

Fast and Memory-Efficient Exact Attention with IO-Awareness

2024.07.19

HPC Lab

홍성준, 박지연, 김유나

Contents Table

- 1 Abstract
- 2 Introduction
- 3 Background
- 4 FlashAttention
- 5 Experiments

1

Abstract

- ✓ Self-Attention의 시간 및 메모리 복잡도가 시퀀스 길이에 대해 제곱으로 비례하여, 긴 시퀀스에서는 느리고 메모리를 많이 소모한다.
- ✓ GPU HBM와 GPU on-chip SRAM 간의 메모리 Read & Write 횟수를 줄이기 위해,
 GPU에서 forward pass와 Backward pass를 구현하고, tiling을 사용하는 FlashAttention을 제안한다.
- ✓ 또한, Block-sparse Attention으로 확장하여 빠른 Approximate Attention을 제공한다.
- ✔ Flash Attention 및 Block-sparse Attention은 Transformer의 더 긴 Context의 입력을 가능하게 한다.

2

Introduction

- ✓ 이전 연구는, FLOP 감소에 집중하며 메모리 접근(IO)에 발생하는 오버헤드를 무시하는 경향이 있다.
- ✓ Attention Algorithm을 IO-aware로 만들기 위해,
 빠른 GPU on-chip SRAM과 상대적으로 느린 GPU HBM 사이의 Read & Write를 고려해야 한다.
- ✓ Flash Attention의 주요 목표는 Attention 행렬을 HBM에 읽고 쓰는 횟수를 줄이는 것이다.
- (1) 전체 입력에 접근하지 않고 Attention 계산을 재구성하여 입력을 **블록**으로 나누는 Tiling을 제안한다.
- (2) **Softmax normalization factor**를 Forward pass에 저장하여

 Backward pass에서는 SRAM에서 Attention을 빠르게 **Recomputation**할 수 있도록 한다.

Memory Hierarchy

- ✓ GPU 메모리 계층은 크기와 속도가 다른 여러 형태의 메모리로 구성되며, 더 작은 메모리가 더 빠르다.
- ✓ SRAM은 on-chip 메모리로, L1 Cache/Shared 메모리 등을 지칭한다.
- ✓ 계산 속도가 메모리 속도에 비해 빨라짐에 따라, 연산은 점점 더 HBM 접근에 의해 병목 현상이 발생한다.

Bandwidth & Memory Size

Execution Model

- ✔ GPU는 대규모 스레드를 통해 연산(Kernel)을 실행한다.
- ✓ 각 커널은 HBM에서 레지스터 및 SRAM으로 입력을 로드하고, 계산을 수행한 후 HBM에 출력을 쓴다.

Initialize O, I and m matrices with zeroes. m and I are used to calculate cumulative softmax. Divide Q, K, V into blocks (due to SRAM's memory limits) and iterate over them, for i is row & j is column.

Background

Standard Attention

✔ 표준 Attention은 행렬 S와 $P(중간 ừ)를 HBM에 저장해야 하므로, <math>O(N^2)$ 의 메모리가 필요하다.

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

$$\mathbf{S} = \mathbf{Q}\mathbf{K}^{\top} \in \mathbb{R}^{N \times N}, \quad \mathbf{P} = \operatorname{softmax}(\mathbf{S}) \in \mathbb{R}^{N \times N}, \quad \mathbf{O} = \mathbf{P}\mathbf{V} \in \mathbb{R}^{N \times d},$$

S = Attention Score, P = Attention Weight, O = Attention Output

N: Sequence Length, d: head dimension

Algorithm 0 Standard Attention Implementation

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM.

- 1: Load \mathbf{Q} , \mathbf{K} by blocks from HBM, compute $\mathbf{S} = \mathbf{Q}\mathbf{K}^{\mathsf{T}}$, write \mathbf{S} to HBM.
- 2: Read **S** from HBM, compute P = softmax(S), write **P** to HBM.
- 3: Load **P** and **V** by blocks from HBM, compute $\mathbf{O} = \mathbf{PV}$, write \mathbf{O} to HBM.
- 4: Return **O**.

FlashAttention

- ✔ Standard Attention은 HBM에 있는 Q, K, V $\in \mathbb{R}^{N \times d}$ 를 사용하여 Attention 연산의 중간 값을 계산하고 이를 HBM에 기록하는 과정에서 HBM 접근 횟수가 증가한다.
- ✓ FlashAttention은 HBM 접근 횟수를 줄이면서 정확한 Attention을 계산하기 위해서 Tiling, Recomputation 기법을 제안한다.

- 1. Q, K, V, Softmax Normalization Statistics(m, l), Attention Output(O)을 블록으로 나눔
- 2. 블록 별로 로드해서 Attention score 계산 (중간 값 저장 x)
- 3. Attention score로 m, l를 구한 후, Softmax 연산
- 4. O, m, I HBM 저장

Tiling

- 1. HBM에서 Q, K, V를 **블록** 단위로 SRAM에 로드

2. SRAM에서 Attention Output을 블록 단위로 계산
$$m(x) := \max_i x_i, \quad f(x) := \left[e^{x_1 - m(x)} \dots e^{x_B - m(x)}\right]$$
 , $\ell(x) := \sum_i f(x)_i, \quad \operatorname{softmax}(x) := \frac{f(x)}{\ell(x)}.$

$$m(x) = m(\left[x^{(1)} \ x^{(2)}\right]) = \max(m(x^{(1)}), m(x^{(2)})),$$

$$f(x) = \left[e^{m(x^{(1)}) - m(x)} f(x^{(1)}) \quad e^{m(x^{(2)}) - m(x)} f(x^{(2)})\right],$$

$$\ell(x) = \ell(\left[x^{(1)} \ x^{(2)}\right]) = e^{m(x^{(1)}) - m(x)} \ell(x^{(1)}) + e^{m(x^{(2)}) - m(x)} \ell(x^{(2)}),$$

$$\operatorname{softmax}(x) = \frac{f(x)}{\ell(x)}.$$

Recomputation

- ✔ Backward pass를 위한 중간 값인 $S, P \in \mathbb{R}^{N \times N}$ 를 저장하지 않는다.
- ✓ 출력 O와 Softmax Normalization Statistics m, I을 저장함으로써,
 Backward pass에서 SRAM의 Q, K, V 블록으로부터 S와 P를 Recomputation할 수 있다.
- ✓ 더 많은 FLOP이 발생해도 HBM 접근이 줄어들어 Backward pass를 더 빠르게 한다.

Kernel fusion

- ✓ 메모리 bound* 연산을 가속화하기 위한 방법이다.
- ✓ 연산을 **하나의 Kernel**로 통합함으로써 메모리 액세스 시간과 Kernel 실행 시간을 감소하여 최적화한다.
- ✓ Standard Attention 모델 Train에서는, Attention 연산의 중간 값을 Backward pass를 위해 HBM에 저장해야 하므로, 이는 **Kernel fusion의 효과를 감소시킨다**. Attention o
- ✓ FlashAttention은 동일한 입력에 여러 연산이 적용되는 경우,
 입력을 각 연산마다 여러 번 HBM에서 로드하는 대신 한 번만 로드하고
 중간 값을 저장하지 않는다.
- * 메모리 bound 작업에서는 메모리에서 데이터를 가져오고 쓰는 시간이 전체 작업의 속도를 결정짓는다.

Dropout - PRNG

- ✓ 원래 Dropout mask를 생성할 시, O(N^2)의 공간 복잡도가 발생한다.
- ✓ PRNG(Pseudo-random number generator)를 사용하여 0~1 사이의 값을 생성할 경우,
 O(N)의 공간 복잡도가 발생하여 더 효율적이다.

- 1. Forward pass에서 생성되어 저장된 시드값 \Re 을 Backward pass에서 설정한다.
- 2. 시드값이 고정된 상태에서 0~1 사이의 값으로 Random Dropout mask 행렬을 생성한다.
- 3. dropout 확률보다 작을 경우, **0**

dropout 확률보다 클 경우, $\frac{1}{(1-P_drop)}$ 으로 Dropout mask가 설정되고, Attention Weight에 곱해진다.

Algorithm 1. FlashAttention

Algorithm 1 FlashAttention

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM, on-chip SRAM of size M.

- 1: Set block sizes $B_c = \left\lceil \frac{M}{4d} \right\rceil$, $B_r = \min\left(\left\lceil \frac{M}{4d} \right\rceil, d \right)$.
- 2: Initialize $\mathbf{O} = (0)_{N \times d} \in \mathbb{R}^{N \times d}, \ell = (0)_N \in \mathbb{R}^N, m = (-\infty)_N \in \mathbb{R}^N$ in HBM.
- 3: Divide **Q** into $T_r = \left\lceil \frac{N}{B_r} \right\rceil$ blocks $\mathbf{Q}_1, \ldots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \left\lceil \frac{N}{B_c} \right\rceil$ blocks $\mathbf{K}_1, \ldots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \ldots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
- 4: Divide **O** into T_r blocks $\mathbf{O}_i, \ldots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, divide ℓ into T_r blocks $\ell_i, \ldots, \ell_{T_r}$ of size B_r each, divide m into T_r blocks m_1, \ldots, m_{T_r} of size B_r each.
- 5: for $1 \le j \le T_c$ do
- 6: Load $\mathbf{K}_i, \mathbf{V}_i$ from HBM to on-chip SRAM.
- 7: for $1 \le i \le T_r$ do
- 8: Load $\mathbf{Q}_i, \mathbf{O}_i, \ell_i, m_i$ from HBM to on-chip SRAM.
- 9: On chip, compute $\mathbf{S}_{ij} = \mathbf{Q}_i \mathbf{K}_j^T \in \mathbb{R}^{B_r \times B_c}$.
- 10: On chip, compute $\tilde{m}_{ij} = \operatorname{rowmax}(\mathbf{S}_{ij}) \in \mathbb{R}^{B_r}$, $\tilde{\mathbf{P}}_{ij} = \exp(\mathbf{S}_{ij} \tilde{m}_{ij}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\tilde{\ell}_{ij} = \operatorname{rowsum}(\tilde{\mathbf{P}}_{ij}) \in \mathbb{R}^{B_r}$.
- 11: On chip, compute $m_i^{\text{new}} = \max(m_i, \tilde{m}_{ij}) \in \mathbb{R}^{B_r}$, $\ell_i^{\text{new}} = e^{m_i m_i^{\text{new}}} \ell_i + e^{\tilde{m}_{ij} m_i^{\text{new}}} \tilde{\ell}_{ij} \in \mathbb{R}^{B_r}$.
- 12: Write $\mathbf{O}_i \leftarrow \operatorname{diag}(\ell_i^{\text{new}})^{-1}(\operatorname{diag}(\ell_i)e^{m_i m_i^{\text{new}}}\mathbf{O}_i + e^{\tilde{m}_{ij} m_i^{\text{new}}}\tilde{\mathbf{P}}_{ij}\mathbf{V}_j)$ to HBM.
- 13: Write $\ell_i \leftarrow \ell_i^{\text{new}}$, $m_i \leftarrow m_i^{\text{new}}$ to HBM.
- 14: end for
- 15: end for
- 16: Return **O**.

Algorithm 1. FlashAttention

Algorithm 1 FlashAttention

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM, on-chip SRAM of size M.

- 1: Set block sizes $B_c = \left\lceil \frac{M}{4d} \right\rceil, B_r = \min\left(\left\lceil \frac{M}{4d} \right\rceil, d\right)$.
- 2: Initialize $\mathbf{O} = (0)_{N \times d} \in \mathbb{R}^{N \times d}, \ell = (0)_N \in \mathbb{R}^N, m = (-\infty)_N \in \mathbb{R}^N$ in HBM.
- 3: Divide **Q** into $T_r = \left\lceil \frac{N}{B_r} \right\rceil$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \left\lceil \frac{N}{B_c} \right\rceil$ blocks $\mathbf{K}_1, \dots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \dots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
- 4: Divide \mathbf{O} into T_r blocks $\mathbf{O}_i, \ldots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, divide ℓ into T_r blocks $\ell_i, \ldots, \ell_{T_r}$ of size B_r each, divide m into T_r blocks m_1, \ldots, m_{T_r} of size B_r each.
- 5: for $1 \le j \le T_c$ do
- 6: Load \mathbf{K}_j , \mathbf{V}_j from HBM to on-chip SRAM.
- 1: SRAM의 사이즈인 M을 4d로 나누어 블럭 사이즈를 설정한다.
- 3: Q는 $T_r = \frac{N}{B_r}$ 개의 블럭 개수를 가지고, 각 블럭의 사이즈는 $B_r \times d$ 이다.
 - K와 V는 $T_c = \frac{N}{B_c}$ 개의 블럭 개수를 가지고, 각 블럭 사이즈는 $B_c \times d$ 이다.
- 6: K와 V의 j번 째 블럭을 HBM에서 SRAM으로 로드한다.

Algorithm 1. FlashAttention

- 7: for $1 \le i \le T_r$ do
- 8: Load $\mathbf{Q}_i, \mathbf{O}_i, \ell_i, m_i$ from HBM to on-chip SRAM.
- 9: On chip, compute $\mathbf{S}_{ij} = \mathbf{Q}_i \mathbf{K}_i^T \in \mathbb{R}^{B_r \times B_c}$.
- 10: On chip, compute $\tilde{m}_{ij} = \operatorname{rowmax}(\mathbf{S}_{ij}) \in \mathbb{R}^{B_r}$, $\tilde{\mathbf{P}}_{ij} = \exp(\mathbf{S}_{ij} \tilde{m}_{ij}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\tilde{\ell}_{ij} = \operatorname{rowsum}(\tilde{\mathbf{P}}_{ij}) \in \mathbb{R}^{B_r}$.
- 11: On chip, compute $m_i^{\text{new}} = \max(m_i, \tilde{m}_{ij}) \in \mathbb{R}^{B_r}$, $\ell_i^{\text{new}} = e^{m_i m_i^{\text{new}}} \ell_i + e^{\tilde{m}_{ij} m_i^{\text{new}}} \tilde{\ell}_{ij} \in \mathbb{R}^{B_r}$.
- 12: Write $\mathbf{O}_i \leftarrow \operatorname{diag}(\ell_i^{\text{new}})^{-1}(\operatorname{diag}(\ell_i)e^{m_i m_i^{\text{new}}}\mathbf{O}_i + e^{\tilde{m}_{ij} m_i^{\text{new}}}\tilde{\mathbf{P}}_{ij}\mathbf{V}_j)$ to HBM.
- 13: Write $\ell_i \leftarrow \ell_i^{\text{new}}$, $m_i \leftarrow m_i^{\text{new}}$ to HBM.
- 14: end for
- 15: end for
- 16: Return **O**.
- 8: K와 V가 j번 째 블럭일 때, Q의 i번 째 블럭을 HBM에서 SRAM으로 로드한다.
- 9: Q의 i번 째 블럭과 K의 j번 째 블럭(Transpose)을 한 번에 행렬곱 한다.

행렬 곱한 중간 값(S, P)을 HBM에 write하는 과정이 없다.

Algorithm 2. FlashAttention Forward pass

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM, on-chip SRAM of size M, softmax scaling constant $\tau \in \mathbb{R}$, masking function MASK, dropout probability p_{drop} .

- 1: Initialize the pseudo-random number generator state \mathcal{R} and save to HBM.
- 2: Set block sizes $B_c = \left\lceil \frac{M}{4d} \right\rceil, B_r = \min\left(\left\lceil \frac{M}{4d} \right\rceil, d \right)$.
- 3: Initialize $\mathbf{0} = (0)_{N \times d} \in \mathbb{R}^{N \times d}, \ell = (0)_N \in \mathbb{R}^N, m = (-\infty)_N \in \mathbb{R}^N$ in HBM.
- 4: Divide **Q** into $T_r = \left\lceil \frac{N}{B_r} \right\rceil$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \left\lceil \frac{N}{B_c} \right\rceil$ blocks $\mathbf{K}_1, \dots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \dots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
- 5: Divide **O** into T_r blocks $\mathbf{O}_i, \ldots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, divide ℓ into T_r blocks $\ell_i, \ldots, \ell_{T_r}$ of size B_r each, divide m into T_r blocks m_1, \ldots, m_{T_r} of size m_1, \ldots, m_{T_r} of si
- 6: for $1 \le j \le T_c$ do
- 7: Load \mathbf{K}_i , \mathbf{V}_i from HBM to on-chip SRAM.
- 8: for $1 \le i \le T_r$ do
- 9: Load $\mathbf{Q}_i, \mathbf{O}_i, \ell_i, m_i$ from HBM to on-chip SRAM.
- 10: On chip, compute $\mathbf{S}_{ij} = \tau \mathbf{Q}_i \mathbf{K}_i^T \in \mathbb{R}^{B_r \times \overline{B}_c}$.
- 11: On chip, compute $\mathbf{S}_{ij}^{\text{masked}} = \text{MASK}(\mathbf{S}_{ij})$.
- 12: On chip, compute $\tilde{m}_{ij} = \operatorname{rowmax}(\mathbf{S}_{ij}^{\text{masked}}) \in \mathbb{R}^{B_r}$, $\tilde{\mathbf{P}}_{ij} = \exp(\mathbf{S}_{ij}^{\text{masked}} \tilde{m}_{ij}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\tilde{\ell}_{ij} = \operatorname{rowsum}(\tilde{\mathbf{P}}_{ij}) \in \mathbb{R}^{B_r}$.
- 13: On chip, compute $m_i^{\text{new}} = \max(m_i, \tilde{m}_{ij}) \in \mathbb{R}^{B_r}$, $\ell_i^{\text{new}} = e^{m_i m_i^{\text{new}}} \ell_i + e^{\tilde{m}_{ij} m_i^{\text{new}}} \tilde{\ell}_{ij} \in \mathbb{R}^{B_r}$.
- 14: On chip, compute $\tilde{\mathbf{P}}_{ij}^{\text{dropped}} = \text{dropout}(\tilde{\mathbf{P}}_{ij}, p_{\text{drop}})$.
- 15: Write $\mathbf{O}_i \leftarrow \operatorname{diag}(\ell_i^{\text{new}})^{-1}(\operatorname{diag}(\ell_i)e^{m_i m_i^{\text{new}}}\mathbf{O}_i + e^{\tilde{m}_{ij} m_i^{\text{new}}}\tilde{\mathbf{P}}_{ij}^{\text{dropped}}\mathbf{V}_j)$ to HBM.
- 16: Write $\ell_i \leftarrow \ell_i^{\text{new}}, \, m_i \leftarrow m_i^{\text{new}} \text{ to HBM}.$
- 17: end for
- 18: **end for**
- 19: Return $\mathbf{0}, \ell, m, \mathcal{R}$.

Algorithm 3. Standard Attention Backward pass

✔ Backward pass는 신경망을 학습시키는 과정에서 손실 함수의 기울기를 계산하여 가중치를 업데이트한다.

Algorithm 3 Standard Attention Backward Pass

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V}, \mathbf{dO} \in \mathbb{R}^{N \times d}, \mathbf{P} \in \mathbb{R}^{N \times N}$ in HBM.

- 1: Load **P**, **dO** by blocks from HBM, compute $\mathbf{dV} = \mathbf{P}^{\top} \mathbf{dO} \in \mathbb{R}^{N \times d}$, write \mathbf{dV} to HBM.
- 2: Load **dO**, **V** by blocks from HBM, compute $\mathbf{dP} = \mathbf{dOV}^{\top} \in \mathbb{R}^{N \times N}$, write \mathbf{dP} to HBM.
- 3: Read **P**, **dP** from HBM, compute $\mathbf{dS} \in \mathbb{R}^{N \times N}$ where $dS_{ij} = P_{ij}(dP_{ij} \sum_{l} P_{il}dP_{il})$, write \mathbf{dS} to HBM.
- 4: Load dS and K by blocks from HBM, compute dQ = dSK, write dQ to HBM.
- 5: Load **dS** and **Q** by blocks from HBM, compute $\mathbf{dK} = \mathbf{dS}^{\mathsf{T}}\mathbf{Q}$, write \mathbf{dK} to HBM.
- 6: Return dQ, dK, dV.
- 1: Attention Weight인 **P**와 Attention Output gradient **dO**를 로드하여 Value 행렬의 gradient **dV**를 계산한다.
- 2: Attention Output gradient dO와 Value 행렬 V를 로드하여 dP를 계산한다.
- 3: Attention Weight인 **P**와 gradient **dP**를 사용하여 **dS**를 계산한다.
- 4: Attention Score의 gradient dS와 Key 행렬 K를 로드하여 Query 행렬의 gradient dQ를 계산한다.
- 5: Attention Score의 gradient **dS**와 Query 행렬 Q를 로드하여 Key 행렬의 gradient **dK**를 계산한다.

Algorithm 4. FlashAttention Backward pass

Algorithm 4 FlashAttention Backward Pass

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V}, \mathbf{O}, \mathbf{dO} \in \mathbb{R}^{N \times d}$ in HBM, vectors $\ell, m \in \mathbb{R}^N$ in HBM, on-chip SRAM of size M, softmax scaling constant $\tau \in \mathbb{R}$, masking function MASK, dropout probability p_{drop} , pseudo-random number generator state \mathcal{R} from the forward pass.

- 1: Set the pseudo-random number generator state to \mathcal{R} .
- 2: Set block sizes $B_c = \left\lceil \frac{M}{4d} \right\rceil, B_r = \min\left(\left\lceil \frac{M}{4d} \right\rceil, d\right)$.
- 3: Divide \mathbf{Q} into $T_r = \begin{bmatrix} \frac{N}{B_r} \end{bmatrix}$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \begin{bmatrix} \frac{N}{B_c} \end{bmatrix}$ blocks $\mathbf{K}_1, \dots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \dots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
- 4: Divide **O** into T_r blocks $\mathbf{O}_i, \ldots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, divide \mathbf{dO} into T_r blocks $\mathbf{dO}_i, \ldots, \mathbf{dO}_{T_r}$ of size $B_r \times d$ each, divide ℓ into T_r blocks $\ell_i, \ldots, \ell_{T_r}$ of size B_r each, divide m into T_r blocks m_1, \ldots, m_{T_r} of size m_2, \ldots, m_{T_r} of size m_1, \ldots, m_{T_r} of size m_2, \ldots, m_{T_r} of size m_1, \ldots, m_{T_r} of size m_2, \ldots, m_{T_r} of size m_1, \ldots, m_{T_r} of size m_2, \ldots, m_{T_r} of size m_1, \ldots, m_{T_r} of size m_2, \ldots, m_{T_r} of size m_2, \ldots, m_{T_r} of size m_1, \ldots, m_{T_r} of size m_2, \ldots, m_{T_r}
- 5: Initialize $\mathbf{dQ} = (0)_{N \times d}$ in HBM and divide it into T_r blocks $\mathbf{dQ}_1, \dots, \mathbf{dQ}_{T_r}$ of size $B_r \times d$ each. Initialize $\mathbf{dK} = (0)_{N \times d}, \mathbf{dV} = (0)_{N \times d}$ in HBM and divide \mathbf{dK}, \mathbf{dV} in to T_c blocks $\mathbf{dK}_1, \dots, \mathbf{dK}_{T_c}$ and $\mathbf{dV}_1, \dots, \mathbf{dV}_{T_c}$, of size $B_c \times d$ each.
- ✓ Standard Attention Backward pass와 다른 점은 블록 단위로 나누어 연산하는 Tiling 기법을 적용한다.

- 6: for $1 \le j \le T_c$ do
- 7: Load \mathbf{K}_j , \mathbf{V}_j from HBM to on-chip SRAM.
- 8: Initialize $\mathbf{dK}_j = (0)_{B_c \times d}, \mathbf{dV}_j = (0)_{B_c \times d}$ on SRAM.
- 9: **for** $1 \le i \le T_r$ **do**
- 10: Load $\mathbf{Q}_i, \mathbf{O}_i, \mathbf{dO}_i, \mathbf{dQ}_i, \ell_i, m_i$ from HBM to on-chip SRAM.
- 11: On chip, compute $\mathbf{S}_{ij} = \tau \mathbf{Q}_i \mathbf{K}_j^T \in \mathbb{R}^{B_r \times B_c}$.
- 12: On chip, compute $\mathbf{S}_{ij}^{\text{masked}} = \text{MASK}(\mathbf{S}_{ij})$.
- On chip, compute $\mathbf{P}_{ij} = \operatorname{diag}(l_i)^{-1} \exp(\mathbf{S}_{ij}^{\text{masked}} m_i) \in \mathbb{R}^{B_r \times B_c}$. $\mathsf{P} = \mathsf{Attention}$ Weight
- On chip, compute dropout mask $\mathbf{Z}_{ij} \in \mathbb{R}^{B_r \times B_c}$ where each entry has value $\frac{1}{1-p_{\text{drop}}}$ with probability $1-p_{\text{drop}}$ and value 0 with probability p_{drop} .

S = Attention Score

- On chip, compute $\mathbf{P}_{ij}^{\text{dropped}} = \mathbf{P}_{ij} \circ \mathbf{Z}_{ij}$ (pointwise multiply).
- 16: On chip, compute $\mathbf{d}\tilde{\mathbf{V}}_j \leftarrow \mathbf{d}\tilde{\mathbf{V}}_j + (\mathbf{P}_{ij}^{\text{dropped}})^{\top} \mathbf{dO}_i \in \mathbb{R}^{B_c \times d}$.
- 17: On chip, compute $\mathbf{dP}_{ij}^{\text{dropped}} = \mathbf{dO}_i \mathbf{V}_i^{\mathsf{T}} \in \mathbb{R}^{B_r \times B_c}$.
- On chip, compute $d\mathbf{P}_{ij} = d\mathbf{P}_{ij}^{\text{dropped}} \circ \mathbf{Z}_{ij}$ (pointwise multiply). 16 ~ 26: Standard Attention
- 19: On chip, compute $D_i = \text{rowsum}(\mathbf{dO}_i \circ \mathbf{O}_i) \in \mathbb{R}^{B_r}$.
- $On chip, compute <math>d\mathbf{S}_{ij} = \mathbf{P}_{ij} \circ (d\mathbf{P}_{ij} D_i) \in \mathbb{R}^{B_r \times B_c}$. Backward pass와 동일하다.
- 21: Write $\mathbf{dQ}_i \leftarrow \mathbf{dQ}_i + \tau \mathbf{dS}_{ij} \mathbf{K}_j \in \mathbb{R}^{B_r \times d}$ to HBM.
- 22: On chip, compute $\tilde{\mathbf{dK}}_j \leftarrow \tilde{\mathbf{dK}}_j + \tau \mathbf{dS}_{ij}^{\top} \mathbf{Q}_i \in \mathbb{R}^{B_c \times d}$.
- 23: end for
- 24: Write $d\mathbf{K}_j \leftarrow d\tilde{\mathbf{K}}_j, d\mathbf{V}_j \leftarrow d\tilde{\mathbf{V}}_j$ to HBM.
- 25: end for
- 26: Return dQ, dK, dV.

IO Complexity of FlashAttention

✓ 시퀀스 길이를 N, 헤드 차원을 d, SRAM 크기를 M 일 경우,

Standard Attention은 $\theta(Nd + N^2)$ 의 HBM 접근이 필요하다.

FlashAttention은 Standard Attention보다 훨씬 적은 $\theta\left(\frac{N^2d^2}{M}\right)$ 의 HBM 접근이 필요하다.

The primary factor affecting runtime

✓ FlashAttention이 Backward pass에서 Recomputation으로 인해
Standard Attention보다 더 많은 FLOP 수를 가지고 있음에도 불구하고,
HBM 접근 수가 훨씬 적어 Attention 수행 시간이 훨씬 빠르다.

✓ 따라서, **HBM 접근 횟수**가 Attention 수행 시간을 결정하는 주요 요소이다.

Attention	Standard	FLASHATTENTION
GFLOPs	66.6	75.2
$\mathrm{HBM}\ \mathrm{R/W}\ \mathrm{(GB)}$	40.3	4.4
Runtime (ms)	41.7	7.3

Option: GPT-2 medium, N(seq_length) = 1024, d = 64, head = 16, batch size = 64, A100 GPU

The primary factor affecting runtime

- ✔ FlashAttention의 블록 크기를 변경하여 HBM 접근 횟수와 Forward pass의 실행 시간을 측정했다.
- ✓ 블록 크기가 증가하면 HBM 접근* 횟수가 줄어들고 실행 시간이 감소한다.
- ✓ 블록 크기가 충분히 크면 (256 이상) 실행 시간은 산술 연산(FLOPs)에 의해 병목된다.
- ✓ 게다가, 더 큰 블록 크기는 작은 SRAM 크기에 맞지 않는다.

*HBM 접근

$$\theta\left(\frac{N^2d^2}{M}\right) = \theta\left(\frac{N^2d}{B_c}\right)$$

Option: GPT-2 medium, N = 1024, d = 64, head = 16, batch size = 64, A100 GPU

Block-Sparse FlashAttention

Algorithm 5 Block-Sparse FlashAttention Forward Pass

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM, on-chip SRAM of size M, softmax scaling constant $\tau \in \mathbb{R}$, masking function MASK, dropout probability p_{drop} , block sizes $B_c = \left\lceil \frac{M}{4d} \right\rceil, B_r = \min\left(\left\lceil \frac{M}{4d} \right\rceil, d\right)$, block sparsity mask $M \in \{0, 1\}^{N/B_r \times N/B_c}$...

- 1: Initialize the pseudo-random number generator state \mathcal{R} and save to HBM.
- 2: Initialize $\mathbf{O} = (0)_{N \times d} \in \mathbb{R}^{N \times d}, \ell = (0)_N \in \mathbb{R}^N, m = (-\infty)_N \in \mathbb{R}^N$ in HBM.
- 3: Divide **Q** into $T_r = \left[\frac{N}{B_r}\right]$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \left[\frac{N}{B_c}\right]$ blocks $\mathbf{K}_1, \dots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \dots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
- 4: Divide \mathbf{O} into T_r blocks $\mathbf{O}_i, \dots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, divide ℓ into T_r blocks $\ell_i, \dots, \ell_{T_r}$ of size B_r each, divide m into T_r blocks m_1, \ldots, m_{T_r} of size B_r each.
- 5: **for** $1 \le j \le T_c$ **do**
- Load \mathbf{K}_i , \mathbf{V}_i from HBM to on-chip SRAM.
- for $1 \le i \le T_r$ do
- if $M_{ij} \neq 0$ then
- Load $\mathbf{Q}_i, \mathbf{O}_i, \ell_i, m_i$ from HBM to on-chip SRAM. 9:
- On chip, compute $\mathbf{S}_{ij} = \tau \mathbf{Q}_i \mathbf{K}_i^T \in \mathbb{R}^{B_r \times B_c}$. 10:

Option: N(seq length) = 4k

- Mask Matrix $M \in \{0,1\}^{N \times N}$ 가 주어지고, M = 0인 블럭(Mask)는 skip으로 처리되어 연산에서 제외된다.
- Block-Sparse Attention $\stackrel{\bigcirc}{\leftarrow} \theta \left(Nd + \frac{N^2d^2}{M}s\right)$ (s: the fraction of nonzero block).
- Non-zero Block의 비율이 적을수록 Mask의 비율이 많기 때문에 Runtime이 적다.

Faster Models with FlashAttention

- ✔ FlashAttention을 사용하여 Wikipedia 데이터셋에서 BERT-large 모델을 훈련했다.
- ✔ MLPerf 1.1의 Training 시간 기록을 세운 Nvidia의 구현과 비교하였을 때 Training time이 15% 감소했다.

BERT Implementation	Training time (minutes)
Nvidia MLPerf 1.1 [58]	20.0 ± 1.5
FLASHATTENTION (ours)	17.4 ± 1.4

to reach the target accuracy of 72% on masked language modeling. Averaged over 10 runs on 8xA100 GPUs.

Faster Models with FlashAttention

- ✔ FlashAttention을 사용하여 OpenWebtext 데이터셋에서 GPT-2에서 모델을 훈련했다.
- ✓ GPT-2 small과 medium은 HuggingFace 구현에 비해 최대 3배,

Megatron-LM에 비해 최대 1.7배의 빠른 Training 속도를 달성했다.

Model implementations	OpenWebText (ppl)	Training time (speedup)
GPT-2 small - Huggingface [87]	18.2	$9.5 \text{ days } (1.0 \times)$
GPT-2 small - Megatron-LM [77]	18.2	$4.7 \text{ days } (2.0 \times)$
GPT-2 small - FlashAttention	18.2	$\textbf{2.7 days} \ (\textbf{3.5} \times)$
GPT-2 medium - Huggingface [87]	14.2	$21.0 \text{ days } (1.0\times)$
GPT-2 medium - Megatron-LM [77]	14.3	$11.5 \text{ days } (1.8 \times)$
GPT-2 medium - FlashAttention	14.3	$6.9 ext{ days } (3.0 \times)$

Averaged over 10 runs on 8xA100 GPUs.

Faster Models with FlashAttention

- ✓ FlashAttention을 사용하여 Long-range Arena 벤치마크로 Vanilla Transformer에서 모델을 평가할 때, 각 Task는 1024에서 4096 사이의 다른 시퀀스 길이를 가진다.
- ✔ FlashAttention이 2.4배의 속도 향상을 달성했고, Block-sparse FlashAttention은 2.8배의 속도 향상을 달성했으며, 다른 Approximate Attention와 비교했을 때 가장 빠르다.

Models	ListOps	Text	Retrieval	Image	Pathfinder	Avg	Speedup
Transformer	36.0	63.6	81.6	42.3	72.7	59.3	-
FLASHATTENTION	37.6	63.9	81.4	43.5	72.7	59.8	$2.4 \times$
Block-sparse FlashAttention	37.0	63.0	81.3	43.6	73.3	59.6	2.8 ×
Linformer [84]	35.6	55.9	77.7	37.8	67.6	54.9	2.5×
Linear Attention [50]	38.8	63.2	80.7	42.6	72.5	59.6	2.3×
Performer [12]	36.8	63.6	82.2	42.1	69.9	58.9	1.8×
Local Attention [80]	36.1	60.2	76.7	40.6	66.6	56.0	1.7×
Reformer [51]	36.5	63.8	78.5	39.6	69.4	57.6	1.3×
Smyrf [19]	36.1	64.1	79.0	39.6	70.5	57.9	1.7×

Better Models with Longer Sequences

✔ FlashAttention은 GPT-2 small의 Context Length를 4배를 늘릴 수 있으며,

Megatron-LM보다 4배 더 긴 컨텍스트 길이에도 30% 더 빠르며, 0.7 더 나은 perplexity를 달성했다.

Model implementations	Context length	OpenWebText (ppl)	Training time (speedup)
GPT-2 small - Megatron-LM	1k	18.2	$4.7 \text{ days } (1.0 \times)$
GPT-2 small - FlashAttention	1k	18.2	$2.7 ext{ days } (1.7 \times)$
GPT-2 small - FlashAttention	2k	17.6	$3.0 \text{ days } (1.6 \times)$
GPT-2 small - FlashAttention	$4\mathrm{k}$	17.5	$3.6 \text{ days } (1.3\times)$

Better Models with Longer Sequences

- ✓ FlashAttention을 사용하여 더 긴 시퀀스로 Transformer를 학습하면 MIMIC-III 및 ECtHR 데이터셋에서 성능이 향상된다.
- ✓ 사전 학습된 RoBERTa 모델의 시퀀스 길이를 늘려 성능 향상을 평가했다.
- ✓ MIMIC-III에서 시퀀스 길이 16K가 512보다 4.3 포인트 더 높고,
 ECtHR에서 시퀀스 길이 8K가 512보다 8.5 포인트 더 높다.

	512	1024	2048	4096	8192	16384
MIMIC-III [47]	52.8	50.7	51.7	54.6	56.4	57.1
ECtHR [6]	72.2	74.3	77.1	78.6	80.7	79.2

Table 5: Long Document performance (micro F_1) at different sequence lengths using FLASHATTENTION.

Better Models with Longer Sequences

- ✓ Path-X 및 Path-256 벤치마크는 긴 Context를 테스트하기 위해 설계된 LRA 벤치마크이다.
- ✓ 128×128(또는 256×256) 이미지에서 두 점이 연결되는 경로가 있는지 분류하는 작업이다.
- ✓ 이전 작업에서는 모든 Transformer 모델이 메모리가 부족하거나 불안정한 성능만 달성했다.
- ✔ FlashAttention은 Path-X에서 **61.4**의 정확도를 달성했다.

추가적으로, Block-Sparse FlashAttention은 Transformers가 시퀀스 길이 64K로 확장되어 Path-256에서

63.1의 정확도를 달성했다.

\mathbf{Model}	Path-X	Path-256
Transformer	X	×
Linformer [84]	X	×
Linear Attention [50]	X	×
Performer [12]	X	×
Local Attention [80]	X	×
Reformer [51]	X	×
SMYRF [19]	×	×
FLASHATTENTION	61.4	×
Block-sparse FlashAttention	56.0	63.1

Benchmarking Attention - Runtime

✔ FlashAttention은 메모리 접근이 적기 때문에 짧은 시퀀스에서는

Approximate/Sparse Attention 어텐션보다도 빠르게 실행된다.

- ✓ Linformer Attention의 실행 시간은 시퀀스 길이가 512에서 1024 사이일 때 FlashAttention과 교차한다.
- ✓ 반면, Block-Sparse FlashAttention은 모든 시퀀스 길이에 걸쳐 빠르다.

Benchmarking Attention - Memory Footprint

- ✓ FlashAttention과 Block-Sparse FlashAttention은 같은 메모리 사용량을 가지며, 이는 시퀀스 길이에 따라 선형적으로 증가한다.
- ✓ Linformer를 제외한 모든 알고리즘은 A100 GPU에서 시퀀스 길이가 64K 이전에 메모리가 부족해지지만, FlashAttention은 Linformer보다도 2배 더 효율적이다.

Thank You