

Paired-sample t-test in epidemiology

Szymon Moliński, 17.08.2017 r., Gdańsk

Paired-sample t-test use cases: dog overweight treatment

Why are we performing this type of test?

Calculations: steps

- 0. Analyze the properties of data.
- 1. Calculate the difference between sample at time t[1] and t[0] (before and after the treatment).
- 2. Calculate the mean difference.
- 3. Calculate the standard deviation of differences, calculate the standard error of mean difference.
- 4. Calculate the t-statistics.
- 5. Compare t-distribution with tables for getting the value of T. This will give the p-value for paired t-test.

Calculations: step 0 – data analysis

EXCERCISE

From the next slide we'll perform an excercise to understand what is going on behind the paired t-test.

Excercise is written for the MS Excel platform. You will be working in the document named *paired_t_test_ex.xlsx*

Two datasets are prepared. You will check if the diet helps overweight dogs or not. Good luck!

- The part of the excercise is to find some kind of functions in the Excel software. The list (not sorted) of all needed functions:
- AVERAGE (ŚREDNIA), SQRT (PIERWIASTEK), COUNT (ILE.LICZB), ABS (MODUŁ.LICZBY), T.DIST.2T (ROZKŁAD.T.DS)

Calculations: step 1 – calculate the difference between paired samples

1) Difference between pairs of observations

$$d_i = t[1]_i - t[0]_i$$

t[0] - observation before treatment t[1] - observation after treatment

D2	D2 \Rightarrow \times f_x =[@[After diet]]-[@[Before diet]]						
	А	В	С	D	Е		
1	ID 🔻	Before diet	After diet	Difference d = (after - before)	(d - mean(d))^2		
		25	27		47.4		
2	1	25	27	2	17,4		
3	2	29	22	-7	23,2		
4	3	32	36	4	38,1		
5	4	38	33	-5	7,9.		
6	5	28	24	-4	3,3		
7	6	37	25	-12	96,4		
8	7	30	24	-6	14,5		
9	8	27	36	9	124,9		
10	9	37	24	-13	117,0		

Calculations: step 2 – calculate the Standard Deviation

2.1) Mean difference	$\bar{d} = \frac{\sum_{i=1}^{n} d_i}{n}$	n – number of samples
2.2) Sum of each (Difference – Mean Difference) ^ 2	$SS_{\bar{d}} = \sum_{i=1}^{n} (d_i - \bar{d})^2$	
2.3) Standard Deviation	$s_d = \sqrt{\frac{SS_{\overline{d}}}{n-1}}$	

Calculations: step 3 – calculate the standard error and degrees of freedom

3.1) Standard error of differences	$SE(\bar{d}) = \frac{s_d}{\sqrt{n}}$	
3.2) Degrees of freedom DF	DF = n - 1	

Calculations: step 4 - calculate the t-statistics and P-value

4.1) t-statistics
$$T = \frac{\bar{d}}{SE(\bar{d})}$$

Calculations: step 4.2- use tables of the t-distribution to compare value of T to the t_{n-1} distribution. This will give p-value for the paired t-test. In MS EXCEL you should use T.DIST.2T function to get the result.

		•			
Step 1:	Step 2:	Step 3:			
C	Count mean difference	Sum of (difference -			
Count difference d(1)	mean(d)	mean_difference)^2			
2	-2,18	1985,38			
	State the null hypothesis H[0]	Diet program is not working;			
Step 4:	State the null hypothesis hi[o]	Average weight is the same			
	Formulate analysis plan	Significance level should be			
Step 5:	Torridate analysis plan	smaller than 0.05			
Step 6:	Analyze sample data				
<u> </u>	Step 6.2: ▼	Step 6.3: ▼			
s (standard deviation of					
differences)	SE (standard error)	DF (degrees of freedom)			
s = sqrt[SUM(d -	SE = s / sgrt(number of	DF = (number of pairs in			
mean(d))^2 / (number of					
pairs in sample - 1)]	pairs in sample)	sample - 1)			
6,365371881	0,900199524	49			
•					
	Step 7:				
	t (t-statistic test)				
t = [(mean(after) - mean(before) - D] / SE = (mean(difference) - expected difference) / SE					
-2,42168535					
	Step 8:				
	Calculate P-value from t				
1,92%					
Diet has statistically significant effect on the dogs weight					

Calculations: it can be done faster in MS Excel!

Go to:

Tools -> Data Analysis -> T-test: Paired Two Sample for Means

Enjoy!

T-test: Paired Two Sample	for Means	
	Variable 1	Variable 2
Mean	32.28	30.1
Variance	22.77714286	29.68367347
Observations	50	50
Pearson's correlation	0.22965177	
H(0)	0	
df	49	
t Stat	2.42168535	
P(T<=t) one tail	0.009597746	
T test one tail	1.676550893	
P(T<=t) two tails	0.019195491	
T test two tails	2.009575237	

PROGRAMMING EXCERCISE

At the end you have to create simple Java Script module which is calculating the t statistics.

Excercise has two parts:

- Calculations (up to t-statististics),
- 2) Reading data from the table (t-distribution tables) the second part will be exploited later, during the next workshop, so do noy be worry about that.

Steps to do:

- 1) Read JSON file with 'CY-2005' object and 'CY-2015' object (each object is created from the ID key and value for this key), file name is data.json,
- 2) Perform all calculations: for each ID subtract var1 value from var2 value.
- 3) Calculate the mean difference.
- 4) Calculate Standard Deviation and Standard Error.
- 5) Calculate t-statistics.

Empathy and Curiosity are our driving factors