggtcaaa	cctgggacac	cccagcgtga	cagcccagcc
900	ctagccgcag	cacttggtgc	ctcagagttc	ctgccgtcac	tcccgctctg	cttcaagcac
960	aggaccaaag	ggcctgctcc	gtcccatcct	cttgtgtggt	cagccactga	catgaatggg
1020	gccttgaaga	tctgtgaggg	tgctgaggcc	tgtccttcct	atcctccacg	gatcacccac
1080	gtgaagggca	aagtgcctga	agctatgctc	gcagagaagg	tggcacattg	ccaaaatctg
1140	gggtacgagt	ctgcccagtg	ggatgggcct	ggacacggct	tcatacaact	gcccctccc
1200	tctacgtctg	cacageggca	gaccactgag	ttcccccact	actttgggct	ggatggggac
1260	ttcttgaccc	actgtggatg	ttctcaggtc	cctcaaggga	aatgagttct	ccatgtcagc
1320	tggtgggtgt	tcggtggtgg	agtgtcagcc	aggtggacct	tctgggaagc	ccaggaagac
1380	cccgatacca	gtgctcatgt	ggtggtggtg	gccttctggt	ctcttgttct	gatcgccgca
1440	tgaccaggga	gagctgaccc	atatgaggag	tgacccagaa	gcccagcaga	tcggcgcaag
1500	cggaggagag	aggagccagc	cacggacccc	attcccatca	cggaggctgc	gaactccatc
1560	gctgctctgt	gacaacagta	tagtctcaag	gccaccctga	agagccgagg	tgtagggctg
1620	gggagataga	accacggtga	ctccacgctg	gccgcagtta	gagcccgagg	gatgagtgaa
1680	aagatcagga	gaggaggagg	tgggcgggcc	ctccaggctc	gaactgctgt	aacacagact

tgaaggcatc	aaacaggcca	tgaaccattt	tgttcaggag	aatgggaccc	tacgggccaa	1740
gcccacgggc	aatggcatct	acatcaatgg	gcggggacac	ctggtctgac	ccaggcctgc	1800
ctcccttccc	taggcctggc	tccttctgtt	gacatgggag	attttagctc	atcttggggg	1860
cctccttaaa	cacccccatt	tcttgcggaa	gatgctcccc	atcccactga	ctgcttgacc	1920
tttacctcca	acccttctgt	tcatcgggag	ggctccacca	attgagtctc	tcccaccatg	1980
catgcaggtc	actgtgtgtg	tgcatgtgtg	cctgtgtgag	tgttgactga	ctgtgtgtgt	2040
gtggaggggt	gactgtccgt	ggaggggtga	ctgtgtccgt	ggtgtgtatt	atgctgtcat	2100
atcagagtca	agtgaactgt	ggtgtatgtg	ccacgggatt	tgagtggttg	cgtgggcaac	2160
actgtcaggg	tttggcgtgt	gtgtcatgtg	gctgtgtgtg	acctctgcct	gaaaaagcag	2220
gtattttctc	agaccccaga	gcagtattaa	tgatgcagag	gttggaggag	agaggtggag	2280
actgtggctc	agacccaggt	gtgcgggcat	agctggagct	ggaatctgcc	tccggtgtga	2340
gggaacctgt	ctcctaccac	ttcggagcca	tgggggcaag	tgtgaagcag	ccagtccctg	2400
ggtcagccag	aggcttgaac	tgttacagaa	gccctctgcc	ctctggtggc	ctctgggcct	2460
gctgcatgta	catattttct	gtaaatatac	atgcgccggg	agcttcttgc	aggaatactg	2520
ctccgaatca	cttttaattt	ttttctttt	tttttcttgc	cctttccatt	agttgtattt	2580
tttatttatt	tttattttta	tttttttta	gagatggagt	ctcactatgt	tgctcaggct	2640
ggccttgaac	tcctgggctc	aagcaatcct	cctgcctcag	cctccctagt	agctgggact	2700
ttaagtgtac	accactgtgc	ctgctttgaa	tcctttacga	agag		2744
<210> 27	a					

<211> 1809

<212> DNA

<213> Rattus norvegicus

<400> 27

gcgccgcctg gttatcggc agcctcgca gcagcaggg gtgggagccg acgctgccgg 60
agagcgagca gcctggcagg cacggacatg gtgctcctgg cgcagggcgc ttgttgctcg 120
aaccagtggc tggcggcgt gcttctgagc ctgtgctctt gcctcccggc tgggcagagc 180
gtggacttcc cctgggcggc cgtggacaac atgctggtga ggaaaggtga cacggcggtg 240
ctcaggtgtt acttggaaga cggagcatca aagggcgcct ggctcaacag gtcaagtatc 300
attttgctg gaggtgacaa gtggtcagtg gaccctcgag tttccattc cacattgaat 360
aaaagggact acagcctcca gatacagaac gttgatgtga cagatgatgg cccgtacacc 420

tgttctgtgc agacccaaca cacaccacgg acgatgcagg ttcatctcac tgtgcaagtt 480

ogodougogo u	-ga-o-o-aa-ca	oucucaegg	4094090495		-5-55	
ccaccgaaaa t	atatgacat	ctcaaatgac	atgaccatca	atgaaggaac	caacgtcacc	540
cttacttgtt t	ggccactgg	gaagccagag	cccgccattt	cctggaggca	tatctcccca	600
tcagcaaaac o	atttgaaaa	tggacaatat	ttggacattt	atggaattac	aagagaccag	660
gctggggagt a	acgaatgcag	tgcagagaac	gatgtatcat	tcccagatgt	gaagaaagtg	720
agagtggtcg t	gaactttgc	gcctacaatt	caggaaatta	aatctggcac	agtgacccct	780
ggacgcagtg g	gactgataag	atgtgagggt	gcaggtgtgc	cgccgccagc	cttcgagtgg	840
tacaaaggag a	agaagagact	cttcaatggc	caacaaggaa	ttatcattca	gaattttagc	900
acaagatcca t	cctcacagt	gaccaacgtg	acacaggagc	acttcggcaa	ctatacttgt	960
gtggctgcca a	acaagttggg	cacaaccaac	gcgagcctgc	ccctcaaccc	tccaagcaca	1020
gcccagtatg g	gaattactgg	gagcgcctgt	gacctcttct	cctgctggag	ccttgcgttg	1080
acactatctt o	ctgtcatcag	catattctac	ctgaagaatg	ccatcctaca	atgaatctaa	1140
agacccatga a	aaggctttca	aggagtetet	gggagtgctg	acggctggat	ccaatctggt	1200
gcagttaggt t	cgaagcagcg	tgggatacaa	teggeegtet	gtacgagggt	gacacctttt	1260
gtctgtggaa t	tegetggttg	tgtaaatact	ttcattctcc	tctccttttg	attagacaca	1320
cgaccttgtg a	agcactgca	cattgtccct	ttttttaaga	tgtgaaaggt	ctgaacttac	1380
ttttagagga t	tattaattgt	gatttcatgt	ttgtaatcta	caacttttca	agagcattca	1440
gtcgtggtct g	gctaggcttc	cggctgtagt	ttacataaca	aatattgcag	tgaacccatg	1500
attctttaag g	gctgcaatac	aagggttcca	tgccctgttt	caataagagt	caacccacat	1560
ttacaaagat g	gcatttttt	cttttttgat	aaaaattcaa	ataatattgc	cttcagatca	1620
tttcttcaaa a	atataacaca	tatctagatg	teectgeteg	catgacatcc	aggttttgga	1680
aatgagcctt g	gtaatataac	tcgctatgct	tctccttcta	atttcagcat	gggtgtgcct	1740
tcataaaaaa a	ataatctctt	tgtctctgac	aaatacttaa	tgttttccta	aaccttgcaa	1800
tttggaagc						1809
<210> 28 . <211> 1017				•		

<211> 1017

<212> DNA

<213> Homo sapiens

<400> 28

atggtcggga gagttcaacc ggatcggaaa cagttgccac tggtcctact gagattgctc 60

tgccttcttc ccacaggact gcctgttcgc agcgtggatt ttaaccgagg cacggacaac	120
atcaccgtga ggcaggggga cacagccatc ctcaggtgcg ttctagaaga caagaactca	180
aaggtggcct ggttgaaccg ttctggcatc atttttgctg gacatgacaa gtggtctctg	240
gacccacggg ttgagctgga gaaacgccat tctctggaat acagcctccg aatccagaag	300
gtggatgtct atgatgaggg ttcctacact tgctcagttc agacacagca tgagcccaag	360
acctcccaag tttacttgat cgtacaagtc ccaccaaaga tctccaatat ctcctcggat	420
gtcactgtga atgagggcag caacgtgact ctggtctgca tggccaatgg ccgtcctgaa	480
cctgttatca cctggagaca ccttacacca actggaaggg aatttgaagg agaagaagaa	540
tatetggaga teettggeat caccagggag cagteaggea aatatgagtg caaagetgee	600
aacgaggtct cctcggcgga tgtcaaacaa gtcaaggtca ctgtgaacta tcctccact	660
atcacagaat ccaagagcaa tgaagccacc acaggacgac aagcttcact caaatgtgag	720
gcctcggcag tgcctgcacc tgactttgag tggtaccggg atgacactag gataaatagt	780
gccaatggcc ttgagattaa gagcacggag ggccagtctt ccctgacggt gaccaacgtc	840
actgaggage actacggcaa ctacacctgt gtggctgcca acaagctggg ggtcaccaat	900
gccagcctag teettttcag acctgggtcg gtgagaggaa taaatggate catcagtetg	960
gccgtaccac tgtggctgct ggcagcatct ctgctctgcc ttctcagcaa atgttaa	1017
<210> 29 <211> 1075 <212> DNA <213> Homo sapiens <400> 29	
atggtcggga gagttcaacc ggatcggaaa cagttgccac tggtcctact gagattgctc	60
tgccttcttc ccacaggact gcctgttcgc agcgtggatt ttaaccgagg cacggacaac	120
atcaccgtga ggcaggggga cacagccatc ctcaggtgcg ttgtagaaga caagaactca	180
aaggtggcct ggttgaaccg ttctggcatc atttttgctg gacatgacaa gtggtctctg	240
gacccacggg ttgagctgga gaaacgccat tctctggaat acagcctccg aatccagaag	300
gtggatgtct atgatgaggg ttcctacact tgctcagttc agacacagca tgagcccaag	360
acctcccaag tttacttgat cgtacaagte ccaccaaaga tctccaatat ctcctcggat	420

gtcactgtga atgagggcag caacgtgact ctggtctgca tggccaatgg ccgtcctgaa 480

cctgttatca cctggagaca ccttacacca actggaaggg aatttgaagg agaagaagaa 540

tatetggaga teettggeat caccagggag cagteaggea aatatgagtg caaagetgee	600
aacgaggtct cctcggcgga tgtcaaacaa gtcaaggtca ctgtgaacta tcctcccact	660
atcacagaat ccaagagcaa tgaagccacc acaggacgac aagcttcact caaatgtgag	720
gcctcggcag tgcctgcacc tgactttgag tggtaccggg atgacactag gataaatagt	780
gccaatggcc ttgagattaa gagcacggag ggccagtctt ccctgacggt gaccaacgtc	840
actgaggagc actacggcaa ctacacctgt gtggctgcca acaagctggg ggtcaccaat	900
gccagcctag tccttttcaa acgtgtttta cccacaatcc cccaccccat tcaaggacct	960
gggtcggtga gaggaataaa tggatccatc agtctggccg taccactgtg gctgctggca	1020
gcatctctgc tctgccttct cagcaaatgt taaaagggcg aattcaggcc taatt	1075
<210> 30 <211> 1017 <212> DNA <213> Homo sapiens <400> 30	
atggtcggga gagttcaacc ggatcggaaa cagttgccac tggtcctact gagattgctc	60
tgccttcttc ccacaggact gcctgttcgc agcgtggatt ttaaccgagg cacggacaac	120
atcaccgtga ggcaggggga cacagccatc ctcaggtgcg ttgtagaaga caagaactca	180
aaggtggcct ggttgaaccg ttctggcatc atttttgctg gacatgacaa gtggtctctg	240
gacccacggg ttgagctgga gaaacgccat tctctggaat acagcctccg aatccagaag	300
gtggatgtct atgatgaggg ttcctacact tgctcagttc agacacagca tgagcccaag	360
acctcccaag tttacttgat cgtacaagtc ccaccaaaga tctccaatat ctcctcggat	420
gtcactgtga atgagggcag caacgtgact ctggtctgca tggccaatgg ccgtcctgaa	480
cctgttatca cctggagaca ccttacacca actggaaggg aatttgaagg agaagaagaa	540
tatctggaga tccttggcat caccagggag cagtcaggca aatatgagtg caaagctgcc	600
aacgaggtet eeteggegga tgteaaacaa gteaaggtea etgtgaacta teeteecaet	660
atcacagaat ccaagagcaa tgaagccacc acaggacgac aagcttcact caaatgtgag	720
gcctcggcag tgcctgcacc tgactttgag tggtaccggg atgacactag gataaatagt	780
gccaatggcc ttgagattaa gagcacggag ggccagtctt ccctgacggt gaccaacgtc	840
actgaggagc actacggcaa ctacacctgt gtggctgcca acaagctggg ggtcaccaat	900
gccagcctag tccttttcag acctgggtcg gtgagaggaa taaatggatc catcagtctg	960

gccgtaccac tgtggctgct g	ggcagcatct	ctgctctgcc	ttctcagcaa	atgttaa	1017
<210> 31 <211> 898 <212> DNA <213> Homo sapiens					·
<400> 31					
tcaggtgcgt tgtagaagac	aagaactcaa	aggtggcctg	gttgaaccgt	tctggcatca	60
tttttgctgg acatgacaag (tggtctctgg	acccacgggt	tgagctggag	aaacgccatt	120
ctctggaata cagcctccga a	atccagaagg	tggatgtcta	tgatgagggt	tcctacactt	180
gctcagttca gacacagcat	gagcccaaga	cctcccaagt	ttacttgatc	gtacaagtcc	240
caccaaagat ctccaatatc	tcctcggatg	tcactgtgaa	tgagggcagc	aacgtgactc	300
tggtctgcat ggccaatggc	cgtcctgaac	ctgttatcac	ctggagacac	cttacaccaa	360
ctggaaggga atttgaagga (gaagaagaat	atctggagat	ccttggcatc	accagggagc	420
agtcaggcaa atatgagtgc	aaagctgcca	acgaggtctc	ctcggcggat	gtcaaacaag	480
tcaaggtcac tgtgaactat	cctcccacta	tcacagaatc	caagagcaat	gaagccacca	540
caggacgaca agcttcactc	aaatgtgagg	cctcggcagt	gcctgcacct	gactttgagt	600
ggtaccggga tgacactagg	ataaatagtg	ccaatggcct	tgagattaag	agcacggagg	660
gccagtette cetgaeggtg	accaacgtca	ctgaggagca	ctacggcaac	tacacctgtg	720
tggctgccaa caagctgggg	gtcaccaatg	ccagcctagt	ccttttcaga	cctgggtcgg	780
tgagaggaat aaatggatcc	atcagtctgg	ccgtaccact	gtggctgctg	gcagcatctc	840
tgctctgcct tctcagcaaa	tgttaataga	ataaaaattt	aaaaataatt	taaaaaac	898
<210> 32 <211> 3110 <212> DNA <213> Homo sapiens <400> 32					
gaccaggact gtgcggctgc	cggagtcctg	ggaagttgtg	gctgtcgaga	atgggggtct	60
gtgggtacct gttcctgccc	tggaagtgcc	tcgtggtcgt	gtctctcagg	ctgctgttcc	120
ttgtacccac aggagtgccc	gtgcgcagcg	gagatgccac	cttccccaaa	gctatggaca	180
acgtgacggt ccggcagggg	gagagcgcca	ccctcaggtg	taccatagat	gaccgggtaa	240
cccgggtggc ctggctaaac	cgcagcacca	tcctctacgc	tgggaatgac	aagtggtcca	300
tagaccctcg tgtgatcatc	ctggtcaata	caccaaccca	gtacagcatc	atgatccaaa	360

atgtggatgt	gtatgacgaa	ggtccgtaca	cctgctctgt	gcagacagac	aatcatccca	420
aaacgtcccg	ggttcaccta	atagtgcaag	ttcctcctca	gatcatgaat	atctcctcag	480
acatcactgt	gaatgaggga	agcagtgtga	ccctgctgtg	tcttgctatt	ggcagaccag	540
agccaactgt	gacatggaga.	cacctgtcag	tcaaggaagg	ccagggcttt	gtaagtgagg	600
atgagtacct	ggagatctct	gacatcaagc	gagaccagtc	cggggagtac	gaatgcagcg	660
cgttgaacga	tgtcgctgcg	cccgatgtgc	ggaaagtaaa	aatcactgta	aactatcctc	720
cctatatctc	aaaagccaag	aacactggtg	tttcagtcgg	tcagaagggc	atcctgagct	780
gtgaagcctc	tgcagtcccc	atggctgaat	tccagtggtt	caaggaagaa	accaggttag	840
ccactggtct	ggatggaatg	aggattgaaa	acaaaggccg	catgtccact	ctgactttct	900
tcaatgtttc	tgaaaaggat	tatgggaact	atacttgtgt	ggccacgaac	aagcttggga	960
acaccaatgc	cagcatcaca	ttgtatgggc	ctggagcagt	cattgatggt	gtaaactcgg	1020
cctccagagc	actggcttgt	ctctggctat	cagggaccct	cttagcccac	ttcttcatca	1080
agttttgata	agaaatccta	ggtcctctga	gcaacgcctg	cttctcatat	cacagacttt	1140
aatctacact	gcggagagca	aaccagcttg	ggcttctttt	tgttttttc	tgttattcta	1200
gatttgtttt	ctttttgttt	ttgtttattt	gtttgtttgc	ttttatttcc	agcttgaatg	1260
agtggggttg	ggggcggggt	gggcagggtt	ctaccacgtg	taggataatc	attcattggt	1320
gtgtccaaaa	atggggtctg	ctcctgctac	cttgaccctt	ccctttcctc	tgcttctctc	1380
ctcatcatca	ttcccaacaa	catcctctgc	cacacacaac	aaaacgtaag	tttcatttgg	1440
gcaaaaattg	agcctcacaa	taaacaccct	gaagacacaa	cttgacttat	aacatagtgc	1500
acagcaagag	ctacatccaa	gtgtcctatt	atctgtgatt	attttcttaa	tgacaatgta	1560
catatgcccc	catccatgtt	aattattatc	taattccatt	agggttcacg	tcttttcttt	1620
ctgggacact	atcctactat	atccatatct	atagatttca	atatagatga	ttgtgccatc	1680
ttctgtagcc	cctccgctct	actcattcct	tccaccatct	gcagagattt	gaagtttggg	1740
gctatgcatg	aaacccaaca	ctaaattttg	caagtcaagt	gaccaaaaaa	gggggaggca	1800
ttttgaagat	agaacctcta	tttaaaaag	agaagttcaa	ctcataaacg	tgattgatag	1860
gtggctgatt	tatttaggtt	ttgtcaagct	atctatcaaa	gtaatggtac	agttacccat	1920
ctactcaaat	atctgattta	tctcaccatc	caattatcta	cccacctgtc	ttcctctcta	1980
gcaatctatt	tactgtttat	caatctatca	atgtaattgt	ctaacactcc	tttctattct	2040

ctccctacta ctcactatca a	ttcatcccc	atatgaatct	ctaaccatat	tgtatctctc	2100
ccactgtatt catttataca c	catcagcag	acattggcat	cttcaaaatt	atctttcaac	2160
ttctgtgaaa gccaacgatc t	cacaggtta	acaaaataca	aaagcaatac	cctgtgttgt	2220
ggactcttta aaatctggta t	cctatccac	ccaagggaga	cactaacaga	taggccaaag	2280
tagcaagcta atgatcagtc a	actcactatt	cccggaagag	cctgtgtttt	ctaaaacact	2340
ttcttgggaa gcagatcagc c	tagaaaagt	tttgattagc	actgtggttt	tccttttgca	2400
cttgaaggac aaaggtgcca g	gcctttatgc	ttctctcaac	ccttcaagaa	agtacatgtc	2460
aggaacctat ggctggcttt c	cttagcagc	aagaacttga	gagaaaaaca	catctgtctc .	2520
tgcaatgcaa agtgaagagt c	cacccgcct	gagtgggatg	acttcagcta	gagtctcctt	2580
tctgctccag ttctggttta a	tctgtttga	aaactatcca	gtaaaaagct	gatggaggcc	2640
aattacatgg cgggtgtatt g	gacaactctg	gtatttgttt	caggaagctc	ttctaagctg	2700
agggcacttg agcaactgac t	taattttca	agcacttgat	taacacaaca	ctgcaaacag	2760
aagggagaaa gtgtcagtga c	cacagtttcc	tctgatgcag	ctgcttctcc	aatggctttg	2820
gggaagaact tcaccagctc t	tcaggttca	aagcagaccc	agcatacaaa	caagagctga	2880
gccacctttg ctgtcttgtc t	cctgggacg	agaaggactc	atccagcaaa	gttgcctggg	2940
attcaaaata aaggcattgc a	agaccgcaca	ggtgtgctgc	agggactgat	ccacagagag	3000
gatgagaatg cagcatcaat c	gcagacctg	ccctgcctca	gttggaaaac	cttttcaggc	3060
cctcagtcta aaaaataaaa a	atatgagca	ccaaaaaaaa	aaaaaaaaaa		3110
<210> 33 <211> 1080 <212> DNA <213> Homo sapiens					
<400> 33 cgagaatggg ggtctgtggg t	cacctgttcc	tgccctggaa	gtgcctcgtg	gtcgtgtctc	60

cgagaatggg ggtctgtggg tacctgttcc tgccctggaa gtgcctcgtg gtcgtgtctc 60
tcaggctgct gttccttgta cccacaggag tgcccgtgcg cagcggagat gccaccttcc 120
ccaaagctat ggacaacgtg acggtccggc agggggagag cgccaccctc aggtgtacca 180
tagatgaccg ggtaacccgg gtggcctggc taaaccgcag caccatcctc tacgctggga 240
atgacaagtg gtccatagac cctcgtgtga tcatcctggt caatacacca acccagtaca 300
gcatcatgat ccaaaatgtg gatgtgtatg acgaaggtcc gtacacctgc tctgtgcaga 360
cagacaatca tcccaaaacg tcccgggttc acctaatagt gcaagttcct cctcagatca 420

tgaatatctc	ctcagacatc	actgtgaatg	agggaagcag	tgtgaccctg	ctgtgtcttg	480
ctattggcag	accagagcca	actgtgacat	ggagacacct	gtcagtcaag	gaaggccagg	540
gctttgtaag	tgaggatgag	tacctggaga	tctctgacat	caagcgagac	cagtccgggg	600
agtacgaatg	cagcgcgttg	aacgatgtcg	ctgcgcccga	tgtgcggaaa	gtaaaaatca	660
ctgtaaacta	tcctccctat	atctcaaaag	ccaagaacac	tggtgtttca	gtcggtcaga	720
agggcatcct	gagctgtgaa	gcctctgcag	tccccatggc	tgaattccag	tggttcaagg	780
aagaaaccag	gttagccact	ggtctggatg	gaatgaggat	tgaaaacaaa	ggccgcatgt	840
ccactctgac	tttcttcaat	gtttcagaaa	aggattatgg	gaactatact	tgtgtggcca	900
cgaacaagct	tgggaacacc	aatgccagca	tcacattgta	tgggcctgga	gcagtcattg	960
atggtgtaaa	ctcggcctcc	agagcactgg	cttgtctctg	gctatcaggg	accetettag	1020
cccacttctt	catcaagttt	tgataagaaa	tcctaggtcc	tctgagcaac	gcctgcttct	1080

<210> 34

<211> 1071

<212> DNA

<213> Homo sapiens

<400> 34

cgagaatggg ggtctgtggg tacctgttcc tgccctggaa gtgcctcgtg gtcgtgtctc 60 traggretget gtteettgta recaraggag tgreegtgeg rageggagat greacetter 120 180 ccaaagctat ggacaacgtg acggtccggc agggggagag cgccaccctc aggtgtacca tagatgaccg ggtaacccgg gtggcctggc taaaccgcag caccatcctc tacgctggga 240 300 atgacaagtg gtccatagac cctcgtgtga tcatcctggt caatacacca acccagtaca gcatcatgat ccaaaatgtg gatgtgtatg acgaaggtcc gtacacctgc tctgtgcaga 360 cagacaatca teccaaaaeg teeegggtte acetaatagt geaagtteet eeteagatea 420 480 tgaatatete eteagacate actgtgaatg agggaageag tgtgaceetg etgtgtettg 540 ctattggcag accagagcca actgtgacat ggagacacct gtcagtcaag gaaggccagg getttgtaag tgaggatgag tacetggaga tetetgacat caagegagae cagteegggg 600 660 agtacgaatg cagcgcgttg aacgatgtcg ctgcgcccga tgtgcggaaa gtaaaaatca 720 ctgtaaacta tcctccctat atctcaaaag ccaagaacac tggtgtttca gtcggtcaga agggcatcct gagctgtgaa gcctctgcag tccccatggc tgaattccag tggttcaagg 780 840 aagaaaccag gttagccact ggtctggatg gaatgaggat tgaaaacaaa ggccgcatgt

ccactctgac tttcttcaat gtttcagaaa aggattatgg gaactatact tgtgtggcca	900
cgaacaaget tgggaacace aatgccagca tcacattgta tgggcctgga gcagtcattg	960
atggtgtaaa ctcggcctcc agagcactgg cttgtctctg gctatcaggg accctcttag	1020
cccacttctt catcaagttt tgataagaaa tcctaggtcc tctgagcaac g	1071
<210> 35 <211> 1478 <212> DNA <213> Homo sapiens	
<400> 35 gaccaggact gtgcggctgc cggagtcctg ggaagttgtg gctgtcgaga atgggggtct	60
gtgggtacct gttcctgccc tggaagtgcc tcgtggtcgt gtctctcagg ctgctgttcc	120
ttgtacccac aggagtgccc gtgcgcagcg gagatgccac cttccccaaa gctatggaca	180
acgtgacggt ccggcagggg gagagcgcca ccctcaggtg taccatagat gaccgggtaa	240
cccgggtggc ctggctaaac cgcagcacca tcctctacgc tgggaatgac aagtggtcca	300
tagaccctcg·tgtgatcatc ctggtcaata caccaaccca gtacagcatc atgatccaaa	360
atgtggatgt gtatgacgaa ggtccgtaca cctgctctgt gcagacagac aatcatccca	420
aaacgtcccg ggttcaccta atagtgcaag ttcctcctca gatcatgaat atctcctcag	480
acatcactgt gaatgaggga agcagtgtga ccctgctgtg tcttgctatt ggcagaccag	540
agccaactgt gacatggaga cacctgtcag tcaaggaagg ccagggcttt gtaagtgagg	600
atgagtacct ggagatetet gacateaage gagaceagte eggggagtae gaatgeageg	660
cgttgaacga tgtcgctgcg cccgatgtgc ggaaagtaaa aatcactgta aactatcctc	720
cctatatctc aaaagccaag aacactggtg tttcagtcgg tcagaagggc atcctgagct	780
gtgaagcctc tgcagtcccc atggctgaat tccagtggtt caaggaagaa accaggttag	840
ccactggtct ggatggaatg aggattgaaa acaaaggccg catgtccact ctgactttct	900
tcaatgtttc tgaaaaggat tatgggaact atacttgtgt ggccacgaac aagcttggga	960
acaccaatgc cagcatcaca ttgtatgggc ctggagcagt cattgatggt gtaaactcgg	1020
cctccagagc actggcttgt ctctggctat cagggaccct cttagcccac ttcttcatca	1080
agttttgata agaaatccta ggtcctctga gcaacgcctg cttctcatat cacagacttt	1140
aatctacact gcggagagca aaccagcttg ggcttctttt tgtttttttc tgttattcta	1200
gatttgtttt ctttttgttt ttgtttattt gtttgtttgc ttttatttcc agcttgaatg	1260

agtggggttg	ggggcggggt	gggcagggtt	ctaccacgtg	taggataatc	attcattggt	1320
gtgtccaaaa	atggggtctg	ctcctgctac	cttgaccctt	ccctttcctc	tgcttctctc	1380
ctcatcatca	ttcccaacaa	catcctctgc	cacacacaac	aaaacgtaag	tttcatttgg	1440
gcaaaaattg	agcctcacaa	taaacaccct	gaagacac			1478
	s sapiens					
<400> 36 atggggcttg	cgggcgccgc	tggacgctgg	tggggactcg	ctctcggctt	gaccgcattc	60
ttcctcccag	gcgtccactc	ccaggtggtc	caggtgaacg	actccatgta	tggcttcatc	120
ggcacagacg	tggttctgca	ctgcagcttt	gccaacccgc	ttcccagcgt	gaagatcacc	180
caggtcacat	ggcagaagtc	caccaatggc	tccaagcaga	acgtggccat	ctacaaccca	240
tccatgggcg	tgtccgtgct	ggctccctac	cgcgagcgtg	tggaattcct	gcggccctcc	300
ttcaccgatg	gcactatccg	cctctcccgc	ctggagctgg	aggatgaggg	tgtctacatc	360
tgcgagtttg	ctaccttccc	tacgggcaaț	cgagaaagcc	agctcaatct	cacggtgatg	420
gccaaaccca	ccaattggat	agagggtacc	caggcagtgc	ttcgagccaa	gaaggggcag	480
gatgacaagg	tcctggtggc	cacctgcacc	tcagccaatg	ggaagcctcc	cagtgtggta	540
tcctgggaaa	ctcggttaaa	aggtgaggca	gagtaccagg	agatccggaa	ccccaatggc	600
acagtgacgg	tcatcagccg	ctaccgcctg	gtgcccagca	gggaagccca	ccagcagtcc	660
ttggcctgca	tcgtcaacta	ccacatggac	cgcttcaagg	aaagcctcac	tctcaacgtg	720
cagtatgagc	ctgaggtaac	cattgagggg	tttgatggca	actggtacct	gcagcggatg	780
gacgtgaagc	tcacctgcaa	agctgatgct	aaccccccag	ccactgagta	ccactggacc	840
acgctaaatg	gctctctccc	caagggtgtg	gaggcccaga	acagaaccct	cttcttcaag	900
ggacccatca	actacagcct	ggcagggacc	tacatctgtg	aggccaccaa	ccccatcggt	960
acacgctcag	gccaggtgga	ggtcaatatc	acagaattcc	cctacacccc	gtctcctccc	1020
gaacatgggc	ggcgcgccgg	gccggtgccc	acggccatca	ttgggggcgt	ggcggggagc	1080
atcctgctgg	tgttgattgt	ggtcggcggg	atcgtggtcg	ccctgcgtcg	gcgccggcac	1140
accttcaagg	gtgactacag	caccaagaag	cacgtgtatg	gcaacggcta	cagcaaggca	1200
ggcatccccc	agcaccaccc	accaatggca	cagaacctgc	agtaccccga	cgactcagac	1260

gacgagaaga aggccggccc actg	ggtgga agcagctatg	aggaggagga	ggaggaggag	1320
gagggcggtg gaggggggag gcgc	aaggtg ggcggccccc	accccaaata	tgacgaggac	1380
gccaagcggc cctacttcac cgtg	gatgag gccgaggccc	gtcaggacgg	ctacggggac	1440
cggactctgg gctaccagta cgac	cctgag cagctggact	tggctgagaa	catggtttct	1500
cagaacgacg ggtctttcat ttcc	aagaag gagtggtacg	tgtag		1545
<210> 37 <211> 1599 <212> DNA <213> Homo sapiens				
<400> 37 ccccgatggc tcggatgggg cttg	cgggcg ccgctggacg	ctggtgggga	ctcgctctcg	60
gcttgaccgc attcttcctc ccag	gcgtcc actcccaggt	ggtccaggtg	aacgactcca	120
tgtatggctt catcggcaca gacg	tggttc tgcactgcag	ctttgccaac	ccgcttccca	180
gcgtgaagat cacccaggtc acat	ggcaga agtccaccaa	tggctccaag	cagaacgtgg	240
ccatctacaa cccatccatg ggcg	tgtccg tgctggctcc	ctaccgcgag	cgtgtggaat	. 300
tectgeggee etectteace gatg	gcacta teegeetete	ccgcctggag	ctggaggatg	360
agggtgtcta catctgcgag tttg	ctacct tccctacggg	caatcgagaa	agccagctca	420
atctcacggt gatggccaaa ccca	ccaatt ggatagaggg	tacccaggca	gtgcttcgag	480
ccaagaaggg gcaggatgac aagg	tcctgg tggccacctg	cacctcagcc	aatgggaagc	540
ctcccagtgt ggtatcctgg gaaa	ctcggt taaaaggtga	ggcagagtac	caggagatcc	600
ggaaccccaa tggcacagtg acgg	tcatca gccgctaccg	cctggtgccc	agcagggaag	660
cccaccagca gtccttggcc tgca	tcgtca actaccacat	ggaccgcttc	aaggaaagcc	720
tcactctcaa cgtgcagtat gagc	ctgagg taaccattga	ggggtttgat	ggcaactggt	780
acctgcagcg gatggacgtg aagc	tcacct gcaaagctga	tgctaacccc	ccagccactg	840
agtaccactg gaccacgcta aatg	gctctc tccccaaggg	tgtggaggcc	cagaacagaa	900
ccctcttctt caagggaccc atca	actaca gcctggcagg	gacctacatc	tgtgaggcca	960
ccaaccccat cggtacacgc tcag	gccagg tggaggtcaa	tatcacagaa	ttcccctaca	1020
ccccgtctcc tcccgaacat gggc	ggcgcg ccgggccggt	gcccacggcc	atcattgggg	1080
gcgtggcggg gagcatectg ctgg	tgttga ttgtggtcgg	cgggatcgtg	gtcgccctgc	1140
gtcggcgccg gcacaccttc aagg	gtgact acagcaccaa	gaagcacgtg	tatggcaacg	1200

gctacagcaa ggcaggcatc ccccagcacc acccaccaat ggcacagaac ctgcagtacc	1260
ccgacgactc agacgacgag aagaaggccg gcccactggg tggaagcagc tatgaggagg	1320
aggaggagga ggaggagggc ggtggagggg gcgagcgcaa ggtgggcggc ccccacccca	1380
aatatgacga ggacgccaag cggccctact tcaccgtgga tgaggccgag gcccgtcagg	1440
acggetacgg ggaccggact ctgggetacc agtacgaccc tgagcagetg gacttggctg	1500
agaacatggt ttctcagaac gacgggtctt tcatttccaa gaaggagtgg tacgtgtagc	1560
cccccttcca gagcctctgt ctgtgaccgc tcctcccca	1599
<210> 38 <211> 1614 <212> DNA <213> Homo sapiens	
<400> 38 atggcccggg ccgctgccct cctgccgtcg agatcgccgc cgacgccgct gctgtggccg	60
ctgctgctgc tgctgctcct ggaaaccgga gcccaggatg tgcgagttca agtgctaccc	120
gaggtgcgag gccagctcgg gggcaccgtg gagctgccgt gccacctgct gccacctgtt	180
cetggaetgt acateteect ggtgaeetgg cagegeecag atgeaeetge gaaeeaceag	240
aatgtggccg ccttccaccc taagatgggt cccagcttcc ccagcccgaa gcctggcagc	300
gageggetgt cettegtete tgecaageag ageaetggge aagacacaga ggeagagete	360
caggacgcca cgctggccct ccacgggctc acggtggagg acgagggcaa ctacacttgc	420
gagtttgcca ccttccccaa ggggtccgtc cgagggatga cctggctcag agtcatagcc	480
aagcccaaga accaagctga ggcccagaag gtcacgttca gccaggaccc tacgacagtg	540
gccctctgca tctccaaaga gggccgccca cctgcccgga tctcctggct ctcatccctg	600
gactgggaag ccaaagagac tcaggtgtca gggaccctgg ccggaactgt cactgtcacc	660
ageogettea cettggtgee etegggeega geagatggtg teaeggteae etgeaaagtg	720
gagcatgaga gcttcgagga accagccctg atacctgtga ccctctctgt acgctaccct	780
cctgaagtgt ccatctccgg ctatgatgac aactggtacc tcggccgtac tgatgccacc	840
ctgagctgtg acgtccgcag caacccagag cccacgggct atgactggag cacgacctca	900
ggcaccttcc cgacctccgc agtggcccag ggctcccagc tggtcatcca cgcagtggac	960
agtotgttca ataccacett cgtctgcaca gtcaccaatg ccgtgggcat gggccgcgct	1020
gagcaggtca tetttgteeg agagaceeee aacacageag gegcagggge cacaggegge	1080

atcategggg gcatcatege egecatcatt getaetgetg tggetgecae gggeateett	1140
atctgccggc agcagcggaa ggagcagacg ctgcaggggg cagaggagga cgaagacctg	1200
gagggacete cetectacaa gecacegace ecaaaagega agetggagge acaggagatg	1260
ccctcccage tetteactet gggggceteg gageacagee cacteaagae eccetaettt	1320
gatgctggcg cctcatgcac tgagcaggaa atgcctcgat accatgagct gcccaccttg	1380
gaagaacggt caggaccett geaccetgga gecacaagee tggggteece cateceggtg	1440
cctccagggc cacctgctgt ggaagacgtt tccctggatc tagaggatga ggaggggag	1500
gaggaggaag agtatetgga caagateaae eccatetatg atgetetgte etatageage	1560
ccctctgatt cctaccaggg caaaggcttt gtcatgtccc gggccatgta tgtg	1614
<210> 39 <211> 1547 <212> DNA <213> Homo sapiens <400> 39	1
gagececaca ggeaectaet aaacegeeca geegategge eeccacagag tggeeeggg	60
geeteeggee gggeeeagte ceeteeeggg eeeteeatgg eeegggeege tgeeeteetg	120
ccgtcgagat cgccgccgac gccgctgctg tggccgctgc tgctgctgct gctcctggaa	180
accggagccc aggatgtgcg agttcaagtg ctacccgagg tgcgaggcca gctcgggggc	240
accgtggage tgccgtgcca cctgctgcca cctgttcctg gactgtacat ctccctggtg	300
acctggcage geceagatge acctgegaac caccagaatg tggcegeett ceaccetaag	360
atgggtccca gettccccag ceegaagect ggcagegage ggctgtcctt egtetetgee	420
aagcagagca ctgggcagga cgccacgctg gccctccacg ggctcacggt ggaggacgag	480
ggcaactaca cttgcgagtt tgccaccttc cccaaggggt ccgtccgagg gatgacctgg	540
ctcagagtca tagccaagcc caagaaccaa gctgaggccc agaaggtcac gttcagccag	600
gaccctacga cagtggccct ctgcatctcc aaagagggcc gcccacctgc ccggatctcc	660
tggctctcat ccctggactg ggaagccaaa gagactcagg tgtcagggac cctggccgga	720
actgtcactg tcaccagecg cttcaccttg gtgccctcgg gccgagcaga tggtgtcacg	780
gtcacctgca aagtggagca tgagagcttc gaggaaccag ccctgatacc tgtgaccctc	840
totgtacgot accotoctga agtgtocato tocggotatg atgacaactg gtacetoggo	900
cgtactgatg ccaccetgag ctgtgacgte cgcagcaace cagageccae gggetatgae	960

tggagcacga	cctcaggcac	cttcccgacc	tccgcagtgg	cccagggctc	ccagctggtc	1020
atccacgcag	tggacagtct	gttcaatacc	accttcgtct	gcacagtcac	caatgccgtg	1080
ggcatgggcc	gcgctgagca	ggtcatcttt	gtccgagaaa	ccccagggc	ctcgccccga	1140
gatgtgggcc	cgctggtgtg	gggggccgtg	ggggggacac	tgctggtgct	gctgcttctg	1200
gctggggggt	ccttggcctt	catcctgctg	agggtgagga	ggaggaggaa	gagccctgga	1260
ggagcaggag	gaggagccag	tggcgacggg	ggattctacg	atccgaaagc	tcaggtgttg	1320
ggaaatgggg	accccgtctt	ctggacacca	gtagtccctg	gtcccatgga	accagatggc	1380
aaggatgagg	aggaggagga	ggaggaagag	aaggcagaga	aaggcctcat	gttgcctcca	1440
ccccagcac	tcgaggatga	catggagtcc	cagctggacg	gctccctcat	ctcacggcgg	1500
gcagtttatg	tgtgacctgg	acacagacag	agacagagcc	aggcccg		1547
<210> 40 <211> 1569 <212> DNA <213> Homo	sapiens					
	ggcacctact	aaaccgccca	gccgatcggc	ccccacagag	tggcccgcgg	60
gceteeggee	gggcccagtc	ccctcccggg	ccctccatgg	cccgggccgc	tgccctcctg	120
ccgtcgagat	cgccgccgac	gccgctgctg	tggccgctgc	tgctgctgct	gctcctggaa	180
accggagccc	aggatgtgcg	agttcaagtg	ctacccgagg	tgcgaggcca	gctcgggggc	240
accgtggagc	tgccgtgcca	cctgctgcca	cctgttcctg	gactgtacat	ctccctggtg	300
acctggcagc	gcccagatgc	acctgcgaac	caccagaatg	tggccgcctt	ccaccctaag	360
atgggtccca	gcttccccag	cccgaagcct	ggcagcgagc	ggctgtcctt	cgtctctgcc	420
aagcagagca	ctgggcaaga	cacagaggca	gagetecagg	acgccacgct	ggccctccac	480
gggctcacgg	tggaggacga	gggcaactac	acttgcgagt	ttgccacctt	ccccaagggg	540
tccgtccgag	ggatgacctg	gctcagagtc	atagccaagc	ccaagaacca	agctgaggcc	600
cagaaggtca	cgttcagcca	ggaccctacg	acagtggccc	tctgcatctc	caaagagggc	660
cgcccacctg	cccggatctc	ctggctctca	tccctggact	gggaagccaa	agagactcag	720
gtgtcaggga	ccctggccgg	aactgtcact	gtcaccagcc	gcttcacctt	ggtgccctcg	780
ggccgagcag	atggtgtcac	ggtcacctgc	aaagtggagc	atgagagctt	cgaggaacca	840
						000

gccctgatac ctgtgaccct ctctgtacgc taccctcctg aagtgtccat ctccggctat 900

gatgacaact ggtacctcgg ccgtactgat gccaccctga gctgtgacgt ccgcagcaac	960
ccagagecca egggetatga etggageaeg aceteaggea eetteeegae eteegeagtg	1020
geccaggget eccagetggt catecaegea gtggacagte tgttcaatac cacettegte	1080
tgcacagtca ccaatgccgt gggcatgggc cgcgctgagc aggtcatctt tgtccgagaa	1140
accccaggg cctcgccccg agatgtgggc ccgctggtgt ggggggccgt gggggggaca	1200
ctgctggtgc tgctgcttct ggctgggggg tccttggcct tcatcctgct gagggtgagg	1260
aggaggagga agagcectgg aggagcagga ggaggagcca gtggcgacgg gggattctac	1320
	1380
gatccgaaag ctcaggtgtt gggaaatggg gaccccgtct tctggacacc agtagtccct	
ggtcccatgg aaccagatgg caaggatgag gaggaggagg aggaggaaga gaaggcagag	1440
aaaggcctca tgttgcctcc accccagca ctcgaggatg acatggagtc ccagctggac	1500
ggetecetea teteaeggeg ggeagtttat gtgtgacetg gacacagaca gagacagage	1560
caggcccgg	1569
<210> 41 <211> 1928 <212> DNA	
<213> Homo sapiens	
<213> Homo sapiens <400> 41 gagcagaaca gggaggctag agcgcagcgg gaaccggccc ggagccggag ccggagcccc	60
<400> 41	60 120
<400> 41 gagcagaaca gggaggctag agcgcagcgg gaaccggccc ggagccggag ccggagccc	
<400> 41 gagcagaaca gggaggctag agcgcagcgg gaaccggcc ggagccggag ccggagcccc acaggcacct actaaaccgc ccagccgatc ggccccaca gagtggcccg cgggcctccg	120
<pre><400> 41 gagcagaaca gggaggctag agcgcagcgg gaaccggccc ggagccggag ccggagcccc acaggcacct actaaaccgc ccagccgatc ggccccaca gagtggcccg cgggcctccg gccgggccca gtcccctccc gggccctcca tggcccgggc cgctgccctc ctgccgtcga</pre>	120 180
<pre><400> 41 gagcagaaca gggaggctag agcgcagcgg gaaccggccc ggagccggag ccggagcccc acaggcacct actaaaccgc ccagccgatc ggccccaca gagtggcccg cgggcctccg gccgggccca gtcccctccc gggccctcca tggcccgggc cgctgccctc ctgccgtcga gatcgccgcc gacgccgctg ctgtggccgc tgctgctgct gctgctcctg gaaaccggag</pre>	120 180 240
<pre><400> 41 gagcagaaca gggaggctag agcgcagcgg gaaccggccc ggagccggag ccggagcccc acaggcacct actaaaccgc ccagccgatc ggccccaca gagtggcccg cgggcctccg gccgggccca gtcccctccc gggccctcca tggcccgggc cgctgccctc ctgccgtcga gatcgccgcc gacgccgctg ctgtggccgc tgctgctgct gctgctcctg gaaaccggag cccaggatgt gcgagttcaa gtgctacccg aggtgcgagg ccagctcggg ggcaccgtgg</pre>	120 180 240 300
<pre><400> 41 gagcagaaca gggaggctag agcgcagcgg gaaccggccc ggagccggag ccggagcccc acaggcacct actaaaccgc ccagccgatc ggccccaca gagtggcccg cgggcctccg gccgggccca gtcccctccc gggccctcca tggcccgggc cgctgccctc ctgccgtcga gatcgccgcc gacgccgctg ctgtggccgc tgctgctgct gctgctcctg gaaaccggag cccaggatgt gcgagttcaa gtgctacccg aggtgcgagg ccagctcggg ggcaccgtgg agctgccgtg ccacctgctg ccacctgttc ctggactgta catctccctg gtgacctggc</pre>	120 180 240 300 360
<pre><400> 41 gagcagaaca gggaggctag agcgcagcgg gaaccggccc ggagccggag ccggagcccc acaggcacct actaaaccgc ccagccgatc ggccccaca gagtggcccg cgggcctccg gccgggccca gtcccctccc gggccctcca tggcccgggc cgctgccctc ctgccgtcga gatcgccgcc gacgccgctg ctgtggccgc tgctgctgct gctgctcctg gaaaccggag cccaggatgt gcgagttcaa gtgctacccg aggtgcgagg ccagctcggg ggcaccgtgg agctgccgtg ccacctgctg ccacctgttc ctggactgta catctccctg gtgacctggc agcgccaga tgcacctgcg aaccaccaga atgtggcgc cttccaccct aagatgggtc</pre>	120 180 240 300 360 420
<pre><400> 41 gagcagaaca gggaggctag agcgcagcgg gaaccggccc ggagccggag ccggagcccc acaggcacct actaaaccgc ccagccgatc ggcccccaca gagtggcccg cgggcctccg gccgggccca gtcccctccc gggccctcca tggcccgggc cgctgccctc ctgccgtcga gatcgccgcc gacgccgctg ctgtggccgc tgctgctgct gctgctcctg gaaaccggag cccaggatgt gcgagttcaa gtgctacccg aggtgcgagg ccagctcggg ggcaccgtgg agctgccgtg ccacctgctg ccacctgttc ctggactgta catctccctg gtgacctggc agcgccaga tgcacctgcg aaccaccaga atgtggccgc cttccaccct aagatgggtc ccagcttccc cagcccgaag cctggcagcg agcggctgtc cttcgtctct gccaagcaga</pre>	120 180 240 300 360 420 480
<pre><400> 41 gagcagaaca gggaggctag agcgcagcgg gaaccggccc ggagccggag ccggagcccc acaggcacct actaaaccgc ccagccgatc ggccccaca gagtggcccg cgggcctccg gccgggccca gtcccctccc gggccctcca tggcccgggc cgctgccctc ctgccgtcga gatcgccgcc gacgccgctg ctgtggccgc tgctgctgct gctgctcctg gaaaccggag cccaggatgt gcgagttcaa gtgctacccg aggtgcgagg ccagctcggg ggcaccgtgg agctgccgtg ccacctgctg ccacctgttc ctggactgta catctccctg gtgacctggc agcgcccaga tgcacctgcg aaccaccaga atgtggccgc cttccaccct aagatgggtc ccagcttccc cagcccgaag cctggcagcg agcggctgtc cttcgtctct gccaagcaga gcactgggca agacacagag gcagagctcc aggacgccac gctggccctc cacgggctca</pre>	120 180 240 300 360 420 480 540

ctgcccggat ctcctggctc tcatccctgg actgggaagc caaagagact caggtgtcag

780

ggaccctggc	cggaactgtc	actgtcacca	gccgcttcac	cttggtgccc	tcgggccgag	840
cagatggtgt	cacggtcacc	tgcaaagtgg	agcatgagag	cttcgaggaa	ccagccctga	900
tacctgtgac	cctctctgta	cgctaccctc	ctgaagtgtc	catctccggc	tatgatgaca	960
actggtacct	cggccgtact	gatgccaccc	tgagctgtga	cgtccgcagc	aacccagagc	1020
ccacgggcta	tgactggagc	acgacctcag	gcaccttccc	gacctccgca	gtggcccagg	1080
gctcccagct	ggtcatccac	gcagtggaca	gtctgttcaa	taccaccttc	gtctgcacag	1140
tcaccaatgc	cgtgggcatg	ggccgcgctg	agcaggtcat	ctttgtccga	gaaaccccca	1200
gggcctcgcc	ccgagatgtg	ggcccgctgg	tgtggggggc	cgtgggggg	acactgctgg	1260
tgctgctgct	tctggctggg	gggtccttgg	ccttcatcct	gctgagggtg	aggaggagga	1320
ggaagagccc	tggaggagca	ggaggaggag	ccagtggcga	cgggggattc	tacgatccga	1380
aagctcaggt	gttgggaaat	ggggaccccg	tcttctggac	accagtagtc	cctggtccca	1440
tggaaccaga	tggcaaggat	gaggaggagg	aggaggagga	agagaaggca	gagaaaggcc	1500
tcatgttgcc	tccaccccca	gcactcgagg	atgacatgga	gtcccagctg	gacggctccc	1560
tcatctcacg	gcgggcagtt	tatgtgtgac	ctggacacag	acagagacag	agccaggccc	1620
ggccctcccg	cccccgacct	gaccacgccg	gcctagggtt	ccagactggt	tggacttgtt	1680
cgtctggacg	acactggagt	ggaacactgc	ctcccacttt	cttgggactt	ggagggaggt	1740
ggaacagcac	actggacttc	tecegtetet	agggctgcat	ggggagcccg	gggagctgag	1800
tagtggggat	ccagagagga	ccccgccc	cagagacttg	gttttggctc	cagccttccc	1860
ctggccccgt	gacactcagg	agttaataaa	tgccttggag	gaaaacaaaa	aaaaaaaaa	1920
aaaaaaaa						1928
<210> 42 <211> 244 <212> DNA <213> Hom <400> 42	o sapiens	2222222	~~~~~			60

gagegagagg cegggggtge egageegge ggggagaget gggeeggag ageagaacag 60 ggaggetaga gegeagegg aaceggeeg gageeggag eggageecea caggeaceta 120 ctaaacegee eageegateg geececacag agtggeeege gggeeteegg eegggeecag 180 teeceteeg ggeeeteeat ggeeegggee getgeeetee tgeegtegag ategeegeeg 240 aegeegetge tgtggeeget getgetgetg etgeteetgg aaaceggage ecaggatgtg 300

,	cgagttcaag	tgctacccga	ggtgcgaggc	cagctcgggg	gcaccgtgga	gctgccgtgc	360
	cacctgctgc	cacctgttcc	tggactgtac	atctccctgg	tgacctggca	gcgcccagat	420
	gcacctgcga	accaccagaa	tgtggccgcc	ttccacccta	agatgggtcc	cagcttcccc	480
	agcccgaagc	ctggcagcga	gcggctgtcc	ttcgtctctg	ccaagcagag	cactgggcaa	540
	gacacagagg	cagagctcca	ggacgccacg	ctggccctcc	acgggctcac	ggtggaggac	600
	gagggcaact	acacttgcga	gtttgccacc	ttccccaagg	ggtccgtccg	agggatgacc	660
	tggctcagag	tcatagccaa	gcccaagaac	caagctgagg	cccagaaggt.	cacgttcagc	720
	caggacccta	cgacagtggc	cctctgcatc	tccaaagagg	gccgcccacc	tgcccggatc	780
	tcctggctct	catccctgga	ctgggaagcc	aaagagactc	aggtgtcagg	gaccctggcc	840
	ggaactgtca	ctgtcaccag	ccgcttcacc	ttggtgccct	cgggccgagc	agatggtgtc	900
	acggtcacct	gcaaagtgga	gcatgagagc	ttcgaggaac	cagccctgat	acctgtgacc	960
•	ctctctgtac	gctaccctcc	tgaagtgtcc	atctccggct	atgatgacaa	ctggtacctc	1020
	ggccgtactg	atgccaccct	gagctgtgac	gtccgcagca	acccagagcc	cacgggctat	1080
	gactggagca	cgacctcagg	caccttcccg	acctccgcag	tggcccaggg	ctcccagctg	1140
	gtcatccacg	cagtggacag	tctgttcaat	accaccttcg	tctgcacagt	caccaatgcc	1200
	gtgggcatgg	gccgcgctga	gcaggtcatc	tttgtccgag	agacccccaa	cacagcaggc	1260
	gcaggggcca	caggcggcat	catcgggggc	atcatcgccg	ccatcattgc	tactgctgtg	1320
	gctgccacgg	gcatccttat	ctgccggcag	cagcggaagg	agcagacgct	gcagggggca	1380
	gaggaggacg	aagacctgga	gggacctccc	tcctacaagc	caccaacccc	aaaagcgaag	1440
	ctggaggcac	aggagatgcc	ctcccagctc	ttcactctgg	gggcctcgga	gcacagccca	1500
	ctcaagaccc	cctactttga	tgctggcgcc	tcatgcactg	agcaggaaat	gcctcgatac	1560
	catgagctgc	ccaccttgga	agaacggtca	ggacccttgc	accctggagc	cacaagcctg	1620
	gggtccccca	tcccggtgcc	tccagggcca	cctgctgtgg	aagacgtttc	cctggatcta	1680
	gaggatgagg	agggggagga	ggaggaagag	tatctggaca	agatcaaccc	catctatgat	1740
	gctctgtcct	atagcagccc	ctctgattcc	taccagggca	aaggctttgt	catgtcccgg	1800
	gccatgtatg	tgtgagctgc	catgcgcctg	gcgtctcaca	tctcacctgt	tgatccctta	1860
	gctttcttgc	caaggatcta	gtgccccctg	acctctggcc	aggccactgt	cagttaacac	1920
	atatgcattc	catttgtgat	gtctaccttg	gtggctccac	tatgacccct	aacccatgag	1980
	cccagagaaa	ttcaccgtga	taatggaatc	ctggcaacct	tatctcatga	ggcaggaggt	2040

ggggaaggtg cttctgcaca acctctgat	ce ccaaggacte eteteccaga etgtgacett 2100
agaccatacc tctcaccccc caatgcctc	cg actcccccaa aatcacaaag aagaccctag 2160
acctataatt tgtcttcagg tagtaaatt	ce ctgcctacca agcaagcage cccagcctag 2220
ggtcagacag ggtgagcctc atacagact	cg tgccttgatg gccccagcct tgggagaaga 2280
atttactgtt aacctggaag actactgaa	at cattttaccc ttgcccagtg gaataggacc 2340
taaacatccc ccttccgggg aaagtgggt	cc atctgaattg ggggtagcaa ttgatactgt 2400
tttgtaaact acatttccta caaaatatg	ga atttatactt tg 2442
<210> 43 <211> 2171 <212> DNA <213> Rattus norvegicus <400> 43	
	gc gtggactaca gggactgaat cggacccgga 60
accacatgge eccactegee ggtgeetet	te geteeegggt gtggteageg gggetaetga 120
ggctgctgct gctgtcctgc tttacgctc	cc agaaagcggg tggggagata gctgtgcagg 180
tgctctccaa ttcgaccggc ttcttggg	ag ggtctacagt cttgcactgt agtctggctt 240
ccaaagacaa tgtgacaatc actcagcta	aa catggatgaa gagggatcca gatggatccc 300
accetteegt geetgtette caccecaag	ga aggggcccag catctctgat ccagagaggg 360
tgaagttett ggttgeeaag gtgtaegag	gg atctgaggaa cgcatctctg gccatctcga 420
acttgcgtgt agaagacgaa ggcatcta	tg agtgtcagat tgccacgttc cccacaggca 480
gtaagagcgc caatgtctgg ctgaaggt	gt tegecegace taaaaacaca geagaggeee 540
tggagccctc tcccaccttg atgccgcag	gg acgtggccaa atgcatctct gctgatggtc 600
accetectgg acgaatcacg tggtcctc	ga atgtgaatgg aagctaccgt gaaatgaagg 660
aaacagggtc ccagccgggc accaccac	ag ttatcageta cetetecatg gtgeetteta 720
gccaggcaga tggcacgaac atcacctg	ca cagtggaaca tgaaagcttc caggagccgg 780
accagcagec attgatectt tecetace	tt atccacccga agtgtccatc tctggctatg 840
aaggcaactg gtacattggc ctcactaa	cg tgaacctgac ctgtgaagct cgcagcaaac 900
caccgcccac caactatagc tggagcac	gg ccacgggtcc ccttcccaac tccactcatt 960
tccaggaaaa cggcagtcac ctgctaat	ct ccaccgtgga tgacctcaat aacacgatct 1020

ttgtgtgcaa agccatcaat gccctagggt ctgggcaggg ccaagtgacc atcctagtta 1080

aagaggcatc	tgagattctg	ccgccaaaga	caagcttagg	cactggctac	atcattgcca	1140
tcgtcttttg	tgtcctgatc	atcggagtag	tagcaggcat	tgtattctgg	aaatacaggc	1200
gtggttgtgg	tcggcagtcc	aggaccttag	acagggagaa	cgtccgctat	tcagcagcga	1260
atggcgtctc	tgtcccaaac	gtggagacga	acaacttgag	gtgatggtgc	tggggtagac	1320
agaactaagg	aacttgaaga	cataacaact	ggaaccctac	ttccacaaaa	gaaaaagcct	1380
ccagagagac	ttgactgtcc	agtgtggcga	acatagcaag	gttgggggtc	tccttggccg	1440
ctgccgaatt	ccgcattgtc	gaaaggactc	atggaacccg	gtgtgctgac	tcacacttga	1500
catctcagca	agcgagggcc	acataaagca	aggttgagtc	tagcacggct	gtagagagaa	1560
gccctgtcta	tacacaggca	agctaagggg	ctttgagaca	gtcagaaact	gaagtctttc	1620
tttgggtaag	gtaaatcctc	tacctcgtgt	atgtgacaaa	cttgaaagac	ttctacctct	1680
gagactcaag	tgcggactct	ctttatagct	gactcagctg	gggctaaccc	ctctctcctc	1740
tctggacaag	gtctcagagt	gtagccaaag	ctagaccgaa	actcacagag	gtccgtctgt	1800
ctctacctcc	caagtgctgc	agttaaaggt	ttgtgtgtgc	cacactcctt	tgctaggtct	1860
ttttaataaa	gtaaatattt	aataaagtaa	tatatttata	aaaaaactag	ttataatata	1920
tattttttga	gacagtgttt	cctgtagccc	aggctgacct	caaacttact	atgtagccaa	1980
gaatgatagt	aáactaattt	attttaattt	gtcttcaagc	ttaaacatag	cccaacccct	2040
gctcctttcc	ctctcttctc	tcaatccatt	ttcgtcttct	ttttcttccc	agacactatt	2100
ctgatgtatg	tcttcattgc	aaacatttta	ttgaccttcg	taaaaatgtg	tgaaccacag	2160
ataaaaaaaa	g					2171

<210> 44

<211> 404

<212> PRT

<213> Homo sapiens

<400> 44

Gly Gln Phe Pro Leu Thr Gln Asn Val Thr Val Val Glu Gly Gly Thr 35 40 45

Ala Ile Leu Thr Cys Arg Val Asp Gln Asn Asp Asn Thr Ser Leu Gln 50 55 60

Trp Ser Asn Pro Ala Gln Gln Thr Leu Tyr Phe Asp Asp Lys Lys Ala 65 70 75 80

Leu Arg Asp Asn Arg Ile Glu Leu Val Arg Ala Ser Trp His Glu Leu 85. 90 95

Ser Ile Ser Val Ser Asp Val Ser Leu Ser Asp Glu Gly Gln Tyr Thr 100 105 110

Cys Ser Leu Phe Thr Met Pro Val Lys Thr Ser Lys Ala Tyr Leu Thr 115 120 125

Val Leu Gly Val Pro Glu Lys Pro Gln Ile Ser Gly Phe Ser Ser Pro 130 135 140

Val Met Glu Gly Asp Leu Met Gln Leu Thr Cys Lys Thr Ser Gly Ser 145 150 155 160

Lys Pro Ala Ala Asp Ile Arg Trp Phe Lys Asn Asp Lys Glu Ile Lys 165 170 175

Asp Val Lys Tyr Leu Lys Glu Glu Asp Ala Asn Arg Lys Thr Phe Thr 180 185 190

Val Ser Ser Thr Leu Asp Phe Arg Val Asp Arg Ser Asp Asp Gly Val 195 200 205

Ala Val Ile Cys Arg Val Asp His Glu Ser Leu Asn Ala Thr Pro Gln 210 215 220

Val Ala Met Gln Val Leu Glu Ile His Tyr Thr Pro Ser Val Lys Ile 225 230 235 240

Ile Pro Ser Thr Pro Phe Pro Gln Glu Gly Gln Pro Leu Ile Leu Thr 245 250 255

Cys Glu Ser Lys Gly Lys Pro Leu Pro Glu Pro Val Leu Trp Thr Lys 260. 265 270

Asp Gly Glu Leu Pro Asp Pro Asp Arg Met Val Val Ser Gly Arg 280

Glu Leu Asn Ile Leu Phe Leu Asn Lys Thr Asp Asn Gly Thr Tyr Arg 295

Cys Glu Ala Thr Asn Thr Ile Gly Gln Ser Ser Ala Glu Tyr Val Leu

Ile Val His Asp Pro Asn Ala Leu Ala Gly Gln Asn Gly Pro Asp His 330

Ala Leu Ile Gly Gly Ile Val Ala Val Val Phe Val Thr Leu Cys 345 340

Ser Ile Phe Leu Leu Gly Arg Tyr Leu Ala Arg His Lys Gly Thr Tyr 360

Leu Thr Asn Glu Ala Lys Gly Ala Glu Asp Ala Pro Asp Ala Asp Thr 375

Ala Ile Ile Asn Ala Glu Gly Ser Gln Val Asn Ala Glu Glu Lys Lys 395 390

Glu Tyr Phe Ile

<210> 45 <211> 549 <212> PRT <213> Homo sapiens

<400> 45

Met Ala Arg Thr Leu Arg Pro Ser Pro Leu Cys Pro Gly Gly Lys 5 10

Ala Gln Leu Ser Ser Ala Ser Leu Leu Gly Ala Gly Leu Leu Gln 20

Pro Pro Thr Pro Pro Pro Leu Leu Leu Leu Phe Pro Leu Leu Leu 40

Phe Ser Arg Leu Cys Gly Ala Leu Ala Gly Pro Ile Ile Val Glu Pro

50 55 60

His Val Thr Ala Val Trp Gly Lys Asn Val Ser Leu Lys Cys Leu Ile 65 70 75 80

Glu Val Asn Glu Thr Ile Thr Gln Ile Ser Trp Glu Lys Ile His Gly
85 90 95

Lys Ser Ser Gln Thr Val Ala Val His His Pro Gln Tyr Gly Phe Ser 100 105 110

Val Gln Gly Glu Tyr Gln Gly Arg Val Leu Phe Lys Asn Tyr Ser Leu 115 120 125

Asn Asp Ala Thr Ile Thr Leu His Asn Ile Gly Phe Ser Asp Ser Gly 130 135 140

Lys Tyr Ile Cys Lys Ala Val Thr Phe Pro Leu Gly Asn Ala Gln Ser 145 150 155 160

Ser Thr Thr Val Thr Val Leu Val Glu Pro Thr Val Ser Leu Ile Lys 165 170 175

Gly Pro Asp Ser Leu Ile Asp Gly Gly Asn Glu Thr Val Ala Ala Ile 180 185 190

Cys Ile Ala Ala Thr Gly Lys Pro Val Ala His Ile Asp Trp Glu Gly 195 200 205

Asp Leu Gly Glu Met Glu Ser Thr Thr Thr Ser Phe Pro Asn Glu Thr 210 215 220

Ala Thr Ile Ile Ser Gln Tyr Lys Leu Phe Pro Thr Arg Phe Ala Arg 225 230 235 240

Gly Arg Arg Ile Thr Cys Val Val Lys His Pro Ala Leu Glu Lys Asp $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$

Ile Arg Tyr Ser Phe Ile Leu Asp Ile Gln Tyr Ala Pro Glu Val Ser 260 265 270

Val Thr Gly Tyr Asp Gly Asn Trp Phe Val Gly Arg Lys Gly Val Asn 275 280 285

Leu Lys Cys Asn Ala Asp Ala Asn Pro Pro Pro Phe Lys Ser Val Trp 290 295 300

Ser Arg Leu Asp Gly Gln Trp Pro Asp Gly Leu Leu Ala Ser Asp Asn 305 310 315 320

Thr Leu His Phe Val His Pro Leu Thr Phe Asn Tyr Ser Gly Val Tyr 325 330 335

Ile Cys Lys Val Thr Asn Ser Leu Gly Gln Arg Ser Asp Gln Lys Val 340 345 350

Ile Tyr Ile Ser Asp Pro Pro Thr Thr Thr Thr Leu Gln Pro Thr Ile 355 360 365

Gln Trp His Pro Ser Thr Ala Asp Ile Glu Asp Leu Ala Thr Glu Pro 370 375 380

Lys Lys Leu Pro Phe Pro Leu Ser Thr Leu Ala Thr Ile Lys Asp Asp 385 390 395 400

Thr Ile Ala Thr Ile Ile Ala Ser Val Val Gly Gly Ala Leu Phe Ile 405 410 415

Val Leu Val Ser Val Leu Ala Gly Ile Phe Cys Tyr Arg Arg Arg Arg 420 425 430

Thr Phe Arg Gly Asp Tyr Phe Ala Lys Asn Tyr Ile Pro Pro Ser Asp 435 440 445

Met Gln Lys Glu Ser Gln Ile Asp Val Leu Gln Gln Asp Glu Leu Asp 450 455 460

Ser Tyr Pro Asp Ser Val Lys Lys Glu Asn Lys Asn Pro Val Asn Asn 465 470 475 480

Leu Ile Arg Lys Asp Tyr Leu Glu Glu Pro Glu Lys Thr Gln Trp Asn 485 490 495

Asn Val Glu Asn Leu Asn Arg Phe Glu Arg Pro Met Asp Tyr Tyr Glu 500 505 510

Asp Leu Lys Met Gly Met Lys Phe Val Ser Asp Glu His Tyr Asp Glu 520

Asn Glu Asp Asp Leu Val Ser His Val Asp Gly Ser Val Ile Ser Arg 535

Arg Glu Trp Tyr Val

<210> 46

<211> 381 <212> PRT

<213> Homo sapiens

<400> 46

Ala Gly Gln Glu Val Gln Thr Glu Asn Val Thr Val Ala Glu Gly Gly 5

Val Ala Glu Ile Thr Cys Arg Leu His Gln Tyr Asp Gly Ser Ile Val

Val Ile Gln Asn Pro Ala Arg Gln Thr Leu Phe Phe Asn Gly Thr Arg 35 40

' Ala Leu Lys Asp Glu Arg Phe Gln Leu Glu Glu Phe Ser Pro Arg Arg 50

Val Arg Ile Arg Leu Ser Asp Ala Arg Leu Glu Asp Glu Gly Gly Tyr

Phe Cys Gln Leu Tyr Thr Glu Asp Thr His His Gln Ile Ala Thr Leu 85 90

Thr Val Leu Val Ala Pro Glu Asn Pro Val Val Glu Val Arg Glu Gln 100

Ala Val Glu Gly Gly Glu Val Glu Leu Ser Cys Leu Val Pro Arg Ser

Arg Pro Ala Ala Thr Leu Arg Trp Tyr Arg Asp Arg Lys Glu Leu Lys 130 135

Gly Val Ser Ser Ser Gln Glu Asn Gly Lys Val Trp Ser Val Ala Ser

145 150 155 160

Thr Val Arg Phe Arg Val Asp Arg Lys Asp Asp Gly Gly Ile Ile Ile 165 170 175

Cys Glu Ala Gln Asn Gln Ala Leu Pro Ser Gly His Ser Lys Gln Thr 180 185 190

Gln Tyr Val Leu Asp Val Gln Tyr Ser Pro Thr Ala Arg Ile His Ala 195 200 205

Ser Gln Ala Val Val Arg Glu Gly Asp Thr Leu Val Leu Thr Cys Ala 210 215 220

Val Thr Gly Asn Pro Arg Pro Asn Gln Ile Arg Trp Asn Arg Gly Asn 225 230 235 240

Glu Ser Leu Pro Glu Arg Ala Glu Ala Val Gly Glu Thr Leu Thr Leu 245 250 255

Pro Gly Leu Val Ser Ala Asp Asn Gly Thr Tyr Thr Cys Glu Ala Ser 260 265 270

Asn Lys His Gly His Ala Arg Ala Leu Tyr Val Leu Val Val Tyr Gly 275 280 285

Glu Ser Arg Leu Arg Pro Thr Glu Gly Gly Gly Ala Pro Asp Pro 290 295 300

Gly Ala Val Val Glu Ala Gln Thr Ser Val Pro Tyr Ala Ile Val Gly 305 310 315 320

Gly Ile Leu Ala Leu Leu Val Phe Leu Ile Ile Cys Val Leu Val Gly 325 330 335

Met Val Trp Cys Ser Val Arg Gln Lys Gly Ser Tyr Leu Thr His Glu 340 345 350

Ala Ser Gly Leu Asp Glu Gln Gly Glu Ala Arg Glu Ala Phe Leu Asn 355 360 365

Gly Ser Asp Gly His Lys Arg Lys Glu Glu Phe Phe Ile 370 375 380

<210> 47

<211> 388

<212> PRT

<213> Homo sapiens

<400> 47

Met Gly Arg Ala Arg Phe Gln Trp Pro Leu Leu Leu Leu Trp Ala 1 5 10 15

Ala Ala Ala Gly Pro Gly Ala Gly Gln Glu Val Gln Thr Glu Asn Val 20 25 30

Thr Val Ala Glu Gly Gly Val Ala Glu Ile Thr Cys Arg Leu His Gln 35 40 45

Tyr Asp Gly Ser Ile Val Val Ile Gln Asn Pro Ala Arg Gln Thr Leu 50 60

Phe Phe Asn Gly Thr Arg Ala Leu Lys Asp Glu Arg Phe Gln Leu Glu 65 70 75 80

Glu Phe Ser Pro Arg Arg Val Arg Ile Arg Leu Ser Asp Ala Arg Leu 85 90 95

Glu Asp Glu Gly Gly Tyr Phe Cys Gln Leu Tyr Thr Glu Asp Thr His 100 105 110

His Gln Ile Ala Thr Leu Thr Val Leu Val Ala Pro Glu Asn Pro Val 115 120 125

Val Glu Val Arg Glu Gln Ala Val Glu Gly Gly Glu Val Glu Leu Ser 130 140

Cys Leu Val Pro Arg Ser Arg Pro Ala Ala Thr Leu Arg Trp Tyr Arg 145 150 155 160

Asp Arg Lys Glu Leu Lys Gly Val Ser Ser Ser Gln Glu Asn Gly Lys 165 170 175

Val Trp Ser Val Ala Ser Thr Val Arg Phe Arg Val Asp Arg Lys Asp 180 185 190

Asp Gly Gly Ile Ile Ile Cys Glu Ala Gln Asn Gln Ala Leu Pro Ser 195 200 205

Gly His Ser Lys Gln Thr Gln Tyr Val Leu Asp Val Gln Tyr Ser Pro 210 215 220

Thr Ala Arg Ile His Ala Ser Gln Ala Val Val Arg Glu Gly Asp Thr 225 230 235 240

Leu Val Leu Thr Cys Ala Val Thr Gly Asn Pro Arg Pro Asn Gln Ile 245 250 255

Arg Trp Asn Arg Gly Asn Glu Ser Leu Pro Glu Arg Ala Glu Ala Val260 \cdot \cdot 265 \cdot 270

Gly Glu Thr Leu Thr Leu Pro Gly Leu Val Ser Ala Asp Asn Gly Thr 275 280 285

Tyr Thr Cys Glu Ala Ser Asn Lys His Gly His Ala Arg Ala Leu Tyr 290 295 300

Val Leu Val Val Tyr Asp Pro Gly Ala Val Val Glu Ala Gln Thr Ser 305 310 315 320

Val Pro Tyr Ala Ile Val Gly Gly Ile Leu Ala Leu Leu Val Phe Leu 325 330 335

Ile Ile Cys Val Leu Val Gly Met Val Trp Cys Ser Val Arg Gln Lys 340 345 350

Gly Ser Tyr Leu Thr His Glu Ala Ser Gly Leu Asp Glu Gln Gly Glu
355 360 365

Ala Arg Glu Ala Phe Leu Asn Gly Ser Asp Gly His Lys Arg Lys Glu 370 375 380

Glu Phe Phe Ile 385

<210> 48

<211> 345

<212> PRT

<213> Homo sapiens

<400> 48

Met Gly Arg Ala Arg Arg Phe Gln Trp Pro Leu Leu Leu Leu Trp Ala 1 5 10 \cdot 15

Ala Ala Val Pro Gly Ala Gly Gln Glu Val Gln Thr Glu Asn Val 20 25 30

Thr Val Ala Glu Gly Gly Val Ala Glu Ile Thr Cys Arg Leu His Gln 35 40 45

Tyr Asp Gly Ser Ile Val Val Ile Gln Asn Pro Ala Arg Gln Thr Leu 50 55 60

Phe Phe Asn Gly Thr Arg Ala Leu Lys Asp Glu Arg Phe Gln Leu Glu 65 70 75 80

Glu Phe Ser Pro Arg Arg Val Arg Ile Arg Leu Ser Asp Ala Arg Leu 85 90 95

Glu Asp Glu Gly Gly Tyr Phe Cys Gln Leu Tyr Thr Glu Asp Thr His 100 105 110

His Gln Ile Ala Thr Leu Thr Val Leu Val Ala Pro Glu Asn Pro Val 115 120 125

Val Glu Val Arg Glu Gln Ala Val Glu Gly Gly Glu Val Glu Leu Ser 130 135 140

Cys Pro Val Pro Arg Ser Arg Pro Ala Ala Thr Leu Arg Trp Tyr Arg 145 150 155 160

Asp Arg Lys Glu Leu Lys Gly Val Ser Ser Ser Gln Glu Asn Gly Lys 165 170 175

Val Trp Ser Val Ala Ser Thr Val Arg Phe Arg Val Asp Arg Lys Asp 180 185 190

Asp Gly Gly Ile Ile Ile Cys Glu Ala Gln Asn Gln Ala Leu Pro Ser 195 200 205

Gly His Ser Lys Gln Thr Gln Tyr Val Leu Asp Val Gln Tyr Ser Pro 210 215 220

Thr Ala Arg Ile His Ala Ser Gln Ala Val Val Arg Glu Gly Asp Thr 230

Leu Val Leu Thr Cys Ala Val Thr Gly Asn Pro Arg Pro Asn Gln Ile

Arg Trp Asn Arg Gly Asn Glu Ser Leu Pro Glu Arg Ala Glu Ala Val

Gly Glu Thr Leu Thr Leu Pro Gly Leu Val Ser Ala Asp Asn Gly Thr 280

Tyr Thr Cys Glu Ala Ser Asn Lys His Gly His Ala Arg Ala Leu Tyr 295 300

Val Leu Val Val Tyr Gly Ser Tyr Leu Thr His Glu Ala Ser Gly Leu

Asp Glu Gln Gly Glu Ala Arg Glu Ala Phe Leu Asn Gly Ser Asp Gly

His Lys Arg Lys Glu Glu Phe Phe Ile 340

<210> 49 <211> 432 <212> PRT

<213> Homo sapiens

<400> 49

Met Gly Ala Pro Ala Ala Ser Leu Leu Leu Leu Leu Leu Leu Phe Ala 5 10

Cys Cys Trp Ala Pro Gly Gly Ala Asn Leu Ser Gln Asp Gly Tyr Trp 20

Gln Glu Gln Asp Leu Glu Leu Gly Thr Leu Ala Pro Leu Asp Glu Ala

Ile Ser Ser Thr Val Trp Ser Ser Pro Asp Met Leu Ala Ser Gln Asp 55

Ser Gln Pro Trp Thr Ser Asp Glu Thr Val Val Ala Gly Gly Thr Val

65 70 75 80

Val Leu Lys Cys Gln Val Lys Asp His Glu Asp Ser Ser Leu Gln Trp 85 90 95

Ser Asn Pro Ala Gln Gln Thr Leu Tyr Phe Gly Glu Lys Arg Ala Leu 100 . 105 110

Arg Asp Asn Arg Ile Gln Leu Val Thr Ser Thr Pro His Glu Leu Ser 115 120 125

Ile Ser Ile Ser Asn Val Ala Leu Ala Asp Glu Gly Glu Tyr Thr Cys 130 135 140

Ser Ile Phe Thr Met Pro Val Arg Thr Ala Lys Ser Leu Val Thr Val 145 150 155 160

Leu Gly Ile Pro Gln Lys Pro Ile Ile Thr Gly Tyr Lys Ser Ser Leu 165 170 175

Arg Glu Lys Asp Thr Ala Thr Leu Asn Cys Gln Ser Ser Gly Ser Lys 180 185 190

Pro Ala Ala Arg Leu Thr Trp Arg Lys Gly Asp Gln Glu Leu His Gly
195 200 205

Glu Pro Thr Arg Ile Gln Glu Asp Pro Asn Gly Lys Thr Phe Thr Val 210 215 220

Ser Ser Ser Val Thr Phe Gln Val Thr Arg Glu Asp Asp Gly Ala Ser 225 235 240

Ile Val Cys Ser Val Asn His Glu Ser Leu Lys Gly Ala Asp Arg Ser 245 250 255

Thr Ser Gln Arg Ile Glu Val Leu Tyr Thr Pro Thr Ala Met Ile Arg 260 265 270

Pro Asp Pro Pro His Pro Arg Glu Gly Gln Lys Leu Leu His Cys 275 280 285

Glu Gly Arg Gly Asn Pro Val Pro Gln Gln Tyr Leu Trp Glu Lys Glu 290 295 300

Gly Ser Val Pro Pro Leu Lys Met Thr Gln Glu Ser Ala Leu Ile Phe 305 310 315

Pro Phe Leu Asn Lys Ser Asp Ser Gly Thr Tyr Gly Cys Thr Ala Thr 325 330

Ser Asn Met Gly Ser Tyr Lys Ala Tyr Tyr Thr Leu Asn Val Asn Asp 340 345

Pro Ser Pro Val Pro Ser Ser Ser Thr Tyr His Ala Ile Ile Gly 360 365 355

Gly Ile Val Ala Phe Ile Val Phe Leu Leu Ile Met Leu Ile Phe 380 375 370

Leu Gly His Tyr Leu Ile Arg His Lys Gly Thr Tyr Leu Thr His Glu

Ala Lys Gly Ser Asp Asp Ala Pro Asp Ala Asp Thr Ala Ile Ile Asn 405 410

Ala Glu Gly Gly Gln Ser Gly Gly Asp Asp Lys Lys Glu Tyr Phe Ile 425 420

<210> 50 <211> 344 <212> PRT <213> Homo sapiens

<400> 50

Met Gly Val Cys Gly Tyr Leu Phe Leu Pro Trp Lys Cys Leu Val Val 10

Val Ser Leu Arg Leu Leu Phe Leu Val Pro Thr Gly Val Pro Val Arg 25

Ser Gly Asp Ala Thr Phe Pro Lys Ala Met Asp Asn Val Thr Val Arg 40

Gln Gly Glu Ser Ala Thr Leu Arg Cys Thr Ile Asp Asn Arg Val Thr 55

Arg Val Ala Trp Leu Asn Arg Ser Thr Ile Leu Tyr Ala Gly Asn Asp 65 70 75 80

- Lys Trp Cys Leu Asp Pro Arg Val Val Leu Leu Ser Asn Thr Gln Thr 85 90 95
- Gln Tyr Ser Ile Glu Ile Gln Asn Val Asp Val Tyr Asp Glu Gly Pro 100 105 . 110
- Tyr Thr Cys Ser Val Gln Thr Asp Asn His Pro Lys Thr Ser Arg Val 115 120 125
- His Leu Ile Val Gln Val Ser Pro Lys Ile Val Glu Ile Ser Ser Asp 130 135 140
- Ile Ser Ile Asn Glu Gly Asn Asn Ile Ser Leu Thr Cys Ile Ala Thr 145 150 155 160
- Gly Arg Pro Glu Pro Thr Val Thr Trp Arg His Ile Ser Pro Lys Ala 165 170 175
- Val Gly Phe Val Ser Glu Asp Glu Tyr Leu Glu Ile Gln Gly Ile Thr 180 185 190
- Arg Glu Gln Ser Gly Asp Tyr Glu Cys Ser Ala Ser Asn Asp Val Ala 195 200 205
- Ala Pro Val Val Arg Arg Val Lys Val Thr Val Asn Tyr Pro Pro Tyr 210 215 220
- Ile Ser Glu Ala Lys Gly Thr Gly Val Pro Val Gly Gln Lys Gly Thr 225 230 235 240
- Leu Gln Cys Glu Ala Ser Ala Val Pro Ser Ala Glu Phe Gln Trp Tyr 245 250 255
- Lys Asp Asp Lys Arg Leu Ile Glu Gly Lys Lys Gly Val Lys Val Glu 260 265 270
- Asn Arg Pro Phe Leu Ser Lys Leu Ile Phe Phe Asn Val Ser Glu His 275 280 285
- Asp Tyr Gly Asn Tyr Thr Cys Val Ala Ser Asn Lys Leu Gly His Thr

290 295 300

Asn Ala Ser Ile Met Leu Phe Gly Pro Gly Ala Val Ser Glu Val Ser 305 310 315 320

Asn Gly Thr Ser Arg Ala Gly Cys Val Trp Leu Leu Pro Leu Leu 325 330 335

Val Leu His Leu Leu Leu Lys Phe 340

<210> 51

<211> 798

<212> PRT

<213> Homo sapiens

<400> 51

Met Val Trp Cys Leu Gly Leu Ala Val Leu Ser Leu Val Ile Ser Gln 1 5 10 15

Gly Ala Asp Gly Arg Gly Lys Pro Glu Val Val Ser Val Val Gly Arg 20 25 30

Ala Gly Glu Ser Val Val Leu Gly Cys Asp Leu Leu Pro Pro Ala Gly 35 40 45

Arg Pro Pro Leu His Val Ile Glu Trp Leu Arg Phe Gly Phe Leu Leu 50 60

Pro Ile Phe Ile Gln Phe Gly Leu Tyr Ser Pro Arg Ile Asp Pro Asp 65 70 75 80

Tyr Val Gly Arg Val Arg Leu Gln Lys Gly Ala Ser Leu Gln Ile Glu 85 90 95

Gly Leu Arg Val Glu Asp Gln Gly Trp Tyr Glu Cys Arg Val Phe Phe 100 105 110

Leu Asp Gln His Ile Pro Glu Asp Asp Phe Ala Asn Gly Ser Trp Val 115 120 125

His Leu Thr Val Asn Ser Pro Pro Gln Phe Gln Glu Thr Pro Pro Ala 130 135 140

Val 145	Leu	Glu	Val	Gln	Glu 150	Leu	Glu	Pro	Val	Thr 155	Leu	Arg	Cys	Val	Ala 160
Arg	Gly	Ser	Pro	Leu 165	Pro	His	Val	Thr	Trp 170	Lys	Leu	Arg	Gly	Lys 175	Asp
Leu	Gly	Gln	Gly 180	Gln	Gly	Gln	Val	Gln 185	Val	Gln	Asn	Gly	Thr 190	Leu	Arg
Ile	e Arg	Arg 195	Val	Glu	Arg	Gly	Ser 200	Ser	Gly	Val	Tyr	Thr 205	Cys	Gln	Ala
Ser	Ser 210	Thr	Glu	Gly	Ser	Ala 215	Thr	His	Ala	Thr	Gln 220	Leu	Leu	Val	Leu
Gly 225	Pro	Pro	Val	Ile	Val 230	Val	Pro	Pro	Lys	Asn 235	Ser	Thr	Val	Asn	Ala 240
Ser	Gln	Asp	Val	Ser 245	Leu	Ala	Cys	His	Ala 250	Glu	Ala	Tyr	Pro	Ala 255	Asn
Leu	1 Thr	Tyr	Ser 260	Trp	Phe	Gln	Asp	Asn 265	Ile	Asn	Val	Phe	His 270	Ile	Ser
Arg	, Leu	Gln 275	Pro	Arg	Val	Arg	Ile 280	Leu	Val	Asp	Gly	Ser 285	Leu	Arg	Leu
Let	1 Ala 290	Thr	Gln	Pro	Asp	Asp 295	Ala	Gly	Cys	Tyr	Thr 300	Cys	Val	Pro	Ser
Asr 305	ı Gly	Leu	Leu	His	Pro 310	Pro	Ser	Ala	Ser	Ala 315	Tyr	Leu	Thr	Val	Leu 320
Туз	Pro	Ala	Gln	Val 325	Thr	Ala	Met	Pro	Pro 330	Glu	Thr	Pro	Leu	Pro 335	Ile
Gly	Met	Pro	Gly 340	Val	Ile	Arg	Cys	Pro 345	Val	Arg	Ala	Asn	Pro 350	Pro	Leu
Let	ı Phe	Val	Ser	Trp	Thr	Lys	Asp	Gly	Lys	Ala	Leu	Gln	Leu	Asp	Lys

Phe Pro Gly Trp Ser Gln Gly Thr Glu Gly Ser Leu Ile Ile Ala Leu 370 375 380

Gly Asn Glu Asp Ala Leu Gly Glu Tyr Ser Cys Thr Pro Tyr Asn Ser 385 390 395 400

Leu Gly Thr Ala Gly Pro Ser Pro Val Thr Arg Val Leu Leu Lys Ala 405 410 415

Pro Pro Ala Phe Ile Glu Arg Pro Lys Glu Glu Tyr Phe Gln Glu Val 420 425 430

Gly Arg Glu Leu Leu Ile Pro Cys Ser Ala Gln Gly Asp Pro Pro 435 440 445

Val Val Ser Trp Thr Lys Val Gly Arg Gly Leu Gln Gly Gln Ala Gln 450 455 460

Val Asp Ser Asn Ser Ser Leu Ile Leu Arg Pro Leu Thr Lys Glu Ala 465 470 475 480

His Gly His Trp Glu Cys Ser Ala Ser Asn Ala Val Ala Arg Val Ala \cdot 485 490 495

Thr Ser Thr Asn Val Tyr Val Leu Gly Thr Ser Pro His Val Val Thr 500 505 510

Asn Val Ser Val Val Ala Leu Pro Lys Gly Ala Asn Val Ser Trp Glu 515 520 525

Pro Gly Phe Asp Gly Gly Tyr Leu Gln Arg Phe Ser Val Trp Tyr Thr 530 540

Pro Leu Ala Lys Arg Pro Asp Arg Met His His Asp Trp Val Ser Leu 545 550 560

Ala Val Pro Val Gly Ala Ala His Leu Leu Val Pro Gly Leu Gln Pro 565 570 575

His Thr Gln Tyr Gln Phe Ser Val Leu Ala Gln Asn Lys Leu Gly Ser 580 585 590

Gly Pro Phe Ser Glu Ile Val Leu Ser Ala Pro Glu Gly Leu Pro Thr

. 605 595 600

Thr Pro Ala Ala Pro Gly Leu Pro Pro Thr Glu Ile Pro Pro Pro Leu 615 620 610

Ser Pro Pro Arg Gly Leu Val Ala Val Arg Thr Pro Arg Gly Val Leu 635 630

Leu His Trp Asp Pro Pro Glu Leu Val Pro Lys Arg Leu Asp Gly Tyr

Val Leu Glu Gly Arg Gln Gly Ser Gln Gly Trp Glu Val Leu Asp Pro 665

Ala Val Ala Gly Thr Glu Thr Glu Leu Leu Val Pro Gly Leu Ile Lys 680

Val Cys Ser Leu Arg Val Pro Pro Arg Gly Leu Arg Gly Gln Leu Arg

Gln Arg Pro Gln Gln His Gly Gln Arg Leu His Phe Arg Ser Gly Gly

Leu Pro Phe Ala His Ala Ala Ala Gly Pro Pro Ala Ser Ala Arg Ala 725 730

Gly Arg Gly Gly Arg Ser Leu Leu Ser Gly Ser Gly Arg Pro Cys 740 745

Glu His Pro Gly Arg Leu Pro Pro Glu Pro Ala Gln Gly Cys Pro Pro 760

Pro Pro Gln Ala Pro Pro Pro Arg Ser Thr Ser Tyr Leu Leu Ser Asp 775

Arg Glu Val Ser Cys Thr Leu Cys Ser Gly Leu Arg Gln Ser 785 790

<210> 52 <211> 779 <212> PRT <213> Homo sapiens

<400> 52

Gly Met Lys Pro Phe Gln Leu Asp Leu Leu Phe Val Cys Phe Phe Leu 1 5 10 15

- Phe Ser Gln Glu Leu Gly Leu Gln Lys Arg Gly Cys Cys Leu Val Leu 20 25 30
- Gly Tyr Met Ala Lys Asp Lys Phe Arg Arg Met Asn Glu Gly Gln Val 35 40 45
- Tyr Ser Phe Ser Gln Gln Pro Gln Asp Gln Val Val Ser Gly Gln 50 55 60
- Pro Val Thr Leu Leu Cys Ala Ile Pro Glu Tyr Asp Gly Phe Val Leu 65 70 75 80
- Trp Ile Lys Asp Gly Leu Ala Leu Gly Val Gly Arg Asp Leu Ser Ser 85 90 95
- Tyr Pro Gln Tyr Leu Val Val Gly Asn His Leu Ser Gly Glu His His
 100 105 110
- Leu Lys Ile Leu Arg Ala Glu Leu Gln Asp Asp Ala Val Tyr Glu Cys 115 120 125
- Gln Ala Ile Gln Ala Ala Ile Arg Ser Arg Pro Ala Arg Leu Thr Val
- Leu Val Pro Pro Asp Asp Pro Val Ile Leu Gly Gly Pro Val Ile Ser 145 150 155 160
- Leu Arg Ala Gly Asp Pro Leu Asn Leu Thr Cys His Ala Asp Asn Ala 165 170 175
- Lys Pro Ala Ala Ser Ile Ile Trp Leu Arg Lys Gly Glu Val Ile Asn 180 185 190
- Gly Ala Thr Tyr Ser Lys Thr Leu Leu Arg Asp Gly Lys Arg Glu Ser 195 200 . 205
- Ile Val Ser Thr Leu Phe Ile Ser Pro Gly Asp Val Glu Asn Gly Gln 210 215 220

Ser Ile Val Cys Arg Ala Thr Asn Lys Ala Ile Pro Gly Gly Lys Glu 225 230 235 240

- Thr Ser Val Thr Ile Asp Ile Gln His Pro Pro Leu Val Asn Leu Ser 245 250 255
- Val Glu Pro Gln Pro Val Leu Glu Asp Asn Val Val Thr Phe His Cys
 260 265 270
- Ser Ala Lys Ala Asn Pro Ala Val Thr Gln Tyr Arg Trp Ala Lys Arg 275 280 285
- Gly Gln Ile Ile Lys Glu Ala Ser Gly Glu Val Tyr Arg Thr Thr Val 290 295 300
- Asp Tyr Thr Tyr Phe Ser Glu Pro Val Ser Cys Glu Val Thr Asn Ala 305 , 315 , 320
- Leu Gly Ser Thr Asn Leu Ser Arg Thr Val Asp Val Tyr Phe Gly Pro 325 330 335
- Arg Met Thr Thr Glu Pro Gln Ser Leu Leu Val Asp Leu Gly Ser Asp 340 345 350
- Ala Ile Phe Ser Cys Ala Trp Thr Gly Asn Pro Ser Leu Thr Ile Val 355 360 365
- Trp Met Lys Arg Gly Ser Gly Val Val Leu Ser Asn Glu Lys Thr Leu 370 375 380
- Thr Leu Lys Ser Val Arg Gln Glu Asp Ala Gly Lys Tyr Val Cys Arg 385 390 395 400
- Ala Val Val Pro Arg Val Gly Ala Gly Glu Arg Glu Val Thr Leu Thr 405 410 415
- Val Asn Gly Pro Pro Ile Ile Ser Ser Thr Gln Thr Gln His Ala Leu 420 425 430
- His Gly Glu Lys Gly Gln Ile Lys Cys Phe Ile Arg Ser Thr Pro Pro 435 440 445
- Pro Asp Arg Ile Ala Trp Ser Trp Lys Glu Asn Val Leu Glu Ser Gly

450 455 460

Thr Ser Gly Arg Tyr Thr Val Glu Thr Ile Ser Thr Glu Glu Gly Val 465 470 475 480

Ile Ser Thr Leu Thr Ile Ser Asn Ile Val Arg Ala Asp Phe Gln Thr 485 490 495

Ile Tyr Asn Cys Thr Ala Trp Asn Ser Phe Gly Ser Asp Thr Glu Ile 500 505 510

Ile Arg Leu Lys Glu Gln Gly Ser Glu Met Lys Ser Gly Ala Gly Leu 515 520 525

Glu Ala Glu Ser Val Pro Met Ala Val Ile Ile Gly Val Ala Val Gly 530 535 540

Ala Gly Val Ala Phe Leu Val Leu Met Ala Thr Ile Val Ala Phe Cys 545 550 555 560

Cys Ala Arg Ser Gln Arg Asn Leu Lys Gly Val Val Ser Ala Lys Asn 565 570 575

Asp Ile Arg Val Glu Ile Val His Lys Glu Pro Ala Ser Gly Arg Glu 580 585 590

Gly Glu Glu His Ser Thr Ile Lys Gln Leu Met Met Asp Arg Gly Glu 595 600 605

Phe Gln Gln Asp Ser Val Leu Lys Gln Leu Glu Val Leu Lys Glu Glu 610 615 620

Glu Lys Glu Phe Gln Asn Leu Lys Asp Pro Thr Asn Gly Tyr Tyr Ser 625 630 635 640

Val Asn Thr Phe Lys Glu His His Ser Thr Pro Thr Ile Ser Leu Ser 645 650 655

Ser Cys Gln Pro Asp Leu Arg Pro Ala Gly Lys Gln Arg Val Pro Thr 660 665 670

Gly Met Ser Phe Thr Asn Ile Tyr Ser Thr Leu Ser Gly Gln Gly Arg 675 680 685

Leu Tyr Asp Tyr Gly Gln Arg Phe Val Leu Gly Met Gly Ser Ser Ser 690 695 700

Ile Glu Leu Cys Glu Arg Glu Phe Gln Arg Gly Ser Leu Ser Asp Ser 705 710 715 720

Ser Ser Phe Leu Asp Thr Gln Cys Asp Ser Ser Val Ser Ser Ser Gly 725 730 735

Lys Gln Asp Gly Tyr Val Gln Phe Asp Lys Ala Ser Lys Ala Ser Ala 740 . 745 . 750

Ser Ser Ser His His Ser Gln Ser Ser Gln Asn Ser Asp Pro Ser 755 760 765

Arg Pro Leu Gln Arg Arg Met Gln Thr His Val 770 775

<210> 53

<211> 442

<212> PRT

<213> Homo sapiens

<400> 53

Met Thr Thr Glu Pro Gln Ser Leu Leu Val Asp Leu Gly Ser Asp Ala 1 5 10 15

Ile Phe Ser Cys Ala Trp Thr Gly Asn Pro Ser Leu Thr Ile Val Trp 20 25 30

Met Lys Arg Gly Ser Gly Val Val Leu Ser Asn Glu Lys Thr Leu Thr 35 40 45

Leu Lys Ser Val Arg Gln Glu Asp Ala Gly Lys Tyr Val Cys Arg Ala 50 60

Val Val Pro Arg Val Gly Ala Gly Glu Arg Glu Val Thr Leu Thr Val 65 70 75 80

Asn Gly Pro Pro Ile Ile Ser Ser Thr Gln Thr Gln His Ala Leu His 85 90 95

Gly Glu Lys Gly Gln Ile Lys Cys Phe Ile Arg Ser Thr Pro Pro 100 105 . 110

- Asp Arg Ile Ala Trp Ser Trp Lys Glu Asn Val Leu Glu Ser Gly Thr 115 120 125
- Ser Gly Arg Tyr Thr Val Glu Thr Ile Ser Thr Glu Glu Gly Val Ile 130 140
- Ser Thr Leu Thr Ile Ser Asn Ile Val Arg Ala Asp Phe Gln Thr Ile 145 150 155 160
- Tyr Asn Cys Thr Ala Trp Asn Ser Phe Gly Ser Asp Thr Glu Ile Ile 165 170 175
- Arg Leu Lys Glu Gln Gly Ser Glu Met Lys Ser Gly Ala Gly Leu Glu 180 185 190
- Ala Glu Ser Val Pro Met Ala Val Ile Ile Gly Val Ala Val Gly Ala 195 200 205
- Gly Val Ala Phe Leu Val Leu Met Ala Thr Ile Val Ala Phe Cys Cys 210 215 220
- Ala Arg Ser Gln Arg Asn Leu Lys Gly Val Val Ser Ala Lys Asn Asp 225 230 235 240
- Ile Arg Val Glu Ile Val His Lys Glu Pro Ala Ser Gly Arg Glu Gly 245 250 255
- Glu Glu His Ser Thr Ile Lys Gln Leu Met Met Asp Arg Gly Glu Phe 260 265 270
- Gln Gln Asp Ser Val Leu Lys Gln Leu Glu Val Leu Lys Glu Glu Glu 275 280 285
- Lys Glu Phe Gln Asn Leu Lys Asp Pro Thr Asn Gly Tyr Tyr Ser Val 290 295 300
- Asn Thr Phe Lys Glu His His Ser Thr Pro Thr Ile Ser Leu Ser Ser 305 310 315 320
- Cys Gln Pro Asp Leu Arg Pro Ala Gly Lys Gln Arg Val Pro Thr Gly

325 330 335

Met Ser Phe Thr Asn Ile Tyr Ser Thr Leu Ser Gly Gln Gly Arg Leu 340 345 350

Tyr Asp Tyr Gly Gln Arg Phe Val Leu Gly Met Gly Ser Ser Ser Ile 355 360 365

Glu Leu Cys Glu Arg Glu Phe Gln Arg Gly Ser Leu Ser Asp Ser Ser 370 380

Ser Phe Leu Asp Thr Gln Cys Asp Ser Ser Val Ser Ser Ser Gly Lys 385 390 395 400

Gln Asp Gly Tyr Val Gln Phe Asp Lys Ala Ser Lys Ala Ser Ala Ser 405
410
415

Ser Ser His His Ser Gln Ser Ser Ser Gln Asn Ser Asp Pro Ser Arg 420 425 430

Pro Leu Gln Arg Arg Met Gln Thr His Val

<210> 54

<211> 510

<212> PRT

<213> Homo sapiens

<400> 54

Met Pro Leu Ser Leu Gly Ala Glu Met Trp Gly Pro Glu Ala Trp Leu 1 5 10 15

Leu Leu Leu Leu Ala Ser Phe Thr Gly Arg Cys Pro Ala Gly 20 25 30

Glu Leu Glú Thr Ser Asp Val Val Thr Val Val Leu Gly Gln Asp Ala 35 40 45

Lys Leu Pro Cys Phe Tyr Arg Gly Asp Ser Gly Glu Gln Val Gly Gln 50 55 60

Val Ala Trp Ala Arg Val Asp Ala Gly Glu Gly Ala Gln Glu Leu Ala 65 70 75 80

Leu Leu His Ser Lys Tyr Gly Leu His Val Ser Pro Ala Tyr Glu Gly 85 90 95

- Arg Val Glu Gln Pro Pro Pro Pro Arg Asn Pro Leu Asp Gly Ser Val 100 105 110
- Leu Leu Arg Asn Ala Val Gln Ala Asp Glu Gly Glu Tyr Glu Cys Arg 115 120 125
- Val Ser Thr Phe Pro Ala Gly Ser Phe Gln Ala Arg Leu Arg Leu Arg 130 135 140
- Val Met Val Pro Pro Leu Pro Ser Leu Asn Pro Gly Pro Ala Leu Glu 145 150 155 160
- Glu Gly Gln Gly Leu Thr Leu Ala Ala Ser Cys Thr Ala Glu Gly Ser 165 170 175
- Pro Ala Pro Ser Val Thr Trp Asp Thr Glu Val Lys Gly Thr Thr Ser 180 185 190
- Ser Arg Ser Phe Lys His Ser Arg Ser Ala Ala Val Thr Ser Glu Phe 195 200 205
- His Leu Val Pro Ser Arg Ser Met Asn Gly Gln Pro Leu Thr Cys Val 210 215 220
- Val Ser His Pro Gly Leu Leu Gln Asp Gln Arg Ile Thr His Ile Leu 225 230 235 240
- His Val Ser Phe Leu Ala Glu Ala Ser Val Arg Gly Leu Glu Asp Gln $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$
- Asn Leu Trp His Ile Gly Arg Glu Gly Ala Met Leu Lys Cys Leu Ser 260 265 270
- Glu Gly Gln Pro Pro Pro Ser Tyr Asn Trp Thr Arg Leu Asp Gly Pro 275 280 285
- Leu Pro Ser Gly Val Arg Val Asp Gly Asp Thr Leu Gly Phe Pro Pro 290 295 300

Leu Thr Thr Glu His Ser Gly Ile Tyr Val Cys His Val Ser Asn Glu 305 310 315

Phe Ser Ser Arg Asp Ser Gln Val Thr Val Asp Val Leu Asp Pro Gln 325 330 335

Glu Asp Ser Gly Lys Gln Val Asp Leu Val Ser Ala Ser Val Val Val 340 345

Val Gly Val Ile Ala Ala Leu Leu Phe Cys Leu Leu Val Val Val Val 360

Val Leu Met Ser Arg Tyr His Arg Arg Lys Ala Gln Gln Met Thr Gln 370 375

Lys Tyr Glu Glu Glu Leu Thr Leu Thr Arg Glu Asn Ser Ile Arg Arg 385 390 395

Leu His Ser His His Thr Asp Pro Arg Ser Gln Pro Glu Glu Ser Val 405

Gly Leu Arg Ala Glu Gly His Pro Asp Ser Leu Lys Asp Asn Ser Ser

Cys Ser Val Met Ser Glu Glu Pro Glu Gly Arg Ser Tyr Ser Thr Leu 435 440 445

Thr Thr Val Arg Glu Ile Glu Thr Gln Thr Glu Leu Leu Ser Pro Gly 450 455

Ser Gly Arg Ala Glu Glu Glu Glu Asp Gln Asp Glu Gly Ile Lys Gln . 470

Ala Met Asn His Phe Val Glu Asn Gly Thr Leu Arg Ala Lys Pro 490

Thr Gly Asn Gly Ile Tyr Ile Asn Gly Arg Gly His Leu Val 500 505

<210> 55
<211> 510
<212> PRT
<213> Homo sapiens

<400> 55

Met Pro Leu Ser Leu Gly Ala Glu Met Trp Gly Pro Glu Ala Trp Leu 1 5 10 15

Leu Leu Leu Leu Leu Ala Ser Phe Thr Gly Arg Cys Pro Ala Gly 20 25 30

Glu Leu Gly Thr Ser Asp Val Val Thr Val Val Leu Gly Gln Asp Ala . 35 40 45

Lys Leu Pro Cys Phe Tyr Arg Gly Asp Ser Gly Glu Gln Val Gly Gln 50 55 60

Val Ala Trp Ala Arg Val Asp Ala Gly Glu Gly Ala Gln Glu Leu Ala 65 70 75 80

Leu Leu His Ser Lys Tyr Gly Leu His Val Ser Pro Ala Tyr Glu Gly 85 90 95

Arg Val Glu Gln Pro Pro Pro Pro Arg Asn Pro Leu Asp Gly Ser Val 100 105 110

Leu Leu Arg Asn Ala Val Gln Ala Asp Glu Gly Glu Tyr Glu Cys Arg 115 120 125

Val Ser Thr Phe Pro Ala Gly Ser Phe Gln Ala Arg Leu Arg Leu Arg 130 135 140

Val Leu Val Pro Pro Leu Pro Ser Leu Asn Pro Gly Pro Ala Leu Glu 145 150 155 160

Glu Gly Gln Gly Leu Thr Leu Ala Ala Ser Cys Thr Ala Glu Gly Ser 165 170 175

Pro Ala Pro Ser Val Thr Trp Asp Thr Glu Val Lys Gly Thr Thr Ser 180 185 190

Ser Arg Ser Phe Lys His Ser Arg Ser Ala Ala Val Thr Ser Glu Phe 195 200 205

His Leu Val Pro Ser Arg Ser Met Asn Gly Gln Pro Leu Thr Cys Val 210 215 220

Val Ser His Pro Gly Leu Leu Gln Asp Gln Arg Ile Thr His Ile Leu 225 230 235 240

- His Val Ser Phe Leu Ala Glu Ala Ser Val Arg Gly Leu Glu Asp Gln 245 250 255
- Asn Leu Trp His Ile Gly Arg Glu Gly Ala Met Leu Lys Cys Leu Ser 260 265 270
- Glu Gly Gln Pro Pro Pro Ser Tyr Asn Trp Thr Arg Leu Asp Gly Pro 275 280 285
- Leu Pro Ser Gly Val Arg Val Asp Gly Asp Thr Leu Gly Phe Pro Pro 290 295 300
- Leu Thr Thr Glu His Ser Gly Ile Tyr Val Cys His Val Ser Asn Glu 305 310 315 320
- Phe Ser Ser Arg Asp Ser Gln Val Thr Val Asp Val Leu Asp Pro Gln 325 330 335
- Glu Asp Ser Gly Lys Gln Val Asp Leu Val Ser Ala Ser Val Val Val 340 345 350
- Val Gly Val Ile Ala Ala Leu Leu Phe Cys Leu Leu Val Val Val Val 355 360 365
- Val Leu Met Ser Arg Tyr His Arg Arg Lys Ala Gln Gln Met Thr Gln 370 375 380
- Lys Tyr Glu Glu Glu Leu Thr Leu Thr Arg Glu Asn Ser Ile Arg Arg 385 390 395 400
- Leu His Ser His His Thr Asp Pro Arg Ser Gln Pro Glu Glu Ser Val 405 410 415
- Gly Leu Arg Ala Glu Gly His Pro Asp Ser Leu Lys Asp Asn Ser Ser 420 425 430
- Cys Ser Val Met Ser Glu Glu Pro Glu Gly Arg Ser Tyr Ser Thr Leu 435 440 445

Thr Thr Val Arg Glu Ile Glu Thr Gln Thr Glu Leu Leu Ser Pro Gly 450 455 460

Ser Gly Arg Ala Glu Glu Glu Glu Asp Gln Asp Glu Gly Ile Lys Gln

Ala Met Asn His Phe Val Gln Glu Asn Gly Thr Leu Arg Ala Lys Pro 490 495

Thr Gly Asn Gly Ile Tyr Ile Asn Gly Arg Gly His Leu Val 500 505

<210> 56 .

<211> 348 <212> PRT

<213> Rattus norvegicus

<400> 56

Met Val Leu Leu Ala Gln Gly Ala Cys Cys Ser Asn Gln Trp Leu Ala

Ala Val Leu Leu Ser Leu Cys Ser Cys Leu Pro Ala Gly Gln Ser Val 25 . 30

Asp Phe Pro Trp Ala Ala Val Asp Asn Met Leu Val Arg Lys Gly Asp

Thr Ala Val Leu Arg Cys Tyr Leu Glu Asp Gly Ala Ser Lys Gly Ala

Trp Leu Asn Arg Ser Ser Ile Ile Phe Ala Gly Gly Asp Lys Trp Ser 70

Val Asp Pro Arg Val Ser Ile Ser Thr Leu Asn Lys Arg Asp Tyr Ser

Leu Gln Ile Gln Asn Val Asp Val Thr Asp Asp Gly Pro Tyr Thr Cys 105

Ser Val Gln Thr Gln His Thr Pro Arg Thr Met Gln Val His Leu Thr 120

Val Gln Val Pro Pro Lys Ile Tyr Asp Ile Ser Asn Asp Met Thr Ile 135

Asn Glu Gly Thr Asn Val Thr Leu Thr Cys Leu Ala Thr Gly Lys Pro 145

Glu Pro Ala Ile Ser Trp Arg His Ile Ser Pro Ser Ala Lys Pro Phe 170

Glu Asn Gly Gln Tyr Leu Asp Ile Tyr Gly Ile Thr Arg Asp Gln Ala 185 180

Gly Glu Tyr Glu Cys Ser Ala Glu Asn Asp Val Ser Phe Pro Asp Val 195 200

Lys Lys Val Arg Val Val Val Asn Phe Ala Pro Thr Ile Gln Glu Ile 210

Lys Ser Gly Thr Val Thr Pro Gly Arg Ser Gly Leu Ile Arg Cys Glu 225 . 230 235

Gly Ala Gly Val Pro Pro Ala Phe Glu Trp Tyr Lys Gly Glu Lys 245 250

Arg Leu Phe Asn Gly Gln Gln Gly Ile Ile Ile Gln Asn Phe Ser Thr

Arg Ser Ile Leu Thr Val Thr Asn Val Thr Gln Glu His Phe Gly Asn 275 280 285

Tyr Thr Cys Val Ala Ala Asn Lys Leu Gly Thr Thr Asn Ala Ser Leu 300 290 295

Pro Leu Asn Pro Pro Ser Thr Ala Gln Tyr Gly Ile Thr Gly Ser Ala 310

Cys Asp Leu Phe Ser Cys Trp Ser Leu Ala Leu Thr Leu Ser Ser Val 330

Ile Ser Ile Phe Tyr Leu Lys Asn Ala Ile Leu Gln 340

<210> 57

<211> 348 <212> PRT

<213> Rattus norvegicus

<400> 57

Met Val Leu Leu Ala Gln Gly Ala Cys Cys Ser Asn Gln Trp Leu Ala 1 5 10 15

Ala Val Leu Leu Ser Leu Cys Ser Cys Leu Pro Ala Gly Gln Ser Val 20 25 30

Asp Phe Pro Trp Ala Ala Val Asp Asn Met Leu Val Arg Lys Gly Asp 35 40 45

Thr Ala Val Leu Arg Cys Tyr Leu Glu Asp Gly Ala Ser Lys Gly Ala 50 55 60

Trp Leu Asn Arg Ser Ser Ile Ile Phe Ala Gly Gly Asp Lys Trp Ser 65 70 75 80

Val Asp Pro Arg Val Ser Ile Ser Thr Leu Asn Lys Arg Asp Tyr Ser 85 90 95

Leu Gln Ile Gln Asn Val Asp Val Thr Asp Asp Gly Pro Tyr Thr Cys
100 105 110

Ser Val Gln Thr Gln His Thr Pro Arg Thr Met Gln Val His Leu Thr 115 120 125

Val Gln Val Pro Pro Lys Ile Tyr Asp Ile Ser Asn Asp Met Thr Ile 130 135 140

Asn Glu Gly Thr Asn Val Thr Leu Thr Cys Leu Ala Thr Gly Lys Pro 145 150 155 160

Glu Pro Ala Ile Ser Trp Arg His Ile Ser Pro Ser Ala Lys Pro Phe 165 170 175

Glu Asn Gly Gln Tyr Leu Asp Ile Tyr Gly Ile Thr Arg Asp Gln Ala 180 185 190

Gly Glu Tyr Glu Cys Ser Ala Glu Asn Asp Val Ser Phe Pro Asp Val 195 200 205

Lys Lys Val Arg Val Val Val Asn Phe Ala Pro Thr Ile Gln Glu Ile

220 210 215

Lys Ser Gly Thr Val Thr Pro Gly Arg Ser Gly Leu Ile Arg Cys Glu 230 235

Gly Ala Gly Val Pro Pro Pro Ala Phe Glu Trp Tyr Lys Gly Glu Lys

Arg Leu Phe Asn Gly Gln Gln Gly Ile Ile Ile Gln Asn Phe Ser Thr 265

Arg Ser Ile Leu Thr Val Thr Asn Val Thr Gln Glu His Phe Gly Asn 275 280

Tyr Thr Cys Val Ala Ala Asn Lys Leu Gly Thr Thr Asn Ala Ser Leu 295

Pro Leu Asn Pro Pro Ser Thr Ala Gln Tyr Gly Ile Thr Gly Ser Ala

Cys Asp Leu Phe Ser Cys Trp Ser Leu Ala Leu Thr Leu Ser Ser Val 325 330

Ile Ser Ile Phe Tyr Leu Lys Asn Ala Ile Leu Gln

<210> 58 <211> 338 <212> PRT <213> Homo sapiens

<400> 58

Met Val Gly Arg Val Gln Pro Asp Arg Lys Gln Leu Pro Leu Val Leu

Leu Arg Leu Leu Cys Leu Leu Pro Thr Gly Leu Pro Val Arg Ser Val

Asp Phe Asn Arg Gly Thr Asp Asn Ile Thr Val Arg Gln Gly Asp Thr

Ala Ile Leu Arg Cys Val Leu Glu Asp Lys Asn Ser Lys Val Ala Trp

Leu Asn Arg Ser Gly Ile Ile Phe Ala Gly His Asp Lys Trp Ser Leu 65 70 75 80

- Asp Pro Arg Val Glu Leu Glu Lys Arg His Ser Leu Glu Tyr Ser Leu 85 90 95
- Arg Ile Gln Lys Val Asp Val Tyr Asp Glu Gly Ser Tyr Thr Cys Ser 100 105 110
- Val Gln Thr Gln His Glu Pro Lys Thr Ser Gln Val Tyr Leu Ile Val 115 120 125
- Gln Val Pro Pro Lys Ile Ser Asn Ile Ser Ser Asp Val Thr Val Asn 130 135 140
- Glu Gly Ser Asn Val Thr Leu Val Cys Met Ala Asn Gly Arg Pro Glu 145 150 155 160
- Pro Val Ile Thr Trp Arg His Leu Thr Pro Thr Gly Arg Glu Phe Glu 165 170 175
- Gly Glu Glu Tyr Leu Glu Ile Leu Gly Ile Thr Arg Glu Gln Ser 180 185 190
- Gly Lys Tyr Glu Cys Lys Ala Ala Asn Glu Val Ser Ser Ala Asp Val 195 200 205
- Lys Gln Val Lys Val Thr Val Asn Tyr Pro Pro Thr Ile Thr Glu Ser 210 215 220
- Lys Ser Asn Glu Ala Thr Thr Gly Arg Gln Ala Ser Leu Lys Cys Glu 225 230 235 240
- Ala Ser Ala Val Pro Ala Pro Asp Phe Glu Trp Tyr Arg Asp Asp Thr 245 250 255
- Arg Ile Asn Ser Ala Asn Gly Leu Glu Ile Lys Ser Thr Glu Gly Gln 260 265 270
- Ser Ser Leu Thr Val Thr Asn Val Thr Glu Glu His Tyr Gly Asn Tyr 275 280 285

Thr Cys Val Ala Ala Asn Lys Leu Gly Val Thr Asn Ala Ser Leu Val 290 295 300

Leu Phe Arg Pro Gly Ser Val Arg Gly Ile Asn Gly Ser Ile Ser Leu 305 310 315 320

Ala Val Pro Leu Trp Leu Leu Ala Ala Ser Leu Leu Cys Leu Leu Ser 325 330 335

Lys Cys

<210> 59

<211> 345

<212> PRT

<213> Homo sapiens

<400> 59

Met Gly Val Cys Gly Tyr Leu Phe Leu Pro Trp Lys Cys Leu Val Val $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Val Ser Leu Arg Leu Leu Phe Leu Val Pro Thr Gly Val Pro Val Arg 20 25 30

Ser Gly Asp Ala Thr Phe Pro Lys Ala Met Asp Asn Val Thr Val Arg 35 40 45

Gln Gly Glu Ser Ala Thr Leu Arg Cys Thr Ile Asp Asp Arg Val Thr 50 55 60

Arg Val Ala Trp Leu Asn Arg Ser Thr Ile Leu Tyr Ala Gly Asn Asp 65 70 75 80

Lys Trp Ser Ile Asp Pro Arg Val Ile Ile Leu Val Asn Thr Pro Thr 85 90 95

Gln Tyr Ser Ile Met Ile Gln Asn Val Asp Val Tyr Asp Glu Gly Pro 100 105 110

Tyr Thr Cys Ser Val Gln Thr Asp Asn His Pro Lys Thr Ser Arg Val 115 120 125

His Leu Ile Val Gln Val Pro Pro Gln Ile Met Asn Ile Ser Ser Asp 130 135 140

Ile Thr Val Asn Glu Gly Ser Ser Val Thr Leu Leu Cys Leu Ala Ile 145 150 155

Gly Arg Pro Glu Pro Thr Val Thr Trp Arg His Leu Ser Val Lys Glu 170 175 165

Gly Gln Gly Phe Val Ser Glu Asp Glu Tyr Leu Glu Ile Ser Asp Ile 185 180

Lys Arg Asp Gln Ser Gly Glu Tyr Glu Cys Ser Ala Leu Asn Asp Val 200

Ala Ala Pro Asp Val Arg Lys Val Lys Ile Thr Val Asn Tyr Pro Pro 210 215

Tyr Ile Ser Lys Ala Lys Asn Thr Gly Val Ser Val Gly Gln Lys Gly 230

Ile Leu Ser Cys Glu Ala Ser Ala Val Pro Met Ala Glu Phe Gln Trp 245 250 255

Phe Lys Glu Glu Thr Arg Leu Ala Thr Gly Leu Asp Gly Met Arg Ile 260 265

Glu Asn Lys Gly Arg Met Ser Thr Leu Thr Phe Phe Asn Val Ser Glu 280 275

Lys Asp Tyr Gly Asn Tyr Thr Cys Val Ala Thr Asn Lys Leu Gly Asn 290

Thr Asn Ala Ser Ile Thr Leu Tyr Gly Pro Gly Ala Val Ile Asp Gly 310

Val Asn Ser Ala Ser Arg Ala Leu Ala Cys Leu Trp Leu Ser Gly Thr 330

Leu Leu Ala His Phe Phe Ile Lys Phe 340

<210> 60 <211> 514 <212> PRT

<213> Homo sapiens

<400> 60

Met Gly Leu Ala Gly Ala Ala Gly Arg Trp Trp Gly Leu Ala Leu Gly
1 5 10 15

Leu Thr Ala Phe Phe Leu Pro Gly Val His Ser Gln Val Val Gln Val 20 25 30

Asn Asp Ser Met Tyr Gly Phe Ile Gly Thr Asp Val Val Leu His Cys 35 40 45

Ser Phe Ala Asn Pro Leu Pro Ser Val Lys Ile Thr Gln Val Thr Trp 50 55 60

Gln Lys Ser Thr Asn Gly Ser Lys Gln Asn Val Ala Ile Tyr Asn Pro 65 70 75 80

Ser Met Gly Val Ser Val Leu Ala Pro Tyr Arg Glu Arg Val Glu Phe $85 \hspace{1cm} 90 \hspace{1cm} 95$

Leu Arg Pro Ser Phe Thr Asp Gly Thr Ile Arg Leu Ser Arg Leu Glu 100 105 110

Leu Glu Asp Glu Gly Val Tyr Ile Cys Glu Phe Ala Thr Phe Pro Thr 115 120 125

Gly Asn Arg Glu Ser Gln Leu Asn Leu Thr Val Met Ala Lys Pro Thr 130 140

Asn Trp Ile Glu Gly Thr Gln Ala Val Leu Arg Ala Lys Lys Gly Gln 145 150 155 160

Asp Asp Lys Val Leu Val Ala Thr Cys Thr Ser Ala Asn Gly Lys Pro 165 170 175

Pro Ser Val Val Ser Trp Glu Thr Arg Leu Lys Gly Glu Ala Glu Tyr 180 185 190

Gln Glu Ile Arg Asn Pro Asn Gly Thr Val Thr Val Ile Ser Arg Tyr 195 200 205

Arg Leu Val Pro Ser Arg Glu Ala His Gln Gln Ser Leu Ala Cys Ile

210 215 220

Val Asn Tyr His Met Asp Arg Phe Lys Glu Ser Leu Thr Leu Asn Val 225 230 235 240

Gln Tyr Glu Pro Glu Val Thr Ile Glu Gly Phe Asp Gly Asn Trp Tyr 245 250 255

Leu Gin Arg Met Asp Val Lys Leu Thr Cys Lys Ala Asp Ala Asn Pro 260 265 270

Pro Ala Thr Glu Tyr His Trp Thr Thr Leu Asn Gly Ser Leu Pro Lys 275 280 285

Gly Val Glu Ala Gln Asn Arg Thr Leu Phe Phe Lys Gly Pro Ile Asn 290 295300

Tyr Ser Leu Ala Gly Thr Tyr Ile Cys Glu Ala Thr Asn Pro Ile Gly 305 310 315 320

Thr Arg Ser Gly Gln Val Glu Val Asn Ile Thr Glu Phe Pro Tyr Thr 325 330 335

Pro Ser Pro Pro Glu His Gly Arg Ala Gly Pro Val Pro Thr Ala 340 345 350

Ile Ile Gly Gly Val Ala Gly Ser Ile Leu Leu Val Leu Ile Val Val 355 360 365

Gly Gly Ile Val Val Ala Leu Arg Arg Arg His Thr Phe Lys Gly 370 375 380

Asp Tyr Ser Thr Lys Lys His Val Tyr Gly Asn Gly Tyr Ser Lys Ala 385 390 395 400

Gly Ile Pro Gln His His Pro Pro Met Ala Gln Asn Leu Gln Tyr Pro 405 410 415

Asp Asp Ser Asp Asp Glu Lys Lys Ala Gly Pro Leu Gly Gly Ser Ser 420 425 430

Tyr Glu Glu Glu Glu Glu Glu Glu Gly Gly Gly Gly Gly Glu Arg 435 $440 \hspace{1.5cm} 445$

Lys Val Gly Gly Pro His Pro Lys Tyr Asp Glu Asp Ala Lys Arg Pro 450 455 460

Tyr Phe Thr Val Asp Glu Ala Glu Ala Arg Gln Asp Gly Tyr Gly Asp 465 470 475 480

Arg Thr Leu Gly Tyr Gln Tyr Asp Pro Glu Gln Leu Asp Leu Ala Glu 485 490

Asn Met Val Ser Gln Asn Asp Gly Ser Phe Ile Ser Lys Lys Glu Trp 505

Tyr Val

<210> 61

<211> 538 <212> PRT <213> Homo sapiens

<400> 61

Met Ala Arg Ala Ala Ala Leu Leu Pro Ser Arg Ser Pro Pro Thr Pro 10

Leu Leu Trp Pro Leu Leu Leu Leu Leu Leu Glu Thr Gly Ala Gln 20 . 25

Asp Val Arg Val Gln Val Leu Pro Glu Val Arg Gly Gln Leu Gly Gly . 45

Thr Val Glu Leu Pro Cys His Leu Leu Pro Pro Val Pro Gly Leu Tyr 55

Ile Ser Leu Val Thr Trp Gln Arg Pro Asp Ala Pro Ala Asn His Gln 70

Asn Val Ala Ala Phe His Pro Lys Met Gly Pro Ser Phe Pro Ser Pro 90

Lys Pro Gly Ser Glu Arg Leu Ser Phe Val Ser Ala Lys Gln Ser Thr 100 105 110 .

Gly Gln Asp Thr Glu Ala Glu Leu Gln Asp Ala Thr Leu Ala Leu His 115 120 125

- Gly Leu Thr Val Glu Asp Glu Gly Asn Tyr Thr Cys Glu Phe Ala Thr 130 135 140
- Phe Pro Lys Gly Ser Val Arg Gly Met Thr Trp Leu Arg Val Ile Ala 145 150 155 160
- Lys Pro Lys Asn Gln Ala Glu Ala Gln Lys Val Thr Phe Ser Gln Asp 165 170 175
- Pro Thr Thr Val Ala Leu Cys Ile Ser Lys Glu Gly Arg Pro Pro Ala 180 185 190
- Arg Ile Ser Trp Leu Ser Ser Leu Asp Trp Glu Ala Lys Glu Thr Gln 195 200 205
- Val Ser Gly Thr Leu Ala Gly Thr Val Thr Val Thr Ser Arg Phe Thr 210 215 220
- Leu Val Pro Ser Gly Arg Ala Asp Gly Val Thr Val Thr Cys Lys Val 225 230 235 240
- Glu His Glu Ser Phe Glu Glu Pro Ala Leu Ile Pro Val Thr Leu Ser 245 250 255
- Val Arg Tyr Pro Pro Glu Val Ser Ile Ser Gly Tyr Asp Asp Asn Trp 260 265 270
- Tyr Leu Gly Arg Thr Asp Ala Thr Leu Ser Cys Asp Val Arg Ser Asn 275 280 285
- Pro Glu Pro Thr Gly Tyr Asp Trp Ser Thr Thr Ser Gly Thr Phe Pro 290 295 300
- Thr Ser Ala Val Ala Gln Gly Ser Gln Leu Val Ile His Ala Val Asp 305 310 315 320
- Ser Leu Phe Asn Thr Thr Phe Val Cys Thr Val Thr Asn Ala Val Gly 325 330 335
- Met Gly Arg Ala Glu Gln Val Ile Phe Val Arg Glu Thr Pro Asn Thr

> 340 345 350

Ala Gly Ala Gly Ala Thr Gly Gly Ile Ile Gly Gly Ile Ile Ala Ala 360

Ile Ile Ala Thr Ala Val Ala Ala Thr Gly Ile Leu Ile Cys Arg Gln 375

Gln Arg Lys Glu Gln Thr Leu Gln Gly Ala Glu Glu Asp Glu Asp Leu 390

Glu Gly Pro Pro Ser Tyr Lys Pro Pro Thr Pro Lys Ala Lys Leu Glu 410

Ala Gln Glu Met Pro Ser Gln Leu Phe Thr Leu Gly Ala Ser Glu His 420 425

Ser Pro Leu Lys Thr Pro Tyr Phe Asp Ala Gly Ala Ser Cys Thr Glu

Gln Glu Met Pro Arg Tyr His Glu Leu Pro Thr Leu Glu Glu Arg Ser 455

Gly Pro Leu His Pro Gly Ala Thr Ser Leu Gly Ser Pro Ile Pro Val 470 475

Pro Pro Gly Pro Pro Ala Val Glu Asp Val Ser Leu Asp Leu Glu Asp 485 490

Glu Glu Glu Glu Glu Glu Glu Tyr Leu Asp Lys Ile Asn Pro Ile 505

Tyr Asp Ala Leu Ser Tyr Ser Ser Pro Ser Asp Ser Tyr Gln Gly Lys 520

Gly Phe Val Met Ser Arg Ala Met Tyr Val

<210> 62 <211> 479 <212> PRT <213> Homo sapiens

<400> 62

Met Ala Arg Ala Ala Leu Leu Pro Ser Arg Ser Pro Pro Thr Pro 1 5 10 15

- Leu Leu Trp Pro Leu Leu Leu Leu Leu Leu Glu Thr Gly Ala Gln 20 25 30
- Asp Val Arg Val Gln Val Leu Pro Glu Val Arg Gly Gln Leu Gly Gly 35 40 45
- Thr Val Glu Leu Pro Cys His Leu Leu Pro Pro Val Pro Gly Leu Tyr 50 55 60
- Ile Ser Leu Val Thr Trp Gln Arg Pro Asp Ala Pro Ala Asn His Gln 65 70 75 80
- Asn Val Ala Ala Phe His Pro Lys Met Gly Pro Ser Phe Pro Ser Pro 85 90 95
- Lys Pro Gly Ser Glu Arg Leu Ser Phe Val Ser Ala Lys Gln Ser Thr
 100 105 110
- Gly Gln Asp Thr Glu Ala Glu Leu Gln Asp Ala Thr Leu Ala Leu His 115 120 125
- Gly Leu Thr Val Glu Asp Glu Gly Asn Tyr Thr Cys Glu Phe Ala Thr 130 140
- Phe Pro Lys Gly Ser Val Arg Gly Met Thr Trp Leu Arg Val Ile Ala 145 150 155 160
- Lys Pro Lys Asn Gln Ala Glu Ala Gln Lys Val Thr Phe Ser Gln Asp 165 170 175
- Pro Thr Thr Val Ala Leu Cys Ile Ser Lys Glu Gly Arg Pro Pro Ala 180 185 190
- Arg Ile Ser Trp Leu Ser Ser Leu Asp Trp Glu Ala Lys Glu Thr Gln 195 200 205
- Val Ser Gly Thr Leu Ala Gly Thr Val Thr Val Thr Ser Arg Phe Thr 210 215 220

Leu Val Pro Ser Gly Arg Ala Asp Gly Val Thr Val Thr Cys Lys Val 225 230 235 240

Glu His Glu Ser Phe Glu Glu Pro Ala Leu Ile Pro Val Thr Leu Ser 245 250 255

Val Arg Tyr Pro Pro Glu Val Ser Ile Ser Gly Tyr Asp Asp Asn Trp 260 265 270

Tyr Leu Gly Arg Thr Asp Ala Thr Leu Ser Cys Asp Val Arg Ser Asn 275 280 285

Pro Glu Pro Thr Gly Tyr Asp Trp Ser Thr Thr Ser Gly Thr Phe Pro 290 295 300

Thr Ser Ala Val Ala Gln Gly Ser Gln Leu Val Ile His Ala Val Asp 305 310 315 320

Ser Leu Phe Asn Thr Thr Phe Val Cys Thr Val Thr Asn Ala Val Gly 325 330 335

Met Gly Arg Ala Glu Gln Val Ile Phe Val Arg Glu Thr Pro Arg Ala 340 345 350

Ser Pro Arg Asp Val Gly Pro Leu Val Trp Gly Ala Val Gly Gly Thr 355 360 365

Leu Leu Val Leu Leu Leu Leu Ala Gly Gly Ser Leu Ala Phe Ile Leu 370 375 380

Leu Arg Val Arg Arg Arg Lys Ser Pro Gly Gly Ala Gly Gly 385 390 395 400

Ala Ser Gly Asp Gly Gly Phe Tyr Asp Pro Lys Ala Gln Val Leu Gly 405 410 415

Asn Gly Asp Pro Val Phe Trp Thr Pro Val Val Pro Gly Pro Met Glu 420 425 430

Pro Asp Gly Lys Asp Glu Glu Glu Glu Glu Glu Glu Glu Lys Ala Glu 435 440 445

Lys Gly Leu Met Leu Pro Pro Pro Pro Ala Leu Glu Asp Asp Met Glu

450 455 460

Ser Gln Leu Asp Gly Ser Leu Ile Ser Arg Arg Ala Val Tyr Val 470

<210> 63 <211> 412 <212> PRT <213> Rattus norvegicus

<400> 63

Met Ala Pro Leu Ala Gly Ala Ser Arg Ser Arg Val Trp Ser Ala Gly 10

Leu Leu Arg Leu Leu Leu Ser Cys Phe Thr Leu Gln Lys Ala Gly 25

Gly Glu Ile Ala Val Gln Val Leu Ser Asn Ser Thr Gly Phe Leu Gly 40

Gly Ser Thr Val Leu His Cys Ser Leu Ala Ser Lys Asp Asn Val Thr 50 55 60

Ile Thr Gln Leu Thr Trp Met Lys Arg Asp Pro Asp Gly Ser His Pro

Ser Val Pro Val Phe His Pro Lys Lys Gly Pro Ser Ile Ser Asp Pro 85 90

Glu Arg Val Lys Phe Leu Val Ala Lys Val Tyr Glu Asp Leu Arg Asn 100 105

Ala Ser Leu Ala Ile Ser Asn Leu Arg Val Glu Asp Glu Gly Ile Tyr 115

Glu Cys Gln Ile Ala Thr Phe Pro Thr Gly Ser Lys Ser Ala Asn Val 130

Trp Leu Lys Val Phe Ala Arg Pro Lys Asn Thr Ala Glu Ala Leu Glu 150

Pro Ser Pro Thr Leu Met Pro Gln Asp Val Ala Lys Cys Ile Ser Ala 165 170

Asp Gly His Pro Pro Gly Arg Ile Thr Trp Ser Ser Asn Val Asn Gly 180 185 190

- Ser Tyr Arg Glu Met Lys Glu Thr Gly Ser Gln Pro Gly Thr Thr Thr 195 200 205
- Val Ile Ser Tyr Leu Ser Met Val Pro Ser Ser Gln Ala Asp Gly Thr 210 215 220
- Asn Ile Thr Cys Thr Val Glu His Glu Ser Phe Gln Glu Pro Asp Gln 225 235 240
- Gln Pro Leu Ile Leu Ser Leu Pro Tyr Pro Pro Glu Val Ser Ile Ser 245 250 255
- Gly Tyr Glu Gly Asn Trp Tyr Ile Gly Leu Thr Asn Val Asn Leu Thr 260 265 270
- Cys Glu Ala Arg Ser Lys Pro Pro Pro Thr Asn Tyr Ser Trp Ser Thr 275 280 285
- Ala Thr Gly Pro Leu Pro Asn Ser Thr His Phe Gln Glu Asn Gly Ser 290 295 300
- His Leu Leu Ile Ser Thr Val Asp Asp Leu Asn Asn Thr Ile Phe Val 305 310 315 320
- Cys Lys Ala Ile Asn Ala Leu Gly Ser Gly Gln Gly Gln Val Thr Ile 325 330 335
- Leu Val Lys Glu Ala Ser Glu Ile Leu Pro Pro Lys Thr Ser Leu Gly 340 345 350
- Thr Gly Tyr Ile Ile Ala Ile Val Phe Cys Val Leu Ile Ile Gly Val 355 360 365
- Val Ala Gly Ile Val Phe Trp Lys Tyr Arg Arg Gly Cys Gly Arg Gln 370 375 380
- Ser Arg Thr Leu Asp Arg Glu Asn Val Arg Tyr Ser Ala Ala Asn Gly 385 390 395

Val Ser Val Pro Asn Val Glu Thr Asn Asn Leu Arg 405 410