Capítulo 1

Gas de Fermi

DIBUJOS

$$\langle n_e \rangle = \frac{1}{z^{-1}\,\mathrm{e}^{\beta e} + 1} = \frac{1}{\mathrm{e}^{\beta(\mu - e)} + 1}$$

Si $\mu < 0$ como e > 0 siempre, ni aún en el estado de más baja energía se llega a ocupar el nivel (restan muchos niveles vacíos).

Sea que $T \to \infty$ entonces $\beta \to \infty$ y se sigue que

$$\begin{aligned} \mathbf{e}^{\beta(e-\mu)} &\to \infty e > \mu \\ \mathbf{e}^{\beta(e-\mu)} &\to 0e < \mu \\ \mathbf{e}^{\beta(e-\mu)} &\to 1e = \mu \end{aligned}$$

Luego, con T=0es Fermi un escalón. El valor de μ que determina el último estado ocupado se llama e_F

DIBUJO

$$f_{3/2}(z) = \frac{\lambda^3}{v} = \int_0^{\xi = \beta \mu} \frac{x^{1/2}}{\Gamma(3/2)3/2} dx = \frac{4}{3} \frac{1}{\pi^{1/2}} (\beta \mu)^{3/2} = \frac{4}{3} \frac{1}{\pi^{1/2}} (\beta e_F)^{3/2}$$

1.1 Análisis del gas ideal de Fermi

La primera aproximación consiste en

- Caso no degenerado : $\frac{\lambda^3}{v} \ll 1$ que lleva a Talta y valto por ende N/V chico.

$$z \ll 1$$
 $f_{\nu}(z) \approx z$ $\frac{\lambda^3}{v} \approx z$

Si vale la condición entonces

$$\begin{split} \frac{\lambda^3}{v} &= \sum_{l=1}^\infty \frac{(-1)^{l+1}z^l}{l^{3/2}} \ll 1 \qquad z \ll 1 \\ \beta pV &\approx 1 + \frac{\lambda^3}{v2^{5/2}} \qquad \qquad U = \frac{3}{2}\frac{N}{\beta}\left(1 + \frac{\lambda^3}{v2^{5/2}}\right) \end{split}$$

• $\frac{\lambda^3}{v} < 1$ entonces z < 1 y hay que expandir el virial,

$$\beta pV = \sum_{l=1}^{\infty} (-1)^{l-1} a_l \left(\frac{\lambda^3}{v}\right)^{l-1}$$

que igualando coeficientes se hace (¿?)

 λ^3/v a orden 1 hay efectos cuánticos

$$f_{5/2}(z) = f_{3/2}(z) \cdot \sum_{l=1}^{\infty} (-1)^{l-1} a_l \left(\frac{\lambda^3}{v}\right)^{l-1}$$

- $\frac{\lambda^3}{v} \approx 1$ Cálculo numérico
- Caso altamente degenerado : $\frac{\lambda^3}{v}\gg 1$ se tiene $z\gg 1$ Se puede expandir $f_{\nu}(z)$ en función de $(\log)^{-1}$ mediante lema de Sommerfeld

 $z \gg 1$ entonces $\log z \gg 1$ $(\log z)^{-1} \ll 1 \log z = \beta \mu$

$$f_{5/2}(z) = \frac{8}{15\pi^{1/2}} (\log z)^{5/2} \left[1 + \frac{5\pi^2}{8} (\log z)^{-2} + \dots \right]$$

$$f_{3/2}(z) = \frac{4}{3\pi^{1/2}} (\log z)^{3/2} \left[1 + \frac{\pi^2}{8} (\log z)^{-2} + \dots \right]$$

y entonces

$$\begin{split} \frac{\lambda^3}{v} &= \frac{4}{3\pi^{1/2}} (\log z)^{3/2} \quad \text{a orden 0} \\ \frac{h^3}{(2\pi m k T)^{3/2}} \frac{N}{V} \frac{3\pi^{1/2}}{4} (kT)^{3/2} &= \mu^{3/2} \\ \frac{h^3}{\pi} \frac{N}{V} \frac{3}{(2m)^{3/2} 4} &= \mu^{3/2} = e_F^{3/2} \\ \frac{\lambda^3}{v} \frac{3\pi^{1/2}}{4} (kT)^{3/2} &= \mu^{3/2} \left[1 + \frac{\pi^2}{8} (\log z)^{-2} + \ldots \right] \\ \frac{h^3}{\pi} \frac{N}{V} \frac{3}{(2m)^{3/2} 4} &= e_F^{3/2} \approx \mu^{3/2} \left[1 + \frac{\pi^2}{8} (\log z)^{-2} \right] \end{split}$$

$$e_F \approx \mu \left[1 + \frac{\pi^2}{8} (\frac{\mu}{kT})^{-2} \right]^{2/3} \approx \mu \left[1 + \frac{\pi^2}{12} (\frac{kT}{\mu})^2 \right]$$

Anoté investigar este pasaje.

$$e_F \approx \mu \left[1 - \frac{\pi^2}{12} (\frac{kT}{e_F})^2 \right]$$

y consideramos

$$\frac{1}{\mu^2} \approx \frac{1}{e_F^2}$$

pués μ es muy grande.

$$\beta pv = \frac{f_{5/2}(z)}{f_{3/2}(z)} \approx \frac{2\beta\mu}{5} \left[1 + \frac{5\pi^2}{8} \left(\frac{kT}{\mu} \right)^2 \right] \left[1 - \frac{\pi^2}{8} \left(\frac{kT}{\mu} \right)^2 \right]$$

Hasta orden dos en T resulta

$$\begin{split} pv &\approx \frac{2\mu}{5} \left[1 + \frac{\pi^2}{2} \left(\frac{kT}{\mu} \right)^2 \right] = \frac{2e_F}{5} \left[1 - \frac{\pi}{12} \left(\frac{kT}{e_F} \right)^2 \right] \left[1 + \frac{\pi^2}{2} \left(\frac{kT}{e_F} \right)^2 \right] \\ pv &\approx \frac{2e_F}{5} \left[1 + \frac{5\pi^2}{12} \left(\frac{kT}{e_F} \right)^2 \right] \\ U &= \frac{3}{2} pv \approx \frac{3}{5} Ne_F \left[1 + \frac{5\pi^2}{12} \left(\frac{kT}{e_F} \right)^2 \right] \\ C_V &= \frac{\partial U}{\partial T} \approx \frac{N\pi^2 k^2 T}{2e_F} \qquad C_V \propto T \\ C_V &\approx \frac{\pi^2}{2} Nk \left(\frac{T}{T_F} \right) \end{split}$$

DIBUJO T_F siempre estará ene general en la zona clásica donde no vale la aproximación degenerada.

Calor específico Fermi (¿?)