

MODELO DE IDENTIFICAÇÃO DE DOENÇAS AGRÍCOLAS

RESUMO

- Problemática
- Proposta de solução
- Funcionamento
 - Etapas do Crisp-DM aplicados no projeto
- Próximos passos

1. Problemática

Quais as dificuldades do tema abordado?

- Dificuldade de controlar manualmente se a plantação está saudável.
- Dificuldade em identificar patologias.
- Alguns produtores não conhecem as possíveis patologias que suas plantações podem sofrer.
- Não existem tecnologias que auxiliem o agricultor nestes momentos. Muitos contam com a experiencia mas algumas vezes sem efetividade.
- Com tudo isso, o agricultor pode ter um prejuízo grande o suficiente para ter que encerrar as suas atividades.

2. Proposta de solução

Usar um <u>modelo de</u> reconhecimento de imagens para fazer um rápido diagnóstico de doenças agrícolas, para que seja tomada uma ação, visando a recuperação da saúde dessas plantas, além de mitigar a contaminação.

3. Funcionamento

3.1 – Entendimento dos dados

- Atributos Alvo (case Inicial)
 - Categoria escolhida: Soja
 - Patologia escolhida: Oídio
- Bases de imagens retiradas do site da EMBRAPA.
- Aproximadamente 1.500 amostras, entre saudáveis e doentes.
- Identificar plantas saudáveis ou doentes

Repositório Digipathos

Base de Imagens de Sintomas de Doenças de Plantas (PDDB)

- Termo de uso
- Download de arquivos de imagem compactados
- Publicação relacionada
- Como citar

Comunidades do repositório

Clique em uma comunidade para ver suas coleções

Base de Imagens de Sintomas de Doenças de Plantas PDDB

Image Database of Plant Disease Symptoms PDDB

Infopat

Projeto de Integração de processamento digital de imagens em fotografias e sistema especialista para diagnóstico de doenças em plantas no Brasil.

Busca facetada

Cultura	
Soja (Soybean)	22
Citros (Citrus)	27
Coqueiro (Coconut Tree)	24
Feljao (Dry bean)	24
Mandioca (Cassava)	20
Maracuja (Passion Fruit)	12

Desordem	
Antracnose (Anthracnose	17
Ferrugem (Rust)	12
Oidio (Powdery mildew)	17
Saudavel (Healthy)	7
Mancha Bacteriana (Bacterial spot)	0

3.2 - Pré-processamento

- Identificar algumas características essenciais:
 - posição da folha,
 - evidência da patologia,
 - luminosidade da imagem,
 - densidade das plantas do fundo
- Separação da base entre treinamento, validação e teste
- Redimensionalização
- Dessaturação
- Limiarização/Segmentação

Redimensionalização:

Diminuir o tamanho de uma imagem para deixar o processamento mais leve e, consequentemente, mais rápido, ou, aumentá-la para melhorar a qualidade da imagem e, consequentemente, trazer melhores resultados.

Dessaturação:

É o processo de remoção das camadas RGB para que a limiarização possa ser mais efetiva.

• Limiarização/Segmentação: é o processo de segmentação de uma imagem a partir dos tons de cinza de cada objeto.

3.3 – Modelagem

- Rede Neural Convolucional
 Bibliotecas utilizadas: Keras e TensorFlow
- Treinamento do modelo

Código - Pré-processamento

Pré-Processamento

Found 1052 images belonging to 2 classes. Found 429 images belonging to 2 classes.

```
In [13]: # Criando os objetos train datagen e validation datagen com as regras de pré-processamento das imagens
         from keras, preprocessing, image import ImageDataGenerator
         train_datagen = ImageDataGenerator(rescale = 1./255,
                                            rotation range=40,
                                            width_shift_range =0.2,
                                            height shift range =0.2,
                                            shear range = 0.2,
                                            zoom_range = 0.2,
                                            horizontal flip = True,
                                            vertical flip=True,
                                            fill mode='nearest')
         validation_datagen = ImageDataGenerator(rescale = 1./255)
In [14]: # Pré-processamento das imagens de treino e validação
         BATCH SIZE = 50
         training set = train datagen.flow from directory('C:/Base Soja TCC/dataset treino',
                                                          target_size = (64, 64),
                                                          batch size = 32.
                                                          class mode = 'binary')
         validation set = validation datagen.flow from directory('C:/Base Soja TCC/dataset validacao',
                                                                 target size = (64, 64),
                                                                 batch_size = 32,
                                                                 class mode = 'binary')
```

Código - Construção da rede neural Convolucional

```
In [4]: # Inicializando a Rede Neural Convolucional
         classifier = Sequential()
In [5]: # Passo 1 - Primeira Camada de Convolução
         classifier.add(Conv2D(32, (3, 3), input shape = (64, 64, 3), activation = 'relu'))
In [6]: # Passo 2 - Poolina
         classifier.add(MaxPooling2D(pool_size = (2, 2)))
         # Desativa 30% dos neuronios para evitar Overfitina
         classifier.add(Dropout(0.3))
In [7]: # Adicionando a Segunda Camada de Convolução
         classifier.add(Conv2D(32, (3, 3), activation = 'relu'))
In [8]: classifier.add(MaxPooling2D(pool size = (2, 2)))
         classifier.add(Dropout(0.3))
In [9]: # Passo 3 - Flattening
         classifier.add(Flatten())
In [10]: # Passo 4 - Full connection
         classifier.add(Dense(units = 128, activation = 'relu'))
         classifier.add(Dropout(0.5))
In [11]: # Passo 5 - Camada de saida
         classifier.add(Dense(units = 1, activation = 'sigmoid'))
In [12]: # Compilando a rede
         classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
```

3.4 – Validação

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 62, 62, 32)	896
max_pooling2d_1 (MaxPooling2	(None, 31, 31, 32)	0
dropout_1 (Dropout)	(None, 31, 31, 32)	0
conv2d_2 (Conv2D)	(None, 29, 29, 32)	9248
max_pooling2d_2 (MaxPooling2	(None, 14, 14, 32)	0
dropout_2 (Dropout)	(None, 14, 14, 32)	0
flatten_1 (Flatten)	(None, 6272)	0
dense_1 (Dense)	(None, 128)	802944
dropout_3 (Dropout)	(None, 128)	0
dense_2 (Dense)	(None, 1)	129
Total params: 813,217 Trainable params: 813,217 Non-trainable params: 0		

12.5

10.0

15.0

O modelo alcançou 98% de acurácia no treinamento e 99% na validação.

1052 imagens separadas para treinamento e 429 separadas para validação (classificadas em doente e saudável).

0.0

0.0

2.5

3.5 – Demonstração de teste

Código - Teste (10 imagens de amostragem)

Acurácia: 98% 30 imagens separadas para teste


```
In [75]: # Primeira Imagem
         import numpy as no
         import matplotlib.pyplot as plt
         from keras preprocessing import image
         test_set = glob.glob('C:/Base_Soja_TCC/dataset_teste/*.jpg')
         test image = np.array([image.img to array(image.load img(image name, target size=(64, 64), color mode='rgb'))/64 for image name
         result = classifier.predict(test_image)
         training set.class indices
         y true = [0,0,0,0,0,1,1,1,1,1]
         figure = plt.figure(figsize=(20,8))
         for i in range (10):
             if result[i] == 1:
                 prediction = 'Saudavel'
             else:
                 prediction = 'Doente'
             ax = figure.add_subplot(3, 5, i + 1, xticks=[], yticks=[])
             im = plt.imread(test set[i])
             ax.imshow(im)
             ax.set title("{}".format(prediction), color=( "red" if result[i] == y true[i] else "green"))
```


4. Próximos passos

- Para o Trabalho de Conclusão de Curso (TCC) pretendemos treinar o modelo para identificar mais patoligas.
- Um outro ponto de melhoria seria, após identificar se existe alguma patologia nas plantas, identificar também qual o tipo da patologia identificada, para assim, auxiliar rapidamente o agricultor com a melhor forma de tratar as plantas contaminadas.

Obrigado!

