Estatística Descritiva

Ana Amelia Benedito Silva

Representação de dados

- Tabelas
- Gráficos
 - Dados qualitativos
 - Barras (horizontais ou verticais)
 - Setores (pizzas)
 - Dados quantitativos
 - Histograma para dados discretos
 - Histograma para dados contínuos

Dados de 36 trabalhadores de uma empresa

nome	estado civil	escolaridade	Filhos	salário	idade	origem
Natanael	solteiro	1o. Grau	0	4	26	interior
Manoel	casado	1o. Grau	1	4.56	32	capital
Walter	casado	2o. Grau	2	15.99	35	capital
Hernando	casado	2o. Grau	2	19.4	48	capital
Gregório	casado	superior	3	23.3	42	interior

Categorias	Count	Percent
solteiro	14	38,9
casado	17	47,2
viúvo	2	5,6
separado	3	8,3

Categorias	Count	Percent
1o. Grau	12	33,3
2o. Grau	18	50,0
superior	6	16,7

Categorias	Count	Percent
interior de SP	15	41,7
capital	13	36,1
outro estados	8	22,2

número filhos	Count	Percent
0	10	27,8
1	7	19,4
2	9	25,0
3	5	13,9
4	4	11,1
5	1	2,8

Faixas de salário	Count	Percent
4,0<=x<8,0	10	27,8
8,0<=x<12,0	12	33,3
12,0<=x<16,0	8	22,2
16,0<=x<20,0	5	13,9
20,0<=x<24,0	1	2,8

Medidas de tendência central e Medidas de dispersão

Os 11 alunos de uma turma de Estatística receberam as notas abaixo. Qual é a nota que mais reflete o desempenho da turma?

7 4 2 4 5 3 6 7 4 8 9

Ordenação dos dados

antes da ordenação

7 4 2 4 5 3 6 7 4 8 9

após a ordenação

2 3 4 4 4 5 6 7 7 8 9

Tabela de distribuição de frequências

notas	freqüência		
0	0		
1	0		
2	1		
2 3	1		
4	3		
5	1		
6	1		
7	2		
8	1		
9	1		
10	0		

Representação gráfica da tabela de distribuição de frequências

Mas afinal, qual é a nota que mais reflete o desempenho da turma?

MEDIDAS DE TENDÊNCIA CENTRAL

- média
- mediana
- moda

MÉDIA

 resultado da divisão da soma de todos os elementos de um conjunto de números pelo número total de elementos do conjunto

$$(2+3+4+4+4+5+6+7+7+8+9)/11 = 59/11$$

média = 5,4

MÉDIA

desvantagem: é afetada por valores extremos

Exemplo:

- divide uma distribuição ordenada de dados em 2 metades iguais
- é um índice de posição
- Posição da mediana = (n+1)/2

 Quando o número de elementos (n) é ímpar a mediana corresponde ao elemento central

2 5 9 14 21

Posição da mediana= $(5+1)/2 = 3^{\circ}$ elemento

 Quando o número de elementos é par a mediana corresponde à média aritmética dos 2 elementos centrais.

Mediana =
$$(9+14)/2 = 11,5$$

Posição da mediana= $(6+1)/2=3,5^{\circ}$ elemento

Turma de Estatística

Mediana

Posição = $(11+1)/2 = 6^{\circ}$ elemento

 vantagem: útil para descrever distribuições de dados com valores extremos

• Exemplo: 2 4 8 15 20

2 4 8 15 200

MÉDIA E MEDIANA

MÉDIA E MEDIANA

MODA

- valor que ocorre com maior freqüência
- obtida por inspeção da tabela de distribuição de freqüências
- útil para medidas qualitativas

Exemplo: candidatos numa eleição

times de futebol num campeonato

MODA

- medidas que dividem a distribuição em partes iguais
- servem para descrever posições numa distribuição de dados

PERCENTIL

divide os dados em 100 partes iguais:

• **QUARTIL**

divide os dados em 4 partes iguais:

$$Q_1, Q_2, Q_3$$

- percentil 50 = mediana = segundo quartil (Q₂)
- percentil 25 = primeiro quartil (Q₁)
- percentil 75 = terceiro quartil (Q₃)

Posição do $Q_1 = \frac{1}{4} (n+1)$

Posição do $Q_2 = \frac{1}{2} (n+1)$

Posição do $Q_3 = \frac{3}{4} (n+1)$

Cálculo dos quartis

0,9 1,0 1,7 2,9 3,1 5,3 5,5 12,2 12,9 14,0 33,6 \rightarrow n=11

Posição do
$$Q_1 = \frac{1}{4}(11+1) = 3^{\circ}$$
 elemento $Q_1 = 1,7$

Posição do $Q_2 = \frac{1}{2}(11+1) = 6^{\circ}$ elemento

$$\rightarrow$$
 Q₂ = 5,3

Posição do $Q_3 = \frac{3}{4}(11+1) = 9^{\circ}$ elemento

$$\rightarrow$$
 Q₃ = 12,9

Cálculo dos quartis

19 20 21 25 30 31 33 37 61 77

Posição do
$$Q_1 = \frac{1}{4}(10+1) = 2,75^{\circ}$$
 elemento $\rightarrow Q_1 = \frac{(20+21)}{2} = 20,5$

Posição do
$$Q_2 = \frac{1}{2} (10+1) = 5,5^{\circ}$$
 elemento $\rightarrow Q_2 = (30+31)/2 = 30,5$

Posição do
$$Q_3 = \frac{3}{4}(10+1) = 8,25^{\circ}$$
 elemento $\rightarrow Q_3 = (37+61)/2=49$

QUARTIS NUMA DISTRIBUIÇÃO

BOX-PLOT

Construção

LS=Q3+1,5(Q3-Q1)

----- *LI*=Q1-1,5(Q3-Q1)

"Máximo" é o maior valor menor que LS;

"Mínimo" é o menor valor maior que LI.

Exemplo: Tempo de sobrevivência (dias)

Dados ordenados (n=36)

18	21	21	23	23	25
27	29	30	31	32	32
32	34	35	36	38	41
42	42	43	44	45	46
46	47	48	50	54	56
57	58	60	61	98	116

$$md = 41,5$$
 $Q1 = 30,25$ $Q3 = 49,5$

Observações discrepantes?

Forma da Distribuição

BOX-PLOT

Notas turma A

Notas turma B

Figura 1 – Nota das turmas A e B expressa através de box-plot.

MEDIDAS DE DISPERSÃO

- amplitude total ou intervalo
- Intervalo interquartil
- variância
- desvio-padrão

Exemplo 2: Considere as notas de um teste de 3 grupos de alunos

Grupo 1: 3,4,5,6,7 Grupo 2: 1, 3, 5, 7, 9 Grupo 3: 5,5,5,5,5

Temos:
$$\bar{x}_1 = \bar{x}_2 = \bar{x}_3 = 5$$
 e $md_1 = md_2 = md_3 = 5$

Medidas de Dispersão

Finalidade: encontrar um valor que resuma a variabilidade de um conjunto de dados

•Amplitude (A):

$$A = m\acute{a}x - min$$

Para os grupos anteriores, temos:

Grupo 1,
$$A = 4$$

Grupo 2,
$$A = 8$$

Grupo 3,
$$A = 0$$

Intervalo interquartil

É a diferença entre Q3 e Q1 IQ = Q3 - Q1

19 20 21 25 30 31 33 37 61 77

$$Q_1 = 20,5$$
 $Q_2 = 30,5$ $Q_3 = 49$

$$IQ = 49 - 20,5 = 28,5$$

DESVIO-PADRÃO

- é a medida de dispersão mais usada
- determina a dispersão de todos os valores em relação à média
- as distâncias em relação à média são elevadas ao quadrado

Variância:

Variância =
$$s^2 = \frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n-1} = \sum_{i=1}^n \frac{(x_i - \overline{x})^2}{n-1}$$

•Desvio padrão:

Desvio Padrão = $s = \sqrt{Variância}$

Cálculo para os grupos:

G1:
$$s^2 = (3-5)^2 + (4-5)^2 + (5-5)^2 + (6-5)^2 + (7-5)^2$$

$$\Rightarrow s^2 = 10/4 = 2.5 \Rightarrow s = 1.58$$

G2:
$$s^2 = 10 \implies s = 3,16$$

G3:
$$s^2 = 0 \Rightarrow s = 0$$

• Coeficiente de Variação (CV)

- é uma medida de dispersão relativa
- elimina o efeito da magnitude dos dados
- exprime a variabilidade em relação à média

$$CV = \frac{s}{\overline{x}} \times 100 \%$$

Exemplo 3:

Altura e peso de alunos

	Média	Desvio Padrão	Coef. de Variação
Altura	1,143m	0,063m	5,5 %
Peso	50 kg	6kg	12 %

Conclusão: Os alunos são, aproximadamente, duas vezes mais dispersos quanto ao peso do que quanto à altura.

Exemplo 4:

Altura (em *cm*) de uma amostra de recémnascidos e de uma amostra de adolescentes

	Média	Desvio padrão	Coef. de variação
Recém-nascidos	50	6	12%
Adolescentes	160	16	10%

Conclusão: Em relação às médias, as alturas dos adolescentes e dos recém-nascidos apresentam variabilidade quase iguais.

A DISTRIBUIÇÃO NORMAL

 muitos fenômenos biológicos, psicológicos e sociais seguem uma distribuição normal

CURVA DE GAUSS_(Normal)

Faixa de_normalidade

- média aritmética ± desvio-padrão
- corresponde à aproximadamente 68% dos indivíduos da amostra

Exemplo: pesos obtidos em 2 grupos de atletas

	GrupoA	Grupo B
	78	65
	80	69
	82	78
	85	85
	85	85
	85	93
	86	96
	88	98
Soma	669	669
Média	83,6	83,6
Mediana	85	85
Moda	85	85
N	8	8

DESVIO-PADRÃO

peso grupo A	d = peso - média	d^2
78	78 - 83,6= -5,6	$(-5,6)^2 = 31,36$
80	80 - 83,6=-3,6	$(-3,6)^2 = 12,96$
82	82 - 83,6=-1,6	$(-1,6)^2 = 2,56$
85	85 - 83,6= 1,4	$(1,4)^2 = 1,96$
85	85 - 83,6= 1,4	$(1,4)^2 = 1,96$
85	85 - 83,6= 1,4	$(1,4)^2 = 1,96$
86	86 - 83,6= 2,4	$(2,4)^2 = 5,76$
88	88 - 83,6= 4,4	$(4,4)^2 = 19,36$
		soma = 77,88

Variância = $(soma d^2/(n-1)) = 77,88/(8-1) = 11,1 kg^2$ Desvio-padrão = raiz (variância) = raiz (11,1) = 3,3 Kg

DESVIO-PADRÃO

peso grupo B	d = peso - média	d ²
65	65 - 83,6 = -18,6	$(-18,6)^2 = 31,36$
69	69 - 83,6 = -14,6	$(-14,6)^2 = 12,96$
78	78 - 83,6 = -5,6	$(-5,6)^2 = 2,56$
85	85 - 83,6 = 1,4	$(1,4)^2 = 1,96$
85	85 - 83,6 = 1,4	$(1,4)^2 = 1,96$
93	93 - 83,6 = 9,4	$(9,4)^2 = 1,96$
96	96 - 83,6 = 12,4	$(12,4)^2 = 5,76$
98	98 - 83,6 = 14,4	$(14,4)^2 = 19,36$
		soma = 1043,88

Variância = $(\text{soma d}^2/(\text{n-1})) = 1043,88/(8-1) = 149,12 \text{ kg}^2$ Desvio-padrão = raiz (variância) = raiz (149,12) = 12,2 Kg

Faixa de normalidade

Grupo A

- Média = 83,6Kg; desvio-padrão= 3,3 Kg
- Faixa de normalidade= 83,6 ± 3,3 Kg

Grupo B

Média = 83,6Kg; desvio-padrão= 12,2 Kg
 Faixa de normalidade= 83,6 ± 12,2 Kg

Figura 1 – Peso dos grupos A e B. Dados expressos em média±dp.