

Databases and Information Systems

Relational Algebra

Dmitriy Traytel slides partly by Marcos Vaz Salles

Do-lt-Yourself Recap: Fill in the blanks

P

X	y
1	10
2	12
42	10

$$\{x \mapsto 42\} \qquad \neg P(x,10)$$

$$\{x \mapsto 12\} \qquad \neg P(x,10)$$

$$[\neg P(x,10)] =$$

$$[P(x,10) \lor P(2,x)] =$$

$$[\neg P(x,10) \lor P(2,x)] =$$

$$[P(x,10) \lor P(2,y)] =$$

What should we learn today?

- Understand the notion of domain independence and be able to argue whether a given query is domain independent
- Understand the relational algebra normal form (RANF) and be able to determine whether a relational calculus query is in RANF
- Explain the operators of the relational algebra
- Formulate queries in the relational algebra
- Explain limitations of the relational algebra in terms of query expressiveness
- Formulate queries with the main extensions of the relational algebra including bag semantics, grouping, aggregation, sorting, and outer join

Finite vs Infinite

- Fundamental problem with relational calculus:
 [φ] is not always a finite relation
- Some examples for such "unsafe" queries
 - $\phi = Ships(n,cl,l) \lor Outcomes(n,b,r)$
 - $\varphi = P(x) \vee Q(y)$
 - $\varphi = \neg P(x)$
 - $\Phi = x \approx y$
- But: query evaluation works with finite tables (why?)

- All tables (predicates) are finite
- Q: Where does the infiniteness of [φ] come from?

- All tables (predicates) are finite
- Q: Where does the infiniteness of [φ] come from?
- A: The domain D

- All tables (predicates) are finite
- Q: Where does the infiniteness of [φ] come from?
- A: The domain D
- D can be seen as a parameter of query evaluation: [φ]

- All tables (predicates) are finite
- Q: Where does the infiniteness of [φ] come from?
- A: The domain D
- D can be seen as a parameter of query evaluation: [φ]
- ϕ is domain-independent if for all \mathbb{D} , \mathbb{E} : $\llbracket \phi \rrbracket_{\mathbb{D}} = \llbracket \phi \rrbracket_{\mathbb{E}}$

- All tables (predicates) are finite
- Q: Where does the infiniteness of [φ] come from?
- A: The domain D
- \mathbb{D} can be seen as a parameter of query evaluation: $\llbracket \varphi \rrbracket_{\mathbb{D}}$
- ϕ is domain-independent if for all \mathbb{D} , \mathbb{E} : $\llbracket \phi \rrbracket_{\mathbb{D}} = \llbracket \phi \rrbracket_{\mathbb{E}}$

AND

• For example: $P(x) \land Q(y)$ is domain-independent: $[P(x) \land Q(y)]_{\square} = DB(P) \times DB(Q)$

Unsafe -> Not Domain Independent

$$\llbracket \Phi
rbracket$$

$$\Phi = P(x) \vee Q(y)$$

 $\{(x,y). x \in DB(P) \text{ and } y \in D \text{ or } x \in D \text{ and } y \in DB(Q)\}$

$$\Phi = \neg P(x)$$

 $\{(x). x \in \mathbb{D} \text{ and } x \notin DB(P)\}$

$$\Phi = x \approx y$$

 $\{(x,x). x \in \mathbb{D}\}$

- Here, safe means "finite query result"
- Implication does not hold!

- Here, safe means "finite query result"
- Implication does not hold!
- Any formula without free variables (= closed) has a finite query result

- Here, safe means "finite query result"
- Implication does not hold!
- Any formula without free variables (= closed) has a finite query result
- $\llbracket \forall x. P(x) \rrbracket_{\square} = \{()\} \text{ if } \square = DB(P)$

- Here, safe means "finite query result"
- Implication does not hold!
- Any formula without free variables (= closed) has a finite query result

•
$$\llbracket \forall x. P(x) \rrbracket_{\square} = \{()\} \text{ if } \square = DB(P)$$

•
$$[\![\forall x. P(x)]\!]_{\square} = \{\} \text{ if } DB(P) \subsetneq \square$$

When is a formula domain-independent?

- Undecidable problem
 (= there exists no algorithm that answers the above question precisely)
- Resort to syntactic overapproximations:
 - under easy-to-check conditions a formula is domain-independent
 - e.g., the formula is a conjunction of n predicates (conjunctive queries)
 - conditions not met \Longrightarrow the formula may or may not be domain-independent

Relational Algebra Normal Form

- A particular syntactic overapproximation
- RANF ---- domain-independent
- Even better: RANF ==> each "subformula" evaluates to a finite relation
- Has something to do with Relational Algebra (coming soon)

```
\begin{array}{lll} \text{ranf}(P(t1, \ \dots, \ tn)) & \Leftrightarrow & \text{true} \\ & \text{ranf}(t1 \approx t2) & \Leftrightarrow & \text{false} \\ & \text{ranf}(\neg \ \phi) & \Leftrightarrow & \text{fv}(\phi) = \{\} \ \text{and} \ \text{ranf}(\phi) \\ & \text{ranf}(\phi \lor \psi) & \Leftrightarrow & \text{ranf}(\phi) \ \text{and} \ \text{ranf}(\psi) \ \text{and} \ \text{fv}(\phi) = \text{fv}(\psi) \\ & \text{ranf}(\forall x. \ \phi) & \Leftrightarrow & \text{false} \\ & \text{ranf}(\exists x. \ \phi) & \Leftrightarrow & \text{ranf}(\phi) \end{array}
```

```
ranf(\phi) and ranf(\psi) or
rar
rar
ran
                                     anf(\phi) and ranf(\psi) and fv(\phi)=fv(\psi)
ranf(\phi \lor \psi)
ranf(\phi \wedge \psi)
                               ⇔ false
ranf(\forall x. \phi)
ranf(\exists x. \phi)
                               \iff ranf(\varphi)
```

```
ranf(\phi) and ranf(\psi) or
     ranf(\phi) and \psi=\neg\chi and ranf(\chi) and fv(\chi)\subseteq fv(\phi) or
rar
rar
                                        anf(\phi) and ranf(\psi) and fv(\phi)=fv(\psi)
ranf(\phi \lor \psi)
ranf(\phi \wedge \psi)
                                 \Leftrightarrow false
ranf(\forall x. \phi)
ranf(\exists x. \phi)
                                 \iff ranf(\varphi)
```

```
ranf(\phi) and ranf(\psi) or
     ranf(\phi) and \psi=\neg\chi and ranf(\chi) and fv(\chi) \subseteq fv(\phi) or
ran f(\phi) and \psi=t1\approx t2 and f(v(t1))\subseteq f(\phi) or f(v(t2))\subseteq f(\phi) or
rar
                                       anf(\phi) and ranf(\psi) and fv(\phi)=fv(\psi)
ranf(\phi \lor \psi)
ranf(\phi \wedge \psi)
                                \Leftrightarrow false
ranf(\forall x. \phi)
ranf(\exists x. \phi)
                                \iff ranf(\varphi)
```

```
ranf(\phi) and ranf(\psi) or
      ranf(\phi) and \psi=\neg\chi and ranf(\chi) and fv(\chi)\subseteq fv(\phi) or
ran f(\phi) and \psi=t1\approx t2 and f(v(t1))\subseteq f(\phi) or f(v(t2))\subseteq f(\phi) or
ran  ranf(\varphi)  and  \psi = \neg t1 \approx t2  and  fv(t1) \subseteq fv(\varphi)  and  fv(t2) \subseteq fv(\varphi) 
                                           \sqrt{\text{anf}(\varphi)} and \text{ranf}(\psi) and \text{fv}(\varphi)=\text{fv}(\psi)
ranf(\phi \lor \psi)
ranf(\phi \wedge \psi)
                                   \Leftrightarrow false
ranf(\forall x. \phi)
ranf(\exists x. \phi)
                                     \iff ranf(\varphi)
```

$$P(x) \lor Q(y)$$

$$P(x) \land Q(y)$$

$$P(x,y) \land Q(y,z)$$

$$P(x,y) \land \neg Q(y,z)$$

$$P(x,y,z) \land \neg Q(y,z)$$

$$P(x,y,z) \land \neg y \approx z$$

$$P(x,y,z) \land \neg (Q(y,z) \lor R(x,z))$$

$$P(x,y,z) \land \neg Q(y,z) \land \neg R(x,z)$$

$$P(x) \lor Q(y)$$

$$P(x) \wedge Q(y)$$

$$P(x,y) \wedge Q(y,z)$$

$$P(x,y) \land \neg Q(y,z)$$

$$P(x,y,z) \land \neg Q(y,z)$$

$$P(x,y,z) \land \neg y \approx z$$

$$P(x,y,z) \land \neg (Q(y,z) \lor R(x,z))$$

$$P(x,y,z) \land \neg Q(y,z) \land \neg R(x,z)$$

$$P(x) \lor Q(y)$$

$$P(x) \wedge Q(y)$$

$$P(x,y) \wedge Q(y,z)$$

$$P(x,y) \land \neg Q(y,z)$$

$$P(x,y,z) \land \neg Q(y,z)$$

$$P(x,y,z) \land \neg y \approx z$$

$$P(x,y,z) \land \neg (Q(y,z) \lor R(x,z))$$

$$P(x,y,z) \land \neg Q(y,z) \land \neg R(x,z)$$

$$P(x) \lor Q(y)$$

$$P(x,y) \wedge Q(y,z)$$

$$P(x,y) \land \neg Q(y,z)$$

$$P(x,y,z) \land \neg Q(y,z)$$

$$P(x,y,z) \land \neg y \approx z$$

$$P(x,y,z) \land \neg (Q(y,z) \lor R(x,z))$$

$$P(x,y,z) \land \neg Q(y,z) \land \neg R(x,z)$$

$$P(x) \lor Q(y)$$

$$P(x,y) \wedge Q(y,z)$$

$$P(x,y) \land \neg Q(y,z)$$

$$P(x,y,z) \land \neg Q(y,z)$$

$$P(x,y,z) \land \neg y \approx z$$

$$P(x,y,z) \land \neg (Q(y,z) \lor R(x,z))$$

$$P(x,y,z) \land \neg Q(y,z) \land \neg R(x,z)$$

$$P(x) \lor Q(y)$$

$$P(x) \wedge Q(y)$$

$$P(x,y) \wedge Q(y,z)$$

$$P(x,y) \land \neg Q(y,z)$$

$$P(x,y,z) \land \neg Q(y,z)$$

$$P(x,y,z) \land \neg y \approx z$$

$$P(x,y,z) \land \neg (Q(y,z) \lor R(x,z))$$

$$P(x,y,z) \land \neg Q(y,z) \land \neg R(x,z)$$

$$P(x) \lor Q(y)$$

$$P(x) \wedge Q(y)$$

$$P(x,y) \wedge Q(y,z)$$

$$P(x,y) \land \neg Q(y,z)$$

$$P(x,y,z) \land \neg Q(y,z)$$

$$P(x,y,z) \land \neg y \approx z$$

$$P(x,y,z) \land \neg (Q(y,z) \lor R(x,z))$$

$$P(x,y,z) \land \neg Q(y,z) \land \neg R(x,z)$$

$$P(x) \vee Q(y)$$

$$P(x) \wedge Q(y)$$

$$P(x,y) \wedge Q(y,z)$$

$$P(x,y) \land \neg Q(y,z)$$

$$P(x,y,z) \land \neg Q(y,z)$$

$$P(x,y,z) \land \neg y \approx z$$

$$P(x,y,z) \land \neg (Q(y,z) \lor R(x,z))$$

$$P(x,y,z) \land \neg Q(y,z) \land \neg R(x,z)$$

$$P(x) \lor Q(y)$$

$$P(x) \land Q(y)$$

$$P(x,y) \wedge Q(y,z)$$

$$P(x,y) \land \neg Q(y,z)$$

$$P(x,y,z) \land \neg Q(y,z)$$

$$P(x,y,z) \land \neg y \approx z$$

$$P(x,y,z) \land \neg (Q(y,z) \lor R(x,z))$$

$$P(x,y,z) \land \neg Q(y,z) \land \neg R(x,z)$$


```
loves(who:string,what:string)
smells(what:string)
```

```
e.g. loves(Bill, cheese)
    loves(Bill, jackfruit)
    loves(Bill, tomato)
    loves(Elon, cheese)
    loves(Elon, fish)
    loves(Elon, jackfruit)
    loves(Jeff, cheese)
    loves(Jeff, Jeff)
    smells(cheese)
    smells(jackfruit)
    smells(fish)
```

```
loves(who:string,what:string)
smells(what:string)
```

Compute the lovers of cheese that love all things that smell.

```
e.g. loves(Bill, cheese)
    loves(Bill, jackfruit)
    loves(Bill, tomato)
    loves(Elon, cheese)
    loves(Elon, fish)
    loves(Elon, jackfruit)
    loves(Jeff, cheese)
    loves(Jeff, Jeff)
    smells(cheese)
    smells(jackfruit)
    smells(fish)
```

```
loves(who:string,what:string)
smells(what:string)
```

Compute the lovers of cheese that love all things that smell.

The most efficient RC query in RANF wins.

```
e.g. loves(Bill, cheese)
    loves(Bill, jackfruit)
    loves(Bill, tomato)
    loves(Elon, cheese)
    loves(Elon, fish)
    loves(Elon, jackfruit)
    loves(Jeff, cheese)
    loves(Jeff, Jeff)
    smells(cheese)
    smells(jackfruit)
    smells(fish)
```

```
loves(who:string,what:string)
smells(what:string)
```

Compute the lovers of cheese that love all things that smell.

The most efficient RC query in RANF wins. Hint #1: any feature supported by RC-eval is allowed

```
e.g. loves(Bill, cheese)
    loves(Bill, jackfruit)
    loves(Bill, tomato)
    loves(Elon, cheese)
    loves(Elon, fish)
    loves(Elon, jackfruit)
    loves(Jeff, cheese)
    loves(Jeff, Jeff)
    smells(cheese)
    smells(jackfruit)
    smells(fish)
```

loves(who:string,what:string)
smells(what:string)

Compute the lovers of cheese that love all things that smell.

The most efficient RC query in RANF wins.

Hint #1: any feature supported by RC-eval is allowed

Hint #2: RC-eval uses VeriMon to evaluate RANF queries

https://doi.org/10.1007/978-3-031-17715-6_1

```
e.g. loves(Bill, cheese)
    loves(Bill, jackfruit)
    loves(Bill, tomato)
    loves(Elon, cheese)
    loves(Elon, fish)
    loves(Elon, jackfruit)
    loves(Jeff, cheese)
    loves(Jeff, Jeff)
    smells(cheese)
    smells(jackfruit)
    smells(fish)
```

Codd's Theorem

For every <u>domain-independent relational calculus</u> query there exists an <u>equivalent query in RANF</u>

$$(P(x,y,z) \land \neg Q(y,z)) \land \neg R(x,z)$$

Give names to the supported table operations Use these as basic operators

X	y	Z
1	10	4
2	12	4
42	10	5

Give names to the supported table operations Use these as basic operators

X	y	Z
1	10	4
2	12	4
42	10	5

=

X	y	Z
2	12	4
42	10	5

X	Z	y	Z	
12	4	10	4	
42	5	13	4	

Give names to the supported table operations Use these as basic operators

X	V	Z				•			
	<i>J</i>			$\mid \mathbf{v} \mid$	Z		X	$oldsymbol{f V}$	Z
1 1	10	4						<i>J</i>	
			A	10	4		2	12	4
2	12	4			_				_
		_		13	4		42	10	5
42	10	5			_				
1									

Give names to the supported table operations

Use these as basic operators

X	V	Z				•			
	J			\mathbf{V}	Z		X	$oldsymbol{\mathbf{V}}$	Z
1	10	4							
				10	4		2	12	4
2	12	4	/\ '						
				13	4		42	10	5
42	10	5			_				
14									

Basic operations:

- Selection σ Selects a subset of rows from relation
- Projection π Deletes unwanted columns from relation
- Cross-product × Allows us to combine two relations
- Set-difference Tuples in relation 1, but not in relation 2
- Union U Tuples in relation 1 and in relation 2

Additional operations:

- Intersection \cap , join \bowtie , antijoin \triangleright , division \div , renaming ρ : Not essential, but (very!) useful.
- Each operation returns a finite relation, i.e., operations can be composed! (Algebra is "closed".)

Example Instances

- "Sailors" and "Reserves" relations for our examples.
- In relational calculus: formula's variables = column names
- In relational algebra: column names (= attributes) fixed
- Names in results "inherited" from names in input relations.

R1

sid	bid	day
22	101	10.10
58	103	11.12

S1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Source: Ramakrishnan & Gehrke 17

	\bigcirc
	٠,
O	

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Projection

- Deletes attributes that are not in projection list.
- Schema of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
- Projection operator has to eliminate duplicates! (Why??)

Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it.
 (Why not?)

 $\pi_{\text{sname,rating}}(S2)$

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

 $\pi_{age}(S2)$

	_
<i>C.</i>	"
\cup	

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Projection

- Deletes attributes that are not in projection list.
- Schema of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
- Projection operator has to eliminate duplicates! (Why??)

• Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it.

(Why not?)

$$\pi_{\text{sname,rating}}(S2)$$

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

$\pi_{age}(S2)$	age
	35.0
	55.5

	0
J	

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Projection

- Deletes attributes that are not in projection list.
- Schema of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
- Projection operator has to eliminate duplicates! (Why??)

Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it.

(Why not?)

 $\pi_{\text{sname,rating}}(S2)$

∃sid,age.
S2(sid,sname,rating,age)

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

 $\pi_{age}(S2)$ $\exists sid, sname, rating.$ $S2_{(sid, sname, rating, age)}$

age	
35.0	
55.5	

Selection

S2

•	Selects	rows that	t satisfy	selection	condition.
---	---------	-----------	-----------	-----------	------------

- No duplicates in result! (Why?)
- Schema of result identical to schema of (only) input relation.
- Result relation can be the input for another relational algebra operation! (Operator composition.)

$$\sigma_{\text{rating}>8}(S2)$$

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

$$\pi_{\text{sname,rating}}(\sigma_{\text{rating}>8}(S2))$$

sname	rating
yuppy	9
rusty	10

SIG	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Selection

S2

Selects rows	that	satisfy	selection	condition.
		•		
	Selects rows	Selects rows that	Selects rows that satisfy	Selects rows that satisfy selection

- No duplicates in result! (Why?)
- Schema of result identical to schema of (only) input relation.
- Result relation can be the input for another relational algebra operation! (Operator composition.)

 $\sigma_{\text{rating}>8}(S2)$

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

 $\pi_{\text{sname,rating}}(\sigma_{\text{rating}>8}(S2))$

sname	rating
yuppy	9
rusty	10

10

sid sname rating age

yuppy

lubber

guppy

rusty

58

35.0

55.5

35.0

35.0

S2(sid,sname,rating,age)

 \land rating > 8

Source: Ramakrishnan & Gehrke

Selection

S2

•	Selects	rows th	nat	satisfy	selection	condition.
---	---------	---------	-----	---------	-----------	------------

- No duplicates in result! (Why?)
- Schema of result identical to schema of (only) input relation.
- Result relation can be the input for another relational algebra operation! (Operator composition.)

 $\sigma_{\text{rating}>8}(S2)$

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

 $\pi_{\text{sname,rating}}(\sigma_{\text{rating}>8}(S2))$

sname	rating
yuppy	9
rusty	10

sid sname rating age

yuppy

lubber

guppy

rusty

58

9

8

5

10

35.0

55.5

35.0

35.0

S2(sid,sname,rating,age)

 \land rating > 8

S2(sid,sname,rating,age)

 \land rating > 8

∃sid,age.

- These operations take two input relations that must be union-compatible:
- Same number of fields.
- "Corresponding" fields have the same type.
- What is the schema of result?

sid	sname	rating	age
22	dustin	7	45.0
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

sid	sname	rating	age
22	dustin	7	45.0

S1 U S2

S1 \(\capsilon\) S2

S1 - S2

- These operations take two input relations that must be union-compatible:
- Same number of fields.
- "Corresponding" fields have the same type.
- What is the schema of result?

sid	sname	rating	age
22	dustin	7	45.0
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

sid	sname	rating	age
22	dustin	7	45.0

S1 U S2

S1 \(\capsilon\) S2

S1 - S2

- These operations take two input relations that must be union-compatible:
- Same number of fields.
- "Corresponding" fields have the same type.
- What is the schema of result?

	sid	sname	rating	age	
	22	dustin	7	45.0	
١	28	yuppy	9	35.0	1
	31	lubber	8	55.5	(
	44	guppy	5	35.0	
	58	rusty	10	35.0	À

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

sid	sname	rating	age
22	dustin	7	45.0

S1 U S2

S1 \(\capsilon\) S2

S1 - S2

S1 (sid,sname,rating,age) V S2(sid,sname,rating,age)

- These operations take two input relations that must be union-compatible:
- Same number of fields.
- "Corresponding" fields have the same type.
- What is the schema of result?

sid	sname	rating	age
22	dustin	7	45.0
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

sid	sname	rating	age
22	dustin	7	45.0

S1 (sid, sname, rating, age) $\Lambda \neg S2$ (sid, sname, rating, age)

S1 (sid, sname, rating, age) $\land S2$ (sid, sname, rating, age)

S1 \(\capsilon\) S2

S1 - S2

S1 U S2

Cross-Product

- sid bid day 101 10.10 58 103 11.12

- Each row of S1 is paired with each row of R1.
- Result schema has one field per field of S1 and R1, with field names "inherited" if possible.
- Conflict: Both S1 and R1 have a field called sid.

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

21	X	R ₁
O I		

sid	sname	rating	age	sid	bid	day
22	dustin	7	45.0	22	101	10.10
22	dustin	7	45.0	58	103	11.12
31	lubber	8	55.5	22	101	10.10
31	lubber	8	55.5	58	103	11.12
58	rusty	10	35.0	22	101	10.10
58	rusty	10	35.0	58	103	11.12

Cross-Product

- Each row of S1 is paired with each row of R1.
- Result schema has one field per field of S1 and R1, with field names "inherited" if possible.
- Conflict: Both S1 and R1 have a field called sid.

sid	sname	rating	age	sid	bid	day
22	dustin	7	45.0	22	101	10.10
22	dustin	7	45.0	58	103	11.12
31	lubber	8	55.5	22	101	10.10
31	lubber	8	55.5	58	103	11.12
58	rusty	10	35.0	22	101	10.10
58	rusty	10	35.0	58	103	11.12

	sid	bid	day
	22	101	10.10
-{	£ 58	103	11.12

<u> </u>			
sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Renaming

- The ρ operator gives a new schema to a relation.
- $\rho_{R1(A1,...,An)}(R2)$ makes R1 be a relation with attributes A1,...,An and the same tuples as R2.
- Simplified notation: R1(A1,...,An) := R2.
- In our previous example: Res(sid1,sname,rating,age,sid2,bid,day) := S1 X R1

• Condition Join: $R \bowtie_C S = \sigma_C (R \times S)$

• S1 Ms1.sid<R1.sid R1

sid	sname	rating	age	sid	bid	day
22	dustin	7	45.0	58	103	11.12
31	lubber	8	55.5	58	103	11.12

- Result schema same as that of cross-product.
- Fewer tuples than cross-product,
 might be able to compute more efficiently
- Sometimes called a theta-join.

- Condition Join: $R \bowtie_C S = \sigma_C (R \times S)$
- S1 Ms1.sid R1

sid	sname	rating	age	sid	bid	day
22	dustin	7	45.0	58	103	11.12
31	lubber	8	55.5	58	103	11.12

- Result schema same as that of cross-product.
- Fewer tuples than cross-product,
 might be able to compute more efficiently
- Sometimes called a theta-join.

$$S1_{\text{(sid1,sname,rating,age)}} \land R1_{\text{(sid2,bid,day)}}$$

 $\land sid1 < sid2$

 Equijoin: A special case of condition join where the condition contains only equalities

• S1 ⋈_{sid} R1

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10.10
58	rusty	10	35.0	103	11.12

- Result schema similar to cross-product, but only one copy of fields for which equality is specified.
- Natural Join ⋈: Equijoin on all common fields.

 Equijoin: A special case of condition join where the condition contains only equalities

• S1 Msid R1

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10.10
58	rusty	10	35.0	103	11.12

$$S1_{\text{(sid,sname,rating,age)}} \land R1_{\text{(sid,bid,day)}}$$

- Result schema similar to cross-product, but only one copy of fields for which equality is specified.
- Natural Join ⋈: Equijoin on all common fields.

Find names of sailors who've reserved boat #103

$$\pi_{\text{sname}}(\sigma_{\text{bid}=103}(\text{R1}) \bowtie \text{S1})$$

R1

sid	bid	day
22	101	10.10
58	103	11.12

Tmp1:=
$$\sigma_{bid=103}(R1)$$

Tmp2:=Tmp1 × S1

Tmp3:= π_{sname} (Tmp2)

Different ways to state the same query

S1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

 $\pi_{\text{sname}}(\sigma_{\text{bid}=103}(\text{R1} \times \text{S1}))$

Relational Query Languages

- Query Languages != programming languages!
 - QLs not expected to be "Turing complete".
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.
- Relational Algebra has limited expressibility
 - What queries are hard to answer?
 - What queries can't we answer?

Hard, but possible

- Relational Schema:
 - Employees(ssn: integer; sal: real; mgr_ssn: integer).
- Find the employees with the highest salary:
 - How would you do it?
- Intuition:
 - Create "dominance" relation: e1 dominates e2 if e1 has salary higher than or equal to e2
 - Divide "dominance" relation by original table: Finds employees who dominate all others
- What about the second highest salary?

DIKU

Impossible, but very useful

- Relational Schema:
 - Employees(<u>ssn</u>: integer; sal: real; mgr_ssn: integer).
 - Works_In(<u>ssn</u>: integer; <u>did</u>: integer)
- Find the total amount paid in salaries by department
- Problem: We do not know how to count!
- What about finding employees that work in exactly three departments?

Impossible, but very useful

- Relational Schema:
 - Employees(ssn: integer; sal: real; mgr_ssn: integer).
 - Works_In(<u>ssn</u>: integer; <u>did</u>: integer)
- Find all the superiors of employee with SSN 123-22-3666
- We want a Transitive Closure: Comes in handy when you query graphs
- Problem: We can't write arbitrary loops/recursion!
 - RA operators only implement implicit "foreach element in relation" loops

Extensions to Relational Algebra

- Relational query languages restrict expressiveness to obtain ease of use and of optimization.
- There are some very useful queries we cannot express in the relational algebra.
- Many extensions proposed to handle those queries made into SQL.

We will study an extended relational algebra next!

Extensions to Relational Algebra

- Relational query languages restrict expressiveness to obtain ease of use and of optimization.
- There are some very useful queries we cannot express in the relational algebra.
- Many extensions proposed to handle those queries made into SQL.

We will study an extended relational algebra next!

- Expressions in projections
- Bags vs sets
- Duplicate elimination
- Grouping/aggregation

- Sorting
- Outer joins
- Recursion

Extending Projection with Expressions

- Using the same π_L operator, we allow the list L to contain arbitrary expressions involving attributes:
 - Arithmetic on attributes, e.g., A+B→C.
 - Duplicate occurrences of the same attribute.

$$\pi_{\text{rating+sid}} \rightarrow_{\text{rs,age,age}} (S1)$$

rs	age	age
29	45.0	45.0
39	55.5	55.5
68	35.0	35.0

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Relational Algebra on Bags

- A bag (or multiset) is an unordered collection where duplicates are allowed
 - Like a set, but an element may appear more than once.
- Example: {1,2,1,3} is a bag.
- Example: {1,2,3} is a bag that happens to also be a set.
- SQL uses bag semantics

 $\pi_{age}(S2)$ 35.0 35.0 35.0 35.0

 $\sigma_{\text{age}<40.0}(\pi_{\text{age}}(\text{S2}))$

age
35.0
35.0
35.0

S2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Source: Bulskov (partial)

Bag Product

 $\sigma_{\text{age}} < 40.0 (\pi_{\text{age}}(S2))$ 35.0 35.0

 $\pi_{\text{sname}}(\sigma_{\text{sid}<40}(\text{S2}))$

sname yuppy lubber

 $\sigma_{\text{age}<40.0}(\pi_{\text{age}}(\text{S2})) \times \pi_{\text{sname}}(\sigma_{\text{sid}<40}(\text{S2}))$

age	sname
35.0	yuppy
35.0	yuppy
35.0	yuppy
35.0	lubber
35.0	lubber
35.0	lubber

S2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Source: Bulskov

- An element appears in the union of two bags the sum of the number of times it appears in each bag.
 - Example: $\{1,2,1\} \cup \{1,1,2,3,1\} = \{1,1,1,1,1,1,2,2,3\}$
- An element appears in the intersection of two bags the minimum of the number of times it appears in either.
 - Example: $\{1,2,1,1\} \cap \{1,2,1,3\} = \{1,1,2\}.$
- An element appears in the difference A B of bags as many times as it appears in A, minus the number of times it appears in B, but never less than 0 times.
 - Example: $\{1,2,1,1\} \{1,2,3\} = \{1,1\}$.

Beware: Bag Laws!= Set Laws

Some, but not all algebraic laws that hold for sets also hold for bags.

Examples

- The commutative law for union $R \cup S = S \cup R$ holds for bags, since addition is commutative
- However, set union is idempotent, meaning that $S \cup S = S$.
- For bags, if x appears n times in S, then it appears 2n times in S U S.
- Thus S ∪ S!= S in general, e.g., {1} ∪ {1} = {1,1}!= {1}.

Duplicate Elimination

- R1 := δ (R2).
- R1 consists of one copy of each tuple that appears in R2 one or more times.

age 35.0 55.5 $\pi_{\text{age}}(S2)$ 35.0 35.0

age 35.0 $\delta(\pi_{\text{age}}(\text{S2}))$ 55.5

Aggregation Operators

- Aggregation operators are not operators of relational algebra.
- Rather, they apply to entire columns of a table and produce a single result.
- The most important examples: SUM, AVG, COUNT, MIN, and MAX.

SUM(rating) = 32COUNT(sid) = 4MAX(age) = 55.5AVG(rating) = 8

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Source: Bulskov (partial) 37

Grouping Operator

- $\gamma_L(R)$ where L is a list of elements that are either:
 - Individual (grouping) attributes.
 - AGG(A), where AGG is one of the aggregation operators and A is an attribute.
 - An arrow and a new attribute name renames the component.

Semantics

- Form one group for each distinct list of values in R for grouping attributes in list L.
- Within each group, compute AGG(A) for each aggregation on list L.
- Result has one tuple for each group:
 - The grouping attributes and
 - Their group's aggregations.

$$\gamma_{\text{age,COUNT(rating)}} \rightarrow_{\text{cr}} (S2)$$

cr	age
3	35.0
1	55.5

 $\gamma_{\text{age,MAX(rating)}} \rightarrow_{\text{mr}} (S2)$

mr	age
10	35.0
8	55.5

S2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Source: Bulskov (partial)

Sorting

- $\tau_L(R)$ is the list of tuples of R sorted first on the value of the first attribute on L, then on the second attribute of L, and so on.
 - Break ties arbitrarily.
- \bullet τ is relation itself, but with tuples sorted.
 - Semantics in SQL are murky: result should be a sequence; however, result is treated as a bag if fed to any other operators
 - Some operators can be made order-preserving

 $au_{
m rating}(S2)$

sid	sname	rating	age
44	guppy	5	35.0
31	lubber	8	55.5
28	yuppy	9	35.0
58	rusty	10	35.0

2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Outer Join

- Suppose we join R ⋈ S.
- A tuple of R that has no tuple of S with which it joins is called dangling.
 - Similarly for a tuple of S.
- Outer join \bowtie preserves dangling tuples by padding them with \perp (NULL in SQL).
- Variants that preserve only left/right dangling tuples: 🖏 L, 🖏 R

$$S1 \stackrel{\circ}{\bowtie}_L R1 = S1 \stackrel{\circ}{\bowtie} R1$$

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10.10
58	rusty	10	35.0	103	11.12
31	lubber	8	55.5		1

 $S1 \stackrel{\circ}{\bowtie}_R R1 = S1 \bowtie R1$

sid	bid	day
22	101	10.10
58	103	11.12

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

What should we learn today?

- Understand the notion of domain independence and be able to argue whether a given query is domain independent
- Understand the relational algebra normal form (RANF) and be able to determine whether a relational calculus query is in RANF
- Explain the operators of the relational algebra
- Formulate queries in the relational algebra
- Explain limitations of the relational algebra in terms of query expressiveness
- Formulate queries with the main extensions of the relational algebra including bag semantics, grouping, aggregation, sorting, and outer join

