DI	1	•	D -
Dal	15	and	Bins

m balls, n bins. $v_i \in [m]$, throw ball i to rondom bin j. ($j \in [m]$) independently.

How are bolls distributed across n bins?

One of the most natural random processes

- Coupon Collector "Hashing"

Questions

- For each m, # balls in largest/smallest bin?
- When does every bin become nonempty?

When do two items occupy the some (in? (Birthday Aradas)

Let $S := \pm t$ of (unordered) pairs (j,k) of balls in the some tm. $E[S] = {m \choose 2} \cdot {n \choose n} = \frac{m(m-1)}{2n} \quad Markou$ $S_{b}, if <math>m = dJn$, $r_{b} = \frac{m(m-1)}{2n} = O(d^{2})$.

More precisely, for $m \ge n$, let $p_{m,n} = \Pr[all \text{ bins have } \le l \text{ boll}]$. $p_{m,n} = 1 \cdot (1 - \frac{1}{n}) \cdot (1 - \frac{2}{n}) \cdot \cdots \cdot (1 - \frac{m-1}{n}) \cdot 1 + x \le e^{x} \text{ for "all } x''$ $= e^{-(\frac{m-1}{2})/n}$ $= e^{-(\frac{m-1}{2})/n}$

So if m = dJn $P_{m,n} \leq e^{-\Omega(d^n)}$

Ex= 1+x+ /2 +x/(+...

 $\frac{p_{k,n} = (\cdot (1^{-1}/_{h}) \cdot (1^{-2}/_{h}) \cdot ... (1^{-2k/_{h}})}{\geq e^{(-1/_{h} + 1/_{h} - 2/_{h} + (2/_{h})^{2} - ... - k^{-1}/_{h} + (k^{-1}/_{h})^{2})}}$ $= e^{-(k^{-1}/_{h})/_{h} + O(k^{3}/_{h})^{2}}$ $= e^{-(k^{-1}/_{h})/_{h} + O(k^{3}/_{h})^{2}}$ (+x+x²\ge for x \in [-1/_{h}]

So if m=dln, Pmn >e O(-d+d)/n)

When does every him become nonempty?

Let Si be the # balls when i bins are nonempty for the first time, and Ti = Siti-Si (let So = 0)

Sn=To+...+Tin. Each Ti is independent!

Fix i. Ti is "geometrically distributed with parameter $p_i = \frac{n-1}{n}$ ".

 $T_{i} = \begin{cases} 1 & \omega.p. & P_{i} \\ 2 & \omega.p. & (1-p_{i})p_{i} \end{cases}$ $3 & \omega.p. & (1-p_{i})^{2}p_{i} \\ \vdots \\ t & \omega.p. & (1-p_{i})^{2}p_{i}, \end{cases}$ $E[T_{i}] = \begin{cases} p_{i}, & \sigma^{2}[T_{i}] = (1-p_{i})/p_{i}^{2}. \end{cases}$

Then, $\mathbb{E}[S_n] = \sum_{i=0}^{n-1} \frac{1}{P_i} = \sum_{i=0}^{n-1} \frac{n}{n-i} = n \left(\frac{1}{n} + \dots + 1\right) = n + n \left(\frac{1}{n} +$

 $\Rightarrow \sigma(S_0) \leq \sqrt{2} n.$

So, Pr]Sn-nHn/≥kn] = Pr[ISn-nHn/≥k.o(Sn)] < 2/k2.

(much stronger bound possible)

When m= C·n log n for large	C_{I}
Vie[m], je[n], Zij=l if ball i is in	
$\forall j \in [n], let X_j = \sum_{i=1}^{m} Z_{ij}$	
	Another version of Chernolt:
m bails	if Y=Yi++4k is the sen of
independent	Tild, foll-valued ru's,
not independent Zij	Pr[14-E[4]] = 2E[4]] = 2e
For each j E[n], Xj = \(\frac{1}{2}\)Zij is	sum of i.i.d. 0-1 random variables.
Let X=XJ/m (average of Zij), a	nd use Charneff
(EIX)=/n	m/n
Pr[X-E[X] > & E[X]	- E KELX 1/3
	- m/i2n .
Using &= 1/2, Pr[Ki/m-1/n] > 1/2n]	$\leq 2e$ $\leq \frac{2}{n^2}$ if $C \geq 24$.
By union bounding over all JE[n]	
$Pr[X_j-m/n \ge m/2n$ for	some $j \leq 2/n$.
W.RZ1-2/n, all bins have [1/2r	, 3m/2n] balls!
n	to bins empty roughly some at lals.
	7 227
m=0.	m=n·Hn m=C·nl·gn (Clarge anstant)

Verifying Matrix Product

This lecture: given A and B, is A=B?

- But A and B are given in "complex forms", so deterministic checking may be inefficient.
- Randomness and algebraic techniques help &

Verifying Matrix Product - Input: $A, B, C \in \mathbb{R}^{n \times n}$

Output: YES if AB=C, NO o.w.

Deterministic algo: Compute AB and check AB=C. $O(n^{2.37...})$ time (very complicated)

Randomized algo.

Vi EIn], sample d; from {0,13}

Compute ABd = A(Bd)

Compute Cd

YES if ABd=Cd, NO o.w.

3 matrix-vector multiplication: Running time O(n2).

If AB=C, then ABd=Cd d, so YES w.p. 1 (with probability) If AB #C, let (AB); and Ci be the ith column of AB and C respectively and assume (AB);* + C;* for some i E In]. Then given any fixed sompled values of di,..., dir, dir, ... du, Prai [ABd = Cd] = Prai [= (AB) jdj = = Cjdj] The consider only d_i^* as random = $\begin{bmatrix} -d_i^* \begin{bmatrix} \sum_{j=1}^n (AB-C)_j d_j = 0 \end{bmatrix} \end{bmatrix}$ = Prait [] (AB-C); dj=-(AB-C); di] -fixed vector e $= \int \frac{1}{2} \text{ if } e = 0 \text{ or } -(AB-C)_{1}*$...If AB≠C, will output NO w.p. ≥1/2! ("error probability \le \(\sqrt{2} \) Repeating t times will make error probability = 1/24 $\begin{bmatrix} 1 & 3 & 1 & 2 & 1 \\ 2 & 1 & 1 & 2 & 2 \\ 2 & 1 & 1 & 2 & 2 \\ 2 & 1 & 2 & 2 \\ 2 & 1 & 2 & 2 \\ 2$

$$\begin{bmatrix} 5 & 7 \\ 8 & 10 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = \begin{bmatrix} 4 & 7 \\ 7 & 11 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$$

$$\begin{bmatrix} 5 \\ 8 \end{bmatrix} d_1 + \begin{bmatrix} 7 \\ 10 \end{bmatrix} d_2 = \begin{bmatrix} 4 \\ 7 \end{bmatrix} d_1 + \begin{bmatrix} 7 \\ 10 \\ 11 \end{bmatrix} d_2$$