МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Операционные системы»

ТЕМА: ИССЛЕДОВАНИЕ СТРУКТУР ЗАГРУЗОЧНЫХ МОДУЛЕЙ.

Студент гр.0382	 Диденко Д.В.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2022

Цель работы.

Исследование различий в структурах исходных текстов модулей типов .COM и .EXE, структур файлов загрузочных модулей и способов их загрузки в основную память

Задание.

Шаг 1. Напишите текст исходного .СОМ модуля, который определяет тип РС и версию системы. Ассемблерная программа должна читать содержимое предпоследнего байта ROM BIOS, по таблице, сравнивая коды, определять тип РС и выводить строку с названием модели. Если код не совпадает ни с одним значением, то двоичный код переводиться в символьную строку, содержащую запись шестнадцатеричного числа и выводиться на экран В виде соответствующего сообщения. определяется версия системы. Ассемблерная программа должна по значениям регистров AL и AH формировать текстовую строку в формате xx.yy, где xx номер основной версии, а уу - номер модификации в десятичной системе счисления, формировать строки с серийным номером ОЕМ и серийным номером пользователя. Полученные строки выводятся на экран. Отладьте полученный исходный модуль. Результатом выполнения этого шага будет «хороший» .COM модуль, а также необходимо построить «плохой» .EXE, полученный из исходного текста для .СОМ модуля.

- Шаг 2. Напишите текст исходного .EXE модуля, который выполняет те же функции, что и модуль в Шаге 1 и постройте и отладьте его. Таким образом, будет получен «хороший» .EXE.
- Шаг 3. Сравните исходные тексты для .COM и .EXE модулей. Ответьте на контрольные вопросы «Отличия исходных текстов COM и EXE программ».
- Шаг 4. Запустите FAR и откройте (F3/F4) файл загрузочного модуля .COM и файл «плохого» .EXE в шестнадцатеричном виде. Затем откройте (F3/F4) файл загрузочного модуля «хорошего» .EXE и сравните его с предыдущими файлами. Ответьте на контрольные вопросы «Отличия форматов файлов COM и EXE модулей».

Шаг 5. Откройте отладчик TD.EXE и загрузите .COM. Ответьте на контрольные вопросы «Загрузка COM модуля в основную память». Представьте в отчете план загрузки модуля .COM в основную память.

Шаг 6. Откройте отладчик TD.EXE и загрузите «хороший» .EXE. Ответьте на контрольные вопросы «Загрузка «хорошего» EXE модуля в основную память».

Шаг 7. Оформление отчета в соответствии с требованиями. В отчете необходимо привести скриншоты. Для файлов их вид в шестнадцатеричном виде, для загрузочных модулей – в отладчике.

Основные теоретические положения.

Тип IBM PC хранится в байте по адресу 0F000:0FFFEh, в предпоследнем байте ROM BIOS. Соответствие кода и типа в таблице 1:

Таблица 1. Тип IBM PC.

Модель	Код	
PC	FF	
PC/XT	FE,FB	
AT	FC	
PS2 модель 30	FA	
PS2 модель 50 или 60	FC	
PS2 модель 80	F8	
PCjr	FD	
PC Convertible	F9	

Для определения версии MS DOS следует воспользоваться функцией 30H прерывания 21H. Входным параметром является номер функции в AH:

MOV AH,30h

INT 21h

Выходными параметрами являются:

AL - номер основной версии. Если 0, то < 2.0

АН - номер модификации

ВН - серийный номер ОЕМ (Original Equipment Manufacturer)

BL:CX - 24-битовый серийный номер пользователя.

Выполнение работы.

Были объявлены строки для вывода информации:

- PC n db "PC",0Dh,0Ah,'\$'
- PC XT n db "PC/XT",0Dh,0Ah,'\$'
- PC AT n db "AT",0Dh,0Ah,'\$'
- PS2_model_30_n db "PS2 model 30",0Dh,0Ah,'\$'
- PS2_model_50_or_60_n db "PS2 model 50 or 60",0Dh,0Ah,'\$'
- PS2 model 80 n db "PS2 model 80",0Dh,0Ah,'\$'
- *PCjr n db "PCjr"*,0Dh,0Ah,'\$'
- PC conv n db "PC Convertible",0Dh,0Ah,'\$'
- def n db "None coincidences",0Dh,0Ah,'\$'
- VERSIONS db 'Version MS-DOS: . ',0DH,0AH,'\$'
- SERIAL_NUMBER db 'Serial number OEM: ',0DH,0AH,'\$'
- USER NUMBER db 'User serial number: H\$'

Были составлены функция для определения типа ПК PC_TYPE в соответствии с таблицей 1 и функция для определения характеристик OC OS VER:

- номер основной версии системы и её модификации;
- номер ОЕМ;
- серийный номер пользователя.

В результате выполнения были получены следующие значения(рис.1-3): Рис 1. "Хороший" .exe модуль.

C:\>lab1_exe.exe PSZ model 50 or 60 Version MS-DOS: 5.0 Serial number OEM: 0 User serial number: 000000H

Рис 2. "Хороший" .com модуль.

C:\>lab1_com.com PS2 model 50 or 60 Version MS-DOS: 5.0 Serial number OEM: 0 User serial number: 000000H

Рис 3. "Плохой" .exe модуль.

Выводы.

Изучены различия в структурах исходных текстов модулей типов .COM и .EXE, структур файлов загрузочных модулей и способов их загрузки в основную память.

ПРИЛОЖЕНИЕ А

ОТВЕТЫ НА КОНТРОЛЬНЫЕ ВОПРОСЫ

Отличия исходных текстов СОМ и ЕХЕ программ:

1. Сколько сегментов должна сдержать СОМ-программа?

СОМ-программа должна содержать ровно один сегмент. Код и данные находятся в одном сегменте, а стек генерируется автоматически.

2. ЕХЕ-программа?

EXE-программа должна содержать не менее одного сегмента. Сегменты кода, данных и стека описываются отдельно друг от друга, но есть возможность не описывать сегмент стека, в таком случае будет использоваться стек DOS.

3. Какие директивы должны быть обязательно в тексте COMпрограммы?

Должна быть обязательна директива ORG 100h, так как при загрузке модуля все сегментные регистры содержат адрес префикса программного сегмента (PSP), который является 256-байтовым(100H) блоком, поэтому адресация имеет смещение в 256 байт от нулевого адреса. Также необходима процедура ASSUME для того, чтобы сегмент данных и сегмент кода указывали на один общий сегмент. (ASSUME CS:TESTPC, DS:TESTPC, ES:NOTHING, SS:NOTHING)

4.Все ли форматы команд можно использовать в СОМ-программе?

Не все форматы поддерживаются. Нельзя использовать команды вида mov <pегистр>, seg <имя сегмента>, так как в .com-программе отсутствует таблица настроек (содержит описание адресов, которые зависят от размещения загрузочного модуля в ОП).

Отличия форматов файлов .СОМ и.ЕХЕ программ:

1. Какова структура файла . СОМ? С какого адреса располагается код?

СОМ-файл состоит из одного сегмента, состоящего из сегмента кода и сегмента данных, сегмент стека генерируется автоматически при создании СОМ-программы. СОМ-файл ограничен размером одного сегмента и не превышает 64 Кб.

Код начинается с адреса 0h, но при загрузке модуля устанавливается смещение в 100h.

2. Какова структура файла «плохого» EXE? С какого адреса располагается код? Что располагается с адреса 0?

В «плохом» ЕХЕ данные и код располагаются в одном сегменте, что для ЕХЕ файла некорректно, так как код и данные должны быть разделены на отдельные сегменты. Код располагается с адреса 300h, а с адреса 0h идёт таблица настроек.

3.Какова структура «хорошего» EXE? Чем он отличается от файла «плохого» EXE?

В ЕХЕ-программе код, данные и стек поделены на сегменты. Программа в формате ЕХЕ может иметь любой размер. ЕХЕ-файл имеет заголовок, который используется при его загрузке. Заголовок состоит из форматированной части, содержащей сигнатуру и данные, необходимые для загрузки ЕХЕ-файла, и таблицы для настройки адресов. В отличии от «плохого» ЕХЕ в «хорошем» ЕХЕ присутствуют три сегмента: сегмент кода, сегмент данных и сегмент стека, а «плохой» ЕХЕ содержит один сегмент, совмещающий код и данные. Также в «плохом» ЕХЕ адресация кода начинается с 300h, так как он получается из .СОМ файла, в котором изначально сегмент кода смещён на 100h, а при создании «плохого» ЕХЕ к этому смещению добавляется размер

PSP модуля(200h). А в «хорошем» EXE присутствует только смещение для PSP модуля, поэтому код начинается с 200h.

Загрузка СОМ модуля в основную память:

1. Какой формат загрузки модуля COM? С какого адреса располагается код?

Определяется сегментный адрес участка ОП, у которого достаточно места для загрузки программы, образ СОМ-файла считывается с диска и помещается в память, начиная с PSP:0100h. После загрузки двоичного образа СОМ-программы сегментные регистры CS, DS, ES и SS указывают на PSP(в данном случае сегментные регистры указывают на 50DD), SP указывает на конец сегмента PSP(обычно FFFE), слово 00H помещено в стек, IP содержит 100H в результате команды JMP PSP:100H.

2. Что располагается с адреса 0?

Программный сегмент PSP, размером 256 байт (100h), зарезервированный операционной системой.

3. Какие значения имеют сегментные регистры? На какие области памяти они указывают?

Ссегментные регистры CS, DS, ES и SS указывают на PSP и имеют значения 50DD.

4. Как определяется стек? Какую область памяти он занимает? Какие адреса?

Стек генерируется автоматически при создании COM-программы. SS – на начало (0h), регистр SP указывает на конец стека (FFFEh), Адреса стека расположены в диапазоне 0h – FFFEh (FFFEh, – последний адрес, кратный двум).

Загрузка «хорошего» EXE модуля в основную память:

1. Как загружается «хороший» .EXE? Какие значения имеют сегментные регистры?

ЕХЕ-файл загружается, начиная с адреса PSP:0100h. В процессе загрузки считывается информация заголовка (PSP) ЕХЕ в начале файла и выполняется перемещение адресов сегментов, то есть DS и ES устанавливаются на начало сегмента PSP(DS=ES=50DD), SS(SS=50ED) — на начало сегмента стека, СS(CS=5109) — на начало сегмента команд. В IP загружается смещение точки входа в программу, которая берётся из метки после директивы END. Причём дополнительный программный сегмент (PSP) присутствует в каждом EXEфайле.

2. На что указывают регистры DS и ES?

Регистры DS и ES указывают на начало сегмента PSP.

3. Как определяется стек?

Стек определяется с помощью сегмента стека AStack, после которой задаётся размер стека. При исполнение регистр SS указывает на начало сегмента стека, а SP на конца стека(его смещение).

4. Как определяется точка входа?

Точка входа определяется при помощи директивы END.