Applied Machine Learning

Data Transformation

Computer Science, Fall 2022

Instructor: Xuhong Zhang

Data Transformation

Outline

- Attribute Selection
- Discretizing numeric attributes
- Projections
- Transforming multiple classes to binary ones
- Calibrating class probabilities

You just want to apply a learner? No

- Scheme/parameter selection
 - Treat selection process as part of the learning process to avoid optimistic performance estimates
- Modifying the input:
 - Data engineering to make learning possible or easier
- Modifying the output
 - Converting multi-class problems into two-class ones
 - Re-calibrating probability estimates

Attribute selection

- Attribute selection is often important in practice
- For example, adding a random (i.e., irrelevant) attribute can significantly degrade a classification tree's performance
 - Problem: the built-in attribute selection is based on smaller and smaller amounts of data
- Instance-based learning is particularly susceptible to irrelevant attributes
 - Number of training instances required increases exponentially with number of irrelevant attributes
- Exception: naïve Bayes can cope well with irrelevant attributes
 - Note that relevant attributes can also be harmful if they mislead the learning algorithm

Shema-independent attribute selection

- Filter approach to attribute selection: assess attributes based on general characteristics of the data
- In this approach, the attributes are selected in a manner that is independent of the target machine learning scheme
- One method: find smallest subset of attributes that separates data
- Another method: use a fast learning scheme that is different from the target learning scheme to find relevant attributes
 - E.g., use attributes selected by tree models, or coefficients of linear model, possibly applied recursively (recursive feature elimination)
 Q: What you need to pay attention to when

Q: What you need to pay attention to when you use coefficients to select features?

Entropy

- Entropy: a common way to measure impurity
- Entropy H(X) of a random variable X

of possible values for X

$$H(X) = -\sum_{i=1}^{n} P(X = i) \log_2 P(X = i)$$

- H(X) is the expected number of bits needed to encode a randomly drawn value of X (under most efficient code) to encode message X = i.
- So, expected number of bits to code one random X is H(X).

Example: Huffman Code

- In 1952 MIT student David Huffman devised, in the course of doing a homework assignment, an elegant coding scheme which is optimal in the case where all symbols' probabilities are integral powers of ½.
- A Huffman code can be built in the following manner:
 - o Rank all symbols in order of probability of occurrence
 - Successively combine the two symbols of the lowest probability to form a new composite symbol; eventually we will build a binary tree where each node is the probability of all nodes beneath it
 - o Trace a path to each leaf, noticing direction at each node

Huffman Code Example

A .125

B .125

C .25

D .5

M	code le	ength	prob	
Α	000	3	0.125	0.375
В	001	3	0.125	0.375
\mathbf{C}	01	2	0.250	0.500
D	1	1	0.500	0.500
averag	1.750			

If we use this code to many messages (A,B,C or D) with this probability distribution, then, over time, the average bits/message should approach 1.75

Scheme-independent attribute selection

- Attribute weighting techniques based on instance-based learning can also be used for filtering
- Correlation-based Feature Selection (CFS):
 - Correlation between attributes measured by symmetric uncertainty:

$$U(A,B) = 2 \frac{H(A) + H(B) - H(A,B)}{H(A) + H(B)} \in [0,1], H(A,B) = -\sum_{i} \sum_{j} P(A,B) \log_2 P(A,B)$$

Goodness of subset of attributes measured by

$$\sum_{j} U(A_{j},C) / \sqrt{\sum_{i} \sum_{j} U(A_{i},A_{j})}$$

breaking ties in favour of smaller subsets

C: the class attribute

Note: if all m attributes in the subset correlate
perfectly with the class and with one another, the
numerator becomes ?

And the denominator becomes ?

Searching the attribute space

- Number of attribute subsets is exponential in the number of attributes
- Common greedy approaches:
 - forward selection
 - backward elimination
- More sophisticated strategies:
 - Bidirectional search
 - Best-first search: can find optimum solution
 - Beam search: approximation to best-first search
 - Genetic algorithms

Attribute subsets for weather data

Scheme-specific selection

- Wrapper approach to attribute selection: attributes are selected with target scheme in the loop
- Implement "wrapper" around learning scheme
 - Evaluation criterion: cross-validation performance
- Time consuming in general
- Can use significance test to stop cross-validation for a subset early if it is unlikely to "win"
 - Can be used with forward, backward selection, prior ranking, or specialpurpose schemata search
- Scheme-specific attribute selection is essential for learning decision tables
- Efficient for decision tables and Naïve Bayes

Attribute discretization

- Discretization can be useful even if a learning algorithm can be run on numeric attributes directly
- Avoids normality assumption in Naïve Bayes and clustering
- Examples of discretization we have already encountered:
 - Decision tree performs local discretization
- Global discretization can be advantageous because it is based on more data
- Apply learner to
 - k valued discretized attribute or to
 - k 1 binary attributes that code the cut points
- The latter approach often works better when learning decision trees or rule sets

Discretization: unsupervised

- Unsupervised discretization: determine intervals without knowing class labels
 - When clustering, the only possible way!
- Two well-known strategies:
 - Equal-interval binning
 - Equal-frequency binning (also called histogram equalization)
- Unsupervised discretization is normally inferior to supervised schemes when applied in classification tasks
 - But equal-frequency binning works well with naïve Bayes if the number of intervals is set to the square root of the size of dataset (proportional k-interval discretization)

Discretization: supervised

 Classic approach to supervised discretization is entropybased

- This method builds a decision tree with pre-pruning on the attribute being discretized
 - Uses entropy as splitting criterion
 - Uses the minimum description length principle as the stopping criterion for pre-pruning
- Works well: still the state of the art

Formula for stopping criterion

- Can be formulated in terms of the information gain
- Assume we have N instances
 - Original set: k classes, entropy E
 - First subset: k_1 classes, entropy E_1
 - Second subset: k_2 classes, entropy E_2

$$gain > \frac{\log_2(N-1)}{N} + \frac{\log_2(3^k-2) - kE + k_1E_1 + k_2E_2}{N}$$

- If the information gain is greater than the expression on the right, we continue splitting
- Results in no discretization intervals for the temperature attribute in the weather data

Error-based vs. entropy-based

- Question: could the best discretization ever have two adjacent intervals with the same class?
- Error-based: No. For if so,
 - Collapse the two
 - Free up an interval
 - Use it somewhere else
 - (This is what error-based discretization will do)
- Entropy-based: Surprisingly, yes.
 - (and entropy-based discretization can do it)

Error-based vs. entropy-based

A 2-class, 2-attribute problem

- The point is that what changes as the value of a1 crosses the boundary at 0.3 is not the majority class but the class distribution.
- The majority class remains dot.
- The distribution, however, changes markedly, from 100% to just over 50%.
- And the distribution changes again as the boundary at 0.7 is crossed, from 50% to 0%.

Supervised discretization: other methods

- Can replace top-down procedure by bottom-up method
- This bottom-up method has been applied in conjunction with the <u>chi-squared</u> test
 - Continue to merge intervals until they become significantly different
- Can use dynamic programming to find optimum k-way split for given additive criterion
 - Requires time quadratic in the number of instances
 - But can be done in linear time if error rate is used instead of entropy
 - However, using error rate is generally not a good idea when discretizing an attribute as we will see

Projections

- Simple transformations can often make a large difference in performance
- Example transformations (not necessarily for performance improvement):
 - Difference of two date attributes
 - Ratio of two numeric (ratio-scale) attributes
 - Concatenating the values of nominal attributes
 - Encoding cluster membership
 - Adding noise to data
 - Removing data randomly or selectively
 - Obfuscating the data

Principle component analysis

- Unsupervised method for identifying the important directions in a dataset
- We can then rotate the data into the (reduced) coordinate system that is given by those directions
- PCA is a method for dimensionality reduction
- Algorithm:
 - 1. Find direction (axis) of greatest variance
 - 2. Find direction of greatest variance that is perpendicular to previous direction and repeat
- Implementation: find eigenvectors of the covariance matrix of the data
 - Eigenvectors (sorted by eigenvalues) are the directions

Example: 10-dimensional data

Axis	Variance	Cumulative
1	61.2%	61.2%
2	18.0%	79.2%
3	4.7%	83.9%
4	4.0%	87.9%
5	3.2%	91.1%
6	2.9%	94.0%
7	2.0%	96.0%
8	1.7%	97.7%
9	1.4%	99.1%
10	0.9%	100.0%

Data is normally standardized or mean-centered for PCA

Random projections

- PCA is nice but expensive: cubic in number of attributes
- Alternative: use random directions instead of principal components
- Surprising: random projections preserve distance relationships quite well (on average)
 - Can use them to apply kD-trees to high-dimensional data
 - Can improve stability by using ensemble of models based on different projections
- Different methods for generating random projection matrices have been proposed

Correlation vs. statistical independence

- PCA is sometimes thought of as a method that seeks to transform correlated variables into linearly uncorrelated ones
- Important: correlation and statistical independence are two different criteria
 - Uncorrelated variables have correlation coefficients equal to zero – entries in a covariance matrix
 - Two variables A and B are considered independent when their joint probability is equal to the product of their *marginal* probabilities:

$$P(A,B) = P(A)P(B)$$

Automatic data cleansing

- Attribute noise vs. class noise
 - Attribute noise should be left in the training set (i.e., do not train on clean set and test on dirty one)
 - Systematic class noise (e.g., one class substituted for another): leave in training set
 - Unsystematic class noise: eliminate from training set, if possible

Robust regression

- "Robust" statistical method -- one that addresses problem of outliers
- Possible ways to make regression more robust:
 - Minimize absolute error, not squared error
 - Remove outliers (e.g., 10% of points farthest from the regression plane)
 - Minimize median instead of mean of squares (copes with outliers in x and y direction)
- Least median of squares regression finds the narrowest strip covering half the observations
 - Expensive to compute

Example: least median of squares

Number of international phone calls from Belgium, 1950–1973

Detecting anomalies

- Visualization can help to detect anomalies
- Automatic approach: apply committee of different learning schemes, e.g.,
 - decision tree
 - nearest-neighbor learner
- Conservative consensus approach: delete instances incorrectly classified by all of them
 - Problem: might sacrifice instances of small classes

One-Class Learning

- Usually training data is available for all classes
- Some problems exhibit only a single class at training time
- Test instances may belong to this class or a new class not present at training time
- This the problem of one-class classification
 - Predict either target or unknown

Outlier detection

- One-class classification is often used for outlier/anomaly/novelty detection
- First, a one-class models is built from the dataset
- Then, outliers are defined as instances that are classified as <u>unknown</u>
- Another method: identify outliers as instances that lie beyond distance d from percentage p of training data
- Density estimation is a very useful approach for oneclass classification and outlier detection
 - Estimate density of the target class and mark low probability test instances as outliers
 - Threshold can be adjusted to calibrate sensitivity

Transforming multiple classes to binary ones

- Some learning algorithms only work with two class problems
- Sophisticated multi-class variants exist in many cases but can be very slow or difficult to implement
- A common alternative is to transform multi-class problems into multiple two-class ones
- Simple methods:
 - Discriminate each class against the union of the others one-vs.-rest
 - Build a classifier for every pair of classes pairwise classification

Error-correcting output codes

- Multiclass problem vs. multiple binary problems
 - Simple one-vs.rest scheme:
 One-per-class coding
- Idea: use error-correcting codes instead
 - base classifiers predict 1011111, true class = ??
- Use bit vectors (codes) sot that we have large Hamming distance between any pair of bit vectors:
 - Can correct up to (d-1)/2 single-bit errors

class	class vector
а	1000
b	0100
С	0010
d	0001

class	class vector
a	1111111
b	0000111
С	0011001
d	0101010

Exhaustive ECOCs

- Exhaustive code for k classes:
 - Columns comprise every possible *k*-string ...
 - ... except for complements and all-zero/one strings
 - Each code word contains $2^{k-1} 1$ bits
- Class 1: code word is all ones
- Class 2: 2^{k-2} zeroes followed by $2^{k-2}-1$ ones
- Class i: alternating runs of 2^{k-i} 0s and 1s
 - last run is one short

Exhaustive code, k = 4

class	class vector
а	1111111
b	0000111
С	0011001
d	0101010

Calibrating class probabilities

- Class probability estimation is harder than classification:
 - Classification error is minimized as long as the correct class is predicted with maximum probability
 - Estimates that yield correct classification may be quite poor with respect to quadratic or informational loss
- But: it is often important to have accurate class probabilities
 - E.g. cost-sensitive prediction using the minimum expected cost method

Visualizing inaccurate probability estimates

- Consider a two class problem. Probabilities that are correct for classification may be:
 - Too optimistic too close to either 0 or 1
 - Too pessimistic not close enough to 0 or 1

Reliability diagram showing overoptimistic probability estimation for a two-class problem

Calibrating class probabilities

- Can view calibration as a function estimation problem
 - One input estimated class probability and one output the calibrated probability
- Reasonable assumption in many cases: the function is piecewise constant and monotonically increasing
- Can use isotonic regression, which estimates a monotonically increasing piece-wise constant function: Minimizes squared error between observed class "probabilities" (0/1) and resulting calibrated class probabilities
- Alternatively, can use logistic regression to estimate the calibration function
 - Note: must use the log-odds of the estimated class probabilities as input
- Advantage: multiclass logistic regression can be used for calibration in the multiclass case