Plan:

- 1. Define Simple linear regression
- 2. Explain the underlying assumptions of linear regression

Inferential Analysis: Regression

Shannon E. Ellis, Ph.D UC San Diego

Department of Cognitive Science sellis@ucsd.edu

CORRELATION

ASSOCIATION BETWEEN VARIABLES

i.e. Pearson Correlation, Spearman Correlation, chi-square test

COMPARISON OF MEANS

DIFFERENCE IN MEANS BETWEEN VARIABLES

i.e. t-test, ANOVA

REGRESSION

DOES CHANGE IN ONE VARIABLE MEAN CHANGE IN ANOTHER?

I.e. simple regression, multiple regression

NON-PARAMETRIC TESTS

FOR WHEN ASSUMPTIONS IN THESE OTHER 3 CATEGORIES ARE NOT MET

i.e. Wilcoxon rank-sum test, Wilcoxon sign-rank test, sign test

CORRELATION

ASSOCIATION BETWEEN VARIABLES

i.e. Pearson Correlation, Spearman Correlation, chi-square test

COMPARISON OF MEANS

DIFFERENCE IN MEANS BETWEEN VARIABLES

i.e. t-test, ANOVA

REGRESSION

DOES CHANGE IN ONE VARIABLE MEAN CHANGE IN ANOTHER?

I.e. simple regression, multiple regression

NON-PARAMETRIC TESTS

FOR WHEN ASSUMPTIONS IN THESE OTHER 3 CATEGORIES ARE NOT MET

i.e. Wilcoxon rank-sum test, Wilcoxon sign-rank test, sign test

"All models are wrong, but some are useful"

-George Box (British Statistician, *JASA* 1976)

Effect size (β) can be estimated using the slope of the line

Effect size (β) can be estimated using the slope of the line

The *closer* the points are to the regression line, the *less uncertain* we are in our estimate

Assumptions of linear regression

- 1. Linear relationship
- 2. Multivariate normality
- 3. No multicollinearity
- 4. No auto-correlation
- 5. Homoscedasticity

Linear regression assumes no multicollinearity. Multicollinearity occurs when the independent variables (in multiple linear regression) are too highly correlated with each other.

Autocorrelation occurs when the observations are *not* independent of one another (i.e. stock prices)

