Mouvement TR ★

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = R\overrightarrow{i_2}$ avec R = 30 mm. De plus :

- $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1;
- ▶ $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2**.

Un vérin électrique positionné entre 0 et 1 permet de maintenir 1 en équilibre. Un moteur électrique positionné entre 1 et 2 permet de maintenir 2 en équilibre.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer le couple et l'effort que doivent développer chacun des actionneurs pour maintenir le mécanisme en équilibre.

Corrigé voir .

Mouvement R *

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R\overrightarrow{i_1}$ avec R = 20 mm. La liaison pivot est motorisée par un moteur modélisée dont l'action mécanique sur **1** est donnée par $\overrightarrow{C_m} = C_m \overrightarrow{k_0}$ avec $C_m = 40$ Nm. La fréquence de rotation nominale est de 1500 tr min⁻¹.

La pesanteur est telle que $\overrightarrow{g} = -g\overrightarrow{j_0}$. On note m_1 la masse du solide 1, B son centre

d'inertie et
$$I_B(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & A_1 & 0 \\ 0 & 0 & A_1 \end{pmatrix}_{\mathfrak{B}_1}$$
 avec $A_1 = 12,5$ kg m². Le couple résistant dû

aux frottements est supposé constant et égal à 4 N m.

(On notera J le moment dynamique du solide 1 autour de l'axe $(A, \overrightarrow{k_0})$.

Question 1 Calculer l'accélération du moteur pendant le démarrage.

Question 2 Calculer le temps mis pour atteindre la fréquence nominale.

STAT

Pas de corrigé pour cet exercice.

5 DYN

Pas de corrigé pour cet exercice.

Corrigé voir 4.

Mouvement RR 3D ★

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R\overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell\overrightarrow{i_2} + r\overrightarrow{j_2}$. On note $R + \ell = L = 20$ mm et r = 10 mm. De plus :

- ► $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1;
- ▶ G_2 désigne le centre d'inertie de 2 tel que $\overrightarrow{BG_2} = \ell \overrightarrow{i_2}$, on note m_2 la masse de 2.

Un moteur électrique positionné entre 0 et 1 permet de maintenir 1 en équilibre. Un moteur électrique positionné entre 1 et 2 permet de maintenir 2 en équilibre.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Proposer une démarche permettant de déterminer le couple que doivent développer chacun des actionneurs pour maintenir le mécanisme en équilibre.

Corrigé voir 2.

Mouvement T - ★

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$. On note m_1 la masse du solide 1. On note G le centre d'inertie de 1 tel que $\overrightarrow{BG} = \ell \overrightarrow{j_1}$. La pesanteur est telle que $\overrightarrow{g} = -g \overrightarrow{i_0}$. Un vérin positionné entre 1 et 0 permet d'actionner la pièce 1.

Les performances dynamique de l'axe demandées sont les suivantes :

- ► vitesse linéaire maximale : 50 m min⁻¹;
- ► accélération linéaire maximale : 9.8 m s^{-2} .

Objectif

L'objectif de ce travail est de déterminer les caractéristiques du moteur (vitesse et couple) permettant d'atteindre ces performances.

Question 1 Quelle est la vitesse maximale que l'axe peut atteindre en $m s^{-1}$.

Question 2 Combien de temps l'axe met-il pour atteindre la vitesse maximale?

Question 3 Quelle distance l'axe parcourt-il pour atteindre la vitesse maximale?

Question 4 Quelle est la longueur minimale à commander pour que l'axe puisse atteindre la vitesse maximale?

Pas de corrigé pour cet exercice.

G- ----

Pas de corrigé pour cet exercice.

Question 5 Tracer le profil de la position, de la vitesse et de l'accélération pour parcourir une distance de 50 cm. On cherchera à atteindre les performances maximales de l'axe.

Un motoréducteur permet d'entraîner un système poulie – courroie permettant de déplacer la charge. On considère :

- ▶ une charge de masse 1 kg;
- ▶ un poulie de rayon 5 cm;
- ▶ un réducteur de rapport de transmission 1 : 20.

Question 6 Déterminer le couple à fournir par la poulie pour déplacer la charge lorsque l'accélération est au maximum.

Corrigé voir 3.

Mouvement RR 3D ★

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H\overrightarrow{j_1} + R\overrightarrow{i_1}$ et $\overrightarrow{BC} = L\overrightarrow{i_2}$. On a H = 20 mm, $r = 5 \,\mathrm{mm}$, $L = 10 \,\mathrm{mm}$. De plus :

- ▶ G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1} = \overrightarrow{Hj_1}$, on note m_1 la masse de 1; ▶ $G_2 = C$ désigne le centre d'inertie de 2, on note m_2 la masse de 2.

Un moteur électrique positionné entre 0 et 1 permet de maintenir 1 en équilibre. Un moteur électrique positionné entre 1 et 2 permet de maintenir 2 en équilibre.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g\overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Proposer une démarche permettant de déterminer le couple que doivent développer chacun des actionneurs pour maintenir le mécanisme en équilibre.

Corrigé voir 6.

B DYN

8 STAT

Pas de corrigé pour cet exercice.

Parallélépipède percé★

La matrice d'inertie d'un cylindre d'axe (G, \overline{k}) de rayon R et de hauteur H et de masse m est donnée en son centre d'inertie par $I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{r}, \overrightarrow{r}, \overrightarrow{r}, \overrightarrow{r}\right)}$ avec

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et $C = m\frac{R^2}{2}$.

La matrice d'inertie d'un parallélépipède rectangle de cotés a, b et c et de masse m est

donnée en son centre d'inertie par $I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{i}, \overrightarrow{k}\right)}$ avec $A = m \frac{b^2 + c^2}{12}$,

$$B = m\frac{a^2 + c^2}{12}$$
, $C = m\frac{a^2 + b^2}{12}$.

Soit la pièce suivante.

On pose
$$\overrightarrow{OA} = \frac{a}{3}\overrightarrow{x} + \frac{c}{2}\overrightarrow{z}$$
.

Question 1 Déterminer la position du centre d'inertie *G* du solide.

Question 2 Déterminer la matrice d'inertie du solide en *G*.

Corrigé voir 3.

Xavier Pessoles Sciences Industrielles de l'Ingénieur – PSI