TP555 - AI/ML

Prova (1S2020)

Orientações

 Crie um notebook do Jupyter diferente para cada um dos exercícios, mesmo para os teóricos. Para os exercícios teóricos ou mesmo exercícios que requerem respostas textuais, crie um nova célula e mude o tipo da célula para "Markdown" conforme mostrado na figura.

- Desenhos podem ser feitos à mão ou qualquer outro SW de sua preferência. Colocar na pasta **prova** uma figura ou pdf do desenho.
- Crie uma pasta chamada **prova** no seu repositório e coloque todos os notebooks lá.
- A prova deve ser resolvida individualmente.
- Todas as questões tem o mesmo peso.
- A interpretação faz parte da prova.
- Boa sorte!

Questões

- 1) Exercício sobre regressão polinomial: Neste exercício, você irá deve descobrir qual o polinômio que melhor aproxima um conjunto de pontos ruidosos. Utilize o arquivo poly reg p.csv onde a primeira coluna contém os valores de x e a segunda de y. O arquivo contém a versão ruidosa da função original, ou seja o modelo gerador ao qual ruído é adicionado. Em seguida
 - A. Apresente o gráfico de x versus y, mostrando os **pontos** amostrados do modelo gerador.
 - B. Encontre uma aproximação polinomial que represente bem os dados do arquivo. Para encontrar a melhor aproximação, utilize os seguintes métodos: validação cruzada holdout (com 70% do conjunto original para treinamento e 30% para validação), validação cruzada k-fold (com k=10 folds), validação cruzada leave-p-out (com p=1). Plote a curva do erro quadrático médio versus ordem do polinômio para cada um dos métodos de validação cruzada. (Dica: Analise polinômios com ordem variando de 1 até 20.)

- (**Dica**: Observe que para os métodos do k-fold e leave-p-out você vai plotar um gráfico com a *curva da média erro quadrático médio versus ordem do polinômio*).
- C. Plote as curvas de aprendizado (i.e., erro quadrático médio para os conjuntos de treinamento e de validação versus a variação do tamanho do conjunto de treinamento) para as ordens de polinômio que melhor aproximam o modelo gerador, inclua também entre as ordens que melhor aproximam o modelo gerador as ordens 1, 2 e 20. O que você pode concluir após analisar estes resultados?
 - (**Dica**: Não se esqueça de dividir o conjunto em conjuntos de treinamento e validação. Use uma proporção de 70%/30% para a divisão do conjunto.)
- D. Em seguida, de posse da melhor ordem de polinômio que aproxima os dados do modelo gerador, treine o modelo com todos os dados do arquivo. Utilize padronização de atributos com a classe StandardScaler da biblioteca SciKit-Learn.
- E. Plote um gráfico que mostre os pontos ruidosos do arquivo **poly_reg_p.csv** e os valores encontrados com o modelo para os valores de x vindos do arquivo csv, ou seja, use o modelo para "prever" os valores de y com os valores de x vindos do arquivo.
- 2) Exercício sobre classificação de bayes: Usando a teoria Bayesiana de decisão e os dados de treinamento abaixo, encontre a probabilidade de uma pessoa com os seguintes atributos: idade <= 30, renda = Média, estudante = Sim e classificação de crédito = boa, comprar ou não um personal computer (PC). Baseado nas probabilidades encontradas, esta pessoa compraria ou não o PC? Apresente todos os cálculos necessários para se calcular as probabilidades.</p>

Exemplo	Idade	Renda	Estudante	Classificação de crédito	Classificação: Compra o PC?
1	<= 30	Alta	Não	Boa	Não
2	<= 30	Alta	Não	Excelente	Não
3	31 a 40	Alta	Não	Boa	Sim
4	> 40	Média	Não	Boa	Sim
5	> 40	Baixa	Sim	Boa	Sim
6	> 40	Baixa	Sim	Excelente	Não
7	31 a 40	Baixa	Sim	Excelente	Sim
8	<= 30	Média	Não	Boa	Não
9	<= 30	Baixa	Sim	Boa	Sim
10	> 40	Média	Sim	Boa	Sim
11	<= 30	Média	Sim	Excelente	Sim
12	31 a 40	Média	Não	Excelente	Sim

13	31 a 40	Alta	Sim	Boa	Sim
14	> 40	Média	Não	Excelente	Não

3) Exercício sobre regressão logística: Utilizando a seguinte função hipótese $h_a(x) = f(a_0 + a_1x_1 + a_2x_2)$, onde f(.) é a função de limiar sigmóide (ou logística), e o algoritmo do **gradiente descendente em batelada com early-stopping** que você implementou para a lista #5, treine um classificador de regressão logística para classificar os dados gerados através da execução do código abaixo.

```
# Import all necessary libraries.
import numpy as np
from sklearn.model_selection import train_test_split

# Create the dataset.
X = np.random.randn(1000, 2)
y = np.array(np.logical_xor(x[:, 0] > 0, x[:, 1] > 0), dtype=int)

# Split array into random train and test subsets.
x_train, x_test, y_train, y_test = train_test_split(X, y, random_state=42)
```

Em seguida, faça o seguinte

- a. Plote um gráfico mostrando as diferentes classes.
- b. Analisando o gráfico do item (a), que tipo de fronteira de decisão seria necessária para separar essas classes (linear ou não-linear)?
- c. Plote um gráfico com número de épocas versus os erros de treinamento e validação.
- d. Plote a matriz de confusão.
- e. Plote uma figura com as fronteiras de decisão para a função hipótese do enunciado.
- f. Plote o gráfico com a curva característica de operação do receptor (ROC).
- g. Imprima as *métricas de classificação* utilizando a função *classification_report*.
- h. Encontre uma função hipótese que melhor separe os dados do exercício.
- i. Repita os itens (c) até (g), agora com a **função hipótese** que você encontrou no item (h).
- j. Qual a diferença na performance do classificador entre as duas funções hipóteses? (Dica: qual das 2 hipóteses confere ao classificador maior precisão de classificação?)

(**Dica**: utilize como base o notebook ClassificationOfTwoLinearlySeparableClasses.ipynb, nele você vai encontrar a implementação do algoritmo do *gradiente descendente em batelada com early-stopping*).

(Dica: não se esqueça de encontrar o melhor valor para o passo de aprendizagem).

4) Exercício sobre k-NN: Detecção 16QAM com k-NN. Neste exercício você irá utilizar o classificador k-NN, para realizar a detecção de símbolos 16QAM. Os símbolos 16QAM são dados pelo trecho de código abaixo. O trecho de código também apresenta uma função que deve ser utilizada para modular os bits em símbolos 16QAM.

```
mapping_table = [-3-3j, -3-1j, -3+3j, -3+1j, -1-3j, -1-1j, -1+3j, -1+1j, 3-3j, 3-1j, 3+3j, 3+1j, 1-3j,
1-1j, 1+3j, 1+1j]

def mod(bits):
    symbols = np.zeros((len(bits),),dtype=complex)
    for i in range(0,len(bits)): symbols[i] = mapping_table[bits[i]]/np.sqrt(10)
    return symbols
```

Um exemplo de código para gerar símbolos 16QAM é dado à seguir

```
# Generate N 4-bit symbols.
bits = np.random.randint(0,16,N)
```

Modulate the binary stream into 16QAM symbols. symbols = mod(bits)

O resultado do seu classificador (neste caso, um detector) deve ser comparado com a curva da taxa de erro de símbolo (SER) teórica do 16QAM, a qual é dada por

SER =
$$2\left(1 - \frac{1}{\sqrt{M}}\right) erfc\left(k\sqrt{\frac{Es}{N0}}\right) - \left(1 - \frac{2}{\sqrt{M}} + \frac{1}{M}\right) erfc\left(k\sqrt{\frac{Es}{N0}}\right)^2$$
,

onde M é a ordem da modulação, i.e., 16, e $k = \sqrt{\frac{3}{2(M-1)}}$ é o fator de normalização da energia dos símbolos. Utilizando a classe *KNeighborsClassifier* do módulo *neighbors* da biblioteca *sklearn*, faça o seguinte

- A. Construa um classificador, utilizando o classificador k-NN, para realizar a detecção dos símbolos 16QAM.
 - a. Gere N = 100000 símbolos 16QAM aleatórios.
 - b. Passe os símbolos através de um canal AWGN.
 - c. Detecte a probabilidade de erro de símbolo para cada um dos valores do vetor Es/N0 = [0, 2, 4, 6, 8, 10,12, 14, 16, 18, 20].
- B. Apresente um gráfico comparando a SER simulada e a SER teórica versus os valores de Es/N0 definidos acima.
- C. Podemos dizer que a curva simulada se aproxima da curva teórica da SER? (Dica: A função erfc pode ser importada da seguinte forma: from scipy.special import erfc).

(**Dica**: Uma rápida revisão sobre a taxa de erro de símbolo para modulações M-QAM pode ser encontrada no link:

http://www.dsplog.com/2012/01/01/symbol-error-rate-16gam-64gam-256gam/).

5) (Opcional) Exercício sobre árvores de decisão utilizando a métrica ID3: Neste exercício você criar uma árvore de decisões para prever se o senhor Jair pagará o empréstimo que ele está solicitando junto à um banco para montar uma indústria

farmacêutica especializada na produção de hidroxicloroquina. Jair possui os seguintes atributos: **Possui casa própria? Não - Estado civil: Casado - Experiência de trabalho: 3**. Portanto, dado estes três atributos sobre o senhor Jair, e a árvore montada acima, deve-se emprestar ou não o dinheiro a ele?

OBS.: Todos os atributos são discretos, ou seja, assumem valores de um conjunto finito de valores. Por exemplo, o atributo experiência de trabalho assume apenas os seguintes valores: 0, 1, 2, 3, 4 e 5.

Possui casa própria?	Estado civil	Experiência de trabalho (0-5)	Pagou?
Sim	Solteiro	3	Sim
Não	Casado	4	Sim
Não	Solteiro	5	Sim
Sim	Casado	4	Sim
Não	Divorciado	2	Não
Não	Casado	4	Sim
Sim	Divorciado	2	Sim
Não	Casado	3	Não
Não	Casado	4	Sim
Não	Casado	2	Não
Sim	Casado	2	Sim
Não	Solteiro	2	Sim
Não	Divorciado	3	Não
Não	Não Solteiro		Sim
Sim	Sim Divorciado		Sim
Sim	Sim Solteiro		Não
Sim	Sim Casado		Sim

6) Exercício sobre k-Means: Quantização de cores de uma imagem. Neste exercício, os pixels da imagem img2.jpg são representados em um espaço 3D e o k-Means será usado para reduzir o número de cores necessárias para mostrar a imagem. Na literatura de processamento de imagens, o *codebook* obtido pelo k-Means (i.e., os centros dos clusters) é chamado de paleta de cores. Usando um único byte, é possível endereçar até 256 cores, enquanto uma codificação RGB requer 3 bytes por pixel, o que dá um total de 256*256*256 =.16777216 cores, ou seja, mais de 16 milhões de cores diferentes. Uma cor em codificação RGB geralmente é codificada como uma tupla de 3 elementos com 8 bits cada, portanto, cada dimensão assume um valor dentro do

intervalo [0, 255], em que 0 representa a ausência de cor, enquanto 255 representa a presença total da cor.

A quantização de cores encontra um pequeno número de cores representativas em uma determinada imagem. Cada pixel produz um padrão tridimensional no espaço de cores RGB. Usando *k-Means*, podemos agrupar todos os pixels de uma imagem em k clusters e atribuir a cada pixel da imagem original a cor representada pelo centro do cluster mais próximo. Assim, uma imagem contendo milhões de cores pode ser compactada em uma imagem contendo k cores diferentes. Após ler as referências abaixo, faça o seguinte

- A. Carregue a imagem img2.jpg e verifique as dimensões da array carregada.
- B. Exiba a imagem original em seu notebook.
- C. Torne os dados da imagem, i.e., a array carregada no item (A), em uma array 2D.
- D. Treine 4 clusterizadores k-Means para 2, 4, 8 e 16 cores, respectivamente, ou seja, 2, 4, 8 e 16 clusters. Treine cada clusterizador com apenas 1000 elementos tomados aleatoriamente da imagem original, ou seja, uma array com 1000 x 2 elementos.
- E. Faça a predição com a array 2D contendo a imagem original para cada um dos clusterizadores k-Means.
- F. Para cada um dos 4 clusterizadores treinados, atribua a cada pixel da imagem original o valor do centroide do cluster mais próximo.
- G. Visualize a imagem quantizada para cada um dos 4 clusterizadores, conforme mostrado na figura abaixo.

H. Se cada uma das 3 cores do RGB é representada por 1 byte (i.e., 8 bits) qual o tamanho aproximado da imagem original e de cada uma das 4 imagens quantizadas?

Referências

[1] https://lmcaraig.com/color-quantization-using-k-means

[2]

https://github.com/adityaguptai/Color-Quantization-using-K-Means/blob/master/Color%20Quantization%20Using%20K-Means.ipynb

[3]

https://scikit-learn.org/stable/auto_examples/cluster/plot_color_quantization.html#sphx-glr-auto-examples-cluster-plot-color-quantization-py

- [4] https://en.wikipedia.org/wiki/Color quantization
- [5] https://www.idtools.com.au/segmentation-k-means-python/

7) Exercício sobre multi-layer perceptrons: Neste exercício você irá realizar a classificação da função lógica XOR com uma rede multi-layer perceptron (MLP). A tabela verdade e o gráfico com as classes dos elementos da tabela são mostrados abaixo. Como você deve se lembrar das listas de exercício, classificadores lineares, entre eles o perceptron, não conseguem separar classes que não são linearmente separáveis, ou seja, no caso abaixo, uma linha reta não conseguiria criar regiões que classifiquem os elementos corretamente.

Após ler a referência abaixo, faça o seguinte

- A. Treine um *classificador* utilizando um *conjunto de perceptrons* que separe (classifique) os dados da tabela acima com precisão de 100%. **Use o menor número possível de perceptrons** (ou seja, de nós/neurônios) para implementar tal classificador com precisão de 100%.
 - (**Dica**: Você pode utilizar uma das classes de multilayer perceptron disponibilizadas pela biblioteca SciKit-Learn.)
- B. Plote uma figura mostrando as fronteiras de decisão.
- C. Plote a matriz de confusão.
- D. Plote a curva ROC.
- E. Baseado na curva ROC, qual a área sob a curva?

Referências

[1]

https://medium.com/@jayeshbahire/the-xor-problem-in-neural-networks-50006411840b [2] http://home.agh.edu.pl/~vlsi/Al/xor_t/en/main.htm

8) Exercício sobre multi layer perceptrons com TensorFlow: Utilizando o TensorFlow, implemente um Multi Layer Perceptron (MLP) com 3 unidades (i.e., perceptrons), mostrada na figura abaixo, que classifique a função lógica XOR.

Se nós imaginarmos este classificador MLP da figura em forma matricial, então nós temos a seguinte equação:

$$y = f(f(W*X + B)*w + b3),$$

onde:

- X é o vetor de entrada com dimensão 2x1.
- W é uma matriz de coeficientes para a primeira camada da MLP, com dimensão 2x2.
- B é um vetor de bias para a primeira camada, com dimensão 2x1.
- w é um vetor de coeficientes para a segunda camada da MLP, com dimensão 2x1.
- b3 é um escalar de bias para a segunda camada, com dimensão, 1x1.
- y é o valor de saída da MLP.
- f(.) é a função de ativação sigmóide.

Use 40000 épocas e imprima o erro a cada 100 épocas, em seguida, faça o seguinte:

- a) Crie um grafo utilizando o GradientDescentOptimizer
 (Dica: verifique a documentação deste otimizador no seguinte link: https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/GradientDescentO ptimizer)
- b) Treine o modelo.
- c) Crie um segundo grafo utilizando o **AdamOptimizer**. Não se esqueça de resetar o grafo com *tf.reset_default_graph()*.

(**Dica**: verifique a documentação deste otimizador no seguinte link: https://www.tensorflow.org/api docs/python/tf/compat/v1/train/AdamOptimizer)

- d) Treine o modelo.
- e) Qual dos 2 otimizadores tem melhor performance?