Digital Logic and Verilog

Lecture 13&14 & 15: Adders and Verilog Basic 2

> Xiaoping Huang Fall 2019

Outline

Lecture 13 & 14 & 15:

Chapter: 3.2-3.5,3.8, 3.7.3 Page 122-166 and 178-194

Addition of Unsigned Numbers

- I-bit Addition (half adder and full adder)
- XOR gates
- Multi-bit Addition and subtraction
- Ripple-Carry Adder
- Fast Adders
- Multiplication of Unsigned Numbers(*)
- Verilog Basic 2 and Examples

3.2 Addition of Unsigned Number

I-Bit Addition

Two I-bit addends: $x, y \in \{0, 1\}$ $\Rightarrow \text{sum} \in \{0, 1, 2\}$

... Need 2 bits to represent output

Low Bit: S (Sum)

High Bit: C (Carry)

C is useful when adding multi-bit numbers

(a) The four possible cases

Truth Table

X	Υ	С	S
0	0	0	0
0	I	0	
I	0	0	
I	I		0

SOP Realization

$$s = \overline{x} \cdot y + x \cdot \overline{y}$$

$$\begin{array}{c|ccccc} C & x & 0 & 1 \\ & 0 & 0 & 0 \\ & 1 & 0 & 1 \end{array}$$

$$c = x \cdot y$$

Truth Table

X	Υ	С	s
0	0	0	0
0		0	I
I	0	0	I
I	I		0

SOP Realization

$$s = \overline{x} \cdot y + x \cdot \overline{y}$$

$$c = x \cdot y$$

$$s = \overline{x} \cdot y + x \cdot \overline{y}$$

$$c = x \cdot y$$

Note that this is just an exclusive-or operation

(d) Graphical symbol

HALF-ADDER:

- Uses only 2 gates
- Does not require inverted inputs

Multi-bit Addition

To extend our results to larger inputs & outputs, consider using a half-adder to add each pair of bits.

Ex:

Multi-bit Addition

▶ Consider the addition of each pair of bit x_i and y_i separately

Generated carries
$$\longrightarrow$$
 1 1 1 0 ... c_{i+1} c_i ... $X = x_4 x_3 x_2 x_1 x_0$ 0 1 1 1 1 (15)₁₀ ... x_i ...

- $\rightarrow x_i, y_i, c_i, s_i, c_{i+1}$
- Problem:

If a carry is generated at one stage, it must be added to the next stage. No input available for this on half adder.

- ▶ 2 (I-bit addends): $\mathbf{x_i}, \mathbf{y_i} \in \{0, 1\}$ I (I-bit carry-in): $\mathbf{c_i} \in \{0, 1\}$ ⇒ sum $\in \{0, 1, 2, 3\}$
 - still only need 2-bit output

```
low bit: s<sub>i</sub> (sum)
```

high bit: c_{i+1} (carry-out)

Truth Table

X _i	y _i	c _i	s _i	C _{i+1}
0	0	0	0	0
0	0	I	l	0
0	I	0	l	0
0	I	I	0	I
I	0	0	I	0
I	0		0	I
I	I	0	0	I
I	l	I		I

- $\mathbf{s}_{i} = \mathbf{I}$ iff I or 3 inputs = I
- $C_{i+1} = I$ iff 2 or 3 inputs = I

▶ SOP Realization

SOP Realization

$$Ci+1$$
 c_{i}
 0
 0
 1
 1
 1
 1
 1

$$s_{i} = \overline{x}_{i}y_{i}\overline{c}_{i} + x_{i}\overline{y}_{i}\overline{c}_{i} + \overline{x}_{i}\overline{y}_{i}c_{i} + x_{i}y_{i}c_{i}$$

$$Cost = 5 + 16 = 21$$

$$C_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

$$Cost = 4 + 9 = 13$$

Total
$$cost = 34$$

Use of XOR

$$s_i = x_i \oplus y_i \oplus c_i$$
 $c_{i+1} = x_i y_i + x_i c_i + y_i c_i$

Total cost = 5 + 12 = 17

XOR Gates

- XOR operations are sometimes very useful in optimizing logic circuits because they cover nonadjacent squares in a K-map.
- 2-input XOR

$$f = a \oplus b$$
$$= \overline{a} \cdot b + a \cdot \overline{b}$$
$$= b \oplus a$$

XOR Gates

- XOR operations are sometimes very useful in optimizing logic circuits because they cover nonadjacent squares in a K-map.
- 2-input XOR

$$f = a \oplus b$$
$$= \overline{a} \cdot b + a \cdot \overline{b}$$
$$= b \oplus a$$

XOR Gates – 3 input XOR

$$f = a \oplus b \oplus c = (a \oplus b) \oplus c = a \oplus (b \oplus c)$$

- f = I if an odd number of inputs = I
- f = 0 if an even number of inputs = I

XOR Gates – 3 input XOR

$$f = a \oplus b \oplus c = (a \oplus b) \oplus c = a \oplus (b \oplus c)$$

- f = I if an odd number of inputs = I
- f = 0 if an even number of inputs = I

SOP: 5 gates

XOR: I gate

Features of XOR

- XOR is also referred to as the odd function
- For the Two-input XOR, one input can be thought as the control signal to determine whether the true or complemented of the other input.
- NOR, which is the complement of XOR, is also referred to as the coincidence operation.
- ▶ The symbol of the XNOR.

3.2.1 Decomposed full adder

- Can we make a full adder using two half adders?
- Use HA₁ to add a, b

• Use HA_2 to add s_1 , c_{in}

$$c_{in} = c_{in} = c_{in} = c_{in} = c_{in} = c_{in} = c_{in}$$

$$c_{in} = c_{in} = c_{in} = c_{in} = c_{in} = c_{in}$$

$$c_{in} = c_{in} = c$$

Let
$$c_{out} = c_1 + c_2 = \overline{a}bc_{in} + a\overline{b}c_{in} + ab\overline{c}_{in} + ab\overline{c}_{in}$$

Decomposed full adder

Circuit

Total cost = 5 + 10 = 15

3.3.2 Ripple-Carry Adder

We can make an n-bit adder by using n full adders

Figure 3.5. An *n*-bit ripple-carry adder.

3.3.2 Ripple-Carry Adder

- We can make an n-bit adder by using n full adders
- Ex: n = 4

4-Bit Ripple-Carry Adder

- The delay increases as more bits are added.
- Ex: 4-bit ripple-carry adder:

Max delay from inputs to $c_1 = 3$ gates

Max delay from inputs to $c_2 =$

Max delay from inputs to $c_3 =$

Max delay from inputs to cout

Critical path delay

- Note that delays to s_1 , s_2 , s_3 are each one gate more than delays to c_1 , c_2 , c_3 .
 - \Rightarrow If we can reduce delays to carry bits, delay to sum bits will also be reduced.

Analysis of the ripple-carry adder

- For ripple-carry adder, the total delay depends on the size of the number.
- ▶ When 32 or 64 bit number, the delay is unacceptable
- As a result, we need to design a new architecture in the following chapter
- Until now, we talk about the unsigned adder.

3.2.3 design Example

Suppose that we need a circuit that multiplies an eight-bit unsigned number by 3. Let $A = a_7 a_6 \cdots a_1 a_0$ denote the number and $P = p_9 p_8 \cdots p_1 p_0$ denote the product P = 3A

More efficient!!

3.3.2 Addition and Subtraction

I's Complement Addition

Figure 3.8. Examples of 1's complement addition.

So: Correction may be needed, which means extra addition will be involved, the circuit is not simple as we expected.

Addition and Subtraction

2's Complement Addition

Figure 3.9. Examples of 2's complement addition.

So: The result is always correct, and the circuit is also simple, just perform one time addition.

1011

Addition and Subtraction

2's ComplementSubtraction

(+5) - (+2) (+3)

$$\begin{array}{c}
0101 \\
-0010
\end{array}
\longrightarrow
\begin{array}{c}
0101 \\
+1110 \\
\hline
10011
\end{array}$$

The easiest way of performing subtraction is to negate the subtrahend and add it to the minuend.

$$\frac{(-5)}{-(+2)}$$

ignore

(+7)

So: it is also correct

and simple for subtraction

1101

Figure 3.10. Examples of 2's complement subtraction.

Addition and Subtraction

> 2's Complement Subtraction

- (a) The number circle
- (b) Subtracting 2 by adding its 2's complement
- Graphical interpretation of tour birds complement numbers

3.3.3 Adder and Subtraction Unit

- For X-Y = X+(-Y), we need the 2's complement of Y, which can be obtained by adding I to the I's complement of Y. In other words, Subtraction can be completed by the addition
- So :We need to perform X+Y and X+Y+I In just one circuit.
- How can we build the unify circuit to perform addition and subtraction.
- Think about the feature of XOR.

Adder/Substractor unit

Figure 3.12. Adder/Substractor unit.

Hints:

- When design the digital circuit:
 - As flexible as possible
 - As many tasks as possible
- ▶ To minimize the area and reduce the wiring complexity

3.3.5 Arithmetic Overflow

- What is overflow?
 - The result beyonds the range of the 2's complement of n-bit singed number.
- So: The occurrence of overflow should be detected and reported the system.
- Investigate some example in the textbook.

Analysis of the Overflow

▶ The four cases where 2's-complement numbers with magnitudes of 7 and 2 are added.

Figure 3.13. Examples of determination of overflow.

How to detect the overflow?

- Analysis Figure 3.9 and Figure 3.13
- We can draw the conclusion:
- for the n-bit numbers ,we have

Overflow = $c_{n-1} \oplus c_n$ Note: c_{n-1} is the carry out from the MSB position C_n is the carry out form the Sign position

- Another way to detect the overflow is to compare the sign bit of sum with the sign of summands.
- ▶ So: ??
- Understand the difference of carry out and the overflow

3.3.6 Performance Issues

A commonly used indicator of the value of a system is its price/performance ratio.

• Circuit delay: (2n+1) △t

Performance Issues

- The longest delay is often referred to as the <u>critical-path</u> <u>delay</u>.
- ▶ The path that causes this delay is called the *critical path*.

Outline

Lecture 13 & 14 & 15:

Chapter: 3.2-3.5,3.8, Page 122-166 and 178-194

Addition of Unsigned Numbers

- ▶ I-bit Addition (half adder and full adder)
- XOR gates
- Multi-bit Addition and subtraction
- ▶ Ripple-Carry Adder
- Fast Adders
- Multiplication of Unsigned Numbers(*)
- Verilog Basic 2 and Examples

3.4 Fast Adder

- We can reduce the delays to the carry bits by calculating them directly from the inputs, not from the outputs of the previous stage.
- The trade-off is an increase in complexity for a decrease in delay.
- There are two ways to produce a carry output from each stage.
 - Carry Generation
 - Carry Propagate

Carry Generation: in a given stage, a carry is generated if both a and b are 1.

Carry Propagate: if a carry comes in to a given stage, we will propagate that carry to the next stage if either a or b is 1.

$$\Rightarrow$$
 c_{n+1} = I if c_n = I and (a_n = I or b_n = I)

Note: if $a_n = b_n = c_n = 1$, it is customary to count this as a generate, but not a propagate. (Book is different.)

$$\Rightarrow \mathbf{p_n} = \mathbf{a_n} \oplus \mathbf{b_n}$$
$$\Rightarrow \mathbf{p_n} = \mathbf{a_n} + \mathbf{b_n}$$

Note: g_n and p_n are already produced by the full adder circuit!!!

Adder outputs

$$s_n = a_n \oplus b_n \oplus c_n = p_n \oplus c_n$$

$$c_{n+1} = a_n b_n + (a_n + b_n) c_n = g_n + p_n c_n$$

To reduce delays to carry outputs, rewrite c_{n+1} in terms of c_0 , g, and p signals

```
    ▶ Bit 0: c_1 = g_0 + p_0c_0
    ▶ Bit 1: c_2 = g_1 + p_1c_1
    = g_1 + p_1g_0 + p_1p_0c_0
    ▶ Bit 2: c_3 = g_2 + p_2c_2
    = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0c_0
    ▶ Bit 3: c_4 = g_3 + p_3c_3
    = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0 + p_3p_2p_1p_0c_0
```

- Result: Carry-lookahead adder
- Two level AND-OR circuit in which c_i can be evaluated very quickly

Figure 3.14. A ripple-carry adder based on Expression 3.3.

4Figure 3.15. The first two stages of aucarry-lookahead adder9/26

4-Bit Carry-Look-Ahead Adder based On the Figure 3.4

Critical paths:

inputs to s_1, s_2, s_3

Critical path delay = 4 gates

- Drawbacks:
 - Complexity, fan-ins
 - Remember: the number of fan-in is A part of Cost

So: Fan-in is limited

Comprise: You should recognize the Critical path and calculate the critical path delay

How to Build larger Adder: Parallelization Inside Block Serialization Between Blocks

Figure 3.16. A hierarchical carry-lookahead adder with ripple-carry between blocks.

Parallelization Inside Block and

Between Blocks x_{15-8} y_{15-8} x_{7-0} y_{7-0} **Block** Block **Block** c_0 c_{24} G_3 G_1 G_0 s_{15-8} s_{31-24} c_8 c_{32} *c*₁₆ Parallel between blocks Second-level lookahead

Example: 4-Bit Carry-Look-Ahead Adder w/ Block Generate and Propagate

When will a 4-bit adder propagate a carry from c_0 to c_4 ?

A:When it is propagated at every stage

$$P = p_3 p_2 p_1 p_0$$

When will a 4-bit adder generate a carry output c₄?

A: (I) if a carry is generated at the last stage – **OR** –

(2) If it is generated at any stage and propagated through all following stages

$$G = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0$$

$$\mathbf{c_4} = \mathbf{G} + \mathbf{P}\mathbf{c_0}$$

This is how the carry out is computed from the block generate and propagate

Example

Creating Larger Adders Using 4-bit Carry-Look-Ahead Blocks

3.7.3

Binary-Coded-Decimal Representation

- If X + Y ≤ 9, then the addition is the same as the addition of 2 four-bit unsigned binary numbers.
- if X + Y > 9, then the result requires two BCD digits.
- Two cases where some correction has to be made:

$$Z=X+Y$$
If $Z \le 9$, then $S = Z$ and

Figure 3.38. Addition of BCD digits. 2019/9/26

Binary-Coded-Decimal Representation

Binary-Coded-Decimal Representation

```
module bcdadd(Cin, X, Y, S, Cout);
  input Cin;
  input [3:0] X, Y;
  output reg [3:0] S;
  output reg Cout;
  reg [4:0] Z;
  always@(X, Y, Cin)
  begin
     Z = X + Y + Cin:
     if (Z < 10)
        \{Cout, S\} = Z;
     else
        \{Cout, S\} = Z + 6;
  end
```

Binary-Coded-Decimal Representation

Outline

Lecture 13 & 14 & 15:

Chapter: 3.2-3.5,3.8, Page 122-166 and 178-194

Addition of Unsigned Numbers

- ▶ I-bit Addition (half adder and full adder)
- XOR gates
- Multi-bit Addition and subtraction
- ▶ Ripple-Carry Adder
- ▶ Fast Adders
- Multiplication of Unsigned Numbers(*)
- Verilog Basic 2 and Examples

3.5 Design of Arithmetic Circuits Using CAD Tools

DESIGN OF ARITHMETIC CIRCUITS USING VERILOG

How to write the hierarchical code for a ripple-carry adder?

```
module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

xor (s, x, y, Cin);
and (z1, x, y);
and (z2, x, Cin);
and (z3, y, Cin);
or (Cout, z1, z2, z3);
```

endmodule

Figure 3.18. Verilog code for the full-adder using gate level primitives.

endmodule

Figure 3.19. Another version of Verilog code from Figure 3.18.

3.5.2 DESIGN OF ARITHMETIC CIRCUITS USING VERILOG

```
module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

assign s = x ^ y ^ Cin;
assign Cout = (x & y) | (x & Cin) | (y & Cin);
```

endmodule

Figure 3.20. Verilog code for the full-adder using continuous assignment.

module fulladd (Cin, x, y, s, Cout);

input Cin, x, y;

output s, Cout;

```
assign s = x ^ y ^ Cin,

Cout = (x & y) | (x & Cin) | (y & Cin);

endmodule
```

3.5.2

Design of Arithmetic Circuits Using Verilog

```
module adder4 (carryin, x3, x2, x1, x0, y3, y2, y1, y0, s3, s2, s1, s0, carryout);
   input carryin, x3, x2, x1, x0, y3, y2, y1, y0;
   output s3, s2, s1, s0, carryout;
   fulladd stage0 (carryin, x0, y0, s0, c1);
   fulladd stage1 (c1, x1, y1, s1, c2);
   fulladd stage2 (c2, x2, y2, s2, c3);
   fulladd stage3 (c3, x3, y3, s3, carryout);
endmodule
module fulladd (Cin, x, y, s, Cout);
                                                     Maintain the
   input Cin, x, y;
   output s, Cout;
                                                       sequence
   assign s = x ^ y ^ Cin,
   assign Cout = (x \& y) | (x \& Cin) | (y \& Cin);
endmodule
```

Figure 3.22. Verilog code for a four-bit adder.

3.5.3 Using Vectored Signals

Multibit signals can be represented in Verilog code as a <u>multibit</u> <u>vector</u>, An example of an input vector is

```
input [3:0] X; wire [3:1] C;
module adder4 (carryin, X, Y, S, carryout);
   input carryin;
   input [3:0] X, Y;
                                           Support partial
   output [3:0] S;
                                               selection
   output carryout;
   wire [3:1] C;
   fulladd stage0 (carryin, X[0], Y[0], S[0], C[1]);
   fulladd stage1 (C[1], X[1], Y[1], S[1], C[2]);
   fulladd stage2 (C[2], X[2], Y[2], S[2], C[3]);
   fulladd stage3 (C[3], X[3], Y[3], S[3], carryout);
endmodule
             Figure 3.23. A four-bit adder using vectors.
```

USING A GENERIC SPECIFICATION

How to define a module that could be used to implement an adder of any size?

Verilog allows the use of general parameters that can be given a specific value as desired.

For example:

$$X[n-1:0]$$
.

parameter n = 4;

the bit range of X is [3:0]

Default Value, may be updated When instantiation

Figure 3.23. A four-bit adder using vectors.

USING A GENERIC SPECIFICATION

```
module addern (carryin, X, Y, S, carryout);
  parameter n=32;
  input carryin;
  input [n-1:0] X, Y;
  output reg [n-1:0] S;
  output reg carryout;
  reg [n:0] C;
  integer k;
  always @(X, Y, carryin)
  begin
                                           'For' statement
     C[0] = carryin;
                                          Not Suggested!!
     for (k = 0; k < n; k = k+1)
     begin
       S[k] = X[k] ^ Y[k] ^ C[k];
       C[k+1] = (X[k] \& Y[k]) | (X[k] \& C[k]) | (Y[k] \& C[k]);
     end
     carryout = C[n];
  end
endmodule
```

Using a Generic Specification

```
module addern (carryin, X, Y, S, carryout);
parameter n=32;
  input carryin;
  input [n-1:0] X, Y;
  output [n-1:0] S;
  output carryout;
                                                   module fulladd (Cin, x, y, s, Cout);
  wire [n:0] C;
                                                     input Cin, x, y;
                                                     output s, Cout;
  genvar i;
  assign C[0] = carryin;
                                                     assign s = x ^ y ^ Cin,
  assign carryout = C[n];
                                                     assign Cout = (x \& y) | (x \& Cin) | (y \& Cin) |
                                                   & Cin);
  generate
     for (i = 0; i < n - 1; i = i+1)
                                                   endmodule
     begin:addbit
        fulladd stage (C[i], X[i], Y[i], S[i], C[i+1]);
     end
  endgenerate
                                         Figure 3.25. A ripple-carry adder specified
endmodule
```

by using the **generate** statement.

3.5.5 Nets and Variables in Verilog

- Nets: Connections between logic elements are defined using nets.
- 1). A net represents a node in a circuit.
- 2). It can be a *scalar* that represents a single connection or a *vector* that represents multiple connections.
- <u>Variables</u>: Signals produced by procedural statements are referred to as <u>variables</u>.
- 2). A variable can be assigned a value in one Verilog statement, and it retains this value until it is overwritten by a subsequent assignment statement.
- 3). There are two types of variables: reg and integer.

 Verilog implements such operations using arithmetic assignment statements and vectors.

```
For example: input [n-1:0] X,Y;
                    output [n-1:0] S;
                             S = X + Y:
                  module addern (carryin, X, Y, S);
                     parameter n = 32;
                                               EDA tool will
                     input carryin;
                                               synthesize the "+"
                     input [n-1:0] X, Y;
                     output reg [n-1:0] S;
                                               into the connection
                                               of basic logic gates
                     always @(X, Y, carryin)
                              S = X + Y + carryin;
```

```
module addern (carryin, X, Y, S, carryout, overflow);
   parameter n = 32;
   input carryin;
   input [n-1:0] X, Y;
   output reg [n-1:0] S;
   output reg carryout, overflow;
   always @(X, Y, carryin)
   begin
       S = X + Y + carryin;
       carryout = (X[n-1] \& Y[n-1]) | (X[n-1] \& \sim S[n-1]) | (Y[n-1] \& \sim S[n-1]);
       overflow = (X[n-1] & Y[n-1] & \sim S[n-1]) | (\sim X[n-1] & \sim Y[n-1] & S[n-1]);
   end
```

Figure 3.27. An *n*-bit adder with carry-out and overflow signals.

```
module addern (carryin, X, Y, S, carryout, overflow);
    parameter n = 32;
    input carryin;
    input [n-1:0] X, Y;
    output reg [n-1:0] S;
    output reg carryout, overflow;
    reg [n:0] Sum;
    always @(X, Y, carryin)
    begin
       Sum = \{1'b0,X\} + \{1'b0,Y\} + carryin;
       S = Sum[n-1:0];
       carryout = Sum[n];
       overflow = (X[n-1] & Y[n-1] & \sim S[n-1]) | (\sim X[n-1] & \sim Y[n-1] & S[n-1]);
    end
```

Figure 3.28. An alternative specification of an *n*-bit adder with carry-out and overflow signals.

```
module addern (carryin, X, Y, S, carryout, overflow);
    parameter n = 32;
    input carryin;
    input [n-1:0] X, Y;
    output reg [n-1:0] S;
    output reg carryout, overflow;
    always @(X, Y, carryin)
    begin
        \{carryout, S\} = X + Y + carryin;
        overflow = (X[n-1] & Y[n-1] & \sim S[n-1]) | (\sim X[n-1] & \sim Y[n-1] & S[n-1]);
    end
```

endmodule

Figure 3.29. Simplified complete specification of an *n*-bit adder.

```
module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output reg s, Cout;

always @(x, y, Cin)
{Cout, s} = x + y + Cin;
```

endmodule

Figure 3.30. Behavioral specification of a full-adder.

3.5.7 Module Hierarchy in Verilog Code

```
module adder_hier (A, B, C, D, S, T, overflow);
    input [15:0] A, B;
    input [7:0] C, D;
    output [16:0] S;
    output [8:0] T;
    output overflow;
    wire o1, o2; // used for the overflow signals
    addern U1 (1'b0, A, B, S[15:0], S[16], o1);
    defparam U1.n = 16;
    addern U2 (1'b0, C, D, T[7:0], T[8], o2);
    defparam U2.n = 8;
    assign overflow = 01 \mid 02;
```

endmodule

Figure 3.31. An example of setting parameter values in Verilog code.

MODULE HIERARCHY IN VERILOG CODE

```
module adder_hier (A, B, C, D, S, T, overflow);
    input [15:0] A, B;
    input [7:0] C, D;
    output [16:0] S;
    output [8:0] T;
    output overflow;
    wire o1, o2; // used for the overflow signals
    addern #(16) U1 (1'b0, A, B, S[15:0], S[16], o1);
    addern #(8) U2 (1'b0, C, D, T[7:0], T[8], o2);
    assign overflow = 01 \mid 02;
endmodule
```

Figure 3.32. Using the Verilog # paratom to satche values of parameteos 9/9/26

3.5.8 Representation of Numbers in Verilog Code

- Numbers can be given as constants in Verilog code.
- They can be given as binary (b), octal (o), hexadecimal (h), or decimal (d) numbers.

12'b1	0001	0101001
12 01	0001	0101001

12'o4251

12'h8A9

12'd2217

'b100010110

'o426

'h116

278

REPRESENTATION OF NUMBERS IN VERILOG CODE

- The value of a positive number does not change if 0s are appended as the most-significant bits;
- the value of a negative number does not change if Is are appended as the most-significant bits.
- Such replication of the sign bit is called sign extension.

Suppose that *A* is an eight-bit vector and *B* is a four-bit vector.

$$S = A + B$$
;

$$S = A + \{4\{B[3]\}, B\};$$

3.8 Examples

You Read them after class and now we Skip

Conclusion

- Understanding the ADDER and fast ADDER
- XOR Gate
- Difference of the ripple-carry and look-ahead carry adder
- Some concept like delay, critical path, fan-in, fan-out ...
- Advanced Verilog
- Textbook Reading: 3.2-3.5, 3.8, 3.7.3
- Assignment: 3.1, 3.2, 3.4
- (if you have done ,please skip)
- 3.5, 3.7(how to prove), 3.14
- 3.21, 3.22

Next Lecture

Lecture 16:

Combinational Logic: Circuit Building Blocks