

Claims

1. A honeycomb catalyst having gas conduits for feeding a gas to be treated from an inlet to an outlet of each conduit and performing gas treatment on the sidewalls of the conduit,

characterized in that the honeycomb catalyst has an approximate length such that the flow of the gas to be treated which has been fed into the gas conduits is straightened in the vicinity of the outlet.

2. A honeycomb catalyst according to claim 1, wherein the length L_b (mm) is represented by equation (A):

$$L_b = a(L_y/L_{ys} \cdot 22e^{0.035(L_y \cdot U_{in})}) \quad (A)$$

(wherein U_{in} (m/s) represents a gas inflow rate, L_y (mm) represents an aperture size, L_{ys} is an aperture size of 6 mm (constant value), and "a" is a constant falling within a range of 3 to 6, when the aperture size (L_y) is 6 mm and the gas inflow rate is 6 m/s).

3. An NO_x removal catalyst for use in an NO_x removal apparatus, which is a honeycomb catalyst for use in a flue gas NO_x removal apparatus, the catalyst having gas conduits for feeding an exhaust gas from an inlet to an outlet of each conduit and performing NO_x removal on the sidewalls of the conduit,

characterized in that the NO_x removal catalyst has an approximate length such that the flow of the exhaust gas which has been fed into the gas conduits is straightened in

the vicinity of the outlet.

4. An NO_x removal catalyst for use in an NO_x removal apparatus according to claim 3, wherein the length L_b (mm) is represented by equation (A):

$$L_b = a(L_y/L_{ys} \cdot 22e^{0.035(L_y \cdot U_{in})}) \quad (A)$$

(wherein U_{in} (m/s) represents a gas inflow rate, L_y (mm) represents an aperture size, L_{ys} is an aperture size of 6 mm (constant value), and "a" is a constant falling within a range of 3 to 6, when the aperture size (L_y) is 6 mm and the gas inflow rate is 6 m/s).

5. An NO_x removal catalyst for use in an NO_x removal apparatus according to claim 3, wherein the length of the NO_x removal catalyst falls within a range of 300 mm to 450 mm.

6. A flue gas NO_x removal apparatus comprising a plurality of NO_x removal catalyst layers provided in the gas flow direction, each catalyst layer being composed of a plurality of honeycomb NO_x removal catalysts juxtaposed in a direction crossing the gas flow direction,

each honeycomb NO_x removal catalyst having gas conduits for feeding an exhaust gas from an inlet to an outlet of each conduit and performing NO_x removal on the sidewalls of the conduit,

characterized in that each of the NO_x removal catalysts forming each NO_x removal catalyst layer has an approximate length such that the flow of the exhaust gas which has been fed into the gas conduits is straightened in the vicinity of the outlet, and two NO_x removal catalyst layers adjacent to

each other are disposed with a space therebetween, the space serving as a common gas conduit where exhaust gas flows discharged through the NO_x removal catalysts are intermingled one another.

7. A flue gas NO_x removal apparatus according to claim 6, wherein the length Lb (mm) is represented by equation (A) :

$$Lb = a(Ly/Lys \cdot 22e^{0.035(Ly \cdot U_{in})}) \quad (A)$$

(wherein U_{in} (m/s) represents a gas inflow rate, Ly (mm) represents an aperture size, Lys is an aperture size of 6 mm (constant value), and "a" is a constant falling within a range of 3 to 6, when the aperture size (Ly) is 6 mm and the gas inflow rate is 6 m/s).

8. A flue gas NO_x removal apparatus according to claim 6, wherein the length of the NO_x removal catalyst falls within a range of 300 mm to 450 mm.

9. A flue gas NO_x removal apparatus according to claim 7 or 8, which has 3 to 5 stages of the NO_x removal catalyst layers having a specific length (Lb).