Application

Réducteurs épicycloïdaux

Savoirs et compétences :

Exercices - Train épicycloïdal

On note Z_i le nombre de dents de la roue i (sauf cas où deux roues dentées sont liées à i).

Question 1 Pour le train suivant, déterminer $\frac{\omega(3/0)}{\omega(1/0)}$.

Question 3 Pour le train suivant, déterminer $\frac{\omega(4/0)}{\omega(3/0)}$.

Question 2 Pour le train suivant, déterminer $\frac{\omega(4/0)}{\omega(1/0)}$

Question 4 Pour le train suivant, déterminer $\frac{\omega(3/0)}{\omega(1/0)}$.

1

Question 5 Pour le train suivant, déterminer $\frac{\omega(3/0)}{\omega(1/0)}$ en considérant que 4 et 0 sont encastrés.

Question 6 Pour le train suivant, déterminer $\frac{\omega(3/0)}{\omega(1/0)}$ en considérant que 4 et 0 sont encastrés.

Transmission de la cheville du robot NAO

NAO est un robot humanoïde conçu par la société française Aldebaran. À l'origine il a été conçu comme prototype du robot Romeo, destiné à être au service des personnes. NAO est utilisé à l'heure actuelle dans la recherche en robotique et dans des domaines pédagogiques.

Objectif On s'intéresse ici à la cheville NAO. On cherche à savoir si, à partir du moteur retenu par le constructeur, la chaîne de transmission de puissance permet de vérifier les exigences 1.1.1.1 et 1.1.1.2.

Architecture de l'axe de Roulis

Architecture de l'axe de Tangage

Question 1 Quels doivent être les rapports de réductions des transmissions par engrenage afin de respecter les exigences 1.1.1.1 et 1.1.1.2?

Question 2 Dans le cas de l'axe de tangage, remplir le tableau suivant :

Roue dentée	Module	Nb dents	Diamètre
Pignon 03 20			
Mobile Inf1 Roue			
Mobile Infl Pignon			
Mobile Inf2 Roue			
Mobile Inf2 Pignon			
Mobile Inf4 Roue			
Mobile Inf4 Pignon			
Roue de sortie			

Question 3 Dans le cas de l'axe de tangage, réaliser le schéma cinématique minimal.

Question 4 Calculer le rapport de transmission de la chaîne de transmission de l'axe de tangage? L'exigence 1.1.1.2 est-elle respectée? Si non, quelle(s) solution(s) de remédiation pourrait-on proposer?

Question 5 Calculer le rapport de transmission de la chaîne de transmission de l'axe de roulis? L'exigence 1.1.1.1 est-elle respectée? Si non, quelle(s) solution(s) de remédiation pourrait-on proposer?

Transmission du ControlX

On note R le rayon des poulies 3 et 6, k le rapport de réduction du réducteur.

Question Exprimer la vitesse du solide 5 en fonction de la fréquence de rotation du moteur.

Question Exprimer F_{ext} en fonction du couple moteur.