Nome, MATRICOLA

Domanda 1

Considerando il processore MIPS64 e l'architettura descritta in seguito:

- Integer ALU: 1 clock cycle

- FP arithmetic unit: pipelined 3 stages
- Integer ALU: 1 clock cycle

 FP arithmetic unit: pipelined 3 stages

 FP divider unit: not pipelined unit that requires 7 clock cycles
- FP multiplier unit: pipelined 7 stages branch delay slot: 1 clock cycle, and the branch delay slot disabled
- forwarding enabled
- it is possible to complete instruction EXE stage in an out-of-order fashion.

Usando il frammento di codice riportato, si calcoli il tempo di esecuzione dell'intero programma in colpi di clock e si completi la seguente tabella.

```
for (i = 0; i < 100; i++) {
   v4[i] = v1[i]/v2[i];
   v5[i] = (v3[i]/v1[i]) + v4[i];
```


Nome.	<i>MATRICOLA</i>	
I VOIIIC,	MILLICOLLI	***************************************

Domanda 2

Considerando il programma precedente, e in particolare la coppia di istruzioni: div.d f4,f1,f2 ... div.d f6,f3,f1

che tipo di hazard potrebbe crearsi e come viene risolto? motivare la risposta.

Il tipo di hazard che potrebbe crearsi è di tipo strutturale visto che l'unità di divisione non è pipelined, ovvero non può eseguire più istruzioni in parallelo. Una possibile soluzione al problema è quella di adottare la tecnica dell'instruction rescheduling in modo da anticipare alcune istruzioni che non dipendono dall'unità di divisione per evitare o diminuire gli stalli dovuti a questo hazard.

Nome, MATRICOLA

Domanda 2

Si consideri una BHT di 1K elementi con contatori di saturazione a 2 bit. Usando il frammento di codice proposto, si calcoli lo stato finale della BHT al completamento dell'esecuzione del programma proposto. Si calcoli inoltre, la *misprediction rate* complessiva. Lo stato iniziale della BPU è indicato nella tabella.

Assunzioni generali:

- R10 è il registro di controllo del loop ed è inizializzato a 100
- R3 e R7 sono registro di riferimento con valore 5
- R13 e R17 sono i registri in ingresso
 - o R13 riceve un valore sempre maggiore a 5
 - o R17 riceve un valore una volta minore a 5, e la volta successiva maggiore a 5: {<5, >5, <5, <5, >5, <5, >5...}
- Gli altri registri sono inizializzati a 0 fuori dal ciclo.

Address	Inst	ruction	BHT (2-bit)	Prediction	misP. counter
0x0000	L0:		2	Т	
	;	Reading input values	2	Т	
0x0010		SLT R1, R3, R13	2	Т	
0x0014		BEQZ R1, L1 Sempre not taken	2-1-0	T-NTNT	1
0x0018		DADDI R11, R0, 10	2	Т	
0x001C	L1:	SLT R4, R7, R17 (0 pari, 1 dispari)	2	Т	
0x0020		BEQZ R4, L2 Taken nelle pari	2-3-2	Т-Т-Т-ТТ	0-1-1-2-249-50
0x0024		DADD R12, R12, R4	2	Т	
0x0028	L2:	SLT R5, R4, R1 (1)	2	Т	
0x002C		BEQZ R5, L3 Taken nelle dispari	2-1-21	T-NT-T-NTT- NT	1-2-3100
0x0030		DADD R14, R0, R5	2	Т	
0x0038	L3:	SLT R6, R12, R11	2	Т	
0x003C		BEQZ R6, L4 Sempre not taken	2-1-0	T-NTNT	1
0x0040		DADDI R15, R0, 10	2	Т	
0x0044	L4:		2	Т	
0x0048	_	DADDI R10, R10, #-1	2	Т	
0x004C		BNEZ R10, L0 taken tranne ultima	2-3-32	T-TNT	1
0x0050					

Note:

SLT R1,R2,R3 ; IF (R2 < R3) R1 \leftarrow 1 ; ELSE R1 \leftarrow 0

Nome, MATRICOLA

Misprediction rate = (1+50+100+1+1) / 500 = 30.6%

Nome	MATRICOLA	
INDITIC,	MILLICOLLI	

Domanda 4

Considerando il programma precedente, che vantaggio/svantaggio potrebbe avere se la BHT includesse contatori di saturazione a 3-bit. Motivare la risposta.

L'utilizzo di un contatore a saturazione a 3-bit non avrebbe portato alcun vantaggio nella situazione in esame, infatti:

- BEQZ R1, L1 e BEQZ R6, L4 sono sempre not taken, quindi il contatore scenderà a 0 (anche nel caso a 3 bit)
- BNEZ R10, L0 è sempre taken tranne che nell'ultima iterazione, quindi il valore si saturerà a 3 (nel caso di 3 bit arriverebbe ad 8 e nell'ultima scenderebbe a 7)
- BEQZ R4, L2 è taken solo nelle iterazioni pari, quindi il valore del contatore oscilla tra 3 e 2 (con 3 bit non ottengo vantaggi)
- BEQZ R5, L3 è taken solo nelle iterazioni dispari, quindi il valore del contatore oscilla tra 2 e 1 (con 3 bit non ottengo vantaggi)