

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

GEOESTADÍSTICA APLICADA

Tema: Funciones Aleatorias

Instructores:

Dr. Martín A. Díaz Viera (mdiazv@imp.mx)

Dr. Ricardo Casar González (<u>rcasar@imp.mx</u>)

Contenido

- Función Aleatoria (FA)
- Variable regionalizada
- Función de distribución de una FA
- Momentos de una FA
- Estacionaridad de una FA
- Clasificación de las FA según su grado de estacionaridad
- FA estacionarias de segundo orden
- Funciones aleatorias intrínsecas
- Funciones aleatorias no estacionarias

Función Aleatoria

- Si a cada punto \underline{x} que pertenece a un dominio Ω en el espacio le hacemos corresponder una variable aleatoria \mathbf{Z} , entonces el conjunto de variables aleatorias espacialmente distribuidas será una *función aleatoria* $\mathbf{Z}(\underline{x})$.
- Ejemplo: La distribución espacial de las facies o la porosidad en un yacimiento.

Variable regionalizada

- Al tomar una muestra de una función aleatoria, a la que llamaremos realización, se obtendrá una función espacial discreta la cual constituye una variable regionalizada.
- Es decir una realización de una función aleatoria es una *variable regionalizada* .

Función de distribución de una FA

• Sea una función aleatoria $\mathbf{Z}(\underline{x})$ definida en una región Ω , entonces el vector aleatorio

$$\{Z(\underline{x}_1), Z(\underline{x}_2), ..., Z(\underline{x}_n)\}$$

• se caracteriza por su función de distribución de probabilidad *n*-variada:

$$F_{Z(\underline{x}_1),Z(\underline{x}_2),...,Z(\underline{x}_n)}(z_1,z_2,...,z_n) =$$

$$= \Pr \left[Z(\underline{x}_1) \le z_1, Z(\underline{x}_2) \le z_2,...,Z(\underline{x}_n) \le z_n \right]$$

Función de distribución de una FA

- El conjunto de todas las distribuciones para todo valor de *n* y para cualquier selección de puntos en Ω constituye la *ley espacial de probabilidad* de la función aleatoria.
- Esta función en la práctica es imposible de determinar y sólo se puede esperar inferir los primeros momentos de la distribución de la FA **Z**(<u>x</u>).

Momentos de una FA

- Momento de primer orden
- Conocido como *valor medio* o *media* de
 Z(<u>x</u>) está definido como:

$$m(\underline{x}) = E[Z(\underline{x})]$$

Momentos de una FA

- Momentos de segundo orden
- La *varianza* de $Z(\underline{x})$ está definida como:

$$\sigma^{2}(\underline{x}) = Var[Z(\underline{x})] = E[\{Z(\underline{x}) - m(\underline{x})\}^{2}]$$

 La covarianza de Z(x) está definida como:

$$C(\underline{x}_i,\underline{x}_j) = E\left[\left\{Z(\underline{x}_i) - m(\underline{x}_i)\right\}\left\{Z(\underline{x}_j) - m(\underline{x}_j)\right\}\right]$$

Momentos de una FA

- Momentos de segundo orden
- El *semivariograma* de **Z**(<u>x</u>) está definido como:

$$2\gamma(\underline{x}_{i},\underline{x}_{j}) = Var\left[Z(\underline{x}_{i}) - Z(\underline{x}_{j})\right]$$
$$\gamma(\underline{x}_{i},\underline{x}_{j}) = \frac{1}{2}E\left[\left\{Z(\underline{x}_{i}) - Z(\underline{x}_{j})\right\}^{2}\right]$$

 También conocido como función de semivarianzas o variograma

Estacionaridad de una FA

Se dice que una función aleatoria es *estrictamente estacionaria* si su función de distribución de probabilidad es invariante a cualquier traslación respecto a un vector *h* .

Pero resulta práctico limitar la hipótesis de estacionaridad a los primeros momentos.

Clasificación de las FA según su grado de estacionaridad

• FA estacionarias de segundo orden

FA aleatorias intrínsecas

Funciones aleatorias no estacionarias

FA estacionarias de segundo orden

Se dice que una FA es *estacionaria de segundo orden* si sus momentos de primer y segundo orden no dependen de la posición, es decir

$$E[Z(\underline{x})] = m \quad y \quad Var[Z(\underline{x})] = \sigma^2 \quad \forall \underline{x}$$

$$C(\underline{h}) \equiv C(\underline{x} + \underline{h}, \underline{x}) = E[Z(\underline{x} + \underline{h})Z(\underline{x})] - m^2$$

$$\gamma(\underline{h}) \equiv \gamma(\underline{x} + \underline{h}, \underline{x}) = \frac{1}{2} E\left[\left\{Z(\underline{x} + \underline{h}) - Z(\underline{x})\right\}^{2}\right]$$

FA aleatorias intrínsecas

- Cuando la FA no es estacionaria pero las diferencias $Z(\underline{x}+\underline{h})-Z(\underline{x})$ son estacionarias de segundo orden (*Hipótesis Intrínseca*)
- El valor esperado de la diferencia es

$$E\left[Z(\underline{x}+\underline{h})-Z(\underline{x})\right]=m \quad \forall \underline{x}$$

• La varianza de la diferencia es

$$Var\left[Z(\underline{x}+\underline{h})-Z(\underline{x})\right]=2\gamma(\underline{h}) \quad \forall \underline{x}$$

- Cuando no cumplen la *Hipótesis Intrínseca*.
- El valor esperado de la diferencia depende de la posición

• La varianza de la diferencia no es estacionaria

Diagrama de clasificación de las FAs por su grado de estacionaridad

- Un indicador de no estacionaridad (tendencia) es cuando el variograma presenta un crecimiento similar o superior a <u>h</u>²
- Si consideramos a la FA como $Z(\underline{x}) = m(\underline{x}) + R(\underline{x})$ Entonces vemos que el variograma depende de \underline{x}

$$\gamma(\underline{x}+\underline{h},\underline{x}) = \gamma_R(\underline{h}) + 1/2 \left\{ m(\underline{x}+\underline{h}) - m(\underline{x}) \right\}^2$$

• Si la deriva o tendencia es lineal $m(\underline{x}) = m_0 + \underline{m}_1 \cdot \underline{x}$ $\gamma(\underline{h}) = \gamma_R(\underline{h}) + 1/2(\underline{m}_1 \cdot \underline{h})^2$

Ejemplo de datos en presencia de tendencia con un variograma que crece \underline{h}^2

No_muestras	130
Minimo	1967.78
Cuartil_1er	2018.14
Mediana	2030.15
Media	2046.81
Cuartil_3er	2060.89
Maximo	2232.12
Rango	264.34
Rango_Intercuartil	42.75
Varianza	2382.28
Desv_Estandar	48.81
Simetria	1.53
Curtosis	5.05

Ejemplo de datos en presencia de tendencia con un variograma que crece \underline{h}^2

No_muestras	130
Minimo	1967.78
Cuartil_1er	2018.14
Mediana	2030.15
Media	2046.81
Cuartil_3er	2060.89
Maximo	2232.12
Rango	264.34
Rango_Intercuartil	42.75
Varianza	2382.28
Desv_Estandar	48.81
Simetria	1.53
Curtosis	5.05

Ejemplos de Estacionaridad

- (a) Media y varianza constantes; (b) media variable y varianza constante;
- (c) Media constante y varianza no constante; (d) Media y varianza no constantes.

Ejemplos de Estacionaridad

(a) Media estacionaria; (b) Media no estacionaria

