V.206

Die Wärmepumpe

Niko Salewski Julian Hochhaus niko.salewski@tu-dortmund.de julian.hochhaus@tu-dortmund

Durchführung: 08.11.16 Abgabe: 15.11.16

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	3
2	Theoretische Grundlagen 2.1 Güteziffer	3
3	Durchführung 3.1 Versuchsbeschreibung	5
4	Auswertung	5
5	Diskussion	6
Lit	teratur	6

1 Zielsetzung

In dem vorliegenden Versuch soll der Transport von Wärmeenergie entgegen des Wärmeflusses, realisiert durch eine Wärmepumpe, untersucht werden. Hierbei sollen die Güteziffer, der Massendurchsatz des Transportmediums und der Wirkungsgrad des Kompressors untersucht werden, um Aussagen über die Qualität der Wärmepumpe zu treffen.

2 Theoretische Grundlagen

Der zweite Hauptsatz der Thermodynamik besagt, dass Wärme immer vom wärmeren zum kälteren Reservoir fließt. Dieser Prozess lässt sich allerdings auch umkehren. Es ist allerdings auch möglich, diesen Prozess umzukehren. Dies kann man realisieren mittels einer Wärmepumpe, welche dem System mechanische Arbeit zuführt. Dadurch kann dann Wärme vom kälteren ins wärmere Reservoir transportiert wird.

2.1 Güteziffer

Die Güteziffer ν gibt das Verhältnis zwischen transportierter Wärmemenge und der dafür benötigten Arbeit an. Nach dem 1. Hauptsatz der Thermodynamik muss die dem Reservoir 1 hinzugefügte Wärmemenge Q_1 der Summe der aus Reservoir 2 entzogenen Wärmemenge Q_2 und der mechanischen Arbeit A, im vorliegenden Versuch durch die Kompressionsarbeit realisiert, sein. Daraus ergibt sich dann für

$$\nu = \frac{Q_1}{A} \stackrel{(2)}{\Rightarrow} \nu_{id} = \frac{T_1}{T_1 - T_2} \tag{1}$$

$$\frac{Q_1}{T_1} - \frac{Q_2}{T_2} = 0 (2)$$

2.2 Massendurchsatz

2.3 Berechnung der Kompressionsleistung

2.4 Prinzipieller Aufbau einer Wärmepumpe

In Abbildung 1 ist T_2 das wärme
abgebende und T_1 das wärmeaufnehmende Reservoir. Der Wärme
transport erfolgt dabei über ein reales Gas, welches beim Fluss durch T_2
verdampft wird, also Wärme aufnimmt und in T_1 wieder verflüssigt wird und dabei seine
 aufgenommene Wärme wieder abgibt. (1)

[1]

Abbildung 1: Prinzipieller Aufbau einer Wärmepumpe [1]

3 Durchführung

3.1 Versuchsbeschreibung

Abbildung 2: Schematischer Aufbau der Messapparatur [1]

4 Auswertung

Abbildung 3: Plot.

5 Diskussion

Literatur

[1] TU Dortmund. Versuch 206: Die Wärmepumpe. 2016.