Name:		- L		
			 1.124	12 d
Signature:	Ind	dex No	 - 67 . ••••••	*

545/3
CHEMISTRY
PRACTICAL
Paper 3
July/August 2023
2 hours

WESTERN JOINT MOCK EXAMINATIONS

Uganda Certificate of Education

CHEMISTRY PRACTICAL

Paper 3

2 Hours

INSTRUCTIONS TO CANDIDATES:

Answer both questions.

Answers are to be written in the spaces provided in this booklet. Use **blue** or **black** ink ball pen only. Any work done in **pencil** will **not** be marked except drawings. You are **not** allowed to use reference books. (i.e. text books, booklets on qualitative analysis etc).

All working must be clearly shown.

Mathematical tables and silent non-programmable calculators may be used.

For Examiners' Use Only			
	Marks	Examiners Initials	
Q.1			
Q.2			
Total			

1.	You	are	provided	with	the	following:
----	-----	-----	----------	------	-----	------------

BA₁, which is a solution containing 12.3 grams per litre of the metal sulphate, YSO_4 . nH_2O .

BA2, which is a solution of sodium hydroxide solution.

BA3, which is a 0.1M hydrochloric acid solution.

The metal sulphate reacts with sodium hydroxide solution according to the following equation:

$$YSO_4(aq) + 2NaOH(aq) \longrightarrow Y(OH)_2(s) + Na_2SO_4(aq)$$

Then insoluble hydroxide reacts with hydrochloric acid according to the following equation:

$$Y(OH)_2(s) + 2HCl(aq) \longrightarrow YCl_2(aq) + 2H_2O(l)$$

You are required to determine the number of moles of water of crystallization in the metal sulphate, $YSO_4 \cdot nH_2O$.

Procedure:

Pipette 25.0 cm³ (or 20.0 cm³) of **BA**₁ into a clean conical flask. Using a measuring cylinder, transfer an equal volume of **BA**₂ as in the procedure above into the conical flask containing **BA**₁, shake the contents of the conical flask thoroughly for about 10 seconds and allow it to stand.

Label the resultant mixture **BA**₄. Titrate the mixture **BA**₄ using solution **BA**₃ from the burette while shaking gently until the precipitate just dissolves to form a colourless solution.

Repeat the procedure until you obtain consistent results.

Record your results in the table below.

RESULTS			
Volume of pipette used			cm³ (½ mark)
Final burette reading (cm³)			
Initial burette reading (cm³)			
Volume of BA ₃ used (cm ³)			
(a) (i) State the volumes of BA₃ u	sed to calculate	the average volume.	(7½ marks) (01 mark)
(ii) Calculate the average volu	me of BA ₃ used.	.	(2½ marks)
			cm ³
(b) Calculate the number of mole	es of;		

(i) hydrochloric acid in BA₃ that reacted with the metal hydroxide in BA₄.

(02 marks)

us(es) that may be evolved. Record y 9 marks) Tests	Observation	and the table.
arry out the following tests to identi	IV The cations and anion	T7 T 1
ou are provided with substance Y , we have to identify	which contains two cation	as and one oni
Determine the value of n in the fo $(H = 1, 0 = 16, \text{ formula mass of } YS)$	$SO_4 = 120$)	(04 marks)
) Determine the value of - i- 41 c		
		(02 marks)
(iv) metal sulphate $(YSO_4 \cdot nH_2O)$	in one litre of solution.	(02 marks)
(iv) metal evilate at a great		••••••
(iii) metal sulphate that reacted w	vith the sodium hydroxid	e in BA₂ . (02 marks)

(ii) metal hydroxide in BA 4 that r	reacted with the hydroch	lorio acidia na
	•••••	
		••••••

Tests	Observation	Deduction
(a) Heat two spatula end-fuls of Y strongly in a dry boiling tube and then allow it to cool.		
(b) To the residue obtained in (a), add 5 cm³ of dilute nitric acid and shake well or warm to dissolve. Add dilute sodium hydroxide solution drop-wise until in excess. Filtrate and keep both the filtrate and the residue.		

2.

(c) Wash the residue from (b) and then		
add dilute nitrie and draw :		
add dilute nitric acid drop-wise		
until the residue just dissolves.		
Divide the solution into four parts		
and test as follows:		
(i) To the first part of the		
solution, add dilute sodium		
hydroxide activities due :	,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
hydroxide solution drop-wise	113	Labor id
until in excess.		
(ii) To the second part of solution,		
add 4-5 drops of dilute sodium		,
hydrogen carbonate solution		
and heat		
(iii) To the third part of solution,		
add 4.5 draws of 111 of 111		
add 4-5 drops of dilute sodium		
sulphate solution.		
(iv) Use the fourth part to carry		,
out a test of your own choice to		
confirm the cation in the		
residue.		
TEST		
1231		
(d) To the filtrate obtained in (b), add		
dilute nitric acid drop-wise until		
the solution is just acidic. Divide		
the acidic solution into five parts:		
and deside solution into live parts.		
(i) To the first part of the acidic		
solution, add dilute sodium		
hydroxide solution drop-wise		
until in excess.		
(ii) To the second part of the		
acidic solution, add dilute		
ammonium hydroxide solution		
drop-wise until in excess.		
(iii) To the third part of the acidic		
solution, add 3-4 drops of		
dilute lead (II) nitrate solution.		
(iv) To the fourth part of the acidic		
solution, add dilute	C	
hydrochloric acid followed by		
excess barium chloride		
solution.		
(v) Use the fifth part of the acidic		
solution to carry out a test of		
your own choice to confirm the		
anion in Y .		
e) (i) The cations in Y are		
j (ij The cations in 1 arc	••••••	
(ii) The anion in Y is		