Data Developer Salary Analysis

By Ian Joshua Sainani

25 Jul 2024

Data Source: https://www.kaggle.com/datasets/zeesolver/data-eng-salary-2024

Load Packages

```
library(dplyr)
library(ggplot2)
library(statsr)
library("scales")
library(countrycode)
```

Import Data

 $salaries_df <- \ read.csv("~/Library/CloudStorage/OneDrive-NanyangTechnologicalUniversity/personal\ projection of the control of the contro$

Data Exploration

Overview of the structure of salaries_df

```
str(salaries_df)
```

```
## 'data.frame':
                 16534 obs. of 11 variables:
                    ## $ work_year
## $ experience_level : chr "SE" "SE" "SE" "SE" ...
## $ employment_type : chr "FT" "FT" "FT" "FT" ...
## $ job_title
                    : chr "AI Engineer" "AI Engineer" "Data Engineer" "Data Engineer" ...
## $ salary
                   : int 202730 92118 130500 96000 190000 160000 400000 65000 101520 45864 ...
## $ salary_currency : chr "USD" "USD" "USD" "USD" ...
                    : int 202730 92118 130500 96000 190000 160000 400000 65000 101520 45864 ...
## $ salary_in_usd
## $ employee_residence: chr "US" "US" "US" "US" ...
## $ remote ratio
                 : int 0000000000...
## $ company_location : chr "US" "US" "US" "US" ...
                 : chr "M" "M" "M" "M" ...
## $ company_size
```

Check for missing data

```
cat("Count of null values:", sum(is.na(salaries_df)))
## Count of null values: 0
```

View unique values in columns of interest

```
distinct_values <- list(
  Years = unique(salaries_df$work_year),
  Experience_Levels = unique(salaries_df$experience_level),
  Employment_Types = unique(salaries_df$employment_type),
  Company_Sizes = unique(salaries_df$company_size),
  Company_Location = unique(salaries_df$company_location)
)
distinct_values</pre>
```

```
## $Years
## [1] 2024 2022 2023 2020 2021
##
## $Experience_Levels
## [1] "SE" "MI" "EN" "EX"
##
## $Employment_Types
## [1] "FT" "CT" "PT" "FL"
##
## $Company_Sizes
## [1] "M" "L" "S"
##
## $Company_Location
## [1] "US" "AU" "GB" "CA" "NL" "LT" "DK" "FR" "ZA" "NZ" "AR" "ES" "KE" "LV" "IN"
## [16] "DE" "IL" "FI" "AT" "BR" "CH" "AE" "PL" "SA" "UA" "EG" "PH" "TR" "OM" "MX"
## [31] "PT" "BA" "IT" "AS" "IE" "EE" "MT" "HU" "LB" "RO" "VN" "NG" "LU" "GI" "CO"
## [46] "SI" "GR" "MU" "RU" "KR" "CZ" "QA" "GH" "SE" "AD" "EC" "NO" "JP" "HK" "CF"
## [61] "SG" "TH" "HR" "AM" "PK" "IR" "BS" "PR" "BE" "ID" "MY" "HN" "DZ" "IQ" "CN"
## [76] "CL" "MD"
```

Problem Formulation

Average Salary of each Job Title

```
Std = sd(salary_in_usd)) %>%
  arrange(desc(AvgSalary))
average_salaries
## # A tibble: 153 x 6
      job_title
                                    AvgSalary MedSalary MinSalary MaxSalary
##
##
      <chr>
                                        <dbl>
                                                  <dbl>
                                                             <int>
                                                                       <int>
                                                                               <dbl>
                                      399880
                                                  399880
                                                           399880
                                                                      399880
## 1 Analytics Engineering Manager
                                                                                 NA
## 2 Data Science Tech Lead
                                      375000
                                                 375000
                                                           375000
                                                                      375000
                                                                                 NA
## 3 Head of Machine Learning
                                      299758.
                                                 330000
                                                            76309
                                                                      448000 137103.
## 4 Managing Director Data Scien~
                                                                      300000 28284.
                                      280000
                                                 280000
                                                           260000
## 5 AWS Data Architect
                                      258000
                                                 258000
                                                           258000
                                                                      258000
                                                                                 NA
## 6 AI Architect
                                      252551.
                                                 204000
                                                            99750
                                                                      800000 131291.
## 7 Cloud Data Architect
                                      250000
                                                 250000
                                                           250000
                                                                      250000
## 8 Director of Data Science
                                                                      375500 72954.
                                      218775.
                                                 217000
                                                           57786
                                      211860.
## 9 Head of Data
                                                 215000
                                                            31520
                                                                      329500 66834.
## 10 Prompt Engineer
                                      205094.
                                                 197011
                                                            60462
                                                                      600000 115091.
## # i 143 more rows
# Create density plot
hist_avg_salaries <- ggplot(data = average_salaries, aes(x = AvgSalary)) +
                     geom_histogram(aes(y = after_stat(density*10^4)), binwidth = 5000,
                                    fill = "#b3cde3", color = "black") +
                     geom_density(aes(y = after_stat(density*10^4)),
                                  color = "#810f7c", size = 1) +
                     geom_vline(aes(xintercept = mean(AvgSalary)),
                                color = "red", size = 1,
                                linetype = "dashed") +
                     geom_vline(aes(xintercept = median(AvgSalary)),
                                color = "black", size = 1,
                                linetype = "dotted")
# Styling
hist_avg_salaries + labs(title = "Histogram and Density Plot of Average Salaries",
                         x = "Average Salary",
                         y = expression(Density~(~10^4))) +
                    scale x continuous(labels = comma) +
                    theme(plot.title = element_text(hjust = 0.5),
                    panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
```

panel.background = element_blank(), axis.line = element_line(colour = "black"))

Histogram and Density Plot of Average Salaries


```
# Print mean and median values
cat("Mean:", mean(average_salaries$AvgSalary), "\n")

## Mean: 132017.8

cat("Median:", median(average_salaries$AvgSalary))

## Median: 127292.8

# Standard deviation of salaries among all individual full time jobs

std_all <- salaries_df %>%
    filter(employment_type == "FT") %>%
    summarise(std = sd(salary_in_usd))

# Standard deviation of average salaries, among full time, unique job titles

std_unique <- average_salaries %>%
    summarise(std = sd(average_salaries$AvgSalary))

cat("Standard deviation (FT, All):", std_all$std, '\n')
```

Standard deviation (FT, All): 68351.02

```
cat("Standard deviation (FT, Unique):", std_unique$std)
```

Standard deviation (FT, Unique): 57862.94

The standard deviations can be observed to be very large, and it can be seen to drop as we establish a grouping.

We want to then find out if there are any factors that impact the salaries of employees, and in what way.

How does experience level affect salary?

For a fair comparison, we will filter only FT employees

```
# Descriptive Statistics
exp_salaries <- salaries_df %>%
  filter(employment_type == "FT") %>%
  group_by(experience_level) %>%
  summarise(min = min(salary_in_usd), q1 = quantile(salary_in_usd,0.25),
   AvgExpSalary = mean(salary_in_usd), median = median(salary_in_usd),
   q3 = quantile(salary_in_usd, 0.75), max = max(salary_in_usd),
   std = sd(salary_in_usd)) %>%
  arrange(desc(AvgExpSalary))
# Create a colour gradient
colour_gradient_exp <- c("EN" = "#b3cde3", "MI" = "#8c96c6", "SE" = "#8856a7", "EX" = "#810f7c")
# Sort experience level
exp_level <- c('EN', 'MI', 'SE', 'EX')</pre>
# Create a barplot
salary_vs_exp <- ggplot(data = exp_salaries, aes(x = factor(experience_level,</pre>
                level = exp_level), y = AvgExpSalary, fill = experience_level)) +
                scale_y_continuous(labels = comma) +
                scale_fill_manual(values = colour_gradient_exp)
# Styling
salary vs exp + labs(title = "Average Salary vs Experience Level", x = "Experience Level",
                     y = "Average Salary (USD)") +
                     theme(plot.title = element_text(hjust = 0.5),
                     panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
                     panel.background = element_blank(), axis.line = element_line(colour = "black"))
```


View Descriptive Statistics exp_salaries

```
## # A tibble: 4 x 8
     experience_level
                                 q1 AvgExpSalary median
##
                       min
                                                              q3
                                                                    max
                                                                           std
                     <int>
                              <dbl>
                                           <dbl>
                                                   <dbl>
                                                           <dbl>
                                                                 <int>
                                         194823. 191928. 235250 465000 69772.
## 1 EX
                      15000 145000
## 2 SE
                     15809 120250
                                         163732. 155000
                                                         200000 750000 63898.
## 3 MI
                      15000 81500
                                         126224. 115360 155000 800000 67040.
## 4 EN
                                          92827. 83171 117006. 774000 51583.
                      15000 58780.
```

```
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"))
```

Salary Distribution among Experience Levels

How does employment type affect salary?

```
# Descriptive Statistics
emp_salaries <- salaries_df %>%
  group_by(employment_type) %>%
  summarise(min = min(salary_in_usd), q1 = quantile(salary_in_usd, 0.25),
    AvgEmpSalary = mean(salary_in_usd), median = median(salary_in_usd),
    q3 = quantile(salary_in_usd, 0.75), max = max(salary_in_usd),
    std = sd(salary_in_usd)) %>%
  arrange(desc(AvgEmpSalary))

# Create a colour gradient
colour_gradient_emp <- c("FL" = "#edf8d1", "PT" = "#bae4b3", "CT" = "#74c476", "FT" = "#238b45")

# Sort employment type
emp_type <- c('FL', 'PT', 'CT', 'FT')</pre>
```

Average Salary vs Employment Type

View Descriptive Statistics emp_salaries

```
## # A tibble: 4 x 8
##
     employment_type
                       min
                                q1 AvgEmpSalary median
                                                              q3
                                                                           std
                                                                    max
                     <int>
                             <dbl>
                                          <dbl>
                                                  <dbl>
                                                           <dbl> <int>
                                                                        <dbl>
                                        149988. 141525 185900 800000 68351.
## 1 FT
                     15000 102225
```

```
## 2 CT
                     25500 50000
                                        112578. 93856 121902. 416000 91676.
## 3 PT
                                         83750. 66452. 121158. 291340 61774.
                     15966 35028.
## 4 FL
                     20000 31892.
                                         49221. 47778. 57500 100000 24997.
# Create a boxplot
bp_emp_salaries <- ggplot(data = salaries_df, aes(x = factor(employment_type,</pre>
                  level = emp_type), y = salary_in_usd,
                  fill = employment_type)) + geom_boxplot(show.legend = FALSE) +
                  scale_y_continuous(labels = comma)+
                  scale_fill_manual(values = colour_gradient_emp)
# Styling
bp_emp_salaries + labs(title = "Salary Distribution among Employment Types",
                       x = "Employment Type", y = "Salary (USD)") +
                      theme(plot.title = element_text(hjust = 0.5),
                      panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
                      panel.background = element_blank(), axis.line = element_line(colour = "black"))
```

Salary Distribution among Employment Types

Does remote ratio have an impact on salary?

```
cor.test(salaries_df$remote_ratio, salaries_df$salary_in_usd)

##

## Pearson's product-moment correlation

##

## data: salaries_df$remote_ratio and salaries_df$salary_in_usd

## t = -7.3781, df = 16532, p-value = 1.681e-13

## alternative hypothesis: true correlation is not equal to 0

## 95 percent confidence interval:

## -0.07246839 -0.04208281

## sample estimates:

## cor

## -0.05728887
```

With a correlation score of -0.0573, there is a very weak negative correlation between the remote ratio and salary.

How does company region affect salary?

```
# Create new column indicating region of company location
salaries_df$company_region = countrycode(salaries_df$company_location, "iso2c", "region")
# Descriptive Statistics
reg_salaries <- salaries_df %>%
  filter(employment_type == "FT") %>%
  group_by(company_region) %>%
  summarise(min = min(salary_in_usd), q1 = quantile(salary_in_usd, 0.25),
   AvgRegSalary = mean(salary_in_usd), median = median(salary_in_usd),
   q3 = quantile(salary_in_usd, 0.75), max = max(salary_in_usd),
    std = sd(salary_in_usd)) %>%
  arrange(desc(AvgRegSalary))
# Create a boxplot
bp_reg_salaries <- ggplot(data = salaries_df, aes(x = company_region, y = salary_in_usd,</pre>
                   fill = company_region)) +
                   geom_boxplot(show.legend = FALSE) +
                   scale_y_continuous(labels = comma) +
                   theme(axis.text.x = element_text(angle = 10, hjust = 1, size = 7)) +
                   scale_fill_brewer(palette = "Set3")
# Styling
bp_reg_salaries + labs(title = "Salary Distribution among Regions",
                       x = "Region", y = "Salary (USD)") +
                      theme(plot.title = element_text(hjust = 0.5),
                      panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
                      panel.background = element_blank(), axis.line = element_line(colour = "black"))
```

Salary Distribution among Regions

View Descriptive Statistics reg_salaries

```
## # A tibble: 7 x 8
##
     company_region
                                         q1 AvgRegSalary median
                                \min
                                                                    q3
                                                                                  std
                                                                          max
##
     <chr>
                              <int>
                                     <dbl>
                                                   <dbl> <dbl>
                                                                <dbl>
                                                                        <int>
                                                                               <dbl>
## 1 North America
                              15000 1.11e5
                                                 156748. 1.47e5 1.9 e5 800000 65673.
## 2 Middle East & North Afr~ 22800 8.34e4
                                                 129438. 1.03e5 1.69e5 417937 84246.
## 3 East Asia & Pacific
                              15000 5.34e4
                                                 106686. 8.90e4 1.42e5 300000 69905.
## 4 Europe & Central Asia
                              16455 4.92e4
                                                  84182. 6.88e4 1.03e5 430967 53244.
## 5 Latin America & Caribbe~ 16000 4.00e4
                                                  82869.6
                                                             e4 8.80e4 774000 96778.
                                                  53933. 4.28e4 5.70e4 200000 34165.
## 6 Sub-Saharan Africa
                              15000 3.67e4
                              15809 2.02e4
                                                  43017. 3.17e4 5.48e4 172700 33218.
## 7 South Asia
```

Drill down into regional salary distribution for each experience level

```
# Get the unique experience levels
experience_levels <- unique(salaries_df$experience_level)
# Loop through each experience level and create a boxplot</pre>
```

```
for (x in experience_levels) {
    # Subset data for the current experience level and employment type FT
    subset_df <- subset(salaries_df, experience_level == x & employment_type == "FT")

# Create the boxplots
plots <- ggplot(data = subset_df, aes(x = company_region, y = salary_in_usd, fill = company_region)
    geom_boxplot(show.legend = FALSE) +
    scale_y_continuous(labels = comma) +
    scale_fill_brewer(palette = "Set3") +
    labs(title = paste("Regional Salary Distribution for", x, "Employees"),
    x = "Company Region", y = "Salary (USD)") +
    theme(axis.text.x = element_text(angle = 10, hjust = 1, size = 7),
        panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
        panel.background = element_blank(), axis.line = element_line(colour = "black"),

print(plots)
}</pre>
```

Regional Salary Distribution for SE Employees

Company Region

Regional Salary Distribution for MI Employees

Does the size of the company impact the salary of their employees?

Average Salary vs Company Size

View Descriptive Statistics size_salaries

```
## # A tibble: 3 x 8
     company_size
                   min
                             q1 AvgSizeSalary median
                                                                      std
                                                               max
##
     <chr>
                          <dbl>
                                        <dbl> <dbl> <dbl>
                  <int>
                                                             <int>
## 1 L
                  15000 82304.
                                      142023. 136000 202100 423000 73429.
## 2 M
                  15000 105000
                                      151197. 143225 185900 800000 67800.
## 3 S
                 15809 50510.
                                       87775. 76078 115000 275000 52891.
```

Salary Distribution among Company Sizes

How has the average salary changed over the years?

```
# Descriptive Statistics
years_salaries <- salaries_df %>%
filter(employment_type == "FT") %>%
group_by(work_year) %>%
```

Average Salary Trend


```
# View Descriptive Statistics
years_salaries
```

```
## # A tibble: 5 x 8
## work_year min q1 AvgYearSalary median q3 max std
```

##		<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>
##	1	2020	15000	49268	106760.	87000	120000	450000	84380.
##	2	2021	15000	54202	99486.	86369	140000	423000	63013.
##	3	2022	15000	95000	134883.	132320	173000	430967	57612.
##	4	2023	15680	109400	153867.	145000	190000	750000	65275.
##	5	2024	17598	100000	150864	140000	186153	800000	73655