11. Lineární zobrazení

V celé přednášce pojednáváme o vektorových prostorech nad jedním a týmž polem P.

Definice. Buďte U, V vektorové prostory. Zobrazení $f: U \to V$ se nazývá *lineární*, přesněji *lineární nad polem P*, jestliže platí

(i)
$$f(a+b) = f(a) + f(b)$$
 (aditivita)

(ii)
$$f(ra) = rf(a)$$
 (homogenita)

pro každé dva vektory $a, b \in U$ a každý skalár $r \in P$. Jiný název pro lineární zobrazení je homomorfismus vektorových prostorů.

Příklad. (1) Identické zobrazení id : $U \to U$, id(a) = a, je lineární.

- (2) Nulové zobrazení $0: U \to U, 0(a) = 0$, je lineární.
- (3) Násobení skalárem $c \in P$: Zobrazení $f_c : U \to U$, $f_c(a) = ca$, je lineární. Nazývá se *homotetie*. Všimněte si, že (1) resp. (2) jsou speciální případy pro c = 1 resp. c = 0.
- (4) Zobrazení $\mathbf{C} \to \mathbf{C}$, $z \mapsto z^*$, kde z^* je číslo komplexně sdružené k číslu $z \in \mathbf{C}$, je lineární zobrazení vektorových prostorů nad \mathbf{R} . Toto zobrazení *není* lineární zobrazení nad \mathbf{C} . Ověřte.
- (5) Zobrazení re : $\mathbf{C} \to \mathbf{R}$, $z \mapsto \operatorname{re} z = \frac{1}{2}(z+z^*)$ (reálná část čísla z) je lineární zobrazení vektorových prostorů nad \mathbf{R} .
 - (6) Je-li $U \subseteq V$ podprostor, pak vložení $\iota_U : U \to V$, $\iota_U(u) = u$, je lineární zobrazení.

Cvičení. Ukažte, že zobrazení $f: \mathbf{R} \to \mathbf{R}$ je lineární nad \mathbf{R} právě když existuje skalár $c \in \mathbf{R}$ takový, že f(a) = ca.

Návod: Položte c = f(1).

Uveď me dva příklady významných geometrických zobrazení, která jsou lineární co se týče účinku na vektory.

1. *Otáčení*. Při otáčení Eukleidovské roviny kolem pevného bodu o úhel α se všechny vektory otáčejí o týž úhel α , nezávisle na jejich umístění. Vzniká zobrazení $\phi_{\alpha}: E^2 \to E^2$.

Otáčení převádí součet vektorů na součet vektorů a podobně c-násobek vektoru na c-násobek vektoru. Například aditivita se velmi názorně ověří poukazem na to, že otáčením kolem vrcholu

se rovnoběžník převádí v rovnoběžník a délka jeho stran a úhlopříček se přitom nemění.

Podobně otáčení kolem pevné osy v trojrozměrném Eukleidovském prostoru představuje lineární zobrazení vektorů $E^3 \rightarrow E^3$.

2. *Rovnoběžné promítání*. Promítání Eukleidovského prostoru E^3 do 2-rozměrného podprostoru (průmětny) R ve zvoleném směru L je zobrazení $E^3 \rightarrow R$. Směrem se rozumí libovolný 1-rozměrný podprostor L takový, že $E^3 = L \dotplus R$. Průmět do roviny R je sčítanec x_R v (jednoznačném) vyjádření $x = x_L + x_R$, kde $x_L \in L$ a $x_R \in R$.

Promítání $p:E^3\to R$ je lineární zobrazení. Aditivita se projevuje v tom, že průmětem rovnoběžníka je rovnoběžník.

Cvičení. Ukažte, že lineární zobrazení $U \to V$ je homomorfismem abelovských grup $(U, +, 0, -) \to (V, +, 0, -)$. Speciálně, f(0) = 0, f(-a) = -f(a).

Tvrzení. Buďte $f:U\to V, g:V\to W$ homomorfismy. Pak je $g\circ f:U\to W$ také homomorfismus.

Důkaz. Ověřme aditivitu zobrazení $g \circ f$. Pro libovolná $a, b \in U$ máme $(g \circ f)(a + b) = g(f(a+b)) = g(f(a) + f(b)) = g(f(a)) + g(f(b)) = (g \circ f)(a) + (g \circ f)(b)$. Homogenita podobně.

Jádro a obraz

Definice. Buď $f: U \rightarrow V$ homomorfismus. Označme

$$Ker f = \{ u \in U \mid f(u) = 0 \},\$$

$$\operatorname{Im} f = fU = \{ f(u) \mid u \in U \}.$$

Ker f se nazývá $j\'{a}dro$ a Im f se nazývá obraz homomorfismu f .

Tvrzení. Buď $f: U \rightarrow V$ homomorfismus. Pak

- (1) Ker f je podprostor v U.
- (2) $\operatorname{Im} f$ je podprostor ve V.

Důkaz. (1) (i) $0 \in \text{Ker } f$, protože f(0) = 0. (ii) Nechť $a, b \in \text{Ker } f$. Pak $a + b \in \text{Ker } f$, protože f(a + b) = f(a) + f(b) = 0 + 0 = 0. (iii) Nechť $a \in \text{Ker } f$, $r \in P$. Pak $ra \in \text{Ker } f$ (cvičení).

(2) Cvičení.

Cvičení. (1) Pro homomorfismus re z příkladu (5) platí:

$$Im re = \mathbf{R}, \qquad Ker re = \mathbf{R}i = \{ri \mid r \in \mathbf{R}\}.$$

- (2) Při rovnoběžném promítání $p:E^3\to E^2$ je podprostor Ker f totožný se směrem promítání, kdežto Im $f=E^2$.
 - (3) Při otáčení $\phi_{\alpha}: E^2 \to E^2$ o úhel $\alpha \neq 2k\pi$ je Im $\phi_{\alpha} = E^2$, zatímco Ker ϕ_{α} je nulový podprostor.

Tvrzení. Buď $f: U \rightarrow V$ homomorfismus. Pak

- (1) f je injektivní právě tehdy, když Ker f = 0.
- (2) f je surjektivní právě tehdy, když $\operatorname{Im} f = V$.

Důkaz. (1) Buď f injektivní, buď u libovolný prvek z Ker f. Pak f(u) = 0, ale současně f(0) = 0, načež z injektivity u = 0.

Naopak, nechť Ker f=0 a nechť f(a)=f(b). Pak f(a-b)=f(a)-f(b)=0, a tedy $a-b\in {\rm Ker}\ f$, načež a-b=0, čili a=b.

(2) Zřejmé.

Jsou-li oba prostory U, V konečněrozměrné, pak se číslo dim Ker f nazývá defekt a číslo dim Im f hodnost lineárního zobrazení. Platí o nich následující tvrzení.

Tvrzení. Buď $f:U\to V$ homomorfismus mezi konečněrozměrnými prostory U,V. Pak

$$\dim \operatorname{Ker} f + \dim \operatorname{Im} f = \dim U.$$

Důkaz. Označme dim U=n, dim Ker f=m a dim Im f=p. Zvolme bázi u_1,\ldots,u_m v Ker f, doplňme ji do báze u_{m+1},\ldots,u_n v U. Ověřme, že vektory $f(u_{m+1}),\ldots,f(u_n)$ tvoří bázi v Im f.

Zaprvé, $f(u_{m+1}), \ldots, f(u_n)$ generují Im f. Víme totiž, že u_1, \ldots, u_n generují U, načež $f(u_1), \ldots, f(u_n)$ generují fU = Im f (ověřte podrobně), ale $f(u_1) = 0, \ldots, f(u_m) = 0$, takže je můžeme z generující množiny bez následků vyškrtnout.

Zadruhé, $f(u_{m+1}), \ldots, f(u_n)$ jsou lineárně nazávislé. Vskutku, uvažujme o nulové lineární kombinaci $x_{m+1} f(u_{m+1}) + \cdots + x_n f(u_n) = 0$, čili, $f(x_{m+1} u_{m+1} + \cdots + x_n u_n) = 0$, tj.

$$x_{m+1}u_{m+1} + \cdots + x_nu_n \in \text{Ker } f$$
,

načež

$$x_{m+1}u_{m+1} + \cdots + x_nu_n = x_1u_1 + \cdots + x_mu_m$$

pro vhodné koeficienty x_1, \ldots, x_m . Ale zúčastněné vektory $u_1, \ldots, u_m, u_{m+1}, \ldots, u_n$ jsou nezávislé, a proto jsou všechny koeficienty nulové, zejména x_{m+1}, \ldots, x_n jsou nuly, což se mělo dokázat.

Našli jsme bázi v Im f čítající n-m vektorů, takže dim Im $f=n-m=\dim U-\dim \operatorname{Ker} f$. Důkaz je hotov.

Izomorfismy

Podobně jako u jiných algebraických struktur, invertibilní homomorfismy se nazývají izomorfismy.

Definice. *Izomorfismus* vektorových prostorů je bijektivní lineární zobrazení.

Tvrzení. Buď $f: U \rightarrow V$ izomorfismus. Pak je

$$f^{-1}: V \to U$$

též izomorfismus.

Důkaz. Zobrazení f^{-1} je bijektivní. Dokažme, že je lineární. Ověřme aditivitu, tj. rovnost $f^{-1}(a+b) = f^{-1}(a) + f^{-1}(b)$. Počítejme:

$$f(f^{-1}(a+b)) = a+b = f(f^{-1}(a)) + f(f^{-1}(b)) = f(f^{-1}(a) + f^{-1}(b)).$$

Požadovaná rovnost plyne z injektivnosti zobrazení f. Homogenita podobně.

Definice. Vektorové prostory U, V, mezi nimiž existuje izomorfismus, se nazývají *izomorfní*. Zapisujeme $U \cong V$.

Tvrzení. (1) Reflexivita: $U \cong U$.

- (2) Symetrie: je- $li U \cong V$, $pak V \cong U$.
- (3) Tranzitivita: je- $li\ U \cong V$, $V \cong W$, $pak\ V \cong W$.

Důkaz. (1) id : $U \to U$ je izomorfismus. (2) Viz předchozí tvrzení. (3) Kompozice bijekcí je bijekce, kompozice homomorfismů je homomorfismus.

Cvičení. (1) Homotetie $f_c: a \mapsto ca$ z příkladu (3) je izomorfismus právě tehdy, když $c \neq 0$.

- (2) Homomorfismus $z \mapsto z^*$ z příkladu (4) je izomorfismus $\mathbf{C} \cong \mathbf{C}$.
- (3) Homomorfismus re z příkladu (5) není izomorfismus (není injektivní).
- (4) Otáčení je vždy izomorfismus. Rovnoběžné promítání $E^3 \to E^2$ není nikdy izomorfismus.

Tvrzení. Buďte $U \cong V$ dva izomorfní konečněrozměrné vektorové prostory. Pak dim $U = \dim V$.

Důkaz. Buď $f:U\to V$ izomorfismus. Pak dim Ker f=0, dim Im $f=\dim V$, a proto dim $U=\dim \operatorname{Ker} f+\dim \operatorname{Im} f=\dim V$.

Cvičení. Buď $f: U \to V$ izomorfismus konečněrozměrných prostorů. Je-li $u_1, \ldots, u_n \in U$ báze prostoru U, pak $f(u_1), \ldots, f(u_n) \in V$ je báze prostoru V. Dokažte. Totéž pro množiny generátorů resp. množiny lineárně nezávislých vektorů.

Izomorfni prostory se z hlediska lineárni algebry prakticky neliší a není mezi nimi žádný rozdíl odhalitelný prostředky lineární algebry.

V konečněrozměrném případě je situace obzvlášť příjemná: každý prostor U je izomorfní s některým prostorem P^n .

Tvrzení. (1) Libovolný vektorový prostor U nad polem P je izomorfní s prostorem $P^{\dim U}$.

(2) Konečněrozměrné vektorové prostory U, V jsou izomorfní právě tehdy, když mají stejnou dimenzi.

Důkaz. (1) Nechť dim U = n. Zvolme libovolně bázi e_1, \ldots, e_n v U. Pak má libovolný vektor $u \in U$ souřadnice x_1, \ldots, x_n , jednoznačně určené vztahem $u = x_1e_1 + \cdots + x_ne_n$. Zaveď me zobrazení $U \to P^n$ předpisem $u \mapsto (x_1, \ldots, x_n)$. O něm je známo, že je lineární, protože při sčítání vektorů se jejich souřadnice sčítají a při násobení skalárem se násobí týmž skalárem.

(2) Implikace " \Rightarrow " již byla dokázána. Implikace " \Leftarrow ": Je-li dim $U=\dim V$, pak $U\cong P^{\dim U}=P^{\dim V}\cong V$.

Vidíme, že počítání s vektory v souřadnicích je vlastně výpočtem v izomorfním prostoru $U \cong P^n$. Na druhé straně, tento izomorfismus závisí na volbě souřadnic, a to je důvod, proč není vhodné prostory U a P^n ztotožňovat.

Každé lineární zobrazení je jednoznačně určeno obrazy vektorů libovolné báze a tyto obrazy lze volit libovolně:

Tvrzení. Zvolme bázi u_1, \ldots, u_n v konečněrozměrném prostoru U. Pak ke každé n-tici vektorů $v_1, \ldots, v_n \in V$ existuje právě jedno lineární zobrazení $f: U \to V$ takové, že $f(u_1) = v_1, \ldots, f(u_n) = v_n$.

Důkaz. Zvolme n-tici vektorů $v_1, \ldots, v_n \in V$. Obecný prvek $u \in U$ je tvaru $x_1u_1 + \cdots + x_nu_n$. Položme $f(u) = x_1v_1 + \cdots + x_nv_n$. Ověřte samostatně, že (a) zobrazení $f: U \to V$ je lineární a $f(u_i) = v_i$; (b) je-li $f': U \to V$ lineární zobrazení takové, že $f(u_i) = v_i$, pak f' = f.

Přitom lze snadno rozeznat injektivní a surjektivní homomorfismy:

Tvrzení. Buď $f: U \rightarrow V$ zobrazení z předchozího tvrzení

- (1) f je injektivní právě tehdy, když jsou vektory $v_1, \ldots, v_n \in V$ nezávislé;
- (2) f je surjektivní právě tehdy, když vektory v_1, \ldots, v_n generují V.

Důkaz. Cvičení.

Důsledek. Zobrazení f z předchozího tvrzení je izomorfismus právě tehdy, když v_1, \ldots, v_n je báze.

Přímý součet vektorových prostorů

Již dříve jsme zavedli přímé součty podprostorů. Nyní uvedeme konstrukci přímého součtu libovolných prostorů, pokud mají společné pole skalárů.

Definice. Buď te U_1, \ldots, U_n libovolné vektorové prostory nad polem P. Na kartézském součinu $U_1 \times \cdots \times U_n$ zaveď me strukturu vektorového prostoru předpisem

$$(u_1, \ldots, u_n) + (v_1, \ldots, v_n) = (u_1 + v_1, \ldots, u_n + v_n),$$

 $r(u_1, \ldots, u_n) = (ru_1, \ldots, ru_n)$

pro libovolné prvky $(u_1, \ldots, u_n), (v_1, \ldots, v_n) \in U \times V$.

Vektorový prostor $U_1 \times \cdots \times U_n$ s touto algebraickou strukturou se značí $U_1 \oplus \cdots \oplus U_n$ a nazývá se *přímý součet* vektorových prostorů U_1, \ldots, U_n .

Cvičení. Ověřte, že $U_1\oplus\cdots\oplus U_n$ skutečně splňuje všechny axiomy vektorového prostoru.

Tvrzení. Jsou-li U_1, \ldots, U_n konečněrozměrné vektorové prostory, pak platí

$$\dim(U_1 \oplus \cdots \oplus U_n) = \dim U_1 + \cdots + \dim U_n.$$

Důkaz. Je-li $e_1^i, \ldots, e_{m_i}^i$ báze prostoru U_i , pak je

$$(e_1^1, 0, \dots, 0), \dots, (e_{m_1}^1, 0, \dots, 0), \dots, (e_1^n, 0, \dots, 0), \dots, (e_{m_n}^n, 0, \dots, 0)$$

báze prostoru $U_1 \oplus \cdots \oplus U_n$ (cvičení).

Jsou-li U_1, \ldots, U_n podprostory nějakého vektorového prostoru U, pak mohou existovat dva různé přímé součty, $U_1 \dotplus \cdots \dotplus U_n$ a $U_1 \oplus \cdots \oplus U_n$. První z nich je podprostor v U, kdežto druhý není. Nicméně, oba přímé součty jsou izomorfní. Plyne to z následujícího tvrzení.

Tvrzení. Buďte U_1, \ldots, U_n podprostory konečněrozměrného vektorového prostoru U. Pak jsou následující výroky ekvivalentní:

- (1) součet $U_1 + \cdots + U_n$ je přímý;
- (2) zobrazení $p: U_1 \oplus \cdots \oplus U_n \to U_1 + \cdots + U_n$,

$$(u_1,\ldots,u_n)\mapsto u_1+\cdots+u_n,$$

je izomorfismus prostoru $U_1 \oplus \cdots \oplus U_n$ *na prostor* $U_1 + \cdots + U_n$.

(3) dim $U_1 + \cdots + \dim U_n = \dim(U_1 + \cdots + U_n)$.

Důkaz.

- $(1) \Rightarrow (2)$. Zobrazení p je lineární (cvičení). Dále, ke každému $u \in U_1 + \cdots + U_n$ existuje rozklad $u = u_1 + \cdots + u_n$, kde $u_i \in U_i$ pro každé $i = 1, \ldots, n$. Je-li součet $U_1 + \cdots + U_n$ přímý, potom je rozklad $u = u_1 + \cdots + u_n$ jediný a $u \mapsto (u_1, \ldots, u_n)$ je zobrazení $U_1 + \cdots + U_n \to U_1 \oplus \cdots \oplus U_n$, inverzní k p. Potom je p bijektivní, a tedy izomorfismus.
- $(2) \Rightarrow (3)$. Je-li $U_1 + \cdots + U_n \cong U_1 \oplus \cdots \oplus U_n$, pak $\dim(U_1 + \cdots + U_n) = \dim(U_1 \oplus \cdots \oplus U_n) = \dim U_1 + \cdots + \dim U_n$.
- $(3) \Rightarrow (2)$. Nechť $\dim U_1 + \cdots + \dim U_n = \dim(U_1 + \cdots + U_n)$. Homomorfismus p je surjektivní (cvičení). Máme pak $\dim \operatorname{Ker} p = \dim(U_1 \oplus \cdots \oplus U_n) \dim \operatorname{Im} p = \dim U_1 + \cdots + \dim U_n \dim(U_1 + \cdots + U_n) = 0$. Tudíž, p je injektivní, a proto izomorfismus, načež je náš součet přímý podle předchozího tvrzení.
 - $(2) \Rightarrow (1)$. Cvičení.

Cvičení. Dokažte, že zobrazení p z předchozího tvrzení je opravdu lineární.

Cvičení. Pro každé $i=1,\ldots,n$ máme zobrazení $\pi_i:U_1\oplus\cdots\oplus U_n\to U_i$, zadané předpisem $(u_1,\ldots,u_n)\mapsto u_i$. Nazývá se i-tá projekce.

Pro každé $i=1,\ldots,n$ máme též zobrazení $\iota_i:U_i\to U_1\oplus\cdots\oplus U_n$, zadané předpisem $u\mapsto(0,\ldots,0,u,0,\ldots,0)$, kde u stojí na i-tém místě. Nazývá se vložení i-tého sčítance.

Ukažte, že projekce π_i a vložení ι_i jsou lineární zobrazení. Spočtěte $\pi_i \circ \iota_i$.