

NGOING LINIVERSIT

Y

D

数值分析第一章
1.1(1) 有限次四则运算
(2)尽量避免两个相近数作减法计算
为母绝对传证小子为子绝对值
(3) 数值分析处理截断误差和含为误差
(4) 有效数字越多相对误差越小
1.3 次,=0.3040 →有交级线4
→ S(X1) 误差限 0.5 × 10 ⁻⁴
$\rightarrow \sum_{r}(\chi_{i})$ 相对误差限 $\frac{\sum(x_{i})}{\chi_{i}} = 1.64 \times 10^{-4}$
1.5 正剂的面积误差算法 △S=2L·△L
1-6 跑步成绩误差 t'=tx LfOL
1.11 精确度改进方法
$0 y = \frac{1}{1+2x} - \frac{1-x}{1+x} \implies \frac{2x^2}{(1+2x)(1+x)} = \frac{2}{5} - \frac{1}{5}$
$0 y = \frac{1}{1+2x} - \frac{1-x}{1+x} \implies \frac{2x^2}{(1+2x)(1+x)} = \frac{2}{5} - \frac{2}{1+2x} = \frac{2}{5} - \frac{2}{1+2x} = \frac{2}{5} - \frac{2}{1+2x} = \frac{2}{5} - \frac{2}{1+2x} = \frac{2}{5} - \frac{2}{5} - \frac{2}{5} = \frac{2}{5} - \frac{2}{5} = \frac{2}{5} - \frac{2}{5} = \frac{2}{5} - \frac{2}{5} = \frac{2}$
$3 y = \frac{1 - \cos 2x}{x} = \frac{2 \sin^2 x}{x} $
(4) y= sin(x+e)-sinx = 2(0s(x+€)sin € 415/€

布唐大学 CHONGQING UNIVERSITY

数值分析第二章

2.1(4) $A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$ ||A||,-光数 = max {1,3}=3 31线对值和65最大值 11A11z= teta ATA = (15) det (71-ATA) = (7-1 -1)=0 #特础 7 = 3±√5 ||A||2 = TAMAX =2.287 P(A) 港苑数 det (7I-A) = (7-1)(7-2)=0 7max = 2 P(A) = 2 cond (A) 2 = (|A||2 || A -1||2 ||A||a付於數 行绝对值和的最大值 2.1 (5)(6) 2.11(1) (211) (x1) = (4) /5 = ||A||n=6 ||A^T||n=3 ||b||n=6

重度大学

数值分本力 2 前
2-1 (1) Gauss i 為美 主方等为 O 计算中断
产元季太小·经考七省大
(2) Gauss 计算工作量取得针次 (点)
平分根法有军对任于正经外往 (内3)
迫赶注对角的价=对角 (5n-3)
→高具行艺
$ \begin{pmatrix} 231 & & & & & & & & & & $
→平分根法(对的谜)
A=LLT AFL
→ LU 9% \$
$A = LU$ $Ly = b \rightarrow y$ $Ux = y \rightarrow x$
一)追赶法
1等三对角矩阵有解片三角和下三角的条轮

在度大学 CHONGQING UNIVERSITY

数值分析第三章

致值分析第三章
3-2 Jacobi 选行法 Gauss-Seidei 选行法
3.4 母為
3.6. A= (1 a a) O IZ a a 1) B Jacobi 45 Ex
aai) 3 Jacobi 45 Ex
① i 序所有主于全区144万列式为正
ii 内有对和人
iii 习 Cholesky 分解
② ; 谱学经431
-> 特征信絕对伯的最大值
—> [A ij] > Sum [A i,j]
-> [A ij] > Sum [Ai,j]

在孩大学 CHONGQING UNIVERSITY

美殖分析第四章)

2.2 GAUSS 消去法	3.2 Jacobi #A
2.3 GAUSS 主元素的《到新	Gauss Seider &A
2.9 GAUSS-JORDANSASSA	SORIK
2.5 LUBAG	3.3 造代矩阵判收敛
Doulittle Sh	多 基分至同样中1 11分至为
Crout 323	*3.4 共华厄村新展
3月主元三角3万分。	•
2.6 LDUSA3	4.1 桑暴族 / 3处
Choleska BAZ	6幂法
平分相线	4.2 Jawbi 1/5
设进事务程度	*4.3 QR35
Gauss रेरे ते दिन्डीर	Hanseholder \$12
2.7 迫赶法	LR BAZ
2.8 范数 500 400 400 400 400 400 400 400 400 400	

```
* 未命名 - Notepad3
                                                                                         X
文件(F)
      编辑(E) 查看(V) 外观(P) 设置(S) 帮助(H)
            #2.2高斯消去法
     □def gauss_elimination(A, b):
 2
          n = len(b)
 3
          # 将A扩展成增广矩阵
          for i in range(n):
 5
              A[i].append(b[i])
 7
          # 前向消去过程
 8
          for i in range(n):
              for k in range(i+1, n):
10
                  factor = A[k][i] / A[i][i]
11
                  for j in range(i, n+1):
12
                     A[k][j] -= factor * A[i][j]
13
14
          # 回代过程
15
          x = [0 \text{ for i in range(n)}]
16
          for i in range(n-1, -1, -1):
17
              x[i] = A[i][n] / A[i][i]
18
              for k in range(i-1, -1, -1):
19
                  A[k][n] -= A[k][i] * x[i]
20
          return x
21
22
行 1/22
           列 5/9 字符 5/9 求值 --
                                 选定 --
                                         选行 --
                                                        578 字节 Unicode (UTF-8) CR+LF INS STD Python 脚本
                                                匹配 -/-
```

```
🥒 * 未命名 - Notepad3
                                                                                           X
      编辑(E) 查看(V) 外观(P) 设置(S) 帮助(H)
文件(F)
         #2.3列主元消去法
     □def pivot_gauss_elimination(A, b):
 2
          n = len(b)
 3
          #将A扩展成增广矩阵
          for i in range(n):
 5
              A[i].append(b[i])
 6
 7
          for i in range(n):
 8
              # 列主元选择
              max_row = max(range(i, n), key=lambda k: abs(A[k][i]))
10
              A[i], A[max_row] = A[max_row], A[i]
11
12
              for k in range(i+1, n):
13
                  factor = A[k][i] / A[i][i]
14
                  for j in range(i, n+1):
15
                      A[k][j] -= factor * A[i][j]
16
17
          x = [0 \text{ for i in range(n)}]
18
          for i in range(n-1, -1, -1):
19
              x[i] = A[i][n] / A[i][i]
20
              for k in range(i-1, -1, -1):
21
                  A[k][n] = A[k][i] * x[i]
22
          return x
23
24
行 1/24
           列 11 / 10 字符 11 / 10 求值 --
                                  选定 --
                                          选行 --
                                                 匹配 -/- 687 字节 Unicode (UTF-8) CR+LF INS STD Python 脚本
```

```
* 未命名 - Notepad3
                                                                                         X
                                                                                    文件(F)
      编辑(E) 查看(V) 外观(P) 设置(S) 帮助(H)
         #2.4GAUSS-JORDAN消去法
     □def gauss_jordan_elimination(A, b):
 2
          n = len(b)
 3
          # 将A扩展成增广矩阵
          for i in range(n):
 5
              A[i].append(b[i])
 6
 7
          for i in range(n):
 8
              # 归一化主对角线上的元素
              pivot = A[i][i]
10
              for j in range(i, n+1):
11
                  A[i][j] /= pivot
12
13
              for k in range(n):
14
                  if k != i:
15
                     factor = A[k][i]
16
                     for j in range(i, n+1):
17
                         A[k][j] -= factor * A[i][j]
18
19
          x = [A[i][n]  for i  in range(n)]
20
          return x
21
22
23
行 1/23
          列 20 / 19 字符 20 / 19 求值 --
                                 选定 --
                                         选行 --
                                                       572 字节 Unicode (UTF-8) CR+LF INS STD Python 脚本
                                                匹配 -/-
```

```
🥒 * 未命名 - Notepad3
                                                                                        X
      编辑(E) 查看(V) 外观(P) 设置(S) 帮助(H)
文件(F)
       #2.5LU分解法
 1
     □def lu_decomposition(A):
 2
          n = len(A)
 3
          L = [[0.0] * n for i in range(n)]
          U = [[0.0] * n for i in range(n)]
 5
 6
          for i in range(n):
 7
             L[i][i] = 1.0
 8
             for j in range(i, n):
                 sum_U = sum(L[i][k] * U[k][j] for k in range(i))
10
                 U[i][j] = A[i][j] - sum_U
11
12
             for j in range(i+1, n):
13
                 sum_L = sum(L[j][k] * U[k][i] for k in range(i))
14
                 L[j][i] = (A[j][i] - sum_L) / U[i][i]
15
16
          return L, U
17
18
19
行 1/19
          列 10/9 字符 10/9 求值 --
                               选定 --
                                      选行 -- 匹配 -/- 503 字节 Unicode (UTF-8) CR+LF INS STD Python 脚本
```

```
🥒 * 未命名 - Notepad3
                                                                                      X
                                                                                 编辑(E) 查看(V) 外观(P) 设置(S) 帮助(H)
文件(F)
         #2.6平方根分解法
     □def cholesky_decomposition(A):
 2
          n = len(A)
 3
          L = [[0.0] * n for i in range(n)]
 5
          for i in range(n):
 6
             for j in range(i+1):
 7
                 sum_L = sum(L[i][k] * L[j][k] for k in range(j))
 8
                 if i == j:
                     L[i][j] = (A[i][i] - sum_L) ** 0.5
10
                 else:
11
                     L[i][j] = (A[i][j] - sum_L) / L[j][j]
12
13
          return L
14
15
行 1/15
          列 11/10 字符 11/10 求值 --
                                选定 --
                                       选行 --
                                               匹配 -/- 403 字节 Unicode (UTF-8) CR+LF INS STD Python 脚本
```

```
🥒 * 未命名 - Notepad3
                                                                                        X
      编辑(E) 查看(V) 外观(P) 设置(S) 帮助(H)
文件(F)
     #2.7LDLT分解法
 1
     □def ldlt_decomposit 粘贴(A):
 2
          n = len(A)
 3
          L = [[0.0] * n for i in range(n)]
          D = [0.0] * n
 5
 6
          for i in range(n):
 7
             for j in range(i):
 8
                 sum_LDLT = sum(L[i][k] * L[j][k] * D[k] for k in range(j))
 9
                 L[i][j] = (A[i][j] - sum_LDLT) / D[j]
10
11
             sum_D = sum(L[i][k] * L[i][k] * D[k] for k in range(i))
12
             D[i] = A[i][i] - sum_D
13
             L[i][i] = 1.0
14
15
          return L, D
16
17
行 1/17
          列 12 / 11 字符 12 / 11 求值 -- 选定 -- 选行 -- 匹配 -/- 455 字节 Unicode (UTF-8) CR+LF INS STD Python 脚本
```

```
🥒 * 未命名 - Notepad3
                                                                                         X
     编辑(E) 查看(V) 外观(P) 设置(S) 帮助(H)
文件(F)
    #2.8追赶法
1
     □def tridiagonal_matrix_algorithm(a, b, c, d):
2
          n = len(d)
3
          c_{prime} = [0] * n
          d_{prime} = [0] * n
5
          c_{prime[0]} = c[0] / b[0]
7
          d_{prime[0]} = d[0] / b[0]
8
          for i in range(1, n):
10
             denominator = b[i] - a[i] * c_prime[i-1]
11
             c_prime[i] = c[i] / denominator
12
             d_{prime[i]} = (d[i] - a[i] * d_{prime[i-1]}) / denominator
13
14
          x = [0] * n
15
          x[-1] = d_prime[-1]
16
17
          for i in range(n-2, -1, -1):
18
             x[i] = d_prime[i] - c_prime[i] * x[i+1]
19
20
          return x
21
22
```

行 1 / 22 列 8 / 7 字符 8 / 7 求值 -- 选定 -- 选行 -- 匹配 -/- 536 字节 Unicode (UTF-8) CR+LF INS STD Python 脚本

```
🥒 * 未命名 - Notepad3
                                                                                         X
文件(F)
      编辑(E) 查看(V) 外观(P) 设置(S) 帮助(H)
         #3.2JACOBI迭代法
1
    □def jacobi_method(A, b, tolerance=1e-10, max_iterations=1000):
2
          import numpy as np
3
          n = len(A)
          x = np.zeros_like(b, dtype=np.double)
5
          x_new = np.zeros_like(x, dtype=np.double)
6
7
          for iteration in range(max_iterations):
8
             for i in range(n):
9
                 s1 = np.dot(A[i, :i], x[:i])
10
                 s2 = np.dot(A[i, i + 1:], x[i + 1:])
11
                 x_{new[i]} = (b[i] - s1 - s2) / A[i, i]
12
13
              if np.linalg.norm(x_new - x, ord=np.inf) < tolerance:</pre>
14
                 break
15
             x = x_new.copy()
16
17
          return x
18
19
```

行 1 / 19 列 14 / 13 字符 14 / 13 求值 -- 选定 -- 选行 -- 匹配 -/- 575 字节 Unicode (UTF-8) CR+LF INS STD Python 脚本

```
🥒 * 未命名 - Notepad3
                                                                                            X
文件(F)
      编辑(E) 查看(V) 外观(P) 设置(S) 帮助(H)
         #3.2GAUSS-SEIDEI 迭代法
 1
     □def gauss_seidel_method(A, b, tolerance=le-10, max_iterations=1000):
 2
          import numpy as np
 3
          n = len(A)
          x = np.zeros_like(b, dtype=np.double)
 5
 6
          for iteration in range(max_iterations):
 7
              x_new = np.copy(x)
 8
              for i in range(n):
 9
                  s1 = np.dot(A[i, :i], x_new[:i])
10
                  s2 = np.dot(A[i, i + 1:], x[i + 1:])
11
                  x_{new[i]} = (b[i] - s1 - s2) / A[i, i]
12
13
              if np.linalg.norm(x_new - x, ord=np.inf) < tolerance:</pre>
14
                  break
15
16
              x = x_new
17
          return x
18
19
20
行 1/20
           列 17 / 19 字符 17 / 19 求值 --
                                  洗定 --
                                          选行 --
                                                  匹配 -/- 567 字节 Unicode (UTF-8) CR+LF INS STD Python 脚本
```

```
🥒 * 未命名 - Notepad3
                                                                                      X
文件(F) 编辑(E) 查看(V) 外观(P) 设置(S) 帮助(H)
     #4.2乘幂法
 1
     □def power_method(A, tol=1e-10, max_iter=1000):
 2
          n = len(A)
 3
          b_k = [1.0 \text{ for } \_ \text{ in range(n)}]
 4
 5
          for _ in range(max_iter):
 6
              # 计算A * b_k
 7
              b_k1 = [sum(A[i][j] * b_k[j] for j in range(n)) for i in range(n)]
 8
 9
              # 计算新的b_k1的模长
10
              b_k1_norm = sum(x**2 for x in b_k1) ** 0.5
11
12
              # 归一化b_k1
13
              b_k = [x / b_k1_norm for x in b_k1]
14
15
              # 检查收敛性
16
              if sum((b_k1[i] / b_k1_norm - b_k[i])**2 for i in range(n)) < tol:</pre>
17
                  break
18
19
          # 计算特征值
20
          eigenvalue = sum(A[i][j] * b_k[j] for i in range(n) for j in range(n)) / sum(b_k)
21
22
          return eigenvalue, b_k
23
24
      # 示例矩阵
25
     ∃A = [
26
          [4, 1],
27
          [2, 3]
28
29
      eigenvalue, eigenvector = power_method(A)
30
      print("最大特征值:", eigenvalue)
31
      print("对应特征向量:", eigenvector)
32
33
行 1/33
           列 5/7 字符 5/7 求值 --
                                                 匹配 -/- 891 字节 Unicode (UTF-8) CR+LF INS STD Python 脚本
                                  洗定 --
                                          选行 --
```

🥒 * 未命名 - Notepad3 编辑(E) 查看(V) 外观(P) 设置(S) 帮助(H) 1 #4.7JACOBI法 2 pdef jacobi_method(A, tol=1e-10, max_iter=1000): import math 3 4 def max_off_diag(A): 5 n = len(A)6 7 max_val = 0 k = 0 8 1 = 0 9 10 for i in range(n): for j in range(i + 1, n): 11 12 if abs(A[i][j]) > max_val: 13 $\max_{val} = abs(A[i][j])$ 14 k = i15 1 = j 16 return max_val, k, l 17 def rotate(A, P, k, l): 18 19 n = len(A)20 if A[k][k] != A[l][l]: tau = (A[1][1] - A[k][k]) / (2 * A[k][1])21 t = math.copysign(1 / (abs(tau) + math.sqrt(1 + tau * tau)), tau) 22 23 t = 1 if A[k][l] > 0 else -1 24 c = 1 / math.sqrt(1 + t * t)25 s = t * c 26 27 for i in range(n): 28 29 if i != k and i != l: $A_{ik} = A[i][k]$ 30 31 $A_{il} = A[i][l]$ $A[i][k] = c * A_ik - s * A_il$ 32 33 A[k][i] = A[i][k]34 $A[i][l] = c * A_il + s * A_ik$ A[l][i] = A[i][l]35 36 $A_kk = A[k][k]$ 37 $A_{ll} = A[l][l]$ 38 $A_{kl} = A[k][l]$ 39 $A[k][k] = c * c * A_kk - 2 * c * s * A_kl + s * s * A_ll$ $A[1][1] = s * s * A_kk + 2 * c * s * A_kl + c * c * A_ll$ 40 41 A[k][1] = 042 A[l][k] = 043 44 for i in range(n): 45 $P_{ik} = P[i][k]$ 46 $P_{il} = P[i][l]$ 47 $P[i][k] = c * P_ik - s * P_il$ $P[i][l] = c * P_il + s * P_ik$ 48 49 50 n = len(A)P = [[1 if i == j else 0 for j in range(n)] for i in range(n)] 51 for i in range(max_iter): 52 \max_{val} , k, l = \max_{val} off_diag(A) 53 if max_val < tol: 54 55 break rotate(A, P, k, l) 56 57 eigenvalues = [A[i][i] for i in range(n)] 58 59 eigenvectors = [P[i] for i in range(n)] 60 return eigenvalues, eigenvectors 61 # 示例矩阵 62 63 ₽A = [[4, -2, 2], 64 [-2, 4, -2],65 [2, -2, 4]66] 67 68 eigenvalues, eigenvectors = jacobi_method(A) 69 print("特征值:", eigenvalues) 70 print("特征向量:", eigenvectors) 71

X