```
Programming in the Cloud
                   Gabriel Scalosub
         Based on various papers/resources (see list at the end)
```

Outline Cloud Programming Paradigms • (Ultra) Quick Introduction to Big Data Hadoop and MapReduce

```
Outline

    Cloud Programming Paradigms

   • (Ultra) Quick Introduction to Big Data

    Hadoop and MapReduce
```


(Ultra) Quick Introduction to Big Data

- (Classical) vertical scaling vs. horizontal scaling*
 - Vertical: stronger HW, faster CPUs, larger memory, larger BW, larger storage
 - Stops being scalable beyond some point
 - Horizontal: parallelizing code, use more COTS HW
 - If done correctly, can be scaled unlimitedly
 - No problem handling/analyzing many TBs of data
- Distributed file-system
 - Store data "everywhere" / "all-over"
 - Easy/fast (parallel) access
 - Fault-tolerance

(Ultra) Quick Introduction to Big Data

- Processing locality
 - Goal: avoid costly data transfers
 - time, congestion, \$\$\$...
 - Perform data processing close to where data is stored
 - Same host
 - Same rack
 - Same cluster
 - Big Data: stored "everywhere" / "all-over"
 - Make processing tasks "local"
 - Process only small chunks of data available "close by"
 - Minimize data transfers
 - We've seen similar things before:
 - Traffic/data aware placement...

Outline Cloud Programming Paradigms • (Ultra) Quick Introduction to Big Data Hadoop and MapReduce

Hadoop and MapReduce

- Hadoop: Big Data Framework
 - Hadoop distributed file system (HDFS)
 - Developed and open-sourced by Yahoo (2010)
 - Following initial design of the GFS published by Google (2003)
 - MapReduce programming paradigm
 - Published by Google (2004)
- Extended by YARN (Hadoop 2-)
 - Yet Another Resource Negotiator
 - Manage computing resources
 - Processing tasks scheduling
- Many extensions of the ecosystem
 - Hive, Spark, Kafka, ...

- Hadoop cluster
 - Racks of storage (disks), connected to the network
 - Master-slave architecture
 - Master: namenode
 - Slave(s): datanode(s)
- namenode
 - Maintains entire file namespace structure in memory
 - Great for not-too-many very large files, ill-suited for great-many (billions) small files
- datanode
 - Stores actual data, in blocks
- Might look familiar if you know P2P...

Image: Hanson (2011)

- HDFS data blocks
 - Data stream broken into blocks
 - Block size: 128MB (default in YARN)
 - Much larger than disk block size (~KB)
 - Makes disk seek-time negligible compared to disk transfer rate

true ballpark figures

- Example:
 - Disk with 10ms seek-time, 100MB/s transfer rate
 - Goal: Find BlockSize (MB) s.t. seek-time is 1% of transfer time
 - $0.01 * (BlockSize/100) = 10ms \Rightarrow BlockSize \sim 100MB$
- Each block stored in multiple disks
 - Redundancy for parallel read & fault tolerance
 - Default #copies: 3
 - May be increased for higher parallelizability

Targeting:

- Streaming file access
- Not random-access

- HDFS namenode
 - Manages FS namespace, and all FS tree, files, directories, and metadata
 - FS structure Information stored persistently on local disk
 - Image file, edit-log file (occasionally merged into image file)
 - Files blocks locations ephemeral (i.e., in memory only)
 - Reconstructed from datanodes, sending periodical reports to namenode
 - Single point of failure...
 - Addressed by HDFS high-availability (HA): standby namenode
- HDFS datanode
 - Stores file blocks, managed-by / reports-to namenode
- HDFS client
 - Issues requests (read/write) to namenode (CLI / RESTful API)

- Client performing Read
 - NN gives list of DNs with file first blocks
 - Sorted by proximity to client
 - Topology aware!
 - Client constantly reads from FSDIS
 - Oblivious to file/DN locations
 - FSDIS opens/closes DNs connections
 - Requests DNs of subsequent blocks directly from NN
 - Verifies checksums for blocks received from DNs
 - No unnecessary open connections
 - sequential

Image: White (2015)

- Client performing Write
 - Client request causes NN to create file
 - NN verifies permissions, existence, etc.
 - NN provides pipeline of nodes
 - Will store copies of the block
 - New pipeline whenever new block required
 - Client writes data packets to local buffer
 - Consumed by FSDOS
 - FSDOS awaits ack from all datanodes for clearing packets
 - Strict consistency
 - Failures handled by NN
 - As long as block is available on some DN
 - Asynchronous replication / fault recovery

Image: White (2015)

- Features
 - Abstracts away the physical underlying storage
 - Meant to handle very large files (GB, TB)
 - Not ideal for small files
 - Distributed: network-based file system
 - Streaming data access
 - Write-once (and append), Read-many-times
 - Scalable & cost-efficient: horizontal scaling
 - Just add more machines...
 - Fault-tolerance: replication & recovery
 - High-throughput: supports high rates
 - Latency is a secondary objective

Programming over Hadoop And now, how to go beyond just read-write

MapReduce: Introduction

- Divide and Conquer
 - Split main big task into smaller subtasks
 - Solve smaller subtasks recursively
 - If small enough, solve directly
 - Combine solutions of subtasks into solution of main task
- Scatter-gather

• Example: merge-sort

MapReduce Example: Word Count

- The Word Count problem:
 - Input: (very big) file
 - Output: number of times each word appears in file
- Case 1: File size > Memory, {(word,count)}_{word} < Memory
 - Maintain hash-table with words as keys, update counter as you scan file
- Case 2: File size > Memory, {(word,count)}_{word} > Memory
 - Unix pipelining:

extract_words(file) | sort | uniq -c

- "extract_words(file)" emits words in file, one by one (separate lines)
- Unix "sort" actually performs a variant of merge-sort under-the-hood, with temp files
- Unix "uniq -c" outputs the count for each unique entry

MapReduce Example: Word Count

- From Unix pipelining to MapReduce
 extract_words(file) | sort | uniq -c
- Map()
 - Scan input file, record-by-record
 - Record=line, in our case
 - Extract keys from each record
 - Words, in our case
 - (Also "count" values, trivially 1, in our case)

- Reduce()
 - Aggregate / summarize / filter / transform
 - Count unique words, in our case
 - Write result to file

- Group by key
 - Sort&Shuffle
 - Well, just sort, in our case

MapReduce Paradigm

- Map Group (Sort & Shuffle) Reduce
 - Input: set of (k, v) key-value pairs
 - $Map(k, v) \rightarrow list((k', v'))$
 - Single Map() call for each key-value pair in input
 - Map extracts list of intermediate key-value pairs
 - Potentially unrelated to key-value pairs in input
 - Reduce $(k', list(v')) \rightarrow list((k', v''))$
 - Single Reduce() call for each unique key k'
 - All intermediate key-value pairs with same key are reduced together(!)

provided by the MR framework

- Group (Sort & Shuffle)
 - Gets all(!) Map() lists corresponding to some set of keys k'
 - Possibly from different Map() calls
 - Sorts all key-value pairs in lists by key
 - Shuffles key-value-lists pairs to reducers
 - Usually with some hash-function $h(k') \mod R$
 - Load balancing
 - Each Reduce() gets all lists with same key
 - Sometimes referred as "partitioning"

MapReduce Paradigm

- Map Group (Sort & Shuffle) Reduce
 - Input: set of (k, v) key-value pairs
 - $Map(k, v) \rightarrow list((k', v'))$
 - Single Map() call for each key-value pair in input
 - Map extracts list of intermediate key-value pairs
 - Potentially unrelated to key-value pairs in input
 - Reduce $(k', list(v')) \rightarrow list((k', v''))$
 - Single Reduce() call for each unique key k^\prime
 - All intermediate key-value pairs with same key are reduced together(!)

Word Count

```
map(key, value):

// key: document name, value: document contents

for each word w in value:

EmitIntermediate(w, "1");
```

```
reduce(key, values):
  // key: a word, values: a list of counts
  result = 0;
  for each v in values:
    result += ParseInt(v);
  Emit(AsString(result));
```

MapReduce Paradigm

- Map Group (Sort & Shuffle) Reduce
 - Input: set of (k, v) key-value pairs
 - $Map(k, v) \rightarrow list((k', v'))$
 - Single Map() call for each key-value pair in input
 - Map extracts list of intermediate key-value pairs
 - Potentially unrelated to key-value pairs in input
 - Reduce $(k', list(v')) \rightarrow list((k', v''))$
 - Single Reduce() call for each unique key k'
 - All intermediate key-value pairs with same key are reduced together(!)

MapReduce: Some Finer Details

- Combiners
 - Deals with mappers producing many key-value pairs with same key
 - E.g., very common words (think "The", "a", etc.)
 - Mapper does pre-aggregation before grouping Input
 - Similar to Reduce, but partial view
 - Possible for associative operations
 - E.g., sum, count, max, etc.
 - Minimizes mapper-reducer traffic

Car, (2, 1)

MapReduce: Some Finer Details

- Combiners
 - Deals with mappers producing many key-value pairs with same key
 - E.g., very common words (think "The", "a", etc.)
 - Mapper does pre-aggregation before grouping Input
 - Similar to Reduce, but partial view
 - Possible for associative operations
 - E.g., sum, count, max, etc.
 - Minimizes mapper-reducer traffic
- Dealing with stragglers
 - MR is "bottlenecked" by slowest mapper/reducer
 - Usually solved by spawning additional mappers/reducers
 - And taking the result from the first that finishes
- Failures
 - Reset tasks (Map/Reduce)

MapReduce: Runtime & Workflow

- Master node coordinating MR
 - Client issues job
 - MR handles spawning mapper / reducer tasks across machines
 - Mappers scheduled close to stored data
 - Mappers intermediate results kept in local FS
 - Master is notified, directs reducers to intermediate results location
 - Synchronous / map-reduce barrier
 - Mappers should finish before reducers kick-in
 - Managing failures and inter-process communications

Image: Dean & Ghemawat (2004)

MapReduce Applications

- Distributed grep
 - Mapper: grep lines matching pattern
 - Reducer: Identity
- Inverted index
 - Mapper: extracts <word,doc_id> pairs by going over words appearing in doc_id
 - Reducer: concatenate all doc_id for any given word, output <word, list(doc_id)>
 - Application: reverse web-link graph, <target, list(source)>
- Distributed sorting
 - Mapper: local sorting of list
 - Reducer: merge sorting of sorted lists
- Many many others...

• HW:

- Complex business intelligence
- Prediction mechanism
- Stay tuned...

"MapReduce-inspired" Problems & Frameworks

- Network aware MapReduce
 - Beyond mere locality
 - Take available network resources into account
 - Mappers scheduling, shuffling/partitioning to reducers
- Machine learning
 - Distributed training of Neural Networks
 - Highly non-trivial

Word Count: Full Unix Pipeline (Simple) Example

```
cat input_file | tr -s ' ' | tr ' ' '\n' | sort | uniq -c | sort -k 1nr,1 | less
```

Word Count: Full Unix Pipeline (Simple) Example cat input_file | tr -s ' ' | tr ' ' '\n' | sort | uniq -c | sort -k 1nr,1 | less Extract lines Shrink multiple spaces to single space Break every word onto single line Sort Count unique words Sort by count as key (n=number, r=reverse) Display result

Word Count: Full Unix Pipeline (Simple) Example

Word Count: Full Unix Pipeline (Simple) Example

Word Count \w MR: A Pythonish Implementation Demo Python Using Linux-sort www.michael-noll.com

(Partial) Bibliography

- Laney, "3D Data Management: Controlling Data Volume, Velocity and Variety", Gartner (2001)
- Zikopoulus et al., "Understanding Big Data", McGraw-Hill (2012)
- Du, "Apache Hive Essentials", Packt (2015)
- Ghemawat et al., "The Google File System", SOSP (2003)
- Shvachko et al., "The Hadoop Distributed File System", MSST (2010)
- Hanson, "An introduction to the Hadoop Distributed File System", https://www.ibm.com/developerworks/library/wa-introhdfs/ (2011)
- White, "Hadoop The Definitive Guide", O'Reilly (2015)
- Dean and Ghemawat, "MapReduce: Simplified Data Processing on Large Clusters", OSDI (2004)
- Pattamsetti, "Distributed Computing in Java 9", Packt (2017)
- Noll, "Writing An Hadoop MapReduce Program In Python", https://www.michael-noll.com/