Devoir à la maison nº 6

Problème 1 —

On se propose de déterminer l'ensemble \mathcal{E} des fonctions f continues sur \mathbb{R} telles que

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+y) + f(x-y) = 2f(x)f(y)$$

Partie I -

- 1. Montrer que cos est dans l'ensemble \mathcal{E} .
- **2.** Montrer que pour tout $(x,y) \in \mathbb{R}^2$, $\operatorname{ch}(x+y) = \operatorname{ch}(x)\operatorname{ch}(y) + \operatorname{sh}(x)\operatorname{sh}(y)$. En déduire que ch est dans \mathcal{E} .
- 3. Soit $f \in \mathcal{E}$. Montrer que pour tout $\alpha \in \mathbb{R}$, la fonction $f_{\alpha} : x \in \mathbb{R} \mapsto f(\alpha x)$ est également dans \mathcal{E} .
- **4.** Soit $f \in \mathcal{E}$.
 - **a.** Montrer que f(0) = 0 ou f(0) = 1.
 - **b.** Montrer que si f(0) = 0, f est constamment nulle sur \mathbb{R} .
 - c. Montrer que si f(0) = 1, f est paire.

Partie II -

Soit $f \in \mathcal{E}$ telle que f(0) = 1.

- 1. Soit $r \in \mathbb{R}_+^*$.
 - a. Montrer que pour tout $x \in \mathbb{R}$, $\int_0^r f(x+y) dy = \int_x^{x+r} f(u) du$.
 - $\mathbf{b.}\ \, \mathrm{Montrer}\ \, \mathrm{que}\ \, \mathrm{pour}\ \, \mathrm{tout}\ \, x\in\mathbb{R},\, 2f(x)\int_0^r f(y)\, dy = \int_x^{x+r} f(u)\, du + \int_{x-r}^x f(u)\, du.$
- 2. a. Montrer qu'il existe $r \in \mathbb{R}_+^*$ tel que $\int_0^r f(y) \, dy > 0$. On suppose dans la suite de cette question que r vérifie cette condition.
 - **b.** Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} .
 - c. Montrer que f est en fait de classe \mathcal{C}^{∞} sur \mathbb{R} .
 - **d.** Prouver qu'il existe $c \in \mathbb{R}_+^*$ tel que

$$\forall x \in \mathbb{R}, \ cf'(x) = f(x+r) - f(x-r)$$

3. En déduire qu'il existe $\lambda \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R}, \ f''(x) = \lambda f(x)$$

Partie III -

- 1. Résoudre sur $\mathbb R$ l'équation différentielle $y''=\mu y$ en distinguant les cas $\mu>0,\ \mu<0$ et $\mu=0.$
- 2. En déduire tous les éléments de \mathcal{E} en exploitant la question I.4.c.