Epreuve écrite

Examen de fin d'études secondaires 2005

Section: BC

Branche: PHYSIQUE

Nom e	t prénom	du candidat	
	_		_
	_		_

A)En juin 2002, les scientifiques Chad Trujillo et Mike Brown ont découvert une nouvelle « planète » dans notre système solaire qu'ils ont baptisée « Quaoar ». Quaoar effectue un mouvement pratiquement circulaire autour du Soleil. Déterminer la distance de cette planète au Soleil ainsi que la masse du Soleil.

(distance = distance entre les 2 centres d'inertie)

Planète	Rayon en km	Période de révolution en années	s Distance au Soleil	
		terrestres	en km	
Terre	6380	1	150.000.000	
Quaoar	1250	285	?	

7 points

B)Auto-induction:

- 1)Décrire une expérience montrant le phénomène de l'auto-induction (ouverture ou fermeture d'un circuit) . Interprétation .
- 2)Etablir l'expression mathématique de l'inductance d'un solénoide de longueur I , ayant N spires de surface S chacune (sans noyau de fer) .
- 3)Que devient l'inductance si l'on introduit un noyau de fer dans la bobine ?
- 4)Une bobine d'inductance L et de résistance $R = 6.3~\Omega$ est parcourue par un courant électrique dont l'intensité i varie suivant une fonction affine du temps , à savoir que pour t=0 , i = 3 A et pour t = 100 ms , i = 0 .

Déterminer la valeur de L pour que la tension aux bornes de la bobine s'annule pour t = 50 ms .

- C)1)Définir la force de Lorentz et donner les caractéristiques de cette force .
- 2)Une particule de masse m et de charge q (>0) entre avec une vitesse $\overrightarrow{v_0}$ dans un champ magnétique uniforme \overrightarrow{B} tel que \overrightarrow{B} est perpendiculaire à $\overrightarrow{v_0}$; on sait que la trajectoire est plane.

Montrer que le mouvement est uniforme et que la trajectoire est circulaire de rayon R .

3)La vitesse v_0 est obtenue en accélérant sous une tension U la particule (initialement immobile)de masse m et de charge q ; on utilise maintenant une particule (initialement immobile) de masse m' = 4 m , de même charge q et on l'accélère sous la même tension U .

Calculer en fonction de R la valeur du nouveau rayon R' dans le même champ magnétique.

13 points (3+6+4)

Epreuve écrite

Examen de fin d'études secondaires 2005	Nom et prénom du candidat	
Section: BC		
Branche: PHYSIQUE		

D)Exercice:

L'équation du mouvement vertical d'une pointe A est de la forme $y = a \cos \omega t$; l'amplitude a vaut 5 mm et la fréquence est de 50 Hz.

- 1)Déterminer la vitesse de A au moment où son élongation est de 2,5 mm (2 solutions) .
- 2)Cette pointe est l'extrémité d'une corde élastique tendue horizontalement : le front d'onde se propage à la célérité constante de 8 m/s .

Ecrire l'équation horaire d'un point B situé à 18 cm de A sur la corde (dans le sens positif); calculer la valeur de l'élongation de B à l'instant t = 0,115 s.

Est-ce que le point B vibre en phase avec le point A ? Motiver la réponse .

3)On considère un point C situé à 48 cm de A sur la corde (dans le sens positif) ; en C on fixe la corde. La tension de la corde vaut $F=0.8~\mathrm{N}$; trouver le nombre de fuseaux et la valeur de la masse linéique de la corde , sachant que la célérité des ondes dans la corde reste égale à $8~\mathrm{m/s}$.

- E)1)Etablir l'équation différentielle du mouvement du centre d'inertie d'un pendule élastique horizontal non amorti (le pendule est caractérisé par la masse m et la raideur k).
- 2) Donner une solution de cette équation différentielle et en déduire l'expression de la période propre de cet oscillateur .
- 3)On utilise un autre ressort de raideur k'; quelle relation doit exister entre k' et k pour que la période propre soit triplée ? (la masse m reste constante).

9 points (4+3+2)

F)Petites questions:

Mouvement d'un projectile dans un champ de pesanteur uniforme ; le projectile est lancé (vers le haut) avec une vitesse initiale \sqrt{n} faisant un angle α avec une horizontale .

- 1)Existe-t-il des points sur la trajectoire parabolique où le vecteur vitesse est perpendiculaire au vecteur accélération ? Expliquer .
- 2)La portée horizontale est la distance entre le point de lancement O et le point d'impact P dans le même plan horizontal : calculer la valeur de la vitesse en P si la valeur de la vitesse en O vaut V_0 .

4 points (2+2)