SPRAWOZDANIE

Zajęcia: Eksploracja i wizualizacja danych Prowadzący: prof. dr hab. Vasyl Martsenyuk

Laboratorium: 3 **Data:** 23.03.2023

Temat: "Użycie biblioteki PySpark dla dużych zbiorów danych"

Wariant: 7

Justyna Kowal Informatyka II stopień, stacjonarne, semestr 3, Gr. 1 https://github.com/amaix3/eiwd

1. Polecenie

Celem zajęć jest eksploracja i wizualizacja danych z użyciem API Spark przez bibliotekę pyspark. Kolejnym etapem zajęć jest pobieranie danych z pliku CSV lokalnie oraz z użyciem URL. Podstawowe kroki eksploracji przedstawione są w pliku Zajecie3_Spark.ipynb. Dane są określone wariantem z zadania 1, które zostały pobrane ze strony https://ghdx.healthdata.org/ihme_data. Wariant wybrany w zadaniu jest wariant 7: Global Burden of Disease Study 2019 (GBD 2019) Smoking Tobacco Use Prevalence 1990-2019

2. Zadania

- 1 Użycie PySpark w celu eksploracji Big Data
 - 1.1 Konfigurowanie środowiska w Anaconda lub Google Colab

Do wykonywania zadań został wybrany Google Colaboratory

```
[88] # Polecenie do zainstalowania pakietów pyspark i py4j:

! pip install pyspark==3.0.1 py4j==0.10.9

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: pyspark==3.0.1 in /usr/local/lib/python3.10/dist-packages (3.0.1)
Requirement already satisfied: py4j==0.10.9 in /usr/local/lib/python3.10/dist-packages (0.10.9)
```

- 1.2 Sesja Spark
- 1.3 Tworzenie SparkSession

```
[89] from pyspark.sql import SparkSession
    spark = SparkSession.builder\
    .master("local[*]")\
    .appName('PySpark_Tutorial')\
    .getOrCreate()
```

1.4 - Czytanie danych

```
[90] csv_file = '/content/IHME_GBD_2019_SMOKING_TOB_1990_2019_NUM_SMOKERS_Y2021M05D27.CSV' df = spark.read.csv(csv_file)
```

1.5 - Pobieranie danych za pomocą URL

```
[91] from pyspark import SparkFiles
    spark.sparkContext.addFile('https://storage.covid19datahub.io/level/1.csv')
    df = spark.read.csv(SparkFiles.get("1.csv"), header=True)
```

2 - Strukturyzacja danych za pomocą schematu Spark

Kod do odczytu danych w formacie pliku CSV:

```
[92] data = spark.read.csv(
     '/content/IHME GBD 2019 SMOKING TOB 1990 2019 NUM SMOKERS Y2021M05D27.CSV',
     sep=',',
     header=True,
     data.printSchema()
     root
      |-- measure name: string (nullable = true)
      |-- location_id: string (nullable = true)
      |-- location name: string (nullable = true)
      |-- sex_id: string (nullable = true)
      |-- sex name: string (nullable = true)
      |-- age_group_id: string (nullable = true)
      |-- age_group_name: string (nullable = true)
      |-- year_id: string (nullable = true)
      |-- val: string (nullable = true)
      |-- upper: string (nullable = true)
      |-- lower: string (nullable = true)
```

Precyzowanie struktury danych

```
[93] from pyspark.sql.types import *
     data schema = [
                      StructField('measure name', StringType(), True),
                      StructField('location_id', IntegerType(), True),
                      StructField('location_name', StringType(), True),
                      StructField('sex_id', IntegerType(), True),
                      StructField('sex_name', StringType(), True),
                      StructField('age_group_id', IntegerType(), True),
                      StructField('age_group_name', StringType(), True),
                      StructField('year_id', IntegerType(), True),
                      StructField('val', DoubleType(), True),
                      StructField('upper', DoubleType(), True),
                      StructField('lower', DoubleType(), True),
     final struc = StructType(fields = data schema)
     data = spark.read.csv(
            '/content/IHME GBD 2019 SMOKING TOB 1990 2019 NUM SMOKERS Y2021M05D27.CSV',
           sep=',',
           header=True,
           schema=final struc
     data.printSchema()
```

```
root
|-- measure_name: string (nullable = true)
|-- location_id: integer (nullable = true)
|-- location_name: string (nullable = true)
|-- sex_id: integer (nullable = true)
|-- sex_name: string (nullable = true)
|-- age_group_id: integer (nullable = true)
|-- age_group_name: string (nullable = true)
|-- year_id: integer (nullable = true)
|-- val: double (nullable = true)
|-- upper: double (nullable = true)
|-- lower: double (nullable = true)
```

- 3 Różne metody kontroli danych
 - 3.1 schema(): Ta metoda zwraca schemat danych (ramka danych).

```
data.schema

StructType(List(StructField(measure_name,StringType,true),StructField(location_id,IntegerType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true),StructField(location_name,StringType,true
```

3.2 - dtypes zwraca listę krotek z nazwami kolumn i typami danych.


```
[('measure_name', 'string'),
        ('location_id', 'int'),
        ('location_name', 'string'),
        ('sex_id', 'int'),
        ('sex_name', 'string'),
        ('age_group_id', 'int'),
        ('age_group_name', 'string'),
        ('year_id', 'int'),
        ('val', 'double'),
        ('upper', 'double'),
        ('lower', 'double')]
```

3.3 - head(n) zwraca n wierszy jako listę.

```
[80] data.head(3)

[Row(measure_name='Number of Smokers', location_id=1, location_name='Global', sex_id=1, sex_name='Male', age_group_id=29, age_group_name='15+ years', year_id=1990, val=803101467.1, upper=809622101.0, lower=795908635.8),

Row(measure_name='Number of Smokers', location_id=1, location_name='Global', sex_id=2, sex_name='Female', age_group_id=29, age_group_name='15+ years', year_id=1990, val=189148834.0, upper=193092888.7, lower=185599469.9),

Row(measure_name='Number of Smokers', location_id=1, location_name='Global', sex_id=3, sex_name='Both', age_group_id=29, age_group_name='15+ years', year_id=1990, val=992250301.2, upper=1000161258.0, lower=984788043.8)]
```

3.4 - show() domyślnie wyświetla pierwsze 20 wierszy, a także przyjmuje liczbę jako parametr określający ich liczbę

+	<u> </u>	+			+	+		·	·	·	+
measure_name	location_id	location_name	sex_id	sex_name	age_group_id	age_grou	p_name	year_id	val	upper	10
Number of Smokers	1	Global	1	Male	29	15+	years	1990	8.031014671E8	8.09622101E8	7.95908635
Number of Smokers	1	Global	2	Female	29	15+	years	1990	1.89148834E8	1.930928887E8	1.85559469
Number of Smokers	1	Global	3	Both	29	15+	years	1990	9.922503012E8	1.000161258E9	9.84788043
Number of Smokers	1	Global	1	Male	29	15+	years	1991	8.138972164E8	8.20033926E8	8.06951447
Number of Smokers	1	Global	2	Female	29	15+	years	1991	1.905375451E8	1.944249287E8	1.86974424
Number of Smokers		Global	3	Both	29	15+	years		1.004434762E9		
Number of Smokers		Global	1	Male			years		8.233148278E8		
Number of Smokers		Global		Female			years	1992	1.919026028E8	1.957108776E8	1.88406607
Number of Smokers	1	Global	3	Both			years	1992	1.015217431E9	1.02272003E9	1.00784687
Number of Smokers		Global	1	Male	29	15+	years	1993	8.313872544E8	8.372931128E8	8.2494964
Number of Smokers		Global		Female			years	1993	1.932817999E8	1.970625972E8	1.89839182
Number of Smokers		Global					years		1.024669054E9		
Number of Smokers	1	Global	1	Male	29	15+	years	1994	8.378204498E8	8.437233083E8	8.31634003
Number of Smokers	1	Global		Female			years	1994	1.947461502E8	1.985204504E8	1.91356813
Number of Smokers	1	Global					years		1.0325666E9		
Number of Smokers	1	Global					years		8.433043019E8		
Number of Smokers	1	Global	2	Female	29	15+	years	1995	1.963544335E8	2.002139588E8	1.93012859
Number of Smokers		Global	3	Both			years		1.039658735E9		
Number of Smokers		Global		Male			years		8.478849471E8		
Number of Smokers	1	Global	2	Female	29	15+	years	1996	1.980633863E8	2.018466552E8	1.94632018

first() zwraca pierwszy wiersz danych.

[98] data.first()

Row(measure_name='Number of Smokers', location_id=1, location_name='Global', sex_id=1, sex_name='Male', age_group_id=29, age_group_name='15+ years', year_id=1990, val=803101467.1, upper=809622101.0, lower=795908635.8)

take(n) zwraca pierwsze n wierszy

```
[99] data.take(5)
```

[Row(measure_name='Number of Smokers', location_id=1, location_name='Global', sex_id=1, sex_name='Male', age_group_id=29, age_group_name='15+ years', year_id=1990, val=803101467.1, upper=809622101.0, lower=795908635.8),

Row(measure_name='Number of Smokers', location_id=1, location_name='Global', sex_id=2, sex_name='Female', age_group_id=29, age_group_name='15+ years', year_id=1990, val=189148834.0, upper=193092888.7, lower=185559469.9),

Row(measure_name='Number of Smokers', location_id=1, location_name='Global', sex_id=3, sex_name='Both', age_group_id=29, age_group_name='15+ years', year_id=1990, val=992250301.2, upper=1000161258.0, lower=984788043.8),

Row(measure_name='Number of Smokers', location_id=1, location_name='Global', sex_id=1, sex_name='Male', age_group_id=29, age_group_name='15+ years', year_id=1004, year_sid=1004, year years', year_id=1991, val=813897216.4, upper=820033926.0, lower=806951447.9),
Row(measure_name='Number of Smokers', location_id=1, location_name='Global', sex_id=2, sex_name='Female', age_group_id=29, age_group_name='15+
years', year_id=1991, val=190537545.1, upper=194424928.7, lower=186974424.5)]

describe() oblicza niektóre wartości statystyczne dla kolumn liczbowych.

[100] data.describe()

DataFrame[summary: string, measure_name: string, location_id: string, location_name: string, sex_id: string, sex_name: string, age_group_id: string, age_group_name: string, year_id: string, val: string, upper: string, lower: string]

columns zwraca listę zawierającą nazwy kolumn.

[101] data.columns

```
['measure name',
 'location id',
 'location name',
 'sex id',
 'sex name',
 'age_group_id',
 'age group name',
 'year_id',
 'val',
 'upper',
 'lower'l
```

count() zwraca całkowitą liczbę wierszy w zestawie danych

20970

3.10 - differ() to liczba odmiennych wierszy w używanym zbiorze danych.

```
[103] data.differ()
```

3.11 - printSchema() wyświetla schemat danych.

```
root
|-- measure_name: string (nullable = true)
|-- location_id: integer (nullable = true)
|-- location_name: string (nullable = true)
|-- sex_id: integer (nullable = true)
|-- sex_name: string (nullable = true)
|-- age_group_id: integer (nullable = true)
|-- age_group_name: string (nullable = true)
|-- year_id: integer (nullable = true)
|-- val: double (nullable = true)
|-- upper: double (nullable = true)
|-- lower: double (nullable = true)
```

4 - Manipulacja kolumnami

4.1 - Dodawanie kolumny:

4.2 - Aktualizacja kolumny:

4.3 - Upuszczanie kolumny:

+	+		+	+	+		+	+	+		
İ	measure_name	location_id	location_name	sex_id	sex_name	age_group_id	age_group_nar	me year_id	val	upper	lower
+	+		+	+	+		+	+	+	+	+
Numb	per of Smokers	1	Global	1	Male	29	15+ year	rs 1990	8.031014671E8	8.09622101E8	7.959086358E8
Numb	oer of Smokers	1	Global	2	Female	29	15+ year	`s 1990	1.89148834E8	1.930928887E8	1.855594699E8
Numb	per of Smokers	1	Global	3	Both	29	15+ year	rs 1990	9.922503012E8	1.000161258E9	9.847880438E8
Numb	per of Smokers	1	Global	1	Male	29	15+ year	rs 1991	8.138972164E8	8.20033926E8	8.069514479E8
Numb	per of Smokers	1	Global	2	Female	29	15+ year	`s 1991	1.905375451E8	1.944249287E8	1.869744245E8
+			+	+	+		·	+	+		+

only showing top 5 rows

5 - Radzenie sobie z brakującymi wartościami

```
from pyspark.sql import functions as f
# Usuń wiersze z brakującymi wartościami w dowolnej z kolumn
data.na.drop()
# Zastąp brakujące wartości za pomocą średniej
data.na.fill(data.select(f.mean(data['age_group_id'])).collect()[0][0])
# Zastąp brakujące wartości nowymi
# data.na.replace(old_value, new_vallue)
```

DataFrame[measure_name: string, location_id: int, location_name: string, sex_id: int, sex_name: string, age_group_id: int, age_group_name: string, year_id: int, val: double, upper: double, lower: double]

6 - Pobieranie danych

6.1 - Select

```
[109] # wybór jednej kolumny
    data.select('year_id').show(5)
```

```
+----+
|year_id|
+----+
| 1990|
| 1990|
| 1990|
| 1991|
| 1991|
+----+
only showing top 5 rows
```

```
# wybór kilku kolumn
data.select(['location_name', 'sex_name', 'year_id']).show(5)
```

```
+----+
|location name|sex name|year id|
       Global|
                Male
                       1990
       Global| Female|
                       1990
       Global
                Both
                       1990
      Global
                Male
                       1991
      Global | Female|
                       1991
only showing top 5 rows
```

6.2 - Filter

```
[111] from pyspark.sql.functions import col
    data.filter( (col('year_id') >= 2000) & (col('sex_name') == 'Female') ).show(5)
```

+		++							+	+
measure_name	location_id	location_name	sex_id	sex_name	age_group_id	age_group_name	year_id	val	upper	lower
+		++			·+				+	+
Number of Smokers	1	Global	2	Female	29	15+ years	2000	2.03389244E8	2.070119921E8	2.000443639E8
Number of Smokers	1	Global	2	Female	29	15+ years	2001	2.043228487E8	2.078410984E8	2.011225869E8
Number of Smokers	1	Global	2	Female	29	15+ years	2002	2.051251323E8	2.086136115E8	2.019432714E8
Number of Smokers	1	Global	2	Female	29	15+ years	2003	2.05852521E8	2.094216076E8	2.026372326E8
Number of Smokers	1	Global	2	Female	29	15+ years	2004	2.064882331E8	2.099930308E8	2.031999303E8
+		++			·					

only showing top 5 rows

6.3 - Between

6.4 - When

6.5 - Like

[114] data.select('location_name', data.location_name.rlike('^[G,P]').alias('location_name zaczyba sie na litere G lub P')).distinct().show()

+				+
location_name location_name	zaczyba	sie na	litere G	lub P
+				+
Cuba				false
Mauritania				false
Djibouti				false
Slovenia				false
Sub-Saharan Africa				false
Malawi				false
United Kingdom				false
Pakistan				true
Botswana				false
Madagascar				false
Australia				false
United States of				false
[Ghana				true
Tokelau				false
Belarus				false
Bolivia (Plurinat				false
Dominican Republic				false
Paraguay				true
Croatia				false
Ukraine				false
+				+
only showing top 20 rows				
, , , , , , , , , , , , , , , , , , , ,				

```
[115] data.select(['val', 'upper', 'lower']).groupBy('val').mean().show()
```

```
val
                   avg(val)|
                              avg(upper) | avg(lower) |
                              139677.191 | 128260.0995 |
  134007.9694 134007.9694
  8270.464532 | 8270.464532
                             9504.142112 7096.286328
  11829.30213 | 11829.30213 | 13621.19377 | 10115.58969 |
  35698.65734 35698.65734
                             37600.2659 33870.85627
  46355.98657 46355.98657
                            49432.5945 43154.77478
  13869.07463 | 13869.07463 | 15706.97617 | 12179.06027
  20742.10263 20742.10263
                             22062.18255 | 19357.08588 |
  7423.071697 | 7423.071697 | 8228.304212 | 6694.14611
  7448.841156 7448.841156 8213.962619 6706.265256
  9104.794872 | 9104.794872 | 10096.50032 | 8162.279112
  2887.470373 | 2887.470373 | 3818.180825 | 2189.147345 |
  4744.936929 4744.936929
                              5932.17345 3729.904017
  458.0840221 | 458.0840221 |
                             606.3972438 344.4231654
  3185.522508 3185.522508 3507.963054 2861.54479
  3986.842432 3986.842432 4810.125966 3191.818067
  7677.332734 7677.332734 8179.958609 7109.126253
  12568.07874 | 12568.07874 | 13358.02037 | 11766.13512 |
  4478.782127 4478.782127
                             4815.00638 4148.004533
  441.7884447 441.7884447
                             565.9563718 331.323542
8.313872544E8|8.313872544E8|8.372931128E8|8.24949648E8|
only showing top 20 rows
```

6.7 - Agregacja

```
[116] from pyspark.sql import functions as f

data.filter((col('val') >= 1000000) & (col('val') <= 5000000))\
    .groupBy("location_name") \
    .agg(f.min("val").alias("from"),
    f.max("val").alias("to"),
    f.min("val").alias("minimum vaccinated"),
    f.max("val").alias("maximum vaccinated"),
    f.avg("val").alias("average vaccinated"),
    f.min("val").alias("minimum_economic_support_index"),
    f.max("val").alias("maximum_economic_support_index"),
    f.avg("val").alias("average_economic_support_index"),
    ).show(truncate=False)</pre>
```

location_name	from	to	minimum vaccinated	maximum vaccinated	average vaccinated	minimum_economic_support_index	maximume
Côte d'Ivoire	1023886.493	2165483.532	1023886.493	2165483.532	1601788.6232857148	1023886.493	2165483.5
Yemen	1030535.291	3657898.202	1030535.291	3657898.202	1993066.6792333333	1030535.291	3657898.2
Sweden	1067123.166	1644302.372	1067123.166	1644302.372	1308458.0137666664	1067123.166	1644302.3
Republic of Korea	1063356.593	1179678.716	1063356.593	1179678.716	1147212.8582666668	1063356.593	1179678.7
Philippines	2214973.74	3144082.409	2214973.74	3144082.409	2863151.9060000004	2214973.74	3144082.4
Malaysia	2942804.951	4978849.254	2942804.951	4978849.254	4206188.935574467	2942804.951	4978849.2
Turkey	3198400.064	4940216.419	3198400.064	4940216.419	4282831.987909092	3198400.064	4940216.4
Malawi	1019364.093	1164664.74	1019364.093	1164664.74	1083080.244666667	1019364.093	1164664.7
Iraq	2135606.051	4941969.609	2135606.051	4941969.609	3431766.7088846145	2135606.051	4941969.6
Cambodia	1089526.703	2373559.505	1089526.703	2373559.505	1725967.798783333	1089526.703	2373559.5
Afghanistan	1013802.294	2257180.971	1013802.294	2257180.971	1605877.0142962963	1013802.294	2257180.9
Jordan	1015421.261	2817093.164	1015421.261	2817093.164	1765783.7067692312	1015421.261	2817093.1
Sudan	1210513.281	2689229.553	1210513.281	2689229.553	1917168.4488166673	1210513.281	2689229.5
Greece	1269978.149	3921930.694	1269978.149	3921930.694	2422811.3991111116	1269978.149	3921930.6
Sri Lanka	2073078.052	2606806.575	2073078.052	2606806.575	2329932.261716666	2073078.052	2606806.5
Algeria	2473253.484	4979791.166	2473253.484	4979791.166	3636862.253909091	2473253.484	4979791.1
Slovakia	1156863.894	1331143.078	1156863.894	1331143.078	1260198.3315666674	1156863.894	1331143.0
Argentina	2982430.438	4846195.904	2982430.438	4846195.904	3803538.7871000012	2982430.438	4846195.9
Belgium	1007284.838	2783487.184	1007284.838	2783487.184	1656247.782831326	1007284.838	2783487.1
Angola	1002162.849	1519341.656	1002162.849	1519341.656	1212375.1044736842	1002162.849	1519341.6

7 - wizualizacja danych

```
[117] from matplotlib import pyplot as plt

currency_df = data.select(['location_name',
    'val',
    'upper',
    'lower']
)\
    .groupBy('location_name')\
    .mean()\
    .toPandas()
    ind = list(range(12))
    ind.pop(6)
    currency_df.iloc[ind ,:].plot(kind='bar', x='location_name', y=currency_df.columns.tolist()[1:],
    figsize=(12, 6), ylabel='People', xlabel='iso_currency')
    plt.show()
```


8 - Zapisywanie/zapisywanie danych do pliku

```
[80] # CSV
    data.write.csv('dataset.csv')
    # JSON
    data.write.save('dataset.json', format='json')
    # Parquet
    data.write.save('dataset.parquet', format='parquet')
```

```
[87] # Zapisywanie wybranych kolumn
    # CSV
    data.select(['location_name','sex_name','year_id','val'])\
    .write.csv('dataset_columns.csv')
    # JSON
    data.select(['location_name','sex_name','year_id','val'])\
    .write.save('dataset_columns.json', format='json')
    # Parquet
    data.select(['location_name','sex_name','year_id','val'])\
    .write.save('dataset_columns.parquet', format='parquet')
```

3. Wnioski

Na podstawie otrzymanego wyniku można stwierdzić, że biblioteka PySpark używana jest do przetwarzania dużych zbiorów danych. Używana podczas zajęć biblioteka pozwala na wczytywanie danych z różnych formatów: CSV, JSON, Parquet, jak również za pomocą URL. Biblioteka PySpark pozwala manipulować kolumnami: dodawać kolumnę, zmienić nazwę kolumnie, oraz usunąć kolumnę. PySpark i PySpark SQL zapewniają szeroki zakres metod i funkcji do łatwego wyszukiwania danych.