

Global Modeling and Assimilation Office

GMAO Office Note No. 8 (Version 1.0)

GEOS-5 Chemistry Transport Model User's Guide

Release Date: 09/04/2015

Global Modeling and Assimilation Office Earth Sciences Division NASA Goddard Space Flight Center Greenbelt, Maryland 20771

GEOS-5 Chemistry Transport Model User's Guide

Document maintained by Jules Kouatchou (NASA/GSFC)
This document should be cited as:
Kouatchou, J., A. Molod, J. E. Nielsen, B. Auer, W. Putman and T. Clune, GEOS-5 Chemistry Transport Model User's Guide. GMAO Office Note No. 8 (Version 1.0), 26 pp, available from http://gmao.gsfc.nasa.gov/pubs/office_notes.
Approved by:
Steven Pawson Date Chief, Global Modeling and Assimilation Office Code 610.1, NASA GSFC

REVISION HISTORY

Version	Revision Date	Extent of Changes
1.0	09/04/2015	Baseline

Abstract:

The Goddard Earth Observing System version 5 (GEOS-5) General Circulation Model (GCM) makes use of the Earth System Modeling Framework (ESMF) to enable model configurations with many functions. One of the options of the GEOS-5 GCM is the GEOS-5 Chemistry Transport Model (GEOS-5 CTM), which is an offline simulation of chemistry and constituent transport driven by a specified meteorology and other model output fields. This document describes the basic components of the GEOS-5 CTM, and is a user's guide on to how to obtain and run simulations on the NCCS Discover platform. In addition, we provide information on how to change the model configuration input files to meet users' needs.

Contents

1	Backgr	ound
2	Obtain	ing the Code
3	Compi	ling the code \dots
4	Runnii	ng the Code
5	Chang	ing Default Configuration
	5.1	CTM_GridComp.rc File
	5.2	Duration of Experiment
	5.3	ExtData Component
	5.4	Ouputting Variables
Bibli	ograph	y
Appe	endix A	: Meteorological Fields for GMI
Appe	endix B	: Using the GEOS-5 CTM CC for Producing Diagnostics
App	endix C	: Export State Variables
	3.1	pCHEM
	3.2	GMI
	3.3	GOCART

1 Background

The GEOS-5 Chemistry Transport Model (CTM) integrates one configurable CTM with options for running any chemistry module currently available within the GEOS-5 GCM code base. It uses the GEOS-5 Earth System Modeling Framework (ESMF) infrastructure (MAPL, the "History" component and the "ExtData" component) and the GEOS-5 advection component (AdvCore) to drive the GEOS-5 Chemistry component (that includes options for the Global Modeling Initiative (GMI) [Logan et al., 2003], the Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) [Chin et al., 2000], GEOS-Chem [Bey et al., 2001], etc.). Detailed information about the GEOS-5 CTM is available in [Kouatchou et al., 2015].

The main components of GEOS-5 CTM are:

AdvCore: the transport componet which source code is part of the GEOS-5 directory $FV dy core-Cubed\ GridComp/.$

Chemistry: the GEOS-5 Chemistry component which contains all the options for chemistry models available in GEOS-5 GCM, such as GOCART, GMI, GEOS-Chem, etc. The entire GEOS-5 GEOSchem GridComp/ defines this component.

Diffusion: component where various diffusion methods are implemented.

Convection: component where various convection methods are implemented.

GEOS-5 CTM Cinderella: a component which primary role is to provide services to the other components. For instance, it will compute the courant numbers and mass fluxes (using the winds and pressure) for AdvCore.

They are shown in Figure 1.

Figure 1: Flow diagram of the main components of GEOS-5 CTM.

2 Obtaining the Code

It is assumed that we have access to the GEOS-5 CVS repository and that we have the settings:

setenv CVS_RSH ssh

setenv CVSROOT :ext:userID@progressdirect.nccs.nasa.gov:/cvsroot/esma

where *userID* is our NCCS username.

The latest version of GEOS-5 CTM (as of August 2015) is under the tag name:

To obtain the code, use the cvs command:

```
cvs co -r Heracles-3 1 CTM GEOSctm
```

We will then get the directory GEOSctm/. The basic directory structure of the code is:

```
src/
src/Config/
src/GMAO_Shared/
src/Applications/
src/Applications/GEOSctm_App
src/GEOSctm_GridComp/
src/GEOSctm_GridComp/CTMconvection_GridComp/
src/GEOSctm_GridComp/CTMpTracers_GridComp/
src/GEOSctm_GridComp/FVdycoreCubed_GridComp/
src/GEOSctm_GridComp/FVdycoreCubed_GridComp/
```

The GEOS-5 CTM Cinderella component (used to derived variables) is included in the file:

```
src/GEOSctm_GridComp/GEOS_ctmEnvGridComp.F90
```

3 Compiling the code

To compile the code, go to the directory:

```
GEOSctm/src/
```

and issue the command (that does a parallel compilation):

```
./parallel build.csh
```

(we should be ready to provide our sponsor code account). The executable, GEOSctm.x, will be in the directory:

GEOSctm/Linux/bin

4 Running the Code

In order to run GEOS-5 CTM, a "setup" script is available with a suite of default configurations. Go to the directory $GEOSctm/src/Applications/GEOSctm_App/$ and run the script:

We will answer a series of questions to determine the model configuration (horizontal resolution, type of Chemistry, driving dataset, etc.) we are interested in. Table 1 shows the possible configuration options.

The script will automatically generate configuration files and run scripts. In our experiment directory, it will create:

Chemistry	\mid Passive Tracer, pChem, GOCART, GMI, GOCART_Data \mid
Driving Dataset	MERRA, FP, FP-IT, MERRA2
Horizontal Resolution (deg)	2, 1, 1/2, 1/4, 1/8, 1/16

Table 1: Configuration options of GEOS-5 CTM.

CAP.rc: file containing information on start date & time,

end date & time of job segment, duration of job segment, stop date & time of entire experiment.

HISTORY.rc: file for selecting the type of diagnostics to be produced

ctm_run.j: SLURM script for submitting the job

RC/ contains all the resource files needed to drive the model

CTM_GridComp.rc: file for turning on/off Convection, Diffusion and for selecting the type of meteorological

driving (MERRA or MERRA2)

GEOSCTM.rc: file for setting model parameters

MAPL_ExtData.rc file needed by ExtData to read external data files

Before submitting, create the file:

cap_restart: ASCII file containing (single line) starting the

date (YYYYMMDD) and time (HHMMSS) of the job segment

in the format: YYYYMMDD HHMMSS

and then issue the command:

qsub ctm run.j

At run time, the following directories will be created:

holding/: location where output files are moved to after a

successful run.

restart/: location of restart files generated by the model scratch/: temporary directory used to keep necessary files

while the code is running

Remark 1 If we choose to use MERRA2 driving datasets (default option), the ctm_setup script will generate the file MERRA2_ExtData.rc.tmpl instead of MAPL_ExtData.rc. At run time, the SLURM script ctm_run.j manipulates MERRA2_ExtData.rc.tmpl to create a file similar to MAPL ExtData.rc.

5 Changing Default Configuration

5.1 CTM_GridComp.rc File

The $CTM_GridComp.rc$ file is used to set options for Convection, Diffusion and the type meteorological data.

Meteorological Data

We need to set the variable metType that has two options: MERRA2 (default, can also be used for FP-IT data) and MERRA (for MERRA data).

Convection

By default, Convection is activated for GMI and not for other configurations. In case we want to exercise Convection for non-GMI experiments, we need to set:

Diffusion

By default, Duffusion is activated all configurations but Passive Tracer. In case we want to exercise Diffusion, we need to set:

do_ctmDiffusion: T

5.2 Duration of Experiment

In the process of generating the configuration scripts, the following files were created:

- *CAP.rc*: contains begin/end date and time of entire job, stop date, duration (in days) of each job segment.
- $ctm_run.j$: SLURM script
- cap_restart: contains two numbers pointing to the starting date YYYYMMDD and starting hour HHMMSS of the job.

Assume that we want to carry out a 12-month experiment with January 1, 2005 as starting date. We want to run one month at the time. The file $cap_restart$ will have

20050101 000000

and the file *CAP.rc* will have the settings:

BEG_DATE: 20000101 000000 END_DATE: 20060101 000000 JOB_SGMT: 00000031 000000

Note that the stop date **END DATE** is January 1, 2006. We will need to submit the PBS script:

qsub ctm run.j

When the first job segment is completed (for January 2005), the script will resubmit itself. The file cap restart will automatically be updated to contain

20050201 000000

5.3 ExtData Component

GEOS-5 contains the Gridded Component ExtData that has the ability to read from external files variables needed by the model. ExtData

- Relies on a resource file that lists the variables to be read in. Each variable is represented with the following information: short name, dimension, unit, path to netCDF/hdf file containing the variable, variable name in the file, reading frequency, etc.
- Can perform unit conversion. It has basic scaling and offset calculations.

- Does time interpolation.
- Does regridding.
- Is called at every time step before all the other run methods (Physics, Dynamics).
- Is the last ESMF gridded component the entire code will rely on to look for the availability of a given variable (requested by another ESMF gridded component). If the variable cannot be provided, the code will abort.

Create/Edit the file MAPL ExtData.rc:

This resource file (to be located in the running directory) is read by the *ExtData* component and should contain information on the variables to be extracted from the files.

PrimaryExpo									
#		-							
# Export	I	1	l V	I	L Refresh	Fac	tors	E2	xternal File
# Name	Units	Dim	Loc	Clim	Time Template	Offset	Scale	Variable	Template
#		-							
ZPBL	'n,	ху	C	N	N O	0.0	1.0	PBLH	MERRA2_400.tavg1_2d_flx_Nx.%y4%m2%d2.nc4
FRLAND	'1'	xy	C	Y	N O	0.0	1.0	FRLAND	MERRA2_400.const_2d_asm_Nx.climatology.nc4
T	,K,	xyz	C	N	N O	0.0	1.0	T	MERRA2_400.inst3_3d_asm_Nv.%y4%m2%d2.nc4
PLE	'Pa'	xyz	E	N	N O	0.0	1.0	PLE	MERRA2_400.tavg3_3d_nav_Ne.%y4%m2%d2.nc4

where:

Export Name: The variable name as written in Import State declaration.

Units: The unit of the variable.

Dim: Variable dimension (xy or xyz)

V Loc: Can have either 'C' (center) of 'E' (edge).

Clim: Determine if the reading will be cyclic (Y) or not (N).

Factors: Offset and Scale for unit vonversion.

External File: The variable name as it appears in the file and the location where the external file resides.

5.4 Ouputting Variables

Component Names

To produce a field by the HISTORY component, it is important to know the acronym of the component which owns it. Table 2 lists the main component names and their acronyms.

HISTORY Settings

The contents of the the file HISTORY.rc tell the model what and how to output its state and diagnostic fields. To learn the proper settings in HISTORY.rc, visit the website:

http://geos5.org/wiki/index.php?title=Ganymed 4.1 User's Guide#Determining Output: HISTORY.rc

Long Name	Name in HISTORY.rc
GEOS-5 CTM Cinderella	CTMenv
GEOSchem Cinderella	CHEMENV
Passive Tracer	TR
GOCART	GOCART
GMI	GMICHEM
Convection	CONVECTION
Diffusion	DIFFUSION

Table 2: Component Names and Acronymes Used in HISTORY.rc. $\,$

Bibliography

- [Bey et al., 2001] Bey, I., Jacob, D. J., M.Yantosca, R., Logan, J. A., Filed, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schiltz, M. G. (2001). Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation,. *J. Geophys. Res.*, 106:23073–23095.
- [Chin et al., 2000] Chin, M., Rood, R. B., Lin, S.-J., Muller, J., and Thompson, A. (2000). At-mospheric sulfur cycle simulated in the global model GOCART: model description and global properties. J. Geophys. Res., 105:24671–24687.
- [Kouatchou et al., 2015] Kouatchou, J., Clune, T., Molod, A., Putman, W., Auer, B., Nielsen, J. E., da Silva, A., Strahan, S., and Steenrod, S. (2015). GEOS-5 CTM: A new ESMF-based framework for a generalized chemistry transport model. *Geosci. Model Dev.* submitted.
- [Logan et al., 2003] Logan, J. A., Bergmann, D., Rodriguez, J., Chatfield, R., Considine, D., Wang, Y., Jacob, D., Prather, M., Rotman, D., and Cameron-Smith, P. (2003). Evaluation of tropospheric chemistry simulations for the Global Modeling Initiative (GMI). *Geophysical Research Abstracts*, 5.

Appendix A: Meteorological Fields for GMI

Below is a the list of typical meteorological related variables required to run the GMI configuration.

Short Name Long Name Unit AIRDENS air density kg m-3 ALBVF surface albedo for visible diffuse 1 ASNOW fractional area of land snowcover 1 CLDTT total cloud area fraction 1 CN_PRCP convective precipitation kg m-2 s-1 CNV_MFC cumulative mass flux kg m-2 s-1 CNV_MFD detraining mass flux kg m-2 s-1 DFPAR surface downwelling par diffuse flux W m-2 DQDT specific humidity tendency due to moist s-1 DRPAR surface downwelling par diffuse flux W m-2 FCLD cloud fraction for radiation 1 FRACI ice covered fraction of tile 1 FRLAND fraction of lake 1 FRLAND fraction of land 1 FRLAND fraction of land 1 FRLANDICE fraction of land 1 FRLANDICE fraction of land-ice 1 GRN greeness fraction 1 LAI leaf area index 1 LWI land-ocean-ice mask 1 PFL_CN 3D flux of liquid convective precipitation kg m-2 s-1 LWI land-ocean-ice mask 1 PFL_SAN 3D flux of liquid non convective precipitation kg m-2 s-1 PFL air pressure Pa PS surface pressure Pa Q specific humidity 1 QL cloud liquid for radiation 1 RH2 relative humidity after moist
ALBUF Surface albedo for visible diffuse 1 ASNOW fractional area of land snowcover 1 CLDTT total cloud area fraction 1 CN_PRCP convective precipitation kg m-2 s-1 CNV_MFC cumulative mass flux kg m-2 s-1 CNV_MFD detraining mass flux kg m-2 s-1 DFPAR surface downwelling par diffuse flux W m-2 DQDT specific humidity tendency due to moist s-1 DRPAR surface downwelling par beam flux W m-2 FCLD cloud fraction for radiation 1 FRACI ice covered fraction of tile 1 FRLAND fraction of land 1 FRLAND fraction of land 1 FRLAND fraction of land 1 FRLANDICE fracrion of land-ice 1 LAI leaf area index 1 LFR lightning flash rate 1 LWI land-ocean-ice mask 1 PFL_CN 3D flux of liquid convective precipitation kg m-2 s-1 PFL_E air pressure Pa PS surface pressure Pa Q specific humidity 1 QL cloud liquid for radiation 1 SWNDSRF surface net downward shortwave flux W m-2 T temperature K TA surface air temperature K TA Surface air temperature K TAUCLW optical thickness for ice clouds 1 TRRCPP tropopause pressure based on blended estimate Pa
ASNOW fractional area of land snowcover 1 CLDTT total cloud area fraction 1 CN_PRCP convective precipitation kg m-2 s-1 CNV_MFC cumulative mass flux kg m-2 s-1 CNV_MFD detraining mass flux kg m-2 s-1 CNV_MFD detraining mass flux wm-2 DPPAR surface downwelling par diffuse flux wm-2 DQDT specific humidity tendency due to moist s-1 DRPAR surface downwelling par beam flux wm-2 FCLD cloud fraction for radiation 1 FRACI ice covered fraction of tile 1 FRLAND fraction of land 1 FRLAND fraction of land 1 FRLANDICE fracrion of land-ice 1 GRN greeness fraction 1 LAI leaf area index 1 LFR lightning flash rate km-2 s-1 LWI land-ocean-ice mask 1 PFL_CN 3D flux of liquid convective precipitation kg m-2 s-1 PFL_LSAN 3D flux of liquid convective precipitation kg m-2 s-1 PFL_LSAN 3D flux of liquid non convective precipitation kg m-2 s-1 PFL_C air pressure Pa Q specific humidity 1 QL cloud liquid for radiation 1 RH2 relative humidity after moist 1 SWNDSRF surface net downward shortwave flux Wm-2 T temperature K TA surface air temperature K TA surface air temperature K TA Surface lair temperature K TAUCLU optical thickness for liquid clouds 1 TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
CLDTT total cloud area fraction 1 CN_PRCP convective precipitation kg m-2 s-1 CNV_MFC cumulative mass flux kg m-2 s-1 CNV_MFD detraining mass flux kg m-2 s-1 DFPAR surface downwelling par diffuse flux w m-2 DQDT specific humidity tendency due to moist s-1 DRPAR surface downwelling par beam flux w m-2 FCLD cloud fraction for radiation 1 FRACI ice covered fraction of tile 1 FRLAND fraction of lake fraction of land 1 FRLAND fraction of land 1 FRLAND fraction of land-ice 1 GRN greeness fraction 1 LAI leaf area index 1 LFR lightning flash rate km-2 s-1 LWI land-ocean-ice mask 1 FFL_CN 3D flux of liquid convective precipitation kg m-2 s-1 PFL_LSAN 3D flux of liquid non convective precipitation kg m-2 s-1 PLE air pressure Pa Q specific humidity 1 QL cloud liquid for radiation 1 SWNDSRF surface net downward shortwave flux W m-2 T temperature K TA surface air temperature K TA surface air temperature K TAUCLU optical thickness for liquid clouds 1 TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
CN_PRCP convective precipitation kg m-2 s-1 CNV_MFC cumulative mass flux kg m-2 s-1 CNV_MFD detraining mass flux kg m-2 s-1 DFPAR surface downwelling par diffuse flux W m-2 DQDT specific humidity tendency due to moist s-1 DRPAR surface downwelling par beam flux W m-2 FCLD cloud fraction for radiation 1 FRACI ice covered fraction of tile 1 FRLAKE fraction of lake 1 FRLAND fraction of land 1 FRLANDICE fracrion of land 1 FRLANDICE fracrion of land-ice 1 GRN greeness fraction 1 LAI leaf area index 1 LFR lightning flash rate 1 LWI land-ocean-ice mask 1 FFL_CN 3D flux of liquid convective precipitation kg m-2 s-1 PFL_LSAN 3D flux of liquid non convective precipitation kg m-2 s-1 PFL air pressure Pa Q specific humidity 1 QL cloud liquid for radiation 1 RH2 relative humidity after moist 1 SWNDSRF surface net downward shortwave flux W m-2 T temperature K TAM Surface air temperature K TAM Surface air temperature K TAUCLI optical thickness for ice clouds 1 TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
CNN_MFC cumulative mass flux kg m-2 s-1 CNV_MFD detraining mass flux kg m-2 s-1 DFPAR surface downwelling par diffuse flux W m-2 DQDT specific humidity tendency due to moist s-1 DRPAR surface downwelling par beam flux W m-2 FCLD cloud fraction for radiation 1 FRACI ice covered fraction of tile 1 FRLAKE fraction of lake 1 FRLAND fraction of land 1 FRLANDICE fracrion of land-ice 1 GRN greeness fraction 1 LAI leaf area index 1 LFR lightning flash rate LWI land-ocean-ice mask 1 FFL_LSAN 3D flux of liquid convective precipitation kg m-2 s-1 PFL_LSAN 3D flux of liquid non convective precipitation kg m-2 s-1 PFL air pressure Pa PS surface pressure Pa Q specific humidity 1 QL cloud liquid for radiation 1 RH2 relative humidity after moist 1 SWNDSRF surface net downward shortwave flux W m-2 T temperature K TAM 2-meter air temperature K TAW CLU optical thickness for ice clouds 1 TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
CNV_MFD detraining mass flux kg m-2 s-1 DFPAR surface downwelling par diffuse flux W m-2 DQDT specific humidity tendency due to moist s-1 DRPAR surface downwelling par beam flux W m-2 FCLD cloud fraction for radiation 1 FRACI ice covered fraction of tile 1 FRACI fraction of lake fraction of lake fraction of land 1 FRLAND fraction of land 1 FRLANDICE fracrion of land-ice 1 GRN greeness fraction 1 LAI leaf area index 1 LFR lightning flash rate 1 LWI land-ocean-ice mask 1 PFL_CN 3D flux of liquid convective precipitation kg m-2 s-1 PFL_ISAN 3D flux of liquid non convective precipitation kg m-2 s-1 PFL_E air pressure Pa PS surface pressure Pa Q specific humidity 1 QL cloud liquid for radiation 1 RH2 relative humidity after moist 1 SWNDSRF surface net downward shortwave flux W m-2 T temperature K TAUCLU optical thickness for liquid clouds 1 TAUCLI optical thickness for ice clouds 1 TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate
DFPAR surface downwelling par diffuse flux
DQDT specific humidity tendency due to moist surface downwelling par beam flux W m-2 FCLD cloud fraction for radiation 1 FRACI ice covered fraction of tile 1 FRLAKE fraction of lake 1 FRLAND fraction of land 1 FRLANDICE fracrion of land-ice 1 GRN greeness fraction 1 LAI leaf area index 1 LFR lightning flash rate 1 LWI land-ocean-ice mask 1 FFL_CN 3D flux of liquid convective precipitation kg m-2 s-1 PFL_LSAN 3D flux of liquid non convective precipitation kg m-2 s-1 PFL air pressure Pa PS surface pressure Q specific humidity 1 QL cloud liquid for radiation 1 RH2 relative humidity after moist 1 SWNDSRF surface net downward shortwave flux W m-2 T temperature K TA surface air temperature K TA surface air temperature K TA Surface precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
DRPAR surface downwelling par beam flux W m-2 FCLD cloud fraction for radiation 1 FRACI ice covered fraction of tile 1 FRLAKE fraction of lake 1 FRLAND fraction of land 1 FRLANDICE fracrion of land-ice 1 GRN greeness fraction 1 LAI leaf area index 1 LFR lightning flash rate 1 LWI land-ocean-ice mask 1 FFL_CN 3D flux of liquid convective precipitation kg m-2 s-1 PFL_LSAN 3D flux of liquid non convective precipitation kg m-2 s-1 PFL air pressure Pa PS surface pressure Pa Q specific humidity 1 QL cloud liquid for radiation 1 RH2 relative humidity after moist 1 SWNDSRF surface net downward shortwave flux W m-2 T temperature K TA surface air temperature K TA surface air temperature K TA surface air temperature K TAUCLU optical thickness for liquid clouds 1 TRUCLI optical thickness for ice clouds 1 TROPP tropopause pressure based on blended estimate Pa
FCLD cloud fraction for radiation 1 FRACI ice covered fraction of tile 1 FRLAKE fraction of lake 1 FRLAND fraction of land 1 FRLANDICE fracrion of land-ice 1 GRN greeness fraction 1 LAI leaf area index 1 LFR lightning flash rate 1 LWI land-ocean-ice mask 1 FFL_CN 3D flux of liquid convective precipitation 1 FFL_LSAN 3D flux of liquid non convective precipitation 1 FFL_LSAN 3D flux of liquid non convective precipitation 2 FFL surface pressure 2 FA surface pressure 3 FA specific humidity 1 FFL cloud liquid for radiation 1 FF
FRACI ice covered fraction of tile 1 FRLAKE fraction of lake 1 FRLAND fraction of land 1 FRLANDICE fracrion of land-ice 1 GRN greeness fraction 1 LAI leaf area index 1 LFR lightning flash rate km-2 s-1 LWI land-ocean-ice mask 1 PFL_CN 3D flux of liquid convective precipitation kg m-2 s-1 PFL_LSAN 3D flux of liquid non convective precipitation kg m-2 s-1 PLE air pressure Pa PS surface pressure Pa Q specific humidity 1 QL cloud liquid for radiation 1 RH2 relative humidity after moist 1 SWNDSRF surface net downward shortwave flux W m-2 T temperature K TA surface air temperature K TA surface air temperature K TAUCLU optical thickness for liquid clouds 1 TAUCLI optical thickness for ice clouds 1 TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
FRLAKE fraction of lake 1 FRLAND fraction of land 1 FRLANDICE fracrion of land-ice 1 GRN greeness fraction 1 LAI leaf area index 1 LFR lightning flash rate km-2 s-1 LWI land-ocean-ice mask 1 PFL_CN 3D flux of liquid convective precipitation kg m-2 s-1 PFL_LSAN 3D flux of liquid non convective precipitation kg m-2 s-1 PLE air pressure Pa PS surface pressure Pa Q specific humidity 1 QL cloud liquid for radiation 1 RH2 relative humidity after moist 1 SWNDSRF surface net downward shortwave flux W m-2 T temperature K TA surface air temperature K TA surface air temperature K TAUCLU optical thickness for liquid clouds 1 TAUCLI optical thickness for ice clouds 1 TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
FRLAND fraction of land FRLANDICE fracrion of land-ice GRN greeness fraction LAI leaf area index LFR lightning flash rate LWI land-ocean-ice mask PFL_CN 3D flux of liquid convective precipitation FRLAND FRLAND FRLAND FRLAND FRLAND FRLAND FRLAND FRLAND FRLAND FRAND FR
FRLANDICE fraction of land-ice 1 GRN greeness fraction 1 LAI leaf area index 1 LFR lightning flash rate km-2 s-1 LWI land-ocean-ice mask 1 PFL_CN 3D flux of liquid convective precipitation kg m-2 s-1 PFL_LSAN 3D flux of liquid non convective precipitation kg m-2 s-1 PLE air pressure Pa PS surface pressure Pa Q specific humidity 1 QL cloud liquid for radiation 1 RH2 relative humidity after moist 1 SWNDSRF surface net downward shortwave flux W m-2 T temperature K T2M 2-meter air temperature K TAA surface air temperature K TAUCLW optical thickness for liquid clouds 1 TAUCLI optical thickness for ice clouds 1 TROPP tropopause pressure based on blended estimate Pa
GRN greeness fraction LAI leaf area index LFR lightning flash rate LWI land-ocean-ice mask PFL_CN 3D flux of liquid convective precipitation FFL_LSAN 3D flux of liquid non convective precipitation RFL_LSAN 3D flux of liquid non convective precipitation PS surface pressure PS surface pressure Q specific humidity QL cloud liquid for radiation RH2 relative humidity after moist SWNDSRF surface net downward shortwave flux T temperature T temperature TA surface air temperature TA surface air temperature TAUCLW optical thickness for liquid clouds TAUCLI optical thickness for ice clouds TROPP tropopause pressure based on blended estimate Pa 1 1 1 1 1 1 1 1 1 1 1 1 1
LAI leaf area index LFR lightning flash rate LWI land-ocean-ice mask PFL_CN 3D flux of liquid convective precipitation kg m-2 s-1 PFL_LSAN 3D flux of liquid non convective precipitation kg m-2 s-1 PLE air pressure PS surface pressure Q specific humidity QL cloud liquid for radiation RH2 relative humidity after moist SWNDSRF surface net downward shortwave flux T temperature T temperature TA surface air temperature TA surface air temperature TAUCLW optical thickness for liquid clouds TAUCLI optical thickness for ice clouds TROPP tropopause pressure based on blended estimate I km-2 s-1 Rm-2 s-1 Rm-2 s-1 Rm-2 s-1 RmOPP
LFR lightning flash rate km-2 s-1 LWI land-ocean-ice mask 1 PFL_CN 3D flux of liquid convective precipitation kg m-2 s-1 PFL_LSAN 3D flux of liquid non convective precipitation kg m-2 s-1 PLE air pressure Pa PS surface pressure Pa Q specific humidity 1 QL cloud liquid for radiation 1 RH2 relative humidity after moist 1 SWNDSRF surface net downward shortwave flux W m-2 T temperature K T2M 2-meter air temperature K TA surface air temperature K TAUCLW optical thickness for liquid clouds 1 TAUCLI optical thickness for ice clouds 1 TROPP tropopause pressure based on blended estimate Pa
LWI land-ocean-ice mask 1 PFL_CN 3D flux of liquid convective precipitation kg m-2 s-1 PFL_LSAN 3D flux of liquid non convective precipitation kg m-2 s-1 PLE air pressure Pa PS surface pressure Pa Q specific humidity 1 QL cloud liquid for radiation 1 RH2 relative humidity after moist 1 SWNDSRF surface net downward shortwave flux W m-2 T temperature K T2M 2-meter air temperature K TA surface air temperature K TAUCLU optical thickness for liquid clouds 1 TAUCLI optical thickness for ice clouds 1 TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
PFL_CN 3D flux of liquid convective precipitation kg m-2 s-1 PFL_LSAN 3D flux of liquid non convective precipitation kg m-2 s-1 PLE air pressure Pa PS surface pressure Pa Q specific humidity 1 QL cloud liquid for radiation 1 RH2 relative humidity after moist 1 SWNDSRF surface net downward shortwave flux W m-2 T temperature K T2M 2-meter air temperature K TA surface air temperature K TAUCLU optical thickness for liquid clouds 1 TAUCLI optical thickness for ice clouds 1 TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
PFL_LSAN 3D flux of liquid non convective precipitation kg m-2 s-1 PLE air pressure Pa PS surface pressure Pa Q specific humidity 1 QL cloud liquid for radiation 1 RH2 relative humidity after moist 1 SWNDSRF surface net downward shortwave flux W m-2 T temperature K T2M 2-meter air temperature K TA surface air temperature K TAUCLW optical thickness for liquid clouds 1 TAUCLI optical thickness for ice clouds 1 TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
PLE air pressure Pa PS surface pressure Pa Q specific humidity 1 QL cloud liquid for radiation 1 RH2 relative humidity after moist 1 SWNDSRF surface net downward shortwave flux W m-2 T temperature K T2M 2-meter air temperature K TA surface air temperature K TAUCLW optical thickness for liquid clouds 1 TAUCLI optical thickness for ice clouds 1 TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
PS surface pressure Pa Q specific humidity 1 QL cloud liquid for radiation 1 RH2 relative humidity after moist 1 SWNDSRF surface net downward shortwave flux W m-2 T temperature K T2M 2-meter air temperature K TA surface air temperature K TAUCLW optical thickness for liquid clouds 1 TAUCLI optical thickness for ice clouds 1 TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
Q specific humidity 1 QL cloud liquid for radiation 1 RH2 relative humidity after moist 1 SWNDSRF surface net downward shortwave flux W m-2 T temperature K T2M 2-meter air temperature K TA surface air temperature K TAUCLW optical thickness for liquid clouds 1 TAUCLI optical thickness for ice clouds 1 TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
QL cloud liquid for radiation 1 RH2 relative humidity after moist 1 SWNDSRF surface net downward shortwave flux W m-2 T temperature K T2M 2-meter air temperature K TA surface air temperature K TAUCLW optical thickness for liquid clouds 1 TAUCLI optical thickness for ice clouds 1 TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
RH2 relative humidity after moist 1 SWNDSRF surface net downward shortwave flux W m-2 T temperature K T2M 2-meter air temperature K TA surface air temperature K TAUCLW optical thickness for liquid clouds 1 TAUCLI optical thickness for ice clouds 1 TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
SWNDSRF surface net downward shortwave flux W m-2 T temperature K T2M 2-meter air temperature K TA surface air temperature K TAUCLW optical thickness for liquid clouds 1 TAUCLI optical thickness for ice clouds 1 TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
T temperature K T2M 2-meter air temperature K TA surface air temperature K TAUCLW optical thickness for liquid clouds 1 TAUCLI optical thickness for ice clouds 1 TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
T2M 2-meter air temperature K TA surface air temperature K TAUCLW optical thickness for liquid clouds 1 TAUCLI optical thickness for ice clouds 1 TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
TA surface air temperature K TAUCLW optical thickness for liquid clouds 1 TAUCLI optical thickness for ice clouds 1 TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
TAUCLW optical thickness for liquid clouds 1 TAUCLI optical thickness for ice clouds 1 TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
TAUCLI optical thickness for ice clouds 1 TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
TPREC total precipitation kg m-2 s-1 TROPP tropopause pressure based on blended estimate Pa
TROPP tropopause pressure based on blended estimate Pa
U eastward wind m s-1
U10M 10-meter eastward wind m s-1
USTAR surface velocity scale m s-1
V northward wind m s-1
V10M 10-meter northward wind m s-1
WET1 surface soil wetness 1
ZOH surface roughness for heat m
ZPBL Planetary boundary layer height m
ZLE geopotential height m

Appendix B: Using the GEOS-5 CTM CC for Producing Diagnostics

The GEOS-5 CTM Cinderella component (CC) can be used to produce diagnostics variables. Users may want the model to output meteorological fields (that are in external data files) at the same

resolution as that of the other diagnostics. Simple code modifications can be done in CC to achieve it. Assume that we want to write out specific humidity. The following changes will be introduced in CC:

SetServices

```
_____
      call MAPL_AddImportSpec(GC,
                                                                       &
           SHORT_NAME = 'Q',
                                                                       &
           LONG_NAME = 'specific_humidity',
                                                                       &
           UNITS
                      = 'kg kg-1',
                                                                       &
                     = MAPL_DimsHorzVert,
          DIMS
          VLOCATION = MAPL_VLocationCenter,
                                                           RC=STATUS
                                                                       )
      VERIFY_(STATUS)
      call MAPL_AddExportSpec(GC,
                                                                       &
           SHORT_NAME = 'Q',
                                                                       &
           LONG_NAME = 'specific_humidity',
                                                                       &
           UNITS
                      = 'kg kg-1',
                                                                       &
                     = MAPL_DimsHorzVert,
          DIMS
                                                                       &
          VLOCATION = MAPL_VLocationCenter,
                                                           RC=STATUS
                                                                       )
      VERIFY_(STATUS)
RUN
      real, pointer, dimension(:,:,:) :: imQ => null()
      real, pointer, dimension(:,:,:) :: exQ => null()
      call MAPL_GetPointer ( IMPORT, imQ,
                                            'Q', __RC__ )
                                           'Q', __RC__ )
      call MAPL_GetPointer ( IMPORT, exQ,
      exQ = imQ
In the HISTORY.rc file, we will need the setting:
       'Q'
                     , 'CTMenv',
```

Appendix C: Export State Variables

We provide a list of fields that can be produced by the HISTORY component. They are export state variables of existing components.

3.1 pCHEM

	Units Dim Long Name		_	xyz	xyz	-> xyz tendency of nitrous oxide volume mixing ratio due to production [mol mol-1 s-1]	xyz	_	xyz	xyz	xyz	_	_	-> xyz tendency of methane volume mixing ratio due to production [mol mol-1 s-1]	_	_	_	_	_	_	_
	Units	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	^	^	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	s-1	s-1	kg kg-1	bpmv	Dobsons	Dobsons
-	Component	PChem	PChem	PChem	PChem	PChem	PChem	PChem	PChem	PChem	PChem	PChem	PChem	PChem	PChem	PChem	PChem	PChem	PChem	PChem	PChem
	Name	OX_TEND	H20_TEND	OX_PROD	OX_LOSS	N20_PROD	N20_LOSS	CFC11_PROD	CFC11_LOSS	CFC12_PROD	CFC12_LOSS	HCFC22_PROD	HCFC22_LOSS	CH4_PROD	CH4_LOSS	H20_PROD	H20_L0SS	03	O3PPMV	T03	TT03

3.2 GMI

Name	Component	Units	Dim	Long Name
GMICHEMBCphobic	GMICHEM	kg kg-1	xyz	prescribed hydrophobic black carbon from GMICHEM
GMICHEMBCphilic	GMICHEM	kg kg-1	xyz	prescribed hydrophylic black carbon from GMICHEM
GMICHEMdu001	GMICHEM	kg kg-1	xyz	prescribed dust bin 1 from GMICHEM

prescribed dust bin 2 from GMICHEM prescribed dust bin 3 from GMICHEM prescribed dust bin 4 from GMICHEM	hydrophobic organic carbon from		bin 3 from	prescribed sea salt bin 4 from GMICHEM	prescribed sea salt bin 5 from GMICHEM	prescribed sulfate from GMICHEM		STS aerosol effective radius	effective aerosol fall velocity	PBL flag for HO2 loss in aerosols	surface emission of isoprene	surface emission of odd nitrogen	surface emission of monoterpenes	biogenic source of CO from oxidation of methanol	biogenic source of CO from oxidation of monoterpenes	biogenic source of propene	soil source of odd nitrogen	surface ship source of nitric acid	surface ship source of ozone	nitrous oxide emissions [mol mol-1 s-1]	carbon monoxide emissions [mol mol-1 s-1]	methyl ethyl ketone (C4H8O) emissions [mol mol-1 s-1]	propene (C3H6) emissions [mol mol-1 s-1]	ethane emissions [mol mol-1 s-1]	ane emissions [mol mol-1 s-1]	C45 alkanes (C4H10) emissions [mol mol-1 s-1]	acetaldehyde (C2H4O) emissions [mol mol-1 s-1]	formaldehyde emissions [mol mol-1 s-1]	acetone emissions [mol mol-1 s-1]	methane emissions [mol mol-1 s-1]	NO emissions from lightning [mol mol-1 s-1]	solar zenith angle for GMIchem photolysis	dust optical depth (400 nm)	dust surface area	sulfate optical depth (400 nm)
X X X X X X X X X X X X X X X X X X X	xyz xyz	Xyz	x x x x	xyz	xyz	xyz	xyz	xyz	xyz	xyz	ху	xy	ху	ху	ху	ху	ху	ху	ху	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xy	xyz	xyz	xyz
kg kg-1 kg kg-1 kg kg-1			- кв кв-1 Кв кв-1		kg kg-1	kg kg-1	cm —	Cm	cm s-1	0-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	<u>^</u>	<u> </u>	^	^ -	<u> </u>	^	<u> </u>	<u> </u>	<u> </u>	<u> </u>	^	^	deg	1	cm+2 cm-3	
GMICHEM GMICHEM GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM		GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM
GMICHEMdu002 GMICHEMdu003 GMICHEMdu004	GMICHEMOCphobic	GMICHEMOCphilic	GMICHEMSS003	GMICHEMss004	GMICHEMSS005	GMICHEMS04	REFFICE	REFFSTS	VFALL	HO2PBLFLAG	EMISOPSFC	EMNOX	EMMONOT	EMBIOCOMETH	EMBIOCOMONOT	EMBIOPROPENE	EMSOILNOX	EMSHIPHN03	EMSHIP03	EM_NO	EM_CO	EM_MEK	EM_PRPE	EM_C2H6	EM_C3H8	EM_ALK4	EM_ALD2	EM_CH20	EM_ACET	EM_CH4	EM_LGINO	SZAPHOT	DUSTOD	DUSTSA	S040D

hygroscopic growth of sulfate	sulfate surface area	black carbon optical depth (400 nm)	hygroscopic growth of black carbon	black carbon surface area	organic carbon optical depth (400 nm)	hygroscopic growth of organic carbon	organic carbon surface area	accumulated sea salt optical depth (400 nm)	hygroscopic growth of accumulated sea salt	accumulated sea salt surface area	coarse sea salt optical depth (400 nm)	hygroscopic growth of coarse sea salt	coarse sea salt surface area	ozone mass mixing ratio	ozone mass mixing ratio in ppm	tendency of odd oxygen mixing ratio due to chemistry [kg kg-1 s-1]		total ozone	total tropospheric ozone	tropopause pressure used in GMICHEM	tropopause pressure imported into GMICHEM	gas phase water from GMICHEM	aerosol mass mixing ratios	aerosol deposition	condensed phase hno3 [mixing_ratio]	gas phase-hno3 [mixing_ratio]	photolysis rate constants for NO	surface area densities	photolysis rate constants	photolysis reaction rates	thermal rate constants [2-3body_varies]	thermal reaction rates	Aerosol Dust Radii	surface area aerosol dust
xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xy	xy	xy	xy	xyz	xyz	xy	xyz	xyz	xy	xyz	xyz	xyz	xyz	xyz	xyz	xyz
1	cm+2 cm-3	1	1	cm+2 cm-3	-	-	cm+2 cm-3	T-	1	cm+2 cm-3			cm+2 cm-3	kg kg-1	bpmv	^	^	dobsons	dobsons	Pa	Pa	mol mol-1	kg kg-1	kg m-2 s-1	^	^	s^-1	cm^2cm^3	cm3 s-1	cm-3 s-1	^	cm-3 s-1	Cm	cm^2cm^3
GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMICHEM	GMIchem	GMIchem	GMIchem	GMIchem	GMIchem	GMIchem	GMIchem	GMIchem	GMIchem	GMIchem	GMIchem	GMIchem
S04HYGRO	SO4SA	BCOD	BCHYGRO	BCSA	OCOD	OCHYGRO	OCSA	SSAOD	SSAHYGRO	SSASA	SSCOD	SSCHYGRO	SSCSA	03	03PPMV	OX_TEND	H20_TEND	GMIT03	GMITT03	GMITROPP	AGCMTROPP	GMIH20	AERO	AERO_DP	HN03CONDsad	HNO3GASsad	jNO2val	gmiSAD	gmiQJ	gmiQQJ	gmiQK	gmiQQK	gmiERADIUS	gmiTAREA

3.3 **GOCART**

Note that the component names on the list refer to the subcomponents of GOCART. In the HISTORY.rc file, use GOCART as the component who owns each variable on the list.

Name	Component	Units	Dim	Long Name
BCMASS	BC	kgkg	xyz	Black Carbon Mass Mixing Ratio
BCCONC	l BC	kg m-3	xyz	Black Carbon Mass Concentration
BCEXTCOEF	l BC	m-1	xyz	Black Carbon Extinction Coefficient [550 nm]
BCSCACOEF	l BC	m-1	xyz	Black Carbon Scattering Coefficient [550 nm]
BCEM001	l BC	kg m-2 s-1	xy	Black Carbon Emission Bin 001
BCEM002	l BC	kg m-2 s-1	xy	Black Carbon Emission Bin 002
BCSD001	l BC	kg m-2 s-1	xy	Black Carbon Sedimentation Bin 001
BCSD002	l BC	kg m-2 s-1	xy	Black Carbon Sedimentation Bin 002
BCDP001	l BC	kg m-2 s-1	xy	Black Carbon Dry Deposition Bin 001
BCDP002	l BC	kg m-2 s-1	xy	Black Carbon Dry Deposition Bin 002
BCWT001	l BC	kg m-2 s-1	xy	Black Carbon Wet Deposition Bin 001
BCWT002	l BC	kg m-2 s-1	xy	Black Carbon Wet Deposition Bin 002
BCSV001	l BC	kg m-2 s-1	xy	Black Carbon Convective Scavenging Bin 001
BCSV002	l BC	kg m-2 s-1	xy	Black Carbon Convective Scavenging Bin 002
BCHYPHIL	l BC	kg m-2 s-1	xy	Black Carbon Hydrophobic to Hydrophilic
BCEMAN	l BC	kg m-2 s-1	xy	Black Carbon Anthropogenic Emissions
BCEMBB	l BC	kg m-2 s-1	xy	Black Carbon Biomass Burning Emissions
BCEMBF	l BC	kg m-2 s-1	xy	Black Carbon Biofuel Emissions
BCSMASS	l BC	kg m-3	xy	Black Carbon Surface Mass Concentration
BCCMASS	l BC	kg m-2	xy	Black Carbon Column Mass Density
BCEXTIAU	BC		xy	Black Carbon Extinction AOT [550 nm]
BCSCATAU	l BC	1	xy	Black Carbon Scattering AOT [550 nm]
BCANGSTR	l BC	1	xy	Black Carbon Angstrom parameter [470-870 nm]
BCFLUXU	l BC	kg m-1 s-1	xy	Black Carbon column u-wind mass flux
BCFLUXV	l BC	kg m-1 s-1	xy	Black Carbon column v-wind mass flux
CFC12S	CFC	mol mol-1	xyz	Stratospheric CFC-12 (CC12F2)
CFC12T	CFC	mol mol-1	xyz	Tropospheric CFC-12 (CC12F2)
CFC12EM	CFC	kg m-2 s-1	xy	CFC-12 Emission
CFC12SLS	CFC	m-3 s-1	xyz	Stratospheric CFC-12 Loss
CFC12TLS	CFC	m-3 s-1	xyz	Tropospheric CFC-12 Loss
CFC12SCL	CFC	kg m-2	xy	Stratospheric CFC-12 Column

Tropospheric CFC-12 Column CFC-19 Photomate	- —	CH4 Emission an	CH4	CH4 Emission leakage	CH4 Emission gas venting	CH4 Emission ocean HYDZ	CH4 Emission municipal sewers	CH4 Emission soil absorption	CH4 Emission termites	CH4 Emission bogs	CH4 Emission biomass burning	CH4 Emission rice cultivation	CH4 Emission swamps	CH4 Emission tundra	CH4 Emission biofuel	CH4 Emission total	CH4 Chemical Production ENSEMBLE	CH4 Chemical Production animals	CH4 Chemical Production coal	CH4 Chemical Production leakage	CH4 Chemical Production gas venting	CH4 Chemical Production ocean HYDZ	CH4 Chemical Production municipal sewers	CH4 Chemical Production soil absorption	CH4 Chemical Production termites	Chemical Production	CH4 Chemical Production biomass burning	CH4 Chemical Production rice cultivation	CH4 Chemical Production swamps	CH4 Chemical Production tundra	CH4 Chemical Production biofuel	CH4 Chemical Production total	CH4 Chemical Loss ENSEMBLE	CH4 Chemical Loss animals	CH4 Chemical Loss coal	
xy	x X	, ×	×y	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	*
kg m-2	kg m-2 s-1	m-2	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	- C
CFC	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	717
CFC12TCL	CH4EM	CH4EManimls	CH4EMcoal	CH4EMleak	CH4EMgasvnt	$\mathtt{CH4EMhydz}$	CH4EMmsw	CH4EMsoilab	CH4EMtrmite	CH4EMbogs	CH4EMburn	CH4EMricec	CH4EMswamps	CH4EMtundra	CH4EMbf	CH4EMtot	CH4PD	CH4PDanimls	CH4PDcoal	CH4PDleak	CH4PDgasvnt	CH4PDhydz	CH4PDmsw	CH4PDsoilab	CH4PDtrmite	CH4PDbogs	CH4PDburn	CH4PDricec	CH4PDswamps	CH4PDtundra	CH4PDbf	CH4PDtot	CH4LS	CH4LSanimls	CH4LScoal	SHAI GI Pal

CH4LShydz	CH4	kg m-2 s-1	λ×	CH4 Chemical Loss ocean HYDZ
CH4LSmsw	CH4	kg m-2 s-1	×	CH4 Chemical Loss municipal sewers
CH4LSsoilab	CH4	kg m-2 s-1	ху	CH4 Chemical Loss soil absorption
CH4LStrmite	CH4	kg m-2 s-1	ху	CH4 Chemical Loss termites
CH4LSbogs	CH4	kg m-2 s-1	ху	CH4 Chemical Loss bogs
CH4LSburn	CH4	kg m-2 s-1	хy	CH4 Chemical Loss biomass burning
CH4LSricec	CH4	kg m-2 s-1	ху	CH4 Chemical Loss rice cultivation
CH4LSswamps	CH4	kg m-2 s-1	ху	CH4 Chemical Loss swamps
CH4LStundra	CH4	kg m-2 s-1	ху	CH4 Chemical Loss tundra
CH4LSbf	CH4	kg m-2 s-1	ху	CH4 Chemical Loss biofuel
CH4LStot	CH4	kg m-2 s-1	хy	CH4 Chemical Loss total
CH4SC	CH4	Appo	хх	CH4 Surface Concentration ENSEMBLE
CH4SCanimls	CH4	bpbv	ху	CH4 Surface Concentration animals
CH4SCcoal	CH4	Appo	ху	CH4 Surface Concentration coal
CH4SCleak	CH4	bpbv	ху	CH4 Surface Concentration leakage
CH4SCgasvnt	CH4	ppbv	ху	CH4 Surface Concentration gas venting
CH4SChydz	CH4	ppbv	ху	CH4 Surface Concentration ocean HYDZ
CH4SCmsw	CH4	bpbv	ху	CH4 Surface Concentration municipal sewers
CH4SCsoilab	CH4	bpbv	ху	CH4 Surface Concentration soil absorption
CH4SCtrmite	CH4	bpbv	ху	CH4 Surface Concentration termites
CH4SCbogs	CH4	Appo	ху	CH4 Surface Concentration bogs
CH4SCburn	CH4	Appo	хy	CH4 Surface Concentration biomass burning
CH4SCricec	CH4	Appo	ху	CH4 Surface Concentration rice cultivation
CH4SCswamps	CH4	bpbv	хy	CH4 Surface Concentration swamps
CH4SCtundra	CH4	bpbv	xy	CH4 Surface Concentration tundra
CH4SCbf	CH4	bpbv	xy	CH4 Surface Concentration biofuel
CH4SCtot	CH4	ppbv	xy	Surface Concentr
CH4CL	CH4	kg m-2	xy	CH4 Column Burden ENSEMBLE
CH4CLanimls	CH4	kg m-2	xy	CH4 Column Burden animals
CH4CLcoal	CH4	kg m-2	ху	CH4 Column Burden coal
CH4CLleak	CH4	kg m-2	xy	CH4 Column Burden leakage
CH4CLgasvnt	CH4	kg m-2	xy	CH4 Column Burden gas venting
CH4CLhydz	CH4	kg m-2	хy	CH4 Column Burden ocean HYDZ
CH4CLmsw	CH4	kg m-2	xy	CH4 Column Burden municipal sewers
CH4CLsoilab	CH4		xy	CH4 Column Burden soil absorption
CH4CLtrmite	CH4	kg m-2	xy	CH4 Column Burden termites
CH4CLbogs	CH4		хy	Column Burden
CH4CLburn	CH4		xy	CH4 Column Burden biomass burning
CH4CLricec	CH4	kg m-2	ху	CH4 Column Burden rice cultivation

CH4 Column Burden swamps	CH4 Column Burden tundra	CH4 Column Burden biofuel	CH4 Column Burden total	CH4 Photolytic Loss ENSEMBLE	CH4 Photolytic Loss animals	CH4 Photolytic Loss coal	CH4 Photolytic Loss leakage	CH4 Photolytic Loss gas venting	CH4 Photolytic Loss ocean HYDZ	CH4 Photolytic Loss municipal sewers	CH4 Photolytic Loss soil absorption	CH4 Photolytic Loss termites	CH4 Photolytic Loss bogs	CH4 Photolytic Loss biomass burning	CH4 Photolytic Loss rice cultivation	CH4 Photolytic Loss swamps	CH4 Photolytic Loss tundra	CH4 Photolytic Loss biofuel	CH4 Photolytic Loss total	H2O tendency from CH4 photolysis ENSEMBLE [kg kg-1 s-1]	H2O tendency from CH4 photolysis animals [kg kg-1 s-1]	H2O tendency from CH4 photolysis coal [kg kg-1 s-1]	H2O tendency from CH4 photolysis leakage [kg kg-1 s-1]	H2O tendency from CH4 photolysis gas venting [kg kg-1 s-1]	H2O tendency from CH4 photolysis ocean HYDZ [kg kg-1 s-1]	H2O tendency from CH4 photolysis municipal sewers [kg kg-1 s-1]	tendency from CH4 photolysis	H2O tendency from CH4 photolysis termites [kg kg-1 s-1]	H2O tendency from CH4 photolysis bogs [kg kg-1 s-1]	H2O tendency from CH4 photolysis biomass burning [kg kg-1 s-1]	H2O tendency from CH4 photolysis rice cultivation [kg kg-1 s-1]	H2O tendency from CH4 photolysis swamps [kg kg-1 s-1]	H2O tendency from CH4 photolysis tundra [kg kg-1 s-1]	H2O tendency from CH4 photolysis biofuel [kg kg-1 s-1]	H2O tendency from CH4 photolysis total [kg kg-1 s-1]	CH4 dry air mole fraction ENSEMBLE	CH4 dry air mole fraction animals	CH4 dry air mole fraction coal
^×	x x	- x	- x	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz
kg m-2	kg m-2	kg m-2	kg m-2	m-3 s-1	m-3 s-1	m-3 s-1	m-3 s-1	m-3 s-1	m-3 s-1	m-3 s-1	m-3 s-1	m-3 s-1	m-3 s-1	m-3 s-1	m-3 s-1	m-3 s-1	m-3 s-1	m-3 s-1	m-3 s-1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	mol mol-1	mol mol-1	mol mol-1
CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4
CH4CLswamps	CH4CLtundra	CH4CLbf	CH4CLtot	CH4JL	CH4JLanimls	CH4JLcoal	CH4JLleak	CH4JLgasvnt	CH4JLhydz	CH4JLmsw	CH4JLsoilab	CH4JLtrmite	CH4JLbogs	CH4JLburn	CH4JLricec	CH4JLswamps	CH4JLtundra	CH4JLbf	CH4JLtot	CH4QP	CH4QPanimls	CH4QPcoal	CH4QPleak	CH4QPgasvnt	CH4QPhydz	CH4QPmsw	CH4QPsoilab	CH4QPtrmite	CH4QPbogs	CH4QPburn	CH4QPricec	CH4QPswamps	CH4QPtundra	CH4QPbf	CH4QPtot	CH4DRY	CH4DRYanimls	CH4DRYcoal

CH4 dry air mole fraction leakage CH4 dry air mole fraction gas venting	dry air mole fraction ocea	dry air mole fraction	dry air mole fraction	dry air mole	CH4 dry air mole fraction bogs	CH4 dry air mole fraction biomass burning	CH4 dry air mole fraction rice cultivation	CH4 dry air mole fraction swamps	CH4 dry air mole fraction tundra	CH4 dry air mole fraction biofuel	CH4 dry air mole fraction total	CO Emission ENSEMBLE	CO Emission (Boreal Biomass Burning)	CO Emission (Non-Boreal Biomass Burning)	CO Emission (Anthopogenic Emissions Northern Asia)	CO Emission (Anthopogenic Emissions Southern Asia)	CO Emission (Anthopogenic Emissions Europe)	CO Emission (Anthopogenic Emissions North America)	CO Emission (Asia and Europe Biomass Burning)	CO Emission (North America Biomass Burning)	CO Emission (Central and South America Biomass Burning)	CO Emission (Africa Biomass Burning)	CO Emission (Global Biomass Burning)	CO Emission (Asia Non-Biomass Burning)	CO Emission (European Non-Biomass Burning)	CO Emission (North American Non-Biomass Burning)	CO Emission (Global Non-Biomass Burning)	CO Chemical Production ENSEMBLE	CO Chemical Production (Boreal Biomass Burning)	CO Chemical Production (Non-Boreal Biomass Burning)	CO Chemical Production (Anthopogenic Emissions Northern Asia)	CO Chemical Production (Anthopogenic Emissions Southern Asia)	CO Chemical Production (Anthopogenic Emissions Europe)	CO Chemical Production (Anthopogenic Emissions North America)	CO Chemical Production (Asia and Europe Biomass Burning)	Chemical Production	CO Chemical Production (Central and South America Biomass Burni
xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xyz	xy	xy	xy	xy	l xy	xy	xy	xy	l xy	xy	l xy	l xy	l xy	xy	l xy	xy	xy	xy	xy	l xy	l xy	l xy	l xy	l xy	xy	xy
mol mol-1 mol mol-1					mol mol-1	mol mol-1	mol mol-1	mol mol-1	mol mol-1	mol mol-1	mol mol-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1
CH4 CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CH4	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO	CO
ak	'dz	M:	ilab	mite	gs	lrn	cec	l sdume	ındra	_	_ _	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
CH4DRYleak CH4DRYgasvnt	CH4DRYhydz	CH4DRYmsw	CH4DRYsoilab	CH4DRYtrmite	CH4DRYbogs	CH4DRYburn	CH4DRYricec	CH4DRYswamps	CH4DRYtundra	CH4DRYbf	CH4DRYtot	COEM	COEMbbbo	COEMbbnb	COEMffru	COEMffas	COEMffeu	COEMffna	COEMbbae	COEMbbna	COEMbbla	COEMbbaf	COEMbbgl	COEMnbas	COEMnbeu	COEMnbna	$\mathtt{COEMnbgl}$	COPD	COPDbbbo	COPDbbnb	COPDffru	COPDffas	COPDffeu	COPDffna	COPDbbae	COPDbbna	COPDbbla

Chemical Production (Africa Biomass Burning) Chemical Production (Global Biomass Burning) Chemical Production (European Non-Biomass Burning) Chemical Production (North American Non-Biomass Chemical Production (North American Non-Biomass Chemical Production (Global Non-Biomass Burning) Chemical Loss (Boreal Biomass Burning) Chemical Loss (Non-Boreal Biomass Burning) Chemical Loss (Anthopogenic Emissions Northern Chemical Loss (Anthopogenic Emissions Southern Chemical Loss (Anthopogenic Emissions Southern Chemical Loss (Anthopogenic Emissions Burning) Chemical Loss (Anthopogenic Emissions Burning) Chemical Loss (Anthopogenic Emissions Burning) Chemical Loss (Asia and Europe Biomass Burning) Chemical Loss (Global Non-Biomass Burning) Chemical Concentration in ppby (Anthopogenic Emistrace Concentration in ppby (North America Burface Concentration in ppby (No	CO Surface Concentration in ppbv (Africa Biomass Burning) CO Surface Concentration in ppbv (Global Biomass Burning) CO Surface Concentration in ppbv (Asia Non-Biomass Burning) CO Surface Concentration in ppbv (European Non-Biomass Burning) CO Surface Concentration in ppbv (Global Non-Biomass Burning) CO Surface Concentration in ppbv (Global Non-Biomass Burning) CO Column Burden ENSEMBLE
	xy
Kg Hg Hg Hg Hg Hg Hg Hg	— 16-9 — 16-9 — 16-9 — 16-9 — 16-9 — 18-9
888888888888888888888888888888888888888	8888888
COPDbbaf COPDbbas COPDbbas COPDbbas COPDbbas COPDbbas COLSbbbo COLStfru COLStfru COLSbbae COSCbbbb COSCCffru COSCCffru COSCCffae COSCCffae COSCCbbae COSCCbbae COSCCbbae COSCCbbae COSCCbbae COSCCbbae	COSCbbaf COSCbbgl COSCbbas COSCbbas COSCbbas COSCbba

Column Burden (Boreal Biomass Burning) Column Burden (Non-Boreal Biomass Burning) Column Burden (Anthopogenic Emissions Northern	CO Column Burden (Anthopogenic Emissions Southern Asia) CO Column Burden (Anthopogenic Emissions Europe)		Column Burden (North America Biomass Bu	Column Burden (Central and Sou	Column Burden (Africa Biomass	Column Burden	Burden (CO Column Burden (European Non-blomass burning) CO Column Burden (North American Non-Biomass Burning)	(Global Non-Biomass Burning)	Carbon Dioxide	North American Carbon Dioxide	South American Carbon Dioxide	African Carbon Dioxide	CO2 Emission Bin 001	CO2 Emission Bin 002	CO2 Emission Bin 003		CO2 Bulk Mixing Ratio (Column Massps) Bin 001	CO2 Bulk Mixing Ratio (Column Massps) Bin 002		Bulk Mixing Ratio (Column	Surface Concentration Bin	CO2 Surface Concentration Bin 002	CO2 Surface Concentration Bin 003	CO2 Surface Concentration Bin 004	Dust Mass Mixing Ratio	Dust Mass Mixing Ratio - PM 2.5	Dust Mass Concentration	Dust Extinction Coefficient [550 nm]	Dust Scattering Coefficient [550 nm]	Dust Emission Bin 001	Emission Bin	Dust Emission Bin 003
x x x x x x x x x x x x x x x x x x x	x x xy	×××	ς ×	хх	хy	ху	×,	× ×	, x	xyz	xyz	xyz	xyz	хy	ху	ху	ху	ху	ху	ху	ху	хy	ху	ху	xy	xyz	xyz	xyz	xyz	xyz	хy	хy	ху
	kg m-2 kg m-2	kg m-2			kg m-2		Kg III-Z	Kg III-2 Kg III-2	kg m-2	molmol	molmol	molmol	molmol	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1			1	1	l 1e-6	l 1e-6	l 1e-6	l 1e-6	kg kg-1	kg kg-1	kg m-3	m-1	m-1	kg m-2 s-1	m-2	kg m-2 s-1
00	S S — —		8 8	- CO	- CO		3 6	3 8	CO —	C02	C02	CO2	C02	C02	C02	C02	C02	C02	C02	C02	C02	C02	C02	C02	C02	DO	DO	DO	DO	DO	DQ	DO -	DO
COCLbbbo COCLbbnb COCLffru	COCLffas COCLffeu	COCLffna COCT bhas	COCLbbna	COCLbbla	COCLbbaf	COCLbbgl	CUCLnbas	COCLubna	COCLnbgl	C02	COZNAMER	COSSAMER	COZAFRIC	C02EM001	C02EM002	C02EM003	C02EM004	C02CL001	C02CL002	C02CL003	C02CL004	C02SC001	C02SC002	C02SC003	C02SC004	DUMASS	DUMASS25	DUCONC	DUEXTCOEF	DUSCACOEF	DUEM001	DUEM002	DUEMOO3

Dust Emission Bin 004 Dust Emission Bin 005 Dust Sedimentation Bin 001	Sedimentation Bin	Dust Sedimentation Bin 003 Dust Sedimentation Bin 004	Sedimentation B	Dry Deposition Bin	Dust Dry Deposition Bin 002 Dust Dry Deposition Bin 003	Dry Deposition Bin	Dust Dry Deposition Bin 005	Dust Wet Deposition Bin 001	Dust Wet Deposition Bin 002	Dust Wet Deposition Bin 003	Deposition	Dust Wet Deposition Bin 005	Dust Convective Scavenging Bin 001	Dust Convective Scavenging Bin 002	Bin	Bin	Dust Convective Scavenging Bin 005	Dust Surface Mass Concentration	Dust Column Mass Density	Dust Extinction AOT [550 nm]	Dust Scattering AOT [550 nm]	Dust Surface Mass Concentration - PM 2.5		Dust Extinction AOT [550 nm] - PM 2.5	Dust Scattering AOT [550 nm] - PM 2.5	Dust TOMS UV Aerosol Index	Dust column u-wind mass flux	Dust column v-wind mass flux		Dust Scattering AOT [550 nm] - PM 1.0 um	Dust Angstrom parameter [470-870 nm]	aerosol mass mixing ratios		Total Aerosol Extinction AOT [550 nm]
x x x x x	x x	× × × ×	xy	×	× ×	×	×	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	x x	x x	x x	xy	xy	xy	xy	xy	x x	xy	xy	- xy	xyz	×x	xy
kg m-2 s-1 kg m-2 s-1 kg m-2 s-1	п-2	kg m-2 s-1 kg m-2 s-1		m-2	kg m-2 s-1	m-2	kg m-2 s-1					kg m-2 s-1		kg m-2 s-1	kg m-2 s-1	kg m-2 s-1		kg m-3	kg m-2			kg m-3	kg m-2				kg m-1 s-1	kg m-1 s-1	-		_ 1		kg m-2 s-1	_ 1
DQ -	nd -	00 	l DU	DO -	nd –	DO	DO	DO	DQ	DQ	DO	DQ	DO	DO	DO	DO	DQ	DO	DO	DO	DO	DQ	DO	DO	DO	DO	DO	DO	DO	DQ	DO	GOCART	GOCART	GOCART
DUEMOO4 DUEMOO5 DUSDOO1	DUSD002	DUSDO04	DUSD005	DUDP001	DUDPO02 DUDPO03	DUDP004	DUDP005	DUWT001	DUWT002	DUWT003	DUWT004	DUWT005	DUSV001	DUSV002	DUSV003	DUSV004	DUSVOO5	DUSMASS	DUCMASS	DUEXTTAU	DUSCATAU	DUSMASS25	DUCMASS25	DUEXTT25	DUSCAT25	DUAERIDX	DUFLUXU	DUFLUXV	DUEXTTFM	DUSCATFM	DUANGSTR	AERO	AERO_DP	TOTEXTTAU

	mol-1 s-1]
	ENSEMBLE
Total Aerosol Scattering AOT [550 nm] Total Aerosol Exinction AOT [550 nm] - PM2.5 Total Aerosol Scattering AOT [550 nm] - PM2.5 Total Aerosol Exinction AOT [550 nm] - PM1.0 Total Aerosol Scattering AOT [550 nm] - PM1.0 Total Aerosol Angstrom parameter [470-870 nm] Ozone mass mixing ratio Ozone volume mixing ratio Dry deposition speed Cone Total ozone Total ozone Cone dry deposition Ozone tendency [kg kg-1 s-1]	Tendency of odd oxygen mixing ratio due to Chemistry [mol mol-1] Organic Carbon Mass Mixing Ratio ENSEMBLE Organic Carbon Ext. Coefficient [550 nm] ENSEMBLE Organic Carbon Emission Bin 001 ENSEMBLE Organic Carbon Emission Bin 001 ENSEMBLE Organic Carbon Emission Bin 001 ENSEMBLE Organic Carbon Dry Deposition Bin 001 ENSEMBLE Organic Carbon Dry Deposition Bin 002 ENSEMBLE Organic Carbon Dry Deposition Bin 001 ENSEMBLE Organic Carbon Met Deposition Bin 002 ENSEMBLE Organic Carbon Met Deposition Bin 002 ENSEMBLE Organic Carbon Met Deposition Bin 002 ENSEMBLE Organic Carbon Hydrophobic to Hydrophilic ENSEMBLE Organic Carbon Hydrophobic to Hydrophilic ENSEMBLE Organic Carbon Biomass Burning Emissions ENSEMBLE Organic Carbon Biomass Burning Emissions ENSEMBLE Organic Carbon Biomass Durning Emissions ENSEMBLE Organic Carbon Biomass Durning Emissions ENSEMBLE Organic Carbon Biomass Density ENSEMBLE Organic Carbon Column Mass Density ENSEMBLE Organic Carbon Anthropogenic Emissions ENSEMBLE Organic Carbon Anthropogenic Emissions ENSEMBLE Organic Carbon Biofuel Emissions ENSEMBLE Organic Carbon Biofuel Emissions ENSEMBLE Organic Carbon Anthropogenic Emissions ENSEMBLE Organic Carbon Anthropogenic Emissions ENSEMBLE Organic Carbon Angstrom parameter [470-870 nm]
1 1 1 1 kg kg-1 mol mol-1 m s-1 ppmv Dobsons kg m-2 s-1 kg m-2	Kg Kg-1
GOCART GOCART GOCART GOCART GOCART O3 O3 O3 O3 O3	T
TOTSCATAU TOTEXTT25 TOTSCAT25 TOTSCAT27 TOTSCATFM TOTSCATFM TOTSCATFM O3 OX O3DDV O3PPMV O3PPMV O3TOT O3DDP	UX_1END UX_1END UCMASS UCCONC UCEMO01 UCEMO02 UCEMO01 UCSD001 UCSD001 UCSD001 UCSD001 UCSD001 UCSD001 UCSD002 UCMT001 UCSV001 UCSV001 UCSV002 UCEMBB UCEMBB

Emission Asia Emission Asia Emission Asia Emission Burope Emission North Amer Emission Australia Decay Ensemble Decay Africa Decay Africa Decay Africa Decay Africa Surface Concentrati Sult Mass Mixing R Salt Emission Bin Salt Emission Bin Salt Emission Bin Salt Emission Bin	Sea Salt Emission bin 005
	×
а в в в в в в в в в в в в в в в в в в в	Kg m-2 S-1
	gg –
RnEMAsia RnEMAsia RnEMAsia RnEMAust RnEMAust RnLSAsia RnLSAsia RnLSAust RnLSAust RnLSAust RnSCAMM RnCLAust SSMASS SSMASS SSMASS SSMASS SSEMOO1 SSEMOO2 SSEMOO3	SSEMOOS

															n 001	n 002	n 003	n 004	n 005	on				on - PM 2.5	2.5	- PM 2.5	- PM 2.5		- PM 1.0 um	- PM 1.0 um	[470-870 nm]			ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE
Salt Sedimentation Bin 001	Salt Sedimentation Bin 002	Salt Sedimentation Bin 003	Salt Sedimentation Bin 004	Salt Sedimentation Bin 005	Salt Dry Deposition Bin 001	Salt Dry Deposition Bin 002	Salt Dry Deposition Bin 003	Salt Dry Deposition Bin 004	Salt Dry Deposition Bin 005	Salt Wet Deposition Bin 001	Salt Wet Deposition Bin 002	Salt Wet Deposition Bin 003	Salt Wet Deposition Bin 004	Salt Wet Deposition Bin 005	Salt Convective Scavenging Bin	Salt Surface Mass Concentration	Salt Column Mass Density	Salt Extinction AOT [550 nm]	Salt Scattering AOT [550 nm]	Salt Surface Mass Concentration	Salt Column Mass Density - PM	Salt Extinction AOT [550 nm]	Salt Scattering AOT [550 nm]	Salt TOMS UV Aerosol Index		Salt Scattering AOT [550 nm]	Salt Angstrom parameter [470-	Salt column u-wind mass flux	Salt column v-wind mass flux	ate Emission Bin 001	ate Emission Bin 002	ate Emission Bin 003	ate Emission Bin 004	ate Dry Deposition Bin 001				
Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sea S	Sulfate	Sulfate	Sulfate	Sulfate	Sulfate					
kg m-2 s-1 xy	kg m-2 s-1 xy	kg m-2 s-1 xy	m-2 s-1	kg m-2 s-1 xy	kg m-2 s-1 xy	kg m-2 s-1 xy	kg m-2 s-1 xy	kg m-2 s-1 xy	kg m-3 xy	kg m-2 xy	1 xy	1 xy	kg m-3 xy	kg m-2 xy	1 xy	1 xy	1 xy	1 xy	1 xy	1 xy	kg m-1 s-1 xy	kg m-1 s-1 xy	kg m-2 s-1 xy	kg m-2 s-1 xy	kg m-2 s-1 xy	kg m-2 s-1 xy	kg m-2 s-1 xy											
SS	SS	l SS	SS	l ss	l ss	SS	l SS	SS	l SS	l SS	SS	l SS	l SS	l SS	l SS	SS	SS	l SS	SS	SS	l SS	SS	SS	SS	l SS	l SS	SS	l SS	l SS	l SS	l SS	l SS	l SS	l su				
SSSD001	SSSD002	SSSD003	SSSD004	SSSD005	SSDP001	SSDP002	SSDP003	SSDP004	SSDP005	SSWT001	SSWT002	SSWT003	SSWT004	SSWT005	SSSV001	SSSV002	SSSV003	SSSV004	SSSV005	SSSMASS	SSCMASS	SSEXTTAU	SSSCATAU	SSSMASS25	SSCMASS25	SSEXTT25	SSSCAT25	SSAERIDX	SSEXTIFM	SSSCATFM	SSANGSTR	SSFLUXU	SSFLUXV	SUEM001	SUEM002	SUEM003	SUEM004	SUDP001

																											ENSEMBLE										
ENSEMBLE ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE	1 ENSEMBLE	2 ENSEMBLE	3 ENSEMBLE	4 ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE	ns ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE	[column] ENSEMBLE	[column] ENSEMBLE	(wet dep) [column]	ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE	ENSEMBLE
Sulfate Dry Deposition Bin 002 Sulfate Dry Deposition Bin 003	Sulfate Dry Deposition Bin 004	Sulfate Settling Bin 001	Sulfate Settling Bin 002	Sulfate Settling Bin 003	Sulfate Settling Bin 004	Sulfate Wet Deposition Bin 001	Sulfate Wet Deposition Bin 002	Sulfate Wet Deposition Bin 003	Sulfate Wet Deposition Bin 004	Sulfate Convective Scavenging Bin 001	Sulfate Convective Scavenging Bin 002	Sulfate Convective Scavenging Bin 003	Sulfate Convective Scavenging Bin 004	SO4 Anthropogenic Emissions	SO2 Anthropogenic Emissions	SO2 Biomass Burning Emissions	SO2 Volcanic (non-explosive) Emissions	SO2 Volcanic (explosive) Emissions	SO2 Prod from DMS oxidation	MSA Prod from DMS oxidation	SO4 Prod from SO2 oxidation	SO4 Prod from wet SO2 oxidation	SO4 Prod from aqueous SO2 oxidation	SO2 Prod from DMS Oxidation [column]	SO4 Prod from Gaseous SO2 Oxidation	SO4 Prod from Aqueous SO2 Oxidation	SO4 Prod from Aqueous SO2 Oxidation	MSA Prod from DMS Oxidation [column]	SO2 Surface Mass Concentration	SO2 Column Mass Density ENSE	SO4 Surface Mass Concentration	SO4 Column Mass Density	DMS Surface Mass Concentration	DMS Column Mass Density	SO4 Aerosol Mass Concentration	SO4 Extinction Coefficient [550 nm]	SO4 Scattering Coefficient [550 nm]
x x x x	xy _	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xyz	xyz	xyz	xyz	xyz	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xy	xyz	xyz	xyz
kg m-2 s-1 kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-2 s-1	kg m-3	kg m-2	kg m-3	kg m-2	kg m-3	kg m-2	kg m-3	m-1	m-1
ns I	ns I	ns I	ns I	ns I	ns I	l SU	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I	ns I
SUDP002 SUDP003	SUDP004	SUSD001	SUSD002	SUSDOO3	SUSD004	SUWT001	SUWT002	SUWTOO3	SUWT004	SUSV001	SUSV002	SUSV003	SUSV004	SO4EMAN	SOZEMAN	SOZEMBB	SOZEMVN	SOZEMVE	PS02	PMSA	PS04G	PS04WET	PS04AQ	SUPS02	SUPS04G	SUPS04AQ	SUPS04WT	SUPMSA	SOZSMASS	SOZCMASS	S04SMASS	S04CMASS	DMSSMASS	DMSCMASS	SUCONC	SUEXTCOEF	SUSCACOEF

Angstrom column u- column v- Aerosol M Extinctio Scatterin ate Emiss ate Emiss ate Emiss ate Dry D ate Dry D ate Dry D ate Wet D ate Conve ate Conve ate Conve ate Conve brond from brod from Prod from Prod from Prod from	SO4 Angstrom u- SO4 column u- SO4 column v- SO4 Extinctio SO4 Extinctio SO4 Extinctio SU1fate Emiss Su1fate Emiss Su1fate Emiss Su1fate Emiss Su1fate Dry D Su1fate Dry D Su1fate Dry D Su1fate Dry D Su1fate Wet D Su1fate Conve Su2fate Conve	Angstrom parameter [470-870 nm] ENSEMBLE column u-wind mass flux ENSEMBLE column v-wind mass flux ENSEMBLE Aerosol Mass Mixing Ratio ENSEMBLE	[550 nm] EN EN [550 nm]	in 001 (1	Bin	Emission Bin 004 (Volcanic)	Bin 001	002	Dry Deposition Bin OO3 (Volcanic) Dry Deposition Bin OO4 (Volcanic)	(Volca	ing Bin 002 (Volcanic)	ing Bin 003 (Volcanic)	Bin 004	_	Deposition Bin 002 (Volcanic)	Deposition Bin 003 (Volcanic)	Wet Deposition Bin 004 (Volcanic)	ctive Scavenging Bin 001 (Volcanic)	ctive Scavenging Bin 002 (Volcanic)	Scavenging Bin	ctive Scavenging Bin 004 (Volcanic)	enic Emissions (Volcanic)	enic Emissions (Volcanic)	Biomass Burning Emissions (Volcanic)	(non-explosive) Emissions (Volcanic)	(explosive) Emissions (Volcanic)	DMS oxidation (Volcanic)	DMS oxidation (Volcanic)	SO2 oxidation (Volcanic)	wet SO2	aqueous SO2 oxidation (DMS Oxidation [column] (Volcanic)	
	# 1 1 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	S04 804 804	S04 - S04	Sulf	Sulfate Sulfate	Sulfate	Sulfate Dry	Sulfate Dry	Sulfate Dry Sulfate Drv	Sulfate	Sulfate	_	Sulfate	Sulfate	Sulfate Wet	Sulfate Wet	Sulfate	_	_	_	_	_	_	802	SO2 Volcanic	SO2 Volcanic	802	MSA	SO4 Prod	S04	S04	302	1 . (1)
		SUANGSTR SUFLUXU SUFLUXV SO4MASS	SUEXTTAU SUSCATAU	SUEMO01volc	SUEMO03volc	SUEM004volc	SUDP001volc	SUDP002volc	SUDPOO4volc	SUSD001volc	SUSD002volc	SUSD003volc	SUSD004volc	SUWT001volc	SUWT002volc	SUWT003volc	SUWT004volc	SUSV001volc	SUSV002volc	SUSV003volc	SUSV004volc	SO4EMANvolc	SOZEMANvolc	SOZEMBBvolc	SOZEMVNvolc	SOZEMVEvolc	PS02volc	PMSAvolc	PSO4Gvolc	PS04WETvolc	PSO4AQvolc	SUPS02volc	ר ריב־"א ראקודה

SUPSO4WTvolc	l su	kg m-2 s-1	ху	SO4 Prod from Aqueous SO2 Oxidation (wet dep) [column] (Volcanic)	umn] (Volcanic
SUPMSAvolc	l su	kg m-2 s-1	xy	MSA Prod from DMS Oxidation [column] (Volcanic)	
SOSSMASSvolc	l su	kg m-3	ху	SO2 Surface Mass Concentration (Volcanic)	
SOZCMASSvolc	l su	kg m-2	хх	SO2 Column Mass Density (Volcanic)	
SO4SMASSvolc	l su	kg m-3	xy	SO4 Surface Mass Concentration (Volcanic)	
SO4CMASSvolc	l su	kg m-2	ху	SO4 Column Mass Density (Volcanic)	
DMSSMASSvolc	l su	kg m-3	хх	DMS Surface Mass Concentration (Volcanic)	
DMSCMASSvolc	l su	kg m-2	ху	DMS Column Mass Density (Volcanic)	
SUCONCVOLC	l su	kg m-3	xyz	SO4 Aerosol Mass Concentration (Volcanic)	
SUEXTCOEFvolc	l su	m-1	xyz	SO4 Extinction Coefficient [550 nm] (Volcanic)	
SUSCACOEFvolc	l su	m-1	xyz	SO4 Scattering Coefficient [550 nm] (Volcanic)	
SUANGSTRvolc	l su	1 1	хх	SO4 Angstrom parameter [470-870 nm] (Volcanic)	
SUFLUXUvolc	l su	kg m-1 s-1	ху	SO4 column u-wind mass flux (Volcanic)	
SUFLUXVvolc	l su	kg m-1 s-1	ху	SO4 column v-wind mass flux (Volcanic)	
SO4MASSvolc	l su	kg kg-1	xyz	SO4 Aerosol Mass Mixing Ratio (Volcanic)	
SUEXTTAUvolc	l su	1 1	ху	SO4 Extinction AOT [550 nm] (Volcanic)	
SUSCATAUvolc	ns I	1 1	хy	SO4 Scattering AOT [550 nm] (Volcanic)	
			1 1 1		ı