NON-INDEPENDENT VARIABLES

This paradox points to a serious problem. In computing partial derivatives of f(x, y, z), we assumed that x, y, z were independent. Up to now, x could move while y and z were fixed. In physics and chemistry and economics that may not be possible. If there is a relation between x, y, z, then x can't move by itself.

EXAMPLE 5 The gas law PV = nRT relates pressure to volume and temperature. P. V. T are not independent. What is the meaning of $\partial V/\partial P$? Does it equal $1/(\partial P/\partial V)$?

Those questions have no answers, until we say what is held constant. In the paradox, $\partial r/\partial x$ had one meaning for fixed y and another meaning for fixed θ . To indicate what is held constant, use an extra subscript (not denoting a derivative):

$$(\partial r/\partial x)_{\theta} = \cos \theta \qquad (\partial r/\partial x)_{\theta} = 1/\cos \theta. \tag{12}$$

 $(\partial f/\partial P)_V$ has constant volume and $(\partial f/\partial P)_T$ has constant temperature. The usual $\partial f/\partial P$ has both V and T constant. But then the gas law won't let us change P.

EXAMPLE 6 Let f = 3x + 2y + z. Compute $\partial f/\partial x$ on the plane z = 4x + y.

Solution 1 Think of x and y as independent. Replace z by 4x + y:

$$f = 3x + 2y + (4x + y)$$
 so $(\partial f/\partial x)_y = 7$.

Solution 2 Keep x and y independent. Deal with z by the chain rule:

$$(\partial f/\partial x)_y = \partial f/\partial x + (\partial f/\partial z)(\partial z/\partial x) = 3 + (1)(4) = 7.$$

Solution 3 (different) Make x and z independent. Then y = z - 4x:

$$(\partial f/\partial x)_{-} = \partial f/\partial x + (\partial f/\partial y)(\partial y/\partial x) = 3 + (2)(-4) = -5.$$

Without a subscript, $\partial f/\partial x$ means: Take the x derivative the usual way. The answer is $\partial f/\partial x = 3$, when y and z don't move. But on the plane z = 4x + y, one of them must move! 3 is only part of the total answer, which is $(\partial f/\partial x)_y = 7$ or $(\partial f/\partial x)_z = -5$.

Here is the geometrical meaning. We are on the plane z = 4x + y. The derivative $(\partial f/\partial x)_y$ moves x but not y. To stay on the plane, dz is 4dx. The change in f = 3x + 2y + z is df = 3dx + 0 + dz = 7dx.

EXAMPLE 7 On the world line $x^2 + y^2 + z^2 = t^2$ find $(\partial f/\partial y)_{x,z}$ for f = xyzt.

The subscripts x, z mean that x and z are fixed. The chain rule skips $\partial f/\partial x$ and $\partial f/\partial z$:

$$(\partial f/\partial y)_{x,y} = \partial f/\partial y + (\partial f/\partial t)(\partial t/\partial y) = xzt + (xyz)(y/t)$$
. Why y/t ?

EXAMPLE 8 From the law PV = T, compute the product $(\partial P/\partial V)_T(\partial V/\partial T)_P(\partial T/\partial P)_V$.

Any intelligent person cancels ∂V 's, ∂T 's, and ∂P 's to get 1. The right answer is -1:

$$(\partial P/\partial V)_T = -T/V^2$$
 $(\partial V/\partial T)_P = 1/P$ $(\partial T/\partial P)_V = V$.

The product is -T/PV. This is -1 not +1! The chain rule is tricky (Problem 42).

EXAMPLE 9 Implicit differentiation was used in Chapter 4. The chain rule explains it:

If
$$F(x, y) = 0$$
 then $F_x + F_y y_x = 0$ so $dy/dx = -F_x/F_y$. (13)