Calcolo dell'esponente di Lyapunov più grande da una serie temporale

Seminario del corso di Dinamica non lineare

Alessandro Batignani

21 novembre 2023

Sommario

- Introduzione
- Algoritmo di Rosenstein et al.
- Applicazione al Sistema di Lorenz
- Conclusioni
- Bibliografia

Introduzione

Definizione: attrattore strano

Sia A un attrattore, ovvero attracting set e topologicamente transitivo rispetto a ϕ (G). Diciamo che A è un attrattore strano se è sensibile alle condizioni iniziali.

Domanda

Perchè un attrattore caotico viene chiamato **strano**?

Insiemi frattali

Gli attrattori caotici sono chiamati strani poichè spesso sono riconducibili a degli insiemi frattali.

• Gli **insiemi frattali** sono complesse forme geometriche con una struttura fine ad una scala arbitrariamente piccolo. Solitamente presentano un qualche grado di self-similarity;

Osservazione

Per quantificare la dimensione di un insieme frattale non vengono usate le considerazioni fatte per gli insiemi più basilari: le curve hanno un grado di libertà ⇒ sono unidimensionali...

• Vengono utilizzate delle nozioni di dimensione più generali.

Correlation dimension

Supponendo di avere un numero infinito di punti dello spazio delle fasi $\{\overrightarrow{X}_i\}_{i=1}^{+\infty}$

Definizione Correlation dimension

Dato l'integrale di correlazione
$$C(r) \equiv \lim_{N \to +\infty} \frac{1}{N^2} \sum_{i,j=1}^{N} \theta(r - |\vec{X}_i - \vec{X}_j|)$$
,

nel limite $r \to 0$ si assume che $C(r) \propto r^v$, dove v è chiamata correlation dimension.

Negli anni '90 l'algoritmo di Grassberger e Procaccia (GPA) per il calcolo di v era il metodo più popolare per quantificare il caos, in particolare veniva considerate una stima della complessità del sistema.

Criticità del GPA [1]

Tuttavia il GPA è *altamente sensibile* alle variazione di diversi parametri come:

- Numero di punti
- Dimensione di embedding
- Ritardo ricostruito o lag
- Rapporto tra segnale e rumore

Rosenstein et al. suggeriscono che gli esponenti di Lyapunov possano fornire una caratterizzazione più utile del caos un sistema caotico.

Gli esponenti di Lyapunov

Considerando dei sistemi dinamici regolari e assumendo le ipotesi del Multiplicative Ergodic Theorem:

Definizione Esponente di Lyapunov

Presi due punti nello spazio delle fasi separati da una distanza iniziale $||\delta\vec{x}(0)||$ infinitesimale, allora il seguente limite esiste ed è finito e definisce l'esponente di Lyapunov nella direzione $\delta\vec{x}(0)$:

$$\lambda(\delta \vec{x}(0)) = \lim_{t \to +\infty} \lim_{\delta \vec{x}(0) \to 0} \frac{1}{t} \ln \frac{||\delta \vec{x}(t)||}{||\delta \vec{x}(0)||}$$

In generale se il sistema dinamico è definito su \mathbb{R}^n si avranno n esponenti di Lyapunov che compongono il cosiddetto spettro di Lyapunov $\{\lambda_1, ..., \lambda_n\}$.

Inoltre tali quantità sono invarianti sotto una trasformazione liscia e non singolare dello spazio delle fasi.

L'esponente di Lyapunov maggiore

Osservazione 1

Per $||\delta\vec{x}(0)||$ sufficientemente piccola e t sufficientemente elevato si avrà $\delta x(t) \sim e^{\lambda t}/\delta \vec{x}(0)$ /, se $\lambda > 0$ allora traiettorie inizialmente vicine tendono ad allontarsi tra loro esponenzialmente;

Osservazione 2

Per il Multiplicative Ergodic Theorem il limite della slide precedente, per un $\delta \vec{x}(0)$ scelto randomicamente, fornisce l'esponente di Lyapunov maggiore (λ_1) con probabilità 1 [1];

⇒ se l'esponente di Lyapunov maggiore è positivo si avrà sensibilità alle condizioni iniziali;

Complicazioni nel contesto sperimentale

Esitono efficienti algoritmi che permettono di calcolare tutto lo spettro di Lyapunov a partire dalle equazioni che descrivono il sistema dinamico.

Problematiche

- Nelle situazioni sperimentali le leggi della dinamica non sono note;
- non sappiamo quali e quante siano le variabili che governano la dinamica;
 - spesso i dati sperimentali consistono in una serie temporale di una singola osservabile.

Metodo dei ritardi (pt. 1)

Il metodo dei ritardi è una procedura per la *ricostruzione* di un'orbita del sistema dinamico a partire da una serie temporale di N punti $\{s_1, \ldots, s_N\}$.

Per il nostro fine è sufficiente costruire un'orbita che possa essere mappata in quella vera, con una trasformazione liscia e non singolare.

La traiettoria ricostruita \mathbf{X} può essere espressa con la seguente matrice

$$\mathbf{X} = (X_1 \ X_2 \ \dots X_M)^T ,$$

dove ogni riga X_i rappresenta lo stato del sistema all' i-esimo tempo di campionamento. Ogni X_i è dato dall'espressione

$$X_i = (s_i \ s_{i+1} \dots \ s_{i+(m-1)J}),$$

dove J è il lag (un numero naturale) e m è la dimensione di embedding.

Quindi la matrice X ha dimensioni $M \times m$, e le costanti m, M, J e N sono legate dalla relazione

$$M = N - (m-1)J.$$

Metodo dei ritardi (pt. 2)

Il successo di tale procedura è supportato da una serie di teoremi (Takens, Saur,..) validi per serie temporali di lunghezza e precisione infinita:

se D la dimensione frattale dell'attrattore, allora una dimensione di embedding m > 2D è sufficiente per garantire un'*oppurtuna* orbita ricostruita (condizione di Takens [7]).

Considerazioni:

- Nella pratica è possibile *ricostruire l'attrattore* al di sotto della condizione di Takens.
- La scelta di J è una questione di natura sperimentale e influenza la ricostruzione dell'attrattore.

Algoritmo di Rosenstein et al.

Consente di calcolare l'esponente di Lyapunov maggiore di un sistema dinamico a partire da una serie temporale s(t) utilizzando il metodo dei ritardi.

Vantaggi di tale algoritmo [1]:

- affidabile per brevi serie temporali (condizione di Eckmann-Ruelle [2]);
- *semplice* da implementare;
- computazionalmente veloce;
- robusto alle variazioni dei suoi parametri caratteristici (es. J e m);

Condizioni di Eckmann-Ruelle*

Dato un generico punto P dello spazio ricostruito, si richiede che P abbia un numero considerevole di punti a *piccola* distanza da esso. In formule:

$$\Gamma(r) >> 1$$
, $\rho \equiv \frac{r}{d} << 1$

dove $\Gamma(r)$ è il numero di punti all'interno di una palla con raggio r e centrata in P, e d è il diametro dell'attrattore ricostruito. Considerando le condizioni su r e le assunzioni fatte in [5] possiamo scrivere $\Gamma(r) \approx \text{const.} \times r^{\nu}$; supponendo che $\Gamma(d) \approx N$, si arriva all'espressione

$$\Gamma(r) \approx N \left(\frac{r}{d}\right)^{\mathsf{v}}$$

Mettendo assieme il precedente risultato con le richieste iniziali si ha:

$$\log N \gg \nu \log \left(\frac{1}{\rho}\right)$$

Ad esempio supponendo $\rho = 0.1$ si ottiene $N \gg 10^{\nu}$.

Scelta dei parametri m e J

- I teoremi di embedding non possono essere usati per la scelta di m
 - \Rightarrow è necessario ripetere il metodo dei ritardi per differenti valori di m.
- La scelta del lag è una questione delicata e influenza la traiettoria ricostruita:
 - se J è *troppo piccolo* ⇒ i punti ricostruiti si dispongono lungo la bisettrice dello spazio di embedding;
 - se J è *troppo grande* ⇒ l'orbita ricostruita si ripiega nello spazio di embedding;
 - \Rightarrow come compromesso viene scelto il valore di J per cui la funzione di autocorrelazione di s(t) decade a $1 \frac{1}{e}$.

Calcolo di λ_1 (pt. 1)

Non resta che calcolare l'esponente di Lyapunov maggiore per l'orbita ricostruita:

per ogni X_j viene trovato il proprio primo vicino X_k posto ad una distanza $d_j(0) = \min_{k'} ||X_{k'} - X_j||$. Si richiede che il primo vicino soddisfi il seguente vincolo temporale:

$$|\mathbf{k} - j| \Delta t \ge T$$
,

dove Δt è l'intervallo di tempo tra campionamenti consecutivi s(t) e T è il *periodo medio dell'orbita.

Tale condizione consente di considerare X_j , X_k come condizioni iniziali vicine di traiettorie differenti, evitando di trovare un esponente di Lyapunov nullo [3].

*Nota

Il periodo medio dell'orbita è stato stimato come il reciproco della frequenza media dello spettro in potenza di s(t).

Calcolo di λ_1 (pt. 2)

Per iterazioni sufficientemente lunghe si assume che $d_j(i) \sim C_j e^{\lambda_1(i\Delta t)}$, dove $d_j(i)$ è la distanza tra X_j e il suo primo vicino dopo un tempo $i\Delta t$. Facendo il logaritmo naturale della precedente espressione e considerando ciascun j, si ottiene un set di M rette parallele con pendenza proporzionale a λ_1 :

$$\ln d_i(i) \sim \ln C_i + \lambda_1(i\Delta t) \quad \forall j = 1,..,M;$$

Mediando le precedenti espressioni su j e poi eseguendo un fit lineare si ottiene il valore di λ_1 .

Applicazione al Sistema di Lorenz

Il sistema dinamico preso in considerazione è il **sistema di Lorenz.** Per i seguenti valori dei parametri è presente un attrattore caotico:

$$\dot{x} = \sigma(y - x)$$

$$\dot{x} = \sigma(y - x)$$

$$\dot{y} = x(R - z) - y$$

$$\dot{z} = xy - bz$$

Valori dei parametri:

$$\sigma = 16.0$$

$$R = 45.92$$

$$b = 4.0$$

Esponente di Lyapunov maggiore aspettato:

$$\lambda_1 = 1.5$$

Simulazioni

Metodologia

- Le simulazioni sono state effettuate utilizzando il linguaggio di programmazione Python (https://github.com/alebati3/nonlinear-dynamics-seminar);
- le equazioni differenziali sono state risolte numericamente utilizzando l'integrazione Runge-Kutta del 4° ordine con passo di integrazione Δt fisso ($\Delta t = 0.01$ s);
 - la condizione iniziale è stata selezionata generando un punto casualmente con distribuzione uniforme nella regione [-30, 30] ×[-40, 40] ×[10, 70], che comprende l'attrattore;
 - i punti che fanno parte del transiente sono stati esclusi dall'analisi;

Convenzione

Ho scelto come serie temporale la coordinate x della traiettoria generata $\{x_1, ..., x_N\}$.

Serie temporale e grandezze associate

Ricostruzione dell'attrattore al variare di m

Ricostruzione dell'attrattore al variare di J

Andamento delle distanze d_i nel tempo

Facendo evolvere nel tempo X_j e il suo primo vicino, come varia nel tempo la distanza d_j ?

Aspettativa:

per tempi sufficientemente grandi $d_i(i) \sim C_i e^{\lambda_1(i\Delta t)} \Rightarrow \ln d_i(i) \sim \ln C_i + \lambda_1(i\Delta t)$

N=5000 $\Delta t = 0.01 \text{ s}$ m=3 J=11

 d_j ha un andamento rumoroso e irregolare

Andamento di $< d_j >$ nel tempo

Cosa succede facendo la media su tutti gli M punti?

Aspettativa:

per t sufficientemente grandi
$$< \ln d_j(i) > \sim C + \lambda_1(i\Delta t)$$

Simulazione:

Osserviamo la presenza di 3 comportamenti differenti:

- un transiente
- una regione qualitativamente lineare
- una saturazione

Precisazione sull'evoluzione temporale

Per osservare l'andamento di d_j per un tempo $L=i\cdot \Delta t$ è necessario far evolvere X_i e il suo primo vicino per un tempo L.

- \Rightarrow non possono prendere parte all'analisi i punti con indice > M-i
- \Rightarrow le distenze d_j che possiamo studiare sono $M_{eff} \leq M-i$
- Ho scelto L in modo da osservare l'inizio del plateau

Osservazione

 scegliere L più lunghi non incrementa la regione di interessa e diminuisce il numero di distanze a disposizione.

Criticità dell'approccio attuale

- La stima di λ_1 dipende dalla scelta dell'intervallo su cui eseguiamo il fit lineare.
- La procedura adottata non tiene minimamente conto della variabilità dei dati
 - se avessi preso un'orbita differente?
- Mancanza di un'incertezza associate alla stima di λ_1 .
- ⇒ Vogliamo un approccio più consistente e che cerchi di limitare queste criticità.

Approccio di Abraham et al. (pt. 1) [6]

- Generiamo una singola serie temporale da 15000 per poi partizionarla in 3 data set disgiunti;
- Con ciascuna delle 3 serie temporali ottenute troviamo il grafico $< \ln(d_i(t)) >$

• Vogliamo calcolare una derivata di $< ln(d_i(t))>$

Slope(i $\cdot \Delta t$) \equiv coefficiente angolare ottenuto dal fit lineare eseguito nell'intervallo $[(i - \Delta p) \cdot \Delta t, (i + \Delta p) \cdot \Delta t]$

 $2 \cdot \Delta p + 1$ è il numero di punti su cui viene eseguito il fit lineare.

Approccio di Abraham et al. (pt. 2)

 \Rightarrow è consistente estrarre il valore di λ_1 da questo intervallo!

Nel mio caso non osservo alcun intervallo in cui è presente un plateau comune alle tre curve!

Domanda

Mediando le 3 curve cosa succede?

Possibile soluzione (pt. 1)

Osservazione

Se vogliamo ricavare una procedura per stimare λ_1 a partire della regione *piuttosto piatta* risulta comodo richiedere una condizione quantitativa:

dato un intervallo I e definita $\Delta < Slope >$ come

$$\Delta$$
<*Slope*> \equiv max<*Slope*> - min<*Slope*>,

Si richiede che
$$\frac{\Delta < Slope>}{media < Slope>} \% < 5\%$$
.

Una volta selezionato un opportuno intervallo I_C , λ_1 e l'incertezza associata $\Delta\lambda_1$ vengono stabilite facendo la media campione e deviazione standard di <Slope> su I_C .

Possibile soluzione (pt. 2)

La presenza di un I_C dipende dal valore di Δp .

Stima di λ_1 al variare di m

N=5000;
$$\Delta t = 0.01 \text{ s}$$
; J=11; L = 3 s;

m	$\lambda_1 \pm \Delta \lambda_1$	$len(I_c)$
3	1.33 ± 0.02	0.5 s
5	1.30 ± 0.02	0.6 s
7	1.31 ± 0.02	0.35 s
9	×	×

Stima di λ_1 al variare di J

N=5000;
$$\Delta t = 0.01 \text{ s}$$
; m=3; L = 3 s;

J	$\lambda_1 \pm \Delta \lambda_1$	$len(I_c)$
1	×	×
11	1.33 ± 0.02	0.5 s
21	1.21 ± 0.01	0.5 s
31	1.18 ± 0.01	0.35 s
41	×	×

Conclusioni

Commenti sull'approccio alternativo:

- consente di tener conto della variabilità dei dati.
- Fornisce una stima di λ_1 con un'*incertezza associata*.
- Le condizioni su I_C e la scelta di Δp sono opinabili.
- Richiede più tempo.
- Non sempre riesce a fornire una stima di λ_1 .

Bibliografia (pt. 1)

[1] A practical method for calculating largest Lyapunov exponent from small data sets.

Michael T. Rosenstein, James J. Collins and Carlo J. De Luca, 1993

[2] Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems.

J.-P. Eckmann and D. Ruelle, 1992

[3] At least one Lyapunov exponent vanishes if the trajectory of an attractor does not contain a fixed point H. Haken, 1983

[4] Ergodic theory of chaos and strange attractors. J.-P. Eckmann and D. Ruelle, 1985

Bibliografia (pt. 2)

- [5] Characterization of Strange Attractors. P. Grassberger and I. Procaccia, 1982
- [6] Calculating the dimension of attractor from small data sets. N.B. Abraham, A.M. Albano, B. Das, G. De Guzman, S. Yong, R.S. Gioggia, G.P. Puccioni and J.R. Tredicce, 1986
- [7] Nonlinear Time Series Analysis, 2nd edition.
 H. Kantz and T. Schreiber, 2004
- [8] Nonlinear Dynamics and Chaos, 2nd edition.
 S. Strogatz, 2014

