

Архитектура компьютера и операционные системы

Лекция 4. Оперативная память

Андреева Евгения Михайловна доцент кафедры информатики и вычислительного эксперимента

План лекции

- Организация основной памяти
 - биты, байты байты, слова,
 - порядок байтов в слове
- Сверхоперативная память:
 - кэш-память
- Домашнее задание

Основная память

Центральный процессор

Основная память

имени И.И. Воровича -

RAM (random access memory, т.е. память с произвольным доступом)

Основная память

ROM (read only memory, или память только для чтения), или ПЗУ

Оперативная память

Постоянное запоминающее устройство $(\Pi 3Y)$

Организация памяти

- Бит. Двоичная система (причины перехода)
- Двоично-десятичный код
 - $-167 = 128 + 32 + 4 + 2 + 1 = 1010 \ 0111_2$
 - $-167 = 0001 \ 0110 \ 0111_{2-10}$
- Квантовые биты (1989, Дэвид Дойч)
 - Как работают квантовые компьютеры
- Молекулярные компьютеры
 - ДНК-логика как основа биокомпьютера
 - ДНК извлекла корень из 900

Ячейка памяти и её адрес

6

Разнообразие реализаций ОП

Компьютер	Число битов в ячейке
Burroughs B1700	1
IBM PC	8
DEC PDP-8	12
IBM 1130	16
DEC PDP-15	18
XDS 940	24
Electrologica X8	27
XDS Sigma 9	32
Honeywell 6180	36
CDC 3600	48
CDC Cyber	60

Адреса ячеек

сегмент:смещение

```
File Edit Tabs Help
                                                        Почему
CS: 00 DS=SS=ES: 001
AH:00 AL:00 AX:
                            EXT
                                                        смещение =3
BH:00 BL:00 BX:
CH:00 CL:00 CX:
                                             . TEXT
                                   . SECT
DH:00 DL:00 DX:
                                            MOV
                                                      (res), 29531
SP: 7ff8 SF 0 D S Z C
                            . SECT
                                            MOVB
                                                      (y), 255
BP: 7ff8 CC - > p - -
SI: 0000 IP:0000:PC
                                            XOR
                                                      AX, AX
DI: 0000 .TEXT+0
                                   . SECT
                                            . DATA
                                          . WORD
                                   X:
                                                     -2
                   T
                                          . BYTE
                                   str: .ASCIZ
                                                      "Hello!"
                                   . SECT . BSS
res
                                   res:
                                             . SPACE
           =0000: fe ff 0 48 65 6c 6c 6f ...Hello!..
                                                   -2 18432 27749 28524
           =0002: 0 48 65 6c 6c 6f 21 0 .Hello!.... 18432 27749 28524
                                                                    33
           =0003: 48 65 6c 6c 6f 21 0 0 Hello!.... 25928 27756
str
                                                            8559
           =000a: 0 0 0 0 0 0 0 .....
res
      +0
```


Порядок байтов в слове

- Прямой (big-endian) старшие байты по младшим адресам, использовался для TCP/IP, в PNG, FLV, EBML.
 - пример 29531₁₀ = 73 5b₁₆
- Обратный (little-endian) младший байт по младшему адресу, в x86.
 - пример 29531_{10} = в обратном порядке $5b 73_{16}$
- Переключаемый (bi-endian), в ARM, PowerPC, DEC Alpha,
 MIPS, PA-RISC и др.

Пример (29531 в памяти)

Пример $(0A0B0C0D_{16})$

- 8-битный байт, прямой порядок:
 - |0A|0B|0C|0D|
- 8-битный байт, обратный порядок:
 - -|0D|0C|0B|0A|
- 16-битный байт, прямой порядок:
 - -|0A0B|0C0D|
- 16-битный байт, обратный порядок:
 - -|0C0D|0A0B|

Порядок: "за" и "против"

- Прямой порядок привычней для человека
- Обратный порядок упрощает адресацию и переход к новому размеру слова (пример архитектуры х86 – 16, 32, 64 бита)
- Обратный порядок упрощает реализацию арифметики

Сверхоперативная память: кэш-память

Центральный процессор

Кэш-память

 промежуточный буфер с быстрым доступом, содержащий информацию, которая может быть запрошена процессором с наибольшей вероятностью.

Сверхоперативная память: кэш-память

- Фон-неймановская архитектура и закон Мура
- Принцип локальности (locality of reference)
- Кэш-линейки (lines) и кэш-записи (entries)
- Если
 - с среднее время доступа к кэш-памяти,
 - m среднее время доступа к основной памяти,
 - h доля кэш-промахов (0≤ h ≤1),
- то среднее время доступа к данным t=c+h*m.

Работа с кэш-памятью

- Алгоритмы замещения
 - LRU- Least recently used-Вытеснение давно неиспользуемых,
 - LFU-Least-Frequently Used-Наименее часто используемый,
 - etc)
- Политики обратной записи (сквозная, отложенная)
- Формат кэш-записи: тег-данные-флаги

Ассоциативность

- полная ассоциативность любая строка ОП может находиться в любом месте кэш-памяти, причем в любой комбинации с другими строками. Каждая запись имеет идентификатор, часто называемый тегом, определяющий соответствие между элементами данных в кэше и их копиями в основной памяти;
- прямое отображение;
- 4-канальный множественно-ассоциативный случай.

Прямое отображение

4-канальный множественноассоциативный случай

Многоуровневая кэш-память

- L1 часть процессора, Гарвардская архитектура. Объём от 16 до 64 Кбайт
- L2 часть процессора, отдельный набор микросхем.
 Объём от 512 до 1–12 Мбайт
- L3 более 24 Мбайт, в общем пользовании.
- L4 только для многопроцессорных высокопроизводительных систем

Ядро K8 в процессоре AMD Athlon 64

