AD-A012 815

GLASSY CARBONS

MICHIGAN UNIVERSITY

PREPARED FOR
ADVANCED RESEARCH PROJECTS AGENCY

FEBRUARY 1975

DISTRIBUTED BY:

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Final Report

for the Period June 30, 1973 to January 1, 1975

Glassy Carbons

February 1975

Sponsored by Advanced Research Projects Agency ARPA Order No. 1824

DISTRIBUTION STATEMENT A

Approved for public resease
Distribution Unlimited

Department of Materials and Metallurgical Engineering

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
U.S. Department of Continence
Springfield VA 22151

GLASSY CARBONS

Final Report for the Period June 30, 1973 to January 1, 1975

February 1975

ARPA Order Number: 1824 Program Code Number: 1D10

Contractor: The Regents of The University of Michigan

Effective Date of Contract: 1 June 1973

Amount of Contract: \$150,000

Contract Number: DAHC15-71-C-0283

Principle Investigator: Professor Edward E. Hucke

Department of Materials & Metallurgical

Engineering

The University of Michigan Ann Arbor, Michigan 48104

(313) 764-3302

ì.

The views and conclusions contained in this document are those of the author and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency or the U.S. Government.

TABLE OF CONTENTS

	SUMMARY	V
I.	INTRODUCTION	1
II.	MATERIALS PREPARATION	2
III.	STRUCTURAL STUDIES	4
	Solid Structure	5
	X-ray Studies	5
	Electron Microscopy and Diffraction	6
	Thermodynamic Studies	7
	Pore Structure	11
	Small Angle X-ray Scattering	11
	Electron Scanning Microscopy	12
	Pycnometry	12
	Surface Area	13
	Mercury Porosimetry	13
IV.	PROPERTY EVALUATION	13
	Hardness	13
	Compressive and Tensile Strength	14
	Sonic Modulus and Internal Friction	15
	Resistivity	17
	REFERENCES	1. 8
	ADDENDIY	19

SUMMARY

Through the introduction of a controlled porosity, selectable in the range from below 100A to 50 microns, it was possible to produce glassy carbon in section thickness in excess of 3 inches in processing times less than six days. It was further learned and confirmed through a variety of measurements that glassy carbon is not a single material, even when made from the same starting polymer system, but rather a class of materials whose structure and resulting properties can be tailored over an extremely wide range. The properties obtainable compare favorably not only with other carbons, but with other material classes, especially for high temperature applications.

A new thermodynamic method was developed and applied to quantitatively measure the configurational enthalpy and entropy of various glassy carbons relative to graphite. The measurements confirmed quantitatively the marked differences that exist in the atomic strains and disorder in the different carbons. The thermodynamic measurements also gave a quantitative measure of the fraction of surface sites covered by oxygen, which was found to be higher than for graphite. In addition, the high degree of disorder in glassy carbon was shown to at least partially account for the increased resistance to gasification in CO-CO₂ shown at high temperatures by glassy carbons with respect to graphite.

Preceding page blank

The various carbons have a basically planar structure. The fine structure determined by electron microscopy, electron diffraction and X-ray diffraction is not homogeneous on a size scale below 100 Angstroms. The material is paracrystalline with a characteristic size ranging from 10-100Å depending on processing, and with some non-graphitic, very crystalline regions occasionally existing in sizes up to 500Å.

Helium, xylene, mercury intrusion, small angle X-ray scattering, surface area analysis, and scanning electron microscopy show the pore structure of glassy carbons may be either isolated or interconnected, mono or polydisperse, and in a size range from 5Å to 50 microns. Mechanical strength has an approximate inverse relation to the pore size. The pore structure allows a decrease in density, as well as the opportunity to vary mechanical properties and provide chemical filtering and absorption appliances with substantial strength.

GLASSY CARBONS

I. INTRODUCTION

In the past ten years, various workers have reported the preparation, structure, and properties of a "new" form of carbon called glassy, glass-like or vitreous carbon. The names arose from the similarity in appearance to a black glass. Relatively little was known about its detailed structure.

Since these relatively pure carbons are made from controlled decomposition of various polymers, they represent a potentially plentiful and cheap material which, because of the inherent chemical and physical properties of carbon, offer exciting possibilities, including those for very high temperature applications. These materials are isotropic in properties and easily formed into complicated shapes. The major disadvantage of these materials has been that in order to obtain crack free pieces only very small sections (less than 1/8") could be produced and then only with very long and therefore expensive (e.g. 30 days) pyrolysis cycles. In addition, while the materials studied all had some similarities in properties, enough variation existed to question whether the structure was unique and whether substantial improvement might be made through a better control and understanding of the structure. In order to answer these questions, a three year research program was undertaken at The University of Michigan under the sponsorship of the Advanced

Research Projects Agency of the Department of Defense. Related programs were also carried out at Battelle Northwest Laboratories, Pennsylvania State University and Gulf Energy and Environmental Systems Division.

The major goal of the program at The University of Michigan was to extend the section size available and shorten the pyrolysis cycle. Additional goals were to extend the range of properties obtainable and structurally characterize the materials.

The experimental program had three major areas of endeavor, 1) Materials Preparation, 2) Structural Characterization, and 3) Property Evaluation and Correlation. Many of the detailed findings in each of these areas have already been presented in a series of reports¹⁻⁵, and a complete set of experimental data is presented as an appendix to this report. Since the total number of experiments is very large, only a summary of the major findings in each of the areas will be presented in this final report.

II. MATERIALS PREPARATION

The primary goal of the research was realized when it was demonstrated that very thick sections (up to 3 in.) could be produced in relatively short cycles (1 to 6 days) if a pore for ing liquid were used with the original polymer in order to help the escape of gas during pyrolysis. Both the total pore volume and the pore size could be in this way reproducibly varied over very wide ranges. Pore size was varied over four orders of

magnitude reaching down to the 30-50 angstrom size. Both open and closed pore system materials were produced having in several cases a selectable pore size distribution.

The most important conclusion arising from the materials preparation program was that glassy carbon is not a single material, but rather includes a wide range of materials with a correspondingly large range in properties. Not only do different starting polymers produce different structures when pyrolyzed the same, but in general every aspect of the polymer processing and pyrolysis of a given starting material influences the final product. This finding indicates that a high degree of control is required to make a reproducible property set, but it also indicates the exciting potential to tailor a given set of properties to a desired end use. Both the ability to reproduce and to controllably vary the properties were demonstrated in the many hundreds of carbons prepared in this program.

In general, the polymers that yield glassy carbons are thermosetting, network types that evolve substantial quantities of heat during their polymerization. In general such materials have multiple condensation reactions which depend on temperature as well as amount and type of catalyst. Examples are phenolic and furfural alcohol types which were used most in this work. It was found that the most important factor in obtaining good samples was in carrying out a controlled initial polymerization so that as nearly as possible all parts of the sample were undergoing reaction at the same time and temperature. This requires

in general very slow reactions at low temperatures, particularly in larger section sizes. It was found that once having produced a non-uniform polymerization due to, for example, allowing the center of a section to get hotter than the surface, a crack free piece could not be made no matter how slowly the subsequent pyrolysis was carried out. On the other hand, if a uniform micro and macro structure were produced relatively fast pyrolysis cycles were successful.

Aside from yielding crack free samples, the fine structure as measured by a variety of means was different for a given polymer starting material after indentical heating to 2000°C where only the time of holding at 100°C was varied. This finding shows a remarkable ability to inherent structural modifications built in through early processing. The work also indicated that different structures could be obtained by varying only the pyrolysis rate, pressure (vacuum vs. nitrogen), and final heat treating temperature (HTT). The effect is large and well known, the atmosphere and rate effects were more subtle but still present.

III. STRUCTURAL STUDIES

Since it was soon learned that there was no single structure for glassy carbon, it is impossible to summarize the detailed structural findings of all samples. However, several generalizations can be made. First, glassy carbons are not homogeneous, even though they may appear to be on a macroscopic level. All contain significant amounts of porosity which

accounts for their very attractive low density. The void space may, however, vary considerably in amount and size, and the solid comprising the remainder of the structure varies significantly in size and structure. Since the structural features of both the solid and the voids vary over such a wide size range, there is, in general, no single evaluation technique that can be used. As a result, this program used all of the techniques available with cross comparisons where such were possible.

Solid Structure

The solid structure was studied using X-ray diffraction, electron microscopy and diffraction, optical microscopy, and a specially developed thermodynamic analysis.

X-ray Studies - The various carbons have received relatively active study by wide angle X-ray diffraction. In general, this work agreed well with the previous works. However, within the usually reported range of values for the layer plane spacing, d_{002} ; the in plane spacing, d_{110} , and the line broadening parameters, $L_{\rm c}$ and $L_{\rm a}$, there is an experimentally significant variation depending on the particular carbon and its processing. In short, while this method is rapid, and can determine easily the difference between disordered carbons and relatively good graphite, it is very insensitive to the differences between highly disordered carbons. The complete findings are presented in Table 1 of the Appendix. The important findings are that increasing HTT and some processing methods, which in general could not be predicted, resulted in materials that had X-ray

structures significantly closer to graphite, although they were never very close to being a fully developed graphitic structure. The structure is certainly planar, with a near perfect graphitic spacing within planes. The line broadening parameters, $L_{\rm c}$ and $L_{\rm a}$, are certainly not easily interpreted in this case as crystallite sizes, but they do correspond within a factor of about 2 with features that can be seen in electron diffraction and transmission microscopy.

Electron Microscopy and Diffraction - Transmission electron microscopy, both bright and dark field, together with selected area diffraction studies shed some light on the fine structure of the carbons. These results are summarized in Tables 2 and 3 in the Appendix. They show that on a small scale, 20-100A, most of the material is highly disordered giving at most a granulated appearance and very poor crystallinity. The granulation makes up a larger structure which often appears to be platelets of 100-500Å. Occasionally structural features from 1000-10,000A were encountered, which gave a well defined graphitic or a crystalline indication of one of the tetrahedrally bonded carbon polymorphs. This behavior has been noted in other studies of glassy carbon 6. The various structures could be approximately correlated with the X-ray data, were roughly as expected with varying HTT, but in general important and unexplainable differences occurred between different processing treatments on the same polymer.

Thermodyanmic Studies - Since the various methods of studying the fine scale solid structure were not very sensitive to small differences, an entirely new method was conceived, developed and applied. This method measured the free energy difference between a macroscopic sample of the disordered carbon and nearly perfect graphite, as a function of temperature, using a solid electrolyte cell. A traditional thermodynamic analysis, together with the known fact that the specific heats of the carbon differed negligibly, allowed the calculation of residual (configurational) entropy and enthalpy values. These values are, respectively, direct numerical measures of the degree of disorder relative to graphite and the amount of bond straining and missing bonds relative to graphite. The values measured were quite large (10 cal/mole-°K) compared to those for other paracrystalline materials such as polymers. Various glassy carbons showed large difference in each parameter even though no such large differences were noticeable in the other structural measurements. In general this method proved highly satisfactory, and is recommended as a tool in characterizing various samples of disordered carbons since its greatest sensitivity occurs at the highly disordered states. It is noteworthy that various samples can have a highly strained structure on a microscale (high residual enthalpy), but have a relatively low disorder (low residual entropy). The reverse was also found to be true, although higher entropy is usually associated with higher enthalpy. No simple models of small relatively perfect crystals or randomly stacked crystals

could account for the relatively high residual entropies measured.

A mixed bond model was developed that could semi-qualitatively rationalize this result.

It was also found that the measurements on a given carbon could be used with literature data for oxygen exchange to give quantitative in ormation about the oxygen occupation of surface reaction sites. This technique is a potentially valuable new tool for studying the surface structure of various carbons.

The remarkably high entropy values associated with some glassy carbons accounts for its unusual stability at high temperatures where the entropy term in the free energy outweighs the enthalpy term. In fact, this finding was demonstrated in an independent experiment described below.

Stability of Glassy Carbon and Graphite in ${\rm CO_2}$ - Most of the commercially available and the experimental samples of glassy carbon prepared at The University of Michigan, exhibited at high temperature, equilibrium oxygen partial pressures higher than graphite. The equilibrium oxygen partial pressure, ${\rm p_{O_2}}$, increased with increasing temperature for all the glassy carbon samples. Table 4 lists the ${\rm p_{O_2}}$ values at three temperatures for a commercial graphite UC-AGSR, one commercially available sample of glassy carbon (Beckwith D-82-2), and three experimental samples. The samples (except for graphite which was heat treated to 2500°C) were heat treated to about 2000°C for about one hour in the atmosphere of either flowing nitrogen or vacuum ("5×10⁻⁷ atms.). The values of ${\rm p_{O_2}}$ for all the samples tabulated in Table 4 are higher

than for graphite. For example, p_{02} value for Hercules H-54 sample at 1200°C is roughly four orders of magnitude higher than graphite at the same temperature. This big difference in p_{02} naturally suggests an interesting experiment; let samples of glassy carbon and graphite be placed side by side at a high temperature and then pass a CO-CO₂ gas mixture, which is oxidizing to graphite and reducing to glassy carbon, over the two carbon samples, i.e.,

$$\left(\mathbf{p}_{\mathbf{O}_{2}}\right)_{\text{graphite}} < \left(\mathbf{p}_{\mathbf{O}_{2}}\right)_{\text{CO-CO}_{2}} \text{ mixture} < \left(\mathbf{p}_{\mathbf{O}_{2}}\right)_{\text{glassy carbon}}$$

If the kinetic factors are favorable, and if the desired ${\rm CO-CO}_2$ gas mixture maintains constant ${\rm p}_{\rm O_2}$ within the limits of the above inequality, then all of the graphite sample should be oxidized, except ash, and the glassy carbon sample should undergo negligible weight loss.

An experimental program was designed with the above motive. The Beckwith D-82-2 and LMSC glassy carbon samples were studied. Unfortunately, the thermodynamic data and hence P_{0_2} values were not measured for LMSC glassy carbon samples, but to a first approximation they can be assumed to be close to that of Beckwith D-82-2 sample. About 2 gms comprising 10-15 thin equivalent chips of both graphite and glassy carbon (to avoid any surface area effects) were weighed and placed in zirconium boats side by side in the constant temperature zone of a horizontal furnace. The CO₂ gas was passed through graphite chips kept at gas entry portions of a lower temperature zone of

the same furnace, and the resulting CO-CO₂ gas mixture then continuously flowed over the boats containing graphite and glassy carbon samples kept at the desired constant temperature zone, and then flowed out of the system. The temperature of the graphite chips at the lower temperature and the temperature of the constant temperature zone were adjusted in such a fashion that the resulting CO-CO₂ gas mixture satisfied the desired inequality of Eq. 1.

The weight loss data are shown in Table 5, where temperature and time refer to the temperature and time of gas flow at the constant temperature zone. The furnace was cooled without the flow of CO2 to avoid any sooting on carbon samples. The weight loss ratios of graphite and glassy carbons are as high as 19, but not infinite as anticipated by theory discussed above. However, the net weight losses of glassy carbon samples are very small, about 30 milligrams in 2 grams, and this could well be either experimental error or due to some ${\rm CO}_{\rm 2}$ gas which might have passed through the low temperature graphite bed without coming to its equilibrium. It should be noted that the glassy carbon loss was small and about constant even though the flow rate varied by 1 order of magnitude, the time varied by a factor of 6, and the temperature varied by 300°C. The dramatic effect of CO, gas flow rate on graphite oxidation as opposed to almost invariance for glassy carbon is quite apparent from Table 5. For examples, a flow rate of 0.6 c.c./sec. at 1200°C for 45 minutes oxidizes 22.7% of graphite, whereas a flow rate

of 0.05 c.c./sec. for even 12 hours at about the same temperature, oxidizes only 2.3 percent of the same graphite sample. The probable reasons for only partial oxidation of graphite are short constant temperature zone, relatively low CO₂ flow rate, and a need for better control of the inequality of Eq. 1. It would appear possible through further refinement of this experiment to demonstrate unequivocally that the differences in weight loss were not due to kinetic factors.

These preliminary results suggest strongly that the well known high temperature oxidation resistance of glassy carbon relative to graphice can be explained at least partially by its higher equilibrium oxygen pressure, as well as the more usual explanation on the basis of kinetic factors.

Pore Structure

Small Angle X-ray Scattering - The fine pore structure on the scale of 10-100Å was studied using small angle X-ray scattering. Table 6 summarizes the radius of gyration values observed using a traditional analysis. Since the pores are probably not spherical, a pore diameter has not been reported. For the most part these data are in agreement with those in the literature. They show pores ranging from 15 to 100A with the lower values associated with lower HTT. However, a significant new finding was evident. In many of the carbons the pore size is polydisperse. A controlled variation of the dispersion would be useful in tailoring properties, particularly in chemical absorption and catalysis.

Scanning Electron Microscopy - For pore structure ranging from 100Å up, scanning microscopy was used. It was found that good checks with other methods, such as porosimetry and transmission electron studies, were possible in certain ranges where they overlapped. By varying the resin, its polymerization, and pyrolysis, it was possible to vary not only the amount of pores, but the shape and size distribution. With these techniques it becomes possible to tailor a strong body with a controlled pore structure for subsequent infiltration with other materials as, for example, metals. It was also found possible to allow a macro pore structure to connect the smaller pore structure as might be required in chemical applications.

Pycnometry - The very fine scale porosity was studied using He or Xylene pycnometry. The results are given in Table 9. In light of the purposeful inclusion of porosity, it is not supprising that the apparent density of the carbons could be varied over the wide range indicated. However, it was also noted that the real density shows considerable variation (1.18 to 1.9 gm/cm³). Such a large variation had not previously been shown. It was found that even the "real density" of the various carbons was illusive since different values were often obtained in He and Xylene. In general, the Xylene densities were most reproducible and were, together with the geometrically determined apparent densities, the basis for normalizing all the physical properties for the fraction solid contained. It was found that there was no explainable correlation of the real density with processing variables.

Surface Area - These data are summarized in Table 7. For the most part the data were obtained with gas (N_2) absorption, but some measurements were made in a Knudsen flow apparatus. The surface area figures could be well correlated with that visible in the scanning electron microscope ($^{\sim}100A$ resolution) except in the cases for low HTT carbons. In this case, a very large amount of assessible surface exists, probably on the scale of 5-10A, as has been noted by studies of chemical sieving. Many of the samples exhibit useful surface areas large nough ($^{>}500 \text{ m}^2/\text{gm}$) to be attractive in chemical operations, particularly when it is noted that the materials are quite strong and easily made into macroporous coherent form.

Mercury Porosimetry - Another check for the pore properties was provided by Hg intrusion. The results shown in Table 8 in general agree with those found by other methods. The table shows a few examples of the remarkably wide range available in tailoring pore structure. For example, the pore volume of those samples measured ranged from .02-1.1 cm³/gm, and the mean pore diameter from 30-470,000Å. The pore spectrum could be made either very narrow or varied over a wide range. The real density, as measured with Hg, shows only moderately good agreement with that measured with He or Xylene.

IV. PROPERTY EVALUATION

Hardness

Obtaining a meaningful hardness test on carbons has long been realized to be difficult due to the large amount of voids

usually present and the relatively low modulus. In most of the materials the indentation recovers completely after removing the load. Application of a coating to the surface allows a reading of the indentation that exists under load, which is relatively large due to the porosity and low modulus. Using this value, the hardnesses were rarely over 300 VHN. However, these materials easily scratch hardened steel and glass, which would indicate their hardness should be in excess of 1000 VHN. While various hardness tests were studied, it was concluded that many were useful only in comparing properties of carbons with closely related structures, and not for comparison with different material classes.

Compressive and Tensile Strength - After development of testing techniques, it was found that compressive testing gave the most reproducible strength results. The values, which are averages for multiple samples for both compressive and tensile strength, are tabulated in Table 9 and in Table 10 on a normalized basis. After trials of several methods for measuring tensile strength, the diametral loading of a right cylinder was chosen. This test was quite consistant with tensile bar data. The values shown for both tension and compression are for samples with a larger stressed volume than those most often published for three-point bending of very small samples. The values shown are useful for comparing the various kinds of carbon, but since they are brittle materials, should be used with care in comparing to other sample sizes, testing speeds, etc. Values up to about 60,000 psi

compressive and 11,000 psi tensile were produced. There is no reason to believe that either of these values represented an optimum. It should also be noted that most of the samples had a purposefully included porosity, even though often it was too fine to see with anything except an electron microscope. Therefore, the strengths shown are quite attractive compared to other material classes on a density normalized basis. The comparison of properties also looks promising with respect to graphitic materials. The physical properties were also corrected to the actual fraction of carbon as determined by the ratio of apparent to real density. It can be seen in Table 10 that these values still show a wide range for the various carbons. This indicates that structura' factors dominate the strength. As might be expected, a rough correlation was obtained between the strength and the size of the pores. The strengths are roughly inversely proportional to the logarithm of the pore size3. However, even at a given pore size and volume, some of the carbons were significantly stronger which indicates that the very fine scale structure of the solids plays a role. This conclusion was supported by a correlation that was established between the reduced compressive strength and the reduced electrical conductivity, 5

Sonic Modulus and Internal Friction - The sonic modulus agreed well with that determined in tensile testing and was therefore adopted for routine evaluation. The data are included in Tables 9 and 10. These data show a possibility for selecting a

modulus over a range of more than 1 order of magnitude. factor can be extremely useful in designing with other materials in order to minimize thermal stresses and stress concentrations. The range encompasses that for various human bones, which is of particular significance in biomaterials applications, where these carbons are known to have the required bio-compatibility. The modulus, when corrected for the fraction carbon present, should be relatively independent of ordinary micro-structural features such as pore size or shape. However, the normalized data which range from .3×10⁶ to 10⁷ psi indicate substantial differences exist in the short range bonding in the different carbons. The higher value is more than three times the usual value for glassy carbon, but well below that for various carbon fibers. However, since the materials are isotropic, they indeed look attractive with respect to other carbon materials. addition, on a strength to density basis, they compare favorably with all other classes of materials. The modulus for a given carbon tends to go through a maximum versus HTT in the range 1000-1800°C. A similar effect was detected in strength values. It should be emphasized that the values thus far determined do not represent the optimum.

The internal friction behavior was determined on a variety of carbons and found to encompass a range spanning the whole range of other material classes from the highly damping to the almost loss free. This factor again indicates the ability to tailor properties to a given requirement. Since the

pore structure, as well as the fine scale bonding, would be expected to affect the internal friction, no clear-cut correlation was found with other measured properties.

Resistivity - The electrical resistivity data are included in Tables 9 and 10. It can be seen that values range widely for the various carbons. On a normalized basis there is, as expected, a much smaller variation, but still more than a factor of three when comparing materials with the same HTT. It is therefore certain that the processing affects the short range bonding, but in no easily predictable manner. When comparing materials processed to the same HTT, those with the lower reduced resistivity, showed the highest values of strength on a reduced basis. However, since the resistivity for a given material falls continuously versus HTT, and the strength in general goes through a maximum, reduced resistivity can not be used as a sole yard-stick for strength.

References

- E. E. Hucke, "Glassy Carbons," Semi-Annual Progress Report, January 1972, ARPA Contract No. DAHC15-71-C-0283.
- 2. Ibid, June 1972.
- 3. Ibid, January 1973.
- 4. Ibid, June 1973.
- 5. Ibid, January 1974.
- 6. A. G. Whitacre and B. Tooper, "Single Crystal Diffraction Patterns From Vitreous Carbon," Aerospace Report No. TR-007 4(9250-07)-2, May 15, 1974. National Technical Information Service No. AD 778-933.

APPENDIX

TABLE 1 SUMMARY OF X-RAY DATA

(All values in Angstroms)

Symbols Used in the Tables

Experimental Condition

All the samples were run in a Phillips-Norelco Diffractometer using CuKa radiation under the following conditions:

Tube Voltage: 45KV Tube Current: 14mA

Proportional Counter Voltage: 1.622KV
Proportional Counter Time Constant: 4 sec.

Chart Speed: 1/2 inch/min.

Scan Speed: 1.2 degree (20)/min.

Slits: 1°/006"/1° at Primary/Scattering/Secondary

Sample used of thickness of 3mm in all cases except where otherwise designated. The value of d(10) refers to the unresolved (100) and (101) peak.

(002) Peak Type

S: "Smooth" (or single phase) Peak

NVS: "Not Very Smooth" Peak

2P: "2 Phase" Peak
3P: "3 Phase" Peak

					AND DESCRIPTIONS AND DESCRIPTIONS	
Sample Designation	Temp.	(002) Peak Typc	d(002)	Lc	d(10)	La
Graphite, solid		S	3.37	Very	2.13	Very
3mm & 1mm thick				High		High
Graphite		S	3.37	Very	2.13	Very
-				Hiqh		High
Graphite, natural		s	3.35	Very	2.13	Very
(Reported)				High		High
Graphite, synthetic		s	3.37	Very	2.13	Very
(Reported)				High		High
				-		,

Preceding page blank

(002)Temp. Peak Sample Designation (°C) Type d(002)Lcd(10)La Commercial Samples Lockheed, solid S 98.0 2000 3.53 21.2 2.09 Lockheed, reported 2000 3.56 19.0 __ Beckwith, solid 2000 S 3.55 23.2 2.09 112.0 Beckwith, reported 2000 3.54 15.0 --50.0 Tokai, solid S 1000 3.70 14.2 2.07 43.7 Tokai, reported 2000 Atomergic Chemicals S 3.40 2500 38.4 2.09 69.0 Co., V-25, solid Atomergic Chemicals 2500 Co., V-25, reported Atomergic Chemicals 1000 NVS 3.44 2.10 42.0 71.0 Co., V-10 Atomergic Chemicals 1000 Co., V-10, reported Hercules H-54 1795 S 3.49 28.0 2.09 51.0 311-9 2000 S 3,54 28.0 2.10 57.0 311-19 700 S 3.63 18.0 ---~-311-20 2000 S 2.10 3.53 27.2 46.0 S 311-21 2000 3.52 27.2 2.10 54.0 311-22 2000 2P 2.49 29.0 2.12 >125.0 3.45 311-25 700 S 3.70 21.0 311-30A 2000 S 2.10 3.51 23.4 54.0 311-31 2000 S 3.50 25.0 2.10 51.0 312-8 S 2000 3.52 27.0 2.10 42.0 312-9 2000 2P 3.52 27.0 2.10 57.0 3.45 S 312-10 700 3.65 16.2 312-10 2000 s 35.0 2.11 3.49 53.0 312-14 2000 S 3.51 29.0 2.09 61.0 312-14A 2000 3P 3.46 32.0 2.12 >150.0 3.43 3.36 312-15 2000 S 3.52 27.1 2.11 51.0 312-16 2000 3P 3.47 32.1 2.11 51.0 3.43 3.36 312-21 2000 S 30.8 3.51 2.10 57.0 312-26 2000 S 27.8 2.09 3.51 48.0 312-28 2000 S 3.51 27.2 2.10 51.0 312-29 2000 S 34.0 2.10 3.51 57.0

S

S

NVS

3.57

3.51

3.48

27.6

30.8

30.8

2.10

2.10

2.10

56.0

54.0

52.8

2000

2000

2000

312-31, solid

312-32

312-33

Sample Designation (°C) Type d(002) Lc d(10) La 312-34 2000 2P 3.46 33.0 2.11 46.2 312-39 2000 S 3.49 29.8 2.10 53.0 312-40 2000 2P 3.48 30.1 2.99 54.0 312-43 2000 2P 3.48 33.2 2.11 51.0 312-44 2000 3P 3.46 30.4 2.10 37.0 312-48 2000 3P 3.46 30.4 2.10 37.0 312-48 2000 3P 3.46 30.4 2.10 37.0 312-49 2000 5 3.52 31.1 2.11 51.0 315-1 27.00 S 3.53 27.2 2.10 48.0 315-2 2000 2P 3.49 29.0 2.11 54.0 315-3 70 S 3.71 16.2 </th <th></th> <th></th> <th>(002)</th> <th></th> <th></th> <th></th> <th></th>			(002)				
312-34		Temp.	Peak				
312-39	Sample Designation	(°C)	Туре	d(002)	Lc	<u>d(10)</u>	La
312-39 2000 S 3.49 29.8 2.10 53.0 312-43 2000 2P 3.48 30.1 2.09 54.0 312-44 2000 2P 3.48 33.2 2.11 51.0 312-48 2000 3P 3.48 42.0 2.11 51.0 312-48 2000 3P 3.46 30.4 2.10 37.0 312-49 2000 S 3.52 31.1 2.11 61.0 31.5-1 2000 S 3.53 27.2 2.10 48.0 315-2 31.0 2.10 54.0 31.5-2 2000 2P 3.49 29.0 2.10 54.0 54.0 31.5-3 27.2 2.10 48.0 31.5-3 3.71 16.2	312-34	2000	2P		33.0	2.11	46.2
312-40 2000 2P 3.48 30.1 2.09 54.0 312-43 2000 2P 3.48 33.2 2.11 51.0 312-44 2000 2P 3.48 42.0 2.11 51.0 312-48 2000 3P 3.46 30.4 2.10 37.0 312-49 3.43 3.37 3.37 3.37 3.52 31.1 2.11 61.0 31.5-1 2.00 5 3.53 27.2 2.10 48.0 315-2 2000 2P 3.49 29.0 2.10 54.0 315-2 2000 2P 3.49 29.0 2.10 54.0 315-5 2000 2P 3.49 29.0 2.11 54.0 315-5 2000 2P 3.49 29.0 2.11 54.0 315-8 2000 2P 3.49 28.2 2.10 56.0 315-9 2000 2P 3.49 28.2 2.10 56.0 315-9 3.44 315-18 2000 3P 3.40 45.0 3.381 315-24 </td <td>212 30</td> <td>2000</td> <td>C</td> <td></td> <td>20.0</td> <td>2.20</td> <td>53.0</td>	212 30	2000	C		20.0	2.20	53.0
312-43 2000 2P 3.48 33.2 2.11 51.0							
312-43 2000 2P 3.48 33.2 2.11 51.0 312-44 2000 2P 3.48 42.0 2.11 51.0 312-48 2000 3P 3.46 30.4 2.10 37.0 312-49 20.0 5 3.52 31.1 2.11 61.0 315-1 2000 8 3.53 27.2 2.10 48.0 315-2 2000 2P 3.49 29.0 2.10 54.0 315-3 700 S 3.71 16.2 315-5 2000 2P 3.49 29.0 2.11 54.0 315-8 2000 2P 3.49 28.2 2.10 56.0 315-9 2000 2P 3.49 28.2 2.10 56.0 315-18 2000 3P 3.49 28.2 2.10 54.0 315-20 680 S 3.53 26.3 2.10 54.0 315-20 680 S 3.70 16.3	312-40	2000	4.5		30.1	2.09	54.0
312-44 2000 2P 3.48 42.0 2.11 51.0 312-48 2000 3P 3.46 30.4 2.10 37.0 312-49 20.0 S 3.52 31.1 2.11 61.0 315-1 2000 S 3.53 27.2 2.10 48.0 315-2 2000 2P 3.49 29.0 2.10 54.0 315-3 700 S 3.71 16.2 315-5 2000 2P 3.49 29.0 2.11 54.0 315-8 2000 2P 3.49 29.0 2.11 54.0 315-9 2000 2P 3.49 29.0 2.11 54.0 315-14 2000 3P 3.49 28.2 2.10 56.0 315-18 2000 3P 3.47 33.0 2.11 47.0 315-20A 2000 3P 3.53 26.3 2.10 57.0 315-21C 2000 2P 3.53 28.0 2.10 <td< td=""><td>312-43</td><td>2000</td><td>2P</td><td>3.48</td><td>33.2</td><td>2.11</td><td>51.0</td></td<>	312-43	2000	2P	3.48	33.2	2.11	51.0
312-48 2000 3P 3.44 30.4 2.10 37.0 312-49 2010 5 3.52 31.1 2.11 61.0 315-1 2000 2P 3.49 29.0 2.10 54.0 315-5 2000 2P 3.49 29.0 2.11 54.0 315-8 2000 2P 3.49 29.0 2.11 54.0 315-9 2000 2P 3.49 28.2 2.10 56.0 315-14 2000 2P 3.49 28.2 2.10 56.0 315-14 2000 3P 3.49 33.0 2.11 47.0 315-14 2000 3P 3.40 45.0 315-18 2000 2P 3.53 26.3 2.10 54.0 315-20 680 S 3.70 16.3 315-20 2000 2P 3.53 28.0 2.10 57.0 315-21C 2000 2P 3.53 28.0 2.10 57.0 315-22 665 S 3.67 16.4 315-24A 2000 S 3.52 26.5 2.09 48.0 315-25A 2000 S 3.52 26.5 2.10 46.0 315-26B 2000 2P 3.52 26.0 2.10 46.0 315-28 2000 2P 3.52 26.0 2.10 46.0			_				
312-48 2000 3P 3.46 3.43 3.37 312-49 2010 315-1 2000 S 3.52 31.1 2.11 61.0 315-2 2000 2P 3.49 29.0 2.10 54.0 315-3 315-5 2000 2P 3.49 29.0 2.11 54.0 315-5 2000 2P 3.49 29.0 2.11 54.0 3.15-8 2000 2P 3.49 29.0 2.11 54.0 3.44 315-8 2000 2P 3.49 28.2 2.10 56.0 3.44 315-14 2000 S 3.53 26.3 2.10 56.0 3.54 315-18 2000 2P 3.47 33.0 2.11 47.0 3.44 315-18 2000 S 3.53 26.3 2.10 54.0 315-18 315-20 3.381	312-44	2000	2 P		42.0	2.11	51.0
3.43 3.27 312-49 2000 S 3.52 31.1 2.11 61.0 315-1 2000 S 3.53 27.2 2.10 48.0 315-2 2000 2P 3.49 29.0 2.10 54.0 315-3 700 S 3.71 16.2 315-5 2000 2P 3.49 29.0 2.11 54.0 315-8 2000 2P 3.49 29.0 2.11 54.0 315-9 2000 2P 3.49 28.2 2.10 56.0 315-14 2000 S 3.53 26.3 2.10 54.0 315-14 2000 S 3.53 26.3 2.10 54.0 315-18 2000 3P 3.40 45.0 315-18 2000 3P 3.51 35.1 315-20 6680 S 3.70 16.4 315-22 2000 S 3.52 27.8 2.10 57.0 315-22 2000 S 3.52 28.0 2.10 57.0 315-22 3000 S 3.53 26.3 2.10 57.0 3.43 315-24 2000 2P 3.53 28.0 2.10 57.0 3.43 315-26 665 S 3.67 16.4 315-22 2000 S 3.52 28.0 2.10 57.0 315-24 2000 S 3.52 28.0 2.10 57.0 315-25 2000 S 3.52 28.0 2.10 57.0 315-26 665 S 3.67 16.4 315-26 665 S 3.67 16.4 315-26 3.38 315-26 665 S 3.67 16.4 315-28 2000 S 3.52 26.5 2.09 48.0 315-28 2000 S 3.52 26.5 2.09 48.0 315-28 2000 S 3.52 26.5 2.10 46.0 3.41 3.37 315-28 2000 S 3.52 26.0 2.10 46.0 3.41 3.37 315-28 2000 S 3.53 2000 200 200 300 300 300 300 300 300 3	312-48	2000	3 P		30 4	2 10	37 0
312-49 2000 S 3.52 31.1 2.11 61.0 315-1 2000 S 3.53 27.2 2.10 48.0 315-2 2000 2P 3.49 29.0 2.10 54.0 315-5 2000 2P 3.49 29.0 2.11 54.0 315-5 2000 2P 3.49 29.0 2.11 54.0 315-8 2000 2P 3.49 29.0 2.11 54.0 3.44 315-8 2000 2P 3.49 28.2 2.10 56.0 3.44 315-18 2000 S 3.53 26.3 2.10 54.0 315-18 2000 3P 3.40 45.0 315-20A 2000 2P 3.53 28.0 2.10 57.0 315-21 2000 2P 3.53 28.0 2.10 57.0 315-22 2000 S 3.53 28.0 2.10 57.0 315-22 2000 S 3.55 22 27.8 2.10 57.0 315-24 2000 S 3.55 22 27.8 2.10 57.0 315-24 2000 S 3.55 22 27.8 2.10 57.0 315-24 2000 S 3.55 22 27.8 2.10 57.0 315-26 2000 S 3.55 22 27.8 2.10 51.0 315-26 2000 S 3.55 22 27.8 2.10 46.0 3.41 3.37 3.31 3.31 3.31 3.31 3.31 3.31 3.3	322 10	2000	31		20.4	2.10	37.0
312-49 20(0 S 3.52 31.1 2.11 61.0 315-1 2000 S 3.53 27.2 2.10 48.0 315-2 2000 2P 3.49 29.0 2.10 54.0 315-3 700 S 3.71 16.2 315-5 2000 2P 3.49 29.0 2.11 54.0 315-8 2000 2P 3.49 28.2 2.10 56.0 315-9 2000 2P 3.47 33.0 2.11 47.0 315-14 2000 S 3.53 26.3 2.10 54.0 315-18 2000 S 3.53 26.3 2.10 54.0 315-216 2000 S 3.53 26.3 2.10 54.0 315-20 680 S 3.70 16.3 315-20A 2000 2P 3.52 27.8 2.10 57.0 315-21C 2000 2P 3.52 27.8 2.10 57.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
315-1 2000 2P 3.53 27.2 2.10 48.0 315-2 2000 2P 3.49 29.0 2.10 54.0 315-3 700 S 3.71 16.2 315-5 2000 2P 3.49 29.0 2.11 54.0 315-8 2000 2P 3.49 28.2 2.10 56.0 315-9 2000 2P 3.47 33.0 2.11 47.0 315-14 2000 S 3.53 26.3 2.10 54.0 315-18 2000 3P 3.40 45.0 315-20 680 S 3.70 16.3 315-20A 2000 2P 3.53 28.0 2.10 57.0 315-20A 2000 2P 3.52 27.8 2.10 57.0 315-21C 2000 2P 3.52 27.8 2.10 57.0 315-22 665 S 3.67 16.4	312-49	2000	s		31.1	2.11	61.0
315-2	315-1	2000					
315-3 315-3 315-5 2000 2P 3.49 29.0 2.11 54.0 3.44 315-8 2000 2P 3.49 3.49 3.44 315-9 2000 2P 3.49 3.44 33.0 2.10 56.0 3.44 315-9 3.44 315-14 2000 3P 3.44 315-18 2000 3P 3.381 3.381 315-20 315-20A 2000 2P 3.53 28.0 2.10 57.0 315-21C 2000 2P 3.53 28.0 2.10 57.0 3.43 315-22 665 S 3.67 3.64 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70	315-2	2000	2P				
315-5 2000 2P 3.49 29.0 2.11 54.0 315-8 2000 2P 3.49 28.2 2.10 56.0 315-9 2000 2P 3.47 33.0 2.11 47.0 315-14 2000 S 3.53 26.3 2.10 54.0 315-18 2000 3P 3.40 45.0 315-20 680 S 3.70 16.3 315-20A 2000 2P 3.53 28.0 2.10 57.0 315-21C 2000 2P 3.52 27.8 2.10 57.0 315-21C 2000 2P 3.52 27.8 2.10 57.0 315-22 665 S 3.67 16.4 315-22 2000 S 3.52 28.0 2.10 51.0 315-24A 2000 2P 3.47 20.0 315-25A 2000 3P 3.50 26.5 2.10 46.0 <td></td> <td></td> <td></td> <td>3.43</td> <td></td> <td></td> <td></td>				3.43			
315-8 2000 2P 3.49 28.2 2.10 56.0 3.44 3.49 3.44 3.5-9 2000 2P 3.47 33.0 2.11 47.0 3.44 3.5-14 2000 S 3.53 26.3 2.10 54.0 315-18 2000 3P 3.40 45.0 3.381 3.351 3.3	315-3	700	S	3.71	16.2		
315-8 2000 2P 3.49 28.2 2.10 56.0 315-9 2000 2P 3.47 33.0 2.11 47.0 315-14 2000 S 3.53 26.3 2.10 54.0 315-18 2000 3P 3.40 45.0 3.381 3.351	315-5	2000	2P	3.49	29.0	2.11	54.0
315-9 2000 2P 3.47 33.0 2.11 47.0 3.15-14 2000 3P 3.40 45.0 3.381 3.351 315-20 680 S 3.70 16.3 315-20A 2000 2P 3.52 27.8 2.10 57.0 3.43 315-22 665 S 3.67 16.4 315-22 2000 S 3.52 27.8 2.10 57.0 3.43 315-24 2000 2P 3.52 27.8 2.10 57.0 3.43 3.51 3.52 27.8 2.10 57.0 3.43 3.53 3.53 3.53 3.67 3.64 315-22 3.38 3.52 3.67 3.67 3.68 3.67 3.69 3.70 3.68 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70							
315-9 2000 2P 3.47 33.0 2.11 47.0 3.44 315-14 2000 3P 3.40 45.0 3.381 3.351 315-20 680 S 3.70 16.3 3.43 315-21C 2000 2P 3.53 28.0 2.10 57.0 3.43 315-22 665 S 3.67 16.4315-22 2000 S 3.43 315-24A 2000 2P 3.52 28.0 2.10 57.0 315-24A 2000 2P 3.52 28.0 2.10 57.0 315-26B 2000 S 3.52 28.0 2.10 57.0 3.43 315-26B 2000 S 3.52 28.0 2.10 51.0 3.43 315-26B 2000 S 3.52 28.0 2.10 51.0 3.43 315-26B 2000 S 3.52 26.5 2.09 48.0 3.41 3.37 315-26B 2000 2P 3.56 2.10 46.0 3.43 315-28B 600 S 3.70 16.8 315-30 2000 2P 3.56 24.0 2.09 48.0 3.43 315-31	315-8	2000	2 P		28.2	2.10	56.0
315-14 2000 S 3.53 26.3 2.10 54.0 315-18 2000 3P 3.40 45.0 3.38£ 3.351 3.35			_				
315-14 2000 S 3.53 26.3 2.10 54.0 315-18 2000 3P 3.40 45.0 3.381 3.381 3.351 3.351 3.351 3.351 3.351 3.351 3.351 3.351 3.351 3.351 3.352 28.0 2.10 57.0 57.0 3.43 3.43 3.343 3.343 3.343 3.343 3.352 27.8 2.10 57.0 57.0 3.43 3.52 28.0 2.10 57.0 57.0 3.43 3.52 28.0 2.10 57.0 57.0 3.43 3.52 28.0 2.10 57.0 57.0 57.0 3.43 3.52 28.0 2.10 57.0 57.0 57.0 3.52 28.0 2.10 57.0 57.0 3.52 28.0 2.10 51.0 51.0 3.38 3.38 3.38 3.38 3.38 3.52 28.0 2.10 46.0 3.43 3.52 26.5 2.09 48.0 3.43 3.52 26.5 2.10 46.0 3.43 </td <td>315-9</td> <td>2000</td> <td>2P</td> <td></td> <td>33.0</td> <td>2.11</td> <td>47.0</td>	315-9	2000	2P		33.0	2.11	47.0
315-18 2000 3P 3.40 45.0 3.382 3.351 315-20 680 S 3.70 16.3 315-20A 2000 2P 3.53 28.0 2.10 57.0 3.43 315-21C 2000 2P 3.52 27.8 2.10 57.0 3.43 315-22 665 S 3.67 16.4 315-22 2000 S 3.52 28.0 2.10 51.0 315-24A 2000 2P 3.47 20.0 315-25A 2000 S 3.52 28.0 2.10 51.0 315-26B 2000 S 3.52 26.5 2.09 48.0 315-26B 2000 3P 3.50 26.5 2.10 46.0 3.41 3.37 315-26C 680 S 3.69 17.1 315-28 2000 2P 3.43 315-28B 600 S 3.70 16.8 315-28B 600 S 3.70 16.8 315-30 2000 2P 3.56 24.0 2.09 48.0	215 14	2000	_		0.6		
3.382 3.351 315-20 315-20A 2000 2P 3.53 28.0 2.10 57.0 3.43 315-21C 2000 2P 3.52 27.8 2.10 57.0 3.43 315-22 665 S 3.67 16.4 315-22 2000 S 3.52 28.0 2.10 57.0 3.43 315-24A 2000 2P 3.47 20.0 315-25A 3.38 315-25A 2000 S 3.52 26.5 2.09 48.0 3.15-26B 2000 3P 3.50 26.5 2.10 46.0 3.41 3.37 315-26C 315-28 2000 2P 3.52 26.0 2.10 46.0 3.41 3.37 315-28B 600 S 3.70 16.8 315-30 2000 2P 3.56 24.0 2.09 48.0 3.43 315-31						2.10	54.0
315-20 680 S 3.70 16.3 315-21C 2000 2P 3.53 28.0 2.10 57.0 3.43 315-22 665 S 3.67 16.4 315-22 2000 S 3.52 28.0 2.10 51.0 315-24A 2000 2P 3.52 28.0 2.10 51.0 315-24A 2000 S 3.52 28.0 2.10 51.0 315-25A 2000 S 3.52 26.5 2.09 48.0 315-26B 2000 3P 3.50 26.5 2.10 46.0 3.41 3.37 315-26C 680 S 3.69 17.1 315-28 2000 2P 3.52 26.0 2.10 46.0 3.41 3.37 315-28 2000 2P 3.52 26.0 2.10 46.0 3.41 3.37 315-28 2000 2P 3.52 26.0 2.10 46.0 3.41 3.37 315-28 2000 2P 3.52 26.0 2.10 46.0 3.41 3.37 315-28 3.43 3.43 3.43 3.43 3.43 3.43 3.43 3.4	315-18	2000	312	3.40	45.0		
315-20							
315-20A 2000 2P 3.53 28.0 2.10 57.0 3.43 315-21C 2000 2P 3.52 27.8 2.10 57.0 3.43 315-22 665 S 3.67 16.4 315-22 2000 S 3.52 28.0 2.10 51.0 315-24A 2000 2P 3.47 20.0 3.38 315-25A 2000 S 3.52 26.5 2.09 48.0 315-26B 2000 3P 3.50 26.5 2.10 46.0 3.41 3.37 315-28 2000 2P 3.52 26.0 2.10 46.0 3.41 3.37 315-28 2000 2P 3.52 26.0 2.10 46.0 3.43 315-28B 600 S 3.70 16.8 315-28 315-30 2000 2P 3.56 24.0 2.09 48.0 3.43 315-31 680 S 3.70 18.2	315-20	680	S		16.3		
315-21C 2000 2P 3.52 27.8 2.10 57.0 3.43 315-22 665 S 3.67 16.4 315-22 2000 S 3.52 28.0 2.10 51.0 315-24A 2000 2P 3.47 20.0 315-25A 2000 S 3.52 26.5 2.09 48.0 315-26B 2000 3P 3.50 26.5 2.10 46.0 3.41 3.37 315-26C 680 S 3.69 17.1 315-28 2000 2P 3.52 26.0 2.10 46.0 3.43 315-28B 600 S 3.70 16.8 315-30 2000 2P 3.56 24.0 2.09 48.0 3.43 315-31 680 S 3.70 18.2						2.10	57.0
315-21C 2000 2P 3.52 27.8 2.10 57.0 315-22 665 S 3.67 16.4 315-22 2000 S 3.52 28.0 2.10 51.0 315-24A 2000 2P 3.47 20.0 315-25A 2000 S 3.52 26.5 2.09 48.0 315-26B 2000 3P 3.50 26.5 2.10 46.0 315-28 2000 2P 3.52 26.0 2.10 46.0 315-28B 600 S 3.70 16.8 315-30 2000 2P 3.56 24.0 2.09 48.0 315-31 680 S 3.70 18.2					2000	2120	5,.0
315-22 665 S 3.67 16.4 315-22 2000 S 3.52 28.0 2.10 51.0 315-24A 2000 2P 3.47 20.0 315-25A 3.52 26.5 2.09 48.0 315-26B 2000 3P 3.50 26.5 2.10 46.0 3.41 3.37 315-26C 680 S 3.69 17.1 315-28 2000 2P 3.52 26.0 2.10 46.0 3.43 315-28B 600 S 3.70 16.8 315-28B 600 S 3.70 16.8 315-30 2000 2P 3.56 24.0 2.09 48.0 3.43 315-31 680 S 3.70 18.2	315-21C	2000	2P		27.8	2.10	57.0
315-22 2000 S 3.52 28.0 2.10 51.0 315-24A 2000 2P 3.47 20.0 3.38 315-25A 2000 S 3.52 26.5 2.09 48.0 315-26B 2000 3P 3.50 26.5 2.10 46.0 3.41 3.37 315-26C 680 S 3.69 17.1 315-28 2000 2P 3.52 26.0 2.10 46.0 3.43 315-28B 600 S 3.70 16.8 315-30 2000 2P 3.56 24.0 2.09 48.0 3.43 315-31 680 S 3.70 18.2						•	
315-24A 2000 2P 3.47 20.0 3.38 315-25A 2000 S 3.52 26.5 2.09 48.0 315-26B 2000 3P 3.50 26.5 2.10 46.0 3.41 3.37 315-26C 680 S 3.69 17.1 315-28 2000 2P 3.52 26.0 2.10 46.0 3.43 315-28B 600 S 3.70 16.8 315-30 2000 2P 3.56 24.0 2.09 48.0 3.43 315-31 680 S 3.70 18.2	315-22	665	S	3.67	16.4		
3.38 315-25A 2000 S 3.52 26.5 2.09 48.0 315-26B 2000 3P 3.50 26.5 2.10 46.0 3.41 3.37 315-26C 680 S 3.69 17.1 315-28 2000 2P 3.52 26.0 2.10 46.0 3.43 315-28B 600 S 3.70 16.8 315-30 2000 2P 3.56 24.0 2.09 48.0 3.43 315-31					28.0	2.10	51.0
315-25A 2000 S 3.52 26.5 2.09 48.0 315-26B 2000 3P 3.50 26.5 2.10 46.0 3.41 3.37 315-26C 680 S 3.69 17.1 315-28 2000 2P 3.52 26.0 2.10 46.0 3.43 315-28B 600 S 3.70 16.8 315-30 2000 2P 3.56 24.0 2.09 48.0 3.43 315-31 680 S 3.70 18.2	315-24A	2000	2P		20.0		
315-26B 2000 3P 3.50 26.5 2.10 46.0 3.41 3.37 315-26C 680 S 3.69 17.1 315-28 2000 2P 3.52 26.0 2.10 46.0 3.43 315-28B 600 S 3.70 16.8 315-30 2000 2P 3.56 24.0 2.09 48.0 3.43 315-31 680 S 3.70 18.2						_	
3.41 3.37 315-26C 680 S 3.69 17.1 315-28 2000 2P 3.52 26.0 2.10 46.0 3.43 315-28B 600 S 3.70 16.8 315-30 2000 2P 3.56 24.0 2.09 48.0 3.43 315-31 680 S 3.70 18.2							
3.37 315-26C 680 S 3.69 17.1 315-28 2000 2P 3.52 26.0 2.10 46.0 3.43 315-28B 600 S 3.70 16.8 315-30 2000 2P 3.56 24.0 2.09 48.0 3.43 315-31 680 S 3.70 18.2	315-26B	2000	3 P		26.5	2.10	46.0
315-26C 680 S 3.69 17.1 315-28 2000 2P 3.52 26.0 2.10 46.0 3.43 315-28B 600 S 3.70 16.8 315-30 2000 2P 3.56 24.0 2.09 48.0 3.43 315-31 680 S 3.70 18.2							
315-28 2000 2P 3.52 26.0 2.10 46.0 3.43 315-28B 600 S 3.70 16.8 315-30 2000 2P 3.56 24.0 2.09 48.0 3.43 315-31 680 S 3.70 18.2	315-260	690	c		171		
315-28B 600 S 3.70 16.8 315-30 2000 2P 3.56 24.0 2.09 48.0 315-31 680 S 3.70 18.2						2 10	46 0
315-28B 600 S 3.70 16.8 315-30 2000 2P 3.56 24.0 2.09 48.0 3.43 315-31 680 S 3.70 18.2	J1J40	2000	45		20.0	2.10	40.0
315-30 2000 2P 3.56 24.0 2.09 48.0 3.43 315-31 680 S 3.70 18.2	315~28B	600	s		16.8		
3.43 315-31 680 S 3.70 18.2							48.0
315-31 680 S 3.70 18.2		- • •	=				
	315-31	680	S		18.2		
	315-34	680	S	3.69	15.4		

	Temp.	(002) Peak				
Sample Designation	(°C)	Туре	d(002)	Lc	d(10)	La
315-36	2000	3P	3.52	24.3	2.10	
			3.43	44.J	2,10	48.5
315~37	600	_	3.37			
315-37	680 2000	S S	3.63	17.5		
315-38	680	\$ \$	3.50 3.63	26.3	2.098	42.0
315-38	2000	2P	3.49	18.8 27.1	2.097	46.0
215 20			3.43	21.1	2.097	46.0
315-39	2000	2P	3.53	27.2	2.098	57.0
315-39	600	_	3.43			
315-40	680 2000	S	3.63	20.0		
315-41	2000	s nvs	3.54	25.6	2.097	51.0
315-42	2000	S	3.49 3.56	23.6 27.2	2.098	51.0
315-43	2000	NVS	3.52	24.3	2.098 2.098	46.0
315-43	700	S	3.67	17.4	2.090	51.0
315-44	2000	2P	3.55	23.1	2.10	40.2
315-45	2000	•	3.45			
315-46A	2000	S 2P	3.49	27.2	2.10	46.6
	2000	24	3.55 3.43	23.1	2.098	57.0
316-6	2000	NVS	3.50	27.0	2.11	57 A
316-7, Run 1	2000	S	3.49	28.0	2.10	57.0 45.0
316-7, Run 2 316-15	2000	s	3.52	27.0	2.10	53.0
316-28	2000	2P	3.40	32.0		
316-32	2000 2000	S 2P	3.50	27.2	2.10	51.0
	2000	2.5	3.42 3.40	53.0		~~ -
317-1	700	s	3.71	20.0		
317-1	2000	S	3.46	45.0	2.11	63.0
317-2 317-2	700	S	3.68	15.7		
317-6	2000 700	NVS	3.48	24.6	2.09	47.0
317-6	2000	s NVS	3.71	13.0		
317-7	700	S	3.55 3.68	22.0	2.10	55.0
317-7	2000	NVS	3.46	16.0 27.5	2.10	<u></u>
317~8	700	S	3.71	11.5	Z,10 	50.0
317-8	2000	2P	3.56	20.0	2.10	44.0
317-10	2000	NUVC	3.46			
317-11	700	NVS S	3.48 3.71	26.0	2.10	68.0
317-13	700	S	3.72	16.3 15.0		
317-13	2000	NVS	3.47	24.0	2.08	66.0
317-14	700	S	3.71	15.7	2.500 	
317-14 317-15	2000	NVS	3.45	27.0	2.09	46.0
317-15	700 2000	S	3.71	15.3		
317-16	2000	NVS S	3.47	26.0	2.09	54.0
-	2000	Ð	3.54	24.0	2.09	53. 0

		(002)				
	Temp.	Peak				
Sample Designation	(°C)	Туре	d(002)	Lc	d(10)	La
317-18	2000	S	3.59	21.0	2.09	58.0
317-19	700	S	3.68	16.5		
317-19	2000	NVS	3.49	30.0	2.09	52.0
317-20	700	S	3.66	17.5		
317-20	2000	`s	3.50	25.6	2.09	48.0
317-24, Run 1	2000	NVS	3.52	24.0	2.09	45.0
317-24, Run 2, solid		NVS	3.49	21.0	2.09	50.0
317-25	2000	S	3.53	20.0	2.09	50.0
317-26, Run 1	2000	NVS	3.48	26.0	2.09	48.0
317-26, Run 2, solid		2P	3.46	24.2	2.10	51.0
			3.43		_,_,	
317-28	2000	NVS	3.46	25.0	2.09	52.0
317-29	700	2P	3.43	21.5		
			3.42			
317-29, Run 1	2000	NVS	3.43	65.0		
317-29, Run 2	2000	NVF	3.426	75.0		
317-30	2000	2P	3.44	29.5		
			3.40			
317-31A	2000	S	3.58	22.0	2.10	46.0
317-32	700	s				
317-32	2000	2P	3.51	23.6	2.08	49.0
			3.48			
317-33	700	S	3.68	17.0	~-	
317-33	2000	S	3.414	92.0	2.10	49.0
317-34	700	S	3.68	17.0		
317-34	2000	3P	3.44	30.0	2.09	50.0
			3.42			
			3.36			
317-35	700	S	3.71	16.0		
317-35	2000	3P	3.50	26.5	2.10	62.0
			3.43			
			3.36			
317-37	700	s	3.68	15.6		
317-37	2000	NVS	3.43	43.0	2.10	63.0
317-38	700	S	3.68	15.6		
317-38	2000	3 P	3.54	25.0	2.09	51.0
			3.43			
			3.37			
317-39, Run 1	2000	3P	3.45	28.0	2.10	52.0
55 , 57, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,			3.43			
			3.36			
317-39, Run 2,	2000	3P	3.52	24.2	2.09	45.0
solid, lmm thick			3.42			
- · · · · · · · · · · · · · · · · · · ·			3.37			
317-39, Run 3,	2000	3P	3.52	23.5	2.09	49.0
solid, 1mm thick		- -	3.41			
-			3.37			

		(002)				
Sample Designation	Temp.	Peak Type	d(002)	Lc	d(10)	La
317-40	2000	3P	3.49	24.8	2.10	48.0
			3.42			
			3.36			
317-41A	2000	S	3.53	26.5		48.0
317-416	2000	S	3.53	28.0	2.10	54.0
317-42	2000	3 P	3.49	26.0	2.10	42.6
			3.42			
217 42	2000	3.0	3.36	26.0	2 00	56.0
317-43	2000	3P	3.45 3.42	26.0	2.09	56.0
			3.35			
317-44	2000	3P	3.48	30.0	2.09	55.0
32, 14	4000	3.	3.42	3010	2.03	55.0
			3.36			
317-45, solid,	700	s	3.75	12.9	***	
1mm thick						
317-45, Run 1	2000	3 P	3.48	25.0	2.09	60.0
			3.40			
			3.35			
317-45, Run 2	2000	3 P	3.46	24.0	2.09	42.0
			3.42			
217.46	2000	3 P	3,35 3,43	31.5	2.10	75.0
317-46	2000	32	3.42	21.7	2.10	7.0
			3.36			
317-47	2000	3P	3.50	27.0	2.10	60.0
		~-	3.42	_,,,		- " - "
			3.36			
317-48, Run 1	700	S	3.71	16.2		
317-48, Run 2	700	S	3.87	1 7.4		
317-48, Run 1	2000	3P	3.45	40.0	2.10	60.0
			3.43			
217 40 Press 2	2000	3.0	3.37	34.0	2 10	E 0 0
317-48, Run 2	2000	3P	3.46 3.43	34.0	2.10	59.0
solid, 1mm thick			3.43			
317-49	700	s	3.71	15.7		
317-49, Run l	2000	3P	3.49	29.0	2.09	62.0
32.7 2.7 1.00.0			3.41			
			3.35			
317-49, Run 2	2000	3P	3.46	33.0	2.09	60.0
solid, lmm thick			3.44			
			3.37			
317-50	700	S	3.67	15.6	~~	
318-1	2000	S	3,55	28.0	2.10	54.0
318-2	2000	S	3.51	27.0	2.10	55.0
318-3, Run 1	700	S S	3.70	16.7		
318-3, Run 2	700	5	3.69	16.7		

		(002)				
	Temp.	Peak	2/000	_	2 (2 4)	_
Sample Designation	(°C)	Туре	d(002)	Lc		La
318-3	2000	2P	3.46 3.41	26.0	2.11	51.0
318-4	700	S	3.66	16.8		
318-6A	2000	S	3.50	31.0	2.09	59.0
318-7, Run l	2000	S	3.50	28.0	2.10	65.0
318-7, Run 2, solid	2000	S	3.49	28.0	2.10	45.0
318-8, Run l	2000	S	3.45	39.0	2.10	63.0
318-8, Run 2 solid, 2mm thick	2000	S	3.45	43.5	2.10	77.0
318-9	2000	2P	3.48 3.46	32.5	2.11	57.0
318-10	520	s	3.74	15.2		~-
318-10	2000	Š	3.49		2.12	50.0
318-11, Run 1	2000	NVS	3.42	77.0	2.10	38.0
318-11, Run 2	2000	NVS	3.43	78.0	2.11	40.0
318-12	2000	3P	3.49	31.4	2.09	59.0
			3.43			
			3.36			
318-13	2000	NVS	3.42	44.0		58.0
318-14	700	S	3.65	16.0		
318-14	2000	3P	3.48	30.5	2.10	60.0
			3.43 3.36			
310-15 Pun 1	700	s	3.75	16.0		
318-15, Run 1 318-15, Run 2	700	S	3.75	15.1		
318-15, Kun 2	2000	3P	3.45	30.2		60.0
310 13	2000	72	3.42	3312		•••
			3.37			
318-16	700	S	3.72	15.7		
318-16	2000	2 P	3.43	39.0	2.09	49.0
			3.41			
318-17	700	S	3.68	16.7	<i></i>	
318-17	2000	NVS	3.45	42.0	2.11	59.0
318-18, Run 1	700	S	3.68	16.4		
318-18, Run 2	700	S S	3.71	16.3 25.6	2.10	44.0
318-18	2000		3.55 3.52	26.0	2.10	59.0
318-19 318-20	2000 700	S S	3.67	16.0		J7.0
318-20	2000	s	3.53	21.0	2.09	48.0
318-21, Run 1	700	s	3.78	14.0		
318-21, Run 2	700	s	3.75	15.4		
318-21	2000	S	3.55	23.6	2.10	55.0
318-22	700	S	3.70	15.4		
318-22, Run l	2000	NVS	3.44	65.0	2.10	55.0
318-22, Run 2	2000	NVS	3.44	64.0	2.11	54,0
318-23	700	S	3.74	16.0		~-
318-23	2000	s	3.63	63.0	2.10	73.0
318-24	700	S	3.64	16.7		

	Temp.	(002) Peak				
Sample Designation	(°C)	Type	d(002)	Lc	d(10)	<u>La</u>
318-24	2000	S	3.44	45.0	2.10	68.0
318-26, Run 1	700	S	3.69	15.7		
318-26, Run 2	700	S	3.75	16.1		
318-26, Run 3	700	S	3.69	16.7		
318-27	2000	2P	3.45	35.4	2.10	47.0
318-28	700	s	3.41 3.75	18.0		
318-28	2000	2P	3.47	27.0	-	
•			3.42	27.0		
318-29, Run 1	2000	NVS	3.45	30.0	2.08	62.0
318-29, Run 2,	2000	2P	3.50	30.5	2.10	65.0
solid, lmm thick			3.44			
318-29, Run 3	2000	2P	3.52	31.0	2.10	60.0
310.30	700		3.42	3.5.0		
318-30 318-30, Run 1	700 2000	S	3.64	15.2		
318-30, Kun 1	2000	2P	3.48 3.43	34.1	2.11	69.0
318-30, Run 2	2000	3P	3.45	31.0	2.11	63.0
310 35, 1141. 2	2000	.,,,	3.41	31,0	2.11	63.0
			3.36			
318-31, Run 1	2000	2P	3.45	35.5	2.10	64.0
			3.43		_,_,	
318-31, Run 2	2000	3P	3.47	31.0	2.11	63.0
			3.41			
210 20 2		_	3.36			
318-32, Run 1	700	S	3.64	15.7		~-
318-32, Run 2 318-32	700	S	3.63	16.0		
318-33	2000 700	s s	3.44	47.0	2.10	65.0
318-33	2000	NVS	3.66 3.46	16.7 28.0	2.11	64.0
318-34	700	S	3.63	16.5	2.11	04.0
318-34	2000	3P	3.49	37.0	2.10	59.0
			3.43	3,.4	2120	3310
			3.36			
318-35	700	S	3.71	15.3		
318-35	2000	3P	3 0	34.0	2.11	67.0
			3.44			
210-26	700		3.37	3 17 0		
318-36 318-36	700	S	3.68	17.0	0.30	
.510-30	2000	2P	3.51 3.44	28.0	2.10	49.0
318-37	700	S	3.71	16.1		
318-37	2000	3P	3.46	33.6	2.10	52.
	. • •		3.43			J 2. 1
			3.376			
318-38	700	S	3.71	15.6		~
318-38	2000	3P	3.47	28.0	2.10	49.0
			3.43			
			3.37			

	Temp.	(002) Peak				
Sample Designation	(°C)	Туре	d(002)	Lc	d(10)	La
318-39, Run 1	700	s	3.71	17.0	** =1	
318-39, Run 2	700	S	3.65	17.2		
solid, lmm thick	2000					
318-39 318-40	20 0 0 700	s s	3.51 3.71	26.1	2.09	60.0
318-40	2000	2P	3.52	15.0 28.0	2.11	54.0
313 .0	2000	2.1	3.45	20.0	2.11	34.0
318-41	700	S	3.71	14.8		
318-41	2000	S	3.50	28.0	2.09	57.0
318-43, Run 1	700	S	3.69	17.0		
318-43, Run 2	700	S	3.71	13.8		
solid, lmm thick 318-43, solid	2000	S	3.44	21 0	2 12	50.0
318-44	700	\$ \$	3.72	31.0 15.6	2.12	58.0
318-44	2000	S	3.55	27.2	2.10	44.0
318-45	700	s	3.71	15.7		
318-45	2000	s	3.56	25.4	2.10	46.0
318-46	700	S	3.71	15.9		
318-46, solid	2000	S	3.53	26.2	2.11	51.0
lmm thick 318-47	700	s	2 71	350		
318-47	2000	nvs	3.71 3.49	15.0 29.0	2.10	48.0
318-48, Run 1	2000	S	3.53	26.8	2.10	54.0
318-48, Run 2	2000	S	3.52	29.2	2.10	42.0
318-50, Run 1	700	S	3.71	14.3	***	
318-50, Run 2	700	S	3.71	15.5		
318-50	2000	S	3.53	26.0	2.10	46.0
318-51 318-52	2000	S	3.56	27.2	2.10	56.0
318-53, Run 1	2000 2000	s s	3.53 3.52	26.5 26.5	2.10	54.0
318-53, Run 2	2000	S	3.54	30.0	2.10 2.10	54.0 60.0
318-54	700	S	3.66	17.0	2.10	
318-55	700	s	3.71	15.2		
318-56	2000	S	3.54	27.0	2.10	54.0
318-58	700	S	3.71	18.0		
318-58	2000	NVS	3.51	28.2	2.10	51.0
318-59 318-59	700 2000	S S	3.68	16.7		
318-60	700	S	3.51 3.70	26.0 15.7		
316-60	2000	2P	3.47	32.0		
			3.44	02.0		
318-61	700	S	3.71	18.6		
318-61	2000	S	3.52	23.3	2.09	55.0
318-62	700	S	3.70	15.3		
318-62 321-1	2000 700	S S	3.56	22.5	2.10	51.0
321-2	700 70 0	2P	3.66 3.63	5.0 17.4	~~	
~ ~ ** **		~ <i>L</i>	3.57	11.4	-	-

Sample Designation	Temp. (°C)	(002) Peak Type	d(002)	Lc	d(10)	
321-2	2000	3P	3.54 3.43 3.38	22.8	2.10	
321-3	700	s	3.64	1.7.4		

Sample Designation	(°C)	Туре	d(002)	Lc	d(10)	La
321-2	2000	3P	3.54	22.8	2.10	51.5
			3.43			
			3.38			
321-3	70¢	S	3.64	1.7.4		
321-3	2000	S	3.53	24.3	2.10	51.0
321-4	700	S	3.64	17.2		
321-4	2000	-				
321-5	700	S	3.63	15.4		
321-5	2000	S	3.49	26.4	2.09	53.7
321-6	700	S	3.64	17.0		
321-6	2000	S	3.54	27.7	2.10	48.0
321-7	700	s	3.69	18.0		
321-7	2000	-				
321-8	700	S	3.69	17.5	~-	
321-8	2000	-			~-	
321-9	700	S	3.67	17.4		
321-9	2000	-				
321-10	700	S	3.67	17.0		
321-10	2000	_			~-	
321-11	700	S	3.71	17.0		
321-11	2000	2P	3.54	27.2	2.10	65.0
221 12	700		3.46	1.6.0		
321-12	700	S	3.63	16.8	2-004	56.0
321-12	2000	S	3.53	26.4	2.094	56.0
321-13	700	S	3.66	17.0	2.00	 (1 0
321-13	2000	2P	3.49	33.2	2.09	61.0
321-16A	2000	210	3.42 3.50	20 0	2.10	=7 0
321-10A	2000	3P	3.43	30.8	2.10	57.0
			3.36			
321-16B	2000	Ş	3.50	28.8	2.10	44.0
321-16C	700	S	3.63	15.2	2.10	
321-17	700	s	3.60	18.7		
321-17B	2000	s	3.49	28.8	2.10	44.0
321-18A	2000	3P	3.50	29.8	2.10	49.0
		32	3.43	2500	4040	1200
			3.37			
321-18B	700	S	3.63	15.2	<u></u>	
321-19A	2000	2P	3.54	25.0	2.09	46.0
			3.426			
321-19A	700	S	3.63	17.1		
321-19B	2000	NVS	3.43	39.0	2.10	53.8
321-20A	700	S	3. 63	17.5		
321-20A	2000	3 P	3.52	28.0	2.10	61.0
			3.42			
			3.36			
321-20B	2000	3P	3.53	37.0	2.10	46.0
			3.426			
			3.37			
321-21A	700	S	3.63	18.0		
•						

	Temp.	(002) Peak				
Sample Designation	(°C)	Туре	đ(002)	Lc	d(10)	La
321-21A	2000	NVS	3.43	41.6	2.10	51.0
321-21B	700	S	3.64	18.4		
321-21B	2000 2000	S	3.52 3.52	27.0	2.10	57.0
321-22A	2000	2P	3.43	27.6	2.10	53.0
321-22B	700	S	3.70	16.1		
321-23	2000	S	3.49	33.0	2.10	54.0
321-23A	700	S	3.63	18.4		
321-23B 321-23B	700 2000	S 3P	3.36 3.52	16.5 29.6	2.10	51.0
321-23B	2000	32	3.43	29.0	2.10	21.0
			3.36			
321-24	700	S	3.70	15.8		
321-24A	700	S	3.63	16.2		
321-24B	700	S	3.63	16.5		
321-24B 321-25	2000 70 0	S S	3.43 3.63	35.4 18.4	2.09	57.0
321-25	2000	NVS	3.47	30.8	2.10	60.8
321-25A	700	S	3.60	21.0		
321-25A	2000	NVS	3.43	40.2	2.10	60.5
321-26	700	S	3.67	15.0		
321-26 321-26A	2000 700	S S	3.52 3.63	27.2 18.1	2.094	48.5
321-26A 321-26A	2000	5	3.52	27.2	2.094	54.0
321-27	2000	s	3.52	29.8	2.10	51.0
321-29	700	S	3.63	16.8		
321-29	2000	3P	3.49	24.8	2.094	58.0
			3.40			
321-30	700	S	3.35 3.63	19.6		
321-31	2300	3 P	3.44	49.0	2.10	60.5
			3.41			
	0000		3.37			
321-31A	2300 2300	NVS 3P	3.40	90.0	2.11 2.11	58.0
321-31B	2300	35	3.49 3.43	37.0	2.11	69.0
			3.37			
321~31C	700	S	3.60	18.8		
321-31C	2300	3P	3.49	34.5	2.11	69.0
			3.426			
321-31D	700	S	3,37 3,63	17.4		
321-31D	100	S	3.47	37.2	2.11	69.0
321-31E	701	S	3.63	17.4		
321-31E	2300	NVS	3.426	61.6	2.11	69.0
321-31F	700	S	3.60	18.5	2 10	
321-31F 321-31G	2300 2300	S 2P	3.45 3.47	44.0 35.0	2.10 2.10	69.0 56.0
J2 I- JIG	2300	4.5	3.43	30.0	2.10	20.0

	Temp.	(002) Peak				
Sample Designation	(°C)	Туре	d(002)	Lc	d(10)	La
321-311	2300	2P	3.49	40.0	2.11	69.0
			3.38			
321-32	700	S	3.60	18.9		
321-34	2300	S	3.42	57. 5	2.10	78.5
321-34A	2300	S	3.426	51.4	2.10	42.0
321-36A	2300	S	3.47	53.6	2.11	64.5
321-36B	700	S	3.63	18.2		46.0
321-36C 321-37	2300	S	3.43	70.0	2.10	46.0
321-37A	2000	s s	3.52	30.8 18.1	2.10	54.0
321-37A 321-37B	700 2000	3P	3.60 3.53	27.2	2.10	54.0
321-37B	2000	3F	3.44	21.2	2.10	J4.0
			3.36			
321-38B	700	S	3.63	17.7		
321-39	2000	2P	3.48	34.1	2.10	57.0
			3.426	~ ~ ~ ~		
321-39B	700	S	3.63	16.4		
321-41C	2000	3P	3.49	32.6	2.10	62.5
			3.43			
			3.36			
321-42A	700	S	3.63	18.8		
321-42A	2000	2P	3.49	35.5	2.10	60.5
203 425	~~~	_	3.43			
321-42B	700	S	3.63	16.7	2-3-0	
321-428	2000	2P	3.50	25.3	2.10	64.4
321-43B	700	S	3.43 3.63	19.0		
321-43B	2000	2P	3.49	35.0	2.098	59.4
321 430	2000	2.5	3.42	33.0	2.000	32.4
321-43B ₁	2000	2P	3.50	36.8	2.11	59.5
•			3.426			
321-43B ₂	2000	2P	3.50	33.0	2.10	57.0
			3.43			
321-44A	2000	3P	3.50	30.8	2.10	51.0
			3.43			
201 442			3.36			
321-44B	2000	3P	3.50	29.0	2.10	54.0
			3.43			
321-45A	2200	c	3.36 3.49	33.0	2.10	57.0
321-45B	2200 2200	S	3.49	45.5	2.10	40.5
321-43B 321-46A	2000	S 2P	3.49	31.7	2.10	60.4
₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	2000	L. E	3.43	J 4 6 7	2,20	55.1
321-46B	2000	3P	3.46	30.8	2.10	51.0
	••		3.43	- , • -		
			3.36			
321-46C	2000	3P	3.47	35.6	2.10	51.0
			3.43			
			3.36			

		(002) Peak				
Sample Designation	Temp.	Type	d(002)	Lc_	d(10)	La
321-46D	2000	3P	3.50	31.7	2.10	64.4
321 400			3.43			0
			3,36			
321-48A	2000	S	3.50	31.8	2.10	57.0
321-48B	2000	S	3.50	33.0	2.10	64.4
321-48C	2000	S	3.50	33.0	2.10	60.4
321-49A	2000	S	3.49	33.0	2.10	60.4
321-49B	2000	NVS	3.426	51.2	2.10	54.0
321-51	2000	NVS	3.43	91.5	2.11	69.0
321-51A	2000	NVS	3.43	107.5	2.11	68.0
321-52	2000 2000	NVS 3P	3.43 3.44	91.2 26.4	2.11 2.085	60.5 57.3
322-1A	2000	J.F	3.44	20.4	2.005	37.3
			3.33			
322-1B	2000	S	3.40	41.5	2.085	
322-2B	1600	S	3.50	23.0	2.085	37.3
322-3B	1600	S	3.53	22.0	2.085	61.0
322-9A	2000	S	3.37	105.0	2.10	49.6
322-9B	2000	S	3.38	117.0	2.09	51.0
322-10A	2000	2P	3.43	33.0	2.085	
		_	3.38			
322-10B	2000	2P	3.50	30.8	2.10	69.0
	2222	222	3.43	22.4	2 205	
322-10C	2000	2P	3.49 3.43	33.4	2.085	
222 300	2000	2P	3.43	28.6	2.10	60.0
322-10D	2000	2.5	3.43	20.0	2, 1, 0	00.0
322-11A	1670	S	3.55	22.0	2.085	51.2
322-11B	1670	S	3.49	23.0	2.085	47.0
322-11B	2000	2P	3.47	33.0	2.085	48.5
322-12A	1600	S	3.56	23.0	2.085	40.5
322-12B	1670	S	3.56	22.0	2.10	57.0
322-13B	1670	S	3.53	31.8	2.085	50.2
322-14A	1670	S	3.50	23.0	2.085	
322-14B	1670	S	3.56	21.0	2.09	46.0
322-15B	1670	S	3.56	25.0	2.085	48.4
322-16A	1670	S	3.56	23.5	2.085	44.0
322-16B	1670	S S	3.56 3.56	22.0 22.2	2.085 2.085	88.0
322-17A 322-17B	1670 1670	S	3.56	22.2	2.085	51.4
322-17B 322-18B	1670	S	3.50	28.8	2.085	61.5
322-10B 322-19B	1670	s	3.56	20.6	2.085	48.5
322-20	1670	Š	3.50	21.4	2.085	30.2
322-21B	1670	S	3.56	17.0	2.085	69.5
322-23A	1300	S	3.56	17.4	2.085	
322-25A	1410	S	3.56	18.5	2.085	46.1
322-25B	1410	S	3.56	19.2	2.07	121.0
322-26A	1410	Ş	3.50	25.6	2.085	51.0
322-26B	1410	S	3.50	19.2	2.085	40.2

(002) Peak

Sample_Designation_	Temp.	Peak Type	d(002)	Lc	d(10)	La
327-27A	1410	S	3.59	20.0	2.085	57.3
322-27B	1410	S	3.56	19.3	2.085	40.0
322-28A	1410	S	3.56	19.4	2.08	40.2
322-28ь	1410	S	3.56	17.8	2.085	53.2
322-29	1410	S S	3.56	20.1	2.085	40.2
322-29B	1410 1410	S	3.56	21.0	2.085	53.2
322-31A 322-31B	1410	S	3.56 3.56	23.0	2.085	40.4
322-31B 322-32	1350	s S	3.56	18.8 18.2	2,085 2.085	54.0 48.5
322-32	1350	S	3.56	19.2	2.085	46.0
32.7-35	1350	S	3.56	20.6	2.085	54.0
322-36	1543	S	3.56	19.2	2.085	53.0
322-37	1543	S	3.56	23.0	2.085	
322-40	1440	S	3.53	23.6	2.085	66.0
322-41	1440	S	3.56	20.4	2.085	61.0
322-42A	1440	S	3.56	21.4	2.085	37.1
322-42B	1440	S	3.56	21.4	2.085	65.0
322-46	1440	s	3.53	19.6	2.08	
322-47A	1440	S	3.50	21.5	2.085	74.0
322-47B	1440	S	3.56	20.0	2.085	51.6
322-48A	1600	S	3.49	21.5	2.085	51.0
322-49	1460	S	3.53	24.4	2.10	49.0
322- 9	1600	S	3.52	23.0	2.085	
322 د 3 2	1460	S	3.56	20.0	2.09	54.2
322-53B	1460	S	3.56	20.0	2.10	
322-53C	1460	S	3.56	18.4	2.085	49.0
322-54A	1460	S	3.56	18.7	2.085	48.2
322-58	1500	NVS	3.50	21.0	2.085	53.0
322-58A	1500	S	3.49	21.0	2.085	51.0
322-59	1500	S	3.56	24.4	2.085	53.8
322-61	1500	NVS	3.47	37.0	2.09	60.0
322-62	1500	S	3.47	30.8	2.085	97.0
322-62A	700	S	3.56	18.3		
322-63A	1500	S	3.46	35.6	2.10	72.5
322-63 322 - 64	1500 1370	NVS S	3.42 3.56	31.6 18.5	2.10 2.085	51.0 54.0
322-66	1370	S	3.56	19.8	2.085	46.0
322-67A	1370	S	3.53	23.0	2.085	53.0
322-67B	1370	S	3.56	20.8	2.085	49.0
322-68A	1370	S	3.56	19.5	2.085	48.0
322-68B	1370	S	3.56	19.6	2.09	51.0
322-69	1370	S	3.56	18.5	2.085	54.0
323-1	1370	S	3.60	18.4	2.08	40.5
323-2	1370	s	3.60	18.4	2.07	44.0
323-2A	1.370	S	3.60	18.4	2.07	48.0
323-3	1370	s	3.49	23.0	2.07	51.0
323-3A	1370	S	3,56	19.4	2.08	46.0
323-4	1370	S	3.58	18.9	2.07	54.0
323-4A	1370	S	3.58	20.0	2.07	51.0

		(002)				
Sample Designation	Temp. (°C)	Peak Type	d(002)	I.c	d(10)	La
323-5	1000	S	3.63	16.4	2.07	42.0
323-5A	1000	S	3.63	15.4	2.07	46.0
323-6Ā	1000	S	3.63	16.8	2.07	42.0
323-6	1000	S	3.63	16.0	2.07	51.0
323-7	1000	S	3.63	18.1	2.07	46.0
323-8	1000	S	3.63	18.4	2.07	44.0
323-8A	1000	S	3.63	17.2	2.07	36.0
323-9	1000	S	3.63	15.6	2.07	44.5
323-9A	1000	ន	3.63	16.4	2.07	37.0
323-11A	1000	S	3.63	16.2	2.07	35.0
323-11B	1000	S	3.63	17.7	2.07	37.2
323-11C	1000	S	3.63	17.4	2.07	32.0
323-11D	1000	S	3.63	16.4	2.08	37.2
323-11E	1000	S	3.63	16.7	2.07	39.0
323-11F	1000	S	3.63	16.4	2.07	49.0
323-11G	1000	S	3.63	17.7	2.07	46.0
323-12	1000	s	3.63	17.7	2.07	44.0
323-12A	1000	S	3.63	17.7	2.07	37.0
323-13	1000	S	3.63	18.8	2.07	40.5
323- 13A	1000	S	3.63	17.0	2.07	51.0
323-14	1000	S	3.62	16.7	2.08	48.5
323-19	1049	s	3.63	1.7.7	2.07	37.2
323-20	1049	s	3.63	17.1	2.07	40.5
323-20A	1049	ຣ	3.63	16.8	2.07	51.0
323-21	1049	s	3.63	15.6	2.07	42.0
323-22	1049	S	3.63	16.2	2.07	40.5
323-23	1049	S	3.63	16.5	2.08	51.0
323-24	1049	S	3.63	19.1	2.07	38.6
323-25	1038	S	3.63	16.2	2.07	39.0
323-25A	1038	S	3.63	16.0	2.07	39.0
323-26A	1038	S	3.63	16.2	2.08	42.0 39.0
323-26B	1038	S	3.67	16.0	2.08	42.0
323-27	1038	S	3.63	15.5	2.07 2.08	46.0
323-27A	1038	S	3.63	1.6.2	2.08	40.5
323-28	1038	S	3.63	15.0 15.8	2.08	44.0
323-29 (low-p)	1038	ន ន	3.63	16.8	2.08	40.4
323-29 (hi-p)	1038	ន S	3.62	16.2	2.08	46.0
323-29	1038		3.67	17.4	2.08	44.0
323-29A	1038	s s	3.63	17.1	2.07	56.0
323-30B	1038	5 5	3.63 3.63	15.8	2.08	48.5
323-30¢	1038		3.63	21.0	2.08	46.0
323-31	1038 1036	S	3.63	15.6	2.03	42.0
323-32	1038	ន ន	3.63 3.67	16.5	2.08	38.6
323-32A		S	3.67	16.0	2.08	42.0
323-32B	1038 1038	S	3.63	15.6	2.08	42.0
323-32C	1038	S S	3.67	16.7	2.08	44.0
323~32D	1027			15.0	2.07	38.5
323-33		S	3.63		2.07	38.6
323-34	1038	S	3.63	16.5	2,00	20.0

Comple D. J.	Temp.	(002) Peak				
Sample Designatio	n (°C)	Type	d(002)	Lc	d(10)	La
323-35	1027	S	3.67	15.0	2.08	39.0
323-36	1027	s	3.67	15.0	2.08	39.0
323-36	1027	s	3.63	15.0	2.98	40.0
323-38 323-39	1027	s	3.67	15.7	2.08	37.4
323-40	700	S	3.70	14.5		
323-41	1000	S	3.70	15.7	2.08	38.0
323-42	1015	S	3.70	16.0	2.08	40.5
323-43	700	S	3.70	16.0		
323-45	1015	S	3.70	15.4	2.08	40.5
323-46	1015	S	3.70	17.9	2.08	43.0
323-47	1000	S	3.70	15.0	2.08	40.5
323-48	1005	S	3.70	15.8	2.08	42.0
323~49	1005	S	3.70	16.0	2.08	42.0
323-50	700	S	3.70	16.0	~~ <u>~</u>	
323-51	1000	S	3.70	16.0	2.08	42.0
323-52	1000 700	S	3.67	16.4	2.08	36.0
323-53		S	3.70	15.6		
323~54	1080 700	S	3.62	18.9	2.08	40.5
323-55	1027	S	3.63	16.7		
323-56	700	S	3.63	15.0	2.08	39.0
323-57	1000	s s	3.70	15.6		
323-58	1000	S	3.63	16.0	2.08	41.0
323-59	1000	S	3.67	15.7	2.08	36.0
323-58	1080	S	3.67	16.0	2.08	40.5
323-64	700	S	3.63 3.63	15.6	2.08	36.0
323-66	1000	S	3.70	16.2	2.08	35.0
323-67	1000	S	3.63	15.0 15.0	2.08	48.5
323-68	1000	S	3.70		2.08	36.0
323-69	1000	s	3.63	16.0	2.07	55.0
324-1	1000	s	3.70	16.2 14.0	2.08	46.0
324-2	1000	s	3.67	16.0	2.08	39.0
324-3	1000	Š	3.63	16.2	2.08 2.08	42.0
324-4	1000	Š	3.63	16.8	2.08	42.0
324-5	1000	S	3.67	15.5	2.08	38.0
324-6	1000	S	3.63	16.2	2.08	39.0 38.0
324-8	1000	S	3.67	16.4	2.08	37.4
324-9	1000	S	3.67	14.8	2.08	44.0
324-10	1000	S	3.63	16.5	2.08	36.0
324-11	1000	S	3.63	16.5	2.08	41.0
324-13	1000	S	3.63	16.7	2.08	41.0
324-14	1000	S	3.63	16.4	2.08	42.0
324-15	1000	S	3.63	16.0	2.08	42.0
324-16	1000	S	3.63	16.2	2.08	43.0
324-18	1000	S	3.70	16.2	2.08	60.0
324-19 1 hr. vac.	1066	S	3.63	16.5	2.08	40.0
324-19 1 hr. vac. 324-19	1550	S	3.63	18.8	2.08	51.0
344-13	1000	S	3.63	15.9	2.07	35.8

		(002)				
Sample Designation	Temp.	Peak Type	d(002)	Lc	d(10)	T -
324-19 1 hr. vac.	1250					La
324-19 1 hr. vac.	1890	S	3.63	15 4	2.07	35.8
324-20	1060	s s	3.56	22.4	2.08	57.0
324-21	1060		3.63	16.2	2.08	43.0
324-22	1060	S	3.63	15.9	2.08	44.0
324-23	1060	S	3.70	16.0	2.07	40.5
324-24	1060	S	3.70	16.2	2.08	45.0
324-25A	1060	S	3.70	16.2	2.08	40.0
324-25B		S	3.70	16.8	2.08	46.0
324-25C	1060	S	3.67	16.7	2.08	41.0
324-23C 324-27D	1060	S	3.70	16.0	2.08	42.0
324-28	1060	S	3.70	16.3	2.08	36.0
324-29	1060	S	3.70	15.3	2.07	38.0
324-29	1060	S	3.70	16.0	2.08	40.0
324-31	1060	S	3.70	15.7	2.08	36.0
324-31 324-33G	1060	S	3.63	16.4	2.08	39.0
324-34	1082	s	3.63	17.0	2.08	41.0
324-34	1066	S	3.63	16.0	2.08	37.0
324-35 324-36	1066	S	3.63	16.4	2.08	37.4
324-30 324-37	1066	S	3.63	17.3	2.08	35.6
	1060	S	3.63	16.4	2.08	37.0
324-38	1066	S	3.63	17.0	2.08	41.0
324-39	1066	S	3.63	16.7	2.08	41.0
324-40	1066	S	3.63	15.5	2.08	39.0
324-40A	1066	S	3.63	16.7	2.08	39.0
324-41	1066	S	3.63	16.5	2.08	42.0
324-42	1066	S	3.63	16.7	2.08	44.0
324-43 324-43P	1066	S	3.63	16.7	2.08	41.0
324-43B ₄	1440	S	3.60	22.0	2.08	46.0
324-44 324-45	1066	S	3.63	16.5	2.08	46.0
	1060	S	3.63	15.3	2.08	39.0
324-47 324-48	1066	S	3.63	16.7	2.08	37.4
324-49	1066	S	3.63	15.9	2.08	41.0
324-51	1104	S	3.63	15.6	2.08	42.0
324-52	1104	S	3.67	15.8	2.08	41.0
324-53	1104	S	3.63	17.4	2.07	48.0
324-54	590	S	3.70	14.4	~-	
324-56	1066	S	3.63	15.0	2.08	39.0
324-58	1066	S	3.63	15.0	2.08	42.0
	1066	S	3.63	15.0	2.08	39.0
324-59 324-61	1066	S	3.63	16.0	2.08	49.0
324-62	1066	S	3.63	16.0	2.08	37.0
	1066	S	3.63	15.6	2.08	44.0
324-63	1066	S	3.67	16.0	2.08	40.5
324-65	1066	S	3.63	16.5	2.08	39.0
324-66	1066	S	3.63	16.5	2.08	46.0

TABLE 2 Sizes of the Structural Features Observed in Bright and Dark Field Electron Micrographs Compared to Crystallite Sizes Obtained from X-ray Analysis

Sample #	Platelet Dia. A	Granu- lation* Dia. Å	Dark F Dia.		X-ray	(Å) <u>La</u>	(002) Peak Type
311-19 (2000)	150-500	30-40	20-40				
311-19 (750) ×	150-350	20-30			14	19	S
312-31 (2000)	200-500	20-45	20-45		27.6	56	S
312-31 (2000)	150	35	30	>100	28	56	S
317-24 (2000)	250	42	60†		24	45	NVS
317-29 (2000)	>250	60	30-70 ⁺		65-75		NVS
317-33(2000)	250-500	35			92	49	S
317-45 (2000)	>500	30			25	60	3P
317-48 (2000) ×	250	55			34	59	3P
317~49 (2000)×	250-500	45	40+		33	60	3P
318~12 (2000)	250-500	6 0	50	110†	31	59	3P
318-22(2000)	>500	40-60	35		65	55	NVS
318-22 (700)	250				15.7		s
318-23(2000)	250	50	50		63	73	S
318-23(700)				- -	16		S
318-29(2000)×	>500	30-40	60		31	63	2P
321-31C(2000)×	250	35	6 0	80	35	69	3 P
321-31D(2300)	250	40	35	80	37	69	S

^{*}Diameter corresponds to distances between nearest neighbor.

^{**}Diameter of diffracting regions obtained from (002) or (100) diffraction halos.

^{*}Some of the crystallites giving rise to halos or spots are very large in size, i.e., up to 500Å.

^{*}A second structural feature was observed in the bright field micrographs of these samples. This new feature appeared to be long regular cylinders 500Å in diameter by about 1µ long. Regular striations along the length were spaced 45Å apart.

TABLE 3 Electron Diffraction Results Compared to X-ray Diffraction Results for d(002) and d(10) Spacings (A)

	Electron					
	X-ra		Diffrac		(002)	
Sample #	<u>d(002)</u>	d(10)	<u>d(002)</u>	<u>d(10)</u>	Peak Type	
Graphite	3.35	2.13	3.37	2.12		
311-19(2000)	3.56	2.17	3.45	2.09		
311-19(750)	3.70	2.19		2.07	S	
312-31(2000)	3.54	2.12	3.53	2.16	S	
	3.57	2.10	3.53	2.12	S	
317-24 (2000)	3.50	2.10	3.53+	2.10†	NVS	
317-29 (2000)	3.43		3.35†	2.12	NVS	
			3.45			
317-33 (2000)	3.414	2.10	3.35+	2.10	S	
317-45 (2000)	3.35	2.09	3.50	2.10	3P	
	3.48					
317-48 (2000)	3.46	2.10	3.48+	2.12	3P	
317-49 (2000)	3.48	2.09	3.48+	2.10	3P	
318-12(2000)	3.49	2.09	3.47	2.11	3P	
318-22(2000)	3.44	2.10	3.37†	2.07	NVS	
318-22 (700)	3.70	~ ~	3.50	2.11	S	
			3.42			
318-23(2000)	3.43	2.10	3.50+	2.10	S	
318-23(700)	3.74			2.07	S	
318-29(2000)	3.45	2.08	3.45	2.12	2P	
321-31C(2300)	3.43	2.11	3.56 %	2.12	3P	
321-31D(2300)	3.47	2.11	3.50*	2.125	S	

^{*}In this sample no spots were seen on any diffraction halo. †In addition to Debye-Scherrer rings, a number of sharp diffracting spots were observed on or close to the ring.

Table 4. Oxygen Partial Pressures in Equilibrium with Graphite and Glassy Carbons

Sample Number	Sample Description (HTT, HTt atmosphere)	P _{O 2} (atms) (800°C)	p _O (atms) (1000°C)	p _{O2} (atms) (1200°C)
Graphite	UC-AGSR	7.3×10 ⁻²¹	5.2×10 ⁻¹⁹	9.9×10 ⁻¹⁸
321-13	1800°C 1 hr vacuum	2.0×10 ⁻²⁰	2.8×10 ⁻¹⁸	8.0×10 ⁻¹⁷
Beckwith D-82-2	2000°C	5.6×10 ⁻¹⁹	2.4×10 ⁻¹⁶	1.0×10 ⁻¹⁴
Hercules H-54	1795°C 1 hr vacuum	1.4×10 ⁻¹⁸	7.5×10 ⁻¹⁶	3.4×10 ⁻¹⁴
324-19	1890°C 1 hr vacuum	1.9×10 ⁻¹⁹	2.8×10 ⁻¹⁷	5.8×10 ⁻¹⁶

Table 5. Summary of Welfilt Loss Experiment Data

rangele Tampele in desir		1.;	I was a second of the second o	erri. 1988 Instrugulte Gottable	
10000 G. Aleka Cada i E TT 4250090	1.35	3 14	0.6	23.7	3.2
LMS. Gluscy Carlot. HV1:1-00 ² 7	1. 7.	3	9.2	29.	2.4
Leckwit. 1-02-2 HTT-1506-C	900	3,/4	0.2	L4. /	7 . 6
BedAW.th D-82-2 H:2#20001C	1010		9.°	2.3	1 . 7
Fackwith. 1-02-1 htt:/2000/c	i. ···		6.65		

Table 6. Radius of Gyration Results from Small Angle X-Ray Diffraction

Commercial Sample #	Our Value	Reported Value	Dispersity
LMSC-20 LMSC-26	14.8 12.6	13.2	Monodisperse
LMSC-30	26.0	23.4	и
GC-10 GC-20	5.2 9.2	5.7	"
V-25	13.9	9.5 15.5	e1 1J
Beckwith-20	10.8	13.3	 VI
V-10-42	14.8		8 5
PFA-2000	13.1	13.0	11
H-54	12.2		•
Our Sample #			
311-19(750)	5.0~65		Polydisperse
312-10(2000) 312-31(2000)	19.7-53		- 11 -
315-22 (2000)	14.2-65 12.0-70		11
317-24(2000)	10.2-70		,
317-26 (2000)	15.6		Monodisperse
317-45 (700)	4.0-90		Polydisperse
317-45 (2000)	14.8		Monodisperse
317-48 (700)	5.0-85		Polydisperse
317~48 (2000)	10.5-66		•1
317-49(2000) 318-1(2000)	12.6 11.8		Monodisperse
318-3 (2000)	15.1		**
318-4 (700)	6.0-20		Polydisperse
318-5A(2000)	16.4		Monodisperse
318-6A(2000)	11.5		"
318-7 (2000)	16.3		**
318-8 (2000)	14.2-63		Polydisperse
318-9 (2000) 318-10 (520)	15.8~75		**
318-10(2000)	13.8~45 14.4~35		**
318-11 (2000)	13.2		Monodisperse
318-12(2000)	15.7-75		Polydisperse
318-13(2000)	12.9-68		" " " " " " " " " " " " " " " " " " "
318-14 (2000)	12.7		Monodisperse
318-15 (700)	6.7-90		Polydisperse
318-15(2000) 318-16(2000)	13.2-52		# #
318-17(2000)	14.1-45 15.8-46		"
318-18(2000)	11.9-50)1
318-19(2000)	11.8		Monodisperse
318-20 (2000)	11.8-50		Polydisperse

	Our Value	
Our Sample #	$R_{G}(A)$	Dispersity
318-21(2000)	12.7	Monodisperse
318-22 (700)	10.4-82	Polydisperse
318-22 (2000)	15.0-68	* " *
318-23 (2000)	14.0-60	II
318-24 (2000)	16.2-85	11
318-27 (2000)	14.2	Monodisperse
318-28 (700)	6.2-100	Polydisperse
318-28 (2000)	12.7	Monodisperse
318-29 (2000)	13.0	!!
318-30(700)	7.3-63	Polydisperse
318-30(2000)	13.4	Monodisperse
318-31 (2000)	13.8	
318-32 (2000)	14.2-70	Polydisperse
318-33 (2000)	15.1-58	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
318-34 (2000)	13.9	Monodisperse
318-35 (700)	8.6-85	Polydisperse
318-35 (2000)	12.0	Monodisperse
318-38 (2000)	12.0-47	Polydisperse
318-39 (700)	13.2-45	 U
318-39 (1000)	12.4-36	Manadianova
318-40 (2000)	11.9	Monodisperse
318-41 (2000)	15.8-61	Polydisperse
318-42 (2000)	12.7-74 13.9-57	11
318-43 (700)	14.4-47	· ·
318-43 (2000)	12.6-52	· ·
318-44 (2000)	7.0-46	11
318-45 (700) 318-45 (2000)	20.4-53	ti
318-46 (2000)	14.0-40	er e
318-47 (2000)	10.1	Monodisperse
318-48 (2000)	10.0-66	Polydisperse
318-49 (2000)	10.0-67	"
318-50 (700)	7.5-93	și și
318-51(2000)	12.9	Monodisperse
318-52 (2000)	10.4	· ·
318-53 (2000)	11.3	11
318-56 (2000)	10.4	(I
318-58 (2000)	12.4-85	Polydisperse
318-59 (2000)	11.6-76	**
318-60(2000)	10.9-60	
318-61 (2000)	11.2-100	"
318-62 (2000)	12.6-70	ti ti
321-2(700)	14.7-52	
321-7 (1795)	11.1-62	"
321-7 (2000)	11.7-53	
321-9 (2000)	15.1-57	
321-10 (2000)	15.3-59	ii .
321-13 (1066)	6.85-42	

Our Sample #	Our Value RG (Å)	Dispersity
321-13(1227)	8.9-52	Polydisperse
321-13(1504)	9.0-56	"
321-13(1795)	12.0-59	li li
321-13 (2000)	12.3-66	ft
321-23(2000)	12.6-59	II II
321-23A(2000)	13.5-69	***
321-23B(2000)	13.2-62	11
321-24(2000)	14.2-79	n
321-24A(2000)	16.4-63	11
321-25 (2000)	14.2-72	II .
321-31 (700)	11.6-65	II .
321-31G(2300)	18.1	Monodisperse
323-50(1000)	5.1-70	Polydisperse
324~19(1000)	8.25-76	" "
324-19 (1250)	9.5-76	£1
324-19 (1550)	10.5-90	It
324-19(1890)	10.9-93	н

TABLE 7

Sample #	Temp.°C	He Density (gm/cm³)	Surface Area Knudsen Flow (m²/gm)	Specific Surface Area (m²/gm)
311-32	2000	1.41	3.0	26.4
317-9	700	1.83		506.0
317-9	2000	1.70	12.5	59.9
317-12	700	1.80	9.1	510.0
317-12	2000	1.72		109.0
318-22	700	1.79		459.0
318-22	2000	1.51		49.6
321-9	700	1.46	~~	541.2
321-9	2000	1.28X*		12.7
321-13	367			257.0
321-13	700			852.3
321-13	1066	1.56X		72.4
321-13	1227	1.54X		56.6
321-13	1504	1.50X		51.3
321-13	1795	1.44x		47.9
321-24B	2000	1.48X		61.3
321-25A	2000	1.45X		36.9
323-8	1000	1.51X		3.3
323-26A	1038	1.46X	~-	
323-50	1000	1.51X	40 eu	203.0

^{*}X indicated Xylene

TABLE 8

Sample: #	Temp.°C	^ρ He real¹ (g/cc)	^ρ Hg real ² (g/cc)	OHg app.	MPD (μ)	IPV (cc/g)
GC Nu.1		1.47	1.482	1.424	.003	.0273
302-5	2320		1.509	.647	2.97	.8828
302-12	2320		1.501	.559	3.62	1.1224
305-6	2000	1.94	1.802	.636	2.54	1.015].
6.62 Mo	2000	2.7.	1.002	.030	2,34	1.0131.
305-12	2000	1.55	1.562	.557	4.19	1.1560
305-18	2000	1.77	1.718	.606	2.49	1.0678
.4 Mo	2000	± • / /	1.710	.000	2.47	1.0070
308P-2 #2		1.586	1.505	1.034	.009	.3030
308P-3 #3		1.611	1.486	1.077	.008	.2559
310-1	1000	1.011	1.446	.814	.023	.5411
310-3	1000	J. 6 & /	1.424	.805	.023	.5454
310-17A	2000	1.50	1.175	.639	.119	.7130
310-18	1000	1.48	1.452	.687	.039	.7666
310-18	2000	1.15	1.366	.648	.044	.8110
310-20	2000	1.09	1.458	1.029	.069	.2855
310-29	2000	1.89	1.533	.944	.014	.3959
311-21	2000	1.59	1.339	.731	.014	.6221
311-22	2000	1.00	.847	.484	.154	.8809
312-19A	730	1.20	1.481	.879	.629	.4626
312-19A 312-29	728	1.52	1.441	1.038	.014	.2709
312-23	2000	1.41	1.490	.923	.025	.4118
312-31	2000	1.26				.0540
312-43	2000	1.53	1.302	1.214	.005 .121	.4425
312-49	2000	1.34	1.392	.861	.011	.2579
315-1	2000	1.50	1.404	1.031	47.0	.3412
317-5	2000	1.42	1.431	.962	.071	.4039
317-18	2000	1.50	1.313 1.255	.873 .953	39.1	.281
318-22	700	1.79	1.426	.953 .771	.057	.5958
318-22	2000	1.51		.937	.054	. 4334
318-45	2000	1.37X	1.576	.78		
321-7			1.20		.0078	.021
321-7 321-9	2000 700	1.54	1.04	.76	.028	.205
321 - 9		1.46	1.24	.98	.0073	
	2000	1.36	1.4	1.2	.0057	.016
321-13 321-13	700 1504	1.50X ³	2.00	.96	.042	.49883
			1.09	.51	.046	.48293
321-13	1795	1.44X	1.24	.77	.044	.47032
321-17	2000	1.43	1.17	.59	2.15	.299
321-18	2000	1.67	1.16	.87	.175	.247

^{*}Glassy Carbon No. 1 - Le Carbone, p. 6927.

¹Real density as determined by He pycnometry

²Real density as determined by Hg

³X indicates Xylene

Sample #	Temp.°C	^β He real ¹ (g/cc)	PHg real ² (g/cc)	Hg app.	MPD (μ)	IPV (cc/g)
321-19	2000	1.80	1.56	.98	.049	.379
321-20	2000	1.60	1.63	.70	.088	.345
321-21	2000	1.79	1.30	.85	.041	.377
321-25	2000	~-	2.20	1.14	.011	.088
321-31	2000	1.41	1.49	1.34	.0195	.075
322-14A	1300				2.2	.826
322-14A	1412	1.74		~~	1.7	.494
322-14B	1300				2.3	.501
322-14B	1412	→ =			1.5	.496
322-17A	1300	~-			4.5	.604
322-17A	1412				4.4 2.5	.271
322-17B	1300					.382
322-17B	1412				2.0	.534
322-19A	1300				1.0	.461 .472
322-19A	1412	1.9			.08 .65	.466
322-19B	1300 1412				.95	.468
322-19B					1.8	.432
322-20	1300 1412	1.57X			1.5	.666
322-20 322-21A	1300	1.50X			18.0	.503
322-21A 322-21A	1412	2.00A			3.5	.420
322-21A 322-21B	1412	1.52X			10.0	.400
322-21B	1300	1.52A			8.0	.780
322-22A	1300				1.1	.308
322-22A	1412	1.48%			1.2	.443
322-22B	1300		~ ~		1.4	.457
322-22B	1412	1.49X		··· -	1.2	.440
322-23A	1300	1.55X			1.5	.443
322-23A	1412	1.47X			1.2	.458
322-23B	1300	2.08X			.32	.453
322-23B	1412	1.61X		~-	.35	.458
322-24A	1300	1.54X			1.3	.395
322-24A	1412				1.3	.563
322-24B	1300				1.9	.620
322-24B	1412	1.59X			1.4	.888
322-32	1350	1.60X			1.4	.571
322-35	1350	1.43X			6.0	.472
322-41	1440	1.59X			.07	.669
322-45	1500	1.72X			4.2	.421
322-46	1500	1.48X			1.4	.550
322-47A	1500	1.47X			1.3	.652
322-48	1605	1.53X			6.0	.634
322-49	1400				7.0	.841
322-49	1400			- -	7.0	.607
322-49	1600	1.51X	~~		7.0	.595
322-50	1600	1.52X			6.0 6.0	.545 .679
322-50	1400	1.48X	1 27		1.27	.497
323-26A	1038	1.46X	1.37	.53	1.2/	• *2 7 7

Ult. Str. psi (×10 ⁻³)	1.01	7.04	1.23	4.85	1	2.83	7.78	1	5.13	1	1.11	!	:	!	i t	ţ	96.5	i	0.36	!	!	4.7	2.51	!	1	!	
Compr. Str. psi (×10-3)	5.18	7.2	6.85	20.0	36.0	1.73	, 1	39.7	29.5	1 1	27.3	! !	!	!	} 	1	!	!	1.47	!	t I	47.7	29.3	 	1	1 1	
Sonic Mod. psi (x10-5)	1	!	0.35	!	1	;	!	;	;	į	!	i	!	!	i i	!	!	i	1.27	!	!	! 1	!	ì	1.48	1,37	
Int. Frict.	;	!	1.43	1	i I	: 1	!	!	1	!	1	1	!	!	1	!	;	ļ	ţ	1	1	i i	!	;	0.93	1.63	
Hard- ness (DPH)	! i	!	i	ŀ	1	1	1	t 1	1	06	1	86	135	176	107	105	 	† 1	!	! †	!	ŀ		1	1	!	
Resistivity N-cm (×10)	! 1	1	.294	1	1	1	1	i	!	!	1	!	!	!	!	1	!	!	.349	!	!	!	!	!	.180	.275	
^p real (g/cc)	2.07	1																									
b) He	ļ	ł 1		1	1.44	1.27	ŀ	1.52	1.47	1.59	1,38	1.18	ł ‡	1.26	1	1	1.3	1.49	1.52	1.38	1.55	9.1	1	1.6	1.6	1.60	
0app.		(0.60)	0.51	(1.07)	(1.00)	(0.77)	(1.15)	(1.07)	(06.0)	!	(0.92)	1	1 1	!	1	!	(1.10)	(0.89)	0.70	i i	ļ	\sim	(0.79)	\mathcal{L}	0.84	0.77	
Temp. C	0	\circ	2000	C	0	0	0	0	0	0	0	0	9	2000	9	0	0	0	\circ	\circ	\bigcirc	\bigcirc	0	0	2000	\circ	
Sample #	10-3	11-3	311-35	12-1	12-1	12-1	12-2	12-2	12 - 3	12 - 3	12-3	12-4	12-4	12-4	12-4	12-4	12-4	15-	15-	15-	15-	15-1	15-1	15-2	15-	15-20	

All other densities from *Data in parenthesis obtained from unmachined cylinders. machined cylinders.

Ult. Str. psi (x10-3)	1	9	7.13	9.	1	•	4.61	4.78	7.38	6.63	4.24	1	4.39	ŧ	1	5.15	ı	\mathbf{e}	•	į	2.95		1	2.51	:	2.97	5.59	4.41	1	!	0	2.02	!
Compr. Str. psi (x10-3)	i	i	46.8	27.0	1	;	24.3	i	35.5	30.5	25.6	36.6	37.3	1	1	35.1	1	36.2	45.0	:	21.0	16.4	:	14.2	1	2.40	5.	•			18.6		1
Sonic Mod. psi (x10-6)	1.52	i	1.54	1	1	; !	•	I	1.55	1	1.20	1.38	;	1	1	1.44	1.65	1.60	;	1.26	0.87	1.22	1		i i	0.93	1.78	1.76	1	!	1.35	1.28	1.65
Int. Frict. (x10 ³)	0.54	!	0.26	!	1	i	:	i	2.38	i	i	!	!	!	!	0.33	0.47	0.42	1	1.50	0.31	2.01	1	0.31		1	0.47	1.28	:	!	1.18	0.98	0.35
Hard- ness (DPH)	;	1	•	1	!	1	;	1	!	!	!	1 5	!	1							!	1	!	1	1	1	!	!	8	!	1	!	<u>:</u>
Resistivity Ω -cm $(\times 10)$. 203	1 1	.147	1	i	1	1	!	.317	!	.057	.149	!	t I	f	.119	.237	.229	!	.195	. 294	.137	!	.262	!	.237	.188	2	1	.220	.038	.157	.249
$\begin{array}{c} \rho \text{real} \\ (g/cc) \\ \end{array}$!	1,37	; ;	1.47	1.46	!	1.43	1.58	1	1.45	į	! !	ł	1	i	1	1	s I	¢ 	1	;	:	1.75	1.48	!	!	1.43	1.43	1.41	1.41	;	1	1.47
Pr (9 He	1.60		1.52	1	1.63	1.78	;	1	1.41	!	1.45	1.45	1.46	1.49	1.48	1.46	1.48	1.46	1.43	1.50	1.58	1.57	1.89	1.61	1.51	1.51	1.64	1.64	1.33	1.67	1.67	1.',7	1.83
(9/cc)		, ,	•	•	•	•	•	e	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0.77	•	•
Temp.°C) C	, 0	0	O	0	O	0	0	0	O	0	0	O	0	0	0	0	0	0	0	0	0	0	O	0	0	0	0	0	2000	0	0
Sample #	15-2	15-2	15-2	15-2	15-2	15-2	$\frac{1}{15-2}$	15-2	15-2	15-2	15-2	15-2	15-2	15-3	15-3	15-3	15 - 3	15-3	15-3	15-3	15-3	15 - 3	15-3	15-3	15 - 3	15 - 3	15 - 3	15-3	15-4	15-4	315-41A	15-4	15-4

317-32 317-33	7-3	7-3	7-2	7-2	7-2	7-2	7-2	7-2	7-2	7-2	7-1	7-1	7-1	7-1	7-1	7-1	7-1	7-	7	7		7	7-	L	1	315-46	4	1	315-45	5-4	315-43	Sample #	
2000 2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	Temp. °C	
0.89 (1.02)	. 7	1	0.74	.9	!	. 7	(0.88)	0.76	(0.83)	(1.05)	(1.13)	0.72	(0.91)	(0.87)	(0.88)	(0.89)	0.79	(0.93)	1.00	(0.79)	•		0.71	. 2	(.899)	•	(1.094)	. 7	(0.88)	0.76	(1.04)	(g/cc)	р д р р
	1.45		1.65	1.7	1		1.69	1.57	;	1.51	1.68	1.50	1.46	1.49	1.88	1.60	1.42	1.76	1.64	1.82	1.88	1.42	1.74	1.67		!	1	i	1.39		1	He	a ro
1.43	1	1.51	1.49	1.45	1	1	1.41	1	1.46	;	1	1.26	1	1	1.45	;	1	1	1.44	1.43	1.45	1.31	1.45	1.21	į		1.51			1.43	1.48	Xy1	real
.224	!	;	.122	;	!	.195	!	.187	!	!	1 1	.088	1	1	!	!	.009	1	:	1	1	!	.088	1	;	!	1 1	.039	!	.214	1	(×10)	Resis- tivity
73	;	i	1	i	1	14	1	£	;	;	;	;	;	i	ŀ	i	!	;	1	1	1	55 80	1	;	58	105	•	i	:	1	!	(DPH)	Hard-
1 1	1	;	1	!	1	0.66	1 1	0.76	!	1	!	0.39	1	: 1	•	ţ	0,75	:	ļ	t i	;	;	!	1	1	;	ţ	0.28	1	0.32	1	(×103)	Int. Frict.
1.64	i	;	0.86	1	1	1.51	!	1.45	1	;	;	0.86	1	!	1	:	1.45	;	1.82	;	1	1	0.91	;	1	;	;	5. 8	1	1.43	•	(×10-5)	Sonic Mod. psi
44.2		;	16.4	!	37.3	4.7	34.1	49.1	7.6	+	28.2	5.1	33.6	27.4	;	;	43.7	32.3	40.5	;	!	33.1	23.7	56.5	2.5		;	;	!	1	50.0	(×10-1)	Compr. Str. psi
5.05 5.60	1	!	2.48	1	•	0.92	2.85	4.37	1.90	1	8.75	3.30	4.09	4.69	!	5.82	6.00	5.77	2,29	1	;	7.50	2.97	7.5	2.23	1	1	•	1	!	1	$(\times 10^{-3})$	Ult. Str. psi

			. ب	<u> </u>	œ	₹*	2		_	_	~	С.		īΩ	2			9		~			7	~		6		6			~		7
Ult Str psi (×10-	4	1	ي و		ι.	₹.	ر. د.	6.	6.	۳,	7.	٦.		2.	9.	1	3.0	5		~	1	1	9	5.6	ŀ	5.19	-		1	-	0.8	!	0
Compr. Str. psi (x10-3)	24.0	٠.			•			7	۲.	6	S.	•	ς.	4	7.		11.1		;	34.5	1	:	•	18.2	ä	7.	i	1	1		4.74		28.2
Sonic Mod. psi (x10-6)	2.07		9	•	1.20	7	!	i 1	{	1.54	!	1.35	1	1.27	1	7	0.89	٠.	!	08.0	;	1	0.65	!	!	:	:	1.48	ţ	:	0.41	1	1.43
Int. Frict.	i	1	0.31	7	H	1	1	!	1	•	1	1.68	1	!	1	1 †	1.31	1	!	!	!	!	! !	1	1	!	!	1	1	1	0.41	} 	1
Hard- ness (DPH)	!		80		49	ŀ	1	1	ì	53	!	52	! !	71	49	!	;	1	1	!	;	!	1	09	i	56	! 1	51	61	7.1	31	40	47
Resis- tivity C-cm (×10)	.321	ı		9	\sim	∞	1	1	1	.135	į	.007	i	.112	i	i I	\$ O.	.169	ì	907.0		i	.1.65	1	i	i	;	; !	i	1	.285	!	.270
$\begin{cases} c & \text{real} \\ c & \text{cc} \end{cases}$	1.50	1	1.43	1.43	1	!	1.59	٣,	1	!	1	ļ	1	!	!	1	ł	1	!	1	1.51		1.34	1	1.49	1	1	;	1	1.23	!	1	1
Ore (g.	1.56	٠	٣.	٣,	.2	•		1	•	•	•	•	•	•	1.39	•	1.51	+	•	ı	1.37	4.		1.49			4	1.58	2	!	1.47	'n	4
papp.	0.65	•	•	•			•							•								7	7.	6.	6	6.	6.	6	σ,	0	0.77	9	6.
Temp.°C	2000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	68	00	00	00	00	00	00	00	00	00	00	00	00	00
ample #	7-3	7-3	7-3	7-3	7-3	7-4	7-4	7-41	7-4	7-42	7-4	7-4	7-4	7-4	7-4	7-4	7	8-1	ď	8	8-3	8	8	8	8	8	8-1	8-1	8-1	8-1	8	8-1	-

Papp.	Ω, \		Pro (9,	preal (g/cc)	Resistivity \Omega-cm (\times10)	Hard- ness (DPH)	Int. Frict. (x10 ³)	Sonic Mod. psi (x10-6)	Compr. Str. psi (×10 ⁻³)	ult. Str. psi (×10 ⁻³)
			1	1						•
2000 0.74 1.46 -	.74 1.46			•	.189	53	0.18	1.18	33.2	
000	1.48			!	ł I	4 0	!	¦	i i	
000	:			!	1	;	;	1	1	2.28
000 (0.77) 1.41	,77) 1.41	1.41	•	!	1	!	1	!	:	!
000 1.50	1.50			!	!	65	į	!	\$ 1	1
000 1.37	1.37		_	.49	i	26	1	!	ł	1
000 0.83 1.45	.83 1.45			\$.237	44	!	1.29	29.5	4.37
700 (0.78) 1.48	.78) 1.48			!	!	39	1	l i	1	1
000 (0.91) 1.49	.91) 1.49			!	!	54	1	i	i	1
000 0.97 1.29	.97 1.29		_	1.52	!	19	i i	1.49	1	1
000 0.92 1.29	.92 1.29		• •	1.53	!	i i	i 1	ł	25.0	4.47
65.1 (86.0) 000	.98) I.59			1	!	70	!	;	;	i 1
000 (0.87) 1.38	.87) 1.38			1	1	;	!	;	;	ļ
000 0.84 1.45	.84 1.45			;	.177	1	1 1	1.33	1	1
000 0.63 1.45	.63 1.45			1	.194	26	1	:	0.23	0.73
000 1.08 1.49	.08 1.49			; ;	!	60	!	1.52	21.9	5.82
000 0.55 1.31	.55 1.31		~	36	.216	21	2.41	0.135	1.6	0.19
000 (0.84) 1.57	.84) 1.57			1	!	53	:	1	19.7	!
00.0 000	08.		, ,	1.53	.101	57	0.73	1.37	32.2	4.75
000 1.07 1.45	.07 1.45			1	ļ	}	i I	!	28.7	4.85
000 0.88 1.43	.88 1.43			1	.118	1	1	1.48	26.4*	4.57
000 1.02 1.41	.02 1.41			1	.107	67	!	1.35	18.6*	3.34
000 0.92 1.48	.92 1.48			1	.112	;	} 1	2.17	25.7*	3.90
000 1.52	- 1.52			!	:	1	1	!	!	l t
000 1.23 1.57	.23 1.57			1	.085	!	;	2.99	34.9*	7.95
0000 (1.05) 1.44	.05) 1.44			!	1	 	l i	1	:	1
000 (1.08)	.08)			1.42	1	106	1	1	!	1
(1.09)	(60.			1.46	!	103	; 	•	!	!
000	٠	!		1.37	.070	ļ	1	3.1	i	1
000 1.02	.02	1		1.46	.41	26	;	2.34	42.3*	7.35
000 1.08 1.43	.08 1.43	43		! 1	!	1	-	1	3.5	8.27

*Head speed .05 in/min., all others .02 in/min.

ult. Str.	(×10-3)	.7	1.44	Š	9.	1	6.02	4.20	7.63	3.96	6.98	.87	7.18	1	8.27	•	٥.	۲.	∞.	~	0	ū	6.04	٠.	r.	1	5.26	1	φ.	6.04		1	
Compr. Str.	$(\times 10^{-3})$	i t	•	17.7	4.73	i 1	1	31.7	9	2	•	4	•	4	41.7*	1	œ.	4	4	•	7	4	36.2	4	4	-	36.7	ı	6	31.5		i	
Sonic Mod.	(×10 ⁻⁶)	1	φ.	1.66	1 1	1	۲.	2.15	۲.	4.	•	1	1	!	2.33	†	1.48	1	2.99	1.54	i	1.22	1.67	1	1.55	!	1.81	•		1.83	1.49	î	
Int	$(\times 10^3)$;	!	1	1	!	;	1	!	!	1	!	ŧ	1	1	1	!	1	1	1	;	1	;	1	0.21	!	0.22	;		0.15	0.11	1	
Ä	(DPH)	!	;	!	;	(1	; 1	!	СТ. Д.	1	69	1	78	1	81	1	105	120	66	95	132	1	131	1	1	!	!	!	!	115	87	!	
Resis- tivity	£-cm (×10)	1	1	130	1 1	1	.237	!	.150	.403	!	i I	.340	1	.31	!	.546	i i	.100	.114	1	.121	.115	!	i	1	!	:	!	1	!	i	
preal	/cc) xy1	;	;	;	;	1.43	1.51	1.38	1.42	1.38	ł	;	1	ì	1	!	i i	1.28	1	1	ļ	!	1.50	!	i	1.39			4	1.42	1.46	4	•
Q.	He He	1	4	7	1.42	ω,	1	1.38	1,71	1.75	1.39	1	1.57	1.52	1.60	1.54	1.46	1.36	1,34	1.43	ŀ	1.32	1.48	3	8	7.	4.	9	ŀ	9	1.80	. 7	
c	'app. (g/cc)	1	α	? =		φ.	6	5	6	0	6.	1	•	6	Ó	0	9	٦.	. 2		1	6	•	6.	φ,	9	6.	Ċ,	9	∞.	(0.83)	•	
	Temp.°C	9		2 2	20	0	0	0	20	0	00	00	00	0	2000	0	00	00	00	00	00	00	00	00	00	00	00	00	00	0	00	00	1
	Sample #	0	101	יו מו	18-5	2 2 6	181	201	1816	18-6	18-6	21-1	21-3	2 0	10	21-	21-	71-	21-1	21-1	$\frac{1}{21-1}$	21-12	$\frac{1}{21-1}$	21 - 1	21-16	21-16	$\frac{1}{21-17}$	21 - 18	$\frac{1}{21-18}$	$\frac{2}{21-19}$	$\frac{1}{21-1}$	0	

*Head speed .05 in/min., all others .02 in/min.

Ult. Str.		(×10 ⁻³)	6.21	6.35	6.16	6.14	4.58	4.35	5.15	7.28	6.36	5.98	6.39	7.04	6.76	5,14	0.77	:	1,34	5.94	!	1	1	!	4.08	7	S	i	$\boldsymbol{\sigma}$	9	4	•	5	. 7	.7
Compr.	ŧ -,-1	(×10 ⁻³)	34.8	45.5	46.4	31.9	34.8	36.1	33.7	58.6	40.9	42.7	47.8	49.1	45.1	27.9	26.4	!	9.7	40.0	1	!	1	1	33.3	13.6	22.2	! !	22.6	25.0	40.5	12.2	36.9	35.5	36.9
Sonic		(×10-6)	;	1.65	1.93	1.44	i	1.43	1.42	2.05	1.64	1.69	1.95	1.05	2.22	0.68	!	!	0.62	1.59	!	!	1	!	;	0.70	!		1.15	.1	9.	φ.	5	• 9	σı
101	Frict.	(×10³)	;	1	; ;	!	1	ŀ	!	1	!	1	1	1	1	!	1	:	1	1	!	!	!	1	! !	!	1	:	!	!	!	ŧ 1	1	í	;
ולאפת	ness	(DPH)	ļ	1 1	į	1	1	!	i 1	† 1	!	!	! !	1	!	:	!	!	t 	:	!	1	!	1	!	:	;	i	;	!	!	!	1	! !	1
Resis-	S-cm	(×10)	;	.2		.28	1	.17	.19	.12	.27	.18	.19	.14	.15	.13	i	!	.11	.18	!	!	1	1	1	.23	.18	!	.16	.24	.17	.18	.17	.18	.20
, (-	(32/b)	Xy1	1	4	4.	4	٦,	1.50	₹.	!	'n	₹.	9.	4.	1.48	7.	5	!	1	1.42	;	1	;	1	1.53	•	1	-	1.48		'n	₹.	٣.	'n	
a.	1,5	Не	1.50	1.74	ł	1.79	1	!	ł	1.74	1 1	1.77	6 1	1	i	1	1.43	1.54	1.52	1.64	1.41	1.40	1,56	1.41	1	1	1.66	1.48	1	!	;	!	1 1	1.36	1.30
	Ω	(d/cc)	•	٠,	٠.	6	6	0.93	9	C.	ο.	σ.	•	6.	0		ň	0.4	φ.	٥.	œ	9	6.	φ.		۲.	0	•	0.91	φ.	6.	ω.	ō.	o.	9
		Temp.°C	00	00	00	00	00	00	00	0	00	00	00	00	00	00	00	00	00	00	30	30	30	30	2300	30	30	30	00	00	00	00	00	00	00
		Sample #	21-20	21-21	21-21	21 - 22	21-22	21 - 2	21-22	21 - 2	21-2	21-23	21-24	21-24	21 - 2	21 - 25	21 - 26	21 - 2	21 - 2	21 - 2	21 - 31	21 - 31	21-31	21 - 31	321-31D	21 - 31	21-31	21 - 31	21 - 31	21-31	21-31	21-31	21-31	21 - 32	21-32

			Q	,	Resis-	3	4 5	Sonic	Compr.	ult. Str.
Sample #	Temp.°C	(app.	re (g/ He	real (g/cc) xyl	S-cm (×10)	ness (DPH)	Frict. (x10 ³)	psi (×10 ⁻⁶)	psi (×10 ⁻³)	psi (×10 ⁻³)
21-326	2000	6	1.25	1.50	.21	l 1	i	•	41.4	6.11
21-3	0	0.92	1	1.47	.25	;	;	1.49	1	
$\frac{21-32}{21-32}$	00	00	;	1.47		1	:	.2	i	1 '
$\frac{1}{21-32}$	00	6.	1.33	;		!	1	.5		
21-32	00	6.		1.54		ŀ	!!	16.		
21-32	00	6.	i	1		1 1	l i	S	_;	
21-33	00	6.	1.41	1	.16	1	l í	1	39.8	5.96
21-33	00	φ.	1	1.47		!	!		<u>ب</u>	9.
21-34	30	ο.	•	!	1	:	1	F	i	1 ·
21 - 34	30	9	1.59	1	.27	1	[1.49	$\boldsymbol{\vdash}$	7.55
21-34	30	6,	;	ນຸ	.18	!	!	2.94	•	6.
21-34	30	0	i	1.49	!	:	!	1.46		ı
21-34	30	6	1.21	ļ	.38	ı	!	0.92	40.9	5.43
$\frac{21}{21} - 36$	30	~~	1.80	₹.	;	1	!	!		•
21-36	30	0	1.66	1.35	.29	1	!	1.15	50.4	7.23
21-36	30	٦.	1.43	i	!	:	!	1	!	i 1
21 - 37	30	0.	1.41	ŀ		1	!	1	1	1
21-37	30	9.	1.50	!	.24	!	1	0.42	•	0
21-37	30	1	ł	;	\$:	1	ļ	٠	₹.
21 - 37	30			1.76	. 44	1	1	0.94	•	٣.
21 - 3	30	9	:	1.56	:	;	1	80.0	1.05	
21-37	30	.7	1	1.62	.31	!	1	7	•	₽,
21-39	30	ω.	1.60	!	.23	:	t í	0.72	•	۳.
21-4	30	9.	1.42	!	.30	:	!	;	0.50	90.
21-41	30	۲.	1.51	1	!	!	;	1	ı	1
21-42	00	۲.	ł	1.44	. 29	1	1	س	0	
21-42	00	9	4.	1	. 28	;	!	?	1.14	4
21-43	20		L	1	.36	;	1	0.60	1.31	
21-43	20	9	4.	1	. 46	!	!	۲.	0.73	. 7
21-44	20	6	œ	1.46	!	!	!	!	!	i
31-4	20	•	1.56	ţ	;	† 	i i	i	!	:
22-45	20	٦.		1.42	1	!	1	1	1	!
5.4	2200	0	8	1.50	60.	;	i	0.42	41.50	5.93

			ď	,	Resis-	7	4	Sonic	Compr.	ult.
		gann	i 5	eal /cc)	clvity 0-cm	ness.	Frict.	god.	st. osi	oci.
Sample #	Temp.°C	(22/6)	He	(3/ cg)	(×10)	(DPH)	$(\times 10^3)$	(×10 e)	(×10 ⁻³)	(×10-3)
21-46	20	•	1.40	!	i	!	1	į.	1	ļ t
321-46B	2200	•	1.43	1.43	. 26	1	!	0.16	2.04	0.49
21-46	20	•	1.60	i I	!	!	!	1	1	1
21-47	9	(1.13)	2.07	1.48	1	!	1	!	1	!
21-47	9	•	1.67	1	i	!	!	!	i	i
21-47	9	•	1.84	1.45	i	•	1	!	1	!
21-48	9	•	1.40	1	1	!	!	;	;	1
21-48	9		1,43	ţ	.24	!	t i	0.34	2.65	09.0
21-48	00	•	1.58	!	;	!!	1	!	!	1
21-49	9	•	1.51	1	!	!	1	1	!	†
21 - 49	60	•	1.44	!	i	1	;	;	1	1
21-49	09	•	1.51	;	1	! !	!	!	!	!
21-50	9	•	1.69	1	ļ	!	Į Į	† [1	!
21-50	9	•	1.43	1	.15	1	!	1.5	28.2	4.52
21-5	9	•	1.45	!	 	!	!	1	;	1
21-51	35	•	1.50	;	!	1	!	0.73	9.1	1.36
21-5	35	•	1.53	1	.21	1	!	1	1	!
21-5	00	!	7,3	1.52	1	{ }	1	:	:	1 1
21-5	00	•	2.07	1.47	!	!	1	!	!	!
22-1	60	•	!	1.59	.24	† †	1	0.27	4.00	0.78
22-1	60	•	7.98	1	• 39	1	!	0.26	!	1
22-2	60	•	2,05	1.59	()	;	:	:	ŀ	:
22-3	9	•	1	1.59	.18	;	i i	0.73	6.80	69.0
22-3	9	•	2.0	1.52	1	1	1	1 1	1	!
22-	00	•	1.55	1	!	[!	1	!	1
22-	00	•	1.41	;	!	!	!	!	!	;
22-10	10	•	8.1	1	1	; 	!	;	1	!
22-11	67	•	1	7.49	.207	!!	ł	0.25	1.77	.59
22-11	67	•	1.9	!	.26	!	;	0.24	0.791	0.17
22-12	09	•	1	1.43	.28	!	!	0.24	2.23	0.24
22-12	9	•	!	1.50	.23	!	!	0.35	2.04	0.24
22-	67	0.78	ł	1.45	.17	!	t 1	0.59	4.06	!
22-14	67	•	1.74	;	i	1	!	!	!	!

	(×10 ⁻³)	;		0.82	ന	7.		0.41	1.43	0.74	H	$\vec{\vdash}$	í	٥.	4	?	3.24	۲.	9.	9.	٦.	9.	.77	0.363	.46	ری	∞.	۳,	٠.	٦.	4.	6.	₹.	.5
Compr. Str.	(×10 ⁻³)	6.82		3.97	1 1	37.3		_	8.97	\sim	4.1	5.2	;	•		١	က	•	7.	4.	8.4	9.0	9.	1.85	0.	2.7	3.4	œ	.	•	Ä	7	13.95	α.
Sonic Mod.	(<10_6)	0.57	1	0.35	2	•	1	•	~	•	i	;	!	1 1	1	!	-	1.48	-	-	1	-	-	0.24	-	-	-	•	•	•	•	-	•	•
Int	(×10³)	;	1	!	!	!	!	!	!	I	!	!	1	1	1	1	!	t i	† 	1	!	1	1	1	ŧ	!	!	!	1	!	!	!	1	!
	(DPH)	1	1	!	l 1	1	!	!	!	<u> </u>	!	!	!	I I	!	1	!	!	1	1	!	!	1 1	1	!	•	!	1	1	i 1	1	1	:	!
Resis- tivity	(×10)	.19	1	.22	.37	60.	1	. 28	.17	.22	1	!	1	1	t 1	1	.11	.13	.11	80.	.10	.19	.18	.34	. 24	. 22	.13	.22	.10	.20	.17	.18	.11	.17
Preal	$\frac{(g/cc)}{xy^{1}}$	1.48	1	1.54	1.48		;	•	•	•	•	Ϊ.	<u>-</u>	;	٦.	ij.	1.48	j.	i	~	1.44	1.46	4.	1.58	9	•	٣.	4	4.	4.	9.	ů	S.	.5
Q,	е)	i	1.89		1	!	1.98		1	i	!	1	!	!	1	i	;	!	1	1	i	!	1.64	1	i i	!	1	1	1	1	į	1	;	!
	(g/cc)	~	\sim	0.78	~		\sim	~	~	~	\sim	~	\sim	\sim	\sim	m	m	\sim	~	\mathbf{a}	\sim	10	\sim	10	~	-	~	~	\sim	\sim	~	10	-	~
	Temp.°C	67	67	1670	67	67	67	67	40	40	40	40	40	30	30	40	41	67	40	40	40	40	41	41	35	35	35	35	54	54	54	44	44	44
	Sample #	22-1	22 - 1	322-16B	22-1	22-1	22-1	22-1	22-2	22 - 21	22-22	22-22	22 - 23	22 - 23	22-24	22 - 24	22-2	22-25	22-26	22 - 2	22-2	22 - 2	22 - 3	22-3	22-3	22 - 3	22-3	22-3	22 - 3	22 - 3	22-3	22-3	22-4	22-4

ult.	SCI.	$(\times 10^{-3})$	6	0	6.	2.22	٦.	0,	S.	?	•	g .		۳.	!	:	<u></u>	:	!	0	۲.	۲.	5.13	4.	1	5.93	1	1	4.86	1	4.48	1.47	!	1	1.19
Compr.	Str.	$(\times 10^{-3})$		•	9.8	13.19	6	. 2	4.4			2		•	! !	1 6	1	!	!	щ •	ė	5	24.3	ņ.	ı	38.9	!	!!	30.9	1	27.9		;	!	5.2
Sonic	Mod.	ps1 (×10 ⁻⁶)	0.8	9	9	0.87	₩.	. 7	. 7	σ.	9.	4.	۲,	0.56	1	1	1	:	;	0.4	1.21	1.69	2.47	1.92	ŀ	1.89	1		1.32	;	1,33	0.53	I 1	1	0.42
, ,	ָ ע	$(\times 10^3)$;	!	;	!	!	1	!	!	!	:	;	!	!	1 	:	!	i I	!	1	1	;	1	:	 	!	! !	i	:	!	!	1	i	;
;	Hard-	ness (DPH)		;	1	:	1	!	!	!	t 1	!	;	!	!	1	1	!	!	!	!	!	1	<u> </u>	!	!	1	į	!	!	!	; ;	!	1	1
Resis-	tivity	2-cm (×10)	14	. 23	20	.18	.27	.17	.19	.19	.20	.29	.15	.15	!	;	;	!	!	.189	.095	.074	.057	920.	!	.085	1		660.	1	.101	.180	.150	;	.189
	real	3/cc) Xy1		!	1.44	1.46	1.46	1.51	1	1.49	1.72	1.48	1.46	1.52	ŝ	1.53	٣.	9.	9	₹.	1.49	1.56	1.49	9	S	9	- 3	S	9	Ŋ	4	S	1.25	4	1.50
c	. Γ) He	;	;	1	1	!	;	1	1	1	i	!	1	!	1	1	!	;	;	ŀ	;	!	1	1	1	!	1	!	ļ	!	ŧ	1	!	1
	c	'app. (g/cc)	1	٧	9	0.75	.7	æ	9		œ	9.	۲.	7.		0.	6	0	0		9	0	7.	ο.	٦.	Q.	7	0.	₩.	φ.	ω.		7	.7	9.
		Temp.°C	1440	V P	4 4	1440	44	44	44	44	44	9	9	60	46	50	50	50	50	50	50	50	50	57	37	37	37	37	35	37	37	37	37	37	37
		Sample #	22-428	4C7-CC	22-42B	322-42B	22-42B	22-42B	22-42B	22-42B	22-45	22-4	22-4	22-5	22 - 5	22-5	22-5	22-5	22-5	22-61	22-6	22-6	22-6	22-6	22-6	22-6	22-6	22-6	22-6	22-67	22-6	22-6	22-6	22-68	22-6

Ult. Str. psi (x10 ⁻³)	1.38	- !	4.33	7	1	'n	1.88	٠.	.82	.94	1	!	;	1.29		4.	3.10	œ	-1	1.01	1	1	1.83	œ	!	2.1		2.7	•	3.12	ļ	1 5
Compr. Str. psi (x10-3)	(• 1	9		!	•	9	•	۳.	0.	1	;	;	8.18	:	0.9	12.59	2.7	1	5.35	!	1		•	!	10.63	5	'n	0	7.0	1	!
Sonic Mod. psi (x10-6)		ا ن	1.15	ς,	1	4.	0.55		0	.07	;	į	!	0.15		?	0.31			0.079	i	1	1	0.059	1	.2	.2	0.386	.38	i	ļ	1
Int. Frict.	1	{ 	;	l l	i	1	1	!	i	!	į	!	1	!	!	1	1	!	1	l I	!	î	i I	!	!	1	!	!	!	1	1	:
Hard- ness (DPH)	!	! !	ł	;	!	:	1	!	!	1	í	1	;	:	1	!	•	1	1	!	!	!	1	1	t 1	1	!	!	1	1	!	1
Resistivity \(\text{\alpha} - cm \) (\text{\x}10)	198	V		.111	1	.061	.176	\sim		.432	1	1	;	.339	1	6	.166	7	ļ Į	.435	1	!	.406		!	.19	0	.161	S	\sim	1	1
Preal (g/cc)	1.47	1.44 1.46	য	1.44		ις.	ব	4	r,	7.	4	4	r.	3	'n	'n	.5	υ,	r.	1.49	ហ	S	7.	ς.	5	ŝ		5	ı,	5	.5	1.55
P. He	Д 1 В 1	; ;	ŀ	1	1	1	!	1	l 1	ł	!	1	}	!	1	i	1	!	i	1	1	1	1	1	;	;	!	;	!	;	!	!
(g/cc)	0.72	00	~	ω	9	_	_	\sim	^-	·-	9	\mathbf{G}	~	0.7	$\mathbf{\sigma}$	$\overline{}$	\sim	\sim	\sim	0.77	\sim	^	^	~	~	$\overline{}$	$\overline{}$	_		1		•
Temp.°C	1370	J W	3	37	37	37	37	3	8	00	8	00	00	00	00	8	8	8	8	00	0	8	00	00	8	00	9	2	00	00	2	9
Sample #	322-69A	23.7	23-	23-	23-	23-	23-	2 3-	23-	23-	23-	23-	23-	23-	23-	23-	23-	23-	23-	23-	23-	3,1	23-	23-	23-	23-	13-	3-	3-	23-	23-	3-

ult.	otr.	(×10 ⁻³)	.67	4.08	4.54	3.03	5.01	2.02	l i	69.	.54	2.32	2.43	!	2.88	!	1	1.59	.31	1	1	1	i	2.05	2.5	2.77	;	1	1	;	2.59	;	2.24	;
Compr.	str. nsi	(×10 ⁻³)	3.21	31.6	20.0	11.72	27.45	9.35	•	3.4	3.1	13.8	12.3	1	12.6	!	!	8,71	3.64	!	!	1 1	:	9.21	10.4	1	i	: ;	1	† 1	11.68	;	10.3	! !
Sonic	Mod.	(×10-6)	0.075	0.28	0.26	0.23	0.29	0.25	;	0.034	0.036	0.207	0.198	;	!	!	0.207	0.18	!	:	!	1 1	1	:	0.199	0.21	1	1	!	!	:	;	0.23	;
-	Frict.	(×10³)	ł	1	;	3	!	!	:	-	1	1	!	;	1	!	!	<u>:</u>	!	;	!	!	!	;	i 	1	:	;	ł	1	;	!	:	:
	Hard-	(DPH)	1	1	1	1	!	!	!	!	1	!	:	!	1	;	1	1	1 5	1	1	!	!	!	:	1	1	1	!	1	!	!	!	;
Resis-	tivity O-Cm	(<10)	.549	.172	.186	.199	.179	.192	!	.583	.444	.223	.228	!	.492	1	.223	.267	. 705	1	l I	!	!	.204	.233	.226	;	1	:	1	.156	1	.23	1
•	real	XX X	1.50	1.50	1.50	1.42	1.49	1.37	1.59	1.49	1.47	1.47	1.46	1,57	1.45	1.45	1.43	1.44	1.47	1.47	1.53	1.53	1.54	1.36	1.46	1.45	1.42	1.45	1.44	1.45	1.45	1.48	1.44	1.5
Q	н ,	He		ļ	;	i	1	;	1	1	1	1	;	ŀ	i	!	1	1	1	!	!	1	!	1	1	1	1	:	1	1	ŀ	1	1	1
	o cc	(3/cc)	0.6	0.85	0.82	0.92	0.86	6.0	(1.08)	0.66	0.67	0.88	0.88	(0.94)	0.94	(68.0)	0.93	0.92	0.64	(1.19)	ĺ	(1.18)	1	0.82	0.92	0.92	1	1	!		1.06		5.0	0.71
		Temp.°C	0	O	0	0	0	0	0	0	0	0	0	0	O	0	0	0	0	0	0	0	0	0	0	O	0	0	0	0	0	0	1082	0
		ample #	3-1	3-2	3-2	3-2	3-2	3-2	3-2	3-2	3-2	3-2	3-2	3-2	3-2	3-2	3-2	3-2	3-2	3-2	3-3	3-3	3-3	3-3	3-3	3-3	3-3	3-3	3-3	3-3	3-3	3-3	23-35A	3-3

Ult. Str. psi (x10-3)	•	٠	9.	4.	m.	٠	2.14	Ţ	٠	9	٠,	7	٠	4.58		i	œ	. 7	۲,		φ.	1	9	4.	۳.	œ	٦.	9	۳.		4.87	σ,	ī.
Compr. Str. psi (x10-3)	5	-	•	ж •	1.9		4.2		۲.	9.	٠ ف	1.2	-	5.	1	,	ö	•	5.3	9.11	٠	1	œ	•	. 7		۲.			8.7	N	6.73	0
Sonic Mod. psi (x10-6)		. 18	!	0.311	. 20	1	!	-	15	۲.	1	7	•	Ŋ	:	t i	1	0.20	1	0.175	.11		0.199	. 2	₹.	ı	.17	.12	۲.	.17	0.39	۲.	Ţ.
Int. Frict.	! !	!	}	1	}	!!	f į	1	;	:	ł	!	1	!	!	1	1	1	:	!	;	1	!	1	1	;	!!	!	; ;	!	; ;	i	1
Hard- ness (DPH)	\$!	ţ	1	1	1	!	;	í 1	1	i	!	1	1	!	i i	i	1	!	1	!	1	1	;	!	!	;	1	1	1	1	i	1
Resistivity Recomposition (×10)			$\overline{}$		۲۶.	.26	.212	.23	.28	.24	.21	.23	. 228	.15	!	1				.25			.21				.22			.24	.14	6	
real (g/cc)	•	1.5	S	1.44	4	4	;	4	1.50	5	4.	5		.5	5	4.	4.	4	4.	1.54	J.	.5	4.	4.	4.	5	₹.	帮.	4.	5	ı,	ιĊ	ŗ.
P. He	i	!	!	1	1	1	1	1	1	1	!	ł	1	;	1	1	1	1	1	1	1	;	i	ŀ	1	!	!	!	1	ļ	1	1	1
ρapp.	9.	•	σ.	9	ο.	ω.	6.0	φ,	φ,	φ,	9.	φ.	٥.	9	٦.	4.	•	æ	•	ω,	7	۲.	9.	٠.	9.	ω,	φ.	,		8	٠	۲.	٠.
Temp.°C	08	02	90	08	02	02	1082	02	02	02	02	02	02	02	02	02	08	02	80	02	02	02	02	02	00	00	00	00	00	00	00	00	00
Sample #	23-3	23-3	23 - 3	23-3	23-4	23-4	323-42	23-4	23-4	23 - 4	23-4	23-4	23-4	23-5	23-5	23-5	23-5	23-5	23-5	23-5	23-5	23-6	23-6	23-6	23-6	23-6	23-6	24-	24-	24-	24-	24-	24-

Ult.	u	psi	OI.	2.28	⊣	٦	!	∹		۳,		7.59	4.	•	. 2	4.	6.	٠,	6.	7	2.33	4.	0.	4		∞	•	. 95	٠	7.	í	1	.76	!	;	r
Compr.	Str.	ps <u>i</u>	(×10 ³)		7.6		1	•	18.0	•	1	6.9	٦.	0.2	2.2	4.8	4.4	6.0	7.0	3.3	14.39	5.7	3,3	9	ω,	6.	4.8	0.	45	S	.391	1	3.11	i	!	ני
Sonic	Mod.	psi	OI.	0.13	7	;	1	ς,	25	٣,	1 2	.50	7	.37	.43	0.189	.16	. 48	.46	ı		.25	27	.03	.08	1	0.46	0.	00.	1	!	!	0.105	;	٤ 1	יי ני
	Int	Frict.	(×10³)	i	!	1	1	1	1	t 1	ł	1	!	1	1	1	1	í	1	i	1	1	1	!	1	1	1	1	!	!	!	1	!	!	ł	;
	Hard-	ness	(DPH)	1	1	1	1	!	1	1	1	i i	ţ	1	!	!	!	1	!	!	! !	ł	1	1	1	1	!	!	1	† †	1	!	1	!	!	i
Resis-	tivity	ი-ი	(×10)	305	$\boldsymbol{\omega}$. 28	!	.14	.19	.14	$\overline{}$.114	.15	.12	N	$^{\circ}$	24	11	12	18	.2	18	_	\sim	38	16	.119	29	.10	47	. 11	!	.269			C R
c	real	(a/cc)	Xy1	4				S		1.50	4	4.	4,	7	'n	υ	7.	4.	4	.5	1.52	ι,	۵,	4	٠.	-	J.	r.	'n	ī.	5	υ.	1.44	9.	٠. ا	ľ
			He	!	1	1	1	;	í		!	§	1	!	!	1	1	!	ì	1	!	1	;	1	1		1	ł	1	i	1	!	i	!	!	ļ
	c	Papp.	(a/cc)	. 7	. 7	æ	χ,	9.	æ	9.	0.	0	ο.	0.	2	8	ω,	۰.	0	6.	0.97	<u>ي</u>	8	. 7	. 7	u١	0	. 7	rJ.	ů.	•	!	8.0	-	(0.72)	σ
			Temp.°C	00	00	0	00	00	00	00	85	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	06	90	1060	90	90	Š
			Sample #	24-	24-	24-	24-1	24-1	24-1	24-1	24 - 1	24-1	24-1	24-1	24 - 1	24-1	24-2	24 - 2	24-2	24-2	24-2	24 - 2	24-2	24-2	24 - 2	24-2	24-2	24 - 2	24-2	24-2	24-2	24-2	324-29	24 - 3	24 - 3	24-3

ult. Str.	psi (x10_3)	3.5		•	ı	1.83	•	•	1	•		•	٠	2.06	•	٠	•	•	•	٠	ı	6.40	•	ı		1	2.17	1			σ	:	1	.78
Compr. Str.	$\frac{\text{psi}}{(\times 10^{-3})}$	•	2.2	•	:		٦.		í		œ	4.2	Ξ.	9	9.	1.9	2.0	6.	٣	۲.	1	37.65	9	1	œ	ភ	•	1		0	•		6.81	
Sonic Mod.	psi (×10 6	.2	0.31	?	1	0 I 9	ı	0.17		Ġ	. 21	٦.	٦.	18	4	4	. 2	3	٦.	. 2	ļ		. 2	1		₹.		ŀ		Š	C.	1	13	0
1.3	Frict. (x103)	i I	!	:	1	!	!	!	!	;	i	í	•	1	1	!	!	1	!	;	5 1	1	!	1	<u>!</u> !	!	!	!	1	1	! !	l l	!	!
Hard-	ness (DPH)	ł	1	į į	i	!	1	!	1	1 1	 	!	1	!	1	1	!	1	! !	i i	{	1	!	l i	!	1	1	i	1	!	1	1	1	:
Resis- tivity	8-cm (×10)	16			1	.206	\sim		1 1	ထ	Q/	~		.203	17	20	18	18	20	6	1	⊣	8	ı		13	œ			Ч	.214	1		
	(g/cc) Xy1	5	ŝ	1.56	'n	4.	4	r.	r,		4.	.5	5.	4.	ς.	5	.5	.5	.5	ر. ا	5	1.54	J.	.5	4.	4.	ιŮ	υ,	4.	4.	.5	ň	.5	.5
æ	He	i	;	;	1	!	l I	1	1	1	ł 1	! •	;	1	ļ	!	;	ł	!	1	i		1	1	;	!	1	1	1	1	1	1	1	!
(app.	φ,	0	0.97	φ.	φ.	φ.	φ.	- 1	6.	φ.	φ.	8	ω.	9	6	6.	φ.	¢;	a,	7.	1.11	0.	•	6.	0.	6.	7.	0.	9.	9	•	8	۲.
	Temp.°C	90	90	1060	S	90	90	90	90	90	90	90	90	90	90	90	90	Š	06	90	01	10	10	90	90	90	90	90	90	06	90	90	90	90
	Sample #	24-3	24 - 3	324-35	24-3	24-3	24-3	24-3	24-4	24-40	24-4	24-40	24-4	24-4	24-4	24-4	24-4	24-4	24-4	24-4	21-4	24-5	24-5	24-5	24-5	24 - 5	24-5	24-5	24-6	24-6	24-6	24-6	24-6	24-6

		~																																	
Ult.	psi	(×10 3	1.76	!	1.31	1.46	1	.54	3.55	1	1	1	!	!	1	1.58	6.89	2.83	;	1	1.78	1.39	1.02	1.26	1.99	1	!	1	1.51	1.47	1.57	1.65	L. / 3	79.7	1.49
Compr.	psi.	(×10 ³)	8.62	; 	6.33	6.40	7.98	2.64	31.09	!	1	1	1 1	í •	!	8.14	38.97	11.33	1	!	7.73	4.98	9.19	6.53	9.88	:	ţ	1	7.71	6.58	7.77	8.17	8.30	44.4	7.32
Sonic	psi.	(×10_6)	0.14	!	0.12	0.12	0.17	90.0	0.30	!	!	!	!	!	!	1	:	;	ţ	!	;	!	;	•	! !	1	1	!	į	!	;	;	;	!	;
T	Frict.	$(\times 10^{3})$! 	!	!				í	6	{	ł I	1	ł	i	i	i	!	1	1	!	!	!	1	!	1	í	í	!	!	!	1	i I	t 1	!
ת ג ני	ness	(HAQ)	1	!	!	1	1	1 1	1	1	1		1	 	!	1	!	;	!	! !	;	1	;	1	;	1	!	!	!	1	1	† 	!	;	-
Resis-	S-cm	(×10)	.251	1	.284	.274	.229	.351	.165	;	ţ	1	; !	1	1 f	.260	.234	,138	: 1	1 i	.388	.411	.304	180	.174	i	!	;	.153	.315	.313	.321	.311	.283	.369
((a/cc)	Xy1	1.59	1.59	1.52	1.55	1.54	1.55	1.52	1.48	1.51	1.53	1.5	1.5	1.49	1.54	1.4	1.53	1.51	1.57	1.52	1.54	1.66	1.47	1.49	1.56	1.52	1.44	1.55	1.53	1.57	1.59	1.56	1.55	1.65
ŭ		Hc	;	ł	i	1	1	1	!	!	;	;	;	!	1	f i	1	!	;	1	į	1	;	;	1	1	1	;	1	;	1	į	í	1	1
	papp.	, OI	ο,	œ		۲.	σ.	7.	Φ,	.95	.91	.87	.83	.82	.87	.88	.08	.93	.72	.85	. 85	.76	.78	.82	.91	.14	.77	.94	. 74	.72	.76	.70	0.730	.71	.72
		Temp.°C	90	90	90	90	90	9 J	90	06	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	1066	90	90
		Sample #	24-6	24-6	24-6	24-7	24-	24-7	25-1	25-	25-	25 - 2	25 - 2	25-2	25-	25-	25 -	25-	25 -	25-	25-	25-	25-	25-	25-	25-	25-	25-	25-18	25-18	25-18	25-19	325-19B	25-19	25-

Ult. Str.	$(\times 10^{-3})$	2.09	ω.	0.	ហ	1	2.92	i	1.98		•	•	1.63	2.58		1.70	•	1 .	1.45	n o		2		v) (0	1 (٠		1 3	2.35		! 1	1	1.3
Compr. Str.	$(\times 10^{-3})$	0.4	3.5	12.31	3,5	i	12.72	-	8.56		ŀ	4.34	6.3	9	1	~	4.	1	6.14	ů.	4	9	m, c	o, ·	4		6	5.25	; (12.53	2,	<u> </u>	1	6.4
Sonic Mod.	(×10 6)	1	! 1	i i	ŀ	1	1	i	1	1	!	1	!	!	i	!	i	1	!	1	!	i	1	1	1	!	i	•	!	:	1	1	!	1
13.7	$(\times 10^3)$!	1	!	! !	1	!	1	1	1	!	;	:	!	1	!	:	1	! }	!	!	1	! 	1 l	!	!	1	!	1	1	1	1	! !	1
Hard-	(DPH)	!	1	<u>{</u>	i	!	1	!	į	1	!	1	1	;	!	!	!	!	3 4	!	!	1	;	!	t (!	į I	1	1	1	i	1	1	!
Resis- tivity	12-cm (×10)	.274	.224	. 244		1	.285	!	.315	i	1	10	.273	.252		.320		i	.329	~	Service Service	.358	\circ	S	CD.	•	.270	00	!	.251	.273	1		.285
	(g/cc)	5.	9.	.5	1.59	9.	5	5	9.	٠. ح	S	4.	5	ŭ	4.	'n	4.	4.	٠,	٠,	ŗ,	.2	5	ŝ	5	'n	5	.5	5	5	.5	v.	υ,	•
a .	01	1	i i	!	1	!	!	!	!	!	!	1	1	1	-	1	1	1	i	;	!	1	ļ	1	ļ	!	1	1	!	!	1	1	1	1
	(9/cc)	.80	.88	8.4	0.830	72	ਨੂੰ <u>.</u>	.93	84	. 54	.80	.76	.79	.87	.82	.89	.95	.81	.83	.90	.76	.80	.77	,72	.81	. 82	98.	.74	50	.86	.89	.77	.97	.84
	Temp. °C	90	0.5	90	1060	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90
	Sample #	25-2	25-2	25-2	325-24	25 - 2	25-2	25-2	25-2	25-2	25-3	25 - 3	25 - 3	25-3	25-3	25-3	25 - 3	25 - 3	25-3	25 - 3	25-4	25 - 4	25-4	25-4	25-4	25-4	25-4	25-4	25-4	25-5	25-5	25-5	25 - 5	25-5

•		3	1		νį	ς.	0	2	5	9	7	2	m	I	5	m.	2	ក	5	=	7	<u>ლ</u>	7	ω	<u>m</u>	gn.	4	_	ស៊	7	<u>س</u>	ص	Ŋ		2
Ult	Str	psi (×)	21	2.9	7.7	٠	1.6	•	•	•	r.	•	•	•	•	•	٠	•	2.0	•	٠	•	•	•	•			•	•	•	•	•	•		•
Compr.	T)	psi (x)0[3)	7	•	4		•	•	•	•	•	•	•	•	4	Š.	•	•	8.89	•	•	δ.	•	٠	•		•	•	11.93	•	•	ė.	•	ς.	
Sonic	Wod.	ps <u>i</u> (×10 6)	7 0101	;	1	1	!	;	i	i	1	t t	!	!	;	!	;	1	1	<u>\$</u>	1	1	1	!	!	!	i	;	ţ	!	;	;	:	!	1
	Int.	Frict.	> l	;	;	; 	1	1	1	1	;	!	i	1	!	†	1	i	1	;	1	į į	;	!	!	1	1	! :	;	!	;	!	1	!	;
	Hard-	ness (npu)	(nan)	;	!	ļ	!	1	1	ļ	1	!	!	!	!	!	;	!	;	!	!	;	!	1	!	1	;	1	!	1	!	1	!	!	1
Resis-	tivity	2-cm	107	.211		.151		.277	0	6	~	9	S	4	S	7	3	S	.222	œ	0	œ	\sim	\sim	\sim	4	7	\sim	7		\sim	_	0	$\overline{}$	7
	Preal	_ :	170	.5	4	₹.	.5	Š	.5	٠.	5	9	'n	4	5	z.		5	1.48	4	4.	4	.5	.5	ς.	4.	4.	3	4.	4	4.	5	₹.	4	7
(o.		all	1	í		1	ł	!	i	;	1	i	;	!	1	1	1	!	Į į	1	!	!	1	!	ļ	1	!	1	;	1	;	!	!	ŀ
	,	app.	(3)(6)	6		6	∞.	ω.	ω.	∞.	9.	۲.	α,	œ	9	ά	Φ.	တ	0.867	က	æ	ထ	ω.	α;	9.	6	0	6.	Φ,	φ.	æ	Ø,	0	<i>5</i> 7	6
			Temp. C	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	1066	90	08	08	08	08	90	90	90	90	90	90	90	90	90	06	90
			Sample #	25-5	25-5	25-5	25-5	25-5	25-5	25-5	25-5	25-5	25-5	25-5	25-6	<u>25-6</u>	25-61	25-61	325-61B	25-61	25-61	25-61	25-62	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6

*Head speed 0.2 in/min.

Ult. Str.	psi (*10-³)	ω,	īυ.	١- ١	6	0	Q.	7.	⊣ :	ထ	٦,	Ç.	٠,	•	٦.	3,73	'n.	r.	7.	∞.		7	9	!	'	0.27	₹.	!	!	1				σ.	
Compr. Str.	psi (x10-1)	0	4.	α.	φ.	c.	11.	₹.	4.	7.	٠.	S.	7.	. 2	٥.	15.40	5	δ.	4.	~;	۲.	0.	ഗ	!	-	1.73	φ.	!	!	1	ŀ	6.53	0	0.9	
Sonic Mod.	psi (<10-6)	i i	!	;	!	!	!	1	1	1	!	!	¦	1	!	<u> </u>	i	:	;	<u> </u>	:	:	!	1	!	!	: 1	!	!	!	!	!	1	1	
Int.	Frict. (×10 ³)	;	; 1	i	1	1	! !	1	!	1	1	!]	1	1	!	ţ	1	!	1	1	1	!	1	!	1	;	1	!	i	1	1	!	1	
Hard-	ness (DPH)	;	!	!	!	1	,	1		ę i	;	!	1	!	1	!	;	!	1	!	1	!	!	!	!	t I	!	!	!	1	ţ	;	1 1	!	
Resis-	3-cm (×10)	10	-	-	-	m	-	**		O	\circ	\sim	\sim	S	m	.219	27	LO	26	21	32	O	$\mathbf{\sigma}$	1	1	.383	9		!	1	1	.237	.129	$^{\circ}$	
	(g/cc)	4	4		4.	4	1.52	1,47	1.47	1.52	1.47	1.50	1.45	4.	4	1.52	ς.	7		ω,	æ	ι,	4	9	٦,	9	9	9	6	9	9	4	4	4	
a a	He	!	ļ	!	i I	1	1	1	•	1	1	ŀ	!	1	ŀ	1	1	1	1	1	1	1	!	i	I ŧ	1	1	1	!	ı	1	1	1	1	
	(g/cc)	1,015	90	9	99	03	72	8	. 9	16.	96.	.97	92	.97	.93	0.984	.91	.80	.77	.72	69.	.97	989	.57	.56	.70	.7	75	.65	.70	96.	7	.8	.7.	
	Temp.°C	9	90	90	90	0.7	0.5	90	90	90	07	05	07	0.5	0.7	1054	0.5	0.5	0.5	0.6	90	90	90	00	9	00	00	90	90	90	90	63	63	63	
	Sample #	7.15	25-6	25-66	99-50	25-6	25-66	25-67	25-67	25-6	25-68	25-6	25-69	25-69	25-69	325-69D	25-69	26-1	26-	26-2	26-	26-	26-	26-	-97	26-	26-	26-	26-	26-	26-	26-1	26-1	326-13	

*Head speed 0.2 in/min.

Ult.	Str.	psi (x)0-3)	7	•	7.45	2.71		// . 7	3 60	00.0	3,99		TO.*		70.5	אמ	•	2.76
Compr.	str.	psi (×10 ⁻³)		ר ה ר ה	17.71	12.97		77.40	22, 32	10.11	23,16		. L 2 . 4 L	35 12	31.00	35.12	1	11.95
Sonic	Mod.	psi (×10-6)		1)	1	!	ŀ	!		!		1	1		1		:
	Int.	Frict.		i		!	!		•		1	1		1		!		:
	Hard-	ness (DPH)					1											
esis-	ivity	೧–cm n (×10)		143		98⊺.	170) i	.197		8/T•	7.00) 	.237	•	.134	0	761.
~	cal t	(g/cc) e Xyl (1.44		1.48	1,56	•	1.52	-	1.52	1,5]	; (1,62	,	1.50	,	1.50
C	1 4) He		;		i i	1		1		l I	1		!		1		; I
	c	(app.		0.769	5	710.0	0.830		0.030	ננס כ	7/0.0	0.899	0	778.0	000	7,000	C Y O	0 * 0 * 0
		Temp.°C		1630	777	// * * *	1177	רנו	// **	777		1177	ררוו	// 77	000	1033	000	1001
		Sample #		326-14	376-15		326-16	276-17		326-18) (326-22	^		304-26	010	326-27	,

Density
with
Correlated
Properties
Physical
10
TABLE

$0 \left(\frac{\rho \mathbf{a}}{\rho_{\mathbf{H}\mathbf{e}}} \right)$	1	!	i	!	1	!	† †	1	t •	;	:	•	.016*		!	!	.013*	O	;				1		!	.003*	0	!	*400.		_	!
$\sigma_{\text{UTS}}\left(\frac{\rho_{\text{real}}}{\rho_{\text{app.}}}\right)$		3.67	:	1	•	;	5.33	:	1	.	٠.	œ	0.78*	•		;	!	:	0.4	11.9*	1.4	۳,	۲.	α.	0.9	۲.	;			:	10.6*	•
$\sigma_{cs}\left(\frac{\rho_{real}}{\rho_{app}}\right)$		18.8	!	i	:	51.8*		!		47.7*		1 1	7	71.2*		1	:	1	1	78.2*	0	တ	!	Ų,	0	46.4*		ø		:	•	
$\mathbf{E}_{\mathbf{S}}\left(\frac{\rho_{\mathbf{real}}}{\sigma_{\mathbf{app.}}}\right)$		1	:	;	;	!	;	!	1	;	1	;	2.76*	!	:	φ,	2.85*	۲.	!	2.51*	ŀ	\$ 1	1	2.41*	1	2.18*	\sim	!	9.	•	2.56*	i
CUTS ^{/ D} app.		8	5.	6.99	5		102.1	188.0	!	ъ.	ω.	0	4.	136.0	œ	1	b I	ţ 1	91.	217.6	. 60	45.	52.	32.	.60	47.	-1	27.	178.8	!	201.5	78.
cs/capp.	1	2	33,	37.	29	000	62.	;	305	901	24.	!	φ α	1235.5	030.	1	1	1	ŧ	2	743.0	67.	!	20.	62.	888.9	224.	79.	218.	!		26
Es/oapp.	27.17.	1					1		!	!	!	;	50.3	!	1	œ,	49.3	о Э	!	45.8	1	i 1	ţ		1	~	•		50.0	6	တ	
0 1 1	anilyte	10 - 3	11-3	11-3	12-1	12-1	12-	12-2	12-2	12-3	12-3	12-4	15-2	315-14	15-1	15-20	15-20	15-20	15-21	15.	15-21	15-25	15-25	15-25	15-26	15-26	15-26	15-28	15-31	15-31	15-3	15-3

*Calculated with helium (otherwise with xylene).

(real)	יויין ייין ייין ייין ייין ייין ייין ייי	.01	.7* .011	.5*	.01	.2* .01	8.33 .013	.57	.001	.002	0	\dashv	1	011	00.	+6.	.5	6.07	9.	•	*6.0	0. *8.	0.5	°.		.78	0	۳,	0	-57	.7* .01	•		TA. TT.
$ \begin{pmatrix} \frac{\rho_{\text{real}}}{\rho_{\text{app}}} \end{pmatrix} \sigma_{\text{UT}} $	To be	;	S.	<u>.</u>	· .	0	53.5	5	-		m	1	71.1	! ;	! !	•		48.4	'n	7		8	!	•	9.6	•	7.9	٠. ش	•	₹.	8	33.0	_	•
S.	2	4	. 2	6	7	6.	2.65	9•		6.	2.69	٠,	1	9	•	!	1	1.85	;	2.62	1	2.61*	1	1 1		1.51	!	!		<u>د</u> ۱	œ̄.	1.73	V	•
ours/papp.	1 (×T0 -)	1	36.	14.	31.	14.	161.7	27.	1	2.	6.69	1	1	1	1	•	72.	116.2	.99	63.	72.		81.	49.	24.	04.	15.	٣,	9.	6	2	N	r	7
os/b	(×10_c)		72.	90.	44	25.	1038.8	824.	12.	71.	63.			!		•	97.	922	175.	20.	964.	36.	- 1	74.	25.	26.	93.	54.	794.	76.	167.	61	0	200
/papp.	in(×10-c)	4	0	4	ij	5		7	l	ф		2	1		•	1		35.6	ŀ		L	50.9			1		;	¦	52.9	;	ب	32.3	_	-
,	Sample #	15-3	15-34	15-34	15-37	15-38	5-1	15-39	15-41	15-41	15-4	15-4	15-4	15-4	15-45	15-4	17-1	317-2	17-	17-	100	17-1	17-1	17-1	17-1	17-11	17-1	17-2	17-2	17-2	17-2	17-	6.66	C / T

	$E_{\mathbf{s}'}^{\prime}$ $^{ ho}$ $^{\mathbf{app}}$ $^{\circ}$	ocs'oapp.	"UTS" app.	@ D	ea O	ea	$\rho\left(\frac{\rho \mathbf{a}}{\rho_{\mathrm{Hc}}}\right)$
ample #	in(\10-6)	in (×10 ⁻³)	$in(\times 10^{-3})$	psi(~10-6)	psi(x10-3)	psi(×10-3)	::-cm(-10)
7-3	တ	025.	97.	.7	5		Ä
7-3	9	049.	12.	٥.	4.	6.0	H
7			129.0	1.60	59.7	29.9	.017
7-3	۳,	963.	29.	6.	4.0	9	0
7-4	0	42.	12.	•	9	6	-1
7-4	1	98.	0		7.	•	!
7-41		28.	ω		-	6.	
7-4	1	68.	9			•	ŧ
7-4		.99	6	2.63*		œ	* 800.
7-4	•	462.	76.			8	- E
7-4		03.		2.43*		•	
7-4	1	017.	64.	1		'n	ı
7-4		83.	5	2.32*	m	•	.006*
7-4	1	785.	60.	ı	6	0	1
7-4	6	1	!	່ເກ	ı	i	ı
7-4		∞	4.	1.67*	20.9*		α
8-1	4.	1	89.8	٠,	i	o.	0
8-2	5	76.	∞	1	ı	1	1
8-7	۳,	29.	о ф		1.4		1 1
8-8	1		5	1 1		7	;
8-8		36.	1		0.2	1	1
8-9	1	92.	50.		2.8	8.1*	i i
8 - 1	5.	ļ		Ŋ	1	œ	•
8-1	₹.	70.	29.	۲.	6	•	~
8-1	4	31.	18.	. 26	4.	•	~~
8-1	4	4	ж •	99.	5	.5	_
18-22	43.2	987.0	46.	2.25*	ij	•	.014*
8-2	5	1	 	٣.	1	I	1 1
8-2	ı				33.6		1
8-2		ļ	ı	2.30*		1	Ä
8-2	1	Ч	32.2	1		~	*800.
8-3		m	6	2.10*	30.2*	•	1
8-3	•	0	•	ن	3.96	4.	600.

$\frac{1}{2} \qquad o \left(\frac{\rho a}{\rho_{He}} \right)$	3) Q-cm(×10)		.053	1	~	0	*00.	0		2	1	i ·	*E60°	1	.154	ŀ	.010	\sim	1 1	.021*	CV.	.034*	, :	*600.	7	∞	C	1 1	!	1	!!	1	1	
ours (rea		;	٠	6.57*	7.4*	•	6.3*	10.1*	i	10.5	0	ų,	•		•	2	•	2			7	•	•	j.	•	4	٠	•	8	46.7	•	٠	10.1	
$\sigma_{cs} \left(\frac{\rho_{real}}{\rho_{app.}} \right)$. 1		61.6			S	41.3*		1	60.5	₹.	•	4	46.2	1	4	4	30.9	。	₩.	;	63.1*	6	о Ф	0	•	7	9	5	Ŋ	2.	51.4	S	
Es (real)	psi (×10-6)	1	2.62	1	2.41*	•		•	ω.	٤.	;	4.23*	$\boldsymbol{\omega}$	1	.15	0		•	1 1	1	•	2.39*	1	۲.	2.36*	9	9•	1	•	~	•	σ.	9	
σurs'ρapp.	in(×10 ⁻³)	;	64.	25.	4	90.	117.0	g.	1	00.	2	δ.	6	Ţ.	65.	17.	22.	109.0	01.	03.	10.	15.	31.	38.	51.	₹.	76.	73.	48.	•	46.	93.	92.	
σs'ρapp.	in(×10 ⁻³)	0 059	ב 18. כ	1	831.0	505.0	773.0	785.0	1	1149.0	89	546.0	86.	151.0	1	886.0	Š	9	-4	130.	061.	197.	283.	07.	184.	427.	0.32.	994.	92.	680	26.	.900	055.)
Es/bapp.	in(×10-6)	1	46.9	; ;	ب	, v	65.7	7	7	4	1	9	46.2		•	0	2	40.4	1	1	6	45.6	ŀ	9		5.	œ	1	0	53.5	0	œ	6	•
	Sample #	6 - 2		ה ה ה	ה ה ה	יי פ פ	318-37	8-3	18-4	18-4	18-4	8-5	8-5	18-5	8-5	8-5	9-8	18-6	18-6	$\frac{1}{2}$	12-	21-	21-	21-1	21-1	21-1	$\frac{1}{2}$	$\frac{1}{2}$	21 - 16	21-	21-18	21 - 19	21-10	

Sample \$	Es/papp.	σcs/ρapp. in(×10 ⁻³)	ours ^{/o} app.	$\mathbb{E}_{\mathbf{S}}\left(\frac{\rho_{\mathbf{real}}}{\rho_{\mathbf{app.}}}\right)$	$\sigma_{cs}\left(\frac{\rho_{real}}{\rho_{app}}\right)$	$^{\sigma} urs \left(\frac{^{\rho} real}{^{\rho} app} \right) $ $psi \left(\times 10^{-3} \right)$	$\rho\left(\frac{^{D}\mathbf{a}}{^{D}\mathbf{He}}\right)$
21-21	œ	34	87.	τ,	0	•	
$\frac{1}{21-2}$			171.1	2.83	68.2	9.1	.014
21 - 22	5	4	81.	7	œ	₹.	\dashv
21 - 22	1	∞	29.	1	~ †	٠,	1 .
21-22	5	07	29.	٠,	œ	•	.011
21 - 22	7	01	54.		m	8.2	
21-23	4.	99	94.	4.	ω	2.2	0,
21 - 23	7.	18	84.	9	υ. •	۲.	н.
21 - 2	œ	22	71.	5	m	ф ф	-
21 - 2	2.	297.	73.	0	マ	٠	
21-24	0	430.	05.	•	ۍ. د	。	0
21-24	7.	170.	75,	٦.	2	•	┥.
21-2	•	0	13.	•	œ	ij	0
21 - 26	1	466.	5	1	7	4	1
21 - 2	0	313,	43.	?	۲.	₹.	0
21 - 29	٠	157.	5	•	٠ 0	•	. 1
21 - 31	6.	03.	2.	•	0.5	0.	52
21-31	1	. 66	95.	1	ģ	•	┥,
21 - 31	₹.	87.		φ	9	٠	Η,
21 - 31	9	77.	11,	•	ۍ ک	Ţ	~
21 - 31	•	43.	75.	5	m	. 7	~
21-31	7	388.	58.	₹.	0	۲.	Α,
21 - 31	•	63.	0	2		٠	.012
21-32	ė	049.		4.	9	o	٠ -
21 - 32		.860	71.		•	4	⊣
21-32	7.	245.	83.	• 5		ġ.	4
21 - 32	4.8	1		ς,		;	н.
21-32	•			٣,		ı	$\boldsymbol{\vdash}$
21 - 32	5.	33.	7		59.28*	8.33*	.017*
321-32F	26.3	963.5	123.8	₽.	53.4	æ	1
21-32	S.	926.	31.			1 4	
21-33	1,	71.	75.	'	59.7*	* 40.0 * 40.0	*011x
21-33		999	08.			•	

$\rho\left(\frac{\rho_{\mathbf{a}}}{\rho_{\mathbf{He}}}\right)$	Ω-cm(×10)	.016*	~	•	*0598	1	23	*9010*	19	;	-	.012*	\boldsymbol{H}	.012	$\boldsymbol{\vdash}$.019*		.014*	Ч		Ч	Н	Н	0	Н	Н	Н	щ	0	\vdash	\prec	_	900.	0
0 D	psi(×10 ⁻³)	12.5*	•	:		۲.	٦.	. 48	00	2		2.5*		0		*62.	.47*	œ	1.0*		7	1	1.5	1	S	ř.		.62		1	•	1.62		8.76	m •
തിവ	psi (×10 ⁻³)	51.8*	ė	•	52.1*		•	2	3.1	•	•	0	i.	œ	9	•	•	•	•			1 1	7.76	•	3	•	0	œ	4.2	•	12.8	7.84	1	51.9	58.7*
	psi(×10-6)	4.	4.97	. 2	۲.	:		•	• 00	~	4		! !	9	•	'n	.24*	.28*	9	7	1.1*	1	Ŋ	9		S		9		1.1	0	9	4.	3.02	
$^{\sigma}$ urs $^{\prime}{}^{ ho}$ app.	$in(\times 10^{-3})$	217.7		1	158.2	61.3	187.0	45.7	12.6	•	•	43.2	•	0	7.	•	6	9	o.	\sim	φ	;	26.2		6.9	7	<u>.</u>	12.1	9.	l i				162.7	
ocs/papp.	in(×10 ⁻³)	O	980.5	!	1191.6	1	03.	7	48.7	4.	υ,	4	23.	ω,	æ	9	m,	6	8	69.	Š	1	135.0	ļ	5	9	30.	5	77.3	44.	œ	40.	1	964.8	83.
Es/papp.	in (×10-6)	2.9	86.56	2.5	9	t i	9.	•	32.9		•	•	ŀ	•	•	•		٠	ä	٠	0	- 1	•	8.6	•	ず.	о	5	•	0	6	ò	7	56.1	0
	Sample #	21-3	21-3	21 - 3	21-3	21-36A	21 - 3	21-3	21-3	21 - 3	21-3	21-3	21-4	21-4	21-4	21-4	21-4	21-4	21-4	21-5	21-5	21 - 5	22-1	22-1	22-3	22-1	22-1	22-1	22-1	22-1	22-1	22-1	22-1	322-18A	21-4

$\rho\left(\frac{\rho a}{\rho_{He}}\right)$	3	4 (800.	⊣	;	!	ì	•	ŧ	900.	0		J	0	0	~	-	~~	.010	0	0	00	~	0	0	0	0	:	1	0	60	.0135		1 1
${^{\circ}_{\text{UTS}}}\left(\frac{{^{\text{real}}}}{{^{\text{app.}}}}\right)$		0	٠	7	0	99	φ.	7	٠.	œ	0.	;	ī,	ထ	9	. 29	œ	.00	3.01	æ	٠,	.16	-	9.	٢-	ę.	9.	:		7.	ن		4	;
$\sigma_{cs}\left(\frac{\rho_{real}}{\rho_{app.}}\right)$	21	•	0	•	6 ,9	•	;	;	!	_	•		5.	•	<u>.</u>	•		•	6.3	4.	ä	6.	9	. 7	9	.	H.		!	-	5	38.8	7.	;
$\mathbf{E}_{\mathbf{S}}\left(\frac{\rho \mathbf{real}}{\rho \mathbf{app.}}\right)$		•	1.55	0	;	1	!	;	1	•	2.76	!				٣,	2	۲.	1.37	6.	?	7	တ	$\overline{}$	φ.	. 2	φ,				٠	1.78		•
Turs/Papp.	i			۲.	۲.	۲.	υ. •	。	۳,	6	68.	∹	7	4	8.3	۲.	4.5	7.4	S	2	۳,	7.6	1.8	m,	7.	20.	œ	4.2	ب	5	Ξ.	~	44.9	
des/Papp.	21.	45	17.	4.	~		!	!	1 ;	2	619.0	9	4	547.6	5.	۲.	4	4.	8	S	4	<u>.</u>	;	3,	٠÷	88	72.	4.	01.	4	9	5	511.6	00
Es/papp.		-	27.3	o,	1	i	;	1	!	2	46.6	-	ζ,	- 1	8	•	9.	٠ س	۳,	9	4.	0	ġ	ņ.	3,	6	ه اسم	m	6	<u>.</u>	2	3.	29.36	0
(·	dillp	22 - 1	22-2	22 - 2	22-2	22-2	22-2	22-2	22-2	$\frac{1}{22-2}$	22-2	22-2	$\frac{2}{2}$	22-2	22-2	22-3	22 - 3	22-3	22-3	22 - 3	22 - 3	22-3	22 - 3	22-3	22 - 3	22-4	22-4	22-42	22-42	22-42B	22-42B	22-42B	322-42B4	22-42B

	Es/papp.	ocs'oapp.	UTS Papp.	ea	e a	ea	D C B D D
Sample #	in (×10-6)	in(×10 ⁻³)	in(×10 ⁻³)	psi (×10-6)	psi (×10-3)	psi (×10 ⁻³)	Ω-cm(×10)
22-4	Ŋ,	21.	9	6.	Ç,	•	~
22-4	5	.	œ	4.	14.2	• 2	Н
22-4			0	Q.	•	7	Ч
22-4	۲.	62.5	78.	4	•	۲.	0
22 - 5	ä	69	9	7	4.8	φ.	0
322-61	14.96	146.62	37.78	0.79	~	1,99	.010
22-6	4	75.7	89.	α,	9	œ	0
22-6	•	90.	13.7	9	5.8	4	0
22-6	7.4	565.	9.3	•	0	4.	0
22-6	4	87.	52.	ᅼ	4.4	œ	0
22-6	6.2	157.	76.5	7.	7.3	7.	0
22-6	ς,	900	58.	5	6	~	0
22-6	4.	41,	51.2	7	7.9	۲.	0
22-6	о О	84.	4	•	Š	0	0
22-6	i	1	:	1		ı	0
22 - 6	9	08.	7.7	9	i.	ı,	0
22-6	9.	01.	ъ.	œ	0	8	7
22-7	0	44.	5.7	۲.	2.	ω,	\vdash
23 -	0	47.	53.6	۲.	φ,	0.	0
23 - 2	5.	16.	i,	ω,	7	٣,	0
23-	60.7	∞	59.	3.36	•	•	C
23-	9	05.	9	0.	9	r,	60
23-	9.5	97.	· 	0.	5.8	7	60
23 - 5	6.	63.	•	• 16	ω.	••	23
23 - 5	σ.	55.	9	.15	œ	6.	21
23-	٣.	94.	Ġ	.29	5.9	5	17
23-8	.7	80.	2	. 42	1.9	.7	12
23-	•	38.	æ	.45	8.4	3	13
23-	9.	29.	7	.19	8.1	9	12
23-11	φ.	92.	9	7.	0.3	6.	22
23-	,	m	64.1	ı	10.01	3.40	$^{\circ}$
23-11		48	-	0.121	8.1	. 7	21
23-1	ω,	82.	5	.35	9.	0.	12

$\frac{\rho_{\mathbf{a}}}{\rho_{\mathbf{H}\mathbf{e}}}$	14	H	11	60	.022	60	10	12	10	12	25	20	\vdash	013	031	14	17	30	12	14	14	11	-4	\neg	$\boldsymbol{\vdash}$	Н.	-	-	$\overline{}$	-	~	~
$\sigma_{\rm UTS} \left(\frac{{}^{\rm p}{\rm real}}{{}^{\rm app.}}\right)$	6	•	4.	7	1.675	•	۳,	9.	9	0	بي	٦.	•	0	4				4.	6.	۳.	•	.5	٦.	ď.	4	₹.	.5	œ	1.85	æ	9.
$ \sigma_{cs} \left(\frac{\rho_{real}}{\rho_{app.}} \right) e_{si} (10^{-3}) $	•	H	• 6	3	8.0	5	9	•	7	₹.	•	•	•	Ö	6		•	8.4	5			Š	•	۲.	6	œ	。	7.9	7.	15.98	т С	ω
$\mathbf{E_s} \begin{pmatrix} \rho \mathbf{real} \\ \rho \mathbf{app.} \end{pmatrix}$.31	0.527	.52		.18	4	.47	.35	.50	.38	.07	.07	0.346	.32		.31	0.282			0.316	, 33		0.368	.17	.32		45	'n			0.274	. 32
°uTS ^{/ p} app. in (×10 ⁻³)	بہ	9	,-i	ω.	30.9	32.	т т	91.	Ä	2	တ	5	5	9	4.		۲.	٣,	9	Š	۳,	۲.	ъ	2	0	<u>ф</u>	Š.	ę.	<u>ښ</u>	34.6	i	4.
°cs/Papp. in (×10 ⁻³)	71.	81.	91.	02.	148.1	28.	675.	52.	83.	87.	42.	28.	34.	36.	71.		62.		10.	12.		04.	15.	24.	.09	32.	88.	36.	30.	00	46.	37.
Es/papp. in (×10 ⁻⁵)	7	, o	4		٠.,	• !		رن.	٠,	9.	7	4	6.51			1	C P C			σ	6.32		0.	ω.	6.05		0,	3.13				ଫ୍.
Sample #	2 3-1	23-13	23-1	23-14	323-19	23-2	$\frac{2}{3}$	23-21	23-2	23-2	23-2	$\frac{2}{3} - \frac{5}{5}$	23-2	2-53		23-2	2- c7	13-29	23-52	23-32	23-3	· 1	23-35	23-	23-3	23 - 3	23 - 3	23-4	23-4	(1)	23-4	23-4

$\rho \left(\frac{\rho \mathbf{a}}{\rho \mathbf{He}} \right)$	[0		~	> -		М.	$\boldsymbol{\vdash}$	\vdash	-	~	—	0	\neg	~	0	c_1	~	0	$\boldsymbol{\vdash}$.015	-	_	\vdash	00		0	0	~	0	0	.012	-
$\left(\frac{\rho_{real}}{\rho_{app.}}\right)$	4	٧	• u	•	ن.		0	œ	σ.	ď	٦.	σ.	.5	۲.	Ġ	₹.	'n	4.	۰.	4.98	٣.	2	٦.	. 7		ر	œ	٣,	۲.	æ.	4.47	ທຸ
$\left\{\frac{^{real}}{^{os}}\right\}$	15.0		•	, 0	9	0	2	۲-	4	7	۳.	2.3	3,	۳.	ä	ij	ġ	æ	3.	13.81	₹.	₹.	ά	÷		٠. د	_;	4.	্ খ	ġ	27.6	5.
$\mathbf{E}_{\mathbf{S}}\left(\frac{preal}{papp.}\right)$		£,) · (4.		0.340		.33	0.240	.32	.34	.64		.29	.24	.29	.34	.59	. 24	0.255	. 24	. 26		0.496		.52	. 65	.37	.79	.67	0.351	. 28
συπε ^{/ο} αρρ.		• - u	က ဂ ၈	•	9	0.	7	_	0	6	ري	(J)	63.	0	9	9	9	9	73.	0.	0	۲.	4.	122.2	7.	53.	92.	0	27.	74.	80.	5.
σcs/ρapp.	7 700	ρı,	300°	7	.80	84.	32.	15	57.	24.	44	68	250.	8	. 60	23.	01.	04.	48	49.	69.	69.	49.	806.8	79.	38.	90.	465.	36.	79.	496.	76.
E app.	1	•	6.36	•		6.36		C	4.32	6	7	Ċ)) 	7	ייי	9		6	4.4	4.61	S	φ		6	•	9	7.	6.9	0.2	0	6.3	5.34
2 E ?	ding to	23-4	23-4	23 - 5	23-5	23-5	93-5	ነ (ነ (ነ ር) () () () () (73-6	3-7-6	7 1 6	7 10	23-6	74-1	24-	170	24-	24-	177	24-	24-	24-	24-1	24-	24-1	24-1	24-1	24-1	24-1	24-1	-2

	E / Pann	oce/pann	oms/bapp.	Es real	cs real	UTS Papp.	o He
Sample #	in (×10 ⁻⁶)	,	in (×10 ⁻³)	i (psi (×10 ⁻³)	psi (×10 ³)	2-cm (×10)
7		300	133	טאַע	L.	7	0
77-67	12.33)) (20.0	, ~	Ċ	0
2-47	7	• a			• •		.011
7:47	*			46	2	9	0
7417	† ~	0 1 7	; ~	40	4.6	~	0
さいしょう	• •	, ,	• ,_	36	, ,	m	-
07 - 77		ה ה	י		. 6	8	(
324-250	# (r	142.9	17.2	0.180	7.74	. 932	0
74 75	•	. 6	47				
74-26	7	40.		.70	φ.		0
24-27	3.47	196.	37.	0.192	•	2.05	-
75-27	٠,٠	25.	'n	.02	4.	37	\sim
76-57)	, L			4	~	4
10140		0			4		\Box
24-29	9	07.6	9	.18	5.60	•	.015
24-3	4	54.	۲-,	. 24	9.	~	~4
24:3	6	86.	18.	0.428	7	4.9	0
24-3	4	02.	6	.47	4.2		0
24-3	7	73.	7.	. 32	٠.	۳.	-
24-3	0	29.	8	.31	•	•	
25-3	۳.	86.	ä		<u>ۍ</u>	7	-
24-3	ω.	48.	2	0.292	3.6	4	~
24. 50	3.27	149.3	31.7	. 18	•		0
24-46	9.	94.	ن				
24-4	'n	81.	ä	. 33	<u>ن</u>	ò	Η.
24-41	ο.	4	۲,	. 32	۲.	σ.	\dashv
24-4	φ.	91.	₹.	٣.	ö	4.	
24-4	9	34.	7.	. 42	ф ф	₹.	-
24-4	٦.	61.	ж.	. 28	6	₹.	-
24-4	۳.	61.	4	0.446	19.8	5.73	.011
24-4	۳,	22.	Ġ	99.	;		-
24-4	0.	80.	S.	. 2		₹.	

$\rho\left(\frac{\rho_{\mathbf{a}}}{He}\right)$.011	0	~	Н	Ç	П	0	7	_	7	_	$\overline{}$	14	13	13	$\overline{}$	60	\mathbf{H}	-	0	2	02	-	0	0	00			_	.015	0	
0urs (app.)	4.27		۲.	ω.		4	4.87	φ.	۲.		٠.	٦.	2.55	٠.		•	•	۲.	•	9.	۲.	œ	7	4	4	ᅼ	٥.	4	4.	3.69	7	٠,
$ \begin{array}{c} \begin{pmatrix} real \\ cs & app. \end{pmatrix} \\ psi & (10^{-3}) \end{array} $	9	5	4.	5	0.1	13.46	7.3	3.5	υ.	<u>ښ</u>	•	ņ	•	۲,	'n	ů.	ς.	4.	ö	φ.	'n	0	φ.	ä	9	9	پ	5	8	17.7	7	ė
$\mathbf{E_{s}}\left(\frac{^{real}}{^{app.}}\right)$	رب	• 76	٠,	.29	.63	0.467	.57	.36	.41	.25	.14	. 24	.23	.23	. 28	٦.	ا															
ours papp.	~		က	4.		ë	92.9	5.	9		0	4.	46.5	٦.		0	4	9	ġ	ά,	7.	ö	9	7	0	5	5	ä	4.	65.6	5.	9
cs/Papp.	91.	38.	.99	47.	72.	43.	31.	54.	87.	32.	34.	65.	26.	24.	42.	01.	77.	54.	98.	33.	51.	81.	24.	26.	90.	85.	49.	79.	20.	314.7	26.	79.
E./ app.	9	۲.	0.	•	6.	8.45	6.	7.	5	4.	9.	٠,	. 2	. 2	7.	ς,	₹.															
Sample	24-4	24 - 5	24-5	24-5	24-5	24-	24-6	24-6	24-6	24−€	24-6	24-6	24-6	24-7	24-7	24-7	25-1	25-	25-	25-	25-1	25-1	25-1	25 - 1	25-1	25-18	25-18	25-18	25-19	325-19B	25-19	25-2

$\rho\left(\frac{\rho_{\mathbf{a}}}{\rho_{\mathbf{He}}}\right)$	_	_	~ ;	~	_	$\boldsymbol{\vdash}$.014	-	$\boldsymbol{\neg}$	~	⊣	-	~	~	_	2	~	$\boldsymbol{\prec}$	-	7	~	~	_	$\boldsymbol{\vdash}$		$\overline{}$	Ч	~	$\boldsymbol{\vdash}$	$\boldsymbol{\vdash}$	~	.012	~
$\sigma_{\rm UTS} \left(\frac{\rho_{\rm ref}}{\rho_{\rm app.}} \right)$	6	7	.7	ω,	3	.7	1.55	Τ.	4	٥.	٣.	•	۲,	9.	4.	S.	æ	6.	9	.	٣,	9.	4.	φ.		•	•	•	7	٦.	7	1.45	m.
$\sigma_{cs}\left(\frac{\rho_{real}}{\rho_{apr.}}\right)$	6	5.1	•	ä	ä	9	8.19		0	3	9	0.9	•	4.7	4	ö	2.6	ф ф	9	•	2.9	٠.	4	4		ش	•	9	•	•	•	5.6	•
$\mathbf{E_{s}} \left(\frac{^{\rho} \mathbf{real}}{^{\rho} \mathbf{app.}} \right)$																																	
$^{\circ}$ UTS $^{\prime}$ $^{\circ}$ app.	-	4	9	4	6	٠ ټ۲	29.6	7	ä	6	5	7.	о ф	9	щ •	4.	0	ņ.	φ,	ب	5	5.	2.	ņ,	4.	9.	Η.	ς,	9.	ω.	Ή.	5	2
σ_{cs}^{ρ} app.	58	333	01.	51.	46.	80.	155.4	22.	67.	30.	02,	02.	22.	70.	65.	90.	26.	52.	49.	96	01.	06.	10.	41.	87.	35.	35.	86.	74.	58.	φ,		2
Es/papp. in (v10-6)																																	
Sample *	25-2	25-2	25-2	25-2	25-2	25-2	325-31	25-3	25-3	25 - 3	25 - 3	25-3	25-3	25-4	25-4	25-4	25 - 4	25-4	25-4	25-4	25-5	25-5	25-5	25-5	25-	25-5	25-	25-5	25-5	25-5	25-5	25-	25-59

$\begin{array}{c} \left(\frac{\rho}{2}\mathbf{a}\right) & \rho\left(\frac{\rho}{\rho}\mathbf{a}\right) \\ 0^{-3} & \Omega - cm\left(\times 10\right) \end{array}$			-	.018	-	\rightarrow	_	,-4	-	_	_	_	~	-	~	-	~	~	\vdash	$\overline{}$	-	-1	~	-	_	_	-1	~	$\overline{}$	\boldsymbol{H}	$\boldsymbol{\vdash}$	_	$\overline{}$.015	•
$\begin{array}{c} \rho & \rho \\ \sigma & \sigma \\ \sigma & \sigma \end{array}$		۲.	٥.	2,16	ę,	9	v.	ω,	₹,	.	₹.	4	0.	۳.	7	٥.	٥.	?	٣,	œ	4.	3.88	3.8	5	•	۲,	4.	7.	٥.	9	4.	4.	•	7	•
cs (real,		٠	4	σ	9	۲,	•	9.0	6	•	3	₹.	0	ä	ۍ.	&	0	ri	•	6.	•	9.3	٠	•	6	φ.	7.	•	0.7	5.	。	о Ф	•		
$\mathbf{E_{s}}\left(\frac{0.\mathbf{real}}{c^{app.}}\right)$																																			
$^{\sigma}$ urs $^{\prime}$ papp.		6	5	39.4	7	5.	ς	4.	•	4.	œ	3	2	φ,	Ö	4.	5.	4.	۳,	9.	φ.	•	4.	0	4		ς,	ä	7.	9	8	ä	σ	ω,	
$^{\sigma}cs^{/\rho}app.$		63.	71.	168.5	04.	37.	83.	999.	79.	95.	12.	74.	92.	95.	84.	44.	85.	61.	39.	82.	02.	9	86.	97.	375.	63.	63.	88.	95.	92.	45.	45.	45.	12.	
$\frac{E_s}{r}$ (10 ⁻⁵)	1																																		
Sample #		25-5	25-6	325-60A/W	25-61	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	25-6	,

$0\left(\frac{\rho_{\mathbf{a}}}{\rho_{\mathbf{He}}}\right)$ $\Omega_{-\mathbf{cm}}(\cdot 10)$		
$^{\sigma}$ UTS $\left(\frac{^{\mathrm{p}}$ real $}{^{\mathrm{o}}$ app.	W4041040W40HU00440800804	
$\sigma_{cs} \left(\frac{\rho_{real}}{\rho_{app.}} \right)$	24.8 10.1 10.1 10.1 22.5 8 2.5 7 4.7 8 2.5 12.9 98 6 3.5 12.9 8 6 0 12.9 12.9 13.5 14.6 14.6 15.5 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8	
$\mathbf{E_s}\left(\frac{\rho_{real}}{\rho_{app.}}\right)$		
UUTS / Papp.	103.0 104.9 77.9 125.7 125.7 80.8 10.8 115.59 113.51 126.79 126.79 180.41	
σ_{cs}/ρ_{app} .	459.9 340.8 316.9 156.7 124.2 415.6 420.4 68.31 111.49 573.97 735.96 452.10 735.96 452.10 1081.3	
Es/fapp.		
Sample #	325-69B 325-69B 325-69D 326-1	