Université d'Évry Val d'Essonne 2011-2012

M54 algèbre et arithmétique 2

Feuille 3 — Idéaux, quotients

Exercice 1. 1. Montrer qu'un anneau n'ayant que deux idéaux est un corps.

2. Montrer qu'un anneau intègre n'ayant qu'un nombre fini d'idéaux est un corps. Indication : pour $x \neq 0$, considérer les idéaux (x^n) pour $n \in \mathbb{N}$.

Exercice 2. Soient K un corps et A un anneau non nul. Montrer que tous les morphismes de K dans A sont injectifs.

Exercice 3. Déterminer I + J, $I \cap J$ et IJ pour :

- 1. $I = 8\mathbf{Z}$ et $J = 12\mathbf{Z}$ dans \mathbf{Z} ;
- 2. I = (X 1) et J = (X) dans $\mathbf{Z}[X]$;
- 3. $I = (X^2 + 1)$ et J = (X + 2) dans $\mathbf{Z}[X]$.

Exercice 4. Soient A un anneau et I un idéal de A. On appelle radical de I l'ensemble $\sqrt{I} = \{x \in A \mid \exists n \in \mathbb{N}, x^n \in I\}.$

- 1. Montrer que \sqrt{I} est un idéal.
- 2. Dans **Z**, calculer $\sqrt{12\mathbf{Z}}$ et $\sqrt{72\mathbf{Z}}$.

Exercice 5. Soient A un anneaux, I et J deux idéaux de A tels que I+J=A. Montrer que pour tout $n \in \mathbb{N}$ on a $I^n+J^n=A$.

Exercice 6. Soient A et B deux anneaux, I un idéal de A et $f: A \to B$ un morphisme surjectif. Montrer que f(I) est un idéal de B.

Exercice 7. Soient K_1 et K_2 deux corps. Déterminer tous les idéaux de $K_1 \times K_2$.

Exercice 8. Soient A un anneau, a et b deux éléments de A. Montrer que :

- 1. L'anneau A[X]/(X-a) est isomorphe à A;
- 2. L'anneau A[X,Y]/(Y-b) est isomorphe à A[X];
- 3. L'anneau A[X,Y]/(X-a,Y-b) est isomorphe à A.

Indication : quel est le noyau du morphisme de A[X] dans A qui envoie X sur a?

Exercice 9. On note $\mathbf{F}_2 = \mathbf{Z}/2\mathbf{Z}$ et $\mathbf{F}_4 = \mathbf{F}_2[X]/(X^2 + X + 1)$.

- 1. Écrire la liste complète des polynômes de degré 1 dans $\mathbf{F}_2[X]$.
- 2. En déduire que $\mathbf{F}_4 = \{0, 1, \alpha, \alpha + 1\}$ où l'on a noté α l'image de X dans \mathbf{F}_4 .
- 3. Dresser les tables d'addition et de multiplication de ${\bf F}_4$.
- 4. Constater que \mathbf{F}_4 est un corps et en déduire qu'il n'est pas isomorphe à $\mathbf{Z}/4\mathbf{Z}$.

Félicitations, vous venez de rencontrez votre premier corps fini non primitif!