EDA 및 전처리

2. 전처리

개요

분석을 위한 데이터 구조 만들기 결측치, 이상치 탐색 및 조치

Feature Engineering

개요

- ✓ 목표
- ✓ 머신러닝 프로세스 Review
- ✓ 데이터 전 처리란?

목표

- 1. 목표에 맞게 데이터프레임을 구성할 수 있다.
- 2. 결측치(NA; NaN)와 이상치를 찾아서 조치할 수 있다.
- 3. 추가 변수를 충분히 도출해 낼 수 있다.
- 4. 도출한 변수가 성능에 미치는 영향을 확인할 수 있다.

머신러닝 프로세스 Review

데이터 전처리란?

데이터를 분석 가능한 형태로 만드는 작업

- ① NA, 이상치 데이터를 처리하고
- ② 필요한 변수가 충분히 도출된,
 - 기존 변수 : 그대로 이용
 - 추가 변수 : 기존 변수에서 가공하거나, 신규로 수집되는 변수

데이터프레임(테이블) 형태

분석을 위한 데이터 구조 만들기

분석 가능한 데이터

- ✓ 두 가지 형태의 정보가 저장되는 구조 : Dataframe 혹은 Table
 - ① 데이터가 밑으로 쌓이는 구조
 - ② 변수(열) 의미에 맞는 데이터
 - ③ 변수(열) 마다의 데이터타입

분석 가능한 데이터

- ✓ 문제 정의
- ✓ 주제에 맞는 정보 정의
 - 정보 중에서
 - 가용한 정보: 그대로 사용 가능한 정보, 가공해야 되는 정보
 - 비가용한 정보 : 수집(구입) 가능한 정보, 수집 불가능한 정보
- ✓ 정보를 dataframe 형태로 만들기
 - SQL : join, group by 등
 - Python:
 - pd.groupby
 - pd.concat
 - pd.merge

분석 가능한 데이터

- ✓ Dataframe 사례
 - 고객 이탈 데이터프레임

고객D	성별	나이	최근1개월 구매액	최근1개월 방문횟수	이탈여부
					0
					1

■ 이미지 분류 : MNIST

숫자	p1	p2	p 3	p4	p 5		p781	p782	p783	p784
4	0	0	0	0	34	78	167	250	0	0

결측치, 이상치 탐색 및 조치

결측치, 이상치를 어떻게 다룰 것인가?

✓ 데이터 분석 전에 <u>반드시</u> 결측치와 이상치를 처리해줘야 한다.

구분	① 제거	② 대체
이상치	제거는 권장하지	자료의 하한/ 상한 값으로 대체비즈니스 의미에 맞는 값으로 대체
결측치	- 않음. 특히 자료가 많지 않은 경우	 시계열 데이터 : 같은(비슷한) 시기의 데이터 최빈값/ 평균값으로 대체 비즈니스 의미에 맞는 값으로 대체

결측치, 이상치를 어떻게 다룰 것인가?

③ 데이터셋을 분리한다. (대체할 방법이 없고, 중요한 변수라면)

고객₪	이름	성별	바이	구매액
1	###	남	10	1000
2	@@@	여	24	2200
3	\$\$\$	여	54	3400
4	%%%	남	38	5000
5	8.8.8	NA	18	1000
6	***	NA	22	2200

모델1

고객D	이름	나이	구매액
5	8.8.8	18	1000
6	***	22	2200

모델2

NaN값 찾기

✓ NaN값 찾기

```
0 0.520113 0.884000
                     1.260966 -0.236597
                                         0.312972 -0.196281
                               0.862355
1 -0.837552
                 NaN 0.143017
2 -0.452595
3 0.317503 -0.917042 1.780938 -1.584102
                                         0.432745
4 -0.722852 1.704820 -0.113821 -1.466458
                                         0.083002
                                                   0.011722
5 -0.622851 -0.251935 -1.498837
                                         1.098323
                                                   0.273814
6 0.329585 0.075312 -0.690209 -3.807924
7 -1.123433 -1.187496 1.868894 -2.046456 -0.949718
8 1.133880 -0.110447 0.050385 -1.158387 0.188222
                                                        NaN
9 -0.513741 1.196259 0.704537 0.982395 -0.585040 -1.693810
```

Q 0 1 2 3 4 5

0 False False False False False False
1 False True False False False False
2 False True False False False False
3 False False False False False False
4 False False False False False False
5 False False False True False False
6 False False False False False False
7 False False False False False False
8 False False False False False False
9 False False False False False False

3 0 False
1 True
2 False
3 True
4 False
5 True
dtype: bool

dtvpe: int64

Python

```
import pandas as pd
import numpy as np

df =
pd.DataFrame(np.random.randn(10,6))
# Make a few areas have NaN values
df.iloc[1:3,1] = np.nan
df.iloc[5,3] = np.nan
df.iloc[7:9,5] = np.nan
```

- df
- 2 df.isna()
- 3 df.isna().any()
- 4 df.isna().sum()

NaN값 채우기: 특정값으로.

✓ NaN값 채우기

- pandas.dataframe.fillna()
- 단일 값으로 채우기 : .fillna(0)
- 열 별로 특정 값으로 채우기 : 열 별로 채울 값을 dictionary 형태로 만들고 채우기


```
Python
import pandas as pd
import numpy as np
df =
pd.DataFrame(np.random.randn(10,6))
# Make a few areas have NaN values
df.iloc[1:3,1] = np.nan
df.iloc[5,3] = np.nan
df.iloc[7:9,5] = np.nan
df.fillna(0) 1
values = {1: 0.5, 3: 1.5, 5: 2.5}
df.fillna(value=values) 2
```

NaN값 채우기 : Titanic의 Age 채우기

- ✓ Titanic["Age"] 데이터에서 NaN값은 어떻게 처리할 것인가?
 - ① 이름에서 타이틀(호칭)을 분리하자. 그리고 별도 칼럼으로 만들자.
 - 당시 호칭을 통해 나이대를 가늠할 수 있다.
 - ② 호칭의 평균 나이를 계산한다.
 - ③ 나이가 NaN인 사람의 호칭을 보고 평균나이를 넣어준다.

실습 #8 : NaN 찾기

이상치 검출

- ✓ Chart(scatter, boxplot) 를 통해 살펴보고
- ✓ 비즈니스 관점에서 이상치인지 판별합니다.
- ✓ 통계량이 의한 판별은 보조자료로 활용합니다.

이상치 검출

✔ Chart로 살펴보기

Python

sns.boxplot(x=ti["Fare"])

Python

sns.scatterplot(x="Fare", y="Age",
hue="Survived", data=ti)

이상치 검출

- ✓ IQR을 이용한 이상치 검출
 - IQR = 3 사분위수 1사분위수
 - 1사분위수 1.5 * IQR ~ 3사분위수 + 1.5 * IQR

Python

```
q1 = ti['Age'].quantile(.25)
q3 = ti['Age'].quantile(.75)

iqr = q3-q1

min_iqr = q1 - 1.5 * iqr

max_iqr = q3 + 1.5 * iqr

print(min_iqr, max_iqr)
```

Feature Engineering

Feature Engineering

- ✓ 기존 독립변수로 종속변수를 설명하는데 부족하다면 새로운 변수를 만들어 내야 합니다.
 - → 대부분의 상황에서는 기존 변수로는 부족!
- ✓도메인지식 + 경험 + 창의력 +

- ✓모델 성능을 향상시키기 위해 굉장히 중요한 작업
- ✓ 불필요한 변수를 제거하고, 중요한 변수에 집중하도록 함.
- ✔통계적으로 만들어 낼 수도 있지만, <u>도메인지식</u>에 기반하여야 함

추가변수 사례

- ✓ 중요 값을 기준으로 변수 만들기
 - 음주 습관에 대한 분석 : age 변수를 이용해서 age >= 20 → 음주가능연령
 - 아파트가격 분석 : 방 수 >=4 & 화장실수 >=2 → Premium
 - 유통 판매분석 : 명절여부, 주요이벤트여부
- ✓ 복수의 변수로부터 도출하기
 - 일교차 = 일최고기온 일최저기온
- ✓ 시계열 데이터의 과거 데이터 계산
 - 주가 데이터 : 최근 7일 이동평균값
- ✓ Dummy variable
 - 범주형 데이터를 명시적인 숫자로 변형

Normalization

✓ 변수 간의 값의 범위를 맞추는 작업

$$x' = \frac{x - min(x)}{max(x) - min(x)}$$