Question number	Answer		Mark
18(a)	 Thermionic emission Electrons in the heated metal gain energy and leave the surface 	1	2
18 (b) (i)	 Use of E_k = ½ mv² Use of 1.6 × 10⁻¹⁹ C to convert eV to J or J to eV Energy = 7.6 × 10⁻¹³ J (Accept 4.7 MeV) 	1 1 1	3
	Example of calculation $E_k = 0.5 \times 9.11 \times 10^{-31} \text{ kg} \times (2.5 \times 10^6 \text{ m s}^{-1})^2$ $= 2.8 \times 10^{-18} \text{ J}$ Additional $E_k = 59 \times 80 \times 10^3 \text{ V} \times 1.6 \times 10^{-19} \text{ C}$ $= 7.55 \times 10^{-13} \text{ J}$		
18 (b) (ii)	 As the electrons approach the speed of light there is no appreciable increase in speed v is constant and the electrons spend the same time in(/between) drift tubes, so s = vt must be 	1	2
18 (c)	 Constant Waves travelling in opposite direction (meet and) superpose/interfere Or a wave and a reflected wave (meet and) superpose/interfere 	1	2
	 At points where waves in antiphase destructive interference takes place Or At points where waves in phase constructive interference takes place 	1	
	 Zero/minimum amplitude at points where destructive interference takes place Or Maximum amplitude at points where constructive interference takes place Or Nodes at points where destructive interference takes place 		
	Or Antinodes at points where constructive interference takes place	1	3

	Total for question 18		14	
	B = 0.0028 T			
	$B = 2.70 \times 10^{-23} \text{ kg m s}^{-1}/0.061 \text{ m} \times 1.60 \times 10^{-19}$	C		
	$p = 2.70 \times 10^{-23} \text{ kg m s}^{-1}$			
	10^{-31} kg			
	$(2.5 \times 103) \text{ eV} \times 1.6 \times 10^{-19} \text{ C} = p^2 / 2 \times 9.11 \times 10^{-19} \text{ C}$			
	Example of calculation			
	B = 0.0028 I			
	$\bullet B = 0.0028 \text{ T}$	1	4	
	• Use of $r = p/BQ$	1		
. ,	• Use of $E_k = p^2 / 2m$	1		
18 (d)	• Use of 1.6×10^{-19} C to convert eV to J	1		