Empirical Significance of Learning in a New Keynesian Model with Firm-Specific Capital

James Murray Indiana University

July 20, 2007

Introduction 1 / 48

- Purpose:
 - Estimate the empirical significance of learning.
 - Determine what features of U.S. data constant gain least squares learning can explain.
- Learning suggested to deliver features:
 - Inflation scares.
 - Great moderation.
 - Time varying volatility.
 - Macroeconomic persistence.
- Estimate a NK model with learning and RE by MLE.
 - Estimate with and without endogenous capital.
 - Estimate under alternative initial conditions for beliefs of agents.
- Examine forecast errors, evolution of shocks, and evolution of agents' coefficients.

Consumers 2 / 48

Utility function:

$$U_0 = E_0^* \sum_{t=0}^{\infty} \beta^t \left[\frac{1}{1-\sigma} \xi_t \left(c_t(i) - \eta c_{t-1}(i) \right)^{1-\sigma} - \frac{1}{1+\mu} n_t(i)^{1+\mu} \right]$$

- E_t^* : possibly non-rational expectations operator.
- $c_t(i)$: consumption at time t.
- $n_t(i)$: labor supply at time t.
- ξ_t : common preference shock.
- β : discount factor.
- $\sigma \in (0, \infty)$: inverse of the intertemporal elasticity of substitution.
- $\eta \in [0,1)$: degree of habit formation.
- $\mu \in (0, \infty)$: inverse of the elasticity of labor supply.

Production 3 / 48

Final good production:

$$y_t = \left[\int_0^1 y_t(i)^{\frac{\theta-1}{\theta}} di \right]^{\frac{\theta}{\theta-1}}$$

- y_t output of final good, $y_t(i)$ output of intermediate good i.
- $\theta \in (1, \infty)$: elasticity of substitution in production.

Intermediate goods production:

Model with capital:
$$y_t(i)=z_tk_t(i)^{lpha}\left(
u^tn_t(i)
ight)^{1-lpha}$$

Model without capital: $y_t(i)=z_tn_t(i)$

- z_t: common technology shock.
- $k_t(i)$: firm-specific capital good.
- ullet u: gross growth rate of labor productivity.

- Follow Calvo (1983) pricing: fraction $1-\omega$ firms re-optimize their price each period.
- Inflation indexation: Those who cannot re-optimize may adjust according to:

$$\ln(p_t(i)) = \ln(p_{t-1}(i)) + \gamma \pi_{t-1}$$

 With firm-specific capital (Woodford, 2005), leads to Phillips curve:

$$\pi_t = \frac{\gamma}{1 + \beta \gamma} \pi_{t-1} + \frac{\beta}{1 + \beta \gamma} E_t \pi_{t+1} + \kappa \hat{\mathbf{s}}_t$$

- \hat{s}_t : average marginal cost in the economy (percentage deviation from steady state).
- κ : function of many parameters.

- Final good is converted to a firm-specific capital good.
- Investment of $I_t(i)$ leads to capital stock next period:

$$k_{t+1}(i) = (1 - \delta)k_t(i) + \mu_t I_t(i) - \frac{\phi}{2} \left[\frac{k_{t+1}(i)}{k_t(i)} - 1 \right]^2 k_t(i)$$

- \bullet μ_t : common investment technology shock.
- δ : depreciation rate.
- ϕ : capital adjustment cost parameter.
- Profit maximizing marginal cost:

$$\hat{\mathsf{s}}_t = \frac{\mu + \alpha}{1 - \alpha} \hat{\mathsf{y}}_t - \frac{\alpha(\mu + 1)}{1 - \alpha} \hat{\mathsf{k}}_t - \hat{\lambda}_t - \frac{\mu + 1}{1 - \alpha} \hat{\mathsf{z}}_t,$$

• Market clearing condition:

Model with capital:
$$y_t = c_t + I_t + g_t$$

Model without capital: $y_t = c_t$

ullet g_t : Exogenous demand shocks such as changes in government spending and net exports.

• Model without capital: interest rate responds to output gap:

$$\hat{r}_t = \rho_r \hat{r}_{t-1} + (1 - \rho_r) \left(\psi_\pi \pi_t + \psi_y \tilde{y}_t \right) + \epsilon_{r,t}$$

- $\psi_{\pi} \in (0, \infty)$: feedback on inflation.
- $\psi_y \in (0, \infty)$: feedback on output.
- $\rho_r \in (0,1)$: smoothing parameter.
- Model with capital: interest rate responds to the deviation of output from steady state:

$$\hat{r}_t = \rho_r \hat{r}_{t-1} + (1 - \rho_r) \left(\psi_\pi \pi_t + \psi_y \hat{y}_t \right) + \epsilon_{r,t}$$

- Non-policy shocks (percentage deviations from steady state) are AR(1):
 - Preference shock: $\hat{\xi}_t = \rho_{\xi} \hat{\xi}_{t-1} + \epsilon_{\xi,t}$
 - Technology shock: $\hat{z}_t = \rho_z \hat{z}_{t-1} + \epsilon_{z,t}$
 - Investment shock: $\hat{\mu}_t = \rho_{\mu}\hat{\mu}_{t-1} + \epsilon_{\mu,t}$
 - Demand shock: $\hat{g}_t = \rho_g \hat{g}_{t-1} + \epsilon_{g,t}$
- $\epsilon_{\xi,t}$, $\epsilon_{z,t}$, $\epsilon_{\mu,t}$, $\epsilon_{g,t}$, $\epsilon_{r,t}$ are independently normally distributed with mean zero.

- Re-write the model without capital in terms of the output gap.
- Notation:
 - Tilde denotes (percentage) deviation from fully flexible outcome.
 - Superscript *f* denotes fully flexible outcome.
 - Superscript * denotes steady state value.
- Natural rate of interest:

$$r_{t}^{n} = r_{t}^{f} - E_{t} \pi_{t+1}^{f}$$

$$r_{t}^{n} = (1 - \rho_{r^{n}}) r^{*} + \rho_{n} r_{t-1}^{n} + \epsilon_{t}^{r^{n}}$$

• Consumer first order conditions + market clearing:

$$\begin{split} \tilde{\lambda}_t &= E_t \tilde{\lambda}_{t+1} + \left(r_t - r_t^n - E_t \pi_{t+1} \right) \\ \tilde{\lambda}_t &= \frac{1}{(1 - \beta \eta)(1 - \eta)} \left[\beta \eta \sigma E_t \tilde{y}_{t+1} - \sigma (1 + \beta \eta^2) \tilde{y}_t + \sigma \eta \tilde{y}_{t-1} \right] \end{split}$$

• Phillips curve:

$$\pi_t = \beta E_t \pi_{t+1} + \kappa \left(\mu \tilde{y}_t - \tilde{\lambda}_t \right) + u_t$$

Cost push shock:

$$u_t = \rho_u u_{t-1} + \epsilon_t^u$$

• The New Keynesian model has the form:

$$\Omega_0 x_t = \Omega_1 x_{t-1} + \Omega_2 E_t x_{t+1} + \Psi z_t$$
$$z_t = A z_{t-1} + \epsilon_t$$

- x_t vector of time t variables, observable to agents at following time period.
- z_t: vector of time t shocks, observable to agents in current period.
- Rational expectations solution:

$$x_t = Gx_{t-1} + Mz_t$$

- Agents estimate elements of G and M by least squares.
- Agents know coefficients in A.
- X_t : vector of regressors: $X'_t = [1 \ x'_{t-2} \ z'_{t-1}]$.
- Y_t : vector of dependent variables: $Y_t = x_{t-1}$.
- $\hat{\phi}_t$: least squares estimate of the coefficients in G and M.
- Information at available at time $t: x_{t-1}, z_t$.
- Evolution of $\hat{\phi}_t$ in recursive form:

$$\hat{\phi}_t = \hat{\phi}_{t-1} + gR_t^{-1}X_{t-1}\left(Y_t - X_{t-1}'\hat{\phi}_{t-1}\right)$$

$$R_t = R_{t-1} + g(X_{t-1}X_{t-1}' - R_{t-1})$$

• where g is the constant learning gain.

Estimation 13 / 48

- Method: Maximum likelihood estimation.
- Data: Quarterly data for 1960 through 2005.
- Model with no capital:
 - CBO measure of the output gap.
 - Annualized quarterly inflation rate of the GDP deflator.
 - Annualized quarterly Federal funds rate.
- Model with endogenous capital:
 - Real GDP per capita.
 - Real private consumption per capita.
 - Real gross private domestic investment per capita.
 - Annualized quarterly inflation rate of the GDP deflator.
 - Annualized quarterly Federal funds rate.
- Calibrated parameters:
 - Model without capital: $\beta = 0.99$, $\mu = 0$ (perfectly elastic labor supply).
 - Model with capital: $\beta=$ 0.99, $\delta=$ 0.025, $\alpha=$ 0.33, $\nu=$ 1.00533.

- $\hat{\phi}_t$ and R_t must be initialized for estimation.
- MSV solution, expected outer product of the state vector under RE.
 - Much of learning theory valid for the neighborhood of the MSV solution.
 - Initial conditions are supported by the micro-foundations.
 - Problem: Learning dynamics smallest when near MSV solution.
- Joint estimation:
 - Problems: As many as 40 additional parameters (endogenous capital estimation).
 - Motivation: illustrates how predictions depend on initial conditions.
- Alternative approach: Use a VAR(1) from pre-sample data
 - Problem: latent variables are regressors capital stock, structural shocks.

RE Solution for Initial Conditions

Description	Parameter	RE	Std. dev.	Learning	Std. dev.
Learning gain	g			0.0104	0.0048
Habit formation	η	0.9953	0.0105	0.9470	0.0214
Inverse elasticity sub.	σ	0.0830	0.0724	0.5057	0.4069
Phillips curve slope	κ	0.0001	0.0001	0.0001	0.0001
Price indexation	γ	0.9686	0.0458	0.9730	0.0172
Interest rate smoothing	ρ_r	0.8449	0.0269	0.8943	0.0178
Policy feedback on output	ψ_{v}	0.2073	0.0778	0.3346	0.0931
Policy feedback on inflation	ψ_{π}	1.2812	0.2230	1.5895	0.3079
Persistence nat. int. rate	ρ_n	0.9944	0.0081	0.9016	0.0273
Persistence cost push	ρ_{u}	1.50E-6	0.0684	0.0000	0.0224
Std. dev. nat. int. rate	s _n	0.0009	0.0005	0.1150	0.1065
Std. dev. cost push	S _U	2.45E-6	3.40E-6	2.49E-6	3.00E-7
Std. dev. policy shock	Sr	5.48E-6	3.40E-6	5.31E-6	3.30E-7
Steady state inflation	π^*	7.9795	2.8442	5.6139	1.0109

- Learning gain statistically significantly different from zero.
- Habit formation and indexation remain significant sources of persistence.
- Learning model predicts lower steady state level inflation.
- Rest of the parameters are very similar.

Rational Expectations

Learning (RE initial conditions)

Differences in Forecast Errors

Correlation of Forecast Errors

Output gap 0.9858

Inflation 0.9707

Interest Rate 0.9833

- Forecast errors essentially the same.
- Forecast errors for all variables are largest in 1970s.
 - Neither model explains monetary policy in 1979-1982 period.
 - Neither model can explain changes in volatility.
 - Learning model actually makes slightly larger forecast errors.

Rational Expectations

Learning (RE initial conditions)

Natural Rate Shock

Difference in Smoothed Shocks

Correlation of Smoothed Shocks

Natural Rate Shock 0.7150

Cost Push Shock 0.9799

Policy Shock 0.9907

Learning (RE initial conditions):

Evolution of Coefficients

Learning (RE initial conditions): Evolution of Coefficients

- Perceived persistence in output starts low, increases over the 1970s and early 1980s.
- Perceived impact of past inflation on output opposite sign of RE solution.
- Perceived persistence of inflation falls during 1970s.
- Perceived monetary policy during late 1970s:
 - Believed to respond more to output, less to inflation.
 - Permanent increase in perceived interest rate persistence.
 - Spike in the predictive power of interest rate.

Estimated Initial Conditions

Description	Parameter	Estimate	Std. dev.
Learning gain	g	0.0116	0.0072
Habit formation	η	0.0436	0.0404
Inverse elasticity sub.	σ	2.4018	2.8262
Phillips curve slope	κ	0.0001	0.0003
Price indexation	γ	0.9940	1.1123
Interest rate smoothing	ρ_r	0.8940	0.0279
Policy feedback on output	ψ_y	0.2973	0.1329
Policy feedback on inflation	ψ_{π}	1.0576	0.1989
Persistence nat. int. rate	ρ_n	0.9987	1.00E-8
Persistence cost push	ρ_{u}	0.0002	0.0823
Std. dev. nat. int. rate	Sn	0.0007	0.0080
Std. dev. cost push	s _u	1.5E-05	6.06E-06
Std. dev. policy shock	Sr	5.4E-06	4.6E-07
Steady state inflation	π^*	1.6478	0.8418

- Not shown: estimates of initial conditions.
 - Many estimates have large standard deviations.
- Learning gain statistically significantly different from zero.
- Degree of habit formation is close to zero.
- Point estimate of price indexation still high, but insignificant.
- Point estimate of steady state inflation is low.

Rational Expectations

Learning (Estimated initial conditions)

Differences in Forecast Errors

Correlation of Forecast Errors

Output gap 0.7333

Inflation 0.8472

Interest Rate 0.8861

Rational Expectations

Learning (Estimated initial conditions)

Natural Rate Shock

0.35
0.3
0.25
0.2
0.15
0.1
0.05

Difference in Smoothed Shocks

Natural Rate Shock

Cost Push Shock

Policy Shock

Correlation of Smoothed Shocks

Natural Rate Shock 0.7150

Cost Push Shock 0.9799

Policy Shock 0.9907

Estimated Initial Conditions: Evolution of Coefficients

	RE	Learning (RE init.)	Learning (Est. init.)
MSE Output	1.0920	1.1041	0.7303
MSE Inflation	1.6613	1.5781	1.4175
MSE Fed Funds	1.2594	1.0879	0.9435
Log-likelihood	-303.8	-291.9	-241.6

RE Solution for Initial Conditions

Description	Parameter	RE	Std. dev.	Learning	Std. dev.	
Learning gain	g			3.51E-6	7.01E-6	
Habit formation	η	0.0855	0.0846	0.1078	0.0805	
Inverse elasticity sub.	σ	16.5056	13.8189	16.8358	14.5459	
Capital / output ratio	k_y	4.4799	0.2129	4.5061	0.2129	
Consumption / output ratio	Cy	0.7141	0.0547	0.7234	0.0516	
Inverse elasticity labor	μ	1.53E-5	0.3944	1.00E-5	0.4396	
Capital adjustment cost	ϕ	27.9001	5.4801	27.4460	5.9845	
Phillips curve slope	κ	0.0116	0.0034	0.0119	0.0037	
Price indexation	γ	0.9999	0.0000	0.9999	0.0000	
Interest rate smoothing	$ ho_r$	0.8147	0.0196	0.8103	0.0203	
Policy feedback on output	$\psi_{\scriptscriptstyle Y}$	0.0326	0.0116	0.0356	0.0122	
Policy feedback on inflation	ψ_{π}	1.5401	0.1504	1.4735	0.1405	
Persistence in tech. shock	ρ_z	1.40E-5	0.0888	1.00E-5	0.0902	
Persistence in pref. shock	ρ_{ξ}	0.9793	0.0176	0.9800	0.0167	
Persistence in inv. shock	$ ho_{\mu}$	0.9295	0.0235	0.9282	0.0253	
Persistence in AD shock	ρ_{g}	0.9989	0.0042	0.9993	0.0035	
Std. dev. tech. shock	Sz	0.2399	0.1262	0.2326	0.1325	
Std. dev. inv. shock	s_{μ}	0.1996	0.1219	0.1900	0.1251	
Std. dev. pref. shock	Sξ	0.1722	0.1447	0.1857	0.1626	
Std. dev. policy shock	Sr	0.0025	0.0001	0.0024	0.0001	
Std. dev. AD shock	Sg	0.0222	0.0091	0.0238	0.0098	
Steady state inflation	π^*	8.6918	2.3997	10.3678	3.0793	
Steady state output	<i>y</i> *	1.2521	0.1033	∄ 1.2355 →	≣ 0.0984 ∽	q

Estimated Initial Conditions

٦	Description	Parameter	Estimate	Std. dev.	ï
ĺ	Learning gain	g	0.0288	0.0077	
	Habit formation	η	0.0772	0.1031	
	Inverse elasticity sub.	σ	16.6941	14.4002	
	Capital / output ratio	k_y	4.5086	1.5187	
	Consumption / output ratio	c_y	0.7213	0.0842	
	Inverse elasticity labor	μ	0.0132	1.3992	
	Capital adjustment cost	ϕ	28.1764	38.5551	
	Phillips curve slope	κ	0.0120	0.0154	
	Price indexation	γ	0.9999	0.0000	
	Interest rate smoothing	$ ho_r$	0.8776	0.0351	
	Policy feedback on output	ψ_{y}	0.0374	0.0661	
	Policy feedback on inflation	ψ_{π}	1.5654	0.4185	
	Persistence in tech. shock	$ ho_z$	0.0000	0.0124	
	Persistence in pref. shock	$ ho_{\xi}$	0.9611	0.0234	
	Persistence in inv. shock	$ ho_{\mu}$	0.9364	0.0405	
	Persistence in AD shock	$ ho_{g}$	0.9999	0.0001	
	Std. dev. tech. shock	s_z	0.2569	0.5566	
	Std. dev. inv. shock	s_{μ}	0.1830	0.1692	
	Std. dev. pref. shock	s_{ξ}	0.1707	0.1461	
	Std. dev. policy shock	s _r	0.0024	0.0001	
	Std. dev. AD shock	s_g	0.0255	0.0154	
	Steady state inflation	π^*	9.5185	6.1255	
	Steady state output	у*	1.2396	□ 0.1424 □	Ē

- With RE initial conditions:
 - Learning gain essentially zero.
 - All parameter estimates are very similar.
 - Habit formation close to zero under both RE and Learning.
 - Inflation indexation very close to one.
- With Estimated initial conditions.
 - Point estimates similar as with RE.
 - Not shown: standard deviations for some initial conditions huge.
 - Learning gain greater than zero.
 - Inflation indexation remains significant and close to one.
 - Standard deviations of some structural parameters increased:
 - Capital adjustment cost.
 - Policy feedback on inflation.
 - Steady state inflation.

Rational Expectations

Learning (RE initial conditions)

Differences in Forecast Errors (Correlations)

Learning (Estimated initial conditions)

Differences in Forecast Errors (Correlations)

- Forecast errors for inflation and federal funds rate are clustered in 1970s.
- Volatility of forecast errors is not clustered for consumption and investment.
- Learning model with estimated initial conditions:
 - Out performs the RE model for predicting inflation during 1970s.
 - Under performs the RE model for predicting output during 1980s.
- Even with estimated initial conditions: models have similar performance.

Technology shock

Rational Expectations

Monetary policy shock

Preference shock

Aggregate demand shock

Learning (RE initial conditions)

Technology shock

Investment shock

Monetary policy shock

Preference shock

Aggregate demand shock

Differences in smoothed shocks (Correlations)

Investment shock

(0.9998) Aggregate demand shock

Monetary policy shock

(0.9997)

Learning (Estimated initial conditions)

Technology shock

Investment shock

Monetary policy shock

Preference shock

Aggregate demand shock

Differences in smoothed shocks (Correlations)

(-0.9528) Preference shock

Investment shock

(0.5308) Aggregate demand shock

Monetary policy shock

(0.9794)

	RE	Learning (RE init.)	Learning (Est. init
MSE Output	23558.2	24868.6	24652.0
MSE Consumption	7129.3	7105.1	6883.4
MSE Investment	7118.3	6930.3	7656.7
MSE Inflation	1.6727	1.7508	1.3893
MSE Fed Funds	1.4116	1.5910	1.4483
Log-likelihood	-3042.2	-3041.6	-241.6

- Estimated a NK model without capital under RE and Learning.
 - RE initial conditions: fails to explain persistence, volatility clustering.
 - Estimated initial conditions: some persistence explained, not volatility clustering.
- Estimated a NK model with endogenous capital under RE and learning.
 - Using RE initial conditions: No difference, capital explained some persistence and volatility.
 - Using Estimated Initial conditions:
 - Can get very different paths of shocks and coefficients.
 - Model fit not greatly improved.
 - Still does not explain volatility clustering.
- Conclusion: Expectations framework with larger deviations from RE likely needed to explain data.

