Submitted to *Econometrica*

1	A SAMPLE ARTICLE TITLE	1
2		2
3	FIRST AUTHOR	3
4	First Department of the First Author, University and Second Department of the First Author, University	4
5	Chaona Anthrop	5
6	SECOND AUTHOR Department of the Second and Third Authors, University	6
7	Department of the Second and Third Authors, University	7
8	THIRD AUTHOR	8
9	Department of the Second and Third Authors, University	9
10	Department of the Second and Third Additions, University	10
11	The abstract should summarize the contents of the paper. It should be clear,	11
12	descriptive, self-explanatory and not longer than 150 words. It should also be	12
13	suitable for publication in abstracting services. Please avoid using math formulas	13
14	as much as possible. We recommend 3-8 keywords	14
15		
	KEYWORDS: First keyword, second keyword, third keyword.	15
16	1. INTRODUCTION	16
17		17
18	This template helps you to create a properly formatted LATEX $2_{arepsilon}$ manuscript. Prepare	18
19	your paper in the same style as used in this sample .pdf file. Try to avoid excessive use	19
20	of italics and bold face; underlining is generally banned (except for exceptional cases).	20
21	Please do not use any LATeX 2ε or TeX commands that affect the layout or formatting of	21
22	your document (i.e., commands like \textheight , \textwidth , etc.). Note that the	22
23	Introduction should be Section 1 it should not imediately follow the abstract without a	23
24	heading.	24
25		25
26	First Author: first@somewhere.com	26
27	Second Author: second@somewhere.com	27
28	Third Author: third@somewhere.com We thank four anonymous referees. The Editor should not be thanked anonymously or by name in this footnote,	28
29	or elsewhere in the paper. The first author gratefully acknowledges financial support from the National Science	29
2.0	Foundation through Grant XXX-0000000.	2.0

1	2. SECTION HEADINGS	1
2	Here are some subsections:	2
3		3
4	2.1. A Subsection	4
5	Regular text.	5
6		6
7	2.1.1. A Subsubsection	7
8	Regular text.	8
9		9
10	Paragraph heading If you want to add mini-headings for paragraphs without numbers	10
11	<pre>please use \paragraph*{}.</pre>	11
12	3. TEXT	12
13	3.1. <i>Lists</i>	13
14		14
15	The following is an example of an <i>itemized</i> list, two levels deep.	15
16	• This is the first item of an itemized list. Each item in the list is marked with a "tick."	16
17	The document style determines what kind of tick mark is used. This is the second item of the list. It contains another list neeted inside of it.	17
18	• This is the second item of the list. It contains another list nested inside of it. This is the first item of an itemized list that is nested within the itemized list.	18
19	- This is the ground item of the inner list. IAT-Y allows you to not lists deeper then	19
20	- This is the second item of the inner list. LATEX allows you to nest lists deeper than	20
21	you really should. This is the rest of the second item of the outer list.	21
22	 This is the fest of the second item of the outer list. This is the third item of the list. 	22
23	The following is an example of an <i>enumerated</i> list, two levels deep.	23
24	(i) This is the first item of an enumerated list. Each item in the list is marked with a	24
25	"tick." The document style determines what kind of tick mark is used.	25
26	(ii) This is the second item of the list. It contains another list nested inside of it.	26
27	(a) This is the first item of an enumerated list that is nested within.	27
28	(a) This is the first item of an enumerated list that is nested within. (b) This is the second item of the inner list. LATEX allows you to nest lists deeper	28
29	-	29
30	than you really should.	30

1	This is the rest of the second item of the outer list.	1
2	(iii) This is the third item of the list.	2
3	Do not use (1), (2), etc. for items in order to avoid confusion with numbered equations.	3
4		4
5	3.2. Punctuation	5
6	Avoid unnecessary hyphenation; many hyphenated words can be treated as one or two	6
7	words. Dashes come in three sizes: a hyphen, an intra-word dash like " U -statistics" or "the	7
8	time-homogeneous model"; a medium dash (also called an "en-dash") for number ranges or	8
9	between two equal entities like "1-2" or "Cauchy-Schwarz inequality"; and a punctuation	9
10	dash (also called an "em-dash") in place of a comma, semicolon, colon or parentheses—	10
11	like this.	11
12	Generating an ellipsis with the right spacing around the periods requires using	12
13	\ldots.	13
14		14
15	3.3. Citation	15
16	Only include in the reference list entries for which there are text citations, and make sure	16
17	all citations are included in the reference list. Simple author and year cite: Aumann (1987).	17
18	Multiple bibliography items cite: Peck (1994), Enelow and Hinich (1990), Wittman (1990),	18
19	Cahuc, Postel-Vinay and Robin (2006). Author only cite: Wittman. Year only cite: (1990).	19
20	Citing bibliography with object Aumann (1987, Theorem 1). Citing within brackets is done	20
21	with the same commands (e.g., Peck (1994), Enelow and Hinich (1990), Wittman (1990)).	21
22	4. FONTS	22
23		23
24	Please use text fonts in text mode, e.g.:	24
25	Roman	25
26	<pre>Italic </pre>	26
27	<pre>Bold </pre>	27
28	SMALL CAPS Same sorif	28
29	<pre>Sans serif </pre>	29
30	<pre>Typewriter </pre>	30

1	Please use mathematical fonts in mathematical mode, e.g.:	1
2	ABCabc123	2
3	$ABCabc123 \setminus \{\}$	3
4	ABCabc123	4
5	$ABCabc$ 123 $lphaeta\gamma$	5
6	\mathcal{ABC}	6
7	$ABC \mathbb{C} $	7
8	ABCabc123	8
9	ABCabc123	9
10	ABCabc123	10
11	Note that \mathcal, \mathbb belongs to capital letters-only font typefaces.	11
12	5. NOTES	12
13		13
14	Footnotes ¹ pose no problems in text. ² Please do not add footnotes on math.	14
15	6. QUOTATIONS	15
16	Text is displayed by indenting it from the left margin. There are short quotations	16
17	This is a short quotation. It consists of a single paragraph of text. There is no paragraph indentation. It	17
18	<pre>should be coded between \begin{quote} and \end{quote}.</pre>	18
19	and longer ones.	19
20	This is a longer quotation. It consists of two paragraphs of text. The beginning of each paragraph is	20
21	indicated by an extra indentation.	21
22	This is the second paragraph of the quotation. It is just as dull as the first paragraph. It should be coded	22
23	<pre>between \begin{quotation} and \end{quotation}.</pre>	23
24	7. ENVIRONMENTS	24
25	Please use regular counters (Theorem 1) as opposed to counters belonging on sections	25
26	(Theorem 3.1). Results (Lemmas, Propositions, Theorems, Claims) can be on the same or	26
27	different counters.	27
28	————	28
29	¹ This is an example of a footnote.	29
30	² Note that footnote number is after punctuation.	30

A SAMPLE RUNNING HEAD TITLE

1	7.1. Examples for plain-Style Environments	1
2	THEOREM 1: This is the body of Theorem 1.	2
3	THEOREM 1. This is the body of Theorem 1.	3
4	PROOF: This is the body of the proof of the theorem above. Q.E.D.	4
5		5
6	CLAIM 1: This is the body of Claim 1.	6
7	AXIOM 1: This is the body of Axiom 1. Axioms should be on a different counter from	7
8	results (e.g. Theorems, Propositions, Lemmas).	8
9	resuus (e.g. 1neorems, 1 ropositions, Lemmas).	9
10	THEOREM 2—Title of the Theorem: This is the body of Theorem 2. Theorem 2 has	10
11	additional title.	11
12		12
13	LEMMA 3: This is the body of Lemma 3. Lemma 3 is numbered after Theorem 2 because	13
14	$we \ used \ [theorem] \ in \ \ newtheorem.$	14
15	EACT. This is the body of the fact Eact is unnumbered because we used \ norther comme	15
16	FACT: This is the body of the fact. Fact is unnumbered because we used \newtheorem*	16
17	$instead\ of\ \ newtheorem.$	17
18	PROOF OF THEOREM 2: This is the body of the proof of Theorem 2. Q.E.D.	18
19		19
20	7.2. Examples for remark-Style Environments	20
21	The following environments can be numbered or not; if numbered, they should be on	21
22	different counters from results.	22
23	different counters from results.	23
24	DEFINITION 1: This is the body of Definition 1. Definitions should be on a different	24
25	counter from results (e.g. Theorems, Propositions, Lemmas).	25
26		26
27	EXAMPLE: This is the body of the example. Example is unnumbered because we used	27
28	\newtheorem* instead of \newtheorem.	28
29		29
30	REMARK 1: This is the body of the remark.	30

1	8. EQUATIONS AND THE LIKE	1
2	Only number equations to which there is a subsequent reference. See equations below	2
3	(1)–(7). Please punctuate equations as you would punctuate a sentence, that is add a comma	3
4	between two equations and add a period if it ends a sentence.	4
5	Two equations:	5
6	$C_s = K_M \frac{\mu/\mu_x}{1 - \mu/\mu_x} \tag{1}$	6
7	$C_s = K_M \frac{1 - \mu/\mu_x}{1 - \mu/\mu_x} \tag{1}$	7
8	and	8
9	$G = \frac{P_{\text{opt}} - P_{\text{ref}}}{P_{\text{rof}}} 100(\%). \tag{2}$	9
10	- Tel	10
11	Equation arrays:	11
12	$\frac{dS}{dt} = -\sigma X + s_F F,\tag{3}$	12
13		13
14	$\frac{dX}{dt} = \mu X,\tag{4}$	14
15	$\frac{dP}{dt} = \pi X - k_h P,\tag{5}$	15
16	ω_{ℓ}	16
17	$\frac{dV}{dt} = F. ag{6}$	17
18	One long equation, note that the equation number is on the last line:	18
19		19
20	$\mu_{\text{normal}} = \mu_x \frac{C_s}{K_x C_x + C_s}$	20
21	$= \mu_{\text{normal}} - Y_{x/s} (1 - H(C_s)) (m_s + \pi/Y_{p/s})$	21
22		22
23	$= \mu_{\text{normal}} / Y_{x/s} + H(C_s)(m_s + \pi / Y_{p/s}). \tag{7}$	23
24	Note that variables made of more than one letter should use command \mathit,	24
25	e.g., $sov = 550$, where sov is sum of votes. Abbreviations used in subscripts or su-	25
26	perscripts should use \mathrm, e.g., $t_{ m max}-t_{ m min}=10.$ Operator names should use	26
27	\operatorname, e.g. $AR(1)$. Also, note that \emptyset symbol is preferred to \varnothing .	27

9. TABLES AND FIGURES

Cross-references to labeled tables: As you can see in Table I and also in Table II.

TABLE I ${}_{2} \label{eq:Table I}$ The spherical case ($I_{1}=0,\,I_{2}=0$).

Equil. Points	x	y	z	C	S
L_1	-2.485252241	0.000000000	0.017100631	8.230711648	U
L_2	0.000000000	0.000000000	3.068883732	0.000000000	S
L_3	0.009869059	0.000000000	4.756386544	-0.000057922	U
L_4	0.210589855	0.000000000	-0.007021459	9.440510897	U
L_5	0.455926604	0.000000000	-0.212446624	7.586126667	U
L_6	0.667031314	0.000000000	0.529879957	3.497660052	U
L_7	2.164386674	0.000000000	-0.169308438	6.866562449	U
L_8	0.560414471	0.421735658	-0.093667445	9.241525367	U
L_9	0.560414471	-0.421735658	-0.093667445	9.241525367	U
L_{10}	1.472523232	1.393484549	-0.083801333	6.733436505	U
L_{11}	1.472523232	-1.393484549	-0.083801333	6.733436505	U

Note: This is how table note should be presented. Please do not use asterisks or bold face to denote statistical significance. We encourage authors to report standard errors and coverage sets or confidence intervals.

FIGURE 1.—The dotted lines show the values of u(x) for x in the discrete support of F. The solid lines show $u_{\text{conv}}(x)$.

Sample of cross-reference to figure: Figure 1 shows that it is not easy to get something on paper. Note that figures will be in grayscale in the printed version.

2	SAMPLE POSTERIOR ESTIMATES FOR EACH MODEL.							2
3					(Quantile		3
4	Model	Parameter	Mean	Std. Dev.	2.5%	50%	97.5%	4
5	Model 0	β_0	-12.29	2.29	-18.04	-11.99	-8.56	5
6		eta_1	0.10	0.07	-0.05	0.10	0.26	6
7		eta_2	0.01	0.09	-0.22	0.02	0.16	7
8	Model 1	eta_0	-4.58	3.04	-11.00	-4.44	1.06	8
9		eta_1	0.79	0.21	0.38	0.78	1.20	9
10		eta_2	-0.28	0.10	-0.48	-0.28	-0.07	10
11	Model 2	eta_0	-11.85	2.24	-17.34	-11.60	-7.85	11
		eta_1	0.73	0.21	0.32	0.73	1.16	
12		eta_2	-0.60	0.14	-0.88	-0.60	-0.34	12
13		eta_3	0.22	0.17	-0.10	0.22	0.55	13
14								14
15			APPEN	NDIX: T	ITLE			15
16	A 1 1 1.1	1		1 '		10	\$41	16
17		-	_	_		iment. II	there is only one ap-	17
18	pendix, then please ref	fer to it in to	ext as	in the A	ppendix.			18
19					_			19
20	APPENDIX A: TITLE OF THE FIRST APPENDIX							
21	If there are more th	an one app	endix, th	nen please	refer to	it as	in Appendix A, Ap-	20
22	pendix B, etc.							22
23								23
	API	PENDIX E	3: TITLE	OF THE	SECOND	APPENI	DIX	
24		R 1	First Sub	section of	Annandi	v R		24
25		D.1. 1	iisi Suo	section of	пррении	λ D		25
26	If your appendix is l	ong, make	sure to d	ivide it in	to subsec	tions and	d refer to them in text.	26
27	Use the standard LATE	X comman	ds for h	eadings in	n {appe	endix}.	. Headings and other	27
28	objects will be number	red automa	tically.					28
29								29
30		${\cal P}$	$= (j_{k,1}, \dots, j_{k+1}, \dots, j$	$j_{k,2},\ldots,j$	$_{k,m(k)}).$		(8)	30

TABLE II

1	Sample of cross-reference to formula (8) in Appendix B.1. Note that it is better to refer	1			
2	to Appendix B.1 as opposed to Appendix B, because it is easier for the reader to locate the	2			
3	necessary place.	3			
4	DEFENSIVE	4			
5	REFERENCES	5			
6	AUMANN, ROBERT (1987): "Correlated Equilibrium as an Expression of Bayesian Rationality," <i>Econometrica</i> , 55, 1–18. [3]	6			
7	PECK, JAMES (1994): "Competition in Transactions Mechanisms: The Emergence of Competition," Unpublished	7			
8	Manuscript, Ohio State University. [3]	8			
9	ENELOW, JAMES, AND MELVIN HINICH, eds. (1990): Advances in the Spatial Theory of Voting. Cambridge,	9			
10	U.K.: Cambridge University Press. [3]	10			
11	WITTMAN, DONALD (1990): "Spatial Strategies when Candidates Have Policy Preferences," in Advances in the	11			
12	Spatial Theory of Voting, ed. by M. Hinich and J. Enelow. Cambridge, U.K.: Cambridge University Press, 66-	12			
	98. [3]				
13	CAHUC, PIERRE, FABIEN POSTEL-VINAY, AND JEAN-MARC ROBIN (2006): "Supplement to 'Wage Bargaining with On the Joh Search, Theory and Evidence," Feen constraint Symplement and Material, 74, [3]	13			
14	with On-the-Job Search: Theory and Evidence'," <i>Econometrica Supplementary Material</i> , 74. [3]	14			
15	Co-editor [Name Surname; will be inserted later] handled this manuscript.				
16					
17		17			
18		18			
19		19			
20		20			
21		21			
22		22			
23		23			
24		24			
25		25			
26		26			
27		27			
28		28			
29		29			
30		30			