Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty

Wei Chen¹

Integrated DEsign Automation Laboratory (IDEAL), Northwestern University, Evanston, IL 60208-3111

> Ruichen Jin Ford Motor Company

Agus Sudjianto Bank of America

The importance of sensitivity analysis in engineering design cannot be over-emphasized. In design under uncertainty, sensitivity analysis is performed with respect to the probabilistic characteristics. Global sensitivity analysis (GSA), in particular, is used to study the impact of variations in input variables on the variation of a model output. One of the most challenging issues for GSA is the intensive computational demand for assessing the impact of probabilistic variations. Existing variance-based GSA methods are developed for general functional relationships but require a large number of samples. In this work, we develop an efficient and accurate approach to GSA that employs analytic formulations derived from metamodels. The approach is especially applicable to simulation-based design because metamodels are often created to replace expensive simulation programs, and therefore readily available to designers. In this work, we identify the needs of GSA in design under uncertainty, and then develop generalized analytical formulations that can provide GSA for a variety of metamodels commonly used in engineering applications. We show that even though the function forms of these metamodels vary significantly, they all follow the form of multivariate tensor-product basis functions for which the analytical results of univariate integrals can be constructed to calculate the multivariate integrals in GSA. The benefits of our proposed techniques are demonstrated and verified through both illustrative mathematical examples and the robust design for improving vehicle handling performance. [DOI: 10.1115/1.1904642]

1 Introduction

Sensitivity analysis has been widely used in engineering design to gain more knowledge of complex model behavior and help designers make informed decisions regarding where to spend the engineering effort [1]. In deterministic design, sensitivity analysis is used to find the rate of change in the model output by varying input variables one at a time near a given central point, often called local sensitivity analysis. For design under uncertainty [1–5], sensitivity analysis is performed with respect to the probabilistic characteristics of model inputs and outputs. The term global sensitivity analysis (GSA) is used when the focus is on studying the impact of variations over the entire range of model inputs—as opposed to local sensitivity using partial derivatives—on the variation of a model output. Details of the potential usage of GSA for both robust design and reliabilitybased design are provided in [6]. In brief, GSA can be used in a prior-design stage to screen out variables that are probabilistically insignificant and to understand the interactions between design and noise variables, or applied in a post-design stage to determine where the effort should be made to reduce the variability so that the quality of a design can be improved.

Related to the methods for GSA is the concept of analysis of variance (ANOVA) in classical design of experiments (DOE) that identifies the factor effects through statistical analysis of computer experiments [7]. Since ANOVA employs statistical representations of model parameters, the same concept can be used to study the behavior of a model with probabilistic inputs. However,

due to the computational complexity, the standard ANOVA is often used to provide linear effects and second-order interaction effects of variables, but is seldom used to evaluate the nonlinear effect and the total effect (including linear, nonlinear main effects, and interaction effects), information that is critical for ranking variable importance.

To extend the traditional ANOVA to GSA, a number of variance-based methods have been developed, including the Fourier amplitude sensitivity test (FAST) [8], correlation ratio [9], various importance measures [10], Sobol's total effect indices [11], etc. Reviews on different GSA methods can be found in 12–14. Similar to the concept as used in ANOVA, many of these methods decompose the total variance of an output to items contributed by various sources of input variations, and then derive sensitivity indices as the ratios of a partial variance contributed by an effect of interest over the total variance of the output. Nevertheless, most of these methods are developed for general functional relationships without consideration that acquiring sample outputs are resource (e.g., computationally) intensive. Therefore, the existing methods require a large number of samples or lengthy numerical procedures such as by employing Monte Carlo [11] or lattice samplings [8,9]. None of the existing GSA methods are analytical techniques which are expected to be more computationally efficient and accurate. The efficiency is a major barrier of applying GSA for design problems that involve computationally expensive simulations.

We note that in simulation-based design, to facilitate affordable design exploration and optimization, metamodels ("model of model") are often created based on computer simulations to replace the computationally expensive simulation programs [15]. While it may be easy to identify the impact of input variations by simply inspecting the regression coefficients of a linear or a quadratic polynomial metamodel, it would be difficult to understand metamodels with sophisticated functional forms, such as radial

¹Corresponding Author, weichen@northwestern.edu. Mechanical Engineering, Northwestern University, Evanston, IL 60208-3111, phone 847-491-17019, fax 847-491-3015

Contributed by the Design Automation Committee for publication in the JOURNAL OF MECHANICAL DESIGN. Manuscript received August 10, 2004; revised December 3, 2004. Associate Editor: K. Lewis.

basis function networks [16,17] Kriging [18,19] etc., let alone when the input variations follow various probabilistic distributions. In this work, we develop an efficient and accurate approach to GSA that employs analytical formulations derived based on the metamodels, assuming that the accuracy of metamodels is satisfactory. The approach is especially applicable to simulation-based design because the information of metamodels is readily available to designers. Similar to many existing variance-based GSA methods, our method uses the concept of ANOVA decomposition for assessing the sensitivity indices. The proposed analytical approach eliminates the need of sampling which could be time-consuming even applied to metamodels. It also improves the accuracy by eliminating the random errors of statistical sampling (note that even a very sophisticated quasi-Monte Carlo sampling has a root mean square error of $O(n^{-3/2+\varepsilon})$, $\varepsilon > 0$ where n is the sample size [20]. In this work, we identify the needs of GSA in design under uncertainty, and then develop generalized analytical formulations that can provide GSA for a variety of metamodels, including those commonly used metamodels such as polynomial, Kriging, the Radial Basis Functions, and MARS [21]. Even though the function forms of these metamodels vary significantly, we show that all these models follow the form of multivariate tensor-product basis functions (TPBFs) for which the analytical results of univariate integrals can be constructed to calculate the multivariate integrals in GSA. Our paper is organized as follows. In Sec. 2, we lay out the mathematical background of GSA. The concepts of ANOVA decomposition and sensitivity indices are introduced. In Sec. 3, we identify the types of GSA for design under uncertainty and present our analytical approach to GSA. In Sec. 4, we verify and illustrate the advantages of our proposed techniques by mathematical and engineering examples. Section 5 is the closure of this

2 Mathematical Background of GSA

In this section, we first introduce the concept of ANOVA decomposition, which is foundational to the evaluation of sensitivity indices (SIs) in variation-based GSA. The SIs are defined next. An example is used to further explain the concept of GSA.

2.1 ANOVA Decomposition. The *global* sensitivity stands for the *global* variability of an output over the *entire range of the input variables* that are of interest and hence provides an overall view on the influence of inputs on an output as opposed to a local view of partial derivatives. With the concept of variance-based GSA, a function is decomposed through functional *Analysis of Variance* (ANOVA) [11,20] into increasing order terms, i.e.,

$$f(x_1, x_2, \dots, x_M) = f_0 + \sum_{i=1}^{M} \phi_i(x_i) + \sum_{i_1=1}^{M} \sum_{i_2=i_1+1}^{M} \phi_{i_1 i_2}(x_{i_1}, x_{i_2}) + \dots + \phi_{1 \dots M}(x_1, \dots, x_M).$$
 (1)

Let x_i (i = 1, 2, ..., M) be independent random variables with probability density functions $p_i(x_i)$, the constant term f_0 is the mean of the $f(\mathbf{x})$:

$$f_0 = \int f(\mathbf{x}) \prod_{i=1}^{M} \left[p_i(x_i) dx_i \right]. \tag{2}$$

It should be noted that the assumption of statistical independence of variables is used throughout this paper for the derivation of the proposed method. This assumption holds in many practical applications as contributions to multiple random variables often come from different, but independent sources, such as in structural design the random material properties due to material processing and the instability of load due to environment. If independent assumption among the random variables is warranted then the proposed approach provides significant computational advantage; otherwise, the Copula technique in Monte Carlo simulation have to be used. In practice, the real probabilistic distributions are often

unknown or can not be practically defined with precision. Therefore, independent assumption is often used for the purpose of sensitivity analysis to conduct "what-if" analysis.

Based on Eq. (2), a decomposition item depending on a single variable x_i , referred as the main effect, is obtained by averaging out all the variables except x_i and minus the constant item, i.e.,

$$\phi_i(x_i) = \int f(\mathbf{x}) \prod_{j \neq i} [p_j(x_j) d\mathbf{x}_j] - f_0.$$
 (3)

A decomposition item depending on two variables, referred as the second-order interaction, is obtained by averaging out all the variables except these two variables and minus their main effects as well as the constant item, i.e.,

$$\phi_{i_1 i_2}(x_{i_1}, x_{i_2}) = \int f(\mathbf{x}) \prod_{j \neq i_1, i_2} [p_j(x_j) dx_j] - \phi_{i_1}(x_{i_1}) - \phi_{i_2}(x_{i_2}) - f_0$$
(4)

In general, a decomposition item depending on *s* variables (referred as *s*-order interaction) is obtained by averaging out all the variables except the *s* variables in concern and eliminating the items depending on any subsets of the *s* variables:

$$\phi_{i_{1}...i_{s}}(x_{i_{1}}, ..., x_{i_{s}}) = \int f(\mathbf{x}) \prod_{j \neq i_{1}...,i_{s}} [p_{j}(x_{j})dx_{j}]$$

$$- \sum_{k=1}^{s-1} \sum_{j_{1},...,j_{k} \in (i_{1},...,i_{s})} \phi_{j_{1}...j_{k}}(x_{j_{1}}, ..., x_{j_{k}}) - f_{0},$$
(5)

where $j_1 < j_2 \cdots < j_k$.

2.2 Variance Decomposition and Sensitivity Indices. By squaring and integrating Eq. (1) and using the orthogonality feature of the decomposition terms in Eq. (1), the variance V of f can be expressed as the summation of variances $V_{i_1...i_s}$ of $\phi_{i_1...i_s}$ (referred as partial variances),

$$V = \sum_{i=1}^{M} V_i + \sum_{i_1=1}^{M} \sum_{i_2=i_1+1}^{M} V_{i_1 i_2} + \dots + V_{1,\dots,M},$$
 (6)

where,

$$V = \operatorname{Var}\{f(\mathbf{X})\} = \int f^{2}(\mathbf{x})p(\mathbf{x})d\mathbf{x} - f_{0}^{2}, \tag{7}$$

and

$$V_{i_{1}...i_{s}} = \operatorname{Var}\{\phi_{i_{1}...i_{s}}(x_{i_{1}}, ..., x_{i_{s}})\}$$

$$= \int \phi_{i_{1}...i_{s}}^{2}(x_{i_{1}}, ..., x_{i_{s}}) \prod_{j=i_{1}}^{i_{s}} [p_{j}(x_{j})dx_{j}].$$
 (8)

In Eq. (7), \mathbf{x} stands of a vector of variables, the evaluation involves a multidimensional integration of the product of function f and density functions. With Eq. (6), the output variability of f (measured by variance) is decomposed into separate portions attributable to each input and interaction. A *global sensitivity index* is defined as a partial variance contributed by an effect of interest normalized by the total variance V, i.e.,

$$S_{i_1\dots i_c} = V_{i_1\dots i_c}/V. \tag{9}$$

A sensitivity index (S_i) corresponding to a single variable (x_i) is called *main sensitivity index* (MSI), and a sensitivity index corresponding to the interaction of two or more variables $(S_{i_1...i_s}, s \ge 2)$ is called *interaction sensitivity index* (ISI). From Eq. (6), it can be found easily that all the sensitive indices sum to 1, i.e.,

876 / Vol. 127, SEPTEMBER 2005

Transactions of the ASME

$$\sum_{s=1}^{M} \sum_{i_1 < \dots < i_s} S_{i_1 \dots i_s} = \sum_{s=1}^{M} S_{i_1 i_2} + \dots + S_{1 \dots M} = 1. \quad (10)$$

To quantify the *total influence* of each individual variable induced by both its main effect and interactions with other variables, we can either sum all effects that involve the variable of interest or use the approach of "freezing unessential variables" [11]. This is done by partitioning the variables into x_i and its complementary set $\mathbf{x}_{\sim i} = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_M)$. The *total sensitivity index* (TSI) for variable x_i is given by

$$S_i^t = S_i + \hat{S}_{i,\sim i} = 1 - \hat{S}_{\sim i},$$
 (11)

where $\hat{S}_{i,\sim i}$ is the sum of all the $S_{i_1...i_s}$ that involve the index i and at least one index from $(1,\ldots,i-1,i+1,\ldots,M); \hat{S}_{\sim i}$ is the sum of all the $S_{i_1...i_s}$ terms that do not involve the index i. For a three-variable model, the total effect of x_1 , i.e., S_i^t is given by:

$$S_1^t = S_1 + S_{1,2} + S_{1,3} + S_{1,2,3} = 1 - (S_2 + S_3 + S_{2,3}).$$
 (12)

2.3 Example of GSA. Considering the following second-order polynomial function:

$$f(\mathbf{x}) = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_{11} x_1^2 + \beta_{12} x_1 x_2, \tag{13}$$

where $\beta_1 = \beta_2 = \beta_3 = 1/100$, $\beta_4 = 1/10$, $\beta_{11} = 1$, and $\beta_{12} = 1$; each variable is uniformly distributed in $[-1\ 1]$. Based on the formulas in Eqs. (7)–(11) the sensitivity indices are obtained as:

$$S_1 = V_1/V = 0.4371$$
, $S_2 = S_3 = V_2/V = 1.639e - 4$,

$$S_4 = V_4/V = 1.639e - 2$$
, $S_{12} = V_{12}/V = 0.5462$. (14)

Obviously, the sum of these indices is equal to 1. We note that the MSI (main sensitivity index) of x_1 (S_1) is influenced by the linear and quadratic coefficients (β_1 and β_{11}) of x_1 ; the MSIs of x_2 , x_3 , and x_4 are only related to the coefficients of linear terms because there are no nonlinear terms of these variables; the ISI (interaction sensitivity index) between x_1 and x_2 (S_{12}) is influenced by the coefficient β_{12} . Furthermore, the TSI (total sensitivity index) corresponding to x_1 can be obtained by $S_1^t = S_1 + S_{12}$ $+S_{13}+S_{14}=0.9835$. Likewise, the TSIs corresponding to x_2 , x_3 , and x_4 are 0.5463, 1.639e-4, and 1.639e-4, respectively. Based on the values of TSI, the variable importance with respect to their impact on the output variability is ranked following the sequence of x_1 , x_2 , x_3 (x_4). For this example, using MSIs or linear effects alone to rank the importance of variables would be misleading. It should be noted that as the sensitivity indices are (output) variance-based, they may enlarge the difference in significance between two variables. For instance, the ratio of the TSIs of x_1 and x_4 is close to 60, it means that the contribution to performance variance from x_1 is 60 times as that from x_1 but it does not mean that x_1 is 60 times as important as x_4 .

3 Development of Analytical Formulations of GSA

The evaluations of sensitivity indices in Eqs. (1)–(11) involve multivariate integrals which are very computationally expensive. Even though advanced sampling approaches have been developed for GSA as introduced in Sec. 1, they are not practically feasible for problems with time-consuming model evaluations. In this work, we develop an efficient and accurate approach to GSA that employs analytical formulations derived based on the metamodels, which are readily available in simulation-based design. In this section, we first introduce the concept of *subset decomposition* which will largely simplify the derivation of analytical formulations presented later. We then examine the special needs of GSA

for design under uncertainty; the generalized GSA formulations are provided. Next, the concept of tensor product basis function is introduced. Using a polynomial model as an example, we illustrate how the GSA is conducted analytically by transforming a metamodel into the form of tensor product basis function. Due to the space limitation, our focus in this paper is on illustrating the idea and concept behind the proposed method. The details of derived formulas for the commonly used metamodeling techniques can be found in [22].

3.1 Subset Decomposition and Subset SIs. With subset decomposition, a variable set is divided into several subsets $\mathbf{x}_{U_1}...\mathbf{x}_{U_T}$, and the function is decomposed into the effects related to these subsets. Assuming these subsets are statistically independent, then similar to the ANOVA decomposition for individual variables [Eq. (1)], we have:

$$f(\mathbf{x}) = f_0 + \sum_{i_1 = 1} \hat{\phi}_{\mathbf{U}_i}(\mathbf{x}_{\mathbf{U}_i}) + \sum_{i_1 = 1}^r \sum_{i_2 = i_1 + 1}^r \hat{\phi}_{\mathbf{U}_{i_1} \mathbf{U}_{i_2}}(\mathbf{x}_{\mathbf{U}_{i_1}}, \mathbf{x}_{\mathbf{U}_{i_2}}) + \cdots$$

$$+ \hat{\phi}_{\mathbf{U}_1, \dots, \mathbf{U}_r}(\mathbf{x}_{\mathbf{U}_1}, \dots, \mathbf{x}_{\mathbf{U}_{r'}}), \tag{15}$$

where the symbol " $\hat{}$ " means that the decomposition items are related to subsets of variables. The definition of the decomposition item $\hat{\phi}_{U_{i_1}...U_{i_s}}$ is also similar to that of $\phi_{i_1...i_s}$ related to individual variables [Eq. (2)], except that subsets of variables $x_{U_{i_1}...x_{Ui_s}}$ are used to replace individual variables $x_{i_1},...,x_{i_s}$. The variance of $f(\mathbf{x})$ is now decomposed into the sum of a set of subset variances,

$$V = \sum \hat{V}_{\mathbf{U}_i} + \sum_{i_1 < i_2} \hat{V}_{\mathbf{U}_{i_1} \mathbf{U}_{i_2}} + \dots + \hat{V}_{\mathbf{U}_1 \dots \mathbf{U}_T}.$$
 (16)

The *subset sensitivity indices* are defined as the subset variance normalized by the total variance V, i.e.,

$$\hat{S}_{\mathbf{U}_{i},\dots\mathbf{U}_{i}} = \hat{V}_{\mathbf{U}_{i},\dots\mathbf{U}_{i}}/V. \tag{17}$$

A sensitivity index corresponding to one subset is called *subset* main sensitivity index (SMSI) and a sensitivity index corresponding to two or more subsets is called *subset* interaction sensitivity index (SISI). For instance, assuming there are totally three variables, grouped into two groups: $\mathbf{x}_{U_1} = (x_1, x_2)$ and $\mathbf{x}_{U_2} = (x_3)$, then,

$$\hat{S}_{\mathbf{U}_1} = S_1 + S_2 + S_{1,2}, \quad \hat{S}_{\mathbf{U}_2} = S_3, \quad \text{and } \hat{S}_{\mathbf{U}_1\mathbf{U}_2} = S_{1,3} + S_{2,3} + S_{1,2,3},$$

$$\hat{S}_{\mathbf{U}_{1}}^{t} = S_{1} + S_{2} + S_{1,2} + S_{1,3} + S_{2,3} + S_{1,2,3} = 1 - S_{3}$$
and
$$\hat{S}_{\mathbf{U}_{2}}^{t} = S_{3} + S_{1,3} + S_{2,3} + S_{1,2,3} = 1 - S_{1} - S_{2} - S_{1,2}.$$
(18)

Subset decomposition provides a more generic form for ANOVA decomposition. One advantage with subset decomposition is that SISIs can be directly defined via a linear combination of a set of SMSIs. We can prove that the subset interaction effect $\hat{\phi}_{\mathbf{U}_{i_1}...\mathbf{U}_{i_s}}$ can be expressed as:

$$\hat{\phi}_{\mathbf{U}_{i_{1}}...\mathbf{U}_{i_{s}}}(\mathbf{x}_{\mathbf{U}_{i_{1}}},\ldots,\mathbf{x}_{\mathbf{U}_{i_{s}}}) = \sum_{l=1}^{s} \sum_{j_{1},...,j_{l} \in (i_{1},...,i_{s})} (-1)^{s-l} \hat{\phi}_{\mathbf{U}_{j_{1}}+...\mathbf{U}_{j_{l}}}(\mathbf{x}_{\mathbf{U}_{j_{1}}},\ldots,\mathbf{x}_{\mathbf{U}_{j_{l}}}), (19)$$

where "+" means the combination of several subsets into a single subset. Correspondingly, the subset interaction variance $\hat{V}_{\mathbf{U}_{i_1}\dots\mathbf{U}_{i_s}}$ and SISIs $\hat{S}_{\mathbf{U}_{i_1}\dots\mathbf{U}_{i_s}}$ can be obtained by:

$$\hat{V}_{\mathbf{U}_{i_1}\dots\mathbf{U}_{i_s}} = \sum_{l=1}^{s} \sum_{j_1,\dots,j_l \in (i_1,\dots,i_s)} (-1)^{s-l} \hat{V}_{\mathbf{U}_{j_1}+\dots\mathbf{U}_{j_l}}, \tag{20}$$

SEPTEMBER 2005, Vol. 127 / 877

$$\hat{S}_{\mathbf{U}_{i_1}\dots\mathbf{U}_{i_s}} = \sum_{l=1}^{s} \sum_{j_1,\dots,j_l \in (i_1,\dots,i_s)} (-1)^{s-l} \hat{S}_{\mathbf{U}_{j_1}+\dots\mathbf{U}_{j_l}}.$$
 (21)

This property of subset decomposition will largely simplify the derivation of analytical formulations as only formulations related to SMSIs need to be derived. It also facilitates the study of the interaction between two groups of variables (e.g., groups of design and noise variables in design under uncertainty). The types of GSA in design under uncertainty are examined next.

3.2 Types of GSA in Design under Uncertainty. In design under uncertainty, the variability of an output is caused by both the change of design variables and the uncertainty in noise variables. Based on subset decomposition, $f(\mathbf{x})$ can be expressed as,

$$f(\mathbf{x}) = f_0 + \hat{\phi}_{\mathbf{D}}(\mathbf{x}_{\mathbf{D}}) + \hat{\phi}_{\mathbf{R}}(\mathbf{x}_{\mathbf{R}}) + \hat{\phi}_{\mathbf{D}\mathbf{R}}(\mathbf{x}), \tag{22}$$

where $\hat{\phi}_D(x_D)$ is the subset main effect of design variables x_D , $\hat{\phi}_R(x_R)$ is the subset main effect of noise variables x_R , and $\hat{\phi}_{DR}(x)$ is the subset interaction effect between x_D and x_R . The total variance of an output is decomposed into,

$$V = \hat{V}_{\mathbf{D}} + \hat{V}_{\mathbf{R}} + \hat{V}_{\mathbf{DR}}.$$
 (23)

The sensitivity indices obtained by normalizing the items in Eq. (23) allow designers to rank order the importance of design variables as well as noise variables. Studying the interactions between design and noise variables facilitates robust design [23], where the basic idea is to minimize the output uncertainty without eliminating the uncertainty source by adjusting the design variables. Here the sensitivity index $\hat{S}_{DR} = \hat{V}_{DR}/V$ can be used as a measure of the capability of design variables to desensitize the effect of noise variables. Similarly, the capability of a single design variable x_i to dampen the response uncertainty can be measured by a sensitivity index corresponding to the sum of interactions between x_i and all noise variables, defined as the sum of the ISIs involving x_i and at least one noise variable, i.e.,

$$S_i^r = \hat{S}_{DR} - \hat{S}_{(D-i)R} = 1 - \hat{S}_{\sim i} - \hat{S}_D + \hat{S}_{D-i},$$
 (24)

where $\mathbf{D} - i$ stands for an index subset containing all the indices in \mathbf{D} except i.

Besides factor importance, it is also desirable to know the uncertainty elimination of which variable (or a set of variables) will lead to the most significant reduction of uncertainty of performance. Assuming that the uncertainty of a variable with index $i \in \mathbf{R}$ could be eliminated, then the uncertainty of the response is reduced by the value:

$$\Delta \sigma_{yi}^2 = \text{Var}[f(\mathbf{X})|\mathbf{x_D})] - \text{Var}[f(\mathbf{X})|\mathbf{x_D},x_i)]. \tag{25}$$

If the values of design variables are not yet determined (e.g., in a prior-design stage), an uncertainty reduction measure averaged over the entire range of design variables, called *average uncertainty reduction*, can be used to evaluate the benefits of eliminating the uncertainty source. The average uncertainty reduction is evaluated by,

$$\overline{\Delta \sigma_{yi}^2} = V - \hat{V}_{\mathbf{D}} - (V - \hat{V}_{\mathbf{D}+i}) = \hat{V}_{\mathbf{D}+i} - \hat{V}_{\mathbf{D}} = V_i + \hat{V}_{i\mathbf{D}}, \quad (26)$$

which is equal to the sum of the variance of the main effect of the noise variable x_i of interest and the variance of the subset interaction effect between x_i and design variable set $\mathbf{x_D}$. Correspondingly sensitivity index for uncertainty reduction, S_i^u , of variable x_i , is defined as:

$$S_i^u = \overline{\Delta \sigma_{yi}^2} / V = \hat{S}_{\mathbf{D}+i} - \hat{S}_{\mathbf{D}} = S_i + \hat{S}_{i\mathbf{D}}. \tag{27}$$

3.3 Tensor Product Basis Functions. We find that if a function can be expressed as a tensor-product basis function (TPBF)

(cf., [24]), then the analytical results of univariate integrals can be constructed to evaluate the multivariate integrals required for GSA. A multivariate TPBF $B_i(\mathbf{x})$ is defined as a product of M univariate basis functions $h_{il}(x_l)$, i.e.,

$$B_i(\mathbf{x}) = \prod_{l=1}^{M} h_{il}(x_l), \quad i = 1, 2, \dots, N_b.$$
 (28)

For instance $B(\mathbf{x}) = x_1 x_2$ can be rewritten as $B(\mathbf{x}) = h_1(x_1)h_2(x_2)$, where $h_1(x_1) = x_1$ and $h_2(x_2) = x_2$. Note here $h_{il}(x_l)$ could be equal to 1 to represent a constant term. Then a special category of functions, called tensor-product basis functions, can be defined as a linear expansion of these multivariate basis functions, i.e.,

$$f(\mathbf{x}) = a_0 + \sum_{i=1}^{N_b} a_i B_i(\mathbf{x}) = a_0 + \sum_{i=1}^{N_b} \left[a_i \prod_{l=1}^{M} h_{il}(x_l) \right],$$
 (29)

where a_i (i=0,1,..., N_b) are constant coefficients. Many commonly used metamodels, i.e., polynomial regression model, MARS, RBF (with Gaussian basis functions), Kriging, can be expressed as TPBFs, with details shown in Sec. 3.5.

3.4 Generalized Formulations for GSA. With subset decomposition shown in Sec. 3.1, all statistical quantities involved in GSA can be evaluated by two most fundamental quantities [Eqs. (30) and (31)]. We name them as the *noncentered subset main effect* (or called conditional mean) and the *subset main variance*, respectively.

$$\hat{f}_{\mathbf{U}}(\mathbf{x}_{\mathbf{U}}) = \int f(\mathbf{x}) \prod_{l \neq \mathbf{U}} [p_{l}(x_{l}) dx_{l}], \tag{30}$$

$$\hat{V}_{\mathbf{U}} = \int \left[\hat{f}_{\mathbf{U}}(\mathbf{x}_{\mathbf{U}}) - f_0 \right]^2 \prod_{l \in \mathbf{U}} \left[p_l(x_l) dx_l \right], \tag{31}$$

where $\mathbf{x_U}$ are a set of model input variables of interest. The quantity in Eq. (30) is named as *noncentered* subset main effect because the constant item needs to be subtracted to evaluate the subset main effect, in the way similar to Eq. (3).

Substituting into Eq. (30) the expression of the tensor-product function [Eq. (29)], we write the noncentered subset main effect for \mathbf{x}_{II} as follows:

$$\hat{f}_{\mathbf{U}}(\mathbf{x}_{\mathbf{U}}) = \int \left\{ a_0 + \sum_{i=1}^{N_b} \left[a_i \prod_{l=1}^{M} h_{il}(x_l) \right] \right\} \prod_{l \in \mathbf{U}} [p_l(x_l) dx_l]$$

$$= a_0 + \sum_{i=1}^{N_b} \left\{ a_i \prod_{l \in \mathbf{U}} \left[\int h_{il}(x_l) p_l(x_l) dx_l \right] \prod_{l \in \mathbf{U}} h_{il}(x_l) \right\}$$

$$= a_0 + \sum_{i=1}^{N_b} \left[a_i \prod_{l \in \mathbf{U}} C_{1,il} \prod_{l \in \mathbf{U}} h_{il}(x_l) \right], \tag{32}$$

where, $C_{1,il}$ is the mean of the univariate basis function $h_{il}(x_l)$, i.e.,

$$C_{1,il} = \int h_{il}(x_l)p_l(x_l)dx_l. \tag{33}$$

The function mean f_0 can be directly obtained by using an empty subset $\mathbf{x}_{\mathbf{U}}$ (i.e., $\mathbf{U} = \emptyset$),

$$f_0 = a_0 + \sum_{i=1}^{N_b} \left[a_i \prod_{l=1}^{M} C_{1,il} \right].$$
 (34)

Substituting into Eq. (31) the expressions of f_0 [Eq. (34)] and the TPBF [Eq. (28)], we write the subset main variance for \mathbf{x}_U as follows:

$$\hat{V}_{\mathbf{U}} = \int \left\{ \sum_{i=1}^{N_b} \left[a_i \prod_{l \in \mathbf{U}} C_{1,il} \prod_{l \in \mathbf{U}} h_{il}(x_l) \right] - \sum_{i=1}^{N_b} \left(a_i \prod_{l=1}^{M} C_{1,il} \right) \right\}^2 \prod_{l \in \mathbf{U}} [p_l(x_l) dx_l] = \int \left\{ \sum_{i=1}^{N_b} \left[a_i \prod_{l \in \mathbf{U}} C_{1,il} \prod_{l \in \mathbf{U}} h_{il}(x_l) \right] \right\}^2 \prod_{l \in \mathbf{U}} [p_l(x_l) dx_l] - \left[\sum_{i=1}^{N_b} \left(a_i \prod_{l=1}^{M} C_{1,il} \right) \right]^2 = \sum_{i_1=1}^{N_b} \sum_{i_2=1}^{N_b} \left\{ a_{i_1} a_{i_2} \prod_{l \in \mathbf{U}} (C_{1,i_1 l} C_{1,i_2 l}) \prod_{l \in \mathbf{U}} \int_{l \in \mathbf{U}} h_{i_1 l}(x_l) h_{i_2 l}(x_l) p_l(x_l) dx_l \right\} - \sum_{i_1=1}^{N_b} \sum_{i_2=1}^{N_b} \left[a_{i_1} a_{i_2} \prod_{l=1}^{M} (C_{1,i_1 l} C_{1,i_2 l}) \right] = \sum_{i_1=1}^{N_b} \sum_{i_2=1}^{N_b} \left\{ a_{i_1} a_{i_2} \prod_{l=1}^{M} (C_{1,i_1 l} C_{1,i_2 l}) \left\{ \prod_{l \in \mathbf{U}} \left[C_{2,i_1 i_2 l} l / (C_{1,i_1 l} C_{1,i_2 l}) \right] - 1 \right\} \right\}, \tag{35}$$

where, C_{2,i_1i_2l} is the inner product of two univariate basis functions $h_{i_1l}(x_l)$ and $h_{i_2l}(x_l)$, i.e., $C_{2,i_1i_2l} = \int h_{i_1l}(x_l)h_{i_2l}(x_l)p_l(x_l)dx_l$. With $\mathbf{x_U} = \mathbf{x}$, we can directly obtain the variance of $f(\mathbf{x})$:

$$V = \sum_{i_1=1}^{N_b} \sum_{i_2=1}^{N_b} \left\{ a_{i_1} a_{i_2} \prod_{l=1}^{M} (C_{1,i_1 l} C_{1,i_2 l}) \left\{ \prod_{l=1}^{M} \left[C_{2,i_1 i_2 l} / (C_{1,i_1 l} C_{1,i_2 l}) \right] - 1 \right\} \right\}.$$
(36)

It can be observed that the above formulations [Eqs. (32)–(36)] depend on two common sets of quantities defined by univariate integrals, i.e., the mean of univariate basis function C_1 and the inner product of two univariate basis functions C_2 . Once the forms of the basis functions and the distributions of the variables are defined, the values of C_1 and C_2 can be derived and used to evaluate all sensitivity indices for GSA.

3.5 Analytical GSA Formulations via Metamodels. Using the polynomial model and the Kriging model as examples, we illustrate in this section how to further expand the generalized analytical formulations in Sec. 3.4 for commonly used metamodels that follow the form of TPBFs. Detailed derivations of univariate integrals as well those for Gaussian radial basis function model and MARS model can be found in [22].

All polynomial regression models can be transformed into the tensor product form. Consider the most widely used second-order regression model,

$$f(\mathbf{x}) = \beta_0 + \sum_{i=1}^{M} \beta_i x_i + \sum_{i=1}^{M} \beta_{ii} x_i^2 + \sum_{i=1}^{M} \sum_{j=i+1}^{M} \beta_{ij} x_i x_j.$$
 (37)

For any $0 \le i, j \le M$, and $j \ne 0$, we define multivariate basis functions as

$$B_{(i,j)} = \begin{cases} x_j & i = 0 \\ x_j^2 & i = j \\ x_i x_j & i < j \end{cases}$$
 (38)

The univariate basis functions corresponding to variable x_l are:

$$h_{(i,j)l} = \begin{cases} 1 & \text{none of } (i,j) = l \\ x_l & \text{only one of } (i,j) = l \\ x_l^2 & \text{both of } (i,j) = l \end{cases}$$
 (39)

The polynomial model can be re-written as

$$f(\mathbf{x}) = \beta_0 + \sum_{0 \le i, j \le M, j \ne 0} \beta_{ij} B_{(i,j)} = \beta_0 + \sum_{0 \le i, j \le M, j \ne 0} \beta_{ij} \prod_{l=1}^M h_{(i,j)l},$$
(40)

where $\beta_{0j} = \beta_j$.

The subset main effects/variances and the response mean/variance for a second polynomial regression model can be directly evaluated. The univariate integrals C_1 and C_2 are evaluated by, respectively:

$$C_{1,(i,j)l} = \begin{cases} 1 & \text{none of } (i,j) = l \\ \int x_l p_l(x_l) dx_l = \mu_l & \text{only one of } (i,j) = l \\ \int x_l^2 p_l(x_l) dx_l = \mu_l^2 + \sigma_l^2 & \text{both of } (i,j) = l \end{cases}$$
(41)

$$C_{2,(i_{1},j_{1})(i_{2},j_{2})l} = \begin{cases} 1 & \text{none of } (i_{1},j_{1},i_{2},j_{2}) = l \\ \int x_{l}p_{l}(x_{l})dx_{l} = \mu_{l} & \text{only one of } (i_{1},j_{1},i_{2},j_{2}) = l \end{cases}$$

$$C_{2,(i_{1},j_{1})(i_{2},j_{2})l} = \begin{cases} \int x_{l}^{2}p_{l}(x_{l})dx_{l} = \mu_{l}^{2} + \sigma_{l}^{2} & \text{only two of } (i_{1},j_{1},i_{2},j_{2}) = l \\ \int x_{l}p_{l}(x_{l})dx_{l} = \mu_{l,3} + 3\mu_{l}\sigma_{l}^{2} + \mu_{l}^{3} & \text{only three of } (i_{1},j_{1},i_{2},j_{2}) = l \end{cases}$$

$$\int x_{l}^{4}p_{l}(x_{l})dx_{l} = \mu_{l,4} + 4\mu_{l}\mu_{l,3} + 6\mu_{l}^{2}\sigma_{l}^{2} + \mu_{l}^{2} & \text{all of } (i_{1},j_{1},i_{2},j_{2}) = l \end{cases}$$

$$(42)$$

Here, μ_l and σ_l^2 are the mean and variance of input variable x_l ; Here, μ_l and σ_l are the ineal and variance of input variable x_l , $\mu_{l,n}$ (n=3,4) is the *n*th centered moment of x_l , i.e., $\mu_{l,n} = \int (x_l - \mu_l)^n p(x_l) dx_l$. The values of μ_l , σ_l^2 , $\mu_{l,3}$, and $\mu_{l,4}$ depend on the type of input distributions. For uniform distributions, we have $\sigma_l^2 = \delta_l^2/3$, $\mu_{l,3} = 0$, $\mu_{l,4} = \delta_l^4/5$; for normal distributions, we have $\mu_{l,3}=0, \ \mu_{l,4}=3\sigma_l^4.$

Furthermore, noting that many C_1 and C_2 are equal to 1, we can obtain the noncentered subset main effect [Eq. (30)] and the subset main variance [Eq. (31)] for GSA via the tensor product based polynomial function in Eq. (40):

$$\hat{f}_{\mathbf{U}}(\mathbf{x}_{\mathbf{U}}) = \beta_0 + \sum_{i \in \mathbf{U}} \beta_i \mu_i + \sum_{i \in \mathbf{U}} \beta_{ii} \sigma_i^2$$

$$+ \sum_{i \in \mathbf{U}} \sum_{j \in \mathbf{U}, j \ge i} \beta_{ij} \mu_i \mu_j + \sum_{i \in \mathbf{U}} \left(\beta_i + \sum_{j \in \mathbf{U}} \beta_{ij} \mu_j \right) x_i$$

$$+ \sum_{i \in \mathbf{U}} \sum_{j \in \mathbf{U}, i \ge i} \beta_{ij} x_i x_j, \tag{43}$$

$$\hat{V}_{U} = \sum_{i \in U} \left[\beta_{ii}^{2} (\mu_{i,4} - 2\sigma_{i}^{4}) + \left(\beta_{i} + \beta_{ii}\mu_{i} + \sum_{j=1}^{M} \beta_{ij}\mu_{j} \right)^{2} \sigma_{i}^{2} + \left(\beta_{i} + \beta_{ii}\mu_{i} + \sum_{j=1}^{M} \beta_{ij}\mu_{j} \right)^{2} \sigma_{i}^{2} + \left(\beta_{i} + \beta_{ii}\mu_{i} + \sum_{j=1}^{M} \beta_{ij}\mu_{j} \right)^{2} \beta_{ii}\mu_{i,3} \right] + \sum_{i \in U} \sum_{j \in U, j \ge i} \beta_{ij}^{2} \sigma_{i}^{2} \sigma_{j}^{2},$$
(44)

where $\beta_{ji} = \beta_{ij}$ if i > j.

Similar approach of analytical derivation can be applied to other types of metamodels commonly used in engineering design. For example, a Kriging model can be transformed into a tensorproduct function:

$$f(\mathbf{x}) = \hat{\beta} + \sum_{i=1}^{N} \kappa_{i} \prod_{l=1}^{M} h_{il}(x_{l}).$$
 (45)

Many different one-dimensional correlation functions could be used (see, e.g., [18,19]). In practice, The Gaussian correlation function, $h_{il}(x_l) = \exp[-\theta_l(x_l - x_{il})^2]$ has become the most popular choice, where θ_l is the correlation coefficient.

For uniform distribution, we derive that [22]

$$C_{1,il} = \frac{1}{2\delta_l} \sqrt{\frac{\pi}{\theta_l}} \{ \Phi(a_{il}\sqrt{2\theta_l}) - \Phi(b_{il}\sqrt{2\theta_l}) \}, \tag{46}$$

$$C_{2,i_{1}i_{2}l} = \frac{1}{2\delta_{l}} \sqrt{\frac{\pi}{2\theta_{l}}} \exp[-\theta_{l}(x_{i_{1}l} - x_{i_{2}l})^{2}/2] \times (\Phi[\sqrt{\theta_{l}}(a_{i_{1}l} + a_{i_{2}l})] - \Phi[\sqrt{\theta_{l}}(b_{i_{1}l} + b_{i_{2}l})]), \tag{47}$$

where $a_{il} = \mu_l + \delta_l - x_{il}$ and $b_{il} = \mu_l - \delta_l - x_{il}$; $\Phi(\cdot)$ stands for the CDF of the standard normal distribution; δ_l is the difference between upper bound and low bound of x_l .

For normal distributions, it can be shown that [22]

$$C_{1,il} = \frac{1}{\sqrt{2\sigma_t^2\theta_t + 1}} \exp\left[-\frac{\theta_l}{2\sigma_t^2\theta_l + 1} (\mu_l - x_{il})^2 \right], \quad (48)$$

$$C_{2,i_1i_2l} = \frac{1}{\sqrt{4\sigma_l^2\theta_l + 1}} \exp\left\{-\frac{\theta_l}{4\sigma_l^2\theta_l + 1} [(\mu_l - x_{i_1l})^2 + (\mu_l - x_{i_2l})^2 + 2\sigma_l^2\theta_l(x_{i_1l} - x_{i_2l})^2]\right\}.$$
(49)

The Gaussian radial basis function model [16] can be written as,

$$f(\mathbf{x}) = \beta + \sum_{i=1}^{N_{\phi}} \lambda_i \varphi_i(\mathbf{x}), \qquad (50)$$

 $\varphi_i(\mathbf{x}) = \exp[-(1/2\tau_i^2)\Sigma_{l=1}^M(x_l - t_{il})^2] = \prod_{l=1}^M \exp[-(x_l - t_{il})^2]$ where. $-t_{il}$)²/2 τ_{i}^{2}]. τ_{i} is the width (also called radius) of a radial based function $\varphi_i(\mathbf{x})$; t_i is the center of the radial basis function and has elements t_{il} . If we define $h_{il}(x_l) = \exp[-(x_l - t_{il})^2/2\tau_i^2]$, then the RBF model is transformed into a tensor-product function:

$$f(\mathbf{x}) = \beta + \sum_{i=1}^{N_{\phi}} \left[\lambda_i \prod_{l=1}^{M} h_{il}(x_l) \right].$$
 (51)

Noting that the form of Gaussian RBF model is similar to that of Kriging model, except that the width au_i is associated with each basis function instead of to each variable.

For uniform distributions, it is proved that

$$C_{1,il} = \frac{\tau_i}{\delta_l} \sqrt{\frac{\pi}{2}} \{ \Phi[(\mu_l + \delta_l - t_{il})/\tau_i] - \Phi[(\mu_l - \delta_l - t_{il})/\tau_i] \},$$
(52)

$$C_{2,i_1i_2l} = \frac{a_{i_1i_2}}{\delta_l} \sqrt{\frac{\pi}{2}} \exp[-(t_{i_1l} - t_{i_2l})^2 / (2\tau_{i_1}^2 + 2\tau_{i_2}^2)] (\Phi[(\mu_l + \delta_l - b_{i_1i_2l}) / a_{i_1i_2}] - \Phi[(\mu_l - \delta_l - b_{i_1i_2l}) / a_{i_1i_2}]),$$
 (53)

where, $a_{i_1 i_2} = \tau_{i_1} \tau_{i_2} / \sqrt{\tau_{i_1}^2 + \tau_{i_2}^2}$ and $b_{i_1 i_2 l} = (\tau_{i_1}^2 t_{i_2} l + \tau_{i_2}^2 t_{i_1 l}) / (\tau_{i_1}^2 + \tau_{i_2}^2)$. For normal distributions, it is proved that

$$C_{1,il} = \frac{1}{\sqrt{\sigma_l^2/\tau_l^2 + 1}} \exp[-(\mu_l - t_{il})^2/(2\tau_i^2 + 2\sigma_l^2)], \quad (54)$$

$$C_{2,i_{1}i_{2}j} = \frac{\tau_{i_{1}}\tau_{i_{2}}}{\sqrt{b_{i_{1}i_{2}}l}} \exp\left\{-\frac{1}{2b_{i_{1}i_{2}}l} \left[\tau_{i_{2}}^{2}(\mu_{j} - t_{i_{1}j})^{2} + \tau_{i_{1}}^{2}(\mu_{j} - t_{i_{2}j})^{2} + \sigma_{j}^{2}(t_{i_{1}j} - t_{i_{2}j})^{2}\right]\right\},$$
(55)

where $b_{i_1i_2l} = \sigma_l^2(\tau_{i_1}^2 + \tau_{i_2}^2) + \tau_{i_1}^2\tau_{i_2}^2$. A MARS model [21] can be viewed as is a weighted sum of tensor spline basis functions, i.e.,

$$f(\mathbf{x}) = a_0 + \sum_{i=1}^{N_b} a_i B_i(\mathbf{x}),$$
 (56)

where the tensor spline basis functions are defined as tensor products of univariate truncated power functions:

$$B_i(\mathbf{x}) = \prod_{l \in \mathbf{K}_i} [s_{il}(x_l - t_{il})]_+^q.$$
 (57)

 $\mathbf{K}_{i} = (k_{i1}, \dots, k_{iJ})$ is the set of the indices of variables involved in the *i*th multivariate basis function and J_i is the dimension of interaction (i.e., the number of different variables). t_{il} is a knot location corresponding to variable x_l . The exponent q is the order of the spline. The subscript "+" denotes the positive part of a function. The quantities s_{il} take on values ± 1 , and indicate the rightleft part of a function. If we define a set of univariate basis functions as

$$h_{il}(x_l) = \begin{cases} 1 & l \in \mathbf{K}_i \\ [s_{il}(x_l - t_{il})]_+^q & l \in \mathbf{K}_i \end{cases} , \tag{58}$$

then the MARS model is written in a tensor-product function as follows:

$$f(\mathbf{x}) = a_0 + \sum_{i=1}^{N_b} \left[a_i \prod_{l=1}^{M} h_{il}(x_l) \right].$$
 (59)

880 / Vol. 127, SEPTEMBER 2005

Transactions of the ASME

Fig. 1 Main effects of illustrative example

For uniform distributions, it is proved that:

$$C_{1,il} = \frac{s_{il}}{2\delta_l} \left[\frac{x_l^2}{2} - t_{il} x_l \right]_{lb_{1,i}}^{ub_{1,a}} \quad (l \in \mathbf{K}_i), \tag{60}$$

$$C_{2,i_{1}i_{2}l} = \frac{s_{i_{1}l}s_{i_{2}l}}{2\delta_{l}} \left[\frac{x_{l}^{3}}{3} - \frac{(t_{i_{1}l} + t_{i_{2}l})x_{l}^{2}}{2} + t_{i_{1}l}t_{i_{2}l}x_{l} \right] \Big|_{lb_{2a}}^{ub_{2a}}$$

$$(l \in \mathbf{K}_{i,}, l \in \mathbf{K}_{i,}), \tag{61}$$

where $f(x)|_a^b = f(b) - f(a)$; $ub_{1a} = \min[ub_1, \mu_l + \delta_l]$ and $lb_{1a} = \max[lb_1, \mu_l - \delta_l]$; $ub_{2a} = \min[ub_2, \mu_l + \delta_l]$ and $lb_{2a} = \max[lb_2, \mu_l - \delta_l]$.

For normal distributions, it is proved that:

$$C_{1,il} = s_{il} \left\{ \frac{\mu_l - t_{il}}{\sigma_l} \Phi\left(\frac{x_l - \mu_l}{\sigma_l}\right) - \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{(x_l - \mu_l)^2}{2\sigma_l^2}\right] \right\} \Big|_{lb_1}^{ub_1}$$

$$(l \in \mathbf{K}_i), \tag{62}$$

$$C_{2,i_{1}i_{2}l} = s_{i_{1}l}s_{i_{2}l} \left\{ \left[\frac{(\mu_{l} - t_{i_{1}l})(\mu_{l} - t_{i_{2}l})}{\sigma_{l}} + \sigma_{l} \right] \Phi\left(\frac{x_{l} - \mu_{l}}{\sigma_{l}} \right) - \frac{x_{l} + \mu_{l} - t_{i_{1}l} - t_{i_{1}l}}{\sqrt{2\pi}} \exp\left[-\frac{(x_{l} - \mu_{l})^{2}}{2\sigma_{l}^{2}} \right] \right\} \bigg|_{lb_{2}}^{ub_{2}}$$

$$(l \in \mathbf{K}_{i_{1}}, l \in \mathbf{K}_{i_{2}}). \tag{63}$$

The detailed derivations of univariate integral results of RBF and MARS models can be found in [22].

4 Verification and Engineering Examples

4.1 Verification Example. We consider here a four-variate function

$$f(\mathbf{x}) = 1 + \exp\{-2[(x_1 - 1)^2 + x_2^2] - 0.5(x_3^2 + x_4^2)\}$$
$$+ \exp\{-2[x_1^2 + (x_2 - 1)^2] - 0.5(x_3^2 + x_4^2)\}$$
(64)

where $0 \le x_1, x_2, x_3, x_4 \le 1$, x_i follows the uniform distribution. The uniform distribution is chosen so that the GSA provides the effects of each individual variable across the whole range formed by its lower and upper bounds. The above function has the form of a Kriging model, in which the correlation coefficients θ_1 and θ_2 are equal to 2 and the correlation coefficients θ_3 and θ_4 are equal to 0.5. Therefore, the Kriging metamodel provides an exact fit of the original function. The results of using the analytical GSA are expected to be the same as the exact solutions. Due to the symmetric feature in this function, x_1 and x_2 , x_3 , and x_4 should have the same influence on $f(\mathbf{x})$, respectively.

The main effects and second-order interactions obtained using the analytical formulations derived for Kriging model are graphically shown in Figs. 1 and 2, respectively. In the following, " $x_1(x_2)$ " means x_1 and x_2 are mutually replaceable since the effects are the same; the same with " $x_3(x_4)$." From the figures, it is observed that the main effect of $x_3(x_4)$ is much larger than that of $x_1(x_2)$; the interaction between x_1 and x_2 , however, is much larger than that between $x_1(x_2)$ and $x_3(x_4)$ and that between x_3 and x_4 . Interactions do exist due to the exponential function form in Eq. (52). The nonlinearity of the effects is also clearly demonstrated. Table 1 shows pairs of MSI and TSI (S_i, S_{Ti}) corresponding to each variable, which are evaluated by the following relationships between sensitivity indices and subset main indices:

$$S_i = \hat{S}_i$$
, and $S_i^t = 1 - \hat{S}_{\sim i}$. (65)

Results from our proposed analytical method and using Monte Carlo samples are both included in Table 1 for the purpose of comparison. From the analytical results, it is observed that the MSI for $x_1(x_2)$ are very small while TSI for $x_1(x_2)$ are very large due to large interactions that exist between $x_1(x_2)$ and other variables; on the other hand, the TSI and MSI for $x_3(x_4)$ are close, which indicates that the interactions involving $x_3(x_4)$ are relatively

Fig. 2 Interaction effects between two variables

Table 1 Comparison of main/total sensitivity indices

			(S_1, S_1^t)	(S_2, S_2^t)	(S_3,S_3^t)	(S_4, S_4^t)
Monte Carlo Method	Analytical Method Sample Size	100,000 10,000 1,000	(0.0033,0.5798) (0.0208,0.5820) (0.0787,0.5809) (0.2448,0.6119)	(0.0033,0.5798) (0.0089,0.5838) (0.0518,0.5835) (0.3761,0.6167)	(0.2063,0.2220) (0.2126,0.2235) (0.2115,0.2245) (0.4844,0.2225)	(0.2063,0.2220) (0.2326,0.2216) (0.2845,0.2232) (0.2814,0.2467)

Table 2 Sensitivity indices for design under uncertainty

Sensitivity indices for robust design			Sensitivity indices for uncertainty reduction	
S_1^r	S_3^r	$\hat{S}^r_{(1,3)}$	S_2^u	S_4^u
0.5764	0.0156	0.5806	0.5683	0.2105

Table 4 Noise variables and their ranges

Variable	Distribution	Lower Bound	Upper Bound	Unit
brake_level	Uniform	70	120	psi
start brake	Uniform	1.02	1.38	s
end_brake	Uniform	1.53	2.07	s
steer_level	Uniform	60	100	deg
end_steer	Uniform	2.16	3.24	s

small. These observations are consistent with what we learned from Figs. 1 and 2.

Different sizes of Monte Carlo random samples are tested and compared to the analytical results. We observe that for this particular function tested, Monte Carlo method is inaccurate with relatively small sample size (i.e., 1000). With a large sample size (100,000), the results from Monte Carlo improve; however, due to estimation errors, some of the results from the sampling method are still not accurate. For example, results from all sampling tests show that TSI for x_4 is smaller than MSI, which is impossible as total effect should always be larger than or equal to main effect. We conclude from this verification example that our proposed analytical method can avoid random errors associated with sampling methods. The results from our method are expected to be the most accurate since they are analytically derived.

As discussed in Sec. 3.2, the information offered by GSA can be used for various aspects to guide design under uncertainty. In the context of robust design, a sensitivity index $\hat{S}_{\mathbf{U}}^r$ can be used to measure the capability of a set of design variables $\mathbf{x}_{\mathbf{U}}$ to desensitize the effect of noise variables on the output uncertainty; on the other hand, a sensitivity index $\hat{S}_{\mathbf{U}}^r$ can be used to measure the impact of eliminating all noise variable(s) $\mathbf{x}_{\mathbf{U}}$ to reduce the output uncertainty. All sensitivity indices for design under uncertainty can be obtained based on SMSIs. For instance, the sensitivity index S_1^r can be calculated by: $S_1^r = 1 - \hat{S}_{(3,2,4)} - \hat{S}_{(1,3)} + S_3$. The values of the sensitivity indices are shown in Table 2.

Since the interaction between the subsets of design and noise variables is significant, i.e., $\hat{S}_{(1,3)(2,4)} = \hat{S}_{(1,3)}^r = 0.5806$, it means that adjusting the design variables could considerably desensitize the effect of noise variables for this model. In particular, the capability of the design variable x_1 to dampen output uncertainty could be considerable since S_1^r is large. From the values of S_2^u and S_4^u in the table, it is observed that reducing the uncertainty source in the noise variable x_2 will have a larger impact than reducing that in the noise variable x_4 .

4.2 Vehicle Handling Problem. Rollover of ground vehicles is one of the major causes of highway accidents in the United States [25]. To prevent vehicle rollover, we developed a robust design procedure [26] to optimize vehicle and suspension parameters so that the design is not only optimal against the worst ma-

neuver condition but is also robust with respect to a range of maneuver inputs. In our earlier work, the second-order polynomial function was created as the response surface model; factor importance was examined by checking the coefficients of the second-order polynomial function and screened based on the linear effects. In this work, our proposed analytical techniques for GSA are applied to the same problem. Through comparisons, we illustrate the advantages of our newly developed methods.

4.2.1 Problem Definition. The detailed description of the simulation program for studying the rollover behavior and the robust design formulation for preventing rollover can be found in [26]. In brief, the rollover simulation is the integrated computer tool ArcSim [27] developed at the University of Michigan for simulating and analyzing the dynamic behavior of 6-axle tractor/semi-trailers. Without building the metamodel, the testing of an optimization scenario without robustness consideration takes at least five hours to converge [28] on the Sun Ultra-1 workstation. When robustness considerations are introduced, the computational demand becomes more significant.

Fourteen ArcSim input parameters corresponding to suspension and vehicle parameters are chosen as design variables (control factors) (see Table 3). The steering and braking parameters are taken as the noise factors to capture the range of maneuvering conditions (see Table 4). The level of braking (brake_level) is the amount of braking pressure applied. The level of steering (steer_level) is the angle the steering wheel is turned. The starting and ending times of braking defines when the driver starts and stops braking. The ending times of steering defines when the driver stops steering. A rollover metric (*R*) is used as the performance response for which the metamodel is created. The rollover metric is defined as the square root of the integral of the square of the rollover angle in a 5 s period. If the rollover angle becomes greater than 45°, rollover will inevitably occur.

4.2.2 Development of the Kriging Metamodel and GSA. To reduce the problem size, screening experiments are first performed to identify the critical variables. A 200×19 (200 runs for 19 variables) optimal LHD [29] is generated for the screening experiments. A kriging metamodel of rollover metric is created over all the design variables and noise variables. When implementing the GSA, uniform distributions are used for all design

Table 3 Design variables and their ranges

Variables	Description	Lower bound	Upper bound	Unit
HH1	Height of hitch above ground	51.20	76.80	in
KHX1	Hitch roll torsional stiffness	80000	120000	in-lb/deg
KT11	Axle 1 tire stiffness	5520.00	8280.00	lb/in
KT123	Axles 2 and 3 tire stiffness	5520.00	8280.00	lb/in
KT2123	Axles 4–6 tire stiffness	4139.20	6208.80	lb/in
LTS11	Distance between springs on Axle 1	30.40	45.60	in
LTS123	Distance between springs on Axles 2 and 3	30.40	45.60	in
LTS2123	Distance between springs on Axles 4–6	30.40	45.60	in
M11	Laden load for Axle 1	11540	17310	lbm
M123	Laden load for Axles 2 and 3	20358.40	30537.60	lbm
M2123	Laden load for Axle 4-6	16274.40	24411.60	lbm
SCFS11	Axle 1 spring stiffness scale factor	0.8	1.2	/
SCFS123	Axles 2 and 3 spring stiffness scale factor	0.8	1.2	,
SCFS2123	Axle 4–6 spring stiffness scale factor	0.8	1.2	,

Fig. 3 Sensitivity indices of 19 variables (D-design variable, N-noise variable)

variables over the whole design range defined by lower and upper bounds; distributions defined in Table 4 are taken as the input for noise variables. By using uniform distributions we assume that the chance of taking a specific value is equal across the whole range of a variable. Thus the GSA provides the effects of each individual variable over its range for the purpose of screening.

As shown in Fig. 3, the total sensitivity index (TSI), which takes into account not only the contribution of main effects of a variable but also the contribution of interactions between variables, is used for ranking the importance of different variables. From Fig. 3, it is evident that the eight design variables listed as "Rest" as a whole contribute merely 0.001% of the variability in the metamodel in terms of subset TSI $(\hat{S}^t_{\text{Rest}} \approx 1.0e-5)$. In addition, the interactions between these eight design variables and the noise variables are also negligible $(\hat{S}^r_{\text{Rest}} \approx 1.6e-6)$.

Based on these observations, it is decided to use the 11 relatively important variables in subsequent procedures and freeze the eight relatively unimportant variables at their nominal values. It is

Table 5 Importance ranking of the variables

TSI	MSI
brake level	steer level
brake end	brake level
steer level	brake end
MĪ23	LTS123
LTS123	brake start
M2123	M2123
steer end	steer end
brake start	$Har{H}1$
HHĪ1	M11
M11	LTS2123
LTS2123	M123
	brake_level brake_end steer_level M123 LTS123 M2123 steer_end brake_start HH1 M11

also found that three noise variables, i.e., brake_level, end_brake, and steer_level play very significant roles in the variability of the response. Table 5 shows the importance ranking of the top 11 variables in terms of TSI and the sensitivity indices of main effects (MSI). It is noted that for this problem, the two rankings are not the same. For instance, MSI of M123 is negligible, while its TSI is considerably large. In our earlier study [26], ANOVA based study of main effects was used to reduce the size of the problem, where M123 is considered as unimportant. We believe that the TSI better reflects the whole contribution of a variable to a response and should be used in screening.

With the knowledge of variable importance, an additional 400 sample runs are applied in a sequential manner to build the Krig-

Fig. 4 Subset contributions of noise, design variables, and interactions

Table 6 Interactions between one design variable and all noise variables

	HH1	LTS123	LTS2123	M11	M123	M2123
S_i^r	2.078e-2	3.170e-2	2.211e-2	1.643e-2	3.914e-2	7.549e-3

Fig. 5 Main effects of variables (on rollover metric)

Journal of Mechanical Design

SEPTEMBER 2005, Vol. 127 / 883

Fig. 6 Interaction between M123 and start_brake

ing model for the reduced set of 11 variables. The R-square value of the metamodel is at around 0.8 after confirmation. Previous experience has shown that this problem is very nonlinear and it is difficult to obtain a metamodel with a very high accuracy [26,30]. The Kriging model obtained for the reduced set of 11 variables is used to refine the ranking of variable importance and to interpret the response behavior. Figure 4 illustrates the contribution (to the variability of rollover metric) of the subset main effect of noise variables, the subset main effect of design variables, and the subset interaction between the two groups. It is found that the subset interactions are not negligible, which is a desired feature in robust design. Table 6 shows the sensitivity indices S_i^r for all the interactions between one design variable and all noise variables. From the table, we observe that the capability of M123 to dampen the output uncertainty is larger than other design variables. This further confirms the importance of keeping variable M123 in robust

Figure 5 shows the main effect of each variable on the rollover metric (all the variables are normalized). Main effects of noise variables, in particular, brake_level, end_brake, and steer_level, are very significant and nonlinear. Figures. 6 and 7 show, respectively, the interactions between design variable M123 and the noise vari-

Fig. 7 Interaction between M123 and end_brake

ables start_brake and end_brake. Based on the robust design concept, these interactions may lead to a reduction in variability of rollover metric incurred by noise variables. For instance, from Figs. 6 and 7 it is found that choosing the low bound of M123 will lead to smaller variability caused by start_brake and end_brake.

4.2.3 Robust Design Optimization. Since the focus of this study is on global sensitivity analysis, the robust design formulation and results for preventing vehicle rollover under a range of maneuver conditions are omitted here. Readers interested in the robust design formulation and the solution should consult [31], where the reduced model obtained in the work is used for robust design to improve vehicle handling performance and the same idea presented in this paper for GSA is used for deriving analytical formulations of mean and variance in uncertainty propagation to facilitate efficient robust design. It is found that the robust design achieved is far better than the results obtained in our earlier work [26]. Besides the reason that the Kriging model created based on space-filling sample points in this study is much more accurate than the quadratic response surface model created based on ad hoc sampling approach in the earlier work, the use of the proposed GSA method has helped provide more accurate assessments of design performance and it variance while the problem size is also reduced. The GSA method used in this work has identified M123 as a critical variable through the total sensitivity index. Chen et al. earlier study, however, failed to identify M123 as an important variable because a quadratic response model was created for the screening purpose, and only the linear main effects were used in ranking variable importance due to the limitation of the classical ANOVA analysis.

5 Closure

The fundamental contribution of this work is the development of analytical techniques for assessing the global sensitivity and performance distribution characteristics via the use of metamodels in simulation-based design under uncertainty. We discover that the commonly used metamodels such as polynomial, Kriging, the Radial Basis Functions, and MARS all follow the form of multivariate tensor-product basis functions for which the analytical results of univariate integrals can be combined to evaluate the multivariate integrals in GSA (global sensitivity analysis). We identify the needs of GSA in design under uncertainty and further derive the generalized analytical formulations as well as the metamodel specific analytical formulations.

Our other contribution is the introduction of variable subset decomposition in GSA which transforms the evaluations of subset interaction sensitivity indices into a combination of subset main sensitivity indices. In particular, the decomposition of control and noise variable sets provides a powerful tool to facilitate insightful construction of robust design.

Using both mathematical examples and an engineering problem, we demonstrate that compared to the existing sampling based approaches to variance-based GSA, our approach provides more accurate as well as more efficient GSA results, assuming that the accuracy of metamodels is satisfactory. The techniques are especially useful for design applications that require computationally expensive simulations. The knowledge obtained though global sensitivity analysis offers insights into the model behavior, provides guidance in reducing the problem size, and helps to identify sources for variance reduction. Overall, they help designers make informed decisions in product design with the consideration of uncertainty, a step beyond traditional sensitivity analysis in deterministic design.

As a part of our research effort, the same idea presented in this paper has been used for deriving analytical formulations for uncertainty propagation, in particular, the assessments of mean and variance of a model output in robust design [31]. Results show that the use of the analytical approach significantly reduces the random errors associated with the sampling approach and greatly

Transactions of the ASME

facilitates the convergence of optimization for robust design. Future work in this area will involve the consideration of the dependence of the variability of input variables and alternative GSA measures that evaluate the impact of variables not only by the influence on the variance but also on the whole probabilistic distribution of a model output.

Acknowledgments

The support from Ford URP (University Research Program) and NSF Grant No. DMI0335877 is greatly acknowledged. We are grateful for the Arcsim program provided by the Automotive Research Center (ARC) at University of Michigan.

Nomenclature

 $p(\mathbf{x}) = p(x_1, x_2, \dots x_M)$: = Joint probability density function (PDF)

M: = Number of variables

 $p_i(x_i)$: = Individual (marginal) probability density function

 $\phi_i(x_i)$: = Main effects in the ANOVA

 $\phi_{i_1,\ldots,i_s}(x_{i_1},\ldots,x_{i_s})$: = Interaction effects in the ANOVA

 $f_i(x_i), f_{i_1 i_2}(x_{i_1}, x_{i_2})...$ = Uncentered main and interaction effects

 $V_{i_1...i_s}$: = Variance of $\phi_{i_1...i_s}(x_{i_1},...,x_{i_s})$ S_i : = Main sensitivity index (MSI) corre-

sponding to x_i

 $S_{i_1,...,i_s}$ = Interaction sensitivity index (ISI) corresponding to the interaction between x_{i_1}, x_{i_2}, \ldots , and x_{i_s}

 S_i^t : = Total sensitivity index (TSI) corresponding to x_i

$$\begin{split} \hat{\phi}_{\mathbf{U}_1,\dots,\mathbf{U}_T}(\mathbf{x}_{\mathbf{U}_1},\dots,\mathbf{x}_{\mathbf{U}_T}) &:= \text{ Subset main interaction effects} \\ \hat{f}_{\mathbf{U}_i}(\mathbf{x}_{\mathbf{U}_i}), & \\ \hat{f}_{\mathbf{U}_1,\dots,\mathbf{U}_T}(\mathbf{x}_{\mathbf{U}_1},\dots,\mathbf{x}_{\mathbf{U}_T}) &:= \text{ Subset uncentered main interaction effects} \end{split}$$

 $\hat{S}_{\mathbf{U}_i}, \hat{S}_{\mathbf{U}_i, \dots \mathbf{U}_i}, \hat{S}_{\mathbf{U}_i}^t := \text{Subset main sensitivity index}$ (SMSI), Subset interaction sensitivity index (SISI), and Subset total sensitivity index (STSI)

 x_D , x_R : = Subset of design variables and noise variables

 $\mu_{v}(\mathbf{x_{D}}), \sigma_{v}^{2}(\mathbf{x_{D}})$: = Response mean and Variance

 $S_i^r(S_U^r)$: = Sensitivity index to measure the capability of a design variable x_i (or a design variable subset x_U) to dampen response uncertainty

 $S_i^u(\hat{S}_{IJ}^u)$: = Sensitivity index to measure the capability of a *noise variable* x_i (or a noise variable subset x_{II}) to reduce response uncertainty

 $B_i(\mathbf{x})$: = Multivariate tensor-product basis

function $h_{il}(x_l)$: = Univariate basis function

 N_b : = Number of multivariate basis functions

 $C_{1,il}$, C_{2,i_1i_2l} : = Univariate integrals ANOVA = Analysis of variance

GSA = Global sensitivity analysis

ISI = Interaction sensitivity index

MSI = Main sensitivity index

SI = Sensitivity index

SISI = Subset interaction sensitivity index

SMSI = Subset main sensitivity index TPBF = Tensor-product basis functions

TSI = Total sensitivity index

References

- [1] Manring, N. D., 2003, "Sensitivity Analysis of the Conical-Shaped Equivalent Model of a Bolted Joint," ASME J. Mech. Des., 125, 642-646.
- [2] Du, X., and Chen, W., 2004, "Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design," ASME J. Mech. Des., **126**(2), pp. 225–233.
- [3] Du, X., Sudjianto, A., and Chen, W., 2004, "An Integrated Framework for Optimization under Uncertainty using Inverse Reliability Strategy," ASME J. Mech. Des., 126(4), 562-570.
- [4] Youn, B. D., and Choi, K. K., 2004, "An Investigation of Nonlinearity of Reliability-Based Design Optimization Approaches," ASME J. Mech. Des., **126**, 403-411.
- [5] Nikolaidis, E., Chen, S., Cudney, H., Haftka, R. T., and Rosca, R., 2004, "Comparison of Probability and Possibility for Design Against Catastrophic Failure under Uncertainty," ASME J. Mech. Des., **126**, 386–394.
- [6] Liu, H., Chen, W., and Sudjianto, A., 2004, "Relative Entropy Based Method for Global and Regional Sensitivity Analysis in Probabilistic Design," DETC2004-57500, 2004 ASME Design Automation Conference, Salt Lake City, UT, September 28-October 2, 2004.
- [7] Box, G. E. P., Hunter, W. G., and Hunter, J. S., 1978, Statistics for Experimenters, Wiley, New York.
- [8] Saltelli, A., Tarantola, S., and Chan, K., 1999, "A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output," Technometrics, 41(1), 39-56.
- [9] McKay, M. D., Morrison, J. D., and Upton, S. C., (1999), "Evaluating prediction uncertainty in simulation models," Comput. Phys. Commun., 117, pp. 44-51.
- [10] Homma, T., and Saltelli, A., 1996, "Importance Measures in Global Sensitivity Analysis of Nonlinear Models," Reliability Eng. Sys. Safety, **52**, pp. 1–17.
- [11] Sobol, I. M., 1993, "Sensitivity Analysis for Nonlinear Mathematical Models," Mat. Model., 1, 407-414 [translation of Sobol', 1990, "Sensitivity Estimates for Nonlinear Mathematical Models," Matematicheskoe Modelirovanie, 2, 112-118 (in Russian).
- [12] Reedijk, C. I., 2000, "Sensitivity Analysis of Model Output: Performance of various local and global sensitivity measures on reliability problems," Master's Thesis, Delft University of Technology, 2000.
- [13] Helton, J. C., 1993, "Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal," Reliability Eng. Sys. Safety, 42, 327–367.
- [14] Chan, K., Saltelli, A., Tarantola, S., 1997, "Sensitivity Analysis of Model Output: Variance-Based Methods Make the Difference," Proceedings of the 1997 Winter Simulation Conference.
- [15] Chen, W., Allen, J. K., Schrage, D. P., and Mistree, F., 1997, "Statistical Experimentation Methods for Achieving Affordable Concurrent Design," AIAA J., 35(5), 893-900.
- [16] Hardy, R. L., 1971, "Multiquadratic equations of topography and other irregular surfaces," J. Geophys. Res., 76, pp. 1905-1915.
- [17] Dyn, N., Levin, D., and Rippa, S., 1986, "Numerical procedures for surface fitting of scattered data by radial basis functions," SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput., 7(2), pp. 639-659.
- [18] Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P., 1989, "Design and Analysis of Computer Experiments," Stat. Sci., 4, No. 4, pp. 409–435.
- [19] Currin, C., Mitchell, T., Morris, M. D., and Ylvisaker, D., 1991, "Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments," J. Am. Stat. Assoc., 86 (416), 953–963.
- [20] Owen, A. B., 1999, "Monte Carlo quasi-Monte Carlo and Randomized quasi-Monte Carlo," in H. Niederreiter and J. Spanier, eds., Monte Carlo and quasi-Monte Carlo Methods, pp. 86-97.
- [21] Friedman, J. H., 1991, "Multivariate Adaptive Regression Splines," Ann. Stat., 19(1), pp. 1-141.
- [22] Jin, R., 2004, "Enhancements of Metamodeling Techniques in Engineering Design," PhD dissertation, University of Illinois at Chicago, Chicago, IL.
- [23] Phadke, M. S., 1989, Quality Engineering Using Robust Design, Prentice Hall, Englewood Cliffs, NJ.
- [24] Hastie, T., Tibshirani, R., Friedman, J., 2001, The Elements of Statistical Learning: data mining, inference, and prediction, Springer-Verlag, New York.
- [25] Mohamedshah, Y., Council, F., 1997, "Synthesis of Rollover Research," March 10, 1997.
- [26] Chen, W., Garimella, R., and Michelena, N., 2001, "Robust Design for Improved Vehicle Handling Under a Range of Maneuver Conditions," Eng. Optimiz., 33, No 3, 303-326.
- [27] Sayers, M. W., and Riley, S. M., 1996, "Modeling Assumptions for Realistic Multibody Simulations of the Yaw and Roll Behavior of Heavy Trucks," SAE Paper No. 960173. Society of Automotive Engineers, Warrendale, PA.
- [28] Michelena, N., and Kim, H.-M., 1998, "Worst-Case Design for Vehicle Handling," Fourth Annual Conference on Modeling and Simulation of Ground

SEPTEMBER 2005, Vol. 127 / 885

- Vehicles, The Automotive Research Center, The University of Michigan, Ann
- Arbor, May 19–20, 1998.
 [29] Jin, R., Chen, W., and Sudjianto, A., "An Efficient Algorithm for Constructing Optimal Design of Computer Experiments," DETC-DAC48760, 2003 ASME Design Automation Conference, Chicago, IL, September 2–6, 2003, to appear in Journal of Statistical Planning and Inference.
 [30] Jin, R., Chen, W., and Simpson, T., 2001, "Comparative Studies of Metamod-
- eling Techniques under Multiple Modeling Criteria," Journal of Structural & Multidisciplinary Optimization, 23(1), pp. 1-13.
- [31] Chen, W., Jin, R., and Sudjianto, A., 2004, "Analytical Uncertainty Propagation in Simulation-Based Design under Uncertainty," AIAA-2004-4356, 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, NY, August 30-September 1, 2004.