Exercises Advanced Machine Learning Fall 2019

Series 2. October 10, 2019 (Bayesian Linear Regression)

Machine Learning Laboratory

Dept. of Computer Science, ETH Zürich

Prof. Joachim M. Buhmann

Web https://ml2.inf.ethz.ch/courses/aml/

Teaching assistant: Stefan Stark

starks@inf.ethz.ch

Problem 1 (MLE for Gaussians):

Consider a data set $X = \{x_1, ..., x_N\}$ drawn i.i.d. from $N(\mu, \Sigma)$.

- a. Write down the log-likelihood function of the data. ¹
- b. Derive $\hat{\mu}$ and $\hat{\Sigma}$, the MLE estimates of μ and Σ . ²
- c. Show that $\hat{\mu}$ is an unbiased estimator and $\hat{\Sigma}$ is a biased estimator.

Problem 2 (Conditioning a Gaussian):

Consider a D-dimensional vector $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$, partioned into

$$\mathbf{x} = (\mathbf{x}_a, \mathbf{x}_b)$$

with the corresponding partionings

$$\mu = (\mu_a, \mu_b)$$

$$\Lambda = \Lambda = (\Lambda_{aa} \quad \Lambda_{ab})$$

 $\Sigma^{-1} = \Lambda = \begin{pmatrix} \Lambda_{aa} & \Lambda_{ab} \\ \Lambda_{ba} & \Lambda_{bb} \end{pmatrix}$

The conditional $p(\mathbf{x}_a \mid \mathbf{x}_b)$ is a Gaussian distribution, $\mathcal{N}(\mathbf{x}_a \mid \mu_{a|b}, \Sigma_{a|b})$. Here we will derive expressions for its mean $\mu_{a|b}$ and variance, $\Sigma_{a|b}$.

- 1. The exponential in $\mathcal{N}(\mathbf{x} \mid \mu, \Sigma)$ is $-\frac{1}{2}(\mathbf{x} \mu)^T \Sigma^{-1}(\mathbf{x} \mu)$. Show that this can be represented by a term quadratic in ${f x}$, a term linear in ${f x}$ and a constant term that does not depend on ${f x}$, $a{f x}^T{f A}{f x}+b{f x}^T{f b}+c$. This is the multi-variate version of completing the square. Derive expressions for ${f A}$ and ${f b}$ as functions of μ and Σ .
- 2. Expand the exponential from part (1) in terms of the components \mathbf{x}_a and \mathbf{x}_b .
- 3. The conditional distribution, $p(\mathbf{x}_a \mid \mathbf{x}_b)$ is realized by treating \mathbf{x}_b as constant and renormalizing the joint distribution. Using the expansion derived in (2) complete the square and give expressions for $\mu_{a|b}$ and $\Sigma_{a|b}$
- 4. The precision matrix Λ was used here for conveinence. Usually we only have access to the covariance matrix $\Sigma = \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix}. \text{ Given the identities } \Lambda_{aa} = (\Sigma_{aa} - \Sigma_{ab}\Sigma_{bb}^{-1}\Sigma_{ba})^{-1} \text{and } \Lambda_{ab} = -\Lambda_{aa}\Sigma_{ab}\Sigma_{bb}^{-1}, \text{ show that } \mu_{a|b} = \mu_a + \Sigma_{ab}\Sigma_{bb}^{-1}(\mathbf{x}_b - \mu_b) \text{ and } \Sigma_{a|b} = \Sigma_{aa} - \Sigma_{ab}\Sigma_{bb}^{-1}\Sigma_{ba}.$

Problem 3 (Bayesian Regression):

Consider the linear regression model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ with n observations and p predictor variables. We model $\epsilon \sim N(0, \sigma^2 \mathbf{I})$ and $\beta \sim N(0, \mathbf{\Lambda}^{-1})$.

You may find the trace trick useful: $x^TAx = \operatorname{Tr}(x^TAx) = \operatorname{Tr}(xx^TA) = \operatorname{Tr}(Axx^T)$ Useful calculus identities: $\frac{\partial}{\partial A}|A| = A^{-T}$, $\frac{\partial}{\partial A}\operatorname{Tr}(AB) = B^T$

- 1. What is the dimensionality of ϵ ? Of **X**? Of β ?
- 2. Show that the posterior distribution $p(\beta|\mathbf{Y},\mathbf{X},\sigma^2,\mathbf{\Lambda})$ is normal with mean $\mu_{\beta}=(\mathbf{X^TX}+\sigma^2\mathbf{\Lambda})^{-1}\mathbf{X^TY}$ and covariance matrix $\mathbf{\Sigma}_{\beta}=\sigma^2(\mathbf{X^TX}+\sigma^2\mathbf{\Lambda})^{-1}$.
- 3. What is the dimensionality of $(\mathbf{X}^T\mathbf{X} + \sigma^2\mathbf{\Lambda})^{-1}$? Of μ_{β} ? Of Σ_{β} ?
- 4. Assume the form $\Lambda = \frac{\lambda}{\sigma^2} I$. What affect does varying λ have on the posterior distribution of β ?

Problem 4 (Intro to Prediction in Gaussian Processes):

Let f be the noise-free latent function value from a Gaussian Process with mean 0 and kernel K, evaluated at locations \mathbf{X} , i.e.

$$p(\mathbf{f}) = \mathcal{N}(\mathbf{f} \mid 0, K(\mathbf{X}, \mathbf{X}))$$

Derive the mean and variance of f_* , latent function values evaluated at a set of new locations X_* , conditioned on f.