# Lesson 1: The Biology of You

BIOL 1441 Cell & Molecular Biology



# Learning Objectives (a.k.a. Study Guide)

# By the end of this lesson, students will be able to:

- 1. Explain how the human body is organized, from smallest (cells) to largest (organism).
- 2. List the structures found in all types of cells.
- 3. Explain how a prokaryotic cell is different from a eukaryotic cell, and give examples of each.
- 4. Describe the primary function of a cell's plasma membrane.

- 5. List the 4 main macromolecules found in the human body.
- 6. Identify examples of each of the major macromolecules.
- 7. Describe the function of each kind of macromolecule.
- 8. Explain what happens in catabolic & anabolic reactions.
- 9. Explain what happens in hydrolysis & dehydration synthesis.

## What Happens When You Eat?

The **macromolecules** in the food you eat are broken into **monomers** through the process of hydrolysis.

The **monomers** from your food are used to build **macromolecules** using dehydration synthesis.



You are an **organism**.

Each of your **organs** has a specific job in its organ system.

Your body is made of 30 trillion cells!



Your **organ systems** do complex functions to keep you alive.

**Tissues** (a.k.a. groups of cells) work together to form organs.

## Cells

#### Cells are the smallest living things

#### To be alive, a cell must:

- Be separate from its environment
- Be able to create energy from food
- Be able to grow
- Be able to reproduce

# The macromolecules that cells are built from help it do these things:

- Lipids form a plasma membrane barrier between inside & outside
- Carbohydrates are an easy energy source
- Proteins help the cell perform complex tasks
- Nucleic acids store genetic information to pass along to offspring



## Classifying Cells

Cells can be classified based on the location of their genetic information

#### Some cells are **prokaryotic** cells

- Their genetic information is found in a nucleoid region (labeled D)
- Bacterial cells are prokaryotic cells

#### Some cells are **eukaryotic** cells

- Their genetic information is stored in a membrane-enclosed nucleus (labeled B)
- Animal cells & plant cells are eukaryotic cells







## Let's Practice!



Observe the cell on the left.

```
This cell:

DOES / DOES NOT

have a membrane-enclosed nucleus.
```

This cell would be considered: prokaryotic / eukaryotic

## Let's Practice!

Observe the cells on the left.



These cells:
DO / DO NOT
have a membrane-enclosed nucleus.

These cells would be considered: prokaryotic / eukaryotic

## Cells

Prokaryotic & eukaryotic cells can look very different

Despite their many differences, all cells require some of the same structures to be alive:

- 1. DNA & RNA, a set of genetic information
- 2. Ribosomes, protein-building structures
- **3.** A plasma membrane, a dividing line between inside & outside
- **4. Cytoplasm**, a sugar & protein solution inside the cell

Note: we may use **cytoplasm** and **cytosol** interchangeably this semester. Curious about the difference? See the short video on Canvas.

#### **Bacterial (Prokaryotic) Cells**







**Eukaryotic Human Cells** 







#### **Other Eukaryotic Cells**







DNA
Deoxyribonucleic acid

Nitrogenous base

Sugar phosphate backbone

## All Cells Have:

MACROMOLECULE: Nucleic Acids

## **DNA & RNA**

DNA & RNA are the genetic information molecules of cells

- DNA is double-stranded, with 2 lines of genetic information wrapped around each other
- RNA is usually single-stranded, with just 1 line of information

The **monomers** (a.k.a. pieces) used to build DNA & RNA are **nucleotides** 

- Each nucleotide has a phosphate group, a sugar, and a nitrogenous base
- The <u>nitrogenous base</u> is what determines the identity of the nucleotide (A, T, G, C, or U)



## All Cells Have: DNA & RNA



The <u>sugar</u> in each nucleotide determines if it is found in DNA or RNA

- DNA nucleotides have deoxyribose sugar
- RNA nucleotides have ribose sugar

The nucleotides found in DNA & RNA are different

- DNA: A, T, C, & G
- RNA: A, U, C, & G



DNA stores ALL the genetic information of a cell.

Regions called **genes** contain the directions for building specific proteins.

When a cell needs a specific protein, it makes an mRNA "copy" of the information stored in that gene.

This mRNA is sent to ribosomes so they can build the protein.

## Stop & Think It Through!

Why do all cells (animal, plant, and bacterial) need to have DNA and RNA?

## All Cells Have: Ribosomes

Ribosomes are a cell's protein-building "machines"

- In bacteria, ribosomes are found throughout the cytoplasm
- In animal & plant cells, ribosomes are also attached to the rough endoplasmic reticulum

To build proteins, ribosomes need mRNA & monomers called **amino acids** 

- First, they "read" the mRNA instructions
- Then, they connect amino acids in the correct order



### **Proteins**

Proteins (a.k.a. polypeptides) are long chains of amino acids

- After each chain is built, it folds into its 3D shape
- Sometimes, more than one folded chain connect, making a larger functional protein

Proteins MUST be the correct 3D shape to be able to do their job in the cell

- Proteins lose their shape if the temperature or pH is too high or low, or if they are exposed to toxic chemicals
- If a protein permanently loses its 3D shape, it is denatured
- Denatured proteins CANNOT perform their functions









## MACROMOLECULE: Proteins

## **Functions of Proteins**

Proteins perform many different functions in cells

Cytoskeleton proteins give cells their 3D shape

**Enzymes** speed up chemical reactions

- Some reactions (anabolic reactions) build things
- Some reactions (catabolic reactions) break things

**Glycoproteins** act like a name tag for cells (or viruses, like the one that causes COVID-19)

**Transport proteins** move molecules across the plasma membrane of cells





## Stop & Think It Through!

Some antibiotics <u>inactivate the ribosomes</u> of bacterial cells.

What *effect* would this have on bacterial cells?

Why would this kind of antibiotic be a good way to treat a bacterial infection?

# All Cells Have: **A Plasma Membrane**

The cell's plasma membrane is also known as its phospholipid bilayer

Phospholipid molecules have two regions

- Their head group, which loves water (making it hydrophilic)
- Their fatty acid tails, which hate water (making them hydro**phobic**)

The bilayer structure of the plasma membrane protects the phospholipid's tails from water

• It also makes it semipermeable (a.k.a. "picky" about what can & cannot cross it)

MACROMOLECULE: Lipids

Outside the cell



The head (the hydrophilic part)

The tails (the hydrophobic parts)

## All Cells Have: Cytoplasm



# Cytoplasm is the soupy solution inside a cell's plasma membrane

- 80% of this is water
- It includes all of cell's organelles
- It also includes dissolved salts & macromolecules

#### Macromolecules in the cytoplasm

- Cytoskeleton proteins, giving the cell its shape
- Enzymes, speed up chemical reactions
- Carbohydrates, providing energy to the cell

## Carbohydrates

#### Carbohydrates are a cell's "favorite food"

• The energy stored in carbohydrates are released through **catabolic** (a.k.a. breaking) reactions

#### Carbohydrates are classified by size

- Monosaccharides (like glucose) are made of one sugar molecule
- Disaccharides (like sucrose) are made of two sugar molecules
- Polysaccharides (like starch) are made of many sugar molecules



## Carbohydrates

### Not all carbohydrates are the same

- Some carbohydrates (pentoses) have 5 carbons while others (hexoses) have 6 carbons
- Some carbohydrates are linear while others form rings

Monosaccharides & disaccharides provide energy quickly

### Polysaccharides **store** energy

- Glycogen is used by animal cells for <u>short-term</u> energy storage
- Starches are used by plant cells for <u>short-term</u> energy storage

MACROMOLECULE: Carbohydrates



starch

### Fats

Fats are used for <u>long-term</u> energy storage

The most common fat in animal cells is **triglycerides** 

**Triglycerides** are made of a glycerol head & three fatty acid tails

- The energy of fats is stored in the chemical bonds (connections) in the fatty acid tails
- The longer the fatty acid tail, the more energy that is stored in it

#### Simplified triglyceride structure



#### Detailed triglyceride structure



## Fats

Fatty acid tails can be saturated or unsaturated

**Saturated** fatty acids have carbons attached to as many hydrogens as possible

- This creates straight fatty acid tails that can pack together closely
- This kind of fat is solid at room temperature

**Unsaturated** fatty acids have double bonds (extra connections) between carbons

- This creates bent fatty acid tails that can't squeeze as closely together
- This kind of fat is liquid at room temperature

#### saturated fatty acid





#### unsaturated fatty acid



## Stop & Think It Through!

Why is it good for human skeletal muscle cells to store extra energy in the form of *glycogen*, not *triglycerides*?

## Let's Practice!

Omega-6 fatty acids are a type of **unsaturated** fatty acid used by the human body to grow. (Interestingly, our bodies cannot make them!)

Which chemical structure is MOST LIKELY to represent an omega-6 fatty acid?

How do you know?

## Let's Practice!



Phospholipids are the type of lipid used to build a cell's plasma membrane.

Each phospholipid has 2 fatty acid tails.

#### Fatty Acid #1 is a:

saturated / unsaturated fatty acid.

#### Fatty Acid #2 is a:

saturated / unsaturated fatty acid

## Cholesterol

# **Cholesterol** is a lipid made of 4 attached carbon rings

- Cholesterol can be obtained through diet
- Cholesterol is also made by the liver when it metabolizes saturated fatty acids

Excessive cholesterol can clog blood vessels, but the human body requires a moderate level of it

- Cholesterol maintains the stability of the plasma membrane
- Cholesterol is used to make sterol hormones (like testosterone, estrogen, and cortisol)





## Types of Chemical Reactions

Catabolic reactions occur when large molecules (like lipids) are broken down into smaller pieces

- Large molecules store energy in their chemical bonds (a.k.a. connections) between smaller pieces
- <u>Catabolic</u> reactions **release** the stored energy for a cell to use

**Anabolic** reactions occur when smaller pieces are used to <u>build</u> a large molecule

- Building new connections between smaller pieces requires energy
- Cells use <u>anabolic</u> reactions to store energy for later use









## Cortisol

#### Terminology:

Synthesis / genesis = building
Lysis / release = breaking

Cortisol is a sterol hormone released by the body during stress

Cortisol changes the metabolic processes (a.k.a. chemical reactions) of the body

- It increases
   breakdown of
   glycogen (stored
   energy) in the body
- Cortisol decreases the building of new proteins



Notice that the effects of <u>cortisol</u> on metabolism are **opposite** of the effects of <u>insulin</u> on metabolism



Based on its effects in the body, would **cortisol** be an <u>anabolic</u> hormone or a catabolic hormone?

Based on its effects in the body, would **insulin** be an <u>anabolic</u> hormone or a <u>catabolic</u> hormone?

## Water & Chemical Reactions

Water (H<sub>2</sub>O) is often involved in the breaking & building of chemical bonds

In **hydrolysis**, water is used to <u>break</u> a chemical bond

- A water molecule is split into H & OH, each part attaching to a different side of the chemical bond
  - Result: the monomers detach from one another
- Hydrolysis is a type of catabolic reaction

In **dehydration synthesis**, water is <u>made</u> (along with a new chemical bond)

- H & OH are removed from the monomers
  - Result: a chemical bond forms between them
- Dehydration synthesis is a type of *anabolic* reaction







## So... What Happens When You Eat?

The **macromolecules** in the food you eat are broken into **monomers** through the process of hydrolysis.

The **monomers** from your food are used to build **macromolecules** using dehydration synthesis.



## Let's Practice! The Macromolecules: A Summary

| Type of Macromolecule | Function | Examples |
|-----------------------|----------|----------|
| Lipids                |          |          |
|                       |          |          |
|                       |          |          |
|                       |          |          |

## To Prepare for Next Class...

- ☐ Review your class notes
  - Use the eTextbook & Other Helpful Resources to supplement your lecture notes
- ☐ Complete the homework assignment
  - Review what you didn't understand and make another attempt. You can complete the homework as many times as you want!
- ☐ Print the slides for Lesson #2 The Great Divide

☐ Take some deep breaths... this moves oxygen directly into your cells and reduces stress!

