

SJSU SAN JOSÉ STATE UNIVERSITY

Agenda

- Multivariate Calculus Review
- Lagrange Multipliers & Constrained Optimization

SJSU SAN JOSÉ STATE UNIVERSITY

Partial Derivatives

• For functions with 2 or more variables, we get partial derivatives:

THE PART OF THE PA

Δ

Chain Rule

• For multivariate functions, we can have intermediate variables between the dependent and independent variables.

$$w(x,y,z) = 2xyz$$
where $x = t, y = 2t, z = t^2$

• We can use chain rule to find the partial derivatives:

$$\begin{split} \frac{dw}{dt} &= \frac{\partial w}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial t} & \text{one intermediate variable} \\ \frac{\partial z}{\partial s} &= \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} & \text{two intermediate variables} \\ \frac{\partial z}{\partial t} &= \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t} & \text{two intermediate variables} \end{split}$$

5

Example

Use chain rule to find the partial derivatives of the multivariable function:

$$w(x, y) = x^{2}y + x$$
$$x = 1 + t$$
$$y = 2 + t^{2}$$

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial t} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial t}$$

Example

Use chain rule to find the partial derivatives of the multivariable function:

$$z(r,\theta) = \ln(r) + r^2 \sin \theta$$
$$r = 3s^2 - t$$
$$\theta = 2t^2 - \frac{4}{s^2}$$

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$
$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

7

Gradient

The gradient of a scalar function $f(x_1, x_2, ..., x_n)$ is a vector that points in the direction of the greatest rate of increase of the function:

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots\right)$$

Example: Find the gradient vector of $f(x,y) = x^2 + y^2$

9

Extrema

- In functions of several variables f(x, y, ...), **extrema** (or critical points) are points where the function reaches local or global maximum or minimum values.
- Types of extrema:
 - Local Maximum: Function value is greater than all nearby values.
 - Local Minimum: Function value is less than all nearby values.
 - Global Maximum/Minimum: Highest/lowest value over the entire domain.
- To find extrema,
 - Compute the gradient $\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \dots\right)$
 - Set gradient to zero: $\nabla f = 0$
 - Solve for the critical points.

Extrema of 2D Functions

- For functions of 2 variables, we have the Second Derivative Test:
- The Hessian matrix contains all the second partial derivatives of f(x, y):

$$H = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{bmatrix}$$

• The determinant of is called the discriminant

$$D = f_{xx}f_{yy} - f_{xy}^2$$

- -D > 0 → extrema
 - $f_{xx} > 0$ local minimum
 - $f_{xx} < 0$ local maximum
- -D < 0 → saddle points
- $-D = 0 \rightarrow \text{inconclusive}$

isis wasis wasis wasis wasis

11

Example: 1D Function

Find the critical values of the function $f(x) = -x^3 + 3x^2$

Constrained Optimization

- Constrained optimization is about maximizing or minimizing an objective function subject to one or more constraints.
- Constraints can be anything that limits the feasible region of the optimization problem, such as inequalities, equalities, or bounds

Example: a company wants to maximize its profits subject to constraints on its production capacity and resources.

• In this case, the objective function is the profit function, and the constraints are the production capacity and resource availability

ALE STANDARD STANDARD

15

Constrained Optimization Techniques Constrained optimization problems can be solved using various techniques: Lagrange Multipliers Penalty Methods Gradient Descent Grid Search Random Search

Lagrange Multipliers

Lagrange multipliers is a method to find extrema of function f(x, y, ...) subject to equality or inequality constraints g(x, y, ...) = 0

• To solve this constrained optimization problem, we define the Lagrange multiplier as:

$$\nabla f = \lambda \nabla g$$

- Then, we solve for λ , x, y, ...
- Evaluate f(x, y, ...) with these values of x, y will give the extrema values

nwalisnwalisnwalisnwalisnwalisnwalisnwalisnwalisnwalisnwalisnwalisnwalisnwalisnwalisnwalisnwalisnwalisnwalisnw

17

Example: Constrained Optimization

Find the extrema of the function $f(x) = x^2 + y^2 + 100$ subject to the constraint 2x + y = 6

