Algebraic geometry 2 Exercise sheet 4

Solutions by: Esteban Castillo Vargas and David Čadež

6. Mai 2024

Exercise 1. First of all we can use that finite projective modules are locally finite free. So since we are searching for an open neighbourhood of a point, we can first localize to some neighbourhood where N is finite free. (So assume $N=A^n$ is finite free.)

Since $M \otimes_A k(x)$ is finite dimensional k(x)-vsp, we can pick a basis $\{b_i \otimes 1\}_{i=1,\ldots,m}$. Let $g \colon F := A^n \to M$ be defined by $e_i \mapsto b_i$. At x we obtain an isomorphism $F \otimes_A k(x) \xrightarrow{\sim} M \otimes_A k(x)$.

The composition $F \to M \to N$ is a map of free A-modules, so it can be represented by a matrix $J \in M_{n \times m}(A)$. At x this matrix has rank $m = \dim_{k(x)}(M \otimes_A k(x))$. So there is a neighbourhood U on which it has rank at least m (here we use argument from the previous sheet: U is taken to be the non-vanishing locus of determinant of some appropriate minor). On U, the composition $F \xrightarrow{J} N$ has left inverse $N \xrightarrow{I} F$ (i.e. it is injective).

On U, the section of the map $M \to N$ is given by composition $N \xrightarrow{I} F \xrightarrow{g} M$, which is what we wanted to show.

Exercise 3. By the definition of formally étale, the exercise reduces to show that in a diagram

$$\begin{array}{ccc}
\mathbb{F}_p & \longrightarrow R \\
\downarrow & & \downarrow \\
A & \stackrel{g}{\longrightarrow} R/I,
\end{array}$$

where $I^2 = 0$, there exists a unique lift $A \to R$.

We can define a lift very explicitly:

Define $(-)^p \colon R \to R$ with $x \mapsto x^p$. Since R has characteristic p, this is a homomorphism. Ideal I is clearly contained in the kernel, so it factors through the quotient: $R \to R/I \to R$. Denote $u \colon R/I \to R$.

By assumption A is a perfect \mathbb{F}_{v} -algebra, so Frobenius endomorphism is an

automorphism. We claim that a composition

$$A \xrightarrow{\operatorname{Fr}_A^{-1}} A \xrightarrow{g} R/I \xrightarrow{u} R$$

lifts g. Indeed, for any $x=y^p\in A$, we have $(u\circ g\circ\operatorname{Fr}_A^{-1})(x)=g(y)^p=g(x)$. Now we prove uniqueness: Let φ,ψ be two lifts. Take any $x=y^p\in A$. Since they are lifts, we have $\varphi(y)-\psi(y)\in I$. But then $(\varphi(y)-\psi(y))^p=0$ and thus also $\varphi(y^p)-\psi(y^p)=\varphi(x)-\psi(x)=0$, so $\varphi=\psi$.