第五章

1 设有如下所示的关系 R:

课程名	教师名	教师地址
C1	马千里	D1
C2	于得水	D1
СЗ	余快	D2
C4	于得水	D1

- (1) 它为第几范式? 为什么?
- (2) 是否存在删除操作异常?若存在,则说明是在什么情况下发生?
- (3) 将它分解为高一级范式, 分解后的关系 如何解决分解前可能存在的删除操作 异常问题。

解: (1) 它是 2NF。 因为 R 的候选码为课程名,而"课程名 \rightarrow 教师名","教师名 \rightarrow 课程名"不成立,"教师名 \rightarrow 教师地址",即存在非主属性教师地址对候选码课程名的传递函数依赖,因此 R 不是 3NF,又因为不存在非主属性对候选码的部分函数依赖,所以是 2NF。

- (2) 存在删除操作异常。当删除某门课程时会删除不该删除的 教师的有关信息。
 - (3) 分解为高一级范式如下所示:

课程名	教师名
C1	马千里
C2	于得水
C3	余快
C4	于得水

教师名	教师地址
马千里	D1
于得水	D1
余快	D2

R2

分解后,若删除课程数据时,仅对关系 R1 操作,教师地址信息 在关系 R2 中仍然保留,不会丢失教师方面的信息。 2 请问如下图所示的关系 R 为第几范式?是 否存在操作异常?若存在,则说明是在什么 情况下发生?发生的原因是什么?将它分 解为高一级的范式,分解后的关系能否解决 操作异常问题呢?

工程号	材料号	数量	开工日期	完工日期	已竣工天数
P1	I1	4	9805	9902	4 0
P1	I2	6	9805	9902	40
P1	13	15	9805	9902	40
P2	I1	6	9811	9912	16
P2	14	18	9811	9912	16

解:它为1NF。关系的候选码为(工程号,材料号),

关系 R 的函数依赖集 F:

(工程号,材料号)→数量

(工程号,材料号) ——开工日期

(工程号,材料号) → 完工日期

(工程号、材料号) → 已竣工天数

工程号→开工日期

工程号→完工日期,

工程号→已竣工天数

存在操作异常,如果工程项目确定后,但是还未用到材料,工程数据进不到数据库中,出现插入异常。若工程下马,删除工程其他都删掉了。

R1

工程号	材料号	数量
P1	I1	4
P1	I2	6
P1	I3	15
P2	I1	6
P2	14	18

工程号	开工日期	完工日期	已竣工天数
P1	9805	9902	4 0
P1	9805	9902	40
P1	9805	9902	40
P2	9811	9912	16
P2	9811	9912	16

关系 R1 和 R2 都是 2NF. 但关系 R2 [≠] 3NF

工程号→完工日期,完工日期 → 工程号 完工日期→已竣工天数,存在传递函数依赖 因此还存在操作异常,当删除某工程时,已 竣工天数也被删除。

R3

工程号	开工日期	完工日期
P1	9805	9902
P1	9805	9902
P1	9805	9902
P2	9811	9912
P2	9811	9912

完工日期	已竣工天数
9902	40
9902	40
9902	40
9912	16
9912	16

3 设有如下关系 R, R 的候选码为_____, R中的函数依赖有_____, R属于_____范式。

A	D	Е
a1	d1	e2
a 2	d6	e2
a 3	d4	е3
a4	d4	е4

解: R 中的函数依赖有 $\{A\rightarrow D, A\rightarrow E, DE\rightarrow A\}$;

R的候选码为A或DE;

R 上的任意函数依赖的左部都包含了 R 的任

一候选码, 所以R是BCNF。

4 已知关系模式 R 的全部属性集 U={A, B, C, D, E, G}及函数依赖集:

 $F = \{AB \rightarrow C, C \rightarrow A, BC \rightarrow D, ACD \rightarrow B, D \rightarrow EG, BE \rightarrow C, CG \rightarrow BD, CE \rightarrow AG\}$

求属性集闭包(BD)-

解: X(0)=BD, X(1)=BDEG, X(2)=BDEGC,

X(3) = ABCDEG

故(BD)→=ABCDEG

5 设有函数依赖集

F={AB→CE, A→C, GP→B, EP→A, CDE→P, HB→P, D→HG, ABC→PG} 求:与F等价的最小函数依赖集。

解: (1) 将 F 中各依赖的右部属性单一化:

$$F1 = \begin{bmatrix} AB \longrightarrow C & HB \longrightarrow P \\ AB \longrightarrow E & D \longrightarrow H \\ A \longrightarrow C & D \longrightarrow G \\ GP \longrightarrow B & ABC \longrightarrow P \\ EP \longrightarrow A & ABC \longrightarrow G \\ CDE \longrightarrow P \end{bmatrix}$$

(2) 对于 $AB_{\rightarrow}C$, 由于有 $A_{\rightarrow}C$, 则为多余的函数依赖:

$$F1 = \begin{bmatrix} AB \rightarrow C & HB \rightarrow P \\ AB \rightarrow E & D \rightarrow H \\ A \rightarrow C & D \rightarrow G \\ GP \rightarrow B & ABC \rightarrow P \\ EP \rightarrow A & ABC \rightarrow G \\ CDE \rightarrow P \end{bmatrix} \Longrightarrow F2 = \begin{bmatrix} AB \rightarrow E & HB \rightarrow P \\ A \rightarrow C & D \rightarrow H \\ GP \rightarrow B & D \rightarrow G \\ EP \rightarrow A & ABC \rightarrow P \\ CDE \rightarrow P & ABC \rightarrow G \end{bmatrix}$$

(3) 通过分析,没有多余的依赖,则

$$F3 = \begin{bmatrix} AB \rightarrow E & HB \rightarrow P \\ A \rightarrow C & D \rightarrow H \\ GP \rightarrow B & D \rightarrow G \\ EP \rightarrow A & ABC \rightarrow P \\ CDE \rightarrow P & ABC \rightarrow G \end{bmatrix}$$

6 设有关系模式 R(U, F), 其中:U={E, F, G, H}

 $F=\{E_{\rightarrow}G, G_{\rightarrow}E, F_{\rightarrow}EG, H_{\rightarrow}EG, FH_{\rightarrow}E\}$,求 F 的最 小依赖集。

解: (1) 将 F 中各依赖的右部属性单一化:

 $F1=\{E\rightarrow G, G\rightarrow E, F\rightarrow E, F\rightarrow G, H\rightarrow E, H\rightarrow G, FH\rightarrow E\}$

- (2) 对于 $FH \rightarrow E$, 由于有 $F \rightarrow E$, 所以为多余的, 则 $F2 = \{E \rightarrow G, G \rightarrow E, F \rightarrow E, F \rightarrow G, H \rightarrow E, H \rightarrow G\}$
- (3)F2 中的 F→E 和 F→G 以及 H→E 和 H→G 之一是多余的,则

 $F3=\{E\rightarrow G, G\rightarrow E, F\rightarrow E, H\rightarrow E\}$

或者 $F3=\{E\rightarrow G, G\rightarrow E, F\rightarrow G, H\rightarrow G\}$

或者 $F3=\{E\rightarrow G, G\rightarrow E, F\rightarrow E, H\rightarrow G\}$

或者 $F3=\{E\rightarrow G, G\rightarrow E, F\rightarrow G, H\rightarrow E\}$