

Figure 50.1: Let C be the cone determined by the bold orange curve through (0,0,1) in the plane z=1. Then u+C, where u=(0.25,0.5,0.5), is the affine translate of C via the vector u.

Definition 50.2. Let V be a normed vector space and let U be a nonempty subset of V. For any point $u \in U$, the cone C(u) of feasible directions at u is the union of $\{0\}$ and the set of all nonzero vectors $w \in V$ for which there exists some convergent sequence $(u_k)_{k\geq 0}$ of vectors such that

(1) $u_k \in U$ and $u_k \neq u$ for all $k \geq 0$, and $\lim_{k \to \infty} u_k = u$.

(2)
$$\lim_{k\to\infty} \frac{u_k - u}{\|u_k - u\|} = \frac{w}{\|w\|}$$
, with $w \neq 0$.

Condition (2) can also be expressed as follows: there is a sequence $(\delta_k)_{k\geq 0}$ of vectors $\delta_k \in V$ such that

$$u_k = u + ||u_k - u|| \frac{w}{||w||} + ||u_k - u|| \delta_k, \quad \lim_{k \to \infty} \delta_k = 0, \ w \neq 0.$$

Figure 50.2 illustrates the construction of w in C(u).

Clearly, the cone C(u) of feasible directions at u is a cone with apex 0, and u + C(u) is a cone with apex u. Obviously, it would be desirable to have conditions on U that imply that C(u) is a convex cone. Such conditions will be given later on.

Observe that the cone C(u) of feasible directions at u contains the velocity vectors at u of all curves γ in U through u. If $\gamma: (-1,1) \to U$ is such a curve with $\gamma(0) = u$, and if $\gamma'(u) \neq 0$