Relatório Atividade 01 - MO824

Aluno

Athyrson Machado Ribeiro

01 de abril de 2022

Código do Curso: 3

Introdução

Descrição do problema

Uma companhia possui F fábricas para atender a demanda de J clientes. Cada fábrica pode escolher dentre L máquinas e M tipos de matéria-prima para produzir P tipos de produtos. A companhia precisa desenvolver um plano de produção e transporte com o objetivo de minimizar os custos totais. Mais especificamente, a companhia deve determinar a quantidade de cada tipo de produto a ser produzida em cada máquina de cada fábrica e a quantidade que deve ser transportada de cada produto partindo de cada fábrica para cada consumidor. Os parâmetros do problema encontram-se abaixo:

- $D_{j,p} =$ demanda do cliente j, em toneladas, do produto p
- $r_{m,p,l}$ = quantidade de matéria-prima m, em toneladas, necessária para produzir uma tonelada do produto p na máquina l;
- $R_{m,f}$ = quantidade de matéria-prima m, em toneladas, disponível na fábrica f;
- $C_{l,f}$ = capacidade disponível de produção, em toneladas, da máquina l na fábrica f;
- $p_{p,l,f} =$ custo de produção por tonelada do produto p
 utilizando a máquina l na fábrica f;
- $t_{p,f,j} =$ custo de transporte por tonelada do produto p partindo da fábrica f até o cliente j;

Modelo matemático

O objetivo da companhia é então encontrar uma solução que, de acordo com a quantidade de clientes, fabricas, máquinas, matérias-primas e produtos seja a que apresente os menores custos totais de transporte e produção, ao mesmo tempo que satisfaça as demandas dos clientes.

Função objetivo

Temos então duas variáveis de decisão nesse problema, $X_{p,l,f}$, que é a quantidade de produtos p produzidos utilizando a máquina l na fábrica f e $Y_{p,f,j}$ que é a quantidade de produtos p produzidos na fábrica f que devem ser entregues ao cliente j.

A função objetivo do problema é então:

$$min(\sum_{p=1}^{|P|}\sum_{l=1}^{|L|}\sum_{f=1}^{|F|}X_{\mathrm{p,l,f}}\cdot p_{\mathrm{p,l,f}} + \sum_{p=1}^{|P|}\sum_{f=1}^{|F|}\sum_{j=1}^{|J|}Y_{\mathrm{p,f,j}}\cdot t_{\mathrm{p,f,j}})$$

Onde o primeiro termo se refere a soma dos custos de produção para todos os produtos produzidos pela companhia e o segundo termo se refere a soma dos custos de entrega de todos os produtos entregues pela companhia. Sendo |P| a quantidade de tipos diferentes de produtos que a companhia produz; |L| a quantidade de tipos diferentes de máquinas que a companhia possui; |F| a quantidade de fábricas existentes na companhia e |J| a quantidade de possiveis clientes que a companhia atende.

Restrições

A primeira restrição do problema é que a somatória de todos os produtos que saem para transporte partindo de todas as fábricas, para todo produto p e todo cliente j, deve ser maior ou igual à demanda do cliente j pelo produto p.

$$\sum_{f=1}^{|F|} \ge D_{j,p} \quad \forall p \quad \forall j$$

A segunda restrição é que a somatória de todos os produtos produzidos pela fábrica f multiplicados pela respectiva quantidade de matéria-prima m necessária para produzir tal produto p na máquina l deve ser maior ou igual à quantidade $R_{m,f}$ de matéria-prima m disponível na fábrica f, para toda fábrica f e toda matéria-prima m.

$$\sum_{p=1}^{|P|} \sum_{l=1}^{|L|} X_{p,l,f} \cdot r_{mpl} \le R_{m,f} \quad \forall f \quad \forall m$$

Sendo |L| a quantidade total de tipos de máquinas que a companhia possui.

A terceira restrição é que a somatória de todos os produtos que são produzidos em uma máquina l na fábrica f deve ser menor ou igual a capacidade de produção $C_{l,f}$ da máquina l na fábrica s, para toda máquina l e toda fábrica f.

$$\sum_{p=1}^{|P|} X_{p,l,f} \le C_{l,f} \quad \forall l \quad \forall f$$

A quarta restrição é que a somatória da quantidade de um produto p produzida em todas as máquinas numa fábrica f seja igual a quantidade desse produto p que sai dessa fábrica f para todos os clientes, para toda fábrica f e todo produto p.

$$\sum_{l=1}^{|L|} X_{p,l,f} = \sum_{j=1}^{|J|} Y_{p,f,j} \quad \forall p \quad \forall f$$

A quinta restrição é que os valor de $X_{p,l,f}$ e $Y_{p,f,j}$ seja maior ou igual a 0 para todo produto p, máquina l, fábrica f e cliente j.

$$X_{p,l,f} \ge 0 \quad \forall p \quad \forall l \quad \forall f$$

$$Y_{p,f,j} \ge 0 \quad \forall p \quad \forall f \quad \forall j$$

Resultados

Como demonstrado na Tabela 1, para cada instância do modelo foi possível obter o de número de variáveis. Porém o número total de restrições, o custo e o tempo para se encontrar a solução ótima só pôde ser obtido para instâncias com até 500 clientes. Não foi possível executar a função model.optimize() para instâncias com mais de 500 clientes.

Table 1: Um nome qualquer

Clientes	Variáveis	Restrições	Custo	Tempo (s)
100	101760	33200	259328	0.738
200	393872	66130	511546	4.373
300	878832	99330	762582	10.355
400	1555792	132530	1011760	43.454
500	2420704	165460	1264267	100.578
600	3480864	-//-	-//-	-//-
700	4733024	-//-	-//-	-//-
800	6170736	-//-	-//-	-//-
900	7806096	-//-	-//-	-//-
1000	9625408	-//-	-//-	-//-

O código foi feito em Python 3 e executado numa máquina com as seguintes especificações: Intel Core i3-4005U 64 bits e RAM 4GB.

Conclusões

De acordo com os dados demonstrados na tabela foram plotados dois gráficos, Figuras 1 e 2. No gráfico da figura 1 se observa um crescimento mais drastico do tempo de execução conforme se aumenta a quantidade de clientes, valor esse que também influência diretamente na quantidade de fábricas. Essa curva de crescimento se assemelha a uma curva de uma função exponêncial. No

gráfico da figura 2 se observa um crescimento mais acentuado do valor da solução ótima em relação ao número de clientes. A curva de crescimento lembra uma curva de uma função linear.

Figure 1: Figura 1: gráfico do número de clientes versus o tempo necessário para se encontrar a solução ótima do problema em cada instância - Figura de autoria própia

Figure 2: Figura 2: gráfico do número de clientes versus o valor da solução ótima do problema - Figura de autoria própia

Inferimos então, com os dados obtidos na Tabela 1 e Figuras 1 e 2, que aumentar a quantidade de clientes gera um aumento linear no valor da solução ótima, porém um aumento exponencial no tempo necessário para se encontrar a solução ótima. Isso se deve em parte ao fato de que a função objetivo é da ordem de $X^2 + Y^2$, onde X e Y são as variáveis de decisão do problema.