

Classification of Magic The Gathering Cards

MITCHELL BROGAN

Introduction

- **Motivation:** To assist the organizations that determine the ranks of cards by providing them with a rough idea of each card's usefulness.
- Objective: Determine whether a card is considered above/below average.
- Result: Achieved a classification model with 92% accuracy.

Info

NAME

TYPE LINE

Methodology

Data:

- 69,000+ cards (25,000+ unique cards)
- 80+ features (engineered 750+ features)
- https://scryfall.com/docs/api/bulk-data

Metrics:

- Intrinsic Card Info
- Third Party Card Ranking

Tools:

Pandas, Numpy, Sklearn, Plotly, Excel

Methodology Cont.

Models Used:

- Logistic Regression
- Decision Tree
- Random Forest
- Adaptive Boost
- Gradient Boost
- Ensemble

Trade Study Procedure:

- Each model tested on 100% of features and top 50% correlated features
- Each Configuration tested on different hyperparameter configurations

Results - EDA

Color Distribution

Colorless

Basic Card Types

Results Cont. - ED.A

Distributions of CMC

Results Cont. - Logistic Regression

Logistic Regression Model (50% Features, C = 10)

Tuned C parameter between: C = 0.1 C = 1

C = 10

Results Cont. - Decision Tree

Decision Tree Model (100% Features, Depth = 16)

9

Results Cont. - Random Forest

Random Forest Model (100% Features, Depth = 16, Estimators = 100)

Results Cont. - Adaptive boost

Adaboosted Decision Tree Model (50% Features, Depth = 16, Estimators = 10)

Results Cont. - Gradient Boosting

Gradient Boosted Model (100% Features, Estimators = 100)

Results Cont. - Ensemble of Prior Best Models

Ensemble of All Models (50% Features, C = 10, Depth = 16, Estimators = 100)

Results Cont. - Best Results

Ensemble 50% Features:

• Accuracy Score: 0.819

• F1 Score: 0.844

Precision v Recall Score: 0.924

• ROC AUC Score: 0.905

• Overfit Score: 0.034

Best Performances Outside of Ensemble:

Best Accuracy: 0.849
Adaboost

• Best F1: 0.867 Adaboost

Best PvR: 0.912 Adaboost, Random Forest (TIE)

• Best ROC: 0.921 Adaboost

• Best Overfit: 0.000 Decision Tree, Gradient Boost (TIE)

Results Cont. - Best Vs. Worst Confusion Matrix

Conclusion

- Given the intrinsic information regarding any given card, it's in game usefulness can be classified with reasonable accuracy.
- The ensemble method of combining logistic regression, decision trees, random forests, ada-boost, and gradient boost yielded the best results.

Future Work

- Make use of the rules text per card.
- Utilizing power/toughness values.
- Classify playstyles from card information.
- Deeper feature engineering.
- Tuning more hyperparameters.

Appendix

Model	Feature Correlation Cutoff	HyperParameters	Val Scores	Train Scores	Test Score	F1 Score	ROC AUC Score	Overfit Score	Eval Metric	
Logistic Regression	100% of Features	C = 0.1	0.767	0.77	0.77	0.795	0.85	0.0035	0.8015	
		C = 1	0.774	0.781	0.762	0.806	0.859	0.007	0.8020	Best 100 LR
		C = 10	0.757	0.76	0.77	0.789	0.846	0.0031	0.7986	
	Top 50%	C = 0.1	0.778	0.783	0.783	0.809	0.869	0.0051	0.8152	
		C = 1	0.783	0.792	0.786	0.811	0.874	0.0081	0.8156	
		C = 10	0.788	0.788	0.785	0.814	0.874	0.0011	0.8232	Best 50 LR
Decision Tree	100% of Features	Max Depth = None	0.814	0.992	0.823	0.843	0.825	0.1776	0.6527	
		Max Depth = 16	0.826	0.877	0.826	0.847	0.882	0.051	0.8007	Best 100 DT
		Max Depth = 4	0.751	0.747	0.755	0.772	0.799	0.0044	0.7709	
	Top 50%	Max Depth = None	0.795	0.898	0.805	0.823	0.858	0.103	0.7257	
		Max Depth = 16	0.803	0.82	0.796	0.82	0.871	0.017	0.8120	Best 50 DT
		Max Depth = 4	0.725	0.725	0.73	0.789	0.777	0	0.7653	
Random Forest	100% of Features	n_estimators = 10	0.79	0.81	0.793	0.831	0.886	0.02	0.8167	
		n_estimators = 100	0.803	0.821	0.802	0.837	0.891	0.018	0.8253	Best 100 RF
		n_estimators = 1000	0.801	0.822	0.803	0.836	0.894	0.021	0.8233	
	Top 50%	n_estimators = 10	0.775	0.793	0.778	0.814	0.866	0.018	0.8013	
		n_estimators = 100	0.792	0.799	0.794	0.819	0.875	0.007	0.8223	Best 50 RF
		n_estimators = 1000	0.792	0.799	0.786	0.823	0.876	0.007	0.8213	
AdaBoost	100% of Features	n_estimators = 10	0.839	0.92	0.849	0.867	0.905	0.081	0.7927	Best 100 Ada
		n_estimators = 50	0.837	0.993	0.848	0.867	0.921	0.156	0.7227	
		n_estimators = 100	0.843	0.991	0.845	0.864	0.915	0.148	0.7267	
	Top 50%	n_estimators = 10	0.81	0.861	0.815	0.839	0.895	0.051	0.7987	Best 50 Ada
		n_estimators = 50	0.807	0.899	0.821	0.843	0.894	0.092	0.7607	
		n_estimators = 100	0.81	0.898	0.816	0.839	0.884	0.088	0.7583	
Gradient Boosting	100% of Features	n_estimators = 10	0.74	0.738	0.737	0.791	0.835	0.002	0.7857	
		n_estimators = 50	0.793	0.795	8.0	0.827	0.882	0.002	0.8343	
		n_estimators = 100	0.805	0.81	0.813	0.837	0.894	0.005	0.8430	Best 100 Grad
	Top 50%	n_estimators = 10	0.721	0.725	0.779	0.779	0.808	0.004	0.7847	
		n_estimators = 50	0.76	0.76	0.771	0.804	0.856	0	0.8103	
		n_estimators = 100	0.781	0.782	0.786	0.818	0.87	0.001	0.8237	Best 50 Grad
Ensemble	100% of Features Stack	ab_50, ab_10, gb	0.854	0.973	0.863	0.88	0.939	0.119	0.7750	
		lr_c1, rf_n1000, ab, gb	0.835	0.892	0.842	0.861	0.922	0.057	0.8180	
		Best Models of LR,	0.84	0.897	0.839	0.859	0.92	0.057	0.8157	
	Top 50%	DT, RF, AB, GB	0.814	0.848	0.819	0.844	0.905	0.034	0.8220	Best Ens