综述. 特征选择方法

MF1733062 万晨 weanl_jc@163.com 2018 年 4 月 8 日

1. 介绍

FS 在 ML 中能解决那些问题? 已经解决得怎么样了? 还有那些问题? feature construction = FS + FE 特征选择 (Feature, Variable and Attribution Selection), 是机器学习中 feature construction 的重要组成部分。在筛选原始数据,构造有用的特征集合方面,特征 选择不同于特征提取 (Feature Extraction): 后者会通过线性或非线性的方式从原始数据中 构造出全新的特征,具有特征学习和表示学习的能力 ["Representation Learning: A Review and New Perspectives"];特征选择通过设计一些简单高效或者精致巧妙的方法,实现从原 始特征集合中选出最优的特征子集,能够保持特征对应的原始物理意义。所谓最优特征子 集,理论上定义为没有信息丢失的最小特征子集,以 Markov blanket 的形式给出 [D. Koller, Toward optimal feature selection [C.Aliferis, Local causal and markov blanket induction for causal discovery and feature selection]; 实际中理论的 ground-truth 很难找,所以经验 上一般我们用预测器性能(如分类器的精度)来评估特征子集的选择结果。特征选择一直 以来是一个重要的课题:为了分析特征间相关性,早期[Blum and langley,1997,Kohavi and John,1997] 等在 1997 年提出了特征选择方面课题研究, 当时大多数应用领域下特征维数 还不超过 40。后续基因序列分析和 web 文本分类等典型应用不断推动特征选择课题研究: [2001, Feature selection for high-dimensional genomic microarray data] 针对高维的染色体 序列数据提出了给予特征选择的基因分析方法,[2015, Deep Feature Selection: Theory and Application to Identify Enhancer and Promoters] 将深层神经网络应用到特征选择中,实 现了基因 Enhancer 和 Promoter 的有效分析。目前特征选择研究有两大趋势:第一,应对 各种结构化和非结构化的数据设计出一套较为通用的方法,决策树类和深层神经网络类在 特征选择方面的改进是不错的解决方法,[Feature Selection via Regularized Trees] 就是通 过修改单棵树的构造算法实现基于随机森林的 Ensemble 类的特征选择方法; 第二, 应对 curse of dimensionality,设计复杂度较低的算法,有效地处理高维数据,改进现有的算法以 及组合使用一些简单的算法都是很好的思路。

在数据处理中,应用特征选择方法概括起来有如下优势:

- 可以过滤无关特征: 采集过程可能引入数据噪声, 从而影响后续的数据处理; 同样与任务显著的无关特征 (irrelevant) 也可以认为是噪声, 特征选择方法一定程度上可以过滤这一部分噪声;
- 可以剔除冗余特征: 相当部分特征虽然与任务相关, 但互相之间存在显著的冗余关系 (redundant), 特征选择方法可以依据实际需求选出代表性的特征, 降低冗余;

• 可以实现特征重要性的评估:一些带有指标(如相关系数、权值)或其他"得分"的特征选择方法,可以在选出的特征子集中按指标或"得分"对特征进行重要性排序。

2. 过滤式与包裹式