

Figure 1 Commonly used glycosylating agents

Figure 2 Donor bound solid-phase carbohydrate synthesis

Figure 3 Acceptor bound solid-phase carbohydrate synthesis

a) oligonucleotides

b) oligopeptides

c) oligosaccharides

Solvent Vessels 260c 200 260b Automated Oligosaccharide Synthesizer 260a Computer ▼ Temperature Control Unit 280 290 Solution Transfer System To Waste 210 Reaction Vessel 270 Blocking Vessel 250 Deblocking Vessel 240 **Donor Vessels** 220b Activator Vessel 230 220a

Figure 5

Automated Oligosaccharide Synthesizer

Figure 6

Double-Walled Cooled Reaction Vessel

Figure 7

Figure 8

2D-NMR comparison of resin bound and solution phase pentamer

Automated Synthesis of the Phytoalexin Elicitor **8-Glucan Using Glycosyl Phosphates**

Prior syntheses:

Garegg et al. Angew. Chem. Int. Ed. 1983, 22, 793;

van Boom et al. Chem. Eur. J. 1995, 1, 16;

on soluble support: van Boom et al. Recl. Trav. Chim. Pays-Bas 1993, 112, 464;

on polymer support using trisaccharide blocks: Nicolaou et al. Angew. Chem. Int. Ed. 1998, 37, 1559.

1993mmyz ... Indixon

Figure 10

Automated Oligosaccharide Synthesis

Chemical Issues:

- Choice of Resin (Merrifield's, Argopore, Tentagel)
- Linker: HO
- Glycosylation Protocol
- Deprotection Protocol
- Capping Cycle
- Cleavage Method
- **Purification Technique**

Practical Issues:

- Scale (µmol-mmol)
- Cycle Development/Time
- Temperature Control Device

Automated Oligosaccharide Synthesis with Glycosyl Phosphates: Coupling Cycle

	Reage	Reagent/Solvent	Equivalents	Temperature	Time	
Š	Coupling	Donor TMSOTf	വവ	-15 °C	15 min	
Wa	Washing	CH ₂ Cl ₂ THF			5 min	
CO	Coupling	Donor TMSOTf	വവ	-15 °C	15 min	
Wa	Washing	CH ₂ Cl ₂ THF			5 min	
Dep	Deprotection	N₂H₄-HOAc		15 °C	30 min	
Wa	Washing	Pyr./AcOH			5 min	
Dep	Deprotection	N ₂ H ₄ -HOAc		15 °C	30 min	
Wa Wa	Washing	Pyr./AcOH			5 min	

Figure 11

Cycle Time per residue 110 min

Solid Support Oligosaccharide Synthesis: Glycosyl Phosphate Donors

53% overall yield

Pivo Bno Pivo Bno Pivo

 excess reagents drive reactions to completion Advantages:

purification only at the end of the synthesis

Automated Hexasaccharide Synthesis Using **Glycosyl Phosphates**

Crude HPLC Profile of the Hexamer Synthesis

Figure 14

Automated Oligomannoside Synthesis: Coupling Cycle

Time	30 min	5 min	30 min	5 min	30 min	5 min	30 min	5 min
Equivalents	10		10					
Reagent/Solvent	Donor TMSOTf	CH ₂ Cl ₂	Donor TMSOTf	CH ₂ Cl ₂ THF	NaOMe	CH ₂ Cl ₂	NaOMe	CH ₂ Cl ₂
Re	Coupling	Washing	Coupling	Washing	Deprotection	Washing	Deprotection	Washing
	<u> </u>						·	

Figure 15

25µmol Scale

Cycle Time per residue 140 min

17

Solid-Phase Oligosaccharide Synthesis: Coupling Cycle Development

Figure 16

42% yield

74% yield

(manual synthesis: 9%)

stepwise yield: 94% stepwise yield: 94%

TOKTHO" ZZZZEGEO Figure 17

HR-MAS HMQC-Analysis of Pentamannosides

HPLC Purification of the Heptamannoside

Automated Synthesis of a Decamannoside

Using Trichloroacetimidates

34% yield

stepwise yield: 94.9%

Automated Synthesis of Leishmania Cap Tetrasaccharide

66% yield

Automated Synthesis of GlcA Trisaccharide

Cycle:

Time: 8.5 h

Donor: 5.0 eq

Activator: 0.5 eq TMSOTf

Deprotection: 0.5 M NH₂NH₂•H₂O

TONTED

Automated Synthesis of polyglucosamines

