- SHEAR FACTOR CALCULATIONS -

Section geometry	Width_	<u>Height</u>	
Top subsection	$b_1 := 200$	$h_1 := 50$	[mm]
Bottom subsection	$b_2 := 50$	$h_2 := 100$	[mm]
Total section height	$h := h_1 + h_2 = 150$		
Material properties	Elastic modulus	Shear modulus	(typical timber properties)
Top subsection	$E_1 := 11000$	$G_1 := 600$	[N/mm²]
Bottom subsection	$E_2 := 11000$	$G_2 := 600$	[N/mm²]
Shear stiffness	$GA := G_1 \cdot h_1 \cdot b_1 + G_2$	$_2 \cdot h_2 \cdot b_2 = 9 \cdot 10^6$	[N]

Section view

± — SECTION VIEW

Position of neutral axis from the top edge [mm] $y_n := \frac{b_2 \cdot h_2 \cdot E_2 \cdot \left(h_1 + \frac{h_2}{2}\right) + b_1 \cdot h_1 \cdot E_1 \cdot \frac{h_1}{2}}{b_1 \cdot h_1 \cdot E_1 + b_2 \cdot h_2 \cdot E_2} = 50$ Position of neutral axis from center [mm] $y_c := y_n - \frac{h}{2} = -25$

General expressions

Approximation for step function $H(z) := \frac{1}{2} \cdot (1 + \text{sign}(z))$

Elastic modulus expression for the whole cross-section depending on the distance from the top edge

$$E(z) := E_1 \cdot H(z + y_c + h) - (E_1 - E_2) \cdot H(z + y_c + \frac{h}{2} - h_1)$$

Shear modulus expression for the whole cross-section depending on the distance from the top edge

$$G(z) := G_1 \cdot H(z + y_c + h) - (G_1 - G_2) \cdot H(z + y_c + \frac{h}{2} - h_1)$$

Cross sectional width depending on the distance from the top edge

$$b(z) := b_1 \cdot H(z + y_c + h) - (b_1 - b_2) \cdot H(z + y_c + \frac{h}{2} - h_1)$$

Balance of energy of the beam for linear elasticity

Properties for the simply supported beam (useful for the further calculations):

- Linear distributed load [kN/m] q := 1

- Span length [m] L := 1

Internal energy

Bending stiffness $EI := \operatorname{Int}\left(E\left(z\right) \cdot b\left(z\right) \cdot z^{2}; \ z; -\frac{h}{2} - y_{c}; \ \frac{h}{2} - y_{c}\right)$

Shear flow expression $T(z) := (-q) \cdot \frac{L}{2 \cdot EI} \cdot \text{Int} \left(E(z) \cdot b(z) \cdot z; z; -\frac{h}{2} - y_c; z \right)$

 $U := \text{eval}\left[\frac{1}{2} \cdot \text{Int}\left(\frac{\left(T\left(z\right)\right)^{2}}{G\left(z\right) \cdot b\left(z\right)}; z; -\frac{h}{2} - y_{c}; \frac{h}{2} - y_{c}\right)\right]$

External energy $\mathbb{W}\left(k_s\right) := \frac{1}{2} \cdot \frac{k_s}{GA} \cdot \left(\frac{q \cdot L}{2}\right)^2 = \frac{k_s}{72000000}$

 $\text{Shear correction factor} \qquad \qquad k_{_S} := \mathtt{solve} \left(\mathit{U} - \mathit{W} \left(\mathit{k}_{_S} \right); \; k_{_S} \right) = \mathtt{1,8}$

Bending stiffness [Nmm²] $EI = 2,75 \cdot 10^{11}$

Shear correction factor [-] $k_s = 1, 8$

Corrected shear stiffness [N] $GAc := \frac{GA}{k_s} = 5 \cdot 10^{-6}$