Eight Puzzle - Inteligência Artificial

Mateus Gabi Moreira mateus.moreira@aluno.ufms.br

8 de abril de 2018

1 Introdução

O jogo Eight-Puzzle, ou 8-Puzzle, também chamado de Gem Puzzle, Boss Puzzle, Jogo dos Quinze, Mystic Square e muitos outros, é um quebra-cabeça deslizante que consiste em um quadro de quadrados numerados em ordem aleatória com um ladrilho faltando. O quebra-cabeça também existe em outros tamanhos, se o tamanho for 3 x 3, o quebra-cabeça é chamado de 8 Puzzle e, se for 4 x 4, o quebra-cabeça é chamado de 15 Puzzle. O objeto deste quebra-cabeça é colocar as peças em ordem, fazendo movimentos deslizantes que usam o espaço vazio [1].

O n-Puzzle é um problema clássico para modelar algoritmos envolvendo heurísticas. As heurísticas comumente usadas para esse problema incluem contar o número de peças perdidas e encontrar a soma da Distância de Manhatthan [2] entre cada bloco e sua posição na configuração do objetivo.

Então, foi proposto o desenvolvimento de um algoritmo de busca em largura no qual use heurística de Posições Erradas e da soma das Distâncias de Manhattan. Além disso, deve-se comparar o tempo de solução de um problema com solução em profundidade 1 até 20 e apresentar o resultado em uma tabela.

2 Métodos

O algoritmo proposto está disponível no Github [3] e utiliza apenas uma busca em largura. A busca possui um parâmetro no qual informa qual heurística deve ser usada na geração dos filhos. Foi percebido que a busca pela solução poderia ser melhorada se os filhos fossem gerados em ordem crescente. Por exemplo, dado um estado inicial, com quatro possíveis movimentos (filhos), é calculado o valor da heurística de cada filho e realizado a ordenação desses filhos.

2.1 Busca em Largura

A busca em largura segue o algoritmo clássico [4], pseudo-código abaixo:

```
BuscaEmLargura
       escolha uma raiz s de G
 3
       marque s
 4
       insira s em F
       enquanto F nao esta vazia faca
 5
 6
           seja v o primeiro vertice de F
           para cada w pertencente a listaDeAdjacencia de v faca
              se w nao esta marcado entao
 9
                  visite aresta entre v e w
10
                  marque w
                  {\tt insira} \ {\tt w} \ {\tt em} \ {\tt F}
11
12
               senao se w pertence a F entao
13
                  visite aresta entre v e w
14
              fim se
15
           fim para
16
           retira v de F
```

Há uma pequena alteração nesse pseudo-código: os vértices adjacentes estão ordenados pela heurística na Geração de Filho.

2.2 Geração dos Filhos

A Geração de Filhos se resume a três passos: Geração de Filhos (GF), Cálculo do Valor da Heurística de Cada Filho (HCF) e Ordenação dos Filhos pelo HCF (OF). Os filhos são ordenados

em ordem crescente, pois, se o valor da heurística é menor, possivelmente este filho esta mais próximo da resposta.

3 Resultados

	Tempo de Execução em millisegundos		Passos de Execução	
Profundidade	Posições Erradas	Distância de Manhattan	Posições Erradas	Distância de Manhattan
1	0.0579357147217	0.0989437103271	1	1
2	0.114917755127	0.288009643555	2	4
3	0.231027603149	0.431776046753	5	7
4	0.361204147339	0.550985336304	10	12
5	1.37901306152	1.80697441101	46	48
6	2.27093696594	2.73180007935	7 6	78
7	3.38101387024	4.42600250244	106	126
8	4.76813316345	5.41305541992	154	156
9	9.74297523499	11.1930370331	304	306
10	16.263961792	17.1389579773	444	446
11	49.3049621582	37.4789237976	1080	826
12	71.9468593597	58.1150054932	1426	$\boldsymbol{1182}$
13	187.988996506	189.996004105	2730	$\boldsymbol{2642}$
14	437.371015549	473.384141922	$\boldsymbol{4264}$	4440
15	682.032823563	926.525831223	5866	6940
16	373.097896576	775.340795517	4104	5966
17	162.008047104	185.796022415	$\boldsymbol{2284}$	2346
18	63.2200241089	71.9640254974	1302	1368
19	40.1258468628	46.450138092	946	1014
20	78.8869857788	86.6129398346	1538	1582

Tabela 1: Representação dos Dados obtidos.

Figura 1: Relação do Tempo de Execução com as Heurísticas.

4 Conclusão

O algoritmo infelizmente não é um dos melhores e possívelmente não é a solução ótima. Isso pode ser visto quando comparamos os casos de profundidade 15 e 19. Era esperado que o caso 19 tivesse mais tempo de execução e mais passos de execução, por estar mais embaralhado. Porém,

Figura 2: Relação da Quantidade de Passos de Execução com as Heurísticas.

o caso 19 foi cerca de 17 vezes mais rápido e 6 vezes menos passos de execução. Isso nos permite dizer que mesmo com mais passos executados no *embaralhamento* (profundidade) o caso 19 estava mais próximo da resposta. Isto é, não importa quantos passos foram feitos durante a fase de *embaralhamento*, o que importa é o valor da heurística dado um estado.

Ademais, os resultados obtidos mostram que na maioria dos casos, 18 dentre 20, ou 90% dos casos, a Heurística de Posições Erradas mostra-se mais eficaz que a Heurística da Soma das Distâncias de Manhattan. E que o Tempo de Execução é diretamente proporcional a quantidade de passos da busca, Figuras 1 e 2.

Referências

- [1] Wikipedia contributors. 15 puzzle wikipedia, the free encyclopedia, 2018. [Online; acessado 8-Abril-2018].
- [2] Vreda Pieterse and Paul E. Black. Dictionary of algorithms and data structures, 2006. [Online; acessado 8-Abril-2018].
- [3] M. G., Moreira. 8puzzle ia. https://github.com/MateusGabi/8Puzzle-IA, 2018.
- [4] Wikipédia. Busca em largura wikipédia, a enciclopédia livre, 2018. [Online; acessadp 8-Abril-2018].