Première S 2 - À rendre le 02 mars 2015

Sujet 1

Le barème est donné à titre indicatif, il pourra être modifié. Vous rendrez le sujet avec la copie.

Exercice 1

Résoudre les équations suivantes

$$8x^2 + 5x - 2 > 0$$

Solution: On commence par calculer le discriminant de $P(x) = 8x^2 + 5x - 2$.

$$\Delta = b^2 - 4ac$$

$$\Delta = 5^2 - 4 \times 8(-2)$$

$$\Delta = 25 - 4(-16)$$

$$\Delta = 25 - (-64)$$

$$\Delta = 89$$

comme $\Delta = 89 > 0$ donc *P* a deux racines

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{5 - \sqrt{89}}{2 \times 8} = -0.9$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{5 + \sqrt{89}}{2 \times 8} = 0.28$$

Comme a=8, on en déduit le tableau de signe de P

x	-∞		-0.9		0.28		+∞
P		+	0	-	0	+	

On regarde maintenant où sont les + dans le tableau de signe pour résoudre l'inéquation.

$$-3x^2 + 2x + 4 < 0$$

Solution: On commence par calculer le discriminant de $Q(x) = -3x^2 + 2x + 4$.

$$\Delta = b^2 - 4ac$$
 $\Delta = 2^2 - 4(-3) \times 4$
 $\Delta = 4 - 4(-12)$
 $\Delta = 4 - (-48)$
 $\Delta = 52$

comme $\Delta = 52 > 0$ donc Q a deux racines

Première S 2 – 2014-2015 1/??

2/??

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{2 - \sqrt{52}}{2 \times -3} = 1.54$$

 $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{2 + \sqrt{52}}{2 \times -3} = -0.87$

Comme a = -3, on en déduit le tableau de signe de Q

x	-∞		-0.87		1.54		+∞
Q		_	0	+	0	_	

On regarde maintenant où sont les – dans le tableau de signe pour résoudre l'inéquation.

$$8x^2 + 5x - 2 \ge -3x^2 + 2x + 4$$

Solution: On commence par se ramener à une équation de la forme $ax^2 + bx + c \ge 0$.

$$8x^{2} + 5x - 2 \ge -3x^{2} + 2x + 4 \Leftrightarrow 8x^{2} + 5x - 2 - (-3x^{2} + 2x + 4) \ge 0$$

$$\Leftrightarrow 8x^{2} + 5x - 2 - (-3x^{2} + 2x + 4) \ge 0$$

$$\Leftrightarrow 8x^{2} + 5x - 2 - (3x^{2} + 2x + 4) \ge 0$$

$$\Leftrightarrow 8x^{2} + 5x - 2 + 3x^{2} - 2x - 4 \ge 0$$

$$\Leftrightarrow (8 + 3)x^{2} + (5 + (-2))x + (-2) + (-4) \ge 0$$

$$\Leftrightarrow 11x^{2} + 3x - 6 \ge 0$$

Ensuite on étudie le signe de $R(X) = 11x^2 + 3x - 6$.

$$\Delta = b^2 - 4ac$$
 $\Delta = 3^2 - 4 \times 11(-6)$
 $\Delta = 9 - 4(-66)$
 $\Delta = 9 - (-264)$
 $\Delta = 273$

comme $\Delta = 273 > 0$ donc *R* a deux racines

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{3 - \sqrt{273}}{2 \times 11} = -0.89$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{3 + \sqrt{273}}{2 \times 11} = 0.61$$

Comme a=11, on en déduit le tableau de signe de R

x	-∞		-0.89		0.61		+∞
R		+	0	_	0	+	

On regarde maintenant où sont les + dans le tableau de signe pour résoudre l'inéquation.

Exercice 2

Tracer le tableau de variation des fonctions suivantes (Vous pouvez utiliser les nombres à virgules)

Première S 2 – 2014-2015

1 $f: x \mapsto -10x^3 + x^2 - 7x + 5$

Solution: Pour avoir les variations de f, il faut connaître le signe de sa dérivé. On dérive P

$$f'(x) = 3(-10)x^2 + 2 \times 1x + 1(-7)$$

$$f'(x) = -30x^2 + 2x - 7$$

On étudie le signe de P^\prime

Ensuite on étudie le signe de $f'(x) = -30x^2 + 2x - 7$.

$$\Delta = b^2 - 4ac$$

$$\Delta = 2^2 - 4(-30)(-7)$$

$$\Delta = 4 - 4 \times 210$$

$$\Delta = 4 - 840$$

$$\Delta = -836$$

Alors $\Delta = -836 < 0$ donc f' n'a pas de racine.

Comme a=-30, on en déduit le tableau de signe de f^{\prime}

x	-∞	+∞
Signe de f^\prime	-	-

2 $g: x \mapsto -9x^3 - 8x^2 - 5x - 2$

Solution: Pour avoir les variations de g, il faut connaître le signe de sa dérivé. On dérive P

$$g'(x) = 3(-9)x^2 + 2(-8)x + 1(-5)$$

 $g'(x) = -27x^2 - 16x - 5$

On étudie le signe de P^\prime

Ensuite on étudie le signe de $g'(x) = -27x^2 - 16x - 5$.

$$\Delta = b^2 - 4ac$$
 $\Delta = (-16)^2 - 4(-27)(-5)$
 $\Delta = 256 - 4 \times 135$
 $\Delta = 256 - 540$
 $\Delta = -284$

Alors $\Delta = -284 < 0$ donc g' n'a pas de racine.

Comme a=-27, on en déduit le tableau de signe de g'

x	-∞	+∞
Signe de g'	_	

3 $h: x \mapsto -7x^2 - 9x + 3 - f(x)$

À RENDRE LE 02 MARS 2015

Solution: On commence par simplifier l'expression de h

$$h(x) = -7x^{2} - 9x + 3 - f(x)$$

$$h(x) = -7x^{2} - 9x + 3 - (-10x^{3} + x^{2} - 7x + 5)$$

$$h(x) = -7x^{2} - 9x + 3 + 10x^{3} - x^{2} + 7x - 5$$

$$h(x) = 10x^{3} + ((-7) + (-1))x^{2} + ((-9) + 7)x + 3 + (-5)$$

$$h(x) = 10x^{3} - 8x^{2} - 2x - 2$$

Pour avoir les variations de h, il faut connaître le signe de sa dérivé. On dérive P

$$h'(x) = 3 \times 10x^2 + 2(-8)x + 1(-2)$$

 $h'(x) = 30x^2 - 16x - 2$

On étudie le signe de P^\prime

Ensuite on étudie le signe de $h'(x) = 30x^2 - 16x - 2$.

$$\Delta = b^{2} - 4ac$$

$$\Delta = (-16)^{2} - 4 \times 30(-2)$$

$$\Delta = 256 - 4(-60)$$

$$\Delta = 256 - (-240)$$

$$\Delta = 496$$

comme $\Delta = 496 > 0$ donc h' a deux racines

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-16 - \sqrt{496}}{2 \times 30} = -0.1$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-16 + \sqrt{496}}{2 \times 30} = 0.64$$

Comme a = 30, on en déduit le tableau de signe de h'

x	-∞		-0.1		0.64		+∞
Signe de <i>h'</i>		+	0	_	Ô	+	

Exercice 3

Appliquer l'algorithme de tri vu en cours à la suite suivante

6914	6851	6532	6884	6164	6495