

High-Temperature Strain Sensing for Aerospace Applications

Anthony (Nino) Piazza, Dr. Lance W. Richards, Larry D. Hudson NASA Dryden Flight Research Center Summer WRSGC in Bethlehem, PA August 18-20, 2008

Cleared for public release

Outline

- Background
- Objective
- Sensors
- Attachment Techniques
- Laboratory Evaluation / Characterization
- Large-Scale Structures

Background

Sensor Development Motivation

Lack of Capability

- TPS and hot structures are utilizing advanced materials that operate at temperatures that exceed our ability to measure structural performance
- Robust strain sensors that operate accurately and reliably beyond 1800°F are needed but do not exist

Implication

- Hinders ability to validate analysis and modeling techniques
- Hinders ability to optimization structural designs

Objective

Measurements Lab

Provide strain data for validating finite element models and thermal-structural analyses

- Develop sensor attachment techniques for relevant structural materials at the small test specimen level
 - Apply methods to large scale hot-structures test articles
- Perform laboratory tests to characterize sensor and generate corrections to apply to indicated strains

Dynamic Measurements (Max Op 1850°F)

High-Temp Quarter-Bridge Strain Gage

Pro's

- Sturdy / rugged thermal sprayed installation and spot-welded leadwire stakedown
- Available high sample rate DAS, usually AC coupled to negate large ξapp

Con's

- Large magnitude ξapp primarily due to wire TCR, slope rotates cycle-to-cycle
- · Sensitivity (GF): Function of temperature

-10000 PTZ -11000 -12000 Rotation Direction Heat / Cool Rate: 1st Cycle 1 °F / sec -13000 2nd Cycle -3000 3rd Cycle -14000 Strain |με -9000 1000 1200 1400 1st Cycle -12000 2nd Cvcle 3rd Cycle -15000 500 1000 1500 Temp (F)

Apparent Strain = [TCR_{gage} / GF_{set} + $(\alpha_{sub} - \alpha_{gage})$] * (ΔT)

Static Measurement (Max Op 1850°F)

Extrinsic Fabry-Perot Interferometer (EFPI)

Commercially Available

Strain = δL_C / $L_{G (initial)}$, where sensitivity = L_G Apparent Strain (ξ app) = (α_{sub} - α_{fiber}) * ΔT

Static Measurement

Single Mode EFPI Signal Conditioning

Static Measurement (Max Op 600°F)

Applications Above 600°F

Develop sensor attachment techniques for relevant structural materials

- Derive surface prep and optimal plasma spray parameters for applicable substrate
 - i.e., powder media / type, power level, traverse rate, feed rate, and spraying distance
- Or, optimize / select cement that best fits application
- Improve methods of handling and protecting fragile sensor during harsh installation processes

Thermal Spray vs. Cement

Thermal sprayed attachments are preferred even though cements are simpler to apply

- Cements are often corrosive to TC or strain gage alloys
 - Si / Pt, NaF / Fe-Cr-Al alloys, alkali silicate / Cr
- Cements are more prone to bond failure due to shrinkage and cracking caused when binders dissipate
- Tests indicate increased EFPI gage-to-gage scatter on first cycle

Thermal Spray Equipment

Thermal Spray Room

- 80KW Plasma System
- Rokide Flame-Spray System
- Powder Spray System
- Grit-Blast Cabinet
- Micro-Blast System
- Water Curtain Spray Booth

Thermal Spray

Arc-plasma sprayed base coat

- Metallic Substrates: Used to transition high expansion substrate metal with low expansion sensor attachment material (Al₂O₃)
- CMC Substrates (inert testing): High melting-point ductile transitional metals (i.e. Ta, TiO₂, & Mo) more conducive for attachment to smooth surfaces like SiC

Rokide flame-sprayed sensor attachment

- Applies a less dense form of alumina than plasma spraying
- Electrically insulates (encapsulate) wire resistive strain gages

Wire Strain Gage Installation

Place SG on thermal sprayed basecoats via carrier tape

Spot weld threeconductor leadwire

Fiber Optic EFPI Installation

Fiber Optic EFPI Installation

Applications Below 600°F

Validate and characterize strain measurement

- Base-line / characterize high-temperature strain sensors on monolithic Inconel specimens
 - Known material spec's isolate substrate from inherent sensor traits prior to testing on more complex composites
- Evaluate / characterize sensitivity (GF) of strain sensors on ceramic composite substrates using laboratory combined thermal / mechanical load fixture
- Generate apparent strain curves for corrections of indicated strains on relevant ceramic composite hot-structures

Combined Thermal / Mechanical Loading (Obsolete)

EFPI Combined Loading on IN625

Thermal / Mechanical Cantilever Beam Testing of EFPI's

- Excellent correlation with SG to 550°F (3%)
- Very little change to 1200°F
- Slight drop in output slope above 1200°F
- Maximum gap readability uncertain at upper range temperatures on high expansion material

Combined Thermal / Mechanical Loading (Current)

Furnace / cantilever beam loading system for sensitivity testing

- Air or inert (3000°F max)
- 12-in³ inner furnace with Molydisilicide elements
- Micrometer / mandrel side loading
- LVDT displacement measurements
- POCO Graphite hardware for inert environment testing of ceramic composites
- IN625 hardware for metallic testing in air
- Sapphire viewing windows

Dilatometer Testing

Sensor Characterization

Air or inert (3000°F max)

- Evaluate bond integrity
- Generate ξapp correction curves
- Evaluate sensitivity and accuracy
- Evaluate sensor-to-sensor scatter, repeatability, hysteresis, and drift

4 EFPI's on C-C

EFPI Apparent Strain

 ξ_{app} Correction: Removal of inherent sensor traits and substrate expansion from indicated strain to acquire true strains or thermal stresses

$$\xi_{\text{true}} = \xi_{\text{indicated}} - \xi_{\text{app}}$$
, where $\xi_{\text{app}} = (\alpha_{\text{sub}} - \alpha_{\text{fiber}}) * \Delta T$

- Inconel (LH chart): Large expansion differential between IN601 and Si
 - output primarily substrate expansion, CTE * ∆T
- CMC (RH chart): Small expansion ratio between C-SiC and Si
 - requires correction for fiber expansion (lessening cavity gap)
- Graphs demonstrate how well actual ξapp curves followed theoretical

FBG Apparent Strain

Thermal Out (unbonded) = $(\alpha_{fiber} + \xi / Pe) * \Delta T$ where:

Thermal Optic Effect (ξ) = 3.78 $\mu\epsilon$ /F Strain Optic Constant (Pe) = 0.725

Dryden Flight Research Center

Large Scale Structures

Ceramic Composite Control Surfaces

Large Scale Structures

Metallic Dynamic Environment

C-17 Engine Testing

- Test temperatures above 1100°F
- Engine intentionally unbalanced creating large peak-to-peak vibrations

X-33 Sonic Fatigue Testing

- Dynamic loads as high as -158db
- Test temperatures above 1500°F
- High transient heating rates producing large thermal stresses

Large Scale Structures

Fiber Optic Wing Shape Sensing

