Date:	(D) 20 (n) D)	Name:

hollow spherical shell. The gravitational field will have its greatest value at point(s) 1. Test masses are used to measure the gravitational field at various positions in and near a

where C is a dimensionless constant, and R_P is the radius of the planet. The gravitational A = A = A = A. The mass density of a planet varies with distance from the center as $\rho = \rho_o \left(1 - C \frac{1}{\rho} \right)$.

field of the planet for $v < R_P$ is

A)
$$\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{3R_p}{3R_p})^{\frac{1}{p}} + 4\Pi$$

B) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{3R_p}{3R_p})^{\frac{1}{p}} + 4\Pi$

B) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{3R_p}{3R_p})^{\frac{1}{p}} + 4\Pi$

C) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{2R_p})^{\frac{1}{p}} + 4\Pi$

E) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{2R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{3R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{3R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{3R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{3R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{3R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{3R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{3R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{3R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{3R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{3R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{3R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{3R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{3R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{3R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{3R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{3R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{2R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{2R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{2R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{2R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{2R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{2R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{2R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{2R_p})^{\frac{1}{p}} + 4\Pi$

B) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{2R_p})^{\frac{1}{p}} + 4\Pi$

A) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{2R_p})^{\frac{1}{p}} + 4\Pi$

B) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{2R_p})^{\frac{1}{p}} + 4\Pi$

B) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{2R_p})^{\frac{1}{p}} + 4\Pi$

B) $\vec{g} = -\rho_0 G(\frac{r^2}{2} - \frac{1}{2R_p})^{\frac{1}{p}} + 4\Pi$

B) $\vec{g} = -\rho_0 G(\frac{r^2}{2} -$