Examenul de bacalaureat național 2016 Proba E. c) Matematică M_st -nat

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$b_2 = b_1 \cdot q = 4 \cdot 2 =$	3 p
	= 8	2p
2.	$x_V = 1$	2p
	$y_V = -1$	3 p
3.	$2x+1=5 \Rightarrow 2x=4$	3p
	x = 2, care verifică ecuația	2p
4.	$C_5^2 = \frac{5!}{2! \cdot 3!} =$	3p
	=10	2 p
5.	$0 = m \cdot 1 - 2$	3p
	m = 2	2 p
6.	$\frac{AB}{\sin C} = 2R \Rightarrow R = \frac{\sqrt{2}}{2 \cdot \frac{\sqrt{2}}{2}} =$	3p
	=1	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(2) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} =$	2p
	=0-1=-1	3 p
b)	$A(a) + A(-a) = \begin{pmatrix} 2-a & 1 \\ 1 & 2-a \end{pmatrix} + \begin{pmatrix} 2+a & 1 \\ 1 & 2+a \end{pmatrix} = \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix} =$	3p
	$=2\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = 2A(0)$, pentru orice număr real a	2 p
c)	$A(x)A(x) = \begin{pmatrix} x^2 - 4x + 5 & 4 - 2x \\ 4 - 2x & x^2 - 4x + 5 \end{pmatrix}, \ 2A(1) = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$	3 p
	$\begin{cases} x^2 - 4x + 5 = 2 \\ 4 - 2x = 2 \end{cases}$, de unde obţinem $x = 1$	2 p
2.a)	$f(-1) = (-1)^3 - 4 \cdot (-1)^2 + m \cdot (-1) + 4 = -m - 1$	2 p
	$f(1) = 1^3 - 4 \cdot 1^2 + m \cdot 1 + 4 = m + 1 \Rightarrow f(-1) + f(1) = -m - 1 + m + 1 = 0$, pentru orice număr real m	3p
b)	$m = -1 \Rightarrow f(-1) = f(1) = 0$	3p
	$X-1$ divide f și $X+1$ divide f , deci polinomul f se divide cu polinomul X^2-1	2 p

c)	$x_1 + x_2 + x_3 = 4$, $x_1x_2 + x_2x_3 + x_3x_1 = m \Rightarrow x_1^2 + x_2^2 + x_3^2 = 16 - 2m$	3 p
	Cum $x_1 x_2 x_3 = -4$ și $x_1^2 + x_2^2 + x_3^2 - \frac{4(x_1 x_2 + x_2 x_3 + x_3 x_1)}{x_1 x_2 x_3} = 16 - 2m - \frac{4m}{-4} = 16 - m$, obținem $m = 16$	2 p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = \frac{(2x-1)(x-1) - (x^2 - x + 1)}{(x-1)^2} =$	3р
	$= \frac{x^2 - 2x}{(x-1)^2} = \frac{x(x-2)}{(x-1)^2}, \ x \in (1, +\infty)$	2p
b)	f(2)=3, f'(2)=0	2p
	Ecuația tangentei este $y - f(2) = f'(2)(x-2)$, adică $y = 3$	3 p
c)	$f'(x) > 0$, pentru orice $x \in (2, +\infty) \Rightarrow f$ este strict crescătoare pe $(2, +\infty)$	2 p
	Cum $2 < e < 3$ și $f(3) = \frac{7}{2}$, obținem $f(e) < \frac{7}{2}$	3p
2.a)	$\int_{1}^{2} x^{2} f(x) dx = \int_{1}^{2} e^{x} dx = e^{x} \Big _{1}^{2} =$	3p
	$=e^2-e=e(e-1)$	2 p
b)	F este o primitivă a funcției $f \Rightarrow F'(x) = f(x)$, pentru orice $x \in (0, +\infty)$	2 p
	$F''(x) = \frac{e^x(x-2)}{x^3} \ge 0$, pentru orice $x \in [2, +\infty)$, deci funcția F este convexă pe $[2, +\infty)$	3p
c)	$\mathcal{A} = \int_{1}^{2} \left f(x) \right dx = \int_{1}^{2} \frac{e^{x}}{x^{2}} dx$	2p
	Cum $x \ge 1 \Rightarrow x^2 \ge 1 \Rightarrow \frac{1}{x^2} \le 1$, obținem $\frac{e^x}{x^2} \le e^x$, deci $\mathcal{A} \le \int_1^2 e^x dx$, adică $\mathcal{A} \le e(e-1)$	3p