

WEST BENGAL UNIVERSITY OF TECHNOLOGY

BM-201

MATHEMATICS - II

Time Allotted: 3 Hours

Answer any ten questions.

Full Marks: 70

 $10 \times 1 = 10$

The questions are of equal value.

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP A(Multiple Choice Type Questions)

(i)	The differential coefficient of χ^6 with respect to χ^3 is						
	(A) $2x^3$	(B) 2x	(C) $2x^2$	(D) 2			
(ii)	The degree	and order	of the	differential	equation		
	$\left(\frac{d^2y}{dx^2}\right)^{\frac{2}{3}} - 3\frac{dy}{dx} = 4 \text{ are}$						
	(A) degree = $\frac{2}{3}$	$\frac{1}{2}$, order = 2	(B) degree = 2 , order = 2				
	(C) degree $= 2$	(D) degree = 3 , order = 2					
(iii)	The series $1 - 1 + 1 - 1 + \dots$ is						
	(A) convergent with sum 0		(B) convergent with sum 1				
	(C) divergent		(D) oscillatory				

Turn Over

1.

CS/BCA/Even/Sem-2nd/BM-201/2015

		•					
(iv)		inear transformation from R ² to R ³ defined by					
	$T(x, y) = (x + 2y, x - y, y)$. Then the image of $(1, 2)$ is $(A) (2, 1, -1)$ (B) $(5, -1, 2)$ (C) $(1, 1, 1)$ (D) $(2, 2, 3)$ (v) In \mathbb{R}^3 , the vectors $(1, 0, 1)$, $(1, 1, 0)$ and $(0, 1, 1)$ are						
(v)							
. (*)	(A) linearly dependent (B) linearly independent						
	(C) both (A) and (B) (D) none of these						
(vi)	If $(5,7) = a(1, respectively)$	1) + b(1,	2)the values	of a and b are			
,	(A) 1, 2	(B) 2, 3	(C) 3, 2	(D) 3, 3			
(vii)	The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if						
	$(A) p \ge 1$	(B) p = 1	(C) $p \le 1$	(D) p = 0			
(viii)	$\frac{1}{(D-2)(D-3)}e^x is$						
	(A) $\frac{e^x}{2}$	(B) $\frac{xe^{2x}}{2}$	$(C) - \frac{xe^x}{6}$	$(D)-\chi e^{3x}$			
(ix)							
	(A) $\{u_n\}$ is convergent to 1 (B) $\{u_n\}$ is divergent						
(C) $\{u_n\}$ is convergent to 0 (D) none of these							
. (x)	(x) If S and T be two subspaces of a vector space V, then which of the following is also a subspace of V?						
	(A) $S \cup T$	(B) S-T	(C) T-S	(D) $S \cap T$			
(xi)	s						
	$(A)\frac{1}{y^2}$	(B) y	(C) $\frac{1}{y}$	(D) 1			
(xii)	Leibnitz's test is						
	(A) a constant series		(B) a series of positive terms				
	(C) an alternatin	g series	(D) a series of negative terms				
(xiii)	Let T be a line $T(x, y) = (x + y,$		to R ³ defined by				
	(A) 3	(B) 2	(C) 1	·(D) 0			
2153			2				

GROUP B (Short Answer Type Questions)

Answer any three questions.

 $3 \times 5 = 15$

- 2. Solve any two of the following:
 - (a) $y = px + \frac{a}{p}$.
 - (b) $(D^2-4)y=e^{2x}+e^{-4x}$.
 - (c) $(D^2 + 9)y = \cos 3x$.
- 3. Test the convergence of the series

$$\chi + \frac{2^2 x^2}{2!} + \frac{3^3 x^3}{3!} + \frac{4^4 x^4}{4!} + \dots X > 0.$$

- 4. Let $S = \{(x, y, z) | x + y + z = 0, x, y, z \in \mathbb{R}^3 \}$. Prove that S is a subspace of \mathbb{R}^3 . Find the dimension of S.
- 5. Find the representative matrix of the linear transformation $T: R^3 \longrightarrow R^3$ defined by T(x, y, z) = (3x + z, -2x + y, -x + 2y + 4z).
- 6. Define monotone sequence. When is a monotone sequence convergent? Is the following sequence $\{u_n\}$ convergent?

$$u_n = \frac{3n+1}{n+2}$$
.

GROUP C (Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

- 7. (a) Verify whether the differential equation 3+7+5 $e^{y}dx + (xe^{y} + 2y)dy = 0$ is exact.
 - (b) Solve: $x \frac{dy}{dx} 2y = xy^4$.
 - (c) Find the general and singular solutions of $y = px p^2$.

CS/BCA/Even/Sem-2nd/BM-201/2015

- 8. (a) Discuss the convergency of the sequence $\left\{\frac{1}{n}\sin\frac{n\pi}{2}\right\}$.
 - (b) Let $S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a+b=0, a, b, c, d \in R \right\}$. Find a basis and dimension of S.
 - (c) Show that $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\dots$ Is a divergent series.
- 9.(a) Solve: $x^2 \frac{d^2 y}{dx^2} 3x \frac{dy}{dx} 5y = \sin \log x$.
 - (b) If $\{\alpha, \beta, \gamma\}$ is basis of a real vector space V, show that $\{\alpha + \beta, \beta + \gamma, \gamma + \alpha\}$ is also a basis of V
 - (c) Determine the linear mapping T:R³ → R³ which maps the basis vectors
 (0, 1, 1), (1, 0, 1), (1, 1, 0) of R³ to the vectors
 (1, 2, 1), (1, 1, 2), (2, 1, 1) respectively. find dim(kerT).
- 10. (a) State D' Alembert's ratio test. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$.
 - (b) Show that the series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$ converges conditionally.
 - (c) Show that the sequence $\sqrt{2}$, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2}+\sqrt{2}}$,... converges to 2.
- 11.(a) Find the differential equation of all circles touching the axis of x at the origin.
 - (b) Show that the vectors (1, -2, 3), (2, 3, 1) and (-1, 3, 2) form a basis of R³.
 - (c) Give an example to show that union of two sub spaces need not be a sub space of v.