Experiencing MIS

Fifth Canadian Edition

Chapter 8

Decision Making and Business Intelligence

Q8-1: Do Managers Make Rational Decisions? (1 of 2)

- Decision making, choosing from range of alternatives is essence of management
- Decision making process is much more complicated for three reasons:
 - 1. Concept of rationality is hard to define
 - 2. Good outcomes may result from irrational processes, bad outcomes can result from good processes
 - 3. Humans intend to be rational, but there are limits on our cognitive capabilities.

"Bounded rationality" - Herbert Simon

Q8-1: Do Managers Make Rational Decisions? (2 of 2)

- We are not calculators, or economic automatons
- Rather, we settle, sacrifice, choose an alternative "good enough" across a range of criteria
- Chapter focus is on decision making by managers supported by business intelligence systems
 - Data-driven decision making

Management Misinformation Systems (1 of 3)

- Coined by Russell Ackoff, 1960s
- Designers of MIS make erroneous assumptions about managerial decision making, thus the systems may not provide good solutions

Management Misinformation Systems (2 of 3)

Three assumptions:

- 1. Managers will make better decisions if they get the data they need.
 - Ackoff: too many possibilities exist, and better decisions will not necessarily be made even with perfect data. Uncertainty and complexity.
- 2. Poor decisions are made because of lack of information.
 - Ackoff: managers have too much, not too little, information. Information overload.

Management Misinformation Systems (3 of 3)

- 3. Managers know what data they need.
 - Ackoff: They are not sure if their requests are necessary or superfluous, and tent ask for more than needed, further promoting information overload.

Information Overload

- Managers face information overload
 - Digital universe is doubling in size every two years (IDC)
 - Data is growing at the rate of 40 percent a year
 - Occurs inside and outside of organizations
- The challenge is to find the appropriate data and incorporate them into their decision-making processes

Figure 8-1 How Big Is an Exabyte?

Kilobyte (KB)	yte (KB) 1000 bytes OR 10 ³ bytes 2 Kilobytes: A typewritten page 100 Kilobytes: A low-resolution photograph				
Megabyte (MB)	byte (MB) 1 000 000 bytes OR 106 bytes 1 Megabyte: A small novel OR a 3.5-inch floppy disk 2 Megabytes: A high-resolution photograph 5 Megabytes: The complete works of Shakespeare 10 Megabytes: A minute of high-fidelity sound 100 Megabytes: 1 meter of shelved books 500 Megabytes: A CD-ROM				
Gigabyte (GB)	1 000 000 000 bytes OR 10 ⁹ bytes 1 Gigabyte: A pickup truck filled with paper 20 Gigabytes: A good collection of the works of Beethoven 100 Gigabytes: A library floor of academic journals				
Terabyte (TB)	te (TB) 1 000 000 000 000 bytes OR 10 ¹² bytes 1 Terabyte: 50 000 trees made into paper and printed 2 Terabytes: An academic research library 10 Terabytes: The printed collection of the U.S. Library of Congress 400 Terabytes: National Climactic Data Center (NOAA) database				
Petabyte (PB)	1 000 000 000 000 bytes OR 1015 bytes 1 Petabyte: Three years of EOS data (2001) 2 Petabytes: All U.S. academic research libraries 20 Petabytes: Production of hard-disk drives in 1995 200 Petabytes: All printed material				
Exabyte (EB)	1 000 000 000 000 000 000 bytes OR 10 ¹⁸ bytes 2 Exabytes: Total volume of information generated worldwide [in 1999] 5 Exabytes: All words ever spoken by human beings				

Copyright © 2019 Pearson Canada Inc.

Source: <u>www2.sims.berkeley.edu/research/projects/how-much-info/datapowers.html</u>. Used with the permission of Peter Lyman and Hal R. Varian, University of California at Berkeley.

Problems with Data

- Raw data usually unsuitable for sophisticated reporting or data mining
 - Dirty data
 - Missing values
 - Inconsistent data, esp. in data collected over time
 - Data not integrated
 - From different sources
 - From incompatible sources
 - Granularity
 - Fine data: data that expresses precise detail (e.g. clickstream data)
 - Course data: highly summarized (Google Analytics)

Q8-2: What Are OLTP and OLAP

- Online Transaction Processing (OLTP) system collects data electronically and process the transactions online
 - Can be in real time or batched transactions
- OLTP systems backbone of all functional, crossfunctional, and interorganizational systems in an organization
- OLTP systems support decision making by providing the raw information about transactions and status for an organization

What Are OLAP? (1 of 2)

- While data may be collected in OLTP, the data may not be used to improve decision making
- Online Analytic Processing (OLAP) systems focus on making OLTP-collected data useful for decision making
 - OLAP provides the ability to sum, count, average, and perform other simple arithmetic operations on groups of data
 - OLAP report has measures, or facts, and dimensions

Figure 8-3 OLAP Product Family by Store Type

	Α	В	С	D	Е	F	G
1							
2							
3	Store Sales Net	Store Type					
4	Product Family	Deluxe Supermarket	Gourmet Supermarket	Mid-Size Grocery	Small Grocery	Supermarket	Grand Total
5	Drink	\$8 119.05	\$2 392.83	\$1 409.50	\$685.89	\$16 751.71	\$29 358.98
6	Food	\$70 276.11	\$20 026.18	\$10 392.19	\$6 109.72	\$138 960.67	\$245 764.87
7	Nonconsumable	\$18 884.24	\$5 064.79	\$2 813.73	\$1 534.90	\$36 189.40	\$64 487.05
8	Grand Total	\$97 279.40	\$27 483.80	\$14 615.42	\$8 330.51	\$191 901.77	\$339 610.90

Copyright © 2019 Pearson Canada Inc.

Source: Microsoft Excel

What Is the Data Resource Challenge?

- Though data is collected, it may not be used to improve decision-making
 - Ex. Grocery chain found to use less than 2% of the scanner data it collects
- Companies must see their data as an asset a resource from which benefits can be obtained
- If data is an asset, how is it reported? Who manages it? Who extracts the value out of it?
 - Focus on Business Intelligence

Q8-3: What Are Business Intelligence Systems?

- Business Intelligence (BI) system provides information for improving decision making
- Five categories of BI systems:
 - Group decision support systems (GDSS)
 - Reporting systems
 - Data-mining systems
 - Knowledge-management (KM) systems
 - Expert systems

Reporting Systems

- Integrate data from multiple sources
- Process data by sorting, grouping, summing, averaging, and comparing
- Format results into reports
- Improve decision making by providing:
 right information to right user at right time

Data-Mining Systems

- Process data using sophisticated statistical techniques
 - E.g., regression analysis, data tree analysis
- Can find patterns and relationships to anticipate events or predict future outcomes
 - Market-basket analysis is a type of data-mining system, computes correlations of items on past orders to determine ones frequently purchased together

Knowledge-Management Systems

- Create value from intellectual capital
- Collect and share human knowledge
- Supported by the five components of the information system
- Foster innovation
- Improve customer service
- Increase organizational responsiveness
- Reduce costs

Expert Systems

- Encapsulate the knowledge of human experts in the form of If/Then rules
 - If condition is true, Then initiate procedure
- Improve diagnosis and decision making in nonexperts

Q8-4: How Do Organizations Use Data Warehouses to Acquire Data?

- Analyses from operational data are not recommended
- Operational data not set up for analysis, but for fast and reliable transaction processing
- Operational data gets extracted for BI processing
 - To a database for small companies
 - To a data warehouse for larger companies

Data Warehouse

- Data warehouse: Facility for managing an organization's BC data
- Functions:
 - Obtain data
 - Cleanse data
 - Organize and relate data
 - Catalogue data
- Stores metadata, or data about data
- Usually a room with a few computers and storage devices

Figure 8-7 Components of a Data Warehouse

Copyright © 2019 Pearson Canada Inc.

Q8-5: What Are the Differences Between Data Warehouses and Data Marts?

- Data mart: data collection created to address needs of a:
 - specific function, problem, opportunity
- Companies may have more than one
 - E.g., one for clickstream data, one for market-based analysis, another for inventory
- Smaller than data warehouse
- Users in data mark obtain data from data warehouse, but do not have expertise that data warehouse employees need

Figure 8-9 Data Mart Examples

Copyright © 2019 Pearson Canada Inc.

Q8-6: What Are Typical Data-Mining Applications?

- Data Mining: application of statistical techniques to find patterns and relationships among data and to classify and predict
- convergence of disciplines
 - statistics and mathematics
 - artificial intelligence
 - machine-learning
- Data mining techniques take advantage of developments in data management
- Unsupervised and Supervised techniques

Figure 8-10 Convergence of Disciplines for Data Mining

Copyright © 2019 Pearson Canada Inc.

Unsupervised Data Mining

- Analysts do not create model or hypothesis before running the analysis
- Apply data-mining technique to the data and observe results
- Hypotheses created after analysis as explanation for results
- Example: Cluster analysis
 - identify groups of entities that have similar characteristics

Supervised Data Mining

- Model developed before the analysis
- Statistical techniques applied to data to estimate parameters of the model
- Examples:
 - Regression analysis
 - measures the impact of a set of variables on another variable
 - Neural networks
 - used to predict values and make classifications, such as "good prospect" or "poor prospect" customers
 - Market-based analysis
 - Determining sales patterns items that tend to be bought together

Big Data

- Large amounts of varied data from a variety of sources over a period of time could be used to make better decisions
- Controversial
 - Lack of precision in its definition
 - Adds to excessive data collection
 - Expensive
 - Imprecise (overly vague or general)

