Math 421, Section 1 Midterm 1 Fall 2024

First name:	Last name:
riist name	Last name:

Instructions:

- This exam contains 3 problems, and there are a total of 30 points available.
- \bullet Show all your work in the space provided. You may also use the backs of pages.
- $\bullet\,$ No outside resources are allowed, including notes, calculators, textbooks, etc.

Question	Points	Score
1	10	
2	10	
3	10	
Total:	30	

1. (10 points) Using induction, prove that for all $n \in \mathbb{N}$ we have

$$\frac{1}{1\cdot 4} + \frac{1}{4\cdot 7} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{3n+1}.$$

- 2. Let $f:A\to B$ be a function. Prove or disprove the following statements:
 - (a) (5 points) $f(A_1) \cap f(A_2) \subseteq f(A_1 \cap A_2)$ for all $A_1, A_2 \subseteq A$.
 - (b) (5 points) $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$ for all $A_1, A_2 \subseteq A$.

- 3. (a) (3 points) Let $f: \mathbb{R} \to \mathbb{R}$ be a function and $a, \ell \in \mathbb{R}$ be numbers. State the definition of the *limit* of f(x) as x approaches a is ℓ .
 - (b) (7 points) Prove that the function $f(x) = x^2 + 3$ satisfies this definition for a = 1 and $\ell = 4$.

Extra paper