	and a PROF								
	TUTORIAL -1								
	LINEAR ALGEBRA: MATRICES								
	UIACSOID - CBHAGYA VINOD RANAT								
	F Q E 3 J 43								
01>	Find the rank of the following matrices								
	C ₁ C ₂ C ₃								
	(a)R ₁ 1 2 3								
	$R_2 = 1 + 4 + 2 $								
	R ₃ 2 6 5								
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
0	= 0 2 -1 = 0 2 -1								
	0 2 1 0 2 1								
J Parsel a									
1 8 / 4	1 2 3 NO. OF UNCORY								
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
	LO O O J LZ J - KHNK.								
	b) [13 43] A-A-A-A								
	3 9 12 3								
0	1341								
	zorse jongston to all It st. st. st. of								
	Step 1: $R_2 \leftarrow R_2 - 3 \times R_1$ Step 2: $R_3 \leftarrow R_3 - R_1$								
	1343								
	0 0 0 -6								
	[1341]								
	Step 3. R2 = R2 * 1/3 Step 4 R3 - R3 - R2								
	1343 No. of linear								
	0 0 0 -2 0 0 0 -2 independent rows =								
	(Rank of Matrix = 2								
Vision	of Kank of Harry 2								

(C)
$$R_1 \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & +2 + 1 & +4 \\ R_2 & 3 & 1 & 3 & 1 & -2 \\ R_3 & 3 & 1 & 3 & 1 & -2 \\ R_4 & 6 & 3 & 0 & 7 \end{bmatrix}$$

Step 1:
$$R_2 \leftarrow R_2 - R_{1/2}$$
, $R_3 \leftarrow R_3 - (\frac{R_1}{2} \times 3)$, $R_4 \leftarrow R_4 - (\frac{R_4}{2} \times 6)$

Step 2:
$$R_3 \leftarrow R_3 - R_2 \times (\frac{23}{5})$$
 $R_4 \leftarrow R_4 - R_2 \times (\frac{23}{5})^{(-6)}$

$$\begin{bmatrix} 2 & 3 & -1 & 1 \\ 0 & -5/2 & -3/2 & -4/2 \\ 0 & 0 & 33/5 & 22/5 \\ 0 & 0 & 33/5 & 22/5 \end{bmatrix}$$

$$\begin{cases} -4 + \frac{6}{5} \times \frac{7}{2} - \left(\frac{42-20}{5}\right) \end{cases}$$

$$\begin{bmatrix}
2 & 3 & -1 & 1 \\
0 & -5/2 & -3/2 & -4/2 \\
0 & 0 & 33/5 & 22/5
\end{bmatrix}$$
No of indepent rows
$$= \boxed{3}$$

VISION

			row elle		Column e	4	
	1 1 0	2) volup	1 0 0	loon on	11000	sute8	
		1 =		19	0 1 0		
retor	0 -1	-1	0 0 1		001	8 3	
EA.		182+62			p I	P- oa	
2	C ₂ ←	- C2 - &C1	C3.	← C ₃ -	241	8-121	
	1 0	0	100		1 -1 -2		
	0 11	11- = 0	-1 1 0	A	0 1 0		
	0 -1		6001		0 0 1		
3	R ₃ ←	R3 + R2		9 - 19 -			0
	e ms				p- 8 1		
	1 0	0	100	11-	1 -1 -2		
	0 1	19 =	-1 1 0	A	0 1 0		
	0 0		-1 1 1		0 0 1		
KI Y	alipais C	tod Not	, 521	17 = 1	L xrdaM	For the	KED
4	c ₃ ←	c3 - c2	23	1			
	_	7 -	1-1-	91 -		4	
oi ad	1 10	DOM . ale	1 0 0	a si	10/41 -1	douz 1	
	0 1	0 =	-1 1 0	A	0 1 -1	ah al	
		0] [-1 1 1	7:0	0 0 1	22	0
	NORMAL	FORM					
	Each Row	= Atmost only	y D No	w Alis	in Mormal fo	m	
			and w	ith Ronk	2 (No. of	linearly i	ndependent
1	No. of n	on-zero row			1k] = >0		
	Companio	1, -1-		100	1-1		_
ANS:		P =	1100		φ = 1	-1 -1	0
			-1 1 0				
			-1 1 1			0 1	

5.> If
$$A = \begin{bmatrix} 3-3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
 and $A = \begin{bmatrix} 3-3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$

(i) Find A-1

(5)
$$R_2 \leftarrow R_2 + {\binom{4}{3}}^{R_3}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix} = \begin{bmatrix}
1 & -1 & 0 \\
-2 & 3 & -4
\end{bmatrix} A$$

$$I = A^{-1} A$$

Ans
$$A^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$$

(6)

			(7)							
5.>	$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $									
3.7	$A = \begin{bmatrix} 3 & -3 & 4 \end{bmatrix}$ $A^{-1} = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}$									
		2 -3			-2 3 -4					
		0 -1	1		-2 3 -3					
	$LHS = A^3 = A^2 \times A$									
	det s calculate									
	A2 =	3 -	3 4	3 -3 4	9-6 -9+		12+4			
		2 -	3 4	× 2 -3 4	= 6-6+0 -6		12 \$ +4			
0		0 -	11	0 -1 1	0-2+0 0+	3-1 0+	-4+1			
					+	7				
		- 1			= 3 -4	4				
	0 -1									
		-2 2								
	$A^3 = LHS = A^2 \times A = \begin{bmatrix} 3 & -4 \end{bmatrix}$				3 -3 4					
	0 -1 0 X 2 -3 4									
	-2 2 -3 0 -1 1									
			0 0	2 1 1 2		7				
0		=		0 -9+12	-4 12-16+4 -4	1				
			-2							
			-6+4	+0 6-8+	3 - 278-	3 1				
		1	1	-1	0					
			-2	3	-4	2 RHS				
			- 2	3	- 3					
	Hence A3 = A-1, Proved.									
	SUBMITTED BY:									
	U19CS012									
				BHAGYA RAN	A					
vision		C								