Probabilidad y Análisis de Datos

Daniel Fraiman

Maestría en Ciencia de Datos, Universidad de San Andrés

1/36

Basket market

Aplicaciones en espacios grandes discretos

Supongamos que estamos interesados en entender:

"qué y cómo compra una persona cuando va al supermercado"

- En el supermercado hay N items
- Una compra es: $\mathbf{X} = (X_1, X_2, ..., X_N)$, con $X_i = \{0, 1\}$ (no compró, compró).

3/36

Aplicaciones en espacios discretos grandes discretos

Supongamos que estamos interesados en entender:

"qué y cómo compra una persona cuando va al supermercado"

Concretamente

Objetivo: Identificar productos que tiendan a comprarse de forma conjunta.

Con el fin de:

- situarlos en posiciones cercanas dentro de la tienda y maximizar la probabilidad de que los clientes compren.
- presentar nuevos combos de productos al consumidor de manera de aumentar las ventas.
- Si es una compra web, sugerir otros productos.

Aplicaciones en espacios discretos grandes discretos

Customers Who Bought This Item Also Bought

Pattern Recognition and Machine Learning (Information Science and Christopher Bishop 115 Hardcover \$60.76 Prime

Learning From Data Yaser S. Abu-Mostafa 会会会会。 Bardcover

The Elements of Statistical Learning: Data Mining, Inference, and Prediction,... Trevor Hastle 50 Hardcover \$62.82 Prime

Probabilistic Graphical Models: Principles and Techniques (Adaptive... Daphne Koller

5/36

Reglas de Asociación e items frecuentes

El problema matemático es el siguiente:

Supongamos que sabemos que la persona tiene en su carrito de compras los productos A y B, ¿hay altas chances de que compre T si lo encuentra antes de llegar a la caja?

Llamemos S al evento que tiene las compras actuales.

$$S = A \cap B$$
, $S \to T$?

¿Le recomendamos T?

Reglas de Asociación e items frecuentes

Problema matemático:

Dado S, ¿cuál es el producto T que maximiza la probalidad de compra? Llamemos $\Theta^[-S]$ al conjunto que tiene a todos los productos del supermercado menos los que ya fueron comprados S.

$$T = \underset{Y \in \Theta^{-S}}{argmax} \mathbb{P}(Y|S)$$

• En realidad estaremos interesados en ordenar los productos según su probabilidad. Quizás ofrecemos los 5 primeros.

7/36

Reglas de Asociación e items frecuentes

Objetivo:

Estimar $\mathbb{P}(Y|S)$ para todo $Y \in \Theta$.

Recordemos:

$$\mathbb{P}\left(Y|S\right) = \frac{\mathbb{P}(Y \cap S)}{\mathbb{P}(S)} \text{ con } \mathbb{P}\left(S\right) > 0.$$

Estimación:

Basado en la historia de compras (tickets):

•
$$\mathbb{P}(S) \approx \frac{\#\{\text{tickets con } S\}}{\#\{\text{tickets}\}}$$

•
$$\mathbb{P}(Y \cap S) \approx \frac{\#\{\text{tickets con } Y \text{ y } S\}}{\#\{\text{tickets}\}}$$

Reglas de Asociación e items frecuentes

Dificultad en la estimación:

El conjunto Θ es muy grande (N), por lo tanto el Espacio de Probabilidad de compras será gigante (2^N), no tendremos una muestra (historia de compras) suficientemente grande y entonces las estimaciones tendrán mucho error (o varianza).

• Pero independiente de lo anterior, no nos interesan realmente los productos Y con $\mathbb{P}(Y|S) << 1$.

Nuevo planteo

Vamos a pedir:

- $\mathbb{P}(S \cap T) \ge s$, con *s* algún valor prefijado.
- $\mathbb{P}(T|S) \ge c$, con c algún valor prefijado.

9/36

Reglas de Asociación e items frecuentes

Nuevo planteo

Vamos a pedir:

- $\mathbb{P}(S \cap T) \ge s$, con *s* algún valor prefijado.
- $\mathbb{P}(T|S) \ge c$, con c algún valor prefijado.
- $Soporte(S \to T) = Soporte(T \to S) := \mathbb{P}(S \cap T) \ge s$, con s algún valor prefijado.
- Confianza($S \to T$):= $\mathbb{P}(T|S) \ge c$, con c algún valor prefijado.

Reglas de Asociación e items frecuentes

- $Soporte(S \to T) := \mathbb{P}(S \cap T) \ge s$, con s algún valor prefijado.
- Confianza($S \to T$):= $\mathbb{P}(T|S) \ge c$, con c algún valor prefijado.
- Soporte = "cuántas ventas $S \cap T$ espero tener"
- Confianza = qué confianza (chances) tengo en que compren el producto *T* recomendado cuando tienen *S*.

11/36

Reglas de Asociación e items frecuentes

En la práctica:

Ponemos un límite al tamaño de S y T. Por ejemplo |S| < 3 y |T| = 1, Si compró salchichas y pan (|S| = 2), ¿qué le ofrezco? ¿Y si compró ojotas y protector solar?

- Fijamos s (Soporte:= $\mathbb{P}(S \cap T) \ge s$)
- Fijamos c (Confianza:= $\mathbb{P}(T|S) \ge c$)
- Y damos todas las recomendaciones (T) para todos los conjuntos S compatibles con tener un soporte y una confianza mayor a S C.

Algoritmo a Priori: $\mathbb{P}(S \cap T) \geq s$

13/36

Algoritmo a Priori: $\mathbb{P}\left(S \cap T\right) =: \mathbb{P}\left(Z\right) \geq s$

Objetivo: Encontrar todos los conjuntos Z (con |Z| < k) que cumplen $\mathbb{P}(Z) \ge s$.

Algoritmo A Priori

- 1. Generar una lista con todos los conjuntos Z de tamaño 1.
- 2. k = 1.
- 3. Podar (prune) de la lista los candidatos Z de tamaño k que $\mathbb{P}(Z) < s$.
- 4. Generar todos los conjuntos Z' de tamaño k+1 que tienen como subconjunto a los elementos de la lista.
- 5. k = k + 1 y go to 3.

Algoritmo a Priori: $\mathbb{P}(Z) \geq s$

15/36

Algoritmo a Priori: $\mathbb{P}\left(Z\right) \geq \overline{s}$

Algoritmo a Priori: $\mathbb{P}(Z) \geq s$

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

17/36

Observación:

Propiedad:

Sea Z un conjunto de k items (|Z| = k) que tiene soporte c.

• Cualquier subconjunto, Z', no vacío de Z tiene soporte $\geq c$.

Demostración.

Supongamos que Z corresponde a los productos de las primeras k coordenadas del vector de compras.

$$s = \mathbb{P}(Z) = \mathbb{P}((X_1, X_2, \dots, X_k) = (1, 1, \dots, 1))$$

Z' es un subconjunto de Z, por ejemplo los dos primeros productos.

$$\mathbb{P}(Z') = \mathbb{P}((X_1, X_2) = (1, 1))$$

$$= \sum_{j_1, j_2, \dots, j_{k-2} \in \{0, 1\}} \mathbb{P}((X_1, X_2, X_3, \dots, X_k) = (1, 1, j_1, j_2, \dots, j_{k-2}))$$

$$= \mathbb{P}((X_1, X_2, \dots, X_k) = (1, 1, \dots, 1)) + \text{probabilidades}$$

$$= s + \text{probabilidades} \ge s$$

REGLAS DE ASOCIACIÓN

19/36

Reglas de Asociación

Una vez que tenemos nuestro listado con los distintos Z con soporte $\geq s$.

- **1** Particionamos cada Z. $S \cup T = Z$ con $S \cap T = \emptyset$.
- **2** Calculamos la confianza de la regla $S \to T$

(si compraste S te recomiendo T)

Reglas de Asociación

Supongamos que el conjunto de items $\{A, B, C\}$ es uno de los que tiene confianza $\geq s$

- Particionamos $\{A, B, C\}: S \to T$
 - $\{A\} \to \{B,C\}, \{B\} \to \{A,C\}, \{C\} \to \{A,B\}$ $\{A,B\} \to \{C\}, \{A,C\} \to \{B\}, \{B,C\} \to \{A\}$
- ② Calculamos la confianza de cada una de estas reglas de asociación $S \rightarrow T$.
- \odot Presentamos las que tienen confianza mayor a c.

21/36

Reglas de Asociación

Confianza

$$Confianza(S \to T) = \mathbb{P}(T|S) = \frac{\mathbb{P}(T \cap S)}{\mathbb{P}(S)} = \frac{Soporte(S \cup T)}{Soporte(S)}. \text{ (raro, ¿no?)}$$

Reglas de Asociación

Eventos

T =compra los artículos C y D. $\mathbf{X} = (X_1, X_2, 1, 1, X_5, \dots, X_N)$

S = compra el artículos A y B. $\mathbf{X} = (1, 1, X_3, X_4, X_5, \dots, X_N)$

 $T \cap S = \text{compra los } A, B, C, y D.$ $\mathbf{X} = (1, 1, 1, 1, X_5, \dots, X_N)$

$$confianza(S \to T) = \mathbb{P}(T|S) = \frac{\mathbb{P}(T \cap S)}{\mathbb{P}(S)}$$

Conjuntos de artículos

$$T = \{C, D\}.$$

$$S = \{A, B\}.$$

$$T \cup S = \{A, B, C, D\}.$$

$$Confianza(S \rightarrow T) = \frac{Soporte(S \cup T)}{Soporte(S)}$$

23/36

Reglas de Asociación

{Bread, Milk} \Longrightarrow {Diaper} $\dfrac{\text{Soporte}(\{\text{Bread, Milk, Diaper}\})}{\text{Soporte}(\{\text{Bread, Milk}\})} =$

Reglas de Asociación

Itemset Count
{Bread,Milk,Diaper}

25/36

Confianza

 $=\frac{3}{3}=100\%$

Reglas de Asociación

Reglas de Asociación con número de items fijos

Una vez que tenemos nuestro listado con los distintos Z con soporte $\geq s$.

- **1** Particionamos cada Z. $S \cup T = Z$ con $S \cap T = \emptyset$.
- 2 Calculamos la confianza de la regla $S \rightarrow T$

(si compraste S te recomiendo T)

Al fijar en número de items en la regla de asociación en |Z|. Donde $S \cup T = Z$ podemos podar el arbol de reglas de decisión.

27/36

Reglas de Asociación con número de items fijos

Al fijar en número de items en la regla de asociación en |Z|. Donde $S \cup T = Z$ podemos podar el arbol de reglas de decisión.

Supongamos que $Z = \{A, B, C, D\}$. Las posibles reglas son:

- $\bullet \ \{A,B\} \leftrightarrows \{C,D\}, \{A,C\} \leftrightarrows \{B,D\}, \{A,D\} \leftrightarrows \{B,C\}$

Propiedad:

Sea
$$S_1 \cup T_1 = Z$$
 y $S_2 \cup T_2 = Z$ con $dim(S_1) > dim(S_2)$. Se cumple
$$Confianza(S_1 \to T_1) \geq Confianza(S_2 \to T_2)$$

Reglas de Asociación con número de items fijos

Propiedad:

Sea
$$S_1 \cup T_1 = Z$$
 y $S_2 \cup T_2 = Z$ con $dim(S_1) > dim(S_2)$. Se cumple
$$Confianza(S_1 \to T_1) \geq Confianza(S_2 \to T_2)$$

Demostración.

$$Confianza(S_k \to T_k) = \frac{Soporte(Z)}{Soporte(S_k)}$$
 y como $Soporte(S_k) \ge Soporte(S_{k-1})$

29/36

Pruning de Reglas de Asociación

ALTERNATIVAS A LA CONFIANZA: LIFT, LEVERAGE

31/36

Confianza vs Lift

Confianza:

$$Confianza(S \to T) = \mathbb{P}(T|S)$$

Problema: ¿ Qué pasa si T se compra casi siempre?

- Entonces $\mathbb{P}(T|S)$ probablemente sea alto.
- Peor aún si S y T son indep $(\mathbb{P}(T|S) = \mathbb{P}(T))$ S no predice nada.

Lift:

$$Lift(S \to T) = \frac{\mathbb{P}(T|S)}{\mathbb{P}(T)} = \frac{Confianza(S \to T)}{Soporte(T)}$$

- S y T son indep $\leftrightarrow Lift(S \rightarrow T) = 1$.
- Recomendamos $S \to T$ cuando Lift > 1.

Confianza vs Lift

Comparación

- Confianza: medida que dice las chances de que se compre *T* cuando compraste *S*.
- Lift: medida que compara el grado de dependencia entre *S* y *T*. Mide cuán buena es la regla respecto al azar.

33/36

Otras medidas

Coverage:

$$Coverage(S o T) = \mathbb{P}\left(S\right) = Soporte(S) = \frac{Soporte(S o T)}{Confianza(S o T)} = \frac{\mathbb{P}\left(S \cap T\right)}{\mathbb{P}\left(T|S\right)}$$

Leverage:

$$Leverage(S \rightarrow T) = \mathbb{P}(S \cap T) - \mathbb{P}(S) \mathbb{P}(T)$$

$$Leverage(S \rightarrow T) = soporte(S \cup T) - soporte(S) soporte(T)$$

Added Value:

$$AD(S \rightarrow T) = \mathbb{P}(T|S) - \mathbb{P}(T) = confianza(S \rightarrow T) - soporte(T)$$

Reglas de Asociación con 😱

Paquete arules

- > transacciones = read.transactions(file = "datos_groceries.csv", format = "single", sep = ",",header = TRUE, cols = c("id_compra", ïtem"), rm.duplicates = TRUE)
- > soporte=0.1; confianza=0.7
- > reglas=apriori(data = transacciones, parameter = list(Support = soporte, confidence = confianza)) #, minlen = 3, maxlen = 5
- > inspect(reglas)

35/36

Resumen

- Confianza: medida que dice las chances de que se compre T cuando compraste S.
- Lift: medida que compara el grado de dependencia entre S y T. Mide que tan buena es la regla respecto al azar.
- Soporte de la regla: indica el impacto en término de ventas totales.