GFX_TextController

Description

This is a text mode video display controller that supports color intended for use with a 64-bit bus. The controller uses several internal dual ported r/w memories to store text, text attributes and character bitmaps. The display memory is sixty-four bits wide. 512 different simultaneous characters may be displayed along with 21-bit background and foreground colors (RGB777 format). The use of internal dual ported memories means that the text controller does not consume any memory bandwidth from the processor.

The core is selected via a circuit select input.

Address	Description	
\$0000 to	text screen and attribute memory area, currently the controller only	
\$1DEFF	supports a 119.75kB memory	
\$1E000 to	character bitmap memory, currently the controller only supports a 8kx9	
\$1FFFF	memory, which allows 1024 8x8 character bitmaps.	
\$1DF00 to	tout controller register and	
\$1DFFF	text controller register area	

Text and Attribute Memory Layout

63 58	57 37	36 16	9 0
z-order	Fg Color	Bk Color	char code

Clocks

The text video display controller uses two clocks, a bus timing clock (clk_i) and a video timing clock (dot_clk_i), which can be completely independent.

The core synchronizes the display relative to externally supplied horizontal and vertical synchronization signals.

Register Description

Reg. 31 No.	0	R/W	Function	Description
0	dddddddd nnnnnnn	RW	number of columns	nnn = number of columns ddd = character output delay (default 3).
1	nnnnnnn	RW	number of row	
2	nnnnnnnnnn	W	window left	Text window position- pixels before the display starts, referenced to the hsync signal
3	nnnnnnnnnnn	W	window top	Text window position - scan lines down from the top of the screen referenced to the vsync signal
4	nnnnn	W	max scanline	maximum scan line used to display chars default 7.
5	hhhh wwww	W	pixel size	pixel size in video clocks and scan lines default is 1 (2 video clocks per pixel) and 1 (two video scan lines per pixel).
6		W	reset state	This bit when set to 1 places the controller in a special reset mode. Default is 1.
7	nnnnnn nnnnnnn nnnnnn	W	Transparent Color	color value that corresponds to a transparent background color

8	T TBB sssss	W	cursor start	ssss=scan line cursor display starts on T T = Cursor Type 00 Box 01 Line 10 Underscore 11 Asterisk B = Cursor Blink B Rate 00 no blink 01 no display 10 1/16 frame rate (4 times per second) 11 1/32 frame rate (2 times per second)
9	eeeee	W	cursor end	scan line cursor display ends on
10	aaaaaaaa aaaaaaaa	W	display offset	starting address of the text screen in the display memory, defaults to zero
11	аааааааа аааааааа	W	cursor position	location of the cursor in the display memory
12	аааааааа аааааааа	R	light pen position	address of the light pen

Graphics

The core may be used as a low-resolution graphics controller via the programmable character set. The characters can be programmed for block graphics. For instance, each character could be a two by two grid of pixels. Sixteen different characters would be required to represent all the different combinations. It is also possible to program characters to a three by three grid of pixels using all 512 programmable characters to represent every possible combination of on/off pixels. The default resolution is 56x29 or (392x232 pixels). This would allow approximately a 168x87 graphics display.

Graphics and text may be intermixed by allocating part of the programmable character set for a graphic arrray. For instance using 256 programmable characters a 128x128 bitmapped display can be created.

Special Reset Mode

In special reset mode the core display memory is continuously updated according to the address on the address bus. This mode allows an echo of the system startup data to the display. This mode is disabled by writing a zero bit to register 6.

Core Parameters

Name	Default Value	Description
COLS	84	default number of columns of text
ROW S	31	default number of rows of text

Module Interface Description

rtfTextController

module rtfTextController(rst_i, clk_i, cs_i, cyc_i, stb_i, ack_o, we_i, adr_i, dat_i, dat_o, vclk, hsync, vsync, blank, border, rgbIn, rgbOut);

System	Description	
rst_i	This signal is normally connected to the system reset signal. It resets the text controller interface forcing it to the reset state.	
clk_i	This is usually connected to the system clock and is used as a base timing clock for I/O operations.	
Slave Port		
cs_i	circuit select input - selects the core for a read or write operation.	
cyc_i	indicates that a valid bus cycle is taking place. The core will not respond to the bus unless this signal is active.	
stb_i	This strobe signal also indicates that a valid bus cycle is taking place	
ack_o	This signal indicates that the core has processed the bus transaction (it is the logical and of cyc_i and stb_i).	
we_i	This signal is used to signify a write operation to the text controller.	

adr_i	This sixteen bit address bus is used to address one of text controllers's registers or internal memory. (Registers are described below). Registers respond to the address range \$DFxx		
dat_i	This is the 32 bit data input bus to the text controller.		
dat_o	This is the 32 bit data output bus from the text controller.		
Video Ports			
vclk	This input is the video clock input. Pixel timing is derived from it.		
hsync	Horizontal sync. This input signal signals the start/end of a video scanline (end-of-line)		
vsync	Vertical sync. This input signal indicates the end of the video frame.		
blank	This input signal indicates that the display should be blanked. It is active during the video blanking period.		
border	This input signal indicates that a border area is active.		
rgbln	This 24 bit input bus can be connected to an external RGB input. (The text controller may display on top of the external input).		
rgbOut	This output signal bus contains the 24 bit RGB display data.		
Parameters			
ROWS	Use this parameter to specify the default number of text rows.		
COLS	Use this parameter to specify the default number of text columns.		

WISHBONE Compatibility Datasheet

The text controller core may be directly interfaced to a WISHBONE compatible bus.

WISHBONE Datasheet WISHBONE SoC Architecture Specification, Revision B.3			
Description:	Specifications:		
•	GFX_TextController - Text mode		
General Description:	video display controller		
Supported Cycles:	SLAVE, READ / WRITE SLAVE, BLOCK READ / WRITE SLAVE, RMW		
Data port, size:	64 bit		

Data port, granularity:	64 bit		
Data port, maximum operand size:	64 bit Little Endian		
Data transfer ordering:	any (undefined)		
Data transfer sequencing			
Clock frequency			
constraints:			
	Signal Name:		
cross reference to equivalent WISHBONE	ack_o adr_i(16:0)	Equiv. ACK O	
signals	clk_i	ADR_I()	
	_ dat_i(63:0)	CLK_I	
	dat_o(63:0)	DAT_I()	
	cyc_i	DAT_O()	
	stb_i	CYC_I	
	we_i	STB_I	
		WE_I	
Special Requirements:	external sync generator		