Data Mining & Machine Learning

CS37300 Purdue University

Nov 10, 2023

Pattern discovery

- Models describe entire dataset (or large part of it)
- Pattern characterize local aspects of data
- Pattern: predicate that returns "true" for the instances in the data where the pattern occurs and "false" otherwise
- Task: find descriptive associations between variables

Pattern in tabular data

- Primitive pattern: subset of all possible observations over variables X1,...,Xd
 - If X_k is categorical then $X_k = c$ is a primitive pattern
 - If X_k is ordinal then $X_k \le c$ is a primitive pattern
- Start from primitive patterns and combine using logical connectives such as AND and OR
 - age<40 AND income<100,000
 - chips=1 AND (beer=1 OR soda=1)

Pattern space

- Set of legal patterns; defined through set of primitive patterns and operators to combine primitives
 - Example: If variable X₁,...,X_d are all binary we can define the space of patterns to be all conjunctions of the form
 (X_{i1}=1) AND (X_{i2}=1) AND ... AND (X_{ik}=1)
- Typically there is a generalization/specialization relationship between patterns
 - Pattern α is more general than pattern β , if whenever β occurs, α occurs as well. This also means that pattern β is more specific than pattern α
 - Examples:
 age<40 AND income<100,000 is more specific than age<40
 chips=1 is more general than chips=1 AND (beer=1 OR soda=1)
 - This property is used during search

Pattern discovery task

- Find all "interesting" patterns in the data
- Challenge: find the right balance between
 - Pattern complexity
 - Pattern impact
 - Computational complexity

Search problem

- Searching for all patterns is computationally intractable
- Consider market basket data where each row has 1000 binary variables
- How many possible patterns?
 - How many unique transactions?
 - How many subsets (patterns)?
 2⁽²¹⁰⁰⁰⁾

Transaction ID	beer	eggs	flour	milk
1	0	1	1	1
2	1	1	0	0
3	0	1	0	1
4	0	1	1	1
5	0	0	0	1

Example: lattice of itemsets (general to specific)

Solution

- Take advantage of the nature of the score function to prune parts of the search space and reduce run time
- What is the score function?
 - Patterns that occur frequently are often of interest.. thus score function often involves frequency

Finding frequent itemsets

Find sets of items:

- with large "support" i.e. patterns that occur with higher-than-threshold frequency or,
- large "confidence" i.e. precision of rules is higher.

Support is monotonic

- A subset of a frequent itemset must also be frequent
- If {A,B} is a frequent itemset then both {A} and {B} are frequent itemsets as well

The Apriori principle:

- Iteratively find frequent itemsets with cardinality from 1 to k (k-itemset)
- Prune any sets of size k that are not frequent

Apriori algorithm

- Classic algorithm for learning association rules that uses *apriori principle* to search efficiently for rules that meet support and confidence thresholds
- Given a pruned list of candidate frequent sets of size k
 - Algorithm performs a linear scan of the data to determine which of these sets are frequent
- Confirmed frequent sets of size k are combined to generate possible frequent sets of size k+1
 - Followed by another pruning step
 - Cardinality of largest frequent set is quite small for large support values
- Use frequent itemsets to form association rules

Sequential pattern mining

- · Task:
 - Find frequent substring patterns
- Data:
 - Sequence data, biological data, text collections
- Applications:
 - Bioinformatics, text analysis, clustering, classification

Sequential patterns

- Substring
- Regular expression
- Episode
 - Partially ordered collection of events occurring together
 - Can take time or sequential ordering into account but is insensitive to intervening events
 - For instance, headache followed by sense of disorientation within a given time period

Graph mining

- Task:
 - Find frequent subgraph patterns
- Data:
 - Graph databases or relational databases
- Applications:
 - · Graph indexing, similarity search, clustering, classification

Subgraphs

GRAPH DATASET

FREQUENT PATTERNS (MIN SUPPORT IS 2)

Association rule mining

Task:

• Find frequent patterns, associations, correlations, or causal structures among items

Data:

 Transaction databases, relational database, or other information repositories

Applications:

 Market basket analysis, cross-marketing, catalog design, loss-leader analysis, clustering, classification

Rule

- A rule is an expression of the form $\theta \rightarrow \phi$
- Association rules:
 - All variables are binary
 - Probabilistic statement about the co-occurrence of certain events in the database
- Mining rules
 - Number of rules grows exponentially with dimensions
 - How to find patterns in an efficient manner?
 - How to determine which rules are interesting?

Association rules

- Data
 - Basket: customer transaction; items: products
 - Basket: document; items: words
 - Basket: web pages; items: links
- Find all rules of the form $\theta \rightarrow \phi$ that satisfy the following constraints:
 - Support of the rule is greater than threshold s
 - Confidence of the rule is greater than threshold c
 - For instance, 98% of people who purchase tires and auto accessories also have automotive service done

Rule evaluation

- Support (also known as frequency)
 - $s(\theta \rightarrow \phi) = fr(\theta \land \phi)$
 - Number of samples which have antecedent θ and consequent ϕ , divided by total number of samples.
- Confidence (also known as accuracy)
 - $c(\theta \rightarrow \phi) = p(\phi \mid \theta) = fr(\theta \land \phi) / fr(\theta)$
 - Number of samples which have antecedent θ and consequent ϕ , divided by number of samples which have antecedent θ .

Rule evaluation

- Support (also known as frequency)
 - $s(\theta \rightarrow \phi) = fr(\theta \wedge \phi)$
 - Number of samples which have antecedent θ and consequent φ, divided by total number of samples.
- Confidence (also known as accuracy)
 - $c(\theta \rightarrow \phi) = p(\phi \mid \theta) = fr(\theta \land \phi) / fr(\theta)$
 - Number of samples which have antecedent θ and consequent φ, divided by number of samples which have antecedent θ.
- Which has higher confidence?
 - 1. flour \rightarrow eggs
 - 2. eggs \rightarrow flour

Transaction ID	beer	eggs	flour	milk
1	0	1	1	1
2	1	1	1	0
3	0	1	0	1
4	0	1	1	1
5	0	0	0	1

Example

Transaction ID	beer	eggs	flour	milk	{beer, eggs, flour, milk} support count = 0		
1	0	1	1	1			
2	1	1	1	0			
3	0	1	0	1			
4	0	1	1	1	\text{\left\{beer, eggs, flou\} 1/5 \text{\left\{beer, eggs, milk\} 0 \text{\left\{beer, flour, milk\} 0 \text{\left\{eggs, flour, milk\} 2\text{\left\{2}}}		
5	0	0	0	1			
				(bee	er, eggs} 1/5 {beer, flour} 1/5 {beer, milk} 0 {eggs, flour} 3/5 {eggs, milk} 3/5 {flour,milk} 2/5 {beer} 1/5 {eggs} 4/5 {flour} 3/5 {milk} 4/5		
					'Frequent Itemsets'		

support threshold = 0.3

Example


```
Confidence
                  {flour}
                                 3/4 = 0.75
{eggs}
flour}
                                3/3 = 1
                  {eggs}
                  \{milk\}
                                2/4 = 0.5
eggs}
                  {eggs}
                                2/4 = 0.5
milk}
                                2/3 = 0.67
                  {milk}
flour}
milk}
                                2/4 = 0.5
                  {flour}
                                2/3 = 0.67
[eggs, flour] \rightarrow
                  {milk}
                  {flour}
                                2/2 = 1
eggs, milk}
flour, milk}
                  {eggs}
                               2/2 = 1
              \rightarrow {flour, milk} 2/4 = 0.5
eggs}
                 \{\text{eggs, milk}\}\ 2/3 = 0.67
flour}
{milk}
                  {eggs, flour} 2/4 = 0.5
```

Association rules

- Knowledge representation?
 - If-then rules
- Score function?
 - Support, confidence
- Search?
 - Exhaustive search
 Returns all rules that exceed support and confidence thresholds,
 pruning (based on apriori principle) is used to eliminate portions of search
- Optimal?

space

Yes. Guaranteed to find all rules that exceed specified thresholds.

Evaluation

- Association rules algorithms usually return many, many rules
 - Many are uninteresting or redundant (For instance, ABC→D and AB→D may have same support and confidence)
- How to quantify interestingness?
 - Objective: statistical measures
 - Subjective: *unexpected* and/or *actionable* patterns (requires domain knowledge)

Drawback of support

- Support suffers from the **rare item problem** (Liu et al.,1999)
 - Infrequent items not meeting minimum support are ignored which is problematic if rare items are important
 - For instance, rarely sold products which account for a large part of revenue or profit
- Support falls rapidly with itemset size. A threshold on support favors short itemsets

Drawback of confidence

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence = P(Coffee|Tea) = 15/20 = 0.75, which is high but rule is misleading since $P(Coffee|\overline{Tea}) = 75 / 80 = 0.9375$

Statistical-based measures

• Lift:
$$\frac{P(Y \mid X)}{P(Y)}$$

• Piatetsky-Shapiro: P(X,Y) - P(X)P(Y)

•
$$\phi$$
-coefficient:
$$\frac{P(X,Y)-P(X)P(Y)}{\sqrt{P(X)(1-P(X))P(Y)(1-P(Y))}}$$

Lift example

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence = P(Coffee|Tea) = 15/20 = 0.75, which is high but rule is misleading since $P(Coffee|\overline{Tea}) = 75 / 80 = 0.9375$

P(Coffee) = 0.9

Lift = P(Coffee|Tea)/P(Coffee) = 0.75 / 0.9 = 0.8333 < 1 (negatively associated)

Lift example 2

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence = $P(Coffee|\overline{Tea}) = 75 / 80 = 0.9375$

P(Coffee) = 0.9

Lift = $P(Coffee|\overline{Tea})/P(Coffee) = 0.9375 / 0.9 = 1.0417 > 1$ (positively associated)