Examen final de SIN: Test del bloque 2 (1,75 puntos)

ETSINF, Universitat Politècnica de València, 26 de enero de 2023

Grupo, apellidos y nombre: 1,

Marca cada recuadro con una única opción. Puntuación: $\max(0, (\text{aciertos} - \text{errores}/3) \cdot 1, 75/6)$.

1 B Dada la siguiente tabla de probabilidades conjuntas de las 3 variables de interés:

A	0	0	0	0	1	1	1	1
В	0	0	1	1	0	0	1	1
C	0	1	0	1	0	1	0	1
P(A,B,C)	0.035	0.089	0.085	0.054	0.215	0.161	0.165	0.196

¿Cuál es el valor de $P(A=1,B=1 \mid C=1)$? $P(A=1,B=1 \mid C=1) = 0.392$

A)
$$P(A=1, B=1 \mid C=1) \le 0.25$$

B)
$$0.25 < P(A=1, B=1 \mid C=1) \le 0.50$$

C)
$$0.50 < P(A=1, B=1 \mid C=1) \le 0.75$$

D)
$$0.75 < P(A=1, B=1 \mid C=1) \le 1.00$$

2 A Dado el clasificador en 2 clases definido por sus vectores de pesos $\mathbf{w}_1 = (1,1,2)^t$, $\mathbf{w}_2 = (2,0,3)^t$ en notación homogénea, ¿cuál de los siguientes conjuntos de vectores **no** define un clasificador equivalente al dado?

A)
$$\mathbf{w}_1 = (-1, -1, -2)^t, \mathbf{w}_2 = (-2, 0, -3)^t$$

B)
$$\mathbf{w}_1 = (2, 1, 2)^t, \, \mathbf{w}_2 = (3, 0, 3)^t$$

C)
$$\mathbf{w}_1 = (3, 2, 4)^t, \, \mathbf{w}_2 = (5, 0, 6)^t$$

D)
$$\mathbf{w}_1 = (2, 2, 4)^t, \, \mathbf{w}_2 = (4, 0, 6)^t$$

3 D Supóngase que estamos aplicando el algoritmo de aprendizaje de árboles de clasificación para un problema de cuatro clases, c=1,2,3,4. El algoritmo ha alcanzado un nodo t que incluye los siguientes datos: 4 de la clase 1, 64 de la 2, 32 de la 3 y 64 de la 4. La impureza de t, $\mathcal{I}(t)$, medida como la entropía de la distribución empírica de las probabilidades a posteriori de las clases en t, es: I=1.65

A)
$$0.00 \le \mathcal{I}(t) < 0.50$$
.

B)
$$0.50 \le \mathcal{I}(t) < 1.00$$
.

C)
$$1.00 \le \mathcal{I}(t) < 1.50$$
.

D)
$$1.50 \le \mathcal{I}(t)$$
.

- 4 B Se tiene una partición de un conjunto de datos 3-dimensionales en un número de clústers dado, $C \geq 2$. Considérese la transferencia del dato $\mathbf{x} = (1,6,9)^t$ de un clúster j a otro $i,j \neq i$. Se sabe que el clúster j contiene 2 datos (contando \mathbf{x}) y el i 3. Asimismo, se sabe que la media del clúster j es $\mathbf{m}_j = (8,2,8)^t$ y la del i $\mathbf{m}_i = (10,8,9)^t$. Si se realiza dicha transferencia, se producirá un incremento de la suma de errores cuadráticos, ΔJ , tal que: $\Delta J = -68.2$
 - A) $\Delta J < -70$
 - B) $-70 \le \Delta J < -30$
 - C) $-30 \le \Delta J < 0$
 - D) $\Delta J \geq 0$
- 5 C Sea M un modelo de Markov de representación gráfica:

- $\ensuremath{\mathbb{E}}$ Qué probabilidad Pacumulan todas las cadenas que empiezan por el símbolo b que puede generar M? P=0.6
- A) $P \le 0.25$
- B) $0.25 < P \le 0.50$
- C) $0.50 < P \le 0.75$
- D) $0.75 < P \le 1.00$
- 6 C Sea M un modelo de Markov de conjunto de estados $Q = \{1, 2, F\}$; alfabeto $\Sigma = \{a, b\}$; probabilidades iniciales $\pi_1 = \frac{2}{3}, \pi_2 = \frac{1}{3}$; matriz de probabilidades de transición entre estados A y de emisión de símbolos B, y matriz de Viterbi V:

A	1	2	F
1	$\frac{2}{6}$	$\frac{2}{6}$	$\frac{2}{6}$
2	$\frac{3}{7}$	$\frac{1}{7}$	$\frac{3}{7}$

B	a	b
1	$\frac{3}{4}$	$\frac{1}{4}$
2	$\frac{1}{3}$	$\frac{1}{4}$ $\frac{2}{3}$

V	a	a
1	$\frac{1}{2}$	V_{12}
2	$\frac{1}{9}$	V_{22}

- ¿Cuáles son los valores de V_{12} y V_{22} ? $V_{12} = \max(\frac{1}{2} \cdot \frac{2}{6} \cdot \frac{3}{4}, \frac{1}{9} \cdot \frac{3}{7} \cdot \frac{3}{4}) = \frac{1}{8}, V_{22} = \max(\frac{1}{2} \cdot \frac{2}{6} \cdot \frac{1}{3}, \frac{1}{9} \cdot \frac{1}{7} \cdot \frac{1}{3}) = \frac{1}{18}$
- A) $V_{12} = \frac{1}{8}$, $V_{22} = \frac{23}{378}$
- B) $V_{12} = \frac{9}{56}$, $V_{22} = \frac{23}{378}$
- C) $V_{12} = \frac{1}{8}$, $V_{22} = \frac{1}{18}$
- D) $V_{12} = \frac{9}{56}$, $V_{22} = \frac{1}{18}$

Examen final de SIN: Problema del bloque 2 (2 puntos)

ETSINF, Universitat Politècnica de València, 26 de enero de 2023

Grupo, apellidos y nombre: 1,

Problema sobre Perceptrón

En la tabla siguiente se proporciona un conjunto de 4 muestras bidimensionales de aprendizaje de 3 clases, c = 1, 2, 3.

n	x_{n1}	x_{n2}	c_n
1	5	2	1
2	1	2	3
3	1	1	2
4	4	1	1

Se pide:

1. (1.5 puntos) Realiza una traza de ejecución de una iteración del algoritmo Perceptrón, con factor de aprendizaje $\alpha = 1$, margen b = 0.1 y los siguientes pesos iniciales de cada clase por columnas:

d	w_{d1}	w_{d2}	w_{d3}
0	-3	0	-1
1	1	-4	-5
2	-4	-2	0

2. (0.5 puntos) Clasifica la muestra de test $\mathbf{x} = (5,5)^t$ mediante un clasificador lineal con los vectores de pesos obtenidos en el apartado anterior.

Solución:

1. Una iteración de Perceptrón con 1 muestra mal clasificada y pesos resultantes:

d	w_{d1}	w_{d2}	w_{d3}
0	-4	1	-2
1	0	-3	-6
2	-5	-1	-1

2. Clasificación de la muestra de test.

$$g_1(\mathbf{x}) = -29$$

$$g_2(\mathbf{x}) = -19$$

$$g_3(\mathbf{x}) = -37$$

$$c(\mathbf{x}) = 2$$