Progetto di robotica

Inversione cinematica e visione robotica

Marco Loddo Maria Chiara Cecconi

Obbiettivo

- Creare un software di controllo per il braccio robotico UR5
- Il software deve permettere di riconoscere e raggiungere oggetti marker predefiniti

UR5:

- 6 gradi di libertà
- · Peso massimo sollevato 5 kg
- Ampiezza massima raggiungibile 850mm

Tecnologie usate per lo sviluppo

- . Gazebo
- ROS
- PythonLibrerie python d'interesse:
 - Supporto a ROS (roslib, rospy, ...)
 - Analisi visiva (OpenCV, Camera.py, ...)

Metodi usati – Inverse Kinematics

- Raggiungimento della posizione obbiettivo
- Algoritmo analitico per il calcolo della IK
- . Approccio:
 - geometria del braccio
 - calcolo a partire dal primo giunto (shoulder)
 - ricaviamo giunto per giunto tutte le possibili soluzioni
 - si seleziona la "miglior" soluzione

THETA 1 – SHOULDER UP/DOWN:

- Considero vettore posizione tra base e frame 5
- Pos: traslare di d6 in direzione negativa z del frame 6
- Si vede dalla figura che $\theta 1 = \psi + \varphi + \pi/2$
- dove $\psi = atan2((P_{05})y, (P_{05})x)$ $\varphi = \pm arccos(d4/||(P_{05})||xy)$

THETA 5 – WRIST UP/DOWN:

- Conoscendo θ1 risolviamo per θ5
- Consideriamo ora la posizione del frame 6 rispetto a frame 1 $(P61)_z = d6*cos(\theta 5) + d4$
- dove $(P_{61})z = (P_{60})x*sin(\theta 1) - (P_{60})y*cos(\theta 1)$
- Risolviamo per $\theta 5$ $\theta 5 = \pm \arccos((P61)z - d4) / d6)$
- θ5 perciò è ben definito se l'argomento è ≤ 1.

THETA 6

- Adesso troviamo la trasformazione dal frame 6 al frame 1 $T_{61} = ((T_{01})^{n} 1 \ T_{06})^{n} 1$
- Ricordando la struttura delle trasformazioni omogenee, avremo nella terza colonna

$$-\sin(\theta 6) \sin(\theta 5) = z_y$$

 $\cos(\theta 6) \sin(\theta 5) = z_x$

- Risolviamo per $\theta 6$ $\theta 6 = atan2(-zy/sin(\theta 5), zx/sin(\theta 5))$
- Non è ben definito se $sin(\theta 5) = 0$ oppure zx, zy = 0

THETA 2, 3 – ELBOW UP/DOWN:

- Consideriamo I giunti rimanenti come un manipolatore planare 2R
- Troviamo la posizione del frame 3 rispetto all' 1: P13

- Ci consentirà di ricavare $\theta 3$ $\theta 3 = \pm \arccos((||P_{31}||^{2}-a_{2}^{2}-a_{3}^{2})/2*a_{2}*a_{3})$
- Da esso troviamo θ 2 θ 2 = -atan2((P31)y , -(P31)x) + arcsin(a₃*sin(θ 3)/||P31||)
- Infine $\theta 4$ T34 = T31*T14 = = (T12*T23)-1*T14 $\theta 4 = atan2(xy, xx)$

Metodi usati – modifiche al modello

Si è modificato il modello *UR5.sdf* come segue:

- Inserita una box dietro al braccio, in questa viene posto il modello di un sensore, in particolare una telecamera.
 Questa servirà a vedere il marker da raggiungere (ball rossa)
- Inserito un end effector, in particolare una mano. Il modello originario è il braccio Hollie, dal quale si è isolata la mano **Schunk hand** per poi inserirla nel modello dell'UR5.

Metodi usati – Visione

- Presa un'immagine, si filtra pixel per pixel con una mask (i limiti di valore da 0 a 255 del colore desiderato)
- Una volta ottenuta la maschera, si trova il bordo più piccolo che la contiene, con annesse coordinate e dimensioni.
- Prese queste dimensioni, viene effettuato un calcolo di trasformazione di coordinate da schermo a spazio 3D
- Ottenute le coordinate, vengono convertite poi in coordinate polari per poter essere ammissibili nello spazio del robot*
- Viene effettuato uno shift di coordinate da coordinate della camera a coordinate del robot

Processo esecutivo

Il processo viene eseguito come segue:

- Si ha una pallina rossa, che sia visibile dalla telecamera
- Il codice acquisisce le immagini e identifica il marker
- Vengono calcolate le coordinate nel mondo dell'oggetto riconosciuto
- Le coordinate vengono passate al metodo di calcolo della IK
- Calcolate le varie soluzioni dei giunti della IK, si sceglie quella ottimale
- Si fanno ruotare i giunti del robot secondo la soluzione
- A tal punto la mano sarà vicina alla pallina, abbastanza da poterla afferrare
- Si fa eseguire alla mano il movimento di "grasp"

Risultati

- Test eseguiti sulla posizione calcolata dall'immagine della pallina
- Per ognuno dei 3 test si sono presi 3 risultati

TEST 1	TEST 2	TEST 3
0,2027 – 0,207226	-0,6001 — -0,60495	0,4157 - 0,410265
0,1435 – 0,144019	0,4103 – 0,415624	-0,0989 — -0,09859
0,5012 – 0,656701	0,3021 – 0,474741	0,6257 - 0,717697
T.E.: 0,014040 sec	T.E.: 0,015161 sec	T.E.: 0,017479 sec

- I 3 risultati erano uguali in ogni caso a quelli sopra mostrati
- Si rileva il maggior scostamento nell'asse Z

Risultati

- Test eseguiti sulla IK
- Il risultato della IK è stato rielaborato con la FK per cercare di ottenere il punto XYZ di partenza

TEST 1	TEST 2	TEST 3
0,2027 – 0,2025	-0,6001 — -0,6007	0,4157 – 0,4102
0,1435 – 0,1437	0,4103 – 0,4129	-0,0989 — -0,09836
0,5012 – 0,656701	0,3021 – 0,3024	0,6257 - 0,6266
T.E.: 0,0151610 sec	T.E.: 0,0174798 sec	T.E.: 0,026179 sec
Tot: 2,04254 sec	T.E.: 2,0196274 sec	T.E.: 2,056328 sec

Conclusioni

- La Cinematica inversa con approccio algebrico è veloce, ma complessa da studiare e implementare
- La IK singolarmente si dimostra precisa, sempre che il goal sia nel workspace
- La visione combinata alla IK si presenta precisa almeno nell'ordine delle prime due cifre decimali, fatta eccezione per Z (comunque il risultato è apprezzabile all'atto pratico)
- Il braccio sarà quindi in grado di raggiungere la pallina in maniera adeguata
- Una volta effettuato il grasp, possiamo usare la FK, o la IK nuovamente, per dire al braccio la nuova posizione in cui spostare la pallina

