

CSH1F2 Introduction to Computer Science Session 1: Introduction

Author: Lecturer Team

Bachelor of Engineering, School of Computing

Grades

- Based on academic rules
 - -A > 80
 - 70<AB <u><</u>80
 - -65< B ≤70
 - -60<BC <65
 - 50< C < 60
 - -40< D <50
 - E ≤ 40 or because of academic dishonest activity by student

- Grade composition
 - Class projects: 10 to 20% each project, around 5x projects
 - UTS / mid exam : 0%
 - UAS / final exam : 0%
 - Tugas Besar / final project : 0%
 - Attendance : 0%
- Notes

Min 75% attendance is required to get B grade

Academic Dishonest

Penyontekan (Cheating)

includes the act of actually receiving and giving assistance beyond the authority or giving and receiving illegal benefits in all forms of academic work.

Plagiat (Plagiarism)

includes stealing or copying sentences, structures, ideas and / or thoughts of others and imitating the work / work of others, or such business ventures, without mentioning the copied sources or references.

Pemalsuan (Falsification)

includes statements or words or writing that is not true or false documents against any conditions related to one's academic history. Counterfeit actions include - but are not limited to - signature falsification, altering or damaging official data, providing false documents or adding or reducing or deleting information on academic documents, or changing test answer statements or other academic work after the test period or time limit specified.

Targeted Competence

- Able and understand the introductory concepts related to:
 - Digital Information and Internet,
 - Algorithm and Data Structures,
 - Data Representation and Manipulation,
 - User Interface and User Experience
 - Big Data and Data Analytics,
 - Modern Software Development Approach
- Understand fast trajectory of information technology in current disruption in innovation
- Able to relate topics in this lecture with other courses and specializations in School of Computing Telkom University

Reference

- https://www.code.org or https://scratch.mit.edu (for class projects)
- https://git-scm.com and https://www.github.com
 (for class projects)
- https://edx.org (course: Harvard CS50 Problem Set 0)
- https://coursera.org (course: UCSD Algorithmic Toolbox Week 1, Week 2)
- https://cognitiveclass.ai (course: Data Visualization with Python Module 1, Module 2)
- <u>https://www.mckinsey.com</u> (topic: Digital, Internet of Things, Analytics)
- https://www.gartner.com/ (topic: Magic Quadrant, Hype Cycle)
- Other resources to support weekly lecture materials.
- Subject to be changed based on class schedule and student progress.

Our Class Rules

- 1. Be prepared for each session and don't be late more than 20 minutes
- 2. Turn off or silent all communication device
- 3. Attend by system (student-card tapping) and bring your own laptop
- 4. Provide class contact person to lecturer
- 5. Start Whatsapp or Line group during the lecture
- 6. This class syllabus is different compared to other parallel classes, we are achieving the same learning goals though. You are free to invite others to this class to learn together
- 7. No homework, no UTS, no UAS, we try to maximize class discussion and interactivity
- 8. We learn together

Syllabus and Class Schedule

- 1. Introduction and Internet
- 2. Algorithms class project
- 3. Algorithms class project (*)
- 4. Data Structure
- Data Structure class project
 (*)
- 6. Data Representation
- Data Representation class project (*)
- (*) = classroom tap only, then free to learn anywhere = 6 sessions

- 8. UI and UX
- 9. UI and UX class project (*)
- 10.Big Data and analytics
- 11.Big data and analytics class project
- 12. Modern software development framework
- 13. Modern software development framework team project (*)
- 14. Modern software development framework team project (*)

Final Project

No Tugas Besar or Final Project for this class.

Who: Anton Herutomo

Contact me at:

Whatsapp +62 812 83212168Line herutomo@yahoo.com

Linkedin https://www.linkedin.com/in/antonherutomo (content not updated for privacy reason)

Experience:

- o Founder and Advisor Cahaya Quran (Islamic content publisher in Jawa Pos Group Indonesia) since 2017
- o Founder and Advisor **Quran Cordoba** (Islamic content publisher in Indonesia and Malaysia) since 2013
- o Project Director Sharia Fintech PT Telkom Metra (fintech startup under Telkom Indonesia) since 2017
- CTO PT Reta Consulting Indonesia (a Singapore based startup in retail audit) since 2017
- o Founder Websekolah.org (an Indonesian startup in education with Gramedia Group) since
- o Treasurer Yayasan Darussalam (Islamic foundation in Bandung Barat, Indonesia) since 2011
- Professional Lecture Telkom University (School of Computing) since 2010
- Previous:
 - PT Telekomunikasi Indonesia Tbk, 1998-2006, Manager level
 - PT XL Axiata Tbk, 2006-2010, GM level
 - PT Witami Tunai Mandiri (Truemoney), 2016-2017, Chief Technology Officer

Education:

- 1992 1996 Teknik Informatika, Telkom University
- 1996 1998 School of Computer Systems Engineering, RMIT University

Introduction

1. Why Computer Science?

In 2 minutes

- Write in a paper: 5 words that you think really represent the Computer Science
- Put it carefully (I'll ask again later)

Why Computer Science?

- Computer Science is change everything
- ▶ 19th century?

- Is marked by the industrial revolution
- 20th century?

Is marked by physics and engineering

Why Computer Science?

21st century?

- Digital age/ internet
- Examples:
 - agriculture,
 - fashion,
 - medical,
 - energy,
 - weather,
 - Art and entertainment

Introduction

- 1. Why Computer Science?
- 2. Is it hard to learn programming?

Is it hard to learn programming?

Do you wanna be a programmer?

Programming is ... ?

- Tell the computer what we want it to do
- Teach computer to do something
- Creating something from scratch, as we want
- Need time to do
- Sometimes intimidating, but it can be learned
- Breaking down the problems
- IT engineer is needed by many fields

Is it hard to learn programming?

How do you start?

- Jack (Twitter): obsessed by the map and its information
- Bill (Microsoft): software to decide classmate (girl)
- Drew (Dropbox): software asking favourite colour and age
- Elena (Clothia.com): drawing circle and square on the screen
- Gabe (Valve) : program 'hello world'
- What next?

Need imagination, team work, and supportive work environment

Is it hard to learn programming??

- What's the benefit and for whom? How?
 - Make a group of 3, see following video and make a summary of it

 After you watching the video, write again 5 words that most representing the computer science

5 words represent computer science?

- **)** 1.
- **)** 2.
- **)** 3
- **)** 4
- **)** 5

- After introduction>
- **)** 1.
- **)** 2
- **)** 3
- **)** 4
-) 5

Internet Intro

1. Numeric transmission

Numeric Transmission

- While the binary number system can be used to represent any value we wish,
- in practice the range of values we are able to represent is limited by the number of bits we use.
- Thus, protocols for exchanging binary information must specify in advance how many bits will form a single number among other things.
- Without knowing this information the receivers of a message have no way of determining how to break up an incoming stream of bits into individual numbers; it will just appear to be a random string of 0s and 1s.

Internet Intro

- 1. Numeric Transmission
- 2. Text Coding and Transmission

Text Coding and Transmission

ASCII - ASCII American Standard
Code for Information
Interchange. ASCII is
the universally
recognized raw text
format that any
computer can
understand.

code - (v) to write code, or to write instructions for a computer.

ASCII

- ASCII codes were originally 7 bits long and so there are 128 possible values.
- O-31 are "control characters" that are largely defunct and go unused; they were formerly used to control various aspects of machines and printers.
- 32-126 are printable characters and include the numbers 0-9, all 26 letters (both lowercase and uppercase), and many common punctuation symbols.
- 127 is the symbol for delete.
- Over time, 8 bits became a standard "chunk-size" for encoding information. ASCII made the transition to this 8-bit encoding by just adding an extra 0 to the front of the old 7-bit codes.

Activity 1 (in 5 mins)

Quick Activity: write your name in ASCII codes

	_0	_1	_2	_3	_4	_5	_6	_7	_8	_9	_A	_B	_c	_D	_E	_F
Θ_	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	50	SI
	9999	0001	0002	0003	9994	9995	9996	0007	9998	0009	000A	999B	000C	000D	000E	000F
	Ø	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1_	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
	9919	9911	9912	0013	9914	0015	9916	0017	9918	0019	001A	001B	001C	001D	001E	001F
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
2_	SP 0020 32	! 0021 33	0022 34	# 0023 35	\$ 9924 36	% 0025 37	& 9926 38	9927 39	(9928 40) 0029 41	* 992A 42	+ 9928 43	902C 44	- 992D 45	992E 46	/ 002F 47
3_	Ø	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
	9939	9931	9932	9933	9934	9935	9936	9937	9938	0039	003A	003B	993C	003D	003E	003F
	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
4_	@	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
	9949	9941	9942	9943	9944	9945	9946	9947	9948	0049	994A	9948	994C	994D	004E	_{004F}
	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
5_	P	Q	R	S	T	U	V	W	X	Y	Z	[\]	^	—
	9959	9951	9952	9953	9954	9955	9956	9957	9958	9959	995A	0058	005C	995D	005E	005F
	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
6_	9060 96	a 9961 97	b 9962 98	C 9963 99	d 9954 199	e 9965 191	f 9956 192	g 9967 193	h 9968 194	i 0069 105	j 006A 106	k 9968 197	1 006C 108	m 006D 109	n 006E 110	O 006F 111
7_	p 9979 112	q 9971 113	r 9972 114	S 0073 115	t 9974 116	u 9975 117	V 9976 118	W 9977 119	X 9978 120	y 0079 121	Z 997A 122	{ 0078 123	997C 124	} 007D 125	~ 007E 126	DEL 007F 127

Intro to Internet

- 1. Numeric Transmission
- 2. Text Coding and Transmission
- 3. Internet for All

Internet

- IETF Internet Engineering Task Force develops and promotes voluntary Internet standards and protocols, in particular the standards that comprise the Internet protocol suite (TCP/IP).
- Internet A group of computers and servers that are connected to each other.
- Net Neutrality the principle that all Internet traffic should be treated equally by Internet Service Providers.

What is Internet?

- Video 1
- Tahun 1970-an, Vint and Bob Kahn designed it
- It was an advancement of ARPANET (Advance Research Project Agency Network) by Department of Defense, USA
- It started with experimental message exchange network which turned out to be nationwide scale

Who controls Internet?

- Video 2
- nobody and everybody is in charge of making the internet work but the reason it all works together because everyone uses the same protocols.
- who develops these protocols? Who makes the final decisions? Who is in charge? The amazing thing is that no single person, government, or corporation is in charge.
- Rather, it is a collection of citizens and volunteers interested in defining the standards who formed a volunteer organization called the Internet Engineering Task Force to develop and promote voluntary internet standards IETF.

Vocabulary [1]

- IP Address A number assigned to any item that is connected to the Internet.
- Packets Small chunks of information that have been carefully formed from larger chunks of information.
- Protocol A set of rules governing the exchange or transmission of data between devices.
- Video 3

Internet

- Many network systems, such as local ethernet and WiFi, rely on addressing schemes
- to make sure bits are received by the correct computer based on address and
- for other computers to simply ignore messages not intended for them.

Vocabulary [2]

- Packets Small chunks of information that have been carefully formed from larger chunks of information.
- TCP Transmission Control Protocol provides reliable, ordered, and error-checked delivery of a stream of packets on the internet. TCP is tightly linked with IP and usually seen as TCP/IP in writing.

Worksheet

- Prepare for next week (Session 2) by installing Git through <u>https://git-scm.com</u>, in this lecture we use Windows as our default operating system.
- 2. Learn how to use Git in 20 minutes at
 - https://www.youtube.com/watch?v=Y9XZQO1n_7c
 - https://www.youtube.com/watch?v=SWYqp7iY_Tc
- 3. Open a Github account at https://www.github.com and share the account to Lecturer for subsequent class collaboration
- 4. Bring a laptop for next session (one student one laptop)

7HANX YOU