Praxis-IT

Table of contents

V	orwort control of the state of	13
	Digitalisierung in der ambulanten Versorgung	. 13
	Messung digitaler Reife	. 14
	Akzeptanz digitaler Technologien	. 17
	Digitalisierte Bereiche in der Arztpraxis	. 18
	Ausbildung für das digitale Gesundheitssystem	. 18
	Digital transformiertes Arbeitsleben	. 19
	Digitale Fähigkeiten	. 20
	Auswirkungen der Digitalisierung & Digitale Trennung	. 22
	Digitale Trennung überwinden	. 27
	Nebenwirkungen digitaler Technologien	. 27
1	Einleitung	30
_	1.1 Schritt für Schritt zur neuen Software	
	1.2 Digitalisierung von Prozessen	
	1.3 Dienstleister vor Ort	
2	Praxisverwaltungssoftware	33
_	2.1 Geschichte	
	2.2 Nutzen Digitaler Patientenakten	
	2.3 System Usability Scale (SUS) und Net Promoter Score (NPS)	
	2.4 TI-Score	
	2.5 Übersichtstabelle	
	2.6 Patientenportal	
	2.6.1 OpenNotes – Einblicke in die Praxisdokumentation	
	2.7 Elektronische Patientenakte	
	2.8 Effiziente Dateneingabe	
	2.9 Gesundheitsinformationssysteme	
		4-
l	Kommunikation	47
3		48
	3.1 Traditionelle Systeme:	
	3.9 IP basiarta Systamo:	18

	3.3	Schlüsselmerkmale und Funktionen	
	3.4	Entscheidungsmerkmale	
	3.5	Übersichtstabelle	49
4	Tele	efonassistenz	50
	4.1	Einleitung	50
	4.2	Für Arztpraxen	50
	4.3	Allgemeine Telefonassistenzsysteme	51
5	Onli	inepräsenz	52
J	5.1	Technische Umsetzung	52
	5.1	Rechtliche Aspekte für Websites von Arztpraxen	52
	0.2	5.2.1 Telemediengesetz (TMG)	52
		5.2.2 Heilmittelwerbegesetz (HWG)	53
	5.3	Anbieter mit kostenlosen Website-Buildern	53
	0.0	5.3.1 Merkmale der kostenlosen Versionen:	54
	5.4	Ohne technische Kenntnisse Websites erstellen	54
	5.5	Übersichtstabelle	54
	5.6	Beispielwebseite	55
6	Tolo	ematikinfrastruktur	56
U	6.1	KIM Dienste	56
	0.1	6.1.1 eArztbrief	57
		6.1.2 KIM Mail	57
	6.2	Interoperabilität	58
	6.3	Konnektoren	60
	6.4	Forschung	60
	6.5	eRezept	61
7		znachrichtendienst	64
	7.1	Einleitung	64
	7.2	Kommunikation zwischen PatientInnen & Behandelnden	66
	7.3	Kommunikationsplattformen	66
	7.4	Matrix Protokoll	67
	7.5	Übersichtstabelle	67
	7.6	Sicherheit Nachrichtenverkehr	68
		7.6.1 Vergleich von Instant-Messaging-Diensten	68
		7.6.2 Vorwärts-Sicherheit	68 68
		7.6.3 Replay-, Reflection- und Reordering-Angriffe	69
	7.7	7.6.4 End-to-End-Verschlüsselung (E2EE)	69
	7.7	Forschung	70
	1.0	10100110115	/

	7.9 Projekte	70 71
8	Terminbuchung	73
	8.1 Einleitung	73
	8.2 Softwarelösungen	73
	8.3 Kombinationslösungen	75
9	Terminplanungs- und Umfragetools	78
10) Rechtliches	79
11	l Videosprechstunde	80
	11.1 Einleitung	80
	11.2 Studienlage	81
	11.3 Vergütung über EBM	82
	11.4 Softwarelösungen	83
	11.5 Gesetzgebung	85
12	2 Telemedizin	86
	12.1 Telemonitoring-Plattformen	86
	12.2 Herzinsuffizienz	86
	12.3 Chronische Lungenerkrankungen	86
	12.4 Herzrhythmusstörungen	87
	12.5 EBM (gesetzliche Krankenversicherung)	87
	12.6 GOÄ (private Krankenversicherung)	87
	12.7 Studien zur Wirksamkeit von Telemedizin	87
	12.7.1 Herzinsuffizienz-Telemonitoring	87
	12.7.2 Fernüberwachung implantierbarer Geräte	88
	12.7.3 DX-Technologie zur Arrhythmie-Erkennung	88
	12.7.4 Telemonitoring bei COPD und Atemwegserkrankungen	88
	12.8 Übersichtstabelle	88
	12.9 Photoplethysmographie (PPG)	90
	12.10Forschung	91
	12.11Telemedizin in ländlichen Gebieten	92
	12.12Nachhaltigkeit	94
	12.13Internet of Things IoT	95
13	3 Wartezimmer	96

П	Klinische Kompetenzen	97
14	Anamnese & Dokumentation	98
	14.1 Einleitung	98
	14.2 Anamnesewerkzeuge	98
	14.3 Dokumentation	110
	14.4 Triagewerkzeuge	118
	14.5 Aufklärung	119
	14.6 Ambient Scribe	119
15	Symptomchecker	120
	15.1 Beispielawendungen	120
	15.2 Studien	
	15.3 Leistungsvergleich	
16	Digitales Wissensmanagement	124
-0	16.1 Für Gesundheitspersonal	
	16.2 Digitale Wissensplattformen	
	16.3 Gesetzliche Pflicht zur Fortbildung	
	16.4 Digitale Wissenswerkzeuge	
	16.5 Für PatientInnen	
	16.6 Persönliche Wissenssammlung	
	16.7 digitale Verwaltung der Fortbildungspunkte	
	16.8 eLogbuch	
	16.9 Mit KI Wissensflut bewältigen	
	16.10Lernendes Gesundheitssystem	
17	Wunddokumentation	131
11	17.1 Einleitung	_
	17.2 Softwarelösungen	
	17.3 Forschung	
	17.9 Porschung	102
18	•	133
	18.1 Funktionen	
	18.2 Impfausweis in der ePA	
	18.3 Kosten	
	18.4 Reiseimpfungen	
	18.5 Übersichtstabelle	136
	18.6 Medizinisches Informationsobjekt	
	18.7 Impfsoftware während COVID-19 Pandemie	138
	18.8 Nutzung von digitalen Impfinformationssystem	138
19	Medikation	139
	19.1 Medikamentenmanagement	139

	19.2 Medikamentenanwendungen	
	19.3 Arzneimitteltherapiesicherheit (AMTS)	
	19.4 ATHINA	
	19.5 Pharmazeutische Dienstleistung Polymedikation	. 141
	19.6 Datenmatrix QR Code Medikationsplan	. 141
	19.7 Betäubungsmittel	. 142
	19.8 Medikamenteneinnahmeerinnerung	. 143
20	Ambulantes Operieren	144
21	. Psychotherapie	146
	21.1 Software	. 146
	21.2 Forschung	
Ш	l Praxisverwaltung	148
22	Buchhaltung	149
	22.1 Dokumentenmanagement und Archivierung	
	22.2 Automatisierung und Workflow-Optimierung	
	22.3 Sicherheit und Kompatibilität	. 149
	22.4 Benutzerfreundlichkeit und Integration	. 149
	22.5 Cloud-basierte und On-Premise-Optionen	
	22.6 Skalierbarkeit	
	22.7 Kostenmodell	. 150
	22.8 Übersichtstabellen	
	22.9 Bezahlsysteme	
	22.10E-Rechnung	. 151
23	G Qualitätsmanagement	152
	23.1 KBV-PraxisCheck	. 152
	23.2 KTQ-Zertifizierung (Kooperation für Transparenz und Qualität im Gesund-	
	heitswesen)	
	23.3 DIN EN ISO 9001:2015	
	23.4 QM-Richtlinie des Gemeinsamen Bundesausschusses (G-BA)	
	23.5 Übersicht QM Software	. 153
24	Dienstplanung	155
	24.1 Softwarefunktionen	
	24.2 Softwarelösungen	. 156
25	Materialwirtschaft	157
	25.1 Bestellsysteme	
	25.2 Kühlmonitoring	. 157

26	Daten	schutz	159
	26.1 I	Dienstleistungensarten	159
	26.2 F	Praktische Anwendungen des Datenschutzes in Arztpraxen	159
	2	26.2.1 Datensammlung und -management:	159
	2	26.2.2 Datenaustausch und Kommunikation:	160
	2	26.2.3 Datensicherheitsmaßnahmen:	160
	2	26.2.4 Nutzung externer Dienste:	160
	2	26.2.5 Patientenrechte:	160
	2	26.2.6 Spezifische Szenarien:	161
	2	26.2.7 Veränderungen in der Praxis:	161
	2	26.2.8 Dokumentation und Einhaltung:	161
	2	26.2.9 Datenschutzbeauftragter (DPO):	161
	26.3 Ü	Übersichtstabelle	161
27	IT Sic	herheit	164
21			164
		Beispiele für IT-Schwachstellen	
		Praxisspezifische IT-Sicherheitsanforderungen	
		Pr.3.1 Nach Praxisgröße:	
		77.3.2 Nach Medizintechnik:	
		77.3.3 Telematikinfrastruktur (TI):	
		27.3.4 Zusammenfassung der Anlagen:	
		Gesetzgebung bezüglich IT-Sicherheit	
		Beispiel IT-Architektur Praxis	
		Mobile Device Management (MDM)	
		Security Information and Event Management (SIEM)	
		Richtiges Löschen	
		Jbersicht IT Grundschutz	
		Cyberversicherung	
		nternet of Things (IoT)	
		Jmstellung RSA zu ECC	
		KRITIS & NIS2	
		Datenverlust	
IV	Med	izinische Fachgebiete	176
			- -
28	_		177 177
	-		177
		9	178
			178 178
	28 3 K	(unstliche Intelligenz	178

29	Derr	matologie	180
	29.1	Einleitung	180
	29.2	Softwarelösungen	180
	29.3	Forschung	181
30	Diab	petologie	183
	30.1	Studienlage	183
	30.2	Softwarelösungen	184
31	Herz	z- & Kreislaufmedizin	186
	31.1	Angiologie	186
	31.2	Bluthochdruck	187
	31.3	Kardiologie	187
		31.3.1 Forschung	187
32	Rhe	umatologie	190
	32.1	Software	190
	32.2	Digitalisierungsinitiative durch Fachgesellschaft	190
		32.2.1 Umfrage der Kommission Digitale Rheumatologie 2020	191
	32.3	DiGAs in der Rheumatologie	192
	32.4	Patientenermächtigung	192
	32.5	Forschung	194
33	Orth	nopädie	195
34	Reha	abilitation	196
	34.1	Einleitung	196
		Hilfsmittel	
	34.3	Heilmittel	196
	34.4	Roboterassistenz	197
35	Neu	rologie & Psychiatrie	198
	35.1	Digitale Präsenz	198
	35.2	Digitales Kopfschmerztagebuch	198
	35.3	Weitere digitale Anwendungen	198
	35.4	Online Ressourcen	199
	35.5	Forschung	199
		35.5.1 Teleneuropsychologie	200
		35.5.2 Teleneurologie	200
		•	201
		35.5.4 Parkinson	201
36	Radi	iologie	203
	36.1	Image-Management-Systeme	203

	36.2	Weitere Softwarelösungen	203
37	37.1 37.2 37.3 37.4	mologie 2 Allgemein 2 Kinderpneumologie 2 Lungenfunktionsdiagnostik 2 Schlafen 2 Forschung 2	205 205 205
38		troenterologie 2 Forschung 2 38.1.1 Telemedizin 2 38.1.2 KI-Bilderkennung in der Endoskopie 2 38.1.3 KI-Mikrobiom-Analyse 2	209 209
39	39.1 39.2 39.3 39.4 39.5	Ierheilkunde 2 Digitale pädiatrische Praxisverwaltung 2 Pädiatrische Anwendungen 2 Kinderuntersuchungsheft als Medizinisches Informationsobjekt (MIO) 2 Gesund im digitalen Zeitalter 2 Digitales Informationsmaterial 2 Forschung 2	211 213 213 214
40	$40.1 \\ 40.2$	ologie & Hämatologie2Digitale Wissensplattformen2Forschung2Anwendungen2	216
41	41.1	Forschung	
42	42.1	rgologie 2 Anwendungen	
V	Ge	sundheitswesen 2	222
43	43.1 43.2 43.3	Einleitung	223 223 223 224 225

44	Pflegesoftware 44.1 Industrie	
45	Stationäre Versorgung	230
46	Öffentliches Gesundheitswesen	231
	46.1 Gesundheitsdaten	
	46.2 Digital Public Health	. 231
47	Digitalisierung der Krankenkassen	232
	47.1 ePA-Apps	
	47.2 Tabelle ePA Apps	
	47.2.1 Installationszahlen ePA Apps Google Play Store	
	47.3 Elektronische Ersatzbescheinigung	
	47.4 Elektronische Arbeitsunfähigkeitsbescheinigung	
	47.6 Offener Quelltext	
48	3 Gesetzgebung	240
49	Übersicht über zentrale Gesetzesvorhaben im Gesundheitswesen	242
	49.1 Nationale eHealth Strategie	
	49.2 Forschung	
	49.2.1 Kostensenkung durch Digitalisierung	244
50	Forschung	245
	50.1 Datenerfassung im Ambulanten Bereich	
	50.2 Institutionentheorie	
	50.3 Qualitative Daten	
	50.4 Evaluierung digitaler Gesundheits-Technologien	
	50.5 Implementierungsforschung	
	50.5.1 NASS Framework	
	50.5.2 TAM & UTAUT	
	50.6 Geschichte	. 250
51	Diskurs	251
	51.1 Diskurshistorie	
	51.2 Übersicht Podcasts	
	51.3 Diskursthemen	
	51.3.1 Elektronische Patientenakte	
	51.3.2 Telemedizin	
	51.3.3 Praxisverwaltungssoftware	
	51.3.4 Telematikinfrastruktur	265

		51.3.5 Digitale Gesundheitsanwendungen				 	 			 278
	51.4	Organisationen				 	 			 287
	51.5	Zeitschriften & Verlage				 	 			 288
	51.6	Veranstaltungen				 	 			 288
		Soziale Medien								
	51.8	Bücher				 	 			 289
52	Digit	tale Innovation								290
	52.1	Einleitung				 	 			 290
	52.2	Geschäftsmodelle				 	 			 290
		52.2.1 Direkte Zugangswege (B2P/B2C-L	ösu	nge	n)	 	 			 291
		52.2.2 Indirekte Zugangswege (B2B-Mode	elle)			 	 			 292
	52.3	Entwicklungsprozess				 	 			 294
		Beispiele								
		52.4.1 Digimanagerin				 	 			 295
		52.4.2 Referenzpraxis				 	 			 296
	52.5	Plattformen				 	 			 296
		Offener Quelltext								
		Zertifizierung Digitaler Anwendungen								
		DiGA								
	52.9	Gründungszentren				 	 			 299
	52.10	OVeranstaltungsformate				 	 			 299
	52.11	Technologische Disruption				 	 			 299
	52.12	2Veränderungsmanagement				 	 			 300
	52.13	$_{ m BBeratung}$				 	 			 301
		4Praxisgründung Simulator								
	52.15	5Institutionalisierung				 	 			 302
		<u> </u>								
53		stliche Intelligenz								303
		Einleitung								
	53.2	Lernmaterialien								
		53.2.1 Kostenfreie Angebote								
		53.2.2 Kostenpflichtige Angebote								
	53.3	Experimentelle Anwendungen				 	 			 304
		KI-Agenten								
		Online Plattformen								
		Ethik								
		Datengetriebene Lösungen								306
		Übersichtsplattform								306
	53.9	Forschung								
		53.9.1 Bürokratieerleichterung				 	 			 308
		53.9.2 Arbeitsgruppen								308
		53.9.3 Akzeptanz Künstlicher Intelligenz				 	 	 _		308

	53.10KI Lehre	309
	53.11KI Curriculum	309
	53.12Internationaler Vergleich	310
	53.13Regulatorik	
54	Ethik	311
	54.1 Vertrauen	311
55	International	312
	55.1 Digitale Primärversorgung in anderen Ländern	312
	55.2 Wie digital ist das deutsche Gesundheitswesen im internationalen Vergleich?	313
	55.3 Sektorenübergreifende Elektronische Gesundheitsakte	314
	55.4 Veranstaltungen	315
56	Zusammenfassung	316
	56.1 Wisssensbuch	316
	56.2 Leitprinzipien	
	56.3 Projekt	
	56.4 Produktneutralität	
57	Referenzen	320

Vorwort

"Praxis-IT" bietet eine umfassende Sammlung praxisorientierter Informationen und Tools mit dem Ziel, Theorie und Praxis zu verbinden. Sie ermöglicht es, technologische Lösungen besser zu verstehen und anzuwenden.

Digitalisierung in der ambulanten Versorgung

Die Einführung von elektronischen Patientenakten (ePA) hat die Arbeitsweise von Arztpraxen verändert. Studien zeigen, dass ePA nicht nur die Dokumentation verbessern, sondern auch die Koordination und Kommunikation innerhalb des Gesundheitswesens erleichtern können (Neunaber and Meister 2023). Dennoch bleibt die effektive Nutzung dieser Systeme eine Herausforderung, da die Einführung oft von unzureichenden Schulungen und technologischen Hürden begleitet wird (Miller, Sim, and Newman 2004).

In seinem Artikel "Digitale Gesundheit: Wie digitale Anwendungen die Medizin verändern werden – Oder nicht?" analysiert Sven Meister die digitale Transformation im Gesundheitswesen, die durch Begriffe wie "Gesundheit 4.0" geprägt ist und Herausforderungen wie Fachkräftemangel adressiert. Technologien wie Künstliche Intelligenz, Augmented und Virtual Reality, Sprachassistenz und mobile Gesundheitsanwendungen (mHealth) fördern Effizienz und Patientenversorgung, etwa durch Telemedizin oder digitale Biomarker. Gesetze wie das Digitale-Versorgung-Gesetz (DVG) und das Krankenhauszukunftsgesetz (KHZG) unterstützen diesen Wandel, doch bleibt Deutschland international zurück. Der "Faktor Mensch" steht im Fokus, da Akzeptanz und Kompetenzen oft fehlen. Meister betont die Notwendigkeit von Partizipation, Kompetenzausbau und strukturiertem Veränderungsmanagement, um die Potenziale der Digitalisierung zu nutzen. (Meister 2023)

Der Einsatz von Computern und spezifischen klinischen Funktionen wie Verschreibung, Medikamentenprüfung und Erstellung von Gesundheitsakten ist in fast allen europäischen Ländern in der Primärversorgung verbreitet. Jedoch bestehen erhebliche Unterschiede in der Nutzung, insbesondere in süd- und mitteleuropäischen Ländern. Es wird empfohlen verstärkte Bemühungen auf europäischer Ebene zu unternehmen, um diese Unterschiede zu verringern und die IKT-Nutzung in der Primärversorgung zu verbessern. (Rosis and Seghieri 2015)

Die Studie "Patients' use and experiences with e-consultation and other digital health services with their general practitioner in Norway: results from an online survey" untersucht

die Nutzung und Erfahrungen von Patienten mit vier digitalen Gesundheitsdiensten in Norwegen: elektronische Terminbuchung, Rezeptverlängerung, nicht-klinische Anfragen und E-Konsultationen. Eine Online-Umfrage mit 2043 Teilnehmern zeigte, dass vor allem Frauen, jüngere Erwachsene und digital affine Personen mit höherer Bildung diese Dienste nutzen. Die elektronische Terminbuchung war am häufigsten genutzt (66,4 %), gefolgt von Rezeptverlängerungen (54,3 %). Nutzer berichteten von hoher Zufriedenheit, Zeitersparnis und verbessertem Zugang zu ihrem Hausarzt, wobei E-Konsultationen als effiziente Alternative zu herkömmlichen Konsultationen angesehen wurden. (Zanaboni and Fagerlund 2020)

Die Studie "The promise of digital healthcare technologies", veröffentlicht in Frontiers in Public Health am 26. September 2023, untersucht die aktuellen und zukünftigen Einsatzmöglichkeiten digitaler Gesundheitstechnologien im Gesundheitswesen, mit besonderem Fokus auf den ambulanten Sektor. Relevante Erkenntnisse zeigen, dass Telemedizin die Versorgung in abgelegenen Gebieten verbessert, indem sie geografische Barrieren überwindet und den Zugang zu medizinischen Dienstleistungen erleichtert. Wearable Sensoren wie Fitbit ermöglichen präzise Gesundheitsüberwachung, etwa zur Erkennung von Depressionen oder Schlafstörungen, was die Patientenautonomie stärkt. KI-gestützte Systeme unterstützen präzise Diagnosen und klinische Entscheidungen, etwa durch die Analyse von EKG-Daten oder die Erkennung von Krankheiten wie Diabetes. Herausforderungen wie mangelnde digitale Kompetenz, Datenschutzbedenken und Interoperabilitätsprobleme behindern jedoch die flächendeckende Implementierung. Die Studie betont die Notwendigkeit regulatorischer Rahmenbedingungen und interdisziplinärer Zusammenarbeit, um diese Technologien effektiv in die ambulante Versorgung zu integrieren. (Yeung et al. 2023)

Messung digitaler Reife

Ein zentraler Aspekt der Digitalisierung in Arztpraxen ist die Messung der digitalen Reife. Laut Teixeira et al. (2022) ist die digitale Reife sowohl auf individueller als auch systemischer Ebene erforderlich, um eine nachhaltige digitale Transformation im Gesundheitswesen sicherzustellen (Teixeira et al. 2022). Digitale Reife-Modelle, wie sie von Rimmer et al. (2014) beschrieben wurden, bieten praktische Werkzeuge, um den Fortschritt in der Nutzung von Technologien zu bewerten und gezielte Verbesserungen zu identifizieren (Rimmer et al. 2014; Neunaber and Meister 2023).

Reifegradmodelle (Maturity Models, MM) basieren auf der Annahme, dass Individuen, Organisationen und Prozesse sich durch Entwicklungsphasen zu höherer Reife entwickeln. Im Gesundheitssektor sind zwei Hauptfaktoren für Investitionen in Gesundheitsinformationssysteme (HIS) verantwortlich: die zunehmende Belastung durch chronische Krankheiten und die Notwendigkeit, die Qualität und Sicherheit der Gesundheitsversorgung erheblich zu verbessern. (Gomes and Romão 2018)

Obwohl über 95% der Hausarztpraxen im NHS computerisiert sind, nutzen viele die Technologie nicht effektiv. Das General Practice Information Maturity Model (GPIMM), inspiriert von

Modellen aus der Softwarequalität und Innovationsdiffusion, definiert fünf Reifegrade des Informationsmanagements, von papierbasierten Systemen bis hin zu vollständig papierlosen Praxen. Gillies betont die Bedeutung von Schulungen und strategischen Informationsinitiativen, um die Entwicklung der Praxen zu fördern, und den Übergang von einem technologiezentrierten zu einem informationszentrierten Ansatz zu unterstützen. (Gillies 2000)

In dem Artikel "Maturity assessment models: a design science research approach" untersucht Tobias Mettler die Entwicklung und Anwendung von Reifegradbewertungsmodellen in sozialen und technischen Systemen. Er identifiziert häufige Kritikpunkte wie übermäßige Bürokratie, mangelnde theoretische Fundierung und die trügerische Sicherheit, die solche Modelle vermitteln können. Mettler schlägt einen Design-Science-Forschungsansatz vor, um die typischen Phasen der Entwicklung und Implementierung solcher Modelle zu analysieren. Dabei betont er die Bedeutung von Entscheidungsparametern, die sowohl für die wissenschaftliche Strenge als auch für die praktische Relevanz des Modells entscheidend sind. Ziel ist es, ein besseres Verständnis für die Gestaltung theoretisch fundierter und praxisnaher Reifegradmodelle zu schaffen. (Mettler 2011)

In der Literaturübersicht "Maturity Models of Healthcare Information Systems and Technologies: a Literature Review" von João Vidal Carvalho et al. werden verschiedene Reifegradmodelle für das Management von Informationssystemen und -technologien im Gesundheitswesen untersucht. Die Autoren identifizieren und vergleichen 14 relevante Modelle, darunter das Quintegra Maturity Model für elektronische Gesundheitsversorgung und das Healthcare IT (HIT) Maturity Model von IDC Health Industry Insights. Jedes Modell wird hinsichtlich seiner Entwicklungsmethodik, Validierung, Umfang, Phasen und Merkmale in Bezug auf Dimensionen oder Einflussfaktoren beschrieben. Die Ergebnisse der Analyse verdeutlichen die Notwendigkeit, ein umfassendes Reifegradmodell zu entwickeln, das einen ganzheitlichen Ansatz verfolgt und eine breite Palette von Einflussfaktoren berücksichtigt, um alle Bereiche und Teilsysteme von Gesundheitseinrichtungen zu integrieren. (Carvalho, Rocha, and Abreu 2016)

Die Studie "A Patient-Centered Framework for Evaluating Digital Maturity of Health Services: A Systematic Review" von Flott et al. (2016) zielt darauf ab, Methoden und Metriken zur Bewertung der digitalen Reife im Gesundheitswesen zu identifizieren und ein evidenzbasiertes Bewertungsinstrument zu entwickeln, das den gesamten Patientenpfad berücksichtigt. Die Autoren führten eine systematische Literaturübersicht durch, um geeignete Bewertungsmethoden und Indikatoren für digitale Reife zu ermitteln. Sie entwickelten daraufhin ein Bewertungsframework, das digitale Reife in verschiedene Stufen unterteilt und spezifische Metriken für jede Stufe definiert. Dieses Framework ermöglicht eine umfassende Bewertung der digitalen Reife von Gesundheitsdiensten über den gesamten Patientenpfad hinweg. Die Ergebnisse der Studie bieten einen strukturierten Ansatz zur Bewertung der digitalen Reife im Gesundheitswesen und unterstützen die Identifizierung von Bereichen, die verbessert werden müssen, um eine patientenzentrierte Versorgung zu fördern. Das entwickelte Framework kann als Leitfaden für die Implementierung und Bewertung digitaler Gesundheitsinitiativen dienen. (Flott et al. 2016)

Die Arbeit von Cresswell et al. beschäftigt sich mit der Notwendigkeit, dass Gesundheitssysteme digital unterstützt werden, um sich kontinuierlich zu verbessern, und hebt hervor, dass groß angelegte digitale Transformationsinitiativen oft Schwierigkeiten haben, nationale Prioritäten mit lokalen Bedürfnissen in Einklang zu bringen. Er betont das Engagement des Vereinigten Königreichs mit 595 Millionen Pfund im Rahmen des Global Digital Exemplar (GDE) Programms, das darauf abzielt, digital herausragende NHS-Organisationen zu fördern. Trotz der weit verbreiteten Nutzung des HIMSS Electronic Medical Record Adoption Model (EMRAM) kritisieren die Autoren den engen Fokus auf technologische Funktionalitäten und Fortschrittsstufen, da dieser nicht die menschlichen und organisatorischen Faktoren oder integrierte Versorgungsmodelle berücksichtigt. Die Autoren schlagen ein neues, flexibleres Modell zur Bewertung der digitalen Reife vor, das eine lokale Anpassung und eine kontinuierliche Neubewertung der Ziele ermöglicht. Dadurch wird sichergestellt, dass die digitale Transformation mit den lokalen Bedürfnissen übereinstimmt und nicht nur auf das Erreichen bestimmter technologischer Meilensteine fokussiert ist. Dieser Ansatz ist entscheidend, um sinnvolle Verbesserungen im Gesundheitswesen zu erzielen, insbesondere im Hinblick auf die Gesundheit der Bevölkerung, Kostensenkung, Patientenerfahrungen und die Work-Life-Balance der Gesundheitsdienstleister. (Cresswell et al. 2019)

Die Studie von befasst sich mit der Messung der Selbstbeurteilung von Ärzten zur Kompetenz im Umgang mit elektronischen Patientenakten (EPAs), einem Konzept, das als "EMR-Reife" bezeichnet wird. Die Forschung zielt darauf ab, ein validiertes Modell zur Messung der EMR-Reife von Ärzten in der Gemeinde zu entwickeln und zu validieren. Ziel ist es, die Fortschritte der Ärzte über die reine Einführung von EPAs hinaus zu messen und zu verstehen, was zur Reife des EMR-Einsatzes beiträgt. (Chong et al. 2020)

Die Methode basierte auf einem in Ontario geförderten EMR-Einführungsprogramm. Ein auf einem Krankenhausmodell basierendes Reifegradmodell wurde für Gemeinschaftspraxen angepasst. Ein Umfrageinstrument wurde entwickelt, das dann von Experten und Beteiligten überprüft wurde. Die Ergebnisse bestätigten die Gültigkeit des Modells und seine Akzeptanz durch die Zielgruppe.

Neunaber et al. untersuchten die Messung der digitalen Reife in allgemeinärztlichen Praxen. Mittels explorativer, qualitativer Forschung und 20 Experteninterviews wurden sechs Dimensionen und insgesamt 26 Unterkategorien identifiziert. Vier dieser Dimensionen (mit 16 Unterkategorien) wurden direkt mit der digitalen Reife in Verbindung gebracht: "digital unterstützte Prozesse", "Praxispersonal", "organisatorische Strukturen und Regeln" sowie "technische Infrastruktur". Zwei weitere Dimensionen (mit 10 Unterkategorien) wurden induktiv ermittelt: "Nutzen und Ergebnisse" und "externe Rahmenbedingungen". Die Ergebnisse deuten darauf hin, dass digitale Reife ein multidimensionales Konstrukt ist, das menschliche, organisatorische und technische Faktoren umfasst. Für eine präzise Messung der digitalen Reife in der ambulanten Versorgung sollten Reifegradmodelle vielschichtig sein und externe Einflussfaktoren berücksichtigen. Zukünftige Forschung sollte die identifizierten Dimensionen statistisch validieren und die Zusammenhänge zwischen den Messdimensionen und ihren Unterkategorien analysieren. (Neunaber, Mortsiefer, and Meister 2024)

Akzeptanz digitaler Technologien

Die Akzeptanz digitaler Technologien hängt stark von der Kommunikation und dem Engagement der Praxismitglieder ab. Untersuchungen zeigen, dass interne Kommunikationsmuster entscheidend dafür sind, wie Technologien in den Arbeitsalltag integriert werden (Lanham, Leykum, and McDaniel 2012). Dies unterstreicht die Bedeutung einer ganzheitlichen Strategie, die nicht nur technische, sondern auch soziale und organisatorische Faktoren berücksichtigt.

Es gibt Schlüsselfaktoren, die den Erfolg solcher Implementierungen beeinflussen, darunter Führungsengagement, Anpassung der Arbeitsabläufe und Schulung des Personals. Erforderlich ist eine ganzheitliche Herangehensweise, die sowohl technische als auch menschliche Aspekte berücksichtigt, um die erfolgreiche Integration von Gesundheitstechnologien in Organisationen zu gewährleisten. (Cresswell and Sheikh 2013)

Die Studie "Barriers and facilitators to utilizing digital health technologies by healthcare professionals" untersucht Hindernisse und Förderfaktoren für den Einsatz digitaler Gesundheitstechnologien durch Gesundheitsfachkräfte. Durch eine systematische Analyse von 108 Übersichtsarbeiten zeigt sie, dass Infrastruktur- und technische Probleme, psychologische Barrieren sowie Bedenken hinsichtlich erhöhten Arbeitsaufwands die Haupthindernisse darstellen. Fördernde Faktoren umfassen Trainingsprogramme, die Wahrnehmung der Technologieeffektivität und Anreize durch verschiedene Akteure. Die Ergebnisse betonen die Notwendigkeit, diese Hindernisse zu überwinden, um eine ganzheitliche Integration digitaler Technologien im Gesundheitswesen zu ermöglichen und die Qualität der Versorgung zu verbessern. (Borges do Nascimento et al. 2023)

Die Studie von Greenhalgh, Stones und Swinglehurst (2014) untersucht die "Widerstände" gegen das Choose and Book-System, eine 2004 in England eingeführte Online-Terminbuchung für Krankenhausambulanzen. Mithilfe der Strukturationstheorie und Giddens' Konzept der Expertensysteme analysiert die qualitative Fallstudie in vier Allgemeinmedizinpraxen, warum das System trotz politischer Unterstützung und finanzieller Anreize unpopulär blieb. Die Ergebnisse zeigen, dass Widerstand aus der Inkompatibilität des Systems mit professionellen Normen, sozialen Beziehungen, kontextuellen Urteilen und der Politik der Patientenwahl resultierte, da es lokale Wissensstrukturen und praktische Weisheit überlagerte und Patienten unrealistisch als rationale Entscheidungsträger darstellte. (Greenhalgh, Stones, and Swinglehurst 2014)

Digitalisierte Bereiche in der Arztpraxis

Figure 1: Digitalisierung Ambulante Gesundheitsversorgung

Ausbildung für das digitale Gesundheitssystem

In einer Studie stellen Car et al. das DECODE-Framework vor, ein international konsensbasiertes Modell für digitale Gesundheitskompetenzen in der medizinischen Ausbildung. Aufgrund der schnellen Digitalisierung im Gesundheitswesen und eines Mangels an entsprechender Ausbildung wurde ein strukturiertes Kompetenzmodell entwickelt. In einer Delphi-Studie mit 211 Experten aus 79 Ländern wurden vier Hauptbereiche identifiziert: Professionalität in der digitalen Gesundheit, Patienten- und Bevölkerungsbezogene digitale Gesundheit, Gesundheitsinformationssysteme und Gesundheitsdatenwissenschaft. Diese umfassen 19 Kompetenzen mit insgesamt 33 obligatorischen und 145 fakultativen Lernzielen. Das Framework soll medizinischen Fakultäten helfen, digitale Gesundheit systematisch in ihre Lehrpläne zu integrieren, um zukünftige Ärzte besser auf technologische Entwicklungen vorzubereiten. (Car et al. 2025)

In einem ergänzenden Kommentar werden die Unsicherheiten in der digitalen Transformation der medizinischen Ausbildung, insbesondere im Kontext von Künstlicher Intelligenz (KI) und digitalen Gesundheitstechnologien diskutiert. Das internationale DECODE-Rahmenwerk definiert Kompetenzen und zahlreiche Lernziele, um Medizinstudenten auf zukünftige digitale Herausforderungen vorzubereiten. Neben technischen Fähigkeiten betont der Artikel die Notwendigkeit, Patienten als Mitgestalter ihrer eigenen Versorgung einzubinden. Wichtige Themen sind die Bewertung und Nutzung digitaler Werkzeuge, der Umgang mit Bias in Algorithmen und die ethische Verantwortung im Einsatz von KI. Zudem wird empfohlen, Studierende praxisnah mit Fallstudien und Simulationen auf die datengetriebene Patientenkommunikation vorzubereiten, um eine informierte und vertrauensvolle Arzt-Patient-Beziehung zu fördern. (Liebovitz 2025)

Das Projekt "Neue Gesundheitsberufe für das digitale Zeitalter" der Stiftung Münch, veröffentlicht im Februar 2020, schlägt vor, die Ausbildung im Gesundheitswesen angesichts der digitalen Transformation und demografischer Herausforderungen grundlegend zu reformieren. Die Reformkommission plädiert für die Einführung dreier neuer Berufe: Fachkraft für digitale Gesundheit, Prozessmanager für digitale Gesundheit und Systemarchitekt für digitale Gesundheit. Diese Berufe sollen durch spezifische Kompetenzen und innovative Curricula die Versorgung verbessern, digitale Technologien wie KI und Telemedizin integrieren und die interprofessionelle Zusammenarbeit fördern. Ziel ist es, die Qualität der Gesundheitsversorgung zu steigern, insbesondere für chronisch Kranke, und die Berufsbilder an die Anforderungen eines digitalisierten Gesundheitssystems anzupassen. (Kuhn et al. 2020)

Die Masterarbeit "Erfassung und Förderung digitaler Kompetenzen von Hochschullehrenden der Humanmedizin" untersucht die digitalen Kompetenzen von Hochschullehrenden der Humanmedizin in Deutschland mittels einer Mixed-Methods-Studie, basierend auf dem "Digital Competence Framework for Educators" (DigCompEdu) und dem "Nationalen Kompetenzbasierten Lernzielkatalog Medizin" (NKLM). Eine Online-Umfrage mit 432 Lehrenden und sechs Experteninterviews zeigen, dass die digitalen Kompetenzen der Lehrenden ein breites Spektrum abdecken, wobei sie ihre lehr- und medizinspezifischen Kompetenzen auf mittlerem Niveau einschätzen, während Experten diese als schwach bis mittel bewerten. Zur Förderung werden praxisnahe, fachspezifische Qualifizierungsmaßnahmen und institutionelle Unterstützung empfohlen, um digitale Technologien effektiv in die Lehre zu integrieren. (Körner 2024)

Digital transformiertes Arbeitsleben

Die Studie "social health@work" der BARMER und der Universität St. Gallen untersucht, wie die Digitalisierung und mobiles Arbeiten die Gesundheit der Beschäftigten beeinflussen. Je höher der digitale Reifegrad eines Unternehmens ist, desto geringer ist das Stressempfinden der Beschäftigten und desto besser ist ihre Arbeitsfähigkeit. Wenn Unternehmen und mobil arbeitende Beschäftigte Spielregeln wie die Trennung von Beruf und Privatleben einhalten, machen

flexibles Arbeiten und der digitale Wandel die Mitarbeitenden gesünder und leistungsfähiger. Zudem wirkt sich das Zugehörigkeitsgefühl der Mitarbeitenden in ihrem Team positiv auf deren Gesundheit aus und spielt für die erfolgreiche Gestaltung mobiler Arbeit eine zentrale Rolle. (Christoph Straub 2022)

Der Healthcare-Bereich steht vor tiefgreifenden Veränderungen, die durch Digitalisierung und die damit verbundenen VUCA-Bedingungen (volatile, unsicher, komplex, ambig) Diese Bedingungen destabilisieren die bisherigen Strukturen und angetrieben werden. Zusätzlich verstärken globale Pandemien, technologische Fortschritte und die Routinen. Patientenwünsche die Notwendigkeit eines beschleunigten Paradigmenwechsels. Um Gesundheitsorganisationen zu helfen, neue Bedingungen besser zu verstehen und sich anzupassen, schlagen wird ein IT-gestützter, multiperspektivischer Analyseprozess vorgeschlagen, der ein ganzheitliches Verständnis und Entscheidungsfindung ermöglicht, um maßgeschneiderte Digitalisierungsstrategien abzuleiten. Der Artikel stellt den GOLD-Rahmen und die dazugehörige IT-Tool-Unterstützung vor, um ein ganzheitliches Verständnis zu erlangen, indem geeignete Methoden und Theorien ausgewählt und verknüpft sowie deren korrekte Nutzung geleitet wird. Die Formalisierung der IT-Tool-Unterstützung gewährleistet Konsistenz und bildet die Grundlage für kontinuierliche Verbesserungen. Der Ansatz umfasst den gesamten Prozess von der Erkennung neuer Chancen und Risiken bis hin zur Umsetzung von organisationsspezifischen Strategien zur Transformation. (Steffen, Braun von Reinersdorff, and Rasche 2023)

Digitale Fähigkeiten

Die digitale Gesundheitskompetenz (DGK) ist definiert als die Fähigkeit, mit digitalen Gesundheitsinformationen umzugehen, um Gesundheit und Wohlbefinden zu fördern. Zwei repräsentative Studien, HLS-GER 2 und eine Untersuchung vom AOK Bundesverband, zeigen, dass trotz unterschiedlicher Methoden ein großer Teil der Bevölkerung eine geringe DGK aufweist. Diese Kompetenz ist eng mit Bildungsniveau, Sozialstatus, finanzieller Deprivation und Alter verbunden, was auf einen sozialen Gradienten hinweist. Während der COVID-19-Pandemie gab es Hinweise auf eine Verbesserung der DGK, doch bleibt Unsicherheit über die Nachhaltigkeit dieser Entwicklung. Der Artikel betont die Notwendigkeit eines besseren rechtlichen Rahmens, finanzieller Ressourcen und einer solideren Datenbasis zur Förderung der DGK, um soziale Ungleichheiten zu verringern und die digitale Transformation im Gesundheitswesen zu unterstützen. (Dratva, Schaeffer, and Zeeb 2024)

Eine bundesweite Umfrage im Oktober 2020 mit 1014 Teilnehmern zeigte, dass eine Mehrheit (88,56%) glaubt, dass Digitalisierung zukünftig die Gesundheitsversorgung beeinflussen wird, jedoch nur 57,10% aktuell solche Technologien für Gesundheitszwecke nutzen. Über die Hälfte der Befragten (52,47%) erlebten ungenaue Informationen zur COVID-19-Pandemie online, obwohl 78,01% sich sicher fühlten, Fehlinformationen zu erkennen. Der Gebrauch digitaler Technologien zur Förderung körperlicher Aktivität war niedrig (21,70%). Trotz

hoher wahrgenommener eHealth Kompetenz war nur 43,10% der Teilnehmer sicher, Gesundheitsentscheidungen basierend auf Online-Informationen zu treffen. Soziodemographische Faktoren wie höheres Einkommen, jüngeres Alter und höhere Bildung korrelierten mit mehr Nutzung digitaler Gesundheitstechnologien. (De Santis et al. 2021)

Eine Studie untersuchte die eHealth-Kompetenz und die Nutzung von Internet- und eHealth-Diensten in der deutschen Gemeinde Dingelstädt im ländlichen Thüringen. Mit 488 Rückmeldungen zeigte sich, dass 76,4% der Bevölkerung zukünftig digitale Medien für Gesundheitszwecke nutzen möchten. Es gab keine signifikante Alterskorrelation mit der Nutzung eHealth-Dienste, jedoch zeigte sich, dass niedrige Bildungsniveaus mit einem geringeren Verständnis und Vertrauen in digitale Gesundheitsinformationen verbunden waren. Die Mehrheit der Teilnehmer verwendet täglich das Internet. Trotzdem fühlen sich viele unsicher, Gesundheitsentscheidungen basierend auf Online-Informationen zu treffen, was auf eine Lücke zwischen digitalen Fähigkeiten und Vertrauen hinweist. Die Studie betont die Notwendigkeit, Bürger mit ausreichenden digitalen Fertigkeiten auszustatten, um von der Digitalisierung des Gesundheitswesens zu profitieren. (Cramer et al. 2023)

Der Zusammenhang zwischen soziodemografischen Faktoren, digitaler Gesundheitskompetenz und der Nutzung von Wearables für Gesundheitsförderung und Krankheitsprävention in Deutschland wurde mittels einer landesweiten Querschnittsumfrage im November 2022 untersucht. Unter den 932 Teilnehmern nutzten 24% Wearables zur Gesundheitsüberwachung, wobei die Nutzung bei älteren, niedrigerem Bildungstatus, in kleineren Haushalten, mit niedrigerem Einkommen und in kleineren Städten oder neuen Bundesländern geringer war. Ein deutlicher generationsbedingter Unterschied wurde festgestellt, wobei jüngere Erwachsene (18-40 Jahre) eine höhere Nutzung aufwiesen, unabhängig von ihrer digitalen Gesundheitskompetenz. Bei älteren Erwachsenen war jedoch eine höhere digitale Gesundheitskompetenz mit einer höheren Wahrscheinlichkeit der Nutzung von Wearables verbunden. Die digitale Gesundheitskompetenz wurde mit dem eHealth Literacy Scale (eHEALS) gemessen und zeigte, dass sie die Beziehung zwischen Alter und Wearable-Nutzung teilweise abbildet. Diese Ergebnisse weisen auf soziodemografische Disparitäten hin und betonen die Notwendigkeit, digitale Gesundheitskompetenz zu fördern, um die Nutzung von Gesundheitstechnologien zu erleichtern und eine gerechtere Gesundheitsversorgung zu gewährleisten. (Pan et al. 2024)

Der Artikel "Förderung digitaler Gesundheitskompetenz in benachteiligten Lebenslagen durch Community-orientierte Ansätze" beschreibt die Ergebnisse eines Workshops auf der 58. Jahrestagung der DGSMP. Ziel war es, Herausforderungen und Potenziale der Förderung digitaler Gesundheitskompetenz (DiGeKo) bei benachteiligten Gruppen zu identifizieren. Durch interaktive Methoden wie Perspektivwechsel und Zukunftswerkstatt wurden spezifische Bedürfnisse von Menschen mit geistiger Behinderung, älteren Menschen/Pflegebedürftigen und Schüler:innen erarbeitet. Die Ergebnisse betonen die Notwendigkeit zielgruppengerechter, Community-orientierter Ansätze, um DiGeKo effektiv zu fördern, und fordern weitere Forschung sowie die Integration digitaler und präsentischer Angebote. (Wrona et al. 2025)

Der Artikel "Development of the Digital Health Literacy Instrument: Measuring a Broad Spectrum of Health 1.0 and Health 2.0 Skills" beschreibt die Entwicklung des Digital Health

Literacy Instrument (DHLI), das sowohl Health 1.0- als auch Health 2.0-Kompetenzen misst, einschließlich operativer Fähigkeiten, Navigation, Informationssuche, Bewertung von Zuverlässigkeit und Relevanz, Hinzufügen eigener Inhalte und Schutz der Privatsphäre. In einer Stichprobe der niederländischen Bevölkerung (N=200) zeigte die Selbsteinschätzungsskala (21 Items) gute Reliabilität (Cronbachs Alpha = .87) und Validität, während die sieben performancebasierten Items einzeln interpretiert werden sollten, da sie kein einheitliches Konstrukt bildeten. Das Instrument korrelierte wie erwartet mit Alter, Bildung, Internetnutzung, Gesundheitsstatus und anderen Gesundheitskompetenz-Skalen, wobei die Ergebnisse auf die Notwendigkeit weiterer Forschung in anderen Sprachen und Populationen hinweisen. (Van Der Vaart and Drossaert 2017)

Die Studie "eHEALS: The eHealth Literacy Scale" von Cameron D. Norman und Harvey A. Skinner entwickelte ein 8-Item-Instrument zur Messung der eHealth-Literacy, also der Fähigkeit, elektronische Gesundheitsinformationen zu finden, zu bewerten und anzuwenden. Ziel war es, die psychometrischen Eigenschaften des eHEALS in einer Jugendpopulation zu evaluieren, die aufgrund ihrer Vertrautheit mit Technologie als Testgruppe diente. Die Studie mit 664 Teilnehmern im Alter von 13 bis 21 Jahren zeigte eine hohe interne Konsistenz (= .88) und moderate Test-Retest-Reliabilität (r = .40 bis .68) über sechs Monate. Eine Hauptkomponentenanalyse ergab eine einheitliche Faktorstruktur, die 56 % der Varianz erklärte. Das eHEALS erweist sich als vielversprechendes Werkzeug zur Beurteilung der eHealth-Kompetenzen, insbesondere in klinischen Kontexten, wobei weitere Forschung für andere Populationen und den Zusammenhang mit Gesundheitsoutcomes nötig ist. (Norman and Skinner 2006)

Auswirkungen der Digitalisierung & Digitale Trennung

Die Arbeit "Digitized patient-provider interaction: How does it matter? A qualitative meta-synthesis" von Hege K. Andreassen und Kollegen untersucht die Digitalisierung der Patient-Ärzte-Interaktion durch eine meta-ethnografische Analyse von 15 qualitativen Studien. Sie identifiziert vier zentrale Konzepte – Respatialisierung, Wiederverbindung, Reaktion und Rekonfiguration –, die strukturelle Veränderungsprozesse in der Gesundheitsversorgung aufzeigen. Die Autoren argumentieren, dass digitale Interaktionen die räumlichen und sozialen Beziehungen verändern, neue Arbeitsprozesse schaffen und grundlegende gesellschaftliche Institutionen wie Arbeit und Krankheitsverständnis neu gestalten. Damit bietet die Studie einen soziologischen Rahmen, um die Bedeutung von E-Health über mikrosoziale Analysen hinaus zu verstehen und dessen Rolle im Wandel moderner Gesellschaften zu beleuchten. (Andreassen et al. 2018)

Die Studie "Digital Divide – Soziale Unterschiede in der Nutzung digitaler Gesundheitsangebote" von Alejandro Cornejo Müller, Benjamin Wachtler und Thomas Lampert untersucht, wie sich die Digitalisierung von Gesundheitsangeboten auf die gesundheitliche Chancengleichheit auswirkt. Durch eine Literaturübersicht zeigen die Autoren, dass die Nutzung digitaler

Gesundheitsangebote stark mit soziodemografischen Faktoren wie Alter, Bildung und Einkommen sowie mit Gesundheitskompetenz zusammenhängt, wobei jüngere, höher gebildete und einkommensstärkere Personen diese häufiger in Anspruch nehmen. Die Ergebnisse deuten darauf hin, dass bestehende gesundheitliche Ungleichheiten durch den "Digital Divide" – also Unterschiede in Zugang, Kompetenzen und Nutzung – verstärkt werden könnten, da sozial benachteiligte Gruppen weniger profitieren. Die Studie betont die Notwendigkeit weiterer Forschung, um die Auswirkungen sozialer Determinanten auf digitale Gesundheitsversorgung besser zu verstehen und gesundheitliche Ungleichheiten nicht zu verschärfen. (Cornejo Müller, Wachtler, and Lampert 2020)

Die Studie "Patients' Experiences With Digitalization in the Health Care System: Qualitative Interview Study" von Christian Gybel Jensen und Kollegen untersucht die digitalen Praktiken und Erfahrungen von Patienten im neurologischen Bereich mit öffentlichen digitalen Gesundheitsdiensten in Dänemark. Durch 31 halbstrukturierte Interviews zeigt die qualitative Analyse vier Hauptkategorien: soziale Ressourcen als digitale Lebensader, notwendige Fähigkeiten, starke Gefühle als Förderer oder Hindernisse und Leben ohne digitale Tools. Die Ergebnisse verdeutlichen, dass der Zugang zu sozialer Unterstützung, physische, kognitive und kommunikative Fähigkeiten sowie Motivation und Komfort entscheidend sind, um digitale Tools positiv zu nutzen. Patienten ohne diese Voraussetzungen erleben Herausforderungen, fühlen sich ausgeschlossen und benachteiligt, was auf potenzielle Ungleichheiten im Gesundheitswesen hinweist. Die Autoren fordern eine Anpassung der Systeme an unterschiedliche digitale Gesundheitskompetenzen, um Inklusion zu fördern. (Gybel Jensen, Gybel Jensen, and Loft 2024)

Die Arbeit "The potential and paradoxes of eHealth research for digitally marginalised groups: A qualitative meta-review" von Jessica A. Coetzer und Kollegen untersucht, wie die Forschung den Einsatz von eHealth bei digital marginalisierten Gruppen wie Menschen mit niedrigem sozioökonomischen Status, Migranten oder älteren Menschen betrachtet. Durch eine qualitative Meta-Analyse von 29 Studien identifizieren die Autoren vier Paradoxien: eHealth wird als einfache Lösung für komplexe Gesundheitsprobleme dargestellt; Barrieren werden individuell gerahmt, während Lösungen systemisch bleiben; Patienten und Gesundheitskräfte tragen die Hauptverantwortung trotz systemischer Ziele; und obwohl maßgeschneiderte Lösungen gefordert werden, werden Gruppen homogen betrachtet. Die Studie kritisiert diese Diskrepanzen und fordert einen Paradigmenwechsel hin zu systemischem Denken, um gesundheitliche Ungleichheiten nicht zu verschärfen. (Coetzer et al. 2024)

Die wissenschaftliche Arbeit "Evaluating the Digital Health Experience for Patients in Primary Care: Mixed Methods Study" von Melinda Ada Choy und Kollegen untersucht die Erfahrungen von Patienten mit digitaler Gesundheit in der Grundversorgung, mit einem Fokus auf den digitalen Gesundheitsunterschied bei sozioökonomisch benachteiligten Personen. Mithilfe eines explorativen Mixed-Methods-Designs wurden zunächst qualitative Interviews mit 19 Patienten geführt, die an chronischen Krankheiten und sozioökonomischen Nachteilen leiden, gefolgt von einer quantitativen Umfrage unter 487 Patienten aus australischen Allgemeinpraxen. Die Studie identifiziert sechs Haupthindernisse für den Zugang zu digitaler Gesundheit, darunter

eine Präferenz für menschliche Dienstleistungen, geringes Vertrauen in digitale Angebote und hohe finanzielle Kosten. Die Ergebnisse zeigen, dass 31 % der Befragten noch nie digitale Gesundheitsdienste genutzt haben und dass häufige Nutzer höhere digitale Kompetenz und Interesse aufweisen. Die Autoren betonen, dass die Überwindung des digitalen Gesundheitsunterschieds maßgeschneiderte, mehrstufige Interventionen erfordert, die auf die individuellen Barrieren der Patienten abgestimmt sind. (Choy et al. 2024)

Der Artikel "The Impact of Accelerated Digitization on Patient Portal Use by Underprivileged Racial Minority Groups During COVID-19: Longitudinal Study" von Feng Mai und Kollegen untersucht, wie die beschleunigte Digitalisierung während der COVID-19-Pandemie die Nutzung von Patientenportalen durch benachteiligte rassische Minderheiten beeinflusst hat. Mit einem longitudinalen Datensatz eines großen städtischen akademischen medizinischen Zentrums in den USA analysierten die Autoren die Portalnutzung von 25.612 Patienten (20,13 % Schwarze, 0,99 % Hispanoamerikaner, 78,88 % Weiße) vor und während der Pandemie (März bis August 2019 und 2020). Die Studie zeigt, dass vor der Pandemie ein signifikanter digitaler Graben bestand, da Minderheitenpatienten das Portal weniger nutzten als weiße Patienten. Während der Pandemie verringerte sich dieser Graben jedoch, insbesondere durch die vermehrte Nutzung mobiler Geräte, wobei Minderheitenpatienten sowohl die Häufigkeit als auch die Vielfalt der Portalnutzung schneller steigerten. Die Ergebnisse deuten darauf hin, dass die beschleunigte Digitalisierung die digitale Kluft in der Telemedizin nicht verbreitert, sondern verkleinert hat, und bieten Ansätze für politische Maßnahmen zur weiteren Schließung dieses Grabens. (Mai et al. 2023)

Der Artikel "Patients' Experiences With Digitalization in the Health Care System: Qualitative Interview Study" von Christian Gybel Jensen und Kollegen untersucht die digitalen Praktiken und Erfahrungen von Patienten mit öffentlichen digitalen Gesundheitsdiensten im neurologischen Bereich in Dänemark. Mithilfe eines qualitativen Designs mit hermeneutischem Ansatz wurden 31 semistrukturierte Interviews mit aktuell oder ehemals hospitalisierten Patienten eines neurologischen Krankenhausdepartments geführt. Die Analyse identifizierte vier Kategorien: soziale Ressourcen als digitale Lebensader, notwendige Fähigkeiten, starke Gefühle als Förderer oder Hindernisse und Leben ohne digitale Tools. Die Ergebnisse zeigen, dass der Zugang zu sozialer Unterstützung, physische, kognitive und kommunikative Fähigkeiten sowie Motivation und Komfort entscheidend für positive Erfahrungen mit digitalen Tools sind. Patienten ohne diese Voraussetzungen erlebten Herausforderungen und fühlten sich teilweise ausgeschlossen, was auf die Notwendigkeit hinweist, digitale Gesundheitsdienste flexibel und inklusiv zu gestalten, um gesundheitliche Ungleichheiten zu vermeiden. (Gybel Jensen, Gybel Jensen, and Loft 2024)

Sy Atezaz Saeed und Ross MacRae Masters beleuchten in "Disparities in Health Care and the Digital Divide" die anhaltenden Ungleichheiten in Gesundheitsoutcomes und deren Verstärkung durch den digitalen Graben trotz neuer Technologien wie Telemedizin. Die Autoren zeigen, dass soziale Determinanten wie Armut, Geschlecht und Rasse die Nutzung von Gesundheitsinformationstechnologien (HIT) beeinflussen, wobei etwa Menschen mit niedrigem

Einkommen, Frauen und Schwarze seltener Telemedizinbesuche abschließen. Während Technologien wie Telepsychiatrie die Versorgung bei Schizophrenie oder PTSD verbessern können, bleiben Herausforderungen wie unzureichender Internetzugang und geringe digitale Gesundheitskompetenz bestehen, insbesondere in ländlichen und einkommensschwachen Gebieten. Die Studie betont, dass HIT das Potenzial hat, die Versorgungsqualität zu steigern, jedoch gezielte Maßnahmen wie bessere IT-Unterstützung, Patientenaufklärung und Gleichheitsförderung erforderlich sind, um den digitalen Graben zu verringern und gerechte Gesundheitsoutcomes zu gewährleisten. (Saeed and Masters 2021)

Der Artikel "Telehealth and the Digital Divide: Identifying Potential Care Gaps in Video Visit Use" untersucht die Barrieren für ältere Patienten bei der Nutzung von Videokonsultationen im Rahmen der Telemedizin. Während die COVID-19-Pandemie zu einem starken Anstieg virtueller Arztbesuche führte, bleibt der Zugang zu Videobesuchen ungleich verteilt, insbesondere für ältere Menschen, Menschen mit Migrationshintergrund und wirtschaftlich Benachteiligte. Die Studie basiert auf Interviews mit Patienten und Klinikpersonal und zeigt, dass viele Patienten zwar über digitale Geräte verfügen, sich aber unsicher in deren Nutzung fühlen. Häufige Hindernisse sind mangelnde digitale Kompetenz, fehlende Unterstützung sowie technische Herausforderungen. Trotz eines allgemeinen Interesses an Videokonsultationen bevorzugen viele Patienten Telefonbesuche, da sie sich mit der Technologie überfordert fühlen. Das Klinikpersonal bestätigt diese Herausforderungen und betont die Notwendigkeit von Schulungen und technischer Unterstützung. Der Artikel unterstreicht, dass gezielte Maßnahmen erforderlich sind, um digitale Gesundheitslösungen inklusiver und zugänglicher zu gestalten. (Choxi et al. 2022)

Die Übersichtsarbeit "Impact of COVID-19 on the digital divide: a rapid review" untersucht die Auswirkungen der COVID-19-Pandemie auf die "digitale Kluft" im Gesundheitswesen. Sie konzentriert sich darauf, wie bestehende Ungleichheiten beim digitalen Zugang und der Nutzung während der ersten Welle der Pandemie hervorgehoben wurden, als die Gesundheitsversorgung zunehmend auf digitale Technologien angewiesen war. Die Übersicht identifiziert Herausforderungen beim digitalen Zugang (wie Probleme mit der Internetverbindung), der digitalen Kompetenz (wo ethnische Minderheiten und ältere Menschen beim Zugang zur digitalen Gesundheitsversorgung auf Hindernisse stießen) und der digitalen Assimilation (die Integration digitaler Werkzeuge in den Alltag). Die Studie kommt zu dem Schluss, dass die Pandemie die anhaltende Natur der digitalen Kluft unterstrich, insbesondere in Bezug auf gefährdete Bevölkerungsgruppen wie ältere Menschen und ethnische Minderheiten, und betont die Notwendigkeit, diese Ungleichheiten anzugehen, da digitale Technologien im Gesundheitswesen immer wichtiger werden. (Litchfield, Shukla, and Greenfield 2021)

In "Health Disparities, Clinical Trials, and the Digital Divide" untersuchen die AutorInnen die Schnittstelle von gesundheitlichen Ungleichheiten, klinischen Studien und der digitalen Kluft, wobei die Notwendigkeit gerechter digitaler Gesundheitslösungen betont wird. Die Unterrepräsentation von ethnischen und rassischen Minderheiten in klinischen Studien wird hervorgehoben. Die Autoren erörtern, wie die digitale Kluft, gekennzeichnet durch ungleichen Zugang zu digitalen Technologien und Kompetenzen, gesundheitliche Ungleichheiten verschärft,

was insbesondere während der COVID-19-Pandemie deutlich wurde. Sie schlagen Strategien vor, um digitale Gesundheitsgerechtigkeit in klinischen Studien zu erreichen, einschließlich gesellschaftlichem Engagement, nutzerzentriertem Design und der Berücksichtigung digitaler Determinanten der Gesundheit. Der Artikel liefert auch fachspezifische Beispiele in der Herz-Kreislauf-Medizin und der Dermatologie, die veranschaulichen, wie digitale Werkzeuge entweder Gesundheitsgerechtigkeitslücken überbrücken oder vergrößern können. Die Autoren schließen mit der Betonung der Bedeutung inklusiver digitaler Innovation und der Zusammenarbeit zwischen Bundesbehörden, Industrie und Wissenschaft, um gerechte Gesundheitsergebnisse zu gewährleisten. (Adedinsewo et al. 2023)

Der Achte Altersbericht der Bundesregierung untersucht die Auswirkungen der Digitalisierung auf ältere Menschen in den Bereichen Wohnen, Mobilität, soziale Integration, Gesundheit, Pflege und Sozialraum. Er betont, dass digitale Technologien das Potenzial haben, die Lebensqualität und Selbstständigkeit älterer Menschen zu fördern, etwa durch Smart Home-Systeme, Mobilitäts-Apps oder Telemedizin, jedoch bestehen Herausforderungen wie die digitale Spaltung, fehlende Kompetenzen und ethische Fragen. Die Kommission empfiehlt, den Zugang zu digitalen Technologien zu verbessern, digitale Souveränität zu stärken, generationsübergreifenden Austausch zu fördern und ethische Debatten anzustoßen. Zudem soll die Forschung zu den Wirkungen digitaler Technologien ausgebaut und die kommunale Daseinsvorsorge digital gestärkt werden, um Teilhabe und Autonomie zu sichern. (Berner, Endter, and Hagen 2020)

Die Studie "Inequities in Health Care Services Caused by the Adoption of Digital Health Technologies: Scoping Review" untersucht die Ungleichheiten im Gesundheitswesen durch die Einführung digitaler Gesundheitstechnologien. Sie zeigt, dass diese Technologien, obwohl sie die Effizienz der Gesundheitsversorgung steigern sollen, zu Ungleichheiten führen, da nicht alle Bevölkerungsgruppen gleichermaßen Zugang zu ihnen haben oder sie nutzen können. Faktoren wie Alter, Ethnie, Einkommen, Bildung, Gesundheitszustand und digitale Kompetenz beeinflussen diese Ungleichheiten. Die Studie schlägt Maßnahmen vor, um diese Ungleichheiten zu verringern, darunter staatliche Initiativen wie nationale Krankenversicherungen, die Entwicklung benutzerfreundlicher Technologien durch Anbieter und die Förderung digitaler Kompetenzen bei den Nutzern, um eine gerechtere Gesundheitsversorgung zu gewährleisten. (Yao et al. 2022)

Die Studie "Understanding factors influencing the adoption of mHealth by the elderly: An extension of the UTAUT model" untersucht die Faktoren, die die Akzeptanz von mobilen Gesundheitsdiensten (mHealth) bei älteren Menschen in Entwicklungsländern wie Bangladesch beeinflussen. Basierend auf dem Unified Theory of Acceptance and Use of Technology (UTAUT) zeigt die Untersuchung, dass Leistungserwartung, Aufwandserwartung, sozialer Einfluss, Technologieangst und Widerstand gegen Veränderungen die Nutzungsabsicht älterer Menschen signifikant beeinflussen. Hingegen hat die unterstützende Infrastruktur keinen signifikanten Einfluss auf die Nutzungsabsicht. Die Ergebnisse bieten wertvolle Einblicke für mHealth-Anbieter und Entscheidungsträger, um die Einführung und Gestaltung von mHealth-Diensten zu verbessern, und bestätigen die Anwendbarkeit des UTAUT-Modells in diesem

Digitale Trennung überwinden

Das Projekt "Digital im Alter – Di@-Lotsen" soll älteren Menschen den Zugang zur digitalen Welt erleichtern. Ehrenamtliche Di@-Lotsinnen und -Lotsen bieten niedrigschwellige, wohnortnahe Unterstützung, etwa durch Kurse oder Hausbesuche, um digitale Kompetenzen zu vermitteln. Lokale Stützpunkte koordinieren diese Angebote, stellen Technik wie Tablets bereit und fördern die Vernetzung. Das Projekt, gestartet im Juli 2021, umfasst mittlerweile über 60 Stützpunkte und 500 Lotsen, die den Alltag älterer Menschen durch digitale Teilhabe bereichern.

Die Studie "Implementing a Digital Health Navigator: Strategies and Experience in the Hospital Setting to Alleviate Digital Equity" von Saiyed et al. beschreibt die Einführung eines Digital Health Navigator (DHN)-Programms an der Universitätsklinik Pittsburgh. Ziel war es, die Nutzung digitaler Gesundheitstools, insbesondere des Patientenportals, zu fördern und digitale Ungleichheiten zu verringern. Über 30 Tage hinweg unterstützte das DHN-Programm 260 Patienten in zwei Krankenhäusern durch persönliche Schulungen, was zu einer hohen Akzeptanz (98 % fanden die Schulung hilfreich) und Zufriedenheit (90 % würden das Portal weiterempfehlen) führte. Besonders ältere Patienten und solche mit begrenztem Technologiezugang profitierten. (Saiyed et al. 2024)

Die Studie "The Los Angeles County Department of Health Services Health Technology Navigators" von Casillas und Abhat beschreibt die Einführung eines Health Technology Navigator (HTN)-Programms im Los Angeles County Department of Health Services (LAC DHS). Das Programm zielt darauf ab, digitale Ungleichheiten zu überwinden, indem es Patienten, insbesondere aus unterversorgten Gruppen, durch persönliche Unterstützung bei der Nutzung des Patientenportals befähigt. Seit November 2021 haben 13 Navigatoren die Portalregistrierung von 20 % auf 42 % der aktiven Patienten gesteigert, mit über 30.000 dokumentierten Einschreibungen bis Juni 2023. Das Programm verbessert die digitale Gesundheitskompetenz, erhöht die Mitarbeiterzufriedenheit und wird als Modell für andere Gesundheitssysteme vorgeschlagen, um gerechtere Zugänge zu digitaler Gesundheitsversorgung zu schaffen. (Casillas and Abhat 2024)

Nebenwirkungen digitaler Technologien

Die Arbeit "Power, paradox and pessimism: On the unintended consequences of digital health technologies in primary care" von Sue Ziebland, Emma Hyde und John Powell untersucht die unbeabsichtigten Folgen des Einsatzes digitaler Gesundheitstechnologien in der Primärversorgung. Die Autoren führen eine konzeptionelle Literaturübersicht durch, um ein tieferes Verständnis der komplexen Auswirkungen dieser Technologien – wie Online-Konsultationen,

elektronische Patientenakten und Apps – auf Menschen, Beziehungen und Arbeitsweisen zu gewinnen. Sie identifizieren drei zentrale Themen: die Änderung von Machtverhältnissen zwischen Patienten und Fachkräften, paradoxe Ergebnisse, die den ursprünglichen Absichten widersprechen, und eine wachsende Pessimismus-Kultur unter Mitarbeitern gegenüber digitalen Innovationen. Die Studie betont die Notwendigkeit, bei der Planung solcher Technologien die potenziellen negativen Effekte zu berücksichtigen, insbesondere vor dem Hintergrund der durch die Covid-19-Pandemie beschleunigten Digitalisierung. Ziel ist es, zukünftige Implementierungen durch ein besseres Verständnis dieser Dynamiken zu verbessern und eine reflektierende Lernkultur zu fördern. (Ziebland, Hyde, and Powell 2021)

Die Studie "Meaningless work: How the datafication of health reconfigures knowledge about work and erodes professional judgement" von Klaus Hoeyer und Sarah Wadmann untersucht, wie die Datifizierung im stark digitalisierten dänischen Gesundheitssektor die Wahrnehmung von Arbeit und professionelles Urteilsvermögen verändert. Basierend auf Interviews und Beobachtungen zeigen die Autoren, dass die zunehmende Datenintensität – gerechtfertigt durch Ziele wie Effizienz und Evidenzbasierung – zu Kontrolle und Überwachung führt, aber auch "sinnlose Arbeit" erzeugt, die von Leistungserbringern als "kafkaeske Situation" empfunden wird. Sie identifizieren Dynamiken, die dieses Empfinden antreiben, etwa standardisierte Datenanforderungen, die klinische Ziele verfehlen, und argumentieren, dass Daten oft symbolische Kommunikation statt praktischen Nutzen dienen. Die Studie hebt drei Folgen hervor: Ressourcenverschiebung von Patientenversorgung zu Datenarbeit, epistemische Zweifel an Datenvalidität und eine veränderte Arbeitskultur, die klinische Prioritäten verschiebt. Sie fordert, Raum für Urteilsvermögen in datengesättigten Systemen zu bewahren, um sinnvolle Arbeit zu fördern. (Hoeyer and Wadmann 2020)

Die Studie "The double-edged sword of digital self-care: Physician perspectives from Northern Germany" von Amelia Fiske, Alena Buyx und Barbara Prainsack untersucht, wie Ärzte in Norddeutschland digitale Selbstfürsorge-Praktiken wahrnehmen und in ihre Arbeit integrieren. Basierend auf 15 Interviews aus dem Jahr 2018 zeigt die Untersuchung, dass Ärzte digitale Selbstfürsorge – wie die Nutzung von Smartphones zur Datenerfassung oder Online-Diagnosetests – ambivalent beurteilen: Sie sehen Potenzial für mehr Patientenautonomie und verbesserte Versorgung, äußern jedoch Bedenken hinsichtlich Validität, Fehldiagnosen und zusätzlicher Belastungen für das Gesundheitssystem. Die Ergebnisse verdeutlichen eine Diskrepanz zwischen technikoptimistischen Narrativen über "e-Patienten" und den tatsächlichen Erfahrungen der Ärzte, die persönliche Beziehungen und ärztliche Anleitung als essenziell für eine sichere Nutzung betonen. Digitale Selbstfürsorge wird als "doppelseitiges Schwert" beschrieben, das Empowerment bietet, aber nicht die qualitativ hochwertige medizinische Versorgung ersetzen kann, und regulatorische sowie ethische Herausforderungen aufwirft. (Fiske, Buyx, and Prainsack 2020)

Die Arbeit "eHealth in primary care. Part 2: Exploring the ethical implications of its application in primary care practice" von Sarah N. Boers und Kollegen untersucht die ethischen Implikationen von eHealth in der Primärversorgung. Sie argumentiert, dass eHealth – wie Gesundheits-Apps, Wearables und Entscheidungsunterstützungssysteme – Selbstmanagement

und personalisierte Medizin fördert, jedoch auch ethische Herausforderungen birgt. Die Autoren analysieren vier zentrale Aspekte: (1) den Umgang mit diagnostischer Unsicherheit durch nicht-erklärbare Algorithmen, die Verantwortung, Gerechtigkeit und Autonomie beeinflussen; (2) veränderte Patientenrollen, bei denen Autonomie gefördert, aber auch durch Technologien eingeschränkt werden kann; (3) neue Verantwortlichkeiten und Verantwortungslücken durch Technologie-Delegation; (4) die trianguläre Beziehung Patient-eHealth-Arzt, die menschliche Interaktion und gemeinsame Entscheidungsfindung neu gestaltet. Die Studie fordert eine parallele ethische Forschung, um praxisgerechte Richtlinien zu entwickeln, und betont die Notwendigkeit, diese Implikationen bei der Implementierung von eHealth zu berücksichtigen. (Boers et al. 2020)

Die Studie "Unintended consequences of online consultations: a qualitative study in UK primary care" von Andrew Turner und Kollegen untersucht die unbeabsichtigten Folgen von Online-Konsultationen in der britischen Primärversorgung. Basierend auf Interviews mit 19 Patienten und 18 Mitarbeitern aus acht Praxen in Südwest- und Nordwestengland zwischen Februar 2019 und Januar 2020 zeigt die Studie, dass Online-Tools, die den Zugang zu Pflege verbessern und Effizienz steigern sollen, unerwartete Probleme verursachen. Dazu gehören eingeschränkter Zugang für digital ausgeschlossene Patienten, Schwierigkeiten bei der effektiven Kommunikation mit Ärzten sowie zusätzliche Arbeitsbelastung und Isolation für das Personal. Die Ergebnisse verdeutlichen, dass diese Folgen oft aus Unsicherheiten über Prozesse und der Bevorzugung simpler, transaktionaler Interaktionen resultieren, was die ganzheitliche Betreuung beeinträchtigt. Die Autoren betonen die Notwendigkeit, diese Herausforderungen zu erkennen und durch maßgeschneiderte Prozesse zu mildern, um die Vorteile der Technologie zu nutzen. (Turner et al. 2021)

1 Einleitung

In einer digitalisierten Welt sind effektive IT-Systeme entscheidend für die Effizienz und Qualität in der Gesundheitsversorgung. Die fortschreitende Entwicklung von Praxisverwaltungssoftware, digitalen Anamnese-Tools und Dienstplanungslösungen verändert den Arbeitsalltag in Praxen. Die Herausforderung besteht jedoch darin, diese technischen Möglichkeiten effizient und praxisnah einzusetzen.

Es gibt Verzeichnisse, die ÄrztInnen und PatientInnen bei der Navigation und Auswahl von Gesundheits-Apps und digitalen Tools unterstützen. Jede dieser Plattformen bietet eine Art von Datenbank oder Vergleichstool, um die Qualität, Funktionen und Eignung von Gesundheits-Apps und Software für medizinische Zwecke zu bewerten. (MindApps 2025; medxsmart 2025; Zentralinstitut für die kassenärztliche Versorgung (Zi) 2025)

1.1 Schritt für Schritt zur neuen Software

Die Studie "How to Implement Digital Services in a Way That They Integrate Into Routine Work: Qualitative Interview Study Among Health and Social Care Professionals" von Janna Nadav und Kollegen untersucht, wie digitale Dienste erfolgreich in die Routinearbeit von Gesundheits- und Sozialfachkräften integriert werden können. Durch qualitative Fokusgruppeninterviews mit 30 Fachkräften aus vier finnischen Gesundheitszentren wurden Erfahrungen mit der Implementierung digitaler Dienste analysiert und 14 Praktiken identifiziert, die den Erfolg fördern. Dazu gehören umfassende Kommunikation, konsistente Implementierungsprozesse, Rechtfertigung des Dienstes, Beteiligungsmöglichkeiten, positive Einstellungen, organisatorische Unterstützung, ausreichende Zeit und Schulungen, Benutzerfreundlichkeit sowie Feedback- und Monitoring-Möglichkeiten. Die Ergebnisse, basierend auf der Normalisierungstheorie, bieten wertvolle Erkenntnisse für Organisationen weltweit, insbesondere vor dem Hintergrund der durch die COVID-19-Pandemie beschleunigten Digitalisierung, und stammen aus Finnland, einem Vorreiterland in diesem Bereich. (Nadav et al. 2021)

Figure 1.1: Softwareeinführung Ablaufplan

1.2 Digitalisierung von Prozessen

Digitale Mittel können in Prozesse integriert werden. Als Beispiel dient die Blutentnahme. Für die meisten Prozessschritte stehen digitale Hilfsmittel zur Verfügung: Terminvereinbarung, Kommunikation, Anmeldung, Ergebnisrückmeldung.

Figure 1.2: Beispielprozess Blutentnahme

1.3 Dienstleister vor Ort

Dienstleister vor Ort (DVO) sind Ansprechpartner für die Umsetzung der IT in der Praxis. Sie verbinden medizinische Einrichtungen mit der Telematikinfrastruktur (TI) und übernehmen technische Aufgaben wie die Installation von Konnektoren und Kartenterminals, oft als zertifizierte Partner der KBV. Einige DVO konzentrieren sich auf spezifische IT Ökosysteme. So listen Unternehmen wie CGM, Tomedo, T2Med und Medatixx eigene Servicepartner auf, die Praxen bei der Einrichtung und Wartung unterstützen.

- gematik.de/informationen-fuer/dienstleister-vor-ort-dvo
- KBV_ISAP_Dienstleister_ZERT_P390_SGBV.pdf

2 Praxisverwaltungssoftware

2.1 Geschichte

Die Entwicklung der Praxisverwaltungssysteme (PVS) begann in den 1980er Jahren, als Ärzte erkannten, dass sie effizientere Wege zur Verwaltung ihrer Praxen benötigten. Anfangs entwickelten Ärzte wie Dr. Wiegand von APW-Wiegand maßgeschneiderte Software, da die damals verfügbaren Programme oft zu den spezifischen Anforderungen der Praxisalltags nicht passten oder zu kostspielig waren. Diese frühen Systeme konzentrierten sich auf grundlegende Verwaltungsaufgaben wie Patientenverwaltung und Rechnungsstellung, mit dem Ziel, Bürokratie zu reduzieren und auf das Streben nach einer papierlosen Praxis hinzuwirken. Mit der Zeit und dem Aufkommen des Shareware-Prinzips wuchs die Verbreitung dieser Software, was zur Gründung kleiner Unternehmen und der Einführung von Support-Services führte. Die Weiterentwicklung von PVS wurde stark durch den Input und die Wünsche der Anwender beeinflusst, was zu benutzerfreundlicherer und praxisorientierter Software wie tomedo® führte. Mit der Digitalisierung und der Einführung der Telematikinfrastruktur (TI) in Deutschland wurde die Integration von elektronischen Rezepten, Krankenscheinen und Patientenakten zwingend notwendig. Heutzutage bieten PVS nicht nur administrative Unterstützung, sondern auch Telemedizin-Funktionen und Integrationen mit digitalen Gesundheitsanwendungen (DiGA). Der Markt hat sich von lokalen Desktop-Lösungen zu cloudbasierten, webbasierten Systemen entwickelt, die Flexibilität und Sicherheit bieten, wie es RED medical mit ihrer web-basierten Software zeigt. Die Betonung liegt heute auf Benutzerfreundlichkeit, Integration in den digitalen Gesundheitsraum und die Unterstützung von Ärzten bei der Patientenversorgung.

2.2 Nutzen Digitaler Patientenakten

In einer Studie wurden die Auswirkungen der Einführung eines ambulanten elektronischen Gesundheitsakten-Systems (EHR) auf die Produktivität von Ärzten in einer großen akademischen multi-spezialisierten Arztgruppe untersucht. Dabei wurden Daten von 203 Ärzten analysiert, wobei diejenigen, die das EHR übernommen hatten, eine signifikante Steigerung der monatlichen Patientenzahlen (+9 Besuche) und der abrechenbaren Arbeitseinheiten (wRVUs) (+12) zeigten, während die Nicht-Adopter keine signifikanten Veränderungen in diesen Bereichen aufwiesen. Beide Gruppen verzeichneten jedoch eine Erhöhung der monatlichen Abrechnungen (22 % bzw. 16 %). Die Produktivitätssteigerung der EHR-Nutzer trat insbesondere nach einer Eingewöhnungsphase von mindestens sechs Monaten auf. Die

Ergebnisse legen nahe, dass die anfänglichen Bedenken hinsichtlich Produktivitätsverlusten durch EHR-Einführung möglicherweise unbegründet sind und dass die Unterschiede zwischen Adoptern und Nicht-Adoptern weiter untersucht werden sollten, um künftige Implementierungsstrategien zu optimieren. (Cheriff et al. 2010)

Anhand von Daten aus dem Jahr 2018 wurden rund 100 Millionen Patientenkontakte mit 155.000 Ärzten analysiert, die das Cerner Millennium EHR nutzen, um zu beurteilen, wie viel Zeit ambulante Fachärzte und Hausärzte in den USA für elektronische Gesundheitsakten (EHR) aufwenden. Im Durchschnitt verbrachten Ärzte 16 Minuten und 14 Sekunden pro Patientenkontakt mit EHR-Funktionen, wobei Aktenprüfung (33 %), Dokumentation (24 %) und Anordnungen (17 %) den größten Anteil ausmachten. Die Zeitnutzung variierte stark innerhalb der Fachgebiete, während die prozentuale Verteilung der Aufgaben relativ konstant blieb. Die Ergebnisse verdeutlichen den erheblichen Zeitaufwand für EHR-Nutzung und weisen auf Optimierungspotenziale hin. (Overhage and McCallie Jr 2020)

2.3 System Usability Scale (SUS) und Net Promoter Score (NPS)

Der System Usability Scale (SUS) und der Net Promoter Score (NPS) sind beide bewährte Methoden zur Bewertung von Kundenerlebnissen, jedoch mit unterschiedlichen Fokussen. SUS ist speziell darauf ausgerichtet, die Benutzerfreundlichkeit eines Systems oder einer Anwendung zu messen. Es besteht aus 10 Fragen, die auf einer Likert-Skala beantwortet werden, und ergibt einen Gesamtwert zwischen 0 und 100, wobei höhere Werte eine bessere Benutzerfreundlichkeit anzeigen. Im Gegensatz dazu misst der NPS die Kundenzufriedenheit und -loyalität, indem er die Wahrscheinlichkeit erfragt, dass ein Kunde das Unternehmen oder den Service weiter empfehlen würde. NPS wird durch die Differenz zwischen dem Anteil der Promotoren (9-10 Punkte) und dem Anteil der Kritiker (0-6 Punkte) berechnet und bietet eine schnelle Einschätzung der Kundenbindung. Beide Methoden sind wertvolle Instrumente, um verschiedene Aspekte der Kundenerfahrung zu verstehen und zu verbessern, wobei SUS sich auf Usability und NPS auf die allgemeine Zufriedenheit und Empfehlungsbereitschaft konzentriert.

2.4 TI-Score

Der TI-Score berücksichtigt Kriterien wie die Nutzbarkeit, die Effizienz und die Zufriedenheit der Anwender und klassifiziert die Software entsprechend. Mit diesem Score soll Transparenz geschaffen und die Qualität der TI-Anwendungen, wie z.B. das E-Rezept oder die elektronische Patientenakte (ePA), für alle Beteiligten im Gesundheitswesen sichtbar gemacht werden. (gematik GmbH 2025b)

2.5 Übersichtstabelle

Table 2.1: Übersicht Praxisverwaltungssoftware

_								E-		
	Produkt	n Umt ernehmen	URL	SUS	NPS	Wechs	selde	Actites	cdyouAt	UeArztbrie
0	CGM ALBIS	CGM Deutschland	cgm.com	48.5	-67.9	65.2	?	?	?	?
1	Apris	AG APRIS Gesellschaft für Praxis- computer mbH	apris.de	60.2	-14.3	47.6	В	A	В	C
2	CGM M1 PRO	CGM Deutschland AG	cgm.com	42.8	-73.5	68.5	?	A	?	?
3	CGM	CGM Deutschland AG	cgm.com	48.5	-71.2	65.5	na	n A	?	?
4	DATA VI- TAL	CGM Deutschland AG	cgm.com	48	-65.6	69.2	?	A	?	?
5	DURIA	Duria eG	duria.de	74.1	53.3	11.1	?	?	?	?
6	Data- AL	Data-AL GmbH	data-al.de	58.7	-34	47.7	?	D	В	С
7	EL - Elaphe Longis- sima	Softland GmbH	softland.de	74.3	9	26.3	?	?	?	?
8	EVA	abasoft EDV Programme GmbH	abasoft.de	68.9	12.2	29.2	В	A	?	?
9	Elefant	HASOMED GmbH	hasomed.de	60.8	-41.8	51.9	?	A	?	?
10	EPIKUF	REpikur Software GmbH & Co. KG	epikur.de	63.4	-33.6	49.7	A	?	?	?

-	Produktn	Unnt ernehmen	URL	SUS	NPS	Wechs	elde	AcRtes	cdyotA	UeArztbrief
11		FIDUS Software Entwicklungs- GmbH	fidus.de	67.1	11.8	6.5	?	?	?	?
		ifa Systems	ifasystems.de	59.3	-33.3	56.2	A	A	?	?
	IndiCatio	ET Software Developments GmbH	indication.com	56.9	-25	36.8	?	?	?	?
14		InterData Praxiscom- puter GmbH	interdata.de	80.6	53.1	9.1	С	?	?	?
15		KIND GmbH & Co. KG		77.9	0	88.9	na	n?	?	?
16		MMAVIVision AG	medvision.de	48.5	-25	40	В	?	?	?
17	MEDYS	MEDYS GmbH	medys.de	73.7	26.3	27.8	С	?	?	?
	OF- FICE	INDAMED EDV- Entwicklung und -Vertrieb GmbH	indamed.de	70.9	24.5	18.5	В	A	A	В
19	PROFIM	ED Medisoft AG	pro- medisoft.de	61.1	-34.1	36.8	В	A	A	A
20		PEGA Elektronik- Vertriebs GmbH	pegamed.de	82.6	60.3	8.5	?	?	?	?
	PRAXIS- PROGR <i>A</i>	MediSoftware MM	medisoftware.de	80.4	63.7	12.7	A	A	A	A
22		Nocutz GmbH Systemhaus	neutz.net	67.6	23.7	23.5	?	?	?	?
	psychoda Ψ	tergosoft GmbH	ergosoft.info	74	22.3	21.3	A	В	\mathbf{C}	В
24	Q- MED	Schwerdtner Medizin- Software GmbH	q-med.de	44.6	-80	72.2	A	?	A	A

								E-		
	Produkti	n Umt ernehmen	URL	SUS	NPS	Wechs	elde	AcRteszo	e potA t	UeArztbrief
25	Quincy	FREY ADV GmbH	frey.de	59.7	-28.2	45.1	A	A	?	?
26	RED medi- cal	RED Medical Systems GmbH	redmedical.de	54.6	-39.3	53.6	В	A	A	A
27	S3- Win	S3 Praxiscomputer GmbH	praxiscomputer.de	57.8	-29.3	44.8	?	A	?	?
28	Smarty	New Media Company GmbH & Co. KG	smarty- online.de	74.9	32.1	22.3	A	В	A	A
29	T2med	T2med GmbH & Co. KG	t2med.de	82.1	64.9	5.5	В	A	A	?
30	CGM TUR- BOMED	CGM Deutschland	cgm.com	46.4	-82.1	72.1	na	nВ	A	В
31	medatixx	kmedatixx GmbH & Co. KG	medatixx.de	64.7	-4.8	28.5	?	?	?	?
32	medavis RIS	medavis GmbH	medavis.de	55.1	-29.2	42.1	В	nan	С	В
33	psyprax	psyprax GmbH	psyprax.de	64.9	-18.5	34.4	В	A	A	A
34	tomedo®	zollsoft GmbH	zollsoft.de	83.5	76.5	4.6	A	A	A	A
35	x.comfor	tmedatixx GmbH & Co. KG	medatixx.de	60.7	-40.5	47	?	?	?	?
36	x.concep	tmedatixx GmbH & Co. KG	medatixx.de	56.2	-46.5	55	?	?	?	?
37	x.isynet	medatixx GmbH & Co. KG	medatixx.de	59.3	-25.2	46.2	?	?	?	?
38	Medi10		H µN⊮ matechnik.de	nan	nan	nan	В	A	С	В
39	inSuite	Doc Cirrus GmbH	doc-cirrus.com	nan	nan	nan	С	A	С	В

					E-	
Produktn Umt ernehmen	URL	SUS	NPS	Wechs		hpatA tUeArztbr
0 principa SIEGELE Software GmbH	siegele- software.com	nan	nan	nan	ВА	A C
1 RadCentrMesalvo Mannheim GmbH	mesalvo.com	nan	nan	nan	ВВ	A D
2 amasys Cerner Health Services Deutschland GmbH	cerner.de	nan	nan	nan	nan nan	? ?
3 MEDICU NHÜN NET Service für Ärzte AG	mednet.de	nan	nan	nan	? A	A B
4 apraxos Dr. Claudia Neumann EDV- Beratung	apraxos.de	nan	nan	nan	nan A	СС
5 ArztpraxiAPW- Wie- Wiegand gand Medizinische Software Entwicklung und Vertrieb GmbH	apw- wiegand.de	nan	nan	nan	C A	? ?
6 Praxis4M 6ko Kom One GmbH	cokom.de	nan	nan	nan	nan?	СВ
7 MediSuit&aul Albrechts Verlag GmbH	pav.de/praxissoftw	are/ nano rdn	ung na nft	wa rr an	nan A	nan nan
8 easyTI eHealth Experts GmbH	ehex.de	nan	nan	nan	B nan	nan nan
9 ACETOmeCETO Softwareen- twicklung GmbH	aceto- online.com	nan	nan	nan	? ?	A ?

								E-		
I	Produkti	n Umt ærnehmen	URL	SUS	NPS	Wechs	eld Per	ARtesze	epotAt	UeArztbrie
50 ε	eRIS	Digithurst Bildverar- beitungssys- teme GmbH & Co. KG	digithurst.de	nan	nan	nan	В	nan	?	?
51 d	diosZX	dios eine Marke der Spitta GmbH	spitta.de	nan	nan	nan	В	?	?	?
1	RST- MED Win	Dr. Rainer Steinbrecher Softwareen- twicklung	rst-med.de	nan	nan	nan	nan	C	?	?
53 I	InterMed	l iDB1 Informatik UG	dbi- informatik.de	nan	nan	nan	?	С	?	?
54 V	WinRadi	ologigration GmbH	bendergruppe.com/m	edigration	nan	nan	?	nan	С	?
	Med4Wi: PLUS	nMüritz COMP Greifswald Computersystemhaus GmbH	mcomp.de	nan	nan	nan	С	nan	?	?
56 A	ARZT20	08chmidt Computersysteme	$\operatorname{arzt2000.de}$	nan	nan	nan	?	?	?	?
57 I	LIS++	4labs software GmbH		nan	nan	nan	?	nan	?	?
58 A	AOris	AObit Software Ltd.	aobit.de	nan	nan	nan	?	nan	naı	nan
59 l	atropro	APM IT	apm-it.de	nan	nan	nan	?	nan	nar	nan
	_	sarkandus GmbH	arkandus.de	nan	nan	nan	?	?	?	?
61 N	Med7	Bitron GmbH Technolo- giesysteme	med7.de	nan	nan	nan	?	?	?	?
/	dc- Pathos / dc- Ross	dc-systeme Informatik GmbH	dc-systeme.de	nan	nan	nan	?	nan	?	?

_							E-	
	Produkt	n Umt ernehmen	URL	SUS	NPS	Wechs	eld PeAdRitesze	potA tUeArztbrief
63	Doctorly	Doctorly GmbH	doctorly.de	nan	nan	nan	? nan	nan nan
64	i/med Billing	Dorner GmbH & Co KG	dorner.de	nan	nan	nan	? nan	nan nan
65	AiDKlin	iDosing GmbH	dosing.de	nan	nan	nan	nan?	nannan
66	PatiO	Dr. Jürgen Krampert		nan	nan	nan	nannan	? ?
67	MEDI_I	L D rEStrzata	strzata.de	nan	nan	nan	nan nan	? ?
68	medibit	EXAMION GmbH	examion.com	nan	nan	nan	? nan	? ?
69	theHub	Fresenius Medical Care Deutschland GmbH	fresenius.de	nan	nan	nan	nannan	? ?
70	Centricit RIS-i	yGE Healthcare IT	gehealthcare.com	nan	nan	nan	? nan	nannan
71	GMC PaDok	Gesellschaft für medizinische Computersys- teme mbH	gmc- systems.de	nan	nan	nan	nan nan	? ?
72	esQlab.o	n gnac lient.System GmbH	ni gtegiantion e	nan	nan	nan	? ?	? ?
73	ifap VoS	ifap Service- Institut für Ärzte und Apotheker GmbH	ifap.de	nan	nan	nan	nan?	nan nan
74	KVDT	ifms GmbH	ifms.de	nan	nan	nan	? nan	nannan
75	CLASSY	KHP - Informatik GmbH & Co KG	khp-classy.de	nan	nan	nan	? ?	? ?
76	David	Medat Computer- Systeme GmbH	medat.de	nan	nan	nan	? nan	nan nan

							E-		
Produ	ktnUnnternehmen	URL	SUS	NPS	Wechs	elde	AcRiteszo	epotAt U	JeArztbrief
77 easym	ed medatixx GmbH & Co. KG	medatixx.de	nan	nan	nan	?	?	?	?
78 x.vian	ovamedatixx GmbH & Co. KG	medatixx.de	nan	nan	nan	?	?	?	?
79 Ashvii xIS		u nicadioas communica	tionsndn	nan	nan	?	nan	?	?
80 J- MED	Medical Data Investigation (MDI) GmbH	mdigmbh.de	nan	nan	nan	nar	nan	?	?
81 MELO MeCo Arzt&	OS melos GmbH m	melosgmbh.de	nan	nan	nan	?	nan	nan	nan
	OS NEXUS / CHILI GmbH	nexus-chili.de	nan	nan	nan	nar	nan	?	?
83 CARV	V PENTA Services GmbH & Co. KG	pentaservices.de	nan	nan	nan	?	nan	?	?
84 GenL	AB&Projodis GmbH	projodis.net	nan	nan	nan	nar	nan	?	?
85 Rescu	ePr&escuePro Production GmbH & Co. KG	rescuepro.de	nan	nan	nan	?	nan	nan	nan
86 SAP Ambu latory Care Man- age- ment			nan	nan	nan	nai	1?	nan	nan
87 PalliD	Ooc StatConsult GmbH	pallidoc.de	nan	nan	nan	?	nan	nan	nan
	OL O FNISOLO Y GmbH	unisolode	nan	nan	nan	?	nan	?	?
89 PDV- FR	Universitätskli: Freiburg	ni kuik linik- freiburg.de	nan	nan	nan	?	nan	nan	nan

						E-		
Produkt	n Umt ernehmen	URL	SUS	NPS	Wechs	el d P ARtesze	hpotAt UeArzt1	brief
90 RAD+ RIS Sys-	uttenthaler mediaCon- sulting	rad.plus	nan	nan	nan	nan nan	? ?	
tem 91 Eterno Cloud	Eterno Cloud	Eterno Cloud	nan	nan	nan	nan nan	nan nan	

Quellen: System Usability Scale (SUS Mittelwert) und Net Promoter Score (NPS Mittelwert) und Wechselbereitschaft (Müller, Nieporte, and Graf von Stillfried, n.d.), TI-Score (gematik GmbH 2025b), (Kassenärztliche Bundesvereinigung 2025)

2.6 Patientenportal

Die Studie "Patients with complex chronic conditions: Health care use and clinical events associated with access to a patient portal" von Mary E. Reed und Kollegen untersucht den Einfluss eines Patientenportals auf die Gesundheitsversorgung von 165.447 Diabetikern, einschließlich solcher mit multiplen chronischen Erkrankungen, in einem integrierten Versorgungssystem (Kaiser Permanente Northern California, 2006–2007). Mittels marginaler Strukturmodelle und inverser Wahrscheinlichkeitsgewichtung zeigt die Studie, dass Portalzugang mit signifikant mehr ambulanten Besuchen sowohl bei Patienten mit nur Diabetes als auch bei solchen mit komplexen Erkrankungen verbunden ist (p<0,05). Bei Patienten mit multiplen chronischen Erkrankungen führte der Portalzugang zudem zu signifikant weniger Notfallbesuchen (3,9 weniger pro 1.000 Patienten pro Monat, p<0,05) und vermeidbaren Krankenhausaufenthalten (0,8 weniger pro 1.000 Patienten pro Monat, p<0,05), während bei Diabetikern ohne weitere Erkrankungen ähnliche Trends nicht statistisch signifikant waren. Die Ergebnisse deuten darauf hin, dass Portale die ambulante Versorgung fördern und bei komplexen Patienten kritische Ereignisse reduzieren können, obwohl die Beobachtungsstudie keine Kausalität beweist und auf ein spezifisches System beschränkt ist. (Reed et al. 2019)

2.6.1 OpenNotes – Einblicke in die Praxisdokumentation

Im Jahr 2009 führte die US-Regierung eine Gesetzgebung ein, die Gesundheitsdienstleister dazu anregte, Technologien zu adaptieren, die Patienten elektronischen Zugang zu ihren Gesundheitsdaten über sichere Patientenportale ermöglichen, um eine stärkere Patientenbeteiligung für bessere Gesundheitsergebnisse zu fördern. Die OpenNotes-Initiative von 2010, die zunächst auf hausärztliche Versorgung fokussiert war, beinhaltete das Teilen von Ärzte-Notizen mit Patienten und zeigte erhebliche Vorteile wie eine erhöhte Kontrolle der Patienten über ihre

Gesundheitsversorgung, ein besseres Verständnis der medizinischen Pläne und eine bessere Vorbereitung auf Arztbesuche. Diese Praxis hat sich seitdem erweitert, und mittlerweile haben über 38 Millionen US-Patienten elektronischen Zugang zu ihren Notizen in verschiedenen Fachrichtungen. Eine umfassende Umfrage in drei Gesundheitssystemen zeigte, dass Patienten, insbesondere solche aus benachteiligten Gruppen, das Lesen der Notizen als äußerst nützlich empfanden, wobei nur wenige Verwirrung oder erhöhte Sorgen meldeten. Die Studie unterstreicht den Wert transparenter medizinischer Aufzeichnungen zur Verbesserung der Patientenbeteiligung und deutet auf Potenziale für weitere Verbesserungen in der Kommunikation zwischen Patient und Arzt hin. (Walker et al. 2019)

Die Studie "A proof-of-concept study for patient use of open notes with large language models" untersucht die Zuverlässigkeit und Genauigkeit von drei großen Sprachmodellen (Chat-GPT 40, Claude 3 Opus, Gemini 1.5) bei der Beantwortung patientengenerierter Fragen zu einer neuro-onkologischen Notiz. Patienten entwarfen Fragen, die von den Modellen mit verschiedenen Prompt-Strategien (Standard, Randomisiert, Persona, Randomisiert-Persona) beantwortet wurden. Die Antworten wurden von einem Neuroonkologen und einem Patienten anhand von Kriterien wie Genauigkeit, Relevanz und Klarheit bewertet. Ergebnisse zeigen, dass Persona-basierte Prompts die besten Antworten lieferten, insbesondere bei ChatGPT 40, während alle Modelle bei der Evidenznutzung schwächelten. Die Studie unterstreicht das Potenzial von Sprachmodellen, Patienten beim Verständnis klinischer Notizen zu unterstützen, betont aber die Bedeutung von Prompt-Design und Patientenschulung. (Salmi et al. 2025)

2.7 Elektronische Patientenakte

Die ePA-Materialien des HÄV auf http://www.haev.de/epa bieten Hausarztpraxen umfassende Informationen, FAQs und Aushänge. Die KBV unterstützt Praxen mit einem Starterpaket, bestehend aus einem Serviceheft, Infoblatt, Schaubild und Materialien wie Postern und Patienteninformationen fürs Wartezimmer. Praxen sollen die Technik testen und Feedback geben, um die ePA bis Oktober zu optimieren. Eine Online-Fortbildung mit sechs CME-Punkten erklärt medizinische, rechtliche und technische Aspekte. kbv.de/html/1150_74639.php kbv.de/html/epa.ph Die gematik bietet ein kostenloses Infopaket zur elektronischen Patientenakte (ePA) für Praxen, Apotheken, Kliniken und Pflegeeinrichtungen an, das Plakate, Flyer, Einlegeblätter und Spickzettel enthält, um Patient:innen über die Nutzung und Vorteile der ePA aufzuklären. shop.gematik.de

Der Artikel "The impact of the electronic medical record on structure, process, and outcomes within primary care: a systematic review of the evidence" von Jayna M. Holroyd-Leduc und Kollegen untersucht die Auswirkungen elektronischer Patientenakten (EPA) in der ambulanten Primärversorgung. Die systematische Literaturübersicht analysiert Studien von 1998 bis 2010 und zeigt, dass EPA strukturelle Vorteile wie bessere Lesbarkeit und Zugänglichkeit bietet sowie Prozesse wie Dokumentation und Kommunikation verbessert. Die Effekte auf klinische

Ergebnisse sind jedoch weniger eindeutig, mit nur geringfügigen Verbesserungen der Gesundheitsqualität. Kosten-Nutzen-Analysen deuten auf langfristige Einsparungen hin. (Holroyd-Leduc et al. 2011)

Der Artikel "Adopting electronic medical records: Are they just electronic paper records?" von Morgan Price und Kollegen untersucht die Herausforderungen bei der Einführung elektronischer Patientenakten in der Primärversorgung in Manitoba, Kanada. In einer Mixed-Methods-Studie mit 57 Interviews und Diskussionsgruppen in fünf Praxen wurden Adoptionsniveaus (2,3 bis 3,0 von 5) bewertet und qualitative Analysen durchgeführt. Viele Nutzer verwendeten die elektronischen Systeme lediglich als "elektronische Papierakten", ohne erweiterte Funktionen wie Entscheidungsunterstützung, Patientenzugang zu Daten oder Praxisberichte zu nutzen. Hauptprobleme waren eine technologische Implementierungsgrenzen, mangelnde Kenntnis der Funktionen und schlechte Datenqualität der Akten, die zukünftige Nutzung einschränken könnten. Die Autoren betonen die Notwendigkeit von Schulungen und Qualitätsverbesserungen, um die Optimierung der elektronischen Patientenakten zu fördern. (Price, Singer, and Kim 2013b)

Im Artikel "Challenges to EHR Implementation in Electronic-Versus Paper-based Office Practices" von Stephanie O. Zandieh und Kollegen werden spezifische Hürden bei der Einführung elektronischer Patientenakten (EPA) in papierbasierten und bereits digitalisierten ambulanten Praxen identifiziert. Für papierbasierte Praxen wurden folgende Hürden hervorgehoben: unzureichende Hardware wie Arbeitsstationen und Drucker, die Notwendigkeit eines IT-Experten vor Ort, mangelnde Vertrautheit mit IT sowie Schwierigkeiten bei der Anpassung der Arbeitsabläufe an ein papierloses System. Diese Praxen erwarteten zudem Produktivitätseinbuße während der Umstellung. Im Gegensatz dazu sahen bereits digitalisierte Praxen andere Hindernisse: Widerstand gegen den Wechsel von einem vertrauten System, unzureichende technische Schulungen und fortlaufender Support. Beide Praxistypen kämpften mit Produktivitätsverlusten und Anpassungsschwierigkeiten, jedoch unterschieden sich die Schwerpunkte der Herausforderungen je nach Ausgangslage. (Zandieh et al. 2008)

Der Artikel "Electronic Health Record Impact on Work Burden in Small, Unaffiliated, Community-Based Primary Care Practices" von Jenna Howard und Kollegen untersucht, wie der Einsatz elektronischer Patientenakten die Arbeitsbelastung in kleinen, unabhängigen Primärversorgungspraxen beeinflusst. Durch qualitative Feldforschung in sieben Praxen im Nordosten der USA wurde festgestellt, dass elektronische Patientenakten die Arbeitsbelastung von nicht-ärztlichen Mitarbeitern (z. B. durch verbesserte Patientenaufnahme und Kommunikation) reduziert, während sie bei ärztlichem Personal variabel wirkt: Einige Aufgaben wie Verschreibungen werden erleichtert, andere wie das Sprechzimmerdokumentation und die Verwaltung chronischer Krankheiten erschweren die Arbeit. Die Studie betont, dass durchdachte Implementierung und Workflow-Redesign die Belastung für das ärztliche Personal mildern können. Sie fordert PVS-Entwickler, die komplexen Bedürfnisse des Personals besser zu berücksichtigen, um die Effizienz und Nutzung zu optimieren. (Howard et al. 2013)

Der Artikel "The Impact of Electronic Health Records on Workflow and Financial Measures in Primary Care Practices" von Neil S. Fleming und Kollegen untersucht die Auswirkungen

der Einführung eines kommerziellen elektronischen Patientenakten-Systems auf Arbeitsabläufe und finanzielle Kennzahlen in 26 Primärversorgungspraxen des HealthTexas Provider Network zwischen 2006 und 2008. Mithilfe eines unterbrochenen Zeitreihendesigns wurden monatliche Daten von 2004 bis 2009 analysiert, darunter Personalbestand, Produktivität, Patientenzahlen, Praxiskosten, Einnahmen und Nettogewinn. Die Ergebnisse zeigen, dass nach der Einführung einer elektronischen Patientenakte die Personalkosten und Praxisausgaben anstiegen (3 bzw. 6 % nach 12 Monaten), während Produktivität, Besuchszahlen und Nettogewinn zunächst sanken, sich aber nach 12 Monaten weitgehend erholten. Die Besuchsintensität blieb stabil.(Fleming et al. 2014)

Der Artikel "New governance of the digital health agency: a way out of the joint decision trap to implement electronic health records in Germany?" von Tugce Schmitt analysiert die Herausforderungen bei der Einführung der elektronischen Patientenakte (ePA) in Deutschland. Die Haupterkenntnisse zeigen, dass die Fragmentierung des deutschen Gesundheitssystems, geprägt durch Korporatismus und Selbstverwaltung, die Integration von Gesundheitsdaten behindert. Trotz politischer Bemühungen bleibt die ePA-Nutzung mit nur 1 % der gesetzlich Versicherten gering, was auf Widerstände der Ärzteschaft und komplexe Entscheidungsstrukturen zurückzuführen ist. Die Studie hebt hervor, dass die Governance von gematik, der nationalen Digitalagentur, von einer korporatistischen zu einer stärker staatlich gelenkten Struktur geändert wurde, um Fortschritte zu erzielen. Dennoch wird betont, dass eine erfolgreiche ePA-Implementierung eine Abkehr von der sektoralen Trennung hin zu einem patientenzentrierten, wertorientierten Gesundheitssystem erfordert, unterstützt durch selektive Verträge und stärkere Einbindung von Endnutzern. (Schmitt 2024, 2023)

2.8 Effiziente Dateneingabe

Die Arbeit "Making Keyboard Shortcuts Accessible: Keyboard Shortcuts for Healthcare Professionals in an Electronic Healthcare System" von Julia Grentzelius untersucht die Nutzung von Tastaturkürzeln im klinischen Informationssystem COSMIC. Ziel der Studie war es, herauszufinden, welche Nutzergruppen am meisten von Tastaturkürzeln profitieren würden und wie sie diese effektiv erlernen können. Die Forschung ergab, dass insbesondere Pflegekräfte durch den Einsatz von Tastaturkürzeln erhebliche Zeitersparnisse erzielen könnten. Hauptprobleme waren mangelndes Bewusstsein und fehlende Visualisierung der Shortcuts. (Grentzelius 2023)

Der Artikel "Hidden Costs of Graphical User Interfaces" untersucht, warum erfahrene Nutzer von grafischen Benutzeroberflächen wie Microsoft Word selten effiziente Tastenkürzel verwenden, obwohl diese schneller sind als Menüs und Symbolleisten. Eine Umfrage unter 251 erfahrenen Word-Nutzern zeigte, dass die meisten die weniger effizienten Symbolleisten bevorzugen, während eine zweite Studie mit sechs Teilnehmern bestätigte, dass Tastenkürzel tatsächlich die schnellste Methode sind. Die Autoren schließen, dass Nutzer trotz der Lernunterstützung

durch die Oberfläche nicht zu effizienten Methoden übergehen und schlagen vor, Trainingsprogramme zu optimieren, um diesen Übergang zu fördern. (Lane et al. 2005)

Der Artikel "Digital disparities among healthcare workers in typing speed" untersucht die Tippfähigkeiten von 2690 Mitarbeitern aus zwei großen medizinischen Zentren in Amsterdam und zeigt erhebliche Unterschiede nach Alter, Beruf und medizinischer Spezialisierung. Die durchschnittliche korrigierte Tippgeschwindigkeit betrug 60,1 Wörter pro Minute, wobei sie mit zunehmendem Alter signifikant abnahm (rho -0.51, P<0.001), Personen mit Tippkursen über 20 % schneller tippten und Ärzte der Inneren Medizin die schnellsten unter den medizinischen Fachkräften waren, während kein Geschlechterunterschied bestand. Die Ergebnisse deuten darauf hin, dass ältere Mitarbeiter und bestimmte Berufsgruppen in einem zunehmend digitalisierten Gesundheitswesen benachteiligt sind, und schlagen Trainingsmodule sowie alternative Eingabemethoden vor, um diese Unterschiede auszugleichen. (Schuurman et al. 2022)

Tastenkürzel können die Effizienz von Ärzten bei der Nutzung medizinischer Software steigern, indem sie repetitive Aufgaben beschleunigen und den Arbeitsfluss optimieren:

- Tomedo Tastaturkürzel
- T2med Tastaturkürzel
- CGM Albis Tastaturkürzel

2.9 Gesundheitsinformationssysteme

Das Buch Health Information Systems: Technological and Management Perspectives von Alfred Winter, Elske Ammenwerth, Reinhold Haux, Michael Marschollek, Bianca Steiner und Franziska Jahn bietet eine umfassende Einführung in die Technologien und Managementansätze von Gesundheitsinformationssystemen. In dieser überarbeiteten Open-Access-Ausgabe von 2023 wird detailliert beschrieben, wie diese Systeme in verschiedenen Kontexten – von der Prävention über die Behandlung akuter und chronischer Krankheiten bis hin zur medizinischen Forschung – aufgebaut, verwaltet und deren Qualität bewertet werden kann. (Winter et al. 2023)

Part I Kommunikation

3 Telefonanlage

3.1 Traditionelle Systeme:

- Analoge Telefonanlagen: Diese älteren Systeme übertragen Sprachsignale analog über das öffentliche Telefonnetz, erlauben nur eine Verbindung gleichzeitig und sind weitgehend veraltet.
- ISDN Telefonanlagen: Digitale Leitungen bieten zwei Kanäle für parallele Gespräche und mehr Funktionen als analoge Systeme, werden jedoch zugunsten von IP-Systemen ausgemustert.

3.2 IP-basierte Systeme:

- VoIP Telefonanlagen: Übertragen Sprachdaten über das Internet in digitalen Paketen und können lokal oder in der Cloud gehostet werden.
- Cloud-Telefonanlagen: Virtuelle Systeme, bei denen die Funktionen einer traditionellen Telefonanlage über das Internet bereitgestellt werden. Sie benötigen keine physische Hardware, nur eine stabile Internetverbindung. Sie sind skalierbar, flexibel und bieten Unified Communications-Funktionen. Beispiele sind Placetel und Easybell.
- **Hybride Telefonanlagen**: Kombinieren traditionelle ISDN- und IP-Telefonie, ermöglichen eine schrittweise Übergang zu VoIP.
- SIP Trunks: Nutzen die Internetverbindung für Anrufe, kompatibel mit IP-Telefonanlagen.

3.3 Schlüsselmerkmale und Funktionen

- Anrufmanagement: Anrufweiterleitung, Anrufumleitung, Anrufwarteschleifen, IVR-Systeme, Anrufabholung, Busy Lamp Field, Anrufaufzeichnung.
- Kommunikationsfunktionen: Messaging, Videokonferenzen, Fax-to-Mail.
- Benutzerverwaltung: Verwaltung von Durchwahlen, Anzeige des Präsenzstatus.
- Integration: Integration mit Microsoft Teams, CRM-Systemen.

3.4 Entscheidungsmerkmale

- Nummerportierung: Übertragung bestehender Telefonnummern.
- Anrufqualität: HD-Sprachqualität in modernen Systemen.
- Sicherheit: Verschlüsselung zum Schutz der Daten.
- Hardware: Unterstützung verschiedener IP-Telefone und Geräte, Miet- oder Kaufangebote.
- Mobile Apps: Anwendungen für Smartphones.
- Bandbreitenanforderungen: Min. 80 Kbit/s pro gleichzeitigen Anruf für Cloud-Systeme.
- Kosten: Kosten basieren auf Nutzeranzahl und Features, oft mit Testphasen.
- Flexibilität & Skalierbarkeit: Anpassungsfähigkeit bei Cloud-Systemen.
- Analyse: Berichtswesen und Analyse für Anrufverkehrsdaten.

3.5 Übersichtstabelle

Table 3.1: Übersicht Telefonanlagen

	Anbieter	URL
0	3CX	3cx.de
1	NFON	nfon.com/de
2	Placetel	placetel.de
3	Sipgate	sipgate.de
4	easybell	easybell.de
5	Wildix	wildix.com/de
6	Vonage	vonage.com
7	STARFACE	starface.com

4 Telefonassistenz

4.1 Einleitung

Telefonassistenzsysteme zeichnen sich durch eine Reihe gemeinsamer Kriterien aus, darunter die Nutzung von künstlicher Intelligenz (KI) zur Automatisierung und Verbesserung von Telefoninteraktionen, die Fähigkeit, Anrufe ohne menschliches Zutun zu bearbeiten, und die Erhöhung der Betriebsleistung durch Automatisierung von Routineaufgaben. Sie bieten eine 24/7-Verfügbarkeit, nutzen Sprachverarbeitung, um menschliche Sprache zu verstehen und darauf zu reagieren, legen Wert auf Datensicherheit und Datenschutz gemäß Vorschriften wie der DSGVO, und integrieren sich nahtlos mit anderen Systemen wie CRM, Kalendern und Praxisverwaltungssoftware. Unterschiede bestehen in der Zielgruppe oder Branchenfokussierung, wie z.B. spezialisierte Systeme für medizinische Einrichtungen gegenüber allgemeinen Kundendienstlösungen, der Unterstützung verschiedener Sprachen, dem Grad der Autonomie bei der Anrufbehandlung und spezifischen Funktionen wie Aufzeichnungs- und Analysemöglichkeiten.

4.2 Für Arztpraxen

Table 4.1: Übersicht Telefonassistenzsysteme für Arztpraxen

Anbieter	Internetadresse
MediVoice	mediform.io/medivoice
Aaron	aaron.ai
PraxisConcierge	praxisconcierge.de
Dr.wait	$\operatorname{drwait.de}$
Docmedico	docmedico.de
VITAS	vitas.ai
CGM one Telefonassistent	one.cgm.com/telefonassistent
Medflex	medflex.de
Co-Brain	co-brainers.com
Praxassist	www.praxassist.de

4.3 Allgemeine Telefonassistenzsysteme

Table 4.2: Übersicht Telefonassistenzsysteme für Unternehmen

Anbieter	Internetadresse
BOTfriends Phonebot	botfriends.de
DUSOFFICE	dusoffice.de
KI-Telefonservice.de	ki-telefonservice.de
CallOne	callone.de
Parloa	parloa.com
Vonage Business	vonage.com
SignalWire	signalwire.com
Inteliwise	inteliwise.com
fonio.ai	fonio.ai
reventix Softphone	reventix.de
Aircall	aircall.io
Pollie AI	pollie.ai

5 Onlinepräsenz

5.1 Technische Umsetzung

- Plattform: Auswahl eines zuverlässigen CMS oder Website-Builders.
- Domain und Hosting: Markenrelevante Domain und zuverlässiges Hosting.
- Sicherheit: SSL-Zertifikate und Sicherheitsmaßnahmen.

5.2 Rechtliche Aspekte für Websites von Arztpraxen

• Datenschutz:

- Datenschutzerklärung zur Einhaltung der DSGVO erforderlich.
- Klärung über Datensammlung und -verarbeitung.
- Auftragsverarbeitungsvertrag bei Datenverarbeitung durch Dritte.
- Einwilligung zur Lead-Generierung notwendig.
- Rechtsgrundlagen für Datenverarbeitung (Art. 6 DSGVO).

• Berufsrechtliche Vorgaben:

- Einhaltung der Richtlinien der Bundes- und Landesärztekammer.

• Urheberrecht:

- Nutzung nur originaler oder lizenzierter Inhalte (Bilder, Karten).
- Lizenzierung von Karten, z.B. Google Maps.

• Haftung:

- Verantwortung für eigenen Inhalt, aber keine Überwachungspflicht für Drittinhalte.
- Haftung nach Kenntnis von Rechtsverletzungen.

• Rechtliche Texte:

- Korrekte Texte wie Datenschutzerklärung, AGB und Widerrufsbelehrung.
- Tools wie Legal Cockpit zur Textgenerierung verfügbar.

• Cookies:

- Benutzerzustimmung für Cookie-Nutzung erforderlich.

5.2.1 Telemediengesetz (TMG)

- Reguliert Online-Dienste in Deutschland.
- Impressum (Rechtliche Hinweise) sind für kommerzielle Websites zwingend.
 - Pflichtinformationen:
 - * Name, Adresse des Anbieters
 - * Kontaktinformationen
 - * Für Arztpraxen: Beruf, Lizenzland, Ärztekammer
 - **Zweck:** Transparenz und Identifizierung des Betreibers.
 - Strafen: Bis zu 50.000 Euro bei Nichterfüllung.

5.2.2 Heilmittelwerbegesetz (HWG)

- Reguliert Werbung für medizinische Produkte/Dienste.
 - Werbebeschränkungen:
 - * Kein "Vorher-Nachher"-Bilder: Z.B. Zahnärzte dürfen keine Zahnbilder zeigen.
 - * Eingeschränkte Patientenbewertungen: Können als Werbung gelten.
 - Faktische Informationen sollen im Vordergrund stehen.
 - **Professionalität:** Keine aufdringliche Werbung.

5.3 Anbieter mit kostenlosen Website-Buildern

- Webador: Bietet einen kostenlosen Plan an, der Werbung enthält und keine eigene Domain erlaubt.
- **Jimdo:** Startet mit einer **kostenlosen Website**, die später durch ein Upgrade erweitert werden kann.
- Mobirise: Kostenloser offline Website-Builder ohne Programmierkenntnisse, bietet eine freie Subdomain.
- OnePage: Kostenlose Version ohne Werbung oder Branding, kein Trial oder Kreditkartenangaben nötig.
- Webnode: Kostenlose Version mit AI-Assistent und Editor, aber mit Branding. Eigenes Domain erfordert Upgrade.
- Weebly: Kostenlose Webhosting-Dienste im Rahmen des kostenlosen Website-Builders.

5.3.1 Merkmale der kostenlosen Versionen:

- Eingeschränkte Funktionen: Weniger Features als bei bezahlten Plänen.
- Branding/Werbung: Oft mit Werbung oder dem Branding des Anbieters.
- Subdomain: Statt eigener Domain nur eine Subdomain verfügbar.
- Grundlegende Funktionalität: Trotz Einschränkungen kann eine funktionierende Website erstellt werden.

5.4 Ohne technische Kenntnisse Websites erstellen

Viele Anbieter bieten Lösungen, um ohne technische oder Programmierkenntnisse Websites zu erstellen:

- Drag-and-Drop-Editoren: Benutzung von drag-and-drop-Schnittstellen zur einfachen Elementplatzierung.
- Vorlagen: Viele professionelle Vorlagen zur Anpassung ohne Designkenntnisse.
- KI-gestützte Gestaltung: Künstliche Intelligenz erstellt Layouts, Inhalte und Bilder basierend auf Benutzereingaben.
- Kein Programmieren nötig: Die Plattformen übernehmen alle technischen Aspekte der Webseite.
- Benutzerfreundliche Oberflächen: Einfach zu bedienende Schnittstellen für Anfänger.
- Anpassbare Elemente: Tools zur einfachen Anpassung von Text und Medien.
- Unterstützung: Tutorials, Hilfe-Center und Kundensupport für Benutzer ohne technisches Wissen.

5.5 Übersichtstabelle

Table 5.1: Übersicht Webseitenanbieter

Website	URL
Praxisdesign	praxisdesign.works
Jimdo	jimdo.com
Onepage	onepage.io
Wix	wix.com
GoDaddy	godaddy.com
Webnode	webnode.com
Webador	webador.de
Weebly	weebly.com
Mobirise	mobirise.com

Website	URL	
Whitevision	whitevision.de	
Die Arzt-Website	die-arzt-website.de	
Meyer-Wagenfeld	meyer-wagenfeld.de	
Designery Health	designery.health	
Arztwebdesign	arztwebdesign.de	
Doctify	doctify.com	
DOConline	doc-online.de	

5.6 Beispielwebseite

Google Sites ist eine Plattform zur Erstellung und Bereitstellung kostenloser Websites ohne technische Vorkenntnisse. Nutzer könne schnell eine Website mit Informationen wie Öffnungszeiten, Dienstleistungen und Kontaktmöglichkeiten gestalten in einem Editor, ähnlich dem Vorgehen in einer Textverarbeitung. Voraussetzungen sind lediglich ein Google-Konto und eine Internetverbindung. Die kostenlose Version bietet grundlegende Funktionen und Webseite unter der Internetadresse wie bspw. sites.google.com/view/die-praxis, während erweiterte Funktionen wie eine eigene Domain kostenpflichtig sein können.

6 Telematikinfrastruktur

6.1 KIM Dienste

KIM, abgekürzt für "Kommunikation im Medizinwesen", ist ein zentrales Element der digitalen Transformation im deutschen Gesundheitswesen. Es handelt sich um ein sicheres Kommunikationssystem, das speziell für den Austausch vertraulicher Informationen zwischen verschiedenen Akteuren des Gesundheitssektors entwickelt wurde. Mit KIM können Arzte, Apotheken, Krankenhäuser und andere Gesundheitsdienstleister Nachrichten, ärztliche Briefe, elektronische Arbeitsunfähigkeitsbescheinigungen (eAU) und Rezepte sicher per E-Mail versenden. Das Ziel ist es, traditionelle Kommunikationswege wie Post und Fax durch eine elektronische, effiziente und kostengünstige Alternative zu ersetzen. Seit dem 1. Oktober 2021 ist das Senden von eAU möglich, und seit dem 1. Januar 2022 sind Arztpraxen zur Nutzung von KIM verpflichtet, während Apotheken seit dem 1. Januar 2024 ebenfalls KIM nutzen müssen. Die Nutzung von KIM erfordert eine Registrierung und Identitätsprüfung sowie den Anschluss an die Telematikinfrastruktur (TI) über TI-Connect und eine elektronische Gesundheitskarte (eHBA). Ein zentrales Verzeichnis (Verzeichnisdienst) erleichtert zudem das Auffinden von Kontaktdaten innerhalb des Systems. KIM wird durch spezielle Softwaremodule, die als SMTPund POP3-Proxys fungieren, unterstützt, die die Nachrichten vor dem Versenden verschlüsseln und signieren und bei Empfang entschlüsseln und die Signatur verifizieren.

Table 6.1: Übersicht Anbieter KIM Dienst

	Anbieter	URL
0	akquinet health service GmbH	Akquinet
1	Arvato Systems GmbH	Arvato
2	CompuGroup Medical (CGM)	$\overline{\text{CGM}}$
3	Deutsches Gesundheitsnetz (DGN)	DGN
4	kv.dox	kvdox.akquinet.de
5	Telekom Healthcare Solutions	ti.telekom-healthcare.com
6	slis services	slis
7	RED Medical Systems GmbH	${\rm red medical. de/telematik/}$

6.1.1 eArztbrief

Der kv.connect-Arztbrief war eine frühere, weniger standardisierte Lösung, mit der Ärzte elektronische Arztbriefe über eine KV-Plattform versandten, ohne Anbindung an die Telematikinfrastruktur (TI). Das TI-eArztbrief-Modul ist hingegen ein System innerhalb der TI, das sichere, strukturierte und interoperable Arztbriefe über KIM ermöglicht. Es unterstützt einheitliche Formate wie FHIR und die Integration in die elektronische Patientenakte (ePA). kv.connect gilt als Übergangslösung, während der TI-eArztbrief die Zukunft der Digitalisierung im Gesundheitswesen darstellt.

• kv.digital/medizinische-kommunikation/kv-connect

6.1.2 KIM Mail

KIM-Mail nutzt eine spezialisierte Implementierung, die auf dem KOMLE-Standard (KOM-munikationsLEitungsstandard) basiert. Dieser Standard ermöglicht die sichere Kommunikation über die Telematikinfrastruktur (TI) und verwendet dafür spezielle Protokolle und Verfahren, um die notwendige Sicherheit und Integrität der medizinischen Daten zu gewährleisten. Der KOMLE-Standard (KOMmunikationsLEitungsstandard) unterscheidet sich von herkömmlichen E-Mail-Protokollen wie SMTP, POP3 und IMAP. Sicherheit wird durch den Einsatz von Public Key Infrastrukturen (PKI) und TLS (Transport Layer Security) gewährleistet. KOMLE-Clientmodule (KOM-LE) sind darauf ausgelegt, nahtlos in die TI-Systeme zu integrieren und bieten spezifische Schnittstellen für die Kommunikation mit anderen TI-Diensten.

Die Studie von Saatjohann, Ising und Schinzel analysiert die Sicherheit der E-Mail-Infrastruktur "Kommunikation im Medizinwesen" (KIM), die im deutschen Gesundheitswesen verwendet wird. Obwohl KIM eine starke Ende-zu-Ende-Verschlüsselung mittels S/MIME bietet, entdeckten die Autoren gravierende Schwachstellen in der Verarbeitung durch Clientmodule. So konnten Angreifer beispielsweise Signaturen täuschen, indem sie HTML und CSS nutzten, um Warnhinweise zu verstecken. Zusätzlich speicherte ein KIM-Clientmodul sensible medizinische Daten unverschlüsselt in Logdateien, was gegen geltende Spezifikationen verstößt. Eine weitere kritische Schwachstelle betraf die Log4Shell-Lücke, die potenziell Remote-Code-Ausführung auf Praxisservern ermöglichte. Die Autoren kritisieren das unzureichende Zulassungs- und Updateverfahren der gematik und fordern stärkere Sicherheitsprüfungen sowie transparente und verpflichtende Update-Prozesse. (Saatjohann, Ising, and Schinzel 2024)

6.1.2.1 Beispiel-KIM-Adressenendungen

@i-motion.kim.telematik

@tomedo.kim.telematik

@kv.dox.kim.telematik
@cgm.kim.telematik
@praxis.tm.kim.telematik

6.2 Interoperabilität

InterSystems bietet Datenmanagement- und Interoperabilitätslösungen für das Gesundheitswesen an. Ihre Hauptprodukte, wie InterSystems IRIS for Health, eine Cloud-basierte Plattform, ermöglichen die schnelle Entwicklung datenintensiver Gesundheitsanwendungen durch Unterstützung globaler Standards wie HL7 FHIR, HL7 V2 und IHE. Sie fördern die nahtlose Integration von Gesundheitsdaten aus verschiedenen Quellen, etwa elektronischen Patientenakten (ePA), medizinischen Geräten oder klinischen Studien, und bieten skalierbare Lösungen für Analysen und künstliche Intelligenz.

Die mio42 GmbH entwickelt im Auftrag der Kassenärztlichen Bundesvereinigung (KBV) medizinische Informationsobjekte (MIOs), um die Interoperabilität und Digitalisierung im Gesundheitswesen voranzutreiben. Diese MIOs sind standardisierte, digitale Bausteine wie Impfpass, Mutterpass oder Laborbefund, die den Austausch strukturierter Gesundheitsdaten über die elektronische Patientenakte (ePA) zwischen Arztpraxen, Krankenhäusern und anderen Akteuren ermöglichen. mio42 spezifiziert diese Inhalte semantisch und syntaktisch, etwa durch FHIR- und XML-Formate, und unterstützt deren Integration in IT-Systeme.

RISE bietet eine gematik-zugelassene ePA-Lösung, die von über 80 gesetzlichen und privaten Krankenkassen genutzt wird und mehr als 28 Millionen Versicherten zur Verfügung steht. Die RISE ePA umfasst eine App für iOS, Android und Desktop (Windows/Linux/macOS), die Versicherten den Zugriff auf ihre Gesundheitsdaten ermöglicht, sowie ein Backend und ein Framework zur Integration in bestehende Systeme von Kassen oder Versicherungen. Zusätzlich bietet RISE TI-Produkte wie den RISE Konnektor für Praxen und Krankenhäuser, digitale Identitäten (GesundheitsID via RISE Digital ID), sichere E-Mail-Kommunikation (KIM) und Identity Provider (IDP) für Fachdienste wie das E-Rezept. Die Lösungen sind nutzerzentriert entwickelt (UIG-Siegel), DSGVO-konform, ausschließlich in deutschen Rechenzentren gehostet und bieten höchste Sicherheitsstandards (EIDAS-Schutzniveau).

IBM stellt die eGA als eigenständige Anwendung bereit, die über die Apps kooperierender Versicherungen (z. B. Techniker Krankenkasse, DKV, Generali) zugänglich ist. Versicherte können ihre Daten wie Arztberichte, Impfstatus oder Medikation zentral einsehen, verwalten und mit Ärzten oder Krankenhäusern teilen, wobei sie die volle Kontrolle über Zugriffsrechte behalten. IBM gewährleistet höchste Sicherheitsstandards durch Ende-zu-Ende-Verschlüsselung, Datenspeicherung ausschließlich in deutschen Rechenzentren und Zwei-Faktor-Authentifizierung.

OpenEHR und FHIR verfolgen unterschiedliche Ansätze zur Digitalisierung im Gesundheitswesen. OpenEHR, ein Standard der openEHR Foundation, zielt mit seinem zweistufigen Modell aus stabilem Referenzmodell und flexiblen Archetypen auf die Schaffung lebenslanger, semantisch reicher elektronischer Gesundheitsakten ab, die durch syntaktische Interoperabilität eine einheitliche Datenstrukturierung gewährleisten. Es eignet sich ideal für komplexe, longitudinale Patientenakten und wird etwa in nationalen EHR-Systemen genutzt, erfordert jedoch eine aufwendige Implementierung. FHIR, entwickelt von HL7, setzt hingegen auf eine ressourcenbasierte Architektur mit RESTful APIs, um den schnellen, pragmatischen Datenaustausch zwischen Systemen zu ermöglichen, wobei syntaktische Interoperabilität durch standardisierte Formate wie JSON erreicht wird – allerdings mit weniger Fokus auf semantische Tiefe. Während openEHR auf Persistenz und klinische Modellierung abzielt, punktet FHIR mit Entwicklerfreundlichkeit und breiter Akzeptanz, etwa in der deutschen Telematikinfrastruktur für Anwendungen wie das E-Rezept. Beide Standards sind komplementär: openEHR speichert Daten langfristig, FHIR tauscht sie effizient aus, und eine Kombination – etwa durch Mapping – könnte ihre Stärken optimal vereinen. Die Wahl hängt vom Ziel ab: Langzeitdaten mit openEHR oder flexibler Austausch mit FHIR.

Das Buchkapitel "Norway, Sweden, and Finland as forerunners in open ecosystems and openEHR" von Hanna Pohjonen beschreibt die Vorreiterrolle der nordischen Länder bei der Einführung von openEHR und offenen Gesundheitssystemen. Historisch war der datenbasierte Austausch zwischen Organisationen ein zentrales Ziel in den nordischen Ländern, was zu nationalen Infrastrukturen für dokumentenbasiertes Teilen führte. Aufgrund der Einschränkungen dieser Methode wächst die Nachfrage nach strukturiertem Datenaustausch, wobei openEHR-Projekte von Datenaustausch zu modularen elektronischen Patientenakten (EPA) weiterentwickelt werden. Die führenden EPA-Anbieter in den Nordics entschieden sich intern für openEHR als Datenmodell, um ihre Lösungen zu modernisieren, was international nicht immer der Fall ist. Die nordische Erfahrung zeigt, dass ein tiefes Verständnis der Vorteile von Modularität und openEHR unter allen Beteiligten entscheidend ist, um ein echtes Ökosystem zu schaffen, da monolithische Lösungen sonst attraktiver erscheinen könnten. (Pohjonen 2022)

Semantische Interoperabilität im Gesundheitswesen ermöglicht die einheitliche Interpretation und Nutzung von Daten über Systemgrenzen hinweg, was durch standardisierte Terminologien und Klassifikationen gefördert wird, wie sie das Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM) bereitstellt. SNOMED CT ist eine umfassende klinische Terminologie, die präzise Begriffe für Diagnosen, Prozeduren und Befunde definiert und so die Bedeutung von Gesundheitsdaten maschinenlesbar macht. LOINC standardisiert Labortests und klinische Messungen, wodurch Ergebnisse wie Blutwerte systemübergreifend vergleichbar werden, während UCUM die Einheiten vereinheitlicht. Die ICD-10-GM, eine deutsche Anpassung der Internationalen Klassifikation der Krankheiten, dient der einheitlichen Codierung von Diagnosen für Abrechnung und Statistik, mit jährlichen Updates für aktuelle medizinische Entwicklungen. Diese Systeme des BfArM tragen dazu bei, dass Daten nicht nur syntaktisch, sondern auch semantisch interoperabel sind, was die Qualität von Versorgung, Forschung und Gesundheitsmanagement steigert.

Die L-INA-Plattform (Learning Interoperability) der gematik bietet eine Lernumgebung, um Wissen über Interoperabilität im Gesundheitssystem zu vermitteln. Sie ergänzt den Interoperabilitätsnavigator INA und unterstützt Nutzer:innen dabei, Entscheidungen im Kontext der Interoperabilität (IOP) zu treffen. Mit Videos, Factsheets und interaktiven Modulen – von "IOP in a Nutshell" bis "EHDS" – können Fachkräfte ihre Kompetenzen erweitern.

Die Publikation "Identifying and Optimizing Factors Influencing the Implementation of a Fast Healthcare Interoperability Resources Accelerator: Qualitative Study Using the Consolidated Framework for Implementation Research—Expert Recommendations for Implementing Change Approach" wurde vom CSIRO Australian e-Health Research Centre veröffentlicht und untersucht die Implementierung des Sparked FHIR-Accelerator-Programms in Australien. Durch qualitative Interviews mit 17 Stakeholdern wurden die zentralen Komponenten des Programms identifiziert und Einflussfaktoren für dessen Umsetzung analysiert, basierend auf dem Consolidated Framework for Implementation Research (CFIR). Acht Schlüsselfaktoren, darunter Engagement, Innovationsdesign und lokale Bedingungen, wurden herausgearbeitet und mit dem Expert Recommendations for Implementing Change (ERIC)-Tool abgeglichen, um Strategien zur Verbesserung der Implementierung zu entwickeln. Die Studie bietet wertvolle Erkenntnisse für Entscheidungsträger und Implementierende, um die Akzeptanz und Effektivität von FHIR-Standards zu fördern. (Li et al. 2025)

6.3 Konnektoren

Konnektoren sind zentrale Hardware-Komponenten in der Telematikinfrastruktur des deutschen Gesundheitswesens, die eine sichere Vernetzung von Arztpraxen und anderen Einrichtungen mit digitalen Gesundheitsdiensten ermöglichen. Anbieter wie secunet Security Networks AG, Research Industrial Systems Engineering (RISE) und KoCo Connector GmbH bieten zugelassene Modelle wie den secunet konnektor, Rise Konnektor und die KoCoBox MED+ an, die regelmäßig aktualisiert und zertifiziert werden. Die Zulassungen, wie etwa für den secunet konnektor 2.0.0 bis 2.1.0 (gültig bis April 2027) oder die KoCoBox MED+ (bis August 2026), gewährleisten die Einhaltung strenger Sicherheits- und Interoperabilitätsstandards. Ältere Versionen, insbesondere von T-Systems und frühere RISE-Modelle, sind mittlerweile außer Dienst gestellt, was die Notwendigkeit kontinuierlicher technischer Weiterentwicklung unterstreicht.

6.4 Forschung

Der Artikel "The Role of the Installed Base in Information Exchange Among General Practitioners in Germany: Mixed Methods Study" von Tim Holetzek und Kollegen untersucht den Informationsaustausch von Hausärzten in Deutschland, basierend auf einer Umfrage mit 250 Teilnehmern und 10 Interviews im Land Brandenburg. Er zeigt, dass zum Zeitpunkt der

Studie traditionelle Kommunikationswege wie Telefon, Fax und Post dominieren, während digitale Kanäle wie E-Mail oder KIM (Kommunikation im Medizinwesen) selten genutzt werden. Ältere Ärzte bevorzugen analoge Systeme und sehen in der Digitalisierung mehr Belastung als Nutzen, bedingt durch technische Probleme oder Inkompatibilitäten. Die Studie identifiziert drei Hinderniscluster – unausgereifte Softwarelösungen, Aufklärungssdefizite und zusätzliche Belastungen bei der Integration in bestehende Praxisprozesse – und betont, dass die etablierte Infrastruktur ("Installed Base") die digitale Transformation prägt. Eine erfolgreiche Integration neuer Technologien erfordert deren Anpassung an bestehende Routinen, um Frustration zu vermeiden und die Versorgung zu sichern. (Holetzek et al. 2025)

Die wissenschaftliche Evaluation des IGES-Instituts im Auftrag der gematik GmbH untersucht 2024 die Nutzung und Akzeptanz der Anwendungen der Telematikinfrastruktur (TI) im Gesundheitswesen. Ziel ist es, den Grad der Integration der TI in den Versorgungsalltag zu erfassen und Optimierungspotenziale für die Weiterentwicklung aufzuzeigen. Die zentralen Erkenntnisse: Die meisten medizinischen Einrichtungen sind technisch an die TI angeschlossen, nutzen sie jedoch überwiegend nur in begrenztem Umfang. Besonders das E-Rezept und die elektronische Arbeitsunfähigkeitsbescheinigung (eAU) sind weit verbreitet. Technische Probleme, Informationsdefizite und mangelnde Nutzerfreundlichkeit hemmen jedoch die stärkere Nutzung. Die elektronische Patientenakte (ePA) wird bislang nur selten eingesetzt, ihre verpflichtende Einführung ab 2025 ("ePA für alle") stößt auf Zurückhaltung. Insgesamt befindet sich die TI in einer Transformationsphase: von der technischen Bereitstellung hin zur nutzbringenden Integration in die Versorgungspraxis.

Die Studie "Challenges and conditions for successfully implementing and adopting the telematics infrastructure in German outpatient healthcare: A qualitative study applying the NASSS framework" untersucht die Einführung der Telematikinfrastruktur (TI) im deutschen ambulanten Gesundheitswesen. Ziel war es, die Wahrnehmungen und Einstellungen von Hausärzten und Pflegediensten zur TI hinsichtlich der Förderung interprofessioneller Kommunikation und Zusammenarbeit zu analysieren. Durch qualitative Interviews mit sieben Hausärzten und zehn Pflegekräften wurden fünf Hauptthemen identifiziert, die in das NASSS-Framework integriert wurden. Die Ergebnisse zeigen, dass digitale Technologien das Potenzial haben, die Kommunikation zu verbessern, jedoch technische Störungen, mangelnde Benutzerfreundlichkeit und organisatorische Hürden die Akzeptanz beeinträchtigen. Pflegedienste waren optimistischer als Hausärzte, die oft Vorbehalte äußerten. Die Studie betont die Notwendigkeit früher Nutzerbeteiligung und klarer Kommunikation für eine erfolgreiche Implementierung. (Nordmann et al. 2024)

6.5 eRezept

Die offizielle App Das E-Rezept der gematik ermöglicht es Nutzern, elektronische Rezepte bequem auf ihrem Smartphone zu verwalten und einzulösen. Sie bietet Funktionen wie das

Anzeigen von Rezeptinformationen, das Einlösen von Rezepten in Apotheken und das Bestellen von Medikamenten. Die App ist für alle gesetzlich Versicherten kostenfrei.

Es gibt Softwarelösungen, die Ärzten zusätzliche Funktionen zur Verordnungsverwaltung bieten wie bspw. schnelle Rezepterstellung, intelligente Suchfunktionen, Medikationsplanerstellung und AMTS-Prüfungen (siehe data4doc). Einige Praxisverwaltungssysteme (PVS) haben ähnliche Zusatzfunktionen integriert, die eine nahtlose Zusammenarbeit und Datenübertragung ermöglichen. Die Software bietet außerdem aktuelle Medikamenteninformationen und ist über eine standardisierte Schnittstelle in bestehende PVS-Systeme integrierbar.

Die Studie "The failed implementation of the electronic prescription in Germany – A case study" von Paul Drews und Ingrid Schirmer analysiert die Einführung der elektronischen Verschreibung in Deutschland zwischen 2003 und 2010. Sie identifiziert 14 Gründe für die fehlende Durchsetzung der Initiative, die in fünf Kategorien eingeteilt werden, darunter ein zu starker Fokus auf technische Aspekte, mangelnde Berücksichtigung organisatorischer Prozesse, Zeitpläne für Entwicklungsprojekte, vorgenommene Priorisierung der elektronischen Verschreibung und nicht eindeutige Governance-Strukturen. Weitere Probleme waren die unzureichende Einbindung von Leistungserbringenden, verzögerte Kosten-Nutzen-Analysen und negative Auswirkungen auf die Arbeitszeit von Leistungserbringenden ohne spürbare Vorteile. Die Studie betont die Notwendigkeit einer besseren Abstimmung zwischen zentralen und dezentralen Akteuren sowie einer iterativen Projektplanung, um komplexe IT-Projekte umzusetzen. (Drews and Schirmer 2015)

Die Studie "Barriers and facilitators to implementing electronic prescription: a systematic review of user groups' perceptions" untersucht die Wahrnehmungen von Nutzergruppen hinsichtlich der Hindernisse und Förderfaktoren bei der Einführung elektronischer Rezepte (eprescribing) in der Primärversorgung. Durch eine systematische Literaturrecherche wurden 34 Publikationen analysiert, die zahlreiche Elemente als Barrieren oder Förderfaktoren identifizierten. Zu den wichtigsten Faktoren zählen technische und gestalterische Aspekte, Interoperabilität, relevante Inhalte, positive Einstellung zur elektronischen Rezeptierung, Produktivität und verfügbare Ressourcen. Die Studie betont, dass technische und organisatorische Unterstützung entscheidend für eine erfolgreiche Implementierung ist und dass Faktoren je nach Implementierungsphase als Barriere oder Förderfaktor wahrgenommen werden können. Abschließend wird empfohlen, zukünftige Studien auf die Perspektiven anderer Nutzergruppen wie Apotheker und Patienten zu erweitern. (Gagnon et al. 2014)

Die Studie "Comparison of Electronic Prescription Systems in the European Union: Benchmarking Development, Use, and Future Trends" bietet einen umfassenden Vergleich der Entwicklung, Funktionalitäten und Nutzung von elektronischen Rezeptsystemen (EPS) in den EU-Mitgliedstaaten. Bis Ende 2022 hatten 24 EU-Länder EPS weit verbreitet eingeführt, während Deutschland und Frankreich Pilotprojekte starteten und Luxemburg noch kein System besaß. Die meisten EPS (25 von 27) nutzen ein ähnliches Design mit zentralem Server und Endnutzer-Software oder webbasierten Anwendungen, wobei 22 als nationale Systeme strukturiert sind. Trotz technischer Ähnlichkeiten unterscheiden sich Funktionalitäten, Authentifizierungsmethoden, Rezeptgültigkeit und Medikamentenabdeckung erheblich. Die Studie

betont die Notwendigkeit standardisierter Methoden für EPS-Forschung, um Gesundheitspolitik und Digitalisierung zu unterstützen. (Bruthans et al. 2025)

Die Studie "The ePrescription Initiative and Information Infrastructure in Norway" analysiert die Einführung elektronischer Rezepte in Norwegen. Nach anfänglichen Misserfolgen wurde ab 2011 eine erfolgreiche Lösung etabliert, die durch eine flexible Integration in bestehende Systeme, einen evolutionären Entwicklungsansatz und angepasste Governance-Strukturen geprägt ist. Die Untersuchung hebt die Bedeutung der Bewältigung der installierten Basis hervor, die durch die Entwicklung eines eigenständigen Verordnungsmoduls (GPM) erleichtert wurde. Diese Anpassungen ermöglichten eine breite Akzeptanz in der Primärversorgung, Krankenhäusern und bei der Unterstützung von Mehrdosenabgaben, trotz anfänglicher Herausforderungen durch komplexe Koordination und veraltete Infrastruktur. (Hanseth and Bygstad 2017)

Die Studie "From Paper to E-Prescribing of Multidose Drug Dispensing: A Qualitative Study of Workflow in a Community Care Setting" untersucht die Einführung von elektronischen Verordnungen für die Mehrdosis-Medikamentenausgabe (MDD) in der kommunalen Gesundheitsversorgung in Norwegen. Durch qualitative Interviews mit 34 Krankenschwestern und Apothekern zeigt die Untersuchung, dass E-Verordnungen eine bessere Systemintegration und potenziell höhere Patientensicherheit ermöglichen, jedoch auch den Arbeitsaufwand durch häufigere Klärungen und Korrekturen erhöhen. Die Studie hebt hervor, dass ein besseres Verständnis der Rollen und Bedürfnisse der beteiligten Fachkräfte den Arbeitsfluss verbessern könnte. (Josendal and Bergmo 2021)

Die Studie "Going digital in Germany: An exploration of physicians' attitudes towards the introduction of electronic prescriptions – A mixed methods approach" untersucht die geringe Verbreitung elektronischer Rezepte (ePs) in Deutschland. Sie kombiniert qualitative Interviews und eine Online-Umfrage unter 1136 Ärzten, um die Akzeptanz und technischen Barrieren zu analysieren. Die Ergebnisse zeigen, dass die niedrige Penetration nicht primär durch technische Hindernisse, sondern durch geringe Technologieakzeptanz der Ärzte bedingt ist, die mit geringem wahrgenommenen Nutzen, hohem Aufwand und geringer Patientennachfrage zusammenhängt. Maßnahmen wie verbesserte technische Stabilität, Systemfunktionalität und Informationsvermittlung könnten die Einführung von ePs fördern. (Graf et al. 2023)

7 Kurznachrichtendienst

7.1 Einleitung

In der Studie von Hoonakker, Carayon und Cartmill wurde der Einfluss von sicherer Messaging-Technologie auf den Arbeitsablauf in Hausarztpraxen untersucht. Die Ergebnisse zeigen, dass sichere Messaging die Kommunikation und Informationsflüsse verbessern kann, insbesondere durch die Möglichkeit der asynchronen Kommunikation. Allerdings kann es auch nachteilige Effekte haben, wie eine erhöhte Arbeitsbelastung, wenn Patienten ungeeignete Nachrichten senden. Kliniker sind ambivalent gegenüber dieser Technologie, da sie zusätzliche Aufgaben ohne entsprechende Vergütung mit sich bringen kann. Praxismitarbeiter sind im Vergleich zu Klinikern positiver eingestellt, und Patienten sind überwiegend sehr zufrieden mit sicherem Messaging. Die Umsetzung und der Gebrauch der Technologie sind entscheidend dafür, ob sie den Arbeitsablauf verbessert. (Hoonakker, Carayon, and Cartmill 2017)

Die Studie von Yakushi et al. analysierte die Nutzung sicherer Messaging-Dienste in den hausärztlichen Abteilungen von Kaiser Permanente Southern California (KPSC) im Jahr 2017. Sie zeigte, dass Patientinnen mit häufigen Arztbesuchen und Telefonterminen mehr E-Mails an ihre Hausärzte sendeten. Patienten mit chronischen Erkrankungen versendeten etwa dreimal mehr Nachrichten als andere. Frauen waren für fast zwei Drittel der Nachrichten verantwortlich, obwohl sie nur die Hälfte der Patientinnenschaft ausmachten. Nur etwa ein Viertel der Mitglieder nutzte das Messaging-System, wobei medizinischer Rat der häufigste Grund für Nachrichten war. Die Ergebnisse deuten darauf hin, dass das Verständnis der demografischen und klinischen Faktoren, die die Nutzung beeinflussen, entscheidend ist für die Entwicklung effizienter Personalmodelle und Nachrichtenverteilungsstrategien in der primären Gesundheitsversorgung. (Yakushi et al. 2020)

Die Studie von Zhou et al. untersuchte den Einfluss des Zugangs zu einer elektronischen Patientenakte mit sicherer Nachrichtenübermittlung auf die Nutzung von Primärversorgungsdiensten in einer Region von Kaiser Permanente (KP). Die Ergebnisse zeigten, dass die jährliche Rate der Arztbesuche bei Erwachsenen um 6,7% bis 9,7% sank für Mitglieder, die das System nutzten. Außerdem erlebten diese Mitglieder einen geringeren Anstieg dokumentierter Telefonkontakte (16,2%) im Vergleich zur Kontrollgruppe (29,9%). Die Studie deutet darauf hin, dass sichere Nachrichtenübermittlung zwischen Patienten und Ärzten die Effizienz und den Zugang zu Gesundheitsdiensten verbessern kann, indem sie sowohl die Anzahl der Arztbesuche als auch den Bedarf an telefonischen Kontakten reduziert. (Y. Y. Zhou et al. 2007)

In der Studie von Lieu et al. wurden die Erfahrungen und Strategien von Hausärzten zur Verwaltung elektronischer Nachrichten untersucht. Die Ergebnisse basieren auf Interviews mit 24 Hausärzten, die zeigen, dass die Verwaltung von elektronischen Nachrichten neue Stressoren geschaffen hat, insbesondere durch die Erwartung schneller Antworten von Patienten. Einige Ärzte entwickelten verschiedene Strategien zur Effizienzsteigerung, wie Multitasking und Delegation an medizinische Assistenten. Die Studie betont, dass Ärztinnen durch Wissensaustausch und Strategien für Nachrichtenmanagement unterstützt werden sollten. (Lieu et al. 2019)

Die Meta-Analyse von Thakkar et al. (2016) untersucht den Einfluss von SMS-Interventionen auf die Medikamentenadhärenz bei chronischen Erkrankungen und zeigt, dass Textnachrichten die Wahrscheinlichkeit einer korrekten Einnahme nahezu verdoppeln (Odds Ratio 2,11). Für die ambulante medizinische Versorgung ist relevant, dass SMS-basierte Interventionen einfach, kostengünstig und skalierbar sind, wobei die Adhärenzrate von 50 % auf etwa 67,8 % steigt. Die Studie weist jedoch auf Limitationen hin, wie die kurze Dauer der Studien, die häufige Nutzung subjektiver Messmethoden und moderate Heterogenität, was langfristige Effekte und die optimale Gestaltung der Nachrichten offenlässt. Dennoch bietet die Methode ein vielversprechendes Werkzeug, um die Therapietreue in der ambulanten Praxis zu verbessern, insbesondere bei Patienten mit chronischen Krankheiten. (Thakkar et al. 2016)

In der systematischen Übersichtsarbeit "Mobile technologies to support healthcare provider to healthcare provider communication and management of care" von Daniela C. Gonçalves-Bradley et al. werden die Auswirkungen mobiler Technologien auf die Kommunikation und Konsultation zwischen Gesundheitsdienstleistern im Vergleich zur üblichen Versorgung untersucht. In 19 randomisierten Studien mit über 5766 Teilnehmern, hauptsächlich aus Ländern mit hohem Einkommen, wurde festgestellt, dass mobile Technologien, wie Mobiltelefone, die Zeit zwischen Vorstellung und Behandlung verkürzen können, insbesondere wenn Primärversorger mit Spezialisten konsultieren (mittlere Evidenzsicherheit). Sie könnten auch die Wahrscheinlichkeit von Untersuchungen wie Retinopathie-Screenings bei Diabetikern erhöhen und Verweisungen an spezialisierte Einrichtungen bei bestimmten Hauterkrankungen reduzieren (mittlere Evidenzsicherheit). Es gab jedoch wenig Beweise für Auswirkungen auf die Lebensqualität der Patienten, die Zufriedenheit von Anbietern und Patienten oder die Kosten (niedrige Evidenzsicherheit). Technische Schwierigkeiten wurden selten berichtet, und die Evidenz ist aufgrund von Bias-Risiken und kleiner Stichprobengrößen begrenzt, was weitere Forschung in unterschiedlichen Kontexten erforderlich macht. (Gonçalves-Bradley et al. 2020)

Bei der Studie "A digital platform to support communication and organization in the general practice: Evaluation of healthcare usage and costs using claims data of a health insurer" von R.F. Willemsen et al. handelt es sich um eine retrospektive Beobachtungskohortenstudie. Sie untersucht die Auswirkungen einer digitalen Plattform zur Unterstützung von Kommunikation und Organisation in der Allgemeinmedizin auf die Inanspruchnahme von Gesundheitsleistungen und die Kosten. Die Plattform ermöglicht Patienten unter anderem Online-Terminbuchungen, E-Konsultationen und Medikamentenwiederholungen. Anhand von Abrech-

nungsdaten einer Krankenversicherung wurden die Konsultationen und Kosten vor und nach der Einführung sowie im Vergleich zu einer Kontrollgruppe analysiert. Die Ergebnisse zeigen einen signifikanten Anstieg der Hausarztkonsultationen und -kosten nach der Implementierung, was teilweise auf verbesserte Zugänglichkeit der Versorgung zurückzuführen sein könnte. Die Studie betont das Potenzial solcher Plattformen, die Flexibilität für Ärzte und Patienten zu erhöhen, fordert jedoch weitere Forschung zu Langzeiteffekten und Arbeitsbelastung. (Willemsen et al. 2024)

7.2 Kommunikation zwischen PatientInnen & BehandeInden

Die Kurznachrichtendienste zur Kommunikation zwischen PatientInnen und ÄrztInnen bieten sich verschiedene Möglichkeiten, können drei Gruppen zugeordnet werden. Diese Gruppe bieten ähnliche Funktionen unterscheiden sich aber in ihrer Historie, technischen Spezifikation und Sicherheitseigenschaft.

1. PVS-integrierter Messenger:

- Tomedo: Arzt direkt Diese Lösung ermöglicht eine direkte und sichere Kommunikation direkt innerhalb des PVS.
- **T2med: Patmed** Eine weitere Option, die speziell für die Kommunikation zwischen Patienten und Ärzten innerhalb des T2med-Systems entwickelt wurde.

2. Externe Apps:

 Monks Praxis App - Diese App ist über den Google Play Store verfügbar und bietet eine benutzerfreundliche Oberfläche für die Kommunikation, unabhängig vom PVS.

3. TI-Messenger:

• Ab Sommer 2025 wird der **TI-Messenger ePA** eine weitere Option sein, der für sichere und sektorenübergreifende Kommunikation zwischen Leistungserbringern und Patienten entwickelt wurde. (gematik GmbH 2025a)

7.3 Kommunikationsplattformen

Das Projekt "Digitales Gesundheitsdorf Oberes Rodachtal (DIGI-ORT)" verbessert die medizinisch-pflegerische Versorgung in ländlichen Regionen durch Digitalisierung. Eine digitale Plattform vernetzt ambulante Pflegedienste, Hausärzte, Pflegebedürftige und deren Angehörige, um Abstimmungsprozesse zu vereinfachen und Gesundheits- sowie Pflegedaten effizient auszutauschen. Ergänzend fördert der Einsatz von technischen Assistenzsystemen, wie textilbasiertem Vitaldatenmonitoring, ein selbstbestimmtes Leben im eigenen Zuhause. Eine lokale Anlaufstelle informiert über technikunterstütztes Wohnen und koordiniert einen

ehrenamtlichen Begleitdienst. Das 2018–2021 vom Bayerischen Staatsministerium für Gesundheit und Pflege geförderte Projekt wurde 2019 mit dem Sonderpreis "Stadt.Land.Digital" für seinen innovativen Ansatz ausgezeichnet. (Ahrens 2023)

7.4 Matrix Protokoll

Das Matrix-Protokoll ist ein offenes Standardprotokoll für dezentrale, sichere Kommunikation im Internet, das sowohl für Chat- als auch für Voip-Kommunikation genutzt werden kann. In Deutschland hat die Telematikinfrastruktur (TI), die für die Digitalisierung des Gesundheitswesens verantwortlich ist, das Matrix-Protokoll zur Grundlage für den TI-Messenger gemacht. Der TI-Messenger ermöglicht eine sichere und interoperable Kommunikation zwischen verschiedenen Akteuren im Gesundheitswesen, wie Ärzten, Apotheken und Krankenkassen. Er basiert auf Matrix, um eine Ende-zu-Ende-Verschlüsselung zu gewährleisten und die Integration in bestehende Systeme zu erleichtern.

7.5 Übersichtstabelle

Table 7.1: Kurznachrichtendienste Anbieter

	Software	Anbieter	URL
0	Siilo	Doctolib	siilo.com
1	AKQUINET TIM	Akquinet AG	akquinet.com
2	AMP.chat	Awesome Technologies GmbH	awesome-technologies.de
3	Famedly	Famedly GmbH	famedly.com
4	Gedisa	Gedisa GmbH	gedisa.de
5	samedi	samedi GmbH	samedi.de
6	x-tention	x-tention GmbH	x-tention.de
7	Threema	Threema GmbH	threema.ch
8	CONSIL!UM	Consilium GmbH	CONSIL!UM
9	Teamwire	Teamwire GmbH	Teamwire
10	LifeTime	LifeTime GmbH	LifeTime

Quelle: u.a. (gematik GmbH 2025a)

Table 7.2: Weitere Kommunikationsanwendungen

	Software	Anbieter	URL
0	Garrio	Garrio GmbH	garrio.de

Software	Anbieter	URL
1 App zum Doc	helpwave GmbH	app-zum-doc.de

7.6 Sicherheit Nachrichtenverkehr

7.6.1 Vergleich von Instant-Messaging-Diensten

Instant-Messaging-Dienste wie Signal und Threema setzen verschiedene Sicherheitsmaßnahmen ein, um die Kommunikation der Nutzer zu schützen. Signal bietet eine End-to-End-Verschlüsselung (E2EE) für alle Kommunikationen, Vorwärts-Sicherheit, und verwendet starke kryptographische Methoden wie Curve25519 und AES-CBC. Threema hingegen behauptet ebenfalls E2EE, jedoch nur mit Vorwärts-Sicherheit auf Client-Server-Ebene und ohne E2EE-Forward-Secrecy, was die Nutzung langfristiger Schlüssel problematisch macht. Beide Dienste sind sicherer als WhatsApp, wobei Signal im Vergleich zu Telegram und Threema die stärksten Sicherheitsgarantien bietet, während Threema zwischen Telegram und Signal rangiert, mit Schwächen in der Sicherheit, insbesondere bei der Abwehr von Replay-, Reflection- und Reordering-Angriffen. (Rösler, Mainka, and Schwenk 2018; Son et al. 2022; Truong 2022; Boschini, n.d.; Brückner 2023; Paterson, Scarlata, and Truong 2023)

7.6.2 Vorwärts-Sicherheit

Vorwärts-Sicherheit (Perfect Forward Secrecy) ist ein Konzept in der Kryptographie, das besagt, dass die Kompromittierung eines Schlüssels in der Gegenwart nicht dazu führt, dass vergangene Kommunikation entschlüsselt werden kann. Das wird durch die Verwendung von Sitzungsschlüsseln erreicht, die für jede Kommunikationssitzung neu generiert werden und nach deren Beendigung verworfen werden. Diese temporären Schlüssel sind unabhängig von langfristigen Schlüsseln, wodurch sichergestellt wird, dass selbst wenn ein langfristiger Schlüssel kompromittiert wird, vergangene Sitzungen sicher bleiben.

Signal implementiert diese Sicherheitseigenschaft, indem es für jede Kommunikation eine neue Schlüsselpaarung generiert und diese nach der Sitzung löscht. Threema hingegen bietet diese Eigenschaft nur auf der Client-Server-Ebene, was bedeutet, dass die Vorwärts-Sicherheit in Bezug auf die End-to-End-Verschlüsselung nicht vollständig gegeben ist.

7.6.3 Replay-, Reflection- und Reordering-Angriffe

Bei einem Replay-Angriff fängt ein Angreifer eine legitime Nachricht ab und sendet sie später erneut, um eine unerwünschte Handlung auszulösen oder eine Aktion zu wiederholen, die

bereits einmal autorisiert wurde. Zum Beispiel könnte ein Angreifer eine abgefangene Authentifizierungsanfrage wieder abspielen, um sich als berechtigter Benutzer auszugeben. Maßnahmen gegen Replay-Angriffe umfassen oft die Verwendung von Nonce (Nummer, die nur einmal verwendet wird) oder Zeitstempel.

In einem Reflection-Angriff nutzt der Angreifer die Struktur einer Nachricht, um sie zurück an den Absender zu spiegeln, oft in der Hoffnung, dass der Absender die eigene Nachricht als gültig akzeptiert. Dies könnte dazu führen, dass der Absender eine Aktion ausführt, die er nicht beabsichtigt hat, oder dass er eine Nachricht als gültig bestätigt, die er selbst gesendet hat. Eine Abwehrstrategie besteht darin, Nachrichten so zu gestalten, dass sie von der Quelle eindeutig unterscheidbar sind, zum Beispiel durch die Verwendung von unterschiedlichen Nonce oder Schlüsseln für Anfragen und Antworten.

Bei einem Reordering-Angriff werden Nachrichten, die in einer bestimmten Reihenfolge gesendet wurden, von einem Angreifer umgeordert und dann weitergeleitet. Dies kann dazu führen, dass die Empfänger eine falsche Abfolge von Ereignissen wahrnehmen oder dass Abhängigkeiten in der Nachrichtenverarbeitung gestört werden. Um dies zu verhindern, können Sequenznummern oder andere Mechanismen zur Nachverfolgung der Reihenfolge implementiert werden, die sicherstellen, dass Nachrichten in der richtigen Reihenfolge verarbeitet werden.

Diese Angriffe zielen darauf ab, die Sicherheitsprotokolle zu umgehen, die auf der Annahme basieren, dass Nachrichten in einer sicheren, unveränderten und chronologisch korrekten Reihenfolge empfangen werden.

7.6.4 End-to-End-Verschlüsselung (E2EE)

End-to-End-Verschlüsselung (E2EE) bezeichnet eine Methode der Datensicherheit, bei der Daten, die zwischen zwei Parteien ausgetauscht werden, nur von diesen beiden Parteien entschlüsselt und gelesen werden können.

E2EE erfordert, dass die Schlüssel zwischen den Kommunikationspartnern sicher ausgetauscht oder generiert werden. Dies kann durch Protokolle wie Diffie-Hellman-Schlüsselaustausch oder durch die Verwendung von Public-Key-Kryptographie geschehen.

7.7 Datenaustausch

"REDDOXX" (https://www.reddoxx.com/) bietet E-Mail-Management und IT-Sicherheit, mit Fokus auf DSGVO-konforme E-Mail-Archivierung, Spam- und Virenschutz sowie einfacher E-Mail-Verschlüsselung ohne Zertifikatsaufwand, was den sicheren Austausch sensibler Patientendaten erleichtert. "DRACOON" (https://www.dracoon.com/de/home) stellt eine Cloud-Plattform bereit, die für das Gesundheitswesen entwickelt wurde, und ermöglicht Praxen den

datenschutzkonformen Austausch und die Speicherung medizinischer Daten, inklusive Zugriffskontrollen und mobiler Nutzung, um die Zusammenarbeit mit Kliniken oder Therapeuten zu optimieren. Beide Anbieter unterstützen Praxen dabei, Datenschutzvorgaben einzuhalten und Arbeitsprozesse effizienter zu gestalten.

Anonetics ist ein Hamburger Startup, das sich auf sichere digitale Dokumentenübertragung im Gesundheitswesen spezialisiert hat. Mit der Lösung anolink können Nutzer Dokumente schnell und DSGVO-konform über eine Blockchain- und Cloud-basierte Plattform versenden. Das Unternehmen zielt darauf ab, Systeme wie Faxgeräte zu ersetzen und Arbeitsabläufe in Kliniken, Apotheken und Praxen zu optimieren. Serverstandort ist Deutschland, und sensible Daten werden nur temporär gespeichert.

7.8 Forschung

Das Projekt TI-PAA implementiert von Juni 2024 bis Mai 2025 einen TI-konformen Instant-Messenger zur Verbesserung der Kommunikation zwischen Hausarztpraxen, Apotheken und Pflegeheimen in Nürnberg. Ziel ist es, die bisherigen ineffizienten Kommunikationswege wie Telefon und Fax durch eine sichere, zeitsparende Alternative zu ersetzen und Handlungsempfehlungen für eine breitere Nutzung zu entwickeln. Erste Ergebnisse zeigen Potenzial, jedoch erschwert die fehlende TI-Anbindung der Pflegeheime die Umsetzung.

7.9 Projekte

Das Gesundheitsnetzwerk PORT ist ein gemeinnütziger Verein mit Sitz in Willingen, der sich der Verbesserung der regionalen Gesundheitsversorgung widmet. Ziel ist eine patientenzentrierte, langfristige Versorgung durch ein starkes regionales Netzwerk aus Fachleuten wie Ärzten, Pflegekräften und Therapeuten. Im Artikel "Gesundheitsnetz PORT: 'Inzwischen sind wir von Unterversorgung weit entfernt" der Ärztezeitung vom 10. August 2023 wird das regionale Gesundheitsnetzwerk beschrieben. Das Modell vernetzt 40 Leistungserbringen, verbessert die Versorgung in Nordhessen, lockt medizinischen Nachwuchs an und entlastet Ärzte. Das Netzwerk zeigt, wie regionale Kooperation die Unterversorgung überwinden kann, die lokale Gesundheitsversorgung entlastet und Nachwuchs in die Region zieht. (Böhm 2020)

Die medflex bietet eine Übersicht regionaler Gesundheitsnetzwerke, die Fachkräfte wie Ärzte, Therapeuten, Apotheker und Labore auf Landkreisebene über die digitale Plattformen vernetzt. Ziel ist es, den Austausch und die Zusammenarbeit im Gesundheitswesen zu fördern. Digitale Technologien unterstützen dies durch sichere Kommunikation, effiziente Koordination von Überweisungen und Befunden sowie direkten Kontakt zu Kollegen.

7.9.1 Forschung Gesundheitsnetzwerke

Die Studie "The effect of provider affiliation with a primary care network on emergency department visits and hospital admissions" von Finlay A. McAlister und Kollegen untersucht den Einfluss von Primärversorgungsnetzwerken auf die Gesundheitsversorgung in Alberta, Kanada. Sie vergleicht die Ergebnisse von Erwachsenen, die zwischen 2008 und 2009 entweder in einem Primärversorgungsnetzwerk (1,5 Millionen Patienten) oder in konventioneller Primärversorgung (1,1 Millionen Patienten) betreut wurden. Primärversorgungsnetzwerke zielen darauf ab, den Zugang zu interprofessioneller, teambasierter Versorgung zu verbessern. Die Ergebnisse zeigen, dass Patienten in Netzwerken seltener die Notaufnahme aufsuchten (1,4 % vs. 1,7 % für bestimmte chronische Erkrankungen und 25,5 % vs. 30,5 % insgesamt), jedoch häufiger ins Krankenhaus eingewiesen wurden (0,6 % vs. 0,6 % für chronische Erkrankungen und 9,3 % vs. 9,1 % insgesamt). Insgesamt führte die Netzwerkversorgung zu 169 weniger Notaufnahmebesuchen und 86 weniger Krankenhaustagen pro 1000 Patientenjahre, was auf eine effektivere Primärversorgung hindeutet. (McAlister et al. 2018)

Die Studie "A Practice-Proven Adaptive Case Management Approach for Innovative Health Care Services (Health Circuit)" von Carmen Herranz und Kollegen stellt Health Circuit vor, ein anpassungsfähiges Fallmanagement-Tool, das Gesundheitsfachkräfte und Patienten durch dynamische Kommunikationskanäle und patientenzentrierte Arbeitsabläufe unterstützt, um personalisierte, evidenzbasierte Interventionen umzusetzen. Ziel war es, den gesundheitlichen Nutzen, die Benutzbarkeit (mittels System Usability Scale, SUS) und Akzeptanz (mittels Net Promoter Score, NPS) zu bewerten. In einer cluster-randomisierten Pilotstudie (2019–2020) mit 100 Patienten mit hohem Krankenhausaufenthaltsrisiko (Studie 1) reduzierte Health Circuit Notaufnahmebesuche (13 % vs. 44 %), förderte die Patientenselbstbestimmung (P<.001) und zeigte gute Akzeptanz (NPS: 31, SUS: 54/100). In einer zweiten Beobachtungsstudie (2020–2021) mit 104 Hochrisikopatienten vor großen Operationen (Studie 2) erreichte es eine hohe Benutzbarkeit und Akzeptanz (NPS: 40, SUS: 85/100). Health Circuit zeigt Potenzial für eine wertschöpfende Gesundheitsversorgung und gute Nutzerakzeptanz, trotz Prototypstatus, was weitere Tests in realen Szenarien rechtfertigt. (Herranz et al. 2023)

Die Studie "Key characteristics and critical junctures for successful Interprofessional networks in healthcare – a case study" von Shannon Sibbald und Kollegen untersucht die Erfolgsfaktoren eines kleinen, lokalen Primärversorgungsnetzwerks in Südwest-Ontario, Kanada, das das ARGI Respiratory Health Program implementiert hat. Mithilfe einer explorativen Fallstudie, basierend auf Fokusgruppen, Beobachtungen, Interviews und Dokumentenanalysen, wurden vier Schlüsselmerkmale identifiziert: ein wachstumsorientiertes Denken mit Fokus auf Qualitätsverbesserung, klare und stärkenbasierte Teamrollen, geteilte Führung und Erfolg sowie transparente Kommunikation. Zudem wurden fünf entscheidende Wendepunkte beschrieben: das Erkennen eines gemeinsamen Bedarfs, die Schaffung einer flexiblen gemeinsamen Vision, die Förderung von Empowerment, die Erlangung externer Anerkennung und der Nachweis des Erfolgs. Diese Erkenntnisse bieten wertvolle Lektionen für die Entwicklung und Implementierung ähnlicher Netzwerke, die interdisziplinäre Zusammenarbeit und verbesserte Patienten-

versorgung fördern. (Sibbald et al. 2020)

Die Studie "eHealth for people with multimorbidity: Results from the ICARE4EU project and insights from the '10 e's' by Gunther Eysenbach" von Maria Gabriella Melchiorre und Kollegen untersucht die Implementierung von eHealth-Technologien in integrierten Versorgungsprogrammen für Menschen mit Multimorbidität in Europa. Im Rahmen des ICARE4EU-Projekts wurden 2014 101 Programme in 24 Ländern analysiert, von denen 85 eHealth-Tools nutzten, 42 speziell für ältere Menschen. Die Ergebnisse zeigen, dass eHealth die Versorgungsintegration, Lebensqualität und Kosteneffizienz verbessern kann, wobei unzureichende Finanzierung eine Haupthürde darstellt. Diese Befunde werden mit den "10 e's" von Eysenbach (z. B. Efficiency, Empowerment, Equity) verknüpft, die Vorteile wie Effizienz und Qualitätssteigerung sowie Herausforderungen wie ethische Fragen und Bildungsbedarf hervorheben. Die Studie unterstreicht das Potenzial von eHealth für die Versorgung von Multimorbidität und liefert Ansätze für zukünftige eHealth-Initiativen in Europa. (Melchiorre et al. 2018)

Die Studie "Connecting Social, Clinical, and Home Care Services for Persons with Serious Illness in the Community" von Robyn L. Golden und Kollegen schlägt das Essential Care Model vor, um die medizinischen, psychologischen, kognitiven und sozialen Bedürfnisse älterer Menschen mit schweren Erkrankungen besser zu adressieren. Dieses Modell basiert auf integrierten biopsychosozialen Assessments, individuellen Versorgungsplänen mit gemeinsamen Zielen, einem teambasierten Ansatz über den gesamten Versorgungskontinuum hinweg und kontinuierlicher Qualitätsverbesserung. Es erfordert diverse, interdisziplinäre Teams mit Schulungen in Alterung und Zusammenarbeit, ein Netzwerk gemeindebasierter Organisationen (CBOs) für häusliche Dienstleistungen, eine elektronische Kommunikationsplattform und Zahlungsmodelle, die Teamarbeit fördern. Bestehende Modelle wie PACE oder GRACE zeigen Effektivität und Kosteneffizienz, doch systemische Hürden wie fehlende EHR-Interoperabilität und inadäquate Vergütung behindern eine flächendeckende Umsetzung. Die Studie betont die Notwendigkeit von Qualitätsmessungen, die Lebensqualität und Kosteneinsparungen berücksichtigen, um eine nahtlose Versorgung zu gewährleisten. (Golden et al. 2019)

Die Studie "HÄPPI – Konzeption eines Modells für die ambulante Versorgung in Deutschland" von Simon Schwill und Kollegen entwickelt ein Modell für ein hausärztliches Primärversorgungszentrum (HÄPPI) mit einem interprofessionellen Team, um die Primärversorgung angesichts demografischer Herausforderungen zu stärken. In neun Workshops und durch Interviews mit Expert*innen aus verschiedenen Gesundheitsberufen wurden Chancen wie erweiterte, patientenzentrierte Versorgung und verbessertes Management chronischer Erkrankungen sowie Herausforderungen wie Dokumentation und Teamarbeit identifiziert. Das HÄPPI-Modell zielt auf ganzheitliche Betreuung durch Wissensaustausch, digitale Integration (z. B. Videokonsultationen) und Gesundheitskompetenzförderung ab, mit einer Anbindung an die hausarztzentrierte Versorgung (HZV). Es bietet eine schrittweise umsetzbare, zukunftsorientierte Lösung, erfordert jedoch Unterstützung bei Prozessmanagement und die Einbindung weiterer Gesundheitsberufe. (Schwill et al. 2024)

8 Terminbuchung

8.1 Einleitung

Bei der Auswahl eines Terminbuchungstools sollten Sie auf Funktionsumfang, Benutzerfreundlichkeit, Integration mit bestehender Software und Datenschutz achten. Berücksichtigen Sie auch die Kostenstruktur, den Kundensupport und die Skalierbarkeit des Systems, um sicherzustellen, dass es den aktuellen und zukünftigen Bedürfnissen Ihrer Einrichtung entspricht. Benutzerbewertungen können ebenfalls wertvolle Einblicke bieten.

Eine Studie von Atherton et al. (Atherton et al. 2024) untersuchte die Nutzung und Erfahrungen mit Online-Terminbuchungssystemen in englischen Hausarztpraxen und fand heraus, dass nur 16 % der Patienten diese Systeme nutzten, obwohl 45 % davon wussten. Besonders ältere Menschen über 75 Jahre und Patienten aus sozioökonomisch benachteiligten Gebieten nutzten die Angebote seltener. Berufstätige und Menschen mit chronischen Erkrankungen schätzten die Flexibilität und Einfachheit, während ältere Patienten oft die Telefonbuchung bevorzugten. Die Nutzung wurde maßgeblich durch die Organisation der Praxis, die Verfügbarkeit von Terminen und die Benutzerfreundlichkeit beeinflusst. Um die Nutzung zu erhöhen, sind gezielte Informationen und Unterstützung für benachteiligte Gruppen notwendig.

Waddell et al. (K. J. Waddell et al. 2024) untersuchte den Zusammenhang zwischen der Einführung einer Selbstbuchungsfunktion im elektronischen Patientenakte (EHR) System und der Durchführung von Screening-Mammographien. Sie zeigte, dass nach der Einführung der Selbstbuchung die Rate der Mammographie-Abschlüsse von 22,2% auf 49,7% stieg. Die Ergebnisse legen nahe, dass die Selbstbuchungsfunktion im EHR-System eine kostengünstige und skalierbare Möglichkeit zur Steigerung der Teilnahme an vorbeugenden Krebsscreenings darstellt.

8.2 Softwarelösungen

Table 8.1: Übersicht Softwarelösungen Terminbuchung

Index	Anbieter	Webseite	Beschreibung
)	Betty24	info.betty24.de	Online- Terminbuchungssystem für medizinische Einrichtungen mit automatisierten Terminerinnerungen und Patientenman-
1	Cituro	cituro.com	agement. Flexible Praxissoftware für Online- Terminbuchungen mit individuellen Einstellungen für Arztpraxen.
2	Doctena	doctena.com	Online- Terminbuchungsplattfor für Patienten zur einfachen Arztterminvereinbarung.
3	Dr. Flex	dr-flex.de	Smarte Online- Terminvergabe für Arztpraxen mit automatisierten Erinnerungen und digitaler Patientenverwaltung.
4	${ m eTermin}$	etermin.net	Online-Terminplaner für Arztpraxen mit Kalendersynchronisation, automatischen Erinnerungen und flexibler Verwaltung.
5	terminiko	terminiko.de	Praxisinterne Terminverwaltung mit Online- Buchungsmöglichkeiten für Patienten ohne Benutzerkonto.

Index	Anbieter	Webseite	Beschreibung
6	Terminland	terminland.de	Online- Terminbuchung für das Gesundheitswesen mit individuellen Anpas- sungsmöglichkeiten für Praxen.
7	TimeControl	timecontrol.app	Praxissoftware für digitale Terminplanung mit automatischen Erinnerungen und Integration in bestehende Systeme.
8	Visita	visita.arzttermine.de	Online- Terminvergabe für Ärzte mit digitalem Wartezimmer, Videosprechstunden und Patientenkom- munikation.

8.3 Kombinationslösungen

Table 8.2: Übersicht Softwarelösungen Terminbuchung und weitere Funktionen

Index	Anbieter	Webseite	Beschreibung
0	321med	321med.com	Digitale Lösung für Arztpraxen mit Online- Terminbuchung, Videosprechstunden, digitaler Anamnese und sicherer Patien- tenkommunikation.

Index	Anbieter	Webseite	Beschreibung
1	Doctolib	doctolib.de	Plattform für Termin- und Patien- tenmanagement mit Videosprechstunden, digitaler Kommunikation und Praxissoftware- Integration.
2	Dr. QEN	${ m drqen.com}$	Online- Terminbuchung und kontaktlose Patien- tenkommunikation mit digitaler Anamnese und Dokumentenverwaltung.
3	Dr. Wait	${\rm drwait.de}$	Echtzeit- Wartezeitmanagement mit KI-basierten Lösungen zur Arztbrief-Erstellung, Rezepttelefon und Laborwert- Erklärung.
4	Dubidoc	dubidoc.de	Online- Terminbuchung mit Self-Check-In zur Automatisierung des Anmeldeprozesses und Entlastung der Fachkräfte.
5	Jameda	jameda.de	Online- Terminvergabe mit Videosprechstunden und KI-gestützter Dokumentation über Noa Notes.

Index	Anbieter	Webseite	Beschreibung
6	No-Q	no-q.info	Digitale Lösung für
			Terminplanung,
			Videosprechstunden
			und
			Dokumentverwaltung
			zur Optimierung von
			Arbeitsprozessen.
,	TerMed	m termed.de	Terminmanagementsyste
			mit Online-Buchung
			und integrierter
			Videosprechstunde
			für Arztpraxen.
3	Timerbee	timerbee.com	Flexibles Termin-
			buchungssystem mit
			automatischen
			Erinnerungen,
			Workflow-
			Optimierung und
			OP-Planung.

9 Terminplanungs- und Umfragetools

Digitale Terminplanungs- und Umfragetools vereinfachen die Organisation von Meetings, Events oder Abstimmungen, indem sie Zeitpläne koordinieren und Antworten erfassen. Diese Tools sind besonders nützlich für Teams, Vereine oder private Gruppen, da sie oft ohne großen Aufwand genutzt werden können. Viele bieten datenschutzfreundliche Optionen, intuitive Bedienoberflächen und flexible Anpassungsmöglichkeiten.

- StrawPoll
- Nuudel
- Xoyondo
- Kulibri
- Bitpoll
- DuD-Poll

10 Rechtliches

Das Gesundheits-Digital-Agentur-Gesetz (GDAG) sieht vor, dass gemäß § 370c SGB V technische und prozessuale Anforderungen an digitale Terminbuchungsplattformen festgelegt werden. Dabei sollen Obergrenzen für Terminbuchungsmöglichkeiten über Online-Plattformen definiert werden. Außerdem werden Mindestvorgaben für die telefonische Erreichbarkeit von Ärztepraxen eingeführt. Die Online-Terminvergabe soll laut Gesetzgeber einen bedarfsgerechten und diskriminierungsfreien Zugang zu Terminen für Versicherte schaffen. Sie zielt darauf ab, eine wirtschaftliche Prüfung der Terminvergabe zu vermeiden, indem kurzfristige Termine nicht nur für extrabudgetar vergütete Leistungen reserviert werden. Zudem sollen gleiche Chancen für diejenigen gewährleistet werden, die Online-Terminbuchungen nicht nutzen können.

11 Videosprechstunde

11.1 Einleitung

Gemeinsame Merkmale von Videosprechstundenprodukten:

- Video- und Audio-Kommunikation: Alle Anbieter bieten eine Plattform zur visuellen und akustischen Interaktion zwischen Arzt und Patient.
- Datensicherheit: Verschlüsselung und Datenschutz, um die Vertraulichkeit medizinischer Informationen zu gewährleisten.
- Benutzerfreundlichkeit: Die meisten Systeme sind so gestaltet, dass sowohl Patienten als auch Ärzte sie ohne große Einarbeitung nutzen können.
- **Terminplanung**: Integration oder zumindest die Möglichkeit der Terminverwaltung, um den Ablauf zu organisieren.
- **Dokumentenfreigabe**: Die Funktion, während oder nach der Sitzung Dokumente zu teilen.

Unterscheidende Merkmale:

- Integration mit anderen Systemen: Die Tiefe der Integration mit Praxisverwaltungssystemen kann stark variieren. Einige bieten umfassende APIs, andere vielleicht nur rudimentäre Schnittstellen.
- Zusätzliche Funktionen: Dies kann von Screensharing, über spezielle Module für verschiedene medizinische Fachbereiche bis hin zu erweiterten Chat-Funktionen oder der Möglichkeit, Rezepte direkt zu verschicken, reichen.
- Anpassungsmöglichkeiten: Während einige Plattformen stark anpassbar sind, um den individuellen Bedürfnissen zu entsprechen (z.B. durch White-Label-Lösungen), sind andere eher standardisiert und weniger flexibel.
- Mehrsprachigkeit: Die Verfügbarkeit in mehreren Sprachen kann ein Unterscheidungsmerkmal sein, besonders für internationale oder kulturell vielfältige Patientengruppen.
- Qualität der Verbindung: Die technische Ausstattung und Serverinfrastruktur der Anbieter kann zu unterschiedlichen Qualitäten in der Video- und Audioübertragung führen.
- Support und Schulung: Der Umfang und die Art der angebotenen Unterstützung, sei es durch Schulungsmaterialien, Live-Support oder umfassende FAQs, variiert.
- Compliance und Zertifizierung: Spezifischen Zertifizierungen wie bspw. ISO 27001.

Diese Merkmale zeigen, dass, obwohl die Grundfunktion einer Videosprechstunde bei allen Anbietern ähnlich ist, die Details in der Umsetzung und die zusätzlichen Dienstleistungen erhebliche Unterschiede darstellen.

11.2 Studienlage

Videosprechstunden bieten Hausärzten Flexibilität und erleichtern die Gestaltung effizienter Behandlungsabläufe, insbesondere bei Triage- und Nachsorgefällen. Sie verbessern die Erreichbarkeit für Patienten, führen jedoch zu Herausforderungen wie einem Anstieg trivialer Anfragen und einer möglichen Beeinträchtigung der Diagnosefähigkeit. Die einfache Verfügbarkeit kann die Fähigkeit der Patienten zur Selbstfürsorge verringern, was Ärzte zusätzlich belastet. Eine Balance zwischen digitalen und physischen Konsultationen wird als essenziell angesehen, um die Versorgungsqualität und die Kontinuität in der Arzt-Patient-Beziehung zu wahren. Die Studie hebt hervor, dass Videosprechstunden das Gesundheitssystem transformieren, jedoch eine bewusste Integration erfordern. (Norberg et al. 2024; Mold et al. 2019)

Die Studie in fünf nordeuropäischen Ländern (Assing Hvidt et al. 2023) zeigt, dass trotz der Einführung während der COVID-19-Pandemie die Akzeptanz durch ÄrztInnen und Personal gering bleibt, was auf Barrieren wie mangelnde technische Integration, begrenzte finanzielle Anreize und Vorbehalte zurückzuführen ist. Die Videosprechstunde wurde von PatientInnen zwar als flexibel und effizient geschätzt, von ÄrztInnen jedoch als unzureichend wahrgenommen, um eine qualitativ hochwertige Versorgung zu gewährleisten. Für eine erfolgreiche Implementierung sind technische Integration, finanzielle Förderung und ein Wandel notwendig, der die berufliche Identität und Praxisnormen berücksichtigt.

Eine Arbeit von Ivanova et al. untersuchte die Präferenzen und Erfahrungen von US-Erwachsenen mit Telemedizin im Vergleich zu traditionellen Arztbesuchen anhand einer landesweiten Umfrage mit 4577 Teilnehmern im Jahr 2022. Im Vergleich zu 2017 stieg die Bekanntheit von Telemedizin bei Hausärzten von 5,3 % auf 61,1 %, und die Nutzung von 3,5 % auf 34,5 %. Die Zufriedenheit mit Telemedizin (70,3 %) war ähnlich hoch wie mit Präsenzbesuchen (77,8 %), und Telemedizin wurde als einfacher empfunden (71,3 % vs. 62,9 %). Personen mit niedrigerem Einkommen berichteten über geringere Zufriedenheit und Nutzerfreundlichkeit, was auf finanzielle Barrieren hinweist. Die Akzeptanz war höher, wenn ein bestehendes Arzt-Patienten-Verhältnis bestand. 70 % der Befragten wären enttäuscht, wenn Telemedizin nicht mehr verfügbar wäre. Die Ergebnisse zeigen, dass Telemedizin zunehmend akzeptiert wird, aber weiterhin soziale Ungleichheiten bestehen. (Ivanova et al. 2024)

In einer Pilotstudie wurden 28 Patienten telemedizinisch betreut, indem digitale Symptomerfassung und Videokonsultationen mit herkömmlichen Arztbesuchen kombiniert wurden. Die Ergebnisse zeigten eine hohe diagnostische Übereinstimmung von 92,8 %, eine um 26,2 % kürzere Konsultationsdauer und eine hohe Patientenzufriedenheit von 85,5 %. Die Autoren

schlussfolgern, dass Videokonsultation eine sichere und effiziente Ergänzung zur herkömmlichen medizinischen Versorgung darstellt. (Tan et al. 2022)

Der Artikel "Patient e-Visit Use and Outcomes for Common Symptoms in an Integrated Health Care Delivery System" untersucht die Nutzung und den Erfolg von e-Visits für häufige Beschwerden wie Harnwegsinfektionen oder Atemwegsinfekte in einem integrierten Gesundheitssystem im Jahr 2019. Die meisten Nutzer waren Frauen unter 40, und 81 % benötigten innerhalb von 7 Tagen keine weitere Betreuung, was auf eine erfolgreiche Versorgung hinweist. Ärzte bearbeiteten die Anfragen in 2–3 Minuten mithilfe digitaler Tools, was e-Visits effizienter als traditionelle Besuche macht. Dennoch könnten begrenzte Erstattungen die Akzeptanz bremsen. (Bhargava et al. 2021)

Die Studie "Factors Associated With the Availability of Virtual Consultations in Primary Care Across 20 Countries: Cross-Sectional Study", veröffentlicht im Journal of Medical Internet Research (2025), untersuchte die Verfügbarkeit und Nutzung virtueller Konsultationen in der Primärversorgung in 20 Ländern. Telefonkonsultationen waren sowohl vor (73,1 %) als auch während (90,4 %) der COVID-19-Pandemie die häufigste Methode, mit signifikanten Zuwächsen bei der Verfügbarkeit aller Typen – Telefon (+17,3 %), Video (+39,5 %) und Chat (+8,6 %) – während der Pandemie. Der größte Anstieg in der Nutzung zeigte sich bei Telefonkonsultationen (+11 Stunden/Woche). Die digitale Reife von Praxen und digitale Schulungen waren schwach mit der Verfügbarkeit von Video- und Chat-Konsultationen assoziiert, während länderspezifische Unterschiede die Verfügbarkeit stark beeinflussten, wobei Videokonsultationen während der Pandemie zunehmende Disparitäten zeigten. Die Ergebnisse unterstreichen die Rolle der Pandemie bei der Beschleunigung der Einführung virtueller Konsultationen und die Notwendigkeit weiterer Forschung zu nationalen Einflussfaktoren für eine effektive Umsetzung. (Kerr et al. 2025)

Die Studie "Determinants of Having Online Health Consultations During the COVID-19 Pandemic Among Middle-Aged and Older Adults in Germany: Representative Longitudinal Survey Study" untersucht die Faktoren, die die Nutzung von Online-Gesundheitskonsultationen bei mittelalten und älteren Menschen in Deutschland während der COVID-19-Pandemie beeinflussen. Basierend auf Daten der Deutschen Alterssurveys (DEAS) von 2020 und 2021 zeigt die Studie, dass 10,3% der Befragten (N=5456, Durchschnittsalter 67,8 Jahre) Online-Konsultationen nutzten. Höhere Bildung, schlechtere subjektive Gesundheit, häufigere körperliche Aktivität, stärkere Einsamkeit, höhere Lebenszufriedenheit und eine größere wahrgenommene Bedrohung durch COVID-19 waren mit der Nutzung verbunden. Die Ergebnisse betonen die Bedeutung von Bildung, psychosozialen Faktoren und Gesundheitsaspekten für die Telemedizin-Nutzung. (Neumann, König, and Hajek 2025)

11.3 Vergütung über EBM

Die Videosprechstunde kann im ambulanten Bereich für eine Vielzahl von Leistungen eingesetzt und nach dem Einheitlichen Bewertungsmaßstab (EBM) vergütet werden. Dazu

gehören Gesprächsleistungen wie problemorientierte ärztliche Gespräche, psychiatrische und psychotherapeutische Sitzungen (Einzel- und Gruppentherapie), Beratungsgespräche, Verlaufskontrollen sowie spezifische Beratungen (z. B. genetische Beratung oder Schmerztherapie). Zudem sind Notfallpauschalen im organisierten Notfalldienst, Konsiliarpauschalen und Zuschläge für bestimmte Fachgruppen vorgesehen. Auch ambulante spezialfachärztliche Versorgungen (z. B. bei Mukoviszidose oder onkologischen Fallkonferenzen) sowie Videofalkonferenzen mit Pflegekräften oder zur Versorgung von Palliativpatienten sind möglich. Die Abrechnung erfolgt unter bestimmten Bedingungen, etwa mit einer Begrenzung auf maximal 30 % der Behandlungsfälle pro Quartal, und kann mit Abschlägen verbunden sein, wenn keine persönliche Konsultation stattfindet.

Die neue EBM-Gebührenordnungsposition 01443 (gültig ab 1. April 2025) ermöglicht die vergütete Videofallkonferenz zwischen Vertragsärzten und Pflege(fach)kräften, die an der Versorgung eines chronisch pflegebedürftigen Patienten in dessen Häuslichkeit, einer Pflegeeinrichtung oder einer beschützenden Einrichtung beteiligt sind. Der Unterschied zwischen den EBM-Gebührenordnungspositionen 01442 und 01443 liegt in der abrechnungsberechtigten Arztgruppe und dem spezifischen Anwendungsbereich. Während die GOP 01442 nur von koordinierenden Vertragsärzten für die Videofallkonferenz mit Pflege(fach)kräften bei chronisch pflegebedürftigen Patienten abgerechnet werden kann, ist die GOP 01443 (ab April 2025) für alle Vertragsärzte zugänglich, die einen chronisch pflegebedürftigen Patienten mitbehandeln, sofern innerhalb der letzten drei Quartale ein persönlicher Arzt-Patienten-Kontakt stattgefunden hat. Die neue GOP wurde speziell zur Verbesserung der Versorgung von Demenzpatienten eingeführt, ist zunächst für zwei Jahre außerhalb der morbiditätsbedingten Gesamtvergütung angesiedelt und wird zum festen Preis vergütet. Diese Erweiterung erleichtert die interdisziplinäre Abstimmung und stärkt die medizinische Versorgung von Menschen mit Demenz.

Siehe dazu:

- KBV Praxisnachrichten Demenz: Videofallkonferenz mit Pflegefachkräften wird vergütet
- KBV Media Videosprechstunde Vergütung
- Beschluss des Erweiterten Bewertungsausschusses zu EBM Ziffer 01443

11.4 Softwarelösungen

Table 11.1: Übersicht Softwarelösungen Videosprechstunde

Index	Product	Company	URL
1	m.Doc Smart	m.Doc GmbH	smart-
	Practice		practice.mdoc.one

Index	Product	Company	URL
2	VIOMEDI	Facharzt-Sofort-	viomedi.de
		GmbH	
3	Doctolib	Doctolib GmbH	info.doctolib.de
4	samedi	samedi GmbH	samedi.com
5	RED connect plus	RED Medical	redmedical.de
		Systems GmbH	
6	Medikonsil-direkt	Dr. Lipp & Partner	medikonsil-direkt.de
		GbR	
7	${\bf Doccura-Ihre}$	Bayerische	doccura.de
	Online	TelemedAllianz	
	Videosprechstunde	GmbH	
8	arzt-direkt	zollsoft GmbH	arzt-direkt.de
9	ak-WhiteLabel	arztkonsultation ak	${\it arztkonsultation.de}$
		GmbH	
10	ZAVA	ZAVA	sprechstunde.online
	sprechstunde.online	sprechstunde.online	
11	TeleClinic	TeleClinic GmbH	teleclinic.com
12	Clickdoc	CompuGroup	clickdoc.fr
		Medical SE &	
		Co. KGaA	
13	Fernarzt	HealthHero Germany	Fernarzt.com
		GmbH	
14	Jameda	Jameda GmbH	jameda.de
15	$\operatorname{MediQuit}$	MediQuit GmbH	mediquit.de
16	Patientus	Patientus GmbH	patientus.de
17	DrAnsay	DrAnsay GmbH	dransay.com
18	Doxy.me	Doxy.me, Inc.	doxy.me/de
19	Minddistrict	Minddistrict GmbH	Minddistrict
20	Sprechstunde Online	Sprechstunde Online	Sprechstunde Online
		GmbH	
21	Webprax	Webprax GmbH	Webprax
22	Avodaq	Avodaq AG	Avodaq Connected
			Healthcare
23	Medityme	Medityme GmbH	Medityme
24	Videoclinic	A+ Videoclinic GmbH	videoclinic.de

zweitmeinung-arzt.online bietet eine Plattform, um eine ärztliche Zweitmeinung online über eine Videosprechstunde einzuholen. Nutzer können Termine mit Fachärzten buchen, ihre medizinischen Unterlagen hochladen und eine Einschätzung erhalten, ohne lange Wartezeiten oder

Anfahrtswege. Die Plattform, betrieben von der MedRefer GmbH im Auftrag der Konsilado GmbH, richtet sich an Selbstzahler und verspricht Flexibilität, Unabhängigkeit und Vertraulichkeit, wobei die Abrechnung nach der Gebührenordnung für Ärzte (GOÄ) erfolgt.

11.5 Gesetzgebung

Die Anlage 31c zum Bundesmantelvertrag-Ärzte (BMV-Ä), geschlossen zwischen der Kassenärztlichen Bundesvereinigung (KBV) und dem GKV-Spitzenverband, regelt ab dem 1. März 2025 die Anforderungen zur Sicherung der Versorgungsqualität telemedizinischer Leistungen gemäß § 87 Abs. 20 SGB V. Sie ergänzt bestehende Vorgaben (Anlagen 31a und 31b) und zielt darauf ab, Videosprechstunden und Telekonsilien flächendeckend in die vertragsärztliche Versorgung zu integrieren. Kernpunkte umfassen die verpflichtende Nutzung der elektronischen Patientenakte (ePA, § 3), den elektronischen Medikationsplan (§ 4), sowie Vorgaben für niedrigschwelligen Zugang (§ 6) und strukturierte Anschlussversorgung (§ 10). Ab September 2025 wird die räumliche Nähe zwischen Arzt und Patient priorisiert (§ 7), und ein Ersteinschätzungsverfahren für unbekannte Patienten eingeführt (§ 9). Die Vereinbarung betont Datenschutz, Patientensicherheit und technische Standards (Anlage 1), um Qualität und Zugänglichkeit zu verbessern.

Das Ausstellen einer Arbeitsunfähigkeitsbescheinigung (AU) ist in der Videosprechstunde sowohl bei bekannten als auch bei zuvor unbekannten Patientinnen und Patienten möglich, und zwar für bis zu 3 Tage bei unbekannten sowie bis zu 7 Tage bei bekannten Patientinnen und Patienten.

Die Videosprechstunde darf außerhalb des Vertragsarztsitzes durchgeführt werden, sofern der Vertragsarzt weiterhin seinen Verpflichtungen am Ort des Vertragsarztsitzes gemäß § 19a Abs. 1 Sätze 2 und 3 Zulassungsverordnung für Vertragsärzte nachkommt.

12 Telemedizin

12.1 Telemonitoring-Plattformen

- SaniQ: Flexibles Tool für Ärzte; integriert Daten von Chronischkranken via Wearables; Video-Konsultation möglich.
- **BIOTRONIK Home Monitoring:** Fernüberwachung von Herzgeräten; Patienten-App zur Beteiligung.
- inCareNet HF: Für Telemonitoring-Zentren; unterstützt G-BA-Kriterien und Abrechnung.
- Medtronic CareLink: Überwachung implantierter Geräte; einfache Datenübertragung.
- TytoCare: Handgerät für Fernuntersuchungen; Versionen für Kliniken und Heimgebrauch.

12.2 Herzinsuffizienz

- SaniQ HERZ und inCareNet HF ermöglichen die Fernüberwachung für Herzinsuffizienzpatienten.
- Reduziert Krankenhausaufenthalte, verbessert Überlebensraten, und verhindert Dekompensation.
- In Deutschland standardisiert und von Krankenkassen abrechenbar.

12.3 Chronische Lungenerkrankungen

- SaniQ unterstützt die Überwachung von Asthma, COPD, Lungenemphysem und zystischer Fibrose.
- Früherkennung von Verschlechterungen, weniger Arztbesuche.

12.4 Herzrhythmusstörungen

• BIOTRONIK Home Monitoring zur Überwachung von Herzrhythmusstörungen; erkennt subklinische Vorhofflimmern.

12.5 EBM (gesetzliche Krankenversicherung)

- Telemonitoring bei Herzinsuffizienz seit Januar 2022 abrechenbar:
 - GOP 13583: Einweisung und Schulung: €10,92 (1x pro Jahr).
 - GOP 40910: Grundausstattung: €68,00 (1x pro Quartal).
 - GOP 13586: Telemonitoring: €241,32 (1x pro Quartal).
 - GOP 13587: Zusatz für verstärktes Monitoring: €27,01 (1x pro Quartal).
- Maximaler Erstattungsbetrag: Bis zu €1.356,24 pro Patient pro Jahr.
- Telemedizinisches Zentrum (TMZ): Kardiologen können als TMZ abrechnen.
- Infrastruktur: Service- und Infrastrukturkosten werden erstattet.
- Extrabudgetäre Vergütung: Mögliche bei Nutzung von Plattformen wie SaniQ HERZ.

12.6 GOÄ (private Krankenversicherung)

- Gemeinsame Abrechnungsrichtlinien seit Januar 2024:
 - Analog Code 33 GOÄ: Einweisung und Schulung: €17,49/40,22/61,20 (1x zu Beginn).
 - Analog Code 551 GOÄ: Alarme bei Herzimplantaten: €2,80/5,04/6,99 (pro Tag).
 - Analog Code 600 GOÄ: Alarme mit externen Geräten: €4,25/9,79/14,89 (pro Tag).
 - Analog Code 60 GOÄ: Konsultation und Dokumentation: €6,99/16,09/24,48 (pro Arzt).

12.7 Studien zur Wirksamkeit von Telemedizin

12.7.1 Herzinsuffizienz-Telemonitoring

• TIM-HF2-Studie: Zeigte, dass telemedizinische Betreuung bei Herzinsuffizienz positive Ergebnisse liefert, egal wie stark die Pumpfunktion des linken Ventrikels beeinträchtigt ist.

- Meta-Analyse von IN-TIME, ECOST, TRUST (TRUECOIN): Unterstützung für den Nutzen der täglichen Fernüberwachung von ICDs.
- IN-TIME-Studie: Reduzierte Mortalität um 60% und Verschlechterung des Herzversagens um 30%.

12.7.2 Fernüberwachung implantierbarer Geräte

- TRUST-Studie: Reduzierte geplante persönliche Nachkontrollen um 60%.
- COMPAS-Studie: Verringerte Krankenhauseinweisungen um 66% bei Vorhofflimmern.
- ECOST-Studie: Verringerte Hospitalisierungen um 72% bei unangemessenen ICD-Schocks.

12.7.3 DX-Technologie zur Arrhythmie-Erkennung

- MATRIX-Studie: Verbesserte Erkennung subklinischer Vorhofflimmern durch DX-ICD-Systeme.
- THINGS-Register: DX-Systeme erkennen AT/AF fast viermal häufiger.
- SENSE-Studie: Vorteile der DX-ICD-Systeme bei der Erkennung von AHRE.

12.7.4 Telemonitoring bei COPD und Atemwegserkrankungen

- **TELEMENTOR COPD-Studie**: Prüft die Reduktion von Rückfällen bei COPD-Patienten mit SaniQ.
- Studie während der Pandemie: Zeigte Verbesserungen bei Asthma, COPD und SARS-CoV-2 Patienten.
- Mortalität und Kostenstudie (2016): Zeigte, dass digitale Überwachung die Mortalität bei COPD-Patienten halbiert.

12.8 Übersichtstabelle

Table 12.1: Übersicht Telemedizinische Anbieter

Software	Anbieter	URL
1 Qurasoft 2 MedKitDoc 3 TytoCare 4 Getemed	Qurasoft GmbH MedKitDoc GmbH TytoCare Inc. Getemed Medizin- und Informationstechnik GmbH	qurasoft.de medkitdoc.de tytocare.com getemed.de

	Software	Anbieter	URL
5	Biotronik	Biotronik SE & Co. KG	biotronik.com
6	Medtronic	Medtronic GmbH	$\operatorname{medtronic.com}$
7	Abbott	Abbott Laboratories	abbott.com
8	Medgate	Medgate AG	Medgate
9	Zava	Zava GmbH	Zava
10	Sanvartis	Sanvartis GmbH	Sanvartis
11	MD Medicus	MD Medicus GmbH	MD Medicus
12	Dermanostic	Dermanostic GmbH	Dermanostic
13	Cosinuss	Cosinuss GmbH	cosinuss.com
14	Onlinedoctor	Onlinedoctor GmbH	Onlinedoctor
15	Meliva	Meliva GmbH	Meliva
16	TK Doc	Techniker Krankenkasse	TK Doc
17	DAK Online-	Deutsche Angestellten-Krankenkasse	DAK Online-
	Videosprechstunde		Videosprechstunde
18	Clarimedis	AOK PLUS	Clarimedis
	Videosprechstunde		Videosprechstunde
19	Teledoktor	BARMER	Teledoktor
20	Myoncare	Myoncare GmbH	myoncare.com
21	Vita Group	Vita Group AG	Vita Group
22	Veritas	Veritas Videoconsult GmbH	Veritas Videoconsult
	Videoconsult		
23	4Sigma	4Sigma GmbH	4Sigma
24	BetterDoc	BetterDoc GmbH	$\operatorname{BetterDoc}$
25	iSansys	iSansys GmbH	isansys.com
25	IEM	IEM GmbH	iem.de
25	Hedy	Hedy GmbH	hedy.de
26	Pinzon Health	Pinzon Health GmbH	pinzon.health
27	Platform24	Platform24 GmbH	platform 24.com
28	Smart Care	Smart Care GmbH	smart care health. de
29	Semdatex	Semdatex GmbH	semdatex.com
30	ZTM	ZTM GmbH	ztm.de
31	Noah Labs	Noah Labs GmbH	noah-labs.com
32	ProCarement	ProCarement GmbH	procarement.com
33	i-atros	i-atros GmbH	i-atros.com
34	Doccla	Doccla GmbH	doccla.de
35	Luscii	Luscii Healthtech B.V.	luscii.com
36	SaniQ	Qurasoft GmbH	SaniQ
36	esysta Diabetes	esysta GmbH	esysta-diabetes.com
37	Vivora	Vivora Health GmbH	vivora.health
38	Actimi	Actimi GmbH	actimi.com

12.9 Photoplethysmographie (PPG)

Image Photoplethysmographie (iPPG) ist eine berührungslose Methode zur Messung von Herzfrequenz und Blutdruck, indem Lichtintensitätsänderungen im Gesicht mittels Webcam aufgezeichnet werden, wie in einer Studie von Trirongjitmoah et al. (Heliyon, 2024) beschrieben. Die Analyse von 100 Probanden zeigte eine starke Korrelation der iPPG-Herzfrequenz mit einem oszillometrischen Blutdruckmessgerät. Für die Blutdruckschätzung wurden 6-Sekunden-Segmente des iPPG-Signals mittels kontinuierlicher Wavelet-Transformation und einem kompakten Convolutional Neural Network (CNN) verarbeitet, mit Ergebnissen von Grad A für diastolischen und Grad B für systolischen Blutdruck nach den Kriterien der British Hypertension Society. Die Methode erfüllt auch die Standards der Association for the Advancement of Medical Instrumentation und bietet Potenzial für effiziente, nicht-invasiveScreenings, bleibt aber auf klare Signale unter kontrollierten Bedingungen angewiesen. (Trirongjitmoah et al. 2024)

Remote Photoplethysmographie (rPPG) ermöglicht die berührungslose Messung physiologischer Parameter wie Herzfrequenz durch Analyse von Hautlichtveränderungen in Videos, wie in einer Studie von Di Lernia et al. (2024) untersucht. Die Autoren entwickelten ein Open-SourcerPPG-Verfahren, das Herzfrequenz aus Online-Webcam-Videos extrahiert, selbst unter unkontrollierten Bedingungen wie variierender Beleuchtung oder Bewegung. In zwei Experimenten wurde die Methode validiert: Zuerst gegen den CohFace-Datensatz (Laborkonditionen) und dann mit 231 Online-Videos von 18 Teilnehmern, verglichen mit Fingerpulsoximeter-Daten. Die Ergebnisse zeigten eine hohe Genauigkeit (Spearman-Korrelation rs = 0.752 im Labor, Pearson r = 0.578 online), trotz Herausforderungen wie Signalrauschen und schlechter Videoqualität. (Di Lernia et al. 2024)

Die Studie von Allado et al. (2022) untersuchte die Genauigkeit der Remote-Photoplethysmographie (rPPGc) zur Messung der Herzfrequenz (HR) in klinischen Alltagssituationen anhand von 963 Patienten, die eine Lungenfunktionsprüfung benötigten. Mit dem rPPGc-System Caducy v1.0.0 wurden HR-Messungen per Webcam gleichzeitig mit einem Standard-EKG (Goldstandard) über 60 Sekunden durchgeführt. Die Ergebnisse zeigten eine hohe Übereinstimmung (ICC = 0.886, CI95 [0.871–0.899]), wobei 94,6 % der Messungen im Bland-Altman-Plot innerhalb des CI95 lagen, was eine Genauigkeit von 96,2 % ergab. Alter, Geschlecht und Hautphototypen 1–4 beeinflussten die Präzision nicht, jedoch war die Stichprobe für dunklere Hauttöne (FSP 5–6) zu klein für definitive Aussagen. Die Studie bestätigt das Potenzial von rPPGc für HR-Messungen in der Telemedizin. (Allado et al. 2022)

Table 12.2: Beispiele PPG Anwendungen

Anwendung	URL
CheckBP	checkbp.com

Anwendung	URL
Pulse HRV by Camera BLE ECG	play.google.com

12.10 Forschung

Das Innovationsfondsprojekt Stay@Home – Treat@Home (STH), gefördert vom Gemeinsamen Bundesausschuss (G-BA), zielt darauf ab, die Versorgung pflegebedürftiger Menschen in Berlin zu Hause zu verbessern. Durch ein telemedizinisches Netzwerk und ein digitales interaktives Gesundheitstagebuch (DiG) werden Gesundheitsdaten in Echtzeit erfasst und geteilt, um frühzeitig Verschlechterungen zu erkennen und ungeplante Krankenhausaufenthalte zu reduzieren. Unter der Leitung der Charité – Universitätsmedizin Berlin arbeiten Partner wie die Kassenärztliche Vereinigung Berlin, Johanniter-Unfall-Hilfe und Malteser Hilfsdienst zusammen.

Die Studie "Healthcare utilization in a cohort receiving chronic disease specialty care by video telemedicine compared to propensity-matched adults not using telemedicine" untersucht die Nutzung von Telemedizin und deren Auswirkungen auf die Inanspruchnahme von Gesundheitsleistungen. Sie wurde im Alaska Tribal Health System durchgeführt und nutzte elektronische Gesundheitsdaten von Erwachsenen mit chronischen Erkrankungen, die zwischen Juli und Dezember 2021 Spezialistenbesuche hatten. Die Studie vergleicht Telemedizin-Nutzer mit einer propensity-score-ange passten Kontrollgruppe, die keine Telemedizin nutzte, und analysiert Krankenhausaufenthalte, ambulante Besuche und Notfallbesuche im Jahr 2022. Telemedizin-Nutzer waren etwas älter, hatten mehr chronische Erkrankungen und lebten in unterschiedlichen Regionen. Die Ergebnisse zeigen eine nicht-signifikante Erhöhung der Inanspruchnahme von Gesundheitsleistungen bei Telemedizin-Nutzern, was im Kontext von Patientenpräferenzen und potenziellen Vorteilen der Telemedizin betrachtet werden sollte. (Ferucci, Arnold, and Holck 2025)

Die Studie "Virtual urgent care in an integrated value based healthcare system" untersucht die telemedizinische Akutversorgung (VUC) im Rahmen des integrierten, wertorientierten Gesundheitssystems der Southern California Permanente Medical Group (SCPMG). Das Programm "Get Care Now" (GCN) bietet rund um die Uhr telemedizinische Konsultationen und ergänzt die stationären Notfallambulanzen (UCC). Die Studie vergleicht Patientendemografien, Wartezeiten, Rückkehrquoten und Patientenzufriedenheit zwischen GCN und UCC. GCN-Nutzer, überwiegend weiblich und hispanisch, hatten kürzere Wartezeiten (21,19 Minuten weniger) und eine hohe Zufriedenheitsrate (Net Promoter Score von 87). Rückkehrquoten zum Notfall oder UCC waren vergleichbar, und GCN zeigte geringere Antibiotikaverschreibungen. Die Ergebnisse belegen, dass GCN die Notfallversorgung nachhaltig unterstützt und die Belastung stationärer Einrichtungen reduziert. (Nguyen et al. 2025)

12.11 Telemedizin in ländlichen Gebieten

Neben ePAs haben auch weitere digitale Technologien, wie Telemedizin, die Patientenversorgung nachhaltig verändert. Die Implementierung von Telemedizinlösungen hat insbesondere in ländlichen Gebieten gezeigt, wie der Zugang zur Gesundheitsversorgung verbessert werden kann, ohne dabei die Qualität der Behandlung zu beeinträchtigen (Wilcox et al. 2008). Diese Technologien erfordern jedoch eine sorgfältige Integration in bestehende Arbeitsprozesse, um von allen Beteiligten akzeptiert zu werden (Versluis et al. 2020).

Die wissenschaftliche Untersuchung "The Empirical Foundations of Telemedicine Interventions in Primary Care" analysiert die Wirksamkeit von Telemedizin im Bereich der Primärversorgung. Die Ergebnisse basieren auf einer systematischen Überprüfung von Studien, die zwischen 2005 und 2015 veröffentlicht wurden. Von den anfänglich 2.308 identifizierten Artikeln erfüllten 86 die Einschlusskriterien. Die Mehrheit der Studien unterstützt die Machbarkeit und Akzeptanz von Telemedizin in der Primärversorgung. Allerdings variieren die Ergebnisse je nach demografischen Faktoren wie Geschlecht, Alter und sozioökonomischem Status. Patienten zeigen oft eine höhere Akzeptanz gegenüber Gesundheitsdienstleistern. Die Daten zu Zwischenzielen sind begrenzt, deuten jedoch darauf hin, dass Telemedizininterventionen in der Regel mindestens genauso effektiv sind wie traditionelle Versorgung. Kostenanalysen variieren, aber Telemedizin in der Primärversorgung wird zunehmend als kosteneffektiv angesehen. (Bashshur et al. 2016)

Die Studie mit dem Titel "Health technology assessment for digital technologies that manage chronic disease: a systematic review" untersucht bestehende Bewertungsrahmen für digitale Gesundheits-Technologien (DHTs), die chronische Krankheiten zu Hause managen. Die Autoren identifizierten 44 relevante Bewertungsrahmen, die sich hauptsächlich auf klinische Effektivität und Sicherheit konzentrieren. Dabei empfahlen sie spezifische Inhalte für die Beurteilung von DHTs in 28 der 145 HTA Core Model-Themen. Zusätzlich wurden 22 DHT-spezifische Themen identifiziert, die noch nicht in bestehenden Modellen enthalten sind. Die Autoren schließen, dass die aktuellen Bewertungsrahmen für DHTs nicht ausreichen und planen, ein ergänzendes Evaluierungsframework zu entwickeln. (Huben et al. 2021)

Das PERCS Framework (Planning and Evaluating Remote Consultation Services) hilfe Fernkonsultationen im Gesundheitswesen zu bewerten und zu planen, insbesondere im Kontext der COVID-19-Pandemie. Es basiert auf einer umfangreichen empirischen Datensammlung aus verschiedenen UK-Studien zur Einführung und Skalierung von Fernkonsultationen. Das Framework umfasst sieben Domänen: der Grund für die Konsultation, der Patient, die klinische Beziehung, das Zuhause und die Familie, Technologien, Personal, die Gesundheitsorganisation und das Gesundheitssystem. Die Hauptergebnisse zeigen, dass die Interaktionen auf verschiedenen Ebenen (individuell, organisatorisch und systemisch) die Einführung und Bereitstellung von Fernkonsultationen stark beeinflussen. Insbesondere wurde ein Paradoxon aufgedeckt: Während politische Entscheidungsträger von effizienten, sicheren und zugänglichen Fernkonsultationen ausgingen, zeigte die empirische Untersuchung, dass die tatsächliche Umsetzung von Fernkonsultationen in der Praxis häufig mit Widersprüchen

und ethischen Dilemmata verbunden war, wie etwa bei der Verwendung von Technologien zur Triagierung von Patienten oder der Balance zwischen digitaler und relationaler Kontinuität. (Greenhalgh et al. 2021)

Die Studie von Knapp et al. untersucht den Einsatz von Patient-reported Outcome Measures (PROMs) und Patient-reported Experience Measures (PREMs) in der Evaluierung von Telemedizin. Von 2671 identifizierten Studien wurden 303 (11,34 %) in die Analyse einbezogen, darunter randomisierte kontrollierte Studien, nicht kontrollierte Studien und Machbarkeitsstudien. Die am häufigsten untersuchten Ergebnisdomänen waren die gesundheitsbezogene Lebensqualität, emotionale Funktion und Adhärenz. PROMs wurden häufiger als PREMs verwendet, und selbst entwickelte Instrumente kamen in 21,4 % der Studien vor. Es wurde festgestellt, dass die Verwendung von PROMs mit dem Anstieg des Evidenzniveaus der Studien zunahm, während PREMs weniger häufig verwendet wurden. Zudem hat die Anzahl der Studien, die PROMs und PREMs verwenden, seit 2000 zugenommen, ebenso wie die Anzahl der verwendeten Messinstrumente. Es gibt eine zunehmende Verwendung von PROMs und PREMs in Evaluierungsstudien zur Telemedizin, wobei PROMs häufiger als PREMs eingesetzt werden. Mit der zunehmenden Reife der Telemedizinanwendungen und höherem Evidenzniveau stieg der Einsatz von PROMs. Obwohl häufig die gesundheitsbezogene Lebensqualität und emotionale Funktion gemessen wurden, wurde Gesundheitskompetenz, die für die Nutzung der Anwendungen wichtig ist, nur selten berücksichtigt. Weitere Bemühungen sollten unternommen werden, um die Erhebung von PROMs und PREMs in Evaluierungsstudien zu standardisieren. (Knapp et al. 2021)

Video-Konsultationen erwiesen sich als besonders nützlich bei Konsultationen außerhalb der regulären Sprechzeiten, in Pflegeheimen und für spezifische Aufgaben. Die Studie schlussfolgert, dass die Einführung von Video-Konsultationen in der Praxis verstärkt auf Szenarien fokussiert werden sollte, in denen diese Methode einen klaren Vorteil bietet, wie etwa in abgelegenen Gegenden, außerhalb der regulären Sprechzeiten oder in Fällen, in denen Patienten oder Ärzte eine starke Präferenz für Video-Konsultationen haben. Trotz Verbesserungen in der Funktionalität, Zuverlässigkeit und Benutzerfreundlichkeit von Video-Technologien wurde ihre Nutzung oft als weniger effizient im Vergleich zu anderen Methoden wie Telefonkonsultationen oder persönlichen Untersuchungen wahrgenommen. (Greenhalgh, Ladds, et al. 2022)

Im Rahmen einer Mixed-Methods-Studie, die Interviews, ethnographische Beobachtungen und Dokumentenanalysen umfasst, wurden die Praxen über einen Zeitraum von zwei Jahren begleitet. Die Studie untersucht, wie 11 britische Allgemeinarztpraxen die Einführung und Integration von Fernbehandlungen (telefonisch, per Video oder online) im Rahmen der COVID-19-Pandemie umsetzen. Ziel ist es, zu verstehen, wie diese Praxen Fern- und Präsenzbehandlungen miteinander in Einklang bringen und welche Herausforderungen dabei auftreten. Die Praxen variieren in Größe, geografischer Lage, Demografie und digitaler Reife, haben jedoch gemeinsame systemische Herausforderungen, wie hohe Arbeitsbelastung und Personalmangel. Die Studie identifizierte mehrere zentrale Themen: 1) Die Verwaltung des "digitalen Eingangs", also der Zugang und Triage der Patienten über digitale Portale, wobei einige Praxen

mit diesen Systemen unzufrieden waren. 2) Qualitäts- und Sicherheitsbedenken, insbesondere hinsichtlich des Risikos, wichtige Diagnosen bei Fernbehandlungen zu übersehen. 3) Die digitale Inklusion, bei der sich die Praxen bemühten, Patienten ohne digitale Geräte oder Fähigkeiten nicht zu benachteiligen. 4) Die Unterstützung und Schulung des Personals, wobei einige Praxen Schwierigkeiten hatten, den Arbeitsaufwand zu bewältigen. 5) Die Auswahl und Implementierung von Technologien, die oft von der bisherigen Infrastruktur der Praxis abhängig waren und sich nur schwer ändern ließen. Die Ergebnisse zeigen, dass die Reaktionen der Praxen auf die digitale Transformation sehr unterschiedlich ausfallen, je nach den spezifischen Bedürfnissen und Prioritäten der jeweiligen Praxis. In der weiteren Studie werden diese Themen weiterhin verfolgt und erweitert, einschließlich der Erfahrungen und der Rolle der Patienten. (Greenhalgh, Shaw, et al. 2022)

12.12 Nachhaltigkeit

Die Studie "Decarbonizing Health Care: Measuring the Carbon Footprint Impact of a National VA Telehealth Program" untersucht, wie sich die Nutzung eines nationalen Telemedizin-Programms des US-Veteranen-Systems (VA) auf den CO -Fußabdruck des Gesundheitswesens auswirkt. Die Autoren analysieren, inwieweit Telemedizin durch die Reduktion von patientenbezogenen Reisen zu einer signifikanten Verringerung der Treibhausgasemissionen beiträgt. (Weppner et al. 2025) Ähnliche nationale Analysen zeigen, dass Telemedizin in den USA pro Sitzung eine mittlere Einsparung von etwa 20 kg CO ermöglicht und im Zeitraum 2021–2022 zu einer Gesamtreduktion von etwa 1,4 Millionen Tonnen CO geführt hat, indem sie physische Anfahrten zu medizinischen Einrichtungen ersetzt hat. Die Ergebnisse unterstreichen, dass Telemedizin ein effektives Instrument zur Dekarbonisierung des Gesundheitswesens darstellt, insbesondere durch die Vermeidung von Reiseemissionen, wobei der größte Nutzen in ländlichen Regionen mit langen Anfahrtswegen erzielt wird. (Madison et al. 2024; Cummins et al. 2024)

Die Studie "Aligning With the Goals of the Planetary Health Concept Regarding Ecological Sustainability and Digital Health: Scoping Review" untersucht den Einfluss der Digitalisierung im Gesundheitswesen auf ökologische Nachhaltigkeit. Sie analysiert 58 Studien, hauptsächlich zu Telemedizin, und zeigt, dass diese erhebliche CO -Einsparungen ermöglicht, etwa 830 Millionen kg durch vermiedene Transportemissionen. Zudem werden soziale Vorteile wie Patientenzufriedenheit und wirtschaftliche Aspekte wie Kostensenkungen beleuchtet. Die Studie betont jedoch, dass nur wenige Untersuchungen den gesamten Lebenszyklus digitaler Technologien berücksichtigen, und fordert weitere Forschung, um die langfristige Nachhaltigkeit zu gewährleisten. Das Planetary Health-Konzept dient als Leitrahmen für eine nachhaltige digitale Transformation im Gesundheitswesen. (Berger, Ehlers, and Nitsche 2025)

12.13 Internet of Things IoT

Die Studie "Understanding consumer acceptance of healthcare wearable devices: An integrated model of UTAUT and TTF" untersucht die Akzeptanz von tragbaren Gesundheitsgeräten (HWDs) durch Verbraucher. Sie integriert die Modelle UTAUT (Unified Theory of Acceptance and Usage of Technology) und TTF (Task-Technology Fit), um Faktoren zu analysieren, die die Nutzungsabsicht beeinflussen. Die Ergebnisse zeigen, dass Leistungserwartung, Aufwandserwartung, sozialer Einfluss, unterstützende Bedingungen und die Passung von Aufgabe und Technologie die Akzeptanz positiv beeinflussen und 68 % der Varianz der Nutzungsabsicht erklären. Die Studie betont die Bedeutung von Nutzerwahrnehmungen und der funktionalen Übereinstimmung von HWDs mit den Anforderungen gesundheitlicher Aktivitäten. Praktische und theoretische Implikationen werden diskutiert, um die Nutzung von HWDs zu fördern. (H. Wang et al. 2020)

13 Wartezimmer

Warteraummanagement kann durch Technologien wie Selbstanmeldesysteme, Patientenaufrufsysteme und digitale Unterhaltungslösungen optimiert werden, um Wartezeiten zu verkürzen und den Patientenfluss effizienter zu gestalten. Diese Systeme verbessern die Patientenerfahrung, reduzieren den administrativen Aufwand und helfen dabei, den Datenschutz zu wahren.

Table 13.1: Übersicht Softwareanwendungen im Wartezimmer

Index	Produkt	Unternehmen	URL
1	mediDOK eTerminal	mediDOK Software Entwicklungsge- sellschaft mbH	eterminal.de
2	Quickticket	Quickticket GmbH	quickticket.io
3	Oxygen.Q - Patiente- naufrufsystem	DOOH media GmbH	OxygenQ.net
4	Wartezimmer-TV	Meyer-Wagenfeld	meyer-wagenfeld.de
5	Patiententerminal	eKiosk GmbH	patiententerminal.de
6	ArztPager	Alpha11 GmbH	arzt-pager.de
7	D-Pad	DeGIV GmbH	degiv.net/d-pad
8	WifiMedia4Patients	BerLinux Solutions GmbH	www.wifimedia4patients.d

Part II Klinische Kompetenzen

14 Anamnese & Dokumentation

14.1 Einleitung

Digitale Lösungen in Arztpraxen ermöglichen die effiziente Verwaltung von Patientendaten, Anamnesen, Schulung und Dokumentation.

- Patientenaufnahme und Anamnese: Patienten können mit Tools wie Idana und Simpleprax ihre Anamnesebögen vorab digital ausfüllen, wobei Simpleprax auch die digitale Unterschrift und Verwaltung administrativer Dokumente ermöglicht.
- Patientenschulung: Digitale Plattformen wie Simpleprax, medudoc und MAIA bieten aktuelle, rechtlich abgesicherte Bildungsressourcen an, wobei medudoc durch Videos und eine personalisierte Herangehensweise punktuell ist.
- Dokumentation: Die digitale Erfassung von Patientendaten, Behandlungsverläufen, Abrechnungen durch elektronische Signaturen sichert die rechtliche Konformität.
- Daten-Synchronisation: Daten aus digitalen Anamnesen können über Schnittstellen wie GDT, VDDS, oder FHIR in Echtzeit mit Patientenakten synchronisiert werden, für eine Integration in verschiedene IT-Systeme.
- Formularmanagement: Simpleprax bietet die Möglichkeit, Dokumentvorlagen anzupassen und spezifische Formulare zu erstellen.
- Prozessautomatisierung: Software für digitale Anamnese automatisiert die Übertragung von Formularen, um die Abläufe in der Praxis zu optimieren.
- Nachsorge und Qualitätssicherung: MAIA unterstützt spezifische Nachsorgemodule, und strukturierte Patientenbefragungen wie ePRO dienen der Qualitätssicherung.

14.2 Anamnesewerkzeuge

Table 14.1: Übersicht Softwarelösungen digitale Anamnese & Dokumentation

Anbieter	Webseite	Beschreibung
Starc	Starc	PatientInnen
		können
		aus mehr
		als 12
		Sprachen
		wählen
		und
		digitale
		Anamne-
		sebögen
		per PC,
		Smart-
		phone
		oder
		Tablet
		vorab
		ausfüllen.
		Teilen des
		Anamne-
		sebogens
		per
		$\overline{\mathrm{QR} ext{-}\mathrm{Code}}$
		oder
		Internet-
		seite
		möglich.

Anbieter	Webseite	Beschreibung
Idana	Idana	Eine von
		Ärzten
		entwick-
		elte
		Software
		zur
		digitalen
		Anam-
		nese von
		zu Hause
		oder in
		der
		Praxis.
		Unter-
		stützt
		Smart-
		phones,
		Tablets
		und Com-
		puter.
		Integriert
		sich in
		Praxisver-
		wal-
		tungssys-
		teme und
		bietet
		Funktio-
		nen wie
		Patiente-
		naufk-
		lärung
		und
		Formula-
		rmanage-
		ment.

Anbieter	Webseite	Beschreibung
$\overline{\text{CGM}}$	AmbulApps	Digitale
		Lösungen
		für
		Anam-
		nese und
		Doku-
		menta-
		tion in
		der
		Praxis.
		$\operatorname{Er} ext{-}$
		${ m m\"{o}glicht}$
		PatientIn-
		nen,
		relevante
		Informa-
		tionen
		über ein
		integri-
		ertes
		Patien-
		$\operatorname{tenportal}$
		vorab zu
		übermit-
		teln.

Anbieter	Webseite	Beschreibung
//AIA.tools	MAIA.tools	Plattform
		für
		digitale
		Anam-
		nese,
		Patiente-
		naufk-
		lärung
		und
		Nach-
		sorge.
		Unter-
		stützt
		ePRO
		(elec-
		tronic
		Patient-
		Reported
		Out-
		comes).
		Patienten
		können
		Anamne-
		sebögen
		online
		ausfüllen.
		Reported Out- comes). Patienter können Anamne- sebögen online

Anbieter	Webseite	Beschreibung
Simpleprax	Simpleprax	Unterstützt
		digitale
		Anam-
		nese,
		Verwal-
		tung und
		Aufk-
		lärungs-
		doku-
		mente.
		Daten
		werden in
		Echtzeit
		mit der
		Patiente-
		nakte
		synchro-
		nisiert.
		Koopera-
		tion mit
		Thieme
		und
		Meducoc.

Anbieter	Webseite	Beschreibung
Dr. QEN	Dr. QEN	Kontaktlose
		und pa-
		pierlose
		Kommu-
		nikation
		mit
		Patienten.
		Digitale
		Anam-
		nese und
		Doku-
		menten-
		verwal-
		tung per
		Smart-
		phone
		oder
		QR-Code.
		Online-
		Terminbuchung
		möglich.

Anbieter	Webseite	Beschreibung
Infoskop	Infoskop	Digitale
_	-	Anam-
		nese von
		zu Hause
		oder vor
		$\operatorname{Ort},$
		digitaler
		Check-in
		und
		Doku-
		menten-
		verwal-
		tung.
		DSGVO-
		konformes
		Mailsys-
		tem und
		Videosprech-
		stunde
		integri-
		ert.
		OI U.

Anbieter	Webseite	Beschreibung
mediDOK eForms	mediDOK eForms	Digitales
		Ausfüllen
		von For-
		mularen,
		Anamnese-
		und
		Aufk-
		lärungs-
		bögen
		online
		ausfüll-
		bar.
		Daten
		können
		direkt ins
		Praxis-
		archiv
		übernom-
		men
		werden.
		Integra-
		tion in
		PVS
		abhängig
		vom
		System.

Anbieter	Webseite	Beschreibung
myMedax	myMedax	Digitale
		Fragebogen-
		Software
		für Tablet
		und
		Browser.
		Erfassung
		von
		Anam-
		nese,
		Befra-
		gung und
		Aufk-
		lärung.
		Eigener
		Fragebo-
		geneditor
		für indi-
		viduelle
		Formu-
		lare.
AnaBoard	AnaBoard	Plattform
		für
		digitale
		Anam-
		nese und
		Patiente-
		naufk-
		lärung.
		Gewinner
		$\operatorname{digiPraxis}$
		KVWL
		2020 in
		der
		Kategorie
		Online-
		Terminbuchung
		und
		Videosprech-
		stunde.

Anbieter	Webseite	Beschreibung
Nelly	Nelly	Plattform
-	-	für
		digitale
		Patien-
		tenkom-
		munika-
		tion.
		Funktio-
		nen wie
		Termin-
		verein-
		barung,
		Erin -
		nerungen,
		Aufk-
		lärung
		und
		digitale
		Anam-
		nese
		durch
		Online-
		Formulare.

Anbieter	Webseite	Beschreibung
Docyet	Docyet	KI-
·	·	gestützte
		digitale
		Anam-
		nese mit
		medizinis-
		cher
		Erstein-
		schätzung.
		Automa-
		tische
		Triage
		und
		Vorschläge
		für
		mögliche
		Differen-
		tialdiag-
		nosen.

Anbieter	Webseite	Beschreibung
Bingli	Bingli	KI-
		gestützte
		Patiente-
		nanam-
		nese mit
		intelligen-
		ten
		medizinis-
		chen
		Fragebö-
		gen.
		Anam-
		nese zu
		Hause
		oder per
		Spracheingabe
		möglich.
		Unter-
		stützung
		mehrerer
		Sprachen
		und
		Telemedi-
		zin.

14.3 Dokumentation

Table 14.2: Übersicht Softwarelösungen Dokumentation

Anbieter	Webseite	Beschreibung
medudoc	medudoc	Bietet
		eine
		digitale
		Plat-
		tform für
		Patiente-
		naufk-
		lärung
		mit
		personal-
		isierten
		Videos.
		Patienten
		können
		sich
		vorab
		über
		geplante
		Eingriffe
		in-
		formieren.

Anbieter	Webseite	Beschreibung
Dragon Medical One	Dragon Medical One	Eine
		cloud-
		basierte
		Spracherken-
		${ m nungs}{ m soft}$ -
		ware für
		medizinis-
		$_{ m che}$
		Doku-
		men-
		tation per
		Spracheingabe
		Nutzt KI
		und Deep
		Learning,
		um sich
		an das
		Vokabu-
		lar der
		Praxis
		anzu-
	voice4medicine	passen.
voice4medicine (Dragon		Eine
Medical)		Spracherken-
,		nungslö-
		sung für
		den medi-
		zinischen
		Bereich,
		die auf
		Dragon
		Medical
		basiert
		und die
		Doku-
		menta-
		tion
		durch
		Spracheingabe
		erle-
		ichtert.

Anbieter	Webseite	Beschreibung
Eudaria	Eudaria	KI-
		basierte
		Software,
		die
		während
		der
		Sprech-
		stunde
		automa-
		tisch
		dokumen-
		tiert.
		Nutzt die
		neuesten
		Entwick-
		lungen
		im
		Bereich
		der
		großen
		Sprach-
		modelle
		(LLMs).

Anbieter	Webseite	Beschreibung
Schicksma.online	Schicksma.online	Mit der
		Software
		können
		Patien-
		tendaten
		wie
		Laborbe-
		funde,
		Arzt-
		briefe
		und Pri-
		vatrech-
		nungen
		verschlüs-
		selt
		direkt
		online an
		Patienten
		gesendet
		werden.
CGM one Doku-Assistent	CGM one Doku-Assistent	Ein
	<u> </u>	Doku-
		menta-
		tionsassis-
		tent von
		Compu-
		Group
		Medical,
		der die
		medizinis-
		che
		Doku-
		menta-
		tion
		erle-
		ichtert.

Anbieter	Webseite	Beschreibung
HCQS	HCQS	SMASS/SmED
		ist eine
		web-
		basierte
		Software
		zur
		schnellen
		und
		sicheren
		Ein-
		schätzung
		von
		Alltags-
		beschwer-
		den und
		medizinis-
		chem
		Ver-
		sorgungs-
		bedarf.
		Unter-
		stützt
		Gesprächs-
		führung
		und
		Doku-
		menta-
		tion.

Anbieter	Webseite	Beschreibung
Thieme Compliance	Thieme Compliance	Bietet
		Lösungen
		für
		Patiente-
		naufk-
		lärung
		und -
		information,
		ein-
		schließlich
		digitaler
		Aufk-
		lärungs-
		bögen,
		die
		bereits
		zuhause
		ausgefüllt
		werden
		können.
Noa (Jameda GmbH)	Noa	Nimmt
,		das Arzt-
		Patienten-
		Gespräch
		auf,
		dokumen-
		tiert den
		Verlauf
		und
		erstellt
		am Ende
		einen
		Bericht.
		Integra-
		tion in
		ePA und
		PVS.

Anbieter	Webseite	Beschreibung
voize GmbH	voize	Pflegekräfte
		können
		die Doku-
		menta-
		tion frei
		am
		Smart-
		phone
		ein-
		sprechen.
		Die
		Software
		erstellt
		automa-
		tisch die
		passenden
		Pflege-
		berichte
		und
		überträgt
		diese ins
		Doku-
		menta-
		tionssys-
		tem.
Noteless AS	noteless.com/de	Noteless
	,	erstellt
		klinische
		Notizen
		aus Pa-
		tientenge-
		sprächen
		zum
		Einfügen
		in die
		Patiente-
		nakte.

Medicstream ist eine Plattform, die Ärzten und Behandlungsteams ermöglicht, Patienten vor oder nach Gesprächen individuelle Informationen zu Erkrankungen und Behandlungen bere-

itzustellen. Über personalisierte Videoclips und digitale Inhalte, wie Kurse oder Apps, können Ärzte maßgeschneiderte "Infoboxen" erstellen, die Patienten zeit- und ortsunabhängig nutzen können. Die Plattform entlastet Arzt-Patienten-Gespräche, indem sie Grundaufklärung digital vermittelt, und ist intuitiv ohne Vorkenntnisse nutzbar.

14.4 Triagewerkzeuge

Der Patienten-Navi, ein digitales Tool der Kassenärztlichen Bundesvereinigung (KBV), das Hilfesuchenden eine Selbsteinschätzung ihrer medizinischen Beschwerden ermöglicht. Über einen Chatbot beantworten Nutzer Fragen zu ihren Symptomen, woraufhin die Software "Strukturierte medizinische Ersteinschätzung in Deutschland" (SmED) Warnhinweise prüft und Empfehlungen zur Dringlichkeit und Versorgungsstufe (z. B. Arztpraxis, 116117 oder 112) gibt. Das Angebot ist anonym, ohne Anmeldung nutzbar und unterstützt die Entlastung des ärztlichen Bereitschaftsdienstes, indem es Patienten orientiert und bei Bedarf an weitere Dienste vermittelt.

Infermedica, ein polnisches Unternehmen, bietet für den deutschen Markt KI-gestützte Symptom-Checker und virtuelle Triage-Dienste an (symptomate.com). Diese helfen Patienten, Symptome zu bewerten und Diagnosen zu erhalten, während Gesundheitsdienstleister effizienter triagieren können. Anpassbar an deutsche Standards, unterstützt Infermedica Krankenkassen und Kliniken bei der Digitalisierung, entlastet Personal und passt zur elektronischen Patientenakte (ePA).

XUND bietet eine KI-gestützte "Patient Interaction Suite", die den gesamten Patientenweg von Prävention über Diagnose bis zur Nachsorge digitalisiert. Zu den Kernangeboten zählen vier Module: "Symptom Check" zur Identifikation möglicher Ursachen von Symptomen, "Illness Check" zur Bewertung spezifischer Krankheitsvermutungen, "Health Check" für präventive Risikoanalysen und "Patient Monitoring" für automatisierte Nachsorge. Diese Lösungen sind als API-first-Medizinprodukte konzipiert, die sich flexibel in bestehende Systeme integrieren lassen und über 520 Krankheiten sowie 21.000 Symptomvarianten abdecken. Zusatzfunktionen wie "Medical Content" mit Selbsthilfetipps, "Data Insights" für detaillierte Analysen und "Ecosystem Management" zur Verknüpfung mit Gesundheitsdienstleistern ergänzen das Angebot. XUND richtet sich an Gesundheitsdienstleister, Versicherungen und Pharmaunternehmen, ist als Klasse-IIa-Medizinprodukt nach MDR zertifiziert und fördert eine präzise, zugängliche Gesundheitsversorgung. XUND wird primär für den europäischen Markt angeboten, mit einem starken Fokus auf den deutschsprachigen Raum (Österreich, Deutschland, Schweiz), da das Unternehmen seinen Sitz in Wien hat.

Das Forschungsprojekt DokPro ist ein modulares KI-System, das Notaufnahmen entlastet, indem es die Erstanamnese automatisiert. Patienten kommunizieren in einer Kabine mit einem Avatar, der Vitalparameter wie Herzfrequenz und Blutsauerstoff misst und gezielte Fragen stellt. Das System erstellt einen detaillierten PDF-Bericht, der automatisch ins Krankenhausinformationssystem (KIS) übertragen wird.

14.5 Aufklärung

Der ArztAvatar ist ein Werkzeug für Ärzte, das auf künstlicher Intelligenz basiert und die Kommunikation zwischen Arzt und Patient optimiert. Es ermöglicht die Erstellung eines digitalen Avatars, der Patienten in verschiedenen Sprachen und rund um die Uhr Informationen zu Behandlungen, Terminen oder medizinischen Fragen liefert. Durch die einfache Integration in Praxis-Websites oder Apps verbessert es die Patientenbindung und entlastet das Praxispersonal.

14.6 Ambient Scribe

Gordon D. Schiff beschreibt in "AI-Driven Clinical Documentation — Driving Out the Chitchat?" die persönliche Erfahrung mit dem Einsatz von Künstlicher Intelligenz (KI) in der klinischen Dokumentation. Er beleuchtet, wie KI-basierte Tools wie Spracherkennung und automatische Notizgenerierung die Effizienz in der medizinischen Dokumentation steigern können, indem sie redundante oder irrelevante Informationen ("Chitchat") reduzieren. Gleichzeitig warnt Schiff vor potenziellen Risiken, wie dem Verlust wichtiger klinischer Nuancen oder der Überautomatisierung, die die Arzt-Patient-Interaktion beeinträchtigen könnte. Der Artikel fordert einen ausgewogenen Ansatz, um die Vorteile von KI zu nutzen, ohne die Qualität der Patientenversorgung zu gefährden. (Schiff 2025)

15 Symptomchecker

15.1 Beispielawendungen

Table 15.1: Beispiele Symptomchecker

Name	URL
Mediktor	my.mediktor.com
Ada	ada.com
Symptoma	symptoma.com

15.2 Studien

Die Studie "Correlating global trends in COVID-19 cases with online symptom checker self-assessments" von Marc Zobel, Bernhard Knapp, Jama Nateqi und Alistair Martin, veröffentlicht am 10. Februar 2023 in PLOS ONE, untersucht die Beziehung zwischen den Risikobewertungen eines Online-Symptomcheckers und den weltweiten Trends bei COVID-19-Infektionen. Sie analysiert Daten des Symptomcheckers Symptoma (www.symptoma.com) aus 18 Ländern und vergleicht diese mit offiziellen Infektionszahlen, um Korrelationen zu ermitteln. Die Studie zeigt eine durchschnittliche Korrelation von 0,342 zwischen den als risikoreich eingestuften Nutzern und den bestätigten Fällen, wobei diese Korrelation mit der selbstberichteten Gesundheit eines Landes zusammenhängt. Zudem stellt sie fest, dass die Trends im Symptomchecker den offiziellen Zahlen meist um drei Tage vorausgehen. Die Autoren schließen, dass Online-Symptomchecker nationale Infektionstrends erfassen können und somit ein wertvolles Werkzeug für die Pandemiebekämpfung darstellen. Die Daten sind unter github.com/symptoma/global trends symp c19 verfügbar. (Zobel et al. 2023)

Die Studie "Diagnostic Accuracy of Web-Based COVID-19 Symptom Checkers: Comparison Study" von Nicolas Munsch, Alistair Martin und weiteren Autoren, veröffentlicht im Oktober 2020 im Journal of Medical Internet Research (DOI: 10.2196/21299), bewertet die diagnostische Genauigkeit von zehn webbasierten COVID-19-Symptomcheckern. Sie analysiert deren Leistung anhand von 50 COVID-19-Fällen und 410 Kontrollfällen ohne COVID-19, wobei Sensitivität, Spezifität, F1-Score und Matthews-Korrelationskoeffizient (MCC) ermittelt wurden. Die Ergebnisse zeigen große Unterschiede: Symptoma (F1=0.92, MCC=0.85) und Infermedica

(F1=0.80, MCC=0.61) erzielten die besten Werte für "hohes Risiko", während andere wie Ada (F1=0.24) und Your.MD (F1=0.24) schlechter abschnitten. Die Studie hebt hervor, dass nur zwei Checker ein gutes Gleichgewicht zwischen Sensitivität und Spezifität bieten, und betont die Bedeutung solcher Tools für Triage und Entlastung des Gesundheitswesens während der Pandemie, trotz variabler Zuverlässigkeit. (Munsch et al. 2020)

Die Studie "Comparison of Two Symptom Checkers (Ada and Symptoma) in the Emergency Department: Randomized, Crossover, Head-to-Head, Double-Blinded Study" von Johannes Knitza und Kollegen, veröffentlicht 2024 im Journal of Medical Internet Research (DOI: 10.2196/56514), vergleicht die diagnostische Genauigkeit, Sicherheit, Benutzbarkeit und Akzeptanz der Symptomchecker Ada und Symptoma in der Notaufnahme des Universitätsklinikums Erlangen. In einer randomisierten, doppelt verblindeten Crossover-Studie mit 437 Patienten zwischen April und November 2021 zeigte Ada eine höhere diagnostische Genauigkeit (identische Diagnose bei 14 % vs. 4 % für Symptoma als Top-Diagnose) und bessere Benutzbarkeit (88 % vs. 78 % fanden sie einfach). Beide Checker übersahen jedoch bei 13–14 % der Fälle potenziell lebensbedrohliche Diagnosen, und Ada triagierte 34 % korrekt, aber 13 % zu niedrig. Die Akzeptanz war gering (NPS: Ada –34, Symptoma –47). Die Autoren warnen vor der unkritischen Nutzung solcher Tools in Notfällen und fordern strengere klinische Evaluationsstudien. (Johannes Knitza et al. 2024)

Die Studie "Vom Symptom zur Diagnose – Tauglichkeit von Symptom-Checkern: Update aus Sicht der HNO" von J. Nateqi und Kollegen, veröffentlicht am 16. April 2019 in HNO (Band 67, S. 334–342), untersucht die diagnostische Genauigkeit moderner Symptomchecker aus der Perspektive der Hals-Nasen-Ohren-Heilkunde. Sie aktualisiert eine Harvard-Studie von 2015, die eine Treffergenauigkeit von 29–71 % feststellte, indem sie fünf neue Checker (Symptoma, Ada, FindZebra, Mediktor, Babylon) einbezieht und die Ergebnisse normiert. Symptoma sticht mit 82,2 % (Top 1), 100 % (Top 3 und Top 10) heraus und übertrifft den bisherigen Standard deutlich. In einem HNO-spezifischen Test mit Fällen aus dem British Medical Journal erreicht Symptoma 64,3 % (Top 1), 92,9 % (Top 3) und 100 % (Top 10), weit vor Isabel (21,4 %; 40,5 %; 61,9 %) und FindZebra (26,2 %; 42,9 %; 54,8 %). Die Autoren schließen, dass Symptoma als einzige praxistaugliche Lösung gilt, empfehlen jedoch größere Studien, insbesondere zu seltenen Krankheiten. (Nateqi et al. 2019)

Die Studie "Laypeople's Use of and Attitudes Toward Large Language Models and Search Engines for Health Queries: Survey Study" untersucht, wie Laien in den USA große Sprachmodelle (LLMs) wie ChatGPT und Suchmaschinen wie Google für Gesundheitsfragen nutzen, und zeigt Auswirkungen für die ambulante medizinische Versorgung. Während Suchmaschinen mit 95,6 % Nutzung die Hauptquelle bleiben, verwenden bereits 32,6 % LLMs, wobei 13,9 % diese sogar als erste Anlaufstelle wählen – ein Hinweis auf eine wachsende Akzeptanz, die den Zugang zu Gesundheitsinformationen erleichtert und die Patientenautonomie stärkt. (Mendel et al. 2025)

Die Studie "The RepVig framework for designing use-case specific representative vignettes and evaluating triage accuracy of laypeople and symptom assessment applications" von Marvin Kopka et al. (Scientific Reports, 2024) stellt den RepVig Framework vor, der repräsentative

Vignetten für die Bewertung von Selbsttriage-Entscheidungen durch Laien, Symptom-Assessment-Apps (SAAs) und Large Language Models (LLMs) entwickelt. Basierend auf repräsentativen Designprinzipien wurden 45 Vignetten aus Reddit-Posts (Subreddit r/AskDocs) gesammelt und mit traditionellen, von Klinikern erstellten Vignetten verglichen. Die Ergebnisse zeigen, dass repräsentative Vignetten höhere Genauigkeit (OR=1.52-2.00), Sicherheit (OR=1.81-3.41) und Neigung zur Übertriage (OR=1.80-2.66) bei Laien, SAAs und LLMs erzielen, wobei sich die Rangfolge der besten SAAs und LLMs ändert. Die Autoren empfehlen, den RepVig Framework für zukünftige Studien zu nutzen, um realitätsnähere Vignetten zu erstellen und die Generalisierbarkeit von Triage-Leistungen zu verbessern. (Kopka et al. 2024)

Die Studie "Technology-supported self-triage decision making" von Marvin Kopka et al. (npj Health Systems, 2025) untersucht, wie Laien Symptom-Assessment-Apps (SAAs) und Large Language Models (LLMs) für Selbsttriage-Entscheidungen nutzen. Durch eine konvergente Mixed-Methods-Studie mit Interviews und einem randomisierten kontrollierten Versuch zeigt die Studie, dass Entscheidungsprozesse durch Faktoren vor, während und nach der Interaktion beeinflusst werden. Laien nutzen Technologie für Informationssammlung und -analyse, bleiben aber für die Integration und finale Entscheidung verantwortlich. Quantitative Ergebnisse zeigen, dass die Entscheidungsgenauigkeit mit einer leistungsstarken SAA (Ada) von 53.2% auf 64.5% steigt (OR=2.52, p<0.001), nicht jedoch mit ChatGPT (54.8% vor vs. 54.2% nach Nutzung, p=0.79). Die Autoren schlagen ein Modell für technologiegestützte Selbsttriage vor und betonen die Notwendigkeit, Mensch-Technologie-Teams statt isolierter Systeme zu untersuchen. (Kopka et al. 2025)

Die Studie "From Tool to Teammate: A Randomized Controlled Trial of Clinician-AI Collaborative Workflows for Diagnosis" untersucht die Integration eines speziell entwickelten GPT-Systems in klinische Diagnoseprozesse. An der Studie nahmen 70 Kliniker teil, die zwei kollaborative Ansätze – KI zuerst und KI danach – mit herkömmlichen Methoden verglichen. Beide KI-gestützten Arbeitsabläufe verbesserten die Diagnosegenauigkeit auf 85 % bzw. 82 % im Vergleich zu 75 % bei traditionellen Methoden, was signifikante Verbesserungen zeigt (p < 0,0004 und p < 0,00001). Die Studie betont das Potenzial kollaborativer KI-Systeme, die Expertise von Klinikern zu ergänzen und die diagnostische Entscheidungsfindung zu optimieren. (Everett et al. 2025)

15.3 Leistungsvergleich

Benchmarking ist ein systematischer Prozess, bei dem die Leistungsfähigkeit von Systemen, wie großen Sprachmodellen (LLMs), durch Vergleich mit einem definierten Standard gemessen wird, um Stärken und Schwächen zu identifizieren und Verbesserungen voranzutreiben. Der Artikel "Diagnosis Arena: Benchmarking Diagnostic Reasoning for Large Language Models" veranschaulicht dies durch einen anspruchsvollen Benchmark, der die diagnostischen Fähigkeiten

von LLMs in komplexen klinischen Szenarien testet. DiagnosisArena umfasst 1.113 strukturierte Fälle aus 28 medizinischen Fachbereichen, basierend auf Fallberichten aus Journalen wie Lancet und NEJM. Durch einen mehrstufigen Prozess aus Datensammlung, Segmentierung, iterativem Filtern und Experten-KI-Verifikation stellt der Benchmark sicher, dass nur komplexe Fälle mit ausreichenden diagnostischen Hinweisen enthalten sind. Modelle wie o3-mini (45,82 % Genauigkeit), o1 (31,09 %) und DeepSeek-R1 (17,79 %) zeigen erhebliche Schwächen, was eine Generalisierungslücke bei klinischen Diagnosen aufdeckt. Multiple-Choice-Formate vereinfachen die Aufgabe künstlich, da Modelle wie o1 hier 61,90 % erreichen, was ihre wahren Reasoning-Fähigkeiten nicht widerspiegelt. (Zhu et al. 2025)

16 Digitales Wissensmanagement

16.1 Für Gesundheitspersonal

Digitale Wissens- und Fortbildungsplattformen bieten medizinischen Fachkräften den Vorteil, jederzeit und überall auf aktuelles medizinisches Wissen zugreifen zu können. Sie unterstützen die kontinuierliche berufliche Weiterbildung tragen so zur Aufrechterhaltung und Verbesserung der Fachkenntnisse bei.

In der Studie von Sibley wurden die Erfahrungen des American College of Cardiology bei der pandemie-bedingten Digitalisierung ihrer CME-Angebote analysiert, wobei insbesondere die Umstellung von Präsenzveranstaltungen auf virtuelle Formate und die Durchführung der jährlichen wissenschaftlichen Tagung untersucht wurden. Die Analyse der Nutzungsdaten zeigte, dass digitale Formate zwar Vorteile wie zeitliche und örtliche Flexibilität, bessere globale Zugänglichkeit und Kosteneffizienz bieten, aber auch mit Herausforderungen wie schwierigerer Aufmerksamkeitssteuerung und geringeren Vernetzungsmöglichkeiten verbunden sind. Die höchste Beteiligung wurde am ersten Tag und in den frühen Tagesstunden verzeichnet, wobei eine signifikante Nutzung mobiler Geräte und eine globale Teilnahme aus über 170 Ländern festgestellt wurde. Basierend auf diesen Erkenntnissen empfiehlt die Studie für zukünftige digitale CME-Angebote kürzere Lerneinheiten, die Integration interaktiver Elemente, die Kombination synchroner und asynchroner Lernmöglichkeiten sowie die Entwicklung hybrider Veranstaltungsformate, die die Vorteile von Präsenz- und virtuellen Formaten vereinen. (Sibley 2022)

16.2 Digitale Wissensplattformen

Table 16.1: Beispiele digitale Wissensplattformen

Product	Company	URL
Amboss Deximed DocCheck	Amboss GmbH Deximed GmbH DocCheck AG	amboss.com deximed.de doccheck.com
Flexikon KBV2GO	Kassenärztliche Bundesvereinigung	kbv.de

Product	Company	URL
Medscape	WebMD LLC	medscape.com
Coliquio	Coliquio GmbH	coliquio.de
UpToDate	Wolters Kluwer	uptodate.com
	Health	
CME MedCram	MedCram	cme.medcram.de
CME-	MedLearning	cme.medlearning.de
MedLearning	GmbH	
derCampus	derCampus GmbH	dercampus.eu
Medical Tribune	Medical Tribune	medical-tribune.de
	Verlag	
NowToGo	MedizinToGo	now.medizintogo.de
	GmbH	
Doctorflix	DOCFLIX GmbH	doctorflix.de
Medixum	Medixum GmbH	medixum.de
Esanum	Esanum GmbH	esanum.de
CME MediPoint	CME MediPoint	cmemedipoint.de
	GmbH	
webop Von	webop GmbH	webop.de
Chirurgen für		
Chirurgen		
Winglet	Winglet Education	winglet-community.com
	GmbH	
SYNLAB	SYNLAB Weiden	synlab.de
Fortbildungen	GmbH	
IMD	IMD Institut für	imd-berlin.de
Fortbildungen	medizinische	
	Diagnostik	

16.3 Gesetzliche Pflicht zur Fortbildung

Die gesetzlichen und berufsrechtlichen Regelungen zur ärztlichen Fortbildung in Deutschland verpflichten Ärztinnen und Ärzte zur kontinuierlichen beruflichen Weiterbildung, um ihre Fachkenntnisse zu erhalten und zu entwickeln. Diese Fortbildungspflicht gilt für alle berufstätigen Ärzte und muss durch ein Fortbildungszertifikat der Ärztekammer nachgewiesen werden. Die Regelungen basieren auf der (Muster-)Fortbildungsordnung (MFBO) und sehen vor, dass in einem Fünfjahreszeitraum mindestens 250 Fortbildungspunkte erworben werden müssen. (Bundesärztekammer Gesetzliche und berufsrechtliche Regelung)

Die FobiApp ermöglicht Ärztinnen und Ärzten den mobilen Zugriff auf ihr persönliches Fortbildungspunktekonto und die Registrierung bei Fortbildungsveranstaltungen mittels

EFN-Barcode. Nach 15 Jahren wurde die App Ende 2024 durch zwei neue webbasierte Anwendungen ersetzt, die von der Bundesärztekammer betreut werden. Diese neuen Anwendungen bieten geräteunabhängigen Zugriff auf Punktekonten und Fortbildungspunktemeldungen für Veranstalter.

Die EIV-Schnittstelle der Bundesärztekammer, erreichbar über punkte.eiv-fobi.de, ermöglicht die elektronische Erfassung und Meldung von Fortbildungspunkten für Ärztinnen und Ärzte. Sie ist ein Beispiel gelungener Digitalisierung und bietet Veranstaltern die Möglichkeit, Teilnahmepunkte über die EIV-Punktemeldungs-App oder eine REST-API direkt an die Plattform zu übermitteln, indem sie die Einheitliche Fortbildungsnummer (EFN) der Teilnehmer und die Veranstaltungsnummer (VNR) nutzen.

16.4 Digitale Wissenswerkzeuge

Table 16.2: Beispiele digitale Wissenstools

Product	Company	URL
Orpha.net	INSERM US14	orpha.net
Embryotox	Institut für	embryotox.de
	Klinische	
	Pharmakologie	
	und Toxikologie	
	Charité	
Dosing	Abt. Klinische	dosing.de
	Pharmakologie &	
	Pharmakoepidemi-	
	ologie UK	
	Heidelberg	
Medbee	Medbee GmbH	medbee.org/s/
MedCalc	MDCalc Ltd. Inc.	medcalc.org
MAGICapp	MAGIC Evidence	magicevidence.org/magicapp
	Ecosystem	
	Foundation	
ACB Calculator	Dr Rebecca King	acbcalc.com
Anticholinergic	& Steve Rabino	
Burden		
Wittener	Prof. Dr. Andreas	harntrakt.de
Harntrakt-	Wiedemann	
Nebenwirkungs-		
Score		

16.5 Für PatientInnen

Plattformen wie washabich.de und gesund.bund.de bieten verlässliche Gesundheitsinformationen für Patientinnen. Sie bieten Gesundheitsinformationen in einer leicht verständlichen Form, die es Patientinnen ermöglicht, komplexe medizinische Konzepte zu begreifen, ohne dass sie Fachwissen voraussetzen.

Table 16.3: Übersicht digitale Gesundheitsaufklärung

Product	Company	URL
Was hab ich	Was hab' ich?	washabich.de
	gemeinnützige GmbH	
Gesund.bund.de	Bundesministerium	gesund.bund.de
	für Gesundheit	
Simply Onno	Simply Onno	simply-onno.com

https://www.doccheck.com/de/detail/videos/5384-arzt-patienten-kommunikation-leicht-gemacht

Es gibt Nachweise, die die Wirksamkeit von TheraKey hervorheben. Es ist ein digitales Therapiebegleitprogramm, das Patient:innen mit chronischen Erkrankungen bei der Aufklärung, dem Selbstmanagement und der Therapietreue unterstützt. Evaluationen zeigen, dass 78 % der Nutzer:innen nach dem Einsatz des Onlineportals besser mit ihrer Erkrankung umgehen können. In einer Studie mit 185 Menschen zeigte nach drei Monaten Verbesserungen bei Selbstmanagement, Wohlbefinden, Adhärenz und einer Reduktion krankheitsbezogener Belastung. 84 % der Befragten vertrauten den TheraKey-Inhalten mehr als anderen Onlinequellen. (Kulzer et al. 2022; Red 2017, 2013)

16.6 Persönliche Wissenssammlung

Die optimale Methode Wissen zu notieren, ob auf Papier oder elektronisch, bleibt ein vielschichtiges Thema mit unterschiedlichen Forschungsergebnissen. Handschriftliche Notizen führen oft zu einer besseren kognitiven Verarbeitung, da sie Zusammenfassungen und Umschreibungen erfordern, was ein tieferes Verständnis und eine verbesserte Erinnerungsfähigkeit fördert. (Salame and Nujhat 2024) Im Gegensatz dazu bietet die digitale Notizenerfassung Vorteile in Bezug auf Geschwindigkeit, Lesbarkeit, Organisation und Durchsuchbarkeit und erlaubt die Integration von Multimedia-Elementen. Eine Metaanalyse zeigte jedoch, dass elektronische Methoden mit schlechteren Lernergebnissen korrelieren: Studierende, die digital schrieben, erzielten bis zu 25 % schlechtere Ergebnisse als diejenigen mit handschriftlichen Notizen. (Mike Allen 2020)

Table 16.4: Beispiele digitale Notizprogramme

Product	URL
Joplin	joplinapp.org
Obsidian	obsidian.md
OneNote	onenote.com
Evernote	evernote.com

Die Patienten-Universität an der Medizinischen Hochschule Hannover fördert die Gesundheitskompetenz von Patient:innen und Interessierten durch kostenfreie Bildungsangebote. Sie bietet Expertenvorträge (vor Ort und im Livestream), Selbstmanagement-Kurse wie INSEA, digitale Gesundheitskurse (KundiG) und Gesundheitstipps. Themen reichen von modernen Medizintechnologien bis zu erblichen Erkrankungen. Organisiert wird das Programm unter der Leitung von Prof. Dr. Marie-Luise Dierks und Dr. Gabriele Seidel, in Kooperation mit Partnern wie BARMER und Selbsthilfegruppen. patienten-universitaet.de

16.7 digitale Verwaltung der Fortbildungspunkte

Die Website https://www.fobiapp.de/ ist die offizielle Plattform der FobiApp, einer Fortbildungsanwendung, die von der Landesärztekammer Hessen entwickelt wurde, um Ärztinnen und Ärzten in Deutschland die Verwaltung ihrer Fortbildungspunkte und -veranstaltungen zu erleichtern. Sie bietet Informationen zur Nutzung der App, die ab 2025 durch eine webbasierte Lösungen ersetzt wird.

16.8 eLogbuch

Das eLogbuch der Ärztekammern, zugänglich über https://elogbuch.bundesaerztekammer.de/Home/Login, ist eine digitale Webanwendung der Bundesärztekammer, die einheitlich die Dokumentation der ärztlichen Weiterbildung sowohl für Weiterbildungsbefugte (WBB) als auch für Ärztinnen und Ärzte in Weiterbildung (WBA) erleichtert. Für Weiterzubildende ermöglicht das eLogbuch eine kontinuierliche, ortsunabhängige Erfassung von Weiterbildungsinhalten. Anders als beim Papierlogbuch, das physisch geführt und übergeben werden muss, können WBA ihre Fortschritte jederzeit digital aktualisieren, an WBB zur Bestätigung freigeben und bei einem Kammerwechsel nahtlos mitnehmen – ein klarer Vorteil gegenüber der statischen Papierform. Für Weiterbildungsbefugte bietet das eLogbuch eine zentrale, digitale Übersicht über die Logbücher der WBA, die sie betreuen. Statt Papierdokumente einzeln zu prüfen, können WBB online auf freigegebene Einträge zugreifen, diese bestätigen und Weiterbildungsgespräche direkt im System dokumentieren. Dies reduziert den Verwaltungsaufwand erheblich und

ermöglicht eine schnellere, transparentere Rückmeldung im Vergleich zum oft zeitaufwändigen Austausch physischer Logbücher.

16.9 Mit KI Wissensflut bewältigen

Der Artikel "Seventy-Five Trials and Eleven Systematic Reviews a Day: How Will We Ever Keep Up?" von Hilda Bastian, Paul Glasziou und Iain Chalmers untersucht die Herausforderungen, vor denen Gesundheitsfachkräfte und die Öffentlichkeit stehen, um mit der explosionsartigen Zunahme an klinischen Studien Schritt zu halten. Die Autoren zeigen, dass täglich etwa 75 Studien und 11 systematische Übersichtsarbeiten veröffentlicht werden – eine Zahl, die noch kein Plateau erreicht hat. Sie kritisieren, dass trotz der Fortschritte in der Evidenzsynthese nur ein kleiner Teil der Studien in systematischen Reviews analysiert wird. Um Archie Cochranes Vision von umfassenden, regelmäßig aktualisierten Zusammenfassungen aller relevanten randomisierten Studien zu verwirklichen, fordern sie eine eine Priorisierung systematischer Reviews, effizientere Methoden und offenen Zugang zu diesen Ressourcen. (Bastian, Glasziou, and Chalmers 2010)

Pathway und Glass Health sind zwei englischsprachige Plattformen, die Kliniker:innen bei der medizinischen Entscheidungsfindung unterstützen. Pathway (http://www.pathway.md) bietet evidenzbasierte, schnell zugängliche klinische Leitlinien, interaktive Algorithmen und Empfehlungen zu über 30.000 Themen. Glass Health (https://glass.health) nutzt KIgestützte Entscheidungsunterstützung, um Ärzt:innen Diagnosen und Behandlungspläne zu liefern. Beide Tools richten sich an medizinisches Fachpersonal und fördern eine datenbasierte Praxis.

OpenEvidence (OE), ein großes Sprachmodel mit medizinischem Fokus, zeichnet sich im Vergleich zu ähnlichen Produkten wie DynaMed, UpToDate und anderen LLMs (z. B. GPT-4, Llama-3.1, CoPilot) durch Antworten mit Referenzen aus Fachjournalen und Leitlinien aus. OE ist bei allgemeinen Fragen effizienter ist als textlastige klinische Ressourcen. Im Gegensatz zu GPT-4 oder Llama-3.1, die keine Zitate liefern, und CoPilot, das oft auf Websites verweist, bietet OE eine wissenschaftlichere Grundlage, ist aber weniger umfassend als kostenpflichtige Tools wie UpToDate oder Amboss und dient eher als gezielte Punkt-of-Care-Hilfe denn als Wissensdatenbank. (Wu and Casauay 2025)

ResearchRabbit researchrabbit.ai ist eine Plattform, die Techniken der Künstlichen Intelligenz (KI) nutzt, um bei der Bewältigung der stetig wachsenden Wissensflut zu unterstützen. Die Plattform ermöglicht es, wissenschaftliche Literatur effizient zu durchsuchen, zu organisieren und zu analysieren. Techniken wie maschinelles Lernen, NLP und Netzwerkanalyse werden genutzt, um relevante Studien, Artikel und Verbindungen zwischen Forschungsthemen aufzudecken. Durch Darstellung von Artikeln in Netzwerken hilft die Plattform, den Überblick zu behalten und die Informationsüberlastung zu reduzieren.

16.10 Lernendes Gesundheitssystem

Die Studie "Learning health systems in primary care: a systematic scoping review" von Nash et al. (2021) untersucht die Verbreitung und Merkmale von lernenden Gesundheitssystemen (LHS) in der Primärversorgung. Durch eine systematische Literaturrecherche von 2007 bis 2020 wurden 21 LHS identifiziert, von denen nur eines ausschließlich in der Primärversorgung tätig war, während die anderen integrierte Gesundheitssysteme umfassten. Die meisten Systeme befanden sich in den USA und nutzten Daten für Echtzeit-Überwachung, Qualitätsverbesserung und Entscheidungsunterstützung. Herausforderungen wie Datenzugang, Nachhaltigkeit und Förderung einer Lernkultur wurden ebenso identifiziert wie potenzielle Lösungen, etwa standardisierte Datenplattformen und Einbindung der Gemeinschaft. Die Studie betont das Potenzial von LHS in der Primärversorgung, hebt jedoch deren frühen Entwicklungsstand hervor. (Nash et al. 2021)

17 Wunddokumentation

17.1 Einleitung

Wund-Apps unterstützen bei der digitalen Dokumentation, Vermessung und Überwachung von Wunden sowie bei der Auswahl geeigneter Behandlungsmaterialien.

Wichtige Features, die bei der Bewertung von Wund-Apps berücksichtigt werden sollten, sind:

- 1. **Automatische Wundvermessung**: Präzise Erfassung von Wundgrößen, z. B. mithilfe von Fotos und Kalibrierungsmarkern.
- 2. **Dokumentationsfunktionen**: Leitliniengerechte und flexible Erfassung von Wunddaten, einschließlich Text, Bildern und optionaler Pflichtfelder.
- 3. **Produktempfehlungen**: Unterstützung bei der Auswahl geeigneter Materialien basierend auf Wundstatus und Kriterien.
- 4. **Datenmanagement**: Speicherung, Export und Integration der Dokumentationen in Praxissoftware oder als PDF.
- 5. **Teamkommunikation**: Echtzeitzugriff und kollaborative Funktionen zur Unterstützung im Behandlungsteam.
- 6. **Benutzerfreundlichkeit**: Intuitive Bedienung, Offline-Verfügbarkeit und einfache Schulungsmöglichkeiten.
- 7. **Datenschutz**: DSGVO-Konformität, inklusive sicherer Speicherung und Zugriffskontrolle.
- 8. **Visualisierung des Heilungsverlauf**s: Fotogalerien, Overlayfunktionen und Diagramme zur Verlaufskontrolle.
- 9. **Interoperabilität**: Schnittstellen zu anderen Systemen und Geräten, wie Praxissoftware oder digitalen Einwilligungslösungen.

17.2 Softwarelösungen

Table 17.1: Übersicht Wunddokumentationsanwendungen

	Software	Anbieter	URL
0	WundDoku App	DRACO	draco.de/wunddoku-
			app
1	Healico	Healico	healico.de
2	Wund A pp	Wund A pp	${\it wundapp.at}$
3	imitoWound	imito AG	imito.io/de/imitowoun
4	Cutimed Wound	Essity	essity.de/cutimed
	Navigator	-	- ,
5	Wundera	Wundera	wundera.health
6	Die WundApp	Lohmann & Rauscher	lohmann-
			rauscher.com/de-
			de/wundapp (
7	Simply Wound App	Hartmann	hartmann.info/simply-
			wound-app
8	WoundDesk	WoundDesk	wounddesk.com
9	Recom WundApp	Ascom	ascom.com/recom-
	11		wundapp

17.3 Forschung

Eine Studie von Nair (2018) zeigte, dass Smartphone-Apps für digitale Wundbilder die Produktivität in der Wunddokumentation und -analyse steigern, indem sie Zeit (27 Stunden täglich in einem Zentrum mit 10 Pflegern) und Kosten sparen und genaue Messungen ermöglichen. (Nair 2018) Bradshaw et al. (2011) entwickelten eine klinische Leitlinie und Kompetenzcheckliste, um die Konsistenz und Genauigkeit der Wundfotografie zu verbessern, was die Dokumentation und Kommunikation zwischen Klinikern optimierte. (Bradshaw, Gergar, and Holko 2011) Murphy et al. (2006) fanden heraus, dass digitale Bilder nach Training und mit einem Bewertungstool eine zuverlässige Alternative zur traditionellen Wundbeurteilung am Krankenbett bieten, was die Effizienz und den Zugang zu Expertise an entfernten Standorten erhöht. (Murphy Jr et al. 2006)

18 Impfsoftware

18.1 Funktionen

Mehrere Schlüsselfunktionen unterscheiden spezialisierte Impfsoftware:

- Digitale Impfunterlagenverwaltung: Im Kern bieten diese Softwarelösungen eine digitale Möglichkeit zur Verwaltung von Impfunterlagen, die traditionelle papierbasierte Systeme ersetzen. Dazu gehört die Möglichkeit, das Impfdatum, den Impfstofftyp und die Chargennummer zu erfassen.
- Terminplanung und -management: Viele Plattformen bieten Funktionen zum Planen, Bestätigen und Verwalten von Impfterminen. Dies kann die Koordination von Terminzeiten, das Versenden von Erinnerungen und die Möglichkeit zur Terminverschiebung umfassen. Einige Systeme bieten auch Funktionen zur Verwaltung von Terminslots, um Wartezeiten zu vermeiden.
- Patientendatenmanagement: Die Software erleichtert die digitale Registrierung von Patienten und die Erfassung relevanter medizinischer Informationen. Dazu kann die Anamnese (Krankengeschichte) und die Aufzeichnung von Nebenwirkungen nach Impfungen gehören.
- Integration mit Praxisverwaltungssystemen: Einige der Softwarelösungen sind darauf ausgelegt, sich mit bestehenden Praxisverwaltungssystemen zu integrieren, was die Arbeitsabläufe für Gesundheitsdienstleister effizienter gestaltet. Diese Integration ermöglicht den einfachen Datentransfer und die automatische Erstellung von Impfzertifikaten.
- Datensicherheit und Datenschutz: Ein Schwerpunkt liegt auf der sicheren Speicherung und Handhabung von Patientendaten. Viele der Softwarelösungen betonen ihre Einhaltung von Datenschutzvorschriften wie der DSGVO. Einige verwenden auch Zwei-Faktor-Authentifizierung zur zusätzlichen Sicherheit.
- Unterstützung mehrerer Sprachen: Einige Apps bieten Unterstützung für mehrere Sprachen, was die Zugänglichkeit für Patienten und Nutzer verbessert.
- Mobile Zugänglichkeit: Viele der Softwarelösungen haben Smartphone-Apps sowohl für Apple als auch für Android, was den einfachen Zugang zu Informationen für sowohl Gesundheitsdienstleister als auch Patienten ermöglicht.

- Spezifische COVID-19-Funktionen: Eine Anzahl der Apps und Softwarelösungen wurde entwickelt oder angepasst, um COVID-19-Impfungen zu adressieren. Dazu gehören Funktionen zum Erfassen und Verfolgen von COVID-19-Impfungen, zur Überwachung der Impfstoffwirksamkeit und zur Bereitstellung von Informationen über Varianten.
- Verfolgung des Impffortschritts: Einige Apps bieten die Möglichkeit, den Impffortschritt eines Patienten zu verfolgen und Erinnerungen für Nachkontrolltermine zu geben. Dies umfasst die Verfolgung mehrerer Impfungen für denselben Patienten (z.B. erste und zweite Dosis).
- Interoperabilität: Einige Software, wie impf.app, konzentrieren sich auf die Kompatibilität verschiedener Systeme, um den Datenaustausch zwischen Patienten und Ärzten zu ermöglichen.
- **Digitale Zertifikate:** Einige Systeme generieren digitale Impfzertifikate, die als Nachweis für Impfungen verwendet werden können.

18.2 Impfausweis in der ePA

Das Video "TK-Safe Challenge" zeigt wesentliche Vorteile des digitalen Impfausweises gegenüber der analogen Version:

- Übersichtlichkeit: Alle Impfungen sind zentral in der App abrufbar, mit klarem Überblick über den Impfstatus.
- Erinnerungsfunktion: Die App benachrichtigt automatisch, wenn Impfungen (z. B. Tetanus) aufgefrischt werden müssen.
- Einfache Handhabung: Impfdaten sind jederzeit digital zugänglich, ohne mühsames Suchen oder Arztbesuche zur Statusprüfung.

"Wenn du dich zum Beispiel gegen Tetanus hast impfen lassen vor Jahren und die Wirkung der Impfung lässt nach, bekommst du von TK-Safe eine Erinnerung [...]"

https://www.youtube.com/watch?v=90rbtNu64q4

18.3 Kosten

Die Kosten für Impfsoftware variieren je nach spezifischem Produkt und seinen Funktionen:

- Kostenlose Software: Einige Impfsoftware wird völlig kostenlos angeboten. Die DIFA1 App wurde kostenlos für alle Geimpften zur Verfügung gestellt. Ähnlich ist die impf.app PRAXIS Anwendung kostenlos erhältlich. Auch DIFA bietet eine digitale Impfmanagement-Plattform einschließlich eines Schnellterminsystems kostenlos an.
- Kostenlos für bestimmte Nutzer: Die DIFA1 App wird Ärzten und medizinischem Personal ebenfalls kostenlos angeboten. Die impf.app ist kostenfrei für Patienten.
- Kostenlose Software mit Registrierung: DIFA bietet seinen Impf-Web/App-Service allen Ärzten kostenlos an, nach Registrierung.
- "Pay per use"-Modell: impfoo nutzt ein "Pay per use"-Modell, bei dem eine einmalige Einrichtungsgebühr für die Systemkonfiguration erhoben wird, gefolgt von einer Festgebühr von €1 pro durchgeführter Impfung.
- Praxisverwaltungssoftware (PVS): Die Quellen geben auch Informationen über die Kosten von Praxisverwaltungssoftware, die teilweise Impfmanagement-Funktionen beinhalten. Diese Systeme haben typischerweise eine Kombination aus einmaligen Implementierungskosten und jährlichen Gebühren:
 - Implementierungskosten: Diese k\u00f6nnen zwischen €0 und €2.190 liegen, abh\u00e4ngig vom System.
 - Jährliche Kosten: Diese reichen von €304,8 bis €3.226,8 pro Jahr, abhängig von der Software und der Anzahl der Ärzte in der Praxis.
 - Kombinierte jährliche Kosten (einschließlich amortisierter Implementierungskosten): Diese reichen von €304,8 bis €3.226,8 pro Jahr.
 - Die Quelle bemerkt, dass die Kostenstrukturen dieser PVS-Systeme komplex sein können und es an Transparenz bei den Anbietern mangelt, was es schwer macht, die Gesamtkosten der Software zu kennen.

Es ist wichtig zu beachten, dass einige dieser Softwarelösungen, wie DIFA1 und impf.app, mit Unterstützung von öffentlichen Gesundheitsinitiativen entwickelt wurden und daher kostenlos angeboten werden. Das "Pay per use"-Modell von impfoo ist so konzipiert, dass es risikofrei ist, da die Kosten direkt mit der Nutzung verbunden sind und keine Abonnementgebühren anfallen.

18.4 Reiseimpfungen

Die Quellen diskutieren Reiseimpfungen im Kontext des digitalen Impfmanagement, wobei einige Schlüsselaspekte hervorgehoben werden:

• Reiseempfehlungen: Einige der Apps bieten die Funktion Empfehlungen für Reiseimpfungen an. Diese Funktion hilft Nutzern, notwendige Impfungen je nach Reiseziel zu identifizieren, was besonders nützlich bei der Planung internationaler Reisen ist.

- Integration mit der Reiseplanung: Eine App, ImpfPassDE Plus, ist speziell darauf ausgelegt, Reiseplanung mit Impfbedarf zu integrieren. Sie ermöglicht es Benutzern, ihre Reisepläne einzugeben, sei es für einen einfachen Urlaub oder eine Trekkingreise, und identifiziert dann fehlende Impfungen. Diese Funktion hilft Nutzern, sich mit passendem medizinischem Rat auf die Reise vorzubereiten, und bietet zudem nützliche Informationen über das Reiseziel und Reiseimpfstoffe.
- Umfassende Impfunterlagen: Digitale Impf-Apps wie ImpfPassDE ermöglichen es Nutzern, vollständige Unterlagen aller durchgeführten Impfungen zu führen, einschließlich der für Reisen notwendigen, und sorgen dafür, dass der Nutzer jederzeit einen leicht zugänglichen Nachweis über seine Impfungen hat.
- Erinnerungen für Reiseimpfungen: Die ImpfPassDE App liefert Erinnerungen für fällige Impfungen. Diese Funktion ist auch in der App impf.app verfügbar, die automatische Erinnerungen für alle Arten von Impfungen bietet, nicht nur für solche im Reisekontext.
- "Plus"-Version: Die ImpfPassDE Plus-Version der App ist ein kostenpflichtiger Service, der zusätzliche Funktionen bietet, darunter verbesserte Unterstützung bei der Reiseplanung, Bildungsstoffe über Krankheiten und konfigurierbare Erinnerungen.
- Allgemeiner Impfstatus: Alle Impf-Apps zeigen an, ob ein Nutzer mit allen Arten von Impfungen, einschließlich Reiseimpfungen, auf dem neuesten Stand ist. Zum Beispiel nutzt ImpfPassDE ein einfaches farbkodiertes System, um den aktuellen Impfstatus eines Nutzers anzuzeigen.
- Kein spezifischer Fokus: Es ist zu beachten, dass, obwohl Reiseimpfungen eine Funktion einiger der besprochenen Apps darstellen, der Hauptfokus der in den Quellen besprochenen Software auf der allgemeinen Impfmanagement liegt, insbesondere im Hinblick auf COVID-19.

Die App "Sicher Reisen" des Auswärtigen Amts bietet umfassende Informationen für eine sichere Auslandsreise. Sie enthält aktuelle Reise- und Sicherheitshinweise, Einreisebestimmungen, medizinische Tipps sowie Kontakte zu deutschen Botschaften. Mit intuitiver Menüführung und einem frischen Design können Nutzer Länder favorisieren und erhalten Benachrichtigungen bei aktualisierten Hinweisen. Die kostenlose App ist für Android und iOS verfügbar

18.5 Übersichtstabelle

Table 18.1: Übersicht Impfsoftware

Software	URL	Hinweis
ImpfDocNE	impfdocne.de	Praxisseitiges
		Impfmanagement GZIM mbH
Impfpass	impfpass.de	Patientenseitiges
		Impfmanagement GZIM mbH
Digitaler Impfpass	https://www.digitaler- impfpass.at/	Rockenschaub & Hurnaus

Table 18.2: Übersicht weitere Impfsoftware

Software	URL	Hinweis
Impfoo	impfoo.de	Impfzentren
RKI STIKO-App	rki.de	Impfwissen
Impfsystem	impfsystem.de	Impfmanagement
Medisoft Quickimpf	medisoft.de	Impfdokumentation
Impf.app	impf.app	GZIM mbH Anwendungen für
		Hausärzteverband
		Niedersachsen
DIFA Diga1	difa-vf.de	Deutsches Institut für
_		Fachärztliche
		Versorgungsforschung GmbH
DIFA Difa1	difa-vf.de	Deutsches Institut für
		Fachärztliche
		Versorgungsforschung GmbH

18.6 Medizinisches Informationsobjekt

Die Impfpass-Spezifikation als Medizinisches Informationsobjekt (MIO) der Kassenärztlichen Bundesvereinigung (KBV) definiert den elektronischen Impfpass zur strukturierten Dokumentation von Impfunge. Das MIO definiert die Softwarestrukturen für die digitale Erfassung und Verwaltung von Impfdaten, einschließlich Impfstoff, Chargennummer, Datum, verabreichender Person und Immunitätsnachweisen wie Titeruntersuchungen oder durchgemachten Erkrankungen. Basierend auf FHIR® (Fast Healthcare Interoperability Resources) unterstützt das MIO eine einheitliche, interoperable Datenstruktur für die Integration in elektronische Patientenakten (ePA). Eine Umsetzungspflicht für IT-Systeme besteht aktuell nicht (Stand Juli 2024).

18.7 Impfsoftware während COVID-19 Pandemie

Während der COVID-19-Pandemie spielte Software eine zentrale Rolle bei der Verwaltung und Nachverfolgung von COVID-Impfungen. Digitale Impfpässe, wie die EU-COVID-Zertifikate oder nationale Apps (z. B. CovPass in Deutschland), ermöglichten die Erfassung, Validierung und Vorlage von Impfdaten über standardisierte QR-Codes. Diese Systeme basierten oft auf FHIR-Standards und unterstützten die Interoperabilität. Regulatorische Bemühungen, etwa durch die WHO oder nationale Gesundheitsbehörden, fokussierten auf Datenschutz, Sicherheit und einheitliche Standards, um Impfstatus international vergleichbar zu machen. Softwarelösungen wie Impfmanagementsysteme optimierten Terminvergaben und Impfstofflogistik, während Meldesysteme (z. B. zum RKI) die Überwachung von Impfraten und Nebenwirkungen unterstützten.

18.8 Nutzung von digitalen Impfinformationssystem

Die Studie "Use of Immunization Information Systems in Primary Care" von Allison Kempe und Kollegen untersucht, wie Kinderärzte, Familienmediziner (FPs) und Allgemeininternisten (GIMs) in den USA Immunisierungsinformationssysteme (IIS) nutzen. Von Januar bis April 2015 befragten die Autoren 907 Ärzte per E-Mail und Post, mit Rücklaufquoten zwischen 63 % und 75 %. Ergebnisse zeigen, dass viele Ärzte – besonders GIMs (48 %) – nicht wissen, dass es IIS gibt; 81 % der Kinderärzte, 72 % der FPs und nur 27 % der GIMs nutzen sie. Häufige Nutzungshürden sind fehlende Updates in elektronischen Patientenakten (29–35 %) und Probleme beim elektronischen Datenupload (22–31 %). Die Studie identifiziert Wissenslücken über IIS-Funktionen wie Impfstatusbestimmung oder Erinnerungen und zeigt, dass FPs und GIMs im Vergleich zu Kinderärzten seltener IIS nutzen. Abschließend wird betont, dass mangelnde Interoperabilität mit elektronischen Systemen und geringe Awareness – vor allem bei Erwachsenenmedizinern – die Nutzung einschränken, obwohl IIS in fast allen US-Bundesstaaten existieren und 88 % der Kinder unter 6 Jahren erfasst sind. (Kempe et al. 2017)

Der Artikel "Praxistaugliche Gesamtlösung – Digitaler Impfnachweis für die Praxis schon bald verfügbar" aus Gesundheitsökonomie & Qualitätsmanagement (2021; 26(02): 76-77) beschreibt die Entwicklung eines digitalen Impfnachweises durch die Gesellschaft zur Förderung der Impfmedizin (GZIM) als Reaktion auf die wachsende Nachfrage nach digitalen Gesundheitslösungen. Der Beitrag hebt hervor, wie digitale Ansätze in der Gesundheitsdiskussion an Bedeutung gewinnen, und positioniert den Impfnachweis als praxisnahe Antwort auf aktuelle Bedürfnisse. (Gesellschaft zur Förderung der Impfmedizin (GZIM) 2021)

19 Medikation

19.1 Medikamentenmanagement

Mehrere Onlinedienstleister bieten digitale Lösungen zur Vereinfachung des Medikamentenmanagements, einschließlich des Einlösens von E-Rezepten, der Online-Bestellung von Medikamenten mit Liefer- oder Abholoption und der Verwaltung von Gesundheitsdaten wie Medikationsplänen. Gemeinsam ist ihnen die Vernetzung mit lokalen Apotheken, die Förderung der Zugänglichkeit durch benutzerfreundliche Apps oder Webplattformen sowie die Integration von Zusatzfunktionen wie Terminbuchungen oder digitale Gesundheitsservices

Table 19.1: Beispiele Onlinedienstleister Medikationsmanagement

Name	URL
Meine Apotheke	pharmatechnik.de
Medikamendo	medikamendo.de
Gesund.de	gesund.de

19.2 Medikamentenanwendungen

Table 19.2: Beispiele digitale Medikationsanwendungen

Name	URL
Papp Meine Medikation	play.google.com play.google.com
Mediteo MyTherapy	play.google.com mytherapyapp.com

Digitale Medikationsanwendungen erhöhen die Therapieadhärenz um 7 % bis 40 % und werden von Nutzern als nützlich und einfach zu bedienen wahrgenommen, mit einer durchschnittlichen Zufriedenheit von 8,1 von 10. Sie bieten Funktionen wie Erinnerungen, Medikamenteninformationen und Gesundheitstipps. (Pérez-Jover et al. 2019)

Die Idee des "Pillen-Selfie"-Projekts der MQR (Medizinische Qualitätsgemeinschaft Rendsburg) eG zielt darauf ab, Ärzten eine Übersicht über die Medikamente ihrer Patienten zu ermöglichen, insbesondere bei Sprachbarrieren oder unklarer Medikamentenkenntnis. Patienten werden ermutigt, Verpackungen ihrer Medikamente – verschreibungspflichtige wie selbst gekaufte – sowie ihren Medikationsplan mit dem Smartphone zu fotografieren und diese "Pillen-Selfies" beim Arztbesuch vorzuzeigen. Ein mehrsprachiger Flyer unterstützt die Umsetzung.

19.3 Arzneimitteltherapiesicherheit (AMTS)

Table 19.3: Übersicht AMTS Systeme

Produkt-URL	Beschreibung	
ifap.de/therafox-pro	THERAFOX PRO: Webbasierter AMTS-Check für Ärzte zur Prüfung von Medikationsrisiken wie Wechselwirkungen.	
mmi.de/amts-service	MMI AMTS-Service: Tool zur Analyse von Arzneimittelrisiken für Fachpersonal und Patientenberatung.	

embryotox.de ist eine unabhängige Informationsplattform des Pharmakovigilanz- und Beratungszentrums für Embryonaltoxikologie an der Charité-Universitätsmedizin Berlin. Sie bietet evidenzbasierte Informationen zur Sicherheit von Arzneimitteln in Schwangerschaft und Stillzeit. Nutzer können Wirkstoffe oder Erkrankungen suchen, um Risiken, Empfehlungen und Alternativen zu erfahren, ergänzt durch ein Ampelsystem zur schnellen Einschätzung. Gefördert vom Bundesministerium für Gesundheit, arbeitet Embryotox ohne Einfluss der Pharmaindustrie und bietet zusätzlich kostenlose individuelle Beratung sowie eine App.

dosing.de wird vom Institut für Klinische Pharmakologie & Pharmakoepidemiologie des Universitätsklinikums Heidelberg betrieben. Kernfunktion ist die Unterstützung bei der Dosisanpassung von Medikamenten, insbesondere bei Niereninsuffizienz.

Die Studie "A scoping review on generative AI and large language models in mitigating medication related harm" untersucht den Einsatz generativer KI und großer Sprachmodelle (LLMs) zur Reduzierung medikamentenbedingter Schäden. Die Analyse von 30 Studien zeigt, dass diese Technologien in drei Hauptbereichen angewendet werden: Erkennung und Vorhersage von Arzneimittelwechselwirkungen, Unterstützung klinischer Entscheidungen und Pharmakovigilanz. Generative KI und LLMs zeigen vielversprechende Ergebnisse bei der frühzeitigen Identifikation von Nebenwirkungen, der Klassifikation von Arzneimittelereignissen und der Unterstützung bei der Medikamentenverwaltung. Allerdings fehlen prospektive Tests in realen klinischen Umgebungen, und es bestehen Herausforderungen wie unzureichende Sensitivität, veraltete Informationen und potenzielle Verzerrungen. (Ong et al. 2025)

19.4 ATHINA

ATHINA (Arzneimitteltherapiesicherheit in Apotheken) ist ein Qualifizierungskonzept, das 2012 von der Apothekerkammer Nordrhein entwickelt wurde und mittlerweile von zwölf Landesapothekerkammern im ATHINA-Verbund umgesetzt wird. Ziel ist die Etablierung der Medikationsanalyse in öffentlichen Apotheken, um die Arzneimitteltherapiesicherheit (AMTS) zu verbessern, insbesondere bei Patienten mit Polymedikation.

19.5 Pharmazeutische Dienstleistung Polymedikation

Die pharmazeutische Dienstleistung "Erweiterte Medikationsberatung bei Polymedikation" richtet sich an Patienten mit Polymedikation, also Personen, die dauerhaft mindestens fünf systemisch wirkende Arzneimittel oder Inhalativa einnehmen. Sie wird einmal jährlich oder bei erheblicher Umstellung der Medikation (mindestens drei neue oder geänderte systemische Mittel innerhalb von vier Wochen) angeboten. Im Mittelpunkt steht ein strukturiertes Gespräch, bei dem die gesamte Medikation – einschließlich Selbstmedikation – erfasst wird, ergänzt durch Daten aus der Apotheke, Medikationsplänen oder Arztberichten. Eine pharmazeutische Prüfung auf arzneimittelbezogene Probleme wie Interaktionen, Doppelmedikation oder Anwendungsfehler folgt, wobei Lösungen erarbeitet und bei Bedarf mit dem Arzt abgestimmt werden. Abschließend erhalten Patienten einen aktuellen Medikationsplan, Ärzte bei Zustimmung einen Bericht. Ziel ist die Erhöhung der Arzneimitteltherapiesicherheit, Verbesserung der Therapieeffektivität und Optimierung der Medikamentenanwendung. Die Dienstleistung wird von qualifizierten Apothekern erbracht und von der Krankenkasse vergütet.

19.6 Datenmatrix QR Code Medikationsplan

Ein Datenmatrix QR-Code des bundeseinheitlichen Medikationsplans ist ein zweidimensionaler Barcode, der die wichtigsten Informationen eines Medikationsplans in digitaler Form speichert. Er ermöglicht eine schnelle und fehlerfreie Übertragung von Arzneimittelinformationen zwischen Arzt, Apotheke und Patient, indem er Details zu verschriebenen Medikamenten, Dosierungen und Anwendungsbedingungen enthält.

Die Spezifikation für den bundeseinheitlichen Medikationsplan (BMP) gemäß § 31a SGB V regelt die technischen Anforderungen und Struktur eines standardisierten Medikationsplans, der in Papierform sowie als maschinenlesbare Version vorliegt. Sie legt fest, wie dieser Plan erstellt, aktualisiert und von verschiedenen Akteuren im Gesundheitswesen genutzt wird, einschließlich der Integration in Arztpraxen, Apotheken und Krankenhäusern. Die Spezifikation berücksichtigt auch die Barrierefreiheit für sehbehinderte Patienten und den Einsatz eines 2D-Barcodes zur maschinenlesbaren Speicherung und Übertragung der Medikationsdaten.

Figure 19.1: Barcode Medikationsplan

19.7 Betäubungsmittel

Der Referentenentwurf der Vierten Verordnung zur Änderung der Betäubungsmittel-Verschreibungsverordnung sieht die verpflichtende Einführung der elektronischen Betäubungsmittel-Verordnung (eBtM) in der vertragsärztlichen Versorgung vor. Die KBV begrüßt die Digitalisierung, fordert jedoch vollständige digitale Lösungen für alle BtM-Verordnungen, rechtssichere Direktzuweisung von Substitutionsmitteln, ausschließlich elektronische Dokumentation, minimierte dezentrale Dokumentation, digitale Verordnung von Praxisbedarf, ausreichende Erprobung in Modellregionen, Übertragbarkeit auf Praxisvertreter, keine Verzögerungen bei der Datenübermittlung und Vermeidung doppelter Verordnungen. Die KBV erwartet steigende Kosten und Aufwände für Praxen und kritisiert die angenommene

Kostenneutralität. Siehe dazu KBV-Stellungnahme zum Referentenentwurf der vierten Verordnung zur Änderung der Betäubungsmittel-Verschreibungsverordnung, Stand 21.03.2024, PDF $251~\mathrm{KB}$

19.8 Medikamenteneinnahmeerinnerung

Die Studie "Patient-reported usability challenges when implementing integrated EHR medication reminders for kidney transplant patients in a home setting: A pilot study" untersucht die Machbarkeit eines integrierten EHR-Medikamentenerinnerungstools für Nierentransplantationspatienten in einer häuslichen Umgebung. In einer Pilotstudie mit 43 Teilnehmern an einem großen akademischen Krankenhaus in den Niederlanden wurde die Benutzbarkeit und Zufriedenheit mittels des validierten GEMS-Fragebogens bewertet. Die Ergebnisse zeigten eine gemischte Benutzbarkeit und Zufriedenheit (GEMS-Score: 65,0 %), mit Einschränkungen wie mangelnder Anpassungsmöglichkeit der Erinnerungen und Schwierigkeiten beim Abhaken von Medikamenten. Etwa ein Drittel der Teilnehmer fand das Tool nützlich und war bereit, es weiter zu nutzen. Verbesserungen, insbesondere bei der Individualisierung der Benachrichtigungen, sind für eine großflächige Implementierung erforderlich. (Oudbier et al. 2025)

20 Ambulantes Operieren

Die Softwarelösungen für das ambulante Operieren unterstützen verschiedene Aspekte des operativen Managements, von der Planung und Dokumentation bis hin zur Optimierung und Integration.

OP-Management und Planung:

• Torin (Getinge), OP-Management (Meierhofer), OPteamizer (Logex), DIANA (HP Lehnen Software), und B. Braun Organize (B. Braun SE) bieten Funktionen zur detaillierten Planung, Zeitmanagement und Ressourcenallokation für Operationen. Sie ermöglichen eine optimale Nutzung von OP-Sälen, Personal und Materialien.

Dokumentation und Nachverfolgung:

• Produkte wie T-DOC 2000, T-DOC Select, T-DOC Endo (alle Getinge), und instacount®PLUS (Invitec) konzentrieren sich auf die Dokumentation von chirurgischen Eingriffen, Instrumentenverfolgung und Qualitätskontrolle. Sie unterstützen die Erfassung und Speicherung von Daten zur Nachverfolgung und zur Einhaltung von Standards.

Datenanalyse und Optimierung:

• INSIGHT (Getinge), Caresyntax, und Torin SmartView (Getinge) nutzen Datenanalyse, um operative Prozesse zu optimieren, Effizienz zu steigern und potenzielle Engpässe zu identifizieren. Diese Systeme bieten Einblicke in die Leistungsfähigkeit und helfen, operative Prozesse kontinuierlich zu verbessern.

Integration und Interoperabilität:

• Viele dieser Softwarelösungen sind darauf ausgelegt, mit anderen Systemen im Krankenhaus oder in der Praxis zu interagieren, wie z.B. Krankenhausinformationssystemen (KIS), um eine nahtlose Datenübertragung und eine ganzheitliche Betrachtung der Patientenversorgung zu gewährleisten.

Table 20.1: Übersicht der Softwarelösungen für die OP-Management- und Sterilgutverwaltung

Software	Hersteller	URL
INSIGHT	Getinge	getinge.com/de/produkte/insight
Torin	Getinge	getinge.com/int/products/torin

Software	Hersteller	URL
T-DOC 2000	Getinge	getinge.com/de/produkte/t-doc-2000
Getinge Online	Getinge	getinge.com/de/produkte/getinge-online
T-DOC Select	Getinge	getinge.com/de/produkte/t-doc-select
T-DOC Endo	Getinge	getinge.com/de/produkte/t-doc-endo
Tegris	Getinge	getinge.com/de/produkte/tegris
Torin SmartView	Getinge	getinge.com/int/products/torin-smartview
DIANA	HP Lehnen	hp-lehnen-software.com/diana
	Software	- '
OP-Management	Meierhofer	meierhofer.com/loesungen/op-management
OPteamizer	Logex	logex.com
Caresyntax	Caresyntax	caresyntax.com
instacount®PLUS	Invitec	invitec.de
B. Braun Organize	B. Braun SE	bbraun.de

21 Psychotherapie

21.1 Software

Table 21.1: Übersicht Digitale Produkte

Produkt	Unternehmen	URL
Klindo	KLINDO GmbH	klindo.de
Testbox	insight.out GmbH	testbox.de
Testarchiv	Leibniz-Institut für	testarchiv.eu
	Psychologie (ZPID)	
Lucoyo	Lucoyo Health GmbH	lucoyo.de
Therapsy	TheraSoft GmbH	therapsy.de
Summie AI	Solid Rock Ventures UG	summie.ai
ViaHealth	Via Health GmbH	via-health.de
Klenico	Klenico GmbH	klenico.com

Table 21.2: Übersicht Forschung

Projekt	Träger	URL
DigiNavi	Mental Health AG MHB Fontane	diginavi.de
Society of Digital Psychiatry	Division of Digital Psychiatry at BIDMC	digitalpsych.org

Ama Mind bietet ein Online-Portal, das psychisch belasteten Menschen in Deutschland hilft, qualitätsgeprüfte Hilfsangebote zur Verbesserung ihres mentalen Wohlbefindens zu finden. Die Plattform richtet sich an Betroffene, Organisationen und Unternehmen und stellt kostenfrei geprüfte Lösungen bereit, die individuell auf die Bedürfnisse der Nutzer abgestimmt sind. Ziel ist es, den Zugang zur psychischen Gesundheitsversorgung zu erleichtern

21.2 Forschung

Die Studie "Randomized Trial of a Generative AI Chatbot for Mental Health Treatment", veröffentlicht am 27. März 2025 in NEJM AI, untersucht die Wirksamkeit des KI-Chatbots Therabot bei der Behandlung von psychischen Erkrankungen. In einer nationalen, randomisierten kontrollierten Studie mit 210 Erwachsenen, die an Depressionen, generalisierten Angststörungen oder einem hohen Risiko für Essstörungen litten, wurde Therabot über vier Wochen getestet. Teilnehmer, die Therabot nutzten, zeigten signifikante Symptomreduktionen im Vergleich zur Kontrollgruppe, sowohl nach vier als auch nach acht Wochen. Der Chatbot wurde intensiv genutzt, und die therapeutische Beziehung wurde mit der zu menschlichen Therapeuten vergleichbar bewertet. Die Ergebnisse deuten darauf hin, dass feinabgestimmte KI-Chatbots personalisierte psychische Gesundheitsinterventionen skalierbar anbieten können, wobei weitere Forschung nötig ist. (Heinz et al. 2025)

Part III Praxisverwaltung

22 Buchhaltung

Die Buchhaltungssoftwareprodukte teilen mehrere gemeinsame Merkmale, die sich aus den allgemeinen Anforderungen an moderne Buchhaltungs- und Dokumentenmanagementsysteme (DMS) ableiten lassen:

22.1 Dokumentenmanagement und Archivierung

• Viele dieser Softwarelösungen bieten Funktionen für die Verwaltung und Archivierung von Dokumenten, sei es durch eigene DMS-Funktionen oder durch Integration mit externen DMS-Lösungen. Beispielsweise bietet bitfarm-Archiv ein umfassendes Dokumentenmanagementsystem mit Open-Source-Optionen und ecoDMS ist bekannt für seine kostengünstigen Dokumentenmanagementlösungen.

22.2 Automatisierung und Workflow-Optimierung

• Automatisierung von Buchhaltungs- und Dokumentenprozessen ist ein zentraler Bestandteil dieser Software. **Amagno** betont beispielsweise den "Digital Workplace" durch hohe Automatisierung, und **DocuWare** bietet ebenfalls umfangreiche Automatisierungsfunktionen, um Workflows zu optimieren.

22.3 Sicherheit und Kompatibilität

• Daten- und Datensicherheit sind bei allen Systemen ein Hauptanliegen, mit SSLverschlüsselten Verbindungen und regelmäßigen Backups. Compliance mit gesetzlichen Anforderungen wie GoBD und GDPR ist ebenfalls ein gemeinsames Merkmal.

22.4 Benutzerfreundlichkeit und Integration

• Eine intuitive Benutzeroberfläche und die Möglichkeit, mit anderen Geschäftssystemen zu integrieren, sind wichtige Merkmale. **Lexware** und **Candis** bieten beispielsweise Integrationen zu verschiedenen Finanz- und Buchhaltungsanwendungen.

22.5 Cloud-basierte und On-Premise-Optionen

• Viele dieser Anbieter bieten sowohl Cloud- als auch On-Premise-Lösungen an, um unterschiedlichen Kundenbedürfnissen gerecht zu werden. **ecoDMS** und **bitfarm-Archiv** sind Beispiele für Anbieter, die beide Modelle unterstützen.

22.6 Skalierbarkeit

• Die Softwareprodukte sind oft darauf ausgelegt, mit dem Wachstum des Unternehmens zu skalieren, sodass sie sowohl für kleine Unternehmen als auch für große Konzerne geeignet sind.

22.7 Kostenmodell

• Die Preismodelle variieren, aber es gibt eine Tendenz zu flexiblen Lizenzierungsmodellen, die sowohl monatliche Abonnements (SaaS) als auch einmalige Kaufpreise umfassen können.

22.8 Übersichtstabellen

Table 22.1: Übersicht Softwarelösungen Buchhaltung

	Software	Anbieter	URL
1	Aequitixx	Aequitixx GmbH	aequitixx.de
10	Solvi	Solvi GmbH	solvi.de
11	CURE Finance	CURE Finance GmbH	cure.finance
12	Nelly	Nelly GmbH	getnelly.de
14	Meda3	Meda3 GmbH	meda3.de
15	HonorarPlus	Honorar+Plus H+P UG	honorarplus.de
		(haftungsbeschränkt)	
16	Dr. Clever	Dr. Clever GmbH	dr-clever.de
17	Arzt-Dashboard	Arzt-Dashboard GmbH	arzt-dashboard.de
18	privadis	MCC Medical CareCapital GmbH	privadis.de
19	Simba n^3	Simba n³ GmbH	nhochdrei.de
20	Honorarfuchs	Honorarfuchs GmbH	honorarfuchs.de

Table 22.2: Übersicht Softwarelösungen Dokumentenmanagement

	Software	Anbieter	URL
3	Amagno	Amagno GmbH	amagno.de
5	DocuWare	DocuWare GmbH	docuware.com
8	ecoDMS	ecoDMS GmbH	ecodms.de
9	bitfarm-Archiv	bitfarm Informationssysteme GmbH	bitfarm-archiv.de
10	Starke-DMS	Starke + Reichert GmbH & Co. KG	starke-dms.de

22.9 Bezahlsysteme

Table 22.3: Beispiele Bezahlsysteme

Name	URL
Tillhub	tillhub.de
$\operatorname{Sum} \operatorname{Up}$	sumup.com
ready2order	ready2order.com
PAYONE	payone.com

22.10 E-Rechnung

Die E-Rechnung ermöglicht die strukturierte, maschinenlesbare Übermittlung von Rechnungsdaten, etwa im ZUGFeRD- oder XRechnungs-Format, und erfüllt gesetzliche Anforderungen, wie die EU-Richtlinie $2014/55/\mathrm{EU}$.

23 Qualitätsmanagement

23.1 KBV-PraxisCheck

Der KBV-PraxisCheck ist ein kostenloses Online-Tool der Kassenärztlichen Bundesvereinigung (KBV), das speziell für Ärzte, Psychotherapeuten und Praxisteams entwickelt wurde. Mit diesem Selbsttest können Praxen ihre Qualität und Sicherheit in verschiedenen Bereichen wie Hygiene, Impfen, Prävention von Wundinfektionen, Datenschutz, Informationssicherheit, Patientensicherheit und Qualitätsmanagement überprüfen. Anhand von Fragen, die in wenigen Minuten beantwortet werden können, erhält die Praxis sofort Rückmeldungen zu ihren Leistungen und praktische Tipps zur Verbesserung der Praxisabläufe.

23.2 KTQ-Zertifizierung (Kooperation für Transparenz und Qualität im Gesundheitswesen)

KTQ bietet ein Zertifizierungssystem speziell für Arzt- und Zahnarztpraxen sowie psychotherapeutische Praxen und Medizinische Versorgungszentren (MVZ). Es umfasst Selbst- und Fremdbewertung und zielt darauf ab, Qualitätsmanagement-Systeme zu entwickeln und zu verbessern.

23.3 DIN EN ISO 9001:2015

Diese internationale Norm für Qualitätsmanagement kann von Praxen angewendet werden, um ihre Qualitätssysteme zu zertifizieren. Sie legt den Fokus auf Kundenzufriedenheit durch eine effektive Qualitätsverwaltung.

23.4 QM-Richtlinie des Gemeinsamen Bundesausschusses (G-BA)

Diese Richtlinie schreibt ein internes Qualitätsmanagement für Vertragsärzte und psychotherapeuten vor. Zertifizierungen basierend auf dieser Richtlinie sind nicht zwingend erforderlich, aber Praxen können sich nachweisen lassen, dass sie den Anforderungen entsprechen.

23.5 Übersicht QM Software

Table 23.1: Übersicht Softwarelösungen Qualitätsmanagement Praxis

Software	Anbieter	URL	Anmerkungen
Paul	Paul Solutions	paul-	30 Tage kostenlos, dann min 69Euro / Monat
	GmbH	solutions.de	
vismed	vismed GmbH	vismed.de	mehr als nur Wissensmanagement, externe &
QM			umfassende Überprüfung Ihres QMs
neoQM	neoQM $GmbH$	neoqm.de	für alle möglichen Branchen auch für Arztpraxen
RoxTra	RoxTra GmbH	roxtra.com	
OrgaVision	n OrgaVision	orgavision.c	ofür mehrere Branchen und auch für Arztpraxen.
	GmbH		Kosten bei 25 MitarbeiterInnen pro Jahr 2900
			Euro (mon 241,67 Euro)
BITqms	BITWORKS	bitworks.ne	t vorwiegend Krankenhäuser
	EDV-		
	Dienstleistungs-		
	GmbH		
ConSense	ConSense GmbH	consense-	vorwiegend Krankenhäuser
		$\operatorname{gmbh.de}$	
Latz	Latz Protect	latz-	für Arztpraxen
Protect	GmbH	protect.com	
Intralean	Intralean GmbH	intralean-	
Medical		medical.de	

Table 23.2: Übersicht Softwarelösungen allgemeines Qualitätsmanagement

Software	Anbieter	URL	Anmerkungen
$\overline{\mathrm{eQMS}}$	Page-Tec GmbH	page-	formal auch für Gesundheitswesen, aber eher für
		tec.de	andere Unternehmen
i:solution	i:select GmbH	concept-	mehr als nur QM aber nicht spezifisch für das
CAQ		$\operatorname{pro.de}$	Gesundheitswesen
CWA	CAQ AG Factory	caq.de	zwar für Medizintechnik und Labor aber nicht
Smart-	Systems		für Arztpraxen
Process			
eQMS	Page-Tec GmbH	eqms.de	QM für viele Branchen ua. Medizintechnik und
			Labor, keine Arztpraxen
SimplifyU	SimplifyU GmbH	simplifyu.de	e 100% auf Akut- und Rehaeinrichtungen
QM-	QM-Pilot GmbH	qm-	schweizer Firma, man kann Flusschemata
Pilot		pilot.de	entwerfen um Prozesse zu beschreiben

Software	Anbieter	URL	Anmerkungen
Q.wiki	Q.wiki GmbH	q-wiki.de	QM für andere Unternehmen und nicht für das Gesundheitswesen
BabtecQ	Babtec Informationssysteme GmbH	babtec.de	Für Elektronik Maschinenbau, Automotive nur MedTechnik, nicht für Arztpraxen
WissIntra	Wissensmanagemen	ntwissintra.d	b enight fjiro da sæsenudheitswesen
NG	GmbH		
Testify	Testify GmbH	testify.io	nicht für das Gesundheitswesen
iqs CAQ	iqs Software	iqs.de	nicht für das Gesundheitswesen
	GmbH		
SmartProc	cessWA GmbH	cwa-	nicht für das Gesundheitswesen
		software.co	m
MS LDS	MS Management Systeme GmbH	$rac{ ext{msqf-}}{ ext{gmbh.de}}$	nicht für das Gesundheitswesen

Table 23.3: Weitere Softwarelösungen

Software	Anbieter	URL	Anmerkungen
Schedura	ablida GmbH	schedura.de	Künstliche Intelligenz für die
QM- Assist	social-software.de	social- software.de	Dokumentenverwaltung Softwarekatalog für die Sozialwirtschaft

Die qualido GmbH bietet mit dem qualido manager eine vielseitige Softwarelösung für Informations- und Qualitätsmanagement, die sich an Unternehmen aller Branchen richtet, mit einem Schwerpunkt auf dem Gesundheits- und Rettungswesen. Das modulare System umfasst Funktionen wie Dokumentenmanagement, Fortbildungsmanagement, Geräteverwaltung, Ereignismanagement, Auditmanagement und Vertragsmanagement, um Prozesse effizient zu gestalten und gesetzliche Anforderungen zu erfüllen. Es ermöglicht transparente Dokumentenlenkung, Schulungsplanung, digitale Zusammenarbeit und standortübergreifende Kommunikation – alles intuitiv bedienbar und mobil zugänglich. Zusätzlich bietet qualido Beratung, Schulungen und Audits, um den digitalen Wandel zu unterstützen. Kostenlose Live-Demos und eine Informationsmappe stehen Interessierten zur Verfügung.

24 Dienstplanung

24.1 Softwarefunktionen

Ein effektives Dienstplanungstool für eine Arztpraxis sollte folgende wesentliche Merkmale besitzen:

- **Benutzerfreundlichkeit**: Eine intuitive Oberfläche, leicht zu bedienen für Ärzte und Praxismitarbeiter.
- Automatisierte Schichtplanung: Automatische Zuweisung von Schichten basierend auf Verfügbarkeiten, Qualifikationen und gesetzlichen Anforderungen.
- Flexibilität und Anpassbarkeit: Anpassung an Praxisspezifika, wie Notdienste oder Urlaub.
- Echtzeit-Überwachung: Sofortige Benachrichtigung über Schichtänderungen.
- Mitarbeiter-Selbstservice: Eingabe von Verfügbarkeiten und Urlaubswünschen durch Mitarbeiter.
- Integration und Kompatibilität: Nahtlose Verbindung mit Praxis-Software und Kalendern.
- Mobile Zugänglichkeit: Zugriff auf Schichtpläne via App oder optimierter Webseite.
- Zeiterfassung und -management: Präzise Erfassung von Arbeitszeiten für Abrechnungen und Überstunden.
- Benachrichtigungssysteme: Automatische Updates über Änderungen.
- Berichterstellung und Analyse: Überwachung von Überstunden oder Effizienz im Dienstplan.
- Compliance und Regeln: Sicherstellung der Einhaltung von Arbeitszeitgesetzen.
- Datenmanagement und Sicherheit: Schutz der sensiblen Daten gemäß Datenschutzrichtlinien.
- Export- und Import-Funktionen: Datenmanagement in und aus Excel oder CSV.
- Kommunikationswerkzeuge: Interne Kommunikation für Schichtplanung und Notizen.

Diese Merkmale fördern Transparenz, Flexibilität und Effizienz, was zur Zufriedenheit und Produktivität im Praxisteam beiträgt.

24.2 Softwarelösungen

Table 24.1: Übersicht Softwarelösungen Dienstplanung

Produkt	Anbieter	URL
Shiftbase	Shiftbase	Shiftbase
Mein Schichtplan	Mein Schichtplan	Mein Schichtplan
Schichtplaner-	Schichtplaner-	Schichtplaner-Online
Online	Online	
Planday	Planday	Planday
Aplano	Aplano	Aplano
Vote2Work	Vote2Work	
Planerio	Planerio	Planerio
Staffomatic	Staffomatic	Staffomatic
biduum	biduum	biduum
Dyflexis	Dyflexis	Dyflexis
Ordio	Ordio	Ordio
Crewmeister	Crewmeister	Crewmeister
Zeiterfassung	Softwarenetz	softwarenetz.de/zeiterfassung
TimeMonkey	MonkeyDent	monkeydent.de
	GmbH	
clockin	clockin GmbH	clockin.de
TiMaS	mess-elektronik-	megzeit.de/timas-zeiterfassung
	groß GmbH	

Der AOK-Urlaubsplaner ist ein PDF-Formular, das hilft die Urlaubs- und Abwesenheitszeiten zu erfassen. Mit diesem kostenlosen PDF-Dokument, das im Adobe Acrobat Reader bearbeitet werden kann, lassen sich Urlaubswünsche, Resturlaub und andere Abwesenheiten einfach festhalten.

25 Materialwirtschaft

25.1 Bestellsysteme

Table 25.1: Beispiele digitale Materialwirtschaft

Produkt	URL
PUSH® Order Inhouse	hartmann.info/
PUSH® Order	hartmann.info/
Premium	
PUSH® Hygiene	hartmann.info/
PUSH® Control OP	hartmann.info/
On-Demand	merzljak.de/on-demand-eprocurement-loesungen-gesundheitswesen
E-Procurement	
Orgamax	orgamax.de

Die Praxisdienst-Apps, "easyOrder", zeigt wie digitale Hilfsmittel in der Materialwirtschaft in Arztpraxen nützlich sein können. Die easyOrder App ermöglicht es, vergangene Bestellungen als Basis für neue zu nutzen, Produktsuchen durchzuführen und durch Bestandsalarme rechtzeitig Nachschub zu ordern. Der Bestell-Assistent erleichtert das Scannen von EAN-Codes per Smartphone oder Zebra TC22 Scanner, um Artikel direkt in den digitalen Warenkorb zu übernehmen.

25.2 Kühlmonitoring

Die DIN 58345 und DIN 13277 sind Normen, die Anforderungen an Medikamentenkühlschränke in Arztpraxen und anderen medizinischen Einrichtungen definieren. Die DIN 58345 legt fest, dass Kühlschränke für Arzneimittel eine konstante Temperatur zwischen +2 °C und +8 °C halten, mit optischen und akustischen Alarmen bei Temperaturabweichungen oder Stromausfall sowie abschließbaren Türen zum Schutz vor unbefugtem Zugriff ausgestattet sein müssen. Die im Mai 2022 eingeführte DIN 13277 löst die DIN 58345 ab und erweitert den Anwendungsbereich auf Labore und wissenschaftliche Einrichtungen, indem sie flexiblere Umgebungsparameter wie Luftfeuchtigkeit und CO2-Konzentration ermöglicht. Beide Normen

gewährleisten eine sichere Lagerung temperaturempfindlicher Medikamente und Impfstoffe in Arztpraxen.

Table 25.2: Beispiele Digitales Kühlmonitoring

Produkt	URL
testo Saveris 1	testo.com

26 Datenschutz

26.1 Dienstleistungensarten

- Vorlagen und Checklisten: Organisationen bieten Vorlagen für die Dokumentation von Verarbeitungstätigkeiten, interne Arbeitsabläufe und Einwilligungs- und Vertraulichkeitserklärungen sowie Checklisten für spezifische Aufgaben an.
- Schulung und Sensibilisierung: Interaktive Trainingsmodule zur Sensibilisierung von Mitarbeitern für Datenschutz und sichere Handhabung von Patientendaten, einschließlich Schutz vor Ransomware-Angriffen.
- IT-Sicherheitsrichtlinien und Unterstützung: Richtlinien für sichere IT-Betriebe, inklusive Passwortmanagement, Zugangskontrollen und sichere Datenübertragung, basierend auf Anlagen des BÄK und KBV.
- Datenschutzmanagementsysteme (DSMS): Tools zur Dokumentation von Risikobewertungen und Implementierung von Sicherheitsmaßnahmen.
- Datenschutzbeauftragte (DPO): Interne oder externe DPOs zur Sicherstellung der Einhaltung von Datenschutzvorschriften.
- Cyber-Versicherung: Schutz vor Schäden durch Cyber-Angriffe.
- Information und Unterstützung von Verbänden: Richtlinien und Musterlösungen von medizinischen Verbänden.
- Datenschutzberatung: Fachliche Beratung zur Einhaltung von Datenschutz in der Gesundheitsbranche.
- Initiativen und Kooperationen: Tools wie "Mit Sicherheit gut behandelt" für Datenschutzmaßnahmen.
- Automatisierte Compliance-Lösungen: Plattformen zur Automatisierung von Compliance-Aufgaben.

26.2 Praktische Anwendungen des Datenschutzes in Arztpraxen

26.2.1 Datensammlung und -management:

- Erstkontakt mit Patienten: Datenschutz bei der Erfassung von Informationen durch Anmeldeformulare.
- Anamnesebögen: Vorsichtiger Umgang mit sensiblen Daten in Patientenakten.

- Elektronische Patientenakten (ePA): Sichere Speicherung und Zugangskontrolle in digitalen Systemen.
- Digitalisierung von Dokumenten: Übertragung von Papierdokumenten in digitale Formate mit Sicherung der Integrität.

26.2.2 Datenaustausch und Kommunikation:

- Überweisungen und E-Arztbriefe: Datenschutz bei der Datenweitergabe an Fachärzte.
- Laboraufträge: Sicherer Umgang mit Daten bei Laboruntersuchungen.
- E-Mail-Kommunikation: Verschlüsselung von E-Mails zur Sicherung der Patientendaten.
- Videokonsultationen: Datensicherheit und Vertraulichkeit bei Videoanrufen.

26.2.3 Datensicherheitsmaßnahmen:

- Passwortmanagement: Sichere Passwortrichtlinien.
- Cybersicherheit: Schutz vor Cyberangriffen.
- Datenverschlüsselung: Verschlüsselung gespeicherter und übermittelter Daten.
- Datensicherungen: Backup-Strategien und Notfallpläne.
- Reaktion auf Datenlecks: Prozeduren für Datenlecks und Meldungen.

26.2.4 Nutzung externer Dienste:

- Externe IT-Dienstleister: Sicherstellung der Datenschutzkonformität bei Outsourcing.
- Cloud-Dienste: Datenschutz bei Nutzung von Cloud-Diensten.
- Datenverarbeitungsverträge: Verträge zur rechtmäßigen Datenverarbeitung.

26.2.5 Patientenrechte:

- Auskunftsrecht: Erfüllung von Informationsanfragen der Patienten.
- Berichtigungsrecht: Korrektur falscher Informationen.
- Löschungsrecht: Behandlung von Löschungsanforderungen unter Berücksichtigung von Aufbewahrungsfristen.

26.2.6 Spezifische Szenarien:

- Homeoffice: Datenschutz im häuslichen Arbeitsumfeld.
- Terminbuchungstools: GDPR-Konformität bei Online-Terminvergabe.
- Digitale Gesundheitsanwendungen (DiGA): Datenschutz bei der Nutzung von Di-GAs
- Soziale Medien: Datenschutz bei der Online-Präsenz.
- Physiotherapeuten: Schutz von Patientendaten bei Nachfragen nach Impfstatus.
- Bewerbungsdaten: Sorgfältiger Umgang mit Bewerbungsunterlagen.

26.2.7 Veränderungen in der Praxis:

- Praxisübergabe oder -schließung: Schutz von Patientendaten bei Praxisübergaben oder -schließungen.
- Praxiszusammenschlüsse: Datenschutz bei Fusionen von Praxen.

26.2.8 Dokumentation und Einhaltung:

- Verarbeitungsverzeichnis (ROPA): Dokumentation der Datenverarbeitung.
- Datenschutz-Folgenabschätzung (DPIA): Risikobewertung bei neuen Technologien oder hohem Risiko.
- Technische und organisatorische Maßnahmen: Implementierung zur Datensicherheit.

26.2.9 Datenschutzbeauftragter (DPO):

• Ernennung eines DPO: Überwachung der Datenschutzkonformität.

26.3 Übersichtstabelle

Table 26.1: Übersicht Softwarelösungen Datenschutz

Name	Beschreibung	URL
Dieter	Ein Tool, das Datenschutz einfach und	dietermachtdatenschutz.de
macht den	verständlich macht.	
Daten-		
schutz		

Name	Beschreibung	URL
DataGuard	Unterstützt Unternehmen bei	dataguard.de
	Datenschutzbestimmungen mit Fokus	
a= a====	auf Automatisierung und Compliance.	
SECJUR	Online-Tool zur Erstellung von	secjur.com
	Datenschutzrichtlinien und	
	Unterstützung bei	
	DSGVO-Konformität.	1.1.4.1
teachDATA	Kostenlose Online-Schulungen zur	teachdata.de
	DSGVO für Mitarbeiter, einfach und	
a atima Minda	verständlich gestaltet.	a attivious in dia and demosi
activelying.a	cardentische Onlinekurse zum	activemind.academy
	Datenschutz gemäß DSGVO für beliebig viele Mitarbeiter.	
N.C.	Online-Datenschutzschulung für	vc-datenschutz.de
VC-	de de la Nachweis vor	vc-datenschutz.de
datenschutz.	Aufsichtsbehörden dient.	
PRIOLAN	Präsenz- und Online-Schulungen mit	priolan.de
GmbH	Fokus auf Datenschutz für	prioran.de
Gilloii	Unternehmen.	
kbw.de	Praxisorientierte Kurse für	kbw.de
	Datenschutzbeauftragte, sowohl online	
	als auch vor Ort.	
ISiCO	Individuelle Datenschutz-Schulungen,	isico-datenschutz.de
Daten-	angepasst an spezielle Bedürfnisse.	
schutz		
GmbH		
Complipro	Datenschutz- und Compliance-Tool für	complipro.de
	Unternehmen.	
Datenschutz	Plattform mit Lösungen und Schulungen	daten schutz-in-arzt praxen. de
in	für den Datenschutz in Arztpraxen.	
Arztpraxen		
Mit	Datenschutz-Ressourcen für	mit-sicherheit-gut-behandelt.de
Sicherheit	medizinische Praxen und	
gut	Gesundheitseinrichtungen.	
behandelt		
Datenschutz	Informationsportal mit Leitfäden und	datenschutz-praxis.de
Praxis	Schulungen zum Datenschutz.	
Keyed	Bietet umfassende Lösungen und	keyed.de
	Schulungen rund um Datenschutz.	

Name	Beschreibung	URL
Datenschutzexpösttegen speziell für die Gesundheitsbranche, um Datenschutz und DSGVO-Konformität zu		datenschutzexperte.de
	gewährleisten.	

27 IT-Sicherheit

27.1 Einleitung

Die KBV IT-Sicherheitsrichtlinie wurde von der Kassenärztlichen Bundesvereinigung (KBV) entwickelt, um die Anforderungen von § 75b SGB V zu erfüllen, einem Gesetz zur Stärkung der IT-Sicherheit im Gesundheitswesen. Die Richtlinie standardisiert technische und organisatorische Maßnahmen (TOMs) zur Datensicherheit gemäß Artikel 32 der DSGVO und unterscheidet sich nach Praxisgröße und IT-Infrastruktur. Sie fokussiert sich auf die Ziele Vertraulichkeit, Integrität und Verfügbarkeit von Daten und wird jährlich mit dem BSI aktualisiert. Diese Richtlinie ist für alle Praxen im gesetzlichen Krankenversicherungssystem verpflichtend und unterstützt eine schrittweise Umsetzung. ((KBV) 2020)

27.2 Beispiele für IT-Schwachstellen

Der "CyberPraxMed"-Bericht des BSI (Sicherheit in der Informationstechnik 2023) untersucht die IT-Sicherheitslage in deutschen Arztpraxen. Die Wahrscheinlichkeit eines erfolgreichen Cyberangriffs wird als hoch eingestuft, während die bestehenden Richtlinien oft nicht umgesetzt werden. Der Bericht listet spezifische Risiken auf:

- Unbeaufsichtigte PCs: Viele Praxen haben Computer, die mit aktiven Benutzersitzungen unbeaufsichtigt gelassen werden, sodass Patienten oder andere externe Personen Zugang zu diesen Systemen haben könnten.
- Unsicherer Fernzugriff: Praxen nutzen häufig VPN oder RDP-Verbindungen zur Netzwerkzugriffs, manchmal mit privaten Geräten zur Datenverarbeitung und -speicherung, was sensible Informationen gefährden kann.
- Fehlende Backup-Tests: Regelmäßige Tests der Backup-Funktionen werden oft nicht durchgeführt, was bedeutet, dass nach einem Angriff möglicherweise keine Datenwiederherstellung möglich ist.
- Unsichere Netzwerkbuchsen: Es gibt oft offene oder ungeschützte Netzwerkbuchsen in den Praxen, die als Angriffspunkte genutzt werden könnten.
- **Private Geräte**: Viele Praxen integrieren private Geräte in das gleiche Netzwerk wie ihre professionelle Ausrüstung, was die Sicherheit des gesamten Netzwerks gefährden kann.

- Fehlende Netzwerksegmentierung: Es fehlt an der Trennung von LAN, WLAN, medizinischen Geräten und IT-Ausrüstung, was das Risiko der Malwareverbreitung erhöht.
- Unverschlüsselte E-Mails: Einige Praxen tauschen Patientendaten über unverschlüsselte E-Mails aus, wodurch diese Daten leicht abgefangen werden können.
- Fehlende Sicherheitssysteme: Viele Praxen verwenden keine Systeme zur Eindringungserkennung oder -verhinderung (IDS/IPS), was Angriffe weniger wahrscheinlich macht zu entdecken oder zu verhindern.
- Fehlende IT-Dokumentation: Es gibt häufig keine ausreichende Dokumentation der IT-Struktur und -Sicherheitsmaßnahmen, was bedeutet, dass Schwachstellen oft unbemerkt und unbehandelt bleiben.

27.3 Praxisspezifische IT-Sicherheitsanforderungen

27.3.1 Nach Praxisgröße:

- Kleine Praxen (1-5 Personen im Datenerfassungsprozess):
 - Grundanforderungen:
 - * **Anlage 1** und **Anlage 5** der KBV IT-Sicherheitsrichtlinien müssen eingehalten werden.
- Mittelgroße Praxen (6-20 Personen im Datenerfassungsprozess):
 - Grund- und Zusatzanforderungen:
 - * Anlage 1 und 5, plus zusätzliche Maßnahmen in Anlage 2 (wie App-Berechtigungen, Zugangskontrolle für Webanwendungen, sichere Authentifizierung, Protokolle für mobile Geräte und Datentransfer).
- Große Praxen (mehr als 21 Personen oder hohes Datenaufkommen):
 - Umfassende Anforderungen:
 - * Anlagen 1, 2 und 5, sowie zusätzliche Maßnahmen in Anlage 3 (strengere Regelungen für IT-Komponenten, Verschlüsselung, sicherer Datentransfer).

27.3.2 Nach Medizintechnik:

- Praxen mit großer Medizintechnik (z.B. CT, MRT, PET-Scanner):
 - Zusätzliche Gerätespezifische Anforderungen:
 - * Anlage 4 muss eingehalten werden, welche spezifische Sicherheitsmaßnahmen für solche Geräte umfasst.

27.3.3 Telematikinfrastruktur (TI):

• Für Alle Praxen:

 Anlage 5 für den sicheren Betrieb von TI-Komponenten wie Konnektoren, Kartenlesern und Praxis-ID-Karten.

27.3.4 Zusammenfassung der Anlagen:

- Anlage 1: Grundlegende IT-Sicherheitsmaßnahmen für alle Praxen (sicherer App-Nutzung, Virenschutz, Firewalls, Datensicherung).
- Anlage 2: Zusätzliche Sicherheit für mittelgroße Praxen (App-Berechtigungen, Webanwendung-Zugangskontrolle, Mobilitätssicherheit).
- Anlage 3: Weitere Anforderungen für große Praxen (Verschlüsselung, sicherer Datentransfer).
- Anlage 4: Sicherheit für große medizinische Geräte.
- Anlage 5: Sicherheit für TI-Komponenten.

27.4 Gesetzgebung bezüglich IT-Sicherheit

• § 75b SGB V:

- Verpflichtet Arztpraxen zur Implementierung von IT-Sicherheitsmaßnahmen, basierend auf dem Digitalen-Versorgungs-Gesetz (DVG) 2019.
- KBV gibt verbindliche Richtlinien heraus, abhängig von Praxisgröße und Medizintechnik.

• § 203 StGB:

 Regelt das ärztliche Schweigeprivileg, was den Schutz von Patientendaten priorisiert.

• § 32 DSGVO:

 Verlangt technische und organisatorische Maßnahmen (TOMs) zur Sicherung von Daten.

• § 291a SGB V:

 Bezieht sich auf die Telematikinfrastruktur (TI) und die Rolle der gematik bei Datenschutz.

• § 3 Abs. 9 & § 28 Abs. 6-9 BDSG:

- Allgemeine Datenschutzanforderungen.

• § 22 BDSG:

Regelung zur Nutzung von Patientendaten, die auf die Behandlung beschränkt ist;
 zusätzliche Verwendung benötigt Zustimmung des Patienten.

• § 2 Absatz 9 BSI-Gesetz:

- Klärt, dass Arztpraxen **nicht** zu kritischen Infrastrukturen zählen.
- § 390 SGB V IT-Sicherheit in der vertragsärztlichen und vertragszahnärztlichen Versorgung
- § 391 SGB V IT-Sicherheit in Krankenhäusern
- § 392 SGB V IT-Sicherheit der gesetzlichen Krankenkassen
- § 393 SGB V Cloud-Einsatz im Gesundheitswesen; Verordnungsermächtigung

Weitere gesetzliche Rahmenbedingungen:

• BSI-Gesetz:

 Betrifft das Bundesamt für Sicherheit in der Informationstechnik (BSI), welches Richtlinien wie den IT-Grundschutz liefert.

• MBO-Ä § 10 Abs. 5 & MBO-Pt § 10 Abs. 2:

 Berufsordnungsregeln für Ärzte und Psychotherapeuten betreffend elektronische Patientenakten.

• IFSG & MPG:

 Infektionsschutzgesetz und Medizinproduktegesetz für Patienten- und Mitarbeiterschutz.

27.5 Beispiel IT-Architektur Praxis

Figure 27.1: Beispiel IT-Architektur

27.6 Mobile Device Management (MDM)

Mobile Device Management (MDM) in Arztpraxen ermöglicht die zentrale Verwaltung und Sicherung von mobilen Geräten wie Smartphones und Tablets. Damit können Ärzte und Praxismitarbeiter sicher auf Patientendaten zugreifen, während gleichzeitig die Datenschutzrichtlinien eingehalten werden. MDM-Lösungen unterstützen zudem die Fernwartung und -aktualisierung der Geräte

Produkt	URL
Ivanti	ivanti.com
(MobileIron)	
SOTI	soti.de
Jamf Pro	jamf.com
ManageEngine	manageengine.com
Hexnode	hexnode.com
IBM MaaS360	ibm.com

27.7 Security Information and Event Management (SIEM)

Security Information and Event Management (SIEM) sammeln und korrelieren Log-Daten aus verschiedenen IT-Systemen, um verdächtige Aktivitäten oder Sicherheitsverletzungen frühzeitig zu erkennen.

Produkt/Anbieter	URL
ByteSnipers	bytesnipers.com
SVA	sva.de
Logpoint	logpoint.com
Myracle Security	myrasecurity.com
Splunk	splunk.com
IBM QRadar	ibm.com
Exabeam	exabeam.com
Graylog	graylog.org
ManageEngine	manageengine.com
Log360	
Rapid7 InsightIDR	rapid7.com
SolarWinds	solarwinds.com
Security Event	
Manager	

27.8 Richtiges Löschen

Beim sicheren Löschen von Daten gilt es sicherzustellen, dass diese nicht wiederhergestellt werden können. Auf Mac-Systemen empfiehlt sich die Verwendung des "Secure Erase"-Features. Für Unix- und Linux-Benutzer überschreibt das Kommandozeilen-Tool "shred" Dateien durch mehrfaches Überschreiben mit zufälligen Daten. Für Windows-Nutzer gibt es das Tool "SDelete" von Sysinternals, das Dateien auf der Festplatte sicher löscht. Diese Methoden stellen sicher, dass gelöschte Daten nicht durch Software zur Datenwiederherstellung rekonstruiert werden können.

27.9 Übersicht IT Grundschutz

Table 27.3: Übersicht IT Grundschutz

Product	Company	URL
SiDOK	2net	2net.de
ENTERPRI	SE4conform	4conform.com
ISMS /	GmbH	
DSMS		
Akarion	Akarion	akarion.com
GRC Cloud		

Product	Company	URL
$\overline{\operatorname{docsetMinder}}$	Allgeier Cyris	allgeier-cyris.de
i-doit	becon GmbH	becon.de
Add-ons		
crisam	crisam	crisam.net
CANCOM Compli-	CANCOM	cancom.de
anceSuite		
Normtracker	certvision	certvision.de
Compliance Manage-	360incontrol	360incontrol.ch
ment		
easyISMS	concat	concat.de
Condignum	condignum	condignum.com
Platform		
CONTECHN	RIONTECHNE	Teontechnet.de
Suite+ /		
INDITOR /		
INPRIVE		
GRASP	GRASP	grasp-irm.com
Athereon GRC	Athereon	athereon.de
Datenschutz-	Datenschutz-	datenschutz-management.software
Management	Management	
Software	Software	
EGERIE	EGERIE	egerie.eu
EEC	EEC	eec.de
ETES	ETES GmbH	etes.de
Groupware		
/ Fileshare		
/ WebCon-		
ference	G 1:	
Compliance	Compliance	compliance-aspekte.de
Aspekte	Aspekte FortControl	C 1 .
FortControl ForumISM	Forum-IS	fortcontrol.io forum-is.de
	fuentis	
fuentis Suite 4 / GRC Suite	ruentis	fuentis.com
GAIMS	GAIMS	gaims.app

Product	Company	URL
BIC BSI	GBTEC	gbtec.com
Grund-		
schutz		
guksa	guksa	guksa.de
Goriscon	Goriscon	goriscon.de
HiScout	HiScout	hiscout.com
ibi-systems	ibi-systems	ibi-systems.de
save-	infodas	save-infodas.de
infodas		
Intervalid ISMS	Intervalid	intervalid.com
ISMS4KMO	ISMS4KMO	isms4kmo.de
ITQX	ITQX	itq-institut.de
Virtual42	Virtual42	virtual42.com
opus i	kronsoft e.K.	kronsoft.de
M24S	M24S	m24s.info
wmc-direkt	wmc-direkt	wmc-direkt.de
	KOMNITRACK	ERnnitracker.com
GRC-		
Center	OFFDIG	
OTRIS	OTRIS	otris.de
Daten-		
schutzman-		
agement	datamaahuta /	pueses Chali
preeco	datenschutz / information- ssicherheit	preeco GmbH
$\operatorname{proISCat}$	$\operatorname{proISCat}$	proiscat.de
Reguvis IT-	Reguvis	reguvis.de
Grundschutz		
Cockpit		
		robin-data.io
		runecast.com
GRC- COCKPIT	SAVISCON GmbH	saviscon.de
		schleupen.de
		tcc.de
		verinice.com skillswift.com swissgrc.com sintegrity.de tcc.de

Product	Company	URL
		dsc2.info
		temino.de
HITGuard	TogetherSecur	e togethersecure.com
	GmbH	
		quidit.de
		xmera.de
ENTERPRIS	SE4conform	4conform.com
ISMS / EN-	GmbH	
TERPRISE		
DSMS		
RED	RED	redmedical.de/red-protect-praxisfirewall/
protect –	Medical	
Praxis-	Systems	
Firewall	GmbH	

Quelle: BSI IT Grundschutztools

VeraCrypt ist ein kostenloses, quelloffenes Verschlüsselungs-Tool, das Daten auf Festplatten, USB-Sticks oder in Containern sicher schützt. Es bietet starke 256-Bit-Verschlüsselung (z. B. AES) und ermöglicht die Erstellung verschlüsselter virtueller Laufwerke oder die komplette Systemverschlüsselung. Als Nachfolger von TrueCrypt ist es einfach zu nutzen und besonders sicher gegen Brute-Force-Angriffe.

Icinga ist ein Open-Source-Tool zur Überwachung von IT-Infrastrukturen, das Netzwerke, Server und Anwendungen in Echtzeit überwacht. Es bietet flexible Konfigurationsmöglichkeiten, eine moderne Web-Oberfläche (Icinga Web 2) und unterstützt verteilte Systeme für hohe Skalierbarkeit. Als Fork von Nagios erweitert es dessen Funktionen mit Features wie REST-API und verbesserten Datenbankverbindungen.

ModSecurity ist eine Open-Source-Web Application Firewall (WAF), die Webanwendungen vor Angriffen wie SQL-Injection oder Cross-Site-Scripting schützt. Sie lässt sich in Webserver wie Apache, Nginx oder IIS integrieren und bietet flexible Regelsets zur Erkennung und Blockierung von Bedrohungen in Echtzeit. Als leistungsstarkes Sicherheits-Tool wird sie oft mit zusätzlichen Regelwerken wie dem OWASP Core Rule Set erweitert.

27.10 Cyberversicherung

Viele Arztpraxen und Krankenhäuser in Deutschland sind unzureichend gegen Cyberangriffe geschützt, obwohl die Folgen schwerwiegend sein können, wie Datenklau, Erpressung oder Manipulation medizinischer Geräte. Beispielsweise verursachte ein Hackerangriff 2016 am

Lukaskrankenhaus Neuss einen Schaden von etwa einer Million Euro. Umfragen zeigen, dass zwei Drittel der Krankenhäuser bereits betroffen waren und niedergelassene Ärzte das Risiko unterschätzen, da sie sensible Patientendaten besitzen und technisch oft angreifbar sind. Ransomware-Angriffe, die Systeme blockieren oder Daten stehlen, sind besonders häufig, wobei Schäden auch ohne Lösegeldzahlung hoch sind. Schwachstellen entstehen durch einfache Passwörter, fehlende Updates und ungeschultes Personal, das oft Ziel von Social-Engineering-Techniken wird. Medizinische Geräte sind aufgrund strenger Sicherheitsstandards und permanenter Internetverbindung besonders anfällig. Empfohlene Schutzmaßnahmen umfassen regelmäßige Updates, starke Passwörter, Schulungen und Sicherungskopien. (Kurz 2021)

Viele Krankenhäuser in Deutschland sind nicht gegen Cyberangriffe versichert, entweder weil sie keine Versicherung wollen oder als nicht versicherbar gelten, was an hohen Anforderungen und steigenden Prämien liegt, die sich teils verdoppelt oder verdreifacht haben. Cyberattacken nahmen 2023 um 18,7 % zu, wobei Gesundheitseinrichtungen durch sensible Patientendaten, veraltete Medizintechnik und Ressourcenmangel besonders gefährdet sind. Versicherer fordern Basisabsicherungen wie Virenschutz, Firewalls und Mitarbeiterschulungen, doch die Komplexität der Krankenhaus-IT, einschließlich vernetzter Medizin- und Betriebstechnik, erschwert dies. Ein Information Security Management System (ISMS) hilft, Transparenz zu schaffen, reicht aber allein nicht aus, da Patientensicherheit zusätzliche Schutzziele erfordert. Aktive Cyberversicherungen bieten neben Schadensersatz auch Präventionsleistungen wie Schulungen oder Notfall-Hotlines, während flexible Versicherer Auflagen mit Fristen setzen, um Krankenhäuser versicherbar zu machen. (Lang 2025)

Table 27.4: Beispiele Cyberversicherung

Name	URL
Ecclesia	ecclesia.com
Relyens	relyens.eu
Hiscox	hiscox.de
Cogitanda	cogitanda.com
Cyberdirekt	cyberdirekt.de
HDI	hdi.de

27.11 Internet of Things (IoT)

Die Studie "How secure are your health devices—stopping wearables becoming a personal and national security risk?" untersucht die Cybersicherheitsrisiken von vernetzten medizinischen Geräten (IoMT), insbesondere im Kontext globaler Lieferketten. Sie beleuchtet, wie die zunehmende Verbreitung von Wearables und Remote-Patientenüberwachung die Abhängigkeit von diesen Geräten und ihren Daten erhöht, während Schwachstellen in der Lieferkette, wie

Backdoors oder Manipulationen, ernsthafte Risiken für Patienten und Gesundheitssysteme darstellen. Die Autoren diskutieren reale Vorfälle, wie die Schwachstelle CVE-2024-12248 in einem Patientenmonitor, und schlagen Maßnahmen wie Root-of-Trust-Technologien, Zero-Trust-Modelle und strengere Regulierungen (z. B. EU Cyber Resilience Act, US FD&C Act) vor, um die Sicherheit von IoMT-Geräten zu gewährleisten und gezielte Angriffe zu verhindern. (Ostermann et al. 2025)

27.12 Umstellung RSA zu ECC

Die Telematikinfrastruktur (TI) wird bis Ende 2025 von RSA2048 auf das sicherere und effizientere ECC256-Verschlüsselungsverfahren umgestellt, wie vom BSI und der Bundesnetzagentur vorgegeben. Dies erfordert den Austausch von etwa 35.000 Konnektoren, zehntausenden Heilberufs- und Praxisausweisen sowie Gerätekarten, die nicht ECC-fähig sind. Die KBV kritisiert den engen Zeitrahmen und fordert eine Fristverlängerung, da Praxen ansonsten TI-Anwendungen wie eRezept oder eAU nicht mehr nutzen könnten. Die gematik hält am Zeitplan fest, erlaubt aber Ausnahmen für bestimmte Gerätekarten. Praxen werden von Anbietern proaktiv über notwendige Austausche informiert. kbv.de/html/1150_74961.php

RSA (Rivest-Shamir-Adleman) und ECC (Elliptic Curve Cryptography) sind Verschlüsselungsverfahren, die sensible Daten in der Telematikinfrastruktur schützen. Bei RSA wird ein Schlüsselpaar aus öffentlichem und privatem Schlüssel erzeugt: Der öffentliche Schlüssel verschlüsselt die Daten, der private Schlüssel entschlüsselt sie. Es nutzt mathematische Operationen mit großen Primzahlen, was sicher, aber rechenintensiv ist. ECC basiert auf elliptischen Kurven und erreicht mit kürzeren Schlüsseln (z. B. 256 Bit) ein höheres Sicherheitsniveau bei geringerem Rechenaufwand. Beide Verfahren sichern z. B. elektronische Signaturen oder Datenübertragungen.

27.13 KRITIS & NIS2

Im Gesundheitssektor gewährleisten KRITIS-Betreiber und Einrichtungen kritische Dienstleistungen wie stationäre medizinische Versorgung, Versorgung mit lebenserhaltenden Medizinprodukten, Arzneimitteln, Blut/Plasma sowie Laboratoriumsdiagnostik, die durch NIS2- und KRITIS-Cybersecurity-Pflichten geschützt werden müssen. Mit der NIS2-Umsetzung und dem KRITIS-Dachgesetz, die voraussichtlich 2025 in Kraft treten, erweitert sich die Regulierung, indem neue Einrichtungen, basierend auf Umsatz- und Mitarbeiterzahlen, sowie Betreiber kritischer Anlagen einbezogen werden. openkritis.de

Die NIS-2-Richtlinie, seit dem 17. Oktober 2024 in nationales Recht umgesetzt, verschärft die Cybersecurity-Anforderungen für Unternehmen mit mindestens 50 Mitarbeitenden oder einem Jahresumsatz von über zehn Millionen Euro. Betroffene Unternehmen müssen ein umfassendes Risikomanagement etablieren, um sensible Patientendaten und kritische Systeme

vor Cyberangriffen zu schützen. Dazu gehören Maßnahmen wie Datensicherung, Firewalls, Frühwarnsysteme, Need-to-Know-Zugriffsregelungen, Notfallpläne und regelmäßige Fortbildungen. Sicherheitsvorfälle müssen innerhalb von 24 Stunden an das BSI gemeldet werden. Die Geschäftsleitung ist verpflichtet, sich fortzubilden und haftet bei Verstößen. Ein strukturiertes Risikomanagement, einschließlich interner Regelungen, Vorfallsbewältigung und Kryptografie, ist essenziell, um Bedrohungen frühzeitig zu erkennen und zu minimieren.

27.14 Datenverlust

Die Studie "Psychiatric electronic health records in the era of data breaches – What are the ramifications for patients, psychiatrists and healthcare systems?" untersucht die Risiken von Datenlecks in elektronischen Patientenakten (EPA) im psychiatrischen Bereich. Sie analysiert Vorfälle wie die Datenlecks bei Medibank und Australian Clinical Labs, die zeigen, wie sensible Informationen, insbesondere zu psychischen Erkrankungen und Substanzkonsum, für Erpressung, Identitätsdiebstahl und Betrug missbraucht werden können. Die Autoren betonen die Notwendigkeit, nur minimale personenbezogene Daten in EPAs zu speichern, um Risiken zu reduzieren, und fordern eine stärkere gesetzliche Regulierung zum Schutz der Privatsphäre, ähnlich dem US-amerikanischen HIPAA. Abschließend wird empfohlen, Patienten und medizinisches Personal über die unvermeidbaren Risiken von Datenlecks aufzuklären und Unterstützungsmaßnahmen für Betroffene bereitzustellen. (Looi et al. 2024)

Part IV Medizinische Fachgebiete

28 Augenheilkunde

28.1 Übersicht

Table 28.1: Übersicht Softwarelösungen

Produkt	Company	URL
RetinAI	RetinAI	retinai.com
lumineticscore formerly	Digital Diagnostics	digitaldiagnostics.com
IDx-DR		
teamplay digital health	Siemens Healthineers AG	siemens-healthineers.com
SPECTRALIS	Heidelberg Engineering	heidelbergengineering.com
	GmbH	
ZEISS VISULAS 532s	ZEISS	zeiss.com/meditec
Plusoptix A12C	Plusoptix GmbH	plusoptix.com
EyeWisdom® MCS ²	Visionix	visionix.com
Amparex	Amparex	web.amparex.com

Altris AI ist ein MedTech-Unternehmen, das eine KI-gestützte Plattform zur Analyse von OCT-Scans (Optische Kohärenztomographie) entwickelt hat. Die browserbasierte Software unterstützt Augenärzte und Optometristen bei der Diagnostik, indem sie über 70 Netzhautpathologien und Biomarker automatisch erkennt. Mit FDA-Zulassung und CE-Zertifizierung ist Altris AI kompatibel mit OCT-Geräten und wird weltweit in über 500 Kliniken und Optometrie-Zentren eingesetzt. Das Unternehmen mit Hauptsitz in Chicago und Forschungsstandorten in Kiew und Málaga verfolgt die Mission, vermeidbare Erblindung durch frühzeitige Erkennung zu verhindern.

Table 28.2: Übersicht Initiativen

Produkt	Company	URL
PASBADIA Collaborative Community on Ophthalmic Innovation	PASBADIA CCOI Foundation	copicoh.uni-luebeck.de cc-oi.org

28.2 Forschung

28.2.1 oregis

Die oregis Initiative ist das deutsche ophthalmologische Register, ein Projekt der Deutschen Ophthalmologischen Gesellschaft (DOG), das umfassende Daten zur Augenheilkunde in Deutschland sammelt. Ziel ist es, anonymisierte Behandlungsfalldaten aus Praxen und Kliniken zentral zusammenzuführen, um die Versorgungsforschung zu stärken und fundierte Erkenntnisse zu Erkrankungen, Therapien und Versorgungsstrukturen zu gewinnen. Mit über 870.000 Patienten und Millionen von Messwerten wie Augeninnendruck und Visus bietet oregis eine wachsende Datenbasis. Durch automatische Datenübertragung via Konnektor-Module und höchste Datenschutzstandards soll langfristig die augenheilkundliche Versorgung verbessert werden. Die Initiative ruft Kliniken und Praxen auf, sich anzuschließen, um die Forschung und Patientensicherheit nachhaltig voranzutreiben.

Die oregis-Dashboard-Studie, veröffentlicht von Julian Alexander Zimmermann, Christopher Dicke, Maren Arndt, Noel-Adrian Hollosi, Jens Julian Storp und Nicole Eter in Klinische Monatsblätter für Augenheilkunde (2025), stellt eine neue Funktion des ophthalmologischen Registers oregis der Deutschen Ophthalmologischen Gesellschaft (DOG) vor. Entwickelt von der Klinik für Augenheilkunde am Universitätsklinikum Münster und oregis (DOG e.V., München), ermöglicht das webbasierte Dashboard teilnehmenden Zentren, ihre Versorgungsdaten in Echtzeit mit anonymisierten Gesamtdaten zu vergleichen. Basierend auf Apache Superset und einem sicheren Datenschutzkonzept mit Verschlüsselung und 2-Faktor-Authentifizierung, fördert es Benchmarking und Versorgungsforschung. (Zimmermann et al. 2025)

28.3 Künstliche Intelligenz

Die Arbeit "VisionFM: a Multi-Modal Multi-Task Vision Foundation Model for Generalist Ophthalmic Artificial Intelligence" stellt ein KI-Bilderkennungsmodell vor, das mit 3,4 Millionen ophthalmologischen Bildern von 560.457 Personen aus 26 Ländern und Regionen trainiert wurde. VisionFM deckt ein breites Spektrum an Augenerkrankungen, Bildgebungsmodalitäten (z. B. Fundusfotografie, OCT, UBM) und Geräten ab und bietet durch selbstüberwachtes Lernen eine Grundlage für zahlreiche Anwendungen wie Krankheitsdiagnose, Segmentierung von Läsionen und Gefäßen, Verlaufsprognosen und die Vorhersage systemischer Biomarker. Es übertrifft in der Diagnose von 12 häufigen Augenerkrankungen sowohl junge als auch mittelerfahrene Ophthalmologen, zeigt starke Verallgemeinerungsfähigkeit auf neue Modalitäten und Geräte und nutzt synthetische Daten, um die Lernfähigkeit zu verbessern. Ziel ist es, globale ophthalmologische Herausforderungen effizienter und skalierbarer zu bewältigen, insbesondere in Regionen mit begrenztem Zugang zu Fachkräften, und die Entwicklung zukünftiger KI-Anwendungen im Augenheilkundebereich zu beschleunigen. (Qiu et al. 2023)

RETFound ist Grundlagenmodell für die Erkennung von Augenkrankheiten, entwickelt von Zhou et al. (2023). Es wurde mit selbstüberwachtem Lernen auf 1,6 Millionen unmarkierten Fundusbildern trainiert und nutzt einen Vision Transformer (ViT), um generalisierbare Merkmalsrepräsentationen zu erlernen. Im Gegensatz zu herkömmlichen KI-Modellen, die umfangreiche annotierte Daten für spezifische Aufgaben benötigen, ermöglicht RETFound eine schnelle Anpassung an verschiedene Anwendungen wie die Diagnose von diabetischer Retinopathie, Glaukom oder die Prognose systemischer Erkrankungen. Unter realen Bedingungen zeigte das RETFound Modell eine um über 15 % höhere Sensitivität und Spezifität im Vergleich zu kommerziellen Modellen und übertraf traditionelle CNN-Modelle in der Generalisierungsfähigkeit. Die Ergebnisse unterstreichen das Potenzial von RETFound, die Genauigkeit und Effizienz von Augenscreenings, insbesondere in ressourcenarmen Regionen, zu verbessern. (Y. Zhou et al. 2023)

29 Dermatologie

29.1 Einleitung

Digitale Hautanalyse-Tools unterscheiden sich in der Präzision der Analyse, der Benutzer-freundlichkeit, den unterstützten Plattformen (App vs. Web), der Kostenstruktur (kostenlos vs. kostenpflichtig) und der Spezialisierung auf bestimmte Hautprobleme oder -typen. Während einige Tools eher auf eine schnelle, allgemeine Hautanalyse abzielen, konzentrieren sich andere auf tiefgehende Untersuchungen, die von Dermatologen oder Hautpflegeexperten unterstützt werden.

hautnetz-deutschland.de ist ein Netzwerk für dermatologische Versorgung, das Patienten den Zugang zu spezialisierten Hautärzten und telemedizinischen Dienstleistungen in Deutschland erleichtert.

www.gemeinsam-gegen-hautkrebs.de informiert über Hautkrebsprävention, Früherkennung und Behandlungsmöglichkeiten und fördert die Zusammenarbeit zwischen Patienten, Ärzten und Organisationen im Kampf gegen Hautkrebs.

29.2 Softwarelösungen

Table 29.1: Übersicht Softwarelösungen Business-to-Business

Product	Company	URL
Skinive	Skinive Holding BV	skinive.com
intellimago	zollsoft GmbH	intellimago.de

Table 29.2: Übersicht Softwarelösungen Direct-to-Consumer

Product	Company	URL
Nia Neurodermitis IQONIC.AI	Nia Health GmbH SkinTech Corp. GmbH	nia-health.de iqonic.ai

Product	Company	URL
SkinScreener App	medaia GmbH	skinscreener.com
derma2go	derma2go AG	derma2go.com
DermaValue	DermaValue	dermavalue.com
	GmbH	
SkinTheory	SkinTheory	apps.apple.com/us/app/skintheory-skin-acne-
		routine
Miiskin	Miiskin	miiskin.com
SkinTheory	SkinTheory	com.skintheory.skintheory
(Android)		
MDacne	MDacne	mdacne.com
La Roche-Posay	La Roche-Posay	effaclar-spotscan
Effaclar SpotScan		
AI-Derm	IAC Search and	ai-derm.com
	Media Europe,	
	Ltd.	
CRUSE Control	UCARE (Urticaria	cruse-control.com
	Centers of	
	Reference and	
	Excellence)	

Die ItchyMonsters-App unterstützt Kinder mit Neurodermitis spielerisch bei der täglichen Hautpflege. Durch Gamification und Augmented Reality motiviert die App Kinder dazu, regelmäßig einzucremen, während ein integriertes Hauttagebuch Eltern und Ärzt:innen hilft, den Therapieverlauf zu überwachen. Kostenlos und werbefrei bietet sie eine kindgerechte, stressfreie Lösung zur Verbesserung der Hautgesundheit.

29.3 Forschung

Table 29.3: Übersicht Forschungsprojekte

Product	Company	URL
AcneDet on Roboflow	AcneDet	${\bf roboflow.com/acnedet/acnedet-v1}$
Derm.AI KIADEKU	Fraunhofer AICOS KIADEKU GmbH	dermai.projects.fraunhofer.pt interaktive-technologien.de/projekte/kiadeku

Aisencia ist ein Start-up aus Bremen, das sich auf KI-gestützte Lösungen für die Dermatopathologie spezialisiert hat. Mit der Software Vistaneos optimiert das Unternehmen

den Workflow in Laboren, indem es ein Bildverwaltungssystem mit künstlicher Intelligenz kombiniert, um präzise und schnelle Diagnosen von Hautkrankheiten wie Basalzellkarzinom oder Melanom zu ermöglichen. Aisencia hat Auszeichnungen erhalten, darunter den 2. Platz beim EXIST Start-up Award 2024 und den 1. Platz beim CAMPUSiDEEN-Wettbewerb 2023.

30 Diabetologie

30.1 Studienlage

Die Übersichtsarbeit von Eberle et al. "Diabetology 4.0: Scoping Review of Novel Insights and Possibilities Offered by Digitalization" stellt Entwicklungen der Digitalisierung im Bereich der Diabetologie dar. Es gibt verschiedene Technologien wie Glukose-Monitoring-Systeme, smarte Insulinpens, Insulinpumpen, geschlossene Regelkreissysteme, mobile Gesundheits-Apps, Telemedizin und elektronische Gesundheitsakten. Die Autorinnen identifizieren Herausforderungen wie Datenschutz, Interoperabilität und Standardisierung. (Eberle, Stichling, and Löhnert 2021)

Künstliche Intelligenz (KI) wird in der Diabetologie in mehreren Bereichen eingesetzt. Automatische Netzhautscreenings, wie das KI-System IDx-DR, ermöglichen die frühzeitige Erkennung diabetischer Retinopathie anhand von Fundusbildern. Zudem unterstützt KI die klinische Diagnostik, etwa durch Systeme wie "DreaMed Advisor Pro", das Insulindosierungen auf Basis kontinuierlicher Glukosemonitoring-Daten (CGM) optimiert. Für Patienten gibt es KI-gestützte Selbstmanagement-Tools wie das "Guardian Connect System" von Medtronic, das frühzeitig vor Hypoglykämien warnt und so zur besseren Blutzuckerkontrolle beiträgt. Darüber hinaus wird KI zur Risikostratifizierung und Vorhersage von Diabetes eingesetzt, indem Machine-Learning-Modelle individuelle Krankheitsrisiken berechnen. (Nomura et al. 2021)

Die Studie von Lehmann et al. untersucht App-Engagement als Prädiktor für Gewichtsverlust in gemischten Interventionsprogrammen für Menschen mit Übergewicht oder Adipositas. Sie analysieren Daten aus realen, groß angelegten, gemischten Versorgungsinterventionen und bestätigen, dass Patienten, die häufiger mit der App interagieren (z.B. durch höhere Protokollierungsaktivität), nach drei und sechs Monaten signifikant mehr Gewicht verlieren als solche mit geringerer App-Nutzung. Die Ergebnisse zeigen, dass frühes App-Engagement ein zuverlässiger Indikator für den Erfolg der Gewichtsreduktion ist, was die Möglichkeit bietet, klinische Maßnahmen frühzeitig anzupassen oder zu überwachen. (Lehmann, Jones, and Schirmann 2024) Die Autoren haben Verbindungen zu einem Unternehmen, die in der Gesundheits- und Technologiebranche tätig ist und könnten daher von den Ergebnissen der Studie profitieren, was ein potenzieller Interessenkonflikt ist. Diese Verbindung wurde in der Studie offengelegt.

Die GEMINI-T2D-Studie hatte zum Ziel, die Wirksamkeit einer webbasierten Plattform mit algorithmusgesteuerter Insulin-Titration bei Patienten mit insulinbehandeltem Typ-2-Diabetes (T2D) zu evaluieren. Die Studie wurde am Singapore General Hospital durchgeführt und

umfasste 25 Teilnehmer, die 24 Wochen lang begleitet wurden. Die Ergebnisse zeigten eine signifikante Reduktion des HbA1c-Werts (im Durchschnitt 1,2%) sowie Verbesserungen des nüchternen Blutzuckers (FPG) und eine moderate Erhöhung der Insulindosis. Die Intervention führte auch zu einer hohen Adhärenz bei der Selbstmessung des Blutzuckers (SMBG), wobei die meisten Hypoglykämie-Ereignisse mild waren. Diese Ergebnisse unterstreichen das Potenzial webbasierten, algorithmusgesteuerten Insulin-Titrationssysteme zur Verbesserung der glykämischen Kontrolle, zur Stärkung der Patientenbeteiligung und zur Unterstützung von Ärzten bei der effektiveren Behandlung von T2D. Obwohl die Studie aufgrund ihrer kleinen Stichprobengröße Einschränkungen aufwies, deutet sie darauf hin, dass solche Interventionen eine vielversprechende Lösung zur Optimierung des Diabetesmanagements darstellen, insbesondere in ressourcenbegrenzten Umgebungen. (Thiagarajan et al. 2025)

Die Studie von Kim et al. (2025), veröffentlicht in npj Digital Medicine, untersucht die Rolle von Künstlicher Intelligenz (KI) bei der Unterstützung patientenzentrierter Versorgung in der Diabetesbehandlung. Durch die Analyse von 528.199 Patientennachrichten von 11.123 Diabetikern mittels natürlicher Sprachverarbeitung und KI wurden zentrale Anliegen der Patienten identifiziert, wie Ernährungsfragen, Interpretation von Laborergebnissen und administrative Herausforderungen. Die Forscher entwickelten KI-Tools, um diese Bedürfnisse zu adressieren, darunter automatisierte Patientenschulungen und optimierte administrative Unterstützung, die von fünf Endokrinologen hinsichtlich ihrer Nützlichkeit und Risiken bewertet wurden. Besonders nützlich erschienen evidenzbasierte Antworten auf häufige Fragen und automatisierte Genehmigungsvorlagen, während Tools mit direkter Integration von Patientendaten als riskanter eingestuft wurden. Die Ergebnisse zeigen das Potenzial von KI, die Diabetesversorgung zu individualisieren und die Effizienz der Patientenbetreuung zu steigern. (Kim et al. 2025)

Das Positionspapier "Telemedizin in der Behandlung von Menschen mit Diabetes mellitus" beschreibt Telemedizin als effektive Lösung zur Fernbetreuung von Patient:innen mit Diabetes, die Warte- und Anfahrtszeiten reduziert. Es betont, dass nicht alle Patient:innen dafür geeignet sind und bestimmte Voraussetzungen, wie technische Kompetenz und geeignete Hardware, erfüllt sein müssen. Besonders profitieren können Personen mit Typ-1-Diabetes, Typ-2-Diabetes mit Sensorunterstützung, Gestationsdiabetes oder solche, die AID-Systeme und Insulinpumpen nutzen. Studien zeigen eine HbA1c-Reduktion und verbesserte Zielbereichszeiten, doch die Therapieadhärenz kann nachlassen. Telemedizin erweitert das Behandlungsspektrum, erfordert jedoch regelmäßige persönliche Kontakte und sorgfältige Datensicherheit. (Resl et al. 2025)

30.2 Softwarelösungen

Table 30.1: Apps für Ärzt:innen (B2B)

Software	Anbieter	URL	Anmerkungen
Swiss Diabetes Guide	Schweizerische Gesellschaft für Endokrinologie und Diabetologie (SGED)	diabetesguide.ch	Pharmakotherapie-Empfehlungen für Diabetes Typ 2
SiDiary für Pro- fessionals	Sinovo Ltd.	SiDiary	Verwaltung von Patientendaten, Berichte, Therapieanpassung
Glooko	Glooko Inc.	glooko.com	Integration von Daten aus verschiedenen Blutzuckermessgeräten

Table 30.2: Apps für Patient:innen (D2C)

Software Anbieter	URL	Anmerkungen
mySugr Roche	mysugr.com Diabetes-Tagebuch mit	
Diabetes Care		Blutzucker-Tracking und Berichten
Glucose Azumio	glucosebuddy.com	Synchronisation mit CGM-Systemen,
Buddy		Blutzuckerprotokoll
DiabetesSMna Medical	diabetes-m.com	Detaillierte Analyse, Bolusrechner,
Systems		Berichte
${f BlueLoop}$ hildren with	blueloop.mycareconnecDiabetes-Management speziell für Kinder	
Diabetes		
DiabTre ndabTrend	diabtrend.com	KI-gestützte Blutzuckerprognose,
Ltd.		Tagebuch, Rezept-Datenbank

Table 30.3: Open-Source Software

Software Anbieter	URL	Anmerkungen
Nightscoupen-Source- Community	nightscout.info	Echtzeit-Überwachung von Blutzuckerwerten, ursprünglich für Kinder mit Diabetes entwickelt

31 Herz- & Kreislaufmedizin

31.1 Angiologie

trackPAD (Rocket Apes GmbH) zielt auf die Unterstützung von Patienten mit peripherer arterieller Verschlusskrankheit (pAVK) ab. In den Bereichen Gesundheitsmanagement und wissenschaftliche Forschung bietet die App durch Gamification und Schrittzähler eine Möglichkeit, Patienten zu motivieren, ihre Gehtrainings durchzuführen, was direkt zur Verbesserung ihrer Lebensqualität beiträgt. Für Forscher ist trackPAD ein wertvolles Werkzeug, indem es Daten für wissenschaftliche Analysen durch mobilen Datensammlungsansatz bereitstellt.

LipoCheck App (LipoCheck GmbH) konzentriert sich auf das Management von Lipödem, einer Erkrankung, die hauptsächlich Frauen betrifft. Die App deckt die Bereiche Diagnose, Therapie und Selbstmanagement ab, sowie die Dokumentation von Symptomen und Therapien. Sie bietet Lipödem-Patientinnen umfassende Unterstützung durch Gesundheitsinformationen, Ernährungsrezepten, Übungsplänen und Zugang zu einem Netzwerk von Spezialisten. Für Ärzte erleichtert die App die Kommunikation und Dokumentation durch die Bereitstellung von Arztbriefen und Therapieempfehlungen.

biolitec App (biolitec AG) ist darauf ausgelegt, medizinische Fachkräfte bei der Anwendung von Lasertherapien in verschiedenen medizinischen Bereichen wie Urologie, Phlebologie, HNO und Ästhetik zu unterstützen und Erfahrungen auszutauschen.

Dopplex Vascular Reporter von Huntleigh Healthcare unterstützt die Gefäßdiagnostik durch die Visualisierung und Dokumentation von Doppler-Untersuchungen. Mit dieser Software können Ärzte Wellenformen in Echtzeit analysieren, speichern und drucken

Table 31.1: Übersicht Softwarelösungen Gefäßmedizin

Software	Anbieter	URL
0 trackPAD	Rocket Apes GmbH	rocket- apes.com/apps/trackpad
1 LipoCheck App	LipoCheck GmbH	lipocheck.de/lipodem-
2 biolitec App	biolitec AG	app biolitec.de/biolitec-
		app

Software	Anbieter	URL
3 Dopplex Vascular Reporter	Huntleigh Healthcare	huntleigh.de

Die Webseite cholesterin-neu-verstehen.de bietet Informationen rund um das Thema Cholesterin, dessen Bedeutung für die Gesundheit und den Umgang damit. Sie klärt über die Rolle von Cholesterin im Körper, Risikofaktoren für Herz-Kreislauf-Erkrankungen und Möglichkeiten zur Senkung hoher Cholesterinwerte auf. Die Inhalte sind leicht verständlich und richten sich an Menschen, die mehr über Cholesterinmanagement, Ernährung und einen gesunden Lebensstil erfahren möchten.

31.2 Bluthochdruck

	Software	Anbieter	URL
0	Vantis	KHK und Herzinfarkt	G. Pohl-Boskamp GmbH & Co. KG
$\begin{array}{c} 1 \\ 2 \end{array}$	actensio Hypertonie.App	mementor DE GmbH Hypertension Care UG	actens.io www.hypertonie.app

31.3 Kardiologie

Die Pocket-Leitlinien Anwendungen der Deutschen Gesellschaft für Kardiologie und der European Society of Cardiology machen kardiologische Leitlinien auf digitalen Endgeräten zugänglich und verfügbar.

31.3.1 Forschung

Der Artikel "Benefits and Barriers to mHealth in Hypertension Care: Qualitative Study With German Health Care Professionals" untersucht die Perspektiven von Gesundheitsfachkräften (HCPs) – Allgemeinmedizinern, Kardiologen und Pflegekräften – hinsichtlich der Vorteile und Hindernisse bei der Integration von mobilen Gesundheitsanwendungen (mHealth-Apps) in die routine mäßige Behandlung von Hypertonie. Durch qualitative, halbstrukturierte Interviews zwischen Oktober 2022 und März 2023 wurden drei Hauptthemen identifiziert: mHealth-Apps können die Patientensicherheit durch kontinuierliche Überwachung erhöhen, die Autonomie der Patienten fördern und die medizinische Versorgung durch Echtzeitdaten unterstützen. Dennoch wurden Barrieren wie Datenmanagement, Kommunikationsprobleme und Systemhandling hervorgehoben, die strukturelle und prozedurale Anpassungen erfordern. Die Studie

betont, dass eine erfolgreiche Nutzung digitaler Tools die Überwindung von Hindernissen wie Interoperabilitätsproblemen, unklaren Kostenerstattungsrichtlinien und Informationsbedarf erfordert, während die Einbindung der Nutzer und verständliche Informationen entscheidend für die Akzeptanz und Verbreitung von mHealth-Apps in der Hypertoniebehandlung sind. (May et al. 2025)

Die TIMELY-Studie der Universität Witten/Herdecke (https://www.uni-wh.de/timely-studie) entwickelt eine patientenzentrierte eHealth-Plattform, die mithilfe von Künstlicher Intelligenz (KI) die Sekundärprävention bei koronarer Herzkrankheit (KHK) verbessert. Sie nutzt Geräte wie Blutdruckmessgeräte, EKG-Pflaster und Activity Tracker, um Risiken kontinuierlich zu überwachen, und setzt KI-Chatbots ein, um den psychischen Zustand der Patienten zu bewerten und gezielte Verhaltensinterventionen anzubieten. Ziel ist es, die Selbstfürsorge der Patienten sowie die Effizienz der Kliniker zu steigern, indem Risikofaktoren und Symptome besser gemanagt werden. Die Plattform wird in einer multizentrischen, randomisierten Studie in Deutschland, den Niederlanden und Spanien evaluiert, um ihre Wirksamkeit und Kosteneffizienz zu prüfen.

Die Arbeit "Mobile Apps and Wearable Devices for Cardiovascular Health: Narrative Review" von Gauri Kumari Chauhan, Patrick Vavken und Christine Jacob untersucht den aktuellen Stand von mobilen Gesundheitsanwendungen (mHealth-Apps) und tragbaren Geräten (Wearables) zur Förderung der Herzgesundheit, mit einem besonderen Fokus auf die DACH-Region (Deutschland, Österreich, Schweiz). Ziel der narrativen Übersicht ist es, die Vorteile dieser Technologien für Patienten und Kliniker zu bewerten, insbesondere hinsichtlich ungedeckter Bedürfnisse wie geschlechtsspezifischer Symptome, sowie deren Integration in das Gesundheitssystem zu analysieren. Mithilfe einer Suche in den Schweizer App-Stores und auf Google wurden 20 Apps und 22 Wearables identifiziert und anhand eines soziotechnischen Rahmens bewertet. Die Ergebnisse zeigen, dass nur wenige Apps (30 %) und Wearables (9 %) speziell für die DACH-Region entwickelt wurden, geschlechtsspezifische Informationen oft fehlen (25 % der Apps, 40 % der Wearables) und die klinische Integration begrenzt ist. Wearables häufiger evidenzbasiert und medizinisch zertifiziert sind, mangelt es vielen Apps an wissenschaftlicher Grundlage, was ihr Potenzial einschränkt. Die Autoren betonen die Notwendigkeit, diese Technologien inklusiver und besser in klinische Abläufe integrierbar zu gestalten, um die Herzgesundheit effektiv zu verbessern. (Chauhan, Vavken, and Jacob 2025)

Die Studie "Evaluation of a large language model to simplify discharge summaries and provide cardiological lifestyle recommendations", veröffentlicht in Communications Medicine im Mai 2025, untersucht die Nutzung eines großen Sprachmodells (LLM), GPT-40, zur Vereinfachung von kardiologischen Entlassungsberichten und zur Erstellung von Lebensstilempfehlungen. 20 anonymisierte Berichte wurden mit zwei Ansätzen (volltext- und segmentweise) verarbeitet, um die Lesbarkeit zu verbessern und personalisierte Empfehlungen zu generieren. Die Ergebnisse zeigen eine signifikante Verbesserung der Lesbarkeit (10. Schulstufe), wobei die Berichte korrekt, vollständig, harmlos und patientenverständlich waren, laut Bewertung von 12 medizinischen Experten. Die Lebensstilempfehlungen waren relevant und evidenzbasiert, jedoch nur

begrenzt personalisiert. Die Studie deutet auf das Potenzial von LLMs für patientenzentrierte Berichte hin, erfordert aber weitere Forschung zu klinischer Anwendung, Qualitätssicherung und Datenschutz. (Rust et al. 2025)

Die Studie "CT coronary angiography with HeartFlow®: a user's perspective" untersucht die Rolle der Computertomographie-Koronarangiographie (CTCA) in Kombination mit der HeartFlow®-Technologie zur Beurteilung von koronaren Herzerkrankungen. Seit der Aktualisierung der NICE-Richtlinie (CG95) im November 2016 ist CTCA die bevorzugte Erstuntersuchung bei Verdacht auf Angina pectoris, da sie eine hohe Sensitivität (89 %) beim Ausschluss obstruktiver Koronararterienerkrankungen (CAD) bietet, jedoch mit einer niedrigeren positiven prädiktiven Wert von 48 %. HeartFlow® nutzt fortschrittliche computergestützte Strömungsdynamik, um die fraktionelle Flussreserve (FFRCT) aus CTCA-Daten zu berechnen, was die funktionelle Bedeutung von Stenosen präzise bestimmen kann. Studien wie PLAT-FORM und ADVANCE zeigen, dass CTCA mit FFRCT zu vergleichbaren klinischen Ergebnissen führt wie herkömmliche Tests, bei potenziellen Kosteneinsparungen von mindestens 9,1 Millionen Pfund bis 2022 im NHS. (Brady et al. 2019)

32 Rheumatologie

32.1 Software

Software in der Rheumatologie zeichnet sich durch spezifische Funktionen wie Anamneseerhebung, Dokumentation von Krankheitsverläufen und Scoring-Systeme für die Bewertung von Krankheitsaktivität aus.

Table 32.1: Übersicht Softwarelösungen Rheumatologie

Product	Company	URL
RheDAT	EMIL Software GmbH	rhedat.de/
RheMIT	EMIL Software GmbH	bdrh-service.de/rhemit/
RheCORD	EMIL Software GmbH	rhecord.de/
RhePort	Rheuma-Online GmbH	rheport.de/
Rheuma-VOR	BDRh Service GmbH	rheuma-vor.de/
Joint-Pain-Assessment-	-	-
Tool (JPAST)		
Bechterew-check.de	Deutsche Vereinigung	bechterew-check.de
	Morbus Bechterew e.V.	
Digital Rheuma Lab	-	$\operatorname{digitalrheumalab.de}/$
Mida Rheuma® App	MIDA GmbH	midaia.de/
RheumaDok	EMIL Software GmbH	m rheumadok.de/
EMIL	EMIL Software GmbH	itc-ms.de/
DocuMed.rh	-	-
RheumaNet	Deutsche Gesellschaft für	rheumanet.org/
	Rheumatologie e.V.	
VivoCare Rheuma	StatConsult GmbH	vivocare-software.de
Assist		

32.2 Digitalisierungsinitiative durch Fachgesellschaft

Das Digital Rheumatology Network vernetzt eine Reihe von Digitalisierungsinitiativen. Zu den Aktivitäten gehören der jährliche "Digital Rheumatology Day", ein hybrides Event, das

Experten aus Medizin, Forschung, Pharma, MedTech und Gesundheits-IT zusammenbringt, um neue digitale Praktiken wie digitale Therapeutika, Biomarker, künstliche Intelligenz und virtuelle Realität zu diskutieren. Die Plattform bietet zudem Webinare und Podcasts, die Themen wie digitale Versorgungspfade und Fernüberwachung fokussieren, sowie einen Blog mit aktuellen Entwicklungen. Der "Digital Rheumatology Research Award" zeichnet innovative Forschungsarbeiten aus, etwa zur Nutzung von Smartphone-Apps für Patientenberichte oder KI in der Diagnostik.

32.2.1 Umfrage der Kommission Digitale Rheumatologie 2020

Die Kommission "Digitale Rheumatologie" der Deutschen Gesellschaft für Rheumatologie (DGRh) konzentriert sich auf die Digitalisierung in der Rheumatologie. Ihre Aufgaben umfassen die Erarbeitung von Empfehlungen zur Nutzung digitaler Anwendungen und Technologien in der rheumatologischen Praxis, die Verbesserung der Patientenversorgung durch digitale Lösungen und die Förderung der Forschung in diesem Bereich. Diese Kommission spielt eine zentrale Rolle bei der Integration neuer digitaler Tools und Methoden zur Optimierung der Diagnose, Behandlung und Nachsorge von Patienten mit rheumatischen Erkrankungen.

Die Tabelle aus dem "Positionspapier der Kommission zur Nutzung digitaler Anwendungen in der Rheumatologie" der Deutschen Gesellschaft für Rheumatologie e.V. (DGRh) zeigt eine Auswahl von Apps, die für rheumatologische Zwecke nützlich sind und die Bewertungen im Rahmen einer Umfrage auf dem Rheumatologischen Kongress 2018.

Table 32.2: Befragungsergebnisse der DGRh

		Anteil an	Anteil an		
		App-Empfehlungen	App-Empfehlungen		
App		für Kollegen n=52, n	für Patienten n=8, n		
Name	Zweck	(%)	(%)	Preis	iOS Android
Labcal	Berechnungst	tobl(2)	X	Kostenlos	s la Nein
Medcalx	Berechnungst	to•bl(8)	X	Kostenlos	s la Nein
PAH -	Berechnungst	tobl(2)	X	Kostenlos	J a Ja
Woche					
für					
Woche					
Calculate	Berechnungst	to•bl(8)	X	Kostenlos	J a Ja
by					
QxMD					
Rheuma	Berechnungst	to&l(13)	1 (13)	Kostenlos	s la Ja
helper		• •			
Ada	Diagnoseunte	erstú 2 }ung	1 (13)	Kostenlos	s la Ja
Isabel	Diagnoseunte	erst ú2 ;ung	X	Kostenpf	Neitily ein

App Name	Zweck	Anteil an App-Empfehlungen für Kollegen n=52, n (%)	Anteil an App-Empfehlungen für Patienten n=8, n (%)	Preis iOS Android
AmiKo	Medikamen	tenIn(12);mation	X	Kostenlo s la Ja
Desitin				
Arznei	Medikamen	ten ii lf((2ih))ation	1 (13)	Kostenlo s la Ja
aktuell				
Arzneimit	tteMedikamen	ten 2 n(f 4) ; mation	X	Kostenlo s la Ja
Pocket				
Corticonv	ver M edikamen	ten i n(f2);mation	X	Kostenlos Nein Nein
EKO2go	Medikamen	tenIn(D) mation	X	Kostenlo s la Ja
Embryoto	ox Medikamen	ten 2 n(f 4) mation	3 (38)	Kostenlo s la Ja
Pneumoto	ox Medikamen	tenIn(D):mation	X	Kostenlos Nein Nein
RheumaL	iv&ymptom-	2(4)	2(25)	Kostenlo s la Ja
	Tracking	• •	, ,	

Quelle: (J. Knitza et al. 2020)

32.3 DiGAs in der Rheumatologie

Eine Studie von (Albrecht et al. 2025) zeigt, dass digitale Gesundheitsanwendungen (DiGAs) eine Ergänzung zur Behandlung rheumatischer Erkrankungen darstellen, insbesondere bei der Symptomkontrolle von Rückenschmerzen und Gewichtsmanagement. Von 191 Patient:innen nutzten 66 % die DiGAs wöchentlich, 51 % berichteten von einer Symptomverbesserung, wobei Anwendungen wie Kaia Rückenschmerzen und Somnio besonders effektiv waren. Trotz hoher Benutzerfreundlichkeit bleibt die Abschlussrate niedrig (15 %), was auf die Notwendigkeit zusätzlicher Patientenschulungen und Unterstützungsangebote hinweist. Für Rheumatolog:innen bieten DiGAs eine Möglichkeit, Patienten über digitale Mittel individuell zu unterstützen und die Versorgung zu ergänzen.

32.4 Patientenermächtigung

Die Anwendung Lupus-Pass der Lupus Erythematodes Selbsthilfegemeinschaft ermöglicht Betroffenen, ihre Krankheitsdaten zu verwalten und fördert durch ein Diskussionsforum den Austausch und die Gemeinschaftsbildung unter Lupus-Patienten. Neben der Präventionsunterstützung, wie der Einschätzung des Arteriosklerose-Risikos, bietet die Plattform auch wissenschaftliche Datenerhebung zur Verbesserung der Forschung und Lebensqualität. Zusätzlich

dient sie als ständiger Begleiter, um Folgeerkrankungen vorzubeugen und persönliche Gesundheitsstrategien zu entwickeln.

Die digitale Anwendung AbbVie Care, ist ein Beispiel für ein industriegetriggertes Serviceprogramm, das Patienten mit chronischen Erkrankungen unterstützt, die ein AbbVie-Medikament verschrieben bekommen haben. Diese Plattform bietet über digitale Technologien eine Vielzahl an Funktionen: Patienten können sich online anmelden und erhalten Zugang zu einem persönlichen Gesundheitscoach, der per Telefon oder Videoanruf individuelle Beratung und Unterstützung – etwa zur Medikamentenanwendung und Verabreichung – bietet. Zudem ermöglicht die App den Zugriff auf Informationsmaterial zu Erkrankungen, Tipps für den Alltag und einen Downloadbereich für Unterlagen. Als Weiterhin gibt es die Möglichkeit, eine mobile medizinische Fachkraft für Hausbesuche zu buchen, sowie eine Servicehotline für schnelle Hilfe, wodurch die Therapie digital begleitet und die Selbstverwaltung der Patienten gestärkt wird.

Die Webseite Lupus Check.de ist ein Informations- und Unterstützungsportal für Menschen mit Lupus erythematodes, ihre Angehörigen und Interessierte. Unter dem Motto "Mit Lupus leben – Wissen macht stark" bietet sie Inhalte zu Themen wie Diagnose, Symptome, Therapie und Lebensführung, erstellt von Expertinnen und Experten sowie ergänzt durch Erfahrungsberichte von Betroffenen. Zu den Angeboten zählen Downloads wie Checklisten, Patientenbroschüren und Vorlagen, ebenso wie Mutmachgeschichten, Videos von digitalen Lupustagen und ein Podcast mit Fachinterviews. Die Plattform fördert den Austausch, klärt über den Umgang mit der chronischen Autoimmunerkrankung auf und unterstützt dabei, den Alltag mit Lupus besser zu bewältigen.

"MeinCarePlus" (https://www.meincareplus.de/de_DE/home.html) ist eine von Biogen entwickelte digitale Plattform, die Patienten mit chronisch-entzündlichen Erkrankungen der Gelenke, des Darms, der Haut oder der Augen sowie deren Angehörigen Unterstützung bietet. Sie bietet Informationen zu Diagnosen, Therapien und Alltagsbewältigung, ergänzt durch praktische Tools wie die Care+ App für Therapiemanagement, einen Apothekenfinder und Download-Ressourcen wie Broschüren. Zusätzlich fördert die Plattform den Austausch durch Blogs, Podcasts und Erfahrungsberichte, um Betroffenen und deren Umfeld Wissen, Orientierung und Gemeinschaft zu vermitteln.

"Rheumafit" (https://www.rheumafit.ch/) ist die erste Online-Plattform mit Übungsvideos für Menschen mit Morbus Bechterew und anderen rheumatischen Erkrankungen, entwickelt von der Schweizerischen Vereinigung Morbus Bechterew in Zusammenarbeit mit der Zürcher Hochschule für Angewandte Wissenschaften (ZHAW). Sie bietet über 20 speziell konzipierte Trainingsprogramme, die von Physiotherapeuten geleitet werden, inklusive Angaben zu Dauer, Intensität und trainierten Körperpartien, sowie Tipps für das Training zu Hause. Die Plattform passt Übungen an individuelle Einschränkungen an, ist auf jedem internetfähigen Gerät zugänglich und unterstützt Betroffene dabei, Kraft, Beweglichkeit und Koordination flexibel und selbstständig zu fördern. Eine kostenlose Registrierung ermöglicht vollen Zugriff auf alle Inhalte.

Das Digitale Rheumatologische Informationssystem (DiRhIS) der BDRh Service GmbH bietet Rheumatolog:innen eine kostenfreie, webbasierte Plattform, um Patient:innen maßgeschneiderte Informationspakete zu Diagnose, Therapie und Leben mit rheumatischen Erkrankungen bereitzustellen. Über eine Oberfläche können Ärzt:innen Inhalte wie Videos, Podcasts oder Dokumente aus einem validierten Contentangebot auswählen und personalisierte "Infokörbe" erstellen, die Patient:innen per Link, QR-Code oder App erhalten. Die Inhalte, geprüft durch ein Expertengremium, sind leicht verständlich und können mit individuellem Branding versehen werden. DiRhIS ist mit RheDAT verknüpft und wird von Fachverbänden wie der Deutschen Rheuma-Liga unterstützt.

32.5 Forschung

Das REMOTRA-Projekt (REMote moniToring in pReclinical Arthritis) ist eine Machbarkeitsstudie, die die frühzeitige Erkennung von rheumatoider Arthritis (RA) durch digitales Monitoring und patientenzentrierte Aufklärung fördert. In der prospektiven Kohortenstudie wurden 43 RA-Risikopersonen (65,9 % weiblich, Durchschnittsalter 50,1 Jahre) eingeschlossen, die nach dem Anschauen von Aufklärungsvideos zu Frühzeichen von RA und Gelenkselbstuntersuchung die REMOTRA-App nutzten. Die Studie zeigte hohe Patientenakzeptanz (NPS 54,4 für Aufklärungsvideo), gute Benutzbarkeit (SUS 88,1/100 nach 3 Monaten) und eine Adhärenz von 58,5 %. Mit einem negativen prädiktiven Wert und einer Sensitivität von 100 % konnte REMOTRA RA-Ausbruch zuverlässig ausschließen, jedoch war der positive prädiktive Wert niedrig (12 %). Die Ergebnisse unterstreichen das Potenzial digitaler Ansätze für die RA-Früherkennung, erfordern aber weitere Validierung in multizentrischen Studien. (Pfeuffer et al. 2025)

33 Orthopädie

Die Bauerfeind Therapie-App unterstützt Nutzer mit personalisierten Trainingsprogrammen, die von Experten für spezifische gesundheitliche Probleme und Bauerfeind-Produkte wie Genu-Train (Knie), LumboTrain (Rücken) oder MalleoTrain (Fuß) entwickelt wurden, inklusive Videoanleitungen und Heilungsverlaufsüberwachung. Sie bietet wertvolle Informationen über den Körper und die Produkte, passt Übungen kontinuierlich an den Fortschritt an und erfordert ein Bauerfeind-Produkt für optimale Nutzung, ist jedoch kein Ersatz für ärztliche oder physiotherapeutische Betreuung. Auf Google Play umfasst das Angebot der Bauerfeind AG neben der Therapie-App auch die Hilfsmittel-App für Ärzte und Fachhändler zur schnellen Produktauswahl sowie die curaflow-App für Frauen mit Lymph- und Lipödem, die Selbstmanagement und Entstauungsübungen fördert.

34 Rehabilitation

34.1 Einleitung

Der Bundesverband Deutscher Privatkliniken (BDPK) informiert auf seiner Webseite über die Anbindung von Reha- und Vorsorgeeinrichtungen an die Telematikinfrastruktur (TI), die durch das Patientendaten-Schutz-Gesetz (PDSG) seit dem 1. Januar 2021 ermöglicht wurde. Die TI bringt Vorteile wie Notfalldatenmanagement, elektronische Medikationspläne und Patientenakten sowie eine sichere Kommunikationsplattform (KIM). Die Kosten für die notwendigen Komponenten wie Konnektoren, Institutionskarten und eHealth-Kartenterminals werden seit dem 1. Januar 2022 durch einen Zuschlag gedeckt, der auf Antrag ausgezahlt wird.

Produkt	Company	URL
VivoInform	bee-i GmbH	vivoinform.de

34.2 Hilfsmittel

Produkt	Company	URL
Digitale Anwendungen	medi GmbH & Co. KG	medi.de
Hilfsmittel-App	Hilfsmittel-App	hilfsmittel-app.de
Rehadat	Rehadat	rehadat.de
Optica Omnia	Optica GmbH	optica.de
PraxWin	PraxWin GmbH	praxwin.de

34.3 Heilmittel

Produkt	Company	URL
Thera-Pi	Thera-Pi	thera-pi-software.de
Buchner	Buchner GmbH	buchner.de
Thevea	Thevea	thevea.de

Produkt	Company	URL
Henara	Henara GmbH	henara.de
Synaptos	Synaptos	synaptos.de

34.4 Roboterassistenz

TEDIRO GmbH, ein Tech-Startup aus Leipzig und Ilmenau, entwickelt den mobile Roboter THERY, der Patienten beim selbstgesteuerten Gangtraining mit Unterarmstützen unterstützt, indem Bewegungsabläufe mittels KI-gestützter Kameratechnologie analysiert und Korrekturvorschläge gegeben werden. Das cloudbasierte Therapie-Management-System ermöglicht personalisierte Trainingspläne und die Dokumentation von Fortschritten. TEDIRO kombiniert Expertise in Robotik, Softwareentwicklung und Physiotherapie, um die Mobilität von Patienten fördern.

35 Neurologie & Psychiatrie

35.1 Digitale Präsenz

Ärzte im Netz ermöglichte eine digitale Präsenz für neurologische und psychiatrischpsychotherapeutische Praxen. Mit Angeboten wie PraxisApps "Mein Psychiater" und "Mein Neurologe", zertifizierter Videosprechstunde und Online-Terminverwaltung. Die Lösungen sind in Zusammenarbeit mit Berufsverbänden der Neurologie und Psychiatrie entwickelt. (neurologen-und-psychiater-im-netz.org)

Die Cortex.DIREKT-App ist der Nachrichtendienst der neuropsychiatrischen Berufsverbände BVDN, BVDP und BDN. Mitglieder dieser Verbände können sich mit ihrer Mitgliedsnummer registrieren und Push-Nachrichten mit wichtigen Informationen zu Themen wie Honoraren oder Fortbildungsveranstaltungen direkt auf ihr Smartphone oder Tablet erhalten. Nutzer können individuell auswählen, welche Informationskanäle sie abonnieren möchten, und die App ist für Mitglieder kostenfrei. Entwickelt in Zusammenarbeit mit Monks-Ärzte im Netz.

35.2 Digitales Kopfschmerztagebuch

Die DMKG-App ist ein elektronischer Kopfschmerzkalender der Deutschen Migräne- und Kopfschmerzgesellschaft e.V. Nutzende können sich an Einträge erinnern lassen und eine übersichtliche Zusammenfassung in der App ansehen oder herunterladen. Sie unterstützt zudem die Kopfschmerzforschung in Deutschland als Teil des "Kopfschmerzregister"-Projekts, indem pseudonymisierte Daten für wissenschaftliche Auswertungen genutzt werden, um die Kopfschmerzversorgung langfristig zu verbessern. Die App ist kostenlos, werbefrei und sowohl für Android als auch iOS verfügbar. Weitere Infos gibt es unter www.kopfschmerzregister.de.

35.3 Weitere digitale Anwendungen

Table 35.1: Übersicht digitale Anwendungen Neurologie

Name	URL
Floodlight MS	Roche Pressemitteilung

Name	URL
Emendia MS	neurosys.de/emendia
Brisa	Brisa App Google Play Store
Neolexon	neolexon.de
NeuroNation MED	neuronation-med.de
MoveApp	deutsche-parkinson-
	hilfe.de/foerderprojekte/moveapp
MS Kognition	dmsg.de/ms-kognition
$\operatorname{HeadApp}$	headapp.com/de

TinySteps ist eine kostenlose Bewegungs-App, entwickelt von Alexion Pharma Germany GmbH in Zusammenarbeit mit Patient:innen, Physiotherapeut:innen und Neurolog:innen, um Menschen mit Myasthenia gravis (MG) und Neuromyelitis-Optica-Spektrum-Erkrankungen (NMOSD) zu mehr Aktivität im Alltag zu verhelfen. Die App bietet kurze, herunterladbare Übungsvideos, die auch offline genutzt werden können, sowie Live-Übungen alle zwei Wochen, wissenswerte Artikel und eine Erinnerungsfunktion. Sie ist kein medizinisches Produkt, sondern dient als Vorlage für Bewegung nach therapeutischer Rücksprache, mit dem Ziel, die Lebensqualität Betroffener durch kleine, machbare Schritte zu verbessern. TinySteps ist sofort nutzbar, ohne Anmeldung, und wurde speziell auf die Bedürfnisse neuromuskulär Erkrankter abgestimmt.

35.4 Online Ressourcen

eisai-epitrack.com ist eine Plattform von Eisai, einem globalen Pharmaunternehmen, die Epi-Track® vorstellt, ein klinisches Werkzeug zur Beurteilung von Aufmerksamkeit und exekutiven Funktionen bei Patienten mit Epilepsie. EpiTrack dient Ärzten, Pflegekräften, Psychologen und anderen Gesundheitsfachkräften als Screening-Instrument, um kognitive Nebenwirkungen von Antiepileptika sowie Auswirkungen von Anfällen zu verfolgen.

35.5 Forschung

BrainTrip will mit NeuroAI basierend auf EEG-Hirnwellenanalyse zügige, kostengünstige und nicht-invasive neurologische Diagnostik in Arztpraxen bringen. Die KI-gestützte Technologie analysiert Gehirnwellen und erkennt Krankheiten wie Demenz und Depression.

35.5.1 Teleneuropsychologie

Teleneuropsychologie, die Fernanwendung neuropsychologischer Tests über Telefon oder Videokonferenz, erweitert den Zugang zu Gesundheitsdiensten für Patienten in abgelegenen Gebieten oder mit Mobilitätseinschränkungen. Die Übersichtsarbeit von "Remote Neuropsychological Assessment: Teleneuropsychology" von Elif Yıldırım et al. untersucht die Ergebnisse von Studien zur Teleneuropsychologie und deren Grundprinzipien, einschließlich einer speziell für die Türkei entwickelten Leitlinie für teleneuropsychologische Assessments zu Hause. Studien zeigen, dass Tests zu Aufmerksamkeit, Gedächtnis, exekutiven Funktionen und Sprache, insbesondere verbal durchgeführte, zuverlässig remote angewendet werden können, wobei Faktoren wie Patientenauswahl, Testwahl und ethische Aspekte berücksichtigt werden müssen. Obwohl direkter Patientenkontakt in der klinischen Neuropsychologie essenziell bleibt, bietet die Teleneuropsychologie, wenn sie von geschulten Experten korrekt angewendet wird, eine gute Alternative zu persönlichen Evaluationsmethoden. (Yıldırım et al. 2024)

Der Artikel "Applications of Teleneuropsychology to the Screening and Monitoring of Epilepsy" von Chris Tailby et al. untersucht drei Ansätze für Fernbewertungen – unbeaufsichtigte, computerbasierte Tests, telefonische Assessments und videokonferenzbasierte Tests – und zeigt, dass diese Methoden trotz langsamer Adaption in der Epilepsie-Neuropsychologie vielversprechend sind. Unbeaufsichtigte, computeradministrative Tests (z. B. via Browser oder Apps) sind in der Altersforschung etabliert und zeigen Zuverlässigkeit bei Geschwindigkeit und Arbeitsgedächtnis, wurden jedoch in Epilepsie-Studien kaum untersucht, mit begrenzter Sensitivität für epilepsiespezifische Defizite. Telefonische Assessments sind bei älteren Kohorten weit verbreitet und technisch zugänglich, decken aber nicht alle kognitiven Domänen ab, während videokonferenzbasierte Tests diese Lücke teilweise schließen, jedoch oft traditionelle Materialien nutzen statt die Technologie voll auszuschöpfen. Die Autoren plädieren für die Entwicklung integrierter, videokonferenzbasierter, computerunterstützter Testverfahren, die Vorteile menschlicher und computergestützter Ansätze kombinieren, um eine breite Anwendbarkeit über neuropsychologische Erkrankungen hinweg zu ermöglichen, von Kindheit bis ins hohe Alter. (Tailby et al. 2024)

35.5.2 Teleneurologie

Das Projekt NeTKoH etabliert eine telemedizinische Vernetzung zwischen der Universitätsmedizin Greifswald und etwa 40 Hausarztpraxen in Vorpommern, um die fachärztliche Versorgung bei neurologischen Erkrankungen in der strukturschwachen Region zu verbessern. Hausärzte können während der Sprechstunde per Telekonsil fachärztliche Empfehlungen einholen, um eine schnellere, wohnortnahe Diagnostik und Therapie zu ermöglichen. In einer prospektiven Interventionsstudie mit "Stepped-Wedge Cluster Design" werden ca. 1.000 Patienten der AOK Nordost untersucht, um u. a. die Zeit bis zur Diagnosestellung und Krankenhausaufenthalte zu vergleichen. Mit 5,2 Millionen Euro Förderung (01/2021–07/2025)

zielt das Projekt auf standardisierte Behandlungspfade, die auf andere Regionen übertragbar sind.

Das Projekt TENEAM entwickelt ein telemedizinisches Versorgungskonzept für Patientinnen und Patienten mit chronischen neurologischen Erkrankungen in den ländlichen Regionen Brandenburgs und Mecklenburg-Vorpommerns, wo der Mangel an Neurologen die Versorgung erschwert. Durch spezielle teleneurologische Sprechstunden, in die Hausärzte überweisen, wird eine zeitnahe Diagnostik und Therapieempfehlung ermöglicht. Das 45-monatige Projekt, gefördert mit ca. 8,4 Millionen Euro, vergleicht die Telemedizin mit der Regelversorgung, evaluiert Lebensqualität, Versorgungssituation und Kosten-Nutzen und strebt an, die Versorgungsqualität zu verbessern und dem Fachkräftemangel entgegenzuwirken.

Das Projekt ANNOTEM (Akut-Neurologische Versorgung in Nord-Ost-Deutschland mit TeleMedizinischer Unterstützung) erweitert telemedizinische Netzwerke zur verbesserten Versorgung neurologischer Akuterkrankungen wie Schlaganfall, Schädel-Hirn-Trauma oder epileptische Anfälle in ländlichen Regionen. Durch spezialisierte Behandlungseinheiten, standardisierte Notfalldiagnostik und einen rund um die Uhr verfügbaren Telekonsildienst wird eine schnelle und fachgerechte Erstversorgung ermöglicht. Nach einer zweijährigen Testphase von 2017 bis 2021 mit einer Förderung von ca. 6,9 Millionen Euro wurde die Wirksamkeit des Modells evaluiert, um es bei Erfolg in anderen strukturschwachen Regionen anzuwenden. Konsortialpartner wie das Universitätsklinikum Greifswald und die Charité Berlin waren beteiligt.

35.5.3 Öffentlicher Datensatz Floodlight App

Der "Floodlight MS Dataset" auf Kaggle, bereitgestellt von Kevin Mader, umfasst Smartphone-Daten zur Erforschung des täglichen Krankheitsverlaufs bei Multipler Sklerose (MS). Er enthält Messungen aus der Floodlight® MS-App, die kognitive, motorische und funktionelle Fähigkeiten von MS-Patienten über Sensoren wie Beschleunigungsmesser und Touchscreen-Interaktionen erfasst. Ziel ist es, Einblicke in die Lebensqualität und Krankheitsdynamik zu gewinnen, indem Daten wie Reaktionszeiten, Gehgeschwindigkeit und Handkoordination analysiert werden. Der Datensatz ist öffentlich zugänglich und eignet sich für maschinelles Lernen, um Muster und Veränderungen bei MS zu untersuchen. Weitere Details zur Datenerhebung und Nutzung finden sich auf der Kaggle-Seite unter kaggle.com/datasets/kmader/floodlight-ms-dataset.

35.5.4 Parkinson

Die Studie "Co-Designing a 'win-win' in Predictive AI" untersucht die Perspektiven von Menschen mit Parkinson-Krankheit (PwP) im Rahmen der partizipativen Entwicklung von KI-Tools für die Parkinson-Behandlung. Durch qualitative Triangulation aus 13 Interviews und zwei Fokusgruppen mit 14 PwP aus sechs europäischen Ländern wurden deren Ansichten

zu KI-Tools und Faktoren für ihr Engagement analysiert. Die Ergebnisse zeigen, dass PwP großes Potenzial in KI-gestützter Medikamentenresponse-Vorhersage sehen, während Risikobewertungstools Skepsis hervorrufen. Die Teilnehmenden betonten die Bedeutung von Krankheitskomplexität, individuellen Faktoren, Datenschutz und Transparenz in der KI-Entwicklung. Der Co-Design-Prozess wurde als entscheidend angesehen, um vertrauenswürdige und nutzbringende Tools zu schaffen, die sowohl die Lebensqualität der Patienten verbessern als auch die klinische Praxis optimieren können. (Luckhaus et al. 2025)

36 Radiologie

36.1 Image-Management-Systeme

Die easyRadiology AG bietet ein Image-Management-System, das Ärzten, Patienten und medizinischem Personal jederzeit und überall Zugriff auf klinische Bilder und Befunde ermöglicht. Mit nahtloser Integration, interoperablen Systemen und flexiblen Schnittstellen erlaubt easyRadiology eine vollständig digitale Patienten-Journey – von der Terminvereinbarung bis zur Entlassung.

36.2 Weitere Softwarelösungen

Table 36.1: Beispiele Radiologiesoftware

Name	Link
Raya Diagnostics	Raya Diagnostics
Examion Röntgensoftware	Examion Röntgensoftware
OpenDICOM	OpenDICOM
MicroDicom	MicroDicom
RadiAnt Viewer	RadiAnt Viewer
IMAIOS DICOM Viewer	IMAIOS DICOM Viewer
Weasis	Weasis
Visus	Visus
ORPALIS DICOM Viewer	ORPALIS DICOM Viewer
OsiriX	OsiriX
Awesome DICOM	Awesome DICOM
Sante DICOM Viewer	Sante DICOM Viewer Lite
EndoNet DICOM Viewers	EndoNet Free DICOM Viewers

37 Pulmologie

37.1 Allgemein

Die Webseite atemwegsliga.de/pneumo-digital-apps gehört zur Deutschen Atemwegsliga e.V. und ist Teil der Initiative PneumoDigital. Diese Initiative widmet sich der Bewertung und Vorstellung von Gesundheits-Apps, die speziell für Menschen mit pneumologischen Erkrankungen wie Asthma oder COPD entwickelt wurden.

Table 37.1: Beispiele digitale Anwendungen

Name	URL
Kaia COPD	Kaia COPD
Atemwege gemeinsam	pneumo-digital-apps/app-atemwege
gehen	
OMRON Asthma	OMRON Asthma Diary
Diary	
Vivatmo	Vivatmo
breazyTrack	breazyTrack
copd-aktuell.de	copd-aktuell.de
Kata	Kata
myAir	myAir
NichtraucherHelden	NichtraucherHelden
SaniQ	SaniQ
TheraKey	TheraKey

Quelle: atemwegsliga.de/pneumo-digital-apps

Die Webseite rauchfrei-info.de ist ein unabhängiges Informationsportal der Bundeszentrale für gesundheitliche Aufklärung (BZgA), das Rauchenden kostenfrei und seriös beim Ausstieg aus der Nikotinabhängigkeit unterstützt. Sie bietet umfassende Ressourcen wie das "rauchfrei Ausstiegsprogramm", bei dem Nutzer über 21 Tage mit täglichen Tipps, E-Mails und einer Erfolgskurve begleitet werden, sowie ein Forum und Chat für den Austausch mit Gleichgesinnten und Experten. Zusätzlich gibt es praktische Tools wie einen Ersparnisrechner, Tests

zur Tabakabhängigkeit und Motivation, sowie Informationen zu Gesundheitsrisiken und Unterstützungsangeboten wie der kostenlosen Telefonberatung (0800 8313131), um den Weg in ein rauchfreies Leben zu erleichtern.

Der Lungeninformationsdienst von Helmholtz Munich, in Kooperation mit dem Deutschen Zentrum für Lungenforschung (DZL), bietet aktuelle, wissenschaftlich fundierte und verständliche Informationen zu Lungenkrankheiten. Das kostenlose Gesundheitsportal informiert über Diagnose, Therapie, Prävention und Forschung, ohne das ärztliche Beratungsgespräch zu ersetzen. Es richtet sich an Patient:innen, Angehörige und die Öffentlichkeit, um den Umgang mit Lungenkrankheiten zu verbessern. Neue Erkenntnisse werden bereitgestellt, unterstützt durch Partner wie die Deutsche Gesellschaft für Pneumologie und Patientenorganisationen.

37.2 Kinderpneumologie

Die PARI Kinder App, vorgestellt auf https://www.pari.com/de/kinderecke/, ist eine kostenlose Anwendung für Kinder ab etwa vier Jahren, die spielerisch das Thema Inhalation und Atemwege vermittelt.

37.3 Lungenfunktionsdiagnostik

Table 37.2: Beispiele Software Lungenfunktionsdiagnostik

Name	URL
GANSHORN PowerCube	ganshorn.de
Vyntus BODY (Vyaire)	vyaire.com
MasterScreen (Morgan)	morgansci.com
COSMED Software	cosmed.com
MIR - Medical International	spirometry.com
Research	

37.4 Schlafen

Table 37.3: Beispiele Anwendungen

Name	URL
Somnovia	somnovia.de
Somn.io	somn.io

Name	URL
HelloBetter	hellobetter.de

37.5 Forschung

Das Buch "Lung Function Testing in the 21st Century: Methodologies and Tools Bridging Engineering to Clinical Practice" von C. Ionescu aus dem Jahr 2018 bietet eine umfassende Übersicht über Lungenfunktionstests, von standardisierten bis hin zu neuen Methoden wie IOS und FOT. Es verbindet Ingenieurwissenschaften mit klinischer Praxis, indem es fortschrittliche Technologien aus Mathematik, Physik und Biologie vorstellt und deren Anwendung in der Atemwegsdiagnostik erläutert. Zudem behandelt es Geräte, Protokolle und zukünftige Perspektiven, um die Lücke zwischen Forschung, Entwicklung und klinischem Einsatz zu schließen. (Ionescu 2018)

Die Studie "Artificial Intelligence-Driven Prognosis of Respiratory Mechanics: Forecasting Tissue Hysteresivity Using Long Short-Term Memory and Continuous Sensor Data" untersucht die Anwendung künstlicher Intelligenz (KI) zur Prognose der Atemmechanik, insbesondere zur Vorhersage der sogenannten Gewebehysteresivität – einem wichtigen Marker für Atemwegserkrankungen. Dazu wird ein Long Short-Term Memory (LSTM)-Modell verwendet, das kontinuierliche Sensordaten analysiert. Die Forscher kombinieren Daten aus der Forcierten Oszillationstechnik (FOT) und dem kommerziellen RESMON-Gerät mit kontinuierlichen Messungen des Equivital (EQV) LifeMonitor. Das Ziel ist es, die Anzahl und Dauer der notwendigen Messungen zu reduzieren, indem die Gewebehysteresivität anhand von Herzfrequenz- und EKG-Daten geschätzt und vorhergesagt wird. Die Ergebnisse zeigen, dass LSTM-Modelle die Gewebehysteresivität mit hoher Genauigkeit bestimmen können, wodurch die Messbelastung für Patienten signifikant verringert und die Atemwegsüberwachung durch KI optimiert wird. (Othman et al. 2024)

Die Studie "Employing the Forced Oscillation Technique for the Assessment of Respiratory Mechanics in Adults" untersucht die wachsende Bedeutung der Forced Oscillation Technique (FOT) zur Charakterisierung der Atemmechanik bei gesunden und erkrankten Personen. FOT ergänzt traditionelle Lungenfunktionstests, indem sie während der normalen Atmung oszillatorische Frequenzen nutzt, um Widerstand (Rrs) und Reaktanz (Xrs) des Atmungssystems zu messen, die den Luftwegdurchmesser sowie Energieverlust und -speicherung widerspiegeln. Trotz steigender Popularität und neuer technischer Standards bleibt die klinische Anwendung wegen mangelnder Standardisierung bei Datenerfassung und -berichterstattung begrenzt. (Qian et al. 2022)

Die Studie von Hawthorne et al. (2022) untersucht, ob kontinuierliches, nicht-invasives Monitoring von Vitalzeichen mittels tragbarer Technologie eine bevorstehende Wiedereinweisung nach einer akuten Exazerbation der chronisch obstruktiven Lungenerkrankung (AECOPD) vorhersagen kann. Dazu wurden 35 Patienten nach ihrer Krankenhausentlassung gebeten,

über sechs Wochen ein tragbares Überwachungsgerät zu tragen, das Atemfrequenz, Herzfrequenz, Hauttemperatur und körperliche Aktivität erfasste. Die Ergebnisse zeigen, dass eine erhöhte Herzfrequenz und eine reduzierte körperliche Aktivität mit einer Verschlechterung der Symptome korrelierten. Zudem stiegen drei Tage vor einer Exazerbation die Atemfrequenz und die Herzfrequenz messbar an. Die Studie weist darauf hin, dass Atem- und Herzfrequenz als potenzielle Prädiktoren für eine bevorstehende Exazerbation weiter untersucht werden sollten, obwohl individuelle Unterschiede in den Vitalzeichen die Vorhersage erschweren. (Hawthorne et al. 2022)

Die Studie "Towards Using Cough for Respiratory Disease Diagnosis by Leveraging Artificial Intelligence: A Survey" von Aneeqa Ijaz und Kollegen bietet einen umfassenden Überblick über den Einsatz von Husten als diagnostisches Werkzeug für Atemwegserkrankungen mithilfe künstlicher Intelligenz (KI). Sie untersucht, wie Machine Learning (ML) und Deep Learning (DL) Hustenakustik analysieren können, um Krankheiten wie Asthma, COPD, Pneumonie oder COVID-19 mit hoher Genauigkeit zu erkennen und vorläufig zu diagnostizieren. Die Autoren beleuchten den Mechanismus der Hustenentstehung, latente Hustenmerkmale und deren Nutzung in KI-Modellen sowie die Entwicklung spezialisierter Anwendungen zur Hustenüberwachung. Basierend auf einer umfangreichen Literaturanalyse zeigen sie, dass KI-basierte Algorithmen eine entscheidende Rolle bei der Früherkennung von Atemwegserkrankungen spielen können, indem sie charakteristische Merkmale aus Hustengeräuschen extrahieren. Zudem werden Herausforderungen wie Datenverfügbarkeit, Modellinterpretierbarkeit und Datenschutz sowie zukünftige Forschungsrichtungen für robuste, ubiquitäre Lösungen diskutiert. (Ijaz et al. 2022)

Die Studie "Artificial Intelligence Techniques to Predict the Airway Disorders Illness: A Systematic Review" von Apeksha Koul und Kollegen bietet eine systematische Übersicht über den Einsatz von maschinellem Lernen (ML) und tiefem Lernen (DL) zur Vorhersage von Atemwegserkrankungen wie Asthma, Lungenkrebs, COVID-19 und anderen. Sie analysiert 155 Artikel aus den Jahren 2010 bis 2022 und fasst den aktuellen Stand KI-basierter Systeme zur Erkennung dieser Erkrankungen zusammen. Die Autoren beleuchten Trends, vergleichen Techniken wie CNN, SVM und Random Forest anhand von Metriken wie Genauigkeit und F1-Score und diskutieren Herausforderungen wie Datenmangel, Modellfehler und Klassenungleichgewicht. Abschließend werden zukünftige Forschungswege vorgeschlagen, um die Effizienz und Anwendbarkeit KI-gestützter Diagnosen zu verbessern. (Koul, Bawa, and Kumar 2023)

Die Pilotstudie "The Asthma App as a New Way to Promote Responsible Short-Acting Beta2-Agonist Use in People With Asthma: Results of a Mixed Methods Pilot Study" untersucht die Machbarkeit und Benutzbarkeit einer Smartphone-App, die mittels partizipativen Designs entwickelt wurde, um Asthma-Patienten durch Überwachung und Psychoeducation zu einem verantwortungsvollen Umgang mit kurz wirksamen Beta2-Agonisten (SABA) zu verhelfen. Weltweit leiden etwa 262 Millionen Menschen an Asthma, und der übermäßige Gebrauch von SABA kann negative gesundheitliche Folgen haben. Mit einem Mixed-Methods-Ansatz wurden quantitative Daten über App-Nutzung, Asthma-Symptome (Control of Allergic Rhinitis and Asthma Test) und Lebensqualität (SF-36) sowie qualitative Interviews zur Nutzererfahrung

erhoben. Nach drei Monaten verbesserten sich die Asthma-Symptome signifikant (von 14,8 auf 18,5), blieben jedoch unkontrolliert, während die Lebensqualität unverändert blieb; die App wurde als benutzerfreundlich (SUS: 82,3) bewertet. Trotz hoher Abbruchraten deuten die Ergebnisse auf ein Potenzial zur Integration in die Standardbehandlung hin, wobei weitere Studien erforderlich sind. (Berg et al. 2024)

Der Artikel "Die Zukunft der Pneumologie ist digital" von Holger Woehrle und Christoph Schöbel, veröffentlicht in Pneumo News (2021), beleuchtet die fortschreitende Digitalisierung in der Medizin, insbesondere in der Pneumologie. Er beschreibt, wie Big Data und Künstliche Intelligenz Krankheitsverläufe präziser analysieren und individualisierte Therapien ermöglichen können. Datenschutz und die Datenhoheit der Patienten werden als zentrale Herausforderungen betont, ebenso wie die Notwendigkeit einheitlicher Plattformen und skalierbarer Systeme. Telemedizinische Ansätze, wie Apps auf Rezept und digitale Überwachungssysteme, bieten Potenzial zur Verbesserung der Patientenversorgung, etwa in der Schlaf- und Beatmungsmedizin. Die Autoren fordern eine aktive Gestaltung der Digitalisierung, um Ärzte zu unterstützen, nicht zu ersetzen, und betonen die Bedeutung einer patientenzentrierten Präzisionsmedizin. (Woehrle and Schöbel 2021)

Das Projekt TeLAV (Telemedizinische Lungenfunktions-APP & Vernetzung) der Medizinischen Qualitätsgemeinschaft Rendsburg eG Ärztenetz unterstützt Asthma- und COPD-Patienten im Kreis Rendsburg-Eckernförde durch Telemedizin. Seit April 2021 erhalten Patienten ein Heimspirometer und eine App, die mit Hausarztpraxen und pneumologischen Assistenten vernetzt ist, um Lungenfunktionswerte täglich zu überwachen. Ziel ist die frühzeitige Erkennung von Verschlechterungen, Anpassung der Therapie und Vermeidung stationärer Aufenthalte, wodurch die Lebensqualität der Patienten verbessert werden soll.

38 Gastroenterologie

38.1 Forschung

38.1.1 Telemedizin

Die Studie "Telephone Consultation as a Substitute for Routine Out-patient Face-to-face Consultation for Children With Inflammatory Bowel Disease" (2015) untersucht die Wirksamkeit und Kosten von Telefonkonsultationen im Vergleich zu herkömmlichen ambulanten persönlichen Konsultationen bei Kindern mit entzündlichen Darmerkrankungen (IBD). In einer randomisierten kontrollierten Studie mit 86 Patienten (8–16 Jahre) in Manchester, UK, zeigte sich kein Unterschied in der Lebensqualität nach 12 Monaten zwischen den Gruppen (Telefon vs. persönlich). Telefonkonsultationen waren kürzer (9,8 vs. 14,3 Minuten) und kostengünstiger (£35,41 vs. £51,12 pro Konsultation), ohne Hinweise auf Nachteile in Bezug auf Krankheitsverlauf oder Patientenzufriedenheit. Die Studie, finanziert vom UK National Institute for Health Research, zeigt, dass Telefonkonsultationen eine effektive und kostensparende Alternative für die Routinebetreuung von Kindern mit IBD sind. (Akobeng et al. 2015)

38.1.2 KI-Bilderkennung in der Endoskopie

Computervision hat in der Endoskopie hat durch KI-gestützte Systeme wie EndoML und EndoDINO Einzug gehalten. EndoML ermöglicht es, mit dem Fundamentmodell EndoDINO, das auf über 130.000 Endoskopievideos trainiert wurde, KI-Modelle für Anwendungen wie Polypenerkennung, Landmarkenerkennung und IBD-Schweregradbewertung zu entwickeln, ohne tiefgehende Programmierkenntnisse. Die Plattform erleichtert das Hochladen und Labeln von Endoskopiedaten, beschleunigt die Biomarker-Identifikation und bietet HIPAA- und SOC2-konforme Sicherheit. EndoDINO übertrifft frühere Modelle wie Etro-FM und Endo-FM durch die Nutzung von 10 Millionen Frames und fortschrittlicher DINOv2-Architektur, was zu höherer Präzision bei Klassifikation, Segmentierung und Detektion führt. unterstützt EndoML Objekterkennung, Videosegmentierung, natürliche Sprachanalyse und interaktive Visualisierungen wie T-SNE-Diagramme, während ein dynamischer API-Zugang und der Datenaustausch die Integration und Forschung weiter fördern. Studien wie die von Zhao Wang et al. (2025) zeigen, dass Modelle wie EndoFM-LV, die auf langen Videosequenzen trainiert werden, bestehende Ansätze in Klassifikation, Segmentierung, Detektion und Workflow-Erkennung deutlich übertreffen, was die Bedeutung langer Sequenzen für die Endoskopie-Analyse unterstreicht. (Z. Wang et al. 2025)

38.1.3 KI-Mikrobiom-Analyse

Die Studie "Classification of Microbiome Data from Type 2 Diabetes Mellitus Individuals with Deep Learning Image Recognition" untersucht die Klassifikation von Mikrobiomdaten zur Unterscheidung zwischen gesunden und an Typ-2-Diabetes leidenden Personen mittels Deep Learning. Die Forscher entwickelten eine innovative Methode, bei der Mikrobiomdaten als radiale Heatmaps visualisiert und mit einem ResNet-50-Modell analysiert wurden. Dabei wurden 674 gesunde und 272 T2D-Proben untersucht, was eine Klassifikationsgenauigkeit von 96 %, eine Spezifität von 97 % und eine Sensitivität von 92 % ergab. Die Studie zeigt, dass diese Methode eine präzise Unterscheidung ermöglicht und zukünftig zur Diagnose verschiedener Krankheiten durch Analyse des Darmmikrobioms beitragen könnte. (Pfeil et al. 2023)

Die Studie "Investigation of metabolic pathways from gut microbiome analyses regarding type 2 diabetes mellitus using artificial neural networks" untersucht die Klassifizierung von Stoffwechselwegen des Darmmikrobioms bei Typ-2-Diabetes-Patienten mittels neuronaler Netze. Durch Next-Generation-Sequencing von 16S-rDNA aus Stuhlproben wurden Mikrobiomprofile von 272 Patienten und 674 gesunden Kontrollpersonen erstellt und Stoffwechselwege identifiziert. Ein neuronales Netz ermöglichte eine präzise Klassifizierung mit einer Genauigkeit von 84,5 %, wobei wichtige Stoffwechselwege wie die Biosynthese von Aminosäuren (z. B. L-Tyrosin, L-Phenylalanin) und Thiazolen als entscheidend für die Vorhersagegenauigkeit erkannt wurden. Eine SHAP-Analyse zeigte, dass bestimmte Biosynthesewege bei Typ-2-Diabetes häufiger auftreten, während andere reduziert sind. Die Studie unterstreicht die Bedeutung des Darmmikrobioms für das Verständnis und die Diagnose von Typ-2-Diabetes. (Siptroth et al. 2023)

39 Kinderheilkunde

39.1 Digitale pädiatrische Praxisverwaltung

Der BVKJ fördert die Digitalisierung im Gesundheitswesen (bvkj-service-gmbh.de/digitale-angebote) durch Angebote wie die PraxisApp "Meine pädiatrische Praxis", PädExpert® für telemedizinische Konsultationen, PädAssist® für digitales Langzeitmonitoring von Asthma oder Rheuma und PädHome für Online-Videosprechstunden.

Digitale Angebote sind in die Versorgung von Versicherten bestimmter Krankenkassen integriert beispielsweise über das Programm clever-fuer-kids.de oder STARKE KIDS by BKK.

39.2 Pädiatrische Anwendungen

Die ItchyMonsters-App macht Hautpflege für Kinder mit Neurodermitis zu einem spannenden Abenteuer. Durch Gamification und Augmented Reality motiviert die App Kinder, sich regelmäßig einzucremen, indem sie virtuelle Monster pflegen und entwickeln. Mit einem Hauttagebuch, kindgerechtem Lernen über Neurodermitis und einer werbefreien, sicheren Umgebung unterstützt sie Familien und Ärzte.

Das VADEMECUM ist ein Beobachtungsinstrument, das speziell für Kinder im Entwicklungsalter von 3 bis 30 Monaten entwickelt wurde, mit Beobachtungspunkten, die ein Entwicklungsalter bis zu 4,5 Jahren abdecken. Das Instrument wird von Eltern, Bezugspersonen oder Fachpersonen aus Bereichen wie Kinderheilkunde, Heilpädagogik, Physiotherapie, Ergotherapie, Logopädie, Kitas oder Behindertenhilfe genutzt, um die Entwicklung eines Kindes zu beobachten und zu dokumentieren. Es wird in drei Bereichen eingesetzt: primäre Prävention (Begleitung des Entwicklungsprozesses ohne Verdacht auf Beeinträchtigungen), sekundäre Prävention (Früherkennung von Entwicklungsverzögerungen) und tertiäre Prävention (Begleitung bei diagnostizierten Beeinträchtigungen). Die digitale Version des VADEMECUM besteht aus einer App und einer Webapplikation. Sie ermöglicht eine papierfreie Erfassung von Beobachtungen durch Eltern und Fachpersonen. Verfügbar in mehreren Sprachen (Deutsch, Albanisch, Englisch, Französisch, Italienisch, Portugiesisch, Türkisch), unterstützt sie die Erstellung automatischer Entwicklungsprofile mit Normtabellen (90%- und 50%-Norm) und ICF-CY-Kodierungsvorschlägen in der Webapplikation. Fachpersonen eröffnen Accounts für Bezugspersonen, und die App erlaubt Mehrbenutzerzugriff auf einem Gerät durch Wechsel von

Benutzername und Passwort. Beobachtungen aus der Papierversion können in die Webapplikation übertragen werden, und die Datenübermittlung an Fachpersonen erfolgt sicher, wobei nur markierte Punkte in der App verbleiben. Die digitale Version reduziert den administrativen Aufwand für Auswertung und Dokumentation um etwa das Fünffache.

Die neolexon Logopädie-Apps bieten Sprachtherapie für Erwachsene, Kinder und Sprachtherapeut:innen. Entwickelt von Expertinnen, unterstützen die Aphasie-App für Erwachsene und die Artikulations-App für Kinder das selbstständige Üben zu Hause an Tablet, Smartphone oder PC. Die Apps sind als Medizinprodukte zertifiziert, für Patient:innen meist kostenfrei und werden von vielen Krankenkassen in Deutschland erstattet. Zusätzlich fördert die Lernspiel-App "Milus Wörterreise" die Sprachentwicklung von Kindern ab 3 Jahren. Neolexon kombiniert Therapieerfahrung mit digitaler Innovation für individuelle Sprachförderung.

PhonoLo ist eine logopädische App, die kindgerechte, wissenschaftlich fundierte Übungen zur Verbesserung der Aussprache von Kindern bietet. Mit spielerischen Inhalten, liebevollen Grafiken und einer motivierenden Geschichte rund um die Zauberinsel Logolie unterstützt die App Kinder und Eltern dabei, Sprachstörungen spielerisch zu minimieren. Basierend auf dem bewährten P.O.P.T.-Therapieansatz fördert PhonoLo rezeptive und expressive Sprachfähigkeiten durch strukturierte Phasen und ein Belohnungssystem. Die App ermöglicht zudem die Verknüpfung mit Logopäden für individuelle Hausaufgaben und Fortschrittskontrolle.

Zahnputz-Apps wie die Disney Magic Timer App von Oral-B und Pokémon Smile gestalten die tägliche Zahnpflege als unterhaltsames Erlebnis. Die Oral-B-App nutzt beliebte Disney-, Marvel- und Star Wars-Charaktere, um Kinder zu motivieren, bis zu 90% länger zu putzen. Durch das Scannen von Charakteren auf Oral-B-Produkten schalten Kinder ihre Lieblingsfiguren frei, sammeln Sticker, Badges und Spiele und verfolgen ihren Fortschritt über ein Elternportal mit Putzkalender. Die App bietet Timer und Technik-Tipps, um die richtige Putztechnik zu fördern. Pokémon Smile hingegen macht Zähneputzen zu einem Abenteuer, bei dem Kinder über die Kamera ihres Smartphones Pokémon von Karies-Bakterien retten. Durch gründliches Putzen vervollständigen sie ihren Pokédex mit über 100 Pokémon, verdienen Pokémon-Mützen und können dekorierte Fotos erstellen. Die App bietet Erinnerungen, einen einstellbaren Timer (1-3 Minuten) und Tipps für bessere Zahnhygiene, während Belohnungen wie die Zahnputz-Meister-Medaille die Motivation steigern. Beide Apps fördern durch Gamification gesunde Gewohnheiten, wobei Oral-B stärker auf Charaktervielfalt und Elternkontrolle setzt, während Pokémon Smile mit seinem Fokus auf Pokémon-Sammeln und kreativen Foto-Features punktet. Beide sind kostenlos im App Store und bei Google Play erhältlich und machen Zahnpflege spielerisch und effektiv.

Die HiPP Kinder App, entwickelt vom Babynahrungshersteller HiPP, ist eine kostenlose Spiele-App für Kinder ab vier Jahren. Sie bietet Lernspiele, Geschichten und ein Hörspiel rund um das Leben auf einem Biobauernhof, bei dem Figuren wie Anton Affe und Carla Chamäleon die Kinder begleiten. Die App fördert motorische Fähigkeiten, vermittelt Wissen über Natur und Umwelt und ist in 20 Sprachen verfügbar. Von der Initiative "lesenmit.app" empfohlen und vom Magazin APPS als beste Kinder-App ausgezeichnet.

Die AUTHARK-App (App-unterstützte Therapie-Arbeit für Kinder) ist eine für 6- bis 12-jährige Kinder entwickelte Anwendung, die Verhaltenstherapien bei Störungen wie Aggressivität, Angst, Depression, Zwängen oder ADHS unterstützt. Sie fördert den Transfer von Bewältigungsstrategien in den Alltag, unterstützt Diagnostik und Verlaufskontrolle und erhöht die Therapiemotivation. AUTHARK ist primär für den Einsatz unter therapeutischer Anleitung konzipiert und kann mit Programmen wie THAV, ScouT, THOP oder THAZ kombiniert werden.

39.3 Kinderuntersuchungsheft als Medizinisches Informationsobjekt (MIO)

Medizinische Informationsobjekte wie das Kinderuntersuchungsheft (U-Heft) dienen der standardisierten Dokumentation medizinischer Daten, um Interoperabilität und Datenaustausch in der elektronischen Patientenakte zu gewährleisten. Das U-Heft, auch "Gelbes Heft" genannt, bildet die Früherkennungsuntersuchungen von der Geburt bis etwa zum fünften Lebensjahr ab, basierend auf der Kinder-Richtlinie des Gemeinsamen Bundesausschusses. Es umfasst zehn U-Untersuchungen, die körperliche, geistige und psychosoziale Entwicklungsstände erfassen, ohne als Diagnoseinstrument zu dienen, wobei Auffälligkeiten separat abgeklärt werden. Die Digitalisierung des U-Hefts durch die Kassenärztliche Bundesvereinigung (KBV) zielt auf eine inhalt- und strukturerhaltende elektronische Version ab. Die Umsetzung berücksichtigt semantische und syntaktische Interoperabilität. Der Entwicklungsprozess umfasste eine Kommentierungsphase (Juli bis August 2020) und Benehmensherstellung (Oktober bis November 2020), bevor das MIO U-Heft vom KBV-Vorstand beschlossen wurde.

39.4 Gesund im digitalen Zeitalter

Die Initiative "Bildschirmfrei bis 3" ist eine deutschlandweite Kampagne, die Eltern dazu ermutigt, ihre Kinder in den ersten drei Lebensjahren von digitalen Bildschirmmedien fernzuhalten, um eine gesunde Entwicklung in Bereichen wie Feinmotorik, Aufmerksamkeit und sozialem Verhalten zu fördern. Sie bietet Eltern durch eine Studie, Informationsmaterial, Elternbriefe und Tipps Unterstützung für eine medienbewusste Erziehung. Die Initiative wird von der Universität Witten/Herdecke und dem Berufsverband der Kinder- und Jugendärzte (BVKJ) unterstützt und setzt auf Aufklärung in Kinderarztpraxen, unter anderem durch Signalaufkleber im U-Heft bei der U5-Untersuchung.

39.5 Digitales Informationsmaterial

Das Gesundheitsamt Dortmund bietet digitales Informationsmaterial zur Kindergesundheit, insbesondere für Eltern, deren Kinder Symptome wie Husten, Halsschmerzen oder Durchfall zeigen. Auf der Website finden sich leicht verständliche Flyer und Videos in mehreren Sprachen, darunter Deutsch, Englisch, Türkisch, Arabisch und weitere.

39.6 Forschung

Das Regionale Telepädiatrische Netzwerk (RTP-Net) in Mecklenburg-Vorpommern und Brandenburg verbessert die pädiatrische Versorgung in ländlichen Regionen durch telemedizinische Lösungen. Angesichts des demografischen Wandels, sinkender Geburtenraten und langer Anfahrtswege vernetzt RTP-Net 12 Kliniken, um Kapazitäten zu bündeln und Fachkompetenzen zu ergänzen. Es bietet telemedizinische Triage, spezialfachärztliche Videosprechstunden und einen virtuellen Hintergrunddienst, um eine wohnortnahe, hochwertige Versorgung sicherzustellen. Das Forschungsprojekt, gefördert mit 1,3 Millionen Euro, untersucht, ob Telemedizin die regionale Versorgung nachhaltig stärken kann, und evaluiert Prozesse sowie Vergütungsmodelle für eine mögliche Überführung in die Regelversorgung.

Die Studie "Health Care Professionals' Experiences and Views of eHealth in Pediatric Care: Qualitative Interview Study Applying a Theoretical Framework for Implementation" untersucht die Perspektiven von Gesundheitsfachkräften auf die Implementierung einer eHealth-Intervention, eChildHealth (eCH), in der pädiatrischen Versorgung. Die Forschung wurde in einem Universitätskrankenhaus in Südschweden durchgeführt und umfasste semistrukturierte Interviews, um Einflussfaktoren auf die eHealth-Einführung zu identifizieren, insbesondere für die Förderung der Selbstverwaltung und Kommunikation nach Krankenhausentlassung. Die Ergebnisse zeigten, dass die familienzentrierte Natur der pädiatrischen Versorgung und die Heterogenität der Patienten die Komplexität erhöhen, während eHealth-Tools wie eCH für ihre Benutzerfreundlichkeit und Flexibilität zur Verbesserung von Kommunikation und Selbstmanagement geschätzt wurden. Herausforderungen umfassten jedoch die Einhaltung gesetzlicher Vorschriften, Datensicherheit und organisatorische Bereitschaft, was eine gemeinsame Vision und robuste Kommunikationskanäle für eine nachhaltige Implementierung erforderlich macht. Die Studie betont die Notwendigkeit weiterer Forschung zu den Wahrnehmungen der Beteiligten, um eine gerechte und effektive eHealth-Integration zu unterstützen. (Castor et al. 2023)

40 Onkologie & Hämatologie

40.1 Digitale Wissensplattformen

Das Angebot von Onkopedia, einem Onlineportal der Deutschen Gesellschaft für Hämatologie und Medizinische Onkologie (DGHO), umfasst ein umfassendes Leitlinien- und Wissensportal für Fachkräfte, Patienten und Interessierte im Bereich Hämatologie und Onkologie. Es bietet ca. 140 Leitlinien zur Diagnostik und Therapie von Blut- und Krebserkrankungen, die frei zugänglich sind und praxisnahe Empfehlungen liefern. Zusätzlich enthält die Plattform eine Wissensdatenbank mit umfangreichen Informationen, Bildmaterialien und Arzneimittelbewertungen, einschließlich Zulassungsstudien und Nebenwirkungen. Das Wissensportal wurde auch als mobile App zugänglich gemacht. Die kostenfreie App, verfügbar für iOS und Android, bietet Fachkräften und Patienten direkten Zugriff auf die Wissensdatenbank für eine flexible und ortsunabhängige Nutzung.

Das Angebot von onkowissen.de umfasst eine Reihe von digitalen Anwendungen, die die Verfügbarkeit von Wissen zu Diagnose und Behandlung verschiedener onkologischer Erkrankungen erleichtern sollen. Zu den verfügbaren Anwendungen gehören unter anderem "CLL onkowissen" für chronische lymphatische Leukämie, "ITP onkowissen" für immune Thrombozytopenie, "Prostatakarzinom onkowissen" für Prostatakrebs, "CTCL onkowissen" für kutane T-Zell-Lymphome und "GynOnk onkowissen" für gynäkologische Tumore. Diese Apps bieten Fachkräften mit einem onkowissen.de-Login digitalen, schnellen und aktuellen Zugriff auf umfassende Informationen, darunter Therapiealgorithmen, verfügbare Substanzen, Diagnostik, Therapiemanagement sowie Newsfeeds mit aktuellen Entwicklungen.

EasyOncology ist eine von Fachärzt:innen der Universitätsklinik Köln seit 2013 entwickelte App, die medizinischen Fachkräften praxisnahe, evidenzbasierte und aktuelle onkologische Behandlungsempfehlungen bietet. Mit klinisch validierten Therapiealgorithmen, die aktuelle Leitlinien und Best Practices berücksichtigen, unterstützt die CE-zugelassene App eine schnelle, intuitive Orientierung in der komplexen Onkologie. Zusätzlich umfasst sie Informationen zu Begleiterscheinungen, komplementären Behandlungen und sozialmedizinischen Aspekten.

40.2 Forschung

Die Studie "Remote Monitoring of Chemotherapy-Induced Peripheral Neuropathy by the NeuroDetect iOS App: Observational Cohort Study of Patients With Cancer" untersucht die Machbarkeit und Genauigkeit der NeuroDetect-App zur Fernüberwachung von Chemotherapie-induzierter peripherer Neuropathie (CIPN) bei Krebspatienten unter neurotoxischer Chemotherapie. Die App integriert subjektive Patientenberichte über die EORTC QLQ-CIPN20-Skala mit sechs objektiven funktionellen Tests, die neurologische Untersuchungen wie Gehen, Stehen und manuelle Geschicklichkeit mittels Smartphone-Sensoren nachbilden. In einer prospektiven, longitudinalen Kohortenstudie mit 45 Patienten zeigte die NeuroDetect-App eine hohe Genauigkeit bei der Erkennung von CIPN in den Füßen (AUC=83,8%), jedoch nicht in den Händen (AUC=67,9%), wobei der Romberg-Stance-Test und der Finger-Tapping-Test die größten Beiträge leisteten. Die Kombination von funktionellen und subjektiven Daten verbesserte die Erkennungsgenauigkeit numerisch, insbesondere früh im Behandlungsverlauf, doch sind größere Studien erforderlich, um die Modelle zu validieren und den klinischen Nutzen zu bestätigen. (Chen et al. 2025)

Die Studie "A Retrospective Observational Study on the Impact of Digital Strategies to Boost Cervical Screening Uptake in Primary Care" untersuchte den Einfluss digitaler Strategien auf die Teilnahme an der Gebärmutterhalskrebs-Vorsorge in einer ländlichen Hausarztpraxis in Großbritannien. Durch den Einsatz von Videos, Informationsmaterial und einem Online-Buchungssystem stieg die Teilnahmequote innerhalb von drei Monaten signifikant: bei Frauen von 25–49 Jahren von 77 % auf 80,5 %, bei 50–64-Jährigen von 81 % auf 97 %, womit das nationale Ziel von 80 % erreicht wurde. Die Ergebnisse zeigen, dass digitale Kommunikation Barrieren wie Angst oder geringe Gesundheitskompetenz überwinden kann, insbesondere bei älteren Frauen, und eine kosteneffiziente, skalierbare Methode zur Verbesserung der Vorsorge darstellt. (Haith et al. 2025)

40.3 Anwendungen

Die myTcell-App, entwickelt von FUSE im Auftrag des LMU Klinikums München, ist ein zertifiziertes Medizinprodukt der Klasse I, das seit Juli 2021 europaweit für iOS, Android und als Desktop-Version auf mytcell.de verfügbar ist. Sie unterstützt Ärzt:innen beim Management von Nebenwirkungen infolge Krebstherapien mit CAR-T-Zellen und Bispezifischen Antikörpern (BiTEs), die bei Leukämien und Lymphomen eingesetzt werden. Die App bietet interaktive Werkzeuge wie den Toxicity Calculator zur Bewertung von Nebenwirkungen wie CRS, ICANS oder HLH und liefert gradspezifische Therapieempfehlungen basierend auf Leitlinien der ASTCT, EBMT und NCCN. Sie führt durch die komplexe Vorbehandlungslogistik, dient als Nachschlagewerk mit Verlinkungen zu Studien und ermöglicht über die Connect-Funktion die Kontaktaufnahme mit CAR-T-Zentren in Deutschland. myTcell verbessert die Patienten-

sicherheit und spart Zeit, wie in einer Untersuchung anhand Nutzer:
innenfeedback beschrieben wurde. (Blumenberg et al. 2021)

41 Hals-Nasen-Ohren-Heilkunde

41.1 Forschung

Die Studie "Real-Time Laryngeal Cancer Boundaries Delineation on White Light and Narrow-Band Imaging Laryngoscopy with Deep Learning", veröffentlicht am 4. Januar 2024 in The Laryngoscope, untersucht die Anwendung von Deep Learning zur automatischen Abgrenzung von Kehlkopfkrebs in endoskopischen Bildern und Videos. Unter der Leitung von Claudio Sampieri und Kollegen wurde das Modell SegMENT-Plus anhand von 3933 Bildern von 557 Patienten trainiert und auf zwei externen Datensätzen validiert, wobei es eine hohe Genauigkeit (Dice Similarity Coefficient = 0,83) und eine Verarbeitungsgeschwindigkeit von 25,6 Frames pro Sekunde erreichte. Es zeigte ähnliche Leistungen wie zwei HNO-Assistenzärzte und konnte in Echtzeit auf Videolaryngoskopien angewendet werden. Ziel ist es, die Präzision bei der Tumorresektion zu verbessern und positive Schnittränder zu reduzieren, wobei klinische Studien für die Praxisanwendung noch ausstehen. Die Ergebnisse deuten auf eine robuste Generalisierung und ein großes Potenzial für die chirurgische Unterstützung hin. (Sampieri et al. 2024)

41.2 DiGA

Digitale Gesundheitsanwendungen (DiGA) haben in den letzten Jahren zunehmend an Bedeutung gewonnen, insbesondere im HNO-Bereich, wo sie Patienten mit chronischen Erkrankungen wie Tinnitus unterstützen können. Diese Apps bieten strukturierte, evidenzbasierte Therapieansätze oder beratende Maßnahmen, die in den Behandlungsprozess integriert werden können. Beide Apps, Meine Tinnitus App und Kalmeda, sind digitale Gesundheitsanwendungen (DiGA), die darauf abzielen, Menschen mit Tinnitus zu unterstützen.

Table 41.1: Beispiele Softwareanwendungen

Anbieter	Webseite	Beschreibung	Anwendungsdauer
Meine	Meine Tinnitus App	Bietet Tinnitus Counseling zur Aufklärung	10
Tinnitus		und Beratung, um eine Basis für weitere	Wochen
App		Therapieoptionen zu schaffen.	(Lek-
			tionen
			à
			60-90
			Minuten)
Kalmeda	Kalmeda	Digitale Gesundheitsanwendung mit	90
		kognitiver Verhaltenstherapie zur	Tage
		Behandlung und Bewältigung von Tinnitus.	

42 Allergologie

42.1 Anwendungen

Pollenius ist eine Anwendung für Mobiltelefone, entwickelt von der Charité – Universitätsmedizin Berlin, die Berliner Allergikern nahezu in Echtzeit Daten zum Pollenflug liefert. Mit einer Verzögerung von nur etwa drei Stunden zeigt die App, basierend auf Messungen einer automatisierten Pollenfalle auf dem Tempelhofer Feld, die Konzentrationen der acht allergierelevantesten Pflanzen wie Birke, Gräser oder Ambrosia. Nutzer können zudem ein Symptomtagebuch führen, das Pollenkonzentration, Beschwerden und Medikamenteneinnahme übersichtlich darstellt, um Diagnose und Therapie zu unterstützen. Verfügbar für Android und iOS, sammelt Pollenius anonymisierte Daten, um die Versorgungsforschung zu Pollenallergien voranzutreiben und individuelle Vorhersagemodelle zu entwickeln. play.google.com apps.apple.com

Die Pollen-App der Pollenstiftung ist ein kostenloser mobiler Dienst für Allergiker in Deutschland, Österreich, Frankreich, Schweiz, Schweden, Spanien, Großbritannien und Südtirol, verfügbar für iOS und Android. Sie liefert Echtzeit-Vorhersagen zur Pollenbelastung basierend auf der Postleitzahl des Nutzers und erstellt nach Eingabe individueller Allergiesymptome eine personalisierte Belastungsvorhersage. Mit Funktionen wie einem Allergie-Selbsttest, einem persönlichen Pollentagebuch zur Dokumentation und Weiterleitung an Ärzte im PDF-Format sowie einem Erinnerungsservice für Therapieplanung unterstützt die App Allergiker, ihre Beschwerden gezielt zu managen und die Pollensaison besser zu bewältigen.

42.2 Pollenfluginformationdienst

Der Pollenflug-Gefahrenindex des Deutschen Wetterdienstes (DWD) ist ein Online-Echtzeit-Informationsdienst, der tägliche Vorhersagen zur Pollenbelastung für die acht allergologisch wichtigsten Pollenarten in Deutschland (Hasel, Erle, Esche, Birke, Süßgräser, Roggen, Beifuß und Ambrosia) bereitstellt. Die Vorhersagen geben die Pollenkonzentration (Pollen pro m³ Luft) für den aktuellen und die zwei folgenden Tage an, was Allergikern hilft, ihre Aktivitäten und Medikamenteneinnahme gezielt anzupassen.

Die Studie "Automatisches Pollenmonitoring in Deutschland" von Buters et al. (Allergo J. 2020) hebt die Bedeutung des elektronischen Polleninformationsnetzwerks (ePIN) hervor, insbesondere in Bayern, wo acht automatische Pollenmonitore die Grundlage für Echtzeit-Pollendaten bilden. Diese Monitore, nutzen Bilderkennung, um Pollen mit einer

Erkennungsrate von etwa 91 % zu identifizieren, und liefern Daten, die direkt online über Plattformen wie epin.bayern.de verfügbar sind. Die Studie betont, dass solche Systeme Allergikern sofortige Informationen über lokale Pollenkonzentrationen bieten, was eine schnelle Korrelation zwischen Symptomen und Pollenbelastung ermöglicht. Dies ist besonders in Zeiten von Atemwegserkrankungen wie COVID-19 hilfreich, um Allergien von viralen Infektionen zu unterscheiden. (Buters et al. 2021)

Part V Gesundheitswesen

43 Zahnärztliche Praxis

43.1 Einleitung

Zahnärztliche Software bietet eine Vielzahl von Funktionen. Dazu gehören Praxismanagement, das die Verwaltung von Terminen, Patientenakten und Abrechnungen umfasst, sowie Elektronische Gesundheitsakten. Moderne Programme bieten auch Telemedizinlösungen, E-Rezept-Funktionen und mobile Zugriffs-Optionen, um die Flexibilität und Effizienz in der Praxis zu erhöhen.

Zahnärztliche Software muss spezielle Anforderungen erfüllen, die sich von denen allgemeiner medizinischer Praxen unterscheiden. Dazu gehören detaillierte Zahndokumentationen wie Odontogramme für die Behandlung und Planung sowie die Integration von speziellen Bildgebungsverfahren wie intraorale und panoramische Röntgenaufnahmen. Diese Software muss auch Funktionen für die Planung von Prothesen und Kieferorthopädie und besondere Abrechnungscodes unterstützen, die nur in der Zahnmedizin verwendet werden. Darüber hinaus bieten sie oft Visualisierungen für Behandlungspläne und spezialisierte Systeme zur Patientenerinnerung, um die spezifischen Bedürfnisse und Abläufe in zahnärztlichen Praxen abzudecken.

43.2 Softwarefunktionen

- Allgemeine Verwaltungsfunktionen:
 - Terminplanung
 - Patientenregistrierung und -verwaltung
 - Kontaktmanagement

• Abrechnung und Finanzmanagement:

- Handhabung von zahnärztlichen Abrechnungscodes
- Zahlungsprozessierung
- Finanzübersicht

• Berichterstattung und Analyse:

- Praxiseinkommensberichte
- Patientendemografie-Berichte

• Patienteninformationen und klinische Verwaltung:

- Elektronische Gesundheitsakten mit Integration in andere Systeme (Interoperabilität)
- Detallierte Zahndokumentation (Odontogramme)
- Behandlungsplanung mit Visualisierungen

• Bildgebungs-Integration:

- Verknüpfung mit Bildgebungssystemen

• Kommunikation und Konnektivität:

- Interoperabilität mit Laboren, Apotheken und Krankenhäusern (Telematikinfrastruktur)
- Telemedizin-Funktionen für Video-Sprechstunden
- Mobile Zugriffsmöglichkeiten auf Patienten- und Praxisdaten

• Spezialisierte zahnärztliche Funktionen:

- Integration mit Dental-Labors für Prothesen- und Kieferorthopädiearbeiten
- Spezifische Abrechnungscodes für die Zahnmedizin
- Patientenerinnerungssysteme für regelmäßige Kontrollen

43.3 Zahnarztpraxissoftware

Table 43.1: Übersicht Zahnarztsoftware

Software	URL
teemer	ARZ.dent GmbH
VISIdent	BDV GmbH
VISInext	BDV GmbH
CAPAZ	CAPAZ GmbH
CGM	CompuGroup Medical Dentalsysteme GmbH
HIGHDENT	
PLUS	
CGM XDENT	CompuGroup Medical Software GmbH
ChreMaSoft	CompuGroup Medical Dentalsysteme GmbH
Z1	CompuGroup Medical Dentalsysteme GmbH
ZahnarztRechner	CompuGroup Medical Dentalsysteme GmbH
Dental	Computer Forum GmbH
Express/Ortho	
Express	
ivoris	Computer konkret AG
	teemer VISIdent VISInext CAPAZ CGM HIGHDENT PLUS CGM XDENT ChreMaSoft Z1 ZahnarztRechner Dental Express/Ortho Express

	Software	URL
11	INFINITY Q	CROSSSOFT GmbH
	HEALTH	
12	D1	D1 GmbH
13	DS4	DAMPSOFT GmbH
14	DS-WIN-	DAMPSOFT GmbH
	PLUS	
15	iSiDent	DATEXT iT-Beratung
16	DENSoffice	DENS GmbH
17	dentport	Dentport GmbH
18	DentRechner	DentRechner
19	ErgoDent	ErgoDent Software GmbH
20	EVIDENT	EVIDENT GmbH
21	KFO-Office	FDK Fachdienst der Kieferorthopäden GmbH & Co. KG
22	PRAXIDENT	h&k GbR
	A4	
23	DENT-	h&k GbR
	MAGIC	
24	Orgadontic	Orgadontic
	Office	
25	LinuDent	PHARMATECHNIK GmbH & Co. KG
26	apollonia /	Procedia GmbH
	iDent	
27	charly by	solutio GmbH & Co. KG
	solutio	
28	DIOS ZX	Spitta GmbH
29	Pdent	Winkler Software
30	claire	Patient 21 SE
31	tomedo	zollsoft GmbH
	DENTAL	

Quelle: (Kassenzahnärztliche Bundesvereinigung 2025)

43.4 Zahnärztliche Dokumentationswerkzeuge

Table 43.2: Übersicht zahnärztliche Dokumentationswerkzeuge

Software	URL	Beschreibun
Athena	Athena	Eine
		Prax-
		isverwal-
		${ m tungssoft}$
		ware, die
		Termin-
		planung,
		Abrech-
		nung und
		Patien-
		tenver-
		waltung
		umfasst.
Sonia	Sonia	Mit
		Sonia
		werden
		Aufk-
		lärung,
		Beratung
		und Be-
		handlung
		in Ihrer
		Zahnarzt-
		praxis
		automa-
		tisch
		ein-
		heitlich
		und voll-
		ständig
		dokumen-
		tiert.

PraxiPal ist ein in 2024 gegründetes Berliner Startup, das eine KI-gestützte virtuelle Rezeptionistin für Arztpraxen anbietet. Die Lösung automatisiert Telefonanrufe, entlastet das Praxispersonal und verbessert die Erreichbarkeit für Patienten.

44 Pflegesoftware

44.1 Industrie

Die nursIT Institute GmbH aus Berlin bietet mit seiner KI-gestützten Software careIT eine innovative Lösung zur Automatisierung und Vereinfachung der Pflege- und Behandlungsdokumentation in Krankenhäusern. Über das Selbstversorgungs-Meta-Pflegeassessment (SeMPA) werden Risiken und Maßnahmen abgeleitet, während die hohe Interoperabilität durch HL7 FHIR eine nahtlose Integration in bestehende Systeme ermöglicht. Zusätzlich fördert nursIT mit Tools wie bedIT und planIT die Teamarbeit, Patientensicherheit und Effizienz in der Pflege.

Die myneva Group bietet Pflegesoftwarelösungen. Mit Produkten wie myneva.care, myneva.connect und myneva.analytics optimiert sie Dokumentation, Kommunikation und datengestützte Entscheidungen. Die Software vereint Fachwissen und digitale Tools, um Abläufe zu vereinfachen und den Fokus auf die Versorgung der Menschen zu legen.

Die Sinfonie GmbH & Co. KG bietet eine flexible und umfassende Softwarelösung für soziale Einrichtungen wie Altenhilfe, Eingliederungshilfe sowie Kinder- und Jugendhilfe, die Prozesse wie Pflegeplanung, Dokumentation und Abrechnung optimiert. Mit über 25 Jahren Erfahrung entwickelt das Unternehmen individuell anpassbare digitale Tools, die sowohl stationär als auch mobil genutzt werden können, inklusive Apps und Spracherfassung.

Caretronic bietet mit NurseCare ein IP-Schwesternrufsystem, das Notrufe, Pflegeverwaltung und Dokumentation in einem Gerät bündelt. Die flexiblen, modularen Lösungen lassen sich nahtlos in bestehende Systeme integrieren und fördern die Kommunikation zwischen Pflegekräften und Patienten. Ziel ist es, durch digitale Unterstützung die Pflegequalität zu erhöhen und gesetzliche Standards sicher zu erfüllen.

Die Standard Systeme GmbH bietet mit ihrer Software "caresystem ambulant" eine maßgeschneiderte Lösung für ambulante Pflegedienste, die durch mobile Datenerfassung und transparente Kostenvoranschläge die Dokumentation und Kundenakquise erleichtert. Die flexible, modulare Software ermöglicht eine intuitive Bedienung, integriert wichtige Funktionen wie Pflegeplanung und Qualitätsmanagement und kann jederzeit an individuelle Anforderungen angepasst werden. Ziel ist es, Pflegekräften mehr Zeit für die Betreuung zu verschaffen und den administrativen Aufwand zu minimieren.

Die atacama blooms GmbH bietet mit "Nursing Knowledge Services" (NKS) einen Wissensserver zur intelligenten Dokumentation und Entscheidungsunterstützung in der

Krankenhauspflege sowie mit "Nursing Intelligence" (NI) eine smarte Datenanalyse- und Beratungslösung für das Pflegemanagement. Mit "AVIDOC" stellt sie einen digitalen Assistenten bereit, der Dokumente mittels KI automatisiert ausliest, strukturiert und Prozesse wie die Rechnungsverarbeitung optimiert. Diese Produkte nutzen Künstliche Intelligenz und Semantik, um Pflegeprozesse effizienter und einfacher zu gestalten.

Die MEDIFOX DAN GmbH mit Hauptsitz in Hildesheim ist ein führender Anbieter von Softwarelösungen für die Pflegebranche und unterstützt ambulante Dienste, stationäre Einrichtungen sowie therapeutische Praxen mit modularen, digitalen Tools zur Dokumentation, Planung und Verwaltung. Seit über 25 Jahren entwickelt das Unternehmen innovative Produkte wie MD Ambulant und MD Stationär, die Pflegekräfte entlasten und Prozesse effizienter gestalten. Als Teil der ResMed-Gruppe setzt MEDIFOX DAN auf Datensicherheit, Flexibilität und individuelle Kundenbetreuung, um die Digitalisierung im Gesundheitswesen voranzutreiben.

QualiPEP richtet sich an Pflegeeinrichtungen und zielt darauf ab, die Gesundheitskompetenz von Bewohnern und Beschäftigten zu fördern. Im Rahmen des Forschungsprojekts QualiPEP, das vom AOK-Bundesverband und dem Bundesministerium für Gesundheit zwischen 2017 und 2021 umgesetzt wurde, wurde ein digitaler Selbstbewertungsbogen entwickelt. Dieser Gesundheitskompetenz-Check hilft Einrichtungen, ihren aktuellen Stand zu bewerten und Potenziale zur Verbesserung zu erkennen. Ergänzend bietet die Seite Informationen und Handlungsempfehlungen, um Prävention, Gesundheitsförderung und betriebliche Gesundheitsmaßnahmen nachhaltig zu stärken. Ziel ist es, die Lebensqualität und Versorgung in der Pflege durch praxisnahe und wissenschaftlich fundierte Ansätze zu steigern.

Ascom ist ein globales Unternehmen, das Kommunikations- und Koordinationslösungen für Langzeitpflege, Krankenhäuser und Unternehmen anbietet. Ascom entwickelt Systeme wie Bewohnerruf, Aktivitätsüberwachung und zielgerichtetes Alarmmanagement. Lösungen wie Myco Smartphones und cloudbasierte Dienste wie Staff Safety as a Service unterstützen Pflegekräfte und Bewohner:innen, etwa bei AnglicareSA in Australien oder Allium Healthcare in Singapur. Ascom kombiniert Software, Mobilgeräte und Services für maßgeschneiderte, skalierbare Pflege- und Sicherheitslösungen.

44.2 Forschung

Das Impulspapier "Die digitale Dividende in der Pflege" von Julia Bringmann und Michaela Evans-Borchers thematisiert die Herausforderungen und Potenziale der Digitalisierung in der Pflege. Es beleuchtet, warum digitale und KI-basierte Anwendungen oft nicht die erhoffte Entlastung für Pflegekräfte bringen, und schlägt Lösungen vor. Das Papier fordert evidenzbasierte Nachweise für den Nutzen digitaler Technologien, verbesserte Finanzierung und Akzeptanzförderung durch erfahrbare Mehrwerte. Es definiert vier Handlungsfelder: Schließen von Evidenzlücken, Kommunikation wirksamer Anwendungen, Förderung bewährter Technologien und Vermeidung von Fehlwirkungen. Vorschläge umfassen Metaanalysen, regionale Wissenstransfer-Netzwerke, gezielte Förderprogramme wie ein Langzeitpflegezukunftsgesetz

und die Stärkung der Mitbestimmung, um eine "digitale Dividende" zu realisieren, die Pflegekräfte entlastet und die Versorgungsqualität sichert. (Bringmann and Evans-Borchers, n.d.)

45 Stationäre Versorgung

Die Deutsche Krankenhaus TrustCenter und Informationsverarbeitung GmbH (DKTIG) mit Sitz in Leipzig ist ein Partner der Krankenhäuser für Datensicherheit, Datenkommunikation und Dateninformation, getragen von den 16 Landeskrankenhausgesellschaften und der Deutschen Krankenhausgesellschaft. Seit ihrer Gründung 1996 stellt sie Zertifikate für den sicheren Datenaustausch gemäß § 301 SGB V bereit und unterstützt den Zugang zur Telematikinfrastruktur. Zusätzlich betreibt die DKTIG das Deutsche Krankenhaus Verzeichnis und bietet Lösungen wie Software für Nachhaltigkeitsberichte an.

Das deutsche SCIPHOX-Projekt sollte die Kommunikation zwischen Krankenhausinformationssystemen und Arztpraxen mittels XML standardisieren, insbesondere für Entlassungs- und Überweisungsbriefe. Dafür wurde die Clinical Document Architecture (CDA) von HL7 als Grundlage gewählt, angepasst an nationale Anforderungen wie Versicherungsdaten, um die Lücke zwischen den bisherigen Protokollen HL7 und "*DT" zu schließen. Das Projekt, gestartet im Jahr 2000, übersetzte und erweiterte den CDA-Standard, um eine nahtlose elektronische Datenübertragung im deutschen Gesundheitswesen zu ermöglichen. (Heitmann, Schweiger, and Dudeck 2003)

46 Öffentliches Gesundheitswesen

46.1 Gesundheitsdaten

Das ARE-Dashboard des RKI bietet eine Übersicht über akute respiratorische Erkrankungen in Deutschland, während der Data Tracker von Epic Research aggregierte Gesundheitsdaten aus elektronischen Akten für Forschung und Entscheidungsfindung bereitstellt. Das BEAM-Dashboard der CDC visualisiert Daten zu bakteriellen, enterischen und Pilzkrankheiten, um Ausbrüche zu überwachen, und das NREVSS-Dashboard der CDC verfolgt wöchentlich Trends bei respiratorischen und enterischen Viren in den USA. Gemeinsam unterstützen diese Tools die öffentliche Gesundheit durch datengestützte Einblicke.

Der Versorgungsatlas des Zentralinstituts für die kassenärztliche Versorgung (Zi) bietet auf versorgungsatlas.de/dashboard ein interaktives Dashboard, das die Prävalenztrends von sechs chronischen Krankheiten (Asthma, COPD, Diabetes, Herzinsuffizienz, Hypertonie, KHK) in Deutschland von 2015 bis 2023 visualisiert. Basierend auf bundesweiten Abrechnungsdaten der vertragsärztlichen Versorgung zeigt es regionale Unterschiede, geschlechts- und altersspezifische Trends und wird jährlich aktualisiert. Nutzer können durch interaktive Karten, Tabellen und Diagramme die Daten flexibel analysieren, unterstützt durch kompakte Factsheets zum Download.

46.2 Digital Public Health

Die Studie "The dawn of digital public health in Europe: Implications for public health policy and practice" untersucht die Bedeutung digitaler Gesundheitstechnologien in Europa, insbesondere während der COVID-19-Pandemie, und betont die Notwendigkeit effektiver Überwachungssysteme. Sie beleuchtet die rasante Entwicklung digitaler Public Health (DPH)-Strategien, die durch die Pandemie beschleunigt wurde, und hebt deren Potenzial zur Stärkung von Gesundheitssystemen, Förderung von Gesundheitsgerechtigkeit und Erreichung universeller Gesundheitsversorgung hervor. Die Autoren diskutieren Herausforderungen wie digitale Ungleichheiten, Interoperabilität und Datenschutz sowie die Notwendigkeit, die Bevölkerung, insbesondere Jugendliche, durch digitale Gesundheitskompetenz einzubinden. Abschließend fordern sie eine koordinierte, multidisziplinäre Strategie, unterstützt durch politische und technische Rahmenbedingungen, um DPH nachhaltig in die Gesundheitspolitik zu integrieren. (B. L. H. Wong et al. 2022)

47 Digitalisierung der Krankenkassen

47.1 ePA-Apps

Die ePA-Apps der Krankenkassen in Deutschland bieten Versicherten die Möglichkeit, ihre elektronische Patientenakte (ePA) digital zu verwalten. Basierend auf der Information von der gematik gibt es folgende Punkte zu beachten:

- Verfügbarkeit: Jede gesetzliche Krankenkasse stellt ihre eigene ePA-App zur Verfügung, was insgesamt zu über 100 verschiedenen Apps führt, die alle auf den Vorgaben der gematik basieren. Diese Apps sind für iOS und Android verfügbar.
- Funktionen:
 - Dokumentenverwaltung: Versicherte können ihre Gesundheitsdaten, wie Arztbriefe,
 Befunde oder Medikationspläne, in der ePA speichern, einsehen und verwalten.
 - Zugriffsrechte: Nutzer können entscheiden, wer auf ihre Daten zugreifen darf, z.B. Ärzte oder Apotheken, und diese Berechtigungen jederzeit verwalten oder widerrufen.
 - Sicherheit: Alle Daten werden verschlüsselt gespeichert und übertragen, um den Datenschutz zu gewährleisten. Die Apps nutzen die hochsichere Telematikinfrastruktur (TI).
- Nutzungsvoraussetzungen: Um die volle Funktionalität der ePA-Apps zu nutzen, benötigen Versicherte die neue elektronische Gesundheitskarte (eGK) mit NFC-Schnittstelle und eine persönliche PIN. Alternativ kann auch die GesundheitsID verwendet werden.
- Opt-Out-Prinzip: Mit der Einführung der "ePA für alle" im Jahr 2025 werden automatisch ePAs für alle Versicherten erstellt, sofern sie nicht widersprechen. Diese Einführung bedeutet, dass die Nutzung der ePA weiterhin freiwillig ist, aber die Akte standardmäßig angelegt wird.

Beispiele von Krankenkassen-Apps: - AOK: "AOK Mein Leben" - Barmer: "BARMER eCare" - BKK B. Braun Aesculap: "BKK B. Braun Aesculap ePA" - Knappschaft: "Meine GESUND-HEIT"

Diese Apps können von den jeweiligen Krankenkassen heruntergeladen werden und bieten eine zentrale Anlaufstelle für die Verwaltung persönlicher Gesundheitsdaten. Die Versicherten haben dabei stets die Kontrolle darüber, welche Daten in welcher Form und für wen zugänglich gemacht werden.

47.2 Tabelle ePA Apps

Table 47.1: Übersicht ePA Anwendungen der Krankenkassen

Krankenkasse	Google Play Store	Apple App Store	Sonstige 1	Sonstige 2
www.aok.de	play.google.com	apps.apple.c	comwww.microsoft.com	
www.audibkk.de	play.google.com			
www.bahn-bkk.de	play.google.com		•	
www.barmer.de	play.google.com			
www.bertelsmann-	play.google.com			
bkk.de	Paril 184 184	o.pp.		
www.big-direkt.de	play.google.com	apps.apple.c	compaclient.de	
www.bkk-pwc.de	play.google.com			
bkk-akzo.de	play.google.com		-	
www.bkk-bba.de	play.google.com		-	
bkk-pfaff.de	play.google.com			
www.bkkdb.de	play.google.com		-	
www.bkk-	play.google.com		-	
diakonie.de	1 000	11 11	•	
www.bkk-da.de	play.google.com	apps.apple.c	eom	
www.bkk-	play.google.com			
euregio.de			-	
www.bkk-evm.de	play.google.com	apps.apple.c	compaclient.de	
www.bkk-ewe.de	play.google.com			
bkkexklusiv.de	play.google.com	apps.apple.c	compaclient.de	
www.bkk-faber-	play.google.com	apps.apple.c	compaclient.de	
castell.de				
www.bkk-	play.google.com	apps.apple.c	compaclient.de	
firmus.de				
www.bkk-	play.google.com	apps.apple.c	compaclient.de	
freudenberg.de				
www.bkkgs.de	play.google.com	apps.apple.c	compaclient.de	
www.bkk-gb.de	play.google.com	apps.apple.c	compaclient.de	
www.bkk-	play.google.com	apps.apple.c	compaclient.de	
herkules.de				
bkk-linde.de	play.google.com	apps.apple.c	compaclient.de	
bkk-mahle.de	play.google.com	apps.apple.c	compaclient.de	
www.bkk-	play.google.com	apps.apple.c	compaclient.de	
melitta.de				
www.miele-bkk.de	play.google.com	apps.apple.c	compaclient.de	

Krankenkasse	Google Play Store	Apple App Store	Sonstige 1	Sonstige 2
mobil-	play.google.com	apps.apple.c	om	
krankenkasse.de	1 70 0	11 11		
www.bkk-mtu.de	play.google.com	apps.apple.c	ompaclient.de	
www.bkkpfalz.de	play.google.com			
bkk-provita.de	play.google.com		_	
www.bkk- public.de	play.google.com		——————————————————————————————————————	
www.bkk-rrw.de	play.google.com	apps.apple.c	omepaclient.de	
www.bkk- salzgitter.de	play.google.com	apps.apple.c	ompaclient.de	
www.bkk- scheufelen.de	play.google.com	apps.apple.c	ompaclient.de	
bkk-sbh.de	play.google.com	apps.apple.c	oæpaclient.de	
www.bkk- technoform.de	play.google.com	apps.apple.c	ompaclient.de	
www.bkk-vdn.de	play.google.com	apps.apple.c	oæpaclient.de	
www.bkk- verbundplus.de	play.google.com	apps.apple.c	oæpaclient.de	
www.bkk- voralb.de	play.google.com	apps.apple.c	ompaclient.de	
www.bkk-werra- meissner.de	play.google.com	apps.apple.c	ompaclient.de	
www.bkk-wf.de	play.google.com	apps.apple.c	oæpaclient.de	
www.bkk- wuerth.de	play.google.com	apps.apple.c	ompaclient.de	
www.bkk-zf- partner.de	play.google.com	apps.apple.c	ompaclient.de	
www.bkk24.de	play.google.com	apps.apple.c	ompaclient.de	
www.bmwbkk.de	play.google.com		——————————————————————————————————————	
www.bosch-bkk.de	play.google.com	apps.apple.c	oæpaclient.de	
www.continentale- bkk.de	play.google.com	apps.apple.c	oæpaclient.de	
www.dak.de	play.google.com	apps.apple.c	oæpaclient.de	
www.debeka- bkk.de	play.google.com	apps.apple.c	ompaclient.de	
www.bergische- krankenkasse.de	play.google.com	apps.apple.c	ompaclient.de	
www.energie- bkk.de	play.google.com	apps.apple.c	ompaclient.de	
www.ey-bkk.de	play.google.com	apps.apple.c	oæpaclient.de	

Krankenkasse	Google Play Store	Apple App Store	Sonstige 1	$\begin{array}{c} \text{Sonstige} \\ 2 \end{array}$
www.heimat-	play.google.com	apps apple o		_
krankenkasse.de	piay.googic.com	аррыаррю	oupuenom.de	
www.hek.de	nlay google com	anns annle d	comwww.microsoft.com	apps.apple.co
www.hkk.de	play.google.com			apps.appie.co
www.ikkbb.de	play.google.com			
www.ikk-classic.de	play.google.com		——————————————————————————————————————	
www.ikk-	play.google.com		-	
	piay.googie.com	apps.appie.c	compachent.de	
gesundplus.de www.die-ik.de	play googla som	anna annla	compositiont do	
	play.google.com			
www.ikk-	play.google.com	apps.appie.c	co æp achent.de	
suedwest.de	1 1	1	1 1	
www.karlmayer-	play.google.com	apps.apple.d	compachent.de	
bkk.de				
www.kkh.de	play.google.com		——————————————————————————————————————	
knappschaft.de			comwww.microsoft.com	
www.koenig-bauer-	play.google.com	apps.apple.o	compactient.de	
bkk.de		_		
www.krones-	play.google.com	apps.apple.o	co æ paclient.de	
bkk.de				
www.mercedes-	play.google.com	apps.apple.o	compaclient.de	
benz-bkk.com				
www.merck-	play.google.com	apps.apple.o	compactient.de	
bkk.de				
www.mhplus-	play.google.com	apps.apple.o	co æ paclient.de	
krankenkasse.de				
www.meine-	play.google.com	apps.apple.d	co æ paclient.de	
krankenkasse.de				
www.novitas-	play.google.com	apps.apple.d	compaclient.de	
bkk.de				
www.pronovabkk.de	play.google.com	apps.apple.d	compaclient.de	
www.ruv-bkk.de	play.google.com			
www.salus-bkk.de	play.google.com			
www.sbk.org	play.google.com		-	
www.securvita.de	play.google.com		-	
www.skd-bkk.de	play.google.com			
www.svlfg.de	play.google.com			
www.xn-sdzucker-	play.google.com		-	
bkk-dlb.de	P.207.800810.00III	. «ррымррісі		
www.tk.de	play.google.com	apps apple o	cowww tk de	
www.tui-bkk.de	play.google.com			

V no roleo roleo gao	Google Play Store	Apple Ap Store	•	Sonstige 2
Krankenkasse	Store	Store	Sonstige 1	<u>Z</u>
www.viactiv.de	play.google.con	apps.app	le.cowww.microsoft.com	
www.vividabkk.de	play.google.con	apps.app	le.coæpaclient.de	
www.wmf-bkk.de	play.google.con	apps.app	le.coæpaclient.de	
gesundheitswelt.allia	a nzlak .google.con	n itunes.ap	ple.com	
www.continentale.de	e			
www.gothaer.de	play.google.con	apps.app	le.com	
www.hallesche.de	play.google.con	apps.app	le.com	
signal-iduna.de	play.google.con	apps.app	le.com	

 $\label{eq:Quelle:Quelle:genatik.de/versicherte/epa-app} Quelle: genatik.de/versicherte/epa-app$

47.2.1 Installationszahlen ePA Apps Google Play Store

ePA Apps Google Play Store Installationszahlen

Quellen: gematik.de, Google Play Store, Stand: 2025-02-16

Figure 47.1: ePA Apps Google Play Store Installationszahlen

Die Verteilung der ePA-App-Installationszahlen zeigt eine deutliche Dominanz der TK-App mit 63,1 % der Installationen, was auf die hohe Anzahl der TK-Versicherten hinweisen könnte, die über 11 Millionen beträgt. Diese hohe Zahl könnte bedeuten, dass die TK effektiv ihre Mitglieder zur Nutzung der App motiviert oder dass die App durch ihre Benutzerfreundlichkeit und die Integration in den Service "TK-Safe" bevorzugt wird. Die Allianz Gesundheits-App folgt mit 9,9 %, was ebenfalls auf eine starke Präsenz und möglicherweise auf eine gut etablierte Marke zurückzuführen sein könnte. Andere Apps wie die AOK Mein Leben (8,1 %) und die BARMER eCare (4,9 %) haben ebenfalls signifikante Anteile, die jedoch weniger stark vertreten ist. Spekulativ könnte man sagen, dass die Verteilung von der Benutzerfreundlichkeit, der Bekanntheit der Krankenkasse und der spezifischen Bedürfnisse der Nutzer beeinflusst wird, wobei größere Krankenkassen wie die TK und Allianz möglicherweise besser in der Lage sind,

47.3 Elektronische Ersatzbescheinigung

Die elektronische Ersatzbescheinigung (eEB) dient als digitaler Versicherungsnachweis, wenn die elektronische Gesundheitskarte (eGK) beim Arztbesuch nicht genutzt werden kann. Sie wird über den Kommunikationsdienst KIM automatisiert an die Praxis übermittelt und kann direkt ins Praxisverwaltungssystem (PVS) importiert werden, wodurch manuelles Einpflegen entfällt. Ihre Nutzung ist seit Oktober 2024 möglich und wird ab Juli 2025 für Praxen und Krankenkassen verpflichtend.

47.4 Elektronische Arbeitsunfähigkeitsbescheinigung

Die elektronische Arbeitsunfähigkeitsbescheinigung (eAU) ermöglicht Ärzten, Arbeitsunfähigkeitsnachweise digital an Krankenkassen zu übermitteln, seitdem sie im Januar 2022 obligatorisch wurde. Dies spart Zeit und bürokratischen Aufwand für Patienten, da sie die Bescheinigung nicht mehr selbst weiterleiten müssen. Die eAU wird über die sichere Telematikinfrastruktur (TI) geschickt, was den Datenschutz erhöht und eine schnellere Bearbeitung von Krankengeldanträgen ermöglicht. Arbeitgeber müssen seit Januar 2023 die Daten direkt bei den Krankenkassen abrufen, was ein weiterer Unterschied zur Papier-AU ist, bei der der Patient den Nachweis vorlegte. Insgesamt führt die eAU zu mehr Effizienz und Transparenz, erfordert aber eine gewisse Investition und Anpassung.

Die Einführung der elektronischen Arbeitsunfähigkeitsbescheinigung (eAU) führt laut dem Bürokratieindex 2022 der Kassenärztlichen Bundesvereinigung (KBV) zu einem zusätzlichen Zeitaufwand von etwa 50 Sekunden pro Fall, was bei 90 Millionen Bescheinigungen jährlich etwa 1,25 Millionen Stunden Mehrbelastung in Vertragsarztpraxen bedeutet. Hauptgründe sind die lange Dauer des elektronischen Signiervorgangs und der Aufwand für papiergebundene Ersatzbescheinigungen bei technischen Fehlern. Qualitative Untersuchungen zeigen, dass die fehleranfällige Telematikinfrastruktur, unklare Verantwortlichkeiten und die Abhängigkeit von Anbietern die Praxisabläufe erheblich behindern. Vorschläge der KBV zielen auf schnellere Signaturprozesse, verbesserte TI-Zuverlässigkeit, verbindliche Lieferfristen und ein volldigitales Verfahren ab 2023, um den Bürokratieaufwand zu reduzieren. kbv.de/html/bix.php

47.5 GesundheitsID

Die GesundheitsID der gematik ist eine digitale Identität, die als Alternative zur elektronischen Gesundheitskarte (eGK) dient und Versicherten einen kartenlosen Zugang zu Telematikinfrastruktur-Anwendungen bietet. Ab dem 1. Januar 2024 sind Krankenkassen

verpflichtet, auf Wunsch eine GesundheitsID auszustellen, wobei die Nutzung freiwillig bleibt. Mit der GesundheitsID können Versicherte sich über ihr Smartphone in Apps wie das E-Rezept oder die elektronische Patientenakte einloggen. Die gematik und Krankenkassen arbeiten daran, die Anmeldung einfach und komfortabel zu gestalten, um eine breite Nutzung zu ermöglichen. Ab 2026 kommt eine weitere Funktion hinzu: Patientinnen und Patienten brauchen dann keine eGK mehr als Versicherungsnachweis in der Praxis, sondern können sich mit ihrer digitalen Identität ausweisen. Die GesundheitsID kann dann als Alternative zur elektronischen Gesundheitskarte genutzt werden. Beim Umgang mit Gesundheitsdaten erfordert die GesundheitsID im Gegensatz zum Online-Banking, wo Gesichtserkennung oft ausreicht, eine Zwei-Faktor-Authentifizierung zur besonders hohen Sicherheit, da die Folgen eines Datenverlusts von Gesundheitsdaten anderer Natur sind als bei Verlust von Bankdaten.

47.6 Offener Quelltext

Das GitHub-Repository epa4all widmet sich dem Thema der elektronischen Patientenakte (ePA) und ist eine Initiative zur Förderung ihrer Nutzung und Weiterentwicklung zu sein. Es bietet Werkzeuge, Ressourcen und Informationen, um die Implementierung der ePA im medizinischen Bereich zu unterstützen. Durch Zusammenarbeit und Wissensaustausch zielt das Projekt darauf ab, digitale Gesundheitslösungen zugänglicher und effizienter zu gestalten. Es richtet sich sowohl an Fachleute im Gesundheitswesen als auch an Entwickler, die an innovativen Technologien für die Gesundheitsbranche interessiert sind.

48 Gesetzgebung

In Deutschland gibt es zahlreiche gesetzliche Regelungen, die die Gesundheitsversorgung und Nutzung digitaler Gesundheitsdienste betreffen:

• § 11 Abs. 1 S. 1 Apothekengesetz (ApoG): Link zum Gesetz

Regelt, dass Erlaubnisinhaber und das Personal von Apotheken keine Rechtsgeschäfte oder Absprachen tätigen dürfen, die die bevorzugte Lieferung bestimmter Arzneimittel zum Ziel haben, es sei denn, es gibt gesetzliche Ausnahmen.

• § 310 SGB V: Link zum Gesetz

Bezieht sich auf die Aufgaben der Gesellschaft für Telematik, die für die Entwicklung und den Betrieb der Telematikinfrastruktur verantwortlich ist, um den sicheren Austausch von Gesundheitsdaten zu gewährleisten.

• § 360 SGB V: Link zum Gesetz

Legt fest, dass vertragsärztliche elektronische Verordnungen über die Telematikinfrastruktur übermittelt und verarbeitet werden müssen, sobald die notwendigen Dienste und Komponenten flächendeckend verfügbar sind.

• § 291 SGB V: Link zum Gesetz

Verpflichtet die Krankenkassen dazu, für jeden Versicherten eine elektronische Gesundheitskarte (eGK) auszustellen, die als Schlüssel für den Zugang zu digitalen Gesundheitsdiensten dient.

• § 341 und § 342 SGB V: Link zu § 341 SGB V und Link zu § 342 SGB V Stellen sicher, dass die elektronische Patientenakte (ePA) den Versicherten zur Verfü-

Stellen sicher, dass die elektronische Patientenakte (ePA) den Versicherten zur Verfügung steht und deren Nutzung freiwillig ist, mit dem Ziel, Gesundheitsinformationen einrichtungs- und sektorenübergreifend zu nutzen.

• § 365 Absatz 1 SGB V: Link zum Gesetz

Beschreibt die Vereinbarung über technische Verfahren zur Videosprechstunde, die von der Kassenärztlichen Bundesvereinigung und dem Spitzenverband Bund der Krankenkassen im Benehmen mit der Gesellschaft für Telematik getroffen wird. Diese Regelungen sind auch in der Anlage 31b zum Bundesmantelvertrag-Ärzte (BMV-Ä) festgelegt.

• § 390 SGB V: Link zum Gesetz

Behandelt die IT-Sicherheit in der vertragsärztlichen und vertragszahnärztlichen Versorgung, um die Integrität und Vertraulichkeit der Daten zu schützen.

• § 75B SGB V: Link zum Gesetz

Regelt die Übermittlung von Patientendaten, insbesondere in Bezug auf die elektronische Verarbeitung und Übermittlung von Gesundheitsdaten.

• § 332b SGB V: Link zum Gesetz

Definiert Rahmenvereinbarungen, die Anforderungen an Praxisverwaltungssysteme (PVS) setzen, um eine sichere und effiziente Verwaltung von Patienteninformationen zu gewährleisten.

Diese gesetzlichen Bestimmungen bilden die Grundlage für die Digitalisierung und den sicheren Datenfluss in der Gesundheitsversorgung

49 Übersicht über zentrale Gesetzesvorhaben im Gesundheitswesen

- Bundesministerium für Gesundheit E-Health-Gesetz
- Bundesregierung DigiG
- Bundesministerium für Gesundheit TSVG
- Bundesministerium für Gesundheit GDNG
- Bundesministerium für Gesundheit GSAV
- Bundesministerium für Gesundheit DVG
- Bundesministerium für Gesundheit PDSG
- Bundesministerium für Gesundheit DVPMG

49.1 Nationale eHealth Strategie

Der Artikel "National eHealth strategies: a comparative study of nine OECD health systems", veröffentlicht in BMC Health Services Research, untersucht die eHealth-Strategien von neun Gesundheitssystemen (Australien, Dänemark, Estland, Finnland, Norwegen, Schweden, UK/NHS England, Katalonien/Spanien und USA/Veterans Affairs). Die Autoren führen eine qualitative Vergleichsanalyse durch, basierend auf öffentlich zugänglichen Strategiedokumenten, und fokussieren drei Dimensionen: Vision und Ziele, Umsetzungsmethoden sowie Nachverfolgungsstrukturen. Ziel ist es, die Effizienz und Ergebnisse von Gesundheitssystemen durch effektive eHealth-Strategien zu verbessern. Die Studie zeigt, dass die meisten Systeme klare Visionen und Ziele formulieren, und betont die Bedeutung einer strukturierten Implementierung und Nachverfolgung für den Erfolg digitaler Gesundheitsinitiativen. (Palm et al. 2025)

Table 49.1: Übersicht nationale eHealth Strategien

${\bf Umsetzungsmethoden}$	${\bf Nachver folgungs strukturen}$
Nationale digitale Gesundheitsstrategie mit Fokus auf Interoperabilität und Datenaustausch.	Regelmäßige Evaluierung durch die Australian Digital Health Agency.
	Nationale digitale Gesundheitsstrategie mit Fokus auf Interoperabilität

Land/S	y Mision und Ziele	Umsetzungsmethoden	Nachverfolgungsstrukturen
Dänem	arkerbesserung der Versorgungsqualität und Effizienz durch einheitliche digitale	Zentralisierte Infrastruktur (z. B. Sundhed.dk) und verpflichtende Nutzung durch Gesundheitsdienste.	Kontinuierliche Überwachung durch die Danish Health Data Authority.
Estland	Lösungen. Schaffung eines vollständig digitalisierten Gesundheitswesens mit Fokus auf	E-Health-System mit elektronischen Patientenakten und Blockchain-Technologie für Sicherheit.	Staatliches Monitoring durch das Estonian e-Health Foundation-Team.
	Datenzugang. acStärkung der Bürgerbeteiligung und Effizienz durch digitale Selbstverwaltungstools. gelntegration und Koordination der Versorgung durch standardisierte digitale Plattformen.	Kanta-System für zentrale Datenspeicherung und schrittweise Einführung von e-Services. Nationale eHealth-Strategie mit Fokus auf elektronische Patientenakten und Telemedizin.	Evaluierung durch das Gesundheitsministerium und das Nationale Institut für Gesundheit. Überwachung durch die Direktion für eHealth (Norge.no).
Schwed	ehörderung eines zugänglichen und sicheren Gesundheitswesens durch digitale Innovation.	Vision e-hälsa 2025 mit regionaler Umsetzung und starker Betonung auf Datenschutz.	Koordinierte Nachverfolgung durch die eHealth Agency und regionale Gesundheitsbehörden.
UK (NHS Eng- land)	Modernisierung des NHS durch digitale Transformation und verbesserte Patientenerfahrung.	NHS Long Term Plan mit Investitionen in KI, Apps und digitale Infrastruktur (z. B. NHS App).	Evaluierung durch NHS Digital und das Department of Health and Social Care.
	niemrenteinung. niemrenden die versorgung durch digitale Integration regionaler Dienste.	TIC Salut Social-Strategie mit Fokus auf Interoperabilität und Telemedizin in der Primärversorgung.	Regionale Überwachung durch das katalanische Gesundheitsministerium.

\mathbf{USA}	Optimierung der	VA's Electronic Health	Zentralisierte Kontrolle
(Vet-	Versorgung für	Record Modernization	durch das VA Office of
erans	Veteranen durch	(EHRM) mit Fokus auf eine	Information and
Af-	digitale Tools und	einheitliche EHR-Plattform.	Technology.
fairs)	Datenzugänglichkeit.		

49.2 Forschung

49.2.1 Kostensenkung durch Digitalisierung

Die Studie "Cost Minimization Analysis of Digital-first Healthcare Pathways in Primary Care" führte eine retrospektive, registerbasierte Analyse im finnischen Harjun Terveys durch, um die Kosten der digitalen mit der traditionellen Primärversorgung bei akuten Erkrankungen zu vergleichen. 64.969 akute Episoden wurden analysiert und einem Propensity-Score-Matching unterzogen. Die Studie ergab, dass digitale Behandlungspfade die durchschnittlichen Episodenkosten im Vergleich zur traditionellen Versorgung um 22,7~%~(170,74~€~vs.~220,91~€, P<0,001) senkten. Die Kosteneinsparungen reichten von 10,3~%~ bei Atemwegsinfektionen bis zu 52,5~%~ bei Gastroenteritis, was auf geringere Behandlungskosten, weniger Laboruntersuchungen und weniger bildgebende Verfahren zurückzuführen ist. Die digitale Versorgung erforderte im Allgemeinen weniger Folgebesuche, mit Ausnahme von Atemwegsinfektionen, bei denen ein leichter Anstieg zu verzeichnen war. Sensitivitätsanalysen bestätigten die Robustheit dieser Ergebnisse und unterstützen Digital-First-Modelle als kosteneffizienten Ansatz für die Behandlung akuter Erkrankungen in der Primärversorgung, ohne die Versorgungskontinuität zu beeinträchtigen. (Dahlberg et al. 2025)

50 Forschung

50.1 Datenerfassung im Ambulanten Bereich

Die Forschung durch Datensammlung im ambulanten Bereich wird durch Wearables und mobile Technologien verändert. Geräte wie Fitness-Tracker oder Smartwatches ermöglichen die kontinuierliche Erfassung von Gesundheitsdaten wie Herzfrequenz, Schlafqualität oder Aktivitätsniveaus in Echtzeit. Plattformen wie die REDCap Mobile App unterstützen Forscher bei der Datenerfassung und -verwaltung direkt von Patienten, während GoWrap die Integration und Analyse von Daten aus Wearables erleichtert.

50.2 Institutionentheorie

Die Studie "Changing the conversation on evaluating digital transformation in healthcare: Insights from an institutional analysis" untersucht, wie schwierig es ist, digitale Veränderungen im Gesundheitswesen, besonders in der ambulanten Versorgung, zu bewerten. Sie nutzt die Institutionentheorie, um zu zeigen, dass unterschiedliche Sichtweisen – von Leistungserbringern, Verwaltung und Forschenden – die Bewertung kompliziert machen. In der ambulanten Versorgung führen diese Unterschiede zu Konflikten, weil verschiedene Ziele und Begriffe verwendet werden. Die Autoren schlagen vor, dass Leistungserbringer, Verwaltung und Forschende besser zusammenarbeiten und eine gemeinsame Sprache nutzen, um die Bewertung zu verbessern. Sie führen den Begriff "Logik-Bootstrapping" ein, der beschreibt, wie Beteiligte ihre Ziele und Methoden Schritt für Schritt anpassen, um die gemeinsam Probleme zu lösen. (Burton-Jones et al. 2020)

Die Studie "Applying institutional theory to the adoption of electronic health records in the U.S." untersucht die Einführung elektronischer Gesundheitsakten (EHRs) in ambulanten medizinischen Praxen in den USA anhand der Institutionentheorie. Sie zeigt, dass mimetische Kräfte vor den staatlichen Anreizen der HITECH Act von 2009 bei Unsicherheit eine wichtige Rolle spielten, während coercive Kräfte nach Einführung der Anreize und Strafen an Bedeutung gewannen. Normative Kräfte beeinflussten die Adoptionsentscheidungen kontinuierlich, insbesondere durch Netzwerkeffekte und professionelle Normen. Die Studie verdeutlicht den Einfluss institutioneller Faktoren, wie staatlicher Regulierung und Branchennormen, auf die Technologieadoption im Gesundheitswesen. (Sherer, Meyerhoefer, and Peng 2016)

Die Studie "Cost Minimization Analysis of Digital-first Healthcare Pathways in Primary Care" führte eine retrospektive, registerbasierte Analyse im finnischen Harjun Terveys durch, um die Kosten der digitalen mit der traditionellen Primärversorgung bei akuten Erkrankungen zu vergleichen. 64.969 akute Episoden wurden analysiert und einem Propensity-Score-Matching unterzogen. Die Studie ergab, dass digitale Behandlungspfade die durchschnittlichen Episodenkosten im Vergleich zur traditionellen Versorgung um 22,7 % (170,74 € vs. 220,91 €, P<0,001) senkten. Die Kosteneinsparungen reichten von 10,3 % bei Atemwegsinfektionen bis zu 52,5 % bei Gastroenteritis, was auf geringere Behandlungskosten, weniger Laboruntersuchungen und weniger bildgebende Verfahren zurückzuführen ist. Die digitale Versorgung erforderte im Allgemeinen weniger Folgebesuche, mit Ausnahme von Atemwegsinfektionen, bei denen ein leichter Anstieg zu verzeichnen war. Sensitivitätsanalysen bestätigten die Robustheit dieser Ergebnisse und unterstützen Digital-First-Modelle als kosteneffizienten Ansatz für die Behandlung akuter Erkrankungen in der Primärversorgung, ohne die Versorgungskontinuität zu beeinträchtigen. (Pendergrass and Ranganathan 2021)

50.3 Qualitative Daten

Die Studie "Semistructured interviewing in primary care research: a balance of relationship and rigour" von Melissa DeJonckheere und Lisa M. Vaughn beschreibt die wesentlichen Fähigkeiten und Schritte für die Durchführung semistrukturierter Interviews in der Primärversorgungsforschung. Diese Methode ermöglicht es, offene, qualitative Daten zu sammeln, um Gedanken, Gefühle und Überzeugungen von Teilnehmenden zu einem bestimmten Thema tiefgehend zu erforschen. Die Autoren betonen die Notwendigkeit eines relationalen Ansatzes sowie praktischer Fertigkeiten wie der Entwicklung eines Interviewleitfadens, dem Aufbau von Vertrauen und der Analyse der Daten. Semistrukturierte Interviews sind besonders für Hausärzte geeignet, da sie auch mit begrenzten Ressourcen durchführbar sind und tiefe Einblicke in die Erfahrungen von Patienten und Anbietern ermöglichen. Die Studie bietet praktische Empfehlungen für jeden Schritt des Prozesses, um die Qualität der Forschung zu sichern. (DeJonckheere and Vaughn 2019)

50.4 Evaluierung digitaler Gesundheits-Technologien

Das "Evidence Standards Framework" (ESF) des National Institute for Health and Care Excellence (NICE) für digitale Gesundheits- und Pflege-Technologien (DHTs) wurde 2018 entwickelt stellt eine standardisierte Vorgehensweise für die klinische und wirtschaftliche Bewertung von DHTs durch Gesundheitssysteme bereit. Der Rahmen wurde mit einem agilen und iterativen Ansatz entwickelt, der eine Literaturrecherche, Expertenkonsultationen und Stakeholder-Feedback beinhaltete. (Unsworth et al. 2021)

50.5 Implementierungsforschung

Implementierungsforschung untersucht, wie evidenzbasierte Praktiken, Interventionen oder Technologien effektiv in reale Systeme integriert werden können. Die Plattform Implementome, entwickelt vom Geneva Digital Health Hub (gdhub), ist eine Wissensdatenbank für digitale Gesundheit. Sie nutzt das Konzept der "Implementomics", um multidimensionale Daten zu Projekten, Akteuren, Publikationen und Erfahrungen zu sammeln, zu organisieren und bereitzustellen. Ziel ist es, die Zusammenarbeit globaler Akteure zu fördern, evidenzbasierte Entscheidungen und die digitale Gesundheitstransformation zu unterstützen.

Das ICER-PHTI Assessment Framework for Digital Health Technologies, entwickelt in Zusammenarbeit mit dem Institute for Clinical and Economic Review (ICER), bewertet digitale Gesundheitslösungen anhand von klinischer Wirksamkeit und wirtschaftlichem Einfluss. Es basiert auf den Prioritäten von Arbeitgebern, Krankenkassen und Gesundheitssystemen und unterstützt diese bei fundierten Entscheidungen über den Einsatz digitaler Technologien. Das Framework analysiert den Technologiekontext, die klinischen Vorteile, die Nutzererfahrung, die Sicherheit und Wirksamkeit (in drei Risikostufen: Selbstmanagement, diagnostische/prognostische und therapeutische Technologien), die Gesundheitsgerechtigkeit (Zugänglichkeit und Verteilung) sowie den wirtschaftlichen Einfluss durch Budgetanalysen. Es bietet Entwicklern und Investoren Leitlinien zur Evidenzgenerierung und fördert die Einführung hochwertiger, kosteneffizienter Technologien.

Private Forschungsorganisationen:

- inav-berlin.de
- agenon.de

Die Studie "A systematic review of clinicians' acceptance and use of clinical decision support systems over time" von Nicki Newton et al., veröffentlicht in npj Digital Medicine (2025), untersucht die Faktoren, die die Akzeptanz und Nutzung von klinischen Entscheidungsunterstützungssystemen (CDS) in Krankenhäusern über die Zeit beeinflussen. Die systematische Überprüfung analysierte 67 Studien aus den Jahren 2007 bis 2024 und kategorisierte die Faktoren nach dem Zeitpunkt der Datenerhebung nach der CDS-Implementierung. Zu den durchgehend relevanten Faktoren zählen die Nützlichkeit des Systems und dessen Integration in bestehende Arbeitsabläufe. Wahrgenommene Ergebnisse waren im ersten Jahr besonders prominent, während individuelle Faktoren nach sechs Monaten an Bedeutung gewannen. Nach fünf Jahren wurden Strategien zur Umgehung von Systembeschränkungen berichtet. Die Ergebnisse bieten Leitlinien für die Entwicklung, Implementierung und langfristige Unterstützung von CDS-Systemen. (Newton et al. 2025)

Die Studie "eHealth initiatives; the relationship between project work and institutional practice" von Line Lundvoll Warth und Kari Dyb untersucht die Implementierung von nationalen eHealth-Diensten in Norwegen, insbesondere des Kjernejournal (Summary Care Record) und elektronischer Rezepte (e-prescriptions), aus der Perspektive von Projektmanagern. Durch 22

semi-strukturierte Interviews in den Jahren 2016 und 2018 wird analysiert, wie die Arbeit der Projektmanager mit den institutionellen Praktiken in Gesundheitseinrichtungen zusammenhängt. Die Ergebnisse zeigen, dass die Implementierung als Teil der nationalen Strategie in enger Zusammenarbeit mit der Norwegischen Direktion für eHealth erfolgte, jedoch Spannungen zwischen den kurzfristigen Projektzielen und der langfristigen Nutzung der Tools durch Fachkräfte bestehen. Während e-prescriptions erfolgreich angenommen wurden, blieb die Nutzung des Kjernejournal hinter den Erwartungen zurück, was auf eine Diskrepanz zwischen Projektimplementierung und etablierten sozialen Praktiken hinweist. Die Studie betont die Notwendigkeit, die sozialen Aspekte institutioneller Praktiken bei der Implementierung zu berücksichtigen, um den Erfolg solcher Initiativen zu fördern. (Warth and Dyb 2019)

50.5.1 NASS Framework

Die Studie "Leveraging Implementation Science in Human-Centred Design for Digital Health", veröffentlicht in den Proceedings der CHI Conference 2024, schlägt vor Implementierungswissenschaft in den menschzentrierten Designprozess für digitale Gesundheitsinterventionen zu integrieren. Sie kombiniert das Nonadoption, Abandonment, Scale-up, Spread, and Sustainability (NASSS)-Framework mit dem Double Diamond-Designprozess, um die Einführung und langfristige Nutzung evidenzbasierter digitaler Interventionen zu fördern. Anhand einer Fallstudie zur Neugestaltung einer Gesundheitsförderungsintervention, die das Risiko für alkoholbedingten Brustkrebs bei Frauen während routinemäßiger Mammographien reduzieren soll, wird die Anwendung dieses Ansatzes demonstriert. Die Studie hebt hervor, wie Implementierungswissenschaft die Designphasen strukturieren kann, um Komplexität zu reduzieren und die Skalierbarkeit sowie Nachhaltigkeit digitaler Gesundheitslösungen zu verbessern. Abschließend werden Reflexionen über die Herausforderungen und Chancen dieses interdisziplinären Ansatzes für zukünftige Forschung diskutiert. (A. Waddell et al. 2024)

Die Studie "Beyond Adoption: A New Framework for Theorizing and Evaluating Nonadoption, Abandonment, and Challenges to the Scale-Up, Spread, and Sustainability of Health and Care Technologies" entwickelt ein neues, evidenzbasiertes und theoriegeleitetes Rahmenwerk (NASSS), um den Erfolg technologiegestützter Gesundheits- und Pflegeprogramme zu prognostizieren und zu bewerten. Sie kombiniert eine hermeneutische systematische Literaturübersicht mit empirischen Fallstudien zu sechs Technologien, darunter Videokonsultationen und GPS-Tracking. Das NASSS-Framework umfasst sieben Domänen, wie Krankheit, Technologie und Organisation, und klassifiziert Herausforderungen als einfach, kompliziert oder komplex. Es zeigt, dass Programme mit komplexen Herausforderungen in mehreren Domänen selten flächendeckend implementiert werden. Das Framework ist vielseitig einsetzbar, um Technologiedesign, Implementierung und Analyse von Misserfolgen zu unterstützen. (Greenhalgh et al. 2017)

Die Studie "The NASSS-CAT Tools for Understanding, Guiding, Monitoring, and Researching Technology Implementation Projects in Health and Social Care: Protocol for an Evaluation Study in Real-World Settings" entwickelt praktische Werkzeuge zur Analyse und Steuerung komplexer Technologieimplementierungsprojekte im Gesundheits- und Sozialwesen. Basierend

auf dem NASSS-Framework und einem Complexity Assessment Tool (CAT) wurden vier NASSS-CAT-Tools in sieben Co-Design-Workshops mit 50 Stakeholdern entworfen. Diese Tools unterstützen Planung, Überwachung und Forschung durch die Erfassung von Komplexitäten in sechs Domänen. Sie werden in realen Fallstudien getestet, um Herausforderungen wie Nicht-Annahme oder Nachhaltigkeit zu adressieren. Die Ergebnisse zeigen, dass die Tools Komplexitäten identifizieren, aber nicht immer Konflikte lösen können. Zukünftige digitale Versionen und eine Community of Practice sind geplant. (Greenhalgh et al. 2020)

50.5.2 TAM & UTAUT

Das Technology Acceptance Model (TAM), entwickelt von Fred D. Davis (1989), erklärt die Akzeptanz von Informationstechnologien durch zwei zentrale Konstrukte: Perceived Usefulness (wahrgenommene Nützlichkeit), definiert als der Grad, in dem eine Person glaubt, dass die Nutzung eines Systems ihre Leistung steigert, und Perceived Ease of Use (wahrgenommene Benutzerfreundlichkeit), der Grad, in dem die Nutzung als mühelos wahrgenommen wird. TAM postuliert, dass diese Faktoren die Einstellung gegenüber der Technologie und damit die Nutzungsabsicht beeinflussen (Davis, 1989). Die Unified Theory of Acceptance and Use of Technology (UTAUT), entwickelt von Venkatesh et al. (2003), erweitert TAM, indem sie vier Hauptvariablen integriert: Performance Expectancy (ähnlich der wahrgenommenen Nützlichkeit), Effort Expectancy (ähnlich der Benutzerfreundlichkeit), Social Influence (sozialer Einfluss) und Facilitating Conditions (unterstützende Bedingungen). UTAUT fokussiert sich auf die kontinuierliche Nutzung und berücksichtigt zusätzliche Kontexte wie Vertrauen und Risiko, insbesondere in Bereichen wie eHealth. (Davis 1989; Arfi et al. 2021)

Der 2003 von Venkatesh et al. in MIS Quarterly veröffentlichte Artikel stellt die Unified Theory of Acceptance and Use of Technology (UTAUT) vor, die acht konkurrierende Modelle der IT-Akzeptanz synthetisiert, um vier zentrale Determinanten von Nutzerabsicht und -nutzung zu identifizieren, und in empirischen Tests in Organisationen eine Varianz von 69-70% erklärt. Der 2012 von Venkatesh, Thong und Xu veröffentlichte Artikel erweitert UTAUT zu UTAUT2 für Konsumentenkontexte, indem hedonische Motivation, Preiswert und Gewohnheit einbezogen werden, wobei Ergebnisse aus einer Umfrage mit 1.512 Mobilfunk-Internetnutzern eine verbesserte Varianz (56% auf 74% für Absicht, 40% auf 52% für Nutzung) zeigen. Beide Studien, veröffentlicht vom MIS Research Center der University of Minnesota, bieten wertvolle Erkenntnisse, um Strategien zur Technologieakzeptanz zu verbessern. (Venkatesh et al. 2003; Venkatesh, Thong, and Xu 2012)

Die Studie "Beyond TAM and UTAUT: Future directions for HIT implementation research" untersucht die Kritik an den Modellen Technology Acceptance Model (TAM) und Unified Theory of Acceptance and Use of Technology (UTAUT) in der Implementierung von Gesundheitsinformationstechnologien (HIT). Die Autoren kritisieren die übermäßige Vereinfachung von TAM und die eingeschränkte Perspektive beider Modelle, die sich auf individuelle Nutzerwahrnehmungen konzentrieren. Sie argumentieren, dass die Forschung von multidimensionalen Ansätzen profitieren würde, die die Komplexität der HIT-Implementierung

besser erfassen. Abschließend schlagen sie alternative Forschungsrichtungen vor, die sich auf wertschöpfende Nutzung, Systemkomplexität und zeitliche Dimensionen konzentrieren, um das Feld voranzutreiben. (Shachak, Kuziemsky, and Petersen 2019)

Die Studie "TAM-UTAUT and the acceptance of remote healthcare technologies by healthcare professionals: A systematic review" untersucht die Akzeptanz von Fernversorgungstechnologien durch Gesundheitsfachkräfte anhand der Modelle Technology Acceptance Model (TAM) und Unified Theory of Acceptance and Use of Technology (UTAUT). Durch eine systematische Literaturrecherche in den Datenbanken PubMed, Scopus und Web of Science wurden zwischen Mai und Juni 2021 32 relevante Studien identifiziert. Die Ergebnisse zeigen, dass beide Modelle trotz ihres Alters weiterhin gültig sind, um das Akzeptanzverhalten vorherzusagen, wobei TAM häufiger genutzt wurde. Es wurden sowohl die originalen als auch erweiterte Versionen der Modelle getestet, wobei Variablen wie wahrgenommene Nützlichkeit und Benutzerfreundlichkeit als starke Prädiktoren für die Technologieakzeptanz hervorgehoben wurden. Die Studie betont die Anpassungsfähigkeit der Modelle an verschiedene Kontexte und die Relevanz zusätzlicher Variablen zur Verbesserung der Erklärungskraft. (Rouidi et al. 2022)

Die Studie "Acceptance towards digital health interventions – Model validation and further development of the Unified Theory of Acceptance and Use of Technology" untersucht die Akzeptanz von internet- und mobilbasierten Interventionen (IMI) im Gesundheitswesen. Basierend auf dem Unified Theory of Acceptance and Use of Technology (UTAUT) wurde ein Modell validiert und angepasst, das die Akzeptanz von IMI bei Patienten und Gesundheitsfachkräften analysiert. Die Ergebnisse zeigen, dass Performance Expectancy der stärkste Prädiktor für Akzeptanz ist, während Internetangst als zusätzlicher Einflussfaktor identifiziert wurde, der die Effekte von Social Influence und Effort Expectancy moderiert. Das angepasste UTAUT-Modell bietet einen robusten Rahmen, um die Akzeptanz von IMI zu fördern und deren Implementierung in der Routineversorgung zu verbessern. (Philippi et al. 2021)

50.6 Geschichte

Die Studie "Statutory health insurance in Germany: a health system shaped by 135 years of solidarity, self-governance, and competition" beschreibt die Entwicklung des deutschen Gesundheitssystems seit Bismarcks Krankenversicherungsgesetz von 1883. Sie betont die Prinzipien der Solidarität und Selbstverwaltung, die zu einer universellen Gesundheitsversorgung mit umfassenden Leistungen führten. Seit 1993 fördern Reformen Wettbewerb und Marktorientierung, während die Solidarität gewahrt bleibt. Die Einrichtung des Gemeinsamen Bundesausschusses 2004 stärkte die Selbstverwaltung, sichert gute Zugangsmöglichkeiten und hohe Versorgungsqualität, führt jedoch zu einer Überprovision von Arzneimitteln und Krankenhausaufenthalten sowie Herausforderungen bei der Versorgungskontinuität. Das System ist weniger kostenwirksam als in einigen Nachbarländern, was Effizienzsteigerungen erforderlich macht. (Busse et al. 2017)

51 Diskurs

51.1 Diskurshistorie

2017-2019: ePA (elektronische Patientenakte)

• Die Diskussionen drehen sich hauptsächlich um die Einführung, technische Herausforderungen und die allgemeine Idee der ePA.

2020-2021: Telemedizin

• Aufgrund der Pandemie wird Telemedizin zu einem zentralen Thema, mit Fokus auf Fernbehandlung und deren Implementierung.

2022: e-Rezept

• Diese Phase ist durch intensive Diskussionen über die Einführung, Nutzung und Vorteile des elektronischen Rezepts gekennzeichnet.

2023: Digitale Gesundheitsanwendungen (DiGA)

• Es gibt eine starke Konzentration auf digitale Gesundheits-Apps, deren Regulierung, Anwendungen und Nutzen im Gesundheitswesen.

51.2 Übersicht Podcasts

- ÄrzteTag: Der häufigste Podcast-Anbieter, der sich auf die Perspektive von Ärzten und medizinischen Fachkräften in Bezug auf verschiedene Themen der digitalen Gesundheit konzentriert.
- Der Datenschutz Talk: Fokussiert auf Datenschutz und Datensicherheit im Kontext der digitalen Gesundheit, was die Bedeutung von Datensicherheit und -compliance unterstreicht.
- EinBlick Der Podcast: Deckt eine breite Palette von Themen im Gesundheitssystem ab, darunter die Telematikinfrastruktur, digitale Gesundheitspolitik und die Einführung der elektronischen Patientenakte (ePA).
- Startup Insider: Bietet Einblicke in digitale Gesundheits-Startups, Investitionen und unternehmerische Aspekte der digitalen Gesundheit.

- eHealth-Podcast: Konzentriert sich auf die technischen Aspekte der digitalen Gesundheit, einschließlich der Telematikinfrastruktur.
- Folge #170 Forschungsdatenportal für Gesundheit: Eine Serie, die sich mit verschiedenen Themen der digitalen Gesundheit, Forschung und Daten beschäftigt.
- docsdigital: Bietet Podcasts, die praktische digitale Tools für Ärzte und Gesundheitsexperten vorstellen und Anleitungen zum Einsatz und zur Implementierung verschiedener Technologien in der Praxis geben.
- **up-podcast**: Fokussiert auf Themen, die für Therapie und Praxis relevant sind, oft in Bezug auf die Telematikinfrastruktur.
- Visionäre der Gesundheit: Bietet Einblicke in verschiedene Perspektiven und Innovationen im Bereich der digitalen Gesundheit.

51.3 Diskursthemen

51.3.1 Elektronische Patientenakte

In seinem Artikel "Why Doctors Hate Their Computers" vom 12. November 2018 im New Yorker beschreibt Atul Gawande die Frustration von Ärzten mit elektronischen Patientenakten, am Beispiel der Einführung des Epic-Systems bei Partners HealthCare, das mit 1,6 Milliarden Dollar die Arbeitsweise von 70.000 Mitarbeitern verändern sollte. Statt Effizienz zu bringen, hat die Digitalisierung die Arbeitsbelastung erhöht: Ärzte verbringen doppelt so viel Zeit mit Computertätigkeiten wie mit Patienten. Gawande schildert, wie die Systeme durch ihre Starrheit und bürokratischen Anforderungen die Arzt-Patient-Beziehung beeinträchtigen, während Lösungen wie Schreibassistenten oder KI-gestützte Diktierfunktionen zwar Zeit sparen, aber die Grundprobleme nicht lösen; er plädiert für anpassungsfähigere Technologien, die menschliche Verbindungen stärken statt schwächen. (Gawande 2018)

51.3.1.1 Podcasts

Table 51.1: Übersicht Podcasts ePA

index	title	date
1	Studio 9: Welche Chancen bringt die elektronische	09.01.2025
2	Patientenakte? Wissen aktuell – Impuls: Elektronische Patientenakte: Wie sicher sind die Daten?	09.01.2025

index	title	date
3	O-Ton Diabetologie: Diabetes-Technologie: Sind Smart Pens einfach noch nicht smart genug?	08.01.2025
4	Wartungsfenster: ClearPass vom Büdchen	08.01.2025
5	ÄrzteTag: E-Patientenakte gehackt – können Ärzte und Patienten der ePA noch vertrauen, Frau Kastl und Herr Tschirsich?	08.01.2025
6	Hör doch mal zu: HDMZ233 - Weißabgleich im Darkroom	08.01.2025
7	Frauen und Technik – mit Eckert und Wolfangel: Tiny House, Code-Kunst und perfekter Kaffee: Relive mit Bleeptrack, das Superleak von 600.000 E-Autos, Recap 38c3	08.01.2025
8	WDR 5 Satire am Morgen: Das Wort zum Dienstag: Elektronische Patientenakte	07.01.2025
9	CC2tv-Audio mit Wolfgang Rudolph: CC2tv Audiocast Folge 690	06.01.2025
10	Wissen aktuell – Impuls: Was bringt die ePA für alle für die medizinische Forschung?	06.01.2025
11	Der Datenschutz Talk: Fingerabdruck im Perso bleibt Pflicht - Datenschutz News KW 01/2025	03.01.2025
12	Studio 9: Elektronische Patientenakte - Ein Trippelschrittchen in die digitale Zukunft	02.01.2025

index	title	date
13	Der Datenschutz Talk: Auskunft per Self-Service-Tool zulässig - Datenschutz News KW 47-2024	22.11.2024
14	Der Datenschutz Talk: Kommt ein neues Beschäftigtendaten-Gesetz? - Datenschutz News KW 43/2024	25.10.2024
15	Der Datenschutz Talk: Ford denkt über personalisierte Werbung im Auto nach - Datenschutz News KW 37/2024	13.09.2024
16	O-Ton Diabetologie: Prof. Dr. Müller-Wieland: Warum braucht es die elektronische Diabetesakte?	15.07.2024
17	Der Datenschutz Talk: Diskussion um Gesichtserkennung in BDSG Novelle - Datenschutz News KW 26/2024	28.06.2024
18	Der Datenschutz Talk: EDSA startet Initiative zum Auskunftsrecht- Datenschutz News KW 09-2024	01.03.2024
19	Der Datenschutz Talk: Bußgeldverfahren Deutsche Wohnen geht weiter - Datenschutz News KW 08/2024	23.02.2024
20	Der Datenschutz Talk: Unverschlüsselte Auskunft stellt Verstoß dar - Datenschutz News KW 02/2024	12.01.2024

index	title	date
21	Der Datenschutz Talk: Datenübermittlung in USA weiter unter Feuer - Datenschutz News KW 50/2023"	15.12.2023
22	Wissen aktuell – Impuls: Welche Vorteile hat die elektronische Patientenakte?	14.12.2023
23	Der Datenschutz Talk: KI und Datenschutz - Prof. Dr. Tobias Keber im Datenschutz Talk Podcast	07.11.2023
24	Der Datenschutz Talk: Unabhängige AWS-Cloud für Europa - Datenschutz News KW 43-2023	28.10.2023
25	Der Datenschutz Talk: Unabhängige AWS-Cloud für Europa - Datenschutz News KW 43-2023	27.10.2023
26	Der Datenschutz Talk: Schufa-Score vor dem Aus? - Datenschutz News KW 36/2023	08.09.2023
27	Hör doch mal zu: Es war so gewesen	08.08.2023
28	ÄrzteTag: Susanne Koch vom bvitg: "Haken dran beim E-Rezept, bei der ePA wird es eng"	13.06.2023
29	ÄrzteTag: Was werden Ärzte mit dem TI-Messenger anfangen können, Herr Dr. Hartge?	11.05.2023
30	Der Datenschutz Talk: EuGH urteilt zu Grundsatzfragen - Datenschutz News KW 18/2023	05.05.2023

index	title	date
31	Der Datenschutz Talk: ÖDSB: Meta-Tracking-Tools rechtswidrig- Datenschutz News KW 11-2023	17.03.2023
32	Studio 9: Bundesgesundheitsminister Lauterbach stellt elektronische Patientenakte vor	09.03.2023
33	Wissen aktuell – Impuls: Karl Lauterbach stellt neuen Plan für digitale Patientenakte vor	09.03.2023
34	ÄrzteTag: DGIM zur elektronischen Patientenakte: Lieber schnell als perfekt	13.01.2023
35	Der Datenschutz Talk: Hacker stoppen Züge - DS News KW 46/2022	18.11.2022
36	Studio 9: Diskussion Corona und elektronische Patientenakte	16.10.2022
37	ÄrzteTag: Gibt es am 1. Juli den eAU-Knall, Dr. Ozegowski?	21.06.2022
38	Der Datenschutz Talk: Datenschutzmanagement in der Praxis - Dr. Falk Böhm im Datenschutz Talk	23.03.2022
39	Studio 9: Elektronische Patientenakte - wie wird sie angenommen?	28.12.2021
40	CC2tv-Audio mit Wolfgang Rudolph: CC2tv Audiocast Folge 654	02.08.2021
41	ÄrzteTag: Was die Einführung der elektronischen Patientenakte für Ärzte bedeutet	28.06.2021

index	title	date
42	ÄrzteTag: Streitgespräch: "Wir verlangen Digitalisierung mit Gehirnschmalz!"	26.04.2021
43	ÄrzteTag: Warum kommt die Digitalisierung in Arztpraxen nicht voran?	19.02.2021
44	Der Datenschutz Talk: Bußgeldrekorde und DSB-Haftung - DS News KW 50/2020	11.12.2020
45	ÄrzteTag: "Nach 20 Jahren können wir endlich eine E-Mail verschicken!"	25.11.2020
46	ÄrzteTag: Wo sehen Sie Datenschutzlücken bei der ePA, Professor Kelber?	25.08.2020
47	Wissen aktuell – Impuls: Die elektronische Patientenakte kommt	04.07.2020
48	ÄrzteTag: Wie Jens Spahn die "ePA-Hacker" vor den Kopf gestoßen hat	22.02.2020
49	Hör doch mal zu: Only 356 days left until 37C3	07.01.2020
50	CC2tv-Audio mit Wolfgang Rudolph: CC2tv Audiocast Folge 607	28.01.2019
51	Studio 9: Handgemacht - Wie sich Simone Pareigis eine Elektronische Patientenakte bastelte	30.05.2018
52	Wissen aktuell – Impuls: Patient als Datenpaket: Elektronische Gesundheitsakte	21.03.2017

51.3.2 Telemedizin

51.3.2.1 Podcasts

Table 51.2: Übersicht Podcasts Telemedizin

index	title	date
1	Feminismus für alle. Der Lila Podcast.: Paragraph 218, Gisèle Pelicot, Talahon und Imane Khelif – Ein feministischer Jahresrückblick	26.12.2024
2	ÄrzteTag: Videosprechstunde von kommerziellen Anbietern – Konkurrenz oder Ergänzung zur ambulanten Versorgung?	19.12.2024
3	Gesundheit. Macht. Politik.: Symposium Zukunftsforum Public Health	18.12.2024
4	Blaulichthelden – der Feuerwehr-Podcast: #76: Notruf 144: Alarmierung von Notarzt und Rettungsdienst	11.12.2024
5	Startup Insider: Heal Capital: Investieren in die Zukunft der digitalen Gesundheit – VC-Talk mit Associate Lucas Mittelmeier	09.12.2024
6	Autsch - Der Schmerztalk: "Krankheit muss entstigmatisiert werden!" Telemedizin - mit Alexander Waschkau von Hoaxilla - AUTSCH Kapitel 57	06.12.2024
7	Hanf Magazin: Verbände fordern mehr Cannabis-Telemedizin in Kliniken	06.12.2024

index	title	date
8	Die besten wikifolio-Trader im Börsenradio Interview: Gesundheit! Revolutionäre Technologien in der Medizin	02.12.2024
9	Startup Insider: TCC & Glint Solar: Investments & Exits - mit Daniel Höpfner und Henri Kühnert	11.11.2024
10	Startup Insider: Investments-Weekly: Oceanloop • TCC • Xavveo • Plato • nilo.health • Likeminded • Fijo	09.11.2024
11	Hanf Magazin: Gefährden Cannabis-Privatrezepte die Versorgung von Patienten?	04.11.2024
12	Startup Insider: Checkpoint HealthTech #1: Wie können Startups das Gesundheitssystem revolutionieren?	17.10.2024
13	Gesundheit. Macht. Politik.: Michael Stanley NofallG aus Sicht des Rettungsdienstes	08.10.2024
14	ÄrzteTag: Wie läuft's inzwischen mit Cannabis auf Kassenrezept, Professor Gottschling?	25.07.2024
15	Die besten wikifolio-Trader im Börsenradio Interview: wikifolio TraderOnkel: Nvidia-Lauf mit Super Micro Computer - Haier Smart	21.03.2024
16	Home, Hims & Hers Health ÄrzteTag: Kann die Kooperation von KV und Kommunen die Versorgung sichern, Frau Dr. Moreno?	07.12.2023

index	title	date
17	Startup Insider: Filu sammelt Millionen für moderne Tierarztpraxen ein (Reinhard Meier • YZR • Urgent Care)	20.11.2023
18	Startup Insider: Cyberkriminalität • Baidu • Lidar • Fitbit • Jakarta Future City Hub • Novo Nordisk • Kuiper • Secjur • Babylon Health • Atopia	04.09.2023
19	ÄrzteTag: Hat die E-Patientenakte in dieser Form eine echte Chance, Professor Debatin?	04.07.2023
20	Startup Insider: Investments & Exits - mit Business Angel Luis Hanemann	08.06.2023
21	ÄrzteTag: Wird mit der Digitalisierungsstrategie jetzt alles besser, Dr. Stachwitz?	10.03.2023
22	Startup Insider: Filu sammelt Millionen für moderne Tiermedizin mit hybriden Praxen ein (Digitalisierung • Rivus Capital • München)	09.12.2022
23	Startup Insider: Investments & Exits - mit Tina Dreimann von better ventures	18.08.2022
24	ÄrzteTag: Telemedizin bei Hämophilie – ist das auch bei einer Gentherapie sinnvoll, Dr. Mondorf?	13.04.2022
25	Startup Insider: HealthTech Climedo bekommt 5 Mio. Euro für seine klinischen Studien (EDC-Lösung • Electronic Data Capture)	04.04.2022

index	title	date
26	eHealth-Podcast: Folge #129 – Diskussion Gesundheits-IT im Koalitionsvertrag mit Prof. Gerlach	24.01.2022
27	Folge #170 - Forschungsdatenportal für Gesundheit: Folge #129 - Diskussion Gesundheits-IT im Koalitionsvertrag mit Prof. Gerlach	24.01.2022
28	Folge #170 - Forschungsdatenportal für Gesundheit: Folge #106 - Telemedizin	14.01.2022
29	Folge #170 - Forschungsdatenportal für Gesundheit: Episode #15 - eHealth bei unseren europäischen Nachbarn #1	14.01.2022
30	Folge #170 - Forschungsdatenportal für Gesundheit: Folge #54 - Entrepreneurship	14.01.2022
31	Folge #170 - Forschungsdatenportal für Gesundheit: Folge #65 – Einbindung von Patienten durch IT im Krankenhaus	14.01.2022
32	Folge #170 - Forschungsdatenportal für Gesundheit: Folge #47 - News, news und noch mehr eHealth-news	14.01.2022
33	Folge #170 - Forschungsdatenportal für Gesundheit: Folge #119 - Telemedizin (reloaded)	14.01.2022
34	Folge #170 - Forschungsdatenportal für Gesundheit: Episode #4 - FHIR	14.01.2022

index	title	date
35	Folge #170 - Forschungsdatenportal für Gesundheit: Folge #50 - ICD und OPS	14.01.2022
36	Folge #170 - Forschungsdatenportal für Gesundheit: Folge #48 - Consumer Health Informatics	14.01.2022
37	Startup Insider: Dermatologie-Startup Formel Skin sammelt 30 Mio. Euro für langfristige Hautpflege ein	13.01.2022
38	Startup Insider: Cannabis-Startup Bloomwell Group schließt Seed-Runde ab	11.11.2021
39	ÄrzteTag: Der elektronische Heilberufeausweis – wie sicher ist er?	17.05.2021
40	eHealth-Podcast: Folge #119 - Telemedizin (reloaded)	05.03.2021
41	ÄrzteTag: Gefängnisarzt – nichts für schwache Nerven?	04.12.2020
42	ÄrzteTag: "Nach 20 Jahren können wir endlich eine E-Mail verschicken!"	25.11.2020
43	ÄrzteTag: KIM könnte die Digitalisierung in der Arztpraxis beflügeln	24.11.2020
44	ÄrzteTag: Wie funktioniert die Schlaganfallversorgung per Telemedizin?	28.10.2020
45	Startup Insider: Die neue Normalität - Wie Corona die Gesundheits-Branche verändert	09.10.2020
46	Startup Insider: Startups & Corona #6 mit KRY, HTGF und Suncrafter	09.10.2020

index	title	date
47	ÄrzteTag: Wie Ärzte Videosprechstunden für ihre Praxis organisieren können	29.09.2020
48	eHealth-Podcast: Folge #106 – Telemedizin	08.08.2020
49	ÄrzteTag: Pusht die Corona-Krise die Telemedizin?	19.05.2020
50	ÄrzteTag: Warum das Krankenhausentlastungsge- setz Unikliniken nicht reicht	30.04.2020
51	eHealth-Podcast: Folge #65 – Einbindung von Patienten durch IT im Krankenhaus	02.11.2018
52	eHealth-Podcast: Folge #54 – Entrepreneurship	01.06.2018
53	eHealth-Podcast: Folge #50 – ICD und OPS	16.03.2018
54	eHealth-Podcast: Folge #48 - Consumer Health Informatics	16.02.2018
55	eHealth-Podcast: Episode #4 – FHIR	16.02.2018
56	eHealth-Podcast: Episode #15 – eHealth bei unseren europäischen Nachbarn #1	16.02.2018
57	eHealth-Podcast: Folge #47 – News, news und noch mehr eHealth-news	16.02.2018
58	eHealth-Podcast: Episode #4 – FHIR	24.11.2017
59	eHealth-Podcast: Episode #15 – eHealth bei unseren europäischen Nachbarn #1	07.02.2017

51.3.3 Praxisverwaltungssoftware

51.3.3.1 Podcasts

Table 51.3: Übersicht Podcasts Praxisverwaltungssoftware

index	title	date
1	Dentalwelt Podcast: #143 Praxisverwaltung neu gedacht - Tobias Schweighöfer - Dampsoft	26.11.2023
2	Dr. Baxmann's LeanOrthodontics® - Erfolgreich in Praxismanagement & Kieferorthopädie: Praxisnah und flexibel: Das innovative Zahlungsmodell der ZA	25.09.2023
3	Dr. Baxmann's LeanOrthodontics® - Erfolgreich in Praxismanagement & Kieferorthopädie: Die Kunst der Entscheidungsfindung	18.09.2023
4	Dr. Baxmann's LeanOrthodontics® - Erfolgreich in Praxismanagement & Kieferorthopädie: Die 10 wichtigsten KFO-Themen: Fokus auf Kundenzufriedenheit und schlanke Prozesse	11.09.2023
5	up-podcast – der Podcast rund um Therapie und Praxis: Das ist der Weg	17.08.2023
6	Startup Insider: Nelly sammelt 12,5 Mio. Euro für Digitalisierung von Arztpraxen ein (Lakestar • Arc Investors • b2venture)	20.06.2023
7	Der Praxiserfolg Podcast für Zahnärzte: Digitalisierung in der Zahnarztpraxis Teil 3 PVS, Behandlung und Warenwirtschaft	27.04.2023

index	title	date
8	Startup Insider: Doctorly sammelt 10 Mio. US-Dollar für Praxisverwaltungssoftware ein (Health App • HealthTech • Arztpraxen)	09.03.2023
9	AOK Praxis-Talk: #2: Heilmittel-Richtlinien – Neues und Basics beispielhaft erklärt	01.07.2021
10	Aufgebohrt: Der Podcast für nachhaltigen Praxiserfolg - Für Zahnärzte und KFO: 036: Zahnarztpraxis 4.0 - Praxissoftware von A wie Anamnese bis Z wie Zeiterfassung	01.04.2021
11	Aufgebohrt: Der Podcast für nachhaltigen Praxiserfolg - Für Zahnärzte und KFO: 034: Zahnarztpraxis 4.0 - Die richtige Praxisverwaltungssoftware finden	19.03.2021

51.3.4 Telematikinfrastruktur

Die Telematik-Roadmap von Mark Langguth ist eine Übersicht zur Einführung der Telematik-infrastruktur (TI) im deutschen Gesundheitswesen. Sie zeigt den Zeitplan für Anwendungen wie eRezept, ePA oder TI-Messenger, basierend auf gesetzlichen Vorgaben wie dem Digital-Gesetz, sowie technische Entwicklungen wie den Übergang zu TI 2.0.

51.3.4.1 Podcasts

Table 51.4: Übersicht Podcasts Telematikinfrastruktur

index	title	date
1	ÄrzteTag: E-Patientenakte gehackt – können Ärzte und Patienten der ePA noch vertrauen, Frau Kastl und Herr Tschirsich?	08.01.2025
2	EinBlick – Der Podcast: ?????#EinBlick u.a. ?????#Krankenhausreform- Streit ????#SozialabgabenAlarm ?????#ePA-Rollout ?????#ApothekenZukunft	25.10.2024
3	Handelsblatt Today - Der Finanzpodcast mit News zu Börse, Aktien und Geldanlage: Steigende Kassenbeiträge: Gesetzlich Versicherte müssen die Reformen stemmen / Singapurs Weg zum	15.10.2024
4	ökonomischen Champion EinBlick – Der Podcast: ?????#EinBlick – nachgefragt Dr. Georg Münzenrieder: Franken als Vorreiter der digitalen Patientenakte	11.10.2024
5	up-podcast – der Podcast rund um Therapie und Praxis: Telematikinfrastruktur	03.10.2024
6	ÄrzteTag: Ist die gematik nicht doch das bessere Gesundheits-IT- Unternehmen, Frau Wendling?	10.09.2024
7	eHealth-Podcast: Folge #166 – PKV und TI	08.07.2024

index	title	date
8	Folge #170 -	08.07.2024
	Forschungsdatenportal für	
	Gesundheit: Folge #166 – PKV und TI	
9		12.05.2024
9	Dentalwelt Podcast: #169 35 Jahre Laborsoftware - Jetzt	12.03.2024
	auch in der	
	Telematikinfrastruktur	
10	Dentalwelt Podcast: #165	14.04.2024
10	Telematikinfrastruktur für	11.01.2021
	Praxen und Labore - Ein	
	Gamechanger	
11	EinBlick – Der Podcast:	12.04.2024
	????#EinBlick u.a. ????#KI	
	Lauterbach #DMEA	
	????#TI-Messenger	
	????#EPADebatte ????#Pa-	
	tientenbriefeInnovation	
12	ÄrzteTag: TI-Messenger:	08.04.2024
	Wie komme ich mit meinem	
	Smartphone eigentlich in die	
10	TI, Herr Frank?	07.04.0004
13	ÄrzteTag: Raus aus der	05.04.2024
	Tretmühle Praxis-EDV – wie	
	kann das funktionieren, Herr	
1.4	Gaber?	26 02 2024
14	EINFACH KOMPLEX – Der Software- und IT-Podcast:	26.03.2024
	E-Rezept und	
	Telematikinfrastrukur: Eine	
	technische Erklärung #54	
15	DiaLogo - der	29.02.2024
10	Logopädiepodcast:	20.02.2021
	Digitalisierung in der	
	Logopädie (Folge 01)	
16	Gesundheit. Macht. Politik.:	21.02.2024
	Wolfgang Hoffmann	
	Innovations fonds	

index	title	date
17	EinBlick – Der Podcast: ?????#EinBlick u.a. ????#ÄrztlicheVer- sorgung????#LauterbachEchc ????#MVZBoom ????#GematikGesetz, ????#E-Rezept Start	19.01.2024
18	up-podcast – der Podcast rund um Therapie und Praxis: Gamechanger Telematikinfrastruktur	14.12.2023
19	ÄrzteTag: Wie gewinnen Sie Ärzte für Forschung zur digitalen Transformation, Frau Dr. Müller?	10.11.2023
20	EinBlick – Der Podcast: ?????#EinBlick – nachgefragt zum #TI-Messenger: Digitale Gesundheits-Kommunikation revolutionieren!	01.11.2023
21	up-podcast – der Podcast rund um Therapie und Praxis: Das ist der Weg	17.08.2023
22	Gesundheit. Macht. Politik.: Rebecca Beerheide Gesundheitspolitische Sommergesetzgebung	18.07.2023
23	EinBlick – Der Podcast: ?????#EinBlick u.a. #Krankenhausstruktur- reform, monatliche #TI-Pauschalen, #e-Rezept Pflicht ab 2024, Hitzeschutzplan	30.06.2023
24	ÄrzteTag: Susanne Koch vom bvitg: "Haken dran beim E-Rezept, bei der ePA wird es eng"	13.06.2023

index	title	date
25	ÄrzteTag: Was werden Ärzte mit dem TI-Messenger anfangen können, Herr Dr. Hartge?	11.05.2023
26	ÄrzteTag: E-Rezept-Test bis Anfang 2024 – reicht die Zeit, Herr Scholz?	26.04.2023
27	EinBlick – Der Podcast: #EinBlick u.a. Gerätegestützte #Telemedizin, ?????Digitalstrategie BMG_Bund, #Ambulantisierung ????, #DiPA droht Flop	14.04.2023
28	EinBlick – Der Podcast: #EinBlick u.a. #Krankenhausreform NRW-Vorbild, Frauen in Klinikleitung, Community Health Nurses, Digitale Empathie	31.03.2023
29	EinBlick – Der Podcast: ?????#EinBlick – nachgefragt mit Sebastian Zilch: Neustart – Digitalisierungsstrategie soll Transformationsstau auflösen	29.03.2023
30	ÄrzteTag: Wie die Praxissoftware Arztpraxen unter die Arme greifen kann	28.03.2023
31	EinBlick – Der Podcast: #EinBlick u.a. Reform Notfallversorgung ????, Hype um ChatGPT, Digitale???? Identitäten #eID, #MFA Protest	17.02.2023

index	title	date
32	Folge #170 - Forschungsdatenportal für Gesundheit: Folge #145 - Update zur Telematikinfrastruktur	06.02.2023
33	eHealth-Podcast: Folge #145 – Update zur Telematikinfrastruktur	06.02.2023
34	EinBlick – Der Podcast: #EinBlick u.a. kbv4u und Digitalisierung, Erste COPD-DiGA ????, BMC_eV zu #Gesundheitslots:innen	20.01.2023
35	EinBlick – Der Podcast: #EinBlick u.a. #Krankenhausreform im Konsens, Software-Update für TI-Konnektoren, DiGA-Bericht #GKV	13.01.2023
36	EinBlick – Der Podcast: ????#EinBlick – nachgefragt mit Dr. Roland Stahl: Digitalisierung 2023 – wie steht es u.a. beim #E-Rezept?	06.01.2023
37	EinBlick – Der Podcast: #EinBlick u.a. Lauterbachs "Revolution", Apotheker:innen dürfen Fiebersäfte herstellen, #Innovationsfonds	16.12.2022
38	ÄrzteTag: Ist die Telematikinfrastruktur gescheitert, Dr. Kriedel?	14.12.2022
39	eHealth-Podcast: Folge #142 – Das eRezept	02.12.2022
40	Folge #170 - Forschungsdatenportal für Gesundheit: Folge #142 – Das eRezept	02.12.2022

index	title	date
41	ÄrzteTag: TI-Pauschale für Ärzte statt Kostenerstattung – eine gute Lösung, Herr Schick?	29.11.2022
42	EinBlick – Der Podcast: #EinBlick u.a. Long Covid Kongress, E-Health Monitor, ????Telefonische Krankschreibung, Datenschutzkonferenz DSK	25.11.2022
43	EinBlick – Der Podcast: #EinBlick u.a. ?????Innovationsfonds, BMC_eV fordert #IPVZ, ADAC ???? mit MedgateD Gesundheitsmarkt	04.11.2022
44	ÄrzteTag: Die dunkle und die helle Seite der Digitalisierung	08.08.2022
45	ÄrzteTag: Kriedel: "gematik muss Klarheit zu Konnektoren schaffen"	01.08.2022
46	EinBlick – Der Podcast: EinBlick Podcast – u.a. #eAU Pflicht, Reform der Notfallversorgung, Strategie für Corona-Herbst	24.06.2022
47	EinBlick – Der Podcast: EinBlick Podcast – u.a. Karl_Lauterbach lobt PKV, Novelle #GOÄ gefordert, Streit um Infektionsschutzgesetz	10.06.2022
48	EinBlick – Der Podcast: EinBlick Podcast – u.a. Fahrplan e-Rezept, Chirurgische Fernüberwachung ????, neue Antibiotika ???? gegen Resistenzen	03.06.2022

index	title	date
49	ÄrzteTag: Womit könnte die gematik Hausärzte überzeugen, Dr. Spöhrer?	18.05.2022
50	EinBlick – Der Podcast: EinBlick Podcast – u.a. Neuer Fahrplan #eRezept, ab Juli ???? Pflicht für #eAU, Tausch Konnektoren #TI	13.05.2022
51	EinBlick – Der Podcast: EinBlick Podcast – u.a. Finanzierung #Gummilippe geklärt, Vorstellung Kommission #Krankenhausreform, Datenraum #EHDS	06.05.2022
52	EinBlick – Der Podcast: EinBlick Podcast – u.a. # BMG Digitalisierungsstrategie, TI-Konnektorenaustausch, Digitale Diagnosehelfer	29.04.2022
53	EinBlick – Der Podcast: EinBlick Podcast – u.a. Streit um #MVZ, 10.000 eingelöste #E-Rezepte, Innovationsfonds des G-BA	22.04.2022
54	EinBlick – Der Podcast: EinBlick Podcast – u.a. Schwerpunkte des BMG 2022, Kritik an Deckelung bei Videosprechstunden, E-Health-Praxis geplant	08.04.2022
55	ÄrzteTag: Haben Sie dem Konnektortausch gerne zugestimmt, Herr Dr. Kriedel?	08.04.2022
56	ÄrzteTag: Mehr als 100.000 neue Konnektoren – ist das kein Skandal, Herr Dr. Hartge?	28.03.2022

index	title	date
57	EinBlick – Der Podcast: EinBlick Podcast – u.a. Krankenhausgipfel ???? DKGev, Verspätung bei #TI-Messenger, #Digitalisierung ???????? liegt zurück	25.03.2022
58	EinBlick – Der Podcast: EinBlick Podcast – u.a. GKV-Finanzen ???? im Fokus, Debatten über das Infektionsschutzgesetz ???? & die Impfpflicht ????	18.03.2022
59	EinBlick – Der Podcast: EinBlick Podcast – u.a. Wie weiter bei eRezept + eAU, Strategiebewertung #BMG, R2 D2 im Krankenhaus?	11.03.2022
60	EinBlick – Der Podcast: EinBlick Podcast – u.a. Datenschutzlücken bei #TI-Konnektoren, Nutzen + Preise von #DiGA ???? in Kritik	04.03.2022
61	EinBlick – Der Podcast: EinBlick Podcast – u.a. #Healthcare-Barometer 2022, "Sprechende" Medizin soll gestärkt werden	25.02.2022
62	EinBlick – Der Podcast: EinBlick Podcast – u.a. ????Douglas steigt in Apothekenmarkt ein, DieTechniker liegt bei #ePA vorn	18.02.2022
63	eHealth-Podcast: eHealth-Podcast-Folge-130	14.02.2022
64	Folge #170 - Forschungsdatenportal für Gesundheit: eHealth-Podcast-Folge-130	14.02.2022

index	title	date
65	EinBlick – Der Podcast: EinBlick Podcast – u.a. #Telemedizin wirkt -> TelnetNRW, Genesene geschützt, Kritik an Corona-Kurs	11.02.2022
66	ÄrzteTag: DAK-Chef: "Das Prinzip Brechstange hat bei der Digitalisierung nicht funktioniert"	21.01.2022
67	EinBlick – Der Podcast: EinBlick Podcast – u.a. Digitalisierungsreport 2021, Impflicht für med. Personal, Wie geht es weiter mit der e-AU?	21.01.2022
68	Folge #170 - Forschungsdatenportal für Gesundheit: Folge #41 - Elektronische Patientenakten	14.01.2022
69	Folge #170 - Forschungsdatenportal für Gesundheit: Folge #43 - Kommunikationsserver	14.01.2022
70	Folge #170 - Forschungsdatenportal für Gesundheit: Folge #53 - Gesundheits-Apps	14.01.2022
71	Folge #170 - Forschungsdatenportal für Gesundheit: Folge #56 - Ambient Assisted Living und Smarthome	14.01.2022
72	Folge #170 - Forschungsdatenportal für Gesundheit: Folge #63 – openEHR	14.01.2022

index	title	date
73	Folge #170 -	14.01.2022
	Forschungsdatenportal für	
	Gesundheit: Folge $\#122$ –	
	${\bf Digitale-Versorgung-und-}$	
	Pflege-Modernisierungs-	
	Gesetz	
74	Folge #170 -	14.01.2022
	Forschungsdatenportal für	
	Gesundheit: Episode #30 –	
	Order Entry oder	
	Auftragskommunikation	
75	Folge #170 -	14.01.2022
	Forschungsdatenportal für	
	Gesundheit: Folge $\#128$ –	
	KIM (Kommunikation im	
	Medizinwesen)	
76	Folge #170 -	14.01.2022
	Forschungsdatenportal für	
	Gesundheit: Folge $\#126$ –	
	Telematikin frastruktur	
	(Übersicht)	
77	ÄrzteTag: "Einführung von	22.12.2021
	${ m eAU}$ und ${ m E-Rezept-das}$	
	wirkt wie ,Jugend forscht'"	
78	eHealth-Podcast: Folge #128	10.12.2021
	– KIM (Kommunikation im	
	Medizinwesen)	
79	EinBlick – Der Podcast:	19.11.2021
	EinBlick Podcast – u.a.	
	Deutschland Schlusslicht bei	
	# Gesundheits kompetenz,	
	#TI-Atlas der gematik,	
	Cyber-Attacken	
80	ÄrzteTag: Wie halten's die	16.11.2021
	Ärzte mit den	
	TI-Anwendungen,	
	Dr. Hartge?	

index	title	date
81	EinBlick – Der Podcast: EinBlick Podcast – u.a. Lockerung der Sanktionen zur TI gefordert, neues Projekt HerzCheck, Medikamente-Lieferdienste	22.10.2021
82	EinBlick – Der Podcast: EinBlick Podcast – u.a. Ein Jahr DiGA, Zukunft Telematikinfrastruktur TI 2.0, Wie geht es weiter bei e-AU und E-Rezept?	15.10.2021
83	EinBlick – Der Podcast: EinBlick – nachgefragt mit Charly Bunar: Praxis ready for ePA, e-AU und E-Rezept?	13.10.2021
84	ÄrzteTag: Muss ein Urlaubsvertreter in Zukunft einen E-Arztausweis haben, Herr Mohr?	27.09.2021
85	ÄrzteTag: Tipps zur eAU: "Vermeiden Sie es, zum Bananentester zu werden!"	24.09.2021
86	EinBlick – Der Podcast: EinBlick Podcast – u.a. Termine Einführung #eAU & #eRezept umstritten, VKhNRW weitet Indikationen aus	24.09.2021
87	ÄrzteTag: TK-Chef Baas zur Digitalisierung: "Einmal Turbo zünden, reicht nicht"	21.09.2021
88	eHealth-Podcast: Folge #126 - Telematikinfrastruktur (Übersicht)	27.08.2021
89	EinBlick – Der Podcast: EinBlick Podcast – u.a. digitaler #Impfnachweis via #CovPass, Streit um #KIM-Dienste	11.06.2021

index	title	date
90	EinBlick – Der Podcast: EinBlick Podcast – u.a. mit News zu Defizit bei #Kassen GKV_SV, #Telemedizin zur Diabetes-Therapie und zum #KHZG	21.05.2021
91	eHealth-Podcast: Folge #122 – Digitale-Versorgung-und- Pflege-Modernisierungs- Gesetz	11.05.2021
92	EinBlick – Der Podcast: EinBlick – Der Podcast vom 5. März 2021	05.03.2021
93	ÄrzteTag: Warum kommt die Digitalisierung in Arztpraxen nicht voran?	19.02.2021
94	EinBlick – Der Podcast: EinBlick – Der Podcast vom 29. Januar 2021	29.01.2021
95	ÄrzteTag: "Nach 20 Jahren können wir endlich eine E-Mail verschicken!"	25.11.2020
96	ÄrzteTag: Wie Spahn die deutsche Gesundheits-IT an Europa anschließen will	22.10.2020
97	ÄrzteTag: Telematikinfrastruktur - gefährlich oder nützlich?	22.02.2020
98	Gesundheit. Macht. Politik.: Joachim Odenbach - Deutsche Krankenhausgesellschaft (DKG)	18.11.2019
99	eHealth-Podcast: Folge #63 – openEHR	05.10.2018
100	eHealth-Podcast: Folge #56 – Ambient Assisted Living und Smarthome	29.06.2018
101	eHealth-Podcast: Folge #53 – Gesundheits-Apps	18.05.2018

index	title	date
102	eHealth-Podcast: Folge #53 – Gesundheits-Apps	18.05.2018
103	eHealth-Podcast: Folge #41 – Elektronische Patientenakten	16.02.2018
104	eHealth-Podcast: Folge #43 – Kommunikationsserver	16.02.2018
105	eHealth-Podcast: Episode #30 – Order Entry oder Auftragskommunikation	16.02.2018
106	eHealth-Podcast: Folge #43 – Kommunikationsserver	08.12.2017
107	eHealth-Podcast: Folge #41 – Elektronische Patientenakten	10.11.2017
108	eHealth-Podcast: Episode #30 – Order Entry oder Auftragskommunikation	19.05.2017

51.3.5 Digitale Gesundheitsanwendungen

51.3.5.1 Podcasts

Table 51.5: Übersicht Podcasts Digitale Gesundheitsanwendungen

index	title	date
1	Visionäre der Gesundheit:	28.11.2024
	Digitale Lösungen gegen	
	Adipositas: Wie Kai	
	Eberhardt mit Oviva	
	Therapie, Technologie und	
	Prävention vereint	
2	MS-Perspektive - der	11.11.2024
	Multiple Sklerose Podcast:	
	Wie Digitale Medizin die	
	MS-Therapie unterstützt mit	
	Dr. Lars Masanneck	

index	title	date
3	Marktplatz Gesundheitswesen: 96 Niklas Malcherek – Sind DiGAs (Apps auf Rezept) auch in der Schweiz möglich?	06.11.2024
4	docsdigital - Praxisnahe digitale Tools, die innovative Ärzte und HealthTech-Experten kennen sollten: Digitale Gesundheits-Apps - Mein Artikel in der Fachzeitschrift	14.10.2024
5	'Die Innere Medizin'I170 docsdigital - Praxisnahe digitale Tools, die innovative Ärzte und HealthTech-Experten kennen sollten: So erkläre ich meinen	13.10.2024
6	Patienten die DIGA – einfach und verständlich I 169 docsdigital - Praxisnahe digitale Tools, die innovative Ärzte und HealthTech-Experten kennen	13.10.2024
7	sollten: Wie ihr mit kleinen Gesten das Vertrauen von Ärztinnen und Ärzten für digitale Gesundheitsanwendungen gewinnt I168 Visionäre der Gesundheit: Wohnzimmer statt Wartezimmer: Marek Rydzewski über die digitale Transformation der Barmer und die Zukunft der Gesundheitsversorgung	03.10.2024

index	title	date
8	Scaling Champions – Skalierung von IT-Unternehmen: Von der App-Agentur zum DiGA-Spezialisten (mit Malte Bornholdt)	03.10.2024
9	Presseportal.de - Audio: GesundheitsID - Die digitale Identität für die Gesundheit	05.09.2024
10	Das Ohr am Netz: Zwischen Daten und Diagnose: Digitalisierung im Gesundheitswesen	20.08.2024
11	docsdigital - Praxisnahe digitale Tools, die innovative Ärzte und HealthTech-Experten kennen sollten: zanadio - Adipositas-DiGA im Praxischeck I 162	11.08.2024
12	Studienlage: Irrwege - Nepper, Schlepper, Bauernfänger	30.07.2024
13	Healthcare Changers Podcast: #55: Georg Schröckenfuchs, Novartis [>] Internationale Pharma-Karriere: Von Wien über Polen, Griechenland und Italien nach Dubai	26.06.2024
14	docsdigital - Praxisnahe digitale Tools, die innovative Ärzte und HealthTech-Experten kennen sollten: Diese digitalen Tools nutzen die Zero PRAXEN – Dr. Tim Böhringer berichtet I153	15.06.2024

index	title	date
15	Visionäre der Gesundheit: Juliane Hänsler, Marketing Manager und Business Developer bei Enovis und Hauke Rienhoff, CCO von Orthopy über die digitale Revolution in der Orthopädie	13.06.2024
16	WDR 5 Quarks - Wissenschaft und mehr: Natur im Gewitter - Hilfe im Gesundheitswesen - Neandertaler	24.05.2024
17	docsdigital - Praxisnahe digitale Tools, die innovative Ärzte und HealthTech-Experten kennen sollten: Digitale Tools, die du in der Arztpraxis kennen solltest und wie uns die	27.04.2024
18	Patienten "überholen" I146 docsdigital - Praxisnahe digitale Tools, die innovative Ärzte und HealthTech-Experten kennen sollten: Noch 10 Jahre bis zur Rente: Warum Dr. Birgid Puhl jetzt ihr PVS wechselt – und Du es vielleicht auch tun solltest I	17.04.2024
19	docsdigital - Praxisnahe digitale Tools, die innovative Ärzte und HealthTech-Experten kennen sollten: Lars Lomberg: Warum (d)eine digitale Arztpraxis unverzichtbar ist - Tipps für digitale, hilfreiche Tools I 96	03.04.2024

index	title	date
20	docsdigital - Praxisnahe digitale Tools, die innovative Ärzte und HealthTech-Experten kennen sollten: Von der Klinik zur Gründung eines Start-ups - 2 Ärztinnen, die eine wichtige Versorgungslücke schließen wollen I 109	03.04.2024
21	docsdigital - Praxisnahe digitale Tools, die innovative Ärzte und HealthTech-Experten kennen sollten: Mit diesen 3 simplen Fragen förderst Du die Nutzung einer DiGA bei Deinen Patienten I 136	03.04.2024
22	docsdigital - Praxisnahe digitale Tools, die innovative Ärzte und HealthTech-Experten kennen sollten: Die zweite Frage die ich kläre, bevor ich eine DiGA verschreibe I 133	03.04.2024
23	docsdigital - Praxisnahe digitale Tools, die innovative Ärzte und HealthTech-Experten kennen sollten: Mehrere Digitale Gesundheitsanwendungen für dieselbe Indikation? So gehe ich vor I 130	03.04.2024
24	docsdigital - Praxisnahe digitale Tools, die innovative Ärzte und HealthTech-Experten kennen sollten: Mit dieser einfachen Metapher erklärst du deinen Patienten die DiGA (Digitale Gesundheitsanwendung) I 129	03.04.2024

index	title	date
25	docsdigital - Praxisnahe digitale Tools, die innovative Ärzte und HealthTech-Experten kennen sollten: Sozialarbeiter:innen als Brücke zur digitalen Gesundheitsanwendung (DiGA) - Mein Aha-Moment I 119	03.04.2024
26	docsdigital - Praxisnahe digitale Tools, die innovative Ärzte und HealthTech-Experten kennen sollten: Dr. med. Ahmad Sirfy: Wenn du eine digitale Arztpraxis willst, solltest du diese Folge hören I 69	03.04.2024
27	docsdigital - Praxisnahe digitale Tools, die innovative Ärzte und HealthTech-Experten kennen sollten: DiGA Oviva direkt: Wie sprichst du im digitalen Zeitalter mit deinen Patienten über Adipositas? I 104	03.04.2024
28	docsdigital - Praxisnahe digitale Tools, die innovative Ärzte und HealthTech-Experten kennen sollten: Einführung in DiGA: Meine 14-jährige Tochter hat eine klare Meinung - Höre selbst! I 95	03.04.2024

index	title	date
29	docsdigital - Praxisnahe digitale Tools, die innovative Ärzte und HealthTech-Experten kennen sollten: Wie oft hast du als Arzt oder Ärztin gedacht: "Ich sollte mich mit KI beschäftigen, aber ich komme nicht dazu?" I 103	03.04.2024
30	docsdigital - Praxisnahe digitale Tools, die innovative Ärzte und HealthTech-Experten kennen sollten: So werden die DiGAs für Patient:innen und Ärzt:innen wirklich attraktiv I 72	03.04.2024
31	docsdigital - Praxisnahe digitale Tools, die innovative Ärzte und HealthTech-Experten kennen sollten: Bornholdt Lee GmbH: Du willst als Ärztin oder Arzt eine DiGA entwickeln? So startest Du I 84	03.04.2024
32	docsdigital - Praxisnahe digitale Tools, die innovative Ärzte und HealthTech-Experten kennen sollten: Ich frage nach: 5 Mythen über digitale Gesundheitsanwendungen (DiGA) I 92	03.04.2024
33	Healthcare Changers Podcast: #50: Manfred Pferzinger, IMC Krems [>] Die Gesundheitsmanager:innen der Zukunft	13.03.2024

index	title	date
34	Healthcare Changers	17.01.2024
	Podcast: #47: Daniel	
	Amann, edupression $[>]$	
	Permanente Erstattung für	
	die erste österreichische	
	DiGA	
35	Healthcare Changers	22.11.2023
	Podcast: #45: Sigrid	
	Allerstorfer, Roche	
	Diagnostics [>] Über den	
	Mehrwert von Diagnostik für	
	das Gesundheitswesen	
36	Marktplatz	04.10.2023
	Gesundheitswesen: 80 Tobias	
	Gantner - Mehr Einsatz	
	wagen im Gesundheitswesen	
37	Healthcare Changers	28.06.2023
	Podcast: #38: Nina	
	Kasbauer, Exakt Health [>]	
	Dein Physiotherapeut ist	
	jetzt eine App	
38	Healthcare Changers	17.11.2022
	Podcast: #30: Moritz und	
	Philipp Schöllauf, MyReha	
	[>] Digitale	
	Schlaganfalltherapie	
39	Presseportal.de - Audio:	10.10.2022
	Gesundheits-Apps - bringt	
	das was? / So profitieren Sie	
	von digitalen	
	Gesundheitsanwendungen	
40	MS-Perspektive - der	11.05.2022
	Multiple Sklerose Podcast:	
	Interview mit Elisa Ascherl	
	zur Emendia App für	
	MS-Patienten	

index	title	date
41	MS-Perspektive - der Multiple Sklerose Podcast: Interview mit Eva Marten zu elevida, dem Online-Angebot zur Behandlung von Fatigue bei MS	10.05.2022
42	MS-Perspektive - der Multiple Sklerose Podcast: Digitale Unterstützungsangebote für MS-Patienten	09.05.2022
43	MS-Perspektive - der Multiple Sklerose Podcast: Interview mit Dr. Anja Dillenseger über relevante digitale Biomarker für MS-Patienten	04.04.2022
44	Visionäre der Gesundheit: Dr. Hanne Horvath - Gründerin von hellobetter über digitale Psychotherapie und Partnerschaften mit Pharma und Telemedizin	27.01.2022
45	Marktplatz Gesundheitswesen: 54 Inga Bergen – Deutschland digitalisiert sich	10.11.2021
46	Presseportal.de - Audio: Digitale Medizin: Die Zukunft ruft / Wissenswertes über E-Rezept und Gesundheits-Apps	15.06.2021
47	Visionäre der Gesundheit: Prof. Dr. Andreas Michalsen - warum die Digitalisierung eine Chance für die Naturheilkunde ist	17.11.2020

Gesundheits-Apps auf Rezept Wie die digitalen Helfer den Alltag erleichtern

51.4 Organisationen

Table 51.6: Tabelle Organisationen Digitale Medizin

Organisation	URL
Digitale Medizin	digitale-medizin.org
Atlas Digitale Gesundheitswirtschaft	atlas-digitale-gesundheitswirtschaft.de
Medizininformatik Initiative	medizininformatik-initiative.de
TMF e.V.	${ m tmf ext{-}ev.de}$
Gesundheitsforen	gesundheitsforen.net
BVITG	bvitg.de
Interop Council (gematik)	gematik.de/interop-council
ZTG NRW	ztg-nrw.de
Virtuelles Krankenhaus NRW	virtuelles-krankenhaus.nrw
Das Digitale Krankenhaus NRW	das-digitale-krankenhaus.nrw
DGIM Kommission Digitale	dgim.de/digitale-transformation
Transformation	
DocsDigital	docsdigital.de
HIMSS	himss.org
openEHR	openehr.org
HL7	hl7.org
LOINC	loinc.org
SNOMED International	snomed.org
Digitalversorgt	digitalversorgt.de

Die Kassenärztliche Bundesvereinigung (KBV) fordert in Ihrem Positionspapier "digital und nah" eine praxisnahe, ärztlich begleitete Digitalisierung der ambulanten Versorgung mit folgenden Schwerpunkten: Eine stabile, nutzerfreundliche Telematikinfrastruktur und moderne Praxisverwaltungssysteme sollen die Basis bilden. Digitale Verordnungen, Telemedizin, die elektronische Patientenakte (ePA) und KI-gestützte Tools sollen Prozesse effizienter gestalten, die Patientensicherheit erhöhen und die Versorgung bedarfsgerecht steuern. Anreize statt Sanktionen, ein Praxiszukunftsgesetz für Investitionen sowie eine flächendeckende Digitalisierung aller Gesundheitsbereiche sind essenziell. Die ärztliche Expertise muss frühzeitig eingebunden werden, um praxistaugliche Lösungen zu gewährleisten.

- Technische Universität Dresden Research Group Digital Health
- Friedrich-Alexander-Universität Professur für Digital Health PDH

51.5 Zeitschriften & Verlage

Table 51.7: Übersicht Verlage & Zeitschriften

Verlag/Zeitschrift	URL
Mednic	mednic.de
AI in Medicine (NEJM)	ai.nejm.org
BMJ Digital Health	bmjdigitalhealth.bmj.com
BMJ Health & Care Informatics	informatics.bmj.com
BMJ Future Health	futurehealth.bmj.com
JMIR Publications	jmir.org
e-health-com	e-health-com.de
Digital Health Portal	digitalhealthportal.de

51.6 Veranstaltungen

Table 51.8: Tabelle Veranstaltungen Digitale Medizin

Veranstaltung	URL
Inno3	inno3.de
DigiHealth Day (TH Deggendorf)	th-deg.de/digihealthday
DiFG	digitalforum-gesundheit.de
DMEA	dmea.de
TI-Summit	tisummit.de
Nationales Digital Health Symposium	m gmds 2025.de
MEDICA	medica.de

Table 51.9: Tabelle Veranstaltungsverzeichnisse

Kalender	URL
e-health-com	e-health-com.de/veranstaltungskalender
Veranstaltungskalender	, -
Digital Health Events	digital-health-events.de
Digitalversorgt Events	digitalversorgt.info/events
INA Gematik	ina.gematik.de/veranstaltungskalender
Veranstaltungskalender	
DigiKal	eventsdev.buerofalk.de

51.7 Soziale Medien

Eine chinesische Studie untersuchte, wie Ärzte den Kurznachrichtendienst WeChat (Social-Media-Plattform) nutzen um sich wissen anzueignen. Über 60 % der 292 befragten Ärzte suchen regelmäßig online nach Fachwissen, wobei ca. 20 % WeChat dafür nutzen, jedoch nur ca. 24% mit den Ergebnissen zufrieden sind. Täglichen nutzten mehr als 70 % der Ärzte mehr als 30 Minuten die Platform und fast 40 % der Teilnehmenden griffen mehr als 20 Mal pro Tag auf WeChat zu. Fast die Hälfte liest regelmäßig medizinische Artikel auf WeChat, vor allem über Freundeskreise (ca. 60 %) und öffentlichen Profilen (60 %), doch die Professionalität und Nützlichkeit der Inhalte werden als gering bewertet. Der bevorzugte Inhalt ist "Fachwissen von Kollegen" und die Nutzung der Erinnerungsfunktion, was auf den Wunsch nach vertrauenswürdiger, peer-basierter Information hinweist. (Liu et al. 2018)

51.8 Bücher

"Die Digitale Arztpraxis" ist ein Buch, das sich mit der fortschreitenden Digitalisierung im Gesundheitswesen auseinandersetzt und Ärzten sowie Praxisteams praktische Ansätze bietet, um digitale Technologien effektiv in den Praxisalltag zu integrieren. Es beleuchtet Themen wie Telemedizin, elektronische Patientenakten und Datensicherheit, während es gleichzeitig auf die Chancen und Herausforderungen dieser Entwicklungen eingeht. Das Werk, erschienen beim Medizinisch Wissenschaftlichen Verlagsgesellschaft (MWV), richtet sich an Mediziner, die ihre Praxis zukunftssicher gestalten möchten, und kombiniert fachliches Wissen mit konkreten Handlungsempfehlungen.

52 Digitale Innovation

52.1 Einleitung

In seinem JAMA Artikel "How AI Could Reshape Health Care—Rise in Direct-to-Consumer Models", beschreibt Kenneth D. Mandl, wie künstliche Intelligenz (KI) die Gesundheitsversorgung grundlegend verändern könnte, insbesondere durch den Aufstieg direkter Konsumentenmodelle (DTC). Er hebt hervor, dass Google Search längst als Entscheidungshilfe für Patienten dient, während Amazon Prime Telemedizin, Apothekenleistungen und vor Ort hausärztliche Versorgung integriert. Traditionelle Gesundheitsorganisationen (HCOs) kämpfen jedoch mit der digitalen Innovation, da sie an starren Strukturen und komplexen Anforderungen hängen bleiben. Gleichzeitig kommt es zu einer Vermarktwirtschaftlichung der Gesundheitsversorgung durch DTC-Unternehmen, die mit Big Tech und agilen KI-Lösungen schnell skalieren und personalisierte Angebote schaffen, während HCOs Marktanteile an diese Innovatoren verlieren könnten. (Mandl 2025)

Die Studie "A scoping review of ethical aspects of public-private partnerships in digital health" von Marieke A. R. Bak et al. (npj Digital Medicine, 2025) analysiert ethische Herausforderungen von öffentlich-privaten Partnerschaften (PPPs) im Bereich digitaler Gesundheit anhand von 46 Studien aus PubMed, EMBASE und Web of Science. Drei Hauptthemen wurden identifiziert: Datenschutz und Einwilligung, Sicherstellung öffentlicher Vorteile und Zugang sowie gute Governance und Vertrauenswürdigkeit. Die Ergebnisse zeigen, dass PPPs Datenschutzbedenken, unklare Definitionen von "öffentlichem Nutzen" und Machtungleichgewichte zwischen Partnern aufwerfen, wie beispielsweise in den kontroversen Fällen care.data, NHS/DeepMind und deCODE. Die Autoren empfehlen frühzeitige, kontextbezogene Ethikrichtlinien, transparente Governance und öffentliche Beteiligung, um verantwortungsvolle Innovation zu fördern, und fordern weitere Forschung zu tripartiten Partnerschaften und der "Ökonomisierung" digitaler Gesundheit. (Bak et al. 2025)

52.2 Geschäftsmodelle

Softwarehersteller im Bereich der ambulanten Medizin nutzen unterschiedliche Geschäftsmodelle. Sie unterscheiden sich in Kostenstrukturen und Innovationskraft. Es gibt Anbieter mit Lizenzmodell, bei dem Ärzte Anschaffungskosten zahlen, gefolgt von jährlichen Gebühren. Andere bieten Abonnements (SaaS), bei denen monatliche Gebühren für Cloud-basierte Lösungen anfallen – flexibel, aber mit fortlaufenden Kosten und Notwendigkeit eines von Internetzugang; die Innovationskraft ist hoch, da regelmäßige Updates den Wettbewerb antreiben. Wieder andere verkaufen Software als einmaligen Kauf mit optionalen Supportverträgen. Das Genossenschaftsmodell der Duria eG hebt sich davon ab: ÄrztInnen zahlen einmalig einen Genossenschaftsanteil und einen jährlichen Beitrag.

Digitale Innovationen können über direkte und indirekte Zugangswege in den ersten Gesundheitsmarkt integriert werden (Gersch and Danelski 2022).

52.2.1 Direkte Zugangswege (B2P/B2C-Lösungen)

1. Digitale Pflegeanwendungen (DiPA, §40a SGB XI):

- Versorgung von Pflegebedürftigen mit digitalen Anwendungen, die deren Selbstständigkeit fördern.
- Antragstellung erfolgt bei der Pflegekasse.
- Nicht zwingend als Medizinprodukt klassifiziert.

2. Digitale Gesundheitsanwendungen (DiGA, §139e SGB V):

- Medizinprodukte der Risikoklasse I oder IIa.
- Aufnahme in das DiGA-Verzeichnis durch das Fast-Track-Verfahren des BfArM.
- Verordnung durch Ärzte oder Psychotherapeuten ("App auf Rezept").

3. Primärprävention (§20 SGB V):

- Angebote zur Verhinderung von Krankheitsrisiken (z. B. Bewegung, Ernährung).
- Individuelle Verträge der Krankenkassen, keine gesetzliche Regelversorgung.

4. Neue Untersuchungs- und Behandlungsmethoden (NUB, §§135, 137c-h SGB \mathbf{V}):

- Erprobung und mögliche Integration neuer Methoden in den Leistungskatalog.
- Voraussetzung: wissenschaftlicher Nachweis von Nutzen und Wirksamkeit.

5. Hilfsmittel (§33, §139 SGB V, §40, §78 SGB XI):

- Versorgung mit medizinischen oder pflegerischen Hilfsmitteln.
- Digitale Lösungen wie Medikamentenspender, Trackingsysteme, etc.

6. Satzungsleistungen (§11 SGB V):

• Krankenkassen können freiwillige Zusatzleistungen anbieten (z. B. nicht verschreibungspflichtige Medikamente).

7. Besondere Versorgung (§140a SGB V):

Verträge zwischen Krankenkassen und Leistungserbringern, z. B. für sektorenübergreifende Lösungen.

52.2.2 Indirekte Zugangswege (B2B-Modelle)

1. Krankenhauszukunftsgesetz (KHZG):

• Finanzierung von Digitalisierungsprojekten in Krankenhäusern (z. B. elektronische Patientenakten, IT-Sicherheit).

2. White-Label-Lösungen:

• Anpassung digitaler Produkte an die Markenidentität der Kunden, z. B. für Krankenversicherungen oder Pflegeeinrichtungen.

3. Anything-as-a-Service (XaaS):

• Cloud-basierte IT-Dienstleistungen für Stakeholder im Gesundheitswesen (z. B. SaaS, PaaS).

4. IT-Service-Provider:

• Langfristige Bereitstellung von IT-Diensten für Krankenkassen und andere Akteure (z. B. Digitalisierung von Prozessen).

5. Modulare Funktionsangebote:

• Dienste wie Trust-Service-Provider (z. B. digitale Signaturen) oder Datenaggregatoren.

52.3 Entwicklungsprozess

Figure 52.1: Entwicklungsprozess Grafik

52.4 Beispiele

Table 52.1: Übersicht Forschungsprojekte

Forschungsprojekt	URL
Neue Versorgungsformen	innovations fonds.g-ba.de
Blog3	blog 3.de

Table 52.2: Übersicht Initiativen

Initiative	URL
AdAM steht für "Anwendung für digital unterstütztes Arzneimitteltherapie-Management"	teledermatologie.infokom.de
RP-DOC	$\operatorname{rpdoc.de}$
PAVK-TEGECOACH	innovations fonds.g-ba.de
Veovita	veovita.de

52.4.1 Digimanagerin

https://www.youtube.com/watch?v=dGgFFKb9tsE

Die Fortbildung "Digi-ManagerIn" der KVWL qualifiziert nichtärztliches Praxispersonal in Westfalen-Lippe zu Digitalisierungsbeauftragten. Sie umfasst 205 Stunden und wird in Kooperation mit der Ärztekammer Westfalen-Lippe und der Universität Witten/Herdecke Theoretische Module behandeln Datenschutz, Telematikinfrastruktur und digitale Kommunikation. Praktische Anwendungen finden in der digitalen Musterpraxis "dipraxis" statt. Teilnehmende erstellen eine praxisindividuelle Digitalisierungsstrategie mit dem KVWL-Reifegradmodell. Praxen erhalten 5.000 Euro Aufwandsentschädigung für die Freistellung. Das Programm startete im April 2023 und wird ab 2025 zweimal jährlich angeboten. In Baden-Württemberg bietet die Landesärztekammer mit der MAK und dem Bosch Digital Innovation Hub ein Blended-Learning-Seminar "Digi-Managerin (Arztpraxis)" an. Es richtet sich an medizinisches Fachpersonal, umfasst 40 Unterrichtseinheiten über fünf Tage in Stuttgart und kostet 298 Euro. Weitere Informationen gibt es unter www.aerztekammer-bw.de. Andere Bundesländer bieten derzeit keine vergleichbare Fortbildung mit diesem Titel an. Ähnliche Weiterbildungen zur Digitalisierung existieren jedoch deutschlandweit. kv-innovationsscout.de/projekt/digi-managerin aerztekammerbw.de/digi-managerin kvwl.de/themen-a-z/digi-managerin kvbawue.de/kvbw/aktuelles/newsartikel/neues-mak-seminar-digi-managerin

52.4.2 Referenzpraxis

Die Kassenärztliche Vereinigung Westfalen-Lippe (KVWL) präsentiert mit der "dipraxis" eine Ausstellung zur Digitalisierung im Gesundheitswesen. In dieser Beispielpraxis können Vertragsärzte und -psychotherapeuten digitale Tools wie Online-Terminbuchungen, digitales Patientenmanagement und Telematikinfrastruktur-Anwendungen direkt testen und Fortbildungspunkte sammeln. Die KVWL bietet neutrale, herstellerunabhängige Beratung, zeigt auf Touchscreens Datenanalysen und teilt Erfahrungsberichte von Kollegen. Ähnlich unterstützt die KV Berlin mit der "DEMO E-Health Showpraxis" Praxisteams durch interaktive Einblicke in digitale Lösungen, die Praxisabläufe optimieren, die Zusammenarbeit fördern und die Patientenversorgung verbessern. Termine für beide Showrooms sind online buchbar. Die KV Brandenburg fördert digitale Referenzpraxen mit monatlich 1.000 Euro, um praxistaugliche Innovationen zu testen.

52.5 Plattformen

Medxsmart.de ist eine Vergleichsplattform, die speziell für digitale Tools in Arztpraxen entwickelt wurde. Sie bietet Ärztinnen und Ärzten die Möglichkeit, verschiedene Lösungen zu durchsuchen und zu vergleichen, um die Digitalisierung ihrer Praxis zu optimieren.

Die Open Healthcare Alliance (OHA) ist ein Netzwerk, das sich darauf konzentriert, die digitale Gesundheitsversorgung voranzutreiben. Es fördert die Zusammenarbeit und den Austausch zwischen verschiedenen Akteuren im Gesundheitssektor, um innovative, interoperable Lösungen zu entwickeln und zu implementieren.

Solutionfinder.health ist eine Plattform, die Health IT Lösungen für Gesundheitsdienstleister zusammenführt. Sie bietet eine zentrale Anlaufstelle, um digitale Tools und Services zu entdecken, die für spezifische Bedürfnisse im Gesundheitswesen geeignet sind, und somit die Auswahl und Implementierung dieser Lösungen erleichtert.

United Web Solutions ist ein Verband, der sich darauf spezialisiert hat, die Digitalisierung im Gesundheitswesen durch maßgeschneiderte IT-Lösungen voranzutreiben. Er bietet Krankenhäusern und MVZ die Möglichkeit, durch die Kombination verschiedener Expertenlösungen ihre Arbeitsprozesse zu optimieren und effizienter zu gestalten.

healthon.de ist eine Informations- und Qualitätsplattform für Gesundheits-Apps in Deutschland, die Verbraucher und Fachöffentlichkeit über Trends und Entwicklungen in der digitalen Gesundheit informiert. Sie bewertet Gesundheits-Apps, Medizin-Apps und Digitale Gesundheitsanwendungen (DiGA) anhand eines Ehrenkodex, bietet Testberichte, Marktanalysen und Statistiken wie das DiGA-Dashboard, um Transparenz zu schaffen.

Das KV-Appradar ist ein Informationsportal des Zentralinstituts für die kassenärztliche Versorgung (Zi), das seit 2021 Fachinformationen zu über 3.400 Gesundheits-Apps und Digitalen Gesundheitsanwendungen (DiGA) bietet, um Ärzt:innen, Psychotherapeut:innen und

Patient:innen bei der Orientierung im App-Markt zu unterstützen. Sie kategorisiert Apps in etwa 60 Themenbereiche, liefert Bewertungen, Downloadzahlen und unterscheidet sich von App-Stores durch medizinische Relevanz und Diagnoseinformationen.

Mindapps beinhaltet die Mobile Health Index and Navigation Database (MIND), eine interaktive Plattform, die dabei hilft, Apps für mentale Gesundheit und Gehirnfunktionen zu finden, die individuellen Bedürfnissen und Vorlieben entsprechen. Nutzer können Apps nach Kriterien wie Datenschutz, Kosten (inklusive kostenloser Optionen), wissenschaftlicher Evidenz und Nutzerfreundlichkeit durchsuchen, um die passende Anwendung für sich zu identifizieren. Die Datenbank richtet sich an alle, die mentale Gesundheits-Apps suchen, und bietet eine Vielzahl von Kategorien wie Apps gegen Depressionen, Angstzustände oder Stress. Sie wird als gemeinnütziges Projekt ohne Werbung präsentiert und zielt darauf ab, personalisierte Lösungen für psychisches Wohlbefinden zu fördern.

DigaDocs bietet Informationen zu Digitalen Gesundheitsanwendungen (DiGA) in Deutschland, die seit Ende 2019 auf Rezept verschrieben werden können. Die Plattform richtet sich an Patienten sowie ärztliches und therapeutisches Personal und stellt Testberichte, Übersichten zu zugelassenen DiGAs und wissenschaftliche Einschätzungen bereit.

52.6 Offener Quelltext

Open-Source-Software ist in ambulanten Arztpraxen bisher wenig verbreitet, während sie in anderen Bereichen des Gesundheitswesens, insbesondere in Gesundheitsämtern, zunehmend an Bedeutung gewinnt. In Arztpraxen dominieren proprietäre Praxisverwaltungssysteme, da diese oft spezialisierte Funktionen für Abrechnung, Dokumentation und Telematikinfrastruktur bieten. Open-Source-Lösungen wie **OpenEMR** oder **Thera-Pi** existieren zwar, werden aber vergleichsweise selten genutzt, da viele Praxen auf zertifizierte, kommerzielle Software angewiesen sind und Wechselbarrieren hoch sind. Im Gegensatz dazu haben Gesundheitsämter in den letzten Jahren verstärkt auf Open Source gesetzt. Ein prominentes Beispiel ist **SORMAS**, das in vielen deutschen Gesundheitsämtern zur digitalen Kontaktnachverfolgung während der COVID-19-Pandemie eingesetzt wurde. Auch das Open-Source-Projekt **Agora** zeigt, dass öffentliche Stellen zunehmend auf offene, transparente Softwarelösungen setzen.

Der medatixx-HealthHub ist ein digitales Ökosystem, das Praxen und Gesundheitsdienstleister durch moderne FHIR-Standards nahtlos vernetzt. Es ermöglicht Softwareanbietern, ihre Lösungen sicher und standardisiert in die medatixx-Praxissoftware zu integrieren, während Praxen aus einem Marktplatz digitaler Anwendungen wählen können, um Prozesse effizienter zu gestalten. Die Plattform fördert Zusammenarbeit, verbessert Kommunikation und unterstützt die Digitalisierung im Gesundheitswesen, wobei Sicherheit durch einen Akkreditierungsund Testprozess gewährleistet wird.

52.7 Zertifizierung Digitaler Anwendungen

Gesundheits-Apps bilden die Mehrheit der verfügbaren Anwendungen und umfassen ungeschützte Begriffe wie Lifestyle-Apps (z. B. Fitness-Tracker) oder serviceorientierte Apps, die keine medizinischen Zwecke verfolgen, sondern Informationen und Organisation unterstützen. Digitale Medizinprodukte hingegen sind CE-gekennzeichnete Anwendungen, die nach EU-Medizinprodukteverordnung (MDR) registriert sind und gezielt Krankheiten erkennen, behandeln oder Patienten zu einem gesundheitsförderlichen Leben begleiten. DiGA (Digitale Gesundheitsanwendungen) sind eine spezielle Unterkategorie digitaler Medizinprodukte, die zusätzlich vom BfArM auf Sicherheit, Qualität und Wirksamkeit geprüft werden, einen positiven Gesundheitsnutzen nachweisen müssen und als "Apps auf Rezept" erstattungsfähig sind, wenn sie ärztlich verschrieben oder direkt über die Krankenkasse bei Diagnose beantragt werden.

Der DiGA-Analyzer von fbeta ist ein Analysetool, das Daten des DiGA-Verzeichnisses des BfArM strukturiert, visuell aufbereitet und im Verlauf einordnet. Er bietet interaktive Charts und Einblicke zu Markttrends, Evidenznarrativen und der Verzeichnis-Historie, um Marktlücken zu identifizieren und strategische Entscheidungen im Bereich Digitaler Gesundheitsanwendungen (DiGA) zu unterstützen. Die quartalsweise aktualisierten Daten basieren auf dem Bundesanzeiger und ermöglichen nutzerdefinierte Analysen für Markteinblicke.

Die Studie von Shaheen E. Lakhan, veröffentlicht im Mai 2025 in Cureus, stellt den Composite Digital Therapeutic Index (cDTI) vor, ein Rahmenwerk zur Bewertung von verschreibungspflichtigen digitalen Therapeutika (PDTs). Der cDTI kombiniert vier Domänen – Wirksamkeit, Engagement, Evidenzqualität und Sicherheit – zu einem einzigen Score, um von der FDA zugelassene PDTs zu vergleichen. Der cDTI bietet ein transparentes, reproduzierbares Werkzeug für Stakeholder, mit Plänen zur Erweiterung um Real-World-Daten und weitere Domänen wie Gerechtigkeit und Kosteneffizienz. (Lakhan 2025)

52.8 **DiGA**

Die Studie "Patient Acceptance of Prescribed and Fully Reimbursed mHealth Apps in Germany: An UTAUT2-based Online Survey Study" untersucht die Akzeptanz von mobilen Gesundheitsanwendungen (mHealth) in Deutschland. Sie analysiert die Bereitschaft der Patienten, solche Apps zu nutzen, und identifiziert Einflussfaktoren wie Leistungserwartung, Selbsteffizienz und Einstellung. Basierend auf einer Online-Umfrage mit 1051 Teilnehmern zeigt die Studie eine hohe Nutzungsbereitschaft (76 %), besonders bei staatlich zertifizierten Apps, während nur 27 % bereit sind, diese selbst zu bezahlen. Die Ergebnisse betonen die Notwendigkeit, negative Vorurteile frühzeitig abzubauen und die Vorteile von mHealth-Apps klar zu kommunizieren. (Uncovska et al. 2023)

52.9 Gründungszentren

Startup-Inkubatoren und -Acceleratoren für digitale Gesundheitsunternehmen unterstützen digitale Lösungen im Gesundheitswesen, indem sie Gründern Ressourcen, Netzwerke und Finanzierung bereitstellen. Flying Health in Berlin verbindet Startups mit etablierten Akteuren der Gesundheitsbranche, bietet strategische Beratung und unterstützt bei der Entwicklung zukunftsfähiger Geschäftsmodelle. Startupbootcamp Digital Health mit Sitz in Berlin beschleunigt junge Unternehmen durch ein intensives Programm, das von Partnern wie Sanofi oder Munich Re unterstützt wird, und hat Erfolge wie BOCAhealth (Hydrationsmessung) vorzuweisen. G4A Health, initiiert von Bayer, bietet Startups bis zu 100.000 Euro, 100 Tage Co-Working-Space und Mentoring, wobei seit 2013 über 150 digitale Gesundheitsfirmen gefördert wurden, darunter Okko Health (Augen-Biomarker). Speedinvest, ein europäischer Venture-Capital-Fonds, investiert in frühe Phasen digitaler Gesundheitslösungen und bietet neben Kapital auch strategische Unterstützung. Bosch Health Campus in Stuttgart fördert interdisziplinäre Innovationen im Gesundheitsbereich mit Fokus auf Forschung und Kooperationen. Hubs Sidepreneur listet verschiedene deutsche Inkubatoren auf, die teils auch Health-Startups unterstützen, wobei der Fokus jedoch breiter gefasst ist. Diese Programme unterscheiden sich in ihrer Ausrichtung – von praxisnaher Frühentwicklung bis hin zu langfristiger Forschungskooperation – und tragen gemeinsam dazu bei, die Digitalisierung im Gesundheitswesen voranzutreiben.

52.10 Veranstaltungsformate

Die Ideenkampagne ADRENALIN@UKSH startete 2021 am Universitätsklinikum Schleswig-Holstein mit dem Ziel, Mitarbeitende aktiv in die Zukunftsgestaltung einzubinden. Für ambulante Praxen ist dabei besonders relevant, dass der Erfolg digitaler Innovationen von einer offenen internen Kommunikation und dem Engagement des Teams abhängt. Über eine ganzheitliche Strategie, die technische Lösungen mit sozialen und organisatorischen Faktoren verbindet, lassen sich digitale Technologien in den Praxisalltag integrieren. Hackathons bringen interdisziplinäre Teams zusammen, um komplexe Probleme des Gesundheitswesens kreativ zu lösen. Sie fördern den Wissenstransfer zwischen Forschung, Wirtschaft und Praxis, treiben technologische und organisatorische Innovationen voran und stärken durch Kooperationen.

52.11 Technologische Disruption

Die Studie "Voice as a Biomarker in Health-Tech: Mapping the Evolving Landscape of Voice Biomarkers in the Start-Up World" von Emily G. Evangelista und Kollegen untersucht die wachsende Rolle von Stimmbiomarkern in der Gesundheitstechnologie. Dies könnte andere, bisherige Diagnoseverfahren teilweise obsolet machen. Der Markt für Stimmbiomarker wurde

2021 mit 1,9 Milliarden US-Dollar bewertet und soll bis 2028 auf über 5,1 Milliarden US-Dollar ansteigen, mit einer jährlichen Wachstumsrate von 15,15 %. Ziel der Studie war es, die aktuelle Landschaft von Start-ups zu kartieren, die Stimme als Gesundheitsbiomarker nutzen. Dafür wurden umfassende Recherchen über Internetquellen, soziale Medien und Literaturdatenbanken durchgeführt. Insgesamt wurden 27 Start-ups identifiziert, die KI einsetzen, um Stimmbiomarker zu entwickeln; 24 davon sammelten Investitionen in Höhe von über 178 Millionen US-Dollar und veröffentlichten gemeinsam 194 Publikationen, von denen 66 % peerreviewed sind. (Evangelista et al. 2024)

Die Arbeit "Disruptive Innovation – Considerations for Health and Health Care in Europe", herausgegeben von der Expertengruppe der Europäischen Kommission für effektive Investitionen im Gesundheitswesen (EXPH), untersucht das Potenzial disruptiver Innovationen im europäischen Gesundheitssektor. Disruptive Innovationen werden als Veränderungen definiert, die neue Netzwerke und Organisationsstrukturen schaffen, ältere Systeme verdrängen und Gesundheitsversorgung effizienter sowie zugänglicher machen. Die Expertengruppe identifiziert fünf zentrale Bereiche für disruptive Innovationen: translationale Forschung, Zugang zu neuen Technologien, Präzisionsmedizin, Ausbildung von Gesundheitsfachkräften und Gesundheitsförderung. Es empfiehlt politische Maßnahmen, um förderliche Bedingungen für Innovationen zu schaffen und bestehende Barrieren zu überwinden, während gleichzeitig Gerechtigkeit, Qualität und Nachhaltigkeit im Gesundheitswesen gewahrt bleiben. (Innovation, n.d.)

52.12 Veränderungsmanagement

Die Studie "Diffusion of Innovations in Service Organizations: Systematic Review and Recommendations" von Trisha Greenhalgh et al. untersucht, wie Innovationen in der Gesundheitsdienstleistung verbreitet und nachhaltig implementiert werden können. Sie bietet eine systematische Literaturübersicht, die ein evidenzbasiertes Modell zur Verbreitung von Innovationen in Gesundheitsorganisationen entwickelt, Wissenslücken identifiziert und eine robuste Methodik für systematische Reviews vorschlägt. Die Studie unterscheidet zwischen passiver Diffusion, aktiver Dissemination, Implementierung und Nachhaltigkeit und betont die Bedeutung von Innovationsattributen, sozialen Netzwerken, organisationalem Kontext und der Interaktion zwischen Innovation, Adoptern und Umfeld. Empirische Erkenntnisse zeigen, dass relative Vorteile, Kompatibilität, geringe Komplexität, Erprobbarkeit und Beobachtbarkeit die Adoption fördern, während organisatorische Faktoren wie absorptive Kapazität und empfänglicher Kontext entscheidend für die Assimilation sind. Die Autoren fordern theoriegeleitete, prozessorientierte und multidisziplinäre Forschung, um die komplexen Dynamiken der Innovationsverbreitung besser zu verstehen. (Greenhalgh et al. 2004)

52.13 Beratung

Beratungsunternehmen unterstützen bei der digitalen Transformation. Der Beratungsprozess beginnt mit einer Analyse der Bedürfnisse der Arztpraxis, gefolgt von einer individuellen Beratung und dem Vorschlag maßgeschneiderter digitaler Lösungen. Nach der Planung und Umsetzung, einschließlich Installation und Schulung, bieten die Anbieter fortlaufenden Support, um eine effiziente Nutzung sicherzustellen, während Datenschutz stets gewährleistet wird.

Name	URL
Docport	docport.de
Eterno Health	eterno.health
Arztkonsultation	arztkonsultation.de
Lux Digitale Praxis	lux-digitalepraxis.de
Digital Medizin	digital-medizin.com
Medizinio	medizinio.de
GoMedicus	gomedicus.com
Praxis Digital	praxisdigital.info

"Praxis-as-a-Service" (PaaS) ist ein innovatives Konzept, bei dem Arztpraxen als vollständig digitalisierte und outsourced gemanagte Einheiten betrieben werden, wobei Dienstleister die gesamte technische Infrastruktur, wie Telematikinfrastruktur und Softwarelösungen, bereitstellen und warten, um den Praxisbetrieb zu optimieren. "Innovation-as-a-Service" (IaaS) hingegen fokussiert sich darauf, Gesundheitseinrichtungen Zugang zu maßgeschneiderten, extern entwickelten Innovationslösungen zu bieten, etwa durch KI-gestützte Diagnostik oder digitale Therapieplattformen, ohne dass diese selbst entwickelt werden müssen. Beide Ansätze zielen darauf ab, die Effizienz zu steigern und den Fokus auf die Patientenversorgung zu legen, indem sie komplexe technologische Herausforderungen an spezialisierte Anbieter delegieren.

52.14 Praxisgründung Simulator

Praxisraum ist ein innovatives Planspiel, das angehende Ärztinnen und Ärzte spielerisch auf den Aufbau und die Organisation einer Vertragsarztpraxis vorbereitet. Unter www.praxisraum.de können Nutzer ein Serious Game erleben, das durch Gamification-Elemente wie Avatar-Auswahl, praxisnahe Entscheidungen und Herausforderungen motiviert. Ziel ist es, Wissenslücken zu schließen und Berührungsängste abzubauen, indem realitätsnahe Daten in eine interaktive, motivierende Spielumgebung eingebettet werden.

52.15 Institutionalisierung

In Deutschland haben sich mehrere Institute gebildet, die sich der digitalen Medizin widmen:

- Institut für Digitale Medizin (IDM) der Universität Bonn
- IDM am Universitätsklinikum Augsburg
- IDM am Philipps-Universität Marburg
- Fraunhofer MEVIS in Bremen
- University Center for Digital Healthcare (UCDHC) in Frankfurt am Main
- Institut für Digitale Medizin an der Goethe-Universität Frankfurt
- Innovationszentrum Digitale Medizin am Uniklinikum Aachen
- Institut für Digitalisierung in der Medizin am Uniklinikum Freiburg

53 Künstliche Intelligenz

53.1 Einleitung

Das Positionspapier des HAEV aus Juli 2024, betitelt "Künstliche Intelligenz (KI) in der Hausarztpraxis", beleuchtet den Einsatz von KI in der hausärztlichen Versorgung. Es betont die Chancen von KI, wie die Unterstützung bei Diagnose und Therapieplanung, die Entlastung von administrativen Aufgaben und die Verbesserung der Patienteninteraktion durch Chatbots. Gleichzeitig werden Risiken wie Datenschutzbedenken, ethische Fragen und mögliche Verzerrungen angesprochen. Das Papier fordert Transparenz, Qualitätssicherung der Daten, Anpassung an Praxisprozesse und die Entwicklung eines klaren regulatorischen Rahmens für den verantwortungsvollen Einsatz von KI in der Medizin. Es wird betont, dass KI als Ergänzung und nicht als Ersatz für ärztliche Entscheidungen dient, wobei die Sicherheit und der Datenschutz der Patienten sowie die Entlastung des Praxisteams im Vordergrund stehen.

Der Artikel "Ten Ways Artificial Intelligence Will Transform Primary Care" aus dem Jahr 2019 beschreibt, wie KI die hausärztliche Versorgung in den USA verändern könnte. Er hebt zehn Bereiche hervor, darunter Risikoprädiktion, Populationsgesundheitsmanagement, medizinischer Rat und Triage, und Diagnostik, in denen KI Verbesserungen bringen könnte. Die Herausforderung besteht darin, die Balance zu finden, wie KI am besten in den hausärztlichen Alltag integriert wird, um die vier Ziele (bessere Versorgung, bessere Gesundheit, geringere Kosten, Wohlbefinden der Arbeitskräfte) zu erreichen. (Lin, Mahoney, and Sinsky 2019)

Die Trendstudie "Künstliche Intelligenz in der ambulanten Versorgung: Trends, Chancen und Potenziale für das deutsche Gesundheitswesen" untersucht die Rolle von KI im Gesundheitswesen. Sie zeigt, dass ein Drittel der Ärzt:innen bereits KI nutzt, insbesondere in Bildgebung, Diagnostik und Dokumentation, während zwei Drittel ein hohes Zukunftspotenzial sehen. KI entlastet vor allem administrative Aufgaben, verbessert Prävention und ermöglicht personalisierte Medizin. Haftungsrisiken und Kontrollverlust sind jedoch zentrale Vorbehalte. Die Studie betont die Notwendigkeit europäischer Gesundheitsdaten, strenger Datenschutzstandards und umfassender Fortbildung, um KI verantwortungsvoll einzusetzen und den Fachkräftemangel zu mildern.

53.2 Lernmaterialien

53.2.1 Kostenfreie Angebote

Der KI-Campus bietet kostenlose Online-Kurse und Ressourcen zum Thema Künstliche Intelligenz in der Medizin, darunter Kurse zu Grundlagen, klinischen Anwendungen und Ethik. Diese Kurse sind für Mediziner:innen konzipiert und werden in Zusammenarbeit mit renommierten Partnern wie der Charité und dem DFKI angeboten.

openHPI ist die Bildungsplattform des Hasso-Plattner-Instituts, die kostenlose Online-Kurse zu Themen der Informatik anbietet. Diese Kurse richten sich an verschiedene Zielgruppen, von Einsteigern bis zu Fachpublikum, und decken sowohl Grundlagen als auch aktuelle Forschungsthemen ab. Die Plattform wurde 2012 als erstes europäisches MOOC-Projekt gestartet und bietet innovative Lernformate.

Kaggle Learn bietet eine Sammlung kostenloser, interaktiver Kurse zum Erlernen von Datenwissenschaft und maschinellem Lernen. Diese Kurse sind so gestaltet, dass Sie praktische Fähigkeiten erwerben können, die Sie sofort anwenden können. Kaggle Learn ist ideal für Anfänger und Fortgeschrittene, um ihre Fähigkeiten in Bereichen wie Python, Pandas, und maschinellem Lernen zu verbessern.

53.2.2 Kostenpflichtige Angebote

- nuvio.health/ki-kompetenztraining
- futurehealth.academy

53.3 Experimentelle Anwendungen

pillenfuchs.konsilado.de ist ein experimentelles KI-gestütztes Forschungsprojekt, das darauf abzielt, Medikationspläne mithilfe eines großes Sprachmodells zu überprüfen. Es handelt sich explizit nicht um ein medizinisches Angebot von menschlichen Ärzten oder Apothekern, sondern um ein experimentelles Tool. Die KI analysiert Medikationspläne basierend auf eingegebenen Patientendaten wie Alter, Geschlecht, Nierenfunktion und einem hochgeladenen Bundesmedikationsplan (als PDF oder Text). Dabei werden potenzielle Arzneimittelwechselwirkungen, Empfehlungen und Quellen ausgegeben. Die Ergebnisse sind jedoch ohne Gewähr, können Fehler enthalten und stellen keine verbindlichen Handlungsempfehlungen dar. Es wird ausdrücklich betont, dass nur der behandelnde Arzt verlässliche medizinische Ratschläge geben kann.

53.4 KI-Agenten

dianoviCDS unterstützt bei der Diagnose und Behandlung, indem es patientenspezifische Empfehlungen auf Basis von Symptomen, medizinischen Leitlinien und anonymisierten Patientendaten liefert. Die Plattform kombiniert Sprachmodelle mit klassischem maschinellem Lernen. Durch Integration in bestehende Informationssysteme optimiert dianoviCDS Arbeitsabläufe und unterstützt bei der Abrechnungsoptimierung. hessian.ai/aisrcommunity/dianovi

53.5 Online Plattformen

Kaggle-Datensätze und Kaggle-Wettbewerbe illustrieren den Einsatz künstlicher Intelligenz in der Medizin, indem sie Zugang zu Gesundheitsdaten und Herausforderungen bieten. Nutzende können Datensätze wie beispielsweise anonymisierte, fiktive Gesundheitsdaten oder medizinische Bilddaten herunterladen, um KI-Modelle für Diagnosen oder Therapieoptimierung zu trainieren. Parallel dazu fördern Wettbewerbe die Entwicklung von Algorithmen und Modellen, etwa zur Vorhersage von Krankheitsverläufen oder zur Analyse von Gesundheitsrisiken, durch kollaborativen Wissenswettbewerb. Kaggle bietet eine Plattform, auf der KI-gestützte Lösungen getestet, verfeinert und auf medizinische Probleme angewendet werden können.

53.6 Ethik

Das Projekt "Mein Doktor, die KI und ich" des Instituts für Geschichte, Ethik und Philosophie der Medizin an der Medizinischen Hochschule Hannover untersuchte den Einsatz von Künstlicher Intelligenz in der Gesundheitsversorgung aus der Perspektive von Bürgern und Ärzten über den Zeitraum von 2023 bis 2024. In mehreren Veranstaltungen wurde diskutiert, wie KI die Arzt-Patienten-Beziehung verändert und welche ethischen Herausforderungen dabei entstehen. Ziel war es, konkrete Handlungsempfehlungen für den verantwortungsvollen Einsatz von KI in der Medizin zu entwickeln.

Die Studie "Patients' Trust in Health Systems to Use Artificial Intelligence" von Paige Nong und Jodyn Platt (JAMA Network Open, 2025) untersucht das Vertrauen von US-Bürgern in Gesundheitssysteme hinsichtlich des verantwortungsvollen Einsatzes von Künstlicher Intelligenz (KI) und des Schutzes vor KI-bedingten Schäden. Basierend auf einer national repräsentativen Umfrage von 2039 Erwachsenen im Jahr 2023 zeigt die Studie, dass die Mehrheit (65,8 %) geringes Vertrauen in den verantwortungsvollen KI-Einsatz und 57,7 % geringes Vertrauen in den Schutz vor KI-Schäden hat. Höheres allgemeines Vertrauen in das Gesundheitssystem korreliert stark mit Vertrauen in KI-Nutzung, während Diskriminierungserfahrungen im Gesundheitswesen das Vertrauen senken. Die Autoren betonen die Notwendigkeit besserer

Kommunikation und Investitionen in die Vertrauenswürdigkeit von Gesundheitsorganisationen, um das Vertrauen in KI-Anwendungen zu stärken. (Nong and Platt 2025)

Die Studie "Expectations of healthcare AI and the role of trust: understanding patient views on how AI will impact cost, access, and patient-provider relationships" von Paige Nong und Molin Ji (Journal of the American Medical Informatics Association, 2025) untersucht die Erwartungen von US-Bürgern an Künstliche Intelligenz (KI) im Gesundheitswesen basierend auf einer national repräsentativen Umfrage mit 2039 Teilnehmern von Juni bis Juli 2023. Die Ergebnisse zeigen niedrige Erwartungen: Nur 19,4 % erwarten Kostensenkungen, 19,55 % eine Verbesserung der Arzt-Patienten-Beziehung und 30,28 % besseren Zugang zur Versorgung. Höheres Vertrauen in Gesundheitssysteme und Ärzte korreliert mit positiveren KI-Erwartungen, während Frauen sowie Schwarze und Hispanics höhere Erwartungen als Männer bzw. Weiße haben. Die Autoren betonen, dass Vertrauen und Patientenbindung zentrale Aspekte der KI-Governance sein sollten, um negative Auswirkungen auf das Vertrauen zu vermeiden und patientenzentrierte KI-Systeme zu fördern. (Nong and Ji 2025)

53.7 Datengetriebene Lösungen

Die Dienstleistung von Intrexx konzentriert sich auf die Bereitstellung einer Low-Code-Plattform, um Datenaustausch bestehender digitaler Systeme nahtlos zu ermöglichen. Intrexx ermöglicht die Erstellung von Datenanwendungen mit minimalem Programmieraufwand, indem es intuitive Tools wie den Daten-Designer für zentralisierte, datenschutzkonforme Datenverwaltung bereitstellt. Automatisierung wird durch vordefinierte Workflows realisiert, wodurch Routineaufgaben effizienter und fehlerärmer werden. Der Intrexx Applikations-Builder ermöglicht es Datenmodelle, Formulare und Workflows zu erstellen und an spezifische Anforderungen anzupassen. Es bedarf keine umfassenden IT-Kenntnisse, dank der Low-Code-Ansätze wie Drag-and-Drop und vorgefertigter Schnittstellen.

53.8 Übersichtsplattform

Die Website Alles KI bietet einen Überblick über KI-Anwendungen zum Einsatz im Alltag.

53.9 Forschung

AMIE (Articulate Medical Intelligence Explorer) ist ein KI-System basierend auf einem großen Sprachmodell, das für diagnostische Dialoge optimiert wurde. Der medizinische Dialog mit dem Patienten ist elementar für eine präzise Diagnose. KI kann diesen Prozess zugänglicher und konsistenter machen könnte. AMIE wurde mit einem neuartigen, simulationsbasierten Selbstlernsystem trainiert und in einer randomisierten, doppelt verblindeten Studie mit 149

klinischen Szenarien gegen Hausärzte getestet. Dabei zeigte AMIE eine höhere diagnostische Genauigkeit und übertraf die Ärzte in den meisten Bewertungskategorien, wie Anamneseaufnahme und Empathie. Dennoch betont der Artikel Einschränkungen, wie die ungewohnte Text-Chat-Schnittstelle, und fordert weitere Forschung für reale Anwendungen. (Tu et al. 2024) AMIE wurde erweitert, um nicht nur Diagnosen zu stellen, sondern auch das Follow-up zu unterstützen, indem es Krankheitsverläufe, Therapieansprechen und sichere Medikamentenverordnungen berücksichtigt. Basierend auf den Gemini-Modellen nutzt AMIE Techniken wie langes Kontextverständnis und geringe Halluzinationsraten, um Ärzte und Patienten bei komplexen Behandlungsplänen zu unterstützen.

- research.google/blog/amie-a-research-ai-system-for-diagnostic-medical-reasoning-and-conversations
- research.google/blog/advancing-amie-towards-specialist-care-and-real-world-validation
- $\bullet \ \ research.google/blog/from\mbox{-}diagnosis\mbox{-}to\mbox{-}treatment\mbox{-}advancing\mbox{-}amie\mbox{-}for\mbox{-}longitudinal\mbox{-}disease\mbox{-}management$

Die Studie "Why Is Primary Care Different? Considerations for Machine Learning Development with Electronic Medical Record Data" von Jacqueline K. Kueper et al., veröffentlicht am 24. April 2025 in NEJM AI, beleuchtet die Besonderheiten der Primärversorgung und deren Implikationen für die Entwicklung von maschinellem Lernen (ML) mit Daten aus elektronischen Patientenakten. Primärversorgung als Fundament des Gesundheitssystems zeichnet sich durch Erstkontakt, Ganzheitlichkeit, Koordination und Kontinuität aus, doch die ML-Entwicklung in diesem Bereich hinkt anderen medizinischen Fachrichtungen hinterher. Die Autoren betonen die Notwendigkeit maßgeschneiderter Methoden, die repräsentative Daten, ganzheitliche Kohorten, zielgerichtete Outcomes und validierungsstrategien für dezentrale klinische Kontexte berücksichtigen. Interdisziplinäre Zusammenarbeit und verstärkte Investitionen in ML-Forschung für die Primärversorgung könnten klinische Entscheidungsfindung, Patientenergebnisse und Innovationen im Gesundheitswesen verbessern. (Kueper et al. 2025)

Der Artikel "Application of Artificial Intelligence in Community-Based Primary Health Care: Systematic Scoping Review and Critical Appraisal" untersucht die Anwendung von Künstlicher Intelligenz (KI) in der Primärversorgung. Die systematische Übersichtsarbeit, veröffentlicht 2021, analysiert 90 Studien, die KI-Systeme in diesem Bereich getestet oder implementiert haben, und identifiziert häufig verwendete Methoden wie maschinelles Lernen (45 %), natürliche Sprachverarbeitung (27 %) und Expertensysteme (19 %). Die Ergebnisse zeigen Vorteile wie verbesserte Diagnose und Krankheitsmanagement, weisen jedoch auch auf Herausforderungen wie Datenvariabilität, ethische Bedenken und hohe Verzerrungsrisiken hin. Die Autoren betonen die Notwendigkeit weiterer Forschung, um die effektive Entwicklung und Implementierung von KI in der Primärversorgung zu fördern, insbesondere unter Berücksichtigung von Geschlecht, Alter und ethnischer Diversität. (Abbasgholizadeh Rahimi et al. 2021)

Die Studie "Artificial Intelligence in Outpatient Primary Care: A Scoping Review on Applications, Challenges, and Future Directions" untersucht den Einsatz von künstlicher Intelligenz (KI) in der ambulanten Grundversorgung. Sie analysiert, wie KI-Technologien wie

maschinelles Lernen und Deep Learning diagnostische Genauigkeit, Risikoprognosen, personalisierte Behandlungen und Workflow-Effizienz verbessern können. Die Autoren, Stacy Iannone, Amarpreet Kaur und Kevin B. Johnson, führten eine systematische Literaturrecherche nach PRISMA-ScR-Richtlinien durch und identifizierten 61 relevante Studien aus 3.203 gescreenten Manuskripten. Die Ergebnisse zeigen, dass KI hauptsächlich in der Modellentwicklung steckt, mit begrenzter realer Anwendung in Bereichen wie klinischer Entscheidungsfindung und Krankheitsdiagnose. Die Studie betont die Notwendigkeit von groß angelegten klinischen Studien, interdisziplinären Kooperationen und verbesserten Datenschutzstandards, um KI effektiv in die Primärversorgung zu integrieren und Patientenergebnisse zu verbessern. (Iannone, Johnson, and Kaur 2025)

53.9.1 Bürokratieerleichterung

Die Studie "Machine learning in general practice: scoping review of administrative task support and automation" untersucht den Einsatz von maschinellem Lernen zur Unterstützung und Automatisierung administrativer Aufgaben in der Allgemeinmedizin. Die Autoren analysierten 12 Studien, die überwiegend Terminplanungsaufgaben mit überwachten Lernmethoden behandeln, jedoch mit geringer Beteiligung von Allgemeinmedizinern. Die Forschung zeigt ein hohes Potenzial für solche Methoden, ist aber durch fehlende open-source-Daten und eine Priorisierung diagnostischer Aufgaben begrenzt. Zukünftige Studien sollten open-source-Daten nutzen und die Beteiligung von Ärzten klar dokumentieren. (Sørensen et al. 2023)

53.9.2 Arbeitsgruppen

- Das [Schliep Lab](https://schlieplab.org/] an der Brandenburgischen Technischen Universität erforscht mit KI neue Medikamente, untersucht Genome und entwickelt Algorithmen für Sequenzierungsdaten.
- Das van der Schaar Lab an der Universität Cambridge entwickelt KI- und maschinelle Lernmethoden für die Medizin.
- Das Digital Health Cluster des HPI forscht mit neuen Technologien an innovativen Lösungen, um die Gesundheit und das Wohlbefinden von Menschen und Gemeinschaften zu verbessern.

53.9.3 Akzeptanz Künstlicher Intelligenz

Das Projekt "KI-BA: Künstliche Intelligenz in der Versorgung – Bedingung der Akzeptanz von Versicherten" untersucht die Akzeptanz von KI-Anwendungen in der gesetzlichen Krankenversicherung (GKV) aus der Perspektive von Versicherten und Ärzt:innen. Ziel ist es, individuelle und kontextuelle Einflussfaktoren wie Alter, Bildung oder Technikaffinität zu identifizieren, die die Akzeptanz beeinflussen. Dazu werden KI-Einsatzgebiete kategorisiert, quantitative Befragungen mit etwa 1.500 Versicherten und 500 Ärzt:innen in Nordbayern durchgeführt und

Handlungsempfehlungen für die nutzergerechte Implementierung von KI-Systemen entwickelt. Das von der Fraunhofer-Gesellschaft und der Friedrich-Alexander-Universität Erlangen-Nürnberg geführte Projekt lief von August 2021 bis Januar 2024 und wurde mit ca. 900.000 Euro gefördert.

53.10 KI Lehre

Die Studie in "AI education for clinicians" (Januar 2025) betont die Notwendigkeit gezielter AI-Ausbildung für Kliniker, um den sicheren und effektiven Einsatz von AI-Tools in der Medizin zu gewährleisten. Sie schlägt drei Expertise-Stufen vor: grundlegende Fähigkeiten zur Nutzung von AI-Tools, fortgeschrittene Fähigkeiten zur kritischen Bewertung und ethischen Implikationen sowie Expertenfähigkeiten für technische Innovationen. Die Autoren diskutieren Herausforderungen in der Integration von AI in medizinische Curricula, insbesondere logistische und curriculare Hürden, und empfehlen multidisziplinäre Ansätze sowie angepasste Lehrpläne für verschiedene Gesundheitssysteme und Fachrichtungen. Beispiele bestehender AI-Ausbildungsprogramme werden zur Veranschaulichung angeführt. (Schubert et al. 2025)

53.11 KI Curriculum

Die Studie "AIFM-ed Curriculum Framework for Postgraduate Family Medicine Education on Artificial Intelligence: Mixed Methods Study" entwickelt einen Lehrplanrahmen, um Künstliche Intelligenz (KI) in die Weiterbildung kanadischer Hausärzte zu integrieren. Durch eine Literaturrecherche und Expertenpanels entstand das AIFM-ed-Framework, das KI-Inhalte wie Grundlagen der Datenwissenschaft, Anwendung von KI-Tools (z. B. Diagnoseunterstützung, Praxisorganisation), ethische Aspekte (z. B. Datenschutz, Bias) und Bewertungsmethoden für KI-Tools umfasst. Diese Inhalte werden im 24-monatigen kanadischen Hausmedizin-Curriculum longitudinal integriert: im ersten Jahr durch Grundlagenmodule, im zweiten durch praktische Anwendungen wie Simulationen. Das Framework orientiert sich an den CanMEDS-Kompetenzen und adressiert den Bedarf an digitaler Kompetenz, wie vom College of Family Physicians of Canada gefordert. Es soll angehende Hausärzte befähigen, KI verantwortungsvoll in der Praxis einzusetzen, und fordert weitere Validierung für eine flächendeckende Implementierung. (Tolentino et al. 2025)

Das Data-Augmented, Technology-Assisted Medical Decision Making (DATA-MD) Curriculum, entwickelt von einem interdisziplinären Team der University of Michigan, schließt die Wissenslücke von klinischem Personal bei der Bewertung und Nutzung von Künstlicher Intelligenz (KI) und Maschinenlernen (ML). Im Mai und Juni 2023 mit 23 Assistenzärzten der Inneren Medizin getestet, umfasst das Curriculum vier Module zu KI/ML-Grundlagen, Epidemiologie und Biostatistik, Unterstützung diagnostischer Entscheidungen sowie ethischen

und rechtlichen Aspekten. Das Pilotprogramm zeigte signifikante Verbesserungen der Wissensstände in drei Modulen und erhöhte das Vertrauen der Lernenden in die Bewertung von KI/ML-Literatur und deren Anwendung in der klinischen Praxis. Trotz Einschränkungen wie kleiner Stichprobengröße und fehlendem Fokus auf generative KI zeigt das Curriculum Potenzial für eine breitere Anwendung in verschiedenen medizinischen Fachrichtungen und Institutionen, mit Plänen für Erweiterung und regelmäßige Aktualisierungen, um neue KI-Technologien zu berücksichtigen. (A. Wong et al. 2024)

53.12 Internationaler Vergleich

Der Bericht "Trust, attitudes and use of artificial intelligence: A global study 2025" zeigt, dass Deutschland im Vergleich zu anderen Ländern niedrige Werte bei KI-Ausbildung, -Wissen und -Kompetenz aufweist, wobei nur 20% der Befragten KI-bezogene Schulungen angaben, das Wissen bei 2,4/5 und die Kompetenz bei 4,0/7 liegt. Viele nutzen KI-Systeme regelmäßig, doch nur einige glauben, dass die Vorteile die Risiken überwiegen, und die Besorgnis über KI überwiegt Optimismus. Es wird Regulierung gefordert, bestehende Vorschriften seien unzureichend, wobei die wahrgenommene Angemessenheit von Schutzmaßnahmen von 2022 bis 2024 sank. Im Arbeitskontext stieg die regelmäßige KI-Nutzung, und die organisatorische Einführung von KI wuchs, doch die Unterstützung für verantwortungsvolle KI-Nutzung nahm ab. Das KI-Wissen blieb konstant, aber Sorgen und wahrgenommene Risiken stiegen, während Vertrauen in KI-Systeme und deren Vertrauenswürdigkeit abnahmen. Deutschland zeigt somit geringe KI-Akzeptanz, sinkendes Vertrauen und wachsende Skepsis, ähnlich wie andere fortgeschrittene Volkswirtschaften.

53.13 Regulatorik

Der Artikel "Regulation of AI: Learnings from Medical Education" von Vokinger, Soled und Abdulnour, veröffentlicht im April 2025 in NEJM AI, beleuchtet die regulatorischen Herausforderungen bei der Integration von künstlicher Intelligenz (KI) in das Gesundheitswesen aufgrund ihrer dynamischen und intransparenten Natur. Die Autoren schlagen ein KI-CBME-Lebenszyklus-Framework vor, das Parallelen zur kompetenzbasierten medizinischen Ausbildung (CBME) zieht. Dieses Framework übernimmt die fünf Kernkomponenten von CBME – Kompetenzdefinition, schrittweises Vorgehen, maßgeschneiderte Lernerfahrungen, kompetenzorientierter Unterricht und standardisierte Bewertung – zur Regulierung von KI-Systemen. Es betont kontinuierliche, ergebnisorientierte Bewertungen in Produktionsumgebungen, um Patientensicherheit, Verantwortlichkeit und Vertrauen zu gewährleisten und gleichzeitig das Potenzial von KI im Gesundheitswesen zu maximieren. (Vokinger, Soled, and Abdulnour 2025)

54 Ethik

Die Physicians' Charter for Responsible AI ist eine Initiative von Ärzten, die sich für den verantwortungsvollen Einsatz von Künstlicher Intelligenz in der Medizin einsetzt. Sie betont, dass KI stets patientenzentriert, ethisch, fair und sicher sein muss. Die Charta basiert auf den vier Säulen der medizinischen Ethik – Autonomie, Wohltun, Nicht-Schaden und Gerechtigkeit – und sieht KI als Unterstützung für Ärzte, nicht als Ersatz für die menschliche Arzt-Patienten-Beziehung.

54.1 Vertrauen

Die Studie "A systematic review of consumers' and healthcare professionals' trust in digital healthcare" von Soraia de Camargo Catapan et al. (npj Digital Medicine, 2025) analysiert systematisch 49 Studien zu Vertrauensmessungen in digitaler Gesundheitsversorgung aus der Perspektive von Konsumenten und Gesundheitsfachkräften. Die Ergebnisse zeigen, dass Vertrauen ein komplexes Konstrukt ist, das die Nutzung, Akzeptanz und Nützlichkeit digitaler Gesundheitsangebote beeinflusst. Konsumentenvertrauen wird durch Datengenauigkeit, Privatsphäre, digitale Kompetenz, Bildung und Einkommen beeinflusst, während Fachkräfte Vertrauen durch Schulung und gute Systemleistung entwickeln. Viele Studien verwenden jedoch nicht validierte Instrumente, und es fehlt ein theoretischer Rahmen für Vertrauen in digitale Gesundheit. Die Autoren fordern verbesserte, validierte Messinstrumente und einen Fokus auf kulturelle sowie geografische Unterschiede, um Vertrauen zu fördern und die Implementierung digitaler Gesundheitslösungen zu unterstützen. (Catapan et al. 2025)

Die Studie "Expectations of healthcare AI and the role of trust: understanding patient views on how AI will impact cost, access, and patient-provider relationships" untersucht die Erwartungen US-amerikanischer Erwachsener an KI im Gesundheitswesen mittels einer Umfrage von Juni bis Juli 2023 mit 2039 Teilnehmern. Die Ergebnisse zeigen geringe Erwartungen: Nur 19,4 % erwarten eine Verbesserung der Bezahlbarkeit, 19,55 % eine bessere Arzt-Patient-Beziehung und 30,28 % einen verbesserten Zugang zur Versorgung. Höheres Vertrauen in Anbieter und das Gesundheitssystem korreliert mit optimistischeren Erwartungen. Demografische Faktoren wie Geschlecht und Ethnie beeinflussen die Erwartungen. Die Studie betont die Bedeutung von Vertrauen und Patientenbeteiligung in der KI-Governance, um Gesundheitssysteme an die Erwartungen der Öffentlichkeit anzupassen und Vertrauen zu erhalten. (Nong and Ji 2025)

55 International

55.1 Digitale Primärversorgung in anderen Ländern

In fünf Primärversorgungspraxen in Manitoba wurden 57 Interviews und vier Diskussionsgruppen durchgeführt. Die Ergebnisse zeigten, dass die EPA-Nutzungsraten auf einer Skala von 0 bis 5 zwischen 2,3 und 3,0 lagen. Besonders niedrig war die Nutzung von Entscheidungsunterstützungssystemen, der Bereitstellung von Patientenzugriff auf eigene Daten und von Praxis-Reporting-Tools. Hindernisse für die vollständige Nutzung der EPA waren unter anderem Implementierungsprobleme, unzureichende eHealth-Infrastruktur, mangelndes Bewusstsein für EPA-Funktionen und schlechte Datenqualität. Viele Ärzte nutzten ihre EPA lediglich als "elektronische Papierakten" und schöpften deren Potenzial nicht aus. Die Studie empfiehlt Bildungs- und Qualitätsverbesserungsmaßnahmen, um die Datenqualität zu erhöhen und die Nutzung der EPA zu optimieren. (Price, Singer, and Kim 2013a)

Die Studie "The informatics capability maturity of integrated primary care centres in Australia" untersucht, wie gut integrierte Primärversorgungszentren in Australien Informationen sammeln, verwalten und teilen sowie eHealth-Technologien implementieren. Die Ergebnisse zeigen, dass diese Zentren unterschiedliche Modelle in Bezug auf Finanzierung, Eigentum, Führung und Organisation aufweisen. Der Einsatz digitaler Werkzeuge zur Datensammlung und -nutzung variiert, wobei Probleme bei der Konnektivität und dem Fehlen technischer Standards die Datenintegration und -weitergabe erschweren. (Liaw et al. 2017)

Eine Studie von Haverinen et al. untersuchte die Entwicklung der Digitalisierung in Finnland. Die größte Entwicklung der E-Health-Reife fand zwischen 2011 und 2014 statt, wobei die Entwicklung danach fortgesetzt wurde und einige Indikatoren bereits den maximalen Nutzungsgrad erreicht haben. Die primäre Gesundheitsversorgung hinkt in der Entwicklung hinter der spezialisierten Versorgung her. Es wurden regionale Unterschiede zwischen den finnischen Krankenhausbezirken festgestellt. Die Ergebnisse verdeutlichen, dass E-Health in Finnland durch nationale Strategien und gesetzliche Änderungen kontinuierlich gefördert wurde. Einige Funktionen haben bereits eine 100%-ige Nutzung erreicht, aber es besteht noch Entwicklungspotenzial, insbesondere in der primären Gesundheitsversorgung. Die Studie untersuchte die Entwicklung der E-Health-Reife in Finnland von 2011 bis 2020, sowohl im Bereich der primären Gesundheitsversorgung als auch der spezialisierten Versorgung. Daten wurden durch webbasierte Fragebögen im Rahmen von Umfragen zur Nutzung von Informations- und Kommunikationstechnologie im finnischen Gesundheitswesen erhoben. Es wurden insgesamt

16 Indikatoren verwendet, die die Verfügbarkeit und Nutzung von elektronischen Patientenakten, Bildarchivierungssystemen, Gesundheitsinformationsaustausch und anderen wichtigen E-Health-Funktionen beschrieben. (Haverinen et al. 2022)

55.2 Wie digital ist das deutsche Gesundheitswesen im internationalen Vergleich?

Deutschland befindet sich laut dem Global Digital Health Monitor (GDHM, Stand Mai 2023) in Phase 5 der digitalen Gesundheit und zeigt Stärken in den Bereichen Führung und Governance, Gesetzgebung sowie Infrastruktur, mit Bewertungen von 5, insbesondere durch Datenschutzund Datensicherheitsgesetze sowie Infrastruktur in über 75 % der Gesundheitseinrichtungen. Der private Sektor beteiligt sich systematisch an digitalen Gesundheitsaktivitäten (Score: 4), und Strategien zur Förderung von Gerechtigkeit und Menschenrechten in digitalen Gesundheitslösungen sind etabliert. Jedoch fehlen Daten für viele Indikatoren in den Bereichen Strategie und Investitionen, Arbeitskräfte, Standards und Interoperabilität sowie Dienste und Anwendungen.

Der Stand von eHealth in Deutschland hat sich laut der "2024 Digital Decade eHealth Indicator Study" im Vergleich zu 2022 deutlich verbessert. Fortschritte gibt es insbesondere in der Verfügbarkeit von elektronischen Gesundheitsakten und der Anbindung verschiedener Gesundheitsdienstleister an digitale Systeme. Dennoch bleibt der Zugang zu bestimmten Gesundheitsdaten, etwa zu medizinischen Bildern oder Daten von medizinischen Geräten, eingeschränkt. Ein weiteres Hindernis ist, dass private Gesundheitsdienstleister weniger gut vernetzt sind als öffentliche. Ambulante Einrichtungen sind weniger gut in digitale Systeme eingebunden als Krankenhäuser. Die Erhebung basiert auf einer Online-Umfrage, die von den zuständigen Behörden in jedem teilnehmenden Land ausgefüllt wird. Die Antworten spiegeln den Stand der Dinge zum 31. Dezember 2023 wider. Die Analyse erfolgt anhand von zwölf Teilindikatoren, die verschiedene Aspekte des digitalen Gesundheitswesens abdecken. Deutschland befindet sich im eHealth-Reifegrad im oberen Mittelfeld und wird als "Fast-Tracker" eingestuft. Die Umfrage zur Digitalisierung im Gesundheitswesen unterscheidet nicht explizit zwischen stationären und ambulanten Bereichen. Während größere Krankenhäuser meist an zentrale digitale Systeme angebunden sind, haben viele niedergelassene Ärzt*innen und private Einrichtungen noch keinen vollständigen digitalen Zugang. Öffentliche Krankenhäuser und Kliniken sind mit einer durchschnittlichen Vernetzungsrate von 74 % innerhalb der EU-27 besser in digitale Systeme integriert als ambulante Einrichtungen. Private Gesundheitsdienstleister, darunter viele ambulante Praxen, haben hingegen eine geringere Vernetzungsrate von nur 55 %. In Deutschland zeigt sich dieser Trend ebenfalls. (Commission et al. 2024)

Die Bertelsmann-Studie "SmartHealthSystems: International comparison of digital strategies" untersucht die Digitalisierungsstrategien im Gesundheitswesen in 17 Ländern und zeigt, dass das deutsche Gesundheitssystem im internationalen Vergleich hinterherhinkt. Deutschland belegt im entwickelten Digital Health Index den 16. von 17 Plätzen der untersuchten Länder.

Während in anderen Ländern die wichtigsten Patientendaten in elektronischen Gesundheitsakten gespeichert und Rezepte digital übermittelt werden, arbeitet Deutschland noch an den Grundlagen digitaler Gesundheitsnetze und tauscht Informationen hauptsächlich auf Papier aus. Die Studie stellt fest, dass in Deutschland die Anwendung intelligenter Algorithmen auf theoretischer Ebene diskutiert wird, während sie in Ländern wie Israel bereits zur Krebsfrüherkennung eingesetzt werden. Im Vergleich zu Ländern wie Dänemark, Israel oder Kanada, die in allen Bereichen deutlich höhere Werte aufweisen, sind Deutschlands Bewertungen, insbesondere in der tatsächlichen Datennutzung, sehr niedrig. Deutschland zeichnet sich zudem durch strenge Datenschutzbestimmungen und das Fehlen einer übergreifenden strategischen Ausrichtung aus, wobei finanzielle Anreize für die landesweite Einführung von digitalen Lösungen fehlen. (Thiel et al. 2019)

Die Studie "The Digital Competitiveness of European Countries: A Multiple-Criteria Approach" von Jelena J. Stankovic, Ivana Marjanovic, Sasa Drezgic und Zarko Popovic schlägt eine Methodik zur Messung der digitalen Wettbewerbsfähigkeit europäischer Länder vor, indem sie einen zusammengesetzten Index unter Verwendung von Multi-Kriterien-Analysen (CRITIC und TOPSIS) entwickelt. Basierend auf 13 Indikatoren aus der Eurostat-Datenbank wird die digitale Wettbewerbsfähigkeit von 30 europäischen Ländern bewertet, wobei nordische Länder die höchsten Werte erzielen, während osteuropäische Länder zurückliegen. Eine Cluster-Analyse zeigt zudem einen Zusammenhang zwischen digitaler Wettbewerbsfähigkeit und wirtschaftlicher Leistung, wobei Länder mit höherer digitaler Kompetenz auch bessere wirtschaftliche Ergebnisse aufweisen. Die Studie betont die Bedeutung der IKT-Nutzung in Unternehmen und liefert Entscheidungsträgern wertvolle Einblicke für die strategische Planung der digitalen Zukunft. (Stankovic et al. 2021)

55.3 Sektorenübergreifende Elektronische Gesundheitsakte

Die gemeinsame Gesundheitsakte in Katalonien (HC3), Història Clínica Compartida de Catalunya, wurde 2008 eingeführ. Es integriert Daten aus Krankenhäusern, Primärversorgungszentren, Langzeitpflegeeinrichtungen, psychiatrischen Einrichtungen, Notfalldiensten, Apotheken und sozialen Pflegeeinrichtungen in ein zentrales System. HC3 konsolidiert Informationen aus mehreren elektronischen Patientenakten (EMRs) unter Verwendung internationaler Standards wie HL7-CDA, SNOMED-CT und LOINC, mit einem eindeutigen Patientenidentifikator. Der Zugang ist auf zugelassene öffentliche Anbieter über ein sicheres virtuelles privates Netzwerk beschränkt, mit einem dreistufigen Sicherheitskonzept für Rückverfolgbarkeit und rechtliche Konformität. HC3 hat sich von einem einfachen Datenrepositorium zu einem strategischen Instrument für ein integriertes, patientenzentriertes Versorgungsmodell entwickelt. (Solans Fernández et al. 2017; Solans et al. 2018; Solans 2020; Piera-Jiménez et al. 2024; Piera-Jiménez and Carot-Sans 2025)

55.4 Veranstaltungen

- arcinnovation.org
- himss.org/events-overview

56 Zusammenfassung

56.1 Wisssensbuch

"Praxis-IT" zeigt praxisnahe IT-Lösungen auf, die den Arbeitsalltag in Praxen effizienter gestalten können. Es behandelt Themen von Praxisverwaltungssoftware bis hin zu KIM-Diensten und gibt wertvolle Einblicke in deren Anwendungsmöglichkeiten.

56.2 Leitprinzipien

Programmiersprachen werden oft von Leitprinzipien begleitet, die ihre Designphilosophie und Nutzung auf einer Metaebene definieren. Diese Prinzipien, wie der "Zen of Python" oder die Unix-Philosophie, bieten Entwicklern Orientierung, indem sie Werte wie Einfachheit, Sicherheit oder Effizienz hervorheben. Sie dienen als Kompass für die Anwendung und Weiterentwicklung der Sprache in der Praxis. Im Umgang mit digitalen Anwendungen im ambulanten Bereich können folgende Handlungsprinzipien hilfreich sein:

i Evidenz prüfen

Vor der Einführung digitaler Lösungen aktuelle Studien und Daten zu Auswirkungen auf Patienten, Mitarbeiter und die Praxisgemeinschaft analysieren. Schaden vermeiden steht an erster Stelle ("First do no harm").

i Einfache Lösungen priorisieren

Bestehende Software vollständig nutzen und Defizite beheben, bevor komplexe Anwendungen eingeführt werden. Künstliche Intelligenz ist nur ein Mittel unter vielen und andere Mittel können Künstlicher Intelligenz überlegen sein.

i Sichere Kommunikation gewährleisten

Verschlüsselte Messengerdienste anstelle unverschlüsselter E-Mails verwenden und Patienten sichere Zugangswege bereitstellen.

i Fehler systematisch managen

Softwarefehler akzeptieren, analysieren, in Teilprobleme zerlegen und lösen. Bei Bedarf eigenständig Hilfe recherchieren bspw. in Nutzerforen oder andere Personen konsultieren.

i Testumgebungen für Lernen und Ausprobieren bereitstellen

Sichere und realitätsnahe Testumgebungen, Sandkästen oder Demos einrichten, um neue Technologien und Prozesse risikofrei zu erlernen und auszuprobieren. Dadurch werden Schwierigkeiten und Fehler in produktiven Umgebungen minimiert, während die Kompetenzentwicklung gefördert wird.

i Lernen und Verändern

Bereitschaft zeigen, neue Technologien zu erlernen und Arbeitsweisen entsprechend anzupassen, um den digitalen Wandel aktiv mitzugestalten.

i Digital wenn möglich, analog wenn nötig

Digitale Werkzeuge sind nicht für alle Menschen einfach zu nutzen. Digitale Anwendungen können ausfallen. Analoge Alternativen werden weiterhin benötigt.

Mitarbeiter und Patienten einbinden

Mitarbeiter und Patienten aktiv in die sichere Nutzung digitaler Technologien einbeziehen und durch Anleitung und Unterstützung mitnehmen.

Nützliche Lösungen erkennen und kommunizieren

gute digitale Werkzeuge identifizieren und Erkenntnisse kommunizieren, um eine effektive Nutzung zu fördern.

i Funktionen nutzen und Communitys einbinden

Die vorhandenen Funktionen bestehender Software voll ausschöpfen und softwarespezifische Communitys sowie Onlineforen nutzen, um Effizienz zu steigern und von bestehendem Wissen zu profitieren.

Gute Suchfunktion vor Hierarchienavigation

Digitale Systeme mit effizienten Suchfunktionen priorisieren, um Informationen schneller zu finden, anstatt auf komplexe Hierarchienavigation zu setzen.

i Daten nicht physisch versenden

Digitale Übertragung von Daten nutzen, um Informationen effizient auszutauschen, anstatt physische Wege von Personen zu erfordern.

i Standards vor individuellen Regeln

Allgemein anerkannte Standards bevorzugen, um Kompatibilität und Effizienz zu gewährleisten.

i Aus Praxisdaten lernen

Vorhandene Daten aus dem Praxisalltag erheben, verstehen und einsetzen, um Abläufe effizienter zu gestalten.

Daten können die primärärztliche Versorgung verbessern, indem sie systematisch genutzt werden, um die Patientenerfahrung und Versorgungsqualität zu optimieren, wie zwei Studien zeigen. Die Untersuchung von Ellis et al. (Ellis et al. 2025) beschreibt, wie eine australische Hausarztpraxis Patientenerfahrungsdaten in einem Learning Health System (LHS) integriert. De Lusignan und van Weel (Lusignan and Weel 2006) betonen die Chancen routinemäßig erhobener Computer-Daten, die dank wachsender Datenmengen, besserer Qualität und Technologie Fortschritte in Audit, Epidemiologie und Versorgungsplanung ermöglichen, trotz Hindernissen wie begrenzten Forschungsmethoden und Datenschutzfragen. Beide Ansätze verdeutlichen, dass Daten die Grundlage für evidenzbasierte Verbesserungen in der ambulanten Versorgung bilden können.

56.3 Projekt

Das Projekt "Digitalisierungslots:innen in der Brandenburger Primärversorgung" (DiLoB), gefördert vom Bundesgesundheitsministerium im Rahmen der Ressortforschung, zielt darauf ab, die Digitalisierung in Arztpraxen der Primärversorgung in Brandenburg nachhaltig zu etablieren. Unter der Leitung der Medizinischen Hochschule Brandenburg (MHB) unterstützt es Praxen bei der Einführung digitaler Prozesse, indem sogenannte Digitalisierungslots:innen – geschultes Personal – Ärzte und Teams bei der Nutzung digitaler Technologien begleiten. Es adressiert die Herausforderungen, die insbesondere ältere Mediziner:innen bei der Integration

neuer Technologien empfinden, und nutzt das digitale Reifegradmodell der Kassenärztlichen Vereinigung Westfalen-Lippe. Durch die Einbindung regionaler Akteure wie Ärztenetzwerke soll die Nachhaltigkeit der Ergebnisse gesichert werden, um die Versorgung zu verbessern und digitale Kompetenzen langfristig zu stärken.

- \bullet mhb-fontane.de/de/DiLoB
- bundesgesundheitsministerium.de

56.4 Produktneutralität

Die aufgeführten Produkte dienen ausschließlich der Veranschaulichung und wurden unabhängig ausgewählt. Die Liste erhebt keinen Anspruch auf Vollständigkeit und stellt keine Empfehlung, Bewertung oder Werbung dar. Die Auswahl erfolgte nach den wissenschaftlichen Grundsätzen des DiLoB-Projektes und unter Berücksichtigung der geltenden Neutralitätsrichtlinien.

57 Referenzen

- Abbasgholizadeh Rahimi, Samira, France Légaré, Gauri Sharma, Patrick Archambault, Herve Tchala Vignon Zomahoun, Sam Chandavong, Nathalie Rheault, et al. 2021. "Application of Artificial Intelligence in Community-Based Primary Health Care: Systematic Scoping Review and Critical Appraisal." Journal of Medical Internet Research 23 (9): e29839.
- Adedinsewo, Demilade, Lauren Eberly, Olayemi Sokumbi, Jorge Alberto Rodriguez, Christi A Patten, and LaPrincess C Brewer. 2023. "Health Disparities, Clinical Trials, and the Digital Divide." In *Mayo Clinic Proceedings*, 98:1875–87. 12. Elsevier.
- Ahrens, Diane. 2023. "Digitales Dorf Zum Nachmachen." In Smart Region: Angewandte Digitale lösungen für Den ländlichen Raum: Best Practices Aus Den Modellprojekten "Digitales Dorf Bayern", 401–12. Springer.
- Akobeng, Anthony K, Neil O'Leary, Andy Vail, Nailah Brown, Dono Widiatmoko, Andrew Fagbemi, and Adrian G Thomas. 2015. "Telephone Consultation as a Substitute for Routine Out-Patient Face-to-Face Consultation for Children with Inflammatory Bowel Disease: Randomised Controlled Trial and Economic Evaluation." *EBioMedicine* 2 (9): 1251–56.
- Albrecht, Alexander, Jule Taubmann, Ioanna Minopoulou, Lukas Hatscher, Stefan Kleinert, Felix Mühlensiepen, Martin Welcker, et al. 2025. "Real-World Evidence of Digital Health Applications (DiGAs) in Rheumatology: Insights from the DiGAReal Registry." Rheumatology and Therapy n/a: n/a. https://doi.org/10.1007/s40744-025-00744-y.
- Allado, Edem, Mathias Poussel, Anthony Moussu, Oriane Hily, Margaux Temperelli, Asma Cherifi, Veronique Saunier, Yohann Bernard, Eliane Albuisson, and Bruno Chenuel. 2022. "Accurate and Reliable Assessment of Heart Rate in Real-Life Clinical Settings Using an Imaging Photoplethysmography." Journal of Clinical Medicine 11 (20): 6101.
- Andreassen, Hege K, Kari Dyb, Carl R May, Catherine J Pope, and Line L Warth. 2018. "Digitized Patient–Provider Interaction: How Does It Matter? A Qualitative Meta-Synthesis." Social Science & Medicine 215: 36–44.
- Arfi, Wissal Ben, Imed Ben Nasr, Galina Kondrateva, and Lubica Hikkerova. 2021. "The Role of Trust in Intention to Use the IoT in eHealth: Application of the Modified UTAUT in a Consumer Context." Technological Forecasting and Social Change 167: 120688.
- Assing Hvidt, E, H Atherton, J Keuper, E Kristiansen, EC Lüchau, B Lønnebakke Norberg, J Steinhäuser, J van den Heuvel, and L van Tuyl. 2023. "Low Adoption of Video Consultations in Post–COVID-19 General Practice in Northern Europe: Barriers to Use and Potential Action Points." *Journal of Medical Internet Research* 25: e47173. https://doi.org/10.2196/47173.
- Atherton, Helen, Abi Eccles, Leon Poltawski, Jeremy Dale, John Campbell, and Gary Abel. 2024. "Investigating Patient Use and Experience of Online Appointment Booking in Pri-

- mary Care: Mixed Methods Study." Journal of Medical Internet Research 26 (1): e51931. https://doi.org/10.2196/51931.
- Bak, Marieke AR, Daan Horbach, Alena Buyx, and Stuart McLennan. 2025. "A Scoping Review of Ethical Aspects of Public-Private Partnerships in Digital Health." *Npj Digital Medicine* 8 (1): 129.
- Bashshur, Rashid L., Joel D. Howell, Elizabeth A. Krupinski, Kathryn M. Harms, Noura Bashshur, and Charles R. Doarn. 2016. "The Empirical Foundations of Telemedicine Interventions in Primary Care." *Telemedicine Journal and E-Health*. https://doi.org/10.1089/tmj.2016.0045.
- Bastian, Hilda, Paul Glasziou, and Iain Chalmers. 2010. "Seventy-Five Trials and Eleven Systematic Reviews a Day: How Will We Ever Keep Up?" *PLoS Medicine* 7 (9): e1000326.
- Berg, Liselot N van den, Cynthia Hallensleben, Lisa AE Vlug, Niels H Chavannes, and Anke Versluis. 2024. "The Asthma App as a New Way to Promote Responsible Short-Acting Beta2-Agonist Use in People with Asthma: Results of a Mixed Methods Pilot Study."
 JMIR Hum Factors 11 (April): e54386. https://doi.org/10.2196/54386.
- Berger, Mathea, Jan Peter Ehlers, and Julia Nitsche. 2025. "Aligning with the Goals of the Planetary Health Concept Regarding Ecological Sustainability and Digital Health: Scoping Review." Journal of Medical Internet Research 27: e71795.
- Berner, Frank, Cordula Endter, and Christine Hagen. 2020. Ältere Menschen Und Digitalisierung: Erkenntnisse Und Empfehlungen Des Achten Altersberichts. Bundesministerium für Familie, Senioren, Frauen und Jugend.
- Bhargava, Reena, Gregg Gayre, Jie Huang, Evangeline Sievers, and Mary Reed. 2021. "Patient e-Visit Use and Outcomes for Common Symptoms in an Integrated Health Care Delivery System." *JAMA Network Open* 4 (3): e212174–74. https://doi.org/10.1001/jamanetworkopen.2021.2174.
- Blumenberg, Viktoria, Lisa Siegmund, Lisa Frölich, Kai Rejeski, Friederike Hildebrandt, Christian Schmidt, Michael von Bergwelt, Veit L Buecklein, and Marion Subklewe. 2021. "'My t Cell': A Smartphone Application for Guidance of CAR t Logistics and Management of CAR t & BiTE Related Toxicities." *Blood* 138: 1926.
- Boers, Sarah N, Karin R Jongsma, Federica Lucivero, Jiska Aardoom, Frederike L Büchner, Martine de Vries, Persijn Honkoop, et al. 2020. "SERIES: eHealth in Primary Care. Part 2: Exploring the Ethical Implications of Its Application in Primary Care Practice." European Journal of General Practice 26 (1): 26–32.
- Böhm, Katharina. 2020. "Die Rolle Der Kommunen Im Bereich Gesundheit: Eine Analyse Der Kooperationen Zwischen Kommunen Und Medizinischen Leistungs-Erbringern Des Versorgungssystems Im Rahmen von Patienten-Orientierten Zentren Der Primär-Und Langzeit-Versorgung (PORT)."
- Borges do Nascimento, Israel Júnior, Hebatullah Abdulazeem, Lenny Thinagaran Vasanthan, Edson Zangiacomi Martinez, Miriane Lucindo Zucoloto, Lasse Østengaard, Natasha Azzopardi-Muscat, Tomas Zapata, and David Novillo-Ortiz. 2023. "Barriers and Facilitators to Utilizing Digital Health Technologies by Healthcare Professionals." NPJ Digital Medicine 6 (1): 161.
- Boschini, Cecilia. n.d. "The Secure Messaging App Conundrum: Signal Vs. Telegram."

- Bradshaw, Leah Marie, Margaret E Gergar, and Ginger A Holko. 2011. "Collaboration in Wound Photography Competency Development: A Unique Approach." *Advances in Skin & Wound Care* 24 (2): 85–92.
- Brady, Paul, Andrew Kelion, Tom Hyde, Edward Barnes, Hazim Rahbi, Andy Beale, and Steve Ramcharitar. 2019. "CT Coronary Angiography with HeartFlow®: A User's Perspective." Br J Cardiol 26: 105–9.
- Bringmann, Julia, and Michaela Evans-Borchers. n.d. "Die Digitale Dividende in Der Pflege." Brückner, Maxi. 2023. "Reverse Engineering Des Instant Messenger-Dienstes "Threema "." PhD thesis, Hochschule Mittweida.
- Bruthans, Jan, Georg Duftschmid, Tora Hammar, Przemyslaw Kardas, Lóránt Bertalan, Martin J Hug, Cille Büllow, et al. 2025. "Comparison of Electronic Prescription Systems in the European Union: Benchmarking Development, Use, and Future Trends." *IEEE Journal of Biomedical and Health Informatics*.
- Burton-Jones, Andrew, Saeed Akhlaghpour, Stephen Ayre, Payal Barde, Andrew Staib, and Clair Sullivan. 2020. "Changing the Conversation on Evaluating Digital Transformation in Healthcare: Insights from an Institutional Analysis." *Information and Organization* 30 (1): 100255.
- Busse, Reinhard, Miriam Blümel, Franz Knieps, and Till Bärnighausen. 2017. "Statutory Health Insurance in Germany: A Health System Shaped by 135 Years of Solidarity, Self-Governance, and Competition." *The Lancet* 390 (10097): 882–97.
- Buters, J, M Gonzalez-Alonso, L Klimek, JC Simon, and R Treudler. 2021. "Automatisches Pollen-Monitoring." *Allergologie* 44 (12): 932.
- Car, Josip, Qi Chwen Ong, Tatiana Erlikh Fox, Daniel Leightley, Sandra J. Kemp, Igor Svab, Kelvin K. F. Tsoi, et al. 2025. "The Digital Health Competencies in Medical Education Framework: An International Consensus Statement Based on a Delphi Study." *JAMA Network Open* 8 (1): e2453131–31. https://doi.org/10.1001/jamanetworkopen.2024.53131.
- Carvalho, João Vidal, Álvaro Rocha, and António Abreu. 2016. "Maturity Models of Health-care Information Systems and Technologies: A Literature Review." *Journal of Medical Systems*. https://doi.org/10.1007/s10916-016-0486-5.
- Casillas, Alejandra, and Anshu Abhat. 2024. "The Los Angeles County Department of Health Services Health Technology Navigators: A Novel Health Workforce to Digitally Empower Patient Communities in Safety Net Systems." *The Journal of Medicine Access.* SAGE Publications Sage UK: London, England.
- Castor, Charlotte, Rose-Marie Lindkvist, Inger Kristensson Hallström, and Robert Holmberg. 2023. "Health Care Professionals' Experiences and Views of eHealth in Pediatric Care: Qualitative Interview Study Applying a Theoretical Framework for Implementation." JMIR Pediatrics and Parenting 6: e47663.
- Catapan, Soraia de Camargo, Hannah Sazon, Sophie Zheng, Victor Gallegos-Rejas, Roshni Mendis, Pedro HR Santiago, and Jaimon T Kelly. 2025. "A Systematic Review of Consumers' and Healthcare Professionals' Trust in Digital Healthcare." NPJ Digital Medicine 8 (1): 115.
- Chauhan, Gauri Kumari, Patrick Vavken, and Christine Jacob. 2025. "Mobile Apps and Wearable Devices for Cardiovascular Health: Narrative Review." JMIR Mhealth Uhealth

- 13 (April): e65782. https://doi.org/10.2196/65782.
- Chen, Ciao-Sin, Michael P Dorsch, Sarah Alsomairy, Jennifer J Griggs, Reshma Jagsi, Michael Sabel, Amro Stino, Brian Callaghan, and Daniel L Hertz. 2025. "Remote Monitoring of Chemotherapy-Induced Peripheral Neuropathy by the NeuroDetect iOS App: Observational Cohort Study of Patients with Cancer." Journal of Medical Internet Research 27: e65615.
- Cheriff, Adam D., Akshay G. Kapur, Maggie Qiu, and Curtis L. Cole. 2010. "Physician Productivity and the Ambulatory EHR in a Large Academic Multi-Specialty Physician Group." *International Journal of Medical Informatics* 79 (7): 492–500. https://doi.org/10.1016/j.ijmedinf.2010.04.006.
- Chong, Jing, Timothy Jason, Mavis Jones, and Darren Larsen. 2020. "A Model to Measure Self-Assessed Proficiency in Electronic Medical Records: Validation Using Maturity Survey Data from Canadian Community-Based Physicians." *International Journal of Medical Informatics*. https://doi.org/10.1016/j.ijmedinf.2020.104218.
- Choxi, Hetal, Hans VanDerSchaaf, Yihan Li, and Emily Morgan. 2022. "Telehealth and the Digital Divide: Identifying Potential Care Gaps in Video Visit Use." *Journal of Medical Systems* 46 (9): 58.
- Choy, Melinda Ada, Kathleen O'Brien, Katelyn Barnes, Elizabeth Ann Sturgiss, Elizabeth Rieger, and Kirsty Douglas. 2024. "Evaluating the Digital Health Experience for Patients in Primary Care: Mixed Methods Study." *Journal of Medical Internet Research* 26: e50410.
- Christoph Straub, Prof. Dr. med. 2022. "Studie Beleuchtet Auswirkung Der Digitalisierung Auf Gesundheit Der Beschäftigten." DGUV Forum, no. 5. https://forum.dguv.de/ausgabe/5-2022/artikel/studie-beleuchtet-auswirkung-der-digitalisierung-auf-gesundheit-der-beschaeftigten.
- Coetzer, Jessica A, Ibrahim Loukili, Nicole S Goedhart, Johannes CF Ket, Tjerk Jan Schuitmaker-Warnaar, Teun Zuiderent-Jerak, and Christine Dedding. 2024. "The Potential and Paradoxes of eHealth Research for Digitally Marginalised Groups: A Qualitative Meta-Review." Social Science & Medicine, 116895.
- Commission, European, Content Directorate-General for Communications Networks, Technology, M Page, R Winkel, A Behrooz, and R Bussink. 2024. 2024 Digital Decade Ehealth Indicator Study Final Report. Publications Office of the European Union. https://doi.org/doi/10.2759/557789.
- Cornejo Müller, Alejandro, Benjamin Wachtler, and Thomas Lampert. 2020. "Digital Divide—Social Inequalities in the Utilisation of Digital Healthcare." Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz 63: 185–91.
- Cramer, Alin, Christian Keinki, Franz Saur, Stefanie Walter, and Jutta Hübner. 2023. "Ehealth Literacy, Internet and eHealth Service Usage: A Survey Among a German Municipality." *Journal of Public Health*, 1–12.
- Cresswell, Kathrin, and Aziz Sheikh. 2013. "Organizational Issues in the Implementation and Adoption of Health Information Technology Innovations: An Interpretative Review." International Journal of Medical Informatics. https://doi.org/10.1016/j.ijmedinf.2012.10.007.
- Cresswell, Kathrin, Aziz Sheikh, Marta Krasuska, Catherine Heeney, Bryony Dean Franklin,

- Wendy Lane, Hajar Mozaffar, et al. 2019. "Reconceptualising the Digital Maturity of Health Systems." Null. https://doi.org/10.1016/s2589-7500(19)30083-4.
- Cummins, Mollie R, Sukrut Shishupal, Bob Wong, Neng Wan, Jiuying Han, Jace D Johnny, Amy Mhatre-Owens, et al. 2024. "Travel Distance Between Participants in US Telemedicine Sessions with Estimates of Emissions Savings: Observational Study." *Journal of Medical Internet Research* 26: e53437.
- Dahlberg, Alexandra CH, Sakari Jukarainen, Taavi J Kaartinen, and Petja I Orre. 2025. "Cost Minimization Analysis of Digital-First Healthcare Pathways in Primary Care." medRxiv, 2025–04.
- Davis, Fred D. 1989. "Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology." MIS Quarterly, 319–40.
- De Santis, Karina Karolina, Tina Jahnel, Elida Sina, Julian Wienert, and Hajo Zeeb. 2021. "Digitization and Health in Germany: Cross-Sectional Nationwide Survey." *JMIR Public Health Surveill* 7 (11): e32951. https://doi.org/10.2196/32951.
- DeJonckheere, Melissa, and Lisa M Vaughn. 2019. "Semistructured Interviewing in Primary Care Research: A Balance of Relationship and Rigour." Family Medicine and Community Health 7 (2): e000057.
- Di Lernia, Daniele, Gianluca Finotti, Manos Tsakiris, Giuseppe Riva, and Marnix Naber. 2024. "Remote Photoplethysmography (rPPG) in the Wild: Remote Heart Rate Imaging via Online Webcams." *Behavior Research Methods* 56 (7): 6904–14.
- Dratva, Julia, Doris Schaeffer, and Hajo Zeeb. 2024. "Digitale Gesundheitskompetenz Der Bevölkerung in Deutschland: Aktueller Stand, Konzepte Und Herausforderungen." Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz 67 (3): 277–84.
- Drews, Paul, and Ingrid Schirmer. 2015. "The Failed Implementation of the Electronic Prescription in Germany-a Case Study."
- Eberle, Claudia, Stefanie Stichling, and Maxine Löhnert. 2021. "Diabetology 4.0: Scoping Review of Novel Insights and Possibilities Offered by Digitalization." *Journal of Medical Internet Research* 23 (3): e23475. https://doi.org/10.2196/23475.
- Ellis, Louise A, Georgia Fisher, Kate Churruca, Maree Saba, Tanja Schroeder, Janani Mahadeva, Sanjyot Vagholkar, et al. 2025. "Using Learning Health System Principles to Embed Patient Experience Data in Primary Care: A Qualitative Investigation." The International Journal of Health Planning and Management 40 (2): 368–80.
- Evangelista, Emily G, Jean-Christophe Bélisle-Pipon, Matthew R Naunheim, Maria Powell, Hortense Gallois, Bridge2AI-Voice Consortium, and Yael Bensoussan. 2024. "Voice as a Biomarker in Health-Tech: Mapping the Evolving Landscape of Voice Biomarkers in the Start-up World." Otolaryngology—Head and Neck Surgery 171 (2): 340–52.
- Everett, Selin S, Bryan J Bunning, Priyank Jain, Ivan Lopez, Anup Agarwal, Manisha Desai, Robert Gallo, et al. 2025. "From Tool to Teammate: A Randomized Controlled Trial of clinician-AI Collaborative Workflows for Diagnosis." medRxiv.
- Ferucci, Elizabeth D, Rabecca I Arnold, and Peter Holck. 2025. "Healthcare Utilization in a Cohort Receiving Chronic Disease Specialty Care by Video Telemedicine Compared to Propensity-Matched Adults Not Using Telemedicine." *Journal of Telemedicine and Telecare*, 1357633X251333514.

- Fiske, Amelia, Alena Buyx, and Barbara Prainsack. 2020. "The Double-Edged Sword of Digital Self-Care: Physician Perspectives from Northern Germany." Social Science & Medicine 260: 113174.
- Fleming, Neil S, Edmund R Becker, Steven D Culler, Dunlei Cheng, Russell McCorkle, Briget da Graca, and David J Ballard. 2014. "The Impact of Electronic Health Records on Workflow and Financial Measures in Primary Care Practices." *Health Services Research* 49 (1pt2): 405–20.
- Flott, Kelsey, Ryan Callahan, Ara Darzi, and Erik Mayer. 2016. "A Patient-Centered Framework for Evaluating Digital Maturity of Health Services: A Systematic Review." *Journal of Medical Internet Research*. https://doi.org/10.2196/jmir.5047.
- Gagnon, Marie-Pierre, Édith-Romy Nsangou, Julie Payne-Gagnon, Sonya Grenier, and Claude Sicotte. 2014. "Barriers and Facilitators to Implementing Electronic Prescription: A Systematic Review of User Groups' Perceptions." Journal of the American Medical Informatics Association 21 (3): 535–41.
- Gawande, Atul. 2018. "Why Doctors Hate Their Computers." *The New Yorker*, November. https://www.newyorker.com/magazine/2018/11/12/why-doctors-hate-their-computers.
- gematik GmbH. 2025a. "TI-Messenger." https://www.gematik.de/anwendungen/ti-messenger.
- ———. 2025b. "TI-Score Wie Gut Ist Ihre Software Im Alltag?" https://www.ti-score.de/. Gersch, Martin, and Alexa Danelski. 2022. "Wege von digitalen Innovationen in den 1. Gesundheitsmarkt." https://www.wiwiss.fu-berlin.de/fachbereich/bwl/pwo/gersch/ressourcen/Ueberblick_Wege-von-digitalen-Innovationen-in-den-1_Gesundheitsmarkt_Gersch-Danelski 2022 .pdf.
- Gesellschaft zur Förderung der Impfmedizin (GZIM). 2021. "Praxistaugliche Gesamtlösung Digitaler Impfnachweis Für Die Praxis Schon Bald Verfügbar." Gesundheitsökonomie & Qualitätsmanagement 26 (02): 76–77. https://doi.org/10.1055/a-1427-8985.
- Gillies, Alan. 2000. "Information Support for General Practice in the New NHS." *Health Libraries Review*. https://doi.org/10.1046/j.1365-2532.2000.00229.x.
- Golden, Robyn L, Erin E Emery-Tiburcio, Sharon Post, Bonnie Ewald, and Michelle Newman. 2019. "Connecting Social, Clinical, and Home Care Services for Persons with Serious Illness in the Community." *Journal of the American Geriatrics Society* 67 (S2): S412–18.
- Gomes, Jorge, and Mário Romão. 2018. "Information System Maturity Models in Healthcare." Journal of Medical Systems. https://doi.org/10.1007/s10916-018-1097-0.
- Gonçalves-Bradley, Daniela C, Ana Rita J Maria, Ignacio Ricci-Cabello, Gemma Villanueva, Marita S Fønhus, Claire Glenton, Simon Lewin, et al. 2020. "Mobile Technologies to Support Healthcare Provider to Healthcare Provider Communication and Management of Care." Cochrane Database of Systematic Reviews, no. 8.
- Graf, Alexander, Leonard Fehring, Maike Henningsen, and Maximillian Zinner. 2023. "Going Digital in Germany: An Exploration of Physicians' Attitudes Towards the Introduction of Electronic Prescriptions—a Mixed Methods Approach." *International Journal of Medical Informatics* 174: 105063.
- Greenhalgh, Trisha, Emma Ladds, Gemma Hughes, Lucy Moore, Joseph Wherton, Sara E Shaw, Chrysanthi Papoutsi, et al. 2022. "Why Do GPs Rarely Do Video Consultations?

- Qualitative Study in UK." British Journal of General Practice. https://doi.org/10.3399/bjgp.2021.0658.
- Greenhalgh, Trisha, Harvey Maylor, Sara Shaw, Joseph Wherton, Chrysanthi Papoutsi, Victoria Betton, Natalie Nelissen, et al. 2020. "The NASSS-CAT Tools for Understanding, Guiding, Monitoring, and Researching Technology Implementation Projects in Health and Social Care: Protocol for an Evaluation Study in Real-World Settings." *JMIR Research Protocols* 9 (5): e16861.
- Greenhalgh, Trisha, Glenn Robert, Fraser Macfarlane, Paul Bate, and Olivia Kyriakidou. 2004. "Diffusion of Innovations in Service Organizations: Systematic Review and Recommendations." *The Milbank Quarterly* 82 (4): 581–629.
- Greenhalgh, Trisha, Rebecca Rosen, Sara Shaw, Richard Byng, Stuart Faulkner, Teresa Finlay, Emily Grundy, et al. 2021. "Planning and Evaluating Remote Consultation Services: A New Conceptual Framework Incorporating Complexity and Practical Ethics." Null. https://doi.org/10.3389/fdgth.2021.726095.
- Greenhalgh, Trisha, Sara Shaw, Anica Alvarez Nishio, Richard Byng, Aileen Clarke, Francesca Dakin, Stuart Faulkner, et al. 2022. "Remote Care in UK General Practice: Baseline Data on 11 Case Studies." Null. https://doi.org/10.3310/nihropenres.13290.2.
- Greenhalgh, Trisha, Rob Stones, and Deborah Swinglehurst. 2014. "Choose and Book: A Sociological Analysis of 'Resistance'to an Expert System." Social Science & Medicine 104: 210–19.
- Greenhalgh, Trisha, Joseph Wherton, Chrysanthi Papoutsi, Jennifer Lynch, Gemma Hughes, Susan Hinder, Nick Fahy, Rob Procter, Sara Shaw, et al. 2017. "Beyond Adoption: A New Framework for Theorizing and Evaluating Nonadoption, Abandonment, and Challenges to the Scale-up, Spread, and Sustainability of Health and Care Technologies." *Journal of Medical Internet Research* 19 (11): e8775.
- Grentzelius, Julia. 2023. "Making Keyboard Shortcuts Accessible: Keyboard Shortcuts for Healthcare Professionals in an Electronic Healthcare System."
- Gybel Jensen, Christian, Frederik Gybel Jensen, and Mia Ingerslev Loft. 2024. "Patients' Experiences with Digitalization in the Health Care System: Qualitative Interview Study." *Journal of Medical Internet Research* 26: e47278.
- Haith, Lisa, Carl Deaney, Danielle Reesby, Victoria Ellis, Georgia Cole, Victoria Scott, Alena Nicholson, and Rachael Hemingway-Deaney. 2025. "A Retrospective Observational Study on the Impact of Digital Strategies to Boost Cervical Screening Uptake in Primary Care." Cancer Control 32: 10732748251330705.
- Hanseth, Ole, and Bendik Bygstad. 2017. "The ePrescription Initiative and Information Infrastructure in Norway." Information Infrastructures Within European Health Care: Working with the Installed Base, 73–87.
- Haverinen, Jari, Jari Haverinen, Niina Keränen, Niina Keränen, Timo Tuovinen, Timo Tuovinen, Ronja Ruotanen, Ronja Ruotanen, Jarmo Reponen, and Jarmo Reponen. 2022. "National Development and Regional Differences in eHealth Maturity in Finnish Public Health Care: Survey Study." *JMIR Medical Informatics*. https://doi.org/10.2196/35612.
- Hawthorne, Grace, Matthew Richardson, Neil J Greening, Dale Esliger, Samuel Briggs-Price, Emma J Chaplin, Lisa Clinch, Michael C Steiner, Sally J Singh, and Mark W Orme. 2022.

- "A Proof of Concept for Continuous, Non-Invasive, Free-Living Vital Signs Monitoring to Predict Readmission Following an Acute Exacerbation of COPD: A Prospective Cohort Study." Respiratory Research 23 (1): 102.
- Heinz, Michael V, Daniel M Mackin, Brianna M Trudeau, Sukanya Bhattacharya, Yinzhou Wang, Haley A Banta, Abi D Jewett, Abigail J Salzhauer, Tess Z Griffin, and Nicholas C Jacobson. 2025. "Randomized Trial of a Generative Ai Chatbot for Mental Health Treatment." NEJM AI 2 (4): AIoa2400802.
- Heitmann, Kai U., Ralf Schweiger, and Joachim Dudeck. 2003. "Discharge and Referral Data Exchange Using Global Standards—the SCIPHOX Project in Germany." *International Journal of Medical Informatics* 70 (2): 195–203. https://doi.org/https://doi.org/10.1016/S1386-5056(03)00036-4.
- Herranz, Carmen, Laura Martín-Moreno Banegas, Fernando Dana Muzzio, Antoni Siso-Almirall, Josep Roca, and Isaac Cano. 2023. "A Practice-Proven Adaptive Case Management Approach for Innovative Health Care Services (Health Circuit): Cluster Randomized Clinical Pilot and Descriptive Observational Study." *Journal of Medical Internet Research* 25: e47672.
- Hoeyer, Klaus, and Sarah Wadmann. 2020. "'Meaningless Work': How the Datafication of Health Reconfigures Knowledge about Work and Erodes Professional Judgement." *Economy and Society* 49 (3): 433–54.
- Holetzek, Tim, Andreas Häusler, Kathrin Gödde, Michael Rapp, Jacob Spallek, and Christine Holmberg. 2025. "The Role of the Installed Base in Information Exchange Among General Practitioners in Germany: Mixed Methods Study." *J Med Internet Res* 27 (March): e65241. https://doi.org/10.2196/65241.
- Holroyd-Leduc, Jayna M, Diane Lorenzetti, Sharon E Straus, Lindsay Sykes, and Hude Quan. 2011. "The Impact of the Electronic Medical Record on Structure, Process, and Outcomes Within Primary Care: A Systematic Review of the Evidence." Journal of the American Medical Informatics Association 18 (6): 732–37.
- Hoonakker, Peter L. T., Pascale Carayon, and Randi S. Cartmill. 2017. "The Impact of Secure Messaging on Workflow in Primary Care: Results of a Multiple-Case, Multiple-Method Study." *International Journal of Medical Informatics* 100: 63–76. https://doi.org/https://doi.org/10.1016/j.ijmedinf.2017.01.004.
- Hoque, Rakibul, and Golam Sorwar. 2017. "Understanding Factors Influencing the Adoption of mHealth by the Elderly: An Extension of the UTAUT Model." *International Journal of Medical Informatics* 101: 75–84.
- Howard, Jenna, Elizabeth C Clark, Asia Friedman, Jesse C Crosson, Maria Pellerano, Benjamin F Crabtree, Ben-Tzion Karsh, Carlos R Jaen, Douglas S Bell, and Deborah J Cohen. 2013. "Electronic Health Record Impact on Work Burden in Small, Unaffiliated, Community-Based Primary Care Practices." Journal of General Internal Medicine 28: 107–13.
- Huben, Amy von, Martin Howell, Kirsten Howard, Joseph Carrello, and Sarah Norris. 2021. "Health Technology Assessment for Digital Technologies That Manage Chronic Disease: A Systematic Review." *International Journal of Technology Assessment in Health Care*. https://doi.org/10.1017/s0266462321000362.

- Iannone, Stacy L, Kevin Johnson, and Amarpreet Kaur. 2025. "Artificial Intelligence in Outpatient Primary Care: A Scoping Review on Applications, Challenges, and Future Directions." medRxiv, 2025–05.
- Ijaz, Aneeqa, Muhammad Nabeel, Usama Masood, Tahir Mahmood, Mydah Sajid Hashmi, Iryna Posokhova, Ali Rizwan, and Ali Imran. 2022. "Towards Using Cough for Respiratory Disease Diagnosis by Leveraging Artificial Intelligence: A Survey." *Informatics in Medicine* Unlocked 29: 100832.
- Innovation, Disruptive. n.d. "Considerations for Health and Health Care in Europe. The EXPH Adopted This Opinion at the 13th Plenary Meeting of 29 February 2016 After Public Consultation."
- Ionescu, Clara. 2018. Lung Function Testing in the 21st Century: Methodologies and Tools Bridging Engineering to Clinical Practice. Academic Press.
- Ivanova, Julia, Hattie Wilczewski, Farina Klocksieben, Mollie Cummins, Hiral Soni, Triton Ong, Janelle Barrera, et al. 2024. "Patient Preferences for Direct-to-Consumer Telemedicine Services: Replication and Extension of a Nationwide Survey." *JMIR Human Factors* 11: e51056. https://doi.org/10.2196/51056.
- Josendal, Anette Vik, and Trine Strand Bergmo. 2021. "From Paper to e-Prescribing of Multidose Drug Dispensing: A Qualitative Study of Workflow in a Community Care Setting." *Pharmacy* 9 (1): 41.
- Kassenärztliche Bundesvereinigung. 2025. "Praxisverwaltungssysteme (PVS) Installationsstatistiken von Softwaresystemen." https://www.kbv.de/html/6989.php.
- Kassenzahnärztliche Bundesvereinigung. 2025. "Herstellerliste Und EDV-Statistik." https://www.kzbv.de/herstellerliste-und-edv-statistik.140.de.html.
- (KBV), Kassenärztliche Bundesvereinigung. 2020. "Richtlinie nach §75b SGB V über die Anforderungen zur Gewährleistung der IT-Sicherheit." https://www.kbv.de/media/sp/RiLi___75b_SGB_V_Anforderungen_Gewaehrleistung_IT-Sicherheit.pdf.
- Kempe, Allison, Laura P. Hurley, Cristina V. Cardemil, Mandy A. Allison, Lori A. Crane, Michaela Brtnikova, Brenda L. Beaty, Laura J. Pabst, and Megan C. Lindley. 2017. "Use of Immunization Information Systems in Primary Care." American Journal of Preventive Medicine 52 (2): 173–82. https://doi.org/https://doi.org/10.1016/j.amepre.2016.07.029.
- Kerr, Gabriele, Geva Greenfield, Edmond Li, Thomas Beaney, Benedict WJ Hayhoe, Josip Car, Ana Clavería, et al. 2025. "Factors Associated with the Availability of Virtual Consultations in Primary Care Across 20 Countries: Cross-Sectional Study." Journal of Medical Internet Research 27: e65147.
- Kim, Jiyeong, Michael L Chen, Shawheen J Rezaei, Tina Hernandez-Boussard, Jonathan H Chen, Fatima Rodriguez, Summer S Han, et al. 2025. "Artificial Intelligence Tools in Supporting Healthcare Professionals for Tailored Patient Care." *Npj Digital Medicine* 8 (1): 210.
- Knapp, Andreas, Lorenz Harst, Stefan Häger, Stefan Hager, Jochen Schmitt, and Madlen Scheibe. 2021. "Use of Patient-Reported Outcome Measures and Patient-Reported Experience Measures Within Evaluation Studies of Telemedicine Applications: Systematic Review (Preprint)." Journal of Medical Internet Research. https://doi.org/10.2196/30042.
- Knitza, J, J Callhoff, G Chehab, A Hueber, U Kiltz, A Kleyer, M Krusche, et al. 2020. "Ziele

- Und Aufgaben Der Kommission." Z Rheumatol 79: 562–69.
- Knitza, Johannes, Ragip Hasanaj, Jonathan Beyer, Franziska Ganzer, Anna Slagman, Myrto Bolanaki, Hendrik Napierala, et al. 2024. "Comparison of Two Symptom Checkers (Ada and Symptoma) in the Emergency Department: Randomized, Crossover, Head-to-Head, Double-Blinded Study." *Journal of Medical Internet Research* 26: e56514.
- Kopka, Marvin, Hendrik Napierala, Martin Privoznik, Desislava Sapunova, Sizhuo Zhang, and Markus A Feufel. 2024. "The RepVig Framework for Designing Use-Case Specific Representative Vignettes and Evaluating Triage Accuracy of Laypeople and Symptom Assessment Applications." Scientific Reports 14 (1): 30614.
- Kopka, Marvin, Sonja Mei Wang, Samira Kunz, Christine Schmid, and Markus A Feufel. 2025. "Technology-Supported Self-Triage Decision Making." *Npj Health Systems* 2 (1): 3.
- Körner, Jasmin. 2024. "Erfassung Und förderung Digitaler Kompetenzen von Hochschullehrenden Der Humanmedizin."
- Koul, Apeksha, Rajesh K Bawa, and Yogesh Kumar. 2023. "Artificial Intelligence Techniques to Predict the Airway Disorders Illness: A Systematic Review." *Archives of Computational Methods in Engineering* 30 (2): 831–64.
- Kueper, Jacqueline K, Winston Liaw, Daniel J Lizotte, and Sian Hsiang-Te Tsuei. 2025. "Why Is Primary Care Different? Considerations for Machine Learning Development with Electronic Medical Record Data." *NEJM AI*. Massachusetts Medical Society.
- Kuhn, Sebastian, Franz Bartmann, Bernadette Klapper, and Uwe Schwenk. 2020. Neue Gesundheitsberufe Für Das Digitale Zeitalter. Stiftung Münch. https://www.stiftung-muench.org/wp-content/uploads/2020/05/NB Final.pdf.
- Kulzer, Bernhard, Dominic Ehrmann, Timm Roos, and Norbert Hermanns. 2022. "626-p: TheraKey Diabetes 3.0 App: Better Self-Management, Well-Being, Adherence, and Less Diabetes Distress of People with Diabetes." *Diabetes* 71 (Supplement_1).
- Kurz, Marisa. 2021. "Cybersicherheit in Arztpraxen Und Krankenhäusern." Aktuelle Rheumatologie 46 (02): 128–29.
- Lakhan, Shaheen E. 2025. "The Composite Digital Therapeutic Index (cDTI): A Multidimensional Framework and Proof-of-Concept Application to FDA-Authorized Treatments." Cureus 17 (5).
- Lane, David M, H Albert Napier, S Camille Peres, and Aniko Sandor. 2005. "Hidden Costs of Graphical User Interfaces: Failure to Make the Transition from Menus and Icon Toolbars to Keyboard Shortcuts." *International Journal of Human-Computer Interaction* 18 (2): 133–44.
- Lang, Michael. 2025. "Cyberversicherung: Hohe hürden für Kliniken." *Kma-Klinik Management Aktuell* 30 (01): 63–65.
- Lanham, Holly J., Luci K. Leykum, and Reuben R. McDaniel. 2012. "Same Organization, Same Electronic Health Records (EHRs) System, Different Use: Exploring the Linkage Between Practice Member Communication Patterns and EHR Use Patterns in an Ambulatory Care Setting." *Journal of the American Medical Informatics Association*. https://doi.org/10.1136/amiajnl-2011-000263.
- Lehmann, Marco, Lucy Jones, and Felix Schirmann. 2024. "App Engagement as a Predictor of Weight Loss in Blended-Care Interventions: Retrospective Observational Study Using

- Large-Scale Real-World Data." J Med Internet Res 26 (June): e45469. https://doi.org/10.2196/45469.
- Li, Jane, Emma Maddock, Michael Hosking, Kate Ebrill, Jeremy Sullivan, Kylynn Loi, Danielle Tavares-Rixon, Rajiv Jayasena, Grahame Grieve, and Alana Delaforce. 2025. "Identifying and Optimizing Factors Influencing the Implementation of a Fast Healthcare Interoperability Resources Accelerator: Qualitative Study Using the Consolidated Framework for Implementation Research-Expert Recommendations for Implementing Change Approach." *JMIR Medical Informatics* 13: e66421.
- Liaw, Siaw-Teng, Rachael Kearns, Jane Taggart, Oliver Frank, Riki Lane, Michael Tam, Sarah Dennis, Christine Walker, Grant Russell, and Mark Harris. 2017. "The Informatics Capability Maturity of Integrated Primary Care Centres in Australia." *International Journal of Medical Informatics*. https://doi.org/10.1016/j.ijmedinf.2017.06.002.
- Liebovitz, David M. 2025. "Navigating Uncertainty in Digital Health Education." *JAMA Network Open* 8 (1): e2453095–95. https://doi.org/10.1001/jamanetworkopen.2024.53095.
- Lieu, Tracy A., Andrea Altschuler, Jonathan Z. Weiner, Jeffrey A. East, Mark F. Moeller, Stephanie Prausnitz, Mary E. Reed, E. Margaret Warton, Nancy Goler, and Sameer Awsare. 2019. "Primary Care Physicians' Experiences with and Strategies for Managing Electronic Messages." JAMA Network Open 2 (12): e1918287–87. https://doi.org/10.1001/jamanetworkopen.2019.18287.
- Lin, S. Y., M. R. Mahoney, and C. A. Sinsky. 2019. "Ten Ways Artificial Intelligence Will Transform Primary Care." *J GEN INTERN MED* 34: 1626–30. https://doi.org/10.1007/s11606-019-05035-1.
- Litchfield, Ian, David Shukla, and Sheila Greenfield. 2021. "Impact of COVID-19 on the Digital Divide: A Rapid Review." BMJ Open 11 (10): e053440.
- Liu, Li, Kunyan Wei, Xingting Zhang, Dong Wen, Li Gao, and Jianbo Lei. 2018. "The Current Status and a New Approach for Chinese Doctors to Obtain Medical Knowledge Using Social Media: A Study of WeChat." Wireless Communications and Mobile Computing 2018 (1): 2329876. https://doi.org/https://doi.org/10.1155/2018/2329876.
- Looi, Jeffrey CL, Richard CH Looi, Paul A Maguire, Steve Kisely, Tarun Bastiampillai, and Stephen Allison. 2024. "Psychiatric Electronic Health Records in the Era of Data Breaches—What Are the Ramifications for Patients, Psychiatrists and Healthcare Systems?" Australasian Psychiatry 32 (2): 121–24.
- Luckhaus, Jamie, Sara Riggare, Anna Kharko, Charlotte Blease, Maria Hägglund, and Therese Scott Duncan. 2025. "Co-Designing a" Win-Win" in Predictive AI: First Results from Interviews and Focus Groups with Persons with Parkinson's Disease." Studies in Health Technology and Informatics 327: 263–67.
- Lusignan, Simon de, and Chris van Weel. 2006. "The Use of Routinely Collected Computer Data for Research in Primary Care: Opportunities and Challenges." Family Practice 23 (2): 253–63.
- Madison, Maia, Robert McLellan, Katelyn Darling, and Kevin M Curtis. 2024. "Evaluating the Impact of Telehealth on Carbon Footprint During Three Phases of the Pandemic at a Rural Academic Medical Center." *Telemedicine and e-Health* 30 (4): e1064–70.
- Mai, Feng, Dong-Gil Ko, Zhe Shan, and Dawei Zhang. 2023. "The Impact of Accelerated

- Digitization on Patient Portal Use by Underprivileged Racial Minority Groups During COVID-19: Longitudinal Study." *Journal of Medical Internet Research* 25: e44981.
- Mandl, Kenneth D. 2025. "How AI Could Reshape Health Care—Rise in Direct-to-Consumer Models." *JAMA*, February. https://doi.org/10.1001/jama.2025.0946.
- May, Susann, Felix Muehlensiepen, Eileen Wengemuth, Frances Seifert, Martin Heinze, Dunja Bruch, and Sebastian Spethmann. 2025. "Benefits and Barriers to mHealth in Hypertension Care: Qualitative Study with German Health Care Professionals." *JMIR Hum Factors* 12 (March): e52544. https://doi.org/10.2196/52544.
- McAlister, Finlay A, Jeffrey A Bakal, Lee Green, Brad Bahler, and Richard Lewanczuk. 2018. "The Effect of Provider Affiliation with a Primary Care Network on Emergency Department Visits and Hospital Admissions." *Cmaj* 190 (10): E276–84.
- medxsmart. 2025. "Medxsmart Digitale Tools Für Ihre Arztpraxis." https://medxsmart.de/. Meister, Sven. 2023. "Digitale Gesundheit: Wie Digitale Anwendungen Die Medizin Verändern Werden-Oder Nicht." Https://Www. Mwv-Berlin. De/Buecher-Bestellen-2016/Images/Product_images/Leseproben_images/9783954667260_Leseprobe. Pdf, Abrufdatum 13: 2023.
- Melchiorre, Maria Gabriella, Giovanni Lamura, Francesco Barbabella, and ICARE4EU Consortium. 2018. "eHealth for People with Multimorbidity: Results from the ICARE4EU Project and Insights from the '10 e's' by Gunther Eysenbach." *PloS One* 13 (11): e0207292.
- Mendel, Tamir, Nina Singh, Devin M Mann, Batia Wiesenfeld, and Oded Nov. 2025. "Laypeople's Use of and Attitudes Toward Large Language Models and Search Engines for Health Queries: Survey Study." *J Med Internet Res* 27 (February): e64290. https://doi.org/10.2196/64290.
- Mettler, Tobias. 2011. "Maturity Assessment Models: A Design Science Research Approach." International Journal of Society Systems Science. https://doi.org/10.1504/ijsss.2011. 038934.
- Mike Allen, Leah LeFebvre, Luke LeFebvre. 2020. "Is the Pencil Mightier Than the Keyboard? A Meta-Analysis Comparing the Method of Notetaking Outcomes." Southern Communication Journal. https://doi.org/10.1080/1041794X.2020.1764613.
- Miller, Robert H., Ida Sim, and Jeffrey A. Newman. 2004. "Electronic Medical Records in Solo/Small Groups: A Qualitative Study of Physician User Types." Studies in Health Technology and Informatics. https://doi.org/null.
- MindApps. 2025. "MindApps Mobile Health Index and Navigation Database." https://mindapps.org/.
- Mold, Freda, Jane Hendy, Yi-Ling Lai, and Simon de Lusignan. 2019. "Electronic Consultation in Primary Care Between Providers and Patients: Systematic Review." *JMIR Medical Informatics* 7 (4): e13042. https://doi.org/10.2196/13042.
- Müller, D, T Nieporte, and D Graf von Stillfried. n.d. "Praxisverwaltungssysteme: Deutschlandweite Ergebnisse Zu Usability, Nutzerzufriedenheit Und Wechselbereitschaft Aus 10.245 Bewertungen Practice Management Systems: Germany-Wide Results on Usability, User Satisfaction, and Willingness to Switch from 10,245 Evaluations."
- Munsch, Nicolas, Alistair Martin, Stefanie Gruarin, Jama Nateqi, Isselmou Abdarahmane, Rafael Weingartner-Ortner, and Bernhard Knapp. 2020. "Diagnostic Accuracy of Web-

- Based COVID-19 Symptom Checkers: Comparison Study." Journal of Medical Internet Research 22 (10): e21299.
- Murphy Jr, Robert X, Michael A Bain, Thomas E Wasser, Eric Wilson, and Walter J Okunski. 2006. "The Reliability of Digital Imaging in the Remote Assessment of Wounds: Defining a Standard." *Annals of Plastic Surgery* 56 (4): 431–36.
- Nadav, Janna, Anu-Marja Kaihlanen, Sari Kujala, Elina Laukka, Pirjo Hilama, Juha Koivisto, Ilmo Keskimäki, and Tarja Heponiemi. 2021. "How to Implement Digital Services in a Way That They Integrate into Routine Work: Qualitative Interview Study Among Health and Social Care Professionals." *J Med Internet Res* 23 (12): e31668. https://doi.org/10.2196/31668.
- Nair, Harikrishna KR. 2018. "Increasing Productivity with Smartphone Digital Imagery Wound Measurements and Analysis." *Journal of Wound Care* 27 (Sup9a): S12–19.
- Nash, Danielle M, Zohra Bhimani, Jennifer Rayner, and Merrick Zwarenstein. 2021. "Learning Health Systems in Primary Care: A Systematic Scoping Review." *BMC Family Practice* 22: 1–13.
- Nateqi, J, S Lin, H Krobath, S Gruarin, T Lutz, T Dvorak, A Gruschina, and R Ortner. 2019. "Vom Symptom Zur Diagnose–Tauglichkeit von Symptom-Checkern: Update Aus Sicht Der HNO." *HNO* 67: 334–42.
- Neumann, Ariana, Hans-Helmut König, and André Hajek. 2025. "Determinants of Having Online Health Consultations During the COVID-19 Pandemic Among Middle-Aged and Older Adults in Germany: Representative Longitudinal Survey Study." *JMIR Aging* 8 (1): e60311.
- Neunaber, Timo, and Sven Meister. 2023. "Digital Maturity and Its Measurement of General Practitioners: A Scoping Review." *International Journal of Environmental Research and Public Health*. https://doi.org/10.3390/ijerph20054377.
- Neunaber, Timo, Achim Mortsiefer, and Sven Meister. 2024. "Dimensions and Subcategories of Digital Maturity in General Practice: Qualitative Study." *J Med Internet Res* 26 (December): e57786. https://doi.org/10.2196/57786.
- Newton, Nicki, Adeola Bamgboje-Ayodele, Rowena Forsyth, Amina Tariq, and Melissa T Baysari. 2025. "A Systematic Review of Clinicians' Acceptance and Use of Clinical Decision Support Systems over Time." *Npj Digital Medicine* 8 (1): 1–17.
- Nguyen, Khang, Dinh Nguyen, Sinjin Lee, Jin Chang, Yvonne Bach, Kien La, Ferdinand Justus, et al. 2025. "Virtual Urgent Care in an Integrated Value Based Healthcare System." Npj Digital Medicine 8 (1): 206.
- Nomura, Akihiro, Masahiro Noguchi, Mitsuhiro Kometani, Kenji Furukawa, and Takashi Yoneda. 2021. "Artificial Intelligence in Current Diabetes Management and Prediction." Current Diabetes Reports 21 (61). https://doi.org/10.1007/s11892-021-01423-2.
- Nong, Paige, and Molin Ji. 2025. "Expectations of Healthcare AI and the Role of Trust: Understanding Patient Views on How AI Will Impact Cost, Access, and Patient-Provider Relationships." Journal of the American Medical Informatics Association 32 (5): 795–99.
- Nong, Paige, and Jodyn Platt. 2025. "Patients' Trust in Health Systems to Use Artificial Intelligence." *JAMA Network Open* 8 (2): e2460628–28.
- Norberg, Børge Lønnebakke, Bjarne Austad, Eli Kristiansen, Paolo Zanaboni, and Linn Okken-

- haug Getz. 2024. "The Impact and Wider Implications of Remote Consultations for General Practice in Norway: Qualitative Study Among Norwegian Contract General Practitioners." JMIR Form Res 8 (December): e63068. https://doi.org/10.2196/63068.
- Nordmann, Kim, Stefanie Sauter, Marie-Christin Redlich, Patricia Möbius-Lerch, Michael Schaller, and Florian Fischer. 2024. "Challenges and Conditions for Successfully Implementing and Adopting the Telematics Infrastructure in German Outpatient Healthcare: A Qualitative Study Applying the NASSS Framework." Digital Health 10: 20552076241259855.
- Norman, Cameron D, and Harvey A Skinner. 2006. "eHEALS: The eHealth Literacy Scale." Journal of Medical Internet Research 8 (4): e507.
- Ong, Jasmine Chiat Ling, Michael Hao Chen, Ning Ng, Kabilan Elangovan, Nichole Yue Ting Tan, Liyuan Jin, Qihuang Xie, et al. 2025. "A Scoping Review on Generative AI and Large Language Models in Mitigating Medication Related Harm." *Npj Digital Medicine* 8 (1): 182.
- Ostermann, Max, Oscar Freyer, Carsten Weinhold, Kai Martius, and Stephen Gilbert. 2025. "How Secure Are Your Health Devices—Stopping Wearables Becoming a Personal and National Security Risk?" *Npj Digital Medicine* 8 (1): 1–4.
- Othman, Ghada Ben, Amani R Ynineb, Erhan Yumuk, Hamed Farbakhsh, Cristina Muresan, Isabela Roxana Birs, Alexandra De Raeve, Cosmin Copot, Clara M Ionescu, and Dana Copot. 2024. "Artificial Intelligence-Driven Prognosis of Respiratory Mechanics: Forecasting Tissue Hysteresivity Using Long Short-Term Memory and Continuous Sensor Data." Sensors 24 (17): 5544.
- Oudbier, SJ, JW Aarts, MA Kuijvenhoven, SL Janssen, M Hilhorst, SA Nurmohamed, EMA Smets, PJI Teeuwisse, LW Dusseljee, et al. 2025. "Patient-Reported Usability Challenges When Implementing Integrated EHR Medication Reminders for Kidney Transplant Patients in a Home Setting: A Pilot Study." International Journal of Medical Informatics, 105949.
- Overhage, J Marc, and David McCallie Jr. 2020. "Physician Time Spent Using the Electronic Health Record During Outpatient Encounters: A Descriptive Study." Annals of Internal Medicine 172 (3): 169–74.
- Palm, Klas, Anders Brantnell, Michael Peolsson, Nurgül Özbek, and Gustaf Hedström. 2025. "National eHealth Strategies: A Comparative Study of Nine OECD Health Systems." *BMC Health Services Research* 25 (1): 269.
- Pan, Chen-Chia, Karina Karolina De Santis, Saskia Muellmann, Stephanie Hoffmann, Jacob Spallek, Nuria Pedros Barnils, Wolfgang Ahrens, Hajo Zeeb, and Benjamin Schüz. 2024. "Sociodemographics and Digital Health Literacy in Using Wearables for Health Promotion and Disease Prevention: Cross-Sectional Nationwide Survey in Germany." *Journal of Prevention*, 1–21.
- Paterson, Kenneth G, Matteo Scarlata, and Kien Tuong Truong. 2023. "Three Lessons from Threema: Analysis of a Secure Messenger." In 32nd USENIX Security Symposium (USENIX Security 23), 1289–1306.
- Pendergrass, John, and C Ranganathan. 2021. "Institutional Factors Affecting the Electronic Health Information Exchange by Ambulatory Providers." *Health Policy and Technology* 10

- (4): 100569.
- Pérez-Jover, Virtudes, Marina Sala-González, Mercedes Guilabert, and José Joaquín Mira. 2019. "Mobile Apps for Increasing Treatment Adherence: Systematic Review." *Journal of Medical Internet Research* 21 (6): e12505.
- Pfeil, Juliane, Julienne Siptroth, Heike Pospisil, Marcus Frohme, Frank T Hufert, Olga Moskalenko, Murad Yateem, and Alina Nechyporenko. 2023. "Classification of Microbiome Data from Type 2 Diabetes Mellitus Individuals with Deep Learning Image Recognition." Big Data and Cognitive Computing 7 (1): 51.
- Pfeuffer, Nicola, Fabian Hartmann, Manuel Grahammer, David Simon, Louis Schuster, Sebastian Kuhn, Gerhard Krönke, Georg Schett, Johannes Knitza, and Arnd Kleyer. 2025. "Early Detection of Rheumatoid Arthritis Through Patient Empowerment by Tailored Digital Monitoring and Education: A Feasibility Study." *Rheumatology International* 45 (2): 1–9.
- Philippi, Paula, Harald Baumeister, Jennifer Apolinário-Hagen, David Daniel Ebert, Severin Hennemann, Leonie Kott, Jiaxi Lin, Eva-Maria Messner, and Yannik Terhorst. 2021. "Acceptance Towards Digital Health Interventions—Model Validation and Further Development of the Unified Theory of Acceptance and Use of Technology." *Internet Interventions* 26: 100459.
- Piera-Jiménez, Jordi, and Gerard Carot-Sans. 2025. "Catalonia's Journey to the Open Platform Paradigm in Healthcare." In *Digital Maturity in Hospitals: Strategies, Frameworks, and Global Case Studies to Shape Future Healthcare*, 111–27. Springer.
- Piera-Jiménez, Jordi, Gerard Carot-Sans, Marina Ramiro-Pareta, Maria Mercedes Nogueras, Júlia Folguera-Profitós, Pepi Ródenas, Alba Jiménez-Rueda, et al. 2024. "A 25-Year Retrospective of Health IT Infrastructure Building: The Example of the Catalonia Region." *Journal of Medical Internet Research* 26: e58933.
- Pohjonen, Hanna. 2022. "Norway, Sweden, and Finland as Forerunners in Open Ecosystems and openEHR." In *Roadmap to Successful Digital Health Ecosystems*, 457–71. Elsevier.
- Price, Morgan, Alexander Singer, and Julie Kim. 2013a. "Adopting Electronic Medical Records: Are They Just Electronic Paper Records?" Canadian Family Physician. https://doi.org/null.
- Price, Morgan, Alex Singer, and Julie Kim. 2013b. "Adopting Electronic Medical Records: Are They Just Electronic Paper Records?" Canadian Family Physician 59 (7): e322–29.
- Qian, Wei, Avani Desai, Jennifer H Therkorn, Jacquelyn C Klein-Adams, Anays M Sotolongo, and Michael J Falvo. 2022. "Employing the Forced Oscillation Technique for the Assessment of Respiratory Mechanics in Adults." *Journal of Visualized Experiments (JoVE)*, no. 180: e63165.
- Qiu, Jianing, Jian Wu, Hao Wei, Peilun Shi, Minqing Zhang, Yunyun Sun, Lin Li, et al. 2023. "Visionfm: A Multi-Modal Multi-Task Vision Foundation Model for Generalist Ophthalmic Artificial Intelligence." arXiv Preprint arXiv:2310.04992.
- Red. 2013. "Online-Programm Erhöht Compliance Bei Diabetikern: Beratungskonzept TheraKey®." MMW-Fortschritte Der Medizin 155 (12): 62–62.
- ——. 2017. "TheraKey® Erhält Innovationspreis." *MMW-Fortschritte Der Medizin* 159 (2): 74–74.

- Reed, Mary E, Jie Huang, Richard J Brand, Romain Neugebauer, Ilana Graetz, John Hsu, Dustin W Ballard, and Richard Grant. 2019. "Patients with Complex Chronic Conditions: Health Care Use and Clinical Events Associated with Access to a Patient Portal." *PloS One* 14 (6): e0217636.
- Resl, Michael, Gerd Köhler, Gerlies Treiber, Birgit Mallinger-Taferner, Ingrid Schütz Fuhrmann, Lars Stechemesser, Birgit Rami-Merhar, et al. 2025. "Positionspapier-Telemedizin in Der Behandlung von Menschen Mit Diabetes Mellitus." Journal für Endokrinologie, Diabetologie Und Stoffwechsel, 1–3.
- Rimmer, Carol, Simon Hagens, Anne Baldwin, and Carol J. Anderson. 2014. "Measuring Maturity of Use for Electronic Medical Records in British Columbia: The Physician Information Technology Office." *Healthcare Quarterly*. https://doi.org/10.12927/hcq.2015.24122.
- Rosis, Sabina De, and Chiara Seghieri. 2015. "Basic ICT Adoption and Use by General Practitioners: An Analysis of Primary Care Systems in 31 European Countries." BMC Medical Informatics and Decision Making 15 (1): 70. https://doi.org/10.1186/s12911-015-0185-z.
- Rösler, Paul, Christian Mainka, and Jörg Schwenk. 2018. "More Is Less: On the End-to-End Security of Group Chats in Signal, Whatsapp, and Threema." In 2018 IEEE European Symposium on Security and Privacy (EuroS&p), 415–29. IEEE.
- Rouidi, Mohammed, Amine Hamdoune, Khadija Choujtani, Adam Chati, et al. 2022. "TAM-UTAUT and the Acceptance of Remote Healthcare Technologies by Healthcare Professionals: A Systematic Review." *Informatics in Medicine Unlocked* 32: 101008.
- Rust, Paul, Julian Frings, Sven Meister, and Leonard Fehring. 2025. "Evaluation of a Large Language Model to Simplify Discharge Summaries and Provide Cardiological Lifestyle Recommendations." Communications Medicine 5 (1): 208. https://doi.org/10.1038/s43856-025-00927-2.
- Saatjohann, Christoph, Fabian Ising, and Sebastian Schinzel. 2024. "KIM: Kaos in Der Medizin." In *Sicherheit 2024*, 93–104. Bonn: Gesellschaft für Informatik e.V. https://doi.org/10.18420/sicherheit2024_006.
- Saeed, Sy Atezaz, and Ross MacRae Masters. 2021. "Disparities in Health Care and the Digital Divide." Current Psychiatry Reports 23: 1–6.
- Saiyed, Salim, Wern Lynn Ng, Madeline Cherry, Safi Khattab, Hafsa Pathan, et al. 2024. "Implementing a Digital Health Navigator: Strategies & Experience in the Hospital Setting to Alleviate Digital Equity." *Telehealth and Medicine Today* 9 (1).
- Salame, Tuba, and Nujhat. 2024. "Note-Taking and Learning: A Summary of Research." International Journal of Instruction 17 (3).
- Salmi, Liz, Dana M Lewis, Jennifer L Clarke, Zhiyong Dong, Rudy Fischmann, Emily I McIntosh, Chethan R Sarabu, and Catherine M DesRoches. 2025. "A Proof-of-Concept Study for Patient Use of Open Notes with Large Language Models." *JAMIA Open* 8 (2): ooaf021. https://doi.org/10.1093/jamiaopen/ooaf021.
- Sampieri, Claudio, Muhammad Adeel Azam, Alessandro Ioppi, Chiara Baldini, Sara Moccia, Dahee Kim, Alessandro Tirrito, et al. 2024. "Real-Time Laryngeal Cancer Boundaries Delineation on White Light and Narrow-Band Imaging Laryngoscopy with Deep Learning." The Laryngoscope 134 (6): 2826–34. https://doi.org/https://doi.org/10.1002/lary.31255.

- Schiff, Gordon D. 2025. "AI-Driven Clinical Documentation—Driving Out the Chitchat?" New England Journal of Medicine.
- Schmitt, Tugce. 2023. "Implementing Electronic Health Records in Germany: Lessons (yet to Be) Learned." *International Journal of Integrated Care* 23 (1).
- ———. 2024. "New Governance of the Digital Health Agency: A Way Out of the Joint Decision Trap to Implement Electronic Health Records in Germany?" *Health Economics*, *Policy and Law* 19 (2): 269–88.
- Schubert, Tim, Tim Oosterlinck, Robert D Stevens, Patrick H Maxwell, and Mihaela van der Schaar. 2025. "AI Education for Clinicians." *EClinicalMedicine* 79.
- Schuurman, Alex R, ME Baarsma, W Joost Wiersinga, and Joppe W Hovius. 2022. "Digital Disparities Among Healthcare Workers in Typing Speed Between Generations, Genders, and Medical Specialties: Cross Sectional Study." *Bmj* 379.
- Schwill, Simon, Anika Meißner, Johanna Mink, Susanne Bublitz, Attila Altiner, and Nicola Buhlinger-Göpfarth. 2024. "HÄPPI–Konzeption Eines Modells für Die Ambulante Versorgung in Deutschland." Zeitschrift für Allgemeinmedizin 100 (3): 142–49.
- Shachak, Aviv, Craig Kuziemsky, and Carolyn Petersen. 2019. "Beyond TAM and UTAUT: Future Directions for HIT Implementation Research." *Journal of Biomedical Informatics* 100: 103315.
- Sherer, Susan A, Chad D Meyerhoefer, and Lizhong Peng. 2016. "Applying Institutional Theory to the Adoption of Electronic Health Records in the US." *Information & Management* 53 (5): 570–80.
- Sibbald, Shannon, Karen Schouten, Kimia Sedig, Rachelle Maskell, and Christopher Licskai. 2020. "Key Characteristics and Critical Junctures for Successful Interprofessional Networks in Healthcare—a Case Study." *BMC Health Services Research* 20: 1–10.
- Sibley, Janice Bain. 2022. "Meeting the Future: How CME Portfolios Must Change in the Post-COVID Era." Journal of European CME 11 (1): 2058452. https://doi.org/10.1080/21614083.2022.2058452.
- Sicherheit in der Informationstechnik, Bundesamt für. 2023. "Abschlussbericht Projekt Cyber-PraxMed Sicherheit in Arztpraxen." Bundesamt für Sicherheit in der Informationstechnik. https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Cyber-Sicherheit/Projekte/CyberPraxMed/cyberpraxmed_abschlussbericht.pdf?___blob=publicationFile&v=1.
- Siptroth, Julienne, Olga Moskalenko, Carsten Krumbiegel, Jörg Ackermann, Ina Koch, and Heike Pospisil. 2023. "Investigation of Metabolic Pathways from Gut Microbiome Analyses Regarding Type 2 Diabetes Mellitus Using Artificial Neural Networks." Discover Artificial Intelligence 3 (1): 19.
- Solans Fernández, Oscar, Carlos Gallego Pérez, Francesc García-Cuyàs, Núria Abdón Giménez, Manel Berruezo Gallego, Adrià Garcia Font, Miquel González Quintana, Sara Hernández Corbacho, and Ester Sarquella Casellas. 2017. "Shared Medical Record, Personal Health Folder and Health and Social Integrated Care in Catalonia: ICT Services for Integrated Care." In New Perspectives in Medical Records: Meeting the Needs of Patients and Practitioners, 49–64. Springer.
- Solans, Oscar. 2020. "Transversal Implementation in Catalonia of the ICT Process of Transition of Care Between Hospitals and Primary Care Centers (PCC)." International Journal

- of Integrated Care 21 (S1): 105.
- Solans, Oscar, Anna Serra, Sara Hernandez, Jordi Martinez, Joan Carles Contel, Inmaculada Olmedo, Ester Sarquella, Pol Perez, and Francesc Garcia-Cuyas. 2018. "Health and Social Electronic Records Integratation in Catalonia." *International Journal of Integrated Care* 18 (s2): 76.
- Son, Jihun, Yeong Woong Kim, Dong Bin Oh, and Kyounggon Kim. 2022. "Forensic Analysis of Instant Messengers: Decrypt Signal, Wickr, and Threema." Forensic Science International: Digital Investigation 40: 301347.
- Sørensen, Natasha Lee, Brian Bemman, Martin Bach Jensen, Thomas B Moeslund, and Janus Laust Thomsen. 2023. "Machine Learning in General Practice: Scoping Review of Administrative Task Support and Automation." *BMC Primary Care* 24 (1): 14.
- Stankovic, Jelena J, Ivana Marjanovic, Sasa Drezgic, and Zarko Popovic. 2021. "The Digital Competitiveness of European Countries: A Multiple-Criteria Approach." *Journal of Competitiveness* 13 (2): 117–34.
- Steffen, Barbara, Andrea Braun von Reinersdorff, and Christoph Rasche. 2023. "IT-Based Decision Support for Holistic Healthcare Management in Times of VUCA, Disorder, and Disruption." Applied Sciences 13 (10). https://doi.org/10.3390/app13106008.
- Tailby, Chris, Jodie E Chapman, Remy Pugh, A Holth Skogan, Christoph Helmstaedter, and Graeme D Jackson. 2024. "Applications of Teleneuropsychology to the Screening and Monitoring of Epilepsy." Seizure: European Journal of Epilepsy.
- Tan, Nan-Guang, Lily Wei-Yun Yang, Mark Zhong-Wei Tan, Jeremiah Chng, Marcus Hong-Tat Tan, and Clive Tan. 2022. "Virtual Care to Increase Military Medical Centre Capacity in the Primary Health Care Setting: A Prospective Self-Controlled Pilot Study of Symptoms Collection and Telemedicine." *Journal of Telemedicine and Telecare* 28 (8): 603–12. https://doi.org/10.1177/1357633X20959579.
- Teixeira, Fábia, Edmond Li, Liliana Laranjo, Claire Collins, Greg Irving, Maria Jose Fernandez, Josip Car, et al. 2022. "Digital Maturity and Its Determinants in General Practice: A Cross-Sectional Study in 20 Countries." medRxiv. https://doi.org/10.1101/2022.08.23. 22278753.
- Thakkar, Jay, Rahul Kurup, Tracey-Lea Laba, Karla Santo, Aravinda Thiagalingam, Anthony Rodgers, Mark Woodward, Julie Redfern, and Clara K. Chow. 2016. "Mobile Telephone Text Messaging for Medication Adherence in Chronic Disease: A Meta-Analysis." *JAMA Internal Medicine* 176 (3): 340–49. https://doi.org/10.1001/jamainternmed.2015.7667.
- Thiagarajan, Nishanth, Hong Chang Tan, Suresh Rama Chandran, Phong Ching Lee, Yun Ann Chin, Wanling Zeng, Emily Tse Lin Ho, David Carmody, Su-Yen Goh, and Yong Mong Bee. 2025. "Web-Based, Algorithm-Guided Insulin Titration in Insulin-Treated Type 2 Diabetes: Pre-Post Intervention Study." *JMIR Form Res* 9 (February): e68914. https://doi.org/10.2196/68914.
- Thiel, Rainer, Lucas Deimel, Daniel Schmidtmann, Klaus Piesche, Tobias Hüsing, Jonas Rennoch, Veli Stroetmann, and Karl Stroetmann. 2019. "SmartHealthSystems: International Comparison of Digital Strategies." *Gütersloh: Bertelsmann-Stiftung*.
- Tolentino, Raymond, Fanny Hersson-Edery, Mark Yaffe, and Samira Abbasgholizadeh-Rahimi. 2025. "AIFM-Ed Curriculum Framework for Postgraduate Family Medicine Education on

- Artificial Intelligence: Mixed Methods Study." JMIR Medical Education 11: e66828.
- Trirongjitmoah, Suchin, Arphorn Promking, Khanittha Kaewdang, Nisarut Phansiri, and Kriengsak Treeprapin. 2024. "Assessing Heart Rate and Blood Pressure Estimation from Image Photoplethysmography Using a Digital Blood Pressure Meter." Heliyon 10 (5).
- Truong, Kien Tuong. 2022. "Breaking Cryptography in the Wild: Threema."
- Tu, Tao, Anil Palepu, Mike Schaekermann, Khaled Saab, Jan Freyberg, Ryutaro Tanno, Amy Wang, et al. 2024. "Towards Conversational Diagnostic AI." https://arxiv.org/abs/2401.05654.
- Turner, Andrew, Rebecca Morris, Dylan Rakhra, Fiona Stevenson, Lorraine McDonagh, Fiona Hamilton, Helen Atherton, et al. 2021. "Unintended Consequences of Online Consultations: A Qualitative Study in UK Primary Care." *British Journal of General Practice*.
- Uncovska, Marie, Bettina Freitag, Sven Meister, and Leonard Fehring. 2023. "Patient Acceptance of Prescribed and Fully Reimbursed mHealth Apps in Germany: An UTAUT2-Based Online Survey Study." *Journal of Medical Systems* 47 (1): 14.
- Unsworth, Harriet, Bernice Dillon, Lucie Collinson, Helen Powell, Mark Salmon, Tosin Oladapo, Lynda Ayiku, et al. 2021. "The NICE Evidence Standards Framework for Digital Health and Care Technologies Developing and Maintaining an Innovative Evidence Framework with Global Impact:" Null. https://doi.org/10.1177/20552076211018617.
- Van Der Vaart, Rosalie, and Constance Drossaert. 2017. "Development of the Digital Health Literacy Instrument: Measuring a Broad Spectrum of Health 1.0 and Health 2.0 Skills." Journal of Medical Internet Research 19 (1): e27.
- Venkatesh, Viswanath, Michael G Morris, Gordon B Davis, and Fred D Davis. 2003. "User Acceptance of Information Technology: Toward a Unified View." MIS Quarterly, 425–78.
- Venkatesh, Viswanath, James YL Thong, and Xin Xu. 2012. "Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology." MIS Quarterly, 157–78.
- Versluis, Anke, Anke Versluis, Sanne van Luenen, Sanne van Luenen, Eline Meijer, Eline Meijer, Persijn Honkoop, et al. 2020. "SERIES: eHealth in Primary Care. Part 4: Addressing the Challenges of Implementation." European Journal of General Practice. https://doi.org/10.1080/13814788.2020.1826431.
- Vokinger, Kerstin N, Derek R Soled, and Raja-Elie E Abdulnour. 2025. "Regulation of AI: Learnings from Medical Education." *NEJM AI*. Massachusetts Medical Society.
- Waddell, Alex, Joshua Paolo Seguin, Ling Wu, Peta Stragalinos, Joe Wherton, Jessica L Watterson, Christopher Owen Prawira, et al. 2024. "Leveraging Implementation Science in Human-Centred Design for Digital Health." In *Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems*, 1–17.
- Waddell, Kimberly J., Keshav Goel, Sae-Hwan Park, Kristin A. Linn, Amol S. Navathe, Joshua M. Liao, Caitlin McDonald, et al. 2024. "Association of Electronic Self-Scheduling and Screening Mammogram Completion." *American Journal of Preventive Medicine* 66 (3): 399–407. https://doi.org/https://doi.org/10.1016/j.amepre.2023.11.002.
- Walker, Jan, Suzanne Leveille, Sigall Bell, Hannah Chimowitz, Zhiyong Dong, Joann G Elmore, Leonor Fernandez, et al. 2019. "OpenNotes After 7 Years: Patient Experiences with Ongoing Access to Their Clinicians' Outpatient Visit Notes." J Med Internet Res 21 (5):

- e13876. https://doi.org/10.2196/13876.
- Wang, Hailiang, Da Tao, Na Yu, and Xingda Qu. 2020. "Understanding Consumer Acceptance of Healthcare Wearable Devices: An Integrated Model of UTAUT and TTF." *International Journal of Medical Informatics* 139: 104156.
- Wang, Zhao, Chang Liu, Lingting Zhu, Tongtong Wang, Shaoting Zhang, and Qi Dou. 2025. "Improving Foundation Model for Endoscopy Video Analysis via Representation Learning on Long Sequences." *IEEE Journal of Biomedical and Health Informatics*.
- Warth, Line Lundvoll, and Kari Dyb. 2019. "eHealth Initiatives; the Relationship Between Project Work and Institutional Practice." *BMC Health Services Research* 19: 1–12.
- Weppner, William G, Amy S Jeffreys, Cynthia J Coffman, Hayden B Bosworth, David Edelman, and Matthew J Crowley. 2025. "Decarbonizing Health Care: Measuring the Carbon Footprint Impact of a National VA Telehealth Program." NEJM Catalyst Innovations in Care Delivery 6 (5): CAT-24.
- Wilcox, Adam B., Watson A. Bowes, Sidney N. Thornton, and Scott P. Narus. 2008. "Physician Use of Outpatient Electronic Health Records to Improve Care." Null. https://doi.org/null.
- Willemsen, Romy F, Jiska J Aardoom, OP van der Galiën, Steven van de Vijver, Niels H Chavannes, and Anke Versluis. 2024. "A Digital Platform to Support Communication and Organization in the General Practice: Evaluation of Healthcare Usage and Costs Using Claims Data of a Health Insurer." *International Journal of Medical Informatics* 181: 105296.
- Winter, Alfred, Elske Ammenwerth, Reinhold Haux, Michael Marschollek, Bianca Steiner, and Franziska Jahn. 2023. *Health Information Systems: Technological and Management Perspectives*. Springer Nature.
- Woehrle, Holger, and Christoph Schöbel. 2021. "Die Zukunft Der Pneumologie Ist Digital." *Pneumo News* 13 (1): 22–27.
- Wong, Andrew, Jeremy Sussman, Nicholson Price, Maggie Makar, Benjamin Li, Jun Yang, and Cornelius James. 2024. "The Data-Augmented, Technology-Assisted Medical Decision Making (DATA-MD) Curriculum: A Machine Learning and Artificial Intelligence Curriculum for Clinical Trainees." *Academic Medicine*, 10–1097.
- Wong, Brian Li Han, Laura Maaß, Alice Vodden, Robin van Kessel, Sebastiano Sorbello, Stefan Buttigieg, and Anna Odone. 2022. "The Dawn of Digital Public Health in Europe: Implications for Public Health Policy and Practice." The Lancet Regional Health–Europe 14.
- Wrona, Kamil J, Joanna Albrecht, Tessa Schulenkorf, and Dirk Bruland. 2025. "Förderung Digitaler Gesundheitskompetenz in Benachteiligten Lebenslagen Durch Community-Orientierte Ansätze: Ergebnisse Eines Workshops." *Prävention Und Gesundheitsförderung*, 1–7.
- Wu, Velyn, and Jed Casauay. 2025. "OpenEvidence." Family Medicine 57 (3): 232–33. https://doi.org/10.22454/FamMed.2024.587513.
- Yakushi, Jose, Mose Wintner, Naomi Yau, Lina Borgo, and Edwin Solorzano. 2020. "Utilization of Secure Messaging to Primary Care Departments." *The Permanente Journal* 24.

- Yao, Rui, Wenli Zhang, Richard Evans, Guang Cao, Tianqi Rui, and Lining Shen. 2022. "Inequities in Health Care Services Caused by the Adoption of Digital Health Technologies: Scoping Review." *Journal of Medical Internet Research* 24 (3): e34144.
- Yeung, Andy Wai Kan, Ali Torkamani, Atul J Butte, Benjamin S Glicksberg, Björn Schuller, Blanca Rodriguez, Daniel SW Ting, et al. 2023. "The Promise of Digital Healthcare Technologies." Frontiers in Public Health 11: 1196596.
- Yıldırım, Elif, Ezgi Soncu Büyükişcan, Şükriye Akça Kalem, and İ Hakan Gürvit. 2024. "Remote Neuropscyhological Assessment: Teleneuropsychology." *Archives of Neuropsychiatry* 61 (2): 167.
- Zanaboni, Paolo, and Asbjørn Johansen Fagerlund. 2020. "Patients' Use and Experiences with e-Consultation and Other Digital Health Services with Their General Practitioner in Norway: Results from an Online Survey." BMJ Open 10 (6): e034773.
- Zandieh, Stephanie O, Kahyun Yoon-Flannery, Gilad J Kuperman, Daniel J Langsam, Daniel Hyman, and Rainu Kaushal. 2008. "Challenges to EHR Implementation in Electronic-Versus Paper-Based Office Practices." *Journal of General Internal Medicine* 23: 755–61.
- Zentralinstitut für die kassenärztliche Versorgung (Zi). 2025. "KV-App-Radar Gesundheits-Apps Bewerten." https://www.kvappradar.de/.
- Zhou, Yi Yvonne, Terhilda Garrido, Homer L Chin, Andrew M Wiesenthal, and Louise L Liang. 2007. "Patient Access to an Electronic Health Record with Secure Messaging: Impact on Primary Care Utilization." Am J Manag Care 13 (7): 418–24.
- Zhou, Yukun, Mark A Chia, Siegfried K Wagner, Murat S Ayhan, Dominic J Williamson, Robbert R Struyven, Timing Liu, et al. 2023. "A Foundation Model for Generalizable Disease Detection from Retinal Images." *Nature* 622 (7981): 156–63.
- Zhu, Yakun, Zhongzhen Huang, Linjie Mu, Yutong Huang, Wei Nie, Jiaji Liu, Shaoting Zhang, Pengfei Liu, and Xiaofan Zhang. 2025. "DiagnosisArena: Benchmarking Diagnostic Reasoning for Large Language Models." https://arxiv.org/abs/2505.14107.
- Ziebland, Sue, Emma Hyde, and John Powell. 2021. "Power, Paradox and Pessimism: On the Unintended Consequences of Digital Health Technologies in Primary Care." Social Science & Medicine 289: 114419.
- Zimmermann, Julian Alexander, Christopher Dicke, Maren Arndt, Noel-Adrian Hollosi, Jens Julian Storp, and Nicole Eter. 2025. "Das Oregis-Dashboard: Webbasiertes Benchmarking in Der Augenheilkundlichen Versorgungsforschung in Deutschland." Klinische Monatsblätter für Augenheilkunde.
- Zobel, Marc, Bernhard Knapp, Jama Nateqi, and Alistair Martin. 2023. "Correlating Global Trends in COVID-19 Cases with Online Symptom Checker Self-Assessments." *Plos One* 18 (2): e0281709.