Nome:

1.

FUNDAMENTALS OF MACHINE LEARNING

AA 2022-2023

Prova Finale (FACSIMILE)

9 Gennaio, 2023

Istruzioni: Niente libri, niente appunti, niente dispositivi elettronici, e niente carta per appunti. Usare matita o penna di qualsiasi colore. Usare lo spazio fornito per le risposte. Instructions: No books, no notes, no electronic devices, and no scratch paper. Use pen or pencil. Use the space provided for your answers.

This exam has 5 questions, for a total of 100 points and 10 bonus points.

Matr	icola:			
Mul	tiple Choice: Select the correct answer from the list of choices.			
(a)	[5 points] True or False: A K-nearest neighbor classifier is only able to learn linear discriminant functions. \bigcirc True $\sqrt{\text{False}}$			
(b)	[5 points] True or False: Projecting a dataset onto its first principal component maximizes the variance of the projected data. $\sqrt{\text{True}}$ False			
(c)	[5 points] True or False: The K-means algorithm is guaranteed to find the best cluster centers for any dataset. \bigcirc True $\sqrt{\text{False}}$			
(d)) [5 points] True or False: A Parzen kernel density estimator uses only the nearest sample in the dataset to estimate the probability of an input sample x . \bigcirc True $$ False			
(e)	[5 points] How many parameters will a Multilayer Perceptron (MLP) for binary classification with a single hidden layer of width 10 and an input dimensionality of 8 have?			
(f)	\bigcirc 80 $\sqrt{99}$ \bigcirc 88 \nearrow None of the above $2 \bigcirc 2 $			
	$ \bigcirc \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{c=1}^{C} (\ln y_c - \ln \hat{y}_c)^2 \bigcirc \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{c=1}^{C} (y_c - \ln \hat{y}_c)^2 \bigcirc \mathcal{L}(\hat{\mathbf{y}}, \hat{\mathbf{y}}) = -\sum_{c=1}^{C} (y_c - \ln \hat{y}_c)^2 \bigcirc \mathcal{L}(\hat{\mathbf{y}}, \hat{\mathbf{y}}) = -\sum_{c=1}^{C} (y_c - \ln \hat{y}_c)^2 $ (8.40)+30 +(30.4)+4			
	$ \sqrt{\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})} = -\sum_{c=1}^{C} y_c \ln \hat{y}_c $ $ \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{c=1}^{C} \ln \hat{y}_c $ $ \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{c=1}^{C} \ln \hat{y}_c $ $ 80 + 10 + 20 + 2 $			
(g)	[5 points] How many iterations of gradient descent must we perform for an epoch of minibatch Stochastic Gradient Descent with a dataset of 1024 samples and a batch size of 16? () 1024 () 1 () 32 $\sqrt{64}$			
Ŋ	$\frac{1}{16} = \frac{102a}{16} = \frac{512}{8} = \frac{256}{a} = \frac{128}{2} = 6a$ $(8 \cdot 10) + 10 + (8 \cdot 1) + \text{Total Question 1: 35}$			
	$\frac{512}{512} \frac{356 + \frac{328 +}{256}}{256} \frac{12000}{256} 80 + 10 + 8 + 1$			
	88 + 11 = 99			
	20 Osem. empo 3 stocko			
	6 4⋅3			

	nswer: Select ALL correct choices: there may be more than one correct choice, but there is set one correct choice.
(a) [5 point	s What are the advantages of projecting data onto $K < D$ principal components?
1	We eliminate noise in the original representation.
	Classes are guaranteed to be linearly separable.
) It is a nonlinear embedding that makes learning easy with simpler models.
1	/ Models trained on the reduced data are simpler.
(b) [5 point	s] Which of the following are advantages of Ensemble Models (e.g. Committees)?
1	They reduce the variance of the resulting model.
	They are much more efficient than the base model.
1	They can reduce the expected error of the final model.
	The resulting model is nonlinear even if the base model is linear.
(c) [5 point	s] Which of the following are causes of the vanishing gradients when training neural networks?
١	/ Saturated inputs to activation functions with near-zero derivatives when saturated.
) Badly scaled input values.
	Very deep models.
) Bad random initialization of the network parameters.
. ,	s] Which of the following are requirements for applying backpropagation to compute gradients p network?
	The network must not be too deep.
	The network must be a directed acyclic graph.
١	/ All activation functions must be differentiable.
	All activation functions must be continuous.
. ,	s] Which of the following are true of the Nadaraya-Watson estimator?
_) It only requires some of the training data at test time.
	/ It is a nonparametric method.
	/ It estimates a nonlinear function of the input.
) It estimates a linear function of the input.
() [-	s] What does the learning rate control in Stochastic Gradient Descent?
1	The size of gradient steps made in each iteration.
	The degree of nonlinearity in the model.
	The regression function is linear in the original input variables.
() [=	/ The speed at which the model learns.
(g) [5 point	
	The Multilayer Perceptron (MLP).
	Logistic regression.
1	/ The K-Nearest Neighbor Classifier
) Decision Trees.

Total Question 2: 35

3. [15 points] Show that the first principal component of dataset $\mathcal{D} = \{\mathbf{x}_n\}_{n=1}^N$ is an eigenvector of the data covariance matrix.

Solution: We saw this in class. Consider a dataset $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ with $\mathbf{x}_n \in \mathbb{R}^D$. We seek a subspace of dimensionality M = 1 in which the projected points have maximum variance. The mean of the dataset \mathcal{D} projected onto a basis vector \mathbf{u}_1 is:

$$\frac{1}{N} \sum_{n=1}^{N} \mathbf{u}_{1}^{T} \mathbf{x}_{n} = \mathbf{u}_{i}^{T} \left\{ \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n} \right\}$$
$$= \mathbf{u}_{1}^{T} \bar{\mathbf{x}},$$

where $\bar{\mathbf{x}} = N^{-1} \sum_{n} \mathbf{x}_{n}$. The variance is then:

$$\frac{1}{N} \sum_{n=1}^{N} (\mathbf{u}_1^T \mathbf{x}_n - \mathbf{u}_1^T \bar{\mathbf{x}})^2 = \mathbf{u}_1^T \mathbf{S} \mathbf{u}_1$$

where
$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}}) (\mathbf{x}_n - \bar{\mathbf{x}})^T$$
.

We cannot simply maximize this – it is unbounded. We must constrain the optimization so that \mathbf{u} has unit norm:

$$\mathbf{u}_1^* = \arg\max_{\mathbf{u}} \left[\mathbf{u}_1^T S \mathbf{u}_1 + \lambda_1 (1 - \mathbf{u}_1^T \mathbf{u}_1) \right]$$

Setting the gradient of the right-hand side to zero and solving, we obtain:

$$\nabla_{\mathbf{u}_1} \mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 + \lambda (1 - \mathbf{u}_1^T \mathbf{u}_1) = \mathbf{0}$$

$$\implies \mathbf{S} \mathbf{u}_1 = \lambda \mathbf{u}_1,$$

which tells us that \mathbf{u}_1 must be an eigenvector of S with eigenvalue λ .

4. [15 points] Show that a Multilayer Perceptron with two hidden layers with activation function $\sigma(x) = x$ is only capable of learning linear functions.

Solution: An MLP with two hidden layers computes the function:

$$\begin{split} f(\mathbf{x}) &= W_{\text{out}} \sigma(W_2 \sigma(W_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) + \mathbf{b}_{\text{out}} \\ &= W_{\text{out}} (W_2 (W_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) + \mathbf{b}_{\text{out}} \text{ (since } \sigma \text{ is the identity function)} \\ &= (W_{\text{out}} W_2 W_1) \mathbf{x} + [W_{\text{out}} W_2 \mathbf{b}_1 + W_{\text{out}} \mathbf{b}_2 + \mathbf{b}_{\text{out}}], \end{split}$$

which is a linear (well, affine) function $f(\mathbf{x}) = W\mathbf{x} + \mathbf{b}$ for:

$$\label{eq:wout} \begin{array}{lcl} W & = & W_{\mathrm{out}}W_2W_1 \\ \mathbf{b} & = & W_{\mathrm{out}}W_2\mathbf{b}_1 + W_{\mathrm{out}}\mathbf{b}_2 + \mathbf{b}_{\mathrm{out}}. \end{array}$$

5. [10 points (bonus)] Design a Deep Convolutional Neural Network (with at least three convolutional layers and one or more pooling layers) to classify MNIST images (input size 28 × 28). Draw the network (or write pseudocode for its definition) and indicate how many parameters each layer has and the sizes of the intermediate feature maps.

Solution: I will write pseudocode in tabular form for the definition of each layer (with corresponding numbers of parameters and size of the activations:

ayer	\mathbf{Type}	Activation Size	# Parameters
1	Input	$1 \times 28 \times 28$	0
2	Conv2D(32, 1, 3, 3)	$32 \times 26 \times 26$	320 (32 * 3 * 3 + 32)
3	ReLU	$32 \times 26 \times 26$	0
4	Conv2D(32, 32, 3, 3)	$32 \times 24 \times 24$	9248
5	ReLU	32 imes26 $ imes2$ 6	0
6	MaxPool(2, 2)	$32 \times 13 \times 13$	0
7	Conv2D(16, 32, 3, 3)	$16 \times 11 \times 11$	4624
8	ReLU	$16 \times 11 \times 11$	0
9	Conv2D(16, 16, 3, 3)	$16 \times 9 \times 9$	2320
10	ReLU	$16 \times 9 \times 9$	0
11	MaxPool(2, 2)	$16 \times 5 \times 5$	0
12	Flatten()	400	0
13	Linear(400, 128)	128	51328
14	ReLU	128	0
15	Linear(128, 64)	64	8256
16	ReLU	64	0
17	Linear(64, 10)	10	650

7 (0.1.9]

5. [10 points (bonus)] Design a Deep Convolutional Neural Network (with at least three convolutional layers and one or nor pooling layers) to classify MNIST images (input size 28 × 28). Draw the network (or write pseudocode for its definition) and indicate how many parameters each layer has and the sizes of the intermediate feature maps.

Solution: I will write pseudocode in tabular form for the definition of each layer (with corresponding numbers of parameters and size of the activations:

Layer	Type work	Activation Size	# Parameters
1	Input	$1 \times 28 \times 28$	" 0
2	Conv2D(32, 1, 3, 3)	$32 \times 26 \times 26$	320 (32 * 3 * 3 + 32)
3	ReLU	$32 \times 26 \times 26$	0
4	Conv2D(32, 32, 3, 3)	$32 \times 24 \times 24$	9248
5	ReLU	$32 \times 26 \times 26$	0
6	MaxPool(2, 2)	$32\times13\times13$	0
7	Conv2D(16, 32, 3, 3)	$16\times11\times11$	4624
8	ReLU	$16 \times 11 \times 11$	0
9	Conv2D(16, 16, 3, 3)	$16 \times 9 \times 9$	2320
10	ReLU	$16 \times 9 \times 9$	0
11	MaxPool(2, 2)	$16 \times 5 \times 5$	0
12	Flatten() RIAPPIC	400	0
13	Linear(400, 128)	128	51328
14	ReLU	128	0
15	Linear(128, 64)	64	8256
16	ReLU	64	0
17	Linear(64, 10)	10	650

eausta uraita		% bacomeru ™
1. INPUT (** 28	x28 X 1	
2 CON 2D (32, 1, 3, 3)	26x26 x 32	32×4×3×3+
odem dem		BAS KOKNEL UXLIFO
eanale K Ai Cuhoto		Welling of the second
3. RelU	26x26x32	0
	96 (2-1)	35×35×3×3+25
G COONUSE (\$2,32,3,3)	x 2e-(3-1)	
	X 32	
a ReW	20×20×32	•
, butions	Saxiaxy	O
oespro (:2		0
5 Max Pool (2,2)	75×75×35	0
	10 (2.)	16×35×2x>+16
6 CONV 2D (16,32,3,3)	12-()-1)	
~ 0.0	70×10×16	0
4 Rolu	FOXIOXIE	O
8 FLATTENC) dim &	1600	0
approciso l'enime	•	₹600×900+900
9 LINEAR (1600, GOO)	400	5600 K 200 F 200
4 CINEALC (1888)	4∞	0
lo Relu		400×128+12P
11 UNEEX (400, 128)	128	200 200 100
·	128	Ð
12 Kelu	• _	128X1D+10
In UNEARCIZE/10)	10	

5. [10 points (bonus)] Design a Deep Convolutional Neural Network (with at least three convolutional layers and one or more pooling layers) to classify MNIST images (input size 28×28). Draw the network (or write pseudocode for its definition) and indicate how many parameters each layer has and the sizes of the intermediate feature maps.

Solution: I will write pseudocode in tabular form for the definition of each layer (with corresponding numbers of parameters and size of the activations:

Layer	Type	Activation Size	# Parameters
1	Input	$1 \times 28 \times 28$	0
2	Conv2D(32, 1, 3, 3)	$32 \times 26 \times 26$	320 (32 * 3 * 3 + 32)
3	ReLU	$32\times26\times26$	0
4	Conv2D(32, 32, 3, 3)	$32 \times 24 \times 24$	9248
5	ReLU	$32 \times 26 \times 26$	0
6	MaxPool(2, 2)	$32 \times 13 \times 13$	0
7	Conv2D(16, 32, 3, 3)	$16 \times 11 \times 11$	4624
8	ReLU	$16 \times 11 \times 11$	0
9	Conv2D(16, 16, 3, 3)	$16 \times 9 \times 9$	2320
10	ReLU	$16 \times 9 \times 9$	0
11	MaxPool(2, 2)	$16 \times 5 \times 5$	0
12	Flatten()	400	0
13	Linear(400, 128)	128	51328
14	ReLU	128	0
15	Linear(128, 64)	64	8256
16	ReLU	64	0
17	Linear(64, 10)	10	650

32×32×3 Rabu 2	1400	s Coyer
3. Input	32×72×3	0
2. Conva(3z,3,7,))	30 x 30 x 32	32×3×7×7+32
3 Rees	30 X 20X 32	Ø
4 Conv20(32,32,7,1)	28×28×32	25+1x(x2(x2C
S Relu	2828875	0
6 Hox (2,2)	3ax1ax32	Ø
4 Conus (32,32,3,3)	75 XBX JS	J2×72×1×) +J2
8 Red	12 × 12 × 12	0
9 Max (2,2)	6×6×72	0
no Flotten()	A ∫36× 3 2]	0
11 Linear (A,200)	200	200 x4 +200