

Winning Space Race with Data Science

Geoffrey Bowles 6/12/2023

Contents

- Executive Summary
- Introduction
- Methodology
 - EDA with Visualization
 - EDA with SQL
 - Interactive Maps with Folium
 - Plotly Dash Dashboard
 - Predictive Analytics
- Results
- Conclusion

Executive Summary

Summary of methodologies

- Collect data using SpaceX REST API and web scraping techniques
- Wrangle data to create success/failure outcome variable
- Explore data with data visualization techniques
- Analyze data with SQL
- Explore launch site success rates and proximities to geographical markers
- Visualize launch sites with most success and payload ranges
- Build models to predict landing outcomes

Exploratory Data Analysis

- Launch success has improved over time
- KSC LC-39A landing site has the highest success rate
- Orbits ES-L1, GEO, HEO, and SSO have a 100% success rate

Visualization/Analytics

 Most launch sites are near the equator and all are close to the coast

Predictive Analytics

- All models performed similarly
- The decision tree model slightly outperformed the rest using the .best_score_

Introduction

Background

SpaceX, a leader in the space industry, strives to make space travel affordable for everyone. Its accomplishments include sending spacecraft to the international space station, launching a satellite constellation that provides internet access and sending manned missions to space. SpaceX can do this because the rocket launches are relatively inexpensive (\$62 million per launch) due to its novel reuse of the first stage of its Falcon 9 rocket. Other providers, which are not able to reuse the first stage, cost upwards of \$165 million each. By determining if the first stage will land, we can determine the price of the launch. To do this, we can use public data and machine learning models to predict whether SpaceX – or a competing company – can reuse the first stage.

Explore

- How payload mass, launch shite, number of flights, and orbits affect landing success
- Rate of successful landings over time
- Best predictive model for successful landing

Methodology

Steps

- Data collection methodology
 - Rocket Launch Data from SpaceX API with Requests via Python
 - Falcon9 Launch Data from Wikipedia with BeautifulSoup via Python
- Perform data wrangling
 - Data was processed with one-hot encoding via Python
- Explore data using SQL and data visualization
- Visualize data with Folium and Plotly Dash
- Build predictive models using classification models to predict landing outcomes
 - How to build, tune, evaluate classification model

Data Collection

SpaceX API Data

- Pulled data from the API using the Requests module in Python
- Converted the JSON response into a Pandas dataframe using pd.json_normalize()
- Created subsets of data using lists
- Constructed a working dataframe from the subsets

Falcon9 Launch Data

- Web scraped data from Wikipedia using the BeautifulSoup module in Python
- Looped through all tables using soup.find_all()
- Parsed each table and stored all information into a custom dictionary
- Created a working dataframe using pd.from_dict()

Data Collection \ SpaceX API

Perform GET Filter Dataset Request on to Falcon 9 SpaceX API Launches Convert JSON Fill Null Values Response to in Dataset **Pandas** Dataframe

Data Collection \ Web Scraping

Perform GET request of Falcon9 Launch Wiki page

Create a data frame by parsing the launch HTML tables

Data Wrangling

Calculate the number of launches on each site

Calculate the number and occurrence of mission outcome per orbit type

Calculate the number and occurrence of each orbit

Create a
landing
outcome label
from Outcome
column

EDA with SQL

Perform the following SQL queries to explore the data:

- Select the distinct launch sites in the space mission
- Select 5 records where the launch site begins with the string 'CCA'
- Display the total payload mass carried by boosters launched by NASA (CRS)
- Display average payload mass carried by booster version F9 v1.1
- List the date when the first successful landing outcome in ground pad was achieved
- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- List the total number of successful and failure mission outcomes
- List the names of the booster_versions which have carried the maximum payload mass
- List the records which will display the month names, failure landing outcomes in drone ship, booster versions and launch sites for the months in 2015
- Rank the count of successful landing outcomes between 6/4/2010 and 3/20/2017

EDA with Data Visualization

Charts

- Flight Number vs. Payload
- Flight Number vs. Launch Site
- Payload Mass (kg) vs. Launch Site
- Payload Mass (kg) vs. Orbit Type

Analysis

- View relationships by using scatter plots
- Show comparisons among discrete categories with bar charts

Build an Interactive Map with Folium

Markers Indicating Launch Sites

Marked all launch sites on a folium map with red circles based on coordinates

Colored Markers of Launch Outcomes

- Assigned the feature launch outcomes (failure or success) to class 0 (failure) and 1 (success)
- Added green (success) and red (failure) markers to each site to show success rates

Distances Between a Launch Site to Proximities

 Added colored lines for calculated distances between launch sites and proximities such as nearest coastline, railway, highway, and city

Build a Dashboard with Plotly Dash

Dropdown List with Launch Sites

Allow user to select all launch sites or a certain launch site

Pie Chart Showing Successful Launches

Allow user to see successful and unsuccessful launches as a percent of the total

Slider of Payload Mass Range

Allow user to select payload mass range

Scatter Chart Showing Payload Mass vs. Success Rate by Booster Version

Allow user to see the correlation between Payload and Launch Success

Predictive Analysis (Classification)

Charts

- Create NumPy array
- Standardize the data with StandardScaler
- Split the data using train_test_split
- Create a GridSearchCV object with cv=10
- Apply GridSearchCV on different algorithms:
 - Logistic Regression
 - Support Vector Machine
 - Decision Tree Classifier
 - K-Nearest Neighbor
- Calculate accuracy on the test data using .score()
- Access the confusion matrix for all models
- Identify the best model using Jaccard_Score, F1_Score and Accuracy

Results Summary

Exploratory Data Analysis

- Launch success has improved over time
- KSC LC-39A has the highest success rate among landing sites
- Orbits ES-L1, GEO, HEO and SSO have a 100% success rate

Visual Analytics

- Most launch sites are near the equator, and all are close to the coast
- Launch sites are far enough away from anything a failed launch can damage (city, highway, railway), while still close enough to bring people and material to support launch activities

Predictive Analytics

Decision Tree model is the best predictive model for the dataset

Flight Number vs. Launch Site

- Earlier flights had a lower success rate (blue = fail)
- Later flights had a higher success rate (orange = success)
- While CCAFS SLC 40 had more launches, the other two launch sites had higher success rates

Payload vs. Launch Site

- Greater payload mass typically leads to more successful launches
- Launches with payload mass greater than ~7,500 kg were very successful
- KSC LC 39A has a 100% success rate for launches less than ~5,500 kg

Success Rate vs. Orbit Type

- 100% Success Rate: ES-L1, GEO, HEO, SSO
- 50-80% Success Rate: GTO, ISS, LEO, MEO, PO
- 0% Success Rate: SO

Flight Number vs. Orbit Type

- The success rate typically increases with the number of launches for each orbit
- GTO is less likely to follow this pattern compared to other orbits

Payload vs. Orbit Type

- LEO, ISS, and PO orbits perform better with heavier payloads
- GTO has mixed results amongst all launches with varying payloads

Launch Success Yearly Trend

- The success rate improved from 2013-2017 and again from 2018-2019
- The success rate decreased from 2017-2018 and again from 2019-2020
- Overall, the success rate has improved from 2013

Launch Site Information

Launch Site Names

- CCAFS LC-40
- CCAFS SLC-40
- KSC LC-39A
- VAFB SLC-4E

Records with Launch Site starting with CCA

%sql select * from spacextbl where launch_site like 'CCA%' limit 5;									
* sqlite:///my_data1.db Done.									
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
06/04/2010	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0.0	LEO	SpaceX	Success	Failure (parachute)
12/08/2010	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0.0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
22/05/2012	7:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525.0	LEO (ISS)	NASA (COTS)	Success	No attempt
10/08/2012	0:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500.0	LEO (ISS)	NASA (CRS)	Success	No attempt
03/01/2013	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677.0	LEO (ISS)	NASA (CRS)	Success	No attempt

Payload Mass

Total Payload Mass

 45,596 kg (total) carried by boosters launched by NASA (CRS)

```
%sql select sum(payload_mass__kg_) as total_payload_mass \
    from spacextbl \
    where customer = 'NASA (CRS)'

* sqlite:///my_data1.db
Done.

total_payload_mass

45596.0
```

Average Payload Mass

 2,928.4 kg (average) carried by booster version F9 v1.1

```
%sql select avg(payload_mass__kg_) as average_payload_mass \
    from_spacextbl_\
    where booster_version_like 'F9_v1.1';

* sqlite:///my_data1.db
Done.

average_payload_mass

2928.4
```

First Successful Ground Landing Date

First Successful Landing

• January 8, 2018

Successful Drone Ship Landing with Payload between 4000 and 6000

Successful Boosters

- F9 FT B1022
- F9 FT B1026
- F9 FT B1021.2
- F9 FT B1031.2

```
%sql select booster_version \
    from spacextbl \
    where landing outcome = 'Success (drone ship)' \
        and payload_mass_kg_ between 4000 and 6000

* sqlite://my_data1.db
Done.

Booster_Version

F9 FT B1022

F9 FT B1021.2

F9 FT B1031.2
```

Total Number of Successful and Failure Mission Outcomes

Mission Outcomes

- 1 Failure
- 100 Success

Boosters

Carrying Max Payload

- F9 B5 B1048.4
- F9 B5 B1049.4
- F9 B5 B1051.3
- F9 B5 B1056.4
- F9 B5 B1048.5
- F9 B5 B1051.4
- F9 B5 B1049.5
- F9 B5 B1060.2
- F9 B5 B1058.3
- F9 B5 B1051.6
- F9 B5 B1060.3
- F9 B5 B1049.7

```
%sql select booster_version \
    from spacextbl \
    where payload mass kg = ( \
         select max(payload_mass__kg_) \( \)
         from spacextbl \
 * sqlite:///my_data1.db
Booster_Version
   F9 B5 B1048.4
   F9 B5 B1049.4
   F9 B5 B1051.3
   F9 B5 B1056.4
   F9 B5 B1048.5
   F9 B5 B1051.4
   F9 B5 B1049.5
   F9 B5 B1060.2
   F9 B5 B1058.3
   F9 B5 B1051.6
   F9 B5 B1060.3
   F9 B5 B1049.7
```

2015 Failed Launch Records – Drone Ship

Showing month, date, booster version, launch site and landing outcome

Month	Date	Booster_Version	Launch_Site	Landing_Outcome
10	01/10/2015	F9 v1.1 B1012	CCAFS LC-40	Failure (drone ship)
04	14/04/2015	F9 v1.1 B1015	CCAFS LC-40	Failure (drone ship)

Landing Outcomes Between 6/4/2010 and 3/20/2017

Showing landing_outcome and count_outcomes in descending order

Landing_Outcome	Count_Outcomes
Success	20
Success (drone ship)	8
Success (ground pad)	7

```
%sql select landing_outcome, count(*) as count_outcomes \
    from_spacextbl_\
    where landing_outcome like 'Success%'_\
        and date between '04-06-2010' and '20-03-2017' \
    group by landing_outcome \
    order by count_outcomes desc

* sqlite://my_datal.db
Done.

Landing_Outcome count_outcomes

Success 20

Success (drone ship) 8

Success (ground pad) 7
```


Launch Sites

Sites closer to the equator gain an advantage when launching due to the additional natural boost of Earth's rotation – helping save costs of extra fuel and boosters

Launch Outcomes

Outcomes for each Launch Site:

- Green markers for successful launches
- Red markers for failed launches
- Launch site VAFB
 SLC-4E has a 4/10
 success rate (40%)

Distance to Proximities

VAFB SLC-4E

- 1.35 km from the nearest coastline
- 1.25 km from the nearest railway
- 14.05 km from the nearest city
- **5.61 km** from the nearest highway

SpaceX Launch Records Dashboard

Success as Percent of Total

- KSC LC-39A has the most successful launches amongst launch sites (41.2%)
- CCAFS LC-40 has the least successful launches amongst launch sites (14.4%)

SpaceX Most Successful Launch Site

Success as Percent of Total

- KSC LC-39A has the highest success rate amongst launch sites (76.9%)
- 10 successful launches and 3 failed launches

Payload Mass and Success

By Booster Version

- Payloads between 2,000 kg and 4,000 kg have the highest success rate
- 1 indicates successful launches and 0 indicates failed launches

Classification Accuracy

Accuracy

- In terms of score and accuracy, all models performed around the same level
- The decision tree classifier had the highest classification accuracy when looking at .best_score_

```
models = {'KNeighbors':knn_cv.best_score_,
                  'DecisionTree':tree cv.best score ,
                  'LogisticRegression':logreg_cv.best_score_,
                  'SupportVector': svm_cv.best_score_}
   bestalgorithm = max(models, key=models.get)
   print('Best model is', bestalgorithm,'with a score of', models[bestalgorithm])
   if bestalgorithm == 'DecisionTree':
       print('Best params is :', tree_cv.best_params_)
   if bestalgorithm == 'KNeighbors':
       print('Best params is :', knn_cv.best_params_)
   if bestalgorithm == 'LogisticRegression':
       print('Best params is :', logreg_cv.best_params_)
   if bestalgorithm == 'SupportVector':
       print('Best params is :', svm cv.best params )
 ✓ 0.0s
Best model is DecisionTree with a score of 0.8767857142857143
Best params is : {'criterion': 'gini', 'max_depth': 2, 'max_features': 'sqrt', 'min_samples_leaf': 2, 'min_samples_split': 10, 'splitter': 'best'}
```


Confusion Matrix

Performance Summary

- A confusion matrix summarizes the performance of a classification algorithm
- All the confusion matrices were identical across the models
- Type 1 errors (False Positives) are not good results
- Confusion Matrix Outputs:
 - 12 True positive
 - 3 True negative
 - 3 False positive
 - 0 False negative

Conclusions

Research

- Most launch sites are near the equator and close to a coastline
- Launch success rate improved from 2013 to 2020
- Orbits ES-L1, GEO, HEO, and SSO have a 100% success rate
- The higher the payload mass (kg), the higher the success rate
- The decision tree model slightly outperformed all other models

