EigenSolver

- Power Iteration
- Inverse Iteration
- QR Iteration
- Lanczos Iteration
- Arnoldi Iteration
- Assumption : real symmetric matrix
- ->real eigen values
 - & invertible (Inverse Iteration Method)
 - & symmetric (Lanczos)

Power Iteration Method

- Goal: Compute the largest magnitude eigenvalue and its eigenvector.
- Start with a random vector b₀.
- - Iterate: $b_{k+1} = A b_k$, then normalize.
- - Stop when $||b_{k+1} b_k|| < tolerance$.
- - Estimate $\lambda \approx |Ab_k| / |b_k|$ using Rayleigh quotient.
- Converges to the dominant eigenvalue (largest in magnitude).

Inverse Iteration Method

- Goal: Compute an eigenvalue close to a guess u (default: 0).
- Start with a random vector b₀.
- LU Decomposition: A = LU (precomputed).
- - Iterate: Solve LU $b_{k+1} = b_k \rightarrow b_{k+1} \approx A^{-1} b_k$. if shift: $b_{k+1} \approx (A-u I)^{-1} b_k$
- - Normalize x and check $||b_{k+1} b_k|| < tolerance$.
- - Estimate $\lambda \approx |Ab_k| / |b_k|$ using Rayleigh quotient.
- Finds eigenvalue closest to initial guess (or 0 if no shift).

QR Iteration Method

- Goal: compute all eigenvalues of a square matrix based on repeated QR decompositions and similarity transforms
- Given a square matrix $A_0 = A$:
- 1. Compute QR decomposition: $A_k = Q_k R_k$
- 2. Construct next iterate: $A_{k+1} = R_k Q_k$
- 3. Repeat until A_k becomes nearly diagonal or uppertriangular.

Why Does It Work?

- $-A_{k+1} = Q_k^T A_k Q_k$ is a similarity transform.
- Similar matrices share eigenvalues.
- - As $k \to \infty$, $A_k \to diagonal form.$
- Diagonal elements ≈ eigenvalues.

Lanczos Iteration Method

- - Goal: approximate eigenvalues of symmetric matrix $A \in \mathbb{R}^{n \times n}$
 - Builds orthonormal basis Q_k for Krylov subspace: $K_k(A, q_0) = \text{span}\{q_0, Aq_0, A^2q_0, ..., A^{k-1}q_0\}$
 - Projects A to low-dim tridiagonal matrix:

$$T_k = Q_k^T A Q_k \in \mathbb{R}^{k \times k}$$

- $A \approx Q_k T_k Q_k^T$
- -Eig(T_k) \approx partial eig(A)
- Efficient for large sparse symmetric matrices.

Lanczos Iteration Method

 $T_k = egin{bmatrix} lpha_1 & eta_1 & 0 & \cdots \ eta_1 & lpha_2 & eta_2 & \cdots \ 0 & eta_2 & lpha_3 & \cdots \ dots & dots & \ddots & \ddots \end{bmatrix}$

- - $Q_k = [q_0, q_1, ..., q_{k-1}]$ (n \times k matrix with orthonormal cols)
 - T_k = tridiagonal matrix with α_j on diag, β_j on off-diag
 - Then:

$$A \approx Q_k T_k Q_k^T \Rightarrow A Q_k = Q_k T_k$$

Main iteration:

$$A q_{j} = \beta_{j-1} q_{j-1} + \alpha_{j} q_{j} + \beta_{j} q_{j+1}$$

Implementation:

$$w = A q_{j} - \beta_{j-1} q_{j-1}$$

$$\alpha_{j} = q_{j}^{T} w$$

$$w \leftarrow w - \alpha_{j} q_{j}$$

$$\beta_{i} = ||w||, \text{ then } q_{i+1} = w / \beta_{i}$$

Yields: tridiagonal T with α on diag, β on off-diagonals

Solve eigenvalue by QR Iteration on T

Arnoldi Iteration Method

- - Goal: approximate eigenvalues of a general (non-symmetric) matrix $A \in \mathbb{R}^{n \times n}$
 - Builds orthonormal basis Q_k for Krylov subspace: $K_k(A, q_0) = \text{span}\{q_0, Aq_0, A^2q_0, ..., A^{k-1}q_0\}$
 - Projects A to low-dim upper Hessenberg matrix: $H_k = Q_k^T A Q_k \in \mathbb{R}^{k \times k}$
 - $A \approx Q_k H_k Q_k^T$
 - Eig(H_k) ≈ partial eig(A)

Arnoldi Iteration Method

- Q_k = [q₀, q₁, ..., q_{k-1}] (n × k matrix with orthonormal cols)
 H_k = upper Hessenberg matrix (zero below subdiagonal)
 Then: A ≈ Q_k H_k Q_k^T ⇒ A Q_k = Q_k H_k
- Main iteration:

```
w = A q_{j}

for i = 0 to j:

h_{ij} = q_{i}^{T} w

w \leftarrow w - h_{ij} q_{i}

h_{i+1,j} = ||w||, q_{i+1} = w / h_{i+1,j}
```

Solve eigenvalue by QR Iteration on H

Eigen Solver Summary

Method	Requirement	Return
Power Iteration	-	max magnitude eigen value
Inverse Iteration	invertible	eigen value close to a given value
QR Iteration	-	all eigen values
Lanczos Iteration	real symmetric	k eigen values
Arnoldi Iteration	-	k eigen values

Test case on Symmetric Positive Definite Matrix

Eigen Solver Test Case

- Generate a spd matrix of 50, max iter = 50, num eigenvalues=10
- [Testing Power Iteration]
- Finish iteration in iter 6
- Estimated dominant eigenvalue (Power Iteration): 792.356
- Time taken: 0 ms
- [Testing Inverse Iteration]
- Finish iteration in iter 3
- Estimated smallest eigenvalue (Inverse Iteration): 5.25056e-08
- Time taken: 145 ms
- [Testing QR Iteration]
- [QR finished]
- Time taken: 19478 ms
- [QR eigenvalues (first 10)]
- 792.356 12.8577 11.9656 10.7768 9.66794 8.73318 8.41568 7.88438 7.15266 7.14658
- [Testing Lanczos Iteration]
- [Lanczos finished]
- Time taken: 13 ms
- [Lanczos eigenvalues (first 10)]
- 792.356 792.355 12.778 11.4522 9.91066 7.30989 4.48347 2.7544 1.04209 0.133806
- [Testing Arnoldi Iteration]
- [Arnoldi finished]
- Time taken: 13 ms
- [Arnoldi eigenvalues (first 10)]
- 792.356 12.8503 11.6539 10.3237 8.81115 6.48019 3.72511 2.11372 0.924672 0.123859