Exercice 17.2

On considère une ellipse γ' d'axes A'B' et C'D'. Construire les tangentes à γ' parallèles à la direction \vec{u}' . Puis représenter l'ellipse γ' .

Soit γ le cercle de diamètre A'B'. L'ellipse γ' est l'image du cercle γ par l'affinité orthogonale d'axe x=(A'B') qui envoie le point C sur le point C'.

Pour déterminer la direction \vec{u} dans le "monde cercle", on considère par exemple la droite u' dirigée par \vec{u}' et passant par C' et on détermine sa pré-image par l'affinité.

On construit les tangentes à γ parallèles à u.

Par affinité, on en déduit les tangentes à \vec{u}' parallèles à \vec{u}' et leur point de contact (on utilise le fait que ces tangentes sont parallèles à \vec{u}').

On dessine l'ellipse γ' à l'aide du rectangle circonscrit et des deux tangentes dirigées par \vec{u}' .

