4 ЛАБОРАТОРНАЯ РАБОТА №4

«МЕТОД АНАЛИЗА ИЕРАРХИЙ»

4.1 Цель работы

Углубление теоретических знаний в области системного анализа, приобретение навыков создания и описания иерархических структур, а также изучение понятий цель, критерий, альтернатива.

4.2 Вариант задания – **16** (**4**)

Требуется решить задачу методом анализа иерархий вручную, а затем написать программу, которая решает МАИ задачу любой размерности.

Фирме нужно купить оборудование для очистки воды помещений. Нужно выбрать из возможных альтернатив (табл. 4.1).

Таблица 4.1 – Критерии альтернатив для оборудования для очистки воды

Критерии	A	В	С
Стоимость	100	80	50
Степень очистки	98	95	90
Надежность	85	85	70
Производительность	0.2	0.1	0.05
Долговечность	4	5	5

4.3 Ход работы

4.3.1 Для начала с помощью метода анализа иерархий в ручную были проведены исследования в ходе которых было выявлено, что вариант "А" получает наивысший вес и следовательно является наиболее оптимальным. Все вычисления представлены на рисунках 4.1-4.6.

Рисунок 1.1 – Первая часть ручных вычислений

carbenu marpu	you nor	naprior.	qui	fre fre
POH9 3.				
сравнении вариантв	८ म्हास्या ३	рения сп	римости	
Стоимость	A	B	C	
1	1	100	100	
13	100	1	<u>80</u>	
0	50	50	1	
сравнении вариантов Степень, очистки	с төгни з _у	B	C	74
A	1	<u>38</u> 95	30	
B	<u>35</u> <u>38</u>	1	35	
C	30	30	1	
сравнения вариантов с	точки зрения	Hagemu	cru	E S S N
Hage KHOCTS	A	B	C	10 134
A	1	1	<u>85</u> 70	3 42
	1	1	85 70	
B			1 ,0	A CONTRACTOR OF THE PARTY OF TH

Рисунок 1.2 – Вторая часть ручных вычислений

MPORES SOUTE LINEAR TO	A	B	ypay88845Qub	eaci4		1-1	
1 pusign quonuno	1/		02		14		
A	1	0.2	0.05		3	144	
B	0.1	1	0.1		7	1	
C	0.05	0.05	1		J		
равноши вариантов с			ale rucery				
Donoseruan	A	B	C				
12	1	4/5	4 5				
B	5/4	1	1				
C	5	1	12	173		100	
ocurraeu be	nc to pa	M	upure	100:			
$W_{11} = \sqrt[3]{1 \cdot \frac{1}{8}}$ $W_{12} = \sqrt[3]{\frac{50}{100} \cdot 1}$ $W_{13} = \sqrt[3]{\frac{50}{100} \cdot \frac{51}{80}}$	80 50	= 3	1.28 = 1	, 086		5 Ac-	
W12 = 3 100 .1.	20 1 1,086 - 1,086 - 25 30	= $\frac{3}{2}\int_{0}^{2}$ = $\frac{3}{2}\int_{0}^{2}$ + 0,679 = $\frac{3}{2}$	1.28 = 1 3125 = 0 = 3, 122	2, 016 2, 679 2 = 1	,008	E Let	

Рисунок 1.3 – Третья часть ручных вычислений

$$W_{2} = 1,039 + 1,008 + 0,954 = 3,005$$

$$W_{31} = \sqrt[3]{1 \cdot 1 \cdot \frac{85}{70}} = \sqrt[3]{1,214} = 1,067$$

$$W_{32} = \sqrt[3]{1 \cdot 1 \cdot \frac{85}{70}} = \sqrt[3]{1,214} = 1,067$$

$$W_{33} = \sqrt[3]{\frac{20}{85} \cdot \frac{70}{85}} \cdot 1 = \sqrt[3]{\frac{9123}{1,644}} = 1,000,878$$

$$W_{4} = \sqrt[3]{1 \cdot \frac{92}{01} \cdot \frac{92}{005}} = \sqrt[3]{1 \cdot \frac{91}{01}} = \sqrt[3]{1 \cdot$$

Рисунок 1.4 – Четвертая часть ручных вычислений

Вори ант	CTOUM	10016	OTE	uaru	Hag	EXHOCA	производи-	DONZOM- HOCE	
A	1,357 3,122						2 3,5 = 0,571	13324 0,862	
B	1,086 3,122 = 0	1,348	1,008 = 3,001	0,336	3,314	= 0,322	13,5= 0,286	3,329 = 0,324	
C	9,679 3,122 = 0,		954 = 1001	0,318	3,314	= 0, 95 %	0,5 3,5 = 0,143	1,077 = 0,324 5,324 = 0,324	
0						,			
ber	popul	2	npu	pure	TOE	3 9	Teld-El-		
								Ha och	ude экспер cyclic
cos	alin	M	Thu	1111	un	anyl	eros.	wir a	gein
wis	COUM	MO	1) pu	gy	nu	ripin	of GOATHER	uu u	1
MTEU 1	Muse	ill	CUA	1702 1	uno	anus	etal.	3 × × 3 × 5	
0	Ju		Court	0	/ ,	/			
Obyle ygal		-			,	-			
wagee 1900	ici aperae	1	2	3	4	5	W. = 2	1.1.4.1.2 =	0 644
ab pygob	anulu							6 3	7011
ado pygon	anuu	1	1	6	7	2	W, = 5/1	1.1.5.1.1 =	1,820
стемых Стемых	анили В (1)	1	1	5	3	2	W2 = 21	1.1.51.1 =	1,820
СТЕМИСА СТЕМИКА СТЕМИКА ОТИСЯКИ	(2)	1	1	5	8	1 2 1	W2 = 5/1 W3 = 5/6	1.1.5.1.½ = 6.\$.1.6.¼ =	1,820 1,125
CADUMACI CTEMBRIS CTUCKEN Vagix HACTE	(2) (3)	1 6	1 15	5	8	1 2 1 4	W2 = 5/6 W3 = 5/6 W4 = 5/	$\frac{1.4.51 \cdot \frac{1}{2}}{5.\frac{1}{5} \cdot 1.6 \cdot \frac{1}{4}} = \frac{1}{3.\frac{1}{5} \cdot \frac{1}{5} \cdot 1.5} = \frac{1}{3.\frac{1}{5} \cdot 1.5}$	1,820 1,125 0,715
СТЕМИСА СТЕМИКА СТЕМИКА ОТИСЯКИ	(2) (3)	1 6 3	1 -15 -18	5 1 1 6	8 6 1	½ ¼ 3	W2 = 5/6 W3 = 5/6 W4 = 5/	1.1.5.1.½ = 6.\$.1.6.¼ =	1,820 1,125 0,715
CACUMACI CACUMACI CACUMACI CACUMACI ORUCINEU Nogologureu	(2) (3) (4)	1 6	1 15	5	8	1 2 1 4	W2 = 5/6 W3 = 5/6 W4 = 5/	$\frac{1.4.51 \cdot \frac{1}{2}}{5.\frac{1}{5} \cdot 1.6 \cdot \frac{1}{4}} = \frac{1}{3.\frac{1}{5} \cdot \frac{1}{5} \cdot 1.5} = \frac{1}{3.\frac{1}{5} \cdot 1.5}$	1,820 1,125 0,715
CADUMACI CTEMBRIS CTUCKEN Vagix HACTE	(2) (3) (4)	1 6 3	1 -15 -18	5 1 1 6	8 6 1	½ ¼ 3	W2 = 5/6 W3 = 5/6 W4 = 5/	$\frac{1.4.51 \cdot \frac{1}{2}}{5.\frac{1}{5} \cdot 1.6 \cdot \frac{1}{4}} = \frac{1}{3.\frac{1}{5} \cdot \frac{1}{5} \cdot 1.5} = \frac{1}{3.\frac{1}{5} \cdot 1.5}$	1,820 1,125 0,715
CACUMACI CACUMACI CACUMACI CACUMACI ORUCINEU Nogologureu	(2) (2) (3) (4) (4) (4)	1 6 3 ½	1 15 18 2	5 1 1 6 4	8 6 1 1	1 2 4 3 1	W ₂ = 50 W ₃ = 50 W ₄ = 5 W ₅ = 50	$\begin{array}{l} (4.58 \cdot \frac{1}{2}) = \\ 5 \cdot \frac{1}{5} \cdot 46 \cdot \frac{1}{4} = \\ 5 \cdot \frac{1}{5} \cdot 46 \cdot \frac{1}{4} = \\ \frac{1}{2} \cdot 24 \cdot \frac{1}{5} \cdot 1 = \\ \end{array}$	1,820 1,125 0,715
CACUMACI CACUMACI CACUMACI CACUMACI ORUCINEU Nogologureu	(2) (2) (3) (4) (4) (4)	1 6 3 ½	1 15 18 2	5 1 1 6 4	8 6 1 1	1 2 4 3 1	W2 = 5/6 W3 = 5/6 W4 = 5/	$\begin{array}{l} (4.58 \cdot \frac{1}{2}) = \\ 5 \cdot \frac{1}{5} \cdot 46 \cdot \frac{1}{4} = \\ 5 \cdot \frac{1}{5} \cdot 46 \cdot \frac{1}{4} = \\ \frac{1}{2} \cdot 24 \cdot \frac{1}{5} \cdot 1 = \\ \end{array}$	1,820 1,125 0,715
ого рэзоль Спинись стемой очиски Подежнист Попукрачен Донговочна	$W = \frac{1}{2}$	1 6 3 ½	1 15 18 2	5 1 1 6 4	8 6 1 1	1 2 4 3 1	W ₂ = 50 W ₃ = 50 W ₄ = 5 W ₅ = 50	$\begin{array}{l} (4.58 \cdot \frac{1}{2}) = \\ 5 \cdot \frac{1}{5} \cdot 46 \cdot \frac{1}{4} = \\ 5 \cdot \frac{1}{5} \cdot 46 \cdot \frac{1}{4} = \\ \frac{1}{2} \cdot 24 \cdot \frac{1}{5} \cdot 1 = \\ \end{array}$	1,820 1,125 0,715
CACUMACI CACUMACI CACUMACI CACUMACI ORUCINEU Nogologureu	(2) (3) (4) (4) (5) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	1 6 3 ½	1 15 18 2	5 1 1 6 4	8 6 1 1	1 2 4 3 1	W ₂ = 50 W ₃ = 50 W ₄ = 5 W ₅ = 50	$\begin{array}{l} (4.58 \cdot \frac{1}{2}) = \\ 5 \cdot \frac{1}{5} \cdot 46 \cdot \frac{1}{4} = \\ 5 \cdot \frac{1}{5} \cdot 46 \cdot \frac{1}{4} = \\ \frac{1}{2} \cdot 24 \cdot \frac{1}{5} \cdot 1 = \\ \end{array}$	1,820 1,125 0,715

Рисунок 1.5 – Пятая часть ручных вычислений

	CTOUMOGE	Crement	HadexHacis	Mpays Bogure 16 Kar	Donolerwars	
	0,644 5,363 = 0,120	1,820 = 0,335 5,363 = 0,335	$\frac{1/25}{5,363} = 0,2/0$	$\frac{0.715}{5,363} = 0.133$	$\frac{1059}{5,363} = 0,197$	
	PER 101	3 3 1		103 10		
	Borne	un mal	Ublue una	concern;	++++	
	1,				259	64
1	$1_A = 0,435$. 0,12+ 0,346	0,839+0,322.0,	21 +0,571-0,133+6,	100.0,197 = 0,3	1/2
1	V - 0218	0/2 - 0026 00	24 (222 22)	0,286.0,133+0,2		2.0
		Nicholador Ch. Text	- N 100 M N 1	PART TORON	WAST 1227	
1	V = 0 217.0	17 + 024.0239	248 + 0 1100, 021 +1	0,143 · 0,133 + 0,324	1.0,197 = 0,2	68
-	10,211 0,1	12 . 4,50 0,500	1 4,475 4,27	אבל עי בנועי כדון	9,57 - 0, 2	NAME OF THE PARTY.
	10.1) 11.	1	0	0	
	1000	g: Ma c	CHOICE MY	plegënneg	Collulle	lu
1	V			9		
C	supuani,	H non	gracet far	ubucuuu b	ec a =>	
	abranca	наш бле	01 04 PH			
1	MINISTRUM	HANCE OOME	e onnu ma	16HVIII.		
	= 10, 100		1 1 7			
-				1 2		
-						211
			1 - 1 - 1	1 - 1 - 1	N NO.	
	i i i i i i					
	203				100	
	Sep.				060	

Рисунок 1.6 – Шестая часть ручных вычислений

4.3.2 Так же была создана программа на языке C++, вычисляющая МАИ любой размерности:

```
#include <iostream>
#include <windows.h>
#include <cmath>
class Matrix {
     double **mainMatrix; // критерии альтернатив
     double **matrixSravneniy; // матрица попарных сравнений на основе экспертных
оценок
     // количество критериев и количество альтернатив
      int kolKrit, kolAlter; // строки = kolKrit; столбцы = kolAlter;
      //можно ввести 15 имен длиной в 19 символов
      char nameKrit[15][20]; // имена критериев
      char nameAlter[26]; // имена альтернатив
      char nameCeli[255]; // имя цели
public:
     Matrix();
     ~Matrix();
     void zapolniaem();
     void reshaem();
};
Matrix :: Matrix() {
      std::cout << "Введите количество критериев (kol <= 15): ";
      std::cin >> this->kolKrit;
      std::cout << "Введите количество альтернатив (kol <= 25): ";
      std::cin >> this->kolAlter;
```

```
std::cout << "Вместо пробела используйте символ нижнего подчеркивания \" \"" << "
std::endl;
      std::cout << "Введите имя ЦЕЛИ: ";
      std::cin >> nameCeli;
      for (int i = 1; i <= kolKrit; i++) {</pre>
            std::cout << "Введите имя " << i << " критерия: ";
           std::cin >> nameKrit[i-1];
      }
      char ch = 65;
      for (int i = 1; i <= kolAlter; i++) {</pre>
           // имя альтернативы:
            nameAlter[i-1] = ch;
            ch++;
      }
      std::cout << std::endl;</pre>
      // выделяем память
    mainMatrix = new double* [kolKrit];
    for (int i = 0; i < kolKrit; i++) {
       mainMatrix[i] = new double [kolAlter];
    }
    matrixSravneniy = new double* [kolKrit];
    for (int i = 0; i < kolKrit; i++) {
        matrixSravneniy[i] = new double [kolKrit];
    }
    system("pause");
    system("cls");
}
void Matrix :: zapolniaem() {
      std::cout << "ЩА будем вводить сравнительные характеристики" << std::endl;
```

```
std::cout << "для этой цели ->\"" << nameCeli << "\"" << std::endl <<
std::endl;
      for (int i = 0; i < kolKrit; i++) {
            for (int j = 0; j < kolAlter; <math>j++) {
                  std::cout << "Введите [" << nameAlter[j] << "] [" << nameKrit[i] <<
"] - ";
                  std::cin >> mainMatrix[i][j];
            }
      }
      std::cout << std::endl;</pre>
      system("pause");
      system("cls");
      std::cout << "A теперь будем вводить элементы матрицы попарных" << std::endl;
      std::cout << "cравнений на освнове экспертных оценок" << std::endl <<
std::endl;
      for (int i = 0; i < kolKrit; i++) {
            for (int j = 0; j < kolKrit; j++) {
                  std::cout << "Введите [" << nameKrit[i] << "] [" << j+1 << "] - ";
                  std::cin >> matrixSravneniy[i][j];
            }
      }
      std::cout << std::endl;</pre>
      system("pause");
      system("cls");
}
void Matrix :: reshaem(){
      double arrVectoraPr[kolKrit]; // вектор приоритетов для главной матрицы
(меняется)
    double arrPrioritetov[kolKrit]; // вектор приоритетов для матриы попарных
сравнений
    std::cout << "Глобальные приоритеты:" << std::endl << std::endl;
```

```
//сделаем синтез приоритетов из матрицы попарных сравнений
   double tempArr[kolKrit]; //временный массив размера кол-ва критериев
   for (int i = 0; i<kolKrit; i++) {</pre>
     tempArr[i] = 1;
     for (int j = 0; j < kolKrit; j++) {
           tempArr[i] = tempArr[i] * matrixSravneniy[i][j];
     }
     tempArr[i] = pow(tempArr[i], (1.0/kolKrit));
    } //вычислили w1, w2, w3, ...
     double sum = 0.0;
     for (int i = 0; i < kolKrit; i++) {
           sum = sum + tempArr[i];
     } //вычислили W
     for (int i = 0; i < kolKrit; i++) {
           arrPrioritetov[i] = tempArr[i] / sum;
     } //сделали синтез приоритетов
    double matrVectoraPr[kolKrit][kolAlter];
     for (int i = 0; i < kolKrit; i++) {
           tempArr[i] = 0.0;
           for (int j = 0; j < kolAlter; <math>j + +) {
                 double tempChislitel = mainMatrix[i][j];
                 matrVectoraPr[i][j] = 1.0;
                 for(int j2 = 0; j2 < kolAlter; j2++) {
                      matrVectoraPr[i][j] = matrVectoraPr[i][j] * (tempChislitel /
mainMatrix[i][j2]);
                 matrVectoraPr[i][j] = pow(matrVectoraPr[i][j], 1.0/kolAlter);
```

```
// std::cout << "вычисленный w[" << i << "] [" << j << "] = " <<
matrVectoraPr[i][j] << std::endl; //---->
                 tempArr[i] = tempArr[i] + matrVectoraPr[i][j];
           }
     }
   //-----
     for(int kolichestvoAlternativ = 0; kolichestvoAlternativ < kolAlter;</pre>
kolichestvoAlternativ++) {
           sum = 0.0;
           for(int i = 0; i < kolKrit; i++){</pre>
                arrVectoraPr[i] = (matrVectoraPr[i][kolichestvoAlternativ] /
tempArr[i]);
           }
           for (int i = 0; i < kolKrit; i++) {
                 sum = sum + (arrVectoraPr[i] * arrPrioritetov[i]);
           } //вычислили глобальный приоритет
           std::cout << "k" << nameAlter[kolichestvoAlternativ] << " = " << sum <<
std::endl;
     }
     std::cout << std::endl << std::endl;</pre>
     system("pause");
}
Matrix :: ~Matrix() {
   // очистить память выделенную матрицам
   for (int i = 0; i < kolKrit; i++) {
       delete [] mainMatrix[i];
   delete [] mainMatrix;
```

```
for (int i = 0; i < kolKrit; i++) {
        delete [] matrixSravneniy[i];
    delete [] matrixSravneniy;
}
int main() {
      SetConsoleCP(1251);
      SetConsoleOutputCP(1251);
      system("color B0");
      //создадим объедок с нашими данными МАИ
      Matrix *MAI = new Matrix();
      MAI->zapolniaem();
      MAI->reshaem();
      delete MAI;
      return 0;
}
```

Результат выполнения программы соответствует ожиданиям и отображен на рисунках 4.7-

```
■ D:\SevSu\3_sem\OSA osnovi sist anala\lab4\program.exe

Введите количество критериев (kol <= 15): 5

Введите количество альтернатив (kol <= 25): 3

Вместо пробела используйте символ нижнего подчеркивания "_"

Введите имя ЦЕЛИ: ОБОРУДОВАНИЕ_ДЛЯ_ОЧИСТКИ_ВОДЫ

Введите имя 1 критерия: стоимость

Введите имя 2 критерия: степень_очистки

Введите имя 3 критерия: надёжность

Введите имя 4 критерия: производительность

Введите имя 5 критерия: долговечность

Для продолжения нажмите любую клавишу . . . ■
```

Рисунок 4.7 – Ввод размерности матрицы и имён критериев

```
D:\SevSu\3_sem\OSA osnovi sist anala\lab4\program.exe
ЩА будем вводить сравнительные характеристики
для этой цели ->"ОБОРУДОВАНИЕ ДЛЯ ОЧИСТКИ ВОДЫ"
Введите [А] [стоимость] - 100
Введите [В] [стоимость] - 80
Введите [С] [стоимость] - 50
Введите [А] [степень_очистки] - 98
Введите [В] [степень_очистки] - 95
Введите [С] [степень_очистки] - 90
Введите [А] [надёжность] - 85
Введите [В] [надёжность] - 85
Введите [С] [надёжность] - 70
Введите [A] [производительность] - 0.2
Введите [B] [производительность] - 0.1
Введите [С] [производительность] - 0.05
Введите [А] [долговечность] - 4
Введите [В] [долговечность] - 5
Введите [С] [долговечность] - 5
Для продолжения нажмите любую клавишу . . .
```

Рисунок 4.8 – Заполнение матрицы с критериями альтернатив

```
D:\SevSu\3_sem\OSA osnovi sist anala\lab4\program.exe
А теперь будем вводить элементы матрицы попарных
сравнений на освнове экспертных оценок
Введите [стоимость] [1] - 1
Введите [стоимость] [2] - 1
Введите [стоимость] [3] - 0.1666
Введите [стоимость] [4] - 0.3333
Введите [стоимость] [5] - 2
Введите [степень_очистки] [1] - 1
Введите [степень_очистки] [2] - 1
Введите [степень_очистки] [3] - 5
Введите [степень_очистки] [4] - 8
Введите [степень_очистки] [5] - 0.5
Введите [надёжность] [1] - 6
Введите [надёжность] [2] - 0.2
Введите [надёжность] [3] - 1
Введите [надёжность] [4] - 6
Введите [надёжность] [5] - 0.25
Введите [производительность] [1] - 3
Введите [производительность] [2] - 0.125
Введите [производительность] [3] - 0.1666
Введите [производительность] [4] - 1
Введите [производительность] [5] - 3
Введите [долговечность] [1] - 0.5
Введите [долговечность] [2] - 2
Введите [долговечность] [3] - 4
Введите [долговечность] [4] - 0.3333
Введите [долговечность] [5] - 1
Для продолжения нажмите любую клавишу . .
```

Рисунок 4.9 – Заполнение матрицы попарных сравнений

```
    ■ D:\SevSu\3_sem\OSA osnovi sist anala\lab4\program.exe
    Глобальные приоритеты:
    kA = 0.376636
    kB = 0.338592
    kC = 0.284772
    Для продолжения нажмите любую клавишу . . . ■
```

Рисунок 4.10 – Результат выполнения программы

Таким образом все программа подтверждает письменные вычисления и доказывает, что вариант "А" действительно является наиболее оптимальным.

Выводы

В ходе выполнения данной лабораторной работы были углублены теоретические знания в области системного анализа, приобретены навыки создания и описания иерархических структур. Изучены такие понятия как цель, критерий и альтернатива. Закреплены навыки разработки программ на языке С++. Полученные во время выполнения лабораторной работы навыки помогут в дальнейшей жизни при необходимости провести системный анализ в какой либо области.