Chapter 4 Discrete Fourier Transform

授课人: 蔡珣

山东大学 软件学院

2022.11

Contents

- Basic mathematics for DFT
 - The modulo arithmetic
 - Circular shift of sequence
- M-points DFT and N-length IDFT
 - N-point DFT for some basic signals
 - The effects of M-point and N-length
- The relation between $X(e^{j\omega})$ and X[k]
- Properties of DFT
- DFT for infinite length
- M-points DFT for LTI system
 - Circular convolution
 - difference from linear convolution
 - for finite-length input signal
 - for infinite-length input signal(overlap-add and overlap-save)
- Filter design

4.1 Basic mathematics in DFT

- The modulo arithmetic $\langle m \rangle_N = m \mod N = l \cdot N + m' = m'$
- Ex. $\langle 6 \rangle_5 = 1$; $\langle 7 \rangle_3 = ?$
- $x[\langle n \rangle_N]$
 - Ex. $x[(5)_3] = x[?]$
- Circular shift of sequence

$$x[\langle n-n_0\rangle_N]$$

 $n_0 > 0$ means the shifting direction is forward; otherwise means backward;

$$x_{c}[n] = x[\langle n - n_{0} \rangle_{N}] \ or x[\langle n + n_{0} \rangle_{N}]$$

$$= \begin{cases} x[n - n_{0}], for \ 0 < n_{0} \le n \le N - 1, \\ x[n - n_{0} + N], for \ 0 \le n \le n_{0}. \end{cases}$$

or =
$$\begin{cases} x[n+n_0], & for \ 0 < n_0 + n \le N-1, \\ x[n+n_0-N], & for \ N \le n+n_0. \end{cases}$$

• Ex. $x[(n-1)_6] = x[?]$

Alternate illustration of a circular shift of a finite-length sequence. (a) x[n], (b) $x[\langle n-1\rangle_6] = x[\langle n+5\rangle_6]$, and $(c)x[\langle n-4\rangle_6] = x[\langle n+2\rangle_6]$

Alternate illustration of a circular shift of a finite-length sequence. (a) x[n], (b) $x[\langle n-1\rangle_6] = x[\langle n+5\rangle_6]$, and $(c)x[\langle n-4\rangle_6] = x[\langle n+2\rangle_6]$

4.2 M-points DFT and N-length IDFT

M-point DFT from N-length signal

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi kn}{M}},$$
If $\omega_k = \frac{2\pi k}{M}$, then $X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\omega_k n}$
Let $W_M = e^{-j\frac{2\pi}{M}}$, $X[k] = \sum_{n=0}^{N-1} x[n] W_M^{nk}$

N-length IDFT from M-point DFT

$$x[n] = \frac{1}{M} \sum_{k=0}^{M-1} X[k] e^{j\frac{2\pi kn}{M}}$$
if $\omega_k = \frac{2\pi k}{M}$, then $x[n] = \frac{1}{M} \sum_{k=0}^{M-1} X[k] e^{j\omega_k n}$
Let $W_M = e^{-j\frac{2\pi}{M}}$, $x[n] = \frac{1}{M} \sum_{k=0}^{M-1} X[k] W_M^{-nk}$

• Some special equations about W_M

•
$$\sum_{k=0}^{M-1} W_M^k = 0;$$

•
$$\sum_{k=0}^{M-1} W_M^{km} = \begin{cases} M, & \text{if } m \text{ is a multiple of } M \\ 0, & \text{else} \end{cases}$$
 $\rightarrow \sum_{k=0}^{M-1} W_M^{km} = M\delta[\langle m \rangle_M]$

The matrix form of DFT and IDFT

$$\mathbf{x} = [x[0] \quad x[1] \quad \cdots \quad x[M-1]]^T \leftrightarrow \mathbf{x} = [x[0] \quad x[1] \quad \cdots \quad x[M-1]]^T$$

$$\mathbf{D}_{M} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & W_{M}^{1} & W_{M}^{2} & \dots & W_{M}^{M-1} \\ 1 & W_{M}^{2} & W_{M}^{4} & \dots & W_{M}^{2(M-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W_{M}^{M-1} & W_{M}^{2(M-1)} & \dots & W_{M}^{(M-1)(M-1)} \end{bmatrix}$$

$$\mathbf{D}_{\mathbf{M}}^{-1} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & W_{M}^{-1} & W_{M}^{-2} & W_{M}^{-3} & W_{M}^{-(M-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W_{M}^{-(M-1)} & W_{M}^{-2(M-1)} & \cdots & W_{M}^{-(M-1)(M-1)} \end{bmatrix} \qquad \mathbf{X} = \frac{\mathbf{1}}{\mathbf{M}} \mathbf{D}_{\mathbf{M}}^{-1} \mathbf{X}$$

$$x = \frac{1}{M} D_M^{-1} X$$

$$D_4$$
 and D_4^{-1} ?

$$\mathbf{D}_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \qquad \mathbf{D}_4^{-1} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix}$$

$$\mathbf{D}_{4}^{-1} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix}$$

N-point DFT for some basic signals

- $x[n] = \delta[n]$, X[k] = ?
 - Solution: $\sum_{n=0}^{N-1} \delta[n] W_N^{nk} = 1$
 - Proof: $x[n] = \frac{1}{N} \sum_{k=0}^{N-1} W_N^{-nk} = \delta[n]_N$ only n=0, x[n] = 1.
- $x[n] = a^n(u[n] u[n N1]), 0 \le n \le N1 1 \le N, X[k] = ?$
 - Solution: $X[k] = \sum_{n=0}^{N_1-1} a^n W_N^{nk} = \sum_{n=0}^{N_1-1} (aW_N^k)^n = \frac{1-(aW_N^k)^{N_1}}{1-aW_N^k}$

The effects of M-point and N-length

• Normaly, M = N, that is x[n] can be recovered from X[k]

$$X[k] = \sum_{n=0}^{M-1} x[n] e^{-j\frac{2\pi kn}{M}} \leftrightarrow x[n] = \frac{1}{M} \sum_{k=0}^{M-1} X[k] e^{j\frac{2\pi kn}{M}}$$

• Proof:

Let
$$W_M = e^{-j\frac{2\pi}{M}}$$
, then

$$x[n] = \frac{1}{M} \sum_{k=0}^{M-1} X[k] W_M^{-nk} = \frac{1}{M} \sum_{k=0}^{M-1} (\sum_{m=0}^{M-1} x[m] W_M^{mk}) W_M^{-nk}$$

$$= \frac{1}{M} \sum_{m=0}^{M-1} x[m] \sum_{k=0}^{M-1} W_M^{(m-n)k} = \begin{cases} \sum_{k=-\infty}^{\infty} x[n+kM], & \text{when } m=n+kM \\ 0, & \text{elese} \end{cases}$$
(since when $m = n + kM$,
$$\sum_{k=0}^{M-1} W_M^{(m-n)k} = M$$
)

- $M \neq N$, $X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi kn}{M}}$, $x[n] = \frac{1}{M} \sum_{k=0}^{M-1} X[k] e^{j\frac{2\pi kn}{M}}$
 - *M* < N, then IDFT will have aliasing

Proof: if M < N, x[n] which n > M will be calculated by $e^{j\frac{2\pi kn}{M}}$ will circle into $e^{j\frac{2\pi k(n-M)}{M}}$

• $M \ge N$, then IDFT will have no-aliasing since $e^{j\frac{2\pi kn}{M}}$ will not circle

4.3 The relation between $X(e^{J\omega})$ and X[k]

- X[k] is the subset of $X(e^{j\omega})$
- Proof:

$$X(e^{j\omega}) = \sum_{n=0}^{N-1} x[n]e^{-j\omega n} = \sum_{n=0}^{N-1} \left[\frac{1}{N}\sum_{k=0}^{N-1} X[k]W_N^{-kn}\right]e^{-j\omega n}$$

$$= \frac{1}{N}\sum_{k=0}^{N-1} X[k]\sum_{n=0}^{N-1} W_N^{-kn}e^{-j\omega n}$$

$$= \frac{1}{N}\sum_{k=0}^{N-1} X[k]\frac{\sin\left(\frac{\omega N - 2\pi k}{2}\right)}{N \cdot \sin\left(\frac{\omega N - 2\pi k}{2N}\right)} \cdot e^{-j[\omega - 2\pi k/N]((N-1)/2]}$$

$$\because only \ if \ \omega N - 2\pi k = 0, etc. \ \omega = 2\pi k/N$$

$$\frac{\sin\left(\frac{\omega N - 2\pi k}{2}\right)}{N\sin\left(\frac{\omega N - 2\pi k}{2N}\right)} \cdot e^{-j[\omega - 2\pi k/N][(N-1)/2]} = 1, else \ 0,$$

$$\therefore in \ this \ case, X(e^{j\omega}) = X[k], with \ \omega = 2\pi k/N$$

- Determine M, which can make $\omega_k = \frac{2\pi k}{M}$ approximate to ω , make DFT to approximate to DTFT.
 - Ex. We have a sequence x[n], $0 \le n \le N-1$ and we want to calculate $X(e^{j\omega})$ for $\omega = k\Delta\omega$, where $\Delta\omega \ll \pi$.
 - (a) What value of *M* is necessary if this is to be done by using DFT and IDFT?
 - Solution: $\frac{2\pi}{M} = \Delta\omega$, so M = round($\frac{2\pi}{\Delta\omega}$)
 - (b) What is the restriction on M?
 - Solution: normally, M > N, but if M < N, we can use M'=m M to make M'> N, and $\Delta \omega = m\Delta \omega'$, so we can get $\omega = km\Delta \omega'$
 - (c) Suppose we want to examine $X(e^{j\omega})$ $\omega_1 \le \omega \le \omega_2$, what is the corresponding range of k in X[k].
 - Solution: $k_1 = round(\frac{M\omega_1}{2\pi}), k_2 = round(\frac{M\omega_2}{2\pi})$

- Some changes from DTFT to DFT
 - Causality and period are different
 - Filter design is different from DTFT
 - Convolution computation is different

4.4 Properties of DFT

- Linearity theorem
- Circular Time-shifting theorem(Delay)
- Circular Frequency-Shifting Theorem
- Circular convolution
 Theorem
- Modulation Theorem
- Parseval's Relation
- Duality theorem

$$G[n] \stackrel{DFT}{\leftrightarrow} Ng[\langle k \rangle_N]$$

$$\alpha g[n] + \beta h[n] \stackrel{DFT}{\leftrightarrow} \alpha G[k] + \beta H[k]$$

$$g[\langle n - n_0 \rangle_N] \stackrel{DFT}{\longleftrightarrow} W_N^{kn} G[k]$$

$$W_N^{-kn_0}g[n] \stackrel{DFT}{\leftrightarrow} G[\langle k-k_0\rangle_N]$$

$$\sum_{m=0}^{N-1} g[n]h[\langle n-m\rangle_N] \overset{DFT}{\longleftrightarrow} G[k]H[k]$$

$$g[n]h[n] \stackrel{DFT}{\leftrightarrow} \frac{1}{N} \sum_{l=0}^{N-1} G[l]h[\langle k-l\rangle_N]$$

$$\sum_{n=0}^{N-1} |g[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |G[k]|^2$$
$$\sum_{n=0}^{N-1} g[n] h^*[n] = \frac{1}{N} \sum_{k=0}^{N-1} G[k] H^*[k]$$

Using Circular Time-shifting theorem (Delay) and Circular Frequency-Shifting Theorem

- Ex. Let G[k] and H[k], $0 \le k \le 7$, denote the 8-point DFTs of two length-8 sequences, g[n] and h[n], respectively.
 - (a) If $G[k] = \{2.6 + j4.1, 3 j2.7, -4.2 + j1.4, 3.5 j2.6, 0.5, 1.3 + j4.4, 2.4 j1.6\}$ and $h[n] = g[\langle n-5\rangle_8]$, determine H[k] without forming h[n].
 - (b) If $g[n] = \{-0.1 j0.7, 1.3 + j, 2 + j0.7, 1.1 + j2.2, -0.8 + j0.2, 3.4 j0.1, -1.2 + j\}$ and $H[k] = G[(< k + 3 >_8]]$, determine h[n] without computing the DFT G[k].

2022/11/5 山东大学 软件学院 蔡珣

Solution

• (a)
$$h[n] = g[\langle n-5\rangle_8]$$
.
 $Hence, H[k] = W_8^{-5k}G[k] = e^{j10\pi k/8}G[k] = e^{j5\pi k/4}G[k]$
 $= \{2.6 + j4.1, e^{\frac{j5\pi}{4}}(3 - j2.7), e^{\frac{j5\pi}{2}}(-4.2 + j1.4), e^{\frac{j15\pi}{4}}(3.5 - j2.6), e^{j5\pi}(0.5), e^{\frac{j25\pi}{4}}(1.3 + j4.4), e^{\frac{j15\pi}{2}}(2.4 - j1.6), e^{\frac{j35\pi}{4}}(-3 + j1.6)\}.$
• (b) $H[k] = G[\langle k+3\rangle_8]$.
 $Hence, h[n] = W_8^3 g[n] = e^{-j6\pi n/8} g[n] = e^{-j3\pi n/4} g[n]$
 $= \{-0.1$
 $-j0.7, e^{\frac{-j3\pi}{4}}(1.3 + j), e^{\frac{-j3\pi}{2}}(2 + j0.7), e^{\frac{-j9\pi}{4}}(1.1 + j2.2), e^{-j3\pi}(-0.8 + j0.2), e^{\frac{-j15\pi}{4}}(3.4 - j0.1), e^{\frac{-j9\pi}{2}}(-1.2 + j3.1), e^{\frac{-j21\pi}{4}}(j1.5)\}.$

• Ex. A length-9 sequence is given by $\{x[n]\}$ = $\{3,5,1,4,-3,5,-2,-2,4\}$, $0 \le n \le 8$, with an 9-point DFT given by X[k], $0 \le k \le 8$. Without computing the IDFT, determine the sequence y[n] whose 9-point DFT is given by $Y[k] = W_3^{-2k}X[k]$.

• Solution:

$$Y[k]=W_3^{-2k}X[k] = W_9^{-6k}X[k]$$
. Therefore, $y[n] = x[\langle n - 6\rangle_9]$. Thus, $y[0] = x[3] = 4$, $y[1] = x[4] = -3$, $y[2] = x[5] = 5$, $y[3] = x[6] = -2$, $y[4] = x[7] = -2$, $y[5] = x[8] = 4$, $y[6] = x[0] = 3$, $y[7] = x[1] = 5$, $y[8] = x[2] = 1$.

The first 5 samples of the 9-point DFT H[k],o ≤k ≤ 8,of a length-9 real sequence h[n],o ≤n≤ 8,given by

 $H[k] = \{156.8414 - j6.0572 6.0346 - j1.957 j8.6603 - 6.876 - j11.4883\}$ Determine the 9-point DFT G[k] of the length-9 sequence $e^{j2\pi n/3}h[n]$ without computing h[n], forming the sequence g[n], and then taking its DFT.

solution:

$$H[k]=H^*[<-k>_9]=H^*[9-k]$$
. Hence, $H[5]=H^*[4]=-6.876$ -j11.4883, $H[6]=H^*[3]=-j8.6603$, $H[7]=H^*[2]=6.0346+$ j1.957, $H[8]=H^*[1]=6.8414+$ j6.0572. Now $g[n]=ej2\pi n/3h[n]=ej6\pi n/9h[n]=W9-6nh[n]$. Therefore $G[k]=H[< k-6>9]$, $0< k<8$.

Symmetry properties of DFT

for complex sequence

Length-N Sequence	N-point DFT
$x[n = x_{re}[n] + jx_{im}[n]$	$X[n] = X_{re}[n] + jX_{im}[n]$
$x^*[-n]$	$X^*[\langle -k \rangle_N]$
$x^*[\langle -n \rangle_N]$	$X^*[k]$
$x_{re}[n]$	$X_{cs}[k] = \frac{1}{2} \{X[k] + X^*[\langle -k \rangle_N]\}$
jx_{im}	$\frac{1}{2}$
$x_{cs}[n]$	$X_{ca}[k] = \frac{1}{2} \{ X[k] - X^*[\langle -k \rangle_N] \}$
$x_{ca}[n]$	$X_{re}[k]$
	$jX_{im}[k]$

for real sequence

Length-N Sequence	N-point DFT
$x[n] = x_{ev}[n] + x_{od}[n]$	$X[k] = X_{re}[k] + jX_{im}[k]$
$x_{ev}[n]$ $x_{od}[n]$	$X_{re}[k]$ $jX_{im}[k]$
Symmetry ralations	$X[k] = X^*[\langle -k \rangle_N]$ $X_{re}[k] = X_{re}[\langle -k \rangle_N]$ $X_{im}[k] = -X_{im}[\langle -k \rangle_N]$ $ X[k] = X[\langle -k \rangle_N $ $arg X[k] == arg X[\langle -k \rangle_N $

Using symmetry properties to compute DFT or IDFT

• Ex. The following 7 samples of a length 12 real sequence x[n] with a real—valued 12—point DFT X[k] are given by :

$$x[0] = 3.8, x[2] = 0.7, x[3] = -3.25, x[5] = 4.1, x[6] = 2.87, x[8] = 9.3, and x[11] = -2$$
. Find the remaining 5 samples of $x[n]$.

Solution:

Since the DFT X[k] is real-valued, x[n] is a circularly even sequence, i.e. $x[n] = x[\langle -n \rangle_{12}]$. Therefore,

$$x[1] = x[\langle -1 \rangle_{12}] = x[11] = -2,$$

 $x[4] = x[\langle -4 \rangle_{12}] = x[8] = 9.3,$
 $x[7] = x[\langle -7 \rangle_{12}] = x[5] = 4.1,$
 $x[9] = x[\langle -9 \rangle_{12}] = x[3] = -3.25,$
 $x[10] = x[\langle -10 \rangle_{12}] = x[2] = 0.7.$

- Using DFT symmetry relations for DFT
- Ex. Without computing the DFT, determine which one of the following length-9 sequences defined for has a real-valued 9-point DFT and which one has an imaginary-valued 9-point DFT.

(a)
$$\{x_1[n]\}=\{4\ 3\ -5\ 1\ -2\ -2\ 1\ -5\ 3\},$$

(b)
$$\{x_2[n]\}=\{0\ 5\ 1\ 4\ -3\ 3\ -4\ -1\ -5\},$$

(c)
$$\{x_3[n]\}=\{0.524.33.4.1.5\},$$

(d)
$$\{x_4[n]\}=\{-5\ 5\ -2\ 2\ 4\ 4\ 2\ -2\ 5\}.$$

 $(a)x1[\langle -n\rangle_9] = x1[n].$

Thus, x1[n] is a circular even sequence and hence, it has a real - valued 9- point DFT.

(b)
$$x2[\langle -n \rangle_9] = -x2[n]$$
.

Thus, x2[n] is a circular odd sequence and hence, it has an imaginar – valued 9 – point DFT.

- (c) $x3[\langle -n \rangle_9]$ is neither equal to x3[n] nor equal to -x3[n]. Thus, x3[n] has a complex valued 9- point DFT.
- (d) $x4[\langle -n \rangle_9] = x4[n]$.

Thus x4[n] is a circular even sequence and hence, it has a real – valued 9 – point DFT.

Ex. The even samples of the 9-point DFT of a length-9 real sequence are given by X[0] = -5.7, X[2] = 1.2 - j4.1, X[4] = -3.5 + j5.3, X[6] = 8.6 - j9.6, and X[8] = -7.7 - j3.2. Determine the missing odd samples of the DFT.

• solution:

Since x[n] is a length-9 real sequence, X[k] =
$$X^*[\langle -k \rangle_9]$$
.
Therefore, X[1] = $X^*[\langle -1 \rangle_9] = X^*[8] = -7.7 + j3.2$
X[3] = $X^*[\langle -3 \rangle_9] = X^*[6] = 8.6 + j9.6$,
X[5] = $X^*[\langle -5 \rangle_9] = X^*[4] = -3.5 - j5.3$,
X[7] = $X^*[\langle -7 \rangle_9] = X^*[2] = 1.2 + j4.1$.

Ex. The 8-point DFT of a length-8 complex sequence v[n] = x[n] + jy[n] is given by

$$V[0] = 3 + j7$$
, $V[1] = -2 + j6$, $V[2] = 1 - j5$, $V[3] = 4 - j9$, $V[4] = 5 + j2$, $V[5] = 3 - j2$, $V[6] = j4$, $V[7] = -3 - j8$,

Where x[n] and y[n] are, respectively, the real and imaginary parts of v[n]. Without computing the IDFT of V[k], determine the 8-point DFTs X[k] and Y[k] of the real sequences x[n] and y[n], respectively.

• solution : v[n] = x[n] + jy[n].

Hence,
$$X[k] = \frac{1}{2} \{V[k] + V * [\langle -k \rangle_8] \}$$
 and $Y[k] = \frac{1}{2j} \{V[k] - V * [\langle -k \rangle_8] \}$ $V[k] = [3 + j7, -2 + j6, 1 - j5, 4 - j9, 5 + j2, 3 - j2, j4, -3 - j8].$ $V * [\langle -k \rangle_8] = [3 + j7, -3 + j8, -j4, 3 + j2, 5 - j2, 4 + j9, 1 + j5, -2 - j6].$ Therefore,

$$X[k] = \left[3 + j7, -\frac{5}{2} + j7, \frac{1}{2} + j\frac{9}{2}, \frac{7}{2} - j\frac{7}{2}, 5, \frac{7}{2} + j\frac{7}{2}, \frac{1}{2} + j\frac{7}{2}, \frac{1}{2} - j\frac{9}{2}, -\frac{5}{2} - j7\right],$$

$$Y[k] = \left[0, -1 - j\frac{1}{2}, -\frac{1}{2} - j\frac{1}{2}, -\frac{11}{2} - j\frac{1}{2}, 2, -\frac{11}{2} + j\frac{1}{2}, -\frac{1}{2} + j\frac{1}{2}, -1 + j\frac{1}{2}\right].$$

4.5 DFT for infinite length

Cut the x[n] into several short N-length $x_n[m]$, then solve $X_n[k]$ by recursive method

- Step1:
 - $X_n[k] = \sum_{m=0}^{N-1} x[n-N+1+m]W_N^{mk}$,
- Step2

$$X_{n+1}[k] = \sum_{m=0}^{N-1} x[n-N+2+m] W_N^{mk} = X_n[k] W_N^{-k} + x[n+1] W_N^{-k} - x[n-N] W_N^{-k}$$

= $[X_n[k] + x[n+1] - x[n-N+1]] W_N^{-k}$

• compare to $X_{n+1}(e^{j\omega}) = e^{j\omega}X_n(e^{j\omega}) + x[n+1] - x[n-N+1]e^{j\omega N}$

4.6 DFT for LTI system

M-points Circular Convolution

$$y_c[n] = DFT^{-1}\{H[k]X[k]\} = \sum_{m=0}^{M-1} x[m]h[\langle n-m\rangle_M]$$

$$\begin{bmatrix} yc[0] \\ yc[1] \\ yc[2] \\ \vdots \\ yc[M-1] \end{bmatrix} = \begin{bmatrix} h[0] & h[M-1] & h[M-2] & \cdots & h[1] \\ h[1] & h[0] & h[M-1] & \cdots & h[2] \\ h[2] & h[1] & h[0] & \cdots & h[3] \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h[M-1] & h[M-2] & h[M-3] & \cdots & h[0] \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ \vdots \\ x[M-1] \end{bmatrix}$$

2022/11/5

- Ex. Consider the two finite-length sequence $g[n] = \{2 1 \ 3\}, 0 \le n \le 2$ and $h[n] = \{-2 \ 4 \ 2 1\}, 0 \le n \le 3$
- (a) Determine $y_L[n] = g[n] \circledast h[n]$.
- (b) Extend g[n] to a length-4 sequence $g_4[n]$ by zero-padding and compute $y_C[n] = g_4[n] \textcircled{4} h[n]$.
- (c)Extend g[n] and h[n] to a length-6 sequences by zero-padding and compute the 6-point circular convolution
- (d) Is $y_C[n]$ the same as $y_L[n]$ determined in Part(a)?

Solution:

```
• (a) y_L[0] = g[0]h[0] = -4, y_L[1] = g[0]h[1] + g[1]h[0] = 10,
         y_L[2] = g[0]h[2] + g[1]h[1] + g[2]h[0] = -6, y_L[3] = g[0]h[3] + g[1]h[2] + g[2]h[1] = 8,
                                                    y_L[4] = g[1]h[3] + g[2]h[2] = 7, y_L[5] = g[2]h[3] = -3.
         • (b)y_c[0] = g_e[0]h[0] + g_e[1]h[3] + g_e[2]h[2] + g_e[3]h[1] = g[0]h[0] + g[1]h[3] + g[2]h[2] = 3,
 y_c[1] = g_e[0]h[1] + g_e[1]h[0] + g_e[2]h[3] + g_e[3]h[2] = g[0]h[1] + g[1]h[0] + g[2]h[3] = 7,
 y_c[2] = g_e[0]h[2] + g_e[1]h[1] + g_e[2]h[0] + g_e[3]h[3] = g[0]h[2] + g[1]h[1] + g[2]h[0] = -6,
 y_c[3] = g_e[0]h[3] + g_e[1]h[2] + g_e[2]h[1] + g_e[3]h[0] = g[0]h[3] + g[1]h[2] + g[2]h[1] = 8.
         • (c) g_e[n] = [2, -1, 3, 0, 0, 0], h_e[n] = [-2, 4, 2, -1, 0, 0],
y_c[0] = g_e[0] h_e[0] + g_e[1] h_e[5] + g_e[2] h_e[4] + g_e[3] h_e[3] + g_e[4] h_e[2] + g_e[5] h_e[1] =
g[0]h[0] = -4 = y_L[0],
y_c[1] = g_e[0]h_e[1] + g_e[1]h_e[0] + g_e[2]h_e[5] + g_e[3]h_e[4] + g_e[4]h_e[3] + g_e[5]h_e[2] = g_e[6]h_e[6]h_e[6]
g[0] h[1] + g[1] h[0] = 10 = y_L[1],
y_c[2] = g_e[0] h_e[2] + g_e[1] h_e[1] + g_e[2] h_e[0] + g_e[3] h_e[5] + g_e[4] h_e[4] + g_e[5] h_e[3] =
g[0] h[2] + g[1] h[1] + g[2] h[0] = -6 = y_L[2],
y_{\zeta}[3] = g_{e}[0] h_{e}[3] + g_{e}[1] h_{e}[2] + g_{e}[2] h_{e}[1] + g_{e}[3] h_{e}[0] + g_{e}[4] h_{e}[5] + g_{e}[5] h_{e}[4] = g_{e}[6] h_{e}[6] + g_{e}[6] h_{e
g[0]h[3] + g[1]h[2] + g[2]h[1] = 8 = y_L[3],
y_c[4] = g_e[0] h_e[4] + g_e[1] h_e[3] + g_e[2] h_e[2] + g_e[3] h_e[1] + g_e[4] h_e[0] + g_e[5] h_e[5] =
g[1] h[3] + g[2] h[2] = 7 = y_L[4],
y_c[5] = g_e[0] h_e[5] + g_e[1] h_e[4] + g_e[2] h_e[3] + g_e[3] h_e[2] + g_e[4] h_e[1] + g_e[5] h_e[0] =
g[2] h[3] = -3 = y_L[5].
 (d)
```

The relation between linear convolution circular convolution

- For N-points circular convolution, how much N should be for each n, $y_c[n] == y_L[n]$?
- solution: $Nx + Nh 1 \le N$
 - Proof:

For N-points circular convolution, by using DFT, all signal should be zero-filled to be N length, so

$$x[n] = \begin{cases} x[n], for \ 0 \le n \le Nx - 1\\ 0, for \ Nx \le n \le N - 1 \end{cases}$$

and

$$h[n] = \begin{cases} h[n], for \ 0 \le n \le Nh - 1 \\ 0, for \ Nh \le n \le N - 1 \end{cases}$$
$$y[n] = \begin{cases} y[n], for \ 0 \le n \le Ny - 1 \\ 0, for \ Ny \le n \le N - 1 \end{cases},$$

so Ny = Nx + Nh - 1 should equal to or less then N, that is $Nx + Nh - 1 \le N$

• Proof 2:

if x[n] is N_1 — length, h[n] is N_2 — length

$$y_c[n] = \sum_{m=0}^{n} x[m]h[n-m] + \sum_{m=n+1}^{N-1} x[m]h[n-m+N]$$

If circle convolution is same as linear convolution, h[n-m+N] should be 0, since x[n] is N_x — length,

 $min(n-m+N) = min(n) - max(m) + N = 0 - (N_x - 1) + N$ max(n-m+N) = max(n) - min(m) + N = N - 1 - (N) + N = N - 1.so when $N - N_x + 1 \le k \le N - 1$, h[k] should be 0, since h[k] is N_h - length, $N_h \le N - N_x + 1 \le N - 1$, so $N_h + N_x - 1 \le N$

- If (Nx and Nh) <N<Nx+N $_h$ -1 , within which range of n that $y_L[n] == y_C[n]$?
 - solution : $Nx-1 + N_h N \le n \le N-1$ | $y_L[n] = y_C[n]$
 - Proof
 - zero-padding x[n] and h[n]to be N-length, where N>Nx and N> Nh $y_C[n] = \sum_{m=0}^{N-1} x[m] \, h[\langle n-m \rangle_N] = \sum_{m=0}^n x[m] h[n-m]$,此部分不会发生求模运算 $+\sum_{m=n+1}^{N-1} x[m] h[n-m+N]$,此部分当h[n-m+N] = 0时, $y_C[n]$ 将和 $y_L[n]$ 相等 由于只有当 $n-m+N \geq N_h$,即 $m-N+N_h \leq n$ 时,才会为h[n-m+N] = 0。 m最大是Nx-1,所以 $m-N+N_h$ 的最大值为 $Nx-1+N_h-N \leq n$,且n不会超过N-1,即,当 $Nx-1+N_h-M \leq n \leq N-1$ 时, $y_L[n] = y_C[n]$ 。

Convolution of causal filter with an infinite signal

- Overlap-add method using N -point DFT and IDFT $(Nm + Nh 1 \le N)$ 固定y段)
 - Step1:Cut the original sequence x[n] into Nm -length , and zero-fill to N length $x_m[n]$,

$$x_m[n] = \begin{cases} x[n + (m-1)Nm], for \ 0 \le n \le Nm - 1\\ 0, for \ Nm \le n \le N - 1 \end{cases}$$

Step2:zero-fill h[n] to N-length

$$h[n] = \begin{cases} h[n], for \ 0 \le n \le Nh - 1\\ 0, for \ Nh \le n \le N - 1 \end{cases}$$

- Step3:N-point DFT to Xm[k] and Hm[k]
- Step4: $Y_m[k] = X_m[k] *H_m[k]$
- Step5:Inverse DFT y_m[n]
- Step6: $y[n] = \sum_{m=1}^{\infty} y_m [n + (m-1)Nm]$

h[n]

overlap-add method

- Overlap-save method using N_m -point circular convolution($N_m > N_h$, 固定x段为 N_m length)
 - Stepi:Cut the original sequence x[n] into N_m length
 - Step2: using circular convolution directly.
 - Step3: Keep the last M- N_h +1 samples , but reject previous N_h -1

let
$$x_m[k] = x[k + m(N_m - N_h + 1)], 0 \le k \le N_m - 1$$

Then
$$x[n] = \sum_{m=0}^{\infty} x_m [n - m(N_m - N_h + 1)]$$

 $w_m[n] = x_m[n] circular convolution h[n]$

$$y_m[n] = \begin{cases} 0.0 \le n \le N_h - 2, & reject; \\ w_m[n], N_h - 1 \le n \le N_m - 1, accept \end{cases}$$
$$y_L[n + m(M - N_h + 1)] = y_m[n]$$

Illustration of the overlap-save method.(a)Overlapped segments of the sequence x[n] (b)Sequences generated by an 11-point circular convolution ,and (c) sequence obtained

overlap-save

- Ex. The linear convolution of a length-110 sequence with a length-1300 sequence is to be computed using 128-point DFT and IDFTs
- (a)Determine the smallest number of DFTs and IDFTs needed to compute the above linear convolution using the Overlap-add approach.
- (b) Determine the smallest number of DFTs and IDFTs needed to compute the above linear convolution using the Overlap-save approach.
- (a) <u>Overlap-add method</u>: Since the impulse response is of length and the DFT size to be used is 128,hence, the number of data samples required for each convolution will be 128-109=19. Also, the DFTs required for the length-1300 data sequence is $\left[\frac{1300}{13}\right] = 69$. Also, the DFT of the impulse response needs to be computed once. Hence, the total number of DFTs used are =69+1=70. The total number of IDFTs used are =69.
- (b) <u>Overlap-save method</u>: In this case ,since the first 110-1=109 points are lost , we need to pad the data sequence with 109 zeros for a total length of 1409. Again, each convolution will result in 128-109=19 correct values . Thus the total number of DFTs required for the data $are\left[\frac{1409}{19}\right] = 75$. Again, 1DFT is required for the impulse response . The total number of DFTs used are 75+1=76. The total number of IDFTs used are =75.

2022/11/5

Convolution of non-causal filter with

causal input

- First, since DFT has no negative part, shift negative part to get Non-negative signal.
- Second, convolution in DFT to get Y[k], then IDFT of Y[k] need shift back
- After get y[n], then shift back N-Nh-1 <=n<=N-1 part to Nh-1 <=n<0 to get correct y[n]

4.7 DFT filter design

- Goals:
 - Given $H(e^{j\omega})$, design a zero-phase FIR LPF h[n] with cut-off ω_c using DFT and inverse DFT;

$$H_{LP}(e^{j\omega}) = \begin{cases} 1, 0 \le |\omega| \le \omega_c, \\ 0, \omega_c < |\omega| \le \pi \end{cases} \to H[k] = \begin{cases} 1, 0 \le k \le k_c, \\ 0, k_c < k \le N - k_c, \\ 1, N - k_c < k \le N - 1 \end{cases}$$

- Method1:
 - pick N, define $\frac{2\pi}{N} = \Delta \omega$, then $\omega_c \to \frac{2\pi k}{N} = k_c \Delta \omega$.
 - for $0 < \omega < \omega_c$, that is $1 \le k \le k_c$, $H(e^{j\omega}) \to H[k]$
 - for $-\omega_c < \omega < 0$, $H^*(e^{j\omega}) \to H[N-k]$.
 - use N-point IDFT, to get h[n] and h[N-k]
 - cascaded to get a completely h[n]

Proof

$$h[n] = DFT^{-1}(H[k])$$

$$= \frac{1}{N} \sum_{k=0}^{k_c} (W_N^{-n})^k + \frac{1}{N} \sum_{k=N-k}^{k_c} (W_N^{-n})^k$$

$$= \frac{1}{N} \frac{1 - W_N^{-n(k_c+1)}}{W_N^{-n}} + \frac{1}{N} \frac{W_N^{-nk_c} - 1}{W_N^{-n}} = \frac{1}{N} \frac{W_N^{-nk_c} - W_N^{-n(k_c+1)}}{W_N^{-n}} \frac{W_N^{-n/2}}{W_N^{-n/2}}$$

$$= \frac{\sin((2\pi/N)n(k_c+1/2))}{\sin((\pi/N)n)} = \frac{\sin((2\pi nk_c/N + (\pi n/2N)))}{\pi/N}$$

When
$$N \gg n$$
, $\frac{\pi n}{2N} \approx 0$, $\frac{\sin(\frac{2\pi nk_c}{N} + (\frac{\pi n}{2N}))}{\frac{\pi}{N}} \approx \frac{\sin(\omega_c n)}{\frac{\pi}{N}} \Rightarrow DTFT$

Note: the phase of $\boldsymbol{H}[\boldsymbol{k}]$ at $\omega=2\pi$ may differ from $\omega=0$

Procedure of getting h[n] from H[k]

- Step1: Determine the function of H[*k*], the size of DFT *M* and cut-off number, *k* for H[k]
- Step2: IDFT to get h[n]
- Step3: Truncate the h[n] to length of $1+2N_h$ by window function
- Step4: determine the h[n] based on causal or non-causal
 - if h[n] is non-causal, then flip the h[n] for M- N_h < n<M to the n<0, so h[n] will be -N_h <=n <= N_h

pseudocode

Given N, Based on the above pseudocode for a LPF H[k] with Nh=100 and AM=10, by DFT and IDFT, Plot h[n] and H[k].

$$H(e^{j\omega(k)}) = H[k]$$

when $k = \omega(k) \frac{N}{2\pi}$

Pseudocode:

```
For 0<=k<=N-1
H[k]=H (e<sup>jω(k)</sup>)
End
h[n]=IDFT{ H[k]}
for 1<=n<=N/2
h[-n]=h[N-n],
end
stop
```

Program 3

1.write a function signal:

S (w, n) = n.exp(-n/6)·cos (
$$\omega$$
, n)
Generate an input signal x(n)

$$X(n)=s(2,n)+s(1.3,n)+s(2.5,n)$$
, $N_x = 100$

2. write a function called Amp. With parameter Am, ω , N_m , X and N_x , which calculate (1) The amplitude response of x as

$$\omega (k) = \frac{\pi k}{N_{m}}$$

$$A_m = \sum_{n=0}^{N_x} x(n) \cdot z^n \mid \mathbf{Z} = \mathbf{e}^{-j\omega (k)}$$
, For $k=0$ to N_m

3.write a function called DSINE with parameter h, $N_{\rm h}$

$$\omega_{\rm c1}$$
 and $\omega_{\rm c2}$, which

designs a band pass FIR digital filter, N_h is its numbers of h, $\omega_{\rm c1}$ and $\omega_{\rm c2}$ are lower and upper cut-off frequency.

4. use DSINE to pass S (1.3, n) but reject other two component of x(n). Plot the amplitude $y(n) = h[n] \otimes x(n)$ with CONV of output.

Summary for convolution using DFT and IDFT

- circular convolution for causal filter with a causal finite signal
 - Step1:Padding zeroes of signal and filter to M-1 length
 - Step2: do M-1 point circular convolution by straight method or DFT and IDFT method
 - When the result is same as that of linear convolution
 - $Nx-1 + N_h M \le n \le M_{-1}$
- Convolution for causal filter with a causal infinite signal
 - Overlap-add method
 - Overlap-save method
- How to do circular convolution for a non-causal filter with a causal signal?
 - Padding zeros for the filter to M-length
 - shift the non-causal part to the end of the length
 - Do the same circular convolution as causal filter
 - Shift back the result