Department of mathematics

MA102 Mathematics II

Academic Year 2015 - 2016

Tutorial & Additional Problem Set - 2

Date of Tutorial Class: August 11, 2015

SECTION - A (for Tutorial - 2)

1. Under the mapping $f(z) = \frac{1}{z}$, find the image of each of the following regions in the complex plane.

(i) $\{z:|z|=r\}$, (ii) $\{z:-\pi/2 < Arg(z) < \pi/2\}$, (ii) $\{z:|z-1|=1\}$.

2. Find (i) $\lim_{z \to \infty} \frac{4z^2}{(z-1)^2}$, (ii) $\lim_{z \to 1} \frac{1}{(z-1)^3}$, (iii) $\lim_{z \to \infty} \frac{z^2+1}{z-1}$.

3. The following functions are defined for $z \neq 0$. Which of these functions can be defined at z = 0 so that they become continuous at z = 0.

(a) $\frac{\Re(z)}{|z|}$ (b) $\frac{z}{|z|}$ (c) $\frac{z\Re(z)}{|z|}$ (d) $\frac{\Re(z^2)}{|z|^2}$ (e) $\frac{z^2}{|z|}$

- 4. Let $f(z) = \frac{x^3(1+i) y^3(1-i)}{x^2 + y^2}$ for $z = x + iy \neq 0$ and f(0) = 0. Show that f(z) is continuous at
- 5. Show that $g(z) = (3x^2 + 2x 3y^2 1) + i(6xy + 2y)$ is analytic at all points in the complex plane. Write this function in terms of z.
- 6. If f(z) is analytic in a domain \overline{D} , then show that $\overline{f(\overline{z})}$ is analytic in a domain $\overline{D} = \{z \in \mathbb{C} : \overline{z} \in D\}$.
- 7. Let $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ be the Laplacian operator. If f(z) is analytic in \mathbb{C} , then prove the following:

(i) $\nabla^2 \{ |f(z)|^2 \} = 4 |f'(z)|^2$ (ii) $\nabla^2 \{ \log |f(z)| \} = 0$

8. Find the analytic function f(z) = u(x, y) + i v(x, y) given the following: (First verify that they are harmonic functions)

(a) $u(x, y) = y^3 - 3x^2y$

(b) $u(x, y) - v(x, y) = (x - y)(x^2 + 4xy + y^2)$

SECTION - B (Supplementary Problems)

(These are for your own practice. They will not be discussed in Tutorials.)

9. Under the mapping $f(z) = z^2$, find the image of the region $\{z : Re(z) > 0, Im(z) > 0\}$ in the complex plane.

10. Let $f(z) = z^2/|z|^2$.

- (a) Find the limit of f(z) as $z = (x + iy) \to 0$ along the line y = x.
- (b) Find the limit of f(z) as $z = (x + iy) \to 0$ along the line y = 2x.
- (c) Find the limit of f(z) as $z = (x + iy) \to 0$ along the path $y = x^2$.
- (d) What can you conclude about the limit of f(z) as $z \to 0$.

- 11. Using definition show that (i) $\lim_{z\to 0} \frac{|z|^2}{z} = 0$, (ii) $\lim_{z\to i} (z^2+4) = 3$.
- 12. Let $f(z) = (x^3y(y-ix))/(x^6+y^2)$ for $z=x+iy\neq 0$ and f(0)=0. Examine whether the function f(z) is differentiable at z=0? Check whether f(z) satisfies the Cauchy-Riemann (CR) equations at z=0?
- 13. Show that the function f(z) = xy + iy is continuous everywhere, but not analytic in \mathbb{C} .
- 14. Let $f(z) = (x^{(4/3)}y^{(5/3)} + ix^{(5/3)}y^{(4/3)}) / (x^2 + y^2)$ for $z = x + iy \neq 0$ and f(0) = 0. Show that CR equations hold true at z = 0 but that f is not differentiable at this point.
- 15. Let $f(z) = z^3$. For $z_1 = 1$ and $z_2 = i$, show that there does not exist any point c on the line y = 1 x, joining z_1 and z_2 , such that $\frac{f(z_1) f(z_2)}{z_1 z_2} = f'(c)$ (i.e., Mean Value Theorem does not extend to complex derivatives.)
- 16. Let a function f(z) = u(x, y) + i v(x, y) be analytic in a domain D. Prove that f(z) must be constant in D if any one of the following holds:
 - (a) f'(z) = 0 throughout in D
 - (b) f(z) is real-valued for all z in D
 - (c) f(z) is purely imaginary valued for all z in D
 - (d) $\overline{f(z)}$ is analytic in D
 - (e) |f(z)| is constant in D
 - (f) arg(f(z)) is constant in D
 - (g) $\Re(f(z)) = u(x, y)$ is constant in D
 - (h) $\Im(f(z)) = v(x, y)$ is constant in D
 - (i) $\Re(f(z)) = \Im(f(z))$ for all $z \in D$
 - (j) $\Re(f(z)) = (\Im(f(z)))^2$ for all $z \in D$
 - (k) $k_1\Re(f(z)) + k_2\Im(f(z)) = k_3$ for all $z \in D$, where k_1, k_2, k_3 are constants.
 - (l) v(x, y) is a harmonic conjugate of u(x, y) in D and also u(x, y) is harmonic conjugate of v(x, y) in D.
- 17. Let $f(z) = z^{(1/2)} = r^{(1/2)}(\cos(\theta/2) + i \sin(\theta/2))$ where r > 0 and $-\pi < \theta < \pi$. Verify Cauchy-Riemann equations in polar form for f(z).
- 18. Let v be a harmonic conjugate of u. Show that $h = u^2 v^2$ is a harmonic function.