Adaptive Model Predictive Control: Robustness and Parameter Estimation

Mark Cannon

Joint work with Matthias Lorenzen, University of Stuttgart and Xiaonan Lu, University of Oxford

Robust MPC paradigm:

- > MPC requires adequate models of the system, uncertainty, disturbances
- Amount of uncertainty in the model crucially affects performance
- □ Large effort (time & money) spent on model identification offline

Adaptive MPC paradigm:

- Identify model online
- ▷ Require: robust constraint satisfaction closed loop stability & performance guarantees parameter convergence

An idea with a long history: e.g. self-tuning control, DMC, GPC \dots [Clarke, Tuffs, Mohtadi, 1987]

Revisited with new tools:

• Set membership estimation

[Bai, Cho, Tempo, 1998]

Robust tube MPC

[Langsson, Chryssochoos, Rakovic, Mayne, 2004]

Dual adaptive/predictive control

[Lee & Lee, 2009]

Recent work on MPC with model adaptation

- Focus on online learning & identification:
 - Persistency of Excitation constraints

```
[Marafioti, Bitmead, Hovd, 2014]
```

- Kalman filter-based parameter estimation with covariance matrix in cost
 [Heirung, Ydstie, Foss, 2017]
- Gaussian process regression, particle filtering

```
[Klenske, Zeilinger, Scholkopf, Hennig, 2016]
[Bayard & Schumitzky, 2010]
```

- Focus on robust constraint satisfaction and performance:
 - Constraints based on prior uncertainty set, online update of cost only
 [Aswani, Gonzalez, Sastry, Tomlin, 2013]
 - Set-based identification, stable FIR plant model

```
[Tanaskovic, Fagiano, Smith, Morari, 2014]
```

This talk considers how to

- ensure robust constraint satisfaction;
- update constraints & costs online via set-membership & point estimates;
- enforce parameter convergence via persistency of excitation conditions.

Outline:

- Set membership parameter estimation
- Polytopic tube robust MPC
- Parameter convergence and time-varying parameters

Parameter set estimate

Plant model with unknown parameter vector θ^* and disturbance w:

$$x_{k+1} = A(\theta^*)x_k + B(\theta^*)u_k + w_k$$

Assume the model is affine in θ^* (assumed constant)

$$x_{k+1} = D_k \theta^* + d_k + w_k$$

$$\begin{cases} D_k = D(x_k, u_k) \\ d_k = A_0 x_k + B_0 u_k \end{cases}$$

with stochastic disturbance $w_k \in \mathcal{W}$ a.s., \mathcal{W} known, compact, polytopic

If x_k, x_{k-1}, u_{k-1} are known, then θ^* must lie in the "unfalsified set":

$$\Delta_k = \{\theta : x_k = D_{k-1}\theta + d_{k-1} + w, \ w \in \mathcal{W}\}\$$

Hence update the parameter set estimate Θ_k via

$$\Theta_k = \Theta_{k-1} \cap \Delta_k$$

Parameter set estimate

- ightharpoonup If Θ_0 is a compact polytope, then Θ_k is a compact polytope for all k>0 But the update $\Theta_k=\Theta_{k-1}\cap\Delta_k$ has potentially unbounded complexity!
- ightharpoonup Instead, use fixed complexity sets defined for given H_{Θ} by

$$\Theta_k = \{\theta : H_{\Theta}\theta \le h_k\}$$

and update Θ_k by solving a set of linear programs:

$$[h_k]_i = \max_{w \in \mathcal{W}, \, \theta \in \Theta_{k-1}} [H_{\Theta}]_i \theta \quad \text{s.t.} \quad x_k = D_{k-1}\theta + d_{k-1} + w$$

Then

$$\Theta_{k-1} \cap \Delta_k \subseteq \Theta_k \subseteq \Theta_{k-1}$$

since

$$\qquad \qquad |H_{\Theta}|_i \theta \leq [h_k]_i \text{ for all } \theta \in \Delta_k \cap \Theta_{k-1} \qquad \qquad \text{implies } \Theta_{k-1} \cap \Delta_k \subseteq \Theta_k$$

$$\qquad \qquad [h_k]_i \leq \max_{\theta \in \Theta_{k-1}} [H_{\Theta}]_i \theta = [h_{k-1}]_i \qquad \qquad \text{implies } \Theta_k \subseteq \Theta_{k-1}$$

Parameter point estimate

To ensure closed loop l^2 stability, we define the MPC cost in terms of a point estimate $\hat{\theta}_k$ of θ^\star , computed using a LMS filter

Given a parameter estimate $\hat{\theta}_k$, let $\hat{x}_{1|k} = A(\hat{\theta}_k)x_k + B(\hat{\theta}_k)u_k$ Then for a given parameter update gain $\mu>0$ satisfying

$$1/\mu > \sup_{(x,u)\in\mathcal{Z}} ||D(x,u)||^2$$

the point estimate $\hat{ heta}_k$ is defined

$$\tilde{\theta}_k = \hat{\theta}_{k-1} + \mu D^{\top}(x_{k-1}, u_{k-1})(x_k - \hat{x}_{1|k-1})$$
$$\hat{\theta}_k = \Pi_{\Theta_k}(\tilde{\theta}_k)$$

where Π_{Θ_k} is the Euclidean projection onto Θ_k

Here $\mathcal Z$ is the joint state and control constraint set (assumed bounded) and the point estimate update becomes simply a projection onto Θ_k if $\mu \to 0$

Parameter point estimate

The closed loop l^2 gain property is based on the following result

Lemma (Point estimate)

If $\sup_{k\in\mathbb{N}}\|x_k\|<\infty$ and $\sup_{k\in\mathbb{N}}\|u_k\|<\infty$, then $\theta_k\in\Theta_k$ for all k and

$$\sup_{T \in \mathbb{N}, w_k \in \mathcal{W}, \hat{\theta}_0 \in \Theta_0} \frac{\sum_{k=0}^T \|\tilde{x}_{1|k}\|^2}{\frac{1}{\mu} \|\hat{\theta}_0 - \theta^{\star}\|^2 + \sum_{k=0}^T \|w_k\|^2} \le 1$$

where $\tilde{x}_{1|k} = A(\theta^{\star})x_k + B(\theta^{\star})u_k - \hat{x}_{1|k}$ is the 1-step prediction error

Control Problem

Consider robust regulation of the system

$$x_{k+1} = A(\theta)x_k + B(\theta)u_k + w_k$$

with $\theta \in \Theta_k$, $w_k \in \mathcal{W}$, subject to the state and control constraints

$$Fx_k + Gu_k \le \mathbf{1} = \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}^\top$$

Assumption (Robust stabilizabilty)

There exists a set $\mathcal{X}=\{x: Vx\leq \mathbf{1}\}$ and feedback gain K such that \mathcal{X} is λ -contractive for some $\lambda\in[0,1)$, i.e.

$$V\Phi(\theta)x \leq \lambda \mathbf{1}$$
, for all $x \in \mathcal{X}, \theta \in \Theta_0$.

where
$$\Phi(\theta) = A(\theta) + B(\theta)K$$
.

Control Problem

State and control input sequences predicted at time k: $u_{i|k}, x_{i|k}$, $i=0,1,\ldots$ are expressed in terms of decision variables $\mathbf{v}=(v_{0|k},\ldots,v_{N|k})$:

$$u_{i|k} = \begin{cases} Kx_{i|k} + v_{i|k} & i = 0, 1, \dots \\ Kx_{i|k} & \end{cases}$$

The regulation cost is defined in terms of point estimate $\hat{ heta}_k$:

$$J_N(x_k, \hat{\theta}_k, \mathbf{v}_k) = \sum_{i=0}^{N-1} \left(\|\hat{x}_{i|k}\|_Q^2 + \|\hat{u}_{i|k}\|_R^2 \right) + \|\hat{x}_{N|k}\|_P^2$$

where $\hat{x}_{i|k}$, $\hat{u}_{i|k}$ are defined by

$$\begin{split} \hat{x}_{i+1|k} &= A(\hat{\theta}_k) \hat{x}_{i|k} + B(\hat{\theta}_k) \hat{u}_{i|k} \\ \hat{u}_{i|k} &= K \hat{x}_{i|k} + v_{i|k} \end{split}$$

and $P \succeq \Phi^\top(\theta) P \Phi(\theta) + Q + K^\top R K$ for all $\theta \in \Theta_0$

Tube MPC

A sequence of sets (a "tube") is constructed to bound the predicted state $x_{i|k}$, with ith cross section, $\mathcal{X}_{i|k}$:

$$\mathcal{X}_{i|k} = \{x : Vx \le \alpha_{i|k}\}$$

where V is determined offline and $\alpha_{i|k}$ are online decision variables

 $lack {f O}$ For robust satisfaction of $x_{i|k} \in {\cal X}_{i|k}$, we require

$$V\Phi(\theta)x + VB(\theta)v_{i|k} + \bar{w} \le \alpha_{i+1|k} \quad \text{for all } x \in \mathcal{X}_{i|k}, \ \theta \in \Theta_k$$
 where $[\bar{w}]_i = \max_{w \in \mathcal{W}} [V]_i w$

⑤ For robust satisfaction of $Fx_{i|k} + Gu_{i|k} \leq 1$, we require

$$(F+GK)x+Gv_{i|k} \leq 1$$
 for all $x \in \mathcal{X}_{i|k}$

Condition (A) is bilinear in x and θ , but it can be expressed in terms of linear inequalities using a vertex representation of either $\mathcal{X}_{i|k}$ or Θ_k

Tube MPC

We generate the vertex representation:

$$\mathcal{X}_{i|k} = \operatorname{co}\{x_{i|k}^1, \dots x_{i|k}^m\}$$

using the property that $\{x: [V]_r x \leq [\alpha_{i|k}]_r\}$ is a supporting hyperplane of $\mathcal{X}_{i|k}$ for each r:

Hence each vertex $x_{i|k}^j$ is given by the intersection of hyperplanes corresponding to a fixed set of rows of V, and

$$x_{i|k}^j = U^j \alpha_{i|k}$$

for some U^j , determined offline from the vertices of $\mathcal{X} = \{x : Vx \leq 1\}$

Tube MPC

In terms of both hyperplane and the vertex descriptions of $\mathcal{X}_{i|k}$, the robust tube constraints become

- **6** $(F+GK)U^{j}\alpha_{i|k}+Gv_{i|k} \leq 1, j=1,\ldots,m$

Now condition (B) is linear and (A) can be equivalently written as linear constraints using

Lemma (Polyhedral set inclusion)

Let
$$\mathcal{P}_i = \{x : F_i x \leq f_i\} \subset \mathbb{R}^n \text{ for } i = 1, 2.$$
 Then $\mathcal{P}_1 \subseteq \mathcal{P}_2$ iff $\exists \Lambda \geq 0$ such that $\Lambda F_1 = F_2$ and $\Lambda f_1 \leq f_2$

Robust MPC online optimization problem

Summary of constraints in the online MPC optimization at time k:

$$\begin{split} Vx_k &\leq \alpha_{0|k} \\ \Lambda^j_{i|k} H_\Theta &= VD(U^j \alpha_{i|k}, KU^j \alpha_{i|k} + v_{i|k}) \\ \Lambda^j_{i|k} h_k &\leq \alpha_{i+1|k} - Vd(u^j \alpha_{i|k}, KU^j \alpha_{i|k} + v_{i|k}) - \bar{w} \\ \Lambda^j_{i|k} &\geq 0 \\ (F + GK)U^j \alpha_{i|k} + Gv_{i|k} &\leq \mathbf{1} \\ \Lambda^j_{N|k} H_\Theta &= VD(U^j \alpha_{N|k}, KU^j \alpha_{N|k}) \\ \Lambda^j_{N|k} h_k &\leq \alpha_{N|k} - Vd(u^j \alpha_{N|k}, KU^j \alpha_{N|k}) - \bar{w} \\ \Lambda^j_{N|k} &\geq 0 \\ (F + GK)U^j \alpha_{N|k} &\leq \mathbf{1} \\ &\qquad \qquad \text{for } i = 0, \dots, N-1, \ j = 1, \dots, m \end{split}$$

Let $\mathcal{D}(x_k, \Theta_k)$ be the feasible set for the decision variables $\mathbf{v}_k, \alpha_k, \Lambda_k$

Robust adaptive MPC algorithm

Offline: Choose Θ_0 , \mathcal{X} , feedback gain K, and compute P

Online, at each time $k = 1, 2, \ldots$

- \blacksquare Given x_k , update the set (Θ_k) and point $(\hat{\theta}_k)$ parameter estimates
- 2 Compute the solution $(\mathbf{v}_k^*, \boldsymbol{\alpha}_k^*, \boldsymbol{\Lambda}_k^*)$ of the QP

$$\begin{aligned} & \min_{\mathbf{v}_k, \boldsymbol{\alpha}_k, \boldsymbol{\Lambda}_k} J(x_k, \hat{\theta}_k, \mathbf{v}_k) \\ & \text{subject to } (\mathbf{v}_k, \boldsymbol{\alpha}_k, \boldsymbol{\Lambda}_k) \in \mathcal{D}(x_k, \Theta_k) \end{aligned}$$

 $\mbox{3}$ Apply the control law $u_k^* = K x_k + v_{0|k}^*$

Robust adaptive MPC algorithm

Theorem (Closed loop properties)

If $\theta^* \in \Theta_0$ and $\mathcal{D}(x_0, \Theta_0) \neq \emptyset$, then for all k > 0:

- $\bullet^{\star} \in \Theta_k$
- $D(x_k, \Theta_k) \neq \emptyset$
- $Fx_k + Gu_k \le 1$

and the closed loop system is finite-gain l^2 -stable, i.e. there exist constants $c_0,c_1,c_2>0$ such that for all T:

$$\sum_{k=0}^{T} \|x_k\|^2 \le c_0 \|x_0\|^2 + c_1 \|\hat{\theta}_0 - \theta^*\|^2 + c_2 \sum_{k=0}^{T} \|w_k\|^2$$

A numerical example

Second-order linear system with

$$(A(\theta), B(\theta)) = (A_0, B_0) + \sum_{i=1}^{3} (A_i, B_i)\theta_i$$

$$A_0 = \begin{bmatrix} 0.5 & 0.2 \\ -0.1 & 0.6 \end{bmatrix}, \qquad B_0 = \begin{bmatrix} 0 \\ 0.5 \end{bmatrix}, \quad A_1 = \begin{bmatrix} 0.042 & 0 \\ 0.072 & 0.03 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

$$A_2 = \begin{bmatrix} 0.015 & 0.019 \\ 0.009 & 0.035 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \qquad A_3 = \begin{bmatrix} 0 & 0 \\ -0 & 0 \end{bmatrix}, \qquad B_3 = \begin{bmatrix} 0.0397 \\ 0.059 \end{bmatrix}.$$

- $> \text{ true parameter } \theta^\star = [0.8 \ \ 0.2 \ \ -0.5]^\top \text{, initial set } \Theta_0 = \{\theta: \|\theta\|_\infty \leq 1\}.$
- ho disturbance uniformly distributed on $\mathcal{W}=\{w\in\mathbb{R}^2:\;\|w\|_\infty\leq 0.1\}$, w_k
- \triangleright state and input constraints: $[x]_2 \ge -0.3$ and $u_k \le 1$.

A numerical example: constraint satisfaction

Figure: Realized closed-loop trajectory from initial condition $x_0 = \begin{bmatrix} 3 & 6 \end{bmatrix}^T$ (red line), predicted state tube at time k = 0 (tube cross-sections: blue, terminal set: pink)

A numerical example: constraint satisfaction

Figure: Realized closed-loop trajectory from initial condition $x_0 = \begin{bmatrix} 3 & 6 \end{bmatrix}^T$ (red line), predicted control tube at time k = 0 (tube cross-sections: blue)

Persistent excitation

ightharpoonup A regressor Ψ_k is persistently exciting (PE) if

$$\beta_1^2 \mathbb{I} \preceq \frac{1}{l} \sum_{k=k_0+1}^{k_0+l} \Psi_k \Psi_k^\top \preceq \beta_2^2 \mathbb{I}$$

for some $\beta_1, \beta_2, l > 0$ and all k_0 (Narendra,1987).

ightharpoonup Define the diameter of Θ as $dia(\Theta) = \sup_{\theta_1, \theta_2 \in \Theta} \|\theta_1 - \theta_2\|$

Convergence of set membership parameter estimate

If the noise bound $w \in \mathcal{W}$ is tight and the regressor D_k is persistently exciting, then $dia(\Theta_k) \to 0$ with probability one [Bai, Cho, Tempo, 1998].

 $\,\vartriangleright\, \mathcal{W}$ is a tight noise bound if the support of the probability distribution of w is equal to \mathcal{W}

Persistent excitation

Regressor:
$$\Psi_k = D_k^{\top} = \begin{bmatrix} A_1 x_k + B_1 u_k & \cdots & A_p x_k + B_p u_k \end{bmatrix}^{\top}$$

Consider the PE condition evaluated over a window that includes n past time-steps plus current time:

$$\sum_{k=-n}^{k=0} D_k^\top D_k \succeq \beta_1^2 \mathbb{I}$$

This is nonconvex in $u_0=Kx_k+v_{0|k}$, but we can linearise to obtain a convex condition. Thus, let $u_0=u_0^*+\delta u$, so that

$$D_0^{\top} D_0 \succeq D(x_0, u_0^*)^{\top} D(x_0, u_0^*) + D^{\top}(x_0, u_0^*) [B_1 \delta u \quad \cdots \quad B_p \delta u]$$
$$+ [B_1 \delta u \quad \cdots \quad B_p \delta u]^{\top} D(x_0, u_0^*)$$

Therefore a sufficient condition for $\sum_{k=-n}^{k=0} D_k^{\top} D_k \succeq \beta_1^2 \mathbb{I}$ is an LMI in δu :

$$\mathsf{LMI}(\delta u) : \sum_{k=-n}^{k=-1} D_k^{\top} D_k + D(x_0, u_0^*)^{\top} D(x_0, u_0^*) \\ + D(x_0, u_0^*)^{\top} \begin{bmatrix} B_1 \delta u & \cdots & B_p \delta u \end{bmatrix} + \begin{bmatrix} B_1 \delta u & \cdots & B_p \delta u \end{bmatrix}^{\top} D(x_0, u_0^*) \succeq \beta_1^2 \mathbb{I}$$

Robust adaptive MPC algorithm with PE constraint

Offline: Choose Θ_0 , \mathcal{X} , β_1 , feedback gain K, and compute P

Online, at each time $k = 1, 2, \ldots$:

- **1** Given x_k , update the set (Θ_k) and point $(\hat{\theta}_k)$ parameter estimates
- 2 Compute the solution $(\mathbf{v}_k^*, \pmb{\alpha}_k^*, \pmb{\Lambda}_k^*)$ of the QP

$$\begin{aligned} & \min_{\mathbf{v}_k, \boldsymbol{\alpha}_k, \boldsymbol{\Lambda}_k} J(x_k, \hat{\theta}_k, \mathbf{v}_k) \\ & \text{subject to } (\mathbf{v}_k, \boldsymbol{\alpha}_k, \boldsymbol{\Lambda}_k) \in \mathcal{D}(x_k, \boldsymbol{\Theta}_k) \end{aligned}$$

If
$$\sum_{k=-n}^{\kappa-1} D_k^{\top} D_k + D(x_0, u_0^*)^{\top} D(x_0, u_0^*) \not\succeq \beta_1 \mathbb{I}$$
:

- (a) Re-run the MPC optimization with $v_{0|k}=v_{0|k}^*+\delta u$ and LMI (δu) as additional constraints
- (b) If a feasible solution exists, set $v_{0|k}^* \leftarrow v_{0|k}^* + \delta u^*$
- 4 Apply the control law $u_k^* = Kx_k + v_{0|k}^*$

A numerical example: parameter set

Figure: Parameter set Θ_k at time steps $k \in \{0, 1, 2; 10, 25, 50; 100, 500, 5000\}$

Θ set	Volume	Cost*
	(%)	
Θ_0	100	62.22
Θ_1	26.1	61.13
Θ_2	18.3	61.03
Θ_{10}	12.7	60.96
Θ_{25}	8.3	60.93
Θ_{50}	6.3	60.77
Θ_{100}	3.4	59.45
Θ_{500}	0.7	57.94
Θ_{5000}	0.0089	53.95
θ^{\star}	-	52.70

Table: Volume of Θ_k as $\Theta_k/\Theta_0 \times 100\%$; Cost* with same initial x_0 and constraints

Time-varying parameters

Assumption (time-varying parameters)

There exists a constant r_{θ} such that the parameter vector θ_k^{\star} satisfies $\theta_k^{\star} \in \Theta_0$ for all k and $\|\theta_{k+1}^{\star} - \theta_k^{\star}\| \leq r_{\theta}$

Define the dilation operator:

$$R_i(\Theta) = \{\theta : H_{\Theta}\theta \le h + ir_{\theta}\mathbf{1}\}\$$

Then the parameter set update can be expressed

$$\Theta_k = R_1(\Theta_{k-1} \cap \Delta_k) \cap \Theta_0$$

and Θ_k is replaced in the tube MPC constraints by

$$\Theta_{i|k} = R_i(\Theta_k) \cap \Theta_0$$

Robust adaptive MPC algorithm with time-varying parameters

Parameter estimate bounds and recursive feasibility properties are unchanged:

Theorem (Closed loop properties)

If $\theta^{\star} \in \Theta_0$ and $\mathcal{D}(x_0, \Theta_0) \neq \emptyset$, then for all k > 0:

- $\bullet^{\star} \in \Theta_k$
- $D(x_k, \Theta_k) \neq \emptyset$
- $Fx_k + Gu_k \le 1$

But the LMS filter has an additional tracking error, which invalidates the l^2 properties, i.e. "certainty equivalence" no longer applies

However other performance measures can be used in this context, such as the min-max approach of [Lorenzen, Allgöwer, Cannon, 2017]

A numerical example: time-varying parameters

Figure: Parameter set Θ_k at times $k \in \{0, 100, 200, 300, 400, 500\}$ for the time-varying system with $r_\theta = 0.01$

A numerical example: time-varying parameters

Figure: Parameter set Θ_k at times $k \in \{0, 5, 25, 70, 120, 500\}$ for the non-time-varying case for comparison

Conclusions & Outlook

Conclusions:

- Adaptive robust MPC with closed loop guarantees is computationally tractable
- Set-membership parameter estimation and LMS point estimates are obvious choices for MPC cost functions and robust constraints
- Nonconvex PE conditions can be relaxed to convex sufficient conditions

Future work

- How to ensure recursive feasibility with PE constraints?
- Are PE conditions better handled by adding terms to the MPC cost (similar to MPC-based dual control)?
- How can we relax the requirement of prior knowledge of a robustly stabilizing local feedback law?

References:

- M. Lorenzen, M. Cannon, & F. Allgöwer, "Robust MPC with recursive model update"
 Automatica (to appear)
- X. Lu, M. Cannon, "Robust adaptive tube model predictive control" ACC19 (submitted)

Recursive Feasibility

Proposition (Recursive Feasibility)

The online MPC optimisation is feasible at all times $t \ge 1$ if the optimisation is feasible at t = 0.

Proof: Define the optimal solution at time t-1 as $(v_{t-1}, \alpha_{t-1}, \sigma_{t-1}, \tau_{t-1})$ and the suboptimal solution at time t as $(\tilde{v}_t, \tilde{\alpha}_t, \tilde{\sigma}_t, \tilde{\tau}_t)$.

- ① update equation and constraints are satisfied for $k \in \mathbb{N}_{0,N-2}$ due to the feasibility at time t-1 and $\Theta_t \subseteq \Theta_{t-1}$
- ② update equation and constraints are satisfied for k=N-1 because of the terminal constraint
- **9** bound on cost (σ_k, au_k) are satisfied for $k \in \mathbb{N}_{0,N-1}$ because of definition
- **9** initial constraint is satisfied because $Vx_t \leq \alpha_{1|t-1}$
- $\textbf{ o} \text{ terminal constraints are satisfied because of the feasibility at time } t-1 \\ \text{ and the definition of } \tilde{\alpha}_{N|t} \text{ implies } \tilde{\alpha}_{N|t} \leq \alpha_{N|t-1} \\$

Asymptotic bounds on state and control

Proposition (Asymptotic bounds on state and control)

If the MPC optimization is feasible at t=0, then the state and control input, x_t and u_t , satisfy the asymptotic bounds:

$$\limsup_{t \to \infty} \max \{Qx_t\} \le \bar{s}_{\infty}(\lambda_{\infty})$$
$$\limsup_{t \to \infty} \max \{Ru_t\} \le \bar{t}_{\infty}(\lambda_{\infty})$$

where $\lambda_{\infty} = \lim_{t \to \infty} \lambda_t$.

Proof: Consider the rate of decrease in cost

$$\begin{split} &J_{t-1}^o - J_t^o \\ & \geq \left[\max\{Qx_{t-1}\} - \bar{s}_{\infty}(\lambda_{t-1}) \right]_{\geq 0} + \left[\max\{Ru_{t-1}\} - \bar{t}_{\infty}(\lambda_{t-1}) \right]_{\geq 0} \\ & - \left(\max\{H_Q\mathbf{1}\} + \max\{H_R\mathbf{1}\} \right) \left(\frac{1}{(1 - \lambda_{t-1})^2} - \frac{1}{(1 - \lambda_t)^2} \right) \max\{\bar{w}\} \end{split}$$