Essentials of Analytical Geometry and Linear Algebra. Lecture 9.

Vladimir Ivanov

Innopolis University

November 6, 2020

Lecture 9. Outline

- Part 1. Quadratic curves
- Part 2. Ellipse
- Part 3. Hyperbola
- Part 4. Parabola

Curves

Part 1. Quadratic curves

In general any quadratic curve is a set of points satisfying the equation:

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

Without proof...

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

Any five (5) points on a plane uniquely define a quadratic curve.

Goals

- Understand similarities
- Understand differences
- Solve some basic problems

Part 2. Ellipse

Definition

Ellipse. Canonical equation of an ellipse

An ellipse is a plane curve, which is represented by the equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

in some Cartesian coordinate system.

Parametric form of the equation of an ellipse

Given
$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}$$

Parametric form of the equation of an ellipse

Given
$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}$$

and eliminating the parameter t, we get

$$\begin{cases} \frac{x^2}{a^2} = \cos^2 t \\ \frac{y^2}{b^2} = \sin^2 t \end{cases}$$

This gives you a nice way to plot a point M(x,y) on an ellipse.

Question

Is this an equation of an ellipse?

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

Question

Is this an equation of an ellipse?

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

Center of the ellipse is at $M(x_0, y_0)$.

Ellipse: foci, eccentricity and focal distances

Foci (aka focuses)

Given an ellipse with major axis 2a. Foci (plural from *focus*) are points $F_1(-c,0)$ and $F_2(c,0)$ that satisfy:

$$c^2 = a^2 - b^2$$

Eccentricity

Given an ellipse with major axis 2a and foci $F_1(-c,0)$, $F_2(c,0)$, the eccentricity of ellipse is denoted as ε : $\varepsilon=\frac{c}{a}$

Eccentricity

Given an ellipse with major axis 2a and foci $F_1(-c,0)$, $F_2(c,0)$, the eccentricity of ellipse is denoted as ε : $\varepsilon=\frac{c}{a}$

What is the range for eccentricity?

"Eccentric Ellipse"

Focal distances

Focal distances

Focal distances

Distance from a point M(x,y) on an ellipse to each of foci.

$$r_1 = a + x\varepsilon$$

$$r_2 = a - x\varepsilon$$

$$r_1 = \sqrt{(x+c)^2 + y^2}$$

$$r_1 = \sqrt{(x+c)^2 + y^2}$$

 $y^2 = (a^2 - x^2)\frac{b^2}{a^2}$

$$r_1=\sqrt{(x+c)^2+y^2}$$

$$y^2=(a^2-x^2)\frac{b^2}{a^2}$$

$$c=a\varepsilon; \text{ Note also: } b^2=a^2-c^2=a^2(1-\varepsilon^2)$$

$$\begin{split} r_1 &= \sqrt{(x+c)^2 + y^2} \\ y^2 &= (a^2 - x^2) \frac{b^2}{a^2} \\ c &= a\varepsilon; \text{Note also: } b^2 = a^2 - c^2 = a^2 (1 - \varepsilon^2) \\ y^2 &= (a^2 - x^2) \frac{b^2}{a^2} = a^2 - a^2 \varepsilon^2 - x^2 + x^2 \varepsilon^2 \end{split}$$

We need to show that $r_1 = a + x\varepsilon$.

$$\begin{split} r_1 &= \sqrt{(x+c)^2 + y^2} \\ y^2 &= (a^2 - x^2) \frac{b^2}{a^2} \\ c &= a\varepsilon; \text{ Note also: } b^2 = a^2 - c^2 = a^2(1-\varepsilon^2) \\ y^2 &= (a^2 - x^2) \frac{b^2}{a^2} = a^2 - a^2\varepsilon^2 - x^2 + x^2\varepsilon^2 \\ r_1^2 &= (x+c)^2 + y^2 = x^2 + 2xc + c^2 + a^2 - a^2\varepsilon^2 - x^2 + x^2\varepsilon^2 = (a+x\varepsilon)^2 \end{split}$$

Note, that $r_2 = a - x\varepsilon$ and hence $r_1 + r_2 = 2a$

Directrices

What are the equations of the directrices?

Why
$$\frac{r_1}{d_1}=\frac{r_2}{d_2}=arepsilon$$
?

$$\frac{r_1}{d_1} = \frac{r_2}{d_2} = \varepsilon$$

$$\frac{d_1}{d_2} \xrightarrow{y} \frac{d_2}{d_2}$$

$$x = -\frac{a}{\varepsilon}$$

$$x = \frac{a}{\varepsilon}$$

Why
$$\frac{r_1}{d_1} = \frac{r_2}{d_2} = \varepsilon$$
? $d_1 = \frac{a}{\varepsilon} + x = \frac{1}{\varepsilon}r_1$; $d_2 = \frac{a}{\varepsilon} - x = \frac{1}{\varepsilon}r_2$

Tangent lines

Example

Check whether this equation is an equation of ellipse?

$$2x^2 + 4x + 3y^2 - 12 = 1$$

Break, 5 min.

Interesting question to study:

Propose a formula for the length (perimeter) of an ellipse.

or

Write a program to calculate it.

Part 3. Hyperbola

Hyperbola

Definition. Canonical equation

A hyperbola is a plane curve, which can be represented in some Cartesian coordinate system by one of the below equations

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 or $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$

Hyperbola

Definition. Canonical equation

A hyperbola is a plane curve, which can be represented in some Cartesian coordinate system by one of the below equations

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 or $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$

Hyperbola

Definition. Canonical equation

A hyperbola is a plane curve, which can be represented in some Cartesian coordinate system by one of the below equations

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 or $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$

If a = b, then it is a equilateral hyperbola.

Question

Is this an equation of a hyperbola?

$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = \pm 1$$

Question

Is this an equation of a hyperbola?

$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = \pm 1$$

Center of the hyperbola is at $M(x_0, y_0)$.

Hyperbola: foci, eccentricity and focal distances

Foci (aka focuses)

Given a hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Foci are points $F_1(-c,0)$ and $F_2(c,0)$ that satisfy:

$$c^2 = a^2 + b^2$$

Eccentricity

Given
$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1.$$
 Eccentricity of the hyperbola ε :
$$\varepsilon=\frac{c}{a}$$
 Note, $\varepsilon>1$

Focal distances

Distance from a point M(x,y) on a hyperbola to each of foci.

$$r_1 = \pm (x\varepsilon + a)$$

$$r_2 = \pm (x\varepsilon - a)$$

Focal distances

Distance from a point M(x,y) on a hyperbola to each of foci.

$$r_1 = \pm (x\varepsilon + a)$$

$$r_2 = \pm (x\varepsilon - a)$$

For any point of hyperbola:

$$r_1 - r_2 = \pm 2a$$

$$r_1=\pm(x\varepsilon+a)$$

$$r_2=\pm(x\varepsilon-a)$$

$$r_1-r_2=\pm2a \text{ (or, just } |r_1-r_2|=2a)$$
 Why do we use \pm here?

Hint: we have 2 branches (for one x is positive for another one x < 0)

Assignment

Define foci, eccentricity and focal distances if a hyperbola has the equation:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$

Directrices

Directrices (plural from *directrix*) are two vertical lines $x=\pm\frac{a}{\varepsilon}$ $\frac{r_1}{d_1}=\frac{r_2}{d_2}=\varepsilon$

Directrix is not DirectX

Directrix a fixed line used in describing a curve or surface.

Thus, Ellipse, Hyperbola (and also a parabola) can be defined using a **directrix** and a **point**.

Assymptotes

Given a hyperbola
$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$

Two straight lines $y=\pm\frac{b}{a}x$ are the asymptotes of the hyperbola.

Use limits to prove it (as $x \to \pm \infty$).

Example

Reduce the equation

$$x^2 - 6x + y^2 + 8y = 0$$

to the canonical form

Part 4. Parabola

Parabola. Definitions

Parabola

 A parabola is the locus of points, which are equidistant from a given point F and line L.

Parabola. Definitions

Parabola

- A parabola is the locus of points, which are equidistant from a given point F and line L.
- The point F is called the focus.

Parabola. Definitions

Parabola

- A parabola is the locus of points, which are equidistant from a given point F
 and line L.
- The point F is called the focus.
- The line **L** is called the **directrix** of the parabola.

Sometimes, p is denoted as 2a.

Parabola. Canonical equation

$$d = r$$
,

Parabola. Canonical equation

$$d = r, x + \frac{p}{2} = \sqrt{(x - \frac{p}{2})^2 + y^2}$$

Parabola. Canonical equation

$$d = r, x + \frac{p}{2} = \sqrt{(x - \frac{p}{2})^2 + y^2} y^2 = 2px$$

Parabola. Other cases

Write the canonical equations.

Parabola. Eccentricity

Recall how we defined eccentricity for ellipse and hyperbola.

Parabola. Eccentricity

Recall how we defined eccentricity for ellipse and hyperbola.

What is the eccentricity of a parabola?

Parabola. Eccentricity

Recall how we defined eccentricity for ellipse and hyperbola.

What is the eccentricity of a parabola?

$$\varepsilon = \frac{r}{d} = 1$$

Reduce the equation

$$x^2 + 4x - 3y = -5$$

to the canonical form.

Interesting case 1

• $x^2 - y^2 = 0$ (a pair of intersecting lines)

Interesting case 2

•
$$2x^2 + 3y^2 = -1$$
 (an imaginary ellipse)

Summary

Summary.

Quadratic curves as sections of a circle cone

Degenerate conics

Relation to Quadratic forms and Matrices

Conic sections are the sets of points whose coordinates satisfy a second-degree polynomial equation (A, B, C, D, E, F) are numbers):

$$Q(x,y) = Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0.$$

Relation to Quadratic forms and Matrices

Conic sections are the sets of points whose coordinates satisfy a second-degree polynomial equation (A, B, C, D, E, F) are numbers):

$$Q(x,y) = Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0.$$

In matrix form (it is the **same** equation):

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} A & B/2 \\ B/2 & C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} D & E \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + F = 0.$$

Relation to Quadratic forms and Matrices

Conic sections are the sets of points whose coordinates satisfy a second-degree polynomial equation (A, B, C, D, E, F) are numbers):

$$Q(x,y) = Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0.$$

In matrix form (it is the **same** equation):

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} A & B/2 \\ B/2 & C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} D & E \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + F = 0.$$

This following expression is called the **quadratic form**: $Ax^2 + Bxy + Cy^2$.

Matrix of the quadratic form :
$$\begin{bmatrix} A & B/2 \\ B/2 & C \end{bmatrix}$$

Useful links

- https://www.geogebra.org
- https://youtu.be/fNk_zzaMoSs
- http://immersivemath.com/ila