错题

- **1、**如图,在平面直角坐标系中,正方形ABCO的点A、C分别在x轴、y轴上,点B坐标为 (6,6) 连接AC.抛物线 $y = x^2 + bx + c$ 经过B、C两点. \square
 - (1)求抛物线的解析式. (2)若动点E从原点出发,以每秒一个单位的速度,沿折线 O-C-B-A 做匀速运动,同时点F从原点出发,以相同的速度向x正半轴方向做匀速运动,过点E作 $ED \perp x$ 轴于点D,当点E停止运动时,点F也停止运动.设 \triangle EFD 的面积为S,运动时间为 x(0 < x < 18),试写出S与x的函数关系式,并求出S的最大值. (3)P是直线AC上的点,在抛物线上是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由.

- **2、**如图,已知直线 $a \parallel b$,线段AB在直线a上,BC垂直于a交b于点C,且 AB = BC ,P是线段BC上异于两端点的一点,过点P的直线分别交b、a于点D、E(点A、E位于点B的两侧),满足 BP = BE ,连接AP、CE.
 - (1)求证: \triangle *ABP* \hookrightarrow *CBE* ; (2)连结AD、BD,BD与AP相交于点F.如图2. ①当 $\frac{BC}{BP} = 2$ 时,求证: $AP \perp BD$; ②当 $\frac{BC}{BP} = n$ (n > 1) 时,设 \triangle *PAD* 的面积为 S_1 , \triangle *PCE* 的面积为 S_2 ,求 $\frac{S_1}{S_2}$ 的值.

- 3、如图,某新建小区要设计一个等腰梯形的花园,梯形花园上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向通道,上下底之间有两条纵向通道,各通道的宽度相等.设通道的宽为x米.□
 - (1)用含x的式子表示横向通道的面积; (2)当三条通道的面积是梯形面积的 $\frac{1}{8}$ 时,求通道的宽; (3)根据设计的要求,通道的宽不能超过6米.如果修建通道的总费用(万元)与通道的宽度成正比例关系,比例系数是5.5,花坛其余部分的绿化费用为每平方米0.02万元,那么当通道的宽度为多少米时,所建花

坛的总费用最少?最少费用是多少万元?

- 4、在 $\triangle ABC$ 中, $\angle C = 90^{\circ}$,两条直角边a,b满足 $a^2 4ab + 3b^2 = 0$,则 $\sin A =$
- 5、如图 $\odot O$ 是 \triangle ABC 的外接圆,连结OA、OC, $\odot O$ 的半径为2, $\sin B = \frac{3}{4}$,则弦AC的长为() \odot A. $\frac{3}{2}$ B. $\sqrt{7}$ C.3 D. $\frac{3}{4}$
- **6、**如图, **②**O 的半径为2,弦BD为 **2√3** cm ,A为 \widehat{BD} 的中点,E为弦AC的中点且在弦BD上,则四边形 ABCD的面积为 . □
- 7、二次函数 $y = ax^2 + bx + c$ ($a \neq 0$) 图象如图,下列结论:① abc > 0 ;② 2a + b = 0 ;③当 $m \neq 1$ 时, $a + b > am^2 + bm$;④ a b + c > 0 ;⑤若 $ax_1^2 + bx_1 = ax_2^2 + bx_2$,且 $x_1 \neq x_2$, $x_1 + x_2 = 2$.其中正确的有_____.(填序号) \Box
- **8、**如图,四边形ABCD内接于 ⊙*O* ,AB是直径,AC和BD相交于点E,且OC平行于AD,分别延长AB、CD交于P,且PB=2OB,CD=4.□
 - (1)求证:DC=BC; (2)求PC的长; (3)求 sin ∠CAB 的值.

9、在不透明的口袋中,有三张形状、大小、质地完全相同的纸片,三张纸片上分别写有函数: ① y = -x,② $y = -\frac{3}{x}$,③ $y = 2x^2$. (1)在上面三个函数中,其函数图象满足在第二象限内y随x的增大而减小的函数有_____(请填写番号);现从口袋中随机抽取一张卡片,则抽到的卡片上的函数图象满足在第二象限内y随x的增大而减小的概率为 ; (2)王亮和李明两名同学设计了一个游戏,规则为:王亮先

从口袋中随机抽取一张卡片,不放回,李明再从口袋中随机抽取一张卡片,若两人抽到的卡片上的函数图象都满足在第二象限内y随x的增大而减小,则王亮得3分,否则李明得2分,请用列表或画树状图的方法说明这个游戏对双方公平吗?若你认为不公平,如何修改规则才能使该游戏对双方公平呢?

标准答案

- 1. \therefore $S_{\triangle} = \frac{1}{2}OE \cdot OF = \frac{1}{2}x^2(0 < x \leq 6)$
 - $dots \ S_{artriangle} = rac{1}{2}OE \cdot OF = rac{1}{2}x^2 (0 < x \leq 6)$

解:(1): 正方形ABCD, B(6,6)

解:(1): 正方形ABCD, B(6,6)

- C(0,6)
- $\therefore C(0,6)$
- ∵B、C在抛物线上
- ∵B、C在抛物线上

$$\therefore \begin{cases} c = 6 \\ -\frac{b}{2} = 3 \end{cases}$$

$$\therefore \begin{cases} c = 6 \\ -\frac{b}{2} = 3 \end{cases}$$

$$\therefore \begin{cases} c = 6 \\ b = -6 \end{cases}$$

$$\therefore \begin{cases} c = 6 \\ b = -6 \end{cases}$$

$$\therefore y = x^2 - 6x + 6$$

$$\therefore y = x^2 - 6x + 6$$

- (2)①当E在OC上运动时
- (2)①当E在OC上运动时

$$OE = x$$
 , $OF = x$

$$OE = x$$
, $OF = x$

- ②当E在BC上运动时
- ②当E在BC上运动时

E到OA的距离为6

E到OA的距离为6

$$OF = x - 6$$

$$OF = x - 6$$

$$\therefore \frac{1}{2} \times 6 \left[x - (x - 6) \right] = 18(6 < x \le 12)$$

$$\therefore \ \frac{1}{2} \times 6 \left[x - (x - 6) \right] = 18 (6 < x \le 12)$$

- ③当E在BA上运动时
- ③当E在BA上运动时

E到AB的距离为 (18-x)

E到AB的距离为 (18-x)

$$OF = x - 6 \\
OF = x - 6$$

$$oldsymbol{\cdot \cdot} S_{ riangle} = rac{1}{2} \cdot (18 - x) \, (x - 6) = rac{1}{2} ig(-108 + 24x - x^2 ig) = -rac{1}{2} x^2 + 12x - 54 (12 < x < 18)$$

$$egin{aligned} dots & S_{egin{aligned} & S$$

$$S_{egin{aligned} S = rac{1}{2} \cdot (18 - x) \, (x - 6) &= rac{1}{2} (-108) \ S = egin{cases} rac{1}{2} x^2 \, (0 < x \leqslant 6) \ 18 \, (6 < x \leqslant 12) \ -rac{1}{2} x^2 + 12x - 54 \, (12 < x < 18) \ rac{1}{2} x^2 \, (0 < x \leqslant 6) \ 18 \, (6 < x \leqslant 12) \ -rac{1}{2} x^2 + 12x - 54 \, (12 < x < 18) \end{cases}$$

当
$$0 < x \le 6$$
 时, $S_{max} = 18$

当
$$0 < x \le 6$$
 时, $S_{max} = 18$

当
$$6 < x \le 12$$
 时, $S_{max} = 18$

当
$$6 < x \le 12$$
 时, $S_{max} = 18$

当
$$12 < x < 18$$
 时, $S < 18$

当
$$12 < x < 18$$
 时, $S < 18$

$$\therefore S_{max} = 18$$

$$\therefore S_{max} = 18$$

- (3)当以OC为边时,则P与A重合,Q与B重合
- (3)当以OC为边时,则P与A重合,Q与B重合

当以OC为对角线,则P为AC中点

当以OC为对角线,则P为AC中点

$$\therefore P(3,3)$$
 ,则 $Q(-3,3)$

$$\therefore P(3,3)$$
 ,则 $Q(-3,3)$

- ::Q不在抛物线上
- ::Q不在抛物线上

故存在Q点, Q(6,6)

故存在Q点, Q(6,6)

$$2$$
、解:(1):: $CB \perp a$

$$\therefore \angle ABP = \angle CBE = 90^{\circ}$$

$$\mathbb{Z}$$
: $AB = BC, BP = BE$

$$\therefore \triangle ABP \cong CBE(SAS)$$

$$(2) \textcircled{1} \cdot \frac{BC}{BP} = 2$$

即有
$$\frac{DC}{BE} = \frac{CP}{BP} = 1$$

 $\therefore DC = CP = BP = BE$

$$\therefore DC = CP = BP = BE$$

$$\therefore \triangle BCD \cong ABP(SAS)$$

$$\therefore \angle DBP = \angle BAP$$

$$\therefore \angle BAP + \angle BPA = 90^{\circ}$$

$$\therefore \angle DBP + \angle APB = 90^{\circ}$$

$$\therefore \angle PFB = 90^{\circ}$$

$$\therefore \overline{AP} \perp BD$$

$$\langle \mathfrak{F}_{\triangle PAD} = S_{\triangle AED} - S_{\triangle APE} \rangle$$

$$=\frac{1}{2}AE\left(BC-BP\right)$$

$$S_{\triangle PCE}^{2} = S_{\triangle BCE} - S_{\triangle PBE}$$

$$=\frac{1}{2}BE\left(BC-BP\right)$$

$$\therefore rac{S_{ riangle PAD}}{S_{ riangle PCE}} = rac{rac{1}{2}AE\left(BC - BP
ight)}{rac{1}{2}BE\left(BC - BP
ight)} = rac{AE}{BE}$$

$$\therefore AE = (n+1)BP$$

$$\therefore \frac{S_{\triangle PAD}}{S_{\triangle PCE}} = n + 1$$

$$\therefore rac{S_1}{S_2} = n+1$$

3、解:(1)横向通道为梯形,其中位线为:
$$\frac{120+180}{2}=150$$
 (米)

- ∴横行通道面积为 150x (m²)
- (2)由题意得:

$$150x + 80x \times 2 - 2x^2 = 150 \times 80 \times \frac{1}{8}$$

即:
$$2x^2 - 310x + 1500 = 0$$

解得:
$$x = 150$$
 (舍去)或 $x = 5$

∴通道宽为 5m

(3)设总费用为y万元

由题意得: $y = (150 \times 80 - 150x - 80x \times 2 + 2x^2) \times 0.02 + 5.5x$

$$= 0.04x^2 - 0.7x + 240 \ (0 < x \le 6)$$

$$x = -\frac{b}{2a} = 8.75$$

∴当 $0 < x \le 6$ 时,y随x增大而减小

当
$$x = 6$$
 时, y 最 $= 237.24$ (万元)

$$6\sqrt{3}cm^2$$

8、(1) 证明 ::: AD || OC

$$\therefore \angle DAB = \angle COB$$

$$\therefore \angle DAB = \angle COB = 2\angle CAB$$
$$\therefore \angle DAC = \angle CAB$$
$$\therefore DC = BC$$

$$\therefore \angle DAC = \angle CAB$$

$$\therefore DC = BC$$

$$\therefore \frac{PC}{CD} = \frac{PO}{OA}$$

$$\mathbb{X} :: PB = 2OB$$

$$\therefore \frac{3OB}{OA} = \frac{PC}{4}$$
$$\therefore PC = 12$$

$$\therefore PC = 12$$

(3) 解 :: PD 与 ⊙O 交于 CD, PA 与 ⊙O 交于 AB

$$\therefore PC \cdot PD = PB \cdot PA$$

$$\therefore 12 \times (12+4) = 2r \times 4r$$

$$\therefore r = 2\sqrt{6}$$

$$\therefore \angle ACB = 90^{\circ}$$

$$\therefore \sin \angle CAB = \frac{BC}{2r} = \frac{\sqrt{6}}{6}$$

(2)解:树状图为:

两人抽到卡片的函数都满足在第二象限内y随x增大而减小有两种情况

∴王亮获胜概率为: $\frac{2}{6} = \frac{1}{3}$

李明获胜概率为: $1 - \frac{1}{3} = \frac{2}{3}$

- ∴每次王亮获得积分为 $\frac{1}{3} \times 3 = 1$ 分,李明获得积分 $\frac{2}{3} \times 2 = \frac{4}{3}$ 分
- :.不公平

可以改变积分使游戏变公平.改为:两人抽到的卡片上的函数图象都满足在第二象限内y随x增大而减小.则王亮得4分,否则李明得2分.