Experimental studies of the $\Lambda(1405)$

physics654 – Seminar on exotic multi-quark states

JAKOB KRAUSE

▼ krause@hiskp.uni-bonn.de | **೧** krausejm

Tutor: Georg Scheluchin

■ scheluchin@physik.uni-bonn.de

18.06.2021

Motivation

What is special about the $\Lambda(1405)$?

- ▶ its mass does not fit well into constituent quark models which do predict baryon masses well for other baryons
- ▶ invariant mass distribution (line shape) differs significantly from usual BREIT-WIGNER shapes
- ightharpoonup candidate for an exotic multiquark state (bound system of $\overline{K}N$) since its mass lies just below threshold

There are (very) many different theoretical approaches to explain this behavior

 \rightarrow There is need for more experimental data!

some plots/pictures?

Table of contents

1. Experimental setup

2. Line-shape measurement

3. Spin-parity measurement

4. Conclusion

2. Line-shape measurement

3. Spin-parity measurement

4. Conclusion

Continuous Electron Beam Accelerator Facility (CEBAF)

Figure 1: CEBAF layout at Jefferson Lab, [Mecking et al. 2003]

Continuous Electron Beam Accelerator Facility (CEBAF)

How can we access $\Lambda(1405)$ with this setup?

- ▶ employ radiator target for the electrons
- ▶ generate high energy photons using the *bremsstrahlung* process
- ▶ shoot high energy photons on proton target (LH2)
- ▶ then we can observe $\gamma p \to K^+\Lambda(1405)$ while knowing p_{γ}, p_p

CEBAF Large Acceptance Spectrometer (CLAS)

Figure 2: CLAS layout at Jefferson Lab, [Mecking et al. 2003]

1. Experimental setup

2. Line-shape measurement

3. Spin-parity measurement

4. Conclusion

Reaction kinematics

Reaction	Strong Final State	and the second	Particles X
		$K^+ p \pi^-(X)$	$K^{+}\pi^{+}\pi^{-}(X)$
$\gamma + p \rightarrow K^{+} +$	{Λ(1405) {Λ(1520)		\
	\sim 33% $\Sigma^+ \pi^-$	π^{0} (52%)	$n (48\%)$ $\Sigma^+ \to p\pi^0$
	$\sim 33\%$ $\Sigma^0 \pi^0$	$\pi^0 \gamma$ (64%)	$ \begin{array}{ccc} & \Sigma^{+} \to p\pi^{0} \\ & \Sigma^{+} \to n\pi^{+} \end{array} $
	\sim 33% $\Sigma^- \pi^+$		$n_{(100\%)}$ $\Sigma^0 \to \gamma \Lambda \longrightarrow \gamma p \pi^-$
	6%/6%		$\Sigma^- \to n\pi^-$
$\gamma + p \rightarrow K^+ + \Sigma^0(1385) \stackrel{\longleftarrow}{\swarrow} K^+ \Lambda \pi^0$		π^0 (64%)	$\Lambda \to p\pi^-$
$\gamma + p \rightarrow K^{*+} + \Sigma^0$		$\pi^0 \gamma$ (64%)	
$\gamma + p \to K^{*0} + \Sigma^+$		π^{0} (52%)	n (48%)

Figure 3: Possible and studied reactions in the analysis of the lineshapes of $\Lambda(1405)$, taken from [Moriya, Schumacher, Adhikari et al. 2013]

There are two sets of reactions that the detector sees

- 1. $K^+p\pi^-$
- 2. $K^{+}\pi^{+}\pi^{-}$

There are many cuts that can be made that apply to both

Initial selection of particles

- ► Initial final state Kaon selection
- ▶ fiducial cuts
- \blacktriangleright remove false K^+ due to π^+ or p
- ► Loose Δ TOF cut (Δ TOF = $t_{\text{meas}} t_{\text{calc}} = t_{\text{meas}} \frac{l\sqrt{p^2 + m_0^2}}{cp}$)
- \triangleright vertex z cut
- ightharpoonup minimum $|\mathbf{p}|$ cuts
- \triangleright Precise \triangle TOF cuts

Figure 4: Δ TOF for π^{\pm} @ 2.35 < W < 2.45 GeV, applied cuts are shown in magenta. [Moriya, Schumacher, Adhikari et al. 2013]

In all channels, the data was divided into 10 bins of energy spanning 100 MeV in the CMS energy $W=\sqrt{s}$ and 20 angle bins in the CMS kaon angle.

 \rightarrow the following analysis was performed independently in every bin of energy and angle!

extracting $\Lambda \pi^0$ and $\Sigma^+ \pi^-$

- reminder: $\Lambda \to p\pi^-, \Sigma^+ \to p\pi^0$
- final state particles: $K^+p\pi^-(\pi^0)$
- determine p_{π} via missing mass fit
- apply cuts based on fits to the invariant masses $M_{p\pi^-}$ and $M_{p\pi^0}$

extracting $\Sigma^+\pi^-$ and $\Sigma^-\pi^+$

- reminder: $\Sigma^{\pm} \to n\pi^{\pm}$
- final state particles: $K^+\pi^+\pi^-(n)$
- determine p_n via missing mass fit
- apply cuts based on fits to the invariant masses $M_{n\pi^{\pm}}$

Figure 5: Dalitz-like plots of the above mentioned invariant masses, taken from [Moriya, Schumacher, Adhikari et al. 2013]

extracting $\Sigma^0 \pi^0$

- reminder: $\Sigma^0 \to \gamma \Lambda \to \gamma p \pi^-$
- final state particles: $K^+p\pi^-(\gamma\pi^0)$ missing mass fit is not applicable here: demand the missing mass is sufficiently greater than m_{π}
- make cuts based on the invariant mass $M_{p\pi^-}$
- now the missing mass $(\gamma p \to K^+ X)$ gives the $\Sigma^0 \pi^0$ lineshape

Figure 6: Invariant mass of the $\gamma\pi$ system, selection range in magenta. Taken from [Moriya, Schumacher, Adhikari et al. 2013]

- ▶ Now the signal regions have been established
- ▶ he true lineshape of the $\Lambda(1405)$ has to be extracted from the vast of reactions \rightarrow any other contributions have to be excluded
- ▶ Strategy: use of Monte-Carlo fits to the data, simulating the contribution of other resonances using the PDG widths and masses

I will not really go into detail here...(??)

Some fit results:

Figure 7: Sample fit results of invariant mass spectra for a single bin in energy and angle, taken from [Moriya, Schumacher, Adhikari et al. 2013]

Interpretation of the results

Having substracted all unwanted reactions, one can obtain the true $\Lambda(1405)$ lineshapes:

Figure 8: Lineshapes of the $\Lambda(1405)$ for the 3 different decay channels and the PDG Breit-Wigner. The data were summed over all angles for better statistics. [Moriya, Schumacher, Adhikari et al. 2013]

Interpretation of the results

There are in fact predictions of the lineshapes differing by decay channel [Nacher et al. 1999].

 \rightarrow main idea: not one amplitude, but two due to isospin decomposition.

Figure 9: Lineshapes of the $\Lambda(1405)$ for the 3 different decay channels and the prediction of [Nacher et al. 1999], taken from [Moriya, Schumacher, Adhikari et al. 2013]

Interpretation of the results

MORIYA ET AL. saw two main reasons for the lineshapes differing from a simple Breit-Wigner:

- 1. Isospin decomposition
- 2. channel coupling between the detected $\Sigma \pi$ and NK final states

Isospin decomposition

let

$$|t_I|^2 = |\langle I, 0|T^{(I)}|\gamma p\rangle|^2,$$

then we can write (neglecting I = 2

using CGK)
$$|T_{\pi^{-}\Sigma^{+}}|^{2} = \frac{1}{3}|t_{0}|^{2} + \frac{1}{2}|t_{1}|^{2} - \frac{2}{\sqrt{6}}\cos\phi_{01}$$

$$|T_{\pi^0 \Sigma^0}|^2 = \frac{1}{3}|t_0|^2$$

$$|T_{\pi^+\Sigma^-}|^2 = \frac{1}{3}|t_0|^2 + \frac{1}{2}|t_1|^2 + \frac{2}{\sqrt{6}}\cos\phi_{01}$$

Channel coupling

the t_I are described by one or two Breit-Wigner amplitudes with mass dependent widths Γ

 \rightarrow modify the amplitude preserving analyticity [Flatté 1976] including the $N\overline{K}$ decay channel available at threshold $m_K + m_p \approx 1434 \,\mathrm{MeV}$

Interpretation of results

Fits with two I=1 and one I=0 amplitudes lead to best agreement with measured data also show $\Sigma^-\pi^+, \Sigma^0\pi^0$?

Figure 10: Data and fits for $\Sigma^+\pi^-$ for different bins in W.~I=0 (solid black), narrow I=1 (dotted black) and wide I=1 (dashed black). Background in dashed red. [Moriya, Schumacher, Adhikari et al.

1. Experimental setup

2. Line-shape measurement

3. Spin-parity measurement

4 Conclusion

Theoretical basics

The $\Lambda(1405)$ is so far (mostly) assumed to have $J^P = \frac{1}{2}^-$, but this has not been determined experimentally

Measuring spin

- \blacktriangleright consider the strong decay $Y^* \to Y\pi$, with J^P the spin and parity of Y^*
- \blacktriangleright the $Y\pi$ angular distribution will only depend on J

$$I(\theta_Y) = \text{const.}$$
 $J = 1/2$
$$I(\theta_Y) \propto 1 + \frac{3(1-2p)}{2p+1} \cos^2 \theta_Y$$
 $J = 3/2$,

where θ_Y is the polar angle of the decay direction of Y in the Y* rest frame, p describes the fraction of spin projections along the z axis

 \blacktriangleright uniform decay pattern is best evidence for spin J=1/2

[Moriya, Schumacher, Aghasyan et al. 2014]

Theoretical basics

Measuring parity

- ightharpoonup the key to accessing the parity lies in determining the Polarization transfer to the decay product Y which we will denote \mathbf{Q}
- ► the angular distribution of **Q** will only depend on **P**

$$\mathbf{Q}(\theta_Y) = \text{const.} \qquad J^P = 1/2^-$$

$$\mathbf{Q}(\theta_Y) = -\mathbf{P} + 2(\mathbf{P} \cdot \mathbf{q})\mathbf{q} \quad J^P = 1/2^+$$

 $ightharpoonup \mathbf{Q}$ can be measured from weak decay angular distribution of Y

Figure 11: Polarization transfer in the strong decay $Y^* \to Y\pi$, taken from [Moriya, Schumacher, Aghasyan et al. 2014]

[Moriya, Schumacher, Aghasyan et al. 2014 and Ref. therein]

Event selection

- ► select kinematic region where the $\Sigma \pi$ invariant mass is dominated by the $\Lambda(1405) \to M_{\Sigma \pi} \in$ $1.30 \,\text{GeV}$ to $1.45 \,\text{GeV}$
- ▶ inspect nine bins in energy and angle, namely with CM energy at 2.6, 2.7 and 2.8 GeV and the three forwardmost kaon angle bins each

Figure 12: $\Sigma \pi$ and $K\pi$ invariant mass in the vicinity of the $\Lambda(1405)$, taken from [Moriya, Schumacher, Aghasyan et al. 2014]

Analysis procedure

- ▶ plot the angular distribution of the projections $\cos \theta_{\Sigma}$ and $\cos \theta_p$ for each bin
- ▶ test each spin hypothesis using Monte-Carlo maximum likelihood fits, which employ angular decay probability distributions according to each hypothesis for $\Sigma \pi$ and $p\pi$. From the fit Q_z will be determined
- test parity hypotheses by determining $Q_z(\cos\theta_{\Sigma})$
- \blacktriangleright compare each hypothesis by calculating a χ^2 probability

Result: data is consistent with $J^P = 1/2^-$ but does in principle not rule out $J^P = 3/2^+$. $1/2^+$ and $3/2^-$ can be discarded.

Figure 13: Distributions of the projections of (a)cos θ_{Σ} and (b) $\cos \theta_{p}$ @ 2.65 < W < 2.75 GeV and 0.70 < $\cos \theta$ < 0.80, taken from [Moriya, Schumacher, Aghasyan et al. 2014]

Figure 14: angular distribution of the polarization $Q_z = 0.65 < W < 2.75 \text{ GeV}$ and $0.70 < \cos \theta < 0.80$. Red: average, blue: expectation for P-wave decay. Taken from [Moriya, Schumacher, Aghasyan et al. 2014]

1. Experimental setup

2. Line-shape measurement

3. Spin-parity measurement

4. Conclusion

Conclusion

Lineshape measurement

- ▶ the CLAS detector was used to study $\gamma p \to K^+ \Lambda(1405)$
- ► after selecting the correct events the true lineshape was extracted using Monte-Carlo sim. of the yield of other resonances
- ► the lineshapes in different decay channels differ from each other and from a simple BREIT-WIGNER
- ► a phenomenological isospin decomposition model was able to describe the data

Spin parity measurement

- ▶ the angular distribution of the decay $\Lambda(1405) \rightarrow \Sigma^{+}\pi^{-}$ was studied
- \blacktriangleright the angular distributions were tested against various J^P hypotheses
- ▶ the data is consistent with $J^P = 1/2^-$ but does not exclude $J^P = 3/2^+$

References

- Flatté, S.M. (1976). 'Coupled-channel analysis of the $\pi\eta$ and $K\overline{K}$ systems near $K\overline{K}$ threshold'. In: *Physics Letters B* 63.2, pp. 224–227. ISSN: 0370-2693. DOI: https://doi.org/10.1016/0370-2693(76)90654-7. URL: https://www.sciencedirect.com/science/article/pii/0370269376906547.
- Mecking, B.A. et al. (2003). 'The CEBAF large acceptance spectrometer (CLAS)'. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 503.3, pp. 513-553. ISSN: 0168-9002. DOI: https://doi.org/10.1016/S0168-9002(03)01001-5. URL: https://www.sciencedirect.com/science/article/pii/S0168900203010015.
 - Moriya, K., R. A. Schumacher, K. P. Adhikari et al. (Mar. 2013). 'Measurement of the $\Sigma\pi$ photoproduction line shapes near the $\Lambda(1405)$ '. In: Phys. Rev. C 87 (3), p. 035206. DOI: 10.1103/PhysRevC.87.035206. URL: https://link.aps.org/doi/10.1103/PhysRevC.87.035206.
- Moriya, K., R. A. Schumacher, M. Aghasyan et al. (Feb. 2014). 'Spin and parity measurement of the Λ(1405) baryon'. In: *Phys. Rev. Lett.* 112 (8), p. 082004. DOI: 10.1103/PhysRevLett.112.082004. URL: https://link.aps.org/doi/10.1103/PhysRevLett.112.082004.