MAT257 PSET 13—Question 1

Jonah Chen

For convinence, we will sum over repeated indices in the same term from 1 to 3. Let ε_{ijk} be the levi-civita tensor.

Given the standard basis for \mathbb{R}^3 , $\{e_1,e_2,e_3\}$ and its dual basis $\{\varphi_1,\varphi_2,\varphi_3\}$, we can identify a basis for $\Lambda^1(\mathbb{R}^3)$: $\{\varphi_1,\varphi_2,\varphi_3\}$ and for $\Lambda^2(\mathbb{R}^3)$: $\{k=1,2,3:\Phi_k:=\frac{1}{2}\varepsilon_{ijk}(\varphi_i\wedge\varphi_j)\}=\{\varphi_2\wedge\varphi_3,\varphi_3\wedge\varphi_1,\varphi_1\wedge\varphi_2\}.$

Using these bases, the wedge product $\Lambda: \Lambda^1(\mathbb{R}^3) \times \Lambda^1(\mathbb{R}^3) \to \Lambda^2(\mathbb{R}^3)$ is the cross product $P: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3, P(x,y) = x \times y$. Let $\omega, \eta \in \Lambda^1(\mathbb{R}^3)$,

$$\omega \wedge \eta = (a_i \varphi_i) \wedge (b_j \varphi_j) = a_i b_j (\varphi_i \wedge \varphi_j) = \varepsilon_{ijk} a_i b_j \Phi_k$$

Similarly, for $x=a_ie_i,y=b_je_j\in\mathbb{R}^3$, their cross product is

$$x \times y = (a_i e_i) \times (b_j e_j) = \varepsilon_{ijk} a_i b_j e_k$$

As $\{\varphi_i\}$ are the basis for $\Lambda^1(\mathbb{R}^3)$ and $\{\Phi_i\}$ are the basis for $\Lambda^2(\mathbb{R}^3)$, these forms are equivalent.