PROBLEMA RESUELTO 2

Calcule el límite

$$\lim_{x\to 0}\frac{\mathrm{e}^x-x-1}{x^2}$$

Utilizando una tabla de valores apropiada

Solución

Para calcular este límite utilizando una tabla de valores, se debe elegir números que se aproximen a x=0 tanto por la izquierda como por la derecha. Para este caso se usarán los números por la izquierda: -0.5, -0.1, -0.01, -0.001 y los números por la derecha: 0.001, 0.01, 0.1, 0.5. Los números elegidos son arbitrarios y la única condición que deben cumplir es la de acercarse a 0 tanto por la derecha como por la izquierda.

Ahora se evalúa la función $\frac{e^x-x-1}{x^2}$ en cada uno de los valores, por ejemplo, al evaluar para

x = -0.01 se obtiene

$$f(-0.01) = \frac{e^{-0.01} - (-0.01) - 1}{(-0.01)^2} = 0.498$$

La tabla siguiente muestra los resultados obtenidos al evaluar la función en todos los valores

X	-0.5	-0.1	-0.01	-0.001	0.001	0.01	0.1	0.5
f(x)	0.426	0.4837	0.498	0.4998	0.5002	0.5017	0.5171	0.5949

La tabla nos muestra que los valores de f(x) se están aproximando a 0.5 cuando x se aproxima a 0, tanto por la izquierda como por la derecha. Razón por la cual se concluye que

$$\lim_{x \to 0} \frac{e^x - x - 1}{x^2} = \frac{1}{2}$$

PROBLEMA RESUELTO 3

Calcule el límite

$$\lim_{x \to -2^{-}} \frac{\sqrt{10 + 3x} + 2}{x + 2}$$

Utilizando una tabla de valores apropiada

Solución

Para calcular este límite usando una tabla de valores se debe construir una tabla evaluando valores por la izquierda de x=-2, por ejemplo, un valor a la izquierda de -2 es -2.5. Al evaluarlo en la función se obtiene

$$f(-2.5) = \frac{\sqrt{10 + 3(-2.5)} + 2}{(-2.5) + 2} =$$

Una tabla de valores apropiada para calcular este límite es la siguiente

х	-3	-2.5	-2.1	-2.01	-2.001
f(x)	-3	-7.162	-39.235	-399.25	-3999.2

En la tabla se observa que cuando x se aproxima a -2 por la izquierda los valores de f(x) son números negativos cada vez más grandes, por lo que se concluye que

$$\lim_{x \to -2^{-}} \frac{\sqrt{10 + 3x} + 2}{x + 2} = -\infty$$

PROBLEMA RESUELTO 4

Calcule el límite

$$\lim_{x \to -\infty} \frac{\sqrt{4x^2 - x}}{2x + 5}$$

Utilizando una tabla de valores apropiada

Solución

Para calcular $\lim_{x \to -\infty} \frac{\sqrt{4x^2 - x}}{2x + 5}$ se debe construir una tabla de valores en donde x tenga

valores negativos cada vez más grandes, ya que tiende al infinito negativo, por ejemplo, si evaluamos en $x=-100\,$ se tiene

$$f(-100) = \frac{\sqrt{4(-100)^2 - (-100)}}{2(-100) + 5} = -1.0269$$

La tabla siguiente muestra el comportamiento de la función cuando x tiende al infinito

x	—10	—100	— 1,000	—10,000	—100,000
f(x)	—1.3499	—1.0269	—1.0026	—1.0003	—1.0

De la tabla anterior se observa claramente que cuando x tiende al infinito negativo, f(x) tiende al valor -1, es decir que

$$\lim_{x\to-\infty}\frac{\sqrt{4x^2-x}}{2x+5}=-1$$

Respuesta:

$$\lim_{x\to-\infty}\frac{\sqrt{4x^2-x}}{2x+5}=-1$$