COMPUTER ORGANIZATION AND ARCHITECTURE

SYLLABUS and SCHEME

Course Coue	Name of the Course					
216U01C304	Computer Organization and Architecture					
Teaching Scheme	TH	P		TUT	Total	
(Hrs./Week)	03	-		-	03	
Credits Assigned	03	-	-		03	
Evaluation Scheme	Marks					
	LAB/TUT	CA	(TH)	ESE	Total	
	CA	IA	ISE			
	-	20	30	50	100	

Course pre-requisites: Basic concepts of

iters and their applications.

Name of the Course

Course Objectives: Students will try to:

- Conceptualize the basics of organization and architecture of a digital computer and the detailed working of the ALU
- Learn the function of each element of a memory hierarchy and detailed working of the control unit
- 3. Study various input output techniques and their applications

Course Outcomes (CO):

Course Code

CO 1	Describe and define the structure of a computer with buses structure and detail working of the arithmetic logic unit and its sub modules
CO 2	Understand the Central processing unit with addressing modes and working of control unit in depth.
CO 3	Learn and evaluate memory organization and cache structure
CO 4	Summarize Input output techniques and multiprocessor configurations

Detailed Culliculum

Module	Unit	Contents		CO	
No.	No.				
			Hrs.		
	1.1	Introduction of computer system and its sub modules, Basic			
		organization of computer and block level description of the			
		functional units. Von Neumann model, difference between			
		computer architecture and computer organization.			
	1.2	Introduction to buses, bus types, and connection I/O devices			
		to CPU and memory, PCI and SCSI			
	_				
2		metic and Logic Unit			
	2.1	Booth's Recoding and Booth's algorithm for signed			
		multiplication, Restoring division and non-restoring division			
		algorithms.	10	CO1	
	2.2	IEEE floating point number representation and operations:	10	COI	
		Addition. Subtraction, Multiplication and Division. IEEE			
		standards for Floating point representations :Single Precision			
		and Double precision Format			
3		al Processing Unit			
	3.1	CPU architecture, Register organization, Instruction formats			
		and addressing modes(Intel processor).,Basic instruction			
		cycle. Control unit Operation ,Micro operations : Fetch,			
		Indirect, Interrupt, Execute cycle Control of the processor,		CO2	
		Functioning of micro programmed control unit, Micro			
		instruction Execution and Sequencing, Applications of			
		Micro programming.			
	3.2	RISC v/s CISC processors, RISC pipelining			
		Self learning: RISC and CISC Architecture, Case study on			
		SPARC			

4.1	memory, Cache memory principles, Elements of Cache Design. ROM, Types of ROM, RAM, SRAM, DRAM, Flash memory, High speed memories Cache Memory Organization: Address mapping, Replacement Algorithms, Cache Coherence, MESI protocol, Interleaved and associative memories, Introduction to: Virtual memory, Main memory allocation,	10	CO3
	Segmentation ,Paging: demand paging and thrashing. Secondary storage, RAID levels		
I/O (Organization		
5.1	External Devices, I/ O Modules	03	CO4
5.2	Programmed I/O, Interrupt driven I/O, DMA		

Module	Unit	Contents	No	CO
No.	No.		of Hrs.	
			111 5.	
6	Multi	processor Configurations		
	6.1	Flynn's classification, Parallel processing systems and		
		concepts, Introduction to pipeline processing and pipeline		
		hazards.		
	6.2	Design issues of pipeline architecture, Instruction pipelining:	08	CO4
		Six Stage instruction pipeline.		
	6.3	8086 Instruction set (Arithmetic Instructions, Logical		
		Instructions, Data transfer instructions), Assembly language		
		programming.		

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	W.Stallings William	Computer Organization and Architecture: Designing for Performance	Pearson Prentice Hall Publication	7th Edition
2.	Hamacher, V. Zvonko, S. Zaky	Computer Organization	Tata McGraw Hill Publication	5th Edition
3.	Hwang and Briggs	Computer Architecture and Parallel Processing	Tata McGraw Hill Publication	
4.	A. Tanenbaum	Structured Computer Organization	Prentice Hall Publication	4th Edition.
5.	John Uffenbeck	8086/8088 families: Design Programming and Interfacing	Pearson Education	
6.	Douglas Hall	Microprocessor and Interfacing	TMH Publication	

William Stallings Computer Organization and Architecture

Chapter 1
Introduction

Architecture & Organization

- Architecture is those attributes visible to the programmer
 - Instruction set, number of bits used for data representation,
 I/O mechanisms, addressing techniques.

- Organization is how features are implemented
 - Control signals, interfaces, memory technology.
 - e.g. Is there a hardware multiply unit or is it done by repeated addition?

COMPUTER ARCHITECTURE	COMPUTER ORGANIZATION
Way hardware components are connected together to form a computer system.	Structure and behaviour of a computer system as seen by the user.
It acts as the interface between hardware and software.	It deals with the components of a connection in a system.
Helps us to understand the functionalities of a system.	How exactly all the units in the system are arranged and interconnected.
A programmer can view architecture in terms of instructions, addressing modes and registers .	Whereas Organization expresses the realization of architecture.
While designing a computer system architecture is considered first .	An organization is done on the basis of architecture.
Computer Architecture deals with high-level design issues.	Computer Organization deals with low-level design issues.
Architecture involves Logic (Instruction sets, Addressing modes, Data types, Cache optimization)	Organization involves Physical Components (Circuit design, Adders, Signals, Peripherals)

Architecture & Organization

- All Intel x86 family share the same basic architecture
- The IBM System/370 family share the same basic architecture
- This gives code compatibility
 - At least backwards
- Organization differs between different versions

S.NO	Processor	Clock Speed	Bus Width	MIPS	Power	Price
1	Intel Pentium 111	The clock speed of Intel Pentium 111 processor is 1GHz	The bus width of Intel Pentium 111 processor is 32	A million instructions per second of Intel Pentium 111 processor is ~900	The power of this processor is 97 W	\$900
2	IBM PowerPC 750X	The clock speed of the IBM PowerPC 750X processor is 550 MHz	The bus width of the IBM PowerPC 750X processor is 32/64	A million instructions per second of IBM PowerPC 750X processor is ~1300	The power of this processor is 5 W	#900
3	MIPS R5000	The clock speed of the MIPS R5000 processor is 250 MHz	The bus width of the MIPS R5000 processor is 32/64	NA	NA	NA
4	StrongARM SA-110	The clock speed of StrongARM SA-110 processor is 233 MHz	The bus width of StrongARM SA- 110processor is 32	The million instructions per second of StrongARM SA-110processor is 268	The power of this processor is 1 W	NA

Structure & Function

Structure is the way in which components

relate to each other

Function is the operation of individual

components as part of the structure

Function

- All computer functions are:
 - Data processing
 - Data storage
 - Data movement
 - Control

Functional View

Operating Environment (source and destination of data)

Operations (a) Data movement

Operations (b) Storage

Operation (c) Processing from/to storage

Operation (d) Processing from storage to I/O

Structure - Top Level

Structure - The CPU

Structure - The Control Unit

William Stallings **Computer Organization** and Architecture 8th Edition Chapter 2 Computer Evolution and Performance

Von Neumann

- Stored Program concept
- Main memory storing programs and data
- ALU operating on binary data
- Control unit interpreting instructions from memory and executing
- Input and output equipment operated by control unit
- Princeton Institute for Advanced Studies
 - IAS
- Completed 1952

Structure of Von Neumann machine

Structure of IAS – detail

Add AX, BX Add [1234], AX Main memory 1002 004 1000 1002 0001 1234

Generations of Computer

- Vacuum tube 1946-1957
- Transistor 1958-1964
- Small scale integration 1965
 - Up to 100 devices on a chip
- Medium scale integration to 1971
 - 100-3,000 devices on a chip
- Large scale integration 1971-1977
 - 3,000 100,000 devices on a chip
- Very large scale integration 1978 -1991
 - 100,000 100,000,000 devices on a chip
- Ultra large scale integration 1991 -Over 100,000,000 devices on a chip

Vacuum Tube

Transistors

Integrated Circuit

Microprocessor

Quantum Computer

1st Generation Computer

2nd Generation Computer

3rd Generation Computer

4th Generation Computer

5th Generation Computer

Subject	1st generation	2nd generation	3rd generation	4th generation	5th generation
Period	Period 1940-1956 1956-1963		1964-1971	1971-present	present & beyond
Circuitry	Vacuum tube	Transistor	Integrated chips (IC)	Microprocessor (VLSI)	ULSI (Ultra Large Scale Integration) technology
Memory Capacity	20 KB	128KB	1MB	Magnetic core memory, LSI and VLSI. High Capacity	ULSI
Processing Speed	300 IPS instructions Per sec.	300 IPS	1MIPS (1 million inst. Per sec.)	Faster than 3rd generation	Very fast
Programming Language	Machine, Language	Assembly language & early high-level languages(FORTRAN, COBOL, ALGOL)	C C++	Higher level languages,C,C++,Java	All the Higher level languages,,Neural networks,
Example of computers	UNIVAC, EDVAC	IBM 1401, IBM 7094, CDC 3600,D UNIVAC 1108	IBM 360 series, 1900 series	Pentium series,Multimedia,	Artificial Intelligence, Robotics

What is a Bus?

- A **communication pathway** connecting two or more devices
- Data connection between 2 or more devices connected to the computer
- Usually broadcast ,Often grouped
 - For Ex: A bus enables a computer processor to communicate with the memory or video card to communicate with the memory
 - e.g. 32 bit data bus is 32 separate single bit channels
- Power lines may not be shown

Buses

- There are a number of possible interconnection systems
- Single and multiple BUS structures are most common
- e.g. Control/Address/Data bus (PC)
- e.g. Unibus (DEC-PDP)

Functions of Buses in Computers

- **Data sharing -** Serial/Parallel, 8-bit, 16-bit, 32-bit or even 64-bit buses.
- Addressing A bus has address lines which allows data to be sent to or from specific memory locations.
- Power A bus supplies power to various peripherals connected to it.
- Timing System clock-synchronize the peripherals attached to it with the rest of the system.

Eg: The expansion bus facilitates easy connection of more or additional components and devices on a computer such as a TV card or sound card.

Data Bus

- Carries data
 - Remember that there is no difference between "data" and "instruction" at this level
- Width is a key determinant of performance
 - 8, 16, 32, 64 bit

Address bus

- Identify the source or destination of data
- e.g. CPU needs to read an instruction (data) from a given location in memory
- Bus width determines maximum memory capacity of system
- 2 ^nos of address lines=Memory Capacity
 - e.g. 8080 has 16 bit address bus giving 64k address space
 - 32 bit?64bit ? 2 ^
 - (16.777216 million terabyte)

 Megabyte
 I,000,000 bytes

 Gigabyte
 I,000,000,000 bytes

 Terabyte
 I,000,000,000,000 bytes

 Petabyte
 I,000,000,000,000,000 bytes

 Exabyte
 I,000,000,000,000,000,000 bytes

 Zettabyte
 I,000,000,000,000,000,000,000 bytes

 Yottabyte
 I,000,000,000,000,000,000,000,000 bytes

Control Bus

- Controls activities of all units of a computer
- Main Function is to carry control signals generated by control unit
 - Ex: One line of control bus is used to indicate whether the CPU is reading/writing to the
 main memory
- Control and timing information
 - Memory read/write signal
 - Interrupt request
 - Clock signals

Bus Interconnection Scheme

Single Bus Problems

- Lots of devices on one bus leads to:
 - Propagation delays
 - Long data paths mean that co-ordination of bus use can adversely affect performance
- Most systems use multiple buses to overcome these problems

Multiple Bus

can be countered to some extent by incirate that the bus can carry and by using wider buses.

Most computer systems enjoy the use of multiple buses. These buses ar rchy. Systems bus Cache /main CPU I/O bus Memory Controller I/O(local bi I/O device I /O device

Bus Types

Dedicated

Separate data & address lines

Multiplexed

- Shared lines
- Address valid or data valid control line
- Advantage fewer lines
- Disadvantages
 - More complex control
 - Ultimate performance

Bus Arbitration

- More than one module controlling the bus
- e.g. CPU and DMA controller
- Only one module may control bus at one time
- Arbitration may be centralised or distributed

Centralised or Distributed Arbitration

- Centralised
 - Single hardware device controlling bus access
 - Bus Controller
 - Arbiter
 - May be part of CPU or separate
- Distributed
 - Each module may claim the bus
 - Control logic on all modules

PCI Bus-Peripheral Component Interconnect

- Intel released to public domain-32 bit and 64 bit versions
- Plug and play facility.
- PCI bus connects the CPU and expansion boards
 - Examples of PCI devices
 - Modem
 - Network Card
 - Sound Card, Video Card, etc

PCI Bus-Peripheral Component Interconnect

- Coupling of the processor and expansion bus by means of a bridge
- 32-bit standard bus width with a maximum transfer rate of 133 Mbytes/s
- expansion to 64 bits with a maximum transfer rate of 266 Mbytes/s, PCI-64/66 532 Mbytes/s,PCI-X 64/133 1064 Mbytes/s
- supporting of multi-processor systems
- burst transfers with arbitrary length
 - supporting of 5 V and 3.3 V power supplies

PCI Bus Lines (required)

- Systems lines
 - Including clock and reset
- Address & Data
 - 32 time mux lines for address/data
 - Interrupt & validate lines
- Interface Control
- Arbitration
 - Not shared
 - Direct connection to PC bus arbiter
- Error lines

PCI Bus Lines (Optional)

- Interrupt lines
 - Not shared
- Cache support
- ▶ 64-bit Bus Extension
 - Additional 32 lines
 - Time multiplexed
 - 2 lines to enable devices to agree to use 64-bit transfer

SCSI-Small Computer System Interface

- Set of standard electronic interfaces that allow personal computers PC's to communicate with peripheral hardware such as disk drives,tapes,CDs,Printers,scanners,etc
- Commonly used for hard disk drives and tape.
- Faster and more Flexibilty.
- SCSI standards are generally backward compatible
- SCSI interfaces have been replaced, for the most part, by

Universal Serial Bus (USB)

SCSI-Small Computer System Interface

- It allows you to add up to 15 peripheral devices.
- SCSI is widely used in workstations, servers, and mainframes; it is less commonly used in desktop PCs.

SCSI-Small Computer System Interface

- 3 versions
- 1. 8 bit 5 MB/s
- 2. 16 bit 320 MB/s
- 3. 32 bit 640 MB/s

SCSI Bus

Fig. 7.4.2: SCSI bus with host adapter and device controller

