

Régime alternatif - Circuit RLC - Corrigé Exercice 1

Le schéma électrique donné était le suivant →

La tension instantanée s'écrit :

$$u = \sqrt{2} \cdot U \cdot \cos(\omega t + \alpha)$$

sachant que : $\omega = 2\pi f$

avec:

U: valeur efficace de la tension

$$U = 100 \text{ V}$$
, $\hat{U} = \sqrt{2} \cdot U$

 ω : pulsation électrique [rad/s] α : déphasage initial [rad] f: fréquence [Hz]

1°)
$$f = f_1 = 1 \text{ kHz}$$

$$2^{\circ}$$
) $f = f_2 = 2 \text{ kHz}$

et les notations complexes correspondantes :

- tension complexe instantanée :

$$\underline{u} = \sqrt{2} \cdot U \cdot e^{j(\omega t + \alpha)}$$
 avec : $u = \text{Re}(\underline{u})$

- phaseur complexe:

$$U = U \cdot e^{j\alpha}$$
 posons: $\alpha = 0$

de même pour le courant i:

- courant instantané : $i = \sqrt{2} \cdot I \cdot \cos(\omega t + \beta)$
- courant complexe instantané:

$$\underline{i} = \sqrt{2} \cdot I \cdot e^{j(\omega t + \beta)}$$

- phaseur complexe:

$$\underline{I} = I \cdot e^{j\beta}$$

Dans notre cas, on cherche à déterminer I et β .

La relation entre U et I est imposée par l'impédance équivalente du circuit, désignée par Z:

$$\underline{U} = \underline{Z} \cdot \underline{I}$$

$$\underline{U} = \underline{Z} \cdot \underline{I}$$
 où: $\underline{Z} = Z \cdot e^{j\varphi}$

avec:

$$Z = |\underline{Z}| = \frac{U}{I}$$

 $Z = |\underline{Z}| = \frac{U}{I}$ et $\varphi = \alpha - \beta$ étant le déphasage entre u et i.

L'impédance en question s'obtient en mettant en série les impédances correspondant aux éléments R, L et C:

$$\underline{Z} = R + \frac{1}{j\omega C} + j\omega L = R + j\left(\omega L - \frac{1}{\omega C}\right)$$

d'où:

$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} \qquad \text{et} \qquad \varphi = \arctan\left(\frac{\omega^2 LC - 1}{\omega RC}\right)$$

et finalement:

$$I = \frac{U}{Z}$$

$$I = \frac{U}{Z}$$
 et $\beta = \alpha - \varphi = -\varphi$

et donc:

$$\sin \varphi = \sin(-\beta)$$

$$\sin \varphi = \sin(-\beta)$$
 et $\cos \varphi = \cos(-\beta)$

Application numérique :

1°) f = 1 kHz (illustration de gauche, impédance équivalente)

$$I = 7.2 \text{ A}$$

$$\varphi = -43.9^{\circ}$$

$$\cos \varphi = 0.723$$

$$\varphi = -43.9^{\circ}$$
 $\cos \varphi = 0.723$ $\sin \varphi = -0.693$

Comme $\omega L < \frac{1}{\omega C}$, à cette fréquence, l'impédance équivalente est de nature capacitive.

2°) f = 2 kHz (illustration de droite, impédance équivalente)

$$I = 9.08 \text{ A}$$

$$\varphi = +24.74^{\circ}$$

$$\varphi = +24.74^{\circ}$$
 $\cos \varphi = 0.908$

$$\sin \varphi = 0.418$$

Comme $\omega L > \frac{1}{\omega C}$, à cette fréquence, l'impédance équivalente est de nature inductive.

Remarque:

Lorsque $\omega L = \frac{1}{\omega C}$, donc que $\omega = \frac{1}{\sqrt{LC}}$, on réalise la condition de **résonance**. L'impédance équivalente vue par la source u est alors purement réelle : le courant qui la traverse est en phase avec la tension et il a son amplitude maximale $(I = \frac{U}{Z})$.