Examen parcial de Física - Electrònica i ones 7 de juny de 2021

Model A

Qüestions: 50% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

T1) Quines de les següents característiques d'una ona electromagnètica són possibles?

- a) $\vec{E}_0 = -12 \text{ V/m } \hat{j}, \vec{B}_0 = 4 \times 10^{-9} \text{ T } \hat{i}, \text{ propagació sentit positiu eix } z$
- b) $\vec{E}_0 = 12 \text{ V/m } \hat{k}, \vec{B}_0 = -4 \times 10^{-8} \text{ T } \hat{j},$ propagació sentit negatiu eix x
- c) $\vec{E}_0=21~{\rm V/m}~\hat{k},\,\vec{B}_0=7\times 10^{-8}~{\rm T}~\hat{k},$ propagació sentit positiu eix z
- d) $\vec{E}_0 = 21 \text{ V/m } (\hat{j} + \hat{k}), \vec{B}_0 = 7 \times 10^{-8} \text{ T } (\hat{i} + \hat{j}), \text{ propagació sentit negatiu eix } z$

T2) La llum solar passa a través de 5 filtres polaritzadors amb el mateix angle entre ells i la intensitat es redueix en un factor de 1/4. Quin és l'angle mínim entre filtres polaritzadors adjacents que reprodueix aquest efecte?

- a) 23.5°
- b) 21°
- c) 32.8°
- d) 0.41°

T3) Cygnus A, la font d'ones de ràdio més poderosa coneguda, es troba a una distància de 600 milions d'anys llum de la Terra i té una potència d'emissió de 10³⁹W. Determineu la potència que rep la Terra (considereu que la longitud de la circumferència terrestre és aproximadament 40.000 km).

- a) 314.4 W
- b) 108 kW
- c) 720 kW
- d) $1.6 \cdot 10^{22}$ W

T4) Quina és la tensió mínima de la f.e.m. ε , per tal que el díode LED condueixi i emeti llum? Les resistències són $R_1=1k\Omega, R_2=100\Omega, R_3=200\Omega.$ La tensió llindar del LED és $V_{LED}=3.3\mathrm{V}$ i la tensió V_Z del díode Zener és $V_Z=5\mathrm{V}$

- a) 16 V
- b) 8.3 V
- c) 19.3 V
- d) 3.3 V

T5) Quina és la funció lògica corresponent al circuit de la figura?

a)
$$(A \cdot B) + (C \cdot D) + (E \cdot F)$$

b)
$$\overline{(A \cdot B) + (C \cdot D) + (E \cdot F)}$$

c)
$$\overline{(A+B)\cdot(C+D)\cdot(E+F)}$$

d)
$$(A+B)\cdot (C+D)\cdot (E+F)$$

Examen parcial de Física - Electrònica i ones 7 de juny de 2021

Model B

Qüestions: 50% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara.

Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- T1) Cygnus A, la font d'ones de ràdio més poderosa coneguda, es troba a una distància de 600 milions d'anys llum de la Terra i té una potència d'emissió de 10³⁹W. Determineu la potència que rep la Terra (considereu que la longitud de la circumferència terrestre és aproximadament 40.000 km).
 - a) 720 kW
- b) $1.6 \cdot 10^{22}$ W
- c) 108 kW
- d) 314.4 W
- **T2)** Quina és la funció lògica corresponent al circuit de la figura?

a)
$$(A+B)\cdot (C+D)\cdot (E+F)$$

b)
$$\overline{(A+B)\cdot(C+D)\cdot(E+F)}$$

c)
$$(A \cdot B) + (C \cdot D) + (E \cdot F)$$

d)
$$\overline{(A \cdot B) + (C \cdot D) + (E \cdot F)}$$

- T3) La llum solar passa a través de 5 filtres polaritzadors amb el mateix angle entre ells i la intensitat es redueix en un factor de 1/4. Quin és l'angle mínim entre filtres polaritzadors adjacents que reprodueix aquest efecte?
 - a) 32.8°
- b) 21^{o}
- c) 0.41°
- d) 23.5°
- T4) Quines de les següents característiques d'una ona electromagnètica són possibles?

a)
$$\vec{E}_0 = -12 \text{ V/m } \hat{j}, \vec{B}_0 = 4 \times 10^{-9} \text{ T } \hat{i},$$
 propagació sentit positiu eix z

- b) $\vec{E}_0=21~{
 m V/m}~(\hat{j}+\hat{k}),\,\vec{B}_0=7\times 10^{-8}~{
 m T}~(\hat{i}+\hat{j}),$ propagació sentit negatiu eix z
- c) $\vec{E}_0 = 21 \text{ V/m } \hat{k}, \vec{B}_0 = 7 \times 10^{-8} \text{ T } \hat{k}, \text{ propagació sentit positiu eix } z$
- d) $\vec{E}_0 = 12 \text{ V/m } \hat{k}, \vec{B}_0 = -4 \times 10^{-8} \text{ T } \hat{j},$ propagació sentit negatiu eix x
- **T5)** Quina és la tensió mínima de la f.e.m. ε , per tal que el díode LED condueixi i emeti llum? Les resistències són $R_1=1k\Omega, R_2=100\Omega, R_3=200\Omega.$ La tensió llindar del LED és $V_{LED}=3.3\mathrm{V}$ i la tensió V_Z del díode Zener és $V_Z=5\mathrm{V}$

Cognoms i Nom:

Codi

Examen de Física - Electrònica i ones 7 de juny de 2021

Problema: 50% de l'examen

Els paràmetres característics del transistor NMOS del circuit de la figura, valen $\beta = 0.2 \text{ mA/V}^2$ i $V_T = 1.5 \text{ V}$.

- a) Per $V_G-V_S=4$ V, $R_0=R_1=1$ k Ω i $R_2=2.5$ k Ω , el transistor treballa en zona de saturació. Trobeu els valors de I_D i V_{out} .
- b) Si respecte de l'apartat anterior modifiquem només R_2 , quin és el valor màxim d'aquesta resistència que farà que el transistor estigui en zona de saturació?
- c) Finalment, canviem la tensió d'alimentació de la porta d'entrada a $\varepsilon = 7.5\,$ V, substituïm la resistència R_1 per un pont $(R_1 = 0)$ i fixem la resistència $R_2 = 2.5\,$ k Ω . Trobeu els nous valors de I_D i V_{out} . En quina zona de treball es troba el transistor en aquest cas?

COMENCEU LA RESOLUCIÓ DEL PROBLEMA EN AQUEST MATEIX FULL

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	a	d
T2)	a	d
T3)	a	d
T4)	c	a
T5)	b	b

Resolució del Model A

- **T1)** La relació entre els vectors del camp elèctric \vec{E} , magnètic \vec{B} i la direcció de propagació \vec{v} és $\vec{E} = c[\vec{B} \times \vec{v}]$.
- T2) El sol emet una llum no polaritzada, que es polaritza en passar pel primer filtre, on perd la meitat de la seva intensitat. En passar cadascun dels 4 filtres posteriors, la intensitat de la llum es redueix en un factor $\cos^2(\alpha)$ on α és l'angle desconegut que busquem. Així doncs, la intensitat desprès de passar per tots els filtres és redueix en un factor $(1/2)\cos^8(\alpha) = 1/4$ i per tant $\alpha = \arccos(0.5^{1/8}) = 23.5$.
- T3) La Terra intercepta una fracció de la potència emesa donada per $\frac{STerra}{4\pi D^2}$. La distància a la Terra és $D=600\times 10^8 anys-llum=600\times 10^8\times 365\times 86400s\times 3\times 10^8 m/s$: $D=5.67\times 10^{24}m$. La circumferència de la Terra $2\pi r=40.000$ km està relacionada amb el seu radi, $r=40.000\cdot 10^3 m/(2\pi)=6.36\cdot 10^6$ m. Per tant, la potència interceptada és $P=10^{39}(\pi r^2)/(4Pi]Dist^2)=314.4$ W
- T4) Quan el LED comença a conduir, la caiguda de tensió a les resistències R_2 i R_3 és igual a V_{LED} , de manera que la intensitat és de $I=V_{LED}/(R_2+R_3)=3.3\mathrm{V}/(100\Omega+200\Omega)=0.11\mathrm{A}$. Com que el díode Zener té una polarització inversa respecte a la direcció del corrent, la ddp sobre ell és igual a la tensió Zener, V_{ZZ} . La caiguda de tensió en el circuit és $I(R_1+R_2+R_3)+V_Z=0.11\mathrm{A}(1000\Omega+100\Omega+200\Omega)+5\mathrm{V}=19.3\mathrm{V}$.
- **T5** Des de la font V_{DD} trobem una estructura paral·lela de transistors NMOS, que corresponen a una estructura NOR. Dins de cada branca hi tenim dos NMOS en sèrie que corresponen a portes NAND a cada branca. Ajuntant els dos criteris, trobem que la porta satisfà la funció lògica $(A \cdot B) + (C \cdot D) + (E \cdot F)$.

Resolució del Problema

a) Amb $V_G - V_S = 4$ V i suposant que estem en zona de saturació tenim $I_D = I_D(\text{sat}) = \frac{\beta}{2} (V_{GS} - V_T)^2 = 0.625 \,\text{mA}.$

Per tant $V_{\rm out}=10\,{\rm V}-0.625\,{\rm mA}\times2.5{\rm k}\Omega=8.44\,{\rm V}$, $V_S=0.625\,{\rm mA}\,1\,{\rm k}\Omega=0.625\,{\rm V}$ i trobem doncs $V_{DS}=V_{\rm out}-V_S=7.81\,{\rm V}$.

La condició de saturació: $V_{GS} - V_T < V_{DS}$ es satisfà $(V_{GS} - V_T = 4 \text{ V} - 1.5 \text{ V} = 2.5 \text{ V} < 7.81 \text{ V}).$

b) El màxim valor de R_2 per a estar en saturació haurà de satisfer $(V_{GS} - V_T = 2.5 \text{ V} \le V_{DS} = (10 \text{ V} - 0.625 \text{ mA } R_2) - 0.625 \text{ mA } 1 \text{ k}\Omega)$. Per tant, és $2.5 \text{ V} = 10 \text{ V} - 0.625 \text{ mA } R_2(\text{max}) - 0.625 \text{ V}$ i trobem

$$R_2(\text{max}) = \frac{10 \text{ V} - 2.5 \text{ V} - 0.625 \text{ V}}{0.625 \text{ mA}} = 11 \text{ k}\Omega.$$

c) Si fem $R_1=0$ i augmentem la tensió d'alimentació de la porta d'entrada a $V_G=7.5\,\mathrm{V}$ tenim que la intensitat de saturació és $I_D(\mathrm{sat})=\frac{\beta}{2}\,(V_{GS}-V_T)^2=3.6\,\mathrm{mA}$. Aquesta intensitat causaria $V_{DS}=V_{out}=10\mathrm{V}-3.6\mathrm{mA}\,2.5\mathrm{k}\Omega=1\mathrm{V}$ que no és consistent amb la condició de saturació. Estarem doncs en zona òhmica i tenim

$$I_D = \beta((V_{GS} - V_T) V_{DS} - V_{DS}^2/2) = 2 \cdot 10^{-4} (6 V_{DS} - V_{DS}^2/2)$$

$$I_D = \frac{10V - V_{DS}}{2.5 \, 10^3}$$

Substituint I_D donada per la segona expressió en la primera, trobem $V_{DS}^2 - 16V_{DS} + 40 = 0$ amb les dues solucions $V_{DS} = 12.9 \text{V}$ (no física) i $V_{\text{out}} = V_{DS} = 3.1 \text{V}$ que és la bona, satisfent la condició de zona òhmica $V_{GS} - V_T > V_{DS}$ ja que 7.5 V - 1.5 V > 3.1 V.

Així doncs $V_{\text{out}} = V_{DS} = 3.1 \text{ V}$ i la intensitat I_D donada per qualsevol de les expressions anteriors és $I_D = 2.76 \text{ mA}$.