Contents

1	Intro	oduzione alla probabilità	4
	1.1	Glossario	4
	1.2	Moda e Mediana	7
		1.2.1 Moda	7
		1.2.2 Mediana	7
	1.3	Media e Varianza Campionaria	8
		1.3.1 Media Campionaria	8
		1.3.2 Varianza Campionaria	8
	1.4	Disugaglianza di Chebyshev	g
	1.5	Percentile	10
	1.6	Insieme di dati Bivariati	10
		1.6.1 Coefficiente di correlazione campionario	10
	1.7	Permutazioni, Combinazioni e Disposizioni	11
		1.7.1 Permutazioni	11
		1.7.2 Combinazioni	11
		1.7.3 Disposizioni	12
	1.8	Probabilità condizionata	12
		1.8.1 Teorema di Bayes	13
	1.9	Operazioni e proprietà tra eventi	13
2	Vari	abile aleatorie	14
	2.1	Funzione di ripartizione (Tutte le variabili)	14
	2.2	Funzione di massa (Variabili discrete)	15
	2.3	Funzione della densità di probabilità (Variabili continue)	16
3	Fun	zioni a due variabili	18
	3.1	Funzione di ripartizione congiunta	18
	3.2	Funzione di massa congiunta	18

10	Mod	lelli di variabili aleatorie	47
9	Legg	ge debole dei grandi numeri	45
8	Funz 8.1 8.2	zione generatrice dei momenti Disugaglianza di Markov	40 41 42
7	Cova 7.1 7.2	Arianza Proprietà della covarianza	37 37 39
6	Devi	azione Standard	36
5	Varia 5.1	anza Costanti reali nella varianza	34 35
	4.6	Valore atteso della somma di due variabili	31
	4.4 4.5	Dimostrazioni	30 31
	4.3	Valore atteso di una funzione	28
	4.2	Funzione di densità (Continue)	28
4	Valo 4.1	re atteso Funzione di massa (Discrete)	27 27
	3.7	funzione di densità condizionata (Continue)	25
	3.6	funzione di massa condizionata (Discrete)	24
	3.5	Distribuzioni condizionate	24
	3.4	Variabili aleatorie indipendenti	21 21
	3.3	Funzione densità congiunta	20

	10.1	Bernoulli	47
	10.2	Binomiali	47
		10.2.1 Valore atteso e varianza di Binomiali	49
		10.2.2 Funzione di massa e di ripartizione di Binomiali	50
	10.3	Poisson	51
		10.3.1 Calcolo esplicito della distribuzione di Poisson	56
	10.4	Ipergeometriche	56
		10.4.1 Media e varianza delle ipergeometriche	57
		10.4.2 Relazioni tra Binomiali ed Ipergeometriche	58
	10.5	Uniformi	59
		10.5.1 Continue	59
		10.5.2 Discrete	61
	10.6	Normali o Gaussiane	61
	10.7	Esponenziali	68
	10.8	Processi stocastici (Poisson)	72
	10.9	Gamma	75
11	Dist	ribuzioni che derivano da quella normale	79
11			
		Chi-quadro	79
	11.2		81
	11.3	Distribuzione F	83
	11 4	Distribuzione logistica	84

1 Introduzione alla probabilità

1.1 Glossario

- Sistemi non deterministici → conoscendo i dati iniziali non possiamo determinare i dati finali
- ullet Incertezza degli eventi o la varianza degli eventi che possono succede
- ullet Rumore o possiamo misurare un evento solo approssimatamente
- Probabilità → la materia che studia i sistemi non deterministici
 - Frequestista → probabilità assegnata sulla base di più esperimenti ripetuti nella stessa condizioni
 - Soggettivista → non esiste un valore oggettivo ma ci si basa sulla fiducia e sull'incertezza che l'individuo ha riguardo l'occorrenza di un certo evento
- ullet Varianza o dispersione dei dati attorno al valore centrale / media / valore
- ullet Confidenza o intervallo che rappresenta una stima dei valori medi

- Frequenza
 - Frequenza assoluta o Numero di volte che si verifica un evento
 - Frequenza relativa \rightarrow Rapporto tra frequenza assoluta e il numero di prove/dati
- ullet Dataset o numero di dati a disposizione $D_n = \{x_1 \dots x_n\}$
- ullet Principio di enumerazione o Passare solo una volta da ogni elemento della raccolta
- Spazio esiti (s o Ω) o Tutti i possibili esiti di un evento o $Dado = \{1\dots 6\}$
- Spazio eventi (e) o Tutti i possibili risultati di un esperimento o $Dado = \{1||2\} \leftarrow$ che esca 1 oppure 2
- ullet Assioma o Tre assiomi fondamentali su cui si poggia la teoria del calcolo delle probabilità
 - 1' Assioma \to La probabilità di E è un numero reale **non negativo** $\mathbb{P}(E) \in \mathbb{R}, \mathbb{P}(E) \geq 0 \ \forall E \subseteq \Omega \ | \ 0 \leq P(E) \leq 1$

- 2' Assioma ightarrow Allo spazio degli esiti è sempre associato ad ${f 1}$ $\mathbb{P}(s)=1$
- 3' Assioma \to Per ogni coppia di eventi incompatibili $E_1, E_2 \subseteq \Omega$ la probabilità di $E_1 \cup E_2$ è uguale alla **somma della loro probabilità** $\mathbb{P}(E_1 \cup E_2) = \mathbb{P}(E_1) + \mathbb{P}(E_2)$

1.2 Moda e Mediana

1.2.1 Moda

Definizione: La moda è il valore che presenta la **massima frequenza** all'interno del dataset

Formula generica:

$$Moda
ightarrow v_i: f_i = max f_i egin{cases} ext{un solo valore} & extbf{Moda} \ ext{più di un valore} & extbf{Valori modali} \end{cases}$$

1.2.2 Mediana

Definizione: La mediana è il **valore centrale** all'interno del dataset (dati ordinati in ordine crescente/decresente)

Formula generica:

$$Mediana = \begin{cases} \text{n pari} & \frac{x_{\frac{n}{2}} + x_{\frac{n}{2}+1}}{2} \\ \text{n dispari} & x_{\left[\frac{n+1}{2}\right]} \leftarrow \text{Intero superiore (Ceil)} \end{cases}$$

Esempio:

$$D_n = \{$$
 28, 34, 51, 19, 62, 43, 29, 38, 45, 26, 49, 33 $\}$

Per la mediana è necessario ordinare i dati in ordine crescente:

$$D_n = \{ 19, 26, 28, 29, 33, 34, 38, 43, 45, 49, 51, 62 \}$$

$$\frac{x_{\frac{12}{2}} + x_{\frac{12}{2}+1}}{2} = \frac{x_6 + x_7}{2} = \frac{34 + 38}{2} = \frac{72}{2} = 36$$

Nota: quando si trova ad esempio x_6 bisogna andare a sostituire il valore con la posizione di ${\bf x}$

1.3 Media e Varianza Campionaria

1.3.1 Media Campionaria

Definizione: La media campionaria è la media degli elementi di un campione.

Formula generica:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

1.3.2 Varianza Campionaria

Definizione: La varianza campionaria è la **dispersione** degli elementi di un campione.

Formula generica:

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

Esempio: (Varianza e Media) $D_n = \{ 3, 4, 6, 7, 10 \}$

Media del campione:
$$\overline{X}=\frac{(\mathbf{3+4+6+7+10})}{\mathbf{5}}=\frac{30}{5}=6$$

Varianza campionaria:
$$s^2 = \frac{[(-3)^2 + (-2)^2 + 0^2 + 1^2 + 4^2]}{4} = 7.5$$

1.4 Disugaglianza di Chebyshev

FARE ESEMPIO

Definizione: Dice quanti dati di un campione cadono all'interno di un intervallo con centro la **media**

$$\forall k \geq 1 : k \in \mathbb{R}$$
$$(\overline{x} - k_s, \overline{x} + k_s) \longrightarrow S_k : [i : 1 \leq i \leq n, |x_i - \overline{x} < k_s|]$$

Generalizzando:

$$\begin{aligned} |x-\overline{x}| &< 5 \longrightarrow 68\% \\ |x-\overline{x}| &< 25 \longrightarrow 95\% \\ |x-\overline{x}| &< 35 \longrightarrow 99.7\% \end{aligned}$$

1.5 Percentile

Definizione: Il percentile è un indicatore che serve ad **indicare il valore minimo** sotto al quade ricade una **determinata percentuale** degli altri elementi sotto osservazione.

$$Valore egin{cases} \geq & {\sf k~\%~dati} \\ \leq & 100 - {\sf k~\%~dati} \end{cases}$$

Prima cosa da fare è ordinare i valori in ordine crescente Dove il secondo quartile è sempre uguale alla **mediana**

Esempio: $D_n = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8 \}$

1.6 Insieme di dati Bivariati

Definizione: è lo studio della relazione di due variabili.

Formula generica:

$$D_n: \{(X_1, Y_1)(X_2, Y_2) \dots (X_n, Y_n)\}$$

1.6.1 Coefficiente di correlazione campionario

Definizione: utilizzato per capire se esiste un legame **lineare** tra due serie di dati.

Formula generica:

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{(n-1)s_x s_y} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overleftarrow{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

1.7 Permutazioni, Combinazioni e Disposizioni

1.7.1 Permutazioni

Definizione: Modi possibili per sistemare n oggetti (0! = 1)

$$n! = n \cdot (n-1) \dots (n \cdot (n-1))$$

Esempio: Fattoriale di 6

$$6! = 6 \cdot (6-1) \cdot (6-2) \dots (6-5) = 720$$

1.7.2 Combinazioni

Definizione: Modi di disporre **k** elementi scelti da **n** elementi (l'ordine **non conta**)

$$\frac{n!}{k! \cdot (n-k)!} = \binom{n}{k}$$

Esempio: in una classe di 26 alunni si devono eleggere 2 rappresentanti

$$C_{n,k} = \frac{n!}{k! \cdot (n-k)!}$$

Sostituiamo n con 26 (numero di alunni) e k con 2 (numeri di rappresentanti)

$$C_{26,2} = \frac{26!}{2! \cdot (26-2)!} = \frac{26!}{2! \cdot 24!} = \frac{25 \cdot 26}{2} =$$
325

è possibile anche semplificare i fattoriali come in questo caso

1.7.3 Disposizioni

Definizione: Modi di disporre k elementi scelti da n elementi (l'ordine conta)

$$\frac{n!}{(n-k)!}$$

Esempio: Quante parole is possono ottenere usando 4 diverse lettere da *youmath* In questo caso dobbiamo contare le disposizioni senza ripetizione di classe 4 di 7

$$D_{7,4} = \frac{7!}{(7-4)!} = \frac{7!}{3!} = \frac{5040}{6} = 840$$

1.8 Probabilità condizionata

Definizione: è la probabilità che succeda un evento E dato un evento F

$$P(E|F) = \frac{P(E|F)}{P(F)}$$

Esempio: 3 scatole con contenuto nascosto dove in una è presente il premio

$$P(Vincita) = \frac{1}{3}$$

 $P(Vincita|1' \text{ pacco contiene un gatto}) = \frac{1}{2}$

 $P(Vincita|1' \text{ pacco } \mathbf{NON} \text{ contiene un } \mathbf{gatto}) = 0$

1.8.1 Teorema di Bayes

Formula generica:

$$P(F_j|E) = \frac{P(F_j \cap E)}{P(E)} = \frac{P(E|F_j) \cdot P(F_j)}{\sum_{i=1}^{p} P(E|F_i) \cdot P(F_i)}$$

Probablità di F_j sapendo che si sia verificato l'evento ${f E}$

1.9 Operazioni e proprietà tra eventi

Definizione: Prendiamo come esempio E ed F come eventi

- $E \cup F \leftarrow$ Unione
- $E \cap F \leftarrow$ Intersezione
- $E \subset F \mid E \subset F \longleftarrow$ Contenuto
- $\bullet \ E \supset F \mid E \supseteq F \longleftarrow Contiene$
- $E^c \leftarrow$ Complemento

Le seguenti operazioni possono essere combinate tra di loro: formando cosi le proprietà che seguono:

- $E \cup (F \cup G) = (E \cup F) \cup G \longrightarrow \mathsf{Associativa}$ unione
- $(E \cup F) \cap G = (E \cap G) \cup (F \cup G) \longrightarrow \mathsf{Distributiva}$ intersezione
- $E \cap (F \cap G) = (E \cap F) \cap G \longrightarrow \mathsf{Associativa}$ intersezione
- $(E \cap F) \cup G = (E \cup G) \cap (F \cup G) \longrightarrow \mathsf{Distributiva}$ unione
- $(E \cup F)^c = \frac{E^c \cap F^c}{(E \cap F)^c} = E^c \cup F^c$

2 Variabile aleatorie

Definizione: La variabile aleatoria è una variabile che può assumere **valori diversi** in dipendenza da *qualche esperimento casuale*.

$$X \begin{cases} Discrete & {\sf Solo} \ {\sf valori} \ \ {\sf finiti} \\ Continue & {\sf Possono} \ {\sf assumere} \ {\sf range} \ {\sf illimitati} \end{cases}$$

2.1 Funzione di ripartizione (Tutte le variabili)

Definizione: La Probabilità che la variabile aleatoria X assuma un valore minore o ugu

Formula generica: $F(x) = P(X \le x)$

• F = funzione di ripartizione

- X = variabile aleatoria
- x = variabile normale

Esempio

$$P(a < X \le b)$$

$$P(X \le b) = P(X \le a) + P(a < X \le b)$$

$$P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$$

2.2 Funzione di massa (Variabili discrete)

Formula generica: p(a) = P(X = a)

se si ha la funzione di ripartizione è possibile ottenere la funzione di massa perche:

$$X \le a = \cup X_i$$

Formula generica:

$$F(x) = P(X \le a) = \sum_{x \le a} p(x_i)$$

TODO- GRAFICO

Esempio: variabile aleatoria X che può assumere valori 1, 2 o 3 Dato che p(1) + p(2) + p(3) = 1

Se:

$$p(1) = \frac{1}{2}$$

$$p(2) = \frac{1}{3}$$

Allora:

$$p(3) = \frac{1}{6}$$

La funzione di ripartizione F di X è data da:

$$F(a) = \begin{cases} 0 & a < 1 \\ \frac{1}{2} & 1 \le a < 2 \\ \frac{5}{6} & 2 \le a < 3 \\ 1 & 3 \le a \end{cases}$$

2.3 Funzione della densità di probabilità (Variabili continue)

Formula generica:

$$P(X \in B) = \int_{B} f(x) dx$$

$$P(X \in (-\infty, +\infty)) = \int_{-\infty}^{+\infty} f(x) dx = 1$$

integrando $-\infty$ a $+\infty$ la probabilità che avvenga x è per forza 1 perche andiamo ad includere tutti i valori di $\mathbb R$

Se abbiamo che
$$\mathbf{B}=[\mathbf{a},\ \mathbf{b}]\longrightarrow P(a\leq X\leq b)=\int_a^b f(x)\,dx$$
 Se abbiamo che $\mathbf{B}=[\mathbf{a}]\longrightarrow P(X=a)=\int_a^a f(x)\,dx=0$

Relazione che lega la funzione di ripartizione F alla densità f:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$$

Derivando entrambi i membri otteniamo che:

$$\frac{d}{da}F(a) = f(a)$$

Esempio: Sia assegnata una variabile aleatoria X con densità data da:

$$f(x) = \begin{cases} C(4x - 2x^2) & 0 < x < 2 \\ 0 & \text{altrimenti} \end{cases}$$

- (a) quanto vale C? (b) quanto vale P(X > 1)?
- (a) siccome f è una densita allora:

$$1 = C \int_0^2 (4x - 2x^2) dx$$
$$= C[2x^2 - \frac{2x^3}{3}] \Big|_{x=0}^{x=2} = C \cdot \frac{8}{3}$$
$$= C = \frac{3}{8}$$

(b) conoscendo ora la densità f possiamo trovare la P(X > 1):

$$P(X > 1) = \int_{1}^{\infty} f(x) dx = \frac{3}{8} \int_{1}^{2} (4x - 2x^{2}) dx = \frac{1}{2}$$

3 Funzioni a due variabili

Questo tipo di funzioni ci sono utili quando l'utilizzo di una sola variabile è impossibile poichè l'oggetto in questione è basato sulla relazione di due variabili aleatorie

3.1 Funzione di ripartizione congiunta

Definizione: Funzione di ripartizione a due variabili aleatorie X e Y

Formula generica:

$$F(x,y) = P(X \le x, Y \le y)$$

Se vogliamo trovare solamente la funzione di ripartizione di una singola variabile aleatoria:

$$F_X(x) = P(X \le x)$$

$$= P(X \le x, Y \le \infty)$$

$$= F(x, \infty)$$

Applicabile anche alla $F_y(y)$

$$F_Y(y) = F(\infty, y)$$

3.2 Funzione di massa congiunta

Definizione: Probabilita che accadano due eventi (X e Y) nello stesso istante.

Formula generica:

$$p(x_i, y_j) = P(X = x_i, Y = y_j)$$

Se vogliamo trovare solamente la funzione di massa di una singola variabile aleatoria:

$$\begin{aligned} p_X(x_i) &:= P(X = x_i) \\ &= P(\bigcup_j \{X = x_i, Y = y_j\}) \\ &= \sum_j P(X = x_i, Y = y_j) \\ &= \sum_j p(x_i, y_j) \end{aligned}$$

Applicabile anche alla p_Y

$$p_Y(y_j) = \sum_i p(x_i, y_j)$$

$$\sum_{x} \sum_{y} p(x, y) = 1$$

3.3 Funzione densità congiunta

Definizione: Due variabili aleatorie X e Y sono *congiuntamente continue* se esiste un funzione non negativa f(x,y) definita per tutti gli x e gli y

Formula generica:

$$P((X,Y) \in C) = \int \int_{(x,y) \in C} f(x,y) dx dy$$

se A e B sono sottoinsiemi qualsiasi di \mathbb{R} e $C := A \times B$

$$C := (x, y) \in \mathbb{R}^2 : x \in A, y \in B$$

Possiamo riscrivere la funzione di ripartizione congiunta di X e Y come segue:

$$F(a,b) = P(X \le a, Y \le b)$$

$$= P(X \in a, Y \in b)$$

$$= \int_{B} \int_{A} f(x,y) dx dy$$

$$= \int_{-\infty}^{a} \int_{-\infty}^{b} f(x,y) dx dy$$

Esempio: Siano X e Y due variabili aleatorie congiuntamente continue con densità di probabilità data da:

$$f(x,y) = \begin{cases} 2e^{-x}e^{-2y} & x > 0, y > 0\\ 0 & altrimenti \end{cases}$$

Si calcolino (a) P(X > 1, Y < 1)

$$P(X > 1, Y < 1) = \int_0^1 \int_1^\infty 2e^{-x}e^{-2y} dx dy$$

$$= \int_0^1 2e^{-2y} (\int_1^\infty e^{-x} dx) dy$$

$$= \int_0^1 2e^{-2y} \{-e^{-x}\}|_{x=1}^\infty dy$$

$$= e^{-1} \int_0^1 2e^{-2y} dy$$

$$= e^{-1} (1 - e^{-2})$$

In questo caso si è integrato prima in una variabile e poi nell'altra

3.4 Variabili aleatorie indipendenti

3.4.1 X,Y indipendenti

Definizione: Un evento su una variabile non influenza l'altra.

Formula generica: Se soddisfano questa richiesta le variabili si dicono *indipendenti*

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$

Usando gli assiomi della probabilità è possibile dimostrare che la definizione di sopra è equivalente a:

$$P(X \le a, Y \le b) = P(X \le a)P(Y \le b)$$

 $\forall a, b \in \mathbb{R}$

Ovvero che la funzione di ripartizione congiunta sia il prodotto delle marginali:

$$F(a,b) = F_X(a)F_Y(b)$$

Funzione di massa:

$$p(a,b) = p_X(a)p_Y(b)$$

$$P(X = a, Y = b) = P(X = a)P(Y = b)$$

Dimostrazione:

$$\begin{split} P(X \in A, Y \in B) &= \sum_{x \in A} \sum_{y \in B} p(x, y) \\ &= \sum_{x \in A} \sum_{y \in B} p_X(x) p_Y(y) \\ &= \sum_{x \in A} p_X(x) \sum_{y \in B} p_Y(y) \\ &= P(X \in A) P(Y \in B) \end{split}$$

Funzione di densità:

$$f(x,y) = f_X(x)f_Y(y)$$
$$\forall x, y \in \mathbb{R}$$

Esempio con variabili indipendenti continue e con stessa funzione di densità:

$$f_X(t) = f_Y(t) = \begin{cases} e^{-t} & t > 0\\ 0 & altrimenti \end{cases}$$

Quale è la densità di probabilità della variabile aleatoria data dal rapporto X/Y

$$F_{X|Y}(a) = P(X|Y \le a)$$

$$= \int_{(x,y)} \int_{x \le ay} f(x,y) \, dx \, dy$$

$$= \int_{(x,y)} \int_{x \le ay} f(x) f(y) \, dx \, dy$$

$$= \int_{0}^{\infty} \int_{0}^{ay} e^{-x} f(x) f(y) \, dx \, dy$$

$$= \int_{0}^{\infty} e^{-y} \left(\int_{0}^{ay} e^{-x} \right) \, dy$$

$$= \int_{0}^{\infty} e^{-y} (1 - e^{-ay}) \, dy$$

$$= \left[-e^{-y} + \frac{e^{-(a+1)y}}{(a+1)} \right]_{0}^{\infty}$$

$$= 1 - \frac{1}{a+1}$$

La funzione di densità si ricava infine derivando la funzione di ripartizione

$$f_{X|Y}(a) = \frac{d}{da}(1 - \frac{1}{a+1}) = \frac{1}{(a+1)^2}a > 0$$

3.5 Distribuzioni condizionate

Definizione: La distribuzione condizionata di Y dato X è la probabilità di X quando è conosciuto il valore assunto da X.

A ogni distribuzione condizionata è associato un valore atteso condizionato e una varianza condizionata

Formula generica: $P(E|F) = \frac{P(E \cap F)}{P(F)}$

3.6 funzione di massa condizionata (Discrete)

Formula generica:

$$\begin{split} p_{X|Y}(X|Y) &= P(X=x,Y=y) \\ &= \frac{P(X=x,Y=y)}{P(Y=y)} \\ &= \frac{p(X,Y)}{p_Y(x,y) > 0} \\ \forall x, \forall y \text{ con } p_Y(y) > 0 \end{split}$$

Se y non è un valore possibile di Y, ovvero se $\mathsf{P}(\mathsf{Y}=\mathsf{y})=\mathsf{0},$ la quantità $p_{X|Y}(x|y)$ non

Esempio: Siano X e Y due variabili aleatorie discrete con funzione di massa congiunta p dato che:

$$p(0,0) = 0.4$$
 $p(0,1) = 0.2$ $p(1,0) = 0.1$ $p(1,1) = 0.3$

Calcolare la massa di X condizionata da Y = 1

$$P(Y = 1) = \sum_{x} p(x, 1) = p(0, 1) + p(1, 1) = 0.5$$

Quindi:

$$P(X = 0|Y = 1) = \frac{p(0,1)}{P(Y = 1)} = \frac{2}{5}$$

$$P(X = 1|Y = 1) = \frac{p(1,1)}{P(Y = 1)} = \frac{3}{5}$$

Se X e Y sono variabili congiuntamente continue, non è possibile utilizzare la definizione di distribuzione condizionata valida per quelle discrete, infatti sappiamo che P(Y = y) = 0 per tutti i valori di y

3.7 funzione di densità condizionata (Continue)

Formula generica:

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

Se X e Y sono congiuntamente continue e A è un sottoinsieme di numeri reali per ogni y si può definire:

$$P(X \in A|Y = y) := \int_A f_{X|Y}(x|y) \, dx$$

Notiamo che X e Y sono indipendenti allora:

$$f_{X|Y}(x,y) = f_X(x) \qquad P(X \in A|Y = y) = P(X \in A)$$

Esempio: è data la seguente densità congiunta di X e Y

$$f(x,y) = \begin{cases} \frac{12}{5}x(2-x-y) & 0 < x < 1, 0 < y < 1\\ 0 & altrimenti \end{cases}$$

Si calcoli la densità condizionata di X rispetto a Y=y per 0 < y < 1. Se questi due numeri sono compresi tra 0 e 1 abbiamo che:

$$\begin{split} f_{X|Y}(x,y) &:= \frac{f(x,y)}{f_Y(y)} \\ &= \frac{f(x,y)}{\int_{-\infty}^{\infty} f(x',y) \, dx'} \\ &= \frac{x(2-x-y)}{\int_{0}^{1} x'(2-x'-y) \, dx'} \\ &= \frac{x(2-x-y)}{\frac{2}{3}-\frac{y}{2}} \\ &= \frac{6x(2-x-y)}{4-3y} \end{split}$$

4 Valore atteso

Definizione: Rappresenta la media pesata dei valori di una variabile aleatoria

4.1 Funzione di massa (Discrete)

$$\mathbb{E}[X] := \sum_{i} x_i P(X = x_i)$$

Si può dire quindi che il valore atteso è anche detto media di X oppure aspettazione

Esempio semplice: Se X è una variabile aleatoria con funzione di massa

$$p(0) = \frac{1}{2} = p(1)$$

Allora:

$$\mathbb{E}[X] = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{0+1}{2} = \frac{1}{2}$$

Esempio dado fair 6 facce $P(x_i=i)=\frac{1}{6}$

$$\mathbb{E}[X] = \sum_{i=1}^{6} i \frac{1}{6} = \frac{1}{6} \sum_{i=1}^{6} i = \frac{21}{6} = \frac{7}{2} = 3.5$$

Oppure:

$$\mathbb{E}[X] := 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = \frac{7}{2} = 3.5$$

dove il risultato è la media dei valori che X può assumere

Se N è molto grande allora $N_i \approx N_p(x_i)$

$$\sum_{i}^{n} x_{i} p(x_{i}) \approx \sum_{i}^{n} x_{i} \frac{n_{i}}{n}$$

4.2 Funzione di densità (Continue)

Formula generica:

$$\mathbb{E}[X] := \int_{-\infty}^{+\infty} x f(x) \, dx$$

Esempio: Siamo in attesa di una comunicazione che deve arrivare dopo le ore 17.

a partire dalle 17 è una variabile aleatoria con funzione di densità data da:

$$f(x) = \begin{cases} \frac{1}{1.5} & \text{se } 0 < \mathbf{x} < 1.5\\ 0 & \text{altrimenti} \end{cases}$$

Il valore atteso del tempo che trascorre tra le 17 e il momento di arrivo della comunicazione è quindi:

$$\mathbb{E}[X] = \int_0^{1.5} \frac{x}{1.5} \, dx = 0.75$$

4.3 Valore atteso di una funzione

Definizione: è possibile calcolare il valore atteso di una funzione g(X) notando che essa stessa è una variabile aleatoria

quindi si applicano le stesse proprietà, come segue:

Variabile discreta:

Variabile Continua:

$$\mathbb{E}[g(X)] = \sum_{i} g(x_i)p(x_i) \qquad \qquad \mathbb{E}[g(x)] = \int_{-\infty}^{+\infty} g(x)f(x) dx$$

Esempio (discrete): quanto vale il valore atteso del quadrato di una variabile X con le seguenti funzioni di massa?

$$p(0) = 0.2$$
 $p(1) = 0.5$ $p(2) = 0.3$

Se poniamo $Y:=X^2$ questa diventa una variabile che può assumere i valori 0^2 , 1^2 . 2^2

$$p_Y(0) := P(Y = 0^2) = 0.2$$

 $p_Y(1) := P(Y = 1^2) = 0.5$

 $p_Y(4) := P(Y = 2^2) = 0.3$

Quindi:

$$\mathbb{E}[X^2] = \mathbb{E}[Y] = 0 \cdot 0.2 + 1 \cdot 0.5 + 4 \cdot 0.3 = 1.7$$

Oppure (utilizzando la proposizione delle variabili discrete)

$$\mathbb{E}[X^2] = 0^2 \cdot 0.2 + 1^2 \cdot 0.5 + 2^2 \cdot 0.3 = 1.7$$

Esempio (continue): Il tempo – in ore – necessario per localizzare un guasto nell'impianto elettrico di una fabbrica è una variabile aleatoria X con funzione di densità

$$f(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \text{altrimenti} \end{cases}$$

Se il danno economico provocato da una interruzione di x ore è x^3 , qual è il valore atteso di questo costo?

Applicando la proposizione della variabile continua possiamo ottenere quanto segue:

$$\mathbb{E}[X^3] = \int_0^1 x^3 \, dx = \frac{1}{4}$$

4.4 Dimostrazioni

Sia per discreto che per continuo si applicano le seguenti proprietà:

$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$$

Se proviamo a ponere a = 0 scopriamo che:

$$\mathbb{E}[b] = b$$

Se proviamo a ponere b = 0 scopriamo che:

$$\mathbb{E}[aX] = a\mathbb{E}[X]$$

Ovvero, il valore atteso di un fattore costante moltiplicato per una variabile aleatoria, è pari alla costante per il valore atteso della variabile aleatoria.

Per caso discreto:

$$\mathbb{E}[aX + b] = \sum_{x} (ax + b)p(x)$$
$$= a\sum_{x} xp(x) + b\sum_{x} p(x)$$
$$= a\mathbb{E}[X] + b$$

Per caso continuo:

$$\begin{split} \mathbb{E}[aX+b] &= \int_{-\infty}^{+\infty} (ax+b) f(x) \, dx \\ &= a \int_{-\infty}^{+\infty} x f(x) \, dx + b \int_{-\infty}^{+\infty} f(x) \, dx \\ &= a \mathbb{E}[X] + b \end{split}$$

4.5 Momenti N-esimi nel valore atteso

Definizione: se n = 1,2 ... n, la quantità $\mathbb{E}[X^n]$ se esiste viene detta *momento* n-esimo della variabile aleatoria X.

è possibile applicare le formule di prima, come segue:

$$\mathbb{E}[X^n] = \begin{cases} \sum_x x^n p(x) & \text{se X è discreta} \\ \int_{-\infty}^{+\infty} x^n f(x) \, dx & \text{se X è continua} \end{cases}$$

4.6 Valore atteso della somma di due variabili

Definizione: è possibile applicare le formule viste sopra anche quando abbiamo due variabili aleatorie

se in questo caso $\mathbb{E}[g(X,Y)]$ esiste allora:

$$\mathbb{E}[g(X,Y)] = \begin{cases} \sum_x \sum_y g(x,y) p(x,y) & \text{Se discreto} \\ \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) \, dx \, dy & \text{Se continuo} \end{cases}$$

se g(X,Y) come $\boldsymbol{g} = \boldsymbol{X} + \boldsymbol{Y}$ allora

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

Dimostrazione caso discreto:

$$\begin{split} \mathbb{E}[X+Y] &= \sum_{x} \sum_{y} (x+y) p(x,y) \\ &= \sum_{x} x \cdot [\sum_{j} p(x_i,y_j)] + \sum_{x} y \cdot [\sum_{i} p(x_i,y_j)] \\ &= \sum_{x} x p_X(x) + \sum_{y} y p_Y(y) \\ &= \mathbb{E}[X] + \mathbb{E}[Y] \end{split}$$

Dimostrazione caso continuo:

$$\mathbb{E}[X+Y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x+y)f(x,y) \, dx \, dy$$

$$= \int_{-\infty}^{\infty} x \left[\int_{-\infty}^{\infty} f(x,y) \, dy \right] dx + \int_{-\infty}^{+\infty} y \left[\int_{-\infty}^{+\infty} f(x,y) \, dx \right] dy$$

$$= \int_{-\infty}^{\infty} x f_X(x) \, dx + \int_{-\infty}^{\infty} y f_Y(y) \, dy$$

$$= \mathbb{E}[X] + \mathbb{E}[Y]$$

è possibile applicare la ricorsione per il numero di variabili aleatori

$$\begin{split} \mathbb{E}[X+Y+Z] &= \mathbb{E}[(X+Y)+Z] \\ &= \mathbb{E}[X+Y] + \mathbb{E}[Z] \\ &= \mathbb{E}[X] + \mathbb{E}[Y] + \mathbb{E}[Z] \end{split}$$

In generale per ogni n

$$\mathbb{E}[X_1 + X_2 + \ldots + X_n] = \mathbb{E}[X_1] + \mathbb{E}[X_2] + \ldots \mathbb{E}[X_n]$$

Esempio: 2 dadi a 6 facce

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

$$= \sum_{i=1}^{6} x_i p(x_i) + \sum_{i=1}^{6} y_i p(y_i)$$

$$= \sum_{i=1}^{6} x_i \frac{1}{6} + \sum_{i=1}^{6} y_i \frac{1}{6}$$

$$= \frac{7}{2} + \frac{7}{2} = 7$$

Dove 7 è il valore atteso della somma dei due dadi.

Se vogliamo predire il valore di X possiamo scegliere un numero che sarà ugual ad X. L'errore che commeteremo sarà di $(X-c)^2$

Se $c=\mathbb{E}[X]$ l'errore sarà minimizzato $\mu:=\mathbb{E}[X]$

$$\mathbb{E}[(X-c)^2] \ge \mathbb{E}[(X-\mu)^2]$$

5 Varianza

Definizione: Indica di quanto i dati si discostano dalla media al quadrato

$$\mu = \mathbb{E}[X] \leftarrow \mathsf{Primo\ momento} \qquad \qquad \mathbb{E}[X^2] \leftarrow \mathsf{Momento\ secondo}$$

Formula generica:

$$Var(X) := \mathbb{E}[(X - \mu)^2]$$

Generalizzazione:

$$\begin{aligned} Var(X) &= \mathbb{E}[(X - \mu)^2] \\ &= \mathbb{E}[X^2 - 2\mu \cdot X + \mu^2] \\ &= \mathbb{E}[X^2] - 2\mu \cdot \mathbb{E}[X] + \mu^2 \\ &= \mathbb{E}[X^2] - \mu^2 \longrightarrow \mathbb{E}[X^2] - \mathbb{E}[X]^2 \end{aligned}$$

Esempio: Varianza di un dado

$$\mathbb{E}[X^2] = \sum_{1}^{6} i^2 P(X = i)$$

$$= 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{6} + 3^2 \cdot \frac{1}{6} + 4^2 \cdot \frac{1}{6} + 5^2 \cdot \frac{1}{6} + 6^2 \cdot \frac{1}{6}$$

$$= \frac{91}{6}$$

Sapendo che $\mathbb{E}[X] = \frac{7}{2}$

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{91}{6} - (\frac{7}{2})^2 = \frac{35}{12}$$

5.1 Costanti reali nella varianza

Una utile identità che riguarda la varianza è la seguente (per ogni coppia di costanti reali a e b)

$$Var(aX + b) = a^2 \cdot Var(X)$$

Per dimostrare ciò ricordiamoci sempre di $\mu := \mathbb{E}[X]$

Dimostrazione:

$$Var(aX + b) := \mathbb{E}[(aX + b - \mathbb{E}[aX + b])^2]$$

$$= \mathbb{E}[(aX + b - a\mu - b)^2]$$

$$= \mathbb{E}[a^2(X - \mu)^2]$$

$$= a^2\mathbb{E}[(X - \mu)^2]$$

$$= a^2Var(X)$$

Se sostituiamo i valori di a e b troviamo che:

SE $a=0 \longrightarrow Var(b)=0 \longrightarrow$ le costanti hanno varianza **nulla**

 $\mathsf{SE}\,a = 1 \longrightarrow Var(X+b) = Var(X) \longrightarrow \mathsf{sommando}$ una const. non cambia la varianza

SE $b = 0 \longrightarrow Var(aX) = a^2 \cdot Var(X)$

6 Deviazione Standard

Definizione: Indica di quanto dei dati si **discotastano dalla media** (non al quadrato)

Formula generica:

$$S = \sqrt{Var(X)}$$

$$Var(X + X) = Var(2 \cdot X) = 4 \cdot Var(X)$$

Se X è indipendente allora:

$$Var(X) + Var(X) = Var(X + X)$$

7 Covarianza

Definizione: Misura la variazione tra due variabili aleatorie associate tra di loro

Formula generica:

$$Cov(X,Y) := \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$$

Dove:

$$\mu_x = \mathbb{E}[X]$$
$$\mu_y = \mathbb{E}[Y]$$

La covarianza può essere negativa, positiva o nulla

Positivo --- Le due variabili crescono o decrescono insieme

Negativo → Quando una variabile cresce l'altra decresce

Nullo → Le due variabili sono indipendenti

è presente una formula alternativa **più semplice** (si trova espandendo il prodotto al secondo membro)

$$Cov(X,Y) = \mathbb{E}[XY - \mu_X Y - \mu_Y X + \mu_X \mu_Y]$$

$$= \mathbb{E}[XY] - \mu_X \mathbb{E}[Y] - \mu_Y \mathbb{E}[X] + \mu_X \mu_Y$$

$$= \mathbb{E}[XY] - \mu_X \mu_Y - \mu_X \mu_Y + \mu_X \mu_Y$$

$$= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

7.1 Proprietà della covarianza

$$Cov(X,Y) = Cov(Y,X) \longleftarrow \mathsf{Simmetria}$$

 $Cov(X,X) = Var(X) \longleftarrow$ Generalizzazione della varianza

$$Cov(X+Y,Z) = Cov(X,Z) + Cov(Y,Z)$$

$$Cov(X + Y, Z + W) = Cov(X, Z) + Cov(X, W) + Cov(Y, Z) + Cov(Y, W)$$

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

- Se $X_1 \dots X_n$ e Y sono variabili aleatorie qualsiasi allora:

$$Cov(\sum_{i=1}^{n} X_i, Y) = \sum_{i=1}^{n} Cov(X_i, Y)$$

- Se $X_1 \dots X_n$ e $Y_1 \dots Y_m$ sono variabili aleatorie qualsiasi allora:

$$Cov(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} Cov(X_i, Y_j)$$

Se X e Y sono variabili aleatorie indipendenti:

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

Questo implica che:

$$Cov(X,Y) = 0$$

Esempio: varianza della somma di 10 lanci indipendenti di un dado Denotiamo con X_i il punteggio del dado *i-esimo*, sappiamo che:

$$Var(\sum_{i=1}^{10} X_i) = \sum_{i=1}^{10} Var(X_i)$$
$$= 10 \cdot \frac{35}{12}$$
$$= \frac{175}{6}$$

7.2 Coefficiente di correlazione lineare

Definizione: numero puro che tiene conto della deviazione standard di X e Y

Formula generica:

$$Corr(X,Y) := \frac{Cov(X,Y)}{\sqrt{Var(X) \cdot Var(Y)}}$$

La correlazione può assumere valori compresi tra -1 e 1

- $-1 \longrightarrow Le$ due variabili sono inversamente proporzionali
- $\mathbf{0} \longrightarrow \mathsf{Le} \; \mathsf{due} \; \mathsf{variabili} \; \mathsf{sono} \; \mathsf{indipendenti}$
- $1 \longrightarrow \mathsf{Le} \; \mathsf{due} \; \mathsf{variabili} \; \mathsf{sono} \; \mathsf{crescono} \; \mathsf{o} \; \mathsf{decrescono} \; \mathsf{con} \; \mathsf{lo} \; \mathsf{stesso} \; \mathsf{rapporto}$

8 Funzione generatrice dei momenti

Definizione: Funzione che ci permette di calcolare i momenti della distribuzione.

Formula generica:

$$\phi(t) = \mathbb{E}[e^{tX}]$$

Dove X è una variabile aleatoria e t è un parametro reale

$$\phi(t) := \mathbb{E}[e^{tX}] = \begin{cases} \sum_x e^{tx} p(x) & \text{se X discreta} \\ \int_{-\infty}^{+\infty} e^{tx} f(x) \, dx & \text{se X continua} \end{cases}$$

Derivando la funzione si ottengono i momenti:

$$\phi'(t) = \frac{d}{dt} \mathbb{E}[e^{tX}] = \mathbb{E}[\frac{d}{dt}e^{tX}] = \mathbb{E}[Xe^{tX} \longrightarrow \phi'(0) = \mathbb{E}[X]]$$

Analogamente:

$$\phi''(t) = \frac{d^2}{dt^2} \mathbb{E}[e^{tX}] = \mathbb{E}[\frac{d^2}{dt^2} e^{tX}] = \mathbb{E}[X^2 e^{tX} \longrightarrow \phi''(0) = \mathbb{E}[X^2]]$$

Generalizzando:

$$\phi^{(n)}(0) = \mathbb{E}[X^n]$$

Media: $\mu_x = \phi'(0)$ Varianza: $\sigma_x^2 = \phi''(0) = \{\phi(0)'\}'$

Ipotizziamo: se X e Y sono indipendenti con ϕ_X e ϕ_Y e se ϕ_{X+Y} è la funzione generatrice dei momenti di X + Y allora:

$$\phi_{X+Y}(t) = \phi_X(t)\phi_Y(t)$$

Concludiamo che:

$$\phi_{X+Y}(t) := \mathbb{E}[e^{t(X+Y)}]$$

$$= \mathbb{E}[e^{tX}e^{tY}]$$

$$= \mathbb{E}[e^{tX}]\mathbb{E}[e^{tY}]$$

$$= \phi_X(t)\phi_Y(t)$$

8.1 Disugaglianza di Markov

Definizione: Ci permette di sapere la probabilità che una variabile assuma valori molto grandi

Serve per calcolare che una variabile aleatoria assuma un minimo di "a" $\longrightarrow a \in \mathbb{R}$

Solo per variabili positive: $X \in (0, +\infty)$

Formula generica:

$$P(X \ge a) \le \frac{\mathbb{E}[X]}{a}$$

Dimostrazione:

$$\mathbb{E}[X] := \int_0^{+\infty} x f(x) dx$$

$$= \int_0^a x f(x) dx + \int_a^{+\infty} x f(x) dx$$

$$\geq \int_a^{+\infty} x f(x) dx$$

$$\geq \int_a^{+\infty} a f(x) dx$$

$$= a \int_a^{+\infty} f(x) dx$$

$$= a P(X \geq a)$$

8.2 Disugaglianza di Chebyshev

Definizione: Ci permette di sapere la probabilità che una variabile si discosti dalla media per più di un certo numero di deviazioni standard.

Se
$$X$$
 var aleatoria $egin{cases} \mu & \mathsf{Media} \\ \sigma^2 & \mathsf{Varianza} \end{cases}$

Per ogni ${f r}>{f 0}$ \longrightarrow valore che indica il discostamento dalla media

Formula generica:

$$P(|X - \mu| \ge r) \le \frac{\sigma^2}{r^2}$$

Dimostrazione: Dimostriamo che:

$$\{|X - \mu| \ge r\}$$
 $\{(X - \mu)^2 \ge r^2\}$

Questi due eventi coincidono e quindi sono **equiprobabili** Sapendo per certo che $(X - \mu)^2$ è *non negativa* Possiamo applicare **Markov** con $a = r^2$ ottenendo:

$$P(|X - \mu| \ge r) = P((X - \mu)^2 \ge r^2)$$

 $\le \frac{\mathbb{E}[(X - \mu)^2]}{r^2} = \frac{\sigma^2}{r^2}$

La disuguaglianza di **Markov** e di **Chebyshev** servono per ottenere le stime di probabilità di eventi rari di variabili cui conosciamo solo la **media** e la **varianza**.

Postilla: in caso di *distribuzione nota* non c'è bisogno di utilizzare una di queste disuguaglianze.

Esempio: I numeri di pezzi prodotti in una settimana è una X di 50

- (a) Cosa si può dire sulla probabilità che la produzione superi i 75 pezzi (a)?
- **(b)** Se è nota anche la varianza pari a **25** cosa si può dire sulla probabilità che la produzione sia compresa tra i *40* e i *60* pezzi?
- (a) per la disuglianza di Markov

$$P(X \ge 75) \le \frac{\mathbb{E}[X]}{75} = \frac{50}{75} = \frac{2}{3}$$

(b) Applicando la disuguaglianza di Chebyshev

$$P(|X - 50| \ge 10) \le \frac{25}{10^2} = \frac{1}{4}$$

Quindi:

$$P(40 \le X \le 60) = P(|X - 50| \le 10) \ge 1 - \frac{1}{4} = \frac{3}{4}$$

Perciò la probabilità che la produzione sia compresa tra $40\,$ e i $60\,$ pezzi è almeno del $75\%\,$

9 Legge debole dei grandi numeri

Definizione: Dice che la probabilità che la differenza tra la media campionaria e il valore atteso superi una determinata soglia diventa sempre più piccola all'aumentare del numero di osservazioni

Definizione: Sia $X_1, X_2 \dots X_n$ una successione di variabili aleatorie tutte con la media $\mathbb{E}[X_i] =: \mu$ allora per ogni $\epsilon > 0$

Formula generica:

$$P(|\frac{X_1+\ldots+X_n}{n}-\mu|>\epsilon)\longrightarrow 0$$
 quando n $\longrightarrow \infty$

Dimostrazione: Proveremo a dimostrare con l'ipotesi che le X_i hanno varianza finita σ^2 abbiamo che:

$$\mathbb{E}[\frac{X_1+\ldots+X_n}{n}] = \mu \qquad \qquad Var(\frac{X_1+\ldots+X_n}{n}) = \frac{\sigma^2}{n}$$

La seconda si può trovare in questo modo:

$$Var(\frac{X_1 + \dots + X_n}{n}) = \frac{1}{n^2} Var(X_1 + \dots + X_n)$$
$$= \frac{Var(X_1) + \dots + Var(X_n)}{n^2}$$
$$= \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

Segue allora dalla disuguaglianza di *Chebyshev* applicata alla variabile aleatoria $(X_1 + \ldots + X_n)/n$ che:

$$P(|\frac{X_1 + \ldots + X_n}{n} - \mu| > \epsilon) \le \frac{\sigma^2}{n\epsilon^2}$$

Esempio: Supponiamo di ripetere in successione *molte copie indipendenti* di un esperimento ponendo:

$$X_i := \begin{cases} 1 & \text{se E si realizza nell'esperimento } \textit{i-esimo} \\ 0 & \text{se E non si realizza nell'esperimento } \textit{i-esimo} \end{cases}$$

La sommatoria $X_1 + X_2 + \ldots + X_n$ rappresenta il numero di prove tra le prime n poichè:

$$\mathbb{E}[X_i] = P(X_i = 1) = P(E)$$

si deduce che la frazione delle n prove nelle quali si realizza E, tende (nel senso della legge debole dei grandi numeri) alla probabilità P(E).

10 Modelli di variabili aleatorie

Definizione: Quelle che studieremo ora (porca madonna) sono dei modelli di variabili aleatorie caratterizzate dal fatto che vengono utilizzati da una vasta generalità dei campi applicativi nei quali compaiono e soprattutto usate in natura.

10.1 Bernoulli

Definizione: Una variabile X si dice bernoulliana se può essere solo 0 e 1

Formula generica:

$$P(X = 0) = 1 - p$$
$$P(X = 1) = p$$

Dove con p intendiamo un valore che dovrà essere $0 \le p \le 1$ Il suo valore atteso è dato da:

$$\mathbb{E}[X] := 1 \cdot P(X = 1) + 0 \cdot P(X = 0) = p$$

10.2 Binomiali

Definizione: Ipotizziamo che dobbiamo realizzare n ripetizioni di un esperimento Se X è il numero totale di successi e n il numero di ripetizioni di un esperimento si dice che abbiamo una *variabile aleatoria binomiale* di parametri (n, p).

La sua funzione di massa è data da:

$$P(X = i) = \binom{n}{i} p^{i} (1 - p)^{n-1}$$

$$i = 0, 1, \ldots, n$$

Dove (ricordiamo) che il coefficiente binomiale è:

$$\binom{n}{i} := \frac{n!}{i!(n-1)!}$$

Spiegazione: Per spiegare le equazioni di sopra dobbiamo fissare una sequenza di esiti con <math>i successi e n-1 fallimenti.

La probabilità che si verichi questa sequenza è appunto $p^i(1-p)^{n-1}$ Si continua quindi con il contare le sequenze di esiti con questa caratteristica $\binom{n}{i}$ Ad esempio, concludendo, per n=5 e i=2 ci sono $\binom{5}{2}=10$ scelte possibili.

Se prendiamo in esempio l'esito (f,s,f,s,f) vediamo che i **successi** si sono verificati nelle prove numero 2 e numero 4.

Ricordiamoci che la somma delle probabilità è pari a 1 tramite questa dimostrazione:

Dimostrazione:

$$\sum_{i} P(X=i) = \sum_{i=0}^{n} {n \choose i} p^{i} (1-p)^{n-1} = [p + (1-p)^{n}] = 1$$

Esempio: Se X è il numero di pezzi difettosi in 10 dischetti con X di parametri (10, 0.1) quanto è la probabilità che ne vengano ritornati esattamente **una** se ne vengono comprate **3**?

La probabilità che una scatola sia ritornata è pari a:

$$P(X > 1) = 1 - P(X = 0) - P(X = 1)$$

$$= 1 - \binom{10}{0} \cdot 0.01^{0} \cdot 0.99^{10} - \binom{10}{1} \cdot 0.01^{1} \cdot 0.99^{9} \approx 0.0043$$

Continuo: Ogni scatola viene resa con probabilità 0.43% Acquistandone quindi 3 scatole otteniamo una variabile di parametri (3, 0.0043) quindi:

 $\binom{3}{1} \cdot 0.0043^1 \cdot 0.9957^2 \approx 0.013$

10.2.1 Valore atteso e varianza di Binomiali

Definizione: La varianza di variabili aleatorie binomiali può essere vista come somma di bernoulliane.

Quindi se X è binomiale di parametri (n, p) si può scrivere nel seguente modo:

$$X = \sum_{i=1}^{n} X_i$$

Dove X_i è una funzione indicatrice del successo dell'*i-esimo* esperimento:

$$X_i := \begin{cases} 1 & \text{se la prova } \textit{i-esima} \text{ ha successo} \\ 0 & \text{altrimenti} \end{cases}$$

Per X tramite le proprietà di media e varianza otteniamo che:

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = np$$

$$Var(X) = \sum_{i=1}^{n} Var(X_i) = np(1-p)$$

10.2.2 Funzione di massa e di ripartizione di Binomiali

Definizione: Supponiamo che X sia binomiale sempre di parametri (n, p) possiamo calcolare la sua **funzione di ripartizione**

$$P(X \le i) = \sum_{k=0}^{i} \binom{n}{k} p^k (1-p)^{n-k} = \sum_{k=0}^{i} P(X = k)$$

$$i = 0, 1 \dots n$$

e la sua funzione di massa:

$$P(X=i) = \binom{n}{i} p^{i} (1-p)^{n-i}$$

è presente una relazione tra P(X=k+1) e P(K=k):

$$P(X = k + 1) = \frac{p}{1 - p} \frac{n - k}{k + 1} P(X = k)$$

$$= \frac{p}{1 - p} \frac{n - k}{k + 1}$$

$$= \frac{n!}{(n - k)! k!} P^{k+1} (1 - p)^{n - (k+1)}$$

$$= \binom{n}{k + 1} P^{k+1} (1 - p)^{n - (k+1)}$$

Esempio: Sia X una variabile aleatoria di parametri n=6 e p=0.4 Iniziando da $P(X=0)=0.6^6$ e applicando una ricorsione troviamo che:

$$P(X = 0) = 0.06^{6} \approx 0.0467$$

$$P(X = 1) = \frac{4}{6} \cdot \frac{6}{1} \cdot P(X = 0) \approx 0.1866$$

$$P(X = 2) = \frac{4}{6} \cdot \frac{5}{2} \cdot P(X = 1) \approx 0.3110$$

$$P(X = 3) = \frac{4}{6} \cdot \frac{4}{3} \cdot P(X = 2) \approx 0.2765$$

$$P(X = 4) = \frac{4}{6} \cdot \frac{3}{4} \cdot P(X = 3) \approx 0.1382$$

$$P(X = 5) = \frac{4}{6} \cdot \frac{2}{5} \cdot P(X = 4) \approx 0.0369$$

$$P(X = 6) = \frac{4}{6} \cdot \frac{1}{6} \cdot P(X = 5) \approx 0.0041$$

10.3 Poisson

Definizione: Una variabile aleatoria X che assume valori $X \in \{1,2,\dots n\}$ viene detta *poissoniana* di parametro $\lambda > 0$ Se la sua funzione di massa è data da:

$$P(X = i) = \frac{\lambda^{i}}{i!}e^{-\lambda}$$
$$i = 0, 1, 2, n$$

La funzione sopra è chiaro che rappresenta una funzione di massa accettabile, difatti:

$$\sum_{i=0}^{\infty} P(X=i) = e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^i}{i!} = e^{-\lambda} e^{\lambda} = 1 \leftarrow \text{sviluppo in serie}$$

Per determinare la **media** e la **varianza** dobbiamo prima calcolare la sua *funzione generatrice dei momenti*:

$$\phi(t) := \mathbb{E}[e^{tX}]$$

$$= \sum_{i=0}^{\infty} e^{ti} P(X = i)$$

$$= e^{-\lambda} \sum_{i=0}^{\infty} e^{ti} \frac{\lambda^i}{i!}$$

$$= e^{-\lambda} e^{\lambda e^t} = exp\{\lambda(e^t - 1)\}$$

Derivando troviamo che:

$$\phi'(t) = \lambda e^t exp\{\lambda(e^t - 1)\}$$

$$\phi''(t) = (\lambda e^t)^2 exp\{\lambda(e^t - 1)\} + \lambda e^t exp\{\lambda(e^t - 1)\}$$

Se valutiamo le due funzioni con il parametro $\mathbf{t}=\mathbf{0}$ ottieniamo che il $\mathbb{E}[X]$ e la Var(X) coincidono:

$$\mathbb{E}[X] = \phi'(0) = \lambda$$

$$Var(X) = \phi''(0) - \mathbb{E}[X]^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$$

La Poissoniana può essere usata come approsimazione di una binomiale di parametri (n, p) quando n è molto **grande** e p è molto **piccolo**. Per la dimostrazione poniamo $\lambda = np$:

$$P(X = i) = \frac{n!}{(n-i)!i!} p^{i} (1-p)^{n-i}$$

$$= \frac{n(n-1)\dots(n-i+1)}{i!} {\binom{\lambda}{n}}^{i} (1-\frac{\lambda}{n})^{n-1}$$

$$= \frac{n(n-1)\dots(n-i+1)}{n^{i}} \cdot \frac{\lambda^{i}}{i!} \cdot \frac{(1-\lambda/n)^{n}}{(1-\lambda/n)^{i}}$$

$$= P(X = i) \approx \frac{\lambda^{i}}{i!} e^{-\lambda}$$

Possiamo dire che l'approssimazione di poisson si può usare per:

- Il numero di persone all'interno di una categoria di persone, che superano i 100 anni di età.
- La quantità di numeri di telefono errati che vengono composti in una giornata.
- Il numero di clienti che entrano in un ufficio postale in un giorno.

Esempio: Se il numero medio di incidenti in un autostrada sia pari a **3**, quanto è la probabilità che la prossima settimana ci sia almeno un incidente?

(se denotiamo il numero di incidenti con X il numero di questi sarà approsimativamente distribuito con Poisson di media 3):

$$P(X \ge 1) = 1 - P(X = 0)$$
$$= 1 - \frac{3^0}{0!}e^{-3}$$
$$= 1 - e^{-3} \approx 0.9502$$

La distribuzione di Poisson è *riproducibile*, quindi la somma di due poissoniane è sempre una poissoniana.

Dimostrabile assegnando ai parametri X_1 e X_2 con parametri λ_1 λ_2 e calcolandone la **funzione generatrice dei momenti** della loro somma:

Dimostrazione:

$$\phi_{X_1+X_2}(t) = \phi_{X_1}(t)\phi_{X_2}(t)$$

= $exp\{\lambda_1(e^t - 1)\}exp\{\lambda_2(e^t - 1)\}$
= $exp\{(\lambda_1\lambda_2)(e^t - 1)\}$

Consideriamo N eventi in modo che $N=N_1+N_2$ con probabilità p e 1-p rispettivamente

Si può calcolare la funzione di massa di N_1 e N_2

$$P(N_1 = n, N_2 = m) = P(N_1 = n, N = n + m)$$

$$= P(N_1 = n | N = n + m)P(N = n + m)$$

$$= P(N_1 = n | N = n + m) \frac{\lambda^{n+m}}{(n+m)!} e^{-\lambda}$$

Condizionando al fatto che n+m eventi ciascuno ha probabilità p si scopre che ci siano esattamente n eventi di tipo 1, quindi una binomiale di parametri (n + m,p) Quindi otteniamo che:

$$P(N_1 = n, N_2 = m) = \binom{n+m}{n} p^n (1-p)^m \frac{\lambda^{n+m}}{(n+m)!} e^{-\lambda}$$

$$= \frac{(n+m)!}{n!m!} p^n (1-p)^m \frac{\lambda^{n+m}}{(n+m)!} e^{-\lambda}$$

$$= \frac{(\lambda p)^n}{n!} e^{-\lambda p} \frac{(\lambda (1-p))^m}{m!} e^{-\lambda (1-p)}$$

è possibile ora calcolare le **distribuzioni marginali** di N_1 e N_2 :

$$P(N_1 = n) = \sum_{m=0}^{\infty} P(N_1 = n, N_2 = m)$$

$$= \frac{(\lambda p)^n}{n!} e^{-\lambda p} \sum_{m=0}^{\infty} \frac{(\lambda (1-p))^m}{m!} e^{-\lambda (1-p)}$$

$$= \frac{(\lambda p)^n}{n!} e^{-\lambda p}$$

e analogamente:

$$P(N_2 = m) = \sum_{n=0}^{\infty} P(N_1 = n, N_2 = m) = \frac{(\lambda(1-p))^m}{m!} e^{-\lambda(1-p)}$$

Da queste equazioni segue che N_1 e N_2 sono variabili con distribuzione di Poisson di media λp e $\lambda(1-p)$ rispettivamente.

Definizione: Se N eventi sono classificati in 1,2, ..., r con probabilità $p_1,p_2,...p_r$ (con la loro somma = 1)

allora la quantità totale di eventi sono variabili di Poisson indipendenti di medie $\lambda p_1, \lambda p_2, ..., \lambda p_r$

10.3.1 Calcolo esplicito della distribuzione di Poisson

Definizione: Se X è una variabile aleatoria di Poisson di media λ allora:

$$\frac{P(X=i+1)}{P(X=i)} = \frac{\lambda^{i+1}e^{-\lambda}}{(i+1)!} \frac{i!}{\lambda^i e^{-\lambda}} = \frac{\lambda}{i+1}$$

Tramite questa formula possiamo ottenere anche:

$$P(X = i + 1) = \frac{\lambda}{i+1}P(X = i)$$

10.4 lpergeometriche

Definizione: Una variabile aleatoria X che ha come *massa di probabilità* si dice *ipergeometrica* di parametri N, M e n.

Introduzione: Una scatola contiene N batterie *accettabili* e M *difettose*. se si estraggono senza rimessa

e in maniera casuale n batterie, con **pari probabilità** a ciascuno degli $\binom{N+M}{n}$ sottoinsiemi.

Formula generica:

$$P(X = i) = \frac{\binom{N}{i} \binom{M}{n-i}}{\binom{N+M}{n}}$$
$$i = 0, 1 \dots n$$

Esempio: prendiamo a caso 6 componenti da una cassa di 20. un sistema funziona solamente se tra i 6 componenti non ci siano più di 2 componenti guasti. Se nella cassa ci sono **15** componenti buoni e **5** guasti, quanto è la probabilità che il sistema funzioni?

- Se indichiamo con X il numero di componenti funzionanti tra i 6 estratti, X è ipergeometrica di parametri 15, 5 e 6, quindi:

$$P(X \ge 4) = \sum_{i=4}^{6} P(X = i)$$

$$= \frac{\binom{15}{4}\binom{5}{2} + \binom{15}{5}\binom{5}{1} + \binom{15}{6}\binom{5}{0}}{\binom{20}{6}} \approx 0.8687$$

10.4.1 Media e varianza delle ipergeometriche

Per determinare la media e la varianza Estrazione solo una volta:

$$X_i := \begin{cases} 1 & \text{se la i-esima$ batteria estratta \`e accettabile} \\ 0 & \text{altrimenti} \end{cases}$$

Quindi:

$$P(X_i = 1) = \frac{N}{N+M}$$

Dimostrazione:

$$P(X_i = 1, X_j = 1) = P(X_j = 1 | X_i = 1)P(X_i = 1)$$
$$= \frac{N-1}{N+M-1} \cdot \frac{N}{N+M}$$

Ciascuna delle X_i è una bernoulliana quindi:

$$\mathbb{E}[X_i] = P(X_i = 1) = \frac{N}{N+M}$$

Utilizziamo il fatto che la X è la somme delle X_i per ottenere la **media**

$$\mathbb{E}[X] = \mathbb{E}[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} \mathbb{E}[X_i] = n \frac{N}{N + M + 1}$$

Riprendendo il discorso di prima la formula della varianza è la seguente:

$$Var(X_i) = P(X_i = 1)P(X_i = 0) = \frac{NM}{(N+M)^2}$$

Utilizziamo la formula per il calcolo della varianza della somma di variabili aleatorie:

$$Var(X) = \sum_{i=1}^{n} Var(X_i) + 2\sum_{j=2}^{n} \sum_{i < j} Cov(X_i, X_j)$$

$$Var(X) = np(1-p)[1 - \frac{n-1}{N+M-1}]$$

10.4.2 Relazioni tra Binomiali ed Ipergeometriche

Definizione: $\operatorname{per} N, M \longrightarrow \infty$ binomiale = $\operatorname{ipergeometrica}$

$$\operatorname{Se} egin{cases} N, M & \operatorname{Grande} \\ n & \operatorname{Piccolo} \end{cases}$$

Binomiale ≈ Ipergeometrica

Differenze la differenza principale tra i due modelli di variabili sta nel caso in esame

se l'estrazione o l'evento **non influenza** la probabilità dell'evento successivo (quindi quando la *probabilità* è uguale per ogni esperimento) allora si usa la **binomiale**.

Se però la probabilità cambia dopo ogni esperimento allora si usa una ipergeometrica

Nei casi però in cui gli *elementi estratti* sono pochi rispetto *all'insieme totale* una ipergeometrica si può **approssimare** con una binomiale.

Binomiale	lpergeometrica	Entrambe				
Se lanciamo 10 volte	Se abbiamo 10 biglie	Estrarre 10 biglietti vin-				
una <i>moneta</i> la binomiale		centi da 100				
rappresenta il numero di	Estrarre 3 biglie e con-	(20 vincenti e 80 per-				
volte che esce testa	tare quelle rosse.	denti)				

Nel caso di entrambe si può approssimare la ipergeometrica con una binomiale con prob. **0.2** e **10** estrazioni totali

10.5 Uniformi

10.5.1 Continue

Definizione: Una variabile aleatoria continua si dice *uniforme* sull'intervallo $[\alpha, \beta]$ se ha la seguente funzione di densità:

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{se } \alpha \le x \le \beta \\ 0 & \text{altrimenti} \end{cases}$$

Si nota che il grafico di una densità soddisfa le condizioni per essere una densità di probabilità:

$$\int_{-\infty}^{\infty} f(x) dx = \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} dx = 1$$

Se $[a,b]\subseteq [lpha,eta]$ possiamo ricavare la sua funzione di ripartizione:

$$P(a < X < b) = \frac{1}{\beta - \alpha} \int_{a}^{b} dx = \frac{b - a}{\beta - \alpha}$$

è possibile anche ricavare la media di una variabile aleatoria X su [lpha,eta]

$$\mathbb{E}[X] := \int_{\alpha}^{\beta} \frac{x \, dx}{\beta - \alpha}$$

$$= \frac{\beta^2 - \alpha^2}{2(\beta - \alpha)}$$

$$= \frac{(\beta - \alpha)(\beta + \alpha)}{2(\beta - \alpha)} = \frac{\alpha + \beta}{2}$$

e la varianza (se abbiamo il momento secondo):

$$Var(X) = \frac{\alpha^2 + \alpha\beta + \beta^2}{3} - (\frac{\alpha + \beta}{2})^2$$
$$= \frac{\alpha^2 - 2\alpha\beta + \beta^2}{12}$$
$$= \frac{(\beta - \alpha)^2}{12}$$

10.5.2 Discrete

Definizione: se p:

$$p(x) = \begin{cases} \frac{1}{\beta - \alpha + 1} & \text{se } \alpha \le x \le \beta & n = \beta - \alpha + 1 \\ 0 & \text{altrimenti} \end{cases}$$

Possiamo ricavare anche il valore atteso:

$$\mathbb{E}[X] = \frac{\beta + \alpha}{2}$$

E la sua varianza:

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{(\beta - \alpha + 1)^2 - 1}{12} = \frac{n^2 - 1}{12}$$

10.6 Normali o Gaussiane

Definizione: Una variabile aleatoria X si dice *normale* o *gaussiana* Di parametri μ e σ^2 .

Se X ha funzione di densità data da:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}$$

$$\forall x \in \mathbb{R}$$

La funzione generatrice dei momenti di una gaussiana (parametri μ, σ^2) si può dedurre da questa equazione:

$$\begin{split} \phi(t) &:= \mathbb{E}[e^{tX}] \\ &= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{tX} exp\{-\frac{(x-\mu)^2}{2\sigma^2}\} \, dx \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{t(\sigma y + \mu)} e^{\frac{-y^2}{2}} \, dy \\ &= \frac{e^{\mu t}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} exp\{\frac{2\sigma ty - y^2}{2}\} \, dy \\ &= exp\{\mu t + \frac{\sigma^2 t^2}{2}\} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} exp\{-\frac{(y-\sigma t)^2}{2}\} \, dy \\ &= exp\{\mu t + \frac{\sigma^2 t^2}{2}\} \end{split}$$

Se deriviamo tutto sto mappazzone otteniamo le seguenti derivate:

$$\phi'(t) = (\mu + \sigma^2 t) \exp\left\{\mu t + \frac{\sigma^2 t^2}{2}\right\}$$

$$\phi''(t) = \left[\sigma^2 + (\mu + \sigma^2 t)^2\right] \exp\left\{\mu t + \frac{\sigma^2 t^2}{2}\right\}$$
(1)

Come ci ricordiamo dalle seguenti funzione generatrici di momenti possiamo ricavarci il valore atteso e la varianza (in questo caso) di una gaussiana

$$\mathbb{E}[X] = \phi'(0) = \mu$$

$$\mathbb{E}[X^2] = \phi''(0) = \sigma^2 \mu^2$$

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \sigma^2$$

Cosi sappiamo che μ σ^2 rappresentano rispettivamente la *media* e la *varianza*

La trasformazione lineare di X (val. al. normale) è a sua volta una gaussiana:

Per
$$X \backsim \mathcal{N} \longrightarrow Y = \alpha X + \beta$$

 α, β costanti e $\alpha \neq 0$

Y viene detta variabile aleatoria *normale* con media $\alpha \mu + \beta$ e varianza $\alpha^2 \sigma^2$ Se $X \backsim \mathcal{N}(\mu, \sigma^2)$ allora:

$$Z := \frac{X - \mu}{\sigma}$$

variabile aletoria *normale* con media 0 e varianza 1 (anche detta **normale standard**)

La sua funzione di ripartizione (indicata con Φ) ha la seguente formula:

$$\Phi(x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy, \quad \forall x \in \mathbb{R}$$

 $\ \, \text{è uguale a dire } P(X \leq x) \\$

Se vogliamo trovare invece $P(X \leq b)$ (se e solo se:)

$$\frac{X - \mu}{\sigma} < \frac{b - \mu}{\sigma}$$

Formula generica: Cosi da avere:

$$P(X < b) = P(\frac{X - \mu}{\sigma} < \frac{b - \mu}{\sigma})$$
$$= P(Z < \frac{b - \mu}{\sigma})$$
$$=: \Phi(\frac{b - \mu}{\sigma})$$

Formula generica: Con queste due equazioni possiamo fare lo stesso per a < b:

$$P(a < X < b) = P(\frac{a - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{b - \mu}{\sigma})$$

$$= P(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma})$$

$$= P(Z < \frac{b - \mu}{\sigma}) - P(Z < \frac{a - \mu}{\sigma})$$

$$=: \Phi(\frac{b - \mu}{\sigma}) - \Phi(\frac{a - \mu}{\sigma})$$

In tutti i casi siamo arrivati sempre ad un $\Phi(x)$, per calcolare il valore effettivo c'è bisogno della tabella che segue qua sotto

Figure 1: Tabella di Φ

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5 <mark>27</mark> 9	.5319	.5359	
0.1	.5398	.5438	.5478	.5 <mark>51</mark> 7	.5557	.5596	.5636	.5 <mark>67</mark> 5	.5714	.5753	
0.2	.5793	.5832	.5871	.5 <mark>91</mark> 0	.5948	.5987	.6026	.6 <mark>06</mark> 4	.6103	.6141	
0.3	.6179	.6217	.6255	.6 <mark>29</mark> 3	.6331	.6368	.6406	.6 <mark>44</mark> 3	.6480	.6517	
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6 <mark>80</mark> 8	.6844	.6879	
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7 <mark>15</mark> 7	.7190	.7224	
0.6	.7257	.7291	.7324	.7 <mark>35</mark> 7	.7389	.7422	.7454	.7 <mark>48</mark> 6	.7517	.7549	
0.7	.7580	.7611	.7642	.7 <mark>67</mark> 3	.7704	.7734	.7764	.7 <mark>79</mark> 4	.7823	.7852	
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8 <mark>07</mark> 8	.8106	.8133	
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8 <mark>34</mark> 0	.8365	.8389	
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8 <mark>57</mark> 7	.8599	.8621	
1.1	.8643	.8665	.8686	.8 <mark>70</mark> 8	.8729	.8749	.8770	.8 <mark>79</mark> 0	.8810	.8830	
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015	
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9 <mark>14</mark> 7	.9162	.9177	
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9 <mark>29</mark> 2	.9306	.9319	
1.5	.9332	.9345	.9357	.9 <mark>37</mark> 0	.9382	.9394	.9406	.9 <mark>41</mark> 8	.9429	.9441	1
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9 <mark>52</mark> 5	.9535	.9545	
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633	
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706	
1.9	.9713	.9719	.9726	.9 <mark>73</mark> 2	.9738	.9744	.9750	.9756	.9761	.9767	اا
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817	
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857	
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890	
2.3	.9893	.9896	.9898	0.9901	.9904	.9906	.9909	.9911	.9913	.9916	
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936	
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952	
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964	
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974	
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981	
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986	
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990	
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993	
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995	
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997	
					7000	.9997	.9997	.9997	.9997	.9998	
3.4	.9997	.9997	.9997	.9997	.9997	.5551	.5551	.5551	.5551	.9998	
3.4	.9997	.9997	.9997	.9997	.9998	.9998	.9998	.9998	.9998	.9998	

Esempio: per trovare un valore se dobbiamo trovare $\Phi(1.77)$ cerco:

1.7 nelle *righe*

0.07 nelle colonne

 $\Phi(-x)$ è possibile trovare $\Phi(-x)$ usando la simmetria della distribuzione rispetto a 0.

$$\Phi(-x) = P(Z < -x)$$
= $P(Z > x)$
= $1 - P(Z < x) = 1 - \Phi(x)$

Esempio:

$$P(Z < -1) = \Phi(-1) = 1 - \Phi(1) \approx 1 - 0.8413 \approx 0.1587$$

Esempio: Sia X una variabile aleatoria normale media: $\mu = 3$, varianza: $\sigma^2 = 16$ Si trovino (a) P(X < 11); (b) P(X > -1) (c) P(2 < X < 7).

(a) Poniamo prima di tutto $Z:=(X-\mu)/\sigma$

$$P(X < 11) = P(\frac{X - 3}{4} < \frac{11 - 3}{4})$$
$$= P(Z < 2)$$
$$= \Phi(2) \approx 0.9972$$

(b) stesso ragionamento per b | (P > -1) |

$$P(X > 1) = P(\frac{X - 3}{4} < \frac{-1 - 3}{4})$$

$$= P(Z > -1)$$

$$= P(Z < 1)$$

$$= \Phi(1) \approx 0.8413$$

(c) stesso ragionamento per c |P(2 < X < 7)|

$$\begin{split} P(2 < X < 7) &= P(\frac{2-3}{4} < \frac{X-3}{4} < \frac{7-3}{4}) \\ &= P(-1/4 < Z < 1) \\ &= \Phi(1) - \Phi(-0.25) \\ &= \Phi(1) - 1 + \Phi(0.25) \approx 0.4400 \end{split}$$

Riproducibilità della distribuzione normale: Dove:

 $X_1, X_2 \dots X_n$ sono aleatorie normali e indipendenti, X_i ha media μ_i e varianza σ_i^2

La sua funzione generatrice di $\sum_{i=1}^{n} X_i$ è data da:

$$\phi(t) = E \left[\exp \left\{ tX_1 + tX_2 + \dots + tX_n \right\} \right]$$

$$= E \left[e^{tX_1} e^{tX_2} \dots e^{tX_n} \right]$$

$$= \prod_{i=1}^n E \left[e^{tX_i} \right]$$

$$= \prod_{i=1}^n \exp \left\{ \mu_i t + \frac{\sigma_i^2 t^2}{2} \right\}$$

$$= \exp \left\{ \bar{\mu} t + \frac{\bar{\sigma}^2 t^2}{2} \right\} \longrightarrow \mathcal{N}(\bar{\mu}, \bar{\sigma}^2)$$
(2)

Dove:

$$\overline{\mu} := \sum_{i=1}^{n} \mu_i \qquad \overline{\sigma}^2 := \sum_{i=1}^{n} \sigma_i^2$$

Semplificazione: Per ogni $\alpha \in (0,1)$ definiamo $\boldsymbol{z_a}$ in modo che:

$$P(Z > z_a) = 1 - \Phi(Z_a) = \alpha$$

Spieghiamo meglio se no non ci capiamo un cazzo.

Definiamo $z_a:=\Phi^{-1}(1-\alpha)$ in modo che la probabilità che una *normale standard* assuma un z_a esattamente ad α

Esempio

$$1 - \Phi(1.645) \approx 0.05$$
 $1 - \Phi(1.96) \approx 0.025$ $1 - \Phi(2.33) \approx 0.01$

Diventano uguali a:

$$z_{0.05} \approx (1.645)$$
 $z_{0.025} \approx (1.96)$ $z_{0.01} \approx (2.33)$

10.7 Esponenziali

Definizione: Una variabile aleatoria continua la cui funzione di densità è data da

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{se } x \ge 0\\ 0 & \text{se } x < 0 \end{cases}$$

per $\lambda > 0$ si dice *esponenziale* con parametro/intensità λ

Definizione: L'esponenziale rappresenta la durata di vita di un fenomeno.

Postilla: La λ rappresenta *il tasso di decadimento* della probabilità. Ovvero la **velocità** con cui la probabilità *diminuisce* al cresce del tempo. Più è grande λ più velocemente la probabilità diminuisce

La sua funzione di ripartizione è data da:

$$F(x) = P(X \le x)$$

$$= \int_0^x \lambda e^{-\lambda y} dy$$

$$= 1 - e^{-\lambda x} \quad x \ge 0$$

Come per gli altri modelli possiamo trovare la sua funzione generatrice dei momenti e di conseguenza i momenti e la varianza.

$$\phi(t) := E\left[e^{tX}\right]$$

$$= \int_{0}^{\infty} e^{tx} \lambda e^{-\lambda x} dx$$

$$= \lambda \int_{0}^{\infty} e^{-(\lambda - t)x} dx$$

$$= \frac{\lambda}{\lambda - t}, \quad t < \lambda$$
(3)

Derivando ϕ otteniamo $\phi'(t)$ e $\phi''(t)$:

$$\phi'(t) = \frac{\lambda}{(\lambda - t)^2}$$

$$\phi''(t) = \frac{2\lambda}{(\lambda - t)^3}$$

Ottenendo in questo modo i soliti valori attesi e la varianza:

$$\mathbb{E}[X] = \phi'(0) = \frac{1}{\lambda}$$

$$\mathbb{E}[X^2] = \phi''(0) = \frac{2}{\lambda^2}$$
$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{1}{\lambda^2}$$

Per una variabile aleatoria esponenziale λ è il *reciproco* del valore atteso e la varianza è il *quadrato* di quest'ultimo.

Definizione: La proprietà centrale della distribuzione esponenziale è la sua assenza di memoria

Spiegazione: spieghiamo meglio quello scritto prima.

La seguente proprietà ci dice che la probabilità che un evento che si verifichi in un certo lasso di tempo **non dipende** dal tempo trascorso fino a quel momento ma solo dal tempo trascorso a partire da quel momento.

In termini di formula riferendoci ad una variabile aleatoria X intendiamo che:

$$P(X>s+t|X>t) = P(X>s) \quad \forall s,t \ge 0$$

Esempio: il numero di miglia percorse da una macchina prima che la batteria si scarichi è di media 10.000 miglia

Se una persona fa un viaggio di 5.000 miglia

Quale è la probabilità che lo porti a termine senza dover sostituire la batteria? e se la distribuzione non è esponenziale?

- ricordandoci la proprietà di assenza di memoria della distribuzione esponenziale il tempo di vita residuo è esponenziale

con intensità $\lambda = 1/10$ e quindi la probabilità cercata è:

$$\begin{split} P(\text{vita residua} > 5) &= 1 - F(5) \\ &= e^{-5\lambda} \\ &= e^{-0.5} \approx 0.607 \end{split}$$

Se non avessimo saputo che la distribuzione è esponenziale, la probabilità sarebbe stata da questa equazione:

$$\begin{split} P(\text{vita residua} > 5) &= P(\text{vita totale} > t + 5 | \text{vita totale} > t) \\ &= \frac{1 - F(t + 5)}{1 - F(t)} \end{split}$$

Postilla: t è il numero di miglia della batteria fino al momento del viaggio Quindi senza l'informazione che la nostra distribuzione è esponenziale avremmo bisogno di ulteriori informazioni.

Proprietà con condizione in assenza di memoria:

$$\frac{P(X > s + t, X > t)}{P(X > t)} = P(X > s)$$

e quindi anche a:

$$P(X > s + t) = P(X > s)P(X > t)$$

Dimostrazione:

$$P(X > x) = e^{-\lambda x} \rightarrow e^{-\lambda(s+t)} = e^{-\lambda s}e^{-\lambda t}$$

Proposizione: se abbiamo $X_1, X_2, \dots X_n$ indipendenti di parametri $\lambda_1, \lambda_2, \dots \lambda_n$ La variabile aleatoria:

$$Y:=min(X_1,X_2,\ldots,X_n)$$
 è **esponenziale** di parametro $\sum_{i=1}^n \lambda_i$

Spiegazione: Basta dimostrare che $P(Y \le x) = 1 - exp\{-x\sum_{i=1}^n \lambda_i\}$ quindi che $P(Y > x) = exp\{-x\sum_{i=1}^n \lambda_i\}$ e ora la vera dimostrazione che tanto è inutile diomerda.

Dimostrazione:

$$P(Y > x) = P\left(\min\left(X_1, X_2, \dots, X_n\right) > x\right)$$

$$= P\left(X_1 > x, X_2 > x, \dots, X_n > x\right)$$

$$= \prod_{i=1}^{n} P\left(X_i > x\right) \quad \text{per l'indipendenza}$$

$$= \prod_{i=1}^{n} \left(1 - F_{X_i}(x)\right)$$

$$= \prod_{i=1}^{n} e^{-\lambda_i x}$$

$$= e^{-x \sum_{i=1}^{n} \lambda_i}$$

$$(4)$$

10.8 Processi stocastici (Poisson)

Definizione: Famiglia di variabili aleatorie parametrizzate da un indice (in questo caso t)

Definizione: Consideriamo una serie di eventi instantanei che avvengono però a intervalli di tempo **random**

Sia N(t) il numero di quanti eventi se ne sono verificati nell'intervallo [0,t] N(t) viene detto **processo di Poisson** di intensità $\lambda,\lambda>0$

Condizioni:

- 1. $N(0) = 0 \longrightarrow \text{si iniziano a contare gli eventi dal tempo } \mathbf{0}$
- 2. Il numero degli eventi che hanno luogo in intervalli di tempo disgiunti sono indipendenti. \rightarrow indipendenza degli incrementi \mid il numero di eventi fino al tempo t -> N(t) è indipendente dal numero di eventi tra il tempo t e il tempo t+s
- 3. La distribuzione del numero degli eventi in un dato intervallo di tempo dipende dalla **lunghezza** dell'intervallo \to stazionarietà degli incrementi | la distribuzione di N(t+s)-N(t) è **la stessa** per tutti i valori di t
- 4. $\lim_{h \to 0} \frac{P(N(h) = 1)}{h} = \lambda \to \text{Per un intervallo di tempo } \textit{molto piccolo} \text{ c'è una probabiltà di } \lambda_h \text{ che si } \textit{verifica un solo evento}$
- 5. $\lim_{h \to 0} \frac{P(N(h) \ge 2)}{h} = 0$ \to Per un intervallo di tempo *molto piccolo* c'è una probabiltà **nulla** che se ne verifichino due o più.

Con queste ipotesi qua di sopra è possibile dimostrare che il numero di eventi che si verificano in un qualsiasi intervallo di tempo t è una variabile aleatoria di Poisson di media λ_t .

Se n è grande:

$$P(N(t) = k) \approx P(k \text{ sottointervalli con 1 evento, n-k con 0 eventi})$$

Sempre per n grande, la condizione 4 e le condizioni 4 e 5 insieme implicano che:

$$P(1 \text{ evento in un sottointervallo fissato}) pprox rac{\lambda_t}{n}$$

$$P(0 \text{ eventi in un sottointervallo fissato}) \approx 1 - \frac{\lambda_t}{n}$$

Utilizzando l'indipendenza della condizione 2 (*indipendenza degli incrementi*) il numero totale di eventi è assimilabile ad una variabile aleatoria **binomiale**.

$$P(k \text{ sotto intervalli con } 1 \text{ evento, n - k con eventi}) \approx \binom{n}{k} (\frac{\lambda_t}{n})^k (1 - \frac{\lambda_t}{n})^{n-k}$$

Se n tende all'infinito può essere approssimata con Poisson media λ_t

$$P(N(t) = k) \approx \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

Proposizione Siano $X_1, X_2, \cdots X_n$ intervalli di tempo che intercorrono rispettivamente dal 1' al 2' al 3' ecc.

Esempio: $X_1 = 5$ e $X_2 = 8$ il primo evento avviene all'istante 5 e il secondo all'istante 13 (5+8)

Vogliamo determinare la distribuzioni delle X_i (ricordando che l'evento $\{X_1 > t\}$ si verifica se nell'intervallo [0, t] non si sono realizzati eventi) quindi:

$$P(X_1 > t) = P(N(t) = 0) = e^{\lambda t}$$

Questo significa che:

$$F_{X_1}(t) := P(X_1 \le t) = 1 - e^{-\lambda t}$$

 X_i è una variabile aleatoria *esponenziale* di intensità λ Per trovare X_2 si noti che qualunque valore s assuma la variabile aleatoria X_1 è data da:

$$\begin{split} P(X_2>t|X_1=s) &= P(0 \text{ eventi in}(s,s+t|X_1=s))\\ &= P(0 \text{ eventi in}(s,s+t)) \quad \text{per la condizione 2}\\ &= e^{-\lambda t} \end{split}$$

Questo prova che la variabile aleatoria X_1 è **esponenziale** e X_2 è esponenziale di intensità λ e **indipendente** da X_1

Proposizione: Le X_i sono tutte *variabili esponenziali* quindi i tempi che separano gli eventi di Poisson di intensità λ sono una *successioni di esponenziali indipendenti*

10.9 Gamma

Definizione: Una variabile aleatoria *continua* si dice distribuzione di *tipo gamma* di parametri (α, λ) con $\alpha > 0$ e $\lambda > 0$ la sua funzione di intensità è data da:

$$f(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} & \text{se } x > 0 \\ 0 & \text{se } x \le 0 \end{cases}$$

dove con Γ indichiamo la funzione gamma di Eulero, definita in modo da normalizzare l'integrale di f come segue:

$$\begin{split} \Gamma(\alpha) &:= \int_0^\infty \lambda^\alpha x^{\alpha-1} e^{-\lambda x} dx \\ &= \int_0^\infty y^{\alpha-1} e^{-y} dy \quad \text{ ponendo } y = \lambda x \end{split} \tag{5}$$

è possibile integrare per parti, se $\alpha > 1$ possiamo scrivere:

$$\int_{0}^{\infty} y^{\alpha - 1} e^{-y} dy = -y^{\alpha - 1} e^{-y} \Big|_{y=0}^{\infty} + \int_{0}^{\infty} (\alpha - 1) y^{\alpha - 2} e^{-y} dy$$

$$= (\alpha - 1) \int_{0}^{\infty} y^{\alpha - 2} e^{-y} dy$$
(6)

Dove il termine $-y^{a-1}e^{-y}\Big|_{y=0}^{\infty}$ è **nullo** perche $\alpha>1$ implica che $\lim_{y\to 0}y^{\alpha-1}=0$ Abbiamo dimostrato quindi che:

$$\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$$

La seguente proprietà ci permette di calcolare per induzione il valore che Γ assume

$$\Gamma(1) = \int_0^\infty e^{-y} \, dy = 1$$

e anche per una $n \geq 1$:

$$\Gamma(n) = (n-1)\Gamma(n-1)$$

$$= (n-1)(n-2)\Gamma(n-2)$$
...
$$= (n-1)!\Gamma(1)$$

Da cui possiamo dedurre che $\Gamma(n) = (n-1)!$

Possiamo ovviamente ottenere la funzione generatrice dei momenti dalla formula:

$$\phi(t) := E\left[e^{tX}\right]$$

$$= \int_{0}^{\infty} e^{tx} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} dx$$

$$= \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{\alpha-1} e^{-(\lambda-t)x} dx$$

$$= \left(\frac{\lambda}{\lambda - t}\right)^{\alpha} \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} y^{\alpha-1} e^{-y} dy$$

$$= \left(\frac{\lambda}{\lambda - t}\right)^{\alpha}$$

$$= \left(\frac{\lambda}{\lambda - t}\right)^{\alpha}$$
(7)

Ora deriviamo per ottenere $\phi'(t)$ e $\phi''(t)$:

$$\phi'(t) = \frac{\alpha \lambda^{\alpha}}{(\lambda - t)^{\alpha + 1}}$$

$$\phi''(t) = \frac{\alpha(\alpha+1)\lambda^{\alpha}}{(\lambda-t)^{\alpha+2}}$$

Ricordiamoci che è possibile ottenere dai momenti il valore atteso e la varianza:

$$\mathbb{E}[X] = \phi'(0) = \frac{\alpha}{\lambda}$$

$$\mathbb{E}[X^2] = \phi''(0) = \frac{\alpha(\alpha+1)}{\lambda^2}$$

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{\alpha}{\lambda^2}$$

Riproducibilità: Come altre distribuzioni fissando λ possiamo renderle **riproducibili**

Se X_1eX_2 sono variabili aleatorie gamma indipendenti, parametri (α_1, λ) e (α_2, λ) possiamo calcolare la funzione generatrice:

$$\phi(t) = \mathbb{E}[e^{t(X_1 + X_2)}]$$

$$= \mathbb{E}[e^{tX_1}e^{tX_2}]$$

$$= \mathbb{E}[e^{tX_1}]\mathbb{E}[e^{tX_2}]$$

$$= (\frac{\lambda}{\lambda - t})^{\alpha_1}(\frac{\lambda}{\lambda - t})^{\alpha_2}$$

$$= (\frac{\lambda}{\lambda - t})^{\alpha_1 + \alpha_2}$$

L'enunciato segue quindi che ϕ determina la distribuzione. è possibile ovviamente generalizzare alla **somma di due variabili aleatorie**

Proposizione gamma: Se $X_1, i=1,2,\ldots,n$ sono variabili indipendenti con parametri gamma $(\alpha_1+\alpha_2,\lambda)$ allora:

$$\sum_{i=1}^{n} X_i$$

è una gamma di parametri

$$\sum_{i=1}^{n} \alpha_i, \lambda$$

Proposizione esponenziali: Se $X_1, i = 1, 2, ..., n$ sono variabili aleatorie *esponenziali* di densità λ allora è una gamma di parametri (n, λ) :

$$\sum_{i=1}^{n} X_i$$

11 Distribuzioni che derivano da quella normale

11.1 Chi-quadro

Definizione: Se $Z_1, Z_2, \dots Z_n$ sono variabili aleatorie normali standard e indipendenti, la somma dei loro quadrati è:

$$X := Z_1^2 + Z_1^2 + \dots + Z_n^2$$

Definizione: Viene definita una distribuzione *CHI-QUADRO* quando abbiamo bisogno di valutare se una *differenza* tra più insiemi di dati è statisticamenente significativo, quindi per fare confronti, e la definiamo così:

$$X \sim \chi_n^2 \quad \chi = {
m chi-quadro}$$

Riproducibilità: La distribuzione è *riproducibile* dove X_1 e X_2 sono indipendenti con n_1 n_2 gradi di libertà

Per la distribuzione normale standard, se X è una chi-quadro con n gradi di liberta e α ($0 \le \alpha \le 1$) definiamo la quantità $\chi^2_{\alpha,n}$ tramite queste equazione:

$$P(X \ge \chi^2_{\alpha,n}) = \alpha$$

Esempio: Si determini $P(X \le 30)$ quando X è una aleatoria chi-quadro con **26** gradi di libertà (dal software):

$$P(X < 30) \approx 0.7325$$

Esempio 2: Si trova vale $\chi^2_{0.05,15}$ tra le tabelle

$$\chi^2_{0.05,15} \approx 24.996$$

Figure 2: Tabella di $\chi^2_{\alpha,n}$

Dove: n = gradi di libertà

se abbiamo

n = 10

 $\alpha = 0.05$

cerco:

10 nelle righe

0.05 nelle *colonne*

Trovo subito che $\chi^2 = 18.307$

11.2 Distribuzione T

Definizione: Se Z e C_n sono variabili indipendenti, con Z normale standard e C_n chi-quadro con n gradi di libertà la sua variabile aleatoria T_n è definita:

$$T_n := \frac{Z}{\sqrt{C_n/n}}$$

in questo caso si dice di avere una **distribuzione t** con n gradi di libertà, che denotiamo così:

$$C_n \sim X_n^2 \longrightarrow \frac{C_n}{n} = \frac{Z_1^2 + \ldots + Z_n^2}{n}$$

Se applichiamo *la legge dei grandi numeri* otteniamo che se n è grande C_n/n sarà molto vicina a $\mathbb{E}[Z_1^2]=1$

Dimostrazione di valore atteso e varianza di T_n che sono dati da:

$$\mathbb{E}[T_n] = 0 \quad n \ge 2$$

$$Var(T_n) = \frac{n}{n-2}$$
 $n \ge 3$

Se T_n è una t con n gradi di libertà e $\alpha \in (0,1)$ definiamo la quantità $t_{\alpha,n}$ in questo modo:

$$P(T_n \ge t_{\alpha,n}) = \alpha$$

è possibile applicare la simmetria:

$$\begin{split} \alpha &= P(-T_n \geq t_{\alpha,n}) \\ &= P(T_n \leq -t_{\alpha,n}) \\ &= 1 - P(T_n > -T_{\alpha,n}) \\ &= P(T_n \geq t_{\alpha,n}) = 1 - \alpha \end{split}$$

Da tutto questo otteniamo qunidi che:

$$-t_{\alpha,n} = t_{1-\alpha,n}$$

11.3 Distribuzione F

Formula generica:

$$F_{n,m} := \frac{C_n/n}{C_m/m}$$

Definizione: Se C_n e C_m sono aleatorie indipendenti, chi-quadro con n e m gradi di libertà

si dice di avere una $\emph{distribuzione}\ \emph{F}\ \text{con}\ n$ e m gradi di libertà

Per ogni $\alpha \in (0,1)$ possiamo definire la quantità $F_{\alpha,n,m}$ in modo:

$$P(F_{n,m} > F_{\alpha,n,m}) = \alpha$$

Se vogliamo trovare una $\alpha > 0.5$ possiamo ottenerla in questo modo:

$$\alpha = P\left(\frac{C_n/n}{C_m/m} > F_{\alpha,n,m}\right)$$

$$= P\left(\frac{C_m/m}{C_n/n} < \frac{1}{F_{\alpha,n,m}}\right)$$

$$= 1 - P\left(\frac{C_m/m}{C_n/n} \ge \frac{1}{F_{\alpha,n,m}}\right)$$

Facciamola più semplive vah:

$$P(\frac{C_m/m}{C_n/n} > \frac{1}{F_{\alpha,n,m}}) = 1 - \alpha$$

Per trovare invece $F_{1-\alpha,n,m}$ dobbiamo fare così:

$$P(\frac{C_m/m}{C_n/n} > \frac{1}{F_{\alpha,n,m}}) = 1 - \alpha$$

Osservando le due equazioni possiamo notare che:

$$\frac{1}{F_{\alpha,n,m}} = F_{1-\alpha,n,m}$$

Boh vabbe

Esempio: Determiniamo $P(F_{6,14} \le 1.5)$ Guardando il software si ottiene che la soluzione è **0.752**

11.4 Distribuzione logistica