PROVA SCRITTA DI RETI LOGICHE E CALCOLATORI.

15 febbraio 2021

Esercizio 1

Si realizzi una rete sequenziale sincrona R con un ingresso X ed una uscita Z. La rete riceve una sequenza S della forma S=100Q. La sequenza Q deve contenere le sottosequenze 000 e 111. Al ricevimento della seconda delle due sottosequenze la rete restituisce il bit 0 se la prima sottosequenza ricevuta è stata 000, e restituisce il bit 1 se la prima sottosequenza ricevuta è stata 111, dopodichè riprende il suo funzionamento da principio.

t:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
X(t): $Z(t)$:			100					Q							100					Q				
X(t):	0	1	0	0	0	1	1	1	0	0	0	1	1	1	0	0	0	0	0	1	0	1	1	1
Z(t):	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0

Nell'esempio riportato, la prima sequenza S è compresa tra t=1 e t=10 ed è tale che in Q appare prima la sottosequenza 111, quindi alla ricezione del terzo 0 della sottosequenza 000 la rete restituisce 1. La seconda sequenza S è compresa tra t=13 e t=23 ed è tale che in Q appare prima la sottosequenza 000, quindi alla ricezione del terzo 1 della sottosequenza 111 la rete restituisce 0.

