İşaret İşleme

Laplace Dönüşümü ve Sürekli Zamanlı Sistemler-H9CD1

Dr. Meriç Çetin

versiyon211020

EEEN343 Sinyaller ve Sistemler Ders Notları

Prof. Dr. Serdar İplikçi

Laplace Dönüşümü

Giriş

- Darbe cevabi bilinen bir sistemin girişine belli bir sinyal uygulandığında çıkış sinyali, giriş sinyali ile sistemin darbe cevabinin konvolüsyonu ile bulunabilir.
- Ancak, giriş sinyali ve/veya darbe cevabının analitik veya grafik ifade olarak edilmesi zorlaştıkça bu konvolüsyon hesabı da zorlaşmaktadır.
- Alternatif olarak Laplace dönüşümü kullanılmaktadır.
- Buna göre, zaman domenindeki sinyaller önce s-domenine dönüştürülmekte, ardından çıkış sinyalinin bu domendeki büyüklüğü bulunmakta ve son olarak bu büyüklük tekrar zaman domenine dönüştürülmektedir.
- Ayrıca, Laplace dönüşümü sayesinde bir LTI sistemin pek çok özelliği de analiz edilebilmektedir.

Pierre-Simon de Laplace Pierre-Simon de Laplace

Laplace Dönüşümünün Tanımı

Sürekli-zamanlı bir x(t) işaretinin Laplace dönüşümü $X(s) = \mathcal{L}\{x(t)\}$ ile gösterilir ve şu şekilde tanımlanır:

$$x(t) \leftrightarrow X(s)$$

$$X(s) = \mathcal{L}\{x(t)\} = \int_{-\infty}^{+\infty} x(t)e^{-st}dt$$

buradaki s değişkeni $s = \sigma + jw$ şeklinde karmaşık bir değişkendir.

Bir örnek

 $x(t) = e^{-at}u(t)$ sinyalinin Laplace dönüşümü

$$x(t) = e^{-at}u(t) \iff X(s) = \int_{-\infty}^{+\infty} e^{-at}u(t)e^{-st}dt$$

$$= \int_{0}^{+\infty} e^{-at}e^{-st}dt$$

$$= \int_{0}^{+\infty} e^{-(s+a)t}dt$$

$$= \frac{-1}{s+a}e^{-(s+a)t}\Big|_{0}^{+\infty}$$

$$= \frac{-1}{s+a}e^{-(s+a)\infty} - \frac{-1}{s+a}e^{-(s+a)0}$$

$$= \frac{-1}{s+a}e^{-(s+a)\infty} + \frac{1}{s+a}$$

$$= \frac{1}{s+a}$$
Re $(s+a) > 0$

Bir örnek

 $x(t) = e^{-at}u(t)$ sinyalinin Laplace dönüşümü

Görüldüğü gibi bu integralin yani Laplace dönüşümünün mevcut olabilmesi için Re(s+a)>0 şartının sağlanması gerekir. s-domeninde bu şart aşağıdaki gibi bir bölgeye denk düşmektedir ki bu bölgeye yakınsama bölgesi denir.

Laplace Dönüşümü X(s)'in Sıfırları ve Kutupları

Laplace dönüşümü olan X(s) en genel halde aşağıdaki gibi iki polinomun oranı şeklindedir:

$$X(s) = \frac{a_0 s^m + a_1 s^{m-1} + \dots + a_{m-1} s + a_m}{b_0 s^n + b_1 s^{n-1} + \dots + b_{n-1} s + b_n} = \frac{a_0}{b_0} \frac{(s - z_1)(s - z_2) \dots (s - z_m)}{(s - p_1)(s - p_2) \dots (s - p_n)}$$

burada a_k ve b_k 'lar reel sabitler, m ve n ise pozitif tamsayılar olup rasyonel fonksiyonlar için her zaman $m \le n$ sağlanmaktadır. Pay polinomunun kökleri olan z_k 'lara X(s)'in sıfırları denmektedir çünkü s'nin bu değerleri için X(s) = 0 olmaktadır. Benzer şekilde, payda polinomunun kökleri olan p_k 'lara da X(s)'in kutupları denmektedir çünkü s'nin bu değerleri için $X(s) = \infty$ olmaktadır.

X(s)'i ifade etmenin bir yolu da sıfır ve kutuplarını s-düzleminde yerlerinin belirtilmesidir. Geleneksel olarak sıfırlar o ile kutuplar da x ile gösterilmektedir. örneğe bakalım:

$$X(s) = \frac{2s^2 + 4s + 4}{s^3 + 4s^2 + s - 26} = 2\frac{(s+1+j)(s+1-j)}{(s-2)(s+3+2j)(s+3-2j)}$$

X(s)'in s=-1+j ve s=-1-j'de sıfırları, $s=2,\,s=-3+2j$ 'de ve s=-3-2j'de kutupları vardır ve sıfır-kutup grafiği şu şekilde gösterilmiştir.

Tablo Laplace Dönüşümünün Özellikleri

Özellik	x(t)	X(s)
	$x(t)$ $x_1(t)$	X(s) $X_1(s)$
	$x_1(t)$ $x_2(t)$	$X_2(s)$
Doğrusallık	$a_1x_1(t) + a_2x_2(t)$	$a_1 X_1(s) + a_2 X_2(s)$
Zamanda Öteleme	$x(t-t_0)$	$e^{-st_0}X(s)$
s-domeninde Öteleme	$e^{s_0t}x(t)$	$X(s-s_0)$
Zamanda Ölçekleme	x(at)	$X\left(\frac{s}{a}\right)$
Zamanda Geri Dönüş	x(-t)	X(-s)
Zamanda Türev	$\frac{d}{dt}x(t)$	sX(s)
s-domeninde Türev	-tx(t)	$\frac{d}{ds}X(s)$
Türev	$\int_{-\infty}^{t} x(\tau)d\tau$	$\frac{1}{s}X(s)$
Konvolüsyon	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$

Tablo Bazı Laplace Dönüşüm Çiftleri

. , ,	
x(t)	X(s)
$\delta(t)$	1
u(t)	$\frac{1}{s}$
-u(-t)	
tu(t)	$\frac{1}{s^2}$ $k!$
$t^k u(t)$	s^{k+1}
$e^{-at}u(t)$	$\frac{1}{s+a}$
$-e^{-at}u(-t)$	$\frac{1}{s+a}$
$te^{-at}u(t)$	$\frac{1}{(s+a)^2}$
$-te^{-at}u(-t)$	$\frac{1}{(s+a)^2}$
$\cos(w_0 t)u(t)$	$\frac{s}{s^2 + w_0^2}$ $\frac{w_0}{w_0}$
$\sin(w_0 t)u(t)$	$\frac{w_0}{s^2 + w_0^2}$ $s + a$
$e^{-at}\cos(w_0t)u(t)$	$\frac{s+a}{(s+a)^2 + w_0^2} \\ \frac{w_0}{w_0}$
$e^{-at}\sin(w_0t)u(t)$	$\frac{w_0}{(s+a)^2 + w_0^2}$

Ters Laplace Dönüşümü

Ters Laplace Dönüşümü

X(s) sinyalinden x(t) sinyaline geçiş aşağıdaki gibi ters Laplace dönüşümü ile sağlanır:

$$x(t) = \mathcal{L}^{-1}\{X(s)\} = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} X(s)e^{st}ds$$

bu derste ters Laplace dönüşümü almak için kısmi kesirlere ayırma yöntemi kullanılacaktır.

Bir Örnek

 $X(s) = \frac{2s+4}{s^2+4s+3}$ 'in ters Laplace dönüşümünü bulalım.

Öncelikle X(s)'i kısmi kesirlere ayıralım:

$$X(s) = \frac{2s+4}{s^2+4s+3}$$

$$= 2\frac{s+2}{(s+1)(s+3)}$$

$$= \frac{c_1}{s+1} + \frac{c_2}{s+3}$$

$$= \frac{1}{s+1} + \frac{1}{s+3}$$

Laplace Tablosundan

$$x(t) = e^{-t}u(t) + e^{-3t}u(t)$$

Örneğin devamı

$$X(s) = \frac{1}{s+1} + \frac{1}{s+3}$$

Laplace Tablosundan

$$x(t) = e^{-t}u(t) + e^{-3t}u(t)$$

Tablo Bazı Laplace Dönüşüm Çiftleri

Tablo Bazi Lapiace Doliuşulli Çittleri		
x(t)	X(s)	
$\delta(t)$	1	
u(t)	1 s 1	
-u(-t)	1 s 1	
tu(t)	$\frac{1}{s^2}$ $k!$	
$t^k u(t)$	$\frac{k!}{s^{k+1}}$	
$e^{-at}u(t)$	$\frac{1}{s+a}$	
$-e^{-at}u(-t)$	$\frac{1}{s+a}$	
$te^{-at}u(t)$	$\frac{1}{(s+a)^2}$	
$-te^{-at}u(-t)$	$\frac{1}{(s+a)^2}$	
$\cos(w_0t)u(t)$	$\frac{s}{s^2 + w_0^2}$ $\frac{w_0}{w_0}$	
$\sin(w_0t)u(t)$	$\frac{w_0}{s^2 + w_0^2}$ $\frac{s + a}{s + a}$	
$e^{-at}\cos(w_0t)u(t)$	$\frac{s+a}{(s+a)^2 + w_0^2} \\ \frac{w_0}{w_0}$	
$e^{-at}\sin(w_0t)u(t)$	$\frac{w_0}{(s+a)^2 + w_0^2}$	

COMPUTER EXAMPLE C4.1

Using the MATLAB residue command, determine the inverse Laplace transform of each of the following functions

 $num = [2 \ 0 \ 5]; den = [1 \ 3 \ 2]; [r, p, k] = residue(num,den)$

$$X_a(s) = \frac{2s^2 + 5}{s^2 + 3s + 2}$$

$$F(s) = \frac{-13}{s+2} + \frac{7}{s+1}$$

$$F(s) = \frac{-13}{s+2} + \frac{7}{s+1} \quad \text{and} \quad f(t) = (-13e^{-2t} + 7e^{-t})u(t) + 2\delta(t)$$

$$X_b(s) = \frac{2s^2 + 7s + 4}{(s+1)(s+2)^2}$$

$$F(s) = \frac{3}{s+2} + \frac{2}{(s+2)^2} - \frac{1}{s+1} \quad \text{and} \quad f(t) = (3e^{-2t} + 2te^{-2t} - e^{-t})u(t)$$

$$X_c(s) = \frac{8s^2 + 21s + 19}{(s+2)(s^2 + s + 7)}$$

 $num = [8 \ 21 \ 19]; den = [conv([1 \ 2], ([1 \ 1 \ 7]))]; [r, p, k] = residue(num, den)$

$$X_c(s) = \frac{8s^2 + 21s + 19}{(s+2)(s^2 + s + 7)}$$

$$F(s) = \frac{1}{s+2} + \frac{3.5329 e^{-j0.1366}}{s+0.5 - j2.5981} + \frac{3.5329 e^{j0.1366}}{s+0.5 + j2.5981}$$

$$f(t) = \left[e^{-2t} + 1.766 e^{-0.5t} \cos(2.5981t - 0.1366)\right] u(t)$$

Bu ders notu için faydalanılan kaynaklar

Lecture 6

Frequency-domain analysis: Laplace Transform

(Lathi 4.1 - 4.2)

Peter Cheung
Department of Electrical & Electronic Engineering
Imperial College London

MIT OpenCourseWare http://ocw.mit.edu

6.003 Signals and Systems Fall 2011

EEEN343 Sinyaller ve Sistemler Ders Notlan

Prof. Dr. Serdar İplikçi
Pamukkale Üniversitesi
Mühendislik Fakültesi
Elektrik-Elektronik Mühendisliği

