Lecture IX Singular-Value Decomposition

- SVD: notion, examples and properties
- Some Useful Matrix Inequalities

Goal of SVD

Decomposition of a, not necessarily square, matrix into a product of three matrices: one containing its singular values, two unitary.

Note 1: Extension of canonical forms for square matrices

Note 2: Used to define a pseudo-inverse for a nonsquare or a singular matrix

The Fundamental Theorem

Consider $A \in \mathbb{C}^{m \times n}$, with rankA = r. Then, there exist unitary matrices $V \in \mathbb{C}^{m \times m}$, $W \in \mathbb{C}^{n \times n}$ such that

$$A = V \Sigma W^*$$

where

$$\Sigma = \begin{pmatrix} S_{r \times r} & 0_{r \times (n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{pmatrix},$$

$$S = diag(\sigma_i), \quad \sigma_i = \sqrt{\lambda_i(A^*A)},$$

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$$
, singular values of A .

Comments

▼ SVD is not unique!

Let $V = \begin{bmatrix} V_1 & V_2 \end{bmatrix}$, $W = \begin{bmatrix} W_1 & W_2 \end{bmatrix}$. $A = V\Sigma W^*$ $\Rightarrow A = V_1 S W_1^* \text{ (Reduced SVD)}$

Construction of V and W

(1) First, decompose the $n \times n$ (Hermitian and positive semifinite) matrix A^*A using its orthonormal set of eigenvectors

$$\tilde{W_1} = [w_1 \cdots w_r], \ \tilde{W_2} = [w_{r+1} \cdots w_n]$$

i.e.
$$\tilde{W}^*A^*A\tilde{W} = \begin{pmatrix} S^2 & 0 \\ 0 & 0 \end{pmatrix}$$
. (CDF)

Then, $\tilde{W_1}^* A^* A \tilde{W_1} = S^2 \Rightarrow S^{-1} \tilde{W_1}^* A^* A \tilde{W_1} S^{-1} = I$.

From (CDF), it follows that $\tilde{W_2}^* A^* A \tilde{W_2} = 0 \Rightarrow A \tilde{W_2} = 0$.

Define $V_1 \triangleq A\tilde{W_1}S^{-1}$, implying $V_1V_1^* = I$.

Construction of V and W

(2) Now, choose any $V_2 \in \mathbb{C}^{m \times (m-r)}$ such that $\begin{bmatrix} V_1 & V_2 \end{bmatrix}$ is unitary.

Then, it can be directly checked

that
$$V^*AW = \begin{pmatrix} S & 0 \\ 0 & 0 \end{pmatrix}$$
, with $W = \tilde{W}$.

Examples

Can you find SVD for the following matrices

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

and

$$A_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}?$$

Answer

$$A_1 = UIU^*$$

with $U \in \mathbb{C}^{2\times 2}$ any arbitrary unitary matrix.

$$A_2 = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}.$$

Exercise

Verify that
$$\begin{pmatrix} \frac{1}{3} & \frac{-2}{\sqrt{5}} & \frac{2}{3\sqrt{5}} \\ \frac{2}{3} & \frac{1}{\sqrt{5}} & \frac{4}{3\sqrt{5}} \\ \frac{2}{3} & 0 & \frac{-\sqrt{5}}{3} \end{pmatrix} \begin{pmatrix} 3\sqrt{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix}$$

is an SVD of
$$A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \\ 2 & 2 \end{pmatrix}$$
.

Case of Symmetric Matrices

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric and positive definite matrix.

Question: What is an SVD of A?

Answer

A can be made diagonal by means of an orthogonal matrix O composed of orthonormal eigenvectors,

i.e.,
$$O^T A O = \Lambda = diag(\lambda_i)$$
.

Therefore, $O\Lambda O^T$ is an SVD of A.

Properties

Assume SVD $A = V\Sigma W^*$. Then,

- (1) rank(A) = the no. of nonzero singular values of A.
- (2) A has the dyadic (or outer product) expansion:

$$A = \sum_{i=1}^{r} \sigma_i v_i w_i^*$$

(3) The singular vectors satisfy

$$\begin{cases} Aw_i = \sigma_i v_i, \\ A^* v_i = \sigma_i w_i. \end{cases}$$

Moore-Penrose Generalized Inverse

Question:

How can we define a (generalized) inverse, denoted A^{\dagger} , of a matrix A which may be singular or nonsquare?

Consider $A: \mathbb{C}^n \to \mathbb{C}^m$, denoted $A \in \mathbb{C}^{m \times n}$.

Define $T: N(A)^{\perp} \to R(A)$ by

$$Tx = Ax$$
, for all $x \in N(A)^{\perp}$.

Moore-Penrose Generalized Inverse

Consider $A: \mathbb{C}^n \to \mathbb{C}^m$, denoted $A \in \mathbb{C}^{m \times n}$.

Define $T: N(A)^{\perp} \to R(A)$ by

Tx = Ax, for all $x \in N(A)^{\perp}$.

Definition of the Moore-Penrose Pseudoinverse

$$A^+:\mathbb{C}^m\to\mathbb{C}^n$$

$$A^+y = T^{-1}y_1,$$

with $y = y_1 + y_2$, $y_1 \in R(A)$, $y_2 \in R(A)^{\perp}$.

Moore-Penrose Generalized Inverse: Computation

Consider $A \in \mathbb{C}^{m \times n}$ and its SVD $A := V \sum W^*$.

Then, $A^{\dagger} := W \sum^{\dagger} V^*$, with \sum^{+} being the transpose of \sum in which the positive singular values of A are replaced by their reciprocals.

Properties of Moore-Penrose Generalized Inverse

- (1) AA^+ and A^+A are Hermitian.
- (2) $AA^{+}A = A$.
- $(3) A^{\dagger}AA^{\dagger} = A^{\dagger}.$
- (4) $A^{\dagger} = A^{-1}$, if A is square and nonsingular.
- (5) A^{\dagger} always exists and is the unique matrix that satisfies the same properties (1)-(3).

See: R. Penrose, "A generalized inverse for matrices", 1955.

2023 Prof.Jiang@ECE NYU

Proof on Uniqueness

Assume that $X \in \mathbb{C}^{n \times m}$ is a matrix satisfying the above properties (1)-(3), i.e. AX and XA are Hermitian, AXA = A, and XAX = X. Then,

$$X = XAX = X (AX)^* = XX^*A^* = XX^* (AA^+A)^* = XX^*A^*A^{+*}A^*$$
 $= X (AX)^* (AA^+)^* = XAXAA^{\dagger} = XAA^{\dagger} = (XA)^*A^{\dagger} = A^*X^*A^{\dagger}$
 $= (AA^{\dagger}A)^* X^*A^+ = A^*A^{+*}A^*X^*A^+ = (A^{\dagger}A)^* (XA)^*A^+$
 $= A^{\dagger}AXAA^{\dagger} = A^{\dagger}AA^{\dagger} = A^{\dagger}, \text{ END OF PROOF}$

Numerical Result

 $A^{+} = \lim_{\delta \to 0} \left(A^{T} A + \delta^{2} I \right)^{-1} A^{T} = \lim_{\delta \to 0} A^{T} \left(A^{T} A + \delta^{2} I \right)^{-1}$

See: A. Albert, Regression and the Moore-Penrose Pseudoinverse, p.19, 1972.

Examples

What is the Moore-Penrose Pseudoinverse of

- 1) a scalar $a \in \mathbb{R}$?
- 2) a vector $v \in \mathbb{R}^n$?
- 3) a matrix $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$?

Answers

- 1) For any scalar a, $a^+ = a^{-1}$ if $a \ne 0$, $a^+ = 0$ if a = 0.
- 2) For any vector $v \in \mathbb{R}^n$,

$$v^{+} = (v^{T}v)^{+} v^{T} = v^{T} / v^{T}v \text{ if } v \neq 0, = 0 \text{ if not.}$$

$$3) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}^{+} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Application to Linear Equations

Consider linear equations

$$Ax = b$$
, with $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, $rank(A) = k$.

By means of SVD

$$A = V \sum W^* \Rightarrow \sum (W^* x) = V^* b.$$

Then the last m-k rows of Σ are 0, and hence it is necessary and sufficient for existence of solutions that the last m-k entries of V^*b are zero.

In other words, b is orthogonal to the last m-k left singular vectors of A.

(Cont'd)

Then, letting
$$V = [v_1 \cdots v_m], W = [w_1 \cdots w_m],$$

$$\sum (W^*x) = V^*b$$

$$\Rightarrow (W^*x)^* = \left[\frac{b^*v_1}{\sigma_1}, \dots, \frac{b^*v_k}{\sigma_k}, 0, \dots, 0\right]^*$$

$$\Rightarrow x = \sum_{i=1}^{k} \frac{v_i^* b}{\sigma_i} w_i \text{ is a solution to } Ax = b.$$

The general solutions of Ax = 0 take the form

$$x_h = \sum_{i=k+1}^{n} c_i w_i$$
 (do you know why?)

So, all solutions of Ax = b are in the form

$$x = \sum_{i=1}^{k} \frac{v_i^* b}{\sigma_i} w_i + \sum_{i=k+1}^{n} c_i w_i \quad \text{(do you know why?)}$$

END.

Example -- Revisited

The following inhomogeneous equation

$$x_1 + 2x_2 = 5$$
$$2x_1 + 4x_2 = 10$$
$$3x_1 + 6x_2 = 15$$

has an infinite number of solutions

$$x = x_p + x_h$$

$$= \begin{bmatrix} 5 \\ 0 \end{bmatrix} + \lambda \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \quad \lambda \in \mathbb{R}.$$

Matrix Inequalities

Matrix inequalities based on inner product play a vital role in systems science and engineering.

Cauchy-Schwarz Inequality

For any pair of vectors $x, y \in \mathbb{C}^n$,

$$\left|\left\langle x,y\right\rangle\right| \leq \left\|x\right\| \cdot \left\|y\right\|$$

where the equality holds if and only if

x, y are linearly dependent,

i.e. x = cy for some scalar c.

Sketch of Proof

It is equivalent to proving the following:

$$\left|\left\langle x,y\right\rangle\right| \doteq \left|\sum_{i=1}^{n} x_{i} \overline{y}_{i}\right| \leq 1$$

for any unit vectors x, y, with equality iff x = cy.

To prove the latter, notice that

$$\left|\sum x_i \overline{y}_i\right| \le \sum |x_i| \cdot |y_i|$$
, with equality iff

$$arg(x_i \overline{y}_i) = \theta$$
 (angle, independent of *i*).

Sketch of Proof (cont'd)

So,
$$\left|\sum x_i \overline{y}_i\right| \le \sum |x_i| \cdot |y_i|$$
, with "=" iff $\arg(x_i \overline{y}_i) = \theta$

Using
$$|x_i| \cdot |y_i| \le \frac{1}{2} |x_i|^2 + \frac{1}{2} |y_i|^2$$
 with "=" iff $|x_i| = |y_i|$,

it follows that
$$\left|\sum x_i \overline{y}_i\right| \le \frac{1}{2} + \frac{1}{2} = 1$$
, as wished.

Moreover, the equality holds with:

$$x_{i} = e^{j\theta_{i}}, y_{i} = e^{-j\theta}e^{j\theta_{i}}, \forall i = 1,...,n$$

$$\Leftrightarrow$$
 $x = cy$, with $c = e^{-j\theta}$.

Another Simpler Proof

The claim is obvious for the special cases: x = 0, or y = 0.

For $x \neq 0$, $y \neq 0$, for any real number λ , the following holds:

$$|x + \lambda y|^2 = \lambda^2 |y|^2 + 2\lambda \langle x, y \rangle + |x|^2$$
.

It has a unique solution or no solution if

$$4\langle x, y \rangle^{2} - 4|x|^{2}|y|^{2} \le 0.$$

The equality holds iff it has a unique solution, i.e., $x = -\lambda y$.

Hadamard's Inequality

- $|\det A| \le ||a^1|| \cdot ||a^2|| \cdot \cdots \cdot ||a^n||$ for any matrix $A = (a^1 \ a^2 \ \cdots \ a^n) \in \mathbb{C}^{n \times n}$.
- The equality holds if and only if

$$a^{j} = 0 \exists \text{some } j, \text{ or } \langle a^{j}, a^{k} \rangle = 0 \quad \forall j \neq k.$$

Example

$$\begin{vmatrix} \det \begin{pmatrix} 1+i & 2-i \\ 3 & 4 \end{vmatrix} = |-2+7i| = \sqrt{53}$$

$$<\sqrt{|1+i|^2 + 3^2} \sqrt{|2-i|^2 + 4^2} = \sqrt{231}.$$

Proof of Hadamard's Inequality

Without loss of generality, assume that

$$\alpha_{j} = ||a^{j}|| > 0, \quad \forall j = 1, 2, ..., n.$$

Also, assume that $B = [b^1 \cdots b^n]$ is a solution

to the constrained optimization problem:

$$\max_{\tilde{B}} \left| \det \tilde{B} \right|$$
, subject to $\left| \tilde{b}^{j} \right| = \alpha_{j}, \forall j = 1,...,n$.

Clearly,
$$|\det B| \ge \prod \alpha_i > 0$$
, because $\tilde{B} = diag(\alpha_i)$

is a candidate solution.

Proof (cont'd)

Expanding $\det B$ by column j yields:

$$\det B = b_{1j}c_{1j} + \dots + b_{nj}c_{nj}$$

with $C = (c_{ij})$ the cofactor matrix of B,

i.e.,
$$c_{ij} = (-1)^{i+j} \det B_{ij}, \ \forall i, j.$$

By Cauchy-Schwarz inequality,

$$|\det B| \le ||b^j|| \cdot ||y|| \doteq \alpha_j ||y||, \quad y \doteq col(\overline{c}_{1j}, \dots, \overline{c}_{nj})$$

Also, $b^j = \mu_j y$ for scalar μ_j because maximizer B guarantees the equality.

Proof (cont'd)

From the fact $b^j = \mu_j y$ for scalar μ_j , we can conclude that the columns of B are orthogonal. Indeed, $\forall k \neq j$,

$$\langle b^k, b^j \rangle = \langle b^k, \mu_j \overline{c}_j \rangle = \overline{\mu}_j \sum_{i=1}^n b_{ik} c_{ij} = \overline{\mu}_j \det \widetilde{B}$$

where B is the matrix by replacing the column j of B by a duplicate column k of B. Thus

$$\langle b^k, b^j \rangle = 0, \quad \forall k \neq j.$$

Proof (cont'd)

From the fact $\langle b^k, b^j \rangle = 0$, $\forall k \neq j$, we have

$$\left|\det B\right|^2 = \det B^* \det B = \det \left(B^*B\right)$$

$$= \det(\langle b^j, b^i \rangle) = \det(\dim(\alpha_i^2)) = \prod_{j=1}^n \alpha_j^2$$

Of course,

$$\left| \det A \right| \le \left| \det B \right| = \prod_{j=1}^{n} \alpha_{j}$$
, as wished.

The equality holds only when A is another maximal solution, so its columns are mutually orthogonal.

Exercises

1. Determine the SVDs of the matrices

$$A_1 = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \text{ and } A_2 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}.$$

2. Let
$$A = (a_{ij})_{n \times n}$$
 and $\rho_i > 0$, $1 \le i \le n$.

Show that
$$\left| \det A \right|^2 \le \prod_{j=1}^n \rho_j^{-2} \left(\sum_{i=1}^n \rho_i^2 \left| a_{ij} \right|^2 \right)$$

When does the equality hold?