

Banco de Dados

Modelo Relacional

CORREÇÃO DO DESAFIO

CORREÇÃO DO DESAFIO

ENTIDADES:

- ALUNO
 - o CPF- Chave Primária
 - o NOME
 - o ENDERECO
- CURSO
 - o CODIGO- Chave Primária
 - o NOME
- DISCIPLINA
 - o CODIGO- Chave Primária
 - o QTDE_CREDITOS
- PROFESSOR
 - o NOME
 - o MATRICULA- Chave Primária
- DEPARTAMENTO
 - o CODIGO- Chave Primária
 - o NOME

RELACIONAMENTOS:

- 1. MATRICULA
 - a. DATA_MATRICULA
- 2. CURSA
- 3. LECIONA
- 4. COMPOE
- 5. CONTROLA
- 6. CONTRATA
 - a. DATA_CONTRATACAO
- 7. PRE-REQUISITO

CORREÇÃO DO DESAFIO

Uma escola decide criar uma base de dados de seus departamentos, alunos, professores, disciplinas e cursos. Para qualquer aluno sabemos CPF, nome e endereço. Para qualquer curso temos o código e nome. Qualquer disciplina temos código e quantidade de credito. Qualquer professor temos nome e matricula. Por último, para qualquer departamento temos código e nome.

- Um aluno pode se matricular em vários cursos assim como em um curso podem ser matriculados vários alunos, sendo necessário especificar a data da matricula.
- Um departamento pode contratar vários cursos como também vários professores sendo necessário especificar a data de contratação desses professores. Um curso ou um professor só podem ser contratados por um único departamento.
- Um professor pode lecionar várias disciplinas para os vários alunos que cursam essas disciplinas e algumas disciplinas podem apresentar prérequisitos de outras várias disciplinas.
- Uma disciplina só pode ser lecionada por apenas um professor.
- Um curso pode ser composto com várias disciplinas assim como uma disciplina pode compor vários cursos.

11/04/2023 PROF. LUIS FELIPE OLIVEIRA

DESAFIO

```
Chave Primaria: cpf
CURSO { codigo, nome, codigo depto }
Chave Primaria: codigo
Chave Estrangeira: codigo depto referencia DEPARTAMENTO
MATRICULA { cpf, codigo, data matricula }
Chave Primaria: cpf, codigo
Chave Estrangeira: cpf referencia ALUNO
Chave Estrangeira: codigo referencia CURSO
DISCIPLINA { codigo, qtde creditos, matricula }
Chave Primaria: codigo
Chave Estrangeira: matricula referencia PROFESSOR
CURSA {cpf, codigo }
Chave Prinaria: cpf, codigo
Chave Estrangeira: cpf referencia ALUNO
Chave Estrangeira: codigo referencia DISCIPLINA
COMPOE { codigo curso, codigo disciplina }
Chave Primaria: codigo curso, codigo disciplina
Chave Estrangeira: codigo disciplina referencia DISCIPLINA
Chave Estrangeira: codigo curso referencia CURSO
PROFESSOR { matricula, nome, codigo departamento, data contratacao }
Chave Primaria: matricula
Chave Estrangeira: codigo departamento referencia DEPARTAMENTO
DEPARTAMENTO { codigo, nome }
Chave Primaria: codigo
PRE REQUISITO {codigo, codigo disciplina dependencia}
Chave Primaria: codigo, codigo disciplina dependencia}
Chave Estrangeira: codigo referencia DISCIPLINA
Chave Estrangeira: codigo disciplina dependencia} referencia DISCIPLINA
```

ALUNO { cpf, nome, endereco}

CORREÇÃO DO EXERCÍCIO DE DER

- 1.Uma universidade tem muitos estudantes e um estudante pode se dedicar a no máximo uma universidade.
- 2.Uma aeronave pode ter muitos passageiros, mas um passageiro só pode estar em um vôo de cada vez.
- 3.Uma nação possui vários estados, e um estado, muitas cidades. Um estado só poderá estar vinculado a uma nação e uma cidade só poderá estar vinculado a um estado.
- 4.Um encontro de eventos esportivos pode ter muitos competidores e um competidor pode participar de mais de um evento.
- 5.Um paciente pode ter muitos médicos e um médico muitos pacientes.
- 6.Um aluno pode frequentar mais mais de uma disciplina e uma mesma disciplina pode ter muitos alunos.

CORREÇÃO DO EXERCÍCIO DE DER

Um encontro de eventos esportivos pode ter muitos competidores e um competidor pode participar de mais de um evento

Um aluno pode frequentar mais de uma disciplina e uma mesma disciplina pode ter muitos alunos

O que veremos hoje?

Modelo Relacional

Tuplas e Tabelas

Tipos de dados suportados

Chave estrangeira

UM POUCO DE HISTÓRIA

O Modelo Relacional foi introduzido por Edgar Frank Codd (1970) e tornou-se um padrão para aplicações comerciais, devido a sua simplicidade e desempenho.

É um modelo formal, bastante representativo e ao mesmo tempo bastante simples, foi o primeiro modelo de dados descrito teoricamente.

MODELO RELACIONAL

- O modelo Relacional é um modelo lógico, utilizado em bancos de dados relacionais.
- Ele tem por finalidade representar os dados como uma coleção de tabelas e cada linha (tupla) de uma tabela representa uma coleção de dados relacionados.
- Neste modelo, começamos a nos preocupar em como os dados devem ser armazenados e em como criaremos os relacionamentos do modelo conceitual.
- É também nessa etapa que definimos o SGBD que será utilizado, bem como os tipos de dados para cada atributo.
- O modelo Relacional é definido usando como base o MER.

MODELO RELACIONAL

O Modelo Relacional representa os dados num Banco de Dados como uma coleção de tabelas e seus relacionamentos.

Cada tabela contém um nome e um conjunto de **atributos** com seus respectivos nomes.

No modelo relacional os atributos precisam ter um domínio definido, ou seja, precisamos especificar todos os valores possíveis que um atributo pode receber.

O domínio de um atributo define qual o tipo de dado e o formato que o dado pode ser armazenado por aquele atributo

TABELAS

- Para descrever uma tabela no modelo relacional, usamos o nome da tabela seguida dos atributos entre parênteses.
- Para identificar a chave primária, devem-se sublinhar o(s) atributo(s) correspondente(s) a ela.
- O tipo de cada atributo também deve aparecer no modelo relacional, como mostra o exemplo abaixo:

```
tbAluno (matricula aluno: inteiro, nome_aluno: caracter(100),
data_nasc_aluno: data)
```

TUPLAS

- As tuplas representam os valores de uma tabela.
- Note que as colunas da tabela representam os atributos, enquanto as linhas representam os registros. Se uma tabela não tiver tuplas, ela estará vazia, ou seja, sem dados.

matricula_aluno	nome_aluno	data_nasc_aluno
100	Ana	12/05/1997
101	João	15/04/1996
102	Maria	22/06/1998
103	José	03/01/1997
104	Marcos	19/03/1996

TIPOS DE DADOS

- Todo campo/valor é de um tipo específico
- SGBD trabalham basicamente com 3 categorias*:
 - Tipos numéricos
 - Tipos de data e hora
 - Tipos literais

NOME: texto	IDADE: inteiro
João	12
Carlos	20
Renata	17

TIPOS DE DADOS - Convenções

Vamos usar as seguintes convenções para facilitar:

- M indicará a largura que pode ser armazena de determinado tipo (exemplo: INTEGER(M)), armazenará um inteiro de M dígitos)
- D indicará o número de dígitos da parte decimal de um valor (exemplo: DECIMAL(M,D), armazenará um decimal de M dígitos na parte inteira e D dígitos na parte decimal)
- [] indicará uma parte opcional (exemplo: INTEGER[(M)], armazenará um inteiro de M dígitos, mas (M) é opcional na definição)

TIPOS DE DADOS - Numéricos

Tipo	Descrição	Padrão
BIT[(M)]	Armazena bits, onde M é a quantidade de bits	1
TINYINT[(M)]	De -128 a 127	3
BOOL, BOOLEAN	Sinônimo de TINYINT(1), onde zero é falso e não-zero é verdadeiro	
SMALLINT[(M)]	De -32768 a 32767	5
MEDIUMINT[(M)]	De -8388608 a 8288607	7
INT[(M)]	De -2147483648 a 2147483647	10
INTEGER[(M)]	Sinônimo de INT	10
BIGINT[(M)]	De -92233720368544775808 a 92233720368544775807	20
FLOAT[(M,D)]	Até 7 casas decimais	Limite
DOUBLE[(M,D)]	Até 15 casas decimais	Limite
DECIMAL[(M[,D])]	Até 30 casas decimais	10,0
DEC[(M[,D])]	Sinônimo de DECIMAL	10,0

TIPOS DE DADOS - Numéricos

- Idade TINYINT UNSIGNED
 - ✓ Idade é do tipo TINYINT, apresenta apenas número positivos de 0 a 255
 - [valor abs(-128-127) = 255]
- Salario DECIMAL(5,2) ZEROFILL
 - ✓ Salario é do tipo DECIMAL, apresenta até 5 dígitos na parte inteira e 2 na parte decimal, completa o restante com zeros (exemplo, 00700.54)
- Demitido BOOLEAN
 - ✓ Demitido é do tipo BOOLEAN, apresenta 0 (false) enquanto estiver trabalho e não-zero (true) quando for demitido

TIPOS DE DADOS - Data e Hora

Tipo	Descrição
DATE	Guarda data no formato YYYY-MM-DD, de 1001- 01-01 até 9999-12-31
DATETIME	Combinação de data e hora no mesmo campo, no formato YYYY-MM-DD HH:MM:SS, de 1001-01-01 00:00:00 até 9999-12-31 23:59:59
TIMESTAMP	Guarda número de segundos desde o EPOCH, 1970-01- 01 até 2038-01-09
TIME	Armazena tempo no formato HH:MM:SS, de - 838:59:59 até 838:59:59
YEAR[(2 4)]	O ano em 2 ou 4 (padrão) dígitos, de 1901 a 2155 para 4 dígitos, ou de 70 a 69 (1970 a 2069) para 2 dígitos

TIPOS DE DADOS - Literais

Tipo	Descrição	Padrão
CHAR[(M)]	Texto de tamanho fixo, de 0 a 255, preenche o que sobrar com espaços em branco	1
VARCHAR(M)	Texto de tamanho variável, de 0 a 65535	Usuário
BINARY(M)	Mesmo que CHAR, mas armazena texto binário em byte, onde M é o tamanho em bytes (geralmente um texto em memória)	Usuário
VARBINARY(M)	Mesmo que CHAR, mas armazena texto binário em byte, onde M é o tamanho em bytes (geralmente um texto em memória)	Usuário

TIPOS DE DADOS - Literais

- CPF CHAR(14)
 - ✓ Um texto fixo de 14 posições
- Nome VARCHAR(255)
 - ✓ Um texto variável de até 255 posições
- Texto TEXT
 - ✓ Um texto de até 65.535 * (2¹⁶ 1) caracteres
- Sexo ENUM('M', 'F')
 - ✓ Um texto que deverá aceitar APENAS 'M' ou 'F

RESUMINDO ...

Basicamente utilizamos de modo geral os seguintes tipos:

Tipo	Descrição
VARCHAR	Valores no campo VARCHAR são strings de tamanho variável. Você pode declarar um campo VARCHAR para ter qualquer tamanho entre 1 e 255, assim como para campo CHAR. No entanto, diferente de CHAR, valores VARCHAR são armazenados usando apenas quantos caracteres forem necessários, mais 1 byte para gravar o tamanho.
INT	Valores inteiros de -2147483648 a 2147483647.
DECIMAL	O tipo DECIMAL é usado por valores para os quais é importante preservar a exatidão como, por exemplo, dados monetários.
DATA	O tipo DATA é usado quando se necessita apenas do valor da data, sem a parte da hora. MySQL recupera e mostra valores do tipo DATA no formato 'ano-mm-dd'

EXERCÍCIO DE 5 min

Adicione o tipo de dado em cada campo/coluna apropriadamente

ORDEM SERVICO NUMERO DATA ABERTURA HORA ABERTURA CLIENTE CPF (FK) TECNICO MATRICULA (FK) PROBLEMA SOLUCAO DATA FECHAMENTO HORA FECHAMENTO CLIENTE TECNICO CPF MATRICULA INOME NOME **ENDERECO** ENDERECO TELEFONE TELEFONE NIVEL ESCOLARIDADE

SOLUÇÃO

ORDEM_SERVICO

```
NUMERO INT(10)
            DATA_ABERTURA DATE(10)
            HORA ABERTURA TIME(9)
            CLIENTE_CPF (FK) VARCHAR(14)
           TECNICO_MATRICULA (FK) INT(9)
PROBLEMA VARCHAR(1000)
            SOLUCAO VARCHAR(1000)
           DATA_FECHAMENTO DATE(10)
           HORA_FECHAMENTO TIME(9)
           CLIENTE
                           TECNICO
VARCHAR(14) CPF
                           MATRICULA INT(9)
                                     VARCHAR(45)
VARCHAR(45) NOME
                           NOME
                           ENDERECO VARCHAR(45)
VARCHAR(45) ENDERECO
                           TELEFONE VARCHAR(15)
VARCHAR(15) TELEFONE
                           NIVEL ESCOLARIDADE
                                                 VARCHAR(15)
```

CHAVE ESTRANGEIRA

- (Foreign Key FK) é um atributo da tabela, que faz referencia a uma chave primaria de outra tabela ou da própria tabela.
- O atributo que é chave estrangeira deve ser do mesmo tipo e do mesmo tamanho que sua primária correspondente. É importante deixar explicito a qual tabela a chave estrangeira está fazendo referência.
- Uma chave estrangeira sempre faz referencia a uma chave primária. A chave estrangeira nunca fará referencia a um atributo que não seja uma chave primária.

CHAVE ESTRANGEIRA

Suponha que tenhamos as tabelas "Turma" e "Aluno", observe que a tabela **tbAluno** possui um atributo **código_turma**. Esse atributo é chave primária na tabela **tbTurma** e, portanto, é uma chave estrangeira na tabela **tbAluno**.

```
tbTurma (código turma: inteiro, nome_turma: caracter(5))

tbAluno (matricula_aluno: inteiro, nome_aluno: caracter(100),
data_nasc_aluno: data, código_turma: inteiro)

código_turma referencia tbTurma
```

CHAVE ESTRANGEIRA

No Modelo Relacional é a chave estrangeira que especifica o relacionamento entre as tabelas. É através da chave estrangeira que conseguimos descobrir, por exemplo, que o aluno João pertence a turma do 2º ano do Curso Técnico em Informática.

matricula_aluno	nome_aluno	data_nasc_aluno	código_turma
100	Ana	12/05/1997	1
101	João	15/04/1996	3
102	Maria	22/06/1998	2
103	José	03/01/1997	1
104	Marcos	19/03/1996	3

codigo_turma	nome_turma
1	1º Informática
2	2º Informática
3	3º Informática
4	1º Enfermagem

EXEMPLO

MINI MUNDO 4 - EMPRESA DE TRANSPORTE MARÍTIMO

EXEMPLO - Solução

```
NAVIO {nome, capacidade}
CHAVE PRIMARIA: nome
CARGA {numero, peso, nome navio, codigo agente, nome porto, data maxima desembarque}
chave primária: numero
CHAVE ESTRANGEIRA: nome navio referencia NAVIO
CHAVE ESTRANGEIRAa: codigo agente referencia AGENTE
CHAVE ESTRANGEIRA: nome porto referencia PORTO
PERECIVEL {numero, data validade}
 CHAVE PRIMÁRIA: numero
 CHAVE ESTRANGEIRA: numero referencia CARGA
SENSIVEL {numero, tempertatura}
CHAVE PRIMÁRIA: numero
CHAVE ESTRANGEIRA: numero referencia CARGA
PORTO {nome}
CHAVE PRIMÁRIA: nome
AGENTE {codigo, nome, nome porto}
CHAVE PRIMARIA: codigo
CHAVE ESTRANGEIRA: nome porto referencia PORTO
ROTA {nome navio, nome porto}
CHAVE PRIMARIA: nome navio, nome porto
CHAVE ESTRANGEIRA: nome navio referencia NAVIO
CHAVE ESTRANGEIRA: nome porto referencia PORTO
```

EXERCICIO

Adicione o tipo de dado em cada campo/coluna apropriadamente

DESAFIO

PARA PRÓXIMA AULA ...

Na nossa próxima aula contaremos com uma oficina prática do MySQL Workbench. Quem tiver computador já pode baixar o software. Aos que tem apenas celulares, vamos procurar apps que similares ao funcionamento do computador.

