Some asymptotic problems on the theory of viscosity solutions of Hamilton–Jacobi equations Ph.D. Thesis Presentation

Son N. T. Tu

MATHEMATICS DEPARTMENT UNIVERSITY OF WISCONSIN - MADISON

June, 2022

- 1 Introduction
- 2 Vanishing viscosity
- 3 Vanishing discount on changing domain

1 Introduction

Vanishing viscosity
Optimal control theory
Asymptotic problems
State-constraint boundary condition
Summary

- 2 Vanishing viscosity
- 3 Vanishing discount on changing domain

Viscosity solutions - Definition

Let $\Omega \subset \mathbb{R}^n$ be open, bounded, we consider the fully nonlinear PDE

$$F(x, u, Du, D^2u) = 0$$
 in Ω .

F is non-decreasing in u, non-increasing in D^2u (degenerate elliptic).

→ No integration by parts, only maximum principle.

Subsolution:
$$\varphi \in C^2$$
, $u - \varphi$ max at x : $F(x, u(x), D\varphi(x), D^2\varphi(x)) \leq 0$

Supersolution: $\psi \in \mathbb{C}^2$, $u - \psi$ min at x:

$$F(x, u(x), D\psi(x), D^2\psi(x)) \ge 0$$

Viscosity solution is *both* subsolution and supersolution.

Introduction

Vanishing viscosity

Optimal control theory Asymptotic problems State-constraint boundary condition Summary

- Wanishing viscosity
- 3 Vanishing discount on changing domain

Vanishing viscosity - Eikonal equation

The minimal amount of time required to travel from a point to the boundary with constant cost ${\bf 1}$ is model by

$$|u'(x)| = 1$$
 in $(-1,1)$ with $u(-1) = u(1) = 0$.

Infinitely many a.e. solutions, physically correct solution: u(x) = 1 - |x|.

Approximated equation with unique solution

$$\begin{cases} |(u^{\varepsilon})'| = 1 + \varepsilon (u^{\varepsilon})'' & \text{in } (-1,1), \\ u^{\varepsilon}(-1) = u^{\varepsilon}(1) = 0. \end{cases}$$

Vanishing viscosity

$$u^{\varepsilon}(x) = 1 - |x| + \varepsilon \left(e^{-1/\varepsilon} - e^{-|x|/\varepsilon} \right) \to u(x)$$

- 1 Introduction
 - Vanishing viscosity
 - Optimal control theory

Asymptotic problems
State-constraint boundary condition
Summary

- 2 Vanishing viscosity
- 3 Vanishing discount on changing domain

Optimal control theory - An infinite horizontal example

Let U be a compact metric space. A *control* is a Borel measurable map $\alpha : [0, \infty) \mapsto U$. We are given:

$$\begin{cases} b = b(x, a) : \overline{\Omega} \times U \to \mathbb{R}^n & \text{velocity vector field} \\ f = f(x, a) : \overline{\Omega} \times U \to \mathbb{R} & \text{running cost.} \end{cases}$$

For $x \in \mathbb{R}^n$ and a control $\alpha(\cdot)$, let $y^{x,\alpha}(t)$ solves

$$\dot{y}(t) = b(y(t), \alpha(t)), \qquad t > 0, \qquad \text{and} \qquad y(0) = x$$

Question. Minimize the cost functional $(\lambda \geq 0)$

$$u(x) = \inf_{\alpha(\cdot)} \int_0^\infty e^{-\lambda s} f(y^{x,\alpha}(s), \alpha(s)) ds.$$

Define $H(x, p) = \sup_{v \in U} (-b(x, v) \cdot p - f(x, v))$ then

$$\lambda u(x) + H(x, Du(x)) = 0 \text{ in } \mathbb{R}^n$$

assuming that $u \in \mathbb{C}^{\infty}$ (using optimality or dynamic programming principle). However the *value function is usually not smooth!*

1 Introduction

Vanishing viscosity Optimal control theory

Asymptotic problems

State-constraint boundary condition Summary

- 2 Vanishing viscosity
- 3 Vanishing discount on changing domain

The development of viscosity solutions in the 1980s by P.-L Lions, L.C. Evans

and M. G. Crandall connects the solution with optimal control.

In this presentation, we focus on the asymptotic with respect to

• vanishing viscosity 2nd-order

2 vanishing discount 1st-order

with state-constraint

- 1 Introduction
 - Vanishing viscosity Optimal control theory Asymptotic problems
 - State-constraint boundary condition
 - Summary
- 2 Vanishing viscosity
- 3 Vanishing discount on changing domain

State-constraint boundary condition

The name state-constraint comes from optimal control (Soner '86).

- Let $\Omega \subset \mathbb{R}^n$. Given a compact control set U, velocity field b(x, v) and cost f(x, v).
- For $x \in \Omega$ and a control $\alpha(\cdot)$, let $y^{x,\alpha}(t)$ solves $\dot{y}(t) = b(y(t),\alpha(t)), \qquad t>0, \qquad \text{and} \qquad y(0) = x$
- A_x : control α such that $y^{x,\alpha}(t) \in \overline{\Omega}$ for all $t \geq 0$.

Question. Minimize the cost functional $(\lambda \geq 0)$

$$u(x) = \inf_{\alpha \in \mathcal{A}_x} \int_0^\infty e^{-\lambda s} f(y^{x,\alpha}(s), \alpha(s)) ds.$$

$$\begin{cases} \lambda u(x) + H(x, Du(x)) \leq 0 \text{ in } \Omega\\ \lambda u(x) + H(x, Du(x)) \geq 0 \text{ on } \overline{\Omega} \end{cases}$$

where

$$H(x, p) = \sup \{-b(x, v) \cdot p - f(x, v) : v \in U\}$$

State-constraint boundary condition

If H and u are smooth, the state-constraint boundary can be written as

$$\begin{cases} \lambda u(x) + H(x, Du(x)) = 0 \text{ in } \Omega \\ D_p H(x, Du(x)) \cdot v(x) \ge 0 \text{ on } \partial \Omega. \end{cases}$$

• Interpretation: $x \in \partial \Omega$, $\alpha^*(x)$ is optimal: $b(x, \alpha^*(x)) \cdot \nu(x) \leq 0$

$$H(x, Du(x)) \le H(x, Du(x) + \beta v(x))$$
 for all $\beta \ge 0$.

- Supersolution on $\partial\Omega$: $\varphi\in C^1$ and $u-\varphi$ has min at $x\in\partial\Omega$.
 - $\partial\Omega$ around x is described g(z) = 0 and v(x) = Dg(x)
 - Lagrange multiplier: $D(u \varphi)(x) = s\nu(x)$
 - $u \varphi$ has min: $s \le 0$,
 - $D\varphi(x) = Du(x) + \beta v(x)$ for $\beta = -s \ge 0$

Assume $u \in C^1$

$$\lambda u(x) + H(x, D\varphi(x)) \ge \lambda u(x) + H(x, Du(x)) = 0$$

Hamiltonian and Lagrangian

We have seen

The Lagrangian via Legendre's transform (convex Hamiltonian)

$$L(x,v) := \sup_{p \in \mathbb{R}^n} \{ p \cdot v - H(x,p) \}.$$

Using L as a cost, we can "inverse" an equation to the dynamic

$$\begin{cases} \lambda u(x) + H(x, Du(x)) \leq 0 \text{ in } \Omega \\ \lambda u(x) + H(x, Du(x)) \geq 0 \text{ on } \overline{\Omega} \end{cases} \implies \boxed{\text{optimal control}}$$

by

$$u(x) = \inf_{\eta(0) = x} \left\{ \int_0^\infty e^{-\lambda s} L(\eta(s), -\dot{\eta}(s)) ds : \eta \in AC, \eta([0, \infty)) \subset \overline{\Omega} \right\}.$$

1 Introduction

Vanishing viscosity
Optimal control theory
Asymptotic problems
State-constraint boundary condition
Summary

- 2 Vanishing viscosity
- 3 Vanishing discount on changing domain

Summary of techniques

In the 4 type of asymptotic problems in this thesis, the techniques to study them can be summarized as follows.

$$\lambda u + H(x, Du) - \varepsilon \Delta u = 0$$

- 1. Homogenization 1st-order
- 2. Changing domain 1st-order

analysis of the optimal path

$$u(x) = \int_0^\infty e^{-\lambda s} L(\eta(s), -\dot{\eta}(s)) ds$$

- 3. Vanishing viscosity 2nd-order: $\varepsilon \to 0$
- Stochastic and deterministic optimal control
- "Pure" PDE method

4. Vanishing discount 1st-order: $\lambda \to 0$

relax from optimal path to "optimal" measure

$$\lambda u_{\lambda}(x) = \int_{(x,v)} L(x,v) \ d\mu(x,v)$$

and taking weak limit of measures.

The presentation focuses on Problem 3 & 4.

- 1 Introduction
- 2 Vanishing viscosity

The optimal control formulation Properties and results Ideas
Semiconcavity of *u*

3 Vanishing discount on changing domain

- 1 Introduction
- 2 Vanishing viscosity
 The optimal control formulation

Ideas
Semiconcavity of u

3 Vanishing discount on changing domain

The 2nd-order state-constraint problem - stochastic optimal control

- Let $\Omega \subset \mathbb{R}^n$ be an open, bounded with $\partial \Omega \in C^2$, $f \in C(\overline{\Omega}) \cap W^{1,\infty}(\Omega)$.
- ullet $\mathbb{B}_t \sim \mathcal{N}(\mathbf{0},t)$ is the Brownian motion. Given a control $lpha(\cdot)$

$$\begin{cases} dX_{t} = \alpha (X_{t}) dt + \sqrt{2\varepsilon} d\mathbb{B}_{t} & \text{for } t > 0, \\ X_{0} = x. \end{cases}$$
 (1)

• To constraint $X_t \in \Omega$, we define

$$\widehat{\mathcal{A}}_{\mathsf{X}} = \left\{ lpha(\cdot) \in \mathsf{C}(\Omega) : \mathbb{P}(\mathsf{X}_t \in \Omega) = 1 \text{ for all } t \geq 0
ight\}$$

Minimize the cost function

$$u^{\varepsilon}(x) = \inf_{\alpha \in \widehat{\mathcal{A}}_x} \mathbb{E}\left[\int_0^\infty e^{-t} L(X_t, \alpha(X_t)) dt\right],$$

Here $L(x, v): \overline{\Omega} \times \mathbb{R}^n \to \mathbb{R}$ is the running cost, we consider the case Legendre's transform of L is $H(x, \xi) = |\xi|^p - f(x)$.

Theorem (Lasry-Lions '89): If $1 then <math>u^{\varepsilon}$ is the unique solution of

$$\begin{cases} u^{\varepsilon}(x) + |Du^{\varepsilon}(x)|^p - f(x) - \varepsilon \Delta u^{\varepsilon}(x) = 0 & \text{in } \Omega, \\ u^{\varepsilon}(x) = +\infty & \text{as} \quad \operatorname{dist}(x, \partial \Omega) \to 0 \end{cases}$$
 (PDE $_{\varepsilon}$)

The 2nd-order state-constraint problem

Viscosity solution framework: Using the Dynamic Programming Principle

$$\begin{cases} u^{\varepsilon}(x) + |Du^{\varepsilon}(x)|^{p} - f(x) - \varepsilon \Delta u^{\varepsilon}(x) \leq 0 & \text{in } \Omega, \\ u^{\varepsilon}(x) + |Du^{\varepsilon}(x)|^{p} - f(x) - \varepsilon \Delta u^{\varepsilon}(x) \geq 0 & \text{on } \overline{\Omega}, \end{cases}$$
 (PDE_{\varepsilon})

in the viscosity sense.

- When $1 is the unique solution with <math>u^{\varepsilon}(x) = +\infty$ on $\partial\Omega$.
- Let $\varepsilon \to 0$, we expect $u^{\varepsilon} \to u$ and u recovers thee deterministic optimal control, especially $u \in C(\overline{\Omega})$

$$\begin{cases} u(x) + |Du|^p - f(x) \le 0 & \text{in } \Omega, \\ u(x) + |Du|^p - f(x) \ge 0 & \text{on } \overline{\Omega} \end{cases}$$
 (PDE₀)

$$u(x) = \inf_{\eta(0) = x} \left\{ \int_0^\infty e^{-s} L(\eta(s), -\dot{\eta}(s)) ds : \eta \in AC, \eta([0, \infty)) \subset \overline{\Omega} \right\}.$$

Literature

Qualitative

- As arepsilon o 0, it is natural to see that $u^arepsilon o u$ in some sense, it has been done
 - Lasry-Lions '89 (PDEs approach)
 - Capuzzo-Dolcetta and Lions '90 (PDEs approach)
 - Fabbri, Gozzi, and Swiech, '17 (stochastic control approach)
- In the limit, u is no longer blowing-up on the boundary.

Quantitative Can we quantify the rate of convergence?

ullet With Dirichlet boundary condition, the rate is $\mathcal{O}(\sqrt{arepsilon})$

$$\begin{cases} u^{\varepsilon}(x) + H(x, Du^{\varepsilon}) - \varepsilon \Delta u^{\varepsilon}(x) = 0 \\ u^{\varepsilon}(x) = 0 \quad \text{on } \partial \Omega \end{cases} \longrightarrow \begin{cases} u(x) + H(x, Du) = 0 \\ u = 0 \quad \text{on } \partial \Omega \end{cases}$$

ullet The one-sided rate can be $\mathcal{O}(arepsilon)$ for convex Hamiltonian

$$-C\sqrt{\varepsilon} \le u^{\varepsilon} - u \le C\varepsilon$$

- Fleming '64
- Bardi and Capuzzo-Dolcetta '97
- Crandall-Lions '84
- Evans '10, Tran '11 (nonlinear adjoint method)

- 1 Introduction
- 2 Vanishing viscosity

Properties and results

Ideas

Semiconcavity of u

3 Vanishing discount on changing domain

Properties of solutions

If $u^\varepsilon(x)+|Du^\varepsilon(x)|^p-f(x)-\varepsilon\Delta u^\varepsilon(x)=0$ in Ω and $u=+\infty$ on $\partial\Omega$, assume $u^\varepsilon\approx Cd(x)^{-\alpha}$ near $\partial\Omega$ we find

$$\begin{cases} u^{\varepsilon}(x) \approx \frac{C_{\alpha} \varepsilon^{\alpha+1}}{d(x)^{\alpha}} & p < 2, \qquad \alpha = \frac{2-p}{p-1}, \quad C_{\alpha} = \frac{(\alpha+1)^{\alpha+1}}{\alpha} \\ u^{\varepsilon}(x) \approx -\varepsilon \log(d(x)) & p = 2 \end{cases}$$

Theorem (Han & Tu, 2021) Assume $f \ge 0$. Also assume f is Lipschitz.

1 If f=0 on $\partial\Omega$ then $|u^{\varepsilon}-u|\leq C\sqrt{\varepsilon}$ in the interior of Ω . More precisely,

$$-C\sqrt{\varepsilon} \le u^{\varepsilon} - u \le C\sqrt{\varepsilon} + \frac{C\varepsilon^{\alpha+1}}{d(x)^{\alpha}}, \qquad p < 2$$

$$-C\sqrt{\varepsilon} \le u^{\varepsilon} - u \le C\sqrt{\varepsilon} + C\varepsilon |\log(d(x))|, \qquad p = 2.$$

- **2** If supp $f \subset\subset \Omega$ then $-C\sqrt{\varepsilon} \leq u^{\varepsilon} u \leq C\varepsilon$ in the interior.
- **3** If $f \in C^2(\Omega)$ such that Df = 0 and f = 0 on $\partial\Omega$ then

$$-C\sqrt{\varepsilon} \le u^{\varepsilon} - u \le C\varepsilon^{1/p} + \frac{C\varepsilon^{\alpha+1}}{d(x)^{\alpha}}, \qquad 1$$

- 1 Introduction
- 2 Vanishing viscosity

The optimal control formulation Properties and results

Ideas

Semiconcavity of u

3 Vanishing discount on changing domain

A heuristic argument

Viscosity solution is \sim weak solution in $L^{\infty} \Longrightarrow$ move the derivative to test function without integration by parts.

Heuristic: Doubling variable method

$$\Phi(x,y) = u^{\varepsilon}(x) - u(y) - \frac{|x-y|^2}{\sigma}, \qquad (x,y) \in \overline{\Omega} \times \overline{\Omega}$$

- Φ has max at x_{σ} , y_{σ} : $\Phi(x_{\sigma}, y_{\sigma}) \ge \Phi(x_{\sigma}, x_{\sigma}) \implies |x_{\sigma} y_{\sigma}| \le C\sigma$.
- Assume $x_{\sigma} \in \Omega$, subsolution test of u^{ε} with $|x y_{\sigma}|^2/\sigma$ as a test function

$$u^{\varepsilon}(x_{\sigma}) + \left| \frac{2(x_{\sigma} - y_{\sigma})}{\sigma} \right|^{p} - f(x_{\sigma}) - \varepsilon \frac{2n}{\sigma} \le 0$$

• Supersolution test of u with $-|x-y_{\sigma}|^2/\sigma$ as a test function

$$u(y_{\sigma}) + \left| \frac{2(x_{\sigma} - y_{\sigma})}{\sigma} \right|^{p} - f(y_{\sigma}) \ge 0$$

Subtract the two equations

$$u^{\varepsilon}(x) - u(x) \leq u^{\varepsilon}(x_{\sigma}) - u(y_{\sigma}) \leq \frac{2n\varepsilon}{\sigma} + f(x_{\sigma}) - f(y_{\sigma}) \leq \frac{2n\varepsilon}{\sigma} + C\sigma$$

and the best choice here is $\sigma = \sqrt{\varepsilon}$.

The $\mathcal{O}(\sqrt{\varepsilon})$ rate - idea

Write
$$\psi^{\varepsilon}(x) = u^{\varepsilon}(x) - \frac{C_{\alpha}\varepsilon^{\alpha+1}}{d(x)^{\alpha}}$$
 we instead use
$$\Phi(x,y) = \psi^{\varepsilon}(x) - u(y) - \frac{C|x-y|^2}{\sigma}$$

then max happen at (x_{σ}, y_{σ}) where $x_{\sigma} \in \Omega$, also $|D\psi^{\varepsilon}(x)| \leq C$ if $d(x) \geq \varepsilon$ (Amstrong-Tran, '15) \Longrightarrow layer is $\mathcal{O}(\varepsilon)$ from $\partial\Omega$

• Consider the case f=0 first (then $u\equiv 0$), then $(\nu>1)$

$$0 \le u^{\varepsilon} \le \frac{\nu C_{\alpha} \varepsilon^{\alpha+1}}{d(x)^{\alpha}} + C \varepsilon^{\alpha+2} \longrightarrow \text{supersolution}$$

- Compactly supported $\operatorname{supp}(f) \subset \Omega_{\kappa} = \{x \in \Omega : d(x) > \kappa\}$. If $\Phi(x,y)$ has max at (x_{σ},y_{σ})
 - (a) If $x_{\sigma} \in \Omega_{\kappa}$ then $d(x_{\sigma}) \geq C\kappa$, it is stronger than $d(x_{\sigma}) \approx \varepsilon^{\gamma}$.
 - (b) If $x_{\sigma} \in \Omega \setminus \Omega_{\kappa}$ we use a new *barrier*, bound solution by w that solves the PDE with $w = +\infty$ on $\partial \Omega_{\kappa} \cup \partial \Omega$.
- General case f=0 on $\partial\Omega$: we do a cut-off $f_{\kappa} \to f$ as $\kappa \to 0$ and $\operatorname{supp}(f_{\kappa}) \subset \Omega_{\kappa}$. Since f=0 on $\partial\Omega$, we can construct $\|f_{\kappa} f\|_{L^{\infty}} \leq C\kappa$.

The $\mathcal{O}(arepsilon)$ rate - idea

- To overcome the final bound in the above method $\kappa + \frac{C}{\kappa}$, which make the best rate is only $\mathcal{O}(\sqrt{\varepsilon})$ we use u^{ε} as a C^2 test function for u.
- Assume that $u^{\varepsilon}(x)-u(x)$ has a maximum over $\overline{\Omega}$ at some interior point $x_0\in\Omega$, then

$$\max_{x \in \overline{\Omega}} \left(u^{\varepsilon}(x) - u(x) \right) \leq u^{\varepsilon}(x_0) - u(x_0) \leq \varepsilon \Delta u^{\varepsilon}(x_0).$$

• If u is uniformly semiconcave in $\overline{\Omega}$, then $\Delta u^{\varepsilon}(x_0) \leq \Delta u(x_0) \leq C$.

Difficulties

- $u^{\varepsilon} = +\infty$ on $\partial\Omega$, we can subtract by $\frac{C\varepsilon^{n+1}}{d(x)^{\alpha}}$ to make maximum happen in the interior (then we need the barrier to handle the case d(x) is small \leftarrow the barrier still plays a crucial role).
- Unless $f \in C^2_c(\Omega)$, in general, u is not uniformly semiconcave but only locally semiconcave. In fact

$$\Delta u(x) \le \frac{C}{d(x)}$$

and this is enough to get $\mathcal{O}(\varepsilon)$ for compactly supported data.

- Introduction
- 2 Vanishing viscosity

The optimal control formulation Properties and results Ideas

Semiconcavity of u

3 Vanishing discount on changing domain

Improved one-sided rate and the semiconcavity of u

- The improved one-sided rate is related to the semiconcavity modulus of u.
- If f is globally semiconcave or can be extended to a globally semiconcave function then u is globally semiconcave (see also new condition [Han, '22]).

• The one-sided rate $\mathcal{O}(\varepsilon)$ for compactly supported data (and thus $\mathcal{O}(\varepsilon^{1/p})$) is obtained as long as u is locally semiconcave with the bound

$$\Delta u(x) \leq \frac{C}{\operatorname{dist}(x,\partial\Omega)}.$$

If $f \in C^2(\Omega)$ such that Df = 0 and f = 0 on $\partial\Omega$ then this condition holds, by using analysis of optimal path in optimal control of u(x).

- 1 Introduction
- 2 Vanishing viscosity
- 3 Vanishing discount on changing domain

The problem
Summary
Mather measures
Main results
Divergence Exampl

- 1 Introduction
- 2 Vanishing viscosity
- Vanishing discount on changing domain The problem

Summary Mather measures Main results Divergence Exampl

The problem

Let $\phi(\lambda):(0,\infty)\nearrow(0,\infty)$ and $r(\lambda):(0,\infty)\to\mathbb{R}$ be continuous

$$\lim_{\lambda \to 0^+} \phi(\lambda) = \lim_{\lambda \to 0^+} r(\lambda) = 0.$$

$$\begin{cases} \phi(\lambda)u_{\lambda}(x) + H(x, Du_{\lambda}(x)) \leq 0 & \text{in } (1+r(\lambda))\Omega, \\ \phi(\lambda)u_{\lambda}(x) + H(x, Du_{\lambda}(x)) \geq 0 & \text{on } (1+r(\lambda))\overline{\Omega}. \end{cases}$$
 (S_{\lambda})

Along $\lambda_j o 0^+$, $\phi(\lambda)u_\lambda o c_0$ and $u_\lambda - u_\lambda(x_0) o u$

Difficulty: Solutions of (S_0) is not unique, even though c_0 is unique. Here c_0 is the so-called *additive eigenvalue*

$$c_0 = \inf \Big\{ c \in \mathbb{R} : H(x, Du(x)) \le c \text{ in } \Omega \text{ has a solution} \Big\}.$$

Main questions of interest: Assume $\frac{\phi(\lambda)}{r(\lambda)} \to \gamma$ as $\lambda \to 0^+$.

- **1** Behavior of u_{λ} as $\lambda \to 0^+$?
- **9** Behavior of c_{λ} , the additive eigenvalue of H in $(1+r(\lambda))\Omega$ as $\lambda \to 0^+$?

The problem - literature

The problem on the torus (periodic BC) is related to homogenization (Lions, Papanicolaou, Varadhan, 1986). Various results related vanishing discount

- 1st-order on the torus: [Davini-Fathi-Iturriaga-Zavidovique, 2016].
- 2nd-order on the torus: [Ishii-Mitake-Tran, 2017], [Mitake-Tran, 2017].
- Bounded domains with Neuumann boundary conditions [Al-Aidarous-Alzahrani-Ishii-Younas, 2016], [Ishii-Mitake-Tran, 2017].
- Problem in \mathbb{R}^n [Ishii-Siconolfi, 2020].
- [Chen-Cheng-Ishii-Zhao, 2019] (vanishing discount with respect to changing Hamiltonians).

- 1 Introduction
- 2 Vanishing viscosity
- 3 Vanishing discount on changing domain

The problem

Summary

Mather measures Main results Divergence Exampl

The problem - literature

Two normalizations for solutions

$$I_1:\left\{u_{\lambda}+rac{c_0}{\phi(\lambda)}
ight\}_{\lambda>0}$$
, and $I_2:\left\{u_{\lambda}+rac{c_{\lambda}}{\phi(\lambda)}
ight\}_{\lambda>0}$

where c_{λ} is the additive eigenvalues of H in $(1 + r(\lambda))\Omega$.

Main results: Denote $\gamma = \lim \phi(\lambda)/r(\lambda)$.

- **1** If $\gamma = 0$ then both I_1 , I_2 converge to the maximal solution u^0 in Ω .
- **9** If γ is finite then I_1 converges to u^{γ} with description in terms of Mather measures. If $\gamma = \infty$ then I_1 diverges (example).
- **3** The difference between \emph{I}_1 and \emph{I}_2 is $\frac{\emph{c}_{\lambda}-\emph{c}_0}{\phi(\lambda)}.$ We show that

$$\lim_{r(\lambda)\to 0^+}\frac{c_\lambda-c_0}{r(\lambda)}, \qquad \text{and} \qquad \lim_{r(\lambda)\to 0^-}\frac{c_\lambda-c_0}{r(\lambda)}$$

exist (descriptions in terms of Mather measures). Thus B converges as well if γ is finite.

4 I_2 is bounded even if $\gamma = \infty$, but we have example showing divergence for I_2 when $\gamma = \infty$ and $r(\lambda) \leq 0$.

- 1 Introduction
- 2 Vanishing viscosity
- 3 Vanishing discount on changing domain

 The problem

Summary

Mather measures

Main results

Divergence Example

Duality representation and Mather measures

A priori estimate: $|Du_{\lambda}| \leq h$, one can ignore H(x, p) with |p| > h. For a measure μ defined on $\overline{\Omega} \times \overline{B}_h$, we define

$$\langle \mu, f \rangle := \int_{\overline{\Omega} \times \overline{B}_h} f(x, v) \ d\mu(x, v), \qquad \text{for } f \in C(\overline{\Omega} \times \overline{B}_h).$$

For each $f \in C(\overline{\Omega} \times \overline{B}_h)$, define

$$H_f(x, p) = \max_{|v| \le h} (p \cdot v - f(x, v)), \qquad (x, p) \in \overline{\Omega} \times \overline{B}_h.$$

Let $\mathcal{R}(\overline{\Omega} \times \overline{B}_h)$: Radon measures on $\overline{\Omega} \times \overline{B}_h$. For $\lambda > 0$ and $z \in \overline{\Omega}$

$$\begin{cases} \mathcal{F}_{\lambda,\Omega} &= \left\{ (f,u) \in C(\overline{\Omega} \times \overline{B}_h) \times C(\overline{\Omega}) : \lambda u + H_f(x,Du) \leq 0 \text{ in } \Omega \right\} \\ \mathcal{G}_{z,\lambda,\Omega} &= \left\{ f - \lambda u(z) : (f,u) \in \mathcal{F}_{\lambda,\Omega} \right\} \\ \mathcal{G}_{z,\lambda,\Omega}' &= \left\{ \mu \in \mathcal{R}(\overline{\Omega} \times \overline{B}_h) : \langle \mu,f \rangle \geq 0 \text{ for all } f \in \mathcal{G}_{z,\lambda,\Omega} \right\}. \end{cases}$$

Representation formula for u: (Mitake-Tran-Ishii, 2017)

$$\lambda u(z) = \min_{\mu \in \mathcal{P} \cap \mathcal{G}'_{z,\lambda,\Omega}} \langle \mu, L \rangle = \min_{\mu \in \mathcal{P} \cap \mathcal{G}'_{z,\lambda,\Omega}} \int_{\overline{\Omega} \times \overline{B}_h} L(x, v) \ d\mu(x, v).$$

Duality representation and Mather measures

$$\begin{cases} \mathcal{F}_{\lambda,\Omega} &= \left\{ (f,u) \in C(\overline{\Omega} \times \overline{B}_h) \times C(\overline{\Omega}) : \lambda u + H_f(x,Du) \leq 0 \text{ in } \Omega \right\} \\ \mathcal{G}_{z,\lambda,\Omega} &= \left\{ f - \lambda u(z) : (f,u) \in \mathcal{F}_{\lambda,\Omega} \right\} \\ \mathcal{G}'_{z,\lambda,\Omega} &= \left\{ \mu \in \mathcal{R}(\overline{\Omega} \times \overline{B}_h) : \langle \mu,f \rangle \geq 0 \text{ for all } f \in \mathcal{G}_{z,\lambda,\Omega} \right\}. \end{cases}$$
 Let $\lambda \to 0^+$
$$\begin{cases} \mathcal{F}_{0,\Omega} &= \left\{ (f,u) \in C(\overline{\Omega} \times \overline{B}_h) \times C(\overline{\Omega}) : H_f(x,Du(x)) \leq 0 \text{ in } \Omega \right\} \\ \mathcal{G}_{0,\Omega} &= \left\{ f : (f,u) \in \mathcal{F}_{0,\Omega} \text{ for some } u \in C(\overline{\Omega}) \right\} \\ \mathcal{G}'_{0,\Omega} &= \left\{ \mu \in \mathcal{R}(\overline{\Omega} \times \overline{B}_h) : \langle \mu,f \rangle \geq 0 \text{ for all } f \in \mathcal{G}_{0,\Omega} \right\}. \end{cases}$$

 $\underline{\mathcal{G}}'_{0,\Omega}$: holonomic measures, s.t. $\langle \mu, v \cdot D\psi(x) \rangle = 0$ for all $\psi \in C^1(\overline{\Omega})$.

Representation formula for c₀: (Mitake-Tran-Ishii, 2017)

$$-c_0 = \min_{\mu \in \mathcal{P} \cap \mathcal{G}'_{0,\Omega}} \langle \mu, L \rangle = \min_{\mu \in \mathcal{P} \cap \mathcal{G}'_{0,\Omega}} \int_{\overline{\Omega} \times \overline{B}_h} L(x, v) \ d\mu(x, v). \tag{2}$$

The set of all measures in $\mathcal{P} \cap \mathcal{G}'_{0,\Omega}$ that minimizing (2) is denoted \mathcal{M}_0 .

- 1 Introduction
- 2 Vanishing viscosity
- 3 Vanishing discount on changing domain

Summary
Mather measures

Main results

Divergence Example

Main results - Convergence of vanishing discount

Let c_{λ} bee the additive eigenvalues of H in $\Omega_{\lambda}=(1-r(\lambda))\Omega$, i.e.,

$$c_{\lambda} = \inf \Big\{ c \in \mathbb{R} : H(x, Du(x)) \le c \text{ in } \Omega_{\lambda} \text{ has a solution} \Big\}.$$

Denote $\gamma = \lim \phi(\lambda)/r(\lambda)$. The two normalizations

$$I_1 = \left\{ u_{\lambda} + \frac{c_0}{\phi(\lambda)} \right\}_{\lambda > 0}$$
, and $I_2 = \left\{ u_{\lambda} + \frac{c_{\lambda}}{\phi(\lambda)} \right\}_{\lambda > 0}$.

Convergence for $\gamma = 0$ (Tu, 2020):

If $\gamma=0$ then \emph{I}_{1} , \emph{I}_{2} converge to \emph{u}^{0} locally uniformly as $\lambda \rightarrow 0^{+}$.

$$\begin{cases} H(x, Du^0(x)) \leq c_0 & \text{ in } \Omega, \\ H(x, Du^0(x)) \geq c_0 & \text{ on } \overline{\Omega}. \end{cases} \quad \text{and} \quad u^0 = \sup_{w \in \mathcal{E}} w$$

where

$$\mathcal{E} = \Big\{ w : H(x, Dw) \le c_0 \text{ in } \Omega \ : \ \langle \mu, w \rangle \le 0 \text{ for all } \mu \in \mathcal{M}_0 \Big\}.$$

Here \mathcal{M}_0 is the set of all $\mu \in \mathcal{P} \cap \mathcal{G}'_0$ such that $-c_0 = \langle \mu, L \rangle$.

Main results - Convergence with the first normalization

$$\begin{split} \text{Assume lim}_{\lambda \to 0^+} \, \frac{\phi(\lambda)}{r(\lambda)} &= \gamma, \, \text{our normalization} \, \mathit{I}_1 = \left\{ u_\lambda + \frac{c_0}{\phi(\lambda)} \right\}_{\lambda > 0}. \\ \left\{ \phi(\lambda) u_\lambda(x) + \mathit{H}(x, \mathit{D}u_\lambda(x)) \leq 0 & \text{in } (1 + r(\lambda))\Omega, \\ \phi(\lambda) u_\lambda(x) + \mathit{H}(x, \mathit{D}u_\lambda(x)) \geq 0 & \text{on } (1 + r(\lambda))\overline{\Omega}. \end{split}$$

Convergence of the I_1 (Tu, 2020): Assume $\lambda \mapsto L((1+\lambda)x, v)$ is C^1 . If γ is finite then I_1 converges to u^{γ} locally uniformly in Ω

$$\begin{cases} H(x,Du^{\gamma}(x)) \leq c_0 & \text{ in } \Omega, \\ H(x,Du^{\gamma}(x)) \geq c_0 & \text{ on } \overline{\Omega}. \end{cases} \quad \text{and} \quad u^{\gamma} = \sup_{w \in \mathcal{E}^{\gamma}} w,$$

where

$$\mathcal{E}^{\gamma} = \left\{ \begin{aligned} w : H(x, Dw) &\leq c_0 \text{ in } \Omega : \\ \left\langle \mu, (-x) \cdot D_x L(x, v) \right\rangle + \left\langle \mu, w \right\rangle &\leq 0 \text{ for all } \mu \in \mathcal{M}_0 \end{aligned} \right\}.$$

- If $\gamma = \infty$ then I_1 is unbounded (counter example).
- The mapping $\gamma \mapsto u^{\gamma}(\cdot)$ from $\mathbb R$ to $C(\overline{\Omega})$ is concave and decreasing.

Main results - The second normalization - eigenvalue behavior

Assume
$$\lim_{\lambda \to 0^+} \frac{\phi(\lambda)}{r(\lambda)} = \gamma$$
, $I_1 = \left\{ u_\lambda + \frac{c_0}{\phi(\lambda)} \right\}_{\lambda > 0}$ and $I_2 = \left\{ u_\lambda + \frac{c_\lambda}{\phi(\lambda)} \right\}_{\lambda > 0}$.
$$\begin{cases} \phi(\lambda) u_\lambda(x) + H(x, Du_\lambda(x)) \leq 0 & \text{in } (1 + r(\lambda))\Omega, \\ \phi(\lambda) u_\lambda(x) + H(x, Du_\lambda(x)) \geq 0 & \text{on } (1 + r(\lambda))\overline{\Omega}. \end{cases}$$

The difference between I_2 and I_1 is $\lim_{\lambda \to 0^+} \left(\frac{c_{\lambda} - c_0}{\phi(\lambda)} \right) = \gamma \lim_{\lambda \to 0^+} \left(\frac{c_{\lambda} - c_0}{r(\lambda) - r(0)} \right)$. $c_{\lambda} = c_0 + c_{(1)}\lambda + \circ(\lambda), \quad \lambda \to 0^+$.

Convergence of additive eigenvalue (Tu, 2020):

$$\lim_{\begin{subarray}{c} \lambda \to 0^+ \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \max_{\mu \in \mathcal{M}_0} \left\langle \mu, (-x) \cdot D_x L(x, \nu) \right\rangle,$$

$$\lim_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\begin{subarray}{c} \lambda \to 0 \\ r(\lambda) > 0 \$$

$$\lim_{\begin{subarray}{c} \lambda \to 0^+ \\ r(\lambda) < 0 \end{subarray}} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right) = \min_{\mu \in \mathcal{M}_0} \left\langle \mu, (-x) \cdot D_x L(x, \nu) \right\rangle.$$

- **2** To study $c_{(1)}$ we can assume $r(\lambda) = \lambda$.

Main results - Second normalization, divergence result

Assume
$$\lim_{\lambda \to 0^+} \frac{\phi(\lambda)}{r(\lambda)} = \gamma$$
, $I_1 = \left\{ u_\lambda + \frac{c_0}{\phi(\lambda)} \right\}_{\lambda > 0}$ and $I_2 = \left\{ u_\lambda + \frac{c_\lambda}{\phi(\lambda)} \right\}_{\lambda > 0}$.
$$\begin{cases} \phi(\lambda) u_\lambda(x) + H(x, Du_\lambda(x)) \leq 0 & \text{in } (1 + r(\lambda))\Omega, \\ \phi(\lambda) u_\lambda(x) + H(x, Du_\lambda(x)) \geq 0 & \text{on } (1 + r(\lambda))\overline{\Omega}. \end{cases}$$

Convergence and divergence results (Tu, 2020):

• If $\gamma \neq 0$ then

$$\lim_{\lambda \to 0^+} \left(u_{\lambda}(x) + \frac{c_{\lambda}}{\phi(\lambda)} \right) = u^{\gamma}(x) + \gamma \underbrace{\lim_{\lambda \to 0^+} \left(\frac{c_{\lambda} - c_0}{r(\lambda)} \right)}_{c_{(1)}^{\pm}}$$

- I_2 is bounded even if $\gamma = \infty$, but we have a divergence example.
- There exists H(x,p) where given any $r(\lambda) \leq 0$ we can construct $\phi(\lambda)$ such that

$$r(\lambda_i)/\phi(\lambda_i) \to -\infty$$
, and I_2 diverges.

- Introduction
- 2 Vanishing viscosity
- 3 Vanishing discount on changing domain

Summary
Mather measures

Divergence Example

Divergence example

Let $r(\lambda) \geq 0$, c_{λ} be the eigenvalue of H in $\Omega_{\lambda} = (1 - r(\lambda)\Omega$. Let

$$H(x,p) = |p| - V(x), \quad (x,p) \in \overline{\Omega} \times \mathbb{R}.$$

where $V: \overline{\Omega} \to \mathbb{R}$, $V \ge 0$ and $V \in \mathrm{BUC}(\overline{\Omega})$.

- Goal: Given $r(\lambda)$, construct $\phi(\lambda)$ s.t. $\{u_{\lambda} + \phi(\lambda)^{-1}c_{\lambda}\}_{\lambda>0}$ is divergent.
- Tool: The instability of the Aubry set $\mathcal{A}_{\Omega_{\lambda}}$ of H on Ω_{λ} , when $\lambda \to 0^+$.
- Semi-distance Let

$$\begin{split} S_{\Omega}(x,y) &= \sup \Big\{ u(x) - u(y) : u \text{ s.t. } H(x,Du(x)) \leq c_0 \text{ in } \Omega \Big\} \\ & \left\{ \begin{aligned} H(x,Du(x)) &\leq c_0 & \text{ in } \Omega, \\ H(x,Du(x)) &\geq c_0 & \text{ on } \overline{\Omega} \backslash \{y\}. \end{aligned} \end{aligned} \right. \end{split}$$

Aubry set:

$$\mathcal{A}_{\Omega} = \left\{z \in \overline{\Omega} : x \mapsto \mathcal{S}_{\Omega}(x,z) \text{ is a state-constraint solution} \right\}$$

$$\begin{array}{ll} \text{With } H(x,p) = |p| - V(x) \text{, then} \\ -c_0 = \min_{\overline{\Omega}} V & \text{and} & \mathcal{A}_{\Omega} = \left\{ x \in \overline{\Omega} : V(x) = \min_{\overline{\Omega}} V \right\}. \end{array}$$

Key point: If $A_{\Omega} = \{z_0\}$ then $u^0(x) \equiv S_{\Omega}(x, z_0)$ (maximal solution).

Divergence example

Switching the small box with this construction, we obtain

Lemma (Tu, 2020) Let $\Omega_{\lambda} = (-1 + r(\lambda), 1 - r(\lambda))$. Then the maximal solution on Ω_{λ} , denoted by $u_{\lambda}^{0}(x)$, does not converge as $\lambda \to 0^{+}$.

This is intuitive as we can choose two subsequences where the mimimum points of V over Ω_{λ} converge to the two vertices.

Divergence example

Consider

$$\begin{cases} \delta u_{\delta}(x) + H(x, Du_{\delta}(x)) \leq 0 & \text{in } \Omega_{\lambda}, \\ \delta u_{\delta}(x) + H(x, Du_{\delta}(x)) \geq 0 & \text{on } \overline{\Omega}_{\lambda}. \end{cases}$$
 (3)

Let c_{λ} be the eigenvalue of H over Ω_{λ}

$$\lim_{\delta \to 0^+} \left(u_{\delta}(x) + \frac{c_{\lambda}}{\delta} \right) \to u_{\lambda}^{0}(x)$$

where $u_{\lambda}^0(x)$ is a maximal solution on Ω_{λ} . For each $\lambda>0$, let $\tau(\lambda)>0$ such that

$$\sup_{x \in \overline{\Omega}_{\lambda}} \left| \left(u_{\delta}(x) + \frac{c_{\lambda}}{\delta} \right) - u_{\lambda}^{0}(x) \right| \leq r(\lambda) \qquad \text{ for all } \delta \leq \tau(\lambda). \tag{4}$$

Set $\phi(\lambda) = \tau(\lambda) r(\lambda)^2$, then $\phi(\lambda) \to 0$ as $\lambda \to 0^+$ and $\gamma = \infty$ ($u_\lambda \equiv u_{\phi(\lambda)}$). Along two subsequences λ_j and δ_j we have

$$\lim_{\lambda_j \to 0^+} \left(u_{\lambda_j}(x) + \frac{c_{\lambda_j}}{\phi(\lambda_j)} \right) = S_{\Omega}(x, -1) \neq S_{\Omega}(x, 1) = \lim_{\delta_j \to 0^+} \left(u_{\delta_j}(x) + \frac{c_{\delta_j}}{\phi(\delta_j)} \right).$$

Thank You