Thursday, 16 April 2020

To go over a loop:

- a) At top $F = mv^2 / mg$, $\frac{V^2}{r} = g$ Vrop = \sqrt{rg} $r = 9 \times 0.05$, g = 9.81hence $V \times 2.101 \, \text{m/s}$
 - let: $V_1 = V_{top}$ $\frac{1}{2}mV^2 + \frac{1}{2}I\omega^2 = mgh + \frac{1}{2}I\omega,^2 + \frac{1}{2}mV,^2$ where $V^2 = rg$, $\omega^2 = \frac{V^2}{V^2}$ $\omega,^2 = \frac{V^2}{V^2}$ $h = 2 \times 9 \times 18 V$ $\frac{1}{2}mV^2 + \frac{1}{2}I\frac{V^2}{V} = mg 18 V + \frac{1}{2}I\frac{V^2}{V^2} + \frac{1}{2}mV,^2$ Moment of Inertial of solid sphere = $\frac{2}{5}mV^2$ $\frac{1}{2}mV^2 + \frac{1}{5}mV^2 \times \frac{V^2}{V} = mg 18 V + \frac{1}{5}mV^2 \frac{V^2}{V^2} + \frac{1}{2}mV,^2$ V = 0.05, $V_1 = V_{top} = 2101$ hence: $V \lesssim 4.661$
 - C) At x, $h = \frac{1}{2}v = 9v$ $\frac{1}{2}mv^2 + \frac{1}{3}mv^2 = mg9v + \frac{1}{3}mv^2 + \frac{1}{2}mv^2$ $V \approx 3.615$ $F = \frac{mv^2}{v} = \frac{0.1 \times 3.615^2}{9x0.05} = 2.904 \text{ N}$
 - d) Energy-concenation: $V_1 = 4661$ $\frac{1}{2}mv_1^2 + \frac{1}{5}mvv_1^2 = mgh$ $\frac{1}{2}x4661^2 + \frac{1}{5}x0.05x4.061^2 = 9.81 \times h$ $h = \frac{11.0707}{9.81}$ = 1.129 m

Transporting a Fridge: TIIN Im 1869N

a) $711 \times (1.3+16) = 369 \times (1.5-16)$ 1080x = -513 $\kappa = -\frac{19}{40} = 0.475 \, \text{m}$ 0.4754.5=1.975

1.975 m from the person with 369H

Assuming light bood (No mass)

Fridge mg: 711+369 = mg=1080 N

b) 1080 - 234 = 846 N

Combined center of gravity should still be at the same point as each still excerts the same force

Assuming conter of mass along board: ratio unchanged Force still the same

711 N & 369 N

1 0.894 239H

846d = 234 x 0.415 d = 0.1314 0.666 from contre

0.5x ton30 = 0.289 m

0.894-0.289 = 0.605m

0.605 cos(30)846 + 1.5 cos(39234 = 3 F2 cos 30 F2=287.61 N (3-0.605) cos(30)846 + 1.5 cos(30)234 = 3 F, cos 30 F1=792.39N