Continuando, se tiene $\mathbf{v'}_3 = \mathbf{v}_3 - (\mathbf{v}_3 \cdot \mathbf{u}_1)\mathbf{u}_1 - (\mathbf{v}_3 \cdot \mathbf{u}_2)\mathbf{u}_2$

$$= \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} - \frac{1}{\sqrt{6}} \begin{pmatrix} \frac{-1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{pmatrix} - \begin{pmatrix} -\frac{1}{6} \\ \frac{1}{6} \\ \frac{2}{6} \end{pmatrix} = \begin{pmatrix} \frac{2}{3} \\ -\frac{2}{3} \\ \frac{2}{3} \end{pmatrix}$$

Por último,
$$|\mathbf{v'}_3| = \sqrt{\frac{12}{9}} = \frac{2}{\sqrt{3}}$$
, de manera que $\mathbf{u}_3 = \frac{\sqrt{3}}{2} \begin{pmatrix} \frac{2}{3} \\ -\frac{2}{3} \\ \frac{2}{3} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}$. Así, una base orto-

normal en
$$\mathbb{R}^3$$
 es $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$, $\begin{pmatrix} -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{pmatrix}$, $\begin{pmatrix} \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}$. Este resultado debe verificarse.

EJEMPLO 6.1.5 Una base ortonormal para un subespacio de \mathbb{R}^3

Encuentre una base ortonormal para el conjunto de vectores en \mathbb{R}^3 que está sobre el plano

$$\pi \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : 2x - y + 3z = 0 \right\}.$$

SOLUCIÓN > Como se vio en el ejemplo 5.6.3, una base para este subespacio de dos dimen-

siones es
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$
 y $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$. Entonces $|\mathbf{v}_1| = \sqrt{5}$ y $\mathbf{u}_1 = \frac{\mathbf{v}_1}{|\mathbf{v}_1|} = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \\ 0 \end{pmatrix}$.

Continuando, se define

$$\mathbf{v'}_{2} = \mathbf{v}_{2} - (\mathbf{v}_{2} \cdot \mathbf{u}_{1})\mathbf{u}_{1}$$

$$= \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix} - \frac{6}{\sqrt{5}} \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix} - \begin{pmatrix} \frac{6}{5} \\ \frac{12}{5} \\ 0 \end{pmatrix} = \begin{pmatrix} -\frac{6}{5} \\ \frac{3}{5} \\ 1 \end{pmatrix}$$

Por último,
$$|\mathbf{v'}_2| = \sqrt{\frac{70}{25}} = \sqrt{\frac{70}{5}}$$
, de manera que $\mathbf{u}_2 = \frac{\mathbf{v}_2'}{|\mathbf{v}_2'|} = \frac{5}{\sqrt{70}} \begin{pmatrix} -\frac{6}{5} \\ \frac{3}{5} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{-6}{\sqrt{70}} \\ \frac{3}{\sqrt{70}} \\ \frac{5}{\sqrt{70}} \end{pmatrix}$.