2º mini-teste — 2 de dezembro de 2022 —

Duração: 30 minutos —

Nome: . Número: _

O mini-teste é constituído por 5 perguntas, cada uma com 4 afirmações, que poderão ser verdadeiras ou falsas. Cada afirmação corretamente assinalada como verdadeira ou como falsa (circundando V ou F respetivamente) tem cotação de 1 valor, cada afirmação incorrectamente assinalada tem cotação (negativa) de -0,25 valores, mas a classificação final em cada pergunta é, no mínimo, 0 valores.

- 1. Seja $\Gamma = \{p_0 \vee p_1, \neg p_0\}.$
 - \mathbf{V} Para qualquer tautologia φ , $\Gamma \cup \{\varphi\}$ é consistente.
 - \mathbf{V} Qualquer subconjunto de Γ é consistente.
 - \mathbf{V} Há uma infinidade de conjuntos maximalmente consistentes que contêm Γ .
- \mathbf{V} Para qualquer $\Delta \subseteq \mathcal{F}^{CP}$ tal que $\Gamma \subseteq \Delta$, se Δ é consistente, então $\neg p_1 \notin \Delta$.
- 2. Seja $\Gamma = \{p_0 \leftrightarrow p_1, \neg p_0\}.$
- $\Gamma \not\models p_1$.
 - **F** $\Gamma \models p_0 \vee p_1$.
 - **F** $\Gamma \not\models \neg p_0 \wedge \neg p_1$.
- $\Gamma \models \neg p_1$.
- 3. Seja $\varphi = p_0 \to p_1$.
 - **F** Não existem derivações em DNP de φ a partir de $\{\neg p_0\}$.
 - Existem derivações em DNP de φ a partir de $\{p_0\}$.
 - Para qualquer $\Gamma \subseteq \mathcal{F}^{CP}$ tal que $\neg p_1 \in \Gamma$, existem derivações em DNP de φ a partir de Γ .
 - Para qualquer $\Gamma \subseteq \mathcal{F}^{CP}$ tal que $p_1 \in \Gamma$, existem derivações em DNP de φ a partir de Γ . V
- 4. Considere o tipo de linguagem $L = (\{c,g\}, \{P\}, \mathcal{N}), \text{ onde } \mathcal{N}(c) = 0, \mathcal{N}(g) = 2 \text{ e } \mathcal{N}(P) = 2, \text{ e}$ considere o *L*-termo $t = g(x_0, c)$.
 - $P(t, x_0)$ é um L-termo.
- \mathbf{V} O L-termo $g(t, x_0)$ tem (exatamente) 4 subtermos.
 - **F** Existem L-termos t' tais que $t[t'/x_1] \neq t$.
 - Para todo o L-termo t', $x_0 \notin VAR(t[t'/x_0])$.
- 5. Seja φ a L_{Arit} -fórmula $\exists x_0(x_0 = s(x_1))$.
- \mathbf{V} φ tem extamente duas subfórmulas.
- $LIV(\exists x_1\varphi) \subseteq LIV(\varphi).$ \mathbf{V}
- $(\exists x_1 \varphi)[s(x_1)/x_0] = \exists x_1 \varphi.$
 - **F** x_1 é substituível (sem captura de variáveis) por $s(x_0)$ em φ .