

Computing Theory

COMP 147 (4 units)

Chapter 1: Regular Languages Closure Properties of Regular Languages

Last Time

- NFAs
 - Nondeterminism
 - NFA and DFA equivalence
 - Convert NFA to DFA
- Regular Languages

Complement of the Language Recognized by a DFA

• Given a machine that recognizes L, we can construct a machine that recognizes the complement of L, \overline{L} , by reversing the accept states and non-accept states Important: does not work for NFA!

Complement DFA

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA that recognizes L(M).

Give a formal definition of a DFA M' that recognizes L(M).

$$M' = (Q, \Sigma, \delta, q_0, F')$$
, where $F' = Q - F$.

Closure under Complement Operation

Closure Under Union

- L1 = {w | w has odd number of 0's}
- L2 = {w | w contains substring 01}
- L1 and L2 are regular languages (We constructed FA's for them)
- is L1 ∪ L2 regular?

Closure Under Union

 Theorem: Regular languages are closed under union.

Proof by NFA construction.

Closure Under Union

PROOF

Let
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

- 1. $Q = \{q_0\} \cup Q_1 \cup Q_2$. The states of N are all the states of N_1 and N_2 , with the addition of a new start state q_0 .
- **2.** The state q_0 is the start state of N.
- 3. The set of accept states F = F₁ ∪ F₂.
 The accept states of N are all the accept states of N₁ and N₂. That way, N accepts if either N₁ accepts or N₂ accepts.
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \\ \delta_2(q, a) & q \in Q_2 \\ \{q_1, q_2\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon. \end{cases}$$

Closure Under Intersection

- $L1 = \{w \mid w \text{ has even number of 0's}\}$
- L2 = {w | w contains substring 01}
- L1 and L2 are regular languages (We constructed FA's for them)
- is L1 ∩ L2 regular?

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$

beware of complementing an NFA

Less Fussy: Product of Machines

Closure Under Intersection

- is L1 ∩ L2 regular?
- Solution1: $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$

beware of complementing an NFA

- Solution2
 - Product of Machines (next slide)

Closure Under Intersection Product construction of DFA

Can be used for other set operations

Closure Under Concatenation

- L1 = {w | w has even number of 1's}
- L2 = {w | w contains substring 101}
- L1 and L2 are regular languages (We constructed FA's for them)
- is L1 L2 regular?

Closure Under Concatenation

- Theorem: Regular languages are closed under concatenation.
 - Proof by NFA construction.

Closure Under Concatenation

PROOF

Let
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$.

- 1. $Q = Q_1 \cup Q_2$. The states of N are all the states of N_1 and N_2 .
- 2. The state q_1 is the same as the start state of N_1 .
- 3. The accept states F_2 are the same as the accept states of N_2 .
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \not\in F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\ \delta_2(q,a) & q \in Q_2. \end{cases}$$

Closure Under Star

- Theorem: Regular languages are closed under the star operation.
 - Proof by NFA construction.

Closure Properties

- Regular Languages are closed under a variety of operations
 - Union, Intersection, Complement
 - String Reversal
 - Set Difference
- Regular Languages are not closed under subset or superset