

dd 720 m=0 has the solution following solution:

\$\P_{\alpha} = \frac{1}{a_{\ell} r^2 + b_{\ell} r^{-e-1}} \P_{\ell} (\cos(\theta))

where le (cos(0)) = Legendre polynomials. Since there is azimuthal symmetry, @ there is no \$\Phi\$-dependence

in the solution. This can be applied as solution applies as there is no free charge current.

Since Px PxH-O Since PxB=O in this case, it follows that B can be written as the gradient of a scalar potential.

7 x B = 0 => B = -7 bm

Stace I'g=0 => -1. (14)=0 => 120=0

At the surface of the sphere, (r=R) $\nabla \times \vec{B} \neq 0$ =) this solution will not hold.

e. At r=R, the normal component of Bis continuous

(B2-B,).n=0 (where B2 and B,) are solu obtained from the solu on in each case (where r>Randrace (brom slides)

Since Assuming the We have that $(-\nabla \phi_2 + \nabla \phi_1) \cdot \hat{\eta} = 0$

: - 4 11 64 0 (P, (cos(0)) = \(\frac{2}{c} \alpha_e \, \text{P}_e'(cos(0)) \) = \(\frac{2}{c} \) \(\frac{1}{c} \) \(

