HW6

519021910711 罗哲文

请类比分析可见光照相机、X线机和伽马相机的成像原理,以及在仪器组成上的异同。

● 可见光照相机仪器组成

X线机

• 伽马相机

仪器	成像原理	仪器组成上的异	仪器组成上的同
可见光照相机	可见光照相机的镜头相当 于一个凸透镜,来自物体的 反射、散射 的可见光经过 照相机镜头的凸透镜后会 聚在胶片上,成倒立、缩小 的实像。	①光源来自成像物体本身对可见光的反射、散射,不需要发射装置; ②不存在转换装置,胶片感受可见光成像。 ③凸透镜汇聚物体散射在各个方向的光,得到成像物体的位置信	①都有机械辅助装置 ②都需要显示装置 (如:显示器、照片等) ③都有对光源敏感的 传感元件(可见光- 胶片、X射线-含磷材料、γ射线-闪烁晶 体)

		息。
X 线机	高速运动的电子轰击靶面后,释放的能量中1%转化为X射线,X射线在穿透人体组织器官时,人体组织器官的密度、厚薄都不相同,对X射线透射人体不同组织器官后的能量衰减不一,X射线透射后经过含磷材料转变为可见光,感光胶片可将透射后的X射线强度信息记录下来,形成图像。	①需要同时具有 X 射线的发射装置和接收装置。 ②仪器中有将 X 射线转化为可见光的含磷转换材料,胶片感受可见光成像。 ③成像的位置信息由发射装置与接收装置的相对位置决定。
伽马相机	人体特定组织内的同位素 衰变释放出伽马射线经过 准直器(尽可能多地通过 来自身体不同位置的相同 方向射线)后抵达闪烁晶 体,闪烁晶体将伽马射线 转化为荧光,随后经过光 电倍增管放大,通过电子 线路和计算机成像。	①光源来自放射性显像剂的 γ衰变, 无发射装置; ②仪器中有闪烁晶体(γ射线→可见光)、光电倍增管(光→电后,通过电子线路传导后计算机成像;30成像的位置信息由准直器应尽可能靠近人体,获得更多方向上发射的伽马射线。