04 - Кинематика материальной точки («естественные» координаты).

 \supset уравнение траектории движения известно: y(x) – известная функция.

О – точка отчета

траектория движения s – дуговая координата (пройденный путь)

s = s(t) — уравнение движения

 τ – вспомогательный единичный вектор, направленный по касательной прямой в данном месте траектории. При перемещении точки А этот единичный вектор изменяет своё направление, всё время оставаясь касательным к траектории движения, поэтому:

$$\vec{\tau} = \vec{\tau}(t)$$

Так как вектор мгновенной скорости \vec{v} тоже направлен по касательной к траектории движения, то его можно выразить через единичный вектор $\vec{\tau}$:

$$\vec{v} = |\vec{v}| \cdot \vec{\tau} = v\vec{\tau}$$

$$v = \frac{ds}{dt}$$

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt}(v\vec{\tau}) = \frac{dv}{dt}\vec{\tau} + v\frac{d\vec{\tau}}{dt}$$

$$\frac{d\vec{\tau}}{dt} = \frac{d\vec{\tau}}{dS} \cdot \frac{dS}{dt} = v \frac{d\vec{\tau}}{dS}$$

 a_{τ} – тангенциальное ускорение

$$a_{\tau} = \frac{dv}{dt} \gtrless 0$$

 $a_{ au}$ отвечает за изменение величины вектора $\vec{v},~a_{ au}\parallel\vec{\tau}.$

 a_n – нормальное ускорение

$$a_n = \frac{v^2}{R} > 0$$

$$\vec{a}_n \uparrow \uparrow \vec{n}; \quad \vec{v} \perp \vec{n} (\vec{a}_n)$$

 \vec{a}_n меняет направление вектора скорости \vec{v} , но не величину.

$$a = \sqrt{a_n^2 + a_\tau^2}$$