Seri bahan kuliah Algeo #13

Vektor di Ruang Euclidean (bagian 3)

Bahan kuliah IF2123 Aljabar Linier dan Geometri

Oleh: Rinaldi Munir

Program Studi Teknik Informatika STEI-ITB

Perkalian Silang (cross product)

• Jika $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$ dan $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ adalah dua vektor di R³ maka perkalian silang (*cross product*) antara \mathbf{u} dan \mathbf{v} adalah

$$\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1)$$

$$\mathbf{u} \times \mathbf{v} = (\begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix})$$

Tips:
$$\begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$$
 $\begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$ $\begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$ $\begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$

• Perkalian silang menghasilkan vektor, perkalian titik menghasilkan skalar

Contoh 1: Misalkan $\mathbf{u} = (0, 1, 7) \text{ dan } \mathbf{v} = (1, 4, 5), \text{ maka}$

$$\begin{bmatrix} 0 & 1 & 7 \\ 1 & 4 & 5 \end{bmatrix}$$

$$\mathbf{u} \times \mathbf{v} = (\begin{vmatrix} 1 & 7 \\ 4 & 5 \end{vmatrix}, - \begin{vmatrix} 0 & 7 \\ 1 & 5 \end{vmatrix}, \begin{vmatrix} 0 & 1 \\ 1 & 4 \end{vmatrix})$$
$$= (5 - 28, -(0 - 7), 0 - 1)$$
$$= (-23, 7, -1)$$

• Jika $\mathbf{u} \times \mathbf{v} = \mathbf{w}$ maka $\mathbf{w} \perp \mathbf{u}$ dan $\mathbf{w} \perp \mathbf{v}$

• Pada Contoh 1 sebelumnya, $\mathbf{u} = (0, 1, 7)$ dan $\mathbf{v} = (1, 4, 5)$, dan sudah dihitung:

$$(0, 1, 7) \times (1, 4, 5) = (-23, 7, -1)$$

u v w

$$\mathbf{w} \cdot \mathbf{u} = (-23, 7, -1) \cdot (0, 1, 7) = (-23)(0) + (7)(1) + (-1)(7)$$

= 0 + 7 - 7 = 0 $\rightarrow \mathbf{w} \perp \mathbf{u}$

$$\mathbf{w} \cdot \mathbf{v} = (-23, 7, -1) \cdot (1, 4, 5) = (-23)(1) + (7)(4) + (-1)(5)$$

= -23 + 28 - 5 = 0 $\rightarrow \mathbf{w} \perp \mathbf{v}$

Sifat-sifat Perkalian Silang

THEOREM 3.5.2 Properties of Cross Product

If u, v, and w are any vectors in 3-space and k is any scalar, then:

- (a) $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$
- (b) $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$
- (c) $(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$
- (d) $k(\mathbf{u} \times \mathbf{v}) = (k\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k\mathbf{v})$
- (e) $\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$
- (f) $\mathbf{u} \times \mathbf{u} = 0$

Perkalian Silang dan Perkalian Titik

THEOREM 3.5.1 Relationships Involving Cross Product and Dot Product

If u, v, and w are vectors in 3-space, then

(a)
$$\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$$
 ($\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{u})

(b)
$$\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0$$
 ($\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{v})

(c)
$$\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - (\mathbf{u} \cdot \mathbf{v})^2$$
 (Lagrange's identity)

(d)
$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$$
 (relationship between cross and dot products)

(e)
$$(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{v} \cdot \mathbf{w})\mathbf{u}$$
 (relationship between cross and dot products)

• Menurut kesamaan Lagrange (Teorema 3.5.1(c)):

$$\|\mathbf{u} \times \mathbf{v}\|^{2} = \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} - (\mathbf{u} \cdot \mathbf{v})^{2}$$

$$= \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} - (\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta)^{2}$$

$$= \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} - (\|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} \cos^{2} \theta)$$

$$= \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} (1 - \cos^{2} \theta)$$

$$= \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} \sin^{2} \theta$$

$$\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$$

θ adalah sudut antara **u** dan **v**

Perkalian Silang Vektor Satuan Standard

• Vektor satuan standard di R² adalah i dan j:

$$i = (1, 0) dan j = (0, 1)$$

• Setiap vektor $\mathbf{v} = (v_1, v_2)$ di R^2 dapat dinyatakan sebagai kombinasi linier

$$\mathbf{v} = \mathbf{v}_1 \mathbf{i} + \mathbf{v}_2 \mathbf{j}$$

• Vektor satuan standard di R³ adalah i, j, dan k:

$$i = (1, 0, 0), j = (0, 1, 0), dan k = (0, 0, 1),$$

• Setiap vektor $\mathbf{v} = (v_1, v_2, v_3)$ di R^3 dapat dinyatakan sebagai kombinasi liner $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$

• Perkalian silang i dan j: i = (1, 0, 0) dan j = (0, 1, 0), maka

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{i} \times \mathbf{j} = (\begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix}, - \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix}, \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix})$$

$$= (0, 0, 1) = k$$

•
$$\mathbf{i} \times \mathbf{j} = \mathbf{k}$$
 $\mathbf{j} \times \mathbf{k} = \mathbf{i}$ $\mathbf{k} \times \mathbf{i} = \mathbf{j}$ $\mathbf{j} \times \mathbf{i} = -\mathbf{k}$ $\mathbf{k} \times \mathbf{j} = -\mathbf{i}$ $\mathbf{i} \times \mathbf{k} = -\mathbf{j}$

• Misalkan $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3) = \mathbf{u}_1 \mathbf{i} + \mathbf{u}_2 \mathbf{j} + \mathbf{u}_3 \mathbf{k}$ $dan \mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) = \mathbf{v}_1 \mathbf{i} + \mathbf{v}_2 \mathbf{j} + \mathbf{v}_3 \mathbf{k}$

maka, dengan menggunakan ekspansi kofaktor:

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{k}$$

Contoh 2: Lihat kembali Contoh 1,

$$\mathbf{u} = (0, 1, 7) = \mathbf{j} + 7\mathbf{k}$$

 $\mathbf{v} = (1, 4, 5) = \mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$

maka

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 7 \\ 1 & 4 & 5 \end{vmatrix} = \begin{vmatrix} 1 & 7 \\ 4 & 5 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 0 & 7 \\ 1 & 5 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 0 & 1 \\ 1 & 4 \end{vmatrix} \mathbf{k}$$
$$= (5 - 28)\mathbf{i} - (0 - 7)\mathbf{j} + (0 - 1)\mathbf{k}$$
$$= -23\mathbf{i} + 7\mathbf{j} - \mathbf{k}$$

Aplikasi Geometri Perkalian Silang

1. Menghitung luas area parallelogram

Parallelogram: area paralel yang dibentuk oleh dua buah vektor

Jadi, $\|\mathbf{u} \times \mathbf{v}\|$ menyatakan luas area paraleogram yang ditentukan oleh vektor \mathbf{u} dan \mathbf{v}

Contoh 3: Tentukan luas segitiga yang ditentukan oleh titik $P_1(2, 2, 0)$, $P_2(-1, 0, 2)$, dan $P_3(0, 4, 3)$.

Penyelesaian: luas segitiga = ½ luas parallelogram

$$\mathbf{u} = \overrightarrow{P_1 P_2} = \overrightarrow{OP_2} - \overrightarrow{OP_1} = (-1, 0, 2) - (2, 2, 0)$$

= (-3, -2, 2)

$$\mathbf{v} = \overrightarrow{P_1 P_3} = \overrightarrow{OP_3} - \overrightarrow{OP_1} = (0, 4, 3) - (2, 2, 0)$$

= (-2, 2, 3)

$$\mathbf{u} \times \mathbf{v} = (\begin{vmatrix} -2 & 2 \\ 2 & 3 \end{vmatrix}, - \begin{vmatrix} -3 & 2 \\ -2 & 3 \end{vmatrix}, \begin{vmatrix} -3 & -2 \\ -2 & 2 \end{vmatrix})$$

= (-10, 5, -10)

Luas parallelogram:
$$\|\mathbf{u} \times \mathbf{v}\| = \sqrt{(-10)^2 + (5)^2 + (-10)^2} = \sqrt{225} = 15$$

Luas segitiga $P_1P_2P_3 = \frac{1}{2}(15) = 7.5$

2. Menghitung volume parallelepide

Parallelepide: bangun tiga dimensi yang dibentuk oleh tiga buah vektor di R³.

Tinjau tiga vektor:

$$\mathbf{u} = (\mathbf{u}_1, \, \mathbf{u}_2, \, \mathbf{u}_3)$$

 $\mathbf{v} = (\mathbf{v}_1, \, \mathbf{v}_2, \, \mathbf{v}_3)$
 $\mathbf{w} = (\mathbf{w}_1, \, \mathbf{w}_2, \, \mathbf{w}_3)$

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{u} \cdot \begin{pmatrix} v_2 & v_3 \\ w_2 & w_3 \end{pmatrix} \mathbf{i} - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} \mathbf{k}$$

$$= \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} u_1 - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} u_2 + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} u_3$$

$$= \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} \longrightarrow \text{determinar}$$

Nilai mutlak dari determinan, atau $|\mathbf{u}\cdot(\mathbf{v}\times\mathbf{w})|$, menyatakan volume parallelepiped

Contoh 4: Tentukan volume *paralellepiped* yang dibentuk oleh tiga buah vektor $\mathbf{u} = 3\mathbf{i} - 2\mathbf{j} - 5\mathbf{k}$, $\mathbf{v} = \mathbf{i} + 4\mathbf{j} - 4\mathbf{k}$, dan $\mathbf{w} = 3\mathbf{j} + 2\mathbf{k}$

Penyelesaian:

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} 3 & -2 & -5 \\ 1 & 4 & -4 \\ 0 & 3 & 2 \end{vmatrix}$$

$$= 3 \begin{vmatrix} 4 & -4 \\ 3 & 2 \end{vmatrix} - (-2) \begin{vmatrix} 1 & -4 \\ 0 & 2 \end{vmatrix} + (-5) \begin{vmatrix} 1 & 4 \\ 0 & 3 \end{vmatrix}$$

$$= 60 + 4 - 15$$

= 49

Volume parallelepiped adalah |49| = 49

Tafsiran Geometri Determinan

- Kembali ke determinan
- Misalkan $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ dan $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2)$ adalah vektor-vektor di R². Nilai mutlak dari determinan

$$\begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix}$$

menyatakan luas *parallelogram* yang dibentuk oleh **u** dan **v**.

$$\begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

menyatakan volume parallelepiped yang dibentuk oleh u, v dan w.

Contoh 5: Tentukan luas *paralellogram* yang dibentuk oleh dua buah vektor $\mathbf{u} = 4\mathbf{i} + 3\mathbf{j}$ dan $\mathbf{v} = 3\mathbf{i} - 4\mathbf{j}$

Penyelesaian:

$$\det(\begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix}) = \begin{vmatrix} 4 & 3 \\ 3 & -4 \end{vmatrix} = -16 - 9 = -25$$

Luas parellogram yang dibentuk oleh \mathbf{u} dan \mathbf{v} adalah |-25| = 25

Contoh 6: Misalkan tiga buah vektor di R³ berikut memiliki titik asal yang sama $\mathbf{u} = (1, 1, 2)$, $\mathbf{v} = (1, 1, 5)$, dan $\mathbf{w} = (3, 3, 1)$

Perlihatkan bahwa ketiga buah vektor tersebut terletak pada satu bidang yang sama.

Penyelesaian:

$$\det\begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 5 \\ 3 & 3 & 1 \end{bmatrix} = (1) \begin{vmatrix} 1 & 5 \\ 3 & 1 \end{vmatrix} - (1) \begin{vmatrix} 1 & 5 \\ 3 & 1 \end{vmatrix} + (2) \begin{vmatrix} 1 & 1 \\ 3 & 3 \end{vmatrix} \\
= (1)(-14) - (1)(-14) + (2)(0) = -14 + 14 + 0 = 0$$

Karena determinan = 0, berarti volume *parallelpiped* = 0, dengan kata lain ketiga buah vektor tersebut terletak pada satu bidang yang sama.

TAMAT