Computational Thinking Logic

Barnaby Martin

Department of Computer Science

Resolution for Propositional Logic

Resolution

Recall the rule of inference known as resolution

$$\frac{p \lor q \qquad \neg p \lor r}{q \lor r}$$

- forms the basis of the proof system for propositional logic known as Resolution.
- However, the basic rule of Resolution is a more general one than that above

$$p_1 \vee ... \vee p_{i+1} \vee \mathbf{x} \vee p_{i+1} \vee ... \vee p_m \qquad q_1 \vee ... \vee q_{i+1} \vee \neg \mathbf{x} \vee q_{i+1} \vee ... \vee q_n$$

$$p_1 \vee ... \vee p_{i+1} \vee p_{i+1} \vee ... \vee p_m \vee q_1 \vee ... \vee q_{i+1} \vee q_{i+1} \vee ... \vee q_n$$

- the p's and the q's are literals
 - that is, variables or negated variables (not necessarily distinct)
- this is the *only* rule of Resolution.

The proof system Resolution

- Natural Deduction proves theorems starting from scratch, whereas
 - Resolution takes a given formula and works with it
 - in order to decide whether it is a theorem or not.
- In the proof system Resolution, we proceed as follows
 - we are given a propositional formula φ
 - we take $\neg \varphi$ and write it in c.n.f. as $C_1 \wedge C_2 \wedge ... \wedge C_m$
 - we start with the clauses C_1 , C_2 , ..., C_m
 - we continually apply the resolution rule of inference to infer new clauses
 - if ever we infer the empty clause ∅
 - then we halt and output that φ is a theorem
 - if we get to the point where we have not inferred the empty clause and we cannot infer any *new* clauses
 - then we halt and output that φ is not a theorem.
- We have one minor remark
 - when resolving, we are also allowed to delete repeated literals in any clause.
- Resolution is both sound and complete
 - if Resolution announces that φ is a theorem then φ is a tautology
 - if φ is a tautology then Resolution announces that φ is a theorem.

Consider the propositional formula φ

· So, the set of clauses to which we apply Resolution is

$$\neg A \lor \neg W \lor I$$
 $A \lor P$ $W \lor S$ $\neg I$ $\neg D \lor \neg P$ $\neg D \lor \neg S$ D

So, we have our set of clauses

(vw

Now we start resolving

ow we start resolving
$$-(A) \vee \neg W \qquad \neg A \vee \neg W \vee T \qquad = \neg A \vee \neg W \qquad = \neg A$$

$$-\neg D \vee S \qquad \neg p \vee \neg p \cdot P \vee S \Rightarrow \neg D \vee S$$

$$-\neg D \lor \neg D$$
 $\neg D \lor \neg D \lor \neg D$

so φ is a theorem

and so a tautology

- Let φ be the formula $((p \lor q) \land (\neg p \lor \neg q) \land (r \Rightarrow (p \land q))) \Rightarrow r$.
- So, $\neg \varphi$ is $\neg (((p \lor q) \land (\neg p \lor \neg q) \land (r \Rightarrow (p \land q))) \bigoplus r)$ $\equiv \underbrace{((p \lor q) \land (\neg p \lor \neg q) \land (r \Rightarrow (p \land q))) \land \neg r}_{\equiv (p \lor q) \land (\neg p \lor \neg q) \land (\neg r \lor (p \land q)) \land \neg r}_{\equiv (p \lor q) \land (\neg p \lor \neg q) \land (\neg r \lor p) \land (\neg r \lor q) \land \neg r}$
- Hence, the set of clauses to which we apply Resolution is

$$p \lor q$$
 $\neg p \lor \neg q$ $\neg r \lor p$ $\neg r \lor q$ $\neg r$

- Let φ be the formula $((p \lor q) \land (\neg p \lor \neg q) \land (r \Rightarrow (p \land q))) \Rightarrow r$.
- So, $\neg \varphi$ is $\neg (((p \lor q) \land (\neg p \lor \neg q) \land (r \Rightarrow (p \land q))) \Rightarrow r)$ $\equiv ((p \lor q) \land (\neg p \lor \neg q) \land (r \Rightarrow (p \land q))) \land \neg r$ $\equiv (p \lor q) \land (\neg p \lor \neg q) \land (\neg r \lor (p \land q)) \land \neg r$ $\equiv (p \lor q) \land (\neg p \lor \neg q) \land (\neg r \lor p) \land (\neg r \lor q) \land \neg r$
- Hence, the set of clauses to which we apply Resolution is

$$p \lor q$$
 $\neg p \lor \neg q$ $\neg r \lor p$ $\neg r \lor q$ $\neg r$

- Now we start resolving
 - $-\frac{q \vee \neg q}{p}$ we can ignore this clause as it will never yield a new clause we can ignore this clause as it will never yield a new clause
 - $-\neg q \vee \neg r$
 - $-\neg p \vee \neg r$
 - $p \vee -r$ we have this clause already
 - $-\frac{r}{r}$ i.e., -r and we have this clause already
 - $-\frac{q}{\sqrt{r}}$ we have this clause already
 - $\frac{1}{r} \sqrt{-r}$ i.e., -r and we have this clause already

no new clauses can be inferred.

so φ is not a theoremand not a tautology

Is Resolution the silver bullet?

- Resolution works by taking the negation of a formula φ we wish to prove true
 - and showing that this negation $\neg \varphi$ is unsatisfiable (in essence).
- One might be inclined to think (from our examples) that Resolution will always give a "quick" answer as to whether a formula is a tautology or not.
- · However, this is not the case
 - for in the worst case Resolution involves an exponential number of applications.

Satisfiability vs. tautologies

SAT-solvers check whether or not a given formula of propositional logic is satisfiable

avb=arb

anb = 7(anb)

- whereas proof systems, such as Resolution, aim to prove theorems.
- To some extent, these two tasks are different sides of the same coin.
- Let φ be some propositional formula.
 - If φ is satisfiable
- φ is satisfiable

 then there exists a truth assignment making φ true

 i.e., there exists a truth assignment making $\neg \varphi$ false

 - i.e., $\neg \varphi$ is not a tautology.
 - Conversely, if $\neg \varphi$ is not a tautology
 - then there exists some truth assignment making $\neg \varphi$ false
 - i.e., there exists some truth assignment making φ true
 - i.e., φ is satisfiable.
- So, φ is satisfiable if, and only if, $\neg \varphi$ is not a tautology
 - this leads to strong links between SAT-solving and automated theorem proving.