ELATE: Elastic tensor analysis

Welcome to ELATE, the online tool for analysis of elastic tensors, developed by **Romain Gaillac** and **François-Xavier Coudert** at CNRS / Chimie ParisTech.

If you use the software in published results (paper, conference, etc.), please cite the <u>corresponding paper</u> (*J. Phys. Condens. Matter*, 2016, 28, 275201) and give the website URL.

ELATE is open source software. Any queries or comments are welcome at fx.coudert@chimie-paristech.fr

Summary of the properties (3D material)

Input: stiffness matrix (coefficients in GPa) of

21.692	24.83	13.965	0.2541	-1.0904	-0.1153
24.83	42.576	19.409	0.9002	-1.1102	0.9063
13.965	19.409	274.1	-0.1283	0.7649	-0.0713
0.2541	0.9002	-0.1283	2.9155	-0.216	-0.583
-1.0904	-1.1102	0.7649	-0.216	2.7181	0.2909
-0.1153	0.9063	-0.0713	-0.583	0.2909	2.2818

Average properties

Averaging scheme	Bulk modulus	Young's modulus	Shear modulus	Poisson's ratio
Voigt	K _V = 50.53 GPa	<i>E</i> _V = 53.615 GPa	G _V = 20.26 GPa	$v_V = 0.32316$
Reuss	K _R = 20.35 GPa	<i>E</i> _R = 8.6296 GPa	G _R = 3.0188 GPa	$v_{R} = 0.42932$
Hill	K _H = 35.44 GPa	E _H = 31.473 GPa	G _H = 11.64 GPa	v _H = 0.35199

Eigenvalues of the stiffness matrix

λ ₁	λ_2	λ ₃	λ_4	λ ₅	λ ₆	
1 772 GPa	2.5153 GPa	3 384 GPa	5 3663 GPa	56 519 GPa	276 72 GPa	

Variations of the elastic moduli

	Young's modulus		Linear compressibility		Shear modulus		Poisson's ratio		
	E_{min}	E _{max}	β_{min}	β_{max}	G _{min}	G _{max}	v _{min}	v _{max}	
Value	5.345 GPa	264.27 GPa	-11.258 TPa ⁻¹	60.413 TPa ⁻¹	1.6871 GPa	13.82 GPa	-0.44725	1.1452	Value
Anisotropy	49	.44	×	o	8.1	92	œ		Anisotropy
Axis	0.8256 0.3951 0.4028	-0.0057 0.0020 -1.0000	-0.0374 0.9993 -0.0041	0.9876 0.0377 0.1524	0.2688 0.9573 -0.1068	0.1206 0.6904 0.7133	-0.0222 0.0905 0.9956	-0.0024 0.9989 0.0466	Axis

Spatial dependence of Young's modulus

Visualize in 3D

Spatial dependence of linear compressibility

Visualize in 3D

linear compressibility in (yz) plane

Spatial dependence of shear modulus

Visualize in 3D

15

Spatial dependence of Poisson's ratio

-15 0 + ←
Shear modulus in (yz) plane

Visualize in 3D

0.5 -0.5 0.5 -0.5 0 ↓ ↑

Poisson's ratio in (yz) plane

Code version: 2024.03.15 (running on Python 3.11.2) Execution time: 1.164 seconds