

Security of Distributed Software

Prof. Dr.-Ing. Martin Gaedke
Chemnitz University of Technology
Department of Computer Science
Professorship of Distributed and Self-organizing
Systems

http://vsr.informatik.tu-chemnitz.de

Chapter 1 INTRODUCTION

Introduction

Before:

- Public networks: closed, managed centrally
- Internet: pure research network, not a worthwhile target, users trust each other

Now:

- Increasing decentralization of public networks by deregulation of telecommunications markets
- Use of the open and decentralized Internet
- Increasingly extensive use of the Web (Deep Web, Social Web, Web 2.0, Semantic Web)

Conclusion:

- Security mechanisms are becoming an indispensable part of modern communication systems
- Security must be considered in a comprehensive and integrated way, taking new aspects into account: identity and privacy

SS 2020

What is Security?

- Definition Ability to avoid being harmed by any risk, danger or threat (Cambridge Dictionary of English)
- In practice, an unreachable goal
- What does this mean for the IT infrastructure?
 - YES YOUR SOFTWARE IS NEVER(!!!!) Secure!
- How to ensure security and how can it be managed?
- How secure must "secure" really be?
- What has to be done do?

Security Goals (until now)

- Mnemonic for security goals: "CIA"
- Confidentiality
 - Data secrecy
- Integrity
 - Data intactness
- Authenticity
 - Secure data origin
- Additional (soon-to-be-) major goals:
 - Liability (Non-Repudiability)
 - Non-repudiation of data origin
 - Important for contracts or in the fight against SPAM
 - Identity
 - Verification of an individual entity
 - Nowadays, identity is of increasing significance!

Assets

- Asset In this lecture, asset is a generic term denoting things worth protecting
 - Data
 - Services, e.g. business applications
- Our focus:
 - Actions to achieve security goals
 - Therefore, strong physical security is the foundation

Digital and Physical Security

PS – Physical Security DS – Digital Security Slide looks boring – but isn't – think about Virtualization!

Numerous Challenges

- Achieving security goals by
 - Information encryption
 - Implementation of authentication
 - Establishment of security activities
 - Monitoring of the system or the network in terms of attacks
 - Continuous reduction of weak spots
 - Etc.

Enlarge your attack surface??... Or

How to improve TP-Link (TL-WR841N / TL-WR841ND)

Data Transfer Model

- The classic scenario
 - Passive Attacker:
 - Can only listen, not manipulate
 - Confidentiality threat
 - Active Attacker:
 - Can listen, change, delete, duplicate
 - Threat for confidentiality, integrity and authenticity

Authenticity vs. Liability

- Difference between authenticity and liability:
 - Focus on internal and external relationships

- Authenticity:
 Bob is sure that the data comes from Alice
- Liability:
 Bob can prove it to third parties

Threats

- Interception of transmitted data
- Modification of transmitted data
 - Change
 - Delete
 - Insert
 - Reorder data blocks

Masquerade

- Faking a false identity
- Sending messages with a false source address
- Unauthorized access to systems
 - Keyword "Hacking"
- Sabotage (Denial of Service)
 - Causing an overload situation (including hardware)
 - "Destroying" protocol instances by illegal packets

Some Attack Techniques

- Tapping cables or radio links
- Interposing (man-in-the-middle attack)
- Replaying of intercepted messages (replay attack)
 (e.g. replay of login messages for the purpose of unauthorized access)
- Selective changing / swapping of bits or bit strings (without being able to decrypt the message)
- Break-in by taking advantage of errors (buffer overflows)
- Break-in by means of active components (trojans, worms, backdoors)
- Breaking cryptographic algorithms
- Social Engineering (e.g. through direct contact and social web)
- Countermeasures:
 - Don't use self-made algorithms, use only proven algorithms that are considered safe!
 - Use safe methods and replace old algorithms
 - Behaviour (Pattern) analysis
 - Use Social Web the right way
 - Know your enemy

Integrated Security

- Security should be considered in an integrated way
 - Consideration of all assets
 - Based on risk assessment
 - Use adequate security approaches and services (often a mix of different techniques)
- Central question: Security vs. Identity
 - What is more important?
 - What is more effective?

Conclusion

- It is almost impossible to achieve 100% security. Therefore, one has to clearly define what has to be protected and how high the according security requirements should be.
- Until now: A simple but effective approach:
 - Asset lists
 - Risk assessment for each asset
- But: Is that still simple in the age of the Web?
- OUR approach:
 - Understand that someday an enemy will successfully attack your application (this might be tomorrow!!!)
 - Therefore: Limit the attack surface, limit identity properties, distribute attack surface, apply encryption everywhere

Beware of Unexpected Risks!

Recommended Reading

- Security Engineering
 - http://www.cl.cam.ac.uk /~rja14/book.html
- Applied Cryptography
 - http://cacr.uwaterloo.ca/ hac/

Further references will be given later... such as BlackHat, CCC, etc.

Also recommended

Homework

Start reading about GDPR:

- https://www.eugdpr.org/the-regulation.html
- https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en

Could you answer:

- What is a data subject?
- What are the data subject's rights?
- What is personal data and what not?
- What is a data processor?
- What is a data controler?

