DEEP LEARNING (ÎNVĂȚAREA PROFUNDĂ)

Capitolul 10 -Introducere și Concepte Fundamentale

CE ESTE DEEP LEARNING?

- Ramură a învățării
 automate ce folosește
 rețele neuronale cu mai
 multe straturi pentru a
 analiza și înțelege date
 complexe.
- Principiul de funcționare: Utilizarea rețelelor neuronale pentru extragerea și reprezentarea ierarhică a caracteristicilor din date.

COMPONENTELE UNUI SISTEM DE DEEP LEARNING

- Date de intrare: Imagini, texte, semnale audio.
- Arhitectura rețelei neuronale: Structura modelului, incluzând straturi convoluționale, recurente etc.
- Straturi ascunse: Straturi intermediare pentru extracţia caracteristicilor complexe.
- Strat de ieşire: Predicţiile finale ale reţelei.
- Funcții de activare: ReLU, Sigmoid, Tanh, Softmax.
- Algoritmi de optimizare:
 Gradient Descent, Adam.

REȚELE NEURONALE ARTIFICIALE

- Modele matematice inspirate de creierul uman, folosite pentru clasificare, regresie, procesarea limbajului.
- Tipuri: Feedforward, Recurente (RNN), Convoluţionale (CNN), Generative Adversarial Networks (GAN).

FUNCȚII DE ACTIVARE ÎN DEEP LEARNING

- Funcția Sigmoidă:
 Compresie între 0 și 1.
- Funcția ReLU: Activează doar valori pozitive.
- Funcția Tanh:Compresie între -1 și 1.
- Funcția Softmax:

 Transformă ieșirile în
 probabilități pentru
 clasificare multi-clasă.

ANTRENAREA REȚELELOR NEURONALE

- Algoritmul de Backpropagation: Ajustează ponderile pentru minimizarea erorilor.
- Tehnici de Îmbunătățire:
 Regularizarea, dropout, normalizarea loturilor.
- Overfitting: Problema de generalizare slabă pe date noi.
- Regularizare: L1, L2, Dropout, Early Stopping.

TRANSFER LEARNING

- Utilizarea modelelor pre-antrenate pe seturi mari de date pentru sarcini similare.
- Beneficii: Reducerea timpului de antrenare, performanță îmbunătățită pe seturi mici de date.

EVOLUȚIA DEEP LEARNING

- Momente cheie:
 Algoritmul
 backpropagation,
 dezvoltarea GPU-urilor,
 disponibilitatea datelor
 masive.

APLICAȚII PRACTICE ALE DEEP LEARNING

- Computer Vision:
 Clasificarea și detectarea
 obiectelor.
- Procesarea Limbajului Natural (NLP): Traducerea automată, clasificarea sentimentelor.
- Speech Processing: Transcrierea şi generarea vorbirii.
- Predictive Analytics: Prezicerea vânzărilor și evenimentelor.

EVALUAREA PERFORMANȚEI REȚELELOR NEURONALE

- Metrici: Acuratețe, F1score, AUC.
- Validare: Cross-Validation, Testare pe date necunoscute.
- Evaluare Vizuală:
 Reprezentarea vizuală a rezultatelor.

PERSPECTIVE VIITOARE ÎN DEEP LEARNING

- Tendințe: Arhitecturi noi, utilizarea datelor diverse, integrarea cu loT și Edge Computing.
- Provocări:

 Interpretabilitatea
 modelelor, necesitatea
 datelor masive.

REZUMAT ȘI CUVINTE CHEIE

- Rezumat: Învățarea profundă și aplicațiile sale diverse.
- Cuvinte Cheie: Deep Learning, Rețele Neuronale, Arhitecturi, Transfer Learning.