ARM[®] 和 Thumb[®]-2 指令集 快速参考卡

表关键字			
Rm {, <opsh>}</opsh>	请参阅表 寄存器,可选择移动常数个位		
<0perand2>	请参阅表 灵活的操作数 2 。移位和循环移位只可用于 Operand2。	<reglist></reglist>	以逗号隔开的寄存器列表,括在大括号{和}内。
<fields></fields>	请参阅表 PSR 域 。	<reglist-pc></reglist-pc>	作为 <reglist>, 不能包含 PC。</reglist>
<psr></psr>	CPSR (当前处理器状态寄存器)或 SPSR (保存的处理器状态寄存器)	<reglist+pc></reglist+pc>	作为 <reglist>, 包含 PC。</reglist>
C* ,V*	在体系结构 v4 及其更早版本中,标记不可预知;在体系结构 v5 及其以后版本中,标记保持不变。	+/-	+或-£(+可省略。)
<rs sh></rs sh>	可为 Rs 或一个直接移位值。每种移位类型的允许值与		请参阅表 ARM 体系结构版本。
	表 寄存器,可选择移动常数个位 中的相同。	<iflags></iflags>	中断标记。一个或多个 a、i、f(中止、中断、快速中断)。
x, y	B 或 T, B 表示半寄存器 [15:0], T 表示半寄存器 [31:16]。	<p_mode></p_mode>	请参阅表 处理器模式
<imm8m></imm8m>	ARM 32 位常数,由 8 位值向右循环移偶数位生成。	SPm	<p_mode> 所指定的处理模式的 SP</p_mode>
	Thumb 32 位常数,由 8 位值左移任意位生成,	<1sb>	位域的最低有效位。
	格式模式为 0xXYXYXYXY、0x00XY00XY 或 0xXY00XY00。	<width></width>	位域宽度, <width> + <lsb> 必须小于或等于 32。</lsb></width>
<prefix></prefix>	请参阅并行指令的前缀	{X}	如果有 X,则 RsX 为 Rs 循环 16 位生成。否则, RsX 为 Rs。
{IA IB DA DB}	之后增加、之前增加、之后减小、之前减小。	{!}	如果有!,则在数据传送完毕后更新基址寄存器(前变址)。
	IB和 DA不可用于 Thumb 状态下。如果省略,则缺省时为 IA。	{S}	如果有 S, 则更新条件标记。
<size></size>	B、SB、H 或 SH, 含义分别为字节、有符号字节、半字和有符号半字。	{T}	如果有 T,则带有用户模式特权。
	SB和 SH不可用于 STR 指令。	{R}	如果存在 R,则对结果进行舍入,否则将其截断。

运算			汇编程序	S更	新		操作	注释
加法	加法		ADD{S} Rd, Rn, <operand2></operand2>	N	Z (C V	Rd := Rn + Operand2	N
	带进位		ADC{S} Rd, Rn, <operand2></operand2>	N	Z	C V	Rd := Rn + Operand2 + 进位	N
	宽	T2	ADD Rd, Rn, # <imm12></imm12>				Rd:= Rn + imm12, imm12 的范围为 0-4095	T, P
	饱和 {加倍}	5E	Q{D}ADD Rd, Rm, Rn				Rd := SAT(Rm + Rn) 加倍 $Rd := SAT(Rm + SAT(Rn * 2))$	Q
寻址	PC 相对的寻址		ADR Rd, <label></label>				Rd:= <label>, 有关 <label> 相对于当前指令的范围, 请参阅注释 L</label></label>	N, L
减法	减法		SUB{S} Rd, Rn, <operand2></operand2>	N	Z (C V	Rd := Rn - Operand2	N
	带进位		SBC{S} Rd, Rn, <operand2></operand2>	N	Z	C V	Rd := Rn - Operand2 - NOT (进位)	N
	宽	T2	SUB Rd, Rn, # <imm12></imm12>	N	Z	C V	Rd := Rn - imm12, imm12 的范围为 0-4095	T, P
	反向减法		RSB{S} Rd, Rn, <operand2></operand2>	N	Z	C V	Rd := Operand2 - Rn	N
	带进位反向减法		RSC{S} Rd, Rn, <operand2></operand2>	N	Z	CV	Rd := Operand2 - Rn - NOT (进位)	A
	饱和 {加倍}	5E	Q{D}SUB Rd, Rm, Rn				Rd := SAT(Rm - Rn) 加倍 $Rd := SAT(Rm - SAT(Rn * 2))$	Q
	从异常中返回, 无出栈。		SUBS PC, LR, # <imm8></imm8>				PC = LR - imm8, CPSR = SPSR (当前模式), imm8 的范围为 0-255。	T
并行	半字方式加法	6	<pre><prefix>ADD16 Rd, Rn, Rm</prefix></pre>				Rd[31:16] := Rn[31:16] + Rm[31:16], Rd[15:0] := Rn[15:0] + Rm[15:0]	G
算法	半字方式减法	6	<pre><prefix>SUB16 Rd, Rn, Rm</prefix></pre>				Rd[31:16] := Rn[31:16] - Rm[31:16], Rd[15:0] := Rn[15:0] - Rm[15:0]	G
	字节方式加法	6	<pre><prefix>ADD8 Rd, Rn, Rm</prefix></pre>				Rd[31:24] := Rn[31:24] + Rm[31:24], Rd[23:16] := Rn[23:16] + Rm[23:16], Rd[15:8] := Rn[15:8] + Rm[15:8], Rd[7:0] := Rn[7:0] + Rm[7:0]	G
	字节方式减法	6	<pre><prefix>SUB8 Rd, Rn, Rm</prefix></pre>				Rd[31:24] := Rn[31:24] - Rm[31:24], Rd[23:16] := Rn[23:16] - Rm[23:16], Rd[15:8] := Rn[15:8] - Rm[15:8], Rd[7:0] := Rn[7:0] - Rm[7:0]	G
	交换半字,半字方式加法,半字方式减法	6	<pre><prefix>ASX Rd, Rn, Rm</prefix></pre>				Rd[31:16] := Rn[31:16] + Rm[15:0], Rd[15:0] := Rn[15:0] - Rm[31:16]	G
	交换半字,半字方减法,半字方式加法	6	<pre><prefix>SAX Rd, Rn, Rm</prefix></pre>				Rd[31:16] := Rn[31:16] - Rm[15:0], Rd[15:0] := Rn[15:0] + Rm[31:16]	G
	差值的绝对值无符号求和	6	USAD8 Rd, Rm, Rs				Rd := Abs(Rm[31:24] - Rs[31:24]) + Abs(Rm[23:16] - Rs[23:16]) + Abs(Rm[15:8] - Rs[15:8]) + Abs(Rm[7:0] - Rs[7:0])	
	差值的绝对值无符号求和, 再累加	6	USADA8 Rd, Rm, Rs, Rn				Rd := Rn + Abs(Rm[31:24] - Rs[31:24]) + Abs(Rm[23:16] - Rs[23:16]) + Abs(Rm[15:8] - Rs[15:8]) + Abs(Rm[7:0] - Rs[7:0])	
饱和	有符号饱和字, 右移	6	SSAT Rd, # <sat>, Rm{, ASR <sh>}</sh></sat>				Rd:= SignedSat((Rm ASR sh), sat)。 <sat> 的范围为 1-32, <sh> 的范围为 1-31。</sh></sat>	Q, R
	有符号饱和字, 左移	6	SSAT Rd, # <sat>, Rm{, LSL <sh>}</sh></sat>				Rd:=SignedSat((Rm LSL sh), sat)。 <sat>的范围为 1-32, <sh>的范围为 0-31。</sh></sat>	Q
	有符号饱和两个半字	6	SSAT16 Rd, # <sat>, Rm</sat>				Rd[31:16] := SignedSat(Rm[31:16], sat), Rd[15:0] := SignedSat(Rm[15:0], sat)。 <sat> 的范围为 1-16。</sat>	Q
	无符号饱和字, 右移	6	<pre>USAT Rd, #<sat>, Rm{, ASR <sh>}</sh></sat></pre>				Rd:= UnsignedSat((Rm ASR sh), sat)。 <sat>的范围为 0-31, <sh>的范围为 1-31。</sh></sat>	Q、R
	无符号饱和字, 左移	6	USAT Rd, # <sat>, Rm{, LSL <sh>}</sh></sat>				Rd:=UnsignedSat((Rm LSL sh), sat)。 <sat>的范围为 0-31, <sh>的范围为 0-31。</sh></sat>	Q
	无符号饱和两个半字	6	USAT16 Rd, # <sat>, Rm</sat>				Rd[31:16] := UnsignedSat(Rm[31:16], sat), Rd[15:0] := UnsignedSat(Rm[15:0], sat)。 <sat>范围为 0-15。</sat>	Q

ARM 和 Thumb-2 指令集 快速参考卡

运算			汇编程序	S更新	f		操作	注释
乘法	乘法		MUL{S} Rd, Rm, Rs	N Z	C*		Rd := (Rm * Rs)[31:0] (如果 Rm 为 Rd, 则 S 可用于 Thumb-2 中。)	N, S
	乘加		MLA{S} Rd, Rm, Rs, Rn	N Z	C*		Rd := (Rn + (Rm * Rs))[31:0]	S
	乘减	T2	MLS Rd, Rm, Rs, Rn				Rd := (Rn - (Rm * Rs))[31:0]	
	无符号长乘法		UMULL{S} RdLo, RdHi, Rm, Rs	N Z	C*	V*	RdHi,RdLo := unsigned(Rm * Rs)	S
	长整数无符号乘加		UMLAL{S} RdLo, RdHi, Rm, Rs	N Z	C*	V*	RdHi,RdLo := unsigned(RdHi,RdLo + Rm * Rs)	S
	无符号长乘法, 两次加法	6	UMAAL RdLo, RdHi, Rm, Rs				RdHi,RdLo := unsigned(RdHi + RdLo + Rm * Rs)	
	长整数有符号乘法		SMULL{S} RdLo, RdHi, Rm, Rs	N Z	C*	V*		S
	长整数乘加		SMLAL{S} RdLo, RdHi, Rm, Rs	N Z				S
	16 * 16 位	5E	SMULxy Rd, Rm, Rs	., 2	•	•	Rd := Rm[x] * Rs[y]	
	32 * 16 位	5E	SMULWy Rd, Rm, Rs				Rd := (Rm * Rs[y])[47:16]	
	16 * 16 位并累加	5E	SMLAxy Rd, Rm, Rs, Rn				Rd := Rn + Rm[x] * Rs[y]	Q
	32 * 16 位并累加	5E	SMLAWy Rd, Rm, Rs, Rn				Rd := Rn + (Rm * Rs[y])[47:16]	o
	长整数 16 * 16 位并累加	5E	SMLALxy RdLo, RdHi, Rm, Rs				RdHi,RdLo := RdHi,RdLo + Rm[x] * Rs[y]	V
	两次有符号乘法,乘积相加	6	SMUAD{X} Rd, Rm, Rs				Rd:= Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16]	Q
		6						_
	并累加		SMLAD(X) Rd, Rm, Rs, Rn				Rd := Rn + Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16] Rd := Rn + Rm[15:0] * RsX[15:0] + Rm[21:16] * RsX[31:16]	Q
	并累加(长整数)	6	SMLALD{X} RdLo, RdHi, Rm, Rs				RdHi,RdLo := RdHi,RdLo + Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16]	
	两次有符号乘法,乘积相减	6	SMUSD{X} Rd, Rm, Rs				Rd := Rm[15:0] * RsX[15:0] - Rm[31:16] * RsX[31:16]	Q
	并累加	6	SMLSD{X} Rd, Rm, Rs, Rn				Rd := Rn + Rm[15:0] * RsX[15:0] - Rm[31:16] * RsX[31:16]	Q
	并累加(长整数)	6	SMLSLD{X} RdLo, RdHi, Rm, Rs				RdHi,RdLo := RdHi,RdLo + Rm[15:0] * RsX[15:0] - Rm[31:16] * RsX[31:16]	
	有符号高位字乘法	6	SMMUL{R} Rd, Rm, Rs				Rd := (Rm * Rs)[63:32]	
	并累加	6	SMMLA{R} Rd, Rm, Rs, Rn				Rd := Rn + (Rm * Rs)[63:32]	
	乘减	6	SMMLS{R} Rd, Rm, Rs, Rn				Rd := Rn - (Rm * Rs)[63:32]	
	带内部 40 位累加	XS	MIA Ac, Rm, Rs				Ac := Ac + Rm * Rs	
	组合半字	XS	MIAPH Ac, Rm, Rs				Ac := Ac + Rm[15:0] * Rs[15:0] + Rm[31:16] * Rs[31:16]	
	半字	XS	MIAxy Ac, Rm, Rs				Ac := Ac + Rm[x] * Rs[y]	
除法	有符号或无符号	RM	<op> Rd, Rn, Rm</op>				Rd:=Rn/Rm <op>为 SDIV(有符号)或 UDIV(无符号)</op>	
移动	移动		MOV{S} Rd, <0perand2>	N Z	С		Rd := Operand2 请参阅移位指令	N
数据	求反移动		MVN{S} Rd, <0perand2>	N Z	C		Rd := 0xFFFFFFF EOR Operand2	N
	移到顶部	T2	MOVT Rd, # <imm16></imm16>				Rd[31:16] := imm16, Rd[15:0] 不受影响, imm16 的范围为 0-65535	
	宽	T2	MOV Rd, # <imm16></imm16>				Rd[15:0] := imm16, Rd[31:16] = 0, imm16 范围为 0-65535	
	40 位累加器到寄存器	XS	MRA RdLo, RdHi, Ac				RdLo := Ac[31:0], RdHi := Ac[39:32]	
	寄存器到 40 位累加器	XS	MAR Ac, RdLo, RdHi				Ac[31:0] := RdLo, Ac[39:32] := RdHi	
移位	算术右移		ASR{S} Rd, Rm, <rs sh></rs sh>	N Z	С		Rd:= ASR(Rm, Rs sh) 与 MOV(S) Rd, Rm, ASR <rs sh> 相同</rs sh>	N
	逻辑左移		LSL{S} Rd, Rm, <rs sh></rs sh>	N Z	C		Rd:=LSL(Rm, Rs sh) 与 MOV{S} Rd, Rm, LSL <rs sh>相同</rs sh>	N
	逻辑右移		LSR{S} Rd, Rm, <rs sh></rs sh>	N Z	C		Rd:=LSR(Rm, Rs sh) 与 MOV(S) Rd, Rm, LSR <rs sh>相同</rs sh>	N
	向右循环移		ROR{S} Rd, Rm, <rs sh></rs sh>	N Z	C		Rd:=ROR(Rm, Rs sh) 与MOV{S} Rd, Rm, ROR <rs sh>相同</rs sh>	N
	带扩展的向右循环移		RRX{S} Rd, Rm	N Z			Rd := RRX(Rm) 与 MOV{S} Rd, Rm, RRX 相同	
计算前导		5	CLZ Rd, Rm				Rd := Rm 中的前导零的数目	
比较	比较		CMP Rn, <operand2></operand2>	N Z	С	V	更新 Rn - Operand2 的 CPSR 标记	N
2012	与负数比较		CMN Rn, <operand2></operand2>	N Z			更新 Rn + Operand2 的 CPSR 标记	N
逻辑	测试		TST Rn, <0perand2>	N Z			更新 Rn AND Operand2 的 CPSR 标记	N
24	相等测试		TEQ Rn, <operand2></operand2>	N Z			更新 Rn EOR Operand2 的 CPSR 标记	1
	与		AND{S} Rd, Rn, <operand2></operand2>	N Z			Rd := Rn AND Operand2	N
			EOR{S} Rd, Rn, <operand2></operand2>	N Z			Rd := Rn AND Operand2 Rd := Rn EOR Operand2	N N
	异或		ORR{S} Rd, Rn, <operand2></operand2>	N Z				
	或	TT:0	• • • •				Rd := Rn OR Operand2	N
	或非	T2	ORN(S) Rd, Rn, <operand2></operand2>	N Z			Rd := Rn OR NOT Operand2	T
	位清除		BIC{S} Rd, Rn, <operand2></operand2>	N Z	C		Rd := Rn AND NOT Operand2	N

ARM 和 Thumb-2 指令集 快速参考卡

运算			汇编程序	操作	注释
位域	位域清零	T2	BFC Rd, #<1sb>, # <width></width>	Rd[(width+lsb-1):lsb] := 0, Rd 的其他位不受影响	
	位域插入	T2	BFI Rd, Rn, #<1sb>, # <width></width>	Rd[(width+lsb-1):lsb] := Rn[(width-1):0], Rd 的其他位不受影响	
	有符号位域提取	T2	SBFX Rd, Rn, #<1sb>, # <width></width>	Rd[(width-1):0] = Rn[(width+lsb-1):lsb], Rd[31:width] = 复制(Rn[width+lsb-1])	
	无符号位域提取	T2	UBFX Rd, Rn, #<1sb>, # <width></width>	Rd[(width-1):0] = Rn[(width+lsb-1):lsb], Rd[31:width] = 复制(0)	
组合	组合: 低半字+高半字	6	PKHBT Rd, Rn, Rm{, LSL # <sh>}</sh>	Rd[15:0] := Rn[15:0], Rd[31:16] := (Rm LSL sh)[31:16]。sh 的范围为 0-31。	
	组合: 高半字+低半字	6	PKHTB Rd, Rn, Rm{, ASR # <sh>}</sh>	Rd[31:16] := Rn[31:16], Rd[15:0] := (Rm ASR sh)[15:0]。sh 的范围为 1-32。	
有符号	半字到字	6	SXTH Rd, Rm{, ROR # <sh>}</sh>	Rd[31:0] := SignExtend((Rm ROR (8 * sh))[15:0])。sh 的范围为 0-3。	N
扩展	两个字节到半字	6	SXTB16 Rd, Rm{, ROR # <sh>}</sh>	Rd[31:16] := SignExtend((Rm ROR (8 * sh))[23:16]), Rd[15:0] := SignExtend((Rm ROR (8 * sh))[7:0])。sh 的范围为 0-3。	
	字节到字	6	SXTB Rd, Rm{, ROR # <sh>}</sh>	Rd[31:0] := SignExtend((Rm ROR (8 * sh))[7:0])。sh 的范围为 0-3。	N
无符号	半字到字	6	UXTH Rd, Rm{, ROR # <sh>}</sh>	Rd[31:0] := ZeroExtend((Rm ROR (8 * sh))[15:0])。sh 的范围为 0-3。	N
扩展	两个字节到半字	6	UXTB16 Rd, Rm{, ROR # <sh>}</sh>	Rd[31:16] := ZeroExtend((Rm ROR (8 * sh))[23:16]), Rd[15:0] := ZeroExtend((Rm ROR (8 * sh))[7:0])。sh 的范围为 0-3。	
	字节到字	6	UXTB Rd, Rm{, ROR # <sh>}</sh>	Rd[31:0] := ZeroExtend((Rm ROR (8 * sh))[7:0])。sh 的范围为 0-3。	N
带加法的	半字到字,加法	6	SXTAH Rd, Rn, Rm{, ROR # <sh>}</sh>	Rd[31:0] := Rn[31:0] + SignExtend((Rm ROR (8 * sh))[15:0])。sh 的范围为 0-3。	
有符号 扩展	两个字节到半字, 加法	6	SXTAB16 Rd, Rn, Rm{, ROR # <sh>}</sh>	Rd[31:16] := Rn[31:16] + SignExtend((Rm ROR (8 * sh))[23:16]), Rd[15:0] := Rn[15:0] + SignExtend((Rm ROR (8 * sh))[7:0])。sh 的范围为 0-3。	
	字节到字,加法	6	SXTAB Rd, Rn, Rm{, ROR # <sh>}</sh>	Rd[31:0] := Rn[31:0] + SignExtend((Rm ROR (8 * sh))[7:0])。sh 的范围为 0-3。	
带加法的	半字到字,加法	6	UXTAH Rd, Rn, Rm{, ROR # <sh>}</sh>	Rd[31:0] := Rn[31:0] + ZeroExtend((Rm ROR (8 * sh))[15:0])。sh 的范围为 0-3。	
无符号 扩展	两个字节到半字, 加法	6	UXTAB16 Rd, Rn, Rm{, ROR # <sh>}</sh>	Rd[31:16] := Rn[31:16] + ZeroExtend((Rm ROR (8 * sh))[23:16]), Rd[15:0] := Rn[15:0] + ZeroExtend((Rm ROR (8 * sh))[7:0])。sh 的范围为 0-3。	
	字节到字,加法	6	UXTAB Rd, Rn, Rm{, ROR # <sh>}</sh>	Rd[31:0] := Rn[31:0] + ZeroExtend((Rm ROR (8 * sh))[7:0])。sh 的范围为 0-3。	
反转	字中的位	T2	RBIT Rd, Rm	For $(i = 0; i < 32; i++)$: $Rd[i] = Rm[31-i]$	
	字中的字节	6	REV Rd, Rm	$Rd[31:24] := Rm[7:0], \ Rd[23:16] := Rm[15:8], \ Rd[15:8] := Rm[23:16], \ Rd[7:0] := Rm[31:24]$	N
	两个半字中的字节	6	REV16 Rd, Rm	$Rd[15:8] := Rm[7:0], \ Rd[7:0] := Rm[15:8], \ Rd[31:24] := Rm[23:16], \ Rd[23:16] := Rm[31:24]$	N
	低半字中的字节, 符号扩展	6	REVSH Rd, Rm	Rd[15:8] := Rm[7:0], Rd[7:0] := Rm[15:8], Rd[31:16] := Rm[7] * &FFFF	N
选择	选择字节	6	SEL Rd, Rn, Rm	如果 GE[0] = 1, 则 Rd[7:0] := Rn[7:0], 否则 Rd[7:0] := Rm[7:0] GE[1]、GE[2]、GE[3] 时位 [15:8]、[23:16]、[31:24] 的选择方法与 GE[0] 相似	
条件判断	条件判断	T2	<pre>IT{pattern} {cond}</pre>	依据不同的模式,最多由连续四个条件指令句组成。模式为一个字符串,最多三个字母。所有字母都可为 T (然后)或 E (否则)。 IT 之后的第一条指令可有条件 cond。如果相应的字母为 T,则后续指令可有条件 cond;如果相应的字母为 E,则为该 cond 的反面情况。有关可用条件代码的信息,请参阅表 条件字段 。	
跳转	跳转		B <label></label>	PC := label。label 为此指令 ±32MB (T2: ±16MB, T: -252 - +256B)	N, B
	带链接的跳转		BL <label></label>	LR:=下一指令的地址, PC:= label。label 为此指令 ±32MB (T2: ±16MB)。	
	跳转并交换	4T	BX Rm	PC := Rm。如果 Rm[0] 为 1,目标为 Thumb;如果 Rm[0] 为 0,目标则为 ARM。	N
	带链接和交换(1)	5T	BLX <1abel>	LR:=下一指令的地址, PC:= label, 更改指令集。 label 为此指令 ±32MB (T2: ±16MB)。	С
	带链接和交换 (2)	5	BLX Rm	LR := 下一指令的地址, PC := Rm[31:1]。如果 Rm[0] 为 1, 更改为 Thumb;如果 Rm[0] 为 0,则更改为ARM。	N
	跳转并更改为 Jazelle 状态	5J	BXJ Rm	如果可用,更改为 Jazelle	
	比较,如果为(非)零,则跳转	T2	CB{N}Z Rn, <label></label>	如果 Rn {== 或 !=} 0, 则 PC := label。label 为 (此指令 + 4-130)。	N, T,
	表跳转字节	T2	TBB [Rn, Rm]	PC = PC + ZeroExtend(Memory(Rn + Rm, 1) << 1)。 跳转范围为 4-512。Rn 可为 PC。	T, U
	表跳转半字	T2	TBH [Rn, Rm, LSL #1]	PC = PC + ZeroExtend(Memory(Rn + Rm << 1, 2) << 1)。 跳转范围为 4-131072。Rn 可为 PC。	T, U
移到 PSR	PSR 到寄存器		MRS Rd, <psr></psr>	Rd := PSR	
或从 PSR	寄存器到 PSR		MSR <psr>_<fields>, Rm</fields></psr>	PSR := Rm (仅选择字节)	1
移出	立即数到 PSR		MSR <psr>_<fields>, #<imm8m></imm8m></fields></psr>	PSR := immed_8r (仅选择字节)	
更改	更改处理器状态	6	<pre>CPSID <iflags> {, #<p_mode>}</p_mode></iflags></pre>	禁用指定的中断,可选择更改模式。	U, N
处理器		6	<pre>CPSIE <iflags> {, #<p_mode>}</p_mode></iflags></pre>	启用指定的中断,可选择更改模式。	U, N
状态	改变处理器模式	6	CPS # <p_mode></p_mode>		U
	设置端序	6	SETEND <endianness></endianness>	为加载和保存设置端序。 <endianness>可为 BE(大端)或 LE(小端)。</endianness>	U, N

ARM 指令集 快速参考卡

加载和存储单个数据项			汇编程序	当 <op> 为 LDR 时执行的操作</op>	当 <op> 为 STR 时执行的操作</op>	注释
加载	直接偏移量		<pre><op>{size}{T} Rd, [Rn {, #<offset>}]{!}</offset></op></pre>	Rd := [address, size]	[address, size] := Rd	1, N
或存储	后变址, 立即数		<pre><op>{size}{T} Rd, [Rn], #<offset></offset></op></pre>	Rd := [address, size]	[address, size] := Rd	2
字、字节 或半字	寄存器偏移量		<pre><op>{size} Rd, [Rn, +/-Rm {, <opsh>}]{!}</opsh></op></pre>	Rd := [address, size]	[address, size] := Rd	3, N
双十丁	后变址,寄存器		<pre><op>{size}{T} Rd, [Rn], +/-Rm {, <opsh>}</opsh></op></pre>	Rd := [address, size]	[address, size] := Rd	4
	PC 相对的		<pp>{size} Rd, <label></label></pp>	Rd := [label, size]	不可用	5, N
加载或存储	直接偏移量	5E	<pre><op>D Rd1, Rd2, [Rn {, #<offset>}]{!}</offset></op></pre>	Rd1 := [address], Rd2 := [address + 4]	[address] := Rd1, [address + 4] := Rd2	6, 9
双字	后变址, 立即数	5E	<pre><op>D Rd1, Rd2, [Rn], #<offset></offset></op></pre>	Rd1 := [address], Rd2 := [address + 4]	[address] := Rd1, [address + 4] := Rd2	6,9
	寄存器偏移量	5E	<pre><op>D Rd1, Rd2, [Rn, +/-Rm {, <opsh>}]{!}</opsh></op></pre>	Rd1 := [address], Rd2 := [address + 4]	[address] := Rd1, [address + 4] := Rd2	7、9
	后变址,寄存器	5E	<pre><op>D Rd1, Rd2, [Rn], +/-Rm {, <opsh>}</opsh></op></pre>	Rd1 := [address], Rd2 := [address + 4]	[address] := Rd1, [address + 4] := Rd2	7、9
	PC 相对的	5E	<pre><op>D Rd1, Rd2, <label></label></op></pre>	Rd1 := [label], Rd2 := [label + 4]	不可用	8,9

预载数据或指令	§ (PLD)	(PLI)	汇编程序	当 <op> 为 PLD 时执行的操作</op>	当 <op> 为 PLI 时执行的操作</op>	注释
直接偏移量	5E	7	<pre><op> [Rn {, #<offset>}]</offset></op></pre>	预载 [address, 32] (数据)	预载 [address, 32] (指令)	1, C
寄存器偏移量	5E	7	<pre><op> [Rn, +/-Rm {, <opsh>}]</opsh></op></pre>	预载 [address, 32] (数据)	预载 [address, 32] (指令)	3, C
PC 相对的	5E	7	<op> <label></label></op>	预载 [label, 32] (数据)	预载 [label, 32] (指令)	5、C

其他内存操作		§	汇编程序	操作	注释
加载多个	数据块加载		LDM{IA IB DA DB} Rn{!}, <reglist-pc></reglist-pc>	从 [Rn] 加载寄存器列表	N, I
	返回(并交换)		<pre>LDM{IA \frac{IB DA }{DB}} Rn{!}, <reglist+pc></reglist+pc></pre>	加载寄存器, PC := [address][31:1] (5T: 当 [address][0] 为 1 时, 更改为 Thumb)	I
	并恢复 CPSR		LDM{IA IB DA DB} Rn{!}, <reglist+pc>^</reglist+pc>	加载寄存器, 跳转(§5T: 并交换), CPSR:= SPSR。仅限异常模式。	I
	用户模式寄存器		LDM{IA IB DA DB} Rn, <reglist-pc>^</reglist-pc>	从 [Rn] 加载用户模式寄存器列表。仅限特权模式。	I
弹出			POP <reglist></reglist>	LDM SP!, <reglist>的规范格式</reglist>	N
加载 独占	信号运算	6	LDREX Rd, [Rn]	Rd:=[Rn],将地址标记为独占访问。如果不是共享地址,则为突出显示的标记设置。 Rd、Rn 不可为 PC。	
	半字或字节	6K	LDREX{H B} Rd, [Rn]	Rd[15:0]:= [Rn] 或 Rd[7:0]:= [Rn],将地址标记为独占访问。 如果不是共享地址,则为突出显示的标记设置。Rd、Rn 不可为 PC。	
	双字	6K	LDREXD Rd1, Rd2, [Rn]	Rd1 := [Rn], Rd2 := [Rn+4],将地址标记为独占访问如果不是共享地址,则为突出显示的标记设置。Rd1、Rd2、Rn 不可为 PC。	9
存储多个	推入或阻止数据存储		<pre>STM{IA \frac{IB DA }{DB}} Rn{!}, <reglist></reglist></pre>	将寄存器列表存储到 [Rn] 中	N, I
	用户模式寄存器		STM{IA IB DA DB} Rn{!}, <reglist>^</reglist>	将用户模式寄存器列表存储到 [Rn] 中。仅限特权模式。	I
推入			PUSH <reglist></reglist>	STMDB SP!, <reglist>的规范格式</reglist>	N
存储	信号运算	6	STREX Rd, Rm, [Rn]	如果允许,则[Rn]:= Rm,清除独占标记, Rd:= 0。否则 Rd:= 1。Rd、Rm、Rn 不可为 PC。	
独占	半字或字节	6K	STREX{H B} Rd, Rm, [Rn]	如果允许, 则 [Rn] := Rm[15:0] 或 [Rn] := Rm[7:0], 清除独占标记, Rd := 0。否则 Rd := 1 Rd、Rm、Rn 不可为 PC。	
	双字	6K	STREXD Rd, Rm1, Rm2, [Rn]	如果允许, 则 [Rn] := Rm1, [Rn+4] := Rm2, 清除独占标记, Rd := 0。否则 Rd := 1 Rd、Rm1、Rm2、Rn 不可为 PC。	9
清除独占		6K	CLREX	清除局部处理器独占标记	C

注释 加	释 加载、存储和预载操作的可用性和选项范围								
注释	ARM 字、B、D	ARM SB、H、SH	ARM T, BT	Thumb-2 字、B、SB、H、SH、D	Thumb-2 T、BT、SBT、HT、SHT				
1	偏移量: - 4095 到 +4095	偏移量: -255 到 +255	不可用	偏移量 如果回写,则为 -255 到 +255, 否则,为 -255 到 +4095	偏移量: 0到 +255, 不允许回写				
2	偏移量: - 4095 到 +4095	偏移量: -255 到 +255	偏移量: - 4095 到 +4095	偏移量: -255 到 +255	不可用				
3	整个 {, <opsh>} 范围</opsh>	{, <opsh>} 不允许</opsh>	不可用	<pre><opsh> 限制为 LSL #<sh>, <sh> 的范围为 0 到 3</sh></sh></opsh></pre>	不可用				
4	整个 {, <opsh>} 范围</opsh>	{, <opsh>} 不允许</opsh>	整个 { , <opsh>} 范围</opsh>	不可用	不可用				
5	当前指令的 +/- 4092 范围内的标签	不可用	不可用	当前指令的 +/- 4092 范围内的标签	不可用				
6	偏移量: -255 到 +255	-	-	偏移量: -1020 到 +1020, 必须是 4 的倍数。	-				
7	{, <opsh>} 不允许</opsh>	-	-	不可用	-				
8	当前指令的 +/- 252 范围内的标签	-	-	不可用	-				
9	Rd1 编号为偶数, 但不可为 r14, Rd2 == Rd1 + 1。	-	-	Rd1 != PC, Rd2 != PC	-				

ARM 指令集 快速参考卡

协处理器运算	§	汇编程序	操作	注释	
数据操作		CDP{2} <copr>, <op1>, CRd, CRn, CRm{, <op2>}</op2></op1></copr>		由协处理器定义	C2
从协处理器移到 ARM 寄存器		MRC{2} <copr>, <op1>, Rd, CRn, CRm{, <op2>}</op2></op1></copr>		由协处理器定义	C2
两个 ARM 寄存器移动	5E	MRRC <copr>, <op1>, Rd, Rn, CRm</op1></copr>		由协处理器定义	
另两个 ARM 寄存器移动	6	MRRC2 <copr>, <op1>, Rd, Rn, CRm</op1></copr>	MRRC2 <copr>, <op1>, Rd, Rn, CRm</op1></copr>		
从 ARM 寄存器移到协处理器		MCR{2} <copr>, <op1>, Rd, CRn, CRm{, <op2>}</op2></op1></copr>		由协处理器定义	C2
两个 ARM 寄存器移动	5E	MCRR <copr>, <op1>, Rd, Rn, CRm</op1></copr>		由协处理器定义	
另两个 ARM 寄存器移动	6	MCRR2 <copr>, <op1>, Rd, Rn, CRm</op1></copr>		由协处理器定义	C
加载和存储, 前变址		<pre><op>{2} <copr>, CRd, [Rn, #+/-<offset8*4>]{!}</offset8*4></copr></op></pre>	op LDC 或 STC。偏移量 0 到 1020 范围内 4 的倍数。	由协处理器定义	C2
加载和存储, 零偏移量		<pre><op>{2} <copr>, CRd, [Rn] {, 8-bit copro. option}</copr></op></pre>	op LDC 或 STC。	由协处理器定义	C2
加载和存储, 后变址		<pre><op>{2} <copr>, CRd, [Rn], #+/-<offset8*4></offset8*4></copr></op></pre>	op LDC 或 STC。偏移量 0 到 1020 范围内 4 的倍数。	由协处理器定义	C2

其他运	算	§	汇编程序	操作	注释
交换字			SWP Rd, Rm, [Rn]	temp := [Rn], [Rn] := Rm, Rd := temp.	D
交换字	节		SWPB Rd, Rm, [Rn]	temp := ZeroExtend([Rn][7:0]), [Rn][7:0] := Rm[7:0], Rd := temp	D
存储返	回状态	6	SRS{IA IB DA DB} SP{!}, # <p_mode></p_mode>	[SPm] := LR, [SPm + 4] := CPSR	C' I
从异常	中返回	6	RFE{IA IB DA DB} Rn{!}	PC := [Rn], CPSR := [Rn + 4]	C, I
断点		5	BKPT <imm16></imm16>	预取中止或进入调试状态。指令中编码为16位的位域。	C, N
安全监	控调用	Z	SMC <imm16></imm16>	安全监控调用异常。指令中编码为 16 位的位域。以前为 SMI。	
超级用	户调用		SVC <imm24></imm24>	超级用户调用异常。指令中编码为 24 位的位域。以前为 SWI。	N
无操作		6	NOP	无操作,可能不花费任何时间。	N
提示	调试提示	7	DBG	向调试系统及其相关系统发送提示。	
	数据内存屏障	7	DMB	确保内存访问的观察顺序。	C
	数据同步屏障	7	DSB	确保内存访问完成。	C
	指令同步屏障	7	ISB	刷新处理器管道并跳转预测逻辑。	C
	设置事件	T2	SEV	向多处理器系统发送事件信号。如果不执行,则为 NOP。	N
	等待事件	T2	WFE	等待事件、IRQ、FIQ、不精确的中止或调试进入请求。如果不执行,则为 NOP。	N
	等待中断	T2	WFI	等待 IRQ、FIQ、不精确的中止或调试进入请求。如果不执行,则为 NOP。	N
	Yield	T2	YIELD	生成对其他线程的控制。如果不执行,则为 NOP。	N

注释			
Α	Thumb 状态下不可用。	N	在 Thumb-2 代码中, 此指令的某些格式或所有格式为 16 位 (窄) 指令。有关详细信息, 请参 阅 Thumb 16 位指令集(UAL) 快速参考卡。
В	在 Thumb 状态下可带有条件,且无须在 IT 块内。		阅 Thumb 16 位指令集(UAL) 快速参考卡。
С	ARM 状态中不允许使用条件代码。	Р	在 Thumb 状态下, 此指令中的 Rn 可为 PC。
C2	备选格式 2 可用于 ARMv5 中。它可提供另一种备选运算。在 ARM 状态下, 备选格式不允许使用条件代码。	Q	如果发生饱和(加法或减法)或溢出(乘法),则设置Q标记。使用 MRS 和 MSR 读取和重置Q标记。
D	已弃用。使用 LDREX 和 STREX 来代替。	R	在 ARM 指令中, <sh> 范围为 1-32。</sh>
G	根据各个运算的结果更新 CPSR 中的 4 个 GE 标记。	S	S 修饰符在 Thumb-2 指令中不可用。
I	IA 是缺省值, 通常省略。	Т	ARM 状态中不可用。
L	ARM <imm8m>。16 位 Thumb 0-1020 范围内 4 的倍数。32 位 Thumb 0-4095。</imm8m>	U	不允许在 IT 块中使用。不允许在 ARM 或 Thumb 状态下使用条件代码。