House Price Prediction

Avesta Narimani 12/ 12/ 2023

Data

Source: Kaggel → House Prices - Advanced Regression Techniques

Df.shape = (1460, 80)

The target variable is SalePrice.

There are 37 numeric columns.

There are 43 categorical columns.

Collinearity

As the correlation matrix indicates, so many features are correlated.

There are three collections of columns which are correlated.

Correlation between features including year:

The following columns are correlated:

['YearRemodAdd', 'GarageYrBlt',

"YearBuilt"]

Decision:

Drop 'YearRemodAdd', 'GarageYrBlt'.

Correlation between feature of area type:

The following columns are correlated:

['BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GarageArea', 'MasVnrArea', 'WoodDeckSF', 'OpenPorchSF']#, "LotArea", "LotFrontage"]

Decision:

Make a new feature by adding them up.

Feature engineering: define a new feature based on summation

```
# columns_of_int = ['BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea',
'GarageArea', 'MasVnrArea', "LotArea", "LotFrontage"]

columns_of_int = col_of_int

df['Bsm'] = 0

for col in columns_of_int:
    df['Bsm'] += df[col]

df.drop(columns_of_int, axis=1, inplace=True)
```

print(df['Bsm'])

Correlation between feature of Lot type:

The following features are

also correlated

col_of_int = ["LotArea", "LotFrontage"]

Decision:

Make a new feature by adding them up:

New feature: LotAreaFront

The new correlation matrix:

Examining the new features

Hypothesis Testing: Investigating the Relationship between Building Square Meters, Lot Area Frontage, and Sale Price

- R-squared (0.718): Approximately 71.8% of the variability in SalePrice is explained by Bsm and LotAreaFront. This indicates a strong model.
- Adjusted R-squared (0.717): Adjusted for the number of predictors, still indicates a good fit.

Coefficients Analysis

- Bsm:
 - Coefficient: 32.9027
 - P-value: < 0.0001
 - Interpretation: Every additional square meter in building's basment size increases the sale price by approximately 32.9 units, assuming LotAreaFront is constant. Statistically significant.
- LotAreaFront:
 - Coefficient: 0.7486
 - P-value: 0.003
 - **Interpretation**: Every additional linear foot of this parameter increases the sale price by approximately 0.75 units, assuming Bsm is constant. Statistically significant.

Multicollinearity Concerns

• **Condition Number (3.73e+04)**: High condition number suggests potential multicollinearity, which could affect coefficient reliability.

Dealing with outliers

In order the improve the model outliers were removed according to the following criteria:

Q1 = df[true_numeric_columns].quantile(0.25)

Q3 = df[true_numeric_columns].quantile(0.75)

IQR = Q3 - Q1

lower_bound = Q1 - multiplier * IQR

upper_bound = Q3 + multiplier * IQR

Dealing with columns with numeric values containing NaN

df['LotAreaFront'].fillna(0, inplace=True)

df['Bsm'].fillna(df['Bsm'].mean(), inplace=True)

Further steps for categorical columns

- Replace NaN with "N/A"
- Created dummy variables

Before applying any model:

- Data splitting
- Standard scaler

Models

Model	RMSE
Mean	62834.4
Median	62113.1
Linear Regression	10283858416.3
Decision Tree Regression	31200.8
Decision Tree Regression Hyperparameter tuning	28947.3
Random Forest Regression (RFR)	22059.9
RFR hyperparameter tuning	22245.3
Gradient Boosting Regression (GBR)	20177.0
GBR hyperparameter tuning	19536.5
XGBoost hyperparameter tuning	19971.9

Conclusion

Gradient Boosting Regression was the best model of all.