Математическое программирование, лекция 10 ДФП

Для определения матрицы пользуются следующим рекуррентным соотношением $A_{k+1} = A_k + A_k^c$ где A_k^c - корректирующая матрица

Наиболее предпочтительным является определение матрицы A_k с помощью конечно-разностной аппроксимации вторых производных

$$x^{(k+1)}-x^{(k)}=A_k(G_{k+1}-G_k)$$
 или $lacktriangle x^{(k)}=A_klacktriangle G_k$

Однако такую аппроксимацию построить невозможно, поскольку на k-той итерации надо уже знать $x^{(k+1)}$ и G_{k+1}

Подставляя в выражение рекурентное соотношение получим

$$igstar{x}^{(k)} = Betta(A_k + A_k^c) igstar{G}_k => A_k^c igstar{G}_k = 1/Betta$$
 $igstar{x}^{(k)} - A_k igstar{G}_k$

Отсюда

$$A_k^c = 1/Betta((\blacktriangle x^{(k)})Y^T)/(Y^T \blacktriangle G_k)) - (A_k \blacktriangle G_k Z^T)/(Z^T \blacktriangle G_k)$$

Алгоритм ДФП

Шаг 1. Задаем $x^{(0)}, k=0$. Опредеелням значение градиента нв точке $x^{(0)}G_0=lacktriangledown f(x^0)$

Полагаем $A_0 = I = [1 \ 0]$ [0 1]

В качестве направления поиска из точки $x^{(0)}$ выбирается вектор $d_0 = -G_0$

Шаг 2. Находим значение шага $alpha_k^*$ минимизирующего функцию $f(x^{(k)}+alpha_kd_k)$. Т.е. проводим одномерный поиск вдоль направления d_k

Шаг 3. вычисляем $x^{(k+1)} = x^{(k)} + alpha_k^*d_k$.

Шаг 4. Проверяем является ли точка $x^{(k+1)}$ точкой минимума функции, например по условию малости градиента $||G_k+1|| <= Eps$, если оно выполняется, то поиск закончен $x^*=x^{(k+1)}$

Иначе переходим к шагу 5

Шаг 5. Вычисляем

$$A_k^c = (lacktriangle x^{(k)}lacktriangle x^{(k)^T})/(lacklask x^{(k)^T}lacklask G_k) - (A_klacklask G_klacklask G_k^TA_k)/(lacklask G+k^T)$$

Шаг 6. Обновляем матрицу $A + k + 1 = A_k + A_k^c$

Шаг 7. Определяем новое направление поиска

Конечно-разностная аппроксимация производных

Точность аппроксимации можно повысить путем использования центральной конечной разности:

$$df(x)/dx_i = f(X+he_i) - f(X-he_i)/2h$$
 x = X

Три вида погрешности:

1. Погрешность отбрасывания

$$f(x+h) = f(x) + hf'(x) + 1/2h^2f''(x) + \dots$$

Отсюда ошибка отбрасывания равна остаточному числу тейлоровского разложения

$$oldsymbol{\Delta}_1 = (f(x+h) - f(x))/h - f'(x) = \phi(f,h) - f'(x) = 1/2hf''(x)$$
 , где $\phi(f,h)$ - приближение (аппроксимация производной правой разностью)

2. Абсолютная ошибка вычисления функции

Эта ошибка вычисления функции в точках x и x+h. Это означает что вместо f(x) и f(x+h) в формулу войдут некоторые величины F(x), F(x+h)

Тогда
$$F(x) = f(x) + Gamma$$

$$F(x+h)=f(x+h)+Gamma_h$$
 $\phi(F,h)=(F(x+h)-F(x))/h=$ $(f(x+h)-f(x))/h+(gamma_h-gamma)/h+(gamma_h-gamma_h-gamma_h)$

3. Ошибка округления

При машинных арифметических операциях. Эти ошибки малы по сравнению с предыдущими ошибками и их, как правило, не учитывают.

6. Сравнение методов и рекомендации по их выбору