Outline solution to the class exercise "Big N"

- 1. Create vertex tables for the object in World coordinate system. (a vertex table is called P, see the coordinates listed under 6).
- 2. Find the axes of the Viewing (camera) coordinate system, vectors **V**, **U** and **N** (from VRP and the Target point).

$$\mathbf{N} = [-1 \quad -3 \quad -2 \quad 1]^{\mathsf{T}}, \ \mathbf{U} = [-3 \quad 5 \quad -6 \quad 1]^{\mathsf{T}}, \ \mathbf{V} = [-2 \quad 0 \quad 1 \quad 1]^{\mathsf{T}}$$

3. Find the transformations which change the coordinates of the object from the World system (RH) to the Viewing system (LH); this is the same transformation which aligns the axes of the Viewing system (V,U,N) with the axes of the World system (X,Y,Z). Create the combined transformation matrix for these transformations.

$$T = \begin{bmatrix} 1 & 0 & 0 & -12 \\ 0 & 1 & 0 & -36 \\ 0 & 0 & 1 & -22 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R = \begin{bmatrix} -0.89 & 0 & 0.45 & 0 \\ -0.36 & 0.59 & -0.72 & 0 \\ -0.27 & -0.80 & -0.53 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$S = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

4. Create the perspective projection matrix and combine all the matrices.

5. Transform all the object vertices through the combined matrix calculated in (4).

$$P' = CM*P$$

6. Calculate the homogeneous coordinates of the points transformed in (6), so that the last (fourth) coordinate for each point is 1. As a check see that the z coordinate of each point is equal to D, the viewing distance.

	Original coordinates				Projected coordinates			
	Х	у	Z	h	Х	у	Z	h
V1	0	0	2	1	-0.4	-0.7	10	1
V2	2	0	2	1	0	-0.8	10	1
V3	2	0	0	1	0.2	-0.5	10	1
V4	0	0	0	1	-0.2	-0.3	10	1
V5	0	6	2	1	-0.5	0.2	10	1
V6	2	6	2	1	0	0	10	1
V7	2	6	0	1	0.2	0.4	10	1
V8	0	6	0	1	-0.2	0.5	10	1
V9	6	0	2	1	0.9	-1.2	10	1
V10	8	0	2	1	1.3	-1.4	10	1
V11	8	0	0	1	1.5	-1.0	10	1
V12	6	0	0	1	1.1	-0.8	10	1
V13	6	6	2	1	1.0	-0.4	10	1
V14	8	6	2	1	1.5	-0.6	10	1
V15	8	6	0	1	1.7	-0.2	10	1
V16	6	6	0	1	1.2	0	10	1

7. Plot the 2D points.

