Universität des Saarlandes Fakultät für Mathematik und Informatik Fachrichtung Mathematik

Prof. Dr. Roland Speicher Dr. Tobias Mai

Übungen zur Vorlesung Höhere Mathematik für Ingenieure I Wintersemester 2020/21

Blatt 10

Lösungshinweise

Notation:

(a) Es sei V ein Vektorraum über dem Grundkörper \mathbb{K} . Sind n beliebige Vektoren $\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)} \in V$ gegeben, so definieren wir ihre $lineare\ H\"{u}lle\ durch$

$$\operatorname{Spann}(\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}) := \left\{ \sum_{j=1}^{n} \lambda_{j} \mathbf{v}^{(j)} \mid \lambda_{1}, \dots, \lambda_{n} \in \mathbb{K} \right\}.$$

Man kann zeigen (siehe Aufgabe 2 (a) auf Präsenzblatt 9 B), dass $\operatorname{Spann}(\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)})$ einen Unterraum von V darstellt. Man nennt $\operatorname{Spann}(\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)})$ deshalb auch den $\operatorname{von} \mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}$ aufgespannten Unterraum von V.

(b) Es sei V ein \mathbb{R} -Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$. Ist M eine beliebige Teilmenge von V, so definieren wir $M^{\perp} := \{ \mathbf{v} \in V \mid \forall \, \mathbf{w} \in M : \langle \mathbf{v}, \mathbf{w} \rangle = 0 \}$. Wir nennen M^{\perp} das orthogonale $Komplement \ von \ M$. Man kann zeigen, dass M^{\perp} immer einen Unterraum von V darstellt.

Aufgabe 1 (6 + 6 Punkte): Im \mathbb{R}^4 betrachten wir die Vektoren

$$\mathbf{v}^{(1)} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \qquad \mathbf{v}^{(2)} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \qquad \mathbf{v}^{(3)} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \qquad \text{und} \qquad \mathbf{v}^{(4)} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

(a) Wir setzen

$$U := \operatorname{Spann}(\mathbf{v}^{(1)}, \mathbf{v}^{(2)})$$
 und $V := \operatorname{Spann}(\mathbf{v}^{(3)}, \mathbf{v}^{(4)}).$

Bestimmen Sie eine Basis des Unterraums $U \cap V$.

Hinweis: Für jedes $\mathbf{x} \in U \cap V$ gibt es $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R}$ mit $\mathbf{x} = \lambda_1 \mathbf{v}^{(1)} + \lambda_2 \mathbf{v}^{(2)} = \lambda_3 \mathbf{v}^{(3)} + \lambda_4 \mathbf{v}^{(4)}$.

(b) Wir betrachten nun den Unterraum

$$W := \text{Spann}(\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \mathbf{v}^{(3)}, \mathbf{v}^{(4)}).$$

Bestimmen Sie dim W und geben Sie eine Orthonormalbasis von W an.

Lösung:

(a) Es sei $\mathbf{x} \in U \cap V$. Wie im Hinweis angegeben gibt es dann $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R}$ mit

$$\mathbf{x} = \lambda_1 \mathbf{v}^{(1)} + \lambda_2 \mathbf{v}^{(2)} = \lambda_3 \mathbf{v}^{(3)} + \lambda_4 \mathbf{v}^{(4)}.$$

Dies führt uns auf die Bedingung

$$\lambda_{1} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + \lambda_{2} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \lambda_{3} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \lambda_{4} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \tag{1}$$

die wir zu dem folgenden linearen Gleichungssystem umschreiben können:

$$\lambda_1 = \lambda_3 \tag{2}$$

$$\lambda_2 = \lambda_4 \tag{3}$$

$$\lambda_2 = \lambda_3 \tag{4}$$

$$\lambda_1 = \lambda_4 \tag{5}$$

Daraus folgern wir, dass

$$\lambda_1 \stackrel{\text{(2)}}{=} \lambda_3 \stackrel{\text{(4)}}{=} \lambda_2 \stackrel{\text{(3)}}{=} \lambda_4.$$

Umgekehrt ist die Bedingung (1) natürlich erfüllt, wenn $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4$ gilt. Dementsprechend gilt $\mathbf{x} \in U \cap V$ genau dann, wenn es ein $\lambda \in \mathbb{R}$ gibt, sodass $\mathbf{x} = \lambda \mathbf{v}$ mit

$$\mathbf{v} := \mathbf{v}^{(1)} + \mathbf{v}^{(2)} = \mathbf{v}^{(3)} + \mathbf{v}^{(4)} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

Also haben wir $U \cap V = \operatorname{Spann}(\mathbf{v})$ und \mathbf{v} ist eine Basis von $U \cap V$.

(b) Aus Aufgabenteil (a) wissen wir bereits, dass $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \mathbf{v}^{(3)}, \mathbf{v}^{(4)}$ die Relation $\mathbf{v}^{(1)} + \mathbf{v}^{(2)} + (-1)\mathbf{v}^{(3)} + (-1)\mathbf{v}^{(4)} = \mathbf{0}$ erfüllen und deshalb nicht linear unabhängig sein können. Insbesondere haben wir $\mathbf{v}^{(4)} = \mathbf{v}^{(1)} + \mathbf{v}^{(2)} + (-1)\mathbf{v}^{(3)}$ und deshalb

$$W = \operatorname{Spann}(\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \mathbf{v}^{(3)}).$$

Wir behaupten, dass $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \mathbf{v}^{(3)}$ linear unabhängig sind und dementsprechend eine Basis von W darstellen. Dazu seien $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ gegeben, die die Bedingung $\lambda_1 \mathbf{v}^{(1)} + \lambda_2 \mathbf{v}^{(2)} + \lambda_3 \mathbf{v}^{(3)} = \mathbf{0}$ erfüllen. Konkret bedeutet dies

$$\lambda_1 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} + \lambda_3 \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix},$$

was wir zu dem folgenden linearen Gleichungssystem umschreiben können:

$$\lambda_1 + \lambda_3 = 0 \tag{6}$$

$$\lambda_2 = 0 \tag{7}$$

$$\lambda_2 + \lambda_3 = 0 \tag{8}$$

$$\lambda_1 = 0 \tag{9}$$

Gemäß (9) und (7) haben wir $\lambda_1 = 0$ und $\lambda_2 = 0$, woraus sich mit (6) oder (8) unmittelbar $\lambda_3 = 0$ ergibt. Folglich sind $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \mathbf{v}^{(3)}$ wie behauptet linear unabhängig und stellen eine Basis von W dar, d. h. dim W = 3.

Wir nutzen nun das Gram-Schmidt-Verfahren, um aus $(\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \mathbf{v}^{(3)})$ eine Orthonormalbasis $(\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \mathbf{w}^{(3)})$ von W zu konstruieren. Wir setzen zunächst

$$\mathbf{w}^{(1)} := \frac{\mathbf{v}^{(1)}}{\|\mathbf{v}^{(1)}\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix},$$

dann

$$\tilde{\mathbf{w}}^{(2)} := \mathbf{v}^{(2)} - \langle \mathbf{v}^{(2)}, \mathbf{w}^{(1)} \rangle \mathbf{w}^{(1)} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} - \langle \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \rangle \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

und

$$\mathbf{w}^{(2)} := \frac{\tilde{\mathbf{w}}^{(2)}}{\|\tilde{\mathbf{w}}^{(2)}\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}$$

und schließlich

$$\begin{split} \tilde{\mathbf{w}}^{(3)} &:= \mathbf{v}^{(3)} - \langle \mathbf{v}^{(3)}, \mathbf{w}^{(1)} \rangle \mathbf{w}^{(1)} - \langle \mathbf{v}^{(3)}, \mathbf{w}^{(2)} \rangle \mathbf{w}^{(2)} \\ &= \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} - \langle \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \rangle \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \langle \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} - \frac{1}{2} \langle \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \rangle \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{2} \langle \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \rangle \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \\ &= 1 \end{split}$$

$$= \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$

und

$$\mathbf{w}^{(3)} := \frac{\tilde{\mathbf{w}}^{(3)}}{\|\tilde{\mathbf{w}}^{(3)}\|} = \tilde{\mathbf{w}}^{(3)} = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}.$$

Nach Konstruktion bildet $(\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \mathbf{w}^{(3)})$ eine Orthonormalbasis von W.

Aufgabe 2 (5 + 3 + 2 Punkte):

- (a) Betrachten Sie den Unterraum $V := \{ \mathbf{x} \in \mathbb{R}^4 \mid x_1 x_2 + x_3 x_4 = 0 \}$ des \mathbb{R}^4 . Bestimmen Sie dim V und geben Sie eine Orthonormalbasis von V an.
- (b) Ergänzen Sie die in (a) bestimmte Orthonormalbasis von V zu einer Orthonormalbasis des \mathbb{R}^4 .
- (c) Stellen Sie den kanonischen Einheitsvektor $\mathbf{e}^{(1)}$ als Linearkombination der in (b) bestimmten Basisvektoren dar.

Lösung:

(a) Als Unterraum von \mathbb{R}^4 muss $\dim V \leq \dim \mathbb{R}^4 \leq 4$ gelten. Wir wollen nun ausschließen, dass $\dim V = 4$ gelten kann. Wäre $\dim V = 4$, so könnten wir eine Basis von V finden, also ein maximales System $(\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \mathbf{v}^{(3)}, \mathbf{v}^{(4)})$ linear unabhängiger Vektoren in V. Diese Vektoren wären dann aber auch in \mathbb{R}^4 linear unabhängig, weshalb $(\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \mathbf{v}^{(3)}, \mathbf{v}^{(4)})$ auch eine Basis von \mathbb{R}^4 sein müsste. Weil wir aus der Vorlesung wissen, dass jeder Vektor (in eindeutiger Weise) als Linearkombination der Basisvektoren geschrieben werden kann, wäre damit $V = \operatorname{Spann}(\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \mathbf{v}^{(3)}, \mathbf{v}^{(4)}) = \mathbb{R}^4$. Dies ist jedoch nicht möglich, weil der Vektor $\mathbf{e}^{(1)} \in \mathbb{R}^4$ offensichtlich nicht zu V gehört. Deshalb muss dim $V \leq 3$ gelten.

Wir zeigen nun dim V=3, indem wir drei linear unabhängige Vektoren in V angeben. Wir betrachten

$$\mathbf{v}^{(1)} := \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \qquad \mathbf{v}^{(2)} := \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix} \qquad \text{und} \qquad \mathbf{v}^{(3)} := \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}.$$

Diese gehören offensichtlich zu V. Wir überzeugen uns nun davon, dass $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \mathbf{v}^{(3)}$ linear unabhängig sind. Hierzu nehmen wir an, dass $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ die Bedingung $\lambda_1 \mathbf{v}^{(1)} + \lambda_2 \mathbf{v}^{(2)} + \lambda_3 \mathbf{v}^{(3)} = \mathbf{0}$ erfüllen. Dies bedeutet konkret

$$\lambda_1 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} + \lambda_3 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

und führt uns deshalb auf das folgende lineare Gleichungssystem:

$$\lambda_1 + \lambda_2 + \lambda_3 = 0$$
$$\lambda_1 = 0$$
$$-\lambda_2 = 0$$
$$\lambda_3 = 0$$

Hieraus ergibt sich unmittelbar, dass $\lambda_1 = \lambda_2 = \lambda_3 = 0$ gelten muss. Also sind die Vektoren $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \mathbf{v}^{(3)}$ wie behauptet linear unabhängig. Insbesondere haben wir deshalb dim $V \geq 3$. Weil wir eingangs bereits gesehen haben, dass dim $V \leq 3$ gelten muss, folgt dim V = 3.

Schließlich bestimmen wir mittels des Gram-Schmidt-Verfahrens aus $(\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \mathbf{v}^{(3)})$ eine Orthonormalbasis $(\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \mathbf{w}^{(3)})$ von V. Wir setzen dafür

$$\mathbf{w}^{(1)} := \frac{\mathbf{v}^{(1)}}{\|\mathbf{v}^{(1)}\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix},$$

dann

$$\tilde{\mathbf{w}}^{(2)} := \mathbf{v}^{(2)} - \langle \mathbf{v}^{(2)}, \mathbf{w}^{(1)} \rangle \mathbf{w}^{(1)}
= \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} - \langle \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \rangle \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}
= \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} - \frac{1}{2} \langle \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \rangle \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}
= \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ -2 \\ 0 \end{pmatrix}$$

und

$$\mathbf{w}^{(2)} := \frac{\tilde{\mathbf{w}}^{(2)}}{\|\tilde{\mathbf{w}}^{(2)}\|} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\ -1\\ -2\\ 0 \end{pmatrix}$$

und schließlich

$$\begin{split} \tilde{\mathbf{w}}^{(3)} &:= \mathbf{v}^{(3)} - \langle \mathbf{v}^{(3)}, \mathbf{w}^{(1)} \rangle \mathbf{w}^{(1)} - \langle \mathbf{v}^{(3)}, \mathbf{w}^{(2)} \rangle \mathbf{w}^{(2)} \\ &= \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \rangle \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} - \langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -1 \\ -2 \\ 0 \end{pmatrix} \rangle \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -1 \\ -2 \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{2} \langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \rangle \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} - \frac{1}{6} \langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ -2 \\ 0 \end{pmatrix} \rangle \begin{pmatrix} 1 \\ -1 \\ -2 \\ 0 \end{pmatrix} \\ &= 1 \end{split}$$

$$= \frac{1}{3} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 3 \end{pmatrix}$$

und

$$\mathbf{w}^{(3)} := \frac{\tilde{\mathbf{w}}^{(3)}}{\|\tilde{\mathbf{w}}^{(3)}\|} = \frac{1}{2\sqrt{3}} \begin{pmatrix} 1\\-1\\1\\3 \end{pmatrix}.$$

Nach Konstruktion bildet $(\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \mathbf{w}^{(3)})$ eine Orthonormalbasis von V.

(b) Bereits in Aufgabenteil (a) haben wir ausgenutzt, dass $\mathbf{e}^{(1)}$ nicht zu V gehört. Somit besteht $(\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \mathbf{v}^{(3)}, \mathbf{e}^{(1)})$ aus linear unabhängigen Vektoren, bildet also eine Basis von \mathbb{R}^4 . Aus dieser können wir mithilfe des Gram-Schmidt-Verfahrens eine Orthonormalbasis von \mathbb{R}^4 konstruieren. Die ersten drei Schritte haben wir schon in Aufgabenteil (a) durchgeführt. Es fehlt damit nur der letzte Schritt. Dafür setzen wir

$$\begin{split} \tilde{\mathbf{w}}^{(4)} &:= \mathbf{e}^{(1)} - \langle \mathbf{e}^{(1)}, \mathbf{w}^{(1)} \rangle \mathbf{w}^{(1)} - \langle \mathbf{e}^{(1)}, \mathbf{w}^{(2)} \rangle \mathbf{w}^{(2)} - \langle \mathbf{e}^{(1)}, \mathbf{w}^{(3)} \rangle \mathbf{w}^{(3)} \\ &= \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} - \frac{1}{6} \begin{pmatrix} 1 \\ -1 \\ -2 \\ 0 \end{pmatrix} - \frac{1}{12} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 3 \end{pmatrix} \\ &= \frac{1}{4} \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} \end{split}$$

und schließlich

$$\mathbf{w}^{(4)} := \frac{\tilde{\mathbf{w}}^{(4)}}{\|\tilde{\mathbf{w}}^{(4)}\|} = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}.$$

Mit $(\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \mathbf{w}^{(3)}, \mathbf{w}^{(4)})$ haben wir dann die gewünschte Orthonormalbasis von \mathbb{R}^4 gefunden.

(c) Es gilt

$$\begin{split} \mathbf{e}^{(1)} &= \langle \mathbf{e}^{(1)}, \mathbf{w}^{(1)} \rangle \mathbf{w}^{(1)} + \langle \mathbf{e}^{(1)}, \mathbf{w}^{(2)} \rangle \mathbf{w}^{(2)} + \langle \mathbf{e}^{(1)}, \mathbf{w}^{(3)} \rangle \mathbf{w}^{(3)} + \langle \mathbf{e}^{(1)}, \mathbf{w}^{(4)} \rangle \mathbf{w}^{(4)} \\ &= \frac{1}{\sqrt{2}} \mathbf{w}^{(1)} + \frac{1}{\sqrt{6}} \mathbf{w}^{(2)} + \frac{1}{2\sqrt{3}} \mathbf{w}^{(3)} + \frac{1}{2} \mathbf{w}^{(4)}. \end{split}$$

Aufgabe 3 (5 + 3 Punkte): Es sei

$$M = \left\{ \mathbf{x} \in \mathbb{R}^3 \mid \mathbf{x} = \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, -1 \le \lambda \le 1 \right\}.$$

- (a) Bestimmen Sie eine Orthonormalbasis von M^{\perp} .
- (b) Bestimmen Sie $(M^{\perp})^{\perp}$ und $((M^{\perp})^{\perp})^{\perp}$.

Lösung: Zur Abkürzung setzen wir
$$\mathbf{e} := \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 und schreiben $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ für $\mathbf{x} \in \mathbb{R}^3$.

(a) Es sei $\mathbf{x} \in \mathbb{R}^3$ gegeben. Wir sehen damit, dass

$$\mathbf{x} \in M^{\perp}$$
 \iff $\forall \lambda \in [-1, 1] : \langle \mathbf{x}, \lambda \mathbf{e} \rangle = 0$
 \iff $\langle \mathbf{x}, \mathbf{e} \rangle = 0$
 \iff $x_1 + x_2 + x_3 = 0.$

Wir betrachten nun die zwei Vektoren

$$\mathbf{v}^{(1)} := \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \quad \text{und} \quad \mathbf{v}^{(2)} := \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$$

Diese sind offensichtlich linear unabhängig und gehören nach der eingangs bewiesenen Charakterisierung zu M^{\perp} . Wir haben also dim $M^{\perp} \geq 2$ und zudem die triviale Abschätzung dim $M^{\perp} \leq \dim \mathbb{R}^3 = 3$. Wegen $\mathbf{e} \notin M^{\perp}$ ist dim $M^{\perp} = 3$ nicht möglich; vgl. Aufgabe 2 (a). Folglich muss dim $M^{\perp} = 2$ gelten und $(\mathbf{v}^{(1)}, \mathbf{v}^{(2)})$ stellt eine Basis von M^{\perp} dar.

Wir nutzen das Gram-Schmidt-Verfahren, um aus $(\mathbf{v}^{(1)}, \mathbf{v}^{(2)})$ ein Orthonormalsystem von M^{\perp} zu konstruieren. Hierfür setzen wir

$$\mathbf{w}^{(1)} := \frac{\mathbf{v}^{(1)}}{\|\mathbf{v}^{(1)}\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1\\0 \end{pmatrix}$$

und

$$\begin{split} \tilde{\mathbf{w}}^{(2)} &:= \mathbf{v}^{(2)} - \langle \mathbf{v}^{(2)}, \mathbf{w}^{(1)} \rangle \mathbf{w}^{(1)} \\ &= \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} - \langle \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \rangle \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} - \frac{1}{2} \underbrace{\langle \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \rangle}_{=1} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \end{split}$$

und damit

$$\mathbf{w}^{(2)} := \frac{\tilde{\mathbf{w}}^{(2)}}{\|\tilde{\mathbf{w}}^{(2)}\|} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\1\\-2 \end{pmatrix}.$$

Die gewünschte Orthonormalbasis von M^{\perp} ist also $(\mathbf{w}^{(1)}, \mathbf{w}^{(2)})$.

(b) Es sei $\mathbf{x} \in \mathbb{R}^3$. Weil $(\mathbf{x}^{(1)}, \mathbf{x}^{(2)})$ nach Aufgabenteil (a) eine Basis von M^{\perp} darstellt, gilt $\mathbf{x} \in (M^{\perp})^{\perp}$ genau dann, wenn die beiden Bedingungen

$$\langle \mathbf{x}, \mathbf{v}^{(1)} \rangle = 0$$
 und $\langle \mathbf{x}, \mathbf{v}^{(2)} \rangle = 0$

erfüllt sind. In der üblichen Komponentenschreibweise für ${\bf x}$ besagen die vorgenannten Bedingungen in äquivalenter Form, dass

$$x_1 - x_2 = 0$$
 und $x_1 - x_3 = 0$.

Hieraus folgt $x_1 = x_2 = x_3$; es existiert also ein $\lambda \in \mathbb{R}$, sodass $\mathbf{x} = \lambda \mathbf{e}$. Umgekehrt liefert uns das Kriterium, dass jeder Vektor dieser Form zu $(M^{\perp})^{\perp}$ gehören muss. Zusammenfassend haben wir also $(M^{\perp})^{\perp} = \operatorname{Spann}(\mathbf{e})$ und damit ferner

$$((M^{\perp})^{\perp})^{\perp} = \operatorname{Spann}(\mathbf{e})^{\perp} = M^{\perp} = \operatorname{Spann}(\mathbf{w}^{(1)}, \mathbf{w}^{(2)}).$$

Aufgabe 4 (10 Punkte): Für zwei Vektoren $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$ definieren wir das Vektorprodukt

$$\mathbf{x} \times \mathbf{y} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \times \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} := \begin{pmatrix} x_2 y_3 - x_3 y_2 \\ x_3 y_1 - x_1 y_3 \\ x_1 y_2 - x_2 y_1 \end{pmatrix} \in \mathbb{R}^3.$$

Zeigen Sie (durch direktes Nachrechnen mittels der Definitionen von Vektor- und Skalarprodukt) für alle $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^3$ den Entwicklungssatz

$$\mathbf{x} \times (\mathbf{y} \times \mathbf{z}) = \langle \mathbf{x}, \mathbf{z} \rangle \mathbf{y} - \langle \mathbf{x}, \mathbf{y} \rangle \mathbf{z}.$$

Lösung: Gegeben seien drei Vektoren $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^3$; wir schreiben wie üblich

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \quad \text{und} \quad \mathbf{z} = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}.$$

Damit rechnen wir nach, dass

$$\begin{split} &\langle \mathbf{x}, \mathbf{z} \rangle \mathbf{y} - \langle \mathbf{x}, \mathbf{y} \rangle \mathbf{z} \\ &= \langle \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \rangle \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} - \langle \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \rangle \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \\ &= (x_1 z_1 + x_2 z_2 + x_3 z_3) \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} - (x_1 y_1 + x_2 y_2 + x_3 y_3) \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \\ &= \begin{pmatrix} x_1 y_1 z_1 + x_2 y_1 z_2 + x_3 y_1 z_3 \\ x_1 y_2 z_1 + x_2 y_2 z_2 + x_3 y_2 z_3 \\ x_1 y_3 z_1 + x_2 y_3 z_2 + x_3 y_3 z_3 \end{pmatrix} - \begin{pmatrix} x_1 y_1 z_1 + x_2 y_2 z_1 + x_3 y_3 z_1 \\ x_1 y_1 z_2 + x_2 y_2 z_2 + x_3 y_3 z_2 \\ x_1 y_1 z_2 + x_2 y_2 z_2 + x_3 y_3 z_2 \end{pmatrix} \\ &= \begin{pmatrix} x_2 y_1 z_2 - x_2 z_1 y_2 - x_3 y_3 z_1 + x_3 y_1 z_3 \\ x_3 y_2 z_3 - x_3 y_3 z_2 - x_1 y_1 z_2 + x_1 y_2 z_1 \\ x_1 y_3 z_1 - x_1 y_1 z_3 - x_2 y_2 z_3 + x_2 y_3 z_2 \end{pmatrix} \\ &= \begin{pmatrix} x_2 (y_1 z_2 - z_1 y_2) - x_3 (y_3 z_1 - y_1 z_3) \\ x_3 (y_2 z_3 - y_3 z_2) - x_1 (y_1 z_2 - z_1 y_2) \\ x_1 (y_3 z_1 - y_1 z_3) - x_2 (y_2 z_3 - y_3 z_2) \end{pmatrix} \\ &= \mathbf{x} \times \begin{pmatrix} y_2 z_3 - y_3 z_2 \\ y_3 z_1 - y_1 z_3 \\ y_1 z_2 - z_1 y_2 \end{pmatrix} \\ &= \mathbf{x} \times (\mathbf{y} \times \mathbf{z}). \end{split}$$

Zusatzaufgabe $(4 \times 5 \text{ Punkte})$:

(a) Es seien A, B, C Mengen. Verdeutlichen Sie die folgende Beziehung zunächst anhand eines Venn-Diagrammes und geben Sie anschließend einen formalen Beweis:

$$(A \cup B) \cap (C \setminus B) \subseteq (A \cup C).$$

Belegen Sie mit einem Beispiel, dass im Allgemeinen keine Gleichheit gelten kann.

- (b) Zusammen mit zwei Bekannten nehmen Sie an einem Wettbewerb mit insgesamt sieben Personen teil. Wie viele Möglichkeiten gibt es,
 - (i) dass Sie Dritter werden und besser als Ihre beiden Bekannten abschneiden;
 - (ii) dass Sie als Vierter abschneiden, einer Ihrer Bekannten besser ist als Sie und der andere den letzten Platz belegt?
- (c) Es seien A, B, C Aussagen. Für welche Kombinationen von w(A), w(B), w(C) sind die Aussagen $A \Rightarrow \neg B, \neg B \Rightarrow A$ und $B \Leftrightarrow C$ alle richtig?
- (d) Es sei (G, \circ) eine endliche Gruppe mit neutralem Element $e \in G$. Zeigen Sie, dass es für alle $g \in G$ ein $n \in \mathbb{N}$ gibt, sodass $g^n = e$, wobei $g^n := \underbrace{g \circ \cdots \circ g}_{E}$.

Lösung:

(a) Die folgenden beiden Venn-Diagramme veranschaulichen die Situation:

Dies stützt die Behauptung, dass allgemein $(A \cup B) \cap (C \setminus B) \subseteq (A \cup C)$ gilt. Den formalen Beweis dieser Inklusion erbringen wir wie folgt: Es sei $x \in (A \cup B) \cap (C \setminus B)$ gegeben. Dann muss $x \in C \setminus B$ und damit $x \in C$ gelten, woraus sich insbesondere $x \in A \cup C$ ergibt. Dies zeigt, dass $(A \cup B) \cap (C \setminus B) \subset A \cup C$.

Um einzusehen, dass hier im Allgemeinen keine Gleichheit gelten kann, betrachten wir die Mengen $A = \{1\}$, $B = \{2\}$ und $C = \{3\}$. Für diese gilt

$$(A \cup B) \cap (C \setminus B) = \{1, 2\} \cap \{3\} = \emptyset,$$

wohingegen

$$A \cup C = \{1, 3\},\$$

sodass die beiden Mengen nicht gleich sind.

- (b) (i) Die erste Person kann die Plätze 4-7 belegen (4 Möglichkeiten) und die zweite Person kann eine der drei verbleibenden Plätze belegen (2-Permutation aus $\{1,\ldots,4\}$ ohne Wiederholung). Die übrigen Läufer belegen beliebig einen der 4 restlichen Plätze (4! = 24 Möglichkeiten). Insgesamt gibt es also $4\cdot 3\cdot 24=288$ Möglichkeiten.
 - (ii) Eine der beiden anderen Personen belegt den letzten Platz (2 Möglichkeiten), die zweite Person belegt einen der Plätze 1-3. Die übrigen Läufer belegen beliebig einen der 4 restlichen Plätze (4! = 24 Möglichkeiten). Insgesamt gibt es also $2 \cdot 3 \cdot 24 = 144$ Möglichkeiten.
- (c) Zunächst bestimmen wir alle möglichen Kombinationen mit Hilfe einer Wahrheitstafel:

w(A)	w(B)	w(C)	$w(\neg B)$	$w(A \Rightarrow \neg B)$	$w(\neg B \Rightarrow A)$	$w(B \Leftrightarrow C)$
1	1	1	0	0	1	1
1	1	0	0	0	1	0
1	0	1	1	1	1	0
1	0	0	1	1	1	1
0	1	1	0	1	1	1
0	1	0	0	1	1	0
0	0	1	1	1	0	0
0	0	0	1	1	0	1

Die Aussagen $A \Rightarrow \neg B$, $\neg B \Rightarrow A$ und $B \Leftrightarrow C$ sind also genau dann alle richtig, falls entweder

- A richtig, B falsch und C falsch oder
- A falsch, B richtig und C richtig sind.
- (d) Es sei $g \in G$ beliebig vorgegeben. Wir betrachten die Abbildung $\varphi : \mathbb{N} \to G, n \mapsto g^n$. Das Bild $\varphi(\mathbb{N}) = \{g^n \mid n \in \mathbb{N}\}$ dieser Abbildung stellt eine Teilmenge der nach Voraussetzung endlichen Menge G dar, muss also selbst endlich sein. Folglich kann φ nicht injektiv sein. (Wäre nämlich φ injektiv, dann würde φ eine Bijektion $\varphi : \mathbb{N} \to \varphi(\mathbb{N})$ liefern, weshalb $\varphi(\mathbb{N})$ abzählbar unendlich müsste, also insbesondere nicht endlich sein könnte.) Da φ nicht injektiv ist, gibt es $n_1, n_2 \in \mathbb{N}$ mit $n_1 \neq n_2$, sodass $\varphi(n_1) = \varphi(n_2)$, d. h. $g^{n_1} = g^{n_2}$. Ohne Beschränkung der Allgemeinheit können wir annehmen, dass $n_2 > n_1$ gilt. Somit ist $n := n_2 n_1 \in \mathbb{N}$. Wir zeigen, dass n die gewünschte Eigenschaft besitzt. Tatsächlich erhalten wir

$$g^n \circ g^{n_1} = g^{n_2 - n_1} \circ g^{n_1} = g^{(n_2 - n_1) + n_1} = g^{n_2} = g^{n_1}$$

und damit schließlich

$$g^n = g^n \circ e = g^n \circ (g^{n_1} \circ (g^{n_1})^{-1}) = (g^n \circ g^{n_1}) \circ (g^{n_1})^{-1} = g^{n_1} \circ (g^{n_1})^{-1} = e.$$