MATH-F-211 : Topologie

R. Petit

année académique 2016 - 2017

Table des matières

I	Topologie Générale	1
1	Espaces métriques	2
	1.1 Définitions	2
	1.2 Sous-espaces métriques	4
	1.3 Suites et limites	
	1.4 Fonctions et applications continues	6
	1.5 Ensembles ouverts et fermés	
	1.6 Métriques équivalentes	7
2		8
	2.1 Définitions	8
	2.2 Homéomorphismes	10
	2.3 Topologie produit	
		11
	2.5 Sous-ensembles fermés et sous-ensembles denses	12
3	Espaces de Haussdorf	15
4	Espaces connexes	17

Première partie

Topologie Générale

Espaces métriques

1.1 Définitions

Définition 1.1. Soit M un ensemble non vide. Une fonction $d: M \times M \to \mathbb{R}$ est un e *métrique* si d satisfait :

M1. $\forall x, y \in M : d(x, y) \ge 0 \text{ avec } d(x, y) = 0 \iff x = y;$

M2. $\forall x, y \in M : d(x, y) = d(y, x)$;

M3. $\forall x, y, z \in M : d(x, z) \leq d(x, y) + d(y, z)$.

Le couple (M, d) est appelé *espace métrique*.

Exemple 1.1. La métrique euclidienne sur \mathbb{R} est définie par :

$$d_{E}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}: (x,y) \mapsto |x-y|$$
.

Démonstration. EXERCICE.

Exemple 1.2. La métrique euclidienne sur \mathbb{R}^n est définie par :

$$d_E: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}: (x,y) \mapsto ||x-y|| = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}.$$

Lemme 1.2 (Inégalité de Cauchy-Schwartz). *Soient* $r, s \in \mathbb{R}^n$. *Alors* :

$$\left(\sum_{i=1}^n r_i s_i\right)^2 \leqslant \left(\sum_{i=1}^n r_i^2\right) \left(\sum_{i=1}^n s_i^2\right).$$

Démonstration. Soit la fonction :

$$F(t) = \sum_{j=1}^{n} (r_j + ts_j)^2 = \left(\sum_{j=1}^{n} s_j^2\right) t^2 + \left(2\sum_{j=1}^{n} r_j s_j\right) t + \sum_{j=1}^{n} r_j^2.$$

La fonction F(t) est positive pour tout t car c'est une somme de valeurs positives. Dès lors, son discriminant est négatif. On a alors :

$$\left(2\sum_{j=1}^n r_j s_j\right)^2 - 4\left(\sum_{j=1}^n r_j^2\right)\left(\sum_{j=1}^n s_j^2\right) \leqslant 0.$$

En divisant par 4 de part et d'autre et en réarrangeant l'inégalité, on obtient :

$$\left(\sum_{j=1}^n r_j s_j\right)^2 \leqslant \left(\sum_{j=1}^n r_j^2\right) \left(\sum_{j=1}^n s_j^2\right).$$

Preuve de l'exemple 1.2. M1 et M2 sont triviaux.

Pour M3, posons pour $1 \le i \le n : r_i := x_i - y_i$ et $s_i := y_i - z_i$.

Par l'inégalité de Cauchy-Schwartz, on peut écrire :

$$\begin{split} 2\sum_{i=1}^n r_i s_i &\leqslant 2\sqrt{\left(\sum_{i=1}^n r_i^2\right)\left(\sum_{i=1}^n s_i^2\right)} \\ 2\sum_{i=1}^n r_i s_i + \sum_{i=1}^n (r_i^2 + s_i^2) &\leqslant 2\sqrt{\left(\sum_{i=1}^n r_i^2\right)\left(\sum_{i=1}^n s_i^2\right)} + \sum_{i=1}^n (r_i^2 + s_i^2) \\ \sum_{i=1}^n (r_i + s_i)^2 &\leqslant \sqrt{\sum_{i=1}^n s_i^2} + \sqrt{\sum_{i=1}^n r_i^2} \\ \sqrt{\sum_{i=1}^n (r_i + s_i)^2} &\leqslant \sqrt{\sum_{i=1}^n r_i^2} + \sqrt{\sum_{i=1}^n s_i^2} \\ \sqrt{\sum_{i=1}^n (x_i - z_i)^2} &\leqslant \sqrt{\sum_{i=1}^n (x_i - y_i)^2} + \sqrt{\sum_{i=1}^n (y_i - z_i)^2} \\ d_E(x, z) &\leqslant d_E(y, z) + d_E(x, y). \end{split}$$

Définition 1.3. Soit $M \neq \emptyset$. On définit la *métrique discrète* sur M par :

$$d: M \times M \to \mathbb{R} : (x,y) \mapsto \begin{cases} 1 & \text{si } x \neq y \\ 0 & \text{si } x = y \end{cases}.$$

Démonstration. M1 et M2 sont triviaux.

Pour M3:

- soit $x \neq z$, et donc $x \neq y$ ou $y \neq z$, ce qui implique $d(x,y) + d(y,z) \geqslant 1 = d(x,z)$; soit x = z, et donc $0 = d(x,z) \leqslant d(x,y) + d(y,z)$.

Définition 1.4. La métrique de Manhattan est définie par :

$$d_{\mathcal{M}}: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}: (x, y) \mapsto |x_1 - y_1| + |x_2 - y_2|.$$

Démonstration. M1 et M2 sont triviaux.

Pour M3, on pose $x, y, z \in \mathbb{R}^2$. On a alors :

$$\begin{split} d_{\mathcal{M}}(x,z) &= d_{\mathsf{E}}(x_1,z_1) + d_{\mathsf{E}}(x_2,z_2) \leqslant d_{\mathsf{E}}(x_1,y_1) + d_{\mathsf{E}}(y_1,z_1) + d_{\mathsf{E}}(x_2,y_2) + d_{\mathsf{E}}(y_2,z_2) \\ &= \left(d_{\mathsf{E}}(x_1,y_1) + d_{\mathsf{E}}(x_2,y_2) \right) + \left(d_{\mathsf{E}}(y_1,z_1) + d_{\mathsf{E}}(y_2,z_2) \right) = d_{\mathcal{M}}(x,y) + d_{\mathcal{M}}(y,z). \end{split}$$

Définition 1.5. Soit $\mathcal{C}([a,b])$, l'ensemble des fonctions continues sur [a,b] à valeurs dans \mathbb{R} . Soient $f,g \in \mathcal{C}([a,b])$, et on définit :

$$\begin{split} & - d_1 : \mathfrak{C}\left([\mathfrak{a},\mathfrak{b}]\right) \times \mathfrak{C}\left([\mathfrak{a},\mathfrak{b}]\right) \to \mathbb{R} : (f,g) \mapsto \int_{\mathfrak{a}}^{\mathfrak{b}} \left| (f-g)(x) \right| dx \,; \\ & - d_2 : \mathfrak{C}\left([\mathfrak{a},\mathfrak{b}]\right) \times \mathfrak{C}\left([\mathfrak{a},\mathfrak{b}]\right) \to \mathbb{R} : (f,g) \mapsto \sqrt{\int_{\mathfrak{a}}^{\mathfrak{b}} \left((f-g)(x) \right)^2 dx \,; \\ & - d_{\infty} : \mathfrak{C}\left([\mathfrak{a},\mathfrak{b}]\right) \times \mathfrak{C}\left([\mathfrak{a},\mathfrak{b}]\right) \to \mathbb{R} : (f,g) \mapsto \sup \left\{ \left| (f-g)(x) \right| \, t.q. \, \, x \in [\mathfrak{a},\mathfrak{b}] \right\}. \end{split}$$

Définition 1.6. Soit $C^1([a,b])$, l'ensemble des fonctions continument différentiables sur [a,b] à valeurs dans \mathbb{R} . On définit :

$$\begin{split} d:\mathcal{C}^1([\mathfrak{a},\mathfrak{b}])\times\mathcal{C}^1([\mathfrak{a},\mathfrak{b}])\to\mathbb{R}:(f,g)\mapsto sup\left\{\left|(f-g)(x)\right|\ t.q.\ x\in[\mathfrak{a},\mathfrak{b}]\right\}+sup\left\{\left|(f'-g')(x)\right|\ t.q.\ x\in[\mathfrak{a},\mathfrak{b}]\right\}\\ &=d_\infty(f,g)+d_\infty(f',g'). \end{split}$$

Remarque. Si f et g sont k fois continument dérivables, alors on définit :

$$d(f,g) = \sum_{i=0}^k d_\infty(f^{(i)},g^{(i)}).$$

1.2 Sous-espaces métriques

Proposition 1.7. *Soit* (M, d) *un espace métrique. Soit* $A \subset M$, *non vide. Alors* (A, d_A) *est un espace métrique, où* :

$$d_A = d|_{A \times A}$$
.

Définition 1.8. Soient (M, d_M) et (N, d_N) deux espaces métriques. Soit $A \subset M$ non-vide. On définit trois métriques distinctes :

$$\begin{split} &d_1:(M\times N)^2\to\mathbb{R}:((x,y),(x',y'))\mapsto d_M(x,x')+d_N(y,y')\\ &d_2:(M\times N)^2\to\mathbb{R}:((x,y),(x',y'))\mapsto\sqrt{d_M(x,x')+d_N(y,y')}\\ &d_\infty:(M\times N)^2\to\mathbb{R}:((x,y),(x',y'))\mapsto max\left\{d_M(x,x'),d_N(y,y')\right\} \end{split}$$

Démonstration. EXERCICE.

Définition 1.9. Soit (M, d) un espace métrique et soient $a \in M, r \in \mathbb{R}_0^+$. On définit la *boule ouverte* centrée en a de rayon r par :

$$B(\alpha, r) := \{x \in M \text{ t.q. } d(x, \alpha) \leq r\}.$$

Définition 1.10. Soit $f:(M,d_M)\times(N,d_N)$, une application entre deux espaces métriques. Si f est une bijection et :

$$\forall x, y \in M : d_N(f(x), f(y)) = d_M(x, y),$$

alors on dit que f est une isométrie.

Remarque. L'ensemble des isométries d'un espace métrique dans lui-même forme un groupe pour la composition.

1.3 Suites et limites

Définition 1.11. Une suite (x_n) dans un espace métrique (M,d) converge vers un point $a \in M$ si et seulement si :

$$\forall \epsilon > 0 : \exists N \in \mathbb{N} \text{ t.q. } \forall n \geqslant N : d(x_n, a) < \epsilon.$$

Lemme 1.12. Soit (x_n) une suite dans un espace métrique (M, d). S'il existe a et b dans M tels que $x_n \to a$ et $x_n \to b$, alors a = b.

Lemme 1.13. Soient (M, d_M) et (N, d_N) deux espaces métriques. Soient (x_n) une suite dans M et (y_n) une suite dans N. Alors la suite $(x_n, y_n)_n$ dans $M \times N$ converge par d en $(a, b) \in M \times N$ si et seulement si $x_n \to a$ et $y_n \to b$, où $d \in \{d_1, d_2, d_\infty\}$.

Remarque. Ici, la convergence est assurée par les trois métriques si elle est constatée par une seule. En réalité, de manière générale, la convergence dépend de la métrique.

Exemple 1.3. La fonction:

$$f_n: [0,1] \to [0,1]: x \mapsto \begin{cases} nx & \text{si } 0 \leqslant x < \frac{1}{n} \\ 2 - nx & \text{si } \frac{1}{n} \leqslant x < \frac{2}{n} \\ 0 & \text{sinon} \end{cases}.$$

On observe que:

$$\begin{split} d_1(f_n,0) &= \int_0^1 \left| f_n(x) - 0(x) \right| dx = \int_0^1 \left| f_n(x) \right| dx = \frac{1}{n} \xrightarrow[n \to +\infty]{} 0 \\ d_2(f_n,0) &= \int_0^1 \left| f_n(x) \right|^2 \leqslant \sqrt{\frac{1}{n}} \xrightarrow[n \to +\infty]{} 0 \\ d_\infty(f_n,0) &= 1 \quad \forall n \in \mathbb{N}. \end{split}$$

Il y a donc convergence vers 0 (la fonction nulle) pour d_1 et d_2 dans $\mathcal{C}([0,1])$ mais vers 1 (la fonction constante valant 1) pour d_{∞} .

Définition 1.14. Une suite (x_n) dans un espace métrique (M, d) est dite *de Cauchy* si :

$$\forall \epsilon > 0 : \exists N \in \mathbb{N} \text{ t.q. } \forall m, n \geqslant N : d(x_m, x_n) < \epsilon.$$

Lemme 1.15. Soit (x_n) une suite convergente dans un espace métrique (M, d). Alors (x_n) est de Cauchy. Remarque. On ne peut pas cependant dire que la réciproque est vraie : le cas est trop général. Exemple 1.4. Si $(x_n) \subset \mathbb{Q}$ est une suite convergente en $\sqrt{2}$ dans \mathbb{R} , alors (x_n) est de Cauchy. Or (x_n) ne converge pas dans \mathbb{Q} .

Définition 1.16. Soient (M, d), un espace métrique et $A \subseteq M$. A est dit borné lorsque :

$$\exists L \in \mathbb{R}^+_0 \text{ t.q. } \forall x, y \in M : d(x, y) \leq L.$$

De plus, la suite $(x_n) \subset M$ est dite bornée lorsque le sous-ensemble $\{x_n \ t.q. \ n \in \mathbb{N}\} \subset M$ est borné. **Proposition 1.17.** *Un sous-ensemble* A *de* M, où (M,d) *est un espace métrique, est borné si et seulement si :*

$$\exists x_0 \in M, R \in \mathbb{R}^+_0 \ t.g. \ A \subset B(x_0, R).$$

Démonstration. □

Théorème 1.18 (Bolzanno-Weierstrass). *Soit* $(x_n) \subset \mathbb{R}^m$. *Si* (x_n) *est bornée, alors il existe une sous-suite de* (x_n) *convergente.*

1.4 Fonctions et applications continues

Définition 1.19. Soit $f:(M,d_M)\to (N,d_N)$, une application entre deux espaces métriques. On dit que f est continue en $a\in M$ lorsque :

$$\forall \varepsilon > 0 : \exists \delta > 0 \text{ t.q. } d_{M}(x, \alpha) < \delta \Rightarrow d_{N}(f(x), f(\alpha)) < \varepsilon.$$

On dit que f est continue lorsqu'elle est continue en tout point a de M.

Lemme 1.20. *Soit* $f: M \to N$, *une application entre deux espaces métriques.* f *est continue en* $a \in M$ *si et seulement si* :

$$\forall (x_n) \subset M : (x \to a) \Rightarrow (f(x_n) \to f(a)).$$

Proposition 1.21. Soient $(M, d_M), (N, d_N), (P, d_P)$ trois espaces métriques. Soient $f : (M, d_M) \to (N, d_N)$ et $g : (N, d_N) \to (P, d_P)$ continues. Alors la fonction $g \circ f$ est également continue.

1.5 Ensembles ouverts et fermés

Définition 1.22. Soit (M, d) un espace métrique. Un sous-ensemble $U \subseteq M$ est dit :

- ouvert si $\forall x \in U : \exists \varepsilon > 0 \text{ t.q. } B(x, \varepsilon) \subseteq U$;
- fermé si son complémentaire $(M \setminus U)$ est ouvert.

Lemme 1.23. Soit $(x_n) \subset M$. La suite (x_n) converge en $a \in M$ lorsque $n \to +\infty$ si et seulement si pour tout ouvert $U \subseteq M$: si $a \in U$, alors il existe $N \in \mathbb{N}$ tel que $\forall n > N : x_n \in U$.

Lemme 1.24. Soit $f: M \to N$ une application all ant d'un espace métrique dans un autre. L'application f est continue f est seulement f in f pour tout ouvert f in f in f and f in f in

Démonstration. Supposons d'abord f continue et prenons $U \subset N$ un ouvert et $a \in f^{-1}(U)$. Par ouverture de U, on a :

$$\exists \varepsilon > 0 \text{ t.q. } B(f(\alpha), \varepsilon) \subseteq U.$$

Également, par continuité de f, on sait que

$$\exists \delta > 0 \ \text{t.q.} \ \forall x \in f^{-1}(U): d_M(x,\alpha) < \delta \Rightarrow d_N(f(x),f(\alpha)) < \epsilon.$$

Autrement dit, si $x \in B(a, \delta)$, alors $f(x) \in B(f(a), \epsilon)$. Et donc $f(x) \in U$, ou encore $B(a, \delta) \subseteq f^{-1}(U)$ qui est donc ouvert.

Supposons alors que pour tout ouvert $U \subseteq N$, $f^{-1}(U)$ est ouvert. Soient $\alpha \in M$ et $\epsilon > 0$. On sait que $B(f(\alpha), \epsilon)$ est un ouvert, et donc $f^{-1}\left(B(f(\alpha), \epsilon)\right)$ est également un ouvert. Or on sait que $\alpha \in f^{-1}\left(B(f(\alpha), \epsilon)\right)$. Dès lors, il existe $\delta > 0$ tel que $B(\alpha, \delta) \subseteq f^{-1}\left(B(f(\alpha), \epsilon)\right)$. Ou encore, de manière équivalente, si $d_M(x, \alpha) < \delta$, alors $d_N(f(x), f(\alpha)) < \epsilon$. La fonction f est donc continue.

Remarque. L'intérêt de ces lemmes est d'avoir une caractérisation de la convergence et de la continuité ne dépendant pas de la métrique mais uniquement de la notion d'ouvert.

Lemme 1.25. *Soit* (M, d) *un espace métrique. Alors :*

- 1. M et Ø sont des ouverts;
- 2. $si U_1, ..., U_k$ sont des ouverts de M, alors $\bigcap_{i=1}^k U_i$ est un ouvert de M;
- 3. $si\{U_i \ t.q. \ i \in I\}$ est une collection quelconque d'ouverts de M, alors $\bigcup_{i \in I} U_i$ est un ouvert de M.

Démonstration. Le point 1 est trivial.

Pour le point 2, prenons $a \in \bigcap_{i=1}^n U_i$. On sait que pour tout $1 \le i \le n$, il existe $\varepsilon_i > 0$ tel que $B(a, \varepsilon_i) \subseteq U_i$. Prenons donc $\varepsilon \coloneqq \min_i \{\varepsilon_i\}$, on sait donc que :

$$\forall i \in \{1, \ldots, n\} : B(a, \varepsilon) \subseteq U_i$$
.

On peut donc dire que $B(\alpha, \epsilon) \subseteq \bigcap_{i=1}^n U_i$.

Pour le point 3, prenons $a \in \bigcup_{i \in I} U_i$. On sait donc qu'il existe $j \in I$ tel que $a \in U_j$, et donc, par ouverture de U_j , il existe $\epsilon > 0$ tel que $B(\alpha, \epsilon) \subseteq U_j \subseteq \bigcup_{i \in I} U_i$.

1.6 Métriques équivalentes

Définition 1.26. Soit M un ensemble non-vide et soient d et d', deux métriques sur M. On dit qu'elles sont *topologiquement équivalentes* lorsqu'elles déterminent les mêmes ouverts.

Corollaire 1.27. Soit M un ensemble non-vide et soient d, d' deux métriques topologiquement équivalentes sur M. Une suite $(x_n) \subset M$ converge par rapport à d si et seulement si elle converge par rapport à d'.

Démonstration. Les deux métriques d et d' déterminent les mêmes ouverts. Dès lors, par le Lemme 1.23, on a la double implication de la convergence. \Box

Théorème 1.28. Les trois métriques d_1 , d_2 , d_∞ sont topologiquement équivalentes.

Démonstration. En notant d l'une de ces métriques et d' une autre, pour toute boule ouverte B_d pour la métrique d, il est possible de déterminer une boule ouverte $B_{d'}$ pour la métrique d' telle que $B_{d'} \subseteq B_d$. \square

Théorème 1.29. *Soit* M *un espace métrique. Pour tout* $x, y \in M$ *, on a :*

$$\frac{1}{2}d_1(x,y)\leqslant \frac{1}{\sqrt{2}}d_2(x,y)\leqslant d_\infty(x,y)\leqslant d_2(x,y)\leqslant d_1(x,y).$$

Définition 1.30. Soit M un ensemble non-vide et soient d, d' deux métriques sur M. Ces métriques sont dites *Lipschtiz-équivalentes* lorsque :

$$\exists A, B \geq 0 \text{ t.q. } \forall x, y \in M : Ad(x, y) \leq d'(x, y) \leq Bd(x, y).$$

Remarque. Par le Théorème 1.29, on sait que les métriques d_1 , d_2 , d_∞ sont Lipschitz-équivalentes. **Lemme 1.31.** Soit M un ensemble non-vide et soient d, d' deux métriques sur M. Si d et d' sont Lipschitz-équivalentes, alors elles sont topologiquement équivalentes.

Espaces topologiques

2.1 Définitions

Définition 2.1. Soit X un ensemble non-vide. Une collection \mathfrak{T}_X des sous-ensembles de X est une topologie lorsque :

T1 $\{X,\emptyset\}\subseteq \mathfrak{T}_X$;

T2 si $U_1, \ldots, U_k \in \mathfrak{T}_X$, alors $\bigcap_{i=1}^k U_i \in \mathfrak{T}_X$;

T3 si $\{U_i \text{ t.q. } i \in I\}$ est une collection quelconque d'éléments de \mathcal{T}_X , alors $\bigcup_{i \in I} U_i \in \mathcal{T}_X$.

On appelle le couple (X, T_X) un *espace topologique*. Les éléments de T_X sont appelés les *ouverts* de X.

Définition 2.2. Soient (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) deux espaces topologiques et $f: X \to Y$. On dit que f est $(\mathcal{T}_X, \mathcal{T}_Y)$ -continue si:

$$\forall u \in \mathfrak{T}_Y: \mathsf{f}^{-1}(u) \in \mathfrak{T}_X\text{,}$$

ou encore:

$$f^{-1}(\mathfrak{T}_X)\subseteq \mathfrak{T}_X.$$

Exemple 2.1. Si (M, d_M) est un espace métrique, on définit \mathfrak{T}_{d_M} comme étant la collection de tous les ouverts de (M, d_M) . On a vérifié par le Lemme 1.25 que (M, \mathfrak{T}_{d_M}) est un espace topologique.

Remarque. On observe qu'une fonction est continue au sens topologique ssi elle est continue au sens précédent, par le Lemme 1.24.

Définition 2.3. Soit X un ensemble non-vide quelconque. On définit :

- la topologie grossière sur X par $\mathfrak{T}_X = \{X, \emptyset\}$;
- la topologie discrète sur X par $\mathfrak{T}_X = \mathfrak{P}(X) = 2^X$.

Remarque. La topologie discrète revient à la topologie induite par la métrique discrète (voir Définition 1.3) sur un ensemble.

La topologie grossière par contre ne peut être issue d'une métrique lorsque $|X| \ge 2$.

Exemple 2.2. Soient
$$\mathbb{N} = \{0, 4, ...\}$$
 et $\mathbb{U}_n = [0, n]$ pour $n \in \mathbb{N}$. On pose $\mathfrak{T} := \{\mathbb{U}_n \text{ t.q. } n \in \mathbb{N}\} \cup \{\mathbb{N}, \emptyset\}$.

L'axiome T1 est satisfait de manière triviale (par définition).

Pour prouver que T2 est respecté, prenons $U_{n_1}, \ldots, U_{n_k} \in \mathfrak{T}$. Posons $\mathfrak{n} \coloneqq \min_i \{\mathfrak{n}_i\}$. On a alors $\bigcap_{i=1}^k U_{\mathfrak{n}_i} = U_{\mathfrak{n}} \in \mathfrak{T}$. Si dans l'intersection, il y a \emptyset , alors l'intersection est $\emptyset \in \mathfrak{T}$. Également si l'intersection comporte au plus k-1 fois \mathbb{N} , on peut les *retirer* et retomber sur le cas $U_{\mathfrak{n}}$. Si l'intersection est $\mathbb{N} \cap \mathbb{N} \cap \ldots \cap \mathbb{N}$, alors l'intersection vaut $\mathbb{N} \in \mathfrak{T}$.

Pour l'axiome T3, prenons $\{U_{n_i} \ t.q. \ i \in I\}$. Si $\{n_i \ t.q. \ i \in I\}$ est borné, alors $\bigcup_{i \in I} U_{n_i} = U_{max_{i \in I}\{n_i\}}$, et sinon $\bigcup_{i \in I} U_i = \mathbb{N}$.

On a donc bien une topologie sur \mathbb{N} , ce qui veut dire que (\mathbb{N}, T) est un espace topologique.

Remarque. Ici, $\mathfrak T$ ne peut être issu d'une métrique car toute fonction continue de $(\mathbb N, \mathfrak T)$ dans $(\mathbb R, \mathfrak T_{d_E})$ est constante. En effet, soit $f: \mathbb N \to \mathbb R$, $(\mathfrak T, \mathfrak T_{d_E})$ -continue. Soit $\mathfrak n_0 \in \mathbb N$. Posons $\mathfrak y := \mathsf f(\mathfrak n_0) \in \mathbb R$. Soit $\epsilon > 0$. Puisque $(\mathfrak y - \epsilon, \mathfrak y + \epsilon)$ est un ouvert, par continuité, on sait que $\mathsf f^{-1}\left((\mathfrak y - \epsilon, \mathfrak y + \epsilon)\right)$ est également un ouvert, et qui contient $\mathfrak n_0$, et donc qui inclut $\mathfrak U_{\mathfrak n_0}$.

On en déduit $f(0) \in (y - \varepsilon, y + \varepsilon)$, or ε est quelconque. On trouve donc :

$$f(0) \in \bigcap_{\epsilon > 0} (y - \epsilon, y + \epsilon) = \{y\}.$$

On a alors trouvé que $f(0) = y = f(n_0)$, et ce, pour tout $n_0 \in \mathbb{N}$. La fonction f est donc bien constante. **Définition 2.4.** Soit (X, T) un espace topologique et soit $x \in X$. Un *voisinage de* x est un sous-ensemble V de X tel que \cdot

$$\exists O \in \mathfrak{T} \text{ t.q. } x \in O \subseteq O.$$

On note $\mathcal{V}_X(x)$ l'ensemble des voisinages de x dans X.

Définition 2.5. Soit $f:(X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$, une application et $a \in X$. On dit que f est continue en a lorsque :

$$\forall V \in \mathcal{V}_{Y}(f(\alpha)) : f^{-1}(V) \in \mathcal{V}_{X}(\alpha).$$

Remarque. On remarque alors qu'une fonction est continue si elle est continue en tous ses points.

Définition 2.6. Soit $A \subseteq (X, T)$. Munissons A d'une topologie :

$$\mathfrak{I}|_{A} := \{ U \cap A \text{ t.q. } U \in \mathfrak{I} \}.$$

On appelle $\mathfrak{I}|_{A}$ la topologie induite par A.

Remarque. Montrons que $\mathfrak{I}|_A$ est bien une topologie.

Pour T1, on sait que \emptyset , $X \in \mathcal{T}$. Et donc $\mathcal{T}|_A \supseteq \{\emptyset \cap A, X \cap A\} = \{\emptyset, A\}$.

Pour T2, prenons $U_1, \ldots, U_k \in \mathcal{T}|_A$. On en déduit que pour tout $i=1,\ldots,k$, il existe $V_i \in \mathcal{T}$ tel que $V_i \cap A = U_i$. Et donc :

$$\bigcap_{i=1}^k U_i = \bigcap_{i=1}^k (V_i \cap A) = \left(\bigcap_{i=1}^k V_i\right) \cap A \in \mathfrak{I}|_A,$$

 $\operatorname{car} \bigcap_{i=1}^k V_i \in \mathfrak{T}.$

Pour T3, à nouveau, pour tout $i \in I$, il existe $V_i \in \mathfrak{I}$ tel que $U_i = V_i \cap A$. On a alors :

$$\bigcup_{i\in I} U_i = \bigcup_{i\in I} (V_i \cap A) = \left(\bigcup_{i\in I} V_i\right) \cap A \in \mathfrak{T}|_A,$$

car $\bigcup_{i \in I} V_i \in \mathfrak{T}$.

Définition 2.7. On appelle *inclusion* la fonction d'identité allant d'un ensemble $A \subset X$ dans X:

$$i:A\to X:x\mapsto x.$$

Lemme 2.8. *Soit* (X, T_X) *un espace topologique et soit* $\emptyset \neq A \subset X$. *La fonction d'inclusion* $i : A \to X$ *est* $(T|_A, T_X)$ -continue.

Remarque. La topologie induite est la plus réduite (avec le moins d'ouverts) telle que l'inclusion est continue.

Lemme 2.9. Soit $f:(X,T_X)\to (Y,T_Y)$ continue et soit $\emptyset\neq A\subseteq X$. Alors $(f\circ i):A\to (Y,T_Y)$ est $(T|_A,T_Y)$ -continue.

Remarque. Cela revient à dire que la restriction d'une fonction continue à un sous-ensemble de son domaine est toujours continue.

Lemme 2.10. *Soient* $f:(X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$, *une application telle que* $f(X) \subseteq B \subseteq Y$. *Alors* f *est* $(\mathcal{T}_X, \mathcal{T}_Y)$ -continue $f: f: (X, \mathcal{T}_X) \to (B, \mathcal{T}_Y|_B)$ *est* $(\mathcal{T}_X, \mathcal{T}_Y|_B)$ -continue.

Lemme 2.11. Soient $f:(X,T_X)\to (Y,T_Y)$ et $g:(Y,T_Y)\to (Z,T_Z)$ deux applications continues. Alors $g\circ f$ est continue.

Démonstration. Soit $U \in \mathcal{T}_Z$. On sait que $(g \circ f)^{-1}(U) = (f^{-1} \circ g^{-1})(U) = f^{-1}(g^{-1}(U))$, où $g^{-1}(U)$ est un ouvert par continuité de g. Appelons-le V. On a alors $f^{-1}(V)$ un ouvert également par continuité de f. Donc $(g \circ f)^{-1}(U) \in \mathcal{T}_X$ et donc $(g \circ f)$ est continue. □

Remarque. On peut remarquer l'efficacité de la topologie dans de telles démonstrations.

2.2 Homéomorphismes

Définition 2.12. Soit $f:(X, T_X) \to (Y, T_Y)$ une application entre deux espaces topologiques. f est un *homéo-morphisme* lorsque :

- (i) f est bijective;
- (ii) f est continue;
- (iii) f^{-1} est continue.

Remarque. Attention: un homéomorphisme n'est pas un homomorphisme!

Également, une bijection continue n'est pas forcément un homéomorphisme.

Par exemple Id : $(X, \mathcal{T}_1) \to (X, \mathcal{T}_2)$, avec $\mathcal{T}_2 \subsetneq \mathcal{T}_1$.

Exemple 2.3. Tous les ouverts de $(\mathbb{R}, \mathcal{T}_{d_F})$ sont homéomorphes. En effet, l'application :

$$f:(a,b)\to(c,d):x\mapsto c+\frac{(x-a)(d-c)}{(b-a)}$$

est continue (et sa réciproque également) et bijective. La continuité est assurée par la composition d'applications continues (translations et homothéties).

Définition 2.13. On appelle *propriété topologique* toute propriété résistante aux homéomorphismes.

Exemple 2.4. Le fait qu'une fonction continue sur $(\mathbb{N}, \mathcal{T}_{d_D})$, avec d_D la métrique discrète, est constante est une propriété topologique.

À l'opposé, le fait d'être un ensemble borné n'est pas une propriété topologique. En effet, l'ensemble ouvert (-1,1) est borné, mais prenons l'application $f:(-1,1)\to\mathbb{R}:x\mapsto\frac{x}{1+|x|}$. On voit bien que f est un homéomorphisme mais que $f((-1,1))=\mathbb{R}$ n'est plus borné.

2.3 Topologie produit

Définition 2.14. Étant donnés deux espaces topologiques (X, T_X) , (Y, T_Y) , on définit la collection T de sous-ensembles de $X \times Y$ comme suit :

$$W \in \mathcal{T} \iff \forall x, y \in W : \exists U \in \mathcal{T}_X, V \in \mathcal{T}_Y \text{ t.g. } (x, y) \in U \times V \subseteq W.$$

On appelle T la topologie produit de T_X et T_Y .

Lemme 2.15. T *est une topologie sur* $X \times Y$.

Démonstration. Pour vérifier T1, on observe que $\emptyset \in \mathfrak{T}$ car si $W = \emptyset$, la condition est vérifiée pour tout $(x,y) \in W$. Également, $X \times Y \in \mathfrak{T}$ car si on prend $(x,y) \in W = X \times Y$, on peut prendre $X \in \mathfrak{T}_X$, $Y \in \mathfrak{T}_Y$ tels que :

$$(x,y) \in X \times Y \subseteq W = X \times Y.$$

Pour vérifier T2, prenons $W_1, W_2 \in \mathcal{T}$. Soit $(x,y) \in W_1 \cap W_2$. On sait que :

$$\exists U_1 \in \mathcal{T}_X, V_1 \in \mathcal{T}_Y \text{ t.q. } (x,y) \in U_1 \times V_1 \subseteq W_1,$$

$$\exists U_2 \in \mathcal{T}_X, V_2 \in \mathcal{T}_Y \text{ t.q. } (x,y) \in U_2 \times V_2 \subseteq W_2.$$

On peut alors dire $(x, y) \in (U_1 \times V_1) \cap (U_2 \times V_2) = (U_1 \cap U_2) \times (V_1 \cap V_2) \subseteq W_1 \cap W_2$.

Pour vérifier T3, soit $\{W_i \text{ t.q. } i \in I\} \subseteq \mathfrak{T}.$ Alors $\bigcup_{i \in I} W_i \in \mathfrak{T}.$ En effet, soit $(x,y) \in \bigcup_{i \in I} W_i.$ On sait qu'il existe $i \in I$ tel que $(x,y) \in W_i.$ Donc $\exists U \in \mathfrak{T}_X \text{ et } V \in \mathfrak{T}_Y \text{ tels que } (x,y) \in U \times V \subseteq \bigcup_{i \in I} W_i.$

Remarque. Les produits d'ouverts sont des ouverts, mais tous les ouverts ne sont pas des produits d'ouverts : il suffit de prendre les boules ouvertes.

Proposition 2.16. Les projections $\pi_1: X \times Y \to X$ et $\pi_2: X \times Y \to Y$ sont continues.

Démonstration. Soit $U \in \mathcal{T}_X$. Alors $\pi^{-1}(U) = U \times Y \in \mathcal{T}$. De même, soit $V \in \mathcal{T}_Y$. Alors :

$$\pi^{-1}(V) = X \times V \in \mathfrak{T}.$$

Remarque. La topologie produit est la moins fine qui rende les π_i continues.

Proposition 2.17. *Soit* $f: Z \to X \times Y$, *une application continue, où* X, Y, Z *sont des espaces topologiques. Alors* f *est continue si et seulement si* $(\pi_1 \circ f)$ *et* $(\pi_2 \circ f)$ *sont continues.*

Démonstration. Supposons f continue. Par la Proposition 2.16, on sait que les projections sont continues, donc la composition d'applications continues est une application continue.

Supposons maintenant les $(\pi_i \circ f)$ continues. Soit $W \in \mathcal{T}$. Soit $z \in f^{-1}(W)$. Puisque W est un ouvert, on sait qu'il existe $(U,V) \in (\mathcal{T}_X,\mathcal{T}_Y)$ tels que $f(z) \in U \times V$. Par hypothèse, on sait $(\pi_1 \circ f)^{-1}(U), (\pi_2 \circ f)^{-1}(V) \in \mathcal{T}$. Par l'axiome d'intersection finie, on sait que $T_z := (\pi_1 \circ f)^{-1}(U) \cap (\pi_2 \circ f)^{-1}(V) \in \mathcal{T}$. On en déduit également $f(z) \supseteq f^{-1}(W) \in T_z$.

Puisque $T_z \subseteq f^{-1}(W)$ pour tout z, on peut dire que :

$$f^{-1}(W) = \bigcup_{z \in f^{-1}(W)} \mathsf{T}_z \in \mathfrak{T},$$

par l'axiome d'union quelconque. La préimage d'un ouvert W est donc bien un ouvert $\in \mathcal{T}$. L'application f est donc continue.

Remarque. Cette proposition assure la continuité composante par composante.

2.4 Topologie quotient

Définition 2.18. un quotient d'un espace topologique (X, T_X) est une application surjective $\pi : X \to Y$, où Y est un ensemble quelconque.

Remarque. On parle de quotient car on peut aisément faire des classes d'équivalences contenant tous les $x \in X$ tels que $\pi(x)$ ont la même valeur. Par surjection de π , on sait que tous les $y \in Y$ admettent une préimage, et on peut donc identifier les classes $[\pi(x)]$ aux valeurs $y = \pi(x)$.

Définition 2.19. La topologie quotient sur Y est la collection \mathcal{T}_{π} de tous les sous-ensembles O de Y tels que $\pi^{-1}(O) \in \mathcal{T}$.

Lemme 2.20. T_{π} est une topologie sur Y. De plus, π est (T, T_{π}) -continue.

Démonstration. Pour vérifier T1, on sait que $\emptyset \in \mathcal{T}_{\pi}$ car $\pi^{-1}(\emptyset) = \emptyset \in \mathcal{T}$. De plus, $\pi^{-1}(Y) = X \in \mathcal{T}$ par surjection de π , et donc $Y \in \mathcal{T}_{\pi}$.

Pour vérifier T2, si $O_1, \ldots, O_k \in \mathcal{T}_{\pi}$, alors :

$$\pi^{-1}\left(\bigcap_{i=1}^k O_i\right) = \bigcap_{i=1}^k \pi^{-1}(O_i) \in \mathfrak{T},$$

par l'axiome d'intersection finie.

Pour vérifier T3, si $\{O_i \ t.q. \ i \in I\} \subset \mathfrak{T}_{\pi}$, alors :

$$\pi^{-1}\left(\bigcup_{\mathfrak{i}\in I}\mathsf{O}_{\mathfrak{i}}\right)=\bigcup_{\mathfrak{i}\in I}\pi^{-1}(\mathsf{O}_{\mathfrak{i}})\in\mathfrak{T},$$

par l'axiome d'union quelconque.

Remarque. Bien qu'il soit correct d'écrire $\pi^{-1}(O_1 \cap O_2) = \pi^{-1}(O_1) \cap \pi^{-1}(O_2)$, il est généralement faux d'écrire $\pi(O_1 \cap O_2) = \pi(O_1) \cap \pi(O_2)$.

Remarque. la topologie quotient est la topologie la plus fine (qui contient le plus d'ouverts) qui rende π continue.

Lemme 2.21. Soit $\pi: (X,T) \to Y$, surjective, et $f: Y \to (Z,T')$. Alors f est $(\mathfrak{I}_{\pi},\mathfrak{I}')$ -continue si et seulement si $(f \circ \pi)$ est $(\mathfrak{I},\mathfrak{I}')$ -continue.

Démonstration. Supposons f continue. $(f \circ \pi)$ est alors une composition d'applications continues, et est donc continue.

Supposons maintenant $(f \circ \pi)$ continue. Prenons $U \in \mathcal{T}'$. Alors $f^{-1}(U) \in \mathcal{T}_{\pi} \iff (\pi^{-1} \circ f^{-1})(U) \in \mathcal{T}$. Or $(\pi^{-1} \circ f^{-1}) = (f \circ \pi)^{-1}$. Donc, par hypothèse, $(f \circ \pi)^{-1}(U) \in \mathcal{T}$.

2.5 Sous-ensembles fermés et sous-ensembles denses

Définition 2.22. Un sous-ensemble F d'un espace topologique X est fermé lorsque X \ F est ouvert. **Lemme 2.23.** *Soit X un espace topologique. Alors :*

- (i) X, \emptyset sont fermés;
- (ii) si F_1, \ldots, F_k sont fermés, alors $\bigcup_{i=1}^k F_i$ est fermé ;
- (iii) si $\{F_i \ t.q. \ i \in I\}$ est une collection de fermés, alors $\bigcap_{i \in I} F_i$ est un ouvert.

Lemme 2.24. *Une application* $f:(X,T_X) \to (Y,T_Y)$ *est continue si et seulement si* :

$$\forall F \subset Y : F \text{ ferm} e \Rightarrow f^{-1}(F) \text{ ferm} e \subset X.$$

Remarque. Un sous-ensemble peut être à la fois ouvert et fermé, et peut n'être ni ouvert, ni fermé. **Définition 2.25.** Soit A un sous-ensemble d'un espace topologique (X, T). L'adhérence de A, notée adh A est le sous-ensemble :

adh
$$A := \{x \in X \text{ t.g. } \forall U \in \mathcal{T} : x \in U \Rightarrow U \cap A \neq \emptyset\}.$$

Définition 2.26. Un point limite de A est un point dans adh $A \setminus A$.

Exemple 2.5. Soit l'intervalle (a,b) avec $a < b \in \mathbb{R}$. adh ((a,b)) = [a,b] si on se place dans \mathbb{R} , mais adh ((a,b)) = (a,b) si on se place dans (a,b).

Lemme 2.27. *Soient* (M, d) *est un espace métrique,* $A \subseteq M$, *et* $x \in M$. *Alors* $x \in adh A$ *si et seulement si* :

$$\exists (x_n) \subset A \text{ t.q. } x_n \xrightarrow[n \to +\infty]{} x.$$

Lemme 2.28. *Soient* A, $B \subseteq (X, T_X)$, *un espace topologique. Alors* :

- (i) A est fermé si et seulement si A = adh A;
- (ii) $A \subseteq B \Rightarrow adh A \subseteq adh B$;
- (iii) adh(adh(A)) = adh(A);
- (iv) adh A est fermé;
- (v) soit F, l'intersection de tous les fermés qui contiennent A ; alors F = adh A.

Démonstration.

(i) Supposons d'abord A fermé. On a alors $A \subseteq \operatorname{adh} A$. Montrons que $\operatorname{adh} A \subseteq A$. Prenons $x \notin A$. Puisque A est fermé, on sait que $U := X \setminus A$ est ouvert et $x \in U$. Mais $U \cap A = (X \setminus A) \cap A = A \cap \emptyset = \emptyset$. Donc $x \notin \operatorname{adh} A$, ce qui montre que $X \setminus A \subseteq X \setminus \operatorname{adh} A$, ou encore $\operatorname{adh} A \subseteq A$. Supposons ensuite $\operatorname{adh} A = A$. Montrons que $X \setminus A$ est ouvert. Soit $x \in X \setminus A = X \setminus \operatorname{adh} A$. Alors, comme $x \notin \operatorname{adh} A$, il existe U_x un ouvert tel que $x \in U_x$ et $U_x \cap A = \emptyset$. Donc:

$$U_{x}\subset X\setminus A=\bigcup_{x\in X\setminus A}U_{x},$$

on a donc bien $X \setminus A$ ouvert.

- (ii) Trivial.
- (iii) Par (ii), on sait que adh $A \subseteq adh(adh(A))$. Montrons que adh $(adh(A)) \subseteq adh A$. Soit $x \in adh(adh(A))$, et soit U ouvert tel que $x \in U$. Alors $U \cap adh(A) \neq \emptyset$, par définition de l'adhérence. Soit $y \in U \cap adh(A)$. On peut donc dire $y \in adh(A)$ et U est un ouvert tel que $U \ni x$. Donc $U \cap A \neq \emptyset$, ou encore $x \in adh(A)$.
- (iv) Trivial par (i) et (iii).
- (v) Montrons que $F \subseteq adh(A)$: adh A est fermé, $donc adh(A) \supseteq \bigcap_{C \text{ fermé } \supseteq A} C = F$. Montrons maintenant que $F \supseteq adh A$: si C est un fermé qui continent A, alors $C = adh C \supseteq adh A$. Donc:

$$\bigcap_{C \text{ ferm\'e } \supseteq A} C \supseteq adh \, A.$$

Définition 2.29. Un sous-ensemble D d'un espace topologique X est dit *dense* lorsque adh D = D. *Exemple* 2.6. Les ensembles \mathbb{Q} et $\mathbb{R} \setminus \mathbb{R}$ sont denses dans \mathbb{R} .

Lemme 2.30. *Soient* X, *un espace topologique*, M, *un espace métrique*, et $f: X \to M$ *continue. Soit* $D \subseteq X$, *un sous-espace dense. Si* $f|_D$ *est constante, alors* $f = f|_X$ *est constante.*

Démonstration. Soit d ∈ D. Posons y := f(d). Supposons par l'absurde qu'il existe x ∈ X (en particulier dans $X \setminus D$) tel que f(x) ≠ f(d) = y. Posons alors ε := d(f(x), y). Par densité de D dans X, on sait que x ∈ adh D, et de plus :

$$f^{-1}\left(B(f(x),\epsilon)\right).\cap D\neq\emptyset.$$

On peut également dire que $B(f(x), \varepsilon)$ est un ouvert de M, et donc $f^{-1}(B(f(x), \varepsilon))$ est un ouvert de X qui contient x.

Puisque $f^{-1}\left(B(f(x),\epsilon)\right)\cap D\neq\emptyset$, prenons $\widetilde{x}\in f^{-1}\left(B(f(x),\epsilon)\right)\cap D$. Puisque $\widetilde{x}\in D$, on sait que $f(\widetilde{x})=y$. Or $f(\widetilde{x})\in B(f(x),\epsilon)$, ce qui veut dire :

$$d(f(x),y)=d(f(x),f(\widetilde{x})) \lesseqgtr \epsilon=d(f(x),y),$$

ce qui est une contradiction. La fonction est donc bien constante sur X.

constance de f.

Espaces de Haussdorf

Définition 3.1. Soit (X, \mathcal{T}_X) un espace topologique, et soit $(x_n) \subset X$ une suite. On dit que (x_n) converge vers $x \in X$ lorsque :

$$\forall U \in \mathfrak{T}_X : x \in U \Rightarrow \exists N \in \mathbb{N} \text{ t.q. } \forall n \geqslant N : x_n \in U.$$

Remarque. Avec cette définition, les limites ne sont pas forcément uniques. Par exemple, en prenant un espace muni de la topologie grossière, toute suite converge vers tout point de l'espace.

Définition 3.2. Un espace topologique X est dit *séparé au sens de Haussdorff* (ou plus simplement *Hausdorff* ou *de Hausdorff*) lorsque :

$$\forall x \neq y \in X : \exists U, V \in T_X \text{ t.q. } U \cap V = \emptyset \text{ et } (x, y) \in U \times V.$$

Lemme 3.3. Si $(x_n) \subset X$ est une suite dans un espace de Hausdorff, et $x_n \to a$, $x_n \to b$ avec $a, b \in X$, alors a = b. Remarque. La définition de limite donnée ci-dessus n'assure l'unicité que lorsque l'espace est de Hausdorff. Exemple 3.1. Si M est un espace métrique, alors il est topologique de Hausdorff.

Par contre, si X est un espace topologique, muni de la topologie grossière et $|X| \ge 2$, alors X n'est pas de Hausdorff.

Exemple 3.2. En reprenant l'exemple $(\mathbb{N}, \mathfrak{T} \coloneqq \{U_n \coloneqq [0, n] \text{ t.q. } n \in \mathbb{N}\})$, on remarque que ce n'est pas un espace de Hausdorff car 0 n'est différenciable d'aucun autre point de \mathbb{N} car il est dans tous les éléments de la topologie (excepté \emptyset).

Soit $F : \mathbb{R}^2 \to \mathbb{R}^2 : (x,y) \mapsto (x,-y)$, un champ de vecteurs. Une orbite de F est une courbe $\gamma : \mathbb{R} \to \mathbb{R}^2$ telle que :

$$(F \circ \gamma) = \gamma'$$
.

Dans le cas de F, on a que toutes les orbites sont sous la forme :

$$\gamma(t) = (a \exp(t), b \exp(-t))$$
 $a, b \in \mathbb{R}$.

Les trajectoires sont donc les branches de l'hyperbole, les demi-axes, et l'origine. Posons Y, l'ensemble des trajectoires de F. On a la surjection :

$$\pi: \mathbb{R}^2 \to Y: (x,y) \mapsto \text{trajectoire de F passant par } (x,y).$$

On peut dès lors exprimer la topologie quotient T_{π} sur Y. Montrons que Y n'est pas de Hausdorff, i.e. pas métrique.

Considérons $\gamma_1 = \mathbb{R}_0^+ \times \{0\}$ et $\gamma_2 = \{0\} \times \mathbb{R}_0^+$. On sait $\gamma_1 \neq \gamma_2$. γ_1 est l'orbite contenant tous les points sous la forme $\{(x,0) \text{ t.q. } x \in \mathbb{R}_0^+\}$ et γ_2 est l'orbite contenant tous les points sous la forme $\{(0,x) \text{ t.q. } x \in \mathbb{R}_0^+\}$.

Soient U, V deux ouverts qui contiennent respectivement $\pi(1,0)$ et $\pi(0,1)$. Dès lors, on trouve $\pi^{-1}(U)$ contient γ_1 , et de même, on trouve $\pi^{-1}(V)$ contient γ_2 .

Remarquons également que pour tout A, $\pi^{-1}(A)$ est une union d'orbites, et donc il existe $\delta>0$ tel que $B((1,0),\delta)\subset\pi^{-1}(U)$, et de même pour $B((0,1),\delta)\subset\pi^{-1}(V)$. Prenons $0<\mathfrak{q}<\delta$. On a alors $\pi((1,\mathfrak{q}))=\pi((\mathfrak{q},1))$ car les orbites correspondent au points conservant xy=c. Mais puisque $\pi((1,\mathfrak{q}))\in U$ et $\pi((\mathfrak{q},1))\in V$, on a $U\cap V\neq\emptyset$. γ_1 et γ_2 ne peuvent être séparés dans (Y,T_π) . **Proposition 3.4.**

- 1. Soient X un espace topologique et $A \subset X$. Si X est de Hausdorff, alors A est de Hausdorff;
- 2. soient X, Y deux espaces topologiques de Hausdorff. Alors $X \times Y$ est de Hausdorff;
- 3. $si\ f: X \to Y$ est une application injective continue entre deux espaces de topologiques. $Si\ Y$ est de Hausdorff, alors X est de hausdorff;
- 4. si X est de Hausdorff et Y est homéomorphe à X, alors Y est de Hausdorff.

Espaces connexes

Définition 4.1. Un espace topologique (X, T_X) ests dit *connexe* lorsque :

$$\forall U, V \in \mathfrak{T}_X : (X = U \cup V \land U \cap V = \emptyset) \Rightarrow (U = \emptyset \lor V = \emptyset)$$

Lemme 4.2. *Un espace topologique* X *est non-connexe si et seulement si il existe* $f: X \to \{0,1\}$ *continue surjective où* $\{0,1\}$ *est muni de la topologie discrète.*

Démonstration. Supposons d'abord X non-connexe. Il existe U, V disjoints non-vides tels que $X = U \cup V$. On peut alors définir de manière univoque :

$$f: X \to \{0,1\}: x \mapsto \begin{cases} 0 & \text{si } x \in U \\ 1 & \text{si } x \in V \end{cases}.$$

 $f \ est \ bien \ surjective \ car \ U \ et \ V \ recouvrent \ X \ et \ continue \ car \ f^{-1}(\{0\}) = U \ et \ f^{-1}(\{1\}) = V \ qui \ sont \ des \ ouverts.$

Supposons maintenant qu'il existe une telle fonction f. En posant $U := f^{-1}(\{0\}), V := f^{-1}(\{1\})$. U et V sont bien définis car U et V sont disjoints, et sont des ouverts par continuité de f. De plus, par surjection, ils sont tous deux non-vides.

Proposition 4.3. Soient X, Y deux espaces topologiques et $f: X \to Y$ continue. Si X est connexe, alors $f(X) \subseteq Y$ est connexe.

Démonstration. Montrons la contraposée. Si f(X) n'est pas connexe, alors $\exists U, V \in \mathcal{T}_Y$ tels que $U \cup V = f(X)$ et tous deux non-vides.

Il existe $U', V' \in T_Y$ tels que $U' \cap f(X) = U$ et $V' \cap f(X) = V$. Alors $f^{-1}(V')$ et $f^{-1}(U')$ sont des ouverts par continuité de f et qui recouvrent X. De plus, on a :

$$f^{-1}(U') \cap f^{-1}(V') = f^{-1}(U' \cap V') = f^{-1}(\emptyset) = \emptyset$$

or $f^{-1}(U) \neq \emptyset \neq f^{-1}(V)$ puisque U et V ne sont pas vides. Dès lors X n'est pas connexe.

Remarque. Le théorème de la valeur intermédiaire dit :

Si $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ est continue et si c appartient à l'intervalle d'extrémités f(a) et f(b), alors il existe $x\in[a,b]$ t.q. f(x)=c.

En sachant que dans \mathbb{R} , les espaces connexes sont les les intervalles, on déduit ce théorème de la proposition précédente.

Proposition 4.4. La connexité est une propriété topologique.

Lemme 4.5. Soit X un espace topologique. Supposons qu'il existe une collection $\{A_i \subseteq X \ t.q. \ i \in I\}$ de sous-espaces de X telle que :

$$\forall i \in I: A_i \text{ est connexe et } \forall j \in I: (j \neq i) \Rightarrow (A_i \cap A_j \neq \emptyset).$$

Alors:

$$\bigcup_{i\in I} A_i \text{ est connexe.}$$

 $\begin{array}{l} \textit{D\'{e}monstration.} \ \ Soit \ f: Y \rightarrow \{0,1\} \ continue. \ Par \ connexit\'e \ des \ A_i, \ on \ sait \ que \ f|_{A_i} \ est \ constante. \ Pour \ tout \\ j \in I, \ puisque \ A_i \cap A_j \neq \emptyset, \ on \ peut \ \'egalement \ dire \ que \ f|_{A_i \cup A_j} \ est \ constante. \ En \ posant: \end{array}$

$$A \coloneqq \bigcup_{i \, k \in I} A_i,$$

par récurrence, on trouve $\left. f \right|_A$ constante (en particulier par surjective).