TRUCHET

 4×4 patterns with 90° rotational symmetry

Introduction

Traditionally, Truchet tiles are square tiles that are divided by a diagonal line, and coloured with two colours with a different colour on either side of the diagonal. Each tile can be rotated to one of four positions. Patterns are formed by placing tiles next to each other, rotating individual tiles to create repeated motifs. This booklet presents a complete listing of 4x4 Truchet tile patterns with 90° rotational symmetry (256 patterns). Treating these 4x4 tile patterns as tiles themselves allows for larger decorative patterns to be constructed from them. For example, a uniform frieze made from a single 4x4 tile can actually produce interesting secondary patterns which help illustrate some interesting relationships that exist among the tile patterns.

Each 4x4 Truchet tile pattern with rotational symmetry has a core 2x2 pattern in one of its quadrants that is rotated to produce the overall pattern. In this booklet, the core pattern, or prototile, is assumed to be in the lower left. Each pattern can identified as a sequence of 4 digits (a, b, c, d), or more succinctly, abcd, that list the rotational positions of each tile in the lower left quadrant. This sequence abcd will be referred to as the signature of the tile pattern.

a	b	Э	g
С	d	р	q
b	d	р	С
a	С	q	а

The 0011 pattern

Pattern families

We can group the 4x4 Truchet tile patterns with rotational symmetry into families where tile patterns are considered to be in the same family if they would look the same without colour – if each corresponding tile shares the same diagonal direction. The sequence that represents the family of a tile pattern can be found by taking the sequence of the tile pattern $modulo\ 2$. So, for example, the 16 tile patterns below are all members of the 0110 family.

The 0110 pattern family

For a given family, there is corresponding *companion* family, the family of patterns formed by rotating each square in a member of the original family by 90°. There are also two *skew* families, formed by taking the upper left and lower right quadrants of an original family tile pattern as a founding pattern and a *dual* family, formed by taking the upper right quadrant as a founding patterns. A family is always different than its companion, and each family has a distinct companion, but it can happen that skew and duals can coincide. Self-dual families, where the dual family is the same as the original are of particular interest in the frieze patterns of the next chapter.

The 0110 family pattern

Self-Dual families

Non self-dual families

companion

skew (+)

0010 skew (-)

dual

Family and tile pattern mappings

Related families and tiles can be obtained from applying simple mappings on the signature of the tile pattern.

Family mappings

companion :
$$(a, b, c, d) \mapsto (a + 1, b + 1, c + 1, d + 1) \pmod{2};$$

skew + : $(a, b, c, d) \mapsto (c + 1, a + 1, d + 1, b + 1) \pmod{2};$
reverse : $(a, b, c, d) \mapsto (d, c, b, a) \pmod{2};$
skew - : $(a, b, c, d) \mapsto (b + 1, d + 1, a + 1, c + 1) \pmod{2};$

Tile pattern mappings

$$\begin{array}{c} \text{skew} + : (a,b,c,d) \mapsto (c+1,a+1,d+1,b+1) & (\text{mod } 4); \\ \text{dual} : (a,b,c,d) \mapsto (d+2,c+2,b+2,a+2) & (\text{mod } 4); \\ \text{skew} - : (a,b,c,d) \mapsto (b+3,d+3,a+3,c+3) & (\text{mod } 4); \\ \text{opposite} : (a,b,c,d) \mapsto (a+2,b+2,c+2,d+2) & (\text{mod } 4); \end{array}$$

On the following pages each family will be shown along with its corresponding companion family, the family of patterns formed by rotating each square in a member of the original family by 90°.

а	р	Э	ષ
С	р	р	q
b	d	р	C
a	С	þ	а

0000	0002	0020	0022
0200	0202	0220	0222
2000	2002	2020	2022
2200	2202	2220	2222

1111	1113	1131	1133
1311	1313	1331	1333
3111	3113	3131	3133
3311	3313	3331	3333

1000	1002	1020	1022
1200	1202	1220	1222
3000	3002	3020	3022
3200	3202	3220	3222

0111	0113	0131	0133
0311	0313	0331	0333
2111	2113	2131	2133
2311	2313	2331	2333

0100	0102	0120	0122
0300	0302	0320	0322
2100	2102	2120	2122
2300	2302	2320	2322

1011	1013	1031	1033
1211	1213	1231	1233
3011	3013	3031	3033
3211	3213	3231	3233

0010	0012	0030	0032
0210	0212	0230	0232
2010	2012	2030	2032
2210	2212	2230	2232

1101	1103	1121	1123
1301	1303	1321	1323
3101	3103	3121	3123
3301	3303	3321	3323

0001	0003	0021	0023
0201	0203	0221	0223
2001	2003	2021	2023
2201	2203	2221	2223

1110	1112	1130	1132
1310	1312	1330	1332
3110	3112	3130	3132
3310	3312	3330	3332

1100	1102	1120	1122
1300	1302	1320	1322
3100	3102	3120	3122
3300	3302	3320	3322

0011	0013	0031	0033
0211	0213	0231	0233
2011	2013	2031	2033
2211	2213	2231	2233

1010	1012	1030	1032
1210	1212	1230	1232
3010	3012	3030	3032
3210	3212	3230	3232

0101	0103	0121	0123
0301	0303	0321	0323
2101	2103	2121	2123
2301	2303	2321	2323

1001	1003	1021	1023
1201	1203	1221	1223
3001	3003	3021	3023
3201	3203	3221	3223

0110	0112	0130	0132
0310	0312	0330	0332
2110	2112	2130	2132
2310	2312	2330	2332

Uniform friezes

Each 4x4 Truchet pattern can be treated like a tile and used in a larger pattern. A uniform *frieze* is a horizontal strip of the same tile pattern repeated. Friezes of 4x4 Truchet pattern tiles with rotational symmetry can be quite striking, and have some interesting characteristics.

A frieze of more than one row of a primary tile reveals a secondary tile pattern that appears as another horizontal strip of 4x4 Truchet tile patterns nestled between the rows of primary tiles. Below, a frieze of 2223 tiles has a secondary pattern of 1000 tiles.

The secondary tile in a frieze pattern is the pattern that has been referred to previously as the *dual* of the original pattern. The dual of a tile pattern is the pattern formed by taking the top right quadrant of the original tile as the prototile of the new tile.

Some tiles are self-dual, and frieze patterns formed by self-dual tiles show a much more uniform pattern, as the extra rows of tiles seemingly nestled between the rows of the original tile are made up of the same original tile. Friezes of self-dual tiles have a third *tertiary* tile pattern with 90° rotational symmetry that appears to overlap between adjacent tiles of the original tile. These tertiary tile patterns are the *skew* of the original tile pattern. Some self-dual friezes are also self-skew, leading to even more uniform patterns.

We can consider the uniform friezes formed by the dual tiles as the same pattern. There are 6 pairs of families where the original and dual are not the same, and these pairs of families yield 16 patterns

each. The 4 remaining families contain some self-dual patterns, and some patterns that are *opp-dual* (the secondary tile is the opposite tile of the original), also reducing the number of patterns. These 4 remaining families provide 10 distinct frieze patterns each. This means that the 256 tile patterns generate 136 distinct friezes.

Frieze patterns for family 0000 (secondary, 0000)

Frieze patterns for family 0001 (secondary, 1000)

Frieze patterns for family 0010 (secondary, 0100)

Frieze patterns for family 0011 (secondary, 1100)

Frieze patterns for family 0110 (secondary, 0110)

Frieze patterns for family 0111 (secondary, 1110)

Frieze patterns for family 1001 (secondary, 1001)

Frieze patterns for family 1011 (secondary, 1101)

Frieze patterns for family 1111 (secondary, 1111)

Some designs

This chapter presents some designs made using one or two types of the 4×4 Truchet tile patterns with 90° rotational symmetry.

Self-dual designs

These designs extend the friezes of self-dual patterns to create patterns where copies of the main tile appear as secondary tiles. The other patterns you can see are provided by the tertiary skew tile patterns that seem to overlap betwen the adjacent pairs of tiles.

Design using 2200

Design using 0202

Design using 2130

Design using 3311

Strongly uniform designs

These self-dual tiles are also self-skew, so the pattern that emerges from placing them together is strongly uniform.

Design using 2310

Design using 3021

Op-dual designs

These designs include two primary tiles, One tile type is placed in the center of the design in a 4×4 square, and a second tile type is used to create a 2-tile wide border around the central square. The tiles

chosen are opposites of each other, and they are also opp-dual tiles, so we see secondary effects where each tile type appears in between the rows of the other.

Design using 2222 and 0000

Design using 2002 and 0220

Design using 2332 and 0110

2332

Design using 2112 and 0330

Design using 3223 and 1001

3223

1001

Design using 3003 and 1221

122

Design using 3333 and 1111

Design using 3113 and 1331

Designs with duals

Like the previous section, these patterns feature a square of one tile type surrounded by another. These tiles are duals of each other, but are not opposite.

Design using 2003 and 1220

Design using 0210 and 2302

Design using 2301 and 3210

Design using 2331 and 3110

Design using 2113 and 1330

Design using 3211 and 3301

Design using 1013 and 1323

1013

Contrasting designs

The tiles in these square and frame patterns were chosen for their contrast with one another.

Design using 2312 and 2310

2312

2310

Design using 0312 and 0132

0312

0132

Design using 0221 and 1203

Design using 2201 and 2012

Design using 0120 and 2012

Design using 2003 and 2220

Design using 2330 and 2130

Design using 0312 and 0310

Bibliography

Dominique Douat. *Methode pour faire une infinité de desseins differens, avec des carreaux mi-partis de deux couleurs par une ligne diagonale.*Chez Florentin de Laulne, 1722. URL https://books.google.ca/books?id=pK7-X6u7FCMC.

Sébastien Truchet. *Memoir on combinations*. Memoirs of the Royal Academy of Sciences, 1704.