SEMAINE DU 21/03 AU 25/03

1 Cours

Espaces préhilbertiens réels

Projection orthogonale Si $E = F \oplus F^{\perp}$ (ce n'est pas toujours le cas si E est de dimension infinie), définition du projecteur orthogonal sur F. Si F est de dimension finie, on a bien $E = F \oplus F^{\perp}$. Expression du projeté orthogonal sur un espace vectoriel de dimension finie à l'aide d'une base **orthonormale** de ce sous-espace vectoriel. Si F est un sous-espace vectoriel de dimension finie d'un espace préhilbertien E et p_F le projecteur orthogonal sur F, alors pour tout $x \in E$, y = p(x) est l'unique vecteur vérifiant d(x, F) = ||x-y||. Inégalité de Bessel. Suite totale. Si $(e_n)_{n \in \mathbb{N}}$ est une suite orthonormale totale d'un espace préhilbertien E et p_F est le projecteur orthogonal sur vect (e_0, \dots, e_n) , alors pour tout $x \in E$, la suite $(p_n(x))$ converge vers x pour la norme euclidienne.

Endomorphismes symétriques Définition. Un endomorphisme d'un espace euclidien est symétrique si et seulement si sa matrice dans une base **orthonormée** est symétrique. Un projecteur (resp. une symétrie) est un endomorphisme symétrique si et seulement si c'est un projecteur orthogonal (resp. une symétrie orthogonale). L'orthogonal d'un sous-espace stable par un endomorphisme symétrique est stable par cet endomorphisme. Théorème spectral et interprétation matricielle.

Automorphismes orthogonaux Définition. Conservation de la norme et du produit scalaire. Un endomorphisme est un automorphisme orthogonal (positif) si et seulement si sa matrice dans une base **orthonormée** est orthogonale (positive). Réduction des automorphismes orthogonaux. Rotation d'un espace euclidien de dimension 3. Les automorphismes orthogonaux positifs d'un espace euclidien de dimension 3 sont les rotations.

2 Méthodes à maîtriser

- Utiliser l'inégalité de Cauchy-Schwarz dans le cas des produits scalaires usuels sur \mathbb{R}^n et $\mathcal{C}^0([a,b],\mathbb{R})$.
- Orthonormaliser une famille libre à l'aide du procédé de Gram-Schmidt.
- Déterminer l'orthogonal d'un sous-espace vectoriel. On peut par exemple déterminer les vecteurs orthonaux à tout vecteur d'une base du sous-espace vectoriel dont on recherche l'orthogonal.
- Calculer un projeté orthogonal, au choix :
 - utiliser l'expression du projeté à l'aide une base **orthonormale** du sous-espace vectoriel sur lequel on projette ;
 - si on connaît une base $(f_1, ..., f_n)$ quelconque de F, on peut caractériser le projeté p(x) d'un vecteur x sur F par $x \in \text{vect}(f_1, ..., f_n)$ et $x p(x) \perp f_i$ pour tout $i \in [1, n]$.
- Calculer la distance euclidienne à un sous-espace vectoriel de dimension finie : utiliser l'expression de la distance en fonction du projeté orthogonal.
- Montrer qu'un endomorphisme est un automorphisme orthogonal, au choix :
 - montrer qu'il conserve le produit scalaire;
 - montrer qu'il conserve la norme;
 - montrer que sa matrice dans une base **orthonormale** est orthogonale.
- Déterminer l'axe et l'angle d'une rotation étant donné sa matrice dans une base orthonormée.
- Déterminer l'image d'un vecteur par une rotation d'axe et d'angle donnés.
- Démontrer les résultats classiques (mais hors programme) sur les endomorphismes symétriques (définis) positifs ou sur les matrices symétriques réelles (définies) positives.
 - Si *u* est un endomorphisme symétrique d'un espace euclidien E, alors

$$(\forall x \in E, \langle u(x), x \rangle \ge 0) \iff \operatorname{Sp}(u) \subset \mathbb{R}_+$$
$$(\forall x \in E \setminus \{0_E\}, \langle u(x), x \rangle > 0) \iff \operatorname{Sp}(u) \subset \mathbb{R}_+^*$$

- Si $A \in \mathcal{M}_n(\mathbb{R})$ est une matrice symétrique réelle, alors

$$\left(\forall \mathbf{X} \in \mathcal{M}_{n,1}(\mathbb{R}), \ \mathbf{X}^{\mathsf{T}} \mathbf{A} \mathbf{X} \ge \mathbf{0} \right) \iff \mathrm{Sp}(\mathbf{A}) \subset \mathbb{R}_{+}$$
$$\left(\forall \mathbf{X} \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{\mathbf{0}\}, \ \mathbf{X}^{\mathsf{T}} \mathbf{A} \mathbf{X} > \mathbf{0} \right) \iff \mathrm{Sp}(\mathbf{A}) \subset \mathbb{R}_{+}^{*}$$

3 Questions de cours

Banque CCP Exercices 39, 63, 68, 101

Matrices symétriques réelles positives Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique réelle. Montrer que

$$\left(\forall X\in\mathcal{M}_{n,1}(\mathbb{R}),\;X^{\mathsf{T}}AX\geq0\right)\iff\mathrm{Sp}(A)\subset\mathbb{R}_{+}$$

 ${f Endomorphismes\ sym\'etriques\ positifs\ }$ Soit u un endomorphisme sym\'etrique d'un espace euclidien ${f E}.$ Montrer que

$$(\forall x \in \mathsf{E}, \, \langle u(x), x \rangle \geq 0) \iff \mathrm{Sp}(u) \subset \mathbb{R}_+$$