The New Keynesian Model

ECON 30020: Intermediate Macroeconomics

Prof. Eric Sims

University of Notre Dame

Spring 2018

Readings

- ▶ GLS Ch. 21 (the demand side)
- ▶ GLS Ch. 22 (the supply side)
- ▶ GLS Ch. 23 (effects of shocks)

New Keynesian Models

- At risk of oversimplification, New Keynesian models are the leading alternative to the neoclassical / RBC model
- "New" Keynesian: neoclassical backbone to these models. Just a twist on neoclassical model, not a fundamentally different framework. In the "medium run" / "long run" models are the same
- Basic difference: nominal rigidities. Wages and/or prices are imperfectly flexible
- Means:
 - 1. Money is non-neutral
 - 2. Demand shocks matter
 - 3. Equilibrium of the model is inefficient
 - There is therefore scope for policy to improve outcomes in short run

Demand and Supply

- ► The demand side of the neoclassical and New Keynesian models are the same
- Differences arise on the supply side
- Two basic variants (or mixture of the two): price stickiness or nominal wage stickiness
- ► This will require some change in the labor market either the firm (price stickiness) or household (wage stickiness) is off its supply or demand schedule
- ► We will focus on two versions of the sticky price model in class – the "Simple" sticky price model and "Partial" sticky price model

Review: Neoclassical Model

Equilibrium conditions:

$$C_{t} = C^{d}(Y_{t} - G_{t}, Y_{t+1} - G_{t+1}, r_{t})$$

$$N_{t} = N^{s}(w_{t}, \theta_{t})$$

$$N_{t} = N^{d}(w_{t}, A_{t}, K_{t})$$

$$I_{t} = I^{d}(r_{t}, A_{t+1}, f_{t}, K_{t})$$

$$Y_{t} = A_{t}F(K_{t}, N_{t})$$

$$Y_{t} = C_{t} + I_{t} + G_{t}$$

$$M_{t} = P_{t}M^{d}(i_{t}, Y_{t})$$

$$r_{t} = i_{t} - \pi_{t+1}^{e}$$

 \triangleright P_t is endogenous

New Keynesian Model

- Simple sticky price model:
 - $P_t = \bar{P}_t$ is now exogenous, rather than endogenous
 - Extreme form of price stickiness: price level completely pre-determined
 - Replace labor demand curve with $P_t = \bar{P}_t$. Firm (which sets price), has to hire labor to meet demand at \bar{P}_t rather than to maximize its value
- Partial sticky price model:
 - $P_t = \bar{P}_t + \gamma (Y_t Y_t^f)$
 - \bar{P}_t is again the exogenous component of the price level. $\gamma \geq 0$ a parameter. Y_t^f the hypothetical equilibrium level of output in neoclassical model.
 - Nests simple sticky price model $(\gamma=0)$ and neoclassical model $(\gamma\to\infty)$
 - Again replace labor demand curve with this modified expression for the price level

Simple Sticky Price Model

Equilibrium conditions:

$$C_{t} = C^{d}(Y_{t} - G_{t}, Y_{t+1} - G_{t+1}, r_{t})$$

$$N_{t} = N^{s}(w_{t}, \theta_{t})$$

$$P_{t} = \bar{P}_{t}$$

$$I_{t} = I^{d}(r_{t}, A_{t+1}, f_{t}, K_{t})$$

$$Y_{t} = A_{t}F(K_{t}, N_{t})$$

$$Y_{t} = C_{t} + I_{t} + G_{t}$$

$$M_{t} = P_{t}M^{d}(i_{t}, Y_{t})$$

$$r_{t} = i_{t} - \pi_{t+1}^{e}$$

- $ightharpoonup \bar{P}_t$ is exogenous
- Only one equation different from neoclassical model!

Partial Sticky Price Model

Equilibrium conditions:

$$C_{t} = C^{d}(Y_{t} - G_{t}, Y_{t+1} - G_{t+1}, r_{t})$$

$$N_{t} = N^{s}(w_{t}, \theta_{t})$$

$$P_{t} = \bar{P}_{t} + \gamma(Y_{t} - Y_{t}^{f})$$

$$I_{t} = I^{d}(r_{t}, A_{t+1}, f_{t}, K_{t})$$

$$Y_{t} = A_{t}F(K_{t}, N_{t})$$

$$Y_{t} = C_{t} + I_{t} + G_{t}$$

$$M_{t} = P_{t}M^{d}(i_{t}, Y_{t})$$

$$r_{t} = i_{t} - \pi_{t+1}^{e}$$

- $ightharpoonup \bar{P}_t$ is exogenous
- Can think of Y_t^f as exogenous with respect to these equations

 it is solution to the eight equations when we are on the
 labor demand curve in neoclassical model

Graphing the Equilibrium

- We will use the AD (aggregate demand) and AS (aggregate supply) curves to summarize the equilibrium
- ▶ AD: stands for aggregate demand. Set of (P_t, Y_t) pairs consistent with the following conditions:

$$C_{t} = C^{d}(Y_{t} - G_{t}, Y_{t+1} - G_{t+1}, r_{t})$$

$$I_{t} = I^{d}(r_{t}, A_{t+1}, f_{t}, K_{t})$$

$$Y_{t} = C_{t} + I_{t} + G_{t}$$

$$M_{t} = P_{t}M^{d}(i_{t}, Y_{t})$$

$$r_{t} = i_{t} - \pi^{e}_{t+1}$$

- ▶ Differently than before, AD curve summarizes *both* real demand (the first three equations, the *IS* curve) and nominal demand (the last two, what will be the *LM* curve)
- ► Classical dichotomy will no longer hold, so cannot separately analyze real and nominal sides of the economy
- Nevertheless, could define and use the AD curve in the neoclassical model

The IS and LM Curves

- ▶ The IS curve is *identical* to before: set of (r_t, Y_t) pairs where the first three of the conditions hold
- ▶ LM curve (liquidity = money) plots combinations of (r_t, Y_t) where last two equations hold. Combination of (r_t, Y_t) where money market clears
- ▶ LM curve is upward-sloping in (r_t, Y_t) space. Basic idea: holding M_t and P_t fixed, if r_t goes up, Y_t must go up for money demand to equal money supply
- Go through graphical derivation
- ▶ LM curve will shift if M_t , P_t , or π_{t+1}^e change
- ▶ Rule of thumb: LM curve shifts in the same direction as real balances, $\frac{M_t}{P_t}$

Deriving the LM Curve

The AD Curve

- ▶ The AD curve is the set of (P_t, Y_t) pairs where the economy is on both the IS and I M curves
- Basic idea: P_t determines position of LM curve, which determines a Y_t where the LM curve intersects the IS curve. A higher P_t means the LM curve shifts in, which results in a lower Y_t
- ► Hence, the AD curve is downward-sloping
- Go through graphical derivation

Deriving the AD Curve

Shifts of the AD Curve

- ► The AD curve will shift if *either* the IS or LM curves shift (for reason other than *P*_t)
- This means that the AD curve will shift right if:
 - ▶ A_{t+1} or G_t increase (IS shifts); M_t or π_{t+1}^e increase (LM shifts)
 - f_t or G_{t+1} decrease (IS shifts)
- Note: we could use the AD curve to summarize the demand side of the neoclassical model as well
- Was just convenient to not since this emphasized classical dichotomy in the neoclassical model

The Supply Side

- ▶ Generically, the AS curve is the set of (P_t, Y_t) pairs (i) consistent with the production function, (ii) *some* notion of labor market equilibrium, and (iii) any exogenous restriction on nominal price or wage adjustment
- Can use the AS curve to summarize the neoclassical model as well as the New Keynesian model:

$$N_t = N^s(w_t, \theta_t)$$

$$N_t = N^d(w_t, A_t, K_t)$$

$$Y_t = A_t F(K_t, N_t)$$

Since P_t does not appear in these equations, the AS curve would be vertical in the neoclassical model

The Neoclassical AS Curve

Neoclassical IS-LM-AD-AS Equilibrium

Simple Sticky Price Model

- In simple sticky price model, assume that $P_t = \bar{P}_t$ is predetermined and hence exogenous (think something like menu costs)
- Replace labor demand with this condition: firm has to meet demand at P_t, cannot optimally choose labor conditional on this
- Conditions:

$$N_t = N^s(w_t, \theta_t)$$

$$P_t = \bar{P}_t$$

$$Y_t = A_t F(K_t, N_t)$$

▶ The AS curve will just be horizontal at \bar{P}_t . Can only shift if \bar{P}_t changes exogenously

The Simple Sticky Price AS Curve

Simple Sticky Price IS-LM-AD-AS Equilibrium

Partial Sticky Price Model

- In partial sticky price model, P_t is "partially" sticky but also depends on "output gap": $P_t = \bar{P}_t + \gamma(Y_t Y_t^f)$
- Replace labor demand with this condition: firm has to meet demand at P_t, cannot optimally choose labor conditional on this
- Conditions:

$$N_t = N^s(w_t, \theta_t)$$

$$P_t = \bar{P}_t + \gamma(Y_t - Y_t^f)$$

$$Y_t = A_t F(K_t, N_t)$$

- \blacktriangleright The AS curve will be upward-sloping with slope determined by γ
- ▶ Crosses point $P_t = \bar{P}_t$ at $Y_t = Y_t^f$, where Y_t^f can graphically be found where labor supply intersects hypothetical labor demand
- ► *AS*^f: hypothetical neoclassical AS curve (sometimes called LRAS)

The Partial Sticky Price AS Curve

Partial Sticky Price IS-LM-AD-AS Equilibrium

Monetary Non-Neutrality

- Whereas in the neoclassical model Y_t is supply determined, in the New Keynesian model output is (fully or partially) demand determined
- ▶ First, figure out what Y_t is (where AD and AS intersect), and then figure out what N_t must be to support that
- ▶ An increase in M_t shifts the LM curve to the right, and hence the AD curve to the right as well
- ightharpoonup With a non-vertical AS curve, this results in a higher Y_t and lower r_t
- ▶ The lower r_t stimulates I_t ; lower r_t plus higher Y_t means C_t is higher
- ▶ To support higher Y_t , N_t must rise
- To induce household to work more, w_t must rise

Increase in M_t : Graphically in Simple Sticky Price Model

Increase in M_t : Graphically in Partial Sticky Price Model

Increase in M_t : Graphically in Neoclassical Model

Monetary Non-Neutrality

- ► A change in the money supply affects real variables in New Keynesian model
- ▶ Has bigger effect on real variables the flatter is the AS curve (i.e. the smaller is γ)
- ▶ Nests two cases: $\gamma = 0$ simply sticky price, $\gamma \to \infty$ is neoclassical (where money is neutral)
- ▶ Intuition: if P_t is imperfectly flexible, then changes in M_t must cause real balances, $\frac{M_t}{P_t}$, to change
- ▶ But for money market to clear this requires changes in r_t and Y_t
- Amount r_t and Y_t must change depends on how much real balances move, which depends on how sticky P_t is

Supply Shocks

- ▶ Supply shocks $(A_t, \theta_t, \text{ or } K_t)$ cause the AS curve to shift
- General rule of thumb: if price level is sticky (so AS curve is non-vertical), output reacts less to supply shocks
- ► Extent to which it reacts less depends upon slope of AS curve

Increase in A_t : Graphically in Neoclassical Model

Increase in A_t : Simple Sticky Price Model

Increase in A_t : Partial Sticky Price Model

Economy Reacts Differently to Supply Shocks

- ▶ Output (and other real variables) *under-react* to supply shock the stickier are prices (i.e. the flatter is the AS curve)
- In extreme case, output don't react at all to productivity shock (simple sticky price model), so N_t falls.
- ▶ Basic intuition: for money market to clear (i.e. to be on LM curve), $\frac{M_t}{P_t}$ must fall. But if P_t is restricted in how much it can fall, r_t and Y_t must react less

Positive IS Shock: Graphically in Neoclassical Model

Positive IS Shock: Simple Sticky Price Model

Positive IS Shock: Partial Sticky Price Model

Demand Shocks Matter

- ► Output reacts to *IS* shocks, the more so the flatter is the *AS* curve
- ▶ In contrast, r_t under-reacts relative to neoclassical case
- Intuition. $\frac{M_t}{P_t}$ needs to fall and r_t to rise to implement neoclassical equilibrium after a positive *IS* shock (e.g. increase in A_{t+1} or decrease in f_t)
- But if P_t can't fall, r_t can't rise as much and Y_t must rise for money market to clear

Conclusion

- ► The New Keynesian model is the same as the neoclassical model except *P*_t is not perfectly flexible
- ▶ Means AS is non-vertical and not on labor demand curve
- Money is non-neutral, demand shocks matter, and economy reacts differently to supply shocks
- Coming agenda:
 - 1. Think about dynamics how does P_t adjust so as to converge to neoclassical equilibrium as economy transitions from short run to medium run?
 - 2. Think about policy if Y_t^f is efficient, no guarantee that $Y_t = Y_t^f$. Scope for policy
 - 3. Think about constraints on policy the zero lower bound (ZLB) on nominal interest rate