Final exam

Introduction to Machine Learning Fall 2021 Instructor: Anna Choromanska

Problem 1 (100 points)

Piglet is looking for Winnie the Pooh in the forest but he can't find his friend. Piglet decided to perform the junction-tree algorithm to obtain cyber representation of his friend and post his digital photo online. Help him out by designing a junction-tree from the graph below which Piglet should use for Winnie the Pooh. Show ALL steps of creating the junction tree (including the table for the Kruskal algorithm).

Problem 2 (60 points)

Consider the Bayesian network below with binary variables x_1, x_2, \ldots, x_7 .

Write out the factorization of the probability distribution $p(x_1, ..., x_7)$ implied by this directed graph. (10 points) Then, using the Bayes ball algorithm, indicate for each statement below if it is True or False and justify your answers (50 points)

- (a) x_2 and x_6 are independent.
- (b) x_2 and x_6 are conditionally independent given x_1, x_3, x_5 .
- (c) x_1 and x_7 are conditionally independent given x_4 .
- (d) x_5 and x_2 are conditionally independent given x_1 and x_3 .
- (e) x_5 and x_1 are conditionally independent given x_3, x_2 , and x_4 .
- (f) x_4 and x_3 are conditionally independent given x_6 .
- (g) x_2 and x_7 are conditionally independent given x_5 and x_6 .
- (h) x_3 and x_5 are conditionally independent given x_6 and x_7 .
- (i) x_5 and x_2 are independent.
- (j) x_2 and x_4 are conditionally independent given x_1 .

Problem 3 (100 points)

You are given the parameters of a 2-state HMM. You observed the input sequence AB (from a 2-symbol alphabet A or B). In other words, you observe two symbols from your finite state machine, A and then B. Using the junction tree algorithm, evaluate the likelihood of this data p(y) given your HMM and its parameters. Also compute (for decoding) the individual marginals of the states after the evidence from this sequence is observed: $p(q_0|y)$ and $p(q_1|y)$. The parameters for the HMM are provided below. They are the initial state prior $p(q_0)$, the state transition matrix given by $p(q_t|q_{t-1})$, and the emission matrix $p(y_t|q_t)$, respectively.

$$\pi = p(q_0) = \begin{bmatrix} 1 & 2 \\ 1/3 & 2/3 \end{bmatrix}$$

$$a^{T} = p(q_t | q_{t-1}) = \begin{bmatrix} 1 & 2 \\ 1/8 & 1/2 \\ 2 & 7/8 & 1/2 \end{bmatrix} \qquad \eta^{T} = p(y_t | q_t) = \begin{bmatrix} 1/4 & 3/4 \\ 3/4 & 1/4 \end{bmatrix}$$

Problem 4 (40 points)

Show the first two iterations (after the initialization) of the k-means clustering algorithm (show centers and assignments of data points to clusters) for the following 2D data set: (-3, -1), (-1, -3), (-2, -6), (-5, -7), (3, 1), (2, 3), (3, 6), (8, 1). Assume the number of centers is equal to 2 and the centers are initialized to (-4, -5) and (5, 4).

Problem 5 (50 points)

Prove (using Jensen's inequality) that for non-negative real numbers x_1, x_2, \ldots, x_n the following holds:

$$\frac{x_1 + x_2 + \dots + x_n}{n} \ge \sqrt[n]{x_1 \cdot x_2 \cdot \dots \cdot x_n}.$$

Problem 6 (50 points)

Consider the fragment of the convolutional architecture given below:

- Input image: $1 \times x \times y$
- $\underbrace{1 \to 8}_{\text{number of input and output channels}} \; , \; \underbrace{2 \times 2}_{\text{filter size}} \; , \underbrace{3 \times 2}_{\text{stride}}$ • Convolutional layer:
- ReLU
- $\bullet \ \, \text{MaxPooling:} \ \, \underbrace{3\times3}_{\text{region size}} \, , \underbrace{2\times2}_{\text{stride}}$
- Convolutional layer: $8 \to 10, 2 \times 2, 2 \times 2$
- \bullet ReLU
- MaxPooling: $3 \times 3, 2 \times 2$
- Flattening (3D to 1D):

number of feature maps
$$\times$$
 size of the feature map (12 \times 9) \rightarrow 1080

What is the size of the input (in other words what is x and y)?