NIERELACYJNE ROZWIĄZANIA BAZODANOWE

Agenda

Narzędzia informatyczne do tworzenia, przetwarzania oraz zarządzania zbiorami danych

Narzędzia ekosystemu Apache Hadoop

Narzędzia analityczne MapReduce

Narzędzia informatyczne do tworzenia, przetwarzania oraz zarządzania dużymi zbiorami danych

Oprogramowanie

- Hadoop
- Spark
- □ Nutch
- □ Pig Latin
- □ Hive
- MapReduce
- NoSQL

Czym jest Hadoop?

- Platforma open source do przetwarzania danych
- Zadania:
 - Model programowania
 - Wsparcie dla algorytmów MapReduce
 - Model dystrybucji danych i przetwarzania równoległego
 - Zarządza klastrem

Komponenty

- □ Trzy aspekty oprogramowania:
 - Hadoop Common
 - HDFS
 - MapReduce

Jak działa HDFS?

Oprogramowanie

- Projekty Apache
- Projekty Non-Apache
- Dostawcy własnych implementacji Hadoop
- Dostawcy przyjaznych interfejsów Hadoop
- Projekt Hadoop as a Service

Projekty Apache Hadoop

- Magazyn danych (NoSQL)
 - HBase
 - Cassandra
 - Hive
- Analiza danych
 - Pig
 - Mahout

- Koordynacjai zarządzanie
 - Ambari
 - Zookeeper
- Narzędzia użytkowe
 - Avro

Bazy NoSQL

- Magazyn dokumentów
 - Standardowy format (XML, JSON itp.)
 - Klucze unikalne
- Grafowe
- Magazyny danych typu klucz-wartość (key-value)
 - Rekordy są parami klucz-wartość (definiowane rekursywnie)
 - Obsługują duże tabele

Model BigTable

- Magazyn pamięci rozwijany przez Google
- BigTable to rozproszona, stała wielowymiarowa posortowana kolekcja typu mapa (mapuje klucz wartość)

Przykład HBase

Implementacja BigTable, która używa silnika HDFS

Row Key	Time Stamp	ColumnFamily contents	ColumnFamily anchor
"com.cnn.www"	t9		anchor:cnnsi.com = "CNN"
"com.cnn.www"	t8		anchor:my.look.ca = "CNN.com"
"com.cnn.www"	t6	contents:html = " <html>"</html>	
"com.cnn.www"	t5	contents:html = " <html>"</html>	
"com.cnn.www"	t3	contents:html = " <html>"</html>	

Jak działa MapReduce?

- Algorytmy MapReduce
- Model programowania do równoległego przetwarzania danych
- Wiele języków programowania i platform może być używanych
- Dostarcza abstrakcyjny model dla programistów

Model programowania MapReduce

- Program MapReduce dokonuje transformacji z listy wejściowej do listy wyjściowej
- Dwa etapy:
 - map (in_key, in_value) ->
 - (out_key, intermediate_value) list
 - reduce (out_key, intermediate_value list) ->
 - out_value list

Etap pierwszy: map

- Źródło danych powinno być zapisane w rekordach (linie w plikach, wiersze bazy danych...)
- Każdy rekord musi posiadać klucz
- Rekordy są przetwarzane dzięki funkcji map jako pary kluczwartość (plik, wiersze)
- map() dostarcza jednej lub wielu pośredniczących wartości wraz z kluczem wyjściowym pochodzącym z danych wejściowych
- Mapowanie identyfikuje wartości wejściowe posiadające tę samą charakterystykę za pomocą klucza wyjściowego

Ćwiczenie 1.

- □ Podaj przykładowe pary klucz-wartość.
- Znajdź dowolne źródło danych (np. lista produktów, oferty pracy) i podaj w jaki sposób można zapisać je jako pary klucz-wartość.

Funkcja reduce()

- Po zakończeniu fazy mapowania, wszystkie pośredniczące wartości dla określonego grupy kluczy wyjściowych jest łączone w listę
- Funkcja reduce() agreguje pośredniczące wartości w jedną lub więcej wartości końcowych dla tych samych kluczy pośredniczących
 - zwykle jest jedna wartość końcowa dla jednego klucz

Typowe aplikacje MapReduce()

- Agregacja danych
- Analiza dziennika zdarzeń
- Statystyki
- Uczenie maszynowe

Przykład: liczenie słów - mapowanie

Przykład: liczenie słów - redukcja

Agregator z MapReduce

INPUT

D1, D2, D3, V

Alice, Angola, B, 4
Alice, Angola, A, 5
Alice, Brazil, A, 3
Alice, Angola, A, 4
Alice, Brazil, B, 8
Bob, Angola, A, 5
Bob, Brazil, A, 7
Bob, Brazil, B, 10
Bob, Angola, B, 20

MAP OUTPUT

Alice 4
Alice, Angola 4
Alice, B 4
Angola 4
B, Angola 4
B 4
Alice, Angola, B 4
Total 4

Alice 5
Alice, Angola5
Alice, A 5
Angola 5
A, Angola 5
A, Angola 5
A 5
Alice, Angola, A 5
Total 5

•••

Funkcja agregatora

INPUT

D1,D2,D3,V Alice, Angola, B, 4 Alice, Angola, A, 5 Alice, Brazil, A, 3 Alice, Angola, A, 4 Alice, Brazil, B, 8 Bob, Angola, A, 5 Bob, Brazil, A, 7 Bob, Brazil, B, 10 Bob, Angola, B, 20

OUTPUT

```
Alice 24
Bob 42
Angola 38
Brazil 28
A 26
B 42
Alice, Angola 13
Alice, Brazil 11
Bob, Angola 25
Bob, Brazil 17
Alice, A 11
Alice, B 12
Bob, A 12
Bob, B
         30
Total 61
```

Jak działa agregator?

Mapowanie

- KLUCZ jest połączeniem wymiarów w jednym wierszu <D1 | D2 | ... | Dn>
- WARTOŚĆ jest miarą
- Wyjściowe wiersze
 - Każdy wiersz powstaje dla każdej kombinacji wymiarów, gdzie znajduje się jeden lub więcej wymiarów
 - Każdy wiersz ma wpływ na ogólny wynik agregacji
- Redukowanie
 - Tak jak liczenie słów

Przykład programowania MapReduce

```
map(String input_key, String input_value):
// input_key: numer wiersza
// input_value: zawartość wiersza
for each word in input_value:
emit (word, "1");
reduce(String output_key, Iterator intermediate_values):
// output_key: słowo
// output_values: lista wartości
int result = 0;
for each v in intermediate values:
result += ParseInt(v);
emit(AsString(result))
```

Przykład 2. W jaki sposób można mapować i redukować?

Wejściowy zbiór danych

Id biletu | Nr rezerwacji | Skąd | Cel | Nr lotu | Mile

Należy utworzyć następujący zbiór danych

Cel faktyczny | Liczba pasażerów

Przykład 2. W jaki sposób można mapować i redukować?

Wejściowy zbiór danych

ID statku | Długość | Szerokość | Czas

Jeden rekord dla każdego odczytu

ID statku | Źródło | Cel | Liczba pasażerów

Jeden rekord na statek

Zaprojektuj następujący zbiór

ID statku | Okres (dzień-noc) | Całkowity czas zatrzymania

Narzędzia ekosystemu Apache Hadoop

Architektura Apache Hadoop

Apache Flume

Pobiera dane i składuje w HDFS

Apache Kafka

 Zarządza danymi strumieniowymi (składowanie, przetwarzania, odczytywanie i zapisywanie)

Apache Storm

Przetwarzanie danych strumieniowych w czasie rzeczywistym

Apache ZooKeeper

Zarządza serwerem Apache

Apache Avro

System serializacji danych

```
{"namespace": "example.avro",
  "type": "record",
  "name": "User",
  "fields": [
          {"name": "name", "type": "string"},
          {"name": "favorite_number", "type": ["int", "null"]},
          {"name": "favorite_color", "type": ["string", "null"]}
]
}
```

Apache Spark

 System przetwarzania w czasie rzeczywistym, możliwość uruchamiania programów w językach Scala, Java, Python itp. na źródłach HDFS, Cassandra, HBase itp.

```
text_file = spark.textFile("hdfs://...")

text_file.flatMap(lambda line: line.split())
    .map(lambda word: (word, 1))
    .reduceByKey(lambda a, b: a+b)
```

Apache HBase

 Baza danych NoSQL dla HDFS bazująca na modelu Google BigTable

Apache Hive

Hurtownia danych wykorzystująca SQL

Apache Pig

Platforma do przetwarzania danych

```
A = LOAD 'student' USING PigStorage() AS (name:chararray, age:int, gpa:float);
B = FOREACH A GENERATE name;
DUMP B;
(John)
(Mary)
(Bill)
(Joe)
```

Ćwiczenia z MapReduce

Jak pracować z Hadoop?

- Użytkownik hduser
- □ Hadoop jest instalowany w:
 - /usr/local/hadoop
- Jak uruchomić MapReduce?
 - hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar pi 2 5

Jak utworzyć folder?

hadoop fs -mkdir -p /user/hduser/folder

 W folderach (katalogach) przechowuje się zbiory danych w postaci plików.

Jak skopiować dane?

- Kopiowanie z lokalnego systemu plików do HDFS
 - hadoop fs -copyFromLocal hdfsTest.txt hdfsTest.txt
- lub prościej
 - hadoop fs -put hdfsTest.txt
- Skopiowanie ze zdalnego systemu plików do lokalnego
 - hadoop fs -copyToLocal /user/hduser/hdfsTest.txt hdfsTest2.txt

Jak wyświetlać pliki?

- Listowanie struktury danych:
 - hadoop fs —ls
- Wyświetlanie zawartości pliku:
 - hadoop fs -cat /user/hduser/hdfsTest.txt
- Usuwanie pliku
 - hadoop fs -rm hdfsTest.txt

MapReduce w 9 etapach

Etap 1: Przygotowanie systemu plików

- 1. Przejście do folderu
- cd NAZWA_FOLDERU
- np.
 - cd JM

- 2. Pobrać dane ze strony internetowej
- wget -c STRONAWWW
- np.
 - wget -c http://wzr.pl/wydzial/index.php?i=26

- 3. Zmienić nazwę pliku lokalnego na inputNAZWA
- mv nazwaPliku inputNAZWA
- np.
 - mv index.php\?i\=26 inputJM

Etap 2: Przygotowanie źródła danych w Apache Hadoop HDFS

4. Zalogowanie jako hduser (Hadoop User).

su hduser

5. Utworzenie katalogu HDFS.

- hadoop fs -mkdir -p /user/hduser/folder
- np.
 - hadoop fs -mkdir -p /user/hduser/sourceJM

- 6. Skopiowanie pliku do HDFS.
- hadoop fs -copyFromLocal plik folder/plik
- np.
 - hadoop fs -copyFromLocal inputJM sourceJM/inputJM

Etap 3. Analiza WordCount

7. Weryfikacja dostępności pliku.

- hadoop fs -ls folderNamehadoop fs -cat folderName/fileName
- np.
- hadoop fs -ls sourceJMhadoop fs -cat sourceJM/inputJM

8. Wykonanie analizy wordcount.

- hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar wordcount inputFolder/inputFile outputFile
- np.
- hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar wordcount sourceJM/inputJM outputJM

Etap 4. Weryfikacja rezultatów

9. Obserwuj rezultaty!

9.1. Sprawdzenie, czy plik wynikowy istnieje.

• hadoop fs -ls

9.2. Weryfikacja plików Hadoop.

- hadoop fs -ls outputFolder
- e.g.
 - hadoop fs -ls outputJM

9.3. Weryfikacja rezultatów.

- hadoop fs -ls outputFile
- e.g.
 - hadoop fs -cat outputJM/part-r-00000

Etap 5: Analiza rezultatów

Czy plik jest za duży?

9.4. Skopiowanie i analiza z grep.

- hadoop fs -copyToLocal plikHDFS plikLokalny
- Np.
 - hadoop fs -copyToLocal /user/hduser/outputJM/part-r-00000 /home/hduser/outputJM.txt

Pytanie

Oprogramowanie bazy danych to:

- HBase
- □ Pig
- □ Pig Latin
- Spark

