МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Организация ЭВМ и систем» Тема: Трансляции, отладка и выполнение программ на языке Ассемблера

Студент гр. 1383	Куликов М.Д.
Преподаватель	Ефремов М.А

Санкт-Петербург 2022

Цель работы.

Изучить трансляцию, отладку и выполнение программ на языке Ассемблера.

Задание.

Часть 1

1. Просмотреть программу hello1.asm, которая формирует и выводит на экран приветствие пользователя с помощью функции ОС MSDOS, вызываемой через прерывание с номером 21H (команда Int 21h).

Выполняемые функцией действия и задаваемые ей параметры - следующие:

- -обеспечивается вывод на экран строки символов, заканчивающейся знаком "\$";
- требуется задание в регистре ah номера функции, равного 09h, а в регистре dx смещения адреса выводимой строки;
 - используется регистр ах и не сохраняется его содержимое.
- 2. Разобраться в структуре и реализации каждого сегмента программы. Непонятные фрагменты прояснить у преподавателя. Строку-приветствие преобразовать в соответствии со своими личными данными.
 - 3. Загрузить файл hello1.asm из каталога Задания в каталог Masm.
 - 4. Протранслировать программу с помощью строки

> masm hello1.asm

с созданием объектного файла и файла диагностических сообщений (файла листинга). Объяснить и исправить синтаксические ошибки, если они будут обнаружены транслятором. Повторить трансляцию программы до получения объектного модуля.

5. Скомпоновать загрузочный модуль с помощью строки

> link hello1.obj

- с созданием карты памяти и исполняемого файла hello1.exe.
- 6. Выполнить программу в автоматическом режиме путем набора строки

> hello1.exe

убедиться в корректности ее работы и зафиксировать результат выполнения в протоколе.

7. Запустить выполнение программы под управлением отладчика с помощью команды

> afd hello1.exe

Записать начальное содержимое сегментных регистров CS, DS, ES и SS. Выполнить программу в пошаговом режиме с фиксацией используемых регистров и ячеек памяти до и после выполнения каждой команды. Обычные команды выполняются по F1 (Step), а вызовы обработчиков прерываний (Int) - по F2 (StepProc), чтобы не входить внутрь обработчика прерываний. Продвижение по сегментам экранной формы отладчика выполняется с помощью клавиш F7 — F10 (up, down, left, right). Перезапуск программы в отладчике выполняется клавишей F3 (Retrieve). Выход из отладчика - по команде Quit.

Результаты прогона программы под управлением отладчика должны быть представлены в виде, показанном на примере одной команды в табл.1, и подписаны преподавателем.

Часть 2

Выполнить пункты 1 - 7 части 1 настоящего задания применительно к программе hello2.asm, приведенной в каталоге Задания, которая выводит на экран приветствие пользователя с помощью процедуры WriteMsg, а также использует полное определение сегментов. Сравнить результаты прогона под управлением отладчика программ hello1 и hello2 и объяснить различия в размещении сегментов.

Выполнение работы

1. Часть 1

- 1.1. Просмотрен код программы hello1.asm и прочитаны комментарии, разобрано действие каждой строки.
- 1.2. В строку Greeting были добавлены личные даные.

- 1.3. Протранслированна программа hello1.asm с созданием объектного файла hello1.obj и файлом листинга hello1.lst ,ошибок не обнаружено.
- 1.4. Скомпонован загрузочный модуль с созданием исполняемого файла hello1.exe.
- 1.5. Запущена программа в автоматическом режиме. Программа выполнилась без ошибок, результат корректен.
- 1.6. Программа запущена под управлением отладчика.

Результаты отладки программы:

Начальное значение сегментных регистров:

$$CS = 1A05$$
; $DS = 19F5$; $ES = 19F5$; $SS = 1A0C$;

Таблица 1 - результаты отладки программы hello1.exe

Адрес	Символический	16-ричный	Содержимое регистров и ячеек памяти		
Команды	код команды	код команды	до выполнения	После выполнения	
0010	MOV AX, 1A07	B8071A	AX = 0000	AX = 1A07	
			IP = 0010	IP = 0013	
0013	MOV DS, AX	8ED8	DS = 19F5	DS = 1A07	
			IP = 0013	IP = 0015	
0015	MOV DX, 0000	BA0000	DX = 0000	DX = 0000	
			IP = 0015	IP = 0018	
0018	MOV AH, 09	B409	AX = 1A07	AX = 0907	
			IP = 0018	IP = 001A	
001A	INT 21	CD21	IP = 001A	IP = 001C	
001C	MOV AH, 4C	B44C	AX = 0907	AX = 4C07	
			IP = 001C	IP = 001E	
001E	INT 21	CD21	IP = 001E	IP = 0010	

2. Часть 2

2.1. Проделаны аналогичные шаги 1.1-1.6 для программы hello2.asm. В строку Greeting дописаны личные данные.

Результаты отладки программы:

Начальное значение сегментных регистров:

$$CS = 1A0B$$
; $DS = 19F5$; $ES = 19F5$; $SS = 1A05$;

2.2. Таблица 2 — Результаты отлидки программы hello2.exe.

Адрес	Символический	16-ричный	Содержимое регистров и ячеек памяти		
Команды	код команды	код команды	до выполнения	После выполнения	
0005	PUSH DS	1E	IP = 0005	IP = 0006	
			SP = 0018	SP = 0016	
			Stack +0 0000	Stack +0 19F5	
			+2 0000	+2 0000	
			+4 0000	+4 0000	
			+6 0000	+6 0000	
0006	SUB AX, AX	2B C0	IP = 0006	IP = 0008	
0008	PUSH AX	50	IP = 0008	IP = 0009	
			SP = 0016	SP=0014	
			Stack +0 19F5	Stack +0 0000	
			+2 0000	+2 19F5	
			+4 0000	+4 0000	
			+6 0000	+6 0000	
0009	MOV AX, 1A07	B8071A	IP = 0009	IP = 000C	

			AX = 0000	AX = 1A07
000C	MOV DS, AX	8ED8	IP = 000C	IP = 000E
			DS = 19F5	DS = 1A07
000E	MOV DX, 0000	BA0000	IP = 000E	IP = 0011
0011	CALL 0000	E8ECFF	IP = 0011	IP = 0000
			SP = 0014	SP = 0012
			Stack +0 0000	Stack +0 0014
			+2 19F5	+2 0000
			+4 0000	+4 19F5
			+6 0000	+6 0000
0000	MOV AH, 09	B409	IP = 0000	IP = 0002
			AX = 1A07	AX = 0907
0002	INT 21	CD21	IP = 0002	IP = 0004
0004	RET	C3	IP = 0004	IP = 0014
			SP = 0012	SP = 0014
			Stack +0 0014	Stack +0 0000
			+2 0000	+2 19F5
			+4 19F5	+4 0000
			+6 0000	+6 0000
0014	MOV DX,0010	BA0100	IP = 0014	IP = 0017
			DX = 0000	DX = 0010
0017	CALL 0000	E8E6FF	IP = 0017	IP = 0000
			SP = 0014	SP = 0012
			Stack +0 0000	Stack +0 001A
			+2 19F5	+2 0000
			+4 0000	+4 19F5
			+6 0000	+6 0000
0000	MOV AH, 09	B409	IP = 0000	IP = 0002
0002	INT 21	CD21	IP = 0002	IP = 0004
0004	RET	С3	IP = 0004	IP = 001A
			SP = 0012	SP = 0014

			Stack +0 001A	Stack +0 0000
			+2 0000	+2 19F5
			+4 19F5	+4 0000
			+6 0000	+6 0000
001A	RET FAR	СВ	IP = 001A	IP = 0000
			SP = 0014	SP = 0018
			CS = 1A0A	CS = 19F5
			Stack +0 0000	Stack +0 0000
			+2 19F5	+2 0000
			+4 0000	+4 0000
			+6 0000	+6 0000

Вывод.

Была изучена трансляция, отладка и выполнение программ на языке Ассемблера

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: hello1.asm

```
; HELLO1.ASM - упрощенная версия учебной программы лаб.раб. N1
              по дисциплине "Архитектура компьютера"
 ******************
; Назначение: Программа формирует и выводит на экран приветствие
             пользователя с помощью функции ДОС "Вывод строки"
             (номер 09 прерывание 21h), которая:
;
              - обеспечивает вывод на экран строки символов,
               заканчивающейся знаком "$";
              - требует задания в регистре ah номера функции=09h,
                а в регистре dx - смещения адреса выводимой
               строки;
              - использует регистр ах и не сохраняет его
               содержимое.
  ***************
  DOSSEG
                                            ; Задание сегментов под
ЛОС
  .MODEL SMALL
                                            ; Модель памяти-
SMALL(Малая)
  .STACK 100h
                                            ; Отвести под Стек 256
байт
  .DATA
                                            ; Начало сегмента данных
                                            ; Текст приветствия
Greeting LABEL BYTE
  DB 'Вас приветствует ст.гр.1383 - Куликов М.Д..',13,10,'$'
  .CODE
                                     ; Начало сегмента кода
  mov ax, @data
                                      ; Загрузка в DS адреса начала
                                     ; сегмента данных
  mov ds, ax
  mov dx, OFFSET Greeting
                                      ; Загрузка в dx смещения
                                     ; адреса текста приветствия
DisplayGreeting:
  mov ah, 9
                                      ; # функции ДОС печати строки
  int 21h
                                     ; вывод на экран приветствия
                                      ; # функции ДОС завершения
      ah, 4ch
  mov
программы
  int 21h
                                     ; завершение программы и выход в
ЛОС
  END
     Название файла: hello2.asm
; HELLO2 - Учебная программа N2 лаб.раб.#1 по дисциплине "Архитектура
компьютера"
          Программа использует процедуру для печати строки
;
      ТЕКСТ ПРОГРАММЫ
EOFLine EQU '$'
                        ; Определение символьной константы
                              "Конец строки"
```

```
; Стек программы
ASSUME CS:CODE, SS:AStack
AStack
         SEGMENT STACK
         DW 12 DUP('!') ; Отводится 12 слов памяти
AStack
         ENDS
; Данные программы
DATA
         SEGMENT
; Директивы описания данных
         DB 'Hello Worlds!', OAH, ODH, EOFLine
GREETING DB 'Student from 1383 - Kulikov M.D. $'
DATA
         ENDS
; Код программы
CODE
         SEGMENT
; Процедура печати строки
WriteMsg PROC NEAR
         mov AH, 9
         int
               21h ; Вызов функции DOS по прерыванию
         ret
WriteMsg ENDP
; Головная процедура
Main
         PROC FAR
         push DS
                       ;\ Сохранение адреса начала PSP в стеке
         sub
               AX,AX
                       ; > для последующего восстановления по
         push AX
                        ;/ команде ret, завершающей процедуру.
         mov
               AX, DATA
                                   ; Загрузка сегментного
         mov
               DS, AX
                                   ; регистра данных.
               DX, OFFSET HELLO
         mov
                                 ; Вывод на экран первой
         call WriteMsg
                                   ; строки приветствия.
         mov DX, OFFSET GREETING; Вывод на экран второй
         call WriteMsg
                                   ; строки приветствия.
         ret
                                   ; Выход в DOS по команде,
                                   ; находящейся в 1-ом слове PSP.
Main
         ENDP
CODE
         ENDS
         END Main
```

приложение Б

ЛИСТИНГИ

Название файла: hello1.lst

Microsoft (R) Macro Assembler Version 5.10

9/26/22 00:16:51

Page 1-1

DOSSEG

.MODEL SMALL

.STACK 100h

.DATA

0000

Greeting LABEL BYTE

0000 D0 92 D0 B0 D1 81

DB "Вас приветствует ст.гр.1383 - Куликов

М.Д..',13,10,'\$'

20 D0 BF D1 80 D0

B8 D0 B2 D0 B5 D1

82 D1 81 D1 82 D0

B2 D1 83 D0 B5 D1

82 20 D1 81 D1 82

2E D0 B3 D1 80 2E

31 33 38 33 20 2D

Page 1-2

20 D0 9A D1 83 D0

BB D0 B8 D0 BA D0

BE D0 B2 20 D0 9C

2E D0 94 2E 2E 0D

0A 24

.CODE

0000 B8 ---- R mov ax, @data

0003 8E D8 mov ds, ax

0005 BA 0000 R mov dx, OFFSET Greeting

0008 DisplayGreeting:

0008 B4 09 mov ah, 9

000A CD 21 int 21h

000C B4 4C mov ah, 4ch

000E CD 21 int 21h

END

Symbols-1

Segments and Groups:

N a m e	Lengt	h Alig	n Coml	oine C	lass	
DGROUP	004A	WORD 0100 PAR	A	STAC	CK	'STACK'
Symbols:						
N a m e	Туре	Value Attr				
DISPLAYGREETING .		L NE	EAR	0008	_TEX	T
GREETING		L BYTE	0000	_DA	ΓΑ	
@CODE		TEXT TH	TYT			
@CODESIZE		TEXT 0	27 🕻 T			
@CPU		TEXT 010	1h			
@DATASIZE		TEXT 0				
@FILENAME		TEXT hell	01			
@VERSION		TEXT 510)			

- 33 Total Lines
- 19 Symbols

47994 + 459266 Bytes symbol space free

- 0 Warning Errors
- 0 Severe Errors

Название файла: hello2.lst

Microsoft (R) Macro Assembler Version 5.10 9/26

9/26/22 00:23:12

Page 1-1

; HELLO2 - PJC‡P μ P±PSP°CĻI PïCЪPsPiCЪP°PjPjP° N2 P»P°P±.CЪP°P±.#1 PïPs PrPëCЃC†PëPïP»PëPSP μ "P

 \hbar СЂС...РёС,Р μ Р ϵ С,С \acute{r} СЂР $^{\circ}$ Р ϵ РsРjРїСЊСЂС,Р μ СЂР $^{\circ}$ "

; PuCЪPsPiCЪP°PjPjP° PëCЃPïPsP»СЊР·СѓР

 μ C, PïCЂPsC†P μ PrCŕCЂCŕ PrP»CЏ PïP μ C‡P°C,Pë

CΓC,

СЪРѕРєРё

;

; ТЕКРЎРў РџР РћР"Р РђРњРњР«

= 0024

EOFLine EQU '\$'

ΡħΡϊCЂΡμΡτΡμΡ»ΡμΡSΡ

ëPμ CΓΡëP¡PIPsP»CH5PSPsP№ PεPsPSCΓC,P°PSC,C<

; "РљРsPSPµC† CЃC

,CЪPsPePë"

; РЎС,Р μ Р ϵ РїСЂРsРіСЂР $^{\circ}$ РјРјС<

ASSUME CS:CODE, SS:AStack

0000 AStack SEGMENT STACK

0000 000C[DW 12 DUP('!') ;

PħC,PIPsPrPëC,CΓC

U 12 CЃР»PsPI PïP°PjCUC,Pë

0021

0018 AStack ENDS

; P"P°PSPSC $\langle P\mu \ P$ ïC \mathcal{T} PsPiC \mathcal{T} P°PjPjC \langle

0000 DATA SEGMENT

; P"PëCЂPμPεC,PëPIC< PsPïPëCΓ́P°PSPëCLI PrP°PSPS

C<C...

0000 48 65 6C 6C 6F 20 HELLO DB 'Hello Worlds!', 0AH,

0DH,EOFLine

57 6F 72 6C 64 73

21 0A 0D 24

0010 53 74 75 64 65 6E GREETING DB 'Student from 1383 - Kulikov M.D.

\$'

74 20 66 72 6F 6D

20 31 33 38 33 20

2D 20 4B 75 6C 69

6B 6F 76 20 4D 2E

44 2E 20 24

0032 DATA ENDS

; РљРsPr PïCЪPsPiCЪP°PjPjC‹

0000 CODE SEGMENT

; PџCЂPsC†PμPrCŕCЂР° PїPμC‡P°C,Pё CЃС,СЂPsPєPё

0000 WriteMsg PROC NEAR

0000 B4 09 mov AH,9

0004 C3 ret

Page 1-2

WriteMsg ENDP 0005 ; P"PsP»PsPIPSP°CLI PïCЪPsC†PμPrCŕCЪP° 0005 PROC FAR Main ;\ РЎРsС...СЪР°РSРµРSРё 0005 1E push DS Pμ P°PrCЂPμCЃP° PSP°C‡P°P»P° PSP PI CЃC,PμP ϵ Pμ 0006 2B C0 sub AX,AX ;> PrP>CUΡϊΡsCΓΡ»ΡμΡ rCrChC%PμPiPs PIPsCrCrC,P°PSPsPIP»PμPSPëCLI PïPs 0008 50 ;/ PePsPiP°PSPrPµ ret push AX , $P \cdot P^{\circ}PIP\mu C^{\dagger}C \in P^{\circ}C^{\dagger}C \otimes P\mu P^{N}_{2}$ PϊC $^{\dagger}P\mu PrC^{\dagger}C^{\dagger}CC^{\dagger}C$ ί. 0009 B8 ---- R mov AX,DATA ; P—P°PiCTbC ŕP·PeP° CΓΡμΡiPiPμPSC, PSPsPiPs 000C 8E D8 ; СЪегРёС mov DS,AX ЃС,СЪР° РтР°PSPSC⟨С.... mov DX, OFFSET HELLO ; P'C(PIPsP 000E BA 0000 R r PSP° CΚ̈́PϵCЂP°PS PïPμCЂPIPsP№ 0011 E8 0000 R call WriteMsg ; CΓC, CЂPsP ePë PïCTbPëPIPμC,CΓC,PIPëCII. mov DX, OFFSET GREETING; P'C<PIPsP 0014 BA 0010 R т PSP° CЌРєСЪР°PS PIC,PsCЪPsP№ call WriteMsg ; CΓC,CЪPsP 0017 E8 0000 R ϵ Pë PïC \bar{b} PëPIP μ C,C $\hat{\Gamma}$ C,PIPëC \bar{L} I. ; P'C<C...PsP 001A CB ret r PI DOS PïPs PεPsPjP°PSPrPμ,

; PSP°C...PsP

rCЏC‰ΡμΡ№CЃCЏ PI 1-PsPj CЃP»PsPIPμ PSP.

001B Main ENDP

001B CODE ENDS

END Main

Symbols-1

Segments and Groups:

N a m e	Lengt	h Alig	n Comb	oine Class	
ASTACK	001B	PARA	NON	E	
Symbols:					
N a m e	Туре	Value Attr			
EOFLINE		NUMBER	0024		
GREETING		L BYTE	0010	DATA	
HELLO		L BYTE	0000	DATA	
MAIN	F PRO	OC 0005	CODI	E Le	ength = 0016
WRITEMSG		N PROC	0000	CODE	Length = 0005
@CPU		TEXT 010 TEXT HEI TEXT 510	LLO2		

- 52 Source Lines
- 52 Total Lines
- 13 Symbols

47986 + 459271 Bytes symbol space free

0 Warning Errors

0 Severe Errors