LINUX Utilitários de Redes

Eduardo Maroñas Monks

YOUTUBE.COM/EMMONKS

Este livro tem como objetivo disponibilizar um guia de referência rápido em utilitários de rede para auxiliar administradores de sistemas operacionais Linux nas rotinas de administração.

1ª edição (revisão 1), Junho de 2023

Primeira publicação

1ª edição (revisão 2), Julho de 2023

Comandos Básicos

• arp-scan

Utilitários Avançados

- tcpump
- socat
- sshpass
- Python Simple HTTP Server
- comandos r (rcp, rexec, rlogin, rsh)
- net
- snmp*
- nfs*
- sshfs

Iptables

Sumário

1	Introdução	5
1.1	Administração de Sistemas Linux	5
1.2	Ambiente para Testes	5
1.3	Escolha da Distribuição	5
2	Comandos Básicos	7
2.1	ifconfig	7
2.2	ip	8
2.3	arp	10
2.4	netstat	10
2.5	route	11
2.6	ethtool	12
2.7	dig	12
2.8	host	13
2.9	nslookup	14
2.10	ping	15
2.11	traceroute	15
2.12	iperf	15
2.13	arping	16
2.14	wget	17
2.15	ssh e scp	17
2.16	ss	18
2.17	mtr	18
2.18	dhclient	19
2.19	telnet	19
2.20	netcat (nc)	19
2.21	curl	20
2.22	rysnc	20
2.23	iwconfig	21
2.24	iwlist	21
2.25	ntodate	21

2.26	iftop	22
2.27	arp-scan	22
3	Procedimentos	23
3.1	Renomear interface	23
3.2	Uso de VLANs	23
3.3	Interface em Bridge	24
3.4	Interface em Bonding	26
3.5	Configurações de interface em arquivos	28
4	Utilitários Avançados	33
4.1	tcpdump	33
4.2	socat	35
4.3	sshpass	36
4.4	Python Simple HTTP Server	36
4.5	comandos r (rcp, rexec, rlogin, and rsh)	36
4.6	net	37
4.7	snmp*	37
4.8	nfs*	37
4.9	sshfs	39
5	lptables	41
5.1	Histórico	41
5.2	Componentes	41
5.2.1 5.2.2 5.2.3 5.2.4	Chains	42 42
5.3	Manipulação de Regras	43
5.4	Valores padrão	43
5.5	Módulos	43
5.6	Outros Exemplos	44
5.7 5.7.1 5.7.2	Exemplo de Script de Firewall Completo Firewall da Empresa 1	

1. Introdução

Neste capítulo são apresentadas as motivações para o conhecimento das ferramentas de administração de redes em sistemas operacionais Linux.

1.1 Administração de Sistemas Linux

A administração de servidores Linux é a rotina da maioria dos administradores de redes e sistemas. Desta forma, dominar os comandos e utilitários essenciais do Linux agilizam o diagnóstico e a resolução dos problemas. Portanto, o primeiro momento é ter conhecimento de quais são os comandos e utilitários essenciais. Em um segundo momento é explorá-los para adaptá-los as necessidades de cada problema.

1.2 Ambiente para Testes

Para realizar testes com as ferramentas é importante o uso com cenários mais completos. Uma das alternativas é o uso do emulador CORE. Neste emulador é possível criar cenários complexos com centenas de hosts Linux e com o uso das ferramentas apresentadas neste livro. Uma máquina virtual com o emulador CORE está disponível (link da VM).

1.3 Escolha da Distribuição

As principais distribuições são baseadas em Redhat (CentOS, Oracle Linux) ou em Debian (Ubuntu, Mint). As diferenças principais entre as distribuições estão na forma de gerenciamento de pacotes, na organização do sistema de arquivos com caminhos diferentes e na política de uso. Por exemplo, uma distribuição tal como a Debian possui políticas restritas para o uso de pacotes que não sigam o licenciamento GPLv3 e os não disponibiliza por padrão. Entretanto, a escolha da distribuição a ser usada é regida muito mais por uma questão de gosto pessoal ou por necessidade de homologação devido a alguma aplicação a ser instalada ou algum hardware específico.

Os utilitários tratados neste livro estão disponíveis em qualquer distribuição atual e os parâmetros dos exemplos deverão funcionar sem problemas.

2. Comandos Básicos

Neste capítulo são apresentados os comandos básicos para configuração de interfaces de rede. Uma das exceções aos comandos básicos é o comando **ip** que engloba diversas funcionalidades para administração de redes em Linux.

2.1 ifconfig

Descrição 2.1 Comando para realizar configurações na interface de rede e obter estatísticas diversas. Em distribuições atuais vem sendo substituído pelo comando **ip**.

- Para mostrar todas as interfaces disponíveis
 - Exemplo 2.1 ifconfig -a
- Para mostrar informações sobre a interface eth0
 - **Exemplo 2.2** ifconfig eth0
- Para configurar um IP na interface eth0
 - **Exemplo 2.3** if config eth0 10.0.0.2 netmask 255.255.255.0
 - **Exemplo 2.4** if config eth0 10.0.0.2/24
- Trocar o endereço físico da interface eth0
 - **Exemplo 2.5** if config eth0 hw ether 00:cc:00:ff:ff:ee
- Para criar um outro IP na interface eth0 (IP alias)
 - **Exemplo 2.6** if config eth0:1 10.10.0.2/24
- Para modificar o MTU da interface eth0
 - Exemplo 2.7 ifconfig eth0 mtu 9000
- Para remover um IP da interface eth0
 - Exemplo 2.8 ifconfig eth0 0.0.0.0
- Para desativar a interface eth0
 - **Exemplo 2.9** if config eth0 down
- Para desativar um IP alias
 - Exemplo 2.10 ifconfig eth0:1 down
- Para ativar a interface eth0
 - Exemplo 2.11 ifconfig eth0 up
- Para adicionar um endereço IPv6 na interface eth0
 - **Exemplo 2.12** if config eth0 inet6 add 2001:0db8:0:200::3/64
- Para remover um endereço IPv6 na interface eth0

Exemplo 2.13 if config eth0 inet6 del 2001:0db8:0:200::3/64

2.2 ip

Descrição 2.2 Comando para realizar configurações na interface de rede, roteamento, tunelamento, obter estatísticas e outras diversas funcionalidades. Em distribuições atuais está disponibilizado como principal ferramenta de configuração de interfaces de rede.

- Para listar todas as interfaces
 - Exemplo 2.14 ip link show
- Para ativar a interface eth0
 - Exemplo 2.15 ip link set eth0 up
- Para desativar a interface eth0
 - Exemplo 2.16 ip link set eth0 down
- Para mostrar o endereçamento das interfaces
 - Exemplo 2.17 ip addr show
- Para mostrar o endereçamento da interface eth0
 - Exemplo 2.18 ip addr show dev eth0
- Para mostrar os hosts vizinhos (conectados na mesma rede física que tenham de comunicado como host, tabela ARP)
 - Exemplo 2.19 ip neigh show
 - Exemplo 2.20 ip neigh show dev eth0
- Para adicionar uma entrada na tabela ARP
 - Exemplo 2.21 ip neigh add 192.168.1.1 lladdr 00:cc:00:ff:ff:ee dev eth0
- Para remover uma entrada da tabela ARP
 - **Exemplo 2.22** ip neigh del 192.168.1.1 dev eth0
- Limpar toda a tabela ARP de uma VLAN
 - Exemplo 2.23 ip -s neigh flush dev eth1.212
- Para adicionar mais um IP na interface eth0 (similar ao IP alias do ifconfig)
 - **Exemplo 2.24** ip addr add 192.168.1.2/24 dev eth0
- Para remover endereços adicionais no eth0
 - **Exemplo 2.25** ip addr del 192.168.1.5/24 dev eth0
- Para configurar um endereço IP na interface eth0
 - **Exemplo 2.26** ip addr add 1.2.3.4/24 broadcast 1.2.3.255 dev eth0
- Para remover um endereço IP na interface eth0
 - **Exemplo 2.27** ip addr del 1.2.3.4/24 broadcast 1.2.3.255 dev eth0
- Para trocar o endereço físico da interface eth0

- Exemplo 2.28 ip link set dev eth0 down
- Exemplo 2.29 ip link set dev eth0 address 00:cc:00:ff:ff:ee
- Exemplo 2.30 ip link set dev eth0 up
- Para modificar o MTU da interface para o valor 1476
 - Exemplo 2.31 ip link set mtu 1476 dev eth0
- Para listar a tabela de roteamento
 - **Exemplo 2.32** ip route show
- Para adicionar uma rota padrão IPv4
 - **Exemplo 2.33** ip route add default via 192.168.1.254
- Para remover uma rota padrão IPv4
 - **Exemplo 2.34** ip route del default via 192.168.1.254
- Para adicionar uma rota estática IPv4
 - **Exemplo 2.35** ip route add 192.168.1.0/24 dev eth0
 - **Exemplo 2.36** ip route add 192.168.8.0/24 via 192.168.254.254
- Para remover uma rota estática IPv4
 - **Exemplo 2.37** ip route del 192.168.1.0/24 dev eth0
 - **Exemplo 2.38** ip route del 192.168.8.0/24 via 192.168.254.254
- Para mostrar os endereços IPv6 de todas as interfaces
 - **Exemplo 2.39** ip -6 a
- Para adicionar um endereço IPv6 na interface eth0
 - **Exemplo 2.40** ip -6 addr add 2001:0db8:0:200::3/64 dev eth0
- Para remover um endereço IPv6 na interface eth0
 - Exemplo 2.41 ip -6 addr del 2001:0db8:0:200::3/64 dev eth0
- Para adicionar uma rota default IPv6
 - Exemplo 2.42 ip -6 route add default via 2001:0db8:0:200::1
- Para remover uma rota default IPv6
 - Exemplo 2.43 ip -6 route del default via 2001:0db8:0:200::1
- Para adicionar uma rota estática IPv6
 - Exemplo 2.44 ip -6 route add 2001:0db8:0:201::/64 via 2001:0db8:0:200::1
- Para remover uma rota estática IPv6
 - Exemplo 2.45 ip -6 route del 2001:0db8:0:201::/64 via 2001:0db8:0:200::1
- Para listar a tabela de roteamento IPv6
 - Exemplo 2.46 ip -6 route show

- Para listar a tabela de vizinhos
 - Exemplo 2.47 ip -6 neigh show
- Para adicionar as marcações de VLANs. No exemplo é adicionada a VLAN ID 100 na interface eth1, criando a interface eth1.100. Para criar múltiplas interfaces marcadadas basta repetir o comando variando o name (nome) e o vlan id.
 - Exemplo 2.48 ip link add link eth1 name eth1.100 type vlan id 100
- Para remover uma interface marcada para uso de VLANs. No exemplo
 - Exemplo 2.49 ip link delete eth1.100

2.3 arp

Descrição 2.3 O protocolo ARP (*Address Resolution Protocol*) tem como principal função a tradução de endereços de forma dinâmica na rede. O uso mais comum é prover o processo da tradução de endereços IP e de endereços físicos (MAC address). O Comando **arp** permite gerenciar as tabelas de tradução de endereços e é bastante útil para descoberta de *hosts* e na adminstração de serviços de rede.

- Para listar a tabela ARP
 - Exemplo 2.50 arp -an
- Para remover uma entrada na tabela ARP
 - **Exemplo 2.51** arp -i eth0 -d 192.168.1.1
- Para adicionar uma entrada na tabela ARP de forma estática
 - **Exemplo 2.52** arp -s 192.168.1.1 00:cc:00:ff:ff:ee

2.4 netstat

Descrição 2.4 Comando para realizar análises e amostragens das conexões de rede, tabelas de roteamento e estatísticas gerais. O comando ss é a opção em distribuições mais atuais.

- Para mostrar todas as portas TCP e UDP em escuta e o processos responsáveis
 - Exemplo 2.53 netstat -nutlp
- Para listar a tabela de roteamento
 - Exemplo 2.54 netstat -rn
- Para mostrar todas as conexões TCP abertas
 - Exemplo 2.55 netstat -tlnp
- Para mostrar todas as conexões TCP abertas, de forma contínua
 - Exemplo 2.56 netstat -tlnpc
- Para mostrar todas as conexões TCP abertas, modo estendido
 - Exemplo 2.57 netstat -tulpen
- Para listar todas as conexões

- Exemplo 2.58 netstat -a
- Para listar estatísticas por protocolo
 - Exemplo 2.59 netstat -s
- Para listar estatísticas somente do protocolo UDP
 - Exemplo 2.60 netstat -su
- Para listar estatísticas somente do protocolo TCP
 - Exemplo 2.61 netstat -st
- Para listar estatísticas das interfaces
 - Exemplo 2.62 netstat -i
- Para obter informações sobre os temporizadores das conexões
 - Exemplo 2.63 netstat -o
- Para listar a tabela de roteamento IPv6
 - Exemplo 2.64 netstat -rn -A inet6

2.5 route

Descrição 2.5 Comando para mostrar informações e gerenciar tabelas de roteamento em IPv4 e IPv6. Este comando vem sendo substituído pelo **ip** em distribuições mais atuais.

- Para listar a tabela de roteamento
 - Exemplo 2.65 route
- Para adicionar a rota padrão
 - **Exemplo 2.66** route add default gw 192.168.1.1
- Para adicionar uma rota estática
 - **Exemplo 2.67** route add -net 192.168.1.0 netmask 255.255.255.0 dev eth0
 - **Exemplo 2.68** route add -net 192.168.1.0 netmask 255.255.255.0 gw 192.168.1.254
- Para remover rotas estáticas
 - **Exemplo 2.69** route del -net 192.168.1.0 netmask 255.255.255.0 gw 192.168.1.254
- Para remover a rota padrão
 - **Exemplo 2.70** route del default gw 192.168.1.1
- Para adicionar uma rota IPv6 padrão
 - Exemplo 2.71 route -A inet6 add default gw 2001:0db8:0:200::1
- Para remover uma rota IPv6 padrão
 - Exemplo 2.72 route -A inet6 del default gw 2001:0db8:0:200::1
- Para listar a tabela de roteamento IPv6
 - Exemplo 2.73 route -A inet6

2.6 ethtool

Descrição 2.6 Comando para gerenciar funções de mais baixo nível da interface de rede, tais como auto-negociação, velocidade, duplex e estatísticas de uso.

- Para mostrar informações gerais sobre a interface eth0
 - Exemplo 2.74 ethtool eth0
- Para mostrar informações sobre o módulo do kernel (driver) da interface eth0
 - Exemplo 2.75 ethtool -i eth0
- Para mostrar estatísticas de tráfego da interface eth0
 - Exemplo 2.76 ethtool -S eth0
- Para mostrar informações sobre configurações de TX, RX e auto-negociação
 - Exemplo 2.77 ethtool -a eth0
- Para fazer piscar o led da placa (ajudar na identificação física da placa)
 - Exemplo 2.78 ethtool -p eth0
- Para forçar 100Mbit/s na interface eth0
 - Exemplo 2.79 ethtool -s eth0 speed 100
- Para desabilitar a auto-negociação na interface eth0
 - Exemplo 2.80 ethtool -s eth0 autoneg off
- Para forçar o modo full-duplex na interface eth0
 - Exemplo 2.81 ethtool -s eth0 duplex full
- Para ativar a opção Wake-on-LAN na interface eth0
 - Exemplo 2.82 ethtool -s eth0 wol g

2.7 dig

Descrição 2.7 Comando para realizar consultas servidores DNS (*Domain Naming System*), alternativa aos comandos **nslookup** e e **host**.

- Para descobrir informações sobre um domínio
 - Exemplo 2.83 dig www.senacrs.com.br
- Para descobrir informações sobre um domínio, com saída reduzida
 - Exemplo 2.84 dig www.senacrs.com.br +noall +answer
- Para descobrir informações sobre um domínio, com saída mínima
 - Exemplo 2.85 dig www.senacrs.com.br +short
- Para descobrir informações sobre os servidores de e-mail de um domínio
 - Exemplo 2.86 dig MX senacrs.com.br
- Para descobrir informações sobre os servidores de DNS de um domínio

- Exemplo 2.87 dig NS senacrs.com.br
- Para receber informações sobre registros de IPv6 de um domínio
 - Exemplo 2.88 dig AAAA senacrs.com.br
- Para receber o maior número de informações sobre um domínio
 - Exemplo 2.89 dig ANY senacrs.com.br
- Para fazer consulta sobre o DNS reversos para determinado IP
 - **Exemplo 2.90** dig -x 177.1.214.233
- Para fazer consulta sobre o DNS reversos para determinado IP, com saída reduzida
 - **Exemplo 2.91** dig -x 177.1.214.233 +short
- Para descobrir informações sobre um domínio, consultando outro servidor, no exemplo o servidor 8.8.8.8
 - Exemplo 2.92 dig @8.8.8.8 www.senacrs.com.br
- Para realizar uma consulta completa para determinado domínio, passando pelos servidores raiz
 - Exemplo 2.93 dig www.senacrs.com.br +trace
- Para obter informações sobre o SOA (Start of Authority) de um domínio
 - Exemplo 2.94 dig SOA senacrs.com.br
- Para obter informações sobre configurações e validações de SPF de um domínio
 - Exemplo 2.95 dig TXT senacrs.com.br

2.8 host

Descrição 2.8 Comando para realizar consultas servidores DNS (*Domain Naming System*), alternativa aos comandos **nslookup** e **dig**.

- Para descobrir informações sobre um domínio
 - Exemplo 2.96 dig www.senacrs.com.br
- Para descobrir informações sobre um domínio
 - Exemplo 2.97 host www.senacrs.com.br
- Para descobrir informações sobre um domínio, com saída aumentada
 - Exemplo 2.98 host -v www.senacrs.com.br
- Para descobrir informações sobre os servidores de e-mail de um domínio
 - Exemplo 2.99 host -t MX senacrs.com.br
- Para descobrir informações sobre os servidores de DNS de um domínio
 - Exemplo 2.100 host -t NS senacrs.com.br
- Para descobrir informações sobre o IPv6 de um domínio
 - Exemplo 2.101 host -t AAAA senacrs.com.br

- Para receber o maior número de informações sobre um domínio
 - Exemplo 2.102 host -t ANY senacrs.com.br
- Para fazer consulta sobre o DNS reversos para determinado IP
 - **Exemplo 2.103** host 177.1.214.233
- Para descobrir informações sobre um domínio, consultando outro servidor, no exemplo o servidor 8.8.8.8
 - Exemplo 2.104 host www.senacrs.com.br 8.8.8.8
- Para obter informações sobre o SOA (Start of Authority) de um domínio
 - Exemplo 2.105 host -t SOA senacrs.com.br
- Para obter informações sobre configurações e validações de SPF de um domínio
 - Exemplo 2.106 host -t TXT senacrs.com.br

2.9 nslookup

Descrição 2.9 Comando para realizar consultas servidores DNS (*Domain Naming System*), alternativa aos comandos **host** e **dig**.

- Para descobrir informações sobre um domínio
 - Exemplo 2.107 nslookup www.senacrs.com.br
- Para descobrir informações sobre os servidores de e-mail de um domínio
 - Exemplo 2.108 nslookup -query=MX senacrs.com.br
- Para descobrir informações sobre os servidores de DNS de um domínio
 - Exemplo 2.109 nslookup -query=NS senacrs.com.br
- Para receber o maior número de informações sobre um domínio
 - Exemplo 2.110 nslookup -query=ANY senacrs.com.br
- Para receber informações sobre IPv6 de um domínio
 - Exemplo 2.111 nslookup -query=AAAA senacrs.com.br
- Para fazer consulta sobre o DNS reversos para determinado IP
 - **Exemplo 2.112** nslookup 177.1.214.233
- Para descobrir informações sobre um domínio, consultando outro servidor, no exemplo o servidor 8.8.8.8
 - Exemplo 2.113 nslookup www.senacrs.com.br 8.8.8.8
- Para obter informações sobre o SOA (Start of Authority) de um domínio
 - Exemplo 2.114 nslookup -query=SOA senacrs.com.br
- Para obter informações sobre configurações e validações de SPF de um domínio
 - Exemplo 2.115 nslookup -query=TXT senacrs.com.br

2.10 ping

Descrição 2.10 Comando para realizar testes de conectividade e condições da rede. Funciona baseado no protocolo ICMP e possibilita obter diagnósticos de perdas, atraso e alcance entre hosts.

- Para realizar teste contínuo
 - Exemplo 2.116 ping www.senacrs.com.br
- Para realizar teste com 20 pacotes
 - Exemplo 2.117 ping -c 20 www.senacrs.com.br
- Para realizar teste com pacotes de 1000 Bytes
 - Exemplo 2.118 ping -s 1000 www.senacrs.com.br
- Para realizar teste com pacotes enviados no intervalo de 0,5 segundos
 - Exemplo 2.119 ping -i 0.5 www.senacrs.com.br
- Para realizar teste com pacotes no modo flood (inundação)
 - Exemplo 2.120 ping -f www.senacrs.com.br
- Para utilizar IPv6
 - Exemplo 2.121 ping6 www.senacrs.com.br

2.11 traceroute

Descrição 2.11 Comando para realizar testes de conectividade, condições da rede e traçar o caminho (rota) entre uma origem e um destino. O **traceroute** é baseado no protocolo ICMP e no campo TTL (*Time to Live*) do protocolo IP que é decrementado a cada passagem por um roteador e ao chegar a zero retorna uma mensagem ICMP para a origem.

- Para realizar testes de rota básico para determinado destino
 - Exemplo 2.122 traceroute www.senacrs.com.br
- Para realizar testes de rota básico para determinado destino, em IPv6
 - Exemplo 2.123 traceroute6 www.senacrs.com.br
- Para realizar testes de rota básico para determinado destino, sem resolução de nomes (DNS)
 - Exemplo 2.124 traceroute -n www.senacrs.com.br
- Para realizar testes de rota básico para determinado destino, com o protocolo ICMP ao invés do UDP padrão
 - Exemplo 2.125 traceroute -I www.senacrs.com.br

2.12 iperf

Descrição 2.12 Ferramenta para realizar testes de vazão entre dois ou mais hosts. O **iperf** permite a utilização do protocolo TCP e UDP para realizar os testes de vazão que tme como objetivo medir o desempenho da rede.

- Para colocar em modo servidor, com o protocolo TCP e a porta padrão 5001
 - Exemplo 2.126 iperf -s
- Para colocar em modo servidor, com o protocolo TCP e a porta padrão 5001, com IPv6
 - Exemplo 2.127 iperf -s -V
- Para executar o cliente, com o protocolo TCP, 10 segundos de teste e a porta padrão 5001
 - Exemplo 2.128 iperf -c IP_Servidor
- Para executar o cliente, com o protocolo TCP, 10 segundos de teste e a porta padrão 5001, com IPv6
 - Exemplo 2.129 iperf –V -c IP_Servidor
- Para executar o cliente, com o protocolo TCP, 30 segundos de teste, relatórios a cada 1s e a porta padrão 5001
 - Exemplo 2.130 iperf -c IP Servidor -i 1 -t 30
- Para colocar em modo servidor, com o protocolo TCP e a porta 15001
 - Exemplo 2.131 iperf -s -p 15001
- Para colocar em modo servidor, com o protocolo UDP e a porta padrão 5001
 - Exemplo 2.132 iperf -s -u
- Para executar o cliente, com o protocolo UDP, 30 segundos de teste, relatórios a cada 1s e a porta 15001
 - Exemplo 2.133 iperf -c IP_Servidor -i 1 -t 30 -u -p 15001
- Para executar o cliente, com o protocolo TCP, 30 segundos de teste, relatórios a cada 1s, a porta padrão 5001 e com 10 conexões em paralelo
 - Exemplo 2.134 iperf -c IP_Servidor -i 1 -t 30 -P 10

2.13 arping

Descrição 2.13 Comando para realizar consultas por meio do protocolo ARP (*Address Resolution Protocol*), similar a ferramenta **ping**. O objetivo do uso é descobrir se um determinado endereço físico está ativo em rede.

- Para enviar requisições ARP para um host vizinho pela interface eth0. Caso o host que tenha o IP 192.168.1.1 esteja ativo na rede, haverá o retorno com a resposta e o tempo de latência.
 - **Exemplo 2.135** arping -I eth0 192.168.1.1
- Para procurar endereços IP duplicados. Este comando envia mensagens ARP solicitando quem teria o endereço físico do endereço IP 192.168.1.1. O IP 192.168.1.1 seria um endereço IP conhecido e se estaria buscando mais alguma interface com o mesmo IP. Em caso de IPs duplicados seriam informados os endereços físicos dos hosts.

Exemplo 2.136 arping -D -I eth0 192.168.1.1

2.14 wget

Descrição 2.14 É um cliente em linha de comando do protocolo HTTP e HTTPS. Permite que sejam feitos acessos a servidores HTTP e downloads de arquivos (uso mais comum).

- Para fazer o download de uma URL
 - **Exemplo 2.137** wget http://192.168.200.3/arquivo.iso
- Para fazer o download de uma URL que possua usuário e senha
 - Exemplo 2.138 wget –http-user=aluno –http-password=senha http://192.168.200.3/arquivo.iso
- Para fazer o download de uma URL por meio de um proxy
 - **Exemplo 2.139** wget -e use_proxy=yes -e http_proxy=192.168.200.253:8080 http://192.168.200.3/arquivo.iso
- Exportar as variáveis do shell http_proxy e https_proxy para uso com web proxy.
 - Exemplo 2.140 export http_proxy="http://192.168.200.253:8080" export https_proxy="http://192.168.200.253:8080"

2.15 ssh e scp

Descrição 2.15 Comandos para realizar acesso remoto e cópia de arquivos por meio do protocolo SSH. Estas ferramentas são fundamentais para o gerenciamento de servidores Linux.

- Para acessar um servidor SSH (192.168.200.3), na porta padrão, com o usuário aluno.
 - Exemplo 2.141 ssh aluno@192.168.200.3
- Para acessar um servidor SSH (192.168.200.3), na porta padrão, com o usuário aluno e obter o modo de depuração.
 - **Exemplo 2.142** ssh -vvvv aluno@192.168.200.3
- Para acessar um servidor SSH (192.168.200.3), na porta 34000, com o usuário aluno.
 - **Exemplo 2.143** ssh -p34000 aluno@192.168.200.3
- Para acessar um servidor SSH (192.168.200.3), na porta padrão, com o usuário aluno e executar o comando "dig @8.8.8.8 www.senacrs.com.br".
 - Exemplo 2.144 ssh aluno@192.168.200.3 "dig @8.8.8.8 www.senacrs.com.br"
- Para copiar o diretório /opt/arquivos do servidor remoto para o diretório local /var/opt, com a porta padrão e com o usuário aluno, mantendo as permissões dos arquivos e diretórios remotos.
 - **Exemplo 2.145** scp -p -r aluno@192.168.200.3:/opt/arquivos /var/opt
- Para copiar o diretório local /tmp/relatorio para o servidor remoto no diretório /home-/aluno, com a porta 34000 e com o usuário aluno, mantendo as permissões dos arquivos e diretórios locais.

Exemplo 2.146 scp -P34000 -p -r /tmp/relatorio aluno@192.168.200.3:

2.16 ss

Descrição 2.16 Comando para realizar análises e amostragens das conexões de rede, tabelas de roteamento e estatísticas gerais. O comando **netstat** é a opção em distribuições mais antigas.

- Para mostrar todas as portas TCP e UDP em escuta e o processos responsáveis.
 - Exemplo 2.147 ss -tupl
- Para mostrar todas as conexões TCP abertas.
 - **Exemplo 2.148** ss -t -a
- Para mostrar todas as conexões UDP abertas.
 - **Exemplo 2.149** ss -u -a
- Para mostrar todas as conexões TCP abertas, de forma contínua a cada 5s.
 - **Exemplo 2.150** watch -n 5 "ss -t -a"
- Para listar todas as conexões.
 - Exemplo 2.151 watch -n 5 "ss -t -a"
- Para listar todas as conexões.
 - **Exemplo 2.152** ss -an
- Para listar estatísticas por protocolo.
 - **Exemplo 2.153** ss -sa
- Para obter informações sobre os temporizadores das conexões.
 - **Exemplo 2.154** ss -o

2.17 mtr

Descrição 2.17 Comando para realizar consultas a roteadores e traçar a rota entre dois hosts. O **mtr** é uma versão do utilitário **traceroute** com mais opções.

- Para realizar testes de forma conínua para determinado endereço.
 - **Exemplo 2.155** mtr 8.8.8.8
- Para realizar testes de forma conínua para determinado endereço, com IPv6.
 - Exemplo 2.156 mtr -6 www.google.com
- Para realizar testes por 10 vezes e gerar um relatório.
 - **Exemplo 2.157** mtr -r -c 10 8.8.8.8
- Para realizar testes de forma conínua para determinado endereço, sem resolução de nomes (DNS).
 - **Exemplo 2.158** mtr -n 8.8.8.8

2.18 dhclient

Descrição 2.18 Comando que implementa um cliente do protocolo DHCP e permite gerenciar o empréstimo de endereços IP.

- Para renovar (renew) o IP por DHCP na interface eth0.
 - Exemplo 2.159 dhclient eth0
- Para liberar (release) o IP por DHCP na interface eth0.
 - Exemplo 2.160 dhclient -r eth0

2.19 telnet

Descrição 2.19 Comando que implementa um cliente do protocolo Telnet. É usado para realizar testes em portas de serviços que utilizam o protocolo TCP.

- Para fazer uma conexão a porta 80 de um endereço IP.
 - **Exemplo 2.161** telnet 19.168.200.3 80
- Obs.: para cancelar a conexão, utilizar a combinação de teclas CTRL+Ç ('ĵ')

2.20 netcat (nc)

Descrição 2.20 Comando que provê diversas funcionalidades relacionadas a conexões de rede e para diagnóstico de serviços.

- Para criar um servidor, com o protocolo TCP, na porta 8000.
 - Exemplo 2.162 nc -1 8000
- Para conectar em um servidor, com o protocolo TCP, na porta 8000.
 - **Exemplo 2.163** nc 192.168.200.3 8000
- Para criar um servidor, com o protocolo UDP, na porta 8000.
 - **Exemplo 2.164** nc -u -1 8000
- Para conectar em um servidor, com o protocolo UDP, na porta 8000.
 - **Exemplo 2.165** nc -u 192.168.200.3 8000
- Para criar um servidor, com o protocolo TCP, na porta 8000, e manter o socket aberto depois da primeira conexão.
 - Exemplo 2.166 nc -k -l 8000
- Para transmitir um arquivo do lado do cliente para o lado do servidor.
 - Exemplo 2.167 Servidor: nc -1 8000 > /tmp/arquivo.dat
 - **Exemplo 2.168** Cliente: nc 192.168.200.3 8000 < arquivo.dat
- Para transmitir um arquivo do lado do servidor para o lado do cliente.
 - Exemplo 2.169 Servidor: nc -1 8000 < /tmp/arquivo.dat
 - **Exemplo 2.170** Cliente: nc 192.168.200.3 8000 > arquivo.dat

2.21 curl

Descrição 2.21 É um cliente em linha de comando do protocolo HTTP e HTTPS. Permite que sejam feitos acessos a servidores HTTP e downloads de arquivos (uso mais comum).

- Realizar o download do arquivo.zip.
 - **Exemplo 2.171** curl https://192.168.254.95/arquivo.zip
- Realizar o download do arquivo.zip e salvar com o nome de arquivo.zip_bk.
 - Exemplo 2.172 curl -o arquivo.zip_bk https://192.168.254.95/arquivo.zip
- Realizar o download do arquivo.zip, com o limite de 1 Mbit/s.
 - Exemplo 2.173 curl –limit-rate 1m -O https://192.168.254.95/arquivo.zip
- Realizar o download do arquivo "arquivo.zip" utilizando protocolo FTP no servidor 192.168.254.90, por meio do dados de autenticação aluno e senha teste.
 - Exemplo 2.174 curl -u aluno:teste ftp://192.168.254.90/arquivo.zip
- Realizar o download do arquivo "arquivo.zip" na URL http://www.meusite.com.br utilizando um proxy de endereço 192.168.254.1 na porta 3128.
 - **Exemplo 2.175** curl -x 192.168.254.1:3128 http://www.meusite.com.br/arquivo.zip
- Realizar o download do arquivo "arquivo.zip" utilizando uma conexão HTTPS e ignorando os erros de certificados SSL.
 - Exemplo 2.176 curl –insecure https://www.meusite.com.br/arquivo.zip

2.22 rysnc

Descrição 2.22 Utilitário e protocolo para realizar a sincronização de arquivos e diretórios de forma local ou remota.

- Sincroniza arquivos locais .pdf em /dados para o host 192.168.254.29 em /backup utilizando o usuário root.
 - Exemplo 2.177 rsync -avz -include '*.pdf' /dados/ root@192.168.254.29:/backup
- Sincroniza o diretório atual, mostrando o progresso da cópia e possibilitando o resumo da cópia em caso de falhas, limitando em 600 Kbytes/s para o host remoto 192.168.254.95 em /root/teste.
 - Exemplo 2.178 rsync -avh -partial -progress -bwlimit=600 . root@192.168.254.95:/root/teste
- Sincroniza o diretório local, /dados/arquivos, com o diretório remoto /dados no host 192.168.254.95. O uso do rsync será por meio do protocolo SSH, com o usuário "aluno" no host remoto.
 - **Exemplo 2.179** rsync -avz -e "ssh -o StrictHostKeyChecking=no -o UserKnownHosts-File=/dev/null" -progress /dados/arquivos/ aluno@192.168.254.95:/dados/
- Obs.: o diretório arquivos será sincronizado como um subdiretório em /dados
 - **Exemplo 2.180** rsync -avz -e "ssh -o StrictHostKeyChecking=no -o UserKnownHosts-File=/dev/null" -progress /dados/arquivos/* aluno@192.168.254.95:/dados/

• Obs.: o conteúdo do diretório arquivos será sincronizado no diretório em /dados

2.23 iwconfig

Descrição 2.23 Comando para realizar configurações na interface de rede sem fios (wireless) e obter estatísticas diversas.

- Para listar todas as interfaces sem fios disponíveis.
 - Exemplo 2.181 iwconfig -a
- Para ativar a interface ath0.
 - Exemplo 2.182 iwconfig ath0 up
- Para desativar a interface ath0.
 - Exemplo 2.183 iwconfig ath0 down
- Para trocar para o canal 11 na interface ath0.
 - Exemplo 2.184 iwconfig ath0 interface channel 11
- Para ativar o modo monitor na interface ath0.
 - Exemplo 2.185 iwconfig ath0 mode monitor
- Para ativar o modo managed (padrão) na interface ath0.
 - Exemplo 2.186 iwconfig ath0 mode managed

2.24 iwlist

Descrição 2.24 Comando que provê funcionalidades de gerenciamento relacionadas a conexões de rede sem fios.

- Para listar os clientes associados ao access point.
 - Exemplo 2.187 iwlist peers
- Para realizar varredura de canais (site survey) utilizando a interface ath0.
 - Exemplo 2.188 iwlist ath0 scan
- Para listar os canais disponíveis.
 - Exemplo 2.189 iwlist channel

2.25 ntpdate

Descrição 2.25 Cliente do protocolo NTP (Network Time Protocol) para ajuste de dia e horário. Para o ajuste ser correto a zona de tempo (timezone) do host deverá estar correta. No horário de Brasília a zona de tempo é a GMT-3.

- Para ajustar o horário do sistema conforme o servidor de NTP 200.132.0.132.
 - **Exemplo 2.190** ntpdate 200.132.0.132
- Para apenas solicitar informações sobre dia e horário ao servidor NTP 200.132.0.132.
 - Exemplo 2.191 ntpdate -q 200.132.0.132

2.26 iftop

Descrição 2.26 Comando para realizar o monitoramento do tráfego em interfaces de rede. Esta ferramenta permite o uso de filtros compatíveis com a biblioteca Libpcap (tcpdump).

- Para monitorar o tráfego de rede na interface eth0.
 - **Exemplo 2.192** iftop –i eth0
- Para monitorar o tráfego de rede na interface eth0 que seja relacionado ao endereço IP 192.168.254.254.
 - **Exemplo 2.193** iftop –i eth0 –f "host 192.168.254.254"
- Para monitorar o tráfego de rede na interface eth2 que seja relacionado a rede 192.168.254.0/24 e na porta TCP 8080.
 - Exemplo 2.194 iftop –i eth0 –f "net 192.168.254 and tcp port 8080"

2.27 arp-scan

Descrição 2.27 Comando para realizar descobertas de IPs e hosts ativos na rede forçando mensagens ARP.

- Realiza uma varredura na rede da interface eth1, 10.10.16.0/24 e filtra pelo IP 10.10.16.71
 - **Exemplo 2.195** arp-scan -I eth1 10.10.16.0/24 | grep 10.10.16.71
- Realiza uma varredura na rede da primeira interface do sistema)(Address Resolution Protocol
 - Exemplo 2.196 arp-scan -1

3. Procedimentos

Neste capítulo são apresentados procedimentos comuns para configurações de rede no sistema operacional Linux.

3.1 Renomear interface

Para trocar o nome da interface eth0 para externo em tempo de execução

Procedimento 3.1.1

ip link set eth0 down

ip link set eth0 name externo

ip link set externo up

Para trocar o nome da interface **eth0** para **externo** de forma permanente, editar o arquivo /**etc/udev/rules.d/70-persistent-net.rules** e trocar o nome da interface que corresponde ao endereço MAC:

Procedimento 3.1.2

```
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="00:0c:29:1d:86:fd", ATTR{type}=="1", KERNEL=="eth*", NAME="eth0"

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="00:0c:29:1d:86:fd", ATTR{type}=="1", KERNEL=="eth*", NAME="externo"
```

3.2 Uso de VLANs

Para ativar o uso de VLANs no Linux, deve ser usado o módulo **8021q**. Por exemplo:

Procedimento 3.2.1

modprobe 8021q

Para criar uma interface virtual deve-se utilizar o comando **vconfig**. Por exemplo, para criar a interface eth1.100 com a marcação 100

Procedimento 3.2.2

vconfig add eth1 100

Para evitar problemas com a filtragem de pacotes, deve-se ativar a **flag** para tornar o **dump** (uso em capturas de tráfego de rede) da interface tal como se não houvesse VLANs. Por exemplo:

Procedimento 3.2.3

vconfig set_flag eth1.100 1

Para remover uma VLAN, usa-se o comando **vconfig** com o parâmetro **rem**. Por exemplo, para remover a interface eth1.100:

Procedimento 3.2.4

vconfig rem eth1.100

Para definir um endereço IP de uma interface com VLAN, usa-se o comando **ifconfig** padrão. Por exemplo, para definir o IP 10.0.0.100 na interface eth1.100:

Procedimento 3.2.5

ifconfig eth1.100 10.0.0.100/24

3.3 Interface em Bridge

Para criar uma bridge de nome br0

Procedimento 3.3.1

ip link add br0 type bridge

brctl addbr br0

Para adicionar a interface eth0 na bridge br0

Procedimento 3.3.2

brctl addif br0 eth0

ip link set eth0 master br0

Para mostrar informações sobre a bridge br0

Procedimento 3.3.3

brctl show

Para mostrar a tabela MAC da bridge br0

Procedimento 3.3.4

brctl showmacs br0

Para ativar a bridge de nome br0

Procedimento 3.3.5

ip link set up dev br0

Para desativar a bridge de nome br0

Procedimento 3.3.6

ip link set dev br0 down

Para remover a interface eth0 de uma bridge de nome br0

Procedimento 3.3.7

ip link set eth0 nomaster

ip link set eth0 down

Para remover uma bridge de nome br0

Procedimento 3.3.8

ip link delete br0 type bridge

brctl delbr br0

Para configurar a interface bridge na inicialização

Procedimento 3.3.9

Debian

Arquivo /etc/network/interfaces

auto lo br0

iface lo inet loopback

iface eth0 inet manual

iface eth1 inet manual

Bridge br0

iface br0 inet static

bridge_ports eth0 eth1

address 192.168.200.3

broadcast 192.168.200.255

netmask 255.255.255.0

gateway 192.168.200.1

Procedimento 3.3.10

Centos

Arquivo /etc/sysconfig/network-scripts/ifcfg-br0

DEVICE=br0

TYPE=Bridge

IPADDR=192.168.200.3

NETMASK=255.255.255.0

ONBOOT=yes

BOOTPROTO=none

NM_CONTROLLED=no

DELAY=0

Arquivo /etc/sysconfig/network-scripts/ifcfg-eth0

DEVICE=eth0

TYPE=Ethernet

HWADDR=AA:BB:CC:DD:EE:FF

BOOTPROTO=none

ONBOOT=yes

NM CONTROLLED=no

BRIDGE=br0

Arquivo /etc/sysconfig/network-scripts/ifcfg-eth1

DEVICE=eth1

TYPE=Ethernet

HWADDR=AA:BB:CC:DD:EE:FE

BOOTPROTO=none

ONBOOT=yes

NM_CONTROLLED=no

BRIDGE=br0

Obs.: é necessária a instalação do pacote bridge-utils para o utilitário brctl

3.4 Interface em Bonding

Para definir qual o modo de operação da interface bonding de nome bond0, editar o arquivo /etc/modprobe.d/bonding.conf

Procedimento 3.4.1

alias bond0 bonding

options bond0 miimon=80 mode=0

Obs.: mode=1 (Active-Passive), mode=0 (Round-Robin)

Para listar sobre a interface bond0

Procedimento 3.4.2

cat /proc/net/bonding/bond0

Para criar a interface bond0, com as interfaces físicas eth0 e eth1, no modo round-robin

Procedimento 3.4.3

modprobe bonding

ifenslave bond0 eth0 eth1

ip link set bond0 up

Para trocar a interface ativa para eth1, no modo de operação Active-Passive

Procedimento 3.4.4

ifenslave -c bond0 eth1

Para remover a inerface eth0 do bonding

Procedimento 3.4.5

ifenslave -d bond0 eth0

Ativação da interface bond0 na inicialização

Procedimento 3.4.6

CentOS

Arquivo /etc/sysconfig/network-scripts/ifcfg-eth0

DEVICE="eth0"

BOOTPROTO="none"

ONBOOT="yes"

TYPE="Ethernet"

MASTER=bond0

SLAVE=yes

Arquivo /etc/sysconfig/network-scripts/ifcfg-eth1

DEVICE="eth1"

BOOTPROTO="none"

ONBOOT="yes"

TYPE="Ethernet"

MASTER=bond0

SLAVE=yes

Arquivo /etc/sysconfig/network-scripts/ifcfg-bond0

DEVICE=bond0

ONBOOT=yes

BOOTPROTO=static

IPADDR=192.168.200.3

PREFIX=24

NETWORK=192.168.200.0

GATEWAY=192.168.200.1

Procedimento 3.4.7

Debian

Arquivo /etc/network/interfaces

auto bond0

iface bond0 inet static

address 192.168.200.3

netmask 255.255.255.0

network 192.168.200.0

gateway 192.168.200.1

slaves eth0 eth1

bond_mode active-backup

bond_mode 0 para Round-Robin

bond_miimon 100

bond_downdelay 200

bond_updelay 200

3.5 Configurações de interface em arquivos

Configurações de interfaces de rede em sistemas padrão **Debian**.

Procedimento 3.5.1

Arquivo de configuração: /etc/network/interfaces

Exemplo de IPv4

auto eth0

iface eth0 inet static

address 192.168.200.3

netmask 255.255.255.0

gateway 192.168.200.254

broadcast 192.168.200.255

dns-nameservers 192.168.200.1 8.8.8.8

dns-search empresa.local

Exemplo de IPv6

iface eth0 inet6 static

address fc00:0:2010:60::190

netmask 64

gateway fc00:0:2010:60::191

Exemplo com o uso de VLANs

Primeira opção: chamar um script para a criação das interfaces marcadas

auto eth1

iface eth1 inet manual

up ifconfig eth1 0.0.0.0 up

up /root/vlans/vlan.sh

Segunda opção: adicionar as interfaces com a nomeação para uso de VLANs

auto eth0.2

iface eth0.2 inet static

address 192.168.2.1

netmask 255.255.255.0

auto eth0.3

iface eth0.3 inet static

address 192.168.3.1

netmask 255.255.255.0

IP alias

auto eth0:1

iface eth0:1 inet static

address 192.168.1.7

netmask 255.255.255.0

broadcast 192.168.1.255

network 192.168.1.0

Configurações de interfaces de rede em sistemas padrão Redhat/CentOS).

Procedimento 3.5.2

Arquivo de configuração: /etc/sysconfig/network-scripts/ifcfg-eth0

Exemplo de IPv4 e IPv6

DEVICE="eth0"

BOOTPROTO="static"

BROADCAST="192.168,200,255"

DNS1="8.8.8.8"

GATEWAY="192.168.200.254"

HWADDR="00:50:56:A8:6F:66"

IPADDR="192.168.200.3"

IPV6ADDR="fc00:0:2010:60::116/64"

IPV6INIT="yes"

IPV6_AUTOCONF="no"

NETMASK="255.255.255.0"

NM_CONTROLLED="yes"

ONBOOT="yes"

TYPE="Ethernet"

UUID="849a1bcf-9d10-4fca-a910-6b0e9af18aba"

IPV6 DEFAULTGW=fc00:0:2010:60::191

VLAN (um arquivo para cada interface)

Arquivo de configuração: /etc/sysconfig/network-scripts/ifcfg-eth1.192

DEVICE=eth1.192

BOOTPROTO=none

ONBOOT=yes

IPADDR=192.168.1.1

PREFIX=24

NETWORK=192.168.1.0

VLAN=yes

IP alias

Arquivo de configuração: /etc/sysconfig/network-scripts/ifcfg-eth1:0

DEVICE=eth1:0

BOOTPROTO=none

ONBOOT=yes

IPADDR=192.168.1.1

PREFIX=24

NETWORK=192.168.1.0

NAME=eth0:0

4. Utilitários Avançados

Neste capítulo são apresentados utilitários avançados de redes para administração de sistemas operacionais Linux. Estas ferramentas proveem poderosas funcionalidades que demandam uma base sólida de conhecimentos na área de redes para poderem ser aproveitas da forma correta.

4.1 tcpdump

Descrição 4.1 Ferramenta para captura de tráfego de rede padrão em sistemas Linux. O Tcpdump é composto por uma ferramenta para interação com o usuário, por uma linguagem de filtros denominada BPF (BSD packet filter) e pela biblioteca Libpcap que possibilita o desenvolvimento de outras ferramentas de captura compatíveis com o formato de arquivos pcap, por exemplo o Wireshark. Parâmetros de captura:

- "-e" Mostra informações da camada de enlace (VLAN, endereço físico)
- "-F" Utiliza um arquivo com os filtros para captura (os filtros em linha de comando serão ignorados)
- "-i" Define qual interface será utilizada para captura. Por padrão, será escolhida a interface com menor número de identificação. No Linux, pode-se utilizar o parâmetro "any" para capturar em qualquer interface, em modo NÃO promíscuo. Para capturar pacotes na interface de loopback, utilizar a interface "lo".
- "-A" mostra o conteúdo dos pacotes em formato texto (ASCII).
- "-n" Não resolve os endereços IP para o nome (DNS). Importante para melhorar o desempenho das capturas e evitar perdas de pacotes.
- "-nn" Não resolve endereços IP para o nome (DNS) e não converte o número da porta para o nome do serviço (Ex.: porta 80 para http)
- "-vv" e "-vvv" Modo verbose, mostra mais informações sobre os pacotes. Um "v" a mais, aumenta o nível de detalhamento dos pacotes
- "-w" Salva a captura em arquivo no formato da biblioteca Libpcap (poderá ser aberto no Wireshark)
- "-s" Define o tamanho do pacote a ser capturado. Por padrão é 64KB (Exemplos: -s120 (captura os primeiros 120 Bytes de cada pacote, -s0 corresponde ao pacote inteiro)

Procedimento 4.1.1 Opções:

Para capturar pacotes na interface padrão, basta executar a ferramenta sem parâmetros

■ Exemplo 4.1 tcpdump

Outros parâmetros são relacionados ao gerenciamento da captura Pacotes da interface eth1, sem resolver o nome dos hosts ou as portas de comunicação e salvar a captura no arquivo /tmp/salvo.cap)

■ Exemplo 4.2 tcpdump –i eth1 –nn –w /tmp/salvo.cap

A filtragem de pacotes é feita por meio de parâmetros da linguagem BPF Pacotes com

origem ou destino do IP 10.0.5.10 e que sejam do protocolo UDP)

■ Exemplo 4.3 tcpdump host 10.0.5.10 and udp

Procedimento 4.1.2 Filtros Básicos:

Por endereço IP, origem ou destino

Exemplo 4.4 tcpdump host 10.0.89.15

Por endereço IP, como origem dos pacotes

Exemplo 4.5 tcpdump src host 10.0.89.15

Por endereço IP, como destino dos pacotes

Exemplo 4.6 tcpdump dst host 10.0.89.15

Por porta da camada de transporte, qualquer protocolo

■ Exemplo 4.7 tcpdump port 80

Por porta de origem da camada de transporte, qualquer protocolo

■ Exemplo 4.8 tcpdump src port 80

Por porta de destino da camada de transporte, qualquer protocolo

■ Exemplo 4.9 tcpdump dst port 80

Por porta do protocolo TCP, origem ou destino

■ Exemplo 4.10 tcpdump tcp port 80

Por porta do protocolo TCP, destino

■ Exemplo 4.11 tcpdump tcp dst port 80

Por porta do protocolo TCP, origem

■ Exemplo 4.12 tcpdump tcp src port 80

Por porta do protocolo UDP, origem ou destino

■ Exemplo 4.13 tcpdump udp port 53

Procedimento 4.1.3 Filtros Diversos:

Filtrar todos os pacotes com destino ou origem de determinada rede

Exemplo 4.14 tcpdump net 192.168.254.0/24

Filtrar todos os pacotes com destino a determinada rede

Exemplo 4.15 tcpdump dst net 192.168.254.0/24

Filtrar todos os pacotes com origem de determinada rede

Exemplo 4.16 tcpdump src net 192.168.254.0/24

Filtrar todos os pacotes que não sejam originados ou destinados a determinada rede

Exemplo 4.17 tcpdump not net 192.168.254.0/24

Filtrar todos os pacotes do protocolo ICMP

■ Exemplo 4.18 tcpdump icmp

Filtrar todos os pacotes do protocolo ARP

■ Exemplo 4.19 tcpdump arp

Filtrar todos os pacotes do protocolo IPv6

■ Exemplo 4.20 tcpdump ip6

Filtrar todos os pacotes multicast ou broadcast

■ Exemplo 4.21 tcpdump multicast or broadcast

Filtrar pacotes de determinado endereço físico, origem ou destino

■ Exemplo 4.22 tcpdump ether host 10:BF:48:89:67:1B

Filtrar pacotes de determinado endereço físico, origem

Exemplo 4.23 tcpdump ether src host 10:BF:48:89:67:1B

Filtrar pacotes de determinado endereço físico, destino

Exemplo 4.24 tcpdump ether dst host 10:BF:48:89:67:1B

Filtrar pacotes de determinada vlan

■ Exemplo 4.25 tcpdump vlan 200

Filtrar os pacotes de multicast ou broadcast que não sejam originados do endereço físco 10:BF:48:89:67:1B

■ Exemplo 4.26 tcpdump multicast or broadcast and not ether host 10:BF:48:89:67:1B

Filtrar os pacotes da VLAN com ID 200, que sejam nas portas 80 ou 443 TCP ou na porta 53 UDP

■ Exemplo 4.27 tcpdump -nn -i eth1 vlan 200 and tcp port 80 or tcp port 443 or udp port 53

Filtrar pacotes do IP 192.178.15.17 que sejam com a porta 80 TCP

■ Exemplo 4.28 tcpdump -nn -i eth1 tcp port 80 and host 192.178.15.17

Filtrar pacotes do protocolo ICMP que sejam originados ou destinados aos endereços da rede 192.168.254.0/24

Exemplo 4.29 tcpdump -nn -i eth1 icmp and net 192.168.254.0/24

4.2 socat

Descrição 4.2 Comando que pode funcionar com um repassador de conexões genérico e um cliente de conexões TCP e UDP.

Procedimento 4.2.1 Exemplos de uso:

Redireciona as conexões locais na porta 80 para o IP 192.168.10.15 na porta 8080

- Exemplo 4.30 socat TCP-LISTEN:80,fork TCP:192.168.10.15:8080
- Conecta na porta 80 do endereço IP 10.1.1.1
- Exemplo 4.31 socat TCP:10.1.1.1:80

4.3 sshpass

Descrição 4.3 Comando que atua como um cliente não interativo de SSH, possibilitando o uso em scripts e, principalmente, em equipamentos onde não é possível usar autenticação por certificados, tais como switches, APs e roteadores.

Procedimento 4.3.1 Exemplos de uso:

A acessa o servidor de SSH no IP 192.168.254.15 com o usuário "aluno" e a senha "senha123"

■ Exemplo 4.32 sshpass -p 'senha123' ssh aluno@192.168.254.15

Acessa o servidor de SSH no IP 192.168.254.15 com o usuário "aluno" e a senha "senha123" e não checa a chave do host.

- Exemplo 4.33 sshpass -p 'senha123' ssh -o StrictHostKeyChecking=no aluno@192.168.254.15
- Acessa o servidor SSH 192.168.10.10 e executa o comando "iwconfig ath0", salvando o resultado em /tmp/saida.txt. A conexão terá o limite de 10s, antes de encerrar por timeout.
- Exemplo 4.34 sshpass -p "senha" ssh -o ConnectTimeout=10 -o StrictHostKeyChecking=no ubnt@192.168.10.10 "iwconfig ath0" > /tmp/saida.txt

4.4 Python Simple HTTP Server

Descrição 4.4 Módulo disponível na linguagem Python que disponibiliza um servidor HTTP simplificado no diretório atual para copiar arquivos de forma facilitada.

Procedimento 4.4.1 Exemplos de uso:

Disponibiliza um servidor HTTP na porta 8000 no diretório atual (Python 2.x).

- Exemplo 4.35 python -m SimpleHTTPServer 8000
 - Disponibiliza um servidor HTTP na porta 9500 no diretório atual (Python 3.x).
- **Exemplo 4.36** python3 -m http.server 9500

4.5 comandos r (rcp, rexec, rlogin, and rsh)

Descrição 4.5 Realizar login, execução de comandos e cópias remotas entre hosts. Os comandos "r" são legados, não são recomendados para uso em produção. Entretanto, podem ser úteis em casos onde existam versões de Unix antigas. Utilizam a porta TCP 514

Procedimento 4.5.1 Exemplos de uso:

Copia de forma recursiva e mantendo as permissões dos arquivos do diretório local /dados para o diretório /backup no servidor1 (o servidor1 é um nome de host disponível no arquivo /etc/hosts da máquina local).

■ Exemplo 4.37 rcp -r -p /dados/ servidor1:backup/

Realiza a execução remota no servidor de IP 192.168.254.95 como usuário root do comando "uptime".

Exemplo 4.38 rsh -1 root 192.168.254.95 uptime

4.6 net

Descrição 4.6 Comandos para realizar a administração remota de servidores Samba ou Microsoft Windows.

Procedimento 4.6.1 Exemplos de uso:

Solicita ao host 192.168.254.17 a lista de serviços disponíveis utilizando o usuário teste 123 do domínio nomedomain. Será solicitada a senha.

■ Exemplo 4.39 net rpc service list -I 192.168.254.17 -U teste123 -W nomedomain

Realiza o reboot do host 192.168.254.5 utilizando o usuário administrador e a senha senhaadmin

■ Exemplo 4.40 net rpc shutdown -r -I 192.168.254.5 -U administrador%senhaadmin

Verifica o status do serviço Spooler (impressão) do host 192.168.254.17 utilizando o usuário teste123

■ Exemplo 4.41 net rpc service status Spooler -I 192.168.254.17 -U teste123

4.7 snmp*

Descrição 4.7 Comandos para realizar consultas e alterações em agentes do protocolo SNMP (Simple Network Management Protocol). Dois comandos básicos são o snmpget e o snmpwalk. Para relizar o uso dos comandos é necessário conhecer a MIB (Management Information Base) para saber qual OID (Objetc Identifier) a ser consultado.

Procedimento 4.7.1 Exemplos de uso:

Acessa o agente SNMP no IP 192.168.254.254, com a comunidade "public", versão "2c" do protocolo e solicita informações sobre o OID "System"

- **Exemplo 4.42** snmpwalk –c public –v2c 192.168.254.254 system
 - Mostra informações sobre a OID sysContact.0 do agente SNMP em localhost
- Exemplo 4.43 snmpget -c public -v2c localhost SNMPv2-MIB::sysContact.0

Descrição 4.8 O protocolo NFS (Network File System) tem como objetivo o compartilhamento em rede de área de armazenaemnto. O protocolo pode utilizar o transporte em UDP e/ou em TCP, sendo que a versão 4 utiliza somente porta 2049 (TCP). O protocolo deverá estar ativado no kernel para funcionar. O serviço no lado cliente é composto pelo serviço do NFS e pelo arquivo **/etc/exports**. O arquivo **/etc/exports** define quais áreas de armazenamento serão compartilhadas e as configurações correspondentes. Exemplos de entradas no arquivo **/etc/exports**:

- Compartilhar o diretório /home para qualquer dentro da faixa 10.10.10.0/24, com direitos de leitura e escrita, com o método assíncrono e evita que usuários conectados no compartilhamento possam ter privlégios de root e aplica o ID do usuário nfsnobody
- /home 10.10.10.0/24(rw,async,root_squash)
- Compartilhar o diretório /home/ftp para qualquer endereço IP com direito de leitura e escrita
- /home/ftp *(rw)
- Comparilhar o diretório /dados para qualquer IP dento da faixa 172.26.0.0/16 com direitos de somente leitura.
- /dados 172.26.0.0/16(ro)

Após alterar o arquivo /etc/exports deve-se executar o comando exportfs -a para aplicar as alterações.

Procedimento 4.8.1 Montagem de compartilhamentos NFS

Montagem no /home local do /home compartilhado do servidor com o IP 10.0.0.1

Exemplo 4.44 mount 10.0.0.1:/home /home

Montagem no /arquivos-remotos local do /dados compartilhado do servidor com o IP 10.0.0.1

■ Exemplo 4.45 mount 10.0.0.1:/dados /arquivos-remotos

Montagem no /backup local do /dados compartilhado do servidor com o IP 10.0.0.1 usando a versão 4 do NFS

■ Exemplo 4.46 mount -t nfs4 10.0.0.1:/dados /backup

Para desmontar o compartilhamento, o comando umount padrão é utilizado. No exemplo está sendo desmontado o /home local

■ Exemplo 4.47 umount /home

Para mostrar os compartilhamentos disponíveis em um servidor com o endereço IP 192.168.67.12

Exemplo 4.48 showmount -e 192.168.67.12

Procedimento 4.8.2 Exemplos de configurações do arquivo /etc/exports

Diretório: /dados

Enderecos IP com acesso: 192.168.254.0/24

Parâmetros:

rw - Liberado acesso de leitura e escrita

sync - Modo síncrono (só após confirmada a operação é feita a escrita em disco), configuração padrão

no_root_squash – ignora qual o usuário remoto, basta ser um dos endereços liberados para ter acesso como root.

Exemplo 4.49 /dados 192.168.254.0/24(rw,sync,no_root_squash)

Diretório /pub

Endereço: * (qualquer um)

Parâmetros:

ro - somente leitura

insecure – libera portas maiores que 1024 como origem no cliente (usuário remoto não precisa ser root)

all_squash – todos os acessos serão mapeados para um usuário comum, normalmente nobody.

■ **Exemplo 4.50** /pub *(ro,insecure,all_squash)

Diretório: /pub2

Endereço IP com acesso: 192.168.254.219

Parâmetros:

rw - Liberado acesso de leitura e escrita

all_squash – faz o mapeamento de usuário e grupo para o UID e GID definidos no parâmetros anonuid e anongid. Neste caso, o UID e GID 99 são do usuário nobody.

■ **Exemplo 4.51** /pub2 192.168.254.219(rw,all_squash,anonuid=99,anongid=99)

4.9 sshfs

Descrição 4.9 sshfs (SSH Filesystem) se comporta como um sistema de arquivos para uso remoto baseado no protocolo SSH (SFTP) e com suporte da biblioteca FUSE. O sshfs possibilita a montagem de diretórios remotos e o uso tal como fossem locais, de forma simples. Desta forma, simplifica o compartilhamento devido ao usar somente a porta de SSH, com autenticação e criptografia já existentes. Para instalar o serviço:

- Debian apt install sshfs
- CentOS yum –enablerepo=powertools install fuse-sshfs

Procedimento 4.9.1

Neste exemplo será montado o "/home/aluno" originado no servidor remoto (endereço IP_Servidor) no diretório local "/arq_remotos".

Para este procedimento funcionar, o diretório "arq_remotos" já deverá existir no cliente local que está executando o comando sshfs.

O usuário "aluno" deverá ter uma conta no servidor remoto e permissões para acessar o diretório "/home/aluno".

No cliente local deverá estar montado o "/home/aluno" remoto no diretório local "arq_remotos".

■ Exemplo 4.52 sshfs aluno@IP_Servidor:/home/aluno/arq_remotos

5. Iptables

Neste capítulo serão apresentadas as funcionalidades do utilitário **iptables**. Este utilitário tem a função de manipular o sistema netfilter que é o firewall de pacotes do Linux. Algumas das funcionalidades mais comuns do Iptables são a construção de firewalls de rede, uso de NAT e PAT, recursos para implementação de proxies transparentes, manipulação de pacotes (tabela mangle) e edição de cabeçalhos. A base da filtragem de pacotes no Linux está em dois módulos. O módulo Netfilter possui funcionalidades de rede internas ao kernel para permitir a filtragem e manipulação de pacotes. O módulo Iptables é a ferramenta em nível de usuário para acesso ao Netfilter.

5.1 Histórico

- Primeira geração: ipfw (BSD)
- Segunda geração: ipfwadm (Linux 2.0)
- Terceira geração: ipchains (Linux 2.2)
- Quarta geração: iptables (Linux 2.4, 2.6, 3.x. 4.x)
- Quinta geração: nftables (Linux 3.13 em diante)

5.2 Componentes

- Chains
- Tabelas
- Políticas
- Ações

5.2.1 Chains

- INPUT: pacotes com destino ao host
- OUTPUT: pacotes originados do host
- FORWARD: pacotes passando pelo host
- POSTROUTING: pacotes que já passaram pelo processo de roteamento
- PREROUTING: pacotes que ainda não passaram pelo processo de roteamento
 - Exemplo 5.1 iptables –A INPUT –i eth0 –p tcp —dport 80 –j ACCEPT
 - Exemplo 5.2 iptables -A INPUT -i eth1 -p tcp -s 192.168.10.15/32 -dport 5001 -j REJECT
 - Exemplo 5.3 iptables –A OUTPUT –p udp —dport 53 –j DROP
 - **Exemplo 5.4** iptables –A FORWARD –i eth0 –s 200.18.79.0/24 –d 189.78.10.45/32 —dport 3389 –i ACCEPT
 - **Exemplo 5.5** iptables -t nat -A POSTROUTING -o eth0 -j SNAT -s 192.168.200.0/24 -to-source 200.67.10.5
 - Exemplo 5.6 iptables -t nat -A PREROUTING -i eth1 -p tcp -s 192.168.200.0/24 -dport 80 -j REDIRECT -to-port 3128

5.2.2 Tabelas

- Filter: padrão, onde é realizada a filtragem de pacotes
- NAT: onde acontecem as traduções de endereçamentos e portas dos pacotes
- Mangle: onde são modificados os cabeçalhos dos pacotes
 - Exemplo 5.7 iptables –A INPUT –t filter –i eth0 –p tcp —dport 80 –j ACCEPT
 - **Exemplo 5.8** iptables -t nat -A POSTROUTING -o eth0 -j SNAT -s 192.168.200.0/24 -to-source 200.67.10.5
 - Exemplo 5.9 iptables -t nat -A PREROUTING -i eth1 -p tcp -s 192.168.200.0/24 -dport 80 -j REDIRECT -to-port 3128
 - Exemplo 5.10 iptables -A PREROUTING -t nat -p tcp -d 177.90.17.45 -dport 18001 -j DNAT -to 192.168.200.10:80
 - Exemplo 5.11 iptables -t mangle -A PREROUTING -i eth1 -p udp -dport 53 -j DSCP -set-dscp-class CS2
 - Exemplo 5.12 iptables -t mangle -A POSTROUTING -o eth0 -p udp -dport 53 -j DSCP -set-dscp-class CS2

5.2.3 Políticas

- ACCEPT: todos os pacotes que não são explicitamente bloqueados, serão aceitos
- DROP: todos os pacotes que não são explicitamente liberados, serão bloqueados
 - Exemplo 5.13 iptables –P INPUT DROP
 - Exemplo 5.14 iptables –P OUTPUT DROP
 - Exemplo 5.15 iptables –P FORWARD ACCEPT

5.2.4 Acões

- ACCEPT: se ocorrer uma combinação com a regra, o pacote é liberado
- DROP: se ocorrer uma combinação com a regra, o pacote é bloqueado sem aviso ao remetente
- REJECT: se ocorrer uma combinação com a regra, o pacote é bloqueado e o remetente receberá um aviso
 - UDP: ICMP host ou porta inalcançável
 - TCP: segmento com a flag Reset ativada
- LOG: se ocorrer uma combinação com a regra, o pacote será registrado em arquivo Normalmente, em /var/log/messages
- REDIRECT: se ocorrer uma combinação com a regra, o pacote será redirecionando para uma porta definida na regra
- MASQUERADE: se ocorrer uma combinação com a regra, o pacote terá o endereço de origem traduzido para o endereço da interface de saída
 - Exemplo 5.16 iptables -A INPUT -p tcp -s 127.0.0.1 -d 127.0.0.1 -j ACCEPT
 - Exemplo 5.17 iptables -A FORWARD -i eth1.100 -p icmp -s 192.168.200.0/24 -d 0/0 -j DROP
 - Exemplo 5.18 iptables -A FORWARD -i eth0 -p udp -s 10.10.20.0/24 -d 10.10.30.0/24 -j REJECT

- Exemplo 5.19 iptables -A FORWARD -p tcp -s 10.10.20.15/32 -d 0/0 -m limit -limit 20/min -limit-burst 5 -j LOG -log-level 7
- Exemplo 5.20 iptables -t nat -A PREROUTING -i eth1.50 -p tcp -s 192.168.200.0/24 -dport 80 -j REDIRECT -to-port 3128
- Exemplo 5.21 iptables -A POSTROUTING -t nat -o eth0 -s 192.168.200.0/24 -j MAS-QUERADE

5.3 Manipulação de Regras

Parâmetros -A, -I e -D:

- "-A" insere a regra abaixo da última regra adicionada.
- "-I" posiciona a regra no topo da lista de regras atual
- "-D" remove a regra
 - Exemplo 5.22 iptables -A FORWARD -p tcp -s 10.10.20.15/32 -d 0/0 -j ACCEPT
 - Exemplo 5.23 iptables –I FORWARD -p tcp -s 10.10.20.15/32 -d 0/0 -j ACCEPT
 - Exemplo 5.24 iptables –D FORWARD -p tcp -s 10.10.20.15/32 -d 0/0 -j ACCEPT
- Parâmetro –L –n –v : para listar as regras, sem tradução de nomes e com os contadores de Bytes e pacotes em cada regra
- Parâmetro –F: para limpar as regras das tabelas filter, mangle e nat
 - Exemplo 5.25 iptables –L –n –v
 - Exemplo 5.26 iptables -F -t filter
 - Exemplo 5.27 iptables -F -t nat
 - **Exemplo 5.28** iptables -F -t mangle

5.4 Valores padrão

Todo o parâmetro não atribuído, é assumido o valor qualquer um (any) ou o valor todos Se não for definido um endereço de origem, destino, interface, protocolo ou porta, será assumido qualquer endereço de origem e destino, porta, protocolo e todas as interfaces.

- Exemplo 5.29 iptables –A INPUT –j ACCEPT
- Exemplo 5.30 iptables –A FORWARD –p tcp –j DROP
- Exemplo 5.31 iptables -A FORWARD -p udp -s 0/0 —dport 161 -j ACCEPT

5.5 Módulos

- Multiport: para colocar múltiplas portas na regra
- Limit: para limitar o número de combinações da regra
- State: para criar combinações conforme o estado do fluxo de pacotes Ativa o modo stateful, onde o estado do fluxo de pacotes é mantido pelo firewall
 - **Exemplo 5.32** iptables -A FORWARD -p tcp -m multiport -s 10.0.0.10/32 -d 0/0 -dports 80,443,465,993,995,587,8080,8081 -j ACCEPT

- Exemplo 5.33 iptables -A FORWARD -p tcp -s 10.0.0.10/32 -d 0/0 -m limit -limit 20/min -limit-burst 5 -j LOG -log-level 7
- Exemplo 5.34 iptables -I INPUT -p udp -s 10.15.0.0/16 -d 0/0 -dport 53 -m state -state NEW,ESTABLISHED,RELATED -j ACCEPT
- Connlimit: para limitar o número de conexões de determinada regra
- Mac: para criar regras baseadas no endereço físico (mac address)
- Iprange: para usar em faixas de IPs
- String: para usar em regras que combinem palavras nos pacotes
 - Exemplo 5.35 iptables -A INPUT -p tcp -syn -dport 22 -m connlimit -connlimit-above 3 -j REJECT
 - Exemplo 5.36 iptables -A FORWARD -m mac -mac-source 00:0F:EA:91:04:08 -j ACCEPT
 - Exemplo 5.37 iptables -A FORWARD -p tcp -m iprange -src-range 192.168.1.5-192.168.1.100 -dport 143 -j ACCEPT
 - Exemplo 5.38 iptables -A FORWARD -m string -algo bm -string "facebook" -p udp -dport 53 -j DROP

5.6 Outros Exemplos

NAT 1:1: para traduzir um endereço IP interno para um endereço IP externo, quando se tem mais de um IP público

```
■ Exemplo 5.39 # NAT 1:1 (10.15.160.25 -> 200.18.16.13) iptables -A FORWARD -s 10.15.160.25/32 -j ACCEPT iptables -A FORWARD -d 10.15.160.25/32 -j ACCEPT iptables -A INPUT -s 10.15.160.25/32 -j ACCEPT iptables -A POSTROUTING -t nat -s 10.15.160.25/32 -o eth0 -j SNAT -to 200.18.16.13 iptables -A PREROUTING -t nat -d 200.18.16.13 -j DNAT -to 10.15.160.25
```

Redirecionamento de portas para outro host: a ação REDIRECT permite apenas o redirecionamento de portas para o próprio firewall. Com o uso de ferramentas tais como redir ou socat junto ao iptables, é possível fazer o redirecionamento para uma porta em um host remoto

■ Exemplo 5.40 # Redirecionamento de portas e hosts

```
# Instalar o utilitário redir redir -lport=8000 -caddr=192.168.200.6 -cport=80 iptables -t nat -I PREROUTING -i eth1 -p tcp -d 192.168.200.3 -dport 80 -j REDIRECT -to-port 8000
```

5.7 Exemplo de Script de Firewall Completo

Exemplo de script de firewall para o cenário da Figura 5.1. Neste cenário são apresentados dois firewalls que atendem as empresas Empresa1 e Empresa2.

Figure 5.1: Cenário exemplo para script de firewall com Iptables.

5.7.1 Firewall da Empresa 1

Link para download: HTTPS://PASTE.EE/P/4OBUE

```
#!/bin/bash
# Firewall da empresa 1
# NAT - rede interna para a interface externa
# eth1 - interface externa (WAN)
# eth0 - interface interna (LAN)
# eth2 - interface DMZ
# Ativa o roteamento
echo 1 > /proc/sys/net/ipv4/ip_forward
#### Ativa Modulos
        /sbin/modprobe ip_conntrack
        /sbin/modprobe ip_conntrack_ftp
        /sbin/modprobe ip_nat_ftp
        /sbin/modprobe ipt_LOG
#### Limpa tabelas e configura defaults
        iptables -F -t filter
        iptables -F -t nat
        iptables -F -t mangle
        ## Delete chains nao defaults
        iptables -X
        iptables -X -t nat
        iptables -X -t mangle
        # Política DROP, chains INPUT e FORWARD
        iptables -P INPUT DROP -t filter
        iptables -P OUTPUT ACCEPT -t filter
        iptables -P FORWARD DROP -t filter
# para manter as conexoes existentes com o proprio firewall (entrada)
        iptables -A INPUT -m state --state RELATED, ESTABLISHED -j ACCEPT
        # para manter as conexoes existentes com o proprio firewall (saida)
```

```
iptables -A OUTPUT -m state --state RELATED, ESTABLISHED -j ACCEPT
# para manter as conexoes passando pelo firewall
        iptables -A FORWARD -m state --state RELATED, ESTABLISHED -j ACCEPT
# Libera acesso ao ICMP (Ping) nas interfaces LAN, DMZ e WAN
iptables -A INPUT -i eth0 -p icmp -j ACCEPT
iptables -A INPUT -i eth1 -p icmp -j ACCEPT
iptables -A INPUT -i eth2 -p icmp -j ACCEPT
# Libera SSH na porta 22
iptables -A INPUT -i eth1 -p tcp -s 0/0 --dport 22 -j ACCEPT
iptables -A INPUT -i eth0 -p tcp -s 0/0 --dport 22 -j ACCEPT
iptables -A INPUT -i eth2 -p tcp -s 0/0 --dport 22 -j ACCEPT
# Libera a resolucao de DNS no servidor local (LAN e DMZ)
iptables -A INPUT -i eth0 -p udp -s 192.168.0.0/24 -d 0/0 --dport 53 -m state
--state NEW, ESTABLISHED, RELATED -j ACCEPT
iptables -A INPUT -i eth2 -p udp -s 200.10.5.0/24 -d 0/0 --dport 53 -m state
--state NEW, ESTABLISHED, RELATED - j ACCEPT
# Mantem o estado das conexoes da interface de loopback
iptables -A INPUT -s 127.0.0.1 -m state --state RELATED, ESTABLISHED -j ACCEPT
iptables -A OUTPUT -s 127.0.0.1 -m state --state RELATED, ESTABLISHED -j ACCEPT
# Libera todos os acesso originados de localhost para localhost
iptables -A INPUT -s 127.0.0.1 -d 127.0.0.1 -j ACCEPT
# Ativa mascaramento (rede interna para o IP da WAN) (IP Fixo)
iptables -t nat -A POSTROUTING -o eth1 -j SNAT -s 192.168.0.0/24 --to-source 200.10.4.2
### Liberacoes (rede interna (LAN) para fora)
# Servicos comuns
iptables -A FORWARD -i eth0 -p tcp -m multiport -s 192.168.0.0/24 -d 0/0 --dports
22,80,443,5001 -j ACCEPT
# Host 192.168.0.12 bloqueado ICMP para fora
iptables -A FORWARD -i eth0 -p icmp -s 192.168.0.12/32 -d 0/0 -j DROP
iptables -A FORWARD -i eth0 -p icmp -s 192.168.0.0/24 -d 0/0 -j ACCEPT
# DNS, NTP
iptables -A FORWARD -i eth0 -p udp -s 192.168.0.0/24 -d 0/0 -m multiport --dports 53,143
-m state --state NEW, ESTABLISHED, RELATED -j ACCEPT
# Redireciona portas (porta publica: 5001, IP interno: 192.168.0.10, Porta interna: 5001)
iptables -A FORWARD -i eth1 -d 192.168.0.10/32 -j ACCEPT
iptables -A PREROUTING -t nat -p tcp -d 200.10.4.2 --dport 5001 -j DNAT
--to 192.168.0.10:5001
### Liberacoes (rede DMZ para fora)
# Servicos comuns
iptables -A FORWARD -i eth2 -p tcp -m multiport -s 200.10.5.0/24 -d 0/0 --dports
22,80,443,5001 -j ACCEPT
# ICMP
iptables -A FORWARD -i eth2 -p icmp -s 200.10.5.0/24 -d 0/0 -j ACCEPT
# DNS, NTP
iptables -A FORWARD -i eth0 -p udp -s 200.10.5.0/24 -d 0/0 -m multiport --dports 53,143
-m state --state NEW, ESTABLISHED, RELATED -j ACCEPT
```

```
### Liberacoes (rede externa para a DMZ)
# Host externo 200.10.0.10, bloqueado o acesso a porta 22 no servidor 200.10.5.10
iptables -A FORWARD -i eth1 -p tcp -s 200.10.0.10/32 -d 200.10.5.10/32 --dport 22 -j DROP
# Servicos comuns, somente para o servidor 200.10.5.10
iptables -A FORWARD -i eth1 -p tcp -m multiport -s 0/0 -d 200.10.5.10/32 --dports
22,80,443,5001 -j ACCEPT
# SSH e HTTP, somente para o servidor 200.10.5.11
iptables -A FORWARD -i eth1 -p tcp -m multiport -s 0/0 -d 200.10.5.11/32
--dports 22,80 -j ACCEPT
# ICMP
iptables -A FORWARD -i eth1 -p icmp -s 200.10.5.0/24 -d 0/0 -j ACCEPT
# Host externo 200.10.0.10, acesso a porta 5001 no servidor 200.10.5.11
iptables -A FORWARD -i eth1 -p tcp -s 200.10.0.10/32 -d 200.10.5.11/32
--dport 5001 -j ACCEPT
```

5.7.2 Firewall da Empresa 2

Link para download: HTTPS://PASTE.EE/P/HYIFI

```
#!/bin/bash
# Firewall da empresa 2
# NAT - rede interna para a interface externa
# eth1 - interface externa (WAN)
# eth0 - interface interna (LAN)
# eth2 - interface DMZ
# Ativa o roteamento
echo 1 > /proc/sys/net/ipv4/ip_forward
#### Ativa Modulos
        /sbin/modprobe ip_conntrack
        /sbin/modprobe ip_conntrack_ftp
        /sbin/modprobe ip_nat_ftp
        /sbin/modprobe ipt_LOG
#### Limpa tabelas e configura defaults
        iptables -F -t filter
        iptables -F -t nat
        iptables -F -t mangle
        ## Delete chains nao defaults
        iptables -X
        iptables -X -t nat
        iptables -X -t mangle
        # Política DROP, chains INPUT e FORWARD
        iptables -P INPUT DROP -t filter
        iptables -P OUTPUT ACCEPT -t filter
        iptables -P FORWARD DROP -t filter
# para manter as conexoes existentes com o proprio firewall (entrada)
        iptables -A INPUT -m state --state RELATED, ESTABLISHED -j ACCEPT
        # para manter as conexoes existentes com o proprio firewall (saida)
```

```
iptables -A OUTPUT -m state --state RELATED, ESTABLISHED -j ACCEPT
# para manter as conexoes passando pelo firewall
        iptables -A FORWARD -m state --state RELATED, ESTABLISHED -j ACCEPT
\# Libera acesso ao ICMP (Ping) nas interfaces LAN, DMZ e WAN
iptables -A INPUT -i eth0 -p icmp -j ACCEPT
iptables -A INPUT -i eth1 -p icmp -j ACCEPT
iptables -A INPUT -i eth2 -p icmp -j ACCEPT
# Libera SSH na porta 22
iptables -A INPUT -i eth1 -p tcp -s 0/0 --dport 22 -j ACCEPT
iptables -A INPUT -i eth0 -p tcp -s 0/0 --dport 22 -j ACCEPT
iptables -A INPUT -i eth2 -p tcp -s 0/0 --dport 22 -j ACCEPT
# Libera a resolucao de DNS no servidor local (LAN e DMZ)
iptables -A INPUT -i eth0 -p udp -s 192.168.0.0/24 -d 0/0 --dport 53 -m state --state
NEW, ESTABLISHED, RELATED - j ACCEPT
iptables -A INPUT -i eth2 -p udp -s 200.10.3.0/24 -d 0/0 --dport 53 -m state --state
NEW, ESTABLISHED, RELATED - j ACCEPT
# Mantem o estado das conexoes da interface de loopback
iptables -A INPUT -s 127.0.0.1 -m state --state RELATED, ESTABLISHED -j ACCEPT
iptables -A OUTPUT -s 127.0.0.1 -m state --state RELATED, ESTABLISHED -j ACCEPT
# Libera todos os acesso originados de localhost para localhost
iptables -A INPUT -s 127.0.0.1 -d 127.0.0.1 -j ACCEPT
# Ativa mascaramento (rede interna para o IP da WAN) (IP Fixo)
iptables -t nat -A POSTROUTING -o eth1 -j SNAT -s 192.168.0.0/24 --to-source 200.10.2.1
### Liberacoes (rede interna (LAN) para fora)
# Servicos comuns
iptables -A FORWARD -i eth0 -p tcp -m multiport -s 192.168.0.0/24 -d 0/0 --dports
22,80,443,5001 -j ACCEPT
# Host 192.168.0.12 bloqueado ICMP para fora
iptables -A FORWARD -i eth0 -p icmp -s 192.168.0.12/32 -d 0/0 -j DROP
# ICMP
iptables -A FORWARD -i eth0 -p icmp -s 192.168.0.0/24 -d 0/0 -j ACCEPT
# DNS, NTP
iptables -A FORWARD -i eth0 -p udp -s 192.168.0.0/24 -d 0/0 -m multiport --dports 53,143
-m state --state NEW, ESTABLISHED, RELATED -j ACCEPT
# Redireciona portas (porta publica: 5001, IP interno: 192.168.0.10, Porta interna: 5001)
iptables -A FORWARD -i eth1 -d 192.168.0.10/32 -j ACCEPT
iptables -A PREROUTING -t nat -p tcp -d 200.10.2.1 --dport 5001 -j DNAT
--to 192.168.0.10:5001
### Liberacoes (rede DMZ para fora)
# Servicos comuns
iptables -A FORWARD -i eth2 -p tcp -m multiport -s 200.10.3.0/24 -d 0/0 --dports
22,80,443,5001 -j ACCEPT
# ICMP
iptables -A FORWARD -i eth2 -p icmp -s 200.10.3.0/24 -d 0/0 -j ACCEPT
# DNS, NTP
iptables -A FORWARD -i eth0 -p udp -s 200.10.3.0/24 -d 0/0 -m multiport --dports 53,143
-m state --state NEW, ESTABLISHED, RELATED -j ACCEPT
```

```
### Liberacoes (rede externa para a DMZ)
# Host externo 200.10.0.10, bloqueado o acesso a porta 22 no servidor 200.10.3.10
iptables -A FORWARD -i eth1 -p tcp -s 200.10.0.10/32 -d 200.10.3.10/32 --dport 22 -j DROP
# Servicos comuns, somente para o servidor 200.10.3.10
iptables -A FORWARD -i eth1 -p tcp -m multiport -s 0/0 -d 200.10.3.10/32 --dports
22,80,443,5001 -j ACCEPT
# SSH e HTTP, somente para o servidor 200.10.3.11
iptables -A FORWARD -i eth1 -p tcp -m multiport -s 0/0 -d 200.10.3.11/32
--dports 22,80 -j ACCEPT
# ICMP
iptables -A FORWARD -i eth1 -p icmp -s 200.10.3.0/24 -d 0/0 -j ACCEPT
# Host externo 200.10.0.10, acesso a porta 5001 no servidor 200.10.3.11
iptables -A FORWARD -i eth1 -p tcp -s 200.10.0.10/32 -d 200.10.3.11/32 --dport 5001 -j ACCEPT
```