

M2CAL WORKFLOW CHALLENGE 2016 Fine tuning CNN with HMM smoothing

21th October 2016

Rémi Cadène, Thomas Robert, Nicolas Thome, Matthieu Cord

University Pierre and Marie Curie - LIP6 - MLIA

M2CAI Workflow Dataset

Context

Videos resolution is 1920×1080 , shot at 25 frames per second at the IRCAD research center in Strasbourg, France.

- 27 training videos ranging from 15mn to 1hour
- 15 test videos

M2CAl Workflow Dataset

Context

1 of 8 classes for each frames:

- TrocarPlacement
- Preparation
- CalotTriangleDissection
- ClippingCutting
- GallbladderDissection
- GallbladderPackaging
- CleaningCoagulation
- GallbladderRetraction

M2CAI Workflow Goal and Measure

Online prediction : $P(y|x_i, x_{i-1}, x_{i-2}, ...)$

 $x_i := \text{frame } i, \text{ and } y := \text{classes}$

Useful to:

Context

- monitor surgeons
- trigger automatic actions

Measures: - Jaccard similarity coefficient:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}$$

- Accuracy top1 : nb frames well classified / nb total frames

Two fold approach

1. Model to classify frames as images

- Extract features from pre-trained CNN
- CNN From Scratch
- Fine tuning pre-trained CNN

2. Smoothing predictions of our frames classifier

- 1 Averaging predictions over 15 frames
- 2 Hidden Markov Model as a "denoizer" (HMM)

1. Creating validation set and extracting images

Spliting randomly the full training set of 27 videos

■ training set : 22 videos

■ validation set : 5 videos {2, 9, 10, 13, 27}

Extracting one frame every 25 frames (1 frame per second)

■ training set : 59,493 images

■ validation set: 8,062 images

■ testing set : 28,732 images

Figure 1 - Vgg16 [simonyan2014very], top2 ILSVRC2014

Pre-trained CNN as Features Extractor

- Remove last layer, Add new layer output size 8, Train with SGD fixing the pre-trained layers
- Extract features somewhere, Train a SVM

Training a CNN From Scratch

- Design specific CNN architecture
- Reinitialized architecture designed for large datasets with strong regularization

UPMC

Fine tuning a pre-trained CNN

■ SGD : Ir, Ird, ftfactor

Adam : Ir, Ird

Model	Input	Param.	Depth	Implem.	Time (ms)
Vgg16	224	138M	16	GPU	
InceptionV3	399	24M	42	GPU	0
ResNet-200	224		200	GPU	
InceptionV3	399	24M	42	CPU	0

Table 1 – Forward+Backward with batches of 30 images.

3. Smoothing the predictions

Averaging the predictions across the last 15 frames (15 seconds)

Hidden Markov Model on the predictions 3 kind of parameters the initial state probabilities the matrix of probabilities of transition between states the emissions of observations

3. Smoothing the predictions

HMM has

Training: counting

Offline testing: Viterbi algorithm to obtain the most likely

sequence of states

Online testing: to predict x_t we apply Viterbi on the sequence

 V_1, \ldots, V_t

Comparison of frames classifiers

Classification Model	Accuracy (%)	
InceptionV3 Extraction	60.53	
InceptionV3 From Scratch	69.13	
InceptionV3 Weldon	78.18	
InceptionV3 Fine-tuned	79.06	
ResNet200 Fine-tuned	79.24	

Table 2 – Accuracy on the validation set.

Comparison of temporal smoothing methods

Temporal Method	Accuracy (%)	Jaccard
Avg Smoothing	85.97 ± 3.75	74.67 ± 7.87
HMM Online	88.90 ± 3.55	81.60 ± 10.49
HMM Offline	93.47 ± 3.59	87.59 ± 6.97

Table 3 – Accuracy Top1 and Jaccard score on the validation set. The variance is computed over all classes.

Visualization

Conclusion

18 AL SORBONNE UNIVERSIT

Conclusion

- Deep Learning efficient
- Fine Tuning most accurate approach
- HMM is usefull to smooth the predictions

Future work

- train on 100%
- ensembling

Code available : github.com/Cadene/torchnet-m2caiworkflow

