

Modélisation à l'aide des IFS

Fonction d'adressage Fonction de transport Courbes et surfaces : condition de raccords

Fonction d'adressage

 Etant donné un IFS composé d'un ensemble fini d'opérateurs

$$\mathbb{T}=\!\left\{T_i,i=0,N-1\right\}$$

On lui associe un ensemble fini d'indices

$$\Sigma = \{0, \dots, N-1\}$$

Fonction d'adressage

• L'attracteur A, associé à \mathbb{T} , est muni d'une fonction d'adressage ϕ [BAR88] définie sur l'ensemble des mots infinis sur Σ (noté Σ^{ω})

$$\phi: \quad \Sigma^{\omega} \rightarrow A \subset E$$

$$\sigma \rightarrow \phi(\sigma) = \lim_{n \to \infty} T_{\sigma_1} T_{\sigma_2} \cdots T_{\sigma_n} p$$

• Où $p \in E$ et $\phi(\sigma)$ est indépendant de p

Exemple

Fonction d'adressage sur [0,1]

Fonction d'adressage ϕ : 10010.. -> p=Lim $(T_1T_0T_0T_1T_0...(p_0))$ 10010.. =Adresse de $p = \sigma$ => $p = \phi(\sigma)$ Dans cet exemple σ = développement binaire de p

Fonction d'adressage sur [0,1]

Attention la fonction d'adressage est propre à chaque l'IFS

Exemple d'adresse sur le riangle de Sierpinski

Intérêt/application

- Permet de paramétré les attracteurs
 - Par l'ensemble des mots infinis de Σ
 - On peut mettre en correspondance avec [0,1] (développement en base $N=\# \mathbb{T}$)
- Permet de mettre en correspondance des attracteurs
 - Utilisation pour le texturage des attracteurs
 - Création de courbes paramétrées.

Exemple d'attracteur texturé

 Attention la fonction d'adressage est injective mais pas nécessairement surjective, i.e. un point de A peut posséder plusieurs adresses.

Fonction de transport

- Objectif:
 - Définir des morphismes et homéomorphisme d'IFS
 - Condition d'équivalence topologique entre attracteurs
 - Construction de courbes et surfaces paramétrées

Fonction de transport

- Définition
 - Étant donnés 2 IFS

$$\mathbb{T} = \left\{ T_i, i \in \Sigma \right\} \qquad \mathbb{T}' = \left\{ T_i', i \in \Sigma \right\}$$

indicés par le même ensemble on peut définir une application *H* par:

$$\forall p \in A \ H(T_i p) = T_i' H(p)$$

Propriétés de H

$$H(A)=A'$$

Et par conséquence

H met en correspondance les subdivisions des attracteurs

$$\begin{split} &H(A) = A ' \\ &H(T_{\sigma_{1}}A) = T_{\sigma_{1}}A ' \\ &H(T_{\sigma_{1}}T_{\sigma_{2}}A) = T_{\sigma_{1}} ' T_{\sigma_{2}} ' A ' \\ &H(T_{\sigma_{1}}T_{\sigma_{2}}\cdots T_{\sigma_{n}}A) = T_{\sigma_{1}} ' T_{\sigma_{2}} ' \cdots T_{\sigma_{n}} ' A ' \end{split}$$

Illustration du transport des sous attracteurs

Propriétés de H

 par passage à la limite H met en correspondance les fonctions d'adressage associés aux IFS

$$\begin{array}{l} \forall \, \sigma \in \Sigma^{\omega} \,, \forall \, p \in A \,, \\ H(\lim_{n \to \infty} T_{\sigma_1} T_{\sigma_2} \cdots T_{\sigma_n} p) = \lim_{n \to \infty} T_{\sigma_1} \,' \, T_{\sigma_2} \,' \cdots T_{\sigma_n} \,' H(p) \\ H(\phi(\sigma)) = \phi \,'(\sigma) \end{array}$$

Fonction de transport

. Illustration

Fonction de transport

- Pour que H soit une fonction, pour tout p du domaine de définition de H, H(p) doit être réduit à un singleton.
- Dans la cas où les T_i sont inversibles la définition devient :

$$\forall P \in T_i(A) \ H(P) = T_i' H((T_i)^{-1} P)$$

- $\bullet \ \ \mathrm{Si} \quad \ P\!\in\!T_{i}(A)\!\cap\!T_{j}(A)$
- H(p) peut s'exprimer de 2 façons

Fonction de transport

D'où la conditions :

$$P\!\in\!T_{i}(A)\!\cap\!T_{j}(A)\!\Rightarrow\!T_{i}'H((T_{i})^{\!-1}P)\!=\!T_{j}'H((T_{j})^{\!-1}P)$$

 C'est ce qu'on appelle la condition d'intersection

Fonction de transport

• Exemple où *H* est bien définie et donc continue

Fonction de transport

Exemple où H n'est pas "bien défini" et donc est non continue

$$T_0(s) = \frac{1}{2} s$$

 $T_1(s) = \frac{1}{2} s + \frac{1}{2}$
 $A = [0,1]$

$$T'_0(s) = 1/3 s$$

 $T'_1(s) = 1/3 s + 2/3$
 $A = Cantor$

Exemple

Cas des courbes de Bézier

$$\tau_0 * t = \frac{t}{2}$$
 Rq: A($\{\tau_0, \tau_1\}$)=[0,1]

$$\tau_1 * t = \frac{t}{2} + \frac{1}{2}$$

$$B(t) \begin{cases} B(\tau_0 * t) = D_0 * B(t) \text{ si } t \in [0,1] \\ B(\tau_1 * t) = D_1 * B(t) \text{ si } t \in [0,1] \end{cases}$$

$$B(\tau_i * p) = D_i * B(p)$$

$$B(p) = D_i * B(\tau_i^{-1} * p)$$

F

Fonction de transport

- IFS paramétré :
- Soient \mathbb{T}^1 et \mathbb{T}^2 2 IFS indexés par le même ensemble Σ
 - Si $A(\mathbb{T}^1) = [0,1]$
 - Si H est bien défini (ie la condition d'intersection est vérifiée)
 - Alors la fonction de transfert permet de réaliser un paramètrage de A(\mathbb{T}^2) par [0,1]= A(\mathbb{T}^1)

Construction de courbes paramétrées

- Condition de raccord faible (ou condition de connexité)
 - Idée :
 - En notant par l'ensemble des indices des bords (dans le cas des courbes est réduit à 2 éléments). Soit l'ensemble fini des adresses des bords
 - L'ensemble des raccords est caractérisé par une relation d'équivalence sur telle que :

$$((i\tau_k),(j\tau_l)) \in Y \Rightarrow T_i(\phi(\tau_k)) = T_j(\phi(\tau_l))$$

