2020.07.03

박진혁

목차

- 1. Introduction
- 2. Image Captioning
- 3. Image Captioning with Semantic Attention
- 4. Result
- 5. Conclusion

- ❖ 주제 선정 이유
 - ▶ 폐 이미지에 해당하는 질병에 대한 문장 생성

- ❖ 컴퓨터 비전(Computer Vision) 이란?
 - 지도학습의 한 분야로 사진/동영상에 대한 정답(Label)이 존재
 - 사진/동영상의 의미있는 정보를 추출하여 분석하는 연구 분야
 - 연구 분야에는 이미지 분류 및 위치파악, 객체 탐지, 이미지 분할 등이 존재

Image Classification

Iron Man

Image Localization

Iron Man

- ❖ 컴퓨터 비전(Computer Vision) 이란?
 - 지도학습의 한 분야로 사진/동영상에 대한 정답(Label)이 존재
 - 사진/동영상의 의미있는 정보를 추출하여 분석하는 연구 분야
 - 연구 분야에는 이미지 분류 및 위치파악, 객체 탐지, 이미지 분할 등이 존재

Object Detection

Thor, Captain America, Car

Image Segmentation

Thor, Captain America, Car

- ❖ 자연어 처리(NLP) 란?
 - 기계가 자연어를 이해하고 해석하여 처리하는 연구 분야
 - 연구 분야에는 텍스트 분류, 감성 분석, 텍스트 요약 등이 존재

2. Image Captioning

- ❖ 이미지 캡셔닝(Image Captioning) 이란?
 - 컴퓨터 비전과 자연어 처리를 연결하는 연구 분야
 - 이미지를 설명하는 문장을 생성하는 알고리즘
 - CNN과 RNN이 결합된 구조

The dog is yawning.

The man with the umbrella is walking down the street.

2. Image Captioning

❖ 이미지 캡셔닝 일반적인 구조

● Input : 이미지 ● Output : 문장

- Image Captioning with Semantic Attention
 - 2016년 Computer Vision and Pattern Recognition(CVPR)에서 발표된 논문
 - 2020년 6월 30일 기준으로 868회 인용

Image Captioning with Semantic Attention

Quanzeng You1, Hailin Jin2, Zhaowen Wang2, Chen Fang2, and Jiebo Luo1

¹Department of Computer Science, University of Rochester, Rochester NY 14627, USA

²Adobe Research, 345 Park Ave, San Jose CA 95110, USA

Abstract

Automatically generating a natural language description of an image has attracted interests recently both because of its importance in practical applications and because it connects two major artificial intelligence fields: computer vision and natural language processing. Existing approaches are either top-down, which start from a gist of an image and convert it into words, or bottom-up, which come up with words describing various aspects of an image and then combine them. In this paper, we propose a new algorithm that combines both approaches through a model of semantic attention. Our algorithm learns to selectively attend to semantic concept proposals and fuse them into hidden states and outputs of recurrent neural networks. The selection and fusion form a feedback connecting the top-down and bottom-up computation. We evaluate our algorithm on two public benchmarks: Microsoft COCO and

Figure 1. Top: an overview of the proposed framework. Given an image, we use a convolutional neural network to extract a top-down visual feature and at the same time detect visual concepts (regions, objects, attributes, etc.). We employ a semantic attention model to combine the visual feature with visual concepts in a recurrent neural network that generates the image caption. Bottom: We show the changes of the attention weights for several candidate concepts with respect to the recurrent neural network iterations.

- Image Captioning with Semantic Attention
 - Top-down approach, Bottom-up approach로 구성
 - Top-down approach : 이미지의 전체적인 특징을 확인
 - Bottom-up approach : 이미지의 자세한 부분을 확인

The man with the umbrella is walking down the street.

<GoogLeNet 구조>

Deep 하고 Width하게

- GoogLeNet
 - 1) Inception 모듈
 - 여러 size의 filter를 병렬적으로 합쳐보자!

- GoogLeNet
 - 1) Inception 모듈
 - 여러 size의 filter를 병렬적으로 합쳐보자!

- GoogLeNet
 - 1) Inception 모듈
 - 여러 size의 filter를 병렬적으로 합쳐보자!

- GoogLeNet
 - 1) Inception 모듈

- GoogLeNet
 - 2) 1×1 Filter

- GoogLeNet
 - 2) 1×1 Filter

- GoogLeNet
 - 3) Global average pooling

GoogLeNet

annocal attention	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops	
convolution	7×7/2	112×112×64	1							2.7K	34M	
max pool	3×3/2	56×56×64	0									
convolution	3×3/1	56×56×192	2		64	192				112K	360M	
max pool	3×3/2	28×28×192	0									
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M	
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M	
max pool	3×3/2	14×14×480	0									
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M	
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M	
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M	
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M	
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M	
max pool	3×3/2	7×7×832	0									
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M	
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M	
avg pool	7×7/1	$1\times1\times1024$	0									Image의 특성
dropout (40%)		1×1×1624	0								=======================================	^
linear		1×1×1000	1							1000K	1M	
softmax		1×1×1000	9									

 $=W^{x,v}v$

 $=\phi_0(v) = x_0$

- Semantic Attention
 - Visual Attribute
 - ▶ Training Data에서 가장 많이 등장한 단어 K개를 이용하여 Class 생성

Andrew 1

Andrew 1

Andrew 1

Andrew 1

- Semantic Attention
 - Training Data에서 가장 많이 등장한 단어 K개
 - Class score가 가장 높은 단어 N개

$$A_i
ightarrow y^i$$
(One Hot Vector) $Y_{t-1}
ightarrow y_{t-1}$ (One Hot Vector)고차원 $lpha_t^i
ightarrow expig(y_{t-1}^T \widetilde{U} y^iig)$

$$A_i
ightarrow Ey^i$$
(Embedding Vector) $Y_{t-1}
ightarrow Ey_{t-1}$ (Embedding Vector) 저차원 $lpha_t^i \propto exp\left((Ey_{t-1})^T UEy^i\right)$

❖ RNN

•
$$t = 00$$
 경우

Input:
$$x_0 = \emptyset_0(v) = W^{x,v}v$$
, $t = 0$

Calculation : $h_0 =$ 초기 hidden state vector $Y_0 \sim p_0 = \varphi(h_0)$

Output : $p_0 \sim Y_0$

- p_t : 단어 Y_t 가 나올 확률 벡터
- A_i : i 번째 단어
- h_t : State t | hidden state vector

❖ RNN

• t > 0 인 경우

Input : $x_t = \emptyset(Y_{t-1}, \{A_i\}), t > 0$

Calculation : $h_t = RNN(h_{t-1}, x_t)$ $Y_t \sim p_t = \varphi(h_t, \{A_i\})$

Output : p_t

- p_t : 단어 Y_t 가 나올 확률 벡터
- A_i : i 번째 단어
- h_t : State t $\stackrel{\circ}{=}$ hidden state vector

3. Image Captioning with Semantic Attention

❖ Image Captioning with Semantic Attention 구조

❖ Image Captioning with Semantic Attention 결과 비교

		Flickr30k					MS-COCO				
Model	B-1	B-2	B-3	B-4	METEOR	B-1	B-2	B-3	B-4	METEOR	
Google NIC [35]	0.663	0.423	0.277	0.183		0.666	0.451	0.304	0.203	_	
m-RNN [26]	0.60	0.41	0.28	0.19		0.67	0.49	0.35	0.25	_	
LRCN [8]	0.587	0.39	0.25	0.165	-	0.628	0.442	0.304	0.21		
MSR/CMU [4]	<u> </u>	<u> </u>	922	0.126	0.164		70 <u>—</u> 1	<u></u>	0.19	0.204	
Toronto [37]	0.669	0.439	0.296	0.199	0.185	0.718	0.504	0.357	0.250	0.230	
Ours-CON-k-NN	0.619	0.426	0.291	0.197	0.179	0.675	0.503	0.373	0.279	0.227	
Ours-CON-RK	0.623	0.432	0.295	0.200	0.179	0.647	0.472	0.338	0.237	0.204	
Ours-CON-FCN	0.639	0.447	0.309	0.213	0.188	0.700	0.532	0.398	0.300	0.238	
Ours-MAX-k-NN	0.622	0.426	0.287	0.193	0.178	0.673	0.501	0.371	0.279	0.227	
Ours-MAX-RK	0.623	0.429	0.294	0.202	0.178	0.655	0.478	0.344	0.245	0.208	
Ours-MAX-FCN	0.633	0.444	0.306	0.21	0.181	0.699	0.530	0.398	0.301	0.240	
Ours-ATT-k-NN	0.618	0.428	0.290	0.195	0.172	0.676	0.505	0.375	0.281	0.227	
Ours-ATT-RK	0.617	0.424	0.286	0.193	0.177	0.679	0.506	0.375	0.282	0.231	
Ours-ATT-FCN	0.647	0.460	0.324	0.230	0.189	0.709	0.537	0.402	0.304	0.243	

- ❖ Image Captioning with Semantic Attention 결과 비교
 - BLEU Score

$$BLEU = BP \times exp(\sum_{n=1}^{N} W_n log p_n)$$

- c: 생성 문장 길이
- r: 실제 문장 길이
- N: n-gram에서의 n의 최대 숫자(보통은 4까지)
- $p_n : \frac{Count_{clip}}{Count}$
- W_n : Weight
- $BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1 \frac{r}{c})} & \text{if } c \le r \end{cases}$

- ❖ Image Captioning with Semantic Attention 결과 비교
 - BLEU Score

- c: 생성 문장 길이, r: 실제 문장 길이
- N: n-gram에서의 n의 최대 숫자
- $p_n: \frac{Count_{clip}}{Count}, W_n: Weight$
- $BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1 \frac{r}{c})} & \text{if } c \le r \end{cases}$

$$c = 7, r = 6$$

❖ Image Captioning with Semantic Attention 결과 비교

n = 2일 경우

- BLEU Score
 - ➤ N-gram : n개의 연속적인 단어 나열

c: 생성 문장 길이, r: 실제 문장 길이

• N: n-gram에서의 n의 최대 숫자

• $p_n: \frac{Count_{clip}}{Count}, W_n: Weight$

• $BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1 - \frac{r}{c})} & \text{if } c \le r \end{cases}$

생성 문장 : the dog the dog on the mat

1 2 3 4 5 6 the dog dog on on the the mat

❖ Image Captioning with Semantic Attention 결과 비교

BLEU Score

c: 생성 문장 길이, r: 실제 문장 길이

• N: n-gram에서의 n의 최대 숫자

• $p_n: \frac{Count_{clip}}{Count}, W_n: Weight$

• $BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1 - \frac{r}{c})} & \text{if } c \le r \end{cases}$

생성 문장 : the dog the dog on the mat

실제 문장 : the dog is on the mat

	n = 2	the dog	dog the	dog on	on the	the mat	SUM
_	Count	2	1	1	1	1	6
-	$Count_{clip}$	1	0	0	1	1	3

Count: 생성된 문장의 n-gram 수

 $Count_{clip}$: 생성된 문장의 n-gram을 기준으로 등장하는 n-gram 수

- ❖ Image Captioning with Semantic Attention 결과 비교
 - BLEU Score
 - $rac{1}{2}$ $c \leq r$ 인 경우

생성 문장 : the dog

실제 문장 : the dog is on the mat

n = 2	the dog	SUM
Count	1	1
$Count_{clip}$	1	1

$$p_2 = \frac{1}{1} = 1$$
(확률은 높지만 제대로 된 문장이 아님) $\rightarrow BP = e^{(1-\frac{5}{2})}$
Penalty

• c: 생성 문장 길이, r: 실제 문장 길이

• N: n-gram에서의 n의 최대 숫자

• $p_n: \frac{Count_{clip}}{Count}, W_n: Weight$

$$\bullet BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-\frac{r}{c})} & \text{if } c \leq r \end{cases}$$

- ❖ Image Captioning with Semantic Attention 결과 비교
 - BLEU Score
 - ▶ c > r인 경우

- c: 생성 문장 길이, r: 실제 문장 길이
- N: n-gram에서의 n의 최대 숫자
- $p_n: \frac{Count_{clip}}{Count}, W_n: Weight$
- $BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-\frac{r}{c})} & \text{if } c \leq r \end{cases}$

생성 문장 : the dog the dog on the mat

실제 문장 : the dog is on the mat

	n = 2	the dog	dog the	dog on	on the	the mat	SUM
_	Count	2	1	1	1	1	6
_	$Count_{clip}$	1	0	0	1	1	3

생성 문장이 길어지면 분모의 count의 합이 커지게 됨 \downarrow p_2 가 자연스럽게 낮아 짐

❖ Image Captioning with Semantic Attention 결과 비교

c: 생성 문장 길이

• r: 실제 문장 길이

BLEU Score

$$BLEU = BP \times exp(\sum_{n=1}^{N} W_n log p_n)$$

• $p_n : \frac{Count_{clip}}{Count}$

• W_n : Weight

•
$$BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-\frac{r}{c})} & \text{if } c \le r \end{cases}$$

생성 문장 : the dog the dog on the mat

실제 문장 : the dog is on the mat

n = 2	the dog	dog the	dog on	on the	the mat	SUM
Count	2	1	1	1	1	6
$\overline{\textit{Count}_{clip}}$	1	0	0	1	1	3

$$p_2 = \frac{3}{6} = \frac{1}{2}$$
 , $BP = 1$

❖ Image Captioning with Semantic Attention 결과 비교

	Flickr30k						MS-COCO				
Model	B-1	B-2	B-3	B-4	METEOR	B-1	B-2	B-3	B-4	METEOR	
Google NIC [35]	0.663	0.423	0.277	0.183	2 2	0.666	0.451	0.304	0.203	_	
m-RNN [26]	0.60	0.41	0.28	0.19	-	0.67	0.49	0.35	0.25	_	
LRCN [8]	0.587	0.39	0.25	0.165	_	0.628	0.442	0.304	0.21	_	
MSR/CMU [4]	<u> </u>	9002	922	0.126	0.164	200	0 <u>—</u> 1	<u> </u>	0.19	0.204	
Toronto [37]	0.669	0.439	0.296	0.199	0.185	0.718	0.504	0.357	0.250	0.230	
Ours-CON-k-NN	0.619	0.426	0.291	0.197	0.179	0.675	0.503	0.373	0.279	0.227	
Ours-CON-RK	0.623	0.432	0.295	0.200	0.179	0.647	0.472	0.338	0.237	0.204	
Ours-CON-FCN	0.639	0.447	0.309	0.213	0.188	0.700	0.532	0.398	0.300	0.238	
Ours-MAX-k-NN	0.622	0.426	0.287	0.193	0.178	0.673	0.501	0.371	0.279	0.227	
Ours-MAX-RK	0.623	0.429	0.294	0.202	0.178	0.655	0.478	0.344	0.245	0.208	
Ours-MAX-FCN	0.633	0.444	0.306	0.21	0.181	0.699	0.530	0.398	0.301	0.240	
Ours-ATT-k-NN	0.618	0.428	0.290	0.195	0.172	0.676	0.505	0.375	0.281	0.227	
Ours-ATT-RK	0.617	0.424	0.286	0.193	0.177	0.679	0.506	0.375	0.282	0.231	
Ours-ATT-FCN	0.647	0.460	0.324	0.230	0.189	0.709	0.537	0.402	0.304	0.243	

❖ Image Captioning with Semantic Attention 결과 비교

Google NIC	a white plate topped with a variety of food.	a baby is eating a piece of paper.	a close up of a plate of food on a table.	a teddy bear sitting on top of a chair.	a person is holding colorful umbrella.	a woman is holding a cell phone in her hand .
Top-5 visual attributes	plate broccoli fries food french	teeth brushing toothbrush holding baby	cake table plate sitting birthday	teddy cat bear stuffed white	umbrella beach water sitting boat	woman bathroom her scissors man
ATT-FCN	a plate with a sandwich and french fries.	a baby with a toothbrush in its mouth.	a table topped with a cake with candles on it.	a white teddy bear sitting next to a stuffed animal	a black umbrella sitting on top of a sandy beach	a woman holding a pair of scissors in her hands

5. Conclusion

- ❖ 결론
 - Image Captioning
 - ➤ CNN과 RNN으로 구성된 구조
 - ▶ 입력 변수 : 이미지
 - ▶ 출력 변수 : 문장

- Image Captioning with Semantic Attention
 - ➤ CNN과 RNN으로 구성된 구조의 RNN에 이미지의 특성을 반영
 - ▶ 입력 변수 : 이미지
 - ▶ 출력 변수 : 문장

감사합니다.

Semantic Attention

 A_i : i 번째 해당하는 단어

 $y^i: A_i \supseteq$ One Hot Vector

 $Y_{t-1}: t-1$ 번째 단어

 $y_{t-1}: Y_{t-1} \supseteq |$ One Hot Vector

 $|\mathcal{Y}|$: 현존하는 모든 단어 수

 $ilde{m{U}} \in \mathbb{R}^{|\mathcal{Y}| imes |\mathcal{Y}|}$

 $oldsymbol{E} \in \mathbb{R}^{d imes |\mathcal{Y}|}$, Embedding matrix

Semantic Attention

$$\alpha_t^i \propto exp\left((Ey_{t-1})^T U Ey^i\right) = \exp(y_{t-1}^T E^T U Ey^i), \ \widetilde{U} = E^T U E$$

$$x_t = W^{x,Y}(Ey_{t-1} + diag(w^{x,A})) \sum_i \alpha_t^i Ey^i)$$

Semantic Attention

❖ RNN

Input:
$$x_0 = \emptyset_0(v) = W^{x,v}v$$
, $t = 0$

Calculation : $h_0 =$ 本기 hidden state vector $Y_0 \sim p_0 = \varphi(h_0, \{A_i\})$

Output : $p_0 \sim Y_0$

- p_t : 단어 Y_t 가 나올 확률 벡터
- A_i : i 번째 단어
- h_t : State t $\stackrel{\circ}{=}$ hidden state vector

RNN

Input :
$$x_t = \emptyset(Y_{t-1}, \{A_i\}), t > 0$$

Calculation :
$$h_t = RNN(h_{t-1}, x_t)$$

 $Y_t \sim p_t = \varphi(h_t, \{A_i\})$

Output : p_t

- p_t : 단어 Y_t 가 나올 확률 벡터
- A_i : i 번째 단어
- h_t : State t $\stackrel{\circ}{=}$ hidden state vector