Subject Code: 17501 **Model Answer- Estimating and Costing** Page No- 01/20

Important Instruction to Examiners:-

- 1) The answers should be examined by key words & not as word to word as given in the model answers scheme.
- 2) The model answers & answers written by the candidate may vary but the examiner may try to access the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance.
- 4) While assessing figures, examiners, may give credit for principle components indicated in the figure. The figures drawn by candidate & model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credit may be given step wise for numerical problems. In some cases, the assumed contact values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding.
- 7) For programming language papers, credit may be given to any other programme based on equivalent concept.

Important notes to examiner

- In Question No- 4(a) Student may assume horizontal as long wall and vertical as short wall also they may find quantity by centerline method. Final answer will be same by all methods.
- 2. In Question No- 5(a) if student have calculated the rate of sand and aggregates in brass instead of m3 marks should be given accordingly. Rates will be different at different places hence examiner should give proportionate marks. Marks should not be given according the GRAND TOTAL, marks should be given according to data entered by students i.e Material, Labour, Centering Shuttering etc.)
- 3. A) In Question No- 5(d) in this numerical depth of excavation is not mentioned hence if student have attempted this quantity full marks should be given.
 - B) Thickness of brick work is not given if students have assumed thickness of brickwork 0.23m thick or 0.3m thick or have attempted this question full marks should be given to students by examiner.
 - C) P.C.C is calculated considering thickness of BBM as 0.3m. If students have considered thickness as 0.23m thick proportionate marks should be given.
 - D) R.C.C slab is calculated considering thickness of BBM as 0.3m. If students have considered thickness as 0.23m thick proportionate marks should be given.

WINTER – 15 EXAMINATIONS Subject Code: 17501 Model Answer- Estimating and Costing Page No- 02/20

Q.NO	SOLUTION	MARKS
Q.1	Attempt Any Three of the following:	12 M
a)	State different types of estimates and explain any one in detail.	04 M
	 There are two types of estimates: 1) Approximate estimate or preliminary estimate 	01M
	 2) Detailed estimate 1) Approximate estimate or preliminary estimate: This estimate is required for preliminary studies of various aspects of work or project, to decide the financial position and policy for administrative sanction by the competent authority. In case of commercial projects as irrigation projects, residential, building project and similar project which earn revenue, the probable income may be work out. To prepare the approximate estimate less skill and time is required. 3) Detailed estimate or item rate estimate: 	3M (for any one)
	 Detailed estimate of item rate estimate: Detailed estimate is an accurate estimate and consists of working out the quantities of each item of work. The dimensions, length, breadth and height of each item are taken out correctly from drawing and quantities of each item are calculate, and abstracting and billing are done. All other expenses required for satisfactory completion of project are added to the above cost to know the total cost of the detailed estimate. 	
b)	Explain the lead and lift.	04 M
	 Lead: - It is the horizontal distance between the trench pit and the place where excavated earth is deposited. Normally lead is taken as 30m. Separate measurements are taken for every 30m lead. Lift: - It is the depth of excavation or the vertical movement of material is called Lift. Normally lift is taken as 1.5m. Separate measurements are taken for every 1.5m lift. 	02 M 02M
c)	How will you prepare approximate estimate for roads and highways	04 M
	Approximate estimate for roads and highways is prepared for per kilometer basis depending on the nature of road, width and thickness of metal etc. for roads and highways the factors to be considered area, land to be acquired, quantity of earthwork, type of road etc. 1. The cost of land acquired: The cost is variable if the route is passing through highly developed area, the cost of this item will be very high 2. The cost of excavation, embankment and drainage: The cost of this item depends on the topography of the country through which the highway runs. 3. The cost of road surface or pavement: the cost of this item is fairly constant for two different highways with same road surface.	04 M
	e.g. for 10 km of a state highway approximate cost @ Rs. 500000 per 1 km works out as Rs.50 lakhs.	

Page No- 03 /20

WINTER – 15 EXAMINATIONS Subject Code: 17501 **Model Answer-** Estimating and Costing

d)	Differer method	-	unit quantity method and total quantity	04 M
	Sr.No	Unit quantity method	Total quantity method	1 M (for each
	1	In unit quantity method the work is divided into various items	In total quantity method item of work divided into the following five subdivisions a) Material, b) labour c) plant d) overheads e) profit.	point)
	2	The total quantity of work under each item is taken out in proper unit of measurement.	The total quantity of each kind or class of material or labour are found and multiplied by their individual unit cost.	
	3	The total cost per unit quantity of each item is analyzed and work out.	Similarly, the cost of plants, overhead expenses and profit are determined.	
	4	Then the total cost for the item is found by multiplying the cost per unit quantity by no. of units.	The cost of all the five sub-heads is summed up to give the estimated cost of the item of work.	
1)B	Attemp	t any <u>ONE</u> of the following		6 M
a)		e 'provisional quantities' and 'pro	visional sum'	6 M
	Certain a some specalled "p Shifting work are Provision These are variation of drawing When the	ecial type of work whose details are provisional sum". Some special work of water lines, Installation of air contents done through licensed contractor or the done through licensed contractor or the done through licensed contractor or the additional quantities which are a of site condition. These quantities and and kept in the bill of quantities unere is a possibility of certain concretinal quantities for the work shall be p	ditioner and its fittings, sever lines such a	3M 3M

WINTER – 15 EXAMINATIONS Model Answer- Estimating and Costing

Page No- 04/20

Subject Code: 17501

Explain any six factors affecting the rate analysis 6 M b) Factors affecting Rate Analysis:-1 M (for 1. Major Factors :- a) Material b) Labour each **2. Minor Factors:** -a) Special Equipment b) Place of work c) Magnitude of work d) factor) Conditions of Contract e) Profit of the contractor f) Specification g) Miscellaneous **Major Factor:**a) Materials: - The material can be calculated by knowing the specification of the items. The price of various materials depends upon market conditions. The cost of material is taken as delivered at site inclusive of transport, local taxes, and other charges. For tools and plants and miscellaneous petty item which cannot be accounted in details lump sum provision is made. It is also necessary to include a certain percentage of waste of all materials to cover breakage, losses, cutting waste etc. b) Labour: - The labour force will be necessary to arrange the materials in proper way so that the items can be completed. The amount of labour force required to carry out a unit of a particular item is decided from past experience or in case of complicated items it is decided by carrying out a sample of that item. The labour force required depends upon the efficiency of labourer hence this force will vary from place to place and also there prices. By knowing the amount of labour force and wages of laborer the cost of labour can be calculated Minor factors:a) Special equipments: - different types of tools and plants are necessary for execution of work. A good estimator will decide whether purchasing is more economical or hiring the tools and plants is advisable. b) Place of work:- if the site is in remote areas, transportation charges increases similarly labour charges also varies i.e. if site conditions are difficult, cost will be more. c) Magnitude of work: - greater the magnitude of work lesser will be the cost. d) Conditions of Contract:- if the condition of contract is very stiff the rates are high e) Profit of the contractor: - Normally 10% of actual cost of work is considered as contractor profit. f) Specification: - it shows the proportion of material, the method of construction and execution of work. If superior quality material issued rate will be higher.

g) Miscellaneous: - time of completion, climatic condition, also affects the rate of item.

Subject Code: 17501

Model Answer- Estimating and Costing

Page No- 05 /20

2)	Attempt any TWO of the following	16 M
1)	Prepare the rate analysis for brick masonry in super-structure using traditional	8 M
	bricks and cement mortar proportion 1:6	
	Rate Analysis for Brick Work in Super Structure in C.M (1:6) in Super Structure	
	Assume 1st Class Brickwork	
	Assume Volume of Brick Masonry = 10m3	43.5
	a) Dry Volume = 35% of volume of masonry	1M
	$=\frac{35}{100} \times 10 = 3.5 \text{ cu.m.}$	
	b) Volume of Cement = $\frac{\text{Dry Volume}}{\text{Sum of Mix Proportion}} \times \text{Content of cement in proportion}$	13.6
	Sum of Mix Proportion	1M
	Volume of Cement = $\frac{3.5}{1+6}$ x 1 = 0.5 cu. m	
	No. of Cement Bags = $\frac{0.5}{0.0347}$ = 14.409 bags	
	$= \underset{\text{approximately}}{\text{approximately}} = 15 \text{ bags}$	
	- approximately – 15 bags	
	Dry Volume	
	c) Volume of Sand = $\frac{\text{Dry Volume}}{\text{Sum of Mix Proportion}}$ x Content of Sand in proportion	1M
	Volume of Sand = $\frac{3.5}{1+6}$ x 6 = 3 cu. m	
	1+6	
	d) Number of Bricks	1M
	Size of one Brick = $19 \text{cm} \times 9 \text{cm} \times 9 \text{cm} = 0.19 \text{m} \times 0.9 \text{m} \times 0.9 \text{m}$	
	Add thickness of Mortar through out = 1cm	
	Size of Brick with mortar = 0.2 m x 0.1 m x 0.1 m	
	Number of Bricks = $\frac{10}{0.2 \times 0.1 \times 0.1}$ = 5000 Nos.	
	0.2 x 0.1x 0.1	
	Assume 5% wastages = $\frac{5}{100}$ x 5000 + 5000 = 5250Nos.	
	Assume $3/0$ wastages $-\frac{1}{100}$ x 3000 $+$ 3000 $-$ 32301105.	

WINTER – 15 EXAMINATIONS Model Answer- Estimating and Costing

Subject Code: 17501

	Sr.No.	Particulars	Quantity	Rate Rs.	Per	Amount Rs.	
		Material					
		Cement	15	350	Bag	5250	
	1	Sand	3	650	M3	1950	
		Bricks	5250	5	No.	26250	
		Scaffolding	Lump Sum	Lump Sum	Lump Sum	100	2M
			•	•	•	33550	
		Labor					
		Head Mason	0.5	400	Day	200	
		Mason	9	300	Day	2700	
		Male Mazdoor	13	250	Day	3250	
	2	Female Mazdoor	5	200	Day	1000	
		Bhisti	2	200	Day	400	
		Contingencies T& P	Lump Sum	Lump Sum	Lump Sum	400	
		8	 	P		7950	
					Total	41500	
	_	Water Charges			1.5%	622.50	
	3	77 2 8			210 / 0	42122.50	
					10		
		Profit & Overhead			10%	4212.25	
	4	Profit & Overhead			10% Grand Total	4212.25 46334.75	2M
		Rate Per Cu	bic Meter = 4		Grand Total 4633.4 Rs	46334.75	2M
)(i)	The cost students newly pr		nool building i	s 2.50 crores i 2. Prepare ap	Grand Total 4633.4 Rs for a capacity proximate est	46334.75 of 600 imate of a	
)(i)	The cost students newly pr plinth an	Rate Per Cu of construction of sch and area of construct oposed school buildin	nool building ition is 1600 m ng for 1500 stu chool building	is 2.50 crores apart 2. Prepare apart and the control of the contr	Grand Total 4633.4 Rs for a capacity proximate est	46334.75 of 600 imate of a	4M
)(i)	The cost students newly proplinth and Cost of property.	Rate Per Cu of construction of sch and area of construct coposed school building rea method.	nool building ition is 1600 m ng for 1500 stu chool building	is 2.50 crores: 2. Prepare apadents with th $=\frac{25000000}{1600}$	Grand Total 4633.4 Rs for a capacity proximate est	46334.75 of 600 imate of a	4M
)(i)	The cost students newly proplinth and Cost of proplements.	Rate Per Cu of construction of sch and area of construct coposed school building rea method.	nool building ition is 1600 m ng for 1500 stu chool building	is 2.50 crores: 2. Prepare apadents with th $=\frac{25000000}{1600}$	Grand Total 4633.4 Rs for a capacity proximate est	46334.75 of 600 imate of a	4M 2M
(i)	The cost students newly proplinth and Cost of property. Then,	Rate Per Cu of construction of sch and area of construct coposed school building rea method. slinth area of existing sch	nool building ition is 1600 ming for 1500 stu	2. Prepare ap idents with the = \frac{25000000}{1600} \tag{5625 Rs/m}^2	Grand Total 4633.4 Rs for a capacity proximate est	46334.75 of 600 imate of a o m ² .Use	4M 2M
)(i)	The cost students newly proplinth and Cost of property. Then, The appropriate appropriate to the property of t	Rate Per Cu of construction of sch and area of construct coposed school building rea method. Slinth area of existing sch coximate cost of	nool building ition is 1600 m ng for 1500 stu chool building = 1 ng = Total plin	2. Prepare ap idents with the = \frac{25000000}{1600} \tag{5625 Rs/m}^2	Grand Total 4633.4 Rs for a capacity proximate est e area of 5000	46334.75 of 600 imate of a o m ² .Use	2M 4M 2M 2M
)(i)	The cost students newly proplinth and Cost of property. Then, The appropriate appropriate to the property of t	Rate Per Cu of construction of sch and area of construct coposed school building rea method. Slinth area of existing sch coximate cost of	nool building ition is 1600 m ng for 1500 stu chool building = 1 ng = Total plin area = 1566	is 2.50 crores: 2. Prepare apole and the solution of the solu	Grand Total 4633.4 Rs for a capacity proximate est e area of 5000	46334.75 of 600 imate of a o m ² .Use	4M 2M

Page No- 07/20

WINTER – 15 EXAMINATIONS Model Answer- Estimating and Costing

Subject Code: 17501

(ii)	Describe 'typical bay' method for approximate estimate.	4M
	Typical Bay Method: This method is used for the buildings have similar column spans	4M
İ	over a larger area such as factory buildings, go-downs, railway platform. Cost of each	
İ	bay is found out by using other method of estimation. Then the cost of whole factory	
İ	building is worked out by multiplying the total number of bays by the cost of	
İ	construction for each bay.	
	Approximate cost = no. of bays X cost of one bay	
c)(i)	State the desired accuracy in taking measurements of items of work as per IS-1200	4M
İ	To achieve the desired accuracy in measurements, following points shall be observed,	1M
İ	1. Dimensions shall be measured to the nearest 0.01 m except the following:	(For
İ	• Thickness of slab measured nearest to 0.005 m.	each
İ	• Wood work to nearest 0.002m.	point)
	• Reinforcement to nearest 0.005 m.	
	 Thickness of roadwork less than 20 cm, measured nearest to 0.005m. 	
İ	2. Areas shall be measured to the nearest 0.01sq.m.	
İ	3. Cubic content shall be worked out nearest to 0.01cu.m. Wood work shall be measured	
İ	nearest to 0.001cu.m.	
	4. Weights shall be workout to nearest 1 kg.	
(ii)	Give the market rates of the following materials.	4M
İ	a) Cement bag:- 290-350 Rs/bag	1M
İ	b) Reinforcing steel:- 32000-35000 per ton	(For
İ	c) Teak wood:- 3000-3100 per ft ³	each)
	d) Coarse aggregate (20 mm to 22 mm):- 900-1000 m ³	
Q3.	Attempt Any Four of the following:	16 M
a)	What are the advantages of using software (QE – Pro) in preparation of estimates	04 M
	of civil engineering works?	4.5.5
İ	Following are the advantages of QE-Pro:	1 M
İ	1) Fort of accurate quantity computation.	Each
	2) Calculates quantities from building plans.	give any
	3) Generation of measurement sheet in LBD format.	four
İ	4) Cost break up for material, labour and machine.	
İ	5) Project planning and Gantt chart.6) Interface with MS project.	
b)	Enlist any four software used for estimation in civil engineering.	04 M
U)	1) QE-Pro	1M for
ı	2) 2002 CD Estimator.	each give
ı	3) Chief Estimator	any four
ı	4) ICE 2000.	points
ı	5) TECS.	Politis
ı	6) Estimator 2.0	
ı	7) Estimate Master 5.13	
ı	8) Build Soft	
r	9) Plan Swift Software	
		i .

WINTER – 15 EXAMINATIONS

Subject Code: 17501 <u>Model Answer- Estimating and Costing</u> Page No- 08 /20

c)	State any four purposes of estimating and costing.	04 M
	Purpose of Estimating	1M for
	1) To know the approximate cost of proposed work.	each give
	2) To obtain administrative approval and technical sanction.	any four
	3) To know the requirement of tools, plants and equipment.	points
	4) To fix up the completion period.	points
	5) To draw up a construction schedule and programme.	
	6) To know value of property.	
	7) To invite tender.	
	8) To keep control over expenditure during construction.	
	Purpose of Costing	
	1) To arrange the finance for proposed work.	
	2) To know the probable cost of project before the execution.	
	3) For valuation of existing property	
	4) To know the cost of various items, well in advance, to be constructed.	
d)	State the rules for deduction in plastering as per IS - 1200.	04 M
<u>u)</u>	Plastering usually 12mm thick is calculated in sq.m.	1 M
	Deduction in plastering are made in the following manner	
	1) No deduction is made for ends of beams, posts, rafters etc.	Each
	2) No deduction is made for opening up to 0.5 sq.m. And no addition is made for jambs,	
	soffits and sill of these opening.	
	3) For opening more than 0.5 sq.m. And up to 3 sq.m. Deduction is made for one face only.	
	No addition for jambs, soffits and sills.	
	4) For opening above 3 sq.m. Deduction is made for both faces of openings, and the jambs,	
	soffits and sill shall be added.	
e)	Explain PWD method of taking out quantities.	04 M
<u> </u>	PWD method is also called as Long wall and short wall or 'out-to-out' and 'in-to-in'	04111
	method. For the accurate estimate the dimensions, length, breadth and height or depth are	
	taken out correctly from drawings. Then the following steps are followed	
	1) Draw the center line plan.	
	2) Consider wall spanning in horizontal direction as 'long wall' and vertical	
	direction as 'short wall' in plan or vice versa.	04 M
	3) Calculate the center to center lengths of long wall and short wall	
	4) Calculate length of 'long wall' out to out	
	Length of long wall = c/c length of long wall + width of item	
	5) Calculate length of 'short wall' in to in	
	Length of short wall = c/c length of short wall - width of item	
	6) Multiply the length by the width and depth to find the quantity.	
	Student should draw a diagram showing long wall and short wall or at least show sample	
	calculation of long wall and short wall.	
f)	Find quantity of 10 mm φ reinforcement in footing shown in fig. no. 1 and prepare	
	schedule of reinforcement.	
		04 M
	@150 mm c/c	
	@150 mm c/c both way	

1M

Assume cover (all round) = 50 mm

1) Length of main straight bar

L =
$$(l - \text{cover}) + 18d$$

= $(1200 - 50 - 50) + 18(10) = 1280 \text{ mm}$

$$L = 1.280 \text{ m}$$

No of bars =
$$\frac{\text{Span - Clear cover}}{\text{Spacing}} + 1$$

= $\frac{1200 - 100}{150} + 1$
= $7.33 + 1$
= $8.33 \text{ say } 9 \text{ Nos.}$

2) Length of distribution bar

Same as main bar as footing is square footing and steel same in both direction. So total bars = 18 Nos.

Bar Bending Schedule

	remaining semea							
Sr.	Description	Shape of Bar	No.	L(m)	Total	Dia.	Wt.	Total
No.					length	Of	kg/m	wt. in
					(m)	bar	$(\phi^2/162)$	kg
						(mm)		_
1	Main and							
	distribution		18	1.280	23.04	10	0.62	14.28
	bar 10 mm							
	ф							

Q4. (A) Work out quantities of following any three items from Fig No. 2: 12 M

Excava Item	Description or	No	Length	Breadth	Donth	Quantity	Total	
No.	Particular of work	140	Length	Dreauth	Depth	Quantity	Quantity	1 M
i)	Excavation in						Quantity	cen
								liı
	foundation							calc
	5W1 5W2 4.8 m 4.3 m							tio
	TMI & TMI K							2 M
	502							fir
	SW, 4.8 m							ans
	Center line plan							_{1 M}
	Long wall:							pro
	LW1 = 7.3; LW2 = 5.3.							ta
	Short Wall							W
	SW1 = 4.8; $SW2 = 4.3$							ll ai
	LW1 = 7.3 + 1 = 8.3m	2	8.300	1.000	0.850	14.110		calc
	LW2 = 5.3 + 1 = 6.3m	1	6.300	1.000	0.850	5.355		ti
				-	0.850	6.460	-	11 -
	SW1 = 4.8 - 1 = 3.8m	1 2	1.3.800	1.000	1 0.0.00	1 ().+()()		11
	SW1 = 4.8 - 1 = 3.8m SW2 = 4.3 - 1 = 3.3m	2	3.800	1.000	+	+	-	-
	SW1 = 4.8 - 1 = 3.8m SW2 = 4.3 - 1 = 3.3m	2	3.800	1.000	0.850	5.610	-	
quantit	SW2 = 4.3 - 1 = 3.3m Student may assume horizo by by centerline method. Fi	2 ontal a	3.300 s long wal	1.000	0.850 al as sho	5.610	31.535m ³	
quantit PCC 1	SW2 = 4.3 - 1 = 3.3m Student may assume horizo by by centerline method. Fi : 4:8 in foundation	2 ontal a	3.300 s long wal	1.000 l and vertice be same by	0.850 al as sho all metho	5.610 rt wall also tods.	31.535m ³ hey may find	4
quantit PCC 1 Item	SW2 = 4.3 - 1 = 3.3m Student may assume horizo ty by centerline method. Fi : 4:8 in foundation Description or	2 ontal a	3.300 s long wal	1.000	0.850 al as sho	5.610	31.535m³ hey may find	4 1 M
quantite PCC 1 Item No.	SW2 = 4.3 - 1 = 3.3m Student may assume horizo by by centerline method. Fi : 4:8 in foundation	2 ontal a	3.300 s long wal	1.000 l and vertice be same by	0.850 al as sho all metho	5.610 rt wall also tods.	31.535m ³ hey may find	4 1 M
quantit PCC 1 Item	SW2 = 4.3 - 1 = 3.3m Student may assume horizo by by centerline method. Fit : 4:8 in foundation Description or Particular of work	2 ontal a	3.300 s long wal	1.000 l and vertice be same by	0.850 al as sho all metho	5.610 rt wall also tods.	31.535m³ hey may find	4 1 M cer lii
quantite PCC 1 Item No.	SW2 = 4.3 - 1 = 3.3m Student may assume horizo ty by centerline method. Fi : 4:8 in foundation Description or Particular of work PCC 1:4:8 in	2 ontal a	3.300 s long wal	1.000 l and vertice be same by	0.850 al as sho all metho	5.610 rt wall also tods.	31.535m³ hey may find	1 M cen lin calc
quantite PCC 1 Item No.	SW2 = 4.3 - 1 = 3.3m Student may assume horizo ty by centerline method. Fi : 4:8 in foundation Description or Particular of work PCC 1:4:8 in foundation	2 ontal a	3.300 s long wal	1.000 l and vertice be same by	0.850 al as sho all metho	5.610 rt wall also tods.	31.535m³ hey may find	1 M cen lin calc
quantite PCC 1 Item No.	SW2 = 4.3 - 1 = 3.3m Student may assume horizo by by centerline method. Fi : 4:8 in foundation Description or Particular of work PCC 1:4:8 in foundation	2 ontal a	3.300 s long wal	1.000 l and vertice be same by	0.850 al as sho all metho	5.610 rt wall also tods.	31.535m³ hey may find	1 M central calculation tide
quantite PCC 1 Item No.	SW2 = 4.3 - 1 = 3.3m Student may assume horizo by by centerline method. Fi : 4:8 in foundation Description or Particular of work PCC 1:4:8 in foundation	2 ontal a	3.300 s long wal	1.000 l and vertice be same by	0.850 al as sho all metho	5.610 rt wall also tods.	31.535m³ hey may find	1 M cer lii calc tie
quantite PCC 1 Item No.	SW2 = 4.3 - 1 = 3.3m Student may assume horizo ty by centerline method. Fi : 4:8 in foundation Description or Particular of work PCC 1:4:8 in foundation SW1 4.8 m A.3 m A.3 m	2 ontal a	3.300 s long wal	1.000 l and vertice be same by	0.850 al as sho all metho	5.610 rt wall also tods.	31.535m³ hey may find	1 M cer lin calc tio
quantite PCC 1 Item No.	SW2 = 4.3 - 1 = 3.3m Student may assume horizo by by centerline method. Fi : 4 : 8 in foundation Description or Particular of work PCC 1 : 4 : 8 in foundation SW1 4 : 8 m A : 2 m Center line plan	2 ontal a	3.300 s long wal	1.000 l and vertice be same by	0.850 al as sho all metho	5.610 rt wall also tods.	31.535m³ hey may find	1 M central calculation ties 2 M für corr
quantite PCC 1 Item No.	SW2 = 4.3 - 1 = 3.3m Student may assume horizo by by centerline method. Fi : 4:8 in foundation Description or Particular of work PCC 1:4:8 in foundation Center line plan Long wall:	2 ontal a	3.300 s long wal	1.000 l and vertice be same by	0.850 al as sho all metho	5.610 rt wall also tods.	31.535m³ hey may find	1 M cen lin calc tie
quantite PCC 1 Item No.	SW2 = 4.3 - 1 = 3.3m Student may assume horizo ty by centerline method. Fi : 4:8 in foundation Description or Particular of work PCC 1:4:8 in foundation Center line plan Long wall: LW1 = 7.3; LW2 = 5.3.	2 ontal a	3.300 s long wal	1.000 l and vertice be same by	0.850 al as sho all metho	5.610 rt wall also tods.	31.535m³ hey may find	1 M central calculation of the c
quantite PCC 1 Item No.	SW2 = 4.3 - 1 = 3.3m Student may assume horizo ty by centerline method. Fi : 4:8 in foundation Description or Particular of work PCC 1:4:8 in foundation Center line plan Long wall: LW1 = 7.3; LW2 = 5.3. Short Wall	2 ontal a	3.300 s long wal	1.000 l and vertice be same by	0.850 al as sho all metho	5.610 rt wall also tods.	31.535m³ hey may find	1 M central calculation of the c
quantite PCC 1 Item No.	SW2 = 4.3 - 1 = 3.3m Student may assume horizo ty by centerline method. Fi : 4:8 in foundation Description or Particular of work PCC 1:4:8 in foundation Center line plan Long wall: LW1 = 7.3; LW2 = 5.3.	ontal amal am	3.300 s long wal	1.000 l and vertice be same by	0.850 al as sho all metho	5.610 rt wall also tods.	31.535m³ hey may find	1 M central calculation of the c
quantite PCC 1 Item No.	SW2 = 4.3 - 1 = 3.3m Student may assume horizo by by centerline method. Fi : 4:8 in foundation Description or Particular of work PCC 1:4:8 in foundation Center line plan Long wall: LW1 = 7.3; LW2 = 5.3. Short Wall SW1 = 4.8; SW2 = 4.3 LW1 = 7.3 + 1 = 8.3m LW2 = 5.3 + 1 = 6.3m	notal and and and and and and and and and and	3.300 s long wallswer will Length 8.300 6.300	1.000 Breadth 1.000 1.000 1.000	0.850 al as sho all method Depth 0.200 0.200	5.610 rt wall also tods. Quantity 3.320 1.260	31.535m³ hey may find	1 M central calculation of the central calculati
quantite PCC 1 Item No.	SW2 = $4.3 - 1 = 3.3$ m Student may assume horizo ty by centerline method. Fi : 4:8 in foundation Description or Particular of work PCC 1:4:8 in foundation Center line plan Long wall: LW1 = 7.3 ; LW2 = 5.3 . Short Wall SW1 = 4.8 ; SW2 = 4.3 LW1 = $7.3 + 1 = 8.3$ m LW2 = $5.3 + 1 = 6.3$ m SW1 = $4.8 - 1 = 3.8$ m	No 2	3.300 s long wall swer will Length 8.300 6.300 3.800	1.000 Breadth 1.000 1.000 1.000 1.000	0.850 al as sho all method Depth 0.200 0.200 0.200 0.200	3.320 1.260 1.520	31.535m³ hey may find	1 M central calculation of the central calculati
quantite PCC 1 Item No.	SW2 = 4.3 - 1 = 3.3m Student may assume horizo by by centerline method. Fi : 4:8 in foundation Description or Particular of work PCC 1:4:8 in foundation Center line plan Long wall: LW1 = 7.3; LW2 = 5.3. Short Wall SW1 = 4.8; SW2 = 4.3 LW1 = 7.3 + 1 = 8.3m LW2 = 5.3 + 1 = 6.3m	No 2	3.300 s long wallswer will Length 8.300 6.300	1.000 Breadth 1.000 1.000 1.000	0.850 al as sho all method Depth 0.200 0.200	5.610 rt wall also tods. Quantity 3.320 1.260	31.535m³ hey may find	1 M cen lin calc tid

Item	Description or	No	Length	Breadth	Depth	Quantity	Total
No.	Particular of work						Quantity
i)	UCR in foundation						
	Step 1.						
	SW1 SW2 4.8 m 4.3 m 6 c c c c c c c c c c c c c c c c c c						
	SW ₁ 4.8 m						
	Center line plan						
	Long wall:						
	LW1 = 7.3; $LW2 = 5.3$.						
	Short Wall						
	SW1 = 4.8; $SW2 = 4.3$						
	LW1 = 7.3 + 0.8 =	2	8.100	0.800	0.600	7.776	
	8.1m	1	<i>c</i> 100	0.000	0.600	2.020	
	LW2 = 5.3 + 0.8 = 6.1m	1	6.100	0.800	0.600	2.928	
	SW1 = 4.8 - 0.8 =	2	4.000	0.800	0.600	3.840	
	4.0m		4.000	0.000	0.000	3.040	
	SW2 = 4.3 - 0.8 =	2	3.500	0.800	0.600	3.360	
	3.5m						
						17.904 m3	
ii)	UCR in plinth Step 2.						
	LW1 = 7.3 + 0.6 = 7.9 m	2	7.900	0.600	0.800	7.584	
	LW2 = 5.3 + 0.6 = 5.9m	1	5.900	0.600	0.800	2.832	
	SW1 = 4.8 – 0.6 = 4.2m	2	4.200	0.600	0.800	4.032	
	SW2 = 4.3 - 0.6 =	2	3.700	0.600	0.800	3.552	
	3.7m						
						18.000 m3	
	Total UCR in plinth						35.904
Note: S	and foundation.						m3

Subject Code: 17501

	<u> 108</u> aic	flooring								4 M
I	Item	Description	or	No	Length	Breadth	Depth	Quantity	Total	
	No.	Particular of							Quantity	3 M for
i	i)	Mosaic floo	ring							calculation
		Room 1		1	4.500	7.000		31.500		
		Room 2		1	4.000	5.000		20.000		1 M for
		Door Sill fo	r D1	3	0.300	1.000		0.900		final
									52.400	correct
									\mathbf{m}^2	answer
N	ote: S	Students may	z take diffe	rent d	limension	s of room	as show	n in section		
		rect method						2000-0-	- 01 1- 9 0	
_		ot any one of			- CILITOTIST	313 01 1 0 0.				6 M
		ate the quan			ement for	the follow	ving and	nrenare a	har	0 1/1
		g schedule.	titles of Ten	11010	inchi loi	the follow	villg allu	ргераге а	Dai	
	Men		Overall	6170		Details	of Paint	forcement		
-	Bear		4000		- 3 -		ottom	Orcement		
	Bear	11		mm			einforce	mant		
			length		Tan D					
			(230 m					- 5 Nos		
				mm	1			nt and 2		
1			section)				ent up)			
	(b) Top Reinforcement									
								- 3 Nos.		
					(c) Stirrups – 6 mm φ					
						(a)		150 mm		
						c/e	C			
		e clear cover	on all sides	= 25 1	mm.					
		of main bar	on all sides		4000	mm		2		3 M for calculation

WINTER – 15 EXAMINATIONS <u>Model Answer-</u> Estimating and Costing

Subject Code: 17501

$$L = T_L - 2 \text{ x side cover} + 2 \text{ x } 0.42 \text{ x } d + 2 \text{ x } 9\phi$$

= 4000 - 2 x 25 + 2 x 0.42 x 350 + 2 x 9 x 16
= 4532 mm.

ii) Length of anchor Bar

$$L = T_L - 2 x \text{ side cover} + 2 x 9\phi$$

= 4000 - 2 x 25 + 2 x 9 x 12
= 4166 mm.

iii) Length of Stirrups

$$A = 230 - 2 \times 25$$

$$= 180$$

$$B = 400 - 2 \times 25$$

$$= 350$$

$$L = 2 (A + B) + 24 d$$

$$= 2 (180 + 350) + 24 \times 6$$

$$= 1204 \text{ mm}.$$

iv) Number of stirrups =
$$\frac{\text{TL-2 x Clear cover}}{\text{Spacing}} + 1$$
$$= \frac{4000-2 \times 25}{150} + 1$$
$$= 27.33 \text{ say } 28 \text{ Nos}$$

Bar Bending Schedule

Sr. No.	Description	Shape of Bar	No.	L (m)	Total length (m)	Dia. Of bar (mm)	Wt. kg/m (d ² /162)	Total wt. in kg
1	Bottom straight bar 16 mm ф		3	4.238	12.714	16	1.58	20.1
2	Bottom bent-up bar 16 mm φ		2	4.532	9.064	16	1.58	14.34
3	Top anchor bar 12 mm		2	4.166	8.332	12	0.89	7.415
4	Length of Stirrups 6 mm \(\phi \) @ 150 c/c		28	1.204	33.712	6	0.22	7.416
								49.271 Kg

3 M for BBS

b)	Calculate the quantities of cement, sand and coarse aggregate for 40 m³ cement	6 M
	concrete having proportion (1:2:4)	
	Wet volume of concrete = 40 m^3	1 M
	Dry volume = 52% more of wet volume	
	$=\frac{52}{100} \times 40 + 40$	
	$= 60.80 \text{ m}^3$	
	Volume of cement = $\frac{\text{Dry volume}}{\text{Sum of proportion}}$ x Content of cement in proportion	
	Volume of cement = $\frac{60.80}{1+2+4}$ x 1	
	Volume of cement = 8.685 m^3	2 M
	Number of cement bags = $\frac{\text{Volume of cement}}{\text{Volume of one cement bag}}$	
	Number of cement bags = $\frac{8.685}{0.035}$ = 248.14 say 250 bags	
	$\frac{1}{0.035} = \frac{240.14 \text{ say } 250 \text{ bags}}{0.035}$	
	Dryvolima	1 ½ N
	Volume of Sand = $\frac{\text{Dry volume}}{\text{Sum of proportion}}$ x Content of sand in proportion	
	Volume of Sand = $\frac{60.80}{1+2+4} \times 2$	
	Volume of Said $-\frac{1}{1+2+4}$ X Z	
	Volume of Sand = 17.37 m^3	
	Dry volume	41/3
	Volume of Coarse aggregate = $\frac{\text{Dry volume}}{\text{Sum of proportion}}$ x Content of coarse aggregate in	$1 \frac{1}{2} N$
	proportion	
	Volume of Coarse aggregate $=\frac{60.80}{1+2+4} \times 4$	
	1+2+4 T	
	Volume of Coarse aggregate $= 34.74 \text{ m}^3$	

)	Attempt any TWO of the following: Find quantity of excavation and concrete for circular community well.										
,	SR.	Description	No.	L	В	Н	Unit	Qty	Total Qty	08	
	1	Excavation									
	i)	a) Excavation upto 1.5m in soft rock		$\frac{\pi}{4}d^2 =$	$\frac{\pi}{4} x 5^2$	1.5	M ³	29.452			
		b) Excavation from 1.5m to 3.0m in soft rock		$\frac{\pi}{4}d^2 =$	$\frac{\pi}{4}$ \times 5 ²	1.5	M ³	29.452			
		c) Excavation from 3.0m to 4.0m in soft rock		$\frac{\pi}{4}d^2=$	$\frac{\pi}{4}$ x 5 ²	1.0	M ³	19.634			
							M^3		78.538	11	
	ii)	a) Excavation from 4.0m to 4.5m in hard murum		$\frac{\pi}{4}d^2=$	$\frac{\pi}{4} x 5^2$	0.5	M ³	9.81		11	
		b) Excavation from 4.5m to 6.0 m in hard murum		$\frac{\pi}{4}d^2=$	$\frac{\pi}{4}$ x 5 ²	1.5	M^3	29.452			
		c) Excavation from 6.0m to 7.5m in hard murum		$\frac{\pi}{4}d^2=$	$\frac{\pi}{4}$ x 5 ²	1.5	M^3	29.452			
		d) Excavation from 7.5m to 9.0m in hard murum		$\frac{\pi}{4}d^2=$	$\frac{\pi}{4}$ x 5 ²	1.5	M ³	29.452			
							M ³		98.173	11	
	iii)	a) Excavation from 9.0m to 10.5m in hard rock		$\frac{\pi}{4}d^2 =$	$\frac{\pi}{4}$ \times 5 ²	1.5	M ³	29.452			
		b) Excavation from 10.5m to 12.0m in hard rock		$\frac{\pi}{4}d^2=$	$\frac{\pi}{4}$ x 5^2	1.5	M ³	29.452			
							M^3		58.904	1N	
							M ³	Total Quantity	235.615	11	
	2	Concrete		$\frac{\pi}{4}x(5.4)$	$(2-5^2)$	1.5	M^3	4,90		21	
		a)P.C.C (0.2m thick)									
		b)P.C.C(0.2m thick)		$\frac{\pi}{4}x(7.4^2)$	$(2-5.4^2)$	0.2	M^3	4.021		21	
							M ³	Total Quantity	8.921		

_	71	`
•	ιn	١,
J	١N	,,

Subject Code: 17501

Chainage	0	30	60	90
Ground Level	500	499.70	498.90	497.60
Formation level	497.5	497.3	497.10	496.80
Depth(F.L-G.L)	-2.5	-2.4	-1.8	-0.8

1M

Chainage	Depth	BD	SD^2	A=BD+SD ²	$A_{m}=A_{1}+A_{2}$ L		Q=A _n	n x L
							Cutting	Filling
0	-2.5	30	9.375	39.375				
30	-2.4	28.8	8.64	37.44	38.407	30	1152.21	
60	-1.8	21.6	4.86	26.46	31.95	30	958.5	
90	-0.8	9.6	0.96	10.56	18.51	30	555.3	
				Total Quantity in m ³			2666.01	

5 (c) Rate Analysis for R.C.C. Work (1:2:4) for Slab including Steel Reinforcement

Assume Wet Volume of R.C.C = 10 m^3

Dry Volume = 52% more of Wet volume

1M

2M

2M

2M**1M**

 $= \frac{52}{100} \times 10 + 10 = 15.2 \text{ cu.m.}$ b) Volume of Cement = $\frac{\text{Dry Volume}}{\text{Sum of Mix Proportion}} \times \text{Content of cement in proportion}$

Volume of Cement =
$$\frac{15.2}{1+2+4}$$
 x 1 = 2.1714 cu. m

No. of Cement Bags =
$$\frac{2.1714}{0.0347}$$
 = 62.576 bags

$$=$$
 approximately $=$ 63 bags

c) Volume of Sand = $\frac{\text{Dry Volume}}{\text{Sum of Mix Proportion}}$ x Content of Sand in proportion

Volume of Sand =
$$\frac{15.2}{1+2+4}$$
 x 2 = 4.3428 cu. m

d) Volume of Aggregates = $\frac{\text{Dry Volume}}{\text{Sum of Mix Proportion}} \text{ x Content of Aggregates in proportion}$

Volume of Aggregates =
$$\frac{15.2}{1+2+4}$$
 x 3 = 8.6857 cu. m

2M

2M

2M

1M

e) Assume 1% Steel Reinforcement

Volume of Steel = $\frac{1}{100} x 10 = 0.1 m^3$

Weight of Steel = $0.1 \times 7850 = 785 \text{ Kg}$

Binding Wire = $10 \times 0.785 = 7.85 \text{Kg}$

Sr.No.	Particulars	Quantity	Rate Rs. P	Per	Amount Rs. P	
	Material					
	Cement	63	350	Bag	22,050	
	Sand	4.3428	650	M^3	2822.82	
1	Aggregates	8.6857	900	M^3	7817.13	
	Steel	785	40	kg	31400	
	Binding Wire	7.85	35	Kg	274.75	
					64,364.70	
	Labor					
	Head Mason	1.5	400	Day	600	
	Mason	3	300	Day	900	
	Male Mazdoor	13	250	Day	3250	
	Female Mazdoor	10	200	Day	2000	
2	For Reinforcement Blacksmith	15	200	Day	3000	
	Bhisti	2	400	Day	800	
	Contingencies T& P	Lump Sum	Lump Sum	Lump Sum	200	
					10,750	
	Centering & Shuttering					
3	Carpenter	10	400	Day	4000	
3	Mazdoor	10	300	Day	3000	
	Nails	Lump Sum	Lump Sum	Lump Sum	300	
					7300	
				Total	82414.70	
4	Water Charges			1.5%	1236.22	
	Profit & Overhead			10%	8241.47	
5				Grand Total	91892.39	

Rate Per Cubic Meter = $\frac{91892.39}{10}$ = **9189**. **239Rs**.

(Note:- if student have calculated the rate of sand and aggregates in brass instead of m³ marks should be given accordingly. Rates will be different at different places hence examiner should give proportionate marks. Marks should not be given according the GRAND TOTAL, marks should be given according to data entered by students i.e Material, Labour, Centering Shuttering etc.)

2M

2M

2M

2M

WINTER – 15 EXAMINATIONS Model Answer- Estimating and Costing

5 (d)

Subject Code: 17501

SR. No	Desription	No.	L	В	Н	Unit	Qty	Total Qty	
1	Excavation	-	2.4	6					
2	BBM (0.3m) thick A=(2.4x6 - 1.8x5.4)=4.68m ² (1.8+0.3+0.3)=2.4m (5.4+0.3+0.3)=6.0m	-	4.68		2	2 M ³		9.36	
3	P.C.C	-	2.4	6	0.15	M ³		2.16	
4	R.C.C Slab	-	2.4	6	0.12	M^3		1.728	

OR

5 (d)

SR. No	Desription	No.	L	В	Н	Unit	Qty	Total Qty
1	Excavation	-	2.26	5.86	2.15			28.47
2	BBM (0.23m) thick L = 1.8 x 2 + (5.4 + 0.23+ 0.23) x 2 = 15.32m	-	15.32	0.23	2	M^3	1-	7.04
3	P.C.C	-	2.26	5.86	0.15	M^3		1.986
4	R.C.C Slab	-	2.26	5.86	0.12	M^3		1.589

NOTE:- 1) In this numerical depth of excavation is not mentioned hence if student have attempted this quantity full marks should be given.

- 2) Thickness of brick work is not given if students have assumed thickness of brickwork 0.23m thick or 0.3m thick or have attempted this question full marks should be given to students by examiner.
- 3)P.C.C is calculated considering thickness of BBM as 0.3m. if students have considered thickness as 0.23m thick proportionate marks should be given.
- 4)R.C.C slab is calculated considering thickness of BBM as 0.3m. if students have considered thickness as 0.23m thick proportionate marks should be given.

Page No- 19 /20

WINTER – 15 EXAMINATIONS Subject Code: 17501 **Model Answer-** Estimating and Costing

Q No.6	Attem	pt any l	FOUR	of the fo	llowing:					16 M
a)	Explai	n how y	ou wi	ill prepar	e approxima	te estimate of	an auditor	ium.,		04 M
	• Aud	itorium	is desi	gned to ac	commodate l	arge audience				1M
	• As	such th	ey lea	ad to ha	ve wide spa	n and multi _l	ple stories	high in c	order to	
				_	oustical requi					1M
						ipments are o				13.//
						or approximat				1M
	<u>a) Sloped Floors: -</u> Sloped floor, with leveled terrace for each row of seating help provide proper sightline from audience to stage.									
							na amaga hatr	trric m	O****	1M
						long with som g system shou				
				e venues.	<u>ii</u> Lighteinn	g system shot	iiu de Hexid	ie io accon	iiiouate	
		-			and life safe	ety is calculat	ed in appro	ximate esti	mate as	
					or these safet		TI			
b)					ement Sheet.					04 M
	1	2		3	4	5	6	7	8	2M
	Item	Descri		Number	Length(m)	Breadth(m)	Depth(m)	Quantity	Total	
	No.	of Ite	em					(m)		
		ct Shee	et 	2	2	4				2M
		1 No.	Dont	ciculars	3 Quantity or	4 Rate	· · · · · ·			2 1 V1
] 31.	INO.	Part	liculais	Number	Rs. P	rei	Per Amount Rs. P		
6 (c)					rumoer	13. 1		10.	1	1M
	Desci	ription				Multiplying	Factor			1M
		Corruga	ted Sh	neet		1.10	2 400001			1M
	M.S.					1.00				1M
	Panel	ed Doo	r			1.3 for Each	side			
	Fully	Glazed	Windo	OW		0.5 for Each	side			
6 (d)		vice Uni								1M
		ospital:-								1M
		uditoriu								1M
	3)Godown:- Per bay									1M
6(e)	4)Road:- Per KM Factors Affecting Task Work:-									1M each
0(6)						nature, size, h	eight, situat	ion. locatio	n.	for any
					dopted, wage		oigin, situat	1011, 10 cu t10	11,	four
				lled labou		- F				points
		•				urn of labour.				•
				_	•	ay increase the				
	5. If th	e work i	s allot	ted on pie	ce work basis	then the daily	y wages outp	out of labou	ır	
	increa	ses.								

WINTER – 15 EXAMINATIONS

<u>Model Answer-</u> Estimating and Costing

Page No- 20 /20

Subject Code: 17501

6 (f) **Contingencies:** • The term Contingencies indicates incidental expenses of miscellaneous character 2Mwhich cannot be classified under any distinct sub head, yet pertain to the work as a whole. • In an estimate a certain amount in the form of contingencies of 3 to 5 percent of estimated cost is provided to allow for the expenses for miscellaneous petty items which do not fall under any sub head of items of work. • Miscellaneous incidental expenses which cannot be classified under any subhead or item are met from the amount provided under contingencies. • If there is any saving against this amount, the amount may be utilized with the sanction of the competent authority for other expenses. 2MWork charged establishment: • It is the establishment which is charged to the works directly. • During the construction of a building or a project, a certain number of work supervisors, chaukidaars, mates, munshies etc. are required to be employed and their salaries are to be paid from the amount of work-charged est. provided in the estimate. • A percentage of 1 ½ to 2 % of the estimate is included in the estimate. • The work-charged employees are temporary staff and their appointment shall have to be sanctioned by competent authority for a specific period.