Assignment 2 - Training of Recurrent Perceptron

Sneha Oram, 23M2159, MS CMINDS-1 A Snegha, 23M2160, MS CMINDS-1 K Hemanth, 23M2164, MS CMINDS-1 A Shruthi, 23M1074, MTech EE-1

Problem Statement

Input: POS-tagged input tokens

Output: Noun chunk labels on tokens .The beginning of the chunk will be labeled 1 and the rest of the words in the chunk will be labeled 0. All other words are labeled 1.

Implementation Details (1/3)

- Loss Function: Cross Entropy
- Activation Function: Sigmoid
- Parameters: W, W_feedback, bias
- **Epoch:** 5
- Learning rate: 0.001
- Batch size: 25

Implementation Details (2/3)

V _^	0.644
V _{NN}	-0.83
V _{DT}	-1.569
V JJ	-0.909
Vот	1.677
W _{NN}	-1.928
W DJ	-0.409
Mn	-0.790
Wот	2.01

Implementation Details (3/3)

Equations used in BPTT -

```
O1 = 5 (WX+ + W-fb 0+ + blas)
       Equation:

L = \sum_{t=1}^{\infty} l(o_t, y_t) \qquad T - \text{ longth of sentence}.
l() \rightarrow \text{ Cross enhappy}
   Loss Equation!
 BPTT Equation:
DW-Fb= = (0+-4+)[0+-1+M-+P(0+-(1-0+1)[0+-1+M-+P(0+-2(1-0+)
Dbias = 5 (0+-A+)[1+M-4+ (0++(1-0++))[1+M-4+(0+3(1-0+))
```

Overall performance

- Accuracy of Test Dataset: 84.12%
- Precision: 0.8097, Recall: 0.9888, F1 Score: 0.8903
- 5-fold cross validation

K-fold	Accuracy	Precision	Recall	F1 score
1/5	81.8	0.788	0.997	0.881
2/5	81.3	0.784	0.997	0.877
3/5	81.3	0.785	0.996	0.878
4/5	81.1	0.782	0.996	0.876
5/5	81.2	0.782	0.996	0.876

Language constraint table

Current (W) Prev (V)	DT	JJ	NN	ОТ
	$V_{\lambda} + W_{DT} > \theta$	$V_{\wedge} + W_{JJ} > \theta$	V _^ + W _{NN} > θ	$V_{\wedge} + W_{OT} > \theta$
^				
		$W + V_{DT} + W_{JJ} < \theta$	$W + V_{DT} + W_{NN} < \theta$	
DT				
		$V_{JJ} + W_{JJ} < \theta$	$V_{JJ} + W_{NN} < \theta$	
JJ		$M + A^{11} + M^{11} < \theta$	$W + V_{JJ} + W_{NN} < \theta$	
				$W + V_{NN} + W_{OT} > \theta$
NN				
	$W+V_{OT}+W_{DT} > 0$	$W+V_{OT}+W_{JJ}>\theta$	$W+V_{OT}+W_{NN} > \theta$	$W+V_{OT}+W_{OT} > \theta$
ОТ				

V^	0.644
V _{NN}	-0.83
V _{DT}	-1.569
V JJ	-0.909
Vот	1.677
W _{NN}	-1.928
W _D J	-0.409
M ¹¹	-0.790
Wот	2.01
W	0.311

Error Analysis (1/2)

```
Bodies_0 found_1 at_1 site_1 of_1 Russian_1 jet_0 crash_0 -_1 officials_1 ._1
```

Sun_0 rises_0 in_1 the_1 east_0

Joe_0 Bidden_0 is_1 the_1 president_0 of_1 USA_1

I_0 am_1 a_1 24_1 year_1 old_0 girl_0

I_0 am_1 a_1 24-year-old_0 girl_0

``_1 They_1 wanted_1 to_1 get_1 a_1 weight_0 off_1 their_1 consciences_1 ''_1,_1 a_1 police_0 spokesman_0 said_1._1

Error Analysis (2/2)

- Model is making mistake if the sentence starts with just 'NN' or 'NN NN' tag.
- Model is making mistake with numbers but when grouped along with other word, it is chunking correctly.
- Punctuations are considered as none Noun chunks.
- Maximum sentence length without any mistake is 67.

Learnings

- A single recurrent perceptron is able to detect noun chunks in a text successfully using bigram assumption.
- The algorithm of BPTT in single perceptron is handling dependencies upto 67 words.