Problem FC-5 (3 parts)

Loops in MIPS and C

Part A Write a MIPS code fragment that corresponds to this C fragment. Assume \$1 holds N, and \$2 holds Sum. Feel free to use additional registers, but use a minimum number of instructions and registers.

```
Sum = 0;
while (N!=0) {
    Sum += N&1;
    N = N >> 1;
}
```

Label	Instruction	Comment
	addi \$2, \$0, 0	# Sum = 0;
Loop:	beq \$1, \$0, Exit	# exit if N == 0
	andi \$3, \$1, 1	# \$3: N&1
	add \$2,\$2,\$3	# Sum +=N&1;
	srl \$1,\$1,1	# N = N >>1
	j Loop	# continue looping
Exit:		

Part B Briefly describe what the code fragment in Part A computes.

It counts the number of "1"s in the binary string N.

Part C Write MIPS code that implements the following expression. The loop body is already listed. Use \$3 for **N** and additional registers as needed.

for $(N = 0; N < 100; N++) \{ loop body \}$	for	(N =	0:	N <	100:	N++)	1	loop body	1
---	-----	------	----	-----	------	------	---	-----------	---

Label	Instruction	Comment		
	addi \$3, \$0, 0	# init N		
Loop:	slti \$4, \$3, 100	# cmp N < 100		
	beq \$4, \$0, Done	# exit if >= 100		
		# loop body		
	addi \$3, \$3, 1	# N++		
	j Loop	# repeat		
Done				