关于 2021-2022 年春季学期 《计量经济学》课程 期末考试说明

1. 考试范围

本次考试围绕计量经济学课程大纲【**附件一**】中**标注星号**的章节内容。 具体题目由课程组期末命题小组成员分别独立完成。

2. 考试题型

本次考试题型多样。选择、填空、问答、计算、证明等形式均可能用于本次试题中。 2020-2021 春季学期考试题目【附件二】供大家参考。注意: 往年试题不会用于本次考试中。附件二不提供任何参考答案。

3. 考试程序

请大家严格遵守**武汉大学学生手册**规定和**武汉大学考试纪律**。如个人有特殊情况请**提前**与本科办联系,履行考试相关手续。

计量经济学平台课课程组 2020年5月29日

计量经济学平台课 课程内容设计(修订稿)

2020年2月20日

教学目标:

指导和帮助学生掌握现代计量经济学主要理论,主流分析方法,同时能学以致用,接轨当前的实证研究前沿,全面提高思维能力和科研水平。

教学思路:

将内容拆分为知识点,不拘泥于教材框架。以一本教材为主 (Principle of Econometrics), 其它教材为辅, 博采众家之长, 同时结合案例, 注重实操。

考试设计:

- (1) ***为必须掌握, ** 为拔高, 拉开差距, * 为锦上添花, 不考
- (2) 理论 + 案例考察

Part 1 (建议 5 周) ***

核心内容: 一元线性模型 + 多元线性回归模型

注:(1)两部分为平行内容,可以类比讲解;

(2)中间涉及到区间估计, 假设检验, 预测, 拟合优度和模型, 建议结合软件 Stata 进行讲解

对应教材章节: Chapter 2-6

The Simple Linear Regression Model

Interval Estimation and Hypothesis Testing

Prediction, Goodness-of-Fit, and Modeling Issues

The Multiple Regression Model

Further Inference in the Multiple Regression Model

Part 2 (建议 2 周) ***

指示变量 (虚拟变量)

异方差及处理办法

注: 这部分为 Part 1 的延伸, 建议结合软件讲解

对于教材章节 Chapter 7-8

Using Indicator Variables

Heteroskedasticity

可學校固定致力。其色与did做好人考察

Part 3 (建议 2 周) ***

面板数据

注: (1) 此章涉及最常见最重要的数据结构

(2) 主要内容为固定效应模型 (随机效应模型相对没有那么重要), 可以结合案例

对应教材章节 Chapter 15

Panel Data Models

Part 4 (建议 3 周) **

因果推断 (IV, DID, RD 和随机试验)

其以安分之春事对这世类进行等推

注:(1)该部分为当下实证计量方法之核心。可以结合相关的论文和案例,介绍解决问题的 思想和方法

- (2) 重点是 IV 和 DID ***
- (3) RD 和随抗试验,有时间的法简单介绍下即可,不从更多

IV: Endogenous Regressors and Moment-Based Estimation 对应教材章节 Chapter 10

DID 对应教材章节 Chapter 7.5

Regression Discontinuity 对应教材章节 Chapter 7.6

Part 5 (建议 2 周) **

数据分析实践

注: (1) 该部分由各个班老师灵活安排,可以用 Stata 软件做一些案列作业,并由助教给出答案并课下答疑。

(2) 考试中可结合一些数据分析输出的表, 让学生计算和分析。

 $\begin{array}{c} \sum_{i} y_{i} X_{1i} - b_{1} \sum_{i} X_{1i} - b_{2} \sum_{i} X_{1i} \cdot X_{2i} = 0 \\ \sum_{i} y_{i} X_{2i} - b_{2} \sum_{i} X_{2i} - b_{1} \sum_{i} X_{1i} X_{2i} = 0 \end{array}$ $\begin{array}{c} \sum_{i} y_{i} X_{1i} - b_{1} \sum_{i} X_{1i} X_{2i} = 0 \\ \sum_{i} y_{i} X_{1i} - b_{1} \sum_{i} X_{1i} = 0 \end{array}$ $\begin{array}{c} \sum_{i} y_{i} X_{1i} - b_{1} \sum_{i} X_{1i} = 0 \\ \sum_{i} y_{i} X_{2i} - b_{2} \sum_{i} X_{2i} = 0 \end{array}$ $\begin{array}{c} \sum_{i} y_{i} X_{2i} - b_{2} \sum_{i} X_{2i} = 0 \\ \sum_{i} y_{i} X_{2i} - y_{i} \sum_{i} y_{i} = y_{i} \end{array}$

$$S = \sum (y_i - y_i)^2 = \sum (y_i - b_1 x_1 i - b_2 x_2 i)$$

$$\frac{\partial S}{\partial b_1} = \sum x_1 i (y_i - b_1 x_1 i - b_2 x_2 i) = 0$$

$$\text{When } \frac{\partial S}{\partial b_2} = \sum x_2 i (y_i - b_1 x_1 i - b_2 x_2 i) = 0$$

第一题(共25分)

(A) 已知回归模型为

 $y_i = \beta_1 x_{1i} + \beta_2 x_{2i} + e_i$

该模型满足 OLS 回归的基本假设条件。 x_{1i} 和 x_{2i} 为两个解释变量,且 x_{1i} 为男性的虚拟变 量, x_{2i} 为女性的虚拟变量。样本量为 N。试回答以下问题:

- (1) β_1 和 β_2 是否可以被估计出来? 如果可以,请证明;如果不可以,也请给出证明。 (9)
- 在此模型中,假设 y_i 是某学期 GPA, 那么 β_1 和 β_2 的经济意义是什么?请简明扼要

(B) 给定模型

该模型满足 OLS 回归的基本假设条件。

请问:如果 y_i (比如说,体重)的度量单位由千克变为克, x_i (比如说,收入)的度量单位由 元变为百元,请问 eta_2 的 OLS 估计量 eta_1 t值和eta值该如何变化,并给出你的证明。(10)

> y/*= 1000 Ni

以 = (MOBi) + (MOD × | W を)・X + / W 色 を 数据。数据包括期刊名称(title),是否由协会创办(society),

图书馆订阅价格(libprice),期刊引用(cites),订阅数量(demand)。样本数 N 为 14。考察 = 1×10 BA += 1×10 BA 期刊的需求。

数据样本	·			,	(4	2 12
title		society	/	libprice	cites	demand
Review of Economic Studies			0	180	0.2411	325
Journal of Econometrics			0	1893	0.2479	129
Journal of Economic Theory			0	1400	0.2514	165
Economic Journal			0	301	0.2540	531
Journal of Financial Economics			0	1339	0.2676	231
Journal of Consumer Research			0	90	0.2762	536
Journal of American Statistical Assn			1	310	0.2800	487
Journal of Finance			1	226	0.3791	799
Quarterly Journal of Econ	omics		0	148	0.4138	660
Journal of Political Economy			0	159	0.6697	737
Econometrica			1	178	0.7943	340
American Economic Revi	iew		1	47	0.8999	1098
Journal of Economic Lite	rature		1	47	0.1530	972

Journal of Economic Perspectives	1	47	0.1583	866	

回归结果

	(I) demand	(II) demand	(III) ln(demand)	(IV) ln(demand)
c	待计算	731.982	8.756	8.513
	(91.054)	(72.089)	(0.381)	(0.575)
society	待计算			0.112
	(139.087)			(0.213)
libprice		-0.372		
		(0.097)		
ln(libprice)			-0.483	-0.453
			(0.069)	(0.089)
cites				0.094
				(0.405)
N	14	14	14	14
R2	0.3416	0.5492	0.8027	0.8098
SSE	795912.833	544957.573	1.1355	1.09498

(1)建立简单回归模型(I),如第一列所示:

 $demand = \beta_1 + \beta_2 society + e$

请计算参数 β_1 , β_2 的最小二乘估计值, 计算 95%的置信区间。解释 β_1 , β_2 估计值的含义。(对应自由度的t临界值为 2.18) (5)

(2)建立期刊的需求模型(II):

 $demand = \beta_1 + \beta_2 libprice + e$

根据回归结果,检验原假设 H_0 : $\beta_2 = 0$,备选假设 H_1 : $\beta_2 \neq 0$,显著性水平 $\alpha = 5$ %。(5)(3)建立期刊的对数需求模型(III):

 $\ln (demand) = \beta_1 + \beta_2 \ln (libprice) + e$

请根据模型(II)和(III)的回归结果,分别计算期刊需求的价格弹性(在均值处)。(5)(4)建立期刊的对数需求多元回归模型(IV):

 $\ln(demand) = \beta_1 + \beta_2 \ln(libprice) + \beta_3 cites + \beta_4 society + e$

检验原假设 H_0 : $\beta_3=0$, $\beta_4=0$, 备选假设 H_1 : $\beta_3\neq0$ 或 $\beta_4\neq0$, 显著性水平 $\alpha=5$ %。 (对应自由度的 F 临界值为 4.1028)。 (5)

(5)对上述回归模型 (IV),有什么原因可能导致 $β_2$ 的最小二乘估计不是有效的?如何检验?有什么原因可能导致 $β_2$ 的最小二乘估计不是无偏的?如何解决?请简要论述。(5)

第三題(共25分)

为了研究 MOOC 教学的效果,实验者把学生分为了两组。指示变量di=

MOOC 实验之后两组人的成绩(y)如第四列所示

超3大河明确指出事; 双重的成计量

曲入MOC组的可能与非MOC组的个体可能存在差异

序号	y(MOOC 实验	d _i	y(MOOC 实验
	前)		后)
1	408	0	454
2	437	1	463
3	443	1	473
4	450	0	484
5	456	0	513
6	463	1	520
7	467	1	576
8	473	0	536
9	483	1	513
10	490	1	559

- (1)请计算 MOOC 教学带来的效果,给出该效果的标准误 se 和 t 值,写出详细过程。(10)
- (2) 请通过计算来证明: 差分估计量和组内估计量相等。(注: 仅仅写公式证明无效)(10)
- (3)请计算实验组和控制组在实验前的差异。你觉得这种差异会影响你的结论么?请详细论证。(5)

第四題. (共25分)

现在我们要研究吸烟(Smoking)对健康(Health)的影响。模型为: Health = $\beta_1 + \beta_2$ Smoking + e。

请回答以下问题

- (1) 假设该模型有遗漏变量"健康意识",请问β2的估计量有何偏误?给出你的证明。(10)
- (2) 面对 (1) 中的遗漏变量问题,如果你打算把"健康意识"控制在模型中,你打算如何做? 将简要说明你的计划。(5)
- (3) 假如还有其它一些因素,比如文化环境可能同时影响 Smoking 和 Health,但是你无法量化,你可能使用工具变量。我们提出了两个工具变量 a. 个人收入水平b. 周围烟酒商店数量。你觉得哪个变量作为工具变量更好?请结合 IV 的知识详细回答(5)
- (4) 结合该案例,请使用你选择的 IV,详细阐述你如何进行 2SLS,并说明你将做哪些检验,请写出你的模型,详细叙述相关步骤。(5)