

Ministério da Educação

Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE

Departamento de Ciências Exatas - DCEX Disciplina: Cálculo Numérico

Prof.: Luiz C. M. de Aquino

Lista de Exercícios IV

Observação

Nesta lista de exercícios, todos os sistemas de equações devem ser resolvidos por Eliminação Gaussiana.

1. Resolva o sistema de equações:

$$\begin{cases} 10x + 2y + z = 23 \\ 2x + y + 5z = 19 \\ x + 5y + z = 20 \end{cases}$$

2. Uma empresa de transporte possui três tipos de caixa: A, B e C. Cada caixa pode transportar simultaneamente três tipos de produtos (X, Y e Z) na quantidade descrita pela tabela abaixo. Com base nessas informações, quantas caixas de cada tipo são necessárias para transportar 590 unidades de X, 255 de Y e 480 de Z?

	X	Y	Z
A	10	5	4
B	6	3	8
C	20	8	16

- 3. Um fabricante de móveis produz cadeiras, mesinhas de centro e mesas de jantar. Cada cadeira leva 10 minutos para ser lixada, 6 minutos para ser tingida e 12 minutos para ser envernizada. Cada mesinha de centro leva 12 minutos para ser lixada, 8 minutos para ser tingida e 12 minutos para ser envernizada. Cada mesa de jantar leva 15 minutos para ser lixada, 12 minutos para ser tingida e 18 minutos para ser envernizada. A bancada para lixar fica disponível 1.340 minutos por semana, a bancada para tingir 940 minutos por semana e a bancada para envernizar 1.560 minutos por semana. Quantos móveis devem ser fabricados (por semana) de cada tipo para que as bancadas sejam plenamente utilizadas?
- 4. Considere o problema do circuito hidráulico mostrado na Figura 1. Este sistema está alimentado por um reservatório cuja a pressão é mantida constante e igual a $P_r = 10$. As saídas das tubulações desembocam na atmosfera, onde a pressão é considerada nula (isto é, $P_a = 0$). Deste modo, a vazão Q_i da i-ésima tubulação depende da diferença de pressão ΔP_i de tal modo que

$$Q_i = K_i L_i \Delta P_i,$$

onde K_i é a resistência hidráulica e L_i o comprimento da tubulação. Por exemplo, para a tubulação 8 temos que $Q_8 = K_8L_8\Delta P_8$, sendo que $\Delta P_8 = P_1 - P_4$ (ou seja, a pressão que "entra" na tubulação pela bifurcação 1 menos a pressão que "sai" da tubulação pela bifurcação 4). Por outro lado, sabese que em cada bifurcação a soma das vazões deve ser nula. Por exemplo, na bifurcação 4 temos que $Q_8 - Q_6 - Q_7 = 0$ (aqui note que a vazão que "entra" na bifurcação é considerada positiva, enquanto que a que "sai" é considerada negativa). Considerando essas informações e os dados da Tabela 1, determine as vazões em cada tubulação e as pressões em cada bifurcação.

Figura 1: Esquema do circuito hidráulico.

Tubulação i	K_i	L_i
1	0,02	1,0
2	0,005	2,0
3	0,085	0,5
4	0,02	1,0
5	0,075	0,5
6	0,085	0,5
7	0,015	2,0
8	0,01	1,0

Tabela 1: Resistência hidráulica e comprimento das tubulações.

Gabarito

[1] $x=1,4,\ y=3,2$ e z=2,6. [2] $A=10,\ B=15$ e C=20. [3] 50 cadeiras, 20 mesinhas de centro e 40 mesas de jantar. [4] $P_1=5,47246730738932,\ P_2=0,919331967858831,\ P_3=0,596344729793603,\ P_4=0,970537261698440.\ Q_1=0,0905506538522137,\ Q_2=0,0455313533953049,\ Q_3=0,0390716086340003,\ Q_4=0,00645974476130455,\ Q_5=0,0223629273672601,\ Q_6=0,0159031826059556,\ Q_7=0,0291161178509532,\ Q_8=0,0450193004569088.$