SOLID GIRGUIT

SERIES 15 930 SEMICONDUCTOR NETWORKS†

DIODE-TRANSISTOR LOGIC (DTL) NETWORKS FOR DIGITAL SYSTEMS

application

The series 15 930 networks are designed for use in medium to high-speed digital applications, including data handling, computer and control systems. Definitive specifications are provided for operating characteristics over the full military temperature range of -55°C to 125°C.

features

LOW SYSTEM COST

- multifunction gates offering low cost per logic function
- electrically designed specifically for monolithic integrated-circuit technology

PERFORMANCE

- high speed
- high d-c noise margins
- low power dissipation
- good fan-out capability

EASE OF DESIGN

- familiar logic configuration (DTL)
- single-ended output dot-OR logic
- complete family for design flexibility
- single power supply

TYPE SN15 931 FLIP-FLOP BAR

description

Series 15 930 is a complete family of diodetransistor logic (DTL) which is most attractive when high performance and low cost per function are necessities to system design.

The basic family consists of NAND gates, an expander, a buffer, a driver and a d-c coupled flip-flop. Dual, triple, and quadruple multifunction-gates are available to minimize system package count.

This line features a unique combination of high speed, high d-c noise margin, and low power dissipation. The single-ended output lends itself readily to performing dot-OR logic thus reducing the number of different type functional blocks in a system.

CONTENTS	Page
DESIGN CHARACTERISTICS AND LOGICAL SYMBOLS	. 2-3
LOADING TABLES	. 4
DEFINITIVE SPECIFICATIONS	. 5-17
D-C TEST CIRCUITS	. 18-21
SWITCHING TIME VOLTAGE WAVEFORMS	. 22-23
MECHANICAL AND PACKAGING DATA	. 24

†Patented by Texas Instruments Incorporated.

typical operating characteristics, $T_A = -55\,^{\circ}\text{C}$ to 125°C, supply voltage $V_{\text{CC}} = 4.5~\text{v}$ to 5.5 v

Speed: Gate Propagation Delay												•							25 nsec
Flip-flop Clock Rate		•		•															7 Mc
Fan-Out Capability: Standard G	ate								٠.										Ω
Flip-flop										•	•	•	•	•	•	•	•	•	-
Ruffor		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	/
Buffer .	• •	•	•	•	٠	•	•	•	•	•	•	•	•	•			•	•	25
Power Gate	θ.		•																27
D-C Margin: At logical 1											_		_						500 my
At logical 0								•	•	•	٠	•	•	•	•	•	•	•	500 1114
Average Power Dissingtion, Por	Gail		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ouu mv
Average Power Dissipation: Per	Gai	e.	•	•	•	•	•	•	•	•	•	•	•	•		•	•		5 mw
Per	Flip	-flop	•		•														20 mw

design characteristics

Series 15 930 is a complete line of high-speed, high-noise-margin, low-power-dissipation, saturated DTL logic. The circuitry is a modification of the conventional DTL in that it utilizes only one power supply and provides a nonsaturating offset transistor in place of one of the offset diodes.

Replacing the offset diode D_1 with transistor Q_1 offers both the manufacturer and the customer a number of advantages:

- Elimination of the V_{BB} power supply makes one more pin available for multifunction capability, which in turn reduces system package count.
- 2. Reduction of size of resistor R_3 from 20 $k\Omega$ to $5~k\Omega$ invites a substantial reduction in the overall size of the monolithic chip and improves yields. Both of these factors contribute heavily to reducing manufacturing costs.
- 3. Reduction of turn-off current transients on signal lines is accomplished because the stored charge on the output transistor \mathbf{Q}_2 is removed locally by \mathbf{R}_3 rather than through diodes \mathbf{D}_1 and \mathbf{D}_2 onto the input signal lines. These transients are also reduced during switching by the offset transistor

 \mathbf{Q}_1 which operates in the unsaturated mode. This technique eliminates the necessity of producing low-speed, high-stored-charge diodes in the same monolithic bar with fast input diodes.

4. The offset transistor Q_1 provides additional drive current to the output transistor Q_2 without requiring high input currents when the input is in the low state. High input currents would limit fan-out of the driving gates. The additional drive to the output transistor invites the use of a smaller base resistor R_3 and relaxes the h_{FE} requirement of the output transistor thus producing higher manufacturing yields.

In order to drive high-fan-out or high-capacity loads, a buffer is available which has a modified double-ended output. This output has a high-sink-current capability when in the on state and a low-impedance emitter-follower output in the off state.

The d-c coupled flip-flop is based on the master-slave principle. This device has AND gate inputs for entry into the master section which are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows (see figure C):

- 1. Isolate slave from master
- 2. Enter information from AND gate inputs to master
- 3. Disable AND gate inputs
- 4. Transfer information from master to slave.

standard line summary

SERIES 15930 SOLID GIRGUIT® SEMICONDUCTOR NETWORKS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply Voltage V _{CC} (See Note 1)	+8 v
Continuous Output Sink Current (SN15 930, SN15 931, SN15 946 and SN15 962)	0 ma
Continuous Output Sink Current (SN15 932 and SN15 944)	i0 ma
Current Out of Input Terminal	0 ma
Current Into Input Terminal	1 ma
Operating Free-Air Temperature Range (See Note 2)	25°C
Storage Temperature Range	50°C

NOTES: 1. Voltage values are with respect to network ground terminal.

2. This rating applies for networks operating at $V_{CC}=5.5$ v, all inputs \dagger at 5.5 v, and the following output current:

SN15 930†,	Sł	N15	94	46,	S	N15	9	62								12	ma
SN15 931 .																	
SN15 932†																36	ma
SN15 944†																40	ma

[†]Expander nodes open

logic definition

Series 15 930 logic is defined in terms of standard POSITIVE LOGIC using the following definitions:

LOW VOLTAGE = LOGICAL 0 HIGH VOLTAGE = LOGICAL 1

input current requirements

Weighted values of input current requirements reflect worst case conditions for $T_A=-55^{\circ}\text{C}$ to 125°C and $V_{\text{CC}}\!=\!4.5\,\text{v}$ to $5.5\,\text{v}$. Each gate input requires that no more than 1.6 ma flow out of the input at a logical 0 input voltage level; therefore, one input load is 1.6 ma maximum. Currents into the input terminals are specified as positive values. Arrows on the d-c test circuits indicate the actual direction of current flow.

WEIGHTED	VALUES C	F INPUT CURR	ENT REQUIREMENTS
NETWORK	TYPE	INPUT	NUMBER OF LOADS
GATES AND EXPANDER	SN15 930 SN15 932 SN15 933 SN15 944 SN15 946 SN15 962	Each Input	ו
FLIP-FLOP	SN15 931	Each Input (Synchronous or Asynchronous)	₹3
		Clock	2

output drive capability

Weighted values of fan-out reflect the ability of an output to sink current (into the ouput terminal) under recommended operating conditions and are specified as positive values. Load currents (out of the output terminal) are specified as negative values. Arrows on the d-c test circuits indicate the actual direction of current flow.

	WEIGHTED	VALUES OF	FAN-OUT
NETWORK	TYPE	OUTPUT	NOMINAL LOADS
FLIP-FLOP	SN15 931	Q or Q	7
GATES	SN15 930 SN15 946 SN15 962	Each Output	8
BUFFER	SN15 932	Each Output	25
POWER GATE	SN15 944	Each Output	27

TYPE SN15 930 DUAL 4-INPUT NAND/NOR GATE

recommended operating conditions

Supply Voltage V_{CC}										. 4	4.5	v to	5.5	5 v
Maximum Fan-Out From Each Output .														. 8

PARAMETER	TEST FIGURE	TEST CONDITIONS†	MIN	MAX	UNIT
		$V_{CC} = 4.5 \text{ v}, \qquad V_{in} = 1.9 \text{ v}, \\ I_{sink} = 12 \text{ ma}, \qquad T_A = 25 ^{\circ}\text{C}$		0.4	٧
V _{out(0)} Logical 0 output voltage (on level)	1	$V_{CC} = 4.5 \text{ v}, V_{in} = 2.1 \text{ v}, \\ I_{sink} = 11.4 \text{ ma}, T_A = -55 ^{\circ} \text{C}$		0.4	v
		$V_{CC} = 4.5 \text{ v}, V_{in} = 1.7 \text{ v}, \\ I_{sink} = 10.8 \text{ ma}, T_A = 125 ^{\circ}\text{C}$		0.45	٧
		$V_{CC} = 4.5 \text{ v}, V_{in} = 1.1 \text{ v}, I_{load} = 0.12 \text{ ma}, T_A = 25 ^{\circ}\text{C}$	2.6		٧
V _{out(1)} Logical 1 output voltage (off level)	2	$V_{CC} = 4.5 \text{ v}, V_{in} = 1.4 \text{ v}, I_{load} = 0.12 \text{ ma}, T_A = -55 ^{\circ}\text{C}$	2.5		٧
		$V_{CC} = 4.5 \text{ v}, V_{in} = 0.8 \text{ v}, I_{load} = 0.12 \text{ ma}, T_A = 125 ^{\circ}\text{C}$	2.5		٧

[†] Expander nodes are open unless otherwise noted.

TYPE 15930 DUAL 4-INPUT NAND/NOR GATE

electrical characteristics (continued)

	PARAMETER	TEST FIGURE	TEST CONDITIONS †	MIN MAX	UNIT
V _{out(1)}	Logical 1 output voltage (off level) with low voltage at expander input node, V _{in(X)}	3	$ m V_{CC} = 4.5 \ v, \ \ \ V_{in(X)} = 1.8 \ v, \ \ I_{load} = 0.12 \ ma, \ T_A = 25 ^{o}C$	2.6	v
I _{in(1)}	Logical 1 level input	4	$V_{CC}=5.5$ v, $V_{in}=4$ v, $T_A=25$ °C and -55 °C	2	μα
111(1)	current		$V_{CC} = 5.5 \text{ v}, \qquad V_{in} = 4 \text{ v}, \ T_A = 125 ^{\circ} \text{C}$	5	μα
	Logical O level input	5	$ m V_{CC} = 5.5~v, V_{in} = 0, \ V_{R} = 4~v, \ T_{A} = 25^{\circ}C~and~-55^{\circ}C$	- 1.6	ma
I _{in(0)}	current	5	$V_{CC}=5.5 v, \qquad V_{in}=0, \ V_R=4 v, \ T_A=125^{\circ}C$	- 1.5	ma
I _{out(1)}	Output reverse current (off level)	6	$ m V_{CC} = m V_{out} = 4.5 v, T_A = 25 {\rm ^{o}C}$	50	μα
			$egin{aligned} \mathbf{V_{CC}} &= 5.5\mathbf{v}, & \mathbf{V_{out}} &= 0, \\ \mathbf{T_A} &= 25^{\mathbf{o}}\mathbf{C} \end{aligned}$	-0.6 -1.34	ma
I_{os}	Short-circuit output current	7	$egin{aligned} \mathbf{V_{CC}} &= 5.5 \mathbf{v}, & \mathbf{V_{out}} &= 0, \\ \mathbf{T_A} &= -55 ^{\circ} \mathbf{C} & \end{aligned}$	-1.34	ma
			$egin{aligned} \mathbf{V_{CC}} &= 5.5 \mathbf{v}, & \mathbf{V_{out}} &= 0, \\ \mathbf{T_A} &= 125 ^{\circ} \mathbf{C} & \end{aligned}$	-1.3	ma
I _{CC(0)}	Logical O level supply current (both gates)	8	${ m V_{CC}}=5$ v, ${ m T_A}=25^{ m o}{ m C}$	6.5	ma
I _{CC(1)}	Logical 1 level supply current at maximum V _{CC} (both gates)	9	$ m V_{CC}=8$ v, $ m T_A=25^{\circ}C$	5.5	ma

switching characteristics, $V_{\text{CC}} = 5 \text{ v}, T_{\text{A}} = 25^{\circ}\text{C}$

	PARAMETER	TEST FIGURE	TEST	CONDITIONS †	MIN	MAX	UNIT
† _{pd(0)}	Propogation delay time to logical 0 level		$R_1 = 400 \Omega$,	C ₁ = 50 pf	10	30	nsec
† _{pd(1)}	Propogation delay time to logical 1 level	27	$R_1 = 3.9 \text{ k}\Omega$,	C ₁ = 30 pf	25	80	nsec

 $[\]dagger$ Expander nodes are open unless otherwise noted.

TYPE SN15 931 FLIP-FLOP WITH SET AND CLEAR

logic

TRUTH TABLES

			R	-S MODE						
		t _n		t _{n+1}						
S ₁	S2	C ₁	C ₂	Q						
0	Х	0	Х	Qn						
0	Χ	Х	0	Qn						
Х	0	0	Х	Qn						
Х	0	Х	0	Qn						
0	Х	1	1	0						
Х	0	1	1	0						
1	1	0	Х	1						
1	1	Х	0	1						
1	1 1 1			Indeterminate						

J-K MODE										
t _n t _{n+1}										
Տ ₁ 0	C ₁	Q								
0	0	Qn								
0	1	0								
1	0	1								
1	1	Qn								

NOTES: 1. $t_n = bit$ time before clock pulse.

- 2. $t_{n+1} = bit$ time after clock pulse.
- 3. X indicates that either a logical 1 or a logical 0 may be
- 4. Logical 1 is more positive than logical 0.
- 5. For operation in the J-K mode connect $\mathbf{S_2}$ to $\overline{\mathbf{Q}}$ and $\mathbf{C_2}$ to $\mathbf{Q}.$

 $\begin{array}{c} \textbf{recommended operating conditions} \\ \textbf{Supply Voltage V}_{CC} \quad . \quad . \quad . \quad . \\ \textbf{Maximum Fan-Out From Each Output .} \end{array}$

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN MAX	UNIT
	Logical O output		$V_{\rm CC} = 4.5 \text{ v}, \qquad V_{\rm CP(S)} = 0.95 \text{ v}, \\ I_{\rm sink} = 10.6 \text{ ma}, T_{\rm A} = 25^{\circ}{\rm C}$	0.4	٧
$V_{out(0)}$	voltage (on level) at Q or Q	10	$V_{CC} = 4.5 \text{ v}, \qquad V_{CP(S)} = 1.1 \text{ v}, \\ I_{sink} = 10 \text{ ma}, \qquad T_A = -55^{\circ}\text{C}$	0.4	٧
			$V_{\rm CC} = 4.5 \text{ v}, \qquad V_{\rm CP(S)} = 0.75 \text{ v}, \\ I_{\rm sink} = 9.5 \text{ ma}, \qquad T_{\rm A} = 125 ^{\circ} {\rm C}$	0.45	٧
	Logical 1 output		$V_{CC} = 4.5 \text{ v}, \qquad V_1 = 1.9 \text{ v}, \ V_2 = 1.1 \text{ v}, \ I_{load} = 0.12 \text{ ma}, \ T_A = 25^{\circ}\text{C}$	2.6	٧
V _{out(1)}	voltage (off level) at Q or Q	11	$V_{CC} = 4.5 \text{ v}, \qquad V_1 = 2.1 \text{ v}, V_2 = 1.4 \text{ v}, \\ I_{load} = 0.12 \text{ ma}, T_A = -55 ^{\circ} \text{C}$	2.5	٧
			${ m V_{CC}} = 4.5 { m v}, \qquad { m V_1} = 1.7 { m v}, \ { m V_2} = 0.8 { m v}, \ { m I_{load}} = 0.12 { m ma}, \ { m T_A} = 125 { m ^{\circ}C}$	2.5	٧
	Logical 1 output		$V_{CC} = 4.5 \text{ v}, V_1 = 1.9 \text{ v}, V_2 = 1.1 \text{ v}, \\ I_{load} = 0.12 \text{ ma}, T_A = 25 ^{\circ}\text{C}$	2.6	٧
V _{ouf(1)}	voltage (off level) at Q or $\overline{\mathbf{Q}}$	12	$V_{CC} = 4.5 \text{ v}, \qquad V_1 = 2.1 \text{ v}, V_2 = 1.4 \text{ v}, \\ I_{load} = 0.12 \text{ ma}, T_A = -55 ^{\circ} \text{C}$	2.5	٧
			$V_{CC} = 4.5 \text{ v}, V_1 = 1.7 \text{ v}, V_2 = 0.8 \text{ v}, \\ I_{load} = 0.12 \text{ ma}, T_A = 125 ^{\circ}\text{C}$	2.5	٧
			$V_{CC} = 5.5 \text{ v}, \qquad V_{in} = 1.1 \text{ v}, \\ T_A = 25^{\circ}\text{C}$	-3.4	ma
I _{CP(0)}	Logical 0 level clock-input forward current	13	$V_{CC} = 5.5 \text{ v}, \qquad V_{in} = 1.4 \text{ v}, T_A = -55 ^{\circ} C$	-3.4	ma
***			$V_{CC} = 5.5 \text{ v}, \qquad V_{in} = 0.8 \text{ v}, $ $T_A = 125 ^{\circ}\text{C}$	-3	ma
I _{CP(1)}	Logical 1 level clock-input	14	$egin{aligned} {\sf V_{CC}} &= 5.5 \ {\sf v}, & {\sf V_{CP}} &= 4 \ {\sf v}, \ {\sf T_A} &= 25 {\rm ^{\circ}C} \ {\sf and} \ -55 {\rm ^{\circ}C} \end{aligned}$	20	μα
•	reverse current		$ m V_{CC} = 5.5 v$, $ m V_{CP} = 4 v$, $ m T_A = 125 ^{o}C$	30	μα

TYPE SN15 931 FLIP-FLOP WITH SET AND CLEAR

electrical characteristics (continued)

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	MAX	UNIT
 I _{in(1)}	Logical 1 level	15	V _{CC} = 5.5v, V _{in} = 4 v, T _A = 25°C and –55°C		2	μα
-in(1)	synchronous-input current		$V_{CC} = 5.5 \text{ v}, \ V_{in} = 4 \text{ v}, $ $T_A = 125 ^{\circ}\text{C}$		5	μα
I _{in(0)}	Logical O level	16	$V_{CC} = 5.5 \text{ v}, \ V_{in} = 0, \ T_A = 25^{\circ}\text{C} \text{ and } -55^{\circ}\text{C}$	_	-1.07	ma
m(U)	synchronous-input current	10	$V_{CC} = 5.5 \text{ v}, \ V_{in} = 0, \ T_A = 125 ^{\circ}\text{C}$		-1	ma
l _{in(1)}	Logical 1 level	17	$V_{CC} = 5.5 \text{ v}, \ V_{in} = 4 \text{ v}, \ T_A = 25 ^{\circ} \text{C} \text{ and } -55 ^{\circ} \text{C}$		2	μα
*in(i)	asynchronous-input current	17	$V_{CC} = 5.5 \text{ v}, \ V_{in} = 4 \text{ v}, \ T_A = 125 ^{\circ}\text{C}$		5	μα
I _{in(0)}	Logical O level	18	${ m V_{CC}} = 5.5 { m v}, \ { m V_{in}} = 0, \ { m T_A} = 25 { m ^{o}C} \ { m and} \ -55 { m ^{o}C}$		-1.2	ma
	asynchronous-input current		$V_{CC} = 5.5 v, \ V_{in} = 0, T_A = 125 ^{\circ} C$		-1.1	ma
I _{CC(0)}	Logical O level supply current	19	$V_{CC}=5 \text{ v}, T_{A}=25 ^{\circ} \text{C}$		11	ma
I _{CC(1)}	Logical 1 level supply current at maximum V _{CC}	20	$ m V_{CC}=8~v,~~T_A=25^{o}C$		14.5	ma

switching characteristics, $V_{\text{CC}} = 5 \text{ v}, T_{\text{A}} = 25 ^{\circ}\text{C}$

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	MAX	UNIT
† _{pd(0)}	Propagation delay time to logical 0 level	28	$R_1 = 400 \Omega$	35	75	nsec
† _{pd(1)}	Propagation delay time to logical 1 level	26	$R_1 = 3.9 \text{ k}\Omega$	35	75	nsec

schematic

TYPE SN15 932 DUAL 4-INPUT NAND/NOR BUFFER

recommended operating conditions

	PARAMETER	TEST FIGURE	TEST CONDITIONS†	MIN	MAX	UNIT
			$V_{CC} = 4.5 \text{ v}, V_{in} = 1.9 \text{ v}, \\ I_{sink} = 36 \text{ ma}, T_A = 25 ^{\circ}\text{C}$		0.4	٧
V _{out(0)}	Logical 0 output voltage (on level)	1	$V_{CC}=4.5\mathrm{v}, V_{\mathrm{in}}=2.1\mathrm{v}, \ I_{\mathrm{sink}}=34\mathrm{ma}, T_{\mathrm{A}}=-55\mathrm{^{o}C}$		0.4	v
			$V_{CC}=4.5\mathrm{v}, V_{\mathrm{in}}=1.7\mathrm{v}, \ I_{\mathrm{sink}}=32\mathrm{ma}, T_{\mathrm{A}}=125\mathrm{^{o}C}$		0.45	٧
			$V_{CC} = 4.5 \text{ v}, V_{in} = 1.1 \text{ v}, \\ I_{load} = 2.5 \text{ ma}, T_A = 25 ^{\circ}\text{C}$	2.6		٧
V _{out(1)}	Logical 1 output voltage (off level)	2	$V_{CC} = 4.5 \text{ v}, V_{in} = 1.4 \text{ v}, \\ I_{load} = 2 \text{ ma}, T_A = -55 ^{\circ} \text{C}$	2.5		٧
			$V_{CC} = 4.5 \text{ v}, V_{in} = 0.8 \text{ v}, \\ I_{load} = 4 \text{ ma}, T_A = 125 ^{\circ} \text{C}$	2.5		٧

[†] Expander nodes are open unless otherwise noted.

TYPE SN15 932 DUAL 4-INPUT NAND/NOR BUFFER

electrical characteristics (continued)

	PARAMETER	TEST FIGURE	TEST CONDITIONS [†]	MIN	MAX	UNIT
V _{out(1)}	Logical 1 output voltage (off level) with low voltage input at expander node, V _{in(X)}	3	$V_{CC} = 4.5 \text{ v}, V_{in[X]} = 1.8 \text{ v}, \\ I_{load} = 2.5 \text{ ma}, T_A = 25 ^{\circ}\text{C}$	2.6		٧
I _{in(1)}	Logical 1 level	4	$V_{CC} = 5.5 \text{ v}, V_{in} = 4 \text{ v},$ $T_A = 25^{\circ}\text{C} \text{ and } -55^{\circ}\text{C}$ $V_{CC} = 5.5 \text{ v}, V_{in} = 4 \text{ v},$		2	μα μα
			$T_A = 125$ °C $V_{CC} = 5.5 \text{ v}, V_{in} = 0, V_R = 4 \text{ v},$			
1	Logical O level	5	T _A = 25°C and -55°C		-1.6	ma
in(0)	input current		$V_{CC} = 5.5 \text{ v}, V_{in} = 0, V_{R} = 4 \text{ v}, \\ T_{A} = 125 ^{\circ} C$		-1.5	ma
l _{out(1)}	Output reverse current (off level)	6	$V_{CC} = V_{out} = 4.5 \text{ v}, T_A = 25^{\circ}\text{C}$		50	μα
1	Short-circuit	7	$V_{CC}=5.5 \text{ v}, V_{out}=0, \\ T_A=25 ^{\circ} C$	-18		ma
los	output current	,	$V_{CC} = 5.5 \text{ v}, V_{out} = 0, \\ T_A = 125^{\circ}\text{C and } -55^{\circ}\text{C}$	-16		ma
I _{CC(0)}	Logical O level supply current (both gates)	8	$V_{CC}=5\text{v}, T_{A}=25^{\circ}\text{C}$		26.6	ma
I _{CC(1)}	Logical 1 level supply current at maximum V _{CC} (both gates)	9	$V_{CC}=8$ v, $T_A=25^{\circ}C$		6	ma

switching characteristics, $V_{\text{CC}} = 5 \text{ v}$, $T_{\text{A}} = 25^{\circ}\text{C}$

	PARAMETER	TEST FIGURE	TEST CONDITIONS [†]	MIN	MAX	UNIT
† _{pd(0)}	Propagation delay time to logical 0 level	27	$R_1 = 150 \Omega, C_1 = 500 pf$	15	40	nsec
t _{pd(1)}	Propagation delay time to logical 1 level	_,	$R_1 = 510 \Omega, C_1 = 500 pf$	25	80	nsec

 $[\]dagger$ Expander nodes are open unless otherwise noted.

TYPE SN15 933 DUAL 4-INPUT EXPANDER

schematic (each expander)

electrical characteristics

0	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	MAX	UNIT
			${ m I_{out}}={ m 2~ma,T_A}={ m 25^{\circ}C}$	0.7	0.82	٧
V _F	Input diode forward voltage	21	$\mathrm{I_{out}}=\mathrm{2~ma}$, $\mathrm{T_A}=\mathrm{-55^{\circ}C}$	0.85	0.98	٧
			I _{out} = 2 mα, T _A = 125°C	0.5	0.65	٧
			$V_{in}=4 v$, $T_A=25 ^{\circ} C$		2	μα
I _{in(R)}	Input diode reverse current	22	$V_{in} = 4 \text{ v,}$ $T_A = -55 ^{\circ}\text{C}$		2	μα
			$V_{in} = 4 \text{ v,} T_A = 125 ^{\circ}\text{C}$		5	μα
1	Anode-to-substrate	23	$ m V_{out} = 4 v$, $ m T_A = 25 ^{\circ} C and -55 ^{\circ} C$		10	μα
out(R)	reverse current	20	$V_{out} = 4 \text{ v}, T_A = 125 ^{\circ}\text{C}$		25	μα

NOTE: A total of four expanders may be connected to an expandable gate to provide a fan-in of 20.

TYPE SN15 944 DUAL 4-INPUT NAND/NOR POWER GATE

recommended operating conditions

	PARAMETER	TEST FIGURE	TEST CONDITIONS†	MIN	MAX	UNIT
			$V_{CC} = 4.5 \text{ v}, \ V_{in} = 1.9 \text{ v}, \ I_{sink} = 40 \text{ ma}, T_A = 25 ^{\circ}\text{C}$		0.4	v
V _{ou†(0)}	Logical 0 output voltage (on level)	1	$V_{CC} = 4.5 \text{ v}, \ V_{in} = 2.1 \text{ v}, \ I_{sink} = 36 \text{ ma}, \ T_A = -55^{\circ}\text{C}$		0.4	٧
			$V_{CC} = 4.5 \text{ v}, \ V_{in} = 1.7 \text{ v}, \ I_{sink} = 36 \text{ ma}, \ T_A = 125 ^{\circ}\text{C}$		0.45	v
V _{out(1)}	Logical 1 output voltage (off level)	24	$ m V_{CC} = 5.5 v, I_{sink} = 5 ma, \ T_A = 25 ^{\circ} C$	6		٧
1	Logical 1 level input	4	$ m V_{CC} = 5.5 v, V_{in} = 4 v, \ T_A = 25 ^{\circ} C and -55 ^{\circ} C$		2	μα
I _{in(1)}	current		$V_{CC} = 5.5 \text{ v}, \ V_{in} = 4 \text{ v}, \ T_A = 125 ^{\circ}\text{C}$		5	μα

[†] Expander nodes are open unless otherwise noted.

TYPE SN15 944 DUAL 4-INPUT NAND/NOR POWER GATE

electrical characteristics (continued)

	PARAMETER	TEST FIGURE	TEST CONDITIONS†	MIN	MAX	UNIT
1	Logical O level input	5	$V_{CC}=5.5\mathrm{v},\ V_{\mathrm{in}}=0,\ V_{\mathrm{R}}=4\mathrm{v},\ T_{\mathrm{A}}=25^{\mathrm{o}}\mathrm{C}$ and $-55^{\mathrm{o}}\mathrm{C}$		-1.6	ma
l _{in(0)}	current		$V_{CC} = 5.5 \text{ v}, \ V_{in} = 0, \ V_{R} = 4 \text{ v}, \ T_{A} = 125 ^{\circ}\text{C}$		-1.5	ma
	Output reverse		$V_{CC} = 5.5 \text{ v}, \ V_{in} = 1.1 \text{ v}, \ V_{out} = 4.5 \text{ v}, \ T_A = 25 ^{\circ}\text{C}$		100	μα
I _{out(1)}	current (off level, worst-case voltage	25	$V_{CC} = 5.5 \text{ v}, \ V_{in} = 1.4 \text{ v}, \ V_{out} = 4.5 \text{ v}, \ T_A = -55 ^{\circ}\text{C}$		50	μα
	at any input)		$V_{CC} = 5.5 \text{ v}, \ V_{in} = 0.8 \text{ v}, \ V_{out} = 4.5 \text{ v}, \ T_A = 125 ^{\circ}\text{C}$		200	μα
l _{out(1)}	Output reverse current (off level, worst-case voltage at expander input)	26	$V_{CC} = 5.5 \text{ v}, \ V_{in(X)} = 1.8 \text{ v}, \ V_{out} = 4.5 \text{ v}, \ T_A = 25 ^{\circ}\text{C}$		100	μα
I _{CC(0)}	Logical O level supply current (both gates)	8	$V_{CC}=5\text{v}, T_{A}=25^{\circ}\text{C}$		20	ma
I _{CC(1)}	Logical 1 level supply current at maximum V _{CC} (both gates)	9	$V_{CC}=8 \text{ v}, T_A=25^{\circ}\text{C}$		6	ma

switching characteristics, $V_{\text{CC}} = 5 \text{ v}, T_{\text{A}} = 25^{\circ}\text{C}$

	PARAMETER	TEST FIGURE	TEST CONDITIONS†	MIN	MAX	UNIT
† _{pd(0)}	Propagation delay time to logical 0 level	27	$R_1 = 150 \Omega, C_1 = 100 pf$	10	35	nsec
† _{pd(1)}	Propagation delay time to logical 1 level	27	$R_1 = 510 \Omega, C_1 = 20 pf$	15	50	nsec

[†] Expander nodes are open unless otherwise noted.

TYPE SN15 946 QUADRUPLE 2-INPUT NAND/NOR GATE

schematic (each gate)

recommended operating conditions

Supply Voltage V _{CC}				•		•				. 4.5 v to 5.5 v
Maximum Fan-Out From Each Output .										8

PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN MAX	UNIT
		$V_{CC} = 4.5 \text{ v}, V_{in} = 1.9 \text{ v}, I_{sink} = 12 \text{ ma}, T_A = 25^{\circ}\text{C}$	0.4	٧
V _{out(0)} Logical O output voltage (on level)	1	$V_{\rm CC} = 4.5 \rm v, \qquad V_{\rm in} = 2.1 \rm v, \ I_{\rm sink} = 11.4 \rm ma, T_A = -55 ^{\circ} C$	0.4	٧
		$V_{CC} = 4.5 \text{ v}, V_{in} = 1.7 \text{ v}, \\ I_{sink} = 10.8 \text{ ma}, T_A = 125 ^{\circ}\text{C}$	0.45	٧
		$V_{\rm CC} = 4.5 \rm v, \qquad V_{\rm in} = 1.1 \rm v, \ I_{\rm load} = 0.12 \rm ma, \ T_A = 25 ^{\circ} C$	2.6	٧
V _{out(1)} Logical 1 output voltage (off level)	2	$V_{CC} = 4.5 \text{ v}, V_{in} = 1.4 \text{ v}, \\ I_{load} = 0.12 \text{ ma}, T_A = -55 ^{\circ}\text{C}$	2.5	٧
		$V_{CC} = 4.5 \text{ v}, \qquad V_{in} = 0.8 \text{ v}, \\ I_{load} = 0.12 \text{ ma}, T_A = 125 ^{\circ}\text{C}$	2.5	v

TYPE SN15 946 QUADRUPLE 2-INPUT NAND/NOR GATE

electrical characteristics (continued)

PARAMETER		TEST FIGURE	TEST CONDITIONS	MIN MAX	UNIT
1	Logical 1 level input	4	$V_{CC}=5.5 \text{ v}, V_{in}=4 \text{ v}, \\ T_A=25 ^{\circ} \text{C} \text{ and } -55 ^{\circ} \text{C}$	2	μα
I _{in(1)}	current	4	$V_{CC} = 5.5 \text{ v}, \qquad V_{in} = 4 \text{ v}, \\ T_A = 125 ^{\circ} \text{C}$	5	μα
l _{in(0)}	Logical O level input current	5	$V_{CC}=5.5$ v, $V_{in}=0$, $V_{R}=4$ v, $T_{A}=25$ °C and -55 °C	-1.6	ma
		3	$V_{CC} = 5.5 \text{ v}, \qquad V_{in} = 0, \ V_{R} = 4 \text{ v}, \ T_{A} = 125 ^{\circ} \text{C}$	-1.5	ma
I _{out(1)}	Output reverse current (off level)	6	$ m V_{CC} = m V_{out} = 4.5 v$, $ m T_A = 25 ^{o}C$	50	μα
			$egin{aligned} \mathbf{V_{CC}} &= 5.5 \mathbf{v}, & \mathbf{V_{out}} &= 0, \ \mathbf{T_A} &= 25 ^{\circ} \mathbf{C} \end{aligned}$	-0.6 -1.34	ma
I _{OS}	Short-circuit output current	7	$V_{CC} = 5.5 \text{ v}, \qquad V_{out} = 0,$ $T_A = -55^{\circ}C$	-1.34	ma
			$V_{CC}=5.5 \text{ v}, \qquad V_{out}=0, \ T_A=125 ^{\circ} \text{C}$	-1.3	ma
I _{CC(0)}	Logical 0 level supply current (all gates)	8	$ m V_{CC} = 5 v$, $ m T_A = 25 ^{o}C$	13	ma
I _{CC(1)}	Logical 1 level supply current at maximum V _{CC} (all gates)	9	$V_{CC}=8 \text{ v,} \qquad T_{A}=25 ^{\circ} \text{C}$	11	ma

switching characteristics, $V_{\text{CC}} = 5 \text{ v}, T_{\text{A}} = 25^{\circ}\text{C}$

PARAMETER		TEST FIGURE	TEST CONDITIONS	MIN	MAX	UNIT
† _{pd(0)}	Propagation delay time to logical O level		$R_1 = 400 \Omega, C_1 = 50 pf$	10	30	nsec
† _{pd(1)}	Propagation delay time to logical 1 level	27	$R_1 = 3.9 \text{ k}\Omega, C_1 = 30 \text{ pf}$	25	80	nsec

TYPE SN15 962 TRIPLE 3-INPUT NAND/NOR GATE

recommended operating conditions

PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	MAX	UNIT
		$V_{CC} = 4.5 \text{ v}, \qquad V_{in} = 1.9 \text{ v}, \\ I_{sink} = 12 \text{ ma}, \qquad T_A = 25 ^{\circ}\text{C}$		0.4	٧
V _{out(0)} Logical 0 output voltage (on level)	1	$V_{\rm CC} = 4.5 \rm v, \qquad V_{\rm in} = 2.1 \rm v, \ I_{\rm sink} = 11.4 \rm ma, T_A = -55 ^{\circ} C$		0.4	٧
		$V_{CC} = 4.5 v$, $V_{in} = 1.7 v$, $I_{sink} = 10.8 ma$, $T_A = 125 ^{\circ}C$		0.45	٧
		$V_{\rm CC} = 4.5 \rm v, \qquad V_{\rm in} = 1.1 \rm v, \ I_{\rm load} = 0.12 \rm ma, \ T_A = 25 ^{\circ} C$	2.6		٧
V _{out(1)} Logical 1 output voltage (off level)	2	$V_{\rm CC} = 4.5 \rm v, \qquad V_{\rm in} = 1.4 \rm v, \ I_{\rm load} = 0.12 \rm ma, \ T_A = -55 ^{\circ} C$	2.5		٧
		$V_{CC} = 4.5 \text{ v}, \qquad V_{in} = 0.8 \text{ v}, \\ I_{load} = 0.12 \text{ ma}, T_A = 125 ^{\circ}\text{C}$	2.5		٧

TYPE SN15 962 TRIPLE 3-INPUT NAND/NOR GATE

electrical characteristics (continued)

PARAMETER		TEST FIGURE	TEST CONDITIONS	MIN MAX	UNIT
J _{in(1)}	Logical 1 level input	4	$ m V_{CC} = 5.5 \ v, V_{in} = 4 \ v, \ T_A = 25 ^{\circ} C \ and -55 ^{\circ} C$	2	μα
	current		$V_{CC}=5.5 \text{ v}, \qquad V_{in}=4 \text{ v}, \ T_A=125 ^{\circ} C$	5	μα
l _{in(0)}	Logical O level input current	5	$ m V_{CC} = 5.5 \ v, V_{in} = 0, \ V_{R} = 4 \ v, \ T_{A} = 25 ^{\circ} C \ and -55 ^{\circ} C$	-1.6	ma
(0)			$egin{aligned} \mathbf{V_{CC}} &= 5.5 \mathbf{v}, \\ \mathbf{T_A} &= 125 ^{\circ} \mathbf{C} \end{aligned} \qquad egin{aligned} \mathbf{V_{in}} &= 0, \ \mathbf{V_R} &= 4 \mathbf{v}, \end{aligned}$	-1.5	ma
I _{out(1)}	Output reverse current (off level)	6	$ m V_{CC} = m V_{out} = 4.5 v$, $ m T_A = 25 ^{o}C$	50	μα
			$egin{aligned} \mathbf{V_{CC}} &= 5.5 \mathbf{v}, & \mathbf{V_{out}} &= 0, \\ \mathbf{T_A} &= 25 ^{\mathbf{o}} \mathbf{C} \end{aligned}$	-0.6 -1.34	ma
Ios	Short-circuit output current		$egin{aligned} \mathbf{V_{CC}} &= 5.5 \mathbf{v}, & \mathbf{V_{out}} &= 0, \\ \mathbf{T_A} &= -55 ^{\circ} \mathbf{C} & \end{aligned}$	-1.34	ma
			$egin{aligned} \mathbf{V_{CC}} &= 5.5 \mathbf{v}, & \mathbf{V_{out}} &= 0, \\ \mathbf{T_A} &= \mathbf{125^{\circ}C} \end{aligned}$	-1.3	ma
I _{CC(0)}	Logical O level supply current (all gates)	8	$V_{CC}=5 \text{ v,} \qquad T_{A}=25 ^{\circ} \text{C}$	9.75	ma
I _{CC(1)}	Logical 1 level supply current at maximum V _{CC} (all gates)	9	$ m V_{CC} = 8 \ v, \qquad T_A = 25 ^{o}C$	8.25	ma

switching characteristics, $V_{\rm CC} = 5 \ v$, $T_{\rm A} = 25 ^{\rm o} C$

PARAMETER		TEST FIGURE	TEST CONDITIONS	MIN	MAX	UNIT
t _{pd(0)}	Propagation delay time to logical 0 level		$R_1 = 400 \Omega$, $C_1 = 50 \mathrm{pf}$	10	30	nsec
[†] pd(1)	Propagation delay time to logical 1 level	27	$ m R_1=3.9~k\Omega,~C_1=30~pf$	25	80	nsec

PARAMETER MEASUREMENT INFORMATION

d-c test circuits †

[†] Arrows indicate actual direction of current flow.

SERIES 15 930 SOLID CIRCUIT® SEMICONDUCTOR NETWORKS

PARAMETER MEASUREMENT INFORMATION

d-c test circuits[†] (continued)

PARAMETER MEASUREMENT INFORMATION

d-c test circuits (continued)

[†] Arrows indicate actual direction of current flow.

SERIES 15 930 SOLID CIRCUIT® SEMICONDUCTOR NETWORKS

PARAMETER MEASUREMENT INFORMATION

d-c test circuits[†](continued)

[†] Arrows indicate actual direction of current flow.

PARAMETER MEASUREMENT INFORMATION

d-c test circuits † (continued)

† Arrows indicate actual direction of current flow.

switching characteristics

- 3. The generator has the following characteristics: ${
 m V}_{
 m out}={
 m 3}$ v, t $_{
 m r}\leq{
 m 15}$ nsec, t $_{
 m f}\leq{
 m 15}$ nsec, t $_{
 m p}={
 m 300}$ nsec, PRR $={
 m 1}$ Mc, ${
 m Z}_{
 m out}\cong{
 m 50}$ Ω .
- 4. The driving network is of the same type as the gate under test.
- 5. Voltage values are with respect to network ground terminal.
- 6. When testing the SN15 944, connect the 2 k\O2 resistor as shown, omit all diodes, and connect resistor R₄ to capacitor C₁ and output.

FIGURE 27 - GATE PROPAGATION DELAY

SERIES 15930 SOLID CIRCUIT® SEMICONDUCTOR NETWORKS

PARAMETER MEASUREMENT INFORMATION

switching characteristics (continued)

TEST CIRCUIT

VOLTAGE WAVEFORMS

NOTES: 1. The generator has the following characteristics:

 ${
m V_{out}}=3$ v, t $_{
m r}\leq$ 15 nsec, t $_{
m f}\leq$ 15 nsec, t $_{
m p}=$ 300 nsec, PRR = 1 Mc, ${
m Z_{out}}\simeq$ 50 $\Omega.$

- 2. All diodes are 1N916.
- 3. Voltage values are with respect to network ground terminal.
- 4. Test circuit shows loading when output \overline{Q} is tested. When output Q is tested, loading is interchanged as indicated by the dotted lines.

FIGURE 28 - FLIP-FLOP PROPAGATION DELAY

SERIES 15 930 SOLID CIRCUIT®

SEMICONDUCTOR NETWORKS†

MECHANICAL DATA

general

SOLID CIRCUIT semiconductor networks are mounted in a glass-to-metal hermetically sealed, welded package. Package body and leads are gold-plated F-15‡ glass-sealing alloy. Approximate weight is 0.1 gram. All external surfaces are

metallic and are insulated from leads and circuit. All Series 15 930 networks are available with formed leads, insulator attached, and/or mounted in a Mech-Pack carrier.

leads

Gold-plated F-15! leads require no additional cleaning or processing when used in soldered or welded assembly. Formed leads are available to facilitate planar mounting of networks on flat circuit boards. Standard lead length is 0.185 inches. Networks can be removed from Mech-Pak carriers with lead lengths up to 0.185 inches.

insulator

An insulator, secured to the back surface of the package, permits mounting networks on circuit boards which have conductors passing beneath the package. The insulator is 0.0025 inches thick and has an insulation resistance of 10 megohms at 25°C.

mech-pak carrier

The Mech-Pak carrier facilitates handling the network, and is compatible with automatic equipment used for testing and assembly. The carrier is particularly appropriate for mechanized assembly operations and will withstand temperatures of 125°C for indefinite periods.

ordering instructions

Variations in mechanical configuration of semiconductor networks are identified by suffix numbers shown in a table at the right.

- NOTES: a. All dimensions in inches.
 - b. Not applicable in Mech-Pak Carrier.
 - c. Measured from center of lead to bottom of package where lead emerges from body.

	1	NO MECH-PAK CARRIER				MECH-PAK CARRIER			
Lead Length	0.18	0.185 inch				Not Applicable			
Formed Leads	No	No	Yes	Yes	No	No	Yes	Yes	
Insulators	No	Yes	No	Yes	No	Yes	No	Yes	
Ordering Suffix	None	-6	-7	-1	-2	-3	-4	-5	

^{*}Patented by Texas Instruments Incorporated.

[‡]F-15 is the ASTM designation for an iron-nickel-cobalt alloy containing nominally 53% iron, 29% nickel, and 17% cobalt.