SESSION 3: ANALYSING GENOMIC AND TRANSCRIPTOMIC DATA IN R

A mini-course

Objectives

- 1. If else and loops
- 2. Base R plotting
- 3. Ggplot2

Loops

• Loop functions in R allow you to iterate over elements in data structures

```
 for() {} while(){}
```

For loop

Syntax:for (variable in sequence) { code }

Try

```
for (i in 1:5) {
  print(i)
}
```

While loops

```
• Syntax:
while (condition) { code }
Try
# Example of a while loop in R
i <- 1
while (i <= 5) {
 print(i)
i <- i + 1
```

Conditional statements

- Conditional statements allow you to execute code based on certain conditions
- Commonly used conditional statements: if, else if, else

If statement

- The if statement allows you to execute code if a condition is TRUE
- Syntax:

```
if (condition) { code }
```

Try

```
x <- 5
if (x > 0) {
  print("Positive number")
}
```

If...else statements

• The if...else statement allows you to execute one block of code if a condition is TRUE, and another block if it is FALSE

```
•Syntax:
if (condition) { code1 }
else { code2 }
```

```
Try
x <- -5
if (x > 0) {
  print("Positive number")
} else {
  print("Not a positive number")
}
```

if...else if...else Statement

- The if...else if...else statement allows you to test multiple conditions
- Syntax:

```
if (condition1) { code1 } else if (condition2) { code2 } else { code3 }

Try

x <- 0
if (x < 0) {
  print("Negative number")
} else if (x > 0) {
  print("Positive number")
} else {
  print("Zero")
```

Exercise 1

Objectives

✓ If else and loops

- 2. Base R plotting
- 3. Ggplot2

Base R plots

- plot(): General purpose plotting function.
- hist(): For creating histograms.
- boxplot(): For creating boxplots.

General syntax

Argument	
main	Plot title
xlab	x-axis label
ylab	y-axis label
abline()	line of best fit

Scatterplot

Changing plot aesthetics in base R

Feature	Function
col=	Adds colour
pch=	Changes point type e.g. to a solid circle
abline()	adds line to the scatter plot

Histogram

Freedman-Diaconis

Changing histogram aesthetics in base R

Argument	Function
col=	Adds colour
breaks=	Controls the number of bars in a histogram

Boxplots

Displacement by Gear

Exercise 2

Objectives

- ✓ If else and loops
- ✓ Base R plotting
- 3. Ggplot2

Ggplot2 package

- ggplot() creates the global plot
- Use 'geom_' with gglplot()to specify which type of plot. E.g.
 - o geom_point()
 - o geom_bar()
 - o geom_boxplot()
- ggsave to save file

ggplot2 syntax

Global mapping

- applies to the
entire plot

```
ggplot(data, mapping) +
geom_point(mapping, stat, position, colour, fill, shape, size, alpha) +
coord_cartesian() +
scale_colour_discrete() +
facet_wrap() +
theme_bw() +
ggtitle() +
labs()
```

Where,

mapping = aes(x, y, colour, fill, shape, size, alpha)

Note: Colour, shape, alpha, etc. can be passed

- 1) to the mapping argument changes attributes based on some variable in the dataset itself (e.g. colour = location, or shape = hdi_class)
- 2) directly as specific arguments in the geom function changes the attributes to fixed values that are provided separately from the data (e.g. colour = "red" or size = 10)

Credit to MSD R course

Example

```
# Colour points by Species, shape points by Species, and add a smooth regression line
ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width, color = Species, shape = Species)) +
geom_point(size = 3, alpha = 0.6) + # Adjust the size and transparency of the points
labs(
 title = "Sepal Length vs Sepal Width",
 x = "Sepal Length (cm)",
 y = "Sepal Width (cm)",
 caption = "Data source: iris dataset"
) +
theme_minimal() + # Use a minimal theme
theme(
 plot.title = element_text(hjust = 0.5), # Center the plot title
 legend.position = "bottom" # Place the legend at the bottom
```


https://ggplot2.tidyverse.org/reference/index.html

Faceting plots

• Faceting allows you to create multiple subplots based on a factor variable, enabling comparison across categories.

Functions:

- facet_wrap(~ variable): Creates a series of plots wrapped into a 2D layout.
- facet_grid(rows ~ cols): Creates a grid of plots based on row and column factors.

Faceting plots

Fig. 7.1 A sketch illustrating the difference between the two facetting systems. facet_grid() (left) is fundamentally 2d, being made up of two independent components. facet_wrap() (right) is 1d, but wrapped into 2d to save space.

Theming plots

• Theming allows you to customize the appearance of your plots for better presentation and readability.

Functions:

- theme(): Base function for customizing themes.
- theme_*(): Predefined themes (e.g., theme_bw(), theme_minimal(), theme_classic()).
- Customize text, axes, legend, grid lines, and more.

Saving plots

ggsave()

Parameters:

- filename: Name of the file to save the plot.
- plot: The plot to save (if not the last created plot).
- device: File format (e.g., "png", "pdf", "svg").
- width, height, units: Dimensions and units of the saved plot.

Exercise 3

Objectives

- ✓ If else and loops
- ✓ Base R plotting
- √Ggplot2