Un exemple par jour 4.1. the complex torus of form C^{\times}/Z_{\times}

$$C:=\mathbb{C}^{\times}/\mathbb{Z}_{X}\stackrel{\text{topo}}{=}\mathbb{T}^{2}$$
 is a cpt Riemannian surface of genus 1. $\gamma\in \text{Aut}(\mathbb{C}^{\times})$ $\gamma\in \mathbb{C}^{\times}$ $\gamma\in \mathbb{C$

Today: a=2

1. fundamental set:

=> only need 2 local chart

2.
$$0 \rightarrow \mathbb{Z} \longleftrightarrow \mathbb{C} \xrightarrow{f: z \mapsto e^{2\pi i z}} \mathbb{C}^{\times} \longrightarrow 1$$

$$\downarrow + \frac{1}{2\pi i} \ln 2 \qquad \downarrow + \frac{1}{2\pi i} \ln 2 \qquad \downarrow^{\times 2}$$

$$0 \rightarrow \mathbb{Z} + \frac{1}{2\pi i} \ln 2 \rightarrow \mathbb{C} \xrightarrow{} \mathbb{C}^{\times} \longrightarrow 1$$

$$0 \to \mathbb{Z} + \frac{1}{2\pi i} \ln 2 \to \mathbb{C} \longrightarrow \mathbb{C}^{\times} \to 1$$

$$\mathbb{C}^{\times} = \mathbb{C}/\mathbb{Z} \Rightarrow \mathbb{C}^{\times}/\mathbb{Z}_{Y} = \mathbb{C}/(\mathbb{Z} \oplus \frac{1}{2\pi i} \ln 2\mathbb{Z})$$

$$\mathbb{C}^{\times} = \mathbb{C}/\mathbb{Z} \Rightarrow \mathbb{C}^{\times}/\mathbb{Z}_{Y} = \mathbb{C}/(\mathbb{Z} \oplus \frac{1}{2\pi i} \ln 2\mathbb{Z})$$

better:
$$a = e^{2\pi} \approx 535.49$$

$$a = e^{-2\pi i w} \approx -230.765$$

3. line bundle on C

Blue — example
Orange — more than this example
Red — important results
Purple — I don't know the answer/proof
Green — sketsch of proof: in a minimal way
Grey — some supplementary explanation. Unimportant assumptions.
Hell grey — explanation on well-known notations.

Brown — small title in subsections.

My symbol collection set

J ,		Mathbb	Mathrsf/Mathcal	Greek		
A abelian variety	α	Aadèles	A aportment		ا	
В	Ь	IB	B building	00	β	
С	с	C cplx number	e chamber category	□ gP graph	γ	
D	d	ID .	9 Poincare disk	△ diag embedding	8	
E elliptic curve	e ramification index	Œ	٤	,	ε	
F field	f '	IF finite field	9 sheaf		ζ	
a group	9	G gp scheme	G g: Lie alg		n	
Н	h	H	upper half plane Hecke alg	Θ	$ \dot{ heta} $	
I ideal	. constant	1	I ideal of sheaf		1 injection	
J	j	Jī	J		k	
K cos/base field	k ← k	IK	ス ス	1 lattice	λ	
L	l	L	1		м	
M module	m	M	M moduli space		y root of unity (5/w)	
Ν	n	N natural number	\mathcal{N}		S constant	
0	o	Ø	O structure sheaf	TT multi	π uniformizer Projection	
P	P	IP proj space	P 8: ell fet		$\rho \leftarrow \rho$	
Q	9	Q rational number	Q	Σ sum	<u>-</u>	
Rring	r	IR real number	$ \mathcal{R} $		τ	
S base scheme	2	\$		Φ	γ	
T tangent space translation	t	T torus	7		X character	
U←U	u	U	-	u	<i>\</i>	
V _{1.5.}	ν	∨	-	Ω	w	
Wwitt vector	w	W	-			
X	×	*	X			
Y =Y	y	Y	y	hebrew	Russian	
Z center	₹	Z integer	2	N cardinal	IIL sha gp	
		l '	•		'	

```
Green: number / basic stuffs in senior high school Orange: scheme - related Darkyellow: advanced algebra Don't use them simultaneously! Don't mix: w/w, \xi/\xi, k/k/\chi, 1/1/\iota, x/\chi/\chi/\chi, y/\psi
```

Japanese mathematicion and their Chiese translations.

1860	Sawayama	沢山	Yuzaburo Sawayama	沢山勇三郎	
1875.4	·		Teiji Takagi	高木贞治	高木 貞治
1908.12	Tannakian	淡中的	Tadao Tannaka	淡中忠郎	
1912.7	Nakayama	中山	Tadashi Nakayama	中山正	
1915.3	Kodaira	小平	Kunihiko Kodaira	小平邦彦	
1917.11	Iwasawa	岩泽	Kenkichi Iwasawa	岩泽健吉	岩浑 健吉
1925.11	Tamagawa	玉河	Tsuneo Tamagawa	王河恒夫	
1927.11			Yutaka Taniyama	谷山丰	谷山 豊
1927.12	Satake	佐武	Ichirō Satake	佐武-即	
1928			Hiroshi Toda	户田宏	戸田 宏
1928.4	Sato	佐藤	Mikio Sato	佐藤干夫	佐藤 幹夫
1930.2	Shimura	志村	Goro Shimura	志村五郎	
1930.3	Yoneda	米田	Nobuo Yoneda	米田信夫	
1930	Matsumura	松村	Hideyuki Matsumura	松村英之	
1931.4	Hironaka	广中	Heisuke Hironaka	广中平祐	広中 平祐
1944.3			Toshitsune Miyake	三宅敏恒	
1947.1			Masaki Kashiwara	柏原正树	柘原 正樹
1951.2	Mori	森	Shigefumi Mori	森重文	
1952.1			Kazuya Kato	加藤和也	
1959.3	Fukaya	深谷	Kenji Fukaya	深分贤冶	
1962.11	Nakajima	中岛	Hiraku Nakajima	中岛启	中島啓
1969.3			Shinichi Mochizuki	望月新一	