NGS Course

Session 1

Sumeet Pal Singh and Yura Song

NGS Course

- <u>Session 1 (05 June)</u>
 File types in NGS (fastq, sam / bam, genome index and gtf / gff3)
 Mapping Fastq files
- <u>Session 2 (18 June)</u>
 Designing and saving workflow in Galaxy
 RNA-Seq. analysis
 Controlling for covariates in RNA-Seq. analysis
- Session 3 (25 June)
 ATAC-Seq. pipeline
 Interrogating ATAC-Seq. data for peaks, tf binding sites, enriched motifs

Course Repository

https://github.com/sumeetpalsingh/NGS Course

Upcoming sessions

Session 1: Introduction to Galaxy and NGS Data Structures

Friday, 05 June, 2020. 5 PM Brussels Time (GMT +2) (See time for your zone below).

YouTube link (can access from the playlist link mentioned above, or): https://youtu.be/-aWxyCokSbM

Session 2: RNA-Seq. Analysis

Thursday, 18 June, 2020. 5 PM Brussels Time (GMT +2) (See time for your zone below).

YouTube link (can access from the playlist link mentioned above, or): https://youtu.be/19sxValzwww

Session 3: ATAC-Seq. Analysis

Thursday, 25 June, 2020. 5 PM Brussels Time (GMT +2) (See time for your zone below).

YouTube link (can access from the playlist link mentioned above, or): https://youtu.be/EICqPXcifxc

Post Issues on Github

FileZilla download contains Malware #1

sumeetpalsingh opened this issue 35 minutes ago · 1 comment

What to expect from the course

- Using Galaxy
- Allow you to go from Raw Data to Analysis
- Teach the steps and associated tools for analysis pipeline
- Independent to work with NGS-Data
- Develop Galaxy Workflows for new analysis / pipeline

What the course is not about

- Does not cover tools / pipelines not present in Galaxy
- Does not cover executing the tools in Shell Script / HPC
- Does not cover adding features to tools that are not implemented in Galaxy
- Does not cover working with non model-organisms

Only covers bulk RNA-Seq. and bulk ATAC-Seq. analysis (not single-cell) made using Illumina instrument

RNA-Seq.

RNA-Seq. Library Preparation

RNA-Seq. Library

Flow cell-based Sequencing

Flow cell capacity

Reads Passing Filter Per Flow Cell

	NovaSeq 6000 System						
Flow Cell Type	SP	S1	S2	S4			
Single-end Reads	650-800 M	1.3-1.6 B	3.3 B-4.1 B	8-10 B			
Paired-end Reads	1.3–1.6 B	2.6-3.2 B	6.6-8.2 B	16-20 B			

For a regular RNA / ATAC-Seq. sample: 10 – 50 M

Raw Data

• Fastq format: Fasta format with quality scores

Raw Data

• Fastq format: Fasta format with quality scores

Quality Score

Fastq Quality Scores

Q	Perror	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58 :	36	0.00025	69 E
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59;	37	0.00020	70 F
5	0.31623	38 €	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K
10	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A			

Using FTP Client to Transfer Files to FTP Server

FTP CLIENT AND SERVER

Connect to FTP Server

For galaxy.org: https://galaxyproject.org/ftp-upload/
 FTP Server: usegalaxy.org

For galaxy.eu: https://galaxyproject.eu/ftp/
 FTP Server: galaxy.uni-freiburg.de

• For galaxy.au: https://usegalaxy-au.github.io/posts/2019/03/18/new-ftp-upload-url/

FTP Server: usegalaxy.org.au

Genome Index

- Genome Index <-> Genome
- Dictionary <-> Words

```
def.i.nite.ly dellis. Max knew that he had being wrong about Diana. \"It's not worth that debeing wrong about Diana. \"See OF COURSE (Ust he had being wrong about mot!" —see OF COURSE (Ust he had being wrong toly not!"
                            being wrong; certainly. Max knew that he had being wrong about Diana. \"It's not worth that he had been wrong about "—see of course (USAGE)"

"No, definitely not!"

Laft'nulan n. 1
                      (USAGE)
(USAGE)

def.i.ni.tion | defi'nif on | n | 1 | [Claphrase]

def.i.ni.tion | defi'nif on | n | 1 | [Claphrase]

def.i.ni.tion | defi'nif on | n | 1 | 1 | 1 | 1 |

def.i.ni.tion | defi'nif on | n | 1 | 1 | 1 |

def.i.ni.tion | defi'nif on | n | 1 | 1 | 1 |

def.i.ni.tion | defi'nif on | n | 1 | 1 | 1 |

def.i.ni.tion | defi'nif on | n | 1 | 1 | 1 |

def.i.ni.tion | defi'nif on | n | 1 | 1 | 1 |

def.i.ni.tion | defi'nif on | n | 1 | 1 | 1 |

def.i.ni.tion | defi'nif on | n | 1 | 1 | 1 |

def.i.ni.tion | defi'nif on | n | 1 | 1 | 1 |

def.i.ni.tion | defi'nif on | n | 1 | 1 | 1 |

def.i.ni.tion | defi'nif on | n | 1 | 1 | 1 |

def.i.ni.tion | defi'nif on | n | 1 | 1 | 1 |

def.i.ni.tion | defi'nif on | n | 1 | 1 | 1 |

def.i.ni.tion | defi'nif on | n | 1 | 1 | 1 |

def.i.ni.tion | defi'nif on | n | 1 | 1 | 1 |

def.i.ni.tion | defi'nif on | n | 1 | 1 | 1 |

def.i.ni.tion | defi'nif on | n | 1 | 1 | 1 |

def.i.ni.tion | defi'nif on | n | 1 | 1 |

def.i.ni.tion | defi'nif on | n | 1 | 1 |

def.i.ni.tion | defi'nif on | n | 1 |

def.i.ni.tion | defi'nif on | n | 1 |

def.i.ni.tion | defi'nif on | n | 1 |

def.i.ni.tion | defi'nif on | n | 1 |

def.i.ni.tion | defi'nif on | n | 1 |

def.i.ni.tion | defi'nif on | n | 1 |

def.i.ni.tion | def.i.ni.tion | defi'nif on | n |

def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | def.i.ni.tion | d
                               def.i.ni.tion | delight | [C] a phrase, or ide that says exactly what a word, phrase, or ide that says in a dictionary | [+ of] No one ide
                                 that says exactly what a word, phrase, or ide
that says in a dictionary [+ of] No one has
definition of terrori-
                                  definition in a dictional of the solution of terrorism, with a satisfactory definition of terrorism, and if something has a particular of the solution of terrorism, and the satisfactory definition of terrorism, with a satisfactory definition of terrorism.
                                   with a satisfactory department of terrorism, with a if something has a particular quality because it must have that quality because
                                    nition if sometimes that quality because a nition, it must have that quality because a nition, it a message that cannot be a nition, baye it: A message that cannot be a nition.
                                      nition, it must a message that cannot be see type have it: A message that cannot be see type have it not effective. 3 [U] the design not effective.
u
                                        type have it. I cannot be see definition, not effective. 3 [U] the degree definition, as a picture, sound at
                                          definition, has a picture, sound etc is thing such as a picture, sound etc is the photograph lacks definition.
                                           thing such as hotograph lacks definition the photograph lacks definition
                                       de-fin-i-tive |di'finJtiv| adj 1 [usu
                                                                   enitive book, study of something
```

Genome Index

Genome Index is unique to every mapping tool

Mapping Tools

• Bowtie2: http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

• BWA: http://bio-bwa.sourceforge.net/

• Hisat2: https://ccb.jhu.edu/software/hisat2/manual.shtml (Normal Laptop)

• STAR: https://github.com/alexdobin/STAR (High RAM requirements: Human ~32 Gb)

SAM file format (Alignment Formats)

- SAM Sequence Alignment / Map Format
- Plain Text (Human Readable)
- Contains
 Quality Scores, Sequence info (Fastq) +
 Alignment Info + MetaData

HEADER containing metadata (sequence dictionary, read group definitions etc.) **RECORDS** containing structured read information (1 line per read record)

SAM Format Example

Chromosome (Mapped database) information

```
Used program and its variables
.0SO
       SN:Chr1 LN:30427671
@SO
    SN:Chr2 LN:19698289
.0SO
    SN:Chr3 LN:23459830
:0SO
    SN:Chr4 LN:18585056
                                          Mapped read in forward
:0SO
     SN:Chr5 LN:26975502
                                             direction on Chr5
@PG ID:bwa PN:bwa VN:0.5.9-r16
                      Chr5
                              22828962
SRR038985.100
                                                   33M
               GCCGGTGATGTAATCAAAATATTTGCTACTCTT
YVUOW]OEKNUUX]PJSRY][63
                      XT:A:U CM:i:0 X0:i:1 X1:i:0 XM:i:
1 XO:i:0 XG:i:0 MD:Z:33
SRR038985.200
                                              33M
                      Chr3
                             14197678
               ACCTGGTTGATCCTGCCAGTAGTCATATGCTTG
                                              X11KN11
YWUX]XIKYRCHSUYX[[SNQJL[MO XT:A:R CM:i:0 X0:i:2 X1:i:0
XM:i:0 XO:i:0 XG:i:0 MD:Z:33 XA:Z:Chr2,+3707,33M,0;
SRR038985.300
       AAACTGCGGGGTCTCACTTTTTTGGGTTTGGGGT
                                        124,/08/5&6-&,(;/4+
%7,+5.:1',*;8:&
```

Unmapped read

BAM File Format (Alignment Format)

BAM: BZGF compressed SAM Format

• Not human readable

• ~ 1 / 5 size of SAM

gtf / gff3 files

- Be aware of the format being used and its compatibility!
- Some tools will only work with gtf / gff3
- Ensembl GTF is NOT the same as UCSC GTF (even for the same assembly)

GTF / GFF3 Fields

https://www.ensembl.org/info/website/upload/gff.html

Fields

Fields must be tab-separated. Also, all but the final field in each feature line must contain a value; "empty" columns should be denoted with a '.'

- 1. **seqname** name of the chromosome or scaffold; chromosome names can be given with or without the 'chr' prefix. **Important note**: the seqname must be one used within Ensembl, i.e. a standard chromosome name or an Ensembl identifier such as a scaffold ID, without any additional content such as species or assembly. See the example GFF output below.
- 2. source name of the program that generated this feature, or the data source (database or project name)
- 3. feature feature type name, e.g. Gene, Variation, Similarity
- 4. start Start position of the feature, with sequence numbering starting at 1.
- 5. end End position of the feature, with sequence numbering starting at 1.
- score A floating point value.
- strand defined as + (forward) or (reverse).
- 8. frame One of '0', '1' or '2'. '0' indicates that the first base of the feature is the first base of a codon, '1' that the second base is the first base of a codon, and so on..
- 9. attribute A semicolon-separated list of tag-value pairs, providing additional information about each feature.

Summary

