Teoria ed Elaborazione dei Segnali definizioni, formule ed esempi

Pietro Barbiero

Quest'opera contiene informazioni tratte da wikipedia (http://www.wikipedia.en) e dalle dispense relative al corso di Teoria ed Elaborazione dei Segnali tenuto dal professor Dovis Fabio e dalla professoressa Bosco Gabriella del Dipartimento di Automatica e Informatica del Politecnico di Torino (IT).

Quest'opera è stata rilasciata con licenza Creative Commons Attribuzione - Non commerciale - Condividi allo stesso modo 4.0 Internazionale. Per leggere una copia della licenza visita il sito web http://creativecommons.org/licenses/by-nc-sa/4.0/.

Indice

1	m	troduzione	ΤŢ
1	Ricl 1.1		13 13 13 13 14 14 14 14 14
2	Seg	nali	15
	2.1	Segnale	15
	2.2	Operazioni sui segnali	15
II	C	Classificazione dei Segnali	17
3	Seg	nali analogici a tempo continuo	19
	3.1	Segnale analogico a tempo continuo	19
		3.1.1 Definizioni	19
		3.1.2 Rappresentazioni alternative	19
		3.1.2.1 Rappresentazione algebrica	19
		3.1.2.2 Rappresentazione trigonometrica	19
		3.1.2.3 Rappresentazione esponenziale	19
	3.2	Grandezze fondamentali per i segnali	19
		3.2.1 Energia di un segnale	19
		3.2.2 Potenza media di un segnale	20
	3.3	Tipologie di segnali	20
		3.3.1 Segnale fisico	20
		3.3.2 Segnale periodico	20 20
		3.3.2.2 Energia	$\frac{20}{20}$
		3.3.2.3 Potenza	$\frac{20}{20}$
		3.3.2.4 Segnale periodico a potenza infinita	20
	3.4	Esercizi	20
	0.1	3.4.1 Energia e potenza	20
4	Vet	tori e segnali	23
	4.1	Spazio vettoriale (o lineare)	23
		4.1.1 Proprietà	23
	4.2	Combinazione lineare (c.l.)	23

		4.2.1	Vettori linearmente indipendenti
		4.2.2	Vettori linearmente dipendenti
	4.3	Prodot	to scalare (o proiezione ortogonale)
		4.3.1	Proprietà
	4.4	Norma	(o lunghezza)
		4.4.1	Proprietà
	4.5	Distanz	${f za}$
	4.6	Energia	a 25
		4.6.1	Energia della somma di due vettori
	4.7	Disegua	aglianza di Schwarz
	4.8	Angolo	tra due vettori
		4.8.1	Vettori ortogonali
		4.8.2	Energia di vettori ortogonali
	4.9	Base di	i uno spazio vettoriale
		4.9.1	Proprietà
		4.9.2	Base ortonormale
		4.9.3	Rappresentazione di vettori tramite basi ortonormali
	4.10		rto segnale-vettore
		4.10.1	Uguaglianza di Parseval
			Disuguaglianza di Bessel
	4.11		ura di Gram-Schmidt
5	Serie		sformata di Fourier 31
	5.1	Rappre	sentazione con funzione porta
	5.2	Proprie	età della delta di Dirac
		5.2.1	Campionamento di un segnale
		5.2.2	Traslazione di un segnale
	5.3	Serie di	i Fourier
		5.3.1	Coefficienti dello sviluppo
		5.3.2	Serie di Fourier di una funzione reale
			5.3.2.1 Serie di Fourier di una funzione reale pari
	5.4		mata di Fourier (tdF)
	5.5	Condiz	ione per l'esistenza e l'invertibilità di ${\mathcal F}$
	5.6	Trasfor	mate fondamentali
		5.6.1	Delta di Dirac
		5.6.2	Segno
		5.6.3	Gradino
		5.6.4	Porta
		5.6.5	Funzione periodica
	5.7	Proprie	età della tdF
		5.7.1	Linearità
		5.7.2	Traslazione (anticipo e ritardo)
		5.7.3	Modulazione (traslazione)
		5.7.4	Scalamento
			5.7.4.1 Supporti tempo-frequenza
		5.7.5	Relazioni di parità
			•
		5.7.6	Convoluzione (prodotto)
			Convoluzione (prodotto)
		5.7.7	(1
		5.7.7 5.7.8	Derivazione
		5.7.7 5.7.8 5.7.9	Derivazione

	5.9	Esercia	zi	39
		5.9.1	Sviluppo in serie	39
		5.9.2	Trasformata di Fourier	42
		5.9.3	Energia dei segnali con la tdF	44
II	I S	\mathbf{Sistem}	ni lineari e stazionari a tempo continuo	45
6	Sist	emi		47
	6.1	Sistem	a (in generale)	47
		6.1.1	Sistema lineare	47
		6.1.2	Sistema tempo invariante	47
		6.1.3	Sistema senza memoria	47
		6.1.4	Sistema con memoria	47
		6.1.5	Sistema causale	47
		6.1.6	Sistema non causale	47
7	Sist	emi Liı	neari Tempo Invarianti (LTI)	49
•	7.1		ta all'impulso	49
	7.2	-	zione di un sistema LTI	49
	1.2	7.2.1	Funzione di trasferimento	49
		7.2.1	Proprietà	49
		7.2.3	Sistema LTI con ingresso sinusoidale	49
		7.2.4	Sistema LTI causale	50
		7.2.4	Sistema LTI reale	50
	7.3		a fisicamente realizzabile	50 50
			a stabile BIBO	50 50
	7.4			50 50
	7 5	7.4.1	Sistema LTI stabile	
	7.5	0	urazioni di sistemi LTI	50
			Parallelo	50
		7.5.2		51
	- 0	7.5.3	Retroazione	51
	7.6		i LTI notevoli	51
		7.6.1	Ritardatore	51
		7.6.2	Amplificatore	52
	7.7		di un segnale	52
		7.7.1	Supporto della tdF	52
		7.7.2	Banda a 3dB	52
		7.7.3	Banda equivalente di rumore	52
		7.7.4	Banda percentuale	52
		7.7.5	Banda unilatera e bilatera	52
	7.8			52
		7.8.1	Passa basso	52
		7.8.2	Passa banda	53
		7.8.3	Passa alto	53
		7.8.4	Elimina banda	53
		7.8.5	Filtro ideale	53
	7.9	Distors	sione lineare	53
	7.10	Filtro o	che non filtra	53
	7.11	Equaliz	zzatore	54
	7.12	Esercia	zi	54
		7.12.1	Funzione di trasferimento	54

8	Spet	ttri e autocorrelazione	55
	8.1	Densità spettrale (o spettro)	55
	8.2	Spettro di ampiezza	55
	8.3	Spettro di energia	55
		8.3.1 Spettro ed energia	55
		8.3.2 Spettro di energia di un sistema LTI	55
	8.4	Spettro di potenza di segnali periodici	56
			56
	8.5	Spettro di potenza di segnali a potenza finita	56
		8.5.1 Spettro e potenza	56
			56
	8.6		56
			57
			57
			57
		1	57
	8.7	$oldsymbol{arphi}$	5.7
	8.8		57
	0.0	Tunzione di mutua corretazione (tunic)	,
9	Teo	rema del campionamento	59
	9.1	Filtro anti-alias (o anti-aliasing)	59
	9.2		59
			59
			59
			60
			60
	9.3		60
	9.4		60
	V -	1	61
			61
	9.5		61
			_
I	I \mathbf{F}	Processi casuali 6	3
10	Тост	wie delle probabilità	3 E
10		1	35 er
	10.1		65 cr
	10.0		65 cr
	10.2		65
			65
	10.0		65
	10.3		66
			66
		1	66
	10.4	V	66
		1	66
		±	66
	10.5		67
			67
		1	67
		•	68
		1	68
	10.6	Insiemi di variabili casuali	68

	10.6.1 Distribuzione cumulativa congiunta	
	10.6.2 Densità di probabilità congiunta	68
	10.6.3 Indipendenza statistica	68
-	10.7 Distribuzione cumulativa di probabilità condizionata	69
-	10.8 Teorema di Bayes con le densità congiunte	69
	10.9 Proprietà	
	10.10Momenti delle variabili casuali	
-	10.10.1 Classificazione dei momenti	
	10.10.2 Valore atteso (media)	
	10.10.3 Valore quadratico medio	
	10.10.4 Varianza	
	10.10.5 Relazione con il valore quadratico medio	
	10.10.5.1 Deviazione standard	
	10.10.6 Covarianza	
	10.10.6.1 Coefficiente di correlazione	
	10.11Combinazioni lineari di variabili casuali	
-	10.12Distribuzione gaussiana	
	10.12.1 Funzione di errore complementare	71
	$10.12.2\mathrm{Funzione}\mathrm{Q}$	71
	10.12.3 Proprietà	72
-	10.13Teorema del limite centrale	72
11]	Processi casuali	73
-	11.1 Processo casuale	73
	11.1.1 Processo casuale come sequenza di variabili casuali	73
	11.1.2 Classificazione	73
	11.1.3 Lettura dei processi	
	11.1.4 Processo determinato	
-	11.2 Statistica di ordine n	
-	11.2.1 Processo completamente descritto	
	11.3 Parametri dei processi casuali	
-	11.3.1 Media	
	11.3.2 Autocorrelazione	
	11.3.2.1 Valore quadratico medio	
	11.3.3 Autocovarianza	74
19 1	Processi stazionari	75
	12.1 Processo stazionario in senso stretto	
-		
	12.1.1 Statistiche dei processi stazionari in senso stretto	
	12.1.2 Medie dei processi stazionari	
	12.1.3 Proprietà	
	12.2 Processo stazionario in senso lato (WSS)	
-	12.3 Processo ciclostazionario in senso stretto	
	12.3.1 Proprietà	
	12.4 Processo ciclostazionario in senso lato	
-	12.5 Stazionarizzazione	76
	Trasformazioni di processi casuali	79
-	13.1 Trasformazione LTI di processi WSS	
	13.1.1 Media	
	13.1.2 Autocorrelazione	
	13.1.3 Trasformazione LTI di un processo gaussiano	
-	13.2 Potenza di processi WSS	80

	13.2.1 Spettro di potenza	30
	13.2.2 Proprietà	30
13.3	Rumore gaussiano bianco (WGN)	31
14 Erge	odicità 8	33
14.1	Media temporale	33
	14.1.1 Casi particolari	33
14.2	Confronto tra medie temporali e medie statistiche	33
14.3	Processo ergodico	33
	14.3.1 Significato	34
	14.3.2 Condizione di ergodicità della media	
14.4	Esercizi	
	14.4.1 Trasmissione numerica	

Elenco delle figure

1.1	Funzione porta	13
4.1 4.2 4.3 4.4 4.5 4.6	Distanza tra vettori	25 25 26 27 28 30
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Segnale approssimato con funzioni delta di Dirac	31 32 34 36 37 38 39 40
7.1 7.2 7.3 7.4 7.5 7.6 7.7	Sistemi in serie Sistemi in retroazione Ritardatore Amplificatore Classificazione dei filtri	50 51 51 51 52 53 54
9.1 9.2 9.3 9.4	Campionamento	59 60 61 62
10.2 10.3 10.4	Variabile casuale Distribuzione cumulativa Densità di probabilità	66 67 67 68 69
12.1	Stazionarizzazione	77
13.1	Domini di un processo WSS (WGN)	81

Parte I Introduzione

Capitolo 1

Richiami di analisi complessa

1.1 Definizioni

1.1.1 Supporto di una funzione

Il supporto di una funzione f è l'insieme dei punti del dominio di f dove f non si annulla

$$f: \Omega \subseteq \mathbb{R} \to \mathbb{C} \implies supp(f) := \{x \in \Omega : f(x) \neq 0\}$$
 (1.1)

1.1.2 Ampiezza

L'ampiezza di una funzione f è il massimo scostamento di una funzione dal suo valore medio

1.1.3 Funzione porta

Una funzione porta è una funzione tale che: se $|t| = \Delta t$ allora f(t) = 1/2; se $|t| < \Delta t$ allora f(t) = 1; se $|t| > \Delta t$ allora f(t) = 0

$$p(t) = \begin{cases} 0 \iff |t| > \Delta t \\ \frac{1}{2} \iff |t| = \Delta t \\ 1 \iff |t| < \Delta t \end{cases}$$
 (1.2)

Figura 1.1: Funzione porta

1.1.4 Delta (o impulso) di Dirac

La funzione delta di Dirac è una funzione tale che l'integrale della delta di Dirac per un segnale $x(\tau)$ è uguale al valore in 0 del segnale x

$$\delta(\tau): \quad x(0) = \int_{-\infty}^{+\infty} x(\tau)\delta(\tau)d\tau \implies x(t) = \int_{-\infty}^{+\infty} x(\tau)\delta(t-\tau)d\tau \tag{1.3}$$

Tramite la funzione $\delta(\tau)$ è quindi possibile valutare il segnale $x(\tau)$ in ogni istante t Si può costruire come limite della funzione porta:

$$\delta(t) = \lim_{\Delta(t) \to 0} \frac{1}{\Delta(t)} p(t) \tag{1.4}$$

1.1.5 Caratteristiche

La funzione delta di Dirac ha le seguenti caratteristiche:

- ha energia infinita: $E(\delta) = \int \delta^2(t) dt = \lim_{\Delta t \to 0} \frac{1}{\Delta t^2} \Delta t \to \infty$
- la $\delta(t)$ può essere normalizzata: $\sqrt{\delta(t)} = \lim_{\Delta t \to 0} \frac{1}{\sqrt{\Delta t}} p(t)$
- ha area unitaria (ponendo x(t) = 1): $x(0) = \int_{-\infty}^{+\infty} \delta(t) = 1$

1.1.6 Gradino

La funzione gradino è una funzione: uguale a 1 se t < 0; uguale a 1/2 se t = 0; uguale a 1 se t > 0

$$u(t) = \frac{1}{2} + \frac{1}{2}sgn(t) \iff u(t) = \begin{cases} 0 \iff t < 0 \\ \frac{1}{2} \iff t = 0 \\ 1 \iff t > 0 \end{cases}$$
 (1.5)

1.1.7 Delta di Kronecker

La funzione delta di Kronecker è una funzione di due variabili discrete i e j che vale 0 se $i \neq j$ e vale 1 se i = j

$$\delta_{ij} := \begin{cases} 0 \iff i \neq j \\ 1 \iff i = j \end{cases} \tag{1.6}$$

1.1.8 Distanza euclidea tra due funzioni

$$d(f,g) = \sqrt{\int_{-\infty}^{+\infty} |f(t) - g(t)|^2 dt}$$
 (1.7)

Capitolo 2

Segnali

2.1 Segnale

Un segnale è una funzione reale o complessa nella variabile tempo la cui forma contiene un'informazione

2.2 Operazioni sui segnali

Si possono effettuare le seguenti operazioni sui segnali:

- trasmissione (per fruirne a distanza spaziale)
- memorizzazione (per fruirne a distanza temporale)
- elaborazione (per eliminare il rumore o generare segnali di livello più alto)

Parte II Classificazione dei Segnali

Capitolo 3

Segnali analogici a tempo continuo

3.1 Segnale analogico a tempo continuo

Un segnale analogico a tempo continuo è una funzione continua del tempo

$$f: \mathbb{R} \to \mathbb{C}$$
 (3.1)

3.1.1 Definizioni

$$\begin{cases} f_R(t) = |f(t)|cos(arg(f(t))) \\ f_I(t) = |f(t)|sin(arg(f(t))) \end{cases} \iff \begin{cases} |f(t)| = \sqrt{f_R^2(t) + f_I^2(t)} \\ arg(f(t)) = tan^{-1} \left(\frac{f_I(t)}{f_R(t)}\right) \end{cases}$$
(3.2)

3.1.2 Rappresentazioni alternative

3.1.2.1 Rappresentazione algebrica

$$f(t) = f_R(t) + if_I(t) \tag{3.3}$$

3.1.2.2 Rappresentazione trigonometrica

$$f(t) = |f(t)|(sin(arg(f(t))) + cos(arg(f(t))))$$
(3.4)

3.1.2.3 Rappresentazione esponenziale

$$f(t) = |f(t)|e^{iarg(f(t))}$$
(3.5)

3.2 Grandezze fondamentali per i segnali

3.2.1 Energia di un segnale

L'energia di un segnale è l'integrale definito tra $-\infty$ e $+\infty$ del quadrato del valore assoluto del segnale

$$E(f(t)) := \int_{-\infty}^{+\infty} |f(t)|^2 dt$$
 (3.6)

3.2.2 Potenza media di un segnale

La potenza media di un segnale è il limite per $a \to \infty$ del rapporto tra: l'integrale definito tra -a e a del quadrato del valore assoluto del segnale; 2a

$$P(f(t)) := \lim_{a \to \infty} \frac{1}{2a} \int_{-a}^{a} |f(t)|^2 dt$$
 (3.7)

3.3 Tipologie di segnali

3.3.1 Segnale fisico

Un segnale fisico è un segnale limitato in ampiezza e supporto

3.3.2 Segnale periodico

Un segnale periodico è un segnale la cui forma si ripete nel tempo

$$f: f(t) = f(t+T) \tag{3.8}$$

3.3.2.1 Rappresentazione

$$f(t) = \sum_{n = -\infty}^{+\infty} f_T(t - nT) \tag{3.9}$$

3.3.2.2 Energia

$$E(f(t)) = \sum_{n = -\infty}^{+\infty} E(f_T) \to \infty$$
(3.10)

3.3.2.3 Potenza

$$P(f(t)) = \frac{E(f_T)}{T} \tag{3.11}$$

3.3.2.4 Segnale periodico a potenza infinita

Un segnale periodico a potenza infinita è un segnale periodico in cui $E(f_T)$ tende a ∞

3.4 Esercizi

3.4.1 Energia e potenza

Esercizio 1. Calcolare energia e potenza media del segnale

$$x(t) = p_1 \left(\frac{t-2}{4}\right) e^{-2t} \quad t \in \mathbb{R}$$

3.4. ESERCIZI 21

dove

$$p_1(t) = \begin{cases} 1 \iff t \le |0.5| \\ 0 \iff t > |0.5| \end{cases}$$

1) Energia

$$E(x) = \int |x(t)|^2 dt = \int_0^4 e^{-4t} dt = -\frac{1}{4} e^{-4t} \Big|_0^4 = -\frac{1}{4} (e^{-16} - e^0) = \frac{1 - e^{-16}}{4} \sim 0.25$$

2) Potenza media $(E(x) \in \mathbb{R} \implies P(x) = 0)$

$$P(x) = \lim_{a \to \infty} \frac{1}{2a} \int_{-a}^{+a} |x(t)|^2 = \lim_{a \to \infty} \frac{E(x)}{2a} = 0$$

Esercizio 2. Calcolare energia e potenza media del segnale

$$x(t) = |t|^{-1/4} \quad t \in \mathbb{R}$$

1) Energia

$$E(x) = \int |x(t)|^2 dt = \int_{-\infty}^{+\infty} |t|^{-1/2} dt = 2 \int_{0}^{+\infty} t^{-1/2} dt = 4t^{1/2} \Big|_{0}^{+\infty} = +\infty$$

2) Potenza media $(E(x) \to \infty \implies P(x) \in \mathbb{R})$

$$P(x) = \lim_{a \to \infty} \frac{1}{2a} \int_{-a}^{+a} |x(t)|^2 = \lim_{a \to \infty} \frac{1}{a} \int_{0}^{a} t^{-1/2} dt = \lim_{a \to \infty} \frac{2}{a} t^{1/2} \bigg|_{0}^{a} = \lim_{a \to \infty} \frac{2a^{1/2}}{a} = 0$$

Esercizio 3. Calcolare energia e potenza media del segnale

$$z(t) = Ae^{j(2\pi ft + kx(t))}$$
 $t \in \mathbb{R}$

dove x(t) è un segnale reale a potenza media finita e A, f e k sono costanti non nulle 1) Energia

$$E(z) = \int |z(t)|^2 dt = \int_{-\infty}^{+\infty} A^2 dt = A^2 t \Big|_{-\infty}^{+\infty} = +\infty$$

2) Potenza media $(E(x) \to \infty \implies P(x) \in \mathbb{R})$

$$P(x) = \lim_{a \to \infty} \frac{1}{2a} \int_{-a}^{a} |z(t)|^2 = \lim_{a \to \infty} \frac{1}{2a} \int_{-a}^{a} A^2 dt = \lim_{a \to \infty} \frac{A^2}{2a} t \Big|_{-a}^{a} = \lim_{a \to \infty} \frac{2aA^2}{2a} = A^2$$

Capitolo 4

Vettori e segnali

4.1 Spazio vettoriale (o lineare)

Uno spazio vettoriale è una struttura algebrica composta da:

- ullet un campo di scalari lpha una struttura algebrica composta da un insieme non vuoto e da due operazioni binarie di somma e prodotto
- un insieme di vettori
- due operazioni binarie di somma e moltiplicazione per scalare

4.1.1 Proprietà

Le proprietà di uno spazio vettoriale sono:

- somma commutativa: x + y = y + x
- somma associativa: x + (y + z) = (x + y) + z = x + y + z
- elemento neutro della somma: x + 0 = x
- inverso per la somma: x + (-x) = 0
- moltiplicazione per scalare (αx) gode delle seguenti proprietà:
 - associativa
 - distributiva
 - elemento scalare neutro per il prodotto: 1x = x
 - elemento scalare nullo per il prodotto: 0x = 0

4.2 Combinazione lineare (c.l.)

Una combinazione lineare di elementi di uno spazio vettoriale è una somma di prodotti tra coppie formate da un vettore e uno scalare

$$x = \sum \alpha_i x_i \tag{4.1}$$

4.2.1 Vettori linearmente indipendenti

Un insieme di vettori linearmente indipendente è un insieme di vettori per cui la loro c.l. è nulla se e solo se tutti gli scalari della c.l. sono nulli

$$\sum \alpha_i x_i = 0 \iff \alpha_i = 0 \quad \forall i \tag{4.2}$$

4.2.2 Vettori linearmente dipendenti

Un insieme di vettori linearmente dipendente è un insieme di vettori in cui esiste almeno un vettore che può essere espresso come c.l. degli altri

$$\exists x_k : x_k = \sum_{i \neq k} \alpha_i x_i \tag{4.3}$$

4.3 Prodotto scalare (o proiezione ortogonale)

Il prodotto scalare è un'operazione che associa ad una coppia di vettori ${\bf x}$ e ${\bf y}$ un numero complesso z

$$z = \langle \mathbf{x}, \mathbf{y} \rangle := \begin{cases} \sum_{t=0}^{\infty} x_i y_i^* & \Longrightarrow \text{ vettore} \\ \int_{-\infty}^{+\infty} x(t) y^*(t) dt & \Longrightarrow \text{ segnale} \end{cases}$$
(4.4)

4.3.1 Proprietà

Proprietà del prodotto scalare sono:

- $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle^*$
- $\langle \mathbf{x} + \mathbf{z}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{z}, \mathbf{y} \rangle$
- $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$

4.4 Norma (o lunghezza)

La norma di un vettore (o di un segnale) \mathbf{x} è un numero pari alla radice quadrata del prodotto scalare tra il vettore \mathbf{x} e se stesso

$$||\mathbf{x}|| := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \begin{cases} \sqrt{\sum |x_i|^2} \implies \text{vettore} \\ \sqrt{\int_{-\infty}^{+\infty} |x(t)|^2 dt} \implies \text{segnale} \end{cases}$$
 (4.5)

e.g.: la norma del vettore $||\mathbf{w}|| = \sqrt{|4|^2 + |3|^2} = 5$; l'energia del vettore è $E(\mathbf{x}) = 5^2 = 25$

4.4.1 Proprietà

Proprietà della norma sono:

- $||\mathbf{x}|| \ge 0 \quad \forall \mathbf{x}$
- $||\mathbf{x}|| = 0 \iff \mathbf{x} = 0$
- $\bullet \ ||\mathbf{x} + \mathbf{y}|| \leq ||\mathbf{x}|| + ||\mathbf{y}||$
- $||\alpha \mathbf{x}|| = |\alpha|||\mathbf{x}||$

4.5. DISTANZA 25

Figura 4.1: Norma ed energia di un vettore

4.5 Distanza

La distanza tra due vettori \mathbf{x} è un numero pari alla norma della differenza tra i due vettori

$$d(\mathbf{x}, \mathbf{y}) := ||\mathbf{x} - \mathbf{y}|| = \sqrt{\langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle} = \begin{cases} \sqrt{\sum |x_i - y_i|^2} \implies \text{vettore} \\ \sqrt{\int_{-\infty}^{+\infty} |x(t) - y(t)|^2 dt} \implies \text{segnale} \end{cases}$$
(4.6)

e.g.: la distanza tra i due vettori: $d(z,w)=\sqrt{|6-4|^2+|0-3|^2}=\sqrt{4+9}=\sqrt{13}\sim 3.6$

Figura 4.2: Distanza tra vettori

4.6 Energia

L'energia di un vettore ${\bf x}$ è un numero pari al quadrato della norma di ${\bf x}$

$$E(\mathbf{x}) := ||\mathbf{x}||^2 = \langle \mathbf{x}, \mathbf{x} \rangle = \begin{cases} \sum_{t=0}^{\infty} |x_i|^2 \implies \text{vettore} \\ \int_{-\infty}^{+\infty} |x(t)|^2 dt \implies \text{segnale} \end{cases}$$
(4.7)

4.6.1 Energia della somma di due vettori

L'energia della somma di due vettori è data dalla somma tra: le energie dei due vettori e il doppio della parte reale del prodotto scalare tra i due vettori

$$E(\mathbf{x} + \mathbf{y}) = ||\mathbf{x} + \mathbf{y}||^{2} =$$

$$= \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle =$$

$$= ||\mathbf{x}||^{2} + ||\mathbf{y}||^{2} + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle^{*} =$$

$$= ||\mathbf{x}||^{2} + ||\mathbf{y}||^{2} + 2\Re(\langle \mathbf{x}, \mathbf{y} \rangle)$$

$$(4.8)$$

4.7 Diseguaglianza di Schwarz

Il quadrato del modulo del prodotto scalare tra due vettori è minore o uguale al prodotto tra le loro energie

$$|\langle \mathbf{x}, \mathbf{y} \rangle|^2 \le ||\mathbf{x}||^2 ||\mathbf{y}||^2 \tag{4.9}$$

L'uguaglianza vale se e solo se i due vettori sono linearmente dipendenti: $\mathbf{x} = \alpha \mathbf{y}$

4.8 Angolo tra due vettori

Un angolo tra due vettori \mathbf{x} e \mathbf{y} è l'arcocoseno del quoziente tra: il valore assoluto del prodotto scalare tra \mathbf{x} e \mathbf{y} ; il prodotto tra le loro norme

$$\theta = \cos^{-1}\left(\frac{|\langle \mathbf{x}, \mathbf{y} \rangle|}{||\mathbf{x}||||\mathbf{y}||}\right) \tag{4.10}$$

Figura 4.3: Prodotto scalare e angolo tra vettori

4.8.1 Vettori ortogonali

Due vettori ortogonali sono due vettori il cui prodotto scalare è nullo:

$$\langle \mathbf{x}, \mathbf{y} \rangle = 0 \iff \cos \theta = 0 \iff \theta = \frac{\pi}{2}$$
 (4.11)

4.8.2 Energia di vettori ortogonali

L'energia della somma di due vettori ortogonali è data dalla somma delle energie dei due vettori

$$E(\mathbf{x} + \mathbf{y}) = ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + 2\Re(\langle \mathbf{x}, \mathbf{y} \rangle) = ||\mathbf{x}||^2 + ||\mathbf{y}||^2$$

$$(4.12)$$

4.9 Base di uno spazio vettoriale

Una base di uno spazio vettoriale è un insieme di vettori dello spazio linearmente indipendenti $\{w_i\}$ in grado di generare tutti gli elementi dello spazio vettoriale attraverso c.l.

$$\{\mathbf{w}_i \in X\} : \mathbf{x} \in X \implies \mathbf{x} = \sum \alpha_i \mathbf{w}_i$$
 (4.13)

4.9.1 Proprietà

Proprietà delle basi sono:

- le basi non sono uniche per ciascuno spazio vettoriale
- la cardinalità delle basi di uno spazio vettoriale è unica e si chiama dimensione dello spazio vettoriale

4.9.2 Base ortonormale

Una base ortonormale è una base di un campo vettoriale tale che: i vettori della base sono a due a due ortogonali; la norma di tutti i vettori della base è 1

$$\{\mathbf{w}_i\} : \begin{cases} \langle \mathbf{w}_i, \mathbf{w}_j \rangle = 0 & \forall i \neq j \\ \langle \mathbf{w}_i, \mathbf{w}_i \rangle = ||\mathbf{w}_i|| = 1 & \forall i \end{cases} \iff \langle \mathbf{w}_i, \mathbf{w}_j \rangle = \delta_{ij}$$
(4.14)

4.9.3 Rappresentazione di vettori tramite basi ortonormali

Un vettore può essere espresso tramite una combinazione lineare delle sue componenti lungo ciascun vettore della base ortonormale del campo vettoriale

$$\mathbf{x} = \sum \langle \mathbf{x}, \mathbf{w}_i \rangle \mathbf{w}_i \tag{4.15}$$

e.g.: il vettore **z** si può esprimere come: $\mathbf{z} = \mathbf{z}_x \mathbf{w}_x + \mathbf{z}_y \mathbf{w}_y = 4\mathbf{w}_x + 3\mathbf{w}_y$

Figura 4.4: Vettore come c.l. di una base ortonormale

4.10 Rapporto segnale-vettore

Un segnale può essere pensato come un vettore di informazione; un segnale può essere espresso tramite una combinazione lineare delle sue proiezioni lungo ciascun segnale della base ortonormale del campo di segnali

$$x(t) = \sum \langle \mathbf{x}, \mathbf{w}_i \rangle \mathbf{w}_i = \mathbf{x}$$
 (4.16)

e.g.: il segnale h(x) si può esprimere come: $h(x) = 2x_f + \frac{1}{2}x_g = 2\sin(x) + \frac{1}{2}\cos(x)$;

Figura 4.5: Segnale come c.l. di una base ortogonale

f e g sono una base ortogonale in quanto: $\int_0^{2\pi} sin(x)cos(x) = \frac{1}{2}cos^2(x)|_0^{2\pi} = 0$ f e g non sono una base normale in quanto: $\sqrt{\int_0^{2\pi} |sin(x)|^2} = \sqrt{\int_0^{2\pi} |cos(x)|^2} = \sqrt{\pi}$ La componente f ha un peso maggiore sulla forma di h in quanto la proiezione di h su f è molto maggiore della proiezione di h su g

4.10.1 Uguaglianza di Parseval

Dato un segnale \mathbf{x} *n*-dimensionale l'energia *n*-dimensionale del segnale è sempre uguale alla somma delle energie delle componenti del segnale

$$E(\mathbf{x}) = \sum_{i=0}^{n} E(\mathbf{x}_i) = \sum_{i=0}^{n} |\alpha \mathbf{w}_i|^2$$
(4.17)

4.10.2 Disuguaglianza di Bessel

Dato un segnale $\bar{\mathbf{x}}$ approssimato in m dimensioni, l'energia n-dimensionale (con $n \geq m$) del segnale \mathbf{x} è sempre maggiore o uguale alla somma delle energie delle componenti del segnale approssimato

$$E(\mathbf{x}) \ge E(\bar{\mathbf{x}}) = \sum_{i=0}^{m} |\alpha \mathbf{w}_i|^2$$
(4.18)

4.11 Procedura di Gram-Schmidt

La procedura di Gram-Schmidt è un algoritmo che permette di trovare una base minima ortonormale a partire da un insieme di segnali l.i.

1. per il primo elemento della base si normalizza un segnale dell'insieme:

$$\hat{\mathbf{w}}_1 = \mathbf{x}_1 \implies \mathbf{w}_1 = \frac{\hat{\mathbf{w}}_1}{||\hat{\mathbf{w}}_1||} \tag{4.19}$$

2. per l'i-esimo elemento della base si normalizza la differenza tra: l'iesimo segnale dell'insieme e la combinazione lineare tra le componenti dell'iesimo segnale dell'insieme relative agli elementi della base trovati in precedenza;

$$\hat{\mathbf{w}}_i = \mathbf{x}_i - \sum_{i=1}^{i-1} \langle \mathbf{x}_i, \mathbf{w}_k \rangle \mathbf{w}_k \implies \mathbf{w}_i = \frac{\hat{\mathbf{w}}_i}{||\hat{\mathbf{w}}_i||}$$
(4.20)

Se al passo i-esimo il segnale $\hat{\mathbf{w}}_i$ è nullo significa che il segnale \mathbf{x}_i è una combinazione lineare dei versori della base trovati in precedenza

(a) Il primo elemento della base è: $\mathbf{w}_1 = \frac{(4,3)}{\sqrt{4^2+3^2}} = \left(\frac{4}{5},\frac{3}{5}\right)$ la cui norma è: $||\mathbf{w}_1|| = \sqrt{\left(\frac{4}{5}\right)^2 + \left(\frac{3}{5}\right)^2} = 1$

(b) Il secondo elemento della base non normalizzato è: $\hat{\mathbf{w}}_2 = (-3,1) - \left\langle (-3,1), \left(\frac{4}{5}, \frac{3}{5}\right) \right\rangle \left(\frac{4}{5}, \frac{3}{5}\right) =$ $= (-3,1) - \left(-\frac{12}{5} + \frac{3}{5}\right) \left(\frac{4}{5}, \frac{3}{5}\right) = (-3,1) + \frac{9}{5} \left(\frac{4}{5}, \frac{3}{5}\right) = \left(-\frac{75}{25}, \frac{25}{25}\right) + \left(\frac{36}{25}, \frac{27}{25}\right) = (-1.56, 2.08)$

(c) Il secondo elemento della base normalizzato è: $\mathbf{w}_2 = \frac{(-1.56, 2.08)}{\sqrt{(-1.56)^2 + 2.08^2}} = (-0.6, 0.8)$ la cui norma è: $||\mathbf{w}_2|| = \sqrt{(0.6)^2 + 0.8^2} = 1$

Figura 4.6: Procedura di Gram-Schmidt

Capitolo 5

Serie e trasformata di Fourier

5.1 Rappresentazione con funzione porta

Un segnale può essere rappresentato mediante funzioni elementari identiche ortogonali come la funzione porta:

$$x(t) \sim x'(t) = \sum_{-\infty}^{+\infty} x(n\Delta t) p_{\Delta t}(t - n\Delta t)$$
(5.1)

Figura 5.1: Segnale approssimato con funzione porta

L'errore dell'approssimazione è direttamente proporzionale alla dimensione del supporto Δt ; facendo tendere Δt a zero è possibile ridurre al minimo l'errore:

$$x(t) = \lim_{\Delta t \to 0} \sum_{n = -\infty}^{+\infty} x(n\Delta t) p_{\Delta t}(t - n\Delta t)$$
(5.2)

5.2 Proprietà della delta di Dirac

5.2.1 Campionamento di un segnale

Il campionamento di un segnale $x(\tau)$ nel punto t_0 si ottiene integrando il prodotto tra il segnale e la delta di Dirac centrata in t_0

$$x(t_0) = \int_{-\infty}^{+\infty} x(t)\delta(t - t_0)dt \tag{5.3}$$

Figura 5.2: Segnale approssimato con funzioni delta di Dirac

5.2.2 Traslazione di un segnale

La traslazione di un segnale x(t) di un valore θ si ottiene facendo il prodotto di convoluzione tra il segnale e la delta di Dirac traslata in θ

$$x(t) * \delta(t - t_0) = \int_{-\infty}^{+\infty} x(t)\delta(t - t_0 - \tau)d\tau = x(t - t_0)$$
 (5.4)

Figura 5.3: Convoluzione tra segnale e delta di Dirac

5.3 Serie di Fourier

La serie di Fourier è un insieme infinito numerabile di funzioni complesse di frequenza $\frac{n}{T}$ (e periodo $\frac{T}{n}$) che formano base ortogonale completa di per tutti i segnali x(t) complessi ad energia finita definiti nell'intervallo $\left[-\frac{T}{2},\frac{T}{2}\right]$

$$x(t) = \sum_{n = -\infty}^{+\infty} \mu_n e^{j2\pi \frac{n}{T}} t = \sum_{n = -\infty}^{+\infty} \mu_n \left(\cos\left(2\pi \frac{n}{T} t\right) + \sin\left(2\pi \frac{n}{T} t\right) \right) \qquad x(t) \in \left[-\frac{T}{2}, \frac{T}{2} \right]$$
 (5.5)

5.3.1 Coefficienti dello sviluppo

I coefficienti dello sviluppo in serie di Fourier si ottengono dal prodotto scalare tra il segnale x(t) e un'esponenziale complesso (base del dominio delle frequenze): sono le proiezioni ortogonali del segnale lungo ciascuna sinusoide della serie di Fourier; i coefficienti dello sviluppo indicano quanto "pesa" ciascuna componente dello sviluppo all'interno del segnale di partenza

$$\mu_n = \frac{1}{T} \int_{-T/2}^{T/2} x(t)e^{-j2\pi \frac{n}{T}t}$$
(5.6)

5.3.2 Serie di Fourier di una funzione reale

La serie di Fourier di una funzione reale è composta da: coefficienti reali e sinusoidi reali

$$x(t) = \mu_0 + \sum_{n=1}^{+\infty} \left(2Re\{\mu_n\} \cos\left(2\pi \frac{2}{T}t\right) - 2Im\{\mu_n\} \sin\left(2\pi \frac{2}{T}t\right) \right)$$
 (5.7)

5.3.2.1 Serie di Fourier di una funzione reale pari

La serie di Fourier di una funzione reale pari è:

$$x(t) = \mu_0 + \sum_{n=1}^{+\infty} \left(2Re\{\mu_n\} \cos\left(2\pi \frac{2}{T}t\right) \right)$$
 (5.8)

5.4 Trasformata di Fourier (tdF)

La tdF è una rappresentazione nel dominio continuo delle frequenze f di un segnale x(t) dipendente dal tempo il quale viene decomposto nella base delle funzioni esponenziali (o trigonometriche) complesse

$$\mathcal{F}\{x(t)\}: x(t) \to X(f) \qquad \mathcal{F}\{x(t)\} =: \int_{-\infty}^{+\infty} x(\theta) e^{-j2\pi f \theta} d\theta = X(f)$$
 (5.9)

L'antitrasformata di Fourier è una rappresentazione nel dominio continuo del tempo t di uno spettro di ampiezza X(f) dipendente dalla frequenza il quale viene decomposto nella base delle funzioni esponenziali (o trigonometriche) complesse

$$\mathcal{F}^{-1}\{X(f)\}: X(f) \to x(t) \qquad \mathcal{F}^{-1}\{X(f)\} =: \int_{-\infty}^{+\infty} X(f)e^{j2\pi ft} df = x(t)$$
 (5.10)

La tdF è l'analogo in un dominio continuo della serie di Fourier

$$x(t) = \sum_{-\infty}^{+\infty} \left(\frac{1}{T} \int_{-T/2}^{T/2} x(\theta) e^{-j2\pi \frac{n}{T}\theta} d\theta \right) e^{j2\pi \frac{n}{T}t} \iff x(t) = \int_{-\infty}^{+\infty} \left(df \int_{-\infty}^{+\infty} x(\theta) e^{-j2\pi f\theta} d\theta \right) e^{j2\pi ft} dt$$

$$(5.11)$$

5.5 Condizione per l'esistenza e l'invertibilità di \mathcal{F}

La tdF esiste ed è invertibile se e solo se il modulo del segnale x(t) è integrabile

$$\mathcal{F} \iff \int_{-\infty}^{+\infty} |x(t)| dt \in \mathbb{C} \tag{5.12}$$

5.6 Trasformate fondamentali

5.6.1 Delta di Dirac

La trasformata del segnale delta di Dirac (centrato in 0) è un segnale costante pari a 1

$$\mathcal{F}(\delta(t)) = \int_{-\infty}^{+\infty} \delta(t - 0)e^{-j2\pi ft}dt = e^{-j2\pi f0} = e^0 = 1 = \delta(f)$$
 (5.13)

L'antitrasformata del segnale costante 1 è un segnale delta di Dirac

$$\mathcal{F}^{-1}\{\delta(f)\} = \int_{-\infty}^{+\infty} \delta(f)e^{j2\pi ft}df = \int_{-\infty}^{+\infty} e^{j2\pi ft}df = \delta(t)$$
 (5.14)

- (a) Rappresentazione nel dominio del tempo
- (b) Rappresentazione nel dominio della frequenza

Figura 5.4: Rappresentazioni della delta di Dirac

5.6.2 Segno

La trasformata del segnale segno è un segnale pari al reciproco di $j\pi f$

$$\mathcal{F}\{sgn(t)\} = \int_{-\infty}^{+\infty} sgn(t)e^{-j2\pi ft}dt = \frac{1}{j\pi f} = sgn(f)$$
 (5.15)

5.6.3 Gradino

La trasformata del segnale gradino è un segnale pari alla somma tra: $\frac{1}{2}\delta(f)$ e il reciproco di $j2\pi f$

$$\mathcal{F}\{u(t)\} = \int_{-\infty}^{+\infty} u(t)e^{-j2\pi ft}dt = \frac{1}{2}\delta(f) + \frac{1}{2}sgn(f) = u(f)$$
 (5.16)

5.6.4 Porta

la trasformata del segnale porta $p_T(t)$ di durata T è un segnale pari al rapporto tra il seno di $\pi f T$ e il prodotto πf

$$\mathcal{F}\{p_T(t)\} = \frac{\sin(\pi f T)}{\pi f} \tag{5.17}$$

5.6.5 Funzione periodica

La trasformata di un segnale periodico s(t) di periodo T è:

$$s(f) = \frac{1}{T} \sum X\left(\frac{n}{T}\right) \delta\left(f - \frac{n}{T}\right) \tag{5.18}$$

5.7 Proprietà della tdF

5.7.1 Linearità

La tdF è un operatore lineare

$$\mathcal{F}\{a_1x_1(t) + a_2x_2(t)\} = a_1\mathcal{F}\{x_1(t)\} + a_2\mathcal{F}\{x_2(t)\}$$
(5.19)

5.7.2 Traslazione (anticipo e ritardo)

La tdF di un segnale traslato in θ è uguale al prodotto tra: la trasformata di Fourier del segnale e un termine di fase

$$\mathcal{F}\{x(t-\theta)\} = \int_{-\infty}^{+\infty} x(t-\theta)e^{-j2\pi ft}dt =$$

$$= \int_{-\infty}^{+\infty} x(t')e^{-j2\pi f(t'+\theta)}dt' = [t' = t - \theta \ dt' = dt]$$

$$= e^{-j2\pi f\theta} \int_{-\infty}^{+\infty} x(t')e^{-j2\pi ft'}dt' = \mathcal{F}\{x(t)\}e^{-j2\pi f\theta}$$
(5.20)

5.7.3 Modulazione (traslazione)

La tdF del prodotto tra un segnale x(t) e un esponenziale (o una sinusoide) di frequenza f_0 è un segnale modulato in f_0 nel dominio della frequenza; uno spettro di ampiezza X(f) modulato in f_0 è lo spettro X(f) traslato nella frequenza f_0

$$\mathcal{F}\{x(t)e^{j2\pi f_0 t}\} = \int_{-\infty}^{+\infty} x(t)e^{j2\pi f_0 t}e^{-j2\pi f t}dt =$$

$$= \int_{-\infty}^{+\infty} x(t)e^{-j2\pi (f-f_0)t}dt = X(f-f_0)$$
(5.21)

(a) Trasformata della funzione x(t)

(b) Transformata della funzione x(t) modulata dal $\cos(2\pi f_0 t) = \frac{1}{2}(e^{j2\pi f_0 t} + e^{-j2\pi f_0 t})$: $\mathcal{F}\{x(t)\cos(2\pi f_0 t)\} = \frac{1}{2}(X(f-f_0) + X(f+f_0))$

Figura 5.5: Modulazione

5.7.4 Scalamento

La tdF di un segnale x(t) scalato nel tempo di un fattore K è il rapporto tra: lo spettro X(f/K) e il valore assoluto di K

$$\mathcal{F}\{x(Kt)\} = \frac{1}{|K|} X\left(\frac{f}{K}\right) \tag{5.22}$$

Significato: espandere l'asse dei tempi corrisponde a comprimere l'asse delle frequenze (e viceversa)

5.7.4.1 Supporti tempo-frequenza

Se un segnale x(t) ha supporto finito nel dominio del tempo, allora la sua tdF ha supporto infinito nel dominio della frequenza (e viceversa)

$$x(t)$$
 supporto finito $\implies X(f)$ supporto infinito $X(f)$ supporto finito $\implies x(t)$ supporto infinito (5.23)

L'inizio e la fine di un segnale nel tempo sono i segnali più rapidi possibile e quindi la loro rappresentazione in frequenza richiede armoniche di frequenza infinita

5.7.5 Relazioni di parità

La tdF di una funzione reale ha: come modulo dello spettro una funzione pari (simmetrica rispetto all'asse delle ascisse) e come argomento dello spettro una funzione dispari (simmetrica rispetto all'origine)

(b) Scalamento nella frequenza: $\mathcal{F}\{\cos(2t)\} = \frac{1}{2}X\left(\frac{f}{2}\right)$

Figura 5.6: Scalamento nel tempo e nlla frequenza

5.7.6 Convoluzione (prodotto)

La tdF del prodotto di convoluzione di due segnali x(t) e y(t) è il prodotto semplice degli spettri dei due segnali

$$\mathcal{F}\{x(t) * y(t)\} = X(f)Y(f) \tag{5.24}$$

5.7.7 Derivazione

La tdF di un segnale x(t) derivato n volte è il prodotto tra: lo spettro X(f) e la derivata n-esima di $j2\pi f$

$$\mathcal{F}\left\{\frac{d^n}{dt^n}x(t)\right\} = X(f)\frac{d^n}{dt^n}(j2\pi f)$$
(5.25)

5.7.8 Integrazione

La tdF di un segnale x(t) integrato tra $-\infty$ e t_0 è la somma tra: il rapporto tra lo spettro X(f) e $j2\pi f$; il prodotto tra la componente costante presente nel segnale X(0) e $1/2\delta(f)$

$$\mathcal{F}\left\{\int_{-\infty}^{t_0} x(\tau)d\tau\right\} = \frac{X(f)}{j2\pi f} + \frac{1}{2}\delta(f)X(0)$$
(5.26)

Il secondo termine della somma tende a zero se nel segnale x(t) la componente costante tende a zero (cioè se X(0) tende a 0); se il secondo termine non è zero l'integrale del segnale x(t) diverge

Figura 5.7: Prodotto di convoluzione tra due segnali

5.7.9 Dualità

La trasformata della tdF di un segnale x(t) è uguale al segnale x(t) ribaltato nel tempo (l'operatore \mathcal{F} è l'inverso di se stesso a meno di un ribaltamento)

$$\mathcal{F}^2\{x(t)\} = \mathcal{F}\{X(f)\} = x(-t) \iff \mathcal{F}\{X(t)\} = x(-f)$$

$$(5.27)$$

Se un segnale X(f) è la trasformata di Fourier di un segnale x(t), allora x(-f) è la trasformata di Fourier del segnale X(t) e.g.:

$$\mathcal{F}\{\delta(t)\} = 1 \iff \mathcal{F}\{1\} = \delta(-f)$$

5.7.10 Proprietà energetiche

Le proprietà energetiche della tdF sono (dipendono dall'invarianza del prodotto scalare):

• uguaglianza di Parseval

$$E(x) = \int |x(t)|^2 dt = \int |X(f)|^2 df$$
 (5.28)

• invarianza del prodotto scalare (non dipende dalla base ortonormale scelta)

$$\langle x(t), y(t) \rangle = \langle X(f), Y(f) \rangle \tag{5.29}$$

• disuguaglianza di Schwarz

$$|\langle X(f), Y(f) \rangle| \le ||X(f)||||Y(f)||$$
 (5.30)

5.8 TdF e sdF di segnali periodici

I coefficienti della sdF e della tdF di un segnale periodico sono uguali

5.9. ESERCIZI 39

5.9 Esercizi

5.9.1 Sviluppo in serie

Esercizio 4. Sviluppare la funzione

$$z(t) = \frac{1}{2} + \cos\left(\frac{\pi t}{4}\right) + \sin(\pi t)$$

sulla base ortonormale composta dai segnali $w_1(t)$, $w_2(t)$ e $w_3(t)$ e verificare la disuguaglianza di Bessel

Figura 5.8: Grafici dei segnali della base ortonormale

Figura 5.9: Scomposizione di un segnale

1) Sviluppo in serie (proiezione del segnale z(t) sugli elementi della base)

$$z(t) = \sum_{i=1}^{n} \langle z, w_i \rangle w_i(t) = \begin{cases} \left\{ \langle z_1, w_1 \rangle = 0 \ (l'integrale \ di \ w_1 \ \grave{e} \ nullo \ lungo \ il \ periodo) \\ \left\{ \langle z_2, w_1 \rangle = \int_0^2 z_2(t) w_1(t) dt - \int_2^4 z_2(t) w_1(t) dt = 2\frac{1}{2} \int_0^2 \cos(\frac{\pi t}{4}) = \frac{4}{\pi} \sin(\frac{\pi t}{4})|_0^2 = \frac{4}{\pi} \\ \left\{ \langle z_3, w_1 \rangle = 0 \ (l'integrale \ di \ z_3 \ \grave{e} \ nullo \ lungo \ il \ periodo) \\ \left\{ \langle z_1, w_2 \rangle = \int_0^4 z_2(t) w_2(t) dt = \frac{1}{4}t|_0^4 = 1 \\ \left\{ \langle z_2, w_2 \rangle = 0 \ (l'integrale \ di \ z_2 \ \grave{e} \ nullo \ lungo \ il \ periodo) \\ \left\{ \langle z_3, w_2 \rangle = 0 \ (l'integrale \ di \ z_3 \ \grave{e} \ nullo \ lungo \ il \ periodo) \\ \left\{ \langle z_1, w_3 \rangle = 0 \ (l'integrale \ di \ w_3 \ \grave{e} \ nullo \ lungo \ il \ periodo) \\ \left\{ \langle z_2, w_3 \rangle = \int_0^4 z_2(t) w_3(t) dt = \begin{cases} \int_0^1 \frac{1}{2} \cos(\frac{\pi t}{4}) dt = \frac{1}{2} \frac{4}{\pi} \sin(\frac{\pi t}{4})|_0^1 \\ \int_1^2 -\frac{1}{2} \cos(\frac{\pi t}{4}) dt = -\frac{1}{2} \frac{4}{\pi} \sin(\frac{\pi t}{4})|_1^2 \\ \int_3^4 -\frac{1}{2} \cos(\frac{\pi t}{4}) dt = -\frac{1}{2} \frac{4}{\pi} \sin(\frac{\pi t}{4})|_3^2 \end{cases} = \frac{4\sqrt{2}}{\pi} - \frac{4}{\pi} \\ \left\{ \langle z_3, w_3 \rangle = \int_0^4 z_3(t) w_3(t) dt = 4 \int_0^1 \sin(\pi t) \frac{1}{2} dt = -2 \frac{1}{\pi} \cos(\pi t) |_0^1 = -\frac{2}{\pi} (-1 - 1) = \frac{4}{\pi} \end{cases} \right.$$

$$= \frac{4}{\pi} w_1(t) + w_2(t) + \frac{4\sqrt{2}}{\pi} w_3(t)$$
 (5.31)

Figura 5.10: Sviluppo in serie

2) Disuguaglianza di Bessel

$$E(z) \ge \sum \langle z, w_i \rangle^2 \iff \frac{\sum \langle z, w_i \rangle^2}{E(z)} \le 1 \implies \frac{(\frac{4}{\pi})^2 + 1 + (\frac{4\sqrt{2}}{\pi})^2}{\int_0^4 z^2(t)dt} = \frac{5,86}{\int_0^4}$$
 (5.32)

Esercizio 5. Dato il segnale reale pari x(t) in figura calcolare lo sviluppo in serie di Fourier nell'intervallo (-3T,3T)

1) Segnale x(t) come c.l. di funzioni porta

$$x(t) = A[p_{\tau}(t+2T) + p_{\tau}(t) + p_{\tau}(t-2T)]$$
(5.33)

5.9. ESERCIZI 41

2) Calcolo di μ_0 ($p_{\tau}(t)$ è la porta di altezza 1 e supporto $\tau/2$)

$$\mu_0 = \frac{1}{(6T)} \int_{(-3T)}^{(3T)} p_{\tau}(t) dt = \frac{1}{6T} 2t \Big|_0^{\tau/2} = \frac{1}{6T} \tau$$
 (5.34)

3) Calcolo di $2Re\{\mu_n\}$ (l'integrale di una funzione pari in un intervallo simmetrico è uguale a due volte l'integrale solo sulla parte positiva)

$$2Re\{\mu_n\} = \frac{2}{(6T)} \int_{(-3T)}^{(3T)} p_{\tau}(t) \cos\left(2\pi \frac{n}{6T}t\right) dt =$$

$$= \frac{1}{(3T)} 2 \int_{0}^{(\tau/2)} \cos\left(\pi \frac{n}{3T}t\right) dt =$$

$$= \frac{2}{3T} \frac{6T}{2\pi n} \sin\left(\pi \frac{n}{3T}t\right) \Big|_{0}^{\tau/2} =$$

$$= \frac{2}{\pi n} \sin\left(\pi \frac{n}{6T}\tau\right)$$

$$(5.35)$$

4) Sviluppo in serie della funzione porta

$$p_{\tau}(t) = \mu_0 + 2Re\{\mu_n\} = \frac{\tau}{6T} + \sum_{1}^{+\infty} \frac{2}{\pi n} \sin\left(\pi \frac{n}{6T}\tau\right) \cos\left(2\pi \frac{n}{6T}t\right)$$

$$(5.36)$$

5) Sviluppo in serie della funzione x(t)

$$x(t) = 3\mu_0 A + A \sum \left[\sin\left(\pi \frac{n}{6T}\tau\right) \left(\cos\left(2\pi \frac{n}{6T}(t+2T)\right) + \cos\left(2\pi \frac{n}{6T}t\right) + \cos\left(2\pi \frac{n}{6T}(t-2T)\right) \right) \right]$$
(5.37)

5.9.2 Trasformata di Fourier

Esercizio 6. Dato un segnale reale pari s(t) onda triangolare avente periodo T, supporto $\tau < T$ e altezza A: calcolare la serie e la trasformata di Fourier

1) Segnale $x(t) \in [-\tau/2, \tau/2]$

$$x(t) = Atri\left(\frac{t}{\tau/2}\right) = Atri\left(\frac{2t}{\tau}\right) = \begin{cases} A(1 - \frac{2|t|}{\tau}) \iff |t| \le \frac{\tau}{2} \\ 0 \iff |t| > \frac{\tau}{2} \end{cases}$$
 (5.38)

2) Calcolo di μ_0 (l'integrale di della funzione triangolare è uguale alla sua area)

$$\mu_0 = \frac{1}{T} \int_{-\tau/2}^{\tau/2} A tri\left(\frac{2t}{\tau}\right) dt = \frac{1}{T} \frac{\tau A}{2}$$

$$\tag{5.39}$$

3) Calcolo di $2Re\{\mu_n\}$ $(x(t) e \cos(\alpha) sono due funzioni pari; il loro prodotto è una funzione pari; l'integrale di una funzione pari in un intervallo simmetrico è uguale a due volte l'integrale sull'intervallo positivo)$

$$2Re\{\mu_{n}\} = \frac{2}{T} \int_{-T/2}^{T/2} x(t) \cos\left(2\pi \frac{n}{T}t\right) =$$

$$= \frac{4}{T} \int_{0}^{\tau/2} A(1 - \frac{2t}{\tau}) \cos\left(2\pi \frac{n}{T}t\right) =$$

$$= \frac{4A}{T\tau} \int_{0}^{\tau/2} (\tau - 2t) \cos\left(2\pi \frac{n}{T}t\right) =$$

$$= \frac{4A}{T\tau} (\tau - 2t) \frac{T}{2\pi n} \sin\left(2\pi \frac{n}{T}t\right) \Big|_{0}^{\tau/2} - \int_{0}^{\tau/2} (-2) \frac{T}{2\pi n} \sin\left(2\pi \frac{n}{T}t\right) dt =$$

$$= \frac{4A}{T\tau} \frac{T}{\tau} \frac{T}{2\pi n} \left(-\cos\left(2\pi \frac{n}{T}t\right)\right) \Big|_{0}^{\tau/2} =$$

$$= \frac{8A}{T\tau} \left(\frac{T}{2\pi n}\right)^{2} \left(1 - \cos\left(2\pi \frac{n}{T}\frac{\tau}{2}\right)\right)$$
(5.40)

4) Sviluppo in serie di x(t)

$$x(t) = \mu_0 + 2Re\{\mu_n\} = \frac{\tau A}{2T} + \sum \left[\frac{8A}{T\tau} \left(\frac{T}{2\pi n} \right)^2 \left(1 - \cos\left(\pi \frac{n}{T}\tau\right) \right) \cos\left(2\pi \frac{n}{T}t\right) \right]$$
 (5.41)

5.9. ESERCIZI 43

5) TdF del segnale periodico $x(t) = Atri(\frac{2t}{\sigma})$

$$\mathcal{F}\{x(t)\} = X(f) = AT\operatorname{sinc}^{2}(fT) = A\frac{\tau}{2}\operatorname{sinc}^{2}\left(f\frac{2}{\tau}\right)$$
(5.42)

6) TdF di s(t)

$$S(f) = \frac{1}{T} \sum \left[\frac{A\tau}{2} \operatorname{sinc}\left(\frac{n\tau}{T}\right) \delta\left(f - \frac{n}{T}\right) \right] = \frac{A\tau}{2T} \sum \left[\frac{\sin^2(\pi\frac{n\tau}{2T})}{(\pi\frac{n\tau}{2T})^2} \delta\left(f - \frac{n}{T}\right) \right]$$
(5.43)

Esercizio 7. Calcolare la tdF del segnale $s(t) = e^{-\alpha t}u(t)$ con $\alpha > 0$

1) Calcolo della tdF a partire dalla definizione (la funzione s(t) ha integrale nullo per t < 0)

$$X(f) = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft}dt =$$

$$= \int_{0}^{+\infty} e^{-\alpha t}e^{-j2\pi ft}dt =$$

$$= -\frac{1}{\alpha + j2\pi f}e^{-(\alpha + j2\pi f)t}\Big|_{0}^{+\infty} =$$

$$= -\frac{1}{\alpha + j2\pi f}$$

$$= -\frac{1}{\alpha + j2\pi f}$$
(5.44)

Esercizio 8. Calcolare la tdF del segnale $s(t) = e^{-2t+4}u(t-2)$

1) Ricerca della funzione di riferimento nelle tavole

$$s(t) = e^{-2(t-2)}u(t-2) = e^{-a(t-2)}u(t-2)$$
(5.45)

2) Ricerca proprietà: traslazione nel tempo

$$x(t-t_0) \iff X(f)e^{-j2\pi t_0 f} \implies$$

$$s(t-2) = e^{-a(t-2)}u(t-2) \iff S(f) = \mathcal{F}\{s(t)\}e^{-j4\pi f}$$
(5.46)

3) Calcolo della tdF del segnale s(t)

$$S(f) = \mathcal{F}\{s(t)\}e^{-j4\pi f} =$$

$$= \frac{1}{a+j2\pi f}e^{-j4\pi f} =$$

$$= \frac{1}{2+j2\pi f}e^{-j4\pi f} =$$

$$= \frac{\frac{1}{2}}{1+j2\pi f}e^{-j4\pi f}$$
(5.47)

Esercizio 9. Calcolare la tdF del segnale $s(t) = e^{-t/2}u(t)\cos(100\pi t) = x(t)y(t)$

1) Ricerca delle funzioni di riferimento nelle tavole

$$x(t) = e^{-t/2} = e^{-\alpha t} (5.48)$$

2) Ricerca delle proprietà: prodotto di convoluzione $(f_0 = 50)$

$$x(t)y(t) \iff X(f) * Y(f) \implies e^{-t/2}\cos(2\pi f_0 t) \iff \mathcal{F}\{x(t)\} * \mathcal{F}\{y(t)\}$$
 (5.49)

3) Calcolo della tdF del segnale s(t) $(x(t) * \delta(t - t_0) = x(t - t_0))$

$$S(f) = \frac{1}{\frac{1}{2} + j2\pi ft} * \frac{1}{2} [\delta(f - f_0) + \delta(f + f_0)] =$$

$$= \frac{1}{2} \frac{1}{\frac{1}{2} + j2\pi (f - f_0)} + \frac{1}{2} \frac{1}{\frac{1}{2} + j2\pi (f + f_0)} =$$

$$= \frac{1}{2} \frac{\frac{1}{2} + j2\pi (f + f_0) + \frac{1}{2} + j2\pi (f - f_0)}{(\frac{1}{2} + j2\pi f)^2 - (\frac{1}{2} + j2\pi f_0)^2} =$$

$$= \frac{1}{2} \frac{1 + j4\pi f}{(\frac{1}{2} + j2\pi f)^2 - (\frac{1}{2} + j2\pi f_0)^2}$$
(5.50)

Esercizio 10. Calcolare la tdF del segnale $s(t) = tri(\frac{t-1}{2})e^{-j200\pi t}$ 1) Ricerca delle proprietà 1.1) Scalamento nel tempo

$$\operatorname{tri}\left(\frac{t}{T}\right) \iff T\operatorname{sinc}^2(fT)$$
 (5.51)

1.2) Traslazione nel tempo

$$\operatorname{tri}\left(\frac{t-t_0}{T}\right) \iff T\operatorname{sinc}^2(fT)e^{-j2\pi f}$$
 (5.52)

1.3) Traslazione in frequenza

$$\operatorname{tri}\left(\frac{t-t_0}{T}\right)e^{-j2\pi f_0 t} \iff T\operatorname{sinc}^2((f+f_0)T)e^{-j2\pi(f+f_0)}$$
(5.53)

2) Calcolo della tdF del segnale s(t)

$$s(t) = 2\operatorname{sinc}^{2}(2(f+100))e^{-j2\pi f}$$
(5.54)

5.9.3 Energia dei segnali con la tdF

Esercizio 11. Calcolare l'energia del segnale $s(t) = 5\operatorname{sinc}(2t)$

1) Ricerca delle funzioni di riferimento nelle tavole (T = 1/2)

$$\operatorname{sinc}\left(\frac{t}{T}\right) \iff p_{\frac{1}{T}}(f) \tag{5.55}$$

2) Ricerca proprietà 2.1) linearità

$$k \operatorname{sinc}\left(\frac{t}{T}\right) \iff k p_{\frac{1}{T}}(f)$$
 (5.56)

2.2) uguaglianza di Parseval

$$\int_{-\infty}^{+\infty} |s(t)|^2 dt \iff \int_{-\infty}^{+\infty} |S(f)|^2 df \tag{5.57}$$

3) Calcolo energia nella frequenza (la funzione porta è pari e l'intervallo di integrazione è simmetrico)

$$E(S(f)) = 2 \int_0^{1/2T} |5p_{\frac{1}{T}}(f)|^2 df = 50f \Big|_0^1 = 50$$
 (5.58)

Parte III

Sistemi lineari e stazionari a tempo continuo

Capitolo 6

Sistemi

6.1 Sistema (in generale)

Un sistema è un blocco che trasforma un segnale in un altro segnale

$$S: x(t) \to y(t) \iff y(t) = S(x(t))$$
 (6.1)

6.1.1 Sistema lineare

Un sistema lineare è un sistema per cui vale il principio di sovrapposizione degli effetti

$$S(a_1x_1(t) + a_2x_2(t)) = a_1S(x_1(t)) + a_2S(x_2(t))$$
(6.2)

6.1.2 Sistema tempo invariante

Un sistema tempo invariante è un sistema in cui un ritardo sugli ingressi si traduce in un ritardo sulle uscite

$$S(x(t - t_0)) = y(t - t_0) \tag{6.3}$$

6.1.3 Sistema senza memoria

Un sistema senza memoria è un sistema in cui l'uscita dipende solo dall'ingresso in quell'istante di tempo

6.1.4 Sistema con memoria

Un sistema con memoria è un sistema in cui l'uscita dipende dagli ingressi in più istanti di tempo

6.1.5 Sistema causale

Un sistema causale è un sistema in cui vale il principio di causa-effetto: cioè l'uscita è causata al massimo dagli ingressi passati ma non da quelli futuri

$$y(t_0) = \mathcal{S}(x(t)_{t=-\infty}^{t_0}) \tag{6.4}$$

6.1.6 Sistema non causale

Un sistema causale è un sistema in cui non vale il principio di causa-effetto: cioè l'uscita è causata sia dagli ingressi passati sia dagli ingressi futuri

$$y(t_0) = \mathcal{S}(x(t)_{t--\infty}^{\infty}) \tag{6.5}$$

Capitolo 7

Sistemi Lineari Tempo Invarianti (LTI)

7.1 Risposta all'impulso

La risposta all'impulso di un sistema è una funzione che restituisce il valore dell'uscita di un sistema quando all'ingresso viene applicata una delta di Dirac

$$h(t) =: \mathcal{S}(\delta(t)) \tag{7.1}$$

7.2 Descrizione di un sistema LTI

Un sistema LTI si può descrivere completamente attraverso la funzione risposta all'impulso

$$y(t) = x(t) * h(t) = \int x(\tau)h(t-\tau)d\tau \iff Y(f) = X(f)H(f)$$
(7.2)

7.2.1 Funzione di trasferimento

La funzione di trasferimento è la trasformata di Fourier della risposta all'impulso di un sistema LTI

$$X(f) \to H(f) \to Y(f) \iff H(f) = \frac{Y(f)}{X(f)}$$
 (7.3)

7.2.2 Proprietà

Le proprietà dei sistemi LTI sono:

- non variano la frequenza del segnale di ingresso
- variano l'ampiezza del segnale di ingresso
- variano la fase del segnale di ingresso

7.2.3 Sistema LTI con ingresso sinusoidale

Un sistema LTI avente come ingresso la sinusoide complessa $e^{j2\pi f_0t}$ è descritto completamente dalla sua funzione di trasferimento H:

$$x(t) = 1 \cdot e^{j2\pi f_0 t} \iff X(f) = \delta(f - f_0)$$

$$Y(f) = X(f)H(f) = \delta(f - f_0)H(f) = \delta(f - f_0)H(f_0) \iff y(t) = x(t)H(f_0)$$
(7.4)

La funzione Y è uguale al valore che H assume in f_0 ; quindi dato un ingresso qualunque, l'uscita di un sistema LTI dipende solo da come il sistema trasforma l'ampiezza e la fase del segnale di ingresso (dalla sua funzione di trasferimento)

7.2.4 Sistema LTI causale

Un sistema LTI causale è un sistema LTI in cui la funzione di trasferimento è nulla per ogni t < 0

$$h(t) = 0 \quad \forall t < 0 \tag{7.5}$$

7.2.5 Sistema LTI reale

Un sistema LTI reale è un sistema in cui la funzione di trasferimento è una funzione reale avente (per le proprietà della tdF): parte reale (modulo) pari, parte immaginaria (fase) dispari

7.3 Sistema fisicamente realizzabile

Un sistema fisicamente realizzabile è un sistema sia causale sia reale

7.4 Sistema stabile BIBO

Un sistema stabile in senso BIBO (Buonded Input Buonded Output) è un sistema in cui ad un ingresso limitato in ampiezza corrisponde un uscita limitata in ampiezza

$$|x(t)| < \infty \implies |y(t)| < \infty \quad \forall t$$
 (7.6)

7.4.1 Sistema LTI stabile

Un sistema LTI stabile è un sistema LTI la cui funzione di trasferimento è modulo integrabile (viene garantito che la H(f) non sia "strana", che tenda a infinito)

$$\int |h(t)|dt < \infty \implies |H(f)| < \infty \tag{7.7}$$

7.5 Configurazioni di sistemi LTI

7.5.1 Parallelo

La funzione di trasferimento di due sistemi LTI in parallelo aventi funzioni di trasferimento $H_1(f)$ e $H_2(f)$ è la somma delle funzioni di trasferimento dei due sistemi

$$Y(f) = X(f)H_1(f) + X(f)H_2(f) = X(f)(H_1(f) + H_2(f)) \implies H(f) = H_1(f) + H_2(f)$$
 (7.8)

Figura 7.1: Sistemi in parallelo

7.5.2 Serie

La funzione di trasferimento di due sistemi LTI in serie aventi funzioni di trasferimento $H_1(f)$ e $H_2(f)$ è il prodotto delle funzioni di trasferimento dei due sistemi

$$Y(f) = (X(f)H_1(f))H_2(f) = X(f)H_1(f)H_2(f) \implies H(f) = H_1(f)H_2(f)$$
(7.9)

Figura 7.2: Sistemi in serie

7.5.3 Retroazione

La funzione di trasferimento di due sistemi LTI in retroazione aventi funzioni di trasferimento $H_1(f)$ e $H_2(f)$ è data dal rapporto tra: $H_1(f)$ e la differenza $1 - H_1(f)H_2(f)$

$$Y(f) = (X(f) + Y(f)H_2(f))H_1(f) \implies Y(f)(1 - H_1(f)H_2(f)) = X(f)H_1(f)$$

$$H(f) = \frac{H_1(f)}{1 - H_1(f)H_2(f)}$$
(7.10)

Figura 7.3: Sistemi in retroazione

7.6 Sistemi LTI notevoli

7.6.1 Ritardatore

Il ritardatore è un sistema LTI che dato un ingresso x(t) fornisce l'uscita ritardata x(t-T)

$$h(t) = \delta(t - T) \iff H(f) = e^{-j2\pi fT} \tag{7.11}$$

$$x(t) \longrightarrow T \longrightarrow y(t) = x(t-T)$$

Figura 7.4: Ritardatore

7.6.2 Amplificatore

L'amplificatore è un sistema LTI che dato un ingresso x(t) fornisce l'uscita amplificata Ax(t)

$$h(t) = A\delta(t) \iff H(f) = A$$
 (7.12)

Figura 7.5: Amplificatore

7.7 Banda di un segnale

7.7.1 Supporto della tdF

La banda di un segnale è il supporto della tdF del segnale misurata sul semiasse positivo delle frequenze (i segnali reali hanno però supporto infinito)

7.7.2 Banda a 3dB

7.7.3 Banda equivalente di rumore

La banda equivalente di rumore di un segnale è il supporto del semiasse positivo delle frequenze della funzione porta che ha lo stesso massimo e la stessa area (cioè la stessa energia) del segnale

$$B_{eq} = \frac{E(H)}{\max(|H(f)|^2)} \tag{7.13}$$

7.7.4 Banda percentuale

La banda percentuale di un segnale è il supporto del semiasse positivo delle frequenze di una percentuale dell'energia del segnale

$$B_{x\%} = \frac{x}{100} E(H) \tag{7.14}$$

7.7.5 Banda unilatera e bilatera

La banda unilatera è la banda del semiasse positivo delle frequenze La banda bilatera è la banda del segnale su tutto l'asse delle frequenze

7.8 Filtro

Un filtro è un sistema in grado di selezionare determinate componenti in frequenza di un segnale

7.8.1 Passa basso

Un passa basso è un filtro avente banda finita centrata intorno all'origine

7.8.2 Passa banda

Un passa banda è un filtro avente banda finita che non include l'origine

7.8.3 Passa alto

Un passa alto è un filtro avente banda infinita che non include l'origine

7.8.4 Elimina banda

Un elimina banda è un filtro avente banda infinita che non include un certo intervallo di frequenze

Figura 7.6: Classificazione dei filtri

7.8.5 Filtro ideale

Un filtro ideale è un filtro avente: guadagno unitario nella banda passante e guadagno nullo nella banda attenuata

7.9 Distorsione lineare

La distorsione lineare è un fenomeno (e.g.: filtro) che modifica la forma del segnale di ingresso

7.10 Filtro che non filtra

Un filtro che non filtra è un filtro che non comporta una distorsione lineare del segnale di ingresso: può solo amplificarlo e/o ritardarlo

$$y(t) = kx(t-T) \iff H(f) = ke^{-j2\pi fT}$$

$$(7.15)$$

7.11 Equalizzatore

Un equalizzatore è un sistema LTI che, posto in serie ad un sistema LTI avente funzione di trasferimento $H_c(f)$, elimina la distorsione lineare provocata dal sistema

$$H_e(f) = \frac{ke^{-j2\pi fT}}{H_c(f)} \tag{7.16}$$

$$X(f) = (XH_c) \left(\frac{ke^{-j2\pi fT}}{H_c}\right) = Xke^{-j2\pi fT}$$
 (7.17)

Figura 7.7: Equalizzatore

7.12 Esercizi

7.12.1 Funzione di trasferimento

Esercizio 12. Dato un circuito RC composto da una resistenza dove scorre la corrente i(t) in serie ad un condensatore; trovare la risposta all'impulso del sistema 1) KVL ai nodi

$$x(t) = Ri(t) + y(t) = RC\frac{dy(t)}{dt} + y(t)$$

$$X(f) = RC(j2\pi f Y(f)) + Y(f) = (1 + j2\pi f RC)Y(f) \implies H(f) = \frac{1}{1 + j2\pi f RC}$$
2) \mathcal{F}^{-1}

$$\mathcal{F}^{-1}\{H(f)\} = e^{-\frac{t}{RC}}u(t)$$
(7.18)

Capitolo 8

Spettri e autocorrelazione

8.1 Densità spettrale (o spettro)

La densità spettrale di una grandezza è una funzione che descrive la distribuzione della grandezza nel dominio delle frequenze

8.2 Spettro di ampiezza

Lo spettro di ampiezza di un segnale x(t) è il segnale x descritto nel dominio delle frequenze

$$X(f) = \mathcal{F}^{-1}\{x(t)\}\tag{8.1}$$

8.3 Spettro di energia

Lo spettro di energia di un segnale x(t) è il quadrato del modulo della tdF del segnale

$$S_x(f) = |X(f)|^2$$
 (8.2)

8.3.1 Spettro ed energia

L'energia di un segnale è l'integrale dello spettro di energia del segnale

$$E(x) = \int S_x(f)df \tag{8.3}$$

8.3.2 Spettro di energia di un sistema LTI

Lo spettro di energia dell'uscita y di un sistema LTI è uguale al prodotto tra lo spettro di energia dell'ingresso per il quadrato del modulo della fdt del sistema

$$S_y(f) = |Y(f)|^2 =$$

$$= |X(f)H(f)|^2 =$$

$$= S_x(f)|H(f)|^2$$
(8.4)

8.4 Spettro di potenza di segnali periodici

Lo spettro di potenza di un segnale è la somma del prodotto tra: il quadrato dei moduli dei coefficienti della serie di Fourier; il treno di delta di Dirac centrate in i/T

$$G_x(f) = := \sum |\mu_i|^2 \delta\left(f - \frac{i}{T}\right) \tag{8.5}$$

8.4.1 Spettro e potenza

La potenza di un segnale è l'integrale dello spettro di potenza del segnale

$$P(x) = \int G_x(f)df = \sum |\mu_i|^2$$
(8.6)

8.5 Spettro di potenza di segnali a potenza finita

Lo spettro di potenza di un segnale a potenza finita è il limite per $T\to\infty$ dello spettro di energia troncato e normalizzato

$$G_x(f) = := \lim_{T \to \infty} \frac{1}{T} |X_T(f)|^2$$
 (8.7)

8.5.1 Spettro e potenza

La potenza di un segnale a potenza finita è l'integrale dello spettro di potenza del segnale

$$P(x) = \int G_x(f)df \tag{8.8}$$

8.5.2 Spettro di potenza di un sistema LTI

Lo spettro di potenza dell'uscita y di un sistema LTI è uguale al prodotto tra lo spettro di potenza dell'ingresso per il quadrato del modulo della fdt del sistema

$$G_y(f) = G_x(f)|H(f)|^2$$
 (8.9)

8.6 Funzione di autocorrelazione (fda)

La funzione di autocorrelazione è una misura di quanto un segnale è uguale a se stesso quando viene traslato nel tempo; la funzione di autocorrelazione è uguale al prodotto scalare tra il segnale e una traslazione in τ del segnale

$$R_{x}(\tau) := \langle x(t+\tau), x(t) \rangle =$$

$$= \int x(t+\tau)x^{*}(t)dt =$$

$$= x(\tau) * x^{*}(-\tau) =$$

$$= \mathcal{F}^{-1}\{X(f)X^{*}(f)\} =$$

$$= \mathcal{F}^{-1}\{|X(f)|^{2}\} = \mathcal{F}^{-1}\{S_{x}(f)\}$$
(8.10)

8.6.1 Fda di un segnale reale

La fda di un segnale reale è una funzione pari

$$x(t) \in \mathbb{R} \implies R_x(\tau) = R_x^*(-\tau)$$
 (8.11)

8.6.2 Fda e energia

La fda di un segnale calcolata nell'origine (non traslata) è uguale all'energia del segnale; l'origine è un massimo della fda

$$R_x(\tau) \le R_x(0) = E(x) \tag{8.12}$$

8.6.3 Fda e potenza

La fda dello spettro di potenza è

$$\Phi_x(\tau) := \lim_{T \to \infty} \int_{-T/2}^{T/2} x(t+\tau)x^*(t)dt$$
 (8.13)

8.6.4 Fda e velocità dei segnali

La fda misura la rapidità con cui un segnale cambia nel tempo:

- ullet segnali lenti: cambiano poco nel tempo \Longrightarrow anche per ritardi grandi restano correlati \Longrightarrow fda ha un decadimento lento
- \bullet segnali veloci: cambiano molto nel tempo \implies anche per ritardi piccoli non sono più correlati \implies fda ha un decadimento rapido

8.7 Spettro di energia mutua

Lo spettro di energia mutua di due segnali x(t) e y(t) è il prodotto tra la tdD di x e la tdF di y coniugata

$$S_{xy}(f) = X(f)Y^*(f)$$
 (8.14)

8.8 Funzione di mutua correlazione (fdmc)

La fdmc di due segnali x(t) e y(t) è una misura di quanto due segnali sono simili

$$R_{xy}(\tau) := \langle x(t+\tau), y^*(t) \rangle =$$

$$= \int x(t+\tau)y^*(t)dt =$$

$$= \mathcal{F}^{-1}\{S_{xy}(f)\}$$
(8.15)

Capitolo 9

Teorema del campionamento

9.1 Filtro anti-alias (o anti-aliasing)

Un filtro anti-alias è un filtro analogico utilizzato prima del campionamento di un segnale al fine di restringere la banda del segnale per soddisfare approssimativamente il teorema del campionamento; il filtro anti-alias tronca le componenti spettrali ad alta frequenza e lascia invariate le altre

$$AA(f) \begin{cases} 0 & \forall |f| > B_{AA} \\ \neq 0 & \forall |f| < B_{AA} \end{cases}$$

$$(9.1)$$

Figura 9.1: Filtro anti-alias

9.2 Campionamento

Il campionamento è un processo che consente di convertire un segnale continuo nel tempo in un segnale discreto nel tempo

$$C: x(t) \to x(n)$$

$$x_C(t) = x(t) \sum_{t} \delta(t - nT_C)$$
(9.2)

9.2.1 Tempo di campionamento

Il tempo di campionamento T_C è l'intervallo di tempo che intercorre tra la valutazione di un campione ed un'altra

9.2.2 Frequenza di campionamento

La frequenza di campionamento f_C è l'inverso del periodo di campionamento

Figura 9.2: Campionamento

9.2.3 Campionamento reale

Un campionamento reale effettuato con il segnale periodico $h(t - nT_C)$ è un campionamento che approssima il campionamento ideale effettuato dalla delta di Dirac

$$x_{C}(t) = x(t) \sum h(t - nT_{C}) =$$

$$= x(t)(h(t) * \sum \delta(t - nT_{C})) \iff$$

$$X_{C}(f) = X(f) * H(f) \frac{1}{T_{C}} \sum \delta\left(f \frac{n}{T_{C}}\right) =$$

$$= Z(f) \frac{1}{T_{C}} \sum \delta\left(f \frac{n}{T_{C}}\right)$$

$$(9.3)$$

Il segnale x(t) viene distorto dal campionamento non ideale

9.2.4 Ricostruzione di segnali reali

La ricostruzione di segnali reali è un processo che equalizza l'effetto distorcente del campionamento reale

$$K(f) = \begin{cases} \frac{1}{AA(f)H(f)} & \forall |f| < B_{AA} \\ 0 & \forall |f| > f_C - B_{AA} \end{cases}$$

$$(9.4)$$

9.3 Teorema del campionamento di Nyquist-Shannon

Un segnale tempo continuo può esser campionato e perfettamente ricostruito a partire dai suoi campioni se e solo se la frequenza di campionamento è maggiore del doppio della banda unilatera

$$f_C > 2B \tag{9.5}$$

9.4 Interpolazione

L'interpolazione è un processo che consente di ricostruire un segnale a tempo continuo a partire da un segnale a tempo discreto

$$x_K(t) = \sum x(n)K(t - nT_C)$$
(9.6)

Per poter ricostruire un segnale correttamente un filtro di interpolazione deve essere:

Figura 9.3: Teorema del campionamento

- non distorcente (piatto) nella banda del segnale
- $\bullet\,$ nullo per $f>f_C-B$ (per eliminare componenti ad alta frequenza)

9.4.1 Filtri distorcenti

Filtri distorcenti sono:

- la funzione porta: $K(f) = \mathcal{F}\{p_{T_C}(t)\} = T_C \text{sinc}(fT_C)$
- lineare (interpolazione a triangoli): $K(f) = \text{tri}(t/T_C) = T_C \text{sinc}^2(fT_C)$

9.4.2 Filtri non distorcenti

Filtri non distorcenti sono:

• la funzione sinc:

9.5 Schema A/D/A

I processi di campionamento e di ricostruzione di un segnale analogico sono composti dalle seguenti fasi:

- $\bullet\,$ inserimento di un filtro anti-alias AA(f)
- campionamento reale (introduce una distorsione) $\sum h(t nT_C)$
- quantizzazione del segnale campionato
- processing del segnale in formato digitale
- inserimento di un filtro di ricostruzione K(f)

Figura 9.4: Schema A/D/A

Parte IV Processi casuali

Capitolo 10

Teoria della probabilità

10.1 Spazio campione

Uno spazio campione S è un insieme dei possibili risultati s_i di un esperimento casuale

10.1.1 Probabilità di un risultato

La probabilità di un associata ad un risultato s_i ha le seguenti proprietà

• la probabilità di un risultato è sempre maggiore o uguale a zero

$$P(s_i) \ge 0 \tag{10.1}$$

• la somma delle probabilità di tutti i risultati di uno spazio campione è uguale a 1

$$\sum P(s_i) = 1 \tag{10.2}$$

10.2 Evento

Un evento è un sottoinsieme di uno spazio campione

10.2.1 Probabilità di un evento

La probabilità di un evento è uguale alla somma delle probabilità associata ai risultati dell'evento

$$P(E) = \sum P(s_i) \tag{10.3}$$

10.2.1.1 Probabilità totale

L'unione di eventi è sempre minore della somma delle probabilità dei singoli eventi

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$
(10.4)

Figura 10.1: Proprietà dell'unione

10.3 Probabilità condizionata

La probabilità condizionata è la probabilità che si verifichi il risultato s se si verifica l'evento B

$$P(s|B) = \begin{cases} \frac{P(s)}{P(B)} \iff s \in B\\ 0 \iff s \notin B \end{cases}$$
 (10.5)

10.3.1 Rinormalizzazione

Se si verifica l'evento B lo spazio delle probabilità diventa B

10.3.2 Proprietà dell'intersezione

L'intersezione di due eventi A e B è il prodotto tra: la probabilità che si verifichi A dato B e la probabilità di B oppure la probabilità che si verifichi B dato A e la probabilità di A

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$
 (10.6)

10.4 Teorema di Bayes

Il teorema di Bayes serve per calcolare la probabilità che se si verifica l'evento B, si verifichi anche l'evento A

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(A \cap B)}{P(B)}$$
(10.7)

10.4.1 Probabilità a priori

La probabilità a priori P(A|B) è la probabilità che: dato come input l'evento B, l'output sia l'evento A

10.4.2 Probabilità a posteriori

La probabilità a posteriori P(B|A) è la probabilità che: dato come output l'evento A, A sia stato generato dall'evento input B

10.5 Variabile casuale

Una variabile casuale $\xi(s)$ è una trasformazione che associa ad ogni elemento di uno spazio campione un numero reale

$$\xi(s): S \to \mathbb{R} \tag{10.8}$$

Figura 10.2: Variabile casuale

10.5.1 Distribuzione cumulativa

La distribuzione cumulativa $F_{\xi}(x)$ è la probabilità che la variabile casuale ξ sia minore o uguale ad un certo valore x

$$F_{\xi}(x) := P(\xi \le x) = \sum_{-\infty < \xi(s) \le x} P(s)$$
 (10.9)

10.5.1.1 Proprietà

Le proprietà della distribuzione cumulativa sono:

- funzione monotòna non decrescente
- $F(-\infty) = 0$
- $F(+\infty) = 1$

Figura 10.3: Distribuzione cumulativa

10.5.2 Densità di probabilità

La densità di probabilità $f_{\xi}(x)$ è la derivata della distribuzione cumulativa

$$f_{\xi}(x) := \frac{\partial}{\partial x} F_{\xi}(x) \tag{10.10}$$

10.5.2.1 Proprietà

La densità di probabilità è una funzione avente integrale su $\mathbb R$ uguale a 1

$$\int_{-\infty}^{+\infty} f_{\xi}(x)dx = F_{\xi}(x) \Big|_{-\infty}^{+\infty} = 1 - 0 = 1$$
 (10.11)

Figura 10.4: Densità di probabilità

10.6 Insiemi di variabili casuali

10.6.1 Distribuzione cumulativa congiunta

La distribuzione cumulativa di probabilità congiunta è la probabilità che le variabili casuali ξ_i siano minori o uguali ai valori x_i

$$F_{\xi_1,\dots,\xi_n}(x_1,\dots,x_n) := P(\xi_1 \le x_1 \cap \dots \cap \xi_n \le x_n)$$
 (10.12)

10.6.2 Densità di probabilità congiunta

La densità di probabilità congiunta è la derivata di ordine n della distribuzione cumulativa di probabilità congiunta

$$f_{\xi_1,\dots,\xi_n}(x_1,\dots,x_n) := \frac{\partial^n}{\partial x_1 \dots \partial x_n} F_{\xi_1,\dots,\xi_n}(x_1,\dots,x_n)$$
(10.13)

10.6.3 Indipendenza statistica

L'indipendenza statistica è una condizione per cui la densità di probabilità congiunta di n variabili casuali è uguale al prodotto tra le densità di probabilità delle singole variabili casuali

$$f_{\xi_1,\dots,\xi_n}(x_1,\dots,x_n) = f_{\xi_1}(x_1)\dots f_{\xi_n}(x_n)$$
 (10.14)

Figura 10.5: Distribuzione cumulativa di probabilità congiunta

10.7 Distribuzione cumulativa di probabilità condizionata

La distribuzione cumulativa di probabilità condizionata è la probabilità che la variabile casuale ξ sia minore o uguale a x se si verifica l'evento B

$$F_{\xi}(x|B) := P(\xi \le x|s \in B) = \frac{1}{P(B)} \sum_{\substack{s \in B \\ -\infty < \xi(s) \le x}} P(s)$$
 (10.15)

10.8 Teorema di Bayes con le densità congiunte

La densità di probabilità congiunta relativa a x_1 e x_2 è uguale al prodotto tra: la densità di probabilità di x condizionata da y e la probabilità di y; oppure la densità di probabilità di y condizionata da x e la probabilità di x

$$f_{\xi_1,\xi_2}(x_1,x_2) = f_{\xi_1,\xi_2}(x_1|x_2)f_{\xi_2}(x_2) = f_{\xi_1,\xi_2}(x_2|x_1)f_{\xi_1}(x_1)$$
(10.16)

10.9 Proprietà

Dal teorema di Bayes discendono le seguenti proprietà:

$$f_{\xi_1}(x) = \int_{-\infty}^{+\infty} f_{\xi_1,\xi_2}(x_1, x_2) dx_2$$
 (10.17)

$$f_{\xi_1}(x) = \int_{-\infty}^{+\infty} f_{\xi_1,\xi_2}(x_1|x_2) f_{\xi_2}(x_2) dx_2$$
 (10.18)

10.10 Momenti delle variabili casuali

Un momento di una variabile casuale è l'integrale su $\mathbb R$ di una funzione g della variabile casuale ξ pesata per la densità di probabilità di ξ

$$E\{g(\xi)\} := \int_{-\infty}^{+\infty} g(x) f_{\xi}(x) dx$$
 (10.19)

10.10.1 Classificazione dei momenti

I momenti possono essere:

- ullet classificati in base all'ordine: dipende dal grado del polinomio g
- centrali: se indicano lo scostamento dei valori di x dalla media (e.g.: $(x-\mu)^k$)

10.10.2 Valore atteso (media)

Il valore atteso è il momento del primo ordine della funzione x

$$E\{x\} := \int_{-\infty}^{+\infty} x f_{\xi}(x) dx = \mu \tag{10.20}$$

10.10.3 Valore quadratico medio

Il valore quadratico medio è il momento del secondo ordine della funzione x^2

$$E\{x^2\} := \int_{-\infty}^{+\infty} x^2 f_{\xi}(x) dx = vqm$$
 (10.21)

10.10.4 Varianza

La varianza è il momento centrale del secondo ordine della funzione $(x - \mu)^2$; è un indice di quanto ciascun valore di x si discosta dalla media

$$E\{(x-\mu)^2\} := \int_{-\infty}^{+\infty} (x-\mu)^2 f_{\xi}(x) dx = \sigma^2$$
 (10.22)

10.10.5 Relazione con il valore quadratico medio

La varianza si può esprimere in funzione del valore quadratico medio (l'integrale è un operatore lineare; la media di una costante è uguale alla costante stessa)

$$E\{(x-\mu)^2\} = E\{x^2 + \mu^2 - 2x\mu\} =$$

$$= E\{x^2\} + E\{\mu^2\} - 2E\{x\mu\} =$$

$$= vmq_x + \mu^2 - 2\mu^2 = vmq_x - \mu^2$$
(10.23)

10.10.5.1 Deviazione standard

La deviazione standard è la radice quadrata della varianza

$$std = \sqrt{\sigma^2} \tag{10.24}$$

10.10.6 Covarianza

La covarianza è il momento centrale congiunto di ordine 1,1 delle variabili casuali ξ_1 e ξ_2

$$\sigma_{\xi_1,\xi_2} = E\{\xi_1 \xi_2\} \tag{10.25}$$

10.10.6.1 Coefficiente di correlazione

Il coefficiente di correlazione è un indice di quanto due variabili casuali siano correlate

$$\rho_{\xi_1,\xi_2} = \frac{\sigma_{\xi_1,\xi_2}}{\sigma_{\xi_1}\sigma_{\xi_2}} \tag{10.26}$$

La scorrelazione non implica l'indipendenza statistica

10.11 Combinazioni lineari di variabili casuali

Una combinazione lineare $\sum \alpha_i X_i$ di variabili casuali ha:

• come media: la c.l. delle medie

$$\mu_z = \sum \alpha_i \mu_i \tag{10.27}$$

 \bullet come varianza (solo se le variabili X_i sono scorrelate): la c.l. delle varianze

$$\sigma_z^2 = \sum \alpha_i^2 \sigma_i^2 \tag{10.28}$$

10.12 Distribuzione gaussiana

La distribuzione gaussiana ha:

• densità di probabilità

$$f_{\xi}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (10.29)

• distribuzione cumulativa di probabilità

$$F_{\xi}(x) = 1 - \frac{1}{2} erfc\left(\frac{x-\mu}{\sqrt{2}\sigma}\right)$$
 (10.30)

oppure

$$F_{\xi}(x) = 1 - Q\left(\frac{x - \mu}{\sigma}\right) \tag{10.31}$$

10.12.1 Funzione di errore complementare

La funzione di errore complementare è definità da:

$$erfc(x) := \frac{2}{\pi} \int_{x}^{\infty} e^{-t^2} dt = 2Q(\sqrt{2}x)$$
 (10.32)

10.12.2 Funzione Q

La funzione Q è definita da:

$$Q(x) := \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-t^{2}/2} dt = \frac{1}{2} erfc\left(\frac{x}{\sqrt{2}}\right)$$
 (10.33)

10.12.3 Proprietà

Le proprietà della distribuzione gaussiana sono:

- una c.l. di variabili casuali gaussiane è una gaussiana
- due variabili casuali gaussiane sono scorrelate sono anche statisticamente indipendenti
- una variabile gaussiana a valor medio nullo i momenti valgono $(k!! = 1 \cdot 3 \cdot 5 \cdots k)$

$$m_k = \begin{cases} (k-1)!!\sigma^k & \iff k = 2t \\ 0 & \iff k = 2t+1 \end{cases}$$
 (10.34)

10.13 Teorema del limite centrale

Una c.l. di variabili casuali statisticamente indipendenti aventi una distribuzione qualunque tende ad assumere una distribuzione gaussiana avente:

• media

$$\mu_z = \sum a_i \mu_i \tag{10.35}$$

• varianza

$$\mu_z = \sum a_i \mu_i \tag{10.35}$$

$$\sigma_z^2 = \sum \alpha_i^2 \sigma_i^2 \tag{10.36}$$

Processi casuali

11.1 Processo casuale

Un processo casuale X(t; s) è un modello probabilistico per un insieme di segnali $\{x(t; s_i)\}$ che associa ad ogni realizzazione (segnale) $x(t; s_i)$ un valore di probabilità P (facendo osservazioni ripetute del processo, si ottengono andamenti temporali diversi)

$$X(t;s) = \{x(t;s_i)\}\tag{11.1}$$

11.1.1 Processo casuale come sequenza di variabili casuali

Un processo casuale $X(t; s_i)$ è una sequenza di variabili casuali $\{X(t_i)\}$ che descrivono statisticamente il comportamento del processo nell'istante t_i

$$X(t; s_i) = \{X(t_i)\}\tag{11.2}$$

11.1.2 Classificazione

I processi casuali possono essere classificati in:

- processi quasi-determinati: processi esprimibili come un segnale determinato funzione di un insieme numerabile di variabili casuali (e.g.: sinusoide con fase ignota)
- processi non quasi determinato: processi non esprimibili come un segnale determinato funzione di un insieme numerabile di variabili casuali (e.g.: rumore termico, segnale vocale)

11.1.3 Lettura dei processi

I processi possono essere letti:

- per orizzontali: si mette in risalto una possibile realizzazione del segnale (segnale determinato)
- per verticali: si mettono in risalto le variabili casuali relative al processo (e.g.: fase, ampiezza...)

11.1.4 Processo determinato

Un processo determinato può essere visto come un processo casuale in cui esiste un'unica realizzazione (avente probabilità 1)

11.2 Statistica di ordine n

La statistica di ordine n di un processo casuale è composta dalle distribuzioni cumulative e dalle densità di probabilità congiunte di un insieme di n variabili casuali costituite da n campioni del processo

$$\begin{cases}
F_{\mathbf{x}}(\mathbf{x}; \mathbf{t}) = F_{x_1, \dots, x_n}(x_1, \dots, x_n; t_1, \dots, t_n) = P(x(t_1) < x_1, \dots, x(t_n) < x_n) \\
f_{\mathbf{x}}(\mathbf{x}; \mathbf{t}) = \frac{\partial^n}{\partial x_1 \cdots \partial x_n} F_{\mathbf{x}}(\mathbf{x}; \mathbf{t})
\end{cases}$$
(11.3)

11.2.1 Processo completamente descritto

Un processo completamente descritto è un processo per il quale è possibile valutare qualsiasi parametro statistico (attraverso la densità di probabilità congiunta) per ogni possibile insieme di suoi campioni

11.3 Parametri dei processi casuali

11.3.1 Media

La media di un processo casuale è la media di una variabile casuale nell'istante di tempo t: valore medio del segnale nell'istante t di un processo osservato per verticali

$$m_X(t) := E\{X(t)\} = \int x f_X(x;t) dx$$
 (11.4)

11.3.2 Autocorrelazione

L'autocorrelazione di un processo casuale è la media del prodotto di una variabile casuale estratta in tempi diversi: è un indice di quanto velocemente la variabile casuale cambia nel tempo

$$R_X(t_1, t_2) := E\{X(t_1)X(t_2)\} = \int \int x_1 x_2 f_{X_1, X_2}(x_1 x_2; t_1 t_2) dx_1 dx_2$$
(11.5)

11.3.2.1 Valore quadratico medio

Il valore quadratico medio di un processo casuale è l'autocorrelazione di un processo casuale di una variabile casuale estratta nello stesso istante di tempo

$$R_X(t_1, t_1) := E\{X(t_1)^2\}$$
(11.6)

11.3.3 Autocovarianza

L'autocovarianza di un processo casuale è la media del prodotto tra: la differenza tra una variabile casuale e la sua media nell'istante t_1 ; la differenza tra la variabile casuale e la sua media nell'istante t_2

$$K_X(t_1, t_2) := E\{(X(t_1) - m_X(t_1))(X(t_2) - m_X(t_2))\} = R_X(t_1, t_2) - m_X(t_1)m_X(t_2)$$
(11.7)

Processi stazionari

12.1 Processo stazionario in senso stretto

Un processo stazionario in senso stretto di ordine n è un processo in cui le statistiche di ordine $m \le n$ dipendono da n-1 variabili $\{\tau_i\}$ che rappresentano le differenze temporali rispetto al primo campione $\{t_i-t_0\}$

$$f_X(x_1,\ldots,x_m;\tau_1,\ldots,\tau_{m-1}) \tag{12.1}$$

12.1.1 Statistiche dei processi stazionari in senso stretto

Le statistiche dei processi stazionari in senso stretto sono:

• statistica di ordine 1:

$$f_X(x;t) = f_X(x;0)$$
 (12.2)

• statistica di ordine 2:

$$f_X(x_1, x_2; 0, t_1 - t_0) = f_X(x_1, x_2; 0, \tau)$$
(12.3)

12.1.2 Medie dei processi stazionari

Le medie dei processi stazionari sono:

• media di un processo stazionario di ordine 1 (siccome non dipende dal tempo la media è un numero):

$$m_X(t) = \int x f_{\xi}(x;0) dx = m_X$$
 (12.4)

• autocorrelazione di un processo stazionario di ordine 2:

$$R_X(t_1, t_2) = \int \int x_1 x_2^* f_X(x_1, x_2; 0, \tau) dx_1 dx_2 = R_X(\tau)$$
(12.5)

12.1.3 Proprietà

Un processo stazionario è un processo in cui:

- ogni traslazione di una realizzazione appartiene al processo
- ogni traslazione di una realizzazione ha la stessa probabilità della realizzazione stessa

Un processo stazionario non è influenzato dall'origine dell'asse del tempo

$$x(t) \in X(t) \implies \begin{cases} x(t - t_0) \in X(t) \\ P\{x(t)\} = P\{x(t - t_0)\} \end{cases}$$

$$(12.6)$$

12.2 Processo stazionario in senso lato (WSS)

Un processo WSS (Wide Sense Stationary) è un processo in cui:

• la media del processo è una costante indipendente dal tempo

$$m_X(t) = m_X \tag{12.7}$$

ullet l'autocorrelazione del processo dipende solo dalla differenza tra t_1 e t_2

$$R_X(t_1, t_2) = R_X(t_1 - t_2) = R_X(\tau)$$
(12.8)

La stazionarietà stretta implica la stazionarietà lasca, ma non viceversa

12.3 Processo ciclostazionario in senso stretto

Un processo ciclostazionario in senso stretto di ordine n è un processo in cui le statistiche di ordine $m \leq n$ dipendono da n-1 variabili $\{\tau_i\}$ che rappresentano le differenze temporali di periodo T rispetto al primo campione $\{t_i - T\}$

$$f_X(x_1, \dots, x_m; t_1 - T, \dots, t_m - T)$$
 (12.9)

12.3.1 Proprietà

Un processo ciclostazionario è un processo in cui:

- ullet ogni traslazione di periodo T di una realizzazione appartiene al processo
- \bullet ogni traslazione di periodo T di una realizzazione ha la stessa probabilità della realizzazione stessa

Un processo stazionario non è influenzato dall'origine dell'asse del tempo

$$x(t) \in X(t) \implies \begin{cases} x(t-T) \in X(t) \\ P\{x(t)\} = P\{x(t-T)\} \end{cases}$$
 (12.10)

12.4 Processo ciclostazionario in senso lato

Un processo ciclostazionario in senso lato è un processo in cui:

• la media è una funzione periodica di periodo T:

$$m_X(t) = m_X(t - T)$$
 (12.11)

• l'autocorrelazione è una funzione periodica di periodo T:

$$R_X(t_1 - T, t_2 - T) (12.12)$$

12.5 Stazionarizzazione

La stazionarizzazione è una tecnica che consiste nell'aggiungere un ritardo (fase) casuale uniforme ad un segnale ciclostazionario per renderlo stazionario in senso lato: vengono introdotte nel processo ciclostazionario tutte le traslazioni possibili del segnale all'interno di un periodo $\theta \in [-T/2, T/2]$

Figura 12.1: Stazionarizzazione

Trasformazioni di processi casuali

13.1 Trasformazione LTI di processi WSS

Una trasformazione LTI di processi WSS consente di conoscere la media e l'autocorrelazione del processo di uscita (non le sue statistiche)

13.1.1 Media

La media di una trasformazione LTI di un processo WSS è il prodotto tra la media del processo in ingresso per la funzione di trasferimento calcolata nell'origine (componente armonica continua)

$$E\{Y(t)\} = E\left\{ \int h(\tau)X(t-\tau)d\tau \right\} =$$

$$= \int h(\tau)E\{X(t-\tau)\}d\tau =$$

$$= m_X \int h(\tau)d\tau = m_X H(0) = m_Y$$
(13.1)

13.1.2 Autocorrelazione

L'autocorrelazione di una trasformazione LTI di un processo WSS è il prodotto di convoluzione tra l'autocorrelazione statistica del segnale in ingresso e l'autocorrelazione deterministica della funzione di trasferimento

$$E\{Y(t)Y(t+\tau)\} = E\left\{ \int \int h(t'')X(t+\tau-t'')h(t')X(t-t')dt'dt'' \right\} =$$

$$= \int \int h(t'')h(t')E\{X(t+\tau-t'')X(t-t')\}dt'dt'' =$$

$$= \int \int h(t'')h(t')R_X\{\tau-(t''-t')\}dt'dt'' = [t=t''-t']$$

$$= \int \int h(t+t')h(t')R_X\{\tau-t\}dtdt' =$$

$$= \int R_X\{\tau-t\} \left(\int h(t+t')h(t')dt' \right)dt =$$

$$= \int R_X\{\tau-t\}R_h(t)dt = R_X(\tau) * R_h(\tau) = R_Y(\tau)$$
(13.2)

 R_X ed R_Y sono medie statistiche di processi (per verticali); R_h è una media temporale

13.1.3 Trasformazione LTI di un processo gaussiano

Una trasformazione LTI di un processo gaussiano (somma e prodotto per uno scalare, derivata e integrale) genera un processo in uscita gaussiano

13.2 Potenza di processi WSS

13.2.1 Spettro di potenza

Lo spettro di potenza di un processo WSS è la tdF della funzione di autocorrelazione $R_X(\tau)$

$$S_X(f) := \mathcal{F}\{R_X(\tau)\} = \int R_X(\tau)e^{-j\pi f\tau}d\tau$$
(13.3)

In genere i processi WSS sono a potenza finita (energia infinita)

La funzione di autocorrelazione è una media: quindi, per calcolare lo spettro di un processo, bisogna tener conto di tutte le possibili realizzazioni del processo: quindi il processo deve essere stazionario (o stazionarizzato)

Lo spettro di potenza di un processo WSS serve per dare un'idea di come sono distribuiti i parametri statistici (valore quadratico medio, media e varianza)

13.2.2 Proprietà

La funzione di autocorrelazione di un processo WSS e la sua tdF godono delle seguenti proprietà:

• lo spettro di potenza è sempre reale, pari e positivo

$$S_X(f) \in \mathbb{R}$$

$$S_X(f) > 0$$

$$R_X(\tau) = R_X^*(-\tau)$$
(13.4)

• lo spettro di potenza dell'uscita di una trasformazione LTI è il prodotto tra: lo spettro di potenza dell'ingresso e il modulo quadro della fdt

$$S_Y(f) = \mathcal{F}\{E\{Y(t)Y(t+\tau)\}\} =$$

= $\mathcal{F}\{R_X(\tau) * R_h(\tau)\} =$
= $S_X(f)|H(f)|^2$ (13.5)

• il valor quadratico medio di una trasformazione LTI è uguale: al valore della funzione di autocorrelazione calcolata in $\tau = 0$; e all'integrale dello spettro di potenza del processo

$$\tau \to 0 \implies E\{X(t)X(t+\tau)\} = E\{X^{2}(t)\} =$$

$$= R_{X}(0) =$$

$$= \int S_{X}(f)e^{j2\pi f\tau}df = \int S_{X}(f)df$$

$$(13.6)$$

13.3 Rumore gaussiano bianco (WGN)

Il rumore gaussiano bianco (White Gaussian Noise) è un modello utilizzato per descrivere il processo termico generato ai capi di una resistenza a temperatura T; il WGN ha le seguenti caratteristiche:

• l'autocorrelazione è una delta di Dirac centrata in 0 (quindi qualsiasi coppia di campioni non prelevati nello stesso istante è scorrelata; inoltre, essendo un processo gaussiano, i campioni sono statisticamente indipendenti)

$$R(\tau) = \frac{kT}{2}\delta(\tau) \tag{13.7}$$

- ha valor medio nullo

$$E\{X(t)\} = 0 (13.8)$$

• il suo spettro di potenza è costante

$$S_X(f) = \mathcal{F}\{R(\tau)\} = \frac{kT}{2} \tag{13.9}$$

• è un processo gaussiano stazionario

Figura 13.1: Domini di un processo WSS (WGN)

Ergodicità

14.1 Media temporale

Una media temporale di un segnale determinato x(t) attraverso la funzione g è una media orizzontale (nel tempo)

$$\langle g(x(t))\rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g(x(t))dt \tag{14.1}$$

14.1.1 Casi particolari

Medie temporali particolari sono:

- valor medio: $g(x) = x(t) \implies \langle x(t) \rangle = \bar{x}$
- potenza media: $g(x) = |x(t)|^2 \implies \langle |x(t)|^2 \rangle = P(x)$
- autocorrelazione: $g(x) = x(t)x(t+\tau) \implies \langle x(t)x(t+\tau)\rangle = R_X(\tau)$

14.2 Confronto tra medie temporali e medie statistiche

Le caratteristiche delle medie sono:

- media temporale $\langle g(x(t;s_i),\ldots,x(t+\tau_{n-1};s_i)\rangle$
 - $-\,$ si applica solo a segnali determinati (a singole realizzazioni di un processo)
 - restituisce una funzione di n-1 variabili $\tau_1, \ldots, \tau_{n-1}$
- media statistica $E\{g(X(t_1),\ldots,X(t_n))\}$
 - si applica all'insieme di realizzazioni di un processo
 - restituisce una funzione di n variabili t_1, \ldots, t_n nel tempo (in genere)

14.3 Processo ergodico

Un processo ergodico è un processo in cui media temporale e media statistica coincidono

$$E\{g(X(t))\} = \langle g(x(t;s_i))\rangle \qquad \forall i \tag{14.2}$$

È possibile estrarre le statistiche di insieme di un processo a partire dalle statistiche temporali su una singola realizzazione

14.3.1 Significato

Se un processo è ergodico significa che:

- ogni realizzazione del processo è rappresentativa dell'intero insieme delle realizzazioni
- le statistiche temporali di una realizzazione sono rappresentative delle statistiche temporali dell'intero insieme delle realizzazioni

14.3.2 Condizione di ergodicità della media

Una condizione sufficiente per dimostrare che la media di un processo sia ergodica è che l'autocovarianza sia modulo integrabile

$$\int |K(\tau)|d\tau < \infty \tag{14.3}$$

14.4 Esercizi

14.4.1 Trasmissione numerica

Esercizio 13. 1) vengono scelti due segnali diversi per la codifica dello 0 e dell'1 2) trasmissione descritta da

$$x(t) = \sum \alpha_i r(t - iT) \qquad \alpha_i \in \{-A, A\}$$
(14.4)

dove α_i è una variabile casuale discreta avente densità di probabilità $f(\alpha)$

14.4. ESERCIZI 85

3) media supponendo $f(-A) = f(A) = 0.5 \implies E\{\alpha_i\} = 0$

$$E\{x(t)\} = E\left\{\sum \alpha_i r(t - iT)\right\} = \sum \left(E\{\alpha_i\}r(t - iT)\right) = 0$$
(14.5)

4) il segnale viaggia attraverso un canale avente funzione di trasferimento C(f); il segnale deve essere equalizzato da un equalizzatore avente funzione di trasferimento $C_e(f) \approx C^{-1}(f)$; al segnale si somma il rumore bianco n(t); si filtra il segnale con un filtro di ricezione (della stessa forma del segnale r(t))

$$z(t) = \int (w(\tau) + n(\tau))h_R(t - \tau)d\tau \implies$$

$$z_s(t) = \int w(\tau)h_R(t - \tau)d\tau =$$

$$= w(\tau) * h_R(\tau)$$
(14.6)

(c) Funzione di trasferimento del ricevitore $h_R(t)$

(d) Uscita del ricevitore da campionare $z_s(t)$