

Banquet Talk: Area-Time-Power tradeoffs in computer design: the road ahead

Michael J. Flynn

Single Stage Fehskens-Malewicki Equations:

burnout velocity:

$$v_b = \sqrt{\frac{F-mg}{k}} \tanh\left[\frac{t_b}{m} \sqrt{k(F - mg)}\right]$$

burnout altitude:

$$y_b = \frac{m}{k} \ln \left\{ \cosh \left[\frac{t_b}{m} \sqrt{k(F - mg)} \right] \right\}$$

coast altitude:

$$y_c = \frac{m_b}{2k} \ln \left[\frac{k v_b^2}{m_b g} + 1 \right]$$

coast time:

$$t_c = \sqrt{\frac{m_b}{g k}} \tan^{-1} \left[v_b \sqrt{\frac{k}{g m_b}} \right]$$

Where:

$$k = \frac{1}{2} \rho C_D A$$

ρ = atmospheric density

C_D = drag coefficient

A = frontal area

t_b = burn time

F = average thrust

m = average thrusting mass

m_b = burnout mass

g = acceleration due to gravity

[Return](#)

Report Documentation Page			Form Approved OMB No. 0704-0188	
<p>Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.</p>				
1. REPORT DATE 01 FEB 2005	2. REPORT TYPE N/A	3. DATES COVERED -		
4. TITLE AND SUBTITLE Banquet Talk: Area-Time-Power tradeoffs in computer design: the road ahead			5a. CONTRACT NUMBER	
			5b. GRANT NUMBER	
			5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)			5d. PROJECT NUMBER	
			5e. TASK NUMBER	
			5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Stanford University			8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited				
13. SUPPLEMENTARY NOTES See also ADM00001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance Embedded Computing (HPEC) Workshops, 28-30 September 2004 Volume 1., The original document contains color images.				
14. ABSTRACT				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE unclassified unclassified unclassified			17. LIMITATION OF ABSTRACT UU	18. NUMBER OF PAGES 33
19a. NAME OF RESPONSIBLE PERSON				

The marketplace

The computer design market (in millions produced, not value)

Device Type	2001	2002	2003	2004	2005	2006
Computational MPUs	147	151	168	187	202	218
Embedded MPUs	159	152	161	167	177	186
4- and 8-bit MCUs	3982	4180	4570	5090	5540	5970
16-bit MCUs	589	626	678	714	797	797
32-bit MCUs	190	216	247	368	511	673
DSP	484	526	569	638	694	691
Total	5551	5851	6393	7164	7921	8535

REF: J. Hines, "2003 Semiconductor Manufacturing Market: Wafer Foundry." Gartner Focus Report, August 2003.

The computer design market growth

B. Lewis, “Microprocessor Cores Shape Future SLI/SOC Market.” Gartner, July 2002

Moore's Law

- Something doubles (or is announced to double) right before a stockholders meeting.
- So that it really doubles about every 2 years

Suggested by: Greg Astfalk lecture

Semiconductor Industry Roadmap

Semiconductor Technology Roadmap

Year	2004	2007	2013	2016
(f) Technology generation (nm)	90	65	32	22
Wafer size (cm)	30	30	45	45
(ρ) Defect density (per cm ²)	0.14	0.14	0.14	0.14
(A) μP die size (cm ²)	3.1	3.1	3.1	3.1
!!! Chip Frequency (GHz)	4.2	9.3	23	39.6
MTx per Chip (Microprocessor)	553	1204	4424	8848
!!! MaxPwr(W) High Performance	158	189	251	288

Time (Performance), Area and Power Tradeoffs

There's a lot of silicon out there ... and
it's cheap

www.newburycamraclub.org.uk

Cost of Silicon

REF: J. Hines, "2003 Semiconductor Manufacturing Market: Wafer Foundry." Gartner Focus Report, August 2003.

The basics of wafer fab

- A 30 cm, state of the art ($\rho = 0.2$) wafer fab facility might cost \$3B and require \$5B/year sales to be profitable...that's at least 5M wafer starts and almost 5B 1cm die /per year. A die ($f=90\text{nm}$) has 100-200 M tx / cm^2 .
- Ultimately at O(\$2000) per wafer that's \$2/ cm^2 or 100M tx. So how to use them?

Area and Cost

Is efficient use of die area important?

Is processor cost important?

NO, to a point – server processors (cost dominated by memory, power/ cooling, etc.)

YES – everything in the middle.

NO – very small, embedded die which are package limited. (10-100Mtx/die)

But it takes a lot of effort to design a chip

world's
first CAD
system?

© Canadian Museum of
Civilization Corporation

Design time: CAD productivity limitations favor soft designs

Source: S. Malik, orig. SEMATECH

M. J. Flynn

13

HPEC '04

Time

High Speed Clocking

Fast clocks are not primarily the result of technology scaling, but rather of architecture/logic techniques:

- Smaller pipeline segments, less clock overhead
- Modern microprocessors are increasing clock speed more rapidly than anyone (SIA) predicted...fast clocks or *hyperclocking* (really short pipe segments)
- But fast clocks do not by themselves increase system performance

Change in pipe segment size

CMOS processor clock frequency

MHz History Chart: see Mac Info Home Page .

Bipolar and CMOS clock frequency

Bipolar cooling technology (ca '91)

Hitachi M880: 500 MHz; one processor/module, 40 die sealed in helium then cooled by a water jacket.
Power consumed: about 800 watts per module

Translating time into performance: scaling the walls

- *The memory “wall”*: performance is limited by the predictability & supply of data from memory. This depends on the access time to memory and thus on wire delay which remains constant with scaling.
- But (so far) significant hardware support (area, fast dynamic logic) has enabled designers to manage cache misses, branches, etc reducing memory access.
- There's also a *frequency* (minimum segment size) and related *power “wall”*. Here the question is how to improve performance without changing the segment size or increasing the frequency.

Missing the memory wall

**Cache size and performance
for the Itanium processor family**

- Itanium processors now have 9MB of cache/die, moving to > 27 MB
- A typical processor (in 2004) occupies < 20% of die, moving to 5%.
- Limited memory BW, access time (cache miss now over 300~)
- Result: large cache and efforts to improve memory & bus

Power

- Old rough an' ready, Zachary Taylor

Power: the real price of performance

$$P_{\text{total}} = \frac{C \cdot V^2 \cdot \text{freq}}{2} + I_{\text{leakage}} \cdot V + I_{\infty} \cdot V$$

While V_{dd} and C (capacity) decrease, frequency increases at an accelerating rate thereby increasing power density

As V_{dd} decreases so does V_{th} ; this increases I_{leakage} and static power.
Static power is now a big problem in high performance designs.

Net: while increasing frequency may or may not increase ***performance*** - it certainly does increase ***power***

Power

- Cooled high power: >70 W/ die
- High power: 10- 50 W/ die ... plug in supply
- Low power: 0.1- 2 W / die.. rechargeable battery
- Very low power: 1- 100 mW /die .. AA size batteries
- Extremely low power: 1- 100 micro Watt/die and below (nano Watts) .. button batteries
- No power: extract from local EM field,
.... O ($1\mu\text{W}/\text{die}$)

Achieving low power systems

By V_{dd} and device scaling

$$\frac{\text{freq}_2}{\text{freq}_1} = \sqrt[3]{\frac{P_2}{P_1}}$$

- By scaling alone a 1000x slower implementation may need *only* 10^{-9} as much power.
- Gating power to functional units and other techniques should enable 100MHz processors to operate at $O(10^{-3})$ watts.
- Goal: $O(10^{-6})$ watts.... Implies about 10 MHz

Extremely Low Power Architecture (ELPA), $O(\mu\text{W})$, getting there....

- 1) Scaling alone lowers power by reducing parasitic wire and gate capacitance.
- 2) Lowering frequency lowers power by a cubic
- 3) Slower clocked processors are better matched to memory reducing caches, etc
- 4) Asynchronous clocking and logic eliminate clock power and state transitions.
- 5) Circuits: adiabatic switching, adaptive body biasing, etc
- 6) Integrated power management

ELP Technology & Architecture

- *ELPA Challenge*: build a processor & memory that uses 10^{-6} the power of a high performance MPU and has 0.1 of the state of the art SPECmark (ok, how about .01?).

Study 1 StrongARM: 450 mW @ 160MHz

- Scale (@22nm) 450mW becomes 5 mW
- Cubic rule: 5mW becomes $5\mu\text{w}$ @ 16MHz
- Use 10x more area to recover performance
- 10x becomes 3-4x memory match timing.
- Asynchronous logic may give 5x in perf.
- Use sub threshold (?) circuits; higher V_T
- Power management

Study 2 the Ant

- 10 Hz, 0.1-1 μ W 250k neurons; 3D packaging, About $\frac{1}{4}$ mm³ or about 1 micron³ per neuron
- How many SPECmarks?

And while we're at it, why not an EHP challenge?

- Much more work done in this area but limited applicability
 - Whole earth simulator (60TFlops)
 - Grape series (40TFlops)
- General solutions come slowly (like the mills of the Gods)
 - Streaming compilers
 - New mathematical models

And don't forget reliability!

Computational Integrity

Design for

- Reliability
- Testability
- Serviceability
- Process recoverability
- Fail-safe computation

Summary

- Embedded processors/SOC is the major growth area with obvious challenges:
 - 1) 10x speed without increasing power
 - 2) 10^{-6} less power with the same speed
 - 3) 100x circuit complexity with same design effort.
- *Beyond this the real challenge is in system design: new system concepts, interconnect technologies, IP management and design tools.*