Technische Universität München Physik Department

Theoretische Physik T39 Prof. Norbert Kaiser

Zwischenklausur zur Theoretischen Physik 2: Elektrodynamik

am 17.12.2013

Name:					
Matrikelnummer:					
	Γ	I	Ι	Ι	
Aufgabe Nr.:	1	2	3	4	\sum
Punktezahl:	10	15	10	15	50
Davon erreicht:					

- Bitte schreiben Sie leserlich Ihren **Namen** und Ihre **Matrikelnummer** auf diese Seite sowie auf **jeden** beschriebenen Papierbogen.
- Verwenden Sie bitte pro Aufgabe eine neue Seite.
- Geben Sie immer den Lösungsweg an!
- Lesen Sie sich die Aufgabenstellungen zunächst aufmerksam durch!
- Diese Klausur besteht aus 4 Aufgaben. Insgesamt können 50 Punkte erreicht werden. Die Bearbeitungszeit ist 90 Minuten.
- Geben Sie auch dieses Angabenblatt ab!

Aufgabe 110 Punkte

In der xy-Ebene liegt um den Ursprung zentriert eine kreisförmige Leiterschleife mit dem Radius k. Durch diese fließt im Gegenuhrzeigersinn der konstante Strom I.

- (a) (4 Punkte) Berechnen Sie (ohne Verwendung von Symmetrieargumenten) das Magnetfeld $\vec{B}(\vec{r})$ auf der z-Achse, d.h. für die Punkte $\vec{r} = (0, 0, z)$.
- (b) (4 Punkte) Bestimmen Sie das magnetische Dipolmoment \vec{m} und das zugehörige Dipolfeld auf der z-Achse. Verifizieren Sie für große Entfernungen auf der z-Achse die Übereinstimmung mit dem Ergebnis aus (a).
- (c) (2 Punkte) Welchen Wert hat das Magnetfeld $\vec{B}(\vec{r})$ an den Punkten $\vec{r} = (x, y, 0)$ in der xy-Ebene mit sehr großem Abstand vom Ursprung?

Innerhalb einer im Ursprung zentrierten Kugel vom Radius R fällt die Ladungsdichte vom Mittelpunkt bis zum Kugelrand hin linear auf den Wert Null ab. Die Gesamtladung in der Kugel beträgt Q.

- (a) (4 Punkte) Geben Sie die radialsymmetrische Ladungsdichte $\rho(r)$, ausgedrückt durch Q und R, an.
- (b) (6 Punkte) Berechnen Sie für das radialsymmetrische elektrische Feld $\vec{E}(\vec{r}) = E(r) \vec{e}_r$ die abstandsabhängige Feldstärke E(r).
- (c) $(5 \ Punkte)$ Welche Arbeit W musste aufgewendet werden, um die Kugel mit der vorgegebenen Ladungsverteilung aufzuladen?

Hinweis: Substituieren Sie r = sR im auftretenden Integral.

Ein elektrischer Dipol $\vec{p} = (0, 0, p)$ befindet sich am Punkt $\vec{a} = (0, 0, a)$ (mit a > 0) über einer in der xy-Ebene liegenden, geerdeten (unendlich ausgedehnten) Metallplatte.

- (a) (5 Punkte) Bestimmen Sie unter Verwendung der Methode der Spiegelladungen das Potential $\Phi(\vec{r})$ im oberen Halbraum z>0 zur Randbedingung, dass es auf der Metallplatte z=0 verschwindet. Überprüfen Sie diese Randbedingung explizit.
- (b) (5 Punkte) Berechnen Sie die auf der Metallplatte influenzierte Flächenladungsdichte $\sigma(x,y)$.

In einem rechteckigen Plattenkondensator (Plattenabstand a und Fläche $b \cdot c$) ist um eine Strecke x (mit 0 < x < b) ein Dielektrikum der relativen Dielektrizitätskonstante $\epsilon > 1$ eingeschoben (siehe Abbildung). Der restliche Raum zwischen den Platten ist leer. Die Ladungen auf der unteren und oberen Platte sind Q und -Q. Alle Felder zwischen den Platten können als (stückweise) homogen angenommen werden.

- (a) (3 Punkte) Welche Beziehung gilt zwischen den elektrischen Felder E_1 und E_2 ? Welche Beziehung gilt zwischen den dielektrischen Verschiebungen D_1 und D_2 ?
- (b) (2 Punkte) Welcher Zusammenhang besteht zwischen D_1 , D_2 und den Flächenladungsdichten σ_1 , σ_2 auf der unteren Platte?
- (c) $(4 \ Punkte)$ Bestimmen Sie in Abhängigkeit von Q und x das elektrische Feld und die dielektrische Verschiebung im gesamten Raum zwischen den Platten.
- (d) (4 Punkte) Berechnen Sie in Abhängigkeit von Q und x die elektrostatische Feldenergie W(x) der Anordnung.
- (e) (2 Punkte) Mit welcher Kraft F wird das Dielektrikum in den Kondensator hineingezogen?

