Disjoint Sets

- Maintaining Disjoint Sets
- Complexity Analysis

Disjoint Sets - Definition

- Set representatives called canonical elements.
- Elements are integers beween 1 and n.
- Each element can be accessed in O(1) time.
- We look for a data structure supporting:
 - makeset(x): cretion of a set with one element x.
 - find(x): returns canonical element of the set containing x.
 - link(x,y): forms a union of two sets with x and y as their canonical elements.

Problem

- How to represent disjoint sets in order to be able to carry out:
 - n makeset,
 - *m* find,
 - k link, $k \le n$ -1,

in any feasible order as quickly as possible?

Applications of Disjoint Sets

- Many algorithm (including many graph algorithms).
- Equivalence of symbolic addresses (Fortran).
- Special kind of sorting.

Vector Representation

SET	NEXT	FIRST	SIZE
1	3	1	4
2	4	2	3
1	5		
2	8		
1	7		
6	0	6	1
1	0		
2	0		

Vector Representation - makeset

- makeset(x)
 - set(x)=x;
 - first(x)=x;
 - next(x)=0; or next(x)=x;
 - size(x)=1
- One makeset takes O(1) time.
- n makesets takes O(n) time.

Vector Representation - find

- find(x) is trivial: return set(x).
- One find takes O(1) time.
- m find take O(m) time.

Vector Representation - link

- link(x,y): Elements of the smaller set are added to the larger set by scanning + pointer update.
- One link takes O(n) time.
- n-1 links take $O(n^2)$ time. Is this a tight bound?
- When an element is scanned, it ends up in a set that is at least twice as big.
- No element cannot be scanned more than O(log₂n) times.
- n-1 links take $O(n\log_2 n)$ time.

Rooted Tree Representation

- Nodes of trees contain elements, one set per tree.
- Roots contain canonical elements.
- Each node has a parent pointer. Roots point to itself.
- The same set can be represented by different trees.

Rooted Tree Representation

- makeset(x): create one-node tree in O(1) time.
- find(x): follow parent pointers from x to the root.
- link(x,y): let y be the parent of x, and let y be the canonical element of the union set.
 Requires O(1) time.

Problems with Rooted Trees

High Trees

```
makeset(1), makeset(2), ..., makeset(n) link(1,2), link(2,3), ..., link(n-1,n)
```


Linking by Size

 Root of the tree with more nodes is made the root of the union tree.

link(1,5), link(4,7), link(3,6), link(2,7)

link(6,8), link(7,5), link(9,6), link(6,7)

Linking by Rank

- Roots of one-element trees have rank 0.
- The root of the tree with higher rank is made the root of the union tree.
- If trees have the same rank, the rank of the new root (chosen arbitrarily), is increased by 1.

Linking by Rank - Examples

link(1,5), link(4,7)

link(3,6), link(2,7)

link(8,6), link(5,7)

link(9,6), link(6,5)

link(1,2), link(2,3) link(3,4), link(4,5) link(5,6), link(6,7)

Linking by Rank – Basics

- Once an item seizes to be a root, it never becomes a root again. Its rank never changes.
- $r(x) \le r(p(x))$ with strict inequality unless p(x)=x.
- r(x) increases by at most 1 during each link.

Lower Bound on Number of Elements

- s(x) = # of elements in a tree with x as root.
- Claim: $s(x) \ge 2^{r(x)}$
- Proof by induction on the number of link operations.
- True before first link: s(x) = 1 and $2^{r(x)} = 1$

Lower Bound Continued

- Assume that claim holds before the *i*-th link: link(x,y).
- Let $r_i(x)$ and $r_i(y)$ be rank values before the *i*-th link.
- If $r_i(x) < r_i(y)$, then y becomes root, $r_{i+1}(y) = r_i(y)$, and $s_{i+1}(y) > s_i(y) \ge 2^{ri(y)} = 2^{ri+1(y)}$
- If $r_i(x) > r_i(y)$, symmetric situation.
- If $r_i(x) = r_i(y)$, then y becomes the root and $s_{i+1}(y) = s_i(x) + s_i(y) \ge 2^{ri(x)} + 2^{ri(y)} = 2^{ri(y)+1} = 2^{ri+1(y)}$

Upper Bound on find

- $n \ge s_i(x) \ge 2^{ri(x)}$ for all x and for all i, $0 \le i \le n$.
- $\log n \ge r_i(x)$.
- Rank is strictly increasing when going up the tree. Conclusion: find requires O(logn) time.
- Overall complexity for n makeset, n-1 link, m find is O(n + mlogn + n-1) = O(n + mlogn).

Linking by Rank – Bound is Tight

- A binominal tree B_0 consists of a single node.
- A binominal tree B_i , i > 0, consists of two binominal trees B_{i-1} with root of one being the parent of the root of the other.
- Bi has size 2ⁱ and height i. Proof by induction on height.

Linking by Rank – Bound is Tight

- makeset(1), makeset(2), ..., makeset(8)
- link(1,2), link(3,4), link(5,6), link(7,8)
- link(2,4), link(6,8)
- link(4,8)
- *m* times find(1)

Path Compression

 During find operation all traversed nodes are made direct sons of the root.

Disjoint Sets - Summary

	Makeset	Find	Link	Total
Vector	O(1)	O(1)	O(n)	O(m+nlogn)
Tree	O(1)	O(n)	O(1)	O(mn)
Link by rank	O(1)	O(logn)	O(1)	O(n+mlogn)
Compression	O(1)	O(logn)	O(1)	O(n+mlog*n)