Transformer Case Study: LLMs

CSE 849 Deep Learning Spring 2025

Zijun Cui

Table of contents

- ✓ The Transformer Architecture
- ✓ Pre-training and Fine-tuning
- ✓ Transformer Applications
- Case study Large Language Models

Transformers, mid-2017

2018 – Inception of the LLM Era

Output

BERT Oct 2018

Representation

GPT June 2018

Generation

- One of the biggest challenges in LM-building used to be the lack of task-specific training data.
- What if we learn an effective representation that can be applied to a variety of downstream tasks?
 - Word2vec (2013)
 - GloVe (2014)

BERT Pre-Training Corpus:

- English Wikipedia 2,500 million words
- Book Corpus 800 million words

BERT Pre-Training Corpus:

- English Wikipedia 2,500 million words
- Book Corpus 800 million words

BERT Pre-Training Tasks:

- MLM (Masked Language Modeling)
- NSP (Next Sentence Prediction)

8

(shifted right)

Outputs

(shifted right)

Inputs

BERT Pre-Training Corpus:

- English Wikipedia 2,500 million words
- Book Corpus 800 million words

BERT Pre-Training Tasks:

- MLM (Masked Language Modeling)
- NSP (Next Sentence Prediction)

BERT Pre-Training Results:

- BERT-Base 110M Params
- BERT-Large 340M Params

BERT Fine-Tuning:

- Simply add a task-specific module after the last encoder layer to map it to the desired dimension.
 - Classification Tasks:
 - Add a feed-forward layer on top of the encoder output for the [CLS] token
 - Question Answering Tasks:
 - Train two extra vectors to mark the beginning and end of answer from paragraph

BERT Evaluation:

- General Language Understanding Evaluation (GLUE)
 - Sentence pair tasks
 - Single sentence classification
 - Several datasets, e.g., MNLI, QQP, CoLA, etc
- Stanford Question Answering Dataset (SQuAD)

BERT Evaluation:

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	5)
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

System	D	Test		
	EM	F1	EM	F1
Leaderboard (Oct	8th, 2	018)		
Human	=	17	82.3	91.2
#1 Ensemble - nInet		-	86.0	91.7
#2 Ensemble - QANet		-	84.5	90.5
#1 Single - nlnet			83.5	90.1
#2 Single - QANet			82.5	89.3
Publishe	ed			
Publishe BiDAF+ELMo (Single) R.M. Reader (Single)		85.8	-	-
R.M. Reader (Single)	78.9	86.3	79.5	86.6
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5
Ours				
BERT _{BASE} (Single)	80.8	88.5	-	0.70
BERT _{LARGE} (Single)		90.9	-	(4)
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2

Table 2: SQuAD results. The BERT ensemble is 7x systems which use different pre-training checkpoints and fine-tuning seeds.

What is our takeaway from BERT?

- Pre-training tasks can be invented flexibly...
 - Effective representations can be derived from a flexible regime of pre-training tasks.

What is our takeaway from BERT?

- Pre-training tasks can be invented flexibly...
 - Effective representations can be derived from a flexible regime of pre-training tasks.
- Different NLP tasks seem to be highly transferable with each other...
 - As long as we have effective representations, that seems to form a general model which can serve as the backbone for many specialized models.

What is our takeaway from BERT?

- Pre-training tasks can be invented flexibly...
 - Effective representations can be derived from a flexible regime of pre-training tasks.
- Different NLP tasks seem to be highly transferable with each other...
 - As long as we have effective representations, that seems to form a general model which can serve as the backbone for many specialized models.
- And scaling works!!!
 - 340M was considered large in 2018

2018 – Inception of the LLM Era

Output Probabilities Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm **GPT** Multi-Head Feed Attention **June 2018** Forward N× Add & Norm $N \times$ Add & Norm Masked Multi-Head Multi-Head **Generation** Attention Attention Positional Positional Encoding Encoding Output Input Embedding Embedding Outputs Inputs (shifted right)

BERT Oct 2018

Representation

- Similarly motivated as BERT, though differently designed
 - Can we leverage large amounts of unlabeled data to pretrain an LM that understands general patterns?

GPT Pre-Training Corpus:

Similarly, BooksCorpus and English Wikipedia

GPT Pre-Training Tasks:

- Predict the next token, given the previous tokens
 - More learning signals than MLM

GPT Pre-Training Results:

- GPT 117M Params
 - Similarly competitive on GLUE and SQuAD

GPT Fine-Tuning:

 Prompt-format task-specific text as a continuous stream for the model to fit

Summarization

Summarize this article:

XXXXXXXXXXXXXX

The summary is:

[Output]

Answer the question based on the context.

QA

Context:

Question:

XXXXXXXXXX

Answer:

[Output]

What is our takeaway from GPT?

- The Effectiveness of Self-Supervised Learning
 - Specifically, the model seems to be able to learn from generating the language itself, rather than from any specific task we might cook up.

What is our takeaway from GPT?

- The Effectiveness of Self-Supervised Learning
 - Specifically, the model seems to be able to learn from generating the language *itself*, rather than from any specific task we might cook up.
- Language Model as a Knowledge Base
 - Specifically, a generatively pretrained model seems to have a decent zero-shot performance on a range of NLP tasks.

What is our takeaway from GPT?

- The Effectiveness of Self-Supervised Learning
 - Specifically, the model seems to be able to learn from generating the language *itself*, rather than from any specific task we might cook up.
- Language Model as a Knowledge Base
 - Specifically, a generatively pretrained model seems to have a decent zero-shot performance on a range of NLP tasks.
- And scaling works!!!

BERT

Oct 2018

BERT – 2018

DistilBERT – 2019

RoBERTa – 2019

ALBERT – 2019

ELECTRA – 2020

DeBERTa – 2020

. . .

Representation

GPT – 2018 GPT-2 – 2019 GPT-3 – 2020 GPT-Neo – 2021 GPT-3.5 (ChatGPT) – 2022 LLaMA – 2023 GPT-4 – 2023

Generation

From both BERT and GPT, we learn that...

• Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs Since LLMs

- Feature Engineering
 - How do we design or select the best features for a task?

From both BERT and GPT, we learn that...

• Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

- Feature Engineering
 - How do we design or select the best features for a task?
- Model Selection
 - Which model is best for which type of task?

From both BERT and GPT, we learn that...

• Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

- Feature Engineering
 - How do we design or select the best features for a task?
- Model Selection
 - Which model is best for which type of task?
- Transfer Learning
 - Given scarce labeled data, how do we transfer knowledge from other domains?

From both BERT and GPT, we learn that...

• Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

Since LLMs

Feature Engineering

- How do we design or select the best features for a task?
- Model Selection
 - Which model is best for which type of task?
- Transfer Learning
 - Given scarce labeled data, how do we transfer knowledge from other domains?
- Overfitting vs Generalization
 - How do we balance complexity and capacity to prevent overfitting while maintaining good performance?

From both BERT and GPT, we learn that...

• Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

Feature Engineering

- How do we design or select the best features for a task?
- Model Selection
 - Which model is best for which type of task?
- Transfer Learning
 - Given scarce labeled data, how do we transfer knowledge from other domains?
- Overfitting vs Generalization
 - How do we balance complexity and capacity to prevent overfitting while maintaining good performance?

- Pre-training and Fine-tuning
 - How do we leverage large scales of unlabeled data out there previously under-leveraged?

From both BERT and GPT, we learn that...

• Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

Feature Engineering

- How do we design or select the best features for a task?
- Model Selection
 - Which model is best for which type of task?
- Transfer Learning
 - Given scarce labeled data, how do we transfer knowledge from other domains?
- Overfitting vs Generalization
 - How do we balance complexity and capacity to prevent overfitting while maintaining good performance?

- Pre-training and Fine-tuning
 - How do we leverage large scales of unlabeled data out there previously under-leveraged?
- Zero-shot and Few-shot learning
 - How can we make models perform on tasks they are <u>not</u> trained on?

From both BERT and GPT, we learn that...

• Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

Feature Engineering

- How do we design or select the best features for a task?
- Model Selection
 - Which model is best for which type of task?
- Transfer Learning
 - Given scarce labeled data, how do we transfer knowledge from other domains?
- Overfitting vs Generalization
 - How do we balance complexity and capacity to prevent overfitting while maintaining good performance?

- Pre-training and Fine-tuning
 - How do we leverage large scales of unlabeled data out there previously under-leveraged?
- Zero-shot and Few-shot learning
 - How can we make models perform on tasks they are <u>not</u> trained on?
- Prompting
 - How do we make models understand their task simply by describing it in natural language?

From both BERT and GPT, we learn that...

• Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

Feature Engineering

 How do we design or select the best features for a task?

Model Selection

 Which model is best for which type of task?

Transfer Learning

 Given scarce labeled data, how do we transfer knowledge from other domains?

Overfitting vs Generalization

 How do we balance complexity and capacity to prevent overfitting while maintaining good performance?

Since LLMs

Pre-training and Fine-tuning

 How do we leverage large scales of unlabeled data out there previously under-leveraged?

Zero-shot and Few-shot learning

 How can we make models perform on tasks they are <u>not</u> trained on?

Prompting

 How do we make models understand their task simply by describing it in natural language?

Interpretability and Explainability

 How can we <u>understand</u> the inner workings of our own models?

The LLM Era

- What are LLMs?
- Modern LLM Architecture
- LLM Training Procedure
- LLM Inference Prompting, In-Context Learning and Chain of Thought
- Evaluating LLMs
- Multimodal LLMs

GPT 2 – Generalizing to Unseen Tasks

- LMs can be used for different tasks by pre-training a "base" model and then fine-tuning for the task(s) of interest
- Practical Issues:
 - Too many copies of the model
 - Need for large-scale labeled data for fine-tuning
- Multi-task Training?
 - Data remains a challenge
 - Humans don't need such large volumes of data to learn can we do better?
- Train a model that can perform NLP tasks in a zero-shot manner

GPT 2 – Task Specifications

 Primary shift comes from modeling assumptions from single-task to general model

GPT 2 – Task Specifications

 Primary shift comes from modeling assumptions from single-task to general model

 Task descriptions may be provided as text – for example, translate this French text to English

GPT 2 – what makes such an LM work?

- Diverse training data
 - Model can do many disparate tasks with no training at all!
- Scaling model capacity and data

	LAMBADA	LAMBADA	CBT-CN	CBT-NE	WikiText2	PTB	enwik8	text8	WikiText103	1BW
	(PPL)	(ACC)	(ACC)	(ACC)	(PPL)	(PPL)	(BPB)	(BPC)	(PPL)	(PPL)
SOTA	99.8	59.23	85.7	82.3	39.14	46.54	0.99	1.08	18.3	21.8
117M	35.13	45.99	87.65	83.4	29.41	65.85	1.16	1.17	37.50	75.20
345M	15.60	55.48	92.35	87.1	22.76	47.33	1.01	1.06	26.37	55.72
762M	10.87	60.12	93.45	88.0	19.93	40.31	0.97	1.02	22.05	44.575
1542M	8.63	63.24	93.30	89.05	18.34	35.76	0.93	0.98	17.48	42.16

Scaling in GPT-2

• Scaling improves the perplexity of the LM and improves performance

Why is this interesting? Look at data scaling

 We know that typical scaling effects look like this when we increase the amount of training data

Why is this interesting? Look at data scaling

- Loss and dataset size is linear on a log-log plot
- This is "power-law scaling"

Scaling - (Kaplan, 2020)

- Can we understand scaling by positing scaling laws?
- With scaling laws, we can make decisions on architecture, data, hyperparameters by training smaller models
- Open Al Study: Scaling Laws for Neural Language Models (Kaplan et al. 2020)

Scaling - (Kaplan, 2020)

 Open Al Study: Scaling Laws for Neural Language Models (Kaplan et al. 2020)

Key Findings:

- Performance depends strongly on scale, and weakly on the model shape
- Larger models are more sample-efficient
- Smooth power laws

$$y = ax^k$$

relationship between empirical performance y and x (one of N, D or C) N - parameters, D - dataset size, C - compute

Scaling Effects

 The effect of some hyperparameters on big LMs can be predicted before training – optimizer (Adam v/s SGD), model depth, LSTM v/s Transformer

• Idea:

- Train a few smaller models
- Establish a scaling law (e.g. ADAM vs SGD scaling law)
- Select optimal hyper param based on the scaling law prediction

Model Scaling: GPT-3

Emergent Abilities with GPT-3 – Wei et. al 2022

Emergent abilities:

- not present in smaller models but is present in larger models
- Do LLMs like GPT3 have these ?

• Findings:

- GPT-3 trained on text can do arithmetic problems like addition and subtraction
- Different abilities "emerge" at different scales
- Model scale is not the only contributor to emergence for 14 BIG-Bench tasks, LaMDA 137B and GPT-3 175B models perform at near-random, but PaLM 62B achieves above-random performance
- Problems LLMs can't solve today may be emergent for future LLMs

Large Language Models

- Language models that have many parameters (over 1B) and can perform multiple tasks through prompting
- Eg. GPT, Llama2, Gemini, PaLM, Mistral, Mixtral etc.

LLM Realization - Architecture

- ✓ Encoder-only (BERT)
 - Pre-training: Masked Language Modeling (MLM)
 - Great for classification tasks, but hard to do generation
- ✓ Decoder-only (GPT)
 - Pre-training: Auto-regressive Language Modeling
 - Stable training, faster convergence
 - Better generalization after pre-training
- Encoder-decoder (T0/T5)
 - Pre-training: Masked Span Prediction
 - Good for tasks like machine translation, summarization

T5/T0: Masked Span Prediction

- Masked span prediction involves:
 - Mask continuous set of tokens (span) in input
 - Predict this masked span from the decoder

Attention patterns (Wang et. al)

- Causal decoder -- each token attends to the previous tokens only.
- In both non-causal decoder and encoder-decoder, attention is allowed to be bidirectional on any conditioning information.
- For the encoder-decoder, that conditioning is fed into the encoder part of the model.

Empirical Observations (Wang et.al 2022)

Decoder-only models outperform encoder-decoder models using similar configuration

	EAI-EVAL	T0-EVAL
Causal decoder	44.2	42.4
Non-causal decoder	43.5	41.8
Encoder-decoder	39.9	41.7
Random baseline	32.9	41.7

Llama 2 Architecture (Ouyang et. al. 2023)

- Decoder-only model
- Changes in transformer module:
 - Norm after sublayer -> Norm before sublayer
 - LayerNorm -> RMSNorm for stability
 - Activation: ReLU -> SwiGLU(x)
 - Position Embedding: Absolute/Relative -> RoPE (Rotary PE)
 - Long contexts: Multi-head attention -> Grouped-query attention

Figure 2: Overview of grouped-query method. Multi-head attention has H query, key, and value heads. Multi-query attention shares single key and value heads across all query heads. Grouped-query attention instead shares single key and value heads for each *group* of query heads, interpolating between multi-head and multi-query attention.

Training of Decoder-only LLMs – Llama 2

- Auto-regressive Pre-training Train to predict the next token on very large scale corpora (~3 trillion tokens)
- 2. Instruction Fine-tuning/ Supervised Fine-tuning (SFT) Fine-tune the pretrained model with pairs of (instruction+input,output) with large dataset and then with small high-quality dataset

Instruction fine-tuning provides as a prefix a natural language description of the task along with the input.

• E.g. Translate into French this sentence: my name is -> je m'appelle

Supervised Fine-tuning versus Pre-training

Objective function

Loss computed only for target tokens in SFT, all tokens are targets in pre-training

Input and Target

- Instruction + input as input with the target as output in SFT
- only input as input with shifted input as target in pre-training

Purpose

- Pre-training makes good generalist auto-completes but good SFT builds models that can do many unseen tasks
- SFT can also guide nature of outputs in terms of safety and helpfulness

Instruction Tuning (Wei et. al. 2021)

Finetune on many tasks ("instruction-tuning")

Input (Commonsense Reasoning)

Here is a goal: Get a cool sleep on summer days.

How would you accomplish this goal? OPTIONS:

- -Keep stack of pillow cases in fridge.
- -Keep stack of pillow cases in oven.

Target

keep stack of pillow cases in fridge

Input (Translation)

Translate this sentence to Spanish:

The new office building was built in less than three months.

Target

El nuevo edificio de oficinas se construyó en tres meses.

Sentiment analysis tasks

Coreference resolution tasks

...

Inference on unseen task type

Input (Natural Language Inference)

Premise: At my age you will probably have learnt one lesson.

Hypothesis: It's not certain how many lessons you'll learn by your thirties.

Does the premise entail the hypothesis? OPTIONS:

yes -it is not possible to tell

-no

FLAN Response

It is not possible to tell

Unsafe Outputs – Alignment Problem

- LLMs may produce
 - Harmful text unparliamentary language, bias and discrimination
 - Text that can cause direct harm allowing easy access to dangerous information
- Therefore, LLMs should be trained to produce outputs that align with human preferences and values
- Modern LLMs do so by using SFT and by using human preference directly in model training

Training of Decoder-only LLMs – Llama 2

- 1. Auto-regressive Pre-training Train to predict the next token on very large scale corpora (~3 trillion tokens)
- 2. Instruction Fine-tuning/ Supervised Fine-tuning (SFT) Fine-tune the pretrained model with pairs of (instruction+input,output) with large dataset and then with small high-quality dataset
- 3. Safety Design a reward model based on human feedback and use policy gradient methods with the trained reward model to update LLM parameters so that outputs align with human values
 - -- RLHF (Reinforcement-learning with Human Feedback)

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

Step 3

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

However, these techniques, like RLHF, can't guarantee LLMs will never produce harmful outputs

LLM Inference: Prompting

Prompts

- Tell the model what to do in natural language
- For example, generate a textual summary of this paragraph:
- Can be as short or long as required

Prompt Engineering

- The task of identifying the correct prompt needed to perform a task
- General rule of thumb be as specific and descriptive as possible
- Can be manual or automatic (prefix-tuning, paraphrasing etc.)

ChatGPT Prompt example

```
messages=[
    "role": "system",
    "content": "You are an assistant that translates corporate jargon into plain English."
    "role": "system",
    "name": "example user",
    "content": "New synergies will help drive top-line growth."
    "role": "system",
    "name": "example assistant",
    "content": "Things working well together will increase revenue."
  . . . /
    "role": "user",
    "content": "This late pivot means we don't have time to boil the ocean for the client deliverable."
  },
```

In-context learning/ Few-shot prompting (Brown,21)

Provide a few examples along with the instruction

```
Instruction | Please classify movie reviews as 'positive' or 'negative'.

Input: I really don't like this movie.
Output: negative

Input: This movie is great!
Output: positive
```

Chain of thought prompting (Wei, 2021)

Get the model to work through the steps of the problem

Figure 1: Chain-of-thought prompting enables large language models to tackle complex arithmetic, commonsense, and symbolic reasoning tasks. Chain-of-thought reasoning processes are highlighted.

What to Pick?

- Full Fine-tuning (FT)
 - a. +Strongest performance
 - b. Need curated and labeled dataset for each new task (typically 1k-100k+ ex.)
 - c. Poor generalization, spurious feature exploitation
- 2. Few-shot (FS)
 - a. +Much less task-specific data needed
 - b. +No spurious feature exploitation
 - c. Challenging
- 3. One-shot (1S)
 - a. +"Most natural," e.g. giving humans instructions
 - b. Challenging
- 4. Zero-shot (0S)
 - a. +Most convenient
 - b. Challenging, can be ambiguous

Stronger task-specific performance

More convenient, general, less data

Note on Parameter Efficient Fine-tuning

- When we don't have large enough data for SFT
 - Freeze the LM and keep some parameters trainable
 - Add an external adapter module to adapt model parameters to the task
 - Perform Low-rank Adaptation (LoRA)

Evaluating LLMs

- Evaluation is challenging
 - Evaluate on as many datasets and tasks as possible

Benchmark (shots)	GPT-3.5	GPT-4	PaLM	PaLM-2-L	Llama 2
MMLU (5-shot)	70.0	86.4	69.3	78.3	68.9
TriviaQA (1-shot)	3 <u>—</u> 3	51-0	81.4	86.1	85.0
Natural Questions (1-shot)	_	_	29.3	37.5	33.0
GSM8K (8-shot)	5 7 .1	92.0	56.5	80.7	56.8
HumanEval (0-shot)	48.1	67.0	26.2	_	29.9
BIG-Bench Hard (3-shot)	_	-	52.3	65.7	51.2

Table 4: Comparison to closed-source models on academic benchmarks. Results for GPT-3.5 and GPT-4 are from OpenAI (2023). Results for the PaLM model are from Chowdhery et al. (2022). Results for the PaLM-2-L are from Anil et al. (2023).

Multimodal LLMs

- Text is only part of the picture
 - We want LLMs that can understand the world by seeing and listening as well
 - Models should be able to do cross-modal reasoning and learning
- Multimodality can be introduced
 - From pre-training: Gemini
 - From instruction-tuning: AudioGPT, Flamingo

Modelling data using continuous representations

- Using continuous speech representations
 - Pros
 - Rich information
 - Good performance
 - Cons
 - Computationally heavy
 - Storage heavy

Modeling data using Discrete Unit

 Recently discrete units shows promising performance and benefit

> Chang, Xuankai, et al. "Exploring Speech Recognition, Translation, and Understanding with Discrete Speech Units: A Comparative Study."

arXiv preprint arXiv:2309.15800 (2023).

- Storage decreases
- Sequence length (> 50% reduction)
- Performance is okay

Multimodal LLMs – Representing Images

- Continuous embeddings
 - concatenated with the embeddings of text inputs to LLMs
 - Pre-trained independently
 - Ex: CLIP

- Discrete representations
 - Extracted from self-supervised audio models like VQ-VAEs

Open Challenges - LLMs

- New Capabilities
 - Multimodal
 - Multi-lingual
 - More Complex Tasks
- Performance
 - Reduce Hallucinations
 - Improve Alignment with Human Preference
 - Increase Context Length Efficiently
 - Improve Data, Training Strategy, and Model Architecture
- Efficiency
 - Computational cost, time, and money
 - Compute architecture GPU/ TPU/ HPU

Safety

- Reduce Harm
- Improve Adversarial Robustness
- Privacy Concerns
- Interpretability
 - Why do LLMs do what they do?