20. Matrices

Exercice 1. (c) Calculer les produits matriciels suivants :

$$\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \times \begin{pmatrix} 1 & -1 & 2 \\ -3 & 2 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 2 & -4 \\ 3 & -2 & 1 \end{pmatrix} \times \begin{pmatrix} 0 & 2 \\ -1 & 2 \\ 0 & 1 \end{pmatrix} \text{ et } \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{pmatrix} \times \begin{pmatrix} -2 & 1 & 1 & 0 \\ 1 & 1 & 0 & -2 \\ 1 & 0 & -2 & 1 \\ 0 & -2 & 1 & 1 \end{pmatrix}.$$

Exercice 2. (i) Soient $L_1, L_2 \in \mathcal{M}_{1,n}(\mathbb{K})$ et $C \in \mathcal{M}_{n,1}(\mathbb{K})$. Quelle est la taille de $L_1 \times C \times L_2$? Pour faire ce calcul, vaut-il mieux faire $(L_1 \times C) \times L_2$ ou $L_1 \times (C \times L_2)$?

Exercice 3. © Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $a_{i,j} = i$. Calculer A^2 et en déduire A^N pour $N \in \mathbb{N}^*$.

Exercice 4. (m) Soit $M \in \mathcal{M}_n(\mathbb{K})$ et $J \in \mathcal{M}_n(\mathbb{K})$ la matrice dont tous les coefficients sont égaux à 1. Calculer JMJ.

Exercice 5. (i) Déterminer les $X \in \mathcal{M}_2(\mathbb{R})$ à coefficients entiers telles que $X^2 + X = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

Exercice 6. (m)/(i) On pose $Dam_n(\mathbb{K}) = \{A \in \mathcal{M}_n(\mathbb{K}) / \forall i, j \in [1, n], i + j \equiv 1 \ [2] \Rightarrow a_{i,j} = 0\}$ l'ensemble des matrices en damier de $\mathcal{M}_n(\mathbb{K})$.

- 1) Montrer que $\mathrm{Dam}_n(\mathbb{K})$ est un sous-anneau de $\mathcal{M}_n(\mathbb{K})$.
- 2) Quand la notion aura été vue. Soit $A \in \mathrm{Dam}_n(\mathbb{K})$ inversible. Montrer que $A^{-1} \in \mathrm{Dam}_n(\mathbb{K})$.

Exercice 7. (m) On pose $SM_n(\mathbb{K}) = \{A \in \mathcal{M}_n(\mathbb{K}) / \exists \lambda \in \mathbb{K} / \forall i, j \in [1, n], \sum_{k=1}^n a_{i,k} = \sum_{j=1}^n a_{k,j} = \lambda \}$ l'ensemble des matrices semi-magiques de $\mathcal{M}_n(\mathbb{K})$. Montrer que $SM_n(\mathbb{K})$ est un sous-anneau de $\mathcal{M}_n(\mathbb{K})$.

Exercice 8. (m) On suppose que
$$a^2 + b^2 + c^2 = 1$$
, on note $A = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix}$ et $B = A^2 + I_3$.

Calculer graphiquement B et vérifier graphiquement que AB = 0 et $B^2 = B$. En déduire alors les puissances n-ièmes de B et de A.

Exercice 9. (m) Soit $X = \begin{pmatrix} 1 & 1 & \dots & 1 \end{pmatrix} \in \mathcal{M}_{1,n}(\mathbb{R})$

- 1) Calculer X^tX et $C = {}^tXX$. En déduire les puissances N-ièmes de C.
- 2) Calculer les puissances N-ièmes de $I_n + C$.

Exercice 10. (m) Soient $d_1, \ldots, d_n \in \mathbb{K}$ tous distincts et $D = \operatorname{diag}(d_1, \ldots, d_n) \in \mathcal{M}_n(\mathbb{K})$. Déterminer l'ensemble des matrices $A \in \mathcal{M}_n(\mathbb{K})$ qui commutent avec D.

Exercice 11. $\boxed{\mathbf{m}}$ Soit $A \in \mathcal{M}_n(\mathbb{K})$ qui commute avec toute matrice de $\mathcal{M}_n(\mathbb{K})$. En utilisant les matrices élémentaires $E_{i,j}$, montrer qu'il existe $\lambda \in \mathbb{K}$ tel que $A = \lambda I_n$.

Exercice 12. (m) Soit $A \in \mathcal{M}_n(\mathbb{R})$ triangulaire supérieure. Montrer que A commute avec sa transposée si et seulement si A est diagonale.

Exercice 13. (c) Déterminer les inverses des matrices suivantes :

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} , \quad B = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 4 & -3 \\ 6 & 3 & 5 \end{pmatrix} \text{ et } C = \begin{pmatrix} 0 & 4 & -2 \\ 2 & -1 & 4 \\ -1 & 0 & -2 \end{pmatrix}$$

Exercice 14. $\boxed{\mathbf{m}}$ Déterminer les $a \in \mathbb{R}$ tels que $A = \begin{pmatrix} 1 & a & a & 1 \\ a & 1 & a & 1 \\ 1 & 1 & 1 & a \\ 1 & a & 1 & 1 \end{pmatrix}$ est inversible.

Exercice 15. (i) Soit $M \in \mathcal{M}_n(\mathbb{R})$ la matrice de terme général $m_{i,j} = \max(i,j)$. Tracer M, montrer que M est inversible et déterminer M^{-1} .

Exercice 16. (i) Soit $A \in \mathcal{M}_n(\mathbb{R})$ définie par $a_{i,j} = 1$ si $j \geq i$ et $a_{i,j} = 2$ sinon. Inverser A.

Exercice 17. (m) Soit $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$. Calculer A^n pour $n \in \mathbb{N}$, puis montrer que A est inversible et calculer A^{-1} . Calculer alors A^n pour $n \in \mathbb{Z}$.

Exercice 18. (m) Utilisation d'un polynôme annulateur. Soit $A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$.

- 1) Déterminer $a, b \in \mathbb{R}$ tels que $A^2 + aA + bI_2 = 0$.
- 2) Calcul d'inverse. Déduire de l'égalité précédente que A est inversible et déterminer A^{-1} .
- 3) Calcul de puissances. Déterminer le reste dans la division euclidienne de X^n par $X^2 + aX + b$. En déduire l'expression de A^n en fonction de n, A et I_2 .

Exercice 19. (m) Pour $A \in \mathcal{M}_n(\mathbb{K})$ une matrice carrée, on pose $\operatorname{Tr}(A) = \sum_{i=1}^n a_{i,i}$ la trace de A (c'est la somme des coefficients diagonaux de A).

- 1) Montrer que $\forall (A, B) \in \mathcal{M}_{n,p}(\mathbb{K}) \times \mathcal{M}_{p,n}(\mathbb{K}), \operatorname{Tr}(AB) = \operatorname{Tr}(BA).$
- 2) En déduire qu'il n'existe pas de matrices $A, B \in \mathcal{M}_n(\mathbb{K})$ telles que $AB BA = I_n$.

Exercice 20. (m) Soit $n \in \mathbb{N}^*$ et $\omega = e^{\frac{2i\pi}{n}}$. On pose la matrice $F = \left(\omega^{(i-1)(j-1)}\right)_{1 \le i,j \le n}$. Calculer $F \times \bar{F}$ où \bar{F} est la matrice où l'on a pris le conjugué de chacun des coefficients de F. En déduire que $F \in GL_n(\mathbb{C})$ et calculer son inverse.

Exercice 21. (i) Soient $A, B, C \in \mathcal{M}_n(\mathbb{K})$ telles que $\forall k \in \{1, 2, 3\}, A^k = B + kC$. Montrer que $\forall k \in \mathbb{N}^*, A^k = B + kC$.

Exercice 22. (i) Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ nilpotentes $(\exists n_1, n_2 \in \mathbb{N}^* / A^{n_1} = 0 \text{ et } B^{n_2} = 0)$ et qui commutent. Montrer que AB et A + B sont nilpotentes.

Exercice 23. (i) Montrer que toute matrice carrée est la somme de deux matrices inversibles.

Exercice 24. (i) Existe-t-il $A, B \in \mathcal{M}_n(\mathbb{R})$ telles que $\forall M \in \mathcal{M}_n(\mathbb{R}), M^T = AMB$?

 $\textbf{Exercice 25.} \ \ \textcircled{*} \ \ \textbf{Montrer qu'une matrice triangulaire supérieure à diagonale nulle est nilpotente}.$