1 picture

For the state A, the incoming edges to this state are from $B_{\{0\}}$ to C with label b/0 and $B_{\{1\}}$ to C with label b/0. There is no difference in the outputs of the incoming edges to this state, and so in the constructing Moore machine the output for this state will be 0.

2 picture

For the state D, the incoming edges are A to D with label b/0, from C to D with label a/0, and from D to D with label b/1.

We get two different outputs for two incoming edges (D to D output 1, C to D output 0). So, the state D will be divided into two, namely, $D_{\{0\}}$ and $D_{\{1\}}$. The outgoing edges are duplicated for both the states generated from D. The modifi ed machine is

3 picture

$110 \mid$ Introduction to Automata Theory, Formal Languages and Computation

21. Convert the following Mealy machine into an equivalent Moore machine. $[\mbox{UPTU }2004]$

Solution: The state q_0 has two incoming edges: from q_1 with label a/0 and from q_3 with label b/1. As there is a difference in output, the state q_0 is divided into q_00 and q_01 with outputs 0 and 1, respectively. The states q_1 and q_3 have only one incoming edge each, and so there is no need of division. The state q_2 has three incoming edges; among those, two are of output '0'

and another is of output '1'. Thus, it is divided into q_20 and q_21 with outputs 0 and 1, respectively.

4 picture

From q_1 input with label 'a' ends on q_00 , and from q_3 input with label 'b' ends on q_01 . The outputs from old q_1 state are duplicated from q_00 and q_01 .

The state q_1 and q_3 are not divided. q_1 gets output '1' and q_3 gets output '0'. Dividing the state q_0 and placing q_1 and q_3 , the intermediate machine becomes as follows

5 picture

The state q_24 is divided into q_20 and q_21 . From q_00 and q_01 input with label 'a' ends on q_21 . From q_3 input with label 'a' ends on q_20 . There is a loop on q_2 . That loop will be on q_20 with label 'b'. Another transition with label 'b' is drawn from q_21 to q_20 . The final Moore machine is as follows

6 picture

22. Minimize the following finite automata.

	Next State		
	Present State	I/P = a	I/P = b
\rightarrow	A	В	F
	В	A	F
	\mathbf{C}	G	A
	D	Н	В
	\mathbf{E}	A	G
	\mathbf{F}	Н	$^{\mathrm{C}}$
	G	A	D
	H	A	$^{\mathrm{C}}$

Here F, G, and H are the final states.

Solution: In the finite automata, the states are $\{A, B, C, D, E, F, G, H\}$. Name this set as S_0 .

 $S_0: \{A, B, C, D, E, F, G, H\}$

All of the states are 0 equivalents.

In the finite automata, there are two types of states: final state and non-final states. So, divide the set of states into two parts, Q1 and Q2.

$$Q_1 = \{F, G, H\}Q_2 = \{A, B, C, D, E\}$$

$$S_1: \{\{F,G,H\}\{A,B,C,D,E\}\}$$

The states belonging to same subset are 1-equivalent because they are in the same set for string length 1. The states belonging to different subsets are 1-distinguishable.

The next states of F are H and C. The next states of G and H are A, D and A, C, respectively.

A, D and A, C belong to the same subset but H and C belong to a different subset. So, F, G, and H are divided into $\{F\}, \{G, H\}$.

For input 0, the next states of A, B, C, D, and E are B, A, G, H, and A, respectively. For input 1,the next states of A, B, C, D, and E are F, F, A, B, and G, respectively. So, the set $\{A, B, C, D, E\}$ is divided into $\{A, B, E\}$ and $\{C, D\}$.

 $S_2: \{\{F\}\{G,H\}\{A,B,E\}\{C,D\}\}$

By the same process, $\{A,B,E\}$ is divided into $\{A,B\},\,\{E\}.$

 $S_3: \{\{F\}\{G,H\}\{A,B\}\{E\}\{C,D\}\} = \{\{A,B\},\{C,D\},\{E\},\{F\},\{G,H\}\}\}$

The set is not dividable further. So, these are the states of minimized DFA. Let us rename the subsets as q_0, q_1, q_2, q_3 , and q_4 . The initial state was A, and so here the initial state is $\{A, B\}$, i.e., q_0 . The final state was F, G, and H, and so here the final states are $\{F\}$, i.e., q_3 and $\{G, H\}$, i.e., q_4 . The tabular representation of minimized DFA is

	Next State		
	Present State	I/P = 0	I/P = 1
\rightarrow	q_0	q_0	q_0
	q_0	q_0	q_0

23.Design a Mealy and Moore machine for detecting a sequence 1010 where overlapping sequences are also accepted. Convert the Moore machine that you have got into a Mealy machine. Are there any differences? How will you prove that the two Mealy machines are equivalent?

Solution: The Mealy machine is

7 picture

The Moore machine is

8 picture

The converted Mealy machine from the given Moore machine is (by using the transactional format)

9 picture

