Consistent feature attribution for tree ensembles

Scott Lundberg and Su-In Lee

(presented by Nao Hiranuma)

Sample problem: Filtering loan applications

Susan, a bank customer

What kind of model would people actually use?

• 2 winning approaches in Kaggle:

- 1. Tree ensembles for structured data (hand crafted features)
- 2. Neural networks for unstructured data (images, speech, etc.)

The bank has structured data

So we use a tree ensemble

Why did Susan's loan get denied?!

Let's see what features are important

xgboost model.get score()

What about coverage instead split counts?

xgboost_model.get_score(importance_type="cover")

What about 'gain' (reduction in training loss)?

xgboost_model.get_score(importance_type="gain")

Two problems

1. Global feature importances don't tell us specifically why <u>Susan</u> was denied a loan.

2. Current ways to measure feature importance are often based on heuristics.

Addressing problem 1: Instance level feature importances

xgboost_model.predict(susan_data, pred_contribs=True)

Measures the impact of a feature as the change in expected model output, when splitting on that feature.

f(x) = [Married & Age > 20]*100

E[f(x) | Married, Age > 20] = 100

f(x) = [Married & Age > 20]*100 + [Age > 20]*10

 $E[f(x) \mid Age > 20, Married] = 110$

Addressing problem 2: SHapley Additive exPlanation (SHAP) values

- If we want to represent a function's output as a sum of feature attributions then there is **only one possible consistent allocation**.
- This uniqueness results comes from Shapley values in game theory, and when combined with conditional expectations of the function they give rise to SHAP values.

SHapley Additive exPlanation (SHAP) values

Use Shapley values to measure the impact of a feature as the change in expected model output, when conditioning on that feature.

The order matters! SHAP values average over all N! possible orderings.

Tree SHAP: Polynomial runtime

Current general SHAP methods require runtime O(2^M) for exact solutions with M features, even when approximating the expected values with a single sample.

We show how to compute SHAP values in O(MD²) for depth D trees.

This makes exact computation tractable for tree ensembles!

f(x) = [Married & Age > 20]*100

E[f(x)] = 25

(Married = Yes, Age > 20 = Yes)

Married: **37.5**

Age > 20: **37.5**

f(x) = [Married & Age > 20]*100 + [Age > 20]*10

E[f(x)] = 30

(Married = Yes, Age > 20 = Yes)

Married: **37.5**

Age > 20: **42.5**

Why Susan's loan was denied

Tree SHAP

Exact theoretically justified feature attributions, now very practical for tree models

Questions?

Superior supervised clustering

Superior supervised clustering

