1 Introduction

In this short note we present a constant-factor approximation algorithm for the even-cycle transversal (ECT) problem: Given a planar graph G = (V, E) and weights $w : V \to \mathbb{R}_+$ find a minimum weight set $H \subset V$ such that $C \cap H \neq \emptyset$ for all even cycles C in G. The problem of hitting all cycles has a 2 approximation [1] and a PTAS [2]. [4] consider for planar graphs, a more general problem where we are given a set of cycles C satisfying some "uncrossing property" (see [4]) is given and we wish to find a minimum weight set $H \subset V$ of vertices, such that $C \cap H \neq \emptyset$ for all $C \in C$. They give a 3 approximation algorithm for this problem in planar graphs and propose an improved approximation using a so called "pocket oracle" which they claim is a 9/4 approximation. [5] show that the approximation of the pocket oracle proposed in [4] is not 9/4, but 18/7 instead and also give a 2.4 approximation algorithm using a new "three-pocket oracle". The approach presented here uses the primal-dual framework of Goemans and Williamson [3, 4].

2 Even cycles

In the following, we fix an embedding of graph G. For a cycle M in G, we let f(M) be the faces in the interior region of M. Given a family C of cycles, a cycle $M \in C$ is face-minimal (with respect to C) if there is no $M' \in C$ with $f(M') \subsetneq f(M)$. In the following, we also abuse notation slightly, and use $A \subset B$ as a short-hand for graph A being a subgraph of graph B. The following lemma captures a key property for our algorithm.

Lemma 2.1. Let C be a face minimal even cycle of our graph, then C contains at most 2 faces of our graph.

Proof. Let $F_1, F_2, ...F_l$ be the faces of C assume for a contradiction $l \geq 3$ then $|E(C)| = |E(F_1)| + |E(F_2)| + ... + |E(F_l)| \mod 2$. Thus if l is odd one of the faces of C must be even. If $l \geq 4$ is even, then remove a path $P \subset E$ bordering 2 faces of C in $G \setminus P$, C has l-1 faces $F'_1, F'_2, ..., F'_{l-1}, l-1 \geq 3$ is odd and one of the F'_i is even. This cycle is strictly contained in C contradiction. \square

The above lemma easily implies that the set of face-minimal even cycles can be found efficiently by checking all even faces, and all adjoining faces in G. Suppose that our goal is to hit a set C of cycles. The algorithm presented here is then based on the following natural pair of linear programs.

min
$$\sum_{v \in V} w_x x_v$$
 (P) max $\sum_{C \in \mathcal{C}} y_C$ (D)
s.t. $\sum_{v \in C} x_v \ge 1 \ \forall C \in \mathcal{C}$ s.t. $\sum_{C: v \in C} y_C \le w_v \ \forall v \in V$ $y \ge 0$

In the following we state the classicial primal-dual framework for feedback vertex set problems as was previously described by Goemans and Williamson [3, 4]. In the algorithm, we use $u \bullet M$ as a short for "u is a vertex on cycle M", and we use **violation** (G, \mathcal{C}, S) to denote a call to a so called *violation oracle* that, given a graph G, cycles \mathcal{C} , and a partial solution S, returns a minimal collection of cycles that are not hit by S.

Algorithm 2.1: [4] Generic primal-dual algorithm for feedback vertex set problem given by (G(V, E), w, C)

```
Let w(y,u) = w(u) - \sum_{M \in \mathcal{M}: u \bullet M} y_M

S = \{u \in V : w(u) = 0\}

while S is not a hitting set for \mathcal{C} do

\mathcal{M} = \mathbf{violation}(G, \mathcal{C}, S).

c_{\mathcal{M}(u)} \leftarrow |M \in \mathcal{M} : u \bullet M|, \forall u \in V.

\alpha \leftarrow \min_{u \in V \setminus S} |w(y, u)| / c_{\mathcal{M}(u)}

y_M = y_M + \alpha, for all M \in \mathcal{M} S \leftarrow \{u \in V : w(y, u) = 0\}.

end while

return a minimal hitting set H \subset S of \mathcal{C}.
```

In [4], the set C is the set of all directed cycles in a directed planar graph. For us, C is the set of even cycles in an undirected planar graph G. Given a partial hitting set $S \subseteq V$, our oracle **violation** will return a maximal set of face-minimal even cycles.

Lemma 2.2 ([4]). Suppose that Algorithm 2.1 returns solution $F \subseteq V$, and that it generates minimally violated sets of cycles $\mathcal{M}_1, \ldots, \mathcal{M}_q$ during its execution. F is an α -approximate solution if

$$\sum_{M \in \mathcal{M}_i} |F \cap M| \le \alpha |\mathcal{M}_i|,$$

for all $1 \le i \le q$.

Consider an inclusion-wise minimal hitting set $H \subseteq V$. Then note that the minimality of H implies that, for each $h \in H$, there is at least one $M_h \in \mathcal{C}$ such that h is the only H-vertex on M_h . We call such a cycle M_h a witness cycle of h.

Definition 2.3. For a hitting set $H \subset V$, \mathcal{M} a set of face-minimal cycles of our graph, define the debit graph $B = (\mathcal{M} \cup H, E)$. Where $(M, h) \in E$ if node h is on cycle M.

Like in [4], we will sometimes think of our debit graph as drawn (embedded in the plane) with the node v_M for cycle M (in debit graph) located at the center of the cycle M (in G) (nodes h where they are in the original graph G). In [4] for the case of all faces the debit graph is planar we will show this also happens to be the case here. Notice that $\sum_{G \in \mathcal{M}} |H \cap G| = |E(B)|$.

The following is an easy 3 approximation for GW in planar graphs if each witness cycle was incremented in our iteration.

Lemma 2.4. For a bipartite planar graph G = (A, B) such that for each node $b \in B$ is incident to a node of degree 1 in A then $|E(G)| \le 3|A|$.

Proof. Let for each $b \in B$ choose a node $a_b \in A$ of degree 1 and denote $A' := \{a_b \mid b \in B\}$ and consider $G' = G[(A \setminus A' \cup B)]$ applying Euler's formula (for bipartite planar graphs) to G' we get $E(G') \le 2|A \setminus A' \cup B|$. Since $E(G) = E(G') + |A'| \le |A'| + 2|A \setminus A' \cup B| \le 2|A| + |A'| \le 3|A|$.

Corollary 2.5. In Lemma 2.4 if at most k nodes of B in G=(A,B) are not incident to nodes of degree 1 then $|E(G)| \leq (3+3k/|A|)|A|$.

Proof. Construct G' from B by adding k nodes of deg 1 to the A side of G. $|E(G')| \le 3(|A| + k) \le (3 + 3k/|A|)|A|$

Note that this gives an easy 3 apx for instances of planar FVS where all witness cycles of our hitting set, for each iteration is a cycle incremented in our iteration. In the following arguments we will think of paths and cycles as being subgraphs and for graph H and path P use the convention $H \setminus P := H \setminus ((P \setminus \{u\}) \setminus \{v\})$ that is we delete the interior of the path from H.

Given a planar graph G let us call an even cycle C of G face minimal, if no other even cycle of G is contained in the (finite) region bounded by C. Let us define two cycles to be crossing the same as in Goemans/ Williamson.

Definition 2.6. We say that cycles A_1 and A_2 cross if the set of common faces is a proper subset of the faces of A_1 and A_2 . E.g., in Figure 1, cycles C_1 and C_2 cross.

Theorem 2.7. Each face minimal even cycle crosses at most one other face minimal even cycle.

Proof. Suppose that a face minimal even cycle C_1 crosses 2 other face minimal even cycles C_2 , C_3 . Let P_2 be a subpath of C_2 s.t. the internal nodes of P_2 are in the interior of C_1 , and the endpoints of P_2 are on C_1 . Clearly, P_2 divides the interior of C_1 into two regions, R_1 and R_2^0 . Suppose, w.l.o.g., that C_3 intersects the interior of R_2^0 . Let P_3 be a subpath of C_3 such that its internal nodes lie in the interior of R_2^0 , and its endpoints lie on the boundary of R_2^0 . Hence, P_3 subdivides R_2^0 into R_2 and R_3 .

Now note that the sum of the lengths of R_1 , R_2 , and R_3 equals $|C_1| + 2(|P_2| + |P_3|)$, an even number by assumption. Hence, one of the R_i must be an even cycle, contradicting the face-minimality of C_1 . (see figure 1)

R_2^0 V_3 V_3 V_3 V_3 Figure 1

 R_1

Corollary 2.8. The debit graph for our oracle is planar.

Proof. As in [4] given the planar embedding of our graph G, we draw (that is, we embed in the plane) our debit graph by placing a node v(M) representing cycle M in the interior of the region bounded by M in G and draw the edges (v(M), h) of our debit graph by drawing an edge from v_M to node h in G.

In this drawing the only potential pairs of crossing edges are of the form $(v(M_1), h_1)$, $(v(M_2), h_2)$ where M_1 and M_2 are two crossing even cycles (see Figure 2). However, since (by Theorem ??) each face minimal even cycle crosses at most one other face minimal even cycle. For such a crossing pair, we can *detour* (see Figure 2) our edges so they don't cross.

Figure 2: Replace the (previously) red edge $\{v(M_1), v(h_1)\}$ with the new grey edge so that our debit graph is drawn with no crossing edges.

Figure 4: Example of uncrossing with $A'_1 = P_i \cup Q_i$, $A'_2 = C$

Theorem 2.9. We may choose a family A of (even) witness cycles such that if two witness cycles A_2 , $A_3 \in A$ cross $A_1 \in A$ then there are vertices $u, v \in A_2 \cap A_3$ such that $A_i = Q \cup Q_i$ for i=2,3 where Q, Q_2, Q_3 are u,v paths and every other cycle of A crossed by A_2 or A_3 intersects A_2 , A_3 at u,v only.

Proof. First let us prove that a cycle of $M \in \mathcal{M}$ cannot cross 2 cycles A_1, A_2 of \mathcal{A} . The proof is basically the same as the

proof of theorem 2.7. Let P_1 be a subpath of A_1 lying in the region bounded by M s.t. the internal nodes of P_1 are in the interior of M and the endpoints of P_1 are on M. P_1 path divides M into two regions M_1, M_2^0 . W.l.o.g., A_2 intersects the interior of M_2^0 . Let P_2 be a subpath of A_2 such that its internal nodes lie in the interior of M_2^0 , and its endpoints lie on the boundary of M_2^0 . P_2 divides M_2^0 into 2 regions, which we call M_2 and M_3 . Note that the sum of the lengths of M_1 , M_2 , and M_3 equals $|M| + 2(|P_1| + |P_2|)$, which is even. So one of the M_i is even contradicting face-minimality of M.

Next we introduce the uncrossing algorithm of [4] on our witness cycles.

Definition 2.10. [4] For a set of witness cycles A any two even cycles $A_1, A_2 \in A$ that cross, we define the uncrossing operation: Let $P_1, P_2, ..., P_l, Q_1, Q_2, ..., Q_l$ be a series of internally disjoint paths such that P_i (resp Q_i) are subpaths of A_1 (resp A_2) for each i, P_i has the same endpoints as Q_i and , all P_i (resp Q_i) lies in the interior of the region bounded by A_2 (resp A_1). (Put simply A_1, A_2 cross each other at P_i, Q_i see figures 3 4.) If for some $S \subset [l]$, if both of $A'_1 := A_1 \cup (\bigcup_{i \in S} Q_i) \setminus (\bigcup_{i \in S} P_i)$, $A'_2 := A_2 \cup (\bigcup_{i \in S} P_i) \setminus (\bigcup_{i \in S} Q_i)$ are even, and contain exactly one hit node then replace A_1, A_2 with A'_1, A'_2 in A, that is we "uncross" the specified P_i, Q_i . (See figure 3.) Otherwise, if for some i, $P_i \cup Q_i \in C$ is even, and contains exactly one hit node and there is an even cycle C in $(A_1 \cup A_2 \setminus P_i) \setminus Q_i$ containing exactly one hit node, define $A'_1 = P_i \cup Q_i$, $A'_2 = C$. (See figure 4.) Replace A_1, A_2 by A'_1, A'_2 in A. (Otherwise we will say that A_1, A_2 cannot be uncrossed and the operation does nothing.)

Figure 3: Example of uncrossing with $A_1' := A_1 \cup (\cup_{i \in S} Q_i) \setminus (\cup_{i \in S} P_i), \quad A_2' := A_2 \cup (\cup_{i \in S} P_i) \setminus (\cup_{i \in S} Q_i)$

One can adapt the proof of lemma 4.2 in [4] to show that this kind of uncrossing action will eventually terminate.

Further the uncrossing action does not increase the number of crossing pairs. ($|(A_1, A_2)| \in \mathcal{A} \times \mathcal{A}$ and A_1 crosses A_2) Thus starting with any set of witness cycles \mathcal{A}' , with the fewest number of crossing pairs, using repeated applications of the uncrossing algorithm in definition 2.10, we can construct a set of witness cycles \mathcal{A} , such that the uncrossing procedure of definition 2.10 can not be applied to any two cycles of \mathcal{A} and also has the fewest number of crossing pairs.

Let us also introduce another uncrossing procedure

Definition 2.11. If A_1, A_2 cross and A_2 consists of internally disjoint paths $Q, R_1, P_1, R_2, P_2..., P_l, R_l$ in that order with

 P_i , lies outside A_1 R_i lie on A_1 Q lies inside A_1 for each P_i , let B_i be the portion of A_1 connecting the endpoints of P_i such that $P_i \cup B_i$ does not contain A_1 if it is possible to replace a subset of P_i with B_i and still have an even witness cycle, we do so.

Lemma 2.12. Let A_1 , A_2 be two crossing witness cycles.

Then there does not exist 2 subpaths P_1 , P_2 of A_2 lying in the

region bounded by A_1 , (in our embedding of G in the plane) such that P_1 , P_2 are internally disjoint and each intersects A_1 at their endpoints, put simply, A_2 does not cross A_1 twice. (see figure 5) Further if Q_1 is a subpath of A_2 with endpoints a_1, b_1 on A_2 internally disjoint from A_1 , then Q_1 has different parity than the paths between a_1, b_1 in A_1 .

Figure 5

Proof. First suppose for a contradiction that P_1, P_2 are two such paths, choose P_1, P_2 so that there is a path in A_1 in-

ternally disjoint from A_2 connecting an endpoint a_1 of P_1 with an endpoint b_2 of P_2 . (That is P_1, P_2 are two "consecutive" crossings) Choose paths $B_1, B_2 \subset A_1$ internally disjoint connecting the endpoints of P_1, P_2 respectively. (see figure 5) Now we may uncross either P_1, B_1 , P_2, B_2 or both unless P_1, B_1 or P_2, B_2 has exactly one hit node. WLOG P_1 contains the hit node of A_2 . If P_2, B_2 does not contain a hit node. In this case, P_2, B_2 must be of different parity. (otherwise $P_2 \cup P_2$ is an even cycle not hit) Thus the cycles $(A_2 \setminus P_1) \cup B_1$, $((A_2 \setminus P_1) \cup B_1 \setminus P_2) \cup B_2$ are of different parity, so one must be even, but neither contains a hit node contradiction. (See figure

6) Thus the hit node of A_1 lies on B_2 . If the closed walk $W:=((A_1\backslash B_1)\backslash B_2)\Delta(A_2\backslash P_1)\backslash P_2)$ is

Figure 6: One of the green cycles is even and not hit.

not a cycle, then it contains an odd cycle C'. Then $(A_2 \cup B_1 \setminus P_1), (A_2 \cup B_1 \setminus P_1)\Delta C'$ are cycles of different parity, and are not hit, which is a contradiction. (see figure 7) So W is a cycle and has

Figure 7: One of the green cycles is even and not hit which shows that A_1, A_2 cannot have "too much intersection" so to speak.

length $|E(A_1)| + E(A_2) - |E(P_1 \cup B_1)| - |E(P_2 \cup B_2)| - 2|E(A_1) \cup E(A_2)|$. As $|E(P_i \cup B_i)|$ are both odd we have this cycle is even, but not hit, a contradiction. (see figure 8)

Figure 8: Green cycle above is even and not hit.

The last point (that P_i, B_i are different parity) is because otherwise one of the hit nodes of A_1, A_2 must lie on the even cycle $P_i \cup B_i$. W.l.o.g the hit node of A_2 lies on P_1 then $A_2 \cup B_1 \setminus P_1$

Suppose for a contradiction, that for some $A_1, A_2, A_3 \in \mathcal{A}, A_1$ crosses A_2 and A_3 let P_2, P_3 be the portions of A_2, A_3

Figure 9

lying in A_1 let u_2, v_2 (resp u_3, v_3) be the endpoints of P_2 resp P_3 . If P_i does not contain a hit node, then set $P'_i = P_i$ otherwise, let P'_i be the intersection of the boundary of $A_1 \cup A_i$ and A_i . If $P'_i = P_i$ define B_i to be the portion of A_1 lying in A_i , otherwise define B_i to be the portion of A_1 lying in the interior of a region of a subgraph of $A_1 \cup P'_i$. (see figure ??)

Let us prove the following structural lemma which will be used later.

Lemma 2.13. (P'_i , B_i as defined above) It cannot be that P'_2 , P'_3 , are internally disjoint and B_2 , B_3 are either internally disjoint, or one is a subpath of the other.

Proof. Assume otherwise, since P'_2, P'_3, B_2, B_3 are internally disjoint, $(A_1 \cup P'_2 \cup P'_3) \setminus (B_1 \cup B_2)$ is an even cycle. So the

hit node of A_1 does not lie on B_2 or B_3 . Letting u_i, v_i be the ends of P_i' let us denote by C_i the subpath of A_1 from u_i to v_i not containing the hit node. We claim that for i=2,3 the cycle $D_i:=(A_i\cup B_i)\backslash P_i$ does not cross any other cycle of \mathcal{A} . Assume the contrary, that D_i crosses $W\in \mathcal{A}$. Let $W=W_1\cup\ldots\cup W_t$ be a decomposition of W into internally disjoint paths which are internally disjoint from D_i . W.l.o.g W_1 does not contain the hit node of W. Let a,b be the endpoints of W_1 and let P be a path between a,b in D_i . Then by Lemma 2.12, W_1,P are different parity so $D_i\backslash P_i\cup W_1$ is an even cycle that is not hit contradiction. This proves that replacing C_i or $A_1\backslash C_i$ with P_i' in A_1 decreases the number of crossings. If B_2,B_3 are internally disjoint, note one of $A':=A_1\cup P_2'\backslash B_2,A^n:=A_1\cup P_3'\backslash B_3,A^{n'_1}:=A_1\cup P_2'\cup P_3'\backslash (B_2\cup B_3)$, is even and contains at most one hit node. If $B_2\subset B_3$ note one of $A':=A_1\cup P_2'\backslash B_2,A^n:=A_1\cup P_3'\backslash B_3,A^{n'_1}:=(A_1\backslash B_3)\cup P_3\cup P_2\cup (B_3\backslash B_2)$ is even and contains at most one hit node. In both cases replacing A_1 with A_1',A^n , or A_1'' in A yields a family of witness cycles with fewer crossing pairs. This is a contradiction. (see figure 10)

Figure 10

Lemma 2.14. It cannot be the case that u_2, v_2 lies on the same side of u_3, v_3 . (that is they lie on the same subpath of A_1 that u_3, v_3 divides A_1 into)

Figure 11: Case 1)

Proof. Thus by lemma 2.13 P'_2 , P'_3 are not internally disjoint, then Suppose for a contradiction, there are nodes r, r' of P'_3 such that there is subpath R_2 of P_2 connecting r, r'. Let R_3 be the subpath of P'_3 between r, r' in P'_3 . Then R_2 , R_3 have different parity. W.l.o.g. the hit node of A_1 does not lies on B_3 , then the cycles $P'_3 \cup B_3$, $(P'_3 \setminus R_3) \cup B_3 \cup R_2$ have different parity but no hit nodes, which is a contradiction. (see figure 12) Thus $(P'_3 \Delta P'_2) \cup B_2 \cup B_3$ is an even cycle (parity follows because P'_i , B_i are different

Figure 12: One of the green cycles is even and not hit

parity) thus the hit node of A_1 lies on $B_2 \cup B_3$. W.l.o.g. it lies on B_2 . (see figure 13) Let r be the first common vertex of P'_2 , P'_3 and r' be the last common vertex (when viewing P'_i to go from v_i to u_i) Denote by F'_i the subpath of P'_i from v_i to r and H'_i the subpath of P'_i from r' to u_i ; by

Figure 13

Figure 14

H the subpath of A_1 from u_2 to u_3 and F the subpath of A_1 from v_2 to v_3 not hitting u_2 . Now notice that the sum of the lengths of the cycles $F_2 \cup F_3 \cup F$ and $H_2 \cup H_3 \cup H$ is even and are not both trivial by assumption. Since the hit node of A_1 lies on B_2 , both $F_2 \cup F_3 \cup F$, $H_2 \cup H_3 \cup H$ are odd so one of $H_3 \cup H_3 \cup H_3$

We consider the following cases:

Case 2 P_2, P_3 intersect.

Г

Case 2 a) u_2, v_2

(can be thought of to) lie on the same side of v_3, u_3 , then let P_2, P_3 intersect at u, v that is there exists a path $R \subset P_i$ connecting u, v. Again choose subpaths B_2, B_3 of A_1 with B_i connecting u_i to v_i and B_2, B_3 internally disjoint. By lemma 2.13 one of (=2,3) $A_i \backslash P_i$ contains a hit node. Define Q_i to be the path from u to u_i , and W_i the path from v to v_i so $(A_2 \backslash P_2) \cup W_2 \cup W_3 \cup Q_2 \cup Q_3 \cup (A_3 \backslash B_3)$. Thus w.l.o.g. P_2 contains no hit node denote by R the path from u to v in P_2 . Let C_1, C_2, C_3, C_4 be the faces of $A_1 \cup P_2 \cup Q_3 \cup W_3$ in counter clockwise order with C_2 the portion bounded by B_2, P_2 . Since R is part of P_2 , C_2 is odd (lemma 2.12) so either C_1 and $C_4 \Delta C_2 \Delta C_3$ are both even, or $C_1 \Delta C_2$ and $C_3 \Delta C_4$ are both even hence the hit node of A_3 lies on $Q_3 \cup W_3$. WLOG the hit node of A_3 lies on Q_3 . If the hit node of A_1 lies on C_3 then $A_3 \cup (A_1 \Delta C_3 \Delta C_2)$, $A_3 \cup (A_1 \Delta C_3)$ are different parity and not hit if the hit node of A_1 lies on C_2 then C_3 is odd and $A_3 \cup (A_1 \Delta C_2 \Delta C_3)$, $A_3 \cup (A_1 \Delta C_2)$ are different parity and not hit contradiction.

Case 2b) u_2, v_2 lie on different sides of v_3, u_3 . WLOG u_2 lies inside A_3 and v_2 lies outside A_2 . Let u be the first vertex P_3 intersects P_2 and v be the last (when considering P_3 to go from u_3 to v_3). WLOG u lies between u_2 and v in P_2 . Denote by R_i the portion of P_i between u_i and u and Q_i the portion of P_i from v to v_i . WLOG suppose that v_2 lies inside A_3 let v_3 be the first vertex of v_4 in the path from v_2 to v_3 to v_4 to v_4 lies the path from v_4 to v_4 and v_4 lies outside v_4 lies inside v_4 lies inside v_4 lies inside v_4 lies inside v_4 lies outside $v_$

First if T'_2, T'_3 have the same parity, then one of them T_j contains a hit node, but then $(A_j \setminus T_j) \cup T_l$ where $l \in \{2, 3\} \setminus j$ is an even cycle so T_l contains a hit node as well. If $B_2 \setminus B_3 \cup R_3 \cup Q_2$ is even, then so is $(A_1 \setminus (B_2 \setminus B_3)) \cup R_3 \cup Q_2$ and the hit node of A_1 cannot hit both. Thus $B_2 \setminus B_3 \cup R_3 \cup Q_2$ is odd. Then $A_2 \setminus (P_2 \cup L_2) \cup L_3 \cup R_3 \cup Q_2$ is of different parity as $A_2 \setminus (P_2 \cup L_2) \cup L_3 \cup (B_2 \setminus B_3)$, $A_2 \setminus (P_2 \cup L_2) \cup L_3 \cup (A_2 \setminus (B_2 \setminus B_3))$, and not both of these can contain the hit node of A_1 contradiction.

Thus T_2', T_3' have different parity if one of these WLOG T_2 contains a hit node, then if T_3 does not contain a hit node, then $Q_2 \cup T_3 \cup R_2 \cup B_2$ or $Q_2 \cup T_3 \cup R_2 \cup (A_1 \setminus B_2)$ is an even cycle with no hit node contradiction, otherwise like in the above paragraphs, $B_2 \setminus B_3 \cup R_3 \cup Q_2$ is odd, as $(A_2 \setminus (P_2 \cup L_2)) \cup L_3 \cup (B_2 \setminus B_3), (A_2 \setminus (P_2 \cup L_2)) \cup L_3 \cup (A_2 \setminus (B_2 \setminus B_3)),$ are different parity and not both of these can contain the hit node of A_1 contradiction. One of each of the following pairs of cycles $(B_2 \cap B_3) \cup R_3 \cup R_3 \cup T_i;$ $(A_1 \setminus (B_2 \cap B_3)) \cup R_3 \cup R_3 \cup T_i;$ $(A_1 \setminus (B_2 \cap B_3)) \cup R_3 \cup R_3 \cup T_i;$ $(A_1 \setminus (B_2 \cup B_3)) \cup (A_2 \cup (B_3 \cup B_3)) \cup (A_2 \cup (B_3 \cup B_3)) \cup (A_3 \cup (B_3 \cup B_3$

If $(A_2 \backslash L_2) \cup L_3 \cup (B_2 \backslash B_3)$ is even, so is $(A_2 \backslash L_2) \cup L_3 \cup (A_1 \backslash (B_2 \backslash B_3))$ and not both cycles can be hit while satisfying (*) so $(A_2 \backslash L_2) \cup L_3 \cup (B_2 \backslash B_3)$ (and likewise $(A_3 \backslash L_3) \cup L_2 \cup (B_3 \backslash B_2)$) is odd. Then for i = 2, 3, $l = \{2, 3\} \backslash l$ either $A_i \backslash L_i \cup L_j \cup R_j \cup Q_i$ is even, or both $(A_1 \backslash (B_i \backslash B_l)) \cup R_l \cup Q_i$, $(B_i \backslash B_l) \cup R_l \cup Q_i$ are, or that one of Q_2, R_3 and one of Q_3, R_2 is hit, combining with (*) we

see this is not possible.

Let C_i be as in the diagram below, if C_1 is odd, then C_2, C_3, C_4 are all even, (lemma 2.12) so each contains a hit node, then replacing A_1 with C_4 uncrosses A_1 contradiction, if C_1 is even, then so is C_5 and C_4, C_3, C_2 are odd, so $(A_2 \setminus (L_2 \cup P_2)) \cup L_3 \cup (B_3 \setminus B_2), (A_3 \setminus (L_3 \cup P_3)) \cup L_2 \cup (B_2 \setminus B_3)$ are even cycles, thus 2 of the hit nodes of A_1, A_2, A_3 lie on these cycles and only one can lie on C_5 so replace A_1 by

Proposition 2.15. We may 2 color the witness cycles A so

that witness cycles of the same color do not cross. Let us label the witness cycles with color 1 A_1 respectively A_2 .

2.1 Direct Goemans Approach

The following result is basically proven in [4]

Theorem 2.16. [4] Let C' be a set of cycles of a graph G' let \mathcal{M}' be the set of face minimal cycles of C' let H be a minimal hitting set, suppose that the debit graph $B(\mathcal{M} \cup H)$ is planar and we can choose a laminar family of witness cycles for the nodes of H. Then $\sum_{M \in \mathcal{M}'} |H \cap M| \leq 3|\mathcal{M}|$.

Using 2.9 and the following proposition, let us partition the set of witness cycles as follows:since each $m \in \mathcal{M}$ intersects at most one witness cycles W(M) one could partition the debit graph B as follows,

- 1) $B[\mathcal{M} \cup \mathcal{A}_1] \setminus W(\mathcal{M})$
- 2) $B[\mathcal{M} \cup \mathcal{A}_2] \setminus W(\mathcal{M})$
- 3) $B[\mathcal{M} \cup W(\mathcal{M})]$

 $B[M \cup \mathcal{A}_1] \backslash W(\mathcal{M})$ and $B[M \cup \mathcal{A}_2] \backslash W(M)$ satisfy the properties of Goemans / Williamson Theorem 2.16 (by choosing $\mathcal{C}' = W(M) \cup \mathcal{A}_i$ and choosing \mathcal{A}_i as our laminar family of witness cycles) thus the number of edges is bounded as such i.e. $E[B[\mathcal{M} \cup \mathcal{A}_i] \backslash W(M)] \leq 3|\mathcal{M}|$ $E[B[\mathcal{M} \cup W(\mathcal{M})] \leq |\mathcal{M}|$ (only edges $(M, W(M)) \mid M \in \mathcal{M}$) So the total number of edges in $E[B[\mathcal{M} \cup W(\mathcal{M})] \leq |\mathcal{M}|$ thus $|E[B[\mathcal{M} \cup \mathcal{A}]]| \leq 7|\mathcal{M}|$

References

- [1] Ann Becker. Approximation algorithms for the loop cutset problem. In *Proceedings of the Tenth International Conference on Uncertainty in Artificial Intelligence*, UAI'94, pages 60–68, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.
- [2] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimensionality and kernels. In *Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms*, SODA '10, pages 503–510, Philadelphia, PA, USA, 2010. Society for Industrial and Applied Mathematics.
- [3] M. X Goemans and D. P Williamson. The primal-dual method for approximation algorithms and its application to network design problems. *Approximation algorithms for NP-hard problems*, pages 144–191, 1997.
- [4] M. X. Goemans and D. P Williamson. Primal-dual approximation algorithms for feedback problems in planar graphs. *Combinatorica*, 18(1):37–59, 1998.

[5] Carsten Moldenhauer. Primal-dual approximation algorithms for node-weighted steiner forest on planar graphs. volume 222, pages 748–759, 07 2011.

Figure 15: Diagram for case 2b) u_2, v_2 lie on different sides of v_3, u_3