

Office de la Propriété Intellectuelle du Canada

Un organisme d'Industrie Canada Canadian Intellectual Property Office

An agency of Industry Canada

CA 2332533 A1 2001/08/18

(21) **2 332 533**

(12) DEMANDE DE BREVET CANADIEN CANADIAN PATENT APPLICATION

(13) **A1**

- (22) Date de dépôt/Filing Date: 2001/02/16
- (41) Mise à la disp pub./Open to Public Insp.: 2001/08/18
- (30) Priorité/Priority: 2000/02/18 (60/184,152) US
- (51) CI.Int. //Int CI. / C12N 15/57, A61K 38/48, C12N 9/64, C12N 5/00, C07K 16/40, C12N 5/10, C12Q 1/00, C12P 21/00
- (71) Demandeur/Applicant:
 F. HOFFMANN-LA ROCHE AG, CH
- (72) Inventeurs/Inventors: ZUO, FENGRONG, US; KLONOWSKI, PAUL, US, HELLER, RENU ANAND, US
- (74) Agent: BORDEN LADNER GERVAIS LLP
- (54) Titre: NOUVELLES METALLOPROTEASES COMPORTANT DES DOMAINES DE NATURE THROMBOSPONDINE ET COMPOSITIONS D'ACIDES NUCLEIQUES CODANT CES COMPOSES
- (54) Title: NOVEL METALLOPROTEASES HAVING THROMBOSPONDIN DOMAINS AND NUCLEIC ACID COMPOSITIONS ENCODING THE SAME

(57) Abrégé/Abstract.

Novel metalloproteases having thrombospondin domain(s) (MPTS proteins) and polypeptides related thereto, as well as nucleic acid compositions encoding the same, are provided. The subject polypeptide and nucleic acid compositions find use in a variety of applications, including diagnostic applications, therapeutic agent screening applications, as well as therapeutic applications for a variety of different conditions. Also provided are methods of treating disease conditions associated with aggrecanase activity, e.g. conditions characterized by the presence of aggrecan cleavage products, such as rheumatoid- and osteo-arthritis

Abstract

Novel metalloproteases having thrombospondin domain(s) (MPTS proteins) and polypeptides related thereto, as well as nucleic acid compositions encoding the same, are provided. The subject polypeptide and nucleic acid compositions find use in a variety of applications, including diagnostic applications, therapeutic agent screening applications, as well as therapeutic applications for a variety of different conditions. Also provided are methods of treating disease conditions associated with aggrecanase activity, e.g. conditions characterized by the presence of aggrecan cleavage products, such as rheumatoid- and osteo-arthritis.

The field of the invention is proteases, particularly metalloproteases with thrombospondin domains.

Cartilage matrix structure as dry weight of the tissue is made up of 70% collagen and 20-30% proteoglycans. The proteoglycan component confers mechanical flexibility to load bearing tissues and imparts viscoelastic properties to cartilage. Its loss leads to rapid structural damage as is seen most frequently in arthritic joint diseases and joint injury.

Aggrecan is a major cartilage proteoglycan. Aggrecan is a large protein of 210 kDa and has three globular domains: G1, G2, and G3. The G1 and G2 domains of the protein are closer to the amino terminus of the protein and their intervening interglobular domain has sites that are proteolytically sensitive. The region between G2 and G3 is heavily glycosylated and connected to oligosaccharides and glycosaminoglycans (GAGs) to form the mature proteoglycan. In arthritic cartilage, core protein fragments of 55 kDa are observed and believed to be the result of cleavage of the core protein in the G1 and G2 interglobular domain between asparagine 341 and phenylalanine 342. This cleavage can be made by many matrix metalloproteinases e.g. MMP-1, -2, -3, -7, -8, -9, and -13. In addition, 60 kDa aggrecan fragments with a - COOH terminus of glutamic acid are also identified and are indicative of a cleavage site between glutamic acid 373 and alanine 374. Matrix metalloproteinase are unable to cleave at this site. The unique endopeptidase activity responsible for this cleavage has been termed 'aggrecanase."

The G1 domain of the core protein forms a stable ternary complex by binding to hyaluronic acid and link proteins in the matrix. Any enzymatic cleavage in this region destabilizes the cartilage matrix structure, leads to the loss of the major proteoglycan aggrecan and exposes type II collagen to collagenases, causing cartilage loss and the consequent development of joint disease. Since a variety of anti-arthritic drugs do not

As such, aggrecanase is considered to be an important drug target for arthritis.

Aggrecan fragments released into the synovial fluid are the primary detectable events in the development of rheumatoid- and osteo- arthritis. Search for this protease has been intense. Despite these intense discovery efforts, identification of human aggrecanase has remained elusive.

As such, there is much interest in the identification of human aggrecanase, as well as the gene encoding this activity.

The following references are directed to this field. U.S. Patents 5,872,209 and 5,427,954, and WO 99/09000; WO 98/55643; WO 98/51665; and WO 97/18207.

Other references include: Abbasdale, "Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family," J. Biol. Chem. (Aug. 1999) 274: 23443-50; Arner et al., "Generation and Characterization of Aggrecanase. A soluble, cartilage-derived aggrecan-degrading activity," J Biol Chem (1999 Mar 5) 274(10):6594-6601; Arner et al., "Cytokine-induced cartilage proteoglycan degradation is mediated by aggrecanase," Osteoarthritis Cartilage (1998 May) 6(3):214-28; billington et al., "An aggrecan-degrading activity associated with chondrocyte 20 membranes," Biochem I (1998 Nov 15) 336 (Pt 1):207-12; Buttner et al., "Membrane type 1 matrix metalloproteinase (MT1-MMP) cleaves the recombinant aggrecan substrate rAggImut at the 'aggrecanase' and the MMP sites. Characterization of MT1 MMP catabolic activities on the interglobular domain of aggrecan," Biochem I (1998 Jul 1)333 (Pt 1):159-65; Flannery et al., "Expression of ADAMTS homologues in articular cartilage," Biochem. Biophys. Res. Commun. (July 1999) 260:318-22; Hurskainen et al., "ADAM-TS5, ADAM-TS6, and ADAM-TS7, Novel members of a New Family of Zinc Metalloproteases," J. Biol. Chem. (Sept. 1999) 274: 25555-25563 Hughes et al., "Differential expression of aggrecanase and matrix metalloproteinase activity in chondrocytes isolated from bovine and porcine articular cartilage," J Biol Chem (1998) 30 Nov 13) 273(46):30576-82; Ilic et al., "Characterization of aggrecan retained and lost from the extracellular matrix of articular cartilage. Involvement of carboxyl-terminal processing in the catabolism of aggrecan," J Biol Chem (1998 Jul 10) 273(28):17451-8; Huno et al., "ADAMTS-1 is an active metalloproteinase associated with the extracellular

.

3

matrix," J. Biol. Chem. (June 1999) 274:18821-6; Kuno et al., "ADAMTS-1 protein anchors at the extracellular matrix through the thrombospondin type I motifs and its spacing region," J. Biol. Chem. (May 1998) 273:13912-7; Kuno et al., "The exon/intron organization and chromosomal mapping of the mouse ADAMTS-1 gene encoding an 5 ADAM family protein with TSP motifs," Genomics (Dec. 1997) 46:466-71; Kuno et al., "Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thombospondin motifs as an inflammation associated gene," J. Biol. Chem. (Jan. 1997) 272: 556-62; Sandy et al., "Chondrocyte-mediated catabolism of aggrecan: aggrecanase-dependent cleavage induced by interleukin-1 or retinoic acid can 10 be inhibited by glucosamine," Biochem J (1998 Oct 1) 335 (Pt 1):59-66; Tang & Hong, "ADAMTS: a novel family of proteases with ADAM protease domain and thrombospondin 1 repeats," FEBS Lett. (Feb. 1999) 445:223-5; Tortorella et al., Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins," Science (June 1999) 284:1664-6; Vankemmelbeke et al., "Coincubation of 15 bovine synovial or capsular tissue with cartilage generates a soluble 'Aggrecanase' activity," Biochem Biophys Res Commun (1999 Feb 24) 255(3):686-91; and Vasquez et al., "METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity," J. Biol. Chem. (Aug. 1999) 274:23349-57.

20

The present invention is directedo to novel metalloproteases having thrombospondin domain(s) (MPTS proteins) and polypeptides related thereto, as well as nucleic acid compositions encoding the same, are provided. The subject polypeptide and nucleic acid compositions find use in a variety of applications, including diagnostic applications, therapeutic agent screening applications, as well as therapeutic applications for a variety of different conditions. Also provided are methods of treating disease conditions associated with aggrecanase activity, e.g. conditions characterized by the presence of aggrecan cleavage products, such as rheumatoid- and osteo-arthritis.

MPTS protein of the subject invention. Figure TB provides the amino acid sequence

of MPTS -15. Figure 1C provides an alignment of the amino acid sequence of the subject MPTS-15 with the amino acid sequence of ADAMTS-6, a sequence disclosed in Hurskainen et al., J. Biol. Chem. (Sept. 1999) 274: 25555-25563.

Figure 2A provides the sequence of a nucleic acid that encodes MPTS-10, an MPTS protein of the subject invention. Figure 2B provides the amino acid sequence of MPTS-10.

Figure 3A provides the sequence of a nucleic acid that encodes MPTS-19, an MPTS protein of the subject invention. Figure 3B provides the amino acid sequence of MPTS-19.

Figure 4A provides the sequence of a nucleic acid that encodes MPTS-20, an MPTS protein of the subject invention. Figure 4B provides the amino acid sequence of MPTS-20.

Novel MPTS proteins and polypeptides related thereto, as well as nucleic acid compositions encoding the same, are provided. The subject polypeptide and/or nucleic acid compositions find use in a variety of different applications, including research, diagnostic, and therapeutic agent screening/discovery/ preparation applications. Also provided are methods of treating disease conditions associated with MPTS, including aggrecanase, function, e.g. diseases characterized by the presence of aggrecan cleavage products, such as rheumatoid- and osteo-arthritis.

20

Novel metalloproteases having thrombospondin domain(s) (also known as MPTS proteins, ADAMTS proteins or aggrecanase proteins), as well as polypeptide compositions related thereto, are provided. The term polypeptide composition as used herein refers to both the full length protein, as well as portions or fragments thereof. Also included in this term are variations of the naturally occurring human protein, where such variations are homologous or substantially similar to the naturally occurring protein, as described in greater detail below. In the following description of the subject invention, the term "MPTS" is used to refer not only to the specific human MPTS proteins disclosed herein (i.e. MPTS-10; MPTS-15; MPTS-19 and MPTS-20), but also to homologs thereof expressed in non-human species, e.g. murine, rat and other mammalian species.

Specific human MPTS proteins of interest are MPTS-15, MPTS-10, MPTS-19 and MPTS-20. MPTS-15 has an amino acid sequence as shown in Fig. 1B and identified as SEQ ID NO:01. MPTS-10 has an amino acid sequence as shown in Fig. 2B and identified as SEQ ID NO:03. MPTS-19 has an amino acid sequence as shown in Fig. 3B and identified as SEQ ID NO:05. MPTS-20 has an amino acid sequence as shown in Fig. 4B and identified as SEQ ID NO:07. The subject MPTS proteins have a molecular weight based on their amino acid sequence of at least about 90 kDal, where the molecular weight based on the amino acid sequence may be substantially higher in certain embodiments. The true molecular weight of the subject MPTS proteins may vary due to glycosylation and/or other postranslational modifications.

Also provided by the subject invention are MPTS polypeptide compositions. The term polypeptide composition as used herein refers to both the full length proteins as well as portions or fragments thereof. Also included in this term are variations of the naturally occurring proteins, where such variations are homologous or substantially similar to the naturally occurring protein, be the naturally occurring protein the human protein, mouse protein, or protein from some other species which naturally expresses an MPTS protein, usually a mammalian species. A candidate homologous protein is substantially similar to an MPTS protein of the subject invention, and therefore is an 20 MPTS protein of the subject invention, if the candidate protein has a sequence that has at least about 35%, usually at least about 45% and more usually at least about 60% sequence identity with an MPTS protein, as determined using MegAlign, DNAstar (1998) clustal algorithm as described in D. G. Higgins and P.M. Sharp, "Fast and Sensitive multiple Sequence Alignments on a Microcomputer," (1989) CABIOS, 5: 151-25 153. (Parameters used are ktuple 1, gpa penalty 3, window, 5 and diagonals saved 5). in the following description of the subject invention, the term "MPTS-protein" is used to refer not only to the human MPTS proteins, but also to homologs thereof expressed in non-human species, e.g. murine, rat and other mammalian species.

 $(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}) = \mathbf{f}_{1}(\mathbf{r}_{1}, \mathbf{v}_{3}, \mathbf{$

usually at least about 65% and more usually at least a^{ij} at 70% with many preferred

embodiments, the sequence identity is at least about 90%, usually at least about 95% and more usually at least about 99% over the entire length of the protein.

In many embodiments, the proteins of the subject invention are enzymes, particularly proteinases and more particularly a metalloproteinases. The subject proteins of this embodiment are characterized by having aggrecanase activity. As such, the subject proteins are capable of cleaving aggrecan in an interglobular domain, particularly between the G1 and G2 domains, and more particularly at the Glu³⁷³-Ala³⁷⁴ bond of human aggrecan, to produce a cleavage product having an N-terminal sequence of ARGSVII.

In addition to the proteins described above, homologs or proteins (or fragments thereof) from other species, i.e. other animal or plant species, are also provided, where such homologs or proteins may be from a variety of different types of species, usually mammals, e.g. rodents, such as mice, rats; domestic animals, e.g. horse, cow, dog, cat; and humans. By homolog is meant a protein having at least about 35 %, usually at least about 40% and more usually at least about 60 % amino acid sequence identity with one of the specific human MPTS proteins as identified above (i.e. with a protein having the amino acid sequence of SEQ ID NOS:01, 03, 05 or 07), where sequence identity is determined as described *supra*.

20

The proteins of the subject invention are present in a non-naturally occurring environment, e.g. they are separated from their naturally occurring environment. In certain embodiments, the subject proteins are present in a composition that is enriched for the subject protein as compared to its naturally occurring environment. For example, purified protein is provided, where by purified is meant that the protein is present in a composition that is substantially free of non-MPTS proteins, where by substantially free is meant that less than 90 %, usually less than 60 % and more usually less than 50 % of the composition is made up of non-MPTS proteins. The proteins of the subject invention may also be present as an isolate, by which is meant that the protein is substantially free of other proteins and other naturally occurring biologic molecules, such as oligosaccharides, polynucleotides and fragments thereof, and the like, where the term "substantially free" in this instance means that less than 70 %,

usually less than 60% and more usually less than 50 % of the composition containing the isolated protein is some other naturally occurring biological molecule. In certain embodiments, the proteins are present in substantially pure form, where by "substantially pure form" is meant at least 95%, usually at least 97% and more usually at least 99% pure.

7

In addition to the naturally occurring proteins, polypeptides which vary from the naturally occurring proteins are also provided, e.g. MPTS polypeptides. By MPTS polypeptide is meant an amino acid sequence encoded by an open reading frame (ORF) 10 of the gene encoding the MPTS, described in greater detail below, including the full length protein and fragments thereof, particularly biologically active fragments and/or fragments corresponding to functional domains, e.g. protease domain, thrombospondin domain, and the like; and including fusions of the subject polypeptides to other proteins or parts thereof. Fragments of interest will typically be at 15 least about 10 ag in length, usually at least about 50 ag in length, and may be as long as 300 ag in length or longer, but will usually not exceed about 1000 ag in length, where the fragment will have a stretch of amino acids that is identical to the subject protein of at least about 10 aa, and usually at least about 15 au, and in many embodiments at least about 50 aa in length. Where the fragment is an MPTS-15 fragment, it preferably includes at least a substantial portion of the protease domain of the wild type protein, where by substantial amount is at least 50%, usually at least 60 % and more usually at least 70 % of the sequence of this domain of the MPTS-15 protein. For example, the MPTS-15 fragment generally includes a sequence which , upon alignment with the sequence of residues from the protease domain of the wild type sequence, shows an 23 Identity with the aligned region of the wild type sequence of this domain of at least about 50%, usually at least about 60% and more usually at least about 70%, wherein in many embodiments the percent identity may be much higher, e.g. 75, 80, 85, 90 or 95% or higher, e.g. 99%.

cartuage and the like. The subject proteins may also be derived from synthetic means.

e.g. by expressing a recombinant gene encoding protein of interest in a suitable host, as described in greater detail below. Any convenient protein purification procedures may be employed, where suitable protein purification methodologies are described in Guide to Protein Purification, (Deuthser ed.) (Academic Press, 1990). For example, a lysate may prepared from the original source, e.g. chondrocytes or the expression host, and purified using HPLC, exclusion chromatography, gel electrophoresis, affinity chromatography, and the like.

Also provided are nucleic acid compositions encoding MPTS proteins or fragments thereof, as well as the MPTS homologues of the present invention. By nucleic acid composition is meant a composition comprising a sequence of DNA having an open reading frame that encodes an MPTS polypeptide of the subject invention, i.e. an mpts gene, and is capable, under appropriate conditions, of being expressed as MPTS. Also encompassed in this term are nucleic acids that are homologous or substantially similar or identical to the nucleic acids encoding MPTS proteins. Thus, the subject invention provides genes encoding the human MPTS proteins of the subject invention and homologs thereof. The human MPTS15 gene is shown in Fig. 1A, where the sequence shown in Fig. 1A is identified as SEQ ID NO:02, infra. The human MPTS10 gene is shown in Fig. 2A, where the sequence shown in Fig. 2A is identified as SEQ ID NO:04, infra. The human MPTS19 gene is shown in Fig. 3A, where the sequence shown in Fig. 3A is identified as SEQ ID NO:06, infra. The human MPTS20 gene is shown in Fig. 4A, where the sequence shown in Fig. 4A is identified as SEQ ID NO:08, infra.

The source of homologous genes may be any species, e.g., primate species, particularly human; rodents, such as rats and mice, canines, felines, bovines, ovines. equines, yeast, nematodes, etc. Between mammalian species, e.g., human and mouse, homologs have substantial sequence similarity, e.g. at least 75% sequence identity, usually at least 90%, more usually at least 95% between nucleotide sequences. Sequence similarity is calculated based on a reference sequence, which may be a subset of a larger sequence, such as a conserved motif, coding region, flanking region, etc. A reference 30 sequence will usually be at least about 18 nt long, more usually at least about 30 nt long, and may extend to the complete sequence that is being compared. Algorithms for sequence analysis are known in the art, such as BLAST, described in Altschul et al.

25

(1990), J. Mol. Biol. 215:403-10 (using default settings, i.e. parameters w=4 and T=17). The sequences provided herein are essential for recognizing MPTS-, including aggrecanase-, related and homologous proteins, and the nucleic acids encoding the same, in database searches. Of particular interest in certain embodiments are nucleic acids of substantially the same length as the nucleic acids identified as SEQ ID NO:02, 04, 06 and 08 and have sequence identity to one of these sequences of at least about 90%, usually at least about 95% and more usually at least about 99% over the entire length of the nucleic acid.

Nucleic acids encoding the proteins and polypeptides of the subject invention may be cDNA or genomic DNA or a fragment thereof. The term "MPTS gene" shall be intended to mean the open reading frame encoding specific MPTS proteins and polypeptides, and introns, as well as adjacent 5′ and 3′ non-coding nucleotide sequences involved in the regulation of expression, up to about 20 kb beyond the coding region, but possibly further in either direction. The gene may be introduced into an appropriate vector for extrachromosomal maintenance or for integration into a host genome.

The term "cDNA" as used herein is intended to include all nucleic acids that share the arrangement of sequence elements found in native mature mRNA species, where sequence elements are exons and 5′ and 3′ non-coding regions. Normally mRNA species have contiguous exons, with the intervening introns, when present being removed by nuclear RNA splicing, to create a continuous open reading frame encoding an MPTS protein.

1.7

10

A genomic sequence of interest comprises the nucleic acid present between the initiation codon and the stop codon, as defined in the listed sequences, including all of the introns that are normally present in a native chromosome. It may further include 5′ as 13′ no translated ratio as found in the majora as N.A. It may forther include 5′.

eather the violence and of the transcribed region. The genomic DNA may be isolated as a

fragment of 100 kbp or smaller; and substantially free of flanking chromosomal sequence. The genomic DNA flanking the coding region, either 3' or 5', or internal regulatory sequences as sometimes found in introns, contains sequences required for proper tissue and stage specific expression.

5

The nucleic acid compositions of the subject invention may encode all or a part of the subject MPTS protein. Double or single stranded fragments may be obtained from the DNA sequence by chemically synthesizing oligonucleotides in accordance with conventional methods, by restriction enzyme digestion, by PCR amplification, *etc.* For the most part, DNA fragments will be of at least 15 nt, usually at least 18 nt or 25 nt, and may be at least about 50 nt.

The subject genes are isolated and obtained in substantial purity, generally as other than an intact chromosome. Usually, the DNA will be obtained substantially free of other nucleic acid sequences that do not include an MPTS gene sequence or fragment thereof, generally being at least about 50%, usually at least about 90% pure and are typically "recombinant", *i.e.* flanked by one or more nucleotides with which it is not normally associated on a naturally occurring chromosome.

20

15

In addition to the plurality of uses described in greater detail in following sections, the subject nucleic acid compositions find use in the preparation of all or a portion of the MPTS polypeptides, as described above. The provided polynucleotide (e.g., a polynucleotide having a sequence of SEQ ID NO:02, 04, 06 or 08), the corresponding cDNA, or the full-length gene is used to express a partial or complete gene product. Constructs of polynucleotides having a sequences of SEQ ID NOs: 02, 04, 06 or 08 can be generated synthetically. Alternatively, single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides is described by, e.g., Stemmer et al., Gene (Amsterdam) (1995) 164(1):49-53. In this method, assembly PCR (the synthesis of long DNA sequences from large numbers of oligodeoxyribonucleotides (oligos)) is described. The method is derived from DNA shuffling (Stemmer, Nature (1994) 370:389-391), and does not rely on DNA ligase, but instead relies on DNA polymerase to build increasingly longer DNA fragments during the assembly process. Appropriate polynucleotide constructs are purified using standard

11

recombinant DNA techniques as described in, for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., (1989) Cold Spring Harbor Press, Cold Spring Harbor, NY, and under current regulations described in United States Dept. of HHS, National Institute of Health (NIH) Guidelines for Recombinant DNA Research.

5

Polynucleotide molecules comprising a polynucleotide sequence provided herein are propagated by placing the molecule in a vector. Viral and non-viral vectors are used, including plasmids. The choice of plasmid will depend on the type of cell in which propagation is desired and the purpose of propagation. Certain vectors are useful for amplifying and making large amounts of the desired DNA sequence. Other vectors are suitable for expression in cells in culture. Still other vectors are suitable for transfer and expression in cells in a whole animal or person. The choice of appropriate vector is well within the skill of the art. Many such vectors are available commercially. The partial or full-length polynucleotide is inserted into a vector typically by means of DNA ligase attachment to a cleaved restriction enzyme site in the vector. Alternatively, the desired nucleotide sequence can be inserted by homologous recombination in vivo. Typically this is accomplished by attaching regions of homology to the vector on the flanks of the desired nucleotide sequence. Regions of homology are added by ligation of oligonucleotides, or by polymerase chain reaction using primers comprising both the region of homology and a portion of the desired nucleotide sequence, for example.

For expression, an expression cassette or system may be employed. The gene product encoded by a polynucleotide of the invention is expressed in any convenient expression system, including, for example, bacterial, yeast, insect, amphibian and mammalian systems. Suitable vectors and host cells are described in U.S. Patent No. 5,654,173. In the expression vector, an MPTS encoding polynucleotide, e.g. as set forth in SEQ ID NO: 02, 04, 06 or 08, is linked to a regulatory sequence as appropriate to obtain the desired expression properties. These can include promoters (attached either at the 5' end of the sense strand or at the 3' end of the antisense strand), enhancers.

torning the marker and the control of the first of the control of the control of the control of the control of

inned to the desired nucleotide sequence using the techniques described above for

linkage to vectors. Any techniques known in the art can be used. In other words, the expression vector will provide a transcriptional and translational initiation region, which may be inducible or constitutive, where the coding region is operably linked under the transcriptional control of the transcriptional initiation region, and a transcriptional and translational termination region. These control regions may be native to the subject MPTS gene, or may be derived from exogenous sources.

Expression vectors generally have convenient restriction sites located near the promoter sequence to provide for the insertion of nucleic acid sequences encoding heterologous proteins. A selectable marker operative in the expression host may be present. Expression vectors may be used for the production of fusion proteins, where the exogenous fusion peptide provides additional functionality, i.e. increased protein synthesis, stability, reactivity with defined antisera, an enzyme marker, e.g. β-galactosidase, etc.

15

Expression cassettes may be prepared comprising a transcription initiation region, the gene or fragment thereof, and a transcriptional termination region. Of particular interest is the use of sequences that allow for the expression of functional epitopes or domains, usually at least about 8 amino acids in length, more usually at least about 15 amino acids in length, to about 25 amino acids, and up to the complete open reading frame of the gene. After introduction of the DNA, the cells containing the construct may be selected by means of a selectable marker, the cells expanded and then used for expression.

25

The MPTS proteins and polypeptides may be expressed in prokaryotes or eukaryotes in accordance with conventional ways, depending upon the purpose for expression. For large scale production of the protein, a unicellular organism, such as *E. coli, B. subtilis, S. cerevisiae*, insect cells in combination with baculovirus vectors, or cells of a higher organism such as vertebrates, particularly mammals, *e.g.* COS 7 cells, HEK 293, CHO, Xenopus Oocytes, etc., may be used as the expression host cells. In some situations, it is desirable to express the gene in eukaryotic cells, where the expressed protein will benefit from native folding and post-translational modifications. Small peptides can also be synthesized in the laboratory. Polypeptides that are subsets of the

complete protein sequence may be used to identify and investigate parts of the protein important for function.

Specific expression systems of interest include bacterial, yeast, insect cell and mammalian cell derived expression systems. Representative systems from each of these categories is are provided below

Bacteria. Expression systems in bacteria include those described in Chang et al., Nature (1978) 275:615; Goeddel et al., Nature (1979) 281:544; Goeddel et al., Nucleic

Acids Res. (1980) 8:4057; EP 0 036,776; U.S. Patent No. 4,551,433; Deboer et al., Proc. Natl. Acad. Sci. (USA) (1983) 80:21-25; and Siebenlist et al., Cell (1980) 20:269.

Yeast. Expression systems in yeast include those described in Hinnen et al., Proc. Natl. Acad. Sci. (USA) (1978) 75-1929; Ito et al., J. Bacteriol. (1983) 153:163; Kurtz et al., Mol. Cell. Biol. (1986) 6-142; Kunze et al., J. Basic Microbiol. (1985) 25:141; Gleeson et al., J. Gen. Microbiol. (1986) 132-3459; Roggenkamp et al., Mol. Gen. Genet. (1986) 202:302; Das et al., J. Bacteriol. (1984) 158:1165; De Louvencourt et al., J. Bacteriol. (1983) 154:737; Van den Berg et al., Bio/Technology (1990) 8:135; Kunze et al., J. Basic Microbiol. (1985) 25:141; Cregg et al., Mol. Cell. Biol. (1985) 5:3376; U.S. Patent Nos. 4,837,148 and 4,929,555; Beach and Nurse, Nature (1981) 300:706; Davidow et al., Curr. Genet. (1985) 10:380; Gaillardin et al., Curr. Genet. (1985) 10:49; Ballance et al., Biochem. Biophys. Res. Commun. (1983) 112:284-289; Tilburn et al., Gene (1983) 26:205-221; Yelton et al., Proc. Natl. Acad. Sci. (USA) (1984) 81:1470-1474; Kelly and Hynes, EMBO J. (1985) 4:475479; F1 () 244,234; and WO 91/00357.

Insect Cells. Expression of heterologous genes in insects is accomplished as described in U.S. Patent No. 4,745,051; Friesen et al., "The Regulation of Baculovirus Gene Expression", in: The Molecular Biology Of Baculoviruses (1986) (W. Doerfler, ed.); EP 0 127,839; EP 0 155,476; and Vlak et al., J. Gen. Virol. (1988) 69:765-776; Miller et al., Ann. Rev. Microbiol. (1988) 42:177; Carbonell et al., Gene (1988) 73:409; Maeda et al., Nature (1985) 315:592-594; Lebacq-Verheyden et al., Mol. Cell. Biol. (1988) 8:3129; Sasting and Proc. Natl. Ann. Rev. Natl.

al., Bio/Technology (1988) 6:47-55, Miller et al., Generic Engineering (1986) 8:277-279, and Maeda et al., Nature (1985) 315:592-594.

Mammalian Cells. Mammalian expression is accomplished as described in Dijkema et al., EMBO J. (1985) 4:761, Gorman et al., Proc. Natl. Acad. Sci. (USA) (1982) 79:6777, Boshart et al., Cell (1985) 41:521 and U.S. Patent No. 4,399,216. Other features of mammalian expression are facilitated as described in Ham and Wallace, Meth. Enz. (1979) 58:44, Barnes and Sato, Anal. Biochem. (1980) 102:255, U.S. Patent Nos. 4,767,704, 4,657,866, 4,927,762, 4,560,655, WO 90/103430, WO 87/00195, and U.S. RE 30,985.

10

20

When any of the above host cells, or other appropriate host cells or organisms, are used to replicate and/or express the polynucleotides or nucleic acids of the invention, the resulting replicated nucleic acid, RNA, expressed protein or polypeptide, is within the scope of the invention as a product of the host cell or organism. The product is recovered by any appropriate means known in the art.

Once the gene corresponding to a selected polynucleotide is identified, its expression can be regulated in the cell to which the gene is native. For example, an endogenous gene of a cell can be regulated by an exogenous regulatory sequence as disclosed in U.S. Patent No. 5,641,670.

The subject polypeptide and nucleic acid compositions find use in a variety of different applications, including general applications, diagnostic applications, and therapeutic agent screening/discovery/ preparation applications, as well as in therapeutic compositions and methods employing the same.

The subject nucleic acid compositions find use in a variety of general applications. General applications of interest include: the identification of MPTS homologs; as a source of novel promoter elements; the identification of MPTS expression regulatory factors; as probes and primers in hybridization applications, e.g. PCR; the identification of expression patterns in biological specimens; the preparation of cell or animal models for MPTS function; the preparation of *in vitro* models for MPTS function; etc.

Homologs of the subject genes are identified by any of a number of methods. A fragment of the provided cDNA may be used as a hybridization probe against a cDNA library from the target organism of interest, where low stringency conditions are used.

5 The probe may be a large fragment, or one or more short degenerate primers. Nucleic acids having sequence similarity are detected by hybridization under low stringency conditions, for example, at 50°C and 6xSSC (0.9 M sodium chloride/0.09 M sodium citrate) and remain bound when subjected to washing at 55°C in 1xSSC (0.15 M sodium chloride/0.015 M sodium citrate). Sequence identity may be determined by hybridization under stringent conditions, for example, at 50°C or higher and 0.1xSSC (15 mM sodium chloride/01.5 mM sodium citrate). Nucleic acids having a region of substantial identity to the provided sequences, e.g. allelic variants, genetically altered versions of the gene, etc., bind to the provided sequences under stringent hybridization conditions. By using probes, particularly labeled probes of DNA sequences, one can isolate homologous or related genes.

The sequence of the 5' flanking region may be utilized for promoter elements, including enhancer binding sites, that provide for developmental regulation in tissues where the subject MPTS gene is expressed. The tissue specific expression is useful for determining the pattern of expression, and for providing promoters that mimic the native pattern of expression. Naturally occurring polymorphisms in the promoter region are useful for determining natural variations in expression, particularly those that may be associated with disease.

Alternatively, mutations may be introduced into the promoter region to determine the effect of altering expression in experimentally defined systems. Methods for the identification of specific DNA motifs involved in the binding of transcriptional factors are known in the art, e.g. sequence similarity to known binding motifs, gel retardation studies, etc. For examples, see Blackwell et al. (1995), Mol. Med. 1:194-205;

The regulatory sequences may be used to identify *cis* acting sequences required for transcriptional or translational regulation of MPTS gene expression, especially in different tissues or stages of development, and to identify *cis* acting sequences and *trans*-acting factors that regulate or mediate MPTS gene expression. Such transcription or translational control regions may be operably linked to an MPTS gene in order to promote expression of wild type or altered MPTS or other proteins of interest in cultured cells, or in embryonic, fetal or adult tissues, and for gene therapy.

Small DNA fragments are useful as primers for PCR, hybridization screening probes, etc. Larger DNA fragments, i.e. greater than 100 nt are useful for production of the encoded polypeptide, as described in the previous section. For use in geometric amplification reactions, such as geometric PCR, a pair of primers will be used. The exact composition of the primer sequences is not critical to the invention, but for most applications the primers will hybridize to the subject sequence under stringent conditions, as known in the art. It is preferable to choose a pair of primers that will generate an amplification product of at least about 50 nt, preferably at least about 100 nt. Algorithms for the selection of primer sequences are generally known, and are available in commercial software packages. Amplification primers hybridize to complementary strands of DNA, and will prime towards each other.

20

25

The DNA may also be used to identify expression of the gene in a biological specimen. The manner in which one probes cells for the presence of particular nucleotide sequences, as genomic DNA or RNA, is well established in the literature. Briefly, DNA or mRNA is isolated from a cell sample. The mkNA may be amplified by RT-PCR, using reverse transcriptase to form a complementary DNA strand, followed by polymerase chain reaction amplification using primers specific for the subject DNA sequences. Alternatively, the mRNA sample is separated by gel electrophoresis, transferred to a suitable support, e.g. nitrocellulose, nylon, etc., and then probed with a fragment of the subject DNA as a probe. Other techniques, such as oligonucleotide ligation assays, in situ hybridizations, and hybridization to DNA probes arrayed on a solid chip may also find use. Detection of mRNA hybridizing to the subject sequence is indicative of MPTS gene expression in the sample.

The sequence of an MPTS gene, including flanking promoter regions and coding regions, may be mutated in various ways known in the art to generate targeted changes in promoter strength, sequence of the encoded protein, etc. The DNA sequence or protein product of such a mutation will usually be substantially similar to the sequences provided herein, i.e. will differ by at least one nucleotide or amino acid, respectively, and may differ by at least two but not more than about ten nucleotides or amino acids. The sequence changes may be substitutions, insertions, deletions, or a combination thereof. Deletions may further include larger changes, such as deletions of a domain or exon. Other modifications of interest include epitope tagging, e.g. with the FLAG system, HA, etc. For studies of subcellular localization, fusion proteins with green fluorescent proteins (GFP) may be used.

Techniques for *in vitro* mutagenesis of cloned genes are known. Examples of protocols for site specific mutagenesis may be found in Gustin *et al.* (1993),

Biotechniques 14:22; Barany (1985), Gene 37:111-23, Colicelli *et al.* (1985), Mol. Gen. Genet. 199:537-9; and Prentki *et al.* (1984), Gene 29:303-13. Methods for site specific mutagenesis can be found in Sambrook *et al.*, Molecular Cloning: A Laboratory Manual, CSH Press 1989, pp. 15.3-15.108; Weiner *et al.* (1993), Gene 126:35-41; Sayers *et al.* (1992), Biotechniques 13:592-6; Jones and Winistorfer (1992), Biotechniques 12:528-30;

Barton *et al.* (1990), Nucleic Acids Res 18:7349-55; Marotti and Tomich (1989), Gene Anal. Tech. 6:67-70; and Zhu (1989), Anal Biochem 177:120-4. Such mutated genes may be used to study structure-function relationships of an MPTS protein, or to alter properties of the protein that affect its function or regulation.

The subject nucleic acids can be used to generate transgeme, non-human animals or site specific gene modifications in cell lines. Transgenic animals may be made through homologous recombination, where the endogenous locus is altered. Alternatively, a nucleic acid construct is randomly integrated into the genome. Vectors for stable integration include plasmids, retroviruses and other animal viruses, YACs,

regulation. Of interest is the use of the subject genes to construct transgenic animal

models of MPTS related disease conditions, including aggrecanase related disease conditions, e.g. disease conditions associated with aggrecanase activity, such as arthritis. Thus, transgenic animal models of the subject invention include endogenous MPTS gene knockouts in which expression of endogenous MPTS is at least reduced if not eliminated, where such animals also typically express an MPTS peptide of the subject invention, e.g. the specific MPTS proteins of the subject invention or a fragment thereof. Where a nucleic acid having a sequence found in the human MPTS gene is introduced, the introduced nucleic acid may be either a complete or partial sequence of the MPTS gene. A detectable marker, such as *lac Z* may be introduced into the MPTS locus, where upregulation of gene expression will result in an easily detected change in phenotype. One may also provide for expression of the gene or variants thereof in cells or tissues where it is not normally expressed, at levels not normally present in such cells or tissues.

DNA constructs for homologous recombination will comprise at least a portion of the an MPTS gene of the subject invention, wherein the gene has the desired genetic modification(s), and includes regions of homology to the target locus. DNA constructs for random integration need not include regions of homology to mediate recombination. Conveniently, markers for positive and negative selection are included. Methods for generating cells having targeted gene modifications through homologous recombination are known in the art. For various techniques for transfecting mammalian cells, see Keown et al. (1990), Meth. Enzymol. 185:527-537.

15

For embryonic stem (ES) cells, an ES cell line may be employed, or embryonic cells may be obtained freshly from a host, e.g. mouse, rat, guinea pig, etc. Such cells are grown on an appropriate fibroblast-feeder layer or grown in the presence of leukemia inhibiting factor (LIF). When ES or embryonic cells have been transformed, they may be used to produce transgenic animals. After transformation, the cells are plated onto a feeder layer in an appropriate medium. Cells containing the construct may be detected by employing a selective medium. After sufficient time for colonies to grow, they are picked and analyzed for the occurrence of homologous recombination or integration of the construct. Those colonies that are positive may then be used for embryo manipulation and blastocyst injection. Blastocysts are obtained from 4 to 6 week old

superovulated females. The ES cells are trypsinized, and the modified cells are injected into the blastocoel of the blastocyst. After injection, the blastocysts are returned to each uterine horn of pseudopregnant females. Females are then allowed to go to term and the resulting offspring screened for the construct. By providing for a different phenotype of the blastocyst and the genetically modified cells, chimeric progeny can be readily detected.

The chimeric animals are screened for the presence of the modified gene and males and females having the modification are mated to produce homozygous progeny. If the gene alterations cause lethality at some point in development, tissues or organs can be maintained as allogeneic or congenic grafts or transplants, or in *in vitro* culture. The transgenic animals may be any non-human mammal, such as laboratory animals, domestic animals, etc. The transgenic animals may be used in functional studies, drug screening, *etc.*, *e.g.* to determine the effect of a candidate drug on aggrecanase activity.

15

Also provided are methods of diagnosing disease states based on observed levels of an MPTS protein or the expression level of the gene in a biological sample of interest. Samples, as used herein, include biological fluids such as blood, cerebrospinal fluid, tears, saliva, lymph, dialysis fluid, and the like; organ or tissue culture derived fluids; and fluids extracted from physiological tissues. Also included in the term are derivatives and fractions of such fluids. The cells may be dissociated, in the case of solid tissues, or tissue sections may be analyzed. Alternatively a lysate of the cells may be prepared.

A number of methods are available for determining the expression level of a gene or protein in a particular sample. Diagnosis may be performed by a number of methods to determine the absence or presence or altered amounts of normal or abnormal MPTS in a patient sample. For example, detection may utilize staining of cells or histological sections with labeled antibodies, performed in accordance with conventional methods. Cells are permeabilized to stain cytoplasmic molecules. The

other labels for direct detection. Alternatively, a second stage antibody or reagent is

used to amplify the signal. Such reagents are well known in the art. For example, the primary antibody may be conjugated to biotin, with horseradish peroxidase-conjugated avidin added as a second stage reagent. Alternatively, the secondary antibody conjugated to a fluorescent compound, e.g. fluorescein, rhodamine, Texas red, etc. Final detection uses a substrate that undergoes a color change in the presence of the peroxidase. The absence or presence of antibody binding may be determined by various methods, including flow cytometry of dissociated cells, microscopy, radiography, scintillation counting, etc.

Alternatively, one may focus on the expression of the MPTS gene. Biochemical studies may be performed to determine whether a sequence polymorphism in an MPTS coding region or control regions is associated with disease. Disease associated polymorphisms may include deletion or truncation of the gene, mutations that alter expression level, that affect the activity of the protein, *etc*.

15

10

Changes in the promoter or enhancer sequence that may affect expression levels of MPTS can be compared to expression levels of the normal allele by various methods known in the art. Methods for determining promoter or enhancer strength include quantitation of the expressed natural protein; insertion of the variant control element into a vector with a reporter gene such as β -galactosidase, luciferase, chloramphenicol acetyltransferase, *etc.* that provides for convenient quantitation; and the like.

A number of methods are available for analyzing nucleic acids for the presence of a specific sequence, e.g. a disease associated polymorphism. Where large amounts of DNA are available, genomic DNA is used directly. Alternatively, the region of interest is cloned into a suitable vector and grown in sufficient quantity for analysis. Cells that express an MPTS protein may be used as a source of mRNA, which may be assayed directly or reverse transcribed into cDNA for analysis. The nucleic acid may be amplified by conventional techniques, such as the polymerase chain reaction (PCR), to provide sufficient amounts for analysis. The use of the polymerase chain reaction is described in Saiki, et al. (1985), Science 239:487, and a review of techniques may be found in Sambrook, et al. Molecular Cloning: A Laboratory Manual, CSH Press 1989, pp.14.2–14.33. Alternatively, various methods are known in the art that utilize

oligonucleotide ligation as a means of detecting polymorphisms, for examples see Riley et al. (1990), Nucl. Acids Res. 18:2887-2890; and Delahunty et al. (1996), Am. J. Hum. Genet. 58:1239-1246.

A detectable label may be included in an amplification reaction. Suitable labels include fluorochromes, e.g. fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-FAM), 2',7'-dimethoxy-4',5'-dichloro-6-carboxyfluorescein (JOE), 6-carboxy-X-rhodamine (ROX), 6-carboxy-2',4',7',4,7-hexachlorofluorescein (HEX), 5-carboxyfluorescein (5-FAM) or N,N,N',N'-tetramethyl-6-carboxyrhodamine (TAMRA), radioactive labels, e.g. ³²P, ³⁵S, ³H; etc. The label may be a two stage system, where the amplified DNA is conjugated to biotin, haptens, etc. having a high affinity binding partner, e.g. avidin, specific antibodies, etc., where the binding partner is conjugated to a detectable label. The label may be conjugated to one or both of the primers. Alternatively, the pool of nucleotides used in the amplification is labeled, so as to incorporate the label into the amplification product.

The sample nucleic acid, e.g. amplified or cloned fragment, is analyzed by one of a number of methods known in the art. The nucleic acid may be sequenced by dideoxy or other methods, and the sequence of bases compared to a wild-type gene sequence. Hybridization with the variant sequence may also be used to determine its presence, by Southern blots, dot blots, etc. The hybridization pattern of a control and variant sequence to an array of oligonucleotide probes immobilized on a solid support, as described in US 5,445,934, or in WO 95/35505, may also be used as a means of detecting the presence of variant sequences. Single strand conformational polymorphism (SSCP) analysis, denaturing gradient gel electrophoresis (DGGE), and heteroduplex analysis in gel matrices are used to detect conformational changes created by DNA sequence variation as alterations in electrophoretic mobility. Alternatively, where a polymorphism creates or destroys a recognition site for a restriction endonuclease, the

Screening for mutations in MPTS may be based on the functional or antigenic characteristics of the protein. Protein truncation assays are useful in detecting deletions that may affect the biological activity of the protein. Various immunoassays designed to detect polymorphisms in MPTS proteins may be used in screening. Where many diverse genetic mutations lead to a particular disease phenotype, functional protein assays have proven to be effective screening tools. The activity of the encoded MPTS protein may be determined by comparison with the wild-type protein.

Diagnostic methods of the subject invention in which the level of MPTS gene expression is of interest will typically involve comparison of the MPTS nucleic acid abundance of a sample of interest with that of a control value to determine any relative differences, where the difference may be measured qualitatively and/or quantitatively, which differences are then related to the presence or absence of an abnormal MPTS gene expression pattern. A variety of different methods for determine the nucleic acid abundance in a sample are known to those of skill in the art, where particular methods of interest include those described in: Pietu et al., Genome Res. (June 1996) 6: 492-503; Zhao et al., Gene (April 24, 1995) 156: 207-213; Soares, Curr. Opin. Biotechnol. (October 1997) 8: 542-546; Raval, J. Pharmacol Toxicol Methods (November 1994) 32: 125-127; Chalifour et al., Anal. Biochem (February 1, 1994) 216: 299-304; Stolz & Tuan, Mol. Biotechnol. (December 19960 6: 225-230; Hong et al., Bioscience Reports (1982) 2: 907; and McGraw, Anal. Biochem. (1984) 143: 298. Also of interest are the methods disclosed in WO 97/27317, the disclosure of which is herein incorporated by reference.

15

The subject polypeptides find use in various screening assays designed to identify therapeutic agents. In vitro screening assays can be employed in which the activity of an MPTS polypeptide, e.g. the aggrecanase activity of an MPTS polypeptide, is assessed in the presence of a candidate therapeutic agent and compared to a control, i.e. the activity in the absence of the candidate therapeutic agent. Activity can be determined in a number of different ways, where activity may generally be determined as ability to cleave aggrecan or at least a fragment therefore, as well as a recombinant polypeptide, that includes the aggrecanase cleavage site, as described above. Such assays are described in U.S. Patent No. 5,872,209 and WO 99/05921 as well as Arner et al., J. Biol. Chem. (March 1999) 274: 6594-6601.

Also of interest in screening assays are non-human transgenic animals that express functional MPTS, where such animals are described above. In many embodiments, the animals lack the corresponding endogenous MPTS. In using such animals for screening applications, a test compound(s) is administered to the animal, and the resultant changes in phenotype, e.g. presence of aggrecan produced by cleavage of the Glu³⁷³-Ala³⁷⁴ bond, are compared with a control.

Alternatively, in vitro models of MPTS binding activity may be measured in which binding events between MPTS and candidate MPTS modulatory agents are monitored.

10

A variety of other reagents may be included in the screening assays, depending on the particular screening protocols employed. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc that are used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Reagents that improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, antimicrobial agents, etc. may be used.

A variety of different candidate therapeutic agents that serve as either MPTS agonists or antagonists may be screened by the above methods. Candidate agents encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than 50 and less than about 2,500 daltons. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines,

et synthetic or natural compounds. For example, numerous means are available for

random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides and oligopeptides. Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available or readily produced. Additionally, natural or synthetically produced libraries and compounds are readily modified through conventional chemical, physical and biochemical means, and may be used to produce combinatorial libraries. Known pharmacological agents may be subjected to directed or random chemical modifications, such as acylation, alkylation, esterification, amidification, etc. to produce structural analogs.

10

Of particular interest in many embodiments are screening methods that identify agents that selectively modulate, e.g. inhibit, the subject MPTS enzyme and not other proteases.

The nucleic acid compositions of the subject invention also find use as therapeutic agents in situations where one wishes to enhance an MPTS activity in a host. The MPTS genes, gene fragments, or the encoded proteins or protein fragments are useful in gene therapy to treat disorders associated with MPTS defects, including aggrecanase defects. Expression vectors may be used to introduce the gene into a cell.

Such vectors generally have convenient restriction sites located near the promoter sequence to provide for the insertion of nucleic acid sequences. Transcription cassettes may be prepared comprising a transcription initiation region, the target gene or fragment thereof, and a transcriptional termination region. The transcription cassettes may be introduced into a variety of vectors, e.g. plasmid; retrovirus, e.g. lentivirus; adenovirus; and the like, where the vectors are able to transiently or stably be maintained in the cells, usually for a period of at least about one day, more usually for a period of at least about several days to several weeks.

The gene or protein may be introduced into tissues or host cells by any number of routes, including viral infection, microinjection, or fusion of vesicles. Jet injection may also be used for intramuscular administration, as described by Furth *et al.* (1992), Anal Biochem 205:365-368. The DNA may be coated onto gold microparticles, and delivered intradermally by a particle bombardment device, or "gene gun" as described in

the literature (see, for example, Tang et al. (1992), Nature 356:152-154), where gold microprojectiles are coated with the DNA, then bombarded into skin cells.

The subject invention provides methods of modulating MPTS, and in many embodiments aggrecanase, activity in a cell, including methods of increasing MPTS activity (e.g. methods of enhancing), as well as methods of reducing or inhibiting MPTS activity, e.g. methods of stopping or limiting aggrecan cleavage. In such methods, an effective amount of a modulatory agent is contacted with the cell.

Also provided are methods of modulating, including enhancing and inhibiting, MPTS activity in a host. In such methods, an effective amount of active agent that modulates the activity of an MPTS protein in vivo, e.g. where the agent usually enhances or inhibits the target MPTS activity, is administered to the host. The active agent may be a variety of different compounds, including a naturally occurring or synthetic small 15 molecule compound, an antibody, fragment or derivative thereof, an antisense composition, and the like.

Of particular interest in certain embodiments are agents that reduce MPTS activity, including agents that reduce aggrecanase activity, e.g. aggrecan cleavage, by at 20 least about 10 fold, usually at least about 20 fold and more usually at least about 25 fold. as measure by the Assay described in Arner et al. (1999), supra. In many embodiments, of particular interest is the use of compounds that reduce aggrecanase activity by at least 100 fold, as compared to a control.

55 Also of interest is the use of agents that, while providing for reduced MPTS. including aggrecanase, activity, do not substantially reduce the activity of other proteinases, if at all. Thus, the agents in this embodiment are selective inhibitors of MPTS. An agent is considered to be selective if it provides for the above reduced aggrecanase activity, but substantially no reduced activity of at least one other

10

Naturally occurring or synthetic small molecule compounds of interest include numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than 50 and less than about 2,500 daltons. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof.

Also of interest as active agents are antibodies that at least reduce, if not inhibit, the target MPTS, e.g. aggrecanase, activity in the host. Suitable antibodies are obtained by immunizing a host animal with peptides comprising all or a portion of the target protein, e.g. MPTS-15, MPTS-19 or MPTS-20. Suitable host animals include mouse, rat sheep, goat, hamster, rabbit, etc. The origin of the protein immunogen may be mouse, human, rat, monkey etc. The host animal will generally be a different species than the immunogen, e.g. human MPTS used to immunize mice, etc.

20

25

15

The immunogen may comprise the complete protein, or fragments and derivatives thereof. Preferred immunogens comprise all or a part of MPTS, where these residues contain the post-translation modifications, such as glycosylation, found on the native target protein. Immunogens comprising the extracellular domain are produced in a variety of ways known in the art, e.g. expression of cloned genes using conventional recombinant methods, isolation from HEC, etc.

For preparation of polyclonal antibodies, the first step is immunization of the host animal with the target protein, where the target protein will preferably be in substantially pure form, comprising less than about 1% contaminant. The immunogen may comprise the complete target protein, fragments or derivatives thereof. To increase the immune response of the host animal, the target protein may be combined with an adjuvant, where suitable adjuvants include alum, dextran, sulfate, large polymeric

anions, oil & water emulsions, e.g. Freund's adjuvant, Freund's complete adjuvant, and the like. The target protein may also be conjugated to synthetic carrier proteins or synthetic antigens. A variety of hosts may be immunized to produce the polyclonal antibodies. Such hosts include rabbits, guinea pigs, rodents, e.g. mice, rats, sheep, goats, and the like. The target protein is administered to the host, usually intradermally, with an initial dosage followed by one or more, usually at least two, additional booster dosages. Following immunization, the blood from the host will be collected, followed by separation of the serum from the blood cells. The Ig present in the resultant antiserum may be further fractionated using known methods, such as ammonium salt fractionation, DEAE chromatography, and the like.

10

Monoclonal antibodies are produced by conventional techniques. Generally, the spleen and/or lymph nodes of an immunized host animal provide a source of plasma cells. The plasma cells are immortalized by fusion with myeloma cells to produce hybridoma cells. Culture supernatant from individual hybridomas is screened using standard techniques to identify those producing antibodies with the desired specificity. Suitable animals for production of monoclonal antibodies to the human protein include mouse, rat, hamster, etc. To raise antibodies against the mouse protein, the animal will generally be a hamster, guinea pig, rabbit, etc. The antibody may be purified from the hybridoma cell supernatants or ascites fluid by conventional techniques, e.g. affinity chromatography using MPTS bound to an insoluble support, protein A sephatose, etc. Therefore it is an object of the present invention to provide monoclonal antibodies binding specifically to the MPTS proteins of the present invention, more specifically such antibodies which inhibit aggreeanase activity and such antibodies which are human or humanized ones.

The antibody may be produced as a single chain, instead of the normal multimeric structure. Single chain antibodies are described in Jost *et al.* (1994) <u>LB.C.</u> 269:26267-73, and others. DNA sequences encoding the variable region of the heavy

retains the specificity and arimity of the original antibody

For *in vivo* use, particularly for injection into humans, it is desirable to decrease the antigenicity of the antibody. An immune response of a recipient against the blocking agent will potentially decrease the period of time that the therapy is effective. Methods of humanizing antibodies are known in the art. The humanized antibody may be the product of an animal having transgenic human immunoglobulin constant region genes (see for example WO 90/10077 and WO 90/04036). Alternatively, the antibody of interest may be engineered by recombinant DNA techniques to substitute the CH1, CH2, CH3, hinge domains, and/or the framework domain with the corresponding human sequence (see WO 92/02190).

10

The use of Ig cDNA for construction of chimeric immunoglobulin genes is known in the art (Liu *et al.* (1987) P.N.A.S. 84:3439 and (1987) I. Immunol. 139:3521). mRNA is isolated from a hybridoma or other cell producing the antibody and used to produce cDNA. The cDNA of interest may be amplified by the polymerase chain reaction using specific primers (U.S. Patent Nos. 4,683,195 and 4,683,202). Alternatively, a library is made and screened to isolate the sequence of interest. The DNA sequence encoding the variable region of the antibody is then fused to human constant region sequences. The sequences of human constant regions genes may be found in Kabat *et al.* (1991) Sequences of Proteins of Immunological Interest, N.I.H. publication no. 91-3242. Human C region genes are readily available from known clones. The choice of isotype will be guided by the desired effector functions, such as complement fixation, or activity in antibody-dependent cellular cytotoxicity. Preferred isotypes are IgG1, IgG3 and IgG4. Either of the human light chain constant regions, kappa or lambda, may be used. The chimeric, humanized antibody is then expressed by conventional methods.

In yet other embodiments, the antibodies may be fully human antibodies. For example, xenogeneic antibodies which are identical to human antibodies may be employed. By xenogenic human antibodies is meant antibodies that are the same has human antibodies, i.e. they are fully human antibodies, with exception that they are produced using a non-human host which has been genetically engineered to express human antibodies, e.g. WO 98/50433; WO 98,24893 and WO 99/53049.

Antibody fragments, such as Fv, F(ab')₂ and Fab may be prepared by cleavage of the intact protein, e.g. by protease or chemical cleavage. Alternatively, a truncated gene is designed. For example, a chimeric gene encoding a portion of the F(ab')₂ fragment would include DNA sequences encoding the CH1 domain and hinge region of the H chain, followed by a translational stop codon to yield the truncated molecule.

Consensus sequences of H and L J regions may be used to design oligonucleotides for use as primers to introduce useful restriction sites into the J region for subsequent linkage of V region segments to human C region segments. C region cDNA can be modified by site directed mutagenesis to place a restriction site at the analogous position in the human sequence.

Expression vectors include plasmids, retroviruses, YACs, EBV derived episomes, and the like. A convenient vector is one that encodes a functionally complete human CH or CL immunoglobulin sequence, with appropriate restriction sites engineered so that any VH or VL sequence can be easily inserted and expressed. In such vectors, splicing usually occurs between the splice donor site in the inserted J region and the splice acceptor site preceding the human C region, and also at the splice regions that occur within the human CH exons. Polyadenylation and transcription termination occur at native chromosomal sites downstream of the coding regions. The resulting chimeric antibody may be joined to any strong promoter, including retroviral LTRs, e.g. SV-40 early promoter, (Okayama et al. (1983) Mol. Cell. Bio. 3:280), Rous sarcoma virus LTR (Gorman et al. (1982) P.N.A.S. 79:6777), and moloney murine leukemia virus LTR (Grosschedl et al. (1985) Cell 41:885); native Ig promoters, etc.

25

In yet other embodiments of the invention, the active agent is an agent that modulates, and generally decreases or down regulates, the expression of the gene encoding the target protein in the host. For example, antisense molecules can be used to down-regulate expression of MPTS in cells. The anti-sense reagent may be intisense.

targeted gene, and inhibits expression of the targeted gene products. Antisense

molecules inhibit gene expression through various mechanisms, e.g. by reducing the amount of mRNA available for translation, through activation of RNAse H, or steric hindrance. One or a combination of antisense molecules may be administered, where a combination may comprise multiple different sequences

5

15

20

Antisense molecules may be produced by expression of all or a part of the target gene sequence in an appropriate vector, where the transcriptional initiation is oriented such that an antisense strand is produced as an RNA molecule. Alternatively, the antisense molecule is a synthetic oligonucleotide. Antisense oligonucleotides will generally be at least about 7, usually at least about 12, more usually at least about 20 nucleotides in length, and not more than about 500, usually not more than about 50, more usually not more than about 35 nucleotides in length, where the length is governed by efficiency of inhibition, specificity, including absence of cross-reactivity, and the like. It has been found that short oligonucleotides, of from 7 to 8 bases in length, can be strong and selective inhibitors of gene expression (see Wagner et al. (1996), Nature Biotechnol. 14:840-844).

A specific region or regions of the endogenous sense strand mRNA sequence is chosen to be complemented by the antisense sequence. Selection of a specific sequence for the oligonucleotide may use an empirical method, where several candidate sequences are assayed for inhibition of expression of the target gene in an *in vitro* or animal model. A combination of sequences may also be used, where several regions of the mRNA sequence are selected for antisense complementation.

Antisense oligonucleotides may be chemically synthesized by methods known in the art (see Wagner et al. (1993), supra, and Milligan et al., supra.) Preferred oligonucleotides are chemically modified from the native phosphodiester structure, in order to increase their intracellular stability and binding affinity. A number of such modifications have been described in the literature, which alter the chemistry of the

30 backbone, sugars or heterocyclic bases.

Among useful changes in the backbone chemistry are phosphorothioates; phosphorodithioates, where both of the non-bridging oxygens are substituted with

sulfur; phosphoroamidites; alkyl phosphotriesters and boranophosphates. Achiral phosphate derivatives include 3'-O'-5'-S-phosphorothioate, 3'-S-5'-O-phosphorothioate, 3'-CH2-5'-O-phosphonate and 3'-NH-5'-O-phosphoroamidate. Peptide nucleic acids replace the entire ribose phosphodiester backbone with a peptide linkage. Sugar modifications are also used to enhance stability and affinity. The α-anomer of deoxyribose may be used, where the base is inverted with respect to the natural β-anomer. The 2'-OH of the ribose sugar may be altered to form 2'-O-methyl or 2'-O-allyl sugars, which provides resistance to degradation without comprising affinity. Modification of the heterocyclic bases must maintain proper base pairing. Some useful substitutions include deoxyuridine for deoxythymidine; 5-methyl-2'-deoxycytidine and 5-bromo-2'-deoxycytidine for deoxycytidine. 5- propynyl-2'-deoxyuridine and 5-propynyl-2'-deoxycytidine have been shown to increase affinity and biological activity when substituted for deoxythymidine and deoxycytidine, respectively.

15 As an alternative to anti-sense inhibitors, catalytic nucleic acid compounds, e.g. ribozymes, anti-sense conjugates, etc. may be used to inhibit gene expression. Ribozymes may be synthesized in vitro and administered to the patient, or may be encoded on an expression vector, from which the ribozyme is synthesized in the targeted cell (for example, see International patent application WO 9523225, and Beigelman et al. (1995), Nucl. Acids Res. 23:4434-42). Examples of oligonucleotides with catalytic activity are described in WO 9506764. Conjugates of anti-sense ODN with a metal complex, e.g. terpyridylCu(II), capable of mediating mRNA hydrolysis are described in Bashkin et al. (1995), Appl. Biochem. Biotechnol. 54:43-56.

It is herefore an object of the present invention to provide a method of modulating MPTS activity in a host, said method comprising: administering an effective amount of an MPTS modulatory agent to said host, or more specifically such a method wherein said modulatory agent is a small molecule, an antibody, or a nucleic acid.

30

As mentioned above, an effective amount of the active agent is administered to

e.g. aggrecanase, activity, as measured by aggrecan cleavage product production, as compared to a control.

In the subject methods, the active agent(s) may be administered to the host using any convenient means capable of resulting in the desired modulation of MPTS activity, e.g. desired reduction in aggrecan cleavage product production. Thus, the agent can be incorporated into a variety of formulations for therapeutic administration. More particularly, the agents of the present invention can be formulated into pharmaceutical compositions by combination with appropriate, pharmaceutically acceptable carriers or diluents, and may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments, solutions, suppositories, injections, inhalants and aerosols.

As such, administration of the agents can be achieved in various ways, including oral, buccal, rectal, parenteral, intraperitoneal, intradermal, transdermal, intracheal, etc., administration.

In pharmaceutical dosage forms, the agents may be administered in the form of their pharmaceutically acceptable salts, or they may also be used alone or in appropriate association, as well as in combination, with other pharmaceutically active compounds.

For oral preparations, the agents can be used alone or in combination with appropriate additives to make tablets, powders, granules or capsules, for example, with conventional additives, such as lactose, mannitol, corn starch or potato starch; with binders, such as crystalline cellulose, cellulose derivatives, acacia, corn starch or gelatins; with disintegrators, such as corn starch, potato starch or sodium carboxymethylcellulose; with lubricants, such as talc or magnesium stearate; and if desired, with diluents, buffering agents, moistening agents, preservatives and flavoring agents.

30

20

The agents can be formulated into preparations for injection by dissolving, suspending or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or

propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.

The agents can be utilized in aerosol formulation to be administered via
inhalation. The compounds of the present invention can be formulated into pressurized acceptable propellants such as dichlorodifluoromethane, propane, nitrogen and the like.

Furthermore, the agents can be made into suppositories by mixing with a variety of bases such as emulsifying bases or water-soluble bases. The compounds of the present invention can be administered rectally via a suppository. The suppository can include vehicles such as cocoa butter, carbowaxes and polyethylene glycols, which melt at body temperature, yet are solidified at room temperature.

Unit dosage forms for oral or rectal administration such as syrups, elixirs, and suspensions may be provided wherein each dosage unit, for example, teaspoonful, tablespoonful, tablet or suppository, contains a predetermined amount of the composition containing one or more inhibitors. Similarly, unit dosage forms for injection or intravenous administration may comprise the inhibitor(s) in a composition as a solution in sterile water, normal saline or another pharmaceutically acceptable carrier.

15

20

The term "unit dosage form," as used herein, refers to physically discrete units suitable as unitary dosages for human and animal subjects, each unit containing a predetermined quantity of compounds of the present invention calculated in an amount sufficient to produce the desired effect in association with a pharmaceutically acceptable diluent, carrier or vehicle. The specifications for the novel unit dosage forms of the present invention depend on the particular compound employed and the effect to be achieved, and the pharmacodynamics associated with each compound in the host.

agents, stabilizers, wetting agents and the like, are readily available to the public.

Where the agent is a polypeptide, polynucleotide, analog or mimetic thereof, e.g. antisense composition, it may be introduced into tissues or host cells by any number of routes, including viral infection, microinjection, or fusion of vesicles. Jet injection may also be used for intramuscular administration, as described by Furth *et al.* (1992), *Anal Biochem* 205:365-368. The DNA may be coated onto gold microparticles, and delivered intradermally by a particle bombardment device, or "gene gun" as described in the literature (see, for example, Tang *et al.* (1992), *Nature* 356:152-154), where gold microprojectiles are coated with the therapeutic DNA, then bombarded into skin cells.

Those of skill in the art will readily appreciate that dose levels can vary as a function of the specific compound, the severity of the symptoms and the susceptibility of the subject to side effects. Preferred dosages for a given compound are readily determinable by those of skill in the art by a variety of means.

10

15

The subject methods find use in the treatment of a variety of different disease conditions involving MPTS activity, including disease conditions involving aggrecanase activity. Of particular interest is the use of the subject methods to treat disease conditions characterized by the presence of aggrecan cleavage products, particularly 60 kDa aggrecan cleavage products having an ARGS N-terminus. Specific diseases that are characterized by the presence of such methods include: rheumatoid arthritis, osteo-arthritis, infectious arthritis, gouty arthritis, psoriatic arthritis, spondolysis, sports injury, joint trauma, pulmonary disease, fibrosis, and the like.

By treatment is meant at least an amelioration of the symptoms associated with the pathological condition afflicting the host, where amelioration is used in a broad sense to refer to at least a reduction in the magnitude of a parameter, e.g. symptom, associated with the pathological condition being treated, such as hyperphosphatemia. As such, treatment also includes situations where the pathological condition, or at least symptoms associated therewith, are completely inhibited, e.g. prevented from happening, or stopped, e.g. terminated, such that the host no longer suffers from the pathological condition, or at least the symptoms that characterize the pathological condition.

A variety of hosts are treatable according to the subject methods. Generally such hosts are "mammals" or "mammalian," where these terms are used broadly to describe organisms which are within the class mammalia, including the orders carnivore (e.g., dogs and cats), rodentia (e.g., mice, guinea pigs, and rats), and primates (e.g., humans, chimpanzees, and monkeys). In many embodiments, the hosts will be humans.

Kits with unit doses of the active agent, usually in oral or injectable doses, are provided. In such kits, in addition to the containers containing the unit doses will be an informational package insert describing the use and attendant benefits of the drugs in treating pathological condition of interest. Preferred compounds and unit doses are those described herein above.

Finaly it is an object of the present invention:

20

- A method of screening to identify MPTS modulatory agents, said method comprising:

 contacting an MPTS proteins as defined herein with a substrate in the presence of an potential modulatory agents; and determing the effect of said modulatory agent on the activity of said protein.
 - (ii) The method as defined in (i), wherein said substrate comprises a glu-ala bond.
- (iii) The method as defined in (ii), wherein said substrate is aggreean or a
 25 Iragment thereof.

Furthermore, a method of treating a host suffering from a disease condition associated with MPTS activity specifically wherein said disease condition is characterized by the presence of aggrecan cleavage prducts, said method comprising:

and officer ment is a the treatment of a disease condition associated with MPTS activity,

specifically wherein said disease condition is characterized by the presence of aggrecan cleavage products, like arthritis.

Examples

<u>Example 1</u>

A nucleic acid array carrying 699 known metalloproteinase genes and novel ESTs available in public and proprietary databases was designed. These sequences on the array were selected by a search with a seed set of known metalloprotease protein sequences from all species. These protein sequences were used to find matching sequences in human nucleotide at the protein (codon) level. Redundant sequences were eliminated, remaining sequences assembled and clustered, and the unique set of 699 sequences were arrayed.

The resultant array was used to screen genes expressed in primary cultures of chondrocytes. A fair number of metalloproteinases known to be expressed by these cells were identified. However, a number of ESTs for novel proteins were also identified. Using these ESTs in subsequent database mining and PCR protocols, four different human MPTS proteins were identified, i.e. MPTS15, MPTS10, MPTS19 and MPTS20.

20

5

Example 2

Expression of MPTS-10

An example of a system for expression of mpts-10 is the COS-7 mammalian cell system. The nucleotide sequence that encodes mpts-10, including the secretion signal sequence, was ligated into a pcDNA3.1 plasmid (In Vitrogen, Carlsbad, CA, USA). Two micrograms of the resulting plasmid was combined with lipofectamine (Life Technologies, Rockville, MD, USA). The mixture was then added to COS-7 cells, which were grown in 6 well plates to a density of approximately 90% confluency. After 6 hours, fresh medium was added to the cells and after 24 hours the cells were washed and fresh serum free medium containing bovine aggrecan (0.1mg/ml, Sigma, St. Louis, MO, USA) was added. The cells were incubated for an additional 48 hours. Five hundred

micoliters of culture fluid from each well was collected and concentrated ten fold. Two microliters of chondroitinase ABC and keratinase (10 u/ml, Sigma, St. Louis, MO, USA) was then added and the samples incubated overnight at 37C. The samples were then boiled in SDS-PAGE sample loading buffer, electrophoresed on a polyacryamide gel and transferred to a PVDF membrane. A Western blot using an antiserum against a neoepitope generated when aggrecanase cleaves aggrecan was then performed.

Another example of a system for expression of mpts-10 was the baculovirus expression system. The DNA sequence that contained the coding sequence for mpts-10 10 (including the sequences that code for the secretion signal sequence) and that had been cloned in the pcDNA3.1 vector was modified by PCR so that the coding sequence and the translational stop codon were flanked by the Not 1 (N-terminal side) and Sfi-1 (Cterminal side). The primer used for the N-terminal end was GATCGCGGCCGCTATGGTGGACACGTGGCCTCTATGGCTCC and the primer for 15 the C-terminal end was TGAGGCCTTCAGGGCCGATCACTGTGCAGAGCACTCACCCCAT. After amplification using standard PCR methods, the fragment was digested with Not 1 and Sfi-1. The digested fragment was ligated into a vector pVI.1392-U, which had also been digested with Not1 and Sfi-1. PVI.1392-U is a derivation of the baculovirus transfer 20 plasmid, pVL1392 (PharMingen, San Diego, CA USA) in which the multiple cloning site has been modified to contain Not-1 and Sfi-1. The overhangs generated by digestion with Not-1 and Sf1-1 were complementary to the overhangs generated in the Not-1 and Sti 1 digested PCR amplified DNA. The ligated DNA was transformed into bacterial cells and a clone was selected that contained the plasmid and the correct mpts-10. 25 sequence. This plasmid was produced and puritied. The mpts-10 sequence was transferred into a baculovirus vector using standard techniques (Baculovirus Expression) Vectors: A Laboratory Manual by David O'Reilly, Lois Miller, and Verne Luckow, W.H. Freeman and Co., New York, USA). Five plaque purified virus preparations were produced from the virus preparation. Sf9 insect cells growing in suspension were 30 infected with each of the plaque purified virus proparations at a multiplicity of 0.5

chondroitinase ABC and keratinase (10u/ml) at 37C overnight. The samples were then examined by Western blotting using an antiserum that reacts with a neoepitope generated when aggrecan is cleaved by aggrecanase.

Another method for expression of mpts-10 was the drosophila expression system. The DNA fragment containing the sequences encoding mpts-10 and flanked by Not-1 and Sfi-1 that had been generated by PCR (see above) was cloned into plasmid Cmk 33. Cmk33 is a plasmid derived from pMK33/pMtHy (Li, Bin et al Biochem J (1996) 313, 57-64) so that Not-1 and Sfi-1 were in the cloning site. The overhangs 10 generated by digestion of this plasmid are compatible with the overhangs generated in the digested DNA containing the mpts-10 fragment (see above). A plasmid containing the correct sequence of mpts-10 was amplified and purified. Drosophila (S2) cells were transformed with the plasmid using standard techniques (Li, Bin et al Biochem J (1996) 313, 57-64). Culture fluid was collected 2 days after transfection. These samples were assayed for aggrecanase activity by incubating with bovine aggrecan (Sigma, St. Louis, MO, USA) at a concentration of 0.1 mg/ml. The samples were then incubated with both chondroitinase ABC and keratinase (10u/ml) at 37C overnight. The samples were then examined by Western blotting using an antiserum that reacts with a neoepitope generated when aggrecan is cleaved by aggrecanase.

Example 3

Expression of MPTS-15

5

20

25 An example of a system for expression of mpts-15 is the COS-7 mammalian cell system. The nucleotide sequence that encodes mpts-15, including the secretion signal sequence, was ligated into a pcDNA3.1 plasmid (In Vitrogen, Carlsbad, CA, USA). Two micrograms of the resulting plasmid was combined with lipofectamine (Life Technologies, Rockville, MD, USA). The mixture was then added to COS-7 cells, which were grown in 6 well plates to a density of approximately 90% confluency. After 6 hours, fresh medium was added to the cells and after 24 hours the cells were washed and fresh serum free medium containing bovine aggrecan (0.1mg/ml, Sigma, St. Louis, MO, USA) was added. The cells incubated for an additional 48 hours. Five hundred

micoliters of culture fluid from each well was collected and concentrated ten fold. Two microliters of chondroitinase ABC and keratinase (10 u/ml, Sigma, St. Louis, MO, USA) was then added and the samples incubated overnight at 37C. The samples were then boiled in SDS-PAGE sample loading buffer, electrophoresed on a polyacryamide gel and transferred to a PVDF membrane. A Western blot using an antiserum against a neoepitope generated when aggrecanase cleaves aggrecan was then performed.

Another example of a system for expression of mpts-15 was the baculovirus expression system. The DNA sequence that contained the coding sequence for mpts-15 (including the sequences that code for the secretion signal sequence) and that had been cloned in the pcDNA3.1 vector was modified by PCR so that the coding sequence and the translational stop codon were flanked by the Not 1 (N-terminal side) and Sfi-1 (C-terminal side). The primer used for the N-terminal end was GATCGCGGCCGCTATGGAAATTTTGTGGAAGACGTTG and the primer for the Cterminal end was TGAGGCCTTCAGGGCCGATCTTAAAGCAAAGTTTCTTTTGGT. After amplification using standard PCR methods, the fragment was digested with Not 1 and Sfi-1. The digested fragment was ligated into a vector pVL1392-U, which had also been digested with Not1 and Sfi-1. PVI.1392-U is a derivation of the baculovirus transfer plasmid, pVL1392 (PharMingen, San Diego, CA, USA) in which the multiple 20 cloning site has been modified to contain Not-1 and Sfi-1. The overhangs generated by digestion with Not-1 and Sf1-1 were complementary to the overhangs generated in the Not 1 and Sfi 1digested PCR amplified DNA. The ligated DNA was transformed into bacterial cells and a clone was selected that contained the plasmid and the correct mpts 15 sequence. This plasmid was produced and purified. The mpts-15 sequence was 25 transferred into a baculovirus vector using standard techniques (Baculovirus Expression Vectors: A Laboratory Manual by David O'Reilly, Lois Miller, and Verne Luckow, W.H. Freeman and Co., New York, USA). Five plaque purified virus preparations were produced from the virus preparation. Sf9 insect cells growing in suspension were infected with each of the plaque purified virus preparations at a multiplicity of 0.5. 30. Culture fluid, was harvested at 3 days after infection. These samples were assayed for

and the control of th

examined by Western blotting using an antiserum that reacts with a neoepitope generated when aggrecan is cleaved by aggrecanase.

Another method for expression of mpts-15 was the drosophila expression system. The DNA fragment containing the sequences encoding mpts-15 and flanked by Not-1 and Sfi-1 that had been generated by PCR (see above) was cloned into plasmid Cmk 33. Cmk33 is a plasmid derived from pMK33/pMtHy (Li, Bin et al Biochem J (1996) 313, 57-64) so that Not-1 and Sfi-1 were in the cloning site. The overhangs generated by digestion of this plasmid are compatible with the overhangs generated in the Not 1 and Sfi 1 digested DNA containing the mpts-15 fragment (see above). A plasmid containing the correct sequence of mpts-15 was amplified and purified. Drosophila (S2) cells were transformed with the plasmid using standard techniques (Li, Bin et al Biochem J (1996) 313, 57-64). Culture fluid was collected 2 days after transfection. . These samples were assayed for aggrecanase activity by incubating with bovine aggrecan (Sigma, St. Louis, MD, USA) at a concentration of 0.1 mg/ml. The samples were then incubated with both chondroitinase ABC and keratinase (10u/ml) at 37C overnight. The samples were then examined by Western blotting using an antiserum that reacts with a neoepitope generated when aggrecan is cleaved by aggrecanase.

20

Example 4

Expression of MPTS-19

An example of a system for expression of mpts-19 is the COS-7 mammalian cell system. The nucleotide sequence that encodes mpts-19, including the secretion signal sequence and the C-terminal stop codon, was ligated into a pcDNA3.1 plasmid (In Vitrogen, Carlsbad, CA, USA). Two micrograms of the resulting plasmid was combined with lipofectamine (Life Technologies, Rocheville, MD, USA). The mixture was then added to COS-7 cells, which were grown in 6 well plates to a density of approximately 90% confluency. After 6 hours, fresh medium was added to the cells and after 24 hours the cells were washed and fresh serum free medium containing bovine aggrecan (0.1mg/ml, Sigma, St. Louis, MO, USA) was added. The cells incubated for an

additional 48 hours. Five hundred micoliters of culture fluid from each well was collected and concentrated ten fold. Two microliters of chondroitinase ABC and keratinase (10 u/ml, Sigma, St. Louis, MO, USA) was then added and the samples incubated overnight at 37C. The samples were then boiled in SDS-PAGE sample loading buffer, electrophoresed on a polyacryamide gel and transferred to a PVDF membrane. A Western blot using an antiserum against a neoepitope generated when aggrecanase cleaves aggrecan was then performed.

Another example of a system for expression of mpts-19 was the baculovirus

expression system. The DNA sequence that contained the coding sequence for mpts-19

(including the sequences that code for the secretion signal sequence) and that had been cloned in the pcDNA3.1 vector was modified by PCR so that the coding sequence and the translational stop codon were flanked by the Not 1 (N-terminal side) and Sfi-1 (C-terminal side). The primer used for the N-terminal end was

GATCGCGGCCCCTATGCCCGGCGCGCCCCAGTCCCCG and the primer for the C-terminal end was

TGAGGCCTTCAGGGCCGATCTCAGCGGCGGGCAACCCGCTG. After amplification using standard PCR methods, the fragment was digested with Not 1 and Sfi-1. The digested fragment was ligated into a vector pVL1392-U, which had also been digested with Not1 and Sfi-1. PVL1392-U is a derivation of the baculovirus transfer plasmid, pVL1392 (PharMingen, San Diego, CA USA) in which the multiple cloning site has been modified to contain Not-1 and Sfi-1. The overhangs generated by digestion with Not-1 and Sfi-1 were complementary to the overhangs generated in the Not 1 and Sfi-1 digested PCR amplified DNA. The ligated DNA was transformed into bacterial

23 cells and a clone was selected that contained the plasmid and the correct mpts-19 sequence. This plasmid was produced and purified. The mpts-19 sequence was transferred into a baculovirus vector using standard techniques (*Baculovirus Expression Vectors: A Laboratory Manual* by David O'Reilly, Lois Miller, and Verne Luckow, W.H. Freeman and Co., New York, USA). Five plaque purified virus preparations were

30 produced from the virus preparation. Sf9 insect cells growing in suspension torre

a concentration of 0.1 mg/ml. The samples were then incubated with both chondroitinase ABC and keratinase (10u/ml) at 37C overnight. The samples were then examined by Western blotting using an antiserum that reacts with a neoepitope generated when aggrecan is cleaved by aggrecanase.

5

Another method for expression of mpts-19 was the drosophila expression system. The DNA fragment containing the sequences encoding mpts-19 and flanked by Not-1 and Sfi-1 that had been generated by PCR (see above) was cloned into plasmid Cmk 33. Cmk33 is a plasmid derived from pMK33/pMtHy (Li, Bin et al Biochem J 10 (1996) 313, 57-64) so that Not-1 and Sfi-1 were in the cloning site. The overhangs generated by digestion of this plasmid with Not 1 and Sfi 1 are compatible with the overhangs generated in the digested DNA containing the mpts-19 fragment (see above). A plasmid containing the correct sequence of mpts-19 was amplified and purified. Drosophila (S2) cells were transformed with the plasmid using standard techniques (Li, Bin et al Biochem J (1996) 313, 57-64). Culture fluid was collected 2 days after transfection. These samples were assayed for aggrecanase activity by incubating with bovine aggrecan (Sigma, St. Louis, MO, USA) at a concentration of 0.1 mg/ml. The samples were then incubated with both chondroitinase ABC and keratinase (10u/ml) at 37C overnight. The samples were then examined by Western blotting using an antiserum that reacts with a neoepitope generated when aggrecan is cleaved by aggrecanase.

Example 5

25 Expression of MPTS-20

An example of a system for expression of mpts-20 is the COS-7 mammalian cell system. The nucleotide sequence that encodes mpts-10, including the secretion signal sequence and the C-terminal stop codon, was ligated into a pcDNA3.1 plasmid (In Vitrogen, Carlesbad, CA, USA). Two micrograms of the resulting plasmid was combined with lipofectamine (Life Technologies, Rockeville, MD, USA). The mixture was then added to COS-7 cells, which were grown in 6 well plates to a density of approximately 90% confluency. After 6 hours, fresh medium was added to the cells and

after 24 hours the cells were washed and fresh serum free medium containing bovine aggrecan (0.1mg/ml, Sigma, St. Louis, MO, USA) was added. The cells incubated for an additional 48 hours. Five hundred micoliters of culture fluid from each well was collected and concentrated ten fold. Two microliters of chondroitinase ABC and keratinase (10 u/ml, Sigma, St. Louis, MO, USA) was then added and the samples incubated overnight at 37C. The samples were then boiled in SDS-PAGE sample loading buffer, electrophoresed on a polyacryamide gel and transferred to a PVDF membrane. A Western blot using an antiserum against a neoepitope generated when aggrecanase cleaves aggrecan was then performed.

10

Another example of a system for expression of mpts-20 was the baculovirus expression system. The DNA sequence that contained the coding sequence for mpts-20 (including the sequences that code for the secretion signal sequence) and that had been cloned in the pcDNA3.1 vector was modified by PCR so that the coding sequence and the translational stop codon were flanked by the Not 1 (N-terminal side) and Sfi-1 (C-terminal side). The primer used for the N-terminal end was GATCGCGCTGCGCTGTGATGAGTGTGCCTG and the primer for the C-terminal end was

TGAGGCCTTCAGGGCCGATCTTATAAAGGCCTTGAGAAAACAG. After

amplification using standard PCR methods, the fragment was digested with Not 1 and

Sfi-1. The digested fragment was ligated into a vector pVL1392-U, which had also been
digested with Not1 and Sfi-1. PVL1392-U is a derivation of the baculovirus transfer
plasmid, pVL1392 (PharMingen, San Diego, CA USA) in which the multiple cloning site
has been modified to contain Not-1 and Sfi-1. The overhangs generated by digestion

with Not-1 and Sf1-1 were complementary to the overhangs generated in the Not-1 and
Sfi-1 digested PCR amplified DNA. The ligated DNA was transformed into bacterial
cells and a clone was selected that contained the plasmid and the correct mpts-20
sequence. This plasmid was produced and purified. The mpts-20 sequence was

3. Vertors: A Laboratory Manuel Kerlynesteryb, 16. (*) veryet i 1920 - 1920 - 1920 - 1920

transferred into a baculovirus vector using standard techniques (Baculovirus Expression

Culture fluid was harvest 3 days after infection. These samples were assayed for aggrecanase activity by incubating with bovine aggrecan (Sigma, St. Louis, MO, USA) at a concentration of 0.1 mg/ml. The samples were then incubated with both chondroitinase ABC and keratinase (10u/ml) at 37C overnight. The samples were then examined by Western blotting using an antiserum that reacts with a neoepitope generated when aggrecan is cleaved by aggrecanase.

Another method for expression of mpts-20 was the drosophila expression system. The DNA fragment containing the sequences encoding mpts-20 and flanked by 10 Not-1 and Sfi-1 that had been generated by PCR (see above) was cloned into plasmid Cmk 33. Cmk33 is a plasmid derived from pMK33/pMtHy (Li, Bin et al Biochem J (1996) 313, 57-64) so that Not-1 and Sfi-1 were in the cloning site. The overhangs generated by digestion of this plasmid with Not 1 and Sfi 1 are compatible with the overhangs generated in the digested DNA containing the mpts-20 fragment (see above). 15 A plasmid containing the correct sequence of mpts-20 was amplified and purified. Drosophila (S2) cells were transformed with the plasmid using standard techniques (Li, Bin et al Biochem J (1996) 313, 57-64). Culture fluid was collected 2 days after transfection. These samples were assayed for aggrecanase activity by incubating with bovine aggrecan (Sigma, St. Louis, MO, USA) at a concentration of 0.1 mg/ml. The samples were then incubated with both chondroitinase ABC and keratinase (10u/ml) at 37C overnight. The samples were then examined by Western blotting using an antiserum that reacts with a neoepitope generated when aggrecan is cleaved by aggrecanase.

25 <u>Example 6</u>

Purification of mpts-10, 15, 19 and 20:

Mpts-10, 15, 19, and 20 were purified from the culture fluid of the expression systems described above using chromatographic procedures. For example, the culture fluid was adjusted with regard to pH, filtered and then loaded onto a column packed with sulfopropyl sepharose FF (Amersham-Pharmacia Biotech, Piscataway, NJ, USA). After washing with a buffer consisting of 10 mM CaCl₂,0.1 M NaCl, and 0.05% Brij35 at a pH

which results in retention of the mpts's on the column, the mpts's were eluted with a $0.1\,$ M to $1.0\,$ M NaCl gradient. Fractions from the column were assayed for the presence of aggrecanase activity as described above and noded. For the purification a column packed with phenylsepharose or sephacryl S-200 can also be used.

SEQUENCE LISTING

<110> Hoffmann-La Roche AG

5 <120> Novel Metalloproteases Having
Thrombospondin Domains and Nucleic Acid Compositions
Encoding the Same

<130> 20594

10

<:150> 50/184,152

<151> 2000-02-18

-:160:- 10

15

<:170: FastSEQ for Windows Version 4.0</pre>

+2100 L

+211: 959

20 - 212: PRT

+213: human

· 220:-

+2230 Xaa at 909 is any amino acid

25

 ${\,^{<\!}}223{\,^{>\!}}$ % at 211 is any amino acid

<223> X at 218 is any amino acid

30 <223> Xaa is any amino acid

	<40	0>	1													
	Met	Glu	Ile	Leu	Trp	Lys	Thr	Leu	Thr	Trp	Ile	Leu	Ser	Leu	Ile	Met
	1				5					10					15	
	Ala	Ser	Ser	Glu	Phe	His	Ser	Asp	His	Arg	Leu	Ser	Tyr	Ser	Ser	Gln
5				20					25					30		
	Glu	Glu	Phe	Leu	Thr	Tyr	Leu	Glu	His	Tyr	Gln	Leu	Thr	Ile	Pro	Ile
			35					40					45			
	Arg		Asp	Gln	Asn	Gly		Phe	Leu	Ser	Phe	Thr	Val	Lys	Asn	Asp
2		50					55					60				
10		His	Ser	Arg	Arg		Arg	Ser	Met	Asp		Ile	Asp	Pro	Gln	Gln
	65				_	70					7.5					80
	Ala	∀a⊥	Ser	Lys		Phe	Phe	Lys	Leu		Ala	Tyr	Gly	Lys	His	Phe
	Uic	* 0.1	3 an	Tan	85 The	T	3			90			_		95	
15	.113	Leu	ASII	100	1111	neu	ASII	1;11.	105	Pne	wai	Ser	Lys		Phe	Thr
	Val	Glu	Tvr		Giv	Lvs	Agn	G° v		Cln	-rn	Lvc	Wi e	110	Phe	Tan
			115	,5	317	2,70	115p	120		J1.1	- 1 2	دلات	125	мэр	PHE	iseu
	Asp	Asn	Cys	His	Tyr	Thr	Gly		Leu	Gln	Asp	Gln		Ser	Thr	(Ph m
		130					135	-			•	140	5			
20	Lys	Val	Ala	Leu	Ser	Asn	Суѕ	Val.	Gly	Leu	His	Gly	Val	lle	Ala	Thr
	145					150					155					161
	Glu	Asp	Glu	Glu	Tyr	Phe	11e	Gla	Pro	Leu	Lys	Asn	Thi	77.2	Glu	Asp
					155					170					175	
	Ser	Lys	His	Phe	Ser	Tyr	014	Asn	GLY	His	Fro	His	Val	::⊬	Tyr	Lyp
25				180					185					100		
	Lya	Ser		Ler:	Gli.	3.1.	Aiq		Leu	Tyr	Asp	His		H.8	Cys	Gly
			195					293					2275			
			zsfi fi	1	. 1 *			1-7		1::	111	7:;	I ·· :	Alvin	À	
311									~ 1							
			. 1.	. • :				1 1 2	. 100			1::1	H1:3		H.:	
		13. m	1110	Arres				• • •	etu.		5	11. 2	21°		Leu	
			2,5		245		7,5.	- 112	G1.1	250	FILU	Val	Gill	. F. Y	255	5/41
	Val	Ala	Asti			Merry	ta:	419	m.,.,.		o:	Arre	Larc	.		
3.5				200 200					265		****	* * = 10	232	$\frac{n_{2}}{2}$	- i, t-	
	His	Tyn	116	:	3:		•.•	5 :		**-7.7	<i>;</i>		÷ ,	• • • •	٠, .	·

	Leu	Thr	Glu	Asp	Gln	Pro	Asn	Leu	Glu	Ile	Asn	His	His	Ala	Asp	Lys
	305					310					315					320
	Ser	Leu	qzA	Ser	Phe	Суѕ	Lys	Trp	Glm	Lys	Ser	Ile	Leu	Ser	His	Gln
					325					330					335	
5	Ser	Asp	Gly	Asn	Thr	Ile	Pro	Glu	Asn	Gly	Ile	Ala	His	His	Asp	Asn
				340					345					35C		
	Ala	Val	Leu	lle	Thr	Arg	Tyr	Asp	Ile	Cys	Thr	Tyr	rys	Asn	Lys	Pro
			355					360					365			
	Cys	Gly	Thr	Leu	Gly	Leu	Ala	Ser	Val	Ala	Gly	Met	Cys	Glu	Pro	Glu
10		370					375					380				
	Arg	Ser	Cys	Ser	Ile	Asn	Glu	Asp	Ile	Gly	Leu	Gly	Ser	Ala	Phe	Thr
	385					390					595					400
	Ile	Ala	His	Glu	Ile	Gly	His	Asn	Phe	Gly	Met	Asn	His	Asp	Gly	Ile
					405					410					415	
15	Bly	Asrı	Ser	Cys	Gly	Thr	Lys	G1y	His	Glu	Ala	Ala	Lys	Leu	Met	Alā
				420					425					430		
	Ala	His	Ile	Thr	Ala	Asn	Thr	Asn	Pro	Phe	Ser	Trp	Ser	Ala	Суғ	Ser
			435					140					445			
	Arg	Asp	туп	Ile	Thr	Ser	Phe	Leu	Asp	Ser	Gly	Arg	Gly	Thr	CAR	Leu
2()		450					455					460				
	Asp	Asn	Glu	Pro	Pro	Lys	Arg	Asp	phas.	fleni	Dyn	Fire	Ala	Va l	Ala	Pro
	165					4110					475					480
	Gly	Gln	Va.	Tyr	Asp	Ala	Asp	310	Gin	Cys	Arg	Phe	Gln	Tyr	G15'	Ala
					485					490					495	
25	Thi	Ser	Arc	Gln	Сув	Tys	Туз	317	giu,	Val	7.745	Arg	Glu	Leu	Trp	Cys
				500					505					510		
	Leu	Ser	Lys	Ser	Asn	Arg	Cys	Vol.	Thr	Asn	Ser	Tie	Prc	Ala	Ala	Glu
			515					520					525			
	Glγ	Thr	Leu	Cys	Glin	Thir	$G1\gamma$	Asn	110	Glu	Lys	GIY	Trp	Cys	Туп	Gln
3()		530					535					540				
	Gly	Asp	Суз	Val	Pro	Phe	Gly	Thr	Trp	Pro	Gln	Ser	lle	qaA	Gly	Gly
	545					550					E 5 5					560
	Trp	Gly	Pro	Trp	Ser	Leu	Trp	Gly	Glu	Cys	Ser	Arg	Thr	Cys	Gly	Gly
					565					570					575	
35	Gly	Val	Ser	Ser	Sec	Leu	Arg	Ніз	Cys	Asp	Ser	Pro	Ala	Pro	Ser	Gly
				580					585					590		
	Gly	Gly	Lys	Tyr	Суз	Leu	Gly	Glu	Arg	ьуs	Arg	туr	Arg	Ser	Cys	As:
			595					600					605			
	Thr	Asp	Pro	Cys	Pro	Leu	Gly	Ser	Arg	Asp	Phe	Arg	Glu	Lys	Gln	Cys
40		610					615					620				

		Asp	Phe	Asp	Asn	Met	Pro	Phe	Arg	Gly		Tyr	Tyr	Asn	Trp	
	625					630					635					640
	Pro	Tyr	Thr	Gly	_	Gly	Val	Lys	Pro	-	Ala	Leu	Asn	Cys		Ala
_					645					650					655	
5	Glu	Gly	Tyr		Phe	Tyr	Thr	Glu		Ala	Pro	Ala	Val		Asp	Gly
				660			_		665	- 3				670		
	Thr	Gln	_	Asn	ALa	Asp	Ser		Asp	He	Суз	Ile		Gly	Glu	Cys
			675	61				630		2.1	-	_	685	_		
10	Lys		Vai	GIY	Cys	Asp		rre	Leu	PΙΛ	Sec	_	Ala	Arg	GTu	Asp
10		590	3	1107		G1	695	3	G1	2	mb	700			F3.	Q1
		cys	Arg	val	СУБ	Gly	ЭΞУ	Asb	GIY	ser		Cys	Asp	Ala	He	
	705	5,	5 1			710					715	.		6.1		720
	۲γدا	Pne	Pne	Asn		Ser	_eu	Pro	Arg	730	GLY	Tyr	Met	GIU		Vai
15		T) a	Daga	7 25 55	725	Ser	17-1	li a	716		ira 1		G1	* * 1	735	M., 6
1.0	انلاوا	TIE	PIO	740	эту	ser	val	nis	745	خابد	vai	Arg	للتناف	750	Ald	мес
	Sar	* 46	7.655		Tlo	Ala	. en:	Lire		·• · , ,	/11.7	Aen	tan		(Darr	r l o
	3e.	-y5	755	- y -	rre	Aid	766	750	261	ما بدو	V127	дар	765	ryr	ГÄТ	Tie
	284	GIV		mrn.	The	Ile	Asp		Pro	Arm	Tara	Phe		Va.	Ala	G1 _V
20		770	11100	112			775	1-:		*** (13, 13	230	.100	V . 4 -		0.41
	The		Phe	His	Pyr	Lys		D.r.o	Thr	Asc	Glu		G1::	Ser	Leu	GD.
	785				- 2 -	790					795					300
	Ala	Leu	Glv	Pro	Thr	5er	Slu	Aan	Leu	ile	Tal	Met	Val	Lei.	. جرآ	
			-		305					815					315	
25	Glu	Gln	Asn	Leu	Jlγ	He	Ard	Tyr	Lvs	Ph	Agn	val.	Ero	٠: -	71.	Arc
				820					825					850		_
	::.:	4317	Se:	GI.y	Neste	Aum	Gla.	Val	-119	Pine	Term	lij.	Aan	Н п	41111	Sier
			34.2°C					(14								
	1111	300	gr.	. Typ	31-2	F. La	1111	·y.	A. L	31.7	7. 7	Lys	Me :	1:	The	Arg
317		ηэ.					:					350				
	Jin	i:.	Ini	Jun.	Arg	Ald	Arq	121	And	1111	Lyn	H 1 14	:1+	1.00	Ser	lyr
	365					870					375					380
	Ala	Lesu	Cys	Leu	Seq	Lys	Lys	Leu	Tle	Gly	Asn	114	Ser	Сув	Arg	Phe
					385					891					895	
35	201-4	Ser	Ser	Cys	Ash	Len	Pis	Lys	J.,	.1.7	Len	Lena	Kaa	Le.	Tyr	Ty:
				$\alpha \gamma \gamma$					14							

Tyr Leu Glu Gly Gly Leu Phe Ala Phe Arg Glu His Ile Leu Gly 945 950 955 <210> 2 5 <211: 2879 <212> DNA <213: human <400: 2 10 atggaaatti tgtggaagac gttgacetgg attitgagee teateatgge tteateggaa tttcatagtg accadagget ttcatadagt tettaagagg aatteetgad tratettgaa cactaccage taactattee aataagggtt gateaaaatg gageatttet eagetttaet 15 130 gtgammatg ataaaractc aaggagaaga oggagtatgg accetattga teracagcag goagiathta agttatittt taaactttca gootatggca agcactttca totaaacttg 20 -actordados cagatitityi giccaaacat titacaytay aatanigggy aaaayatoya . ; 1 coccadigda aacalgattt tilagacaac tgifattaca caggataffi graagatcaa ogta na maa klaaaajtggo titaagbaad tgtgttgggt tgdatggtgn tahtgdlaba 25 uaagalgaau agtatithat ogaacettta aagaataeca cagaggatii caagagatiit agthatgada atygocadoo toatgttatt tacaaaaagt otgocottoa araacgacat 30 ctgtatgatc actotoartg tggggtttog gatttoacaa gaagtggcas achttygtgg ctgaalgada datocaotgt ttottattoa otaccaatta adaacadada tatocaccao agacagaaga gatcagtgag cattgaacgg titgtggaga cattggtagt ggcagacaaa 35 atgatggtgg gotaccatgg cogcaaagac attgaacatt acattttgag tgtgatgaat attgttgcca aactttaccg tgattccagc ctaggaaacg ttgtgaatat tatagtggcc 900

- egettaattg tteteacaga agateageea aacttggaga taaaccacca tgeagacaag 960
- tecetegata gettetgtaa atggeagaaa teeattetet eecaccaaag tgatggaaac 1020
- 5 accattccag aaaatgggat tgcccaccac gataatgcag ttcttattac tagatatgat 1080
 - atetgeaett ataaaaataa geeetgtgga acaetggget tggeetetgt ggetggaatg 1140
- tgtgagcetg aaaggagetg cagcattaat gaagacattg geetgggtte agettttace 10 1200
 - attgcacatg agattggtca caattttggt atgaaccatg atggaattgg agattcttgt 1250
 - gggacgaaag gtcatgaagc agcaanactt atggcagetc acattactge gaataccaat 1320
- 15 cottition gytotgottg cagtogagae tacateacca gottictaga ticaggoogt 1380
 - ggtacttgcc tigataatga gcetcecaag egtgacttte titatecage tgtggcccca 1440
- ggtcaggtgt atgatgotga tgagcaatgt cgtttccagt atggagcaac ctcccgccaa 20 1500
 - tgtaaatatg gggaagtgig bagagagete tggtgterea gcaaaagcaa ergetgtgte 1560
 - accaacagta thecagcage tyaggggaca etgtqtcasa etggggaatat tgaaaaaggg 1620
- 25 tgatgitiste agggaganig tgitteettin ggraennage nedagageat agatggggge 1680
 - tugogteur: gyrcantara yggayaytgo ng wakern anaggg<mark>ag</mark>y om munttra 1740
- tournisages assignmented tourspass of the present consequentity contagues. So there
 - aggsaadgut abuguttut (Taavavagat kolituriitt Tagabboneg ajattttoga 1860
 - gagasacagt gigcagacit tyacaataig ootiichgag gaaagtaita taaciggasa 1920
- 35 opulabaoby gaggbygggt anadomity) gukttasart untbyggtga aggbbataab joan

	getagggaag 2160	atagatgtcg	agtotytyga	ggggacggaa	gcacatgtga	tgccattgaa
	gggttettea 2220	atgattcact	gcccagggga	ggctacatgg	aagtggtgca	gataccaaga
5	ggetetgtte 2280	acattgaagt	tagagaagtt	gccatgtcaa	agaadtatat	tgetttaaaa
	totgaaggag 2340	atgattacta	tattaatggt	geetggaeta	ttgastgges	taggaaattt
l ()	gatgttgetg 2400	ggacagettt	tsattacaag	agaccaactg	at jaaccaga	atecttggaa
	gotobaggto 2460	ctacctcaga	aaatotoato	gtcatggttc	tgittcaaga	acagaatttg
	ggaathaggt 2500	ataagttcaa	tgttcccatc	actogaactg	gcagtggaga	taatgaagtt
15	agotttacat 2580	ggaatcatca	gtcttggtca	gaatgeteag	ctacitgtgc	tggaggtaag
	Atgrecasta 2540	ggcagcccac	ccagagggca	agatggagaa	cadaacacat	totgagotat
Ĵ(.	actitgigit 2700	tgttaaaaaa	gotaattgga	aacatttott	geaggittige	ttdaagetgt
	Raitthccaa 2740	aagaaactt;	gotttaatta	tattatatic	dattigitti	caacctcatg
	28.C			tettggeaca		
25	1010mbaag 2319	actatottga	aggtgggctg	tttgeatite	gtgaanahar	totoggtat
	<310:-3					
	<211:- 947	,				
3(1	<212> PRT	,				
	<213> hum	nan				
	<400> 3					
	Met Ala Pro	Ala Cys G	ln Ile Leu	Arg Trp Ala	Leu Ala Leu	: Gly Leu
35	<u>.</u>	5		10		15
		20		Ala Phe Arg 25	3.0	
		r Leu Glu Se		Ile Ala Phe		g Val Asp
	3.5		40		45	

	His	Asn	Gly	Ala	Leu	Leu	Ala	P'ne	Ser	Pro	Pro	Pro	Pro	Arg	Arg	Gln
		50					55					60				
	Arg	Arg	Gly	Thr	Gly	Ala	Thr	Ala	Glu	Ser	Arg	Leu	Phe	Tyr	Lys	Val
	65					70					75					80
5	Ala	Ser	Pro	Ser	Thr	His	Phe	Leu	Leu		Leu	Thr	Arg	Ser	Ser	Arg
					85					9 C					95	
	Leu	Leu	Ala		His	Val	Ser	Val		Tyr	Trp	Thr	Arg	Glu	Gly	Leu
				100					105					110		
	Ala	Trp		Arg	Ala	Ala	Arg		His	Cys	Leu	Tyr		Gly	His	Leu
10			115					120					125			
	Gln		Gln	Ala	Ser	Ser		His	Val	Ala	Ile	Ser	Thr	Cys	Gly	Gly
		130					135					140				
		His	Gly	Leu	Ile		Ala	Asp	Glu	Glu		Туг	Leu	Ile	Glu	
	145					150					155					160
15	Leu	His	gly	Gly	Pro	Lys	Gly	Ser	Arg		Pro	Glu	Glu	Ser		Pro
					165					170					175	
	His	Val	7al		Lys	Arg	Ser	Ser		Arg	His	Pro	His		Asp	Thr
				180					185					190		
34	Ala	Cys		Val	Arg	Asp	Glu		Pro	Trp	Lys	Gly		Pro	Trp	Trp
20			195					200					205			
	Leu		'Thr	Leu	Lys	Pro		Pro	Ala	Arg	Pro		Gly	Asn	Glu	Thr
		210					215					210				
		Arg	Giy	Gln	Pro		Len	БУS	Arg	Ser		Ser	Yrg	Glu	Arg	
. -	225					230					235					240
25	Val	Glu	Thr	Leu	Val	Val	Ala	ASI	Lys		Met	Va.1	Ala	Tyr		Gly
					245					2.5 C					255	
	Ard	Arq	ysi		41.1	; . ; .	17-	. 1.	1.60	Ala	ile	Mor	Aan	Tim	Mail	Ala
	Lys	1914 		+41.5.	Fe 13 [.3-71	Dept		Aly	Ser	Thi	V/ I			I.++.1	Ma.
<u>3</u> ()			17.1					.: **					28%			
	Tini			1 . •	2.514	lier.			ASD	Gln	Pro		Leu	31 u	110	Hin
		290					295					3 C C				
		His	Ala	Gly	Lys		Len	Asp	Ser	Phe		Lys	Trp	Gln	Lys	
	305					310					315					320
35	Tle	Val	Ast	His	Ser	الزياف	His	Hly	Asn	Ala	Ile	Pro	Glu	Asn	Gly	ä.

Fig. 1

	Met	Cys 370	Glu	Arg	Glu	Arg	Ser	Cys	Ser	Val	Asn	Glu 380	Asp	Ile	Gly	Leu
	Ala		Ala	Pho	Thr	Tle		Hic	Clu	710	Cly		The	Dino	<i>C</i> 1	Mot
	385	1111	7110	1	1111	390	AIG	1113	Gru	-16	395	птр	1111	File	GTÀ	400
5	Asn	His	Asp	Gly	Val	Gly	Asn	Ser	Cys	Gly	Ala	Arg	Gly	Gln	Asp	Pro
					405					410					415	
	Ala	Lys	Leu	Met	Ala	Ala	His	Ile	Thr	Met	Lys	Thr	Asn	Pro	Phe	Val
				420					425					430		
	Trp	Ser	Ser	Oys	Ser	Arg	Asp	Туг	Ile	Thr	Ser	Phe	Leu	Asp	Ser	Gly
10			435					440					445			
	Leu	Gly	Leu	Сув	Leu	Asn	Asn	Arg	Pro	Pro	Arg	Gln	Asp	Phe	Val	Tyr
		450					455					460				
	Pro	Thr	Val	Ala	Pro	Gly	Gln.	Ala	Tyr	Asp	Ala	Asp	Glu	Gln	Cys	Arg
	465					470					475					480
15	Phe	Gln	His	Gly	Val	Lys	Ser	Arg	Gly	Leu	Gln	Arg	Ala	Val	Val	Ser
					485					490					495	
	Glu	Gln	Glu	Gln	Pro	Val	His	His	Gin	Gln	His	Pro	Gly	Arg	Arg	Gly
				500					505					510		
	His	Ala	Val	910	Asp	Aļā	His	His	Arg	Gln	Gly	Val	7al	Leu	Gln	The
20			515					520					525			
	Gly	leu	Сув	Pro	Leu	T:p	Val	Ala	Pro	Arg	Gly	Cys	315	Arg	Ser	Leo
		530					535					540				
	Gly	Ala	Val	AS P	Ser	Met	Gly	Asp	Сув	Ser	Arg	Thr	Cys	Gly	Gly	$\operatorname{Gl}\gamma$
	545					550					fob					560
25	Val	Ser	Ser	Ser	Ser	Arg	His	Cys	Asp	Sei	$\Pr \subset$	Arg	Pro	Thr	Tle	Gly
					565					57¢					575	
	G.y	Lys	Туг	Cys	Leu	G.y	Glu	Arg	Aig	Arg	His	Arg	3er	Cys	4st	The
				58 Û					585					59C		
	Asp	Asp	Сув	Pro	Pro	Gly	Ser	Gln	Asp	Fher	Arg	Glu	√al	Gl:	lys	Ser
30			595					600					505			
	Glu	Phe	Asp	Ser	Ile	Pmo	Phe	Ary	Sly	1.73	Phe	Tyr	Lys	Trp	Lys	Thr
		610					615					620				
		Arg	GLy	Gly	Gly	Val	Lys	Ala	Cys	Ser	Leu	Thr	Cys	Leu	λla	Glu
	625					630					635					640
35	Gly	Phe	Asn	Phe	Туг	Thr	Glu	Arg	Ala	Ala	Ala	Val	7al	Asp	Gly	Thr
					645					650					555	
	Pro	Суѕ	Arg		Asp	Thr	Val	qeA	lie	Сув	Val	Ser	Gly	Glu	Суѕ	Lys
				660					665					670		
	His	Val	Gly	Cys	qzA	Arg	Val	Leu	Gly	Ser	Asp	Leu	Arg	Glu	Asp	Lys
4()			675					680					685			

.........

	Cys		Val	Cys	Gly	Gly		Glγ	Ser	Ala	Cys		Thr	Ile	Glu	Gly
		690					695					700				
		Phe	Ser	Pro	Ala		Pro	GJ7.	Ala	Gly		Glu	Asp	Val	Val	Trp
_	705					710					715					720
5	Ile	Pro	Lys	Gly	Ser	Val	His	Ile	Phe	Ile	Gln	czA	Leu	Asn	Leu	Ser
					725					730					735	
	Leu	Ser	His	Leu	Ala	Leu	Lys	G17.	Asp	Gln	Glu	Ser	Leu	Leu	Leu	Glu
				740					745					750		
	Gly	Leu	br.o	Gly	Thr	Pro	Gln	Pro	His	Arg	Leu	Pro	Leu	Ala	Gly	Thr
1()			755					760					765			
	Thr	Phe	Gln	Leu	Arg	Gln	Gly	Pro	Asp	Gln	Vāl	${\tt Gln}$	Ser	Leu	Glu	Ala
		770					775					780				
	Leu	Gly	Pro	ile	Asn	Ala	Ser	Leu	Ile	Val	Met	Val	Leu	Ala	Arg	Thr
	785					790					795					800
15	Glu	Leu	Pro	Ala	Leu	Arg	Tyr	Arg	Phe	Asn	Ala	Pro	Ile	Ala	Arg	Asp
					805					810					315	
	Ser	Leu	Pro	Pro	Tyr	Ser	Trp	His	Tyr	Ala	Pro	Trp	Thr	Lys	Cys	Ser
				820					825					830		
	Pro	Ser	761	Gln	Ala	Val	Ala	Arg	Cys	Arg	Arg	Trp	Ser	Ala	Ala	Thr
20			335					840					845			
	Lys	Desi	Arp	Ser	Ser	Ala	val.	Ala	Pro	His	Tyr	Cys	Ser	Ala	His	Ser
		£50.					855					860				
	Lys	Lea	Ala	Oln	Lys	Gln	Ala	Arg	Lea	⊌1n	Ніс	319	Ala	Leni	Pro	Gln
	365					870					875					880
25	Asp	Trp	Val	Va1	Gly	Thr	Va 1	Ala	Leu	Uln	Pro	Gla	be i	A.L.	Met	Gl:
					885					390					895	
	:17		Ain	Sor	Arm	See:	Val.	Val	Ove	iln	7.1.3	Fr:	Arm	į.,	57.21	Ar i
				40 5					4,5%						•	
	/15.			Ala		Act	Ass	Ster	Ala	25.1	: -		ī.		F 2 + 1	<u>.</u> .
٠.								4,74		14.1	• `					
		1	Ar e	1.4		T: •	.··,,					5			1. y	
		930				• • • •	935					ere o Big o		7 - :	\ - Y	• • •
	Arg		·/. •				, , ,					1.4.1				
	945															
15																
'-'																

	<400> 4					
	ttocatocta 50	atacgaetea	ctatagggct	cgagcggccg	cccgggcagg	tgtggacac
5	tggcct:tat	ggeteeegee	tgccagatcc	teogetggge	cctcgccctg	gggctgggc
	tcatgttcga 180	ggtcacgcat	gcatteaggt	otcaagatga	gtteetgtes	agtetggaga
10	gotatgagat 24)	agaattaaaa	accogagtgg	accadaacgg	ggdabtgdtg	gasttataga
	cacetostee 3))	ccggaggcag	cgccgcggca	egggygesae	ageogagtee	egeetettet
	acaaaquggo	ctcgcccage	acceaettee	tgotgaacot	gaccogbago	tocogtotac
15	tggcajggca 4.1)	agtataagtg	gagtactgga	cacgggaggg	catggaatgg	cagagggcgg
	cccgg::cca	ctgcctctae	gotggtdadd	tgeagggeca	ggodagdagd	toopatgtgg
2()	ccatcageae 5:)	ctgtggaggc	ctgcacggcc	tgatogtiggo	agacqaqgaa	gagtacotga
	ttgag:rect 6	gcacggtggq	pop aa gggtt	ctoggaguee	ggagyaaags	ggaddaratq
	tggtgruxcaa 600	gagetaatae	otgogreass	endadetigga	cacagostgt	ääsätäsäsö
25	atgag macc	усураандуд	eggeestggt	ggatqaq jan	сстдиадоса	acquetgaca
	ggddd fliggg	qanlqaaaca	gagogtggoc	agcoagginet	gaagogatog	gteageegag
3()	agogotkogt 84 F	ggagaccctg	gtggtggctg	acaagatgat	ggtggcctat	cacaaacac
	gggatint.gga g iii	gdagtatgtd	ctggccatca	tgaacattgt	tgccaaactt	ttocaggact
	ogagtetggg 9th	aagcheeght	aacatecteg	taadtogrot	catootgoto	acggaggacc
55	ageceactet	ggagatoado	caccatgoog	ggaagtocot	ggacagette	tgtaagtggd
	agaaatocat 1080	cgtgaaccac	ageggceatg	gcaatgccat	tocagagaas	ggtgtggcta
0	accatgacac 1140	agcagtgete	atcacacgct	atgadatdtg	catctacaag	aacaaaccct

- geggeacaet aggeetggee eeggtgggeg gaatgtgtga gegegagaga agetgeageg 1200
- teaatgayga cattggcctg gccacagcgt teaccattge ecacgagate gggcacacat 1260
- 5 teggeatyaa ceatgaegge gtgggaaaca getgtgggge eegtggteag gaeceageea 1320
 - ageteatgge tgeccaeatt accatgaaga ccaacceatt egtgtggtea teetgeagee 1330
- gtgactacat caccagettt ctagaetegg geetgggget etgeetgaac aaccggeece 10 1440
- ccagacagga etttgtgtac cegacagtgg cacegygeca agectaegat geagatgage
 - aatgoogett teageatgga gteaaatege gaggtetgea gegagetgtg gtgtetgage 1560
- 15 aagageaacc ggtgcateac caacagcate coggcogcog agggcacgot gtgccagacg
 - cacaccatog acaaggggtg gtgctaca48 cgggtctgtg teceetttgg gtcgcgccca 1680
- gaggetgtgg acggagectg gyggeegtgg actoratggg ggaetgcage eggacetgtg 20-1740
 - goggoggegt greetettet agoogteaet gogadageen haggedaace alegggggea 1800
 - agtactglet gggtgagaga aggeggeace getbetge44 hacggatgae tgtededetg 1860
- 25 germedagga etteagagaa gtgeagtgit etgantitga eagnatedet tteegtggga 1920
 - eatictadea yttigueseug tarossiggep binachtria erichettoj otraogtgio neg
- tageomalogic of the activity of a section of a composition of the detector $S(r)=2\pi dr$
 - guardic cargo consisting for settings from the first position can be adopted agreementable and the consisting for settings from the setting for the setting fo
 - gagicolygg closgannig cyggangada agthecquut glytygdgyt gaeggeagty 2160
- 35 cotgogadin datodagggo gtottvagin nadzetkisin tggagnieggi tangaggatg 2220

cocagoccca cogtotgect ctagotggga coaccettoa actgogacag gggccagace aggineagag belogaagoo otgggacoga thaatgeate toteategte atggtgetgg cooggacoga gotgootgoo otoogotado gottoaatgo occoatogoo ogtgactogo tged::cota :tectggcac tatgegecet ggaccaagtg ctcgcccagt gtgcaggegg tagcliggty laggeggtigg agtgeegeaa ceaagetigga eageteegeg gtegeeeeee 10 actablycay typocacago aagettycee aaaagcaage gegeetyeaa caeggageet tgcc.caaga ctgggttgta ggaactgtcg ctctgcagcc gcagcttgcg atgcaaggcg 27.0 15 tgegongeeg eteggtegig igecaagege egegteteig eegegaagaa aaggegeigg 23.0 aceks.gegs atgoodycag ongogonoac otgtactdag doctgodaed doceacted coctolggay tggoggoodt ogactggtel gagtgcacco ccagelgegg geegggeete 20 (1)(1) egoca egog tagtodittg caagagegea gaccacegeg ceaegetges eseggegear tucto-coog cogocaagoo acoggocado atgogotgoa actigogood nidococodo 25 geoog tiggi tiggetigeega etiggigitigal tigetetigeae agtigegigeit eggigeagegig cagogitogg igogotgoac cagodacaeg ggecaggogt ogcacgagtg caeggaggec 31-0 ctgcgnccgs cgactagtaa gettegtega eeegggaatt aatteeggas eggtaeetge 30 3340 aggoglacea gotttocota tag 32 - 3 <210: 5 35 <211> 1690 <212: PRT <213: human

	< 40	<0>	5													
	Pro 1	Val	Pro	Ala	Met 5	Pro	Gly	Gly	Pro	Ser 10	Pro	Arg	Ser	Pro	Ala 15	Pr
	Leu	Leu	Arg	Pro	Leu	Leu	Leu	Leu	Leu	Суs	Ala	Leu	Ala	Pro		Ala
5				20					25					3 0		
	Pro	Gly	Pro	Ala	Pro	Gly	Arg	Ala	Thr	3lu	Gly	Arg	Ala	Ala	Leu	As
			35					40					4 5			
	lle	Val	His	Pro	Val	Arg	Val	Asp	Ala	зіу	Gly	Ser	Phe	Leu	Ser	Туз
		50					55					60				
] ()	Glu	Leu	Trp	Pro	Arg	A? A	rea	Arg	Lys	Arg	qaA	Val	Sor	Val	Arg	Arg
	65					7.0					75					9.3
	Asp	Ala	Pro	Ala	Phe	Tyr	Glu	Leu	Gln	Tyr	Arg	Gly	Arg	Glu	Leu	Arç
					85					90					95	
	Phe	Asn	Leu		Ala	Asn	Gln	His		Leu	Ala	Pro	Gly	Phe	Val	Sei
15				100					105					110		
	Glu	Thr		Arg	Arg	Gly	Gly		Gly	Arg	Ala	His		Arg	Ala	His
		_	115			_	_	120			_		125			
	Thr.		Aid	CAR	His	Leu		Giy	Glu	Val	Glr.		Pro	Glu	Leu	Glι
2()	01	130	· .	. 1		* 7	135					140				
_()	145	SIŢ	ued	Eld	Ala	11e	Ser	иla	uys	ASD	155	Leu	Lys	Giy	Val	
		Lon	C	Z. zen	Slu		~	1 5 6	r 1			1	2	C		
	.,			A	165	2,833,53	- 7 -	£:	1.173	170	710	161	His D	261	175	ri(
	Ala	And	Pro	gi v	His	21%	(ile	Die ()	His		"al	-,.,		L. w.c.		8.1
25				193			,,,,,		185	,		- 7 -	275	190		7120
	Pro	Chi	Aru	Leu	Ala	Gln	Ara	Glv		Ser	Ser	Ala	Pro			,
			100					100	•				, 61			
	127	1.4.	1.:.		ly:	i r	;1	T	314.	2	Add	Ar :	.:::	4: -	11 : :	
		21.1					7							,	•	
n()	ilr.	Arm	1	1, 1.	Tip	Arg	Arj	÷:.	Arg	127.1	Arc	Ara	- 	11:	.11:.	A:
						330					1135					
	Ser	Val	Ser	ĭ.ys	Glu	Lys	Trp	Val	Glu	Thr	Leu	Val	vr: l	Ala	Asp	213
					245					250					255	
	Lyn	Mot	\mathcal{T}_{α}	Glu	Tyr	His	Gly	Gln	Pri	Gln	Val.	GI ti	Ser	l'y i	Val.	Let.
5.5				260					265					22.		

	Glu	Glu	Asp	Leu	Lys	Ile	Thr	His	His	Ala	Asp	Asn	Thr	Pro	Lys	Ser
	305					310					315					320
	P'ne	Суѕ	Lys	Trp	Gln	Lys	Ser	Ile	Asn	Met	Lys	Gly	Asp	Alā	His	Pro
					325					330					335	
5	Leu	His	His	Asp	Thr	Ala	Ile	Leu	Leu	Thr	Arg	Lys	Asp	Leu	Cys	Ala
				340					345					350		
	Thr	Met	Asc	Arg	Pro	Cys	Glu	Thr	Leu	Gly	Leu	Ser	His	Val	Ala	Gly
			355					360					365			
	Met	Суѕ	Gln	Pro	His	Arg		Суз	Ser	Ile	Asn	Glu	Asp	Thr	Gly	Leu
10		370					375					380				
		Leu	Ala	Phe	Thr		Ala	His	Glu	Leu	Gly	His	Ser	Phe	Gly	Ile
	385					390					395					400
	Gln	His	Asp	Gly		G17.	Asn	Asp	Cys		Pro	Val	Gly	Lys	Arg	Br.o
, -					405					410					415	
15	Phe	Ile	Жеt		Pro	Gln	Leu	Leu		Asp	Ala	Ala	Pro	Leu	Thr	Trp
	6			420		15.1			425					430		
	Ser	Arg		Ser	Arg	Gln	Тут		Thr	Arg	Phe	Leu		Ang	$G_{-}Y$	Tro
	c: u		435		2		Б	440					445			
2()	o-y	450	'.ys	Jeu	ASD	Asp	435	520	Ala	Lys	Asp		il€	Азр	Phe	Pro
-\'	2.12		D	0.50	~1	.,,,		7	* 42.00		Cau	460	<i>(</i> 2.1			,
	465	v ra.	£.0	E 2. V.)	باد	170	DOC.	; y	мыр	V ca .	475	nis	G_F:	Сув	vrd	
		TUY	ar e	A 1 &	Tur		ā n	250	C****	g:,.		Mon	A esti	Asn	175.1	489
		. , .	2-3		485		File	* ****		490	may	r.e.c	ASL	MOH	495	t. y b
25	His	The	f en:	TT - 13 3		Ser	Wa 1	(33.0	Thr		0.78	발생님	Sar	Lys		Alexa
				500	- 1				505		.,.		501	51.0		* 15132
	Ala	Ala	Val.	Asp	Gly	Thr	Aga	Cvs		Glu	Asn	Lvs	Tro	Cys	5.44a	5,607
			515	-	-		,	520					525			
	Gly	Glu	Cys	Val	Pro	Val	G.y	Phe	Arg	Pro	Glu	Ala		Anp	Slv	Giv
30		530					535					540		-	_	-
	Trp	Ser	Gly	Trp	Ser	Nla	Tij	Ser	lle	Cys	Ser		Ser	Cys	Gly	Met
	545					550					555					560
	Gly	Val	Gln	Ser	Ala	Glu	Airg	Gln	Cys	Thr	Gln	F.ro	Thr	Pro	Lys	"yr
					565					570					575	
35	Lys	Gly	Arg	Tyr	Cys	Val	Gly	Glu	Arg	Lys	Arg	Phe	Arg	Leu	Cys	Asn
				580					585					590		
	Leu	Gln	Ala	Cys	Pro	Ala	Gly	Arg	Pro	Ser	Phe	Arg	His	Val	Gln	Cys
			595					600					605			
	Ser	His	Phe	Asp	Ala	Met	Leu	Tyr	Lys	Gly	Arg	Leu	His	Thr	Trp	Val
40		610					615					620				

	Pro	Val	Val	Asn	Asp	Val	Asn	Pro	Cys	Glu	Leu	His	Cys	Arg	Pro	Ala
	625					630					635					640
	Asn	Glu	Tyr	Phe		Glu	Lys	Leu	Arg		Ala	Val	Val	Asp		Thr
_																
5	Pro	Cys	Tyr		Val	Arg	Ala	Ser	_	Asp	Leu	Cys	Ile		Gly	Ile
	_	_				~		70 b		*1-		G	۵.			01
	Cys	Lys		Va.	G±Y	Cys	Asp		ULU	ile	Asp	ser	-	Ala	мет	GIA
	Nan	1 ~~		Clu	1/27	-2145	ui c		5 an	Cly	50×	w.p. ≈		uic	Tile. se	t/s1
10	кър	_	Cys	GTA	Val	.2 Y D		GLY	MSII	Gry	261		(.72	птъ	1111	Vai
10	Ser		th park	Dhe	Glu	alo		G" n	Glv	Leu	GΙν		Ча`	Asn	Val	Glv
		017	****		014			0.20	3.1	2300		-1-	/ Ca 1			720
		Ile	Pro	Ala	Gly		Arg	Glu	Ile	Arg		Gln	Glu	Val	Ala	
					725					730					735	
15	Ala	Ala	Asn	Phe	Leu	Ala	Leu	Arg	Ser	Glu	Asp	Pro	Glu	Lys	Tyr	Phe
				740					745					750		
	Leu	Asn	Gly	Gly	Trp	Thr	Ile	Glr	Trp	Asn	Gly	Asp	Tyr	Gln	Val	Ala
			755					760					465			
	Gly		Thr	Phe	Thr	J.A.:		Arg	Arg	Gly	Asn	•	Glu	Asr	Leu	Tr.r
20																
		Pro	GļŅ	Free	Thr		GIN	Pro	Val	Trp		Glo	3 1	Leu	Phe	
					- 1			_				- 3				800
	G.u	Ser	Asn	Pro		น้ายน้	H15	(7)	3 1 1		'.nr	116	1115	Arg		Ala
15		(1)					•••		11.		120	C+. 5	111	ttie		a.,
'	(*, ;	(47.7)	n.×		٠. د)	Jrt.	FIL	FLI		. 4.	: 	501			-3-	و د ګ
	129.00	mrt)	5j .		Chara	÷4,4	11.41	The		Hv	Ar i		174		žer i	
			÷ ;									- 3		.,		
	Aun	Vaci	Dyra	1,714	1 ++ 1	·;	Ares		A.1.	ily	1: -	7.1	155	gin	:::::	Hir
Ma		5 li					- 5.					20 × 1				
	. Ny si	Aisp	Prince	i esta	Gly	Az gi	1: .	Adjo	Asp	:l::	sin	Arg	Був	Сув	Ser	Gill
	865					970					975					586
	Gln	Pro	Сув	Pro	Ala	Arg	Trj.	Tri	Alia	Gly	91%	Trr,	Glr.	Leu	Cys	Ser
					835					9.70					895	
55	der	Sun	Оув	-	Pio	$G_{*}\gamma$	377	100	Set	Atsi	Ar j	$A^{\dagger}_{+}a$	V31		Cys	ij÷
				61.500										·. ·		
	20 25	625 Asn 5 Pro Cys Asp 10 Ser 705 Leu 15 Ala Leu Gly 20 Ser 785 Glu 25 Gly 276 Asn 307 Asn 307 Cys 865 Gln	625 Asn Glu 5 Pro Cys Cys Lys Asp Arg 10 690 Ser Gly 705 Leu Ile 15 Ala Ala Leu Asn Gly Thr 20 770 Ser Pro 785 Glu Ser 25 Gly Gly Pro Trp Asn Vaci 50 555 Cys Asp 865 Cln Pro	625 Asn Glu Tyr 5 Pro Cys Tyr Cys Lys Asn 675 Asp Arg Cys 690 Ser Gly Thr 705 Leu Ile Pro 15 Ala Ala Asn Leu Asn Gly 755 Gly Thr Thr 20 770 Ser Pro Gly 785 Glu Ser Asn 25 Gly Gly His Pro Trp Chr 84 Asn Vad Cyr 50 865 Gln Pro Cys	625 Asn Glu Tyr Phe 5 Pro Cys Tyr Gln 660 Cys Lys Asn Val 675 Asp Arg Cys Gly 10 690 Ser Gly Thr Phe 705 Leu Ile Pro Ala 15 Ala Ala Asn Phe 740 Leu Asn Gly Gly 755 Gly Thr Thr Phe 20 770 Ser Pro Gly Pro 785 Glu Ser Asn Pro 25 Gly Gly His Asp 620 Pro Trp Chr Lys 84 Asn Val 90 Ser 80 Ser	Asn Glu Tyr Phe Ala 645	625	Asn Glu Tyr Phe Ala Glu Lys 645 645 645 645 645 660 675	625	625	625	625	625	625	625	Ash Clu Typ Phe Ala Glu Lys Leu Arg Ash Ala Val Val Ash Gly

40 (4)

	Pro	Cys	Pro	Ala	Thr	Trp	Ala	Val	Gly	Asn	Trp	Ser	Gln	Cys	Ser	Val
	945					950					955					960
	Thr	Суѕ	Gly	Glu	Gly	Thr	Gln	Arg	Arg	Asn	Val	Leu	Cys	Thr	Asn	Asp
					965					970					975	
5	Thr	Gly	Val	Pro	Cys	Asp	Glu	Ala	Gln	Gln	Pro	Ala	Ser	Glu	Val	Thr
				980					985					990		
	Cys	Ser	Let	Pro	Leu	Cys	Arg	Trp	2ro	Leu	Gly	Thr	Leu	Gly	Pro	Glu
			995					1000					1009			
	Gly	Ser	GLY	Ser	Gly	Ser	Ser	Ser	His	Glu	Leu	Phe	Asn	Glu	Ala	Asp
1()		1010)				1015	5				1020	5			
	Phe	Tle	Pro	His	His	Leu	Ala	Pro	Arg	Pro	Ser	Pro	A.a	Ser	Ser	Pro
	1025					1030					1035					1040
	Lys	Pro	Gly	Thr	Met	Gly	Asn	Ala	Ile	Glu	Glu	Glu	Ala	Pro	Glu	Leu
					1049					1050					1059	
15	Asp	Leu	Pro	Gly	Pro	Val	Phe	Val	Asp	Asp	Phe	Tyr	тут	Asp	Tyr	Asn
				1060					1065					1070		
	Pho	He	Asr	Phe	His	Glu	Asp	Leu	3er	Tyr	Gly	Pro	ser	Glu	Glu	Pro
			1675					1080					1085			
	Asp	Leu	Asp	Leu	Ala	Gly	Thr	Gly	Asp	Arg	Thr	Pro	Pro	Pro	His	Ser
2()		090)				109	5				1100)			
	Arg	Fro	Ala	Ala	Pro	Ser	Thr	Gly	Ser	Pto	Val	Pic	.\`a	Thr	Glu	Pr:
	1135					1110)				::::	5				
	Pro	Ala	Als	Lys	Gla	Glu	Gly	Val	Leu	G.y	Pro	Trp	.ser	Pro	Ser	Pro
					1125)				1.30)				1135)
25	Trp	Ero	Ser	${\tt Gln}$	Ala	Gly	Arg	Ser	erc	Pro	Pro	Pro	3515	Glu	310	Thr
				1146					1145					115	2	
	Fro	Gly	Agr	Pro	Leu	Ile	Asn	Phe	Lau	Fro	JI u	Glu	Asp	Thi	Pro	Ile
			1155	5				1160					163	5		
	Gly	Ala	Pro	Asp	Leu	Gly	Leu	Pro	Ser	Leu	Ser	Trp	Pro	Arşı	Val	Ser
3()		1170					1175)				1180)			
	Thr	Asp	Gly	1.601	Gln	Thr	Pro	Ala	Thr	Pro	Glu	Ser	Gln	Asr.	Asp	Phe
	1185	5				1193)				1195	5				1200
	Pro	Val	Gly	Lys	Asp	Ser	Gln	Ser	Gln	Leu	Pro	Pro	Pro	Trp	Arg	Asp
					1205	5				1210)				1215	5
35	Arg	Thr	Asn	Glu	Val	Phe	Lys	Asp	Asp	Glu	Glu	Prc	Lys	Gly	Arg	Gly
				1220)				1225					1230)	
	Ala	Pro	His	Leu	Pro	Pro	Arg	Pro	Ser	Ser	Thr	Leu	Pio	Pro	Leu	Ser
			1231)				1240	;				1245	ō		
	Pro	Val	Gly	Ser	Thr	His	Ser	Ser	Pro	Ser	Pro	Asp	Val	Ala	Glu	Leu
(()		1250	;				1255					1260)			

	Trp	Thr	Gly	Gly	Thr	Val	Ala	Trp	Glu	Pro	Ala	Leu	Glu	Gly	Gly	Leu
	1265	5				1270)				1275	5				1280
	Gly	Pro	Val	Asp	Ser	Glu	Leu	Trp	Pro	Thr	Val	Gly	Val	Ala	Ser	Leu
					1289	5				1290)				1295	5
5	Leu	Pro	Pro	Pro	Ile	Ala	Pro	Leu	Pro	Glu	Met	Lys	Val	Arg	Asp	Ser
				1300	0				1305	5				1310)	
	Ser	Leu			Gly	Thr	Pro			Pro	Ala	Pro	Gly	Pro	Gly	Ser
			1315					1320					1325			
• * *	Trp	_		Gln	Thr	Val			Trp	Gly	Thr			Pro	Thr	Thr
10		1330					1335					1340				
			Gly	Leu	Gly			Pro	Glu	Pro			Asn	Pro	Gly	
	1345		21			1350			_	~ 1	1355		_	_	_	1360
	nys	GIY	GIn	Pro			Leu	Ser	Pro			Pro	Leu	Ser	Ser	
15	Lou	Lou	Cor	Thy	1369		Twn	100	0.0	1370		A a m	Cau	*11: _	1375 Arg	
1.57	ьец	Leu	261	1380		Ald	пр	MSD	1385		Ald	ASII	ser	1390		vai
	Pro	Gla	Thr			ľ en	Δla	₽ro			ăla	G" ii	Λ¹a		Pro	Pro
			1305			200		1400		100		O - Q	1405		110	110
	Ala	Asp	Pro	Leu	Val	Val	Arg			Ser	Trp	Gln			Asn	Tro
20		1410					1415				-	1420		•		•
	Serr	Glu	Cys.	Ser	Thr	Thr	Cys	Gly	Leu	Gly	Ala	Val	Trp	Arg	Pro	Val
	142	5				1430)				1439	,				1440
	Arg	Cys	Ser	Ser	Gly	Arg	Asp	Glu	Asp	Cys	Ala	Pro	Ala	Gly	Arg	Pro
					1445	5				1450)				.455	,
25	31::	Fro	Ala	Aig	Arg	Cys	His	Let	Arg	Pro	Cys	Ala	Thr	Tri	His	Ser
				1460					1465					147		
					Tyw	Tye	Seri	$\mathbb{A}(\mathbf{t},\zeta)$	Det	7.:	1.7	317	Hy	. ::		1.1.
			14 1					. 3					113			
				11:4	1,3114	V-4-7			Ava	ASS			F:	1	A: :	i :
20		149					1					15				
			. 1	11. In	Fro			A1a	Lys	Pro			His	Arm	F:	
	1504					1510					1515					192
	G.y	Aud	Uln	Fro			Ser	Trp	Туг			Ser	Trp	Arg	Glu	
2.1.					1529					1530					1535	
35	o Fr Y	3.11	8.4	.78	کو نہ ف	G_Y	GLY	GIT	Jin	Gin	Arg	Leu	Val	Thr	Суз	Pi ·

	Cys Ser Ala F	Pro Cys Gly	Gly Gly	Val Gln .	Arg Arg	Leu Val	Lys Cys				
	1585	159	0		1595		1600				
	Mal Asn Thr C	Gln Thr Gly	Leu Pro	Glu Glu	Asp Ser	Asp Gln	Cys Gly				
		1605		1610			1615				
5	His Glu Ala T	Prp Pro Glu	Ser Ser	Arg Pro	Cys Gly	Thr Glu	Asp Cys				
	-	1620		1625		1630					
	Glu Pro Val C	Glu Pro Pro	Arg Cys	Glu Arg .	Asp Arg	Leu Ser	Phe Gly				
	1635		1640			1645					
	Phe Cys Glu I	Thr Leu Arg		Gly Arg	_		Thr Ile				
10	1550		1655		1660						
	Arg Tur Gln C					His Gly					
	1665	167			1675		1680				
	Jer Arg Gly F		Va. Ala	-							
1.5		1685		1690							
15											
	+:210:+ 6										
	<211: 5333										
	<212> DNA										
	KG13: human										
20											
	-:4000 6										
	regatioata co	ratgecegg e	ggoodcagt	coorgoa	gaa aaga	gaatti g	atgegeede				
	40										
	etacticatge re	ratatgaga ta	ulggatada	ggegeee	ccg gacc	ogcado a	ggaogtgca				
25	1.10										
	coogayggco gg	jgoggdast j	gacatogig	caccada.	ttc gagt	cgacge g	gggggatos				
	180										
	thootypoot ac	gagetgig g	redegegea	ctgcgcaa	agc ggga	tgtato t	gtgagaaga				
	2 = 0										
3()	nsagadacad oc	nttotacha di	ohabaatad	. casaddo	geg aget	gegett e	aacctgacc				
	3.00										
	godaatdago ad	rotgotogo g.	paaggattt	gtgagtg	aga egeg	geggeg e	ggaggaatg				
	3+1C										
25	ugdegegege ac	tatooggyo o.	racaddeeg	geetgee	acc tgct	tggcga g	gtgcaggac				
35	420										
	cotgayotog ag	ja g tagaat g	guggedate	agogooto	dcd scââ	cctgaa a	ggtytgttc				
	480	ragaanaata e		000055							
	cagototoca ad	.yayyacta Ci	cactgag	- eductgg	aca gtgc	udagga a	cadactâão				
	2.4₹ ()										

- cacgoddayd docatgtggt gtadaagogt caggoddgg agaggotggd adagoggggt 600
- gattccagty ctccaagcac ctgtggagty caagtgtacc cagagctgga gcctcgacgy 660
- 5 gagegttggg ageageggea geagtggegg eggeeaegge tgaggegtet acaceagegg 720
 - teggtcagca aagagaagtg ggtggagace etggtggtag etgatgecaa aatggtggag 780
 - taccacggac agcogcajgt tgagagotat gtgotgacca tcatgaacat ggtggctggc
 - ctgtttcatg accocagnat tgggaacccc atccacatca ccattgtgcg cctggtcctg
 - otggaagatg aggaggagga octaaagatc acgcaccatg cagacaacac occgaagagc 360
- 15 ttotgcaagt ggcagaaaag catcaacatg aagggggatg cocatcocct gcaccatgac 1020
 - actgreater tyrtraceag aaaggaretg tytgraarra tyaaregger etytgagare 1980
- otgggaetgt eccatgtgge gggeatgtge eageegeace geagetgeag cateaacgag 20 1140
 - gacacgggcc tgccgctggc ctrcactgta geccacgage togggcacag ttrtggcath
 1300
 - ragratgacg daagoggoaa fgactgtgag ondgttgyya kacgacettt datcatgtot 1060
- 25 innacageton typacgacgo ogetoecoto amongghist yergoagoog coagtatato 1920
 - althaggEther tigalogodg goggadenta fan flasais einersktyn blaaddanst 1940
- at report of introductable contraction in the problem expected graphing on the contract of the
 - ragiacyggy retactorge officiacyan gaean ppana alytologoda cacactorgy (500
 - tgototgigg gjandacetg toactodaag otogatgnag oogtggaegg caeceggtgt 1560
- 35 agagaata agtoptot cagtogogay tgc4temis targittoog genogaggee inge

tgtgtgggtg agegeaageg ettlegeete tgeaaletge aggeetgeee tgetggeege

contention genacytesa gtgcagodac tittgatgcca tgctctacaa gggccggttg cacabatggg tgbccgtggt daatgacgtg aaccostgeg agetgeactg ceggeeegeg 1920 aatgagtact ttgccgagaa getgegggae geegtggteg atggcareee etgetaerag glocyagoca googgacot olgoatoaac ggcalolgta agaacgiggg olgtgactto 10 2040 gagattyadt coggtgetat ggaggarege tgtygtgtgt gecarggeda eggetedaec tgocacacog tgagogggac ottogaygaq googayggoo tggggyatgt ggatgtgggg 15 otgatoscag egggegeacg egagatiege atecaagagg tigeogagge tigeoaacite 2220 otggoadtgo ggagogaga ocogdagaaq tacttootda atdgtddotg daccatobag tggaacgggg actaccaggt ggcaqqqacc accitcacat acgcacgcag gggcaactgg 20 gagawortea egiocolggg teolaciaag gageotgiet ggatocaget gelgttelag gagagoaaco otygogogoa otalgajtan accatocaca jggaggoagg tegecacjas 25 gaggiologe egeoegigit eledigyeat langggeeet ggaceaagtg daragteace iyoyyonyay qoqoqqaqaq qoaykasqoq tacoqootogq agoqqooqqo aqqqooqqoq garyaggago acigigacoc coligerocy congatgaco aacagaggaa giroagogag 30 Cagonoligou objectageté etgegolaget queltageage telegologat etectagada collylygydd teleddgolg ggolgrydto tgeatddyda gogtggggot ggalgagdag 35 agogocotgg agocacocgo otgtgaacac ottococggo occotactga aaccocttge aaccyccaty taccetytee gyedadetyy getytyggga actygtetea gtycteayty acatgtgggg agggcactca gcgccgaaat gtcctctgca ccaatgacac cggtgtcccc 4() 2940

.

- tgtgacgagg cocagoagoc agcoayogaa gtoacctgot ototgocact otgtoggtgg 3000
- cccctgggca cactgggccc tgaaggctca ggcagcggct cctccageca cgagetette 3060
- 5 aacgaggetg actteatece geaceaectg geoceaegee etteaceege eteateaece 3120
 - aagocaggea ocatgggeaa egceattgag gaggaggete cagagetyga eetgeegggg 31+0
- congritting tygacyacti etantangan tanaattica toaattinna ngaggatoty 3240
 - toota:gggc cototgagga goodgateta gacetggegg ggacagggga deggacaddd 3300
 - deaddicaea geogtoctgo tgegeeetee aegggtagee etgtgeetge easagageet 3340
- 15 cctgcxgcca aggaggaggg ggtactggga ccttggtccc cgagcccttg gcctagccag 34.0
 - googgieget ecceaedeed acceteagag cagacdedtg ggaaedettt gateaattte 34%0
- oligodigagg aagadaddd dataggggdd ddagatdtig ggoloddaag ddigiddigg 20 - 35:0
 - cocagnigiti ocactgatgg cotgoagada octgodaddo otgagagida aaalgatito 3600
 - ceagtiggea aggacagena dagenadete eccentocat ggegggalag gaccaatgag
- 25 yhtti maagg atgatgaggu ausbaaggse ogoggagbab odbabstyce oboggagabbb 8700
 - a estatua que fa especívico estatua estatua aguadramada abbos mentes da a estatua para α
- or considering the theorem is a specifical and the analysis of the energy for the 3σ
 - quaretging acagogasit jogginuaet googggog officiation formischemic
 - atajeceete tudeagada" gaajgteagy <mark>garagtteee tggag</mark>eoggg gadteeston
- 35 theocagaic baggarmany of manggam objudgacty togologicy dynamouth to

.

	ccagettggg 4200	acageeeege	caacageeae	agagteeetg	agacccagcc	gatggatada
		aageggggee	ccccgcggac	ccgttgjttg	tsaggaacgc	cagetggeaa
5	gogygaaact 4320	ggagcgagtg	ctctaccacc	tgtggcstgg	gtgeggtetg	gaggeeggtg
	egetgtaget	ccggccggga	tgaggastgc	gcccccgctg	googgededa	gaatgaaaga
10	egetgetade 4440	tgeggeeetg	tgccasstgg	cacteaggea	actggagtaa	gtgeteeege
	agetgeggeg 4500	gaggtteete	agtgcgggac	gtgcagtgtg	tggacacacg	ggaccteegg
	ccadtgegge 455)	ccttccattg	teageooggg	cctgccaagc	ogcotgogoa	ooggeeetge
15	gggycccage 452)	cctgcctcag	ctggtadada	tetteetgga	gggagtgoto	ogaggeetgt
	ggcggtggtg 438)	agealcageg	totagtgado	tgcccggagc	caggostots	c jaggaggeg
20	ntgajacoca 474)	acaccacccg	gecetycaac	acceacecet	gcacgcagtg	a jtg gtgaga
	adatig jggde 4300	agtgutcago	accetgiggt	ggiggigiee	agoggogoot	gytcaagtgt
	gtdaasaccc 4350	agacagggct	gcccgaggaa	gacagtgacc	agtgtgggca	chaggeetaa
25	votg (jagst 4339	ccaggaegag	tggcaphyad	yatigtgage	regregages	t-todagat pt
	gage (pgace 4) ()	gaatyteatt	ogggttatga	yagadgo: go	gartactggg	digetgeeag
3()	etge:::::::::::::::::::::::::::::::::::	teegracesa	gtgatgaaga	tagtgatate	ogoccagoca	chidadaacaa
	1000449900 5.30	atcayogggt	tgedegaage	tgabtgtgbb	aggatgcaca	gadogadoga
	cagadendag 5160	tgcccaccac	gggatgtgga	ggageteeeg	ccccatgaga	citaatggtg
35	ctaaccccct E220	otdactadec	agcagcaggc	tggggaddte	discooptica	awaaaggtat
	tuttttatte E280	taacagtttg	tgtaacattt	attaigaitt	tacataaatg	agcatotaco
40	attomaaago 5338	aaaaaaaaa	aaaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaa

-- ---

<210> 7

	<21	.1>	947													
	<21	.2>	PRT													
5	<21	.3>	huma	an												
	<40	00>	7													
	Met	Glr.	Phe	Val	Ser	Trp	Ala	Thr	Leu	Leu	Thr	Leu	Leu	Val	Arg	Asp
	î				5					10					. 5	
10	Leu	Ala	Glu	Met	Gly	Ser	Pro	Asp	Ala	Ala	Ala	Ala	Val	Arg	Lys	Asp
				20					25					3.0		
	Arg	Leu	His	Pro	Arg	Gln	Val		Leu	Leu	Glu	Thr		Ser	Glu	Tyr
	a.	- 1	35		_		_	40		_			45			
15	GIU		Val	Ser	Pro	He		Val	Asn	Ala	Leu		Glu	Pro	Phe	Pro
1.7	ark -	50 50n	17-	U• =	57 %	T	55	(*·1		.	C -	60	,			
	65	Abli	Val	nis	K:11⊖	Lys 70	arg	: 111	AIG	Arg	Ser 75	lie	Asn	Ser	Ala	
		Pro	Trp	Dro	4 La		Als	Car	Ser	Sar		So.	Cov	77.	Cor	80
	ادرفعما	110	1		85	E.145	WIG.	9e1	oe1	90 5er	SUL	SEL	ser	ini	Ser 95	ser
20	Gln	Ala	His	There		1.691	Sa.	Ala	Phe		. : `		D)- e.	Lo		Z. cres
				100	,				105					110		715.,
	1.4.41.	Thr	Ala	Ash	A.a	Gly	Phe	Tie		Bro	1 60	Phe	Thr		Thr	Leu
								120								
	Let	Gly	Thir	Pro	GLy	Vai	Asn	GIn.	Thir	Lys	13.E	Туг		Glu	Glu	Gla
25		130					135					1.1				
	A	314	Dec.	Ly a	Hinn.	`y::	1300	i y r	1 ;::	12 /	: ; :	7.	A. t.	1.1.1	Assi	17**:
						::•										17.
	:: .	1111	:::::	7.10			<i>:</i> • :	٠	170	200	*	y	: .	$\{1, \gamma\}$::::	11.
					1.0											
3(1)	Aisi	Ser	His	Аср	9.7	Азр	Tyr	Fifter	lle	Glu	110	1	· 1.1.	Ser	Met	Asp
				150					185					190		
	Glu	Glr.	G1u	Asp	Glu	Glu	Glu	Gin	Asn	Lys	Pro	His		Il←	Tyr	Ard
			195					20%					21 - 17			
	Arş	Ser	Ala	$\operatorname{Fr} c$	G1n	$A:\mathcal{G}$	$G[\cdot]:$	Fre	Sor	Thr	11.7	Arm	Him	Al n	Cys	AST

and the second of the second o

	Leu	Asn	Ser	Gly	Leu	Ala	Thr	Glu	Ala	Phe	Ser	Ala	Tyr	Gly	Asn	Lys
				260					265					270		
	Thr	Asp	Asn	Thr	Arg	Glu	Lys	Arg	Thr	His	Arg	Arg	Thr	Lys	Arg	Phe
			275					280					285			
5	Leu	Ser	Tyr	Pro	Arg	Phe	Val	Glu	Val	Leu	Val	Val	Ala	Asp	Asn	Arg
		290					295					300				
	Met	Val	Ser	Tyr	His	Gly	Glu	Asn	Leu	Gin	His	Tyr	Ile	Leu	Thr	Leu
	305					310					315					320
	Met	Ser	Tle	Val	Ala	Ser	Ile	Туг	Lys	Asp	Pro	Ser	fle	Gly	Asn	Leu
()					325					330					335	
	Ile	Asn	Ile	Val	Ile	Val	Asn	Leu	Ile	Val	Ile	His	Asn	Glu	Gln	Asp
				340					345					350		
	Gly	Pro	Ser	ile	Ser	Phe	Asn	Ala	Gln	Thr	Thr	Leu	Lys	Asn	Phe	Cys
			355					360					365			
15	Gln	Trp	Gln	His	Ser	Lys	Asn	Ser	Pro	Gly	Gly	Ile	His	His	Asp	Thr
		370					375					380				
	Ala	Val	Leu	Leu	Thr	Arg	Gln	Asp	Ile	Cys	Arg	Ala	Hıs	Asp	Lys	Cys
	চ্চত					390					395					400
	Asp	Tor	Leu	Gly	Leu	Ala	Glu	Leu	Gly	Thr	lle	Суз	Asp	Pro	Tyr	Arg
20					405					410					415	
	Ser	Cys	Sei	I.e	Ser	Glu	yzb	Ser	Gly	Leu	Sei	Thr	Ala	Phe	Thr	Il€
				; 20					425					430		
	Ala	His	GI:	Leu	Gly	His	Val	Phe	Asn	Met	Pro	His	Asp	Asp	Asn	Asn
			435					440					445			
25	Lys	Сув	Буз	Glu	Glu	Gly	Val	Lys	Ser	Pro	Gln	His	Val	Xet	केरिव	Pro
		450					455					460				
	Tint	Let.	Asn	Phe	Tyr	Thr	Asn	Pro	Trp	Met			Lys	Суя	Set	
	465					470					475					480
	Lys	Tyr	Ho	Thr	Glu	Phe	Leu	Asp	Thr			Gly	Glu	Cys		
30					4 850					490					495	
	Asn	Gl:	Pro		Ser	Arg	Pro	Tyr			Pro	Val	Gln	Dett	Pro	Gly
				500					505					510		
	Ile	Leu			Val	Asn	Lys			Glu	Leu	Ile		Gly	Pro	Gly
			515					520					525			
35	Ser			Cys	Pro	Tyr		Met	Gln	CAa	Arg		Leu	Trp	Cys	Asr
		530					535		_			540				
			Asn	. Gly	Val			Gly	Суз	Arg			His	Thr	Pro	
	545					550			_,		555				6.3	560
	Ala	Asp	Gly	Thr			Glu	Pro	Gly			Cys	Lys	Tyr		
4()					565					57C					575	

	Сув	Val	Pro		Glu	Met	Asp	Val	Pro	Val	Thr	Asp	Gly	Ser	Trp	Gly
				580					585					590		
	Ser	Trp		Pro	Phe	Gly	Thr		Ser	Arg	Thr	Cys	Gly	Gly	Gly	Ile
_			595					600					605			
5	Lys		Ala	Ile	Arg	Glu		Asn	Arg	Pro	Glu	Pro	Lys	Asn	Gly	Gly
		610					615					620				
		Tyr	Cys	Val	Gly		Arg	Met	Lys	Phe		Ser	Cys	Asn	Thr	Glu
	625					630					635					640
•	Pro	Cys	Leu	Lys		Lys	Arg	Asp	Phe		Asp	Glu	Gln	Cys	Ala	His
10					545					650					555	
	Phe	Asp	Gly		His	Phe	Asn	Ile		Gly	Leu	Leu	Pro	Asn	Vāl	Arg
				660					665					570		
	Trp	Vátl		Gin	Tyr	Ser	Gly		Leu	Met	Lys	Asp	Arg	Суѕ	Lys	Leu
. ~			675					680					685			
15	Phe		Arg	Val	Ala	Gly		Thr	Ala	Tyr	Tyr	Gln	Leu	Arg	Asp	Arg
		690					695					700				
		Ile	Asp	GLY	Thr		Суѕ	Gly	Gìn	Asp		Asn	Asp	Tle	Сув	
	705					710	_				715					720
241	GIn	G.Y	Leu	Cys		Gin	Ala	GIY	Cys		His	Va.	Leu	Asn		Lys
20					725	2		,		730					735	
	A 174	Atu	Arg		bys	Cys	Gly	Vai.		Gly	Gly	Asp	Asn		Ser	CYS.
	,	44-1		740					745					750		
	1773	. h.r	Was. Tak	A.a	GIY	Thr	Pne		Thr	::al	His	Pyr		Tyr	Agn	Ti.i
25			,					760					765			
)	v (1 _		AT U	1 _ 69	Pro	ATa		A.a	Thr	Asn	1.0	Asp	Vai	A.1 ,	0.5	Hilb
	.	770			. •)	775					780				
	2001	1 111	. 31 1 2	134.77			ASD	ASI	Asisj	Asm	Tyr Tyf	1,51	Ala	10.	Steen's	
١,	17691	- 71	٠		a favo Sa E	1.4-1		Attr.			Fine	1	Mat.	77.1.5		11:
. ,										311					# . .	
	119.11	**: .'	• • •		mi j	- 2 to	ં મું	245 FL		v C1 _	2:4.2	(7,1)	. 71		3 - 7	de:
		~ h	- 1 -	820	-1.1			_	825					83.		
	3.4	i fi f		V-1	للادف	Arg	e		Ser	Thr	Asp	Arg		G _ 1.	Gi:	Git
3.5			334		., .		~	840			_		845			
• , •	. Ht .	1.5.1		1,7 = 1 :	. 1 .	1.6373	Ser	va I	G-Y	Туз	2.01	Tyr	Asstr	Pro	Aug	74.
												0.00				

Glu Arg Lys Arg Lys Leu Val Cys Thr Arg Glu Ser Asp Gln Leu Thr
900 905 910

Val Ser Asp Gln Arg Cys Asp Arg Leu Pro Gln Pro Gly His Ile Thr
915 920 925

5 Glu Pro Cys Gly Thr Asp Cys Asp Leu Arg Trp Ala Thr Val Phe Ser 930 935 940

Arg Pro Leu

945

10 <210: 8

·:211: 4086

4012> DNA

<213> human

15 -44002 8

35

getogiggtg otggagttta agttgagtag taggaatgeg gtagtagtta ggataatata %0

Batagutaaa ttaagaatgg ttabgttagg gttgtacggt agaactgcta ttattcatcc 130

20 talginggia aliqagdagh aligoraagal titigogiago tigggibtiggi mlaatovacci 130

traacigoot gotatgatga abaadattiga gagagtgagg agaaggotta ogttilagtga 240

uggagagatt tggtatatga ttgagatggg ggetagtrit tgtcatgtga gaagaagsag 25 - 300

pooggatyte ägaggggtge uppgggtaan obetyggant dagaagtgaa agggggetat 340

tontaybitt attgotatay ocattatgat talbaatyat gagtatbgat tggtagtatb 400

30 yittanggti dattgiddig agagtatatt gitgaagagg atagdiatta gaaggattat 430

¿gatgoggtt &cttgogtga ggaaatactt gatggoagot totgtggaac gagggtttat
540

ttttttggtt agaactggaa taaaag<mark>ctag catgtttatt totaggccta otcaggtaaa</mark> 500

aaatcagtgc gagettageg etgtgatgag tgtgeetgea aagatggtag agtagatgae 5%0

999994999 tgggaageac catgeagttt gtateetggg ccacactget aacgeteetg 710

- gtgegggace tggeegagat ggggageeea gaegeegegg eggeegtgeg caaggaeagg 730
- ctgcalccga ggcaagtgaa attattagag accctgageg aatacgaaat cgtgtctccc $840\,$
- 5 atecgagtga acgetetegg agaaccettt eccaegaacg tecaetteaa aagaacgega 900
 - eggagiatta actotyccae tyacceetyy ectycettey ectecteete treeteetet $9\,\mathrm{f}0$
- acotestocc aggogoatta cogoetetet geotteggee aggagtttet atttaatete 10 1000
 - acogedaatq coggatttat egeleeactg tteactgtma ecclectogg gaegeeeggg 1090
 - gtgaatcaga ccaagtttta ttccgaagag gaagcggaac tcaagcactg tttctacaaa 1140
- 15 ggotatgica ataccaacte egageacaeg geegicatea geetetgete aggaatgetg 1200
 - ggnacattec ggtotoatga tggggattar thrantgaac cactacagte batggatgaa 1200
- caagaagatg aagaggaada aaadaaaddd dadatdatti ataggdgdag dgdddddaga 20 - 1320
 - афафафсост сивсарувар gcatgcatgt qadadotdag aadadaaaa taggcacagt E380
 - ламинасынун ыдыммаксы<mark>д адса</mark>адынын ілдадарыны ддатінансеі ддеіддідас 1440
- 25 Idia pra pra i tanacagogg ostagomaca yaugharitt intgottatg; tantangneg 1500
 - indication in the faeragegristure enarge area and and and entries in the entries of the expension of the exp
- . The thorough the test per order against a real point of the rest energy energy 30° .
 - valuestric in Flagstit astyteaster graph that totalgaaga in easister
 2686
 - ggaaattia) itaataityt hattytyaan itaattytyä tivataatyn anagyanyyy 1740
- 35 rectorar at estimatign traganaara tragadaaan tittgo jäytig girabratii ja taira

	ccctatagaa 1980	gctgttctat	tagtgaagat	agtggattga	gtacagettt	tacgatcgcc
	catgajetgg 204)	gccatgtgtt	taacatycct	catgatgaca	acaacaaatg	taaagaagaa
5	ggagttaaga 210)	gtececagea	tgtcatggct	ccaacactga	actictacac	caacccctgg
	atgtgytcaa 216)	agtgtagtcg	aaaatatatc	actgagtttt	tagacactgg	ttatggegag
10	tgtttjetta 2220	acgaacctga	atccagaccc	taccetttge	ctgtccaact	gecaggeate
	otttadaacg 2230	tgaataaaca	atgtgaattg	atttttggac	caggttctca	ggtgtgccca
	tatat jatgo 234°)	agtgcagacg	gatatggtga	aataacgtca	atggagtaca	caaaggotgo
15	oggaethage 2400	acacaccctg	ggccgatggg	acggagtgcg	agcctggaaa	gcactgcaag
	tatgganeti 246)	gtgttcccaa	agaaatqgat	gteeeegtga	cagatggatc	ctggggaagt
20	nggagticeet 25do	tiggaacctg	ctccadaaca	tgtggagggg	gcatcaaaac	agccattega
	gagtgamaca 2340	gaccagaacc	aaaaaatgqt	ggaaaatact	gtgtaggacg	tagaatgasa
	tttaa (Loot 2640	graacacgga	gcdatgtoto	aagcagaagc	gagacttccg	agatgaacsg
25	tgtgordadt 27 m	ttgangggaa	gcattiraac	alcaacggtc	tgottoccaa	tgtgcgctgg
	gtodorkaat 27.0	acagtggaat	totgatgaag	gacoggtgca	agttgttetg	cagagtggca
30	gggaa :ecag 23.(cctactatea	gettegagae	agagtgatag	atggaactcc	ttgtggccag
	gadacheatg 28.0	atatotgtyt	ccagggccut	tgccggcaag	otygatgoga	tcatgtttta
	aactonaaag 2340	cooggagaga	taaatguggg	gtttgtggtg	gogataatto	ttcatgcaaa
35	acagtqqcag 3000	gaacatttaa	tacagtacat	tatggttaca	atactgtggt	cegaatteca
	gotggtgota 3060	odaatattga	tgtgoggoag	cacagittet	caggggaaac	agacgatgac
40	aactacttag 3120	ctttatcaag	cagtaaaggt	gaattettge	taaatggaaa	ctttgttgtc

•

	acaatggcca 3180	aaagggaaat	tegcattggg	aatgctgtgg	tagagtacag	tgggtccgag
	actgccgtag 3240	aaagaattaa	ctcaacagat	cgcattgagc	aagaactttt	gcttcaggtt
5	ttgtcggtgg 3300	gaaagttgta	caaccccgat	gtacgctatt	ctttcaatat	tccaattgaa
	gataaacctc 3360	agcagtttta	ctggaacagt	catgggccat	ggcaagcatg	cagtaaaccc
10	tgccaagggg 3420	aacggaaacg	aaaacttgit	tgcaccaggg	aatotgatca	gcttactgtt
	3480			cctgyacaca		
	3540			tcaaggcctt		
15	3500			aggaggggat		
	3660			aattotocat		
20	3720			ctaagaatta		
	3780			cacmacttdo		
25	3840			ttigaaadte		
-,	3900			atoradodad osmikadyns		
	A factorial to the					
\$	4 1.2					
	4080 oqtatt			×		te titug saw
	4086					

<220>

<223> primer

5 <400> 9

gategeggee getatggtgg acaegtggee tetatggete e 41

<210: 10

10 <211> 43

4212> DNA

<213> Artificial Sequence

+:2235×

15 <223> primer

<400> 10

tgaggeette agggeegate aetgtgdaga geactdaded eat

20

Claims

- 1. An MPTS protein selected from the group consisting of MPTS-15, MPTS-10, MPTS-19 and MPTS-20, wherein said protein is present in other than its natural environment.
- 2. The protein according to claim 1, wherein said protein has an amino acid sequence substantially identical to the sequence of SEQ ID NO:01, 03, 05 or 07.
- 10 3. A nucleic acid present in other than its natural environment, wherein said nucleic acid has a nucleotide sequence encoding an MPTS protein selected from the group consisting of MPTS-15, MPTS-10, MPTS-19 and MPTS-20.
- 4. A nucleic acid according to claim 3, wherein said nucleic acid has a nucleic acid sequence that is the same as or substantially identical to the nucleotide sequence of SEQ ID NO:02, 04, 06 or 08.
- 5. An expression cassette comprising a transcriptional initiation region functional in an expression host, a nucleotide sequence according to claims 3 or 4 under the transcriptional regulation of said transcriptional initiation region, and a transcriptional termination region functional in said expression host.
 - 5. A cell comprising an expression cassette according to claim 5 as part of an extrachromosomal element or integrated into the genome of a host cell as a result of introduction of said expression cassette into said host cell.
 - 7. The cellular progeny of the host cell according to claim 6.
- 8. A monoclonal antibody binding specifically to an MPTS protein according to the materials.

The samples are a side of the control of the same of t

isolating said protein substantially free of other proteins.

5

- 10. An MPTS protein as claimed in claim 1 or 2, whenever produced by the process of claim 9.
- 11. A method of screening to identify MPTS modulatory agents, said method comprising:

contacting an MPTS protein according to claim 1 with a substrate in the presence of an potential modulatory agent; and

- determining the effect of said modulatory agent on the activity of said protein.
 - 12. The method according to claim 11, wherein said substrate comprises a glu-ala bond.
- 15 13. The method according to claim 12, wherein said substrate is aggrecan or a fragment thereof.
 - 14. A method of treating a host suffering from a disease condition associated with MPTS activity specifically wherein said disease condition is characterized by the presence of aggrecan cleavage products, said method comprising:
 - administering to said host an MPTS modulatory agent, specifically an antagonist.
- 15. Use of a MPTS modulatory agent, obtainable or obtained by the method claimed in claim 11 for the preparation of a medicament for the treatment of a disease condition associated with MPTS activity, specifically wherein said disease condition is characterized by the presence of aggrecan cleavage products, like arthritis.

FIG. 1A MPTS-15: (2879 bp)

ATGGAAATTTTGTGGAAGACGTTGACCTGGATTTTGAGCCTCATCATGGCTTCATCGGAAT TTCATAGTGACCACAGGCTTTCATACAGTTCTCAAGAGGAATTCCTGACTTATCTTGAACA CTACCAGCTAACTATTCCAATAAGGGTTGATCAAAATGGAGCATTTCTCAGCTTTACTGTG TAPOTAAGTTATTTTTTAAACTTTCAGCOTATGGCAAGCACTTTCATCTAAACTTGACTCT CAA JAGAGATTTTG TG POGAAAGATTTTAGAG FAGANTATFGGGGGAAAGA FG GA DOGGAG TG GAAACAT GA ITT FT FAGACAAC F GTCA FTA CACAGGATAT FTGCAAGAT CAACG FAGTA CAA CTAAAG IG GC I I TAAGCAACT G IGTTGGG ITG CATGGTG TTATTGGTA CAGAA GATGA A GA GTA TT TTA POGAA OOTTTAAA GAATACCA CAGGGATTC CAAGGATTTTAG PTA TGAA AATGGCCAC CCTCA IG PTATTTACAAAAGTC IGCCCT ICAA CAAGGACA TCTGTATGATC ACT OTCATE SESSION PROGRATTE DACAAGAAGTIGGCAAACO PTGGTGGCTGAA PSACAC 15 TCACTGAG CAT FGAACGGTT FG FGGAGACATTCCTAGT GGCAGACAAAATGAT CG FGGGCT ACCATGGCCGCAAAGACATTGAACATTACATTTTGAGTGTGATGAATATTGTTGCCAAACT TTACCOTGA PTODAGCCTAGGAAACGTTGTGAATA PTA PAGTGGCCCGCTTAA PTGTTCTC ACAGAAGAT JAG DOAAACTTGG AGATAAACOACOA IGO AGACAAGTCCCTGGA TAGCTTCT GTAAATGGCAGAAATCCATTCTCTCCCACCAAAGTGATGGAAACACCATTCCA GAAAATGG GATEGUCCA CCACGA FAATGCACFTCTFATTACTA HAT YEGATATCTGCA CFTATAANAA F AAGCCCTGTGGAACATTGGGCTTGGCCTCTGTGGCCAGGAATGTGTGAGCCTGAAAGGAGCT GCAGCATTAATGAAGACACTGGUCTGGGTTCAGCTTTCACCATTGCACATGAGATTGGTCA CAATTTTGGTATGAACCATGATGGAATTGGAAATTCTTGTGGGACGAAAGGTCATGAAGCA -GCAAAACTTATGGCNGCTCACATTACTGCGAATACCANTCCTTTTTCCTGGTCTGCTTGCA GTCGAGACTACATCACCAGCTTTC PAGATTCAGGCCGTGGTACTTGCCTTGATAATGAGCC TOCCAAGCGTGACTTTCTTTATCCAGCTGTGGCCCCAGGTCAGGTGTATGATGCTGATGAG CAACGTCGTTTCCAGTATGGAGCAACCTCCCGCCANTGTAAATATGGGGAAGTGTGTAGAG AGCTCTGGTGTCTCAGCAAAAGCAACCGCTGTGTCACUAACAGTATTCCAGCAGCTGAGGG GACACTGTGTCNAACTGGGAATATTGAAAAAGGGTGGTGTTACCAGGGAGATTGTGTTCCT TOTGGCACTTGGCCCCAGAGCATAGATGGGGGC GGGG CCCCTGG FCACTATGGGGAGAGT OCAGCAGGACCTGCGGGGGGGGGCGTCTCCTYAFCCCTALGACACTCCMGACAGTCCAGCACC DI PAGGAG FIGHAAAATA DIBBO TITGGGGAAARHAA AM FEFAMUUUNGGIIGTA.WACADAD ATGC TO LITUGGTTCC TGALMI ITTCMA JAGAALTA BUDUNTA JAGTI DGALMATATGC HI. TUCCGARGALAGTATTATAACIGGRALIS UTATLITS IA ISTURBIJIAAAGIG NIGT JI ALIAAACTGCTTGGCTGAAGGCCA FAACCCCTAGAGCTGAAACCCGTGCTGCTGCGGGTGACCCAC GEGROCCIAC POCARE ECCUATED ACTOGRADATO LIBRATINA ACTOGRADA ATIOCAR (CAROCTA D COTOTGATALTATTTTGGGATCIGATGCTAFGGAN AINHATGTCGAGTCTGT9GACGGGA CGGLAGCACLTGTGATGCCATTGAAGGGUUMTTCALTGLTTCACTGCCCAGGGGAGGCTAC AUGGAAGTGGTGCAGATACCAAGAGGCTCTGTTCACATCGAAAGTTAGAGAAGTTGCCATGT CAALGAAC PATATTGCTTTAAAATCTGAAGGAGATGATTACTATTAATGGTGCCTGCAC LATEGACTGGCCTAGGALATTTGATGTTCCTGGGACACCTTTTTCATTACALGACACCALCT GATGAACCAGAATCCTTGGAAGCTCTAGGTCCTACCTCAGAAMATCTCATCGTCATGGTTC TO STORAGRAGRAGRAM TO SEEL OF THE CONTROL OF SELECTION

on de la caractería de la composição de la Estados de la caractería de la composição de la composição de la composição de la composição de la composição

GTCTCTGCTGGTGCTTCTCCCAAGACTATCTTGAAGGTGGGCTGTTTGCCTTTCGTGAACACATTCTTGGTAT (SEQ ID NO:02)

FIG. 1B >ORF(frame +1)

- 5 MEILWKTLTWILSLIMASSEFHSDHRLSYSSQEEFLTYLEHYQLTIPIRVDQNGAFLSFTV KNDKHSPRRRSMDPIDPQQAVSKLFFKLSAYGKHFHLNLTLNTDFVSKHFTVEYWGKDGFQ WKHDFLDNCHYTGYLQDQESTTKVALSNCVGLHGVIATEDEEYFIEPLKNTTEDSKHFSYE NGHEHVIYKKSALQQEHLYDHSECGVSDFTESGKPWWLNDTSTVSYSLPINNTHIHHRQKE SVSIERFVETLVVADKMNVGYHGRKDIEHYILSVMNIVAKLYRDSSLGNVVNIIVAELIVI
- 10 TEDQPNI EINHHADKSLDSFCKWQKSILSHQSDGN FIPENGIAHHDNAVLITRYDICTYKN KPCCTLGLASVAGMCEPERSISINEDIGLGSAFTIAHEIGHNFGMNHDGIGNSCGTKGHEA AKLMAAHITANTNPFSWSACSRDY ITSFLDSGRGTCLDNEPPKRDFLY PAVAPGQVYDADE QCRFQYGATSRQCKYGEVCRELWCLSKSNRCVTNS IPAAEGTLCQTGNI EKGWCYQGDCVP FGTWPQSIDGGWGPWSLWGECSETIGGGVSSSLEHCDSPAPSGGGKYCLGERKRYRSCNTD
- 15 PCPLGSEDFREKQCADFDNMPFEGKYYNWKPYTGGGVKPCALNCLAEGYNFYTERAPAVID GTQCNAUSLDICINGECKHVGCDNILGSDAREDRCRVCGGDGSTCDAILGFFNDSLPRGGY MEVVQI PRGSVHIEVREVAMSKNY IALKSEGDDYY INGAWTIDWPRKFIVAGTAFHYKRPT DEPESLEALGPTSENLIVMVULQEQNLGIRYKFNVPITRTGSGDNEVGFTWNHQSWSECSA TCAGGKMPTRQPTQRARWRTKHILSYALCLUKKLIGNISCRFASSCNLPKETLL*LYYIPF
- 20 VFNLM*FVQICW*NTSWHNECLCWCFSQDYLEGGLFAFREHILG (SEQ ID NO (1)

FIG. 1C Align MP15 with ADAMTS-6(in public data base).

5	MP15-4universal+1_ORF1 ADAMTS6+1_ORF1	MEILWKTLTWILSLIMASSEFHSDHRLSYGSQEEFLTYLEHYQLTIPIRV MEILWKTLTWILSLIMASSEFHSDHRLSYGSQEEFLTYLEHYQLTIPIRV
10	MP15-4universal+1_ORF1 ADAMTS6+1_ORF1	DQNGAFLSFTVKNDKHSRRRRSMDPIDPQQAVSKLFF1LJAYGKHFHLNL DQNGAFLSFTVKNDKHSRRRRSMDPIDPQQAVSKLFF1LJAYGKHFHLNL
15	MP15-4universal+1_ORF1 ADAMTS6+1_ORF1	TLNTDFVSKHFTVEYWGKDGPQWKHDFLDXCHYTGYLÇDQESTTKVALSN TLNTDFVSKHFTVEYWGKDGPQWKHDFLDXCHYTGYLÇDQESTTKVALSN
20	MP15-4universal+1_ORF1 ADAMTS6+1_ORF1	CVGLHGVIATEDEEYFIEPLENTTEDSKHFSYENGHPHVIYEKSALQQRH CVGLHGVIATEDEEYFIEPLENTTEDSKHFSYENGHPHVIYEKSALQQRH
25	MP18-4universal-1 ORF1 ADAMIS6+1_ORF1	LYDHSHCGVSDFTRSGKPWWLNDTSTVSYBLPINNTHIHHEQKESVSIER LYDHSHCGVSDFTRSGKPWWLNDTSTVSYBLPINNTHIHHEQKESVSIER
20 2 ·	MP15-4universal+1 ORF1 ADAMIS6+1 ORF1	FVETLVVADPMMVGYHGRKDIEHYILSVMMIVAKDYRESALGNUVNIIVA FVETLVVADPMMVGYHGRKDIEHYILSVMMIVAKDYRESALGNUVNIIVA
3()	MPlb Auniversal+1_00F1 ADAMTS6+1_CRF1	BELVETEDGENLEINHHADKSLDSFCKWOKSILSHOSEGETEFENGTAHH BELVETEDGENLEINHHADKSLDSFCKWOKSILSHOSDGETEFENGTAHH
35	MP15universal-i_ORF1 ADAMES 6-1_CRF1	DNAVLITRYLIGIYANKPOSTLGLASVAGMOEPERSOSIUELIGIGSAFT DNAVLITRYLIGIYANKPOSTLGLASVAGMOEPERSOSIUEDIGLGSAFT
4()	MP11-4uniwetsal+1_ORF1 ADAMT56-1_ORF1	IAHEIGHNERMHDOTGNSOGIE BERAAF, MANBITADITE ES BAARSE IAHEIVENERMHDOIGNSOGIANE, DITTES SITT FOR A FARRE
45	MP15-4universal+1_ORF1 ADAMOS6+1 ORF1	Fig. 1. The second of A IVA of DIGITY AAVAING, UNIVERSE SAAN GAIRS, SECOND OF SAAN GAIRS
	M815-4universal+1_ORF1 ADAMT86+1_ORF1	THE TEVERETWOLSK SNROVINSI PAAEGYLOQIGNIEKOV CYQGDOVPF
50	MP15-4universal+1_ORF1 ADAMT86-1_ORF1	GTWPQSIDGLWGPWSLWGECSRTCGGGVSNSLRHCTSPAYSGGGKYCLGE GTWPQSIDGGWGPWSLWGECSRTCGGGVSNSLRHCTSPAYSGGGKYCLGE
55	MP15-4universal+1_ORF1 ADAMTS6+1_ORF1 FIG. 1C (Cont)	EKRYESCNTEPOPLGSRDFREKQCADFDMIPFRGKYYNWFFYTGGGVKPC EKRYESCNTDPOPLGSRDFREKQCADFDMIPFRGKYYNWFFYTGGGVKPC
	and and tentile	

Align MP15 with ADAMTS-6(in public data base):

5	MP15-4universal+1_ORF1 ADAMTS6+1_ORF1	ALNCLAEGYNFY FERAPAVIDGTQCNADSLDICINGECKHVGCDNILGSD ALNCLAEGYNFY FERAPAVIDGTQCNADSLDICINGECKHVGCDNILGSD
10	MP15-4universal+1_ORF1 ADAMTS6+1_ORF1	AREDRORVOGGDGSTCDAIEGFFNDSLPRGGYMEVVQIPRGSVHIEVREV AREDRORVOGGGGSTCDAIEGFFNDSLPRGGYMEVVQIPRGSVHIEVREV
	MP15-4universal+1 ORF1 ADAMTS6+1 ORF1	AMSENYIALKSEGDDYYINGAWT: DWPRKFDVAGTAFHYKRPTDEPESLE AMSENYIALKSEGDDYYINGAWTIDWPRKFDVAGTAFHYKRPTDEPESLE
15		
	MP15-4universal+1 ORF1 ADAMTS6+1_ORF1	ALGPTSENLIVM/LLQEQNLGIRYKFNVP1TRTGSGENEVGFTWNHQSWS ALGPTSENLIVM/LLQEQNLGIRYKFNVP1TRTGSGENEVGFTWNHQPWS
20	MP15-4universal+1_ORF1 ADAMTS6+1_ORF1	ECSATCAGGKMPTRQPTQRARWRTKHILSYALCLLKKLIGNISCRFASSC ECSATCAGGKMPTRQPTQRARWRTKHILSYALCLLKKLIGNISCRFASSC
25		NLPKETLL (SEQ ID NO:01) NLAKETUL (GenBank Accession No. AF140674)

 $C_{ij} = \{ c_i, c_j \in \mathcal{C}_i \mid c_j \in \mathcal{C}_i \mid c_j \in \mathcal{C}_i \}$

FIG. 2A

MP10-full-length

5 TTCCATCCTAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGGCAGGTGTGGACACGT GGCCTCTATGGCTCCCGCCTGCCAGATCCTCCGCTGGGCCTCGCCCTGGGGGCTGGGGCTG AT STTOGAGGTCACG CATGOCT FOOG STOT CAAGA FGAGT POOT GTOCA GTOTG GAGAGOT ATIGA GA TIOGOCTTO DOCA DOOG OGTGGACOACAA DIGGGGGACTG DTGGCCTTCTCGCCAAOC TO DIPOS DIGGAGGICA BOG DOGOGGICA DIGGGIG BOGA CAGODGAGT DIDIGGOGT SITTO TACIAAA GT 3 3CC FOGOCOA 3 CACCCACTTC O TOOTGAACC F3ACCCGCAG CTC CCCTCTAC PGG CAG GG CACG I DIPOCGIT I GAGTACITG GA CAC BIGGAG BIG DOTTEGIOCTIEG CAGAGGGGGGGGCGGGGG CCACTIGODIPOTACIS DE BOACIOE SOA SIGIS DI DA DIGICAGICAGI EMIGENISMI SA PORGO DA PORGO AC DTGTGGAGGOOTE CAOGGCOTGA DOGTGGOA AG GAGGAAGAGTA DOTGATTGAGOOD D TGCACGG PGGCCCAA GGGTTCTCGGAGCCCGGAGGAAAGTGGACCACATGTGG PGTACAA GOGITIPO O POTOTIGOGITOA OCOCICA DO PGIGA CACA GOO PGITIGIGAO PGAGAGATIGA GAAAACICI TG BAAA BOBOGOOA PEGTGGOTE DEGAOO PROAA BOOAOO BOOAGO DOAGGOO DITEGGAAA AT BAAACAGAGCGTBG CCAGCCAG BOCTGAAG CGATCGBTCABC CGAGAGCGC PACGPGGA OA COCPOSTIGISTISIS DE SAICAAGA PRAITISIS PIRIS DU PAIT DAICI SE SEIGI DICIGIGIA TIGTEGAGICAG 7() TA PROCTO PO DAT DA PRAACAT PRIPERCAAA DE PET DOA SIGNO PODAGROTORIGIAA GARA CC 3 TTAACA FOOT DGTAA OT OG DOT DAIFOO FGU TOACG BAG BADDAGOCAO FO FGGAGAT DA DOCA DOA DE CARAGAMENT DE DEGA DAG OT POTETAAG PEE DAGAAATRODA POGTGAAC CA DAGOGGO DA PEGDAATIGO DA PROCAGAGANOGO POR PEGDIRAA DOATOAQAGAGDAGT EG PCA PCACAC BOTA PBADA POPOD APOTA DAAGAADAAA DOO PB DBEGAGAGAD PAGE DOPES A ENDOSEN TARBARANTALIN NE DE AGASARA BARBARA EN SA PARA DA PARA BARBARA DA PARA BERTA BERTA BORGO CO GC 0 NCA 306 PPCA DCA P P30 0 DA OGAGLYPU 380 JACA DLYPPD 390ATGALYC DA TGACGG CG DGGGAAAA DA BODG DGG BU DIDGG DGG DGAGGAON DA GODAN GID BOATGGOTTG DOGA DATTAO AT ON BY IS EIGCOADD AGARG AEGEO DE AS EOTO D'ADD EED DIE CANAAC DAAGAAN AEGEOAD. GAC 200 3 30 IT 3 339 I PIT 3 00 PSANCANDOGR DO COULAGA LAGGARTY SITS TACCOGA CAGTGG CAID OG 9 9 DCANG DID DA DGATG CAGNEGNG CAATIG DE SOUTTIOCAGICATIG BAG TICAA ATROGOS A 9-9-DO NO DAGOSA GODE SIPAGINGO NO NACRASAGOAACOGGING CATICA DOAA DAG CATOCO 39 DOG I DAAG 30 DA DE II DID NEA DECROACIA I DGACAA GGGGIDE STEED IAC AAACGU BU I BG PBOOLOCT DOGGGOOG SACCOAN IGGONG PBBACGGAACC TOGGGGGACC GGA DTO CAIP 3G 3 39A CIPA DA DO DEGA O DEGITOS DO SOGGO SINERO DE OPPOPA ENGIDO SE POAC 35 — TIGOBACAPO DO CARRO CAA DOATEGROS ROCANS DA DRACO PORRO AMBAGAARRO DE ROACO GOTO DE BOAA DA DIGIGA PANOTO FOCOUS SEGEIOS DO BAGGA O POABAGAA A PIGIDA E ESTE TGANTI FGA DAGCATO I CITTO COGTIG G GAANNIBUTACAAG BGGAAAA IGTA COGGGGGAAGOG COGRICA SID SID SID SECTION AS A DACIO DE DESCRIPCIÓN A SACAD SECTIONARIZATauTUS DE auCORDICA SECUENDA SACADA SECUENDA SEC CGAAT 3 CANS CA OFFIG 3 OF DIE DIEARDE ENGT COTRIBECTO EAGOT BOIE BIGARIE A DAA STIG D CDAGID FIGURGA DESCRIPCIÓN DA STERO DE DE CARROLA TO GAGE CONTROLACION DE CARROLA DE CAR CACCTE SIGNO DEGISTA DI PAGNATACIO STOTOGGATTICO DA ANGGOTOGGATACATA E E CACCATA C CAGGA PODGAACOT UT OPO POAGPOACPOGGOOOTGAAGGGAGAGAGAGGAAGTOCOTS OOG C FIGUAG GGG CEGECTAG BAC ECCCEASCECCACCITETEC ECCASET GGACCACCATEC CONTRACTORS CATEROOF CONTRODUCTORS AREACT ARROUGH AREACT FROM CONTRACTORS TO A CONTRACTORS ORDUCASTOTOCAGOOGTASCCAFOROCOGTGCAGGOOGTGCAACCAAGOOGGAACCAAGOOGGACAC CTGCAACACGGAGCCTTGCCTCAAGACTGGGTTGTAGGAACTGTCGCTCTGCAGCCGCAGAC

Remarks of Comment of the

10 (SEQ ID NO: 04)

FIG. 2B

>MP10-full-length+3_ORF1 Translation of MP10-full-length in frame ±3, ORF 1, threshold 50

5 MAPACQILRWALALGLGLMFEVTHAFRSQDEFLSSLESYEIAFPTEVDHNGALLAFSPPPP PRQRRGTGATAESPLFYKVASPSTHFULNLTRSSFLLAGHVSVEYWTREGLAWQRAARPHC LYAGHLQGQASSSHVAISTCGGLHGLIVADEEEYLIEPLHGGPKGSRSPEESGPHVVYKRS SLEHPHLDTACGVF.DEKPWKGRPWWLRTLKPPPAF.PL/GNETERGQFGLKRSVSRERYVETL 10 VVADKMMVAYHGRRDVEQYVLAIMNIVAKLFQDSSLGSTVNILVTRLILLTEDQPTLEITH HAGKSLDSFCKWQKSIVNHSGH3NAIPENGVANHDTAVLITRYDICIYKNKPCGTLGLAFV GGMCERERSCSVNEDIGLATAFTIAHEIGHTFGMNHDGVGNSCCARGQDPAKLMAAHITMK TNPFVWSSCSRDYITSFLDSGLGLCLNNRPPRQDFVYPTVAPGQAYDADEGCRFQHGVKSR CLGFAVVSEQEQPVHHQQHPGF.RGHAVPDAHHRQGVVLQTGLCPLWVAPRGCGF.SLGAVDS 15 MGECSETCGGGGVSSSSEHCDSPRPTIGGEYCLGEERRHRSCNTDDCPPGSQDFREVQCSEF DSIPFEGKFYKWETYRGGGVKACSLTCLAEGFNFYTERAAAVVDGTPCEPDTVDICVSGEC KHVGCDRVLGSDLEEDKCRVCCGDGSACHTIEGVFSPASPGAGYEDVVWLPKGSVHIFIOD LNLSLSHLALKGDQESLLLEGLPGTPQPHELPLAGTTFQLRQGPDCVOSLEALGPINASLI VMVLARTELPALEYRFNAPIAEDSLPPYSWHYAPWTKCSPSVOAVARCERWSAATKLDSSA 20 VAFHYCSAHSKLAÇKQARLQHGALPQDWAYGTVALQPQLAMQGVRSRSVVCQAPRLCREEK ALDDSACPQPRPEVLRPATAPLALRSGGPRIV*

(SEQ ID NO:03)

35

FIG. 3A

87

MP19 TOCTCCTGCTCCTCTGCGCTCTGGCTCCCGGCCCCCGGACCCGCACCAGGACGTGCAAC -CGAGGGCCGGGCGCACTGGACATCGTGCACCCGGTTCGAGTCGACGCGGGGGGCTCCTTC CTSTCCTACGAGCTGTGGCCCGCGCACTGCGCAAGCGGGATGTATCTGTGCGCCGAGACG CSCCCCCCTTCTACCACCTACAATACCCCCGCGCCCGAGCTGCGCTTCAACCTGACCCCCAA TICAGCACOT SCIEGGOCOOGGOTTTGTGAGCGAGACGCGGCGGCGGCGGCGGCCTGGGCCT GOGOACATORGGGCCACACCCCGGGCCTGCCACCTGCTGCGGGAGGTGCAGAAGAAGAACACTGAGG TOGAGGGTG GOOTGGOGGCCATCAGOGCCTGOGACGGOOTGAAAGGTGTGTTCCAGCTCTC COCCATGTG 3TG PACAAGOGTCAGGCCOCGGAGAGGCTUGCAUA 3CGGGGTGA PTOCAGTG CITOCAAGCADOIRGITGGAAGTGCAAGTGTACCCAGAGCIRGGAGCCITCGACGGGA 2CGTIRGGGA ·BOA/BOGGOA BOAY PGGOGGO BGOCAOGGOTGA/GGOGT/OTA/CADOAG DEGTOG BTOA/GCAAA GAGAAG FGGGTGGAGACCCTGG FGGTAGC FGATGCCAAAATGGTGGAGAGACAGC DECAGG PT SAGAGCTATIGTGCT SACCATICATIGACATIGGTGGTCGTGTGCCTGTT TCATGACCC CAGCATTG SGAACCCCATCCACATCACCATPSTGCGCCTGGTCCTGCTGCTGGAA SATGAGGAG BAGGACCTAAAGATCACGBACCATGCAGACAACACCCGGAAGAGCTTCTGCAAGTGGCAGA AAAGCA FCAACATGAAGGGGGAGA FGCCCATCCCCCTGCAC DATGACAC FGCCATCCTGCTCA C 20 CAGAAAGGACCPGTGTGCAACCATGAACCGGCCCTGTGAGACCCTGGGACTGPCCATGTG 3 DGGGCATGTGCCAGCCG DACCGCAGCTG CAGCATCAACGAGGACACG 2 3CC TGCCGCTGG DO PTOA OTGTAGOCCACGAGO POGGGCA DAGTPTPGGCACPCAGCATGACG GAAGOGGCAA PGA CTG I GAGGCCGTTG GGAAA DGACCT PPCATCATGT CTCCWCAGCTCC PG FACGACG CC GCTCCCCTCACCTGGTCCCGCTGCAGCCGCCAGTATATCACCAGGTTCCTTAACCGTGGGT -GGGGCCTGTGCCTGGACGACCCTCCTGCCAAGGACATTATCGACTTCCCCTTCGGTGCCACC TIGG DG FCCIP. PA PGATG TAAG CCACCAI PICCOGCCTCCAG PADDGGGG C PA D FC PC PC PC TGOGAG SACATGGATAATG POTGOCACADAC POTGGTOO POTGTGGG SACCADC TGTCADT CCAAGC FEGA PG CAGCC ET GEACGGCACCCGGTGTGGGGGAGAATAAG TEE TE TC FCAGTEG GGAGT 3 DGTA DC DGTGGGCTPPOOGGCCCGAGGCCGTCUANGGTGGCTGGTGGTGGAGC GCCTGG PCCA PCTGCTCACGGAGCTGTGGCATGGGCGTACAGAGCGCUGAG CGGAGTGCA CGCAGCUTA 390 3CAAA TACAAAGGCAGA YA STOTO PEGGTGAGGGGAAGG 3 3TT CGGG 3TT CTGCAACCT BCAGGCCTGCCCTGCTGGCCCCCCTCCTTCCGCCCACGTCCACTGCAGGCAC PTTGA TGCCA PGCTCTA DANGGCCCCCPC (ACACA P) PSTGCCCCTC T CAATGNCCTCA

AE DOGRAGE A COLO DE ARGENDA DE DE ACECTOUR DE TOUR DE TRACEDE DE COMBRET DE SER DE SER DE SER DE SER DE COMBRET DE SER D

OF FIGE FIGATOGICACCO DUTGCITACCA SER COSAGO PAGID 1965ACCITICITE CATOLACOSO ATO IGITAAGAACGITOGGACTICOGAGATIGACE COGGITOCEA ESSAD SADGGITGIT

ote dit kase de telitore e el como e el como de la como Assectat de Como de Santa de Como de Santa de Como de C Caseta Anton Como de C

ACCGGTGTCCCCTGTGACGAGGCCCAGCCAGCCAGCGAAGTCACCTGCTCTCTGCCAC TOTOTOGTGGCCCCTG 39CACACTGGGCCCTGAAGGCTCAGGCAGCGGCTCCTCAGCCA CGAG DTCTTCAACGAG B DTGACTTCATCCCGCACCA DCTGGCCCCACGCCCTTCACCCGCC TCATCACCCAAGCCAGGCACGCCATGGGCAACGCCATTGAGGAGGAGGCTCCAGAGCTGGACC ACACCCCCCACCACACA 3CC3PCCT3C P3C3CCCTCCAC3G3TAGCCCTGTGCCTGCCACAG AG DOTOOTSCAGOCAA SGAGGAGGAGGTA OTGGGA DOTOGTOCOOCGAGCCCTTGGCCTAG CCAGGCCGGCCGCTCCCCACCCCCACCCCACCCCAGAGCAGACCCCTGGGAAGCCTTTGATCAAT TTOOTSOOTSAGGAAGADADOOCCAYAGGGGCCCCAGAYO PPGGGCTCCCCAGCCPGFCCP BBCCCABGGTTTCCACTBATGGCCTGCAGACACCTGCCACCCTTGAGAGACAAAATGATTT ·CCCAB PPBBCAAGGACABDCAGABCCABCPGCCCCCTCCATBGCGGGACAGGACCAATGAG GTTTTDAAGGATGATGAGGAACCCAAGGGCCGGCGGAGCACCCCCACCTGCCCCGAGACCCA GOPCCA DG D PGOCCCOTT PG POCCCTG PFGGCAGCA DOCA DT COTOCTAGT DC PGAGG P GOOGGAGO PETGGACA E SA ESCACAG POGOCIPOGGAGO CA SO PO POGAGOTEGO OTTOGO COTSTSGACAGTSAACESES SOCCACESTESSGGES SOTTOFO POCETOCOCOCATAS -COCO PO PO COAGAGAM BAA SETOACESACA EMPOCO PEGAS DE EGGAO POCO PECTADOS AGCCCCAG SACCAGGC PCA PEGEACC PECA SACIPET SECAE DE TEGGGGGACCTTCCCCCC ACAACCO PRACTEGOC POR BECACATRO O PRAGOC PECCOTRAACCO CAGRAC O CAARGGTO AGO DEGAGE DO OTOAGO DE PAAGE PGODE O PGAGE DE PAGES DE SITE TOTO DA CADAGO DE A GAAGOGGG DOCCOOGGG SA DO DETES E EFICAG SAACIGOCA SCEEGICAAGOGG SAAAC E GGAGOGAGT GOTOTACOA CONGREGOOT GG PROCES POTGGAG GCOGGTGCGC NG PAGCTC - CGGCCCTGT 9CCACCT 93 CACT CAGGCAAC PGGAGTAAGPC DIPOCOGCAGCPGCGGCGGAG A PROCEDA DE PROGRADA DE TIESTA DE TENTE TENDA DA REPONTA DE PROCEDA DE PROGRADA DE PROGRADA DE PROCEDA DE PRO C PCAGCTGG TACACATCTT DOTGGAG 3GA 3 FGCTCCGGAGG CONSTGGCGGFTGGTGA 3CAG C GCCCCCTGT9GTGGT3 FTGTCCAGCGGCCTGGCCAAGTGTCAACCCCAAGACCCCAGACAGCGC PRODES DE COLOTORAGARAGA DE SERIE DO SACIADAS DE SERIE ACIDAGARAGA DE SACIADA (A PRODECA DA SACIADA DE SACIADA -GCTG-CCGCT DETECTOTEC DC DAGCACG DE GOACGACTOTEC DE ACCOCATICAGE E ENTRE C DOSCICAC DAGOOGREADA DASACASOOASICO DAGAGAGA DAGAGO PROPERSA SAGACO PROPERSA DO SOCIEDA DA SAGACA DA SOCIEDA DA SAGACA DA SOCIEDA DA SAGACA DA SOCIEDA DA SAGACA DA SA TGFGGCGGA90T000G0CCCCTGCGCCCTAAT6GTGCTAAC6CCCCTCTCACTACCCAAGCAG 40 AAAAAAAAAAAAAAAAAAAAAAAAAAA (SEQ ID NO: 06)

.

FIG 3B

>MP19-full-length+1_ORF1 Translation of MP19-full-length in frame +1, ORF 1, threshold 50

PVPAMPGGPSPRSPAPLLRPLLLLLCALAPGAPGPAPGRATEGRAALDIVHPVRVDAGGSF LSYELWPRALRKRDVSVRRDAPAFYELQYRGRELRFNLTAIQHLLAPGFVSETRRRGGLGP AHIRAHTPACHLIGEVQDPELEGGLAAISACDGLKGVFQLSNEDYFIEPLDSAPARPGHAQ PHV//KRQAPERLAQRGDSSAPSTCGVQVYPELEPRRERWEQRQQWRRPRLRFLHQRSVSK 10 EKWTETLVVADAKMVEYHGQPQVESYVLTIMNMVAGLFHDPSIGNPIHITIVRLVLLEDEE EDLKITHHADNTPKSFCKWDKSINMKGDAHPLHHDTAILLTFKDLCATMIRPCETLGLSHV AGMCOPHRSCSINEDTGLPLAFTVAHELGHSFGIQHDGSGNDCEFVGKRPFIMSPQLLYDA APLTWSFCSROYITRFLDRGWGLCLDDPPAKDIIDFPSVPPGVLYDVSHQCRLQYGAYSAF CEDMDHVCHTLWCSVGTTCHSKLDAAVDGTRCGENKWCLSGECVFVGFRPEAVDGGWSGWS 15 AWSICSESCGMGVQSAEFQCTQPTPHYKGRYCVGERKRFRLCNLQACPAGRPSFRHVQCSH FDAMLYKGRIHTWVPVVNEVNPCELHCFPANEYFAEKLEDAVVDGTPCYQVRASRDLCING TCK17/GCDFEIDSGAMEDECGVCHG1/GSTCHTVSGTFZEAEGLGYVDVGL/LPAGAREIRIQ EVAEAANFLALRSEDPEKYFLNGGWTIQWNGDYQVAGTTFTYARRGNWENLTSPGPTKEPV WIGHLEOBENPGVHYEYTHREAGGHDEVFPPVFSWHYGPWTKCTVTCGRGVQEQW/YCLE 20 RJAGPVDEEHCDFLGRPDDQQRKCSEQFCFARWWAGEWQLCSSSCGPGGLSRRAVLCIRSV GUDEQSALEPPACEHLPRPPTETPCNEHVPTPATWAVGNWSQCSVTGGEGTQRRIVLCTND TGVPCDEAQQPASEVTCSLPLCRWPLGTLGPEGSGSGSSSHELFNEADFIPHHLAPRPSPA SEPKPGTMGNAIBBEAPELDLPGPVTVDDF7YDYNFINFHEILSYGPSEEPDLDLAGTGDE TPPPHSPPAAPSTGSPVPATEPPAAKEEGVLGPWSPSPWPSQAGRSPPPPSEQTPGNFLIN 25 FLPEEDTPIGAPDLGLPSLSWPRVSTUGLQTPATPESQNDFPVGKDSQSQLPPPPWRDETND VFKDDEEPKGRGAPHLPPRPSSTLPPLSPVDSTHSSPSPDVAELNTGGTVAWEPALEGGLG PVDSELMPTVGVASLLPPPIAPLPEMKVEDSSLEPGTPSFPAPGPGSWDLQTVAVMGTFLP TTLPGLOHMPEPALNPGPKGQPESLSPEVPLSSRULSTPAMDSPANSHRYPETQPLAPSLA EAGPPA: PLVVRNASWQACNWSECSTICGLGAVWRPVRCSSGRDEDCAPAGRPQPARECHL 30 RPCATWHSGYMSKOSRSOGGGSSSVRDVQCVDTRDLRPLEPFHCQPGPAKPPAHRPCGAQPC LSWYTS:WREGSEAGGGGEQQRLVTGFEPGLGEEALRPNTTRPCNTHPCTQWVVGPWGQCS APCGGGVQRRLVMCVNTQTGLPEEDSJQCGHEAWPESSHPCGTEDCEPVEPPRCERDALSF GPOETLFLIGROOLPTIRTQUORSOSPPSHGAPSRGHQRYAPP*

35 SEO ID NO:051

FIG. 4A

MP - 20

GGTCGTGGTGCTGGAGTTTAAGTTGAGTAGTAGGAATGCGGTAGTAGTTAGGATAATATAA ATAGTTAAATTAAGAATGGTTATGTTAGGGTTGTACGGTAGAACTGCTATTATTCATCCTA TOTOGOTAATTGAGGAGTATGOTAAGATTTTGOGTAGOTGGGTTTGGTTTAATOCAOCTCA ACTERCOTOCIONICATIONALA CANDA TOGA GAGAGA GAGAGA GAGA CONTRACTORA GAGAGA GAGAGA GAGAGA CONTRACTORA GAGAGA AGAGA GAGAGA GAGAGA GAGAGA GAGAGA GAGAGA GAGAGA AGAGA GAGA AGAGA GAGATTTGGTATATGATTGAGATGGGGGCTAGTTTTPGTTATGTGAGAAGAAG DAGGCCGG ATGTCAGAGGGGCCCTTGGGTAACCTCGGGACTCAGAAGTGAAAAGGGGGCTATTCCTAG TTTTATTG TATAGCCATTATGATTATTANFGATGAGTATTGATTGATTGATTGTATTG GTTCATTG TOOGGAGAGTATATTGTTGAAGAGGATAGCTATTAGAAGGATTATGJATGOGG CT ACCTOSO EGAGGAAATACT TGACGGCAGCE ECCGCGGAACGAGGCTCTATCTE PECE PIGGT DAGAACIGAAAAAAGCTAAAAGCTATIODEBAI OTTTATTATTATAAAAAATGAGTAAAAAAAAAAGCGGC GGGAAGCACCATGCAS PTEGTAT CCTGGGCCACACTGCTAA CGCTCCTGGTGCGGGA CCTG igocidagamere egaciocidaga o ecocogorogo empograda de agacapetroca 200 each AAGTGAAATTATTAGABAGODDIGABDGAATACGAAATCGTGTGTCDDATCCGAGTGAAGGC POPOGGAGAACOCTTTOCCA DBAACGTOCACTTBAAAAGAACGCGACGGAGGATTAACTCT 6 SOA STAR TO CONTRACT TO START TO THE CONTRACT CONTRACT START STARTS AND THE CONTRACT TO THE CONTRACT AND THE CONTRACT AN APPACOS COTO PO PIGOCIPRO E ECAS CAPITATO TAPPRIAMBIDACO ECOAMOS DO SATO TATOROT COAO DE FICACITECIOA COTO COTOGERA DE COORREGATRAAT DAGACIDAARTET C DGAGCA DA DGGCCCE DA POAGOCO DE CECADA GAA GAA GA POAGO DA POAGOA DA POAGOA DA POAGOA DA POAGOA DA POAGOA DA T BIGGGATTATTTTATTGAADOAC IA JAG DOTAT BIATGAADAAGAA BATGAAGAAGAA A REPLACA POR ACIA DE A REGIO DE A GARDA CON DO ENCERA EN LA CARTA DA TARA A CARA A CARA A CARA A CARA A CARA A A DEFACIÁN DA CACACACA DA CACACA DA CACERA DA ALA ALA CACACA CACACACA CONTROLA CONTROLA DA CONTROLA DA CACACACA AAGAAAATGGGGGAGAAAAGGATTAAD CTGGC DGGTGACG TAG CAGCA FIAAA CAGCGG L FTA GOANCAGAGGCATTT POTGG PEATEG FIANTAAGA DOGADAA DAGAAGAGAAAAAGAGGACGC A DAGANGGACAAANCG PT DE TIPA DO CIPA PO DA TOGITIN POTAGAAG TOTITIGO PGGITGO DAGA - CAA DA BAARBOOTITIDA BA DIDA RGIBABAAAA DO PIDAA DA DIATARITITI BAACITITIAAN BIDA A DO STA GOO POTAIDO PATAAAGA DOQAAGTAT DGGAAAT PTAA FIRAA PA FID STIGA PIGGA A DEPRAA PEG PGAYEROA DA A PGAADA BOA EGA EGA EGA CARADO DE PETAA PODE DAGA DAA D A DT AAAAAA CTITTIG CCA G PGGCAG CAT DC GAAGAACAG DC CAGGTG GAAT CCAGCATGA D A D'PGO D'ST C'O PC'FTAA DAA BACA GATATTO D'SCAGAGO G'PCA O BADAAT B'BGA BACC'TDA D -BOCTES TO BARCON A EL CARA DE CONTRE DE CONTRE DE CONTRE DE CONTRA DE CONTRA DE CONTRA DE CONTRA DE CONTRA CO TIGGA PER A DACAGO E PER ACIGO DE ENCEDE DE CONTRO DE CAR PER ENCOCATO DE CARRES DE CONTRO DE CARRES DE CONTRO DE GATGACAA DAA DAAAT STAAAGAA GAAGGAG PPAAGA G PD DD DA GOATGTCAT GGCTCCAA CACTGAAC PPD PACA DOAA DOCCTGGATG PGG PDAAA TPGTAGT DGAAAA PATATDACTGA GTTTTTAGA CACTGG I PA PBBCBNETGTTTBCTTAACGAAC I BAAYDCAGACCCTACCCT - PFGCCTGT CCAACDGCCAGGCATCTPTACAACGTGAATAAACAATGTGAATFGATTT GACCAGGT TO TCAGG PG TG COCATATATGATGCAGTGCA GACGGCTTGGG TGCAATAACGT CAAMBGAG TA DACAA AG SICIT BODGGAOT DABOA DACACOD TGG BIDGGATGBGAO BGA STBO IBAGOTT BIGAAA BOA DIIGOAA BTATIGISATIT RIGT BITOOCAAAIGAAA RIGGATIGITO DOOGTIGA CAGATGA I DO PG S GAAGTTGGAG DOOTTTG GAACCTGCTGCAGAACATGTGGAGAGGGGG -CATCAAAA CAGCCATFCGAGAGTGCAACAGACCA SAACCANAAAAT GGTG SAAAATA DFGT GTAGGACGTAGAATGAAA FTTAA GTOOTGCAACAOGGAGOCATGTO FCAAGOA GAA GOGAG ACTTOOGA BAI BAA CAGTGTGCTCA CTTTGAOGGGAAGCATTTTAA CATCAAOGGTC FGCT TC DCAATGT 9C 9CTGGGTCCCTCAATACAGTGGAATTCTGATGAAG 3A CDGGTGCAAGTTG TTCTBCAGABTBBCAGBGAACACABBCTACTATCAGCTTCGAGACABABTBATAGATBBAA -CTCCTTGTGGCCAGGACACAATGATATCTGTGTCCAGGGCCTTTGCCGGCAAGCTGGATG

CGATCATGTTTTAAACTCAAAAGCCCGGAGAGATAAATGTGGGGTTTTGTGGTGGCGATAAT TOTTCATGCAAAACAGTGGCAGGAACATTTAATACAGTACATTATGGTTACAATACTGTGG TOCGAATTOCAGOTGOTACCAATATTGATGTGCGGCAGCACAGTTTCTCAGGGGAAAC AGACGATGACAACTACTTAGCTTTATCAAGCAGTAAAGGTGAATTCTTGCTAAATGGAAAC TTTGTTGTCACAATGGCCAAAAGGGAAATTCGCATTGGGAATGCTGTGGTAGAGTACAGTG GETCCGAGACTGCCGTAGAAAGAATTAACTCAACAGATCGCATTGAGCAAGAACTTTTGCT TOAGGTTTTGTCGGTGGGAAAGTTGTACAACCCCGATGTACGCTATTCTTTCAATATTCCA ATTGAAGATAAACCTCAGCAGTTTTACTGGAACAGTCATGGGCCCATGGCAAGCATGCAGTA AACCCTGCCAAGGGGAACGGAAACGAAAACTTGTTTGCACCAGGGAATCTGATCAGCTTAC 10 TETTTCTGATCAAAGATGCGATCGGCTGCCCCAGCCTGGACACATACTGAACCCTGTGGT A DAGACTGTGACCTGAGGTGGGCCACTGTTTTCTCAAGGCCTTTTATAAATGAATTGTGAGA G PO PPGCAGGAGGTOCCAGCAGGAGAAGCAAAAGGAGGGGA PGCCGGTOTTAGTTCCCCT TPOPPGTG TTTCAGTGAAATAAGCTTTAACCAATTCTOCATCCCTCTGGAACTGATTATCC AA SA CATACATGTGCAGATTTCTTGTTCACCTAAGAATTAAAAATAGCTAATAGATATGG CACT PSCCAAAAAAAT PCAGTTGATCCTCACMACTTSCTG SSTAGGTATTAGCATTATGA TT-9A 9TCA CA'T'T9TACGT:SAAAACTTGTTTTGAAAGTCAAAAGAAAAGAAAGAGGGAGAACCTCA TO DETGAAAGTACCCATAATGACCTATATCTACCGAGAGTG LATACCACCCAGTAGAAGAA CTECTACACACCTGAAAGTTGCACTACACTAAGGTAGCGTCATGGAAGAAACAAGAAGAAA 20 AAAAAAAAAAAAAAGTACTCTGCGTTGTTACCACTGCTTGCCCTATAGCGAGTGGTATT (SEO ID NO:03)

FIG. 4B >MP20-full-length+1_ORF1_Translation of MP20-full-length in frame +1, ORF1. threshold 50

MQFVSWATLLTLLVRDLAEMGSPLAAAAVRKDRLHPRQVKLLETLSEYEIVSPIRVNALGE PFPTNVHFKRTRRSINSATDPWPAFASSSSSSTSSQAHYPLSAFGQQFLFNLTALAGFIAP LFTVTLLGTPGVNQTKFYSEERAELKHCFYKGYVNTNSEHTAVISLCSGMLGTFRSHDGDY FIEPLQSMDEQEDEEEQNKPHIIYPRSAPQREPSTGRHACDTSEHKNRHSKDKKXTRARKW 10 GERINLAGDVAALNSGLATEAFSAYGNKTDNTFEKRTHRETKRFLSYPRFVEVLVVADNFM VSYHGENLOHYILTLMSIVASIYEDPSIGNLINIVIVNLIVIHNEQDGPSISFNAQTTLKN FCQWQHSKIISPGGIHHDTAVLLTEQDICRAHDECDTLGLAELGTIIDPYRSCSISEDSGLS TAFTIAHELGHVFNMPHDDNNKCKEEGVKSPQHVMAPTLNFYTNPWMWSKUSKKVITEFLD TGYGECLLNEPESRPYPLPVOLPGILYNVIHQCELIFGPGSQVCPYMMQCRRLWCNIVNGV 15 HKGCFTQHTPWADGTECEPGKHCKYGFCVPKEMDVPYTDGSWGSWSPFGTGSRTGGGGIKT AIRECHR PEPKNGGKYCVGRFMKFKSCHTEPCLKQKRDFRDEQCAHFDGKHFNIHGLLPNV RWVPQYSG1LMKDRCKLFCRVAGNTAYYQ1.RDEVIDGTPCGQDTNDICVQGLCEQAGCDHV LNSKARRDEGYGGGDNSSCKTVAGTFNTVHYGYNTVVRIPAGATNIDVFQHSFSGETDDD NYLALSSSEGEFLLNGNFVVTMAKEEIRICMA\VEYSGSETAVERINSTDEIEQELLLQVL 20 SVGKLYNPDVRYSFNIPIEDKPQQFYWNSHGPWQACSKPCQGERKRKLVCTRESDQLTVSD

QRCDRLPQPGHITEPCGTDCDLRWATVFSRPL*

(SEQ ID NO:07)