pymongo_queries

December 30, 2022

1 BDS Assignment 1

This submission is made by Group 136 for BDS Assignment 1.

Group 136

Members as follows

Name	BITS ID	Contribution
Vinayak Nayak	2021fc04135	100%
Shreysi Kalra	2021fc04586	100%

We have used MongoDB Atlas with pymongo and structured our solution as follows - An Exploratory Analysis of data - Populating MongoDB Atlas with our data - Executing queries with pymongo and verifying ther results with pandas

Setup Details - System: Ubuntu 20.04 LTS - pymongo - version 4.3.3 (For interfacing with the database) - MongoDB Atlas (As a cloud hosted database to store our data)

2 Exploratory Data Analysis

```
[]: import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

plt.style.use("fivethirtyeight")
import seaborn as sns

%matplotlib inline
```

```
[]: # Define the data sources
    country_data = "data/country_wise_latest.csv"
    covid_data = "data/covid_19_clean_complete.csv"
    day_data = "data/day_wise.csv"
    full_data = "data/full_grouped.csv"
    usa_data = "data/usa_county_wise.csv"
    world_data = "data/worldometer_data.csv"
```

```
[]: country = pd.read_csv(country_data)
    fig, axis = plt.subplots(1, 1, figsize=(12, 4))

axis.hist(np.log10(country.Confirmed + 1e-2), bins=80, color="r", alpha=0.5)
axis.hist(np.log10(country.Deaths + 1e-2), bins=80, color="g", alpha=0.5)
axis.hist(np.log10(country.Recovered + 1e-2), bins=80, color="b", alpha=0.5)
axis.hist(np.log10(country.Active + 1e-2), bins=80, color="y", alpha=0.5)
axis.legend(["Confirmed", "Deaths", "Recovered", "Active"])

axis.axvline(np.log10(country.Confirmed.mean()), color="r", linestyle="--")
axis.axvline(np.log10(country.Deaths.mean()), color="g", linestyle="--")
fig.suptitle("COVID stats across countries (on log scale)");
```


[]: country.describe()

[]:		Confirmed	Deaths	Recovered	Active	New cases	\
	count	1.870000e+02	187.000000	1.870000e+02	1.870000e+02	187.000000	
	mean	8.813094e+04	3497.518717	5.063148e+04	3.400194e+04	1222.957219	
	std	3.833187e+05	14100.002482	1.901882e+05	2.133262e+05	5710.374790	
	min	1.000000e+01	0.000000	0.000000e+00	0.000000e+00	0.000000	
	25%	1.114000e+03	18.500000	6.265000e+02	1.415000e+02	4.000000	
	50%	5.059000e+03	108.000000	2.815000e+03	1.600000e+03	49.000000	
	75%	4.046050e+04	734.000000	2.260600e+04	9.149000e+03	419.500000	
	max	4.290259e+06	148011.000000	1.846641e+06	2.816444e+06	56336.000000	
		New deaths	New recovered	Deaths / 100 C	ases Recovere	d / 100 Cases	\
	count	187.000000	187.000000	187.00	0000	187.000000	
	mean	28.957219	933.812834	3.01	9519	64.820535	
	std	120.037173	4197.719635	3.45	4302	26.287694	
	min	0.000000	0.000000	0.00	0000	0.000000	
	25%	0.000000	0.000000	0.94	5000	48.770000	
	50%	1.000000	22.000000	2.15	0000	71.320000	

75% max	6.000000 1076.000000	221.0000 33728.0000			86.885000 100.000000
count mean std min 25% 50% 75% max	Deaths / 100 H	Recovered 187.00 inf NaN 0.00 1.45 3.62 6.44 inf	3.382737e+05 1.000000e+01 1.051500e+03 5.020000e+03 3.708050e+04	1 week change 187.000000 9448.459893 47491.127684 -47.000000 49.000000 432.000000 3172.000000 455582.000000	
count mean std min 25% 50% 75% max	1 week % incre 187.000 13.606 24.509 -3.840 2.778 6.890 16.858	0000 6203 9838 0000 5000 0000			

Observations

- 1. There are observations with zero values (maybe missing observations or genuine data as well) in the dataset hence the spike at -2 which we have manually induced to restrict the ranges.
- 2. Confirmed distribution is peaks to the right of Recovered distribution which means that the recovery rate is slower than the contagion rate for the given data.
- 3. Deaths are peaking to the left of recovered with an order of magnitude's difference which is a very good sign. More people are getting recovered than dying.

[]: usa.describe()

[]:		Confirmed	Deaths
	count	58.000000	58.000000
	mean	501.599235	26.559350
	std	836.286029	60.990893
	min	0.000000	0.000000
	25%	66.175416	1.618250
	50%	175.022023	4.852940
	75%	418.920583	15.446665
	max	3817.463922	282.455828

Observations

- 1. In the USA, NY and NJ seem to have the highest number of deaths and confirmed cases respectively.
- 2. Puerto Rico, Diamond Princess and American Samoa have the lowest deaths and confirmed cases.
- 3. From the five point summary it seems there are several provinces where there's no deaths.
- 4. Thankfully for most counties number of deaths are low in comparison to compared cases (< 16 deaths for >75% of the counties).

```
[]: day = pd.read_csv(day_data)
    day = day.groupby(by="Date").sum().reset_index()
    fig, axis = plt.subplots(2, 1, figsize=(12, 7))

sns.barplot(x=day.Date, y=np.log10(day.Confirmed), ax=axis[0])
    axis[0].set_xticks([])
    axis[0].set_title("Log of confirmed cases across the entire time span")

sns.barplot(x=day.Date, y=np.log10(day.Deaths), ax=axis[1])
    axis[1].set_xticks([])
    axis[1].set_title("Log of death cases across the entire time span")

fig.tight_layout();
```



```
[]: day[["Deaths", "Confirmed"]].describe()
[]: Deaths Confirmed
```

```
188.000000 1.880000e+02
count
       230770.760638 4.406960e+06
mean
       217929.094183 4.757988e+06
std
           17.000000 5.550000e+02
min
25%
         3935.000000 1.121910e+05
50%
       204190.000000 2.848733e+06
75%
       418634.500000 7.422046e+06
       654036.000000 1.648048e+07
max
```

Observations

- 1. Across the world, over time, we can see that the number of confirmed cases have reached over 10 million owing to this horrible disease.
- 2. Also, the number of deaths have almost reached the scale of million by the last timestamp available in the data.
- 3. The growth in death cases as well as confirmed cases is very nearly exponential in nature... (Since their log plot seems to be linearly growing).

Now we have a coarse understanding of our underlying data distribution quite well. We can start using mongodb to further dig deep and get insights about our data distribution.

3 Pushing Data to MongoDB Atlas

```
[]: # Import all the necessary libraries
import os

# To suppress unnecessary warnings
import warnings

# For printing and for handling paths
from pathlib import Path
from pprint import pprint

# For cross-checking mongodb query results
import pandas as pd

# For interacting with mongodb database
import pymongo
from pymongo import MongoClient

# For watching the progress
from tqdm import tqdm

warnings.filterwarnings("ignore")
```

```
[]: # Get the connection string from mongodb atlas
# Substitute the password from environment variable
CONNECTION_STRING = f"mongodb+srv://2021fc04135:{os.

→environ['PASSWORD']}@bits-assignment-cluster.xwgiyxv.mongodb.net/?

→retryWrites=true&w=majority"
```

```
[]: # Create a mongo client
client = MongoClient(CONNECTION_STRING)

# Create a temporary database for testing out our queries
db = client["temp"]
```

```
[]: # Define the data sources
     country_data = "data/country_wise_latest.csv"
     covid_data = "data/covid_19_clean_complete.csv"
     day_data = "data/day_wise.csv"
     full_data = "data/full_grouped.csv"
     usa_data = "data/usa_county_wise.csv"
     world_data = "data/worldometer_data.csv"
[]: | # Function to create a collection and add documents to that collection
     def create_db_and_add_records(f, batch_size=128):
         # Give a suitable name to the collection
         collection_name = Path(f).stem
         coll = db[collection_name]
         # Read and upload entries from our csvs to the mongo collection
         df = pd.read csv(f)
         records = df.to_dict(orient="record")
         # Insert every single record in our collection in batches of a fixed size
         n_batches = len(records) // batch_size
         if batch_size * n_batches <= len(records):</pre>
             n batches += 1
         for idx in tqdm(
             range(n_batches), total=n_batches, desc=f"Adding to {collection_name}_u
      ⇔coll."
         ):
             # Create a batch of data
             start_index = idx * batch_size
             end index = (idx + 1) * batch size
             recs = records[start_index:end_index]
             for num, rec in enumerate(recs):
                 rec["_id"] = start_index + num
             # Bulk insert data in batches of 64 items
             try:
                 coll.insert_many(recs)
             # If some of the records already exists, then move over to the next
             # record without creating a fuss
```

```
[]: # # Create all the databases

# create_db_and_add_records(country_data)

# create_db_and_add_records(day_data)

# create_db_and_add_records(usa_data)

# create_db_and_add_records(world_data)
```

except pymongo.errors.BulkWriteError as e:

pass

```
# create_db_and_add_records(covid_data)
     # create_db_and_add_records(full_data)
[]: # Have a look at the created collections from above
     list(db.list_collection_names())
[]: ['country_wise_latest',
      'worldometer_data',
      'full_grouped',
      'usa_county_wise',
      'day_wise',
      'covid_19_clean_complete']
[]: # Create references to all the collections for answering subsequent questions.
     country_coll = db["country_wise_latest"]
     world_coll = db["worldometer_data"]
     full_coll = db["full_grouped"]
     usa_coll = db["usa_county_wise"]
     day_coll = db["day_wise"]
     covid_coll = db["covid_19_clean_complete"]
```

4 Querying the database for respective questions

4.1 Q1

The number of new cases, new deaths and new recovered

'Total Recovered': 174623, '_id': 'Aggregate Stats'}]

```
[]: # Verifying using pandas to check if we get the same answer
df = pd.read_csv(country_data)
df[["New cases", "New deaths", "New recovered"]].sum()
```

```
[]: New cases 228693
New deaths 5415
New recovered 174623
dtype: int64
```

4.2 Q2

The number of death cases in each country of continent Asia and also the corresponding WHO regions

```
[{'Country/Region': 'India',
 'TotalDeaths': 41638.0,
 'WHO Region': 'South-EastAsia'},
{'Country/Region': 'Iran',
 'TotalDeaths': 17976.0,
 'WHO Region': 'EasternMediterranean'},
{'Country/Region': 'Saudi Arabia',
 'TotalDeaths': 3055.0,
 'WHO Region': 'EasternMediterranean'},
{'Country/Region': 'Pakistan',
 'TotalDeaths': 6035.0,
 'WHO Region': 'EasternMediterranean'},
{'Country/Region': 'Bangladesh',
 'TotalDeaths': 3306.0,
 'WHO Region': 'South-EastAsia'},
{'Country/Region': 'Turkey', 'TotalDeaths': 5798.0, 'WHO Region': 'Europe'},
{'Country/Region': 'Iraq',
 'TotalDeaths': 5161.0,
 'WHO Region': 'EasternMediterranean'},
{'Country/Region': 'Philippines',
 'TotalDeaths': 2150.0,
 'WHO Region': 'WesternPacific'},
{'Country/Region': 'Indonesia',
 'TotalDeaths': 5521.0,
 'WHO Region': 'South-EastAsia'},
{'Country/Region': 'Qatar',
```

```
'TotalDeaths': 178.0,
 'WHO Region': 'EasternMediterranean'},
{'Country/Region': 'Kazakhstan',
 'TotalDeaths': 1058.0,
 'WHO Region': 'Europe'},
{'Country/Region': 'Oman',
 'TotalDeaths': 492.0,
 'WHO Region': 'EasternMediterranean'},
{'Country/Region': 'Israel', 'TotalDeaths': 576.0, 'WHO Region': 'Europe'},
{'Country/Region': 'Kuwait',
 'TotalDeaths': 469.0,
 'WHO Region': 'EasternMediterranean'},
{'Country/Region': 'UAE',
 'TotalDeaths': 354.0,
 'WHO Region': 'EasternMediterranean'},
{'Country/Region': 'Singapore',
 'TotalDeaths': 27.0,
 'WHO Region': 'WesternPacific'},
{'Country/Region': 'Bahrain',
 'TotalDeaths': 156.0,
 'WHO Region': 'EasternMediterranean'},
{'Country/Region': 'Japan',
 'TotalDeaths': 1026.0,
 'WHO Region': 'WesternPacific'},
{'Country/Region': 'Armenia', 'TotalDeaths': 772.0, 'WHO Region': 'Europe'},
{'Country/Region': 'Kyrgyzstan',
 'TotalDeaths': 1447.0,
 'WHO Region': 'Europe'},
{'Country/Region': 'Afghanistan',
 'TotalDeaths': 1298.0,
 'WHO Region': 'EasternMediterranean'},
{'Country/Region': 'Azerbaijan', 'TotalDeaths': 479.0, 'WHO Region': 'Europe'},
{'Country/Region': 'Uzbekistan', 'TotalDeaths': 175.0, 'WHO Region': 'Europe'},
{'Country/Region': 'Nepal',
 'TotalDeaths': 65.0,
 'WHO Region': 'South-EastAsia'},
{'Country/Region': 'S. Korea',
 'TotalDeaths': 303.0,
 'WHO Region': 'WesternPacific'},
{'Country/Region': 'Palestine',
 'TotalDeaths': 92.0,
 'WHO Region': 'EasternMediterranean'},
{'Country/Region': 'Malaysia',
 'TotalDeaths': 125.0,
 'WHO Region': 'WesternPacific'},
{'Country/Region': 'Tajikistan', 'TotalDeaths': 62.0, 'WHO Region': 'Europe'},
{'Country/Region': 'Lebanon',
 'TotalDeaths': 70.0,
```

```
'WHO Region': 'EasternMediterranean'},
{'Country/Region': 'Maldives',
 'TotalDeaths': 19.0,
 'WHO Region': 'South-EastAsia'},
{'Country/Region': 'Hong Kong',
 'TotalDeaths': 46.0,
 'WHO Region': 'WesternPacific'},
{'Country/Region': 'Thailand',
 'TotalDeaths': 58.0,
 'WHO Region': 'South-EastAsia'},
{'Country/Region': 'Sri Lanka',
 'TotalDeaths': 11.0,
 'WHO Region': 'South-EastAsia'},
{'Country/Region': 'Yemen',
 'TotalDeaths': 508.0,
 'WHO Region': 'EasternMediterranean'},
{'Country/Region': 'Jordan',
 'TotalDeaths': 11.0,
 'WHO Region': 'EasternMediterranean'},
{'Country/Region': 'Cyprus', 'TotalDeaths': 19.0, 'WHO Region': 'Europe'},
{'Country/Region': 'Georgia', 'TotalDeaths': 17.0, 'WHO Region': 'Europe'},
{'Country/Region': 'Syria',
 'TotalDeaths': 48.0,
 'WHO Region': 'EasternMediterranean'},
{'Country/Region': 'Vietnam',
 'TotalDeaths': 10.0,
 'WHO Region': 'WesternPacific'},
{'Country/Region': 'Taiwan',
 'TotalDeaths': 7.0,
 'WHO Region': 'WesternPacific'},
{'Country/Region': 'Myanmar',
 'TotalDeaths': 6.0,
 'WHO Region': 'South-EastAsia'},
{'Country/Region': 'Mongolia',
 'TotalDeaths': nan,
 'WHO Region': 'WesternPacific'},
{'Country/Region': 'Cambodia',
 'TotalDeaths': nan,
 'WHO Region': 'WesternPacific'},
{'Country/Region': 'Brunei ', 'TotalDeaths': 3.0, 'WHO Region': nan},
{'Country/Region': 'Bhutan',
 'TotalDeaths': nan,
 'WHO Region': 'South-EastAsia'},
{'Country/Region': 'Macao', 'TotalDeaths': nan, 'WHO Region': nan},
{'Country/Region': 'Timor-Leste',
 'TotalDeaths': nan,
 'WHO Region': 'South-EastAsia'},
{'Country/Region': 'Laos', 'TotalDeaths': nan, 'WHO Region': 'WesternPacific'}]
```

```
[]: # Verifying using pandas to check if we get the same answer
df = pd.read_csv("data/worldometer_data.csv")
df[df.Continent == "Asia"][["Country/Region", "TotalDeaths", "WHO Region"]]
```

[]:	Country/Region	TotalDeaths	WHO Region
2	India	41638.0	South-EastAsia
10	Iran	17976.0	EasternMediterranean
12	Saudi Arabia	3055.0	EasternMediterranean
13	Pakistan	6035.0	EasternMediterranean
14	Bangladesh	3306.0	South-EastAsia
16	Turkey	5798.0	Europe
20	Iraq	5161.0	EasternMediterranean
21	Philippines	2150.0	WesternPacific
22	Indonesia	5521.0	South-EastAsia
24	Qatar	178.0	EasternMediterranean
25	Kazakhstan	1058.0	Europe
30	Oman	492.0	EasternMediterranean
31	Israel	576.0	Europe
36	Kuwait	469.0	EasternMediterranean
38	UAE	354.0	EasternMediterranean
41	Singapore	27.0	WesternPacific
47	Bahrain	156.0	EasternMediterranean
48	Japan	1026.0	WesternPacific
49	Armenia	772.0	Europe
51	Kyrgyzstan	1447.0	Europe
52	Afghanistan	1298.0	EasternMediterranean
55	Azerbaijan	479.0	Europe
57	Uzbekistan	175.0	Europe
63	Nepal	65.0	South-EastAsia
72	S. Korea	303.0	WesternPacific
74	Palestine	92.0	EasternMediterranean
83	Malaysia	125.0	WesternPacific
86	Tajikistan	62.0	Europe
95	Lebanon	70.0	${\tt Eastern Mediterranean}$
101	Maldives	19.0	South-EastAsia
107	Hong Kong	46.0	WesternPacific
110	Thailand	58.0	South-EastAsia
114	Sri Lanka	11.0	South-EastAsia
131	Yemen	508.0	${\tt Eastern Mediterranean}$
137	Jordan	11.0	${\tt Eastern Mediterranean}$
140	Cyprus	19.0	Europe
141	Georgia	17.0	Europe
145	Syria	48.0	${\tt Eastern Mediterranean}$
154	Vietnam	10.0	WesternPacific
162	Taiwan	7.0	WesternPacific
165	Myanmar	6.0	South-EastAsia
168	Mongolia	NaN	WesternPacific

174	Cambodia	NaN	WesternPacific
181	Brunei	3.0	NaN
186	Bhutan	NaN	South-EastAsia
193	Macao	NaN	NaN
197	Timor-Leste	NaN	South-EastAsia
200	Laos	NaN	WesternPacific

4.3 Q3

The number of deaths that occurred on 12-02-2020

```
[]: qry = day_coll.find({"Date": "2020-02-12"}, projection={"Deaths": 1, "_id": 0})
    pprint(list(qry))

[{'Deaths': 1118}]
```

```
[]: # Verifying using pandas to check if we get the same answer
df = pd.read_csv(day_data)
df[df.Date == "2020-02-12"][["Deaths"]]
```

[]: Deaths 21 1118

4.4 Q4

The number of active new cases (new cases-(new death+new recovered)) in a reverse sorted order based on the country name

Here we create an additional field called active new cases which is defined as the difference between new cases and the sum of new death and new recovered cases. We then sort based on the country name in a alphabetically decreasing order and only project the country and these cases to get the final result.

```
}
                },
            }
        },
        {"$sort": {"_id": -1}},
    ]
pprint(list(qry))
[{'_id': 'Zimbabwe', 'active new cases': 166},
{'_id': 'Zambia', 'active new cases': -395},
{' id': 'Yemen', 'active new cases': -30},
{'_id': 'Western Sahara', 'active new cases': 0},
{'_id': 'West Bank and Gaza', 'active new cases': 150},
{'_id': 'Vietnam', 'active new cases': 11},
{'_id': 'Venezuela', 'active new cases': 308},
{'_id': 'Uzbekistan', 'active new cases': 104},
{'_id': 'Uruguay', 'active new cases': 6},
{'_id': 'United Kingdom', 'active new cases': 678},
{'_id': 'United Arab Emirates', 'active new cases': -65},
{'_id': 'Ukraine', 'active new cases': 507},
{'_id': 'Uganda', 'active new cases': 9},
{'_id': 'US', 'active new cases': 27319},
{'_id': 'Turkey', 'active new cases': -80},
{'_id': 'Tunisia', 'active new cases': -12},
{'_id': 'Trinidad and Tobago', 'active new cases': 1},
{'_id': 'Togo', 'active new cases': -2},
{'_id': 'Timor-Leste', 'active new cases': 0},
{'_id': 'Thailand', 'active new cases': 4},
{'_id': 'Tanzania', 'active new cases': 0},
{'_id': 'Tajikistan', 'active new cases': -16},
{'_id': 'Taiwan*', 'active new cases': 4},
{'_id': 'Syria', 'active new cases': 22},
{'_id': 'Switzerland', 'active new cases': -136},
{'_id': 'Sweden', 'active new cases': 395},
{'_id': 'Suriname', 'active new cases': 8},
{'_id': 'Sudan', 'active new cases': -13},
{'_id': 'Sri Lanka', 'active new cases': 8},
{'_id': 'Spain', 'active new cases': 0},
{'_id': 'South Sudan', 'active new cases': 42},
{'_id': 'South Korea', 'active new cases': -75},
{'_id': 'South Africa', 'active new cases': -3050},
{'_id': 'Somalia', 'active new cases': -4},
{' id': 'Slovenia', 'active new cases': -50},
{'_id': 'Slovakia', 'active new cases': -37},
{'_id': 'Singapore', 'active new cases': 298},
```

```
{'_id': 'Sierra Leone', 'active new cases': -4},
{'_id': 'Seychelles', 'active new cases': 0},
{'_id': 'Serbia', 'active new cases': 402},
{'_id': 'Senegal', 'active new cases': 12},
{' id': 'Saudi Arabia', 'active new cases': -647},
{'_id': 'Sao Tome and Principe', 'active new cases': -36},
{' id': 'San Marino', 'active new cases': 0},
{'_id': 'Saint Vincent and the Grenadines', 'active new cases': 0},
{'_id': 'Saint Lucia', 'active new cases': 0},
{'_id': 'Saint Kitts and Nevis', 'active new cases': 0},
{'_id': 'Rwanda', 'active new cases': 1},
{'_id': 'Russia', 'active new cases': 2445},
{'_id': 'Romania', 'active new cases': 934},
{'_id': 'Qatar', 'active new cases': -12},
{'_id': 'Portugal', 'active new cases': -25},
{'_id': 'Poland', 'active new cases': 229},
{'_id': 'Philippines', 'active new cases': 1243},
{'_id': 'Peru', 'active new cases': 8484},
{'_id': 'Paraguay', 'active new cases': -9},
{'_id': 'Papua New Guinea', 'active new cases': 0},
{'_id': 'Panama', 'active new cases': 163},
{'_id': 'Pakistan', 'active new cases': -2436},
{'_id': 'Oman', 'active new cases': -685},
{'_id': 'Norway', 'active new cases': 15},
{'_id': 'North Macedonia', 'active new cases': -16},
{'_id': 'Nigeria', 'active new cases': -183},
{'_id': 'Niger', 'active new cases': 0},
{'_id': 'Nicaragua', 'active new cases': 0},
{'_id': 'New Zealand', 'active new cases': 0},
{'_id': 'Netherlands', 'active new cases': 418},
{'_id': 'Nepal', 'active new cases': -490},
{'_id': 'Namibia', 'active new cases': 42},
{'_id': 'Mozambique', 'active new cases': 32},
{'_id': 'Morocco', 'active new cases': 491},
{' id': 'Montenegro', 'active new cases': 22},
{'_id': 'Mongolia', 'active new cases': -3},
{' id': 'Monaco', 'active new cases': 0},
{'_id': 'Moldova', 'active new cases': -138},
{'_id': 'Mexico', 'active new cases': -3957},
{'_id': 'Mauritius', 'active new cases': 0},
{'_id': 'Mauritania', 'active new cases': -186},
{'_id': 'Malta', 'active new cases': 1},
{'_id': 'Mali', 'active new cases': 0},
{'_id': 'Maldives', 'active new cases': 48},
{'_id': 'Malaysia', 'active new cases': 6},
{'_id': 'Malawi', 'active new cases': 18},
{'_id': 'Madagascar', 'active new cases': -292},
{'_id': 'Luxembourg', 'active new cases': -129},
```

```
{'_id': 'Lithuania', 'active new cases': 7},
{'_id': 'Liechtenstein', 'active new cases': 0},
{'_id': 'Libya', 'active new cases': 130},
{'_id': 'Liberia', 'active new cases': 0},
{' id': 'Lesotho', 'active new cases': 0},
{'_id': 'Lebanon', 'active new cases': 115},
{' id': 'Latvia', 'active new cases': 0},
{'_id': 'Laos', 'active new cases': 0},
{'_id': 'Kyrgyzstan', 'active new cases': -358},
{'_id': 'Kuwait', 'active new cases': -83},
{'_id': 'Kosovo', 'active new cases': 206},
{'_id': 'Kenya', 'active new cases': 277},
{'_id': 'Kazakhstan', 'active new cases': -307},
{'_id': 'Jordan', 'active new cases': 8},
{'_id': 'Japan', 'active new cases': 230},
{'_id': 'Jamaica', 'active new cases': 11},
{'_id': 'Italy', 'active new cases': 16},
{'_id': 'Israel', 'active new cases': 1917},
{'_id': 'Ireland', 'active new cases': 11},
{'_id': 'Iraq', 'active new cases': 530},
{'_id': 'Iran', 'active new cases': 291},
{'_id': 'Indonesia', 'active new cases': -50},
{'_id': 'India', 'active new cases': 10222},
{'_id': 'Iceland', 'active new cases': 7},
{'_id': 'Hungary', 'active new cases': 13},
{'_id': 'Honduras', 'active new cases': 298},
{'_id': 'Holy See', 'active new cases': 0},
{'_id': 'Haiti', 'active new cases': 24},
{'_id': 'Guyana', 'active new cases': 19},
{'_id': 'Guinea-Bissau', 'active new cases': 0},
{'_id': 'Guinea', 'active new cases': -60},
{'_id': 'Guatemala', 'active new cases': -614},
{'_id': 'Grenada', 'active new cases': 0},
{'_id': 'Greenland', 'active new cases': 1},
{' id': 'Greece', 'active new cases': 34},
{'_id': 'Ghana', 'active new cases': 348},
{'_id': 'Germany', 'active new cases': 185},
{'_id': 'Georgia', 'active new cases': 4},
{'_id': 'Gambia', 'active new cases': 41},
{'_id': 'Gabon', 'active new cases': -14},
{'_id': 'France', 'active new cases': 2267},
{'_id': 'Finland', 'active new cases': 5},
{'_id': 'Fiji', 'active new cases': 0},
{'_id': 'Ethiopia', 'active new cases': 404},
{'_id': 'Eswatini', 'active new cases': 68},
{'_id': 'Estonia', 'active new cases': -1},
{'_id': 'Eritrea', 'active new cases': 0},
{'_id': 'Equatorial Guinea', 'active new cases': 0},
```

```
{'_id': 'El Salvador', 'active new cases': 267},
{'_id': 'Egypt', 'active new cases': -633},
{'_id': 'Ecuador', 'active new cases': 450},
{'_id': 'Dominican Republic', 'active new cases': -373},
{' id': 'Dominica', 'active new cases': 0},
{'_id': 'Djibouti', 'active new cases': -2},
{' id': 'Denmark', 'active new cases': 32},
{'_id': 'Czechia', 'active new cases': 190},
{'_id': 'Cyprus', 'active new cases': 3},
{'_id': 'Cuba', 'active new cases': 35},
{'_id': 'Croatia', 'active new cases': -49},
{'_id': "Cote d'Ivoire", 'active new cases': -124},
{'_id': 'Costa Rica', 'active new cases': 513},
{'_id': 'Congo (Kinshasa)', 'active new cases': -181},
{'_id': 'Congo (Brazzaville)', 'active new cases': 86},
{'_id': 'Comoros', 'active new cases': 0},
{'_id': 'Colombia', 'active new cases': 4304},
{'_id': 'China', 'active new cases': 202},
{'_id': 'Chile', 'active new cases': 199},
{'_id': 'Chad', 'active new cases': 7},
{'_id': 'Central African Republic', 'active new cases': 0},
{'_id': 'Canada', 'active new cases': 671},
{'_id': 'Cameroon', 'active new cases': 396},
{'_id': 'Cambodia', 'active new cases': -3},
{'_id': 'Cabo Verde', 'active new cases': -82},
{'_id': 'Burundi', 'active new cases': -5},
{'_id': 'Burma', 'active new cases': -2},
{'_id': 'Burkina Faso', 'active new cases': 8},
{'_id': 'Bulgaria', 'active new cases': -43},
{'_id': 'Brunei', 'active new cases': 0},
{'_id': 'Brazil', 'active new cases': -11058},
{'_id': 'Botswana', 'active new cases': 41},
{'_id': 'Bosnia and Herzegovina', 'active new cases': 342},
{'_id': 'Bolivia', 'active new cases': 1379},
{' id': 'Bhutan', 'active new cases': 3},
{'_id': 'Benin', 'active new cases': 0},
{' id': 'Belize', 'active new cases': 0},
{'_id': 'Belgium', 'active new cases': 387},
{'_id': 'Belarus', 'active new cases': 48},
{'_id': 'Barbados', 'active new cases': 0},
{'_id': 'Bangladesh', 'active new cases': 934},
{'_id': 'Bahrain', 'active new cases': -71},
{'_id': 'Bahamas', 'active new cases': 40},
{'_id': 'Azerbaijan', 'active new cases': -168},
{'_id': 'Austria', 'active new cases': 48},
{'_id': 'Australia', 'active new cases': 225},
{'_id': 'Armenia', 'active new cases': -120},
{'_id': 'Argentina', 'active new cases': 2713},
```

```
{'_id': 'Antigua and Barbuda', 'active new cases': -1},
    {'_id': 'Angola', 'active new cases': 17},
    {'_id': 'Andorra', 'active new cases': 10},
    {'_id': 'Algeria', 'active new cases': -141},
    {'_id': 'Albania', 'active new cases': 48},
    {'_id': 'Afghanistan', 'active new cases': 78}]

[]: # Verifying using pandas to check if we get the same answer
    df = pd.read_csv(country_data)
    df["Active New"] = df["New cases"] - (df["New deaths"] + df["New recovered"])
    df.sort_values(by=["Country/Region"], ascending=False)[["Country/Region", "Active New"]]
```

[]:		Country/Region	Active New
	186	Zimbabwe	166
	185	Zambia	-395
	184	Yemen	-30
	183	Western Sahara	0
	182	West Bank and Gaza	150
			•••
	4	Angola	17
	3	Andorra	10
	2	Algeria	-141
	1	Albania	48
	0	Afghanistan	78

[187 rows x 2 columns]

4.5 Q5

The names of the countries with more than 9000 active cases and more than 800 deaths

```
[{'Country/Region': 'Afghanistan'},
    {'Country/Region': 'Argentina'},
    {'Country/Region': 'Bangladesh'},
    {'Country/Region': 'Belgium'},
    {'Country/Region': 'Bolivia'},
    {'Country/Region': 'Brazil'},
```

```
{'Country/Region': 'Chile'},
     {'Country/Region': 'Colombia'},
     {'Country/Region': 'Dominican Republic'},
     {'Country/Region': 'Ecuador'},
     {'Country/Region': 'Egypt'},
     {'Country/Region': 'France'},
     {'Country/Region': 'Guatemala'},
     {'Country/Region': 'Honduras'},
     {'Country/Region': 'India'},
     {'Country/Region': 'Indonesia'},
     {'Country/Region': 'Iran'},
     {'Country/Region': 'Iraq'},
     {'Country/Region': 'Italy'},
     {'Country/Region': 'Kyrgyzstan'},
     {'Country/Region': 'Mexico'},
     {'Country/Region': 'Netherlands'},
     {'Country/Region': 'Nigeria'},
     {'Country/Region': 'Pakistan'},
     {'Country/Region': 'Panama'},
     {'Country/Region': 'Peru'},
     {'Country/Region': 'Philippines'},
     {'Country/Region': 'Portugal'},
     {'Country/Region': 'Romania'},
     {'Country/Region': 'Russia'},
     {'Country/Region': 'Saudi Arabia'},
     {'Country/Region': 'South Africa'},
     {'Country/Region': 'Spain'},
     {'Country/Region': 'Sweden'},
     {'Country/Region': 'Turkey'},
     {'Country/Region': 'US'},
     {'Country/Region': 'Ukraine'},
     {'Country/Region': 'United Kingdom'}]
[]: # Verifying using pandas to check if we get the same answer
     df = pd.read_csv(country_data)
     df = df[(df["Active"] > 9000) & (df["Deaths"] > 800)]
     df[["Country/Region"]]
[]:
              Country/Region
                 Afghanistan
     0
     6
                   Argentina
                  Bangladesh
     13
                     Belgium
     16
     20
                     Bolivia
     23
                      Brazil
     32
                      Canada
```

{'Country/Region': 'Canada'},

```
35
                   Chile
37
                Colombia
50
     Dominican Republic
51
                 Ecuador
52
                   Egypt
61
                  France
70
               Guatemala
76
                Honduras
79
                   India
80
               Indonesia
81
                    Iran
82
                    Iraq
85
                   Italy
93
              Kyrgyzstan
111
                  Mexico
120
             Netherlands
124
                 Nigeria
128
                Pakistan
129
                  Panama
132
                    Peru
133
             Philippines
135
                Portugal
137
                 Romania
138
                  Russia
            Saudi Arabia
145
154
            South Africa
157
                   Spain
161
                  Sweden
172
                  Turkey
173
                      US
175
                 Ukraine
177
         United Kingdom
```

4.6 Q6

The country with the highest number of active cases and also with second highest death rate.

```
pprint(list(qry))
    [{'Active': 2816444, 'Country/Region': 'US'}]
[]: # Verifying using pandas to check if we get the same answer
     df = pd.read_csv(country_data)
     df.sort_values(by=["Active"]).tail(1)
[]:
         Country/Region Confirmed Deaths Recovered
                                                        Active New cases \
     173
                    US
                           4290259
                                    148011
                                              1325804
                                                                    56336
                                                       2816444
          New deaths New recovered Deaths / 100 Cases Recovered / 100 Cases \
     173
                1076
                              27941
                                                   3.45
                                                                          30.9
         Deaths / 100 Recovered Confirmed last week 1 week change \
     173
                           11.16
                                              3834677
                                                              455582
          1 week % increase WHO Region
     173
                      11.88
                              Americas
[]: | qry = country_coll.aggregate(
         {
                 "$sort": {"Deaths / 100 Cases": -1},
             },
             {"$limit": 2},
             {
                 "$sort": {"Deaths / 100 Cases": 1},
             },
             {"$limit": 1},
             {
                 "$project": {
                     "Country/Region": 1,
                     "Active": 1,
                     "Deaths / 100 Cases": 1,
                     "_id": 0,
                 }
             },
         ]
     )
     pprint(list(qry)[-1])
    {'Active': 254427,
     'Country/Region': 'United Kingdom',
     'Deaths / 100 Cases': 15.19}
```

```
[]: # Verifying using pandas to check if we get the same answer
    df.sort_values(by=["Deaths / 100 Cases"], ascending=False).head(2).tail(1)
[]:
         Country/Region Confirmed Deaths Recovered Active New cases \
    177 United Kingdom
                            301708
                                      45844
                                                  1437 254427
                                                                     688
         New deaths New recovered Deaths / 100 Cases Recovered / 100 Cases \
    177
                   7
                                                  15.19
                                                                          0.48
         Deaths / 100 Recovered Confirmed last week 1 week change \
    177
                         3190.26
                                              296944
                                                               4764
          1 week % increase WHO Region
    177
                       1.6
                               Europe
    4.7 Q7
    The total number of deaths all around the world
```

```
[]: qry = country_coll.aggregate(
        [{"$group": {"_id": "Worldwide Deaths", "total": {"$sum": "$Deaths"}}}]
)
pprint(list(qry))

[{'_id': 'Worldwide Deaths', 'total': 654036}]

[]: # Verifying using pandas to check if we get the same answer
    df = pd.read_csv(country_data)
    df.Deaths.sum()
```

[]: 654036

4.8 Q8

The number of death cases and active cases between 28-01-2020 and 21-02-2020

```
"Total Dead": {"$sum": "$Deaths"},
     }
    },
    ]
)
pprint(list(qry))
```

[{'Total Active': 886425, 'Total Dead': 25885, '_id': 'Case counts'}]

```
[]: # Verifying using pandas to check if we get the same answer
df = pd.read_csv(day_data)
df[(df.Date >= start) & (df.Date <= end)][["Active", "Deaths"]].sum()</pre>
```

[]: Active 886425 Deaths 25885 dtype: int64

4.9 Q9

The latitude and longitude of countries ending with "ia" and the number of countries

The data provided here consists of multiple countries and multiple provinces/states within a country. In order to get an exact latitude/longitude on a country level is not possible. We could tackle this in several ways

- Provide lat and long for the capital of that country
- Provide lat and long for the region with most cases in that country
- More simply, provide the average lat and average long of all the provinces/states in the country so we get an approximate coordinate for center of mass of the country.

We have chosen approach 3 to address the above query as showcased below

```
[]: qry = covid_coll.aggregate(
         {"$match": {"Country/Region": {"$regex": ".ia$"}}},
             {
                 "$project": {
                     "Lat": {"$ifNull": ["$Lat", 0]},
                     "Long": {"$ifNull": ["$Long", 0]},
                     "Country/Region": 1,
                 }
             },
             {
                 "$group": {
                     "_id": "$Country/Region",
                     "lat": {"$avg": "$Lat"},
                     "long": {"$avg": "$Long"},
                 }
             },
```

```
{"$sort": {"_id": 1}},
        ]
     )
    pprint(list(qry))
    [{' id': 'Albania', 'lat': 41.1533, 'long': 20.1683},
     {'_id': 'Algeria', 'lat': 28.0339, 'long': 1.6596},
     {'_id': 'Armenia', 'lat': 40.0691, 'long': 45.038199999999996},
     {'_id': 'Australia', 'lat': -32.106275, 'long': 141.3554875},
     {'_id': 'Austria', 'lat': 47.5162, 'long': 14.55009999999999},
     {'_id': 'Bolivia', 'lat': -16.2902, 'long': -63.5887},
     {'_id': 'Bulgaria', 'lat': 42.7339, 'long': 25.48579999999998},
     {' id': 'Cambodia', 'lat': 11.55, 'long': 104.9166999999999},
     {'_id': 'Colombia', 'lat': 4.5709, 'long': -74.2973},
     {'_id': 'Croatia', 'lat': 45.100000000001, 'long': 15.2},
     {'_id': 'Czechia', 'lat': 49.8175, 'long': 15.473},
     {'_id': 'Estonia', 'lat': 58.5953000000001, 'long': 25.0136},
     {'_id': 'Ethiopia', 'lat': 9.145, 'long': 40.4897},
     {'_id': 'Gambia', 'lat': 13.4432, 'long': -15.3101},
     {'_id': 'Georgia', 'lat': 42.3154, 'long': 43.3569},
     {'_id': 'India', 'lat': 20.593684, 'long': 78.96288},
     {'_id': 'Indonesia', 'lat': -0.7893, 'long': 113.92129999999999},
     {'_id': 'Latvia', 'lat': 56.8796, 'long': 24.6032},
     {'_id': 'Liberia', 'lat': 6.42805500000001, 'long': -9.429499},
     {'_id': 'Lithuania', 'lat': 55.1694, 'long': 23.8813},
     {'_id': 'Malaysia', 'lat': 4.21048399999999, 'long': 101.975766},
     {'_id': 'Mauritania', 'lat': 21.0079, 'long': -10.9408},
     {'_id': 'Mongolia', 'lat': 46.8625, 'long': 103.8467},
     {'_id': 'Namibia', 'lat': -22.9576, 'long': 18.4904},
     {'_id': 'Nigeria', 'lat': 9.082, 'long': 8.6753},
     {'_id': 'North Macedonia', 'lat': 41.6086, 'long': 21.7453},
     {'_id': 'Romania', 'lat': 45.9432, 'long': 24.9668},
     {'_id': 'Russia', 'lat': 61.5240099999999, 'long': 105.318756},
     {'_id': 'Saint Lucia', 'lat': 13.9094, 'long': -60.97889999999996},
     {'_id': 'Saudi Arabia', 'lat': 23.88594200000004, 'long': 45.079162},
     {'_id': 'Serbia', 'lat': 44.0165, 'long': 21.0059},
     {'_id': 'Slovakia', 'lat': 48.669, 'long': 19.699},
     {'_id': 'Slovenia', 'lat': 46.1512, 'long': 14.9955},
     {'_id': 'Somalia', 'lat': 5.152149, 'long': 46.19961599999999},
     {'_id': 'Syria', 'lat': 34.802075, 'long': 38.99681500000001},
     {'_id': 'Tanzania', 'lat': -6.369028, 'long': 34.888822},
     {'_id': 'Tunisia', 'lat': 33.886917, 'long': 9.537499},
     {' id': 'Zambia', 'lat': -13.133897, 'long': 27.849332}]
[]: # Verifying using pandas to check if we get the same answer
     df = pd.read csv(covid data)
     df = df[df["Country/Region"].apply(lambda x: x.endswith("ia"))]
```

len(df["Country/Region"].unique())

[]: 38

[]: df.groupby(by=["Country/Region"])[["Lat", "Long"]].mean()

[]:		Lat	Long
	Country/Region		
	Albania	41.153300	20.168300
	Algeria	28.033900	1.659600
	Armenia	40.069100	45.038200
	Australia	-32.106275	141.355488
	Austria	47.516200	14.550100
	Bolivia	-16.290200	-63.588700
	Bulgaria	42.733900	25.485800
	Cambodia	11.550000	104.916700
	Colombia	4.570900	-74.297300
	Croatia	45.100000	15.200000
	Czechia	49.817500	15.473000
	Estonia	58.595300	25.013600
	Ethiopia	9.145000	40.489700
	Gambia	13.443200	-15.310100
	Georgia	42.315400	43.356900
	India	20.593684	78.962880
	Indonesia	-0.789300	113.921300
	Latvia	56.879600	24.603200
	Liberia	6.428055	-9.429499
	Lithuania	55.169400	23.881300
	Malaysia	4.210484	101.975766
	Mauritania	21.007900	-10.940800
	Mongolia	46.862500	103.846700
	Namibia	-22.957600	18.490400
	Nigeria	9.082000	8.675300
	North Macedonia	41.608600	21.745300
	Romania	45.943200	24.966800
	Russia	61.524010	105.318756
	Saint Lucia	13.909400	-60.978900
	Saudi Arabia	23.885942	45.079162
	Serbia	44.016500	21.005900
	Slovakia	48.669000	19.699000
	Slovenia	46.151200	14.995500
	Somalia	5.152149	46.199616
	Syria	34.802075	38.996815
	Tanzania	-6.369028	34.888822
	Tunisia	33.886917	9.537499
	Zambia	-13.133897	27.849332

4.10 Q10

The countries with active cases on 30/03/2020

```
[]: qry = full_coll.find(
         {"Date": "2020-03-30", "Active": {"$gt": 0}},
         projection={"Country/Region": 1, "_id": 0},
     pprint(list(qry))
    [{'Country/Region': 'Afghanistan'},
     {'Country/Region': 'Albania'},
     {'Country/Region': 'Algeria'},
     {'Country/Region': 'Andorra'},
     {'Country/Region': 'Angola'},
     {'Country/Region': 'Antigua and Barbuda'},
     {'Country/Region': 'Argentina'},
     {'Country/Region': 'Armenia'},
     {'Country/Region': 'Australia'},
     {'Country/Region': 'Austria'},
     {'Country/Region': 'Azerbaijan'},
     {'Country/Region': 'Bahamas'},
     {'Country/Region': 'Bahrain'},
     {'Country/Region': 'Bangladesh'},
     {'Country/Region': 'Barbados'},
     {'Country/Region': 'Belarus'},
     {'Country/Region': 'Belgium'},
     {'Country/Region': 'Belize'},
     {'Country/Region': 'Benin'},
     {'Country/Region': 'Bhutan'},
     {'Country/Region': 'Bolivia'},
     {'Country/Region': 'Bosnia and Herzegovina'},
     {'Country/Region': 'Botswana'},
     {'Country/Region': 'Brazil'},
     {'Country/Region': 'Brunei'},
     {'Country/Region': 'Bulgaria'},
     {'Country/Region': 'Burkina Faso'},
     {'Country/Region': 'Burma'},
     {'Country/Region': 'Cabo Verde'},
     {'Country/Region': 'Cambodia'},
     {'Country/Region': 'Cameroon'},
     {'Country/Region': 'Canada'},
     {'Country/Region': 'Central African Republic'},
     {'Country/Region': 'Chad'},
     {'Country/Region': 'Chile'},
     {'Country/Region': 'China'},
     {'Country/Region': 'Colombia'},
     {'Country/Region': 'Congo (Brazzaville)'},
```

```
{'Country/Region': 'Congo (Kinshasa)'},
{'Country/Region': 'Costa Rica'},
{'Country/Region': "Cote d'Ivoire"},
{'Country/Region': 'Croatia'},
{'Country/Region': 'Cuba'},
{'Country/Region': 'Cyprus'},
{'Country/Region': 'Czechia'},
{'Country/Region': 'Denmark'},
{'Country/Region': 'Djibouti'},
{'Country/Region': 'Dominica'},
{'Country/Region': 'Dominican Republic'},
{'Country/Region': 'Ecuador'},
{'Country/Region': 'Egypt'},
{'Country/Region': 'El Salvador'},
{'Country/Region': 'Equatorial Guinea'},
{'Country/Region': 'Eritrea'},
{'Country/Region': 'Estonia'},
{'Country/Region': 'Eswatini'},
{'Country/Region': 'Ethiopia'},
{'Country/Region': 'Fiji'},
{'Country/Region': 'Finland'},
{'Country/Region': 'France'},
{'Country/Region': 'Gabon'},
{'Country/Region': 'Gambia'},
{'Country/Region': 'Georgia'},
{'Country/Region': 'Germany'},
{'Country/Region': 'Ghana'},
{'Country/Region': 'Greece'},
{'Country/Region': 'Greenland'},
{'Country/Region': 'Grenada'},
{'Country/Region': 'Guatemala'},
{'Country/Region': 'Guinea'},
{'Country/Region': 'Guinea-Bissau'},
{'Country/Region': 'Guyana'},
{'Country/Region': 'Haiti'},
{'Country/Region': 'Holy See'},
{'Country/Region': 'Honduras'},
{'Country/Region': 'Hungary'},
{'Country/Region': 'Iceland'},
{'Country/Region': 'India'},
{'Country/Region': 'Indonesia'},
{'Country/Region': 'Iran'},
{'Country/Region': 'Iraq'},
{'Country/Region': 'Ireland'},
{'Country/Region': 'Israel'},
{'Country/Region': 'Italy'},
{'Country/Region': 'Jamaica'},
{'Country/Region': 'Japan'},
```

```
{'Country/Region': 'Jordan'},
{'Country/Region': 'Kazakhstan'},
{'Country/Region': 'Kenya'},
{'Country/Region': 'Kosovo'},
{'Country/Region': 'Kuwait'},
{'Country/Region': 'Kyrgyzstan'},
{'Country/Region': 'Laos'},
{'Country/Region': 'Latvia'},
{'Country/Region': 'Lebanon'},
{'Country/Region': 'Liberia'},
{'Country/Region': 'Libya'},
{'Country/Region': 'Liechtenstein'},
{'Country/Region': 'Lithuania'},
{'Country/Region': 'Luxembourg'},
{'Country/Region': 'Madagascar'},
{'Country/Region': 'Malaysia'},
{'Country/Region': 'Maldives'},
{'Country/Region': 'Mali'},
{'Country/Region': 'Malta'},
{'Country/Region': 'Mauritania'},
{'Country/Region': 'Mauritius'},
{'Country/Region': 'Mexico'},
{'Country/Region': 'Moldova'},
{'Country/Region': 'Monaco'},
{'Country/Region': 'Mongolia'},
{'Country/Region': 'Montenegro'},
{'Country/Region': 'Morocco'},
{'Country/Region': 'Mozambique'},
{'Country/Region': 'Namibia'},
{'Country/Region': 'Nepal'},
{'Country/Region': 'Netherlands'},
{'Country/Region': 'New Zealand'},
{'Country/Region': 'Nicaragua'},
{'Country/Region': 'Niger'},
{'Country/Region': 'Nigeria'},
{'Country/Region': 'North Macedonia'},
{'Country/Region': 'Norway'},
{'Country/Region': 'Oman'},
{'Country/Region': 'Pakistan'},
{'Country/Region': 'Panama'},
{'Country/Region': 'Papua New Guinea'},
{'Country/Region': 'Paraguay'},
{'Country/Region': 'Peru'},
{'Country/Region': 'Philippines'},
{'Country/Region': 'Poland'},
{'Country/Region': 'Portugal'},
{'Country/Region': 'Qatar'},
{'Country/Region': 'Romania'},
```

```
{'Country/Region': 'Rwanda'},
     {'Country/Region': 'Saint Kitts and Nevis'},
     {'Country/Region': 'Saint Lucia'},
     {'Country/Region': 'San Marino'},
     {'Country/Region': 'Saudi Arabia'},
     {'Country/Region': 'Senegal'},
     {'Country/Region': 'Serbia'},
     {'Country/Region': 'Seychelles'},
     {'Country/Region': 'Singapore'},
     {'Country/Region': 'Slovakia'},
     {'Country/Region': 'Slovenia'},
     {'Country/Region': 'Somalia'},
     {'Country/Region': 'South Africa'},
     {'Country/Region': 'South Korea'},
     {'Country/Region': 'Spain'},
     {'Country/Region': 'Sri Lanka'},
     {'Country/Region': 'Sudan'},
     {'Country/Region': 'Suriname'},
     {'Country/Region': 'Sweden'},
     {'Country/Region': 'Switzerland'},
     {'Country/Region': 'Syria'},
     {'Country/Region': 'Taiwan*'},
     {'Country/Region': 'Tanzania'},
     {'Country/Region': 'Thailand'},
     {'Country/Region': 'Timor-Leste'},
     {'Country/Region': 'Togo'},
     {'Country/Region': 'Trinidad and Tobago'},
     {'Country/Region': 'Tunisia'},
     {'Country/Region': 'Turkey'},
     {'Country/Region': 'US'},
     {'Country/Region': 'Uganda'},
     {'Country/Region': 'Ukraine'},
     {'Country/Region': 'United Arab Emirates'},
     {'Country/Region': 'United Kingdom'},
     {'Country/Region': 'Uruguay'},
     {'Country/Region': 'Uzbekistan'},
     {'Country/Region': 'Venezuela'},
     {'Country/Region': 'Vietnam'},
     {'Country/Region': 'West Bank and Gaza'},
     {'Country/Region': 'Zambia'},
     {'Country/Region': 'Zimbabwe'}]
[]: # Verifying using pandas to check if we get the same answer
     df = pd.read_csv(full_data)
     pprint(df[(df.Date == "2020-03-30") \& (df.Active > 0)]["Country/Region"].
      →tolist())
```

{'Country/Region': 'Russia'},

```
['Afghanistan',
'Albania',
'Algeria',
 'Andorra',
'Angola',
 'Antigua and Barbuda',
 'Argentina',
'Armenia',
 'Australia',
'Austria',
 'Azerbaijan',
'Bahamas',
'Bahrain',
 'Bangladesh',
 'Barbados',
 'Belarus',
'Belgium',
'Belize',
'Benin',
'Bhutan',
'Bolivia',
 'Bosnia and Herzegovina',
 'Botswana',
'Brazil',
'Brunei',
'Bulgaria',
'Burkina Faso',
'Burma',
 'Cabo Verde',
 'Cambodia',
 'Cameroon',
'Canada',
'Central African Republic',
'Chad',
'Chile',
'China',
'Colombia',
'Congo (Brazzaville)',
'Congo (Kinshasa)',
'Costa Rica',
"Cote d'Ivoire",
'Croatia',
'Cuba',
 'Cyprus',
'Czechia',
 'Denmark',
'Djibouti',
'Dominica',
```

```
'Dominican Republic',
'Ecuador',
'Egypt',
'El Salvador',
'Equatorial Guinea',
'Eritrea',
'Estonia',
'Eswatini',
'Ethiopia',
'Fiji',
'Finland',
'France',
'Gabon',
'Gambia',
'Georgia',
'Germany',
'Ghana',
'Greece',
'Greenland',
'Grenada',
'Guatemala',
'Guinea',
'Guinea-Bissau',
'Guyana',
'Haiti',
'Holy See',
'Honduras',
'Hungary',
'Iceland',
'India',
'Indonesia',
'Iran',
'Iraq',
'Ireland',
'Israel',
'Italy',
'Jamaica',
'Japan',
'Jordan',
'Kazakhstan',
'Kenya',
'Kosovo',
'Kuwait',
'Kyrgyzstan',
'Laos',
'Latvia',
'Lebanon',
'Liberia',
```

```
'Libya',
'Liechtenstein',
'Lithuania',
'Luxembourg',
'Madagascar',
'Malaysia',
'Maldives',
'Mali',
'Malta',
'Mauritania',
'Mauritius',
'Mexico',
'Moldova',
'Monaco',
'Mongolia',
'Montenegro',
'Morocco',
'Mozambique',
'Namibia',
'Nepal',
'Netherlands',
'New Zealand',
'Nicaragua',
'Niger',
'Nigeria',
'North Macedonia',
'Norway',
'Oman',
'Pakistan',
'Panama',
'Papua New Guinea',
'Paraguay',
'Peru',
'Philippines',
'Poland',
'Portugal',
'Qatar',
'Romania',
'Russia',
'Rwanda',
'Saint Kitts and Nevis',
'Saint Lucia',
'San Marino',
'Saudi Arabia',
'Senegal',
'Serbia',
'Seychelles',
'Singapore',
```

```
'Slovakia',
'Slovenia',
'Somalia',
'South Africa',
'South Korea',
'Spain',
'Sri Lanka',
'Sudan',
'Suriname',
'Sweden',
'Switzerland',
'Syria',
'Taiwan*',
'Tanzania',
'Thailand',
'Timor-Leste',
'Togo',
'Trinidad and Tobago',
'Tunisia',
'Turkey',
'US',
'Uganda',
'Ukraine',
'United Arab Emirates',
'United Kingdom',
'Uruguay',
'Uzbekistan',
'Venezuela',
'Vietnam',
'West Bank and Gaza',
'Zambia',
'Zimbabwe']
```

4.11 Q11

The latitude and longitude of those countries which are having active cases greater than 100

Similary to Q9, we have chosen the approach of providing average lat and long in our case.

```
},
        {
            "$group": {
                "_id": "$Country/Region",
                "lat": {"$avg": "$Lat"},
                "long": {"$avg": "$Long"},
            }
        },
        {"$sort": {"_id": 1}},
    1
pprint(list(qry))
[{'_id': 'Afghanistan', 'lat': 33.93911, 'long': 67.709953},
{'_id': 'Albania', 'lat': 41.1533, 'long': 20.1683},
{'_id': 'Algeria', 'lat': 28.0339, 'long': 1.6596},
{'_id': 'Andorra', 'lat': 42.5063, 'long': 1.5218},
{'_id': 'Angola', 'lat': -11.2027, 'long': 17.8739},
{'_id': 'Argentina', 'lat': -38.4161, 'long': -63.6167},
{'_id': 'Armenia', 'lat': 40.0691, 'long': 45.0382},
{'_id': 'Australia', 'lat': -34.320312538226304, 'long': 145.4311125382263},
{'_id': 'Austria', 'lat': 47.5162, 'long': 14.5501},
{'_id': 'Azerbaijan', 'lat': 40.1431, 'long': 47.5769},
{'_id': 'Bahamas', 'lat': 25.025885, 'long': -78.035889},
{'_id': 'Bahrain', 'lat': 26.0275, 'long': 50.55},
{'_id': 'Bangladesh', 'lat': 23.685, 'long': 90.3563},
{'_id': 'Belarus', 'lat': 53.7098, 'long': 27.9534},
{'_id': 'Belgium', 'lat': 50.8333, 'long': 4.469936},
{'_id': 'Benin', 'lat': 9.3077, 'long': 2.3158},
{'_id': 'Bolivia', 'lat': -16.2902, 'long': -63.5887},
{'_id': 'Bosnia and Herzegovina', 'lat': 43.9159, 'long': 17.6791},
{'_id': 'Botswana', 'lat': -22.3285, 'long': 24.6849},
{'_id': 'Brazil', 'lat': -14.235, 'long': -51.9253},
{'_id': 'Brunei', 'lat': 4.5353, 'long': 114.7277},
{'_id': 'Bulgaria', 'lat': 42.7339, 'long': 25.4858},
{'_id': 'Burkina Faso', 'lat': 12.2383, 'long': -1.5616},
{'_id': 'Burma', 'lat': 21.9162, 'long': 95.956},
{'_id': 'Burundi', 'lat': -3.37309999999995, 'long': 29.91889999999997},
{'_id': 'Cabo Verde', 'lat': 16.5388, 'long': -23.04180000000002},
{'_id': 'Cameroon', 'lat': 3.848, 'long': 11.5021},
{'_id': 'Canada', 'lat': 51.521756117021276, 'long': -89.00679184397163},
{'_id': 'Central African Republic', 'lat': 6.6111, 'long': 20.9394},
{'_id': 'Chad', 'lat': 15.4542, 'long': 18.7322},
{'_id': 'Chile', 'lat': -35.6751, 'long': -71.543},
{'_id': 'China', 'lat': 33.631940350877194, 'long': 115.07268755221388},
{'_id': 'Colombia', 'lat': 4.5709, 'long': -74.2973},
```

```
{'_id': 'Comoros', 'lat': -11.6455, 'long': 43.3333},
{'_id': 'Congo (Brazzaville)', 'lat': -0.228, 'long': 15.8277},
{'_id': 'Congo (Kinshasa)', 'lat': -4.0383, 'long': 21.7587},
{'_id': 'Costa Rica', 'lat': 9.7489, 'long': -83.7534},
{' id': "Cote d'Ivoire", 'lat': 7.54, 'long': -5.5471},
{'_id': 'Croatia', 'lat': 45.1, 'long': 15.2},
{'_id': 'Cuba', 'lat': 21.521757, 'long': -77.78116700000002},
{'_id': 'Cyprus', 'lat': 35.1264, 'long': 33.4299},
{'_id': 'Czechia', 'lat': 49.8175, 'long': 15.47299999999999},
{'_id': 'Denmark', 'lat': 56.38198461538462, 'long': 9.157458741258742},
{'_id': 'Djibouti', 'lat': 11.8251, 'long': 42.5903},
{'_id': 'Dominican Republic', 'lat': 18.7357, 'long': -70.1627},
{'_id': 'Ecuador', 'lat': -1.8312, 'long': -78.1834},
{'_id': 'Egypt', 'lat': 26.82055300000004, 'long': 30.802498},
{'_id': 'El Salvador', 'lat': 13.79419999999998, 'long': -88.8965},
{'_id': 'Equatorial Guinea', 'lat': 1.650799999999998, 'long': 10.2679},
{'_id': 'Eritrea', 'lat': 15.1794, 'long': 39.7823},
{'_id': 'Estonia', 'lat': 58.5953, 'long': 25.0136},
{'_id': 'Eswatini', 'lat': -26.5225, 'long': 31.4659},
{'_id': 'Ethiopia', 'lat': 9.145, 'long': 40.4897},
{'_id': 'Finland', 'lat': 61.92411, 'long': 25.748151},
{'_id': 'France', 'lat': 11.97344885321101, 'long': 4.7488253394495406},
{'_id': 'Gabon', 'lat': -0.803699999999999, 'long': 11.6094},
{'_id': 'Gambia', 'lat': 13.4432, 'long': -15.3101},
{'_id': 'Georgia', 'lat': 42.3154, 'long': 43.3569},
{'_id': 'Germany', 'lat': 51.165691, 'long': 10.451526},
{'_id': 'Ghana', 'lat': 7.94649999999995, 'long': -1.0232},
{'_id': 'Greece', 'lat': 39.0742, 'long': 21.8243},
{'_id': 'Guatemala', 'lat': 15.7835, 'long': -90.2308},
{'_id': 'Guinea', 'lat': 9.9456, 'long': -9.6966},
{'_id': 'Guinea-Bissau', 'lat': 11.8037, 'long': -15.1804},
{'_id': 'Guyana', 'lat': 4.860416000000002, 'long': -58.93018000000001},
{'_id': 'Haiti', 'lat': 18.9712, 'long': -72.2852},
{'_id': 'Honduras', 'lat': 15.2, 'long': -86.2419},
{' id': 'Hungary', 'lat': 47.1625, 'long': 19.5033},
{'_id': 'Iceland', 'lat': 64.9631, 'long': -19.0208},
{'_id': 'India', 'lat': 20.593684, 'long': 78.96288},
{'_id': 'Indonesia', 'lat': -0.7893, 'long': 113.9213},
{'_id': 'Iran', 'lat': 32.427908, 'long': 53.68804599999999},
{'_id': 'Iraq', 'lat': 33.223191, 'long': 43.679291},
{'_id': 'Ireland', 'lat': 53.1424, 'long': -7.69210000000001},
{'_id': 'Israel', 'lat': 31.04605099999995, 'long': 34.851612},
{'_id': 'Italy', 'lat': 41.87194, 'long': 12.56738},
{'_id': 'Jamaica', 'lat': 18.1096, 'long': -77.2975},
{'_id': 'Japan', 'lat': 36.204824, 'long': 138.252924},
{'_id': 'Jordan', 'lat': 31.24, 'long': 36.51},
{'_id': 'Kazakhstan', 'lat': 48.0196, 'long': 66.9237},
{'_id': 'Kenya', 'lat': -0.0236, 'long': 37.9062},
```

```
{'_id': 'Kosovo', 'lat': 42.602636, 'long': 20.902977},
{'_id': 'Kuwait', 'lat': 29.31166, 'long': 47.481766},
{'_id': 'Kyrgyzstan', 'lat': 41.20438, 'long': 74.766098},
{'_id': 'Latvia', 'lat': 56.8796, 'long': 24.6032},
{' id': 'Lebanon', 'lat': 33.8547, 'long': 35.8623},
{'_id': 'Lesotho', 'lat': -29.61000000000003, 'long': 28.2336},
{'_id': 'Liberia', 'lat': 6.428055, 'long': -9.429499},
{'_id': 'Libya', 'lat': 26.3351, 'long': 17.228331},
{'_id': 'Lithuania', 'lat': 55.1694, 'long': 23.8813},
{'_id': 'Luxembourg', 'lat': 49.8153, 'long': 6.1296},
{'_id': 'Madagascar', 'lat': -18.766947, 'long': 46.869107},
{'_id': 'Malawi', 'lat': -13.25430000000000, 'long': 34.3015},
{'_id': 'Malaysia', 'lat': 4.21048399999999, 'long': 101.975766},
{'_id': 'Maldives', 'lat': 3.20279999999999, 'long': 73.2207},
{'_id': 'Mali', 'lat': 17.570692, 'long': -3.9961660000000014},
{'_id': 'Malta', 'lat': 35.9375, 'long': 14.3754},
{'_id': 'Mauritania', 'lat': 21.0079, 'long': -10.9408},
{'_id': 'Mauritius', 'lat': -20.348404, 'long': 57.552152},
{'_id': 'Mexico', 'lat': 23.6345, 'long': -102.5528},
{'_id': 'Moldova', 'lat': 47.4116, 'long': 28.3699},
{'_id': 'Mongolia', 'lat': 46.8625, 'long': 103.84669999999998},
{'_id': 'Montenegro', 'lat': 42.70867800000006, 'long': 19.37439},
{'_id': 'Morocco', 'lat': 31.7917, 'long': -7.0926},
{'_id': 'Mozambique', 'lat': -18.665695, 'long': 35.529562},
{'_id': 'Namibia', 'lat': -22.9576, 'long': 18.4904},
{'_id': 'Nepal', 'lat': 28.1667, 'long': 84.25},
{'_id': 'Netherlands', 'lat': 52.1326, 'long': 5.2913},
{'id': 'New Zealand', 'lat': -40.9006, 'long': 174.8860000000002},
{'_id': 'Nicaragua', 'lat': 12.865416, 'long': -85.207229},
{'_id': 'Niger', 'lat': 17.607789, 'long': 8.081666},
{'_id': 'Nigeria', 'lat': 9.082, 'long': 8.6753},
{'_id': 'North Macedonia', 'lat': 41.6086, 'long': 21.7453},
{'_id': 'Norway', 'lat': 60.4720000000001, 'long': 8.4689},
{'_id': 'Oman', 'lat': 21.512583, 'long': 55.92325500000001},
{' id': 'Pakistan', 'lat': 30.3753, 'long': 69.3451},
{'_id': 'Panama', 'lat': 8.538, 'long': -80.7821},
{'_id': 'Paraguay', 'lat': -23.4425, 'long': -58.4438},
{'_id': 'Peru', 'lat': -9.19, 'long': -75.0152},
{'_id': 'Philippines', 'lat': 12.879721, 'long': 121.774017},
{'_id': 'Poland', 'lat': 51.9194, 'long': 19.1451},
{'_id': 'Portugal', 'lat': 39.3999, 'long': -8.2245},
{'_id': 'Qatar', 'lat': 25.3548, 'long': 51.1839},
{'_id': 'Romania', 'lat': 45.9432, 'long': 24.9668},
{'_id': 'Russia', 'lat': 61.52401, 'long': 105.318756},
{'_id': 'Rwanda', 'lat': -1.94029999999997, 'long': 29.8739},
{'_id': 'San Marino', 'lat': 43.9424, 'long': 12.4578},
{'_id': 'Sao Tome and Principe', 'lat': 0.1864, 'long': 6.6131},
{'_id': 'Saudi Arabia', 'lat': 23.885942, 'long': 45.079162},
```

```
{'_id': 'Serbia', 'lat': 44.0165, 'long': 21.0059},
     {'_id': 'Sierra Leone', 'lat': 8.460555000000001, 'long': -11.77988899999999},
     {'_id': 'Singapore', 'lat': 1.2833, 'long': 103.8333},
     {' id': 'Slovakia', 'lat': 48.669, 'long': 19.699},
     {'_id': 'Slovenia', 'lat': 46.1512, 'long': 14.9955},
     {' id': 'Somalia', 'lat': 5.152149, 'long': 46.199616000000006},
     {'_id': 'South Africa', 'lat': -30.5595, 'long': 22.9375},
     {'_id': 'South Korea', 'lat': 35.90775700000001, 'long': 127.766922},
     {'_id': 'South Sudan', 'lat': 6.87700000000002, 'long': 31.30699999999995},
     {'_id': 'Spain', 'lat': 40.463667, 'long': -3.7492200000000007},
     {'_id': 'Sri Lanka', 'lat': 7.873054, 'long': 80.77179699999998},
     {'_id': 'Sudan', 'lat': 12.86280000000002, 'long': 30.2176},
     {'_id': 'Suriname', 'lat': 3.9193, 'long': -56.027800000000006},
     {'_id': 'Sweden', 'lat': 60.128161000000006, 'long': 18.643501},
     {'_id': 'Switzerland', 'lat': 46.8182, 'long': 8.2275},
     {'_id': 'Syria', 'lat': 34.802075, 'long': 38.99681500000001},
     {'_id': 'Taiwan*', 'lat': 23.7, 'long': 121.0},
     {'_id': 'Tajikistan', 'lat': 38.861, 'long': 71.2761},
     {' id': 'Tanzania', 'lat': -6.369028, 'long': 34.888822},
     { 'id': 'Thailand', 'lat': 15.870032000000002, 'long': 100.992541},
     {'_id': 'Togo', 'lat': 8.6195, 'long': 0.8248},
     {'_id': 'Tunisia', 'lat': 33.886917, 'long': 9.537499},
     {'_id': 'Turkey', 'lat': 38.9637, 'long': 35.2433},
     {'_id': 'US', 'lat': 40.0, 'long': -100.0},
     {'_id': 'Uganda', 'lat': 1.373333, 'long': 32.290275},
     {'_id': 'Ukraine', 'lat': 48.3794, 'long': 31.1656},
     {'_id': 'United Arab Emirates', 'lat': 23.424076, 'long': 53.847818},
     {'_id': 'United Kingdom',
      'lat': 54.280426041666665,
      'long': -3.3155328125000003},
     {'_id': 'Uruguay', 'lat': -32.5228, 'long': -55.7658},
     {'_id': 'Uzbekistan', 'lat': 41.3774909999999, 'long': 64.585262},
     {'_id': 'Venezuela', 'lat': 6.4238, 'long': -66.5897},
     {' id': 'Vietnam', 'lat': 14.058324, 'long': 108.27719899999998},
     {'_id': 'West Bank and Gaza', 'lat': 31.9522, 'long': 35.2332},
     {' id': 'Yemen', 'lat': 15.552727, 'long': 48.516388},
     {'_id': 'Zambia', 'lat': -13.133897, 'long': 27.849331999999997},
     {'_id': 'Zimbabwe', 'lat': -19.015438, 'long': 29.154857}]
[]: # Verifying using pandas to check if we get the same answer
     df = pd.read_csv(covid_data)
     df[df["Active"] > 100].groupby(by=["Country/Region"])[["Lat", "Long"]].mean()
[]:
                               Lat
                                          Long
     Country/Region
     Afghanistan
                        33.939110
                                     67.709953
```

{'_id': 'Senegal', 'lat': 14.4974, 'long': -14.4524},

```
Albania
                    41.153300
                                20.168300
Algeria
                    28.033900
                                 1.659600
Andorra
                    42.506300
                                 1.521800
Angola
                   -11.202700
                                17.873900
Vietnam
                    14.058324 108.277199
West Bank and Gaza 31.952200
                                35.233200
Yemen
                    15.552727
                                48.516388
Zambia
                   -13.133897
                                27.849332
Zimbabwe
                   -19.015438
                                29.154857
[166 rows x 2 columns]
```

4.12 Q12

The countries and respective dates in which maximum increase of active cases occurred.

```
[]: | qry = full_coll.aggregate(
         {
                 "$setWindowFields": {
                     "partitionBy": "$Country/Region",
                     "sortBy": {"Date": 1},
                     "output": {
                         "PreviousActive": {
                              "$shift": {"output": "$Active", "by": -1, "default": 0}
                         }
                     },
                 },
             },
             {"$set": {"Delta": {"$subtract": ["$Active", "$PreviousActive"]}}},
             {"$project": {"Delta": 1, "Country/Region": 1, "Date": 1}},
             {"$sort": {"Country/Region": 1, "Delta": -1}},
             {
                 "$group": {
                     "_id": "$Country/Region",
                     "Date": {"$first": "$Date"},
                     "Increase": {"$first": "$Delta"},
                 }
             },
             {"$sort": {"_id": 1}},
         ]
     )
     pprint(list(qry))
```

```
[{'Date': '2020-05-30', 'Increase': 819, '_id': 'Afghanistan'}, {'Date': '2020-07-11', 'Increase': 83, '_id': 'Albania'},
```

```
{'Date': '2020-07-24', 'Increase': 663, '_id': 'Algeria'},
{'Date': '2020-06-02', 'Increase': 44, '_id': 'Andorra'},
{'Date': '2020-07-10', 'Increase': 61, '_id': 'Angola'},
{'Date': '2020-06-25', 'Increase': 39, '_id': 'Antigua and Barbuda'},
{'Date': '2020-07-17', 'Increase': 3792, 'id': 'Argentina'},
{'Date': '2020-06-04', 'Increase': 677, '_id': 'Armenia'},
{'Date': '2020-03-28', 'Increase': 446, 'id': 'Australia'},
{'Date': '2020-03-26', 'Increase': 1199, '_id': 'Austria'},
{'Date': '2020-06-24', 'Increase': 318, '_id': 'Azerbaijan'},
{'Date': '2020-07-23', 'Increase': 55, '_id': 'Bahamas'},
{'Date': '2020-06-03', 'Increase': 500, '_id': 'Bahrain'},
{'Date': '2020-06-15', 'Increase': 3060, '_id': 'Bangladesh'},
{'Date': '2020-04-02', 'Increase': 12, '_id': 'Barbados'},
{'Date': '2020-04-29', 'Increase': 889, '_id': 'Belarus'},
{'Date': '2020-04-15', 'Increase': 1932, '_id': 'Belgium'},
{'Date': '2020-07-10', 'Increase': 6, '_id': 'Belize'},
{'Date': '2020-06-21', 'Increase': 107, '_id': 'Benin'},
{'Date': '2020-06-07', 'Increase': 11, '_id': 'Bhutan'},
{'Date': '2020-07-18', 'Increase': 1661, '_id': 'Bolivia'},
{'Date': '2020-07-06', 'Increase': 440, '_id': 'Bosnia and Herzegovina'},
{'Date': '2020-07-16', 'Increase': 113, '_id': 'Botswana'},
{'Date': '2020-06-19', 'Increase': 36514, '_id': 'Brazil'},
{'Date': '2020-03-13', 'Increase': 26, '_id': 'Brunei'},
{'Date': '2020-07-09', 'Increase': 264, '_id': 'Bulgaria'},
{'Date': '2020-05-06', 'Increase': 34, '_id': 'Burkina Faso'},
{'Date': '2020-06-18', 'Increase': 22, '_id': 'Burma'},
{'Date': '2020-07-16', 'Increase': 34, '_id': 'Burundi'},
{'Date': '2020-07-03', 'Increase': 81, '_id': 'Cabo Verde'},
{'Date': '2020-03-22', 'Increase': 31, '_id': 'Cambodia'},
{'Date': '2020-07-07', 'Increase': 853, '_id': 'Cameroon'},
{'Date': '2020-04-05', 'Increase': 2737, '_id': 'Canada'},
{'Date': '2020-06-08', 'Increase': 216, '_id': 'Central African Republic'},
{'Date': '2020-05-07', 'Increase': 66, '_id': 'Chad'},
{'Date': '2020-05-30', 'Increase': 11302, '_id': 'Chile'},
{'Date': '2020-02-13', 'Increase': 12305, 'id': 'China'},
{'Date': '2020-07-16', 'Increase': 4892, '_id': 'Colombia'},
{'Date': '2020-05-22', 'Increase': 34, 'id': 'Comoros'},
{'Date': '2020-07-01', 'Increase': 261, '_id': 'Congo (Brazzaville)'},
{'Date': '2020-06-25', 'Increase': 183, '_id': 'Congo (Kinshasa)'},
{'Date': '2020-07-25', 'Increase': 785, '_id': 'Costa Rica'},
{'Date': '2020-06-23', 'Increase': 536, '_id': "Cote d'Ivoire"},
{'Date': '2020-06-25', 'Increase': 91, '_id': 'Croatia'},
{'Date': '2020-04-08', 'Increase': 60, '_id': 'Cuba'},
{'Date': '2020-04-01', 'Increase': 52, '_id': 'Cyprus'},
{'Date': '2020-04-04', 'Increase': 369, '_id': 'Czechia'},
{'Date': '2020-03-31', 'Increase': 267, '_id': 'Denmark'},
{'Date': '2020-05-30', 'Increase': 233, '_id': 'Djibouti'},
{'Date': '2020-03-25', 'Increase': 5, '_id': 'Dominica'},
```

```
{'Date': '2020-07-25', 'Increase': 1445, '_id': 'Dominican Republic'},
{'Date': '2020-04-24', 'Increase': 11482, '_id': 'Ecuador'},
{'Date': '2020-06-19', 'Increase': 1295, '_id': 'Egypt'},
{'Date': '2020-07-26', 'Increase': 300, '_id': 'El Salvador'},
{'Date': '2020-07-02', 'Increase': 724, '_id': 'Equatorial Guinea'},
{'Date': '2020-06-14', 'Increase': 31, '_id': 'Eritrea'},
{'Date': '2020-03-26', 'Increase': 134, 'id': 'Estonia'},
{'Date': '2020-07-18', 'Increase': 91, '_id': 'Eswatini'},
{'Date': '2020-07-08', 'Increase': 911, '_id': 'Ethiopia'},
{'Date': '2020-04-04', 'Increase': 5, '_id': 'Fiji'},
{'Date': '2020-04-04', 'Increase': 262, '_id': 'Finland'},
{'Date': '2020-04-12', 'Increase': 25482, '_id': 'France'},
{'Date': '2020-06-15', 'Increase': 256, '_id': 'Gabon'},
{'Date': '2020-07-25', 'Increase': 61, '_id': 'Gambia'},
{'Date': '2020-04-16', 'Increase': 37, '_id': 'Georgia'},
{'Date': '2020-03-27', 'Increase': 5873, '_id': 'Germany'},
{'Date': '2020-05-08', 'Increase': 901, '_id': 'Ghana'},
{'Date': '2020-04-02', 'Increase': 117, '_id': 'Greece'},
{'Date': '2020-03-27', 'Increase': 4, '_id': 'Greenland'},
{'Date': '2020-03-26', 'Increase': 6, '_id': 'Grenada'},
{'Date': '2020-07-04', 'Increase': 1153, ' id': 'Guatemala'},
{'Date': '2020-05-21', 'Increase': 154, '_id': 'Guinea'},
{'Date': '2020-05-04', 'Increase': 156, '_id': 'Guinea-Bissau'},
{'Date': '2020-06-22', 'Increase': 21, '_id': 'Guyana'},
{'Date': '2020-06-06', 'Increase': 332, '_id': 'Haiti'},
{'Date': '2020-03-24', 'Increase': 3, '_id': 'Holy See'},
{'Date': '2020-06-20', 'Increase': 978, '_id': 'Honduras'},
{'Date': '2020-04-10', 'Increase': 183, '_id': 'Hungary'},
{'Date': '2020-03-25', 'Increase': 84, '_id': 'Iceland'},
{'Date': '2020-07-26', 'Increase': 17275, '_id': 'India'},
{'Date': '2020-07-09', 'Increase': 1533, '_id': 'Indonesia'},
{'Date': '2020-03-28', 'Increase': 2391, '_id': 'Iran'},
{'Date': '2020-06-26', 'Increase': 1124, '_id': 'Iraq'},
{'Date': '2020-04-10', 'Increase': 1491, '_id': 'Ireland'},
{'Date': '2020-07-27', 'Increase': 1917, 'id': 'Israel'},
{'Date': '2020-03-20', 'Increase': 5359, '_id': 'Italy'},
{'Date': '2020-04-20', 'Increase': 50, 'id': 'Jamaica'},
{'Date': '2020-07-15', 'Increase': 735, '_id': 'Japan'},
{'Date': '2020-05-28', 'Increase': 97, '_id': 'Jordan'},
{'Date': '2020-07-01', 'Increase': 18256, '_id': 'Kazakhstan'},
{'Date': '2020-07-26', 'Increase': 789, '_id': 'Kenya'},
{'Date': '2020-06-22', 'Increase': 585, '_id': 'Kosovo'},
{'Date': '2020-05-10', 'Increase': 949, '_id': 'Kuwait'},
{'Date': '2020-07-18', 'Increase': 3895, '_id': 'Kyrgyzstan'},
{'Date': '2020-03-26', 'Increase': 3, '_id': 'Laos'},
{'Date': '2020-04-03', 'Increase': 64, '_id': 'Latvia'},
{'Date': '2020-07-25', 'Increase': 169, '_id': 'Lebanon'},
{'Date': '2020-07-25', 'Increase': 57, '_id': 'Lesotho'},
```

```
{'Date': '2020-06-19', 'Increase': 39, '_id': 'Liberia'},
{'Date': '2020-07-27', 'Increase': 130, '_id': 'Libya'},
{'Date': '2020-03-18', 'Increase': 21, '_id': 'Liechtenstein'},
{'Date': '2020-04-04', 'Increase': 73, '_id': 'Lithuania'},
{'Date': '2020-03-25', 'Increase': 234, 'id': 'Luxembourg'},
{'Date': '2020-07-26', 'Increase': 422, '_id': 'Madagascar'},
{'Date': '2020-07-22', 'Increase': 143, 'id': 'Malawi'},
{'Date': '2020-06-04', 'Increase': 249, '_id': 'Malaysia'},
{'Date': '2020-04-30', 'Increase': 190, '_id': 'Maldives'},
{'Date': '2020-06-10', 'Increase': 62, '_id': 'Mali'},
{'Date': '2020-04-07', 'Increase': 52, '_id': 'Malta'},
{'Date': '2020-06-16', 'Increase': 155, '_id': 'Mauritania'},
{'Date': '2020-04-09', 'Increase': 37, '_id': 'Mauritius'},
{'Date': '2020-07-19', 'Increase': 21313, '_id': 'Mexico'},
{'Date': '2020-06-17', 'Increase': 292, '_id': 'Moldova'},
{'Date': '2020-03-22', 'Increase': 11, '_id': 'Monaco'},
{'Date': '2020-05-14', 'Increase': 56, '_id': 'Mongolia'},
{'Date': '2020-07-17', 'Increase': 649, '_id': 'Montenegro'},
{'Date': '2020-07-25', 'Increase': 623, '_id': 'Morocco'},
{'Date': '2020-07-13', 'Increase': 62, '_id': 'Mozambique'},
{'Date': '2020-07-18', 'Increase': 125, '_id': 'Namibia'},
{'Date': '2020-06-18', 'Increase': 650, '_id': 'Nepal'},
{'Date': '2020-04-10', 'Increase': 1220, '_id': 'Netherlands'},
{'Date': '2020-04-02', 'Increase': 80, '_id': 'New Zealand'},
{'Date': '2020-06-02', 'Increase': 348, '_id': 'Nicaragua'},
{'Date': '2020-04-08', 'Increase': 62, '_id': 'Niger'},
{'Date': '2020-06-11', 'Increase': 533, '_id': 'Nigeria'},
{'Date': '2020-07-18', 'Increase': 181, '_id': 'North Macedonia'},
{'Date': '2020-03-27', 'Increase': 381, '_id': 'Norway'},
{'Date': '2020-07-13', 'Increase': 1003, '_id': 'Oman'},
{'Date': '2020-06-14', 'Increase': 8230, '_id': 'Pakistan'},
{'Date': '2020-06-14', 'Increase': 1344, '_id': 'Panama'},
{'Date': '2020-07-26', 'Increase': 23, '_id': 'Papua New Guinea'},
{'Date': '2020-06-27', 'Increase': 197, '_id': 'Paraguay'},
{'Date': '2020-07-27', 'Increase': 8484, 'id': 'Peru'},
{'Date': '2020-07-08', 'Increase': 2279, '_id': 'Philippines'},
{'Date': '2020-04-19', 'Increase': 473, 'id': 'Poland'},
{'Date': '2020-04-10', 'Increase': 1462, '_id': 'Portugal'},
{'Date': '2020-05-14', 'Increase': 1520, '_id': 'Qatar'},
{'Date': '2020-07-25', 'Increase': 1245, '_id': 'Romania'},
{'Date': '2020-05-04', 'Increase': 9049, '_id': 'Russia'},
{'Date': '2020-06-29', 'Increase': 101, '_id': 'Rwanda'},
{'Date': '2020-03-30', 'Increase': 5, '_id': 'Saint Kitts and Nevis'},
{'Date': '2020-03-29', 'Increase': 6, '_id': 'Saint Lucia'},
{'Date': '2020-05-28',
 'Increase': 7,
 '_id': 'Saint Vincent and the Grenadines'},
{'Date': '2020-04-16', 'Increase': 50, '_id': 'San Marino'},
```

```
{'Date': '2020-06-12', 'Increase': 2875, '_id': 'Saudi Arabia'},
     {'Date': '2020-05-11', 'Increase': 112, '_id': 'Senegal'},
     {'Date': '2020-07-20', 'Increase': 15913, '_id': 'Serbia'},
     {'Date': '2020-06-28', 'Increase': 50, 'id': 'Seychelles'},
     {'Date': '2020-05-24', 'Increase': 85, '_id': 'Sierra Leone'},
     {'Date': '2020-04-20', 'Increase': 1393, 'id': 'Singapore'},
     {'Date': '2020-04-08', 'Increase': 98, '_id': 'Slovakia'},
     {'Date': '2020-03-27', 'Increase': 67, '_id': 'Slovenia'},
     {'Date': '2020-05-12', 'Increase': 76, '_id': 'Somalia'},
     {'Date': '2020-07-26', 'Increase': 9096, '_id': 'South Africa'},
     {'Date': '2020-03-03', 'Increase': 851, '_id': 'South Korea'},
     {'Date': '2020-06-07', 'Increase': 319, '_id': 'South Sudan'},
     {'Date': '2020-03-25', 'Increase': 7218, '_id': 'Spain'},
     {'Date': '2020-07-10', 'Increase': 299, '_id': 'Sri Lanka'},
     {'Date': '2020-05-21', 'Increase': 377, '_id': 'Sudan'},
     {'Date': '2020-06-27', 'Increase': 67, '_id': 'Suriname'},
     {'Date': '2020-06-29', 'Increase': 2500, '_id': 'Sweden'},
     {'Date': '2020-03-23', 'Increase': 1299, '_id': 'Switzerland'},
     {'Date': '2020-07-24', 'Increase': 24, '_id': 'Syria'},
     {'Date': '2020-03-20', 'Increase': 26, 'id': 'Taiwan*'},
     {'Date': '2020-05-20', 'Increase': 375, '_id': 'Tajikistan'},
     {'Date': '2020-04-20', 'Increase': 81, '_id': 'Tanzania'},
     {'Date': '2020-03-22', 'Increase': 186, '_id': 'Thailand'},
     {'Date': '2020-04-16', 'Increase': 10, '_id': 'Timor-Leste'},
     {'Date': '2020-05-16', 'Increase': 32, '_id': 'Togo'},
     {'Date': '2020-03-21', 'Increase': 39, '_id': 'Trinidad and Tobago'},
     {'Date': '2020-03-31', 'Increase': 80, '_id': 'Tunisia'},
     {'Date': '2020-04-11', 'Increase': 4501, '_id': 'Turkey'},
     {'Date': '2020-07-16', 'Increase': 61549, '_id': 'US'},
     {'Date': '2020-07-21', 'Increase': 116, '_id': 'Uganda'},
     {'Date': '2020-06-28', 'Increase': 668, '_id': 'Ukraine'},
     {'Date': '2020-05-27', 'Increase': 492, '_id': 'United Arab Emirates'},
     {'Date': '2020-04-06', 'Increase': 4687, '_id': 'United Kingdom'},
     {'Date': '2020-03-27', 'Increase': 36, ' id': 'Uruguay'},
     {'Date': '2020-07-21', 'Increase': 593, '_id': 'Uzbekistan'},
     {'Date': '2020-07-05', 'Increase': 416, 'id': 'Venezuela'},
     {'Date': '2020-03-22', 'Increase': 19, '_id': 'Vietnam'},
     {'Date': '2020-07-04', 'Increase': 499, '_id': 'West Bank and Gaza'},
     {'Date': '2020-04-05', 'Increase': 4, '_id': 'Western Sahara'},
     {'Date': '2020-06-15', 'Increase': 46, '_id': 'Yemen'},
     {'Date': '2020-07-17', 'Increase': 810, '_id': 'Zambia'},
     {'Date': '2020-07-16', 'Increase': 240, '_id': 'Zimbabwe'}]
[]: # Verify the veracity of the above query using pandas
     groups = df.groupby(by=["Country/Region"])
     recs = []
```

{'Date': '2020-05-05', 'Increase': 151, '_id': 'Sao Tome and Principe'},

```
for s, g in groups:
    g = g.sort_values(by="Date", ascending=True)
    g["Previous"] = g["Active"].shift(periods=1)
    g["Delta"] = g["Active"] - g["Previous"]
    g = g.sort_values(by=["Delta"], ascending=False).head(1)
    recs.append(g[["Date", "Country/Region", "Delta"]])
date_df = pd.concat(recs)
date_df
```

```
[]:
                 Date
                          Country/Region Delta
    33669 2020-05-30
                             Afghanistan 819.0
    44632 2020-07-11
                                 Albania 83.0
    48026 2020-07-24
                                 Algeria 663.0
    34455 2020-06-02
                                 Andorra 44.0
    44374 2020-07-10
                                  Angola 61.0
    43041 2020-07-04 West Bank and Gaza 499.0
                          Western Sahara
    19569 2020-04-05
                                          4.0
    38102 2020-06-15
                                   Yemen
                                          46.0
                                  Zambia 810.0
    46424 2020-07-17
    46164 2020-07-16
                                Zimbabwe 240.0
```

[187 rows x 3 columns]