Linguagens Formais, Autômatos e Computabilidade

Guilherme Henrique de Souza Nakahata

Universidade Estadual do Paraná - Unespar

11 de Junho de 2024

Hierarquia de Chomsky

Definição

Uma linguagem recursivamente enumerável (ou semi-decidível) é um conjunto de cadeias de caracteres que pode ser reconhecido por uma máquina de Turing.

Mais formalmente, uma linguagem L é recursivamente enumerável se existe uma máquina de Turing M tal que:

- Para qualquer cadeia $w \in L$, a máquina M eventualmente aceita w.
- Para qualquer cadeia $w \notin L$, a máquina M ou rejeita w ou entra em um loop infinito.

Características

Características importantes das linguagens recursivamente enumeráveis incluem:

- **Enumerabilidade**: Pode ser listada por uma máquina de Turing.
- Comparação com linguagens decidíveis:
 - Uma linguagem é decidível se a máquina de Turing sempre para e aceita ou rejeita.
 - Em contraste, uma linguagem recursivamente enumerável pode não parar para cadeias fora da linguagem.

Exemplos

Problema da parada:

 O conjunto de todas as descrições de máquinas de Turing M e entradas w tais que M eventualmente para quando executada em w é recursivamente enumerável, mas não é decidível.

Linguagens programáveis:

 As linguagens que podem ser reconhecidas por programas de computador (com tempo potencialmente ilimitado) são recursivamente enumeráveis.

Máquina de Turing (MT)

- Máquina de Turing (MT);
- Mecanismo reconhecedor com maior poder computacional;
- Processamento de funções;
- Reconhecimento de linguagens;
- Dispositivo teórico;
- Allan Turing (1936);
- Ferramenta para estudar a capacidade dos processos algorítmicos;
- Modelo abstrato, concebido antes mesmo de uma implementação tecnológica.

Máquina de Turing ≠ Teste de Turing

Propostos pelo mesmo autor;

Teste de Turing;

Inteligencia Artificial;

Se passar por um humano.

Importância da MT para a Ciência da Computação

- A potência computacional da MT é tão grande quanto a de qualquer sistema algorítmico;
- Se um problema não puder ser resolvido por uma MT, não poderá ser resolvido por qualquer sistema algorítmico;
- MT representa a fronteira teórica da capacidade computacional para as máquinas modernas reais.
- Os computadores modernos são MT;
 - O processador corresponde ao cabeçote da fita;
 - A memória da máquina corresponde a fita;
 - Os padrões de bits correspondem ao alfabeto da fita.

Máquina de Turing (MT)

- Podem ser de dois tipos:
 - Reconhecedora: Responde sim ou n\u00e3o para uma palavra, se pertence ou n\u00e3o \u00e0 linguagem;
 - Transdutora: É gerada uma palavra na própria fita que é a saida da MT.
- Para reconhecer/traduzir uma palavra deve-se processá-la e parar em estado final;
- O cabeçote da fita começa na posição a direita do marcador de início da fita e deve-se terminar o processamento com o cabeçote na mesma posição.

Máquina de Turing (MT)

- Composta por:
 - Fita: Utilizada para leitura e escrita;
 - Cabeçote da fita: Mostra a posição atual da fita e se move para direita e esquerda;
 - Função de transição: Função que movimenta a máquina a partir de um símbolo indo para um estado e movendo o cabeçote para direita ou esquerda.

Máquina de Turing - ESTADO

• Representação gráfica de um ESTADO.

Máquina de Turing - ESTADO INICIAL

• Representação gráfica de um **ESTADO INICIAL**.

Máquina de Turing - ESTADO FINAL

• Representação gráfica de um ESTADO FINAL.

Máquina de Turing - FITA

 Representação gráfica de uma FITA e CABEÇOTE DA FITA.

Máquina de Turing - TRANSIÇÃO

- Representação gráfica de uma TRANSIÇÃO;
- Onde:
 - x = Símbolo lido na fita;
 - y = Símbolo escrito na fita;
 - m =Sentido do movimento, direita ou esquerda.

Máquina de Turing - MT

- Exemplo de uma MT para:
- $L = \{a^n b^n | n > 0\}$

Máquina de Turing - Descrição Formal

- A descrição formal de uma MT deve possuir:
 - E =Conjunto de estados.
 - \sum = Alfabeto da Fita.
 - i = Estado inicial.
 - F =Conjunto de estados finais.
 - $\gamma = \text{Alfabeto auxiliar da Fita}$.
 - < = Marcador de inicio.
 - $\beta = \text{Símbolo branco}$.
 - $\delta = \text{Função de transição}$.
- MT = $\{E, \sum, i, F, \gamma, <, \beta, \delta\}$

Máquina de Turing - Descrição Formal

- $E = \{q0,q1,q2,q3,q4,q5\}$
- \bullet $\sum = \{a,b\}$
- \bullet i = q0
- $F = \{q5\}$
- < = <

Máquina de Turing - Descrição Formal

	a	b	Α	В	<	β
q0	q1,A,R	Χ	q0,A,R	q3,B,R	X	X
q1	q1,a,R	q2,B,L	Х	q1,B,R	Х	Х
q2	q2,a,L	Х	q2,A,L	q2,B,L	q0,<,R	X
q3	Х	Х	Х	q3,B,R	Х	$q4,\beta,R$
q4	Х	Х	q4,A,L	q4,B,L	q5,<,R	X
q5	Х	Χ	Χ	Χ	Χ	Χ

18 / 21

Máquina de Turing - Exercícios

- Novas linguagens:
 - Incremento de um número;
 - Decremento de um número;
 - Complemento de um número;
 - Contar tamanho da palavra unário;
 - Palíndromo;

Máquina de Turing - Exercícios

- Faça uma MT que tenha como entrada um número binário e gere como saída o complemento do número;
- L = $\{a^i b^j c^k | j = i + k, i, k > 0\}$
- L = $\{a^n b^m c^n | n > 0, m > 0\}$
- Faça uma MT que tenha como entada um número binário e gere como saída o número multiplicado por 4;
- Faça uma MT que tenha como entada um número binário e gere como saída o incremento do número (100 o 101, 101 o 110, 1010 o 1011, 11 o 100);
- Descrição formal:
 - *E* = Conjunto de estados.
 - \sum = Alfabeto da Fita.
 - i = Estado inicial.
 - F =Conjunto de estados finais.
 - $\gamma = \text{Alfabeto auxiliar da Fita}$.
 - < = Marcador de inicio.
 - $\beta = \text{Símbolo branco}$.
 - $\delta = \text{Função de transição}$.

Obrigado! Dúvidas?

Guilherme Henrique de Souza Nakahata

guilhermenakahata@gmail.com

https://github.com/GuilhermeNakahata/UNESPAR-2024