

Лекция 4 LightGBM & CatBoost

Владимир Гулин

24 февраля 2018 г.

План лекции

Напоминание

DART

LightGBM

Catboost

Задача обучения с учителем

Постановка задачи

Пусть дан набор объектов $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}, \ \mathbf{x}_i \in \mathcal{X}, \ y_i \in \mathcal{Y}, \ i \in 1, \dots, N$, полученный из неизвестной закономерности $y = f(\mathbf{x})$. Необходимо построить такую $h(\mathbf{x})$, которая наиболее точно аппроксимирует $f(\mathbf{x})$.

Будем искать неизвестную

$$h(\mathbf{x}) = C(a_1(\mathbf{x}), \dots, a_T(\mathbf{x}))$$

 $a_i(\mathbf{x}): \mathcal{X} \to \mathcal{R}, \ \forall i \in \{1,\dots,T\}$ - базовые модели $\mathcal{C}: \mathcal{R} \to \mathcal{Y}$ - решающее правило

Gradient boosting algorithm

- 1. Инициализировать $h_0(\mathbf{x}) = argmin_{\gamma} \sum_{j=1}^{N} L(y_j, \gamma)$
- 2. Для всех *i* от 1 до *T*:
 - (a) Для всех j = 1, 2, ..., N вычислить

$$g_{i,j} = -\left[\frac{\partial L(y_j, h(\mathbf{x}_j))}{\partial h(\mathbf{x}_j)}\right]_{h=h_{i-1}}$$

(b) Построить базовую модель a_i на ответах $g_{i,j}$

$$a_i = \arg\min_{a} \sum_{j=1}^{N} (g_{i,j} - a(\mathbf{x}_j))^2$$

(c) Определить вес b_i

$$b_i = \arg\min_b \sum_{i=1}^N L(y_i, h_{i-1}(\mathbf{x}) + b \cdot a_i(\mathbf{x}_i))$$

- (d) Присвоить $h_i(\mathbf{x}) = h_{i-1}(\mathbf{x}) + b_i \cdot a_i(\mathbf{x})$
- 3. Вернуть $h(x) = h_T(x)$

DART (2015)

Dropouts meet Multiple Additive Regression Trees

- ▶ Идея состоит в применении техники dropout для GBM
- ▶ DART предотвращает over-specialization
- Деревья добавленные вначале имеют существенное влияние на результат
- ▶ Shrinkage фиксит туже проблему, но не достаточно эффективно

Dropout

(a) Standard Neural Net

(b) After applying dropout.

Algorithm 1 The DART algorithm

```
Let N be the total number of trees to be added to
the ensemble
S_1 \leftarrow \{x, -L'_x(0)\}
T_1 be a tree trained on the dataset S_1
M \leftarrow \{T_1\}
for t = 2, \ldots, N do
    D \leftarrow the subset of M such that T \in M is in D
with probability p_{drop}
    if D = \emptyset then D \leftarrow a random element from M
    end if
    \hat{M} \leftarrow M \setminus D
    S_t \leftarrow \left\{ x, -L_x' \left( \hat{M}(x) \right) \right\}
    T_t be a tree trained on the dataset S_t
    M \leftarrow M \cup \left\{ \frac{T_t}{|D|+1} \right\}
    for T \in D do
         Multiply T in M by a factor of \frac{|D|}{|D|+1}
    end for
end for
Output M
```

Регрессия

Ensemble size	25	50	100	250	500	1000
MART	35.13	31.79	30.92	30.07	29.76	29.28
DART	32.50	30.50	29.66	28.14	28.11	27.98
Random Forest	32.76	33.21	32.88	32.36	32.66	32.33

L2

CT slices dataset

Классификация

Ensemble size	50	100	250	500	1000
MART	0.9687	0.9699	0.9707	0.9704	0.9695
DART	0.9676	0.9692	0.9714*	0.9693	0.9699
Random Forest	0.9627	0.9629	0.9629	0.9630	0.9628

Accuracy
Pascal Large scale learning challenge

Ранжирование

algorithm	Shrinkage	Dropout	Loss function parameter	Feature fraction	NDCG@3
MART	0.4	0	1.2	0.75	46.31
DART	1	0.03	1.2	0.5	46.70

NDCG Yahoo! Learning to rank challenge

LightGBM (2017)

A Highly Efficient Gradient Boosting Decision Tree

- Microsoft
- ▶ Позиционируется для больших данных
- ▶ Показывает высокое качество
- Gradient-based One-Side Sampling
- Exclusive Feature Bundling

Best-first decision trees

Figure 1.1: Decision trees: (a) a hypothetical depth-first decision tree, (b) a hypothetical best-first decision tree.

Algorithm 2: Gradient-based One-Side Sampling

```
Input: I: training data, d: iterations
Input: a: sampling ratio of large gradient data
Input: b: sampling ratio of small gradient data
Input: loss: loss function, L: weak learner
models \leftarrow \{\}, fact \leftarrow \frac{1-a}{b}
topN \leftarrow a \times len(I), randN \leftarrow b \times len(I)
for i = 1 to d do
    preds \leftarrow models.predict(I)
    g \leftarrow loss(I, preds), w \leftarrow \{1,1,...\}
    sorted \leftarrow GetSortedIndices(abs(g))
    topSet \leftarrow sorted[1:topN]
    randSet \leftarrow RandomPick(sorted[topN:len(I)],
    randN)
    usedSet \leftarrow topSet + randSet
    w[randSet] \times = fact \triangleright Assign weight fact to the
    small gradient data.
    newModel \leftarrow L(I[usedSet], -g[usedSet],
    w[usedSet])
    models.append(newModel)
```


Algorithm 3: Greedy Bundling

```
 \begin{aligned} &\textbf{Input: } F \text{: features, } K \text{: max conflict count} \\ &\textbf{Construct graph } G \\ &\textbf{searchOrder} \leftarrow G.\textbf{sortByDegree()} \\ &\textbf{bundles} \leftarrow \{\}, \textbf{bundlesConflict} \leftarrow \{\} \\ &\textbf{for } i \textbf{in } searchOrder \textbf{do} \\ &\textbf{needNew} \leftarrow \textbf{True} \\ &\textbf{for } j = 1 \textbf{to } len(bundles) \textbf{do} \\ & \textbf{cnt} \leftarrow \textbf{ConflictCnt(bundles[j],} F[i]) \\ & \textbf{if } cnt + bundlesConflict[i] \leq K \textbf{ then} \\ & \textbf{bundles[j].add(} F[i]), \textbf{needNew} \leftarrow \textbf{False} \\ & \textbf{break} \\ & \textbf{if } needNew \textbf{ then} \\ & \textbf{Add } F[i] \textbf{ as a new bundle to } bundles \end{aligned}
```

Output: bundles

Algorithm 4: Merge Exclusive Features

```
 \begin{array}{ll} \textbf{Input: } numData: \text{ number of data} \\ \textbf{Input: } F: \text{ One bundle of exclusive features} \\ \text{binRanges} \leftarrow \{0\}, \text{ totalBin} \leftarrow 0 \\ \textbf{for } f \textbf{ in } F \textbf{ do} \\ \text{totalBin} += \text{f.numBin} \\ \text{binRanges.append(totalBin)} \\ \text{newBin} \leftarrow \text{new Bin(numData)} \\ \textbf{for } i = 1 \textbf{ to } numData \textbf{ do} \\ \text{newBin}[i] \leftarrow 0 \\ \textbf{for } j = 1 \textbf{ to } len(F) \textbf{ do} \\ & \textbf{if } F[j].bin[i] \neq 0 \textbf{ then} \\ & \text{lenewBin}[i] \leftarrow F[j].bin[i] + \text{binRanges}[j] \\ \end{array}
```


Figure 1: Time-AUC curve on Flight Delay.

Figure 2: Time-NDCG curve on LETOR.

RAM efficiency of data types

Catboost (2017)

Gradient boosting with categorial features support

- Yandex
- ► Наследник MatrixNet
- ▶ Позиционируется как лучшая по качеству
- ▶ Умеет "умно" работать с категориальными фичами
- ▶ Oblivious trees → fast scoring

Решение в лоб

Algorithm 1: Exponential dynamic boosting input : $\{(X_k, Y_k)\}_{k=1}^n, I;$ $1 M_S^0 \leftarrow 0 \text{ for all } S \subset [1, n], |S| \leq I;$ 2 for $iter \leftarrow 1$ to I do foreach S s.t. $|S| \leq I - iter$ do foreach $i \in [1, n] \setminus S$ do foreach $i \in [1, n] \setminus S$ do $\begin{bmatrix} r_i \leftarrow Y_i - M_{S \cup i}^{iter-1}(i); \\ M \leftarrow LearnModel((\mathbf{X}_i, r_i) \text{ for } i \in [1, n] \setminus S; \\ M_S^{iter} \leftarrow M_S^{iter-1} + M; \end{bmatrix}$ 8 return M_{ϕ}^{I}

Ordered dynamic boosting

Algorithm 1: Updating the models and calculating model values for gradient estimation

8 return $M_1 ... M_n; M_1(\mathbf{X}_1), M_2(\mathbf{X}_2) M_n(\mathbf{X}_n)$

Benchmarks

	CatBoost		LightGE	LightGBM XGBoost		st	H2O	
	Tuned	Default	Tuned	Default	Tuned	Default	Tuned	Default
L Adult □	0.26974	0.27298 +1.21%	0.27602 +2.33%	0.28716 +6.46%	0.27542 +2.11%	0.28009 +3.84%	0.27510 +1.99%	0.27607 +2.35%
L [®] Amazon	0.13772	0.13811 +0.29%	0.16360 +18.80%	0.16716 +21.38%	0.16327 +18.56%	0.16536 +20.07%	0.16264 +18.10%	0.16950 +23.08%
Click prediction	0.39090	0.39112 +0.06%	0.39633 +1.39%	0.39749 +1.69%	0.39624 +1.37%	0.39764 +1.73%	0.39759 +1.72%	0.39785 +1.78%
L KDD appetency	0.07151	0.07138 -0.19%	0.07179 +0.40%	0.07482 +4.63%	0.07176 +0.35%	0.07466 +4.41%	0.07246 +1.33%	0.07355 +2.86%
LE KDD churn	0.23129	0.23193 +0.28%	0.23205 +0.33%	0.23565 +1.89%	0.23312 +0.80%	0.23369 +1.04%	0.23275 +0.64%	0.23287 +0.69%
LE KDD internet	0.20875	0.22021 +5.49%	0.22315 +6.90%	0.23627 +13.19%	0.22532 +7.94%	0.23468 +12.43%	0.22209 +6.40%	0.24023 +15.09%

GPU learning curves

Scorer comparison

	1 thread	32 threads
CatBoost	2.4s	231ms
XGBoost	78s (x32.5)	4.5s (x19.5)
LightGBM	122s (x50.8)	17.1s (x74)

Perfomance

Но есть один большой минус — это скорость работы. По моим предварительным наблюдениям, сразу после выхода Кэтбуст отставал от своих аналогов по этому параметру в десятки раз.

Задача

Дано: Имеется набор данных из системы поискового антиспама. **Требуется:** Требуется сравнить ранее рассмотренные классификаторы с lightGBM и catboost.

Пошаговая инструкция

1. Скачать данные и запустить шаблон кода на python goo.gl/CCM2Yo

```
$ python compos.py -h
$ python compos.py -tr spam.train.txt -te spam.test.txt
```

- 2. Построить графики качества классификации в зависимости от параметров алгоритмов
- 3. Построить графики скорости обучения в зависимости от числа базовых моделей

Вопросы

