SRN					

PES University, Bangalore (Established under Karnataka Act No. 16 of 2013) UE19CS205

SAMPLE PAPER FOR

IN SEMESTER ASSESSMENT (ISA-1)- B.TECH III SEMESTER October, 2020

Automata Formal Languages & Logic Answer All Questions

Time: 2 Hrs Max Marks: 60

1.	a)	Consider the function defined by the rule $f(x)=\{2x+2 \text{ for } 0 < x < 5\}$, specify the range and domain of the function.	2
	b)	Let L be the language,	4
		L={ w \in {a*} or w \in {b}*, Σ {a,b}*}	
		Construct a DFA that accepts all the strings that are in L and rejects all the strings	
		that are not in L.	0.0
	c)	Answer the following:	2+2
		i) Consider the following DFA,	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		Give one sentence description of the above DFA	
		ii) draw the transition diagram for the FA M={(A,B,C,D),(0,1), δ ,c,(A,C)} δ (A,0)=, δ (A,1)={A,B,C} δ (B,0)=B, δ (B,1)={A,C} δ (C,0)={B,C}, δ (C,1)={B,D} δ (D,0)={A,B,C,D} δ (D,1)={A}	

SRN					

2	a)	Construct an NFA with six states that accepts the string over the alphabet {a,b} with either even number of a's or the number of b's is multiple of 3.	6
	b)	Convert the following NFA to DFA a q2 q3	4
3.	a)	Give a regular expression that accepts a binary string whose decimal value is divisible by 3.	5
	b)	Explain the closure properties of regular languages.	5
4.	a)	Consider the following grammar: S → aSb S → aS S → € (a) Give a one-sentence description of the language generated by this grammar. (b) Show that this grammar is ambiguous by giving a string that can be parsed in two different ways. Draw both parse trees. (c) Give an unambiguous grammar that accepts the same language as the grammar above	6
	b)	Let the alphabet be {a, b} and the language be the set of strings with more a's than b's. Show that this language is not regular using Pumping Lemma for regular languages.	4

SRN					

5.	a)	Consider the following CFG	6					
		S -> aAS a						
		A -> SbA SS ba						
		Answer the following questions:						
		i) What are the terminals, non-terminals and the start symbol of the grammar?						
		ii) Draw parse tree for the following: "aabbaa"						
		iii) Give leftmost derivation for the above string						
	b)	Give equivalent grammar in CNF for the following CFG	4					
		S -> aSbb T						
		T -> bTaa S λ						
6.	a)	Give PDA for the following language:	4					
		$D = \{ a^i b^j c^k \mid i, j, k \ge 0, \text{ and } i = j \text{ or } j = k \}$						
	b)	For the given grammar, check the acceptance of string w = 10010 using CYK Algorithm-	6					
		$S \rightarrow XY \mid YZ$						
		$X \rightarrow YX \mid 0$						
		$Y \rightarrow ZZ \mid 1$						
		$Z \rightarrow XY \mid 0$						

Acknowledgement : The sample paper is prepared by Prof. Kavitha K N.