北航 2007 年 461 计算机专业综合考研试题

一、(本题共14分,第1、2、3小题各3分,第4小题5分)

- 1. 设 a, b, c 三个元素的进栈次序为 a, b, c, 符号 PUSH 与 POP 分别表示对堆栈进行一次进栈操作与一次出栈操作。
 - (1) 请分别写出所有可能的出栈序列以及获得该出栈序列的操作序列;
 - (2) 指出不可能出现的出栈序列。
- 2. 对于一个有向图,除了进行拓扑排序,还可以采用什么方法判断图中是否存在回路?请简述判断原则。
- 3. 请画出在下列 3 阶 B-树中插入关键字 64 以后的 B-树的状态。

4. 在长度为n的线性表中进行顺序查找。查找第i个数据元素的概率为 p_i ,且分布如下:

$$p_1 = \frac{1}{2}, p_2 = \frac{1}{4}, \dots, p_{n-1} = \frac{1}{2^{n-1}}, p_n = \frac{1}{2^n}$$

请求出在该线性表中查找成功的平均查找长度(要求写成关于 n 的简单表达式形式)。

二、(本题6分)

请写一非递归算法,该算法在按严格递增排列的顺序表 A[1..n] 中采用折半查找法查找值不小于 item 的最小元素。若表中存在这样的元素,则算法给出该最小元素在表中的位置,否则给出信息 0。

三、(本题 10 分)

已知非空二叉树采用顺序存储结构,结点的数据信息依次存放于一维数组 BT[0..*n*-1]中(假设每个结点的数据信息为一个非 0 整数;若数组元素值为 0,则表示该元素对应的结点在二叉树中不存在)。请写一算法,生成该二叉树的二叉链表结构。

四、(本题共15分,第1小题6分,第2小题9分)

- 1. 假设A是命题逻辑中的公式。证明:存在一个合取范式,使得 $A \mid B \perp B \mid A$ 。
- 2. 假设A式谓词逻辑中的公式,I是一个解释。假设 v_1,v_2 是I的两个赋值。考虑以下两个性质:
 - (1) 对于 A 中的每个自由变元 x,都有 $v_1(x) = v_2(x)$;
 - (2) A 在 I, v_1 之下的真值等于 A 在 I, v_2 之下的真值。

构造 A, I, v_1, v_2 使得 (1) 不成立而 (2) 成立。判断当 (1) 成立时 (2) 是否成立,并证明所给出的判断。

五、(本题 10 分)

假设x是变元符号,P,Q是一元谓词符号,判断以下公式是否永真:

 $\exists x (P(x) \land Q(x)) \rightarrow (\exists x P(x) \land \exists x Q(x))$

试分别用解释赋值方法、公理化方法和归结法证明所给出的判断。

六、简答题(本题共15分,每小题各3分)

- 1. 什么是 PCB? 它的三个主要组成部分是什么?
- 2. 进程与线程最根本的差别是什么? (少于15个字,超出扣分)
- 3. 在分区式存储管理中,什么是"地址重定位"? 动态地址重定位与静态地址重定位的区别是什么?
- 4. 哪一种 RAID 保存两份数据? RAID4 与 RAID5 的区别是什么?
- 5. 什么是 FCB? 它的三个主要组成部分是什么?

七、判断题(本题共6分,每小题各1分)

1.	实时操作系统必须比一般操作系统的速度快。	()
2.	分布式操作系统的可靠性要求比单机操作系统的高。	()
3.	中断是由 CPU 发出的。	()
4.	缓存(Cache)一定能提高速度。	()
5.	段页式存储管理可以用于虚拟存储器的管理。	()
6.	死锁是不可避免的。	()

八、(本题9分)

假设有 6 个作业正在等待运行,它们所需的运行时间分别是: 10, 8, 6, 4, 2 和 x。不考虑并行、基于 x、在追求最小平均响应时间(Minimal Average Response Time)的前提下,请给出它们的运行顺序(提示: 共有 6 种顺序,先确定运行方法)。

九、填空题(本题共10分,每空各1分)

1.	运算器的核心是。			
2.	常见的集中式总线判优控制方式有_		和	三种
3.	CPU 响应中断时需要保护程序断点,	这里断点指的是	的内容	ド, 它一般被保存到
	中。			
4.	浮点数加减法的基本运算过程是		和	o
5	条件转移指今所依据的条件来自	寄存器。		

十、(本题共20分,第1小题5分,第2小题10分,第3小题5分)

- 1. 用 $16K \times 8$ 的 SRAM 芯片组成 $64K \times 16$ 的存储器,该存储器按 16 位字编址,请画出存储器扩展图。(5分)
- 2. 某 8 位计算机主存容量 32K 字节,组相联 Cache 容量 2K 字节,每组 4块,每块 64 个字节。假设 Cache 开始是空的,CPU 从主存单元 0 开始顺序读取 2176 个字节数据(即按 0,1,2 的顺序一直读取到地址单元 2175)。然后再重复这样的读数过程 7 遍(共 8 遍)。Cache 速度是主存的 10 倍,采用 LRU 替换算法,假定块替换的时间忽略不计,计算采用 Cache 后的加速比。(10 分)
- 3. 某机字长为 16 位,采用定长指令格式,指令长度为 16 位,包含 32 条双操作数指令、64 条单操作数令和 4 条无操作数指令;每个地址字段占 5 位,请给出该机指令系统的设计方案。

十一、(本题 10 分)

画出微程序控制器的基本组成框图,说明其中各个部件的作用,并结合所画框图,简要说明微程 序控制器的基本工作原理。

十二、单项选择题(本题共6分,每小题各1分)

1	一个信诺每 1	/8 秒采样一次,传输信	早世右 16 种恋化	是士粉捉住输索具	
1.					°
		B. 32 bps		D. 64 bps	
2.		可能只有一个冲突域的			
	A. 交换器	B. 网桥	C. 集线器	D. 路由器	
3.	下列哪种说法	上错误的?			
	A. IP 层可以原	屏蔽各个物理网络的差异	幸		
	B. IP 层可以作	代替各个物理网络的数据	居链路层工作		
	C. IP 层可以原	屏蔽各个物理网络的实现	见细节		
	D. IP 层可以为	为用户提供通用的服务			
4.	在通常情况下	5,以太网交换机中的端	¦口/MAC 地址映射表_	0	
	A. 是由交换标	几的生产厂商建立的			
	B. 是交换机右	主数据转发过程中通过学	卢习动态建立的		
	C. 是由网络管	管理员建立的			
	D. 是由网络月	用户利用特殊的命令建立	工的		
5.	IEEE 802.3 采	用的介质访问控制方法	为。		
	A. 1-坚持算法	生的 CSMA/CD	B. 非坚持算法	的 CSMA/CD	
	C. P-坚持算法	生的 CSMA/CD	D. 以上均不对		
6.	采用 Go-Back	x-N 滑动窗口协议(顺序	接收的窗口协议),设	惊号位数为 n ,则发送	窗口最大尺
	寸为	_ °			
	A. $2^{n} - 1$	B. 2^{n-1}	C. $2n-1$	D. 2 <i>n</i>	

十三、(本题共19分,第1小题6分,第2小题5分,第3小题8分)

1. A、B是位于同一局域网中的两台主机,使用 TCP/IP 协议进行通信,已知主机 B 的 IP 地址, 主机 A 如何得知主机 B 的物理地址(指出所使用的协议名称和协议的工作原理)? (6 分)

- 2. 很多上层协议(如 TCP、UDP、ICMP等)都使用 IP 协议进行数据传输。当 IP 协议层接收到一个完整的数据报之后,它如何判断将其中的数据部分交给哪一个上层协议? (5分)
- 3. 假设一台主机使用传统的 TCP 协议(用于标记字节的序号位为 32 位,报文的生存时间为 120 秒)正在通过一条 10 Gbps 的信道发送 65535 字节的满窗口数据,该信道的往返延迟为 1 ms,忽略各层协议对数据的处理时间。请问:该 TCP 连接可以达到的最大数据吞吐量是多少? (8分)

北航 2006 年 461 计算机专业技术基础考研试题

一、填空题(本题共10分,每小题各1分)

1.	删除长度为 n 的顺序表的第 i 个数据元素之前需要移动表中	素。
	$(1 \le i \le n)$	
2.	下面算法的功能是	
	<pre>typedef struct Node { DataType data; struct Node *link; } *LinkList;</pre>	
	void func(LinkList lista, LinkList listb)	
	<pre>LinkList p; for (p = lista; p->link; p = p->link) p->link = listb; }</pre>	
3.	若某堆栈初始为空,PUSH与 POP分别表示对堆栈进行一次进栈与出栈操作。那么,对于	F输
	入序列 a, b, c, d, e, 经过 PUSH, PUSH, POP, PUSH, POP, PUSH, PUSH 的操作以后,输出户	亨列
	是。	
4.	在具有 n 个元素的非空队列中插入一个元素或者删除一个元素的操作的时间复杂度采用力	ζO
	形式表示为。	
5.	若一棵度为7的树中有8个度为1的结点,有7个度为2的结点,有6个度为3的结点,	有 5
	个度为4的结点,有4个度为5的结点,有3个度为6的结点,有2个度为7的结点,则这一共有	亥树
6.	若某非空二叉树采用顺序存储结构,结点的数据信息依次存放于一个一维数组中(假设数	
	的第一个元素下标为 1),下标分别为 i 和 j 的两个结点处在树中同一层的条件。 $(i \neq j \neq 1)$	是
7.	若具有 n 个顶点的无向连通图采用领接矩阵表示,则该领接矩阵中至少有个非象	₽元
	素。	
8.	在一个按值有序排列的顺序表中进行折半查找,其查找过程可以用一棵称之为"判定树"	的
	二叉树来描述。若顺序表的长度为19,则对应的判定树的根结点左孩子的值(元素在表中	卢的
	位置)是。	
9.	设已知 n 个关键字具有相同的散列函数值,并且采用线性探测再散列方法处理冲突,将这	这 n
	个关键字散列到初始为空的地址空间中,一共发生了次散列冲突。	
10.	按照大顶堆的定义,对序列(26,5,77,1,61,11,59,15,48,19)进行堆积排序,第二趟排序 東时序列的状态是	予结

二、(本题 10 分)

假设长度为n的顺序表A中插入每一个数据元素均为整型数据,请写出在该顺序表中采用顺序查找法查找值为 item 的数据元素的递归算法。若查找成功,算法返回 item 在表中的位置,否则返回-1。(写成非递归算法不得分)

三、(本题 10 分)

选择排序法每一趟排序的基本原理是从当前未排好序的那些元素中选择一个值最小的元素,将其与未排好序的那些元素的第一个元素交换位置。根据这个原理,请写出对一个带有头结点的单链表按数据域值从小到大进行选择排序的算法。

约定:链结点构造为 data link ,每一个链结点的数据域中存放一个整型数,但头结点数据域中不存放任何信息;设头结点指针为 list。

限制:排序过程中不得申请任何链结点空间,也不得改变任何链结点的数据域内容。

四、(本题共17分,第1小题8分,第2小题9分)

- 1. 写出 $\{⊕, ↔, →, \land, \lor, ¬\}$ 的 6 个极小完全集,并证明其中一个集的极小完全性。
- 2. 用解释赋值方法、公理系统方法和归结法三种方法证明以下公式是永真的: $\forall x(A \rightarrow B) \rightarrow (\exists xA \rightarrow \exists xB)$

五、(本题共8分)

对于一般公式 A,指出当变元 x 和项 t 与公式 A 之间满足什么关系时,公式 $\forall xA \to A_t^x$ 是永真的,并证明相应的结论。用例子说明当所给出的条件不满足时,上述公式可能不永真。

六、简答题(本题共15分,每题各3分)

- 1. 进程的基本构成部分是什么?什么是线程?线程与进程的最根本的区别是什么?
- 2. 写出 3 状态的基本进程状态图,给出 5 状态的进程状态名称。
- 3. 产生死锁的基本原因是什么?产生死锁的必要条件是什么?
- 4. 存储管理系统的主要功能是什么?
- 5. 输入输出设备分为几类?请举例说明。

七、判断题(本题共7分,每小题各1分)

1.	在进程退出后,它的线程还可以继续占有内存。	()
2.	在存储管理中,可变式分区方法比固定式分区方法速度快。	()
3.	无论用什么输入输出方法,申请 CPU 的时间是必需的。	()
4.	虚拟文件系统就是网络文件系统。	()
5.	交换(swap)是由存储管理系统完成的。	()
6.	输入输出的缓冲器(buffer)是为了提高外设的速度。	()
7	在中断机构中, 中断都是可以被再中断的。	()

八、(本题共8分)

有5个进程如下表,时间从0开始,单位为1,最高优先级为0。

进程	到达时间	优先级	所需的运行时间
A	0	2	3
В	2	3	8
С	4	4	6

进程	到达时间	优先级	所需的运行时间
D	6	1	5
Е	8	0	4

绘图说明以下进程调度过程(单 CPU 系统, 所有进程只使用 CPU):

请使用时间为横向坐标轴,并在图中标明每个进程的"等待"和"运行"两种状态。

- (1) 先来先服务 (FCFS);
- (2) 时间片轮转 (Round-Robin), 时间片=2;
- (3) 优先级轮转 (Priority Round-Robin), 时间片=2;
- (4) 最短进程轮转法(Shortest Process Next)。

九、(本题共18分,第1小题10分,第2、3小题各4分)

- 1. 某机字长 16 位, CPU 内有 16 个 16 位的通用寄存器,假设指令字长为 32 位,指令系统共包括 32 条"寄存器一存储器"型双操作数指令,存储器型操作数分存储器直接、存储器间接和基址寻址三种寻址方式,任意一个通用寄存器都可以作为基址寄存器,基址寻址的位移量用补码表示。
 - (1) 设计并画出指令格式,并说明各个字段的含义。(6分)
 - (2) 存储器直接寻址和基址寻址的寻址空间各是多少? (4分)
- 2. 简要说明独立请求总线优先权仲裁方式的工作过程。(4分)
- 3. 16K×4的 DRAM 芯片,内部刷新地址计数器应该是多少位?用该芯片构造 256K 字节的存储器,应使用多少芯片? (4分)

十、(本题共10分)

某机主存容量 1 MB,两路组相联方式(每组近有两块)的 Cache 容量为 64 KB,每个数据块为 256 字节。CPU 要顺序访问地址为 20124H、58130H、201F5H和 381F0H等 4 个内容字节单元。已知 访问开始前 Cache 第 1 组(组地址为 1)的两块数据均已被占用(如下图,图中 tag 的内容为二进制),Cache 采用 LRU 替换策略。

Tag	Set 1
00100	Block 0
01011	Block 1

- (1) Cache 分多少组? (2分)
- (2)给出主存的地址格式,说明各个部分的位数及含义;(3分)
- (3) 上述 4 个数中哪些能直接从 Cache 中读取? 若能,说明实际访问的是 Cache 中哪一组的哪个数据块的哪一个字节。(3 分)
 - (4) 4 个数据访问结束时 tag 内容如何变化? (2分)

十一、(本题共12分)

某机结构如下图所示,该机字长为 16 位,图中所有寄存器均为 16 位,控制器采用同步控制方式,每个 CPU 周期包括 4 个节拍周期,数据总线及内总线均为 16 位,存储器周期与 CPU 节拍周期时间相等。加法指令 ADD R1,1000H(R2)的源操作数 1000H(R2)为基址寻址,目的操作数 R1 是寄存器直接寻址,指令编码长度为 32 位,第 1 个 16 位包含了操作码、寻址方式和寄存器编号等指令核心部分,第 2 个 16 位是基址寻址的位移量 1000H。请给出该指令执行过程的微操作序列和时序安排,并详细列出每个节拍周期对应处于有效状态的控制信号。

十二、单项选择题(本题共6分,每小题各1分)

1.		每种相位各有两种幅度的	的 QAM 调制方法,	在 1200 Baud 的信号传统	渝率下能达
	到的数据传输过	基率为。			
	A. 2400 bps	B. 3600 bps	C. 9600 bps	D. 4800 bps	
2.	不同的网络在物	ற理层互连时要求	o		
	A. 数据传输率和	和链路协议都相同			
	B. 数据传输率标	目同,链路协议可以不同			
	C. 数据传输率回	可以不同,链路协议必须	相同		
	D. 数据传输率和	印链路协议都可以不同			
3.	若数据链路的发	设送窗口=4,在已发送 3	号帧并收到 2 号帧	的确认帧后,发送方还	可连续发送
	0				
	A. 1 帧	B. 2 帧	C. 3 帧	D. 4 帧	
4.	在 TCP/IP 协议统	簇的层次中,解决不同计	一算机进程之间的通	通信问题是在。	
	A. 网络接口层	B. 网络层	C. 传输层	D. 应用层	

5.	一个 IP 地址段 200.10	00.50.0/24,子网掩码	马定为 255.255.255.224,	最多可以分成多少个子网?
	子网内最多有多少个	有效 IP 地址?		
	A. 80, 30	B. 4, 62	C. 16, 14	D. 32, 6
6.	要控制网络上的广播	风暴,可以采用哪种	中手段?	
	A. 用路由器将网络分	段	B. 用网桥将网络分段	i Z
	C. 用交换机将网络分	段	D. 用集线器将网络分	〉 段

十三、(本题共19分,第1、3、4小题各5分,第2小题4分)

- 1. UDP 和 TCP 在递交信息时,都使用端口号来标识目标实体(进程)。请给出两个理由说明为什么这两个协议都使用端口号而不直接使用进程号进行通信。(5分)
- 2. 请给出某种操作系统下查看本机 IP 地址及子网掩码的两种方法(操作系统不限)。(4分)
- 3. 简述 traceroute (UNIX 环境) 或 tracert (Windows 环境)的实现原理。(5分)
- 4. 假设一个数据链路软件采用 3 比特序号,发送窗口大小为 7,那么最大接受窗口为多少?为什么? (5分)

北航 2005 年 461 计算机专业技术基础考研试题

一、(本题 10 分)

若散列函数为 H(key) = i MOD 7,其中 i 为关键字 key 的第一个字母在英文字母表中的序号,并且采用线性探测再散列法处理冲突。请画出在一个初始状态为空、地址值域为 [0..6] 的散列表中一次插入关键字 MON, TUE, WED, THU, FRI, SAT, SUN 后的散列表。

二、(本题 10 分)

所谓二叉树等价,是指它们不仅具有相同的拓扑结构,而且对应结点中包含相同数据信息。

假设二叉树采用二叉链表存储结构,链结点构造为 lchild data rchild ,请写一递归算法,判断根结点指针分别为 T1 与 T2 的两棵二叉树是否等价。若它们等价,算法返回 1,否则返回 0。(说明:写成非递归算法不得分)

三、(本题 10 分)

已知一具有n个顶点的有向图G = (V, E)采用领接表存储方法。请写一算法,检查任意给定序列 v_1, v_2, \dots, v_n ($v_i \in V, 1 \le i \le n$)是否为该有向图的一个拓扑序列。若是,算法给出信息 1,否则给出信息 0。

四、(本题共10分,每小题各5分)

- 1. 若 p_1, p_2, \cdots, p_m 是 m 个不同的命题变元, $A_1, A_2, \cdots, A_n, B, C_1, C_2, \cdots, C_m$ 是命题逻辑公式,并且证明: $A_{lC_1, C_2, \cdots, C_m}^{p_1, p_2, \cdots, p_m} \wedge \cdots \wedge A_{nC_1, C_2, \cdots, C_m}^{p_1, p_2, \cdots, p_m} \to B_{C_1, C_2, \cdots, C_m}^{p_1, p_2, \cdots, p_m}$ 是永真式。
- 2. 用演绎定理证明: $\vdash (A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$ 。

五、(本题共15分,第1小题7分,第2小题8分)

- 1. 在谓词逻辑里,假设 A, B 是公式,x 不是 B 的自由变元。证明: $\forall x(A \land B) \Leftrightarrow \forall xA \land B$ 。若 x 是 B 的自由变元,举出一个使得 $\forall x(A \land B) \Leftrightarrow \forall xA \land B$ 不成立的例子。
- 2. 假设 P(x,y) 是二元谓词,判断 $\forall x \exists y P(x,y) \models \exists y \forall x P(x,y)$ 是否成立。用解释赋值方法(如以自然数为论域)及归结法证明上述判断。

六、简答题(本题共12分,每小题各3分)

- 1. 进程与线程的区别? 为什么要引入线程?
- 2. 什么是死锁?
- 3. 什么是文件系统?
- 4. 什么是中断?

七、判断题(本题共8分,每小题各1分)

1	由王島份質法 ((\mathbf{OPT})	诰成缺而家島小	是非常实用的存储管理算法。	()
		. ()1 1 /			(

2	预防死锁的发生可以通过破坏产生死锁的四个必要条件之一来实现。 ()
,)

	3. 在请求页式存储管理系统中,若把页面的大小增加一倍,则缺页中断次	数会减小一半	
	3. 在南水火风间隔百星水池下,石几火面间八个石加一间,从吸火下断风	χΔ ¹ , ()
	4. 在有虚拟存储器的系统中,可以运行比主存容量还大的程序。	()
	5. 进程被创建后的初始状态为"阻塞"状态。	()
	6. 仅当一个进程退出临界区以后,另一个进程才能进入相应的临界区。	()
	7. 打印机是一类典型的块设备。	()
	8. 虚拟存储器的最大存储空间为内存容量和硬盘容量之和。	()
八、	(本题 10 分)		
	我们将只读数据的进程称为"读者"进程,而写或修改数据的进程称为"写者同时读数据,但不允许写者与其它读者或写者同时访问数据。另外,要保证到达的读者也必须等待,直到该写者完成数据访问为止。试用 P, V 操作实现证	:一旦有写者等	待时,
九、	填空题(本题共 10 分,每空各 1 分)		
	1. 按照传输信息的类别,系统总线一般包括、、	和	_°
	2. DRAM 的刷新方式一般有和		
	3. 中断相应时的保护现场实际上是指保存和和	的内容。	
	4. 常见的微指令编码方式包括、、和	· 	三种。
+、	(本题共 15 分,每小题各 5 分)		
	 某计算机存储系统由 Cache、主存和用于虚拟存储的磁盘组成。CPU 总据。若所访问的字在 Cache 中,则存取它只需要 10 ns,将所访问的字从40 ns,而将它从磁盘装入主存则需要 10 μs。假定 Cache 的命中率为 0.9,计算系统访问一个字的平均存取时间。 指令系统格式设计过程中需要考虑哪些要素?并给出简要说明。 某磁盘系统采用 DMA 方式进行数据传送,磁盘转速为 7200 转/分,分 8 字节,磁盘与主存传送数据的宽度为 16 位。假定一条指令执行最长需要用一条指令执行结束时响应 DMA 请求的方案?为什么? 	主存装入 Cache 主存的命中率为 个扇区,每个扇	e 需要 为 0.6, 区 1K
+-	-、(本题共 15 分,第 1 小题 10 分,第 2 小题 5 分)		
储矢	假设某机的主要部件包括:程序计数器 PC、指令寄存器 IR、通用寄存器 RD、算术逻辑运算单元 ALU、移位器 SR、存储器地址寄存器 MAR、存储器等 E阵 M,运算器内部采用内部总线连接,机器采用单总线结构。 (1) 画出该机器的硬件结构框图,图中注明所需的微操作控制信号,并注明 (2) 根据所画的硬件结构图,写出传送指令 MOV R0,(R1)的微操作流程(源 要寻址方式,目的操作数 R0 是寄存器直接寻址方式)。	数据寄存器 MDI 数据流方向;	R、存
+=	二、单项选择题(本题共6分,每小题各1分)		
	1. 在下列几组协议中,是网络层协议。		
	A. IP, TCP, UDP B. ARP, IP, UDP		

C. ICMP, ARP, IP

- D. FTP, SMTP, TELNET
- 2. 在下列网络连接设备中,功能与网桥最接近的是
 - A. 网络适配器
- B. 集线器
- D. 交换机
- 3. IEEE 802.5 协议规定了_______的访问方法及物理层技术规范。
 - A. CSMA/CD
- B. Token Ring
- C. Token Bus
- D. Ethernet
- 4. 在选择 ARQ 协议中,发送窗口中记录的帧是____。
 - A. 已发送出去, 且收到确认的帧
 - B. 已发送出去, 但没有收到确认的帧
 - C. 已发送出去, 有的收到确认, 有的没有收到确认的帧
 - D. 正在等待发送的帧
- 5. UDP 提供 。
 - A. 面向连接的不可靠的数据传输服务
 - B. 无连接的不可靠的数据传输服务
 - C. 面向连接的可靠的数据传输服务
 - D. 无连接的可靠的数据传输服务
- 6. Internet 上的每台主机都有 IP 地址, 假设子网掩码为缺省值, 以下能够正确赋给主机的 IP 地
 - A. 193.46.256.6 B. 130.47.0.0
- C. 127.10.10.17 D. 11.60.0.0

十三、(本题共19分,第1、2小题各6分,第3小题7分)

1. 如图所示,通过路由器连接两个子网,每个子网分别由三台主机组成(分别以A、B、C、D、 E、F标识)。每台主机各分配一个 IP地址,子网掩码均为 255.255.255.224。在工作过程中发 现有一台主机网络通信有问题,试找出该主机的 IP 地址,并说明出现故障的原因。

- 2. 欲设计一个公共总线型网络,介质访问采用 CSMA/CD 算法,设计帧长不小于 10^4 比特,数据 传输率为10° bps, 信号在总线中的传播速度为2×10° 公里/秒。不考虑信号衰减, 那么公共总 线的长度最大为多少公里?
- 3. 通过 1 Mbps 全双工卫星信道(单向传播延迟为 250 毫秒)进行通信,收发双方均采用 10000 比特固定长度的帧,确认总是通过数据帧捎带,使用3位序列号。不考虑数据帧头部开销、 处理时间及信道传输差错,对以下两种协议,所能达到的最大信道利用率分别为多少?

- (1) 停一等协议;
- (2) 连续 ARQ 协议。

北航 2004 年 461 计算机专业技术基础考研试题

一、单项选择题(本题共20分,每小题2分)

1.	在具有 n 个链结点的非空链表的已知位置插入一个链结点的时间复杂度为。
2.	将一个 20 阶五对角矩阵中所有非零元素压缩存储到一个一维数组中,该一维数组至少有
	个数组元素才行。
3.	设 n 个元素的进栈序列为 $1,2,3,\cdots,n$,出栈序列为 P_1,P_2,P_3,\cdots,P_n ,若 $P_1=n$,则 P_i ($1\leq i\leq n$)
	的值为。
4.	深度为 h 的非空完全二叉树中至少有个结点。
5.	完全二叉树、满二叉树、线索二叉树和二叉排序树这四个名词术语中,与数据的存储结构有
	关系的是。
6.	从无向图的任意一个顶点出发,进行一次深度优先搜索便可以访问到该图的所有顶点,则该
	图一定是一个图。
7.	若一个非连通的无向图最多有 28 条边,则该无向图至少有个顶点。
8.	已知某带权连通无向图采用领接矩阵存储方法,邻接矩阵以三元组表形式给出,不包括主对
	角线元素在内的下三角形部分元素对应的各个三元组分别为(2,1,7),(3,1,6),(3,2,8),
	$(4,1,9)$, $(4,2,4)$, $(4,3,6)$, $(5,1,\infty)$, $(5,4,2)$ 。该连通图的最小生成树的权值之和为
9.	顺序查找法、折半查找法、树形查找法和散列查找法这四种方法中,只能在顺序存储结构下
	实现的是。
10.	若对序列(tang, deng, an, wang, shi, bai, fang, liu)采用快速排序法按字典顺序进行排序,并且
	以序列的第一个元素作为分界元素,当该分界元素的排序最终位置确定那一刻,序列的状态
	是。

二、(本题 10 分)

折半查找过程可以用一棵称之为"判定树"的二叉树来描述,请画出在长度为 13 的有序进行折半查找对应的判定树。

三、(本题 10 分)

已知二维数组 A[1:n,1:n],请写一空间复杂度为 O(1) 的算法,该算法将数组顺时针方向旋转 90° (即把第 1 行变成第 n 列,第 2 行变成第 n-1 列,第 3 行变成第 n-2 列,…,第 n 行变成第 1 列)。

四、(本题 10 分)

二叉树的深度的概念采用自然语言可以描述为: 若二叉树为空,则其深度为 0,否则其深度等于其左子树与右子树的最大深度加 1,已知二叉树采用二叉链表作为存储结构,根结点的地址为 T,请写出求二叉树深度的递归算法(写成非递归算法不得分)。

五、填空题(本题共10分,每空各1分)

1.	按传输信息的类别,系统总线一般包括	总线、	总线和	总线三部分。
2.	主存到 Cache 的地址映射方式一般有		和	三种。
3.	运算器的核心是。			
4	党用的三种 I/O 方式是	和		

六、(本题 10 分)

某机器字长 16 位,内存容量 64 KB,包含 8 个 16 位通用寄存器 R0~R7,其中 4 个寄存器又可以当成 8 个 8 位寄存器使用,指令系统的基本要求是:

- (1)64条双操作数指令,有字节操作和16位字操作两种模式
- (2) 所有指令中必有一操作数是寄存器直接寻址,另一操作数的寻址方式有 4 种: 立即寻址、寄存器间接寻址、寄存器直接寻址(间接寄存器为任一 16 位寄存器),变址寻址(R7 为变址寄存器);立即数和变址寻址时的位移量均为 16 位。

请给出该指令系统的详细设计方案(提示:画出指令格式图,说明指令系统编码的长度、指令编码中各字段的位数和含义)。

七、(本题 15 分)

某计算机系统的 CPU 有地址线 16 根 A0~A15(A0 为最低位地址)、数据线 8 根 D0~D7(D0 为最低位)、读写控制线 R/\overline{W} (高电平为读,低电平为写)和内存访问控制信号 \overline{MREQ} (低电平有效),存储器按字节编址,已知系统程序区(BIOS 程序)需要 4 KB,占用最小 4 KB 地址空间;4096~65535 地址范围为用户程序区。现有如下存储芯片:

ROM 芯片: 2K×8, 4K×4, 8K×8

RAM 芯片: 64K×1, 4K×8, 16K×8

- (1) 合理选用上述存储芯片构造系统存储器,指出所选芯片的类型和数量。
- (2) 完成存储器设计, 画出 CPU 与存储器芯片的连接示意图。
- (3)给出片选信号的详细逻辑

八、(本题共15分,第1小题9分,第2小题6分)

- 1. 某运算部件包含一个支持 8 种算术运算和 16 种逻辑运算的 ALU,一个支持 4 种操作的位移器, 4 个寄存器(每个寄存器有单独的输入和输出控制信号)。所有部件由内部总线连接,运算部件用微程序控制单元控制,引起微程序转移的条件有 4 个,控制存储器容量为 256 个字。请设计该运算部件控制单元的微指令格式,并详细说明各字段的含义(采用直接编码方式)。
- 2. 简要说明同步控制方式下指令周期、机器周期和时钟周期的含义,以及三者之间的关系。

九、简答题(本题共18分,每小题3分)

- 1. 讲程
- 2. 虚拟存储技术
- 3. 通道
- 4. 目录
- 5. 死锁

6. 文件系统

十、判断题(本题共7分,每小题各1分)

9. 预防死锁的发生可以通过破坏产生死锁的四个必要条件之一来实现	。 ()
10. 页式存储管理中,用户应将自己的程序划分若干大小相等的页。	()
11. 由于 P, V 操作描述同步和互斥等问题的能力不足, 所以有必要引入其	其它的原语或机制	,如 send
receive 或 monitor 等。	()
12. 在有虚拟存储器的系统中,可以运行比主存容量还大的程序。	()
13. 设备独立性(或无关性)是指能独立实现共享设备的一种特性。	()
14. 仅当一个进程退出临界区以后,另一个进程才能进入相应的临界区	. ()
15 磁带机是一类曲型的块设备。	()

十一、(本题 15 分)

- 1. 写出 P, V 操作的定义。(5分)
- 2. 有n+1个进程 A_1, A_2, \dots, A_n 和 B, 如图所示:

 A_1, A_2, \cdots, A_n 通过同一缓冲区各自不断向 B 发送消息,B 不断接收消息,它必须取走发来的每一个消息。刚开始时缓冲区为空,试用 P, V 操作实现之。(10 分)

十二、(本题 10 分)

一个32位的虚拟存储系统有两级页表,其逻辑地址形式如下:

	第一级页表		第二级页表		页内偏移	
31	22	21	12	11		0

第一级页表占 22~31 位,第二级页表占 12~21 位,页内偏移占 0~11 位。一个进程的地址空间为 4 GB,如果从 0xC00000000 开始映射 4 MB 大小的页表,请问第一级页表所占的 4 KB 空间映射在什么位置,并说明理由。

北航 2003 年 461 计算机专业技术基础考研试题

一、单项选择题(本题共20分,每小题各2分)

1.	数据存储结构通常可	丁以有。					
	A. 两种,它们分别是	是: 顺序存储结构和镇	连式存储结构				
	B. 三种,它们分别是	是: 顺序存储结构、锿	连式存储结构与索	引结构			
	C. 三种,它们分别是	是: 顺序存储结构、锿	连式存储结构与散	[列结构			
	D. 四种,它们分别是	是: 顺序存储结构、镇	连式存储结构、索	引结构与散列结构			
2.	删除非空线性链表中	中由指针p所指结点的	直接后继结点的	过程是依次执行动作。(设			
	链结点的构造为d	ata link)					
	A. $r \leftarrow link(p)$; $link(p)$	←r; call RET(r)	B. r←link(p); li	ink(p)←link(r); call RET(r)			
	C. $r \leftarrow link(p)$; $link(p) \rightarrow link(p)$	←link(r); call RET(p)	D. link(p)←linl	k(link(p)); call RET(p)			
3.	已知二维数组 A[1:4	,1:6]采用列序为主序	方式存储,每个元	元素占用 4 个存储单元,并且 A[3,4]			
	的存储地址为 1234,	那么元素 A[1,1]的存	字储地址为	o			
	A. 1178	B. 1190	C.1278	D. 1290			
4.	某堆栈的输入序列为	51,2,3,4, 下面四个	序列中的	不可能是它的输出序列。			
	A. 1, 3, 2, 4	B. 2, 3, 4, 1	C. 4, 3, 1, 2	D. 3, 4, 2, 1			
5.	若某完全二叉树的涿	R度为 h ,则该完全二	叉树中至少有	个结点。			
	A. 2^h	B. 2^{h-1}	C. $2^{h-1}-1$	D. $2^{h-1} + 1$			
6.	若一棵深度为6的完	完全二叉树的第6层律	了3个叶子结点,	则该二叉树共有个叶子结			
	点。						
	A. 17	B. 18	C. 19	D. 20			
7.	已知带权连	通 无 向 图 G	$=(V,E)$, \sharp				
	$E = \{(v_1, v_2)_{10}, (v_1, v_3)_2, (v_2, v_5)_1, (v_3, v_4)_2, (v_3, v_6)_{11}, (v_4, v_5)_4, (v_4, v_6)_6, (v_5, v_7)_7, (v_6, v_7)_3\} (\text{ if } A \text{ if } A i$						
	下角的数值为边上的	的权值),从源点到顶。	点的最短路径上组	A过的顶点序列是。			
	A. v_1, v_2, v_5, v_7		B. v_1, v_3, v_4, v_6, v_6	V ₇			
	C. v_1, v_3, v_4, v_5, v_7		D. v_1, v_2, v_5, v_4, v_5	v_6, v_7			
8.	下面的说法中,不正	三确的是。					
	A. 折半查找方法不适用于按值有序链接的链表的查找						
	B. 折半查找方法适用于按值有序的顺序表的查找						
	C. 折半查找方法适用	用于按关键字值大小有	有序排列的顺序文	任的查找			
	D. 折半查找方法适用于排序连续顺序文件的查找						
9.	将数据元素 2, 4, 6, 8	, 10, 12, 14, 16, 18, 20,	22 依次存放于一	一个一维数组中,然后采用折半查找			
	方法查找数组元素 1	6,被比较过的数组方	元素的轨迹(数组	· [下标)依次为。			
	A. 12, 18, 14, 16	B. 12, 14, 18, 16	C. 6, 9, 7, 8	D. 6, 7, 9, 8			
10.	从未排序序列中选择	译一个元素,该元素将	子当前参加排序的	那些元素分成前后两个部分,前一			
	部分中所有元素都小	、于或等于所选元素,	后一部分中所有	元素都大于或等于所选元素,而所			
	选元素处在排序的最	是终位置。这种排序方	法称为	0			
		B. 冒泡排序		•			

二、简答题(本题共10分,每小题各5分)

- 1. 下列限制条件下,如何从前至后依次输出非空线性表中的最后 k 个元素? 限制 1: 线性表的长度未知,也不允许采用先求出线性表长度的方法; 限制 2: 线性表中每个元素只允许作一次输入操作。
- 2. 在散列地址范围与散列函数都分别相同的前提下,通常采用链地址法比采用开放地址法处理冲突的时间效率要高,为什么?

三、(本题 10 分)

已知长度为n的线性表 A 采用顺序存储结构,并且元素按值的大小非递减排列,请写一算法,删除线性表中值相同的多余元素(该算法完成后,线性表中元素严格按递增排列)。

四、(本题 10 分)

已知非空二叉树的中序序列与后序序列分别存放于数组 INOD[1:n]与 POSTOD[1:n]中,并且各个结点的数据信息均不相同,请写一非递归算法,生成该二叉树的二叉链表存储结构(设链结点的构造为 lchild data rchild ,根结点地址为 T)。

五、填空题(本题共10分,每空各1分)

1.	一般情况下,	计算机硬件系统	话由	`		和	=	部分组成。
2.	用1位比较法	法进行两个 16 位分	定点整数补码	马的乘剂	去运算,	共需要进行_	次右	ī移运算。
3.	从总体上看,	总线的仲裁方式	代可以分为_		和_	两和	中,其中前者	又分为链式
	查询、	和	三种	优先权	(仲裁方	式。		
4.	下列指令格式	戊 的寻址方式为变	E 址间接寻址	,其格	式为:			
			OP I	X	disp			
	其中I为间接	₹寻址位,I = 1 表	長示间接寻址	, I =	0表示』	直接寻址;X 为	为变址寄存器	号;disp为
	位移量。寻址	上过程为先变址后	后间接,当 I =	= 0 时,	操作数	有效地址 EA	;	当 I=1 时,
	操作数有效地	b址 EA=	_。(写出表	达式)				

六、简答题(本题共15分,每小题各5分)

- 1. 某计算机主频为 800 MHz,每个机器周期平均包含 2 个时钟周期,每条指令平均需要 2.5 个机器周期,求该计算机的平均指令执行速度为多少 MIPS。
- 2. 什么是 DRAM 的刷新? 为什么 DRAM 需要刷新?
- 3. 详细叙述中断响应和中断处理的过程。

七、(本题共15分,第1小题9分,第2小题6分)

1. 某机器字长为 16 位,采用 16 位定长指令格式,机器结构如图所示,指令 ADD R1,(R2);加法指令,R1←(R1)+((R2)) 写出执行该指令的取指周期、取数周期和执行周期的详细操作。

- 2. 某微程序控制器采用水平型微指令格式,控制存储器 36 位宽,微指令格式包括控制字段、地址选择字段和次地址字段三部分。控制字段需要表示的微操作共有 24 个,地址选择字段用来指明引起微指令转移的条件,这些条件基于 8 个不同的标志来建立。
 - (1) 设计该微程序控制器的指令格式,指出各字段各占多少位。
 - (2) 控制存储器的容量有多大?

八、(本题 10 分)

某计算机存储系统包含 16 KB 结构为 4 路组相联 Cache, 主存容量为 16 MB, 假设每块 Cache 大小为 16 字节。

- (1) Cache 和主存各分为多少组?
- (2) 写出主存的地址格式。
- (3) Cache 的地址标记(tag)至少应为多少位?
- (4) 主存地址 23E4F8H 将映射到 Cache 的哪一组?

九、简答题(本题共15分,每小题各3分)

- 1. 临界区
- 2. 系统调用
- 3. 文件系统
- 4. 重定位
- 5. SPOOLing 技术

十、判断题(本题共10分,每小题各1分)

1. 进程在运行中,可以自行修改自己的进程控制块。 () 2. 进程申请 CPU 得不到满足时,其状态变为等待状态。 () 3. 在虚拟存储系统中,只要磁盘空间无限大,作业就能拥有任意大的编址空间。 ()

4.	在内存为 M 的分时系统中,当注册的用户为 N 个时,每个用户拥有 M/N 的内存分	2月。	
		()
5.	特殊文件是指其用途由用户特殊规定的文件。	()
6.	信号量机制控制进程同步和互斥的能力与通信机制是等价的。	()
7.	在作业调度时,采用最高响应比优先的作业调度算法可以得到最短的作业平均周转	专时间。	
		()
8.	实时系统中的作业周转时间有严格的限制。	()
9.	当前目录的引入,提高了访问文件的效率。	()
10.	打印机是一类典型的块设备。	()

十一、(本题 15 分)

考虑有三个吸烟者进程和一个经销商进程的系统。每个吸烟者连续不断地吸他做好的烟卷。做一支烟卷需要烟草、纸和火柴三种原料。这三个吸烟者分别掌握有纸、烟草和火柴。经销商源源不断地提供上述三种原料,但他只将其中的两种原料放在桌上,具有另一种原料的吸烟者就可以做烟卷并抽烟,且在做完后给经销商发信号,然后经销商再拿出两种原料放在桌上,如此往复。

- (1) 请给出 P, V 操作的定义及信号量的物理意义。(5分)
- (2) 试设计一个使经销商和吸烟者同步的算法。(10分)

十二、(本题 10 分)

有一个虚拟存储系统,一个进程共分为 5 页,刚开始时数据区为空,执行时页面走向为: 4,3,2,1,4,3,5,4,3,2,1,5。试给出下列情形下的缺页次数:

- (1) 系统采用先进先出(FIFO)淘汰算法,存储块为3。
- (2) 系统采用先进先出(FIFO)淘汰算法,存储块为 4。
- (3) 比较缺页次数,从中得到什么结论?