Reproducible Research Course Project 1

Liliana Grajales April 3, 2016

Course Project 1

This document includes the code and graphs for Project 1 of the Reproducible Reseach Coursera Course. The data for this project is located at https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2Factivity.zip (https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2Factivity.zip).

The variables included in this dataset are:

- steps: Number of steps taking in a 5-minute interval (missing values are coded as)
- date: The date on which the measurement was taken in YYYY-MM-DD format
- · interval: Identifier for the 5-minute interval in which measurement was taken

The dataset is stored in a comma-separated-value (CSV) and there are a total of 17,568 observations in this dataset.

```
#Libraries
library(dplyr)

## Warning: package 'dplyr' was built under R version 3.2.2

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union

library(base64)

## Warning: package 'base64' was built under R version 3.2.2
```

```
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.2.3
library(chron)
## Warning: package 'chron' was built under R version 3.2.4
#Setting working directory path
setwd("D:/Liliana 2016/ReproducibleResearch/Script Project/repdata-data-activit
#*******
# Reading the table and separating the string of data into columns using sep
=";"
#*******
activity all <- read.csv("activity.csv", sep=",", colClasses ="character")</pre>
#Ommiting NAs
activity <-na.omit(activity all)</pre>
#******
# Plotting the data
#*******
#First column date format description
day <- as.Date(activity[,2], "%Y-%m-%d")</pre>
steps <- as.numeric(activity[,1])</pre>
interval <-as.numeric(activity[,3])</pre>
steps day <- data.frame(day, steps)</pre>
```

What is mean total number of steps taken per day?

In Plot #1 below each circle represents the number of steps taken in intervals of 5 minutes each day For more detail time series plot at each 5-minute interval see Plot # 5

Number of Steps Taken each day (10/2-11/11), circle = steps in 5-min


```
#********************
#Stats per day with NAs remmoved
#*******************
sum_d <-with(steps_day, tapply(steps, day, sum))
mean_d <-with(steps_day, tapply(steps, day, mean))
std_d <-with(steps_day, tapply(steps, day, sd))
sqrt_dim_steps <-with(steps_day, tapply(steps, day, length))
sem_d<-std_d/sqrt(sqrt_dim_steps)
median_d <-with(steps_day, tapply(steps, day, median))</pre>
```

Plot #2 shows a Histogram of the total number of stepst taken each day.

Hystogram of total sum of steps per day without NAs (10/2-11/11)

Plot #3 shows the mean of the total number of steps taken per day

Mean Value of Steps Taken Per Day

Plot #4 shows the median of the total number of steps taken per day

Median Value of Steps Taken Per Day

What is the average daily activity pattern?

Calculating the time series plot of the 5-minute interval and the average number of steps taken across all days

```
#*************************
#First two digit from left to right = Hour
#Last Two digits from left to right = Min
hour_d<-as.character(interval %/% 10^2) #First and second digit (2355= 23hour,
55 min)
minute_d<-as.character(interval %% 10^2) #last two digits
H_M_d <-paste(hour_d,minute_d, sep=":")
day_Hour_Min <-as.POSIXct(paste(day,H_M_d), format="%Y-%m-%d %H:%M")
all_steps_mean <-mean(steps)</pre>
```

Plot #5 shows a time series plot of the 5-minute interval and the average number of steps taken across all days (blue line)

Steps Taken During Each Interval Over Time

Calculating Which 5-minute interval, on average across all the days in the dataset, contains the maximum number of steps?

```
max_steps <-max(steps)
five_minute_interval <- data.frame(interval, steps)
five_minute_interval_max <- subset(five_minute_interval, five_minute_interval$s
teps==max_steps)</pre>
```

The maximum number of steps done in a 5-minute interval are:

```
max_steps

## [1] 806
```

The 5-minute interval with the maximum number of steps is:

```
five_minute_interval_max$interval
```

```
## [1] 615
```

Imputing missing values

The following code describes how to modify the missing step values or NAs

```
#*****************
#Imputting missing values
#******************
number_NAs <- dim(activity_all)-dim(activity)
#Missing values number
number_NAs[1]</pre>
```

```
## [1] 2304
```

```
#******
date m<- as.Date(activity all[,2], "%Y-%m-%d")
steps m <- as.numeric(activity all[,1])</pre>
interval m <-as.numeric(activity all[,3])</pre>
activity modified <-data.frame(date m, steps m, interval m)</pre>
#Below is the code to modify all NAs with the mean of all the steps
activity modified$steps m[which(is.na(activity modified$steps m))]<- all steps</pre>
#*******
#Stats per day with NAs replaced by overall steps mean
#********
sum m <-with(activity modified, tapply(steps m, date m, sum))</pre>
mean m <-with(activity modified, tapply(steps m, date m, mean))</pre>
std m <-with(activity modified, tapply(steps m, date m, sd))</pre>
sqrt dim steps m <-with(activity modified, tapply(steps m, date m, length))
sem m<-std m/sqrt(sqrt dim steps m)</pre>
median m <-with(activity modified, tapply(steps m, date m, median))</pre>
plot(unique(activity_modified$date_m), mean_m, type ="p", xlab="date", ylab= "S
teps Mean Modified", main="Mean Value of Steps Taken Per Day, NAs=Average")
```

Mean Value of Steps Taken Per Day, NAs=Average

plot(unique(activity_modified\$date_m), median_m, type ="p", xlab="date", ylab=
"Steps Median Modified", main="Median Value of Steps Taken Per Day, NAs=Averag
e")

Median Value of Steps Taken Per Day, NAs=Average

stats_day_m <- data.frame(date1_m=unique(activity_modified\$date_m),sum_m,mean_
m,median_m,std_m,sem_m,sqrt_dim_steps_m)</pre>

Ploting the new histogram where the "NAs"" where modified by the overall average number of steps

Hystogram of total sum of steps per day with Modified NAs (10/2-11/11

Are there diferences in activity patterns between weekdays and weekends?

Calculating Steps done during the weekdays and the Weekends

```
#*****************************
#Separating weekend data from week data
#******************************
hour_m<-as.character(interval_m %/% 10^2) #First and second digit (2355= 23hou r, 55 min)
minute_m<-as.character(interval_m %% 10^2) #last two digits
H_M_m <-paste(hour_m,minute_m, sep=":")
day_Hour_Min_m <-as.POSIXct(paste(date_m,H_M_m), format="%Y-%m-%d %H:%M")
activity_modified_%date_time <-day_Hour_Min_m

activity_modified_wkend <-subset(activity_modified,is.weekend(activity_modified %date_m))
activity_modified_wk <-subset(activity_modified,!is.weekend(activity_modified ate_m))
all_steps_mean_wkend <-mean(activity_modified_wkend$steps_m)
all_steps_mean_wk <-mean(activity_modified_wk$steps_m)</pre>
```

Panel plot comparing the average number og stapes taken per 5-min interval across weekdays and weekend


```
## null device
## 1
```