SỞ GD&ĐT HÀ NỘI TRƯỜNG THPT VIỆT ĐỨC

NỘI DUNG ÔN TẬP VÀ KIỂM TRA HỌC KÌ II NĂM HỌC 2020-2021 - MÔN TOÁN KHỐI 11

I. Thống nhất chương trình:

Giải tích:

- Giới hạn của dãy số
- Giới hạn của hàm số Các dạng vô định
- Hàm số liên tục
- Đạo hàm, các quy tắc tình đạo hàm, ứng dụng của đạo hàm

Hình học:

- Đường thẳng vuông góc mặt phẳng
- Hai mặt phẳng vuông góc

II. Ma trận đề:

A. Phần trắc nghiệm (5 điểm)

STT	Các chủ đề	Tổng số câu
1	Giới hạn dãy số	2
2	Giới hạn hàm số	5
3	Hàm số liên tục	3
4	Đạo hàm	5
5	Úng dụng của đạo hàm	2
6	Đường thẳng vuông góc mặt phẳng	4
7	Mặt phẳng vuông góc mặt phẳng	4
	Tổng số câu:	25

B. Phần tư luân (5 điểm)

Câu 1: Giới han dãy số, giới han hàm số, hàm số liên tục

Câu 2: Đao hàm + ứng dung đao hàm

Câu 3: Hình học: Chứng minh đt \perp mp, mp \perp mp, tính góc giữa đt và mp, góc giữa 2 mp

ĐỀ ÔN TẬP SỐ 1

(Biên soạn: thầy Chu Đức Minh)

I. PHẦN TRẮC NGHIỆM:

Tập hợp tất cả các giá trị của tham số m để $\lim_{x\to +\infty} (mx^2 + 2x - 1 - x) > 0$ là

 \mathbf{A} . $(1;+\infty)$.

B. (0;1).

C. $[1; +\infty)$. **D.** $[0; +\infty)$.

Câu 2: $\lim \frac{\sqrt{n^4 - 2n^2 + 1}}{1 - 2n^2}$ bằng

 $A. +\infty$.

 $\mathbf{B}_{\bullet} - \infty$.

D. 1.

Câu 25: Tiếp tuyến của đồ thị hàm số
$$y = -x^3 + 2x^2 + 2$$
 song song với đường thẳng $d: y = x + 2$ có phương trình là

A.
$$y = x + \frac{50}{27}$$
.

B.
$$y = x + 2$$
 hoặc $y = x + \frac{50}{27}$.

C.
$$y = x + 2$$
.

D.
$$y = x + \frac{68}{27}$$
.

II. PHẦN TƯ LUÂN:

Bài 1: Tính các giới han sau:

a)
$$\lim_{x\to 2} \frac{x^2 - 3x + 2}{2x^2 - 5x + 2}$$
.

b)
$$\lim_{x \to -\infty} \frac{\sqrt{2x^6 - 3x^3 - x + 1}}{3 - 2x + x^2 - x^3}$$
.

Bài 2: Xét tính liên tục của hàm số
$$f(x) = \begin{cases} \frac{\sqrt{2x-1}-1}{x^2-3x+2} & khi \ x>1 \\ 1-2x & khi \ x\leq 1 \end{cases}$$
 tại điểm $x=1$.

Bài 3: a) Cho hàm số $f(x) = \frac{x^2 + 2x}{x + 1}$. Giải bất phương trình $f'(x) \ge 0$.

b) Chứng minh rằng với mọi giá trị thực của tham số m, phương trình $(x-1)^2(mx^2-2)-3=0$ luôn có ít nhất hai nghiệm.

Câu 4: Cho hình chóp S.ABCD có $SA \perp (ABCD)$, ABCD là hình vuông cạnh a và $SA = a\sqrt{2}$. Gọi H,I,K lần lượt là hình chiếu của A trên SB,SC,SD.

- a) Chứng minh rằng $(AHK) \perp (SBC)$.
- **b)** Tính góc giữa đường thẳng AI và mặt phẳng (ABCD).

ĐỀ ÔN TÂP SỐ 2

(Biên soạn: thầy Lý Anh Tú)

I. PHẦN TRẮC NGHIỆM:

Dãy số nào sau đây có giới hạn bằng 0?

A.
$$\left(\frac{4}{3}\right)^n$$
.

$$\mathbf{B.} \left(-\frac{4}{3}\right)^n. \qquad \qquad \mathbf{C.} \left(\frac{1}{3}\right)^n.$$

C.
$$\left(\frac{1}{3}\right)^n$$
.

D.
$$\left(-\frac{5}{3}\right)^n$$
.

Dãy số nào sau đây có giới hạn bằng $\frac{1}{5}$? Câu 2:

A.
$$\frac{n^2 - 2n}{5n + 5n^2}$$
. **B.** $\frac{1 - 2n}{5n + 5}$. **C.** $\frac{1 - 2n^2}{5n + 5}$.

B.
$$\frac{1-2n}{5n+5}$$

C.
$$\frac{1-2n^2}{5n+5}$$

D.
$$\frac{1-2n}{5n+5n^2}$$
.

 $\lim_{x \to -1} \left(x^2 - 2x + 3 \right)$ bằng? Câu 3:

B. 2.

C. 4.

D. 6.

 $\lim_{x\to-\infty}\frac{1}{x^k}$ bằng? Câu 4:

A. 0.

 \mathbf{B}_{\bullet} $-\infty$.

 \mathbb{C} . $+\infty$.

D. 1.

Câu 5:
$$\lim_{x\to 1} \frac{3x^4 - 2x^5}{5x^4 + 3x^6 + 1}$$
 bằng?

A.
$$\frac{1}{9}$$

B.
$$\frac{3}{5}$$
.

$$\frac{\mathbf{C}}{5}$$
.

D.
$$-\frac{2}{3}$$
.

Câu 6:
$$\lim_{x \to +\infty} \frac{3x^4 - 2x + 2}{5x^4 + 3x + 1}$$
 bằng?

B.
$$\frac{4}{9}$$
.

C.
$$\frac{3}{5}$$
.

Câu 7:
$$\lim_{x \to +\infty} \left(\sqrt{x+5} - \sqrt{x-7} \right)$$
 bằng?

$$\mathbf{D}$$
. $-\infty$.

Câu 8: Hàm số
$$f(x) = \frac{1}{\sqrt{1-x^2}}$$
 liên tục khi?

A.
$$x \neq 1$$
.

B.
$$x \neq -1$$

C.
$$x \in (-1;1)$$
.

D.
$$x \in [-1;1]$$
.

Câu 9: Cho hàm số
$$f(x) = \begin{cases} 2x^2 - 3x & \text{với } x > 2 \\ 2x^3 - 2x - 5 & \text{với } x \le 2 \end{cases}$$
. Chọn khẳng định đúng.

A. Hàm số liên tục tại x = -2.

B. Hàm số liên tục tại x = 2.

C. Hàm số liên tục tại x = -1.

D. Hàm số liên tục tại x = 1.

Câu 10: Cho hàm số
$$f(x) = \begin{cases} a^2 x^2 & x \le \sqrt{2} \\ (2-a)x^2 & x > \sqrt{2} \end{cases}$$
 $(a \in R)$. Giá trị của tham số a để $f(x)$ liên

tục trên \mathbb{R} bằng

Câu 11: Cho hàm số
$$y = f(x)$$
 có đạo hàm tại x_0 là $f'(x_0)$. Khẳng định nào sau đây **sai**?

A.
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
.

B.
$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x + x_0) - f(x_0)}{\Delta x}$$
.

C.
$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

C.
$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
.

D. $f'(x_0) = \lim_{x \to x_0} \frac{f(x + x_0) - f(x_0)}{x - x_0}$.

Câu 12: Cho hàm số
$$f(x) = \begin{cases} \frac{3 - \sqrt{4 - x}}{4} & khi \ x \neq 0 \\ x + 2m - 1 & khi \ x = 0 \end{cases}$$
. Tìm giá trị thực của tham số m để hàm số $f(x)$

liên tục tại x = 0.

A.
$$\frac{5}{8}$$
.

B.
$$\frac{1}{4}$$

$$\frac{1}{12}$$
.

D. Không tồn tại.

Câu 13: Đạo hàm của hàm số
$$y = x^5 + \frac{2}{x} - 1$$
 bằng

A.
$$5x^4 + \frac{2}{x^2}$$

B.
$$5x^4 - \frac{2}{x^2}$$
.

A.
$$5x^4 + \frac{2}{x^2}$$
. **B.** $5x^4 - \frac{2}{x^2}$. **C.** $5x^4 - \frac{2}{x^2} - 1$. **D.** $5x - \frac{2}{x^2}$.

D.
$$5x - \frac{2}{x^2}$$
.

Câu 14: Đạo hàm của hàm số
$$y = \frac{x^2 - 2x}{x+1}$$
 tại $x = 1$ bằng

C.
$$\frac{1}{4}$$
.

D.
$$-\frac{1}{4}$$
.

Câu 24: Cho chop S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Cạnh $SA = \frac{\sqrt{6}}{2}$ và vì góc với mặt phẳng ABCD. Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng **A.** 60° . **B.** 45° . **C.** 30° . **D.** 90° .

Câu 25:	Cho hình chóp $S.ABC$ có $SA \perp \left(ABC\right)$. Tam giác SBC vuông cân tại S , SB	B=a, r	mặt			
	phẳng (SBC) hợp với đáy góc 30° . Diện tích tam giác ABC bằng					

A.
$$\frac{a^2\sqrt{3}}{3}$$
. **B.** $\frac{a^2\sqrt{3}}{4}$.

B.
$$\frac{a^2\sqrt{3}}{4}$$

C.
$$\frac{a^2\sqrt{3}}{2}$$
. **D.** $\frac{a^2\sqrt{2}}{4}$.

$$\mathbf{D.} \ \frac{a^2\sqrt{2}}{4}.$$

II. PHẨN TỰ LUẬN:

Bài 1:

- a) Tìm giới hạn $\lim \frac{3+n}{4-2n}$.
- **b)** Tìm giới hạn $\lim_{x\to 5} \frac{\sqrt{x+4-3}}{x-5}$.
- c) Cho hàm số: $y = f(x) = \begin{cases} \frac{x^2 6x + 8}{x 4} & khi \ x \neq 4 \\ 2m + 1 & khi \ x = 4 \end{cases}$. Tìm điều kiện của tham số m để hàm

số trên liên tục tại x = 4.

Bài 2: Cho hàm số $y = f(x) = x^3 - x^2 + 1$ có đồ thị (C).

- a) Tính đao hàm của hàm số trên.
- **b**) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ $x_0 = 1$.

Bài 3. Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a, các cạnh bên của hình chóp đều bằng $a\sqrt{3}$.

- a) CMR: $BD \perp (SAC)$
- **b)** Gọi (P) là mặt phẳng đi qua A và vuông góc với cạnh SC. Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (P)
- c) Tính góc giữa đường thẳng AB và mặt phẳng (P)

ĐỀ ÔN TẬP SỐ 3

(Biên soạn: thầy Phạm Viết Chính)

I. PHÀN TRẮC NGHIỆM:

Giới hạn $\lim \frac{2n^2+3}{n^2-1}$ bằng: Câu 1:

$$A. -3.$$

$$\mathbf{R}$$
 -2

Câu 2: Giới hạn
$$\lim_{x \to +\infty} \frac{3 - 2x - 5x^3}{x^3 - 1}$$
 bằng:

$$\mathbf{D}_{\cdot}$$
 $-\infty$.

Giới hạn $\lim_{x\to -1} \frac{x^2-3}{x^3+2}$ bằng: Câu 3:

D.
$$-\frac{3}{2}$$
.

Hàm số nào sau đây *không* liên tục trên \mathbb{R} ? Câu 4:

A.
$$y = x^2 - 3x + 2$$
.

B.
$$y = \sin x$$
.

C.
$$y = \frac{3x+2}{x^2+1}$$

C.
$$y = \frac{3x+2}{x^2+1}$$
. $\underline{\mathbf{D}}$. $y = \frac{3x+1}{x^2-1}$.

Câu 15: Hàm số
$$y = (x^4 - 1)^3 + \frac{2x - 1}{x + 2}$$
 có đạo hàm là:

A. $y' = 12x^3(x^4 - 1)^2 + \frac{5}{(x + 2)^2}$.

B. $y' = 3(x^4 - 1)^2 + \frac{5}{(x + 2)^2}$.

C. $y' = 12x^3(x^4 - 1)^2 + \frac{3}{(x + 2)^2}$.

D. $y' = 4x^3(x^4 - 1)^3 + \frac{5}{(x + 2)}$.

Câu 16: Cho hàm số $y = f(x)$ xác định trên tập số thực R , có đạo hàm tại $x = 1$. Định nghĩa về đạo hàm nào sau đây là đúng?

A. $\lim_{x \to 1} \frac{f(x) - f(-1)}{x + 1} = f'(-1)$.

B. $\lim_{x \to 1} \frac{f(x) + f(-1)}{x + 1} = f'(-1)$.

C. $\lim_{x \to 1} \frac{f(x) + f(-1)}{x + 1} = f'(-1)$.

D. $\lim_{x \to 1} \frac{f(x) - f(-1)}{x - 1} = f'(x)$.

Câu 17: Tiếp tuyến của đổ thị hàm số $y = x^4 - 2x^2 + m$ (với m là tham số) tại điểm có hoành độ $x_0 = -1$ là đường thẳng có phương trình:

A. $x = m - 1$.

B. $y = 0$.

C. $y = m - 3$.

D. $y = m - 1$.

Câu 18: Cho hình chớp $S.ABCD$ trong đó $ABCD$ là hình chữ nhật, $SA \perp (ABCD)$. Trong các tam giác sau tam giác nào không phải là tam giác vuông?

A. ΔSAB .

B. ΔSBC .

C. ΔSCD .

D. ΔSBD .

Câu 19: Cho hình chợp $S.ABC$ có đáy ABC là tam giác vuông tại B , canh bên SA vuông góc với đáy, BH vuông gốc với AC tại H . Khẳng định nào sau đây đúng?

A. $(SBH) \perp (SAC)$.

C. $(SBH) \perp (SAC)$.

D. $(SBH) \perp (SAC)$.

C. $(SBH) \perp (SAC)$.

C. $(SBH) \perp (SAB)$.

D. $(SBH) \perp (ABC)$.

Câu 20: Cho hình lập phương $ABCD.A'B'C'D'$. Góc giữa hai đường thẳng AB và $A'C'$ bằng bao nhiều?

A. 135° .

B. 45° .

C. 90° .

D. 60° .

Câu 21: Biết $\lim_{x \to 1} \frac{\sqrt{x^2 + x} + 2 - \sqrt[3]{7x + 1}}{\sqrt[3]{2}(x - 1)} = \frac{a\sqrt{2}}{b} + c$ ($a,b,c \in \mathbb{Z}$ và $\frac{a}{b}$ tối giàn). Giá trị của $a + b + c = ?$

A. 13.

B. 5.

C. 37.

D. 51.

Câu 22: Cho hàm số $f(x) = \begin{cases} \frac{x^2}{x} & \text{khi } x < 1, x \neq 0 \\ 0 & \text{khi } x = 0 \\ \sqrt{x} & \text{khi } x \geq 1 \end{cases}$

- **A.** Liên tục tại mọi điểm trừ các điểm x thuộc đoạn [0;1].
- **B.** Liên tục tại mọi điểm thuộc \mathbb{R} .
- C. Liên tục tại mọi điểm trừ điểm x = 0.
- **D.** Liên tục tại mọi điểm trừ điểm x = 1.
- **Câu 23:** Cho hai hàm $f(x) = \frac{1}{x\sqrt{2}}$ và $g(x) = \frac{x^2}{\sqrt{2}}$. Tính góc giữa hai tiếp tuyến của đồ thị mỗi hàm số đã cho tại giao điểm của chúng.
 - **A.** 30° .
- **B.** 90° .
- \mathbf{C} . 60°.
- **D.** 45° .

Câu 24: Cho hình chóp S.ABCD có đáy ABC là tam giác đều canh a. Hình chiếu vuông góc S trên mặt phẳng (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Số đo của góc giữa SA và mặt phẳng (ABC) là:

A. 30° .

- **B.** 45⁰.
- \mathbf{C} . 60°.
- **D.** 75° .
- Câu 25: Cho hình chóp S.ABCD có đáy là hình vuông và tam giác SAB là tam giác đều nằm trong mặt phẳng vuông góc với đáy. Gọi H, K lần lượt là trung điểm cạnh AB, BC. Khẳng định nào sau đây đúng?

A. $(SBD) \perp (SAC)$.

- **B.** $(SKD) \perp (SHC)$.
- C. $(SHD) \perp (SAC)$.
- **D.** Góc *SDA* là góc giữa mặt bên (*SCD*) và mặt đáy.

II. PHẦN TỰ LUẬN:

- **Câu 1:** Tìm giới hạn sau $\lim_{x\to 2} \frac{3x^3 4x^2 9x + 10}{7x^2 + 12x 4}$.
- Câu 2: Cho hàm số $f(x) = \begin{cases} \frac{\sqrt{x+3}-2}{x-1} & khi \ x > 1 \\ \frac{x}{4} & khi \ x \le 1 \end{cases}$. Xét tính liên tục của hàm số f(x) tại $x_0 = 1$.
- **Câu 3:** Cho hàm số: $f(x) = (x+1)\sqrt{x^2+1}$. Chứng minh rằng $f'(x) > 0 \ \forall x$.
- **Câu 4:** Cho hình chóp *S.ABCD* có đáy *ABCD* là hình vuông cạnh $a\sqrt{3}$. Cạnh bên *SA* vuông góc với đáy và $SA = a\sqrt{2}$.
 - a) Chứng minh rằng mặt phẳng (SAB) vuông góc với mặt phẳng (SBC).
 - **b)** Tính góc giữa đường thẳng SC và mặt phẳng (ABCD).
- **Câu 5:** Viết phương trình tiếp tuyến của đồ thị hàm số $y = x + 2\sqrt{x^2 + 1}$, biết tiếp tuyến đó song song với truc hoành.

SỞ GIÁO DUC ĐÀO TAO HÀ NÔI

TRƯỜNG THPT VIỆT ĐỨC

ĐỀ THI HOC KÌ II MÔN TOÁN LỚP 11 **NĂM HQC 2019 – 2020**

Thời gian: 90 phút

I. PHẦN TRẮC NGHIỆM:

Tính đạo hàm của hàm số $y = 4x^3 - 2x + \sqrt{x} - 1$. Câu 1:

A.
$$y' = 12x^2 - 2 + \frac{1}{\sqrt{x}}$$
.

B.
$$y' = 12x^2 - 2 + \frac{1}{2\sqrt{x}}$$
.
D. $y' = 12x^2 - 2 - \frac{1}{\sqrt{x}}$.

C.
$$y' = 12x^2 - 2 - \frac{1}{2\sqrt{x}}$$
.

D.
$$y' = 12x^2 - 2 - \frac{1}{\sqrt{x}}$$

- Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mệnh đề nào sau đây đúng? Câu 2:
 - **A.** Khoảng cách từ A đến (BB'C'C) bằng $\frac{3a}{2}$.
 - **B.** Khoảng cách từ A đến (A'BD) bằng $\frac{a}{3}$.

	C. Khoảng cách từ A đến $(CC'D'D)$ bằng $a\sqrt{2}$.					
	D. Độ dài đoạn $AC' =$	$a\sqrt{3}$.				
Câu 3:	âu 3: Hàm số nào dưới đây liên tục trên $\mathbb R$?					
	$\mathbf{A.} \ h(x) = x^2 \sin x.$	$\mathbf{B.} \ g(x) = \tan x.$	C. $f(x) = \frac{1}{2x-1}$.	$\mathbf{D.} \ k(x) = x \tan x.$		
Câu 4:	Cho hàm số $f(x) = 2$	$4x^3 + 4x^2 - 5$. Có bao	nhiêu tiếp tuyến của để	thị hàm số biết tiếp		
	tuyến đó vuông góc vớ	i đường thẳng $y = \frac{1}{2}x$	-5?			
	A. 4.	B. 2.	C. 1.	D. 3.		
Câu 5:	Biết rằng $\lim_{x \to -2} \frac{2f(x) - 1}{x + 2}$	$\frac{1}{x} = 3$, hãy tính $\lim_{x \to -2} \frac{xf(x)}{x}$	$\frac{(x)+1}{x+2}$.			
	A. 3.	B. 1.	$C\frac{3}{2}$.	D. $-\frac{5}{2}$.		
Câu 6:	Tính đạo hàm của hàm	$s\acute{o} y = \sqrt{3x^2 - x + 1} \ .$				
	A. $y' = \frac{6x-1}{2\sqrt{3x^2-x+1}}$.		B. $y' = \frac{6x-1}{\sqrt{3x^2-x+1}}$.			
	C. $y' = \frac{1}{2\sqrt{3x^2 - x + 1}}$.		D. $y' = \frac{1}{\sqrt{3x^2 - x + 1}}$.			
Câu 7:	Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh a , ΔSAB đều và nằm trong					
	mặt phẳng vuông góc với $(ABCD)$. Gọi φ là góc giữa SD và $(ABCD)$. Mệnh đề nào sau					
	đây đúng?		_	_		
	A. $\tan \varphi = \frac{\sqrt{3}}{\sqrt{5}}$.	B. $\tan \varphi = \frac{\sqrt{5}}{\sqrt{3}}$.	$\mathbf{C.} \ \tan \varphi = \frac{\sqrt{3}}{5} \ .$	$\mathbf{D.} \ \tan \varphi = \frac{\sqrt{5}}{3} .$		

A.
$$\tan \varphi = \frac{\sqrt{3}}{\sqrt{5}}$$
.

$$\mathbf{C.} \ \tan \varphi = \frac{\sqrt{3}}{5}.$$

D.
$$\tan \varphi = \frac{\sqrt{5}}{3}$$
.

Câu 8: $\lim_{x \to (-1)} (x^3 + x - 2020)$ bằng

$$\mathbb{C}_{\bullet}$$
 $-\infty$.

D. -2018.

Cho hình chóp đều S.ABCD có tất cả các cạnh bằng a, gọi góc giữa mặt bên và mặt đáy là Câu 9: α . Mệnh đề nào sau đây đúng?

A.
$$\cos \alpha = \frac{\sqrt{2}}{3}$$
. **B.** $\sin \alpha = \frac{\sqrt{2}}{3}$. **C.** $\cos \alpha = \frac{1}{\sqrt{3}}$. **D.** $\sin \alpha = \frac{1}{\sqrt{3}}$.

B.
$$\sin \alpha = \frac{\sqrt{2}}{3}$$

C.
$$\cos \alpha = \frac{1}{\sqrt{3}}$$

Câu 10: Viết phương trình tiếp tuyến của đồ thị hàm số $y = x^3 - 2x^2 + 1$ biết tiếp tuyến đó song song

A.
$$y = -x - 1$$

$$y = -x - \frac{31}{27}$$

A.
$$\begin{bmatrix} y = -x - 1 \\ y = -x - \frac{31}{27} \end{bmatrix}$$
 B. $\begin{bmatrix} y = -x - 1 \\ y = -x + \frac{31}{27} \end{bmatrix}$ C. $\begin{bmatrix} y = -x + 1 \\ y = -x + \frac{31}{27} \end{bmatrix}$ D. $\begin{bmatrix} y = -x + 1 \\ y = -x - \frac{31}{27} \end{bmatrix}$

C.
$$y = -x + 1$$
$$y = -x + \frac{31}{27}$$

Câu 11: Cho hình chóp tam giác đều S.ABC, cạnh đáy bằng a, góc giữa mặt bên và mặt đáy của hình chóp bằng 60° . Khoảng cách từ điểm S đến (ABC) bằng

A.
$$\frac{a}{\sqrt{3}}$$
.

B.
$$\frac{a}{2}$$

C.
$$\frac{a}{3}$$
.

D.
$$\frac{a}{\sqrt{2}}$$
.

A. 90^{o} .

B. 60° .

C. 45^o.

D. 30°.

Câu 19: Cho hàm số $f(x) = \frac{2x-1}{x+2}$. Tính f'(-1).

A. 5.

B. 3

C. −5.

D. −3.

Câu 20: Hàm số $y = \frac{x^2 \sin x}{x^2 + 3x + 2}$ gián đoạn tại bao nhiều điểm?

A. 2.

B. Vô số

C. I

D. 0.

Câu 21: Biết $\lim_{x\to\sqrt{3}} \frac{(x+4)(x-\sqrt{3})}{x^2-3} = a+b\sqrt{3}$ (với a,b là các số hữu tỉ). Giá trị a+b bằng

A. $\frac{5}{3}$.

B. $\frac{5}{2}$.

 $\frac{5}{6}$

D. $\frac{7}{6}$.

Câu 22: Phương trình tiếp tuyến của đồ thị hàm số $y = x^3$ tại điểm M(-1;-1) là

A.
$$y = 3x + 2$$
.

B.
$$y = -3x + 2$$
.

B.
$$y = -3x + 2$$
. **C.** $y = -3x - 2$. **D.** $y = 3x - 2$.

D.
$$y = 3x - 2$$

Câu 23: Tiếp tuyến của parabol $y = 4 - x^2$ tại điểm M(1;3) tạo với 2 trục tọa độ một tam giác có diện tích bằng

A.
$$\frac{5}{2}$$
.

B.
$$\frac{25}{4}$$
. **C.** $\frac{5}{4}$.

C.
$$\frac{5}{4}$$
.

D.
$$\frac{25}{2}$$
.

Câu 24: Một chất điểm chuyển động có phương trình $S = t^2 + 1$ (t là thời gian, tính theo giây, S là quãng đường, tính theo mét). Vận tốc của chất điểm tại thời điểm t = 3 (giây) bằng

A.
$$3 m/s$$
.

B.
$$10 \ m / s$$
.

C.
$$7 m/s$$
.

$$\mathbf{D}$$
. $6m/s$

Câu 25: Cho hàm số $f(x) = \frac{mx^3}{3} - \frac{mx^2}{2} + (3-m)x - 2$. Có bao nhiều giá trị nguyên của m để $f'(x) \ge 0$, $\forall x \in R$?

II. PHẨN TỰ LUẬN:

Bài 1: Tính giới hạn $L = \lim_{x \to 2} \frac{x^2 - 3x + 2}{2x^2 - 5x + 2}$.

Bài 2: Xét tính liên tục của hàm số $f(x) = \begin{cases} \frac{4(\sqrt{x+2}-2)}{x-2} & \text{khi } x > 2 \\ 2x-3 & \text{khi } x \le 2 \end{cases}$ tại x = 2.

Bài 3:

a) Tính đạo hàm của hàm số $f(x) = \sin 2x \cdot \sqrt{x^2 + 1}$.

b) Cho hàm số $y = \frac{x^3}{3} + 2x^2 + (m+1)x + 3m - 1$ có đồ thị (C_m) . Tìm giá trị của tham số m

để tiếp tuyến có hệ số góc nhỏ nhất của đồ thị (C_m) vuông góc với đường thẳng $\Delta: y = 2x + 1$.

Bài 4: Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a. Gọi H là trung điểm của cạnh AB. Biết rằng SH vuông góc với (ABCD) và góc giữa 2 mặt phẳng (SBC) và (ABCD) bằng 60° .

- a) Chứng minh rằng $BC \perp (SAB)$ và $(SAB) \perp (SBC)$.
- **b)** Tính khoảng cách từ điểm O đến mặt phẳng (SCD).

SỞ GIÁO DUC ĐÀO TAO HÀ NÔI TRƯỜNG THPT VIỆT ĐỨC

ĐỀ THI HỌC KÌ II MÔN TOÁN LỚP 11 **NĂM HOC 2018 - 2019** Thời gian: 90 phút

I. PHÂN TRẮC NGHIỆM:

Cho hàm số $f(x) = \frac{x^2 - 3x + 4m}{x - 1}$. Tìm m để f'(x) = 0 có hai nghiệm phân biệt.

	A. $m \ge \frac{1}{2}$.	B. $m > \frac{1}{2}$.	C. $m < \frac{1}{2}$.	D. $m \le \frac{1}{2}$.		
Câu 2:	Tìm số thực a biết $\lim_{x\to 0^+} \frac{x + a\sqrt{x}}{x - 3\sqrt{x}} = 2$?					
	A. $a = -3$.	B. $a = -6$.	C. $a = -10$.	D. $a = -2$.		
Câu 3:	Cho hàm số $y = x^2 - 4x + 3$ có đồ thị là Parabol (P) và điểm M(1; 0). Khẳng định nào đúng trong các khẳng định sau? A. Tiếp tuyến của đồ thị (P) tại M song song với trục hoành. B. Có một tiếp tuyến của đồ thị (P) đi qua M. C. Có hai tiếp tuyến của đồ thị (P) đi qua M. D. Không có tiếp tuyến nào của đồ thị (P) qua M.					
Câu 4:	$\lim_{x \to 1} \frac{x^3 - x}{(2x - 3)(x^2 - 4)} \text{ bằng:}$					
	A. 3.	B. 0.	C. 1.	D. 2.		
Câu 5:	Cho parabol (P) có phương trình $y = -x^2 + 3x - 2$. Viết phương trình tiếp tuyến của đồ thị (P) biết tiếp tuyến vuông góc với đường thẳng (d): $y = -x + 5$.					
	A. $y = -x - 1$.	B. $y = x - 2$.	C. $y = -x + 1$.	D. $y = x - 1$.		
Câu 6:	Đạo hàm của hàm số $y = 3x^4 - \frac{1}{x} + 5$ bằng:					
	A. $12x^3 + \frac{1}{x^2}$.	B. $12x^3 - \frac{1}{x^2}$.	C. $12x^4 - \frac{1}{x^2}$.	D. $12x^3 + \frac{1}{x^2} + 5$.		
Câu 7:	Tiếp tuyến của đồ thị hàm số $y = f(x) = x^5$ tại điểm có tung độ bằng -1 có phương trình là:					
	A. $y = -5x - 6$.	B. $y = 5x + 6$.	C. $y = 5x$.	D. $y = 5x + 4$.		
Câu 8:	Tìm m để phương trình $m^2(x-2)+m(x-1)(x-2)^2+3x-4=0$ luôn có nghiệm?					
	A. Không có giá trị nàoC. Mọi giá trị của <i>m</i> để		B. $m = 1$. D. $m = -8$.			
Câu 9:	Phương trình $-5x^3 - 1 = 0$ có bao nhiều nghiệm thuộc khoảng $(-2;0)$?					

A. 2.

B. 0.

C. 1.

D. 3.

Câu 10: Cho hàm số $f(x) = m^2 x^3 + 3x$. Tìm các giá trị của m để $f'(x) > 0, \forall x \in \mathbb{R}$

A. m < -2 hoặc $m \ge 0$. **B.** $m \le 0$.

C. Mọi m đều thỏa mãn.

D. m > 0.

Câu 11: Đạo hàm số của hàm số $y = \frac{1}{\sqrt{x^2 + 3x}}$ bằng:

A. $y' = -\frac{2x+3}{2\sqrt{(x^2+3x)^3}}$.

B. $y' = \frac{2x+3}{2\sqrt{x^2+3x}(x^2+3x)}$.

C. $y' = \frac{2x+3}{\sqrt{x^2+3x}}$.

D. $y' = -\frac{2x+3}{\sqrt{(x^2+3x)^3}}$.

Câu 22: Cho hình chóp S.ABCD có $SA \perp (ABCD)$ và đáy ABCD là hình chữ nhật. Biết SA = a, AD = 2a. Khi đó khoảng cách từ A đến mặt phẳng (SCD) bằng:

A.
$$\frac{2a\sqrt{5}}{5}$$
.

B.
$$\frac{3a\sqrt{2}}{2}$$

B.
$$\frac{3a\sqrt{2}}{2}$$
. **C.** $\frac{2a\sqrt{3}}{3}$. **D.** $\frac{3a\sqrt{7}}{7}$.

D.
$$\frac{3a\sqrt{7}}{7}$$

 $\lim_{x \to (-2)^+} \frac{|3x+6|}{x^2 + 3x + 2} \text{ bằng:}$ Câu 23:

$$\mathbf{A} \cdot +\infty$$
.

$$\mathbf{B} \cdot -\infty$$

$$C_{\bullet} = 3$$
.

D. 3.

Câu 24: Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O; Biết $SO \perp (ABCD)$ và $SO = a\sqrt{3}$. Đường tròn ngoại tiếp hình vuông ABCD có bán kính bằng a. Gọi α là góc hợp bởi mặt bên (SCD) với đáy. Khi đó tan α bằng:

A.
$$\frac{\sqrt{3}}{2}$$
.

B.
$$\frac{\sqrt{6}}{2}$$
. **C.** $\frac{\sqrt{6}}{6}$.

C.
$$\frac{\sqrt{6}}{6}$$
.

D.
$$\sqrt{6}$$
 .

Câu 25: Tìm giá trị nhỏ nhất của a để hàm số $f(x) = \begin{cases} x+15 & khi \ x>5 \\ x.a^2 & khi \ x \le 5 \end{cases}$ liên tục tại điểm x=5?

A.
$$a = -\frac{11}{5}$$
. **B.** $a = -2$. **C.** $a = \frac{11}{5}$. **D.** $a = 2$.

B.
$$a = -2$$

C.
$$a = \frac{11}{5}$$

D.
$$a = 2$$

II. PHẦN TỰ LUẬN:

Bài 1:

a) Tính
$$\lim_{x\to 3} \frac{x^2 - 4x + 3}{2x^2 - 7x + 3}$$
.

b) Tìm
$$m$$
 để hàm số $f(x) = \begin{cases} \frac{\sqrt{3x+1}-2}{x^2-3x+2} & khi \ x \ge 1 \\ mx-1 & khi \ x < 1 \end{cases}$ liên tục tại $x = 1$.

Bài 2:

a) Tìm đạo hàm của hàm số $g(x) = \sqrt{1 + \tan^2 2x}$.

b) Cho hàm số $y = \frac{x^3}{3} - 2x^2 + (m-1)x + 2m + 1$ có đồ thị (C_m) . Tìm giá trị của tham số mđể tiếp tuyến có hê số góc nhỏ nhất của đồ thị (C_m) tạo với hai trục tọa độ một tam giác cân.

Bài 3: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh 2a, $BCD = 60^{\circ}$. Cạnh bên SA = SC, SB = SD. Góc giữa SC và (ABCD) bằng 60° .

a) CMR: $SO \perp (ABCD)$.

b) CMR : $(SAC) \perp (SBD)$.

c) Tính khoảng cách từ O đến (SBC).