

PROPOSTA DE EXPERIMENTO REMOTO DIDÁTICO APLICADO AO CONTROLE DE ROTAÇÃO DE MOTOR DE CORRENTE CONTINUA

Acadêmico: Luiz Henrique Cassettari

Orientador: Prof. Me. João Mota Neto

Trabalho de Conclusão de Curso - Engenharia Elétrica - Dezembro de 2011

Objetivos

- Experimento Remoto
- Ambiente de Aprendizagem
- Controle PID
- Motor CC

Experimento Remoto

Objeto Controlado

- Tensão de Operação (24V)
- Corrente Nominal (1A)
- Tensão do Taco gerador (2V)

Eletrônica Utilizada no Experimento

- Arduino Uno
- Ethernet Shield

Placa Auxiliar

Ambiente do Arduino

Algoritmo PID

```
float kp = 1.0; // constante proporcional
 float ki = 0.5; // constante integral
 float kd = 0.0; // constante derivativa
 int entrada = 0; // entrada do controlador pid
 int setpoint = 50; // setpoint do controlador pid
 int saida = 0; // saida do controlador pid
long erro somatorio = 0; // somatorio dos erros
 int erro anterior = 0; // erro anterior
 void fazer pid(){
   float dt = (float) 50/1000; // periodo de amostragem iqual a 50ms
   int erro = setpoint - entrada; // calculo do erro
   erro somatorio += erro; // adiciona erro ao erro somatorio
   float p = (float) kp*(erro); // calculo proporcional
   float i = (float) ki*(erro somatorio)*dt; // calculo da integral
   float d = (float) kd*(erro - erro anterior)/dt; // calculo da derivada
   erro anterior = erro; // quarda erro para proxima interação
   saida = p + i + d; // saida igual a soma das ações pid
```


Fluxograma do Arduino

Ambiente do Usuário

Fluxograma do Applet

Validação do Algoritmo

$$F1(s) = \frac{1.25}{0.2 * s + 1} \qquad F2(s) = \frac{1.25}{0.00216 * s^2 + 0.1753 * s + 1}$$

Simulações

Setpoint	60%		
Controlador	Кр	Ki	Kd
Р	1.0		
	5.0		
PI	5.0	0.5	
	5.0	2.0	
PID	5.0	0.5	0.5
	5.0	2.0	0.5
	5.0	0.5	2.0
	5.0	2.0	2.0

Setpoint	80%		
Controlador	Kp	Ki	Kd
Р	1.0		
	5.0		
PI	5.0	0.5	
	5.0	2.0	
PID	5.0	0.5	0.5
	5.0	2.0	0.5
	5.0	0.5	2.0
	5.0	2.0	2.0

Comparação do Controlador P

Simulado no Matlab

Gráfico do Aplicativo

Comparação do Controlador PI

Simulado no Matlab

Gráfico do Aplicativo

Comparação do Controlador PID

Simulado no Matlab

Gráfico do Aplicativo

Conclusão

- Controle PID Motor
- Validação do Algoritmo
- Acessibilidade do Experimento

Obrigado

PROPOSTA DE EXPERIMENTO REMOTO DIDÁTICO APLICADO AO CONTROLE DE ROTAÇÃO DE MOTOR DE CORRENTE CONTINUA

Acadêmico: Luiz Henrique Cassettari

Orientador: Prof. Me. João Mota Neto

Trabalho de Conclusão de Curso - Engenharia Elétrica - Dezembro de 2011

