Fouille de Données

Data Mining

Classification - Partie 3

Plan du cours

- 1. Probabilité Conditionnelle
- 2. Théorème de Bayes
- 3. Classification Naïve Bayésienne
- 4. Cas d'attributs numériques
- 5. Quelques domaines d'utilisation

Classification

SAVOIR - PREDIRE - DECIDER

Naive Bayes

- Basée sur des lois statistiques. Approche probabiliste.
- ➤ Probabilité conditionnelle & théorème de Bayes.
- Utilise la notion de « plus probable » sachant
- Connaissances a priori Prévision du futur à partir du passé.
- Différente de l'approche basée sur les fréquences.
 - Fréquences : on estime la probabilité d'occurrence d'un événement.
 - Bayésienne : on estime la probabilité d'occurrence d'un événement
 sachant qu'une hypothèse préliminaire est vérifiée (connaissance).

Probabilité Conditionnelle

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- ➤ Quelle est la probabilité que quelque chose se produise, sachant que quelque chose d'autre s'est déjà passé ?
- On note : P(A|B) Probabilité de A, sachant B.

Probabilité Conditionnelle

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

> Exemple :

Probabilité Conditionnelle

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

> Exemple:

P(B) = rolling a dice and its value is less then 4

Probabilité Conditionnelle

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

> Exemple :

P(A) = rolling a dice and its value is an odd number

Probabilité Conditionnelle

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

Exemple:

Probabilité Conditionnelle

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

Exemple:

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}$$
the value is

Théorème de Bayes

⇒ à partir de la probabilité conditionnelle, on peut déduire que :

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$P(A|B) P(B) = P(A \cap B) = P(B|A) P(A)$$

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Théorème de Bayes

 \Rightarrow à partir de la probabilité conditionnelle, on peut déduire que :

$$P(A \cap B) = P(A|B) * P(B) = P(B|A) * P(A)$$

<u>Donc</u>:

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$

Théorème de Bayes

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$

Théorème de Bayes

$$p(class | data) = \frac{p(data | class) \times p(class)}{p(data)}$$

Cas Classification : Probabilité qu'un exemple X appartienne à une classe C.

Théorème de Bayes

$$P(C|X) = \frac{P(X|C) * P(C)}{P(X)}$$

Cas Classification: Probabilité qu'un exemple X appartienne à une classe C.

Exemple:

$$X = (35ans, 40000, ?)$$

Age	Income	Buys Computer	
	•••		

P(C|X=35ans, 40 000) - La probabilité que le client X achète (C) un ordinateur sachant que nous connaissons l'âge et le revenu du client.

P(C) - La probabilité qu'un client donné achète un ordinateur, quel que soit son âge, son revenu, ou toute autre information.

Théorème de Bayes

$$P(C|X) = \frac{P(X|C) * P(C)}{P(X)}$$

Cas Classification : Probabilité qu'un exemple X appartienne à une classe C.

Exemple:

X = (35ans, 40000, ?)

Age	Income	Buys Computer

P(X|C) - La probabilité qu'un client X, ait 35 ans et gagne 40 000, sachant que nous savons que le client achètera un ordinateur.

P(X) - La probabilité qu'un client dans le Training Set ait 35 ans et gagne 40 000.

Classification Bayésienne Naïve

- $\triangleright D$: base d'entrainement de N exemples avec leurs classes associées.
- \triangleright Chaque exemple est décrit par n attributs : $A_1, A_2, A_3, \ldots, A_n$
- \triangleright Chaque exemple $X: X = (x_1, x_2, x_3, ..., x_n)$
- \succ m classes sont possibles : $C_1, C_2, C_3, ..., C_m$

$$P(C_i | x_1,...,x_n) = \frac{P(x_1,...,x_n | C_i) * P(C_i)}{P(x_1,...,x_n)}$$

Classification Bayésienne Naïve

$$P(C_i|X) = \frac{P(X|C_i) * P(C_i)}{P(X)}$$

> Approche naïve => Indépendance des attributs.

$$P(X|C_i) = \prod_{k=1}^n P(x_k|C_i)$$

$$= P(x_1|C_i) \times P(x_2|C_i) \times \cdots \times P(x_n|C_i).$$

 $P(X) = P(x_1) * P(x_2) * ... * P(x_n)$

Classification Bayésienne Naïve

$$P(C_i|X) = \frac{P(X|C_i) * P(C_i)}{P(X)}$$

- > Approche naïve => Indépendance des attributs.
- > Devient:

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

Exemple

Whether	Play
Sunny	No
Sunny	No
Overcast	Yes
Rainy	Yes
Rainy	Yes
Rainy	No
Overcast	Yes
Sunny	No
Sunny	Yes
Rainy	Yes
Sunny	Yes
Overcast	Yes
Overcast	Yes
Rainy	No

Exemple

Whether	Play
Sunny	No
Sunny	No
Overcast	Yes
Rainy	Yes
Rainy	Yes
Rainy	No
Overcast	Yes
Sunny	No
Sunny	Yes
Rainy	Yes
Sunny	Yes
Overcast	Yes
Overcast	Yes
Rainy	No

Prédire la classe quand le Weather = Overcast :

Exemple

Whether	Play	
Sunny	No	Ì
Sunny	No	
Overcast	Yes	
Rainy	Yes	
Rainy	Yes	
Rainy	No	
Overcast	Yes	K
Sunny	No	
Sunny	Yes	
Rainy	Yes	
Sunny	Yes	
Overcast	Yes	
Overcast	Yes	4
Rainy	No	

Prédire la classe quand le Weather = Overcast :

- P(Overcast) = 4/14 = 0.29
- P(Yes) = 9/14 = 0.64
 - P(Overcast | Yes) = 4/9 = 0.44

$$P(Yes \mid Overcast) = 0.44 * 0.64 / 0.29 = 0.98$$

Exemple

Whether	Play
Sunny	No
Sunny	No
Overcast	Yes
Rainy	Yes
Rainy	Yes
Rainy	No
Overcast	Yes
Sunny	No
Sunny	Yes
Rainy	Yes
Sunny	Yes
Overcast	Yes
Overcast	Yes
Rainy	No

Prédire la classe quand le Weather = Overcast :

•
$$P(Overcast) = 4/14 = 0.29$$

•
$$P(N_0) = 5/14 = 0.36$$

•
$$P(Overcast | No) = o/5 = o$$

$$P(No | Overcast) = o * 0.36 / 0.29 = o$$

Exemple

Whether	Play
Sunny	No
Sunny	No
Overcast	Yes
Rainy	Yes
Rainy	Yes
Rainy	No
Overcast	Yes
Sunny	No
Sunny	Yes
Rainy	Yes
Sunny	Yes
Overcast	Yes
Overcast	Yes
Rainy	No

Prédire la classe quand le Weather = Overcast :

Supérieur à :

=> la classe quand le **Weather** = **Overcast** est **YES**

Exemple

Whether	Play
Sunny	No
Sunny	No
Overcast	Yes
Rainy	Yes
Rainy	Yes
Rainy	No
Overcast	Yes
Sunny	No
Sunny	Yes
Rainy	Yes
Sunny	Yes
Overcast	Yes
Overcast	Yes
Rainy	No

Whether	No	Yes
Overcast		4
Sunny	2	3
Rainy	3	2
Total	5	9

Exemple

Whether	Play
Sunny	No
Sunny	No
Overcast	Yes
Rainy	Yes
Rainy	Yes
Rainy	No
Overcast	Yes
Sunny	No
Sunny	Yes
Rainy	Yes
Sunny	Yes
Overcast	Yes
Overcast	Yes
Rainy	No

Whether	No	Yes
Overcast		4
Sunny	2	3
Rainy	3	2
Total	5	9

Whether	No	Yes		
Overcast		4	=4/14	0.29
Sunny	2	3	=5/14	0.36
Rainy	3	2	=5/14	0.36
Total	5	9		
	=5/14	=9/14		

P(C)

0.64

0.36

P(X)

Exemple

Frequency Table

Whether	No	Yes
Overcast		4
Sunny	2	3
Rainy	3	2
Total	5	9

Whether	No	Yes		
Overcast		4	=4/14	0.29
Sunny	2	3	=5/14	0.36
Rainy	3	2	=5/14	0.36
Total	5	9		
	=5/14	=9/14		
	0.36	0.64		

Likelihood Table 2

Whether	No	Yes	Posterior Probability for No	Posterior Probability for Yes
Overcast		4	0/5=0	4/9=0.44
Sunny	2	3	2/5=0.4	3/9=0.33
Rainy	3	2	3/5=0.6	2/9=0.22
Total	5	9		

P(X|No) P(X|Yes)

https://www.datacamp.com/tutorial/naive-bayes-scikit-learn

Exemple 2

- > Training Set : 1000 exemples décrivant des fruits.
- > Attributs:
 - Longueur (Long ou Non),
 - Sucre (Sucré ou Non),
 - Couleur (Jaune ou Non).
- > Trois Classes possibles :
 - Banane,
 - Orange,
 - Autre.

Long	Sucré	Jaune	Classe
••••	•••	•••	•••

Exemple 2

Prédire New Data X: Long, Sucré, Jaune, ?

CPT: Conditional Probability Table - Contingency Table

Туре	Long	Non Long	Sucré	Non sucré	Jaune	Non Jaune	Total
Banane	400	100	350	150	450	50	500
Orange	0	300	150	150	300	0	300
Autre	100	100	150	50	50	150	200
Total	500	500	650	350	800	200	1000

Exemple

New Data X : Long, Sucré, Jaune, ?

Calculer:

- > Probabilité postérieure classe Banane : P(Banane | Long, Sucré, Jaune)
- > Probabilité postérieure classe Orange: P(Orange|Long, Sucré, Jaune)
- Probabilité postérieure classe Autre: P(Autre | Long, Sucré, Jaune)

$$P(C_i|X) = \frac{P(X|C_i) * P(C_i)}{P(X)}$$

$$P(X|C_i) = \prod_{k=1}^n P(x_k|C_i)$$

New Data X: Long, Sucré, Jaune, ?

Exemple

$$P(C_i|X) = \frac{P(X|C_i) * P(C_i)}{P(X)}$$

$$P(X|C_i) = \prod_{k=1}^n P(x_k|C_i)$$

Probabilité postérieure - classe Banane :

$$P(Banane | Long, Sucré, Jaune) =$$

$$\frac{\left| P(Long \middle| Banane) * P(Sucré \middle| Banane) * P(Jaune \middle| Banane) * P(Banane)}{P(Long) * P(Sucré) * P(Jaune)} \right|$$

New Data X: Long, Sucré, Jaune,?

Exemple

$$P(C_i|X) = \frac{P(X|C_i) * P(C_i)}{P(X)}$$

$$P(X|C_i) = \prod_{k=1}^n P(x_k|C_i)$$

Probabilité postérieure - classe Orange:

$$P(Orange|Long, Sucré, Jaune) =$$

$$\frac{\left| P(Long | Orange) * P(Sucré | Orange) * P(Jaune | Orange) * P(Orange)}{P(Long) * P(Sucré) * P(Jaune)} \right|$$

New Data X: Long, Sucré, Jaune,?

Exemple

$$P(C_i|X) = \frac{P(X|C_i) * P(C_i)}{P(X)}$$

$$P(X|C_i) = \prod_{k=1}^n P(x_k|C_i)$$

Probabilité postérieure - classe Autre:

$$P(Autre|Long, Sucré, Jaune) =$$

$$\frac{\left| P(Long | Autre) * P(Sucré | Autre) * P(Jaune | Autre) * P(Autre)}{P(Long) * P(Sucré) * P(Jaune)} \right|$$

Exemple

Probabilité à priori : P(C)

$$P(C_i|X) = \frac{P(X|C_i) * P(C_i)}{P(X)}$$
• P(Banane) = 500/1000 = 0.5
• P(Orange) = 300/1000 = 0.3
• P(Autre) = 200/1000 = 0.2

- P(Banane) = 500/1000 = 0.5

Туре	Long	Non Long	Sucré	Non sucré	Jaune	Non Jaune	Total
Banane	400	100	350	150	450	50	500
Orange	0	300	150	150	300	0	300
Autre	100	100	150	50	50	150	200
Total	500	500	650	350	800	200	1000

New Data X: Long, Sucré, Jaune, ?

Exemple

$$P(C_i|X) = \frac{P(X|C_i) * P(C_i)}{P(X)}$$

•
$$P(Long) = 500/1000 = 0.5$$

• P(Sucré) = 650/1000 = 0.65

• P(Jaune) = 800/1000 = 0.8

Туре	Long	Non Long	Sucré	Non sucré	Jaune	Non Jaune	Total
Banane	400	100	350	150	450	50	500
Orange	0	300	150	150	300	0	300
Autre	100	100	150	50	50	150	200
Total	500	500	650	350	800	200	1000

New Data X: Long, Sucré, Jaune, ?

Exemple

Probabilité Vraisemblance: P(X|**Banane**)

$$P(C_i|X) = P(X|C_i) * P(C_i)$$
 P(Long|Banane) = 400/500
P(Sucré|Banane) = 350/500
P(Jaune|Banane) = 450/500

Туре	Long	Non Long	Sucré	Non sucré	Jaune	Non Jaune	Total
Banane	400	100	350	150	450	50	500
Orange	0	300	150	150	300	0	300
Autre	100	100	150	50	50	150	200
Total	500	500	650	350	800	200	1000

New Data X: Long, Sucré, Jaune, ?

Exemple

Probabilité Vraisemblance: P(X|Orange)

• P(Long|Orange) = o/300

• P(Sucré|**Orange**) = 150/300

• P(Jaune|**Orange**)= 300/300

Туре	Long	Non Long	Sucré	Non sucré	Jaune	Non Jaune	Total
Banane	400	100	350	150	450	50	500
Orange	0	300	150	150	300	0	300
Autre	100	100	150	50	50	150	200
Total	500	500	650	350	800	200	1000

New Data X: Long, Sucré, Jaune, ?

Exemple

Probabilité Vraisemblance: P(X|Autre)

• P(Long|Autre) = 100/200

• P(Sucré|**autre**) = 150/200

• P(Jaune|**Autre**)= 50/200

Туре	Long	Non Long	Sucré	Non sucré	Jaune	Non Jaune	Total
Banane	400	100	350	150	450	50	500
Orange	0	300	150	150	300	0	300
Autre	100	100	150	50	50	150	200
Total	500	500	650	350	800	200	1000

Exemple

New Data X: Long, Sucré, Jaune, ?

- \triangleright Probabilité postérieure classe Banane : P(Banane | X) = 0.252 / P(X)
- \triangleright Probabilité postérieure classe Orange: P(Orange|X) = o/P(X)
- ightharpoonup Probabilité postérieure classe Autre: P(Autres|X) = 0.01875/P(X)

→ New Data X : Long, Sucré, Jaune, Banane

Cas attributs numériques

Temperature	Humidity	Class
Hot	86	Yes
Hot	96	Yes
Cool	80	Yes
Cool	65	Yes
Hot	70	Yes
Cool	80	Yes
Hot	70	Yes
Hot	90	Yes
Cool	75	Yes
Cool	85	No
Hot	90	No
Cool	70	No
Hot	95	No
Cool	91	No

Cas attributs numériques

- > Discrétisation ou distribution des valeurs.
- Distribution normale des attributs : Calcul de la moyenne et de l'écart type.

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

$$\sigma = \left[\frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \mu)^{2} \right]^{0.5}$$
Écart type
$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^{2}}{2\sigma^{2}}}$$
Distribution
Normale

Cas attributs numériques

➤ Distribution normale des attributs : Calcul de la moyenne et de l'écart type.

Example:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

$$\sigma = \left[\frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \mu)^{2} \right]^{0.5}$$

Cas attributs numériques

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Play Galf	yes	86 96 80 65 70 80 70 90 75)				
Play Golf	no	85 90 70 95 91					

Humidity

Mean

86.2

StDev

10.2

9.7

P(74 | Yes)
$$P(\text{humidity} = 74 | \text{play} = \text{yes}) = \frac{1}{\sqrt{2\pi} (10.2)} e^{-\frac{(74-79.1)^2}{2(10.2)^2}} = 0.0344$$

P(74 | No)
$$P(\text{humidity} = 74 | \text{play} = \text{no}) = \frac{1}{\sqrt{2\pi}(9.7)} e^{-\frac{(74-862)^4}{2(9.7)^2}} = 0.0187$$

Quelques domaines d'application

- Prédiction temps réel. rapidité.
- Classification textuelle.
- Sentiment Analysis Opinion Mining.
- Filtrage bayésien du spam et des courriers indésirables.
- > Systèmes de recommandation.

Références

Data Mining: concepts and techniques, 3rd Edition

- ✓ Auteur : Jiawei Han, Micheline Kamber, Jian Pei
- ✓ Éditeur : Morgan Kaufmann Publishers
- ✓ Edition: Juin 2011 744 pages ISBN 9780123814807

Data Mining: concepts, models, methods, and algorithms

- ✓ Auteur : Mehmed Kantardzi
- ✓ Éditeur : John Wiley & Sons
- ✓ Edition : Aout 2011 552 pages ISBN : 9781118029121

Data Mining: Practical Machine Learning Tools and Techniques

- ✓ Auteur : Ian H. Witten & Eibe Frank
- ✓ Éditeur : Morgan Kaufmann Publishers
- ✓ Edition : Juin 2005 664 pages ISBN : 0-12-088407-0

Références

- Cours Abdelhamid DJEFFAL Fouille de données avancée
 - ✓ www.abdelhamid-djeffal.net

WekaMOOC – Ian Witten – Data Mining with Weka

✓ https://www.youtube.com/user/WekaMOOC/featured

Cours - PJE : Analyse de comportements avec Twitter Classification supervisée - Arnaud Liefooghe

✓ http://www.fil.univ-lille1.fr/~liefooghe/PJE/bayes-cours.pdf

✓ http://stackoverflow.com/questions/10059594/a-simple-explanation-of-naive-bayes-classification