Elements of statistical learning: Chapter 3

July 29, 2020

Content

- Linear models
 - Sampling properties of $\hat{\beta}$
 - Gauss-Markov Theorem

- 2 Multiple regression
 - From simple univariate to multiple regressions

LS estimator

Let \pmb{X} be an $N \times (p+1)$ matrix of explanatory variables and \pmb{y} an $N \times 1$ vector of outputs. Then we know the LS estimator $\hat{\beta}$

$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y},$$

[see lecture slides "ESL1" for recap and proof].

The "hat" matrix

As such for the fitted linear model

$$\hat{y} = X\hat{\beta}
= X(X'X)^{-1}X'y
= Hy$$

where \boldsymbol{H} is commonly referred to as the hat matrix.

H the projection matrix

Let us denote the column vectors of \mathbf{X} by $\mathbf{x}_0, \mathbf{x}_1, \cdots, \mathbf{x}_p$ with $\mathbf{x}_0 \equiv 1$.

- These vectors span a subspace of \mathbb{R}^N , also referred to as a column vector of X.
- We minimize $RSS(\beta) = ||\mathbf{y} \mathbf{X}\beta||^2$ by choosing $\hat{\beta}$, so that the residual vector $\mathbf{y} \hat{\mathbf{y}}$ is orthogonal to this subspace.
- the hat matrix **H** computes the orthogonal projection, and hence it is also known as the projection matrix.

Variance-covariance matrix

Assumptions

- **①** Observations y_i are uncorrelated have constant variance σ^2
- $2 x_i$ are fixed (i.e. non-stochastic)

$$var(\hat{\beta}) = var \left[(X'X)^{-1}X'y \right]$$

$$= var \left[(X'X)^{-1}X'(X\beta + \epsilon) \right]$$

$$= var \left[(X'X)^{-1}(X'X)\beta + (X'X)^{-1}X'\epsilon \right]$$

$$= var \left[(X'X)^{-1}X'\epsilon \right]$$

$$= \mathbb{E} \left\{ (X'X)^{-1}X'\epsilon[(X'X)^{-1}X'\epsilon]' \right\}$$

$$= \mathbb{E} \left\{ (X'X)^{-1}X'\epsilon\epsilon'X(X'X)^{-1} \right\}$$

$$= \mathbb{E} \left\{ (X'X)^{-1}(X'X)\epsilon\epsilon'(X'X)^{-1} \right\}$$

Note that ϵ is the error term and has zero mean and also remember that ${\pmb X}$ is fixed, and thus

$$\mathbb{E}[aZ] = a\mathbb{E}[Z]$$

where Z is a random variable and a is a constant. Therefore,

$$var(\hat{\beta}) = \mathbb{E} \left\{ \epsilon \epsilon' (\mathbf{X}'\mathbf{X})^{-1} \right\}$$
$$= (\mathbf{X}'\mathbf{X})^{-1} E \left\{ \epsilon \epsilon' \right\}$$
$$= (\mathbf{X}'\mathbf{X})^{-1} \sigma^{2}$$

where σ^2 can be calculated by

$$\sigma^2 = \frac{1}{N - p - 1} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

thus, assuming the errors are further Gaussian

$$\hat{\beta} \sim N(\beta, (\boldsymbol{X}'\boldsymbol{X})^{-1}\sigma^2)$$

Gauss-Markov Theorem

Least squares estimator of parameter β has the smallest variance among all linear unbiased estimators. Why is the LS estimator unbiased?

Proof.

$$\hat{\beta} = \mathbb{E}[\hat{\beta}]$$

$$= \mathbb{E}[(X'X)^{-1}X'y]$$

$$= \mathbb{E}[(X'X)^{-1}X'(X\beta + \epsilon)]$$

$$= \mathbb{E}[\beta + (X'X)^{-1}X'\epsilon]$$

$$= \beta + (X'X)^{-1}X'\mathbb{E}[\epsilon]$$

$$= \beta$$

From simple univariate to muliple regressions

Suppose first we have a univariate model with no intercept

$$Y_i = X_i \beta + \varepsilon_i$$

The least squares estimates and residuals are

$$\hat{\beta} = \frac{\sum\limits_{i=1}^{N} x_i y_i}{\sum\limits_{i=1}^{N} x_i^2}$$

with residuals

$$r_i = y_i - x_i \hat{\beta}$$

which in vector notation can be expressed as

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{N} x_i y_i = \mathbf{x}' \mathbf{y}$$

which is the inner product between x and y.

Thus, the OLS estimator $\hat{\beta}$ can be expressed as follows

$$\hat{\beta} = \frac{\langle x, y \rangle}{\langle x, x \rangle},$$

Suppose now that we have p inputs $\mathbf{x}_1, \cdots, \mathbf{x}_p$, which are the columns of the matrix \mathbf{X} and are orthogonal, such that $<\mathbf{x}_j, \mathbf{x}_k>=0$ for all $i\neq j$. When the inputs are orthogonal, the multiple least squares estimates $\hat{\beta}_j$ are equal tothe univariate estimates - i.e.

$$\hat{\beta}_j = \frac{\langle \mathbf{x}_j, \mathbf{y} \rangle}{\langle \mathbf{x}_j, \mathbf{x}_j \rangle}$$

In other words, the inputs are orthogonal and have no impact on each other's parameters estimates in the model.

Consider the case of an intercept and a single input x, then the least squares coefficient of x has the form

$$\hat{\beta}_1 = \frac{\langle x - \bar{x}1, y \rangle}{\langle x - \bar{x}1, x - \bar{x}1 \rangle}$$

The steps of the algorithm can be seen as follows

- Regress x on 1 to obtain $\bar{x}1$
- ② Obtain the residuals $z = x \bar{x}1$
- **3** Regress \mathbf{y} on \mathbf{z} to obtain the coefficient $\hat{\beta}_1$

$$\hat{\beta}_1 = \frac{\langle z, y \rangle}{\langle z, z \rangle}$$

Step 1 orthogonalizes x with respect to $x_o = 1$.