

Penyelesaian Persamaan Non Linear Metode Tabel

Workshop Metode Numerik Ahmad Zainudin, S.ST 2014

Penyelesaian Persamaan Non Linear

Penyelesaian persamaan non linear

Penyelesaian Persamaan Non Linear

• Persamaan non linear mx + c = 0Dapat diselesaikan dengan :

$$mx + c = 0$$
$$x = -\frac{c}{m}$$

• Penyelesaian persamaan kuadrat $ax^2 + bx + c = 0$ Dapat diselesaikan dengan rumus ABC

$$x_{12} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

• Bagaimana untuk menyelesaikan persamaan x-exp(-x)=0?

Penyelesaian Persamaan Non Linear

Metode Tertutup

- Mencari akar pada range [a,b] tertentu
- Dalam range [a,b] dipastikan terdapat satu akar
- Hasilnya selalu konvergen → disebut juga metode konvergen

Metode Terbuka

- Diperlukan tebakan awal
- x_n dipakai untuk menghitung x_{n+1}
- Hasil dapat konvergen atau divergen

Metode Tertutup

- Metode Tabel
- Metode Biseksi
- Metode Regula Falsi

Metode Terbuka

- Metode Iterasi Sederhana
- Metode Newton-Raphson
- Metode Secant

Konsep Metode Tabel

- Suatu range x=[a,b] mempunyai akar bila f(a) dan f(b) berlawanan tanda atau memenuhi f(a).f(b)<0
- Theorema di atas dapat dijelaskan dengan grafik-grafik sebagai berikut :

Konsep Metode Tabel

- Metode Table atau pembagian area.
- Dimana untuk x di antara a dan b dibagi sebanyak N bagian dan pada masing-masing bagian dihitung nilai f(x) sehingga diperoleh tabel :

X	f(x)
$x_0 = a$	f(a)
\mathbf{x}_{1}	$f(x_1)$
x_{2}	$f(x_2)$
X ₃	$f(x_3)$
•••••	•••••
x _n =b	f(b)

Algoritma Metode Tabel

- (1) Defisikan fungsi f(x)
- (2) Tentukan range untuk x yang berupa batas bawah x_{bawah} dan batas atas x_{atas} .
- (3) Tentukan jumlah pembagian N
- (4) Hitung step pembagi h

$$H = \frac{x_{atas} - x_{bawah}}{N}$$

(5) Untuk i = 0 s/d N, hitung

$$x_i = x_{bawah} + i.h$$

$$y_i = f(x_i)$$

- (6) Untuk I = 0 s/d N dicari k dimana
 - *. Bila $f(x_k) = 0$ maka x_k adalah penyelesaian
 - *. Bila $f(x_k).f(x_{k+1}) \le 0$ maka :
 - Bila $|f(x_k)| \le |f(x_{k+1})|$ maka x_k adalah penyelesaian
 - Bila tidak x_{k+1} adalah penyelesaian atau dapat dikatakan penyelesaian berada di antara x_k dan x_{k+1} .

Contoh Permasalahan

- Selesaikan persamaan : $x+e^x = 0$ dengan range x = [-1,0]
- Untuk mendapatkan penyelesaian dari persamaan di atas range x = [-1,0] dibagi menjadi 10 bagian sehingga diperoleh :

-1,0	-0,63212	
-0,9	-0,9 -0,49343	
-0,8	-0,35067	
-0,7	-0,20341	
-0,6	-0,05119	
-0,5	0,10653	
-0,4	0,27032	
-0,3	0,44082	
-0,2	0,61873	
-0,1	0,80484	
0,0	1,00000	

f(x)

X

		Numerik\Program>table	-0,5	
Tentukan Batas Bad Tentukan Batas Ata	-0,4			
Tentukan Jumlah I	terasi : 10		0)1	
No x	f(x)	Error	0.2	
1 -1.000000	-0.632121	0.632121	-0,3	
2 -0.900000	-0.493430	0.493430		
3 -0.800000	-0.350671	0.350671	-0,2	
4 -0.700000	-0.203415	0.203415	0,2	
5 -0.600000	-0.051188	0.051188	0.1	
6 -0.500000	0.106531	0.106531	-0,1	
7 -0.400000	0.270320	0.270320		
8 -0.300000	0.440818	0.440818	0,0	
9 -0.200000	0.618731	0.618731	0,0	
10 -0.100000	0.804837	0.804837		
Titik_potong_sumb	u—x mendekati nilai	x = -0.600000 dengan	$f \times = -0.051188 \text{ dan}$	err

Contoh Permasalahan (Dilihat dari Kurva)

• Selesaikan persamaan : $x+e^x = 0$ dengan range x = [-1,0]

Contoh Permasalahan

- Dari tabel diperoleh penyelesaian berada di antara –0,6 dan –0,5 dengan nilai f(x) masing-masing -0,0512 dan 0,1065, sehingga dapat diambil keputusan penyelesaiannya di x=-0,6.
- Bila pada range x = [-0.6, -0.5]dibagi 10 maka diperoleh f(x) terdekat dengan nol pada x = -0.57 dengan F(x) = 0.00447

```
I:\Bahan A.jar\Metode Numerik\Metode Numerik\Program>table
Tentukan Batas Bawah : -0.6
Tentukan Batas Atas : -0.5
Tentukan Jumlah Iterasi : 10
                                          Error
        -0.600000
                         -0.051188
                                          0.051188
                         -0.035673
        -0.590000
                                         0.035673
        -0.580000
                         -0.020102
                                         0.020102
        -0.570000
                         -0.004475
                                         0.004475
        -0.560000
                         0.026950
                                         0.026950
                                         0.042748
        -0.540000
                         0.042748
        -0.530000
                         0.058605
                                         0.058605
                         0.074521
                         0.090496
                                         0.090496
Titik potong sumbu-x mendekati nilai x = -0.570000 dengan fx = -0.004475 dan err
or = 0.004475
```

Contoh Permasalahan (Dilihat dari Kurva)

• Selesaikan persamaan : $x+e^x = 0$ dengan range x = [-0.6,-0.5]

Kelemahan Metode Tabel

- Metode table ini secara umum sulit mendapatkan penyelesaian dengan error yang kecil, karena itu metode ini tidak digunakan dalam penyelesaian persamaan non linier
- Tetapi metode ini digunakan sebagai taksiran awal mengetahui area penyelesaian yang benar sebelum menggunakan metode yang lebih baik dalam menentukan penyelesaian.

Program Metode Tabel (Menggambar Kurva)

Menampilkan Kurva f(x)=exp(-x)-x, Misalkan nilai awal batas bawah dan batas atas ditentukan [-1,1]

Berdasarkan kurva di atas persamaan $f(x)=\exp(-x)-x$ terdapat titik potong antara nilai x=0 dan x=1

Program Metode Tabel (Menggambar Kurva)

Berdasarkan nilai awal batas bawah dan batas atas sebelumnya dapat digambarkan kurva f(x)=exp(-x)-x dengan range [0,1]


```
#!/usr/bin/python
import numpy as np
import math
import matplotlib.pyplot as plt
fig = plt.figure()
x = np.linspace(0, 1)
y = np.exp(-x)-x
line, = plt.plot(x, y, linewidth=2)
plt.xlabel('x')
plt.ylabel('y=exp(-x)-x')
plt.grid()
plt.show()
```

Program Metode Tabel

Mendefinisikan fungsi f(x)

float fx(float x){
float y;
 y=exp(-x)-x;
return y;

Jangan lupa mendefinisikan library yang digunakan

```
#include <stdio.h>
#include <math.h>
```


Karena digunakan operasi aritmatika

Menentukan batas bawah, batas atas dan jumlah iterasi

```
printf("Tentukan Batas Bawah : ");
scanf("%f",&x_bawah);
printf("Tentukan Batas Atas : ");
scanf("%f",&x_atas);
printf("Tentukan Jumlah Iterasi : ");
scanf("%f",&N);
```

Hitung step pembagi h

$$H = \frac{x_{atas} - x_{bawah}}{N}$$

Program Metode Tabel

```
Untuk i = 0 s/d N, hitung
                                        Membuat judul tabel
                                        printf("No\tx\t\tf(x)\t\tError\n");
   x_i = x_{bawah} + i.h
   y_i = f(x_i)
                                                                          Untuk menampilkan
  for(i=0; i< N; i++){}
                                                                          hasil
    x=x_bawah+i*h;
    y=fx(x);
    printf("%d\t%f\t%f\n",i+1,x,y,fabs(y));
  I:\Bahan Ajar\Metode Numerik\Metode Numerik\Program>table
  Tentukan Batas Bawah : -1
  Tentukan Batas Atas : 0
  Tentukan Jumlah Iterasi : 10
                           f(x)
                                           Error
                           -0.632121
          -1.000000
                                           0.632121
           -0.900000
                           -0.493430
                                           0.493430
           -0.800000
                           -0.350671
                                           0.350671
          -0.700000
                           -0.203415
                                           0.203415
           -0.600000
                           -0.051188
                                           0.051188
          -0.500000
                           0.106531
                                           0.106531
                                           0.270320
           -0.400000
                           0.270320
           -0.300000
                           0.440818
                                           0.440818
          -0.200000
                           0.618731
                                           0.618731
          -0.100000
                           0.804837
                                           0.804837
  Titik potong sumbu-x mendekati nilai x = -0.600000 dengan fx = -0.051188 dan err
  br = 0.051188
```

Program Metode Tabel

Untuk I = 0 s/d N dicari k dimana

- *. Bila $f(x_k) = 0$ maka x_k adalah penyelesaian
- *. Bila $f(x_k).f(x_{k+1}) < 0$ maka :
 - Bila $|f(x_k)| < |f(x_{k+1})|$ maka x_k adalah penyelesaian
 - Bila tidak x_{k+1} adalah penyelesaian atau dapat dikatakan penyelesaian berada di antara x_k dan x_{k+1} .

```
for(i=0;i<N;i++){
    x=x_bawah+i*h;
    x2=x_bawah+(i+1)*h;
if(fx(x)==0)
    printf("Titik potong sumbu-x saat nilai x = %f\n",x);
else if(fx(x)*fx(x2)<0){
        if(fabs(fx(x)) < fabs(fx(x2))){
            printf("Titik potong sumbu-x mendekati nilai x = %f dengan fx = %f dan error = %f\n",x,fx(x),fabs(fx(x)));
        }
        else
            printf("Titik potong sumbu-x mendekati nilai x = %f dengan fx = %f dan error = %f\n",x,fx(x),fabs(fx(x2)));
        }
        else
            printf("Titik potong sumbu-x mendekati nilai x = %f dengan fx = %f dan error = %f\n",x2,fx(x2),fabs(fx(x2)));
    }
}</pre>
```

Tugas Workshop

 Pengubahan nilai awal batas bawah (a) dan batas atas (b) terhadap 20 iterasi (N)

Batas bawah (a)	Batas atas (b)	Nilai Error (f(x)=e)
0	1	
0.25	0.75	
0.5	0.75	
0.5	0.6	

Lengkapi juga dengan gambar kurva untuk masing-masing range

Tugas Laporan Resmi

Toleransi error terhadap jumlah iterasi (N)

Toleransi error (e)	Jumlah iterasi (N)
0.1	
0.01	
0.001	
0.0001	