

Enhancing Rare Disease Research with Semantic Integration of Environmental and Health Data

Authors: Albert Navarro-Gallinad, Fabrizio Orlandi and Declan O'Sullivan ADAPT Centre for Digital Content, Trinity College Dublin, Dublin, Ireland

International Joint Conference on Knowledge Graphs - 08-12-2021

Linking health data with scientific data through location and time

Use Of Knowledge Graphs

Non-technical researchers using and navigating Knowledge Graphs to answer complex research questions

Better Quality of Life

Researchers will be able to understand better diseases, which could lead to new or better treatments

State Of the Art Review

Review on: combining methods for rare disease clinical data with other data sources using Semantic Web technologies.

Linking data from:

- Biobanks and registries
- Genetic and epigenetic data

Visual interfaces

Some required Semantic Web practical expertise (e.g. SPARQL queries)

Usability studies

Only one usability study using a customized approach

- Limited studies combining health and environmental data together using KGs.
- Limited usability studies with standard metrics in the evaluation.

What did we do? - Design the SERDIF approach

Informed from the SOA results and initial Health Data Researchers (HDR) requirements*

The framework is a combination of (1) a methodology, (2) a knowledge graph and (3) a dashboard.

Research Implementation - Methodology & Use Case

Methodology:

- **Data Collection**
- Semantic Uplift
- Data Query and Filter
- **Data Visualization**
- Data Export/Downlift
- **Usability Evaluation**

Epigenetic factors

Environmental factors

Research Implementation - Data Query & Filter

- 1 Data Collection
- 2 Semantic Uplift
- 3 Data Query and Filter
- 4 Data Visualization
- 5 Data Export/Downlift
- 6 Usability Evaluation

Options for linking different types of RDF graphs:

3. Spatial and temporal reasoning at the SPARQL query level

```
PREFIX geo: <a href="http://www.opengis.net/ont/geosparql#">http://www.opengis.net/def/function/geosparql/>PREFIX geof: <a href="http://www.w3.org/2001/XMLSchema#">http://www.w3.org/2001/XMLSchema#</a>

# Spatial reasoning

FILTER(geof:sfWithin(?eventGeom, ?regionGeom))

FILTER(geof:sfWithin(?envoGeom, ?regionGeom))

# Temporal reasoning

BIND(?dateEvent - "P7D"^^xsd:duration AS ?dateLag)

BIND(?dateLag - "P30D"^^xsd:duration AS ?dateStart)

# Filter environmental data for the selected dates

FILTER(?dateObs > ?dateStart && ?dateObs <= ?dateLag)
```


Research Implementation - Data Visualization

Methodology: **Data Visualization** Data Export/Downlift

Research Implementation - Experiment Setup

- 1 Data Collection
- 2 Semantic Uplift
- 3 Data Query and Filter
- 4 Data Visualization
- 5 Data Export/Downlift
- 6 Usability Evaluation

General aspects

- Sample size 10
- Videoconference
- Tasks derived from HDR consensus
- Think aloud protocol

Quantitative metrics

- Task completion
- Time per task
- PSSUQ

Qualitative metrics

- Session transcript
- ☐ Thematic analysis

Research Implementation - Usability Evaluation

Methodology:

- 1 Data Collection
- 2 Semantic Uplift
- 3 Data Query and Filter
- 4 Data Visualization
- 5 Data Export/Downlift
- 6 Usability Evaluation

+

AAV in Ireland first iteration of the evaluation:

Themes	Code Description Summary	Total Frequency
SERDIF dashboard Usability	Positive overall experience emphasizing the data exploration features of the SERDIF dashboard	112
Clarify description and features	Complicated jargon and ambiguous text descriptions	65
Requirements refinement	Unclear data lineage and environmental data linked to a period prior to the flare events	46
Technical errors	Delays and control malfunctioning during the virtual experiment session	30

Lessons Learnt

Health data domain

- Gaining access to health data can be complicated and long
- Bidirectional communication with domain experts is key
- Jargon as simple as possible

Technical aspects

- Reusing vocabularies/ ontologies facilitates the semantic uplift and data reuse
- Queries execution time can be improved if the query is broken down into smaller pieces

Usability testing

- Double check if the participants have read the documentation
- Videoconferencing environment facilitated the think aloud protocol
- Thematic analysis and PSSUQ are valuable metrics

General aspects

- If researchers find the tool useful for them, they tend to give more relevant feedback
- Examples are great to get the message across

Current Work

Refining the requirements and framework based on the evaluation results

Including a Data Privacy and FAIR assessment steps in the methodology

Validating SERDIF with new case studies

- Substituting the SOSA vocabulary for RDF data cube
- Adding steps to the methodology: Data Privacy and FAIR assessment (First Draft under preparation)
- Undertaking further validation of SERDIF with: Kawasaki Disease in Japan and Vasculitis disease in Europe

Paper Contributions

Preprint available: http://hdl.handle.net/2262/97660 | Slides: https://github.com/navarral/ijckg2021-serdif-paper

https://www.adaptcentre.ie/

http://helical-itn.eu/