Name: answer Key

Question 1

In terms of α and β , express all the lengths and other angle measures (θ and ϕ).

Variable	Algebraic expression
p =	cos(B)
q =	sin (B)
r =	$cor(\alpha) \cdot cor(\beta)$
s =	sin(a)· cos(B)
$\theta =$	d
t =	cos (a). Sin (B)
u =	$sin(\alpha) \cdot sin(\beta)$
$\phi =$	X+B
v =	cos(a+8)
w =	Sin (x+B)

Name:

Answer Key

Question 2

The angle-sum and angle-difference identities are true for any α and β :

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

You know the following:

$$\sin(135^\circ) = \frac{\sqrt{2}}{2}$$
 $\sin(120^\circ) = \frac{\sqrt{3}}{2}$

$$\cos(135^{\circ}) = \frac{-\sqrt{2}}{2} \qquad \qquad \cos(120^{\circ}) = \frac{-1}{2}$$

Determine $\sin(15^{\circ})$ exactly.

$$\frac{\sin(15^{\circ}) = \sin(135^{\circ} - 120^{\circ})}{\sin(135^{\circ}) \cos(120^{\circ}) - \cos(135^{\circ}) \sin(120^{\circ})}$$

$$= \frac{\sqrt{2}}{2} \cdot \frac{-1}{2} - \frac{-\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}$$

$$= \frac{-\sqrt{2}}{4} + \frac{\sqrt{6}}{4}$$

$$=\frac{\sqrt{6}-\sqrt{2}}{4}$$

Name:

answer Key

Question 3

Prove that $\sin(2x) = 2\sin(x)\cos(x)$ for any x.

(Hint: start with an angle-sum formula from Question 2.)

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

$$\cot \alpha = \alpha = \beta.$$

$$\sin(x+x) = \sin(x)\cos(x) + \cos(x)\sin(x)$$

$$sin(2x) = 2 sin(x) cos(x)$$

Question 4

Prove that $cos(2x) = 2cos^2(x) - 1$ for any x.

(Hint: start with an angle-sum formula from Question 2. Also, you will need to use the Pythagorean Identity: $\sin^2(x) + \cos^2(x) = 1$)

$$cos(\alpha+\beta)=cos(\alpha)cos(\beta)-sin(\alpha)sin(\beta)$$

$$cos(x+x) = cos(x)cos(x) - sin(x)sin(x)$$

$$co2(2x) = co2(x) - sin^2(x)$$

$$\sin^2(x) = 1 - \cos^2(x)$$

$$\cos(2x) = \cos^2(x) - (1 - \cos^2(x))$$

$$\cos(2x) = \cos^2(x) - 1 + \cos^2(x)$$

$$Lod (2x) = 2 Lod (x) - 1$$

Name: answer Key

Question 5

Prove that $\cos\left(\frac{y}{2}\right) = \sqrt[+]{\frac{1+\cos(y)}{2}}$. (Technically this assumes $\cos(y/2) > 0$, but let's not worry about that here.)

(Hint: use the identity proved in Question 4.)

$$\cos(2x) = 2\cos^2(x) - 1$$

Let
$$y=2x$$
 so $\frac{y}{2}=x$.

$$\cos(y) = 2\cos^2(\frac{y}{2}) - 1$$

$$cos(y)+1 = 2 cos^2(\frac{y}{2})$$

$$\frac{\cos(y)+1}{2}=\cos^2\left(\frac{y}{2}\right)$$

$$+\sqrt{\frac{1+\cos(y)}{2}}=\log\left(\frac{y}{2}\right)$$

$soa\left(\frac{y}{a}\right) = \frac{1}{\sqrt{1+soa}\left(\frac{y}{a}\right)}$

Question 6

If you knew that $\cos(160^\circ) \approx -0.94$, then what is $\cos(80^\circ)$? Please set up an expression, but do **not** try to simplify or evaluate a decimal approximation.

(Hint: 160/2 = 80.)

$$col\left(\frac{160^{\circ}}{2}\right) = \sqrt{\frac{1+col(160^{\circ})}{2}}$$

$$\cos 2\left(80^{\circ}\right) = \sqrt{\frac{1-0.94}{2}}$$