Лекция 5 Индуктивные расширения

(c) Д.Н. Лавров 2017

Введение

- Многие функции на множестве всех последовательностей не являются индуктивными. Примером может служить функция вычисления среднеарифметического значения.
- Отсутствие индуктивности говорит о том, что по F(ω) и х не возможно вычислить F(ω *x), нам не хватает какой-либо информации для этого.
- Так, например, для вычисления среднеарифметического значения элементов последовательности не хватает знаний об их количестве.
- В таких случаях функцию можно расширить снабдив такой информацией и эта расширенная функция уже будет индуктивной.

Индуктивное расширение

- Определение. Индуктивным расширением функции f : Ω → Y_f называется функция
 F : Ω → Y , обладающая следующими свойствами:
 - F индуктивна;
 - $\exists \pi: Y \to Y_f: \forall \omega \in \Omega \quad f(\omega) = \pi(F(\omega)).$
- Простыми словами, можно f вычислить, зная F.

Стратегии построения расширений

- Существует две стратегии построения алгоритмов для неиндуктивных функций.
- Первая стратегия заключается в прямом представлении неиндуктивной функции в виде композиции нескольких индуктивных. Тогда в качестве индуктивной функции можно будет взять эту композицию.

Стратегии построения расширений

- Существует две стратегии построения алгоритмов для неиндуктивных функций.
- Первая стратегия заключается в прямом представлении неиндуктивной функции в виде композиции нескольких индуктивных. Тогда в качестве индуктивной функции можно будет взять эту композицию.

Стратегии построения расширений

- Вторая стратегия заключается в выражении f(ω *x) через f(ω) и x. Затем анализируется каких именно данных не хватает для перехода.
- Обозначим их за $f_1(\omega)$. Если $f_1(\omega * x)$ выражается через $f(\omega)$, $f_1(\omega)$ и x, то индуктивное расширение F задаётся как пар $F = (f, f_1)$.
- Если же выразить $f(\omega)$ нельзя, то снова анализируется не достающая информация $f_2(\omega)$. И опять, если $f_2(\omega *x)$ выражается через $f(\omega)$, $f_1(\omega)$, $f_2(\omega)$ и x, то индуктивное расширение F задаётся как пар $F = (f, f_1, f_2)$.
- И т.д. пока не будет построено индуктивное расширение.
- В этой ситуации отображение π(F) выбирает первую компоненту вектора F.
- Вторая стратегия не требует какой-либо «креативности» и производится почти механически.

Пример

- F = «Среднеарифметическое значений последовательности».
- Стратегия первая. Функцию вычисления среднего можно разложить на две индуктивных функции: вычисления суммы элементов F_1 и их количества F_2 . Итоговый результат будет вычислен как их отношение
- $F = F_1 / F_2$.
- $F_1(\omega * x) = G_1(F_1(\omega), x) = F_1(\omega) + x$;
- $F_2(\omega * x) = G_2(F_2(\omega), x) = F_2(\omega) + 1$;
- Доопределим F₁ и F₂ на пустых последовательностях:
- $F_1(\Delta) = 0$; $F_2(\Delta) = 0$

Пример

• Результат реализации на Python

```
omega=[1,2,4,2,3]
F1=0; F2=0
for x in omega:
      F1+=x
      F2 += 1
F=F1 / F2
print(F)
```

Пример.

 Вторая стратегия. Посмотрим чего не хватает

$$f(\omega_{k+1}) = f(\omega_k * x) = \frac{1}{k+1} \sum_{i=1}^{k+1} x_i = \frac{1}{k+1} \sum_{i=1}^{k} x_i + \frac{1}{k+1} x_{k+1} = \frac{1}{k+1} f(\omega_k) + \frac{1}{k+1} x_{k+1}$$

• где ω_k – последовательность длины k.

Пример.

- Нам не хватает информации о длине последовательности.
- Обозначим эту информацию, f_1 . Эта функция индуктивна и $f_1(\omega *)$ может быть вычислена при известной $f_1(\omega)$ и х по правилу $f_1(\omega *x) = f_1(\omega) + 1$.
- Тогда положим $F = (f, f_1)$

Пример

$$F(\omega * x) = \frac{f_1(\omega)}{f_1(\omega) + 1} f(\omega) + \frac{1}{f_1(\omega) + 1} x = \frac{f_1(\omega) * f(\omega) + x}{f_1(\omega) + 1}.$$

• Код на Python

Минимальное индуктивное расширение

- Для одной и той же функции можно придумать разные индуктивные расширения. С практической точки зрения интересны минимальные индуктивные расширения. «Минимальное» означает минимум информации об ω.
- *Определение*. Пусть даны две функции на F: Ω → Y и G: Ω → Z. Скажем, что

F≥G,

- если существует р: $Y \to G$: для любой последовательности $\omega \in \Omega$ $G(\omega) = p(F(\omega))$.
- Существование p(x) означает, что G(ω) можно найти по F(ω).

Минимальное индуктивное расширение

- Определение. Индуктивное расширение G:
 Ω → Z функции f называется
 минимальным, если
- a) $G(\Omega) = Z$ (G полностью заполняет Z),
- b) ★: F!= G, где F индкутивное расширение f, выполнено

F > G

Минимальное индуктивное расширение

- *Утверждение*. Минимальное расширение единственно с точностью до изоморфизма.
- Теорема. Минимальное индуктивное расширение существует!
- Определение. Будем говорить, что две последовательности а и b эквивалентны относительно функции f, когда

$$\forall \omega \in \Omega$$
 $f(a * \omega) = f(b * \omega)$.

- Эквивалентность последовательностей а и b будем обозначать знаком ~ и писать а ~ b.
- Введённое отношение эквивалентности действительно является отношением эквивалентности в алгебраическом смысле. Оно обладает основными свойствами эквивалентности, перечисленными ниже.
- Рефлексивность: а \sim а \forall а ∈ Ω .
- Симметричность: если а \sim b, то b \sim a.
- Транзитивность: если а \sim b и b \sim c, то а \sim c.

Критерий минимальности

- Утверждение. Критерий минимальности индуктивного расширения. Индуктивное расширение F: Ω → Y функции f: Ω → Y_f является минимальным тогда и только тогда, когда
- a) $F(\Omega) = Y$,
- b) ∀а, b ∈ Ω: F(a) != F(b) ⇒ a !~ b ,
 где ~ отношение эквивалентности,
 введённое выше.

Вывод

- Существование минимального индуктивного расширения означает использование минимума памяти.
- С другой стороны реализация индуктивной функции даёт однопроходный алгоритм.
- Поэтому основной результат данного раздела: для любой функции f на множестве последовательностей Ω существует минимальный по памяти однопроходный алгоритм, вычисляющий f, этот алгоритм единственный с точностью до изоморфизма.

Литература

- Кушниренко А.Г., Лебедев Г.В. Программирование для математиков: Учебное пособие для вузов. М.: Глав. ред. физ.-мат. лит., 1988. 384с.
- Е.А. Роганов. Основы информатики и программирования: Учебное пособие для программистких специальностей. М.: МГИУ, 2001. 315 с.

Контрольная работа

- Найти минимальное индуктивное расширение для f(n,a)
- Написать программу, вычисляющую по заданым п и а значение функции.

$$f(n,a) = \sum_{k=1}^{n} \frac{a^k}{k!}$$

Вопросы