4. Модели на разпределена софтуерна архитектура

Васил Георгиев

```
ci.fmi.uni-sofia.bg/
```

v.georgiev@fmi.uni-sofia.bg

Съдържание

- Модели софтуерна архитектура
- → Спецификации с UML
- Структурни и функционални диаграми
- → Модели на изгледи

Модели софтуерна архитектура

- Софтуерната архитектура представя т.е. моделира програмния проект (процес на обслужване) като съставен т.е. разпределен процес от софтуерни компоненти
- моделирането на РСА е първата и най-важна фаза на проектиране, настройка, тестване, разгръщане и документация на разпределени среди за обслужване
- моделът на дадена софтуерна архитектура описва
 - декомпозицията на процеса на компоненти
 - функционалната им композиция
 - → прилагания архитектурен стил напр. процедурен, обектен, потоков (data flow), йерархичен или не-йерархичен, информационен (data centric), интерактивен (interaction oriented), базиран на изгледи (views) и др.
 - ⋆ качествените (нефункционалните) атрибути на услугата QoS

Фаза Анализ, предхождаща

моделирането

- акцията и
- конкурентността между обектите
- → UML диаграмите могат да се транслират до HLL с общо приложение

Представяне на софтуерните модели

- Използват се графи и техни разширения
- описанието е чрез диаграми или техни текстови еквиваленти
- цели на описанието са
 - ▶ визуализация
 - → спецификация
 - конструиране
 - → документация
 - 👺 следователно обикновено моделът включва мн. повече от една диаграма
- описанието (моделирането) стартира от по-упростените концепции на бизнес-модела или потребителския сценарий
 - → напр. едномерен модел с блокова диаграма (ненасочен граф) 4.5
- за по пълно функцианално и нефункционално описание на проекта се прилагат многомерни модели
 - → напр. «4+1» модели, включващи
 - ▶ логически изглед
 - ◆ изглед процеси
 - ◆ изглед проектиране
 - → физически изглед
 - → потребителски интерфейсни изгледи

Блокова диаграма на система за електронна търговия

UML-модели на CA

- използва се за ОО-спецификация, анализ, проектиране и документиране на софтуерни проекти
- спецификациите са в две групи диаграми:
- стуктурни диаграми статично описание (изреждане) на елементите в системата
 - йерархична библиотека класове
 - ◆ статични връзки между класовете
 - → наследяване ("is a")
 - → асоциация ("uses a")
 - → агрегация ("has a")
 - → обмен (method invocation)
- ◆ функционални (behavioral) диаграми динамично описание функциите ("поведението") на инстанциите на класовете (т.е. обектите) с диаграми на
 - → интеракцията,
 - колаборацията,
 - акцията и
 - конкурентността между обектите
- ▶ UML диаграмите могат да се транслират до HLL с общо приложение

UML-диаграми за СА – фиг. 4.8

4. Модели фофтуерна архитектура

Структурни UML диаграми

Class	Изброяване и статични връзки между класовете (независещи от взаимодействието им по вр. на изпълнение)
Object	Извлечение от клас диаграмата за обектите и тяхното взаимодействие в определени специфични моменти от изпълнението на системата
Compo- site	Диаграма на съставни структури – описание на структурата на даден компонент като съставящи го класове и компонентните интерфейси
Compo- nent	Описание на системата като структура от компоненти, интерфейсите между тях, и общите системни интерфейси
Package	Йерархична пакетна структура на организацията <i>класовете</i> в директории (т.е. групирани файлове) – пакети от класове и пакети от пакети
Deply- ment	Диаграма на разгръщането - описание на изпълнителната инфраструктура: сървери, изпълняващи <i>компонентите</i> , системно осигуряване и мидълуер, интерфейси и протоколи, вътрешна и външна мрежова свързаност

^{4.} Модели софтуерна архитектура

Функционални UML диаграми...

Use case	Диаграма на случай на употреба – потребителските сценарии на заявки към системата и техните реакции – за описание на функционалните и нефункционалните изисквания към системата
Activity	Диаграма на дейностите – описание на контролния и контекстния обмен между класовете като мрежа от акции, които системата изпълнява за да осъществи реакциите по потребителския сценарий – оркестрация на акциите
State Machine	Диагарама на машна на състоянията – описание на жизнения цикъл на обектите като машина на състоянията и преходите (активни вътрешно-обусловени и реактивни външнообусловени преходи)

... функционални UML диаграми

Inter- action Overview	Диаграма за преглед на взаимодействието – описва потока команди между обектите (control flow) и е комбинация от Action и Sequence диаграмите
Sequence	Диаграма на последователност - нареден (т.е. времеви) списък от съобщенията между обектите
Communi- cation	Аналогично на Sequence диаграмата, но структурирана като като <i>комуникационни канали</i> , които съдържат определен брой последователности
Time Sequence	Времево описание на преходите между вътрешните състояния на обектите и на различимите външни събития (от потребителския сценарий) като последователност от съобщения

Клас диаграми

- най-разпространеното описание при всеки модел
- → статично изброяване на съставните блокове на модела като класове
- → задава «речника» на модела в съответствие с проблемната област
- класовете се описват с техните атрибути
 - → ТИП
 - ▶ интерфейс
 - ▶ методи
 - ▶ свойства
- достъпността (видимостта) на атрибутите се описва като
 - public
 - private
 - protected
 - default
- описва се и отношенията между класовете наследяване, асоциация, агрегация (чрез дъги)
 - → а също и мощността на тези отношения 1:1, 1:много и т.н. (чрез маркировки в края на дъгите)

Клас диаграма – фиг. 4.12

- система за потребителски заявки
- → наследственост "is-a" (стрелка към родителя/базовия клас)
- → агрегация "has-a" (ромб към корена)
- асоциация "uses-α" (нейерархична дъга)
- маркировка на мощността в двата края на дъгите

Моделиране със StarUML

Ръководство по StarUML

http://docs.staruml.io/en/latest/modeling-with-uml/working-withclass-diagram.html#uml-generalization

Моделиране с draw.io

Моделиране с ADL

- Architectural Description Language графична спецификация на модели на разпределена софтуерна архитектура
- ▶ свободна среда за спецификация на ADL- модели AcmeStudio (http://www.cs.cmu.edu/~./acme/AcmeStudio/index.html) с автоматична генерация на Java и C++

Обектни диаграми – фиг. 4.18

- извличат се от клас-диаграмата
- описва обектите като инстанции на класовете т.е. примерно подмножество обекти за дадена клас-диаграма конкретен момент на работа на системата

Диаграма на съставната структура – фиг. 4.19

- → описва връзката между обектите (runtime), с което разширява "речника" на модела
- ◆ обектите и връзката се означават с етикети съответно на ролята (бизнес- или функционална логика) и отношението им ("колаборацията")

Компонентни диаграми – фиг. 4.20

- компонентите са изпълними SW-модули за многократно използване при проектиране, които се представят със своя интерфейс
- → в UML те са със скрита структура (черна кутия) [но при различните технологии се прилагат и компоненти тип "сива" и "стъклена кутия"]
 - → jar в компонентната библиотека JavaBean
 - → dll B.Net
- компонентната диаграма представя съответствието между изискваните (полукръгче)
 и имплементираните (кръгче) интерфейси

компонентите в даден проект може да са готови – COTS – и специфични каталог потребителска GUI склад доставка кредитиране 4. Модели софтуерна архитектура ФМИ/СУ

20

... Компонентни диаграми – фиг. 4.21

- компонентната диаграма представя съответствието между изискваните (полукръгче)
 и имплементираните (кръгче) интерфейси
- ▶ компонентите в даден проект може да са готови COTS и специфични

Пакетна диаграма (фиг. 4.22.1) и диаграма на разгръщането (4.22.2) фолдер с етикет интерфейс чекиране Use Use каталог количка Инфраструктура на разгръщането TCP/IP online Application Database Server количка Server Web сървер кредитор склад доставчик ФМИ/СУ * СИ * PCA 22 4. Модели софтуерна архитектура

Диаграма на случаите на употреба

- описва потребителските сценарии на приложение на системата като граф от актори, случаи на употреба (потребителски функции) и връзките между тях
- → акторите са крайни потребители или други системи, приложения и устройства
- случаите (Use Cases) са комплексни функционални модули от разпределеното приложение/проекта, които описват отделни стъпки от цялостната бизнеслогика
- описанието на СЛУЧаите се допълва в други диаграми с пред- и след-условията на изпълнението им като последователности от стъпките на общото приложение при конкретно негово изпълнение
- връзките между сценариите се маркират с
 - <<include>> от случай, който използва друг случай за изпълнение на дадена функция (насочена дъга)
 - <<extend>> от случай, който извиква друг такъв за изпълнение на функция по изключение (т.е. като опция, която се изпълнява само по изключение)
- диаграмите на случаите на употреба са основа на описанието и [началните]
 им версии се използват за основа на структурните и sequence диаграмите

Диаграма на случаите на употреба

описва потребителските сценарии на приложение на системата като граф от ФИГ, с4-24 употреба (потребителски функции) и връзките между тях акторите са крайни потре и системи, прил Количка 2 Каталог случаите (Use Cases) of ционални моду приложение/проема, които описват отделни стъпки от цялостната бизнеслогика Количка 1 описанието на СЛУЧаит ги диаграми с п овията Проверка о им като последователнос риложение при конкретно негово изпълнение връзките между сценарі маркират с Чекиране Доставка Actor <<ind><<ind>кой (насочена дъга) <<extend>> от случай, който извиква друг такъв за изпълнени нение Фактуриране (т.е. като опция, която се изпълнява само по изключение) диаграмите на случаите на употреба са основа на описанието и [началните] им версии се използват за оч структурните и sequence Изключение Потвърждаване

Диаграма на дейностите

- ◆ описва проекта като потоков (workflow) бизнес процес, състоящ се от дейности activities
- дейностите капсулират
 - логиката на взимането на решение
 - конкурентното изпълнение на функции
 - обработката на изключения
 - прекратяването на процеса (termination)
- потоковата activity диаграма се състои от
 - една начална точка и поне една крайна точка (плътен кръг и ограден кръг)
 - точките на решаване (означават се с ромбче)
 - другите дейности (заоблен правоъгълник)
 - ⋆ конкурентното разделяне и събиране на потоците (дебела черта); N.B. събирането на два и повече потока се счита за синхронизатор (следващите го дейности не могат да стартират без завършване на всички предхождащи го)
 - → събития (events опция) представят обмена на съобщения (signals) между конкурентните акции (насочени многоъгълници с етикети)

... Диаграма на дейностите (фиг. 4.26)

Диаграма Машина на състоянието

- обикновено представят състоянието на обслужващите устройства или софтуерните модули в проекта – набор от състоянията им и преходите между тях
- → логиката на състоянията е реактивна т.е. базира се на външни събития (events)
- състоянията се описват с блок, съдържащ
 - → име,
 - → списък променливи и
 - activity
- → State Machine диаграмата се състои от
 - една начална точка и поне една крайна точка (плътен кръг и ограден кръг)
 - насочени маркирани дъги на преходите
 - състоянията, които меже да са комплексни състояния, съставени от допълващи State Machine диаграми

... Диаграма на Машина на състоянието (фиг. 4.28)

Диаграми за преглед на взаимодействието, последователностни и времеви диаграми

- → диаграмите за преглед на взаимодействието (Interaction Overview) се състоят от кадри (frames), които представляват други диаграми на проекта, маркирани с указател (reference) или със самите диаграми, маркирани с тип напр. sd, cd, ad
 - → дъгите отразяват контролния поток на взаимодействието
- последователностните (sequence) диаграмите отразяват относителната последователност от контролни съобщения между обектите
- ▶ времевата диаграма описва графика на състоянията от машината на състоянията - прилага се за RТприложения и системи – RTOS, ES

Диаграма за преглед на взаимодействието

– фиг. 4.30.

Последователностна диаграма – фиг. 4.31.

Фиг 4 18 2-

Модел на изгледи

- ▶ 4+1 моделиране представя РСА с 4 основни изгледа и един допълнителен логически, развоен, процесен и физически + сценарий на приложние/функциониране, който често се придружава и от изглед на потребителските интерфейси Сценарният изглед и асоциираният с него интерфейсен изглед описват потребителските функции на приложението както и основните нефункционални изисквания
 - произтича от потребителското задание
 - ▶ в UML се специфицира с диаграма на потребителските случаи Логическият изглед описва декомпозицията на разпределеното приложение с оглед на реализираните функции
 - представя основните блокове или компоненти
 - ▶ в UML се специфицира с клас-диаграма (статична), допълнена с една или повече динамични диаграми – най-често последователностни

Развоен, процесен и физически изглед

- Развойният изглед и асоциираният с него интерфейсен изглед описват потребителските функции на приложението както и основните нефункционални изисквания
 - произтича от потребителското задание
 - → в UML се специфицира с диаграма на потребителските случаи
- Процесният изглед описва декомпозицията на разпределеното приложение с оглед на реализираните функции
 - представя основните блокове или компоненти
 - ▶ в UML се специфицира с клас-диаграма (статична), допълнена с една или повече динамични диаграми – най-често последователностни или на дейностите
- Физическият изглед описва цялата РСА на платформата + приложението – инсталация, конфигурация, разгръщане
 - компонентите са на ниво услуги/протоколи или процеси
 - връзките между тях са на ниво комуникационни канали
 - → представя нанасянето (или картирането mapping) на компонентите от развойния изглед върху инфраструктурните възли

Процесен изглед с диаграма на дейностите –

фиг. 4.34.

Физически изглед – фиг. 4.35.

Фиг. 4.20.2

Потребителски интерфейсен изглед

