Les échanges gazeux

Dr.A.GUENDOUZ

Maitre assistant
Physiologie clinique &
explorations fonctionnelles

Echanges gazeux

Echanges gazeux alvéolo-capillaires

Circulation entilation / pulmonaire minute (alvéolaire)

Moulage des vaisseaux pulmonaires

Echanges gazeux

Moulage de l'arbre bronchique

Echanges gazeux alvéolo-capillaires

- Généralités
- Diffusion alvéolo-capillaire
 - Principes physiques
 - Diffusion de l'O₂ et du CO₂
- Efficacité des échanges gazeux alvéolocapillaires
 - Facteurs déterminants l'efficacité des échanges gazeux
 - Poumon idéal vs poumon réel
 - Rapports ventilation/perfusion

Echanges alvéolo-capillaires

Echanges gazeux

Oxygène
Dioxyde de carbone
Anesthésiques gazeux ou volatils
Toxiques (CO, alcool)

Echanges non gazeux

Cellules
Liquides
Particules

Nanoparticules de carbone

- Membrane alvéolocapillaire (MAC)
 - épaisseur ≈ 0,3-0,5
 - au minimum:
 - film liquidien alvéolaire (F)
 - bras d'un pneumocyte I (P1)
 - membranes basales fusionnées entre épithélium alvéolaire et capillaire (MB)
 - cellule endothéliale (E)

Echanges gazeux alvéolo-capillaires

- Généralités
- Diffusion alvéolo-capillaire
 - Principes physiques
 - Diffusion de l'O₂ et du CO₂
- Efficacité des échanges gazeux alvéolocapillaires
 - Facteurs déterminants l'efficacité des échanges gazeux
 - Poumon idéal vs poumon réel
 - Rapports ventilation/perfusion

- Un gaz diffuse toujours
 - d'une zone de pression partielle élevée vers une zone de pression partielle plus basse
 - jusqu'à ce qu'un équilibre soit atteint

 Dans un mélange gazeux, chaque gaz se comporte de façon indépendante

- Diffusion d'un gaz d'un milieu gazeux vers un milieu liquide
 - mêmes lois qu'au
 sein d'un milieu
 gazeux homogène

- Diffusion du gaz proportionnelle
 - aux caractéristiques de la membrane
 - aux caractéristiques du gaz
 - au gradient de pression
 - au temps de contact entre le gaz et la membrane
- Loi de Fick de la diffusion d'un gaz à travers un tissu

- Diffusion du gaz proportionnelle
 - à la surface S du tissu
 - à l'inverse de l'épaisseur e du tissu
 - au gradient de pression de part et d'autre du tissu (P₁-P₂)
 - au temps de contact (dt)
 - à la constante de diffusion du gaz

- Diffusion du gaz proportionnelle à la constante de diffusion du gaz
 - proportionnelle à la solubilité du gaz
 - inversement proportionnelle à la racine carrée de son poids moléculaire
- Constante de diffusion du CO₂ >> O₂

Diffusion alvéolo-capillaire

- Diffusion de l'O₂
 - Grande △ P entre le sang qui arrive dans les capillaires pulmonaires et l'air alvéolaire

Equilibre atteint rapidement (0,3-0,4s)

Diffusion alvéolo-capillaire

- Diffusion du CO₂
 - Faible ∆ P entre le sang veineux mêlé et l'air alvéolaire mais diffusibilité importante

Equilibre atteint rapidement (0,3-0,4s)

Echanges gazeux alvéolo-capillaires

- Généralités
- Diffusion alvéolo-capillaire
 - Principes physiques
 - Diffusion de l'O₂ et du CO₂
- Efficacité des échanges gazeux alvéolocapillaires
 - Facteurs déterminants l'efficacité des échanges gazeux
 - Poumon idéal vs poumon réel
 - Rapports ventilation/perfusion

- Les échanges gazeux alvéolo-capillaires dépendent de:
 - Ventilation alvéolaire
 - Diffusion alvéolo-capillaire
 - Perfusion pulmonaire
 - Rapport ventilation/perfusion

- Diffusion
 - Gradient de pression entre sang veineux mêlé et alvéoles
 - Surface et épaisseur de la membrane A-Cap
 - surface
 - anatomique = $80 100 \text{ m}^2$
 - fonctionnelle = alvéoles normaux + capillaires normaux
 - épaisseur
 - anatomique = $0.5 \mu m$
 - fonctionnelle = toutes les étapes de la diffusion

- Anomalie possible de la diffusion si modification de:
 - surface
 - épaisseur
 - temps de contact

Modification de la taille de la surface d'échange

- Modification de l'épaisseur de la membrane
 - Accumulation de fibres collagène ou le liquide dans l'interstitium
 - Accumulation de liquide dans les alvéoles

- Poumon idéal
 - PaO₂ = PAO₂; PaCO₂ = PACO₂
- Poumon réel normal
 - PaO₂ < PAO₂; PaCO₂ = PACO₂

- Poumon réel normal
 - -PAO₂ = 14 kPa, PaO₂ = 13kPa
 - $-PACO_2 = 5 kPa, PaCO_2 = 5 kPa$
- Gradient alvéolo-artériel normal en O₂ de ≈ 1 kPa; pas de gradient alvéolo-artériel en CO₂ de ≈ 1 kPa
- Origine du gradient alvéolo-capillaire normal en O₂
 - Shunt (court-circuit) sanguin anatomique
 - Inégalités du rapport ventilation/perfusion

Aorte → artères bronchiques → capillaires bronchiques → veines bronchiques → veines azygos → veine cave supérieure

Shunt sanguin anatomique

Inégalités du rapport ventilation/perfusion

Ventilation

Alvéoles distendus. moins compliants Ventilation moindre

Alvéoles non distendus.

Ventilation plus élevée

compliants

Résistances plus élevées **Perfusion moindre**

Plus de recrutement/distension Résistances moins élevées

Distribution régionale de la ventilation alvéolaire en position debout

Ventilation alvéolaire (% valeur prédite)

Distribution régionale de la perfusion en position debout

Perfusion pulmonaire (% valeur prédite)

Rapports ventilation/perfusion

- Rapport V_A/Q
 - Aux sommets
 - ventilation > perfusion
 - rapport V_A/Q élevé
 - Aux bases
 - ventilation < perfusion
 - rapport V_A/Q bas
 - Partie médiane
 - ventilation = perfusion
 - rapport V_A/Q idéal (= 1)

Distribution régionale du rapport V_A/Q

Les pressions sont exprimées en kPa

Conclusions

- Echanges gazeux alvéolo-capillaires
 - Fonction essentielle de l'appareil respiratoire
 - Déterminent la quantité d'O₂ qui sera disponible pour les échanges gazeux tissulaire, donc pour la respiration cellulaire
- Etude de la diffusion gazeuse alvéolo-capillaire possible en routine
- Les échanges se font diffusion selon les mêmes principes au niveau des tissus