UNIVERSIDAD DE TARAPACÁ

FACULTAD DE INGENIERÍA

Departamento de Ingeniería en Computación e Informática

Tarea 2 Preprocesamiento de Fuentes de Datos

Autor: Fabián Justo Villalobos

Curso: Minería de Datos

Profesor: Roberto Espinoza Oliva

Índice

1.	Introducción	3
2.	Objetivos2.1. Objetivo general	
3.	Dataset Diabetes3.1. Análisis Exploratorio Previo	5 9 12
4.	Dataset Notebooks SoloTodo4.1. Análisis Exploratorio Previo	13 13 20 23
5	Conclusiones	24

Índice de tablas

1.	Descripción fuente de datos Diabetes	5
2.	Análisis matemático de los atributos numéricos en DDS	7
3.	Descripción atributos tabla SNDS	13
4.	Análisis matemático de los atributos numéricos en SNDS	14
5.	Cantidad de nulos en el dataset SNDS	15
Índice	e de figuras	
1.	Tabla inicial dataset DDS	7
2.	Gráfico de distribución de tipos de diabetes	8
3.	Tabla resultado para el dataset DDS	12
4.	Distribución de precios de los equipos	16
5.	Relación entre el precio y la capacidad de almacenamiento	17
6.	Relación entre el precio y la cantidad de RAM	18
7.	Frecuencia de equipos por cantidad de RAM	19
8.	Frecuencia de sistemas operativos	20
9.	Cantidad de filas con valores 0 en cada columna	21
10.	Cantidad de filas con valores 0 en cada columna	23

1. Introducción

La minería de datos es un proceso crucial dentro de la ciencia de datos que busca identificar patrones y relaciones significativas en grandes conjuntos de datos. Entre los diferentes pasos que se tienen que seguir, la etapa de análisis y preprocesamiento es una de las más laboriosas y duraderas de este proceso, puesto que es donde se analiza en profundidad una fuente de información, estudiar los rangos en que oscilan sus datos, para luego en el preprocesamiento prepararlos para ser utilizados en algoritmos de minería de datos, como regresión lineal, clasificación, reglas de asociación, entre otros.

Este trabajo se centra en las dos fases mencionadas, aplicadas a dos fuentes de datos: una que trata de pacientes que padecen de distintos tipos de diabetes y sus rasgos, y la segunda sobre los aspectos técnicos de portátiles. La primera fuente proveniente del sitio de Kaggle, mientras que la segunda fue realizado por medio de web scraping del sitio web de SoloTodo.

2. Objetivos

2.1. Objetivo general

Aplicar técnicas de Análisis Exploratorio de Datos y Preprocesamiento en fuentes de datos con distintos comportamientos para prepararlos a la etapa de Minería de Datos

2.2. Objetivos específicos

- O.E.1: Recopilar información sobre fuentes de datos viables
- O.E.2: Realizar análisis exploratorio a cada fuente de dato elegida
- O.E.3: Realizar etapa de preprocesamiento para prepararlos a la siguiente etapa
- O.E.4: Sacar conclusiones respecto a la etapa de preprocesamiento

3. Dataset Diabetes

3.1. Análisis Exploratorio Previo

El dataset consta de una amplia descripción de varios tipos de diabetes y una amplia gama de atributos médicos, genéticos y de estilo de vida que son determinantes para comprender los factores que contribuyen al padecimiento de diabetes en las personas. Desde ahora referenciado como dataset de Diabetes (DDS), consta de:

Cantidad de Ejemplos: 70000
Cantidad de Atributos: 34
Cantidad de Clases: 13

La descripción de los atributos del dataset DDS están descritos en la Tabla 1, además de un análisis de la media, desviación estándar, mínimos y máximos de los valores númericos del mismo (Tabla 2). En el dataset no hubo valores nulos, por lo que no se muestra una tabla al respecto.

Tabla 1: Descripción fuente de datos Diabetes

N°	Atributo	Tipo de dato	Descripción
1	Target	str	El tipo de diabetes o prediabetes
2	Genetic Markers	str	Indicadores de predisposición genética a la diabetes.
3	Autoantibodies	str	Presencia de autoanticuerpos comúnmente asociados con la diabetes autoinmune
4	Family History	bool	Información sobre si existen antecedentes familiares conocidos de diabetes
5	Environmental Factors	str	Detalles sobre las influencias ambientales que pueden contribuir a la diabetes
6	Insulin Levels	int	Niveles de insulina medidos en los pacientes
7	Age	int	Edad del paciente
8	ВМІ	int	El índice de masa corporal del paciente
9	Physical Activity	str	Nivel de acividad física del paciente
10	Dietary Habits	str	Hábitos alimenticios del paciente
11	Blood Pressure	int	Presión de la sangre
12	Cholesterol Levels	int	Niveles de colesterol

Continúa en la siguiente página

Tabla 1: Descripción fuente de datos Diabetes (Continuación)

N°	Atributo	Tipo de dato	Descripción
13	Waist Circumference	int	Medida de cintura
14	Blood Glucose Levels	int	Niveles de glucosa en la sangre
15	Ethnicity	str	Etnia
16	Socioeconomic Factors	str	Factores socioeconómicos
17	Smoking Status	str	Si el paciente es fumador o no
18	Alcohol Consumption	str	Nivel de consumo de alcohol
19	Glucose Tolerance Test	str	Resultado de prueba de tolerancia a la glucosa
20	History of PCOS	bool	Antecedentes de síndrome del ovario poliquístico
21	Previous Gestational Diabetes	bool	Diabetes gestacional previo
22	Pregnancy History	str	Antecedentes de embarazo
23	Weight Gain During Pregnancy	int	Aumento de peso durante el embarazo
24	Pancreatic Health	int	Salud pancreática
25	Pulmonary Function	int	Función pulmonar
26	Cystic Fibrosis Diagnosis	bool	Diagnóstico de fibrosis quística
27	Steroid Use History	bool	Antecedentes de uso de esteroides
28	Genetic Testing	str	Pruebas genéticas
29	Neurological Assessments	int	Evaluaciones nerológicas
30	Liver Function Tests	str	Pruebas de función hepática
31	Digestive Enzyme Levels	int	Niveles de enzimas digestivas
32	Urine Test	str	Análisis de orina
33	Birth Weight	int	Peso al nacer
34	Early Onset Symptoms	bool	Síntomas de aparición precoz

Tabla 2: Análisis matemático de los atributos numéricos en DDS

Atributo	Media aritmética	Desviación estándar	Mínimo	Máximo
Insulin Levels	21.607443	10.785852	5.0	49.0
Age	32.020700	21.043173	0.0	79.0
ВМІ	24.782943	6.014236	12.0	39.0
Blood Pressure	111.339543	19.945000	60.0	149.0
Cholesterol Levels	194.867200	44.532466	100.0	299.0
Waist Circumference	35.051657	6.803461	20.0	54.0
Blood Glucose Levels	160.701657	48.165547	80.0	299.0
Weight Gain During Pregnancy	15.496414	9.633096	0.0	39.0
Pancreatic Health	47.564243	19.984683	10.0	99.0
Pulmonary Function	70.264671	11.965600	30.0	89.0
Neurological Assessments	1.804157	0.680154	1.0	3.0
Digestive Enzyme Levels	46.420529	19.391089	10.0	99.0
Birth Weight	3097.061071	713.837300	1500.0	4499.0

Figura 1: Tabla inicial dataset DDS

Figura 2: Gráfico de distribución de tipos de diabetes

3.2. Descripción Preprocesamiento

Para esta etapa de preprocesamiento, se utilizaron todos los atributos del dataset, por lo que se hizo un mapeo de las columnas con valores nominales (texto) a valores que sean más fácil de usar por algún modelo de minería de datos. En este caso, las *one_hot_columns* corresponden a columnas con dos valores nominales, se hizo uso de la función integrada con Python Pandas *get_dummies* para cambiar a valores booleanos (equivalentes a 0 y 1).

```
import pandas as pd
diabetes_dataset = pd.read_csv('diabetes_dataset00.csv')
one_hot_columns = [
  'Genetic Markers',
  'Autoantibodies',
  'Environmental Factors',
  'Dietary Habits',
  'Ethnicity',
  'Smoking Status',
  'Glucose Tolerance Test',
  'Pregnancy History',
  'Genetic Testing',
  'Liver Function Tests',
]
diabetes_dataset_encoded = pd.get_dummies(diabetes_dataset.drop('Target', axis=1),

→ columns=one_hot_columns, drop_first=True)
```

Luego, para las columnas con más de dos valores nominales, se realizó un proceso aparte de mapear cada una de estas instancias y hacer el reemplazo correspondiente:

```
yes no mapping = {
 'No': 0,
  'Yes': 1
physical_activity_mapping = {
  'Low': 0,
  'Moderate': 1,
  'High': 2
socioeconomic_factors_mapping = {
  'Low': 0,
  'Medium': 1,
  'High': 2
}
alcohol consumption mapping = {
  'Low': 0,
  'Moderate': 1,
  'High': 2
urine_test_mapping = {
 'Normal': 0,
  'Protein Present': 1,
  'Ketones Present': 2,
  'Glucose Present': 3
}
yes_no_columns = ['Family History', 'History of PCOS', 'Cystic Fibrosis Diagnosis',
→ 'Steroid Use History', 'Previous Gestational Diabetes', 'Early Onset Symptoms']
for column in yes no columns:
 diabetes_dataset_encoded[column] =
  → diabetes_dataset_encoded[column].map(yes_no_mapping)
diabetes_dataset_encoded['Physical Activity'] = diabetes_dataset_encoded['Physical
→ Activity'].map(physical_activity_mapping)
diabetes dataset encoded['Socioeconomic Factors'] =

→ diabetes_dataset_encoded['Socioeconomic
→ Factors'].map(socioeconomic_factors_mapping)
diabetes_dataset_encoded['Alcohol Consumption'] = diabetes_dataset_encoded['Alcohol
diabetes_dataset_encoded['Urine Test'] = diabetes_dataset_encoded['Urine
→ Test'].map(urine_test_mapping)
```

Por último, para poder utilizar de forma correcta las columnas con valores numéricos que oscilan entre varios rangos y unidades de medida, se hizo una estandarización de estos valores por medio de la herramiento ofrecida por scikit-learn, *StandardScaler* el cual calcula el nuevo valor siguiente la fórmula:

$$z = (x - u)/s$$

Donde:

- z: Nuevo valor calculado
- x: Valor original
- u: Media aritmética del atributo
- s: Desviación estándar del atributo

```
from sklearn.preprocessing import StandardScaler
numerical_columns = [
 'Insulin Levels',
 'Age',
 'BMI',
 'Blood Pressure',
 'Cholesterol Levels',
 'Waist Circumference',
 'Blood Glucose Levels',
 'Weight Gain During Pregnancy',
 'Pancreatic Health',
 'Pulmonary Function',
 'Neurological Assessments',
 'Digestive Enzyme Levels',
 'Birth Weight'
]
scaler = StandardScaler()
diabetes_dataset_encoded[numerical_columns] =
```

3.3. Resultados

Para finalizar, se logra apreciar en la Figura 3 la tabla resultante después de haber aplicado el preprocesamiento redactado con anterioridad. En este, a comparación de la tabla inicial en la Figura 1, todas las columnas han sido transformadas a valores numéricos (en el caso de True y False, 0's y 1's respectivamente), con tal que este nuevo set de datos esté preparado para ser utilizado en algún modelo predictivo, ya sea usando un Árbol de Decisión, red neuronal, etc.

Figura 3: Tabla resultado para el dataset DDS

4. Dataset Notebooks SoloTodo

4.1. Análisis Exploratorio Previo

El dataset consta del registro de todas las portátiles registradas en el sitio web de SoloTodo, con algunas especificaciones técnicas y sus valores puros, como también puntajes en rendimiento de procesador, tarjeta gráfica y evaluación de rendimiento en videojuegos, aplicaciones en general y movilidad. Desde ahora se referenciará al dataset como SNDS (SoloTodo Notebooks Data Set).

• Cantidad de Ejemplos: 1500

• Cantidad de Atributos total: 33

• Cantidad de Atributos seleccionados:

La descripción de los atributos del dataset SNDS están descritos en la Tabla 3, además de un análisis de la media, desviación estándar, mínimos y máximos de los valores númericos del mismo (Tabla 4), y el conteo de valores nulos en la Tabla 5.

(Tabla 4), y el conteo de valores nulos en la Tabla 5.

Tabla 3: Descripción atributos tabla SNDS

Nº Atributo Tipo de dato Descripción

No	Atributo	Tipo de dato	Descripcion
1	price	int	Precio en pesos chilenos
2	score_general	int	Puntaje de rendimiento en aplicaciones
3	score_games	int	Puntaje de rendimiento en juegos
4	score_mobility	int	Puntaje de rendimiento en movilidad
5	weight	int	Peso en gramos
6	operating_system_family_name	str	Nombre del sistema operativo
7	screen_size_value	int	Tamaño de la pantalla en pulgadas
8	screen_resolution_unicode	str	Resolución de la pantalla
9	screen_rr_value	int	Tasa de refreso de la pantalla
10	battery_mwh	int	Capacidad de la batería integrada en megavatios hora
11	processor_f_value	int	Frecuencia del procesador en MHz
12	processor_p_core_count	int	Número de núcleos físicos
13	processor_thread_count	int	Número de núcleos lógicos
14	processor_speed_score	int	Puntaje del procesador
15	main_gpu_speed_score	int	Puntaje del procesador gráfico principal
16	ram_quantity_value	int	Cantidad de RAM del equipo
17	ram_frequency_value	int	Frecuencia de la ram en MHz

Continúa en la siguiente página

Tabla 3: Descripción atributos tabla SNDS (Continuación)

N°	Atributo	Tipo de dato	Descripción
18	ram_type_name	str	Tipo de RAM
19	sd_capacity_value	int	Almacenamiento más grande del equipo
20	sd_drive_type_name	str	Tipo del almacenamiento más grande

Tabla 4: Análisis matemático de los atributos numéricos en SNDS

Atributo	Media aritmética	Desviación estándar	Mínimo	Máximo
price	1110340.105461	802208.236083	0	6294710
score_general	326.251726	163.877823	41	1000
score_games	251.394852	204.110915	24	1000
score_mobility	489.246704	160.197048	0	975
weight	1723.526679	519.917049	0	4282
screen_size_value	14.806591	1.068114	10	18
screen_rr_value	87.455744	50.536948	60	480
battery_mwh	51031.043942	24484.649538	0	100000
processor_f_value	2115.362210	916.266959	100	4300
processor_p_core_count	4.733208	2.378929	0	16
processor_thread_count	12.662272	6.113577	2	32
processor_speed_score	17510.682360	9805.010515	1202	61985
main_gpu_speed_score	8134.362210	9841.355721	0	46832
ram_quantity_value	15.509102	10.263737	4	128
ram_frequency_value	3686.951036	1657.028580	0	8448
sd_capacity_value	625.414940	357.215184	32	4000

Tabla 5: Cantidad de nulos en el dataset SNDS Cantidad de nulos **Atributo** 0 price 0 score_general 0 score_games score_mobility 0 weight 0 operating_system_family_name 31 screen_size_value 0 0 screen_resolution_unicode 0 screen_rr_value battery_mwh 0 processor_f_value 0 0 processor_p_core_count processor_thread_count 0 processor_speed_score 0 main_gpu_speed_score 0

0

0

0

0

0

ram_quantity_value

ram_frequency_value

ram_type_name

sd_capacity_value

sd_drive_type_name

Se tuvo en cuenta analizar la distribución de los equipos en base a su precio, lo que resultó en que la mayor concentración se encuentra en el rango de 0 - 1.000.000 CLP, debido a que los costos de producción de equipos portátiles para uso hogareño no son elevados. A medida que sube el precio, las especificaciones del equipo son mejores, como procesadores más potentes, procesadores gráficos dedicados, mayor nitidez en las pantallas integradas, entre otros.

```
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(10, 6))
sns.histplot(notebooks_df_cleaned['price'])
plt.xlabel('Precio')
plt.ylabel('Frecuencia')
plt.show()
```


Figura 4: Distribución de precios de los equipos

Se aprecia en la Figura 5 la relación entre la cantidad de almacenamiento de los equipos y sus precios, el cual muestra una concentración entre 0 - 1000 GB. Los equipos localizados en la línea de los 4TB de almacenamiento son equipos de trabajo con otros aspectos técnicos también de potentes.

```
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(10, 6))
sns.scatterplot(x='sd_capacity_value', y='price', data=notebooks_df_cleaned)
plt.xlabel('Capacidad de almacenamiento (GB)')
plt.ylabel('Precio')
plt.show()
```


Figura 5: Relación entre el precio y la capacidad de almacenamiento

Otro vistazo muestra la relación entre el precio y la cantidad de RAM de los equipos por medio de un diagrama de cajas (Figura 6). Se puede apreciar varios valores atípicos, principalmente en los valores de 2^n : 4GB, 8GB, 16GB y 32GB, esto debido a que son las configuraciones más comunes que se venden en el mercado (Figura 7), por lo que mantenerlos en los registros sería la mejor opción.

```
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(10, 6))
sns.boxplot(x='ram_quantity_value', y='price', data=notebooks_df_cleaned)
plt.xlabel('Cantidad de RAM (GB)')
plt.ylabel('Precio')
plt.show()

plt.figure(figsize=(10, 6))
sns.countplot(x='ram_quantity_value', data=notebooks_df_cleaned)
plt.xlabel('Cantidad de RAM (GB)')
plt.ylabel('Frecuencia')
plt.show()
```


Figura 6: Relación entre el precio y la cantidad de RAM

Figura 7: Frecuencia de equipos por cantidad de RAM

Por último, se analizó la frecuencia de los sistemas operativos en los equipos (Figura 8), donde se puede apreciar que la mayoría de los equipos tienen Windows. sin embargo, como se vio en la Tabla 5, hay 31 registros que no tienen sistema operativo, por lo que se deberá tratar para la etapa de preprocesamiento.

```
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(10, 6))
sns.countplot(x='operating_system_family_name', data=notebooks_df_cleaned)
plt.xlabel('Sistema operativo')
plt.ylabel('Frecuencia')
plt.show()
```


Figura 8: Frecuencia de sistemas operativos

4.2. Descripción Preprocesamiento

Previamente se descartaron 10 columnas del dataset original, ya que son columnas que no tienen influencia en el precio del equipo, como el nombre, ID, links, entre otros, por lo que quedan un restante de 20 columnas.

```
import pandas as pd
notebooks_df = pd.read_csv('notebook-dataset/notebook_data.tsv', sep='\t')
columns_to_drop = [
  'name',
  'url',
  'id',
  'slug',
  'picture_url',
  'default_bucket',
  'processor_unicode',
  'processor_thread_count_name',
  'main_gpu_name',
  'gpus_count',
  'processor_tdp',
  'sd_rpm_value',
  'storage_drives_count',
  'power_adapter_power',
notebooks_df_cleaned = notebooks_df.drop(columns=columns_to_drop)
```

En la Tabla 4 hay varias columnas con valores mínimos 0, y la cantidad de filas que contienen valores 0 es significativa (véase Figura 9), lo que no tiene sentido en la vida real, por lo que se procedió a cambiar estos valores por la media, mediana o moda en la columna correspondiente.

```
price: 2
score_general: 0
score_games: 0
score_mobility: 4
weight: 31
operating_system_family_name: 0
screen_size_value: 0
screen_resolution_unicode: 0
screen_rr_value: 0
battery_mwh: 179
processor f value: 0
processor_p_core_count: 13
processor_thread_count: 0
processor_speed_score: 0
main_gpu_speed_score: 190
ram_quantity_value: 0
ram_type_name: 0
sd capacity value: 0
sd_drive_type_name: 0
```

Figura 9: Cantidad de filas con valores 0 en cada columna

```
notebooks_df_cleaned['score_mobility'].replace(0,

→ int(notebooks_df_cleaned['score_mobility'].mean()), inplace=True)
notebooks_df_cleaned['weight'].replace(0,

→ int(notebooks_df_cleaned['weight'].mean()), inplace=True)
notebooks_df_cleaned['processor_p_core_count'].replace(0, 4, inplace=True)
notebooks_df_cleaned['battery_mwh'].replace(0,

→ int(notebooks_df_cleaned['battery_mwh'].mean()), inplace=True)
notebooks_df_cleaned['ram_frequency_value'].replace(0,

→ int(notebooks_df_cleaned['ram_frequency_value'].mean()), inplace=True)
notebooks_df_cleaned['main_gpu_speed_score'].replace(0,

→ int(notebooks_df_cleaned['main_gpu_speed_score'].median()))

so_more_frequent = notebooks_df_cleaned['operating_system_family_name'].mode()[0]
notebooks_df_cleaned['operating_system_family_name'].fillna(so_more_frequent,

→ inplace=True)
```

Y se eliminaron los registros con valores 0 en la columna *price*, ya que no tiene sentido tener un equipo sin precio.

```
notebooks_df_cleaned = notebooks_df_cleaned[notebooks_df_cleaned['price'] > 0]
```

Para las columnas con valores tipo *str*, se procedió a codificarlas con *LabelEncoder* de *sklearn* y se guardó el encoder para su uso posterior, con el objetivo de que los algoritmos de aprendizaje automático puedan trabajar con ellas.

Como las columnas con valores numéricos están en distintas medidas, se recomienda realizar una normazliación de los datos. En este caso se usó *MinMaxScaler* de *sklearn* para que los valores estén en el rango de 0 a 1.

```
from sklearn.preprocessing import MinMaxScaler
numeric_columns = [
 'price',
 'score_general',
 'score_games',
 'score_mobility',
 'weight',
 'screen_size_value',
 'battery_mwh',
 'processor_f_value',
 'ram_quantity_value',
 'ram_frequency_value',
 'sd_capacity_value'
scaler = MinMaxScaler()
notebooks_df_cleaned[numeric_columns] =
```

4.3. Resultados

El dataset SNDS resultado es un dataset limpio y listo para ser utilizado en algoritmos de aprendizaje automático. Se guardó en un archivo notebooks_cleaned.csv, junto al archivo label_encoders_snds.pkl para su uso posterior.

D ~	notebooks_df_cleaned										
	price	score_general	score_games	score_mobility	weight	operating_system_family_name	screen_size_value	screen_resolution_unicode	screen_rr_value	battery_mwh	processor_f_value
	0.096721	0.151199	0.090164	0.641081	0.223649		0.466667			0.419983	0.404762
	0.265743	0.467153									0.904762
	0.027486				0.255752		0.466667			0.409982	0.476190
				0.644324			0.466667				0.190476
	0.460093	0.783107					0.733333				
		0.274244			0.253077		0.466667			0.419983	0.190476
	0.290602						0.466667				
		0.783107	0.694672		0.453719		0.733333			0.999000	
		0.286757		0.489730						0.479984	0.404762
	0.072684	0.328467	0.140369	0.471351	0.325308		0.733333			0.419983	0.452381
	ws × 20 col	umns									

Figura 10: Cantidad de filas con valores 0 en cada columna

5. Conclusiones

El preprocesamiento de las fuentes de datos seleccionadas resultó en conjuntos de información de alta calidad, listos para ser utilizados en aplicaciones de minería de datos. Las técnicas aplicadas permitieron eliminar inconsistencias, mejorar la coherencia y preparar los datos para un análisis eficaz. Gracias a estas acciones, se generaron bases de datos estructuradas y confiables que podrán ser empleadas para construir modelos predictivos precisos y aplicar algoritmos como árboles de decisión. En resumen, el proceso de preprocesamiento permitió convertir los datos en un recurso valioso y preparado para la obtención de conocimiento mediante minería de datos, asegurando resultados más precisos y útiles en futuras fases del análisis.

Referencias

- [1] "Diabetes Dataset." https://www.kaggle.com/datasets/ankitbatra1210/diabetes-dataset/data, 2024. Accedido (20-09-2024).
- [2] "SoloTodo Public Api." https://publicapi.solotodo.com, 2024. Accedido (20-09-2024).