Modern Fizika Laboratórium Fizika Bsc. **Zeeman-effektus**

 $\it K\'esz\'itette:$

Albert Andrea

2. RÖVID ELMÉLETI LEÍRÁS Albert Andrea

1. A mérés rövid leírása

Mágneses térben az egyes spektrumvonalak több vonalra hasadnak fel az atomi mágneses momentumok és a külső mágneses tér kölcsönhatása miatt. Ez a jelenség a Zeeman-effektus. Mivel a mérést nem lehetett kivitelezni készen megkaptam egy adatsort amit eredetlieg a Fabry-Perot interferométert használva kellett volna megkapjak. A szimulációval kapott képek a Hg kék (546.07 nm) vonalának spektrumára vannak elvégezve és ezeket fogom vizsgálni.

2. Rövid elméleti leírás

Külső, kis mágneses tér (B) hatására az elektrom energiaszintjei a következő összefüggés alapján hasadnak fel:

$$E(B) = E_0 + \mu_B B g_j m_j \tag{1}$$

Ahol E_0 a külső zérus mágneses térben érvényes erengia, μ_B a Bohr-magneton értéke, m_j a mágneses kvantumszám, továbbá g_j a Landé-faktor, mely a következőképpen értelmezhető:

$$g_j = 1 + \frac{j(j+1) + s(s+1) - l(l-1)}{2j(j+1)}$$
(2)

j az elektron összimpulzusmomentumát jellemző kvantumszám, s az elektron spinkvantumszáma, l pedig a pálya-impulzusmomentumhoz tartozó kvantumszám.

A felhasaáson kívül szükségünk van a kiválasztási szabályokra is, melyek a következőek:

Δs	0
Δl	$\pm 1,0$
Δj	± 1.0 (DE: J=0 \rightarrow J=0 tiltott)
Δm_j	± 1.0 (DE: $m_j = 0 \rightarrow m_j = 0$ tiltott ha $\Delta j = 0$)

1. táblázat. A megengedett optikai átmenetekre vonatkozó kiválasztási szabályok

A $\Delta m_j = \pm 1$ átmeneteket σ átmeneteknek nevezzük, melyek a mágneses térre merőlegesen polarizáltak, míg a $\Delta m_j = 0$ átmeneteket π átmeneteknek hívjuk és ezek a mágneses térrel párhuzamosan polarizáltak.

Az általunk vizsgát Hg két vegyértékelektronnal rendelkezik, de mi azzal a közelítéssel oldjuk meg a problémát, mintha mindig csak az egyiket gerjesztenénk.

3. ZEEMAN-SPEKTRUM Albert Andrea

3. Zeeman-spektrum

Először a Hg kék vonalának Zeeman-spektrumát kellett meghatározzam. Ez a vonal a ${}^3S_1 \to {}^3P_1$ átmenetnek felel meg. A két energiaszinthez tartozó kvantumszámokat és giromágneses faktorokat az alábbi táblázatba foglaltam:

	${}^{3}S_{1}$	${}^{3}P_{1}$
1	0	1
S	1	1
j	1	1
m_j	-1,0,1	-1,0,1
g_{j}	2	$\frac{3}{2}$

2. táblázat

A mágneses kvantumszám lehetséges értékeiből leolvasható, hogy a szintek mindéket esetben három alnívóra hasadnak. Ez összesen $3 \cdot 3$ átmenetet jelentene, de a Δm_j kiválasztási szabály miatt ebből 9-3, azaz 6 valósul meg.

a $\Delta m_j = 0$ átalakulás során keletkező dipolsugárzás a π komponens a mágneses térrel páthuzamosan, míg a mágneses kvantumszám megváltozásával együttjáró σ komponens a mágneses térre merőlegesen polarizált. Ezáltal két π és három σ átmenet valósul meg.

A felhasadt energiaszintek egyenlő távolságra helyezkednek el egymástól. Az 3S_1 -hez tartozó szintek esetében ennek értéke az (1)-es képletet felhasználva:

$$\Delta E_1 = 18.545B \cdot 10^{-24} J$$

A 3P_1 -nél pedig:

$$\Delta E_2 = 13.911B \cdot 10^{-24} J$$

A relatív intenzitásokat a követlező képletekkel határozhatom meg:

$$m_j \to m_j \pm 1:$$
 $I = b(j \pm m_j + 1)(j \mp m_j)$ (3)

$$m_j \to m_j$$
:
$$I = 4bm_j^2 \tag{4}$$

A következő táblázat az egyes szintekhez tartozó felhasadási energiát (E: $\mu_B B$ egységekben) és relatív intenzitásokat (I) tartalmazza:

	E	I
$-1 \rightarrow -1$	$E_0 - \Delta E_1 + \Delta E_2$	4b
$-1 \rightarrow 0$	$E_0 - \Delta E_1$	2b
$0 \rightarrow -1$	$E_0 + \Delta E_2$	2b
$0 \rightarrow 1$	$E_0 - \Delta E_2$	2b
$1 \to 0$	$E_0 + \Delta E_1$	2b
$1 \rightarrow 1$	$E_0 - \Delta E_2 - \Delta E_1$	4b

3. táblázat

Ezalapján a spektrum a következőképpen néz ki:

4. Kiértékelés

Mivel a mérést nem tudtam elvégezni, készen megkaptam a kiiértékelendő adatokat (kepeket). Ezek különböző áramerősség mellett szemléltetik a Fábry-Perot interferométeren keletkező gyűrűrendszer Zeeman-felhasadását, párhuzamos polarizátor állás (π) esetén. Mindegyik beállításhoz 10 zajjal terhel kép készült. Hogy csökkentsem a zajt átlagoltam a különböző áramerősséghez tartozó képeket (GIMP: G'MIC-el) és a követekző képeket kaptam:

1. ábra. Átlagolt képek

4.1. Kalibráció

A kalibrációt azzal a képpel végeztem ahol a mágneses tér zérus volt (nulla áram).

A kapott képek 600x600 pixelesek. A gyűrűkre nézve a középpont pontosan a (300,300) pixelnél van.

Amit meg akarunk itt határozni az a lencserendszer nagyítása (N), amit az alábbi módon kaphatunk meg:

$$D_{m-1}^2 - D_m^2 = N \frac{\lambda}{2d}$$

azaz

$$N = (D_m^2 - D_{m-1}^2) \frac{2d}{\lambda}$$

ahol D_m az m-ik intenzitásmaximumhoz tartozó gyűrű ármérője (m-et bentrőlkifelé számozva), $\lambda = 435.84 \ nm$ a vizsgált hullámhossz továbbá a Fabry-Perot lemez távolsága $d = 8 \ mm$.

Az intenztitásmaximumok helyének megkeresésére a következő python függvényt írtam:

```
def get_peaks(image):
    peaks = argrelextrema(image[300], np.greater, order=30)[0]
    ok = image[300][peaks] > 200 #van amikor a sotet reszen talan
    maximumokat kozepen
    peaks = peaks[ok]

return peaks # a csucsok helyei az adott sorban (kozepso sor)
```

1. Listing. Csúcsok megkeresése

A gyűrűk elhelyezkedése (pixelben):

m	x_{bal}	x_{jobb}	D	$\Delta(D_{m,m-1}^2)$
1	163	437	274	-
2	88	512	424	104700
3	34	566	532	103248

4. táblázat

Mivel a nagyítás konstans a ΔD^2 értékeket átlagolnom kellett: $\overline{\Delta D^2}=103974~pixel.$ A nagyítás így már meghatározható:

$$N = \overline{\Delta D^2} \frac{2d}{\lambda} = 3.817 \cdot 10^9$$

4.2. π átmenetek vizsgálata

A képek feldolgozásánál itt elegendő volt csupán a felhasadt gyűrűk átmérőit leolvasnom, mivel az alapgyűrűk helyzete megegyezett a kalibrációs mérés során számítottakkal. Ezenkívül az azonos rendű gyűrűk sugarai és hullámhosszkülönbség között fennáll az alábbi összefüggés:

$$\Delta \lambda = \frac{\lambda}{N} (D_m^2 - D_{m'}^2)$$

Ennek ismeretében a Zeeman-energiák már meghatározhatóak a következőképpen:

$$E_z = \frac{hc}{\lambda} - \frac{hc}{\lambda + \Delta\lambda}$$

A mágneses térerősség a mérésleírás alapján:

$$B = 0.89I$$

A mért és a számított értékeket az alábbi táblázatok tartalmazzák:

m	$x_{bal/kulso}$	$x_{bal/belso}$	$x_{jobb/belso}$	$x_{jobb/kulso}$	D_{belso}	D_{kulso}	$\Delta \lambda$
l	158	169	430	444	261	286	$1.561~\mathrm{pm}$
2	84	93	506	516	413	432	$1.833 \; \mathrm{pm}$
3	31	38	562	569	524	538	$1.698~\mathrm{pm}$

5. táblázat. I = 0.5 A

m	$x_{bal/kulso}$	$x_{bal/belso}$	$x_{jobb/belso}$	$x_{jobb/kulso}$	D_{belso}	D_{kulso}	$\Delta \lambda$
1	156	172	427	444	255	288	2.046 pm
2	84	96	505	516	409	432	2.209 pm
3	31	39	562	570	523	539	1.940 pm

6. táblázat. I = 0.55 A

m	$x_{bal/kulso}$	$x_{bal/belso}$	$x_{jobb/belso}$	$x_{jobb/kulso}$	D_{belso}	D_{kulso}	$\Delta \lambda$
l	154	174	426	445	252	291	2.418 pm
2	82	93	504	518	411	436	2.418 pm
3	29	39	562	569	523	540	$2.063~\mathrm{pm}$

7. táblázat. I = $0.6~\mathrm{A}$

m	$x_{bal/kulso}$	$x_{bal/belso}$	$x_{jobb/belso}$	$x_{jobb/kulso}$	D_{belso}	D_{kulso}	$\Delta \lambda$
l	154	174	426	446	252	292	2.485 pm
2	82	96	503	517	407	435	2.692 pm
3	29	40	562	570	522	541	2.306 pm

8. táblázat. I = 0.65 A

m	$x_{bal/kulso}$	$x_{bal/belso}$	$x_{jobb/belso}$	$x_{jobb/kulso}$	D_{belso}	D_{kulso}	$\Delta \lambda$
1	153	175	425	447	250	294	2.733 pm
2	83	96	503	517	407	434	2.593 pm
3	29	40	559	571	519	542	2.786 pm

9. táblázat. I = 0.7 A

m	$x_{bal/kulso}$	$x_{bal/belso}$	$x_{jobb/belso}$	$x_{jobb/kulso}$	D_{belso}	D_{kulso}	$\Delta \lambda$
1	153	176	425	446	249	293	2.723 pm
2	82	97	503	518	406	436	2.884 pm
3	29	41	560	572	519	543	2.910 pm

10. táblázat. I = 0.75 A

Az áramerősség függvényében az átlagos hullámhosszkülöngség és a Zeeman energia:

I [A]	B [T]	$\overline{\lambda}$ [pm]	$E_z[J]$
0.50	0.4450	1.697	$1.776 \cdot 10^{-24}$
0.55	0.4895	2.065	$2.161 \cdot 10^{-24}$
0.60	0.5340	2.230	$2.334 \cdot 10^{-24}$
0.65	0.5785	2.494	$2.610 \cdot 10^{-24}$
0.70	0.6230	2.704	$2.830 \cdot 10^{-24}$
0.75	0.6675	2.839	$2.971 \cdot 10^{-24}$

11. táblázat

A Zeemam-energia a térerősség függvényében:

Az illesztett egyenes paraméterei:

$$m = 5.302 \pm 0.365 \ \frac{J \cdot 10^{-24}}{T}$$

$$b = -0.502 \pm 0.205 \ T$$

A meredekségből pedig a Bohr-magneton értékét is meglehet becsülni ((1)-es képlet):

$$\mu_B = 2m = (10.604 \pm 0.69) \cdot 10^{-24} \frac{J}{T}$$

Összehasonlításképpen a szakirodalomban elfogadott érték: $\mu_B = 9.27 \cdot 10^{-24} \frac{J}{T}$