

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

1100.1244101

FIGURE 1

20

Applied Pot. V X 100	Ion mol fraction	Gas Velocities			$\Delta p(L_s)$	Q _{ohmic} mW	Q _{visc} mW	Q _{gen} mW	Q _{visc+Q_{gen}} Total mW	Q _{ideal} mW
		for L _s =L _e cm/s	L _s cm/s	Re(L _s)						
X 100	1.000E-12	0.01	0.00	0.000010	0.0000000	1.238E-12	0.000001	1.11E-06	1.238E-12	
	3.162E-12	0.04	0.00	0.000031	0.0000001	1.238E-11	0.000003	3.51E-06	1.238E-11	
	1.000E-11	0.12	0.00	0.000097	0.0000002	1.238E-10	0.000011	1.11E-05	1.238E-10	
X 1.50E-08	3.162E-11	0.37	0.01	0.001	0.0000307	0.0000005	1.238E-09	0.000035	3.51E-05	1.238E-09
	1.000E-10	1.18	0.02	0.002	0.000971	0.0000017	1.238E-08	0.000109	1.11E-04	1.238E-08
	3.162E-10	3.72	0.07	0.005	0.003072	0.0000053	1.238E-07	0.000346	3.51E-04	1.238E-07
X 0.005	1.000E-09	11.76	0.24	0.016	0.009715	0.0000168	1.238E-06	0.001095	1.11E-03	1.238E-06
	3.162E-09	37.20	0.74	0.050	0.030721	0.0000531	1.238E-05	0.003465	3.53E-03	1.238E-05
	1.000E-08	117.62	2.35	0.159	0.097147	0.001684	0.00012	0.010996	0.01	0.0001
	3.162E-08	371.96	7.44	0.502	0.307206	0.005383	0.00124	0.035152	0.04	0.0012
X 1	1.000E-07	1176.23	23.52	1.586	0.971472	0.017605	0.01238	0.114973	0.13	0.0124
	3.162E-07	3719.57	74.39	5.016	3.072064	0.0061508	0.12379	0.401686	0.53	0.1238
	1.000E-06	11762.30	235.25	15.863	9.714720	0.0252860	X 23787	1.651345	X 12319	
	3.162E-06	37195.66	743.91	50.163	30.720642	0.1383175	12.37871	9.033049	21.55	12.3787
X 50	1.000E-05	117623.02	2352.46	158.628	97.147201	1.0209592	123.78713	66.675372	191.48	123.7871
	Drift Vel. in cm/s, v _d =	461.747			2.8830E+19					
	N _A , Avogadro Num. In 1/cm ³ =				1.6022E-19	X 1				
	q, Electronic Charge in C _b =									
X 70	E _{ion} , Ioniz. Energy eV									

Frakre 2

FIGURE 3

Electron Affinities and Electron Configurations			
Element	Electron Affinity (kJ/mol)	Electron Configuration	Ionization Energies (kJ/mole)
H	72.8	1s ¹	1300
He	<0	1s ²	2400
Li	59.8	[He] 2s ¹	
Be	<0	[He] 2s ²	
B	27	[He] 2s ² 2p ¹	
C	122.3	[He] 2s ² 2p ²	1050
N	<0	[He] 2s ² 2p ³	
O	141.1	[He] 2s ² 2p ⁴	1300
F	328.0	[He] 2s ² 2p ⁵	
Ne	<0	[He] 2s ² 2p ⁶	

Figure 4

FIGURE 5

FIGURE 6

FIGURE 7

Comparison of Performance Between Pumps Based on Different Technologies

Method	Base Unit Size x N mm ³	Frequency Hz	Power mW	Voltage V	Flow Rate cm ³ /min	Δp psid
Theoretical		DC	1.26	1.41	9.7	22
Ion Drag	10 x 0.25 x 1 = 2.5	DC	1.65	401.41	9.7	
MesoPump (el.-static, future)	5x5x0.5x15 = 188	25	14	100	1.0	10
MesoPump (el.-static, today)	10x10x1x50 = 5000	3	25	150	1.0	10
MesoPump (el.-static, today)	10x10x1x50 = 5000	3	25	150	1.0	10
Piezo-Electric (Fraunhofer)	7x7x1.1x7x14 = 5282	100		98		

Figure 8

23

Temperature Dependence of
Ion Concentration

Temper. T in K	Ion Aff. Energy E(-) in J/mol	Ionizat. Energy E(+) in J/mol	$\frac{\exp(-E/RT)}{\exp(E/RT)}$
600	2.239E-09	3.169E-87	
1500	3.468E-04	2.514E-35	
2000	2.541E-03	1.123E-26	
2500	8.395E-03	1.739E-21	

Figure 9

FIGURE 10

FIGURE 11a

FIGURE 11b