Please amend the claims as follows:

1. (currently amended) A system for encrypting/decrypting messages, comprising:

a public key cryptosystem further comprising a computer operable for generating keys for use

with messages that have been encrypted and/or decrypted wherein the public key cryptosystem

having a predetermined number of prime factors used for the generation of a modulus N and an

exponent e; wherein the modulus N is not a squareful number;

wherein a proper subset of the prime factors of the modulus N composed of less than all of the

distinct prime factors, along with the exponent e, are required to decrypt messages that are

encrypted using the public exponent e and the public modulus N, where e and N are calculated

using RSA methods, and encryption occurs using RSA methods.

2. (currently amended) A method for encrypting/decrypting messages comprising the steps of:

providing a public key cryptosystem including a computer operable to generate at least one key

for encrypting/decrypting at least one message, the public key cryptosystem having a

predetermined number of distinct prime factors used for the generation of a modulus N and an

exponent e; wherein the modulus N is not a squareful number;

wherein a proper subset of the prime factors of the modulus N composed of less than all of the

distinct prime factors are required to decrypt messages that are encrypted using the public

exponent e and the public modulus N, where e and N are calculated using RSA methods, and

encryption of the message occurs using RSA methods.

3. (currently amended) A method for encrypting/decrypting messages comprising the steps of:

Encrypting on a computer a plaintext message M into a ciphertext message C using any method that produces a value equivalent to $C = M^e \mod N$, where $0 \le M < N_d$, such that the ciphertext C can be decrypted into the plaintext message M using only e and the prime factors of N_d

N being the product of all of the numbers in the set S;

N is not a squareful number;

S being a set of at least two <u>distinct</u> prime numbers, $p_1...p_k$, where k is an integer greater than 1;

e being a number;

<u>S</u>;

S_d being a proper subset of S composed of less than all of the distinct prime factors in set

N_d being the product of all of the numbers in the set S_d.

- 4. (original) The method of claim 3, wherein the step of generating the exponent e includes calculating the exponent e as a number that is relatively prime to the product of each distinct prime factor of N minus 1, $(N_1 1)^* ... (N_j 1)$ for distinct prime factors of N 1 to j, where j is the number of distinct prime factors in N, or choosing the exponent e as a small prime number.
- 5. (currently amended) A method for decrypting encrypted messages comprising the steps of: determining if a derived modulus N_d is a squarefree number, and if so,

decrypting on a computer ciphertext C into message M wherein message M was originally an encrypted message that is transformed into electronic, decrypted message M using any method that produces a value equivalent to $M = C^d \mod N_d$, where d is generated using the following steps:

Reply to Office Action of August 4, 2009

calculating the number Z_d as the product of each prime factor of N_d minus 1, $(N_{d1} - 1)^*...(N_{dj} - 1)$ for <u>distinct</u> prime factors of N_d 1 to j, where j is the number of <u>distinct</u> prime factors in N_d ;

generating the exponent d such that the following relationship is satisfied: $e^*d = 1 \mod Z_d$.

- 6. (original) The method according to claim 5, further including the step of: $\\ \text{directly calculating } M = C^d \bmod N_d.$
- 7. (original) The method according to claim 5, further including the steps of:

calculating separate decryption exponents $d_{nd1}...d_{ndj}$ for all prime factors of N_d 1 to j, where j is the number of prime factors in N_d so that the following relationship is satisfied for each member of N_d : $e^*d_{ndi} = 1 \mod (N_{di}-1)$; and performing decryptions of the form $M_i = C^{d_{ndi}} \mod N_{di}$ for all prime factors of N_d from 1 to j, where j is the number of prime factors in N_d , and then using the values of each M_i and N_{di} to reconstruct M.

- 8. (original) The method of claim 7, wherein the values of each M_i and N_{di} restore the plaintext message M using the Chinese Remainder Theorem and/or Garner's algorithm.
- 9. (cancelled)
- 10. (cancelled)
- 11.
- 12. (currently amended) A public key cryptosystem where messages are decrypted on a computer using a set of prime numbers S and the public exponent e, and messages are encrypted using a squarefree modulus N_p that is calculated as the product of a set of <u>distinct</u> numbers that is

a proper superset of S composed of distinct numbers, and encryption occurs with standard RSA

methods using the public exponent e and the modulus N_p .

13. (currently amended) A method for encrypting/decrypting messages, comprising the steps of:

Encrypting on a computer a plaintext message M into a ciphertext message C using any method that produces a value equivalent to $C = M^e \mod N_p$, where $0 \le M < N$, such that the ciphertext C can be decrypted into the plaintext message M using e and the distinct prime factors

of N

N being the product of all of the numbers in the set S;

N is not a squareful number;

S being a set of at least one prime number, $p_1...p_k$, where k is an integer greater than 0;

S_p being a proper superset of S composed of distinct prime numbers;

 N_p being the product of all of the numbers in the set S_p ;

e being a number.

14. (original) The method of claim 13, wherein the step of generating the exponent e includes

calculating the exponent e as a number that is relatively prime to the product of each distinct

prime factor of N_p minus 1, $(N_{p1}-1)*...(N_{pj}-1)$ for distinct prime factors of N_p 1 to j, where j is

the number of distinct prime factors in N_p .

15. (original) The method of claim 13, wherein the step of generating the exponent e includes

choosing the exponent e as a small prime number.

16. (cancelled)

17. (cancelled)

18. (cancelled)

Reply to Office Action of August 4, 2009

19. (currently amended) A method of decrypting encrypted messages, including the steps of:

Decrypting on a computer the ciphertext message C into the plaintext message M by:

determining if the modulus N is a squarefree number; and if so then,

decrypting ciphertext C into message M using any method that produces a value equivalent to $M = C^d \mod N$, where d is generated using the following steps:

Calculating the number Z as the product of each prime factor of N minus 1, $(N_{1-1})^*...(N_i)^*$

 $_{-1}$) for prime factors of N 1 to j, where j is the number of <u>distinct</u> prime factors in N;

then generating the decryption exponent d such that the following relationship is satisfied: $e^*d = 1 \mod Z$.

- 20. (original) The method according to claim 19, further including the step of: directly calculating $M = C^d \mod N$.
- 21. (original) The method according to claim 19, further including the steps of:

calculating separate decryption exponents $d_1...d_j$ for all prime factors of N from 1 to j, where j is the number of prime factors in N so that the following relationship is satisfied for each member of N: $e^*di = 1 \mod (Ni-1)$; and performing decryptions of the form $M_i = C^{di} \mod N_i$ for all prime factors of N from 1 to j, where j is the number of prime factors in N, and then using the values of each M_i and N_i to reconstruct M.

- 22. (original) The method of claim 21, wherein the values of each M_i and N_i reconstruct M using the Chinese Remainder Theorem and/or Garner's algorithm.
- 23. (currently amended) A method for encrypting/decrypting messages comprising the steps of:

Encrypting on a computer a plaintext message M into a ciphertext message C using any method that produces a value equivalent to $C = M^e \mod N_p$, where $0 \le M < N$, such that the ciphertext C can be decrypted into the plaintext message M using e and the prime factors of N.

N being the product of all of the members of set S;

N is not a squareful number;

S being a set of at least two numbers, $p_1...p_k$ where k is an integer greater than 1 and all members of S are equal to p_s, which is a prime number;

S_p being a superset of S composed of distinct prime numbers;

 N_p being the product of all of the numbers in the set S_p ;

e being a number.

24. (original) The method of claim 23, wherein the step of generating the exponent e further includes: Calculating the exponent e as a number that is relatively prime to the product of all of the distinct prime factors of N_p minus 1, $(N_{p1}-1)^*...(N_{pj}-1)$ for distinct prime factors of N_p 1 to j, where j is the number of distinct prime factors in N_p .

25. (original) The method of claim 23, wherein the step of generating the exponent e includes choosing the exponent e as a small prime number.

26. (cancelled)

27. (currently amended) A method for encrypting/decrypting messages, comprising the steps of:

Encrypting on a computer a plaintext message M into a ciphertext message C using any method that produces a value equivalent to $C = M^e \mod N_p$, where $0 \le M < p$, such that the ciphertext C can be decrypted into the plaintext message M using e and p

p being a prime number;

Reply to Office Action of August 4, 2009

S being a set containing only the number p;

S_p being a superset of S consisting of distinct prime numbers;

N_p being the product of all members of the set Sp;

N_p is not a squareful number;

e being a number.

28. (original) The method of claim 27, wherein the step of generating the exponent e further includes: Calculating the exponent e as a number that is relatively prime to the product of each distinct prime factor of N_p minus 1, $(N_{pl}-1)^*...(N_{pj}-1)$ for distinct prime factors of N_p 1 to j,

where j is the number of distinct prime factors in N_p .

29. (original) The method of claim 27, wherein the step of generating the exponent e includes

choosing the exponent e as a small prime number.

30. (currently amended) A method for decrypting encrypted messages, comprising the steps of:

Decrypting on a computer using any method that produces a value equivalent to as $M = C^d \mod p$, where p is a not a squareful number and d is generated using the following step:

Calculating d such that the following equation is satisfied:

$$e*d = 1 \mod (p - 1)$$
.

31. (currently amended) A method for establishing cryptographic communications, comprising

the steps of:

calculating a composite number N, which is formed from the product of distinct prime numbers S, $p_1,...p_k$ where $k \ge 1$.

and N is not a squareful number;

on a computer Encoding a plaintext message M, to a ciphertext C, where M corresponds to a number representative of a message and $0 \le M < S$;

generating an exponent e;

transforming on the computer said plaintext, M, into said ciphertext, C, where C is developed using any method that produces a value equivalent to $C = M^e \mod N$, such that ciphertext C can be decrypted into plaintext M using only e and S.

- 32. (original) The method of claim 31, wherein the step of generating the exponent e further includes: Calculating the exponent e as a number that is relatively prime to the product of each distinct prime factor of N minus 1, $(N_1 1),...(N_j 1)$ for distinct prime factors of N 1 to j, where j is the number of distinct prime factors in N.
- 33. (original) The method of claim 31, wherein the step of generating the exponent e includes choosing the exponent e as a small prime number.
- 34. (currently amended) A method for decrypting encrypted messages, comprising the steps of:

 decoding on a computer the ciphertext message C to the plaintext message M, wherein said decoding comprises the step of: transforming said ciphertext message C to plaintext M, using any method that produces a value equivalent to M = C^d mod S, where S is a not a squareful number and d is generated using the following step:

generating d such that $e^*d = 1 \mod (S - 1)$.

35. (original) A system for encrypting and decrypting electronic communications including a network of computers and/or computer-type devices, such as personal data assistants (PDAs), mobile phones and other devices, in particular mobile devices capable of communicating on the network; generating at least one private key and at least one public key, wherein the at least one

private key is determined based upon any one of a multiplicity of prime numbers that when multiplied together produce N, which is the modulus for at least one of the public keys, and wherein the modulus N is not a squareful number.

- 36. (currently amended) A method for public key decryption where less than all of the distinct prime factors of a number N are used to decrypt a ciphertext message C into plaintext message M, where encryption occurs on a computer with the public key $\{e, N\}$ using any method that produces a value equivalent to $C = Me \mod N$ and N is not a squareful number;
- 37. (currently amended) A method for public key encryption with a public key $\{e, N\}$ where a plaintext message M is encrypted on a computer into a ciphertext message C using any method that produces a value equivalent to $C = M^e \mod (N*X)$, where N is the public modulus, wherein N is not a squareful number; and X is any integer greater than 1.
- 38. (currently amended) A method for public key decryption of a message that has been encrypted with the public key $\{e, N\}$ where a ciphertext message C is decrypted on a computer into a plaintext message M using any method that produces a value equivalent to $M = C^d \mod N_d$, where N_d is the product of less than all of the prime factors of the public modulus N and d satisfies the equation $e^*d = 1 \mod Z$, where Z is the product of each of the k prime factors of N_d minus 1, $(p_1 1)^* \dots (p_k 1)$ and wherein the modulus N is not a squareful number;
- 39. (currently amended) A method for public key decryption of a message that has been encrypted on a computer using any method that produces a value equivalent to $C = M^e \mod N$, where a ciphertext message C is decrypted into a plaintext message M using any method that produces a value equivalent to $M = C^d \mod N_d$, where N_d is the product of less than all of the prime factors of the public modulus N and d satisfies the equation $e^*d = 1 \mod Z$, where Z is the

Reply to Office Action of August 4, 2009

product of each of the k prime factors of N_d minus 1, $(p_1 - 1)^* ... (p_k - 1)$ and where the modulus N is not a squareful number;