Otimização de Modelos de Aprendizado Federado com Redes Definidas por Software

Cândido Leandro de Queiroga Bisneto

CENTRO DE INFORMÁTICA UNIVERSIDADE FEDERAL DA PARAÍBA

Cândido Leandro de Queiroga Bisneto
Otimização de Modelos de Aprendizado Federado com Redes Definidas por Software
Monografia apresentada ao curso Ciência da Computação do Centro de Informática, da Universidade Federal da Paraíba como requisito para a obtenção do grau de Bacharel em Ciência da Computação
Orientador: Fernando Menezes Matos

CENTRO DE INFORMÁTICA UNIVERSIDADE FEDERAL DA PARAÍBA

Trabalho de Conclusão de Curso de Ciência da Computação intitulado *Otimização* de *Modelos de Aprendizado Federado com Redes Definidas por Software* de autoria de Cândido Leandro de Queiroga Bisneto, aprovada pela banca examinadora constituída pelos seguintes professores:

Prof. Dr. Fernando Menezes Matos
Universidade Federal da Paraíba

Prof. [Nome do Professor B]
Universidade Federal da Paraíba

Prof. [Nome do Professor C]
Universidade Federal da Paraíba

Coordenador(a) do Curso de Ciência da Computação [Nome do Coordenador] CI/UFPB

DEDICATÓRIA

[Texto da dedicatória - opcional]

AGRADECIMENTOS

[Texto dos agradecimentos]

RESUMO

[Inserir resumo em português - um único parágrafo informativo contendo: objetivos do trabalho, justificativa e resultados alcançados. Máximo 200 palavras.]

Palavras-chave: Aprendizado Federado, Redes Definidas por Software, XGBoost, LightGBM, CatBoost, Flower Framework, Privacidade de Dados.

ABSTRACT

[Insert abstract in English - one informative paragraph containing: work objectives, justification, and results achieved. Maximum $200~{\rm words.}$]

Keywords: Federated Learning, Software-Defined Networking, XGBoost, LightGBM, CatBoost, Flower Framework, Data Privacy.

LISTA DE FIGURAS

LISTA DE TABELAS

1	Tecnologias utilizadas no projeto	20
2	Metadados do dataset	21
3	Especificações do ambiente computacional	22

LISTA DE ABREVIATURAS

- API Application Programming Interface
- AUC Area Under the Curve
- CART Classification and Regression Trees
- CPU Central Processing Unit
- DP Differential Privacy
- FL Federated Learning
- GBDT Gradient Boosting Decision Trees
- GPU Graphics Processing Unit
- gRPC Google Remote Procedure Call
- HTTP Hypertext Transfer Protocol
- IID Independent and Identically Distributed
- LGPD Lei Geral de Proteção de Dados
- ML Machine Learning
- non-IID Non-Independent and Identically Distributed
- QoS Quality of Service
- ROC Receiver Operating Characteristic
- SDN Software-Defined Networking
- TCC Trabalho de Conclusão de Curso
- TCP Transmission Control Protocol
- UFPB Universidade Federal da Paraíba
- UDP User Datagram Protocol

Sumário

1	INT	rodu	UÇÃO	17
	1.1	Motiva	ação	17
	1.2	Objeti	ivo	17
	1.3	Estrut	cura da monografia	17
2	RE	VISÃC	DE LITERATURA	18
	2.1	Traba	lhos Relacionados sobre Aprendizado Federado	18
	2.2	Traba	lhos sobre Modelos Baseados em Árvores	18
	2.3	Traba	lhos sobre SDN e Otimização de Rede	18
	2.4	Anális	se Comparativa dos Trabalhos	18
3	\mathbf{FU}	NDAM	MENTOS TEÓRICOS	19
	3.1	Apren	dizado Federado	19
		3.1.1	Definição e Características	19
		3.1.2	Estratégias de Agregação	19
	3.2	Model	os Baseados em Árvores de Decisão	19
		3.2.1	XGBoost	19
		3.2.2	LightGBM	19
		3.2.3	CatBoost	19
	3.3	Redes	Definidas por Software (SDN)	19
		3.3.1	Arquitetura SDN	19
		3.3.2	OpenFlow	19
		3.3.3	Aplicações em Aprendizado de Máquina	19
	3.4	Frame	ework Flower	19
		3.4.1	Arquitetura do Flower	19
		3.4.2	Implementação de Clientes e Servidores	19
4	ME	TODO	DLOGIA	20
	4.1	Visão	Geral da Solução Proposta	20

	4.2	Arquit	setura do Sistema	20
		4.2.1	Componentes do Sistema	20
		4.2.2	Fluxo de Comunicação	20
	4.3	Impler	mentação dos Modelos Federados	20
		4.3.1	Adaptação de XGBoost para FL	20
		4.3.2	Adaptação de LightGBM para FL	20
		4.3.3	Adaptação de CatBoost para FL	20
	4.4	Integra	ação com SDN	20
		4.4.1	Configuração da Rede SDN	20
		4.4.2	Políticas de QoS	20
		4.4.3	Monitoramento de Tráfego	20
	4.5	Tecnol	ogias Utilizadas	20
5	$\mathbf{D}\mathbf{A}'$	TASET	E PREPARAÇÃO DOS DADOS	21
	5.1	Seleçã	o do Dataset	21
	5.2	Descri	ção das Features	21
	5.3	Anális	e Exploratória dos Dados	21
	5.4	Pré-pr	ocessamento	21
		5.4.1	Tratamento de Valores Ausentes	21
		5.4.2	Normalização e Padronização	21
		5.4.3	Codificação de Variáveis Categóricas	21
	5.5	Partic	ionamento dos Dados	21
		5.5.1	Particionamento IID	21
		5.5.2	Particionamento non-IID	21
6	CO	NFIGU	JRAÇÃO EXPERIMENTAL	22
	6.1	Ambie	ente Computacional	22
	6.2		parâmetros dos Modelos	22
	6.3	Conng	guração do Aprendizado Federado	22

	6.5	Métricas de Avaliação	. 22
7	RES	SULTADOS	23
	7.1	Resultados em Cenário IID	. 23
		7.1.1 Comparação de Modelos	. 23
		7.1.2 Comparação de Estratégias	. 23
	7.2	Resultados em Cenário non-IID	. 23
		7.2.1 Comparação de Modelos	. 23
		7.2.2 Impacto da Heterogeneidade	. 23
	7.3	Análise de Convergência	. 23
	7.4	Impacto da Integração SDN	. 23
	7.5	Análise Estatística	. 23
		7.5.1 Teste de Friedman	. 23
		7.5.2 Teste Post-hoc de Nemenyi	. 23
8	DIS	CUSSÃO	24
	8.1	Interpretação dos Resultados	. 24
	8.2	Comparação com Estado da Arte	. 24
	8.3	Limitações do Trabalho	. 24
	8.4	Implicações Práticas	. 24
9	CO	NCLUSÕES E TRABALHOS FUTUROS	25
	9.1	Conclusões	. 25
	9.2	Contribuições	. 25
	9.3	Trabalhos Futuros	. 25
\mathbf{R}^{1}	EFE]	RÊNCIAS	25

1 INTRODUÇÃO

- 1.1 Motivação
- 1.2 Objetivo

1.3 Estrutura da monografia

Esta monografia está dividida da seguinte maneira: na segunda seção é feita a revisão da literatura sobre aprendizado federado e redes SDN. Na terceira seção são apresentados os fundamentos teóricos necessários para compreensão do trabalho. Na quarta seção é apresentada a metodologia utilizada no desenvolvimento do trabalho. Na quinta seção o dataset utilizado é descrito em detalhes. Na sexta seção a configuração experimental é apresentada. Na sétima seção os resultados obtidos são apresentados e analisados. Na oitava seção é feita a discussão dos resultados. Na nona seção é feita a conclusão deste trabalho e trabalhos futuros são propostos.

2 REVISÃO DE LITERATURA

- 2.1 Trabalhos Relacionados sobre Aprendizado Federado
- 2.2 Trabalhos sobre Modelos Baseados em Árvores
- 2.3 Trabalhos sobre SDN e Otimização de Rede
- 2.4 Análise Comparativa dos Trabalhos

3 FUNDAMENTOS TEÓRICOS

- 3.1 Aprendizado Federado
- 3.1.1 Definição e Características
- 3.1.2 Estratégias de Agregação
- 3.2 Modelos Baseados em Árvores de Decisão
- 3.2.1 XGBoost
- 3.2.2 LightGBM
- 3.2.3 CatBoost
- 3.3 Redes Definidas por Software (SDN)
- 3.3.1 Arquitetura SDN
- 3.3.2 OpenFlow
- 3.3.3 Aplicações em Aprendizado de Máquina
- 3.4 Framework Flower
- 3.4.1 Arquitetura do Flower
- 3.4.2 Implementação de Clientes e Servidores

4 METODOLOGIA

- 4.1 Visão Geral da Solução Proposta
- 4.2 Arquitetura do Sistema
- 4.2.1 Componentes do Sistema
- 4.2.2 Fluxo de Comunicação
- 4.3 Implementação dos Modelos Federados
- 4.3.1 Adaptação de XGBoost para FL
- 4.3.2 Adaptação de LightGBM para FL
- 4.3.3 Adaptação de CatBoost para FL
- 4.4 Integração com SDN
- 4.4.1 Configuração da Rede SDN
- 4.4.2 Políticas de QoS
- 4.4.3 Monitoramento de Tráfego
- 4.5 Tecnologias Utilizadas

Componente	Tecnologia
Framework FL	Flower 1.6+
Modelos	XGBoost, LightGBM, CatBoost
Linguagem	Python 3.9+
SDN Controller	[A definir]
Comunicação	gRPC

Tabela 1: Tecnologias utilizadas no projeto

5 DATASET E PREPARAÇÃO DOS DADOS

5.1 Seleção do Dataset

Característica	Valor
Nome	[Nome do dataset]
Fonte	[URL/Repositório]
Número de amostras	[N]
Número de features	[M]
Classes	[Lista de classes]
Tipo de problema	Classificação binária/multiclasse

Tabela 2: Metadados do dataset

- 5.2 Descrição das Features
- 5.3 Análise Exploratória dos Dados
- 5.4 Pré-processamento
- 5.4.1 Tratamento de Valores Ausentes
- 5.4.2 Normalização e Padronização
- 5.4.3 Codificação de Variáveis Categóricas
- 5.5 Particionamento dos Dados
- 5.5.1 Particionamento IID
- 5.5.2 Particionamento non-IID

6 CONFIGURAÇÃO EXPERIMENTAL

6.1 Ambiente Computacional

Componente	Especificação
Processador	[Modelo e frequência]
Memória RAM	[Quantidade] GB
GPU	[Modelo] ou N/A
Sistema Operacional	[Nome e versão]
Python	[Versão]

Tabela 3: Especificações do ambiente computacional

- 6.2 Hiperparâmetros dos Modelos
- 6.3 Configuração do Aprendizado Federado
- 6.4 Experimentos Realizados
- 6.5 Métricas de Avaliação

7 RESULTADOS

- 7.1 Resultados em Cenário IID
- 7.1.1 Comparação de Modelos
- 7.1.2 Comparação de Estratégias
- 7.2 Resultados em Cenário non-IID
- 7.2.1 Comparação de Modelos
- 7.2.2 Impacto da Heterogeneidade
- 7.3 Análise de Convergência
- 7.4 Impacto da Integração SDN
- 7.5 Análise Estatística
- 7.5.1 Teste de Friedman
- 7.5.2 Teste Post-hoc de Nemenyi

8 DISCUSSÃO

- 8.1 Interpretação dos Resultados
- 8.2 Comparação com Estado da Arte
- 8.3 Limitações do Trabalho
- 8.4 Implicações Práticas

9 CONCLUSÕES E TRABALHOS FUTUROS

- 9.1 Conclusões
- 9.2 Contribuições
- 9.3 Trabalhos Futuros

REFERÊNCIAS

- [1] AUTOR, A.B.; COAUTOR, C.D. Título do artigo. Nome da Revista, v.10, n.2, p.45-62, 2020.
- [2] AUTOR, Nome. **Título do Livro**. Editora, Cidade, Ano.
- [3] AUTOR, A.; COAUTOR, B. Título do artigo. **Nome da Conferência**, p.100-110, 2021.