MATH 4000/6000 - Homework #6

posted April 8, 2019; due by 5 PM on April 15, 2019

Mathematics may be defined as the subject in which we never know what we are talking about, nor whether what we are saying is true. – Bertrand Russell

Assignments are expected to be neat and stapled. **Illegible work may not be marked**. Starred problems (*) are required for those in MATH 6000 and extra credit for those in MATH 4000.

In this assignment, assume that all rings mentioned are commutative.

- 1. Exercise 4.1.1(a)
- 2. Exercise 4.1.8.
- 3. Let F be a field, and let $f(x) \in F[x]$ be nonconstant. Let $n = \deg f(x)$. In class, we proved that all elements of $F[x]/\langle f(x)\rangle$ have the form $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$, where $a_0, \ldots, a_{n-1} \in F$.

Show that this representation is unique; that is, distinct choices of the a_i correspond to distinct elements of $F[x]/\langle f(x)\rangle$.

4. Suppose that $\phi: R \to S$ is a homomorphism of rings. Prove that $\phi(R)$ is a subring of S. (Recall that, by definition, $\phi(R) = {\phi(r) : r \in R}$.)

Hint: Use the criterion you proved in Problem 1(a) on HW #4.

- 5. Let F be a field and suppose that $p(x) \in F[x]$ is irreducible.
 - (a) Prove that $F[x]/\langle p(x)\rangle$ is a field. Hint: Imitate our proof that \mathbb{Z}_p is a field when p is a prime. Namely, suppose $\overline{a(x)}$ is not $\overline{0}$ in $F[x]/\langle p(x)\rangle$. Then p(x) does not divide a(x). What does this mean about $\gcd(p(x), a(x))$? Go from there.
 - (b) Prove that if I is an ideal of F[x] containing p(x), then either $I = \langle p(x) \rangle$ or I = F[x].
- 6. Let R be a ring, and let I be an ideal of R. Prove that R/I is the zero ring $\iff I = R$.
- 7. Let R be a ring, not the zero ring. We say that an ideal $I \subseteq R$ is a **prime ideal** if
 - (i) $I \neq R$,
 - (ii) whenever a and b are elements of R for which $ab \in I$, either $a \in I$ or $b \in I$ (or both).

Show that for every ideal I of R,

R/I is a domain \iff I is a prime ideal of R.

- 8. Let R, S be rings.
 - (a) (Isomorphism is symmetric) Suppose $\phi \colon R \to S$ is an isomorphism. Since ϕ is a bijection, you know from MATH 3200 that it has an inverse; in other words, there is a map $\psi \colon S \to R$ satisfying

$$(\psi \circ \phi)(r) = r$$
 for all $r \in R$, and $(\phi \circ \psi)(s) = s$ for all $s \in S$.

Prove that ψ is an isomorphism from S to R.

Hint: You may assume as known that ψ is a bijection.

(b) (Isomorphism is transitive) Suppose $\phi \colon R \to S$ and $\psi \colon S \to T$ are isomorphisms. Prove that $\psi \circ \phi$ is an isomorphism from R to T.

Hint: You may take as known that the composition of bijections is a bijection.

- 9. Exercise 4.2.1.
- 10. Let $m, n \in \mathbb{Z}^+$ with gcd(m, n) = 1. Use the Fundamental Homomorphism Theorem to prove that $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$.

Hint: Generalize the argument from class when m = 3, n = 5.

- 11. Use the Fundamental Homomorphism Theorem to establish the following ring isomorphisms.
 - (a) $\mathbb{R}[x]/\langle x^2 + 6 \rangle \cong \mathbb{C}$.

Hint: Consider the "evaluation at $i\sqrt{6}$ " homomorphism taking $f(x) \in \mathbb{R}[x]$ to $f(i\sqrt{6}) \in \mathbb{C}$.

- (b) $R[x]/\langle x\rangle \cong R$ for every ring R.
- (c) $\mathbb{Q}[x]/\langle x^2 1 \rangle \cong \mathbb{Q} \times \mathbb{Q}$.

Hint: Consider the homomorphism from $\mathbb{Q}[x]$ to $\mathbb{Q} \times \mathbb{Q}$ given by $f(x) \mapsto (f(1), f(-1))$.

12. (*) Let m and n be positive integers. Show that if $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$, then $\gcd(m,n) = 1$. This is the converse of Exercise 10.