# Requirements / Design and Test Documentation (RDT)

Version 1.1

ESEP - Praktikum - Sommersemester 2023

Lorenz, Maik, 2542513, maik.lorenz@haw-hamburg.de
Schukow, Dominik, 2441109, dominik.schukow@haw-hamburg.de
Malik, Sulaiman, 2441151, sulaiman.malik@haw-hamburg.de

# Änderungshistorie:

| Version | Erstellt          | Autor               | Kommentar                                                                                                                                                                                                                                                                                                                |
|---------|-------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.1     | 2018-03-12        | LMN                 | Initiale Version des Templates.                                                                                                                                                                                                                                                                                          |
| 0.2     | 2020-03-15        | DAI                 | Überarbeitung wegen Corona.                                                                                                                                                                                                                                                                                              |
| 0.3     | 2022-02-24        | LMN                 | Anpassungen für Sommersemester. Anforderungen an Requirements reduziert auf Ergänzungen.                                                                                                                                                                                                                                 |
| 0.4     | 2022-11-22<br>ff. | CHRS                | Neustrukturierung des Templates, Schriftgrößen vereinheitlicht, Erweiterungen: Hinweise am Anfang des Dokuments, Unterkapitel Hardware und technische Gegebenheiten, Unterkapitel Analyse des Kundenwunsches, Unterkapitel Nachrichten und Signale, allg. Abnahmetest Text + Tabelle, Unterkapitel Abbildungsverzeichnis |
| 0.5     | 2023-03-28        | DOM,<br>SUL,<br>MAI | Abrsprachen, Requirement Analysis, Project management,<br>System context diagram, Abkürzungen, Glossar                                                                                                                                                                                                                   |
| 0.6     | 2023-04-13        | DOM,<br>SUL,<br>MAI | Requirement Analysis (Absprachen), Requirement (Software and Hardware perspective) Uses Cases, Warning, Hardware Analysis, Software Architecture                                                                                                                                                                         |
| 0.7     | 2023-04-27        | DOM,SUL,<br>MAI     | Software-Architektur als Komponentendiagramm, Sequenzdiagramme und erste Verhaltensmodellierung (FSMs) ergänzt                                                                                                                                                                                                           |
| 0.8     | 2023-05-11        | DOM,<br>SUL,<br>MAI | Alle FSMs modelliert, Signalnamen für Lichtschranken geändert. Abgabe für Praktikumstermin 4                                                                                                                                                                                                                             |
| 0.9     | 2023-05-31        | DOM,<br>SUL,<br>MAI | FSMs abgeändert und Beschreibung der Funktionalitäten hinzugefügt                                                                                                                                                                                                                                                        |
| 1.0     | 2023-06-14        | DOM,<br>SUL,<br>MAI | FSMs, Event-Liste und Klassendiagramme gemäß aktueller Implementierung aktualisiert                                                                                                                                                                                                                                      |
| 1.1     | 2023-06-23        | DOM, SUL,<br>MAI    | Praktikumstermin 6 ½:<br>Technische Schulden, Implementierung, Testprotokolle und<br>Abnahmetests aktualisiert                                                                                                                                                                                                           |

# Inhaltsverzeichnis:

| 1 | Tea  | morg  | anisation                                                      | 5  |
|---|------|-------|----------------------------------------------------------------|----|
|   | 1.1  | Vera  | antwortlichkeiten                                              | 5  |
|   | 1.2  | Abs   | prachen                                                        | 5  |
|   | 1.3  | Rep   | ository-Konzept                                                | 5  |
| 2 | Proj | jektm | nanagement                                                     | 6  |
|   | 2.1  | Proz  | zess                                                           | 6  |
|   | 2.2  | Proj  | ektplan                                                        | 6  |
|   | 2.3  | Risil | ken                                                            | 7  |
|   | 2.4  | Qua   | ılitätssicherung                                               | 8  |
| 3 | Pro  | blema | analyse                                                        | 9  |
|   | 3.1  | Ana   | lyse des Kundenwunsches                                        | 9  |
|   | 3.1. | 1     | Stakeholder                                                    | 9  |
|   | 3.1. | 2     | Systemkontext des Systems                                      | 10 |
|   | 3.1. | 3     | Anforderungen                                                  | 10 |
|   | 3.1. | 4     | Use Cases / User Stories                                       | 14 |
|   | 3.1. | 5     | Absprachen                                                     | 18 |
|   | 3.2  | Har   | dware: Analyse der technischen Gegebenheiten                   | 19 |
|   | 3.2. | 1     | Technischer Aufbau und Hardwarekomponenten                     | 19 |
|   | 3.2. | 2     | Werkstücke                                                     | 20 |
|   | 3.2. | 3     | Anforderungen aus dem Verhalten und technischen Besonderheiten | 21 |
|   | 3.3  | Soft  | wareebene                                                      | 22 |
|   | 3.3. | 1     | Systemkontext der Software                                     | 22 |
|   | 3.3. | 2     | Resultierende Anforderungen an die Software                    | 22 |
|   | 3.3. | 3     | Nachrichten und Signale                                        | 24 |
|   | 3.3. | 4     | Sequenz Diagramm (Events)                                      | 27 |
|   | 3.3. | 5     | Warnungen und Fehler                                           | 31 |
| 4 | Soft | ware  | -Design                                                        | 32 |
|   | 4.1  | Soft  | ware Architektur                                               | 32 |
|   | 4.1. | 1     | Beschreibung der Komponenten                                   | 34 |
|   | 4.2  | Soft  | ware Struktur                                                  | 35 |
|   | 4.2. | 1     | Logic mit WorkpieceManager                                     | 35 |

|   | 4.2. | 2      | HAL, EventManager, Watchdog und Logger | 36 |
|---|------|--------|----------------------------------------|----|
|   | 4.2. | .3     | Configuration                          | 37 |
|   | 4.3  | Verl   | naltensmodellierung                    | 38 |
|   | 4.3. | 1      | MainFSM                                | 38 |
|   | 4.3. | 2      | MotorFSM                               | 43 |
|   | 4.3. | .3     | HeightSensorFSM                        | 44 |
|   | 4.3. | 4      | EStopFSM                               | 45 |
|   | 4.3. | .5     | ErrorFSM                               | 46 |
|   | 4.3. | .6     | ServiceModeFSM                         | 47 |
| 5 |      |        | ntierung                               |    |
| , | 5.1  |        | ienmessung                             |    |
|   | 5.2  |        | ntManager                              |    |
| 6 |      |        | sicherung                              |    |
|   | 6.1  |        | strategie                              |    |
|   | 6.2  | Test   | szenarien/Abnahmetest                  | 51 |
|   | 6.3  | Test   | protokolle und Auswertungen            | 59 |
|   | 6.3. | 1      | Unit Tests und Integrationstest        | 59 |
|   | 6.3. | 2      | Systemtests                            | 60 |
| 7 | Tec  | hniscl | he Schulden                            | 62 |
| 8 | Les  | sons l | Learned                                | 64 |
| 9 | Anh  | nang . |                                        | 64 |
|   | 9.1  | Glos   | ssar                                   | 64 |
|   | 9.2  | Abk    | ürzungen                               | 64 |
|   | 9.3  | Abb    | ildungsverzeichnis                     | 65 |

## 1 Teamorganisation

## 1.1 Verantwortlichkeiten

| Verantwortlichkeit    | Person/en        |
|-----------------------|------------------|
| Projektmanager        | Lorenz, Maik     |
| Implementierung, Test | Schukow, Dominik |
| Requirements Analyst  | Malik, Sulaiman  |

## 1.2 Absprachen

#### **Dokumentation**

- Source-Code auf GitHub
- Arbeitsversion RDT im SharePoint
- Abgabefertiges RDT im MS-Teams Raum für Gruppe 2.1

#### Kommunikation

- Feste Zeiten für Meetings im Labor: Donnerstag ab 12:00 Uhr bzw. nach dem Praktikum
- Freitag 13:00 Sprint-Planung / Standup
- Montag 19:00 online
- Meetings je nach aktuellen Themen in MS-Teams Absprache über WhatsApp
- Besprechungsprotokolle werden in <u>Confluence</u> dokumentiert
- Anfragen und Absprachen über WhatsApp (max. Reaktionszeit 1 Stunde). Wenn jemand verhindert ist oder nicht weiterhelfen kann, wird das kommuniziert und ein Termin für eine Antwort genannt oder die Anfrage delegiert

## Aufgabenverteilung

Über das <u>Scrum-Board von JIRA</u> werden zu erledigende Aufgaben in Issues definiert.
 Es ist immer eine "Definition of Done" (vorweggenommener Endzustand) anzugeben, die spezifiziert wann eine Aufgabe als abgeschlossen gilt

## 1.3 Repository-Konzept

Der Source-Code liegt auf GitHub im Projekt ESEP-2023SoSe-Team-2-1.

Wir arbeiten nach dem <u>GitFlow Workflow</u>. Im main-Branch dürfen nur funktionsfähige Versionen liegen. Im develop-Branch ist der Arbeitsstand für die nächste Version. Neue Features werden in eigenen feature-Branches implementiert und danach in den develop-Branch gemerged. Auslieferbereite Versionen werden mit Versionsnummern getaggt.

## 2 Projektmanagement

#### 2.1 Prozess

Da das Team nach dem Scrum-Modell arbeitet, werden zu bearbeitende Aufgaben immer in Sprints eingeplant. Sprints finden immer jeweils zwischen zwei Praktikumsterminen statt, dauern also in der Regel zwei Wochen.

Ein Review des gerade abgeschlossenen sowie die Planung eines neuen Sprints findet immer am Freitag 13:00 nach einem Praktikumstermin statt. In Wochen ohne Praktikum wird dieser Termin dazu genutzt, um den Stand der zu bearbeitenden Aufgaben des aktuellen Sprints zu besprechen.

Besprechungen werden immer schriftlich in Confluence dokumentiert. Sich daraus ergebende Absprachen werden ebenso dokumentiert und falls notwendig direkt in JIRA-Tasks eingeplant.

Wichtige Absprachen mit den Betreuern werden in diesem Dokument festgehalten.

## 2.2 Projektplan

## Meilensteine

| Zeitpunkt   | Ziele                                                               |
|-------------|---------------------------------------------------------------------|
| Praktikum 1 | Organisation innerhalb des Teams definiert.                         |
|             | Anforderungsanalyse und Systemkontextdiagramm erstellt.             |
|             | Projektplan und Projektstruktur erstellt.                           |
|             | Momentics und Repository ist eingerichtet.                          |
|             | Ein Programm kann auf die Anlage geladen werden und diese ansteuern |
| Praktikum 2 | Vollständige Anforderungsanalyse und Abmachungen sind dokumentiert. |
|             | Die Aktorik der HAL ist implementiert.                              |
|             | Beispiel zur Datenübertragung via QNET ist implementiert.           |
|             | Abnahmetests sind formuliert.                                       |
|             | Erstes Dokument der Software                                        |
|             | Architektur ist ausgearbeitet.                                      |
| Praktikum 3 | Überarbeitetes Dokument mit dem Entwurf der Software                |
|             | Architektur liegt vor.                                              |
|             | FSMs sind grob modelliert.                                          |
|             | Die Sensorik der HAL ist implementiert.                             |
|             | Konzept der Übergabe der Daten von HAL zu FSM liegt vor.            |
|             | Präsentation der Architektur als Vortrag.                           |

| Praktikum 4 | Das Dokument der Software Architektur ist final und kann implementiert werden. |
|-------------|--------------------------------------------------------------------------------|
|             | werden.                                                                        |
| Praktikum 5 | FSMs sind ohne Fehlerbehandlung modelliert.                                    |
|             | Grundfunktionalität ohne Fehlerbehandlung implementiert                        |
|             | (Werkstücke können sortiert werden)                                            |
| Praktikum 6 | FSMs sind vollständig modelliert.                                              |
|             | Die Anlage ist vollständig implementiert.                                      |
|             | Abgabe des finalen Requirement Design Dokument.                                |
| Praktikum 7 | Alle nicht realisierten Funktionalitäten sind dokumentiert und begründet.      |
|             | Gesamtanlage ist bereit für die Abnahmetests durch den Kunden.                 |
|             | Fehlerzustände sind dokumentiert.                                              |
|             | "Lessons Learned" ausgefüllt.                                                  |
|             | Abgabe von Dokumenten, Planung, Code und Protokollen                           |

Zur Visualisierung des Projektplans wird die <u>Jira Roadmap</u> verwendet. Das Projekt ist in verschiedene Abschnitte aufgeteilt, die hier auf der oberen Ebene mittels sogenannter "Epics" dargestellt werden (vgl. Gantt-Chart). Der Name jedes Epics ist als vorweggenommener Endzustand formuliert, damit auf den ersten Blick klar ist, was das Ziel ist. Jedes Epic wird auf User Stories und Aufgaben herunter gebrochen, die erledigt werden müssen für die Erreichung des (Teil-)Ziels. Ziel ist es eine Granularität zu schaffen, damit Aufgaben möglichst unabhängig voneinander bearbeitet und somit gut auf die Teammitglieder verteilt werden können.

## 2.3 Risiken

| Risikobeschreibung                            | Hypothetisch<br>/ bekannt | Wahrscheinlichkeit | Maßnahme                                                                   |
|-----------------------------------------------|---------------------------|--------------------|----------------------------------------------------------------------------|
| Teammitglied bricht das Praktikum ab          | bekannt                   | gering             | Absprache mit Kunde über wegfallende Requirements                          |
| Teammitglied ist krank / nicht verfügbar      | bekannt                   | normal             | Gute Dokumentation,<br>Verteilung der Aufgaben an<br>andere Teammitglieder |
| Kein Zugang zum<br>Labor                      | bekannt                   | normal             | Nutzung der Simulation zum<br>Testen der Software                          |
| Verzug durch<br>technische<br>Schwierigkeiten | bekannt                   | normal             | Technische Beratung anfragen bei Profs.                                    |

## 2.4 Qualitätssicherung

Um die Qualität der umgesetzten Features sicherzustellen, werden Unit- und Modultests mit der GoogleTest Suite erstellt. Vor dem Abschluss von Feature-Branches müssen alle Tests bestanden werden.

Mit den Abnahmetests wird die korrekte Funktion des Gesamtsystems aus Kundensicht getestet.

## 3 Problemanalyse

## 3.1 Analyse des Kundenwunsches

Der Kunde stellt ein fertiges System zur Verfügung, das so programmiert werden soll, dass aufgelegte Werkstücke am Ende eines FBM in vorgegebener Reihenfolge ankommen sollen. Zur Ermittlung der Werkstücktypen können deren Eigenschaften durch an der Anlage montierte Sensoren bestimmt werden. Werkstücke, die nicht in die Reihenfolge passen, sollen auf Rutschen aussortiert werden.

## 3.1.1 Stakeholder

| Stakeholder | Interessen                                                                                      |
|-------------|-------------------------------------------------------------------------------------------------|
| Kunde       | Fehlerfreie und richtig sortierte Bausteine.                                                    |
| Entwickler  | Fehlerfreie und termingerechte Implementierung der Software                                     |
| Anwender    | Benutzerfreundliche Sortieranlage, welche vollautomatisch nach auflegen eines Werkstückes läuft |
| Tester      | Testen / Wartung der Software                                                                   |

## 3.1.2 Systemkontext des Systems



Figure 1 Use\_Case\_diagram

## 3.1.3 Anforderungen

| Lfd. Nr. / ID | Beschreibung                                                       | Fußnote    |
|---------------|--------------------------------------------------------------------|------------|
| ANF01         | Auf der Anlage sollen die Werkstücke in folgender                  | 12         |
|               | vorgegebener Reihenfolge sortiert werden:                          |            |
|               | <type a=""> → <type b=""> → <type c=""></type></type></type>       |            |
| ANF02         | Die Sortier-Reihenfolge soll aus allen nicht-binären Werkstücken   | 15, 43, 44 |
|               | über eine auf dem System abgelegten Datei konfigurierbar sein. Die |            |
|               | Konfigurationsdatei soll benutzerfreundlich gestaltet sein.        |            |

| ANF03 | Flache Werkstücke werden von FBM1 erkannt und aussortiert, sofern sie nicht der Konfiguration entsprechen oder die Rutsche an FBM1 voll ist.                                                                                                                                                     | 17    |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| ANF04 | Werkstücke, die nicht der vorgegebenen Reihenfolge entsprechen, werden spätestens an FBM2 aussortiert.                                                                                                                                                                                           | 18    |
| ANF05 | Auf dem FBM1 können sich mehrere Werkstücke befinden.                                                                                                                                                                                                                                            | 22    |
| ANF06 | Auf dem FBM2 darf sich maximal 1 Werkstück befinden. Die Übergabe von FBM1 an FBM2 erfolgt daher auch vereinzelt.                                                                                                                                                                                | 23    |
| ANF07 | Auf der Anlage (beide FBM) sollen die Werkstücke langsam durch die Höhenmessung transportiert werden                                                                                                                                                                                             | 25    |
| ANF08 | Es darf kein Werkstück von der Anlage fallen.                                                                                                                                                                                                                                                    | 26    |
| ANF09 | Sind beide Rutschen voll, läuft der Sortierbetrieb so lange weiter, bis eine Aussortierung eines Werkstückes nicht mehr erfolgen kann.                                                                                                                                                           | 28    |
| ANF10 | Ist die Rutsche auf FBM1 voll, so soll die Aussortierung über FBM2 erfolgen                                                                                                                                                                                                                      | 38    |
| ANF11 | Ist die Rutsche auf FBM2 voll, so soll die Aussortierung über FBM1 erfolgen.                                                                                                                                                                                                                     | 39    |
| ANF12 | Wenn sich auf FBM1 kein Werkstück befindet, soll FBM1 anhalten.                                                                                                                                                                                                                                  | 37    |
| ANF13 | Wenn sich auf FBM2 kein Werkstück befindet, soll FBM2 anhalten.                                                                                                                                                                                                                                  | 37    |
| ANF14 | Wenn ein Werkstück das Ende von FBM 2 erreicht, werden folgende Daten auf der Konsole ausgegeben:  • Werkstück-ID  • Werkstück-Typ  • Mittlerer Höhenmesswert aus der Mitte des Werkstücks von FBM1 in Millimeter  • Mittlerer Höhenmesswert aus der Mitte des Werkstücks von FBM2 in Millimeter | 29-34 |

| ΛΝΓ1 Γ | Fine velle Butsche ist an der enterselbenden Anlage                                                                                                                                                                                                                                 | 27    |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| ANF15  | Eine volle Rutsche ist an der entsprechenden Anlage zu signalisieren.                                                                                                                                                                                                               | 27    |
| ANF16  | An einem FBM können unterschiedliche Varianten der<br>Sortiermechanik eingebaut sein (Auswerfer oder Weiche), die<br>beide vom System unterstützt werden müssen                                                                                                                     | 45-55 |
| ANF17  | Die Lichtschranke an der Höhenmessung darf nicht im<br>Betriebsmodus verwendet werden.                                                                                                                                                                                              | 58    |
| ANF18  | Auf die Anlage werden mehrere Typen von WS unterschiedlich auf das Band gelegt, die alle erkannt werden müssen:  • Flache WS • Hohe WS mit Bohrung und Metall • Hohe WS mit Bohrung ohne Metall • Hohe WS ohne Bohrung  Alle anderen Werkstücke werden als "Unbekannt" eingeordnet. | 2-11  |
| ANF19  | Die sortierten WS am Ende von FBM2 müssen so bereitgestellt werden, dass ein Pick-and-Place Roboter sie entnehmen kann.                                                                                                                                                             | 14    |
| ANF20  | Wenn die Lichtschranke am Anfang von FBM1 frei ist, können neue WS hier eingelegt werden.                                                                                                                                                                                           | 19-21 |
| ANF21  | Eine Änderung der Aussortierung bedingt durch eine volle Rutsche (siehe ANF10 und ANF11) ist dem Bediener zu signalisieren.                                                                                                                                                         | 40    |
| ANF22  | Es soll ein möglichst hoher Durchsatz an Werkstücken erreicht werden                                                                                                                                                                                                                | 42    |
| ANF23  | Der Betrieb der Anlage soll jederzeit sicher sein und darf keine<br>Gefährdung des Bedieners hervorrufen                                                                                                                                                                            | 59    |
| ANF24  | Folgende Fehlerzustände sollen erfasst und dem Bediener signalisiert werden:  • Beide Rutschen voll und ein notwendiges Aussortieren ist nicht mehr möglich  Die weiteren Fehlerfälle werden nach Absprache nicht umgesetzt                                                         | 62    |
| ANF25  | Durch Drücken des "Start"-Tasters (< 2sec) wechselt die Anlage in den Betriebszustand, durch langes (>= 2sec) Drücken in den Service-Mode.                                                                                                                                          | 70-71 |

| ANF26 | Durch Drücken des "Stop"-Tasters (< 2sec) wechselt die Anlage in den Ruhezustand (Wenn keine Fehler oder Warnungen vorliegen).                                                                                                                                                                                                                                                                                                                    | 72-73 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| ANF27 | Durch Drücken eines "E-Stopp" Schalters, steht die ganze Anlage (beide FBM!) still. Sind beide E-Stopp Schalter herausgezogen, bleibt die Anlage weiterhin so lange stehen, bis der Reset-Taster gedrückt wurde.                                                                                                                                                                                                                                  | 75-77 |
| ANF28 | Dem Benutzer sollen sinnvolle Hinweise zur Bedienung der Anlage angezeigt werden durch Nutzung der LEDs an den Tastern oder anderer Anzeigeelemente.                                                                                                                                                                                                                                                                                              | 78    |
| ANF29 | Die grüne Ampel soll im Betriebsmodus dauerhaft leuchten. Im Service-Mode soll sie grün blinken.                                                                                                                                                                                                                                                                                                                                                  | 80-81 |
| ANF30 | Die gelbe Ampel soll bei anliegenden Warnungen blinken.                                                                                                                                                                                                                                                                                                                                                                                           | 82    |
| ANF31 | <ul> <li>Die rote Ampel soll anliegende Fehler wie folgt anzeigen:</li> <li>Anstehend unquittiert: Schnelles Blinken (1 Hz)</li> <li>Anstehend quittiert: Dauerhaftes Leuchten</li> <li>Gegangen unquittiert: Langsames Blinken (0,5 Hz)</li> </ul>                                                                                                                                                                                               | 95-99 |
| ANF32 | <ul> <li>Mit anliegenden Fehlern soll wie folgt umgegangen werden:</li> <li>Neu aufgetreten: Anstehend unquittiert</li> <li>Fehler von Bediener durch Drücken der "Reset"-Taster quittiert: Anstehend quittiert</li> <li>Anstehend quittiert und Fehler behoben: Wechsel in den Zustand "OK / Kein Fehler"</li> <li>Automatisch behobene Fehler: Wechsel in den Zustand "Gegangen unquittiert". Dieser wird durch quittieren verlassen</li> </ul> | 83-93 |

## 3.1.4 Use Cases / User Stories

| ID            | UC-01                                                                                                                                                                                                                                              |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Titel         | E-Stopp Funktion auslösen                                                                                                                                                                                                                          |
| Beschreibung  | Das Use Case beschreibt die Funktionsweise des E-stopp Schalters.                                                                                                                                                                                  |
| Akteure       | Anlage (Lamp, E-Stopp, ButtonReset), Benutzer.                                                                                                                                                                                                     |
| Vorbedingung  | Die Anlage ist im Betriebsmodus                                                                                                                                                                                                                    |
| Hauptszenario | <ol> <li>Ein E-Stopp Schalter an FBM1 oder FBM2 wird gedrückt.</li> <li>Die Anlage stoppt.</li> <li>Der E-Stopp Schalter wird herausgezogen.</li> <li>Vorderband wird ausgeräumt.</li> <li>Reset-Button an FBM1 und FBM2 wird betätigt.</li> </ol> |
| Nachbedingung | Die Anlage ist im Betriebsmodus.                                                                                                                                                                                                                   |

| ID            | UC-02                                                                                                                                                                                                                                                                                                                           |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Titel         | Geflippte Werkstücke erkennen                                                                                                                                                                                                                                                                                                   |
| Beschreibung  | Das Use Case beschreibt die Funktion der Anlage, wenn ein Werkstück bei Übergabe zwischen beiden FBM geflippt wird.                                                                                                                                                                                                             |
| Akteure       | FBM2 (LBA, LBW, LBE, LBR, Motor, Weiche), Console.                                                                                                                                                                                                                                                                              |
| Vorbedingung  | <ul> <li>Anlage ist im Betriebsmodus.</li> <li>Am Ende des FBM2 soll ein Werkstück mit Bohrung kommen.</li> <li>Werktsück mit BoM wird am Anfang des FBM1, so dass die Bohrung nach unten zeigt.</li> <li>Das Werkstück wird bei Übergabe von FBM 1 auf FBM 2 geflippt.</li> <li>Das Werkstück muss sortiert werden.</li> </ul> |
| Hauptszenario | <ol> <li>FBM2 erkennt, dass das Werkstück geflippt wurde</li> <li>Das Werkstück wird nicht aussortiert</li> <li>Das Werkstück wird zum Ende des FBM2 transportiert.</li> <li>Die Daten des Werkstücks werden auf der Konsole mit, Überschlagen" zusätzlich angezeigt.</li> </ol>                                                |

| Nachbedingung | Anlage ist weiter im Betriebsmodus.   |
|---------------|---------------------------------------|
|               | Kein Werkstück befindet sich auf FBM2 |

| ID            | UC-03                                                                 |
|---------------|-----------------------------------------------------------------------|
| Titel         | Rutsche 1 voll erkennen.                                              |
| Beschreibung  | Das Use Case beschreibt die Funktion der Anlage, wenn die Rutsche auf |
|               | FBM 1 voll ist.                                                       |
| Akteure       | Anlage (LBA, LBW, LBE, LBR, Motor, MD, HM, Weiche)                    |
| Vorbedingung  | Anlage ist im Betriebsmodus.                                          |
|               | Rutsche 1 ist voll.                                                   |
|               | Rutsche 2 ist leer.                                                   |
|               | Ein flaches Werkstück befindet sich am MD des FBM1.                   |
| Hauptszenario | System erkennt, dass das Werkstück aussortiert werden muss.           |
|               | 2. Das Werkstück wird zum FBM 2 transportiert.                        |
|               | 3. Das Werkstück wird in Rutsche auf FBM 2 aussortiert.               |
| Nachbedingung | Das Werkstück liegt in der Rutsche von FBM2                           |

| ID            | UC-04                                                                 |
|---------------|-----------------------------------------------------------------------|
| Titel         | Rutsche 2 voll erkennen                                               |
| Beschreibung  | Das Use Case beschreibt die Funktion der Anlage, wenn die Rutsche auf |
|               | FBM 2 voll ist.                                                       |
| Akteure       | Anlage (LBA, LBW, LBE, LBR, Motor, HM, MD, Weiche)                    |
| Vorbedingung  | Anlage ist im Betriebsmodus.                                          |
|               | Rutsche 2 ist voll.                                                   |
|               | Rutsche 1 ist leer.                                                   |
|               | Das (nicht flaches) Werkstück befindet sich am MD des FBM1 und passt  |
|               | nicht in die Sortierreihenfolge.                                      |
| Hauptszenario | System erkennt, dass das Werkstück aussortiert werden muss.           |
|               | 2. Das Werkstück wird in Rutsche auf FBM 1 aussortiert                |
| Nachbedingung | Das Werkstück liegt in der Rutsche von FBM1                           |

| ID    | UC-05                        |
|-------|------------------------------|
| Titel | Beide Rutschen voll erkennen |

| Beschreibung  | Das Use Case beschreibt die Fehlerbehandlung, wenn beide Rutschen    |
|---------------|----------------------------------------------------------------------|
|               | voll sind und ein Werkstück aussortiert wird.                        |
| Akteure       | Anlage (LBA, LBW, LBE, LBR, Motor, Weiche, ButtonReset, ButtonStart, |
|               | Lamp).                                                               |
| Vorbedingung  | Anlage ist im Betriebsmodus.                                         |
|               | Beide Rutschen sind voll.                                            |
|               | Ein Werkstück muss aussortiert werden                                |
| Hauptszenario | 1. Grüne Lampe aus.                                                  |
|               | 2. Die Anlage stoppt.                                                |
|               | 3. Rote Lampe blinkt (1Hz).                                          |
|               | 4. Benutzer drückt Button-Reset(<= 2 Sek.).                          |
|               | 5. Rote Lampe leuchtet dauerhaft.                                    |
|               | 6. Benutzer behebt den Fehler.                                       |
|               | 7. Benutzer drückt Button-Start (<=2 Sek.).                          |
|               | 8. Rote Lampe aus.                                                   |
|               | 9. Grüne Lampe an.                                                   |
| Nachbedingung | Anlage ist im Betriebsmodus                                          |

| ID            | UC-06                                                                                              |
|---------------|----------------------------------------------------------------------------------------------------|
| Titel         | Sortiervorgang starten                                                                             |
| Beschreibung  | Das Use Case beschreibt den Sortiervorgang der Anlage.                                             |
| Akteure       | Anlage (LBA, LBW, LBE, LBR, Motor, Weiche, HM, MD), Benutzer                                       |
| Vorbedingung  | Anlage ist im Betriebsmodus.                                                                       |
|               | Beide Rutsche sind leer.                                                                           |
|               | Die von Anlage angenommene Reihenfolge ist:                                                        |
|               | WS-F → WS-BOM → WS-BM.                                                                             |
|               | Reihenfolge der Werkstücke auf Anlage:                                                             |
|               | ○ WS-BOM $\rightarrow$ WS-F $\rightarrow$ WS-BOM $\rightarrow$ Werkstück BuM $\rightarrow$ WS-BOM. |
|               | Die Werkstücke werden nacheinander am Anfang des FBM1 gelegt.                                      |
| Hauptszenario | WS-BOM wird in Rutsche auf FBM 1 aussortiert.                                                      |
|               | 2. WS-F wird zum Ende transportiert.                                                               |
|               | 3. WS-F wird in Rutsche auf FBM 1 aussortiert.                                                     |
|               | 4. WS-BOM wird zum Ende transportiert.                                                             |
|               | 5. WS-BM wird zum Ende transportiert.                                                              |
|               | 6. WS-BOM wird in Rutsche auf FBM 1 aussortiert.                                                   |

| Nachbedingung | 2 Werkstück BoM sind in Rutsche auf FBM 1.                                         |
|---------------|------------------------------------------------------------------------------------|
|               | <ul> <li>1 WS-F ist in Rutsche auf FBM 2.</li> </ul>                               |
|               | • 1* WS-F $\rightarrow$ 1* WS-BOM $\rightarrow$ 1* WS-BM wurden zum Ende des FBM 2 |
|               | transportiert                                                                      |
|               |                                                                                    |

| ID            | UC-07                                                                                  |
|---------------|----------------------------------------------------------------------------------------|
| Titel         | Sortiervorgang starten für ein Werkstück                                               |
| Beschreibung  | Das Use Case beschreibt den Sortiervorgang der Anlage für ein                          |
|               | Werkstück.                                                                             |
| Akteure       | Anlage (LBA, LBW, LBE, LBR, Motor, Weiche, HM. MD), Benutzer                           |
| Vorbedingung  | Anlage ist im Betriebsmodus.                                                           |
|               | Beide Rutschen sind leer.                                                              |
|               | <ul> <li>Ein Werkstück wird am Anfang des FBM1 gelegt oder von FBM1 an FBM2</li> </ul> |
|               | übergegeben.                                                                           |
| Hauptszenario | 1. Das Werkstück unterbricht LBA                                                       |
|               | 2. Das Werkstück wird zur HD transportiert                                             |
|               | 3. Das Werkstück wird zur MD transportiert                                             |
|               | 4. Das Werkstück wird erkannt, ob es aussortiert werden muss                           |
|               | 5. Das Werkstück unterbricht LBW                                                       |
|               | 6. Das Werkstück muss nicht aussortiert werden                                         |
|               | 7. Das Werkstück unterbricht LBE                                                       |
| Nachbedingung | 6a) Das Werkstück muss aussortiert werden                                              |
|               | 7a) Das Werkstück wird von Weiche aussortiert                                          |
|               | 8a) Das Werkstück unterbricht LBR                                                      |

| ID            | UC-08 |
|---------------|-------|
| Titel         |       |
| Beschreibung  |       |
| Akteure       |       |
| Vorbedingung  |       |
| Hauptszenario |       |
| Nachbedingung |       |

## 3.1.5 Absprachen

Nachfolgend sind die Absprachen ausgeführt, die mit dem Kunden getroffen wurden bzgl. der Anforderungen:

| ID     | Absprache                                                                                                                                                                                                                                                                                  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASP-01 | Wenn auf FB1 ein WS als "ungültig" erkannt wird (passt nicht zu der gewünschten Sortier-Reihenfolge), aber auf FB2 als "gültig" oder umgekehrt, soll immer aufgrund des an FBM2 erkannten WS-Typs entschieden werden, ob das WS aussortiert oder durchgelassen wird.                       |
| ASP-02 | Vom Kunden wurde folgender Vorschlag gemacht: "Wenn ein WS as FBM2 aussortiert werden muss, die Rutsche jedoch voll ist: Können wir nicht zurück fahren und an FB1 aussortieren, wenn frei?"                                                                                               |
|        | Dieses Feature wird nach Absprache nicht umgesetzt aufgrund hohem<br>Programmieraufwand und kein Produktivitätsgewinn. In diesem Fall erfolgt eine<br>Fehlermeldung und Bandstopp.                                                                                                         |
| ASP-03 | Der Höhenmesswert an FBM2 soll als "maximale Höhe in Millimeter" ausgegeben werden.<br>Höhenangaben sollen generell immer in Millimeter erfolgen.                                                                                                                                          |
| ASP-04 | Werkstücke sollen bevorzugt an FBM2 aussortiert werden, da sich sonst alle schnell in der Rutsche stauen. Ausnahme: Aussortierung an FBM1 ist fest vorgegeben (flache WS).                                                                                                                 |
| ASP-05 | Der Anfang von FBM1, an dem neue Werkstücke aufgelegt werden, ist definiert durch den Bereich in dem die erste Lichtschranke unterbrochen wird.                                                                                                                                            |
| ASP-06 | Die Lichtschranke der Höhenmessung wird zum Abnahmetest abgeschaltet. In unserem Prototypen ist diese noch vorhanden, im Produktivsystem wird die Hardware jedoch eingespart, da der Systemarchitekt der Meinung ist, das bekommen die Softwerker auch ohne hin.                           |
| ASP-07 | Eine volle Rutsche wird am jeweiligen FBM als Warnung signalisiert (gelbe Ampel blinkt).                                                                                                                                                                                                   |
| ASP-08 | Da die Bewertung, ob ein WS der gewünschten Reihenfolge entspricht, auf Grundlage von FBM2 erfolgt (siehe ASP-01), wird dieser WS-Typ auch als "finaler Typ" ausgegeben. Zusätzlich wird angegeben, dass sich das WS überschlagen hat.                                                     |
| ASP-09 | Wenn eine Rutsche voll ist und die Aussortierung deshalb am jeweils anderen FBM erfolgt, wird diese Situation neben dem Blinken der gelben Ampel an der vollen Rutsche (Warnung) zusätzlich über das Leuchten von Q1 (Aussortierung an FBM1) bzw. Q2 (Aussortierung an FBM2) signalisiert. |

## 3.2 Hardware: Analyse der technischen Gegebenheiten

## 3.2.1 Technischer Aufbau und Hardwarekomponenten

Die Festo-Transfersysteme verfügen über unterschiedliche Sensoren und Aktoren, mit dessen Hilfe unsere Sortieranlage realisiert wird.

#### Sensorik:

Für die Registrierung der Position von WS werden Lichtschranken verwendet. Damit Entscheidungen zur Sortierung anhand der Höhe von WS getroffen werden können, werden Höhensensoren verwendet. Um das Metall in WS zu erkennen wird ein Metallsensor verwendet. Zudem befindet sich an einem Transfersystem ein Bedienfeld mit den Tasten Start, Stop und Reset. Rechts daneben befindet sich der E-Stopp Schalter. Es handelt sich um einen üblichen E-Stopp-Schalter, der bei Betätigung einklinkt. Durch Herausziehen wird er wieder in seine ursprüngliche Position versetzt. Hierbei handelt es sich nicht um einen klassischen E-Stopp Schalter, der die Anlage stromlos setzt. Der sichere Betrieb nach Betätigung des Schalters muss deshalb über die Steuerungssoftware realisiert werden.

## **Aktorik:**

Die Förderbandmodule werden durch einen eigenen Steuerungscomputer gesteuert mit einem Beaglebone Black. Die beiden Computer sind über Ethernet gekoppelt.

Das FB lässt sich durch entsprechende Ansteuerung des Motors in langsamer und schneller Geschwindigkeit und dazu nach links oder rechts bewegen.

Zur Aussortierung von WS in eine Rutsche existieren zwei Varianten des Hardwareaufbaus. Die eine Variante verfügt über eine Weiche, die zweite Variante über einen Kicker. Die Weiche ist im stromlosen Zustand geschlossen. Beim Öffnen fließt Strom durch die Magnetspule, die die Weiche betätigt. Der Kicker lässt im stromlosen Zustand WS passieren. Fließt Strom durch den Kicker, so fährt dieser aus und drückt ein Werkstück aktiv in die Rutsche. Im ausgefahrenen Zustand können keine WS passieren und werden auch nicht in die Rutsche befördert.

Um den Benutzer über den Zustand des Systems zu informieren, verfügt ein Transfersystem über eine Konsolenausgabe (mit verbundener Momentics IDE über "stdout") und für die zusätzliche Visualisierung über eine Ampel. Die Ampel kann die Farben grün, orange und rot darstellen.

Darüber hinaus verfügt das Bedienfeld über Status-LED's (jeweils an den Tastern Start und Reset sowie Q1 und Q2).

Das FB hat eine Länge von 700 mm mit einer Tiefe von 70 mm. Der Abstand zu den äußeren Förderbandbegrenzungen beträgt 5 mm. Somit beträgt die effektive nutzbare Gesamthöhe des FB 80 mm. Die am Transfersystem angebrachte Rutsche ist 180 mm lang und 70 mm breit. Sie weist eine Verengung von 30 mm an der zulaufenden Seite vom FB auf.



Figure 2 Hardware Darstellung der Sortieranlage



Figure 3 Veranschaulichung der Messwerte (Quelle: https://reposit.haw-hamburg.de/handle/20.500.12738/8463)

## **Beaglebone Black:**

Bei diesem Transfersystem kommt ein Beaglebone Black mit bereits installiertem QNX Neutrino zum Einsatz. Auf dem Beaglebone Black sitzt ein AM3358/9-SoC von TI, der ein ARM Cortex-A8-Prozessor implementiert. Für die Installation bietet QNX ein <u>BSE (Board Support Package) an</u>. Dazu ist es ratsam den entsprechenden User Guide zu <u>suchen und zu finden</u>. Alternativ ist eine Virtualisierung auf zwei VMware-VMs verfügbar. Die korrekte Funktionsweise des Beaglebones wird über ein blaues Lauflicht auf der linken Seite des Frontpanels signalisiert.

## 3.2.2 Werkstücke

Vom Nutzer der Anlage werden verschiedenartige Werkstücke auf das FB gelegt:

| Тур ID | Beschreibung                           | Maße | Besonderheiten / zu beachten                      |
|--------|----------------------------------------|------|---------------------------------------------------|
| WS-F   | Flache WS                              |      |                                                   |
| WS-BM  | Hohe WS mit Bohrung und Metalleinsatz  |      | Wird das WS gedreht, erhält man den Typ WS-<br>OB |
| WS-BOM | Hohe WS mit Bohrung ohne Metalleinsatz |      | Wird das WS gedreht, erhält man den Typ WS-<br>OB |
| WS-OB  | Hohe WS ohne Bohrung                   |      |                                                   |

|        |                   | Die WS verfügen über Rillen. Währe   | nd der    |
|--------|-------------------|--------------------------------------|-----------|
|        |                   | Höhenmessung sind also schnell wed   | chselnde  |
|        |                   | Messwerte zu erwarten.               |           |
| WS-BIN | Binär-codierte WS | Zur Erkennung der Binärcodierung is  | t auch    |
|        |                   | entscheidend, ab wann die Messung    | gestartet |
|        |                   | wird (Mitte bis Ende oder Anfang bis | Mitte des |
|        |                   | WS)                                  |           |
|        |                   |                                      |           |

## 3.2.3 Anforderungen aus dem Verhalten und technischen Besonderheiten

| Lfd. Nr. / ID | Beschreibung                                                                     |
|---------------|----------------------------------------------------------------------------------|
| HW_REQ_001    | Das unterschiedliche Gewicht und je nach Anzahl der auf dem FB befindlichen WS   |
|               | kann dies die Motorgeschwindigkeit beeinflussen. Dies muss bei Funktionen        |
|               | berücksichtigt werden, die Annahmen bzgl. der aktuellen Motorgeschwindigkeit     |
|               | treffen.                                                                         |
| HW_REQ_002    | Binär codierte WS haben die gleiche Höhe wie hohe WS. Diese müssen voneinander   |
|               | unterschieden werden können.                                                     |
| HW_REQ_003    | Die Lichtschranke, die erkennt, wenn sich ein WS unter dem Höhenmesser befindet, |
|               | steht im Produktivbetrieb nicht zur Verfügung. Die Erkennung der Präsenz von     |
|               | Werkstücken unter der Höhenmessung muss deshalb anders erfolgen.                 |

## 3.3 Softwareebene

## 3.3.1 Systemkontext der Software



Figure 4 System Context diagramm

## 3.3.2 Resultierende Anforderungen an die Software

| Lfd. Nr. / ID | Beschreibung                                                                                  |
|---------------|-----------------------------------------------------------------------------------------------|
| REQS_001      | Beim Auflegen eines WS am Anfang von FBM1 wird der Motor aktiviert und das FB                 |
|               | bewegt sich.                                                                                  |
| REQS_002      | Wenn ein aufgelegtes WS den Bereich der Höhenmessung erreicht, bewegt sich der                |
|               | Motor am jeweiligen FBM in langsamer Geschwindigkeit. Beim Verlassen des Bereichs             |
|               | bewegt sich der Motor wieder in schneller Geschwindigkeit.                                    |
| REQS_003      | Ein flaches WS, das nicht der gewünschten Reihenfolge entspricht, wird an FBM1                |
|               | aussortiert. Bei voller Rutsche wird das WS durchgelassen und an FBM2 aussortiert.            |
|               | Ein nicht-flaches WS, das nicht der gewünschten Reihenfolge entspricht, wird an FBM2          |
|               | übergeben und dort aussortiert. Bei voller Rutsche an FBM2 erfolgt die Aussortierung an FBM1. |
|               | Bei gewünschter Aussortierung und falls beide Rutschen voll sind, erfolgt ein                 |
|               | Bandstopp und Fehlermeldung an beiden Anlagen.                                                |
| REQS_004      | Bei voller Rutsche erfolgt eine Warnmeldung. Hierbei blinkt die gelbe Ampel am                |
|               | betroffenen FBM und es wird eine Warnung auf der Konsole ausgegeben mit der                   |
|               | Aufforderung, die Rutsche freizumachen.                                                       |
| REQS_005      | Bei der Übergabe eines WS von FBM1 an FBM2 (LS am Anfang von FBM2                             |
|               | unterbrochen) wird der Motor an FBM2 aktiviert und das FB bewegt sich.                        |

| REQS_006 | Wenn ein WS das Ende von FBM2 erreicht, stoppt der Motor. Der Motor kann erst                                                                                                                  |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|          | wieder anlaufen, wenn die LB wieder frei ist.                                                                                                                                                  |  |  |
|          | Der Motor stoppt auch, wenn ein WS aussortiert wurde.                                                                                                                                          |  |  |
| REQS_007 | Beim Drücken des E-Stopp muss ein sofortiger Bandstopp beider FBM erfolgen.                                                                                                                    |  |  |
| REQS_008 | Im Ruhezustand wechselt die Anlage durch das kurze Drücken des Start-Tasters vom                                                                                                               |  |  |
|          | Ruhezustand in den Betriebszustand.                                                                                                                                                            |  |  |
|          | Im Ruhezustand wechselt die Anlage durch das lange Drücken des Start-Tasters vom                                                                                                               |  |  |
|          | Ruhezustand in den Service-Mode.                                                                                                                                                               |  |  |
| REQS_009 | Im Betriebszustand wechselt die Anlage durch das Drücken des Stopptasters in den                                                                                                               |  |  |
|          | Ruhezustand. Dieser Wechsel ist nur möglich, wenn keine Fehler oder Warnungen                                                                                                                  |  |  |
|          | vorliegen.                                                                                                                                                                                     |  |  |
| REQS_010 | Im Betriebszustand wechselt die Anlage beim Auftreten eines Fehlers, der sich nicht von selbst beheben lässt, in den Fehlermodus, der sich wie folgt verhält:                                  |  |  |
|          | 1. Rote Ampel blinkt schnell (1 Hz)                                                                                                                                                            |  |  |
|          | 2. Drücken des Reset-Tasters: Rote Ampel leuchtet dauerhaft                                                                                                                                    |  |  |
|          | 3. Drücken des Start-Tasters: Wechsel in den Betriebszustand                                                                                                                                   |  |  |
|          | Im Betriebszustand wechselt die Anlage beim Auftreten eines Fehlers, der sich von selbst behebt, in den Fehlermodus. Wenn er sich danach von selbst behebt, verhält sich die Anlage wie folgt: |  |  |
|          | 1. Rote Ampel blinkt langsam (0,5 Hz)                                                                                                                                                          |  |  |
|          | 2. Drücken des Start-Tasters: Wechsel in den Betriebszustand                                                                                                                                   |  |  |
| REQS_011 | Das System muss folgende Konfiguration ermöglichen, die beim Programmstart aus einer Konfigurationsdatei eingelesen wird:                                                                      |  |  |
|          | Modus: Master oder Slave                                                                                                                                                                       |  |  |
|          | Sortiermechanik: Weiche oder Auswerfer                                                                                                                                                         |  |  |
|          | Gewünschte Sortierreihenfolge durch Einlesen einer Konfigurationsdatei auf dem Master-System                                                                                                   |  |  |
|          | Wird eine ungültige oder fehlende Konfiguration festgestellt, erfolgt eine                                                                                                                     |  |  |
|          | Fehlermeldung und ein Wechsel in den Betriebszustand ist nicht möglich.                                                                                                                        |  |  |

REQS\_012

Wenn ein WS an der Weiche von FBM1 angekommen ist, werden folgende Informationen auf der Konsole ausgegeben:

- WS-ID
- WS-Typ
- Mittlere Höhe in Millimetern an FBM1

Wenn ein WS an der Weiche von FBM2 angekommen ist, werden folgende Informationen auf der Konsole ausgegeben:

- WS-ID
- WS-Typ
- Mittlere Höhe in Millimetern an FBM1
- Maximale Höhe in Millimetern an FBM2
- WS hat sich überschlagen: ja/nein

An beiden FBM erfolgt zusätzlich die Ausgabe, ob das WS gültig ist (der gewünschten Reihenfolge entspricht) oder eine Aussortierung erfolgt.

## 3.3.3 Nachrichten und Signale

Anmerkung: Viele Signale können an Master und auch an Slave auftreten. Um die folgenden Tabellen zu vereinfachen, wurde deshalb ein X als Platzhalter innerhalb des Signalnamens verwendet, das für den Systemtyp steht (Events jeweils 1x mit M für Master, 1x mit S für Slave).

## HAL

Folgende Events werden jeweils von der HAL FBM1 (Master) und FBM2 (Slave) an die Logic (Master) über den EventManager gesendet.

| Name                                             | Beschreibung                                                         |
|--------------------------------------------------|----------------------------------------------------------------------|
| ESTOP_X_PRESSED E-Stopp an FBM1/2 wurde gedrückt |                                                                      |
| ESTOP_X_RELEASED                                 | E-Stopp an FBM1/2 wurde gelöst                                       |
| START_X_SHORT                                    | An einer der beiden Anlagen wurde die Start-Taste gedrückt (<=2 sec) |
| START_X_LONG                                     | An einer der beiden Anlagen wurde die Start-Taste gedrückt (>2 sec)  |
| STOP_X_ SHORT                                    | An einer der beiden Anlagen wurde die Stop-Taste gedrückt            |

|                  | (<=2 sec)                                                                     |  |
|------------------|-------------------------------------------------------------------------------|--|
| RESET_X _ SHORT  | SHORT  An einer der beiden Anlagen wurde die Reset -Taste gedrück (<=2 sec)   |  |
| RESET_X _LONG    | An einer der beiden Anlagen wurde die Reset-Taste gedrückt (>2 sec)           |  |
| LBA_X_BLOCKED    | LB Start FBM1 unterbrochen                                                    |  |
| LBA_X_UNBLOCKED  | LB Start FBM1 wieder frei                                                     |  |
| LBW_X_BLOCKED    | LB an der Weiche unterbrochen                                                 |  |
| LBW _X_UNBLOCKED | LB an der Weiche wieder frei                                                  |  |
| LBE_X _BLOCKED   | LB Ende FBM1 unterbrochen                                                     |  |
| LBE_X_UNBLOCKED  | LB Ende FBM1 wieder frei                                                      |  |
| LBR _X_BLOCKED   | LB oben an der Rutsche unterbrochen                                           |  |
| LBR_X_UNBLOCKED  | LB oben an der Rutsche wieder frei                                            |  |
| MD_X_PAYLOAD     | Payload= ist es ein Metal (True oder False)                                   |  |
| HM_X_PAYLOAD     | Payload= die Height des WS in mm                                              |  |
| HM_X_WS_F        | An der Höhenmessung wurde ein Werkstück vom Typ "Flach" erkannt               |  |
| HM_X_WS_OB       | An der Höhenmessung wurde ein Werkstück vom Typ "Hoch ohne Bohrung" erkannt   |  |
| HM_X_WS_BOM      | An der Höhenmessung wurde ein Werkstück vom Typ "Bohrung ohne Metall" erkannt |  |
| HM_X_WS_UNKNOWN  | An der Höhenmessung wurde ein unbekanntes Werkstück erkannt                   |  |

## Höhensensor

Folgende Events werden jeweils von der Logic (Master) an den Höhensensor gesendet:

| Name            | Beschreibung                                                                              |
|-----------------|-------------------------------------------------------------------------------------------|
| HM_X_CAL_OFFSET | Führt eine Kalibrierung des Offsets durch (Laufbandhöhe = 0,0 mm)                         |
| HM_X_CAL_REF    | Führt eine Kalibrierung des Referenzwertes durch (Höhe eines hohen Werkstücks = 25,0 mm). |

Folgende Events werden jeweils von Logic (Master) an HAL FBM1 und FBM2 über Eventmanager gesendet.

| Name          | Beschreibung                                                                |  |
|---------------|-----------------------------------------------------------------------------|--|
| MOTOR _X_FAST | Startet den Motor mit Normaler Geschwindigkeit.                             |  |
| MOTOR _X_SLOW | Startet den Motor mit Langsamer Geschwindigkeit.                            |  |
| MOTOR_X_STOP  | Hält den Motor an.                                                          |  |
|               | Schaltet den Zustand der grünen Lampe:                                      |  |
| LAMP_X_GREEN  | 0: aus<br>1: an                                                             |  |
|               | 2: blinkt langsam                                                           |  |
|               | Schaltet den Zustand der gelben Lampe:                                      |  |
| LAMP_X_YELLOW | 0: aus                                                                      |  |
|               | 1: an 2: blinkt langsam                                                     |  |
|               | Schaltet den Zustand der roten Lampe:                                       |  |
|               | 0: aus                                                                      |  |
| LAMP_X_RED    | 1: an                                                                       |  |
|               | 2: blinkt langsam 3: blinkt schnell                                         |  |
|               | Schaltet den Zustand der LED Q1:                                            |  |
| LED_X_Q1      | 0: aus                                                                      |  |
|               | 1: an                                                                       |  |
|               | Schaltet den Zustand der LED Q2:                                            |  |
| LED_X_Q2      | 0: aus<br>1: an                                                             |  |
|               | Schaltet den Zustand der LED am Start-Taster:                               |  |
| LED_X_START   | 0: aus                                                                      |  |
|               | 1: an                                                                       |  |
|               | Schaltet den Zustand der LED am Reset-Taster:                               |  |
| LED_X_RESET   | 0: aus                                                                      |  |
|               | 1: an                                                                       |  |
| SORT X OUT    | Sortiert das Werkstück aus:                                                 |  |
|               | 0: passieren lassen (Weiche öffnen) 1: aussortieren (Pusher kurz ausfahren) |  |
|               |                                                                             |  |

Die MotorFSM existiert zur Laufzeit zwei Mal, einmal für Steuerung von FBM1 und einmal für FBM2. Folgende Events werden an die entsprechende MotorFSM gesendet, um die Flags "Start", "Stop" und "Fast" zu setzen bzw. rückzusetzen.

| Name               | Beschreibung                                                       |
|--------------------|--------------------------------------------------------------------|
|                    | Stellt einen Request zum Steuern der Motorrichtung (rechts):       |
| MOTOR _X_RIGHT_REQ | 0: nicht nach rechts fahren                                        |
|                    | 1: nach rechts fahren                                              |
|                    | Stellt einen Request zum Steuern der langsamen<br>Geschwindigkeit: |
| MOTOR _X_SLOW_REQ  | 0: langsam aus                                                     |
|                    | 1: langsam an                                                      |
|                    | Stellt einen Request zum Anhalten des Motors:                      |
| MOTOR_X_STOP_REQ   | 0: anhalten aufheben                                               |
|                    | 1: anhalten                                                        |

## Watchdog

Der Watchdog läuft auf FBM1 und FBM2 und sendet all seine Events an den eigenen EventManager.

| Name                  | Beschreibung                                                                                                                            |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| WD_CONN_ESTABLISHED   | Nach einer Verbindungsaufforderung (z.B. nach dem Programmstart) hat die Partneranlage innerhalb der maximal erlaubten Zeit geantwortet |
| WD_CONN_LOST          | Die Verbindung zur Partneranlage wurde unterbrochen                                                                                     |
| WD_CONN_REESTABLISHED | Nach einem vorigen ConnectionLost Event wurde die<br>Verbindung wiederhergestellt                                                       |
| WD_M_HEARTBEAT        | Heartbeat Message von FBM1 an FBM2                                                                                                      |
| WD_S_HEARTBEAT        | Heartbeat Message von FBM2 an FBM1                                                                                                      |

## 3.3.4 Sequenz Diagramm (Events)

Die folgenden Sequenzdiagramme zeigen den Signalaustausch zwischen Komponenten.

## **E-STOP Seq-Diagramm**

Folgendes Diagramm zeigt den Signalaustausch zwischen Komponenten beim Betätigen des Estop an FBM1



Figure 5 Seq\_diagram\_E-stop\_FBM1

Folgendes Diagramm zeigt den Signalaustausch zwischen Komponenten beim Betätigen des Estop an FBM2



Figure 6 Seq\_diagram\_E-stop\_FBM2

Der Signalaustausch zwischen Komponenten findet immer über den Eventmanager statt, wird aber in folgenden Diagrammen nicht gezeigt, um die Diagramme übersichtlicher zu machen.

## Sortierung WS-F in FBM1

Folgendes Diagramm zeigt den Signalaustausch zwischen Komponenten bei Sortierung eines WS-F an FBM1



Figure 7 Seq\_diagram\_WS-F\_FBM1

## Sortierung WS-F RUTSCHE 1 VOLL

Folgendes Diagramm zeigt den Signalaustausch zwischen Komponenten bei Sortierung eines WS-F an FBM2, wenn die Rutsche an FBM1 voll ist.



Figure 8 Seq\_diagram\_WS-F\_FBM2

## **Watchdog Seq-Diagram**

Folgendes Diagramm zeigt den Signalaustausch zwischen Watchdogs, um die Verbindungen zwischen beiden FBMs zu überwachen.



Figure 9 Seq\_diagram\_WATCHDOG

## 3.3.5 Warnungen und Fehler

| Kategorie | Beschreibung                                                                     | Anzeige                                                                                                                                                                        |
|-----------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Warnung   | Rutsche an FBM X voll                                                            | Gelbe Ampel blinkt am jeweiligen FBM                                                                                                                                           |
| Warnung   | Rutsche an FBM voll. Die Aussortierung<br>erfolgt an anderem FBM.                | Gelbe Ampel blinkt am FBM mit voller<br>Rutsche. Zusätzliche Anzeige, dass<br>Aussortierung an anderem FBM<br>erfolgt: Leuchten der LED Q1 (für<br>Master) bzw. Q2 (für Slave) |
| Fehler    | Die Rutschen an beiden FBMs sind voll und ein Werkstück muss aussortiert werden. | Rote Ampel blinkt 1Hz an beiden FBM                                                                                                                                            |
| Fehler    | Netzwerk zwischen FBM1 und FBM2 unterbrochen.                                    | Rote Ampel blinkt 1Hz an beiden FBM                                                                                                                                            |

# 4 Software-Design

## **4.1** Software Architektur

## **Master and Slave**



Figure 10 Component\_diagram\_master



Figure 11 Component\_diagram\_slave

## 4.1.1 Beschreibung der Komponenten

Der **EventManager** (EVM) ist die zentrale Schnittstelle, die alle im System auftretenden Events empfängt und an interessierte Komponenten weiterleitet. Dem EventManager angeschlossene Komponenten können sich für bestimmte Events anmelden ("subscribe"). Wenn diese auftreten, benachrichtigt der EventManager die Komponente darüber über den Aufruf einer Funktion ("publish").

Nachfolgend ist die Funktionsweise der einzelnen Komponenten kurz beschrieben:

## Configuration

Beinhaltet die Konfiguration des Systems, auf dem die aktuelle Software läuft:

- Master oder Slave
- Auswerfer/Weiche
- WS-Reihenfolge (wird bei Programmstart eingelesen)
- Kalibrierwerte (wird in einer Datei gespeichert nach der Kalibrierung im Service-Mode)

## **EventManager**

Empfängt Events von anderen Komponenten (Publishers) und leitet sie an Interessenten (Subscribers) weiter (an andere Anlage per GNS).

#### Watchdog

Überwacht Verfügbarkeit der Partneranlage, meldet Fehler und wenn ein voriger Verbindungsabbruch wieder behoben ist.

#### Logic

Beinhaltet die FSM's (Finite State Machines) zur Steuerung der Sortieranlage sowie Informationen über die auf der Anlage befindlichen Werkstücke. Dies wird über eine Klasse "WorkpieceManager" realisiert.

#### HAL

- Sensorik meldet Sensor-Events (z. B. LB unterbrochen/wieder frei, WS in Höhenmessung, Metall detektiert) an den EventManager
- Sensorik beinhaltet auch den Höhenmesser (ADC), der in einem eigenen Thread läuft und auf Anfrage eine kontinuierliche Höhenmessung startet bzw. stoppt. Die Messergebnisse werden nach der Messung als Event an den EVM geschickt (Messwerte in mm)
- Aktorik lässt sich ansteuern per Methodenaufruf (explizit oder HAL-Events beim EVM)

## Logger

- Loggt Infos, Warnungen, Fehler und Debug-Meldungen auf die Konsole
- Alle wichtigen Events werden auf Master geloggt, was zum Debuggen auch ausreichend ist
- Ist auf alle benötigten Events subscribed, um diese zu loggen
- Logic schick bei Statewechsel changeEvents, welche ebenfalls geloggt werden

#### 4.2 Software Struktur

## 4.2.1 Logic mit WorkpieceManager

Die Logic besteht aus mehreren FSM's, von denen nachfolgend die MainFSM dargestellt ist. Diese empfängt Events, wenn Taster gedrückt wurden und steuert den aktuellen Betriebsmodus.

Zusätzlich werden auch Events der Sensoren verarbeitet, die Informationen der auf dem Band befindlichen Werkstücke aktualisiert und ggf. Aktionen ausgelöst (z. B. Schließen der Weiche, um Werkstück auszusortieren). Dafür wird die Klasse WorkpieceManager benutzt, der alle Werkstücke, deren aktuelle Position und Daten in einer internen Liste verwaltet.



Figure 12 MainFSM mit WorkpieceManager

#### 4.2.2 HAL, EventManager, Watchdog und Logger

Nachfolgend ist ein Klassendiagramm der HAL, des EventManagers und Loggers aufgeführt. Der EventManager agiert auch mit anderen Komponenten, allerdings eignet sich die HAL sehr gut, um das Konzept zum Behandeln von Events anhand des Reactor Patterns darzustellen.

Es existiert eine abstrakte Klasse ("Interface") IEventHandler, die lediglich über eine Methode *notify* verfügt. Jede Klasse, die dieses Interface nun implementiert, kann sich beim EventManager über die Methode *register* anmelden. Beim Auftreten dieses Events ruft der EventManager die Callback-Methode *notify* auf. Das weitere Verarbeiten des Events geschieht nun in der Klasse des spezifischen EventHandlers (Beispiel: HAL Aktorik).

Auf dem Klassendiagramm ist auch der Logger aufgeführt, welcher auch über ein Interface implementiert wird. Dies lässt Raum dafür, den *ConsoleLogger*, der Meldungen auf die Konsole loggt, einfach auszutauschen, z. B. über einen Logger, der die Log-Meldungen per MQTT sendet oder in eine Datei schreibt.



Figure 13 HAL, EventManager, Watchdog und Logger

#### 4.2.3 Configuration

Die Configuration Komponente ist als Singleton implementiert, es existiert damit nur ein Objekt davon zur Laufzeit. Zum Programmstart wird die aktuelle Config aus der Datei eingelesen und intern gespeichert. Komponenten, die die aktuelle Konfiguration benötigen können diese über eine Referenz auf das Objekt einlesen.

Die Konfiguration enthält folgende Informationen:

- isMaster true: Configuration läuft auf dem Master-System, false: Slave
- pusher true: Zum Aussortieren wird der Auswerfer verwendet, false: Weiche
- configuredWorkpieceOrder: Die gewünschte Reihenfolge der Sortierung
- calOffset: Das kalibrierte Offset (Laufband-Höhe)
- adcIncPerMillimeter: Die kalibrierte H\u00f6he eines flachen Werkst\u00fccks (wird zur zuk\u00fcnnftigen Berechnung ben\u00f6tigt)



Figure 14 Configuration

## 4.3 Verhaltensmodellierung

Nachfolgend sind die FSM's aufgeführt, die alle auf dem Master-System (FBM1) parallel laufen:



Figure 15 All FSMs

#### 4.3.1 MainFSM

Zur Steuerung des aktuellen Betriebsmodus verwenden wir eine MainFSM. Diese reagiert im Wesentlichen auf die Tastendrücke (Start, Stop, E-Stop) und wechselt die Betriebsmodi entsprechend.

Im Betriebszustand (Running) wird auch auf Events von den Sensoren reagiert. Diese müssen so verarbeitet werden, dass die Informationen zu den auf den Bändern befindlichen Werkstücken aktualisiert werden. Dafür verwenden wir einen internen "WorkpieceManager", der die aktuellen Informationen und Positionen der Werkstücke kennt.

- Standby: Ruhezustand alles aus
- Running: Betriebszustand Grüne Lampe leuchtet, bereit zum Einlegen neuer Werkstücke. E
- <u>ServiceModeFSM</u>: Hier werden Selbsttests und Kalibrierungen durchgeführt. Da dies ein spezieller Modus ist, der nur von befähigten Personen durchgeführt werden kann, behandeln wir nicht das Drücken des E-Stopps
- <u>EStopFSM</u>: alles aus die Sub-Statemachine ist dafür zuständig, dass dieser Modus wieder verlassen werden kann, wenn die Anlage wieder sicher ist
- <u>ErrorFSM</u>: Fehlerzustand die Sub-Statemachine ist dafür zuständig, dass der Fehler gemäß
   Anforderung quittiert und behoben wird



Figure 16 MainFSM

Bei jedem Zustands-Wechsel wird der neue Betriebsmodus per Event gemeldet (MODE\_x). Die HAL ist auf diese Events registriert und schaltet die Aktoren je nach Zustand (Lampen und Motor).

Falls in den Fehlermodus (ErrorFSM) gewechselt wird und danach wieder in den letzten Zustand gewechselt wird, muss der letzte Modus gemerkt werden, um ein neues Event zu verschicken, das dann nochmals den Wechsel des Betriebsmodus meldet. Dafür benutzen wir die Variable **prevMode**.

#### Modus Running:

Im Modus Running (Betriebsmodus) werden alle empfangenen SensorEvents mithilfe des WorkpieceManager verarbeitet.

Hinweis: Der Platzhalter "x" steht für den Systemtyp (M für Master, S für Slave).

- startBlocked(MASTER):
  - Anlegen eines neuen Werkstücks
  - Wenn vorher noch kein WS auf FBM1 war: Versenden des Events FBM1 OCCUPIED
  - o setMotorFast(true): Setzt das Flag "Motor fast" und lässt den Motor anlaufen
- heightAtMasterReceived(x, avgValue) / heightAtSlaveReceived(x, maxValue):
  - Beim Werkstück, das auf die Höhenmessung wartet, wird der erkannte Typ und der durchschnittliche (FBM1) bzw. maximale (FBM2) Höhenmesswert gesetzt
- metalDetected(x):
  - Beim Werkstück das am Metallsensor angekommen ist, wird der erkannte Typ geändert
- switchBlocked(x):
  - Bei dem Werkstück, das sich an der Weiche befindet, wird geprüft, ob es aussortiert werden soll.
    - Wenn ja und Rampe frei: Schließen der Weiche. Ansonsten: Öffnen der Weiche
- rampBlocked(x):
  - o Das WS, das auf sein Aussortieren wartet, wird aus dem WorkpieceManager entfernt
  - o Der Status der jeweiligen Rutsche wird auf "belegt" gesetzt und es erscheint eine Warnung
  - Wenn sich auf FBM1 bzw. FBM2 kein WS mehr befindet, wird durch Aufruf von setMotorFast(false) der Motor angehalten

 FBM2 verschickt das Event FBM2\_FREE, um im Falle einer anstehenden Übergabe von FBM1 den Transfer einzuleiten

#### rampUnblocked(x):

 Der Status der jeweiligen Rutsche wird auf "frei" gesetzt und die Warnung "Rutsche voll" verschwindet

#### • endBlocked(MASTER):

- Wenn FBM2 frei: Versenden des Events TRANSFER\_START (Motor FBM1 und FBM2 nach rechts) und setMotorFast(true)
- Wenn FBM2 belegt: Versenden des Events WAIT\_FOR\_TRANSFER und Stopp des Motors durch Aufruf von setMotorStop(true)

#### endBlocked(SLAVE):

- Versenden des Events WAIT\_FOR\_REMOVAL (Motor FBM2 stoppen und warten, bis WS entnommen wurde)
- Stoppen des Motors durch Aufruf von setMotorStop(true)
- o Ausgabe der Werkstück-Daten

### endUnblocked(SLAVE):

- o WS, das auf die Entnahme wartet aus dem WorkpieceManager entfernen
- Versenden des Events FBM2\_FREE, um im Falle einer anstehenden Übergabe von FBM1 den Transfer einzuleiten

### startBlocked(SLAVE):

- Wenn ein aktueller Transfer stattfindet (ein WS wartet auf das Ankommen an FBM2), wird der Zähler für Anzahl der Werkstücke auf FBM1 dekrementiert. Wenn dieser 0 ist, wird durch Aufruf von setMotorFast(false) der Motor an FBM1 gestoppt.
- Der Status von FBM2 wird aktualisiert auf "belegt" und das Event FBM2\_OCCUPIED wird versendet
- Starten des Motors an FBM2 durch Aufruf von setMotorFast(true)



Figure 17 Running Ablauf



Figure 18 Class Workpiecemanager



Figure 19 Class Workpiece

#### 4.3.2 MotorFSM

Da es möglich ist, dass mehrere Komponenten zur gleichen Zeit Anfragen zur Änderung der Geschwindigkeit stellen, ist es notwendig diese zu priorisieren. Dafür verwenden wir eine MotorFSM, von der jeweils für FBM1 und FBM2 eine Instanz auf dem Master erstellt wird.

Es bestehen drei boolsche Variablen ("Flags"), die bei Empfang der Events MOTOR\_X\_[STOP|FAST|SLOW] auf true bzw. false gesetzt werden. Nach jedem empfangenen Event wird der Status aller Variablen geprüft und je nach Kombination der Zustand gewechselt.

Beim Wechsel in einen neuen State verschickt die MotorFSM dann Events zur Steuerung des aktuellen Modus über den EventManager an die Aktorik.



Figure 20 MotorFSM

#### 4.3.3 HeightSensorFSM



Figure 21 HeightSensorFSM

Für den Höhensensor existiert eine eigene FSM, die dafür zuständig ist, den Ablauf während der Messung von Werkstücken zu steuern. Anfangs ist die FSM im Zustand WaitForWorkpiece und empfängt kontinuerlich neue Messwerte vom Höhensensor. Bei jedem neuen Wert des ADC wird die Funktion newHeightValueReceived(int val) aufgerufen. Der Rohwert des ADC wird in mm umgewandelt und die FSM prüft, in welchem Bereich der Messwert liegt.

Wenn eine Höhe größer als die Laufbandhöhe (+ 2mm Toleranz) erkannt wird, wird in den Zustand WaitForBelt gewechselt, in dem alle Messwerte zwischengespeichert werden. Wenn wieder Laufbandhöhe erkannt wird, wird zurück in den Zustand WaitForWorkpiece gewechselt und anhand der aufgenommenen Messwerte der erkannte Werkstücktyp sowie der durchschnittliche Höhenmesswert bestimmt. Das Ergebnis der gesamten Messung wird über den EventManager an die MainFSM versendet, die daraufhin die Werkstückdaten aktualisiert.

## Kalibrierung des Höhensensors:

Durch das Senden der Events HM\_X\_CAL\_OFFSET bzw. HM\_X\_CAL\_REF kann der Offset bzw. Referenzwert (25,0mm) einkalibriert werden.

Danach wird der Multiplikator-Wert "ADC-Inkremente pro mm" wie folgt berechnet:

Während der Messungen wird die aktuell gemessene Höhe dann wie folgt berechnet:

### 4.3.4 EStopFSM

Die Sub-Statemachine "EStopFSM" wird betreten, wenn einer der beiden E-Stopp Schalter gedrückt wurde. Um aus diesem Modus wieder raus zu kommen, müssen die E-Stopp beider Förderbandmodule wieder herausgezogen sein und an beiden Bändern der Reset-Taster gedrückt werden. Danach wird wieder in den Ruhezustand (Standby) gewechselt.



Figure 22 EStoppFSM

#### 4.3.5 ErrorFSM

Die Sub-Statemachine "ErrorFSM" wird betreten, wenn ein Fehler auftritt. Der Fehlermodus kann erst verlassen werden, wenn der Fehler behoben und quittiert wurde.

Dabei wird berücksichtigt, dass sich ein Fehler von selbst beheben kann (State "Solved Unresigned") oder manuell behoben werden muss (State "Pending Resigned").



Figure 23 ErrorFSM

#### 4.3.6 ServiceModeFSM

Die ServiceModeFSM wird betreten, wenn man länger als 2 Sekunden den Start-Taster drückt und kann wieder verlassen werden, wenn man den Stop-Taster drückt.

- **SelftestSensors**: Testet die Funktion der Sensoren durch Unterbrechen durch den Benutzer und Ausgabe auf der Konsole
- **SeltestActuators**: Schaltet alle Lampen und die Weiche an und fragt den Benutzer, ob die Funktion gegeben ist
- CalHeightFSM: Kalibrierung des Höhensensors
- CalMotorFSM: Kalibrierung der Motorgeschwindigkeit



Figure 24 ServiceModeFSM

## 5 Implementierung

Im Kapitel Beschreibung der Komponenten ist bereits einiges über die Implementierung beschrieben.

Nachfolgend wird noch mehr ins Detail eingegangen.

## 5.1 Höhenmessung

Zu Beginn hatten wir eine FSM modelliert, die ihren Zustand wechselt, wenn ein anderes Höhenlevel erkannt wird. Dies hat sich während Tests als sehr fehleranfällig erwiesen. Deshalb wurde die FSM geändert und diese hat nur noch zwei Zustände. Wenn Laufbandhöhe gemessen wird, ist die Höhenmessung "inaktiv". Wenn ein Werkstück unter dem Sensor erkannt wird, wird begonnen, alle Messwerte zwischenzuspeichern, bis wieder Laufbandhöhe erkannt wird. Durch Aufruf der Funktion getAverageHeight() wird der durchschnittliche Wert der letzten 100 ADC-Samples aufgerufen. Danach wird die Höhensensor FSM über den neuen Wert über eine Callback-Funktion benachrichtigt.

```
float HeightSensor::adcValueToMillimeter(int adcValue) {
    int abs = adcOffset - adcValue;
    float mm = ((float) abs / adcIncPerMillimeter);
    if (mm < 0)
        return 0.0;
    return mm;
}

float HeightSensor::getAverageHeight() {
    if (window.empty())
        return 0.0;
    long sum = 0;
    for (int val : window) {
        sum += val;
    }
    int avg = sum / window.size();
    return adcValueToMillimeter(avg);
}</pre>
```

Figure 25 Auszug: Bestimmung der Höhenmesswerte in mm anhand der ADC-Rohwerte

Wenn die FSM Laufbandhöhe erkennt, wird der aktuelle Typ anhand der empfangenen Messwerte bestimmt. Da es im Randbereich meist Fehlmessungen gibt, werden die oberen und unteren 5% der Messungen verworfen. Dann wird anhand der Messwerte am Anfang, Mitte und Ende des Werkstücks der Typ bestimmt.



Figure 26 Skizze Höhenmessung

## 5.2 EventManager

Die Komponenten kommunizieren miteinander mit dem Publish/Subscribe Pattern. Der EventManager empfängt alle internen und externen Events über QNX PulseMessages. Daraufhin ruft er die Callback-Funktionen an allen Subscribern auf.

Auf Events "subscribed" werden kann wie folgt am EventManager (Beispiel):

Figure 27 Subscribe auf Events mit Callback-Funktion

Die Callbackfunktionen der Subscriber zu einem Event werden vom EventManager wie folgt aufgerufen:

```
if (subscribers.find(event.type) != subscribers.end()) {
   for (const auto &callback : subscribers[event.type]) {
      callback(event);
   }
}
```

Figure 28 Aufruf der Callback-Funktionen bei den Subscribern

## 6 Qualitätssicherung

### **6.1** Teststrategie

#### Phase 1: Modultest

Während der ersten Entwicklungsphase werden die Teilkomponenten (Module) des Systems unabhängig voneinander entwickelt. Deren Funktionalität wird mithilfe automatisierter Unit-Tests überprüft. Bevor ein Modul fertig gestellt werden kann, muss es als "Black Box" getestet werden,

d. h. die Schnittstellen, die ein Modul für andere Komponenten zur Verfügung stellt, werden getestet anhand der Design-Spezifikation. Dabei ist es ggf. erforderlich, dass das Verhalten anderer Komponenten simuliert wird (bspw. das Versenden von Events und Vergleich der Reaktion des Moduls darauf).

#### **Phase 2: Integrationstest**

Sobald alle Einzelmodule entwickelt sind, wird deren Zusammenwirken miteinander getestet. Dabei muss das Verhalten des Gesamt-Systems simuliert werden. Unterstützung dabei kann die zur Verfügung gestellte Simulationssoftware bieten, mit der Abläufe an der realen Anlage simuliert und reproduzierbar wiederholt werden können.

#### **Phase 3: Systemtest**

Mit dem Systemtest wird die fertige Software auf das Zielsystem aufgespielt und die Funktionalität des Systems als Ganzes getestet. Die Einhaltung der Kundenanforderungen, Sicherheitsfunktionen sowie Qualitätsanforderungen werden getestet. Abweichungen sind festzuhalten und zu beseitigen, bevor die Abnahme durch den Kunden erfolgen kann.

#### **Phase 4: Abnahmetests**

Nach erfolgreichem Bestehen des Systemtests und Beseitigen letzter Bugs, erfolgt die Abnahme durch den Kunden durch Abnahmetests, bei denen die Einhaltung der Kundenanforderungen überprüft werden. Die Testfälle sind unter *6.2 Testszenarien/Abnahmetest* definiert. Während der Abnahme werden die Testergebnisse protokolliert

# **6.2** Testszenarien/Abnahmetest

| Test ID                  | T1                                                                                                    | Getestete Anforderunger                                                                                                                                                                                                                                       | n                                | ANF25, ANF28,<br>ANF29                                                                                                                             | Priorität           | normal  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|--|--|
| Beschreibung             | Servic                                                                                                | ServiceMode: Selbttests und Kalibrierung des Systems                                                                                                                                                                                                          |                                  |                                                                                                                                                    |                     |         |  |  |
| Vorbedingung Input Daten | Höher                                                                                                 | <ul> <li>Das System befindet sich im Ruhezustand</li> <li>Auf beiden Anlagen befindet sich keine Konfigurationsdatei<br/>("tmp/esep_2.1/conf.txt")</li> <li>Alle Sensoren und Aktoren der beiden Anlagen funktionieren</li> </ul> Höhensensor, Lichtschranken |                                  |                                                                                                                                                    |                     |         |  |  |
|                          | 1 1                                                                                                   |                                                                                                                                                                                                                                                               |                                  |                                                                                                                                                    |                     | Erfüllt |  |  |
|                          |                                                                                                       | Aktion  Ogramm an Master und  ve starten                                                                                                                                                                                                                      | Sta<br>In<br>Hi<br>Ko            | Erwartung  e Lampen sind aus. Die art-Taster leuchtet. der Konsole erscheint nweis, dass eine neue nfigurationsdatei erste d eine Kalibrierung erf | der<br>ellt wurde   |         |  |  |
|                          | Start-Taster lange drücken<br>(≥ 2 Sekunden)                                                          |                                                                                                                                                                                                                                                               | In<br>Hi<br>un                   | e grüne Lampe blinkt.<br>der Konsole erscheint<br>nweis, dass sich kein W<br>ter dem Höhensensor<br>iden Anlagen befinden                          | /erkstück<br>an     |         |  |  |
|                          | Sta                                                                                                   | rt-Taster drücken                                                                                                                                                                                                                                             | Die LED am Reset-Taster leuchtet |                                                                                                                                                    |                     |         |  |  |
| Ablaufbeschreibung       | Res                                                                                                   | set-Taster drücken                                                                                                                                                                                                                                            | In<br>Hi<br>W<br>Hö              | e LED am Reset-Taster<br>der Konsole erscheint<br>nweis, dass sich ein ho<br>erkstück (25 mm) unte<br>shensensor an beiden a<br>finden soll.       | der<br>hes<br>r dem |         |  |  |
|                          | Hohes Werkstück (25 mm ± 1mm) unter den Höhensensor an beiden Anlagen legen und Start- Taster drücken |                                                                                                                                                                                                                                                               | Die LED am Reset-Taster leuchtet |                                                                                                                                                    | leuchtet            |         |  |  |
|                          | Res                                                                                                   | set-Taster drücken                                                                                                                                                                                                                                            | ln<br>Hi                         | e LED am Reset-Taster<br>der Konsole erscheint<br>nweis, dass ein beliebi<br>erkstück eingelegt wer                                                | der<br>ges          |         |  |  |
|                          | Beliebiges Werkstück am<br>Anfang von FBM1 einlegen                                                   |                                                                                                                                                                                                                                                               |                                  | s Werkstück fährt bis a<br>de von FBM2 und hält                                                                                                    |                     |         |  |  |

| Die Lichtschranken an der<br>Rampe von FBM1 und<br>FBM2 manuell<br>unterbrechen.<br>Danach Start-Taster<br>drücken | In der Konsole erscheint die Meldung, dass alle Sensoren OK sind. Es wird übergegangen zum "Aktorik Selbsttest", alle Lampen leuchten und die Weiche öffnet sich |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Start-Taster zwei Mal<br>nacheinander drücken                                                                      | Das System wechselt in den<br>Ruhezustand und danach in den<br>Betriebszustand                                                                                   |
| Flaches Werkstück auflegen                                                                                         | Das Werkstück fährt durch bis an das Ende von FBM2                                                                                                               |

| Test ID            | T2                                                                                                   | Getestete Anforderungen                                                                             | ANF23,<br>ANF27,<br>ANF28                                                   | Priorität                                | kriti | sch     |
|--------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------|-------|---------|
| Beschreibung       | Funkti                                                                                               | ionsweise des E-Stopp                                                                               |                                                                             |                                          |       |         |
| Vorbedingung       |                                                                                                      | nlage befindet sich im Betrieb<br>op an FBM1 ist gedrückt.                                          | szustand.                                                                   |                                          |       |         |
| Input Daten        | E-Stop                                                                                               | pp, Reset, Start-Taster                                                                             |                                                                             |                                          |       |         |
|                    |                                                                                                      | Aktion                                                                                              | E                                                                           | rwartung                                 |       | Erfüllt |
|                    | Anla<br>drüc                                                                                         | ge einschalten und Start<br>ken                                                                     | _                                                                           | Die Anlage verbleibt im                  |       |         |
|                    | E-Sto                                                                                                | opp an FBM1 herausziehen                                                                            | Die LED an beiden Reset-Tastern<br>leuchtet                                 |                                          |       |         |
|                    | Rese                                                                                                 | t an beiden FBM drücken                                                                             | Die LED an beiden Start-Tastern<br>leuchtet                                 |                                          |       |         |
|                    | Start<br>drüc                                                                                        | -Taster an einer der FBM<br>ken                                                                     | Die grüne Lampe leuchtet                                                    |                                          |       |         |
| Ablaufbeschreibung | einle                                                                                                | Werkstücke nacheinander<br>egen und warten, bis beide<br>oren laufen.<br>ach E-Stopp an FBM2<br>ken | Die Förderbänder an beiden FBM stehen still. Alle Lampen und LED's sind aus |                                          |       |         |
|                    | Rese                                                                                                 | et an beiden FBM und Start-<br>er drücken                                                           | Die Anlage verbleibt im aktuellen<br>Zustand                                |                                          |       |         |
|                    | E-Stopp an FBM2 herausziehen, Bänder freiräumen, Reset an beiden FBM und einen Start- Taster drücken |                                                                                                     | Betriebszust                                                                | vechselt in den<br>and.<br>ampe leuchtet |       |         |

| Test ID            | Т3                                | Getestete Anforderungen                                                                                                                                               | ANF01,<br>ANF02                                                           | Priorität                                       | hoch    |  |  |  |
|--------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|---------|--|--|--|
| Beschreibung       | Sortie                            | rung der Werkstücke in vorge                                                                                                                                          | gebener Reihe                                                             | nfolge                                          |         |  |  |  |
| Vorbedingung       | (In Ko                            | Konfigurierte Reihenfolge: <ws-f> → <ws-bum> → <ws-ob> (In Konfigurationsdatei: <i>ORDER=F,BUM,OB</i>) Anlage befindet sich im Betriebsmodus.</ws-ob></ws-bum></ws-f> |                                                                           |                                                 |         |  |  |  |
| Input Daten        | Werks                             | tücke, Lichtschranken, Höhen                                                                                                                                          | sensor                                                                    |                                                 |         |  |  |  |
|                    |                                   | Aktion                                                                                                                                                                | E                                                                         | rwartung                                        | Erfüllt |  |  |  |
|                    | Flaches Werkstück (WS-F) auflegen |                                                                                                                                                                       | das Ende vol<br>Die Werkstü<br>FBM1 und FI<br>spätestens a<br>ausgegeben. | ckdaten werden a<br>BM2 jeweils<br>n der Weiche | ın      |  |  |  |
| Ablaufbeschreibung |                                   | es Werkstück mit Bohrung<br>Metall (WS-BuM) auflegen                                                                                                                  | das Ende voi<br>Die Werkstü<br>FBM1 und F                                 | ckdaten werden a<br>3M2 jeweils<br>n der Weiche |         |  |  |  |
|                    |                                   | es Werkstück ohne Bohrung<br>OB) auflegen                                                                                                                             | das Ende voi<br>Die Werkstü<br>FBM1 und F                                 | ckdaten werden a<br>3M2 jeweils<br>n der Weiche |         |  |  |  |

| Test ID            | T4                                              | Getestete Anforderungen                                                                                                                                                                                                                                                                                                    | ANF01, ANF02,<br>ANF03, ANF04,<br>ANF18               | Priorität      | hoch    |  |  |  |
|--------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------|---------|--|--|--|
| Beschreibung       |                                                 | rtierung von Werkstücken, die<br>rechen                                                                                                                                                                                                                                                                                    | nicht der vorgegebene                                 | en Reihenfolge |         |  |  |  |
| Vorbedingung       | •                                               | <ul> <li>Konfigurierte Reihenfolge: <ws-f> → <ws-bum> → <ws-ob>         (In Konfigurationsdatei: ORDER=F,BUM,OB)</ws-ob></ws-bum></ws-f></li> <li>Anlage befindet sich im Betriebsmodus</li> <li>Die Rutschen an beiden FBM sind frei</li> <li>Als nächstes Werkstück wird WS-F erwartet (nach dem Einschalten)</li> </ul> |                                                       |                |         |  |  |  |
| Input Daten        | Werkstücke, Lichtschranken, Höhensensor         |                                                                                                                                                                                                                                                                                                                            |                                                       |                |         |  |  |  |
|                    |                                                 | Aktion                                                                                                                                                                                                                                                                                                                     | Erwartung                                             |                | Erfüllt |  |  |  |
|                    | Werkstück WS-OB (Hoch ohne<br>Bohrung) auflegen |                                                                                                                                                                                                                                                                                                                            | Werkstück wird an de von FBM2 aussortiert             |                |         |  |  |  |
|                    |                                                 | kstück WS-BUM (Hoch mit<br>rung und Metall) auflegen                                                                                                                                                                                                                                                                       | Werkstück wird an der Rutsche von FBM2 aussortiert    |                |         |  |  |  |
| Ablaufbeschreibung | 1 1                                             | kstück WS-BOM (Hoch mit<br>rung ohne Metall) auflegen                                                                                                                                                                                                                                                                      | Werkstück wird an der Rutsche von FBM2 aussortiert    |                |         |  |  |  |
|                    | Binä:<br>aufle                                  | r-codiertes Werkstück<br>egen                                                                                                                                                                                                                                                                                              | Werkstück wird an der Rutsche von FBM2 aussortiert    |                |         |  |  |  |
|                    | Werl                                            | kstück WS-F (Flach) auflegen                                                                                                                                                                                                                                                                                               | Werkstück wird bis an das Ende von FBM2 befördert     |                |         |  |  |  |
|                    | Werkstück WS-F (Flach) auflegen                 |                                                                                                                                                                                                                                                                                                                            | Werkstück wird an der Rutsche<br>von FBM1 aussortiert |                |         |  |  |  |

| Test ID            | T5                                                                   | Getestete Anforderungen                                                                                                                                                                                 | ANF05,<br>ANF06                                                                            | Priorität | normal  |  |  |  |
|--------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------|---------|--|--|--|
| Beschreibung       |                                                                      | Mehrere Werkstücke dürfen sich auf FBM1 befinden.<br>Auf FBM2 darf sich maximal ein Werkstück befinden.                                                                                                 |                                                                                            |           |         |  |  |  |
| Vorbedingung       | • •                                                                  | <ul> <li>Anlage befindet sich im Betriebsmodus</li> <li>Konfigurierte Reihenfolge: <ws-f> → <ws-bum> → <ws-ob>         (In Konfigurationsdatei: ORDER=F,BUM,OB)     </ws-ob></ws-bum></ws-f></li> </ul> |                                                                                            |           |         |  |  |  |
| Input Daten        | Werks                                                                | Werkstücke, Lichtschranken, Höhensensor                                                                                                                                                                 |                                                                                            |           |         |  |  |  |
|                    |                                                                      | Aktion                                                                                                                                                                                                  | E                                                                                          | rwartung  | Erfüllt |  |  |  |
| Ablaufbeschreibung | Zwei Werkstücke (WS-F und WS-<br>BUM) nacheinander auf FBM1<br>legen |                                                                                                                                                                                                         | Der Motor läuft nach Einlegen<br>des ersten Werkstücks an                                  |           | n       |  |  |  |
|                    | Warten, bis sich das erste<br>Werkstück auf FBM2 befindet            |                                                                                                                                                                                                         | Der Motor an FBM1 hält an,<br>wenn das zweite Werkstück am<br>Ende von FBM1 angekommen ist |           |         |  |  |  |

| Warten, bis das erste Werkstück am Ende von FBM2 angekommen ist. Dann entnehmen | Der Motor an FBM1 läuft an und<br>das Werkstück wird an das Ende<br>von FBM2 befördert |  |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|

| Test ID            | Т6                                                                                                           | Getestete Anforderungen                                               | ANF07                      | Priorität                                                                  | normal  |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------|---------|--|--|--|
| Beschreibung       | Werks                                                                                                        | Werkstücke sollen langsam durch die Höhenmessung transportiert werden |                            |                                                                            |         |  |  |  |
| Vorbedingung       | <ul> <li>Anlage befindet sich im Betriebsmodus</li> <li>Als nächstes Werkstück wird WS-F erwartet</li> </ul> |                                                                       |                            |                                                                            |         |  |  |  |
| Input Daten        | Werks                                                                                                        | stücke, Höhensensor                                                   |                            |                                                                            |         |  |  |  |
|                    |                                                                                                              | Aktion                                                                | E                          | rwartung                                                                   | Erfüllt |  |  |  |
| Ablaufbeschreibung |                                                                                                              | nes Werkstück am Anfang<br>FBM1 einlegen                              | FBM2 jeweil<br>Geschwindig | uft an FBM1 und<br>s in langsamer<br>keit, wenn sich d<br>arunter befindet | as      |  |  |  |

| Test ID            | Т7                                                                                                        | Getestete Anforderungen                                | ANF09,<br>ANF10,<br>ANF11,<br>ANF15                                                                     | Priorität  | normal  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------|---------|--|
|                    | Bei vo                                                                                                    | ller Rutsche soll am anderen f                         | BM aussortie                                                                                            | rt werden. |         |  |
| Beschreibung       | Wenn beide Rutschen voll sind, soll der Betrieb so lange weiter laufen, bis mehr aussortiert werden kann. |                                                        |                                                                                                         |            |         |  |
|                    | •                                                                                                         | Anlage befindet sich im Be                             |                                                                                                         |            |         |  |
| Vorbedingung       |                                                                                                           | Als nächstes Werkstück wir<br>Die Rutschen an FBM1 und |                                                                                                         |            |         |  |
| Input Daten        | Werks                                                                                                     | Werkstücke, Höhensensor                                |                                                                                                         |            |         |  |
|                    |                                                                                                           | Aktion                                                 | Erwartung                                                                                               |            | Erfüllt |  |
|                    | Rutsche an FBM2 voll machen                                                                               |                                                        | An FBM2 bli                                                                                             | pe,        |         |  |
|                    | Werkstück WS-OB auflegen                                                                                  |                                                        | die LED Q1 leuchtet  Werkstück wird an FBM1 aussortiert                                                 |            |         |  |
|                    | Rutsche an FBM2 frei machen und FBM1 voll machen                                                          |                                                        | An FBM1 blinkt die gelbe Lampe,<br>die LED Q1 leuchtet                                                  |            | pe,     |  |
| Ablaufbeschreibung | Flaches Werkstück am Anfang<br>von FBM1 einlegen                                                          |                                                        | Werkstück wird an FBM2 aussortiert                                                                      |            |         |  |
|                    |                                                                                                           | e Rutschen voll machen und<br>BuM einlegen             | Werkstück wird bis an das Ende von FBM2 befördert                                                       |            | de      |  |
|                    | Flaches Werkstück am Anfang<br>von FBM1 einlegen                                                          |                                                        | Wenn das Werkstück an der<br>Weiche von FBM2 angekommen<br>ist, geht die Anlage in den<br>Fehlerzustand |            | en      |  |

| Test ID      | Т8                                                                                                             | Getestete Anforderungen                                                                                          | ANF04, ANF14     | Priorität | normal |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------|-----------|--------|--|--|
| Beschreibung | Erken                                                                                                          | nung geflippter Werkstücke u                                                                                     | nd Aussortierung |           |        |  |  |
| Vorbedingung | <ul> <li>Anlage befindet sich im Betriebsmodus</li> <li>Als nächstes Werkstück wird WS-BuM erwartet</li> </ul> |                                                                                                                  |                  |           |        |  |  |
| Aktion       |                                                                                                                | Ein Werkstück <ws-bum> an LBA auf FBM 1 gelegt.  Das Werkstück wird bei der Übergabe auf FBM2 geflippt.</ws-bum> |                  |           |        |  |  |
| Erwartung    | Das Werkstück wird bei FBM2 aussortiert.                                                                       |                                                                                                                  |                  |           |        |  |  |
| Erfüllt      |                                                                                                                |                                                                                                                  |                  |           |        |  |  |

| Test ID      | Т9                                                                                               | Getestete Anforderungen                                                                                                         |                                                                                                                              | Priorität  | normal  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------|---------|--|--|--|
| Beschreibung |                                                                                                  | Wenn die Rutschen bei Beiden Anlagen full sind und ein Werstück aussortiert werden muss wechselt Beide anlagen in Error-Zustand |                                                                                                                              |            |         |  |  |  |
| Vorbedingung | •                                                                                                | Anlage befindet sich im Be<br>Beide Rutsche sind voll.                                                                          | triebsmodus.                                                                                                                 |            |         |  |  |  |
|              |                                                                                                  | Aktion                                                                                                                          | Erwartung                                                                                                                    | g          | Erfüllt |  |  |  |
|              |                                                                                                  | Verkstück < WS-F > an LBA<br>BM 1 gelegt.                                                                                       | Das Werkstück wird z<br>FBM2 transportiert                                                                                   | u Ende des |         |  |  |  |
|              |                                                                                                  | Verkstück < WS-F > an LBA<br>BM 1 gelegt.                                                                                       | Das Werkstück wird beiche des FBM1's tr<br>, Motor stopt bei beid<br>die Rottelampen blinl<br>hz.                            |            |         |  |  |  |
| Aktion       | Rese                                                                                             | t knop wird gedrückt                                                                                                            | Rottelampen blinken                                                                                                          |            |         |  |  |  |
|              | 1 110.00                                                                                         | che 1 und 2 wird leer<br>acht. Start taste gedrückt                                                                             | Das Werkstück wird a aussortiert.                                                                                            | ın FBM1    |         |  |  |  |
|              |                                                                                                  | Verkstück < WS-OB > an LBA<br>BM 1 gelegt.                                                                                      | Das Werkstück wird bis zur weiche des FBM2's transportiert , Motor stopt bei beide FBM und die Rottelampen blinken auf 1 hz. |            |         |  |  |  |
|              | Rutsche 1 und 2 wird leer Das Werkstück wird and FBM2 gemacht. Start taste gedrückt aussortiert. |                                                                                                                                 |                                                                                                                              | ınd FBM2   |         |  |  |  |

| Test ID      | Т9                                     | Getestete Anforderungen                                                                                                                                                                                         |                                  | Priorität | normal  |  |  |
|--------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------|---------|--|--|
| Beschreibung |                                        | Wenn die Verbindung zwischen Beiden Anlagen getrennt wird, dann stopt die<br>Motor bei Beide Anlagen.                                                                                                           |                                  |           |         |  |  |
| Vorbedingung | •                                      | Anlage befindet sich im Betriebsmodus.                                                                                                                                                                          |                                  |           |         |  |  |
|              |                                        | Aktion                                                                                                                                                                                                          | Erwartung                        | 3         | Erfüllt |  |  |
| Aktion       | auf F<br>werk<br>wird<br>F > a<br>wird | Verkstück < WS-F > an LBA<br>FBM 1 gelegt, wenn das<br>estück bei FMB2 ankommt<br>ein weiters werkstück < WS-<br>en LBA auf FBM1 gelegt es<br>dann sofort die verbindungs<br>el zwischen FBM1 und FBM2<br>ennt. | Beide Motor bei beid<br>hält an. | e Anlage  |         |  |  |
|              |                                        |                                                                                                                                                                                                                 |                                  |           |         |  |  |

## **6.3** Testprotokolle und Auswertungen

### 6.3.1 Unit Tests und Integrationstest

Es wurden Unit Test und in der finalen Phase vor der Abnahme Integrationstests hinzugefügt, die den korrekten Ablauf der MainFSM im Modus Running testet. Dafür wurde die GoogleTest Suite verwendet.



## 6.3.2 Systemtests

Wir haben auch Systemtests definiert, die am Komplettsystem ausgeführt wurden. Dadurch konnten wir gut sehen, was bereits funktioniert und wo es noch etwas zu optimieren gibt bzw. Bugfixing.

## Erster Durchlauf:

| ESEP-T18 (1.0) - Anzeige Sinnvoller Hinweise Zur Bedienung                              | ASS<br>ASS<br>ASS | 23/Jun/23 7:32 Pm<br>21/Jun/23 7:57 Pm<br>21/Jun/23 7:56 Pm |
|-----------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------|
|                                                                                         | ASS               |                                                             |
| ESEP-T5 (1.0) - Erkennung Der Werkstücktypen An Der Höhenmessung                        |                   | 21/Jun/23 7:56 Pm                                           |
|                                                                                         | ASS               |                                                             |
| ESEP-T9 (1.0) - Nicht-Flache Werkstücke Sollen An FBM2 Aussortiert Werden.              |                   | 21/Jun/23 7:56 Pm                                           |
| ESEP-T16 (1.0) - Umgang Mit Geflippten Werkstücken                                      | AIL               | 21/Jun/23 7:55 Pm                                           |
| ESEP-T10 (1.0) - Auf FBM2 Darf Sich Maximal Ein Werkstück Befinden                      | ASS               | 21/Jun/23 7:54 Pm                                           |
| ESEP-T8 (1.0) - Aussortierung Flacher Werkstücke An FBM1                                | ASS               | 21/Jun/23 7:51 Pm                                           |
| ESEP-T17 (1.0) - Flache Werkstücke Sollen An FBM1 Aussortiert Werden                    | ASS               | 21/Jun/23 7:51 Pm                                           |
| ESEP-T15 (1.0) - Konfiguration Der Sortierreihenfolge Und Kalibrierwerte                | ASS               | 21/Jun/23 7:50 Pm                                           |
| ESEP-T7 (1.0) - Erzeugung Eines Fehlers An FBM2, Wenn Beide Rutschen Voll Sind          | AIL )             | 21/Jun/23 7:44 Pm                                           |
| ESEP-T6 (1.0) - Erzeugung Eines Fehlers An FBM1, Wenn Beide Rutschen Voll Sind          | AIL               | 21/Jun/23 7:44 Pm                                           |
| ESEP-T14 (1.0) - Der Motor Stoppt, Wenn Sich Kein Werkstück Auf Dem Förderband Befindet | ASS               | 21/Jun/23 7:44 Pm                                           |
| ESEP-T4 (1.0) - Änderung Der Sortierung Bei Voller Rutsche                              | ASS               | 21/Jun/23 7:43 Pm                                           |
| ESEP-T12 (1.0) - Fehlerbehandlung Bei Abgebrochener Kommunikation                       | AIL )             | 21/Jun/23 7:29 Pm                                           |
| ESEP-T3 (1.0) - Sortierung Nach Vorgegebener Reihenfolge                                | AIL               | 21/Jun/23 7:28 Pm                                           |
| ESEP-T2 (1.0) - Wechsel Der Betriebsmodi                                                | ASS               | 21/Jun/23 7:19 Pm                                           |
| ESEP-T11 (1.0) - Verbinden Der Beiden Anlagen Beim Start                                | ASS               | 21/Jun/23 7:19 Pm                                           |
| ESEP-T1 (1.0) - EStopp                                                                  | ASS               | 21/Jun/23 7:12 Pm                                           |

## **Zweiter Durchlauf:**

ESEP-T12 ist "BLOCKED", da die Fehlerbehandlung für diesen Fall noch in Arbeit war

| Name                                                                                    | Status  | Actual End Date   |
|-----------------------------------------------------------------------------------------|---------|-------------------|
| ESEP-T9 (1.0) - Nicht-Flache Werkstücke Sollen An FBM2 Aussortiert Werden.              | PASS    | 22/Jun/23 7:28 Pm |
| ESEP-T17 (1.0) - Flache Werkstücke Sollen An FBM1 Aussortiert Werden                    | PASS    | 22/Jun/23 7:28 Pm |
| ESEP-T13 (1.0) - Aussortierung Mit Auswerfer Und Weiche Möglich                         | PASS    | 22/Jun/23 7:28 Pm |
| ESEP-T8 (1.0) - Aussortierung Flacher Werkstücke An FBM1                                | PASS    | 22/Jun/23 7:28 Pm |
| ESEP-T7 (1.0) - Erzeugung Eines Fehlers An FBM2, Wenn Beide Rutschen Voll Sind          | PASS    | 22/Jun/23 7:28 Pm |
| ESEP-T6 (1.0) - Erzeugung Eines Fehlers An FBM1, Wenn Beide Rutschen Voll Sind          | PASS    | 22/Jun/23 7:27 Pm |
| ESEP-T5 (2.0) - Erkennung Der Werkstücktypen An Der Höhenmessung Und Metallsensor       | PASS    | 22/Jun/23 7:24 Pm |
| ESEP-T14 (1.0) - Der Motor Stoppt, Wenn Sich Kein Werkstück Auf Dem Förderband Befindet | PASS    | 22/Jun/23 7:14 Pm |
| ESEP-T10 (1.0) - Auf FBM2 Darf Sich Maximal Ein Werkstück Befinden                      | FAIL    | 22/Jun/23 7:14 Pm |
| ESEP-T4 (1.0) - Änderung Der Sortierung Bei Voller Rutsche                              | FAIL    | 22/Jun/23 7:09 Pm |
| ESEP-T3 (1.0) - Sortierung Nach Vorgegebener Reihenfolge                                | PASS    | 22/Jun/23 7:03 Pm |
| ESEP-T12 (1.0) - Fehlerbehandlung Bei Abgebrochener Kommunikation                       | BLOCKED | 22/Jun/23 7:03 Pm |
| ESEP-T1 (2.0) - EStopp Funktionalität                                                   | PASS    | 22/Jun/23 5:53 Pm |

## Ergebnis nach zwei Tagen Systemtest:

## Test execution results (summary)



Die fehlerhaften Tests werden in der letzten Woche vor der Abnahme noch verstärkt angegangen und je nach Priorität behoben.

# 7 Technische Schulden

| Mangel                                                                                                                                                                                                                                                                                                                                                            | Vorgeschlagene Maßnahmen zur<br>Behebung                                                                                  | Geschätzter<br>Aufwand |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------|
| Bei getrennter Verbindung zwischen den<br>Anlagen wird in Fehler gewechselt, der sich<br>selbst beheben kann. Ein erneutes Verbinden<br>über GNS ist jedoch aktuell nicht möglich und<br>das Programm muss neu gestartet werden                                                                                                                                   | Bei getrennter Verbindung ein<br>Wiederverbinden anstoßen                                                                 | 6h                     |
| Die Erkennung eines Verbindungsverlustes zum anderen FBM funktioniert nur unzuverlässig und wird meist nur sehr spät erkannt.                                                                                                                                                                                                                                     | Optimierung des Watchdog und<br>Kommunikation über GNS aktuell in<br>Arbeit                                               | 10h                    |
| Werkstück BOM (Hoch mit <u>kleiner</u> Bohrung,<br>schwarz) wird manchmal als OB (Hoch ohne<br>Bohrung) erkannt                                                                                                                                                                                                                                                   | Bestimmung des Typs an der<br>Höhenmessung optimieren (Ausreißer<br>herausfiltern)                                        | 2h                     |
| Nach dem Start des Programms werden<br>manchmal einige Events verarbeitet, die vom<br>vorigen Lauf noch verarbeitet werden                                                                                                                                                                                                                                        | Beim Start des Programms interne<br>Events "flushen"                                                                      | 3h                     |
| An FBM2 wird der durchschnittliche<br>Höhenmesswert angezeigt. Nach Absprache soll<br>der maximale Wert und mittlere Wert angezeigt<br>werden.                                                                                                                                                                                                                    | Es wird der mittlere und maximale<br>Wert ausgegeben.                                                                     | 0,5h                   |
| Im Service-Mode "Selbsttest Aktorik" wird aktuell keine Unterscheidung gemacht, ob ein Auswerfer montiert ist. Dieser bleibt während des Tests eingefahren und fährt kurz aus, wenn die Funktion der Aktorik mit "Start" bestätigt wurde                                                                                                                          | Im Selbttest prüfen, ob Auswerfer<br>montiert ist. Wenn ja, diesen<br>ausfahren.                                          | 0,5h                   |
| Nach Absprache haben wir festgelegt, dass der erkannte Typ an FBM2 entscheidend ist für die Aussortierung bzw. durchlassen.  Allerdings ändern wir unser nächst erwartetes Werkstück dann auch erst an der Weiche von FBM2. Dies hat zur Folge, dass Werkstücke die kurz nacheinander aufgelegt werden und eigentlich in der Reihenfolge sind, aussortiert werden | Bei Werkstücken, deren Typ an FBM1 schon final feststeht, können wir das nächst-erwartete Werkstück schon an FBM1 ändern. | 1h                     |
| Nach dem Fehlerzustand wird wieder in den<br>Ruhezustand gewechselt anstatt in den letzten<br>Zustand                                                                                                                                                                                                                                                             | Fortsetzung des laufenden Betriebs<br>(History-Zustand aufrufen) nachdem<br>der Fehlerzustand verlassen wird              | 2h                     |

| Im ServiceMode beim Sensorik Selbsttest tritt<br>ein SIGSEV auf, jedoch meist an<br>unterschiedlichen Stellen. Der Fehler tritt im<br>Integrationstest nicht auf | (Änderung in den GoF State Machine Übergängen)  Ursache finden und Bug beheben.  Workaround für die Abnahme: Selbsttest der Sensorik im ServiceMode nicht ausführen!                                                                                                                                                                                    | 3h |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Bei anliegender Warnung dauert es ca. eine<br>Sekunde nachdem Stop gedrückt wurde bis der<br>Zustand gewechselt wird.                                            | Ursache bereits gefunden.  Der "Blinking Thread" muss so angepasst werden, dass der Thread sofort terminiert sobald die Anfrage kommt                                                                                                                                                                                                                   | 1h |
| Die CalMotorFSM (im ServiceMode) wurde aus Zeit- und Prioritätsgründen nicht umgesetzt                                                                           | Eine Kalibrierung der Motorgeschwindigkeit ist für eine korrekte Funktionalität unserer Anlage nicht notwendig. Die korrekte Funktion des Motors wird im "Selbsttest Sensorik" geprüft.  Falls der Kunde in einer weiteren Version das Feature "Erkennung von Verschwinden von Werkstücken" wünscht, kann die Kalibrierung des Motors umgesetzt werden. | 3h |

## 8 Lessons Learned

Führen Sie ein Teammeeting durch, in dem gesammelt wird, was gut gelaufen war, was schlecht gelaufen war und was man im nächsten Projekt (z.B. im PO) besser machen muss und will. Listen Sie für die Aspekte jeweils mindestens drei Punkte auf. Weitere Erfahrungen und Erkenntnisse können hier ebenso kommentiert werden, auch Anregungen für die Weiterentwicklung des Praktikums.

## 9 Anhang

### 9.1 Glossar

| Abkürzung | Bedeutung                           |
|-----------|-------------------------------------|
| Anlage    | FBM1 und FBM2                       |
| FBM1      | Erstes Förderband Modul (vorderes)  |
| FBM2      | Zweites Förderband Modul (hinteres) |
| EVM       | EventManager                        |
|           |                                     |

## 9.2 Abkürzungen

| Abkürzung     | Bedeutung                                                          |
|---------------|--------------------------------------------------------------------|
| HAL           | Hardware Abstraktion Layer.                                        |
| FBM           | Förderband Modul (Eine gesamte Anlage mit Beaglebone und Hardware) |
| FB            | Förderband eines FBM                                               |
| Betriebsmodus | Die Anlage sortiert die Werkstücke.                                |
| WS            | Werkstück, der auf die Anlage zur Sortierung gelegt wird           |
| LB            | Light-Barrier (Lichtschranke)                                      |
| LBA           | Light-Barrier Start                                                |
| LBW           | Light-Barrier Weiche                                               |
| LBE           | Light-Barrier Ende                                                 |
| LBR           | Light-Barrier Rutsche                                              |
| BuM           | Werkstücktyp: Hoch mit Bohrung und Metall                          |
| ВоМ           | Werkstücktyp: Hoch mit Bohrung ohne Metall                         |
| ОВ            | Werkstücktyp: Hoch ohne Bohrung                                    |

| MD | Metal Detector   |
|----|------------------|
| HM | Höhen Messsensor |

# 9.3 Abbildungsverzeichnis

Optional: Ein gutes Dokument beinhaltet auch ein Abbildungsverzeichnis. Wir in unserem Praktikumsumfeld benötigen es nicht zwingend.