Introduction to Communications Engineering

Đỗ Công Thuần, Ph.D.

Dept. of CE, SoICT, HUST

Email: thuandc@soict.hust.edu.vn

IT4593E

ONE LOVE. ONE FUTURE.

Thông tin chung

- Tên học phần: Nhập môn kỹ thuật truyền thông
- Mã học phần: IT4593E
- Khối lượng: 2 TC (2-1-0-4)
- Lý thuyết và bài tập: 10 buổi lý thuyết, 5 buổi bài tập
- Đánh giá học phần:

```
30% QT (kiểm tra + bài tập/project + chuyên cần-quiz )
70% CK (trắc nghiệm + tự luận)
```

- Tài liệu tham khảo:
 - Lecture slides
 - Lecture notes
 - Textbooks, ví dụ Communication Systems Engineering, 2nd Edition, by John G. Proakis Masoud Salehi
 - Internet

Lec 04: Decision Theory 4.2 MAP and ML Criteria

Channel Model

Additive White Gaussian Noise n(t)

- «Ergodic» random process
- Each random variable is a Gaussian random variable with zero mean
- Constant power spectral density: $G_n(f) = N_0/2$

AWGN

$$G_n(f) = N_0 / 2$$

$$G_n(f) = N_0 / 2 \qquad \qquad R_n(\tau) = \frac{N_0}{2} \delta(\tau)$$

(autocorrelation function)

AWGN

$$R_n(\tau) = \frac{N_0}{2} \delta(\tau) \qquad \qquad E[n(t_1)n(t_1 + \tau)] = \frac{N_0}{2} \delta(\tau)$$

n(t) is an «ergodic» process (Time properties = Statistical properties)

AWGN

Consider two time instants t_1 and t_2 Corresponding to two random variables:

$$t_1 \longrightarrow n(t_1)$$

$$t_2 \longrightarrow n(t_2)$$

hey are Gaussian random variables with property:

$$E[n(t_1)n(t_2)] = \frac{N_0}{2}\delta(t_1 - t_2)$$

Statistically independent

The Problem at the Receiver

$$\underline{\mathbf{u}}_{\mathrm{T}} \longrightarrow s(t) \longrightarrow r(t) = s(t) + n(t)$$

Problem: given $r(t) \rightarrow \text{recover } s(t)$

Split r(t) into segments corresponding to time intervals T:

$$r(t) = (r[0](t) | r[1](t) | \dots | r[n](t) | \dots$$

$$T \qquad T \qquad T$$

Question: Is it possible to analyze the received signal in any given time interval independently?

$$r(t) = (r[0](t) | r[1](t) | ... | r[n](t) | ... | T$$

$$T$$

$$S(t) = (s[0](t) | s[1](t) | ... | s[n](t) | ... | n(t) = (n[0](t) | n[1](t) | ... | n[n](t) | ...$$

We have:

$$r(t) = s(t) + n(t)$$

Consider the *n*-th time interval:

$$nT \le t < (n+1)T$$

$$r[n](t) = s[n](t) + n[n](t)$$

Each r/n/(t) depends entirely on:

- The transmitted signal: s[n](t)
- The noise: n[n](t) which are random variables existing in the time interval: $nT \le t < (n+1)T$

$$s(t) = (s[0](t) | s[1](t) | \dots | s[m](t) | \dots | s[n](t) | \dots$$

$$T \qquad T \qquad T$$

Each signal s[n](t)

- ullet exists in the time interval T
- is statistically independent of signals in other time intervals s[m](t), $m\neq n$
- $\rightarrow r[n](t)$ is independent of s[m](t), $m \neq n$

$$\mathbf{n}(t) = (\mathbf{n}[0](t) | \mathbf{n}[1](t) | \dots | \mathbf{n}[m](t) | \dots | \mathbf{n}[n](t) | \dots$$

$$T \qquad T \qquad T \qquad T$$

Each noise $n(t_i)$ is also statistically independent

$$\rightarrow r[n](t)$$
 independent of $n[m](t)$, $m \neq n$

The Problem at the Receiver

Consider time interval n: $nT \le t < (n+1)T$

Received signal: r[n](t) = s[n](t) + n[n](t)

Depends only on:

- Transmitted signal s[n](t)
- Noise n[n](t) in the time interval $nT \le t < (n+1)T$

Each time interval can be analyzed independently

NO INTERSYMBOL INTERFERENCE (ISI)

$$r(t) = (\underbrace{r[0](t)}_{T} | \underbrace{r[1](t)}_{T} | \dots | \underbrace{r[n](t)}_{T} | \dots$$

Each time interval is analyzed independently:

Assume considering the original time interval, with $0 \le t < T$

$$r(t) = (r[0](t)) | r[1](t) | \dots | r[n](t) | \dots$$
 T

Consider the original time interval

$$0 \le t < T$$

$$s[0](t) \longrightarrow r[0](t) = s[0](t) + n[0](t)$$

For simplicity, we can omit the index [0]

$$s(t) \longrightarrow r(t) = s(t) + n(t)$$

Problem:

given $r(t) \rightarrow \text{recover } s(t)$

The transmitted signal s(t) certainly belongs to the signal space S.

Does the received signal r(t) belong to S?

$$r(t) = s(t) + n(t)$$

This depends on n(t).

In general, n(t) is a signal not in $S: n(t) \notin S$

Therefore,

$$r(t) \notin S$$

Random variables n_j

We know that

$$n(t) \notin S$$

roject this noise signal onto the orthonormal basis.

$$B = \left(b_j(t)\right)_{j=1}^d$$

The *j-th* projection component is:

$$n_j = \int_0^T n(t)b_j(t)dt$$

$$n_{j} = \int_{0}^{T} n(t)b_{j}(t)dt$$

We can prove that this component n_j này is

a Gaussian random variable:

- Mean $E[n_j]=0$
- Variance $\sigma^2 = N_0/2$
- Statistically independent

$$n_{j} = \int_{0}^{T} n(t)b_{j}(t)dt$$

are Gaussian random variables,

which are achieved through linear transformation of a Gaussian process

$$n_{j} = \int_{0}^{T} n(t)b_{j}(t)dt$$

Mean:

$$E[n_j] = 0$$

$$E\left[n_{j}\right] = E\left[\int_{0}^{T} n(t)b_{j}(t)dt\right] = \int_{0}^{T} E\left[n(t)\right]b_{j}(t)dt = 0$$

$$n_{j} = \int_{0}^{T} n(t)b_{j}(t)dt$$

Variance:

$$\sigma^2 = N_0/2$$

Linearly independent

$$\begin{split} E\left[n_{j}n_{i}\right] &= E\left[\int_{0}^{T}n(t)b_{j}(t)dt\int_{0}^{T}n(x)b_{i}(x)dx\right] = E\left[\int_{0}^{T}\int_{0}^{T}n(t)n(x)b_{j}(t)b_{i}(x)dtdx\right] = \\ &= \int_{0}^{T}\int_{0}^{T}E\left[n(t)n(x)\right]b_{j}(t)b_{i}(x)dtdx = \int_{0}^{T}\int_{0}^{T}\frac{N_{0}}{2}\delta\left(t-x\right)b_{j}(t)b_{i}(x)dtdx = \\ &= \frac{N_{0}}{2}\int_{0}^{T}b_{j}(t)b_{i}(t)dt = \begin{cases} N_{0}/2 & \text{if } j=i\\ 0 & \text{if } j\neq i \end{cases} \end{split}$$

Note: 2 Gaussian RVs have the property, $E[n(t_1)n(t_2)] = (N_0/2).\delta(t_1-t_2)$

Random noise in the signal space

Given n(t) we have the projection components onto the orthonormal basis:

$$n_j = \int_0^T n(t)b_j(t)dt$$

Let

$$n_S(t) = \sum_j n_j b_j(t)$$

Clearly, $n_S(t) \in S$: it is the part of n(t) belonging to S

In general:

$$n(t) \neq n_S(t)$$

Wehave

$$n(t) = n_{S}(t) + e(t)$$

e(t) = is the part of n(t) **not** in S

Choose a time instant $t = t^*$

 $n_S(t^*)$ and $e(t^*)$ are statistically independent

Need to prove

$$E\left[n_{S}(t^{*})e(t^{*})\right] = 0 = E\left[n_{S}(t^{*})\right]E\left[e(t^{*})\right]$$

 $n_S(t^*)$ and $e(t^*)$ are statistically independent

The noise component outside the space S is statistically independent.

Received signal in the signal space

We have proven

$$r(t) \notin S$$

Project r(t) onto the orthonormal basis:

$$B = \left(b_j(t)\right)_{j=1}^d$$

The j-th component is:

$$r_j = \int_0^T r(t)b_j(t)dt$$

$$\left| \mathbf{r}_{S}(t) = \sum_{j} \mathbf{r}_{j} \mathbf{b}_{j}(t) \right|$$
 we have $r_{S}(t) \in S$

In general $r(t) \neq r_s(t)$

But
$$r(t) = s(t) + n(t) = \underbrace{s(t) + n_S(t) + e(t)}_{\in S} \notin S$$

Therefore, $r(t) = r_S(t) + e(t)$ with $r_S(t) = s(t) + n_S(t)$

Decision problem in the signal space

Original basic problem: cho $r(t)=s(t)+n(t) \rightarrow \text{khôi phục } s(t)$

Equivalent problem:

cho $r_S(t) = s(t) + n_S(t) \rightarrow \text{khôi phục } s(t)$

The only difference is the existence of e(t):

The noise component not in S, and it is statistically independent of both s(t) and $n_S(t)$

- $r_S(t)$ is a sufficient statistic for solving the problem
- Sufficient to solve the problem (determine the transmitted signal) in space S
- Other spatial dimensions contain no useful information, only noise

Decision problem: Vector representation

Problem

given $r_S(t) = s(t) + n_S(t) \rightarrow \text{recover } s(t)$

All the 3 signals belong to S

Vector representation

$$\left| r_{S}(t) = s(t) + n_{S}(t) \right|$$

$$|\underline{r} = \underline{s}_T + \underline{n}|$$

$$\underline{r} = (r_1, ..., r_j, ..., r_d)$$

$$r_j = \int_0^T r(t)b_j(t)dt$$

$$\underline{s_T} = (s_1, ..., s_j, ..., s_d)$$

$$s_j = \int_0^T s(t)b_j(t)dt$$

$$\underline{n} = (n_1, ..., n_j, ..., n_d)$$

$$n_j = \int_0^1 n(t)b_j(t)dt$$

Received vector

The received vector \underline{r} (in space S) has the representation:

$$\underline{r} = \underline{s}_T + \underline{n}$$

where $\underline{s}_T = (s_1, ..., s_j, ..., s_d) \in M$ is the transmitted signal

and $\underline{n} = (n_1, ..., n_j,, n_d)$ is the noise vector in space S

For each component of the vector we have: $r_j = s_j + n_j$

$$r_j = s_j + n_j$$

Therefore, the component r_j is Gaussian random variables with:

• Mean:
$$E[r_j] = S_j$$

• Variance:
$$\sigma^2[r_j] = N_0/2$$

Statistically independent

$$\left(E[r_i r_j] = s_i s_j = E[r_i]E[r_j]\right)$$

Problem:

given $r_S(t) = s(t) + n_S(t) \rightarrow \text{recover } s(t)$

Problem:

given $\underline{r} = \underline{s_T} + \underline{n} \rightarrow \text{recover } \underline{s_T}$

Important note:

given r(t), the vector \underline{r} is easily computed (since the orthonormal basis signals are known

Decision criterion

Problem:

given $\underline{r} = \underline{s_T} + \underline{n} \rightarrow \text{recover } \underline{s_T}$

At the receiver side, given \underline{r}

We want to choose the received signal

$$\underline{s}_R \in M$$

Goal: make a correct decision: $\underline{s}_R = \underline{s}_T$

However, this is not always possible, due to the presence of noise.

given \underline{r} , we want to create decision criteria to determine \underline{s}_R

Minimize the probability of symbol (signal) detection error

$$P_{S}(e) = P(\underline{s}_{R} \neq \underline{s}_{T})$$

Decision criterion

Problem:

given $\underline{r} = \underline{s}_T + \underline{n} \rightarrow \text{recover } \underline{s}_T$

Suppose we receive $\underline{r} = \underline{\rho} \in \mathbb{R}^d$

 \rightarrow choose $\underline{s}_R \in M$ such that $P_S(e)$ is minimized

Decision Criterion:

$$\underline{s}_{R} = \arg\min_{\underline{s}_{i} \in M} \left[P(\underline{s}_{R} \neq \underline{s}_{T} \mid \underline{r} = \underline{\rho}) \right]$$

Detection

The problem of deciding which possibility, among a set of possibilities, is true.

- A random variable X with m possible values occurring with a priori probability: P(X=x)
- We observe a variable Y connected to X by the probabilities: P(Y=y|X=x), called **likelihoods**

When an experiment is performed, we obtain 2 samples: $x \in X$ and $y \in Y$.

The decision maker will observe the value of y not x.

Given y, the observer makes a decision d(y)=x. This decision is correct if x'=x

The accepted decision criterion to make decision d(y):

Maximize correct decisions P(x'=x)

Minimize wrong decisions $P(x' \neq x)$

MAP criterion

This is equivalent to the criterion: a MAXIMUM A POSTERIORI (MAP)

$$d(y) = \arg\max_{x} \left[P(X = x \mid Y = y) \right]$$

MAP criterion

Proof:

$$P(X' \neq X) = \sum_{x} \sum_{y} P(X' \neq X, X = x, Y = y) =$$

$$= \sum_{x} \sum_{y} P(X' \neq X \mid X = x, Y = y) P(X = x, Y = y) =$$

$$= \sum_{x} \sum_{y} P(X'(y) \neq x \mid X = x, Y = y) P(X = x \mid Y = y) P(Y = y) =$$

$$= \sum_{x} \sum_{y} P(X'(y) \neq x \mid X = x, Y = y) P(X = x \mid Y = y) P(Y = y)$$

$$= \sum_{y} \left[\sum_{x} (1 - \delta_{X'(y),x}) P(X = x \mid Y = y) \right] P(Y = y)$$

$$X'(y) = \arg\min_{z} \sum_{x} (1 - \delta_{z,x}) P(X = x \mid Y = y) = \arg\max_{x} P(X = x \mid Y = y)$$

Bayes' Theorem
$$P(X = x | Y = y) = \frac{P(Y = y | X = x)P(X = x)}{P(Y = y)}$$

$$d(y) = \arg\max_{x} \left[P(X = x \mid Y = y) \right]$$

$$d(y) = \arg\max_{x} \left[P(Y = y \mid X = x) P(X = x) \right]$$

Under the assumption
$$P(X = x) = \frac{1}{m}$$

$$d(y) = \arg\max_{x} [P(Y = y \mid X = x)]$$

MAXIMUM LIKELIHOOD criterion

$$d(y) = \arg\max_{x} [P(Y = y \mid X = x)]$$

Decision problem at the receiver

 $\mathsf{RV}\,X$ is the transmitted signal

$$\underline{s}_T \in M$$

The observed RV Y is the received signal $\underline{r} = \underline{s}_T + \underline{n} \in S$

$$\underline{r} = \underline{s}_T + \underline{n} \in S$$

$$\underline{r} = \underline{s}_T + \underline{n}$$

The association between \underline{r} and \underline{s}_T $f_{\underline{r}}(\underline{\rho} \mid \underline{s}_T = \underline{s}_i)$

This is a Gaussian probability density function with mean \underline{s}_i and variance $N_0/2$ in each dimension.

Gaussian probability density function (PDF)

Example: *r* is a Gaussian random variable

- Mean: μ
- Variance: σ^2
- Probability density function (PDF):

$$f_r(\rho) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(\rho - \mu)^2}{2\sigma^2})$$

Example: a pair of Gaussian random variables $r_1 r_2$

- Mean μ
- Variance: σ^2
- Statistically independent
- PDF:

$$f_{r_1 r_2}(\rho_1 \ \rho_2) = \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{(\rho_1 - \mu)^2}{2\sigma^2}) \quad . \quad \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{(\rho_2 - \mu)^2}{2\sigma^2})$$

$$f_{r_1 r_2}(\rho_1 \ \rho_2) = \frac{1}{(\sqrt{2\pi}\sigma)^2} \exp(-\frac{(\rho_1 - \mu)^2 + (\rho_2 - \mu)^2}{2\sigma^2})$$

Gaussian probability density function

$$f_{\underline{r}}(\underline{\rho} \mid \underline{s}_T = \underline{s}_i)$$

 \underline{r} = d-dimensional Gaussian RVs

- Mean: $\mu = S_{ij}$
- Variance: $\sigma^2 = N_0/2$
- Statistically independent
- PDF:

$$f_{\underline{r}}(\underline{\rho} \mid \underline{s}_{T} = \underline{s}_{i}) = \frac{1}{(\sqrt{\pi N_{0}})^{d}} \exp(-\frac{\sum_{j=1}^{d} (\rho_{j} - s_{ij})^{2}}{N_{0}})$$

$$d(y) = \arg \max_{x} [P(Y = y \mid X = x)]$$

Becomes:

given
$$\underline{r} = \underline{\rho}$$
 choose $\underline{s}_R = d\left(\underline{\rho}\right) = \arg\max_{\underline{s}_i \in M} \left[f_{\underline{r}}(\underline{\rho} \mid \underline{s}_T = \underline{s}_i) \right]$

Expression

$$f_{\underline{r}}(\rho \mid \underline{s}_T = \underline{s}_i)$$

$$\underline{\underline{s}_{R}} = \arg \max_{\underline{s}_{i} \in M} \left[\frac{1}{(\sqrt{\pi N_{0}})^{d}} \exp \left(-\frac{\sum_{j=1}^{d} (\rho_{j} - s_{ij})^{2}}{N_{0}} \right) \right]$$

$$\underline{\underline{s}_{R}} = \arg \min_{\underline{s}_{i} \in M} \sum_{j=1}^{d} (\rho_{j} - s_{ij})^{2}$$

Minimum distance criterion

$$\underline{s_R} = \arg\min_{\underline{s_i} \in M} \sum_{j=1}^{d} (\rho_j - s_{ij})^2$$

By calculating the Euclidean distance between vectors in \mathbb{R}^d :

$$d_E^2(\underline{\rho} - \underline{s}_i) = \sum_{i=1}^d (\rho_i - s_{ij})^2$$

$$\underline{s_R} = \arg\min_{s_i \in M} d_E^2 (\underline{\rho} - \underline{s}_i)$$

The ML criterion corresponds to the minimum distance criterion

Given
$$\underline{r} = \underline{\rho}$$
 choose $\underline{s}_R = \arg\min_{\underline{s}_i \in M} d_E^2(\underline{\rho} - \underline{s}_i)$

Voronoi region

given
$$\underline{r} = \underline{\rho}$$
 choose $\underline{s}_{\underline{R}} = \arg\min_{\underline{s}_i \in M} d_E^2(\underline{\rho} - \underline{s}_i)$

This is the criterion associated with any vector $\rho \in R^d$ representing the received signal $s_R \in M$

We have the **Voronoi region** (decision region) $V(\underline{s}_i)$

= the set of all received vectors for which the choice is $\underline{s}_R = \underline{s}_i$ $V(\underline{s}_i) = \left\{ \underline{\rho} \in R_{_J} : \underline{s}_R = \underline{s}_i \right\}$

Voronoi region

The set of received vectors used to make the choice: $\underline{s}_R = \underline{s}_i$

When do we have $\underline{s}_R = \underline{s}_i$?

 \rightarrow When $\underline{\rho} \in \mathbb{R}^d$ is closer to \underline{s} than to all other signals in the signal space

$$V(\underline{s_i}) = \{ \underline{\rho} \in R^d : d_E^2(\underline{\rho}, \underline{s_i}) \le d_E^2(\underline{\rho}, \underline{s}) \quad \forall \underline{s} \in M \}$$

Note:

If we receive
$$\underline{\rho} \in V(\underline{s}_i)$$

Ta chọn $S_R = \underline{S}_i$

$$\underline{s_R} = \underline{s}_i$$

minimum distance criterion

given
$$\underline{r} = \underline{\rho}$$
 choose $\underline{s}_{\underline{R}} = \arg\min_{\underline{s}_i \in M} d_E^2(\underline{\rho} - \underline{s}_i)$

Can be represented by the Voronoi region criterion

given
$$\underline{r} = \underline{\rho}$$
 if $\underline{\rho} \in V(\underline{s})$ choose $\underline{s_R} = \underline{s}$

