Lab 1

1 Hash Tables

2 Dictionary Data Structures

- Unsorted Array
 - Find O(n)
 - Insert O(1)
 - Delete (After Find) O(1)
- Linked List
 - Find O(n)
 - Insert O(1)
 - Delete (After Find) O(1)
- Sorted Array
 - Find $O(\log(n))$
 - Insert O(n)
 - * Have to move all the elements down the array
 - Delete (After Find) O(n)
- Balanced Binary Search Tree
 - Look this up
 - Find O(n)
 - * Throwing out half at each step
 - * can assume base 2 for log in this class
 - Insert O(1)
 - Delete (After Find) O(1)
- Hash Tables
 - Expected
 - * Find O(1)
 - * Insert O(1)
 - * Delete (After Find) O(1)
 - Worst Case
 - * Find O(n)
 - * Insert O(n)

3 Asymptotics

- $f(n) = 5n^2 1000, g(n) = 10n^2$
 - -o(g): false
 - -O(g): true
 - $-\Theta(g)$: true
 - $-\Omega(g)$: true
 - $-\omega(g)$: false
- $f(n) = n^3, g(n) = 3n^7 2n$
 - -o(g): true
 - -O(g): true
 - $-\Theta(g)$: false
 - $-\Omega(g)$: false
 - $-\omega(g)$: false
- $f(n) = \sqrt{n}, g(n) = \ln(n)$
 - -o(g):
 - -O(g):
 - $-\Theta(g)$:
 - $-\Omega(g)$:
 - $-\omega(g)$: