Lista 01 - Linguagens Formais e Autômatos

Caio Nery, Gustavo de Oliveira, Linsmar Vital, Luca Argolo e Thiago Vieira

Questão 01 (Prova por contradição):

Sabendo que R é uma relação sobre o conjunto A, tal relação será de equivalência se ela é

- Reflexiva: se para todo $x \in A$: $\langle x, x \rangle \in R(xRx)$
- Simétrica: se para quaisquer elementos $x,y \in A: \langle x,y \rangle \in R \Rightarrow \langle y,x \rangle \in R \ (xRy \ então \ yRx)$
- Transitiva: se para quaisquer elementos $x,y,z \in A: \langle x,y \rangle, \langle y,z \rangle \in R \Rightarrow \langle x,z \rangle \in R \ (xRy \ eyRx \ então \ x = y)$

Então, seja A um conjunto e $R\subseteq AxA$, uma relação de equivalência, e $[x]\neq [y]$. Por ser uma relação de equivalência, se $\forall x,y\in A,\ < x,y> \ \to \ < y,x>$ (por simetria). Não obstante, se $\forall x,y,z\in A,\ < x,y> \ \land \ < y,z> \ \to \ < x,z>$ (por transitividade). Porém, $[x]\neq [y]$ é o mesmo que dizer $< x,y> \ \land \ < y,z> \ \to \ < x,z>$ $não\ existe\ para\ algum\ x,y,z$, o que contradiz a definição de equivalência.

Questão 02

Temos que mostrar que para quaisquer w_1 , w_2 e w_3 .

$$(w_1 . w_2) . w_3 = w_1 . (w_2 . w_3)$$

Sendo uma concatenação de palavras e sabendo que uma palavra é uma sequência finita de elementos e que quando concatenamos duas palavras, o tamanho da palavra resultante é a soma do tamanho das duas palavras iniciais, então tomamos:

$$w_1 = a_1 a_2 \dots a_{n_1}$$
,
 $w_2 = b_1 b_2 \dots b_{n_2}$,
 $w_3 = c_1 c_2 \dots c_{n_3}$

$$w_1 \cdot w_2 = d_1 \dots d_{n_1+n_2} \qquad \text{ t.q} \qquad d_i = \{ \ a_i \ , \ se \ i \ \leq \ n_1 \\ b_{n_1-i} \ , \ se \ i \ > \ n_1$$

$$w_1 \cdot w_2 = a_1 \dots a_n b_1 \dots b_{n_2}$$

$$(w_1 ... w_2) ... w_3 = l_1 ... l_{n_1+n_2+n_3} = a_1 ... a_{n_1} b_1 ... b_{n_2} c_1 ... c_{n_3}$$

t.q $l_i = \{ a_1 , \text{ se i } \leq n_1 \}$

$$b_{n_1-i} \text{ , se } n_1 < \mathbf{i} \leq n_2 \\ c_{n_2-i} \text{ , se } 1 > n_2$$

$$w_2$$
 , $w_3=t_1$... $t_{n_2+n_3}$... t.q ... $t_i=\{b_i$, se i $\leq n_2$
$$c_{n_2-i} \text{ , se 1} > n_2$$

$$\begin{split} w_1 \,.\, (w_2 \,:\: w_3 \,) &= f_1 \,... f_{n_1 + n_2 + n_3} = \, a_1 \,... \, a_{n_1} b_1 \,... \, b_{n_2} c_1 \,... \, c_{n_3} \\ \text{t.q } l_i &= \{ \, a_1 \,,\: \text{se i} \, \leq \, n_1 \\ & b_{n_1 - i} \,,\: \text{se } n_1 < \, \text{i} \, \leq \, n_2 \\ & c_{n_2 - i} \,,\: \text{se } 1 \, > \, n_2 \end{split}$$

Como o resultado de ambas concatenações, resultam na mesma palavra, logo mostramos que a associatividade se aplica.

Questão 3

Sabendo que uma linguagem sobre Σ é um conjunto qualquer sobre esse alfabeto e sejam w_i , tal que $i \in N$, palavras sobre o mesmo alfabeto e pertencentes a linguagem L.

Considerando que $\lambda \in L$, logo λ que é um elemento nulo, vai ser um elemento de L $L = \{\lambda, w_1, w_2, ...\}$.

Como o fecho de kleene de L é a linguagem $L^* = \bigcup_{i \in N} L^i$, ou seja, a união de todas as potências de L , temos que

$$\begin{split} L^* &= L^0 \ \cup \ L^1 \ \cup \ L^2 \ \dots \\ L^* &= \{\lambda\} \cup \{\lambda, \ w_1, \ w_2, \dots\} \cup \{\lambda, \ w_1, \ w_2, \dots\} \cup \dots \\ L^* &= \{\lambda, \ w_1, \ w_2, \dots\} \end{split}$$

Sabendo que a potência de L, $L^0 = \{\lambda\}$ e que pela propriedade de elemento nulo, a concatenação de λ só resultará em λ , se λ . $\lambda = \lambda$. Logo ao analisarmos L^+ , encontramos que

$$L^{+} = L . L^{*}$$

 $L^{+} = \{\lambda, w_{1}, w_{2}, ...\} . (L^{0} \cup L^{1} \cup L^{2} ...)$

$$L^{+} = \{\lambda, w_{1}, w_{2}, ...\} . \{\lambda\} \cup \{\lambda, w_{1}, w_{2}, ...\} \cup \{\lambda, w_{1}, w_{2}, ...\} \cup ...$$

$$L^{+} = \{\lambda, w_{1}, w_{2}, ...\} . \{\lambda, w_{1}, w_{2}, ...\}$$

$$L^{+} = \{\lambda, w_{1}, w_{2}, ...\}$$

Desta forma, um dos elementos de L^+ será λ , pois ocorrerá a concatenação do λ existente em L e do λ existente em L^* . E como L^* , por definição, é a união de todas as potências de L tendendo ao infinito, podemos afirmar que os elementos resultantes de L. L^* já existem em L^* , dessa forma concluimos que $L^+ = L^*$.

Entretanto se $\lambda \in L$, a linguagem L será um conjunto de elementos diferentes de λ .

$$L = \{w_1, w_2, ...\}$$

Dessa forma, temos que:

$$L^+ = L . L^*$$

$$L^{+} = L . (L^{0} \cup L^{1} \cup L^{2} ...)$$

$$L^{+} = \{w_{1}, w_{2}, ...\} . \{\lambda\} \cup \{w_{1}, w_{2}, ...\} \cup \{w_{1}w_{1}, w_{1}w_{2}, ...\} \cup ...$$

Sabendo que λ é um elemento neutro, então para qualquer palavra w_i , temos que $w.\lambda = \lambda.w = w$, logo

$$L^{+} = \{w_{1}, w_{2}, ...\} . \{\lambda, w_{1}, w_{2}, ..., w_{1}w_{1}, w_{1}w_{2}, ...\}$$

$$L^{+} = \{w_{1}, w_{1}w_{1}, ..., w_{1}w_{1}w_{1}, w_{1}w_{1}w_{2}, ..., w_{2}, w_{2}w_{1}, w_{2}w_{2}, ..., w_{2}w_{1}w_{1}, w_{2}w_{1}w_{1}, w_{2}w_{1}w_{2}, ...\}$$

Dessa forma, podemos constatar que λ não pertence a L^+ e sabendo que

$$L^* = L^0 \cup L^1 \cup L^2 \cup ...$$

$$L^* = \{\lambda\} \cup \{w_1, w_2, ...\} \cup \{w_1w_1, w_1w_2, ...\} \cup ...$$

$$L^* = \{\lambda, w_1, w_2, ..., w_1w_1, w_1w_2, ..., w_1w_1w_1, w_1w_1w_2, ...\}$$

Podemos concluir que,

$$L^* \setminus \{\lambda\} = \{w_1, w_2, \dots, w_1w_1, w_1w_2, \dots, w_1w_1w_1, w_1w_1w_2, \dots\}$$

Que são os mesmos elementos presentes em L^+ . De outra forma, podemos dizer que $L^* = L^+ \cup \{\lambda\}$

E como o nosso L^* não possui λ como elemento, logo

$$L^* \setminus {\lambda} = L^+$$

Assim, se $\lambda \in L$, $L^+ = L^*$ e que se $\lambda \not\in L$, então $L^+ = L^* \setminus {\lambda}$.

Questão 4

L1: Seja uma linguagem $L = \{a,b\}$ sobre o alfabeto $\Sigma = \{a,b\}$, iremos adaptar então o fecho de Kleene, que é a união de todas a potências de uma linguagem, para que apenas unamos as potências de L onde $L^{3\times i}$ da seguinte forma

$$w = \bigcup_{i \in N} L^{3 \times i}$$

Prova:

Quando $L = \{a, b\}$:

Pela definição da operação de potenciação, a qual define como potência de uma linguagem L a linguagem

$$L^{i} = \{ \lambda, se i = 0$$

 $L^{i-1}.L, se i > 0$

E definimos nossa linguagem L contendo apenas palavras com cardinalidade um, podemos dizer que o expoente é igual a cardinalidade de todas as palavras no conjunto. i.e.:

$$L = \{a, b\},$$

$$L^{2} = \{aa, ab, ba, bb\},$$

$$L^{3} = \{aaa, aab, aba, abb, baa, bab, bba, bbb\}$$

Provando que todas as palavras contidas no fecho w tem cardinalidade mod 3 = 0.

Para provar que todas as palavras de cardinalidade três estão contidas no fecho:

(Por contradição)

Seja $p1 \in \Sigma^*$ de cardinalidade mod 3 = 0, $e n\~ao existente em w$. Pela maneira que nós definimos L, é preciso que uma palavra de cardinalidade três esteja em uma potência de três de L. i.e:

 $p1 \ \epsilon L^{mod \ 3=0}$. Porém, o enunciado da prova nos diz que uma palavra assim não pode existir, logo, um absurdo.

L2: Para podermos descrever a linguagem L_2 usando operações sobre linguagens, iremos considerar que existem duas linguagens $A_1,A_2\subseteq \Sigma^*$, onde $A_1=\{aaa\}$ e $A_2=\{bbb\}$. Além disso, sabendo que o $w^{'}$ pode ser qualquer palavra no conjunto de palavras do alfabeto $w^{'}\subseteq \Sigma^*$, sabendo que $\Sigma=\{a,b\}$, podemos afirmar então que $w^{'}$ pode ser o fecho de

Kleene de uma linguagem $A_3 = \{a,b\}$, já que o fecho é a união de todas as potências da linguagem A_3 , temos que

$$\begin{split} A_3^* &= \bigcup_{i \in N} A_3^i \\ A_3^* &= A_3^0 \cup A_3^1 \cup A_3^2 \cup \dots \\ A_3^* &= \{\lambda\} \cup \{a,b\} \cup \{aa,ab,ba,bb\} \cup \dots \end{split}$$

Dessa forma, podemos concluir que podemos usar concatenação e o fecho de Kleene para descrever L_2 da seguinte forma

$$w = A_1 . A_3^* . A_2$$

 $w = \{aaa\}. w' . \{bbb\}$

L3: Para conseguirmos descrever a linguagem L_3 usando operações sobre linguagens, precisamos delimitar que as palavras presentes na linguagem não possuem a subpalavra "bba" e controlar os casos que "a" aparece, de forma que ele só apareça em quantidades pares.

Podemos então considerar que a linguagem L_3 é formada pela potência de uma linguagem que possui 2 elementos que serão a base para descrever L_3 , $L=\{aa,\ aba\}$.

Dessa forma, sabendo que sendo $L\subseteq \Sigma^*$ uma linguagem sobre o alfabeto Σ e $i\in N$, podemos definir a potência da seguinte forma:

$$L^{i} = \{ \lambda, se \ i = 0 \}$$

 $L^{i-1}.L, se \ i > 0$

Logo, se aplicarmos algumas potências:

$$L^{0} = \{\lambda\}$$

$$L^{1} = \{aa, aba\}$$

$$L^{2} = \{aaaa, aaaba, abaaa, abaaba\}$$

Portanto, se usarmos o Fecho de Kleene de L, ficamos com a linguagem $L^* = \bigcup_{i \in N} L^i$, que é a união de todas as potências de L. Podemos perceber que não existem palavras com uma quantidade par de "a" e nem palavras com a subpalavra "bba".

$$L^* = L^0 \cup L^1 \cup L^2 \cup ...$$

 $L^* = {\lambda} \cup {aa, aba} \cup {aaaa, aaaba, abaaa, abaaba} \cup ...$
 $L^* = {\lambda, aa, aba, aaaa, aaaba, abaaa, abaaba, ...}$

Desta maneira, podemos descrever L3 como uma potência da linguagem $L = \{aa, \ aba\}$.