

Temporary Clamp Management e-TCM (Shark tank winner 2020)

BU owner: <T-II and TP-PM>
Present date: DD MMM YYYY

Agenda

- Executive Summary
- Cost and Benefit
- Initial Study Result (research / hackathon)
- Implementation scope and approach
- Timeline
- Risk Assessment
- Vendor survey and comparison
- Team Organization

Temporary Clamp Management (eTCM)

Implement Location

Project Size

X-MN/X-OP/ T-II/TP-PO

Medium

WHY: Background

Clamp is the best repair method for a maintenance engineer which prefers to repair any leakages to prevents an expensive and unwanted shutdown. However, its improper management can make a lack of monitoring and tracking of online leak sealing points causing an effect on its maintenance plan, trouble, and finally met the incident. So, this system is able to provide the leak sealing location mapping and risk assessment leading to effective maintenance planning, inspection and monitoring.

WHAT: Project Objective/Goal

- 1. Developing the novel application of systematic approach for managing an onlineleak sealing point against the risk assessment with a smart reporting.
- 2. Improving the capability of maintenance work and inspection task planning.
- 3. Reducing the possibility of unplanned shutdown caused by a loss of containment through monitoring program.

HOW: Implementation approach

- Creating the concept of tracking system, risk assessment and reporting.
- Developing the Online leak-sealing Management System (OMS) program as per the concept.
- Selecting the pilot plant to implement OMS program against the existing online leaksealing clamp.
- Implementing to all BU (Go-live)

WHO: Project Organization

Project Sponsor	Thaworn K. T-II/ Chatree Sa. TP-PM
Project Owner	Palakorn Sat. T-II-IP2
Stakeholders	Plant Operation, Plant Technic, Plant Maintenance and Inspection Department, Turnaround, Warehouse, Project

WHAT: Cost & Benefits

Financial Benefits

Total Investment (MB)	Benefit Category		Payback Period
2.5 (CAPEX 2 MB)	Direct benefit: Saving >10MB/year product loss Indirect benefit: Saving unplanned S/D cost	XX	< 1 year

Non-Financial Benefits

Category	Description
Employee Satisfaction	Effective online-leak sealing tracking for improving maintenance work planning
Digital Culture	New ways of working as a digital leader
Customer Satisfaction	Unplanned shutdown prevention
Other i.e. Reputation/Regulatory / Safety	A loss of containment prevention

WHEN: Timeline

Start – End: Jan 2021 – Dec 2021 Duration (Months): 12

Phase	Description	Target date	Investment (MB)
1	Continue eTCM program improvement as prototype approved in 2020 Shark Tank	Nov 2021	2.0
2	eTCM Go-live to all BU in GC	Dec 2021	0.5
		Total	2.5

As-Is Temporary Clamp Life Cycle

To-Be Temporary Clamp Life Cycle

To-Be Temporary Clamp Life Cycle

COST & BENEFIT

Business Impact

Cost saving

 $$\sim 0.5M/Shutdown (ARO)$

\$ ~10M/Shutdown (GC)

Efficiency

50% reduction in department processing times

Safety & Reliability

Improved safety performance (faster processing)

Transparency

Clear overview of all data, processes and products.

Indirect Benefit: Cost Avoidance from Plant Shutdown

Cost of shutdown relate on plant

Unit	Consequent	S/U time	Loss	Note
U150	Total plant S/D	72h	1.07M\$	HN from 146.5 to 0 t/h, import ref from 52 to 0 t/h
U200	Total plant S/D	72h	1.07M\$	HN from 146.5 to 0 t/h, import ref from 52 to 0 t/h
U370	CX unit S/D	24h	0.031M\$	Bz to CX from 22 to 0 t/h
U380	U380 S/D	24h	0.047M\$	Total 60.9 t/h (PX-Plus 210 t/h at conversion 29%), to 0 t/h
U320	S/D xylene section and r/d heavy platformate (reduce PLF to 120 t/h and no import ref.	72h	0.28 M\$	HN from 146.5 to 120 t/h, import ref from 52 to 0 t/h
U390	R/D off spec HA	24h	0.071 M\$	C9A from 27 t/h to 0 t/h

Direct Cost

Investment 3.5 - 4 MB

Payback < 1 year

Product & Energy loss

~ 150,000 THB/day

Productivity +50%

14 days to 6 days

50 clamps/ plant

1000 clamps/ GC Group

(Avg. 250 clamps per year)

Direct Cost(Product)

Fig. Release rate as a function of pressure and hole diameter for a liquid with density of 650 kg/m³

Direct Cost (Product)

1.	Hole size 3	mm at F	Pressure 7	Barg re	lease rate at

2. Naphtha* price is

3. Then 24 hr leak, calculated (0.5x370x24)

4. Convert to Baht (30.02 Baht/US)

From historic of PTTGC, the number of HC clamps are

Saving 250x133,289 =

Safety factor 50%

\sim \sim	T/hr
0.5	l/nr
(/ .)	

370 US/T

4,440 US/ Day

133,289 Baht/Day

250 Clamps/yr

33.32 MB/year

16.66 MB/year

Note*:

- Paraxylene 546 US/T

- Steam 785 Baht/T

- Polyethylene 928 US/T

- MEG 584 US/T

Direct Cost (Product)

Saving		16.66	MB/day		
If we sa	ve,				
	1 Day	16.66	MB		
	2 Days	33.32	MB		
	3 Days	49.98	MB		
	4 Days	66.64	MB		
	5 Days	83.30	MB		

Indirect VS Direct

7.5 MB VS 0.13 MB

(Per Day, Per Clamp)

(Another direct, If Reuse clamp will save avg. 0.075 MB per clamp)

MVP Result

						e-TCM	e-TCM	e-TCM
Day	CM431002 leak	6"-CM431003 leak	SL940003	CM940005-1	CM940005-2	2021-003-A-P1/Unit 250	2021-002-A-P1/Unit 100	2021-003-A-P1/Unit 100
Create	-	-	-	-	-	-	-	-
Inspection review	4.349	0.948	0.006	0.014	0.000	0.002	0.003	0.442
plant maintenance review	8.924	1.331	8.061	4.857	0.795	3.867	0.001	0.010
clamp design	0.126	0.235	0.758	4.157	7.229	0.020	5.771	2.190
design approval	0.046	0.019	0.181	0.002	0.036	0.005	0.008	0.024
implement approval	0.496	0.010	0.007	0.005	0.017	0.097	0.173	0.071
Execution	6.299	6.078	4.985	6.972	7.930	0.971	2.722	5.028
Total Completed	20.240	8.622	13.998	<u>16.007</u>	<u>16.007</u>	<u>4.962</u>	8.678	7.765

Avg. 14.975 days

Avg. 6.22 days

MVP Result (eTCM)

TEMPORARY ON STREAM LEAK SEALING LOG (A-P1)

OP No.	Unit No.	Tag No./ Line No.	Inspection Review Time (hrs)	Plant Maintenance Review time (hrs)	Clamp Design time (hrs)	Design Approval time (hrs)	Implementation Approval time (hrs)	Execution time (hrs)	Total time (hrs)	Total time (days)
2021-003-A-P1/Unit 250	Unit 250	250-E-1	0.05	23.33	0.48	0.10	2.30	23.28	49.54	4.96
2021-001-A-P1/Unit 250	Unit 250	250-PDT-126	2.22	32.25	28.88	0.03	2.32	52.00	117.70	4.90
2021-004-A-P1/Unit 250	Unit 250	250-TE-69	2.38	0.30	0.57	0.03	2.27	23.13	28.68	1.20
2021-002-A-P1/Unit 250	Unit 250	250-PDT-122	0.12	32.77	28.48	0.05	2.90	64.00	128.32	5.35
2021-001-A-P1/Unit 100	Unit 100	100-LGR308(100-V2) Spoon Piece upper side corro	0.12	0.35	208.32	0.72	1.03	55.93	266.47	11.10
2021-002-A-P1/Unit 100	Unit 100	100-LGR355(100-V8) Spoon Piece upper& Lower	0.07	0.03	138.50	0.18	4.13	65.33	208.24	8.68
2021-002-A-P1/Unit 940	Unit 940	CM940001	0.05	0.38	18.58	0.58	2.77	116.55	138.91	5.79
2021-003-A-P1/Unit 100	Unit 100	100-LT55 (100-V8)Spoon Piece upper& Lower side	10.62	0.22	13.00	0.55	1.68	120.67	146.74	7.77

Avg. 6.22 days

Saving = (14.975-6.22)*0.13 = 1.13 MB/clamp If Steam leak = (14.975-6.22)*9420 = 82,472.1 B/clamp

Benefit Calculation: Clamp Cost Reduction

Remarks

1. %Reused Clamp is initially assumed at 10% meaning that after implementation, 10% of leakage can immediately reuse existing clamp. This percentage should continue to grow as we have more clamp on hand.

Benefit Calculation: Less Realized Expense

To-Be (Fixed Asset) Acquisition Dr. New Clamp Asset 75k Cr. Vendor 75k Depreciation - Monthly Dr. Clamp Depreciation Expense 15k Cr. Accumulated Depreciation 15k

Remarks

- 1. Clamp useful life assumed at 4 years, scrap value 1 THB.
- 2. Depreciation method assumed to be Straight line total useful life daily

INITIAL STUDY (RESEARCH/HACKATHON)

Current Process

Cc Manoch P <A-MN-A1/2422>; Arruk B <A-MN-A1/2407>; Aekarat S Worapan M <A-MN-MP/3016>; Tikumpon T <T-II-IP2/2292>; Nap

Signed By There are problems with the signature. Click the signature button for de

Approve as propose krub.

Current Issues

Disconnected

Many platforms that do not interconnect so the data cannot be easily maintained and shared

Manual Process

As there is no single point of stock relation, it's easy to lose stock and misplace their location

Current issues

Time Consuming

Many platforms that do not interconnect so the data cannot be easily maintained and shared

Data Integrity

The accuracy and consistency of data over its entire life-cycle

Resources

As there is no single point of stock relation, it's easy to lose stock and misplace their location

IMPLEMENTATION SCOPE & APPROACH

Temporary Clamp Management

A simplified portal allows all staff and third parties to log into one single platform

Restructuring

TCM Portal

Assisted Reporting

Making report creation and management easier

Monitoring

Creation of automated flows and smart suggestions

Interactive Map

Visual overview of all repairs

Inventory Management

Real time data tracking

Dashboard

Tracking and analytical reporting made easier

Value Proposition

One single platform

We can create a single portal and bring relevant information into one location from existing systems creating a single reliable platform

Low maintenance

Single platform would allow for focused updates and reduced costs for further feature scaling in the future and reduce complications

Tracking made easy

As each step is broken down, relative and logical tracking of repairs, events and schedules assist users in order to keep track of ongoing progress

Breakdown processes

One primary flow with various departments being provided tasks needed for completion only when relevant

Zero Leak

The foundation for future platforms leading the vision of digital transformation in the organisation. Utilising machine learning and big data analysis to accurately predict potential risk and loss of productivity.

Business Architecture

System Architecture

Possibility of Technology

Technology Comparison

	PROs	CONS
Traditional Development	Custom made to fit our needsGood for complex requirement	Time consuming developmentPotentially more expensive
Low Code Platform	Fast delivery of new softwareAgility to respond to change/updateMulti-experience Made Easy	Lack of customizationGet tied to low code platform

Development & Execution Plan

01

Team Goal

Application setting Q1/2020

02

Development

Product design Q3-4/2020

MVP (Demo)
DIM & Procurement

03

Test at GC4

Feedback from user Q3-4/2020

Phrase II DIM & Procurement 04

Final Improve

Continuous testing Q3-4/2020

05

Go Live

GC Group go live End of 2021

RISK ASSESSMENT

Project Risks

Risks assessment

Risks Management Plan (High and Medium Risks)

No.	Risk Category & Description	Impact	Likeli hood	Mitigation	РТА	Status
1	Resource					
2	Schedule					
3	Scope/Requirement					
4	Technology/Technical					
5	Finance					
6	Legal/Regulation					
7	Quality					
8	Vendor/Supplier					
9	User					
10	Safety/Environment					
11	Process/Operation					

VENDOR SURVEY & COMPARISON

Vendor Sourcing

TEAM ORGANIZATION

Team Organization

Our Team mnomo **Temporary Clamp** Management (TCM) ด้วยนะ Project Coordination Engineer Project Coordinator Sr.Corrosion Engineer Inspection Engineer Inspection Engineer

THANK YOU

Backup Slides

Cost of shutdown relate on plant

Unit	Consequent	S/U time	Loss	Note
U150	Total plant S/D	72h	1.07M\$	HN from 146.5 to 0 t/h, import ref from 52 to 0 t/h
U200	Total plant S/D	72h	1.07M\$	HN from 146.5 to 0 t/h, import ref from 52 to 0 t/h
U370	CX unit S/D	24h	0.031M\$	Bz to CX from 22 to 0 t/h
U380	U380 S/D	24h	0.047M\$	Total 60.9 t/h (PX-Plus 210 t/h at conversion 29%), to 0 t/h
U320	S/D xylene section and r/d heavy platformate (reduce PLF to 120 t/h and no import ref.	72h	0.28 M\$	HN from 146.5 to 120 t/h, import ref from 52 to 0 t/h
U390	R/D off spec HA	24h	0.071 M\$	C9A from 27 t/h to 0 t/h

Average 0.5 MUSD

Date	Hour	Minute	Day	Hour	Minute	Minute	CM431002 leak	Hour	Day
8/10/2019	11	15	-	-	-	-	Create	1	-
12/10/2019	19	37	5760	480	22	6262	Inspection review	104.367	4.349
21/10/2019	17	47	12960	-120	10	12850	plant maintenance review	214.167	8.924
21/10/2019	20	49	0	180	2	182	clamp design	3.033	0.126
21/10/2019	21	55	0	60	6	66	design approval	1.100	0.046
22/10/2019	9	49	1440	-720	-6	714	implement approval	11.900	0.496
28/10/2019	17	0	8640	480	-49	9071	Execution	151.183	6.299
						29145	Completed	485.750	20.240

Date	Hour	Minute	Day	Hour	Minute	Minute	6"-CM431003 leak	Hour	Day
23/6/2020	2	5	-	-	-	-	Create	-	-
24/6/2020	0	50	1440	-120	45	1365	Inspection review	22.750	0.948
25/6/2020	8	46	1440	480	-4	1916	plant maintenance review	31.933	1.331
25/6/2020	14	25	0	360	-21	339	clamp design	5.650	0.235
25/6/2020	14	53	0	0	28	28	design approval	0.467	0.019
25/6/2020	15	8	0	60	-45	15	implement approval	0.250	0.010
1/7/2020	17	0	8640	120	-8	8752	Execution	145.867	6.078
						12415	Completed	206.917	8.622

Date	Hour	Minute	Day	Hour	Minute	Minute	SL940003	Hour	Day
29/7/2020	15	23	-	-	-	-	Create	1	-
29/7/2020	15	31	0	0	8	8	Inspection review	0.133	0.006
6/8/2020	16	59	11520	60	28	11608	plant maintenance review	193.467	8.061
7/8/2020	11	11	1440	-300	-48	1092	clamp design	18.200	0.758
7/8/2020	15	31	0	240	20	260	design approval	4.333	0.181
7/8/2020	15	41	0	0	10	10	implement approval	0.167	0.007
12/8/2020	15	20	7200	0	-21	7179	Execution	119.650	4.985
						20157	Completed	335.950	13.998

							MN920776652		
Date	Hour	Minute	Day	Hour	Minute	Minute	CM940005-1	Hour	Day
11/10/2020	13	48	1	1	-	-	Create	1	-
11/10/2020	14	8	0	60	-40	20	Inspection review	0.333	0.014
16/10/2020	10	42	7200	-240	34	6994	plant maintenance review	116.567	4.857
20/10/2020	14	28	5760	240	-14	5986	clamp design	99.767	4.157
20/10/2020	14	31	0	0	3	3	design approval	0.050	0.002
20/10/2020	14	38	0	0	7	7	implement approval	0.117	0.005
27/10/2020	13	58	10080	-60	20	10040	Execution	167.333	6.972
						23050	Completed	384.167	16.007

							MN910010134		
Date	Hour	Minute	Day	Hour	Minute	Minute	CM940005-2	Hour	Day
26/10/2020	13	48	1	ı	-	-	Create	1	-
26/10/2020	13	48	0	0	0	0	Inspection review	0.000	0.000
27/10/2020	8	53	1440	-300	5	1145	plant maintenance review	19.083	0.795
3/11/2020	14	23	10080	360	-30	10410	clamp design	173.500	7.229
3/11/2020	15	15	0	60	-8	52	design approval	0.867	0.036
3/11/2020	15	39	0	0	24	24	implement approval	0.400	0.017
11/11/2020	13	58	11520	-120	19	11419	Execution	190.317	7.930
						23050	Completed	384.167	16.007

Fig. Release rate as a function of pressure and hole diameter for a liquid with density of 650 kg/m³

Table: Release Hole Sizes and Areas Used in Consequence Analyses

Release Hole Number	Release Hole Size	Range of Hole Diameters (mm)	Release Hole Diameter, d_n (mm)
1	Small	0 – 6.4	$d_1 = 6.4$
2	Medium	> 6.4 – 51	$d_2 = 25$
3	Large	> 51 – 152	$d_3 = 102$
4	Rupture	> 152	$d_4 = \min[D, 406]$

^{***}Referred from API RP 581 Risked Based Inspection Methodology