Exercícios de aplicação da disciplina de Análise Matemática 1/2024

- 1. Considere a sucessão definida pelo termo geral $U_n = \frac{3n-1}{2n+1}$
 - a) Mostre que a sucessão (U_n) é monótona, e convergente para $\frac{3}{2}$;
 - b) Qual desses números 1,6 e $\frac{29}{22}$ é termo da sucessão (U_n) ?
- 2. Um estudante pretende regar 20 laranjeiras que se encontram distanciadas 8 metros uma da outra. Sabe-se que a fonte de água se encontra a 10 metros da primeira laranjeira. Calcule quantos metros serão percorridos pelo estudante, no final do trabalho.
- 3. Numa progressão aritmética, $u_7 = 17$ e $u_{25} = -12$. Determine a razão e a expressão do termo geral.
- **4.** Numa progressão geométrica, $u_5 = 4$ e $u_8 = 108$. Calcule a soma dos primeiros 7 termos consecutivos a partir do oitavo termo da progressão.
- **5.** Um equipamento de escritório custou 50000,00*MT*. Sabendo que o mesmo se desvaloriza **20**% por ano:
- a) Qual será o valor do equipamento após 2; 3 e 4 anos de uso?
- **b**) Encontre uma expressão matemática a partir da qual pode-se achar automaticamente quaisquer valores de desvalorização;
- c) Qual será o valor do equipamento após 20 anos de uso?
 - **6.** Calcule a soma ou o produto:

a)
$$S = 5 + 10 + 20 + 40 + \dots + 40960$$
; b) $3 + 3^2 + 3^3 + 3^4 + \dots + 3^{25}$

c)
$$S = 1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots + \frac{1}{19683}$$
; d) $S = 2 + 7 + 12 + 17 + \dots + 147$;

e)
$$3 \times 3^2 \times 3^3 \times 3^4 \times ... \times 3^{25}$$

7. Ache os limites das seguintes sucessões:

a) $1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \dots, \frac{(-1)^{n-1}}{n}, \dots$	b) $2, \frac{4}{3}, \frac{6}{5}, \frac{8}{7}, \dots, \frac{2n}{2n-1}, \dots$
c) $\sqrt{3}$, $\sqrt{3\sqrt{3}}$, $\sqrt{3\sqrt{3\sqrt{3}}}$,	d) $\sqrt{2}$, $\sqrt{2\sqrt{2}}$, $\sqrt{2\sqrt{2\sqrt{2}}}$,

8. Calcule os seguintes limites:

a)
$$\lim_{n \to \infty} (\frac{1-5n^2}{1+n^2+n})$$
 b) $\lim_{n \to \infty} (0,28)^{2n}$ c) $\lim_{n \to \infty} (\frac{7}{2})^{2n}$ d) $\lim_{n \to \infty} (\frac{n^2-5n-3}{n^2+5n+1})^{2n}$ e) $\lim_{n \to \infty} (\frac{5n-3}{5n+1})^{\frac{2n-1}{2}}$ f) $\lim_{n \to \infty} (\frac{8^{n+1}+6^{n+1}}{8^n+6^n})$ g) $\lim_{n \to \infty} (\frac{3^{n+1}+5^n}{8^n+6^n})$ h) $\lim_{n \to \infty} (\sqrt{n^2+5n+2} - \sqrt{n^2+1})$ i) $\lim_{n \to \infty} (\frac{1}{n^2} + \frac{2}{n^2} + \frac{3}{n^2} + \frac{4}{n^2} + \dots + \frac{n-1}{n^2})$ j) $\lim_{n \to \infty} (1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots + \frac{(-1)^{n-1}}{n^2})$ k) $\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n})$ l) $\lim_{n \to \infty} (\frac{1+3+5+7+\dots+(2n-1)}{n+1} - \frac{2n-1}{2})$

m	$\lim_{n\to\infty} \left(\frac{1^2+2^2+3^2+4^2+\cdots+n^2}{n^3}\right)$	n)	$\lim_{n \to +\infty} \frac{(n+1)(n+2)(n+3)}{n^3}$	o)	$\lim_{n\to+\infty}\frac{nsen(n!)}{n^2+1}$
p	$\lim_{n \to \infty} \left(\frac{\sqrt[3]{n^3 - 5n^2}}{\sqrt{4n^2 + 5} + 2n} \right)$	q)	$\lim_{n\to\infty}(\sqrt{n-2}-\sqrt{n})$	r)	$\lim_{n\to\infty} \left(\frac{\sqrt[3]{n^3 - 5n^2}}{\sqrt{4n^2 + 5} + 2n} \right)$

Fim