- 57 -

Claims

A compound of formula (I):

wherein

 M^1 is -CH₂- or -NR²¹-;

 M^2 is $-CR^{22}R^{23}$ or $-NR^{24}$; provided that if M^1 is $-NR^{21}$ -, M^2 is $-CR^{22}R^{23}$ -;

One of \mathbb{R}^1 and \mathbb{R}^2 are selected from hydrogen, C_{1-6} alkeyl or C_{2-6} alkenyl and the other is selected from C1-Galleyl or C2-Galkenyl;

R3 is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, C_{1-6} alkanoyl, C_{1-6} alkanoyloxy, $N-(C_{1-6}alkyl)amino, N,N-(C_{1-6}alkyl)_2amino, C_{1-6}alkanoylamino, N-(C_{1-6}alkyl)_2amino, C_{1-6}alkyl)_2amino, N,N-(C_{1-6}alkyl)_2amino, N,N-(C_{$ $N,N-(C_{1-6}alkyl)_2$ carbamoyl, $C_{1-6}alkylS(O)_4$ wherein a is 0 to 2, $C_{1-6}alkylS(O)_4$ N-(C₁₋₆alkyl)sulphamoyl and N,N-(C₁₋₆alkyl)₂sulphamoyl;

v is 0-5:

one of R5 and R6 is a group of formula (IA):

 \mathbb{R}^4 and \mathbb{R}^7 and the other of \mathbb{R}^5 and \mathbb{R}^6 are independently selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C14alkyl, C2-alkenyl, C2-alkynyl, C1-alkoxy, C1-alkanoyl, C1-alkanoyloxy, N-(C1-alkyl)amino, N, N-(C_{1-4} alkyl)₂amino, C_{1-4} alkanoylamino, N-(C_{1-4} alkyl)carbamoyl, $N,N-(C_{1-4}alkyl)_2$ carbamoyl, $C_{1-4}alkylS(O)_a$ wherein a is 0 to 2, $C_{1-4}alkoxycarbonyl$,

Best Available Copy

- 58 -

N-(C₁₋₄alkyl)sulphamoyl and N, N-(C₁₋₄alkyl)₂sulphamoyl; wherein R^4 and R^7 and the other of R^5 and R^6 may be optionally substituted on carbon by one or more R^{25} ;

Z is -O-, -N(\mathbb{R}^a)-, -S(O)_b- or -CH(\mathbb{R}^a)-; wherein \mathbb{R}^a is hydrogen or C₁₋₆alkyl and b is 0-2;

R⁸ is hydrogen, C₁₋₄alkyl, carbocyclyl or heterocyclyl; wherein R⁸ may be optionally substituted on carbon by one or more substituents selected from R²⁶; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group selected from R²⁷;

R⁹ is hydrogen or C₁₋₄alkyl:

 R^{10} and R^{11} are independently selected from hydrogen, C_{1-4} alkyl, carbocyclyl or heterocyclyl; or R^{10} and R^{11} together form C_{2-6} alkylene; wherein R^{10} and R^{11} or R^{10} and R^{11} together may be independently optionally substituted on carbon by one or more substituents selected from R^{28} ; and wherein if said heterocyclyl contains an -NH- moiety, that nitrogen may be optionally substituted by one or more R^{29} ;

R¹² is hydrogen, C₁₋₄alkyl, carbocyclyl or heterocyclyl; wherein R¹² may be optionally substituted on carbon by one or more substituents selected from R¹⁰; and wherein if said. heterocyclyl contains an -NH- moiety, that nitrogen may be optionally substituted by one or more R³¹;

R¹³ is hydrogen, halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, hydroxyaminocarbonyl, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₁₋₁₀alkoxy, C₁₋₁₀alkoxy, C₁₋₁₀alkoxyearbonyl, C₁₋₁₀alkanoyl, C₁₋₁₀alkanoyloxy, N-(C₁₋₁₀alkyl)amino, N,N-(C₁₋₁₀alkyl)₂amino, N,N-(C₁₋₁₀alkyl)₃ammonio, C₁₋₁₀alkyl)₂mino, N-(C₁₋₁₀alkyl)₂carbamoyl, C₁₋₁₀alkylS(O)₈ wherein a is 0 to 2, N-(C₁₋₁₀alkyl)₃sulphamoyl, N,N-(C₁₋₁₀alkyl)₂sulphamoyl, N-(C₁₋₁₀alkyl)₃sulphamoylamino, N,N-(C₁₋₁₀alkyl)₃sulphamoylamino, carbocyclyl, carbocyclyl-(2₁₋₁₀alkyl), heterocyclic group, heterocyclylC₁₋₁₀alkyl, carbocyclyl-(C₁₋₁₀alkylene)₆-R³²-(C₁₋₁₀alkylene)₆- or heterocyclyl-(C₁₋₁₀alkylene)₆-R³³-(C₁₋₁₀alkylene)₆-; wherein R¹³ may be optionally substituted on carbon by one or more substituents selected from R³⁶; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group selected from R³⁷; or R¹³ is a group of formula (IB):

. 1010004161

- 59 -

$$\begin{array}{c|c}
R^{17} & & & & R^{15} & O \\
R^{17} & & & & & & & & \\
R^{17} & & & & & & & & \\
R^{16} & & & & & & & \\
R^{16} & & & & & & & \\
R^{14} & & & & & & & \\
\end{array}$$
(IB)

wherein:

X is $-N(R^{38})$ -, $-N(R^{38})C(O)$ -, -O-, and $-S(O)_a$ -; wherein a is 0-2 and R^{38} is hydrogen or $C_{1-4}alkyl$;

R14 is hydrogen or C14alkyl;

R¹⁶ and R¹⁶ are independently selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkoxyl, C₁₋₆alkoxyl, C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkyl)₂amino, N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)₃ wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, N-(C₁₋₆alkyl)₂sulphamoyl, wherein R¹⁵ and R¹⁶ may be independently optionally substituted on carbon by one or more substituents selected from R⁴¹; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group selected from R⁴²;

R¹⁷ is selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, hydroxyaminocarbonyl, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₁₋₁₀alkoxy, C₁₋₁₀alkanoyl, C₁₋₁₀alkanoyloxy, N-(C₁₋₁₀alkyl)amino, N,N-(C₁₋₁₀alkyl)₂amino, C₁₋₁₀alkanoylamino, N-(C₁₋₁₀alkyl)₂amino, C₁₋₁₀alkyl)₂amino, N,N-(C₁₋₁₀alkyl)₂amino, C₁₋₁₀alkyl)₂carbamoyl, C₁₋₁₀alkyl)₂Corbamoyl, C₁₋₁₀alkyl)₃Corbamoyl, N,N-(C₁₋₁₀alkyl)₂Corbamoyl, N-(C₁₋₁₀alkyl)₃Corbamoyl, N-(C₁₋₁₀alkyl)₃Corbamoyl, N-(C₁₋₁₀alkyl)₃Corbamoylamino, carbocyclyl, carbocyclylC₁₋₁₀alkyl, heterocyclic group, heterocyclylC₁₋₁₀alkyl, carbocyclyl-(C₁₋₁₀alkylene)₆- Or heterocyclyl-(C₁₋₁₀alkylene)₆- R⁴⁴-(C₁₋₁₀alkylene)₆- R⁴³-(C₁₋₁₀alkylene)₆- or heterocyclyl-(C₁₋₁₀alkylene)₆- R⁴⁴-(C₁₋₁₀alkylene)₆- R⁴⁵; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group selected from R⁴⁸; or R¹⁷ is a group of formula (IC):

wherein:

R¹⁸ is selected from hydrogen or C₁₋₄alkyl;

R¹⁹ is selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkyl)₂sulphamoyl, carbocyclyl or heterocyclic group; where R¹⁹ may be independently optionally substituted on carbon by one or more substituents selected from R⁵¹; and wherein if said heterocyclyl contains an -NH-group, that nitrogen may be optionally substituted by a group selected from R⁵²;

R²⁰ is selected from halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, hydroxyaminocarbonyl, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₁₋₁₀alkoxy, C₁₋₁₀alkoxy, C₁₋₁₀alkoxycarbonyl, C₁₋₁₀alkanoyl, C₁₋₁₀alkanoyloxy, N-(C₁₋₁₀alkyl)amino, N,N-(C₁₋₁₀alkyl)₂amino, N,N-(C₁₋₁₀alkyl)₃ammonio, C₁₋₁₀alkanoylamino, N-(C₁₋₁₀alkyl)₂carbamoyl, C₁₋₁₀alkylS(O)_n wherein a is 0 to 2, N-(C₁₋₁₀alkyl)₃sulphamoyl, N,N-(C₁₋₁₀alkyl)₂sulphamoyl, N-(C₁₋₁₀alkyl)₃sulphamoylamino, N,N-(C₁₋₁₀alkyl)₂sulphamoylamino, C₁₋₁₀alkyl)₂sulphamoylamino, carbocyclyl, carbocyclylC₁₋₁₀alkyl, heterocyclic group, heterocyclylC₁₋₁₀alkyl, carbocyclyl-(C₁₋₁₀alkylene)_e-R⁵³-(C₁₋₁₀alkylene)_f- or heterocyclyl-(C₁₋₁₀alkylene)_g-R⁵⁴-(C₁₋₁₀alkylene)_h-; wherein R²⁰ may be independently optionally substituted on carbon by one or more R⁵⁷; and wherein if said heterocyclyl contains an -NFI- group, that nitrogen may be optionally substituted by a group selected from R⁵⁸;

p is 1-3; wherein the values of R¹⁵ may be the same or different; q is 0-1;

r is 0-3; wherein the values of R^{16} may be the same or different; m is 0-2; wherein the values of R^{12} may be the same or different; n is 1-2; wherein the values of R^8 may be the same or different; z is 0-3; wherein the values of R^{10} may be the same or different; R^{21} is selected from hydrogen or C_{1-6} alkyl;

GB0400695

100994 PCT Amended Claims

- 61 -

 R^{22} and R^{23} are independently selected from hydrogen, hydroxy, amino, mercapto, C_{1-6} alkyl, C_{1-6} alkyl) amino, N, N- $(C_{1-6}$ alkyl) amino, C_{1-6} and C_{1-6} alkyl) amino, C_{1-6} alkyl) amino, C_{1-6} and C_{1-6} alkyl) amino, C_{1-6} alkyl) amino, C_{1-6} alkyl) amino, C_{1-6} and C_{1-6} alkyl) amino, C_{1-6} and C_{1-6} alkyl) amino, C_{1-6} and C_{1-6} alkyl) amino, C_{1-6} and C_{1-6} and C_{1-6} alkyl) amino, C_{1-6} and C_{1-6} and C_{1-6} and C_{1-6} alkyl) amino, C_{1-6} and C_{1-6} alkyl) amino, C_{1-6} and C_{1-6} and C_{1-6} alkyl) amino, C_{1-6} and C_{1-6} and C_{1-6} alkyl) amino, C_{1-6} and $C_{$

R²⁴ is selected from hydrogen, hydroxy, C₁₋₆alkyl, C₁₋₄alkoxy and C₁₋₆alkanoyloxy; R²⁵ is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy, N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄alkyl)2amino, C₁₋₄alkanoylamino, N-(C₁₋₄alkyl)2carbamoyl, C₁₋₄alkyl)2carbamoyl, C₁₋₄alkyl)2carbamoyl, C₁₋₄alkyl)2sulphamoyl; wherein R²⁵, may be independently optionally substituted on carbon by one or more R⁶⁷;

R²⁶, R²⁸, R³⁰, R³⁶, R⁴¹, R⁴⁷, R⁵¹ and R⁵⁷ are independently selected from halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, hydroxyaminocarbonyl, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₁₋₁₀alkoxy, C₁₋₁₀alkanoyl, C₁₋₁₀alkanoyloxy, C₁₋₁₀alkoxycarbonyl, N-(C₁₋₁₀alkyl)amino, N.N-(C₁₋₁₀alkyl)₂amino, N.N.N-(C₁₋₁₀alkyl)₃ammonio, C₁₋₁₀alkyl)amino, N-(C₁₋₁₀alkyl)carbamoyl, N.N-(C₁₋₁₀alkyl)₂carbamoyl, C₁₋₁₀alkylS(O)_n wherein a is 0 to 2, N-(C₁₋₁₀alkyl)sulphamoyl, N.N-(C₁₋₁₀alkyl)₂sulphamoyl, N-(C₁₋₁₀alkyl)sulphamoylamino, N.N-(C₁₋₁₀alkyl)₂sulphamoylamino, C₁₋₁₀alkyl)sulphamoylamino, carbocyclyl, carbocyclylC₁₋₁₀alkyl, heterocyclic group, heterocyclylC₁₋₁₀alkyl, carbocyclyl-(C₁₋₁₀alkylene)₂-R⁵⁹-(C₁₋₁₀alkylene)₂- or heterocyclyl-(C₁₋₁₀alkylene)₂-R⁶⁰-(C₁₋₁₀alkylene)₃-R⁵⁹-(C₁₋₁₀alkylene)₂- or heterocyclyl-(C₁₋₁₀alkylene)₂-R⁶⁰-(C₁₋₁₀alkylene)₃-R⁵⁰-(C₁₋₁₀alkylene)₅-R³⁰, R³⁶, R⁴¹, R⁴⁷, R⁵¹ and R⁵⁷ may be independently optionally substituted on carbon by one or more R⁶³; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group selected from R⁶⁴;

R²⁷, R²⁹, R³¹, R³⁷, R⁴², R⁴⁸, R⁵², R⁵⁸ and R⁶⁴ are independently selected from C₁₋₆alkyl, C₁₋₆alkanoyl, C₁₋₆alkylsulphonyl, sulphamoyl, N-(C₁₋₆alkyl)sulphamoyl, N-N-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkoxycarbonyl, carbamoyl, N-(C₁₋₆alkyl)₂carbamoyl, benzyl, phenethyl, benzoyl, phenylsulphonyl and phenyl;

 R^{33} , R^{43} , R^{44} , R^{53} , R^{54} , R^{59} and R^{60} are independently selected from -O-, -NR⁶⁵., -S(O)_x-, -NR⁶⁵C(O)NR⁶⁶-, -NR⁶⁵C(S)NR⁶⁶-, -OC(O)N=C-, -NR⁶⁵C(O)- or -C(O)NR⁶⁵-; wherein R^{65} and R^{66} are independently selected from hydrogen or C_{1-6} alkyl, and x is 0-2;

R⁶³ and R⁶⁷ re independently selected from halo, hydroxy, cyano, carbamoyl, ureido, amino, nitro, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, methyl, ethyl, methoxy, ethoxy, vinyl, allyl, ethynyl, methoxycarbonyl, formyl, acetyl, formamido,

GB0400695

100994 PCT Amended Claims

- 62 -

acetylamino, acetoxy, methylamino, dimethylamino, N-methylcarbamoyl, N,N-dimethylcarbamoyl, methylthio, methylsulphinyl, mesyl, N-methylsulphamoyl and N,N-dimethylsulphamoyl; and

- e, f, g and h are independently selected from 0-2: or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof; with the proviso that said compound is not:
- 1,1-dioxo-3-isopropyl-5-phenyl-8-[N-(propyl)carbamoylmethoxy]-2,3,4,5-tetrahydro-1,4benzothiazepine; or
- 1,1-dioxo-3-isopropyl-5-phenyl-7-iodo-8-[N-(propyl)carbamoylmethoxy]-2,3,4,5-tetrahydro-1,4-benzothiazepine.
- A compound of formula (1) according to claim 1 wherein M1 is -CH2- and M2 is -CR²²R²³-; or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- A compound of formula (I) according to claim 1 wherein M1 is -CH2- and M2 is -NR²⁴-; or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- A compound of formula (I) according to claim 1 or 2 wherein R²² and R²³ are independently selected from hydrogen and hydroxy; or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- 5. A compound of formula (I) according to claim 1 or 3 wherein R²⁴ is hydrogen; or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- 6. A compound of formula (I) according to any one of claims 1-5 wherein R1 and R2 are C14alkyl; or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof
- 7. A compound of formula (I) according to any one of claims 1-6 wherein v is 0; or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.

- 63 -

- 8. A compound of formula (I) according to any one of claims 1-7 wherein R⁴ and R⁷ are hydrogen; or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- 9. A compound of formula (I) according to any one of claims 1-8 wherein the R⁵ or R⁶ not selected from a group of formula (IA) is hydrogen or methylthio; or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- 10. A compound of formula (I) according to any one of claims 1-9 wherein one of R^5 and R^6 is a group of formula (IA) (as depicted above); wherein:

Z is -O- or -S(O)_b-; wherein b is 0;

R⁸ is hydrogen;

R⁹ is hydrogen;

 R^{10} and R^{11} are independently selected from hydrogen or carbocyclyl; wherein R^{10} and R^{11} may be independently optionally substituted on carbon by one or more substituents selected from R^{28} :

R¹³ is a group of formula (IB) (as depicted above);

R¹⁴ is hydrogen;

R¹⁵ is hydrogen;

 R^{17} is C_{1-10} alkyl; wherein R^{17} may be optionally substituted on carbon by one or more substituents selected from R^{47} ; or R^{17} is a group of formula (IC) (as depicted above) wherein:

R¹⁸ is selected from hydrogen;

R¹⁹ is selected from hydrogen;

 R^{20} is C_{i-10} alkyl; wherein R^{20} may be independently optionally substituted on carbon by one or more R^{57} ;

p is 1;

q is 0;

r is 0;

m is 0:

n is 1;

z is 1; and

R²⁸, R⁴⁷ and R⁵⁷ are independently selected from halo and hydroxy or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.

- 64 -

```
11.
          A compound of formula (I) wherein:
         Mis-CH2-:
          M<sup>2</sup> is -CR<sup>22</sup>R<sup>23</sup>- and -NR<sup>24</sup>-:
          R<sup>22</sup> and R<sup>23</sup> are independently selected from hydrogen and hydroxy;
          One of R<sup>1</sup> and R<sup>2</sup> is ethyl and the other is butyl;
          R<sup>4</sup> and R<sup>7</sup> are hydrogen:
          One of R<sup>5</sup> or R<sup>6</sup> is selected from a group of formula (IA) (as depicted above) and the
other is hydrogen or methylthio;
          Z is -O- or -S(O)<sub>b</sub>-; wherein b is 0;
          R<sup>8</sup> is hydrogen;
          R<sup>9</sup> is hydrogen:
          R<sup>10</sup> and R<sup>11</sup> are independently selected from hydrogen, 2-fluorophenyl or carbocyclyl;
         R<sup>13</sup> is a group of formula (1B) (as depicted above):
         R<sup>14</sup> is hydrogen;
          R<sup>15</sup> is hydrogen:
          R<sup>17</sup> is pentyl substituted by 5 hydroxy; or R<sup>17</sup> is a group of formula (IC) (as depicted
above) wherein:
         R<sup>18</sup> is selected from hydrogen;
         R<sup>19</sup> is selected from hydrogen:
         R<sup>20</sup> is pentyl substituted by 5 hydroxy:
         p is 1;
```

. .

q is 0;

r is 0;

m is 0;

n is 1; and

z is 1;

or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.

12. A compound of formula (I) selected from:

- 65 -

(+/-)-trans-1,1-dioxo-3-ethyl-3-butyl-5-phenyl-7-methylthio-8-(N-{(R)- α -[N-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,4-benzothiazepine;

(+/-)-trans-1,1-dioxo-3-ethyl-3-butyl-5-phenyl-7-methylthio-8-(N-{(R)- α -[N-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,4-benzothiazepine;

2,3,4,5,6-pentahydroxyhexyl)carbamoyl]-2-fluorobenzyl}carbamoylmethylthio)-2,3,4,5-tetrahydrobenzothiepine; or

1,1-dioxo-3-butyl-3-ethyl-4-hydroxy-5-phenyl-7- $(N-\{1-[N-(2-(S)-3-(R)-4-(R)-5-(R)-(R)-4-(R)-5-(R)-4-(R)-3-(R)-4-(R)-4-(R)-5-(R)-4-(R)-4-(R)-5-(R)-4-(R)-4-(R)-5-(R)-4-(R)-4-(R)-5-(R)-4-(R)-4-(R)-5-(R)-4-(R)-4-(R)-5-(R)-4-(R)-4-(R)-5-(R)-4-(R)-4-(R)-5-(R)-4-(R)-4-(R)-5-(R)-4-(R)-4-(R)-5-(R)-4-(R)-4-(R)-5-(R)-4-($

2,3,4,5,6-pentahydroxyhexyl)carbamoyl]-1-(cyclohexyl)methyl}carbamoylmethylthio)-2,3,4,5-tetrahydrobenzothiepine;

or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.

13. A process for preparing a compound of formula (I) or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in anyone of claims 1-12, which process (wherein variable groups are, unless otherwise specified, as defined in claim 1) comprises of:

Process 1): for compounds of formula (I) wherein Z is -O-,-NR^a or -S-; reacting a compound of formula (IIa) or (IIb):

with a compound of formula (III):

17818394121

GB0400695

100994 PCT Amended Claims

- 66 -

wherein L is a displaceable group;

Process 2): reacting an acid of formula (IVa) or (IVb):

or an activated derivative thereof; with an amine of formula (V):

(V);

Process 3): for compounds of formula (I) wherein R¹³ is a group of formula (IB); reacting an acid of formula (VIa):

HO
$$\begin{array}{c|c}
R^{12} & R^{12} & R^{6} & R^{7} & O & O \\
R^{13} & R^{11} & R^{9} & R^{8} & R^{6} & R^{7} & O & O \\
R^{13} & R^{11} & R^{11} & R^{12} & R^{2} & R$$

or (VIb):

- 67 -

HO
$$R^{12}$$
 R^{11}
 R^{9}
 R^{8}
 R^{7}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{2}
 R^{2}
 R^{4}
 R^{2}

(VIb)

with an amine of formula:

(VI)

Process 4): for compounds of formula (I) wherein R¹³ is a group of formula (IB) and R¹⁷ is a group of formula (IC); reacting an acid of formula (VIIIa):

$$HO \longrightarrow \begin{bmatrix} R & 16 & R & 15 & R^{12} & R^{12} & R^{13} & R^{9} & R^{8} & R^{6} & R^{7} & R^{12} & R^{13} & R^{14} & R^{14} & R^{10} & R^{10} & R^{14} & R^{14} & R^{10} & R^{10} & R^{14} & R^{14}$$

(VIIIa)

or (VIIIb)

- 68 -

(VIIIP)

or an activated derivative thereof; with an amine of formula (IX):

or

Process 5) for compounds of formula (I) wherein one of \mathbb{R}^5 and \mathbb{R}^6 are independently selected from C_{1-6} alkylthio optionally substituted on carbon by one or more \mathbb{R}^{25} ; reacting a compound of formula (Xa) or (Xb):

$$R^{6}$$
 R^{7}
 R^{1}
 R^{2}
 R^{4}
 R^{2}
 R^{3}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{5}
 R^{4}
 R^{5}
 R^{5

wherein L is a displaceable group; with a thiol of formula (XI):

R^m-H

(XI)

wherein R^m is C_{1-6} alkylthic optionally substituted on carbon by one or more R^{25} ; and thereafter if necessary or desirable:

i) converting a compound of the formula (I) into another compound of the formula (I);

- 69 -

- ii) removing any protecting groups;
- iii) forming a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug.
- 14. A compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 12 for use as a medicament.
- 15. A compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 12 for use in a method of prophylactic or therapeutic treatment of a warm-blooded animal, such as man.
- 16. The use of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 12 in the manufacture of a medicament for use in the production of an IBAT inhibitory effect in a warm-blooded animal, such as man.
- 17. A method for producing an IBAT inhibitory effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a produce thereof, as claimed in any one of claims 1 to 12.
- 18. A pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 12, in association with a pharmaceutically-acceptable diluent or carrier.
- 19. A combination comprising a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 12, and an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.

- 20. A combination comprising a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 12, and a bile acid binder.
- 21. A combination comprising a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 12, and an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and a bile acid binder.
- 22. A combination according to claim 19 or claim 21 wherein the HMG Co-A reductase inhibitor is atorvastatin, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a product thereof.
- 23. A combination according to claim 19 or claim 21 wherein the HMG Co-A reductase inhibitor is rosuvastatin, or a pharmaceutically acceptable salt thereof.
- 24. A combination comprising a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 12 and a PPAR alpha and/or gamma agonist, or a pharmaceutically acceptable salt thereof.
- 25. A composition according to claim 24 wherein the PPAR alpha and/or gamma agonist is (S)-2-ethoxy-3-[4-(2-{4-methanesulphonyloxyphenyl}ethoxy)phenyl]propanoic acid or a pharmaceutically acceptable salt thereof.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.