QUESTION 3: -

QUESTION 3: - FORECASTING USING WEATHER DATASET.

Code: -

```
csv = read.csv("C:/Users/HP/Downloads/Weather data.csv", as.is=T)
names(csv)
range(csv$DATE)
library(xts)
install.packages("tsbox")
library(tsbox)
historical = xts(csv[,c("TMAX","TMIN","PRCP")], order.by=as.Date(csv$DATE))
historical = ts regular(historical)
historical = na.fill(historical, "extend")
historical = window(historical, start=as.Date("2000-01-01"), end=as.Date("2020-12-31"))
plot(ts ts(historical$TMAX), col="darkred", bty="n", las=1, fg=NA,
  ylim=c(-20, 120), ylab="Temperature (F)")
lines(ts_ts(historical$TMIN), col="navy")
grid(nx=NA, ny=NULL, lty=1, col="gray")
legend("topright", fill=c("darkred", "navy"), cex=0.7,
    legend=c("TMAX", "TMIN"), bg="white")
barplot(historical$PRCP, border=NA, col="darkgreen", ylim=c(0, 2),
    space=0, bty="n", las=1, fg=NA, ylab="Daily Rainfall (inches)")
grid(nx=NA, ny=NULL, lty=1)
summary(historical)
historical [historical $TMIN] == min(historical $TMIN)]
historical | TMAX == max(historical | TMAX)|
historical | historical | PRCP == max(historical | PRCP) |
historical$MONTH = format(index(historical), "%m")
months = split(as.numeric(historical$TMAX), historical$MONTH)
sapply(months, summary)
months = split(as.numeric(historical$TMIN), historical$MONTH)
sapply(months, summary)
decomposition = stl(ts_ts(historical$TMAX), s.window=365, t.window=7001)
plot(decomposition)
summary(decomposition$time.series[,"trend"])
decomposition = stl(ts_ts(historical$PRCP), s.window=365, t.window=7001)
plot(decomposition)
summary(decomposition$time.series[,"trend"])
monthly.tmax = period.apply(historical$TMAX, INDEX = seq(1, nrow(historical) - 1, 30.4375), FUN =
mean)
plot(ts_ts(monthly.tmax), col="darkred", ylim=c(20, 100),
  lwd=3, bty="n", las=1, fg=NA, ylab="TMAX (F)")
grid(nx=NA, ny=NULL, lty=1)
monthly.prcp = period.apply(historical$PRCP, INDEX = seq(1, nrow(historical) - 1, 30.4375), FUN = sum)
plot(ts_ts(monthly.prcp), col="darkgreen",
  lwd=3, bty="n", las=1, fg=NA, ylab="Monthly Precipitation (inches)")
```

```
grid(nx=NA, ny=NULL, lty=1)
library(forecast)
training.data = period.apply(historical$TMAX, seq(1, nrow(historical) - 1, 30.4375), max)
model.tmax = hw(ts\_ts(training.data), h=60)
plot(model.tmax, lwd=3, bty="n", las=1, fg=NA)
grid(nx=NA, ny=NULL, lty=1)
model.tmax = hw(ts\_ts(training.data), h=720)
plot(model.tmax, lwd=3, bty="n", las=1, fg=NA)
grid(nx=NA, ny=NULL, lty=1)
training.data = ts_ts(historical$TMAX)
parameters = auto.arima(training.data)
print(parameters)
arima.model = arima(training.data, order = c(5,0,1), seasonal = list(order=c(0,1,0), period=365))
arima.tmax = forecast(arima.model, 1825)
plot(arima.tmax, lwd=3, bty="n", las=1, fg=NA,
   xlim=c(2018, 2026), ylab="Mean Monthly High Temperature (F)")
grid(nx=NA, ny=NULL, lty=1)
```

OUTPUTS AND PLOTS

Given Data as time series

Time series decomposition for daily maximum temprature

Time series decomposition for daily rainfall

Aggregation

Forecasts till 2025 of monthly high temprature

Forecasts till 2080 of monthly high temprature

Forecasts from ARIMA(5,0,1)(0,1,0)[365]

ARIMA Forecast till 2026

Console Window Output