_ຍິດທີ 1

ລະບົບຕົວເລກ (Numeration System)

ການສຶກສາລະບົບຕົວເລກເປັນສິ່ງທີ່ສຳຄັນ ເນື່ອງຈາກວ່າລະບົບຕົວເລກເປັນຕົວແທນຂອງ ການທຳຄວາມເຂົ້າໃຈໃນຂໍ້ມູນ. ດັ່ງນັ້ນ, ກ່ອນທີ່ຈະສາມາດທຳການປະມວນຜົນດ້ວຍລະບົບດິຈິ ຕອນໃດໆ ລວມທັງເຄື່ອງດິຈິຕອນຄອມພີວເຕີ ການສຶກສາລະບົບຕົວເລກ ຈຶ່ງເປັນພື້ນຖານທີ່ສຳ ຄັນທີ່ສຸດໃນການອອກແບບວົງຈອນດິຈິຕອນເອເລັກໂຕຣນິກ. ສຳຫຼັບໃນບົດນີ້ເຮົາຈະສຶກສາກ່ຽວ ກັບລະບົບຕົວເລກຕ່າງໆ ແລະ ທີ່ນິຍົມໃຊ້ກັນທົ່ວໄປສຳຫຼັບເປັນຕົວແທນຂອງຂໍ້ມູນ ຊຶ່ງປະກອບ ດ້ວຍ: ລະບົບເລກຖານສິບ, ລະບົບເລກຖານສອງ, ລະບົບເລກຖານແປດ ແລະ ລະບົບເລກຖານ ສິບຫົກ, ການຖອດລະຫັດຕ່າງໆ.

1.1 ລະບົບອະນາລັອກກັບດິຈິຕອນ (Analogue Versus Digitals)

ການແທນຄ່າປະລິມານທາງກາຍຍະພາບໄດ້ປະກອບມີ 2 ວີທີຄື:

ການແທນຄ່າດ້ວຍລະບົບຕົວເລກແບບອະນາລັອກ ເປັນການແທນຄ່າຕົວເລກຂອງ ປະລິມານທີ່ເປັນຊ່ວງຕໍ່ເນື່ອງຂອງຄ່າຕໍ່າສຸດ ແລະ ຄ່າສູງສຸດເຊັ່ນ: ອຸນຫະພູມຂອງເຕົາອົບທີ່ ສາມາດປັບຄ່າໄດ້ຕັ້ງແຕ່ $0-100~^{\circ}C$ ຄ່າອຸນຫະພູມທີ່ວັດແທກໄດ້ຂອງເຕົາອົບອາດຈະມີຄ່າ 65°C ຫຼື 64.96°C ຫຼື 64.958°C ແລະ ຄ່າອື່ນໆ ຊຶ່ງຈະຂຶ້ນຢູ່ກັບຄວາມຖືກຕ້ອງຂອງເຄື່ອງ ວັດແຫກ. ໃນທຳນອງດຽວກັນແຮງດັນໄຟຟ້າທີ່ຕົກຄ່ອມອຸປະກອນບາງຢ່າງ ໃນວົງຈອນເອເລັກ ໂຕຣນິກອາດຈະວັດແທກແຮງດັນໄດ້ເປັນ 6.5 V ຫຼື 6.49 V ຫຼື 6.4869 V. ແນວຄິດພື້ນຖານໃນ ຮູບແບບຂອງການສະແດງຜົນແບບອະນາລັອກຄື ການປຸ່ງນແປງຄ່າຕົວເລກປະລິມານຕໍ່ເນື່ອງ ແລະ ສາມາດມີຄ່າໄດ້ບໍ່ສິ້ນສຸດລະຫວ່າງສອງຈຸດ.

ຂ. ການແທນຄ່າດ້ວຍລະບົບຕົວເລກແບບດິຈິຕອນໂດຍຄ່າຕົວເລກທີ່ເປັນຕົວແທນຈະບໍ່ມີ ຄວາມຕໍ່ເນື່ອງຄ່າຕົວເລກທີ່ເປັນຕົວແທນສ່ວນໃຫຍ່ຈະໃຊ້ເລກຖານສອງ ຕົວຢ່າງການແທນຄ່າທີ່ບໍ່ ມີຄວາມຕໍ່ເນື່ອງເຊັ່ນ: ອຸນຫະພູມຂອງເຕົາອົບມີຄ່າຕົວແທນໃນແຕ່ລະຂັ້ນເທົ່າກັບ 1°C ດັ່ງນັ້ນ, ຄ່າອຸນຫະພູມທີ່ຈະໄດ້ຄື 64°C, 65°C, 66°C ແລະ ຄ່າອື່ນໆ ສະຫຼຸບວ່າ: ອະນາລັອກແມ່ນ ຈະໃຫ້ເອົ້າພຸດຕໍ່ເນື່ອງ ສ່ວນລະບົບດິຈິຕອນແມ່ນເອົ້າພຸດຈະເປັນແບບບໍ່ຕໍ່ເນື່ອງ. ລະບົບອະນາ ລ້ອກຈະມີອຸປະກອນ ຫຼື ຂະບວນການທຳງານທາງກາຍະພາບທີ່ສາມາດສະແດງປະລິມານໃນຮູບ ແບບອະນາລັອກ ສຳຫຼັບລະບົບດິຈິຕອນຈະມີອຸປະກອນທີ່ເຮັດໜ້າທີ່ໃນການປະມວນຜົນທາງກາ ຍະພາບທີ່ສະແດງໃນຮູບແບບດິຈິຕອນ ຫຼື ຕົວເລກ.

ເຕັກນິກທາງດ້ານລະບົບດິຈິຕອນຈະມີຂໍ້ດີ ຄື: ການອອກແບບຄ່ອນຂ້າງງ່າຍ ແລະ ມີ ຄວາມແນ່ນອນສູງ ສາມາດທຳການລັນໂປຣແກຣມໄດ້ ການປ້ອງກັນສັນຍານລົບກວນໄດ້ດີ, ສາມາດຈັດເກັບຂໍ້ມູນໄດ້ງ່າຍ ແລະ ມີຄວາມສະດວກໃນການຜະລິດໃນຮູບແບບວົງຈອນລວມ ທີ່ນຳໄປສູ່ຄວາມພ້ອມຂອງຟັງຊັນທີ່ສັບຊ້ອນຫຼາຍຂຶ້ນພ້ອມດຽວກັນນັ້ນແມ່ນໃຊ້ພື້ນທີ່ຂະໜາດ ນ້ອຍ. ສຳຫຼັບໂລກແຫ່ງຄວາມເປັນຈິງ ປະລິມານທາງກາຍະພາບສ່ວນຫຼາຍເປັນແບບອະນາລັອກ ເຊັ່ນ: ຕຳແໜ່ງຄວາມໄວ, ຄວາມເລັ່ງຂອງແຮງດັນ, ອຸນຫະພູມ ແລະ ອັດຕາສ່ວນການໄຫຼຕ່າງ ເປັນປະລິມານອະນາລັອກທີ່ເກີດຂຶ້ນໃນທຳມະຊາດ. ສຳຫຼັບຕົວປ່ຽນທີ່ເປັນຕົວແທນຂອງປະລິມານ ເຫຼົ່ານີ້ຈະຕ້ອງດຳເນີນການແປງເປັນຂໍ້ມູນດິຈິຕອນສຳຫຼັບໃຊ້ເປັນຂໍ້ມູນ ສຳຫຼັບວີທີການທາງດິຈິ ຕອນເອເລັກໂຕຣນິກ ການຈັດການຕົວປ່ຽນອິນພຸດທີ່ເປັນອະນາລັອກໃຫ້ເປັນຂໍ້ມູນແບບດິຈິຕອນ ເອີ້ນວ່າ: ວົງຈອນແປງສັນຍານອະນາລັອກໃຫ້ເປັນສັນຍານດິຈິຕອນ (Analogue-to-digital converter- circuits) ແລະ ການຈັດການຂໍ້ມູນແບບດິຈິຕອນ ໃຫ້ເປັນຂໍ້ມູນແບບອະນາລັອກຈະ ໃຊ້ວົງຈອນແປງສັນຍານດິຈິຕອນເປັນອະນາລ້ອກ (Digital to-analogue converter circuits). ສຳຫຼັບການແປງຂໍ້ມູນທັງສອງຊະນິດຈະອະທິບາຍຫຼັງຈາກການສຶກສາໃນສ່ວນຕ່າງໆສຳເລັດ ໃນ ບົດນີ້ຈະສຶກສາລະບົບຕົວເລກທີ່ໃຊ້ກັນທົ່ວໄປທີ່ເປັນຕົວແທນຂອງຂໍ້ມູນດິຈິຕອນ.

1.2 ຄວາມຮູ້ເບື້ອງຕົ້ນກ່ຽວກັບລະບົບຕົວເລກ (Introduction to Number Systems)

ການເລີ່ມສຶກສາໃນລະບົບຕົວເລກ ສາມາດອະທິບາຍໄດ້ໂດຍຫຍໍ້ຂອງຄ່າພາລາມິເຕີທີ່ຮ່ວມ ກັນກັບທຸກຈຳນວນຂອງລະບົບຕົວເລກ. ຄວາມເຂົ້າໃຈໃນຄ່າພາລາມິເຕີ ແລະ ຄວາມກ່ຽວຂ້ອງ ກັນນັ້ນເປັນພື້ນຖານໃນການທຳຄວາມເຂົ້າໃຈວີທີການທຳງານລະບົບຕົວເລກຕ່າງໆ. ຕົວເລກທີ່ມີ ລັກສະນະແຕກຕ່າງກັນຈະເປັນຕົວກຳນົດຈຳນວນລວມຕົວເລກທີ່ເປັນອິດສະຫຼະ ທີ່ໃຊ້ໃນລະບົບ ລະບົບເລກຖານທີ່ນິຍົມໃຊ້ຫຼາຍຄື: ລະບົບເລກຖານສິບທີ່ທຸກຄົນຄຸ້ນເຄີຍ. ດັ່ງນັ້ນ, ສາມາດເວົ້າໄດ້ວ່າເລກຖານ 10 ຈະມີຈຳນວນຕົວເລກທີ່ຫຼັກ ແລະ ເປັນອິດສະຫຼະຈຳນວນ 10 ຕົວ ຄື: 0, 1, 2, 3, 4, 5, 6, 7, 8 ແລະ 9. ໃນທຳນອງດຸງວກັນລະບົບເລກຖານ 2 ທີ່ມີພຸງຕົວເລກຈຳ ນວນ 2 ຕົວທກໍເປັນຫຼັກ ຄື: 0 ແລະ 1. ລະບົບເລກຖານ 8 ມີຈຳນວນຕົວເລກຫຼັກ ແລະ ເປັນ ອິດສະຫຼະຈຳນວນ 8 ຕົວ ຄື: 0, 1, 2, 3, 4, 5, 6 ແລະ 7. ສ່ວນລະບົບເລກຖານ 16 ກໍ່ມີຈຳນວນ ຕົວເລກຫຼັກ ແລະ ເປັນອິດສະຫຼະຈຳນວນ 16 ຕົວຄື: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E ແລະ F

1.2.1 ລະບົບເລກຖານສິບ (Decimal Number System)

ລະບົບເລກຖານ 10 ເປັນລະບົບເລກທີ່ມີຄ່າຖານເທົ່າກັບ 10 ດັ່ງນັ້ນ, ຈຶ່ງມີ 10 ຕົວ ຄື: 0, 1, 2, 3, 4, 5, 6, 7, 8 ແລະ 9 ຕົວເລກມີຄ່າສູງສຸດເທົ່າກັບ 9 ເທົ່ານັ້ນ. ຖ້າຕ້ອງການທີ່ຈະຂຸງນຕົວ ເລກຫຼາຍກວ່າ 9 ຈະເປັນການຂຸງນເລກຫຼັກທີ 2 ດ້ວຍຄ່າ 1 ເປັນຕົວທຳອິດແລ້ວຕາມດ້ວຍເລກ 0 ຈະໄດ້ 10, ຈາກນັ້ນ 11, 12, 13, 14, 15, 16, 17, 18 ແລະ 19 ຖັດໄປຕົວເລກຈະກາຍເປັນ 20 ຈົນຮອດ 29 ຕົວເລກສອງຫຼັກຂອງເລກຖານສິບຈະມີຄ່າເຖິງ 99 ແລ້ວຈະເລີ່ມຕົ້ນດ້ວຍການລວມ ກັນເປັນຕົວເລກຈຳນວນສາມຫຼັກ ຄື: 100, 101, 102, 103, 104, 105, 106, 108, 109, 110,....999 ຈາກນັ້ນກໍ່ສາມາດຂຸງນເປັນ 4 ຫຼັກ ໂດຍຕົວທຳອິດຈະປະກອບດ້ວຍຕົວເລກສອງ ຫຼັກຕໍ່າສຸດຕາມດ້ວຍ 0 ເຊັ່ນ: 100 ແລະ ສາມາດເພີ່ມຈຳນວນໄດ້ຢ່າງບໍ່ມີສັ້ນສຸດ.

ການວາງຕຳແໜ່ງຕົວເລກທີ່ແຕກຕ່າງກັນ ຈະເຮັດໃຫ້ຄ່ານ້ຳໜັກຂອງຕົວເລກແຕກຕ່າງກັນ ໂດຍຈະເລີ່ມຈາກ 10°, 10¹, 10² ແລະ ອື່ນໆ (ສຳຫຼັບເລກທີ່ເປັນຈຳນວນເຕັມ) ສ່ວນທີ່ເປັນຈຳ ນວນເສດຈະເລີ່ນຕົ້ນຈາກເຄື່ອງໝາຍ ຈະມີຄ່ານ້ຳໜັກເປັນ 10⁻¹, 10⁻², 10⁻³ ແລະ ອື່ນໆ (ສຳຫຼັບເລກທີ່ເປັນຈຳນວນເສດສ່ວນ) ຄ່າຕົວເລກ ເລກຖານສິບໃດໜຶ່ງສາມາດສະແດງເປັນຜົນລວມ ຂອງຕົວເລກຕ່າງໆ ຄູນດ້ວຍຄ່ານ້ຳໜັກຂອງຕຳແໜ່ງທີ່ຕົວເລກນັ້ນວາງຢູ່.

ຕົວຢ່າງ 1: ໃນກໍລະນີຂອງເລກຖານສິບມີຄ່າເທົ່າກັບ 3586.265

ສຳຫຼັບເລກຈຳນວນເຕັມ (3586) ເຮົາສາມາດຂຽນໃນຮູບແບບຜົນລວມຂອງຄ່ານ້ຳໜັກໄດ້ ດັ່ານີ້:

$$3586 = (3 \times 10^{3}) + (5 \times 10^{2}) + (8 \times 10^{1}) + (6 \times 10^{0})$$

ສ່ວນຈຳນວນເສດ (.265) ເຮົາສາມາດຂຽນໃນຮູບແບບຜົນລວມຂອງຄ່ານ້ຳໜັກໄດ້ດັ່ງນີ້:

$$0.265 = (2 \times 10^{-1}) + (6 \times 10^{-2}) + (5 \times 10^{-3})$$

ຊຶ່ງຈະເຫັນວ່າແນວຄິດກ່ຽວກັບລະບົບເລກຖານນັ້ນ ແມ່ນຂຶ້ນຢູ່ກັບຈຳນວນຕົວເລກທີ່ແຕກ ຕ່າງກັນຂອງຕົວເລກ ແລະ ຕຳແໜ່ງຂອງຕົວເລກ. ນອກຈາກນີ້, ແຕ່ລະຕົວເລກຫຼັກຈະມີຄ່າທີ່ຂຶ້ນ ຢູ່ກັບຕຳແໜ່ງຂອງຫຼັກ ແລະ ຖານຂອງລະບົບຕົວເລກນັ້ນໆ.

1.2.2 ລະບົບເລກຖານສອງ

ລະບົບເລກຖານສອງ ເປັນລະບົບເລກທີ່ມີຄ່າຖານເທົ່າກັບ 2 ແລະ ມີຕົວເລກຫຼັກ 2 ຕົວ ຄື: ເລກ 0 ແລະ 1. ສຳຫຼັບຂັ້ນຕອນການຂຸງນຈຳນວນເລກຖານສອງທີ່ຫຼາຍກວ່າ 1 ຈະຄ້າຍກັບ ໃນກໍລະນີຂອງລະບົບເລກຖານສິບເຊັ່ນ: ຕ້ອງການຈຳນວນຕົວເລກທີ່ແຕກຕ່າງກັນ 16 ຈຳນວນ

ໃນລະບົບເລກຖານສອງຈະເປັນໄດ້ແຕ່ 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, ແລະ 1111 ໝາຍເລກຖັດໄປຫຼັງຈາກເລກ 1111 ແມ່ນຈະເປັນ 10000.

ການວາງຕຳແໜ່ງຕົວເລກທີ່ແຕກຕ່າງກັນຈະເຮັດໃຫ້ຄ່ານ້ຳໜັກຂອງຕົວເລກແຕກຕ່າງກັນ ໂດຍເລີ່ມຈາກ 2° , 2^{1} , 2^{2} ແລະ ອື່ນໆ (ສຳຫຼັບເລກຈຳນວນເຕັມ), ສ່ວນເລກຈຳນວນເສດ ຈະ ເລີ່ມຕົ້ນຈາກເຄື່ອງໝາຍຈະມີຄ່ານ້ຳໜັກເປັນ 2^{-1} , 2^{-2} , 2^{-3} ແລະ ອື່ນໆ. ຄ່າຕົວເລກໃດໜຶ່ງ ຂອງລະບົບເລກຖານສອງສາມາດສະແດງດ້ວຍຜົນລວມຂອງຕົວເລກຕ່າງໆ ຄູນດ້ວຍຄ່ານ້ຳໜັກ ຂອງຕຳແໜ່ງທີ່ຕົວເລກນັ້ນວາງຢູ່.

ຕົວຢ່າງ 2: ໃນກໍລະນີຂອງເລກຖານສອງມີຄ່າເທົ່າກັບ (1011.10)₂

ສ່ວນທີ່ເປັນຈຳນວນເຕັມແມ່ນ (1011₂) ສາມາດຂຽນໃນຮູບແບບຜົນລວມຂອງຄ່ານ້ຳໜັກໄດ້ ດັ່ານີ້:

$$1011_2 = (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)$$

ສ່ວນເລກຈຳນວນເສດສ່ວນ (.102) ສາມາດຂຸງນໃນຮູບແບບຜົນລວມຂອງຄ່ານ້ຳໜັກໄດ້ຄື:

$$.10_2 = (1 \times 2^{-1}) + (0 \times 2^{-2})$$

1.2.3 ລະບົບເລກຖານແປດ (Octal Number System)

ລະບົບເລກຖານແປດ ເປັນລະບົບເລກທີ່ມີຄ່າຖານເທົ່າກັບ 8 ແລະ ມີເລກຫຼັກແປດຕົວ ຄື: 0, 1, 2, 3, 4, 5, 6, ແລະ 7. ສຳຫຼັບຂັ້ນຕອນການຂູງນ ຈຳນວນເລກຖານແປດທີ່ຫຼາຍກວ່າ 7 ຈະ ຄ້າຍກັນກັບໃນກໍລະນີຂອງລະບົບເລກຖານສິບເຊັ່ນ: ຕ້ອງການຂູງນຕົວເລກຈຳນວນທີ່ແຕກຕ່າງ ກັນ 16 ຈຳນວນໃນລະບົບເລກຖານແປດຈະໄດ້ຄື 0, 1, 2, 3, 4, 5, 6, 7,10, 11, 12, 13, 14, 15, 16, ແລະ 17 ເລກຖັດໄປຫຼັງຈາກເລກ 17 ແມ່ນຈະເປັນ 20 ເປັນຕົ້ນ.

ການວາງຕຳແໜ່ງຕົວເລກທີ່ແຕກຕ່າງກັນຈະເຮັດໃຫ້ຄ່ານ້ຳໜັກຂອງຕົວເລກແຕກຕ່າງກັນ ໂດຍຈະເລີ່ມຕົ້ນຈາກ 8°, 8¹, 8² ແລະ ອື່ນໆ (ສຳຫຼັບເລກຈຳນວນເຕັມ), ສ່ວນເລກຈຳນວນ ເສດຈະເລີ່ມຕົ້ນຈາກເຄື່ອງໝາຍຄື: 8⁻¹, 8⁻², 8⁻³ ແລະ ອື່ນໆ. ຄ່າຕົວເລກໃດໜຶ່ງຂອງລະບົບ ເລກຖານແປດສາມາດສະແດງດ້ວຍຜົນລວມຂອງຕົວເລກຄ່າຕ່າງໆ ຄູນໃຫ້ຄ່ານ້ຳໜັກຂອງຕຳແໜ່ງທີ່ຕົວເລກນັ້ນວາງຢູ່.

ຕົວຢ່າງ 3: ໃນກໍລະນີຂອງເລກຖານແປດມີຄ່າເທົ່າກັບ 231.12₈

ສ່ວນທີ່ເປັນຈຳນວນເຕັມແມ່ນ (231 $_8$) ສາມາດຂຽນໃນຮູບແບບຜົນລວມຂອງຄ່ານ້ຳໜັກຄື:

$$231_8 = (2 \times 8^2) + (3 \times 8^1) + (1 \times 8^0)$$

ສ່ວນເລກຈຳນວນເສດສ່ວນ (.128) ສາມາດຂຽນໃນຮູບແບບຜົນລວມຂອງຄ່ານ້ຳໜັກໄດ້ຄື:

$$.12_8 = (1 \times 8^{-1}) + (2 \times 8^{-2})$$

1.2.4 ລະບົບເລກຖານສິບຫົກ (Hexadecimal Number System)

ລະບົບເລກຖານສົບຫົກ ເປັນລະບົບເລກທີ່ມີຄ່າຖານເທົ່າກັບ 16 ຊຶ່ງປະກອບດ້ວຍ: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E ແລະ F ໂດຍທີ່ຄ່າ A = 10, B = 11, C = 12, D = 13, E = 14 ແລະ F = 15. ສຳຫຼັບຂັ້ນຕອນການຂູງນຈຳນວນເລກຖານສິບຫົກທີ່ມີຄ່າຫຼາຍກວ່າ F ຈະ ຄ້າຍຄືກັນກັບໃນກໍລະນີຂອງລະບົບເລກຖານສິບເຊັ່ນ: ຕ້ອງການຂູງນຕົວເລກຈຳນວນທີ່ແຕກຕ່າງ ກັນ 16 ຈຳນວນ ໃນລະບົບເລກຖາສິບຫົກຈະໄດ້ 0, 1, 2, 3, 4, 5, 6, 7,8, 9, A,B, C, D, E, ແລະ F ເລກຖັດໄປຫຼັງຈາກ F ຈະເປັນ 10.

ການວ່າງຕຳແໜ່ງຕົວເລກທີ່ແຕກຕ່າງກັນ ຈະເຮັດໃຫ້ຄ່ານ້ຳໜັກຂອງຕົວເລກແຕກຕ່າງກັນ ໂດຍຈະເລີ່ມຈາກ 160 ,161 ,162 ແລະ ອື່ນໆ (ສຳຫຼັບເລກຈຳນວນເຕັມ). ສ່ວນເລກຈຳນວນເສດ ຈະເລີ່ມຕົ້ນຈາກເຄື່ອງໝາຍເປັນ 16-1,16-2 , 16-3 ແລະ ອື່ນໆ. ຄ່າຕົວເລກໃດໜຶ່ງຂອງລະບົບ ຖານສິບຫົກສາມາດສະແດງດ້ວຍຜົນລວມຂອງຕົວເລກຕ່າງໆ ຄູນໃຫ້ຄ່ານ້ຳໜັກຂອງຕຳແໜ່ງທີ່ ຕົວເລກນັ້ນວາງຢູ່.

ຕົວຢ່າງ 4: ໃນກໍລະນີຂອງເລກຖານສິບຫົກທີ່ມີຄ່າເທົ່າກັບ 2A1.12₁₆

ສ່ວນທີ່ເປັນຈຳນວນເຕັມແມ່ນ (2A116) ສາມາດຂຽນໃນຮູບແບບຜົນລວມຂອງຄ່ານ້ຳໜັກ

$$2A1_{16} = (2 \times 16^{2}) + (10 \times 16^{1}) + (1 \times 16^{0})$$

ສ່ວນເລກຈຳນວນເສດ (.1216) ສາມາດຂຸງນໃນຮູບແບບຜົນລວມຂອງຄ່ານ້ຳໜັກໄດ້ຄື:

$$.12_{16} = (1 \times 16^{-1}) + (2 \times 16^{-2})$$

ຕາຕະລາງທີ 1.1 ການປູບທູບເລກຖານຕ່າງໆ ກັບເລກຖານສິບ

Decimal	Binary	Octal	Hexadecimal
0	0	0	0
1	01	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A

+

Decimal	Binary	Octal	Hexadecimal
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10
17	10001	21	11

1.3 ການປ່ຽນເລກຖານຕ່າງໆ (Conversion of Numeration)

ການປ່ຽນເລກຖານຕ່າງໆ ໃນລະບົບດິຈິຕອນເອເລັກໂຕຣນິກ ແມ່ນເປັນສິ່ງທີ່ມີຄວາມສຳ ຄັນຫຼາຍ, ເນື່ອງວ່າຈາກ<mark>ລະບົບດິຈິຕອນຈະສາມາດເຂົ້າໃຈການທຳງານໄດ້ສະເພາະ 0 ແລະ 1</mark> ເທົ່ານັ້ນ. ເມື່ອນຳມາໃຊ້ສື່ສານໃຫ້ບຸກຄົນທົ່ວໄປຈະເຮັດໃຫ້ເຂົ້າໃຈໄດ້ຍາກເຊັ່ນ: ການໃຊ້ເຄື່ອງຄຳ ນວນເຊິ່ງຕົວເລກ ເມື່ອນັກສຶກສາຕ້ອງການຄຳນວນຈະເຮັດໃຫ້ການປ້ອນຕົວເລກຖານສິບລົງໄປ ໃນເຄື່ອງ, ແຕ່ລະເຄື່ອງຈະໃຊ້ສະເພາະເລກຖານສອງໃນການທຳງານເທົ່ານັ້ນ ຈຶ່ງຈຳເປັນ ຕ້ອງການປຸ່ງນເລກຖານສິບກັບໄປເປັນເລກລະບົບຖານສອງກ່ອນ. ຫຼັງຈາກນັ້ນ, ເຄື່ອງຈະຄຳ ນວນແລ້ວຕ້ອງປຸ່ງນຜົນລັບທີ່ໄດ້ຈາກເລກຖານສອງກັບໄປເປັນເລກຖານສິບ ເປັນຕົ້ນ. ໃນລະບົບ ເລກດິຈິຕອນເອເລັກໂຕຣນິກການປຸ່ງນເລກຖານຈະໃຊ້ສະເພາະເລກຖານສອງ, ເລກຖານແປດ, ເລກຖານສິບ ແລະ ເລກຖານສິບຫົກ ເທົ່ານັ້ນ.

1.3.1 ການປ່ຽນເລກຖານສິບເປັນຖານສອງ (Decimal to Binary conversion)

ການປ່ຽນເລກຖານ 10 ເປັນ ເລກຖານ 2 (ເວົ້າສະເພາະເລກທີ່ເປັນຈຳນວນເຕັມ) ເຮັດໄດ້ ໂດຍການເອົາເລກຖານ 10 ຕັ້ງ ແລ້ວຫານດ້ວຍ 2 ໄປເລື້ອຍໆ ຈົນກວ່າຈະໄດ້ຮັບຜົນລັບເປັນ ເລກ 0 ຫຼື ບໍ່ສາມາດຫານຕໍ່ໄປໄດ້ອີກ. ໃນການຫານນັ້ນຈະຕ້ອງຂຽນເປັນເສດໄວ້ທຸກຄັ້ງ. ຈາກ ນັ້ນ, ໃຫ້ຂຽນເສດສ່ວນທີ່ໄດ້ຈາກການຫານໂດຍລຽນລຳດັບຈາກດ້ານລຸ່ມຂຶ້ນຫາດ້ານເທິງ.

ຕົວຢ່າງ 5: 26₁₀ ມີຄ່າເທົ່າໃດໃນລະບົບເລກຖານ 2 ແກ້:

ຕົວຫານ	ຕືວຕັ້ງຫານ	ຜົນລັບ	ລາຍລະອງດ	ເສດທີ່ໄດ້ຈາກການຫານ
2÷	26	13	26 - (2x13) = 0	0
2÷	13	6	13 - (2x6) = 1	1
2÷	6	3	6 - (2x3) = 0	0
2÷	3	1	3 - (2x1) = 1	1
2÷	1	0 (ຫານບໍ່ໄດ້)	1 - (2x0) = 1	1

ໝາຍເຫດ: ເມື່ອຫານບໍ່ໄດ້ ໃຫ້ນຳເສດສ່ວນມາລູງນຕໍ່ກັນ ໂດຍລຽນຈາກຄ່າລຸ່ມສຸດໄປຫາຄ່າ ເທິງສຸດ. ດັ່ງນັ້ນ, 26 ໃນເລກຖານສິບມີຄ່າເທົ່າກັບ 11010_2

ການປ່ຽນເລກຈຳນວນເສດຖານສິບ ໃຫ້ເປັນເລກຖານສອງ ຈະໃຊ້ວິທີນຳຄ່າເລກຫຼັງຈຸດມາ ຄຼນດ້ວຍ 2 ຈາກນັ້ນ, ນຳຜົນລັບທີ່ເປັນເລກເສດໄປຄູນໃຫ້ 2 ອີກ, ເຮັດວິທີນີ້ໄປເລື້ອຍໆ ຈົນກວ່າ ຈະພໍໃຈກັບຜົນທີ່ໄດ້. ການຄູນໃຫ້ 2 ແຕ່ລະຄັ້ງຈະໄດ້ຕົວເລກ 1 ຕົວທີ່ກາຍມາເປັນເລກຈຳນວນ ເຕັມ, ເລກຕົວນັ້ນຄືຜົນຮັບ. ຈາກນັ້ນ, ນຳເອົາຜົນທີ່ໄດ້ຮັບທັງໝົດມາຂຸງນຕໍ່ລຸງນກັນ ຕັ້ງແຕ່ ຕົວທຳອິດຈົນຮອດຕົວສຸດທ້າຍກໍ່ຈະໄດ້ຄ່າເລກຖານ 2 ທີ່ຕ້ອງການດັ່ງຕົວຢ່າງລຸ່ມນີ້.

ຕົວຢ່າງ 6: ຈົ່ງປຸ່ງນເລກຖານສິບ (0.65625)₁₀ ເປັນເລກຖານ 2 ແກ້:

ໝາຍເຫດ: ເລກຈຳນວນເຕັມໃນການຄູນແຕ່ລະຄັ້ງນຳມາຂຽນລຽນກັນຈະໄດ້ 10101. ສະນັ້ນ, $(0.65625)_{10} = 0.10101_2$

$$26 \frac{2}{13} \frac{2}{13$$

* 75 Vj2) (26.65625) = (11010.10101)

1.3.2 ການປ່ຽນເລກຖານ 10 ເປັນເລກຖານ 8 (Decimal to Octal conversion)

ການປ່ຽນເລກຖານ 10 ໃຫ້ເລກຖານ 8 ເຮັດໄດ້ໂດຍການເອົາເລກຖານສິບມາຕັ້ງ ແລ້ວ ຫານດ້ວຍເລກ 8 ໄປເລື້ອຍໆ ຈົນກວ່າຈະໄດ້ຜົນລັບນ້ອຍກວ່າ 7 ຫຼື ບໍ່ສາມາດຫານຕໍ່ໄປໄດ້. ໃນ ການຫານນັ້ນຈະຕ້ອງຂຽນຈຳນວນເສດໄວ້ທຸກຄັ້ງ ຈາກນັ້ນ ໃຫ້ຂຽນເສດທີ່ໄດ້ຈາກການຫານໂດຍ ລຽນລຳດັບຈາກດ້ານລຸ່ມຂຶ້ນເທິງ.

ຕົວຢ່າງ 7: ຈົ່ງປ່ຽນເລກຖານສິບ 256₁₀ ເປັນເລກຖານ 8

ແກ້:

ໝາຍເຫດ: ຖ້າຈຳນວນທີ່ຫານບໍ່ໄດ້ແມ່ນນຳເອົາຈຳນວນນັ້ນ (ເສດສ່ວນ) ມາລຽນຕໍ່ກັນເລີຍ ສະນັ້ນ, $256_{10} = 400_8$

ການປ່ຽນເລກເສດທີ່ເປັນເລກຖານສິບໃຫ້ເປັນເລກຖານແປດ ຈະໃຊ້ວິທີການນຳເອົາຄ່າເລກ ຫຼັງຈຸດມາຄູນດ້ວຍ 8 ຈາກນັ້ນ ນຳຜົນລັບທີ່ເປັນເລກເສດໄປຄູນໃຫ້ 2 ອີກ, ເຮັດວິທີນີ້ໄປເລື້ອຍໆ ຈົນກວ່າຈະພໍໃຈກັບຜົນທີ່ໄດ້. ການຄູນໃຫ້ 8 ແຕ່ລະຄັ້ງຈະໄດ້ຕົວເລກ 1 ຕົວທີ່ກາຍມາເປັນ ເລກຈຳນວນເຕັມ, ເລກຕົວນັ້ນຄືຜົນຮັບ. ຈາກນັ້ນ, ນຳເອົາຜົນທີ່ໄດ້ຮັບທັງໝົດມາຊຽນຕໍ່ລຽນກັນ ຕັ້ງແຕ່ຕົວທຳອິດຈົນຮອດຕົວສຸດທ້າຍກໍ່ຈະໄດ້ຄ່າເລກຖານ 2 ທີ່ຕ້ອງການດັ່ງຕົວຢ່າງລຸ່ມນີ້.

ຕົວຢ່າງ 8: ຈົ່ງປ່ຽນເລກຖານສິບ (0.140625)₁₀ ເປັນເລກຖານ 8

ແກ້:

$$8 \times 0.140625 = 1.125$$

$$8 \times 0.125 = 1.000$$

ຈຳນວນເຕັມແມ່ນ 1

ຈຳນວນເຕັມແມ່ນ 1

MSB ບິດໃຫຍ່ສຸດ LSB ບິດຕ່ຳສຸດ

ສະນັ້ນ, (0.140625)₁₀ = 0.11₈

1.3.3 ການປ່ງນເລກຖານສິບໃຫ້ເປັນເລກຖານສິບຫົກ (Decimal to Hex conversion)

ການປ່ຽນເລກຖານ 10 ໃຫ້ເປັນເລກຖານ 16 (ເລກຈຳນວນເຕັມ) ເຮັດໄດ້ໂດຍການເອົາ ເລກຖານສິບມາຕັ້ງ ແລ້ວຫານດ້ວຍເລກ 16 ໄປເລື້ອຍໆ ຈົນກວ່າຈະໄດ້ຜົນຮັບນ້ອຍກວ່າ 15 ຫຼື ຈົນກວ່າບໍ່ສາມາດຫານໄດ້.

ໃນການຫານແຕ່ລະຄັ້ງນັ້ນຈະຕ້ອງຂູງນຈຳນວນເສດໄວ້ທຸກຄັ້ງ ຈາກນັ້ນຈຶ່ງຂູງນເສດທີ່ໄດ້ ຈາກການຫານໂດຍລຽນລຳດັບຈາກລຸ່ມຂຶ້ນເທິງ ຫຼື ຕາມລູກສອນດັ່ງລຸ່ມນີ້.

ຕົວຢ່າງ 9: ຈົ່ງປຸ່ງນເລກຖານສິບ 512₁₀ ໃຫ້ເປັນເລກຖານ 16

ແກ້:

ໝາຍເຫດ: ຖ້າຈຳນວນທີ່ຫານບໍ່ໄດ້ແມ່ນນຳເອົາຈຳນວນນັ້ນ (ເສດສ່ວນ) ມາລຸງນຕໍ່ກັນເລີຍ ດັ່ງນັ້ນ, $512_{10} = 200_{16}$

ການປ່ຽນເລກເສດທີ່ເປັນເລກຖານສິບໃຫ້ເປັນເລກຖານສິບຫົກ ຈະໃຊ້ວິທີການນຳເອົາຄ່າ ເລກຫຼັງຈຸດມາຄູນດ້ວຍ 16 ຈາກນັ້ນ ນຳຜົນລັບທີ່ເປັນເລກເສດໄປຄູນໃຫ້ 16 ອີກຄັ້ງ, ເຮັດວິທີນີ້ ໄປເລື້ອຍໆ ຈົນກວ່າຈະພໍໃຈກັບຜົນທີ່ໄດ້. ການຄູນໃຫ້ 8 ແຕ່ລະຄັ້ງຈະໄດ້ຕົວເລກ 1 ຕົວທີ່ກາຍ ມາເປັນເລກຈຳນວນເຕັມ, ເລກຕົວນັ້ນຄືຜົນຮັບ. ຈາກນັ້ນ, ນຳເອົາຜົນທີ່ໄດ້ຮັບທັງໝົດມາຂຸງນຕໍ່ ລງນກັນ ຕັ້ງແຕ່ຕົວທຳອິດຈົນຮອດຕົວສຸດທ້າຍກໍ່ຈະໄດ້ຄ່າເລກຖານ 16 ທີ່ຕ້ອງການດັ່ງຕົວຢ່າງ ລຸ່ມນີ້.

ຕົວຢ່າງ 10: ຈົ່ງປ່ຽນເລກຖານສິບ (0.14453125)₁₀ ເປັນເລກຖານ 16 ແກ້:

$$16 \times 0.14453125 = 2.3125$$

ຈຳນວນເຕັມແມ່ນ 2

$$16 \times 0.3125 = 5$$

ຈຳນວນເຕັມແມ[່]ນ *5*

MSB ບິດໃຫຍ່ສຸດ LSB ບິດນ້ອຍສຸດ

ສະນັ້ນ, (0.14453125)₁₀ = 0.25₁₆

1.3.4 ການປ່ຽນເລກຖານ 2 ເປັນເລກຖານ 10 (Binary to Decimal conversion)

ການປ່ຽນເລກຖານສອງກັບໄປເປັນເລກຖານສິບ ແມ່ນຕ້ອງອາໃສຄ່າປະຈຳຫຼັກຂອງແຕ່ລະ ບິດໃນເລກຖານສອງ ທີ່ຕ້ອງການແປງ ໂດຍຈະແຍກຕົວເລກໃນແຕ່ລະບິດມາຄູນກັບເລກປະຈຳ ຫຼັກ ແລ້ວນຳຜົນໄດ້ຮັບຈາກການຄູນດັ່ງກ່າວມາບວກຕົວກັນ. ກໍ່ຈະໄດ້ເລກຖານສິບທີ່ມີຄ່າຕົງກັບ ເລກຖານສອງ.

ຕົວຢ່າງ 11: ຈົ່ງປ່ຽນເລກຖານສອງ (10101)₂ ເປັນເລກຖານສິບ ແກ້:

$$10101_{2} = (1 \times 2^{4}) + (0 \times 2^{3}) + (1 \times 2^{2}) + (0 \times 2^{1}) + (1 \times 2^{0})$$

$$= 16 + 0 + 4 + 0 + 1$$

$$10101_{2} = 21_{10}$$

ຕົວຢ່າງ 12: ຈົ່ງປ່ຽນເລກຖານສອງ (0.101)₂ ເປັນເລກຖານສິບ ແກ້:

$$0.101_2 = (1 \times 2^{-1}) + (0 \times 2^{-2}) + (1 \times 2^{-3})$$
$$= 0.5 + 0 + 0.125$$
$$0.101_2 = 0.625_{10}$$

1.3.5 ภามปุ่นเอททาน 8 ใช้เป็นเอททาน 10 (Octal to Decimal conversion)

ການປ່ຽນເລກຖານ 8 ເປັນເລກຖານ 10 ຕ້ອງອາໃສຄ່າປະຈຳຫຼັກຂອງແຕ່ລະບິດໃນລະບົບ ເລກຖານແປດທີ່ຕ້ອງການປ່ຽນນັ້ນ ໂດຍຈະແຍກຕົວເລກໃນແຕ່ລະຫຼັກມາຄູນດ້ວຍຄ່າປະຈຳຫຼັກ ແລ້ວນຳຜົນໄດ້ຮັບຈາກການຄູນດັ່ງກ່າວມາບວກກັນ ກໍ່ຈະໄດ້ເລກຖານສິບທີ່ຕ້ອງການ.

ຕົວຢ່າງ 13: ຈົ່ງປຸ່ງນເລກຖານແປດ $(124)_8$ ເປັນເລກຖານສິບ

ແກ້:

$$124_{8} = (1 \times 8^{2}) + (2 \times 8^{1}) + (4 \times 8^{0})$$
$$= 64 + 16 + 4$$
$$124_{8} = 84_{10}$$

ຕົວຢ່າງ 14: ຈົ່ງປ່ຽນເລກຖານແປດ (0.12)₈ ເປັນເລກຖານສິບ

ແກ້:

$$0.12_8 = (1 \times 8^{-1}) + (2 \times 8^{-2})$$
$$= 0.125 + 0.03125$$
$$0.12_8 = 0.15625_{10}$$

1.3.6 ການປ່ານເລກຖານ 16 ເປັນເລກຖານ 10 (Hex to Decimal conversion)

ການປຸ່ງນເລກຖານ 16 ເປັນເລກຖານ 10 ຕ້ອງອາໃສຄ່າປະຈຳຫຼັກຂອງແຕ່ລະບິດໃນ ລະບົບເລກຖານສິບຫົກທີ່ຕ້ອງການປຸ່ງນນັ້ນ ໂດຍຈະແຍກຕົວເລກໃນແຕ່ລະຫຼັກມາຄູນດ້ວຍຄ່າປະຈຳຫຼັກແລ້ວນຳຜົນໄດ້ຮັບຈາກການຄູນດັ່ງກ່າວມາບວກກັນ ກໍ່ຈະໄດ້ເລກຖານສິບທີ່ຕ້ອງການ.

ຕົວຢ່າງ 15: ຈົ່ງປຸ່ງນເລກຖານສິບຫົກ (IAC)₁₆ ໃຫ້ເປັນເລກຖານສິບ ແກ້:

$$1AC_{16} = (1 \times 16^{2}) + (10 \times 16^{1}) + (12 \times 16^{0})$$
$$= 256 + 160 + 12$$
$$1AC_{16} = 428_{10}$$

ຕົວຢ່າງ 16: ຈົ່ງປຸ່ງນເລກຖານສິບຫົກ (0.52)₁₆ ໃຫ້ເປັນເລກຖານສິບ ແກ້:

$$0.52_{16} = (5 \times 16^{-1}) + (2 \times 16^{-2})$$
$$= 0.3125 + 0.0078125$$
$$0.52_{16} = 0.3203125_{10}$$

1.3.7 ການປ່ຽນເລກຖານ 8 ໃຫ້ເປັນເລກຖານ 2 ແລະ ການປ່ຽນເລກຖານ 2 ໃຫ້ເປັນເລກຖານ 8 (Octal to Binary, Binary to Octal conversion)

ລະບົບເລກຖານແປດຈຳນວນ 1 ຫຼັກ ສາມາດແທນໄດ້ດ້ວຍຈຳນວນເລກຖານສອງຈຳນວນ 3 ຫຼັກເຊັ່ນ: $5_8 = 101_2$ ເປັນຕົ້ນ. ດັ່ງນັ້ນ, ໃນການປຸ່ງນເລກຖານແປດເປັນເລກຖານສອງ ຈຶ່ງ ສາມາດເຮັດໄດ້ໂດຍນຳເອົາຕົວເລກຖານສອງຈຳນວນ 3 ຫຼັກ ແທນໃຫ້ເລກຖານແປດ. ໃນທຳ ນອງດຸງວກັນການປຸ່ງນເລກຖານສອງເປັນເລກຖານແປດ ຈະເປັນການຈັດກຸ່ມຈຳນວນຫຼັກຂອງ ເລກຖານສອງໃຫ້ເປັນກຸ່ມລະ 3 ຫຼັກ ເພື່ອໃຊ້ເປັນຕົວແທນຂອງເລກຖານແປດ. ໂດຍເລີ່ມຈັບກຸ່ມ ຈາກທາງດ້ານຂວາມື ສຳຫຼັບຕົວເລກທີ່ຢູ່ດ້ານຊ້າຍມືສາມາດຕື່ມເລກ 0 ເພື່ອໃຫ້ສາມາດຈັດກຸ່ມໄດ້. (ໃຊ້ກັບເລກຈຳນວນເຕັມ) ຕົວແທນຂອງເລກຖານແປດທີ່ທຽບເທົ່າກັບເລກຖານສອງດັ່ງທີ່ສະແດງ ໃນຕາຕະລາງລຸ່ມນີ້:

ຕາຕະລາງທີ 1.2 ສະແດງເລກຖານແດງທູງບເທົ່າກັບເລກຖານສອງ

ເລກຖານແປດ	ເລກຖານສອງ		
0	000		
1	001		
2	010		
3	011		
4	100		
5	101		
6	110		
7	111		

ຕົວຢ່າງ 17: ຈົ່ງປຸ່ງນເລກຖານສອງ (111000111101)₂ ໃຫ້ເປັນເລກຖານແປດ

ຕົວຢ່າງ 18: ຈົ່ງປ່ຽນເລກຖານສອງ (101111.11010)₂ ໃຫ້ເປັນເລກຖານແປດ ແກ້: ເຮົາສາມາດຈັດອອກເປັນກຸ່ມໄດ້ຄື:

ຈາກຕົວຢ່າງທີ 18 ເຫັນວ່າສ່ວນທີ່ເປັນຈຳນວນເຕັມສາມາດຕື່ມເລກ 0 ໃສ່ຊ້າຍສຸດຂອງ ເລກທີ່ໃຫ້ມາ, ສ່ວນທີ່ເປັນຈຳນວນເສດແມ່ນສາມາດຕື່ມໃສ່ຂວາສຸດຂອງເລກທີ່ໃຫ້ມາເພື່ອໃຫ້ ສາມາດຈັດກຸ່ມໃຫ້ໄດ້ຄົບ 3 ຫຼັກ.

ຕົວຢ່າງ 19: ຈົ່ງປຸ່ງນເລກຖານແປດ (245)₈ ໃຫ້ເປັນເລກຖານສອງ

ແກ້: ເຮົາສາມາດຂະຫຍາຍແຕ່ລະຕົວເລກໄດ້ຄືດັ່ງນີ້:

ຕົວຢ່າງ 20: ຈົ່ງປ່ຽນເລກຖານແປດ (345.23)₃ ໃຫ້ເປັນເລກຖານສອງ ແກ້: ເຮົາສາມາດຂະຫຍາຍແຕ່ລະຕົວເລກໄດ້ຄືດັ່ງລຸ່ມນີ້:

ສະນັ້ນ, (345.23)8 = 011100101.0100112

1.3.8 ການປ່ຽນເລກຖານ 2 ໃຫ້ເປັນຖານ 16 ແລະ ການປ່ຽນເລກຖານ 16 ໃຫ້ເປັນຖານ 2 (Binary to Hex, Hex to Binary conversion)

ລະບົບເລກຖານສິບຫົກຈຳນວນ 1 ຫຼັກ ສາມາດແທນໄດ້ດ້ວຍຈຳນວນເລກຖານສອງຈຳ ນວນ 4 ຫຼັກເຊັ່ນ: $9_{16} = 1001_2$ ເປັນຕົ້ນ. ດັ່ງນັ້ນ, ໃນການປ່ຽນເລກສິບຫົກໃຫ້ເປັນເລກຖານສອງ ຈຶ່ງສາມາດເຮັດໄດ້ໂດຍການແທນຕົວເລກຖານສອງຈຳນວນ 4 ຫຼັກ ລົງໃນເລກຖານສິບຫົກຈຳ ນວນ 1 ຫຼັກ. ໃນທຳນອງດຽວກັນການປ່ຽນເລກຖານສອງໃຫ້ເປັນເລກຖານສິບຫົກຈະເປັນການຈັດ ກຸ່ມຈຳນວນຫຼັກຂອງເລກຖານສອງໃຫ້ເປັນກຸ່ມໆລະ 4 ຫຼັກ ເພື່ອໃຊ້ເປັນຕົວແທນຂອງເລກຖານ ສິບຫົກ ຖ້າເປັນຈຳນວນເຕັມການຈັບເປັນກູ່ເລີ່ມມຈາກຫາງດ້ານຂວາມື ສຳຫຼັບຕົວເລກທີ່ຢູ່ດ້ານ ຊ້າຍມືສາມາດຕື່ມເລກ 0 ໃສ່ເພື່ອໃຫ້ສາມາດຈັດກຸ່ມໄດ້ຄົບ. ຖ້າເປັນເລກຈຳນວນເສດ ການຈັດ ກຸ່ມແມ່ນເລີ່ມຈາກດ້ານຊ້າຍມືໄປ ແລະ ສາມາດຕື່ມ 0 ໃສ່ຂວາມືສຸດຂອງເລກເສດທີ່ໃຫ້ມາ ເພື່ອ ໃຫ້ຄົບກຸ່ມ.ຕົວແທນຂອງເລກຖານສິບຫົກທີ່ທຽບເທົ່າກັບເລກຖານສອງສະແດງໃນຕາຕະລາງລຸ່ມ ີ່ນ:

ຕາຕະລາງທີ 1.3 ສະແດງຕົວເລກຖານສິບຫົກທີ່ທຽບເທົ່າກັບເລກຖານສອງ

ເລກຖານສິບຫົກ	ເລກຖານສອງ
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
В	1011
С	1100
D	1101
Е	1110
F	1111

ຕົວຢ່າງ 21: ຈົ່ງປ່ຽນເລກຖານສອງ (111000111101)₂ ໃຫ້ເປັນເລກຖານສິບຫົກ ແກ້: ເຮົາສາມາດຈັດອອກເປັນກຸ່ມໄດ້ຄື:

ສະນັ້ນ, (111000111101) $_2 = E3D_{16}$

ຕົວຢ່າງ 22: ຈົ່ງປຸ່ງນເລກຖານສອງ (101111.11010)₂ ໃຫ້ເປັນເລກຖານສິບຫົກ ແກ້: ເຮົາສາມາດຈັດອອກເປັນກຸ່ມໄດ້ຄື:

ສະນັ້ນ, (101111.11010)₂ = 2F.D0₁₆

ຕົວຢ່າງ 23: ຈົ່ງປຸ່ງນເລກຖານສິບຫົກ (25A)₁₆ ໃຫ້ເປັນເລກຖານສອງ ແກ້: ເຮົາສາມາດຂະຫຍາຍອອກເປັນກຸ່ມຄືດັ່ງນີ້:

ຕົວຢ່າງ 24: ຈົ່ງປຸ່ງນເລກຖານສສາດ (C3A.2B)₁₆ ເປັນເລກຖານສອງ

ແກ້: ເຮົາສາມາດຂະຫຍາຍອອກເປັນກຸ່ມຄືດັ່ງນີ້:

1.3.9 ການປ່ຽນເລກຖານລະຫວ່າງເລກຖານ 8 ກັບເລກຖານ 16

ການປ່ຽນເລກຖານແປດໃຫ້ເປັນເລກຖານສິບຫົກ ແລະ ການປ່ຽນເລກຖານສິບຫົກໃຫ້ເປັນ ເລກຖານແປດ ມີຫຼັກການປ່ຽນຄື: ໃຫ້ປ່ຽນເລກຖານນັ້ນເປັນເລກຖານສອງກ່ອນ ແລ້ວແປງເລກ ຖານສອງທີ່ໄດ້ມາເປັນເລກຖານທີ່ເຮົາຕ້ອງການ.

ຕົວຢ່າງ 25: ຈົ່ງປ່ຽນເລກຖານແປດ (437.65)₈ ໃຫ້ເປັນເລກຖານສິບຫົກ ແກ້:

ຕົວຢ່າງ 26: ຈົ່ງປຸ່ງນເລກຖານສິບຫົກ (9EB.3E)₁₆ ໃຫ້ເປັນເລກຖານສິບຫົກ ແກ້:

1.4 ການຄຳນວນທາງຄະນິດສາດຂອງເລກຖານ (Operator Arithmetic of Numeration)

ການຄຳນວນທາງຄະນິດສາດສຳຫຼັບເລກຖານ ໂດຍທົ່ວໄປປະກອບດ້ວຍ ການບວກ, ການ ລົບ, ການຄູນ ແລະ ການຫານ. ການທຳແບບ 1's Complement ແລະ 2's Complement ບໍ່ວ່າ ຈະເປັນເລກຖານໃດໆ ຈະມີຂັ້ນຕອນການຄຳນວນຄືກັນເຊັນ:

- ຂຽນຈຳນວນເລກຕົວຕັ້ງ ແລະ ເລກຕົວທີ່ໃຊ້ຄຳນວນໃຫ້ລຽນຕົງກັນ ໂດຍເລີ່ມຕັ້ງແຕ່ຫຼັກ ຫົວໜ່ວຍໄປທາງດ້ານຊ້າຍມື.
- ການຄຳນວນຈະຄ້າຍຄືກັບການຄຳນວນເລກຖານສິບ ຊຶ່ງທັງການຈື່ ແລະ ການຢືມຈາກ ຫຼັກທີ່ຫຼາຍກວ່າ.
 - ໂດຍແຕ່ລະຕົວທີ່ຄຳນວນແມ່ນໃຫ້ຄິດໄລ່ເປັນຖານສິບກ່ອນ ແລ້ວຄ່ອຍແປງເປັນຖານອື່ນ.

1.4.1 ການບວກ ແລະ ການລົບ ຄ່າໃນລະບົບເລກຖານສອງ (Add and Subtract Numeration of Binary)

ການຄຳນວນເລກໃນລະບົບເລກຖານສອງຈະມີຫຼັກການທົ່ວໄປ ໃນລະບົບເລກຖານສອງນັ້ນ ຈະມີຕົວເລກທີ່ແຕກຕ່າງກັນຄື: 0 ແລະ 1 ເທົ່ານັ້ນ. ເມື່ອນຳເອົາຈຳນວນ 1+1 ຈະໄດ້ຄ່າເທົ່າກັບ 2 ໃນລະບົບເລກຖານສິບ. ແຕ່ບໍ່ສາມາດຂຸງນໄດ້ໃນລະບົບເລກຖານສອງ. ດັ່ງນັ້ນ, ຈຶ່ງຕ້ອງມີການ ແປງຜົນທີ່ໄດ້ຮັບໂດຍການນຳເອົາຄ່າສອງມາລົບອອກຈາກຜົນໄດ້ຮັບຈະໄດ້ 2 – 2 = 0 ແລະ ມີ ຕົວຈື່ເທົ່າກັບ 1

ຕາຕະລາງທີ 1.4 ການບວກເລກຖານສອງ

ຕົວຕັ້ງ	ຕົວບວກ	<i>ຕົ</i> ນທີ່ໄດ້ຮັບ	ຕົວຈື່
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

ຕົວຢ່າງ 27: ຈົ່ງບວກເລກຖານສອງ 1011₂ + 1001₂ ແກ້:

ການລົບເລກຖານສອງຖ້າຕົວຕັ້ງຫຼາຍກວ່າຕົວລົບ ກໍ່ສາມາດລົບໄດ້ຄືກັນກັບລະບົບເລກ ຖານສິບ ແຕ່ຖ້າຕົວຕັ້ງລົບນ້ອຍກວ່າ ແມ່ນຈະຕ້ອງໄດ້ຢືມຄ່າຈາກຫຼັກທີ່ຢູ່ຖັດໄປທາງດ້ານຊ້າຍມື ເທົ່າກັບ 1 ໂດຍຄ່າທີ່ຢືມມາຈະມີຄ່າເທົ່າກັບ 2 ໃນລະບົບເລກຖານສິບ ແລະ ຕົວທີ່ໃຫ້ຢືມຈະມີຄ່າ ຫຼຸດລົງເທົ່າກັບ 1.

ຕາຕະລາງທີ 1.5 ການລົບເລກຖານສອງ

ຕົວຕັ້ງ	ຕົວລົບ	<i>ຕ</i> ິນທີ່ໄດ້ຮັບ	ຕູວຢູກ
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

ຕົວຢ່າງ 28: ຈົ່ງລົບເລກຖານສອງ 1101101₂ - 1011110₂ ແກ້:

1101101

1011110

0001111

ຕອບ 1101101₂ - 10111110₂ = <mark>0001111₂</mark>

1.4.2 ການຄູນ ແລະ ການຫານ ເລກຖານສອງ

ຕອບ 11011₂ × 101₂ = 10000111₂

ການຄູນ ແລະ ການຫານ ເລກຖານສອງແມ່ນໃຊ້ຫຼັການດງວກັນກັບການຄູນ ແລະ ການ ຫານເລກຖານສິບ ພງງແຕ່ເລກຖານສອງມີພງງ 0 ກັບ 1 ເທົ່ານັ້ນ. ຜົນທີ່ໄດ້ຮັບຈຶ່ງມີພງງ 0 ແລະ 1 ຄືກັນ ດັ່ງຕົວຢ່າງລຸ່ມນີ້:

ຕົວຢ່າງ 30: ຈົ້ງຫານເລກຖານສອງ $1001_2 \div 11_2$

ແກ້:

$$\frac{11}{11}$$

_

ຕອບ: $1001_2 \div 11_2 = 11_2$

$$1001 \div 11$$
 $1001 \frac{11}{11}$
 $1001 \frac{11}{11}$
 $1001 \frac{11}{11}$
 $1001 \frac{11}{11}$
 $11001 \frac{11}{11}$

1.4.3 ການລົບເລກຖານສອງດ້ວຍວິທີຄອມພີເມນ (Complement)

ເນື່ອງຈາກລະບົບຕົວເລກຖານສອງ ເປັນລະບົບເລກຖານທີ່ສຳຄັນໃນການເປັນຕົວແທນຂົ້ ມູນສຳຫຼັບລະບົບດິຈີຕອນ ເມື່ອນຳມາໃຊ້ໃນການຄຳນວນໃນການລົບຕົວເລກຈຳເປັນທີ່ຈະຕ້ອງ ເພີ່ມວົງຈອນການລົບລົງໄປໃນການອອກແບບ. ດັ່ງນັ້ນ, ເພື່ອເປັນການຫຼຸດຄວາມຫຍຸ້ງຍາກໃນ ການອອກແບບ ຈຶ່ງໃຊ້ວິທີການບວກແຕ່ພູງຢ່າງດຸງວໂດຍເປັນການບວກແບບເຄື່ອງໝາຍເຊັ່ນ: $5_{10} + (-2) = 3_{10}$ ເປັນຕົ້ນ. ດັ່ງນັ້ນ, ເພື່ອເຮັດໃຫ້ຮູ້ວ່າຂໍ້ມູນທີ່ນຳມາຄຳນວນນັ້ນມີຄ່າເປັນລົບຈະ ຕ້ອງດຳເນີນການປຸ່ງນຄ່າຕົວເລກໂດຍໃຊ້ວິທີການຄອມພີເມນ ຊຶ່ງເຮັດໄດ້ໂດຍການໃຊ້ເຄື່ອງໝາຍ ລົບ (-) ຕິດມາກັບຕົວເລກ ສຳຫຼັບການຄອມພີເມນໃນລະບົບເລກຖານສອງຈະມີ 2 ແບບຄື: ແບບ 1's Complement ແລະ ແບບ 2's Complement.

ແບບ 1's Complement ເປັນວິທີການກັບສະຖານະຂອງໂລຈິກເຊັ່ນ: ການປ່ຽນໂລຈິກ 0 ເປັນ 1 ແລະ ການປ່ຽນໂລຈິກ 1 ເປັນ 0.

ແບບ 2's Complement ເປັນຜົນບວກທີ່ໄດ້ຮັບຈາກການນຳເອົາຄ່າ 1 ໄປບວກກັບຄ່າ 1's Complement ເພື່ອໃຊ້ສຳຫຼັບຄຳນວນການລົບເລກໂດຍວິທີບວກພງງຍ່າງດງວ ແລະ ໃຊ້ສຳ ຫຼັບການປະມວນຜົນໃນລະບົບດິຈີຕອນ. ກ. ວີທີ່ແບບ 1's Complement

ຂັ້ນຕອນທີ 1: ຫາ 1's Complement ຂອງຕົວລົບ (ຄ່າທີ່ກົງກັນຂ້າມ) ຖ້າຈຳນວນຫຼັກ ຂອງຕົວລົບນ້ອຍກວ່າແມ່ນໃຫ້ຕື່ມເລກ 0 ດ້ານຊ້າຍມືໃຫ້ເທົ່າກັບຕົວຕັ້ງແລ້ວຊອກຄ່າຂອງ 1's Complement;

ຂັ້ນຕອນທີ 2: ບວກຜົນທີ່ໄດ້ຈາກຂໍ້ທີ 1 ກັບຕົວຕັ້ງ;

<u>ຂັ້ນຕອນທີ 3:</u> ຜົນບວກຈາກຂໍ້ທີ 2 ຖ້າຜົນໄດ້ຮັບມີຕົວຈື່ ຫຼື ຫຼາຍກວ່າຈຳນວນຕົວຕັ້ງ (End around carry) ແມ່ນໃຫ້ຕັດຕົວເລກ 1 ທີ່ຢູ່ດ້ານຊ້າຍສຸດອອກ ແລ້ວບວກດ້ວຍ 1.

ຕົວຢ່າງ31: ຈົ່ງລົບເລກຖານສອງ 110111₂ - 100101₂ ດ້ວຍວິທີ 1's Complement

ແກ້:

- ຊອກຄ່າ 1's Complement ຂອງຕົວລົບຈະໄດ້ 011010
- ນຳຄ່າຕົວຕັ້ງມາບວກກັບຜົນຂອງການຊອກຫາຄ່າ 1's Complement ຄື: 011010

ຕົວຢ່າງ 32: ຈົ່ງລົບເລກຖານສອງ 101110₂ - 10111₂ ດ້ວຍວິທີ 1's Complement ແກ້:

- ເນື່ອງຈາກຕົວລົບມີຈຳນວນຫຼັກນ້ອຍກວ່າ ຈຶ່ງຕ້ອງຕື່ມເລກສູນ ໃຫ້ເທົ່າກັບຈຳນວນຫຼັກ ຂອງຕົວຕັ້ງຈະເທົ່າກັບ 010111 ແລ້ວຊອກຫາຄ່າ 1's Complement ຂອງຕົວລົບຈະເທົ່າກັບ 101000
 - ນຳຄ່າຕົວຕັ້ງມາບວກກັບຜົນຂອງການຊອກຫາຄ່າ 1's Complement

ລິທີແບບ 2's Complement

ຂັ້ນຕອນທີ 1: ຫາ 2's Complement ຂອງຕົວລົບ (ຄ່າກົງກັນຂ້າມ) ຖ້າຈຳນວນຫຼັກຂອງ ຕົວລັບນ້ອຍກວ່າຈະຕື່ມເລກ 0 ດ້ານຊ້າຍມືໃຫ້ເທົ່າກັບຕົວຕັ້ງ ແລ້ວຈຶ່ງຊອກຫາຄ່າ 2's Complement

ຂັ້ນຕອນທີ 2: ບວກຜົນທີ່ໄດ້ຮັບຈາກການຊອກຫາຄ່າ 2's Complement ກັບຕົວຕັ້ງ ຜົນ ທີ່ຈະມີຄວາມເປັນໄປໄດ້ 2 ກໍລະນີຄື: ມີຕົວຈື່ ແລະ ບໍ່ມີຕົວຈື່. ກໍລະນີມີຕົວຈື່ ຜົນບວກຈາກຂໍ້ 2 ແມ່ນໃຫ້ຕັດຕົວເລກ 1 ທີ່ຢູ່ຊ້າຍສຸດອອກ ຄ່າທີ່ເຫຼືອແມ່ນຜົນທີ່ໄດ້ຮັບຈາກການຄຳນວນ. ກໍລະນີບໍ່ ມີຕົວຈື່ ຜົນບວກຈາກຂໍ້ 2 ຕ້ອງມາຊອກຫາຄ່າ 2's Complement ຄ່າທີ່ໄດ້ຮັບແມ່ນໃຫ້ໃສ່ເຄື່ອງ ໝາຍລົບໄວ້ດ້ານໜ້າ.

ຕົວຢ່າງ 33: ຈົ້ງລົບເລກຖານສອງ 110111₂ - 100101₂ ດ້ວຍວິທີ 2's Complement

ແກ້:

- ຊອກຄ່າ 2's Complement ຂອງຕົວລົບຈະໄດ້ 011011
- ນຳຄ່າຕົວຕັ້ງມາບວກກັບຜົນຂອງການຊອກຫາຄ່າ 2's Complement

110111

+

ສະນັນ, 1101112 - 1001012 = 0100102

ຕົວຢ່າງ 34: ຈົ່ງລົບເລກຖານສອງ 1101111_2 - 100101_2 ດ້ວຍວິທີ 2's Complement

ແກ້:

- ຊອກຄ່າ 2's Complement ຂອງຕົວລົບຈະໄດ້ 011011
- ນຳຄ່າຕົວຕັ້ງມາບວກກັບຜົນຂອງການຊອກຫາຄ່າ 2's Complement

110111

ສະນັ້ນ, 1101112 - 1001012 = 0010102

1.5 ລະຫັດໃນລະບົບດິຈິຕອນ

ການຈັດຊຸດຂໍ້ມູນເລກຖານສອງ 0 ຫຼື 1 ເຂົ້າກັນໃຫ້ເປັນກຸ່ມແລ້ວແທນເລກໃດເລກໜຶ່ງເອີ້ນ ວ່າ: ລະຫັດ (Code) ໃນການລວມກຸ່ມເລກຖານສອງຈະມີຈຳນວນຈຳກັດຂອງກຸ່ມນັ້ນທີ່ແຕກຕ່າງ ກັນຄື:

- ບິດ (bit) ແມ່ນເລກ 0 ຫຼື 1 ຂອງເລກຖານສອງ;
- ນິບເບີນ (Nibble) ແມ່ນກຸ່ມເລກຖານສອງຈຳນວນ 4 ບິດ;
- ໄບ (Byte) ແມ່ນກຸ່ມເລກຖານສອງຈຳນວນ 8 ບິດ ຫຼື 2 ນິບເບີນ (Nibble);
- ເວີດ (Word) ແມ່ນກຸ່ມເລກຖານສອງຈຳນວນ 2 ໄບ (Byte). ນອກຈາກນັ້ນ, ລະຫັດໃນລະບົບເລກດິຈິຕອນສາມາດແບ່ງອອກເປັນ 2 ປະເພດຄື:
- ລະຫັດມີນ້ຳໜັກ (Weighted Code) ເປັນລະຫັດເລກຖານສອງທີ່ກຳນົດໃຫ້ມີຄ່າປະຈຳ ຕຳແໜ່ງຂອງແຕ່ລະບິດເຊັ່ນ: ລະຫັດບີຊີດີ (Binary Coded Decimal)
- ລະຫັດບໍ່ມີນ້ຳໜັກ (Non Weighted Code) ເປັນລະຫັດເລກຖານສອງທີ່ບໍ່ໄດ້ກຳນົດໃຫ້ ມີຄ່າປະຈຳຕຳແໜ່ງຂອງແຕ່ລະບິດເຊັ່ນ: ລະຫັດເກ່ຍ (Gray Code).

1.5.1 ລະຫັດບີຊີດີ (Binary Coded Decimal)

ລະຫັດບີຊີດີ (BCD: Binary Coded Decimal) ເປັນລະຫັດທີ່ມີນ້ຳໜັກ ຄືບິດແຕ່ລະບິດຈະ ມີຄ່າປະຈຳຕຳແໜ່ງຂອງແຕ່ລະບິດຢູ່. ລະຫັດບີຊີດີຈະແຍກເປັນຊຸດ ໃນໜຶ່ງຊຸດຂອງລະຫັດບີຊີດີ ຈະມີ 4 ບິດ ໃນເລກຖານສິບ, ຖານສິບຫົກ ແລະ 3 ບິດ ໃນເລກຖານແປດ. ດັ່ງນັ້ນ, ລະຫັດບີຊີດີດີຈະແທນເລກຖານສິບ, ຖານແປດ ແລະ ຖານສິບຫົກດັ່ງຕາຕະລາງລຸ່ມນີ້:

ຕາຕະລາງທີ 1.6 ການປງບທງບລະຫວ່າງລະຫັດບີຊີດີ

ລະຫັດບີຊີດີ	ເລກຖານສິບ	ເລກຖານແປດ	ເລກຖານສິບຫົກ
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4

0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	8	-	8
1001	9	-	9
1010	-	-	A
1011	-	-	В
1100	-	-	С
1101	-	-	D
1110	-	-	Е
1111	-	-	F

ຕົວຢ່າງ 35: ຈົ່ງປ່ຽນເລກຕໍ່ໄປນີ້ເປັນລະຫັດບີຊີດີ

แต้:

ຄ. A9₁₆
A 9
(1010) (1001)
ສະນັ້ນ, A9₁₆ = 10101001_{BCD}

1.5.2 ລະຫັດເກີນ 3

ລະຫັດເກີນ 3 ເປັນລະຫັດທີ່ມີຄ່າຫຼາຍກວ່າລະຫັດບີຊີດີຢູ່ 3 ເຊັ່ນ: ລະຫັດບີຊີດີເທົ່າກັບ 1001 ຄ່າຂອງລະຫັດເກີນ 3 ຈະມີຄ່າເທົ່າກັບ 1100 ດັ່ງສະແດງໃນຕາຕະລາງລຸ່ມນີ້:

ຕາຕະລາງທີ 1.7 ການປູງບທູງບລະຫັດເກີນ 3

ເລກຖານສິບ	ລະຫັດບີຊີດີ	ລະຫັດເກີນ 3
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

1.5.3 ລະຫັດເກ່ຍ (Gray Code)

ລະຫັດເກ່ຍ (Gray Code) ນິຍົມນຳມາໃຊ້ໃນລະບົບກົນໄກແບບແກນໝຸນ ເພື່ອບອກຕຳ ແໜ່ງຂອງເພົາໝຸນ, ເປັນລະຫັດທີ່ບໍ່ມີນ້ຳໜັກໃນຕົວ ຊຶ່ງມີຫຼັກໃນການປ່ຽນເລກຖານສອງເປັນ ລະຫັດເກ່ຍ ແລະ ປ່ຽນຈາກລະຫັດເກ່ຍເປັນເລກຖານສອງດັ່ງນີ້:

ກ. ການປ່ຽນເລກຖານສອງເປັນລະຫັດເກ່ຍ

ຂັ້ນຕອນທີ 1: ນຳເລກຖານສອງມາຂຸງນລຸງນກັນໂດຍເວັ້ນຊ່ອງວ່າງ;

ຂັ້ນຕອນທີ 2: ດຶງບິດໃຫຍ່ສຸດລົງມາ (MSB);

<u>ຂັ້ນຕອນທີ 3:</u> ບວກບິດ MSB ກັບບິດຖັດໄປທາງຂວາມືໃສ່ຄ່າທີ່ໄດ້ໂດຍຕັດຕົວຈື່ອອກ ເຮັດແບບນີ້ຈົນຮອດບິດຕ່ຳສຸດ LSB;

ຂັ້ນຕອນທີ 4: ນຳຄ່າທີ່ໄດ້ຂງນລງນກັນ.

ຕົວຢ່າງ 37: ຈົ່ງປຸ່ງນເລກຖານສອງຕໍ່ໄປນີ້ເປັນລະຫັດເກ່ຍ

ກ. 1011₂, ຂ. 10101101₂

ແກ້:

ກ. 1011₂

ຕອບ: 1011₂ = 1110

2. 10101101₂

ຕອບ: 101011012 = 11111011

ຂ. ການປຸ່ງນລະຫັດເກ່ຍເປັນເລກຖານສອງ

ຂັ້ນຕອນທີ 1: ນຳເລກຖານສອງມາຂຸງນລຸງນກັນໂດຍເວັ້ນຊ່ອງ

ຂັ້ນຕອນທີ 2: ດຶງບິດໃຫຍ່ສຸດລົງມາ (MSB);

ຂັ້ນຕອນທີ 3: ບວກບິດ MSB ກັບບິດຖັດໄປທາງຂວາມືໃສ່ຄ່າທີ່ໄດ້ໂດຍຕັດຕົວຈື່ອອກ

<u>ຂັ້ນຕອນທີ 4:</u> ບວກຜົນໄດ້ຮັບທີ່ໄດ້ກັບບິດຖັດໄປທາງຂວາມືໃສ່ຄ່າທີ່ໄດ້ໂດຍຕັດຕົວຈື່ ເຮັດແບບນີ້ຈົນຮອດບິດຕ່ຳສຸດ LSB;

ຂັ້ນຕອນທີ 5: ນຳຄ່າທີ່ໄດ້ມາຂງນລງນກັນ.

ຕົວຢ່າງ 38: ຈົ່ງແປງລະຫັດເກ່ຍຕໍ່ໄປນີ້ເປັນລະບົບເລກຖານສອງ

ກ. 1110 ຂ. 11111011

ແກ້:

ກ. 1110

ຕອບ: 1110 = 1011₂

a. 11111011

MSB LSB $\frac{1}{1} + \frac{1}{1} + \frac{1}{1$

ຕອບ: 11111011 = 10101101₂

1.5.4 ລະຫັດແອັດສກີ (American Standard Code for Information Interchange)

ລະຫັດແອັດສກີ (ASCII: American Standard Code for Information Interchange) ຫຼື ເອີ້ນຫຍໍ້ວ່າ ແອັດສກີ ASCII ເປັນລະຫັດມາດຕະຖານຂອງອາເມລິກາ ທີ່ໃຊ້ແທນຕົວອັກສອນ, ຕົວເລກ ແລະ ສັນຍາລັກຕ່າງໆເຊັ່ນ: ຄີບອດຈໍສະແດງຜົນ, ເຄື່ອງພິມ ລະຫັດ ASCII ມີຂະໜາດ 7 ບິດ ເຮົາສາມາດຖອດລະຫັດ ASCII ໄດ້ຈາກຕາຕະລາງດ້ານລຸ່ມ ໂດຍນຳຄ່າບິດຈາກຕາຕະລາງມາຊຸງນລຸງນຕໍ່ກັນດັ່ງຕົວຢ່າງລຸ່ມນີ້:

ຕາຕະລາງທີ 1.8 ລະຫັດ ASCII

			B7	→	0	0	0	0	0	0	0	0
			ASC	II → B6	0	0	0	0	0	0	0	0
			B 5	→	0	0	0	0	0	0	0	0
B4	В3	B2	В1	Col Rol	0	1	2	3	4	5	6	7
0	0	0	0	0	NUL	DLE	SP	0	@	P	•	p
0	0	0	1	1	SOH	DC1	!	1	A	Q	a	q
0	0	1	0	2	STX	DC3	=	2	В	R	ь	r
0	0	1	1	3	ETX	DC3	#	3	C	S	С	s
0	1	0	0	4	EOT	DC4	\$	4	D	T	đ	t
0	1	0	1	5	ENQ	NAK	%	5	E	Ŭ	e	u
0	1	1	0	6	ACK	SYN	&	6	F	V	f	v
0	1	1	1	7	BLE	ETB	-	7	G	W	g	w
1	0	0	0	8	BS	CAN	(8	Н	X	h	x
1	0	0	1	9	НТ	EM)	9	I	Y	i	y
1	0	1	0	10	LF	SUB	*	:	J	Z	j	Z

1	0	1	1	11	VT	ESC	+	;	K	[k	{
1	1	0	0	12	FF	FS	,	<	L	\	1	
1	1	0	1	13	CR	GS	-	=	M]	m	}
so	1	1	0	14		RS	-	>	N	^	n	~
1	1	1	1	15	SI	US	/	?	О	-	0	DEL

ຕົວຢ່າງ 39: ຈາກຕາຕະລາງຈົ່ງຫາຄ່າຂອງລະຫັດ ASCII ຂອງຄຳວ່າ DIGITAL ແກ້:

ຕົວຢ່າງ 40: ຈາກຕາຕະລາງຈົ່ງຫາຄ່າຂອງລະຫັດ ASCII ຂອງຄຳວ່າ Sunday ແກ້:

Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char
0	0	0		32	20	40	[space]	64	40	100	0	96	60	140	
1	1	1		33	21	41	1	65	41	101	A	97	61	141	a
2	2	2		34	22	42		66	42	102	В	98	62	142	b
3	3	3		35	23	43	#	67	43	103	C	99	63	143	c
4	4	4		36	24	44	\$	68	44	104	D	100	64	144	d
5	5	5		37	25	45	%	69	45	105	E	101	65	145	e
6	6	6		38	26	46	&	70	46	106	F	102	66	146	f
7	7	7		39	27	47		71	47	107	G	103	67	147	q
8	8	10		40	28	50	(72	48	110	н	104	68	150	h
9	9	11		41	29	51)	73	49	111	1	105	69	151	i
10	A	12		42	2A	52		74	4A	112	1	106	6A	152	1
11	В	13		43	2B	53	+	75	4B	113	K	107	68	153	k
12	C	14		44	2C	54		76	4C	114	L	108	6C	154	1
13	D	15		45	2D	55		77	4D	115	M	109	6D	155	m
14	E	16		46	2E	56		78	4E	116	N	110	6E	156	n
15	F	17		47	2F	57	1	79	4F	117	0	111	6F	157	0
16	10	20		48	30	60	0	80	50	120	P	112	70	160	p
17	11	21		49	31	61	1	81	51	121	Q	113	71	161	q
18	12	22		50	32	62	2	82	52	122	R	114	72	162	r
19	13	23		51	33	63	3	83	53	123	5	115	73	163	5
20	14	24		52	34	64	4	84	54	124	T	116	74	164	t
21	15	25		53	35	65	5	85	55	125	U	117	75	165	u
22	16	26		54	36	66	6	86	56	126	V	118	76	166	V
23	17	27		55	37	67	7	87	57	127	W	119	77	167	w
24	18	30		56	38	70	8	88	58	130	X	120	78	170	×
25	19	31		57	39	71	9	89	59	131	Y	121	79	171	У
26	1A	32		58	3A	72	1	90	5A	132	Z	122	7A	172	Z
27	1B	33		59	3B	73	:	91	5B	133	1	123	7B	173	{
28	10	34		60	3C	74	<	92	5C	134	1	124	7C	174	1
29	1D	35		61	3D	75		93	5D	135	1	125	7D	175	}
30	1E	36		62	3E	76	>	94	5E	136	^	126	7E	176	~
31	1F	37		63	3F	77	?	95	5F	137	11231	127	7F	177	

ຈົ່ງຫາຄ່າ ASCII ຂອງຄຳສັບ DIGITAL

