

Guia 1

2do cuatrimestre 2024

Algoritmos y Estructuras de Datos I

Integrante	LU	Correo electrónico
Federico Barberón	112/24	jfedericobarberonj@gmail.com

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - Pabellón I Intendente Güiraldes 2160 - C1428EGA Ciudad Autónoma de Buenos Aires - Argentina

$$\label{eq:tensor} \begin{split} \text{Tel/Fax: (54 11) 4576-3359} \\ \text{http://exactas.uba.ar} \end{split}$$

$\acute{\mathbf{I}}\mathbf{ndice}$

1.	Gui	a 1																							
	1.1.	Ejercicio	1	 																					
	1.2.	Ejercicio	2	 																					
	1.3.	Ejercicio	3	 																					
	1.4.	Ejercicio	4	 																					
	1.5.	Ejercicio	5	 																					
	1.6.	Ejercicio	6	 																					
	1.7.	Ejercicio	7	 																					
	1.8.	Ejercicio	8	 													 								

1. Guia 1

1.1. Ejercicio 1

Determinar los valores de verdad de las siguientes proposiciones cuando el valor de verdad de a, b y c es verdadero y el de x e y es falso.

a)
$$(\neg x \lor b)$$
 True

e)
$$(\neg(c \lor y) \leftrightarrow (\neg c \land \neg y))$$
 True

b)
$$((c \lor (y \land a)) \lor b)$$
 True

f)
$$((c \lor y) \land (a \lor b))$$
 True

c)
$$\neg (c \lor y)$$
 False

g)
$$(((c \lor y) \land (a \lor b)) \leftrightarrow (c \lor (y \land a) \lor b))$$
 True

d)
$$\neg (y \lor c)$$
 False

h)
$$(\neg c \land \neg y)$$
 False

1.2. Ejercicio 2

Considere la siguiente oración: "Si es mi cumpleaños o hay torta, entonces hay torta".

• Escribir usando lógica proposicional y realizar la tabla de verdad

$$(p \lor q) \to q$$

p	q	$(p \lor q)$	$(p \lor q) \to q$
T	Т	Т	T
T	F	Т	F
F	Т	Т	Т
F	F	F	Т

- Asumiendo que la oración es verdadera y hay una torta, qué se puede concluir? Se concluye que puede o no ser su cumpleaños.
- Asumiendo que la oración es verdadera y no hay una torta, qué se puede concluir?
 Se concluye que NO es su cumpleaños.
- Suponiendo que la oración es mentira (es falsa), se puede concluir algo?
 Se concluye que es su cumpleaños pero no hay torta :(

1.3. Ejercicio 3

Usando reglas de equivalencia (conmutatividad, asociatividad, De Morgan, etc) determinar si los siguientes pares de fórmulas son equivalencias. Indicar en cada paso qué regla se utilizó.

a)
$$\bullet$$
 $(p \lor q) \land (p \lor r)$

$$\neg p \rightarrow (q \land r)$$

$$\begin{array}{ccc} (p \vee q) \wedge (p \vee r) \leftrightarrow & p \vee (q \wedge r) \\ \leftrightarrow & \neg (\neg p) \vee (q \wedge r) \\ \leftrightarrow & \neg p \rightarrow (q \wedge r) \end{array} \right| \begin{array}{c} \text{Distributiva} \\ \text{Doble negación} \\ \text{Definición condicional} \end{array}$$

Las fórmulas son equivalentes.

b)
$$\neg (\neg p) \rightarrow (\neg (\neg p \land \neg q))$$

• q

$$\begin{array}{c|cccc} \neg(\neg p) \rightarrow (\neg(\neg p \land \neg q)) \leftrightarrow & \neg(\neg p) \rightarrow (p \lor q) \\ \leftrightarrow & p \rightarrow (p \lor q) & \text{Doble negación} \\ \leftrightarrow & \neg p \lor (p \lor q) & \text{Definición condicional} \\ \leftrightarrow & (\neg p \lor p) \lor q & \text{Asociatividad} \\ \leftrightarrow & True \lor q & \\ \leftrightarrow & True & & \text{Conjunción } True \end{array}$$

Las fórmulas no son equivalentes.

c)
$$\blacksquare$$
 $((True \land p) \land (\neg p \lor False)) \rightarrow \neg(\neg p \land q)$

$$\quad \blacksquare \quad p \land \neg q$$

$$\begin{array}{c|c} ((True \wedge p) \wedge (\neg p \vee False)) \rightarrow \neg (\neg p \wedge q) \\ \leftrightarrow & (p \wedge \neg p) \rightarrow \neg (\neg p \vee q) \\ \leftrightarrow & False \rightarrow \neg (\neg p \vee q) \\ \leftrightarrow & True \\ \end{array} \right| \begin{array}{c} \text{Conjunci\'on } \textit{True y disyunci\'on } \textit{False} \\ \text{Contradicci\'on} \\ \end{array}$$

Las fórmulas no son equivalentes.

d)
$$\bullet$$
 $(p \lor (\neg p \land q))$

$$-p \rightarrow q$$

$$\begin{array}{c|cccc} (p\vee (\neg p\wedge q)) \leftrightarrow & (p\vee \neg p)\wedge (p\vee q) \\ & \leftrightarrow & True \wedge (p\vee q) \\ & \leftrightarrow & p\vee q \\ & \leftrightarrow & \neg (\neg p)\vee q \\ & \leftrightarrow & \neg p\to q \end{array} \quad \begin{array}{c|cccc} \text{Distributiva} \\ \text{Doble negación} \\ \text{Definición condicional} \end{array}$$

Las fórmulas son equivalentes.

e)
$$p \to (q \land \neg (q \to r))$$

$$\quad \blacksquare \ (\neg p \vee q) \wedge (\neg p \vee (q \wedge \neg r))$$

$$\begin{array}{c|cccc} p \to (q \land \neg (q \to r)) \leftrightarrow & \neg (\neg p) \to (q \land \neg (\neg (\neg q) \to r)) & \text{Doble negación} \\ & \leftrightarrow & \neg p \lor (q \land \neg (\neg q \lor r)) & \text{Definición condicional} \\ & \leftrightarrow & \neg p \lor (q \land (q \land \neg r)) & \text{De Morgan} \\ & \leftrightarrow & (\neg p \lor q) \land (\neg p \lor (q \land \neg r)) & \text{Distributiva} \end{array}$$

Las fórmulas son equivalentes.

1.4. Ejercicio 4

Determinar si las siguientes fórmulas son tautologías, contradicciones o contingencias.

a)
$$(p \vee \neg p)$$
 Tautología

p	$(p \vee \neg p)$
T	\mathbf{T}
F	\mathbf{T}

b) $(p \wedge \neg p)$ Contradicción

$$\begin{array}{c|cc}
p & (p \land \neg p) \\
\hline
T & \mathbf{F} \\
F & \mathbf{F}
\end{array}$$

c) $((\neg p \vee q) \leftrightarrow (p \rightarrow q))$ Tautología

p	q	$(\neg p \lor q)$	$(p \to q)$	$((\neg p \lor q) \leftrightarrow (p \to q))$
T	Т	Т	Т	${f T}$
T	F	F	F	${f T}$
F	Γ	T	Т	${f T}$
F	F	T	Т	${f T}$

d) $((p \land q) \rightarrow p)$ Tautología

p	q	$(p \wedge q)$	$((p \land q) \to p)$
Т	Т	Т	T
Т	F	F	${f T}$
\mathbf{F}	Γ	F	${f T}$
\mathbf{F}	\mathbf{F}	F	${f T}$

e) $((p \land (q \lor r)) \leftrightarrow ((p \land q) \lor (p \land r)))$

p	q	r	$(q \lor r)$	$(p \land (q \lor r))$	$(p \wedge q)$	$(p \wedge r)$	$((p \land q) \lor (p \land r))$	Fórmula del enunciado
T	T	Τ	T	T	Т	Τ	T	\mathbf{T}
T	$\mid T \mid$	F	Т	Γ	Т	\mathbf{F}	m T	${f T}$
$\mid T \mid$	F	Γ	Т	Γ	F	Τ	T	${f T}$
$\mid T \mid$	F	F	F	F	F	F	F	${f T}$
F	$\mid T \mid$	Γ	Т	F	F	F	F	$oldsymbol{ ext{T}}$
F	$\mid T \mid$	F	Τ	F	F	F	F	${f T}$
F	$\mid F \mid$	Γ	Τ	F	F	F	F	$oldsymbol{ ext{T}}$
F	F	F	F	F	F	F	F	$oxed{T}$

f)
$$((p \to (q \to r)) \to ((p \to q) \to (p \to r)))$$
 HACER!

1.5. Ejercicio 5

Determinar la relación de fuerza de los siguientes pares de fórmulas:

a) True, False False es más fuerte que True.

b) $(p \wedge q), (p \vee q)$ $(p \wedge q)$ es más fuerte que $(p \vee q)$.

c) $p, (p \land q)$ $(p \land q)$ es más fuerte que p.

d) $p, (p \lor q)$ p es más fuerte que $(p \lor q)$.

e) p,qNo hay relación de fuerza.

f) $p, (p \rightarrow q)$ No hay relación de fuerza.

1.6. Ejercicio 6

Asumiendo que el valor de verdad de b y c es verdadero, el de a es falso y el de x e y es indefinido, indicar cuáles de los operadores deben ser operadores "luego" para que la expresión no se indefina nunca:

a) $(\neg x \lor b)$ Se indefine siempre.

b) $((c \lor (y \land a)) \lor b)$ $((c \lor_L (y \land a)) \lor b)$

c) $\neg (c \lor y)$ $\neg (c \lor_L y)$

- d) $(\neg(c \lor y) \leftrightarrow (\neg c \land \neg y))$ $(\neg(c \lor_L y) \leftrightarrow (\neg c \land_L \neg y))$
- e) $((c \lor y) \land (a \lor b))$ $((c \lor_L y) \land (a \lor b))$
- f) $(((c \lor y) \land (a \lor b)) \leftrightarrow (c \lor (y \land a) \lor b))$ $(((c \lor_L y) \land (a \lor b)) \leftrightarrow (c \lor_L (y \land a) \lor b))$
- g) $(\neg c \land \neg y)$ $(\neg c \land_L \neg y)$

1.7. Ejercicio 7

Sean p, q y r tres variables de las que se sabe que:

- p y q nunca esán indefinidas,
- \blacksquare r se indefine sii q es verdadera

Proponer una fórmula que nunca se indefina, utilizando siempre las tres variables y que sea verdadera si y solo si se cumple que:

a) Al menos una es verdadera.

$$(p \lor q) \lor_L r$$

b) Ninguna es verdadera.

$$\neg (p \lor q) \land_L \neg r$$

- c) Exactamente una de las tres es verdadera. HACER!
- d) Sólo p y q son verdaderas. HACER!
- e) No todas al mismo tiempo son verdaderas. HACER!
- f) r es verdadera. HACER!

1.8. Ejercicio 8

Determinar, para cada aparición de variables, si dicha aparición se encuentra libre o ligada. En cada caso de estar ligada, aclarar a qué cuantificador lo está. En los casso en que sea posible, proponer valores para las variables libres de modo tal que las expresiones sean verdaderas.

a) $(\forall x : \mathbb{Z})(0 \le x < n \to x + y = z)$

Ligadas: x al cuantificador $(\forall x : \mathbb{Z})$.

Libres: n, y, z. Posibles valores: n = 1, y = z = 5.

b) $(\forall x : \mathbb{Z})((\forall y : \mathbb{Z})((0 \le x < n \land 0 \le y < m) \to x + y = z))$

Ligadas: x al cuantificador $(\forall x : \mathbb{Z})$, y al cuantificador $(\forall y : \mathbb{Z})$.

Libres: n, m, z. Posibles valores: n = 1, m = 1, z = 0.

c) $(\forall j : \mathbb{Z})(0 \le j < 10 \to j < 0)$

Ligadas: j al cuantificador $(\forall j : \mathbb{Z})$.

En este caso la expresión es siempre falsa.

d) $(\forall j : \mathbb{Z})(j \leq 0 \rightarrow P(j)) \land P(j)$

Ligadas: j al cuantificador $(\forall j : \mathbb{Z})$.

Libres: j.

El valor de verdad depende de P(j).