Roll No. Total Printed Pages - 8

F-770

M.A./M.Sc. (THIRD SEMESTER) EXAMINATION, Dec. - Jan., 2021-22 MATHEMATICS

(Optional - B)

PAPER FIFTH

(GRAPH THEORY-I)

Time : Three Hours] [Maximum Marks:80

Note: Attempt all sections as directed.

Section - A

(1 mark each)

(Objective/Multiple Choice Questions)

Note: Attempt all questions. Choose the correct answer.

- 1. The maximum number of degree of any vertex in a simple graph with n-vertices is
 - (A) $\frac{n(n-1)}{2}$
 - (B) $\frac{n-1}{2}$
 - (C) n-1
 - (D) $\frac{n}{2}$

2. The size of a simple graph of order *n* cannot exceed.

[2]

- (A) n
- (B) n-1
- (C) $^{n}C_{1}$
- (D) ${}^{n}C_{2}$

3. A vertex with zero in degree is called-

- (A) Source
- (B) Sink
- (C) Zero vertex
- (D) None of these

4. A vertex of degree one is called-

- (A) Isolated vertex
- (B) Pendent vertex
- (C) Zero vertex
- (D) None of these

5. The sum of degrees of the vertices is an undirected graph is-

- (A) 3
- (B) 1
- (C) even
- (D) odd

- 6. The necessary conditions for two graphs to be isomorphic both must have
 - (A) The same number of vertices
 - (B) The same number of edges
 - (C) Equal number of vertices with the same degree
 - (D) All of above
- 7. When n is odd and n > 1, the chromatic number of C_n is:
 - (A) 3
 - (B) 2
 - (C) 1
 - (D) 0
- 8. The chromatic number of K_n is
 - (A) n 1
 - (B) n
 - (C) n + 1
 - (D) n²
- 9. The graph C₆ is:
 - (A) Planar graph
 - (B) Subgraphs
 - (C) Bipartite graph
 - (D) None of these

- 10. A graph G is *n*-colourable but not (k 1) colourable is called-
 - (A) k 1 colourable
 - (B) n 1 colourable
 - (C) K_n colourable
 - (D) K chromatic graph
- 11. The chromatic number of K_n is-
 - (A) n
 - (B) n-1
 - (C) n-2
 - (D) None of these
- 12. For a graph G which is true-
 - (A) G is two chromatic
 - (B) G is non-nuel and bipartite
 - (C) G has no circuits of odd length
 - (D) all of above
- 13. Which of the following statements is true for a graph G
 - (A) G is a split graph
 - (B) G and \overline{G} are traingulated graphs
 - (C) G has no induced subgraph isomorphic to $2K_2$, C_4 or C_5
 - (D) All of above

14. Which of the following statements is true-

(A) Every interval graph is traingulated

(B) Every interval graph is perfect

(C) Both (A) and (B)

(D) None of these

15. For any graph G of order n -

(A) $\Delta(G) \leq n-1$

(B) $\Delta(G) \ge = n-1$

(C) $\Delta(G) \leq n-2$

(D) None of these

16. For any non-trivial connected graph G.

(A) $\alpha_0 \oplus \beta_0 = \alpha_0 \oplus \beta_1$

(B) $\alpha_0 + \beta_0 = \alpha_1 + \beta_1$

(C) $\alpha_0 + \beta_1 = \beta_0 + \alpha_1$

(D) $\alpha_0 + \alpha_1 = \beta_0 + \beta_1$

17. Which of the following statement is true-

(A) A non zero element of $C \cap B$ is called a bicycle

(B) A bicycle has an even number of edges

(C) Both (A) and (B)

(D) None of these

18. For any graph G which is not true-

(A) $\alpha_1 \leq \beta_0$

(B) $\alpha_0 \leq \beta_1$

(C) $\alpha_0 + \beta_0 = n$

(D) $\alpha_0 = \alpha_1$

19. For any graph G the following is not true-

(A) $C_0(G) = \varphi$

(B) $C_0(G) \neq \varphi$

(C) $\alpha_0 = \beta_1$

(D) $\alpha_1 = \beta_0$

20. For any graph G, which is not true-

(A) $\alpha_0 \le \theta_0 \le \theta_1$

(B) $\theta_1 \neq \theta_0$

(C) $\alpha_0 = \theta_1$

(D) $\theta_1 = \theta_0$

Section - B

(2 marks each)

(Very Short Answer type Questions)

Note- Attempt all questions.

1. Define Homomorphism.

2. Explain Binary Operations.

3. Define cycle space.

F-770

- 4. Define critical graphs.
- 5. Define edge colouring.
- 6. Define face colouring.
- 7. Define interval graphs.
- 8. Define split graphs.

Section - C

(3 marks each)

P.T.O.

(Short Answer Type Questions)

Note- Attempt all questions.

 Prove that the number of edges m' in L(G) when G has degree sequence (d_i)ⁿ is given by

$$m' = (\frac{1}{2}) \sum_{i=1}^{n} d_i^2 - m$$

- 2. Show that G is connected iff L(G) is connected.
- 3. Explain cycle pases and cycle graphs.
- 4. Prove that any k- chromatic graph has at least k-vertices of degree at least k-1 each.
- 5. Explain clique parameters.
- 6. Explain Rosenteld numbers.
- 7. Prove that every instant graph is traingulated.
- 8. Prove that every triangulated graph is perfect.

Section - D

(5 marks each)

(Long Answer Type questions)

Note- Attempt All questions.

1. Prove that if a graph G is contractible to a graph H and $\Delta(H) \le 3$ then G has a subgraph homeomorphic to H.

OR

Prove that any uniquely k-colourable graph is (k - 1) connected.

2. Prove that the sum of any two cuts of a graph G is also a cut to G.

OR

Prove that for any graph G with $\delta > 0$

$$\alpha_1 + \beta_1 = n$$

3. Prove that for any graph G of order n > 12 without isolated vertices $\pi_1 \le \lfloor n^2 / 4 \rfloor$ and the partitiones need use only edges and traingles.

OR

Prove that every graph on $\left(\frac{k+\ell}{k}\right)$ vertices contains either a complete subgraph on k + 1 vertices or an independent set of $\ell+1$ vertices.

4. Prove that for any $s \ge 2$

$$R(S,S) \ge 2^{s/2}$$

OR

Prove that a graph G is permutation graph iff G and G are comparability graphs.