Алгебра. Практика. 2021-22

Занятие 1. 06.09.2022.

- **0.** Выполните деление: $\frac{2+1i}{1-2i}$.
- **1.** Решите квадратное уравнение: $x^2 4x + 5 = 0$.
- **2.** Найдите модуль и аргумент числа $-\sqrt{3} + i$.
- 3. Пусть $a = \cos(\frac{5\pi}{7}) + i\sin(\frac{5\pi}{7})$ и $b = \cos(\frac{4\pi}{7}) + i\sin(\frac{4\pi}{7})$.
- а) Найдите $(a+b)^4$.
- б) А потом все корни, скажем, 3 степени из (a + b).
- 4. Решите уравнение:
- a) $z^5 = \overline{z}$;
- $6) z^5 + \overline{z} = 0.$
- **5.** Комплексное число z таково, что $z+\frac{1}{z}=2\cos(\alpha)$ (где α известно). Найдите $z^n+\frac{1}{z^n}$.
- **6.** Пусть $z \in \mathbb{C}, z \neq -1, |z| = 1$. Докажите, что существует такое вещественное число t, что $z = \frac{1-ti}{1+ti}$.

Занятие 2. 13.09.2022.

- 1. Пусть $x + iy = (s + it)^n$. Докажите, что $x^2 + y^2 = (s^2 + t^2)^n$.
- 2. Найдите НОД и его линейное представление с помощью алгоритма Евклида:
- a) (2453, 2007);
- б) (2376, 702).
- **3.** Последовательность чисел Фибоначчи определяется соотношениями $F_1 = F_2 = 1$, $F_{n+2} = F_n + F_{n+1}$ при $n \ge 1$.
 - а) Найдите (F_n, F_{n+1}) .
 - б) Найдите линейное представление НОД (F_n, F_{n+1}) .
- **4.** Докажите, что все натуральные числа, имеющие нечетное число натуральных делителей это точные квадраты
- **5.** Пусть $\varphi(n)$ количество натуральных чисел от 1 до n, взаимно простых с n. Докажите, что $\varphi(n)$: 2 при n > 2.

Занятие 3. 20.09.2022.

- 1. Решите в целых числах уравнение.
- a) 258x 172y = 112;
- 6) 209x 513y = 76.
- **2.** Натуральное число n не имеет собственных делителей, больших 1 и не превосходящих \sqrt{n} . Докажите, что $n \in \mathbb{P}$.
 - **3.** Докажите, что простых чисел вида 4k-1 бесконечно много.
 - **4.** а) Верно ли, что $2\mathbb{Z}$ кольцо главных идеалов?
 - б) Опишите все идеалы в кольца $2\mathbb{Z}$.

Занятие 4. 27.09.2022.

- 1. Найдите вычет обратный 17 по модулю 336.
- **2.** Решите сравнение: Решите сравнение: $91x \equiv 154 \pmod{112}$.
- **3.** Докажите, что d(n) (количество натуральных делителей n) мультипликативна (то есть d(ab) = d(a)d(b) для взаимно простых натуральных a и b).
- **4.** Пусть $n \in \mathbb{N}$. Для $j \in \{0,1,2,3\}$ пусть $S_j(n) = C_n^j + C_n^{j+4} + \dots$ (сумма всех биномиальных коэффициентов с номерами, имеющими остаток j от деления на 4).
 - а) Докажите, что $S_0 S_2 = \text{Re}((1+i)^n)$.

б) Найдите S_0, S_1, S_2 и S_3 .

Занятие 5. 04.10.2022.

- 1. а) Решите систему сравнений
- a) $\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 4 \pmod{5} ; \\ x \equiv 1 \pmod{7} \end{cases}$ 6) $\begin{cases} x \equiv 1 \pmod{7} \\ x \equiv 37 \pmod{41} \\ x \equiv 7 \pmod{85} \end{cases}$
 - **2.** Докажите, что функция Мёбиуса μ мультипликативна.
 - **3.** Число $n \in \mathbb{N}$ имеет 15 натуральных делителей. Сколько простых делителей может иметь n?
 - **4.** а) Найдите сумму первообразных корней степени p из 1, где $p \in \mathbb{P}$.
 - б) Найдите сумму первообразных корней степени $p_1p_2\dots p_k$ из 1, где $p_1,p_2,\dots,p_k\in\mathbb{P}$ разные.

Занятие 6. 18.10.2022.

- **1.** Вещественные числа p, q таковы, что $x^4 + px + q : x^2 + 10x + 1$. Найдите p и q.
- **2.** С помощью алгоритма Евклида, найдите $(x^7 + x^2 + 1, x^{12} 1)$ и его линейное представление.
- **3.** При каких n многочлен $x^{n} 1$ делится на $x^{2} + x + 1$?
- **4.** Найдите все многочлены степени 3, дающие остаток 2x приделении на $(x-1)^2$ и остаток 3x при делении на $(x-2)^3$.

Занятие 7. 25.10.2022.

- **1.** Какую кратность корня 1 может иметь многочен $x^{2n} nx^{n+1} + nx^{n-1} 1$?
- **2.** Пусть n > m > 0, c > 0. Докажите, что многочлен $ax^n + bx^m + c$ не может иметь корня кратности 3 и более.
- **3.** Пусть $n_k > n_{k-1} > \ldots > n_0$. Докажите, что многочлен $a_k x^{n_k} + a_{k-1} x^{n_{k-1}} + \ldots + a_0 x^{n_0}$ не может иметь ненулевого корня кратности более k.
 - 4. Многочлен
 - a) $f(x) \in \mathbb{C}[x]$;
 - б) $f(x) \in K[x]$, где K поле

таков, что $f(x^n) : x - 1$. Докажите, что $f(x^n) : (x^n - 1)$.

Занятие 8. 01.11.2022.

1. Найдите интерподяционный многочлен по точкам:

$$x_0 = 1, x_1 = 2, x_2 = 3, x_3 = 4, x_4 = 5,$$

$$y_0 = 3, y_1 = -10, y_2 = 5, y_3 = 7, y_4 = 8.$$

2. Найдите интерполяционный многочлен по точкам:

$$x_0 = 1, x_1 = -1, x_2 = i, x_3 = -i,$$

$$y_0 = 3, y_1 = 4, y_2 = 1, y_3 = 1.$$

- **3.** Пусть $\alpha_1,\alpha_2,\alpha_3$ корни многочлена x^3+3x+1 . Вычислите а) $\frac{1}{(3-\alpha_1)}+\frac{1}{(3-\alpha_2)}+\frac{1}{(3-\alpha_3)}$, где $\alpha_1,\alpha_2,\alpha_3$ корни многочлена x^3+3x+1 . б) $\frac{1}{(3-\alpha_1)^2}+\frac{1}{(3-\alpha_2)^2}+\frac{1}{(3-\alpha_3)^2}$, где $\alpha_1,\alpha_2,\alpha_3$ корни многочлена x^3+3x+1 .
- **4.** Пусть $\varphi(t) = (t x_1) \dots (t x_n)$, числа x_1, \dots, x_n различны, n > 3. Найдите $\sum_{i=1}^{n} \frac{x_i}{\varphi'(x_i)}$.

Занятие 9. 08.11.2022.

- **1.** Разложите в сумму простейших в $\mathbb{C}(x)$ и в $\mathbb{R}(x)$:
- a) $\frac{x}{x^4-1}$;
- б) $\frac{x}{x^n-1}$, где $n \in \mathbb{N}$, $n \ge 1$.
- **2.** Разложите в сумму простейших $\frac{x^3}{(x^2-1)^2}$.
- **3.** а) Найдите многочлен деления круга $\Phi_p(t)$, где $p \in \mathbb{P}$.
- б) Найдите многочлен деления круга $\Phi_{n^k}(t)$, где $p \in \mathbb{P}$.

Занятие 10. 22.11.2022.

- 1. Решите квадратное сравнение $x^2 + 4x + 6 \equiv 0 \pmod{17}$.
- **2.** Найдите рациональные корни многочлена $2x^3 + 3x^2 + 6x 4$.
- **3.** Докажите, что уравнение $x^3 = 1$ в \mathbb{Z}_p имеет три решения при $p \equiv 1 \pmod 3$ и одно решение при $p \equiv 2 \pmod 3$.
 - **4.** Докажите, что существует бесконечно много простых чисел вида 4k+1.
- **5.** Многочлен $f \in \mathbb{R}[x]$ с $\deg(f) \leq n$ принимает целые значения в точках $k, k+1, \ldots, k+n$, где $k \in \mathbb{Z}$. Докажите, что $f(\mathbb{Z}) \subset \mathbb{Z}$.

Занятие 11. 29.11.2022.

- 1. Многочлен $f(x) \in \mathbb{Z}[x]$ таков, что f(1) = 111 и f(4) = 117. Докажите, что f не имеет \mathbb{Z} корней.
- **2.** Докажите, что многочлен $x^4 + 2x^2 + 3x + 1$ неприводим в $\mathbb{Z}[x]$.
- **3.** Даны различные целые числа a_1, \ldots, a_n . Докажите, что многочлен $f(x) = (x a_1) \ldots (x a_n) 1$ неприводим в $\mathbb{Z}[x]$
 - а) при нечетном n; б) при четном n.
 - **4.** Пусть $p \in \mathbb{P}$. Докажите, что многочлен $\Phi_p(x) = x^{p-1} + \ldots + x + 1$ неприводим в $\mathbb{Z}[x]$.

Занятие 12. 6.12.2021.

- **1.** Вектора x, y, z линейно независимы. Являются ли линейно независимыми следующие тройки векторов:
 - a) x + y, x + z, y + z;
 - б) x y, x z, y z?
- **2.** Какие из данных подпространств K^3 (где K- поле) являются линейными? А какие аффинными?
 - a) $\{(2z+2x,z+x,z-x): x,z\in K\}.$
 - $6) \quad \{(2z+2, z+x+3, z-x) : x, z \in K\}.$
- **3.** Пусть V_1, V_2, V_3 линейные подпространства линейного пространства V, причем V_1 подпространство V_3 . Докажите, что $(V_1 + V_2) \cap V_3 = V_1 + V_2 \cap V_3$.
- **4.** Пусть U, W аффинные подпространства линейного пространства V. Докажите, что U+W тоже аффинное подпространства V.
- **5.** Пусть W-k-мерное аффинное подпространство V (то есть W=U+a, где $a\in V$, а U- линейное подпространство размерности k).
 - а) Докажите, что в W любые k+2 вектора линейно зависимы.
 - а) Докажите, что при $W \neq U$ в W есть k+1 ЛНЗ вектор.

Занятие 13. 20.12.2021.

- 1. Пусть (G,\cdot) группа. Зададим операцию $*:G\times G\to G$ формулой $a*b:=b\cdot a$. Докажите, что (G,*) группа.
 - **2.** Докажите, что $\operatorname{ord}(\mathbf{g}) = \operatorname{ord}(\mathbf{g}^{-1})$ для любого элемента $g \in G$.
 - **3.** Группа G такова, что $a^2 = e$ для любого $a \in G$. Докажите, что G абелева.
- 4. Пусть G конечная группа, |G| четно. Докажите, что существует такой $a \in G$, что $a \neq e$ и $a^2 = e$.
 - **5.** Какие элементы C_n порождают ее при
 - a) $n \in \mathbb{P}$;
 - б) произвольном n?