SI5351A Clock Generator Frequency Setting Tool

Overview

This project provides a Python-based command-line interface for configuring the SI5351A clock generator chip. The SI5351A is a programmable clock generator capable of generating high-precision, multiple independent clock outputs.

日本語版のREADMEはこちらをご覧ください。

Features

- Multi-channel Output: Configure up to 2 independent clock outputs
 - o 1-channel output: CH0 only
 - o 2-channel output: CH0 + CH2
 - o Differential output: CH0 + CH1 (or CH2) pair
- Differential Output Support: Enable differential clock output on CH1 or CH2
- Spread Spectrum Clocking (SSC): Reduce EMI with configurable frequency spread range
- High Precision: Accurate frequency generation using fractional PLL synthesis (frequency setting error: <0.0001%)
- **Test Mode**: Built-in parameter calculation verification function
- Hardware Support: Supports both Adafruit FT232H and Silicon Labs CP2112 USB-to-I2C adapters

Requirements

Environment

• OS: Windows 10/11

Hardware

- SI5351A clock generator chip
- USB-to-I2C adapter (choose one):
 - o Adafruit FT232H USB-to-I2C adapter, or
 - o Silicon Labs CP2112 USB-to-I2C adapter
- 25MHz crystal oscillator (connected to SI5351A)

Breadboard setup showing SI5351A and USB-to-I2C adapter connections

100 yen case housing for the project

Software Dependencies

For FT232H

```
pip install --upgrade adafruit-blinka adafruit-platformdetect
pip install Adafruit_GPIO
```

For CP2112

pip install hidapi

Installation

1. Clone the repository

```
git clone https://github.com/hwengjp/si5351a_freq_setter
cd si5351a_freq_setter
```

2. Install dependencies

For FT232H:

```
pip install --upgrade adafruit-blinka adafruit-platformdetect
pip install Adafruit_GPIO
```

For CP2112:

```
pip install hidapi
```

3. Hardware connection

- Connect USB-to-I2C adapter SCL to SI5351A SCL
- Connect USB-to-I2C adapter SDA to SI5351A SDA
- o Connect USB-to-I2C adapter GND to SI5351A GND
- Connect 25MHz crystal oscillator to SI5351A

Executable (exe) Generation

You can generate an executable file using PyInstaller:

1. Install Pylnstaller

```
pip install pyinstaller
```

2. Generate exe file

For FT232H:

```
# Remove generated files
pyinstaller si5351a_freq_setter_FT232H.py --clean

# Generate single file exe (including libusb0.dll)
pyinstaller si5351a_freq_setter_FT232H.py --onefile --add-binary "C:\\Windows\\System32\\libusb0.dll;."
```

For CP2112:

```
# Remove generated files
pyinstaller si5351a_freq_setter_CP2112.py --clean
# Generate single file exe
pyinstaller si5351a_freq_setter_CP2112.py --onefile
```

The generated exe file will be placed in the dist folder.

Usage

Basic Usage

For FT232H:

```
# 1-channel output (CH0 only, 100MHz)
python si5351a_freq_setter_FT232H.py 100

# 2-channel output (CH0: 100MHz + CH2: 200MHz)
python si5351a_freq_setter_FT232H.py 100 200

# Differential output (channel 1) - CH0(100MHz) + CH1(100MHz inverted)
python si5351a_freq_setter_FT232H.py 100 -d 1

# Differential output (channel 1) + CH2 independent output - CH0(100MHz) + CH1(100MHz inverted) + CH2(200MHz)
python si5351a_freq_setter_FT232H.py 100 200 -d 1

# Differential output (channel 2) - CH0(100MHz) + CH2(100MHz inverted)
python si5351a_freq_setter_FT232H.py 100 -d 2

# Enable spread spectrum
python si5351a_freq_setter_FT232H.py 100 -s
```

```
# Test mode (parameter calculation test)
python si5351a_freq_setter_FT232H.py -t 10
```

For CP2112:

```
# 1-channel output (CH0 only, 100MHz)
python si5351a_freq_setter_CP2112.py 100

# 2-channel output (CH0: 100MHz + CH2: 200MHz)
python si5351a_freq_setter_CP2112.py 100 200

# Differential output (channel 1) - CH0(100MHz) + CH1(100MHz inverted)
python si5351a_freq_setter_CP2112.py 100 -d 1

# Differential output (channel 1) + CH2 independent output - CH0(100MHz) + CH1(100MHz inverted) + CH2(200MHz)
python si5351a_freq_setter_CP2112.py 100 200 -d 1

# Differential output (channel 2) - CH0(100MHz) + CH2(100MHz inverted)
python si5351a_freq_setter_CP2112.py 100 -d 2

# Enable spread spectrum
python si5351a_freq_setter_CP2112.py 100 -s

# Test mode (parameter calculation test)
python si5351a_freq_setter_CP2112.py -t 10
```

Channel Configuration

- 1-channel output: Only CH0 is enabled (CH1, CH2 are disabled)
- 2-channel output: CH0 and CH2 are enabled (CH1 is disabled)
- Differential output: CH0 + specified channel (CH1 or CH2) are enabled
 - o CH0: Normal signal
 - o Specified channel: Inverted signal (same frequency)
- Differential output + independent channel: CH0 + differential channel + independent channel
 - Example: -d 1 + fout0 specified + fout2 specified → CH0(normal) + CH1(inverted) + CH2(independent frequency)

Command Line Options

- fout0: Output frequency for clock 0 (MHz)
- fout2: Output frequency for clock 2 (MHz, optional)
- -d, --differential CHANNEL: Enable differential output (1 or 2)
 - o Differential output always uses the same frequency as CH0 and outputs an inverted signal to the specified channel
 - -d 1: Output inverted signal of CH0 frequency to CH1
 - o -d 2: Output inverted signal of CH0 frequency to CH2
- -s, --ssc: Enable spread spectrum clocking
- -a, --amp FLOAT: Spread spectrum amplitude as percentage of frequency spread relative to base frequency (default: 0.015 = 1.5% p-p)
- -m, --mode {CENTER,DOWN}: Spread spectrum mode (default: DOWN)
- -t, --test INT: Run test mode with specified number of iterations

Limitations

- -d 2 and fout2 cannot be specified simultaneously (CH2 can only be either differential output or independent output)
- -d 1 and fout2 can be specified simultaneously (CH1: differential, CH2: independent output)
- Frequency range: 0.004MHz to 200MHz
- VCO frequency range: 600MHz to 900MHz

High Frequency Output Limitations (Above 150MHz)

Special limitations for 150MHz < frequency ≤ 200MHz range:

In this range, according to Silicon Labs AN619 specification, DIVBY4 mode is automatically used. However, there are the following limitations:

- 1. PLL Multiplier Limitation: PLL multiplier a must be an even integer for stable operation
 - Working frequency examples: 162.5MHz (a=26), 175MHz (a=28), 187.5MHz (a=30), 200MHz (a=32)
 - o Non-working frequency examples: 156.25MHz (a=25, odd), 160MHz (a=25.6, non-integer)

2. **VCO Frequency Requirement**: VCO frequency = output frequency × 4

- VCO frequency must be an even multiple of 25MHz
- Example: $162.5MHz \rightarrow VCO=650MHz (26\times25MHz)$

3. Integer Mode Required: PLL must operate in integer mode

o Fractional mode will not produce normal output

Technical Details:

- DIVBY4 mode uses a fixed divide ratio of 4
- Multisynth setting values are P1=0, P2=0, P3=1, MSx_INT=1, MSx_DIVBY4[1:0]=11b
- Stable operation is only possible when a + b/c is an even integer in PLL settings

Due to these limitations, the usable frequencies are limited in the range above 150MHz. If these conditions are not met when setting the frequency, the calculation will complete normally but no actual output will be obtained.

Test Features

Parameter Calculation Test

```
# For FT232H
python si5351a_freq_setter_FT232H.py -t 5
# For CP2112
python si5351a_freq_setter_CP2112.py -t 5
```

This test runs random tests in the following frequency ranges:

- 100-150 MHz
- 10-100 MHz
- 1-10 MHz
- 0.1-1 MHz
- 0.01-0.1 MHz
- 0.004-0.01 MHz

Test Report

After test execution, the following information is displayed:

- Total test count
- Success count / failure count
- Success rate / failure rate
- Maximum error rate
- Detailed statistics by frequency range

Troubleshooting

FT232H Issues

1. FT232H device not found

- o Check USB connection
- o Verify that drivers are properly installed
- o Ensure FT232H is recognized by the system

2. I2C communication error

- o Check wiring connections (SCL, SDA, GND)
- Verify SI5351A power supply
- Check for proper pull-up resistors

3. Frequency setting error

- Check if requested frequency is within range
- Check parameter calculation limitations

1. CP2112 device not found

- Check USB connection
- Verify that CP2112 drivers are installed
- Ensure CP2112 is recognized by the system

2. HID communication error

- Check if CP2112 is properly connected
- Verify device permissions
- Check for conflicting drivers

3. I2C communication error

- Check wiring connections (SCL, SDA, GND)
- Verify SI5351A power supply
- Check for proper pull-up resistors

4. Frequency setting error

- Check if requested frequency is within range
- Check parameter calculation limitations

SI5351A Register Map Specification

This chapter shows the configuration of the main registers of the SI5351A chip. All registers are 8-bit wide.

System Control Registers

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Description
0x00	SYS_INIT	LOL_B	LOL_A	LOS	Reserved[1]	Reserved[0]	REVID[1]	REVID[0]	System Status
0x01	SYS_INIT_STKY	LOS_B_STKY	LOL_A_STKY	LOS_STKY	Reserved[3]	Reserved[2]	Reserved[1]	Reserved[0]	Sticky Status
0x02	SYS_INIT_MASK	LOS_B_MASK	LOL_A_MASK	LOS_MASK	Reserved[3]	Reserved[2]	Reserved[1]	Reserved[0]	Interrupt Mask
0x03	CLK7_EN	CLK6_EN	CLK5_EN	CLK4_EN	CLK3_EN	CLK2_EN	CLK1_EN	CLK0_EN	Output Enable

Input/Output Control Registers

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Description
0x09	OEB_MASK7	OEB_MASK6	OEB_MASK5	OEB_MASK4	OEB_MASK3	OEB_MASK2	OEB_MASK1	OEB_MASK0	Output Buffer Mask
0x0F	CLKIN_DIV[2]	CLKIN_DIV[1]	CLKIN_DIV[0]	0	0	PLLB_SRC	PLLA_SRC	0	Input Divider & PLL Settings

Clock Control Registers (CLK0-CLK7)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Description
0x10	CLK0_PDN	MS0_INT	MS0_SRC	CLK0_INV	CLK0_SRC[1]	CLK0_SRC[0]	CLK0_IDRV[1]	CLK0_IDRV[0]	CLK0 Settings
0x11	CLK1_PDN	MS1_INT	MS1_SRC	CLK1_INV	CLK1_SRC[1]	CLK1_SRC[0]	CLK1_IDRV[1]	CLK1_IDRV[0]	CLK1 Settings
0x12	CLK2_PDN	MS2_INT	MS2_SRC	CLK2_INV	CLK2_SRC[1]	CLK2_SRC[0]	CLK2_IDRV[1]	CLK2_IDRV[0]	CLK2 Settings
0x16	CLK6_PDN	FBA_INT	MS6_SRC	CLK6_INV	CLK6_SRC[1]	CLK6_SRC[0]	CLK6_IDRV[1]	CLK6_IDRV[0]	CLK6 Settings
0x17	CLK7_PDN	FBB_INT	MS7_SRC	CLK7_INV	CLK7_SRC[1]	CLK7_SRC[0]	CLK7_IDRV[1]	CLK7_IDRV[0]	CLK7 Settings

PLL Setting Registers

PLLA (0x1A-0x21)

Address	Bit[7:0]	Description	
0x1A	MSNA_P3[15:8]	PLLA P3 Parameter Upper	
0x1B	MSNA_P3[7:0]	PLLA P3 Parameter Lower	
0x1C	Reserved[7:2], MSNA_P1[17:16]	PLLA P1 Parameter Most Significant	
0x1D	MSNA_P1[15:8]	PLLA P1 Parameter Upper	
0x1E	MSNA_P1[7:0]	PLLA P1 Parameter Lower	
0x1F	MSNA_P3[19:16], MSNA_P2[19:16]	PLLA P3 Upper/P2 Upper	
0x20	MSNA_P2[15:8]	PLLA P2 Parameter Upper	
0x21	MSNA_P2[7:0]	PLLA P2 Parameter Lower	

PLLB (0x22-0x29)

Address	Bit[7:0]	Description	
0x22	MSNB_P3[15:8]	PLLB P3 Parameter Upper	
0x23	MSNB_P3[7:0]	PLLB P3 Parameter Lower	
0x24	MSNB_P1[17:16], Reserved[5:0]	PLLB P1 Most Significant/Reserved	
0x25	MSNB_P1[15:8]	PLLB P1 Parameter Upper	
0x26	MSNB_P1[7:0]	PLLB P1 Parameter Lower	
0x27	MSNB_P3[19:16], MSNB_P2[19:16]	PLLB P3 Upper/P2 Upper	
0x28	MSNB_P2[15:8]	PLLB P2 Parameter Upper	
0x29	MSNB_P2[7:0]	PLLB P2 Parameter Lower	

Multisynth Setting Registers

MS0 (CLK0) - 0x2A-0x31

Address	Bit[7:0]	Description
0x2A	MS0_P3[15:8]	MS0 P3 Parameter Upper
0x2B	MS0_P3[7:0]	MS0 P3 Parameter Lower
0x2C	Reserved[7], R0_DIV[6:4], MS0_DIVBY4[3:2], MS0_P1[17:16]	DIVBY4 Control Register
0x2D	MS0_P1[15:8]	MS0 P1 Parameter Upper
0x2E	MS0_P1[7:0]	MS0 P1 Parameter Lower
0x2F	MS0_P3[19:16], MS0_P2[19:16]	MS0 P3 Upper/P2 Upper
0x30	MS0_P2[15:8]	MS0 P2 Parameter Upper
0x31	MS0_P2[7:0]	MS0 P2 Parameter Lower

MS1 (CLK1) - 0x32-0x39

Address	Bit[7:0]	Description
0x32	MS1_P3[15:8]	MS1 P3 Parameter Upper
0x33	MS1_P3[7:0]	MS1 P3 Parameter Lower
0x34	Reserved[7], R1_DIV[6:4], MS1_DIVBY4[3:2], MS1_P1[17:16]	DIVBY4 Control Register
0x35	MS1_P1[15:8]	MS1 P1 Parameter Upper
0x36	MS1_P1[7:0]	MS1 P1 Parameter Lower
0x37	MS1_P3[19:16], MS1_P2[19:16]	MS1 P3 Upper/P2 Upper
0x38	MS1_P2[15:8]	MS1 P2 Parameter Upper
0x39	MS1_P2[7:0]	MS1 P2 Parameter Lower

MS2 (CLK2) - 0x3A-0x41

Address	Bit[7:0]	Description
0x3A	MS2_P3[15:8]	MS2 P3 Parameter Upper
0x3B	MS2_P3[7:0]	MS2 P3 Parameter Lower
0x3C	Reserved[7], R2_DIV[6:4], MS2_DIVBY4[3:2], MS2_P1[17:16]	DIVBY4 Control Register
0x3D	MS2_P1[15:8]	MS2 P1 Parameter Upper
0x3E	MS2_P1[7:0]	MS2 P1 Parameter Lower
0x3F	MS2_P3[19:16], MS2_P2[19:16]	MS2 P3 Upper/P2 Upper
0x40	MS2_P2[15:8]	MS2 P2 Parameter Upper
0x41	MS2_P2[7:0]	MS2 P2 Parameter Lower

Spread Spectrum Control Registers

Address	Bit7	Bit6-0	Description
0x95	SSC_EN	SSDN_P2[14:8]	SSC Enable & Down Spread P2
0x96	-	SSDN_P2[7:0]	Down Spread P2 Lower
0x97	SSC_MODE	SSDN_P3[14:8]	SSC Mode & Down Spread P3

DIVBY4 Bit Definitions

MS_DIVBY4[1:0] bit values:

- 00b = DIVBY4 disabled (normal divider operation)
- 01b = Reserved
- 10b = Reserved
- 11b = DIVBY4 enabled (fixed divide ratio of 4)

Important: For outputs above 150MHz, the corresponding MS_DIVBY4[1:0] must be set to 11b.

System Control Registers

Address	Bit7	Bit6-0	Description
0xB1	PLLB_RST	Reserved, PLLA_RST, Reserved[4:0]	PLL Reset Control
0xB7	XTAL_CL	Reserved[6:0]	Crystal Oscillator Load Capacitance Setting
0xBB	CLKIN_FANOUT_EN	XO_FANOUT_EN, Reserved, MS_FANOUT_EN, Reserved[3:0]	Fanout Control

License

This project is released under the GNU General Public License v3.0.

Contributing

Please report bugs and feature requests on the GitHub Issues page.

Acknowledgments

- Original SI5351A Python module by Owain Martin
- FT232H library by Adafruit Industries
- CP2112 HID library support