Problema 1. Determineu si els conjunts següents amb les operacions que s'indiquen són o no grups.

- 1. El conjunt dels nombres naturals N amb la suma.
 - $(\mathbb{N}, +)$ no és un grup, ja que contradiu la propietat de l'existència de l'element oposat. Per exemple, si prenem $2 \in \mathbb{N}$, el seu oposat respecte la suma seria -2, que no pertany a \mathbb{N} .
- 2. El conjunt dels nombres racionals $\mathbb Q$ amb la suma; el mateix conjunt, però amb el producte.
 - $(\mathbb{Q},+)$ és grup. Veiem que compleix les propietats:
 - Associativa: $\forall a, b, c \in \mathbb{Q}$, a + (b + c) = (a + b) + c, es compleix als racionals.
 - Element neutre: $\forall a \in \mathbb{Q}, \ 0+a=a+0=a, \ 0$ és l'element neutre.
 - Element invers: $\forall a \in \mathbb{Q}, \ a + (-a) = 0, \ -a \text{ \'es l'element invers.}$
 - (\mathbb{Q},\cdot) no és un grup, ja que contradiu la propietat de l'existència de l'element invers amb el 0:

Sigui
$$a=0,\ a\in\mathbb{Q}$$
; $1=a\cdot a^{-1}=0\cdot a^{-1}=0$, contradicció.

3. El conjunt $S^1 = \{z \in \mathbb{C} : |z| = 1\}$ amb el producte en \mathbb{C} .

 (S^1,\cdot) és grup. $S^1\subseteq\mathbb{C}\backslash\{0\},$ que és grup amb el producte. Veiem que el producte és intern:

Siguin
$$z_1, z_2 \in S_1$$
.

$$z_1 = a + bi$$

$$z_2 = c + di$$

$$|z_1| = \sqrt{(a+bi)(a-bi)} = \sqrt{a^2+b^2} = 1$$

 $|z_2| = \sqrt{(c+di)(c-di)} = \sqrt{c^2+d^2} = 1$

$$z_1 \cdot z_2 = ac - db + (ad + cb)i$$

$$|z_1 \cdot z_2| = \sqrt{(ac - db)^2 + (ad + cb)^2} = \sqrt{a^2c^2 - 2abcd + d^2b^2 + a^2d^2 + 2abcd + c^2b^2} = \sqrt{a^2(c^2 + d^2) + b^2(c^2 + d^2)} = \sqrt{(a^2 + b^2)(c^2 + d^2)} = \sqrt{a^2 + b^2} \cdot \sqrt{c^2 + d^2} = |z_1| \cdot |z_2| = 1$$

Per tant, $z_1 \cdot z_2 \in S_1$. Veiem que compleix les propietats:

• Associativa: com el producte és associatiu a \mathbb{C} , a S_1 també.

• Element neutre: a $\mathbb{C}\setminus\{0\}$, el neutre és $e=1+0\cdot i=1$. Vegem que 1 és també neutre a S^1 .

Sigui $z \in S^1$, |z| = 1. Per la mateixa raó d'abans, $S^1 \subseteq \mathbb{C} \setminus \{0\}$, i com $\mathbb{C} \setminus \{0\}$ és grup, $z \cdot 1 = z = 1 \cdot z$. Falta veure que $1 \in S^1$. En efecte, $|1|^2 = |1 + 0 \cdot i|^2 = 1^2 + 0^2 = 1$.

• Element invers: sigui $z \in S^1$, z = a + bi. Com z és unitari, sabem que el seu invers en $\mathbb{C} \setminus \{0\}$ és el seu conjugat a - bi, doncs $(a + bi)(a - bi) = a^2 + b^2 = 1$. Falta veure si $a - bi \in S^1$.

En efecte, $|\bar{z}|^2 = |a - bi|^2 = (a - bi)(a + bi) = a^2 + b^2 = 1$.

4. El conjunt dels polinomis $P_n = \{p(x) \in \mathbb{R} [x] : gr(p(x)) \leq n\}$ amb la suma habitual; el mateix conjunt, però amb el producte habitual.

$$(P_n,+)$$
 és grup.

Siguin $a(x), b(x) \in P_n$. Sabem que el grau dels polinomis no augmenta per la suma:

$$gr(a(x) + b(x)) = max \{gr(a(x)), gr(b(x))\} \le n,$$

Per tant la suma és interna: $a(x) + b(x) \in P_n$

Veiem que compleix les propietats:

• Associativa: $\forall a(x), b(x), c(x) \in P_n$, la suma

$$(a(x) + b(x)) + c(x) = a(x) + (b(x) + c(x))$$

és associativa ja que són polinomis.

- Element neutre: $\forall a(x) \in P_n, \ a(x) + 0 = a(x), 0$ és l'element neutre.
- Element invers: $\forall a(x) \in P_n$, a(x) + (-a(x)) = 0, -a(x) és l'element oposat (polinomi a(x) amb els signes canviats).

 (P_n, \cdot) no és un grup, ja que contradiu la propietat de l'element invers amb el 0

5. Sigui E un espai vectorial sobre un cos K; el conjunt dels endomorfismes $End(E) = \{f : E \to E \text{ aplicacions lineals}\}$ amb la composició.

 $(End(E), \circ)$ és un grup trivial quan $E = \{0\}$. Si $E \neq \{0\}$ no és un grup ja que l'aplicació, en general, no és necessàriament bijectiva i pot ser que els elements no tinguin invers. Per exemple, l'aplicació:

$$f: E \to E$$
$$\vec{u} \mapsto \vec{0}$$

no és injectiva, doncs Kerf = E i per tant no és bijectiva.

- 6. Sigui E un espai vectorial sobre un cos K; el conjunt dels endomorfismes de E que tenen invers, que denotarem per Aut(E), amb la composició.
 - $(Aut(E), \circ)$ és grup. L'operació és interna perquè la composició d'aplicacions bijectives és bijectiva. Veiem que compleix les propietats:
 - Associativa: com la composició a End(E) és associativa i $Aut(E) \subseteq End(E)$, també és associativa a Aut(E).
 - Element neutre: $\forall A \in Aut(E)$, $Id \circ A = A \circ Id = A$, Id és l'element neutre (aplicació identitat), i sabem per l'àlgebra lineal que és bijectiva i, per tant, $Id \in Aut(E)$.
 - Element invers: es compleix perquè ja ho suposem a la defició del grup $(Aut(E), \circ)$