Bioinformatics II Winter Term 2016/17

Chapter 3: Multidimensional Data Visualization

Jun.-Prof. Dr.-Ing. Thomas Schultz

URL: http://cg.cs.uni-bonn.de

E-Mail: schultz@cs.uni-bonn.de

Office: Friedrich-Ebert-Allee 144, 53113 Bonn

November 15, 2016

Motivation: Multidimensional Data Vis

- In science, we frequently deal with data items that have multiple attributes
 - e.g., expression levels of a large number of genes
- 2-3 attributes can be mapped to space
- ~3-10 attributes can be visualized using multidimensional visualization techniques
- Some techniques support even more (~100) attributes
- Topic of today's lecture, but first some basics...

Heat Maps

- Heat maps are a direct visual representation of matrices
 - Colors encode numbers in each cell
 - Example [Eisen et al. 1998]:
 - Rows = Different genes
 - Columns = Different times after treatment
 - Values = log of relative expression level
- Refer to Chapter 2 when picking colors!
 - Example: Diverging color scheme greenblack-red

Histograms and Kernel Density Estimation

- **Histogram:** Bar chart of number (or fraction) of values \mathbf{x}_i in predefined ranges ("bins")
 - Result can depend strongly on bin width
 - If \mathbf{x}_i are samples from a probability density function (PDF), histogram is a piecewise constant estimate of the PDF
- Kernel Density Estimation (KDE):
 - Informally,"smooth version of a histogram"

Sketch: Wikipedia

KDE: Formal Definition

• Given values \mathbf{x}_i , KDE is defined by

$$f(\mathbf{x}) = \frac{1}{n} \sum_{i} K(\mathbf{x} - \mathbf{x}_{i})$$

- Kernel K is normalized to integrate to unity, e.g., standard normal $K(x) = \frac{1}{h\sqrt{2\pi}}e^{-\frac{x^2}{2h^2}}$
- **Bandwidth** *h* controls smoothness of *f*:
 - Analogous to number of bins in histogram
 - h too small: estimate "rough" and noisy
 - -h too large: oversmoothing
 - h should decrease with larger number n of samples
 - Silverman's rule of thumb: $h = \left(\frac{4\widehat{\sigma}^5}{3n}\right)^{\frac{1}{5}}$

5

Section 3.1: Scatterplots

Scatterplots

 Scatter plots are useful for visually recognizing trends and correlations between pairs of variables

Scatterplot Matrices (SPLOM)

Produce scatterplots for all pairs of variables and place them into a matrix

Total of $(k^2-k)/2$ scatterplots

Order in SPLOMs

- Re-ordering the dimensions does not change the projections shown in a SPLOM, it only permutes individual plots
- [Peng et al. 2004] find layout so that similar scatterplots are located close to each other
 - Distinguish between high-cardinality dimensions (number of possible values > number of points) and low-cardinality dimensions
 - Sort low-cardinality by number of values
 - Rate ordering of high-cardinality dimensions based on their correlation

SPLOMs: Rating High-Cardinality Order

 Pearson Correlation Coefficient measures degree of *linear* dependence between x and y

$$\rho_{xy} = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i} (x_{i} - \bar{x})^{2}} \sqrt{\sum_{i} (y_{i} - \bar{y})^{2}}}$$

- Clutter measure of a SPLOM:
 - For each pair (x,y) of high-cardinality dimensions, find all other pairs (x',y') with $|\rho_{xy} \rho_{x'y'}| < \epsilon$
 - Add the Euclidean distances of all those plots in the SPLOM (the smaller, the better)

SPLOMs with "Clutter Reduction"

- Exhaustive optimization requires $O(n^2 \cdot n!)$ computation
- Alternative heuristic: Random swapping

Ranking by Features

- To look for scatterplots that exhibit specific patterns, we can rank them by features such as
 - Fraction of outliers
 - Sparsity
 - Convexity
 - Monotonicity
 - etc.

 See [Wilkinson et al. 2006] for a more complete overview and how to compute them

Sorting by Features

 Computing many features and sorting **SPLOMs** according to the principal **PCA mode** is an alternative way to group similar plots together

Scagnostics

- Scagnostics creates a second-level "feature" SPLOM to visualize scatterplots from the original "data" SPLOM
- Links back to data SPLOM

Selecting Good Views

- Select scatterplots in which classes are wellseparated
 - Labels can be part of the data or obtained by clustering (Chapter 3.4)

Distance and Distribution Consistency

Distance consistency (DSC)

- Measures how many percent of all points are in the given projection – closer to their own cluster center than to all others
- Fast and simple to compute
- Assumes spherical clusters

Distribution consistency (DC)

- Based on penalizing local entropy (amount of uncertainty / constraint violation) in high-density regions
- Does not assume particular cluster shapes

Distribution Consistency

Definition of distribution consistency

- Local entropy:
$$H(x,y) = -\sum_{c \in C(X)} \frac{p_c}{\sum p_c} \log_2(\frac{p_c}{\sum p_c})$$
 • Reminder: $H \in [0, \log_2 |C|]$

- Distribution consistency: $\mathbf{DC} = 100 \frac{1}{Z} \sum_{x,y} p(x,y) H(x,y)$
 - $Z = \sum_{x,y} p(x,y) \log_2 |C| / 100$
- p estimated using Kernel Density Estimation

(b) 74

(c) 51

17

DC: WHO Example

WHO data

- 194 countries, 159 attributes, 6 HIV risk groups
 (>12,000 unique scatter plots)
- Focusing on DC > 80 eliminates 97% of the plots
- Highlighted rows: Single discriminative attributes
 - Example: Total health expenses

SPLOM Navigation

 Animated 3D transitions between neighboring views [Elmqvist et al. 2008]

Analogy: "Rolling the dice"

mages from drleft / Wikimedia

Scatterplots with Many Points

- Too many data points lead to overdraw
 - Color code 2Dhistogram ("heat map")
 - Kernel DensityEstimation
 - Disadvantage:Cannot seeindividualpoints

Splatterplots

- Splatterplots [Mayorga / Gleicher 2013]
 - Visual abstraction in image space, detail added when zooming in

Splatterplots: Dense Regions

- Based on Kernel Density Estimation
 - Kernel width defined in screen space
 - High-density regions shown as smooth, filled, and bounded shapes
 - Drawback: Shape can depend on density threshold

Splatterplots: Color Blending

- Where dense regions overlap:
 - Use hue to encode classes
 - Perform blending in LAB color space
 - Reduce luminance and saturation to indicate overlap

Splatterplots: Subsampling

- Outside of dense regions, points are
 - subsampled to ensure a minimum distance between them
 - More points added when zooming in

Fatal car crashes in 2005 vs. 2010

Summary: Scatterplots

- Scatterplots are one of the most common techniques to visualize trends and correlations between pairs of variables
 - Main limitation: Overdraw
 - Partial solution: Splatterplots
- Scatterplot matrices (SPLOM) generalize this technique to multi-dimensional data
 - Special techniques for sorting, navigation, and view selection

Section 3.2: Parallel Coordinates

Parallel Coordinates

Parallel Coordinates can be used to visualize multi-dimensional data

- N equidistant axes which are parallel to one of the screen axes and correspond to the attributes
- The axes are scaled to the [min,max] range of the corresponding attribute
- Every data item corresponds to a polygonal line which intersects each of the axes at the point which corresponds to the value for the attribute

Point-line Duality for Parallel Coordinates

The point \mathbf{x} in a) represented by the line $\mathbf{s}_{\mathbf{x}}$ in parallel coordinates in b).

Point-line Duality for Parallel Coordinates

- A straight line in the Cartesian coordinate system (a) amounts to a single intersection point of the lines in Parallel Coordinates (b).
 - The intersection is not necessarily between X₁ and X₂
 - Parallel lines for a perfect positive correlation
 - Large number of intersection points indicates uncorrelated axes

Example: Parallel Coordinates

Visualization of a microbiological dataset:

Axis Order Matters

Proposing Suitable Axis Orders

- [Ankerst et al. 1998]: Place similar dimensions next to each other
- Write dimension k as a vector \mathbf{a}^k (length: number n of data points)
- Euclidean distance:

$$D_e(\mathbf{a}^k, \mathbf{a}^l) = \sqrt{\sum_{i=1}^n (a_i^k - a_i^l)^2}$$

• Translation-invariant distance (\bar{a}^k = mean of \mathbf{a}^k):

$$D_t(\mathbf{a}^k, \mathbf{a}^l) = \sqrt{\sum_{i=1}^n \left((a_i^k - \overline{a}^k) - (a_i^l - \overline{a}^l) \right)^2}$$

• Scale-invariant distance $D_s(\mathbf{a}^k, \mathbf{a}^l) = D_e(\mathbf{t}(\mathbf{a}^k), \mathbf{t}(\mathbf{a}^l))$ $[\mathbf{t}(\mathbf{a})]_i = \frac{a_i - \min(\mathbf{a})}{\max(\mathbf{a}) - \min(\mathbf{a})}$

Measuring Partial Similarity

- When data is from different points in time,
 - find the longest time during which two attributes are more similar than ϵ :

$$S(\mathbf{a}^k, \mathbf{a}^l) = \max_{i,j} \{ (j-i) | (1 \le i < j \le n) \land D_s(\mathbf{a}^k_{[i,j]}, \mathbf{a}^l_{[i,j]}) < \epsilon \}$$

 $-\mathbf{a}_{[i,j]}$ = vector \mathbf{a} , restricted to coefficients [i,j]

If we would like to permit temporal shift:

$$S_{\operatorname{async}}(\mathbf{a}^k, \mathbf{a}^l) = \max_{i, x, y} \{i | D_S(\mathbf{a}^k_{[x, x+i]}, \mathbf{a}^l_{[y, y+i]}) < \epsilon\}$$

Computational Effort of Similarity Sorting

- Computing partial similarities can be expensive
 - Synchronized: $O(n^2)$ distances
 - Asynchronous: $O(n^3)$ distances
- Even given the distance matrix, finding the order which minimizes the sum of dissimilarities between neighbors is still equivalent to the traveling salesman problem
 - NP-complete, requires heuristic solution

Ant Colony Optimization

- Inspiration: Natural behavior of ants
 - Communication via pheromone trails

- Algorithm in [Ankerst et al. 1998]:
 - Seed m ants randomly, have each of them visit each dimension exactly once
 - Next dimension selected probabilistically, depending on distance and markers (initially zero)
 - At the end of each round, ant with shortest path leaves markers along its path
 - Magnitude inversely related to length of path

Similarity Sorting: Result

Parallel Coordinates using order given by the data

Parallel Coordinates using similarity sorting

Brushing and Linking

Interaction technique:

- "Brushing" = highlighting part of the data by selecting it with the mouse
- "Linking" = also highlighting the same data in another view

Subsampling the Data

Including all data can cause visual clutter:

15.000 data items with noise

5% of the data (750 data items)

Star Glyphs

Proposed by [Fienberg 1979]

- Equally spaced radii with a common origin
- The length of each spike is proportional to the

value of the respective attribute

 The ends are connected by a line

Sun Ray Plots

- Similar to star glyphs/plots
- Draw full axis, line indicates the value along each axis

Summary: Parallel Coordinates

- Parallel coordinates are a standard method for multi-dimensional data visualization
 - Provide overview over all dimensions
 - Correlation seen as parallel lines or single intersection
 - Easy mechanism for brushing / selection
 - Interaction and axis order are crucial!
 - Methods for judging similarity between dimensions
- Variants: Star glyph / sun ray plot

Section 3.3: Other Techniques

Star Coordinates

- Idea in [Kandogan 2001]: Arrange coordinate axes as a star in 2D
 - Unlike in star glyphs,
 represent each data point
 as a point on the plane
 - Point given by vector sum of the scaled coordinate axes
 - Reveals cluster structure and allows for interactive exploration

Star Coordinates: Interaction

- Projection to 2D results in ambiguities that are resolved by interaction
 - Axis scaling, rotation
 - Brush points or axis ranges

Grand Tours

- Idea in [Asimov 1985]: Once we have seen all possible 2D projections of a multi-dimensional space, we have seen the full space
- Create a sequence of projections (i.e., planes through the origin) that is...
 - continuous to allow for visual tracking
 - dense in the space of all projections
 - becoming dense rapidly
 - uniform (i.e., free from bias)
- Possible implementation: Interpolate between random projections

Grand Tour: Example Video

- From tutorial of open source software GGobi (ggobi.org)
- Dataset shows measurements of Australian crab, two species and two sexes each

Dimensional Stacking

- Idea in [LeBlanc et al. 1990]: Recursively embed 2D histograms within each other
 - Bins of outer 2D
 histogram contain
 another 2D histo-

gram, whose bins might contain yet another one...

Pixel-Oriented Techniques

- Idea in [Keim et al. 1995]: Map each data value to the color of a single pixel
 - Shows as much detail as possible
 - Lay out pixels in a recursive fashion to highlight patterns

Level 1: (3x3)

Level 2: (1x24)

Level 3: (80x1)

Glyphs and Icons

- Primitives that can be positioned exactly and represent variables by
 - geometric characteristics like length, angle or shape
 - other attributes like color and transparency
- Design rules
 - Features should be easy to distinguish and combine
 - Icons with different values should be distinguishable

Arrows and Weathervanes

Chernoff Faces

Proposed by [Chernoff 1973]

 Relies on human ability to distinguish small features in faces

• Similar to smileys: ☺ happy, ☺ sad, ☺ neutral,

;) wink, :] grin,

:D laugh, etc.

 Each facial feature represents one variable

Face Morphing

Variant proposed by [Alexa 98]

Summary

- Other alternatives for encoding multidimensional data are
 - Star coordinates (with interaction!)
 - Grand Tours
 - Dimensional Stacking
 - Glyphs

Section 3.4: Clustering

Clustering: Introduction

- Goal of clustering: Find meaningful groups in the data
 - Essentially without knowing anything about it ("unsupervised")
 - Based on similarity alone:
 Group similar data together,
 keep dissimilar data apart
 - Used, e.g., in view selection
- You should already know about two widely used methods:
 - 1. Hierarchical Agglomerative Clustering
 - *2. K*-means

setosa

versicolor

virginica

Spectral Clustering: Motivation

- k-means assumes spherical clusters
- Agglomerative clustering assumes well-separated clusters

55

Similarity Graphs

Undirected weighted **similarity graph** (V,E): Each data point is a vertex V, edge weights measure the similarity between points.

- ε-graph: Connect to all data points within distance ε
- kNN: Connect each data point to its k nearest neighbors
- Mutual kNN: Connect pairs of points for which both are among each other's k nearest neighbors

Graph Cuts

When partitioning a graph (V,E) into two vertex classes V_1 and V_2 , the corresponding "cut" consists of the edges between V_1 and V_2

cut(V₁,V₂) denotes the corresponding sum of edge weights

 Simply trying to minimize the cut usually splits off individual vertices, or very small groups

RatioCut and NCut

 Ratio cut avoids splitting off small clusters by normalizing by the number of nodes:

RatioCut =
$$\frac{\text{cut}(V_1, V_2)}{|V_1|} + \frac{\text{cut}(V_1, V_2)}{|V_2|}$$

- Normalized cut looks for partition such that
 - Similarities between classes are minimized
 - Similarities within classes are maximized

$$NCut = \frac{cut(V_1, V_2)}{vol(V_1)} + \frac{cut(V_1, V_2)}{vol(V_2)}$$

Uses vol(V_i) (sum of edge weights adjacent to V_i)
 rather than number of nodes

Finding exact optima of both criteria is NP-hard.

Graph Laplacian

Define:

- n=|V| (number of data points)
- Affinity matrix W (symmetric, nxn)
 - $-w_{ij}$ contains weight of edge between i and j
- Degree matrix **D** (diagonal, nxn)
 - sum of adjacent edge weights: $d_i = \sum_j w_{ij}$
- Graph Laplacian:

$$\mathbf{L} = \mathbf{D} - \mathbf{W}$$
 and $\tilde{\mathbf{L}} = \mathbf{I} - \mathbf{D}^{-1}\mathbf{W}$ (unnormalized) (normalized)

Indicator Vector

- Define **indicator vector** $f \in R^n$ of set $A \subset V$ such that $f_i = \sqrt{|\bar{A}|/|A|}$ if $v_i \in A$ and $f_i = -\sqrt{|A|/|\bar{A}|}$ if $v_i \in \bar{A}$
- f is orthogonal to the constant one vector 1

$$\sum_{i=1}^{n} f_i = \sum_{i \in A} \sqrt{\frac{|\bar{A}|}{|A|}} - \sum_{i \in \bar{A}} \sqrt{\frac{|A|}{|\bar{A}|}}$$

$$= |A| \sqrt{\frac{|\bar{A}|}{|A|}} - |\bar{A}| \sqrt{\frac{|A|}{|\bar{A}|}} = 0$$

• The Euclidean norm of f is $||f|| = \sqrt{n}$

$$\sum_{i=1}^{n} f_i^2 = |A| \frac{|\bar{A}|}{|A|} + |\bar{A}| \frac{|A|}{|\bar{A}|} = n$$

Quadratic Form of Graph Laplacian

Lemma: The quadratic form associated with the graph Laplacian is

$$f^{T}Lf = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2$$

Proof: $f^T L f = f^T D f - f^T W f = \sum_{i=1}^n d_i f_i^2 - \sum_{i,j=1}^n f_i f_j w_{ij}$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} d_i f_i^2 - 2 \sum_{i,j=1}^{n} f_i f_j w_{ij} + \sum_{j=1}^{n} d_j f_j^2 \right)$$

$$= \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2$$

RatioCut in Terms of Graph Laplacian

• Given indicator vector f,

$$f^{T}Lf = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_{i} - f_{j})^{2}$$

$$= \frac{1}{2} \sum_{i \in A, j \in \bar{A}} w_{ij} (\sqrt{|\bar{A}|/|A|} + \sqrt{|A|/|\bar{A}|})^{2}$$

$$+ \frac{1}{2} \sum_{i \in \bar{A}, j \in A} w_{ij} (-\sqrt{|\bar{A}|/|A|} - \sqrt{|A|/|\bar{A}|})^{2}$$

$$= \text{cut}(A, \bar{A}) \left(\frac{|\bar{A}|}{|A|} + \frac{|A|}{|\bar{A}|} + 2\right)$$

$$= \text{cut}(A, \bar{A}) \left(\frac{|A| + |\bar{A}|}{|A|} + \frac{|A| + |\bar{A}|}{|\bar{A}|}\right)$$

$$= |V| \cdot \text{RatioCut}(A, \bar{A})$$

RatioCut Re-Written

- Our results allow us to **re-write RatioCut** as a minimization of $f^{\rm T} L f$
 - minimization over $A \subset V$ with f defined as above
- This equivalent reformulation with discrete f is still NP-hard, but it suggests a relaxation
 - permit continuous f
 - maintain constraints $f \perp \mathbf{1}$, $||f|| = \sqrt{n}$
 - We can use the Rayleigh-Ritz theorem: Since L is symmetric, its eigenvectors are the critical points of the Rayleigh quotient:

$$R(x) = \frac{x^{\mathrm{T}} L x}{x^{\mathrm{T}} x}$$

Properties of the Graph Laplacian

- L is symmetric and positive semi-definite
 - Symmetry: Direct consequence of definition
 - Semi-definiteness: Consequence of $f^T L f = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i f_j)^2$ and non-negativity of w_{ij}
- The constant one vector 1 is an eigenvector of L with corresponding eigenvalue 0
 - Direct consequence of definition L=D-W

Approximate RatioCut

- As a consequence of the observations above, the desired minimum of $f^T L f$ is attained when f is the eigenvector of L corresponding to its **second** smallest eigenvalue
 - "Fiedler vector", fuzzy cluster indicator
- A hard clustering is achieved by discretizing the coefficients of f, e.g., by
 - Thresholding at zero or at (max+min)/2
 - Applying a clustering method such as K means
 - Sorting the coefficients, computing RatioCut for each possible threshold, taking the optimum
- Note: No approximation guarantees, but works well in many real-world cases

Example: Approximate RatioCut

• Example: ε-graph over points sampled on fissure between lung lobes, edges weighted by similarity in surface normal

Fiedler vector (sorted)

Color coded on 3D data

Approximate Normalized Cut

- The Normalized Cut can be approximated in a very similar way, with the normalized Laplacian $\tilde{\mathbf{L}} = \mathbf{I} \mathbf{D}^{-1}\mathbf{W}$ replacing its unnormalized counterpart $\mathbf{L} = \mathbf{D} \mathbf{W}$
 - Can be re-written as generalized eigenproblem $\mathbf{L}f = \lambda \mathbf{D}f$
 - See [von Luxburg 2007] for details
- Implementation (for both RatioCut and NCut):
 - In practice, construct sparse graph and exploit sparsity in (generalized) eigenvector computation!
 Methods for this are outside of our scope.

Spectral Clustering: Multi-Cluster Case

Strategies for *K*>2 clusters:

- 1. Recursively bisect (sub-)clusters [Shi/Malik]
- Compute K smallest eigenvectors and use them to define K-dimensional coordinates for each point; use a traditional clustering method such as K means on that representation [Ng, Meila/Shi]
 - Justification: Approximation of multi-cluster
 RatioCut, see [von Luxburg 2007]

Visualizing the Spectral Embedding

The plot on the right shows a "grand tour" of the K-dimensional (here, K=5) feature space spanned by five eigenvectors

Spectral Clustering: Number of Clusters

Spectral Gap:

- In case of K connected components, null space of Laplacian is K-dimensional
- A stable clustering requires that K near-zero eigenvalues should be followed by a "spectral gap" towards a markedly larger K+1st eigenvalue

3rd Eigenvector

Summary: Clustering

- Clustering attempts to find intrinsic groups in the data
- Hierarchical agglomerative clustering and kmeans are widely used standard methods
- Spectral clustering can overcome their limitations by adapting to complex cluster shapes and being more robust
 - Linear algebra to solve relaxations of powerful,
 but NP hard clustering criteria
 - Spectral gap as an indicator of cluster number

References: Clustering

- Christopher M. Bishop: *Pattern Recognition and Machine Learning*. Springer, 2006
- Ulrike von Luxburg: *A Tutorial on Spectral Clustering*. Stat Comput 17:395-416, 2007
- Rui Xu: Clustering. Wiley, 2009