Ток в проводниках

1. На поверхности бесконечно длинного цилиндра распределены заряды таким образом, что правая половина поверхности цилиндра от сечения ОО' заряжена положительным электричеством, а левая — отрицательным. В обоих направлениях плотность зарядов увеличивается прямо пропорционально расстоянию от сечения ОО'. Показать, что во всех точках внутри цилиндра напряжённость электрического

поля будет везде одинакова и направлена вдоль оси цилиндра, как это указано на рисунке стрелкой.

- 2. Имеется ли вблизи проводника, по которому течет постоянны ток, электрическое поле?
- **3.** Начертить примерное расположение силовых линий электрического поля вокруг однородного проводника, согнутого в форме дуги. По проводнику течет постоянный ток.

5. а. К точке A среды подводится ток I,а от точки B отводится ток I. Считая, что каждая точка среды независимо от других точек создает стационарное сферически-симметрическое поле тока, определите поверхностную плотность тока в плоскости симметрии точек A и B. Каков полный ток через эту плоскость? Как изменится решение, если и к точке B подводится ток I? б*. Определите распределение плотности тока по поверхности грунта, если на глубине h от его поверхности находится точечный источник с током I.

- **6.** Плоский конденсатор с расстоянием между пластинами d, заполненный средой с диэлектрической проницаемостью ε и удельным сопротивлением ρ, включён в цепь батареи с ЭДС E и внутренним сопротивлением r. Чему равна напряжённость E электрического поля в конденсаторе, если его ёмкость равна C?
- 7. Пространство между пластинами плоского конденсатора заполнено жидкостью с диэлектрической проницаемостью є и удельным сопротивлением р. Найдите силу взаимодействия между пластинами конденсатора, когда через конденсатор течёт постоянный ток І. Площадь пластин конденсатора равна S.
- 8. Два цилиндрических проводника одинакового сечения, но с разными удельными сопротивлениями ρ1 и ρ2, прижаты торцами друг к другу. Найти заряд на границе раздела данных проводников, если в направлении от проводника 1 к проводнику 2 течет ток I.
- 9. На плоскость раздела двух сред, удельная проводимость которых λ_1 и λ_2 , из первой среды идут линии тока, образуя угол α_1 с нормалью к плоскости. Какой угол образуют с этой нормалью линии тока во второй среде? Чему равна поверхностная плотность заряда на границе раздела сред? В первой среде плотность тока j.
- **10.** Удельная проводимость среды зависит от координаты x: $\lambda = \lambda_0 a/(a+x)$. Как зависит от x плотность заряда при стационарной плотности тока j, направленной вдоль оси x?

- 11. В среде с малой удельной проводимостью λ находится металлический шар радиуса r. Определите ток, стекающий с шара, если его потенциал равен V. Если такой шар подсоединить изолированным проводом к громоотводу, то каким будет сопротивление заземления?\
- 12. Два электрода металлические шары диаметра 30 см висят в море на изолированных кабелях на глубине 60 м. Расстояние между шарами 300 м. Удельная проводимость морской воды 4 См/м. Оцените сопротивление воды между шарами.
- **13.** После заполнения конденсатора средой с удельной проводимостью λ и диэлектрической проницаемостью ε сопротивление между его зажимами оказалось равным R. Найдите емкость конденсатора. Зависит ли результат от конструкции конденсатора?

Ток в проводниках

- **1.** Прямолинейный провод глубоко зарыт в однородном грунте. Ток утечки с единицы длины провода равен i. Определите плотность тока на расстоянии r от провода. Длина провода много больше r.
- 2. а. К точке A среды подводится ток I, а от точки B отводится ток I. Считая, что каждая точка среды независимо от других точек создает стационарное сферически-симметрическое поле тока, определите поверхностную плотность тока в плоскости симметрии точек A и B. Каков полный ток через эту плоскость? Как изменится решение, если и к точке B подводится ток I? б*. Определите распределение плотности тока по поверхности грунта, если на глубине h от его поверхности находится точечный источник с током I.

3. На плоскость раздела двух сред, удельная проводимость которых λ_1 и λ_2 , из первой среды идут линии тока, образуя угол α_1 с нормалью к плоскости. Какой угол образуют с этой нормалью линии тока во второй среде? Чему равна поверхностная плотность заряда на границе раздела сред? В первой среде плотность тока j.

- **4.** Удельная проводимость среды зависит от координаты x: $\lambda = \lambda_0 a/(a+x)$. Как зависит от x плотность заряда при стационарной плотности тока j, направленной вдоль оси x?
- 5. Зазор между обкладками плоского конденсатора заполнен последовательно двумя диэлектрическими слоями 1 и 2 толщиной d_1 и d_2 с проницаемостями ε_1 и ε_2 и удельными сопротивлениями ρ_1 и ρ_2 . Конденсатор находится под постоянным напряжением U, причем электрическое поле направлено от слоя 1 к слою 2. Найти σ поверхностную плотность сторонних зарядов на границе раздела диэлектрических слоёв и условие, при котором σ = 0.
- 6. Между пластинами 1 и 2 плоского конденсатора находится неоднородная слабо проводящая среда. Ее диэлектрическая проницаемость и удельное сопротивление изменяются от значений ε_1 , ρ_1 у пластины 1 до значений ε_2 , ρ_2 у пластины 2. Конденсатор подключен к постоянному напряжению, и через него течет установившийся ток I от пластины 1 к пластине 2. Найти суммарный сторонний заряд в данной среде.
- 7. Между пластинами 1 и 3 плоского конденсатора помещена тонкая металлическая пластина 2 параллельно обкладкам конденсатора (см. рисунок). Образовавшиеся объёмы заполнены диэлектрическими жидкостями с одинаковой диэлектрической проницаемостью ε , но с разными удельными сопротивлениями ρ_I и ρ_2 ($\rho_2 > \rho_I$). Найти величину и направление силы, действующей на пластину 2 со стороны электрического поля, когда через конденсатор течёт постоянный ток I. Площади всех трёх пластин одинаковы и равны S.

- **8.** В плоский воздушный конденсатор ёмкости C плотно вставили две проводящие пластины одинаковой толщины. Удельное сопротивление материала одной пластины равно ρ_1 , а другой ρ_2 . На обкладки конденсатора подали постоянное напряжение U («плюс» источника соединён с обкладкой, с которой контактирует пластина 1). Найти заряд, накопившийся на границе раздела пластин при постоянном токе
- **9.** В среде с малой удельной проводимостью λ находится металлический шар радиуса r. Определите ток, стекающий с шара, если его потенциал равен V. Если такой шар подсоединить изолированным проводом к громоотводу, то каким будет сопротивление заземления?
- 10. Два электрода металлические шары диаметра 30 см висят в море на изолированных кабелях на глубине 60 м. Расстояние между шарами 300 м. Удельная проводимость морской воды 4 См/м. Оцените сопротивление воды между шарами.
- **11.** После заполнения конденсатора средой с удельной проводимостью λ и диэлектрической проницаемостью ε сопротивление между его зажимами оказалось равным R. Найдите емкость конденсатора. Зависит ли результат от конструкции конденсатора?
- 12. Дирижабль завис над гористой местностью. Из-за естественной ионизации у воздуха имеется некоторая проводимость. Электрический заряд дирижабля уменьшается в два раза за каждые $\tau = 10$ мин. Найдите удельное сопротивление ρ воздуха.
- **13.** Некоторое вещество обладает нелинейной проводимостью. Удельное сопротивление ρ этого вещества зависит от напряжённости E электрического поля по следующему закону: $\rho = \rho_0 + AE^2$, где $\rho_0 = 1,0 \cdot 10^7$ Ом·м и $A = 1,0 \cdot 10^{-3}$ Ом·м $^3/B^2$. Этим веществом заполнено всё пространство между пластинами плоского конденсатора. Площадь пластин S = 1 м².
- 1) Через конденсатор течёт ток. Найдите максимально возможное значение силы тока I_{max} .
- 2) Предполагая, что расстояние между пластинами конденсатора d=1 см, определите максимальную тепловую мощность, которая может выделяться внутри конденсатора при изменении напряжения между пластинами. Постройте качественный график зависимости мощности P от напряжения U.
- 3) Пусть теперь напряжение на конденсаторе постоянно: $U_1 = 2.0 \cdot 10^3$ В. Какая максимальная мощность может выделяться внутри конденсатора, если изменять расстояние между пластинами? При каком значении $d = d_1$ достигается максимальная мощность? Предполагается, что конденсатор заполнен веществом при любых значениях d. Постройте качественный график зависимости выделяемой мощности P от расстояния d между пластинами.
- 14. Сферический конденсатор с радиусами обкладок $R_1 = R$ и $R_3 = 3R$ подсоединён к источнику с постоянным напряжением U (рис.). Пространство между обкладками заполнено двумя слоями различных веществ с удельными сопротивлениями $\rho_1 = \rho$ и $\rho_2 = 2\rho$ и диэлектрическими проницаемостями $\varepsilon_1 = \varepsilon_2 = 1$. Радиус сферической границы между слоями $R_2 = 2R$. Удельная проводимость слоёв между обкладками конденсатора намного меньше удельной проводимости материала обкладок. 1) Найдите заряд на границе между слоями различных веществ. 2) Найдите силу тока, протекающего через конденсатор.

- 15. Имеются три концентрические хорошо проводящие металлические сферы 1, 2 и 3 радиусами R, 2R и 3R. Пространство между первой и второй сферами заполнено жидкостью с диэлектрической проницаемостью ε и удельным сопротивлением 11ρ , а между второй и третьей жидкостью с диэлектрической проницаемостью 11ε и удельным сопротивлением ρ . Между внутренней и внешней сферами при помощи батарейки поддерживается постоянная разность потенциалов U. Чему равен заряд q_2 средней сферы? Какова сила тока I, который течёт при этом в цепи?
- 16. Плоский конденсатор с расстоянием между обкладками d подсоединён к источнику постоянного тока с ЭДС, равной E (рис.). Конденсатор заполнен двумя слоями слабопроводящих сред с разными значениями удельной проводимости λ_1 и λ_2 . Оба слоя находятся в электрическом контакте между собой и с пластинами конденсатора. Толщина каждого слоя d/2, диэлектрическая проницаемость обоих слоёв $\varepsilon_1 = \varepsilon_2 = 1$. Найдите: 1) поверхностные плотности σ_1 и σ_2 зарядов на пластинах конденсатора; 2) поверхностную плотность σ заряда в плоскости контакта слоёв. Примечание. Удельная проводимость это величина, обратная удельному сопротивлению: $\lambda = 1/\rho$.

