Kucherlapati et al. 1/18

Mouse Heavy Chain J Genes Inactivation Vector

(A) Targeted mouse heavy chain J genes

(B) Inactivation vector mDAJ.Neo

Kucherlapati et al. 2/18

(A) Targeted mouse heavy chain J genes

(B) Inactivation vector pmHoJ

(C) Southern analysis of pmHoJ-targeted ES colonies

Wild type ES cell genome

Targeted ES cell genome

Figure 2

Kucherlapati et al. 3/18

Kucherlapati et al. 4/18

Staining of peripheral blood lymphocytes with fluorescent anti-a allotype (A, D), anti-b 244-3-2/F2-7, (D) A allotype control mouse, (E) B allotype control (F) control mouse. The number in each panel indicates the percentage of cells stained with the specific antibody allotype (B,E) or anti-13220 (C, F). (A, B, C) JH-deletion homozygous mutant mouse

Figure 4

Kucherlapati et al. 5/18

INACTIVATION OF KAPPA CONSTANT REGION

Kucherlapati et al. 6/18

Figure 6

Kucherlapati et al. 7/18

SOUTHERN ANALYSIS OF LIGHT CHAIN CK-TARGETED E14-1 CELLS

Kucherlapati et al. 8/18

KAPPA J/CONSTANT REGION INACTIVATION

J REGION KNOCKOUT VECTOR

TARGETING SCHEME

Figure 8

Kucherlapati et al. 9/18

Figure 9

Kucherlapati et al. 10/18

KAPPA J/CONSTANT REGION DELETION VECTORS

SOUTHERN ANALYSIS OF LIGHT CHAIN JK/CK-DELETED E14-1 CELLS

NATIVE ES CELL LOCUS

CK-TARGETED ES CELL LOCUS

JKCK-DELETED ES CELL LOCUS

Figure 11

Kucherlapati et al. 12/18

Figure 12

Figure 13

Kucherlapati et al. 14/18

Figure 14

Kucherlapati et al. 15/18

(A) Human heavy chain locus

(B) Mouse heavy chain locus

(C) Human heavy chain replacement YAC vector

Figure 16

Kucherlapati et al. 17/18

Mouse Breeding Scheme

Cross IA.

Cross I B.

heterozygous inactive Murine IgH

heterozygous Human IgH

X heterozygous Human IgK

heterozygous inactive Murine IgK

MIgH MIgK HIgH

MIgH (inactive) MIgK MIgH MIgK

MIgH MIgK

X

X

<u>MIgH</u> MIgH MIgK (inactive) MIgK

MIgH MIgK HIgK MIgH MIgK

F1 (cross I A)

F1 (cross I B)

MIgH (inactive) MIgK (inactive) MIgH

MIgK

MIGH MIGK HIGH HIGK

MIgH MIgK

Cross II.

F1 (cross I A) x F1 (cross I B)

F2 Quadruple Heterozygotes

MIgH (inactive) MIgK (inactive) HIgH HIgK

MIgH

MIgK

Cross III.

Intercross F2 mice

DOUBLE F3

Homozygotes

MIgH (inactive) MIgK (inactive) HIgH HIgK

MIgH (inactive) MIgK (inactive)

Figure 17

Kucherlapati et al. 18/18

MAMMALIAN HOST GENOTYPES

Hetero- or Hemi-zygous Mice		Intercross Product Mice*
I.	<u>∆miqL</u> miqH migL migH	$\frac{\Delta mlgL}{\Delta mlgH}$
II.	migL <u>AmigH</u> migL migH	$\begin{array}{ll} \underline{\text{mlgL}} & \underline{\text{\Delta}\text{mlgH}} \\ \underline{\text{mlgL}} & \underline{\text{\Delta}\text{mlgH}} \end{array}$
III.	<u>miqL migH hiqH</u> migL migH	migL migH higH migL migH higH
IV.	<u>miqL miqH hiqL</u> migL migH	migL migH higL
v.	Animal I X Animal II	
	<u>ΔmiqL</u> <u>miqH</u> migL ΔmigH	<u>ΔmiqL</u> <u>ΔmiqH</u> ΔmigL ΔmigH
VI.	Animal III X Animal V	
	<u>miqL</u> <u>miqH</u> <u>hiqH</u> AmigL Amigh	Δ migL Δ migH higH and Δ migL Δ migH higH Δ migL Δ migH
VII.	Animal IV X Animal V	
	<u>miqL</u> <u>miqH</u> <u>hiqL</u> AmigL AmigH	Δ migL Δ migH higL and Δ migL Δ migH higL Δ migL Δ migH
VIII.	Animal VI X Anmial VII	
	Δ migL Δ migH higL higH Δ migL Δ migH	<u>AmigL AmigH higL higH</u> AmigL AmigH higL higH
	migL migH higL higH AmigL AmigH	Amigh Amigh high high and Amigh Amigh high high Amigh Amigh
ıx.	Animal III X Animal IV	
	migL migH higL higH	migL migH higL higH migL migH higL higH
x.	Animal II X Animal IX	·
	migL <u>AmigH</u> <u>higL</u> <u>higH</u>	migl Δ migh high high and migh Δ migh high high migh Δ migh
XI.	Animal I X Animal IX	
	Δ mIqL mIqH hIqL hIqH mIqL mIgH	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^{*}Not all possible genotypes from intercrosses are shown.

Δ = functionally inactive locus
m = mouse endogenous gene
h = human transgene
IgH = immunoglobulin heavy chain
IgL = immunoglobulin light chain