

IoT Long Range Technologies: Standards

Sami TABBANE

December 2017

Summary

A. Fixed & Short Range

B. Long Range technologies

Low-power wide-area network

- 1. Non 3GPP Standards (LPWAN)
- 2. 3GPP Standards

Third Generation Partnership Project

Wide-area M2M technologies and IoT

Carrier frequency tần số sóng mang		Technology	Channel bandwidth	Representative data rate upload/download	Link budget target or max. range		
Licensed cellular		LTE Cat. 0	20 MHz	DL: 1 Mb/s UL: 1 Mb/s	140 dB		
		LTE Cat. M	1.4 MHz	DL: 1 Mb/s UL: 1 Mb/s	155 dB		
		NB-IoT	200 kHz	DL: 128 kb/s UL: 64 kb/s	164 dB		
		EC-GSM	200 kHz	DL: 74 kb/s UL: 74 kb/s	164 dB		
Unlicensed	2.4 GHz	Ingenu RPMA	1 MHz	UL: 624 kb/s DL: 156 kb/s	500 km line of sight		
	Sub-1 GHz	LoRa chirp spread spectrum	125 kHz	UL: 100 kb/s DL: 100 kb/s	nông 15 km rural 5 km urban	ng thôn	
	Sub-1 GHz	Weightless-N	200 Hz	UL: 100 b/s	3 km urban		
	Sub-1 GHz	Sigfox	160 Hz	UL: 100 b/s	50 km rural 10 km urban		

B. Non 3GPP Standards (LPWAN)

- i. LoRaWAN
- ii. Sigfox
- iii. RPMA
- iv. Others

LPWAN REQUIREMENTS

i. LoRaWAN

Roadmap

Differences between LoRa and LoRaWAN

- LoRa contains only the link layer protocol. LoRa modules are a little cheaper that the LoRaWAN ones.
- **LoRaWAN** includes the network layer too so it is possible to send the information to any Base Station already connected to a Cloud platform. LoRaWAN modules may work in different frequencies by just connecting the right antenna to its socket.

International Operators

International development of the solution

Integrators and industrialists

Appropriate technology and maintain it over time

Manufacturers of **End-points**

Broadcast end devices

Manufacturers of **Semiconductors**

Integrate LoRa technology

LoRa technology Overview

- LoRaWAN is a Low Power Wide Area Network
- LoRa modulation: a version of Chirp Spread Spectrum (CSS)
 with a typical channel bandwidth of 125KHz
- High Sensitivity (End Nodes: Up to -137 dBm, Gateways: up to Decibels per milliwatt or dBm is a measure of power level
- Long range communication (up to 15 Km)
 thâm nhập
- Strong indoor penetration: With High Spreading Factor, Up to
 20dB penetration (deep indoor)
- Occupies the entire bandwidth of the channel to broadcast a signal, making it robust to channel noise.
- **Resistant** to Doppler effect, multi-path and signal weakening. 100

Architecture

Spread spectrum basics

Spectrum

trực giao

- Orthogonal sequences: 2 messages, transmitted by 2 different objects, arriving gateway simultaneously on a GW without interference between them (*Code Division Multiple Access* technique: CDMA, used also in 3G).
- Spread Spectrum: Make the signal more robust, the more the signal is spread the more robust. Less sensitive to interference and selective frequency fadings.

Spectrum: unlicensed, i.e. the 915 MHz ISM band in the US, 868 MHz in Europe

Spectrum (Influence of the Spreading Factor)

Far with obstacles:

- → **High sensitivity** required
- → The network **increases** the SF (*Spreading Factor*) →

Throughput decreases but the connection is maintained

Close:

- → Low sensitivity sufficient
- → Decrease of SF (SPREADING FACTOR), increase of throughput

Adaptive throughput

spreading

factor

data rate

ADR: Adaptive Data Rate

sensitivity

Received Signal Strength Indicator

RSSI and SF versus BW

SF BW	7	8	9	10	11	12
125 kHz	-123	-126	-129	-132	-133	-136
250 kHz	-120	-123	-125	-128	-130	-133
500 kHz	-116	-119	-122	-125	-128	-130

signal-to-noise ratio SF, bitrate, sensitivity and SNR for a 125 kHz channel

Receiver sensitivity is a measure of the minimum signal strength that a receiver can detect. It tells us the weakest signal that a receiver will be able to identify and process. So for example a receiver sensitivity of -90 dBm is better than -80 dBm i.e this means that the -90 dBm receiver is more sensitive and can interpret lower power signals.

Spreading factor	Bitrate (bit/sec)	Sensitivity (dBm)	LoRa demodulator SNR
7 (128)	5 469	-124 dBm	bộ giải điều biến -7.5 dB
8 (256)	3 125	-127 dBm	-10 dB
9 (512)	1 758	-130 dBm	-12.5 dB
10 (1024)	977	-133 dBm	-15 dB
11 (2048)	537	-135 dBm	-17.5 dB
12 (4096)	293	-137 dBm	-20 dB

SF and repetition can be either **manual** (i.e., determined by the end-device) or **automatic** (i.e., managed by the network)

LoRaWAN: device classes

Classes	Description	Intended Use	Consumption	Examples of Services
A (« all »)	Listens only after end device transmission	Modules with no latency constraint	The most economic communication Class energetically Supported by all modules. Adapted to battery powered modules	Fire DetectionEarthquake Early Detection
B (« b eacon »)	The module listens at a regularly adjustable frequency	Modules with latency constraints for the reception of messages of a few seconds	Consumption optimized. Adapted to battery powered modules	Smart meteringTemperature rise
C (« continuous »)	Module always listening	Modules with a strong reception latency constraint (less than one second)	Adapted to modules on the grid or with no power constraints	 Fleet management Real Time Traffic Management

→ Any LoRa object can transmit and receive data

Class A

Listening period: varies according to the spreading factor SF

- 5.1 ms at SF7 (outdoor and close devices)
- 10.2 ms at SF8 ...
- 164 ms at SF12 (deep-indoor or fardevices)
 - Very economic energetically
 - Communication triggered by the end device

Class B (Synchronized mode)

Class C

End-device address (DevAddr):

- □ **Application identifier (***AppEUI***):** A global application ID in the IEEE EUI64 address space that uniquely **identifies the owner of the end-device**.
- **Network session key (***NwkSKey***):** A key used by the network server and the end-device to calculate and verify the message integrity code of all data messages to ensure data integrity. toàn vẹn
- **Application session key** (*AppSKey*): A key used by the network server and end-device to encrypt and decrypt the payload field of data messages.

Current state

Amsterdam: was the first city covered by LoRaWAN with only 10 Gateways for the whole city at \$ 1200 per unit. Since then, several cities have followed the trend:

By the end of 2016, France will all be covered by LoRa

ii. Sigfox

Roadmap

Mars By the end of 2013 2012 2014 2016 2016 First fundraising All France San-Francisco Sigfox in Launch of the of Sigfox become the first territory is America in Sigfox covered by US. State covered company to 100 U.S. network cover France Sigfox network by Sigfox cities

Sigfox Overview

- First LPWAN Technology
- The physical layer based on an Ultra-Narrowband wireless modulation
- Proprietary system
- Low throughput (~100 bps)
- Low power
- Extended range (up to 50 km)
- > 140 messages/day/device
- Subscription-based model
- Cloud platform with Sigfox —defined API for

server access

Roaming capability

Architecture

By default, data is conveyed over the air interface without any encryption. Sigfox gives customers the option to either implement their own end-to-end encryption solutions.

Spectrum and access

- Narrowband technology
- Standard radio transmission method: binary phase-shift keying (BPSK)
- Takes very narrow parts of spectrum and changes the phase of the carrier radio wave to encode the data

Frequency spectrum:

- > 868 MHz in Europe
- > 915 MHz in USA

Sigfox transmission

- Starts by an UL transmission
- Each message is transmitted 3 times
- A DL message can be sent (option)
- Maximum payload of UL messages = 12 data bytes
- Maximum payload of **DL messages** = 8 bytes

➤ SIGFOX LPWAN deployed in France, Spain, Portugal, Netherlands, Luxembourg, and Ireland, Germany, UK, Belgium, Denmark, Czech Republic, Italy, Mauritius Island, Australia, New Zealand, Oman, Brazil, Finland, Malta, Mexico, Singapore and U.S.

Sigfox company objectives:

- ✓ Cover China in 2017
- ✓ 60 countries covered by the end of 2018

iii. RPMA

JOSENU

2008

September 2015

2016

2017

RPMA was developed by On-Ramp Wireless to provide connectivity to oil and gas actors it was renamed Ingenu, and targets to extend its technology to the IoT and M2M market

RPMA was implemented in many places Austin, Dallas/Ft. worth, Hostton,TX,Phenix,AZ,

. . . .

RPMA will be invaded in many others countries: Los Angeles, San Franscisco-West Bay,CA,Washington,D C, Baltimore,MD, Kanasas City

INGENU RPMA overview

Random Phase Multiple Access (RPMA) technology is a low-power, wide-area channel access method used exclusively for machine-to-machine (M2M) communication RPMA uses the 2.4 GHz band Offer extreme coverage High capacity Allow handover (channel change)

Excellent link capacity

INGENU RPMA Overview

- ☐ RPMA is a Direct Sequence Spread Spectrum (DSSS) using:
 - Convolutional channel coding, gold codes for spreading
 - ❖ 1 MHz bandwidth
 - **❖** Using **TDD frame** with power control:
 - Closed Loop Power Control: the access point/base station measures the uplink received power and periodically sends a one bit indication for the endpoint to turn up transmit power (1) or turn down power (0).
 - Open Loop Power Control: the endpoint measures the downlink received power and uses that to determine the uplink transmit power without any explicit signaling from the access point/base station.

Specifications of RPMA Solution

☐ Time/Frequency Synchronization

Uplink Power Control

- ✓ Creating a very tightly power controlled system in free-spectrum and presence of interference which reduces the amount of required endpoint transmit power by a factor of >50,000 and mitigates the near-far effect.
- ✓ Frame structure to allow continuous channel tracking.
- ✓ Adaptive spreading factor on uplink to optimize battery consumption.

☐ Handover

- ✓ Configurable gold codes per access point to eliminate ambiguity of link communication.
- ✓ Frequency reuse of 3 to eliminate any inter-cell interference degradation.
- ✓ Background scan with handover to allow continuous selection of the best access point

Specifications of RPMA Solution

■ Downlink Data Rate Optimization

- ✓ Very high downlink capacity by use of adaptive downlink spreading factors.
- ✓ Open loop forward error correction for extremely reliable firmware download.
- ✓ Open loop forward error correction to optimize ARQ signaling. Signaling only needs to indicate completion, not which particular PDUs are lost.

RPMA a Random multiple access Network

- ☐ Random multiple access is performed by delaying the signal to transmit at each end-device
- ☐ Support up to **1000 end devices** simultaneously
- ☐ For the uplink, or the downlink broadcast transmission, a unique Gold code is used.
- ☐ For unicast downlink transmission, the Gold code is built with the end-device ID, such that no other end-device is able to decode the data.

INGENU RPMA architecture

Uplink Subslot Structure

❖ Uplink Subslot Structure Supporting Flexible Data Rate

	Spreading Factor 8192 Subslot 0														
	SF 4096 Subslot 0					SF 4096 Subslot 1									
SF 2048 SF 2 Subslot 0 Subs						SF 2048 SF 2048 Subslot 2 Subslot 3									
2.50	SF 1024 SF 1024 Subslot 0 Subslot 1		SF 1024 SF 1024 Subslot 2 Subslot 3		100000	SF 1024 SF 1024 Subslot 4 Subslot 5		SF 1 Subs	Translation of the second	SF 1 Subs					
SF 512 SS 0	SF 512 SS 1	SF 512 SS 2	SF 512 SS 3	SF 512 SS 4	SF 512 SS 5	SF 512 SS 6	SF 512 SS 7	SF 512 SS 8	SF 512 SS 9	SF 512 SS 10	SF 512 SS 11	SF 512 SS 12	SF 512 SS 13	SF 512 SS 14	SF 512 SS 15

Step 1: Choose Spreading factor from 512 to 8192

Step 2: randomly select subslot

Step 3: Randomly select delay to add to subslot start from 0 to 2048 chips

How end point can transfer a data?

Access Point End Point Registration request (how often the EP will communicate) Assigned a bit on the BCH channel (enable to send or No) Send the message (payload 16 bytes) AP response (Ack or NACK): Successful transaction Not OK send again Send the message Send Acknowledge

Message confidentiality: use of powerful encryption

Message integrity1
Replay protection

Mutual Authentication

Device Anonymity

Authentic firmware Upgrades

Secure Multicasts

RPMA's current and future presence

- □ heavy presence in Texas, with networks in Dallas, Austin, San Antonio, Houston, and large white space areas.
- Ingenu offer the connectivity to more **50% of the Texas state population**.
- ☐ Three densely populated Texas markets are served by only 27 RPMA access points
- RPMA currently provides **more than 100,000 square miles** of wireless coverage for a host of IoT applications.
- ☐ Ingenu will be expanding its coverage to dozens of cities in the next few years.

RPMA's current and future presence

Currently live	Coverage Rollout Q3	Coverage ROLLOUT Q4 2016	Coverage planned 2017
 Austin,TX Dallas/Ft.worth, TX Hostton,TX Phenix,AZ Riverside,CA San Antonio,TX San Diego,CA 	 Columbus, OH Indianapolis,IN 	 Atlanta,GA Jacksonville,FL Miami,FL Oriando,FL New Orleans,LA Charlotte,NC Albuquerque Memphis,TN Nashville,TN EL paso,TX Salt Lake City,UT Richmound, Virginia beach,VA 	 Los Angeles,CA San Franscisco- West Bay,CA Washington,DC Baltimore,MD Kanasas City Greeensboro,NC Las Vegas,NV Oklahorma City, OK And many more cities

v. Others

EnOcean

Based on miniaturized power converters
 Ultra low power radio technology
 Frequencies: 868 MHz for Europe and 315 MHz for the USA
 Power from pressure on a switch or by photovoltaic cell
 These power sources are sufficient to power each module to transmit wireless and battery-free information.
 EnOcean Alliance in 2014 = more than 300 members (Texas, Leviton, Osram, Sauter, Somfy, Wago, Yamaha ...)

Smart nodes **Architecture** Gateway Actors Customer Sensors / Application Switches Building scenario Smart nodes Cloud Gateway Actors EnOcean Link Customer Sensors / Application Switches Smart nodes EnOcean Stack Customer Application Gateway Actors EnOcean Radio connection Backbone connection Customer Sensors / Application Switches

Summary

A. Fixed & Short Range

- **B.** Long Range technologies
 - 1. Non 3GPP Standards (LPWAN)
 - 2. 3GPP Standards

2. 3GPP Standards

- i. LTE-M
- ii. NB-IOT
- iii. EC-GSM
- iv. 5G and IoT

- ➤ eMTC: LTE enhancements for MTC, based on Release-12 (UE Cat 0, new PSM, power saving mode)
- ➤ **NB-IOT**: New radio added to the LTE platform optimized for the low end of the market
- EC-GSM-IoT: EGPRS enhancements in combination with PSM to make GSM/EDGE markets prepared for IoT

Main feature enhancements

- Support for positioning (E-CID and OTDOA)
- Support for Multicast (SC-PTM)
- Mobility for inter-frequency measurements
- Higher data rates
- Specify HARQ-ACK bundling in CE mode A in HD-FDD
- Larger maximum TBS
- Larger max. PDSCH/PUSCH channel bandwidth in connected mode at least in CE mode A in order to enhance support e.g. voice and audio streaming or other applications and scenarios
- Up to 10 DL HARQ processes in CE mode A in FD-FDD
- Support for VolTE (techniques to reduce DL repetitions, new repetition factors, and adjusted scheduling delays)

Main eMTC, NB-IoT and EC-GSM-IoT features

	eMTC (LTE Cat M1)	NB-IOT	EC-GSM-IoT
Deployment	In-band LTE	In-band & Guard-band LTE, standalone	In-band GSM
Coverage*	155.7 dB	164 dB for standalone, FFS others	164 dB, with 33dBm power class 154 dB, with 23dBm power class
Downlink	OFDMA, 15 KHz tone spacing, Turbo Code, 16 QAM, 1 Rx	OFDMA, 15 KHz tone spacing, 1 Rx	TDMA/FDMA, GMSK and 8PSK (optional), 1 Rx
Uplink	SC-FDMA, 15 KHz tone spacing Turbo code, 16 QAM	Single tone, 15 KHz and 3.75 KHz spacing SC-FDMA, 15 KHz tone spacing, Turbo code	TDMA/FDMA, GMSK and 8PSK (optional)
Bandwidth	1.08 MHz	180 KHz	200kHz per channel. Typical system bandwidth of 2.4MHz [smaller bandwidth down to 600 kHz being studied within Rel-13]
Peak rate (DL/UL)	1 Mbps for DL and UL	DL: ~50 kbps UL: ~50 for multi-tone, ~20 kbps for single tone	For DL and UL (using 4 timeslots): ~70 kbps (GMSK), ~240kbps (8PSK)
Duplexing	FD & HD (type B), FDD & TDD	HD (type B), FDD	HD, FDD
Power saving	PSM, ext. I-DRX, C-DRX	PSM, ext. I-DRX, C-DRX	PSM, ext. I-DRX
Power class	23 dBm, 20 dBm	23 dBm, others TBD	33 dBm, 23 dBm

Comparison of cellular IoT-LPWA

Criterion	Cat. 1 (Rel. 8+)	Cat. M1 (Rel. 13)	Cat. NB1 (Rel. 13)	FeMTC (Rel. 14)	eNB-IOT (Rel. 14)
Bandwidth	20 MHz	1.4 MHz	180 kHz	Up to 5 MHz (CE Mode A and B for PDSCH and A only for PUSCH)	180 kHz
Deployments/ HD-FDD	LTE channel / No HD-FDD	Standalone, in LTE channel / HD-FDD preferred	Standalone, in LTE channel, LTE guard bands, HD-FDD	Standalone, in LTE channel / HD-FDD, FD-FDD, TDD	Standalone, in LTE channel, LTE guard bands, HD-FDD preferred
МОР	23dBm	23dBm/ 20dBm	23dBm/ 20dBm	23dBm / 20dBm	23dBm/ 20dBm/ 14dBm
Rx ant / layers	2/1/	1/1	1/1	1/1	1/1
Coverage, MCL	145.4dB DL, 140.7dB UL (20 Kbps, FDD)	155.7dB	Deep coverage: 164dB +3	155.7dB (at 23dBm)	Deep coverage: 164dB
Data rates (peak)	DL: 10 Mbps, UL: 5 Mbps	~800 Kbps (FD-FDD) 300/375 Kbps DL/UL (HD-FDD)	30kbps (HD-FDD)	DL/ UL: 4 Mbps FD-FDD@5MHz	TBS in 80/ 105Kbps 1352/ 1800 peak rates t.b.d.
Latency	Legacy LTE: < 1s	~ 5s at 155dB	<10s at 164 dB	At least the same as Cat. M1 Legacy LTE (normal MCL)	At least the same as Cat. NB1, some improvements are FFS
Mobility	Legacy support	Legacy support	Cell selection, re-selection only	Legacy support	More mobility compared to Cat. NB1
Positioning	Legacy support	Partial support	Partial support	OTDA with legacy PRS and Frequency hopping	50m H target, new PRS introduced. details FSS. UTDOA under study
Voice	Yes (possible)	No	No	Yes	No
Optimizations	n/a	MPDCCH structure, Frequency hopping, repetitions	NPDCCH, NPSS/NSSS, NPDSCH, NPUSCH, NPRACH etc, frequency hopping, repetitions, MCO	Higher bandwidth will be DCI or RRC configured, Multi-cast e.g. SC-PTM	Multi-cast e.g. SC-PTM
Power saving	DRX	eDRX, PSM	eDRX, PSM	eDRX, PSM	[eDRX, PSM]
UE complexity BB	100%	~45%	< 25%	[~55%]	[~25%]

i. LTE-M

Technology

Evolution of LTE optimized for IoT

- Low power consumption and extended autonomy
- Easy deployment
- Interoperability with LTE networks

- Low overall cost
- Excellent coverage: up to 11 Km
- Maximum throughput: ≤1 Mbps

Roadmap

Timeline

- First released in Rel.1in 2 Q4 2014
- Optimization in Rel.13
- Specifications completed in Q1 2016
- Available in 2017 (?)

LTE to LTE-M

3GPP Releases	8 (Cat.4)	8 (Cat. 1)	12 (Cat.0) LTE-M	13 (Cat. 1,4 MHz) LTE-M
Downlink peak rate (Mbps)	150	10	1	1
Uplink peak rate (Mbps)	50	5	1	1
Number of antennas (MIMO)	2	2	1	1
Duplex Mode	Full	Full	Half	Half
UE receive bandwidth (MHz)	20	20	20	1.4
UE Transmit power (dBm)	23	23	23	20

Release 12

- Newcategory of UE ("Cat-0"): lower
 complexity and low cost devices
- Half duplex FDD operation allowed
- Single receiver
- Lower data rate requirement (Max: 1 Mbps)

Release 13

- Reduced receive bandwidth to 1.4 MHz
- Lower device power class of 20 dBm
- 15dB additional link budget: **better coverage**
- More energy efficient because of its extended discontinuous repetition cycle (eDRX)

Present LTE Architecture

Architecture

Spectrum and access

Licensed Spectrum

Reserved For M2M Traffic

Frame 0

- Bandwidth: 700-900 MHz for LTE
- Some resource blocks allocated for IoT on LTE bands
- Resource Block (RB)

 M2M

 **Mobilization of the properties of

ii. NB-IOT

Current status

April 2014	May 2014	Mars 2015	August 2015	November 2015	Jun 2015	2017+	
Narrowband proposal to Connected Living	3GPP 'Cellular IoT' Study Item	GSMA Mobile IoT created	3GPP alignment on single standard	1 st live pre- standard NB-IoT message	Full NB-IoT 3GPP Standard Released	Commercia rollout	ıl

Evolution of LTE-M

Reuses the LTE design extensively: numerologies, DL OFDMA, UL SC-FDMA, channel coding, rate matching, interleaving, etc.

- Reduced time to develop:
 - > Full specifications.
 - ➤ NB-IoT products for existing LTE equipment and software vendors.

June 2016: core specifications completed.

Beginning of 2017: commercial launch of products and services.

Frame and Slot Structure – NB-IoT – 7 symbols per slot

Physical downlink channels

- NB-PDCCH and NB-PDSCH mapping in inband mode:
- · Size of LTE control region and number of NB-RS ports is indicated by NB-MIB.
- Two CCEs (upper 6 REs, and lower 6 REs) defined.
- . NB-PDCCH is punctured on REsused for CSI-RS in the in-band
- Max appregation level for NB-PDCCH: 2
 - Repetition is only applied in case AL=2
- When AL = 2 is used, two NB-CCEs of the same UE are in the same subframe
- Different NB-PDCCHs:
- TDM at subframe level for extended and extreme coverage.
- Can be multiplexed in one subframe for normal coverage
- Error detection through 24-bit CRC for NB-PDSCH
- 16OAM is not supported for NB-PDSCH.
- . The maximum TBS for NB-PDSCH is 680 bits
- Redundancy versions (RVs) for NB-PDSCH are not supported
- NB-SIB1 is transmitted in one subframe of every other frame in 16 continuous frames. The subframes which are used are fixed.

NB-MIB (34-bit payload + 16 CRC bit) is channel-coded and rate-matched into 1600 bits.

Downlink Frame Structure

UL frame structure

UL frame structure Single-Tone (mandatory):

To provide capacity in signal-strengthlimited scenarios and dense capacity

- Number of subcarriers: 1
- Subcarrier spacing: 15 kHz or 3.75 kHz (via Random access)
- Slot duration: 0.5 ms (15 kHz) or 2 ms (3.75 kHz)

Multi-tone (optional):

To provide higher data rates for devices in normal coverage

- Number of subcarriers: 3, 6 or 12 signaled via DCI
- Subcarrier spacing: 15 kHz
- Slot duration = 0.5 ms

New UL signals

DMRS (demodulation reference signals)

New UL channels

- NPUSCH (Physical UL Shared
- Channel)
- NPRACH (Physical Random Access Channel)

Same as LTE

Can co-exist with LTE

NB-IoT Repetitions

Consists on repeating the same transmission several times:

- Achieve extra coverage (up to 20 dB compared to GPRS)
- Each repetition is selfdecodable
- SC is changed for each transmission to help combination
- Repetitions are ACK-ed just once
- All channels can use Repetitions to extend coverage

Example: Repetitions used in NB-IoT in NPDCCH and NPDSCH channels

Release 14 enhancements

- OTDOA
- UTDOA positioning is supported under the following conditions:
- It uses an existing NB-IoT transmission
 - It can be used by Rel-13 UEs
 - Any signal used for positioning needs to have its accuracy, complexity, UE power consumption performance confirmed

Main feature enhancements:

- Support for Multicast (SC-PTM)
- Power consumption and latency reduction (DL and UL for 2 HARQ processes and larger maximum TBS)
- Non-Anchor PRB enhancements (transmission of NPRACH/Paging on a non-anchor NB-IoTPRB)
- Mobility and service continuity enhancements (without the increasing of UE power consumption)
- New Power Class(es) (if appropriate, specify new UE power class(es), e.g. 14dBm)

Physical signals and channels in the downlink:

- Narrowband primary synchronization signal (NPSS) and Narrowband secondary synchronization signal (NSSS): cell search, which includes time and frequency synchronization, and cell identity detection
- Narrowband physical broadcast channel (NPBCH)
- Narrowband reference signal (NRS)
- Narrowband physical downlink control channel (NPDCCH)
- Narrowband physical downlink shared channel (NPDSCH)

	Subframe number									
Even numbered frame	0	1	2	3	4	5	6	7	8	9
	NPBCH	NPDCCH	NPDCCH	NPDCCH	NPDCCH	NPSS	NPDCCH	NPDCCH	NPDCCH	
		or	or	or	or		or	or	or	NSSS
		NPDSCH	NPDSCH	NPDSCH	NPDSCH		NPDSCH	NPDSCH	NPDSCH	
	Subframe number									
Odd numbered frame	0	1	2	3	4	5	6	7	8	9
	NPBCH	NPDCCH	NPDCCH	NPDCCH	NPDCCH		NPDCCH	NPDCCH	NPDCCH	NPDCCH
		or	or	or	or	NPSS	or	or	or	or
		NPDSCH	NPDSCH	NPDSCH	NPDSCH		NPDSCH	NPDSCH	NPDSCH	NPDSCH

- Narrowband physical random access channel (NPRACH): new channel since the legacy LTE physical random access channel (PRACH) uses a bandwidth of 1.08 MHz, more than NB-IoT uplink bandwidth
- Narrowband physical uplink shared channel (NPUSCH)

NPDCCH/NPDSCH resource mapping example

Legend					
	NPDCCH/NPDSCH				
	NRS Port 0				
	NRS Port 1				
	LTE CRS				
	LTE PDCCH				

Physical signals and channels and relationship with LTE

	Physical channel	Relationship with LTE		
	NPSS	 New sequence for fitting into one PRB (LTE PSS overlaps with middle six PRBs) All cells share one NPSS (LTE uses 3 PSSs) 		
	NSSS	 New sequence for fitting into one PRB (LTE SSS overlaps with middle six PRBs) NSSS provides the lowest 3 least significant bits of system frame number (LTE SSS does not) 		
Downlink	NPBCH	640 ms TTI (LTE uses 40 ms TTI)		
Downlink	NPDCCH	 May use multiple PRBs in time, i.e. multiple subframes (LTE PDCCH uses multiple PRBs in frequency and 1 subframe in time) 		
	NPDSCH	 Use TBCC and only one redundancy version (LTE uses Turbo Code with multiple redundancy versions) Use only QPSK (LTE also uses higher order modulations) Maximum transport block size (TBS) is 680 bits. (LTE without spatial multiplexing has maximum TBS greater than 70000 bits, see [9]) Supports only single-layer transmission (LTE can support multiple spatial-multiplexing layers) 		
	NPRACH	 New preamble format based on single-tone frequency hopping using 3.75 kHz tone spacing (LTE PRACH occupies 6 PRBs and uses multi-tone transmission format with 1.25 kHz subcarrier spacing) 		
Uplink	NPUSCH Format 1	 Support UE bandwidth allocation smaller than one PRB (LTE has minimum bandwidth allocation of 1 PRB) Support both 15 kHz and 3.75 kHz numerology for single-tone transmission (LTE only uses 15 kHz numerology) Use π/2-BPSK or π/4-QPSK for single-tone transmission (LTE uses regular QPSK and higher order modulations) Maximum TBS is 1000 bits. (LTE without spatial multiplexing has maximum TBS greater than 70000 bits, see [9]) Supports only single-layer transmission (LTE can support multiple spatial-multiplexing layers) 		
	NPUSCH Format 2	New coding scheme (repetition code) Uses only single-tone transmission		

Extended C-DRX and I-DRX operation

- Connected Mode (C-eDRX):
- Extended DRX cycles of 5.12s and 10.24s are supported
- Idle mode (I-eDRX):
- Extended DRX cycles up to ~44min for eMTC
- Extended DRX cycles up to ~3hr for NB-IOT

Architecture

Spectrum and access

 Designed with a number of deployment options for GSM, WCDMA or LTE spectrum to achieve spectrum efficiency.

• Use licensed spectrum.

Stand-alone operation

Dedicated spectrum.

Ex.: By re-farming GSM channels

Guard band operation

Based on the unused RB within a LTE carrier's guard-band

In-band

operation

Using resource blocks within a normal LTE carrier

LTE-M to NB-IoT

3GPP Release	12 (Cat.0) LTE-M	13(Cat. 1,4 MHz) LTE-M) 13(Cat. 200 KHz) NB-IoT	
Downlink peak rate	1 Mbps 1 Mbps		300 bps to 200 kbps	
Uplink peak rate	1 Mbps	1 Mbps	144 kbps	
Number of antennas	1	1	1	
Duplex Mode	Half	Half	Half	
UE receive bandwidth	20 MHz	1.4 MHz	200 kHz	
UE Transmit power (dBm)	23	20	23	

- Reduced throughput based on single PRB operation
- Enables lower processing and less memory on the modules
- 20dB additional link budget → better area coverage

Vodafone announced the commercialization of NB-IoT

 4 countries in Europe (Germany, Ireland, the Netherlands and Spain) will commercially launch NB-IoT in 2017.

- Announced the commercialization of NB-IoT on 23rd Jan 17
- **1000** sites activated NB-IoT in Spain by the end of march 2017
- Took just a few hours to deploy NB-IoT with software upgrade in Valencia

 Madrid, Valencia, Barcelona is covered, Plan to cover 6 cities in 2017H1

Source: Huawei

Shanghai Unicom:

800+ base stations covered
 Shanghai in 2016Q4

Network readiness accelerates the development of vertical customers

Parking operator

Smart Parking

Gas Utility

Smart Gas Meter

Fire center

Smart Fire Protection

Source: Huawei

China Telecom: NB-IoT Nationwide Coverage in 2017H1

 2017H1, NB-IoT enabled in L850 to achieve national wide coverage

Use cases

Share bicycle

- 100 NB-IoT bicycles test in Beijing University in Q2 2017
- 100K bicycles in Beijing city by September 2017
- China Telecom to provide NB-IoT coverage in whole Beijing by June 2017

- Mar 22 2017, Shenzhen water utility announced commercialization;
- 1200 meters (phase 1) running in live network;

Source: Huawei

iii. EC-GSM

Roadmap

2020: 15% connections excluding cellular IoT will still be on 2G in Europe and 5% in the US (GSMA predictions).

GPRS is responsible for most of today's M2M communications

EC-GSM-IoT Objectives: Adapt and leverage existing 2G infrastructure to provide efficient and reliable IoT connectivity over an extended GSM Coverage

- ➤ Long battery life: ~10 years of operation with 5 Wh battery (depending on traffic pattern and coverage extension)
- Low device cost compared to GPRS/GSM device
- Variable data rates:
 - GMSK: ~350bps to 70kbps depending on coverage extension
 - 8PSK: up to 240 kbps
- Support for massive number of devices: ~50.000 devices per cell
- Improved security adapted to IoT constraint.
- Leverage on the GSM/GPRS maturity to allow fast time to market and low cost

Objectives

- Long battery life: ~10 years of operation with 5 Whbattery (depending on traffic pattern and coverage needs)
- Low device cost compared to GPRS/GSM devices

Extended coverage:

- 164 dB MCL for 33 dBmUE,
- 154 dB MCL for 23 dBmUE

Variable rates:

- GMSK: ~350bps to 70kbps depending on coverage level
- 8PSK: up to 240 kbps
- Support for massive number of devices: at least 50.000 per cell
- Improved security compared to GSM/EDGE

Main PHY features

- New logical channels designed for extended coverage
- Repetitions to provide necessary robustness to support up to 164 dB MCL
- Overlaid CDMA to increase cell capacity (used for EC-PDTCH and EC-PACCH)

Other features

- Extended DRX (up to ~52min)
- Optimized system information (i.e. no inter-RAT support)
- Relaxed idle mode behavior (e.g. reduced monitoring of neighbor cells)
- 2G security enhancements (integrity protection, mutual authentication, mandate stronger ciphering algorithms)
- NAS timer extensions to cater for very low data rate in extended coverage
- Storing and usage of coverage level in SGSN to avoid unnecessary repetitions over the air

> Extended coverage (~ 20 dB compared to GSM coverage)

	GSM900		LoRa
Sens de la Liaison	Montante	Unités	Montante
Partie Réception	BTS		GW
Sensibilité	-104	dBm	-142
Marge de protection	3	dB	0
Perte totale câble et connecteur	4	dB	4
Gain d'antenne (incluant 5 dB de diversité)	-17	dBi	-6
Marge de masque (90% de la surface)	5	dB	5
Puissance médiane nécessaire	-109	dBm	-141
Partie Emission	MS		Capteur
Puissance d'émission (GSM Classe 2 = 2W) Bilan de liaison	33	dBm	20
Affaiblissement maximal	142	dB	161
Pertes dues au corps humain	-3	dB	0
Affaiblissement de parcours (bilan de liaison)	139	dB	161

□ Deployment

- > To be deployed in existing GSM spectrum without any impact on network planning.
- > EC-GSM-IoT and legacy GSM/GPRS traffic are dynamically multiplexed.
- Reuse existing GSM/GPRS base stations thanks to software upgrade.

Main PHY features:

- New "EC" logical channels designed for extended coverage
- Repetitions to provide necessary robustness to support up to 164 dB MCL
- Fully compatible with existing GSM hardware design (Base station and UE)
- IoT and regular mobile traffic are share GSM time slot.

☐ Coverage Extension: 4 different coverage class

	Channels	CC1	CC2	CC3	CC4
DL	MCL(dB)	149	157	161	164
	EC-CCCH	1	8	16	32
	EC-PACCH	1	4	8	16
	EC-PDTCH	1	4	8	16
UL	MCL(dB)	152	157	161	164
	EC-CCCH	1	4	16	48
	EC-PACCH	1	4	8	16
	EC-PDTCH	1	4	8	16

- > Beacon and Synchronization channel don't use coverage class
- EC-BCCH: always repeated 16 times
- EC-SCH: always repeated 28 times
- FCCH: legacy FCCH is used.

Mapped on TS 1

■ Other features:

- Support of SMS and Data, but no voice
- Extended DRX (up to ~52min) [GSM DRX ~11 min]
- Optimized system information (i.e. no inter-RAT support)
- Relaxed idle mode behavior (e.g. reduced monitoring of neighbor cells)
- 2G security enhancements (integrity protection, mutual authentication, mandate stronger ciphering algorithms)
- NAS timer extensions to cater for very low data rate in extended coverage
- > Storing and usage of coverage level in SGSN to avoid unnecessary repetitions over the air
- Optional mobility between GSM and EC-GSM

Actual GSM/GPRS Architecture

2G-based NB-IoT networks should come at the end of 2017, with LTE following around 12 months later

Architecture

iv. 5G and IoT

ITU-R WP5D Detailed Timeline & Process for IMT-2020 in ITU-R

- Initial technology submission: Meeting 32 (June 2019)
- Detailed specification submission: Meeting 36 (October 2020)

Thank you!