Exercices d'Intégration – Séries numériques feuille 3

Licence de Mathématiques

2^{ème} année, semestre 3

Exercice 1. On considère les séries numériques suivantes :

$$A := \sum_{n \ge 1} (-1)^{n+1} \frac{2n+1}{n(n+1)} , B := \sum_{n \ge 1} \ln \left(1 + \frac{1}{n} \right) , C := \sum_{n \ge 0} \frac{e^{in}}{2^n}$$

Pour chacune de ces séries :

- 1. Calculer les sommes partielles S_k pour $k \in \mathbb{N}_{>0}$.
- 2. La série converge-t-elle?
- 3. En cas de convergence, calculer la somme de la série.

Exercice 2. Soit $\sum_{n>0} a_n$ une série convergente. Montrer que $\lim_{n\to+\infty} a_n = 0$.

Exercice 3. On appelle série de Riemann une série de terme général $\frac{1}{n^{\alpha}}$ pour $\alpha \in \mathbb{R}$. Démontrer que la série converge si, et seulement si, $\alpha > 1$. Indication : on pourra essayer de comparer $\sum_{n=1}^{N} \frac{1}{n^{\alpha}}$ et $\int_{1}^{N} \frac{dt}{t^{\alpha}}$.

Exercice 4. Déterminer la nature des séries de terme général suivant :

$$u_n = \frac{2^n}{2n+5^n}$$
, $v_n = \frac{1}{\sqrt{n(n+1)(n+2)}}$, $w_n = \frac{n!}{n^n}$, $a_n = \ln(1+\frac{1}{n^2})$,

$$d_n = \frac{n^2}{n^2 + 1} , e_n = \frac{1}{\sqrt{n^2 - 1}} - \frac{1}{\sqrt{n^2 + 1}} , f_n = \sin \frac{n^3 + 1}{n^5 + 2}; g_n = \left(\frac{n}{n + 1}\right)^{n^2} ,$$

$$h_n = \frac{2^n}{n!} , k_n = \frac{n^n}{n!} , m_n = \frac{\prod_{k=1}^n (n+k)}{(2n)^n} , p_n = \frac{1 + \ln n}{n^2} , q_n = e^{-\sqrt{n}} .$$

Exercice 5. Étudier en fonction du paramètre réel α la nature de la série $\sum_{n>0} \frac{\ln(1+n^{\alpha})}{n}$.

Exercice 6. Soit la série de terme général u_n défini pour $n \ge 3$ par : $u_n = \frac{1}{n \ln n}$.

1. Montrer que :

$$\forall n \geq 3, \int_{n}^{n+1} \frac{1}{t \ln t} dt \leq u_n.$$

- 2. Calculer, pour A > 0: $\int_3^A \frac{1}{t \ln t} dt$
- 3. En déduire la nature de $\sum u_n$.

Exercice 7. On appelle série de Bertrand une série de terme général $\frac{1}{n^{\alpha}(\ln n)^{\beta}}$ avec $\alpha, \beta \in \mathbb{R}$ et n > 1.

- 1. Étudier la nature de la série si $\beta = 0$.
- 2. Vérifier que si $\alpha < 0$ alors la série diverge.
- 3. Montrer que si $0 \le \alpha < 1$, alors la série diverge.
- 4. Montrer que si $\alpha > 1$, alors la série converge.
- 5. On étudie maintenant le cas $\alpha = 1$.
 - (a) Montrer que pour $\beta < 0$ la série diverge.
 - (b) On suppose maintenant $\beta \geq 0$. En encadrant la série, montrer qu'elle converge si, et seulement si, $\beta > 1$.

Exercice 8. Soit $\sum_{n\geq 1} u_n$ une série à termes strictement positifs, et désignons par S_k sa somme partielle d'ordre k.

- 1. Vérifier que pour tout $k \ge 1$ on a $S_k > 0$.
- 2. On suppose que $\sum_{n\geq 1} u_n$ converge et on note $S:=\sum_{n=1}^{+\infty} u_n$. Montrer que la série $\sum_{n\geq 1} \frac{u_{n+1}}{S_n S_{n+1}}$ converge, que S>0 et que

$$\sum_{n=1}^{+\infty} \frac{u_{n+1}}{S_n S_{n+1}} = \frac{1}{u_1} - \frac{1}{S}.$$

3. On suppose que $\sum_{n\geq 1}u_n$ diverge. Montrer que la série $\sum_{n\geq 1}\frac{u_{n+1}}{S_nS_{n+1}}$ converge et que

$$\sum_{n=1}^{+\infty} \frac{u_{n+1}}{S_n S_{n+1}} = \frac{1}{u_1}.$$

4. Déduire des questions précédentes la somme des séries

$$\sum_{n\geq 1} \frac{1}{n(n+1)(n+2)} \text{ et } \sum_{n\geq 1} \frac{2n+1}{n^2(n+1)^2}.$$

Exercice 9. On considère la série de terme général $u_n = \ln \left(1 + \frac{(-1)^n}{n}\right)$.

- 1. Montrer que $\sum u_n$ est une série alternée convergente.
- 2. Cette série est-elle absolument convergente?

Exercice 10. Étudier la nature des séries de terme général u_n dans chacun des cas suivants :

$$a_n = (-1)^n \frac{n^2}{2^n}$$
, $b_n = \sin\left(\left(\frac{1}{n} + n\right)\pi\right)$, $c_n = \sin\left(\pi\sqrt{n^2 + 1}\right)$, $d_n = \frac{(-1)^n}{n + (-1)^n}$
 $e_n = \frac{\cos n}{n}$, $f_n = \frac{\cos n}{n^2}$, $g_n = \frac{\cos^2 n}{n}$, $h_n = \cos(na)\frac{\ln n}{\sqrt{n}}$ avec $a \in \mathbb{R}$.

Exercice 11.

- 1. Montrer que la série $\sum \frac{(-1)^n}{2n+1}$ est convergente.
- 2. Pour tout $n \in \mathbb{N}$ et tout $t \in [0,1]$, on pose $S_n(t) := \sum_{k=0}^n (-1)^k t^{2k}$.
 - (a) Montrer que $\int_0^1 S_n(t) dt = \sum_{k=0}^n \frac{(-1)^k}{2k+1}$.
 - (b) Montrer que, pour tout $n\in\mathbb{N}$ et tout $t\in[0,1]$, on a $S_n(t)=\frac{1-(-1)^{n+1}t^{2(n+1)}}{1+t^2}$.
 - (c) Montrer que : $\forall n \in \mathbb{N}, 0 \le \int_0^1 \frac{t^{2(n+1)}}{1+t^2} dt \le \frac{1}{2n+3}$
 - (d) Calculer $\int_0^1 \frac{1}{1+t^2} dt$.
- 3. En déduire que : $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$.

Exercice 12. Pour tout $n \in \mathbb{N}$ on pose

$$a_n := \int_0^{\pi/4} (\tan t)^n \, \mathrm{d}t.$$

- 1. Étude de (a_n) .
- (a) Quel est le sens de variation de la suite $(a_n)_{n\in\mathbb{N}}$?

- (b) Montrer que la suite $(a_n)_{n\in\mathbb{N}}$ converge.
- (c) Établir une relation entre a_n et a_{n+2} . En déduire la limite de (a_n) .
- (d) Montrer l'inégalité, pour n > 1,

$$\frac{1}{n+1} \le 2a_n \le \frac{1}{n-1}$$

et donner un équivalent à (a_n) .

- 2. Étude de $\sum_{n\in\mathbb{N}} (-1)^n a_n$.
 - (a) Montrer que la série est semi-convergente.
 - (b) Montrer que, pour tout entier n,

$$\sum_{k=0}^{n} (-1)^k a_k = \int_0^{\pi/4} \frac{1}{1+\tan t} dt - (-1)^{n+1} \int_0^{\pi/4} \frac{(\tan t)^{n+1}}{1+\tan t} dt.$$

(c) En déduire l'égalité

$$\sum_{n=0}^{+\infty} (-1)^n a_n = \int_0^{\pi/4} \frac{1}{1 + \tan t} dt.$$

(d) Calculer l'intégrale ci-dessus.

Exercice 13. Soit $(a_n)_n$ une suite monotone et bornée et $\sum_{n\geq 0} b_n$ une série convergente. Montrer que $\sum_{n\geq 0} a_n b_n$ est convergente.

Exercice 14. Soit $(u_n)_n$ une suite à termes strictement positifs telle que $\frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + v_n$ avec $\sum_{n \geq 0} v_n$ absolument convergente.

- 1. Montrer qu'il existe k > 0 tel que $u_n \sim \frac{k}{n^{\alpha}}$.
- 2. En déduire la nature de la série $\sum_{n\geq 0} u_n$ en fonction de α .

Exercice 15. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0\in\mathbb{R}$ et par $\forall n\in\mathbb{N}: u_{n+1}:=u_n+e^{-u_n}$. Montrer que $u_n=\ln n+\frac{\ln n}{2n}+o\left(\frac{\ln n}{n}\right)$.

Exercice 16. Soit $f:[1,+\infty[\to\mathbb{R}_{>0} \text{ continue, positive et décroissante.}]$

1. Montrer que pour tout k > 1, on a

2

$$f(k+1) \le \int_k^{k+1} f(t) \, \mathrm{d}t \le f(k).$$

2. On note $u_n = \sum_{k=1}^n f(k) - \int_1^n f(t) dt$. Montrer que la série (u_n) converge et que sa limite ℓ vérifie $\ell \in [0, f(1)]$.

- 3. Applications:
 - (a) Montrer qu'il existe une constante $\gamma \in [0,1]$ telle que $\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$.
 - (b) Montrer qu'il existe une constante $\alpha \in [1,2]$ telle que $\sum_{k=1}^{n} \frac{1}{\sqrt{k}} = 2\sqrt{n} \alpha + o(1)$.

Exercice 17. Soit f une fonction de classe \mathcal{C}^1 sur l'intervalle $[A, +\infty[$, où $A \in \mathbb{R}$. On suppose que f' est intégrable sur $[A, +\infty[$.

1. Montrer que la série de terme général $\int_{n-1}^{n} f(t) dt - f(n)$ est absolument convergente.

Indication: on pourra intégrer par parties $\int_{n-1}^{n} (t-n+1)f'(t) dt$.

2. En déduire que la série $\sum_{n\geq 0} f(n)$ converge si et seulement si la série de

terme général $\int_{n-1}^{n} f(t) dt$ converge si et seulement si l'intégrale $\int_{A}^{+\infty} f(t) dt$ converge.

Applications.

- 3. Soit $\alpha \in]0,1[$. Quelle est la nature de la série $\sum_{n>0} \frac{\sin(n^{\alpha})}{n}$?
- 4. Quelle est la nature de la série $\sum_{n>0} \frac{\sin(\ln n)}{n}$?

Exercice 18. Soit $f:[0,+\infty[\to\mathbb{R}$ décroissante. On suppose que l'intégrale $\int_0^{+\infty} f(t) dt$ converge et est non-nulle.

1. Pour t>0, prouver la convergence de la série $\sum_{n\geq 1} f(nt)$ et montrer que

$$\sum_{n=1}^{+\infty} f(nt) \underset{t\to 0}{\sim} \frac{1}{t} \int_0^{+\infty} f(x) dx.$$
Application

2. Trouver un équivalent de $\sum_{n=1}^{+\infty} x^{n^2}$ lorsque x tend vers 1.