Subband and wavelet coding

- Vector convolution, convolutional transforms
- Filter banks vs. vector space interpretation
- Orthogonal and biorthogonal subband transforms
- DCT as a filter bank
- Lapped Orthogonal Transform (LOT)
- Discrete Wavelet Transform (DWT)
- Quadrature mirror filters and conjugate quadrature filters
- Lifting implementation/design of the DWT
- Embedded zero-tree coding of wavelet coefficients

Subband coding: motivation

- Coding with block-wise transform introduces visible blocking artifacts, as bit-rate decreases.
- Can we, somehow, overlap adjacent blocks,
 - thereby smoothing block boundaries,
 - but <u>without</u> increasing the number of transform coefficients?
- Solution: subband transform.

Vector convolution

Forward transform

$$\mathbf{y}[n] = \sum_{i \in \mathbb{Z}} A[i] \cdot \mathbf{x}[n-i]$$

$$\mathbf{x}[n] = \sum_{i \in \mathbb{Z}} S[i] \cdot \mathbf{y}[n-i]$$

Perfect reconstruction condition

Original domain

$$\sum_{i \in \mathbb{Z}} S[n-i] \cdot A[i] = \sum_{i \in \mathbb{Z}} A[n-i] \cdot S[i] = I \cdot \delta[n]$$

z-transform: "polyphase matrices"

$$\mathbf{H}(z) = \sum_{i \in \mathbb{Z}} A[i] \cdot z^{-i} \qquad \mathbf{G}(z) = \sum_{i \in \mathbb{Z}} S[i] \cdot z^{-i}$$

Perfect reconstruction condition in the z-domain

$$|\mathbf{G}(z)\mathbf{H}(z) = \mathbf{H}(z)\mathbf{G}(z) = I \quad \Leftrightarrow \quad \mathbf{G}(z) = (\mathbf{H}(z))^{-1}$$

■ Example, m=2

$$\begin{pmatrix} G_{00}(z) & G_{01}(z) \\ G_{10}(z) & G_{11}(z) \end{pmatrix} = \frac{\begin{pmatrix} H_{11}(z) & -H_{01}(z) \\ -H_{10}(z) & H_{00}(z) \end{pmatrix}}{H_{00}(z)H_{11}(z) - H_{01}(z)H_{10}(z)}$$

Filter bank interpretation of convolutional transform

$$h_{q}\left[mi-j\right] = \left(A\left[i\right]\right)_{q,j}; \ 0 \le j, q < m \qquad \qquad g_{q}\left[mi+j\right] = \left(S\left[i\right]\right)_{j,q}; \ 0 \le j, q < m$$

Frequency domain perspective

Vector space interpretation

- Subband decomposition is the projection of the input onto a set of "analysis vectors" in the Hilbert space of square summable sequences
- Consider signal in channel q

$$y_{q}[n] = \sum_{k} h_{q}[k] \cdot x[mn-k] = \sum_{k} h_{q}[mn-k] \cdot x[k] = \langle \mathbf{x}, \mathbf{a}_{q}^{(n)} \rangle$$

 Synthesis filterbank is linear combination of synthesis "basis vectors"

$$x[k] = \sum_{q=0}^{m-1} \sum_{n} y_q[n] \cdot g_q[k-mn]$$

$$\mathbf{x} = \sum_{n=0}^{m-1} \sum_{n=1}^{m-1} y_q[n] \cdot \mathbf{S}_q^{(n)}$$
 "Synthesis vector" n denotes shift

n denotes shift

Orthonormal subband transforms

Orthonormal expansion

$$\mathbf{x} = \sum_{q=0}^{m} \sum_{n \in \mathbb{Z}} \left\langle \mathbf{x}, \mathbf{s}_{q}^{(n)} \right
angle \ \mathbf{s}_{q}^{(n)}$$

Analysis and synthesis vectors are identical!

$$\mathbf{a}_{q}^{(n)} = \mathbf{s}_{q}^{(n)} \qquad A[i] = S^{T}[-i] \qquad h_{q}[k] = g_{q}[-k]$$

Vector space

<u>Convolutional</u> transform

Filter bank

Biorthogonal transforms

 Analysis vectors and synthesis vectors are not necessarily each orthogonal, but each analysis vector must be orthogonal to all but one synthesis vectors (and vice versa)

$$\left\langle \mathbf{s}_{q_{1}}^{(n_{1})}, \mathbf{a}_{q_{2}}^{(n_{2})} \right\rangle = \delta \left[q_{1} - q_{2} \right] \delta \left[n_{1} - n_{2} \right] , \quad 0 \leq q_{1}, q_{2} < m, \quad n_{1}, n_{2} \in \mathbb{Z}$$

- Equivalent to perfect reconstruction
- Important for linear-phase FIR filters, since lapped orthogonal transforms with linear phase do not exist.

Subbands vs. block-wise transform

- Blockwise transforms are a special case of subband decompositions with:
 - Number of bands m = order of transform N
 - Length of impulse responses of analysis/synthesis filters ≤ m
- Filters used in subband coders are <u>not</u> in general orthogonal.
- Linear phase is desirable for images.

Subbands vs. block-wise transform (cont.)

Frequency response of a DCT of order *N*=8

Lapped Orthogonal Transform

Orthonormal convolutional transform with perfect reconstruction

$$\sum_{i} A^{T} [i] A[n+i] = I \cdot \delta[n]$$

$$A^{T}[i] = S[-i]$$

Lapped orthogonal transform (LOT): only A[0] and A[1] non-zero, hence

$$A^{T}[0]A[0] + A^{T}[1]A[1] = \begin{pmatrix} A[0] \\ A[1] \end{pmatrix}^{T} \begin{pmatrix} A[0] \\ A[1] \end{pmatrix} = I \qquad A^{T}[0]A[1] = 0$$

Example LOT basis functions, m=8

[G. Levinsky, EE392C class project, 1997]

LOT vs. DCT coding

LOT

quantizer step size 70 entropy 0.426 bpp

DCT

quantizer step size 70 entropy 0.453 bpp

Discrete Wavelet Transform

 Recursive application of a two-band filter bank to the lowpass band of the previous stage yields octave band

splitting:

Same concept can be derived from wavelet theory:

Discrete Wavelet Transform (DWT)

Cascaded analysis / synthesis filterbanks

2-d Discrete Wavelet Transform

Two-channel filterbank

$$\hat{x}(z) = \frac{1}{2} \Big[h_0(z) g_0(z) + h_1(z) g_1(z) \Big] x(z)$$

$$+ \frac{1}{2} \Big[h_0(-z) g_0(z) + h_1(-z) g_1(z) \Big] x(-z)$$
Aliasing

Aliasing cancellation if :

$$g_0(z) = h_1(-z)$$

 $-g_1(z) = h_0(-z)$

Example: two-channel filter bank with perfect reconstruction

Impulse responses, analysis filters:

Lowpass

<u>Highpass</u>

$$\left(\frac{-1}{4}, \frac{1}{2}, \frac{3}{2}, \frac{1}{2}, \frac{-1}{4}\right)$$
 $\left(\frac{1}{4}, \frac{-1}{2}, \frac{1}{4}\right)$

- Impulse responses, synthesis filters
 - Lowpass

Highpass

$$\left(\frac{1}{4},\frac{1}{2},\frac{1}{4}\right)$$

$$\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)$$
 $\left(\frac{1}{4}, \frac{1}{2}, \frac{-3}{2}, \frac{1}{2}, \frac{1}{4}\right)$

"Biorthogonal 5/3 filters" "LeGall-Tabatabai filters" [LeGall, Tabatabai, 1988]

- Mandatory in JPEG2000
- Frequency responses:

Quadrature Mirror Filters (QMF)

 QMFs achieve aliasing cancellation by choosing

$$h_1(z) = h_0(-z)$$

= $-g_1(z) = g_0(-z)$

[Croisier, Esteban, Galand, 1976]

- Highpass band is the mirror image of the lowpass band in the frequency domain
- Need to design only one prototype filter

Example: 16-tap QMF filterbank

Conjugate quadrature filters

Achieve aliasing cancelation by

Prototype filter

$$h_0(z) = g_0(z^{-1}) \equiv f(z)$$

$$h_1(z) = g_1(z^{-1}) = zf(-z^{-1})$$
 [Smith, Barnwell, 1986]

Impulse responses

$$h_0[k] = g_0[-k] = f[k]$$

$$h_1[k] = g_1[-k] = (-1)^{k+1} f[-(k+1)]$$

Perfect reconstruction: find power complementary prototype filter

$$\left| F(\omega) \right|^2 + \left| F(\omega \pm \pi) \right|^2 = 2$$

Orthonormal subband transform!

Lifting

Analysis filters

- L "lifting steps"
- First step can be interpreted as prediction of odd samples from the even samples

[Sweldens 1996]

Lifting (cont.)

Synthesis filters

- Perfect reconstruction (biorthogonality) is directly built into lifting structure
- Powerful for both implementation and filter/wavelet design

Example: lifting implementation of 5/3 filters

Verify by considering response to unit impulse in even and odd input channel.

Reversible subband transform

- Observation: lifting operators can be nonlinear.
- Incorporate the necessary rounding into lifting operator:

 Used in JPEG2000 as part of 5/3 biorthogonal wavelet transform

Wavelet compression results

Original 512x512 8bpp

Error images

0.048 bpp

enlarged

[Gonzalez, Woods, 2001]

Embedded zero-tree wavelet algorithm

- Idea: Conditional coding of all descendants (incl. children)
- Coefficient magnitude > threshold: significant coefficients
- Four cases
 - ZTR: zero-tree, coefficient and all descendants are not significant
 - IZ: coefficient is not significant, but some descendants are significant
 - 3. POS: positive significant
 - 4. NEG: negative significant
- For the highest bands,
 ZTR and IZ symbols are merged into one symbol Z

Embedded zero-tree wavelet algorithm (cont.)

- Successive approximation quantization and encoding
 - Initial "dominant" pass
 - Set initial threshold θ , determine significant coefficients
 - Arithmetic coding of symbols ZTR, IZ, POS, NEG
 - Subordinate pass
 - Refine magnitude of all coefficients found significant so far by one bit (subdivide magnitude bin by two)
 - Arithmetic coding of sequence of zeros and ones.
 - Repeat dominant pass
 - Omit previously found significant coefficients
 - Decrease threshold θ by factor of 2, determine new significant coefficients
 - Arithmetic coding of symbols ZTR, IZ, POS, NEG
 - Repeat subordinate and dominant passes, until bit budget is exhausted.

Embedded zero-tree wavelet algorithm (cont.)

- Decoding: bitstream can be truncated to yield a coarser approximation: "embedded" representation
- Further details: J. M. Shapiro, "Embedded image coding using zerotrees of wavelet coefficients," IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3445-3462, December 1993.
- Enhancement SPIHT coder: A. Said, A., W. A. Pearlman, "A new, fast, and efficient image codec based on set partitioning in hierarchical trees," IEEE Transactions on Circuits and Systems for Video Technology, vol. 63, pp. 243-250, June 1996.

Conclusions: subband and wavelet coding

- Overlapping basis functions can reduce blocking artifacts
- Biorthogonal subband transforms = perfect reconstruction
- DCT can be understood as a (poor) filter bank
- Discrete Wavelet Transform = cascaded dyadic subband splits
- Quadrature mirror filters and conjugate quadrature filters: aliasing cancellation
- Lifting: powerful for implementation and wavelet construction
- Lifting allows reversible (i.e., lossless) wavelet transform
- Zero-trees: exploit statistical dependencies across subbands

Reading

- Taubman, Marcellin, Sections 4.2, 6.1-6.4, 7
- H. S. Malvar, D. H. Staelin, "The LOT: transform coding without blocking effects," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 4, pp. 553-559, April 1989.
- D. Le Gall, A. Tabatabai, "Sub-band coding of digital images using symmetric short kernel filters and arithmetic coding techniques," Proc. ICASSP-88, vol. 2, pp. 761-764, April 1988.
- J. M. Shapiro, "Embedded image coding using zerotrees of wavelet coefficients," IEEE Transactions on Signal Processing," vol. 41, no. 12, pp. 3445-3462, Dec. 1993.

