Модели обнаружения зависимостей во временных рядах в задачах построения прогностических моделей

Карина Равилевна Усманова

Московский физико-технический институт Физтех-школа прикладной математики и информатики Факультет управления и прикладной математики Кафедра «Интеллектуальные системы»

Научный руководитель: д.ф.-м.н. В.В.Стрижов

Выпускная квалификационная работа бакалавра

Москва 2018

Цель исследования

Цель

Установить связи между заданными временными рядами с помощью метода сходящегося перекрестного отображения (CCM).

Мотивация

Повысить качество прогноза временного ряда путем использования истории временных рядов, коррелирующих с ним.

Литература

- Sugihara G., May R., Ye H., Hsieh C., Deyle E., Fogarty M., and Munch S // Detecting causality in complex ecosystems. 2012.
- Sugihara G., May R. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series // Nature. 1990.
- Golyandina N. and Stepanov D. SSA-based approaches to analysis and forecast of multidimensional time series // 5th St. Petersburg workshop on simulation. 2005.

Траекторное пространство

Задан временной ряд $\mathbf{x} = [x_1, \dots, x_N]$. По нему строится траекторная матрица $\mathbf{H}_{\mathbf{x}}$:

$$\mathbf{H}_{\mathbf{x}} = \begin{pmatrix} x_1 & \dots & x_{L-1} & x_L \\ x_2 & \dots & x_L & x_{L+1} \\ \vdots & \vdots & \vdots & \vdots \\ x_{N-L+1} & \dots & x_{N-1} & x_N \end{pmatrix} = \begin{pmatrix} \mathbf{x}_L \\ \mathbf{x}_{L+1} \\ \vdots \\ \mathbf{x}_N \end{pmatrix}$$

где L — ширина окна.

$$\mathbf{x}_{i} = (x_{i-L+1}, \dots, x_{i-1}, x_{i}) \in \mathbf{M}_{\mathbf{x}}, \quad i = L, \dots, N,$$

где $\mathbf{M}_{\mathbf{x}}$ – траекторное пространство ряда \mathbf{x} .

ССМ, постановка задачи

Задача

Для заданных временных рядов $\mathbf{x} = [x_1, \dots, x_N]$ и $\mathbf{y} = [y_1, \dots, y_N]$ установить наличие или отсутствие связи между ними.

Решение

Считаем, что ряд ${f y}$ зависит от ряда ${f x}$, если существует липшицево отображение $\varphi: {f M_x} o {f M_x}$

$$\rho_{\mathsf{M}_{\mathsf{y}}}(\varphi(\mathsf{x}_i, \varphi(\mathsf{x}_j)) \leq L \cdot \rho_{\mathsf{M}_{\mathsf{x}}}(\mathsf{x}_i, \mathsf{x}_j), \quad \forall \mathsf{x}_i, \mathsf{x}_j \in \mathsf{M}_{\mathsf{x}}$$

ССМ, постановка задачи

- ullet Выбираем ${f x}_{t^*}=(x_{t^*-L+1},\ldots,x_{t^*-1},x_{t^*}).$
- ullet Пусть ${f x}_{t_1},\ldots,{f x}_{t_k}-k$ ближайших соседей вектора ${f x}_{t^*}$ в пространстве ${f M}_{f x}$. Тогда ${f y}_{t^*},{f y}_{t_1},\ldots,{f y}_{t_k}$ строки матрицы ${f H}_{f y}$, соответствующие индексам t_1,\ldots,t_k .

$$S(\mathbf{x}, \mathbf{y}) = \frac{\mathsf{dist}(\mathbf{x})}{\mathsf{dist}(\mathbf{y})}, \quad \mathsf{dist}(\mathbf{x}) = \frac{1}{k} \sum_{i=1}^{k} ||\mathbf{x}_{t^*} - \mathbf{x}_{t_i}||_2$$

Если $S(\mathbf{x}, \mathbf{y})$ меньше некоторого порога s, то ряд \mathbf{y} зависит от ряда \mathbf{x} .

ССМ на подпространствах

Построение проекции

• Сингулярное разложение траекторной матрицы:

$$H_x = U_x \Lambda_x V_x$$

- ullet Выберем $\mathcal{T}_{\mathbf{x}}$ некоторый набор индексов компонент ряда \mathbf{x}
- ullet $\mathbf{M}_{\mathcal{T}_{\mathbf{x}}} \subset \mathbf{M}_{\mathbf{x}}$ траекторное подпространство
- Проекция ряда \mathbf{x} в подпространство $\mathbf{M}_{\mathcal{T}_{\mathbf{v}}}$, описывается траекторной матрицей

$$P_{\mathcal{T}_x} = U_x \tilde{\Lambda}_x V_x$$

$$S(\mathbf{x}, \mathbf{y}, \mathcal{T}_{\mathbf{x}}, \mathcal{T}_{\mathbf{y}}) = \frac{\mathsf{dist}(\mathbf{x}, \mathcal{T}_{\mathbf{x}})}{\mathsf{dist}(\mathbf{y}, \mathcal{T}_{\mathbf{y}})}, \quad \mathsf{dist}(\mathbf{x}, \mathcal{T}_{\mathbf{x}}) = \frac{1}{k} \sum_{i=1}^{k} ||\mathbf{x}_{t^*} - \mathbf{x}_{t_i}||_2$$

ССМ на подпространствах

Задача поиска подпространств $\mathbf{M}_{\mathcal{T}_{\mathbf{x}}}$ и $\mathbf{M}_{\mathcal{T}_{\mathbf{y}}}$ эквивалентна поиску номеров главных компонент $(\mathcal{T}_{\mathbf{x}},\mathcal{T}_{\mathbf{y}})$

$$\begin{split} (\mathcal{T}_{\mathbf{x}}, \mathcal{T}_{\mathbf{y}}) &= \text{arg} \max_{\mathcal{T}_{\mathbf{x}}, \mathcal{T}_{\mathbf{x}}} \mathcal{S}(\mathbf{x}, \mathbf{y}, \mathcal{T}_{\mathbf{x}}, \mathcal{T}_{\mathbf{y}}), \\ &|\mathcal{T}_{\mathbf{x}}| \to \text{min} \\ &|\mathcal{T}_{\mathbf{y}}| \to \text{min} \end{split}$$

8 / 17

$$\mathbf{x} = \sin t + 2\sin\frac{t}{2} + \sigma_{x}^{2}\varepsilon, \quad \sigma_{x}^{2} = 0.3, \quad \varepsilon \in \mathcal{N}(\mathbf{0}, \mathbf{I})$$
$$\mathbf{y} = \sin(2t + 5) + \sigma_{y}^{2}\varepsilon, \quad \sigma_{y}^{2} = 0.25, \quad \varepsilon \in \mathcal{N}(\mathbf{0}, \mathbf{I})$$

Рис.: Ближайшие соседи точки \mathbf{x}_{15}

Рис.: Ближайшие соседи точки ${f y}_{15}$

Ближайшие соседи на фазовых диаграммах

Рис.: Определение ближайших соседей по ряду х

Рис.: Определение ближайших соседей по ряду у

Эксперимент проводился на данных потребления электроэнергии и температуры в течение года.

Рис.: Нормированные ряды потребления электроэнергии, температуры и длины светового дня

Рис.: Кросс-корреляционная диаграмма для ряда температуры и длины светового дня

Рис.: Продифференцированные и нормированные ряды потребления электроэнергии и температуры

14 / 17

Ближайшие соседи на фазовых траекториях

Рис.: Определение ближайших соседей по ряду х

Рис.: Определение ближайших соседей по ряду у

Выбор подпространств

Рис.: Значения функционала $S(\mathbf{x},\mathbf{y},\mathcal{T}_{\mathbf{x}},\mathcal{T}_{\mathbf{y}})$ для различных наборов компонент $(\mathcal{T}_{\mathbf{x}},\mathcal{T}_{\mathbf{y}})$

Результаты

- С помощью метода ССМ исследованы связи между рядами потребления электроэнергии и температуры.
- Исследована связь между проекциями этих рядов в различные подпространства.

К. Р. Усманова, С. П. Кудияров, Р. В. Мартышкин, А. А. Замковой, В. В. Стрижов // Анализ зависимостей между показателями при прогнозировании объема грузоперевозок // Системы и средства информатики, 2018.