

Supervisor: M.Sc. Matthias Assenmacher

Noah Hurmer

 tbd

Abstract

TODO

Contents

1	Introduction			
	1.1	Motivation	1	
	1.2	Applications	1	
	1.3	Graph types	1	
		1.3.1 Graph modes	1	
	1.4	Embedding types	1	
2	Problem and Dataset			
3	Deep Learning and random Walk			
	3.1	Random Walk	2	
	3.2	SkipGram	2	
		3.2.1 DeepWalk as an example for Hierarchical softmax	2	
		3.2.2 node2vec as an example for negative sampling	2	
	3.3	(LSTM)	2	
4	Performance Evaluation		2	
5	Ref	erences	2	

List of Tables

List of Figures

List of Abbreviations

Term	Abbreviation
DL	Deep Learning
GE	Graph Embedding
RW	Random Walk

1 Introduction

1.1 Motivation

1.2 Applications

- uses in social networks
- visualization
- Network compression
- Network Partitioning
- Node Classification
- Link Prediction
- fake news detection

perhaps omit some examples as to not overcrowd or overcomplicate this passage.

1.3 Graph types

- What is a Graph?
- Nodes and edges
- Nodes are the entities
- Edges are the relations between nodes
- nodes can consist of all sort of Data, images, text, etc even mixed
- nodes can have additional attributes

1.3.1 Graph modes

- homogeneous, heterogeneous
- graphs can be directional, weighted, semantik, knowledge based

1.4 Embedding types

- node embedding
- edge embedding
- subgraph/Groups
- entire Graphs

2 Problem and Dataset

introduce the Problem and the associated Dataset on which the algorithms below should be run on.

3 Deep Learning and random Walk

Short Paragraph explaining how one Approach to (node) Graph embedding utilizes Deep Learning methods. List the other approaches not using DL with a brief explanation, and especially mention how the computational advantage of the Random Walk approach can be preferable to MF.

3.1 Random Walk

Introduce the random Walk concept as another subsection of Deep Learning tools for Graph embedding. What is the Aim of the Random Walks?

3.2 SkipGram

Briefly explain the NLM SkipGram and how its paired with Random Walks. Also introduce the problem of calculating the associated softmax equation.

3.2.1 DeepWalk as an example for Hierarchical softmax

3.2.2 node2vec as an example for negative sampling

$3.3 \quad (LSTM)$

Optional Section considered as an excursion to another Random Walk method using a different Model and heterogeneous Graphs as Inputs. Perhaps using HSNL as the algorithm example.

4 Performance Evaluation

Discuss how to evaluate Graph Embedding methods and algorithms and then evaluate the above used ones.

5 References

- Alicia Frame, PhD. 2019. "Graph Embeddings." 2019. https://www.youtube.com/watch?v=oQPCxwmBiWo&ab_channel=Neo4j.
- Cai, HongYun, Vincent W. Zheng, and Kevin Chen-Chuan Chang. 2018. "A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications." *IEEE Transactions on Knowledge and Data Engineering* 30 (9): 1616–37. https://doi.org/10.1109/TKDE.2018. 2807452.
- Goyal, Palash, and Emilio Ferrara. 2018. "Graph Embedding Techniques, Applications, and Performance: A Survey." *Knowledge-Based Systems* 151: 78–94. https://doi.org/https://doi.org/10.1016/j.knosys.2018.03.022.
- Grover, Aditya, and Jure Leskovec. 2016. "Node2vec: Scalable Feature Learning for Networks." CoRR abs/1607.00653. http://arxiv.org/abs/1607.00653.

- Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. 2014. "DeepWalk: Online Learning of Social Representations." *CoRR* abs/1403.6652. http://arxiv.org/abs/1403.6652.
- Pilehvar, Mohammad Taher, and Jose Camacho-Collados. 2020. "Embeddings in Natural Language Processing: Theory and Advances in Vector Representations of Meaning." Synthesis Lectures on Human Language Technologies 13 (4): 1–175. https://doi.org/10.2200/S01057ED1V01Y202009HLT047.