Project #1

Exploring Weather Trends

Analyzing local and global temperature data and comparation the temperature trends in the city of Munich to overall global temperature trends.

1. Extracting the data from the data base using SQL

1.1 Extracting the city data

```
SELECT * FROM city_data
```

1.2 Extracting the city list

```
SELECT * FROM city_list
```

1.3 Extracting the city data

```
SELECT * FROM global_data
```

As result of 1.1, 1.2 and 1.3 three CVS were obtained: city_data.csv, city_list.csv, global_data.csv

2. Exploring the data

2.1 First look at data

```
In [23]: #import the libraries
  import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
```

```
In [2]: #reading the csv data
          city_data = pd.read_csv('city_data.csv', index_col = 'year')
          city_list = pd.read_csv('city_list.csv')
          global_data = pd.read_csv('global_data.csv', index_col = 'year')
In [3]: city_data.head()
Out[3]:
                   city
                           country avg_temp
           year
          1849
                Abidjan
                       Côte D'Ivoire
                                       25.58
                Abidjan
                       Côte D'Ivoire
          1850
                                       25.52
          1851
                Abidjan
                       Côte D'Ivoire
                                       25.67
          1852
                Abidjan
                       Côte D'Ivoire
                                        NaN
          1853 Abidjan Côte D'Ivoire
                                        NaN
In [4]:
         city_list.head()
Out[4]:
                  city
                                 country
          0
                Abidjan
                              Côte D'Ivoire
             Abu Dhabi United Arab Emirates
          2
                 Abuja
                                  Nigeria
          3
                 Accra
                                   Ghana
                Adana
                                  Turkey
In [5]:
          global_data.head()
Out[5]:
                avg_temp
           year
          1750
                     8.72
                     7.98
          1751
          1752
                     5.78
          1753
                     8.39
          1754
                     8.47
```

2.2 Searching for the closest city

Let's take a look to the cities in Germany and choose the closest city to Ingolstadt

```
In [6]: city_data['city'][city_data['country']=='Germany'].unique()
Out[6]: array(['Berlin', 'Hamburg', 'Munich'], dtype=object)
```

2.3 Exploring the data of Munich

```
munich_data = city_data[city_data['city'] == 'Munich']
In [7]:
         munich_data.head()
Out[7]:
                  city country avg_temp
          year
          1743 Munich Germany
                                   1.32
          1744 Munich Germany
                                   6.09
          1745 Munich Germany
                                   -2.15
          1746 Munich Germany
                                   NaN
          1747 Munich Germany
                                   NaN
```

Let's explore and deal with missing values

```
In [8]: munich_data.fillna(method='ffill')
Out[8]:
```

city country avg_temp

year			
1743	Munich	Germany	1.32
1744	Munich	Germany	6.09
1745	Munich	Germany	-2.15
1746	Munich	Germany	-2.15
1747	Munich	Germany	-2.15
2009	Munich	Germany	5.89
2010	Munich	Germany	4.85
2011	Munich	Germany	6.56
2012	Munich	Germany	5.88
2013	Munich	Germany	6.00

271 rows x 3 columns

2.4 Buildig the moving average

```
In [16]: munich_data['avg_temp_mv'] = munich_data['avg_temp'].rolling(7).mean()
    global_data['avg_temp_mv'] = global_data['avg_temp'].rolling(7).mean()
    temp_dif = global_data['avg_temp_mv'] - munich_data['avg_temp_mv']

C:\Users\F4HOBUP\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: Se
```

```
ttingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-d
ocs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
    """Entry point for launching an IPython kernel.
```

2.5 Plotting the data

```
In [22]: plt.figure(figsize=(15,10))
    munich_data['avg_temp_mv'].plot(lw=4, label = 'Munich temperature')
    global_data['avg_temp_mv'].plot(lw=4, label = 'Global temperature')
    temp_dif.plot(lw=4, ls='--', label = 'Temperature difference')
    plt.title('Comparison of global temperature and temperature in Munich',
    fontsize = 20)
    plt.xlabel('Year', fontsize = 20)
    plt.ylabel('Temperature, °C', fontsize = 20)
    plt.legend(loc='best')
    plt.grid()
    plt.show()
```


2.6 Conclusions

- 1. Is your city hotter or cooler on average compared to the global average? --> The temperature in the city of Munich was over the years cooler as the average global temperature
- 2. Has the difference been consistent over time? --> the difference of the temperatures was pretty consistent over time and was between 3 and 4 degrees
- 3. How do the changes in your city's temperatures over time compare to the changes in the global average? --> on the picture you can see that the temperatures correlate very well with

- each other. Increases and decreases in global temperature can also be felt in Munich
- 4. What does the overall trend look like? --> until 1900 in the period before industrialization, the average temperature was around 8 degrees. After industrialization, the temperature rose all over the world and in Munich as well
- 5. Is the world getting hotter or cooler? --> after 1900 ist getting definitely hotter
- 6. Has the trend been consistent over the last few hundred years? --> the trend is consisten raising over the past few hundred years