Random Forests

Dataset	# cases	# vars	# classes	CART	Bagged CART	Random Forests
Waveform	300	21	3	29.1	19.3	17.2
Breast Cancer	699	9	2	5.9	3.7	2.9
Ionosphere	351	34	2	11.2	7.9	7.1
Diabetes	768	8	2	25.3	23.9	24.2
Glass	214	9	6	30.4	23.6	20.6

Leo Breiman (2001) "Random Forests", Machine Learning, 45, 5-32.

Birçok ağaçtan oluşan bir orman büyütün. (R varsayılan 500'dür)

Her ağacı eğitim verilerinden bağımsız bir önyükleme örneğinde * büyütün.

Her düğümde:

- 1. M olası değişkenlerin tümü arasından rastgele m değişken seçin (her düğüm için bağımsız olarak).
 - 2. Seçilen m değişkenleri üzerindeki en iyi bölmeyi bulun.

Ağaçları maksimum derinliğe kadar büyütün (sınıflandırma).

Yeni veriler için tahminler almak için ağaçları oylayın / ortalayın.

* Değiştirme ile rastgele örnek N vaka. CART'ın

birçok avantajını devralın:

- Hem regresyon hem de sınıflandırma problemlerine uygulanabilir. Evet.
- Kategorik öngörücüleri doğal bir şekilde ele alın. Evet.
- Büyük sorunlar için bile hesaplama açısından basit ve hızlı takılması. Evet.
- Resmi dağıtım varsayımları yoktur (parametrik olmayan). Evet.
- Son derece doğrusal olmayan etkileşimleri ve sınıflandırma sınırlarını kaldırabilir. Evet.
- Otomatik değişken seçimi. Evet. Ancak değişken öneme de ihtiyaç var.
- Yedek değişkenler aracılığıyla eksik değerleri ele alır. Yakınlıkları kullanma.
- Ağaç küçükse yorumlanması çok kolaydır. HAYIR!

Ama inherit almayın:

- Ağacın resmi, hangi değişkenlerin nerede önemli olduğu konusunda değerli bilgiler verebilir. HAYIR!
- Terminal düğümleri, verilerin homojen gruplar halinde doğal bir şekilde kümelenmesini önerir. HAYIR!

CART'ta aşağıdakilere göre iyileştirin:

- **Doğruluk** Rastgele Ormanlar, bilinen en iyi makine öğrenimi yöntemleriyle rekabet eder (ancak "bedava öğle yemeği yok" teoremine dikkat edin).
- İstikrarsızlık Veriyi biraz değiştirirsek, tek tek ağaçlar değişebilir ancak orman, birçok ağacın birleşiminden dolayı nispeten sabittir.

İki Doğal Soru

1. Neden bootstrap? (Neden alt örnekleme?)

Önyükleme → çanta dışı veriler →

- Tahmini hata oranı ve karışıklık matrisi
- Değişken önem

2. Neden ağaçlar?

Ağaçlar → yakınlar →

- Eksik değer doldurma
- Aykırı değer tespiti
- Verilerin aydınlatıcı resimleri (kümeler, yapı, aykırı değerler)