

Sumário

- 1. Bibliografia
- 2. Problemas de Proporcionalidade
- 3. Funções
- 4. Função Afim

Bibliografia

Bibliografia da Aula 02

Livro texto: Fundamentos da Matemática Elementar: 1 (Click para baixar)

Problemas de Proporcionalidade

Proporcionalidade

Proporcionalidade

No geral, duas grandezas x e y são proporcionais quando existe um número a tal que

$$y = ax$$

Revisitando os Problemas da Aula 02

Problema 01:

i) As grandezas *P* e *G*, sendo *P* o número de passagens ao mês e de *G* o gasto mensal com transporte, do Problema 1 são proporcionais? Em caso positivo, de qual tipo?

G (R\$)
45,5
45, 5 * 2
130,00/4

Revisitando os Problemas da Aula 02

Problema 02:

ii) As grandezas A e T, sendo A o número necessário de arestas par formar uma quantidade de triângulos T, do Problema 2 são proporcionais? Em caso positivo, de qual tipo?

Т	Α
1	
2 * 1	
10 * 1	
10/2	
	13
	13 * 2
	21/3

Revisitando os Problemas da Aula 02

iii) O que podemos falar sobre a variação das grandezas A e T, do Problema 2? Essas novas grandezas

$$\Delta T = T_f - T_i$$
 e $\Delta A = A_f - A_i$

são proporcionais? Em caso positivo, de qual tipo?

Problema 03:

 i) Um automóvel está viajando por uma estrada com uma velocidade constante de v km/h. Relacione a quantidade de quilômetros percorrido s pelo carro em 1 hora e meia, com a velocidade do mesmo.

v (km/h)	s (km)
50	
75	
100	
120	
	75 * 2
	210
	210/3

ii) As grandezas v e s são proporcionais? Em caso positivo, de qual tipo?

Problema 04:

i) Um automóvel está viajando por uma estrada com uma velocidade constante de 80 km/h. Relacione a quantidade de quilômetros percorrido s pelo carro em um tempo de t horas.

t (h)	s (km)
1	
1,5	
3	
4, 25	
	240 * 2
	210
	210/3

ii) As grandezas *v* e *s* são proporcionais? Em caso positivo, de qual tipo?

Problema de Estacionamento

i) Vitória fez uma pesquisa de preço nos estacionamentos próximo do seu trabalho e verificou que no estacionamento A é cobrado R\$ 5,00 na primeira hora e R\$ 3,00 para as horas adicionais. Relacione a quantidade de horas t de estacionamento com o valor a ser pago E por essas horas.

t (h)	<i>E</i> (R\$)
1	
3	
10	
12	
	32 * 2
	17 * 3

Problema de Estacionamento

- ii) As grandezas t e E são proporcionais? Em caso positivo, de qual tipo?
- iii) O que podemos falar sobre a variação das grandezas t e E? Essas novas grandezas

$$\Delta t = t_f - t_i$$
 e $\Delta E = E_f - E_i$

são proporcionais? Em caso positivo, de qual tipo?

Funções

Definição

Sejam A e B conjuntos de números reais (A, B $\subset \mathbb{R}$). Uma relação f de A em B recebe o nome de **função definida em** A **com imagens em** B se, e somente se, para todo $x \in A$ existe um só $y \in B$ tal que $(x, y) \in f$.

Notação das Funções

- ► Toda função é uma relação binária de *A* em *B*; portanto, toda função é um conjunto de pares ordenados.
- ► Em geral, existe uma sentença aberta y = f(x) que expressa a lei mediante a qual, dado $x \in A$, determina-se $y \in B$ tal que $(x, y) \in f$.
- lsso significa que, dados os conjuntos A e B, a função f tem a lei de correspondência y = f(x).

Notação das Funções

Nas notações da definição 1:

- 1. O conjunto *A* é chamado de **domínio** da função *f*. O conjunto *B* é chamado **contra-domínio** de *f*.
- 2. Se $x \in A$, o elemento $y = f(a) \in B$ é chamado **imagem de** x pela função f.
- 3. Nenhum elemento de A pode ficar sem imagem e cada $x \in A$ só pode ter uma única imagem.

Exemplo

Exemplo 1

- Retorne aos problemas 1 à 4 e determine se as relações estabelecidas entre as grandezas determinam uma função ou não.
- Nos casos positivos, determine o domínio e o contra-domínio de cada função.

Conjunto Imagem

Para uma função $f: A \to B$, o conjunto de todos os elementos do contra-domínio B que corresponde a alguma elemento do domínio A é um subconjunto de B chamado de **imagem** da função f, e é denotado por Imf. Escrevemos

$$Im f = \{ y \in B | y = f(x), \text{ para algum } x \in A \}$$

Exemplo

Exemplo 2

Retorne ao Exemplo 1 e verifique se os números reais a seguir fazem parte do conjunto imagem das funções estabelecidas.

- a) y = -3
- b y = 45, 5
- y = 13
- d y = 210
- **e** y = 70

Função Afim

Definição

Uma função de \mathbb{R} em \mathbb{R} recebe o nome de função afim quando a cada $x \in \mathbb{R}$ associa ao elemento $ax + b \in \mathbb{R}$, em que $a \neq 0$ e b são números reais dados.

Definição

Isso quer dizer que em toda função afim a sua variação na imagem $\Delta y = f(x_2) - f(x_1)$ é proporcional à variação no domínio $\Delta x = x_2 - x_1$:

$$\Delta y = f(x_2) - f(x_1) = (ax_2 + b) - (ax_1 + b)$$

$$= ax_2 + b - ax_1 - b$$

$$= (ax_2 - ax_1) + (b - b)$$

$$= a(x_2 - x_1) = a\Delta x$$

Assim, sempre que $x_1 \neq x_2$ (ou seja, $x_2 - x_1 \neq 0$), temos

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = a \quad \text{(variação média constante)}$$

Exemplo

Exemplo 3

São exemplos de função afim:

- a) f(x) = 3x + 2
 - a = 3 e b = 2;
- b) $f(x) = -\sqrt{2}x + 1$
 - $a = -\sqrt{2} e b = 1$;

Exemplo

c)
$$f(x) = \pi x$$

- $a = \pi e b = 0$;

Casos Particulares

▶ **OBS:** Quando a = 0, qualquer que seja $x \in \mathbb{R}$, tem-se f(x) = b e a variação média é nula:

$$\frac{\Delta y}{\Delta x} = \frac{b-b}{x_2-x_1} = 0.$$

A esta função dá-se o nome de **função constante**.

No caso em que b = 0, a função f(x) = ax é denominada **função linear**.

O Gráfico de uma Função

Definição 3

Dada uma função $f: A \to B$, o conjunto de todos os pares ordenados da forma $(x, f(x)) \in A \times B$ é chamado **gráfico** da função f:

$$gr(f) = \{(x, f(x)) | x \in A e f(x) \in B\}.$$

Como trabalharemos com $A \subset \mathbb{R}$ e $B = \mathbb{R}$, então podemos representar o gráfico da função f, geometricamente, como um subconjunto do plano cartesiano: $gr(f) \subset \mathbb{R} \times \mathbb{R}$.

O Gráfico de uma Função Afim

Teorema 1

O gráfico cartesiano da função f(x) = ax + b é uma reta.

Demonstração: Teorema 1

- Mostra-se que quaisquer 3 pontos do gráfico estão alinhados.
- Para tanto, usa-se semelhança de triângulos, demonstrada através da proporcionalidade entre as variações Δy e Δx.

Crescimento de Funções

Definição 4

Uma função $f: A \subseteq \mathbb{R} \to \mathbb{R}$ é chamada **crescente** se o valor de f(x) cresce quando x cresce; ou seja, se para $x, x' \in A$, tivermos

$$x < x' \Rightarrow f(x) < f(x')$$
.

Uma função $f: A \subseteq \mathbb{R} \to \mathbb{R}$ é chamada **decrescente** se o valor de f(x) decresce quando x cresce; ou seja, se para $x, x' \in A$, tivermos

$$x < x' \Rightarrow f(x) > f(x').$$

Atividades com o Geogebra

- Função Afim Crescente.
- ► Função Afim Decrescente.
- Função Afim Linear.
- ► Função Constante.