

Kapitel 3 Projektmanagement

- Stand: 19.10.2010 -

Übersicht

- Konzepte und Terminologie
- Projektmanagementpläne
- Projektverantwortlichkeiten
- Teamstrukturen
- Projektplanung
- Kommunikationsmanagement
- Abhängigkeiten
- Zeitplan
- Projektmanagementwerkzeuge

Aktivitäten des Projektmanagements

Projekt = Funktionen, Aktivitäten, Tasks, Action Items

Funktionen (IEEE 1058) / Integrale Prozesse (IEEE 1074)

- Aktivitäten die die Dauer des gesamten Projekts umfassen und sich nicht zyklisch wiederholen
 - Projektmanagement
 - Konfigurationsmanagement (SCM)
 - Aufgabenmanagement (Issue Management)
 - Qualitätskontrolle (Verifikation und Validierung)
 - Dokumentation
 - Training
 - **•** ...

Aktivitäten

Beispiele für Aktivitäten

- Planung
- Anforderungserhebung
- Anforderungsanalyse
- Systementwurf
- Objektentwurf
- Implementierung
- Testen
- Auslieferung

- Teil-Aktivitäten der Anforderungsanalyse
 - Verfeinern von Szenarios
 - Use-Case-Modell definieren
 - Objektmodell definieren
 - Dynamisches Modell definieren
 - Benutzerschnittstelle entwerfen

Tasks

Tasks (Aufgaben)

- Kleinste Einheit für Verantwortlichkeit des Managements
 - Atomare Einheit für Planung und Verfolgung
 - Endliche Dauer, benötigt Ressourcen, produziert handfeste Ergebnisse (Dokumente, Code)
- Spezifikation einer Task
 - Name, Beschreibung der zu leistenden Arbeit
 - Vorbedingungen, Dauer, benötigte Ressourcen
 - Erwartete Arbeitsergebnisse
 - Mit der Task verbundenes Risiko
- Erfüllungskriterien
 - Beinhaltet die Akzeptanzkriterien für die Arbeitsergebnisse

Größe von Tasks

- Jede Entwicklungsaktivität identifiziert neue und modifiziert existierende Tasks.
- Die angemessene Größe von Tasks zu finden, ist problematisch.
 - TODO-Listen früherer Projekte
 - Während der anfänglichen Planung sind Tasks notwendigerweise groß.
 - Es ist evtl. anfänglich nicht bekannt, wie ein Problem in Tasks zu zerlegen ist.

- Tasks müssen in Größen aufgebrochen werden, die ein Monitoring zulassen.
 - Arbeitspakete entsprechen i.d.R. wohl-definierten Arbeitsanweisungen für einen Arbeiter und eine Woche (einen Monat) Zeit.
 - Abhängig von der Art der Arbeit und davon, wie gut die Aufgabe verstanden wird.
- Zusammenhängende Tasks werden zu hierarchischen Mengen von Funktionen gruppiert.

Beispiele für Tasks

- Unit test für Klasse "Foo"
- Teste das Subsystem "Bla"
- Schreibe das Benutzerhandbuch
- Schreibe ein Protokoll zur letzten Sitzung und verteile es.
- Schreibe ein Memo über "Linux vs. Windows XP"
- Lege den Zeitplan für die Code Review fest.
- Entwickle den Projektplan

Action Item

- Definition: Ein Task, der einer Person zugeordnet wird, und der innerhalb einer Woche oder weniger erledigt sein muß.
- Action Items
 - Tauchen auf der Agenda im "Status"-Abschnitt auf
 - Klären: Was? Wer? Wann?
- Beispiel für Action Items:
 - Florian erledigt Unit Tests für Klasse "Foo" bis nächste Woche.
 - Bob verschickt die n\u00e4chste Agenda f\u00fcr das Simulationsteam <u>bis 10. Sep.</u>
 12:00
 - Das VIP Team entwickelt einen Projektplan bis 18. Sep.

Software Project Management Plan

Software Project Management Plan

▶ Struktur

Einstieg

- 1. Einführung
- 2. Projektorganisation
- 3. Organisatorischer Prozess
- 4. Technischer Prozess
- 5. Arbeitselemente, Zeitplan, Budget

Optionale Anlagen

SPMP Teil 5 ► Arbeitselemente, Zeitplan, Budget

5.1 Arbeitspakete (,Work breakdown structure')

Zerlegung des Projekts in Tasks; Definition der Tasks

5.2 Abhängigkeiten

◆ Präzedenzrelationen zwischen Funktionen, Aktivitäten und Tasks

5.3 Erforderliche Ressourcen

 Abschätzung für Ressourcen, wie z.B. Personal, Rechenzeit, spezielle Hardware, zusätzliche Software,...

5.4 Budget- und Ressourcenazuweisung

Kosten mit Funktionen, Aktivitäten und Tasks in Verbindung setzen

5.5 Zeitplan

Deadlines, Aufzeigen von Abhängigkeiten, notwendige Meilensteine

Erstellen von Arbeitspaketen

- Was tut man?
 - Aufbrechen des Projekts in Aktivitäten und Tasks
 - Noch ohne Abhängigkeiten zwischen den Tasks
 - Festlegung der AP ist inkrementell und iterativ
- Bedeutung
 - Aufschlüsselung der Arbeitspakete beeinflusst Kosten und Zeitplan
- Heuristik: Schwellwerte für die Erstellung der AP in % der gesamten Arbeit
 - Kleiners Projekt (7 Personen-Monate): mindestens 7% bzw. 0.5 PM
 - Mittleres Projekt(300 Personen-Monate): mindestens 1% bzw. 3 PMs
 - ◆ Großes Projekt (7000 Personen-Monate): mindestens 0.2 % bzw. 15 PMs Quelle: ["Software Engineering Economics", Barry W. Boehm, p. 47, Prentice Hall 1981]

Abhängigkeiten und Zeitplanung

- Abhängigkeitsgraph zeigt Abhängigkeiten unter den Tasks
 - Hierarchisch: "Ist Teil von" / "Beinhaltet"
 - Zeitlich: "Setzt ... voraus" / "Muss vor ... passieren"
- Abschätzung der Dauer jedes Tasks
 - Abhängigkeitsgraph wird mit den Schätzungen beschriftet
- Ressourcenzuteilung
 - Wer / was ist verfügbar?
 - In welchem Umfang / wie belastbar?
 - Wie viel davon kann / will ich nutzen?

Abhängigkeiten + Taskdauer + Ressourcenzuteilung → Zeitplan

Varianten von Abhängigkeitsgraphen

- Aktivitätengraph
 - Projektmeilensteine sind Knoten
 - Tasks sind Kanten
- Zeitplanungsdiagramm (Gant und PERT-Diagramme)
 - Tasks und Meilensteine sind Knoten
 - Kanten repräsentieren zeitliche Abhängigkeiten

→ Details siehe nächste Folien (anhand eines Beispiels)

Ein Haus bauen ▶ Aktivitäten

- Aktivität 1 : Baustelle vorbereiten
 - ◆ Task 1.1: Vermessen
 - ◆ Task 1.2: Baugenehmigung
 - Task 1.3: Ausschachten
 - Task 1.4: Materialbeschaffung
- Aktivität 2: Rohbau
 - Task 2.1: Fundament
 - Task 2.2: Außenwände
 - ◆ Task 2.3: Ext. Klempnerarbeiten
 - Task 2.4: Ext. Elektroinstallation
 - ◆ Task 2.5: Verputzen
 - Task 2.6: Außenanstrich
 - Task 2.7: Aussentüren

- Aktivität 3 : Innenausbau
 - ◆ Task 3.1: Int. Klempnerarbeiten
 - Task 3.2: Int. Elektroinstallation
 - Task 3.3: Esstrich
 - Task 3.4: Innenanstrich
 - Task 3.5: Bodenbeläge
 - ◆ Task 3.6: Innentüren

Ein Haus bauen ▶ Aktivitätsgraph

Zeitplanungsdiagramme ► Hilfe durch Projektverwaltungswerkzeuge

- Gantt Diagramm (Task Zeitleiste)
 - Zeigt Projektaktivitäte und -tasks parallel
 - Zeigt Dauer und Abhängigkeiten
 - Ermöglichen dem Projektleiter nachzuvollziehen, welche Tasks gleichzeitig bearbeitet werden können
- PERT Diagramm (Zeitplan)
 - Grafische Repräsentation von Abhängigkeiten zwischen Tasks und Milestones
 - PERT = Program Evaluation and Review Technique
 - Ein PERT-Diagramm geht von einer Normalverteilung der Taskdauer aus.
 - ⇒ Nützlich für Analyse kritischer Pfade (,Critical Path Analysis')
 - CPM = Critical Path Method
 - Kritischer Pfad ist Folge von Aktivitäten deren Verzögerung den gesamten Ablauf verzögern würde

Gantt-Chart ▶ Beispiel

(Gantt-Charts sind benannt nach dem amerikanischen Ingenieur H. L. Gantt (1861-1919)

PERT-Charts ► "Spielraum" und "Kritischer Pfad"

Startdatum 1

Aktivität1 / Aufgabe1

Spielraum 1

Dauer 1

Startdatum 2

Aktivität2 / Aufgabe2

Spielraum 2

Dauer 2

- Zeitlicher Spielraum (,slack time')
 - geplante Startzeit minus früheste mögliche Startzeit
 - Spielraum 1 = Startdatum 2 (Startdatum 1 + Dauer 1)
- Kritischer Pfad (,critical path')
 - Der Pfad in einem Projektplan, für den der Spielraum an jedem Knoten (Task/Aktivität) null ist.
- Auf dem kritischen Pfad gibt es keinen Spielraum für Tasks/Aktivitäten.
 - Jede Verzögerung einer Aktivität / Task auf dem kritischen Pfad verzögert das gesamte Projekt!

Ein Haus bauen ▶ PERT Diagramm

(Aktivitäten auf kritischen Pfaden sind rot markiert)

Weitere Visualisierungshilfen

- Graphen (Zeitplan)
- Bäume (Arbeitspakete)
- Tabellen (Ressourcen)

Wie werde ich ein guter Projektplaner?

- Stell einen Projektplan auf!
 - Fange basierend auf Erfahrungen mit vergangenen Projekten an
- Behalte Aktivitäten und ihre Dauer im Auge
 - Bestimme die Differenz zwischen geplantem und tatsächlichen Durchsatz
 - Passe den Plan an
 - Überdenke die Ursachen der Verzögerungen und beuge vor
- Denk daran, eine Post-Mortem-Analyse zu machen
 - "Was haben wir aus dem Projekt gelernt?"
 - Bitte Entwickler um Feedback
 - Halte schriftlich fest, was verbessert werden könnte.
- "Post mortem" ist zu spät! → Laufend Feedback einholen!

Heuristiken zum Projektmanagement

- Halte dir die Möglichkeit offen, einen Projektplan zu ändern oder auch komplett zu verwerfen.
 - Die Entwicklung komplexer Systeme ist eine nicht-lineare Angelegenheit.
- Wenn die Ziele unklar und komplex sind, benutze teambasiertes Projektmanagement. In diesem Fall...
 - Vermeide GANTT und PERT Diagramme für Projekte mit sich ändernden Anforderungen.
 - Blicke nicht zu weit in die Zukunft.
- Vermeide Mikromanagement von Details.
- Sei nicht überrascht, wenn aktuelle Projektverwaltungstools nicht funktionieren:
 - Sie wurden für Projekte mit klaren Zielen und festen Organisationsstrukturen entworfen.

Projektmanagement: Zusammenfassung

- Projektplanung
 - Aufschlüsselung der Arbeitspakete (Work breakdown structure)
 - Abhängigkeiten und Strukturen identifizieren: Tasks, Aktivitäten, Funktionen
- Werkzeuge und Techniken
 - GANTT, Abhängigkeitsgraph, Zeitplan, Critical Path Analyse
 - Vorsicht mit Werkzeugen in Projekten mit viel Änderung
- Gibt es Alternativen zu PERT, Gant & Co?
 - → "Issue-based project management"!?!

SPMP Teil 4: Technischer Prozess

SPMP Teil 5: Arbeitselemente, Zeitplan, Budget