■ NetApp

성능 SANtricity 11.6

NetApp February 12, 2024

This PDF was generated from https://docs.netapp.com/ko-kr/e-series-santricity-116/sm-storage/performance-overview.html on February 12, 2024. Always check docs.netapp.com for the latest.

목차

성			. 1
	H념		. 1
	}법		. 4
	AQ 를 참조하십시오		10

성능

개념

성능 개요

성능 페이지에서는 여러 주요 영역에서 스토리지 어레이의 성능을 평가할 수 있는 데이터 그래프와 표를 제공합니다.

성능 기능을 사용하면 다음 작업을 수행할 수 있습니다.

- 성능 데이터를 거의 실시간으로 확인하여 스토리지 어레이에 문제가 있는지 여부를 확인할 수 있습니다.
- 성능 데이터를 내보내 스토리지 배열의 기간별 뷰를 구성하고 문제가 시작된 시기 또는 문제가 발생한 원인을 파악합니다.
- 보려는 객체, 성능 메트릭 및 기간을 선택합니다.
- 메트릭을 비교합니다.

성능 데이터는 다음 세 가지 형식으로 볼 수 있습니다.

- * 실시간 그래픽 * 거의 실시간으로 그래프에 성능 데이터를 표시합니다.
- * 거의 실시간 표 형식 * 거의 실시간으로 테이블의 성능 데이터를 나열합니다.
- * 내보낸 CSV 파일 * 추가 보기 및 분석을 위해 표 형식 성능 데이터를 쉼표로 구분된 값 파일로 저장할 수 있습니다.

성능 데이터 형식의 특성

* 성능 모니터링 유형 *	* 샘플링 간격 *	* 표시된 시간의 길이 *	* 표시되는 최대 개체 수 *	* 데이터 저장 기능 *
실시간 그래픽, 라이브 실시간 그래픽, 기록	10초(라이브) 5분(기록) 표시된 데이터 지점은 선택한 기간에 따라 다릅니다	기본 기간은 1시간입니다. 선택 사항: • 5분 • 1시간 • 8시간 • 1일 • 7일 • 30일	5	아니요
거의 실시간 테이블 형식(테이블 보기)	10초 - 1시간	가장 현재 값입니다	무제한	예

* 성능 모니터링 유형 *	* 샘플링 간격 *	* 표시된 시간의 길이 *	* 표시되는 최대 개체 수 *	* 데이터 저장 기능 *
CSV(쉼표로 구분된 값) 파일	선택한 기간에 따라 다릅니다	선택한 기간에 따라 다릅니다	무제한	예

성능 데이터 보기 지침

- 성능 데이터 수집은 항상 켜져 있습니다. 이 기능을 해제하는 옵션은 없습니다.
- 샘플링 간격이 경과할 때마다 스토리지 배열이 쿼리되고 데이터가 업데이트됩니다.
- 그래픽 데이터의 경우 5분 동안의 시간 프레임에서 평균 5분 동안의 10초 업데이트를 지원합니다. 다른 모든 시간 프레임은 5분마다 업데이트되며, 선택한 시간 프레임 전체의 평균이 됩니다.
- 그래픽 뷰의 성능 데이터는 실시간으로 업데이트됩니다. 테이블 보기의 성능 데이터는 거의 실시간으로 업데이트됩니다.
- 데이터가 수집되는 동안 모니터링되는 개체가 변경되면 개체에 선택한 기간을 확장하는 전체 데이터 요소 집합이 없을 수 있습니다. 예를 들어, 볼륨 세트는 볼륨이 생성, 삭제, 할당 또는 할당되지 않을 때 변경하거나 드라이브를 추가, 제거 또는 장애가 발생할 수 있습니다.

성능 용어

스토리지 어레이에 적용되는 성능 조건에 대해 알아보십시오.

기간	설명
응용 프로그램	애플리케이션은 SQL 또는 Exchange와 같은 소프트웨어 프로그램입니다.
CPU	CPU가 "중앙 처리 장치"에 대해 짧습니다. CPU는 사용 중인 스토리지 시스템의 처리 용량 비율을 나타냅니다.
호스트	호스트는 스토리지 배열의 볼륨에 입출력을 전송하는 서버입니다.
IOPS	IOPS는 초당 입출력 작업의 약어입니다.
지연 시간	지연 시간은 읽기 또는 쓰기 명령에 대한 요청과 호스트 또는 스토리지 시스템의 응답 사이의 시간 간격입니다.
LUN을 클릭합니다	LUN(Logical Unit Number)은 호스트가 볼륨을 액세스하는 데 사용하는 주소 공간에 할당된 번호입니다. 볼륨은 LUN 형태의 용량으로 호스트에 표시됩니다.
	각 호스트에는 고유한 LUN 주소 공간이 있습니다. 따라서 서로 다른 호스트에서 동일한 LUN을 사용하여 서로 다른 볼륨에 액세스할 수 있습니다.

기간	설명
MIB	MIB는 mibibyte(mega binary byte)의 약어입니다. 1MiB는 220 또는 1,048,576바이트입니다. 기본 10 값을 나타내는 MB와 비교합니다. 1MB는 1,024바이트입니다.
오브젝트	개체는 논리적 또는 물리적 스토리지 구성 요소입니다. 논리적 객체에는 볼륨 그룹, 풀 및 볼륨이 포함됩니다. 물리적 객체에는 스토리지 어레이, 어레이 컨트롤러, 호스트 및 드라이브가 포함됩니다.
수영장	풀은 논리적으로 그룹화된 드라이브 집합입니다. 풀을 사용하여 호스트에서 액세스할 수 있는 볼륨을 하나 이상 생성할 수 있습니다. (풀 또는 볼륨 그룹에서 볼륨을 생성하는 경우)
읽기	읽기 작업은 "읽기 작업"에 대한 짧은 것으로, 호스트가 스토리지 시스템에서 데이터를 요청할 때 발생합니다.
볼륨	볼륨은 애플리케이션, 데이터베이스 및 파일 시스템이데이터를 저장하는 컨테이너입니다. 호스트가 스토리지의스토리지를 액세스할 수 있도록 생성되는 논리적 구성요소입니다. 볼륨은 풀 또는 볼륨 그룹에서 사용할 수 있는 용량에서생성됩니다. 볼륨에 정의된 용량이 있습니다. 볼륨이 두 개이상의 드라이브로 구성될 수 있지만 볼륨은 호스트에하나의 논리적 구성 요소로 나타납니다.
볼륨 이름입니다	볼륨 이름은 볼륨 생성 시 볼륨에 할당된 문자열, 기본 이름을 그대로 사용하거나 볼륨에 저장된 데이터의 유형을 나타내는 보다 설명이 포함된 이름을 제공할 수 있습니다.
볼륨 그룹	볼륨 그룹은 공유 특성을 가진 볼륨의 컨테이너입니다. 볼륨 그룹의 용량과 RAID 레벨이 정의되어 있습니다. 볼륨 그룹을 사용하여 호스트에서 액세스할 수 있는 볼륨을 하나 이상 생성할 수 있습니다. 볼륨 그룹 또는 풀에서 볼륨을 생성합니다.

기간	설명
워크로드	워크로드는 애플리케이션을 지원하는 스토리지 객체입니다. 애플리케이션별로 하나 이상의 워크로드 또는 인스턴스를 정의할 수 있습니다. 일부 애플리케이션의 경우 System Manager에서 기본 볼륨 특성이 비슷한 볼륨을 포함하도록 워크로드를 구성합니다. 이러한 볼륨 특성은 워크로드가 지원하는 애플리케이션 유형에 따라 최적화됩니다. 예를 들어, Microsoft SQL Server 애플리케이션을 지원하는 워크로드를 생성한 다음 해당 워크로드에 대한 볼륨을 생성하는 경우 기본 볼륨 특성은 Microsoft SQL Server를 지원하도록 최적화되어 있습니다.
쓰기	"쓰기 작업"에 대한 쓰기 작업이 짧아 호스트에서 스토리지에 데이터를 전송할 때 쓰기가 짧습니다.

방법

그래픽 성능 데이터를 봅니다

논리적 오브젝트, 물리적 오브젝트, 애플리케이션 및 워크로드의 그래픽 성능 데이터를 볼 수 있습니다.

이 작업에 대해

성능 그래프에는 기록 데이터와 현재 캡처 중인 라이브 데이터가 표시됩니다. 실시간 업데이트 라고 표시된 그래프의 세로선은 기록 데이터를 라이브 데이터와 구분합니다.

• 홈 페이지 보기 *

홈 페이지에는 스토리지 레벨 성능을 보여 주는 그래프가 포함되어 있습니다. 이 보기에서 제한된 메트릭을 선택하거나 *성능 세부 정보 보기 *를 클릭하여 사용 가능한 모든 메트릭을 선택할 수 있습니다.

• 상세 보기 *

상세 성능 보기에서 사용할 수 있는 그래프는 다음 세 가지 탭 아래에 있습니다.

- * Logical View * 볼륨 그룹 및 풀별로 그룹화된 논리 오브젝트의 성능 데이터를 표시합니다. 논리적 객체에는 볼륨 그룹, 풀 및 볼륨이 포함됩니다.
- * Physical View * 컨트롤러, 호스트 채널, 드라이브 채널 및 드라이브에 대한 성능 데이터를 표시합니다.
- * 애플리케이션 및 워크로드 보기 * 정의한 애플리케이션 유형 및 워크로드별로 그룹화된 논리적 오브젝트(볼륨) 목록을 표시합니다.

단계

- 1. Home * 을 선택합니다.
- 2. 스토리지 레벨 뷰를 선택하려면 IOPS, MiB/s 또는 CPU 버튼을 클릭합니다.
- 3. 자세한 내용을 보려면 * 성능 세부 정보 보기 * 를 클릭하십시오.

4. Logical View * 탭, * Physical View * 탭 또는 * Applications & 워크로드 View * 탭을 선택합니다.

개체 유형에 따라 각 탭에 다른 그래프가 표시됩니다.

보기 탭	각 오브젝트 유형에 대한 성능 데이터가 표시됩니다
논리적 뷰	• * 스토리지 어레이 *: IOPS, MiB/s
	• * 풀 *: 지연 시간, IOPS, MiB/s
	• * 볼륨 그룹 *: 지연 시간, IOPS, MiB/s
	• * 볼륨 *: 지연 시간, IOPS, MiB/s
물리적 보기	• * 컨트롤러 *: IOPS, MiB/s, CPU, 여유 공간
	• * 호스트 채널 *: 지연 시간, IOPS, MiB/s, 여유 공간
	• * 드라이브 채널 *: 지연 시간, IOPS, MiB/s
	• * 드라이브 *: 지연 시간, IOPS, MiB/s
애플리케이션 및 워크로드 뷰	• * 스토리지 어레이 *: IOPS, MiB/s
	• * 애플리케이션 *: 지연 시간, IOPS, MiB/s
	• * 워크로드 *: 지연 시간, IOPS, MiB/s
	• * 볼륨 *: 지연 시간, IOPS, MiB/s

5. 필요한 개체 및 정보를 보려면 옵션을 사용합니다.

옵션

개체 보기 옵션	설명
문서함을 확장하여 개체 목록을 봅니다.	Navigation 드로어 에는 풀, 볼륨 그룹 및 드라이브와 같은 스토리지 객체가 포함됩니다. 문서함을 클릭하여 문서함의 개체 목록을 표시합니다.
보려는 객체를 선택합니다.	각 개체의 왼쪽에 있는 확인란을 선택하여 보려는 성능 데이터를 선택합니다.
필터를 사용하여 개체 이름 또는 부분 이름을 찾습니다.	필터 상자에 드로어에 있는 개체만 나열할 개체의 이름이나 부분 이름을 입력합니다.
개체를 선택한 후 * 그래프 새로 고침 * 을 클릭합니다.	문서함에서 개체를 선택한 후 * 그래프 새로 고침 * 을 선택하여 선택한 항목에 대한 그래픽 데이터를 봅니다.
그래프를 숨기거나 표시합니다	그래프를 숨기거나 표시하려면 그래프 제목을 선택합니다.

6. 필요에 따라 성능 데이터를 볼 수 있는 추가 옵션을 사용합니다.

추가 옵션

옵션을 선택합니다	설명		
시간 프레임	보려는 시간(5분, 1시간, 8시간, 1일, 7일, 또는 30일). 기본값은 1시간입니다.		
	<u>(i)</u>	30일 기간 동안 성능 데이터를 로드하는 데 몇 분이 걸릴 수 있습니다. 데이터가 로드되는 동안 웹 페이지에서 멀리 이동하거나 웹 페이지를 새로 고치거나 브라우저를 닫지 마십시오.	
데이터 포인트 세부 정보	그래프 위로 커서를 이동하면 특정 데이터 지점에 대한 메트릭이 표시됩니다. 그래프 아래의 스크롤 막대를 사용하여 이전 또는 이후 기간을 봅니다.		
스크롤 막대			
확대/축소 막대	범위를 축	래에서 확대/축소 막대 핸들을 끌어 시간 소합니다. 확대/축소 막대가 넓을수록 상세 정보가 덜 세분됩니다.	
	그래프를 : 선택합니다	재설정하려면 시간 프레임 옵션 중 하나를 다.	
끌어서 놓기		서 특정 시점에서 다른 지점으로 커서를 여 기간을 확대합니다.	
	그래프를 : 선택합니다	재설정하려면 시간 프레임 옵션 중 하나를 다.	

표 형식의 성능 데이터를 보고 저장합니다

성능 그래프 데이터를 표 형식으로 보고 저장할 수 있습니다. 이렇게 하면 표시하려는 데이터를 필터링할 수 있습니다.

단계

- 성능 데이터 그래프에서 * 테이블 보기 시작 * 을 클릭합니다.
 선택한 객체에 대한 모든 성능 데이터가 나열된 테이블이 나타납니다.
- 2. 필요에 따라 개체 선택 풀다운과 필터를 사용합니다.
- 3. 열 표시/숨기기 단추를 클릭하여 표에 포함할 열을 선택합니다.
 - 각 확인란을 클릭하여 항목을 선택하거나 선택 취소할 수 있습니다.

4. 화면 하단의 * Export * 를 선택하여 표 형식 보기를 CSV(쉼표로 구분된 값) 파일로 저장합니다.

내보낼 행의 수와 내보내기 파일 형식(쉼표로 구분된 값 또는 CSV 형식)을 나타내는 * Export Table * (표 내보내기 *) 대화 상자가 나타납니다.

5. 다운로드를 계속하려면 * 내보내기 * 를 클릭하거나 * 취소 * 를 클릭합니다.

브라우저 설정에 따라 파일이 저장되거나 파일의 이름과 위치를 선택하라는 메시지가 표시됩니다.

기본 파일 이름 형식은 파일을 내보낸 날짜와 시간을 포함하는 'performanceStatistics-yyyy-mm-dd_hh-mm-ss.csv'입니다.

성능 데이터를 해석합니다

성능 데이터를 통해 스토리지 어레이의 성능을 튜닝할 수 있습니다.

성능 데이터를 해석할 때는 여러 요소가 스토리지 어레이의 성능에 영향을 미친다는 점을 염두에 두십시오. 다음 표에서는 고려해야 할 주요 영역에 대해 설명합니다.

성능 데이터	성능 튜닝에 미치는 영향
지연 시간(밀리초 또는 ms)	특정 객체의 입출력 작업을 모니터링합니다.
	병목 현상이 있는 개체를 식별할 수 있습니다.
	 볼륨 그룹이 여러 볼륨 간에 공유되는 경우, 개별 볼륨은 드라이브의 순차적 성능을 개선하고 지연 시간을 단축하기 위해 자체 볼륨 그룹이 필요할 수 있습니다.
	 풀을 사용할 경우 지연 시간이 더 길어지며, 드라이브 간에 워크로드가 불균일하여 지연 시간의 가치가 더 적고 일반적으로 더 높습니다.
	• 드라이브 유형과 속도가 지연 시간에 영향을 미칩니다. 랜덤 I/O를 사용하면 회전식 드라이브를 더욱 빠르게 디스크의 서로 다른 위치로 이동하는 데 드는 시간이 줄어듭니다.
	 드라이브 수가 너무 적으면 명령 대기 시간이 많아지고 드라이브에서 명령을 처리하는 데 더 오랜 시간이 소요되어 시스템의 일반적인 지연 시간이 길어집니다.
	 I/O가 클수록 데이터 전송에 따른 추가 시간 때문에 지연 시간이 길어집니다.
	• 지연 시간이 길수록 I/O 패턴이 자연에서 랜덤으로 나타날 수 있습니다. 랜덤 I/O가 있는 드라이브는 순차적 스트림을 사용하는 드라이브보다 지연 시간이 더 짧습니다.
	• 공통 볼륨 그룹의 드라이브 또는 볼륨 간 지연 시간 차이가 있으면 드라이브 속도가 느릴 수 있습니다.

성능 데이터	성능 튜닝에 미치는 영향
IOPS	IOPS 또는 IO/초(Input/Output Operation per Second)에 영향을 주는 요인은 다음과 같습니다. • 액세스 패턴(랜덤 또는 순차) • I/O 크기 • RAID 레벨
	• 캐시 블록 크기 • 읽기 캐싱 설정 여부
	• 쓰기 캐싱 설정 여부
	• 동적 캐시 읽기 프리페치
	• 세그먼트 크기
	• 볼륨 그룹 또는 스토리지 배열의 드라이브 수입니다
	캐시 적중률이 높을수록 입출력 속도가 높아집니다. 쓰기 캐시가 설정된 경우 해제된 경우에 비해 쓰기 입출력 속도가 더 높습니다. 개별 볼륨에 대해 쓰기 캐시를 사용할지 여부를 결정할 때 현재 IOPS와 최대 IOPS를 확인합니다. 랜덤 I/O 패턴보다 순차적 I/O 패턴의 속도가 더 높습니다. I/O 패턴과 상관없이 쓰기 캐시를 설정하여 I/O 속도를 최대화하고 애플리케이션 응답 시간을 단축합니다.
	볼륨의 IOPS 통계에서 세그먼트 크기를 변경하여 성능이 향상된 것을 확인할 수 있습니다. 최적의 세그먼트 크기를 결정하거나 파일 시스템 크기 또는 데이터베이스 블록 크기를 사용하십시오.
MIB/s	전송 또는 처리 속도는 애플리케이션 입출력 크기 및 입출력 속도에 따라 결정됩니다. 일반적으로 애플리케이션 입출력 요청이 작을수록 전송 속도는 낮아지지만 입출력 속도가 빨라지고 응답 시간이 단축됩니다. 애플리케이션 I/O 요청이 클수록 처리 속도가 더 높아질 수 있습니다. 일반적인 애플리케이션 I/O 패턴을 이해하면 특정
	스토리지 어레이에 대한 최대 I/O 전송 속도를 결정하는 데 도움이 됩니다.

성능 데이터	성능 튜닝에 미치는 영향
CPU	이 값은 사용 중인 처리 용량의 백분율입니다.
	동일한 유형의 객체에 대한 CPU 사용량의 차이를 확인할 수 있습니다. 예를 들어, 한 컨트롤러의 CPU 사용량이 무겁거나 시간이 지남에 따라 증가하는 반면 다른 컨트롤러의 CPU 사용량은 더 가볍고 안정적입니다. 이 경우 하나 이상의 볼륨에서 컨트롤러 소유권을 더 낮은 CPU 비율의 컨트롤러로 변경할 수 있습니다.
	스토리지 배열의 CPU를 모니터링할 수 있습니다. 애플리케이션 성능이 저하되면서 CPU가 시간이 지나면서 계속 증가하는 경우 스토리지 어레이를 추가해야 할 수 있습니다. 기업에 스토리지 어레이를 추가하면 허용되는 성능 수준에서 애플리케이션 요구를 계속해서 충족할 수 있습니다.
여유 공간	여유 공간은 컨트롤러, 컨트롤러 호스트 채널 및 컨트롤러 드라이브 채널의 나머지 성능 기능을 나타냅니다. 이 값은 백분율로 표현되며 이러한 개체가 제공할 수 있는 최대 성능과 현재 성능 수준 사이의 간격을 나타냅니다. • 컨트롤러의 경우 여유 공간은 최대 IOPS의
	비율입니다. • 채널의 여유 공간은 최대 처리량 또는 MiB/s의 비율입니다 이 계산에는 읽기 처리량, 쓰기 처리량, 양방향 처리량이 포함됩니다.

FAQ 를 참조하십시오

개별 볼륨의 성능 통계가 총합과 어떤 관련이 있습니까?

풀 및 볼륨 그룹에 대한 통계는 예약된 용량 볼륨을 비롯한 모든 볼륨을 집계하여 계산합니다.

예약된 용량은 스토리지 시스템에서 씬 볼륨, 스냅샷 및 비동기 미러링을 지원하기 위해 내부적으로 사용되며 I/O 호스트에는 표시되지 않습니다. 따라서 풀, 컨트롤러 및 스토리지 어레이 통계가 볼 수 있는 볼륨의 합으로 합산되지 않을 수 있습니다.

그러나 애플리케이션 및 워크로드 통계의 경우 표시되는 볼륨만 집계됩니다.

데이터가 그래프 및 테이블에 0으로 표시되는 이유는 무엇입니까?

그래프 및 테이블의 데이터 지점에 대해 0이 표시되면 해당 시점의 오브젝트에 대한 I/O 활동이 없다는 의미입니다. 이 상황은 호스트가 해당 객체에 대한 입출력을 시작하지 않았거나 객체 자체에 문제가 있을 수 있기 때문에 발생할 수 있습니다.

객체에 대한 기록 데이터를 계속 볼 수 있습니다. 오브젝트에 대한 I/O 활동이 시작되면 그래프 및 표에 0이 아닌데이터가 표시됩니다.

다음 표에서는 주어진 개체에 대해 데이터 요소 값이 0인 가장 일반적인 이유를 보여 줍니다.

스토리지 레벨 객체 유형입니다	이유 데이터는 0으로 표시됩니다
볼륨	• 볼륨에 호스트 할당이 없습니다.
볼륨 그룹	 볼륨 그룹을 가져오는 중입니다. 볼륨 그룹에 호스트에 할당된 볼륨이 포함되어 있지 않습니다. * _ 및 _ * 볼륨 그룹에 예약된 용량이 없습니다.
드라이브	 드라이브에 오류가 발생했습니다. 드라이브가 제거되었습니다. 드라이브가 알 수 없는 상태입니다.
컨트롤러	 컨트롤러가 오프라인 상태입니다. 컨트롤러에 장애가 발생했습니다. 컨트롤러가 제거되었습니다. 컨트롤러가 알 수 없는 상태입니다.
스토리지 시스템	• 스토리지 배열에 볼륨이 포함되어 있지 않습니다.

지연 시간 그래프는 무엇을 표시합니까?

지연 시간 그래프는 볼륨, 볼륨 그룹, 풀에 대한 지연 시간 통계(밀리초(ms))를 워크로드에 적합합니다. 이 그래프는 Logical View, Physical View 및 Applications & 워크로드 보기 탭에 나타납니다.

지연 시간은 데이터가 읽기 또는 쓰일 때 발생하는 지연을 나타냅니다. 그래프의 한 지점 위로 커서를 가져가면 해당 시점에 대한 다음 값(밀리초(ms))이 표시됩니다.

- 읽기 시간.
- 쓰기 시간.
- 평균 I/O 크기

IOPS 그래프에 표시되는 것은 무엇입니까?

IOPS 그래프에는 초당 입출력 작업에 대한 통계가 표시됩니다. 홈 페이지에서 이 그래프는 스토리지 배열에 대한 통계를 표시합니다. Logical View, Physical View, Applications & 워크로드 성능 타일의 보기 탭에서 이 그래프는 스토리지, 볼륨, 볼륨 그룹, 풀, 애플리케이션에 대한 통계를 표시합니다. 보장합니다.

IOPS는 초당 _INPUT/OUTPUT(I/O) 작업의 약어입니다. 그래프의 한 지점 위로 커서를 가져가면 해당 시점에 대한 다음 값을 볼 수 있습니다.

- 읽기 작업 수입니다.
- 쓰기 작업 수입니다.
- 총 읽기 및 쓰기 작업이 결합되었습니다.

MiB/s 그래프는 무엇을 표시합니까?

MiB/s 그래프는 전송 속도 통계를 초당 메비바이트 단위로 표시합니다. 홈 페이지에서 이 그래프는 스토리지 배열에 대한 통계를 표시합니다. Logical View, Physical View, Applications & 워크로드 성능 타일의 보기 탭에서 이 그래프는 스토리지, 볼륨, 볼륨 그룹, 풀, 애플리케이션에 대한 통계를 표시합니다. 보장합니다.

MIB/s는 초당 *mebytes* 또는 1,048,576바이트의 약어입니다. 그래프의 한 지점 위로 커서를 가져가면 해당 시점에 대한 다음 값을 볼 수 있습니다.

- 읽은 데이터의 양
- 기록된 데이터의 양
- 읽고 쓴 데이터의 총 양입니다.

CPU 그래프는 무엇을 표시합니까?

CPU 그래프는 각 컨트롤러(컨트롤러 A 및 컨트롤러 B)에 대한 처리 용량 통계를 표시합니다. CPU는 _ 중앙 처리 장치 _ 의 약어입니다. 홈 페이지에서 이 그래프는 스토리지 배열에 대한 통계를 표시합니다. 성능 타일의 Physical View 탭에서 이 그래프는 스토리지 배열 및 드라이브에 대한 통계를 표시합니다.

CPU 그래프는 스토리지의 작업에 사용되는 CPU 처리 용량의 백분율을 보여 줍니다. 외부 I/O가 발생하지 않는 경우에도 스토리지 운영 체제가 백그라운드 작업 및 모니터링을 수행할 수 있으므로 CPU 활용률이 0이 아닐 수 있습니다. 그래프의 한 지점 위로 커서를 가져가면 해당 시점에 사용되는 처리 기능의 백분율을 볼 수 있습니다.

여유 공간 그래프에 표시되는 것은 무엇입니까?

여유 공간 그래프는 스토리지 어레이 컨트롤러의 남은 성능 기능과 관련이 있습니다. 이 그래프는 홈 페이지와 성능 타일의 물리적 보기 탭에 표시됩니다.

여유 공간 그래프에는 스토리지 시스템에 있는 물리적 개체의 남은 성능 용량이 나와 있습니다. 그래프의 한 지점 위로 커서를 가져가면 컨트롤러 A 및 컨트롤러 B에 대해 남아 있는 IOPS 및 MiB/s 용량의 백분율이 표시됩니다

저작권 정보

Copyright © 2024 NetApp, Inc. All Rights Reserved. 미국에서 인쇄됨 본 문서의 어떠한 부분도 저작권 소유자의 사전 서면 승인 없이는 어떠한 형식이나 수단(복사, 녹음, 녹화 또는 전자 검색 시스템에 저장하는 것을 비롯한 그래픽, 전자적 또는 기계적 방법)으로도 복제될 수 없습니다.

NetApp이 저작권을 가진 자료에 있는 소프트웨어에는 아래의 라이센스와 고지사항이 적용됩니다.

본 소프트웨어는 NetApp에 의해 '있는 그대로' 제공되며 상품성 및 특정 목적에의 적합성에 대한 명시적 또는 묵시적 보증을 포함하여(이에 제한되지 않음) 어떠한 보증도 하지 않습니다. NetApp은 대체품 또는 대체 서비스의 조달, 사용불능, 데이터 손실, 이익 손실, 영업 중단을 포함하여(이에 국한되지 않음), 이 소프트웨어의 사용으로 인해 발생하는 모든 직접 및 간접 손해, 우발적 손해, 특별 손해, 징벌적 손해, 결과적 손해의 발생에 대하여 그 발생 이유, 책임론, 계약여부, 엄격한 책임, 불법 행위(과실 또는 그렇지 않은 경우)와 관계없이 어떠한 책임도 지지 않으며, 이와 같은 손실의 발생 가능성이 통지되었다 하더라도 마찬가지입니다.

NetApp은 본 문서에 설명된 제품을 언제든지 예고 없이 변경할 권리를 보유합니다. NetApp은 NetApp의 명시적인 서면 동의를 받은 경우를 제외하고 본 문서에 설명된 제품을 사용하여 발생하는 어떠한 문제에도 책임을 지지 않습니다. 본 제품의 사용 또는 구매의 경우 NetApp에서는 어떠한 특허권, 상표권 또는 기타 지적 재산권이 적용되는 라이센스도 제공하지 않습니다.

본 설명서에 설명된 제품은 하나 이상의 미국 특허, 해외 특허 또는 출원 중인 특허로 보호됩니다.

제한적 권리 표시: 정부에 의한 사용, 복제 또는 공개에는 DFARS 252.227-7013(2014년 2월) 및 FAR 52.227-19(2007년 12월)의 기술 데이터-비상업적 품목에 대한 권리(Rights in Technical Data -Noncommercial Items) 조항의 하위 조항 (b)(3)에 설명된 제한사항이 적용됩니다.

여기에 포함된 데이터는 상업용 제품 및/또는 상업용 서비스(FAR 2.101에 정의)에 해당하며 NetApp, Inc.의 독점 자산입니다. 본 계약에 따라 제공되는 모든 NetApp 기술 데이터 및 컴퓨터 소프트웨어는 본질적으로 상업용이며 개인 비용만으로 개발되었습니다. 미국 정부는 데이터가 제공된 미국 계약과 관련하여 해당 계약을 지원하는 데에만 데이터에 대한 전 세계적으로 비독점적이고 양도할 수 없으며 재사용이 불가능하며 취소 불가능한 라이센스를 제한적으로 가집니다. 여기에 제공된 경우를 제외하고 NetApp, Inc.의 사전 서면 승인 없이는 이 데이터를 사용, 공개, 재생산, 수정, 수행 또는 표시할 수 없습니다. 미국 국방부에 대한 정부 라이센스는 DFARS 조항 252.227-7015(b)(2014년 2월)에 명시된 권한으로 제한됩니다.

상표 정보

NETAPP, NETAPP 로고 및 http://www.netapp.com/TM에 나열된 마크는 NetApp, Inc.의 상표입니다. 기타 회사 및 제품 이름은 해당 소유자의 상표일 수 있습니다.