Orbits in 3D

Everything we've done so far has been in 2D. Now we're going to 3D.

We're going to look at two basic types of coordinate systems:

1) Ecliptic system:

2) Equatorial System:

Obliquity of ecliptic (e)

We need a fixed reference direction to use coordinate systems

-> Vernal equinor:

" precession of the equinoxes"

Caused by perturbing forces on its

Time for complete precession is 26,000 years

Precession means coataloging objects must refer to a specific date or epoch

we will assume of interest.

this gives us a

Reference System (ECI)

XXX

9

1. Locate s/c in orbit: time

2. Within orbit plane: orbit size + shape orbit orientation in orbit plane

3) within space

 ω :

To transform use 3-1-3 Euler sequence C: cosine \hat{r} $\hat{\theta}$ \hat{h} \hat{h} \hat{r} $\hat{\theta}$ \hat{h} \hat{h} \hat{r} \hat

Example 1:

Given: $\Gamma = 1.6772 \, \text{Re} \, \hat{x} - 1.6772 \, \text{Re} \, \hat{y}$ + 23719 Re 2

V, = 3.1574 &+ 2.4987 9+0.4658 2 km/s

Find: a, e, i, so, w, o.

Shape? $\rightarrow r_i = |\overline{r_i}|, \ V_i = |\overline{V_i}|$

Find E. what shape is the orbit?

E =

Find magnitude of 0.

(h) =

From rotation matrix

Find h.

Then

We can obtain the remaining elements from

$$\hat{r}_{i} = \frac{\bar{r}_{i}}{|\bar{r}_{i}|} = 0.5 \,\hat{x} - 0.5 \,\hat{y} + 0.7071 \,\hat{z}$$

$$\hat{\theta}_{i} = \hat{h}_{x} \hat{r}_{i} = 0.7071 \hat{x} + 0.7071 \hat{y}$$

What is 8,?

Back to
$$\theta_i^*$$
 recall
$$\overline{V}_i = (\overline{v}_i \cdot \hat{r}_i) \hat{r}_i + (\overline{v}_i \cdot \hat{\theta}_i) \hat{\theta}_i$$

Example 2:

Given: $\vec{r}_1 = 14450.6 \hat{x} - 1529.9 \hat{y} - 6524.0 \hat{z} \text{ km}$ $\vec{r}_2 = -6199.5 \hat{x} + 14699.2 \hat{y} + 8531.9 \hat{z} \text{ km}$

P= 2.88 R#

Find: a,e,i, D, w, O, Oz, V, V2

Analysis

Know r = 17,1 and r = 121

Find i, so, O.

To find
$$\overline{V}$$
, \overline{A} \overline{V}_2

$$\overline{V}_2 = F\overline{v}_1 + g\overline{v}_1 = \overline{V}_2 - f\overline{v}_1$$
Use $F + g$ in terms of $\Delta \Theta^*$

$$f, g = F(r_1, r_2, \Delta \Theta^*, P); g(r_1, r_2, \Delta \Theta^*, P)$$
How to find $\Delta \Theta^*$?

Now find B*

Since we have v. and r, now find a + &