from google.colab import files
f=files.upload()

Choose Files AirQuality.csv

AirQuality.csv(text/csv) - 62540857 bytes, last modified: 3/3/2022 - 70% done

import pandas as pd
df=pd.read csv(url,encoding='cp1252')

/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py:2718: DtypeWarning: Columns (0) have mixed types.Specify dtype c interactivity=interactivity, compiler=compiler, result=result)

df.head()

8

	stn_code	sampling_date	state	location	agency	type	so2	no2	rspm	spm
0	150	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	4.8	17.4	NaN	NaN
1	151	151 February - M021990		Hyderabad	NaN	Industrial Area	3.1	7.0	NaN	NaN
?	159	February -	Andhra	Hvderahad	NaN	Residential,	62	28 5	NaN	NaN •

df.shape

(435742, 13)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 435742 entries, 0 to 435741

Data columns (total 13 columns): Non-Null Count # Column Dtype 0 stn_code 291665 non-null object sampling_date 435739 non-null object 1 2 state 435742 non-null object location 435739 non-null object agency 286261 non-null object 5 430349 non-null type object 6 so2 401096 non-null float64 no2 419509 non-null float64 395520 non-null 8 float64 rspm spm 198355 non-null float64 10 location_monitoring_station 408251 non-null object 11 pm2_5 9314 non-null float64 435735 non-null object 12 date dtypes: float64(5), object(8)

memory usage: 43.2+ MB

df.isnull().sum()

stn_code 144077 sampling_date 3 0 state location 3 149481 agency type 5393 34646 so2 16233 no2 rspm 40222 237387 spm location_monitoring_station 27491 pm2_5 426428 date dtype: int64

df.count() #It results in a number of non null values in each column.

stn_code 291665 sampling_date 435739

```
435742
state
location
                                 435739
agency
                                 286261
                                 430349
type
so2
                                 401096
no2
                                 419509
                                 395520
rspm
spm
                                 198355
                                 408251
location_monitoring_station
pm2 5
                                  9314
                                 435735
date
dtype: int64
```

Summarised details

Generate descriptive statistics that summarize the central tendency, dispersion, and shape of a dataset's distribution, excluding NaN values.

df.describe()

	so2	no2	rspm	spm	pm:
count	401096.000000	419509.000000	395520.000000	198355.000000	9314.0000
mean	10.829414	25.809623	108.832784	220.783480	40.7914
std	11.177187	18.503086	74.872430	151.395457	30.832
min	0.000000	0.000000	0.000000	0.000000	3.0000
25%	5.000000	14.000000	56.000000	111.000000	24.0000
50%	8.000000	22.000000	90.000000	187.000000	32.0000
75%	13.700000	32.200000	142.000000	296.000000	46.0000
4					•

Cleansing the dataset

*In this step, we need to clean the data by adding and dropping the needed and unwanted data respectively. *

From the above dataset,

Dropping of less valued columns: stn_code, agency, sampling_date, location_monitoring_agency do not add much value to the dataset in terms of information. Therefore, we can drop those columns.

Changing the types to uniform format: When you see the dataset, you may notice that the 'type' column has values such as 'Industrial Area' and 'Industrial Areas' — both actually mean the same, so let's remove such type of stuff and make it uniform.

Creating a year column To view the trend over a period of time, we need year values for each row and also when you see in most of the values in date column only has 'year' value. So, let's create a new column holding year values.

1.stn_code, agency, sampling_date, location_monitoring_agency do not add much value to the dataset in terms of information. Therefore, we can drop those columns.

2. Dropping rows where no date is available.

- Changing the types to uniform format:

Notice that the 'type' column has values such as 'Industrial Area' and 'Industrial Areas'—both actually mean the same, so let's remove them and make it uniform

```
df["type"].unique()
    array(['RRO', 'I', nan, 'S', 'RO', 'R', 'RIRUO'], dtype=object)

types = {
    "Residential": "R",
    "Residential and others": "RO",
    "Residential, Rural and other Areas": "RRO",
    "Industrial Area": "I",
    "Industrial Areas": "I",
    "Industrial": "I",
    "Sensitive Areas": "S",
    "Sensitive Areas": "S",
    "Sensitive": "S",
    "NaN": "RRO"
}
df.type = df.type.replace(types)
```

	state	location	type	so2	no2	rspm	spm	pm2_5	date
0	Andhra Pradesh	Hyderabad	RRO	4.8	17.4	NaN	NaN	NaN	1990-02- 01
1	Andhra Pradesh	Hyderabad	1	3.1	7.0	NaN	NaN	NaN	1990-02- 01
2	Andhra Pradesh	Hyderabad	RRO	6.2	28.5	NaN	NaN	NaN	1990-02- 01

→ Creating a year column

To view the trend over a period of time, we need year values for each row and also when you see in most of the values in date column only has 'year' value. So, let's create a new column holding year values.

```
df['date'] = pd.to_datetime(df['date'], errors='coerce')
df.head(5)
```

	state	location	location type		o2 no2 rspm		spm	pm2_5	date
0	Andhra Pradesh	Hyderabad	RRO	4.8	17.4	NaN	NaN	NaN	1990-02- 01
1	Andhra Pradesh	Hyderabad	I	3.1	7.0	NaN	NaN	NaN	1990-02- 01
2	Andhra Pradesh	Hyderabad	RRO	6.2	28.5	NaN	NaN	NaN	1990-02- 01

df['year'] = df.date.dt.year
df.head(5)

	state	location	type	so2	no2	rspm	spm	pm2_5	date	year
0	Andhra Pradesh	Hyderabad	RRO	4.8	17.4	NaN	NaN	NaN	1990- 02-01	1990
1	Andhra Pradesh	Hyderabad	1	3.1	7.0	NaN	NaN	NaN	1990- 02-01	1990
2	Andhra Pradesh	Hyderabad	RRO	6.2	28.5	NaN	NaN	NaN	1990- 02-01	1990

Handling Missing Values

The column such as SO2, NO2, rspm, spm, pm2_5 are the ones which contribute much to our analysis. So, we need to remove null from those columns to avoid inaccuracy in the prediction. We use the Imputer from sklearn.preprocessing to fill the missing values in every column with the mean.

```
# defining columns of importance, which shall be used reguarly
COLS = ['so2', 'no2', 'rspm', 'spm', 'pm2_5']
import numpy as np
from sklearn.impute import SimpleImputer
# invoking SimpleImputer to fill missing values
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
df[COLS] = imputer.fit_transform(df[COLS])

df.head(5)
```

	state	location	type	so2	no2	rspm	spm	pm2_5	da
0	Andhra Pradesh	Hyderabad	RRO	4.8	17.4	108.833091	220.78348	40.791467	19 02
1	Andhra Pradesh	Hyderabad	I	3.1	7.0	108.833091	220.78348	40.791467	19 02
2	Andhra	Hyderabad	RRO	6.2	28.5	108.833091	220.78348	40.791467	19

df.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 435735 entries, 0 to 435738
Data columns (total 10 columns):
                             Dtype
             Non-Null Count
    Column
              _____
0 state
             435735 non-null object
   location 435735 non-null object
1
    type
              430345 non-null
              435735 non-null float64
    so2
4
             435735 non-null float64
    no2
    rspm
             435735 non-null float64
              435735 non-null float64
   spm
    pm2_5
              435735 non-null float64
              435735 non-null datetime64[ns]
   date
9 year
              435735 non-null int64
dtypes: datetime64[ns](1), float64(5), int64(1), object(3)
memory usage: 36.6+ MB
```

Data Transformation

All machine learning algorithms are based on mathematics. So, we need to convert all the columns into numerical format.

Taking a broader perspective, data is classified into numerical and categorical data:

- 1. Numerical: As the name suggests, this is numeric data that is quantifiable.
- 2. Categorical: The data is a string or non-numeric data that is qualitative in nature.
- 1. Encoding To address the problems associated with categorical data, we can use encoding. This is the process by which we convert a categorical variable into a numerical form. Here, we will look at three simple methods of encoding categorical data.
- 2. Replacing This is a technique in which we replace the categorical data with a number. This is a simple replacement and does not involve much logical processing. Let's look at an exercise to get a better idea of this.

Simple Replacement of Categorical Data with a Number

df.head(5)

```
state
        location type so2
                                                  spm
                                                           pm2_5
                                                                  da
Andhra
                        4.8 17.4 108.833091 220.78348 40.791467
        Hyderabad RRO
Pradesh
Andhra
                                                                 19
                             7.0 108.833091 220.78348 40.791467
        Hyderabad
                      1 3.1
Pradesh
Andhra
        Hyderabad RRO 6.2 28.5 108.833091 220.78348 40.791467
```

```
df['type'].value_counts()
    RRO
              179013
              148069
    Ι
    RO
               86791
               15010
    RIRUO
                1304
                158
    Name: type, dtype: int64
df['type'].replace({"RRO":1, "I":2, "RO":3,"S":4,"RIRUO":5,"R":6}, inplace= True)
df['type']
    0
               1.0
               2.0
    1
              1.0
    2
    3
               1.0
     4
               2.0
    435734
               5.0
    435735
               5.0
    435736
               5.0
    435737
               5.0
    435738
              5.0
    Name: type, Length: 435735, dtype: float64
```

Converting Categorical Data to Numerical Data Using Label Encoding

Indented block

df['state'].value_counts()

Maharashtra	60382
Uttar Pradesh	42816
Andhra Pradesh	26368
Punjab	25634
Rajasthan	25589
Kerala	24728
Himachal Pradesh	22896
West Bengal	22463
Gujarat	21279
Tamil Nadu	20597
Madhya Pradesh	19920
Assam	19361
Odisha	19278
Karnataka	17118
Delhi	8551
Chandigarh	8520
Chhattisgarh	7831
Goa	6206
Jharkhand	5968
Mizoram	5338
Telangana	3978
Meghalaya	3853
Puducherry	3785
Haryana	3420
Nagaland	2463
Bihar	2275
Uttarakhand	1961

5/20/23, 3:30 PM

 Jammu & Kashmir
 1289

 Daman & Diu
 782

 Dadra & Nagar Haveli
 634

 Uttaranchal
 285

 Arunachal Pradesh
 90

 Manipur
 76

 Sikkim
 1

Name: state, dtype: int64

from sklearn.preprocessing import LabelEncoder
labelencoder=LabelEncoder()
df["state"]=labelencoder.fit_transform(df["state"])
df.head(5)

	state	location	type	so2	no2	rspm	spm	pm2_5	date
0	0	Hyderabad	1.0	4.8	17.4	108.833091	220.78348	40.791467	1990 02-0
1	0	Hyderabad	2.0	3.1	7.0	108.833091	220.78348	40.791467	1990 02-0
2	0	Hyderabad	1.0	6.2	28.5	108.833091	220.78348	40.791467	1990

One Hot Encoding

dfAndhra=df[(df['state']==0)]

dfAndhra

	state	location type so2 n		no2	rspm	spm	pm2_5	
0	0	Hyderabad	1.0	4.8	17.4	108.833091	220.78348	40.791467
1	0	Hyderabad	2.0	3.1	7.0	108.833091	220.78348	40.791467
2	0	0 Hyderabad		6.2	28.5	108.833091	220.78348	40.791467
3	0	Hyderabad	1.0	6.3	14.7	108.833091	220.78348	40.791467
4	0	Hyderabad	2.0	4.7	7.5	108.833091	220.78348	40.791467
26363	0	Rajahmundry	2.0	7.0	13.0	71.000000	220.78348	40.791467
4								-

dfAndhra['location'].value_counts()

Hyderabad	7764
Visakhapatnam	7108
Vijayawada	2093
Chittoor	1003
Tirupati	986
Kurnool	857
Patancheru	698
Guntur	629
Nalgonda	618
Ramagundam	554
Nellore	408
Khammam	385
Warangal	336
Ananthapur	324
Ongole	317
Kadapa	316
Srikakulam	315
Rajahmundry	311
Eluru	300
Vishakhapatnam	297
Kakinada	288

Vizianagaram 282 Sangareddy 85 Karimnagar 67 Nizamabad 27 Name: location, dtype: int64

from sklearn.preprocessing import OneHotEncoder
onehotencoder=OneHotEncoder(sparse=False,handle_unknown='error',drop='first')

pd.DataFrame(onehotencoder.fit_transform(dfAndhra[["location"]]))

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
1	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
2	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
3	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
4	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
26363	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	(
26364	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	(
26365	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	(
26366	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	(
4																Þ

14m 13s completed at 3:24 PM