The MOSTLEE Model

A Model Of Sources, Transport, Loss, and Emission in Exospheres

Dr. Matthew H. Burger

Last Updated: August 1, 2012

Contents

1	✓ AtomicData/get_gvalue_3.1.pro	7
2	$\sqrt{\mathrm{Data/SystemConstants}}$ 2.0.pro	9
3	$\sqrt{\mathrm{Display/determine_image_rotation_4.0.pro}}$	10
4	Display/display_hull.pro	12
5	${\bf Display/display_model_image_4.0.pro}$	13
6	Display/emission_measure_2.0.pro	14
7	${\bf Display/model_view.pro}$	15
8	Display/produce_density_4.1.pro	16
9	${\bf Display/produce_image_4.0.pro}$	17
10	${\bf Display/produce_los_4.12.pro}$	18
11	${\bf Display/produce_results_4.1.pro}$	19
12	Display/produce_voronoi_image_4.3.pro	20
13	Display/quick_look.pro	21
14	${\bf Display/read_result format_4.2.pro}$	22
15	${\bf Display/results_common_4.0.pro}$	23
16	Display/results_density_4.5.pro	24
17	Display/results functions 4.0.pro	25

18 Display/results_kd_tree_4.3.pro	26
$19~{\rm Display/results_packet_weighting_4.0.pro}$	27
20 Display/results_voronoi_4.2.pro	28
21 \sqrt{Forces/accel_3.1.pro}	29
22 \(\sqrt{Forces/gravity}_3.1.pro \)	30
23 Forces/lorentz_2.0.pro	31
24 \(\sqrt{Forces/radiation_pressure_3.1.pro} \)	32
${\bf 25\ Integrator/driver_3.2.pro}$	35
${\bf 26\ Integrator/rk5_3.3.pro}$	36
${\bf 27\ Lifetimes/JupiterPlasma_3.1.pro}$	38
28 Lifetimes/SaturnPlasma_2.0.pro	39
29 Lifetimes/ionization_rate_3.3.pro	40
${\bf 30~Lifetime_setup_3.2.pro}$	41
31 Lifetimes/load_plasma_2.1.pro	42
${\bf 32\ Lifetimes/xyz_to_magcoord_3.1.pro}$	43
${\bf 33~ModelIO/BennaPrecipitationFilename_1.0.pro}$	44
${\bf 34 \ \sqrt{Model IO/Mercury Model End Time_1.0.pro}}$	45
35 ModelIO/combine iterations 3.2.pro	46

${\bf 36~ModelIO/compare_inputs_3.0.pro}$	47
${\bf 37\ ModelIO/extract_distribution_3.3.pro}$	48
${\bf 38 \; Model IO/extract_parameter_3.0.pro}$	49
${\bf 39~ModelIO/inputs_restore_3.3.pro}$	50
$40~{\rm ModelIO/make_generic_input_3.1.pro}$	51
41 ModelIO/make_model_header_3.2.pro	52
${\bf 42~ModelIO/modeloutput_search_3.5.pro}$	53
${\bf 43~ModelIO/output_filename_3.5.pro}$	54
$44 \sqrt{\mathrm{ModelIO/print_inputs}} 3.1.\mathrm{pro}$	55
${\bf 45~Source Distributions/PSD_distribution_1.1.pro}$	56
${\bf 46~Source Distributions/SO2 exosphere_distribution_3.2.pro}$	57
47 SourceDistributions/SourceFlux_1.0.pro	58
48 SourceDistributions/SourceRate_1.0.pro	59
49 SourceDistributions/add_perturbation_2.2.pro	60
${\bf 50~Source Distributions/angular_distribution_3.1.pro}$	61
51 SourceDistributions/charge_exchange_perturbation_2.0.pro	62
${\bf 52~Source Distributions/exosphere_distribution_3.0.pro}$	63
53 SourceDistributions/show veldist 1.0.pro	64

54 \(\sum \) Source \(\text{Distributions/source_distribution_3.3.pro} \)	65
${\bf 55~Source Distributions/speed_distribution_3.3.pro}$	68
${\bf 56~Source Distributions/speed_dists_2.1.pro}$	69
57 SourceDistributions/surface_distribution_3.2.pro	70
${\bf 58~Source Distributions/surface_temperature_3.0.pro}$	74
${\bf 59~Source Distributions/torus_distribution_2.0.pro}$	75
60 loc_operations_3.0.pro	76
61 √locmoon_1.0.pro	77
$62 \sqrt{\text{model_common_blocks_3.0.pro}}$	78
63 model_findpackets_4.0.pro	79
64 modeldriver_3.9.pro	80
$65 \; \mathrm{modelstreamlines B}_3.0.\mathrm{pro}$	81
66 modelstreamlines_3.0.pro	82
67 modstreamA_3.0.pro	83
68 modstreamB_3.0.pro	84
$69 \checkmark planet_dist_2.0.pro$	85
List of Tables	
1 Available g-values	8

2	5th Order Runge-Kutta Coefficients	37
3	output fields	88
4	SystemConsts fields	89
5	DipoleConsts fields	90
6	Solar System Parameters	91
List	of Figures	
List	of Figures Radiation acceleration as function of velocity for species with available g-values	34

$1 \checkmark AtomicData/get gvalue 3.1.pro$

Summary

Creates a g-value structure using saved atomic data.

Calling Procedure

```
gval = get_gvalue, atom, a, path=path
```

Inputs

- 1 atom = species being modeled
- 2 a = heliocentric distance
- 3 path = path where g-values are saved (optional)

Outputs

Function returns a structure with the fields:

- species = same as the atom input
- a = same as the input. Units: AU.
- wavelength = pointer to an array of length nlam with wavelengths of resonance transitions. Units: Å.
- v = pointer to an array of length *nvel* with the radial velocities at which the g-value was calculated Units: $km cm^{-2} s^{-1}$.
- g = pointer to an array of size $nvel \times nlam$ with g-values as function of radial velocity for each resonant transition scaled to distance a. Units: photons s⁻¹.
- radaccel = pointer to an array of size nvel with the radiation acceleration at each wavelength. See radiation pressure and Figure 1. Units: km s⁻¹.
- If the species is not found, a warning is printed and the g-value is set to 0.

Model Procedures Called

None.

Notes

- 1 The g-values are saved in \$BASEPATH/Work/AtomicData/g-values/'
- 2 The structure saved in the g-value files are created with set_up_gvals.
- 3 See Table 1 for list of species that have g-values implemented in the code.
- 4 Figure ?? shows g-value at 1 AU as function of radial velocity for each species listed in Table 1.

This Page Last Updated

Species	Wavelengths (Å)	Reference
С	1560, 1657	Killen et al. (2009)
Ca^{+}	3934, 3969	Killen et al. (2009)
Ca	2722, 4227, 4567	Killen et al. (2009)
Η	1215	Killen et al. (2009)
Не	584	Killen et al. (2009)
K	4045	Killen et al. (2009)
Mg^{+}	2083, 2796	Killen et al. (2009)
Mg	2026, 2852,	Killen et al. (2009)
Mn	2795, 2799, 2802	XXXXX
Na	3303, 5891, 5897	Killen et al. (2009)
O	1303	Killen et al. (2009)
ОН	3081, 3092	Killen et al. (2009)
S	1807, 1820	Killen et al. (2009)
Ti	3187, 3193, 3204, 3342, 3371, 3371, 3636, 3644	XXXXX

Table 1: Available g-values

$2 \sqrt{\text{Data/SystemConstants}}$ 2.0.pro

Summary

Creates the SystemConsts and DipoleConsts structures from data stored in the !consts system variables.

Calling Procedure

SystemConstants, planet, SystemConsts, DipoleConsts

Inputs

• planet: String containing planet name. For purposes of the model, *planet* is defined as the center of the modeled system. Therefore, "sun" and "pluto" are valid planets.

Outputs

- SystemConsts: Structure containing the planetary system constants The fields in the structure are given in Table 4. The values for each object are given in Table 6.
- DipoleConsts: Structure containing the planetary dipole constants The fields in the structure are given in Table 5. The values for each object are given in Table 6.

Model Procedures Called

None.

Notes

- 1 The values used in this routine are saved in the files Data/PhysicalData/PlanetaryConstants.dat and Data/PhsyicalData/DipoleConstants.dat.
- 2 Data taken from NASA Solar System Dynamics and Wikipedia: Sun.

This Page Last Updated

3 √Display/determine image rotation 4.0.pro

Summary

Computes the rotation matrix for an image given a sub-observer longitude, sub-observer latitude, and north pole rotation angle, or a time and observer location.

Calling Procedure

M = determine_image_rotation, input, format

Inputs

- 1 input = input structure
- 2 format = format structure

Outputs

Returns the rotation matrix from model coordinates to the observer's viewpoint.

Model Procedures Called

- 1 relative_position
- 2 utc2et
- 3 rotationmatrix
- 4 rotation

Notes

- 1 There are two ways to specify the observing geometry:
 - 1.1 Sub-Observer point:
 - format.geometry.SubObsLongitude: radians dawnward of sub-solar point
 - format.geometry.SubObsLatitude: radians northward of sub-solar point
 - format.geometry.PolarAngle: north pole rotation angle radians counter-clockwise (?) from north.
 - 1.2 Time and Observer location:
 - format.geometry.time: string time in ISOC format (YYYY-MM-DDTHH:MM:SS.S or YYY-DOYTHH:MM:SS.S)
 - format.geometry.observer: NAIF observer location (e.g., 'Earth', 'MESSENGER')
- 2 The rotation matrix is determined by the rotation angle (θ) of the sun direction $(\hat{\mathbf{x}}_{\odot})$ to the observer direction $(\hat{\mathbf{x}}_{obs})$ around the axis perpendicular to both vectors $(\hat{\mathbf{a}})$:

$$\hat{\mathbf{a}} = \hat{\mathbf{x}}_{\odot} \times \hat{\mathbf{x}}_{obs} \tag{1}$$

$$\cos\theta = \hat{\mathbf{x}}_{\odot} \cdot \hat{\mathbf{x}}_{obs} \tag{2}$$

$$M = \begin{pmatrix} a_x^2 + (1 - a_x)^2 \cos \theta & a_x a_y (1 - \cos \theta) - a_z \sin \theta & a_x a_z (1 - \cos \theta) + a_y \sin \theta \\ a_x a_y (1 - \cos \theta) + a_z \sin \theta & a_y^2 + (1 - a_y^2) \cos \theta & a_y a_z (1 - \cos \theta) - a_x \sin \theta (3) \\ a_x a_z (1 - \cos \theta) - a_y \sin \theta & a_y a_z (1 - \cos \theta) + a_x \sin \theta & a_z^2 + (1 - a_z^2) \cos \theta \end{pmatrix}$$

3 If specifying Sub-Observer point, then:

$$\hat{\mathbf{x}}_{\odot} = (0, -1, 0) \tag{4}$$

$$\hat{\mathbf{x}}_{obs} = (\sin \lambda \cos \mu, -\cos \lambda \cos \mu, \sin \mu) \tag{5}$$

where $\lambda = input.geometry.SubObsLongitude$ and $\mu = input.geometry.SubObsLatitude$

- 4 If specifying Time and Observer location, then $\hat{\mathbf{x}}_{\odot}$ and $\hat{\mathbf{x}}_{obs}$ are determined with relative_position using SPICE.
- 5 If format.geometry.PolarAngle \neq 0, then a rotation is taken around the new y-axis.

This Page Last Updated

4 Display/display_hull.pro
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

$5 {\bf Display/display_model_image_4.0.pro}$
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

${\small 6 Display/emission_measure_2.0.pro}\\$
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

$7 {\bf Display/model_view.pro}$
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

8 Display/produce_density_4.1.pro
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

9 Display/produce_	$_{ m image}_$	$_4.0.\mathrm{pro}$
Summary		
Calling Procedure		
Inputs		
Outputs		
Model Procedures Called		
Notes		
This Page Last Updated		

10 D	$isplay/produce_l$	$\cos_4.12.$ pro
Summa	ry	
Calling	Procedure	
Inputs		
Outputs	;	
Model F	Procedures Called	
Notes		
This Pa	ge Last Updated	

11 Display/produce_results_4.1.pro
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Undated

12	${\bf Display/produce_}$	$_{ m voronoi}_{_}$	$_{ m image}_$	$_4.3.$ pro
Summary				
Callii	ng Procedure			
Input	ts			
Outputs				
Model Procedures Called				
Note	s			
This	Page Last Updated			

$13 Display/quick_look.pro$
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

14	${\sf Display/read_resultformat_}$	4.2.pro
Summ	ary	
Calling	g Procedure	
Inputs		
Outpu	its	
Model	Procedures Called	
Notes		
This F	Page Last Updated	

$15 {\rm Display/results_common_4.0.pro}$
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

$16 Display/results_density_4.5.pro$
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Undated

17 Display/results_functions_4.0.pro
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Undated

$18 Display/results_kd_tree_4.3.pro$
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes

This Page Last Updated

19	${\bf Display/results}_$	$_{ m packet}_{ m c}$	$_{ m weighting}_{}$	_4.0.pro
Summary				
Calli	ng Procedure			
Input	ts			
Outp	outs			
Mod	el Procedures Called			
Note	es			
This	Page Last Updated			

$20 Display/results_voronoi_4.2.pro$
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

21 $\sqrt{\text{Forces/accel } 3.1.pro}$

Summary

Computes the acceleration on a packet due to the specified forces. Possible forces are gravity, radiation pressure, and Lorentz (not working).

Calling Procedure

a = accel(loc, input, magcood, which)

Inputs

- $1 \log = \text{packet location structure}$
- 2 input = input structure
- 3 magcoords = magnetic coordinate structure (which includes out of shadow). See xyz to magcoord.
- 4 which = array specifying which objects are included in the calculation

Outputs

Function returns a structure with field dvdt, which is an $n \times 3$ array with a_x, a_y, a_z in units of R_{plan} s⁻².

Model Procedures Called

- 1 gravity
- 2 radiation pressure
- 3 Lorentz

Notes

1 Total acceleration:

$$\mathbf{a} = \mathbf{a}_{grav} + \mathbf{a}_{radpres} + \mathbf{a}_{lor} \tag{6}$$

- 2 The input structure fields input.Forces.gravity, input.Forces.radpres, and input.Forces.Lorentz are used to specify which forces are included in the calculations.
- 3 The Lorentz force, which only affects ions, does not currently work properly.

This Page Last Updated

22 $\sqrt{\text{Forces/gravity}}$ 3.1.pro

Summary

Computes acceleration due to gravity from each object.

Calling Procedure

agrav = gravity(loc, input)

Inputs

- $1 \log = \text{packet location structure}$
- 2 input = input structure

Outputs

Function returns acceleration due to gravity as a $n \times 3$ array with a_x, a_y, a_z in units of R_{plan} s⁻².

Model Procedures Called

1 locmoon: gives the location of each object as viewed by each packet.

Notes

1 Gravity computed by:

$$\mathbf{a} = \sum_{i=0}^{nobj} \frac{GM}{r_i^2} \hat{\mathbf{r}}_{i} \tag{7}$$

$$r_i = \sqrt{(x-x_i)^2 + (y-y_i)^2 + (z-z_i)^2}$$
 (8)

which is given in component form by:

$$a_x = \sum_{i=0}^{nobj} \frac{GM_i(x - x_i)}{r_i^3} \tag{9}$$

$$a_y = \sum_{i=0}^{nobj} \frac{GM_i(y-y_i)}{r_i^3} \tag{10}$$

$$a_z = \sum_{i=0}^{nobj} \frac{GM_i(z-z_i)}{r_i^3} \tag{11}$$

(12)

where the coordinates of each object (planet and satellites) are $\mathbf{r_i} = (x_i, y_i, z_i)$ are computed by locmoon, GM_i are stored in the SystemConsts variable, and the sum is only performed for objects which input.geometry.include = 1.

This Page Last Updated

12 December 2011

${\bf 23 Forces/lorentz_2.0}$.pro
Summary	
Calling Procedure	
Inputs	
Outputs	
Model Procedures Called	
Notes	
This Page Last Updated	

24 √Forces/radiation pressure 3.1.pro

Summary

Returns the radiation acceleration as function of radial velocity.

Calling Procedure

radiation_pressure, loc, out_of_shadow

Inputs

- $1 \log = \text{packet location structure}$
- 2 out_of_shadow = boolean array specifying whether each packet is in the planet's shadow. Does not currently compute satellite shadow

Outputs

Function returns acceleration due to radiation pressure as a $n \times 3$ array with a_x, a_y, a_z in units of R_{plan} s⁻².

Model Procedures Called

None.

Notes

1 The radiation pressure is computed by:

$$\mathbf{a}_{rad}(v_r) = \sum_{i} \frac{hg(v_r)}{m\lambda_i} \hat{y} \tag{13}$$

where $h = 6.6260690 \times 10^{-27}$ erg s⁻¹ is Planck's constant, g is the g-value as a function of radial velocity relative to the sun v_r , m is the atomic mass, and λ_i is each resonant transition for the species in question.

- 2 The radiation acceleration is actually calculated by the function get_gvalue and stored in the stuff structure in modeldriver (in the fields stuff.radpres_v and stuff.radpres_const). This is done to speed things up.
- 3 \mathbf{a}_{rad} is directed entirely in the $+\hat{y}$ direction. I currently assume the planets' equatorial (rotational) planes are not tilted relative to their orbital planes.
- 4 Similarly, v_{rad} is the velocity in the \hat{y} direction (which is computed relative to the planet) + stuff.vrplanet. stuff.vrplanet is computed by planet_dist and saved into the stuff structure in modeldriver.
- 5 Because the radiation acceleration is computed at discrete values by get_gvalue, the radiation acceleration for each packet is computed by linear interpolation between values.
- 6 If v_r is outside the velocity range in $stuff.radpres_v$, then v_r is assumed to be either the maximum or minimum value of $stuff.radpres_v$, as appropriate.
- 7 $\mathbf{a_{rad}} = 0$ in the shadow of a planet or satellite.
- 8 See Table 1 for list of species that have g-values implemented in the code.
- 9 Figure 1 shows radiation acceleration as function of radial velocity at 1 AU for each species listed in Table 1.

Things to do

- 1 Does not currently compute shadowing for satellites. If radiation pressure is turned on for a system with multiple objects, program will stop.
- 2 The radiation acceleration for K is wrong because I do not have the g-values for the strongest lines.

This Page Last Updated

Figure 1: Radiation acceleration as function of velocity for species with available g-values.

${\bf 25} {\bf Integrator/driver_3.2.pro}$
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

26 Integrator/rk5 3.3.pro

Summary

Computes a Runge-Kutta step and estimates the error.

Calling Procedure

Inputs

Outputs

Model Procedures Called

Notes

- 1 Based on Numerical Recipies, 3rd Edition, Ch. 17.2
- 2 The general form of a fifth-order Runge-Kutta formula is (NR, p. 912):

$$k_1 = hf(x_n, y_n) (14)$$

$$k_2 = hf(x_n + c_2h, y_n + a_{21}k_1) (15)$$

$$k_3 = hf(x_n + c_3h, y_n + a_{31}k_1 + a_{32}k_2) (16)$$

$$k_4 = hf(x_n + c_4h, y_n + a_{41}k_1 + a_{42}k_2 + a_{43}k_3)$$

$$\tag{17}$$

$$k_5 = hf(x_n + c_5h, y_n + a_{51}k_1 + a_{52}k_2 + a_{53}k_3 + a_{54}k_4)$$
(18)

$$k_6 = hf(x_n + c_6h, y_n + a_{61}k_1 + a_{62}k_3 + a_{63}k_3 + a_{64}k_4 + a_{65}k_5)$$

$$\tag{19}$$

$$y_{n+1} = y_n + b_1 k_1 + b_2 k_2 + b_3 k_3 + b_4 k_4 + b_5 k_5 + b_6 k_6 \tag{20}$$

- 3 The coefficients are given in Table 2
- 4 (x_n, y_n) are the values at the beginning of the interval. (x_{n+1}, y_{n+1}) are the values at the end. Actually, there are 7 equations for each y_n corresponding to the 7 output values.

Table 2: 5th Order Runge-Kutta Coefficeints

5 Solving this set of differential equations:

$$\frac{dx}{dt} = v_x \tag{21}$$

$$\frac{dy}{dt} = v_y \tag{22}$$

$$\frac{dz}{dt} = v_z \tag{23}$$

$$\frac{dv_x}{dt} = F_x(x, y, z, v_x, v_y, v_z) \tag{24}$$

$$\frac{dy}{dt} = v_x \tag{21}$$

$$\frac{dy}{dt} = v_y \tag{22}$$

$$\frac{dz}{dt} = v_z \tag{23}$$

$$\frac{dv_x}{dt} = F_x(x, y, z, v_x, v_y, v_z) \tag{24}$$

$$\frac{dv_y}{dt} = F_y(x, y, z, v_x, v_y, v_z) \tag{25}$$

$$\frac{dv_z}{dt} = F_z(x, y, z, v_x, v_y, v_z) \tag{26}$$

$$f = f_0 e^{-\nu(x, y, z, v_x, v_y, v_z)t} \tag{27}$$

$$\frac{dv_z}{dt} = F_z(x, y, z, v_x, v_y, v_z) \tag{26}$$

$$f = f_0 e^{-\nu(x, y, z, v_x, v_y, v_z)t} (27)$$

27 Lifetimes/JupiterPlasma_3.1.pro
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

28	Lifetimes/SaturnPlasma_2.0.pro
Sumi	mary
Callin	ng Procedure
Input	cs ·
Outp	outs
Mode	el Procedures Called
Note	s
This	Page Last Updated

$29 Lifetimes/ionization_rate_3.3.pro$
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

30	$Lifetime_setup_3.2.pro$
Sumi	mary
Callir	ng Procedure
Input	es s
Outp	uts
Mode	el Procedures Called
Note	S

31	${\it Lifetimes/load_}$	$_{ m plasma}_{ m l}$	_2.1.pro
Summary			
Calli	ng Procedure		
Input	ts		
Outp	outs		
Mod	el Procedures Callec	I	
Note	s		
This	Page Last Updated		

${\bf 32} {\bf Lifetimes/xyz_to_magcoord_3.1.pro}$
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

${\bf 33 Model IO/Benna Precipitation Filename_1.0.pro}$
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

$34 \sqrt{\text{ModelIO}/\text{MercuryModelEndTime}}$ 1.0.pro

Summary

Computes the appropriate value of *input.options.endtime* for a Mercury model run as a function of true anomaly angle. The appropriate value is set at $4\times$ the photoionization lifetime.

Calling Procedure

endtime = MercuryModelEndTime(atoms, taa)

Inputs

- 1 atoms = species to look at
- 2 taa = true anomaly angle in radians

Outputs

Function returns $4\times$ the photoionization lifetime of each species at the requested true anomaly angles.

Model Procedures Called

- 1 planet dist: determines Mercury's distance from the sun as function of true anomaly.
- 2 search atomicdata [not in the manual yet]

Notes

None.

This Page Last Updated

12 December 2011

35 ModelIO/combine_iterations_3.2.pro	
Summary	
Calling Procedure	
Inputs	
Outputs	
Model Procedures Called	
Notes	
This Page Last Updated	

$36 ModelIO/compare_inputs_3.0.pro$
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

37	${\bf ModelIO/extract_}$	$_{ m distribution}_{}$	_3.3.pro
Sumi	mary		
Callii	ng Procedure		
Input	cs		
Outp	outs		
Mod	el Procedures Called		
Note	s		
This	Page Last Updated		

$38 ModelIO/extract_parameter_3.0.pro$
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

39	$ModelIO/inputs_restore_3.3.pro$
Sumi	mary
Callin	ng Procedure
Input	es e
Outp	uts
Mode	el Procedures Called
Note	S

40 ModelIO/make_generic_input_3.1.pro
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes

41	$ModelIO/make_model_$	$_\mathrm{header}_$	_3.2.pro
Sumi	mary		
Callii	ng Procedure		
Input	ts		
Outp	outs		
Mod	el Procedures Called		
Note	s		
This	Page Last Updated		

42 ModelIO/modeloutput_search_3.5.pro
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

43	$ModelIO/output_filename_3.5.pro$
Sumr	mary
Callir	ng Procedure
Input	es s
Outp	uts
Mode	el Procedures Called
Note	S

$44 \quad \sqrt{\text{ModelIO/print_inputs}_3.1.pro}$

Summary

Prints the contents of an input structure to the screen.

Calling Procedure

print_inputs, input, printarr=printarr

Inputs

1 input: either an input structure or the name on an inputfile

Outputs

1 printarr: contains a strarr with each of the input fields

Model Procedures Called

1 inputs_restore

Notes

None.

This Page Last Updated

9 December 2011.

45 SourceDistributions/PSD_distribution_1.1.pro
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

46 SourceDistributions/SO2exosphere_distribution_3.2.pro
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

47 SourceDistributions/SourceFlux_1.0.pro Summary Calling Procedure Inputs Outputs Model Procedures Called Notes This Page Last Updated

48 SourceDistributions/SourceRate_1.0.pro
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

$49 Source Distributions/add_perturbation_2.2.pro$
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

50 SourceDistributions/angular distribution 3.1.pro

Summary

Determines the initial angular distribution for packets.

Calling Procedure

angular_distribution, input, output, npack, seed

Inputs

- 1 input = input structure
- 2 output = output structure with $output.vx\theta$ =initial speed distribution.
- 3 npack = number of packets
- 4 seed = seed for random number generator

Outputs

1 output = output structure with output.vx0, output.vy0, and output.vz0 defined in units of R_{plan} s⁻¹

Model Procedures Called

- 1 random_nr
- $2 \text{ RandomDeviates_1d}$

Notes

- 1 First step: randomly choose altitude (θ) and azimuth (ϕ) angles.
 - 1.1 Altitude is measured from surface tangent ($\theta = 0$) to surface normal ($\theta = \pi/2$).
 - 1.2 The zero point for azimuth angle is not clear to me. It is possible to limit the azimuth angle, but I'm not sure exactly how the zero point is defined at each point on the surface. It is better to use the default $(0 \le \phi \le 2\pi)$.
 - 1.3 Three options for angulardist.type: radial, isotropic, costheta
 - 1.4 Radial ejection
 - 1.4.1 $\theta = \pi/2$ for all packets
 - 1.4.2 $\phi = 0$ for all packets (azimuth angle is technically undefined for normal ejection.
 - 1.5 Isotropic ejection
 - 1.5.1 Azimuth angles are evenly distributed from $0 \to 2\pi$.
 - 1.5.2 $\sin \theta$ is evenly distributed between $0 \to 1$ for distributions that start at the surface $(2\pi \text{ ejection into outward-facing hemisphere})$ or $-1 \to 1$ for ejection into $4\pi \text{ str.}$
 - 1.6 costheta ejection
 - 1.6.1 Azimuth angles are evenly distributed from $0 \to 2\pi$.
 - $1.6.2 \ f(\sin \theta) = \sin^n \theta$

This Page Last Updated

20 January 2012

$51 Source Distributions/charge_exchange_perturbation_2.0.p$	ro
Summary	
Calling Procedure	
Inputs	
Outputs	
Model Procedures Called	
Notes	
This Page Last Updated	

52 SourceDistributions/exosphere_distribution_3.0.pro
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

53 SourceDistributions/show_veldist_1.0.pro			
Summary			
Calling Procedure			
Inputs			
Outputs			
Model Procedures Called			
Notes			
This Page Last Updated			

54 ✓ Source Distributions/source distribution 3.3.pro

Summary

Determines the initial positions and velocities for each packet. This is a driver program which calls the procuedures to determine initial spatial, speed, and angular distributions of packets.

Calling Procedure

source_distribution, input, npack, seed, output=output

Inputs

- 1 input: input structure
- 2 npack: number of packets in the output
- 3 seed: seed for random number generator (optional)

Outputs

1 output: an output structure (see below)

Model Procedures Called

- 1 random nr
- 2 surface distribution
- 3 torus distribution
- 4 exosphere distribution
- 5 SO2exosphere distribution
- 6 PSD distribution
- 7 speed distribution
- 8 angular distribution
- 9 add perturbation
- 10 locmoon

Notes

Procuedure used:

- 1 Create the output structure (see Table 3 for description of fields). This just sets up the structure put does not put any values into the fields.
- 2 output.f0 = 1 for all packets initially.
- 3 Set the output time:
 - If input.options.at_once = 1, then output.time is set to input.options.endtime for all packets.
 - If input.options.at_once = 0, then output.time is set to a random value between 0 and input.options.endtime.
- 4 Set the initial locations for packets. Possible distributions allowed in input.SpatailDist.type are:
 - *surface*: starts all packets at a sphere located at input.geometry.startpoint's surface or a uniform exobase. See surface distribution
 - torus: starts all packets in a uniform torus around input.geometry.startpoint. See torus_distribution

- exosphere: starts all the packets in an exosphere over the surface of input.geometry.startpoint See exosphere distribution
- SO2 exosphere: Uses Vincent Dol's exospheric source model. See SO2 exosphere distribution
- *PSD distribution*: Approximation to the ion-enhanced PSD distribution described by Burger et al. (2010). See PSD_distribution

These routines set output.x0, output.y0, and output.z0 in a coordinate system centered on input.geometry.startpoint. A transformation to the input.geometry.planet-cenetered coordinate system is made later, if necessary.

- 5 Set the initial speed distribution. See speed_distribution. This routine sets the initial speed (and possibly the components of the speed) in units of R_{plan} s⁻¹. Satellite orbital velocity is not included yet.
- 6 Set the angular disitribution, if necessary. See angular_distribution. This routine sets output.vx0, output.vx0, and output.vz0 (if it has not already been done) in a coordinate system centered on input.geometry.startpoint. A transformation to the input.geometry.planet-centered coordinate system is made later, if necessary.
- 7 Add a perturbation to the intial velocities, if requested. See add perturbation.
- 8 Make the conversion from the input.geometry.startpoint-centered system to the input.geometry.planet-centered system if necessary.
 - 8.1 Move the packets out to their starting distance and rescale from R_{st.pt.} to R_{plan}:

$$x = x_0 \times \text{SystemConsts.radius}$$
 (28)

$$y = y_0 \times SystemConsts.radius + SystemConsts.a$$
 (29)

$$z = z_0 \times \text{SystemConsts.radius}$$
 (30)

This places each packet at the satellite's orbital distance at orbital phase $= 0^{\circ}$ (local midnight).

8.2 Add in the orbital velocity, if input.options.motion=1:

$$v_x = vx_0 \tag{31}$$

$$v_y = vy_0 - \text{SystemConsts.orbvel}$$
 (32)

$$v_z = vz_0 \tag{33}$$

For a packet at orbital phase = 0° , the direction of orbital motion is in the $-\hat{y}$ direction.

- 8.3 Determine output.phi0, the orbital phase of the satellite at the start time of each packet (output.time seconds ago). See locmoon.
- 8.4 Rotate the packets to the proper location in planet-centered coordinates:

$$output.x = x\cos\phi_0 - y\sin\phi_0 \tag{34}$$

$$output.y = x \sin \phi_0 + y \cos \phi_0 \tag{35}$$

$$output.z = z (36)$$

$$output.vx = v_x \cos \phi_0 - v_y \sin \phi_0 \tag{37}$$

$$output.vy = v_x \sin \phi_0 + v_y \cos \phi_0 \tag{38}$$

$$output.vz = v_z \tag{39}$$

- 9 output.x0, etc., are in startpoint-centered coordinates. These are not used in any of the model computations.
- 10 output.x, etc., are in planet-centered coordinates. These are used in all of the model computations.

This Page Last Updated 20 December 2011.

55 SourceDistributions/speed_distribution_3.3.pr	O
Summary	
Calling Procedure	
Inputs	
Outputs	
Model Procedures Called	
Notes	
This Page Last Updated	

56	${\bf Source Distributions/speed_}$	$_{ m dists}_{ m }$	$_{2}.1.\mathrm{pro}$
Summary			
Callii	ng Procedure		
Input	ts		
Outp	outs		
Mod	el Procedures Called		
Note	s		
This	Page Last Updated		

${\bf 57 \quad Source Distributions/surface_distribution \quad 3.2.pro}$

Summary

Distribute packets about a sphere with radius r = input.SpatialDist.exobase

Calling Procedure

surface_distribution, input, output, npack, seed

Inputs

- 1 input: input structure
- 2 output: output structure defined in source distribution (Table 3)
- 3 npack: number of packets in the output
- 4 seed: seed for random number generator (optional)

Outputs

1 output: output.x0, output.y0, and output.z0 fields are populated.

Model Procedures Called

- 1 RandomDeviates 2d
- 2 random nr

Notes

There are several ways to use this option:

- 1 Use a predefined map file:
 - 1.1 The following lines must be included in the *input* file.

```
SpatialDist.type = surface
SpatialDist.use_map = 1
SpatialDist.mapfile = path_to_mapfile
```

1.2 mapfile is an IDL savefile with a variable called sourcemap which is a structure defined by:

```
sourcemap = {longitude:ptr_new(longitude), latitude:ptr_new(latitude), $
    map:ptr_new(map)}
```

where:

- longitude is an array of longitude (λ) values in radians. See Section ?? for definition of longitude. The acceptable range of values is $0 \le \lambda \le 2\pi$. I generally set this to: longitude = fltarr(361)*!dtor}
- latitude is an array of latitude (μ) values in radians. The acceptable range of values is $-\pi/2 \le \mu \le \pi/2$. I generally set this to latitude = fltarr(181)*!dtor !pi/2.
- map is an array of size (n_{λ}, n_{μ}) containing the relative source flux (particles per unit area) as a function of λ and μ . This does not need to be absolute flux since it is normalized to the total number of packets ejected.
- 2 Uniform ejection within a specified range
 - 2.1 The following lines must be included in the input file:

```
SpatialDist.type = surface
```

SpatialDist.use_map = 0

The following lines are optional:

SpatialDist.longitude0 = minlong

SpatialDist.longitude1 = maxlong

SpatialDist.latitude0 = minlat

SpatialDist.latitude1 = maxlat

- 2.2 minlong (λ_{min}) and maxlong (λ_{max}) are the minimum and maximum longitude values with $0 \le \lambda_{min}, \lambda_{max} \le 2\pi$.
 - If $\lambda_{min} < \lambda_{max}$, then packets are randomly distributed with $\lambda_{min} \leq \lambda < \lambda_{max}$ (Figure 2a).
 - If $\lambda_{min} > \lambda_{max}$, then packets are randomly distributed with $\lambda_{max} \leq \lambda < \lambda_{max} + 2\pi$ (Figure 2b).
 - If $\lambda_{min} = \lambda_{max}$ then all packets are set to $\lambda = \lambda_{min}$.
- 2.3 minlat (μ_{min}) and maxlat (μ_{max}) are the minimum and maximum values of latitude with $\pi/2 \le \mu_{min} \le \mu_{max} \le \pi/2$.
- 2.4 Default values:

$$\begin{array}{rcl} \lambda_{min} & = & 0 \\ \lambda_{max} & = & 2\pi \\ \mu_{min} & = & -\pi/2 \\ \mu_{max} & = & \pi/2 \end{array}$$

- 3 Choosing random values:
 - 3.1 Longitude values are evenly distributed between λ_{min} and λ_{max} , so we can choose values with:

$$\lambda = \lambda_{min} + (\lambda_{max} - \lambda_{min})R \tag{40}$$

where R is a random deviate from a uniform distribution with $0 \le R < 1$.

3.2 Latitude values are not evenly distributed; however, $\sin \mu$ are, so we can choose values with:

$$\sin \mu = \sin \mu_{min} + (\sin \mu_{max} - \sin \mu_{min})R \tag{41}$$

where R is a random number as above and $-1 \le \sin \mu < 1$.

- 4 If input.geometry.StartPoint = input.geometry.planet then:
 - local noon: $\lambda = 0^{\circ}, (x, y, z) = (0, -1, 0)$
 - local dusk: $\lambda = 90^{\circ}, (x, y, z) = (1, 0, 0)$
 - local midnight: $\lambda = 180^{\circ}$, (x, y, z) = (0, 1, 0)
 - local dawn: $\lambda = 270^{\circ}, (x, y, z) = (-1, 0, 0)$

$$x_0 = r_0 \sin \lambda \cos \mu \tag{42}$$

$$y_0 = -r_0 \cos \lambda \sin \mu \tag{43}$$

$$z_0 = r_0 \sin \mu \tag{44}$$

where $r_0 = input.SpatialDist.exobase$

- 5 If input.geometry.StartPoint ≠ input.geometry.planet then:
 - sub-planet: $\lambda = 0^{\circ}, (x, y, z) = (0, -1, 0)$
 - leading side: $\lambda = 90^{\circ}, (x, y, z) = (1, 0, 0)$

- $\begin{array}{l} \bullet \ \ {\rm anti-planet:} \ \lambda = 180^{\circ}, \ (x,y,z) = (0,1,0) \\ \bullet \ \ {\rm trailing \ side:} \ \lambda = 270^{\circ}, \ (x,y,z) = (-1,0,0) \\ \end{array}$

$$x_0 = -r_0 \sin \lambda \cos \mu \tag{45}$$

$$y_0 = -r_0 \cos \lambda \cos \mu \tag{46}$$

$$z_0 = r_0 \sin \mu \tag{47}$$

21 December 2011.

Figure 2: (a) 10^5 packets randomly distributed in longitude and latitude over a surface. (b) 10^4 packets randomly distributed over a surface with $\lambda_{min} = 30^\circ$, $\lambda_{max} = 200^\circ$, $\mu_{min} = -90^\circ$, and $\mu_{max} = 20^\circ$. (c) 10^4 packets randomly distributed over a surface with $\lambda_{min} = 200^\circ$, $\lambda_{max} = 30^\circ$, $\mu_{min} = -90^\circ$, and $\mu_{max} = 20^\circ$.

58 SourceDistributions/surface_temperature_3.0.pro
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

59 SourceDistributions/torus_distribution_2.0.pro
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes
This Page Last Updated

60 loc_operations_3.0.pro
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes

$61 \sqrt{\text{locmoon}} 1.0.\text{pro}$

Summary

Calculates the coordinates of each moon given a "final" orbital longitude and a time difference. Determines where a moon was *time* seconds ago.

Calling Procedure

locmoon, time, theta0, radius, orbrate, x=x, y=y, z=z, ang=ang

Inputs

- time: time before moon was at theta0 (seconds)
- theta0: final orbital longitude of each moon (radians). Corresponds to the position at time=0.
- radius: orbital radius of each moon (R_{plan})
- orbrate: angular speed of each moon (radians/sec)

Outputs

- x: x-position of each moon relative to the planet *time* seconds it was before it was at *theta0* (R_{plan})
- y: y-position of each moon relative to the planet time seconds it was before it was at theta0 (R_{plan})
- z: z-position of each moon relative to the planet time seconds it was before it was at theta0 (R_{plan})
- ang: orbital longitude time seconds ago (radians)

Model Procedures Called

None.

Notes

- time and theta0 are arrays of length npackets. radius and orbrate are arrays with length nobj (number of objects in the system which are included in the model run).
- The outputs are arrays of size (npackets x nobj) which give the location (in model coordinates) of each satellite as seen by each packet.
- $z \equiv 0 \rightarrow I$ have assumed satellites orbit in the planetary equatorial planes.
- Equations used:

$$\theta = -tR + \theta_0 \tag{48}$$

$$x = -r\sin\theta \tag{49}$$

$$y = r\cos\theta \tag{50}$$

where θ is ang, t is time, R is orbrate θ_0 is theta0, and r is radius.

This Page Last Updated

9 December 2011

$62 \quad \sqrt{\bmod el_common_blocks_3.0.pro}$

Summary

Initializes the common blocks used in the model

Calling Procedure

model_common_blocks

Inputs

None.

Outputs

None.

Model Procedures Called

None.

Notes

Three common blocks are defined:

- 1 constants
 - SystemConsts: See Table 4
 - DipoleConsts: See Table 5
 - stuff: See modeldriver
- 2 ratecoefs
 - kappa: See modeldriver
- 3 plasma
 - plasma: See modeldriver
 - plasmahot: See modeldriver

This Page Last Updated

9 December 2011

63 model_findpackets_4.0.pro
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes

64 modeldriver_3.9.pro

Summary

Calling Procedure

Inputs

Outputs

Model Procedures Called

Notes

65	$model streamlines B_$	$_3.0.\mathrm{pro}$					
Summary							
Callin	ng Procedure						
Input	es						
Outp	uts						
Model Procedures Called							
Note	S						
This	Page Last Updated						

$66 \mod \text{elstreamlines}$	$_3.0.$ pro						
Summary							
Calling Procedure							
Inputs							
Outputs							
Model Procedures Called							
Notes							

$67 modstream A_3.0.pro$
Summary
Calling Procedure
Inputs
Outputs
Model Procedures Called
Notes

$68 \mod \text{streamB} _ 3.0. \text{pro}$							
Summary							
Calling Procedure							
Inputs							
Outputs							
Model Procedures Called							
Notes							

69 √planet dist 2.0.pro

Summary

Calculates the distance and radial velocity of a planet relative to the sun as a function of true anomaly angle.

Calling Procedure

planet_dist, taa, SystemConsts, distance=distance, velocity=velocity

Inputs

- 1 taa: array containing true anomaly angles in radians
- 2 SystemConsts: a SystemConstants structure.

Outputs

- 1 distance: distance of the planet from the sun. Units: AU
- 2 velocity: radial velocity (dr/dt) of the planet from the sun. Units: km s⁻¹.

Model Procedures Called

None.

Notes

- 1 The radial velocity is only computed for Mercury and Pluto. Otherwise, it is assumed to be 0. This is to avoid having to model a specific true anomaly for Jupiter and Saturn where dr/dt is small.
- 2 Equations:

$$r = \frac{a(1+\epsilon)}{1+\epsilon\cos\phi} \tag{51}$$

$$v_r = \frac{dr}{dt} \tag{52}$$

where a is the semi-major axis, ϵ is the orbital eccentricity, and ϕ is the true anomaly angle. While computing r is straight forward, computing v_r is not as that requires knowing how ϕ varies with time.

- 3 Procedure used (from wikipedia):
 - 3.1 The mean anomaly is given by:

$$M = \frac{2\pi t}{P} \tag{53}$$

where P is the orbital period and t is time (t/P) is the orbital phase

3.2 The *eccentric anomaly* is the angle from perihelion to the center of the ellipse to the planet:

$$M = E - \epsilon \sin E \tag{54}$$

where E, the eccentric anomaly, is determined numerically.

3.3 The true anomaly angle is given by:

$$\tan(\phi/2) = \sqrt{\frac{1+\epsilon}{1-\epsilon}} \tan(E/2) \tag{55}$$

which can easily be inverted to compute ϕ .

3.4 To get $\phi(t)$, I compute ϕ at 1000 points discrete points along the orbit and numerically compute the derivative dr/dt. This gives ϕ , r, and dr/dt as functions of time (converting from orbital phase to time units using Kepler's Third Law, $P^2 = a^3$, to get the orbital period). I compute r and drdt at the requested true anomalies by linear interpolation.

This Page Last Updated

12 December 2011

References

Burger et al. 2010.

Killen et al. 2009.

Field	Data Type	\mathbf{Unit}	Description
x0	pointer to dblarr	R _{obj}	initial x position
у0	pointer to dblarr	R_{obj}	initial y position
z0	pointer to dblarr	R_{obj}	initial z position
fO	pointer to dblarr	_	initial fractional content
vx0	pointer to dblarr	$R_{\rm plan}~{ m s}^{-1}$	initial v_x
vy0	pointer to dblarr	$R_{\rm plan}~{\rm s}^{-1}$	initial v_y
vz0	pointer to dblarr	$R_{\rm plan}~{\rm s}^{-1}$	initial v_z
phi0	pointer to dblarr	radians	initial orbital phase (local time)
totalsource	double	R_{obj}	total of f0
time	pointer to dblarr	\sec	integration time for each packet
x	pointer to dblarr	R_{plan}	final x position
У	pointer to dblarr	R_{plan}	final y position
z	pointer to dblarr	R_{plan}	final z position
frac	pointer to dblarr	_	final fractional content
VX	pointer to dblarr	$R_{\rm plan}~{\rm s}^{-1}$	final v_x
vy	pointer to dblarr	$R_{\rm plan}~{\rm s}^{-1}$	final v_y
VZ	pointer to dblarr	$R_{\rm plan} \ s^{-1}$	final v_z
lossfrac	pointer to dblarr	_	fraction lost to ionization
hitfrac	pointer to dblarr	_	fraction hitting objects
ringfrac	pointer to dblarr	_	fraction hitting Saturn's rings
leftfrac	pointer to dblarr	_	fraction escaping beyond input.options.outeredge
deposition	structure	_	map of surface deposition (Table ??)
loss_info	structure	_	ionization and dissociation reactions used (Table ??)
sourcefile	pointer to strarr	_	origin of this output file

Table 3: output fields.

\mathbf{Field}	Data Type	${f Unit}$	Description
Planet	string	_	Planet name
rPlan	double	km	Planetary radius
aPlan	double	AU	Planetary semi-major axis
epsPlan	double	_	Planetary eccentricity
Objects	pointer to strarr	_	Object (planet and satellite) names (1)
GM	pointer to dblarr	$R_{\rm plan}^3 \ {\rm s}^{-2}$	Gravitational constant \times Planetary mass $(1,2)$
radius	pointer to dblarr	R_{plan}	Radius of each object relative to planetary radius (1)
a	pointer to dblarr	R_{plan}	semi-major axis of each object relative to plantary radius (1)
eps	pointer to dblarr	_	eccentricity of each object (1)
orbvel	pointer to dblarr	${\rm km~s^{-1}}$	orbital velocity of satellites (2)
period	pointer to dblarr	\mathbf{s}	orbital period of satellites (1)
orbrate	pointer to dblarr	s^{-1}	orbital frequency of satellites (= $2\pi/\text{period}$) (1)

Table 4: SystemConsts fields. Notes: (1) The length of these arrays is (number of satellites) + 1. The first element refers to the planet and is 0, except for radius (where it is 1). (2) $G = 6.67428 \times 10^{-8} \text{ cm}^{-3} \text{ s}^{-2} \text{ g}^{-1}$

\mathbf{Field}	Data Type	\mathbf{Unit}	Description
strength	double	$G R_{plan}^{3}$	Dipole field strength
tilt	double	radians	Dipole tilt
lam3	double	radians	Longitude of tilt
offset	double	R_{plan}	Dipole offset
offlong	double	radians	Longitude of offset
offlat	double	radians	Latitude of offset
period	double	hours	Dipole period
magrat	double	$hours^{-1}$	Dipole rotation frequency $(2\pi/\text{period})$

Table 5: DipoleConsts fields.

Object	orbits	radius	mass	a	ϵ	rot period	orb period
Sun	_	6.955×10^{5}	1.9891×10^{30}	0	0	601.2	0.
Mercury	Sun	2439.7	0.330104×10^{24}	0.387098	0.205630	1407.51	87.97
Venus	Sun	6051.8	4.86732×10^{24}	0.723	0.0068	5832.45	244.70
Earth	Sun	6378.14	5.97219×10^{24}	1.0	0.0167	23.93	365.25
Mars	Sun	3396.2	0.641693×10^{24}	1.524	0.0934	24.62	687.02
Jupiter	Sun	71492.	1898.13×10^{24}	5.203	0.0483	9.9250	4333.
Saturn	Sun	60268.	568.319×10^{24}	9.529	0.0560	10.7625	10743.
Uranus	Sun	25559.	86.8103×10^{24}	19.19	0.0461	17.24	30700.
Neptune	Sun	24764.	102.410×10^{24}	30.09	0.0097	16.11	60280.
Pluto	Sun	1151.	0.01309×10^{24}	39.24	0.2482	153.29	90130.
Moon	Earth	1737.10	7.3477e22	384400	0.554	655.728	27.322
Io	Jupiter	1821.6	8.9319e22	421800.	0.0041	42.456	1.769
Europa	Jupiter	1560.8	4.8e22	671100.	0.0094	85.224	3.551
Ganymede	Jupiter	2163.2	1.4819e23	1070400.	0.0013	171.72	7.155
Callisto	Jupiter	2410.3	1.0759e23	1882700.	0.0074	400.56	16.69
Mimas	Saturn	198.2	0.4e20	185539.	0.0196	22.608	0.942
Enceladus	Saturn	252.1	1.1e20	238037.	0.0047	31.344	1.370
Tethys	Saturn	533.0	6.2e20	294672.	0.0001	45.312	1.888
Dione	Saturn	561.7	11e20	377415.	0.0022	65.688	2.737
Rhea	Saturn	764.3	23e20	527068.	0.0010	108.432	4.518
Titan	Saturn	2575.5	1350e20	1221865.	0.0288	478.800	15.95
Hyperion	Saturn	135.0	5.58e18	1500934.	0.0232	510.720	21.28
Iapetus	Saturn	735.6	18e20	3560851.	0.0293	1903.92	79.33
Phoebe	Saturn	106.6	8.292e18	12947913.	0.1634	13207.2	550.30
Charon	Pluto	593.	1.62e21	19600.	0.	153.294	6.38725
Nix	Pluto	68.	2e18	48708.	0.	596.544	24.856
Hydra	Pluto	84.	2e18	64749.	0.	916.944	38.206

Table 6: Solar System Parameters