Behavioral Economics Exercise 4 Time Preferences

経済学研究科 23A18014 Reio TANJI 丹治伶峰

Question 1 (a) Solve by backward induction.

• Period 2

By $\beta = \delta = 1$, t = 2 agent's intertemporal utility is :

$$-c(e_2) + B(e_1, e_2)$$

where e_1 is given

Then, the best-response of the t=2 agent, depending on the parameters is derived as follows:

If
$$B \ge kc \Leftrightarrow c \le \frac{B}{k}$$

$$BR(e_1) = \begin{cases} 2 & \text{if } e_1 = 0 \\ 1 & \text{if } e_1 = 1 \\ 0 & \text{if } e_1 = 2 \end{cases}$$

and if $kc > B > 2c \Leftrightarrow c > \frac{B}{k}$

$$BR(e_1) = \begin{cases} 1 & \text{if } e_1 = 1 \\ 0 & \text{if } e_1 = 0, 2 \end{cases}$$

• Period 1

Now by $\beta = \delta = 1$, t = 1 agent's intertemporal utility is:

$$-c(e_1)-c(\mathsf{BR}(e_1))+B(e_1,\mathsf{BR}(e_1))$$

By the assumption kc > 2c and B > 2c and the derived best-response of the t = 2 agent, e_1 is the dominant strategy for each case of the parameters.

Therefore, the perception-perfect equilibria is :

If
$$c \le \frac{B}{k}$$

$$(e_1^*, e_2^*) = (1, e_2)$$
where $e_2 = \begin{cases} 2 & \text{if } e_1 = 0\\ 1 & \text{if } e_1 = 1\\ 0 & \text{if } e_1 = 2 \end{cases}$

If
$$c > \frac{B}{k}$$

$$(e_1^*, e_2^*) = (1, e_2)$$
where $e_2 = \begin{cases} 1 & \text{if } e_1 = 1 \\ 0 & \text{if } e_1 = 0, 2 \end{cases}$

(b) • Period 2

The intertemporal utility is:

$$-c(e_2) + \beta B(e_1, e_2)$$

- When $e_1 = 0$

For t=2 agent, $e_2=1$ is strictly dominated by $e_2=0$, since both of them result in $B(0,e_2)=0$.

Then, the agent prefer $e_2 = 2$ iff

$$-kc + \beta B \ge 0$$
$$c \le \frac{\beta B}{k}$$

Otherwise, $e_2 = 0$ is chosen.

– When $e_1 = 1$

 $e_2 = 2$ is strictly dominated by $e_2 = 1$, since $e_2 = 1$ is enough to satisfy B(.,.) = B. The agent prefer $e_2 = 1$ iff

$$-c + \beta B \ge 0$$
$$c \le \beta B$$

• Period 1

- When
$$c \le \frac{\beta B}{k}$$

Even if $e_1 = 0$, $t = 2$ agent choose $e_2 = 2$ and so $B(e_1, e_2) = B$ realizes.
Then, $t = 1$ agent prefer $e_1 = 2$ to $e_1 = 0$ iff

$$(1-\beta)kc \leq 0$$

which never hold since β < 1, so e_1 = 2 is strictly dominated by e_1 = 0. Then, $e_1 = 1$ is preferred iff

$$-c - \beta c + \beta B \ge -kc + \beta B$$
$$(1 + \beta - \beta k)c \le 0$$
which holds iff $k \ge \frac{1 + \beta}{\beta}$

Otherwise,
$$e_1=0$$
 is chosen.
- When $\frac{\beta B}{k} < c \ge \beta B$
 $e_2=2$ is never chosen, which implies that if $e_1=0$, $B(.,.)=0$.
 $t=1$ agent prefer $e_1=2$ to $e_1=0$ iff

$$-kc + \beta B \ge 0$$
$$c \le \frac{\beta B}{k}$$

which never holds, by $c>\frac{\beta B}{k}$. $e_1=1$ is preferred to $e_1=0$ iff

$$-c - \beta c + \beta B \ge 0$$
$$c \le \frac{\beta B}{1 + \beta}$$

Note that $\left(\frac{\beta B}{k}, \frac{\beta B}{1+\beta}\right]$ is not empty interval.

$$-\beta B < c$$

Both t = 1, 2 agent choose $e_t = 0$, rather than any positive e_t .

Therefore, the perception-perfect equilibria is:

$$(e_1^*, e_2^*) = (e_1, e_2)$$

If
$$(c \leq \frac{\beta B}{k}) \wedge (k \geq \frac{1+\beta}{\beta})$$
,

$$e_1 = 1$$
 $e_2 = \begin{cases} 2 & \text{if } e_1 = 0 \\ 1 & \text{if } e_1 = 1 \\ 0 & \text{otherwise} \end{cases}$

If
$$(c \leq \frac{\beta B}{k}) \wedge (k < \frac{1+\beta}{\beta})$$
,

$$e_1 = 0$$

$$e_2 = \begin{cases} 2 & \text{if } e_1 = 0 \\ 0 & \text{otherwise} \end{cases}$$

If
$$c \in (\frac{\beta B}{k}, \frac{\beta B}{1+\beta})$$
,

$$e_1 = 1$$

$$e_2 = \begin{cases} 1 & \text{if } e_1 = 1 \\ 0 & \text{otherwise} \end{cases}$$

If $\beta B < c$,

$$e_1 = 0$$
$$e_2 = 0$$

(c) t=2 agent decides her/his behavior with $\beta<1$, while t=1 agent predicts it with $\hat{\beta}=1$. Then, the agent's prediction and the acual strategy depending on the parameters are summerized as follows:

Parametrical condition					
Belief	Actual choice	e_1	$BR(e_1)$		
$c \leq \frac{B}{k}$	$c \le \frac{\beta B}{k}$	0	2		
		1	1		
		2	0		
$\frac{B}{k} < c \le B$	$\frac{\beta B}{k} < c \le \beta B$	1	1		
		0,2	0		
B < c	$\beta B < c$	any	0		

If $k \leq \frac{1}{\beta}$ holds, then $\frac{B}{k} \leq \beta B$; otherwise, $\frac{B}{k} \leq \beta B$.

f
$$k \le \frac{1}{\beta}$$
 holds, then $\frac{\beta}{k} \le \frac{1}{\beta}$
i. $c \le \frac{\beta}{k}$
ii. $\frac{\beta B}{k} < c \le \frac{B}{k}$
iii. $\frac{\beta}{k} < c \le \beta B$
iv. $\beta B < c \le \frac{B}{2}$
• $k < \frac{1}{\beta}$
ii. $c \le \frac{\beta B}{k}$
iii. $\frac{\beta B}{k} < c \le \frac{\beta B}{k}$
iii. $\frac{\beta B}{k} < c \le \frac{\beta B}{k}$
iv. $\frac{\beta B}{k} < c \le \frac{\beta B}{2}$

(d) t=2 agent decides her/his behavior with $\beta<1$, while t=1 agent predicts it with $\hat{\beta}\in(\beta,1)$. Then, the agent's prediction and the acual strategy depending on the parameters are summerized as follows:

Parametrical condition				
Belief	Actual choice	e_1	$BR(e_1)$	
$c \le \frac{\hat{\beta}B}{k}$	$c \le \frac{\beta B}{k}$	0	2	
		1	1	
		2	0	
$\frac{\hat{\beta}B}{k} < c \le \hat{\beta}B$	$\frac{\beta B}{k} < c \le \beta B$	1	1	
		0,2	0	
$\hat{eta}B < c$	$\beta B < c$	any	0	

If $k \ge \frac{\hat{\beta}}{\beta}$, then $\beta B \ge \frac{\hat{\beta}B}{k}$; otherwise, $\beta B < \frac{\hat{\beta}B}{k}$.

•
$$k \ge \frac{\hat{\beta}}{\beta}$$

i.
$$c \leq \frac{\beta B}{k}$$

ii.
$$\frac{\beta B}{\frac{k}{k}} < c \le \frac{\beta B}{k}$$

iii.
$$\frac{k}{\beta B} < c \le \beta B$$

iv. $\beta B < c \le \hat{\beta} B$

iv.
$$\beta B < c \le \hat{\beta} B$$

v.
$$\hat{\beta}B < c$$

•
$$k < \frac{\hat{\beta}}{\beta}$$

i.
$$c \leq \frac{\beta B}{k}$$

ii.
$$\frac{\beta B}{k} < c \le \beta B$$

iii.
$$\beta B < c \le \frac{\hat{\beta}B}{k}$$

iv.
$$\frac{\hat{\beta}B}{k} < c \le \hat{\beta}B$$

v. $\hat{\beta}B < c$

v.
$$\hat{\beta}B < 1$$

Period 2

When $e_1 = 0$, then t = 2 agent has no incentive to take any choice other than $e_2 = 0$, since $B(0, e_2) = 0$ for any e_2 .

When $e_1 = 1$, t = 2 agent prefer $e_2 = 1$ to $e_2 = 0$ iff

$$-c + \beta B \ge 0$$
$$c \le \beta B$$

otherwise, $e_2 = 0$ for any e_1

• Period 1

t = 1 agent predicts her/his behavior in period 2 with $\hat{\beta} \in (\beta, 1)$.

Then, the agent's prediction and the acual strategy depending on the parameters are summerized as follows:

Parametrical condition					
Belief	Actual choice	e_1	$BR(e_1)$		
$c \leq \hat{\beta}$	$c \leq \beta B$	1	1		
		0	0		
$\hat{\beta}B < c$	$\beta B < c$	any	0		

i.
$$c \leq \beta B$$

ii.
$$\beta B < c \leq \hat{\beta} B$$

iii.
$$\hat{\beta}B < c < \frac{B}{2}$$