# Cervical Spine Fracture Detection

W210 Capstone Presentation II Fall 2022 - Section 3 Weijia Li, Jane Hung, Minjie Xu, Fengyao Luo

# Agenda

**Project Recap** 

**Pipeline** 

**Image Preprocess & Augmentation** 

**Models Comparison** 

**Model Results** 

**Error Analysis** 

**Next Steps** 

# **Project Recap**











- Background
- Market size
- RSNA Cervical Spine Fracture Al Challenge
- MVP
- Product vision
- Mission statement: Quicker, better, more accurate diagnosis to save lives.
- Customers
- Competitors

# **Pipeline**





#### Models

- EfficientNet (use .dicom)
- DenseNet baseline (use JPEG)
- **Custom CNN** Preprocess + Augmentation (use .dicom)



# Train vs Validation Split (80% vs 20%)

| Training Data              | Validation Data              | Holdout Data                                                 |
|----------------------------|------------------------------|--------------------------------------------------------------|
| Used for fitting the Model | Used for<br>Model Evaluation | Used to validate the<br>Model Performance<br>during training |



#### **Evaluation Metrics**

EVALUATIO

- Competition Weighted Loss
- Train loss vs Validation loss
- Accuracy, Precision, Recall, F1 Score
- FP Rate, FN Rate

# **Image Preprocess**

#### **Intensity**

Reduce the memory per patient from 99.5M to 21.4M

#### **Spatial**

#### Clamp intensity

Min: HU = -1000 (air) Max: HU = 1900 (bone)



#### **Rescale Intensity**

normalize the values to [0, 1] for CNN



#### **ToCanonical**

normalize the orientation (to RAS+)



#### Resample

to a sensible value (1 mm isotropic) for faster computations

spacing: (0.58, 0.58, 1.00)



spacing: (1.00, 1.00, 1.00)



# **Image Augmentation**

#### Random Anisotropy(p=0.25)

make images look anisotropic 25% of times

#### **Random Affine**

Apply a random affine transformation

#### Random Noise(p=0.25)

Gaussian noise 25% of times

#### Random Flip



ScalarImage(shape: (1, 512, 512, 406); spacing: (0.31, 0.31, 0.40); orientation: L PS+; dtype: torch.ShortTensor; memory: 203.0 MiB)



ScalarImage(shape: (1, 224, 224, 224); spacing: (1.00, 1.00, 1.00); orientation: R AS+; dtype: torch.FloatTensor; memory: 42.9 MiB)

**Before** 

After

### **Models & Architectures**

- EfficentNet vs. DenseNet vs. customized CNN (Torchio-CNN)
  - Keras vs PyTorch
  - Model scaling
  - Training size
  - Image resolution (resize)
  - Model running time





# C1 to C7 Classification - EfficientNetV2

#### Model: "model" Output Shape Layer (type) \_\_\_\_\_\_ input 2 (InputLayer) [(None, None, None, 1)] conv2d 1 (Conv2D) (None, None, None, 3) efficientnet-b5 (Functional (None, None, None, 2048) 28513520 Model global average pooling2d (G (None, 2048) lobalAveragePooling2D) dense (Dense) (None, 9) 18441 \_\_\_\_\_\_ Total params: 28,531,991 Trainable params: 28,359,255 Non-trainable params: 172,736

# actual label: [1. 1. 1. 0. 0. 0. 0. 0. 0.] predicted output: [0.92639005 0.88605517 0.84040582 0.05682087 0.03717361 0.0239842 0.0283552 0.03207355 0.04325184] predicted label: [1. 1. 1. 0. 0. 0. 0. 0. 0.]







# **Fracture Prediction - EfficientNetV2**



Model: "model"

| Layer (type)                                                  | Output Shape             | Param #  |
|---------------------------------------------------------------|--------------------------|----------|
|                                                               |                          |          |
| input_1 (InputLayer)                                          | [(None, None, None, 1)]  | 0        |
| conv2d (Conv2D)                                               | (None, None, None, 3)    | 30       |
| efficientnet-b5 (Functional )                                 | (None, None, None, 2048) | 28513520 |
| <pre>global_average_pooling2d (G lobalAveragePooling2D)</pre> | (None, 2048)             | 0        |
| dense (Dense)                                                 | (None, 7)                | 14343    |
| <br>Total params: 28,527,893                                  |                          |          |
| Trainable params: 28,355,157                                  |                          |          |

Minimum validation loss: 0.14071543514728546



|   | row_id                                    | fractured |  |  |
|---|-------------------------------------------|-----------|--|--|
| 0 | 1.2.826.0.1.3680043.22327_C1              | 0.596053  |  |  |
| 1 | 1.2.826.0.1.3680043.22327_C2              | 0.616532  |  |  |
| 2 | 1.2.826.0.1.3680043.22327_C3              | 0.329862  |  |  |
| 3 | 1.2.826.0.1.3680043.22327_C4              | 0.577175  |  |  |
| 4 | 1.2.826.0.1.3680043.22327_C5              | 0.434725  |  |  |
| 5 | 1.2.826.0.1.3680043.22327_C6              | 0.453186  |  |  |
| 6 | 1.2.826.0.1.3680043.22327_C7              | 0.507186  |  |  |
| 7 | 1.2.826.0.1.3680043.22327_patient_overall | 1.000000  |  |  |

## **Model Baseline**

Downsample dataset

202 patients (10%)

Resize images

(512, 512)

↓
(150, 150)

Process 3D data



Convert images to PNG



Define loss

DenseNet-121 Model

BCEntropyCompetition



tldr; Baseline overfits based on BCEntropy loss and would not perform well on Kaggle.





# **Error Analysis**

Average inference time: 5.261 s per patient

|   | eval_metric   | patient_level | vertebrae_level | C1  | C2  | C3   | C4   | C5  | C6  | C7  |
|---|---------------|---------------|-----------------|-----|-----|------|------|-----|-----|-----|
| 0 | recall (%)    | 0             | 8.6             | 0   | 0   | 33.3 | 100  | 0   | 0   | 0   |
| 1 | precision (%) | 0             | 7.3             | 0   | 0   | 3.7  | 14.3 | 0   | 0   | 0   |
| 2 | tn            | 19            | 214             | 37  | 33  | 12   | 27   | 36  | 36  | 33  |
| 3 | fp            | 0             | 38              | 0   | 0   | 26   | 12   | 0   | 0   | 0   |
| 4 | fn            | 22            | 32              | 4   | 8   | 2    | 0    | 5   | 5   | 8   |
| 5 | tp            | 0             | 3               | 0   | 0   | 1    | 2    | 0   | 0   | 0   |
| 6 | fpr (%)       | 0             | 15.1            | 0   | 0   | 68.4 | 30.8 | 0   | 0   | 0   |
| 7 | fnr (%)       | 100           | 91.4            | 100 | 100 | 66.7 | 0    | 100 | 100 | 100 |

- 1) The baseline model can **not detect C1, C2, and C7 fractures**, which are the most common and medically problematic.
- 2) The model produces relatively fewer false negatives for C3 and C4 fractures, but these are less likely to fracture.

# **Error Analysis - Example**

















ID: 1.2.826.0.1.3680043.581





















# **Next step**

- C1-C7 classification:
  - o Run the model with full dataset
  - Implement the result to the fracture prediction model
- In depth error analysis to the existing models built
  - EfficientNet
  - DenseNet
  - CNN
- Implement additional feature engineering to the model
- Further optimize the infrastructure and model performance to train larger dataset
- Submit our model before the Final Submission Deadline on Thursday
- Sagittal view model
- Ensemble models