

Recap: Sampling Distributions of Sums of Squares (SS)

Under the Normal error model:

•
$$SSE$$
 and SSR are independent.

• $SSE \sim \sigma^2 \chi^2_{(n-p)}$.

• If $\beta_1 = \cdots = \beta_{p-1} = 0$, then $SSR \sim \sigma^2 \chi^2_{(p-1)}$.

Mean squares (MS): MS = SS/d.f.(SS). MSE: $MSE = \frac{SSE}{n-p}, E(MSE) = \sigma^2.$ MSE is an estimator of the error variance σ^2 . MSR: $MSR = \frac{SSR}{p-1}$. if $\beta_1 = \cdots = \beta_{p-1} = 0$ if otherwise E(MSR) =4□ > 4₫ > 4 ≧ > 4 ≧ > ½ 900 €

Mean squares (MS):
$$MS = SS/d.f.(SS)$$
.

• MSE:

$$MSE = \frac{SSE}{n-p}, E(MSE) = \sigma^2.$$

MSE is an unbiased estimator of the error variance
$$\sigma^2$$
.

$$MSR = \frac{SSR}{p-1}.$$

$$E(MSR) = \begin{cases} \sigma^2 & \text{if } \beta_1 = \cdots = \beta_{p-1} = 0 \\ > \sigma^2 & \text{if } otherwise \end{cases}$$

4□ > 4₫ > 4 ½ > 4½ > ½ 90 < </p>

• MSTO =
$$\frac{SSTO}{n-1}$$
.

Why?

For n cases, up to how many X variables can be included in the model?

F Test of Regression Relation

Under the Normal error model:

Test whether there is a regression relation between the response variable Y and the set of X variables:

F ratio and its null distribution:

where
$$F_{p-1,n-p}$$
 denotes the F distribution with $(p-1,n-p)$ degrees of freedom.

• Decision rule at level α : reject H_0 if $F^* >$

F Test of Regression Relation

Under the Normal error model

 Test whether there is a regression relation between the response variable Y and the set of X variables:

$$H_0: \beta_1 = \cdots = \beta_{p-1} = 0$$
 vs.

$$H_a$$
: not all β_k s equal zero.

F ratio and its null distribution:

$$F^* = \frac{MSR}{MSE}, \quad F^* \sim_{H_0} F_{p-1,n-p},$$

where $F_{p-1,n-p}$ denotes the F distribution with (p-1,n-p)degrees of freedom.

Decision rule at level α : reject H_0 if $F^* > F(1-\alpha; p-1, n-p)$.

ANOVA Table

Source of Variation	S\$	d.f. MS	F*
Regression	$SSR = \mathbf{Y}'(\mathbf{H} - \frac{1}{n}\mathbf{J}_n)\mathbf{Y}$	$p-1$ $MSR = \frac{SSR}{p-1}$	$F^* = \frac{MSR}{MSE}$
Error	$SSE = \mathbf{Y}'(\mathbf{I}_n - \mathbf{H})\mathbf{Y}$	$n - p$ $MSE = \frac{SSE}{n-p}$	MOL
Total	$SSTO = \mathbf{Y}' \left(\mathbf{I}_n - \frac{1}{n} \mathbf{J}_n \right) \mathbf{Y}$	n – 1	

Example Model 2: n = 30, p = 5.

Source of Variation	SS	d.f. MS	F*
Regression	SSR = 366.4846	4 MSR = 91.62116	$F^* = 87.03703$
Error	SSE = 26.31672	25 $MSE = 1.052669$	
Total	SSTO = 392.8013	29	

Pvalue = $P(F_{4,25} > 87.037) \approx 0$, so there is a significant regression relation between Y and X_1, X_2, X_3, X_1X_2 .

Coefficient of Multiple Determination

$$R^2 := \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}$$

- R² is the of the total variation in Y by using the X variables to explain Y.
- $0 \le R^2 \le 1$. When $R^2 = 0$? When $R^2 = 1$?
- Adding more X variables to the model will always
 - R² because:
 - SSTO
 - SSE

Coefficient of Multiple Determination

$$R^2 := \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}$$

- R² is the proportional reduction of the total variation in Y by using the X variables to explain Y.
- $0 \le R^2 \le 1$.
- When $R^2 = 0$? When $R^2 = 1$?
- Adding more X variables to the model will always increase R² because:
 - (i) SSTO remains the same. Why?
 - (ii) SSE becomes smaller. Why?

Since adding more X variables can only R^2 , does this mean we should use as many X variables as possible?

- With more X variables, the model does fit the observed data , indicated by SSE.
- However, a model with many X variables that are unrelated to the response variable and/or are highly correlated with each other tends to
 - the observed data and often do a job for prediction (i.e., generalize poorly for new cases) due to sampling variability.
 - make interpretation
 - make model maintenance more

Since adding more X variables can only increase R^2 , does this mean we should use as many X variables as possible?

- With more X variables, the model does fit the observed data better, indicated by smaller SSE.
- However, a model with many X variables that are unrelated to the response variable and/or are highly correlated with each other tends to
 - overfit the observed data and often do a poor job for prediction (i.e.,) due to increased sampling variability.
 - make interpretation difficult.
 - make model maintenance more costly.

Adjusted Coefficient of Multiple Determination

Adjusted Coefficient of Multiple Determination

Adjust for the number of X variables in the model:

$$R_a^2 = 1 - \frac{MSE}{MSTO} = 1 - \frac{n-1}{n-p} \frac{SSE}{SSTO}$$

- $R_a^2 \leq R^2$.
- R₂ may become smaller when adding more X variables into the model because:
 - the decrease in SSE may be more than offset by the loss of degrees of freedom in \$SE.

Example

$$R^2 = 0.8883, \quad R_a^2 = 0.8754$$

Model 2:
$$Y \sim X_1, X_2, X_3, X_1X_2$$

 $R^2 = 0.933, R_2^2 = 0.9223.$

$$R^2 = 0.937, R_a^2 = 0.9205.$$

(i) For each model,
$$R^2 > R_a^2$$
; (ii) Adding more X variable(s) increases R^2 . The increase of R^2 is much more from Model 1 to Model 2 than from Model 2 to Model 3; (iii) Model 3 has a smaller R_a^2 than Model 2.

Inferences about Regression Coefficients

LS estimators:
$$\hat{\beta}_0$$

$$\hat{\beta}_1$$

$$\hat{\beta}_{p-1}$$

$$\mathbf{E}\{\hat{\beta}\} = \sum_{p \times 1} \sigma^2\{\hat{\beta}\} = \sum_{p \times p} \sigma^2\{\hat{\beta}\} = 0$$
The standard error of $\hat{\beta}_k$, $s(\hat{\beta}_k)$, is the

Inferences about Regression Coefficients

LS estimators:
$$\hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \vdots \\ \hat{\beta}_{p-1} \end{bmatrix} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}.$$

$$p \times p \qquad p \times p \qquad p \times n \quad n \times 1$$

$$\mathbf{E}\{\hat{\boldsymbol{\beta}}\} = \boldsymbol{\beta}, \quad \sigma^2\{\hat{\boldsymbol{\beta}}\} = \sigma^2(\mathbf{X}'\mathbf{X})^{-1}.$$
The standard error of $\hat{\beta}_k$, $s(\hat{\beta}_k)$, is the positive square-root of the $(k+1)th$ diagonal element of $MSE(\mathbf{X}'\mathbf{X})^{-1}$.

- Studentized pivotal quantity:
 - $\frac{\hat{\beta}_k \beta_k}{\hat{\beta}_k}$

•
$$(1 - \alpha)$$
-Confidence interval for β_k :

- T statistic:

• Two-sided T-Test:
$$H_0: \beta_k = \beta_k^0$$
 vs. $H_a: \beta_k \neq \beta_k^0$.

At level α , the decision rule is to reject H_0 if and only if $|T^*|$

What are decision rules for one-sided tests?

Studentized pivotal quantity:

$$\frac{\hat{\beta}_k - \beta_k}{s\{\hat{\beta}_k\}} \sim t_{(n-p)}.$$

• $(1-\alpha)$ -Confidence interval for β_k :

$$\hat{\beta}_k \pm t(1-\alpha/2; (n-p))s\{\hat{\beta}_k\}.$$

• T statistic:

$$T^* = \frac{\hat{\beta}_k - \beta_k^0}{s\{\hat{\beta}_k\}} \underset{H_0}{\sim} t_{(n-p)}.$$

• Two-sided T-Test: $H_0: \beta_k = \beta_k^0$ vs. $H_a: \beta_k \neq \beta_k^0$. At level α , the decision rule is to reject H_0 if and only if $|T^*| > t(1 - \alpha/2; (n - p))$.

What are decision rules for one-sided tests?

Multiple Regression: Example

n = X ₁ ,	= 3(X ₀	0 ca	ase	s, r	esp	on	se	var	iab	le '	Y a	nd [·]	thre	e p	ore	dict	or۱	/ari	abl	es			
cas		, / \:		X1		X2		X 3															
1		3	.01	1.	06	0.8	36 -																
2 3			3.40 .74																				
			. / 4																				
30			1.42																				
														4		4 ₺	▶ ∢	# ▶	4 ∄	Þ	=	99	(p)

Example: Model 2

Nonadditive model with interaction between
$$X_1$$
 and X_2 :

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i1} X_{i2} + \epsilon_i, \quad i = 1, \cdots, 30.$$

$$(p = 5)$$
Call:
$$lm(formula = Y \cdot X1 + X2 + X3 + X1:X2, \text{ data} = \text{ data})$$
Coefficients:
$$Estimate \ Std. \ Error \ t \ value \ Pr(>|t|)$$
(Intercept) 0.8832 0.2153 4.103 0.00038 ***
$$X_1 \quad 1.5946 \quad 0.2421 \quad 6.587 \cdot 6.69e \cdot 07 \quad ***$$

$$X_2 \quad 1.7991 \quad 0.2605 \quad 6.560 \quad 7.16e \cdot 07 \quad ***$$

$$X_3 \quad 2.1266 \quad 0.2687 \quad 7.916 \cdot 2.85e \cdot 08 \quad ***$$

$$X_1:X2 \quad 1.0076 \quad 0.2467 \quad 4.084 \quad 0.00040 \quad ***$$

$$Signif. \ codes: 0 \quad *** \quad 0.001 \quad ** \quad 0.01 \quad ** \quad 0.05 \quad 0.1 \quad 1$$
Residual standard error: 1.026 on 25 degrees of freedom Multiple R-squared: 0.933, Adjusted R-squared: 0.9223
F-statistic: 87.04 on 4 and 25 DF, p-value: 2.681e-14

4□ > 4同 > 4 □ > 4 □ > □

Test whether there is an interaction between X_1 and X_2 . Use

the null hypothesis and

interaction

, so

, vs., H_a:

$$\alpha = 0.01.$$
• H_0 :

•
$$n = 30, p = 5,$$

- conclude that there is
- effect between X_1 and X_2 .
- Alternatively, pvalue= H_0 .

Notes: pvalue for the two-sided alternative is in the R output. What is a 99% confidence interval for β_4 ? How to test the

right-sided alternative? 4□ ▶ 4 Ē ▶ 4 Ē Þ Ē 90 € Test whether there is an interaction between X_1 and X_2 . Use

$$\alpha = 0.01$$
.

- $H_0: \beta_4 = 0$, vs., $H_a: \beta_4 \neq 0$.
- $T^* = \frac{1.0076 0}{0.2467} = 4.084$.
- n = 30, p = 5, t(0.995; 25) = 2.787.
- Since |4.084| > 2.787, reject the null hypothesis and conclude that there is a significant interaction effect between X_1 and X_2 .
- Alternatively, pvalue= $P(|t_{(25)}| > |4.084|) = 0.00040 < 0.01$, so reject H_0 .

Notes: pvalue for the two-sided alternative is in the R output.

What is a 99% confidence interval for β_4 ? How to test the right-sided alternative?

Estimation of the Mean Response

Estimation of the Mean Response

• For a given set of values of the
$$X$$
 variables:

$$\mathbf{X}_{h} = \begin{bmatrix}
1 \\
X_{h1} \\
\vdots \\
X_{h-1}
\end{bmatrix}$$

Corresponding mean response:

$$E(Y_h) = X'_h \beta = \beta_0 + \beta_1 X_{h1} + \cdots + \beta_{p-1} X_{h,p-1}.$$

•
$$\widehat{Y}_h := \mathbf{X}_h' \hat{\boldsymbol{\beta}}$$
 is an unbiased estimator of $E(Y_h)$:

$$E(\widehat{Y}_h) = E(X_h'\widehat{\beta}) = X_h' \mathbf{E}\{\widehat{\beta}\} = X_h' \beta = E(Y_h).$$

$$\sigma^{2}(\widehat{\mathbf{Y}}_{h}) = \mathbf{X}'_{h}\sigma^{2}\{\widehat{\boldsymbol{\beta}}\}\mathbf{X}_{h} = \sigma^{2}\left(\mathbf{X}'_{h}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_{h}\right).$$

Standard error of \widehat{Y}_h :

$$s(\widehat{Y}_h) = \sqrt{MSE(\mathbf{X}'_h(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h)}.$$

•
$$(1 - \alpha)$$
-confidence interval for $E(Y_n)$:

$$\widehat{Y}_h \pm t(1-\alpha/2; n-p)s(\widehat{Y}_h).$$

Example

Estimate the mean response when
$$X_1 = 0.8, X_2 = 0.5, X_3 = -1$$
 under Model 2.

•
$$X'_h =$$

•
$$n = 30, p = 5$$
:

$$\widehat{Y}_h := \mathbf{X}_h' \widehat{\beta} = 1.290,$$

$$\mathbf{X}_h' (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}_h = 0.170, \quad MSE = 1.053,$$

$$s(\widehat{Y}_h) =$$

• A 99%-confidence interval for
$$E(Y_h)$$
: $t(0.995; 25) = 2.787$
1.290 $\pm 2.787 \times 0.423 = [0.111, 2.469]$.

Example

Estimate the mean response when
$$X_1 = 0.8, X_2 = 0.5, X_3 = -1$$
 under Model 2.

•
$$\mathbf{X}'_h = \begin{bmatrix} 1 & 0.8 & 0.5 & -1 & 0.8 \times 0.5 \end{bmatrix}$$

•
$$n = 30, p = 5$$
:

$$\widehat{\mathbf{Y}}_h := \mathbf{X}_h' \widehat{\boldsymbol{\beta}} = 1.290,$$

$$\mathbf{X}'_h(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h = 0.170, \quad MSE = 1.053$$

 $\mathbf{S}(\widehat{Y}_h) = \sqrt{1.053 \times 0.170} = 0.423.$

• A 99%-confidence interval for
$$E(Y_h)$$
: $t(0.995; 25) = 2.787$
1.290 ± 2.787 × 0.423 = [0.111, 2.469].