The table below highlights leading industry players whose research efforts have been inspired by advancements in BEV perception. The data is as of March 2023.

Institution	Related Work				
1 NVIDIA, USA	M^2BEV: Multi-Camera Joint 3D Detection and Segmentation with				
	Unified Bird's-Eye View Representation, 22.04				
2 Qualcomm, USA	X-Align: Cross-Modal Cross-View Alignment for Bird's-Eye-View				
	Segmentation, 22.10, WACV				
3 Bosch, Germany	SemanticBEVFusion: Rethink LiDAR-Camera Fusion in Unified Bird's-Ey				
	View Representation For 3D Object Detection, 22.12				
4 Valeo, France	LaRa: Latents and Rays for Multi-Camera Bird's-Eye-View Semantic				
	Segmentation, 22.06, CORL				
5 Motional, USA	3M3D: Multi-view, Multi-path, Multi-representation for 3D Object				
	Detection, 23.02				
	Surround-View Vision-based 3D Detection for Autonomous Driving: A				
	Survey, 23.02				
	Vision-RADAR fusion for Robotics BEV Detections: A Survey, 23.02				
6 Volvo, Sweden	F2BEV: Bird's Eye View Generation from Surround-View Fisheye				
	Camera Images for Automated Driving, 23.03				
7 Huawei, China (華	Towards Domain Generalization for Multi-view 3D Object Detection in				
為)	Bird-Eye-View, 23.03, CVPR				
8 Horizon Robotics,	MapTR: Structured Modeling and Learning for Online Vectorized HD				
China (地平線)	Map Construction, 22.08, ICLR				
	Vision-based Uneven BEV Representation Learning with Polar				
	Rasterization and Surface Estimation, 22.07, CORL				
	Multi-Camera Calibration Free BEV Representation for 3D Object				
	Detection, 22.10,				
	Sparse4D: Multi-view 3D Object Detection with Sparse				
	Spatial-Temporal Fusion, 22.11				
9 NIO, China (蔚來)	TiG-BEV: Multi-view BEV 3D Object Detection via Target				
	Inner-Geometry Learning, 22.12				
10 DJI, China (大疆)	UniFormer: Unified Multi-view Fusion Transformer for Spatial-Temporal				
	Representation in Bird's-Eye-View, 22.07				
11 DiDi, China (滴	FusionMotion: Multi-Sensor Asynchronous Fusion for Continuous				
滴)	Occupancy Prediction via Neural-ODE, 23.02				
	Consistency of Implicit and Explicit Features Matters for Monocular 3D				
	Object Detection, 22.07				
	Contour Context: Abstract Structural Distribution for 3D LiDAR Loop				
	Detection and Metric Pose Estimation, 23.02				
12 HAOMO.AI ,	BEV-Lanedet: Fast Lane Detection on BEV Ground, 22.10				
China (毫末智行)					
13 PhiGent, China	BEVDet: High-Performance Multi-Camera 3D Object Detection in				
(鑒智機器人)	Bird-Eye-View, 22.06				

	DEV/Det4Dy Evaleit Temperal Cyce in Multi-semana 3D Object				
	BEVDet4D: Exploit Temporal Cues in Multi-camera 3D Object Detection, 22.06				
	BEVerse: Unified Perception and Prediction in Birds-Eye-View for				
	Vision-Centric Autonomous Driving, 22.05				
14 Nullmax, USA	BEVSegFormer: Bird's Eye View Semantic Segmentation From Arbitrary				
	Camera Rigs, 22.03, WACV				
	FastPillars: A Deployment-friendly Pillar-based 3D Detector, 23.02				
15 Meituan, China (美團)	AeDet: Azimuth-invariant Multi-view 3D Object Detection, 22.11				
16 Alibaba, China	BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework,				
(阿里巴巴)	22.05, NeurlPS				
17 JD, China (京東)	JPerceiver: Joint Perception Network for Depth, Pose and Layout				
	Estimation in Driving Scenes, 22.07, ECCV				
	Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object				
	Detection, 22.05				
18 MEGVII, China	PETR: Position Embedding Transformation for Multi-View 3D Object				
(曠視)	Detection, 22.03, ECCV				
	PETRv2: A Unified Framework for 3D Perception from Multi-Camera				
	Images, 22.06.				
	BEVDepth: Acquisition of Reliable Depth for Multi-view 3D Object				
	Detection, 22.06, AAAI				
	BEVStereo: Enhancing Depth Estimation in Multi-view 3D Object				
	Detection with Dynamic Temporal Stereo, 22.09				
	MatrixVT: Efficient Multi-Camera to BEV Transformation for 3D				
	Perception, 22.11				
19 SenseTime, China	DETR4D: Direct Multi-View 3D Object Detection with Sparse Attention,				
(商湯)	22.12				
Fast-BEV: Towards Real-time On-vehicle Bird's-Eye View P					
	23.01, NeurIPS				
	Fast-BEV: A Fast and Strong Bird's-Eye View Perception Baseline, 23.01				
	BEVDistill: Cross-Model BEV Distillation for Multi-view 3D object				
	Detection, 22.11, ICLR				
20 QCraft, China (輕	BEV-Locator: An End-to-end Visual Semantic Localization Network				
舟智行)	Using Multi-View Images, 22.11				

Representative scholars and research teams from leading institutions who have cited the applicant's work on Bird's-Eye View Perception.

Name	Institution	Country/Region	Title
Dinesh Manocha	University of Maryland at	USA	AAAS/AAAI/ACM/IEEE/A
	College Park		NAI Fellow
Anima	California Institute of	USA	AAAI/ACM/IEEE Fellow
Anandkumar	Technology		
Kilian Q.	Cornell University	USA	AAAI/ACM Fellow
Weinberger			
Mani Srivastava	University of California, Los	USA	ACM/IEEE Fellow
	Angeles		
Jensen Huang	NVIDIA	USA	NAE Member
Deepak Ganesan	University of	USA	ACM Fellow
	Massachusetts Amherst		
Henrik I.	University of California San	USA	IEEE Fellow
Christensen	Diego		
Jenq-Neng Hwang	University of Washington	USA	IEEE Fellow
Ming C. Wu	University of California,	USA	IEEE/OSA Fellow
	Berkeley		
Fatih Porikli	Qualcomm	USA	IEEE Fellow
Ming-Hsuan Yang	University of California,	USA	IEEE Fellow
	Merced		
Roberto Cipolla	University of Cambridge	UK	FREng/IAPR Fellow
Gerhard Rigoll	Technical University of	Germany	IEEE Fellow
	Munich		
Luc Van Gool	ETH Zurich	Switzerland	ICCV Marr Prize Winner
Marc Pollefeys	ETH Zurich	Switzerland	ACM/IEEE Fellow
Markus Gross	ETH Zurich	Switzerland	ACM/EUROGRAPHICS
			Fellow
Alexander Yarovoy	Delft University of	Netherlands	IEEE Fellow
	Technology		
Max Welling	University of Amsterdam	Netherlands	CIFAR/ELLIS Fellow
Qing-Long Han	Swinburne University of	Australia	IEEE Fellow
	Technology		
Dacheng Tao	Nanyang Technological	Singapore	ACM/IEEE Fellow
	University		
James Kwok	HKUST	Hong Kong,	IEEE Fellow
		China	
Jiaya Jia	HKUST	Hong Kong,	IEEE Fellow
		China	
Ya-Qin Zhang	Tsinghua University	China	Academician of
			CAE/AAAS/IEEE Fellow
Tieniu Tan	Nanjing University	China	Academician of CAS 3 / 4

			/IEEE/IAPR Fellow
Fei-Yue Wang	Chinese Academy of	China	AAAS/IEEE/ASME Fellow
	Sciences		
Tao Mei	HiDream.ai	China	IEEE/IAPR/CAAI Fellow
Jun Zhu	Tsinghua University	China	AAAI/IEEE Fellow
Guo-Jun Qi	Westlake University	China	IEEE/IAPR Fellow
Yunhong Wang	Beihang University	China	IEEE/IAPR Fellow
Ce Zhu	UESTC	China	IEEE/Optica/IET/AAIA
			Fellow
Lei Zhang	International Digital	China	IEEE Fellow
	Economy Academy		
Zhisheng Niu	Tsinghua University	China	IEEE Fellow

Below listed some representative quotations on applicant's work, including BEVFormer, TopoNet and OpenLane-V2:

- "A unified End-to-End framework [1], which fuses multi-camera and temporal feature based on Deformable Attention and is suitable for various kinds of perception tasks in AD." where [1] refer to BEVFormer, by Andreas Geiger, head of the Department of Computer Science of the University of Tübingen.
- "When used with the current best open-sourced lane-topology model [7], lane detection and lane-topology prediction achieve state-of-the-art performance... With the release of the lane-topology task alongside the OpenLane-V2 dataset, the predominant paradigm for lane detection and relational reasoning models emerged, ..." where [7] refer to TopoNet, and [1] refer to OpenLane-V2, by Kilian Q. Weinberger, AAAI/ACM Fellow.