Ex. 15.4 Suppose x_i , i = 1, ..., N are iid (μ, σ^2) . Let \bar{x}_1^* and \bar{x}_2^* be two bootstrap realizations of the sample mean. Show that the sampling correlation $\operatorname{corr}(\bar{x}_1^*, \bar{x}_2^*) = \frac{n}{2n-1} \approx 50\%$. Along the way, derive $\operatorname{var}(\bar{x}_1^*)$ and the variance of the bagged mean \bar{x}_{ba} Here \bar{x} is a *linear* statistic; bagging produces no reduction in variance for linear statistics.

First, note that
$$E[x_i^*] = [\mathcal{V}]$$
because bootstrap samples have the same expected Value as the original sample.

Then,
$$VAR[X_i^*] = E[VAR[X_i^*|X_1...X_N]]$$

 $+ VAR[E[X_i^*|X_1...X_N]]$
 $= E[\frac{N-1}{N}S^2] + VAR[\bar{X}]$
 $= \frac{N-1}{N}\sigma^2 + \frac{\sigma^2}{N} = [\sigma^2]$

$$= \frac{1}{N^2} VAR(\leq \chi_i^* | \chi_1 ... \chi_n)$$

$$Cov(\overline{X_1}, \overline{X_2}) = \frac{1}{n^2} \leq Cov(\overline{X_1}, \overline{X_2}) = \frac{5^2}{n!}$$

So
$$Covr\left(\frac{1}{X_1}, \frac{1}{X_2}\right) = \frac{Cov}{VAR} = \frac{5^2}{N-15^2}$$

If B bootstrap replicates, then

$$Var(\overline{X}_{B-3}) = Var(\frac{1}{B} \underset{i=1}{\overset{B}{\leq}} \overline{X}_{i}^{*})$$

$$= \frac{1}{B^{2}} \sum_{i=1}^{B} VAR(X_{i}^{*}) + \frac{1}{B^{2}} Cov(\overline{X}_{i}^{*}, \overline{X}_{IC}^{*})$$

$$=\frac{1}{B}\cdot\frac{(2n-1)\sigma^2}{R^2}+\frac{B-1}{B}\cdot\frac{\sigma^2}{R}$$

$$= \left(\frac{3}{2n-1}\right) + \left(\frac{3}{8-1}\right)n$$