Assignment 3

Name: Sahil Mahendra Mody

CWID: 20007262

QUESTION 1

a) We can use list to store the number of retailers, warehouse capacity and retailer's demand and dictionary to store transportation cost between supply and demand.

c) Let Xij be the amount supplied from location I to location j

Constraints:

Min (Z) = Σ CijXij

Minimize Z (cost) where Z=

$$2X_{11} + 4X_{12} + 5X_{13} + 2X_{14} + X_{15} + 3X_{21} + X_{22} + 3X_{23} + 2X_{24} + 3X_{25}$$

Supply Constraints:

 $X_{11}+X_{12}+X_{13}+X_{14}+X_{15} \le 2000$

 $X_{21} + X_{22} + X_{23} + X_{24} + X_{25} <= 3000$

Demand Constraints:

 $X_{11} + X_{21} = 500$

 $X_{12} + X_{22} = 800$

 $X_{13} + X_{23} = 1800$

 $X_{14}+X_{24}=300$

 $X_{15} + X_{25} = 700$

Non-Negativity Constraints:

 $X_{1j} > = 0$

 $X_{2j} > = 0$

QUESTION 2:

Let Xij be the amount supplied from location I to location j and Cij be the transportation cost of supplying one unit of product from location I to location j

Min (Z) = Σ CijXij

$$Min(Z) = 9X_{11} + 14X_{12} + 12X_{13} + 17X_{14} + 11X_{21} + 10X_{22} + 6X_{23} + 10X_{24} + 12X_{31} + 8X_{32} + 15X_{33} + 7X_{34}$$

Supply Constraints:

$$X_{11}+X_{12}+X_{13}+X_{14} <= 200$$

$$X_{21} + X_{22} + X_{24} <= 200$$

$$X_{31} + X_{32} + X_{33} + X_{34} <= 200$$

Demand Constraints:

$$X_{11}+X_{21}+X_{31}=130$$

$$X_{12}+X_{22}+X_{32}=170$$

$$X_{13}+X_{23}+X_{33}=100$$

$$X_{14}+X_{24}+X_{34}=150$$

QUESTION 3:

Let Xij be the amount supplied from location I to location j and Cij be the transportation cost of supplying one unit of product from location I to location j

Step 2:

Min (Z) = Σ CijXij

 $Min(Z) = 16X_{14} + 21X_{15} + 18X_{24} + 16X_{25} + 22X_{34} + 25X_{35} + 23X_{46} + 15X_{47} + 29X_{48} + 20X_{56} + 17X_{57} + 24X_{58}$

Supply Constraints:

X₁₄+X₁₅=72

 $X_{24}+X_{25}=105$

 $X_{34} + X_{35} = 83$

Transhipment Constraints:

X₁₄+X₂₄+X₃₄=X₄₆+X₄₇+X₄₈

 $X_{15}+X_{25}+X_{35}=X_{56}+X_{57}+X_{58}$

Demand Constraints:

 $X_{46}+X_{56} <= 90$

X47+X57<=80

Where Xij>=0

QUESTION 4:

c. Let Xij be the selection of caterers to the events and for simplicity I belongs to {A,B,C,D,E,F,G} and J belongs to {1,2,3,4,5,6}

Minimize Z =

12.6XA1 + 10.3XA2 +14.0XA3 + 19.5XA4 +25.0XA5+ 30.0XA6 +

14.5XB1 +13.0XB2 + 16.5 XB3 +17.0XB4+ 22.5XB5+32.0XB6 +

13.0Xc1+ 14.0Xc2+ 17.6Xc3+ 21.5Xc4 + 23.0Xc5 +35.0Xc6+

11.5XD1+ 12.6XD2+13.0XD3+ 18.7XD4+ 26.2XD5+ 33.5XD6+

10.8XE1+ 11.9XE2+ 12.9XE3+ 17.5XE4+ 21.9XE5+ 28.5XE6+

13.5XF1+ 13.5XF2+ 15.5XF3+ 22.3XF4+ 24.5XF5+ 36.0XF6 +

12.5XG1+ 14.3XG2+ 16.0XG3+ 22.0XG4+ 26.7XG5+ 34.0XG6

Subject to:

Constraints:

Supply Constraint

XA1+ XA2+XA3+XA4+XA5+XA6<=1

 $XB1+XB2+XB3+XB4+XB5+XB6 \le 2$

 $XC1+XC2+XC3+XC4+XC5+XC6 \le 2$

 $XD1+XD2+XD3+XD4+XD5+XD6 \le 1$

XE1+XE2+XE3+XE4+XE5+XE6 <= 1

 $XF1+XF2+XF3+XF4+XF5+XF6 \le 1$

XG1+XG2+XG3+XG4+XG5+XG6<=2

Demand Constraint

XA1+ XB1+XC1+XD1+XE1+XF1+XG1=1

XA2+XB2+XC2+XD2+XE2+XF2+XG2=1

XA3+ XB3+XC3+XD3+XE3+XF3+XG3=1

XA4+ XB4+XC4+XD4+XE4+XF4+XG4=1

XA5+ XB5+XC5+XD5+XE5+XF5+XG5=1

XA6+ XB6+XC6+XD6+XE6+XF6+XG6=1

Where Xij>=0