RESOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS

María González Taboada

Mayo, 2007

Esquema:

- 1 Introducción
- 2 Métodos de un paso
 - Método de Euler explícito
 - Método de Euler implícito
 - Método del trapecio
 - Métodos de Taylor (orden 1 y 2)
 - Métodos de Runge-Kutta
- 3 Referencias

Introducción

■ Ecuación diferencial ordinaria (e.d.o.) de primer orden:

$$y' = f(x, y)$$

La incógnita es la función y = y(x).

Condición inicial:

$$y(x_0) = y_0$$

■ Problema de valor inicial (P.V.I.):

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

Introducción

- Este tipo de problemas solo puede resolverse de manera exacta en algunos casos particulares.
- En general, es necesario emplear métodos numéricos que proporcionan una aproximación de la solución en un número finito de puntos.
- En los puntos intermedios, la solución se aproxima normalmente por interpolación de Hermite.

Introducción

■ Dado h > 0, consideramos los puntos

$$x_k = x_0 + k h$$
 $k = 0, 1, ...$

- Un método numérico para resolver el P.V.I. proporcionará aproximaciones y_k de $y(x_k)$, para k = 0, 1, ...
- De hecho, al implementar el método numérico en el ordenador, se obtienen valores, \tilde{y}_k , para k = 0, 1, ..., afectados por errores de redondeo.

Tipos de errores

Error de discretización:

$$e_k = |y(x_k) - y_k|$$

Error de redondeo:

$$r_k = |y_k - \tilde{y}_k|$$

Error total:

$$E_k = |y(x_k) - \tilde{y}_k|$$

Se verifica que

$$E_k \leq e_k + r_k$$

Clasificación de los métodos numéricos para e.d.o.'s

Se distinguen:

- Métodos de un paso: y_{k+1} se calcula a partir de y_k .
- Métodos multipaso: Un método es de p pasos si y_{k+1} se calcula a partir de $y_k, y_{k-1}, \dots, y_{k-p+1}$.
- Otra clasificación:
 - Métodos explícitos: y_{k+1} se obtiene directamente, mediante una fórmula explícita.
 - **Métodos implícitos:** Para calcular y_{k+1} , hay que resolver una ecuación o sistema de ecuaciones (generalmente no lineal).

Métodos de un paso

Forma general de los métodos de un paso:

- 1 $y_0 = y(x_0)$
- Para $k \geq 0$,

$$y_{k+1} = y_k + h \phi(x_k, y_k, x_{k+1}, y_{k+1})$$

- Si ϕ depende de y_{k+1} , el método es implícito. En caso contrario ($\phi = \phi(x_k, y_k, x_{k+1})$), el método es explícito.

Procedimiento general para obtener métodos de un paso

Se parte de la e.d.o.

$$y'(x) = f(x, y(x))$$

2 Se integra la e.d.o. en el intervalo $[x_k, x_{k+1}]$:

$$y(x_{k+1}) - y(x_k) = \int_{x_k}^{x_{k+1}} f(x, y(x)) dx$$

3 Se aproxima la integral mediante una fórmula de integración numérica.

Método de Euler explícito

$$y'(x) = f(x, y(x))$$

■ Integrando la e.d.o. en $[x_k, x_{k+1}]$, se tiene que:

$$y(x_{k+1}) - y(x_k) = \int_{x_k}^{x_{k+1}} f(x, y(x)) dx$$

La integral se aproxima mediante la fórmula del rectángulo con nodo x_k :

$$\int_{x_k}^{x_{k+1}} f(x, y(x)) dx \approx h f(x_k, y(x_k))$$

■ Entonces, queda que

$$y(x_{k+1}) \approx y(x_k) + h f(x_k, y(x_k))$$

Método de Euler explícito

- Esto motiva la definición del método de Euler explícito:
 - 1 $y_0 = y(x_0)$
 - 2 Para $k \ge 0$, $y_{k+1} = y_k + h f(x_k, y_k)$
- En este caso,

$$\phi(x_k, y_k, x_{k+1}, y_{k+1}) = f(x_k, y_k)$$

Método de Euler implícito

$$y'(x) = f(x, y(x))$$

■ Integrando la e.d.o. en $[x_k, x_{k+1}]$, se tiene que:

$$y(x_{k+1}) - y(x_k) = \int_{x_k}^{x_{k+1}} f(x, y(x)) dx$$

La integral se aproxima mediante la fórmula del rectángulo con nodo x_{k+1} :

$$\int_{x_k}^{x_{k+1}} f(x, y(x)) dx \approx h f(x_{k+1}, y(x_{k+1}))$$

Entonces, queda que

$$y(x_{k+1}) \approx y(x_k) + h f(x_{k+1}, y(x_{k+1}))$$

Método de Euler implícito

- Esto motiva la definición del método de Euler implícito:
 - 1 $y_0 = y(x_0)$
 - 2 Para $k \ge 0$, $y_{k+1} = y_k + h f(x_{k+1}, y_{k+1})$
- En este caso,

$$\phi(x_k, y_k, x_{k+1}, y_{k+1}) = f(x_{k+1}, y_{k+1})$$

■ En general, para determinar y_{k+1} , es necesario resolver una ecuación no lineal:

$$\alpha = y_k + h f(x_{k+1}, \alpha)$$

Normalmente, se resuelve por un método de punto fijo, con $g(\alpha) = y_k + h f(x_{k+1}, \alpha)$.

Método del trapecio

$$y'(x) = f(x, y(x))$$

■ Integrando la e.d.o. en $[x_k, x_{k+1}]$, se tiene que:

$$y(x_{k+1}) - y(x_k) = \int_{x_k}^{x_{k+1}} f(x, y(x)) dx$$

La integral se aproxima mediante la fórmula del trapecio:

$$\int_{x_k}^{x_{k+1}} f(x, y(x)) dx \approx \frac{h}{2} \left(f(x_k, y(x_k)) + f(x_{k+1}, y(x_{k+1})) \right)$$

Entonces, queda que

$$y(x_{k+1}) \approx y(x_k) + \frac{h}{2} \left(f(x_k, y(x_k)) + f(x_{k+1}, y(x_{k+1})) \right)$$

Método del trapecio

- Esto motiva la definición del método del trapecio:
 - 1 $y_0 = y(x_0)$
 - Para $k \geq 0$,

$$y_{k+1} = y_k + \frac{h}{2} \left(f(x_k, y_k) + f(x_{k+1}, y_{k+1}) \right)$$

■ En este caso,

$$\phi(x_k, y_k, x_{k+1}, y_{k+1}) = \frac{1}{2} \left(f(x_k, y_k) + f(x_{k+1}, y_{k+1}) \right)$$

■ Se trata de un método implícito (para determinar y_{k+1} habrá que resolver, en general, una ecuación no lineal).

Métodos de Taylor

- Los métodos de Taylor se basan en un desarrollo de Taylor de la solución de la e.d.o.
- Suponemos que la solución de la e.d.o.

$$y'(x) = f(x, y(x))$$

es suficientemente derivable.

 Haciendo un desarrollo de Taylor de orden p de la solución en el punto x_k y despreciando el resto:

$$y(x_k + h) \approx y(x_k) + h y'(x_k) + \frac{h^2}{2} y''(x_k) + \ldots + \frac{h^p}{p!} y^{p)}(x_k)$$

El método de Taylor de orden p se deduce a partir de esta fórmula.

Solo consideraremos los casos p = 1 y p = 2.

■ Haciendo un desarrollo de Taylor de orden 1 de la solución en el punto x_k y despreciando el resto, se tiene que:

$$y(x_{k+1}) \approx y(x_k) + h y'(x_k)$$

Como *y* es la solución de la e.d.o.

$$y'(x_k) = f(x_k, y(x_k))$$

de modo que

$$y(x_{k+1}) \approx y(x_k) + h f(x_k, y(x_k))$$

A partir de esta ecuación, se define el método de Taylor de orden 1, que resulta ser el método de Euler explícito.

■ Haciendo un desarrollo de Taylor de orden 2 de la solución en el punto x_k y despreciando el resto, se tiene que:

$$y(x_{k+1}) \approx y(x_k) + h y'(x_k) + \frac{h^2}{2} y''(x_k)$$

- Sabemos que $y'(x_k) = f(x_k, y(x_k))$.
- Queda calcular $y''(x_k)$:

$$y''(x_k) = \frac{\partial f}{\partial x}(x_k, y(x_k)) + \frac{\partial f}{\partial y}(x_k, y(x_k))f(x_k, y(x_k))$$

Sustituyendo las expresiones de $y'(x_k)$ e $y''(x_k)$, resulta que:

$$y(x_{k+1}) \approx y(x_k) + h f(x_k, y(x_k))$$

$$+ \frac{h^2}{2} \left(\frac{\partial f}{\partial x}(x_k, y(x_k)) + \frac{\partial f}{\partial y}(x_k, y(x_k)) f(x_k, y(x_k)) \right)$$

- Esta expresión motiva la definición del método de Taylor de orden 2:
 - 1 $y_0 = y(x_0)$
 - Para $k \geq 0$,

$$y_{k+1} = y_k + h f(x_k, y_k) + \frac{h^2}{2} \left(\frac{\partial f}{\partial x}(x_k, y_k) + \frac{\partial f}{\partial y}(x_k, y_k) f(x_k, y_k) \right)$$

■ En el método de Taylor de orden 2,

$$\phi(x_k, y_k, x_{k+1}, y_{k+1}) = f(x_k, y_k) + \frac{h}{2} \left(\frac{\partial f}{\partial x}(x_k, y_k) + \frac{\partial f}{\partial y}(x_k, y_k) f(x_k, y_k) \right)$$

Se trata de un método explícito.

Algunos comentarios sobre los métodos de Taylor

- Los métodos de Taylor son métodos explícitos.
- Para valores de p elevados, consiguen una precisión muy alta.
- Presentan el inconveniente de que son costosos:
 En el método de Taylor de orden p, hay que evaluar en cada paso las derivadas parciales de la función f hasta el orden p 1.

$$y'(x) = f(x, y(x))$$

■ Integrando la e.d.o. en $[x_k, x_{k+1}]$, se tiene que:

$$y(x_{k+1}) - y(x_k) = \int_{x_k}^{x_{k+1}} f(x, y(x)) dx$$

La integral se aproxima mediante una fórmula de integración numérica con q nodos:

$$x_{k,i} = x_k + h c_i$$
 $i = 1, 2, \ldots, q$

donde $c_i \in [0,1]$, para i = 1, 2, ..., q.

■ Dada una fórmula de integración numérica en [0,1]:

$$\int_0^1 f(x) dx \approx \sum_{i=1}^q \beta_i f(c_i)$$

usando las propiedades de las fórmulas de integración numérica (invarianza por traslaciones y variación por homotecias), se deduce una fórmula de integración numérica en $[x_k, x_{k+1}]$:

$$\int_{x_k}^{x_{k+1}} f(x, y(x)) dx \approx h \sum_{i=1}^{q} \beta_i f(x_{k,i}, y(x_{k,i}))$$

■ Entonces tenemos que

$$y(x_{k+1}) \approx y(x_k) + h \sum_{i=1}^{q} \beta_i f(x_{k,i}, y(x_{k,i}))$$

- En la expresión anterior, aparece el valor de la solución en los q nodos $x_{k,i} \in [x_k, x_{k+1}], i = 1, 2, ..., q$.
- Para determinar estos valores, integramos la e.d.o. en $[x_k, x_{k,i}]$:

$$y(x_{k,i}) - y(x_k) = \int_{x_k}^{x_{k,i}} f(x, y(x)) dx$$

Dada la fórmula de integración numérica

$$\int_0^{c_i} f(x) dx \approx \sum_{j=1}^q a_{ij} f(c_j)$$

usando otra vez las propiedades de las fórmulas de integración numérica (invarianza por traslaciones y variación por homotecias), se aproxima:

$$\int_{x_k}^{x_{k,i}} f(x,y(x)) dx \approx h \sum_{j=1}^q a_{ij} f(x_{k,j},y(x_{k,j}))$$

Entonces

$$y(x_{k,i}) \approx y(x_k) + h \sum_{j=1}^{q} a_{ij} f(x_{k,j}, y(x_{k,j}))$$

- El método de Runge-Kutta correspondiente es:
 - 1 $y_0 = y(x_0)$
 - Para $k \geq 0$,
 - 1 Calcular

$$y_{k,i} = y_k + h \sum_{j=1}^q a_{ij} f(x_{k,j}, y_{k,j})$$
 $i = 1, 2, ..., q$

2 Calcular
$$y_{k+1} = y_k + h \sum_{i=1}^{q} \beta_i f(x_{k,i}, y_{k,i})$$

Métodos de Runge-Kutta: observaciones

- En el caso más general, para calcular las aproximaciones intermedias $y_{k,i}$, $i=1,2,\ldots,q$, es necesario resolver un sistema de q ecuaciones con q incógnitas, en general no lineal.
- Si la matriz $A = (a_{ij})$ es estrictamente triangular inferior,

$$y_{k,i} = y_k + h \sum_{j=1}^{i-1} a_{ij} f(x_{k,j}, y_{k,j})$$
 $i = 1, 2, ..., q$

En este caso, no es necesario resolver un sistema (el método es explícito).

Métodos de Runge-Kutta: observaciones

Los nodos de cuadratura, c_i , y los pesos de las fórmulas, a_{ij} y β_i , se dan habitualmente en forma de tabla:

Diagrama de Butcher

Referencias

- R.L. Burden y J.D. Faires, Análisis numérico, Thomson, 2002.
- J.F. Epperson, An introduction to numerical methods and analysis, John Wiley & Sons, 2002.
- E. Hairer, S.P. Norsett y G. Wanner, *Solving Ordinary Differential Equations I: Nonstiff Problems*, Springer, 2002.
- A. Quarteroni y F. Saleri, Cálculo científico con MATLAB y Octave, Springer, 2006.
- L.F. Shampine, Design of software for ODEs, J. Comput. Appl. Maths. 205 (2007) 901-911.