

БУТСТРЭП

Дана выборка X. Решаем задачу регрессии.

- **Бутстрэп:** равномерно возьмем из выборки X l объектов возвращением (т.е. в новой выборке будут повторяющиеся объекты). Получим выборку X_1 .
- ullet Повторяем процедуру N раз, получаем выборки $X_1,\dots,X_N.$

БЭГГИНГ (BOOTSTRAP AGGREGATION)

С помощью бутстрэпа мы получили выборки X_1, \dots, X_N .

- Обучим по каждой из них линейную модель регрессии получим базовые алгоритмы $b_1(x), ..., b_N(x)$.
- Построим новую функцию регрессии:

$$a(x) = \frac{1}{N} \sum_{j=1}^{N} b_j(x)$$

> БЭГГИНГ (BOOTSTRAP AGGREGATION)

С помощью бутстрэпа мы получили выборки X_1, \dots, X_N .

- Обучим по каждой из них линейную модель регрессии получим базовые алгоритмы $b_1(x), ..., b_N(x)$.
- Построим новую функцию регрессии:

$$a(x) = \frac{1}{N} \sum_{j=1}^{N} b_j(x)$$

Утверждение. Если алгоритмы $b_1(x), ..., b_N(x)$ некоррелированы, то среднеквадратичная ошибка алгоритма a(x), полученного при помощи бэггинга, в N раз меньше среднеквадратичной ошибки исходных алгоритмов $b_i(x)$.

PA3ЛОЖЕНИЕ ОШИБКИ (BIAS-VARIANCE DECOMPOSITION)

Утверждение.

$$L(\mu) = \mathbb{E}_{x,y}ig[(y-\mathbb{E}[y|x])^2ig]$$
 (шум) $+\mathbb{E}_{x,y}ig[(\mathbb{E}_X[\mu(X)]-\mathbb{E}[y|x])^2ig]$ (смещение) $+\mathbb{E}_{x,y}ig[\mathbb{E}_X[(\mu(X)-\mathbb{E}_X[\mu(X)])^2ig]$ (разброс)

СМЕЩЕНИЕ И РАЗБРОС

BIAS-VARIANCE TRADEOFF underfitting overfitting zone zone generalization bias capacity optimal capacity

ъ СМЕЩЕНИЕ И РАЗБРОС У БЭГГИНГА

Бэггинг:
$$a_N(x) = \frac{1}{N} \sum_{n=1}^N b_n(x) = \frac{1}{N} \sum_{n=1}^N \widetilde{\mu}(X)(x)$$

(здесь $\tilde{\mu}(X) = \mu(\tilde{X})$ – алгоритм, обученный на подвыборке \tilde{X})

Утверждение.

- 1) **Бэггинг не ухудшает смещенность модели**, т.е. смещение $a_N(x)$ равно смещению одного базового алгоритма.
- 2) Если базовые алгоритмы некоррелированы, то **дисперсия бэггинга** $a_N(x)$ в **N раз меньше дисперсии отдельных базовых алгоритмов**.

> СЛУЧАЙНЫЙ ЛЕС (RANDOM FOREST)

- Возьмем в качестве базовых алгоритмов для бэггинга **решающие деревья,** т.е. каждое случайное дерево $b_i(x)$ построено по своей подвыборке X_i .
- В каждой вершине дерева будем искать *разбиение не по* всем признакам, а по подмножеству признаков.
- Дерево строится до тех пор, пока в листе не окажется n_{min} объектов.

RANDOM FOREST

Алгоритм 3.1. Random Forest

- 1: для $n = 1, \dots, N$
- 2: Сгенерировать выборку X_n с помощью бутстрэпа
- 3: Построить решающее дерево $b_n(x)$ по выборке \tilde{X}_n :
 - ullet дерево строится, пока в каждом листе не окажется не более n_{\min} объектов
 - при каждом разбиении сначала выбирается m случайных признаков из p, и оптимальное разделение ищется только среди них
- 4: Вернуть композицию $a_N(x) = \frac{1}{N} \sum_{n=1}^N b_n(x)$

RANDOM FOREST — ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- Если p количество признаков, то при классификации обычно берут $m=[\sqrt{p}]$, а при регрессии $m=[\frac{p}{3}]$ признаков
- При классификации обычно дерево строится, пока в листе не окажется $n_{min}=1$ объект, а при регрессии $n_{min}=5$

OUT-OF-BAG ОШИБКА

 $Err_{oob} = -$

$$b = 1 \qquad b = 2 \qquad \cdots \qquad b = B$$
Bootstrap
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Fit inbag model
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
OOB error
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Err_{oob} = $\frac{\text{Err}_1 + \cdots + \text{Err}_B}{B} = \frac{1}{B} \sum_{b=1}^{B} \text{Err}_b$

OUT-OF-BAG ОШИБКА

- Каждое дерево в случайном лесе обучается по некоторому подмножеству объектов
- Значит, для каждого объекта есть деревья, которые на этом объекте не обучались.

Out-of-bag ошибка:

$$OOB = \sum_{i=1}^{l} L(y_i, \frac{\sum_{n=1}^{N} [x_i \notin X_n] b_n(x_i)}{\sum_{n=1}^{N} [x_i \notin X_n]})$$

Утверждение. При $N \to \infty$ 00B оценка стремится к leaveone-out оценке.

OOB-SCORE

По графику out-of-bag ошибки можно, например, подбирать количество деревьев в случайном лесе

