CSE 417T Introduction to Machine Learning

Lecture 9

Instructor: Chien-Ju (CJ) Ho

Logistics

- Homework 2 is due on Mar 8, Monday
 - Implement gradient descent for logistic regression
 - Several math questions
- Return of Homework
 - We plan to return each homework around 2 weeks after the deadline
 - Regrade requests
 - You will have up to 7 days to submit regrade requests after homework return.
 - We might check the entire homework for each request, so the grades might go down as well if we find new mistakes
- Exam 1: Mar 23 (Tuesday)

Recap

Linear Models

This is why it's called linear models

• H contains hypothesis $h(\vec{x})$ as some function of $\vec{w}^T\vec{x}$

	Domain	Model
Linear Classification	$y \in \{-1, +1\}$	$H = \{h(\vec{x}) = sign(\vec{w}^T \vec{x})\}\$
Linear Regression	$y \in \mathbb{R}$	$H = \{h(\vec{x}) = \vec{w}^T \vec{x}\}$
Logistic Regression	$y \in [0,1]$	$H = \{h(\vec{x}) = \theta(\vec{w}^T \vec{x})\}$

Credit Card Example

Approve or not

Credit line

Prob. of default

$$\theta(s) = \frac{e^s}{1 + e^s}$$

- Algorithm:
 - Focus on $g = argmin_{h \in H} E_{in}(h)$

Logistic Regression

- Predict a probability
 - Interpreting $h(\vec{x}) \in [0,1]$ as the prob for y = +1 given \vec{x}
- Hypothesis set $H = \{h(\vec{x}) = \theta(\vec{w}^T\vec{x})\}$

•
$$\theta(s) = \frac{e^s}{1+e^s} = \frac{1}{1+e^{-s}}$$

- Algorithm
 - Find $g = argmin_{h \in H} E_{in}(h)$

- Two key questions
 - How to define $E_{in}(h)$?
 - How to perform the optimization (minimizing E_{in})?

Define $E_{in}(\vec{w})$: Cross-Entropy Error

$$E_{in}(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \vec{w}^T \vec{x}_n})$$

- Minimizing cross entropy error is the same as maximizing likelihood
- Likelihood: $Pr(D|\vec{w})$

```
• \vec{w}^* = argmax_{\vec{w}} \Pr(D|\vec{w}) (maximizing likelihood)
= argmin_{\vec{w}} E_{in}(\vec{w}) (minimizing cross-entropy error)
```

Min Cross-Entropy Error <=> Max Likelihood

• $\vec{w}^* = argmax_{\vec{w}} \Pr(D|\vec{w})$ $= argmax_{\overrightarrow{w}} \prod_{n=1}^{N} Pr(y_n | \overrightarrow{x}_n, \overrightarrow{w})$ $= argmax_{\overrightarrow{w}} \prod_{n=1}^{N} \theta(y_n \overrightarrow{w}^T \overrightarrow{x}_n)$ $= argmax_{\overrightarrow{w}} \ln(\prod_{n=1}^{N} \theta(y_n \overrightarrow{w}^T \overrightarrow{x}_n))$ $= argmax_{\overrightarrow{w}} \sum_{n=1}^{N} \ln(\theta(y_n \overrightarrow{w}^T \overrightarrow{x}_n))$ $= argmin_{\overrightarrow{w}} - \sum_{n=1}^{N} \ln(\theta(y_n \overrightarrow{w}^T \overrightarrow{x}_n))$ $= argmin_{\overrightarrow{w}} \sum_{n=1}^{N} \ln \frac{1}{\theta(y_n \overrightarrow{w}^T \overrightarrow{x}_n)}$ $= \operatorname{argmin}_{\overrightarrow{w}} \sum_{n=1}^{N} \ln(1 + e^{-y_n \overrightarrow{w}^T \overrightarrow{x}_n})$ $= \operatorname{argmin}_{\overrightarrow{w}} \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \overrightarrow{w}^T \overrightarrow{x}_n})$ $E_{in}(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \vec{w}^T \vec{x}_n})$

- data independence assumption
- 2. $1-\theta(s)=\theta(-s)$

argmax A(x)B(x)= $argmax \ln A(x) + \ln B(x)$

Optimizing $E_{in}(\vec{w})$: Gradient Descent

An iterative method: $\vec{w}(t+1) \leftarrow \vec{w}(t) + \eta_t \vec{v}_t$

- \vec{v}_t : a unit vector, determining the direction of the update
- η_t : a scalar, determining how much to update

- How to choose \vec{v}_t
 - Move towards the "steepest" direction
 - Approaching the minimum faster
 - Taylor approximation:
 - $E_{in}(\vec{w}(t+1)) E_{in}(\vec{w}(t)) \approx \eta_t \nabla_{\vec{w}} E_{in}(\vec{w}(t))^T \vec{v}_t$
 - Choose \vec{v}_t to be the opposite direction of $\nabla_{\vec{w}} E_{in}$
 - $\vec{v}_t = \frac{-\nabla_{\vec{w}} E_{in}(\vec{w}(t))}{\|\nabla_{\vec{w}} E_{in}(\vec{w}(t))\|}$

• How to choose η_t

$$\bullet \ \eta_t = \eta \| \nabla_{\vec{w}} E_{in}(\vec{w}(t)) \|$$

Gradient Descent (GD) for Logistic Regression

- Initialize $\vec{w}(0)$
- For t = 0, ...
 - Compute gradient $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}(t)) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \overrightarrow{x}_n}{1 + e^{y_n \overrightarrow{w}(t)} \overrightarrow{T} \overrightarrow{x}_n}$
 - $\vec{w}(t+1) \leftarrow \vec{w}(t) \eta \nabla_{\vec{w}} E_{in}(\vec{w}(t))$ [Take gradient, then descent]
 - Terminate if the stop conditions are met
- Return the final weights

 η : learning rate A parameter the learner can choose

We focus on fixed learning rate GD There are other variants

Gradient Descent (GD) for Logistic Regression

- Initialization
 - In HW2, you are asked to initialize $\vec{w}(0)$ to $\vec{0}$
 - In practice, random initialization is a good idea and a common approach
- Stop conditions (a mix of the following criteria)
 - When the number of iteration exceeds the pre-set threshold
 - When the improvement on E_{in} (e.g., check $\nabla_{\overrightarrow{w}}E_{in}$) is too small
 - When E_{in} is small enough
 - (We use the first two in HW2)

Using Logistic Regression for Classification

• Let \overrightarrow{w}^* or g be the learned logistic regression model, how can we make classification predictions using \overrightarrow{w}^* ?

- Set a cutoff probability C% (e.g., 50%).
 - Classify +1 if $g(\vec{x}) = \theta(\vec{w}^* \vec{x}) > C\%$
 - Classify -1 if $g(\vec{x}) = \theta(\vec{w}^{*T}\vec{x}) < C\%$
- When C is 50 (a common choice)
 - $\theta(\vec{w}^{*T}\vec{x}) > 50\% = \vec{w}^{*T}\vec{x} > 0$
 - Equivalent to using \vec{w}^* as the linear classification hypothesis, i.e., $g(\vec{x}) = sign(\vec{w}^{*T}\vec{x})$

Today's Lecture

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.

More on Cross Entropy [This Page is Safe to Skip]

- Cross entropy of q related to $p: H(p,q) = \sum_{i=1}^{n} p(x_i) \log \frac{1}{q(x_i)}$
 - Distance measure between two distributions
 - Fix p, H(p,q) is minimized when q=p [Solve for $\nabla_q H(p,q)=0$]
- Cross-entropy error

•
$$E_{in}(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \vec{w}^T \vec{x}_n})$$

= $\frac{1}{N} \sum_{n=1}^{N} \left[\mathbb{I}[y_n = 1] \ln \frac{1}{\theta(\vec{w}^T \vec{x}_n)} + \mathbb{I}[y_n \neq 1] \ln \frac{1}{1 - \theta(\vec{w}^T \vec{x}_n)} \right]$

- Interpretations
 - p: empirical distribution of y_n in training data
 - q: predicted probability distribution of y_n of hypothesis h
 - Minimizing $E_{in} => Make q \approx p => Make prediction align with data$

Computation of Gradient Descent

- Gradient descent algorithm
 - Initialize $\vec{w}(0)$
 - For t = 0, ...
 - Compute $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}(t)) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \overrightarrow{x}_n}{1 + e^{y_n \overrightarrow{w}(t)^T \overrightarrow{x}_n}}$
 - $\vec{w}(t+1) \leftarrow \vec{w}(t) \eta \nabla_{\vec{w}} E_{in}(\vec{w}(t))$
 - Terminate if the stop conditions are met
 - Return the final weights
- Which step is the most computationally heavy?
 - Calculate the gradient $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \vec{x}_n}{1 + e^{y_n \overrightarrow{w}^T \vec{x}_n}}$
 - The time complexity is O(N)
 - N is large for big datasets

Deal with Heavy Computation of $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w})$

- Speed up the implementation of $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \vec{x}_n}{1 + e^{y_n \overrightarrow{w}^T \vec{x}_n}}$
 - E.g., "vectorization"
- Solve $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w})$ "in expectation"
 - Define $e_n(\vec{w}) = \ln(1 + e^{-y_n \vec{w}^T \vec{x}_n})$, the point-wise error caused by (\vec{x}_n, y_n)
 - Observe that
 - $E_{in}(\overrightarrow{w}) = \frac{1}{N} \sum_{n=1}^{N} e_n(\overrightarrow{w})$
 - $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}) = \frac{1}{N} \sum_{n=1}^{N} \nabla_{\overrightarrow{w}} e_n(\overrightarrow{w})$ (gradient of dataset is the average gradient of points)
 - Draw a point \vec{x}_n from $\{\vec{x}_1, \dots, \vec{x}_N\}$ uniformly at random
 - $E_{\vec{x}_n}[\nabla_{\vec{w}}e_n(\vec{w})] = \nabla_{\vec{w}}E_{in}(\vec{w})$

Stochastic Gradient Descent (SGD)

- Algorithm
 - Initialize $\vec{w}(0)$
 - For t = 0, ...
 - Randomly choose a data point n from $\{1, ..., N\}$
 - $\vec{w}(t+1) \leftarrow \vec{w}(t) \eta \nabla_{\vec{w}} e_n(\vec{w}(t))$
 - Terminate if the stop conditions are met
 - Return the final weights
- $\mathbb{E}[\nabla_{\overrightarrow{w}}e_n(\overrightarrow{w})] = \nabla_{\overrightarrow{w}}E_{in}(\overrightarrow{w})$
 - SGD is doing the same thing as GD in expectation
 - More efficient (scale to large dataset), suitable for online data, helps escaping local min, etc.
 - Noisier, harder to define stop criteria

Mini-Batch Gradient Descent

- GD: Computationally heavy, stable updates
- SGD: Computationally light, noisy updates
- Middle ground: Mini-Batch Gradient Descent
 - In each iteration, randomly choose k points $\{n(1), ..., n(k)\}$
 - Update rule

•
$$\overrightarrow{w}(t+1) \leftarrow \overrightarrow{w}(t) - \eta \frac{1}{k} \sum_{i=1}^{k} \nabla_{\overrightarrow{w}} e_{n(i)}(\overrightarrow{w}(t))$$

- Side-note about HW2
 - Please report your results on GD (non-stochastic version).
 - You should feel free to play around with SGD or mini-batch on your own.

Non-Linear Transformation

Limitations of Linear Models

Using Non-Linear Transformations

• Find a feature transform Φ that map data from \vec{x} space to \vec{z} space

Using Non-Linear Transformations

• Learn a linear classifier in \vec{z} space: $g^{(z)}(\vec{z}) = sign(\vec{w}^{(z)}\vec{z})$

$$\vec{x} = (1, x_1, x_2)$$

$$\vec{z} = (1, x_1^2, x_2^2)$$

$$g^{(z)}(\vec{z}) = sign(-0.6 + z_1 + z_2)$$

Using Non-Linear Transformations

• Transform the learned hypothesis back to \vec{x} space

•
$$g(\vec{x}) = g^{(z)}(\Phi(\vec{x})) = sign(\vec{w}^{(z)}\Phi(\vec{x}))$$

$$\vec{x} = (1, x_1, x_2)$$

$$\vec{z} = (1, x_1^2, x_2^2)$$

$$g^{(z)}(\vec{z}) = sign(-0.6 + z_1 + z_2)$$

Nonlinear Transformation

Generalization of Nonlinear Transformation

- Fact (We'll prove this later)
 - The VC Dimension of d-dim perceptron is d+1
- VC dimension of perceptron on input space $\vec{x} = (x_0, ..., x_d)$
 - d+1
- VC dimension of perceptron on input space $\vec{z} = (z_0, ..., z_{d'})$
 - $\leq d' + 1$ (usually treated as $\approx d' + 1$)
- Careful: Non-linear transform might lead to "nonsense" behavior

How to Choose Feature Transform Φ

How to Choose Feature Transform Φ

Must choose Φ BEFORE looking at the data

Otherwise, you are doing "data snooping"

The hypothesis set H is as large as anything your brain can think of

Choose Φ Before Seeing Data

- Rely on domain knowledge (feature engineering)
 - Handwriting digit recognition example
- Use common sets of feature transformation
 - Polynomial transformation
 - 2nd order Polynomial transformation
 - $\vec{x} = (1, x_1, x_2)$
 - $\Phi_2(\vec{x}) = (1, x_1, x_2, x_1 x_2, x_1^2, x_2^2)$
 - Pros: more powerful (contains circle, ellipse, hyperbola, etc)
 - Cons: 2-d => 5-d
 - More computation/storage
 - Worse generalization error

The VC dimension of d-dim perceptron is d+1

Q-th Order Polynomial Transform

•
$$\vec{x} = (1, x_1, ..., x_d)$$

• From 1-st order to Q-th order polynomial transform:

- $\Phi_1(\vec{x}) = \vec{x}$
- $\Phi_2(\vec{x}) = (\Phi_1(\vec{x}), x_1^2, x_1 x_2, x_1 x_3, \dots, x_d^2)$
- •
- $\Phi_Q(\vec{x}) = (\Phi_{Q-1}(\vec{x}), x_1^Q, x_1^{Q-1}, x_2, \dots, x_d^Q)$

• Number of elements in $\Phi_Q(\vec{x})$

Q-th Order Polynomial Transform

•
$$\vec{x} = (1, x_1, ..., x_d)$$

- From 1-st order to Q-th order polynomial transform:
 - $\Phi_1(\vec{x}) = \vec{x}$
 - $\Phi_2(\vec{x}) = (\Phi_1(\vec{x}), x_1^2, x_1 x_2, x_1 x_3, \dots, x_d^2)$
 - •
 - $\Phi_Q(\vec{x}) = (\Phi_{Q-1}(\vec{x}), x_1^Q, x_1^{Q-1}, x_2, \dots, x_d^Q)$
- Number of elements in $\Phi_O(\vec{x})$
 - $\binom{Q+d}{Q}$

Structural Hypothesis Sets

• Let H_Q be the linear model for the $\Phi_Q(\vec{x})$ space

- Let $g_Q = argmin_{h \in H_O} E_{in}(h)$
 - H_0 H_1 H_2 ...
 - $d_{vc}(H_0)$ $d_{vc}(H_1)$ $d_{vc}(H_2)$...
 - $E_{in}(g_0)$ $E_{in}(g_1)$ $E_{in}(g_2)$...

Structural Hypothesis Sets

• Let H_Q be the linear model for the $\Phi_Q(\vec{x})$ space

- Let $g_Q = argmin_{h \in H_Q} E_{in}(h)$
 - $H_0 \subset H_1 \subset H_2 \dots$
 - $d_{vc}(H_0) \le d_{vc}(H_1) \le d_{vc}(H_2) \dots$
 - $E_{in}(g_0) \ge E_{in}(g_1) \ge E_{in}(g_2) \dots$

