

AO3416 20V N-Channel MOSFET

General Description

The AO3416 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 1.8V. This device is suitable for use as a load switch or in PWM applications. It is ESD protected.

Product Summary

 $\begin{array}{lll} V_{DS} & 20V \\ I_{D} \; (at \; V_{GS} \!\!=\!\! 4.5V) & 6.5A \\ R_{DS(ON)} \; (at \; V_{GS} \!\!=\!\! 4.5V) & < 22m\Omega \\ R_{DS(ON)} \; (at \; V_{GS} \!\!=\!\! 2.5V) & < 26m\Omega \\ R_{DS(ON)} \; (at \; V_{GS} \!\!=\!\! 1.8V) & < 34m\Omega \end{array}$

ESD protected

|--|

7 about the maximum realings T _A =200 amous out of motor							
Parameter		Symbol	Maximum	Units			
Drain-Source Voltage)	V _{DS}	20	V			
Gate-Source Voltage		V _{GS}	±8	V			
Continuous Drain	T _A =25℃		6.5				
Current	T _A =70℃	ID	5.2	A			
Pulsed Drain Current ^C		I _{DM}	30				
	T _A =25℃	В	1.4	\\\			
Power Dissipation ^B T _A =70℃		P _D	0.9	W			
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	C			

Thermal Characteristics								
Parameter		Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient A	t ≤ 10s	D	70	90	€/M			
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	100	125	€/M			
Maximum Junction-to-Lead	Steady-State	$R_{\theta JL}$	63	80	€/M			

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	20			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =20V, V _{GS} =0V			1	μΑ
	a a a a a a a a a a a a a a a a a a a	T _J =55℃	;		5	μ
I _{GSS}	Gate-Body leakage current	$V_{DS}=0V$, $V_{GS}=\pm 8V$			±10	μΑ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$	0.4	0.7	1.1	V
$I_{D(ON)}$	On state drain current	V_{GS} =4.5V, V_{DS} =5V	30			Α
		V _{GS} =4.5V, I _D =6.5A		16	22	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance	T _J =125℃	;	22	30	
DS(ON)	Statio Brain Gourge on Modelance	V_{GS} =2.5V, I_{D} =5.5A		18	26	mΩ
		V_{GS} =1.8V, I_{D} =5A		21	34	mΩ
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =6.5A		50		S
V_{SD}	Diode Forward Voltage	$I_S=1A, V_{GS}=0V$		0.62	1	V
Is	Maximum Body-Diode Continuous Curr	ent			2	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			1295	1650	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =10V, f=1MHz		160		pF
C _{rss}	Reverse Transfer Capacitance	1		87		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		1.8		ΚΩ
SWITCHI	NG PARAMETERS					
Q_g	Total Gate Charge			10		nC
Q_{gs}	Gate Source Charge	V_{GS} =4.5V, V_{DS} =10V, I_{D} =6.5A		4.2		nC
Q_{gd}	Gate Drain Charge	1		2.6		nC
t _{D(on)}	Turn-On DelayTime			280		ns
t _r	Turn-On Rise Time	V_{GS} =4.5V, V_{DS} =10V, R_L =1.54 Ω ,		328		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		3.76		us
t _f	Turn-Off Fall Time			2.24		us
t _{rr}	Body Diode Reverse Recovery Time	I _F =6.5A, dI/dt=100A/μs		31	41	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =6.5A, dI/dt=100A/μs		6.8		nC

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The value in any given application depends on the user's specific board design. B. The power dissipation P_D is based on $T_{J(MAX)}=150^\circ$ C, using $\le 10s$ junction-to-ambient thermal resistance. C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150^\circ$ C. Ratings are based on low frequency and duty cycles to keep

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

initialT_{.i}=25° C.

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(\text{MAX})}$ =150° C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

(Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-toAmbient (Note F)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

