

Statistical Insights into International Cricket Batsmen Performance

Statistical Computing (STAT 50001)

Nehana Jampanaboyana Vaishak Balachandra Naga Niharika

Introduction:

Why Analyze Batting Average and Strike Rate in Cricket?

Cricket, often referred to as a game of statistics.

Cricket Analytics: Highlights the broader domain of leveraging data science techniques to analyze cricket performance metrics.

Overview

- Data Collection & Preprocessing
- Exploratory Data Analysis (EDA)
- Model Development
- Insights & Validation

Motivation

Simple Answer:- Cricket Analytics!!

Why Are These Metrics Important?

- Batting Average: Measures consistency and reliability over a player's career.
- Strike Rate: Highlights scoring efficiency, critical for limited-overs formats.

Data Description

- The data is sourced from the ICC Cricket Dataset on Kaggle.
- Contains detailed statistics on cricket players' performances across various matches and seasons.

Variables (15)

- Player: Name of the player with Country name.
- Span: Start Year and End Year.
- Mat: Number of matches played by the player.
- Inns: Number of innings played by the player.
- NO: Number of times the player remained not out.
- Runs: Total runs scored by the player.
- HS: Player's highest score in a match with out or not status.
- Ave: Average runs scored per innings.
- BF: Number of balls faced by the player.
- SR: A measure of how quickly the player scores.
- 100: Number of centuries scored by the player.
- 50: Number of half-centuries scored.
- 0: Number of times the player got out without scoring.
- 4s: Number of boundaries (4 runs) hit by the player.
- 6s: Number of sixes hit by the player.

Player	Span	Mat	Inns	NO	Runs	HS	Ave	BF	SR	100	50	0	4s	6s
V Kohli (INDIA)	2010- 2019	75	70	20	2633	94*	52.66	1907	138.07	0	24	2	247	71
RG Sharma (INDIA)	2007 -2019	104	96	14	2633	118	32.1	1905	138.21	4	19	6	234	120
MJ Guptill (NZ)	2009 -2019	83	80	7	2436	105	33.36	1810	134.58	2	15	2	215	113
Shoaib Malik (ICC/PAK)	2006 -2019	111	104	30	2263	75	30.58	1824	124.06	0	7	1	186	61
BB McCullum (NZ)	2005 -2015	71	70	10	2140	123	35.66	1571	136.21	2	13	3	199	91

<u>Table.</u> head(Cricket_Data)

https://www.kaggle.com/datasets/mahendran1/icc-cricket

Tools & Libraries

Data Preprocessing

Data preprocessing is the process of transforming raw data into a format that's easier for machines to understand and analyze.

Column Preprocessing

• Splitting columns.

Variables (15)

- Player: Name of the player with Country name.
- Span: Start Year and End Year
- · Mat: Number of matches played by the player.
- · Inns: Number of innings played by the player.
- · NO: Number of times the player remained not out.
- · Runs: Total runs scored by the player.
- HS: Player's highest score in a match with out or not status.
- · Ave: Average runs scored per innings.
- · BF: Number of balls faced by the player.
- · SR: A measure of how quickly the player scores.
- · 100: Number of centuries scored by the player.
- . 50: Number of half-centuries scored.
- · 0: Number of times the player got out without scoring.
- · 4s: Number of boundaries (4 runs) hit by the player.
- · 6s: Number of sixes hit by the player.

Variables (18)

- > colnames(Batsman_clean)
- [1] "Match" "Innings"
- [6] "BattingAverage" "BallsFaced"
- [11] "Ducks"
- "Fours" [16] "Country" "StartYear"
- "NotOut"

"EndYear"

- "Runs" "StrikeRate" "Sixes"
 - "Hundreds" "HS_star"
- "Fifties" "PlayerName"

"HighestScore"

Row Preprocessing

- Removing rows with NA values.
- · Removing duplicate rows.

```
> dim(Batsman)
[1] 2006
            15
```


> dim(Batsman_clean) [1] 1672

Exploratory Data Analysis (EDA):

> summary(Batsman_clean)

Summary Statistics and Key Insights

- The median number of matches played is 7, but the maximum is 111, highlighting disparity in experience.
- Median runs (45.5) are significantly lower than maximum runs (2633), reflecting a few exceptional performers.
- Average fours (13.66) and sixes (5.51) highlight boundary play's importance in total runs.
- Average hundreds (0.0329) and a maximum of 4 indicate only a few achieve this milestone consistently.
- Average ducks (0.90 on 10) suggest batsmen contribute positively in most matches, which indicate less probability of scoring a duck.
- Median Highest Score (HS) of 22 compared to maximum (172) shows variability in top-scoring ability.
- Most players have career spans concentrated between 2010 and 2019, with few exceptions.
- Average fifty-count (0.6328) and a maximum of 24 indicate some players consistently perform.
- Players scoring centuries in a match (max 4) demonstrate elite performance levels.

Top Players Based on Performance

<pre>> print(top_runs)</pre>		> print(top_avg)	<pre>> print(top_strike_rate)</pre>						
# A tibble: 10×2		# A tibble: 10×3			# A tibble: 10×3				
PlayerName	Runs	PlayerName	BattingAverage	Match	PlayerName	StrikeRate	Match		
<chr></chr>	<db7></db7>	<chr></chr>	<db1></db1>	<db 1=""></db>	<chr></chr>	<db7></db7>	<db1></db1>		
1 V Kohli	2633	1 Abu Hider	58	13	1 Washington Sundar	217.	18		
2 RG Sharma	2633	2 Nouman Sarwar	57.3	14	2 Hasan Ali	174.	30		
3 MJ Guptill	<u>2</u> 436	3 V Kohli	52.7	75	3 A Symonds	169.	14		
4 Shoaib Malik	<u>2</u> 263	4 HA Varaiya	51	25	4 Hazratullah Zazai	163.	13		
5 BB McCullum	<u>2</u> 140	5 Babar Azam	50.2	36	5 Izatullah Dawlatzai	162.	14		
6 DA Warner	<u>2</u> 079	6 A Symonds	48.1	14	6 Dawlat Zadran	162.	34		
7 EJG Morgan	<u>2</u> 002	7 RN ten Doeschate	44.4	22	7 C Munro	160.	60		
8 Mohammad Shahzad	<u>1</u> 936	8 KL Rahul	43.8	34	8 GJ Maxwell	160	61		
9 JP Duminy	<u>1</u> 934	9 Hazratullah Zazai	43.2	13	9 JC Tredwell	160	17		
10 PR Stirling	<u>1</u> 929	10 AR Nurse	42.5	13	10 AJ Finch	156.	58		

(Constraints/ Condition: with at least mean matches played)

Frequency Distribution

	Number of Centuries	÷	Frequency	
1	0		16	3(
2	1			33
3	2			(
4	3			1
5	4			
	Search: Frequency Distribution of H Number of Half-Centuries		ries (Fifties) Frequency \$	
1	0		1312	
2	1		161	
3	2		70	
4	3		38	
5	4		28	
	Previous 1 2 Show 5 Search: Frequency Distribut Number of Ducks	✓ entries	4 Next cks Frequency	
	0		858	
1			166	
1	1		466	
	1 2		179	
2				

Exploratory Data Analysis (EDA):

- AFG: Afghanistan
- AUS: Australia
- BDESH: Bangladesh
- ENG: England
- HKG: Hong Kong
- INDIA: India
- NEPAL: Nepal
- NZ: New Zealand
- PAK: Pakistan
- SA: South Africa
- SL: Sri Lanka
- USA: United States
- WI: West Indies

Performance Over Time

INSIGHTS:

- Batting Average showing a gradual decline and Strike Rate exhibiting more significant variability
- Performance in terms of Batting Average has steadily decreased since around 2012, while Strike Rate remains highly inconsistent over the years.

Correlation Matrix

INSIGHTS:

- BATTING AVERAGE:
- has relation with: Balls Faced, Strike Rate, Hundreds, Fifties, Runs etc.,
- STRIKE RATE:
- has relation with: Fours, Sixes, Balls Faced, Ducks etc.,

Exploratory Data Analysis (EDA):

Batting Average and Strike Rate

Highest Score (Out/ Not Out) Status

INSIGHTS:

 Majority of players may contribute modestly to the team's runs, while players with a batting average above 50 are rare and may represent elite performers.

INSIGHTS:

 Strike rates around 100 are typical for average players, while exceptionally high or low strike rates are less common and might represent either elite performers or under-performers.

Highest Score: OUT vs. NOT OUT Players

Player Status

INSIGHTS:

• Players who achieve higher scores are more likely to remain "NOT OUT" at the end.

Model 1: Batting Average Prediction

Regression Analysis for Batting Average

Model To identify the best predictors of a player's

Objective: batting average using stepwise variable

selection (via regsubsets).

Variables Used: "(Intercept)", "Match", "NotOut", "Runs",

"HighestScore", "BallsFaced", "StrikeRate",

"Fifties", "Ducks".

Flexibility: Flexibility is provided to the stakeholder/

user, allowing them to choose the number

of variables to include in the model.

```
> cat("Choose the number of variables to include (1 to 8): ")
Choose the number of variables to include (1 to 8):
> num_vars = as.integer(readline())
6
```


Multiple Linear Regression Model

Using Stepwise Selection

Example: Considered number of variables = 6

Variables selected: "(Intercept)", "Match", "NotOut", "HighestScore", "BallsFaced", "StrikeRate", "Ducks".

BattingAverage ~ Match + NotOut + HighestScore + BallsFaced + StrikeRate + Ducks

```
BattingAverage = 2.3689 - 0.4422*Match + 1.6498*NotOut + 0.3371*HighestScore + 0.0051*BallsFaced + 0.0641*StrikeRate - 1.6451*Ducks
```

Multiple Linear Regression Model

Performing BOXCOX Transformation

Transformed Mode

2.3689 - 0.4422*Match + 1.6498*NotOut + BattingAverage ^ 0.42= 0.3371*HighestScore + 0.0051*BallsFaced + 0.0641*StrikeRate - 1.6451*Ducks

Before boxcox transformation

INFERENCE:

- All 6 variables are significant.
- Multiple R-squared: 0.6455
- Adjusted R-squared: 0.6442

after boxcox transformation

INFERENCE:

- All 6 variables are significant.
- Multiple R-squared: 0.7491
- Adjusted R-squared: 0.7482

Model 2: Strike Rate Prediction

Regression Analysis for Strike Rate

Example: Considered number of variables = 5

Variables selected: "(Intercept)", "Runs", "BallsFaced", "Hundreds", "Fifties", "Fours"

StrikeRate ~ Runs + BallsFaced + Hundreds + Fifties + Fours

```
92.7713 + 0.398*Runs - 0.4141*BallsFaced

Strike Rate Average = - 20.7269*Hundreds - 7.8796*Fifties + 0.1236*Fours
```

Visualizations

INFERENCE:

• Strong positive Correlation

INFERENCE:

• Positive Correlation

INFERENCE:

Strong Positive Correlation

Thank you so much!

Open to

