International Congress of Theoretical and Applied Mechanics
August 30, 2024

Experiments and nonlocal continuum modeling of the size-dependent fracture in elastomers^[1]

Jeongun Lee, Jaehee Lee and Hansohl Cho*

Korea Advanced Institute of Science and Technology

Fracture in elastomers

- Extreme, nonlinear deformation → nonlinear fracture
- Influenced by the size of flaws; the size-dependent fracture [1,2]
 - Rupture stretch increases as the specimen size decreases

a) The presence of flaws impacts the fracture behavior^[3]

b) Size-dependent fracture in polydimethylsiloxane (PDMS) specimens

Fracture in elastomers

- Occurs when ...
 - Macroscopically, G reaches Γ
 - Griffith theory [4,5]
 - G: Energy release rate
 - Γ: Fracture energy
 - Microscopically, ε_R reaches ε_R^f
 - Lake-Thomas theory [6-8]
 - ε_R : Internal energy
 - ε_R^f : critical internal energy; bond dissociation energy

• These approaches are compatible (Lake and Thomas [6])

Objectives

- Predicting the **size-dependent fracture** in elastomers^[1]
 - Experiments and numerical simulations were carried out
- Internal energy-driven fracture criterion; inspired by the Lake-Thomas model [6-8]
- Using the **phase-field model** rooted in the gradient-damage theory [8-12]
 - Mesh-insensitive crack propagation process
 - The internal energy-driven fracture criterion
 - Thermodynamics of the damage and fracture

Size-dependent fracture & Fracture process zone

- Fracture process zone
 - Where the polymer chains rupture = Where the dissipation mainly occurs

• Stress at point (B) is larger than those at (A) and (A')

•
$$\sigma_A = \sigma_{A'} < \sigma_B$$

• \rightarrow Free energy at point (B) is larger than those at (A) and (A')

•
$$\psi_A = \psi_{A'} < \psi_B$$

- $\rightarrow \psi_B$ reaches the critical energy earlier than ψ_A
- → The larger specimen ruptures earlier

The size of fracture process zone [1,2,13,14]:

$$l = \frac{\Gamma}{W^*} = \frac{Fracture\ energy}{Critical\ deformation\ energy}$$

- 1. The damage $d \in [0,1]$
 - d=0: intact
 - d=1: fully damaged
- Internal energy-driven fracture criterion
 - Inspired by the Lake-Thomas model [4]
 - Fracture = **Scission of polymer chains**
- Governing equations [8]
 - Macroforce balance Div $\mathbf{T}_{R}=0$
 - Microforce balance

$$\zeta \dot{d} = 2(1-d)\mathcal{H}_R - \hat{\varepsilon}_R^f(d-l'^2\Delta d)$$

History function;

$$\mathcal{H}_R = \left\langle \varepsilon_R^0 - \varepsilon_R^f / 2 \right\rangle,$$

a)[6] crosslink

- Internal energy should be considered → Bond stretch^[7,8]
 - Deformation = Chain configuration change + stretching of molecular bonds

•
$$\psi_R = (1-d)^2 \left[\frac{1}{2} Nn E_b (\lambda_b - 1)^2 + \frac{1}{2} K (J-1)^2 \right] + N k_b \theta n \left[\frac{\overline{\lambda} \lambda_b^{-1}}{\sqrt{n}} \beta + \ln \left(\frac{\beta}{\sinh \beta} \right) \right] + \frac{1}{2} \varepsilon_R^f l^2 |\nabla d|^2$$

 $(1-d)^2 \varepsilon_R^0$; Damage acts on the internal energy only $-\theta \eta_R$; Entropic energy

Nonlocal energy[8]

a) Reference configuration

$$r_0$$

a) Deformed configuration

- 2. Phase-field model rooted in the gradient-damage theory [8-12]
 - "Diffusive damage zone"

Intrinsic length scale l'

• Microforce balance $\zeta \dot{d} = 2(1-d)\mathcal{H}_R -$

 $\zeta \dot{d} = 2(1-d)\mathcal{H}_R - \hat{\varepsilon}_R^f(d-l'^2\Delta d)$

History function; the fracture criterion

- The intrinsic length scale $l' \rightarrow$ the size of diffusive damage zone
 - A numerical parameter; ambiguous physical meaning

Crack propagation; at reference configuration

- Assumption Diffusive damage zone = Fracture process zone
 - Regions of the damage evolution and the dissipation
- The size of fracture process zone

$$= \frac{\Gamma}{W^*} = \frac{Fracture\ energy}{Critical\ deformation\ energy} \rightarrow Intrinsic\ length\ scale$$

- \rightarrow Identify the intrinsic length scale l from experiments
- → Apply to the phase field model
- → Predict the **size-dependent fracture** by numerical simulations^[1]

a) Fracture process zone

b)[12] Diffusive damage zone

Experimental procedures[1]

- Geometries
 - $a = \{0.5, 1, 5\} \text{ mm}$
 - w = 10a, h = 20a, specimen thickness: 0.5mm
 - \rightarrow w = {5, 10, 50} mm
 - \rightarrow h = {10, 20, 100} mm
- Materials
 - PDMS
 - TangoPlus (3D-printed elastomer)
- Strain rate 0.01 s⁻¹, temperature ~21°C
- Digital image correlation (DIC) analysis
 - → Strain fields from experiments

The intrinsic length scale l

- $l = \frac{\Gamma}{W^*} \rightarrow \text{Experimentally identified intrinsic length scale}^{[1]}$
- Γ: Fracture energy
 - from notched specimens
- *W**: Critical deformation energy
 - from unnotched specimens

PDMS

 $\Gamma \approx 0.25 \text{mJ/mm}^2$, $W^* \approx 2.7 \text{mJ/mm}^3$

 $\rightarrow l \approx 0.08mm$

TangoPlus

 $\Gamma = 0.5 \text{mJ/mm}^2$, $W^* \approx 0.45 \text{mJ/mm}^3$

 $\rightarrow l \approx 1mm$

Results: Experiment vs. Numerical simulation^[1]

- Strain fields in **PDMS** specimens (l = 0.08mm)
 - Larger specimen ruptures earlier

Results: Experiment vs. Numerical simulation^[1]

- Strain fields in **TangoPlus** specimens (l = 1mm)
 - Larger specimen ruptures earlier

Results: Experiment vs. Numerical simulation^[1]

- Notch lengths $a = \{0.5, 1, 5\}$ mm
- Geometric similarity -> Identical initial stress-stretch response
- Smaller notch length → Higher rupture stretch

Notch-length sensitivity^[1]

- PDMS vs. TangoPlus; same specimen sizes
 - PDMS: l = 0.08mm

TangoPlus: l = 1mm

More than 10 times

- Normalized rupture stretch
 - Rupture stretch of notched specimens
 Rupture stretch of unnotched specimens

• Normalized notch length = $\frac{\text{Notch length (a)}}{\text{Intrinsic length scale (i)}}$

Notch-length sensitivity^[1]

- PDMS vs. TangoPlus; same specimen sizes
 - PDMS: l = 0.08mm• TangoPlus: l = 1mm) More than 10 times
- $a/l: 0.5 \sim 5$ (TangoPlus; l = 1mm) \rightarrow Highly notch length-sensitive
- $a/l: 5\sim 50$ (PDMS; l=0.08mm) \rightarrow Less notch length-sensitive

Randomly perforated specimen (TangoPlus)[1]

- Nicely predicted the response without modification of parameters
 - Progressive fracture of ligaments

Conclusion

- Size-dependent fracture is clearly observed in experiments
 - Rupture stretch increases as the notch length decreases
 - Size-dependence increases as the notch-root radius decreases
- The intrinsic length scale determines the size-dependent behavior
 - The intrinsic length scale l defines the size of diffusive damage zone / fracture process zone
 - The intrinsic length scales were identified from experiments
 - Normalized notch length (a/l) determines the size-dependence
- Nonlocal continuum model nicely predicted the fracture in elastomers
 - Nonlocal continuum model utilizes experimentally identified intrinsic length scales
 - The model captures the size-dependent fracture in elastomers
 - The model is capable of predicting the fracture of complex geometries

Reference

- [1] Lee et al., *Phys. Rev. Mater.*, in revision.
- [2] Chen et al., *Extreme Mech. Lett.*, 10, 2017.
- [3] Pharr et al., *J Appl. Phys.*, 111, 2012.
- [4] Griffith, *Philos. Trans. R. Soc. Lond. A*, 221, 1921.
- [5] Rivlin and Thomas, *J. Polym. Sci.*, 10, 1955.
- [6] Lake and Thomas, <u>Proc. R. Soc. Lond.</u>, 300, 1967.
- [7] Mao et al., *Extreme Mech. Lett.*, 13, 2017.
- [8] Talamini et al., <u>J. Mech. Phys. Solids</u>, 111, 2018.
- [9] Peerlings et al., Int. J. Numer. Methods Eng., 39, 1996.
- [10] de Borst et al., *Eur. J. Mech. A/Solids*, 18, 1999.
- [11] Francfort and Marigo, <u>J. Mech. Phys. Solids</u>, 46, 1998.
- [12] Miehe et al., *Int. J. Numer. Methods Eng.*, 83, 2010.
- [13] Bažant, *Int. J. Fract.*, 83, 1997.
- [14] Yang et al., *J. Mech. Phys. Solids.*, 131, 2019.