MATH 689 - Physics for Mathematicians

Lectures by Igor Zelenko, transcribed by Seth Hoisington

Sepember 5, 2023

Theorem 1 (Darboux). If σ is a sympectic form on a 2n-dimensional manifold N, then for all $\lambda \in N$, there exists a neighborhood U of λ and local coordinates $(p_1, \ldots, p_n, q^1, \ldots, q^n)$ such that

$$\sigma = dp_1 \wedge dq^1 + \dots + dp_n \wedge dq^n$$

(See also Arnold, p.229-232)

Such coordinates are called symplectic coordinates and the transition map between symplectic coordinates is called a canonical transformation.

Remark 1.

From linear algebra, for every $\lambda \in N$, we can find a basis in $T_{\lambda}N$ such that the matrix of the bilinear form σ_{λ} in this basis is

$$\begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$$

which corresponds to the coordinate basis $\left(\frac{\partial}{\partial p_1},\ldots,\frac{\partial}{\partial p_n},\frac{\partial}{\partial q^1},\ldots,\frac{\partial}{\partial q^n}\right)$ in (1). In fact, such bases in $T_\lambda N$ are defined modulo the Linear Symplectic group $Sp(T_\lambda N)$. Darboux says that from closure of σ we can choose such a basis at every point of a neighborhood such that the corresponding vector fields commute. Hence, they are coordinate bases w.r.t some coordinates.

1 Lagrangian Submanifolds of a Symplectic Space

1.1 Linear algebra preliminary

Assume that W is a 2n-dimensional vector space with a non-degenerate skew-symmetric form ω . (e.g. $W = T_{\lambda}N$, $\omega = \sigma_{\lambda}$). Given a subspace $L \subseteq W$, let $L^{\angle} = \{v \in W \mid \omega(v,z) = 0 \forall z \in L\}$. Then since ω is non-degenerate, we have $\dim L^{\angle} = \dim W - \dim L = 2n - \dim L$. L is called isotropic if $L \subseteq L^{\angle}$. For example, if $\dim L = 1$, then for all $v, w \in L$, we have that $v = \lambda w$, so, by skew-symmetry,

$$\sigma(v, w) = \lambda \sigma(v, v) = 0.$$

If $L \subseteq W$ is isotropic, then $\dim L \leq \frac{1}{2} \dim W = n$. If L is isotropic and $\dim L = n$, then L is called **Lagrangian**.

Example 1.

In a basis $\left(\frac{\partial}{\partial p_1}, \dots, \frac{\partial}{\partial p_n}, \frac{\partial}{\partial q^1}, \dots, \frac{\partial}{\partial q^n}\right)$, (in which ω has the matrix $\begin{bmatrix} 0 & I\\ -I & 0 \end{bmatrix}$), we let $L_0 = \operatorname{span}\left\{\frac{\partial}{\partial q^1}, \dots, \frac{\partial}{\partial q^n}\right\}$ and let $L_{\infty} = \operatorname{span}\left\{\frac{\partial}{\partial p_1}, \dots, \frac{\partial}{\partial p_n}\right\}$. Both these subspaces are Lagrangian. More generally, for any symmetric matrix $S = [S_{ij}]_{i,j=1}^n$, we have that the subspace

$$L_S = \operatorname{span} \left\{ \frac{\partial}{\partial q^i} + \sum_{j=1}^n S_{ij} \frac{\partial}{\partial p_j} \right\}.$$

is Lagrangian. Indeed, this follows, given that

$$\omega \left(\frac{\partial}{\partial q^{i_1}} + \sum_{j=1}^n S_{i_1 j} \frac{\partial}{\partial p_j}, \frac{\partial}{\partial q^{i_2}} + \sum_{j=1}^n S_{i_2 j} \frac{\partial}{\partial p_j} \right)$$

$$= \sum_i (dp_i \wedge dq^i) \left(\frac{\partial}{\partial q^{i_1}} + \sum_{j=1}^n S_{i_1 j} \frac{\partial}{\partial p_j}, \frac{\partial}{\partial q^{i_2}} + \sum_{j=1}^n S_{i_2 j} \frac{\partial}{\partial p_j} \right)$$

$$= S_{i_1 i_2} - S_{i_2 i_1}$$

$$= 0$$

Moreover L_S is Lagrangian if and only if S is symmetric, and any Lagrangian L transversal to L_{∞} is of the form $L = L_S$ for some symmetric matrix S.

Definition 1. A submanifold L of a symplectic manifold (N, σ) is called Lagrangian if, for every $\lambda \in L$, $T_{\lambda}L$ is a Lagrangian subspace of $T_{\lambda}N$. Equivalently, L is Lagrangian if $\sigma|_{L} = 0$ and dim $L = \frac{1}{2} \dim N$.

Example 2. Let $N = T^*M$ with the canonical symplectic form σ . Then,

- 1. Every fiber of T^*M is Lagrangian.
- 2. Consider M embedded into T^*M are a graph of v-sections, then M is defined by $dp_1 = dp_2 = \cdots = dp_n = 0$, so $\sigma_M = 0$.

Example 3. Given a smooth function $f: M \to \mathbb{R}$, the graph of its differential, given by $L_f = \{((df)_q, q) \mid q \in M\} \subseteq T^*M$, is a Lagrangian submanifold. Then (sketching), we can show that for each $\lambda \in T^*M$,

$$T_{\lambda}(T^*M) = \operatorname{span}\left\{\frac{\partial}{\partial q^1} + \sum_{j=1}^n \frac{\partial^2 f}{\partial q^i \partial q^j} \frac{\partial}{\partial q^j}\right\}.$$

Since the Hessian matrix $S = \left[\frac{\partial^2 f}{\partial q^i \partial q^j}\right]_{ij}$ is symmetric for any smooth map by Clairaut's theorem, then $L_f = L_S$. Hence, it is Lagrangian.

2 Liouville Integrability

Let (N, σ) be a symplectic manifold. We say that some k Hamiltonians $(F_1, \ldots, F_k) \in C^{\infty}(N)^k$ are in involution if $\{F_i, F_j\} = 0$ for all $1 \leq i, j \leq k$. If (F_1, \ldots, F_k) are in involution, then for all $\lambda \in N$, span $\{(\vec{F}_1)_{\lambda}, \ldots, (\vec{F}_k)_{\lambda}\}$ is an isotropic subspace of $T_{\lambda}N$.

We say that the Hamiltonians (F_1, \ldots, F_k) are independent if the vectors $\{(dF_1)_{\lambda}, \ldots, (dF_k)_{\lambda}\}$ are linearly independent. By a simple linear transformation, we can conclude that $\{(\vec{F}_1)_{\lambda}, \ldots, (\vec{F}_k)_{\lambda}\}$. Therefore, if a set of k Hamiltonians are independent and in involution, then $k \leq n = \frac{\dim N}{2}$.

Assume that k=n and (F_1,\ldots,F_n) are independent in involution. Then, we see that span $\{\vec{F}_1,\ldots,\vec{F}_n\}$ is an involutive distribution over N since $[\vec{F}_i,\vec{F}_j]=\overline{\{F_i,F_j\}}=\vec{0}=0$. Therefore, the distribution is integrable by Frobenius' Theorem, so there exists an n-dimensional integral submanifold, which is in fact Lagrangian $(\sigma(\vec{F}_i,\vec{F}_j)=0)$. Given this, the set (F_1,\ldots,F_n) which is independent in involution is called Liouville Integrable. Let $f\in\mathbb{R}^n$ and let $f=(f_1,\ldots,f_n)$. Then, define

$$N_f = \{ \lambda \in N \, | \, F_i(\lambda) = f_i, \, i = 1, \dots, n \}.$$

Then if $N_f \neq \emptyset$, then N_f is a Lagrangian submanifold of N. N_f is invariant under the flow generated by \vec{F}_i for every i.

Remark 2. Note that if (F_1, \ldots, F_k) are integrals of F_1 , then the common level set, $N_f = \{F_1 = f_1, \ldots, F_k = f_k\}$ for $f = (f_1, \ldots, f_n) \in \mathbb{R}^n$, if not empty, is a codimension k submanifold in N and it is invariant with respect to the flow of \vec{F}_1 . So, having k integrals, we can reduce the degrees of freedom by k. The tangent space to N_f at some point $\lambda \in N_f$,

$$T_{\lambda}N_f = \ker(dF_1)_{\lambda} \cap \dots \cap \ker(dF_k)_{\lambda} = \left(\operatorname{span}\{\vec{F}_1, \dots, \vec{F}_k\}\right)^{\angle}$$

In particular, if (F_1, \ldots, F_k) are in involution, then span $(\vec{F}_1, \ldots, \vec{F}_k)$ $|_{\lambda}$ is an isotropic space, so span $(\vec{F}_1, \ldots, \vec{F}_k)$ $|_{\lambda} \subseteq T_{\lambda}N_f$.

Theorem 2 (Arnold-Liouville). Consider a Hamiltonian system $\dot{\lambda} = \vec{H}(\lambda)$ on N admitting n integrals $(F_1 - H, F_2, \dots, F_n)$ independent in involution. Let $f \in \mathbb{R}^n$. Then

1. If N_f is nonempty, connected, and compact, then N_f is diffeomorphic to an n-dimensional torus, and one can choose global coordinates $\varphi = (\varphi_1, \ldots, \varphi_n) \mod 2\pi$ on T^n such that the flow generated by \vec{H} is conditional periodic, i.e. there exists a vector of frequencies $\omega = \omega(f) \in \mathbb{R}^n$

such that on N_f , we have that

$$\dot{\varphi} = \omega \Leftrightarrow \begin{cases} \dot{\varphi}_1 = \omega_1 & \varphi_1(t) = \varphi_1(0) + \omega_1 t \mod 2\pi \\ \vdots & \Leftrightarrow & \vdots \\ \dot{\varphi}_n = \omega_n & \varphi_n(t) = \varphi_n(0) + \omega_n t \mod 2\pi \end{cases}$$

2. Moreover, in the neighborhood \tilde{N} of N_f , there are symplectic coordinates (I,φ) (i.e. $\tilde{N}\cong D\times T^n$) such that $\dot{\lambda}=\vec{H}(\lambda)$ is equivalent to

$$\begin{cases} \dot{I} = 0\\ \dot{\varphi} = \omega(I) \end{cases}$$

Note that since I is constant on N_f , then