

Claudio Arbib Università dell'Aquila

Ricerca Operativa

Il Metodo di Dijkstra

Il metodo di Dijkstra

- Il metodo di Dijkstra consente di calcolare il sottografo Z costituito da tutti gli (s, u)-cammini di peso minimo in un grafo G = (V, E) per $u \in V$, dove s è un vertice fissato di G
- Indicata con y_u^* la distanza del nodo u da s (cioè il peso del più breve (s, u)-cammino), il metodo procede attraverso la costruzione incrementale dell'insieme S dei nodi a distanza nota
- Il metodo si arresta quando y_u^* è stata calcolata per ogni $u \in V$, ovvero, nel caso di calcolo di (s, t)-cammino ottimo, quando si è calcolata y_t^* . La correttezza del metodo è garantita se $c_{uv} \geq 0$ per ogni $uv \in E$

Codifica del metodo di Dijkstra

- 1) Inizializzazione. $S := \{s\}, y_s^* := 0; Z := \emptyset;$
- 2) Calcolo dei vicini. Sia R(S) l'insieme dei nodi di V-S raggiungibili da S con un solo arco, $R(S) := \{v \in V-S \colon uv \in E, u \in S\};$
- 3) Distanza provvisoria. Si associa a ogni $v \in R(S)$ una distanza provvisoria y_v calcolata come $y_v := \min_{u \in S} \{y_u^* + c_{uv}\}$
- 4) Distanza definitiva. Si sceglie il nodo w di R(S) con minima distanza provvisoria, e la si rende definitiva:

$$y_w^* := \min_{v \in R(S)} \{y_v\} = y_u^* + c_{uw}$$

- 5) Aggiornamento di S e Z. S := $S \cup \{w\}$; Z := $Z \cup \{uw\}$
- 6) Criterio di Arresto. Se S = V (o se w = t) l'algoritmo termina, altrimenti si ripete il passo 2.

1) Inizializzazione. $S := \{s\}, y_s^* := 0;$

2) Calcolo dei vicini. Sia R(S) l'insieme dei nodi di V-S raggiungibili da S con un solo arco, $R(S) := \{v \in V-S \colon uv \in E, u \in S\};$

3) Distanza provvisoria. Si associa a ogni $v \in R(S)$ una distanza provvisoria y_v calcolata come $y_v := \min_{u \in S} \{y_u^* + c_{uv}\}$

4) Distanza definitiva. Si sceglie il nodo w di R(S) con minima distanza provvisoria, e la si rende definitiva:

$$y_w^* := \min_{v \in R(S)} \{y_v\} = y_u^* + c_{uw}$$

- 5) Aggiornamento di S e Z. S := $S \cup \{w\}$; Z := $Z \cup \{uw\}$
- 6) Criterio di Arresto. Se S = V (o se w = t)

 l'algoritmo termina, altrimenti si ripete il passo 2.

2) Calcolo dei vicini. Sia R(S) l'insieme dei nodi di V-S raggiungibili da S con un solo arco, $R(S) := \{v \in V-S \colon uv \in E, u \in S\};$

3) Distanza provvisoria.

Si associa a ogni $v \in R(S)$ una distanza provvisoria y_v calcolata come

$$y_v := \min_{u \in S} \{y_u^* + c_{uv}\}$$

4) Distanza definitiva. Si sceglie il nodo w di R(S) con minima distanza provvisoria, e la si rende definitiva:

$$y_w^* := \min_{v \in R(S)} \{y_v\}$$

- 5) Aggiornamento di S e Z. S := $S \cup \{w\}$; Z := $Z \cup \{uw\}$
- 6) Criterio di Arresto. Se S = V (o se w = t) l'algoritmo termina, altrimenti si ripete il passo 2.

2) Calcolo dei vicini. Sia R(S) l'insieme dei nodi di V-S raggiungibili da S con un solo arco,

Correttezza del metodo

Teorema Per ogni $s \in V$, il vettore $\{y_u^*\}_{u \in V}$ calcolato dal metodo di Dijkstra fornisce le distanze da s di tutti i nodi $u \in V$.

Dimostrazione Per induzione.

Anzitutto, siccome $c_{uv} \ge 0$, la distanza di s da se stesso è $y_s^* = 0$. Indichiamo ora con S_k l'insieme S calcolato all'iterazione k, e supponiamo che la distanza di u da s sia y_u^* per ogni $s \in S_k$. Facciamo vedere che, se w è il nodo aggiunto a S_k all'iterazione k+1, y_w^* rappresenta correttamente la distanza di w da S.

Correttezza del metodo

... segue dimostrazione

Supponiamo per assurdo che esista un (s, w)-cammino P di lunghezza $d < y_w^*$.

Poiché P inizia in S_k e termina fuori da S_k , esiste un arco $ab \in P$ con $a \in S_k$, $b \in R(S_k)$.

Siccome $w \in R(S_k)$ e, dal passo 4 dell'algoritmo,

$$y_w^* := \min_{v \in R(S_k)} \{y_v\}$$

si ha

$$(1) y_w^* \leq y_b.$$

Poiché d'altronde $c_{uv} \ge 0 \ \forall uv \in E$, gli archi di P da b a w avranno un peso complessivo ≥ 0 , ossia

$$(2) y_b \le d$$

Dalle (1) e (2) si perviene allora a $y_w^* \le d$, contraddizione.