

Estatística Experimental – GES102

Aula: Introdução à Regressão

Miguel C. Nascimento

16 de maio de 2025 Lavras – MG

1. Relações entre Variáveis Quantitativas

Na Zootecnia, é comum estudar como variáveis quantitativas se relacionam. Esses estudos são fundamentais para:

- Identificar fatores que afetam o desempenho animal;
- Realizar modelagem de resposta;
- Ajustar recomendações técnicas de nutrição, ambiência, manejo, etc.

Exemplos práticos:

- Consumo de ração (X) vs. ganho de peso diário (Y)
- Nível de proteína na dieta (X) vs. produção de leite (Y)
- Densidade de lotação (X) vs. conversão alimentar (Y)

Objetivos da análise relacional:

- Descrever: como uma variável varia com a outra.
- Associar: verificar a força da relação.
- Predizer: estimar valores de uma variável a partir da outra.

2. Correlação

A correlação mede a força e a direção da relação linear entre duas variáveis quantitativas. Coeficiente de correlação de Pearson (r):

$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$
(1)

Interpretação:

Valor de r	Interpretação
Próximo de -1	Correlação forte positiva Correlação forte negativa Correlação fraca ou inexistente

ou ainda:

Valor de $ r $	Interpretação
$0.8 \le r \le 1.0$	Correlação forte
$0.5 \le r < 0.8$	Correlação moderada
$0.3 \le r < 0.5$	Correlação fraca
$0.0 \le r < 0.3$	Correlação desprezível

3. Regressão Linear Simples

A regressão estuda a relação funcional entre uma variável dependente Y e uma independente X:

$$Y = \beta_0 + \beta_1 X + \varepsilon \tag{2}$$

Onde:

- β_0 : intercepto (valor de Y quando X = 0);
- β_1 : coeficiente angular (mudança esperada em Y a cada unidade de X);
- ε : erro aleatório.

Objetivo: encontrar os valores estimados de β_0 e β_1 que melhor ajustam os dados.

4. Estimativa dos Parâmetros (Mínimos Quadrados)

Método dos Mínimos Quadrados (MMQ): minimiza a soma dos quadrados dos resíduos. Fórmulas:

$$\beta_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$
 (3)

$$\beta_0 = \bar{y} - \beta_1 \bar{x} \tag{4}$$

Etapas:

- Calcular as médias \bar{x} e \bar{y} .
- Montar a tabela com: $x, y, x^2, y^2, x \cdot y$.

• Aplicar as fórmulas.

Vamos fazer juntos!

Um experimento foi conduzido com novilhos mestiços Nelore em confinamento, com o objetivo de avaliar o efeito de diferentes níveis de consumo médio diário de ração (kg/dia) sobre o ganho médio diário de peso (kg/dia).

Foram avaliados cinco tratamentos com diferentes quantidades de ração: 5.0, 6.0, 7.0, 8.0 e 9.0 kg/dia. Para cada nível, foi calculado o ganho médio de peso dos animais.

Os dados obtidos foram:

X (Ração kg/dia)	Y (Ganho kg/dia)
5.0	0.8
6.0	1.0
7.0	1.2
8.0	1.4
9.0	1.6

5. Exemplo com Calculadora Científica

Passo a passo (Casio fx-82MS, fx-991, etc.):

- 1. Pressione MODE \rightarrow 2 (STAT)
- 2. Escolha 2 (Regressão A + BX)
- 3. Inserir pares (X, Y): ex: 5, 0.8 M+
- 4. SHIFT + 1 \rightarrow 5 (Reg) \rightarrow 1 (β_0), 2 (β_1), 3 (r)

Resultados esperados:

- $\beta_0 = -0.2$
- $\beta_1 = 0.2$
- r = 1.0

Equação: Y = -0.2 + 0.2XInterpretação:

 \bullet $\beta_1=0.2$: cada kg adicional de ração resulta, em média, em 0.2 kg de ganho de peso.

3

- $\beta_0 = -0.2$: ganho estimado com consumo 0 (sem valor prático).
- Predição: para $X=10 \rightarrow Y=-0.2+0.2 \cdot 10=1.8 \ \mathrm{kg}$

6. Exercício Final

Um experimento foi conduzido com cabras leiteiras da raça Saanen, com o objetivo de avaliar o efeito de diferentes níveis de suplementação com ração concentrada (g/dia) sobre a produção média diária de leite (L/dia).

Foram testados cinco níveis de ração (50, 75, 100, 125 e 150 g/dia), correspondendo a cinco tratamentos experimentais. Para cada tratamento, foi registrada a produção média de leite de um grupo representativo de animais.

Os dados médios obtidos foram os seguintes:

Dados:

Ração (g)	Produção (L/dia)
50	1.2
75	1.7
100	2.0
125	2.1
150	2.5

Tarefas:

- 1. Calcular médias de X e Y.
- 2. Estimar os coeficientes β_0 e β_1 .
- 3. Escrever a equação da reta.
- 4. Interpretar os coeficientes.
- 5. Estimar produção para 135 g de ração.