

BC1105 Materiais e Suas Propriedades

3º Quadrimestre de 2016

Ciência e Engenharia de Materiais

Erika Fernanda Prados erika.prados@ufabc.edu.br

OBJETIVOS

- Mostrar a relação entre Ciência e Engenharia dos Materiais.
- Explicar a relação entre estrutura, propriedade, processamento e desempenho de um material.
- Apresentar uma classificação dos diferentes tipos de materiais.

Definições

- Ciência dos Materiais
 - Investigação das relações entre composição/estrutura e propriedades dos materiais
- Engenharia dos Materiais
 - Projeto, desenvolvimento ou aperfeiçoamento de técnicas de processamento de materiais (= técnicas de fabricação) com base nas relações composição/estrutura e propriedades.
 - E também:
 - Desenvolvimento de formas de produção de materiais socialmente desejáveis a custo socialmente aceitável.

Definições

- Ciência e Engenharia dos Materiais são campos intimamente interligados e interdisciplinares.
- "Ciência e Engenharia dos Materiais é a área da atividade humana associada com a geração e a aplicação de conhecimentos que relacionem composição, estrutura e processamento de materiais às suas propriedades e usos."

Morris Cohen, MIT (in Padilha, A.F. – Materiais de Engenharia, Hemus, 1997, cap. 1)

Objetivos:

- Desenvolvimento de materiais já conhecidos visando novas aplicações ou visando melhorias no desempenho.
- Desenvolvimento de novos materiais para aplicações conhecidas.
- Desenvolvimento de novos materiais para novas aplicações.

Estrutura

- Associada ao arranjo dos componentes internos do material.
- ✓ Ela se distingue quanto a escala de observação:

Escala (m)	Unidade	Estrutura				
<10 ⁻⁹	Å	Atômica				
10 ⁻⁹ a 10 ⁻⁶	nm	Nano				
10 ⁻⁶ a 10 ⁻³	μm	Micro				
≥ 10 ⁻³	mm, m,	Macro				

Exemplos:

- Estrutura atômica: elétrons, prótons e nêutrons.
- Estrutura molecular: átomos iguais, ou distintos, ligados entre si.

Composição

- ✓ Corresponde aos tipos, às proporções, e à disposição dos átomos que estão em uma molécula; ou,
- ✓ As substâncias presentes em um material.

Exemplos:

Nanocompósito híbrido polimérico: nano partícula mineral, ou metálica, em uma matriz polimérica.

Al₂Si₂O₅(OH)₄

Caulinita: branco, cristal pseudo-hexagonal;

Haloisita: branco, verde amarelo, azul, cinza, cristal monoclínico.

Escalas de observação de um bloco de motor em liga de Al

Escala "Macro" $at\acute{e}\cong 1m$

Escala "Micro" grãos ≅ 1 a 10 mm

Escala "Micro" Fases e **Dendritos** ≅ *50* a *500* μm

Escala "Nano" Precipitados ≅ 3 a 100 nm

Escala Atômica ≅ 1 a 100 Å

PROPRIEDADES DE UM MATERIAL

- Propriedades intensivas, as vezes quantitativas, de um sólido ou quase sólido.
- ✓ Podem ser constantes ou ser uma função de uma ou mais variáveis independentes.
- Em sistemas anisotrópicos podem variar conforme a direção.

Principais propriedades do estado sólido Mecânicas;

Elétricas;

Térmicas;

Magnéticas;

Ópticas;

Estabilidade (temporal, dimensional, ambiental).

Processamento: conjunto de técnicas para obtenção de materiais com formas e propriedades específicas.

Desempenho: rendimento do material durante o seu uso.

Exemplo: Amostras de óxido de alumínio (Al₂O₃) processadas por diferentes rotas.

Dispositivos Ópticos (uso em tecnologia de laser)

the prince of regularity that a sature that the prince of figures of the particle of the parti

...e em telas de smartphones

Lâmpada de Vapor de Sódio

Metálicos

Cerâmicos

Poliméricos

2. CLASSIFICAÇÃO DOS MATERIAIS

Ligas Compósitos Biomateriais Semicondutores

LIGAÇÕES QUÍMICAS

As ligações entre átomos podem ser classificadas quanto a suas intensidades em:

- ✓ Ligações primárias, ou fortes, dependem da diferença do caráter eletronegativo (A[⊕]), ou eletropositivo (C[⊕]), dos elementos envolvidos e são:
 - Ligação iônica (C[⊕] + A[⊖] ∴ C[⊕] ≠ A[⊖] e a diferença > 1,7);
 - Ligação covalente (A[⊖] + A[⊖] ∴ A[⊖] ≅ A[⊖] e a diferença entre eles está entre 0,3 e 1,7);
 - ⊳ Ligação metálica (C[⊕] + C[⊕]).

LIGAÇÕES QUÍMICAS

- ✓ Ligações secundárias, ou fracas, dão origem a atrações entre uma molécula qualquer e suas vizinhas e as principais são:
 - Interações dipolo-dipolo;
 - Pontes de hidrogênio;
 - Forças de dispersão de London;
 - Forças de van der Waals.
- ✓ Propriedades importantes, como o ponto de fusão e solubilidade, são influenciadas pelas forças eletrostáticas secundárias que atuam entre as moléculas.

LIGAÇÃO PRIMÁRIA IÔNICA

- ✓ Envolve a transferência de elétrons de um átomo para outro. Ou seja, envolve uma atração eletrostática entre dois íons de cargas opostas.
- ✓ A ligação é não-direcional (atração eletrostática estende-se igualmente em todas direções).
- Grande diferença de eletronegatividade entre os elementos.

Exemplo: cloreto de sódio (NaCl): χ_r Na = 0,9 ; χ_r Cl = 3,0.

- Materiais muito duros. Alto ponto de fusão e ebulição (requer energia considerável para romper o retículo).
- Compostos iônicos conduzem corrente quando a substancia se encontra fundida ou dissolvida. No estado sólido conduzem somente quando apresentam defeitos.
- ✓ Os grupo IA, IIA, VIA e VIIA são fortemente iônicos; outros compostos inorgânicos são parcialmente iônico-covalente (SiO₂).

IA																	0
H	114												IVA	1/8	MA	VIIIA	2 He
2.1	IIA											IIIA	IVA	VA	VIA	VIIA	-
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
1.0	1.5											2.0	2.5	3.0	3.5	4.0	-
11	12											13	14	15	16	17	18
Na	Mg	10222	la con	0020	10002	V00722	4.1	VIII		1.00	(0.00)	Al	Si	P	S	CI	Ar
0.9	1.2	IIIB	IVB	VB	VIB	VIIB				IB	IIB	1.5	1.8	2.1	2.5	3.0	-
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8	-
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1	Xe
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	-
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
0.7	0.9	1.1-1.2	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	-
87	88	89-102															
Fr	Ra	Ac-No															
0.7	0.9	1.1-1.7															

LIGAÇÃO PRIMÁRIA COVALENTE

- ✓ Envolve o compartilhamento de um par de elétrons entre dois átomo e a força de ligação depende da sobreposição entre eles.
- ✓ A ligação resultante é altamente direcional.
- Menor diferença de eletronegatividade entre os elementos do que aquela observada em ligações iônicas.
- ✓ A densidade eletrônica dentro de uma ligação não é atribuída aos átomos individuais, mas em vez é distribuída entre os átomos.

LIGAÇÃO PRIMÁRIA COVALENTE

- ✓ O número de ligações covalentes (N_{lc}) que é possível para um determinado átomo é determinado pelo seu número de elétrons de valência (N') que será subtraído do número de elétrons que completa a camada eletrônica. Ex.:
- Hidrogênio (H): Z = 1, 1s¹ e na camada K são 2 elétrons → N_{Ic} = 2 1 = 1
- ► Carbono (C): Z=6, $1s^22s^22p^2$ e a camada L são 8 elétrons \rightarrow $N_{lc} = 8 4 = 4$

LIGAÇÃO PRIMÁRIA METÁLICA

- Os metais possuem de 1 a 3 três elétrons de valência.
- Resulta do compartilhamento de um número variável de elétrons com um número variável de átomos.
- Os elétrons de valência passam a se comportar como elétrons "livres".
- A ligação resultante é não-direcional.
- ✓ Apresentam a mesma probabilidade de se associar a um grande número de átomos vizinhos, formando uma "nuvem eletrônica" de baixa densidade.

Ilustração esquemática da ligação metálica

LIGAÇÃO SECUNDÁRIA DE VAN DER WAALS

- Uma força de atração fraca entre átomos ou moléculas não polares causada por mudanças temporárias no momento de dipolo (μ); esta atração vista como dipolos elétricos.
- A mudança de μ tem origem no breve deslocamento dos elétrons para um lado do átomo ou molécula, criando um deslocamento similar nos átomos ou moléculas adjacentes
- A atração é muito mais fraca que uma ligação primária.
- ✓ As forças de van der Waals são forças intermoleculares que promove a coesão nos estados líquido e sólido da matéria.
- ✓ É importante em propriedades tais como tensão superficial, ponto de ebulição e efeito capilar.

DIPOLOS ELÉTRICOS

- ✓ Interações dipolares:

- 1. Dipolo induzido

 Molécula polar (com dipolo permanente)
- 2. Molécula polar

 → Molécula polar

$$\delta$$
+HCI δ - δ -

PONTE DE HIDROGÊNIO

- ✓ É um caso especial de ligação entre moléculas polares.
- ✓ É o tipo de ligação secundária mais forte.
- Ocorre entre moléculas em que o H está ligado covalentemente ao flúor ($\chi_r F = 4$ (como no HF), ao oxigênio ($\chi_r O = 3,5$) (como na H₂O) ou ao nitrogênio ($\chi_r N = 3$) (por exemplo, NH₃).
- Ela é responsável pelas propriedades particulares da água.

$$\chi_r F = 4$$
; $\chi_r Br = 2.8$; $\chi_r H = 2.1$; $\chi_r Na = 0.9$

FORÇAS E ENERGIAS DE LIGAÇÃO

- Conhecer as forças interatômicas que ligam os átomos em uma molécula, ajudam o entendimento de muitas das propriedades físicas dos materiais.
- As forças são de dois tipo e suas grandezas dependem da separação ou distância interatômica (r).

Forças interatômicas

- Atrativa (F_A): depende do tipo de ligação que existe entre os dois átomos.
- Repulsiva (F_R): tem a sua origem na interação entre as nuvens eletrônicas carregadas negativamente dos dois átomos.

A força líquida (F_L) entre dois átomos é:

$$F_L = F_R + F_A$$

A energia (*E*) também é função da separação interatômica. *E* e *F* estão relacionadas matematicamente:

$$E_L = \int_{-\infty}^{r} F_L dr = \int_{-\infty}^{r} F_A dr + \int_{-\infty}^{r} F_B dr = E_A + E_R$$

Forças de atração e de repulsão em função da distância interatômica (*r*) para dois átomos isolados.

Classificação dos Materiais Segundo o Tipo de Ligação

Tetraedro que representa a contribuição relativa dos diferentes tipos de ligação para categorias de Materiais de Engenharia (metais, cerâmicas e polímeros)

Bibliografia

William D. Callister, Jr., Materials Science and Engineering – An Introduction, John Wiley, N.Y..

Capítulo 1: Introdução

Capítulo 2: Estrutura atômica e ligações químicas

Outras referências

Shackelford, J. F. – Ciência dos Materiais, 6ª ed., 2008. Cap. 1 a 2.

Apostilas sobre ligações químicas do curso de PQI-2110

Van Vlack, L. - Princípios de Ciência dos Materiais, 3ª ed., Cap. 2.

Padilha, A.F. – Materiais de Engenharia. Hemus. São Paulo. 1997. Caps.1 a 3.

Askeland, D.R. e Phulé, P.P. - The Science and Engineering of Materials.

Thomson Brooks/Cole. 4^a ed. 2003. Caps. 1 e 2.