Privacy Proofs for OpenDP: Partition Map (Measurement)

Summer 2022

Contents

2	Proof	2
	1.2 Pseudo Code in Python	
	1.1 Code in Rust	1
1	Algorithm Implementation	1

1 Algorithm Implementation

1.1 Code in Rust

The current OpenDP library contains the make_map_partition_meas function constructing a Measurement for partitioned data based on a list of Measurements (parallel composition). This is defined in lines 76-136 of the file mod.rs in the Git repository https://github.com/opendp/opendp/blob/449222066a006a19d15bb68e62a87105ce49eb15/rust/src/comb/partition_map/mod.rs#L76-L136.

1.2 Pseudo Code in Python

Preconditions

To ensure the correctness of the output, we require the following preconditions:

- User-specified types:
 - Variable measurements must be a vector of elements of class Measurement. ¹
 - output_measure::Distance must have trait TotalOrd.
 - input_domain: must have trait Domain.
 - output_domain: must have trait Domain.
 - input_metric: must have trait Metric.
 - output_measure: must have trait Measure.

Postconditions

• A Measurement is returned (i.e., if a Measurement cannot be returned successfully, then an error should be returned).

¹To be defined in the pseudocode defs doc.

Pseudo Code

```
1 def make_map_partition_meas(measurements: List[Measurement]) -> Measurement
      input_domain = ProductDomain(m.input_domain for m in measurements)
      output_domain = ProductDomain(m.output_domain for m in measurements)
      def function(data: Vec<DI::Carrier>) -> Vec<DO::Carrier>:
          output = []
          for part, m in zip(data, measurements):
6
              output.append(m.function(part))
          return output
      input_metric = ProductMetric(measurements[0].input_metric)
9
      output_measure = measurements[0].output_measure
10
      def privacy_map(d_in: input_metric::Distance) -> output_measure::
     Distance:
12
          return max(m.map(d_in) for m in measurements)
      return Measurement(input_domain, output_domain, function, input_metric,
      output_measure, privacy_map)
```

2 Proof

The necessary definitions for the proof can be found at "List of definitions used in the proofs".

Theorem 2.1. For every setting of the input parameter measurements to make_map_partition_meas such that the given preconditions hold, make_map_partition_meas raises an exception (at compile time or runtime) or returns a valid Measurement with the following privacy guarantee:

- 1. (Domain-metric compatibility.) The domain input_domain matches one of the possible domains listed in the definition of input_metric.
- 2. (Privacy guarantee.) For every pair of elements v, w in input_domain and for any d_i in, where d_i in has the associated type for input_metric, if v, w are d_i in-close under input_metric, then function(v), function(w) are privacy_map(d_i in)-close under output_measure.

Proof.

- 1. (Domain-metric compatibility.) The input_domain of make_map_partition_meas is ProductDomain and the input_metric is ProductMetric. Since each component m of the variable measurements is a Measurement, m.input_domain matches one of the possible domains listed in the definition of m.input_metric. Therefore, the product of m.input_domain is compatible with the product of m.input_metric.
- 2. (Privacy guarantee.) Let m_i be the *i*th element of the variable measurements, thus m_i is a Measurement. Let MI and MO denote the input_metric and the output_measure of m_i , respectively. For any i and v_i , w_i in the input domain of m_i ,

$$d_{\text{MI}}(v_i, w_i) \leq d_{\text{-in}}$$

implies

$$d_{MO}(f_i(v_i), f_i(w_i)) \leq m_i.privacy_map(d_in),$$

where f_i denotes the function in m_i , and v_i and w_i are the *i*th component of v and w, respectively. Let $d_{PM,MI}$ denote the distance under ProductMetric(MI). Then by Definition 1(i),

$$d_{\mathtt{PM},\mathtt{MI}}(v,w) = \sum_i d_{\mathtt{MI}}(v_i,w_i).$$

Note that, given $d_{PM,MI}(v, w) \leq d_{in}$, by the nature of partitioned data, all $d_{MI}(v_i, w_i)$ are zeros except for at most one. We then have

$$d_{MO}(g(v), g(w)) \le \max_{i} (d_{MO}(f_i(v_i), f_i(w_i)))$$

$$\le \max_{i} (m_i.privacy_map(d_in)),$$

where g is the function in make_map_partition_meas.

Therefore, we have shown that g(v) and g(w) are privacy_map(d_in)-close if v and w are d_in-close.

Definition 1 (Distance under ProductMetric). Let $d_{PM,M}$ denote the distance under ProductMetric(M) where M is a valid metric. Then $d_{PM,M}$ is defined as the sum of distance under each M. Specifically, for any v, w in the input domain and v_i , w_i denote their ith entry, respectively,

(i) for input metric MI,

$$d_{\mathit{PM},\mathit{MI}}(v,w) = \sum_i d_{\mathit{MI}}(v_i,w_i).$$

(ii) for output metric MO,

$$d_{\mathit{PM},\mathit{MO}}(g(v),g(w)) = \sum_i d_{\mathit{MO}}(f_i(v_i),f_i(w_i)),$$

where g and f_i denote the function in their corresponding Transformation.