Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики № *labnum*

name of your labwork

Автор:

your name *groupname*

Долгопрудный, 2021

Обработка эксперементальных данных.

Проведем градуирование магнита.

В, мТл	<i>I</i> , A
1057	2,0
1032	1,8
978	1,6
935	1,4
845	1,2
730	1,0
611	0,8
491	0,6
338	0,4

Таблица 1

Измерим вольт-амперную характеристику образца.

I, мА	U, MKB
0,2	361
0,3	530
0,4	703
0,5	875
0,6	1043
0,7	1220
0,8	1392
0,9	1565
1,0	1743

Таблица 2: Вольт-амперная характиристика образца

Рис. 1

Параметры образца.

$$a=2,2$$
 мм — ширина образца $h=2,5$ мм — толщина образца $L=3,0$ мм — расстояние между контактами

Удельное сопротивление образца можем посчитать по формуле

$$\rho_0 = \frac{U_{35}ah}{IL}$$

Величину $\frac{U_{35}}{I}$ найдем из графика.

$$\rho_0 = 0.312 \text{ Om} \cdot \text{cm}$$

Найдем отсюда удельную проводимость.

$$\sigma = 3.2 \; (\mathrm{Om} \cdot \mathrm{cm})^{-1}$$

Снимем зависимость ЭДС Холла от значения индукции магнитного поля при разных значениях продольного тока. Заметим, что напряжение на контактах связано не только с эффектом Холла, но и с оммическим падением напряжения вдоль пластины. Исключить этот эффект можно двумя способами:

1. Изменять направление магнитного поля, пронизывающего образец. При обращении поля знак ЭДС Холла меняется, поэтому ЭДС Холла U_{34} может быть определена по формуле

$$U_{\perp} = \frac{U^{(+)} - U^{(-)}}{2}$$

2. Можно исключить влияние оммического падения напряжения, измеряя падение напряжения на образце U_0 в отсутсвии магнитного поля. Тогда ЭДС Холла вычисляться по формуле

$$U_{\perp} = U_{34} - U_0$$

$$I=1$$
 мА $U_0=-38$ мкВ

$U^{(+)}$, MKB	$U^{(-)}, \text{ MKB}$	U_{\perp} , мкВ	B, мк T л	<i>I</i> , A
166	-237	202	1057	2,0
157	-230	194	1032	1,8
149	-221	184	978	1,6
137	-210	174	935	1,4
121	-193	157	845	1,2
99	-172	136	730	1,0
75	-148	112	611	0,8
49	-122	86	491	0,6
23	-95	59	338	0,4

Таблица 3

Рис. 2

$$I=0.5~\mathrm{mA}$$
 $U_0=-17~\mathrm{mkB}$

$U^{(+)}, MKB$	$U^{(-)}, \text{ MKB}$	U_{\perp} , мкВ	B, мк T л	<i>I</i> , A
52	-72	62	1057	2
50	-69	60	1032	1,8
47	-66	57	978	1,6
44	-63	54	935	1,4
39	-58	49	845	1,2
32	-52	42	730	1
25	-44	35	611	0,8
17	-36	27	491	0,6
8	-28	18	338	0,4

Рис. 3

$$I=0,3$$
 мА $U_0=-10$ мкВ

$U^{(+)}$, MKB	$U^{(-)}, \text{ MKB}$	U_{\perp} , мкВ	B, мк T л	<i>I</i> , A
85	-120	103	1057	2
82	-115	99	1032	1,8
77	-110	94	978	1,6
71	-105	88	935	1,4
63	-96	80	845	1,2
52	-85	69	730	1
40	-73	57	611	0,8
26	-60	43	491	0,6
13	-47	30	338	0,4

Таблица 4

Рис. 4

По полученным данным вычислим концентрацию носителей зарядов в образце n.

$$\varepsilon_h = \frac{IB}{nea} = R_h \frac{IB}{a}$$

Найдем подвижность носителей зарядов μ в образце, спользуя формулу

$$\sigma = en\mu \Rightarrow \mu = \frac{\sigma}{en}$$

где e – элементарный заряд, а $R_h = \frac{1}{ne}$ – постоянная Холла. Тогда **Вывод:** таким образом, в работе мы нашли концентрацию и подвижность носителей зарядов в образце.

Отличие полученных величин от табличных свидетельствует о том, что изучаемом образце присутствовали примеси.

I мА	$R_h \cdot 10^{-3} \frac{\text{M}^3}{\text{Kл}}$	$n \cdot 10^{16} \text{ cm}^{-3}$	$\mu \cdot 10^3 \frac{\text{cm}^2}{\text{B} \cdot \text{c}}$
1,0	0,418	1,50	1,33
0,5	0,440	1,40	1,43
0,3	0,447	1,39	1,44

Таблица 5