BAB I

PENDAHULUAN

1.1 Latar Belakang Masalah

Budidaya ikan di Indonesia memiliki problem yang lumayan besar yaitu diperlukannya usaha yang besar untuk menghitung dan mengawasi jumlah ikan yang dibudidayakan. Dalam penghitungan bibit pada proses jual beli contohnya, dalam menghitungan bibit lele para pedagang masih menghitung ikan dengan cara manual (Al-Amri 2020). Bibit ikan dipindahkan satu persatu atau ditimbang sesuai berat untuk mendapatkan jumlah ikan. kedua cara tersebut antara sangat tidak efisien atau kurang akurat. Dalam metode penghitungan, ikan dihitung satu per satu dengan tangan atau dengan bantuan sendok atau centong, yang memungkinkan penghitung untuk mengambil ikan dengan jumlah tertentu. Metode ini bisa memakan waktu yang cukup lama bila ikan yang dihitung berjumlah besar, karena itu metode ini biasanya hanya digunakan dalam menghitung ikan dalam jumlah yang sedikit. Sementara itu metode penimbangan hanya menghasilkan jumlah perkiraan yang tidak selalu akurat, namun cepat. Dalam metode ini bibit ikan dimasukan ke dalam suatu wadah yang lalu ditimbang. Berat hasil penimbangan lalu bisa dijadikan acuan kira-kira jumlah ikan yang terdapat di dalam wadah. Metode ini cepat dan cukup efisien dalam menghitung ikan dalam jumlah yang sangat besar. Namun jumlah bibit ikan tidaklah akurat dan hanya berupa perkiraan belaka.

Problem perhitungan ikan ini akan sangat terasa pada industri budidaya ikan yang sangat mementingkan kepadatan populasi dalam tempat budidaya ikan. Populasi ikan yang berlebihan dapat memperlambat pertumbuhan ikan (Diansari dkk., 2013), tetapi di sisi lain populasi ikan yang terlalu kecil akan mengurangi efisiensi lahan yang dimiliki peternak ikan. Dalam mengatasi problem Al-Amri 2020 menciptakan sebuah sistem penghitungan menggunakan sensor *proximity*. Hasil uji coba mendapat hasil yang baik dengan persentase error sebesar 4,07% dengan penghitungan memakan waktu 228 detik per 1000 ikan. Jauh lebih cepat dibanding kecepatan hitung manual yang memakan waktu 20 menit per 1000 ikan. Cara lain dipakai oleh Rusydi 2019 untuk mendeteksi ikan. Rusydi menciptakan sebuah alat penghitungan dengan katup otomatis yang akan terbuka bilamana jumlah ikan yang diinginkan telah tercapai. Alat tersebut mendeteksi ikan menggunakan

konsep *through beam* di mana ikan akan terdeteksi ketika melewati pipa oleh inframerah dan photodioda. Alat tersebut dapat mendeteksi ikan dengan kecepatan 58 ms per ikan dengan tingkat akurasi 100%.

Penggunaan alat deteksi fisik seperti yang digunakan Al-Amri 2020 maupun Rusydi 2019 memiliki beberapa kekurangan, seperti ukuran ikan bergantung kepada ukuran alat yang dipergunakan. Alat Rusydi sangat bergantung dengan kelandaian dan kecepatan lewat ikan yang melewati pipa sensor, mengganti ukuran ikan yang akan dideteksi mengharuskan tes ulang untuk mendapatkan pengaturan alat yang paling optimal (dalam tes, Rusyidi menemukan bahwa kelandaian pipa 30° memberikan hasil paling akurat dalam mendeteksi ikan). Sementara pada alat Al-Amri, lubang keluar ikan yang perlu dimodifikasi untuk mengamodasi ikan yang lebih besar. Metode-metode tersebut sangatlah tidak fleksibel dalam industri peternakan ikan yang tidak hanya menternakan satu jenis ikan saja.

Deteksi Objek Cepat (*Rapid Object Detection*) adalah sebuah algoritma yang diciptakan untuk pendeteksian muka Viola dkk., 2004. Viola menjelaskan kalau algoritma deteksi yang diciptakannya dapat mendeteksi muka dari gambar berukuran 384 x 288 pixel dari kamera berkecepatan 15 *frame* per detik. Deteksi objek dapat digunakan untuk berbagai hal seperti anotasi gambar, penghitungan mobil, deteksi muka, rekognisi muka, pelacakan gambar dan lain-lain. Setiap algoritma deteksi objek bekerja dengan cara yang berbeda-beda namun dengan konsep yang kurang lebih sama. Setiap kelas objek pasti memiliki fitur yang dapat menunjukan jati diri objek tersebut, misalnya objek bola sepak pastilah bulat dan umumnya memiliki dua warna yaitu hitam dan putih dengan pola yang spesifik. Muka manusia memiliki mata, hidung dan mulut yang dapat dibedakan dengan mahluk lainnya misalnya dengan kucing. Metode-metode deteksi objek umumnya menggunakan pendekatan neural network dan *non-neural network* untuk mendefinisikan fitur dari kelas objek yang berusaha dideteksi.

Adaboost (Freund dkk., 1996) adalah sebuah pendekatan non-neural network yang sering digunakan untuk mendefinisikan fitur dari objek yang ingin dideteksi (Weber 2008). Adaboost telah digunakan untuk deteksi berbagai objek seperti deteksi plat nomor kendaraan bermotor (Ho dkk., 2009), deteksi muka (Viola dkk., 2004), deteksi pesawat terbang (Freund dkk., 1996) dan lain-lain. Adaboost mencari fitur sebuah kelas objek dengan menggunakan sekumpulan weak learner untuk membuat sebuah strong learner. Kumpulan weak learner tersebut nantinya akan dinilai sesuai dengan akurasi mereka, di mana weak learner yang secara konsisten benar menebak

fitur sebuah objek akan memiliki nilai lebih dalam keputusan klasifikasi akhir.

Adaboost juga dapat dimodifikasi untuk dapat melakukan klasifikasi yaitu proses memberikan deskripsi label ke sebuah segmentasi objek. Hal ini dilakukan dengan memodifikasi *framework viola-jones* dan juga metode *adaboost* untuk dapat mendeteksi lebih dari satu kelas objek. Hal ini dapat dilakukan dengan modifikasi seperti yang dilakukan oleh Hastie dkk., 2009.

Berdasarkan latar yang telah dijelaskan, penulis akan menggunakan untuk mengklasifikasi genus ikan dengan menggunakan metode *Viola-Jones Feature Extraction dan Boosting Berbasis Decision Tree* untuk mengkonstruksi sebuah *classifier* genus ikan yang nantinya dapat mengklasifikasi ikan dengan input gambar. Hasil yang diharapkan adalah sistem mampu mengklasifikasi ikan dari gambar secara akurat.

1.2 Rumusan Masalah

Dari uraian permasalahan di atas, perumusan masalah dalam penelitian ini adalah 'Bagaimana caranya mengklasifikasi ikan menggunakan metode Viola-Jones Feature Extraction dan Boosting Berbasis Decision Tree?'.

1.3 Batasan Masalah

Batasan masalah pada penelitian ini adalah:

- 1. Klasifikasi ikan menggunakan Viola-Jones Feature Extraction dan Boosting Berbasis Decision Tree.
- 2. Klasifikasi harus bisa melakukan klasifikasi tiga kelas genus ikan, Abudefduf, Amphiprion, dan Chaetodon.
- 3. Klasifikasi dilakukan dengan gambar tampak samping ikan saja dengan ikan menghadap ke kiri. Gambar berukuran 350 x 200 piksel, dan dengan latar belakang sudah dihilangkan.

1.4 Tujuan Penelitian

Tujuan dari penelitian ini adalah membuat program yang mampu mengklasifikasi ikan dengan menggunakan Viola-Jones Feature Extraction dan Boosting Berbasis Decision Tree.

1.5 Manfaat Penelitian

1. Bagi penulis

Memperoleh gelar sarjana dalam bidang Ilmu Komputer, serta menambahkan pengalaman dalam pembuatan sebuah program komputer dengan aplikasi dunia nyata. Dan menambahkan pengetahuan penulis tentang klasifikasi objek, metode *Boosting* dan *Harr-Like Features*.

2. Bagi Program Studi Ilmu Komputer

· Mahasiswa

Diharapkan penelitian ini dapat digunakan sebagai penunjang referensi, khususnya pustaka tentang klasifikasi object dengan Viola-Jones Feature Extraction dan Boosting Berbasis Decision Tree.

Bagi Peneliti Selanjutnya

Diharapkan penelitian ini dapat digunakan sebagai acuan dasar atau kajian awal bagi peneliti yang ingin meneliti permasalahan yang sama, terutama yang berkaitan dengan pengembangan aplikasi klasifikasi ikan.

3. Bagi industri

Dengan harapan agar di masa depan metode klasifikasi ini dapat di-integrasi untuk penghitungan ikan dari *input* gambar maupun video.

4. Komunitas peneliti

Diharapkan penelitian ini dapat menjadi laporan referensi penggunaan metode Viola-Jones Feature Extraction dan Boosting Berbasis Decision Tree dalam klasifikasi ikan.