University of Engineering and Technology Peshawar Department of Electrical Engineering

Course: Linear Algebra (BSI-111) Smester: Spring (Final)

Time allowed: 180minutes Total Marks: 60

Q1(a) (i) Code the message WORK HARD using the matrix

$$\begin{bmatrix} 5 & 3 \\ 2 & 1 \end{bmatrix}$$

- (ii) Decode the message 67 44 41 49 39 19 113 76 62 104 69 55.
- (b) Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be linear transformation for which we have $L(\hat{i}) = (1, 2, -1)$, $L(\hat{i}) = (1, 0, 2)$, $L(\hat{k}) = (1, 1, 3)$. Find L(2, -1, 3).
- **Q2(a)** Find a parametric equation of the line passing through the point (3,-1,-3) and perpendicular to the line joining (3,-2,4) and (0,3,5).
- (b) Prove the volume of a parallelepiped with a vertex at the origin and edges \vec{u}, \vec{v} , and \vec{w} is given by $V = |\vec{u} \cdot (\vec{v} \times \vec{w})|$
- **Q3(a)** Define vector space and determine whether the set of all positive real numbers \mathbf{u} with the operations $\mathbf{u} \oplus \mathbf{v} = 2\mathbf{u} \mathbf{v}$ and $c \circ \mathbf{u} = c\mathbf{u}$ is a vector space?
- (b) Express $\vec{v} = (3,7,-4)$ as a linear combination of $\vec{x} = (1,2,3)$, $\vec{y} = (2,3,7)$, $\vec{z} = (3,5,6)$, also check whether the vectors \vec{x} , \vec{y} , \vec{z} are linearly dependent or independent?
- **Q4(a)** Define the null space of an $m \times n$ matrix A and prove that it is a subspace of \mathbb{R}^n
- (b) Find a basis for the eigenspace associated with λ .

$$\begin{bmatrix} 4 & 2 & 0 & 0 \\ 3 & 3 & 0 & 0 \\ 0 & 0 & 2 & 5 \\ 0 & 0 & 0 & 2 \end{bmatrix}, \lambda = 2.$$