193

SPACE POWER TECHNOLOGIES

 \mathbf{BY}

RONALD J. SOVIE DEPUTY CHIEF, POWER TECHNOLOGY DIVISION

NASA LeRC

AIAA/OAST CONFERENCE ON CSTI AND PATHFINDER 9/13/88

RJS.9-13.001

WHAT WILL BE DISCUSSED

- OAST BASE RESEARCH AND TECHNOLOGY POWER PROGRAM
- PATHFINDER
 - ROVER POWER
 - SURFACE POWER
 - SPACE NUCLEAR POWER (SP-100)
- CSTI
 - HIGH CAPACITY POWER

195

OAST BASE R & T POWER PROGRAM

OAST

SPACE ENERGY CONVERSION R&T BASE PROJECT ELEMENTS

PHOTOVOLTAICSCELLS, BLANKETS, MODULES

LeRC, JPL
D. FLOOD P. STELLA

ELECTROCHEMISTRYBATTERIES, FUEL CELLS

LeRC, JPL
L. THALLER G. HALPRIN

THERMAL ENERGY CONVERSION
 ADVANCED SOLAR DYNAMICS, AMTEC

LeRC, JPL

M. WARSHAY P. BANKSTON

R. BERCAW J. KLEIN

● POWER MANAGEMENT

FAULT TOLERANT, 20 kHz, SPACE ENVIRON.

ELECTROPHYSICS

LeRC, JPL

THERMAL MANAGEMENT

LeRC, GSFC, JSC

ADVANCED RADIATORS, LOW TEMP. HEAT PUMPS, 0-G

M. WARSHAY T. SWANSON W. ELLIS

RJS.9-13.006

PATHFINDER POWER SYSTEMS - MISSIONS

ROVER POWER

- LUNAR/MARS EXPLORATION
- ROBOTIC EXPLORATION AND SAMPLE RETURN
- LUNAR/MARS BASES

SURFACE POWER

- LUNAR/MARS OUTPOSTS
- PILOTED MARS EXPEDITION
- SPACECRAFT POWER
 - EARTH ORBIT
 - OBSERVERS
 - TRANSFER
 - OTHERS

• SPACE NUCLEAR POWER (SP-100)

- LUNAR/MARS BASES
- MANNED MARS EXPEDITION
- ADVANCED EARTH ORBIT OPERATIONS
- OUTER PLANETARY EXPLORATION

SP-100

NVSV

ROLE OF NUCLEAR POWER IN SPACE **MANNED MARS MISSION LUNAR BASE**

BASE CENTRAL UTILITY POWER NUCLEAR SPACE TRANSPORT (NST) **COMMUNICATIONS SATELLITE POWER**

BASE CENTRAL UTILITY POWER **NST CARGO VEHICLE** MANNED VEHICLE APU **COMMUNICATIONS SATELLITE POWER**

CO-ORBITING PLATFORM UTILITY POWER

NST CARGO/EXPLORATION VEHICLE

CD-87-28550

ORIGINAL PAGE IS

OAST

EVOLUTIONARY POWER REQUIREMENTS FOR SURFACE BASE OPERATIONS

UNMANNED PRECURSOR

2 kWe

- ORBITER
- ROVER
- SAMPLE RETURN
- FARSIDE COMSAT

MANNED OUTPOST/CAMP

~ 25-100 kWe

- HABITAT (6 CREW)
- LABORATORY
- SCIENCE EXPTS
- LOX PILOT PLANT
- SITE PREP
- ROVERS/TRAILERS
- LANDER/ASCENT VEHICLE

INTERIM BASE

500 kWe

- HABITAT (15 CREW)
- ADD'L LABS
- EXTENDED SCIENCE
- IN-SITU RESOURCES PLANT
- CELSS RESEARCH
- SURFACE SURVEYS
- MINING
- LOX PRODUCTION
- MATL'S PILOT PLANT
- REUSABLE LEM CARGO VEHICLE

SUSTAINED BASE

2000 kWe

- HABITAT (24 CREW)
- RESEARCH FACILITIES
- SUSTAINED SCIENCE
- INCREASED LOX PRODUCTION
- . METALS PRODUCTION
- . MANUFACTURING
- . CERAMICS PRODUCTION
- . FOOD PRODUCTION
- . PRODUCT EXPORT
- . MASS DRIVER

[9

OAST

LUNAR POWER SYSTEM MASS AND MARS BASES

1	00	kWe
	\mathbf{u}	

		SOA SOLAR	ADV SOLAR	NUCLEAR 4∏	NUCLEAR SURFACE		
200	LUNAR	3,300,000	33,000	11,900	4000		
	MARS	120,000	12,500	11,900	4000		
			500 kWe				
	LUNAR		165,000	20,700	12,000		
	MARS		62,500	20,700	12,000		

MASS SAVINGS IN LEO FOR LUNAR AND MARS OPERATIONS

NUCLEAR (4 PI SHIELD TRANSPORTED FROM EARTH) VERSUS ADVANCED SOLAR

MARS/LUNAR BASE POWER SYSTEM PHILOSOPHY

- SPACECRAFT, INITIAL CAMP BASED ON ADVANCED SOLAR POWER SYSTEMS (10 25 kWe MODULES)
- SURFACE PREPARATION FOR NUCLEAR POWER
- EVOLUTION TO NUCLEAR POWER PROVIDES HUNDREDS TO THOUSANDS OF kWe
- PATHFINDER SOLAR POWER
 - SP-100 GES SUPPORT
- CSTI HIGH CAPACITY POWER (NUCLEAR)

TECHNOLOGY GOALS

• EARTH ORBITAL, SPACECRAFT, OTHER APPLICATIONS

PATHFINDER

SURFACE POWER SYSTEMS

GOAL: DEMONSTRATE FEASIBILITY OF CRITICAL COMPONENT

TECHNOLOGIES NECESSARY FOR INITIAL LUNAR/MARS

CAMPS, SPACECRAFT POWER SYSTEMS

REQUIREMENTS: ~ 3 We/kg - LUNAR CAMP 14 DAYS D/N CYCLE

~ 8 We/kg - MARS CAMP 12 HR D/N CYCLE

ENERGY CONVERSION 40—→300 W/kg

ENERGY STORAGE 40 → 500-1000 Whr/kg

- MISSION DEPENDENT

POTENTIAL FOR SUCCESSFUL OPERATION ON MARS, LUNAR SURFACES

OAST

SURFACE POWER SYSTEMS PROJECT ELEMENTS

- MISSIONS AND SYSTEMS ANALYSIS
- H₂ -O₂ REGENERATIVE FUEL CELL
- PHOTOVOLTAIC POWER
 - AMORPHOUS SILICON CELLS/BLANKETS
 - ADVANCED ARRAY STRUCTURES
- ADVANCED SOLAR DYNAMICS
 - CONCEPTUAL DESIGN STUDY
- POWER CONDITIONING/CONTROL
- ENVIRONMENTAL COMPATIBILITY

SURFACE POWER SYSTEMS MAJOR DELIVERABLES

FY'93

- DEMONSTRATE 2000 HR OPERATION ON 65% REGENERATIVE FUEL CELL
 - 300F, 200 PSI
 - HIGH PRESSURE ELECTROLYZER (3000 PSI)
 - BUILDING BLOCK STACK
- 1 kWe DEMONSTRATION AMORPHOUS SILICON ON KAPTON
 - 2000 W/kg
- CONCEPTUAL DESIGN REDUCED-G ARRAY STRUCTURE
 - $.46 \text{ kg/m}^2$
- CONCEPTUAL DESIGN OF SOLAR DYNAMIC LUNAR/MARS POWER SYSTEMS
 - ELECTRICAL, THERMAL 3 8 W/kg
- POWER CONDITIONING CONTROL DESIGN/ENVIRONMENTAL COMPATIBILITY

300 W/kg

RJS 9-13.022

SURFACE POWER SYSTEMS

• MAJOR LABORATORIES

- LeRC LEAD CENTER
- TECHNICAL SUPPORT FROM JPL, LANL
- CONTACT J. BOZEK, LeRC

SPACE NUCLEAR POWER SP-100

- PROVIDES NASA SUPPORT TO TRI-AGENCY, DOE/NASA/DOD, SP-100 GROUND ENGINEERING SYSTEM (GES) DEVELOPMENT PROGRAM
 - ENSURES REACTOR AVAILABLE FOR NASA APPLICATIONS

REQUIREMENTS

- 100 kWe
- 7 10 YEARS LIFE
- > .95 RELIABILITY
- 30 W/kg
- 1/3 SHUTTLE BAY

SPACE NUCLEAR POWER SP-100 MAJOR DELIVERABLES

- 2.5 MWT REACTOR TEST FY'92
- SPACE SUBSYSTEM TEST 15 kWe FY'94

MAJOR LABORATORIES

DOE - PGM. DIR. - E. WAHLQUIST

JPL - PROJECT MGMT. - V. TRUSCELLO

Lerc - NASA GES SUPPORT - H. BLOOMFIELD

CSTI HIGH CAPACITY POWER

CSTI HIGH CAPACITY POWER

 PROVIDES FOR INCREASED POWER, RELIABILITY AND LIFETIME FOR NUCLEAR SPACE POWER SYSTEMS USING THE SP-100 REACTOR WITH EITHER DYNAMIC OR STATIC

CONVERSION SYSTEMS.

HIGH CAPACITY NUCLEAR POWER

• FOCUSED TECHNOLOGY DEVELOP-MENT TO ENHANCE CAPABILITY OF SPACE POWER SYSTEMS USING GES REACTOR

> 25 → 80 W/kg 100 → 800 kWe

- **►** ADVANCED ENERGY CONVERSION
 - FREE PISTON STIRLING ENGINES
 - ADVANCED THERMOELECTRICS
 - ADVANCED RADIATORS
 - POWER CONDITIONING & CONTROL
 - REFRACTORY & COMPOSITE MATERIALS

CSTI HIGH CAPACITY POWER MAJOR MILESTONES FY92

- DEMONSTRATE TECH. READINESS => 1300 k FPSE
 - 1050 k (25%, <6kg/kWe, 25kWe/pl, T_R= 2.0)
 - 1 YEAR ENDURANCE
 - COMPONENT PERF. W/REFRACTORY METALS
- Z = 1.2 Si Ge GaP "n" LEG TECH. AVAIL. FOR GES
 - OAZ = 0.85
 - DEMONSTRATE POT. FOR Z = 1.2 COUPLE
- 850k, 550k HT PIPE DEMO., & >0.85, <5kg/m²
 - ADV. RADIATOR DEMO. ~ 5kg/m²
- 10⁸ RAD. HARD, 400C INVERTER DEMO.
- COMPLETE REFRACTORY COMPOSITE CHARACTERIZATIONS
- POTENTIAL FOR 10 YEAR LIFE

7.7

CSTI HIGH CAPACITY POWER

• NASA CENTERS

Lerc - Project Management - J. Winter

- ALL PROGRAM ELEMENTS

JPL - ADVANCED THERMOELECTRICS - C. WOOD

CONCLUDING REMARKS

• COMPREHENSIVE SPACE POWER PROGRAM

- BASE R&T, CSTI, PATHFINDER
- SIGNIFICANT ACCOMPLISHMENTS

WELL CO-ORDINATED

- SDIO, USAF, DOE
- LEVERAGE AT NATIONAL LEVEL

• POWER SYSTEM CAPABILITY

- ENABLE BOLD NEW MISSIONS
- RESTORE NATIONAL TECHNICAL LEADERSHIP
- WE HOPE YOU CAN PARTICIPATE