Grade received 100% To pass 76% or higher

1. Given that $f(x,y)=x^2y+3x^2$, find its derivative with respect to x, i.e., find $\frac{\partial f}{\partial x}$.

1/1 point

Note: Please use * to indicate the product in the answer. So, if we would write the entire function f as an answer, it would be x^2 * y + 3 * x^2.

$$2xy + 6x$$

2*x*y + 6*x

⊘ Correct

2. Given that $f(x,y) = xy^2 + 2x + 3y$ its gradient, i.e., abla f(x,y) is:

1/1 point

- $\bigcirc \left[egin{array}{c} 2xy+3 \ y^2+2 \end{array}
 ight]$
- $\bigcirc \left[egin{array}{c} 2xy \ 2x+3 \end{array}
 ight]$
- $\bigcirc \begin{bmatrix} 2y \\ 0 \end{bmatrix}$
- **⊘** Correct

Correct! Applying the gradient's formula: $abla f(x,y) = \left[egin{array}{c} rac{\partial f}{\partial x} \ rac{\partial f}{\partial y} \end{array}
ight]$, you can get the result!

3. Let $f(x,y)=x^2+2y^2+8y$. The minimum value of f is:

1/1 point

-8

⊘ Correct

You are correct! Finding the x and y values that satisfies $\nabla f(x,y) = \left(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}\right) = (0,0)$ and then applying them to f(x,y) gives you the correct result!

4. The gradient of $f(x,y,z)=x^2+2xyz+z^2$ is:

1/1 point

- $lackbox{ } 2x+2yz \ 2xz \ 2xy+2z$
- $egin{bmatrix} 2x+2xz \ 2yz \ 2xy+z \end{bmatrix}$
- $igcap 2x + 2yz \ 2xy \ 2xy + z$
- $igcap 2yz + 2xz \ 2z \ 2x$
- **⊘** Correct

Correct!