

中华人民共和国国家计量检定规程

JJG 130-2011

工作用玻璃液体温度计

Liquid-in-Glass Thermometers for Working

2011-09-20 发布

2012-03-20 实施

工作用玻璃液体温度计检定规程

Verification Regulation of

Liquid-in-Glass Thermometers for Working

JJG 130—2011 代替JJG 50—1996 JJG 130—2004 JJG 618—1999 JJG 978—2003

本规程经国家质量监督检验检疫总局于 2011 年 9 月 20 日批准,并自 2012 年 3 月 20 日起施行。

归口单位:全国温度计量技术委员会

起草单位:北京市计量检测科学研究院

中国计量科学研究院

广东省计量科学研究院

上海市计量技术研究院

辽宁省计量科学研究院

冀州市耀华器械仪表厂

本规程主要起草人:

张 克(北京市计量检测科学研究院)

张 哲(中国计量科学研究院)

王 颖(北京市计量检测科学研究院)

梁显有(广东省计量科学研究院)

参加起草人:

吴建英(上海市计量技术研究院)

董 亮(辽宁省计量科学研究院)

徐彦发(冀州市耀华器械仪表厂)

目 录

1	茫	团			(1)
2	弓	用	文件		(1)
3	才	语			(1)
4	根	述			(2)
4.	1	原	理…		(2)
4.	2	构	造和	类型	(2)
5	ì	量	性能	要求	(4)
5.	1	示	值稳	定度	(4)
5.	2	示	值误	差	(4)
5.	3	线	性度		(4)
6	通	囿用	技术	要求	(6)
6.	1	刻	度与	标志	(6)
6.	2	玻	璃棒	和玻璃套管	(6)
6.	3	感	温泡	、中间泡、安全泡	(6)
6.	4	感	温液	和感温液柱	(6)
7	ì	上量	器具	控制	(7)
7.	1	检	定条	件	(7)
7.	2	检	定项	目	(8)
7.	3	检	定方	法	(8)
7.	4	检	定结	果的处理	(11)
7.	5	检	定周	期	(11)
附	录	A	石剂	由产品用玻璃液体温度计技术规格和检定点	(12)
附	录	В	焦化	比产品用玻璃液体温度计技术规格和检定点	(16)
附	录	С	冰点	贰 (0 ℃) 的制作和使用方法	(17)
附	录	D	温月	度计感温液柱修复方法	(18)
附	录	E	水镇	艮温度计破碎后的实验室参考处置方法	(19)
附	·录	F	常月]感温液体在玻璃中的视膨胀系数	(20)
附	录	G	辅耳	加温度计的基本要求	(21)
附	录	Н	玻ェ	离液体温度计不在规定条件下使用的修正公式	(22)
附	录	J	工作	用玻璃液体温度计检定证书(内页)格式	(23)
				作用玻璃液体温度计检定结果通知书(内页)格式	

工作用玻璃液体温度计检定规程

1 范围

本规程适用于测量范围在-100 ℃~600 ℃的棒式和内标式工作用玻璃液体温度计的首次检定、后续检定和使用中检查。包括一般用途玻璃液体温度计、石油产品试验用玻璃液体温度计、焦化产品试验用玻璃液体温度计。本规程不适用于外标式玻璃液体温度计。

2 引用文件

本规程引用文件:

JJG 160-2007 标准铂电阻温度计

GB/T 514-2005 石油产品试验用玻璃液体温度计技术条件

YB/T 2305—2007 焦化产品试验用玻璃温度计

凡是注日期的引用文件,仅注日期的版本适用于本规程;凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本规程。

3 术语

3.1 刻度线 scale line 印刻在玻璃棒或刻度板上用以指示温度值的刻线。

3.2 刻度值 scale value 印刻在玻璃棒或刻度板上用以指示温度值的数字。

3.3 刻度板 scale plate 内标式玻璃液体温度计内印刻刻度线、刻度值和其他符号的平直、有色(如乳白

色)的薄片。

3.4 主刻度 main scale 测量范围部分的刻度。

- 3.5 主刻度线 main scale line 带有数字的刻度线。
- 3.6 分度值 division value 两相邻刻度线所对应的温度值之差。
- 3.7 辅助刻度 auxiliary scale 为检查零点示值所设置的刻度线和刻度值。
- 3.8 展刻线 expanded scale 温度计测量上限和测量下限以外的刻度线。
- 3.9 浸没标志 immersion mark 局浸温度计用以表示浸没位置的标志线或浸没深度。

3.10 感温泡 bulb

玻璃液体温度计的感温部位,位于温度计的最下端,可容纳绝大部分感温液体的玻璃泡。

3.11 中间泡 contraction chamber

毛细管内径的扩大部位,其作用是容纳部分感温液,以缩短温度计长度。

3.12 安全泡 expansion chamber

毛细管顶端的扩大部位,其作用是当被测温度超过温度计上限一定温度时,保护温度计不致损坏,还可以用来连接中断的感温液柱。

3.13 全浸式温度计 total immersion thermometer

当温度计的感温泡和全部感温液柱浸没在被测介质内,且感温液柱上端面与被测介质表面处于同一水平时[©],才可以正确显示温度示值的玻璃液体温度计。

注:①在实际使用时,全浸温度计的感温液柱上端面可露出被测介质表面 10 mm 以内,以便于读取示值。

3.14 局浸式温度计 partial-immersion thermometer

当温度计的感温泡和感温液柱的规定部分浸没在被测介质内,才可以正确显示温度 示值的玻璃液体温度计。

3.15 露出液柱 exposed-liquid column

温度计在测量过程中,露在被测介质外面的液柱。

3.16 线性度 linearity

玻璃液体温度计相邻两检定点间的任意有刻度值的一个温度点实际检定得到的示值误差与内插计算得到的示值误差的接近程度。玻璃液体温度计的线性度主要由玻璃温度计毛细管均匀性及刻度等分均匀性综合影响。

4 概述

4.1 原理

工作用玻璃液体温度计是利用在透明玻璃感温泡和毛细管内的感温液体随被测介质温度的变化而热胀冷缩的作用来测量温度的。

4.2 构造和类型

工作用玻璃液体温度计按感温泡与感温液柱所呈的角度可以分为直型和角型温度计,按结构可分为棒式温度计和内标式温度计两种形式。常见的直型棒式温度计和直型内标式温度计的构造如图 1 和图 2 所示,角型棒式温度计的构造如图 3 所示。

图 3 (角型)棒式温度计

工作用玻璃液体温度计按分度值可分为高精密温度计和普通温度计两个准确度等级;按用途可分为一般用途玻璃液体温度计、石油产品试验用玻璃液体温度计、焦化产品试验用玻璃液体温度计。

工作用玻璃液体温度计按照分度值及用途的分类见表 1。

表 1 工作用玻璃液体温度计按分度值及用途的分类

		-	工作用玻璃液体温度计	
准确度等级	分度值/℃	一般用途 玻璃液体温度计	石油产品试验用玻璃液体温度计	焦化产品试验用 玻璃液体温度计
高精密 温度计	0.01, 0.02, 0.05	高精密玻璃 水银温度计	高精密石油用 玻璃水银温度计	高精密焦化用 玻璃水银温度计
普通温度计	0.1, 0.2, 0.5, 1.0, 2.0, 5.0	普通玻璃液体温度计	普通石油用玻璃液体温度计	普通焦化用 玻璃液体温度计

5 计量性能要求

5.1 示值稳定度

温度上限高于 100 ℃且分度值为 0.1 ℃,0.05 ℃,0.02 ℃和 0.01 ℃的玻璃液体温度计的示值稳定度应符合表 2 的要求。

表 2 玻璃液体温度计示值稳定度要求

 $^{\circ}$ C

分度值	0. 1	0.05	0.02	0.01
示值稳定度	0.05	0.05	0.02	0.01

5.2 示值误差

- 5.2.1 一般用途玻璃液体温度计的示值误差应符合表3的要求。
- 5.2.2 石油产品试验用玻璃液体温度计的示值误差应符合附录 A 中的要求。
- 5.2.3 焦化产品试验用玻璃液体温度计的示值误差应符合附录 B 中的要求。
- 5.3 线性度
- 5.3.1 高精密温度计的线性度应不大于相应分度值。
- 5.3.2 普通温度计的线性度应不大于相应最大允许误差的要求。

表 3 一般用途玻璃液体温度计最大允许误差^①

Ç

倒 !										分度	度 值								
現 領	温度计上限或下 网所在温度站围	0.01	01	0.	0.02	0.	0.05	0.		0.	2	0.	2	1		2		വ	
本		全浸	局浸	全浸	局浸	全浸	局浸	全浸	局浸	全浸	局浸	全浸	局浸	全浸	局浸	全浸	局浸	全浸	局浸
	-100~<60							土1.0		土1.0		+1.5	±2.0	±2.0	±2.5			1	
有机	-60~<-30		I	l				±0.6	1	土0.8		±1.0	±1.5	土2.0	±2.5	ı	I	1	
液体	-30~<100							土0.4	I	±0.5		±0.5	土1.0	十1.0	1.5	±2.0	十3.0		I
	100~200		1											十1.5	+2.0	±2.0	±3.0		
汞 基	-60~<-30							±0.3		土0.4		十1.0		十1.0					
	-30~100							±0.2	十1.0	±0.3	±1.0	上0.5	+1.0	十1.0	+1.5	土2.0	±3.0		
	0~100	±0.05	±0.10	±0.08	土0.05 土0.10 土0.08 土0.10	±0.10±	±0.15					I			1				
	>100~150					±0.15	±0.20		ı					I	1		ı		
<u></u>	>100~200		ļ	ı		I		土0.4		上0.4	±1.5	±1.0	±1.5	土1.5		±2.0	十3.0		
領	>200~300		-	1				±0.6	-	±0.6	[± 1.0		土1.5	1	土2.0	±3.0	±5.0	±7.5
	>300~400							ı	I	±1.0	I	土1.5		±2.0	ı	±4.0	±6.0	±10.0	±12.0
	>400~200		ļ			l		ı]	±1.2	1	土2.0	I	±3.0		上4.0	±6.0	± 10.0	± 12.0
	>500~600											I	ı		ı	∓6.0	±8.0 ±10.0	±10.0	±15.0

水厢 金属套管式玻璃液体温度计应拆去套管按一般用途温度计局浸方式进行检定; 注:① 没有石油产品试验用玻璃液体温度计标志或焦化产品试验用玻璃液体温度计标志的玻璃液体温度计按一般用途温度计进行检定; 当温度计的量程跨越表 3 中几个温度范围时,则取其中最大的最大允许误差。 玻璃液体温度计按一般用途温度计局浸方式进行检定;

6 通用技术要求

- 6.1 刻度与标志
- 6.1.1 温度计的刻度线应与毛细管的中心线垂直。刻度线、刻度值和其他标志应清晰, 涂色应牢固,不应有脱色、污迹和其他影响读数的现象。
- 6.1.2 在温度计上、下限温度的刻度线以外,应标有不少于该温度计最大允许误差的 展刻线。有零点辅助刻度的温度计,在零点刻度线以上和以下的刻度线应不少于5条。
- 6.1.3 相邻两刻线间的距离应不小于 0.5 mm, 刻线的宽度应不超过相邻刻线间距的 1/10。
- 6.1.4 内标式温度计刻度板的纵向位移应不超过相邻两刻度线间距的 1/3。毛细管应处于刻度板纵轴中央,应没有明显的偏斜,与刻度板的间距应不大于 1 mm。
- 6.1.5 每隔 10~20 条刻度线应标志出相应的刻度值,温度计的上、下限也应标志相应的刻度值。有零点的温度计应在零点处标志相应的刻度值。
- 6.1.6 温度计应具有以下标志:表示摄氏度的符号 "℃"、制造厂名或商标、制造年月。高精密温度计应有编号。全浸式温度计应有"全浸"标志;局浸式温度计应有浸没标志。
- 6.2 玻璃棒和玻璃套管
- 6.2.1 玻璃棒和玻璃套管应光滑透明,无裂痕、斑点、气泡、气线或应力集中等影响 读数和强度的缺陷。玻璃套管内应清洁,无明显可见的杂质,无影响读数的朦胧现象。
- 6.2.2 玻璃棒和玻璃套管应平直,无明显的弯曲现象。
- 6.2.3 玻璃棒中的毛细孔和玻璃套管中的毛细管应端正、平直,清洁无杂质,无影响 读数的缺陷。正面观察温度计时液柱应具有最大宽度。毛细孔(管)与感温泡、中间泡 及安全泡连接处均应呈圆弧形,不应有颈缩现象。
- 6.2.4 棒式温度计刻度线背面应熔入一条带颜色的釉带。正面观察温度计时,全部刻度线的投影均应在釉带范围内。
- 6.3 感温泡、中间泡、安全泡
- 6.3.1 感温泡

棒式温度计感温泡的直径应不大于玻璃棒的直径;内标式温度计感温泡的直径应不 大于与其相接玻璃套管的直径。

6.3.2 中间泡

温度计中间泡上端距主刻度线下端第一条刻度线的距离应不少于 30 mm。

6.3.3 安全泡

温度计安全泡呈水滴状,顶部为半球形。上限温度在300 ℃以上的温度计可不设安全泡。无安全泡的温度计,上限刻度线以上的毛细管长度应不小于20 mm。

- 6.4 感温液和感温液柱
- 6.4.1 水银和汞基合金应纯净、干燥、无气泡。有机液体的液柱应显示清晰、无沉淀。

6.4.2 感温液柱上升时不应有明显的停滞或跳跃现象,下降时不应在管壁上留有液滴或挂色。除留点温度计以外,其他温度计的感温液柱不应中断,不应自流。

7 计量器具控制

计量器具控制包括首次检定、后续检定和使用中检查。

7.1 检定条件

7.1.1 标准器与配套设备见表 4 和表 5。

7.1.2 环境条件

环境温度在 15 ℃~35 ℃,同时应满足标准器及配套电测设备相应的环境要求;要满足防止水银外漏污染环境的条件。

表 4 检定普通温度计的标准器及配套设备

序号	设备名称		技	术性能		用途
1	标准水银温度计	测	温范围:	(-60~3	00)°C	
2	二等标准铂电阻 温度计及配套 电测设备	(0~419.527 2. 电测设备 修正值后的材)℃或(最小分辨 相对误差原 扩展不确	0~660.35 力相当于 並不大于3 定度不大	· 0.001 ℃,引用 B×10 ⁻⁵ ·于被检温度计最	标准器
		温度范围/℃	工作区域	匀性/℃ 工作区域 最大温差	温度波动性 /℃・(10 min) ⁻¹	
3	恒温槽	-100~-30	0.05	0.10	0. 10	热源
		>-30~100	0.02	0.04	0.04	
		>100~300	0.04	0.08	0. 10	
		>300~600	0.10	0.20	0. 20	
4	水三相点瓶及 保温设备			_		测量水三相 点值或零位
5	冰点器		见	.附录 C	-	测量零位
6	读数装置	放っ	大倍数 5 付	音以上,可	丁调水平	温度计读数
7	钢直尺		-	_		测量间距

	表 5 🧸	硷定高精密温	度计的标》	隹器及配套	養设备	
序号	设备名称		技	术性能		用途
1	二等标准铂电阻 温度计及配套 电测设备	419.527) ℃ 2.电测设备 修正值后的材	最小分辨 目对误差应 扩展不确	力相当于 2不大于3 定度不大	于被检温度计最	标准器
2	恒温槽	温度范围 /℃ 0~100 >100~150	温度均工作区域 水平温差 0.005	工作区域	温度波动性 /℃・ (10 min) ⁻¹ 0.01	热源
3	水三相点瓶及 保温设备	7100 100	0.01	- O. O.D	0.02	测量水三相 点值或零位
4	輔助温度计		见	附录G		用于测量 露出液柱温度
5	读数装置	放力	大倍数 5 有	5以上,可	「调水平	温度计读数

表 5 检定高精密温度计的标准器及配套设备

7.2 检定项目

6

工作用玻璃液体温度计的检定项目见表 6。

钢直尺

表 6 工作用玻璃液体温度计的检定项目

测量间距

	The National Control of the Control	The second secon	V //	
检定	项目	首次检定	后续检定	使用中检查
通用技术要求	7. 3, 1, 1	+	/- /	_
超用权小安小	7. 3. 1. 2		+/	+
示值稳	定度◎	+	_	_
示值	误差	+	+	+
线性	生度	+	_	_
			· · · · · · · · · · · · · · · · · · ·	

注: ①只适用温度上限高于 100 ℃且分度值为 0.1 ℃, 0.05 ℃, 0.02 ℃和 0.01 ℃的玻璃温度计。

表中"十"表示应检定,"一"表示可不检定。

7.3 检定方法

- 7.3.1 通用技术要求
- 7.3.1.1 首次检定的温度计:以目力、放大镜、钢直尺观察温度计应符合本规程6.1~6.4的要求。

7.3.1.2 后续检定的温度计应着重检查温度计感温泡和其他部分有无损坏和裂痕等。 感温液柱若有断节、气泡或在安全泡、毛细管壁等处留有液滴或挂色等现象,能修复者,经修复后才能检定。

7.3.2 示值稳定度的检定

首次检定的温度上限高于 100 ℃且分度值为 0.1 ℃,0.05 ℃,0.02 ℃和 0.01 ℃的玻璃液体温度计应进行此项目的抽样检定。

7.3.2.1 有零点的玻璃液体温度计应浸没在下限温度点刻线处,以局浸方式在上限温度点恒温 15 min 取出,自然冷却至室温后,立即测定第一次零点位置。

再将玻璃液体温度计浸没在下限温度点刻线处,以局浸方式在上限温度点恒温 24 h 取出,自然冷却至室温后,立即测定第二次零点位置。

用第二次零点位置的数值减去第一次零点位置的数值,即为示值稳定度。

- 7.3.2.2 无零点的玻璃液体温度计可按上述类似方法测定上限温度的示值变化,即示值稳定度。
- 7.3.2.3 玻璃液体温度计的示值稳定度应符合表 2 的规定。

7.3.3 示值误差检定

工作用玻璃液体温度计示值误差的检定结果以修正值形式给出。应符合表 3、附录 A 及附录 B 中相应温度计最大允许误差的规定。

7.3.3.1 温度计检定点间隔的规定

一般用途温度计检定点间隔的规定见表 7。当按表 7 规定所选择的检定点少于三个时,则应选择下限点、上限点和中间有刻度值的点共三个温度点进行检定。石油产品试验用温度计检定点间隔的规定见附录 A。焦化产品试验用温度计检定点间隔的规定见附录 B。

分 度 值	检定点间隔
0.01	1
0.02	2
0.05	5
0. 1	10
0. 2	20
0.5	50
1, 2, 5	100

表 7 一般用途温度计检定点间隔

°C

7.3.3.2 示值误差的检定方法

(1) 标准温度计和被检温度计应按规定浸没方式垂直插入恒温槽中。标准铂电阻温度计插入深度应至少为 250 mm; 全浸式温度计露出液柱高度应不超过 10 mm; 局浸式温度计应按浸没标志要求插入恒温槽中。检定顺序一般以零点为界,分别向上限或下限方向逐点进行。检定高精密温度计开始读数时,恒温槽实际温度(以标准温度计为准)偏离检定点应不超过 0.1 ℃。检定普通温度计开始读数时,恒温槽实际温度偏离检定点

应不超过 0.2 ℃。

- (2) 温度计插入恒温槽中要稳定 10 min 以上才可读数,高精密玻璃液体温度计读数前要轻敲。读数时视线应与玻璃温度计感温液柱上端面保持在同一水平面,读取感温液柱上端面的最高处(水银)或最低处(有机液体)与被检点温度刻线的偏差,并估读到分度值的十分之一。先读取标准温度计示值(或偏差),再读取各被检温度计的偏差,其顺序为标准→被检 1→被检 2→ \cdots →被检 n,然后再按相反顺序读数返回到标准。分别计算标准温度计示值(或温度示值偏差)的算术平均值和各被检温度计温度示值偏差的算术平均值。
- (3) 高精密温度计读数四次,普通温度计读数两次。读数要迅速、准确、时间间隔要均匀。检定普通温度计,一个温度点检定完毕,恒温槽温度变化应符合表 4 相应温度波动性的要求;检定高精密温度计,一个温度点检定完毕,恒温槽温度变化应符合表 5 相应温度波动性的要求。
- (4)被检温度计零点的示值检定可以在冰点器或恒温槽中用比较法进行。温度计在测量零点前应在冰水中预冷 10 min 左右。
- (5) 标准水银温度计应经常在冻制好的水三相点瓶中或在冰点器中测量其零点位置。如果零点位置发生变化,则应使用下式计算出各温度点新的示值修正值:

新的示值修正值=原证书修正值+(原证书中上限温度检定后的零点位置-新测得的上限温度检定后的零点位置)

- (6) 标准铂电阻温度计在每次使用完后,应在冻制好的水三相点瓶中使用同一电测设备测量其水三相点示值。以新测得的水三相点示值、计算实际温度。
- 7.3.3.3 局浸式温度计露出液柱的温度修正

局浸式温度计应在规定的条件下进行检定。如果不符合规定的条件,应对温度计露出液柱的温度进行修正。局浸式温度计露出液柱温度修正的条件和公式见表 8。

表 8 局浸式温度计露出液柱温度修正的条件和公式

温度计名称	规定条件	不符合条件 示值偏差修正
局浸式 高精密温度计	露出液柱平均温度为 25 ℃ [©]	露出液柱平均温度不 $\Delta_{\iota} = k \cdot n \cdot (25 - t_1)$ (1) 符合规定 $\delta'_{\iota} = \overline{\delta_{\iota}} + \Delta_{\iota}$
局浸式普通温度计	环境温度为 25 ℃ 0	$\Delta_{\iota} = k \cdot n \cdot (25 - t_2)$ (2) 环境温度不符合規定 $\delta'_{\iota} = \overline{\delta_{\iota}} + \Delta_{\iota}$

式中: Δ, ——露出液柱温度修正值;

k——温度计中感温液体的视膨胀系数, \mathbb{C}^{-1} (见附录 F);

n——露出液柱的长度在温度计上相对应的温度(修约到整数),℃;

 t_1 一辅助温度计测出的露出液柱平均温度,℃;

δ,——被检温度计经露出液柱修正后的温度示值偏差,℃;

 δ , — 被检温度计温度示值偏差的平均值, \mathbb{C} ;

t₂----露出液柱的环境温度,℃。

注:① 如果温度计标注有其他温度,以标注温度为准。式(1)、式(2) 中规定的温度也作相应改动。

在检定局浸式高精密温度计时,应将辅助温度计与被检温度计捆绑在一起,使辅助温度计感温泡与被检温度计充分接触,将辅助温度计感温泡底部置于被检温度计露出液柱的下部 1/4 处,测量被检温度计露出液柱的平均温度,并按表 8 中的式(1)对温度计示值偏差进行修正。

在检定局浸式普通温度计时,环境温度应为 $25 \, ^{\circ}$ 。如果环境温度不符合规定,应按表 8 中的式(2)对温度计示值偏差进行修正。

在检定局浸式温度计时,温度计应远离运转的空调、风扇等,应使用冷光源照明读数,保证环境温度稳定、均匀。

7.3.3.4 数据处理

数据处理方法见表 9。

表 9 数据处理方法

项目	以标准铂电阻温度计作标准	以标准水银温度计作标准
实际温度 偏差	$\delta_{ts}^{\star} = t_s^{\star} - t$	$\delta_{ts}^{\star} = \overline{\delta_{ts}} + \Delta_{ts}$
被检温度计 修正值	全浸温度计: $x = \delta_{is}^{\star} - \overline{\delta_{i}}$; 局浸温度计	$x = \delta_{is} - \delta',$
式中: δ _{ts} ——实际温)	度值与被检定点标称温度值的偏差,℃;	
t; ——实际温	度值,℃(依据标准铂电阻温度计检定规格	垦 计算实际温度,应使用新测得的
水三相。	点值);	
t ——被检点	标称温度值,℃;	//
δι	限温度计示值偏差平均值,℃;	
Δ _{ts} ——标准水	展温度计的示值修正值,℃;	//
x 被检温	变计修正值,应修约到分度值的1/10位,	rc. / /

7.3.4 线性度的检定

首次检定的玻璃液体温度计要对相邻两检定点间的任意有刻度值的一个温度点进行抽检。高精密温度计被抽检点的实际示值误差与使用两相邻检定点示值误差内插计算出的示值误差之差,应符合 5. 3. 1 的相应要求,普通温度计被抽检点的实际示值误差应符合 5. 3. 2 的相应要求。

7.4 检定结果的处理

按本规程规定的要求检定合格的工作用玻璃液体温度计应发给检定证书,检定不合格的工作用玻璃液体温度计发给检定结果通知书,并注明不合格项目。

7.5 检定周期

工作用玻璃液体温度计的检定周期应根据使用情况确定,一般不超过1年。

附录A

石油产品用玻璃液体温度计技术规格和检定点

温度计编号	温度范围	分度值 /℃	浸没方式 或深度/mm	检定点/℃	最大允许误差/℃
CP 1	_30~170	1	55	-20, 0, 50, 100	±1.0
GB-1	-30~170	1	55	150	±2.0
GB-2	100~300	1	55	100, 150, 200	±2.0
GD-Z	100/~300	1		250, 300	±3.0
				0, 100	±1.0
GB-3	0~360	1	45	200	±2.0
				300	±3.0
				0, 100	±1.0
GB-4	0~360	1	45	200	±2.0
				300	±3.0
GB-5	− 6~400	2	25	0, 100, 200	±2.0
GB 3	0400	2		300, 370	±4.0
GB-6	0~60	0.5	90	0, 20, 40, 50	±1.0
GB-7	50~110	. 0.5	90	50, 80, 100	±1.0
GB-8	19~27	0.1	90	20, 25	±0.1
GB-9	98~102	0.1	全浸	100	±0.2
GB-10	78~82	0.1	全浸	80	±0.2
ĠB-11	48~52	0.1	全浸	50	±0.2
GB-12	38~42	0.1	全浸	40	±0.2
GB-13	18~22	0.1	全浸	20	±0.2
GB-14	-2~2	0.1	全浸	0	±0.2
GB-15	-22~-18	0.1	全浸	-20	±0.2
GB-16	-32~-28	0. 1	全浸	-30	±0.2
GB-17	-42~-38	0.1	全浸	-40	±0.4
GB-18	−52~−48	0.1	全浸	— 50	±0.4

表(续)

温度计						
(GB-20 58.6~61.4 0.05 全接 0.60, 61 ±0.1 GB-21 133.6~136.4 0.05 全接 0.135, 136 ±0.15 GB-22 −45~35 0.1 全接 −45, −40, −35 ±0.4 GB-23 −35~25 0.1 全接 −25, −20, −15 ±0.2 GB-26 0~150 1 全接 0.50, 100, 150 ±1.0 GB-27 100~250 1 全接 0.50, 100, 150, 200 ±2.0 250 ±3.0 GB-33 20~100 0.5 全接 25, 50, 75, 100 ±0.5 GB-34 38~82 0.1 79 40, 50, 60, 70, 80 ±0.1 GB-37 −38~50 1 108 −35, 0, 50 ±0.2 GB-36 −80~20 0.5 全接 −75, −60, −40, 0 ±1.0 GB-37 −38~50 1 108 −35, 0, 50 ±0.2 GB-38 −80~20 0.5 全接 −75, −60, −40, 0 ±1.0 GB-39 −37~2 0.2 100 −35, −20, 0 ±0.2 d −5.5 GB-38 −35~20 0.5 全接 −75, −60, −40, 0 ±1.0 −70, 0 ±2.0 −70, −35 −70, −35 ±2.0 −70, −35 −70, −35 ±2.0 −70, −35 −70, −35 ±2.0 −70, −35 −70, −35 ±2.0 −70, −35 −70, −35 ±2.0 −70, −35 −70, −35 ±2.0 −70, −35 −70, −35 ±2.0 −70, −35 −70, −35 ±2.0 −70, −35 −70, −35 −70, −35 ±2.0 −70, −35 −70, −30 −70, −35 −70, −30 −70, −30 −70, −30 −70, −30 −70, −30 −7					检定点/℃	最大允许误差/℃
GB-21 133.6~136.4 0.05 全稷 0.135, 136 ±0.15 GB-22 −45~−35 0.1 全稷 45, −40, −35 ±0.4 GB-23 −35~−25 0.1 全稷 −25, −20, −15 ±0.2 GB-24 −25~−15 0.1 全稷 −15, −10, −5 ±0.2 GB-26 9~160 1 全稷 100.150, 200 ±2.0 GB-27 100~250 1 2 2 2 2 2 2 2 2 2 2	GB-19	-62~-58	0.1	全浸	-60	±0.5
(GB-22	GB-20	58.6~61.4	0.05	全浸	0, 60, 61	±0.1
GB-23	GB-21	133.6~136.4	0.05	全浸	0, 135, 136	±0.15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GB-22	$-45 \sim -35$	0.1	全浸	-45, -40, -35	±0.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GB-23	$-35 \sim -25$	0.1	全浸	-35, -30, -25	±0.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GB-24	$-25 \sim -15$	0.1	全浸	-25, -20, -15	±0.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GB-25	− 15 ~− 5	0.1	全浸	-15, -10, -5	±0.2
	GB-26	0~150	1	全浸	0, 50, 100, 150	±1.0
GB-28	CD 07	100 000	1	V 29	100, 150, 200	±2.0
GB-28	GB-27	100~250	1	全浸	250	±3.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GB-28	-5~300	1	76		±1.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CP 00	E		7.0	0, 100, 200, 300	±1.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GB-29	5~400	The second	76	400	±1.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GB-30	-30~60	1	150	-20, 0, 50	±1.0
GB-32		lal			-60	±3.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GB-31	−80~60	1	75	-40, -20, 0	±2.0
$GB-32$ $-60\sim60$ 1 75 50 ± 1.0 $GB-33$ $20\sim100$ 0.5		101	4		50	±1.0
	GR-32	-60~60	1	75	-50, -40, -20, 0	±1.5
GB-34 38~82 0.1 79 40, 50, 60, 70, 80 ± 0.1 GB-35 32~127 0.2 79 $\frac{40, 60, 80, 100, 120}{100, 120}$ ± 0.2 GB-36 $-80\sim20$ 1 76 $\frac{-70, -35}{0, 20}$ ± 2.0 GB-37 $-38\sim50$ 1 108 $-35, 0, 50$ ± 0.5 GB-38 $-80\sim20$ 0.5 ± 2.0 ± 0.5 GB-39 $-37\sim2$ 0.2 100 $-35, -20, 0$ ± 0.2	GD-32	-00/-00		75	50	±1.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GB-33	20~100	0.5	全浸	25, 50, 75, 100	±0.5
GB-35 $32\sim127$ 0. 2 79 $100, 120$ $\pm 0. 2$ GB-36 $-80\sim20$ 1 76 $-70, -35$ $\pm 2. 0$ GB-37 $-38\sim50$ 1 108 $-35, 0, 50$ $\pm 0. 5$ GB-38 $-80\sim20$ $0. 5$ $\pm 2. 0$ $\pm 1. 0$ GB-39 $-38\sim50$ $-75, -60, -40, 0$ $\pm 1. 0$ GB-39 $-37\sim2$ $0. 2$ 100 $-35, -20, 0$ $\pm 0. 2$	GB-34	38~82	0.1	79	40, 50, 60, 70, 80	±0.1
GB-36 $-80\sim20$ 1 76 GB-37 $-38\sim50$ 1 108 -35 , 0, 50 ± 0.5 GB-38 $-80\sim20$ 0.5 全浸 -75 , -60 , -40 , 0 ± 1.0 GB-39 $-37\sim2$ 0.2 100 -35 , -20 , 0 ± 0.2	GB-35	32~127	0. 2	79		±0.2
GB-37 $-38\sim50$ 1 108 -35 , 0, 50 ± 0.5 GB-38 $-80\sim20$ 0.5 全浸 -75 , -60 , -40 , 0 ± 1.0 GB-39 $-37\sim2$ 0.2 100 -35 , -20 , 0 ± 0.2	CB-26	— <u>80 ~ .20</u>	1	76	-70, -35	±2.0
GB-38 -80~20 0.5 全浸 -75, -60, -40, 0 ±1.0 GB-39 -37~2 0.2 100 -35, -20, 0 ±0.2	GD-30	- 6U~2U	1	/ 0	0, 20	±1.0
GB-39 $-37\sim2$ 0. 2 100 -35 , -20 , 0 ± 0.2	GB-37	-38 ∼50	1	108	-35, 0, 50	±0.5
	GB-38	-80∼20	0.5	全浸	-75, -60, -40, 0	±1.0
GB-40 $-54 \sim -15$ 0.2 100 $-50, -30, -15$ ± 0.2	GB-39	-37~2	0.2	100	-35, -20, 0	±0.2
	GB-40	$-54 \sim -15$	0. 2	100	-50, -30, -15	±0.2

表(续)

温度计 编号	温度范围 /℃	分度值 /℃	浸没方式 或深度/mm	检定点/℃	最大允许误差/℃		
GB-41	4~6	0. 02	全浸	0, 4, 5, 6	±0.04		
CD 40		0.5	V 733	30, 80	±0.5		
GB-42	30~180	0.5	全浸	120, 180	±1.0		
CD 40	00 00	2.5	050	-30	±1.0		
GB-43	-38 ~30	0.5	250	0, 30	±0.5		
			_	0, 50	±1.0		
GB-44	0~360	1	全浸	100, 150, 200	±2.0		
				250, 300	±3.0		
				0, 50	±1.0		
GB-45	0~360	1	全浸	100, 150, 200	±2.0		
				250, 300	±3.0		
OP 46	2 222	,		0, 50, 100, 150	±0.5		
GB-46	−2~300	1	全浸	200, 250, 300	±1.0		
OD 47	-2~400	1	全浸	0, 100, 200, 300	±1.0		
GB-47				370	±1.5		
GB-48	−20~102 	0. 2	全浸	-20, -10, 0, 10, 20, 30, 40, 50, 60, 70	±0.15		
GB-49	-20~150	1	76	-20, 0, 50, 100, 150	±0.5		
GB-50	−50~5	0.2	35	-46, -32, -18, 0	±0.2		
GB-51	95~155	0. 2	全浸	0, 100, 110, 130, 150	±0.2		
GB-52	155~170	0.5	全浸	155, 163, 170	±0.5		
GB-53	100~115	0.5	全浸	100, 115	±0.5		
GB-54	34~42	0.1	全浸	38, 41	±0.1		
GB-55	40~70	0.1	全浸	0, 40, 50, 60, 70	±0.1		
GB-56	-1~105	0. 5	全浸	0, 50, 100	±0.5		
GB-57	80~100	0.1	76	80, 90, 100	±0.1		
GB-58	72~126	0.2	100	75, 90, 105, 125	±0.2		
GB-59	98~152	0.2	100	100, 115, 130, 150	±0.3		

表(续)

温度计编号	温度范围	分度值 /℃	浸没方式 或深度/mm	检定点/℃	最大允许误差/℃
GB-60	95~103	0.1	全浸	99, 102	±0.1
GB-61	165~180	0.5	全浸	165, 170, 180	士0.5
GB-62	145~160	0.5	全浸	145, 150, 160	±0.5
GB-63	130~145	0.5	全浸	130, 135, 145	±0.5
GB-64	195~205	0.1	100	195, 205	±0.2
GB-65	− 5~25	0.1	全浸	0, 10, 20	±0.1
GB-66	20~45	0.1	全浸	20, 30, 40	±0.1
GB-67	40~65	0.1	全浸	40, 50, 60	±0.1
GB-68	$-1\sim 38$	0.1	全浸	0, 10, 20, 30, 35	±0.1
GB-69	−15~45	0.2	全浸	-15, 0, 15, 30, 45	±0.2
GB-70	$-37 \sim 21$	0.5	76	-35, -18, 0, 20	±0.5
GB-71	25~55	0.1	全浸	0, 25, 35, 45, 55	±0.1
GB-72	-34~52	0.5	全浸	-30, 0, 25, 45	±0.5
GB-73	$-16 \sim 82$	0.5	全浸	0, 25, 55, 80	±0.5
GB-74	50~240	1	全浸	50, 100, 200, 240	±1.0
GB-75	$-38\sim42$	0.2	50	-35, -20, 0, 20, 40	±0.2
GB-76	25~105	0. 2	50	25, 50, 75, 100	±0.2
GB-77	90~170	0. 2	50	100, 130, 160	±0.4

附录B

焦化产品用玻璃液体温度计技术规格和检定点

温度计编号	温度范围 /℃	分度值 /℃	浸没方式 或深度/mm	检定点/℃	最大允许误差/℃
COK1C	4~6	0.02	全浸	0, 4, 5, 6	±0.04
COK2C	0~50	0.1	全浸	毎 10 ℃检定	±0.2
COK3C	55~85	0.1	全浸	55, 65, 75, 85	±0.2
COK4C	70~90	0.1	全浸	70, 80, 90	±0.2
COK5C	100~120	0. 1	全浸	100, 110, 120	±0.2
COK6C	125~150	0.1	全浸	125, 135, 145	±0.2
COK7C	180~230	0.1	全浸	毎 10 ℃ 检定	±0.3
COK8C	250~300	0.1	全浸	毎 10 ℃检定	±0.3
COK9C	0~50	0.2	全浸	0, 20, 30, 40, 50	±0.3
COK10C	0~100	0.2	95	每 20 ℃检定	±0.4
COK11C	40~150	0.2	95	每 20 ℃检定	±0.4
COK12C	15~45	0.1	100	15, 25, 35, 45	±0.2
COK13C	225~245	0.1	全浸	225, 235, 245	±0.2
COK14C	28~62	0.2	全浸	30, 40, 50, 60	±0.3
COK20C	0~100	0.5	全浸	毎 20 ℃检定	±0.5
COK21C	50~210	0.5	全浸	毎 20 ℃检定	±1.0
COK22C	100~250	0.5	全浸	毎 20 ℃检定	±1.0
COK23C	0~50	1	全浸	毎 10 ℃ 检定	±1.0
COK24C	0~250	1	全浸	0, 50, 100, 150, 200, 250	±1.5
.COK25C	100~370	1	全浸	100, 150, 200, 250, 300, 360	±2.0
COK26C	0~100	_1	全浸	每 20 ℃检定	± 1.0
COK27C	100~150	1	全浸	毎 10 ℃检定	±1.0
COK28C	0~360	1	全浸	0, 50, 100, 150, 200, 250, 300	±2.0
COK29C	0~360	1	45	0, 50, 100, 150, 200, 250, 300	±2.0
COK30C	-2~400	1	全浸	0, 100, 200, 300, 370	±3.0
COK31C	0~300	2	全浸	0, 50, 100, 150, 200, 250, 300	±3.0

附录C

冰点 (0 ℃) 的制作和使用方法

将蒸馏水冰破碎成雪花状,放入冰点槽内(一般可选择具有足够深度的广口保温容器),注入适量的蒸馏水,用干净的金属棒或玻璃棒搅拌,再加入雪花状的碎冰,注入适量的蒸馏水,并进行搅拌,如此反复操作,直至冰面与水面接近,将冰面压紧,稳定10 min 后即可使用。

玻璃液体温度计插入冰点槽时应不接触底部,温度计感温泡与冰点槽底部至少保持 5 cm 以上的距离。实际温度需要用标准温度计进行修正。

根据环境温度,适时倒出冰点槽内部分融化的水,并及时加入适量的碎冰。稳定 10 min 左右,方可继续使用。

附录D

温度计感温液柱修复方法

D.1 热接法

将温度计放在热水中或酒精灯附近加热,一直到整体感温液柱与分离部分连接为 止。如有气泡存在,需要在安全泡内连接。

D.2 冷接法

对测量温度较高的温度计应放入低温环境中,使感温液体收缩,并轻轻弹动温度计,使分离部分在感温泡内与整体连接。

D.3 振动法

在工作台上放置橡胶垫等比较有弹性的物品,沿垂直方向轻轻振动温度计的感温泡,使整体感温液柱与分离部分逐渐连接。

附录E

水银温度计破碎后的实验室参考处置方法

- E.1 水银温度计破碎后应立即打开门窗,打开风扇促进通风,数分钟后才可以收拾碎片和泄露的水银。清除水银者应摘除手上佩带的珠宝饰物、手表等,防止上述物品与水银结合。
- E.2 当水银颗粒较大时,可用纸卷成筒,或用注射器、胶带、湿润棉棒收集,最后将水银装入一个盛有水的大口磨口瓶中,磨口瓶上应张贴明显标志,注明"废旧水银"。
- E. 3 当水银颗粒较小时,污染地面或散布在缝隙中时,可取适量硫磺粉覆盖或用 20% 三氯化铁或 10%漂白粉溶液喷洒,保留半小时左右。将使用过的清除物品及硫磺粉等 收集到一个塑料袋内,张贴明显标志,注明"废旧水银"。
- E. 4 皮肤接触水银后应立即用清水冲洗。
- E.5 如果水银温度计在较高温度的恒温槽中破碎,应立即关闭恒温槽电源,将恒温槽内介质放空,将沉入恒温槽底部的水银迅速吸出。因为温度越高,水银蒸发越快。此时实验室内水银蒸气浓度较高,建议关闭实验室门窗,将少量碘粉装入试管中,用酒精灯加热进行熏蒸,使水银蒸气与碘蒸气生成难挥发的碘化汞,沉降后用水清洗干净并及时通风。
- E.6 将上述废物交有关环保部门处理。

附录F

常用感温液体在玻璃中的视膨胀系数

	k/10 ⁻⁴ °C ⁻¹								
平均温度 /℃	硼硅玻璃					其他玻璃			
	水银	水银	汞基合金	戊烷	甲苯	乙醇	煤油	煤油混合液	
-180				9					
-120				10					
-80				10	9	10.4			
40			1. 35	12	10	10.4			
0	1. 64	1. 58		14	10	10.4			
20				15	11	10.4	9. 2		
100	1. 64	1.58						5.9	
200	1. 67	1.59						6.8	
300	1. 74	1. 64							
400	1. 82								
500	1. 95				-				

附录G

辅助温度计的基本要求

- G.1 辅助温度计技术要求
- G.1.1 测温范围: (0~50) ℃
- G.1.2 分度值:1℃
- G.1.3 感温液体:水银
- G. 1.4 尺寸: A=150 mm; $B=(10\sim15) \text{ mm}$; $C=(6.0\sim6.5) \text{ mm}$; D=C
- G.2 辅助温度计检定要求
- G. 2.1 浸没方式: 全浸
- G.2.2 检定点:0℃,25℃,50℃
- G.2.3 最大允许误差: ±1℃

附录H

玻璃液体温度计不在规定条件下使用的修正公式

温度计名称	规定条件	不符合条件	示值偏差修正	计算实际温度
全浸温度计	露出液柱长度应 不大于 10 mm	局浸使用	$\Delta_{t} = k \cdot n \cdot (t_{0} - t_{1})$ $\delta'_{t} = \delta_{t} + \Delta_{t}$	
局浸式高精 密温度计	露出液柱平均温 度为 25 ℃ [©]	露出液柱平均温度 不符合规定	$\Delta_{t} = k \cdot n \cdot (25 - t_{1})$ $\delta'_{t} = \delta_{t} + \Delta_{t}$	$t_{s} = t + x + \delta'_{t}$
局浸式 普通温度计	环境温度为 25 ℃ [©]	环境温度 不符合规定	$\Delta_{t} = k \cdot n \cdot (25 - t_{2})$ $\delta'_{t} = \delta_{t} + \Delta_{t}$	

式中 Δ,——露出液柱温度修正值;°C;

k——温度计中感温液体的视膨胀系数, \mathbb{C}^{-1} (见附录 F);

n 一露出液柱的长度在温度计上相对应的温度(修约到整数),℃;

t。——温度计温度示值,℃;

 t_1 一一辅助温度计测出的露出液柱平均温度, ℂ;

ŏ,──温度计经露出液柱修正后的温度示值偏差,℃;

δ,——温度计温度示值偏差,℃;

 t_s ——计算出的实际温度值, \mathbb{C} ;

t——温度计检定点标称温度值,℃;

x——温度计的示值修正值,℃。

注:①如果温度计标注有其他温度,以标注温度为准。公式中规定的温度也作相应改动。

附录J

工作用玻璃液体温度计检定证书 (内页) 格式

检定结果

测量范围: 浸没方式或	℃ 浸没深度:	分度值:	℃	
检定点/℃				
示值修正值/℃			And State of the S	
检定点/℃				
示值修正值/℃				

注:

- 1. 检定依据国家计量检定规程 JJG130-2011。
- 2. 根据温度计示值计算实际温度的公式:

全浸温度计:实际温度=示值+示值修正值

局浸温度计:实际温度=示值+示值修正值+露出液柱修正值

附录K

工作用玻璃液体温度计检定结果通知书(内页)格式

检定结果

测量范围: 浸没方式或	℃ 浸没深度:	分度值: 	℃		
检定点/℃					
示值修正值/℃					
				·	
检定点/℃	_				
示值修正值/℃					
注: 检定点	 ℃示值修	 S正值不合格。			