Regular Languages

- Finite Automata
 - e.g., Supermarket automatic door:

Finite Automata

Input signal **NEITHER FRONT BOTH REAR** State transition CLOSED **CLOSED CLOSED CLOSED OPEN** Door table state **OPEN CLOSED OPEN OPEN OPEN**

Definition

- A finite automaton is a 5-tuple (Q, Σ , δ , q₀, F)
 - Q : a finite set called the states
 - $-\Sigma$: a finite set called the alphabet
 - $-\delta: Qx\Sigma \rightarrow Q$ is the transition function
 - $-q_0 \in Q$ is the initial (or start) state
 - $F \subseteq Q$ is the set of accept (or final) states

•
$$M_1 = (Q, \Sigma, \delta, q_0, F)$$

$$-Q = \{q_1, q_2, q_3\}$$

$$-\Sigma = \{0, 1\}$$

 $-q_1$: the start state

$$- F = \{q_2\}$$

$$L(M_1) = A$$

M recognizes A or

M accepts A

the set of all strings that M accepts

$$L(M_1) = 3$$

4

e.g.:

 $L(M_3) = \{ \varepsilon \text{ or ends in } 0 \}$

1 0 <RESET> 2 2 <RESET> 0 1 2 What is the language accepted by the above automata?

 $L(M_5) = \{w \mid \text{the sum of the symbols in } w \text{ is } 0 \text{ modulo } 3$ except the <RESET> resets to 0}

Formal definition of computation

- M = (Q, Σ , δ , q₀, F) w: a string over Σ , $w_i \in \Sigma$, $w = w_1 w_2 \dots w_n$
- M accepts w if a sequence of states
 r₀, r₁, ..., r_n exists in Q and satisfies the following
 3 conditions:
 - $r_0 = q_0$ $- \delta(r_i, w_{i+1}) = r_{i+1}, \text{ for } i = 0, ..., n-1$ $- r_n \in F$

We say that M recognizes language A if
 A = {w | M accepts w}

• Def:

A language is called a regular language if some finite automaton recognizes it.

Designing finite automata

- Let $A = \{w \mid w \text{ is } 0\text{-}1 \text{ string } \& \text{ has odd number of } 1\}$
 - Is A a regular language ?
 - What is the automata accepting A?

Designing finite automata

 E.g.: Design a finite automaton to recognize all strings that contains 001 as a substring

Regular operations

 A, B: languages
 Regular operations: union, concatenation, star

```
- Union:

A \cup B = \{x \mid x \in A \text{ or } x \in B\}
- Concatenation:

A \circ B = \{xy \mid x \in A \text{ and } y \in B\}
- Star:

A^* = \{x_1x_2...x_k \mid k \ge 0 \text{ and each } x_i \in A\}
```

Regular operations

```
eg:
  \Sigma = \{ a, b, c, \ldots, z \} (26 letters)
  A = \{ good, bad \}
  B = \{ boy, girl \}
• A \cup B = \{ good, bad, boy, girl \}
  A ∘ B= {goodboy, goodgirl, badboy,badgirl}
  A^* = \{\varepsilon, \text{good}, \text{bad}, \text{goodbad}, \text{badgood}, \text{goodgood},
```

• E.g. $A_1 = \{w \mid w \text{ has odd number of 1}\}$

$$-Q_1 = \{q_{even}, q_{odd}\}$$

$$-\Sigma = \{0,1\}$$

- q_{even}: start state
- q_{odd}: accept state

• E.g. $A_2 = \{w \mid w \text{ has at least a "1"}\}$

- q₁: start state
- q₂: accept state

• $A_1 \cup A_2 = \{w \mid w \text{ has odd number of } 1 \text{ or }$ w has a 1} $-Q = \{(q_{even}, q_1), (q_{even}, q_2), (q_{odd}, q_1), (q_{odd}, q_2)\}$ $-\sum = \{0, 1\}$ $(q_{\text{even}}, q_1)(q_{\text{even}}, q_1)(q_{\text{odd}}, q_2)$ $(q_{even}, q_2)(q_{even}, q_2)(q_{odd}, q_2)$ $(q_{odd}, q_1) | (q_{odd}, q_1) | (q_{even}, q_2)$ $(q_{odd}, q_2) (q_{odd}, q_2) (q_{even}, q_2)$ $-(q_{even}, q_1)$: start state $-(q_{odd}, q_1)(q_{odd}, q_2)(q_{even}, q_2)$: accept state

Theorem:

The class of regular languages is closed under the union operation. (In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.)

• Pf:Let

```
M_1 recognize A_1, where M_1= (Q_1, \Sigma, \delta_1, q_1, F_1) M_2 recognize A_2, where M_2= (Q_2, \Sigma, \delta_2, q_2, F_2) Goal: Construct M=(Q, \Sigma, \delta, q_0, F) to recognize A_1 \cup A_2
```

- $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\}$
- $-\Sigma$ is the same in M₁, M₂
- For each $(r_1, r_2) \in \mathbb{Q}$ and each $a \in \Sigma$, let $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)) : [If <math>\delta_1(r_1, a)$ is not defined, then how to define this transition?]
- $q_0 = (q_1, q_2), (q_0 \text{ is a new state } \notin Q_1 \cup Q_2)$
- $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

• Theorem:

The class of regular languages is close under the concatenation. (In other words, if A_1 and A_2 are regular languages, so is $A_1 \circ A_2$.)

Nondeterminism:

Input: 0 1 0 1 1 0

• eg:

A: the language consisting of all strings over {0, 1} containing a 1 in the 3rd position from the end

• E.g.: What does the following automaton accept?

Formal definition of a nondeterministic finite automaton

- $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$, $\mathcal{P}(Q)$: the collection of all subsets of Q
- A nondeterministic finite automaton is a 5-tuple (Q, Σ , δ , q_0 , F), where
 - Q : a finite set of states
 - $-\Sigma$: a finite set of alphabet
 - $-\delta: Qx\Sigma_{\varepsilon} \rightarrow \mathcal{P}(Q)$ transition function
 - $-q_0 \in Q$: start state
 - $-F \subseteq Q$: the set of accept states

$$- Q = \{q_1, q_2, q_3, q_4\}$$

$$-\Sigma = \{0, 1\}$$

- q₁: start state
- q₄: accept state

• N=(Q, Σ , δ , q₀, F) ~NFA w: string over Σ , $w = y_1 y_2 y_3 \dots y_m$, $y_i \in \Sigma_{\varepsilon}$, $r_0, r_1, r_2, \dots, r_m \in Q$

- N accepts w if there exist r₀,r₁,r₂,...,r_m such that
 - $-r_0=q_0$
 - $r_{i+1} \in \delta(r_i, y_{i+1})$, for i = 0, ... m-1
 - $-r_{m} \in F$

Equivalence of NFA and DFA

- Theorem: Every nondeterministic finite automaton has an equivalent deterministic finite automaton
- Pf: Let N=(Q, Σ , δ , q₀, F) be the NFA recognizing A.

Goal: Construct a DFA recognizing A

1. First we don't consider ε . Construct M= (Q', Σ , δ ', q_0 ', F')

1. Q' =
$$\mathcal{P}(Q)$$

2. For R \in Q' and a \in Σ let $\delta'(R,a) = \{q \in Q \mid q \in \delta(r,a), r \in R\}$

3.
$$q_0' = \{q_0\}$$
 $= \bigcup_{r \in R} \delta(r, a)$

4. F' = $\{R \in Q' \mid R \text{ contains an accept state of } N\}$

Equivalence of NFA and DFA

2. Consider ϵ : (subset construction)

For any R \in M, define

E(R)={q | q can be reached from R by traveling along 0 or more ϵ }

Replace $\delta(r,a)$ by E($\delta(r,a)$)

Thus, δ' (R, a)={q \in Q: q \in E($\delta(r,a)$) for some r \in R}

Change q_0' to be E({ q_0 })

 Corollary: A language is regular if and only if some NFA recognizes it.

e.q.,

D's states:

$$\{\phi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$$

$$N_4 = (\{1,2,3\}, \{a,b\}, \delta, 1, \{1\})$$

Construct a DFA D equivalent to N₄

E.g., Convert the following NFA to an equivalent DFA

•
$$E(\{q_0\}) = \{q_0\}$$

 $E(\delta(\{q_0\},a)) = \{q_1,q_2\}$
 $E(\delta(\{q_0\},b)) = \phi$
 $E(\delta(\{q_1,q_2\},a) = \{q_1,q_2\}$
 $E(\delta(\{q_1,q_2\},b) = \{q_0\}$

Closure under the regular operations

 Theorem: The class of regular languages is closed under the union operation

A1∪A2

- $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ for A_1
- $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ for A_2

• Construct $N=(Q, \Sigma, \delta, q_0, F)$ to recognize $A1 \cup A2$

$$-Q: \{q_0\} \cup Q_1 \cup Q_2$$

 $-q_0$: start state

$$-F:F_1\cup F_2$$

− For q∈Q and a∈ Σ_{ϵ}

$$\delta(q, a) = \begin{cases} \delta_1(q, a), q \in Q_1 \\ \delta_2(q, a), q \in Q_2 \\ \{q_1, q_2\}, q = q_0 \text{ and } a = \epsilon \\ \phi, q = q_0 \text{ and } a \neq \epsilon \end{cases}$$

 Theorem: The class of regular language is closed under the concatenation operation.

A1 ∘ **A2**

- $-N_1=(Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 .
- $-N_2=(Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2 .

Construct N=(Q, Σ, δ, q₁, F₂) to recognize A1 ∘ A2

```
-Q:Q_1\cup Q_2
```

– q₁: start state

– F₂: accept state

$$-\delta(q, a) = \begin{cases} \delta_1(q, a), & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a), & q \in F_1 \text{ and } a \neq \epsilon \end{cases}$$
$$\delta_1(q, a) \cup \{q_2\}, q \in F_1 \text{ and } a = \epsilon$$
$$\delta_2(q, a), q \in Q_2$$

 Theorem: The class of regular language is closed under the star operation.

Pf: A: $A = \{a, b\}$ $A^* = \{\epsilon, a, b, ...\}$ $\{\epsilon, A \}$ $A \circ A = \{aa, ab, ba, bb\}$ $A \circ A \circ A$...

 $-N_1=(Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A

• Construct $N=(Q, \Sigma, \delta, q_0, F)$ to recognize A^*

```
-Q: \{q_0\} \cup Q
 -q_0: start state
 -F: \{q_n\} \cup F
\begin{split} -\,\delta(q,\,a) = \left\{ \begin{array}{l} \delta_1(q,\,a), & q{\in}Q_1 \text{ and } q{\notin}F_1 \\ \delta_1(q,\,a), & q{\in}F_1 \text{ and } a{\neq}\epsilon \\ \delta_1(q,\,a){\cup}\{q_1\}, & q{\in}F_1 \text{ and } a{=}\epsilon \\ \{q_1\}, & q{=}q_0 \text{ and } a{\neq}\epsilon \\ \phi & q{=}q_0 \text{ and } a{\neq}\epsilon \end{array} \right. \end{split}
```

Regular Expressions

- AWK, GREP in UNIX PERL, text editors.
- E.g. $(0 \cup 1)0^* = (\{0\} \cup \{1\}) \circ \{0\}^*$

• E.g. $(0 \cup 1)^* = \{0, 1\}^*$

Formal definition of a regular expression

Definition:

R is a regular expression if R is

- $-a \in \Sigma$
- 3 —
- **-**ф
- $-(R_1 \cup R_2)$, R_1 and R_2 are regular
- $-(R_1 \circ R_2)$, R_1 and R_2 are regular
- $-(R_1^*)$, R_1 is regular expression

Inductive definition

- E.g., $\Sigma = \{0, 1\}$
 - $-0*10* = \{w : w \text{ has exactly a single 1}\}$
 - $-\Sigma^*1\Sigma^*$
 - $-\Sigma^*001\Sigma^*$
 - $-(\Sigma\Sigma)^*$
 - $-01 \cup 10$
 - $-0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1$
 - $-(0 \cup \varepsilon)1^*=01^* \cup 1^*$
 - $(0 \cup \varepsilon)(1 \cup \varepsilon) = \{\varepsilon, 0, 1, 01\}$
 - $-1*\phi = \phi$
 - $\phi^* = \{\epsilon\}$

• E.g.

R: regular expression

$$R \cup \phi = R$$

$$R \circ \varepsilon = R$$

• R∪ε ?=R R ∘ φ ?= R

• R = {0}. Then R \cup ε = {0, ε } \neq R R \circ φ = φ

Equivalence with finite automata

• Theorem:

A language is regular if and only if some regular expression describes it.

Lemma: (←)
 If a language is described by a regular expression then it is regular.

• Pf:

 $-R = R_1*$

Let R be a regular expression describing some language A.

Goal: Convert R into an NFA N.

$$-R=a \in \Sigma, L(R)=\{a\} \rightarrow \bigcirc$$

$$-R=\epsilon, L(R)=\{\epsilon\}$$

$$-R=\phi, L(R)=\phi$$

$$-R=R_1 \cup R_2$$

$$-R=R_1 \circ R_2$$

• E.g. (ab ∪ a)* – ab - ab \cup a ε - (ab \cup a)*

• eg. (a ∪ b)*aba

— а

— b

 $-a \cup b$

- (a \cup b)*

aba

- (a \cup b)*aba

Generalized nondeterministic finite automaton (GNFA)

• (Q, Σ , δ , q_{start}, q_{accept}) δ : (Q - {q_{accept}}) x (Q - {q_{start}}) \rightarrow R

Set of all regular expressions over Σ

$$\delta(q_i, q_j) = R$$

$$q_i R q_j$$

- Lemma: (→)
 If a language is regular, then it is described by a regular expression
- Pf:
 - a language A is regular
 - There is a DFA M accepting A
 - Goal: Convert DFAs into equivalent regular expressions.

- A GNFA accepts a string w in Σ^* if $w = w_1 w_2 \dots w_k$, where each w_i is in Σ^* and a sequence of states $q_0 q_1 q_2 \dots q_k$ exist, such that
 - $q_0 = q_{start}$ is the start state
 - $q_k = q_{accept}$ is the accept state
 - for each i, we have $w_i \in L(R_i)$, where $q_i = \delta (q_{i-1}, R_i)$
- DFA M ------ GNFA G

 start state
 adding {
 accept state
 transition arrows
- Convert (G): takes a GNFA and return an equivalent regular expression

Convert(G)

- Convert(G)
 - Let k be the number of states of G
 - If k=2, return R

- If k>2, select any $q_{rip} \in Q$ ($\neq q_{start}$, q_{accept}), Let G' = GNFA(Q', Σ , δ ', q_{start} , q_{accept}), where Q' = Q-{ q_{rip} }, and for any $q_i \in Q$ '-{ q_{accept} } and any $q_j \in Q$ '-{ q_{start} }, let δ ' (q_i , q_j) = (R_1)(R_2)*(R_3) \cup (R_4)
- Compute CONVERT(G') and return this value

Claim: For any GNFA G, CONVERT(G) is equivalent to G.

Pf:

By induction on k, the number of states of the GNFA

Basis: It is clear for k=2

Induction step

Assume that the claim is true for k-1 states

- Suppose G accepts an input w, Then in an accepting branch of the computation G enters a sequence of states: q_{start} , q_1 , q_2 , ..., q_{accept}
 - If none of them is q_{rip} , G' accepts w.

G:

- If q_{rip} does appear in the above states, removing each run of consecutive q_{rip} states forms an accepting computation for G'
- Suppose G' accepts an input w

or

qrip

example

example

Arden's Rule

The set A*B is the smallest language that is a solution for X in the linear equation

$$X = A \cdot X \cup B$$

where X, A, B are sets of strings. Moreover, if the set A does not contain the empty word, then this solution is unique.

Example

 $X_i := \{\text{all strings that reaching a final state from } X_i\}$

We can write the following linear equations:

(1)
$$X_1 = aX_2 + bX_3$$

(2)
$$X_2 = aX_1 + bX_2 + \varepsilon$$
 (where ε is the empty string)

$$(3) X3 = bX_1 + aX_2 + \varepsilon$$

From (1)+(2) we have

$$X_2 = a(aX_2 + bX_3) + bX_2 + \varepsilon = (aa + b)X_2 + abX_3 + \varepsilon$$

By Arden's Rule, we have

$$X_2 = (aa + b)*(abX_3 + \varepsilon) = (aa + b)*abX_3 + (aa + b)*$$

Can you continue and get the final answer?

Pumping lemma for regular languages

- Is {0ⁿ1ⁿ: n≥0} regular?
 How can we prove a language non-regular?
- Theorem: (Pumping Lemma)

 If A is a regular language, then there is a number \mathcal{P} (the pumping length) where, if s is any string in A of length $\geq \mathcal{P}$, then s may be divided into 3 pieces, s=x,yz, satisfying the following conditions:
 - for each i ≥ 0, $\chi \gamma^i z \in A$
 - -|y|>0
 - $-|\chi y| \leq \mathcal{P}$

proof

- $M=(Q,\Sigma,\delta,q_1,F)$: a DFA recognizing A
- $-\mathcal{P}=|Q|$: number of state of M
- $s = s_1 s_2 \dots s_n \in A$, $n \ge P$
- $r_1, r_2, ..., r_{n+1}$: the seq. of states M enters while processing
- $\mathbf{r}_{i+1} = \delta(\mathbf{r}_i, s_i)$ for $1 \le i \le \mathbf{n}$. By pigeonhole principle, there must be 2 identical states, say $\mathbf{r}_j = \mathbf{r}_\ell$, $\chi = s_1 \dots s_{j-1}$, $y = s_j \dots s_{\ell-1}$, $z = s_\ell \dots s_n$
- χ takes M from $\mathbf{r_1}$ to $\mathbf{r_j}$, y takes M from $\mathbf{r_j}$ to $\mathbf{r_j}$, and z takes M from $\mathbf{r_j}$ to $\mathbf{r_{n+1}}$

M must accept $\chi y^i z$ for $i \ge 0$

$$\therefore j \neq \ell, |y| = |s_j \dots s_{\ell-1}| > 0, \quad \ell \leq \mathcal{P} + 1, \text{ so } |xy| \leq \mathcal{P}$$

- B={0ⁿ1ⁿ: n≥0} is not regular proof:
 - Suppose B is regular
 - Let P be the pumping length
 - Choose $s = 0^{\mathcal{P}}1^{\mathcal{P}} = 0...01...1 \in B$
 - Let $s = \chi yz$, By pumping lemma, for any $i \ge 0$ $\chi y^i z \in B$. But
 - 0. 01...1: γ has 0 only $\Rightarrow \rightarrow \leftarrow$
 - 0...01 1: γ has 1 only $\Rightarrow \rightarrow \leftarrow$

• $C=\{w\mid w \text{ has an equal number of 0's and 1's}\}$ is not regular.

proof: (By pumping lemma)

- Let \mathcal{P} be the pumping length, Suppose C is regular.
- Let $s = 0^{\mathcal{P}}1^{\mathcal{P}} \in \mathbb{C}$, By pumping lemma, s can be split into 3 pieces, $s = \chi yz$, and $\chi y^i z \in \mathbb{C}$ for any $i \ge 0$
- By condition 3 in the lemma: $|\chi y| \le P$ Thus y must have only 0s. Then $\chi yyz \notin C$

proof: (Not by pumping lemma)

- Suppose C is regular
- It is clear that 0*1* is regualr
- Then C∩0*1*= $\{0^n1^n : n \ge 0\}$ is regular

 $\rightarrow \leftarrow$

• F={ $ww \mid w \in \{0,1\}^*$ } is non-regular. proof:

- Suppose F is regular.
- Let \mathcal{P} be the pumping length given by the pumping lemma
- Let $s = 0^{\mathcal{P}} 10^{\mathcal{P}} 1 \in F$
- Split s into 3 pieces, $s = \chi yz$
- By condition 3 in the lemma: $|\chi y| \le P$ Thus y must have 0 only.

$$\Rightarrow \chi yyz \notin F \quad 0...010...01 \quad \rightarrow \leftarrow$$

- E= $\{0^i1^j: i>j\}$ is non-regular. proof:
 - Assume E is regular.
 - Let \mathcal{P} be the pumping length.
 - Let $s = 0^{P+1}1^{P}$ ∈ E.
 - Split *s* into 3 pieces, $s = \chi yz$
 - By pumping lemma: $\chi y^i z \in E$ for any $i \ge 0$ |y| > 0, y have 0 only. $\chi z \in E$. But χz has $\#(0) \le \#(1)$

• D= $\{1^{n^2}: n \ge 0\}$ is not regular. proof:

- Assume D is regular.
- Let \mathcal{P} be the pumping length.
- Let s = 1^{Q2}∈D
- Split s into 3 pieces, $s = \chi yz \Rightarrow \chi y^i z \in D$, $i \ge 0$
- Consider $\chi y^i z \in D$ and $\chi y^{i+1} z \in D$ $\Rightarrow |\chi y^i z|$ and $|\chi y^{i+1} z|$ are perfect square for any $i \ge 0$
- If m=n², (n+1)² n² = 2n+1 = $2\sqrt{m}$ +1

- Let
$$m = |xy^iz|$$

- $|y| \le |s| = \mathcal{P}^2$
- Let $i = \mathcal{P}^4$
 $|y| = |xy^{i+1}z| - |xy^iz|$
 $\le \mathcal{P}^2 = (\mathcal{P}^4)^{1/2}$
 $< 2(\mathcal{P}^4)^{1/2} + 1$
 $\le 2(|xy^iz|)^{1/2} + 1$
 $= 2\sqrt{m} + 1$
 $\rightarrow \leftarrow$