Denver, Colorado, USA House Price Prediction With Machine Learning in Python

Serdar Celebi

INTRODUCTION

- FOCUSING: Make a
 Regression model that shows a good estimation on prices.
- OBJECTIVE: What is shown in emlakjet dataset or what features are crucial in dataset?
- GOALS: Finding the fit model on the prices with the help of distinct columns.

Seaborn

METHODOLOGIES AND TOOLS

- To gather dataset, we made some web scraping from emlakjet by applying BeatifulSoup model.
- After that approach, we used libraries and their coding tools such as;
- -matplotlib, seaborn (to visualize and make users closer)
 - -Linear Regression tools such as OLS,Ridge, ElasticNet Regression, Lasso etc.

Gathering the data using BeautifulSoup

Introduction

Business need: Predicting movie scores on IMDB

Solution: In order to predict the Movie ratings we will develop a linear regression

model.

Web Scraping

Data Cleaning
& EDA

Basic Model

Model with all
numeric
features

Model with dummy
variables

Regularization

Get the data- Web scraping

Get the data- Web scraping

```
properties = soup.find_all("div", {"class": "property-card-primary-info"})
[12] len(properties)
            20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1 V 0 E 4 F 1 1 1
    properties[0]

√ [14] all info = []
            for i in properties:
                info = {}
                info['Title'] = i.find("div", {"class": "pdp-listing-type sale"}).text
                info['Price'] = i.find("a", {"class":"listing-price"}).text.strip()
                info['Beds'] = i.find("div", {"class": "property-beds"}).text.strip()
                info['Bath'] = i.find("div", {"class": "property-baths"}).text.strip()
                 info['SqFt'] = i.find("div", {"class": "property-sqft"}).text.strip()
                info['city_info'] = i.find("div", {"class": "property-city"}).text.split()[-1]
                all info.append(info)
/ [15] print(all_info)
            [['Title': 'FOR SALE', 'Price': '$595,000', 'Beds': '2 baths', 'Spft': '2,366 sq. ft', 'city_info': '88231'}, ['Title': 'FOR SALE', 'Price': '$499,950', 'Beds': '3 beds', '8ath': '1 bath', 'Spft': '2,1
[16] len(all_info)
            20
    all_properties = []
            for i in tqdm(range(1,34)):
              r = requests, get(f"https://mm.century2).com/real-estate/denver-co/ICCOOMBERINGS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCCOMBINITIAS/CCC
                       headers={'User-agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:61.0) Gecko/20100101 Firefox/61.0'})
                properties = soup.find_all("div", {"class": "property-card-primary-info"})
                for item in properties:
                   info = {}
                    info['Title'] = item.find("div", {"class": "pdp-listing-type sale"}).text
                    info['Price'] = item.find("a", {"class":"listing-price"}).text.strip()
                    info['Beds'] = item.find("div", {"class": "property-beds"}).text.strip()
                    info['Bath'] = item.find("div", {"class": "property-baths"}).text.strip()
                    info['SqFt'] = item.find("div", {"class": "property-sqft"}).text.strip()
                    info['city_info'] = item.find("div", {"class": "property-city"}).text.split()[-1]
                    all_properties.append(info)
            print(all_properties)
```

Data output

```
✓ [22] df
```

	Title	Price	Beds	Bath	SqFt	city_info	
0	FOR SALE	\$595,000	3 beds	2 baths	2,366 sq. ft	80231	
1	FOR SALE	\$360,000	2 beds	2 baths	936 sq. ft	80204	
2	FOR SALE	\$499,950	3 beds	1 bath	2,112 sq. ft	80233	
3	FOR SALE	\$350,000	3 beds	2 baths	1,144 sq. ft	80003	
4	FOR SALE	\$843,030	4 beds	4 baths	4,571 sq. ft	80016	
						•••	
655	FOR SALE	\$646,200	3 beds	3 baths	2,507 sq. ft	80027	
656	FOR SALE	\$620,000	2 beds	1 bath	1,084 sq. ft	80202	
657	FOR SALE	\$1,400,000	4 beds	2 baths	3,088 sq. ft	80206	
658	FOR SALE	\$775,000	6 beds	4 baths	4,968 sq. ft	80016	
659	FOR SALE	\$735,900	3 beds	3 baths	1,675 sq. ft	80204	
660 rd	660 rows × 6 columns						

Data Processing

```
/ [27] df['Bath'] = df['Bath'].apply(lambda x : x.replace('s',''))
/ [28] df['Bath'] = df['Bath'].apply(lambda x : x.replace('bath',''))
/ [29] df['Beds'] = df['Beds'].apply( lambda x : x.replace('beds',''))
       df['Beds']
   df['Beds'] = df['Beds'].apply( lambda x : x.replace('bed',''))
/ [31] df['Price'] = df['Price'].apply(lambda x : x.replace('$',''))
/ [32] df['Price'] = df['Price'].apply(lambda x : x.replace(',',''))
/ [33] df['SqFt'] = df['SqFt'].apply(lambda x : x.replace('sq. ft',''))
/ [34] df['SqFt'] = df['SqFt'].apply(lambda x : x.replace(',',''))

√ [35] # type conversion

       df[['Price','SqFt','Beds','Bath']]= df[['Price','SqFt','Beds','Bath']].astype(int)
 [36] df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 660 entries, 0 to 659
       Data columns (total 6 columns):
        # Column
                       Non-Null Count Dtype
        0 Title
                      660 non-null object
           Price 660 non-null
                                     int64
            Beds
                      660 non-null
                                      int64
                       660 non-null
                                      int64
            Bath
            SqFt
                       660 non-null
                                      int64
                                      object
        5 city info 660 non-null
       dtypes: int64(4), object(2)
       memory usage: 31.1+ KB
```

Data Processing

```
# Outlier Analysis
     fig, axs = plt.subplots(2,3, figsize = (10,5))
    plt1 = sns.boxplot(df['Price'], ax = axs[0,0])
    plt2 = sns.boxplot(df['Beds'], ax = axs[0,1])
    plt3 = sns.boxplot(df['Bath'], ax = axs[0,2])
    plt1 = sns.boxplot(df['SqFt'], ax = axs[1,0])
    plt.tight_layout();
[> /usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable
      FutureWarning
    /usr/local/lib/python3.7/dist-packages/seaborn/ decorators.py:43: FutureWarning: Pass the following variable
      FutureWarning
    /usr/local/lib/python3.7/dist-packages/seaborn/ decorators.py:43: FutureWarning: Pass the following variable
      FutureWarning
    /usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable
      FutureWarning
               1.0
                      1.5
                                  0.8
                                                                  0.8
                                  0.6
                                                                  0.6
                                  0.4
                                                                  0.4
                                  0.2
                                                                  0.2
                             5000
           2000
                 3000
                        4000
                                    0.0
                                                    0.6
                                                         0.8
                                                                    0.0
```

Exploratory Data Analysis

Regression Evaluation Metrics

Here are three common evaluation metrics for regression problems:

. Mean Absolute Error (MAE) is the mean of the absolute value of the errors:

$$\frac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i|$$

. Mean Squared Error (MSE) is the mean of the squared errors:

$$\frac{1}{n}\sum_{i=1}^n(y_i-\hat{y}_i)^2$$

. Root Mean Squared Error (RMSE) is the square root of the mean of the squared errors:

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$$

- . MAE is the easiest to understand, because it's the average error.
- MSE is more popular than MAE, because MSE "punishes" larger errors, which tends to be useful in the real
 world.
- . RMSE is even more popular than MSE, because RMSE is interpretable in the "y" units.

All of these are loss functions, because we want to minimize them.

Model Results

Linear Regression

R^2: 0.8975574856866375

Root Mean Squared Error: 115272.59421

CV R^2: 0.910746

Ridge

R^2: 0.8975574856866375

Root Mean Squared Error: 114728.35240476725

Lasso

R^2: 0.8935089334837565

Root Mean Squared Error: 113692.11382114442

Q & A