Complete Project PDF

Sales Standards of Excellence

Table of Contents:

- Source Code: Experiment A, Experiment B
- Capstone Presentation
- Capstone Sales Report for Relias

Diana Bowden
Eastern University: DTSC691
Fall Term 2023

Experiment A Source Code:

```
# Databricks notebook source
# All of the data sources to pick from (Salesforce, LMS, Funnel, etc.)
root_directory = "/mnt/datalake/silver-adhoc/"
dbutils.fs.ls(root_directory)
# COMMAND -----
#Helper Functions
def load raw data(root dir):
table names = []
for fileinfo in dbutils.fs.ls(root dir):
 filename = fileinfo[1][:-1]
  sdf_tablename = spark.read.format("delta").option("header","true").load(root_dir+filename) # Load
each table from this DIR
  sdf_tablename.createOrReplaceTempView(filename) # Create spark view for each table
  table names.append(filename)
 return table_names
# COMMAND -----
# load salesforce tables
root_directory = "/mnt/datalake/silver-adhoc/salesforce/"
load_raw_data(root_directory)
# COMMAND -----
# MAGIC %md
# MAGIC Load all dfs from prevous notebook before joining
# COMMAND -----
oppdf = spark.sql("""
SELECT_DISTINCT OwnerId, Owner_Full_Name__c, sum(Amount) AS Total_Revenue, Avg(Amount) AS
Avg_Opp_Amount, Avg(Age_c) AS Avg_Sell_Cycle, Avg(Number_of_Opportunity_Products_c) AS
Avg_Num_Products_Per_Opp
FROM opportunity
WHERE Order_Type__c != 'Renewal'
GROUP BY OwnerId, Owner_Full_Name__c
display(oppdf)
# COMMAND -----
#First, explore IsWon column values
```

```
closeddf = spark.sql("""
SELECT OwnerId, Owner_Full_Name__c, IsWon
FROM Opportunity
display(closeddf)
# COMMAND -----
#Aggregate IsWon values into 2 new columns (True vs. False)
from pyspark.sql import SparkSession
from pyspark.sql.functions import sum, when, col
# Creating new columns for counts of 'True' and 'False'
splitdf = closeddf.groupBy('OwnerId').agg(
  sum(when(col('IsWon') == True, 1).otherwise(0)).alias('Total_Opps_Won'),
  sum(when(col('IsWon') == False, 1).otherwise(0)).alias('Total_Opps_Lost')
)
display(splitdf)
# COMMAND -----
#Add calculated fields of total opps count by rep and closure rate
from pyspark.sql import SparkSession
from pyspark.sql.functions import col
avg_close_ratedf = splitdf.withColumn(
  'Avg_Close_Rate',
  (col('Total_Opps_Won') / (col('Total_Opps_Won') + col('Total_Opps_Lost')))
display(avg_close_ratedf)
# COMMAND -----
contractdf = spark.sql ("""
SELECT DISTINCT o.Ownerld, avg(Term) AS Avg_Term_Length
FROM opportunity o
JOIN servicecontract s
ON o.AccountId = s.AccountId
GROUP BY o.OwnerId
display(contractdf)
# COMMAND -----
quotadf = spark.sql("""
```

```
SELECT o.OwnerId, sum(f.QuotaAmount) AS Sum_Quota, sum(o.Amount) AS Sum_Amount
FROM opportunity o
LEFT JOIN forecastingquota f
ON o.OwnerId = f.QuotaOwnerId
GROUP BY o.OwnerId, o.Owner Full Name c
ORDER BY o.Owner Full Name c
display(quotadf)
# COMMAND -----
#add column with % to quota
percent_to_quotadf = quotadf.withColumn(
  'Percent_To_Quota',
  (col('Sum_Amount') / col('Sum_Quota' )))
display (percent_to_quotadf)
# COMMAND -----
avg_opp_discdf = spark.sql("""
SELECT o.OwnerId, avg(q.SBQQ __AverageCustomerDiscount__c) AS Avg_Cust_Disc
FROM opportunity o
JOIN sbqq__quote__c q
ON o.Ownerld = q.Ownerld
GROUP BY o.OwnerId, o.Owner_Full_Name__c
ORDER BY o.Owner Full Name c
""")
display(avg opp discdf)
# COMMAND -----
datedf = spark.sql("""
SELECT Ownerld, ActivityDate
FROM task
""")
display(datedf)
# COMMAND -----
tasksdf = spark.sql("""
SELECT DISTINCT Ownerld, count(Type), min(ActivityDate) AS Rep_Start_Date, max(ActivityDate) AS
Rep_Term_Date
FROM task t
WHERE Status = 'Completed'
GROUP BY OwnerId
display(tasksdf)
```

```
# COMMAND -----
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
# Convert timestamp to date
datedf = tasksdf.withColumn("Rep_Start_Date_Date", F.to_date("Rep_Start_Date"))
datedf = datedf.withColumn("Rep_Term_Date_Date", F.to_date("Rep_Term_Date"))
# Add a calculated field ("Days_Worked")
daysdf = datedf.withColumn("Days Worked", F.datediff("Rep Term Date Date",
"Rep Start Date Date"))
daysdf = daysdf.withColumn("Weeks Worked", F.col("Days Worked") / 7)
display(daysdf)
# COMMAND -----
#drop unnecessary columns
daysdf = daysdf.drop("count(Type)", "Rep_Start_Date", "Rep_Term_Date", "Rep_Start_Date_Date",
"Rep Term Date Date")
display(daysdf)
# COMMAND -----
#consolidate all task types
ttypedf = spark.sql("""
SELECT Ownerld, Type
FROM task
GROUP BY Ownerld, Type
display(ttypedf)
# COMMAND -----
#Total all Type categories into new columns
split taskdf = spark.sql("""
SELECT
  DISTINCT Ownerld,
  COUNT(Type) as Total Activities,
  SUM(CASE WHEN Type= 'Email' THEN 1 ELSE 0 END) as Total Emails,
  SUM(CASE WHEN Type= 'Customer Call' THEN 1 ELSE 0 END) as Total_Customer_Calls,
  SUM(CASE WHEN Type= 'Prospect Call' THEN 1 ELSE 0 END) as Total Prospect Calls,
  SUM(CASE WHEN Type= 'Conversation' THEN 1 ELSE 0 END) as Total_Conversations,
  SUM(CASE WHEN Type= 'Demo Request' THEN 1 ELSE 0 END) as Total Demo Requests,
  SUM(CASE WHEN Type= 'Set Demo' THEN 1 ELSE 0 END) as Total Set Demos,
  SUM(CASE WHEN Type= 'Performed Demo' THEN 1 ELSE 0 END) as Total Performed Demos,
  SUM(CASE WHEN Type= 'Online Meeting' THEN 1 ELSE 0 END) as Total Online Meetings
FROM
```

```
task
GROUP BY
  OwnerId
""").na.fill(0)
display(split taskdf)
# COMMAND -----
from pyspark.sql import functions as F
# Join DataFrames
final typedf = daysdf.join(split taskdf, on="OwnerId")
# List of columns to calculate
columns to calculate = [
  "Total Activities",
  "Total_Emails",
  "Total_Customer_Calls",
  "Total Prospect Calls",
  "Total Conversations",
  "Total_Set_Demos",
  "Total Performed Demos",
  "Total_Demo_Requests",
  "Total Online Meetings"
]
# Iterate over the columns and calculate the corresponding new columns
for col_name in columns_to_calculate:
  new_col_name = f"{col_name}_Per_Week"
  final_typedf = final_typedf.withColumn(new_col_name, F.col(col_name) / F.col("Weeks_Worked"))
display(final_typedf)
# COMMAND -----
#drop colunns not being used in final analysis
final type dropdf = final typedf.drop(
  "Days Worked",
  "Total_Activities",
  "Total_Emails",
  "Total_Customer_Calls",
  "Total Prospect Calls",
  "Total Conversations",
  "Total Demo Requests",
  "Total Set Demos",
  "Total Performed Demos",
```

```
"Total_Online_Meetings")
display(final_type_dropdf)
# COMMAND -----
# MAGIC %md
# MAGIC JOIN following tables: oppdf, avg_close_ratedf, contractdf, percent_to_quotadf,
avg_opp_discdf, final_type_dropdf ON OwnerId
# COMMAND -----
joindf = oppdf.join(avg_close_ratedf, on="OwnerId")
joindf = joindf.join(contractdf, on="OwnerId")
joindf = joindf.join(percent_to_quotadf, on="OwnerId")
joindf = joindf.join(avg_opp_discdf, on="OwnerId")
joindf = joindf.join(final type dropdf, on="OwnerId")
display(joindf)
# COMMAND -----
#filter out reps / sales ops people that may not have quote using Percent_To_Quota field, the dependent
variable.
filtered_df = joindf.filter(joindf["Percent_To_Quota"].isNotNull())
display(filtered df)
# COMMAND -----
descriptive stats = filtered df.summary()
display(descriptive_stats)
# COMMAND -----
#use this cell's visualizations to check outliers before and after removal
# filter out negative values in avg_sell_cycle and avg_cust_disc in df
remove neg out sellcycle = filtered df.where((col('Avg Sell Cycle') >= 0) & (col("Weeks Worked")>0))
remove_neg_opps = remove_neg_out_sellcycle.where(col("Avg_Opp_Amount") > 0)
remove opps = remove neg opps.where(col('Total Opps Won')>0)
remove_opps_disc = remove_opps.where((col("Avg_Cust_Disc") > 0 ) & (col("Avg_Cust_Disc") < 99))
remove_max_opp = remove_opps_disc.where(col("Avg_Opp_Amount") < 160000)
display(remove_max_opp)
# COMMAND -----
#display descriptive stats again for comparison
```

```
descriptive_stats2 = remove_max_opp.summary()
display(descriptive_stats2)
# COMMAND -----
descriptive_stats = filtered_df.summary()
display(descriptive_stats)
# COMMAND -----
# COMMAND -----
#After separating data, run correlations
remove_max_opp.stat.corr("Percent_To_Quota", "Avg_Opp_Amount")
# COMMAND -----
#After separating data, run correlations
remove_max_opp.stat.corr("Percent_To_Quota", "Avg_Cust_Disc")
# COMMAND -----
final_df = remove_max_opp
display(final_df)
# COMMAND -----
from pyspark.sql.functions import col, expr
from pyspark.sql.window import Window
column_name = 'Percent_To_Quota'
# Calculate the 80th percentile value
percentile_value = final_df.approxQuantile(column_name, [0.8], 0.001)[0]
# Create a new column with binary values
binary_df = final_df.withColumn('binary_column', expr(f'CASE WHEN {column_name} >=
{percentile_value} THEN 1 ELSE 0 END'))
# Display the resulting DataFrame
display(binary_df)
# COMMAND -----
#Run Logistic Regression with 80/20 split of training set.
```

```
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import LogisticRegression
from pyspark.ml import Pipeline
from pyspark.sql.functions import col
# Create a VectorAssembler to assemble the feature vector
assembler = VectorAssembler(inputCols=['Avg_Opp_Amount'], outputCol='features')
# Create a Logistic Regression model
Ir = LogisticRegression(featuresCol='features', labelCol='binary column', maxIter=10, regParam=0.01)
# Create a pipeline with the VectorAssembler and Logistic Regression stages
pipeline = Pipeline(stages=[assembler, lr])
# Split the data into training and testing sets
(trainingData, testData) = binary_df.randomSplit([0.8, 0.2], seed=42)
# Fit the model on the training data
model = pipeline.fit(trainingData)
# Make predictions on the test data
predictions = model.transform(testData)
# Display the predictions
predictions.select('binary_column', 'prediction', 'probability').show()
# COMMAND -----
#run ROC validation to determine the logisic regression model's performance based on 80/20 training
set split.
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.ml.classification import LogisticRegression
# Create a BinaryClassificationEvaluator
evaluator = BinaryClassificationEvaluator(labelCol='binary column', rawPredictionCol='prediction',
metricName='areaUnderROC')
# Calculate the AUC-ROC
auc roc = evaluator.evaluate(predictions)
print(f"AUC-ROC: {auc roc}")
# COMMAND -----
#Try K-Fold with logistic regression model to see if logistic regression model performance improves
```

from pyspark.ml.feature import VectorAssembler from pyspark.ml.classification import LogisticRegression

from pyspark.ml import Pipeline

```
from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.sql.functions import col
# binary df is the dataframe to run
independent variable = 'Avg Opp Amount'
label_column = 'binary_column'
# Create a VectorAssembler to assemble the feature vector
assembler = VectorAssembler(inputCols=[independent variable], outputCol='features')
# Create a Logistic Regression model
Ir = LogisticRegression(featuresCol='features', labelCol=label_column)
# Create a pipeline with the VectorAssembler and Logistic Regression stages
pipeline = Pipeline(stages=[assembler, Ir])
# Define the parameter grid for hyperparameter tuning
paramGrid = ParamGridBuilder() \
  .addGrid(lr.regParam, [0.1, 0.01, 0.001]) \
  .addGrid(lr.elasticNetParam, [0.0, 0.5, 1.0]) \
  .build()
# Create a k-fold cross-validator; ;set number of folds to 5
crossval = CrossValidator(estimator = pipeline,
estimatorParamMaps = paramGrid,
evaluator = BinaryClassificationEvaluator(labelCol=label column), numFolds =5)
# Fit the model using cross-validation
cvModel = crossval.fit(binary df) # Use the entire dataset
# The model has been trained and evaluated on each fold
# Access the best model and view its performance
bestModel = cvModel.bestModel
predictions = bestModel.transform(binary df)
areaUnderROC = evaluator.evaluate(predictions)
# Display the area under the ROC curve
print(f"Area Under ROC: {areaUnderROC}")
# COMMAND -----
#run multiple regression model using K-fold validation to determine if this is a better model.
from pyspark.ml.feature import VectorAssembler
```

from pyspark.ml.regression import LinearRegression

from pyspark.ml.tuning import ParamGridBuilder, CrossValidator

from pyspark.ml import Pipeline

```
from pyspark.ml.evaluation import RegressionEvaluator
from pyspark.sql.functions import col
# final df is the DataFrame
target column = 'Percent To Quota'
feature columns = ['Avg Opp Amount', 'Avg Sell Cycle', 'Avg Cust Disc']
# Create a VectorAssembler to assemble the feature vector
assembler = VectorAssembler(inputCols=feature_columns, outputCol='features')
# Create a Linear Regression model
Ir = LinearRegression(featuresCol='features', labelCol=target_column)
# Create a pipeline with the VectorAssembler and Linear Regression stages
pipeline = Pipeline(stages=[assembler, lr])
# Define the parameter grid for hyperparameter tuning
paramGrid = ParamGridBuilder() \
  .addGrid(lr.regParam, [0.1, 0.01, 0.001]) \
  .addGrid(Ir.elasticNetParam, [0.0, 0.5, 1.0]) \
  .build()
# Create a k-fold cross-validator; set number of folds to 5
crossval = CrossValidator(estimator=pipeline,
              estimatorParamMaps=paramGrid,
              evaluator=RegressionEvaluator(labelCol=target column), # Instantiate with labelCol
              numFolds=5)
# Split the data into training and testing sets
(trainingData, testData) = final_df.randomSplit([0.8, 0.2], seed=42)
# Fit the model using cross-validation
cvModel = crossval.fit(trainingData)
# Make predictions on the test data
predictions = cvModel.transform(testData)
# Evaluate the model on the test data
evaluator = RegressionEvaluator(labelCol=target column) # Instantiate with labelCol
rmse = evaluator.evaluate(predictions, {evaluator.metricName: "rmse"})
r2 = evaluator.evaluate(predictions, {evaluator.metricName: "r2"})
# Display evaluation metrics
print(f"Root Mean Squared Error (RMSE): {rmse}")
print(f"R-squared (R2): {r2}")
# COMMAND -----
```

```
# Display evaluation metrics for the MLR model
print(f"Root Mean Squared Error (RMSE): {rmse}")
print(f"R-squared (R2): {r2}")
# COMMAND -----
#Explore other model options - try Random Forest
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import RandomForestRegressor
from pyspark.ml import Pipeline
from pyspark.ml.evaluation import RegressionEvaluator
target column = 'Percent To Quota'
feature_columns = ['Avg_Opp_Amount', 'Avg_Sell_Cycle', 'Avg_Cust_Disc']
# Create a VectorAssembler to assemble the feature vector
assembler = VectorAssembler(inputCols=feature_columns, outputCol='features')
# Create a Random Forest Regressor model
rf = RandomForestRegressor(featuresCol='features', labelCol=target_column)
# Create a pipeline with the VectorAssembler and Random Forest Regressor stages
pipeline = Pipeline(stages=[assembler, rf])
# Split the data into training and testing sets
# Adjust the split ratio as needed
(trainingData, testData) = final_df.randomSplit([0.8, 0.2], seed=42)
# Fit the model on the training data
model = pipeline.fit(trainingData)
# Make predictions on the test data
predictions = model.transform(testData)
# Evaluate the model using a regression evaluator
evaluator = RegressionEvaluator(labelCol=target_column, predictionCol='prediction',
metricName='rmse')
rmse = evaluator.evaluate(predictions)
# Display the Root Mean Squared Error (RMSE)
print(f"Root Mean Squared Error (RMSE): {rmse}")
# View the feature importances
feature importances = model.stages[-1].featureImportances
print("Feature Importances:")
for i, feature in enumerate(feature columns):
```

print(f"{feature}: {feature_importances[i]}")

Experiment B Source Code:

```
# Databricks notebook source
# MAGIC %md
# MAGIC Load all Salesforce tables, helper functions
# COMMAND -----
# All of the data sources to pick from (Salesforce, LMS, Funnel, etc.)
root directory = "/mnt/datalake/silver-adhoc/"
dbutils.fs.ls(root directory)
#Helper Functions
def load raw data(root dir):
table_names = []
for fileinfo in dbutils.fs.ls(root_dir):
 filename = fileinfo[1][:-1]
  sdf_tablename = spark.read.format("delta").option("header","true").load(root_dir+filename) # Load
each table from this DIR
  sdf tablename.createOrReplaceTempView(filename) # Create spark view for each table
  table names.append(filename)
return table names
# load salesforce tables
root directory = "/mnt/datalake/silver-adhoc/salesforce/"
load_raw_data(root_directory)
# COMMAND -----
# MAGIC %md
# MAGIC Examine tables, aggregate, filter and join
# COMMAND -----
# MAGIC %sql
# MAGIC
# MAGIC SELECT *
# MAGIC FROM opportunity
# MAGIC LIMIT 100;
# COMMAND -----
#Obtain total number of accounts by OwnerId
accountdf = spark.sql("""
SELECT DISTINCT Ownerld, count(Name) AS Total_Num_Accounts
```

```
FROM Account
GROUP BY OwnerId
display(accountdf)
# COMMAND -----
#Obtain calculated fields needed from opportunity table
oppdf = spark.sql("""
SELECT
 DISTINCT OwnerId, Owner_Full_Name__c,
 Sales_Division__c,
 SUM(Amount) AS Total_Revenue,
 AVG(Amount) AS Avg_Opp_Amount,
 AVG(Age__c) AS Avg_Sell_Cycle,
 AVG(Number_of_Opportunity_Products__c) AS Avg_Num_Products_Per_Opp
FROM
 opportunity
WHERE
  Sales Division c != "Digital Recruiting"
GROUP BY
  Ownerld,
 Owner_Full_Name__c,
 Sales_Division__c
display(oppdf)
# COMMAND -----
#join account table with opportunity table
acct_opp_df = accountdf.join(oppdf, on="OwnerId", how="left")
display(acct_opp_df)
# COMMAND -----
#First, explore IsWon column values on IsWon
closeddf = spark.sql("""
SELECT OwnerId, Owner_Full_Name__c, IsWon
FROM Opportunity
""")
display(closeddf)
# COMMAND -----
#Aggregate IsWon values into 2 new columns (True vs. False)
```

```
from pyspark.sql.functions import sum, when, col
# Creating new columns for counts of 'True' and 'False'
splitdf = closeddf.groupBy('OwnerId').agg(
  sum(when(col('IsWon') == True, 1).otherwise(0)).alias('Total Opps Won'),
  sum(when(col('IsWon') == False, 1).otherwise(0)).alias('Total Opps Lost')
)
#Add calculated fields of total opps count by rep and closure rate
avg_close_ratedf = splitdf.withColumn(
  'Avg Close Rate',
  (col('Total_Opps_Won') / (col('Total_Opps_Won') + col('Total_Opps_Lost')))
display(avg close ratedf)
# COMMAND -----
#Obtain average contract term length
contractdf = spark.sql ("""
SELECT DISTINCT o.Ownerld, avg(Term) AS Avg_Term_Length
FROM opportunity o
JOIN servicecontract s
ON o.AccountId = s.AccountId
GROUP BY o.OwnerId
""")
display(contractdf)
# COMMAND -----
#Calculate sum of quota and sum of all opportunities, by OwnerId
quotadf = spark.sql("""
SELECT o.OwnerId, o.Owner Full Name c, sum(f.QuotaAmount) AS Sum Quota, sum(o.Amount) AS
Sum Amount
FROM opportunity o
LEFT JOIN forecastingquota f
ON o.OwnerId = f.QuotaOwnerId
GROUP BY o.OwnerId, o.Owner Full Name c
ORDER BY o.Owner_Full_Name__c
#add column with % to quota
percent to quotadf = quotadf.withColumn(
  'Percent To Quota',
  (col('Sum Amount') / col('Sum Quota')))
display (percent to quotadf)
```

```
# COMMAND -----
# COMMAND -----
#Calculate average discount by OwnerId
avg opp discdf = spark.sql("""
SELECT o.OwnerId, avg(q.SBQQ __AverageCustomerDiscount__c) AS Avg_Cust_Disc
FROM opportunity o
JOIN sbqq__quote__c q
ON o.OwnerId = q.OwnerId
GROUP BY o.OwnerId, o.Owner_Full_Name__c
ORDER BY o.Owner_Full_Name__c
display(avg_opp_discdf)
# COMMAND -----
#Obtain "weeks worked" for each rep by first taking min/max of when activity dates started and ended.
datedf = spark.sql("""
SELECT Ownerld, ActivityDate
FROM task
""")
tasksdf = spark.sql("""
SELECT DISTINCT Ownerld, count(Type), min(ActivityDate) AS Rep_Start_Date, max(ActivityDate) AS
Rep Term Date
FROM task t
WHERE Status = 'Completed'
GROUP BY OwnerId
#Next, convert timestamp to date so that a calculated field can be created to subtract min from max
activity date.
from pyspark.sql import functions as F
#Divid days_worked by 7 to get weeks worked, so that all rep activities are normalized by week,
regardless of tenure.
datedf = tasksdf.withColumn("Rep_Start_Date_Date", F.to_date("Rep_Start_Date"))
datedf = datedf.withColumn("Rep Term Date Date", F.to date("Rep Term Date"))
# Add a calculated field ("Days_Worked")
```

```
daysdf = datedf.withColumn("Days_Worked", F.datediff("Rep_Term_Date_Date",
"Rep_Start_Date_Date"))
daysdf = daysdf.withColumn("Weeks_Worked", F.col("Days_Worked") / 7)
display(daysdf)
# COMMAND -----
#drop unnecessary columns
daysdf = daysdf.drop("count(Type)", "Rep_Start_Date", "Rep_Term_Date", "Rep_Start_Date_Date",
"Rep Term Date Date")
#consolidate all task types
ttypedf = spark.sql("""
SELECT Ownerld, Type
FROM task
GROUP BY Ownerld, Type
""")
#Total all Type categories into new columns
split_taskdf = spark.sql("""
SELECT
  DISTINCT Ownerld,
  COUNT(Type) as Total Activities,
  SUM(CASE WHEN Type= 'Email' THEN 1 ELSE 0 END) as Total Emails,
  SUM(CASE WHEN Type= 'Customer Call' THEN 1 ELSE 0 END) as Total Customer Calls,
  SUM(CASE WHEN Type= 'Prospect Call' THEN 1 ELSE 0 END) as Total_Prospect_Calls,
  SUM(CASE WHEN Type= 'Conversation' THEN 1 ELSE 0 END) as Total_Conversations,
  SUM(CASE WHEN Type= 'Demo Request' THEN 1 ELSE 0 END) as Total Demo Requests,
  SUM(CASE WHEN Type= 'Set Demo' THEN 1 ELSE 0 END) as Total Set Demos,
  SUM(CASE WHEN Type= 'Performed Demo' THEN 1 ELSE 0 END) as Total Performed Demos,
  SUM(CASE WHEN Type= 'Online Meeting' THEN 1 ELSE 0 END) as Total Online Meetings
FROM
  task
GROUP BY
  Ownerld
""").na.fill(0)
display(split_taskdf)
# COMMAND -----
```

```
#join tasks with days worked
from pyspark.sql import functions as F
# Join DataFrames
final typedf = daysdf.join(split taskdf, on="OwnerId")
# List of columns to calculate
columns_to_calculate = [
  "Total_Activities",
  "Total_Emails",
  "Total Customer Calls",
  "Total Prospect Calls",
  "Total Conversations",
  "Total_Set_Demos",
  "Total_Performed_Demos",
  "Total_Demo_Requests",
  "Total Online Meetings"
# Iterate over the columns and calculate the corresponding new columns
for col name in columns to calculate:
  new col name = f"{col name} Per Week"
  final typedf = final typedf.withColumn(new col name, F.col(col name) / F.col("Weeks Worked"))
#drop colunns not being used in final analysis
final type dropdf = final typedf.drop(
  "Days_Worked",
  "Total Activities",
  "Total Emails",
  "Total Customer Calls",
  "Total_Prospect_Calls",
  "Total_Conversations",
  "Total Demo Requests",
  "Total Set Demos",
  "Total Performed Demos",
  "Total Online Meetings")
#JOIN following tables: oppdf, avg close ratedf, contractdf, percent to quotadf, avg opp discdf,
final type dropdf ON Ownerld
joindf = acct opp df.join(avg close ratedf, on="OwnerId")
joindf = joindf.join(contractdf, on="OwnerId")
joindf = joindf.join(percent_to_quotadf, on="OwnerId")
joindf = joindf.join(avg_opp_discdf, on="OwnerId")
joindf = joindf.join(final type dropdf, on="OwnerId")
display(joindf)
```

```
# COMMAND -----
#filter out reps / sales ops people that may not have quote using Percent_To_Quota field, the dependent
filtered df = joindf.filter(joindf["Percent To Quota"].isNotNull())
#check stats: descriptive_stats = filtered_df.summary()
#display(descriptive_stats)
#use this cell's visualizations to check outliers before and after removal
# filter out negative values in avg_sell_cycle and avg_cust_disc in df
remove neg out sellcycle = filtered df.where((col('Avg Sell Cycle') >= 0) & (col("Weeks Worked")>0))
remove_neg_opps = remove_neg_out_sellcycle.where(col("Avg_Opp_Amount") > 0)
remove opps = remove neg opps.where(col('Total Opps Won')>0)
outliers_removed_df = remove_opps.where((col("Avg_Cust_Disc") > 0 ) & (col("Avg_Cust_Disc") <99))
outliers_removed_df= outliers_removed_df.where((col("Sales_Division__c") != "Field") &
(col("Sales Division c") != "Field Sales") & (col("Sales Division C") != "Migrations"))
outliers_removed_df = outliers_removed_df.where((col("Sales_Division__c") != "MM"))
display(outliers_removed_df)
# COMMAND -----
#Run Visualizations
display(outliers_removed_df)
# COMMAND -----
# MAGIC %md
# MAGIC SMB Data
# COMMAND -----
#Run visualizations on Avg_Opp_Amount by Sales_Division__c against target: Percent_To_Quota: SMB
smb df = outliers removed df.filter(col("Sales Division c") == "SMB")
display(smb df)
# COMMAND -----
#Review descriptive statistics for outliers and distribution of data
smb stats = smb df.summary()
display(smb stats)
# COMMAND -----
```

```
# Run correlations from visualizations that had the best potential: SMB
from pyspark.sql.functions import corr
smb_opp_corr = smb_df.select(corr("Percent_To_Quota", "Avg_Opp_Amount")).collect()[0][0]
smb disc corr = smb df.select(corr("Percent To Quota", "Avg Cust Disc")).collect()[0][0]
smb activity corr = smb df.select(corr("Percent To Quota",
"Total_Activities_Per_Week")).collect()[0][0]
# Display the correlation
print(f"Correlation between Percent To Quota and Average Opp Amount: {smb opp corr}")
print(f"Correlation between Percent To quota and Average Cust Discount: {smb_disc_corr}")
print(f"Correlation between Percent To quota and Total Avg Weekly Activities: {smb activity corr}")
# COMMAND -----
# MAGIC %md
# MAGIC SMB Linear Regression
# COMMAND -----
#Run Linear Regression Model on SMB with Avg Cust Discount on Percent To Quota
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression
from pyspark.ml import Pipeline
from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
from pyspark.ml.evaluation import RegressionEvaluator
# Assemble features, create a pipeline, and set up cross-validation
target column = 'Percent To Quota'
feature column_smb = ['Avg_Cust_Disc']
assembler = VectorAssembler(inputCols=feature_column_smb, outputCol='smb_feature')
Ir = LinearRegression(featuresCol='smb_feature', labelCol=target_column)
pipeline = Pipeline(stages=[assembler, Ir])
paramGrid = ParamGridBuilder() \
  .addGrid(lr.regParam, [0.1, 0.01, 0.001]) \
  .addGrid(Ir.elasticNetParam, [0.0, 0.5, 1.0]) \
  .build()
crossval = CrossValidator(estimator=pipeline,
             estimatorParamMaps=paramGrid,
              evaluator=RegressionEvaluator(labelCol=target column),
             numFolds=5)
(trainingData, testData) = smb df.randomSplit([0.8, 0.2], seed=42)
```

```
# Fit the model using cross-validation
cvModel = crossval.fit(trainingData)
# Access coefficient estimates
coefficients = cvModel.bestModel.stages[-1].coefficients
# Access the intercept
intercept = cvModel.bestModel.stages[-1].intercept
# Print coefficients and intercept
print(f"Intercept: {intercept}")
for i, coef in enumerate(coefficients):
  print(f"Coefficient {i}: {coef}")
# Make predictions on the test data
predictions = cvModel.transform(testData)
# Evaluate the model on the test data
evaluator = RegressionEvaluator(labelCol=target column)
rmse = evaluator.evaluate(predictions, {evaluator.metricName: "rmse"})
r2 = evaluator.evaluate(predictions, {evaluator.metricName: "r2"})
# Display evaluation metrics
print(f"Root Mean Squared Error (RMSE): {rmse}")
print(f"R-squared (R2): {r2}")
# Access the t-values and p-values from the summary
t values = cvModel.bestModel.stages[-1].summary.tValues
p_values = cvModel.bestModel.stages[-1].summary.pValues
# Print t-values and p-values
for i in range(len(t_values)):
  print(f"Coefficient {i}: T-statistic = {t_values[i]}, P-value = {p_values[i]}")
# COMMAND -----
#Create user interface that forecasts percent to quota
coefficient = 0.0032698978873837653
intercept = 0.2121573067286658
def predict_y(x):
  # Predict Y using the linear regression equation
  y = intercept + coefficient * x
  return y
# Example usage
feature value = 12000
```

```
predicted_y = predict_y(feature_value)
print(f"For feature value {feature_value}, predicted Y is: {predicted_y}")
# COMMAND -----
# MAGIC %md
# MAGIC SMB Multiple Regression
# COMMAND -----
#Run MLR for SMB with avg cust disc and avg opp amount on percent to quota to see if this is better
model
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression
from pyspark.ml import Pipeline
from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
from pyspark.ml.evaluation import RegressionEvaluator
import scipy.stats as stats
# smb_df is DataFrame
target_column = 'Percent_To_Quota'
features_columns_smb = ['Avg_Opp_Amount', 'Avg_Cust_Disc']
# Create a VectorAssembler to assemble the feature vector
assembler = VectorAssembler(inputCols=features columns smb, outputCol='smb features')
# Create a Linear Regression model
Ir = LinearRegression(featuresCol='smb_features', labelCol=target_column)
# Create a pipeline with the VectorAssembler and Linear Regression stages
pipeline = Pipeline(stages=[assembler, Ir])
# Define the parameter grid for hyperparameter tuning
paramGrid = ParamGridBuilder() \
  .addGrid(lr.regParam, [0.1, 0.01, 0.001]) \
  .addGrid(Ir.elasticNetParam, [0.0, 0.5, 1.0]) \
  .build()
# Create a k-fold cross-validator; set number of folds to 5
crossval = CrossValidator(estimator=pipeline,
              estimatorParamMaps=paramGrid,
              evaluator=RegressionEvaluator(labelCol=target column), # Instantiate with labelCol
              numFolds=5)
# Split data into training and testing sets
```

```
(trainingData, testData) = smb_df.randomSplit([0.8, 0.2], seed=42)
# Fit model using cross-validation
cvModel = crossval.fit(trainingData)
# Access coefficient estimates and standard errors
coefficients = cvModel.bestModel.stages[-1].coefficients
t_values = cvModel.bestModel.stages[-1].summary.tValues
# Print coefficients
print("Intercept:", cvModel.bestModel.stages[-1].intercept)
print("Coefficients:", cvModel.bestModel.stages[-1].coefficients)
# Calculate p-values
degrees of freedom = cvModel.bestModel.stages[-1].summary.degreesOfFreedom
p_values = [2 * (1 - stats.t.cdf(abs(t), df=degrees_of_freedom)) for t in t_values]
# Print coefficients, t-values, and p-values
for i, (coef, t_val, p_val) in enumerate(zip(coefficients, t_values, p_values)):
  print(f"Coefficient {i}: Estimate = {coef}, T-value = {t_val}, P-value = {p_val}")
# Make predictions on test data
predictions = cvModel.transform(testData)
# Evaluate model on test data
evaluator = RegressionEvaluator(labelCol=target column) # Instantiate with labelCol
rmse = evaluator.evaluate(predictions, {evaluator.metricName: "rmse"})
r2 = evaluator.evaluate(predictions, {evaluator.metricName: "r2"})
# Display evaluation metrics
print(f"Root Mean Squared Error (RMSE): {rmse}")
print(f"R-squared (R2): {r2}")
# COMMAND -----
import matplotlib.pyplot as plt
import numpy as np
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression
from pyspark.ml import Pipeline
# smb df is DataFrame
# Extract coefficients and intercept
intercept = 0.16387927163782137
coefficients = [4.152605107643032e-06, 0.0032705427993116173]
```

```
# Assemble features
label_column = ['Percent_To_Quota']
feature_columns = ['Avg_Opp_Amount', 'Avg_Cust_Disc']
assembler = VectorAssembler(inputCols=feature columns, outputCol="features")
smb2 df = assembler.transform(smb df)
# Create a Linear Regression model
Ir = LinearRegression(featuresCol="features", labelCol="Percent_To_Quota", predictionCol="prediction")
model = Ir.fit(smb2 df)
# Generate predictions
predictions = model.transform(smb2 df)
# Extract feature values and predictions
feature_values = np.array([row.features.toArray() for row in predictions.select("features").collect()])
predictions values = np.array(predictions.select("prediction").rdd.map(lambda row: row[0]).collect())
# Create a scatter plot
plt.figure(figsize=(10, 6))
# Scatter plot for feature 1
plt.subplot(1, 2, 1)
plt.scatter(feature_values[:, 0], smb2_df.select("Percent_To_Quota").rdd.map(lambda row:
row[0]).collect(), label="Actual")
plt.scatter(feature_values[:, 0], predictions_values, label="Predicted")
plt.xlabel("Avg_Opp_Amount")
plt.ylabel("Percent To Quota")
plt.title("Scatter Plot for Avg_Opp_Amount")
# Add best fit line for feature 1
x_range_1 = np.linspace(np.min(feature_values[:, 0]), np.max(feature_values[:, 0]), 100)
y_range_1 = coefficients[0] * x_range_1 + intercept
plt.plot(x_range_1, y_range_1, color='red', label='Best Fit Line')
plt.legend()
# Scatter plot for feature 2
plt.subplot(1, 2, 2)
plt.scatter(feature values[:, 1], smb2 df.select("Percent To Quota").rdd.map(lambda row:
row[0]).collect(), label="Actual")
plt.scatter(feature_values[:, 1], predictions_values, label="Predicted")
plt.xlabel("Avg_Cust_Disc")
plt.ylabel("Percent_To_Quota")
plt.title("Scatter Plot for Avg Cust Disc")
# Add best fit line for feature 2
x_range_2 = np.linspace(np.min(feature_values[:, 1]), np.max(feature_values[:, 1]), 100)
y range 2 = coefficients[1] * x range 2 + intercept
```

```
plt.plot(x_range_2, y_range_2, color='red', label='Best Fit Line')
plt.legend()
plt.tight_layout()
plt.show()
# COMMAND -----
# MAGIC %md
# MAGIC Mid-Market Data
# COMMAND -----
#Run visualizations on Avg Opp Amount by Sales Division c against target: Percent To Quota:
midmarket_df = outliers_removed_df.filter(col("Sales_Division__c") == "Mid-Market")
#filter outlier
midmarket df = midmarket df.where((col("OWner Full Name c") != "LJ Yarborough"))
display(midmarket df)
# COMMAND -----
#Explore descriptive statistics for outliers / data variability, naans, anomalies
mm stats = midmarket df.summary()
display(mm_stats)
# COMMAND -----
# Run correlations from visualizations that had the best potential: Mid-Market
from pyspark.sql.functions import corr
mm opp corr = midmarket df.select(corr("Percent To Quota", "Avg Opp Amount")).collect()[0][0]
mm_disc_corr = midmarket_df.select(corr("Percent_To_Quota", "Avg_Cust_Disc")).collect()[0][0]
mm convo corr = midmarket df.select(corr("Percent To Quota",
"Total Conversations Per Week")).collect()[0][0]
mm accounts corr = midmarket df.select(corr("Percent To Quota",
"Total Num Accounts")).collect()[0][0]
mm online corr = midmarket df.select(corr("Percent To Quota",
"Total_Online_Meetings_Per_Week")).collect()[0][0]
# Display the correlation
print(f"Correlation between Percent To Quota and Average Opp Amount: {mm_opp_corr}")
print(f"Correlation between Percent To quota and Average Cust Discount: {mm_disc_corr}")
print(f"Correlation between Percent To quota and Total Avg Weekly Conversations: {mm convo corr}")
print(f"Correlation between Percent To quota and Total Number of Accounts: {mm_accounts_corr}")
print(f"Correlation between Percent To quota and Total Avg Online Meetings Per Week:
{mm online_corr}")
```

```
# COMMAND -----
# MAGIC %md
# MAGIC Mid-Market Linear Regression
# COMMAND -----
#Run Linear Regression Model on MM data using feature Avg Cust Disc on Percent to Quota
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression
from pyspark.ml import Pipeline
from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
from pyspark.ml.evaluation import RegressionEvaluator
# Assemble features, create a pipeline, and set up cross-validation
target_column = 'Percent_To_Quota'
feature_column_mm = ['Avg_Cust_Disc']
assembler = VectorAssembler(inputCols=feature_column_mm, outputCol='mm_feature')
Ir = LinearRegression(featuresCol='mm_feature', labelCol=target_column)
pipeline = Pipeline(stages=[assembler, Ir])
paramGrid = ParamGridBuilder() \
  .addGrid(lr.regParam, [0.1, 0.01, 0.001]) \
  .addGrid(Ir.elasticNetParam, [0.0, 0.5, 1.0]) \
  .build()
crossval = CrossValidator(estimator=pipeline,
              estimatorParamMaps=paramGrid,
              evaluator=RegressionEvaluator(labelCol=target_column),
              numFolds=5)
(trainingData, testData) = midmarket df.randomSplit([0.8, 0.2], seed=42)
# Fit the model using cross-validation
cvModel = crossval.fit(trainingData)
# Access coefficient estimates
coefficients = cvModel.bestModel.stages[-1].coefficients
# Access the intercept
intercept = cvModel.bestModel.stages[-1].intercept
# Print coefficients and intercept
print(f"Intercept: {intercept}")
for i, coef in enumerate(coefficients):
```

```
print(f"Coefficient {i}: {coef}")
# Make predictions on the test data
predictions = cvModel.transform(testData)
# Evaluate the model on the test data
evaluator = RegressionEvaluator(labelCol=target_column)
rmse = evaluator.evaluate(predictions, {evaluator.metricName: "rmse"})
r2 = evaluator.evaluate(predictions, {evaluator.metricName: "r2"})
# Display evaluation metrics
print(f"Root Mean Squared Error (RMSE): {rmse}")
print(f"R-squared (R2): {r2}")
# Access the t-values and p-values from the summary
t_values = cvModel.bestModel.stages[-1].summary.tValues
p_values = cvModel.bestModel.stages[-1].summary.pValues
# Print t-values and p-values
for i in range(len(t_values)):
  print(f"Coefficient {i}: T-statistic = {t_values[i]}, P-value = {p_values[i]}")
# COMMAND -----
# MAGIC %md
# MAGIC Mid-Market Multiple Regression
# COMMAND -----
midmarket_df = midmarket_df.filter("Total_Online_Meetings_Per_Week IS NOT NULL AND
Avg_Sell_Cycle IS NOT NULL").cache()
# COMMAND -----
#Run MLR for MM with avg cust disc and total online meetings per week on percent to quota to see if
this is better model
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression
from pyspark.ml import Pipeline
from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
from pyspark.ml.evaluation import RegressionEvaluator
import scipy.stats as stats
import numpy as np
```

```
from pyspark.sql.functions import col
# midmarket_df is dataframe
target column = 'Percent To Quota'
features_columns_mm = ['Avg_Cust_Disc', 'Total_Online_Meetings_Per_Week']
# Create a VectorAssembler to assemble the feature vector
assembler = VectorAssembler(inputCols=features_columns_mm, outputCol='mm_features')
# Create a Linear Regression model
Ir = LinearRegression(featuresCol='mm_features', labelCol=target_column)
# Create a pipeline with the VectorAssembler and Linear Regression stages
pipeline = Pipeline(stages=[assembler, lr])
# Define the parameter grid for hyperparameter tuning
paramGrid = ParamGridBuilder() \
  .addGrid(lr.regParam, [0.1, 0.01, 0.001]) \
  .addGrid(Ir.elasticNetParam, [0.0, 0.5, 1.0]) \
  .build()
# Create a k-fold cross-validator; set number of folds to 5
crossval = CrossValidator(estimator=pipeline,
              estimatorParamMaps=paramGrid,
              evaluator=RegressionEvaluator(labelCol=target column),
              numFolds=5)
# Split data into training and testing sets
(trainingData, testData) = midmarket_df.randomSplit([0.8, 0.2], seed=42)
# Fit model using cross-validation
cvModel = crossval.fit(trainingData)
# Access coefficient estimates
coefficients = cvModel.bestModel.stages[-1].coefficients
# Extract feature values from the test data
feature values = np.array([testData.select(col(col name)).collect() for col name in
features_columns_mm]).squeeze().T
# Calculate the t-values for each coefficient, including intercept
t_values = [coef / (float(std_dev_resid) / np.sqrt(np.sum([float(f) ** 2 for f in feature_values[:, i]]))) for i,
coef in enumerate(coefficients)]
# Calculate p-values from t-values
p values = [2 * (1 - stats.t.cdf(abs(t), df=n - len(features columns mm))) for t in t values]
```

```
# Access the intercept
intercept = cvModel.bestModel.stages[-1].intercept
# Print intercept
print(f"Intercept: {intercept}")
# Print coefficients, t-values, p-values, and standard errors
for i, (coef, t_val, p_val, se) in enumerate(zip([intercept] + list(coefficients), t_values, p_values,
standard errors)):
  print(f"Coefficient {i}: Estimate = {coef}, T-value = {t val}, P-value = {p val}, Standard Error = {se}")
# Make predictions on test data
predictions = cvModel.transform(testData)
# Evaluate model on test data
evaluator = RegressionEvaluator(labelCol=target_column) # Instantiate with labelCol
rmse = evaluator.evaluate(predictions, {evaluator.metricName: "rmse"})
r2 = evaluator.evaluate(predictions, {evaluator.metricName: "r2"})
# Display evaluation metrics
print(f"Root Mean Squared Error (RMSE): {rmse}")
print(f"R-squared (R2): {r2}")
# COMMAND -----
# MAGIC %md
# MAGIC Additional Information on Account Management and Enterprise
# COMMAND -----
#THIS IS NOT PART OF THE PROJECT BUT IS INTENDED TO PROVIDE MORE INFORMATION TO SALES MGT
#Run visualizations on Avg_Opp_Amount by Sales_Division__c against target: Percent_To_Quota:
Account Management
am_df = outliers_removed_df.filter(col("Sales_Division__c") == "Account Management")
display(am df)
# COMMAND -----
#NOT PART OF PROJECT - Run visualizations on Avg_Opp_Amount by Sales_Division__c against target:
Percent_To_Quota: Enterprise
enterpriseall_df = outliers_removed_df.filter(
  (col("Sales Division c") == "Enterprise HHS") |
  (col("Sales_Division__c") == "Enterprise Acute") |
  (col("Sales Division c") == "Enterprise Post-Acute")
display(enterpriseall df)
```

```
# COMMAND -----
from pyspark.sql.functions import col, avg
# Calculate the average of Avg_Opp_Amount for each Sales_Division__c
avg_opp_by_division =
outliers_removed_df.groupBy("Sales_Division__c").agg(avg("Avg_Opp_Amount").alias("Avg_Avg_Opp_A
sorted = avg_opp_by_division.orderBy(col("Avg_Avg_Opp_Amount").desc())
display(sorted)
# COMMAND -----
#display descriptive stats again for comparison
descriptive_stats2 = remove_max_opp.summary()
display(descriptive stats2)
descriptive_stats = filtered_df.summary()
#display(descriptive_stats)
#After separating data, run correlations
remove_max_opp.stat.corr("Percent_To_Quota", "Avg_Opp_Amount")
#After separating data, run correlations
remove max opp.stat.corr("Percent To Quota", "Avg Cust Disc")
final_df = remove_max_opp
display(final df)
# COMMAND -----
#Final deliverable is to identify benchmarks for sales management which includes averages and 75th
percentiles for highes performers. Use descriptive statistics on dataframe to capture averages, min and
max as thresholds for each feautre, by sales division.
smb_stats = smb_df.summary()
display(smb_stats)
mm_stats = midmarket_df.summary()
display(mm_stats)
```

DTSC691: APPLIED DATA SCIENCE CUSTOM PROJECT RESULTS

PROJECT: SALES STANDARDS OF EXCELLENCE

Diana Bowden, Fall Term 2023

BACKGROUND INFORMATION: COMPANY PROBLEM PROJECT GOAL

SOLUTION:

SOFTWARE
DATA EXPLORATION & CLEANING
EXPERIMENTS
RESULTS

PROJECT CODE:

WALKTHROUGH ON DATABRICKS

CHALLENGES:

INTEGRATION STRATEGY
COMPLEXITY
WHAT I HAVE LEARNED
FUTURE RECOMMENDATIONS

BACKGROUND INFORMATION

Project Goal:

Model the most successful sales representatives for use as best-selling practices to increase annual revenue results.

What are the top predictors for success for sales representatives at Relias?

SOLUTION

Leverage the sales tracking data from CRM (Salesforce)

Explore the attributes exhibited by the top sales representatives

Model the data using regression analysis to predict quota attainment from these attributes

Provide additional activity metrics as benchmarks for sales success

SOLUTION

Platform & Software

- Apache Spark core of Azure Databricks platform
- Spark libraries/packages
- Python and SQL compatible programs run on Spark
- Matplotlib
- Databricks integrated visualization tool
- Excel/Word/PowerPoint
- WebEx (recording)

SOLUTION

Data Exploration & Cleaning

- 43 Salesforce (SFDC) tables
- SQL queries on predictor candidates
- Predictor, Dependent variables identified
- 9 Tables in first join
- 6 Tables in second join
- · Descriptive statistics analyzed
- Data visualizations
- Outliers, null values removed
- Data formats (ie, Timestamp to Date)
- Categories and counts created from Tasks
- 30 + calculated fields

SOLUTION: EXPERIMENTS

- **Experiment A** sales divisions aggregated:
 - Logistic Regression (80/20 train and test split)
 - Logistic Regression (K-Fold validation)
 - Random Forest (K-Fold validation)
- **Experiment B** feature engineering modifications, SMB/MM sales divisions:
 - Linear Regression for SMB (K-fold validation, t and p testing)
 - Linear Regression for Mid-Market (K-fold validation t and p testing)
 - Multiple Linear Regression models for SMB (K-fold validation, t and p testing)
 - Multiple Linear Regression models for MM (K-fold validation, t and p testing)

_7

Multiple types of Regression and Validation Techniques used to Identify
Best Model

SOLUTION: PEARSON CORRELATIONS

Experiment A: All Sales Divisions

Feature	Dependent Variable: Percent To Quota (0 to 1)
Avg_Opp_Amount	0.8070
Avg_Sell_Cycle	<mark>0.2990</mark>
Total_Demo_Request_Per_Week	-0.0300
Avg_Close_Rate	-0.1890
Avg_Num_Products_Per_Opp	-0.0200
Avg_Term_Length	-0.1190
Total_Emails_Per_Week	-0.0923
Total_Prospect_Calls_Per_Week	No Correlation run because visuals did not support
Total_Customer_Calls_Per_Week	No Correlation run because visuals did not support
Total_Conversations_Per_Week	-0.0312
Total_Set_Demos_Per_Week	-01830
Total_Performed_Demos_Week	-0.1400
Total_Demo_Requests_Per_Week	-0.0300
Total_Online_Meetings_Per_Week	<mark>-0.2310</mark>

Experiment B: SMB vs. MM Sales Divisions

Experiment B. SMB Pearson's Correlation Results:

- Correlation between Percent To Quota and Average Opp Amount: 0.37218218071266135
- Correlation between Percent To quota and Average Cust Discount: 0.423386881349258
- Correlation between Percent To quota and Total Avg Weekly Activities: -0.20538575028381872

Experiment B. MM Pearson's Correlation Results:

- Correlation between Percent To Quota and Average Opp Amount: -0.12022508786589424
- Correlation between Percent To quota and Average Cust Discount: 0.31834755561553063
- Correlation between Percent To quota and Total Avg Weekly Conversations:
 0.010416490833213958
- Correlation between Percent To quota and Total Number of Accounts: -0.27548335889903575
- Correlation between Percent To quota and Total
 Online Meetings Per Week: 0.2249661298099106

8

SOLUTION: RESULTS & MODEL VALIDATION

Experiment	Division	Regression	Validation	Features	Results	T-Test and P-Test Results
Experiment A1	All	Logistic	80/20	Avg_Opp_Amount	ROC = 0.5378	N/A = Did not perform because ROC was too low and comparable to random chance
Experiment A2	All	Logistic	K-Fold	Avg_Opp_Amount	ROC = 0.6127	N/A – Did not perform because although improved, ROC value was still too low and comparable to random chance
Experiment A3	All	Random Forest	K-Fold	Avg_Opp_Amount Avg_Sell_Cycle Avg_Cust_Disc		N/A – Did not perform because RMSE was too high given the Percent To Quota scale of 0-1
Experiment B1	SMB	Linear	K-Fold	Avg_Cust_Disc	Root Mean Squared Error (RMSE): 0.11367827283577361 R-squared (R2): -0.939068077221632	Intercept: 0.21334034795651072 Coefficient 0: 0.00328007258819299T- Coefficient 0: : T-statistic = 2.5941296695425082, P-value = 0.014919053689924855 Coefficient 1: T-statistic = 6.560752017245371, P-value = 4.103771282792934e-07
Experiment B2	SMB	Multiple	K-Fold	Avg_Opp_Amount Avg_Cust_Disc	Root Mean Squared Error (RMSE): 0.08129527906544977 R-squared (R2): 0.5695292561191588	Intercept: 0.16387927163782137 Coefficient 0: Estimate = 4.152605107643032e-06, T-value = 2.451509636119704, P-value = 0.020981244195025672 Coefficient 1: Estimate = 0.0032705427993116173, T-value = 2.810376139203201, P-value = 0.009096325199308364
Experiment B3	ММ	Linear	K-Fold	Avg_Cust_Disc	Root Mean Squared Error (RMSE): 0.13518621444979825 R-squared (R2): -0.07320713457562689	Intercept: 0.3226327201988182 Coefficient 0: T-statistic = 1.0496002531095305, P-value = 0.3105194110454699 Coefficient 1: T-statistic = 9.730423949339313, P-value = 7.150270620037702e-08
Experiment B4	ММ	Multiple	K-Fold	Avg_Cust_Disc Total_Online_Meetings_Per_Week	Root Mean Squared Error (RMSE): 0.1272495380644176 R-squared (R2): 0.04910805985992739	Intercept: 0.3123193943052424 Coefficient 0: Estimate = 0.3123193943052424, T-value = 0.22607205349133713, P-value = 0.8356722409559736 Coefficient 1: Estimate = 0.0006449522076622271, T-value = 0.20832566399276212, P-value = 0.8483167022891438

SOLUTION: MODEL SELECTION

- P-values significant (<.05) for both features
 - P-value for Avg_Opp_Amount = 0.020981244195025672
 - P-value for Avg_Cust_Disc = 0.009096325199308364
- Indicates both variables are predictors
- RMSE, R2 (goodness of fit) values acceptable
 - RMSE = 0.08129527906544977 lowest error of all models
 - R2 = 0.5695292561191588; highest of all models

SMB Multiple Linear Regression Model Selected

SOLUTION: MODEL SELECTION

Multiple Linear Regression for SMB - best fitting model. Multiple Regression Equation:

$$Y = 60 + 61X1 + 62X2$$
, where 60 is the intercept, 61 is X1 coefficient, 62 is the X2 coefficient

Final Model Equation:

```
"Percent_To_Quota" = 0.16387927163782137 + 4.152605107643032e-06 x (Feature_1) + 0.0032705427993116173 x (Feature_2), where Feature 1 = Avg_Opp_Amount and Feature 2 = Avg_Cust_Disc.
```

SOLUTION: SMB

2 Predictors and Relevant Benchmarks can be used as performance indicators

SMB Benchmarks: Standards of Performance

	Total Num	Ava Opp	Ava Soll	Ava Close	Ava Torm	Ava Cust	Total Activitie	Total Emails	Total Set Demos	Total Performed
summary		_Awg_Opp _Amount			Length		Total_Activitie s_Per_Week	_Per_Week		Demos_Per_Week
count	36	36	36	36	36	36	36	36	36	36
mean	1405.75	11854.56	587.7357	0.429846	33.7318	18.37899	109.4613	61.52405	0.940713	1.03234
stddev	1400.527	11266.95	483.1692	0.115733	7.346555	16.50292	44.46695	34.16769	0.929752	0.817602
min	1	562.95	68.5	0.129808	17.98619	0.391009	5.2883	3.758743	0	0.030852
25%	403	5584.667	152.874	0.368952	28.54474	8.126098	78.04559	33.24151	0.060049	0.365462
50%	1040	8751.83	336	0.415	33.89443	14.16049	99.2165	57.11348	0.659341	0.8262
75%	1718	14325.87	1029.333	0.490518	38.0725	22.47764	138.6264	78.27534	1.359223	1.64572
max	5432	61531.43	1433.889	0.707521	47.41805	95.72791	208.335	143.2419	3.533981	3.479612

Reject null hypotheses; conclude Avg_Opp_Amount and Avg_Cust_Disc are positively correlated with quota attainment for SMB

SOLUTION: MID-MARKET

• Relevant Benchmarks -Descriptive Statistics still very helpful in use as performance indicators

MM Benchmarks: Standards of Performance

										Total_Performed
	Total_Num_	Avg_Opp_		Avg_Close_	Avg_Term	Avg_Cust_	Total_Activities_	Total_Emails_	Total_Set_Demos_	_Demos_Per_We
summary	Accounts	Amount	Avg_Sell_Cycle	Rate	_Length	Disc	Per_Week	Per_Week	Per_Week	ek
count	22	22	22	22	22	22	22	22	22	22
mean	1084.455	28156.34	944.896	0.440551	36.65357	21.35331	112.1941	66.73564	0.785048	0.863651
stddev	904.3352	16331.04	504.2868	0.101498	5.414118	18.21201	46.81782	33.16598	0.842456	0.8077
min	19	8149.73	118.7039	0.181595	28.45822	4.898037	5.2883	3.758743	0	0.030852
25%	471	17760.42	533.1429	0.370569	33.87805	11.68766	94.00776	47.30941	0.060049	0.365462
50%	894	21933.75	1191.25	0.421137	35.83924	20.0265	99.2165	61.48953	0.448109	0.552941
75%	1398	39193.74	1365	0.491098	40.54902	23.19539	142.4739	78.31481	1.269641	1.31165
max	4168	73008.17	1499.5	0.677712	47.41805	95.72791	208.335	143.2419	3.214563	3.479612

Accept null hypotheses; conclude there are no known predictors correlated with quota attainment for MM

CODE WALKTHROUGH: DATABRICKS

CHALLENGES: INTEGRATION STRATEGY

- Results incorporated into PowerPoint for Sales Leadership
- Explore adoption of new weekly activity metrics
- Re-aligning sales territories not possible
- Integration of predictors into reports not recommended discounting controversial
- Integrate benchmarks as threshold metrics required for success.

CHALLENGES: CAPSTONE COMPLEXITY

- 43 SFDC object tables analyzed
- Unfamiliar Cloud Computing and Software
- 9 tables joined initially; 6 tables joined in final project
- Strategy change on joins 1 week
- Unexpected null values for key data
- Extensive data wrangling and cleaning
- Summary statistics performed to understand distribution and anomalies
- 7 different regression models, multiple validation techniques
- Data Complexity- millions of rows of activity data
- Data results illogical at times
- Results interpretation more complex
- Unanticipated small n size after data cleaning

CHALLENGES: WHAT HAVE I LEARNED?

- There is no shame in asking for help
- You know far more than you think you know
- Coding error messages are your friends
- Regardless of software differences, coding concepts still apply
- Adaptability and ongoing learning are key to success as a Data Scientist
- Projects are never really "done" there are always areas for improvement
- Dig deeper on illogical data and results
- Be agile on changing direction but document

WHAT'S NEXT

RECOMMENDATIONS

FUTURE RECOMMENDATIONS

MORE DATA COLLECTION

Continue to collect more data to improve correlations

FEATURE ENGINEERING

Change dependent variable, predictors so that more data can be used

EVOLUTION OF BENCHMARK DATA

Analyze the positive and negative trends in benchmark data

SALES OPERATIONS / DATA CONSISTENCY

Demo request vetting / completion, Territory Assignments

REFERENCES

Mckinney, Wes (2022). Python for Data Analysis, Third Edition. Published by O'Reilly Media,

Geron, Aurelien (2023). Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow, 3rd Edition. Published by O'Reilly Media Inc.

Lubanovic, Bill (2020). Introducing Python, Second Edition. Published by O'Reilly Media, Inc.

VanderPlas, Jake. (December 2016). Python Data Science Handbook, First Edition. Published by O'Reilly Media, Inc.

Matthes, Eric (2019). Python Crash Course, Second Edition. Published by No Starch Press.

Etaati, Leila (June 26, 2018). Azure Databricks Part 2. Published by Radacad.com.

Sruthi E R (Updated October 26, 2023). Understand Random Forest Algorithms With Examples. Analytics Vidhya (https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/#:~:text=A.%20Random%20Forest%20is%20a,and%20outliers%20in%20the%20data.)

Almaliki, Zaid Alisse (March 19, 2019). Do you know how to choose the right learning algorithm array among 7 different types? Towards Data Science (www.towardsdatascience.com)

VanDerwerf, Paul (August 26, 2020). Train-Test Split for Evaluating Machine Learning Algorithms. Machine Learning Mastery (www.machinelearningmastery.com)

Sap.com (2023). SAP Predictive Analytics

https://help.sap.com/docs/SAP_PREDICTIVE_ANALYTICS/41d1a6d4e7574e32b815f1cc87c00f42/5e5198fd4afe4_ae5b48fefe0d3161810.html

Ray, Sunil (Updated September 25, 2023). 8 Ways to Improve Accuracy of Machine Learning Models. Analytics Vidhya. https://www.analyticsvidhya.com/blog/2015/12/improve-machine-learning-results/#:~:text=There%20are%20several%20ways%20to,bagging%2C%20boosting%2C%20and%20stacking.

Stackexchange (2015). <u>Linear regression: Intercept isn't significant</u>. https://stats.stackexchange.com/guestions/160628/linear-regression-intercept-isnt-significant

Wikipedia (2023). Coefficient of

Determination.https://en.wikipedia.org/wiki/Coefficient_of_determination#:~:text=There%20are%20cases%20where%20R,fitting%20procedure%20using%20those%20data.

Databricks.com

Spark.apache.org

Coding Assistance and Troubleshooting:

Databricks Assistant (integrated AI assistant in Databricks to troubleshoot coding errors and issues)
Google.com
Stackoverflow.com

Sales Standards of Excellence Summary of Findings

PRESENTER

Diana Bowden

Account Executive

RELIAS

Agenda

Project Goal

Process

Results

Benchmarks

Integration Strategy

Model the most successful sales representatives to replicate best selling practices.

What are the top predictors for success for sales representatives at Relias?

Process

```
Edit View Run Help Last edit was 24 days ago Provide feedback
   a.OwnerId, a.Name AS Account_Name, a.Type AS Account_Type, a.BillingState AS Billing_State, a.NumberOfEmployees AS Employee_Count,
   4 o.Name, o.AccountId, o.Amount, o.TotalOpportunityQuantity, o.CloseDate, o.Type, o.IsWon,
   5 t.Subject, t.ActivityDate, t.Type, t.WhatId, t.Status,
    6 s.SBOO AverageCustomerDiscount c.
   7 f.PeriodId, f.StartDate, f.OuotaAmount.
   8      oli.Billing_Frequency__c, oli.Vertical__c,
   9 sc.Quote Price Cap c, sc.Term,
  10 r.Account_Name_Client_Size, r.Account_Owner, r.Account_Name_Vertical
  11 FROM account a
  12 LEFT JOIN task t
  13 ON a.OwnerId = t.OwnerId
  14 AND a.Id = t.AccountId
  15 LEFT JOIN opportunity of
   16 ON o.AccountId = a.Id
  17 | FFT JOIN forecastingquota f
  19 LEFT JOIN sbgg quote c s
  21 LEFT JOIN opportunitylineitem oli
  22 ON oli OpportunityId = o Id
  23 LEfT JOIN servicecontract so
  24 ON sc.AccountId = o.AccountId
  25 LEFT JOIN rubybenchmarking r
  26 ON r.Account Name 18 digit ID = o.AccountId
  27 LEFT JOIN opportunityhistory oh
  28 ON oh.OpportunityId = o.Id
  29 WHERE IsWon = TRUE AND t.Status = 'Completed' AND o.Type = 'New Customer
  31 display(final query)
```


- 43 Salesforce (SFDC) tables
- SQL queries on predictor candidates
- Predictor, Dependent variables identified
- Joined tables
- Analyzed descriptive statistics
- Data visualizations
- Outliers, null values removed
- Data formats changes
- Consolidated Tasks categories
- 30 + calculated fields
- Regression used to find predictors

Extensive data exploration, cleaning and manipulation performed

Experiments

- **Experiment A** sales divisions aggregated:
 - Logistic Regression (80/20 train and test split)
 - Logistic Regression (K-Fold validation)
 - Random Forest (K-Fold validation)
- **Experiment B** feature engineering modifications, SMB/MM sales divisions:
 - Linear Regression for SMB (K-fold validation, t and p testing)
 - Linear Regression for Mid-Market (K-fold validation t and p testing)
 - Multiple Linear Regression models for SMB (K-fold validation, t and p testing)
 - Multiple Linear Regression models for MM (K-fold validation, t and p testing)

Multiple types of Regression and Validation Techniques used to Identify Best Model

Results: Pearson Correlations

Experiment A: Aggregated sales divisions

Feature	Dependent Variable: Percent To Quota (0 to 1)				
Avg_Opp_Amount	0.8070				
Avg_Sell_Cycle	0.2990				
Total_Demo_Request_Per_Week	-0.0300				
Avg_Close_Rate	-0.1890				
Avg_Num_Products_Per_Opp	-0.0200				
Avg_Term_Length	-0.1190				
Total_Emails_Per_Week	-0.0923				
Total_Prospect_Calls_Per_Week	No Correlation run because visuals did not support				
Total_Customer_Calls_Per_Week	No Correlation run because visuals did not support				
Total_Conversations_Per_Week	-0.0312				
Total_Set_Demos_Per_Week	-01830				
Total_Performed_Demos_Week	-0.1400				
Total_Demo_Requests_Per_Week	-0.0300				
Total_Online_Meetings_Per_Week	-0.2310				

Experiment B: SMB vs. MM sales divisions

Experiment B. SMB Pearson's Correlation Results:

- Correlation between Percent To Quota and Average Opp Amount: 0.37218218071266135
- Correlation between Percent To quota and Average Cust Discount: 0.423386881349258
- Correlation between Percent To quota and Total Avg Weekly Activities: -0.20538575028381872

Experiment B. MM Pearson's Correlation Results:

- Correlation between Percent To Quota and Average Opp Amount: -0.12022508786589424
- Correlation between Percent To quota and Average Cust Discount: 0.31834755561553063
- Correlation between Percent To quota and Total Avg Weekly Conversations: 0.010416490833213958
- Correlation between Percent To quota and Total Number of Accounts: -0.27548335889903575
- Correlation between Percent To quota and Total Online Meetings Per Week: 0.2249661298099106

Results: Model Validation

Experiment	Division	Regression	Validation	Features	Results	T-Test and P-Test Results
Experiment A1	All	Logistic	80/20	Avg_Opp_Amount	ROC = 0.5378	N/A = Did not perform because ROC was too low and comparable to random chance
Experiment A2	All	Logistic	K-Fold	Avg_Opp_Amount	ROC = 0.6127	N/A – Did not perform because although improved, ROC value was still too low and comparable to random chance
Experiment A3	All	Random Forest	K-Fold	Avg_Opp_Amount	Root Mean Squared Error (RMSE): 0.12396054358188907 Feature Importances:	N/A – Did not perform because RMSE was too high given the Percent To Quota scale of 0-1
				Avg_Sell_Cycle	Avg_Opp_Amount: .5582428319309904 Avg_Sell_Cycle: 0.23379201565840949	
				Avg_Cust_Disc	Avg_Cust_Disc: 0.2079651524106001	
Experiment B1	SMB	Linear	K-Fold	Avg_Cust_Disc	Root Mean Squared Error (RMSE): 0.11367827283577361 R-squared (R2): -0.939068077221632	Intercept: 0.21334034795651072 Coefficient 0: 0.00328007258819299T- Coefficient 0: T-statistic = 2.5941296695425082, P-value = 0.014919053689924855 Coefficient 1: T-statistic = 6.560752017245371, P-value = 4.103771282792934e-07
Experiment B2	<mark>SMB</mark>	Multiple	K-Fold	Avg_Opp_Amount	Root Mean Squared Error (RMSE): 0.08129527906544977	Intercept: 0.16387927163782137
				Avg_Cust_Disc	R-squared (R2): 0.5695292561191588	Coefficient 0: Estimate = 4.152605107643032e-06, T-value = 2.451509636119704, P-value = 0.020981244195025672 Coefficient 1: Estimate = 0.0032705427993116173, T-value = 2.810376139203201, P-value = 0.009096325199308364
Experiment B3	ММ	Linear	K-Fold	Avg_Cust_Disc	Root Mean Squared Error (RMSE): 0.13518621444979825 R-squared (R2): -0.07320713457562689	Intercept: 0.3226327201988182 Coefficient 0: T-statistic = 1.0496002531095305, P-value = 0.3105194110454699 Coefficient 1: T-statistic = 9.730423949339313, P-value = 7.150270620037702e-08
Experiment B4	ММ	Multiple	K-Fold	Avg_Cust_Disc Total_Online_Meetings_Per_ Week	Root Mean Squared Error (RMSE): 0.1272495380644176 R-squared (R2): 0.04910805985992739	Intercept: 0.3123193943052424 Coefficient 0: Estimate = 0.3123193943052424, T-value = 0.22607205349133713, P-value = 0.8356722409559736 Coefficient 1: Estimate = 0.0006449522076622271, T-value = 0.20832566399276212, P-value = 0.8483167022891438

Results

Multiple Linear Regression for SMB - best fitting model. Multiple Regression Equation:

Y = 60 + 61X1 + 62X2,

where 80 is the intercept, 81 is X1 coefficient, 82 is the X2 coefficient

Final Model Equation:

"Percent_To_Quota" = 0.16387927163782137 + 4.152605107643032e-06 x (Feature_0) + 0.0032705427993116173 x (Feature_1), where Feature 0 = Avg_Opp_Amount and Feature 1 = Avg_Cust_Disc.

Conclusion: SMB

- Relevant Benchmarks
 - Highly correlated predictors: Avg Opp Amount, Avg Cust Disc
 - Activity metrics

SMB Benchmarks: Standards of Performance

	Total Nives	A One	Ave Call	Aug Class	A	Aver Cust	Total Activitio	Tatal Empile	Tatal Cat Dames	Total Doufoused
summary		Awg_Opp Amount			Avg_ierm_ Length		s_Per_Week	Per Week		Total_Performed_ Demos Per Week
Summar y	Accounts	_Amount	Cycle	_nate	Length	_Disc	3_1 CI_VVCCK	_i ci_vvcck	_i ei_week	Dellios_i ei_vveek
count	36	36	36	36	36	36	36	36	36	36
mean	1405.75	11854.56	587.7357	0.429846	33.7318	18.37899	109.4613	61.52405	0.940713	1.03234
stddev	1400.527	11266.95	483.1692	0.115733	7.346555	16.50292	44.46695	34.16769	0.929752	0.817602
min	1	562.95	68.5	0.129808	17.98619	0.391009	5.2883	3.758743	C	0.030852
25%	403	5584.667	152.874	0.368952	28.54474	8.126098	78.04559	33.24151	0.060049	0.365462
50%	1040	8751.83	336	0.415	33.89443	14.16049	99.2165	57.11348	0.659341	0.8262
75%	1718	14325.87	1029.333	0.490518	38.0725	22.47764	138.6264	78.27534	1.359223	1.64572
max	5432	61531.43	1433.889	0.707521	47.41805	95.72791	208.335	143.2419	3.533981	3.479612

Reject null hypotheses; conclude Avg Opp Amount and Avg Cust Discount positiviely correlated with quota attainment for SMB

Conclusion: MM

Relevant Benchmarks -Descriptive Statistics still very helpful in use as performance indicators

MM Benchmarks: Standards of Performance

summary	Total_Num_ Accounts		Avg_Sell_Cycle		Avg_Term _Length	Avg_Cust_ Disc	Total_Activities_ Per_Week	Total_Emails_ Per_Week	Total_Set_Demos_ Per_Week	Total_Performed _Demos_Per_We ek
count	22	22	22	22	22	22	22	22	22	22
mean	1084.455	28156.34	944.896	0.440551	36.65357	21.35331	112.1941	66.73564	0.785048	0.863651
stddev	904.3352	16331.04	504.2868	0.101498	5.414118	18.21201	46.81782	33.16598	0.842456	0.8077
min	19	8149.73	118.7039	0.181595	28.45822	4.898037	5.2883	3.758743	0	0.030852
25%	471	17760.42	533.1429	0.370569	33.87805	11.68766	94.00776	47.30941	0.060049	0.365462
50%	894	21933.75	1191.25	0.421137	35.83924	20.0265	99.2165	61.48953	0.448109	0.552941
75%	1398	39193.74	1365	0.491098	40.54902	23.19539	142.4739	78.31481	1.269641	1.31165
max	4168	73008.17	1499.5	0.677712	47.41805	95.72791	208.335	143.2419	3.214563	3.479612

Accept null hypotheses; conclude there are no predictors correlated with quota attainment for MM

Recommendations

- Gather more data to increase n and improve results
- Explore adoption of new weekly activity metrics
- Re-aligning sales territories not possible at this time
- Re-examine discounting practices and policies
- Integrate benchmarks as threshold metrics for success.
- Explore changes in key performance metrics over time

THANK YOU

