

Intro to ML and Language models

Radoslav Neychev

Spring 2021

Outline

- 1. Introduction to Machine Learning, motivation
- 2. ML thesaurus and notation
- 3. RNN intuitions
- 4. Language models
- 5. Q&A

Motivation, historical overview and

current state of ML and Al

Machine Learning applications

- Object detection
- Action classification
- Image captioning
- ...

Machine Learning applications

Machine Learning applications

Data — Knowledge

Long before the ML

Isaac Newton

Johannes Kepler

Long before the ML

Eratosthenes

FALSE

Denote the dataset.

23

Some

student

Dellote	Denote the dataset.										
		Statistics	Python		Native		Target				
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)				
John	22	2 5	4	Brown	English	5	TRUE				
Aahna	17	4	5	Brown	Hindi	4	TRUE				
Emily	25	5	5	Blue	Chinese	5	TRUE				
Michael	27	3	4	Green	French	5	TRUE				

3 NA

Esperanto

FALSE

Observation (or datum, or data point) is one piece of information.

		Statistics	Python		Native		larget
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE
Some							

student 23 3 NA Esperanto 2 In many cases the observations are supposed to be *i.i.d.*

- independent
- identically distributed

4

5

5

TRUE

TRUE

TRUE

TRUE

FALSE

Fostura (or predictor) represents some special property

reature	or bi	redictor) r	epreser	its some	e speciai p	property.	
		Statistics	Python		Native		T
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(r
John	22	5	4	Brown	English	5	

4

5

3

3

Aahna

Emily

Some

Michael

student

17

25

27

23

	1 - 1 -				[]	<u> </u>	
		Statistics	Python		Native		Target
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)

5 Brown

4 Green

5 Blue

3 NA

Hindi

Chinese

French

Esperanto

These all are features

		Statistics	Python		Native		larget
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE
Some							
student	23	3	3	NA	Esperanto	2	FALSE

FALSE

These all are features

23

Some

student

illese a	These all are realures										
		Statistics	Python		Native		Target				
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)				
John	22	5	. 4	Brown	English	5	TRUE				
Aahna	17	4	5	Brown	Hindi	4	TRUE				
Emily	25	5	5	Blue	Chinese	5	TRUE				
N 4 1 1	0.7					_	TDUE				

ivame	Age	(mark)	(mark)	Eye color	language	rarget (mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE

3 NA

3

Esperanto

FALSE

23

3

Some

student

These all are features										
		Statistics	Python		Native		Target			
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)			
John	22	2 5	4	Brown	English	5	TRUE			
Aahna	17	4	5	Brown	Hindi	4	TRUE			
Emily	25	5	5	Blue	Chinese	5	TRUE			
Michael	27	3	4	Green	French	5	TRUE			

3 NA

Esperanto

FALSE

These all are features									
		Statistics	Python		Native		Target		
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)		
John	22	5	4	Brown	English	5	TRUE		
Aahna	17	4	5	Brown	Hindi	4	TRUE		
Emily	25	5	5	Blue	Chinese	5	TRUE		
Michael	27	3	4	Green	French	5	TRUE		

3 NA

Esperanto

Name	Age	(mark)
John	22	
Achno	17	

23

3

Some

student

And even the name is a *feature*

		Statistics	Python		Native		Target
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE
Some							
student	23	3	3	NA	Esperanto	2	FALSE

(despite it might be not informative)

FALSE

The *design matrix* contains all the features and observations. Statistics Dython Mativa Taract

		Statistics	r yulon		INALIVE		iaiyet
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE

Esperanto

3 NA

Some

student

23

3

Features can even be multidimensional, we will discuss it later in this course.

FALSE

Target represents the information we are interested in.

		Statistics	Python		inative		rarget
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE
Some							

3 NA

Esperanto

Target can be either a **number** (real, integer, etc.) – for **regression** problem

23

Target represents the information we are interested in.

		Statistics	Python		Native		Target
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE
Some							
student	23	3	3	NA	Esperanto	2	FALSE

Or a label – for classification problem

Target represents the information we are interested in.

	-						
		Statistics	Python		Native		T
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(
John	22	5	4	Brown	English	5	

5 Blue

3 NA

4 Green

Mark can be treated as a label too (due to finite number of labels:

17 Aahna 5 Brown

5

3

3

25

27

23

1 to 5). We will discuss it later.

Emily

Some

Michael

student

Esperanto

Hindi

Chinese

French

Target (passed)

5

5

TRUE

TRUE

TRUE

TRUE

FALSE

Further we will work with the numerical target (mark)

		Statistics	Python		Native	
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)
John	22	5	4	Brown	English	5
Aahna	17	4	5	Brown	Hindi	4
Emily	25	5	5	Blue	Chinese	5
Michael	27	3	4	Green	French	5
Some student	23	3	3	NA	Esperanto	2

The *prediction* contains values we predicted using some *model*.

Statistics Bython Native Predicted

		Statistics	Python		inative		riedicted
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(mark)
John	22	5	4	Brown	English	5	4.5
Aahna	17	4	5	Brown	Hindi	4	4.5

 Aahna
 17
 4
 5 Brown
 Hindi
 4
 4.5

 Emily
 25
 5
 5 Blue
 Chinese
 5
 5

 Michael
 27
 3
 4 Green
 French
 5
 3.5

Some student 23 3 NA Esperanto 2 3

One could notice that prediction just averages of Statistics and Python marks. So our **model** can be represented as follows:

The *prediction* contains values we predicted using some *model*. Predicted Statistics Python **Native**

Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(mark)
John	22	5	4	Brown	English	5	4.5

Aanna	17	4	5	Brown	Hindi	4	4.5
Emily	25	5	5	Blue	Chinese	5	5
Michael	27	3	4	Green	French	5	3.5

Emily	25	5	5	Blue	Chinese	5	5
Michael	27	3	4	Green	French	5	3.5
Some							
student	23	3	3	NA	Esperanto	2	3

 $\operatorname{mark}_{ML} = \frac{1}{2} \operatorname{mark}_{Statistics} + \frac{1}{2} \operatorname{mark}_{Python}$

Different models can provide different predictions:

5

5

3

The *prediction* contains values we predicted using some *model*. Pradictad Mativo Ctatiation Dython

		Statistics	Python		ivalive		i icalcica
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(mark)
John	22		4	Brown	English	5	1
Aahna	17	4	5	Brown	Hindi	4	5

5 Blue

 $\operatorname{mark}_{ML} = \operatorname{random}(\operatorname{integer from} [1; 5])$

Michael 27 4 Green French Some 23 student 3 NA **Esperanto**

Different models can provide different predictions:

5

25

Emily

Chinese

5

4

3

The *prediction* contains values we predicted using some *model*.

		Statistics	Python		Native		Predicted
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(mark)
John	22	5	4	Brown	English	5	1
Aahna	17	4	5	Brown	Hindi	4	5
Emily	25	5	5	Blue	Chinese	5	2
							_

4 Green

French

23 3 NA **Esperanto** Different models can provide different predictions.

3

3

Michael

student

Some

27

Usually some hypothesis lies beneath the model choice.

Loss function measures the error rate of our model.

Square		Predicted
Square deviation	Target (mark)	(mark)
16	5	1
1	4	5
9	5	2
1	5	4
4	0	2
1	2	3

• **Mean Squared Error** (where y is vector of targets):

$$MSE(\mathbf{y}, \mathbf{\hat{y}}) = \frac{1}{N} ||\mathbf{y} - \mathbf{\hat{y}}||_2^2 = \frac{1}{N} \sum_i (y_i - \hat{y}_i)^2$$

Loss function measures the error rate of our model.

Absolute		Predicted
deviation	Target (mark)	(mark)
4	5	1
1	4	5
3	5	2
1	5	4
1	2	3

• *Mean Absolute Error* (where y is vector of targets):

$$MAE(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} ||\mathbf{y} - \hat{\mathbf{y}}||_1 = \frac{1}{N} \sum_{i} |y_i - \hat{y}_i|$$

5

5

5

3.5

3

To learn something, our *model* needs some degrees of freedom:

		Statistics	Python		Native		Predicted
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(mark)
John	22	5	4	Brown	English	5	4.5

5 Brown

5 Blue

27 Michael 4 Green French Some 23 3 student

 $\operatorname{mark}_{ML} = w_1 \cdot \operatorname{mark}_{Statistics} + w_2 \cdot \operatorname{mark}_{Python}$

5

Aahna

Emily

17

25

Esperanto 3 NA

Chinese

4.5 Hindi 4

4

5

5

2

4.734

5.101

3.714

3.060

To learn something, our *model* needs some degrees of freedom:

				_			
		Statistics	Python		Native		Predicted
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(mark)
John	22	5	4	Brown	English	5	4.447

5 Brown

5 Blue

Hindi

Chinese

Michael 27 3 4 Green French
Some
student 23 3 NA Esperanto

 $\operatorname{mark}_{ML} = w_1 \cdot \operatorname{mark}_{Statistics} + w_2 \cdot \operatorname{mark}_{Python}$

5

Aahna

Emily

17

25

4

5

5

5

4

3

To learn something, our *model* needs some degrees of freedom:

		Statistics	Python		Native		Predicted
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(mark)
John	22	5	4	Brown	English	5	1

5 Brown

Emily 25 5 5 Blue Chinese 27 Michael 4 Green French Some

3

17

23

Aahna

student

$$25$$
 3 4 Green French
 23 3 NA Esperanto
 $23\hat{k}_{ML} = \mathrm{random}(\mathrm{integer\ from\ [1;\ 5]})$

Hindi

Last term we should learn for now is hyperparameter.

Hyperparameter should be fixed before our model starts to work with the data.

We will discuss it later with kNN as an example.

ML thesaurus Recap: Dataset Observation (datum) Feature Design matrix Target Prediction Model Loss function Parameter Hyperparameter

Language generation

RNNs generating...

Shakespeare

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA:

I'll drink it.

Algebraic Geometry (Latex)

```
Proof. Omitted.
Lemma 0.1. Let C be a set of the construction.
   Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that
                                   \mathcal{O}_{\mathcal{O}_{x}} = \mathcal{O}_{X}(\mathcal{L})
Proof. This is an algebraic space with the composition of sheaves \mathcal{F} on X_{Oute} we
have
                          O_X(F) = \{morph_1 \times_{O_X} (G, F)\}
where G defines an isomorphism F \to F of O-modules.
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma ??.
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let U \subset X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.
The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let
                      b: X \rightarrow Y' \rightarrow Y \rightarrow Y \rightarrow Y' \times_X Y \rightarrow X.
be a morphism of algebraic spaces over S and Y.
Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of O_X-modules. The following are equivalent

 F is an algebraic space over S.

   (2) If X is an affine open covering.
Consider a common structure on X and X the functor O_X(U) which is locally of
finite type.
```

Linux kernel (source code)

```
* If this error is set, we will need anything right after that BSD.
static void action new function(struct s stat info *wb)
 unsigned long flags;
 int lel idx bit = e->edd, *sys & -((unsigned long) *FIRST COMPAT);
 buf[0] = 0xFFFFFFFF & (bit << 4);
 min(inc, slist->bytes);
 printk(KERN WARNING "Memory allocated %02x/%02x, "
   "original MLL instead\n"),
   min(min(multi run - s->len, max) * num data in),
   frame pos, sz + first seg);
 div u64 w(val, inb p);
 spin unlock(&disk->queue lock);
 mutex unlock(&s->sock->mutex);
 mutex unlock(&func->mutex);
 return disassemble(info->pending bh);
```

Proof. Omitted.

Lemma 0.1. Let C be a set of the construction.

Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We have to show that

$$\mathcal{O}_{\mathcal{O}_X} = \mathcal{O}_X(\mathcal{L})$$

Proof. This is an algebraic space with the composition of sheaves F on $X_{\acute{e}tale}$ we have

$$\mathcal{O}_X(\mathcal{F}) = \{morph_1 \times_{\mathcal{O}_X} (\mathcal{G}, \mathcal{F})\}$$

where G defines an isomorphism $F \to F$ of O-modules.

Lemma 0.2. This is an integer Z is injective.

Proof. See Spaces, Lemma ??.

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open covering. Let $U \subset X$ be a canonical and locally of finite type. Let X be a scheme. Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.

Let X be a scheme. Let X be a scheme covering. Let

$$b: X \to Y' \to Y \to Y \to Y' \times_X Y \to X$$
.

be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let \mathcal{F} be a quasi-coherent sheaf of \mathcal{O}_X -modules. The following are equivalent

- F is an algebraic space over S.
- (2) If X is an affine open covering.

Consider a common structure on X and X the functor $\mathcal{O}_X(U)$ which is locally of finite type.

This since $F \in F$ and $x \in G$ the diagram

is a limit. Then $\mathcal G$ is a finite type and assume S is a flat and $\mathcal F$ and $\mathcal G$ is a finite type f_* . This is of finite type diagrams, and

- the composition of G is a regular sequence,
- O_{X'} is a sheaf of rings.

Proof. We have see that $X = \operatorname{Spec}(R)$ and \mathcal{F} is a finite type representable by algebraic space. The property \mathcal{F} is a finite morphism of algebraic stacks. Then the cohomology of X is an open neighbourhood of U.

Proof. This is clear that G is a finite presentation, see Lemmas ??. A reduced above we conclude that U is an open covering of C. The functor F is a "field

$$\mathcal{O}_{X,x} \longrightarrow \mathcal{F}_{\overline{x}} -1(\mathcal{O}_{X_{\ell tate}}) \longrightarrow \mathcal{O}_{X_{\ell}}^{-1}\mathcal{O}_{X_{\lambda}}(\mathcal{O}_{X_{\eta}}^{\overline{v}})$$

is an isomorphism of covering of \mathcal{O}_{X_i} . If \mathcal{F} is the unique element of \mathcal{F} such that X is an isomorphism.

The property \mathcal{F} is a disjoint union of Proposition ?? and we can filtered set of presentations of a scheme \mathcal{O}_{X} -algebra with \mathcal{F} are opens of finite type over S. If \mathcal{F} is a scheme theoretic image points.

If \mathcal{F} is a finite direct sum $\mathcal{O}_{X_{\lambda}}$ is a closed immersion, see Lemma ??. This is a sequence of \mathcal{F} is a similar morphism.

```
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/e820.h>
#include <asm/system info.h>
#include <asm/setew.h>
#include <asm/pgproto.h>
#define REG_PG vesa slot addr pack
#define PFM NOCOMP AFSR(0, load)
#define STACK DDR(type)
                           (func)
#define SWAP_ALLOCATE(nr)
                             (e)
#define emulate sigs() arch get unaligned child()
#define access rw(TST) asm volatile("movd %%esp, %0, %3" :: "r" (0)); \
 if ( type & DO READ)
static void stat PC SEC read mostly offsetof(struct seq argsqueue, \
          pC>[1]);
static void
os prefix(unsigned long sys)
#ifdef CONFIG_PREEMPT
  PUT PARAM RAID(2, sel) = get state state();
  set pid sum((unsigned long)state, current state str(),
           (unsigned long)-1->lr full; low;
```

38

Recurrent Neural Networks intuition

We use same weight matrices for all steps

Recurrent neural network: with formulas

$$h_{0} = \bar{0}$$

$$h_{1} = \sigma(\langle W_{\text{hid}}[h_{0}, x_{0}] \rangle + b)$$

$$h_{2} = \sigma(\langle W_{\text{hid}}[h_{1}, x_{1}] \rangle + b) = \sigma(\langle W_{\text{hid}}[\sigma(\langle W_{\text{hid}}[h_{0}, x_{0}] \rangle + b, x_{1}] \rangle + b)$$

$$h_{i+1} = \sigma(\langle W_{\text{hid}}[h_{i}, x_{i}] \rangle + b)$$

$$P(x_{i+1}) = \operatorname{softmax}(\langle W_{\text{out}}, h_{i} \rangle + b_{\text{out}})$$

How to train it?

Loss (e.g. Negative log-likelihood)

RNNs generating...

Shakespeare

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA:

I'll drink it.

Algebraic Geometry (Latex)

```
Proof. Omitted.
Lemma 0.1. Let C be a set of the construction.
   Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that
                                   \mathcal{O}_{\mathcal{O}_{x}} = \mathcal{O}_{X}(\mathcal{L})
Proof. This is an algebraic space with the composition of sheaves \mathcal{F} on X_{Oute} we
have
                          O_X(F) = \{morph_1 \times_{O_X} (G, F)\}
where G defines an isomorphism F \to F of O-modules.
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma ??.
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let U \subset X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.
The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let
                      b: X \rightarrow Y' \rightarrow Y \rightarrow Y \rightarrow Y' \times_X Y \rightarrow X.
be a morphism of algebraic spaces over S and Y.
Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of O_X-modules. The following are equivalent

 F is an algebraic space over S.

   (2) If X is an affine open covering.
Consider a common structure on X and X the functor O_X(U) which is locally of
finite type.
```

Linux kernel (source code)

```
* If this error is set, we will need anything right after that BSD.
static void action new function(struct s stat info *wb)
 unsigned long flags;
 int lel idx bit = e->edd, *sys & -((unsigned long) *FIRST COMPAT);
 buf[0] = 0xFFFFFFFF & (bit << 4);
 min(inc, slist->bytes);
 printk(KERN WARNING "Memory allocated %02x/%02x, "
   "original MLL instead\n"),
   min(min(multi run - s->len, max) * num data in),
   frame pos, sz + first seg);
 div u64 w(val, inb p);
 spin unlock(&disk->queue lock);
 mutex unlock(&s->sock->mutex);
 mutex unlock(&func->mutex);
 return disassemble(info->pending bh);
```