WARTHOG 2018, Lecture I-3

Main Exercise 1. Let X be a finite set and $\mathbb{C}[X]$ (resp. $\mathbb{C}[X \times X]$) be the set of complex valued functions on X.

(a) Show that the map

$$\begin{array}{ccc}
\mathbb{C}[X \times X] & \longrightarrow & \operatorname{End}_{\mathbb{C}}(\mathbb{C}[X]) \\
f & \longmapsto & (x \mapsto \sum_{y \in X} f(x, y)y)
\end{array} \tag{1}$$

is an isomorphism of vector spaces.

(b) Observe that under this isomorphism, the algebra structure on $\mathbb{C}[X \times X]$ is given by convolution:

$$(f \star f')(x, z) = \sum_{y \in X} f(x, y) f'(y, z).$$

- (c) What is the unit for the convolution?
- (d) Let G be a finite group acting on X. We can consider the diagonal action of G on $X \times X$. Show that the isomorphism (1) restricts to an isomorphism

$$\mathbb{C}[X \times X]^G \simeq \operatorname{End}_G(\mathbb{C}[X]).$$

(e) Deduce the dimension of $\operatorname{End}_G(\mathbb{C}[X])$ as a \mathbb{C} -vector space.

We now consider the case where $G = \mathrm{SL}_2(q)$ and $X = \mathbb{P}_1(\mathbb{F}_q)$. Let $h_1, \underline{h}_s, h_s$ be the characteristic functions of ΔX , $X \times X$ and $X \times X \setminus \Delta X$ respectively.

- (f) Express h_s in terms of \underline{h}_s and h_1 .
- (g) Compute the convolution of h_1 with the other functions.
- (h) Compute $\underline{h}_s \star \underline{h}_s$ and deduce $h_s \star h_s$.
- (i) Find a non-trivial linear combination of h_s and h_1 which squares to 1. Deduce that $\mathbb{C}[X \times X]^G$ is isomorphic to the group algebra of $\mathbb{Z}/2\mathbb{Z}$.

Main Exercise 2. We work in the standard setup, but without assuming that F acts trivially on W. Given $s \in S$ we write s_F for the longest element in the parabolic subgroup of W generated by the orbit of s under F. Then $\widetilde{S} = \{s_F \mid s \in S\} \subseteq W^F$ makes (W^F, \widetilde{S}) a Coxeter system.

- (a) Write explicitly s_F for (W, F) of type 2A_2 , 2A_3 and 3D_4 and show that (W^F, \widetilde{S}) is a Coxeter system in each of this case. What is the type of W^F ?
- (b) Given $s \in S$ we set

$$q_s = \#(\mathbf{U} \cap {}^{s_F w_0} \mathbf{U})^F = [B : B \cap {}^{sF} B].$$

Compute q_s for the finite reductive groups $GL_n(q)$ and $GU_n(q)$.

- (c) Recall that $e = |B|^{-1} \sum_{b \in B} b$. Let $w, w' \in W^F$ such that $\ell(ww') = \ell(w) + \ell(w')$. Show that ewew'e = eww'e.
- (d) Let $\mathbf{G} = \mathrm{SL}_2$ with standard Frobenius F. Compute esese in terms of ese and e
- (e) We admit that the multiplication map

$$(\mathbf{U} \cap {}^{w}\mathbf{U}) \times (\mathbf{U} \cap {}^{ww_0}\mathbf{U}) \longrightarrow \mathbf{U}$$

is an isomorphism of varieties. Show that

$$Bs_F B = Bs_F (U \cap {}^{s_F w_0} U)$$

and deduce the formula for esese in general.

(f) Let $\ell: W^F \to \mathbb{N}$ be the length function of W^F and for any $w \in W^F$ define

$$q_w = [B : {}^{\dot{w}}B \cap B]$$
 and $h_w = q_w ewe$.

Show that we have

$$h_s h_w = \begin{cases} h_{sw} & \text{if } \ell(sw) > \ell(w) \\ q_s h_{sw} + (q_s - 1)h_w & \text{if } \ell(sw) < \ell(w) \end{cases}$$

for all $s \in \widetilde{S}$ and $w \in W^F$.

WARTHOG 2018, Lecture I-3 supplementary exercises

Now G denotes any finite group and \mathbb{K} an algebraically closed field. If A is a \mathbb{K} -algebra then we will denote by A-mod the category of all finitely generated (left) A-modules.

Exercise 2. Let us denote by $\operatorname{Fun}(G)$ the set of all \mathbb{K} -valued functions $f: G \to \mathbb{K}$ on G (we do not assume that these respect the group structure). Given $f, g \in \operatorname{Fun}(G)$ we define their convolution product $f \cdot g \in \operatorname{Fun}(G)$ by setting

$$(f \cdot g)(x) = \sum_{y \in G} f(xy)g(y^{-1}).$$

for all $x \in G$. Check that this product endows $\operatorname{Fun}(G)$ with the structure of a \mathbb{K} -algebra. Furthermore, show that we have an isomorphism $\mathbb{K}G \cong \operatorname{Fun}(G)$ of \mathbb{K} -algebras.

Exercise 3. Let $e \in \mathbb{K}G$ be an idempotent then $e\mathbb{K}Ge \subseteq \mathbb{K}G$ is naturally a \mathbb{K} -algebra with identity e. Prove that we have an isomorphism of \mathbb{K} -algebras $\operatorname{End}_{\mathbb{K}G}(\mathbb{K}Ge)^{\operatorname{opp}} \cong e\mathbb{K}Ge$. (Hint: every $f \in \operatorname{End}_{\mathbb{K}G}(\mathbb{K}Ge)$ is uniquely determined by its value at e.)

We assume now that $\operatorname{char}(\mathbb{K}) = 0$. Let $H \leq G$ be a subgroup of G and consider the idempotent

$$e = \frac{1}{|H|} \sum_{h \in H} h \in \mathbb{K}H.$$

Consider the corresponding KG-module $\mathbb{K}Ge \cong \mathbb{K}G \otimes_{\mathbb{K}H} \mathbb{K}He \cong \mathbb{K}[G/H]$ which is nothing other than the module affording the induced character $\operatorname{Ind}_H^G(1_H)$. By Exercise 3 we see that to understand $\operatorname{End}_{\mathbb{K}G}(\mathbb{K}Ge)$ it is sufficient to understand the \mathbb{K} -algebra $\mathcal{H}(G,H) = e\mathbb{K}Ge$, which we call a Hecke algebra. The structure of this algebra is given by the following exercise.

Exercise 4. For any $x \in G$ we denote by $D_x \subseteq G$ the double coset HxH and by $T_x \in \mathbb{K}G$ the corresponding sum

$$T_x = \frac{1}{|H|} \sum_{g \in D_x} g.$$

Let $\mathcal{D} \subseteq G$ be a set of representatives for the double cosets $H \setminus G/H$. Prove that $\{T_x \mid x \in \mathcal{D}\}$ is a basis of $\mathcal{H}(G,H)$. We call this the *standard basis* of $\mathcal{H}(G,H)$. Furthermore, show that we have $T_xT_y = \sum_{z \in \mathcal{D}} \mu_{x,y,z}T_z$ for any $x, y \in \mathcal{D}$ where

$$\mu_{x,y,z} = [D_x \cap zD_y^{-1} : H].$$

Exercise 5. We consider the Hecke algebra $\mathcal{H} := \mathcal{H}_q(W)$ with equal parameters.

(a) We define $\tau: \mathcal{H} \to \mathbb{C}$ by $\tau(h_w) = \delta_{e,w}$. Show that

$$\begin{array}{ccc} \mathcal{H} & \longrightarrow & \mathcal{H}^{\vee} \\ h & \longmapsto & (h' \mapsto \tau(hh')) \end{array}$$

induces an isomorphism of $(\mathcal{H}, \mathcal{H})$ -bimodules. We say that \mathcal{H} is a *symmetric algebra* and that τ is a *symmetrizing form*.

Given $\phi \in \mathcal{H}^{\vee}$, we denote by ϕ^{\vee} the unique element of \mathcal{H} whose image under the previous isomorphism is ϕ .

We now assume that \mathcal{H} is split semisimple. Recall that every irreducible character χ of W yields an irreducible character χ_q of \mathcal{H} .

(b) Given χ an irreducible character of W, show that χ_q^{\vee} is a central element of \mathcal{H} and that $\chi_q^{\vee} = \chi_q^{\vee} e_{\chi_q}$ where e_{χ_q} is the central idempotent attached to χ_q .

We define the Schur element S_{χ} to be the scalar on which χ_q^{\vee} acts on the simple representation associated to χ_q . More precisely

$$S_\chi = \omega_{\chi_q}(\chi_q^\vee)$$

where ω_{χ_q} is the central character associated to χ_q .

- (c) Show that $\chi_q^{\vee} = S_{\chi} e_{\chi_q}$ (Hint: write how a central element decomposes on the basis of primitive central idempotents).
- (d) Using the decomposition of $1_{\mathcal{H}}$ into central idempotents, show that

$$\tau = \sum_{\chi \in \operatorname{Irr} W} \frac{1}{S_{\chi}} \chi_{q}.$$

- (e) Compute the Schur elements when $W = \mathfrak{S}_n$ with n = 2, 3.
- (f) We assume that we are in the generic setup. Show that

$$\dim \rho_{\chi} = \frac{1}{S_{\chi}} \sum_{w \in W} q^{\ell(w)}.$$

(g) Application: compute the degrees of the principal series representations of $GL_3(q)$.