	IRRATIONALE FUNCTIE	GONIOMETRISCHE FUNCTIE			CYCLOMETRISCHE FUNCTIE				
Functies		sin (x)	cos (x)	tan (x)	cot (x)	Bgsin x	Bgcos x	Bgtan x	Bgcot x
Domein & continuïteit	$f(x) = \sqrt{g(x)} + q$ > $g(x) > 0$ > Ongelijkheid oplossen: dom!	R	R	\mathbb{R} zonder $\frac{\pi}{2} + k \cdot \pi$	\mathbb{R} zonder $\pi + k . \pi$	[-1,1]	[-1,1]	R	R
Bereik		[-1, 1]	[-1, 1]	\mathbb{R}	\mathbb{R}	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$[0,\pi]$	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$[0,\pi]$
Asymptoten	VA: Nulwaarden van de noemer. > Let op: $0/0$ = géén asymptoot! HA: graad teller = graad noemer. > $\lim_{x \to +\infty} \frac{\sqrt{ax}}{x}$ > $\lim_{x \to -\infty} \frac{\sqrt{ax}}{x}$ HA: graad teller < graad noemer > $y = 0$ SA: graad teller > graad noemer > $m = \lim_{x \to +\infty} \frac{h(x)}{x \cdot g(x)}$ = $\lim_{x \to -\infty} \frac{h(x)}{x \cdot g(x)}$ > $q = \lim_{x \to +\infty} f(x) - m(x)$	Géén	Géén	$x = \frac{\pi}{2}$ => V.A. Herhaalt zich om de π	$x = \pi$ => V.A. Herhaalt zich om de π	Géén	Géén	$y = \pm \frac{\pi}{2}$ $=> \text{H.A.}$	$y = \pm \pi$ => H.A.
Grafieken	A 7100	Begint vanaf oorsprong, maximum in $\frac{\pi}{2}$, π als nulwaarde.	Begint vanaf 1, $\frac{\pi}{2}$ als nulwaarde, maximum in π	Begint vanonder in $-\frac{\pi}{2}$, π als nulwaarde en stijgt.	Begint vanboven bij 0π , daalt, $\frac{\pi}{2}$ als nulwaarde.	Begint bij $(-1, -\frac{\pi}{2})$, stijgt met 0 als nulwaarde	Begint bij $(-1,\pi)$, daalt met $\frac{\pi}{2}$ als snijpunt met y-as	Begint bij x nadert $-\frac{\pi}{2}$, stijgt met 0 als nulwaarde	Begint bij x naderend tot π , daalt met $\frac{\pi}{2}$ als snijpunt y-as
Periodiciteit	Niet-periodiek	2π	2π	π	π	Niet-perio	odiek		
Even/oneven	Hangt er vanaf	Even	Oneven	Oneven	Oneven				
Uitgebreide functies		Algemene (co)sinusfunctie: $y = a \cdot \cos \cos \sin(bx + c) + d$							
		a = amplitude $b = pulsatie$ > uitrekking t.o.v. y-as> Uitrekking t.o.v. x-as.							

		> $periode = \frac{2\pi}{ b }$	
		c = geen naam> Verschuiving t.o.v. x-as.	
		$fase = -\frac{c}{h}$	
		> fase = negatief ==> naar links verschuiven.	
		> fase = positief ==> naar rechts verschuiven	
		, , , , , , , , , , , , , , , , , , ,	
		d = evenwichtsstand	
		> Verschuiving t.o.v. y-as.	
		y = d = evenwichtsstand	
Consists	Delicanon most constale.	→ Let op: je verschuift de rechte y = d!	Cunning hotunklings
Speciale betrekkingen	Rekenen met wortels: $ *^{n} \sqrt{n} $	Basisbetrekkingen: Grondformule goniometrie: $\sin^2 x + \cos^2 x = 1$	Speciale betrekkingen:
betrekkingen	$ * \sqrt[n]{a^n} = \left(\sqrt[n]{a}\right)^n = a $	Definitie secans: $\sec x = \frac{1}{\cos x}$	$\cos^2 x = \frac{1}{1 + \tan^2 x}$
	$ * \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m $	Definite secans. $\sec x = \frac{\cos x}{1}$	$\sin^2 x = \frac{1}{1 + \cot^2 x}$
	$ * \sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b} $	Definitie cosecans: $\csc x = \frac{1}{\sin x}$	
	$* \sqrt[m]{\sqrt{a}} = \sqrt[m.n]{a}$	Definitie tangens: $\tan x = \frac{1}{\cot x} = \frac{\sin x}{\cos x}$ Definitie cotangens: $\cot x = \frac{1}{\tan x} = \frac{\cos x}{\sin x}$	Eigenschappen cyclometrische functies: $sin(Bgsin x) = 1$
	$ * \sqrt[k.n]{a^{k.m}} = \sqrt[n]{a^m} $	Definitie cotangens: $\cot x = \frac{1}{\tan x} = \frac{\cos x}{\sin x}$	> Geld voor elke vorm maar geldt NIET
	$ * \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} $	tana sina	omgekeerd: $Bgsin(\sin x) \neq 1$.
		(Enkel voor ingangsexamen GNK) –	
	Rekenen met machten:	verdubbelingsformules:	$\sin(Bg\cos x) = \cos(Bg\sin x) = \sqrt{1 - x^2}$
	$\overline{*a^p.a^q = a^{p+q}}$	$\sin 2\alpha = 2 \sin \alpha \cos \alpha$ $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$	$\tan(Bg\cot x) = \cot(Bg\tan x) = \frac{1}{x}$
	$*\frac{a^p}{a^q} = a^{p-q}$		^
		$= 2 \cos^2 \alpha - 1$ $= 1 - \sin^2 \alpha$ Deze, en alle andere formules kan je op	
	$*(a.b)^p = a^p.b^p$	het examen	
	$\left *\left(\frac{a}{b}\right)^p = \frac{a^p}{b^p} \right $	$\tan 2\alpha = \frac{2t}{1-t^2}$ natuurlijk aflezen van je formuleblad	
		$\sin 2\alpha = \frac{1-t}{2t}$ van je formuleblad	
	$\left(\frac{1}{b}\right) = \left(\frac{1}{a}\right)$	$\cos 2\alpha = \frac{1-t^2}{1+t^2}$ goniometrie.	
		$\cos 2u - \frac{1}{1+t^2}$	

Vergelijkingen	Stappenplan: (1) Kwadrateren om zoveel mogelijk wortelvormen weg te werken. (2) Bij het kwadrateren de equivalentie (⇔) vervangen door een implicatie (==>) (3) Op het einde nachecken welke oplossingen vals zijn.	SINUSVERGELIJKING: $\sin \beta = \sin \alpha \Leftrightarrow \beta = \alpha + k . 2\pi \lor \beta = (\pi - \alpha) + k . 2\pi$ COSINUSVERGELIJKING: $\cos \beta = \cos \alpha \Leftrightarrow \beta = \pm \alpha + k . 2\pi$ TANGENSVERGELIJKING $\cos \beta = \cos \alpha \Leftrightarrow \beta = \alpha + k . \pi$	
Limieten	Hoofdeigenschap: $\lim_{x \to a} f(x) = f(a)$ Rekenregel: $\lim_{x \to a} \sqrt{f(x)} = \sqrt{\lim_{x \to a} f(x)}$ Speciale rekenregels: $(-\infty)^{2n+1} \to tekens\ omkeren$ $(-\infty)^{2n} \to tekens\ behouden$ $(\infty)^{2n(+1)} \to tekens\ behouden$ + uitleg van 'andere limieten' bij goniometrische functies	Bijzondere limiet: $\lim_{x\to 0} \frac{\sin x}{x} = 1$ Andere limieten: Zoals elke bij alle functies> invullen> b/0> teken teller en noemer apart nachecken voor + of – oneindig> 0/0> L'hôpital toepassen. = teller en noemer apart afleiden, daarna opnieuw invullen> Limieten kunnen ook <u>numeriek</u> opgezocht worden, dit steunt op de grafische definitie van limieten,	Alle limieten (idem goniometrische functies). Let op: bij cyclometrische functies zal je (vaker dan bij andere functies) soms moeten redeneren. Hou de asymptoten goed in je achterhoofd! BGTAN: $x \to +\infty = \frac{\pi}{2}$ $x \to -\infty = -\frac{\pi}{2}$ BGCOT: $x \to +\infty = 0$ $x \to -\infty = \pi$
Afgeleiden	Voor vierkantswortels: $D\sqrt{f(x)} = \frac{1}{2\sqrt{f(x)}} \cdot Df(x)$ Voor alle n-demachtswortels: $D[f(x)]^q = q \cdot [f(x)]^{q-1} \cdot Df(x)$ > q = een rationale exponent> Kettingregel NIET vergeten	je gaat het getal naderen door een getal kortbij in te vullen (bij oneindig bv. een groot getal). Afgeleiden van de goniometrische functies: $Dsin [f(x)] = cos[f(x)] . Df(x)$ $Dcos [f(x)] = -sin[f(x)] . Df(x)$ $Dtan [f(x)] = \frac{1}{cos^2[f(x)]} . Df(x)$ $Dcot[f(x)] = -\frac{1}{sin^2[f(x)]} . Df(x)$ > Kettingregel NIET VERGETEN!	$DBgsin x = \frac{1}{\sqrt{1-x^2}}$ $DBgcos x = -\frac{1}{\sqrt{1-x^2}}$ $DBgtan x = \frac{1}{1+x^2}$ $DBgcot x = -\frac{1}{1+x^2}$ > Kettingregel NIET VERGETEN!

Verloop	f'(x): stijgen, dalen, extrema > $f'(x)$ > 0: stijgen	Idem irrationale functies (zie hierlangs).			
	-> f'(x) = 0 : extrema	Merk op (makkelijkere werkwijze):			
	-> f'(x) < 0: dalen	$\sin(x) = \max als x = \frac{\pi}{2}$			
		$\sin(x) = \min als x = -\frac{\pi}{2}$			
		$\sin(x) = \min uis x = -\frac{1}{2}$			
		cos(x) = max als $x = 0$			
		$\cos(x) = \min als \qquad x = \pi$			
Inverse relatie	Inverse relatie:	Goniometrische en cyclometrische functies zijn elkaars inverse relaties.			
	GRAFISCH: spiegelen t.o.v. eerste	> Dit betekent dat je beide grafieken kan spiegelen t.o.v. de eerste bissectrice.			
	bissectrice (= rechte: y = x).				
	ALGEBRAÏSCH: x en y van plaats	Goniometrische functies maken van eenderwelke hoekgrootte een getal.			
	wisselen, opnieuw afzonderen naar	$\left > bv.: \sin\left(\frac{\pi}{2}\right) = 1 \right $			
	у.	(2)			
	> Gevolg: $dom f = ber f^{-1}$	Cyclometrische functies maken van eenderwelk getal een hoekgrootte.			
	$ber f = dom f^{-1}$	> bv.: $Bgsin(1) = \frac{\pi}{2}$			
	C	>> Cyclometrische functies zijn in ber <u>eik be</u> perkt om een functie te zijn.			
	Speciale gevallen:	- > Cyclometrische functies zijn in bereik beperkt om een functie te zijn.			
	$y = x^n$ $> x = y^n$	2			
	$\Leftrightarrow y = \sqrt[n]{x}$				
	> n even = relatie	1 /			
	n oneven = functie				
	$y = \sqrt{x}$	-5 -5 -4 34 -2 -1 1 2 3 4 5			
	$\Leftrightarrow x = \sqrt{y}$				
	$\Leftrightarrow y = x^2$				
	$>$ dom f = \mathbb{R}^+ , domein moet				
	dus beperkt worden.				
Finde	Dit zijn alle functies die je moet kunn	pen bespreken op het examen wiskunde van M4!			
Einde	·	en bespreken op het examen wiskunde van M4!			