

AARHUS SCHOOL OF ENGINEERING

SUNDHEDSTEKNOLOGI 3. SEMESTERPROJEKT

Rapport

Gruppe 1

Mads Fryland Jørgensen (2014003827) Jeppe Tinghøj Honeré (201403827) Freja Ramsing Munk (201405722) Nicoline Hjort Larsen (201370525) Sara-Sofie Staub Kirkeby (201406211) Tine Skov Nielsen (201408398)

Vejleder Thomas Nielsen Aarhus Universitet

Resumé

ST3PRJ3 Gruppe 4 Resumé

Gruppe med lemmer	
Jeppe Tinghøj Honeré (201371186)	Dato
Mads Fryland Jørgersen (201403827)	Dato
Freja Ramsing Munk (201406736)	Dato
Nicoline Hjort Larsen(201405152)	Dato
Tine Skov Nielsen (201404233)	Dato
Sara-sofie Staub Kirkeby (201406211)	Dato
Vejleder	
Lars Mortensen	

Godkendelsesformular

Godkendelses formular	•
Forfattere:	
Jeppe Tinghøj Honeré	Mads Fryland Jørgensen
Freja Ramsing Munk	Nicoline Hjort Larsen
Tine Skov Nielsen	Sara-Sofie Staub Kirkeby
Godkendes af Thomas Ni	elsen
Antal sider 18	
Kunde Aarhus Univ	rersitet
Ved underskrivelse af dette doku til udviklingen af det ønskede sy	ument accepteres det af begge parter som værende kraven estem.
Dato: 1. december 2015	
Kundens underskrift	Leverandørens underskrift

Ordliste

Ord Forklaring

Indholdsfortegnelse

Resumé	i
Godkendelsesformular	iii
Ordliste	\mathbf{v}
Kapitel 1 Indledning	3
Kapitel 2 Projektformulering	5
Kapitel 3 Baggrund 3.1 Hjertet & Kredsløb 3.2 Blodtryk 3.3 Hypertension 3.4 Hypotension	7 7 8 8 8
Kapitel 4 Systembeskrivelse	9
Kapitel 5 Krav	11
Kapitel 6 Projektbeskrivelse	13
6.1 Projektgennemførelse	13
6.2 Metode	13
6.3 Specifikation og analyse	13
6.4 Arkitektur	13
6.4.1 Design	13
6.4.2 Implementering	13
6.4.3 Test	13
6.5 Resultater og diskussion	13
6.6 Opnåede erfaringer	13
6.7 Fremtidigt arbejde	13
Kapitel 7 Konklusion	15

Indholdsfortegnelse ASE

${\bf Version historik}$

Version Dato Ansvarlig Beskrivelse

Indledning

I dette projekt var problemstilling at lave en invasiv blodtrykmåler til en valgfri institution. Der er i den forbindelse blevet arbejdet med blodtryks-måling, udvikling af hardware til blodtryksmåleren samt udarbejdelse af et program til analyse af blodtryks-målingen.

Motivationen for projektet bygger på, at der i klinisk praksis ofte er behov for kontinuert at kunne monitorerer en patients blodtryk. Dette er især vigtigt på en operationsstue, hvor blodtrykket er en vigtig parameter til monitorering af deres helbredstilstand, hvilket derfor ligger til grund for udarbejdelsen af dette projekt.

Figur 1.1: Tilslutningen af væskefyldt kateter

Da det er vigtigt med kontinuerte målinger af blodtrykket bliver målingen foretaget invasivt. På billedet ses det hvordan blodtryksmålesystemet er tilsluttet patientens arterier via et væskefyldt kateter.

Projektets resultat vil kunne hjælpe sundhedsfaglig personale med at bevarer overblikket over deres patients fysiske tilstand under en operation. Da det både kan være en planlagt eller akut situation på operationsstuen er det vigtigt, at systemet virker optimalt og udøver den bedste hjælp til personalet.

I dette projekt der skal arbejdes på at udarbejdet et system, der kan tilsluttes det væskefyldte kateter og som kan vise en blodtryks kurve, samt blodtryks værdier på en computerskærm.

Systemet skal bestå af to elementer:

ST3PRJ3 Gruppe 4 1. Indledning

1. Det ene element består af et elektronisk kredsløb, der forstærker signalet fra transduceren og filtrerer signalet med et indbygget analogt filter.

2. Det andet element er et program, der afbilder blodtrykket grafisk som funktion af tiden. Programmet skal lige ledes vise blodtryksværdier, samt puls og kunne udløse en alarm hvis grænseværdier for blodtrykket overskrides.

Projektformulering

Ansvarsområde

Initialer:

Jeppe Tinghøj Honeré - JTH Mads Fryland Jørgensen- MFJ Tine Skov Nielsen- TSN Freja Ramsing Munk - FRM Nicoline Hjort Larsen - NHL Sara-Sofie Staub Kirkeby - SSK

Afsnit Ansvarlig

I dette projekt var problemstilling at lave en invasiv blodtrykmåler til en valgfri institution. Der er i den forbindelse blevet arbejdet med blodtryks-måling, udvikling af hardware til blodtryksmåleren samt udarbejdelse af et program til analyse af blodtryks-målingen.

Motivationen for projektet bygger på, at der i klinisk praksis ofte er behov for kontinuert at kunne monitorerer en patients blodtryk. Dette er især vigtigt på en operationsstue, hvor blodtrykket er en vigtig parameter til monitorering af deres helbredstilstand, hvilket derfor ligger til grund for udarbejdelsen af dette projekt.

Figur 2.1: Tilslutningen af væskefyldt kateter

Da det er vigtigt med kontinuerte målinger af blodtrykket bliver målingen foretaget invasivt. På billedet ses det hvordan blodtryksmålesystemet er tilsluttet patientens arterier via et væskefyldt kateter.

Projektets resultat vil kunne hjælpe sundhedsfaglig personale med at bevarer overblikket over deres patients fysiske tilstand under en operation. Da det både kan være en planlagt eller akut situation på operationsstuen er det vigtigt, at systemet virker optimalt og udøver den bedste hjælp til personalet.

I dette projekt der skal arbejdes på at udarbejdet et system, der kan tilsluttes det væskefyldte kateter og som kan vise en blodtryks kurve, samt blodtryks værdier på en computerskærm.

Systemet skal bestå af to elementer:

- 1. Det ene element består af et elektronisk kredsløb, der forstærker signalet fra transduceren og filtrerer signalet med et indbygget analogt filter.
- 2. Det andet element er et program, der afbilder blodtrykket grafisk som funktion af tiden. Programmet skal lige ledes vise blodtryksværdier, samt puls og kunne udløse en alarm hvis grænseværdier for blodtrykket overskrides.

Afgrænsning

Fra IHA's side er der på forhånd defineret nogle krav til projektets indhold, hvilket indebærer:

Software

- Programmet skal programmeres i C#
- Programmet skal kunne kalibrerer blodtrykssignalet og foretage en nulpunktsjustering
- Programmet skal kunne vise blodtrykssignalet kontinuert
- Programmet skal kunne lagre de måte data i enten en tekstfil eller en database
- Programmet skal kunne filtrerer blodtrykket i selve programmet via et digitalt filter, dette skal kunne slås til og fra

Hardware

- Der skal designes et aktivt 2. ordens lavpasfilter af typen Sallen-Key med unity gain
- Filteret skal designes som et Butterworth filter med cut off frekvens på 50 Hz. C2 skal vælges til 680 nF og R1 = R2. Operationsforstærkeren skal være af typen OP27

3.1 Hjertet & Kredsløb

Hjertet, *cor*, er en hul muskel, der har til opgave at pumpe blodet rundt til hele kroppen. Hjertet består af i alt fire kamre, som det kan ses på figur 3.1 nedenfor. To forkamre, atrier, og to hjertekamre, ventrikler. Atrierne fungere primært som reservoir for blod, mens ventriklerne fungerer som den effektive pumpe.

Figur 3.1: Hjerte med forklarende pile ¹

Hjertekamrene og forkamrene er adskilt fra hinanden af anulus fibrosus, som er en plade af bindevæv. Anulus fibrosus består af fire bindevævsringe, der er forbundet med hinanden. To af disse udgør åbningerne mellem atrierne og ventriklerne. De to sidste danner åbningerne mellem højre hjertekammer og lungepulsåren og venstre ventrikel og hovedpulsåren. Ved alle bindevævsringene er der klapper, der fungere som ventiler.

AV-klapperne sidder mellem atrierne og ventriklerne. Klappen mellem højre atrium og ventrikel kaldes tricuspidalklap, mens klappen mellem venstre atrium og ventrikel kaldes mitralklap, se figur 3.1. Aortaklappen er placeret ved afgangen af hovedpulsåren og pulmonalklappen ved afgangen af lungepulsåren. Klapperne fungere således, at blodet kun kan løbe én vej gennem dem. Åbningen samt lukningen af disse er en passiv proces, som

¹http://www.hjertelunge.dk/hjertesygdomme/hjerte og kredsloeb/hjertet/

ST3PRJ3 Gruppe 4 3. Baggrund

bestemmes af forskelle i væsketrykket på de to sider af klapperne.

Figur 3.2: De forskellige faser i hjertets cyklus ²

Hjertets cyklus, som er illustreret ved figur 3.2, inddeles i to hovedfaser. Den første kaldes diastolen. I diastolen er ventriklerne afslappede og fyldes med blod. Det vil sige, at trykket i ventriklerne bliver lavere end trykket i atrierne, således at AV-klapperne åbnes, og blodet begynder at strømme ind i ventriklerne. Under hele diastolen er aortaklappen lukket. Den anden fase kaldes systolen. I systolen kontraherer ventriklerne sig. Trykket i ventriklerne overstiger trykket i atrierne således, at AV-klapperne lukkes, så tilbagestrømning af blod til atrierne forhindres. Når ventriklerne har kontraheret sig så meget, at trykket i ventriklerne overstiger trykket i hovedpulsåren samt i lungepulsåren, åbnes aortaklappen og pulmonalklappen, og blodet strømmer ud i hovedpulsåren og lungepulsåren. Ventriklernes tryk falder igen til under atriernes tryk, hvilket påvirker, at AV-klapperne åbnes igen og hjertets cyklus starter forfra.

3.2 Blodtryk

3.3 Hypertension

3.4 Hypotension

²Billede fra "Menneskets anatomi og fysiologi"s. 273 figur 9.6

Systembeskrivelse 4

Krav 5

Projektbeskrivelse 6

- 6.1 Projektgennemførelse
- 6.2 Metode
- 6.3 Specifikation og analyse
- 6.4 Arkitektur
- 6.4.1 Design
- 6.4.2 Implementering
- 6.4.3 Test
- 6.5 Resultater og diskussion
- 6.6 Opnåede erfaringer
- 6.7 Fremtidigt arbejde

Konklusion 7

Litteratur