# Máximo común divisor y aplicaciones

Clase 23

IIC 1253

Prof. Cristian Riveros

# Outline

Máximo común divisor

Identidad de Bezóut

Congruencias lineales

Problema chino

# Outline

Máximo común divisor

Identidad de Bezóut

Congruencias lineales

Problema chino

## Máximo común divisor

#### Definición

Sea  $a, b \in \mathbb{Z} - \{0\}$ .

Se define el máximo común divisor gcd(a, b) de a, b como el mayor número d tal que  $d \mid a$  y  $d \mid b$ .

#### **Ejemplos**

$$\gcd(8,12)=4 \qquad \gcd(24,36)=12 \qquad \gcd(54,24)=6$$

En otras palabras, gcd(a, b) es el  $\leq$ -máximo del conjunto:

$$D_{a,b} = \{ c \in \mathbb{Z} \mid c \mid a \land c \mid b \}$$

Para  $a, b \in \mathbb{Z} - \{0\}$ , ¿siempre existe gcd(a, b)?

## icómo calculamos gcd(a, b) para a y b?

Supongamos que queremos calcular gcd(287, 91).

Si dividimos 287 por 91:

$$287 = 91 \cdot 3 + 14$$

#### ¿cuál es la relación entre 287, 91 y 14?

- Si *d* | 287 y *d* | 91, entonces *d* | 14.
  - $\{d \in \mathbb{Z} \mid d \mid 287 \land d \mid 91\} \subseteq \{d \in \mathbb{Z} \mid d \mid 91 \land d \mid 14\}$
- Si d | 91 y d | 14, entonces d | 287.

(¿por qué?)

(¿por qué?)

$$\left\{ d \in \mathbb{Z} \mid d \mid 91 \wedge d \mid 14 \right\} \subseteq \left\{ d \in \mathbb{Z} \mid d \mid 287 \wedge d \mid 91 \right\}$$

#### Por lo tanto, gcd(287, 91) = gcd(91, 14)

# $\mathsf{j}$ cómo calculamos $\mathsf{gcd}(a,b)$ para a y b?

#### Teorema

Para todo  $a, b \in \mathbb{Z} - \{0\}$ , gcd(a, b) = gcd(b, (a mod b)).

#### Demostración: ejercicio.

... ¿para qué nos sirve este resultado?

## Ejemplo

```
287 = 91 \cdot 3 + 14 \qquad \gcd(287, 91) = \gcd(91, 14)
91 = 14 \cdot 6 + 7 \qquad \gcd(91, 14) = \gcd(14, 7)
14 = 7 \cdot 2 \qquad \gcd(14, 7) = 7
\gcd(287, 91) = \gcd(91, 14) = \gcd(14, 7) = 7
```

## icómo calculamos gcd(a, b) para a y b?

Si  $r_0 = a$  y  $r_1 = b$  con  $a \ge b$ , se tiene que:

$$r_0 = r_1 \cdot q_1 + r_2$$
  $0 \le r_2 < r_1$   
 $r_1 = r_2 \cdot q_2 + r_3$   $0 \le r_3 < r_2$   
 $\vdots$   $\vdots$   
 $r_{n-2} = r_{n-1} \cdot q_{n-1} + r_n$   $0 \le r_n < r_{n-1}$   
 $r_{n-1} = r_n \cdot q_n$ 

Por el teorema anterior, tenemos que:

$$\gcd(r_0, r_1) = \gcd(r_1, r_2) = \gcd(r_2, r_3) = \cdots = \gcd(r_{n-1}, r_n) = r_n$$

#### Este es el algoritmo de Euclides.

## Algoritmo de máximo común divisor

```
Algoritmo de Euclides
  input: Números a y b con a \ge b \ge 0
  output: Máximo común divisor entre a y b
  Function MaximoComúnDivisor (a, b)
      x := a
      y := b
     while y \neq 0 do
         r \coloneqq x \bmod y
         x := y
         y := r
      return x
```

¿cuál es el tiempo del algoritmo de Euclides?

## ¿cuál es el tiempo del algoritmo de Euclides?

Para  $a = r_0$  y  $b = r_1$  sabemos que la cantidad de pasos n cumple que:

$$r_0 = r_1 \cdot q_1 + r_2$$
  $0 \le r_2 < r_1$   
 $r_1 = r_2 \cdot q_2 + r_3$   $0 \le r_3 < r_2$   
 $\vdots$   $\vdots$   
 $r_{n-2} = r_{n-1} \cdot q_{n-1} + r_n$   $0 \le r_n < r_{n-1}$   
 $r_{n-1} = r_n \cdot q_n$ 

#### Entonces tenemos que:

## ¿cuál es el tiempo del algoritmo de Euclides?

Lema (Fibonnaci)

Para  $n \ge 3$ , se cumple que:

$$f_n > \left(\frac{1+\sqrt{5}}{2}\right)^{n-2}$$

#### Demuestre el lema usando inducción fuerte.

Usando el lema anterior, tenemos que:

$$b > f_{n+1} > \left(\frac{1+\sqrt{5}}{2}\right)^{n-1}$$

Despejando, obtenemos que  $n < \frac{\log(b)}{\log(\alpha)} + 1$  con  $\alpha = \frac{1 + \sqrt{5}}{2}$ .

Por lo tanto, el **tiempo** del algoritmo de Euclides esta en  $\mathcal{O}(\log(b))$ .

# Outline

Máximo común divisor

Identidad de Bezóut

Congruencias lineales

Problema chino

## Conjunto generadores

#### Definición

Sea  $a, b \in \mathbb{Z} - \{0\}$ .

Se define el conjunto  $\langle a, b \rangle$  generado por a y b como:

$$\langle a,b\rangle = \{c \in \mathbb{Z} \mid \exists s,t \in \mathbb{Z}. c = sa + tb \}$$

## Ejemplo

$$\langle 2,3 \rangle = \{0,1,2,3,4,5,6,7,8,\ldots,-1,-2,-3,\ldots\}$$
  
 $\langle 6,15 \rangle = \{0,6,15,12,21,3,\ldots,-6,-15,-12,\ldots\}$ 

¿es cierto que  $\langle a, b \rangle = \mathbb{Z}$  para todo  $a, b \in \mathbb{Z} - \{0\}$ ?

## Conjunto generadores

#### Definición

Sea  $a, b \in \mathbb{Z} - \{0\}$ .

Se define el conjunto  $\langle a, b \rangle$  generado por a y b como:

$$\langle a, b \rangle = \{ c \in \mathbb{Z} \mid \exists s, t \in \mathbb{Z}. c = sa + tb \}$$

Se define el conjunto  $(a_1, \ldots, a_n)$  generado por  $a_1, \ldots, a_n$  como:

$$\langle a_1,\ldots,a_n\rangle = \{c\in\mathbb{Z}\mid \exists s_1,\ldots,s_n\in\mathbb{Z}.\ c=s_1a_1+s_2a_2+\ldots+s_na_n\}$$

¿qué representa el conjunto (a), generado por un elemento?

## Menor elemento de un conjunto generador

Sea  $a, b \in \mathbb{Z} - \{0\}$ .

Defina g como el menor número positivo en  $\langle a, b \rangle$ :

$$g = \min \{ c \in \langle a, b \rangle \mid c > 0 \}$$

#### ¿por qué existe g?

#### Preguntas

- 1. ¿es cierto que  $\langle g \rangle \subseteq \langle a, b \rangle$ ?
- 2. ¿es cierto que  $\langle a,b\rangle\subseteq\langle g\rangle$ ?



**V** 

Por lo tanto,  $\langle g \rangle = \langle a, b \rangle$ .

## Menor elemento de un conjunto generador

Sea  $a, b \in \mathbb{Z} - \{0\}$ .

Defina g como el menor número positivo en (a, b):

$$g = \min \{ c \in \langle a, b \rangle \mid c > 0 \}$$

#### ¿quién es g con respecto a y b?

Como  $\langle g \rangle = \langle a, b \rangle$  y g = sa + tb para algún  $s, t \in \mathbb{Z}$  tenemos que:

- 1.  $g \mid a \mid y \mid g \mid b$ . ¿por qué?
- 2. Para todo  $h \in \mathbb{Z}$ , si  $h \mid a \ y \ h \mid b$ , entonces  $h \mid g$ . ¿por qué?

Por lo tanto, g es el máximo común divisor de a y b.

## Identidad de Bézout

#### Teorema

Para todo  $a, b \in \mathbb{Z} - \{0\}$ :

1. gcd(a, b) es el menor número positivo tal que existe  $s, t \in \mathbb{Z}$ :

$$gcd(a, b) = sa + tb$$

2. 
$$\langle a, b \rangle = \langle \gcd(a, b) \rangle$$
.

¿cómo podemos encontrar s y t tal que gcd(a, b) = sa + tb?

## ¿cómo encontrar s, t tal que gcd(a, b) = sa + tb?

#### Ejemplo

Para encontrar gcd(252, 198) = 18 tenemos que:

$$252 = 1 \cdot 198 + 54 
198 = 3 \cdot 54 + 36 
54 = 1 \cdot 36 + 18 
36 = 2 \cdot 18$$

¿cómo usamos estos calculos para encontrar s y t tal que  $s \cdot 252 + t \cdot 198 = 18$ ?

Ejercicio: obtenga una regla general para encontrar s y t.

# Outline

Máximo común divisor

Identidad de Bezóut

Congruencias lineales

Problema chino

## Ecuaciones de congruencias

#### Definición

Una congruencia lineal es una ecuación de la forma:

$$ax \equiv b \pmod{m}$$

donde  $m \in \mathbb{N} - \{0\}$ ,  $a, b \in \mathbb{Z}$  y x es una variable.

## **Ejemplos**

$$3x \equiv 2 \pmod{7} \qquad 4x \equiv 3 \pmod{6}$$

¿cómo podemos resolver estas ecuaciones?

## ¿cómo resolver $ax \equiv b \pmod{m}$ ?

Una posibilidad es encontrar el inverso  $a^{-1} \in \mathbb{Z}_m$  tal que: (ojo:  $a^{-1} \neq \frac{1}{a}$ )

$$a \cdot a^{-1} \equiv 1 \pmod{m}$$

Si  $a^{-1}$  existe para a, entonces podemos resolver la ecuación como:

$$ax \equiv b \pmod{m}$$
$$(a^{-1} \cdot a)x \equiv a^{-1} \cdot b \pmod{m}$$
$$x \equiv a^{-1} \cdot b \pmod{m}$$

¿cuál es el inverso?

$$3 \cdot x \equiv 1 \pmod{7}$$
  $4 \cdot x \equiv 3 \pmod{6}$ 

¿cuándo existe el **inverso multiplicativo** de a en  $\mathbb{Z}_m$ ?

## Existencia de inverso multiplicativo

#### Definición

Decimos que a y b son primos relativos si gcd(a, b) = 1.

Teorema

Sea  $a \in \mathbb{Z}$  y  $m \in \mathbb{N}$  con m > 1.

Si a y m son primos relativos, entonces existe un único  $a^{-1} \in \mathbb{Z}_m$  tal que:

$$a \cdot a^{-1} \equiv 1 \pmod{m}$$

## Existencia de inverso multiplicativo

#### Demostración

Suponga que a y m son primos relativos.

Por la identidad de Bézout, existen s y t en  $\mathbb{Z}$  tal que:

$$sa + tm = 1$$
  
 $sa + tm \equiv 1 \pmod{m}$  (usando módulo)

Como  $tm \equiv 0 \pmod{m}$  (¿por qué?) tenemos que:

$$sa \equiv 1 \pmod{m}$$

Por lo tanto, s es un inverso multiplicativo de a módulo m.

Demuestre que  $a^{-1} \in \mathbb{Z}_m$  es único.

## Existencia de inverso multiplicativo

#### Teorema

Sea  $a \in \mathbb{Z}$  y  $m \in \mathbb{N}$  con m > 1.

Si a y m son primos relativos, entonces existe un único  $a^{-1} \in \mathbb{Z}_m$  tal que:

$$a \cdot a^{-1} \equiv 1 \pmod{m}$$

#### Corolario

- 1. Si  $a \ y \ m$  son primos relativos, entonces  $ax \equiv b \pmod{m}$  tiene solución en  $\mathbb{Z}_m$ .
- 2. Si m es primo entonces, todo  $a \in \mathbb{Z}_m \{0\}$  tiene un inverso multiplicativo.

¿cómo encontramos el inverso multiplicativo de  $a \in \mathbb{Z}_m$ ?

# Outline

Máximo común divisor

ldentidad de Bezóut

Congruencias lineales

Problema chino

## Problema del ejercito Chino en el Siglo III



"¿Cuántos soldados hay en el ejercito de Han Xing's? Si los soldados se ordenan en filas de 3, sobrarán 2 soldados. En cambio, si los ordenas en filas de 5, sobrarán 3 y si los ordenas en filas de 7, solo sobrarán 2."

Si x es la cantidad de soldados en el ejercito de Han Xing's:

 $x \equiv 2 \pmod{3}$ 

 $x \equiv 3 \pmod{5}$ 

 $x \equiv 2 \pmod{7}$ 

¿cómo resolvemos este tipo de sistemas de ecuaciones?

#### Teorema chino del resto

#### Teorema

Sean  $m_1, \ldots, m_n$  con  $m_i > 1$  tal que  $m_i, m_j$  son primos relativos con  $i \neq j$ . Para  $a_1, \ldots, a_n \in \mathbb{Z}$ , el sistema de ecuaciones:

$$x \equiv a_1 \pmod{m_1}$$
  
 $x \equiv a_2 \pmod{m_2}$   
 $\vdots$   
 $x \equiv a_n \pmod{m_n}$ 

tiene una única solución en  $\mathbb{Z}_m$  con  $m = m_1 \cdot m_2 \cdot \cdots \cdot m_n$ .

#### ¿cómo demostramos este teorema?

#### Teorema chino del resto

#### Demostración

Sea  $m = m_1 \cdot m_2 \cdot \cdots \cdot m_n$  y defina:

$$M_k = \frac{m}{m_k}$$
 para  $k \in \{1, \dots, n\}$ 

"Es fácil ver" que  $gcd(m_k, M_k) = 1$  para todo  $k \in \{1, ..., n\}$  (¿por qué?). Por lo tanto,  $M_k$  tiene inverso multiplicativo  $M_k^{-1} \in \mathbb{Z}_{m_k}$ :

$$M_k \cdot M_k^{-1} \equiv 1 \pmod{m_k}$$

Definamos la solución  $x^*$  como:

$$x^* = a_1 \cdot M_1 \cdot M_1^{-1} + \ldots + a_n \cdot M_n \cdot M_n^{-1}$$

jes  $x^*$  una solución para el **sistema de ecuaciones**?

#### Teorema chino del resto

#### Demostración

Definamos la solución  $x^*$  como:

$$x^* = a_1 \cdot M_1 \cdot M_1^{-1} + \ldots + a_n \cdot M_n \cdot M_n^{-1}$$

Como  $M_j \equiv 0 \pmod{m_k}$  para  $j \neq k$  (¿por qué?), entonces:

$$x^* \equiv a_1 \cdot M_1 \cdot M_1^{-1} + \dots + a_n \cdot M_n \cdot M_n^{-1} \pmod{m_k}$$

$$\equiv \underbrace{a_1 \cdot M_1 \cdot M_1^{-1}}_{\equiv 0 \pmod{k}} + \dots + \underbrace{a_k \cdot M_k \cdot M_k^{-1}}_{\equiv 0 \pmod{k}} + \dots + \underbrace{a_n \cdot M_n \cdot M_n^{-1}}_{\equiv 0 \pmod{k}} \pmod{m_k}$$

$$\equiv a_k \cdot (M_k \cdot M_k^{-1}) \pmod{m_k}$$

$$\equiv a_k \pmod{m_k}$$

Demuestre que  $x^*$  es único en  $\mathbb{Z}_m$ .