Reguła de L' Hospitala. Badanie funkcji

Literatura

- R. Grzymkowski, Matematyka zadania i odpowiedzi, Gliwice 2002
- W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach cz.I, wydanie dowolne
- A.Leksińska, W.Leksiński, W.Żakowski, Rachunek różniczkowy i całkowy z zastosowaniami, Wydawnictwa Szkolne i Pedagogiczne, Warszawa 1974.
- M.Geweryt, Z.Skoczylas, Analiza Matematyczna1, Przykłady i zadania. Wrocław 2002
- 1. Wykorzystując regułę de L'Hospitala obliczyć granice

a)
$$\lim_{x \to \infty} \frac{\ln(1+x)}{2x}$$
 b) $\lim_{x \to 0} \frac{e^x - e^{-x}}{\ln \cos x}$ c) $\lim_{x \to 0^+} \frac{\ln \sin x}{\ln \sin 2x}$ d) $\lim_{x \to \pi} \left(\frac{1}{\sin x} - \frac{1}{\pi - x} \right)$ e) $\lim_{x \to \infty} \left(\sqrt{x} - \ln x \right)$

f)
$$\lim_{x \to 1^+} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right)$$
 g) $\lim_{x \to 1^+} (x-1) \ln ctg \pi x$ h) $\lim_{x \to 0^+} x^{\sin x}$ i) $\lim_{x \to \infty} (\ln x)^{\frac{1}{x}}$ j) $\lim_{x \to \infty} x(\pi - 2arctgx)$

2. Wyznaczyć asymptoty funkcji

a)
$$y = \frac{x^2}{x+3}$$
 b) $y = \frac{x^3}{2x^2 - 4x - 6}$ c) $y = xe^{\frac{2}{x}}$ d) $y = \frac{e^x}{e^x - 1}$ e) $y = x \ln(1 - x^2)$

f)
$$y = (x-1)\ln x$$
 g) $y = \frac{\ln x}{x}$ h) $y = x - 2arctgx$ i) $y = \sqrt{x^2 - 1}$ j) $y = \frac{\sin x}{x}$

3. Wyznaczyć przedziały monotoniczności i ekstremum funkcji

a)
$$f(x) = \frac{x^2}{x^2 - 4}$$
 b) $y = e^{\frac{1}{3}x^3 - x^2}$ c) $f(t) = \ln \frac{e^t}{t + 1}$ d) $f(x) = x^3 e^x$ e) $y = xe^{\frac{2}{x}}$

f)
$$f(x) = x\sqrt{1-x}$$
 g) $f(x) = \arcsin x + 2\sqrt{1-x^2}$ h) $y = \sqrt[3]{2x^2 - x^3}$

4. Korzystając z II warunku wystarczającego istnienia ekstremum znaleźć wszystkie ekstrema funkcji

a)
$$y = x^3 - 3x^2 + 2$$
 b) $y = (x - 4)e^x$ c) $y = x(x - 4)^3$

5. Wyznaczyć przedziały wypukłości, wklęsłości i punkty przegięcia wykresu funkcji

a)
$$f(x) = \frac{1}{x} + 4x^2$$
 b) $f(x) = \ln \frac{1+x}{1-x}$ c) $f(x) = \sqrt[3]{x}$

d)
$$f(u) = e^{arctgu}$$
 e) $y = (x-1)\ln x$ f) $y = \frac{x}{\ln x}$

6. Wyznaczyć przedział, na którym funkcja

a)
$$f(x) = xe^{-x}$$
 jest jednocześnie malejąca i wypukła

b)
$$f(x) = x + arctgx$$
 jest jednocześnie rosnąca i wklęsła

c)
$$f(x) = 2x^2 - \ln x$$
 jest jednocześnie rosnąca i wypukła

7. Wyznaczyć najmniejszą i największą wartość funkcji

a)
$$y = \frac{x^2 - 5x + 10}{x - 2}$$
 b) $y = \frac{x^2 + x + 1}{x^2 - x + 1}$ c) $y = x + \frac{1}{x}$ w przedziale $(0, 2)$ d) $y = \ln x + \frac{1}{\ln x}$ w przedziale $\langle e^{-2}, e^{-1/2} \rangle \cup \langle e^{1/2}, e^2 \rangle$

Dodatek (asymptpty funkcji –zadanie 2)

