## ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

Вариант 6. Алгоритм Крускала.

Студент Вампилов Буда Арсаланович 411032, группа М4130.

# Ссылка на исходный код (jupyter notebook).

https://github.com/kupaqu/evcalc/blob/main/lab-1-kruskal.ipynb

### Описание работы.

Алгоритм состоит из следующих шагов:

- 1. Отсортировать список ребер в возрастающем порядке.
- 2. Последовательно пройтись по списку ребер добавляя их в оставное дерево.
- 3. Если добавленное ребро создает цикл, то не используем его.
- 4. Если все вершины графа содержатся в оставном дереве, то алгоритм останавливается.

Для реализации алгоритма на языке Python были использованы операторы структуры системы непересекающихся множеств, такие как:

MAKESET

```
1. parent = []
2. rank = []
3. for node in range(self.V):
4.  parent.append(node)
5.  rank.append(0)
```

· FINDSET

```
1. def find(self, parent, i):
2.   if parent[i] == i:
3.     return i
4.   return self.find(parent, parent[i])
```

· UNION

```
6. elif rank[xroot] > rank[yroot]:
7.    parent[yroot] = xroot
8. else:
9.    parent[yroot] = xroot
10.    rank[xroot] += 1
```

### Сложность алгоритма.

Время работы алгоритма складывается из времени сортировки ребер (наибольшее время) и времени работы системы непересекающихся ребер.

В базовом варианте ребра сначала сортируются за время  $O(m^2)$  (с помощью пузырьковой сортировки), затем просматриваются в порядке увеличения веса за время  $O(m^*a(m, n))$ , где а < 5, m – число ребер, n – число вершин. Итоговая сложность алгоритма  $O(n^2)$ .

В случае если сортировать ребра за время O(m\*logm), с помощью Timsort (встроен в Python), то и итоговая сложность алгоритма получится порядка O(m\*logm).

# Тесты и сравнение производительности алгоритмов.

Базовый алгоритм.

|                 | Time (s) | Used memory (MB) | Peak memory (MB) |
|-----------------|----------|------------------|------------------|
| Number of edges |          |                  |                  |
| 100             | 0.004    | 0.009            | 0.010            |
| 200             | 0.012    | 0.019            | 0.022            |
| 300             | 0.030    | 0.026            | 0.031            |
| 400             | 0.043    | 0.034            | 0.040            |
| 500             | 0.091    | 0.042            | 0.050            |
| 600             | 0.151    | 0.053            | 0.064            |
| 700             | 0.241    | 0.064            | 0.076            |
| 800             | 0.329    | 0.073            | 0.086            |
| 900             | 0.460    | 0.093            | 0.108            |
| 1000            | 0.594    | 0.102            | 0.119            |

Оптимизированный алгоритм.

|                 | Time (s) | Used memory (MB) | Peak memory (MB) |
|-----------------|----------|------------------|------------------|
| Number of edges |          |                  |                  |
| 100             | 0.002    | 0.047            | 0.112            |
| 200             | 0.007    | 0.169            | 0.447            |
| 300             | 0.018    | 0.378            | 1.020            |
| 400             | 0.033    | 0.644            | 1.796            |
| 500             | 0.047    | 0.995            | 2.807            |
| 600             | 0.072    | 1.423            | 4.041            |
| 700             | 0.096    | 1.927            | 5.499            |
| 800             | 0.122    | 2.507            | 7.135            |
| 900             | 0.157    | 3.166            | 9.072            |
| 1000            | 0.193    | 3.922            | 11.241           |

Графики.



Базовый алгоритм квадратичной сложности работает значительно дольше оптимизированного алгоритма линейно-логарифмической сложности, это можно увидеть по тому, как возрастает время в секундах относительно

количества вершин. Оптимизированный алгоритм показывает лучшую произоводительность на большом количестве вершин.

Однако производительность памяти в базовой реализации намного лучше, т. к. в сортировке пузырьком требуется только одна временная переменная (методом свапа она не требуется вообще), что соответствует сложности O(1). Оптимизированный алгоритм (Timsort) должен работать с сложностью по памяти O(N), т. к. не предполагает хранение в памяти более двух дубликатов значения, однако на практике видим, что производительность по памяти близка к линейно-логарифической, т. е. O(n\*logn).

#### Выводы.

Было реализовано два варианта алгоритма Крускала, отличающихся методом сортировки, также были проведены тестовые замеры производительности обоих алгоритмов и построены графики, на которых наглядно видны различия по сложности времени и памяти. Также было показано, что эксперименты по памяти отличаются от теоретических выводов для оптимизированного алгоритма.