

STGP10N60L

N-CHANNEL 10A - 600V TO-220 LOGIC LEVEL IGBT

TYPE	V _{CES}	V _{CE(sat)}	I _C
STGP10N60L	600 V	< 1.95 V	10 A

- HIGH INPUT IMPEDANCE (VOLTAGE DRIVEN)
- VERY LOW ON-VOLTAGE DROP (Vcesat)
- LOW THRESHOLD VOLTAGE (LOGIC LEVEL INPUT)
- HIGH CURRENT CAPABILITY
- OFF LOSSES INCLUDE TAIL CURRENT

APPLICATIONS

- ELECTRONIC IGNITION
- LIGHT DIMMER
- STATIC RELAYS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{GS} = 0)	600	V
V _{ECR}	Reverse Battery Protection	25	V
V_{GE}	Gate-Emitter Voltage	± 15	V
Ic	Collector Current (continuous) at T _c = 25 °C	25	А
Ic	Collector Current (continuous) at T _c = 100 °C	20	Α
I _{CM} (•)	Collector Current (pulsed)	100	А
P _{tot}	Total Dissipation at T _c = 25 °C	125	W
	Derating Factor	0.83	W/°C
T _{stg}	Storage Temperature	-65 to 175	°C
T _j	Max. Operating Junction Temperature	175	°C

(•) Pulse width limited by safe operating area

June 1999 1/8

THERMAL DATA

R _{thj-case}	Thermal	Resistance	Junction-case	Max	1.2	°C/W
R _{thj-amb}	Thermal	Resistance	Junction-ambient	Max	62.5	°C/W
R _{thc-sink}	Thermal	Resistance	Case-sink	Тур	0.1	°C/W

ELECTRICAL CHARACTERISTICS ($T_j = -40$ to 150 $^{\circ}$ C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{BR(ces)}	Collector-Emitter Breakdown Voltage	$I_C = 250 \ \mu A$ $V_{GE} = 0$	600			V
I _{CES}	Collector cut-off (V _{GE} = 0)	$V_{CE} = Max Rating$ $T_j = 25 ^{\circ}C$ $V_{CE} = Max Rating$ $T_j = 125 ^{\circ}C$			25 100	μΑ μΑ
I _{GES}	Gate-Emitter Leakage Current (V _{CE} = 0)	$V_{GE} = \pm 15 \text{ V}$ $V_{CE} = 0$			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GE(th)}	Gate Threshold Voltage	$V_{CE} = V_{GE}$ $I_{C} = 250 \mu A$ $V_{CE} = V_{GE}$ $I_{C} = 250 \mu A$ $T_{j} = 25 ^{\circ}C$	0.6 1.0		2.4 2.0	V V
V _{CE(SAT)}	Collector-Emitter Saturation Voltage	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.5 1.4 1.25	2.0	> >
Ic	Collector Current	V _{GE} = 4.5 V V _{CE} = 7 V	15	45		Α

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g fs	Forward Transconductance	$V_{CE} = 25 \text{ V}$ $I_{C} = 8 \text{ A}$ $T_{j} = 25 {}^{\circ}\text{C}$	7	12		S
C _{ies} C _{oes} C _{res}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{CE} = 25 V f = 1 MHz V _{GE} = 0		1800 120 19	2600 165 26	pF pF pF
Q _G	Gate Charge	$V_{CE} = 400 \text{ V}$ $I_{C} = 8 \text{ A}$ $V_{GE} = 5 \text{ V}$		30		nC

FUNCTIONAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CL}	Latching Current	$V_{clamp} = 480 \text{ V}$ $dV/dt = 200 \text{ V/}\mu\text{s}$ $T_j = 125 ^{\circ}\text{C}$	20			А
E _{CF}	Forward Clamping Energy	T_{start} = 55 °C V_{clamp} = 480 V I_{C} = 10 A L = 4.2 mH - Single Pulse	210			mJ
E _{AR}	Reverse Avalanche Energy		10			mJ

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit	
t _{d(on)}	Delay Time Rise Time	V _{CC} = 480 V V _{GE} = 5 V	$I_C = 8 A$ $R_G = 1 K\Omega$		0.7 1.9		μs μs
(di/dt) _{on}	Turn-on Current Slope	$V_{CC} = 480 \text{ V}$ $R_G = 1 \text{ K}\Omega$	I _C = 8 A V _{GE} = 5 V		5		A/μs
Eon	Turn-on Switching Losses	T _j = 125 °C			2.5		mJ

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t_c $t_r(v_{off})$ t_f $E_{off}(**)$	Cross-Over Time Off Voltage Rise Time Fall Time Turn-off Switching Loss	$\begin{aligned} &V_{CC} = 480 \text{ V} & I_{C} = 8 \text{ A} \\ &R_{GE} = 1 \text{ K}\Omega & V_{GE} = 5 \text{ V} \\ &T_{j} = 25 \text{ °C} \end{aligned}$		4 2.5 1.5 9.0		μs μs μs mJ
t_{c} $t_{r}(v_{off})$ t_{f} $E_{off}(**)$	Cross-Over Time Off Voltage Rise Time Fall Time Turn-off Switching Loss	$\begin{aligned} V_{CC} &= 480 \text{ V} & I_{C} &= 8 \text{ A} \\ R_{GE} &= 1 \text{ K}\Omega & V_{GE} &= 5 \text{ V} \\ T_{j} &= 125 \text{ °C} \end{aligned}$		6 3.3 2.5 10.8		μs μs μs mJ

Safe Operating Area

Thermal Impedance

477

^(•) Pulse width limited by safe operating area (*) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

^(**)Losses Include Also The Tail (Jedec Standardization)

Output Characteristics

Transconductance

Collector-Emitter On Voltage vs Collector Current

Transfer Characteristics

Collector-Emitter On Voltage vs Temperature

Capacitance Variations

Gate Charge vs Gate-Emitter Voltage

Gate Threshold vs Temperature

Off Losses vs Gate Resistance

Latching Current vs Rg

Off Losses vs Collector Current

Off Losses vs Temperature

<u>577</u>

Switching Off Safe Operatin Area

Fig. 1: Gate Charge test Circuit

Fig. 2: Switching Times Test Circuit For Resistive Load

Fig. 3: Test Circuit For Inductive Load Switching

TO-220 MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

Information furnished is believed to be accurate and reliable. However, STMicroelectonics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third partes which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com