ENGR 2910-101: Circuit Analysis

Instructor: Brian Rashap Final Due: 12/08/23

Question 1 [15]

The sinusoidal voltage source in the ciruit below is developing a voltage equal to 50sin(400t)V.

- (a) Find the Thevenin voltage with respect to terminals a,b. Express in both complex (a+jb) and Phasor form.
- (b) Find the Thevenin impedance with respect to terminals a,b (in complex form).
- (c) Draw the Thevenin equivalent circuit using a voltage source, resistor, capacitor and/or inductor.

Volume Divider

Value
$$\frac{Z_{c}||Z_{c}|}{Z_{R}+(Z_{c}||Z_{c})} = \frac{-\sqrt{80}||j|60}{320+(-\sqrt{80}||j|60)}(-\sqrt{50})$$

$$= \frac{-\sqrt{160}}{320-\sqrt{160}}(-\sqrt{50})$$

$$= \frac{1-\sqrt{2}}{5}(-\sqrt{50})(-\sqrt{50})$$

$$= \frac{1-\sqrt{2}}{5}(-\sqrt{50})$$

$$= \frac{1-\sqrt{2}}{5}(-\sqrt{50})$$

$$= \frac{122.4 (-153.43)}{5}$$

Question 2 [15]

Find the value of R that makes the below circuit Critically Damped.

Question 3 [15]

Use the Node-Voltage method to find the matrix representation of V_1 and V_2 if i_g $5\cos(2500t)A$ and $v_g=20\cos(2500t+90^\circ)V$. You do NOT need to solve for V_1 and V_2 , nor reduce the matrix to reduced row echelon form.

$$Z_{R} = 12$$
 $Z_{L} = \int (2500)(0.0016) = \int^{4}$
 $Z_{L} = \int (2500)(500106) = \int^{4}$
 $Z_{L} = \int (2500)(500106) = \int^{4}$

$$0 = \frac{\sqrt{1 - \sqrt{2}}}{2} - \frac{\sqrt{1 - \sqrt{2}}}{2} = 0$$

$$5 + \frac{8}{2\sqrt{1 - \sqrt{2}}} + \frac{1}{2\sqrt{1 - 20}} = 0$$

$$5 + \frac{8}{2\sqrt{1 - 2}} + \frac{1}{2\sqrt{1 - 20}} = 0$$

$$\frac{1}{8} \frac{8}{\sqrt{1 + \left(-\frac{15}{12} + \frac{15}{8}\right)}} \frac{1}{\sqrt{2}} = 0$$

$$\frac{1}{8} \frac{8}{\sqrt{1 + \left(-\frac{15}{12} + \frac{15}{8}\right)}} \frac{1}{\sqrt{2}} = 0$$

Question 4 [15]

Find Z_{eq} (Z_{ab}) for the circuit below.

$$= (1 - 18) + (3 + 14) + (4 + 16)$$

$$= (1 - 18) + (3 + 14) + (4 + 16)$$

$$= 12 + 12$$

$$= \frac{2}{10} \left(\frac{1}{5} \right) \left(\frac{1}{5} \right) \left(\frac{1}{5} \right)$$

$$= \frac{2}{10} \left(\frac{1}{5} \right) \left(\frac{1}{5} \right)$$

$$= \frac{1}{100} \left(\frac{1}{5} \right)$$

$$= \frac$$

Question 5 [20]

- (a) What is the voltage at the inverting input (v_n) in terms of v_1 and v_2 .
- (b) Using Kirchhoff's Current Law, what is the equation for currents at the inverting input node?
- (c) Using KCL Equation from (b), derive the equation for v_0 as a function of v_1 and v_2 . What is the gain of this op amp circuit?
- (d) If $v_1 = 1V$ and $v_2 = 3 * \cos(\frac{\pi}{2}t)$, draw a graph of v_o vs time. Show at least two periods of the output.

$$KCL: \frac{V_0 - V_n}{3k} - \frac{V_0}{1k} = 0 \Rightarrow \frac{V_0 - (V_1 + V_2)}{3k} - \frac{(V_1 + V_2)}{1k} = 0$$

$$C) = \sqrt{30-20} = \sqrt{(\sqrt{30+20})}$$

Gain 4

d)
$$V_1 + V_2 \le 1 + 3 \cos\left(\frac{\pi}{2}t\right)$$

$$\omega = 2\pi f \Rightarrow f = \frac{1}{7}$$

$$\text{Penod} = \frac{1}{7} = 7 \text{ seconds}$$

SMORNTION AT \$12V

Question 6 [20]

Assume there is no energy stored in the circuit below when the swithc is closed at t = 0.

- (a) Using the Source Transformation, redraw the circuit as a parallel RLC circuit.
- (b) Find $i_0(t)$ for $t \geq 0$.

Extra Credit

Who was Max Salazar (either a factual or humorous answer will be accepted)?

