16/17 (一) 浙江工业大学高等数学 A 期中考试试卷

班级: 姓名:

题号	_	=	Ξ.	四四	五	总分
得 分	() = (i)	, 7, J	7.	Av.	77	= 12000

填空选择题 (每小题 4分):

1.
$$\lim_{x\to\infty} (1+\frac{2}{x+1})^{3x+4} = \underline{e}^6$$

1.
$$\lim_{x \to \infty} (1 + \frac{2}{x+1})^{3x+4} = \underline{e^{\frac{1}{x}}}$$
2. $\forall y = xe^{\frac{1}{x}}, \quad y = \underline{e^{\frac{1}{x}}} = \underline{e^{\frac{1}{x}}}$

3. 设
$$y = e^{-\sin x^2}$$
 ,则 $dy = - \ge 3$ Co 3^2 e $- \frac{\cos x^2}{2}$ 次

4. 由方程
$$xy^2 - e^{xy} + 2 = 0$$
 确定的隐函数 $y = y(x)$ 的导数 $\frac{dy}{dx} = \frac{y - ye}{x^{2y} - 2xy}$.

5.
$$\lim_{n\to\infty} n \left[\ln(n+3) - \ln n \right] = \frac{2}{3}$$

6. 下列极限中,正确的是(C)

A.
$$\lim_{x \to \infty} \frac{\sin x}{x} = 1$$
 B. $\lim_{x \to 0} \frac{\sin x}{2x} = 1$ C. $\lim_{x \to \infty} x \sin \frac{1}{x} = 1$ D. $\lim_{x \to 0} \frac{\sin \frac{1}{x}}{\frac{1}{x}} = 1$.

- 7. 函数 y = f(x) 在 x_0 处可导, $\Delta y = f(x_0 + h) f(x_0)$,则当 $h \to 0$ 时有(()

 - A. dy 是 h 的等价无穷小; B. dy 是 h 的高阶无穷小;
 - C. $\Delta y dy$ 是比 h 高阶的无穷小; D. $\Delta y dy$ 是 h 的同阶无穷小;

8. 设
$$f(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
, 则 $f(x)$ 在 $x = 0$ 处 ($\int_{0}^{x} f(x) dx = 0$)

- A. $\lim_{x\to 0} f(x)$ 不存在; B. $\lim_{x\to 0} f(x)$ 存在, 但 f(x) 在 x=0 处不连续;
- C. f'(0) 存在; D. f(x) 在x = 0 处连续, 但不可导;

- A. 一个可去间断点,一个跳跃间断点; B. 一个无穷间断点,一个可去间断点;
- C. 一个跳跃间断点,一个无穷间断点; D. 二个无穷间断点。

10. 方程
$$x^3 - 3x + 1 = 0$$
 在区间 $(0,1)$ 内(β)。

- A. 无实根; B. 有唯一实根; C. 有二个实根; D. 有三个实根。

- 二、(10分)判断下列各命题(结论)是否正确(在括弧内填入 / 或×):
 - 1. 两个无穷小的商也是无穷小。(🗡)
- 2. 若函数 f(x) 在 x = a 连续,且 $f(a) \neq 0$,则存在 a 的一个邻域 U(a),在此邻域内有 $f(x) \neq 0$ 。(\checkmark)
 - 3. 若 f(x) 在 a 的一个邻域 U(a) 内满足 $f(x) \leq f(a)$,则必有 f'(a) = 0。 (\nearrow)
- 5. 若函数 f(x) 在 a 的一个邻域 U(a) 内有定义,则函数 f(x) 在 x=a 点可导的充分 必要条件是 $\lim_{h\to 0} \frac{f(a)-f(a+2h)}{h}$ 存在。 (\checkmark)

三、试解下列各题(每小题7分):

1.
$$\sqrt{x} = \lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right)$$

$$= \lim_{x \to 0} \frac{e^x - 1 - x}{x \cdot (e^x - 1)} = \lim_{x \to 0} \frac{e^x - x - 1}{x^2} = \lim_{x \to 0} \frac{e^x - 1}{x^2} = \frac{1}{2}$$

四、试解下列各题(每小题7分):

1. 设函数
$$f(x) = \begin{cases} \frac{\tan x - x}{x^3} & x > 0 \\ ax + b & x \le 0 \end{cases}$$
,试确定常数 a, b ,使 $f(x)$ 在 $x = 0$ 处连续、可

导; 并求 f'(0)

$$\frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100} = \frac{1}{100} =$$

2. 设 f(x) 在 $(-\infty, +\infty)$ 可微,证明当函数 $\Phi(x) = \frac{f(x)}{x}$ 在 $x = a \neq 0$ 处有极值时,曲线 y = f(x) 在 x = a 处的切线必通过原点。

i 圣啊 ·
$$\Phi'(x) = \frac{xf(x) - f(x)}{\chi^2}$$

又 $f(x)$ $f(x) = \frac{xf(x) - f(x)}{\chi^2}$

又 $f(x)$ $f(x) = \frac{xf(x) - f(x)}{\chi^2}$

ス $f(x)$ $f(x) = \frac{xf(x) - f(x)}{\chi^2}$

こ $\Phi'(a) = 0$ こ $af'(a) = f(a)$

い $\Phi'(x)$ $f(x)$ $f(x)$

3. 当
$$0 < x_1 < x_2 < \frac{\pi}{2}$$
 时,证明不等式: $\frac{\tan x_2}{\tan x_1} > \frac{x_2}{x_1}$ [注明: $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{x_1} = \frac{1}{x_2} \int_{-\infty}^{\infty} \frac{1}{x_2} \int_{-\infty}^{\infty} \frac{1}{x_1} \int_{-\infty}^{\infty} \frac{1}{x_2} \int_{-\infty}^{\infty} \frac{1$