

planetmath.org

Math for the people, by the people.

proper generator of a Grothendieck category

 ${\bf Canonical\ name} \quad {\bf ProperGeneratorOfAGrothendieckCategory}$

Date of creation 2013-03-22 18:28:00 Last modified on 2013-03-22 18:28:00

Owner bci1 (20947) Last modified by bci1 (20947)

Numerical id 10

Author bci1 (20947) Entry type Definition Classification msc 18E05 Classification msc 18-00

Related topic GrothendieckCategory Related topic ProperGeneratorTheorem

0.1 Introduction: family of generators and generator of a category

Definition 0.1. Let \mathcal{C} be a category. A family of its objects $\{U_i\}_{i\in I}$ is said to be a family of generators of \mathcal{C} if for every pair of distinct morphisms $\alpha, \beta: A \to B$ there is a morphism $u: U_i \to A$ for some index $i \in I$ such that $\alpha u \neq \beta u$.

One notes that in an additive category, $\{U_i\}_{i\in I}$ is a family of generators if and only if for each nonzero morphism α in \mathcal{C} there is a morphism $u:U_i\to A$ such that $\alpha u\neq 0$.

Definition 0.2. An object U in C is called a *generator* for C if $U \in \{U_i\}_{i \in I}$ with $\{U_i\}_{i \in I}$ being a family of generators for C.

Equivalently, (viz. Mitchell) U is a generator for \mathcal{C} if and only if the set-valued functor H^U is an imbedding functor.

0.2 Proper generator of a Grothendieck category

Definition 0.3. A proper generator U_p of a Grothendieck category \mathcal{G} is defined as a generator U_p which has the property that a monomorphism $i: U' \to U_p$ induces an isomorphism ι ,

$$Hom_{\mathcal{G}}(U_p, U_p) \cong Hom_{\mathcal{G}}(U', U_p),$$

if and only if i is an isomorphism.