Faculty: Vibha Mane



## Assignment 1A Probability Basics and Conditional Probability

## 1 Assignment

- 1. A coin is tossed three times, and the outcomes, heads or tails, are noted. Find
  - (a) the sample space.
  - (b) the set A corresponding to the event "the total number of heads is 2".
  - (c) the set B corresponding to the event "the outcome of the first toss is heads".
  - (d) the set  $A \cap B$  and describe the event that corresponds to this set.
- 2. Four balls numbered 1,2,3 and 4 are in an urn. Two balls are drawn randomly from the urn. The order of drawing is important.
  - (a) Find the sample space of the experiment.
  - (b) Let the event A be described by "one of the drawn balls is 2". Find the set that defines A.
  - (c) Let the event B be described by "the absolute value of the difference of the drawn balls is one". Find the set that defines B.
  - (d) Find the set that corresponds to the event defined by the statement "A occurs but B does not".
- 3. We roll a fair dice, and define the events  $A = \{1, 2, 3\}$ ,  $B = \{2, 4, 6\}$  and  $C = \{2, 3, 4, 5\}$ . Calculate the probabilities of the following events:
  - (a) A, B and C.
  - (b)  $A \cap B$ ,  $A \cap C$ ,  $B \cap C$  and  $A \cap B \cap C$ .
  - (c)  $A \cup B$ ,  $A \cup C$ ,  $B \cup C$  and  $A \cup B \cup C$ .
  - (d)  $(A \cap B)^C$  and  $(A \cup B)^C$ , directly and using De Morgan's laws.
- 4. Show that if events A and B are independent, then so are
  - (a) A and  $B^C$
  - (b)  $A^C$  and B
  - (c)  $A^C$  and  $B^C$

- 5. A coin is tossed three times, and the outcomes, heads or tails, are noted. All the elementary outcomes in the sample space have equal probabilities. Find the probabilities that
  - (a) the first two outcomes are heads.
  - (b) there are no heads.
  - (c) there are more heads than tails.
- 6. Two fair dice are rolled. Let their scores be represented by  $X_1$  and  $X_2$ . Find the probability  $P(X_1 = 4|X_1 + X_2 = 10)$ .
- 7. We roll two dice. Assume all 36 possibilities are equally likely. Let  $X_1$  and  $X_2$  be the result of the first and the second dice, respectively. Let S be the sum of the scores, that is  $S = X_1 + X_2$ . Calculate the following:
  - (a) P(S = k), for  $k = 2, 3, \dots 12$ .
  - (b)  $P(X_1 = 2|S = k)$  for  $k = 2, 3, \dots 12$ .
  - (c)  $P(X_1 = 6|S = k)$  for  $k = 2, 3, \dots 12$ .
- 8. We roll a fair dice, and define the events  $A = \{1, 2, 3\}$ ,  $B = \{2, 3, 4, 5\}$  and  $C = \{2, 4, 5, 6\}$ . Show that the probabilities satisfy the chain rule

$$P(A, B, C) = P(A|B, C)P(B|C)P(C)$$

9. A random number N of dice is thrown. Let  $A_i$  be the event that N=i, and

$$P(A_i) = \frac{1}{2^i}, \quad i = 1, 2, 3, \dots$$

- (a) Compute the probabilities  $P(A_i)$ , i = 1, 2, 3, 4.
- (b) Let us denote the sum of the scores by S. What is the probability that S is 4?
- 10. We have two dice. The first dice is fair, that is, all outcomes are equally likely. The second dice shows a 2 with probability 1/2. We choose a dice at random and observe the face 2. What is the probability that we chose the second dice?

## 11. An insurance company divides people into two categories

- accident-prone, call this event A.
- not accident-prone, event  $A^C$ .

They have statistics that an accident-prone person will have an accident in a 1-year period with probability 0.4. Further, the probability of accident for a not accident-prone person in a 1-year period is 0.05. It is also given that P(A) = 0.3.

- (a) What is the probability that a new policy holder will have an accident during the first year of the policy?
- (b) Suppose a new policy holder has an accident in the first year of the policy. What is the probability that he (or she) is accident prone?