EE 240C Analog-Digital Interface Integrated Circuits

SAR ADC Capacitor and Switching Schemes

SAR Techniques

- Small custom unit capacitors for low– to mid–resolution SAR ADC
- DAC schemes and switching schemes for low power or lower area
- Self-timed comparator or asynchronous SAR
 - At most 2 critical comparator decisions
 - Optimize time needed for comparator
- Redundant SAR
 - Make SAR robust against DAC settling errors and comparator noise
- SAR DAC Calibration
 - DAC non-linearity
 - Digital overhead

- Fully differential variants
- Unsuccessful bit trials lead to reference power loss
- Comparator input node swing

- Parasitic capacitor C_D only causes smaller comparator signal
 - Capacitive divider between switched capacitor and parasitic capacitor

Fully differential implementation

Conventional Switching Scheme

$$Q = -V_{in} \cdot C_{\text{total}} = (V_x - V_{DAC}) \cdot C_{\text{total}} + V_x \cdot C_p$$

Comparator input voltage example for a 10-bit ADC

Split Capacitor Array

- Smaller number of unit elements, but needs calibration
 - Sensitive to parasitic capacitor on secondary summing node

Monotonic Switching Scheme

[C.-C. Liu et al., "A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure," *IEEE J. Solid-State Circuits*, vol. 45, no. 4, pp. 731–740, Apr. 2010]

- Top-plate sampling
- Compare before switching (B-1 single-ended switches for B bits)
- Parasitic capacitor C_p (not shown) leads to gain error

Monotonic Switching Scheme

Monotonic Switching Scheme

$$Q = V_{in} \cdot (C_{\text{total}} + C_p) = (V_x - V_{DAC}) \cdot C_{\text{total}} + V_x \cdot C_p$$

Monotonic Switching Scheme

Comparator input voltage example for a 10-bit ADC

EE 240C Analog-Digital Interface Integrated Circuits

Asynchronous SAR ADC

L42

SAR Techniques

- Small custom unit capacitors for low– to mid–resolution SAR ADC
- DAC schemes and switching schemes for low power or lower area
- Self-timed comparator or asynchronous SAR
 - At most 2 critical comparator decisions
 - Optimize time needed for comparator
- Redundant SAR
 - Make SAR robust against DAC settling errors and comparator noise
- SAR DAC Calibration
 - DAC non-linearity
 - Digital overhead

Asynchrous SAR ADC

[S. W. M. Chen and R. W. Brodersen, "A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13- m CMOS,"

IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669–2680, Dec. 2006]

Asynchronous SAR ADC: Metastability

Johan Vanderhaegen 2019 Fall

EE 240C Analog-Digital Interface Integrated Circuits

SAR ADC Redundancy

Redundant Non-Binary DAC

- Non-binary DAC (with 1 < Radix < 2) allows for recovery of erroneous comparator decisions, due to:
 - Incomplete DAC settling
 - Comparator noise

Non-binary Search

[Ogowa, "SAR ADC Algorithm with Redundancy", 2008]

Binary Search (5b / 5 steps)

Non-Binary Search (5b / 6 steps)

Redundant Binary DAC

[C.-C. Liu et al., "A 10b 100ms/s 1.13mW SAR ADC with binary-scaled error compensation," in 2010 IEEE ISSCC, pp. 386–387]

EE 240C Analog-Digital Interface Integrated Circuits

SAR ADC DAC Calibration

Johan Vanderhaegen
University of California, Berkeley
jpv@eecs.berkeley.edu

Copyright © 2017 Bernhard Boser, Johan Vanderhaegen

DAC Calibration Scheme (5-bit Example)

 Voltage V_x after opening S_x and switching cap voltages for MSB:

 $V_{x_1} = \frac{\Delta C}{C_{TOTAL}} V_{REF}$

Use calibration DAC to digitize residual and to correct conversion

[H.-S. Lee, "Self-calibration techniques for successive approximation analog- to-Digital converters, "PhD thesis, University of California at Berkeley, 1984]

DAC Calibration Scheme

[H.-S. Lee, "Self-calibration techniques for successive approximation analog- to-Digital converters, "PhD thesis, University of California at Berkeley, 1984]

Digital overhead

EE 240C Analog-Digital Interface Integrated Circuits

Successive Approximation ADC

SAR ADC Overall Noise

- T&H (P_{n,th})
- DAC noise (P_{n,dac})
- Comparator noise (P_{n,cmp})
- □ Total input-referred noise:

 $P_{n,tot} \approx P_{n,qn} + P_{n,th} + P_{n,dac} + P_{n,cmp}$

[Harpe2016]

SAR ADC Overall Linearity

- T&H, DAC, comparator offset → ADC offset
- T&H, DAC gain error → ADC gain error
- T&H, DAC non-linearity → ADC non-linearity

SAR ADC Overall Speed

• $T_{clk} > T_{DAC} + T_{comp} + T_{logic}$

T_{DAC}: DAC settling time

T_{comp}: comparator delay

T_{logic}: logic delay

T&H bandwidth

EE 240C Analog-Digital Interface Integrated Circuits

Pipeline ADC

Outline

- Background
 - History and state-of the art performance
 - General idea of multi-step A/D conversion
- Pipeline ADC basics
 - Ideal block diagram and operation, impact of block nonidealities
- Ways to deal with nonidealities
 - Redundancy, calibration
- CMOS implementation details
 - Stage scaling, MDAC design
- Architectural options
 - OTA sharing, SHA-less front-end
- Research topics

History (1)

US Patent # 2,869,079: Staffin and Lohman, "Signal Amplitude Quantizer," 1959

History (2)

- First multi-step ADC with "error correction"
 - T.C. Verster, "A method to increase the accuracy of fast Serial-Parallel Analog-to-Digital Converters," IEEE Trans. Electronic Computers, EC-13, pp. 471-473, 1964.
- First pipeline ADC
 - B.D. Smith, "An Unusual Electronic Analog-Digital Conversion Method," IRE Transactions on Instrumentation, pp.155-160, June 1956.
- First pipeline ADCs in CMOS
 - S.H. Lewis and P.R. Gray, "A pipelined 5-Msample/s 9-bit analog-to-digital converter," JSSC, pp. 954-961, Dec. 1987.
 - S. Sutardja and P.R. Gray, "A pipelined 13-bit 250-ks/s 5-V analog-to-digital converter," JSSC, pp. 1316-1323, Dec. 1988.

General Concept of Multi-Step Conversion

- General idea (two-step example)
 - 1. Perform a "coarse" quantization of the input
 - 2. Compute residuum (error) of step 1 conversion using a DAC and subtractor
 - 3. Digitize computed residuum using a second "fine" quantizer and digitally add to output

Quantizer Model

Quantization Error ϵ = D-V_{in}

EE 240C Analog-Digital Interface Integrated Circuits

Pipeline Simulation

Pipeline Simulation Model

$$V_{\rm res} = G(V_{\rm in} - D\Delta)$$

See Matlab/Simulink L18_pipe_3_el.mdl

Simulation of 2-Bit Stage

Pipeline ADC Model

See Matlab/Simulink L18_pipe_2bps_error.mdl

Simulation Result

EE 240C Analog-Digital Interface Integrated Circuits

Pipelining

S/H

- Conversion time is proportional to number of stages employed
 - E.g. for a two-step ADC, time required for conversion is $T_{conv} = 2 \cdot T_{A/D} + T_{D/A} + T_{SUB}$
- Solution
 - Introduce a sample and hold operation after subtraction
 - Fine ADC has one full clock cycle until new residuum becomes available
 - "Pipelining"

Interstage Gain

- Fine ADC(s) must have precision commensurate with overall target resolution
 - E.g. 8-bit converter with 4-bit/4-bit partition; fine 4-bit decision levels must have "8-bit precision"
- Solution
 - Introduce gain after subtraction

Input to Fine Quantizer with Gain

No longer need precision comparators

Pipeline ADC Block Diagram

Concurrent Stage Operation

- Stages operate on the input signal like a shift register
- New output data every clock cycle, but each stage introduces ½ clock cycle latency

Data Alignment

- Digital shift register aligns sub-conversion results in time
- Digital output is taken as weighted sum of stage bits

Latency

[Analog Devices, AD9226 Data Sheet]

Pipeline ADC Characteristics

- Number of components grows linearly with resolution
 - Unlike flash ADC, where components $\sim 2^{B}$
- Pipeline ADC trades latency for conversion speed
 - Throughput limited by speed of one stage
 - Enables high-speed operation
 - Latency can be an issue in some applications
 - E.g. in feedback control loops
- Pipelining requires good analog "memory elements"
 - Calls for implementation in CMOS using switched-capacitor circuits

EE 240C Analog-Digital Interface Integrated Circuits

Pipeline Modeling

Stage Analysis

• Ignore timing/clock delays for simplicity

$$D = Q(V_{\rm in})$$

$$V_{res} = G \cdot [V_{\rm in} - V_{\rm dac}]$$

Stage Model with Ideal DAC

 Residue of pipeline stage (V_{res}) is equal to (-gain) times sub-ADC quantization error

"Residue Plot" (2-bit Sub-ADC)

Pipeline Decomposition

 Often convenient to look at pipeline as single stage plus backend ADC

Resulting Model

Canonical Extension

$$D_{\text{out}} = V_{\text{in}} + \varepsilon_{q1} \left(1 - \frac{G_1}{G_{d1}} \right) + \frac{\varepsilon_{q2}}{G_{d1}} \left(1 - \frac{G_2}{G_{d2}} \right) + \dots + \frac{\varepsilon_{q(n-1)}}{\prod_{j=1}^{n-2} G_{dj}} \left(1 - \frac{G_{(n-1)}}{G_{d(n-1)}} \right) + \frac{\varepsilon_{qn}}{\prod_{j=1}^{n-1} G_{dj}}$$

- First stage has most stringent precision requirements
- Note that above model assumes that all stages use same reference voltage (same full scale range)
 - This is true for most designs, one exception is [Limotyrakis 2005]

General Result – Ideal Pipeline ADC

• With ideal DACs and ideal digital weights $(G_{dj}=G_j)$

$$D_{\text{out}} = V_{\text{in}} + \frac{\varepsilon_{qn}}{\prod_{j=1}^{n-1} G_j} \quad \Rightarrow \quad B_{\text{ADC}} = B_n + \sum_{j=1}^{n-1} \log_2 G_j$$

- The only error in D_{out} is that of last quantizer, divided by aggregate gain
- Aggregate ADC resolution is independent of sub-ADC resolutions in stage 1...n-1 (!)
- Makes sense to define "effective" resolution of jth stage as R_i=log₂(G_i)

EE 240C Analog-Digital Interface Integrated Circuits

Pipeline Design & Error Sources

Questions

- How to pick stage gain G for a given sub-ADC resolution?
- Impact and compensation of nonidealities?
 - Sub-ADC errors
 - Amplifier offset
 - Amplifier gain error
 - Sub-DAC error
- Begin to explore these questions using a simple example
 - First stage with 2-bit sub-ADC, followed by 2-bit backend

Comparator Offset

See Matlab/Simulink L18_pipe_2bps_error.mdl

Comparator Offset

Digital Correction

Parameters
ADC thresholds

[-1 0.3 1]

DAC outputs

[-1.5-0.5 0.5 1.5]

Gain

2

Sampling frequence
300

Cancel

<u>H</u>elp

Reduced interstage gain:

- No overload (due to comparator offset)
- Reduced input (only 1 bit resolution per stage)

OK

Block Parameters: Pipeline Stage 1

-Subsystem (mask)

Digital Correction

Issue with G=2^B

 Any error in sub-ADC decision levels will overload backend ADC and thereby deteriorate ADC transfer function

Idea #1: G slightly less than 2^B

- Effective stage resolution can be non-integer (R=log₂G)
 - E.g. $R = log_2 3.2 = 1.68 bits$
- See e.g. [Karanicolas 1993]

Idea #2: G < 2^B, but Power of Two

- Effective stage resolution is an integer
 - E.g. $R = log_2 2 = 1 = B-1$
 - Digital hardware requires only a few adders, no need to implement fractional weights
- See e.g. [Mehr 2000]

Idea #3: G=2^B, Extended Backend Range

- No redundancy in stage with errors
- Extra decision levels in succeeding stage used to bring residue "back into the box"
- See e.g. [Opris 1998]

Variant of Idea #2: "1.5-bit stage"

- Sub-ADC decision levels placed to minimize comparator count
- Can accommodate errors up to $\pm \frac{1}{4}$
- $B = log_2(2+1) = 1.589$ (sub-ADC resolution)
- $R = log_2 2 = 1$ (effective stage resolution)
- See e.g. [Lewis 1992]

"1.5-bps" Stage

Pipeline ADC, 1.5 bit per stage (2 comparators per stage)

- A full bit of "overrange" is excessive for typical comparator offset
 - → use only 2 (rather than 3) comparators and G=2
- 3 DAC levels \rightarrow lb(3) = 1.585 Bits
- Overall resolution:
 - 1 bps for all stages but last
 - 1.585 Bit for last

1.5-bps Pipeline

- What is the maximum offset that can be corrected?
- What is the offset of each comparator in this example?

Ref: S. Lewis et al, "A 10-b 20-Msample/s Analog-to-Digital Converter," J. Solid-State Circ., pp. 351-8, March 1992.

Summary on Sub-ADC Redundancy

- We can tolerate sub-ADC errors as long as
 - The residue stays "inside the box", or
 - Another stage downstream returns the residue "into the box" before it gets clipped or reaches the last quantizer
- This result applies to any stage in an n-stage pipeline
 - Can always decompose pipeline into single stage + backend
 ADC
- In literature, sub-ADC redundancy schemes are often called "digital correction"
- There is no explicit error correction!
 - Sub-ADC errors are absorbed in the same way as their inherent quantization error
 - Provided there is no clipping ...

EE 240C Analog-Digital Interface Integrated Circuits

Pipeline Amplifier Errors

Amplifier Offset

- Amplifier offset can be referred toward stage input and results in
 - Global offset
 - Usually no problem, unless "absolute ADC accuracy" is required
 - Sub-ADC offset
 - Easily accommodated through redundancy

Gain Errors

$$D_{out} = V_{in} + \varepsilon_{q1} \left(1 - \frac{G_1 + \Delta}{G_{d1}} \right) + \dots + \frac{\varepsilon_{qn}}{\prod_{j=1}^{n-1} G_{dj}}$$

• Want to make $G_{d1} = G_1 + \Delta$

Digital Gain Calibration (1)

- Error in analog gain is not a problem as long as "digital gain term" is adjusted appropriately
- Problem
 - Need to measure analog gain precisely
- Example
 - Digital calibration of a 1-bit first stage with 1-bit redundancy (R=1, B=2)
- Note
 - Even if all G_{dj} are perfectly adjusted to reflect the analog gains, the ADC will have non-zero DNL and INL, bounded by ± 0.5 LSB. This can be explained by the fact that the residue transitions may not correspond to integer multiples of the backend-LSB. This can cause non-uniformity in the ADC transfer function (DNL, INL) and also non-monotonicity (see [Markus, 2005]).
 - In case this cannot be tolerated
 - Add redundant bits to ADC backend (after combining all bits, final result can be truncated back), or
 - Calibrate analog gain terms

Digital Gain Calibration (2)

Digital Gain Calibration (3)

Step1:
$$D_b^{(1)} = G \cdot [V_{in} + 0.25] + \varepsilon_{qb}^{(1)}$$

Step2:
$$D_b^{(2)} = G \cdot [V_{in} - 0.25] + \varepsilon_{qb}^{(2)}$$

$$D_b^{(1)} - D_b^{(2)} = 0.5 \cdot G + \varepsilon_{qb}^{(1)} - \varepsilon_{qb}^{(2)}$$

- Can minimize impact of quantization error using
 - Averaging (thermal noise dither)
 - Extra backend resolution

DAC Calibration

- Essentially same concept as gain calibration
 - Step through DAC codes and use backend to measure errors
- Store coefficients for each DAC transition in a look-up table

Recursive Stage Calibration

- First few stages have most stringent accuracy requirements
 - Errors of later stages are attenuated by aggregate gain
- Commonly used algorithm [Karanicolas 1993]
 - Take ADC offline
 - Measure least significant stage that needs calibration first
 - Move to next significant stage and continue toward stage 1

Calibration Hardware Example

Alternative Schemes

- Other foreground calibration schemes
 - Calibrate ADC starting from first stage [Singer 2000]
 - Connect stages in a circular loop [Soenen 1995]
- Background calibration
 - See e.g. [Ming 2001]
 - Makes sense primarily when calibration parameters are expected to drift
 - Capacitor ratios do not drift!
 - Background calibration is justifiable e.g. when drift in OTA open-loop gain is an issue

EE 240C Analog-Digital Interface Integrated Circuits

Pipeline Digital Backend

Combining the Bits (1)

• Example1: Three 2-bit stages, no redundancy

Combining the Bits (2)

- Only bit shifts
- No arithmetic circuits needed

Combining the Bits (3)

 Example2: Three 2-bit stages, one bit redundancy in stages 1 and 2 (6-bit aggregate ADC resolution)

Combining the Bits (4)

$$D_{out} = D_1 + \frac{1}{4}D_2 + \frac{1}{16}D_3$$

- D_1 XXX
 - O_2 XXX
 - $\mathbf{X}\mathbf{X}$
- Bits overlap
- Need adders

Combining the Bits (5)

- For fractional weights (e.g. radix <2), there is no need to implement complex multipliers
- Can still use simple bit shifts; push actual multiplication into low-resolution output
 - E.g. a 1x10 bit multiplication needs only one adder...
- See e.g. [Karanicolas 1993]