# CS 190I Deep Learning Residual Network and other CNN variants

Lei Li (leili@cs)
UCSB

Acknowledgement: Slides borrowed from Bhiksha Raj's 11485 and Mu Li & Alex Smola's 157 courses on Deep Learning, with modification

## Recap

- Convolutional layer
  - Reduced model capacity compared to dense layer
  - Efficient at detecting spatial pattens
  - High computation complexity
  - Control output shape via padding, strides and channels
- Max/Average Pooling layer
  - Provides some degree of invariance to translation

## 2-D Convolution Layer

$$y_{i,j} = \sum_{a=1}^{h} \sum_{b=1}^{w} w_{a,b} x_{i+a,j+b}$$

Input

Kernel



Output

| 0  | 3  | 8  | 4  |  |
|----|----|----|----|--|
| 9  | 19 | 25 | 10 |  |
| 21 | 37 | 43 | 16 |  |
| 6  | 7  | 8  | 0  |  |



$$0 \times 0 + 0 \times 1 + 0 \times 2 + 0 \times 3 = 0$$

## 2-D Convolution Layer Summary

- Input  $\mathbf{X}: c_i \times n_h \times n_w$
- Kernel  $\mathbf{W}: c_o \times c_i \times k_h \times k_w$
- Bias  $\mathbf{B}:c_o$

$$Y = X \star W + B$$

- Output  $\mathbf{Y}: c_o \times m_h \times m_w$
- Complexity (number of floating point operations FLOP)  $c_1 = c_2 = 100$

$$c_i = c_o = 100$$

$$k_h = h_w = 5$$

$$m_h = m_w = 64$$

$$O(c_i c_o k_h k_w m_h m_w)$$

1GFLOP

10 layers, 1M examples: 10PF
 (CPU: 0.15 TF = 18h, GPU: 12 TF = 14min)

# **AlexNet**



#### **SVM**

- In the 1990s, algorithms based on support vector machines (SVM) are developed
- Kernel methods
- There are (shallow) models
- Linear classifier with margin loss (hinge loss)



Vladimir **V**apnik

## **Computer Vision Pre-2012**

- Extract features
- Describe geometry (e.g. multiple cameras) analytically
- (Non)Convex optimization problems
- Many beautiful theorems ...
- Works very well in theory when the assumptions are satisfied

## Feature Engineering

- Feature engineering is crucial
- Feature descriptors, e.g. SIFT (Scaleinvariant feature transform), SURF
- Bag of visual words (clustering)
- Then apply SVM ...



(opencv)

# ImageNet (2010)



| Images    | Color images | Gray image for |
|-----------|--------------|----------------|
|           | with nature  | hand-written   |
|           | objects      | digits         |
| Size      | 469 x 387    | 28 x 28        |
| #         | 1.2 M        | 60 K           |
| examples  |              |                |
| # classes | 1,000        | 10             |

#### **AlexNet**

- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNet
- Key modifications
  - Dropout (regularization)
  - ReLu (training)
  - MaxPooling
- Paradigm shift for computer vision



#### **AlexNet Architecture**

Larger pool size, change to max pooling

Larger kernel size, stride because of the increased image size, and more output channels.





#### **AlexNet Architecture**



#### **AlexNet Architecture**



#### **More Tricks**

- Change activation function from sigmoid to ReLu (no more vanishing gradient)
- Add a dropout layer after two hidden FFN layers (better robustness / regularization)
- Data augmentation

## **Data Augmentation**

Create additional training data with existing data























### **ReLU Activation**

#### ReLU: rectified linear unit





## **Dropout Layer**

• For every input  $x_i$ , Dropout produces  $x_i' = \begin{cases} 0 & \text{with probablity } p \\ \frac{x_i}{1-p} & \text{otherise} \end{cases}$ 

#### **AlexNet**



# Complexity

|          |             |        |           |        | Dense (  |
|----------|-------------|--------|-----------|--------|----------|
|          | #parameters |        | FLOP      |        | Dense (  |
|          | AlexNet     | LeNet  | AlexNet   |        | <u> </u> |
|          | Alexivet    | Leivet | Alexivet  | Leiver | Dense (4 |
| Conv1    | 35K         | 150    | 101M      | 1.2M   | Max Po   |
| Conv2    | 614K        | 2.4K   | 415M      | 2.4M   | 3x3 Conv |
| Conv3-5  | 3M          |        | 445M      |        | 1        |
| Dense1   | 26M         | 0.48M  | 26M       | 0.48M  | 3x3 Conv |
| Dense2   | 16M         | 0.1M   | 16M       | 0.1M   | 3x3 Conv |
| Total    | 46M         | 0.6M   | 1G        | 4M     | Max Po   |
| Increase | 11x         | 1x     | 250x      | 1x     | 5x5 Conv |
|          |             |        | _ 0 0 7 1 |        | Max Po   |



## ImageNet Results: ILSVRC Winners



# **VGG**



#### **VGG**

- AlexNet is deeper and bigger than LeNet to get performance
- Go even bigger & deeper?
- Options
  - More dense layers (too expensive)
  - More convolutions
  - Group into blocks



#### VGG Blocks

- Deeper vs. wider?
  - 5x5 convolutions
  - 3x3 convolutions (more)
  - Deep & narrow better
- VGG block
  - 3x3 convolutions (pad 1)(n layers, m channels)
  - 2x2 max-pooling (stride 2)

#### VGG block



# Part of AlexNet



#### VGG Architecture

- Multiple VGG blocks followed by dense layers
- Vary the repeating number to get different architectures, such as VGG-16, VGG-19, ...



## **Going Deeper**

- LeNet (1995)
  - 2 convolution + pooling layers
  - 2 hidden dense layers
- AlexNet
  - Bigger and deeper LeNet
  - ReLu, Dropout, preprocessing
- VGG
  - Bigger and deeper AlexNet (repeated VGG blocks)

## **Residual Networks**

Best paper CVPR 2016

## Does adding layers improve accuracy?



#### **Residual Networks**

- Adding a layer changes function class
- We want to add to the function class
- 'Taylor expansion'
   style f(x) = x + g(x)
   parametrization





### ResNet Block in detail





#### ResNet Module

- Downsample per module (stride=2)
- Enforce some nontrivial nonlinearity per module (via 1x1 convolution)
- Stack up in blocks



```
blk = nn.Sequential()
for i in range(num_residuals):
   if i == 0 and not first_block:
       blk.add(Residual(num_channels,
            use_1x1conv=True, strides=2))
   else:
      blk.add(Residual(num_channels))
```

## Putting it all together

- Same block structure as e.g. VGG or GoogleNet
- Residual connection to add to expressiveness
- Pooling/stride for dimensionality reduction
- Batch Normalization for capacity control

... train it at scale ...



## ImageNet Results: ILSVRC Winners



#### **Notes**

- ResNet won the champion for ILSVRC 2015
- The ResNet paper won the best paper award from CVPR 2016 (one of the leading CV conferences)
- Kaimin He won multiple best papers.

## Papers of Kaimin He

- Exploring Simple Siamese Representation Learning. CVPR Best Paper Honorable Mention, 2021
- Group Normalization. ECCV Best Paper Honorable Mention, 2018
- Mask R-CNN. ICCV Best Paper Award (Marr Prize), 2017
- Focal Loss for Dense Object Detection. ICCV Best Student Paper Award, 2017
- Deep Residual Learning for Image Recognition.
   CVPR Best Paper Award, 2016
- Single Image Haze Removal using Dark Channel Prior. CVPR Best Paper Award, 2009



# ResNext

## Reducing the cost of Convolutions

#### Parameters

$$k_h \cdot k_w \cdot c_i \cdot c_o$$

Computation

$$m_h \cdot m_w \cdot k_h \cdot k_w \cdot c_i \cdot c_o$$

- Slicing convolutions

   (Inception v4)
   e.g. 3x3 vs. 1x5 and 5x1
- Break up channels (mix only within)

only within)
$$m_h \cdot m_w \cdot k_h \cdot k_w \cdot \frac{c_i}{b} \cdot \frac{c_o}{b} \cdot b$$



## Reducing the cost of Convolutions

#### Parameters

$$k_h \cdot k_w \cdot c_i \cdot c_o$$

Computation

$$m_h \cdot m_w \cdot k_h \cdot k_w \cdot c_i \cdot c_o$$

- Slicing convolutions

   (Inception v4)
   e.g. 3x3 vs. 1x5 and 5x1
- Break up channels (mix only within)

$$m_h \cdot m_w \cdot k_h \cdot k_w \cdot \frac{c_i}{b} \cdot \frac{c_o}{b} \cdot b$$



## RexNext budget

- Slice blocks into 32 sub-blocks
- Can use more dimensions
- Higher accuracy

| stage       | output                 | ResNet-50                    |                        | ResNeXt-50 (32×4d)           |                   |      |      |            |
|-------------|------------------------|------------------------------|------------------------|------------------------------|-------------------|------|------|------------|
| conv1       | 112×112                | 7×7, 64, stride 2            |                        |                              | 7×7, 64, stride 2 |      |      |            |
| conv2 56×56 | 3×3 max pool, stride 2 |                              | 3×3 max pool, stride 2 |                              |                   |      |      |            |
|             | 56×56                  | 1×1,64                       |                        |                              | 1×1               | 128  | 1    |            |
| CONVZ       | 30×30                  | 3×3, 64                      | $\times 3$             |                              | 3×3               | 128, | C=32 | $\times 3$ |
|             |                        | $[1\times1,256]$             |                        |                              | 1×1               | 256  |      |            |
| conv3 2     |                        | [ 1×1, 128 ]                 |                        |                              | 1×1               | 256  | 7    |            |
|             | 28×28                  | 3×3, 128                     | $\times 4$             |                              | 3×3               | 256, | C=32 | ×4         |
|             |                        | [ 1×1,512 ]                  |                        |                              | 1×1               | 512  |      |            |
| conv4       | 14×14                  | 1×1, 256                     | ×6                     |                              | 1×1               | 512  | 7    | ×6         |
|             |                        | 3×3, 256                     |                        |                              | 3×3               | 512, | C=32 |            |
|             |                        | 1×1, 1024                    |                        |                              | 1×1               | 1024 |      |            |
|             | 7×7                    | 1×1, 512                     | ]                      | Γ                            | 1×1,              | 1024 |      | 1          |
| conv5       |                        | 3×3, 512                     | ×3                     |                              | 3×3,              | 1024 | C=32 | ×3         |
|             |                        | 1×1, 2048                    |                        | L                            | $1\times1$ ,      | 2048 | _    |            |
| 1×1         | global average pool    |                              | global average pool    |                              |                   |      |      |            |
|             | 1 X 1                  | 1000-d fc, softmax           |                        | 1000-d fc, softmax           |                   |      |      |            |
| # params.   |                        | <b>25.5</b> ×10 <sup>6</sup> |                        | <b>25.0</b> ×10 <sup>6</sup> |                   |      |      |            |
| FLOPs       |                        | <b>4.1</b> ×10 <sup>9</sup>  |                        | <b>4.2</b> ×10 <sup>9</sup>  |                   |      |      |            |

## Recap

#### AlexNet

- 11 layers, bigger convolusion
- ReLu, Dropout, preprocessing

#### VGG

- Bigger and deeper AlexNet (repeated VGG blocks)
- VGG-16 and VGG-19

#### ResNet

- 50 or 153 layers
- Residual connection

## **Next Up**

Advanced optimization methods