Unit 8: Superposition:

Subunit 8.4: The diffraction grating:

Topical Question No: 1

26 Monochromatic light of wavelength 5.30×10^{-7} m is incident normally on a diffraction grating. The first order maximum is observed at an angle of 15.4° to the direction of the incident light.

What is the angle between the first and second order diffraction maxima?

- **A** 7.7°
- **B** 15.4°
- **C** 16.7°
- **D** 32.1°

Topical Question No: 2

29 A diffraction grating experiment is set up using orange light of wavelength 600 nm. The grating has a slit separation of 2.00 μm .

What is the angular separation $(\theta_2 - \theta_1)$ between the first and second order maxima of the orange light?

- **A** 17.5°
- **B** 19.4°
- **C** 36.9°
- **D** 54.3°

Topical Question No: 3

29 Light of wavelength λ is incident normally on a diffraction grating, as shown.

The angle between the two second-order maxima is φ .

Which expression gives the spacing of the lines on the diffraction grating?

- A $\frac{\lambda}{\sin \varphi}$
- $\mathbf{B} = \frac{\lambda}{\sin(\varphi/2)}$
- $c = \frac{2\lambda}{\sin \alpha}$
- $\mathbf{D} = \frac{2\lambda}{\sin\left(\frac{\varphi}{2}\right)}$

Topical Question No: 4

29 A beam of red laser light of wavelength 633 nm is incident normally on a diffraction grating with 600 lines per mm.

The beam of red light is now replaced by a beam of blue laser light of wavelength 445 nm. A replacement diffraction grating is used so that the first-order maximum of the blue light appears at the same position on the screen as the first-order maximum of the red light from the original laser.

How many lines per mm are there in the replacement diffraction grating?

- **A** 420 mm⁻¹
- **B** 470 mm⁻¹
- C 600 mm⁻¹
- **D** 850 mm⁻¹

27 A parallel beam of red light of wavelength 700 nm is incident normally on a diffraction grating that has 400 lines per millimetre.

What is the total number of transmitted maxima?

A 3

B 4

C 6

D 7

Space for working

Topical Question No: 6

29 Monochromatic light is directed at a diffraction grating, as shown.

Which diagram could show all the possible directions of the light, after passing through the grating, that give maximum intensity?

Topical Question No: 7

29 Monochromatic light is directed at a diffraction grating as shown.

Which diagram shows all the possible directions of the light, after passing through the grating, that give maximum intensity?

Space for working

Topical Question No: 8

28 An electromagnetic wave is incident normally on a diffraction grating.

A second-order maximum is produced at an angle of 30° to a normal to the grating.

The grating has 5000 lines per cm.

What is the wavelength of the wave?

A $2.5 \times 10^{-7} \text{m}$ **B** $5.0 \times 10^{-7} \text{m}$ **C** $1.0 \times 10^{-6} \text{m}$ **D** $5.0 \times 10^{-5} \text{m}$

Answer Key

- 1. N/A
- 2. N/A
- 3. D
- 4. D
- 5. N/A
- 6. N/A
- 7. N/A
- 8. N/A