下面这个是正常的表格.

在列设定为center的时候,是没办法控制列宽的,除非用下面的复杂的表格,有一个简单的办法:直接在列的前后内容(比如列头的前后,插入一些空格,就可以增加宽度了)

Feature set	Precision	Recall	\mathbf{F}_1 -Score
$\overline{\text{CRF} + \text{BOW}}$	0.8189	0.5795	0.6787
CRF + BOW + POS	0.8052	0.6086	0.6932

Table 1: Results of multi-label CRF model with different feature sets.

下面要展示如何制作复杂的表格

法一: 使用tabu宏包()

注意,表格内不允许填写美元符号(公式),会报错,默认tabu表格的整个环境都是公式,所以公式可以直接用,如果要写文字或者命令,需要加textup命令

s你好	b	$f(x_n) = \frac{1}{\sqrt{K_0}} \int_{-\infty}^{\infty} F(k) e^{\pm ikx_n} dk$
T $youok$	-1	你好,这是一个很 2ξ 长很长很长 很长的行

Table 2: 符号表示说明

b	$f(x_n) = \frac{1}{\sqrt{K_0}} \int_{-\infty}^{\infty} F(k) e^{\pm ikx_n} dk$
-1	2

Table 3: 符号表示说明

法二:使用graphicx宏包.这个方法和makecell宏包冲突说明:

垂直居中效果和scalebox无关。

重点在于:

>{\centering\vspace{6mm}}m{6cm}<{\vspace{6mm}} tabu 倒是倒是不错的包,不过我实际上是用 lyx 写的东西,不方便用 tabu

最后还是把 arraystretch 调小了,看上去差不多就得了

m{6cm}表示列的宽度,两个vspace表示表格内容上下的空白区高度

\begin{verbatim}

想要不居中,则去掉\centering即可: >{\vspace{6mm}}m{6cm}<{\vspace{6mm}}}

(发现有的时候调试centering和vspace之类的时候会报错,可能原因是换行要用\tabularnewline,不要用\\)

法三: makecell宏包 法三补充实例1:

下面展示一个表格并列的case,用的是floatrow和booktabs宏包.发现不适用于图片,因为标题会写table

符号	说明
L	A表示已存在的充电站数量; B 表示需要新建的充电站数量。 A 表示已存在的充电站数量; B 表示需要新建的充电站数量。
A, B	A表示已存在的充电站数量, B 表示需要新建的充电站数量。 A 表示已存在的充电站数量, B 表示需要新建的充电站数量。

Table 4: 符号表示说明

s	Б	$f(x_n) = \frac{1}{\sqrt{K_0}} \int_{-\infty}^{\infty} F(k)e^{\pm ikx_n} dk$
Т	1	2

Feature set	Precision	Recall	\mathbf{F}_1 -Score
CRF + BOW	0.8189	0.5795	0.6787
CRF + BOW + POS	0.8052	0.6086	0.6932
CRF + BOW + POS + capitalization	0.8169	0.6299	0.7113
CRF + BOW + POS + capitalization + case pattern	0.8148	0.6364	0.7146
CRF + BOW + POS + capitalization + case pattern	0.8287	0.6872	0.7514
+ word representation			

Table 5: Results of multi-label CRF model with different feature sets.

	Reference			
Predicted	Н	Р	R	Q
H	3	0	0	0
P	0	5	0	0
R	0	0	19	1
Q	0	0	0	25

	Reference				
Predicted	Н	Р	R	Q	
H	2	0	0	0	
P	0	4	0	0	
R	1	0	19	0	
Q	0	1	0	26	

Table 6: SVMr confusion matrix.

Table 9: PLS-LDA confusion matrix.

Reference						
Predicted	redicted H P R Q					
H	2	0	0	0		
P	0	5	0	0		
R	1	0	19	0		
Q	0	0	0	26		

	Reference				
Predicted	H P R Q				
Н	2	0	0	0	
P	0	4	0	0	
R	1	0	18	1	
Q	0	1	1	25	

Table 7: RDA confusion matrix.

Table 10: LDA confusion matrix.

	Reference				
Predicted	H P R Q				
H	3	0	0	0	
P	0	4	0	0	
R	0	0	19	0	
Q	0	1	0	26	

Table 8: PAM confusion matrix.

Reference				
Predicted	Н	Р	R	Q
H	2	0	0	0
P	0	3	0	0
R	1	0	12	3
Q	0	2	7	23

Table 11: PLS confusion matrix.