Using Machine Learning to Classify Chest X-Rays

Rohan Bhansali Avi Komarlingam

Dataset: MIMIC-CXR-JPEG

metadata											
dicom_id subject_id study_id ViewPosition Rows Columns											
b5f871e6-	10002428	58601917	AP	3056	2544						

negbio											
subject_id	study_id	Atelectasis	Cardiomegaly								
10002428	58581921		0								
10002428	58601917	1	-1								

Data Processing

Bilinear Interpolation

(2539, 2705)

(512, 512)

Pixel Normalization

Min: 0.000, Max: 255.000

Min: 0.000, Max: 1.000

Developing CNNs

DenseNet

DenseNet-121
DenseNet-161

Model Performance

DenseNet-121

DenseNet-161

Layers: 121 Layers: 161

Accuracy: 92.30% Accuracy: 92.15%

"Results"

Atelectasis -	0	0	0	0	0	0	0	0	1	0	0	0	0	10	
Cardiomegaly -	0	0	0	0	0	0	0	0	1	0	0	0	0		
Consolidation -	0	0	0	0	0	0	0	0	1	0	0	0	0	- 0.8	3
Edema -	0	0	0	0	0	0	0	0	1	0	0	0	0		
Enlarged Cardiomediastinum -	0	0	0	0	0	0	0	0	1	0	0	0	0		
Fracture -	0	0	0	0	0	0	0	0	1	0	0	0	0	- 0.6	5
- Lung Lesion -	0	0	0	0	0	0	0	0	1	0	0	0	0		
른 Lung Opacity -	0	0	0	0	0	0	0	0	1	0	0	0	0	- 0.4	
No Finding -	0	0	0	0	0	0	0	0	1	0	0	0	0		
Pleural Effusion -	0	0	0	0	0	0	0	0	1	0	0	0	0		
Pleural Other -	0	0	0	0	0	0	0	0	1	0	0	0	0	- 0.2	2
Pneumonia -	0	0	0	0	0	0	0	0	1	0	0	0	0		
Pneumothorax -	0	0	0	0	0	0	0	0	1	0	0	0	0		
	Atelectasis -	Cardiomegaly -	Consolidation -	Edema -	Enlarged Cardiomediastinum -	- Fracture -	Lung Lesion -	- Lung Opacity -	No Finding -	Pleural Effusion -	Pleural Other -	Pneumonia -	Pneumothorax -	- 0.0	,

Possible Causes

- Domination of one class over the others due to overrepresentation
- 2. Errors in preprocessing images
- Issues with model architecture

Equalizing Class Sizes

Pixel Denormalization

Min: 0.000, Max: 1.000

Min: 0.000, Max: 255.000

Different Model Architectures

Future Work: Finding a solution to the single-class prediction problem

References

Armitage, H. (2018, November 20). Artificial intelligence rivals radiologists in screening X-rays for certain diseases. Retrieved from https://med.stanford.edu/news/all-news/2018/11/ai-outperformed-radiologists-in-screening-x-rays-for-certain-diseases.html

Baltruschat, I. M., Nickisch, H., Grass, M., Knopp, T., & Saalbach, A. (2019). Comparison of Deep Learning Approaches for Multi-Label Chest X-Ray Classification. Scientific Reports,9(1). doi:10.1038/s41598-019-42294-8

Blumenfeld, A., Greenspan, H., & Konen, E. (2018). Pneumothorax detection in chest radiographs using convolutional neural networks. Medical Imaging 2018: Computer-Aided Diagnosis. doi:10.1117/12.2292540

"Data & Statistics | CDC." Centers for Disease Control and Prevention, Centers for Disease Control and Prevention, www.cdc.gov/DataStatistics/.

Demner-Fushman, D., Kohli, M. D., Rosenman, M. B., Shooshan, S. E., Rodriguez, L., Antani, S., . . . Mcdonald, C. J. (2015). Preparing a collection of radiology examinations for distribution and retrieval. Journal of the American Medical Informatics Association, 23(2), 304-310. doi:10.1093/jamia/cov080

Hou, S., Liu, X., & Wang, Z. (2017). DualNet: Learn Complementary Features for Image Recognition. 2017 IEEE International Conference on Computer Vision (ICCV). doi:10.1109/iccv.2017.62

Huang, G., Liu, Z., Maaten, L. V., & Weinberger, K. Q. (2017). Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.243

Ittyachen, A. M., Vijayan, A., & Isac, M. (2017). The forgotten view: Chest X-ray - Lateral view. Respiratory Medicine Case Reports, 22, 257-259. doi:10.1016/j.rmcr.2017.09.009

Kumar, P., Grewal, M., & Srivastava, M. M. (2018). Boosted Cascaded Convnets for Multilabel Classification of Thoracic Diseases in Chest Radiographs. Lecture Notes in Computer Science Image Analysis and Recognition,546-552. doi:10.1007/978-3-319-93000-8_62

Qin, C., Yao, D., Shi, Y., & Song, Z. (2018). Computer-aided detection in chest radiography based on artificial intelligence: A survey. BioMedical Engineering OnLine, 17(1). doi:10.1186/s12938-018-0544-y

Raipurkar, P., Irvin, J., Ball, R. L., Zhu, K., Yang, B., Mehta, H., Lungren, M. P. (2018). Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLOS Medicine, 15(11). doi:10.1371/journal.pmed.1002686

Raoof, S., Feigin, D., Sung, A., Raoof, S., Irugulpati, L., & Rosenow, E. C. (2012). Interpretation of Plain Chest Roentgenogram. Chest, 141(2), 545-558. doi:10.1378/chest.10-1302

Riggs, W., & Parvey, L. (1976). Differences between right and left lateral chest radiographs. American Journal of Roentgenology,127(6), 997-1000. doi:10.2214/ajr.127.6.997

Reserve

Bilinear Interpolation

Deep Learning

Rohan Bhansali and Avi Komarlingam

Artificial Neural Networks

The Neuron

Activation function

Used to determine if a certain neuron will "fire" or not

Four main functions

How do NN's learn?

- Weights adjust based on cost function to minimize cost
- Back propagation is the process of adjusting the weights to find ideal network

$$C = \sum \frac{1}{2}(\hat{y} - y)^2$$

Back propagation

STEP 1: Randomly initialise the weights to small numbers close to 0 (but not 0).

STEP 2: Input the first observation of your dataset in the input layer, each feature in one input node.

STEP 3: Forward-Propagation: from left to right, the neurons are activated in a way that the impact of each neuron's activation is limited by the weights. Propagate the activations until getting the predicted result y.

STEP 4: Compare the predicted result to the actual result. Measure the generated error.

STEP 5: Back-Propagation: from right to left, the error is back-propagated. Update the weights according to how much they are responsible for the error. The learning rate decides by how much we update the weight

STEP 6: Repeat Steps 1 to 5 and update the weights after each observation (Reinforcement Learning). Or:
Repeat Steps 1 to 5 but update the weights only after a batch of observations (Batch Learning).

STEP 7: When the whole training set passed through the ANN, that makes an epoch. Redo more epochs.

Gradient descent

Using the slope at various points in the cost function lets you find the direction in which the weights are optimized

Stochastic Gradient Descent

	Row ID	Study Hrs	Sleep Hrs	Ouiz	Exam	1	Row ID	Study Hrs	Sleep Hrs	Quiz	Exam
	1	12	6	78%	93%	Upd w's	1	12	6	78%	93%
	2	22	6.5	24%	68%	Upd w's	2	22	6.5	24%	68%
	3	115	4	100%	95%	Upd w's	3	115	4	100%	95%
Upd w's	4	31	9	67%	75%	Upd w's	4	31	9	67%	75%
ppa w s	5	0	10	58%	51%	Upd w's	5	0	10	58%	51%
	6	5	8	78%	60%	Upd w's	6	5	8	78%	60%
	7	92	6	82%	89%	Upd w's	7	92	6	82%	89%
	8	57	8	91%	97%	Upd w's	8	57	8	91%	97%

Batch Gradient Descent

Stochastic Gradient Descent

Convolutional Neural Networks

Usage

Mainly used for image recognition

Convolution Layer

 Feature maps are applied to images in order to extract certain features

Pooling

 Average and max pooling, used to reduce the amount of data to work with

V 14.2

Feature Map

Pooled Feature Map

4

Flatenning

 Images are converted into a single vector to input into an ANN

Full Connection

Flattened vectors are inputted into an ANN

Softmax & Cross Entropy

- Softmax is applied to the values of an output vector to generate probabilities
- Cross Entropy is used as a method to determine how accurate a model is
- More efficient than other methods such as classification or mean squared error

DenseNet

- Alleviates the vanishing-gradient problem
- Strengthens feature propagation and reuse
- Substantially reduces the number of parameters

Even More Different Model Architectures

kNN

Logistic Regression

SVM

		Р	redicted						
		Enlarged Cardiomediastinum	Lung Lesion	Lung Opacity	Σ				
	Enlarged Cardiomediastinum	51.7 %	38.7 %	9.6 %	551				
Actual	Lung Lesion	36.0 %	55.3 %	8.8 %	684				
Act	Lung Opacity	46.9 %	43.0 %	10.1 %	435				
	Σ	735	778	157	1670				
		F	Predicted						
		Enlarged Cardiomediastinum	Lung Lesion	Lung Opacity	Σ				
	Enlarged Cardiomediastinum	43.0 %	35.6 %	21.4 %	551				
nal	Lung Lesion	27.2 %	52.5 %	20.3 %	684				
Actual	Lung Opacity	32.9 %	38.4 %	28.7 %	435				
	Σ	566	722	382	1670				
		Predicted							
		Enlarged Cardiomediastinum	Lung Lesion	Lung Opacity	Σ				
	Enlarged Cardiomediastinum	53.9 %	22.7 %	23.4 %	551				
nal	Lung Lesion	51.3 %	29.2 %	19.4 %	684				
Actual	Lung Opacity	54.5 %	19.5 %	26.0 %	435				
	Σ	885	410	375	1670				

Purpose

