PUBLIC TRANSPORTATION EFFICIENCY ANALYSIS

Phase5 Submission:

INTRODUCTION:

Public Transportation Efficiency Analysis Table of Contents

- Project Overview
- Motivation
- Features
- Data Sources
- Dependencies
- Getting Started
- Installation
- Configuration
- Usage
- Data Analysis
- Contributing
- License

Project Overview

The Public Transportation Efficiency Analysis project is a data analysis and visualization platform that aims to assess and optimize the efficiency of public transportation systems. It leverages data from various sources to provide insights into transit operations, passenger flows, and overall system performance. This project offers tools and visualizations to support transportation authorities and urban planners in making data-driven decisions for improving public transportation.

Motivation

Efficient and reliable public transportation is crucial for urban sustainability and quality of life. This project is motivated by the need to:

- Understand how well public transportation systems are operating.
- Identify areas for improvement to enhance service quality and reduce congestion.
- Enable transportation authorities to allocate resources effectively.

• Provide data-driven insights for decision-making and policy adjustments.

Features

- **Data Integration**: Collect and integrate data from various sources, including transit agencies, GPS trackers, and passenger feedback.
- **Real-time Tracking**: Monitor and analyze real-time transit data to assess delays and service disruptions.
- **Route Optimization**: Suggest route optimizations to reduce travel times and improve passenger experience.
- **Data Visualization**: Create interactive dashboards and reports for visualizing transportation system performance.
- **Performance Metrics**: Calculate key performance indicators (KPIs) such as on-time performance, capacity utilization, and passenger satisfaction.

Data Sources

- Public transportation agencies' data feeds (GTFS, real-time data).
- GPS tracking data from vehicles.
- Passenger feedback and surveys.
- Open data sources related to urban mobility.

Dependencies

Before getting started, ensure that you have the following dependencies installed:

- Python 3.x
- Jupyter Notebook
- Pandas
- Matplotlib
- Seaborn
- Plotly
- Folium
- [Other project-specific libraries]

Getting Started

To set up and run the project, follow these steps:

Installation

- Clone the repository:
- bashCopy code

clone https://github.com/your-username/public-transportanalysis.git

- Install project dependencies:
- bashCopy code

Configuration

 Configure the project by editing the settings file, config.yaml. Specify data sources, API keys, and other relevant parameters.

Usage

To run the project, execute the Jupyter Notebooks or Python scripts provided in the project directory. These scripts will collect, analyze, and visualize public transportation data.

Data Analysis

The project offers various Jupyter Notebooks for data analysis and visualization. You can explore these notebooks to gain insights into public transportation efficiency and performance.

Contributing

Contributions to this project are welcome. If you'd like to contribute, please follow our contribution guidelines.

License

This project is licensed under the <u>MIT License</u>. You are free to use and modify the code as long as you follow the terms of the license.

```
python
import pandas as pd

# Load data from a CSV file (replace 'your_data.csv' with the actual file path)
data = pd.read_csv('your_data.csv')

# Basic data exploration
print("Data Overview:")
print(data.head()) # Display the first few rows of data

# Calculate key metrics
# Example 1: Average passenger load per route
average_load_per_route = data.groupby('Route')['PassengerLoad'].mean()

# Example 2: On-time performance
data['OnTime'] = data['ActualArrivalTime'] <= data['ScheduledArrivalTime']
on_time_performance = data['OnTime'].sum() / len(data) * 100 # Percentage of on-time arrivals

print("\nAverage Load per_route)
```

```
print("\nOn-Time Performance:")
print(f"On-Time Percentage: {on time performance:.2f}%")
```

More analysis can be performed, such as identifying routes with consistently low on-time performance, optimizing schedules, and more.

```
%matplotlib inline
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
import datetime
import os
from math import sqrt
import warnings

## For Multiple Output in single cell
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
warnings.filterwarnings('ignore')

data = pd.read_csv('../input/unisys/ptsboardingsummary/20140711.CSV')
data.shape
data.head(10)
```

TripID	RouteID	StopID	StopName	WeekBeginnin g	NumberOfBoa rdings	
0	23631	100	14156	181 Cross Rd	2013-06-30 00:00:00	1
1	23631	100	14144	177 Cross Rd	2013-06-30 00:00:00	1
2	23632	100	14132	175 Cross Rd	2013-06-30 00:00:00	1
3	23633	100	12266	Zone A Arndale Interchange	2013-06-30 00:00:00	2
4	23633	100	14147	178 Cross Rd	2013-06-30 00:00:00	1
5	23634	100	13907	9A Marion Rd	2013-06-30 00:00:00	1

6	23634	100	14132	175 Cross Rd	2013-06-30 00:00:00	1
7	23634	100	13335	9A Holbrooks Rd	2013-06-30 00:00:00	1
8	23634	100	13875	9 Marion Rd	2013-06-30 00:00:00	1
9	23634	100	13045	206 Holbrooks Rd	2013-06-30 00:00:00	1

```
out_geo = pd.read_csv('../input/outgeo/output_geo.csv')
out_geo.shape
out_geo.head()
```

(4165, 10)

Out[3]:

										0 4 6 [0] .
	accurac y	formatt ed_add ress	google_ place_i d	input_st ring	latitude	longitud e	number _of_res ults	postcod e	status	type
0	ROOFT OP	181 Cross Rd, Westbo urne Park SA 5041, Australi a	ChIJKT7 I9rbPsG oRVHM HkIy- Oyk	181 Cross Rd	- 34.9666 56	138.592 148	1	5041	ОК	street_a ddress
1	ROOFT OP	177 Cross Rd, Westbo urne Park SA 5041, Australi a	ChIJ- VFZ87b PsGoRyf VgC5qb PpE	177 Cross Rd	- 34.9666 07	138.592 301	1	5041	ОК	street_a ddress
2	ROOFT OP	175 Cross Rd, Westbo urne Park SA 5041, Australi a	ChlJIztli rbPsGo R38KRk 76kPFI	175 Cross Rd	- 34.9667 58	138.592 715	1	5041	ОК	street_a ddress

3	GEOME TRIC_CE NTER	Zone A Arndale Intercha nge - South side, Kilke	ChIJnOC 1hCPGs GORIWV CdhF1RI g	Zone A Arndale Intercha nge	- 34.8751 60	138.551 628	1	5009	ОК	bus_sta tion,est ablishm ent,poi nt_of_i nterest, tr
4	ROOFT OP	178 Cross Rd, Malvern SA 5061, Australi a	ChlJycNi ylvOsGo Rdhfq9 GKnpq0	178 Cross Rd	- 34.9649 60	138.611 477	1	5061	ОК	street_a ddress

External Features

In [4]:

```
#DistanceFromCentre: Distance measure from the city centre
#For Calculating Distance between centre with other bus stops by using
Longitude and Latitude
#we have used the Haversine formula
from math import sin, cos, sqrt, atan2, radians
def calc_dist(lat1,lon1):
    ## approximate radius of earth in km
    R = 6373.0
    dlon = radians(138.604801) - radians(lon1)
    dlat = radians(-34.921247) - radians(lat1)
    a = \sin(dlat / 2)**2 + \cos(radians(lat1)) * \cos(radians(-34.921247)) *
sin(dlon / 2)**2
    c = 2 * atan2(sqrt(a), sqrt(1 - a))
    return R * c
out_geo['dist_from_centre'] =
out_geo[['latitude','longitude']].apply(lambda x: calc_dist(*x), axis=1)
                                                                      In [6]:
out_geo.head()
```

accura cy	format ted_ad dress	google _place _id	input_ string	latitud e	longitu de	numbe r_of_r esults	postco de	status	type	dist_fr om_ce ntre	
0	ROOFT OP	181 Cross Rd, Westb ourne Park SA 5041, Austral	ChIJKT 719rbP sGoRV HMHkI y-Oyk	181 Cross Rd	- 34.966 656	138.59 2148	1	5041	OK	street_ addres s	5.1809 61
1	ROOFT OP	177 Cross Rd, Westb ourne Park SA 5041, Austral	ChIJ- VFZ87 bPsGo RyfVgC 5qbPp E	177 Cross Rd	- 34.966 607	138.59 2301	1	5041	OK	street_ addres s	5.1725 25
2	ROOFT OP	175 Cross Rd, Westb ourne Park SA 5041, Austral	ChIJIztI irbPsG oR38K Rk76kP FI	175 Cross Rd	- 34.966 758	138.59 2715	1	5041	OK	street_ addres s	5.1807 09
3	GEOM ETRIC_ CENTE R	Zone A Arndal e Interch ange - South side, Kilke	ChIJn0 C1hCP GsGoRI WvCdh F1RIg	Zone A Arndal e Interch ange	- 34.875 160	138.55 1628	1	5009	ОК	bus_st ation,e stablis hment, point_ of_inte rest,tr.	7.0575 49

4	ROOFT OP	178 Cross Rd, Malver n SA 5061, Austral	ChlJyc NiylvO sGoRd hfq9G Knpq0	178 Cross Rd	- 34.964 960	138.61 1477	1	5061	OK	street_ addres s	4.9000 99
---	-------------	---	---	--------------------	--------------------	----------------	---	------	----	------------------------	--------------

```
\#exp_data = out_geo.head(10)
##Fill the missing values with mode
out_geo['type'].fillna('street_address',inplace=True)
out_geo['type'] = out_geo['type'].apply(lambda x: str(x).split(',')[-1])
out_geo['type'].unique()
                                                                     Out[8]:
array(['street_address', 'transit_station', 'premise', 'political',
       'school', 'route', 'intersection', 'point_of_interest',
       'subpremise', 'real_estate_agency', 'university', 'travel_agency',
       'restaurant', 'supermarket', 'store', 'post_office'], dtype=object)
                                                                     In [9]:
data['WeekBeginning'] = pd.to_datetime(data['WeekBeginning']).dt.date
data['WeekBeginning'][1]
                                                                     Out[9]:
datetime.date(2013, 6, 30)
Data Aggregation
                                                                    In [10]:
#Combine the Geolocation and main input file to get final Output File.
data= pd.merge(data,out_geo,how='left',left_on = 'StopName',right_on =
'input_string')
data.head(5)
data.shape
```

Tri pID	Ro ut el D	Stop ID	Sto pN am e	We ekB egi nni ng	Nu mb erO fBo ard ing s	acc ura cy	for ma tte d_a ddr ess	goo gle _pl ace _id	inp ut_ stri ng	lati tud e	lon git ude	nu mb er_ of_ res ults	pos tco de	stat us	typ e	dist _fr om _ce ntr e	
0	23 63 1	100	141 56	181 Cro ss Rd	201 3- 06- 30	1	RO OF TO P	181 Cro ss Rd, We stb our ne Par k SA 504 1, Aus tral	Chi JKT 719 rbP sGo RV HM Hki y- Oy k	181 Cro ss Rd	- 34. 966 656	138 .59 214 8	1	504 1	ОК	str eet _ad dre ss	5.1 809 61
1	23 63 1	100	141	177 Cro ss Rd	201 3- 06- 30	1	RO OF TO P	177 Cro ss Rd, We stb our ne Par k SA 504 1, Aus tral ia	ChI J- VFZ 87b PsG oRy fVg C5 qb PpE	177 Cro ss Rd	- 34. 966 607	138 .59 230 1	1	504 1	ОК	str eet _ad dre ss	5.1 725 25
2	23 63 2	100	141 32	175 Cro ss Rd	201 3- 06- 30	1	RO OF TO P	175 Cro ss Rd, We stb our ne Par	Chl Jiztl irb PsG oR 38K Rk7 6kP	175 Cro ss Rd	- 34. 966 758	138 .59 271 5	1	504 1	ОК	str eet _ad dre ss	5.1 807 09

								k SA 504 1, Aus tral									
3	23 63 3	100	122 66	Zon e A Arn dal e Int erc han ge	201 3- 06- 30	2	GE OM ETR IC_ CE NT ER	Zon e A Arn dal e Int erc han ge - Sou th sid e, Kilk e	ChI Jn0 C1 hC PGs Go RI WV Cd hF1 RIg	Zon e A Arn dal e Int erc han ge	- 34. 875 160	138 .55 162 8	1	500 9	ОК	tra nsit _st ati on	7.0 575 49
4	23 63 3	100	141 47	178 Cro ss Rd	201 3- 06- 30	1	RO OF TO P	178 Cro ss Rd, Ma Iver n SA 506 1, Aus tral ia	Chl Jyc Niy IvO sGo Rd hfq 9G Kn pq 0	178 Cro ss Rd	- 34. 964 960	138 .61 147 7	1	506 1	ОК	str eet _ad dre ss	4.9 000 99

Out[10]:

Aggregate the Data According to Weeks and Stop names

- NumberOfBoardings_sum Number of Boardings within particular week for each Bus stop
- NumberOfBoardings_count Number of times data is recorded within week
- NumberOfBoardings_max Maximum number of boarding done at single time within week

```
grouped = data.groupby(['StopName', 'WeekBeginning', 'type'])
#grouped.head()

In [14]:
# st_week_grp1 =
pd.DataFrame(data.groupby(['StopName', 'WeekBeginning', 'type']).agg({'Number OfBoardings': ['sum', 'count']})).reset_index()
grouped =
data.groupby(['StopName', 'WeekBeginning', 'type']).agg({'NumberOfBoardings' : ['sum', 'count', 'max']})
grouped.columns = ["_".join(x) for x in grouped.columns.ravel()]

In [15]:
grouped.head(10)
grouped.columns
```

Out[15]:

			NumberOfBoardi ngs_sum	NumberOfBoardi ngs_count	NumberOfBoardi ngs_max
StopName	WeekBeginning	type			
1 Anzac Hwy	2013-06-30	street_address	1003	378	51
	2013-07-07	street_address	783	360	28
	2013-07-14	street_address	843	343	45
	2013-07-21	street_address	710	356	28
	2013-07-28	street_address	898	379	41
	2013-08-04	street_address	799	378	40
	2013-08-11	street_address	1012	358	71
	2013-08-18	street_address	793	333	41
	2013-08-25	street_address	897	354	45
	2013-09-01	street_address	1368	431	59

Out[15]:

Out[16]:

	StopName	WeekBeginnin g	type	NumberOfBoa rdings_sum	NumberOfBoa rdings_count	NumberOfBoa rdings_max
0	1 Anzac Hwy	2013-06-30	street_address	1003	378	51
1	1 Anzac Hwy	2013-07-07	street_address	783	360	28
2	1 Anzac Hwy	2013-07-14	street_address	843	343	45
3	1 Anzac Hwy	2013-07-21	street_address	710	356	28
4	1 Anzac Hwy	2013-07-28	street_address	898	379	41

In [17]:

```
st_week_grp1 =
pd.DataFrame(st_week_grp.groupby('StopName')["WeekBeginning"].count()).res
et_index()
st_week_grp1.head()
```

Out[17]:

	StopName	WeekBeginning
0	1 Anzac Hwy	54
1	1 Bartels Rd	54
2	1 Botanic Rd	54
3	1 Frome Rd	54
4	1 Fullarton Rd	54

In [18]:

```
#Gathering only the Stop Name which having all 54 weeks of Dat
aa = list(st_week_grp1[st_week_grp1['WeekBeginning'] == 54]['StopName'])
aa[1:10]
```

```
Out[18]:
['1 Bartels Rd',
 '1 Botanic Rd',
 '1 Frome Rd',
 '1 Fullarton Rd',
 '1 George St',
 '1 Glen Osmond Rd',
 '1 Goodwood Rd',
 '1 Henley Beach Rd',
 '1 Kensington Rd']
                                                                                In [19]:
bb = st_week_grp[st_week_grp['StopName'].isin(aa)]
bb.head()
bb.<u>shape</u>
type(bb)
                                                                                Out[19]:
                          WeekBeginnin
                                                   NumberOfBoa
                                                                NumberOfBoa
                                                                             NumberOfBoa
             StopName
                                       type
                                                   rdings_sum
                                                                rdings_count
                                                                             rdings_max
             1 Anzac Hwy
                          2013-06-30
                                       street address
                                                   1003
                                                                378
                                                                             51
             1 Anzac Hwy
                          2013-07-07
                                       street address
                                                   783
                                                                360
                                                                             28
 2
                          2013-07-14
                                                                343
                                                                             45
             1 Anzac Hwy
                                       street address
                                                   843
 3
                          2013-07-21
                                                   710
             1 Anzac Hwy
                                       street address
                                                                356
                                                                             28
 4
             1 Anzac Hwy
                          2013-07-28
                                       street address
                                                   898
                                                                379
                                                                             41
                                                                                Out[19]:
(175446, 6)
                                                                                Out[19]:
pandas.core.frame.DataFrame
                                                                                In [20]:
#removing the stoppage which are not having the data of whole 54 weeks
new_data = data[data['StopName'].isin(aa)]
new_data.<u>shape</u>
print("data without stopage removing: ", data.shape)
print("data, after removing stoppage not having the data of whole 54
weeks: ", new_data.shape)
```

Out[20]:

```
(10567931, 11)
data without stopage removing: (10857234, 11)
data, after removing stoppage not having the data of whole 54 weeks:
(10567931, 11)
                                                                              In [21]:
new_data.\underline{head}(2)
filtered_data = new_data[new_data['dist_from_centre'] <= 100]</pre>
filtered_data.shape
                                                                              Out[21]:
                                     WeekB
                                            Numbe
                                                                                dist_fr
                             StopNa
                                                   latitud
                                                          longitu
               Routel
                                                                 postco
        TripID
                      StopID
                                     eginni
                                            rOfBoa
                                                                        type
                                                                                om_ce
                             me
                                                          de
                                                                 de
                                     ng
                                            rdings
                                                                                ntre
                             181
                                                                        street_
                                     2013-
                                                          138.59
                                                                                5.1809
 0
                                                                 5041
        23631
               100
                      14156
                             Cross
                                            1
                                                   34.966
                                                                        addres
                                     06-30
                                                          2148
                                                                                61
                             Rd
                                                   656
                             177
                                                                        street
                                     2013-
                                                                                5.1725
                                                          138.59
                                            1
                                                                 5041
 1
        23631
               100
                      14144
                             Cross
                                                   34.966
                                                                        addres
                                     06-30
                                                          2301
                                                                                25
                             Rd
                                                   607
                                                                              Out[21]:
(10341468, 11)
                                                                              In [22]:
data = filtered_data.copy()
data.shape
                                                                              Out[22]:
(10341468, 11)
                                                                              In [23]:
#No of boarding for each stopage in all weeks
#bb["StopName"].groupby(NumberOfBoardings_sum)
stopageName_with_boarding =
bb.groupby(['StopName']).agg({'NumberOfBoardings_sum': ['sum']})
\#stopageName_with_boarding.columns = ["_".join(x)] for x in
stopageName_with_boarding.columns.ravel()]
#stopageName_with_boarding.head()
stopageName_with_boarding =
pd.DataFrame(stopageName_with_boarding.reset_index())
```

In [24]:

```
#type(stopageName_with_boarding)
stopageName_with_boarding.columns = ["StopName",
"Total_boarding_on_the_stopage"]
#stopageName_with_boarding.shape
stopageName_with_boarding.head()
```

Out[24]:

	StopName	Total_boarding_on_the_stopage
0	1 Anzac Hwy	39429
1	1 Bartels Rd	8412
2	1 Botanic Rd	14868
3	1 Frome Rd	67458
4	1 Fullarton Rd	585

In [25]:

save the aggregate data
#bb.to_csv('st_week_grp.csv', index=False)

Data Exploration

In [26]:

data.nunique()
#data.isnull().sum()
#data['WeekBeginning'].unique()

Out[26]:

TripID	39211
RouteID	616
StopID	5838
StopName	3127
WeekBeginning	54
NumberOfBoardings	359
latitude	2393
longitude	2379
postcode	138
type	8
dist_from_centre	2397
dtype: int64	

Data Visualization

In [27]:

```
##can assign the each chart to one axes at a time
fig,axrr=plt.subplots(2,2,figsize=(15,15))
ax=axrr[0][0]
ax.set_title("No of Boardings")
data['NumberOfBoardings'].value_counts().sort_index().head(20).plot.bar(ax
=axrr[0][0])
ax=axrr[0][1]
ax.set_title("WeekBeginning")
data['WeekBeginning'].value_counts().plot.area(ax=axrr[0][1])
ax=axrr[1][0]
ax.set_title("most Busiest Route")
data['RouteID'].value_counts().head(10).plot.bar(ax=axrr[1][0])
ax=axrr[1][1]
ax.<u>set_title("least Busiest Route")</u>
data['RouteID'].value_counts().tail(10).plot.bar(ax=axrr[1][1])
                                                                     Out[27]:
Text(0.5,1,'No of Boardings')
                                                                     Out[27]:
<matplotlib.axes._subplots.AxesSubplot at 0x7ff880af0940>
                                                                     Out[27]:
Text(0.5,1,'WeekBeginning')
                                                                     Out[27]:
<matplotlib.axes._subplots.AxesSubplot at 0x7ff709a6bb38>
                                                                     Out[27]:
Text(0.5,1,'most Busiest Route')
                                                                     Out[27]:
<matplotlib.axes._subplots.AxesSubplot at 0x7ff709a48e10>
                                                                     Out[27]:
Text(0.5,1,'least Busiest Route')
                                                                     Out[27]:
<matplotlib.axes._subplots.AxesSubplot at 0x7ff736bbafd0>
```


In [28]:

stopageName_with_boarding =
stopageName_with_boarding.sort_values('Total_boarding_on_the_stopage',
ascending = False)
#stopage with most no of boarding
stopageName_with_boarding.head(10)

Out[28]:

		040[20].
	StopName	Total_boarding_on_the_stopage
3054	I2 North Tce	628859
3125	X1 King William St	622099
3032	F2 Grenfell St	604149
3130	X2 King William St	583227
3021	E1 Currie St	550396
3207	Zone C Paradise Interchange	547709

3015	D1 King William St	541046
3211	Zone C Tea Tree Plaza Intercha	451960
3025	E3 Currie St	399351
3039	G3 Grenfell St	356518

In [29]:

#stopage with least no of boarding
stopageName_with_boarding.tail(10)

Out[29]:

	StopName	Total_boarding_on_the_stopage
1845	45 Mcintyre Rd	292
2318	57 Philip Hwy	281
2732	75B Frick St	275
58	109 Regency Rd	274
1633	39D Glenloth Dr	266
170	127 Lyndoch Rd	264
3086	Strathalbyn South Tce	227
1231	31 Glenroy St	221
558	19 Gilles Rd	215
294	145 The Esplanade	175

In [30]:

```
ax = stopageName_with_boarding.head(10).plot.bar(x='StopName',
y='Total_boarding_on_the_stopage', rot=90)
ax.set_title("most busiest stopage")
```

Out[30]:

Text(0.5,1,'most busiest stopage')

Text(0.5,1,'least busiest stopage')

```
In [31]:

ax = stopageName_with_boarding.tail(10).plot.bar(x='StopName',
y='Total_boarding_on_the_stopage', rot=90)

ax.set_title("least busiest stopage")

Out[31]:
```


Out[33]:

	dist_from_centre	NumberOfBoardings
0	0.000018	1892435
1	0.131368	167535
2	0.309089	356518
3	0.314937	1484824

```
0.326005
                                                       120061
                                                                          Out[33]:
Index(['dist_from_centre', 'NumberOfBoardings'], dtype='object')
                                                                          Out[33]:
                            dist_from_centre
                                                       NumberOfBoardings
 2392
                            86.471064
                                                       18905
 2393
                            94.826409
                                                       321
 2394
                            99.625655
                                                       1101
 2395
                            99.665190
                                                       4373
 2396
                            99.748995
                                                       21216
                                                                          In [34]:
import plotly.graph_objs as go
from plotly.offline import iplot
trace0 = go.Scatter(
    x = bb_grp['dist_from_centre'],
    y = bb_grp['NumberOfBoardings'], mode = 'lines+markers', name = 'X2 King
William St')
data1 = [trace0]
layout = <u>dict</u>(title = 'Distance Vs Number of boarding',
               xaxis = dict(title = 'Distance from centre'),
               yaxis = dict(title = 'Number of Boardings'))
fig = dict(data=data1, layout=layout)
iplot(fig)
                                                                          In [35]:
#clustering Technique// based on the distance from city centre
x = data["dist_from_centre"]
distance_10 = []
distance_10_50 = []
distance_50_100 = []
#distance_100_ = []
distance_100_more = []
total = 0
outlier = []
```

outlier_ = 0
for i in x:

```
if(i<=10):
        distance_10.append(i)
        total += 1
    elif(i<=50):
        distance_10_50.append(i)
        total += 1
    elif(i<=100):
        distance_50_100.append(i)
        total += 1
    #elif(i>100 and i< 2000):
        #distance_100_more.append(i)
        #total += 1
    #elif(i>2000):
        #outlier.append(i)
        #outlier_ += 1
                                                                       In [36]:
print(outlier_)
0
                                                                       In [37]:
y = \underline{len}(distance_10) + \underline{len}(distance_10_50) + \underline{len}(distance_50_100)
#+len(distance_100_more)
#print(y)
#print(total)
                                                                       In [38]:
print(total)
print("passangers, boarding the buses in the radious of 10Km from the city
center = ", (len(distance_10)/total)*100)
print("passanger, boarding the buses from the distance of 10Km to 50Km
from the city center = ", (len(distance_10_50)/total)*100)
print("passanger, boarding the buses from the distance of 50Km to 100 from
the city center = ", (len(distance_50_100)/total)*100)
#print("passanger, boarding the buses from the distance of 100Km and more
from the city center = ", (len(distance_100_more)/total)*100)
10341468
passangers, boarding the buses in the radious of 10Km from the city center
= 64.31275521038212
passanger, boarding the buses from the distance of 10Km to 50Km from the
```

```
city center = 33.16731241638035
passanger, boarding the buses from the distance of 50Km to 100 from the
city center = 2.5199323732375327
                                                                     In [39]:
#busiest route on weekly basis
#data.head(10)
# st_week_grp1 =
pd.DataFrame(data.groupby(['StopName','WeekBeginning','type']).agg({'Number
OfBoardings': ['sum', 'count']})).reset_index()
grouped_route = data.groupby(['RouteID']).agg({'NumberOfBoardings':
['sum', 'max']})
grouped_route.columns = ["_".join(x) for x in
grouped_route.columns.ravel()]
                                                                     In [40]:
"""grouped_route = grouped_route.head().reset_index()
type(grouped_route)
grouped_route = grouped_route.sort_values("NumberOfBoardings_sum",
ascending = True)
#stopageName_with_boarding =
stopageName_with_boarding.sort_values('Total_boarding_on_the_stopage',
ascending = False)
#stopage with most no of boarding
#stopageName_with_boarding.head(10)
#grouped_route["NumberOfBoardings_sum"] =
grouped_route["NumberOfBoardings_sum"] / 365
grouped_route.head(10)
grouped_route.shape"""
                                                                     Out[40]:
'grouped_route =
grouped_route.head().reset_index()\ntype(grouped_route)\ngrouped_route =
grouped_route.sort_values("NumberOfBoardings_sum", ascending =
True)\n#stopageName_with_boarding =
stopageName_with_boarding.sort_values(\'Total_boarding_on_the_stopage\',
ascending = False)\n#stopage with most no of
boarding\n#stopageName_with_boarding.head(10)\n#grouped_route["NumberOfBoa
rdings_sum"] = grouped_route["NumberOfBoardings_sum"] /
365\ngrouped_route.head(10)\ngrouped_route.shape'
```

. . . .

```
In [41]:
"""route_data = grouped_route[grouped_route['RouteID'] == "G10"]
route_data.head()"""

Out[41]:
'route_data = grouped_route[grouped_route[\'RouteID\'] ==
"G10"]\nroute_data.head()'
```