

AJUSTE DE CURVAS

Até agora, o polinômio de aproximação foi definido de tal maneira a coincidir com o valor da função dada em pontos definidos (interpolação). Em certos tipos de problemas, isto pode não ser desejável, em particular se os valores foram obtidos experimentalmente e são, portanto, sujeitos a erros. Não é conveniente incorporar esses erros à função de aproximação que reflita a tendência geral da função dada.

Dados n pontos (x_i, y_i) , i = 1,..., n, deseja-se ajustar a eles uma curva g(x), que seja uma "boa aproximação" para esses pontos tabelados.

MÉTODO DOS MÍNIMOS QUADRADOS

Ajuste de Curva - Caso Discreto

Dados os pontos $(x_i, f(x_i))$, i = 1, ..., n, e as n funções $g_1(x)$, $g_2(x)$, ..., $g_2(x_n)$ escolhidas de alguma forma, devemos determinar os coeficientes $a_1, a_2, ..., a_n$ tal que a função $g(x) = a_1g_1(x) + a_2g_2(x) + ... + a_ng_n(x)$ se aproxime ao máximo de f(x).

O ajuste de curvas pelo Método dos Mínimos Quadrados tem por objetivo ajustar g(x) = f(x), de forma que os desvios quadráticos sejam mínimos, ou seja, os coeficientes a_i que fazem com que g(x) se aproxime ao máximo de f(x), são os que minimizam a função:

minimizar
$$\sum_{i=1}^{n} (f(x_i) - g(x_i))^2$$
 minimizar $\sum_{i=1}^{n} e_i^2 \rightarrow \text{minimizar (erros)}^2$

Tipos de ajustes:

• Ajuste polinomial

$$g(x) = a_1g_1(x) + a_2g_2(x) + ... + a_ng_n(x)$$

• Ajuste exponencial

$$g(x) = ab^x$$

$$g(x) = ae^{bx}$$

$$g(x) = e^{ax+b}$$

Ajuste hiperbólico

$$g(x) = \frac{1}{a_1 x + a_2}$$

AJUSTE DE POLINOMIAL – RETA

Dados n pontos (x_i, y_i) , i = 1,..., n, deseja-se ajustar a eles uma reta $g(x) = a_1g_1(x) + a_2g_2(x)$ = $a_1x + a_2$. Assim, $g_1(x) = x$ e $g_2(x) = 1$. Dessa forma, devemos determinar a_1 e a_2 de modo que a função g(x) se ajuste melhor os dados da tabela, ou seja,

$$\min \sum_{i=1}^{n} e_i^2 = \min \sum_{i=1}^{n} (f(x_i) - g(x_i))^2 = \min \sum_{i=1}^{n} [f(x_i) - (a_1 x_i + a_2)]^2$$

$$\Rightarrow E(a_1, a_2) = \min \sum_{i=1}^{n} (f(x_i) - a_1 x_i - a_2)^2$$

Do cálculo diferencial, se a função $E(a_1, a_2)$ possui um ponto de mínimo, então suas derivadas parciais devem ser nulas, ou seja, $\frac{\partial E}{\partial a_1} = 0$ e $\frac{\partial E}{\partial a_2} = 0$. Portanto,

$$\begin{cases} \frac{\partial \sum_{i=1}^{n} e_{i}^{2}}{\partial a_{1}} = 0 \\ \frac{\partial \sum_{i=1}^{n} e_{i}^{2}}{\partial a_{2}} = 0 \end{cases} \Rightarrow \begin{cases} 2\sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(-x_{i}) = 0 \\ 2\sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(-1) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \\ \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(-1) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \\ \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(-1) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \\ \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \\ \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \\ \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \\ \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \\ \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \\ \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i} - a_{1}x_{i} - a_{2})(x_{i} - a_{2})(x_{i} - a_{2})(x_{i} - a_{2})(x_{i} - a_{2})(x_{i} - a_{$$

$$\Rightarrow \begin{cases} \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} a_{1} x_{i}^{2} - \sum_{i=1}^{n} a_{2} x_{i} = 0 \\ \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} a_{1} x_{i} - \sum_{i=1}^{n} a_{2} = 0 \end{cases} \Rightarrow \begin{cases} a_{1} \sum_{i=1}^{n} x_{i}^{2} + a_{2} \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} x_{i} y_{i} \\ a_{1} \sum_{i=1}^{n} x_{i} + a_{2} (n) = \sum_{i=1}^{n} y_{i} \end{cases}$$

Desta forma, tem-se o seguinte sistema linear:

$$\begin{pmatrix} n & \sum_{i=1}^{n} x_{i} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} \end{pmatrix} \begin{pmatrix} a_{2} \\ a_{1} \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{n} y_{i} \\ \sum_{i=1}^{n} x_{i} y_{i} \end{pmatrix}$$

Esse sistema pode ser resolvido por qualquer método visto anteriormente, em particular, o método de Cholesky pode ser aplicado, pois o sistema de equações possui a matriz simétrica e definida positiva.

Exemplo

Ajuste os pontos abaixo a g(x) e calcule o erro.

х	0	1	2	3	4
у	0,98	-3,01	-6,99	-11,01	-15

AJUSTE POLINOMIAL

Dados n pontos (x_i, y_i) , i = 1,..., n, e o valor do grau do polinômio a ser determinado, deseja-se encontrar os coeficientes do polinômio $g(x) = a_1g_1(x) + a_2g_2(x) + ... + a_ng_n(x)$ de modo que min $\sum_{i=1}^{n} (f(x_i) - g(x_i))^2$.

Resolvendo min $\sum_{i=1}^{n} (y_i - g(x_i))^2$, obtém-se o seguinte sistema linear:

$$\begin{pmatrix} n & \sum x_{i} & \sum x_{i}^{2} & \dots & \sum x_{i}^{n} \\ \sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} & \dots & \sum x_{i}^{n+1} \\ \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} & \dots & \sum x_{i}^{n+2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sum x_{i}^{n} & \sum x_{i}^{n+1} & \sum x_{i}^{n+2} & \dots & \sum x_{i}^{n+n} \end{pmatrix} \begin{pmatrix} a_{n} \\ a_{n-1} \\ \vdots \\ a_{2} \\ a_{1} \end{pmatrix} = \begin{pmatrix} \sum y_{i} \\ \sum x_{i} y_{i} \\ \sum x_{i}^{2} y_{i} \\ \vdots \\ \sum x_{i}^{n} y_{i} \end{pmatrix}$$

Exemplo

Ajuste os pontos da tabela abaixo à uma equação do 2º grau e calcule o erro cometido.

х	-2,0	-1,5	0,0	1,0	2,2	3,1
у	-30,5	-20,2	-3,3	9,2	16,8	21,4

Ajuste de Curva - Caso Contínuo

O método dos mínimos quadrados também pode ser usado para aproximar uma função f(x) contínua num intervalo [a,b] por uma combinação de funções do tipo

$$g(x) = a_1g_1(x) + \alpha_2g_2(x) + ... + \alpha_ng_n(x)$$

em que $g_1(x)$, $g_2(x)$, ..., $g_n(x)$ são funções contínuas no intervalo [a,b]. Neste caso, queremos determinar g(x) que melhor se aproxime da função f(x), ou seja, queremos que a área entre as curvas de f(x) e g(x) seja a menor possível. Desta forma:

$$E(a_1, a_2, ... a_n) = \int_{a}^{b} [f(x) - g(x)]^{2} dx$$

Assim, o problema do método dos mínimos quadrados é definido por

minimizar
$$\int_{a}^{b} [f(x) - (a_1 g_1(x) + a_2 g_2(x) + ... + a_n g_n(x))]^2 dx$$

Portanto, o pronto de mínimo necessariamente satisfaz:

$$\frac{\partial E}{\partial a_1} = \frac{\partial E}{\partial a_2} = \dots = \frac{\partial E}{\partial a_n} = 0$$

ou seja,

$$\frac{\partial E}{\partial a_i} = -2 \int_a^b \left(f(x) - \sum_{k=1}^n a_k g_k(x) \right) g_i(x) dx = 0, \ i = 1, ..., n$$

Assim:

$$a_1 \int_a^b g_1(x)g_i(x)dx + \dots + a_n \int_a^b g_n(x)g_i(x)dx = \int_a^b f(x)g_i(x)dx, \quad 1 = 1,\dots, n$$

Utilizando a notação de produto escalar de funções:

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x)dx$$

Temos o sistema de equações normais:

$$\begin{bmatrix} \langle g_1, g_1 \rangle & \langle g_1, g_2 \rangle & \cdots & \langle g_1, g_n \rangle \\ \langle g_2, g_1 \rangle & \langle g_2, g_2 \rangle & \cdots & \langle g_2, g_n \rangle \\ \vdots & & \ddots & \vdots \\ \langle g_n, g_1 \rangle & \langle g_n, g_2 \rangle & \cdots & \langle g_n, g_n \rangle \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} \langle g_1, f \rangle \\ \langle g_2, f \rangle \\ \vdots \\ \langle g_n, f \rangle \end{bmatrix}$$

Se o determinante da matriz do sistema de equações normais for diferente de zero, o sistema possui solução única, ou seja, existe uma única função g(x) que melhor se ajusta a função f(x).

Para um caso simples, sejam as funções $g_1(x)$ e $g_2(x)$ que definem a função g(x), contínuas no intervalo [a,b] e escolhidas a partir de algum critério de mérito:

$$g(x) = a_1 g_1(x) + a_2 g_2(x)$$

Deseja-se encontrar a_1 e a_2 que melhor ajuste a reta g(x) a f(x), não obrigando que a curva ajustada passe pelos pontos f(a) e f(b).

Fazendo a substituição, tem-se:

$$E = \int_{a}^{b} [f(x) - g(x)]^{2} dx = \int_{a}^{b} [f(x)^{2} - 2f(x)g(x) + (g(x))^{2}] dx =$$

$$= \int_{a}^{b} \{f(x)^{2} - 2f(x)[a_{1}g_{1}(x) + a_{2}g_{2}(x)] + a_{1}^{2}g_{1}(x)^{2} + 2a_{1}a_{2}g_{1}(x)g_{2}(x) + a_{2}^{2}g_{2}(x)^{2}\} dx =$$

$$= \int_{a}^{b} [f(x)]^{2} dx - \left[2\int_{a}^{b} f(x)g_{1}(x)dx \right] a_{1} - \left[2\int_{a}^{b} f(x)g_{2}(x)dx \right] a_{2} + \left[\int_{a}^{b} g_{1}(x)^{2}dx \right] a_{1}^{2} +$$

$$+ \left[2\int_{a}^{b} g_{1}(x)g_{2}(x)dx \right] a_{1}a_{2} + \left[\int_{a}^{b} g_{2}(x)^{2}dx \right] a_{2}^{2} = F(a_{1}, a_{2})$$

A solução é encontrar (a_1, a_2) tal que:

$$\frac{\partial E}{\partial a_i}\Big|_{a_1, a_2} = 0$$
 para $i = 1, 2$

$$\frac{\partial E}{\partial a_1} = -2 \int_{a}^{b} f(x) g_1(x) dx + \left[2 \int_{a}^{b} g_1(x)^2 dx \right] a_1 + \left[2 \int_{a}^{b} g_1(x) g_2(x) dx \right] a_2$$

$$\frac{\partial E}{\partial \alpha_2} = -2 \int_a^b f(x) g_2(x) dx + \left[2 \int_a^b g_2(x)^2 dx \right] a_2 + \left[2 \int_a^b g_1(x) g_2(x) dx \right] a_1$$

Igualando-se a zero e reagrupando, tem-se:

$$\left\{ \left[\int_{a}^{b} g_{1}(x)^{2} dx \right] a_{1} + \left[\int_{a}^{b} g_{1}(x) g_{2}(x) dx \right] a_{2} = \int_{a}^{b} f(x) g_{1}(x) dx \\
\left[\int_{a}^{b} g_{1}(x) g_{2}(x) dx \right] a_{1} + \left[\int_{a}^{b} g_{2}(x)^{2} dx \right] a_{2} = \int_{a}^{b} f(x) g_{2}(x) dx$$

Estas equações resultam num sistema de equações tal que:

$$A = \begin{pmatrix} \int_{a}^{b} g_{1}(x)^{2} dx & \int_{a}^{b} g_{1}(x)g_{2}(x) dx \\ \int_{a}^{b} g_{1}(x)g_{2}(x) dx & \int_{a}^{b} g_{2}(x)^{2} dx \end{pmatrix} e b = \begin{pmatrix} \int_{a}^{b} f(x)g_{1}(x) dx \\ \int_{a}^{b} f(x)g_{2}(x) dx \end{pmatrix}$$

Exemplo:

Aproximar $f(x) = 4x^3$ por uma reta no intervalo [0,1].

REGRESSÃO NÃO LINEAR NOS PARÂMETROS – AJUSTE NÃO LINEAR

Muitas vezes, os dados experimentais necessitam de uma família de funções para representa-los que não é composta por combinação linear nos parâmetros. Desta forma, faz-se necessário o uso de outras funções para ajustar adequadamente uma função representada na forma de tabela.

Ajuste exponencial

Existem casos, em que os dados experimentais sugerem que a função tabelada deve ser aproximada por uma função exponencial da forma $g(x) = a(b)^x$, com a e b positivos. Os valores de a e b devem ser obtidos de modo que o erro seja mínimo, ou seja:

$$E(a,b) = \sum_{i=1}^{n} e(x_i)^2 \rightarrow \text{minimizar} \sum_{i=1}^{n} [f(x_i) - g(x_i)]^2$$

A função exponencial $g(x) = a(b)^x$ pode ser ajustada fazendo a seguinte transformação:

$$h(x) = ln(g(x)) = ln(a(b)^{x}) = ln(a) + xln(b)$$

Definindo:

$$a_2 = ln(a)$$
, então $e^{a^2} = a$
 $a_1 = ln(b)$, então $e^{a^1} = b$

Desta forma h(x) = ln(a) + xln(b) = a + bx é representada por uma combinação linear das funções $g_1(x) = x$ e $g_2(x) = 1$, ou seja, $h(x) = a_1g_1(x) + a_2g_2(x)$.

Para que a função g(x) aproxime-se de f(x), a função h(x) deve se aproximar de ln(f(x)), ou seja:

$$g(x) \approx f(x) \rightarrow ln(g(x)) \approx ln(f(x))$$

A tabela de pontos fica definida como:

<i>x</i> ₁	<i>x</i> ₂	 $\chi_{\rm n}$
$ln(f_1(x))$	$ln(f_2(x))$	 $ln(f_n(x))$

Do ajuste de reta tem-se o seguinte sistema linear:

$$\left\{ \left(\sum_{i=1}^{n} x_i^2 \right) a_1 + \left(\sum_{i=1}^{n} x_i \right) a_2 = \sum_{i=1}^{n} \ln(f(x_i)) x_i \right. \\
\left(\left(\sum_{i=1}^{n} x_i \right) a_1 + (n) a_2 = \sum_{i=1}^{n} \ln(f(x_i)) \right. \\$$

Com os valores de a_1 e a_2 obtidos com a resolução do sistema linear, resolvemos o problema: minimizar $\sum_{i=1}^{n} \left[\ln(f(x_i)) - h(x_i) \right]^2$.

Exemplo

Ajuste os pontos da tabela à equação $g(x) = a(b)^x$, com 0 < b < 1, e calcule o erro cometido.

χ_i	-1	-0,9	-0,8	0	1	2
$f(x_i)$	6,01	5,39	4,80	2,01	0,65	0,21

Ajuste hiperbólico

No ajuste hiperbólico, observa-se que os pontos tabelados possuem um comportamento que se aproxima de uma função definida por:

$$g(x) = \frac{1}{a_1(x) + a_2}$$

Novamente, deseja-se determinar os parâmetros a_1 e a_2 tal que:

$$E(a_1, a_2) = \sum_{i=1}^{n} e(x_i)^2 \rightarrow \text{minimizar } \sum_{i=1}^{n} [f(x_i) - g(x_i)]^2$$

Se $g(x) = \frac{1}{a_1(x) + a_2}$ aproxima-se da função f(x), fazemos $h(x) = \frac{1}{g(x)} = a_1(x) + a_2$, que

aproxima-se da função
$$\frac{1}{f(x)}$$
, ou seja, $g(x) \approx f(x) \rightarrow \frac{1}{g(x)} \approx \frac{1}{f(x)}$.

A tabela de pontos fica definida como:

x_1	<i>x</i> ₂		\mathcal{X}_{n}
$1/f_1(x)$	$1/f_2(x)$	•••	$1/f_n(x)$

Do ajuste de reta tem-se o seguinte sistema linear:

$$\begin{cases} \left(\sum_{i=1}^{n} x_{i}^{2}\right) a_{1} + \left(\sum_{i=1}^{n} x_{i}\right) a_{2} = \sum_{i=1}^{n} \frac{x_{i}}{f(x_{i})} \\ \left(\sum_{i=1}^{n} x_{i}\right) a_{1} + (n) a_{2} = \sum_{i=1}^{n} \frac{1}{f(x_{i})} \end{cases}$$

Com os valores de a_1 e a_2 obtidos com a resolução do sistema linear, resolvemos o problema: minimizar $\sum_{i=1}^{n} \left[\frac{1}{f(x_i)} - h(x_i) \right]^2$.

Exemplo

Ajuste os pontos da tabela à equação $g(x) = \frac{1}{a_1(x) + a_2}$ e calcule o erro cometido.

x_i	-3	-2	-1	-0,5	-0,4
$f(x_i)$	-0,13	-0,20	-0,49	-2,01	-4,99

Exercícios

1. Ajuste os pontos abaixo à equação $y = b_0 + b_1 x + b_2 x^2 + b_3 x^3$.

х	-5	-4	-2	0	1	2	3	5
y	386	225	54	6	13	40	110	220

2. Ajuste os dados abaixo utilizando uma reta e uma parábola. Trace as duas curvas no gráfico de dispersão dos dados. Compare.

х	1	2	3	4	5	6	7	8
у	0,5	0,6	0,9	0,8	1,2	1,5	1,7	2,0

- **3.** Aproxime a função $f(x) = (x^3-1)^2$, $x \in [-1,1]$, por uma reta e, por um polinômio de $2^{\underline{o}}$ grau. Compare os resultados obtidos.
- **4.** Aproxime a função $f(x) = \sqrt[3]{x}$ no intervalo [0,1] por um polinômio de 3° grau, usando os valores de x com incremento de 0,1.
- **5.** Ajuste os pontos abaixo à equação $g(x) = be^{ax}$ e calcule o erro cometido.

x_i	0,10	1,50	3,30	4,50	5,00
Уi	1,77	2,17	2,48	2,99	3,15

6. Ajuste os dados abaixo à equação $z(x_i) = \frac{1}{1 + e^{a+bx}}$.

x_i	0,00	0,20	0,50	0,60	0,80	1,10
$z(x_i)$	0,06	0,12	0,30	0,60	0,73	0,74

7. Aproxime a tabela abaixo por uma função do tipo $g(x)=1+ae^{bx}$.

X	0,0	0,5	1,0	2,5	3,0
У	2,0	2,6	3,7	13,2	21,0

8. Faça o diagrama de dispersão e ajuste os dados da tabela abaixo. Calcule o erro.

Х	1,5	3,4	5,1	6,8	8,0
у	2,0	5,0	3,8	6,1	5,8

9. Dada a tabela

х	1,00	1,05	1,10	1,15	1,20	1,25	1,30	1,35
у	1,00	1,01	1,02	1,04	1,05	1,06	1,07	1,08

Determine g(x) e calcule o valor de f(1,18).