1/1 point

1/1 point

1/1 point

1/1 point

1/1 point

1. In this quiz, you will practice changing from the standard basis to a basis consisting of orthogonal vectors.

Given vectors $\mathbf{v}=\begin{bmatrix}5\\-1\end{bmatrix}$, $\mathbf{b_1}=\begin{bmatrix}1\\1\end{bmatrix}$ and $\mathbf{b_2}=\begin{bmatrix}1\\-1\end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.

- \bigcirc $\mathbf{v_b} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$
- \bigcirc $\mathbf{v_b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$
- \bigcirc $\mathbf{v_b} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$
- \bullet $\mathbf{v_b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

 \bigodot correct $\label{eq:correct} \mbox{The vector } v \mbox{ is projected onto the two vectors } b_1 \mbox{ and } b_2.$

 $\textbf{2.} \quad \text{Given vectors } \textbf{v} = \begin{bmatrix} 10 \\ -5 \end{bmatrix}, \textbf{b}_1 = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \text{ and } \textbf{b}_2 = \begin{bmatrix} 4 \\ -3 \end{bmatrix} \text{ all written in the standard basis, what is } \textbf{v} \text{ in the basis defined by } \textbf{b}_1 \text{ and } \textbf{b}_2 \text{? You are given that } \textbf{b}_1 \text{ and } \textbf{b}_2 \text{ are orthogonal to each other.}$

 \bigcirc $\mathbf{v_b} = \begin{bmatrix} 2 \\ 11 \end{bmatrix}$

- $\bigcirc \quad \mathbf{v_b} = \begin{bmatrix} -2/5 \\ 11/5 \end{bmatrix}$
- \odot $\mathbf{v_b} = \begin{bmatrix} 2/5 \\ 11/5 \end{bmatrix}$

 \odot $\,$ correct $\,$ The vector v is projected onto the two vectors b_1 and b_2

 $\textbf{3.} \quad \text{Given vectors } \mathbf{v} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \mathbf{b_1} = \begin{bmatrix} -3 \\ 1 \end{bmatrix} \text{ and } \mathbf{b_2} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \text{ all written in the standard basis, what is } \mathbf{v} \text{ in the basis defined by } \mathbf{b_1} \text{ and } \mathbf{b_2} ? \text{ You are given that } \mathbf{b_1} \text{ and } \mathbf{b_2} \text{ are orthogonal to each other.}$

- $\mathbf{v_b} = \begin{bmatrix} -2/5 \\ 5/4 \end{bmatrix}$
- \bigcirc $\mathbf{v_b} = \begin{bmatrix} 5/4 \\ -5/2 \end{bmatrix}$
- $\bigcirc \quad \mathbf{v_b} = \begin{bmatrix} 2/5 \\ -4/5 \end{bmatrix}$

 \odot $\,$ correct $\,$ The vector v is projected onto the two vectors b_1 and b_2

4. Given vectors $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{b_2} = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$ and $\mathbf{b_3} = \begin{bmatrix} -1 \\ 2 \\ -5 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$, $\mathbf{b_2}$ and $\mathbf{b_3}$? You are given that $\mathbf{b_1}$, $\mathbf{b_2}$ and $\mathbf{b_3}$ are all pairwise or because the part of the pa

- $\bigcirc \qquad \mathbf{v_b} = \begin{bmatrix} -3/5 \\ -1/3 \\ 2/15 \end{bmatrix}$

 \odot correct $\label{eq:correct} \text{The vector } v \text{ is projected onto the vectors } b_1, b_2 \text{ and } b_3$

 $v_b = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$ \otimes correct The vector ${\bf v}$ is projected onto the vectors ${\bf b_1}, {\bf b_2}, {\bf b_3}$ and ${\bf b_4}$.