CS 240 - Data Structures and Data Management

Module 6: Dictionaries for special keys

Armin Jamshidpey

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2023

Outline

- 6 Dictionaries for special keys
 - Lower bound
 - Interpolation Search
 - Tries
 - Standard Tries
 - Variations of Tries
 - Compressed Tries

Outline

- 6 Dictionaries for special keys
 - Lower bound
 - Interpolation Search
 - Tries
 - Standard Tries
 - Variations of Tries
 - Compressed Tries

Lower bound for search

The fastest realizations of *ADT Dictionary* require $\Theta(\log n)$ time to search among n items. Is this the best possible?

Lower bound for search

The fastest realizations of *ADT Dictionary* require $\Theta(\log n)$ time to search among n items. Is this the best possible?

Theorem: In the comparison model (on the keys), $\Omega(\log n)$ comparisons are required to search a size-n dictionary.

Proof: via decision tree for items x_0, \ldots, x_{n-1}

But can we beat the lower bound for special keys?

Assume we are searching for k in items 01, -, and we only use comparisons of can draw decision treet. leaves correspond to answers returned by the algorithm. we have at least not possible answers. => > n+1 leaves in decision tree. The number of leaves of Lepth h is at $n+1 \leq \#$ of leaves $\leq 2^h$ $\Rightarrow n+1 \leqslant 2^h \longrightarrow ly(n+1) \leqslant h$ $= h \in \mathcal{I}(lg n)$

Outline

- 6 Dictionaries for special keys
 - Lower bound
 - Interpolation Search
 - Tries
 - Standard Tries
 - Variations of Tries
 - Compressed Tries

Binary Search

Recall the run-times in a *sorted array*:

- insert, delete: $\Theta(n)$
- search: $\Theta(\log n)$

binary-search(A, n, k)

A: Sorted array of size n, k: key

- 1. $\ell \leftarrow 0, r \leftarrow n-1$
- 2. while $(\ell \leq r)$
- 3. $\underline{m} \leftarrow \lfloor \frac{\ell+r}{2} \rfloor$
- 4. if (A[m] == k) then return "found at A[m]"
- 5. else if (A[m] < k) then $\ell \leftarrow m+1$
- 6. **else** $r \leftarrow m 1$
- 7. **return** "not found, but would be between $A[\ell-1]$ and $A[\ell]$ "

$$k - A(I) = \frac{A[r] - A[I]}{r - I} (m - I)$$

$$k - A[I] = \frac{A[I] - A[I]}{r - I} (m - I)$$

$$\frac{k-A[l]}{A[r]-A[l]}(r-l)=m-l$$

$$m = l + \frac{k - A\Gamma l}{A\Gamma r - A\Gamma l}$$
 (r-l)

Interpolation Search: Motivation

binary-search(
$$A[\ell,r],k$$
): Compare at index $\lfloor \frac{\ell+r}{2} \rfloor = \ell + \lfloor \frac{1}{2}(r-\ell) \rfloor$

Interpolation Search: Motivation

binary-search($A[\ell,r],k$): Compare at index $\lfloor \frac{\ell+r}{2} \rfloor = \ell + \lfloor \frac{1}{2}(r-\ell) \rfloor$

ℓ	\downarrow	r	
40		120	

Question: If keys are *numbers*, where would you expect key k = 100?

Interpolation Search: Motivation

binary-search($A[\ell,r],k$): Compare at index $\lfloor \frac{\ell+r}{2} \rfloor = \ell + \lfloor \frac{1}{2}(r-\ell) \rfloor$

ℓ	↓	r	
 40		120	

Question: If keys are *numbers*, where would you expect key k = 100?

interpolation-search $(A[\ell,r],k)$: Compare at index $\ell + \left\lfloor \frac{k-A[\ell]}{A[r]-A[\ell]}(r-\ell) \right\rfloor$

Interpolation Search

- Code very similar to binary search, but compare at interpolated index
- Need a few extra tests to avoid crash during computation of m.

interpolation-search(A[0..10],449):

S

• Initially $\ell = 0$, r = n - 1 = 10, $m = \ell + \lfloor \frac{449 - 0}{1500 - 0}(10 - 0) \rfloor = \ell + 2 = 2$

interpolation-search(A[0..10],449):

• Initially
$$\ell = 0$$
, $r = n - 1 = 10$, $m = \ell + \lfloor \frac{449 - 0}{1500 - 0} (10 - 0) \rfloor = \ell + 2 = 2$

•
$$\ell = 3$$
, $r = 10$, $m = \ell + \lfloor \frac{449 - 3}{1500 - 3}(10 - 3) \rfloor = \ell + 2 = 5$

interpolation-search(A[0..10],449):

• Initially
$$\ell = 0$$
, $r = n - 1 = 10$, $m = \ell + \lfloor \frac{449 - 0}{1500 - 0}(10 - 0) \rfloor = \ell + 2 = 2$

•
$$\ell = 3$$
, $r = 10$, $m = \ell + \lfloor \frac{449 - 3}{1500 - 3}(10 - 3) \rfloor = \ell + 2 = 5$

•
$$\ell = 3$$
, $r = 4$, found at $A[4]$

0	1	2	3	4	5	6	7	8	9	10
0	1	2	3	449	450	600	800	1000	1200	1500

interpolation-search(A[0..10],449):

• Initially
$$\ell = 0$$
, $r = n - 1 = 10$, $m = \ell + \lfloor \frac{449 - 0}{1500 - 0} (10 - 0) \rfloor = \ell + 2 = 2$

•
$$\ell = 3$$
, $r = 10$, $m = \ell + \lfloor \frac{449 - 3}{1500 - 3}(10 - 3) \rfloor = \ell + 2 = 5$

• $\ell = 3$, r = 4, found at A[4]

Works well if keys are *uniformly* distributed:

- Can show: Recurrence relation is $T^{(avg)}(n) = T^{(avg)}(\sqrt{n}) + \Theta(1)$.
- This resolves to $T^{(avg)}(n) \in \Theta(\log \log n)$.

But: Worst case performance $\Theta(n) \leftarrow$

Outline

- 6 Dictionaries for special keys
 - Lower bound
 - Interpolation Search
 - Tries
 - Standard Tries
 - Variations of Tries
 - Compressed Tries

Tries: Introduction

Trie (also know as radix tree): A dictionary for bitstrings.

(Should know: string, word, |w|, alphabet, prefix, suffix, comparing words,....)

- Comes from retrieval, but pronounced "try"
- A tree based on *bitwise comparisons*: Edge labelled with corresponding bit
- Similar to radix sort: use individual bits, not the whole key

More on tries

Assumption: Dictionary is **prefix-free**: no string is prefix of another

- Assumption satisfied if all strings have the same length.
- Assumption satisfied if all strings end with 'end-of-word' character \$.

Example: A trie for $\{\underline{00}\$,0001\$,0100\$,011\$,0110\$,110\$,111\$\}$

More on tries

Assumption: Dictionary is prefix-free: no string is a prefix of another

- Assumption satisfied if all strings have the same length.
- Assumption satisfied if all strings end with 'end-of-word' character \$.

Example: A trie for {00\$,0001\$,0100\$,011\$,0110\$,110\$,1101\$,111\$}

Then items (keys) are stored *only* in the leaf nodes

Tries: Search

- ullet start from the root and the most significant bit of x
- follow the link that corresponds to the current bit in x;
 return failure if the link is missing
- return success if we reach a leaf (it must store x)
- else recurse on the new node and the next bit of x

```
Trie::search(v \leftarrow \text{root}, \underline{d \leftarrow 0}, \underline{x})

v: node of trie; d: level of v, x: word stored as array of chars

1. if v is a leaf

2. return v

3. else

4. let v' be child of v labelled with x[d]

5. if there is no such child

6. return "not found"

7. else Trie::search(v', d+1, x)
```


Example: Trie::search(011\$)

Example: Trie::search(011\$)

Example: Trie::search(011\$)

Example: Trie::search(011\$) successful

Example: Trie::search(0111\$)

Tries: Insert & Delete

- Trie::insert(x)
 - ► Search for x, this should be unsuccessful
 - ► Suppose we finish at a node *v* that is missing a suitable child. Note: *x* has extra bits left.
 - ► Expand the trie from the node *v* by adding necessary nodes that correspond to extra bits of *x*.
- Trie::delete(x)
 - ▶ Search for *x*
 - ▶ let v be the leaf where x is found
 - delete v and all ancestors of v until we reach an ancestor that has two children.
- Time Complexity of all operations: $\Theta(|x|)$ |x|: length of binary string x, i.e., the number of bits in x

Tries: Insert Example

Tries: Insert Example

Tries: Delete Example

Example: Trie::delete(01001\$)

Tries: Delete Example

Example: Trie::delete(01001\$)

Variation 1 of Tries: No leaf labels

Do not store actual keys at the leaves.

• The key is stored implicitly through the characters along the path to the leaf. It therefore need not be stored again.

This halves the amount of space needed.

Variation 2 of Tries: Allow Proper Prefixes

Allow prefixes to be in dictionary.

- Internal nodes may now also represent keys.
 Use a *flag* to indicate such nodes.
- No need for end-of-word character \$
- Now a trie of bitstrings is a binary tree. Can express 0-child and 1-child implicitly via left and right child.
- More space-efficient.

Variations 3 of Tries

Pruned Trie: Stop adding nodes to trie as soon as the key is unique.

- A node has a child only if it has at least two descendants.
- Note that now we *must* store the full keys (why?)
- Saves space if there are only few bitstrings that are long.
- Could even store infinite bitstrings (e.g. real numbers)

A more efficient version of tries, but the operations get a bit more complicated.

Variation 4 of Tries

Compressed Trie: compress paths of nodes with only one child

- Each node stores an *index*, corresponding to the depth in the uncompressed trie.
 - ► This gives the next bit to be tested during a search
- A compressed trie with n keys has at most n-1 internal nodes

Practical Algorithm to Retrieve Information Coded in Alphanumeric

Compressed Tries: Search

- start from the root and the bit indicated at that node
- follow the link that corresponds to the current bit in x; return failure if the link is missing
- if we reach a leaf, expicitly check whether word stored at leaf is x
- else recurse on the new node and the next bit of x

```
CompressedTrie::search(v \leftarrow root, x)
v: node of trie; x: word
     if v is a leaf
             return strcmp(x, v.key)
       d \leftarrow \text{index stored at } v
       if x has at most d bits
             return "not found"
5.
      v' \leftarrow \text{child of } v \text{ labelled with } x[d]
      if there is no such child
             return "not found"
8
9.
        CompressedTrie::search(v', x)
```

Winter 2023

Example: CompressedTrie::search(10\$) unsuccessful

Example: CompressedTrie::search(101\$) unsuccessful

1

Example: CompressedTrie::search(1\$)

Example: CompressedTrie::search(1\$) unsuccessful

Compressed Tries: Insert & Delete

- CompressedTrie::delete(x):▶ Perform search(x)
 - Remove the node v that stored x
 - ▶ Compress along path to *v* whenever possible.
- CompressedTrie::insert(x):
 - ▶ Perform search(x)
 - Let v be the node where the search ended.
 - Conceptually simplest approach:
 - ★ Uncompress path from root to v.
 - ★ Insert x as in an uncompressed trie.
 - ★ Compress paths from root to v and from root to x.
 - ▶ But it can also be done by only adding those nodes that are needed.
 - Requires leaf-links: Every node stores a link to a leaf that is a descendant.
- All operations take O(|x|) time.

Much more complicated, but space-savings are worth it if words are unevenly distributed.

Multiway Tries: Larger Alphabet

- ullet To represent *strings* over any *fixed alphabet* Σ
- Any node will have at most $|\Sigma|+1$ children (one child for the end-of-word character \$)
- Example: A trie holding strings {bear\$, ben\$, be\$, soul\$, soup\$}

Compressed Multiway Tries

- Variation: Compressed multi-way tries: compress paths as before
- Example: A compressed trie holding strings {bear\$, ben\$, be\$, soul\$, soup\$}

Multiway Tries: Summary

- Operations search(x), insert(x) and delete(x) are exactly as for tries for bitstrings.
- Run-time $O(|x| \cdot \text{(time to find the appropriate child)})$

(, x, x2...|X5) 57U|\$(

Multiway Tries: Summary

- Operations search(x), insert(x) and delete(x) are exactly as for tries for bitstrings.
- Run-time $O(|x| \cdot \text{(time to find the appropriate child))}$

Each node now has up to $|\Sigma| + 1$ children. How should they be stored?

Multiway Tries: Summary

- Operations search(x), insert(x) and delete(x) are exactly as for tries for bitstrings.
- Run-time $O(|x| \cdot (time\ to\ find\ the\ appropriate\ child))$

Each node now has up to $|\Sigma|+1$ children. How should they be stored?

Solution 1: Array of size $|\Sigma| + 1$ for each node.

Complexity: O(1) time to find child, $O(|\Sigma|)$ space per node.

Solution 2: List of children for each node.

Complexity: $O(|\Sigma|)$ time to find child, O(#children) space per node.

Solution 3: Dictionary (AVL-tree?) of children for each node.

Complexity: $O(\log(\#\text{children}))$ time, O(#children) space per node.

Best in theory, but not worth it in practice unless $|\Sigma|$ is huge.

In practice, use *hashing* (keys are in (typically small) range Σ).