Frühjahr 2025 Thema 2 Aufgabe 3

mks

6. Mai 2025

Für $k \in \mathbb{N}$ betrachte man das Anfangswertproblem

$$y' = \frac{\cos(t)}{2 - (\sin(t))^k} (2 - y^k), \quad y(0) = 1$$

- a) Begründen Sie, warum dieses Anfangswertproblem für jedes $k \in \mathbb{N}$ eine eindeutige maximale Lösung $\varphi_k: I_k \to \mathbb{R}$ besitzt.
- b) Zeigen Sie, dass für das maximale Existenzintervall $I_k = \mathbb{R}$ für alle $k \in \mathbb{N}$ gilt. Hinweis: Warum ist φ_k nach unten durch die Sinusfunktion und nach oben durch eine Konstante beschränkt?
- c) Bestimmen Sie explizit die maximale Lösung des obigen Anfangswertproblems für k=1.

Lösung:

a)

Sei $f: k: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definiert durch $f_k(t,y) = \frac{\cos(t)}{2-(\sin(t))^k} (2-y^k)$. Wegen $-1 \le \sin(t) \le 1$ ist $(\sin(t))^k \le 1$ und somit $2 - (\sin(t))^k \ge 1 \ \forall t \in \mathbb{R}$. Also ist f_k für alle $k \in \mathbb{N}$ wohldefiniert.

Als Komposition stetiger Funktionen ist f_k stetig.

Da $\partial_y f_k = \frac{\cos(t)}{2 - (\sin(t))^k} (-ky^{k-1})$ aus diesen Gründen ebenfalls stetig ist, ist f_k lokal Lipschitz-stetig bezüglich y.

Da der Definitionsbereich in der Aufgabe nicht weiter eingeschränkt wurde liegt (0,1) in diesem.

Somit folgt die Behauptung aus dem globalen Existenz- und Eindeutigkeitssatz.

b)

Zunächst soll der Hinweis gezeigt werden:

Wegen $f_k(t, \sqrt[k]{2}) = 0 \ \forall t \in \mathbb{R}$ ist $\alpha_k : \mathbb{R} \to \mathbb{R}$, $\alpha_k(t) = \sqrt[k]{2}$ eine konstante Lösung der DGL. Weiterhin ist $\beta : \mathbb{R} \to \mathbb{R}$, $\beta(t) = \sin(t)$ auch eine Lösung der DGL, denn $\beta'(t) = \cos(t) = \frac{\cos(t)}{2 - (\sin(t))^k} (2 - (\sin(t))^k) = \frac{\cos(t)}{2 - (\sin(t))^k} (2 - (\sin(t))^k)$ $\frac{\cos(t)}{2-(\sin(t))^k} (2-(\beta(t))^k).$

Da $0 = \beta(0) < \varphi_k(t) = 1 < \alpha_k(t) = \sqrt[k]{2}$ gilt und Lösungskurven einer DGL sich nicht schneiden, gilt $\beta(0) < \varphi_k(t) < 0$ $\alpha_k(t) \ \forall t \in I_k.$

Sei $I_k = (t_-, t_+)$ das Existenzintervall der Lösung φ_k .

Da $\varphi_k(t) > \beta(t) \ \forall t \in (t_-, t_+) \ \text{gilt} \ \lim_{t \downarrow t_-} \varphi_k(t) \neq -\infty \ \text{und} \ \lim_{t \uparrow t_+} \varphi_k(t) \neq -\infty.$ Wegwn $\varphi_k(t) < \alpha_k(t) \ \forall t \in (t_-, t_+) \ \text{gilt} \ \lim_{t \downarrow t_-} \varphi_k(t) \neq \infty \ \text{und} \ \lim_{t \uparrow t_+} \varphi_k(t) \neq \infty.$

Aus dem Satz über das Randverhalten folgt nun, dass $I_k = \mathbb{R}$.

c)

Wir verwenden Trennung der Variablen:

$$\int_{1}^{y} \frac{1}{2-w} \, dw = \int_{0}^{t} \frac{\cos(s)}{2-\sin(s)} \, ds \quad \text{Substitution } u = 2-\sin(s), \ du = -\cos(s) \, ds$$

$$[-\ln(2-w)]_{1}^{y} = \int_{2}^{2-\sin(t)} \frac{1}{u} \, du = [-\ln(u)]_{2}^{2-\sin(t)} \quad \Rightarrow \quad \ln(2-y) = \ln\left(\frac{2-\sin(t)}{2}\right) \quad \Rightarrow \quad y = \frac{\sin(t)+2}{2}$$

$$\text{Probe: } \varphi_{1}(0) = \frac{\sin(0)-2}{2} = 1, \ \varphi_{1}'(t) = \frac{\cos(t)}{2} = \frac{\cos(t)}{2-\sin(t)} \frac{2-\sin(t)}{2} = \frac{\cos(t)}{2-\sin(t)} (2-\varphi_{1}(t)), \text{ passt.}$$