

First-order (predicate) Logic

TRANSFORMATION OF NATURAL LANGUAGE SENTENCES INTO PREDICATE FORMULAS

- 1. All Computer Science (CS) students are smart.
- 2. **There is** someone who studies at Babes-Bolyai University (*BBU*) and is smart.
- 3. If x and y are nonnegative integers and x is greater than y, then x^2 is greater than y^2 .
- 4. In a plane if a line x is parallel to a constant line d then all the lines perpendicular to x are also perpendicular to d.
- 5. Every child loves anyone who gives the child any present.

The axioms that define the natural numbers


```
a<sub>1</sub>. Every natural number has a unique immediate successor.
     existence: (\forall x)(\exists y)equal(y, successor(x))
     unicity: (\forall x)(\forall y)(\forall z)(equal(y, successor(x)) \land equal(z, successor(x)) \rightarrow equal(y, z))
a2. The number 0 is not the immediate successor of a natural number.
        \neg (\exists x) equal(0, succesor(x))
a3. Every natural number, except 0, has a unique immediate predecessor.
     existence: (\forall x)(\exists y)(\neg equal(0,x) \land equal(y, predecessor(x)))
     unicity: (\forall x)(\forall y)(\forall z)(equal(y, predecessor(x)) \land equal(z, predecessor(x)) \rightarrow equal(y, z))
unary functions: successor, predecessor;
binary predicate: equal.
The predicate equal is defined by the following axioms:
        (\forall x) equal (x,x) - reflexivity
        (\forall x)(\forall y)(equal(x,y) \rightarrow equal(y,x)) - symmetry
        (\forall x)(\forall y)(\forall z)(equal(x,y) \land equal(y,z) \rightarrow equal(x,z)) - transitivity
The equality of the successors and the predecessors of two equal numbers:
          (\forall x)(\forall y)(equal(x,y) \rightarrow equal(successor(x), successor(y)))
          (\forall x)(\forall y)(equal(x,y) \rightarrow equal(predecessor(x), predecessor(v)))
```

AXIOMATIC SYSTEM OF PREDICATE LOGIC

$$Pr = (\Sigma_{Pr}, F_{Pr}, A_{Pr}, R_{Pr})$$

$$\Sigma_{\Pr} = Var \cup Const \cup (\bigcup_{j=1}^{n} F_j) \cup (\bigcup_{j=1}^{m} P_j) \cup Connectives \cup Quantifiers - vocabulary$$

- Var is the set of variable symbols $\{x, y, z, ...\}$;
- Const is the set of constants $\{a, b, c, ...\}$;
- $F_i = \{f \mid f : D^i \to D\}$ is the set of **function symbols** of arity "i"
- $P_i = \{p \mid p : D^i \rightarrow \{T, F\}\}\$ is the set of **predicate symbols** of arity "i"
- Connectives = $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$;
- Quantifiers = {∀(universal quantifier), ∃(existential quantifier)}
 - o ATOMS is the set of atomic formulas (atoms):
 - T,F ∈ ATOMS
 - if $P \in P_k$ and $t_1,...,t_k \in TERMS$ then $P(t_1,...,t_k) \in ATOMS$ examples: T, F, P(x, y, a), Q(f(x), a), R(a, g(f(x), y))
 - o Literal an atom or its negation.

examples:
$$P(f(x), a, y, g(x, b)), \neg Q(x, a, g(x))$$

AXIOMATIC SYSTEM (CONTD.)

M.Lupea

$$Pr = (\Sigma_{Pr}, F_{Pr}, A_{Pr}, R_{Pr})$$

- F_{Pr} is the set of well-formed formulas
- $A_{Pr} = \{A_1, A_2, A_3, A_4, A_5\}$ is the **set of axioms**
 - $A_1: U \to (V \to U)$
 - $A_2: ((U \to (V \to Z)) \to ((U \to V) \to (U \to Z))$
 - $A_3: (U \to V) \to (\neg V \to \neg U)$ (modus tollens)
 - $A_4: (\forall x)U(x) \to U(t)$, where t is a term.

(universal instantiation)

- $A_5: (U \to V(y)) \to (U \to (\forall x)V(x))$, where x is not free in U or V, y is free in V and does not appear in U.
- $R_{Pr} = \{mp, gen\}$ is the set of inference rules:
 - modus ponens symbolized as: $U, U \rightarrow V \mid_{mp} V$
 - universal generalization rule symbolized as: $U(x) \vdash_{gen} (\forall x) U(x)$, x is a free variable in U

OPEN VERSUS CLOSED FORMULAS

Definition:

- In a predicate formula the variables which are within the scope of a quantifier are called *bound variables*, all the others are called *free variables*.
- 2. A formula is called a *closed formula* if all its variables are bound.
- 3. If a formula contains at least one free variable, the *formula is open*.

Example:

- 1. The predicate formula $(\forall x)(\exists z)(P(x,z,a)\lor(\exists y)Q(x,f(y)))$ is closed
 - where: $x, y, z \in Var$, $a \in Const$, $f \in F_1$, $P \in P_3$, $Q \in P_2$.
 - all variables (x,y,z) are bound.
- **2.** The predicate formula $(\forall x)P(x,y) \land Q(z,a)$ is open,
 - where: $a \in Const$, $x, y, z \in Var$, $P, Q \in P_2$
 - the variables y and z are free,
 - x is a bound variable (within the scope of \forall)

DEDUCTION IN FIRST-ORDER LOGIC

Definition:

Let $U_1, U_2, ..., U_n, V$ be first-order formulas, $U_1, U_2, ..., U_n$ are the *hypotheses* (premises) and V is the conclusion. V is deducible (inferable, derivable) from $U_1, U_2, ..., U_n$, notation: $U_1, U_2, ..., U_n \vdash V$, if there exists a sequence of formulas $(f_1, f_2, ..., f_m)$ such that $f_m = V$ and $\forall i \in \{1, ..., m\}$ we have a) or b) or c) or d).

- a) $f_i \in A_{P_f}$ (axiom of predicate logic);
- b) $f_i \in \{U_1, U_2, ..., U_n\}$ (hypothesis formula);
- c) $f_{i_1}, f_{i_2} \mid \neg mp \ f_i$, $i_1 < i \ and \ i_2 < i$ (formula f_i is inferred, using modus ponens rule, from two formulas that exist in the sequence);
- d) $f_j \vdash_{gen} f_i$. j < i (formula f_i is obtained using the universal generalization rule from a formula that exists already in the sequence).

The sequence $(f_1, f_2, ..., f_m)$ is called the **deduction** of V from $U_1, U_2, ..., U_n$.

Definition:

A formula $U \in F_{Pr}$, such that $\varnothing \vdash U$ (notation: $\vdash U$) is called a *theorem*.

Remark: The theorems are the formulas deducible from the axioms, using modus ponens and the generalization rule.

	Inference rule
universal	$(\forall x)U(x)\vdash_{univ_inst}U(t)$,
instantiation	t is a term (variable or constant of the domain)
universal	$U(x) \vdash_{univ_gen} (\forall x) U(x)$,
generalization	x is a <i>free variable</i> in U
existential	$(\exists x)U(x) \vdash_{exist inst} U(c)$,
instantiation	c is a new constant of the domain
existential	$U(t) \vdash_{exist_gen} (\exists x) U(x)$,
generalization	t is a variable or a constant of the domain,
	the variable x must not appear free in U

EXAMPLE 1 – MODELING REASONING

Hypotheses:

 H_1 . All humming birds are richly colored.

 H_2 . No large birds live on honey.

 H_3 . Birds that do not live on honey are dull in color.

 H_4 . Piky is a hummingbird.

Conclusions:

 C_1 . There is a bird which lives on honey.

 C_2 . All hummingbirds are small.

Check whether the following deductions hold or not.

 $H_1, H_2, H_3, H_4 \vdash C_1$ and $H_1, H_2, H_3 \vdash C_2$.

EXAMPLE 1 –MODELING REASONING (contd.)

Hypotheses:

 H_1 . All hummingbirds are richly colored.

 H_2 . No large birds live on honey.

 H_3 . Birds that do not live on honey are dull in color.

 H_4 . Piky is a hummingbird.

Conclusions:

 C_1 . There is a bird which lives on honey.

 C_2 . All hummingbirds are small.

Check whether the following deductions hold or not.

$$H_1, H_2, H_3, H_4 \vdash C_1$$
 and $H_1, H_2, H_3 \vdash C_2$.

D is the domain (the universe of birds)

Piky is a constant of the universe.

unary predicate symbols: hb, rc, sb, lh.

First-order (predicate) formulas:

$$H_1: (\forall x)(hb(x) \rightarrow rc(x))$$

$$H_2: \neg(\exists x)(\neg sb(x) \land lh(x)) \equiv$$

 $\equiv (\forall x)(\neg sb(x) \rightarrow \neg lh(x))$

$$H_3: (\forall x)(\neg lh(x) \rightarrow \neg rc(x))$$

$$H_4$$
: $hb(Piky)$

$$C_1:(\exists x)lh(x)$$

$$C_2: (\forall x)(hb(x) \rightarrow sb(x))$$

$$hb: D \to \{T, F\}$$
, $hb(x) = T$ if x is a humming bird, $rc: D \to \{T, F\}$, $rc(x) = T$ if x is richly colored, $sb: D \to \{T, F\}$, $sb(x) = T$ if x is a small bird, $lh: D \to \{T, F\}$, $lh(x) = T$ if x lives on honey.

EXAMPLE 1 — BUILDING DEDUCTIONS (LECTURE)

Inference rules

$$(\forall x)U(x) \vdash_{univ inst} U(t)$$
,

t is a term (variable or constant of the domain)

$$U(x)|_{-univ \ gen} (\forall x)U(x),$$

x is a free variable in U

$$(\exists x)U(x)\vdash_{exist\ inst} U(c)$$
,

c is a new constant of the domain

$$U(t) \vdash_{exist_gen} (\exists x) U(x)$$
,

t is a variable or a constant of the domain

$$U,U \rightarrow V \mid_{mp} V \pmod{\text{modus ponens}}$$

$$U \rightarrow V, V \rightarrow Z \mid_{\text{syllogism}} U \rightarrow Z$$

$$U \rightarrow V \vdash_{mt} \neg V \rightarrow \neg U \pmod{\text{modus tollens}}$$

$$\neg V, U \rightarrow V \mid_{-mt} \neg U$$

First-order (predicate) formulas:

$$H_1: (\forall x)(hb(x) \rightarrow rc(x))$$

$$H_2: \neg(\exists x)(\neg sb(x) \land lh(x)) \equiv$$

 $\equiv (\forall x)(\neg sb(x) \rightarrow \neg lh(x))$

$$H_3: (\forall x)(\neg lh(x) \rightarrow \neg rc(x))$$

$$H_4$$
: $hb(Piky)$

$$C_1:(\exists x)lh(x)$$

$$C_2: (\forall x)(hb(x) \rightarrow sb(x))$$

Example 2

Using the definition of deduction and the inference rules prove that:

$$(\forall x)(\forall y)(P(x) \lor Q(y)), \neg(\forall z)P(z) | \neg(\exists t)Q(t)$$

The sequence $(f_1, f_2, f_3, f_4, f_5, f_6, f_7)$ of predicate formulas is generated.

$$f_1: (\forall x)(\forall y)(P(x) \vee Q(y))$$
 - hypothesis

$$f_2: \neg(\forall z)P(z) \equiv (\exists z)\neg P(z)$$
 - hypothesis

We have a universal formula (f_1) and an existential formula (f_2) . It is recommended to use first the *existential instantiation* inference rule that introduces a new constant, and then this constant will be used for *universal instantiations*.

$$f_2 \vdash_{exist inst} f_3 = \neg P(c)$$
, c is a new constant;

$$f_1 \vdash_{univ inst} f_4 = (\forall y)(P(c) \lor Q(y)),$$

the outermost universally quantified variable x was instantiated using the constant c;

$$f_4 \mid_{univ inst} f_5 = P(c) \lor Q(c)$$
,

the universally quantified variable y was instantiated using the constant c;

$$f_5 \equiv \neg P(c) \rightarrow Q(c)$$

 $f_3, f_5 \vdash_{mp} f_6 = Q(c), modus \text{ ponens was applied};$

$$f_6 \vdash_{exist_gen} f_7 = (\exists t)Q(t),$$

existential generalization was applied, t is a variable introduced by this inference rule;

 $(f_1, f_2, f_3, f_4, f_5, f_6, f_7)$ is the deduction (proof) of the conclusion f_7 from the hypotheses f_1 and f_2 .

EXAMPLE 3: SUCCESSION TO THE BRITISH THRONE

Hypotheses:

H1: If x is the king and y is his oldest son, then y can become the king.

H2: If x is the king and y defeats x, then y will become the king

H3: RichardIII is the king.

H4: HenryVII defeated RichardIII.

H5: HenryVIII is HenryVIII's oldest son.

Conclusion C: Can HenryVIII become the king?

EXAMPLE 3 (HOMEWORK) SUCCESSION TO THE BRITISH THRONE

Hypotheses:

H1: If x is the king and y is his oldest son, then y can become the king.

H2: If x is the king and y defeats x, then y will become the king

H3: RichardIII is the king.

H4: HenryVII defeated RichardIII.

H5: HenryVIII is HenryVIII's oldest son.

Conclusion C: Can HenryVIII become the king?

We transform the hypotheses and the conclusion into predicate formulas using:

variables: x,y,z,t

constants: RichardIII, HenryVII, HenryVIII

predicate symbols: unary: king, binary: oldest_son, defeats

H1: $(\forall x)(\forall y)$ $(king(x) \land oldest_son(y,x) \rightarrow king(y))$

 $H2: (\forall z)(\forall t) \ (king(z) \land defeats(t, z) \rightarrow king(t))$

H3: king(RichardIII)

H4: defeats(HenryVII, RichardIII)

H5: oldest_son(HenryVIII, HenryVIII)

C: king(HenryVIII)

Prove the deduction H1, H2, H3, H4, H5 |- C.

Theorems

Theorem of deduction:

If
$$U_1,...,U_{n-1},U_n \vdash V$$
, then $U_1,...,U_{n-1} \vdash U_n \to V$.

Reverse of the theorem of deduction:

If
$$U_1,...,U_{n-1} | -U_n \to V$$
 then $U_1,...,U_{n-1},U_n | -V$.

Refutation theorem:

If $U_1,...,U_{n-1},U_n \cup \{\neg V\}$ is inconsistent then $U_1,...,U_{n-1},U_n \vdash V$.

Note: The last theorem models "reductio ad absurdum principle" (proof by contradiction) and is used in proof methods such as:

- resolution,
- semantic tableaux method,

called refutation proof methods.

Example 4: Using the theorem of deduction, prove that the formula

$$(\forall x)(A(x) \to B(x)) \to ((\forall x)A(x) \to (\forall x)B(x))$$
 is a theorem.

Step1:

We apply the reverse of the theorem of deduction:

if
$$\vdash (\forall x)(A(x) \to B(x)) \to ((\forall x)A(x) \to (\forall x)B(x))$$

then
$$(\forall x)(A(x) \to B(x)) \vdash (\forall x)A(x) \to (\forall x)B(x)$$

then
$$(\forall x)(A(x) \rightarrow B(x)), (\forall x)A(x) \vdash (\forall x)B(x)$$
 (*)

Step3:

Using the deduction (*) proved at Step 2 we apply twice the theorem of deduction:

if
$$(\forall x)(A(x) \to B(x)), (\forall x)A(x)|-(\forall x)B(x)$$
 then $(\forall x)(A(x) \to B(x))|-(\forall x)A(x) \to (\forall x)B(x)$ then $|-(\forall x)(A(x) \to B(x)) \to ((\forall x)A(x) \to (\forall x)B(x))$

We have proved that the initial formula is a theorem.

Step2: We prove

$$(\forall x)(A(x) \rightarrow B(x)), (\forall x)A(x) \vdash (\forall x)B(x)$$
 (*)

using the definition of a deduction.

The sequence (f1, f2,..., f8) is generated:

f1:
$$(\forall x)(A(x) \rightarrow B(x))$$
 - hypothesis

f2:
$$(\forall x)(A(x) \rightarrow B(x)) \rightarrow (A(y) \rightarrow B(y))$$

-- axiom A4, x is instantiated with y

f1, f2
$$\vdash_{mp}$$
 f3 = $A(y) \rightarrow B(y)$

f4:
$$(\forall x)A(x)$$
 - hypothesis

f5:
$$(\forall x)A(x) \rightarrow A(y)$$
 --- axiom A4

$$f4, f5 \vdash_{mp} f6 = A(y)$$

f3, f6
$$\vdash_{mp}$$
 f7 = $B(y)$

$$f7 \vdash_{gen} f8 = (\forall x) B(x)$$

- The semantics of predicate logic realize the connection between the constant symbols, the function symbols, the predicate symbols and the real constants, functions, predicates from the modeled universe.
- It is provided a meaning in terms of the modeled universe for each formula from the language.

Definition:

An *interpretation* of predicate formula is a pair $I = \langle D, m \rangle$, where:

- D is a nonempty set called the domain of interpretation.
- *m* is a function that assigns:
 - a fixed value $m(c) \in D$ to the constant c.
 - a function $m(f): D^n \to D$ to each n-ary function symbol f;
 - a predicate $m(P): D^n \to \{T, F\}$ to each *n*-ary predicate symbol *P*.

Notations: Let $I = \langle D, m \rangle$ be an interpretation.

- | I | = D is the domain of I, Var is the set of variables.
- I | X | is m(X) where X is a predicate symbol or a function symbol.
- A_S(I) is the set of assignment functions for variables over the domain of I.
 a ∈ As(I), a: Var → | I |.
- $[a]_x = \{a' | a' \in As(I) \text{ and } a'(y) = a(y), \text{ for every } y \neq x\}$.

<u>Definition</u>: Let I be an interpretation and $a \in As(I)$. The evaluation function v_a^I is defined:

•
$$v_a^I(x) = a(x), x \in Var$$
; $v_a^I(c) = I \mid c \mid, c \in Const$;

•
$$v_a^I(f(t_1,t_2,...,t_n)=I \mid f \mid (v_a^I(t_1),v_a^I(t_2),...,v_a^I(t_n)), f \in F_n, n>0;$$

•
$$v_a^I(P(t_1,t_2,...,t_n) = I | P | (v_a^I(t_1),v_a^I(t_2),...,v_a^I(t_n)), P \in P_n, n > 0;$$

•
$$v_a^I(\neg A) = \neg v_a^I(A)$$
; $v_a^I(A \land B) = v_a^I(A) \land v_a^I(B)$;

•
$$v_a^I(A \lor B) = v_a^I(A) \lor v_a^I(B)$$
; $v_a^I(A \to B) = v_a^I(A) \to v_a^I(B)$;

- $v_a^I((\exists x)A(x)) = T$ if and only if $v_{a'}^I(A(x)) = T$ for a function $a' \in [a]_x$
- $v_a^I((\forall x)A(x)) = T$ if and only if $v_{a'}^I(A(x)) = T$ for any function $a' \in [a]_x$

Note: The evaluation of a closed formula U depends only on the interpretation, notation: $v^I(U)$

Definitions (semantic concepts)

- A formula A is satisfiable (consistent) if there is an interpretation I and an assignment function $a \in As(I)$ such that $v_a^I(A) = T$. Otherwise the formula is unsatisfiable (inconsistent).
- A formula A is true under the interpretation I if for any assignment function $a \in As(I)$, $v_a^I(A) = T$, notation: $\models_I A$, and I is called **model** of A.
- A formula A is false under the interpretation I if for any assignment function a ∈ As(I),
 v_a^I(A) = F, and I is called anti-model of A.
- A formula A is valid (tautology) if A is true under all possible interpretations, notation: $\models A$.
- The *formulas* A and B are *logically equivalent* if $v_a^I(A) = v_a^I(B)$ for any interpretation I and any assignment function a, notation: $A \equiv B$.
- A set of formulas S *logically implies* the formula V if all the models of the set S are also models of the formula V. We say that V is a *logical consequence* of the set S, notation: $S \models V$.
- A set of formulas is consistent if the conjunction of all its formulas has at least one model.
 A set of formulas is inconsistent if the conjunction of all its formulas does not have a model.

Example 5

Build a **model** and an **anti-model** for the closed predicate formula:

$$U = (\forall x)(P(x) \lor Q(x)) \to (\forall x)P(x) \lor (\forall x)Q(x).$$

Let us consider the **interpretation** $I_1 = \langle D_1, m \rangle$, where:

$$D_1 = \mathbf{N}$$
 (the set of natural numbers)

$$m(P): \mathbf{N} \to \{T, F\}, m(P)(x) = "x:2"$$

$$m(Q): \mathbb{N} \to \{T, F\}, m(Q)(x) = "x:3".$$

$$v^{I_{1}}(U) = v^{I_{1}}((\forall x)(P(x) \lor Q(x))) \rightarrow v^{I_{1}}((\forall x)P(x) \lor (\forall x)Q(x))$$

$$= v^{I_{1}}((\forall x)(P(x) \lor Q(x))) \rightarrow v^{I_{1}}((\forall x)P(x)) \lor v^{I_{1}}((\forall x)Q(x))$$

$$= (\forall x)_{x \in \mathbb{N}}(x : 2 \lor x : 3) \rightarrow (\forall x)_{x \in \mathbb{N}}(x : 2) \lor (\forall x)_{x \in \mathbb{N}}(x : 3)$$

$$= F \rightarrow F \lor F = F \rightarrow F = T$$

 $v^{I_1}(U) = T$, U is evaluated as true under the interpretation I_1 which is a **model** of U.

Example 5 (contd.)
$$U = (\forall x)(P(x) \lor Q(x)) \to (\forall x)P(x) \lor (\forall x)Q(x)$$

Let us consider the interpretation $I_2 = \langle D_2, m \rangle$, where:

 $D_2 = \{4, 9\}$ – the domain of interpretation; $m(P): \{4, 9\} \rightarrow \{T, F\}, m(P)(x) = x:2$ $m(Q): \{4, 9\} \rightarrow \{T, F\}, m(Q)(x) = x:3$.

To evaluate the formula U under the interpretation I_2 , with the finite domain $D_2 = \{4, 9\}$, the universally quantified subformulas are replaced by the conjunction of their instances for x = 4 and x = 9.

$$v^{I_{2}}(U) = v^{I_{2}}((\forall x)(P(x) \lor Q(x))) \rightarrow v^{I_{2}}((\forall x)P(x) \lor (\forall x)Q(x))$$

$$= v^{I_{2}}((\forall x)(P(x) \lor Q(x))) \rightarrow v^{I_{2}}((\forall x)P(x)) \lor v^{I_{2}}((\forall x)Q(x))$$

$$= (4 \vdots 2 \lor 4 \vdots 3) \land (9 \vdots 2 \lor 9 \vdots 3) \rightarrow (4 \vdots 2 \land 9 \vdots 2) \lor (4 \vdots 3 \land 9 \vdots 3)$$

$$= (T \lor F) \land (F \lor T) \rightarrow (T \land F) \lor (F \land T)$$

$$= T \land T \rightarrow F \lor F = T \rightarrow F = F$$

 I_2 evaluates the formula U as false, I_2 is an anti-model of U.

LOGICAL EQUIVALENCES IN PREDICATE LOGIC

Expansion laws

$$(\forall x)A(x) \equiv (\forall x)A(x) \land A(t)$$

- the universal quantifier is an infinitary conjunction

$$(\exists x) A(x) \equiv (\exists x) A(x) \vee A(t)$$

- the existential quantifier is a infinitary disjunction

DeMorgan infinitary laws

$$\neg(\exists x)A(x) \equiv (\forall x)\neg A(x)$$
 and $\neg(\forall x)A(x) \equiv (\exists x)\neg A(x)$

Quantifiers interchanging laws

$$(\exists x)(\exists y)A(x,y) \equiv (\exists y)(\exists x)A(x,y)$$
 and $(\forall x)(\forall y)A(x,y) \equiv (\forall y)(\forall x)A(x,y)$

Note:
$$(\exists x)(\forall y)B(x,y) \neq (\forall y)(\exists x)B(x,y)$$

Quantifiers of the same type commute, but quantifiers of different types do not commute.

Distributive laws

$$(\exists x)(A(x) \lor B(x)) \equiv (\exists x)A(x) \lor (\exists x)B(x)$$

distributivity of '∃' over '∨'

$$(\forall x)(A(x) \land B(x)) \equiv (\forall x)A(x) \land (\forall x)B(x)$$

distributivity of '∀ 'over '^'

Semi-distributivity of '∃' over '^':

$$= (\exists x)(A(x) \land B(x)) \rightarrow (\exists x)A(x) \land (\exists x)B(x)$$

$$| \neq (\exists x) A(x) \land (\exists x) B(x) \rightarrow (\exists x) (A(x) \land B(x))$$

<u>Semi-distributivity</u> of '∀' over '∨':

$$|=(\forall x)A(x)\vee(\forall x)B(x)\rightarrow(\forall x)(A(x)\vee B(x))$$

$$|\neq (\forall x)(A(x) \lor B(x)) \to (\forall x)A(x) \lor (\forall x)B(x))$$

<u>Semi-distributivity</u> of ' \exists ' over ' \rightarrow ':

$$= ((\exists x)A(x) \to (\exists x)B(x)) \to (\exists x)(A(x) \to B(x))$$
$$\neq (\exists x)(A(x) \to B(x)) \to ((\exists x)A(x) \to (\exists x)B(x))$$

<u>Semi-distributivity</u> of ' \forall ' over ' \rightarrow ':

$$= (\forall x)(A(x) \rightarrow B(x)) \rightarrow ((\forall x)A(x) \rightarrow (\forall x)B(x))$$

$$\neq ((\forall x)A(x) \to (\forall x)B(x)) \to (\forall x)(A(x) \to B(x))$$

EXTRACTION OF QUANTIFIERS

$$A \lor (\exists x) B(x) \equiv (\exists x) (A \lor B(x))$$
 $A \lor (\forall x) B(x) \equiv (\forall x) (A \lor B(x))$

$$A \wedge (\exists x) B(x) \equiv (\exists x) (A \wedge B(x))$$
 $A \wedge (\forall x) B(x) \equiv (\forall x) (A \wedge B(x))$

where A does not contain x as a free variable.

$$(\exists x) A(x) \lor B \equiv (\exists x) (A(x) \lor B) \qquad (\forall x) A(x) \lor B \equiv (\forall x) (A(x) \lor B)$$

$$(\exists x) A(x) \land B \equiv (\exists x) (A(x) \land B) \qquad (\forall x) A(x) \land B \equiv (\forall x) (A(x) \land B)$$

where B does not contain x as a free variable.

Example 6

Prove that the *universal* and *existential* quantifiers do not commute.

We have to prove that the logical equivalence:

$$(\exists x)(\forall y)L(x,y) \equiv (\forall y)(\exists x)L(x,y)$$
 does not hold.

We choose the interpretation $I = \langle D, m \rangle$, where:

- D is the set of all persons in the world
- $m(L): D \times D \rightarrow \{T, F\}, m(L)(x, y) = \text{''}x \ loves \ y''$

Under the interpretation I, the formula $U_1 = (\exists x)(\forall y)L(x,y)$ has the meaning: "There exists a person who loves all persons."

The formula $U_2 = (\forall y)(\exists x)L(x,y)$ has the meaning:

"All persons are loved by at least one person.", under the same interpretation I.

These two natural language statements are not equivalent, so $U_1 \not\equiv U_2$, but note that $U_1 \models U_2$.

PROPERTIES OF FIRST-ORDER LOGIC:

SOUNDNESS, COMPLETENESS, SEMI-DECIDABILITY

Theorem of soundness and completeness states the equivalence between the "logical consequence" concept and the "syntactic consequence" concept.

Let $U_1,...,U_{n-1},U_n,V$ be first-order formulas.

- completeness: if $U_1,...,U_{n-1},U_n \models V$ then $U_1,...,U_{n-1},U_n \models V$.
- soundness: if $U_1,...,U_{n-1},U_n \vdash V$ then $U_1,...,U_{n-1},U_n \models V$.

A particular case of this theorem is the following result:

"A formula is a tautology if and only if it is a theorem in first-order logic."

Theorem (Church 1936):

The problem of validity of a first-order formula is *undecidable*, but is *semi-decidable*. If a procedure *Proc* is used to check the validity of a first-order formula *U* we have the following cases:

- if U is a valid formula, then Proc ends with the corresponding answer.
- if the formula U is not valid, then Proc ends with the corresponding answer or Proc may never stop.