Contents

1	Metern	2
2	Massaenhet	2
3	Tidsenhet	2
4	SI-Systemet	2
5	Massa/volym	3
6	Prefix	
7	Övningar 7.1 Densitet	8 8

1 Metern

Från början var en metern definerad av distansen mellan Nordpolen och ekvatorn so man bestämde var 10^7 meter. Man gjorde kopior på metern som kallas arkivmetern. 1 meter är den sträcka som ljuset rör sig i vakum på $\frac{1}{299792458}$ sekund.

2 Massaenhet

Kilogram Arkivkilogram

3 Tidsenhet

Ursprungligen var sekunden $\frac{1}{24*60*60}$ del av medelsoldygnet. Idag är ett visst antal perioder av en viss strålning.

4 SI-Systemet

Bygger på att man har sju stycken noggrant definerade enheter. Som man sedan kan basera andra enheter på.

Härledda enheter: m^2 Volymenheter: m^3 Hastighet: m/s

Ex1: Vid en olje tanks rensning spreds $340 \ dm^3$ olja ut på ett tunnt skikt på vattenytan. Oljeskiktet var 2.5 nm tjockt.

Hur stor area hade oljebältet.

Storhet	Beteckning	Enhet	Beteckning
Längd	1	meter	\mathbf{m}
Massa	m	kilogram	kg
Tid	t	sekund	\mathbf{s}

5 Massa/volym

Massa(g)	Volym i mätglaset(ml)	Stenarnas volym(ml)
0	62	0
16.6	68	6
29.9	73	11
46.2	79	17
62.9	85	23
73.3	88	26

$$\begin{split} m &= \rho * V \\ \rho &= \frac{m}{V} \\ \rho &= 2.714285714 = \frac{76}{28} \\ \rho &= 2,7g/ml = \frac{2,6g}{1ml} = \frac{2,6g}{0,001dm} \end{split}$$

6 Prefix

femto	f	10^{-15}
piko	p	10^{-12}
nano	n	10^{-9}
mickro	μ	10^{-6}
milli	\mathbf{m}	$0,001 = 10^{-3}$
centi	\mathbf{c}	$0,01 = 10^{-2}$
deci	d	$0, 1 = 10^{-1}$
Deka	da	$10 = 10^1$
hekto	h	$100 = 10^2$
kilo	k	$1000 = 10^3$
Mega	Μ	10^{6}
Giga	G	10^{9}
Tera	\mathbf{T}	10^{12}
Peta	Ρ	10^{15}
Exa	\mathbf{E}	10^{18}
Zetta	\mathbf{Z}	10^{21}
Yotta	Y	10^{24}

EX1:

En kula med radien 12,5 mm har massan 61g. Bestäm kulans densitet.

$$\begin{array}{l} m=61g=0,061kg\\ V=\frac{4\pi r^3}{3}=\frac{4\pi 0,0125^3}{3}\approx 8,181230869*10^{-6}m^3\\ \rho=\frac{m}{V}=\frac{0,061}{8,181230869*10^{-6}}\approx 7,5*10^3kg/m^3 \end{array}$$

EX2:

Hur mycket korv kan man göra av Thomas?

$$V = A * l$$

Thomas volym?

Thomas massa: m = 110kg

$$V\rho = \frac{mV}{\rho}$$

$$\frac{V\rho}{}=\frac{m}{}$$

$$\frac{V_{\rho}}{V} = \frac{m}{\rho}$$
 $V = \frac{m}{\rho}$

$$\rho = 0.998g/cm^3 = 998kg/m^3$$

$$V = \frac{m}{2} = 0,11m^3$$

$$r = 1,5cm$$
 Thomas kory

Thomas massa:
$$m = 110kg$$
 $V \rho = \frac{mV}{\rho}$ $\frac{V\rho}{\rho} = \frac{m}{\rho}$ $\frac{V\rho}{\rho} = \frac{m}{\rho}$ Thomas densitet \approx vattnets densitet. $\rho = 0,998g/cm^3 = 998kg/m^3$ $V = \frac{m}{\rho} = 0,11m^3$ $r = 1,5cm$ Thomas korv $A = r^2\pi = (0,015)^2 = \approx 7,068*10^{-4}$ $\rho = \frac{V}{A} = \frac{0,11}{7,068*10^{-4}}$

EX3:

Uppskatta massan för luften i föreläsnings salen. $\rho = \frac{mV}{V}$ $m = \rho V = 1293 * 540 \approx 700 kg$ $\rho = 1,293 kg/m^3$ $V = 12 * 15 * 3 \approx 540 m^3$

Mätnoggranhet Anger närmevärdet med felgränsen $A=0,305m^2$ $0,3045\leqslant A\leqslant 0,3055m^3$ 3 gällande siffror

Viktig regel

Om du gör en multiplikation eller division ska svaret vara så många gällande siffror som det minst noggranna ingångs värde

En matta har längden(l) 12,71 m och bredden(b) 3,46 m. Vilken area har mattan?

$$A = lb = 12,71 * 3,46 \approx 43,9766m^2 \approx 44,0m^2$$

Om du gör en addition eller subtraktion ska svaret ha lika många decimaler som det ingångsvärde som har minst antal decimaler.

7 Övningar

7.1 Densitet

Koppar folie massa: m=13g=0,013kgKoppar folie densitet: $\rho=\frac{m}{V}$ $V=\frac{m}{\rho}=\frac{0,013}{8,96*10^3}$ $h=\frac{V}{A}=1,45*10^{-6}$

7.2 Mätning

$$\begin{array}{l} t = \frac{13min}{2} = 6,5min\ v = 0,300*10^4 m/s\ v = \frac{s}{t} \\ s = v*t = (0,300*10^9)*(6,5*60) = 1,2*10^{11}m \end{array}$$