Nome: _____ Turma: 1ª Série

Valor: 28 • Nota: _____

Ondas

- $1.\ (1\ {\rm Ponto})\ {\rm Um}$ arame de aço, com $1\ {\rm m}$ de comprimento e $10\ {\rm g}$ de massa, é esticado com uma força de tração de $100\ {\rm N}.$ Determine a velocidade de propagação de um pulso transversal nesse arame
- 2. (1 Ponto) Calcule a velocidade de propagação de um pulso transversal num fio em função da intensidade T da força de tração, da área A da seção transversal e da densidade volumétrica ρ do material que constitui o fio.
- 3. (1 Ponto) Um gerador de ondas é ligado a uma corda tensa e em 6 s produz ondas que assumem o aspecto indicado abaixo:

A distância entre duas cristas sucessivas é de 20 cm. Determine

- (a) a frequência da onda;
- (b) a velocidade de propagação da onda.
- 4. (1 Ponto) Uma onda se propaga de acordo com a função

$$y = 4 \cdot \cos\left[2\pi \cdot (10t - 2x) + \frac{\pi}{2}\right]$$

para x e y em cm e t em segundos. Determine:

- (a) a amplitude da onda;
- (b) o comprimento de onda;
- (c) o período da onda;
- (d) a velocidade de propagação.
- 5. (1 Ponto) Uma onda reta propagando-se na superfície da água de um tanque incide diagonalmente numa superfície refletora.
- (a) Desenhe as frentes de onda antes e depois da reflexão.
- (b) Analise o que ocorre com a frequência, a velocidade de propagação e o comprimento de onda após o fenômeno da relexão.

6. (1 Ponto) Uma pedra cai no ponto O da superfície da água contida num tanque, produzindo uma frente de onda circular que se propaga com velocidade 5 cm/s. O ponto O está a 20 cm da parede AB do tanque. Considere as outras paredes bem distantes de O.

Represente a frente de onda 6 s após a perturbação.

7. (1 Ponto) Em um tanque, as frentes de ondas retas na superfície da água, ao passarem de uma parte rasa (1) a outra, profunda (2), o fazem sob ângulo de 30° e 45°, conforme a figura. Sendo a velocidade de propagação no meio (1) igual a $v_1=30\,\mathrm{cm/s}$, determine:

- (a) a velocidade v_2 de propagação no meio (2)
- (b) a razão entre os comprimentos de onda em (1) e (2).
- 8. (2 Pontos) (UFRGS-RS) Um trem de ondas senoidais, gerado por um dispositivo mecânico oscilante, propaga-se ao longo de uma corda. A tabela descreve quatro grandezas que caracterizam essas ondas mecânicas.

Grandeza	Descrição
1	Número de oscilações completas
	por segundo de um ponto da
	corda.
2	Duração de uma oscilação com-
	pleta de um ponto da corda.
3	Distância que a onda percorre du-
	rante uma oscilação completa.
4	Deslocamento máximo de um
	ponto da corda.

As grandezas 1, 2, 3 e 4 são denominadas, respectivamente:

- a) frequência, fase, amplitude e comprimento de onda.
- b) fase, frequência, comprimento de onda e amplitude.
- c) período, frequência, velocidade de propagação e amplitude.
- d) período, frequência, amplitude e comprimento de onda.
- e) frequência, período, comprimento de onda e amplitude.

9	٠.	(2	<u>'</u>	P	or	ıt	OS	3)	E.	X	p	1 1	q	u	e	()	C	μ	16	9	Ė	,	a	1)(C	la	ır	12	28	Q	;8	ıc)	d	e	1	11	n	a	, (D1	n	d	a							

.....

10. (1 Ponto) Duas fontes F_1 e F_2 oscilam em fase na superfície da água contida em um tanque, com frequência de 30 Hz. O ponto A é equidistante das fontes. Observa-se que o ponto mais próximo do ponto A, em que a superfície da água permanece em repouso, é o ponto N. Medindo-se $\overline{NF_1}$ e $\overline{NF_2}$, acha-se uma diferenca de 0.50 cm entre esses dois caminhos.

- (a) Determine a velocidade das ondas na superfície da água.
- (b) Se V é o ponto mais próximo à esquerda do ponto A, que se movimenta com amplitude máxima (linha ventral), calcule a diferença de caminhos $(\overline{VF_2} \overline{VF_1})$.
- 11. (1 Ponto) Numa figura de interferência obtida com duas fontes iguais e em fase, diz-se que uma certa linha é a quarta linha nodal. Calcule a diferença entre os caminhos percorridos pelas ondas provenientes de ambas as fontes até atingirem a referida linha. Dê a resposta em função do comprimento de onda λ das ondas emitidas pelas fontes.
- 12. (1 Ponto) (UnB-DF) Duas fontes coerentes S_1 e S_2 , em fase, emitem sinais que são detectados no ponto P. Ache o maior valor do comprimento de onda das fontes para que o ponto P seja um ponto de máximo.

