Tuesday, November 12, 2024 3:29 PM

10.230g, November 12, 2024
Random Forest
1) Fit B (randonized) trees to bootstrap Samples
Samples
For b=1,,B
(1) draw bootstrap sample Sh
draw bootstrap sample Sb from traing data
(i) Fit a (random'zed) tree to
(i) Fit a (random'zed) tree to Sh to get fb.
reallyft at each split in tree only consider a random sample of M variables
only consider a random
· · · · · · · · · · · · · · · · · · ·
2) Bas my trees (make fis lees coneinted
(2) Bas my trees concluted
Out-of-Bag Error (OOB)
Fach trains sample & will end up in
Each trains sample & will end up in some of my Sb and not others.
not here

notes Page 1

Sorre et my Sb onc. voi others.

S, S₂ S₃ ... S₁₀

Consider bassing only those for where $X \notin S_{L}$:

$$\hat{f}_{-\chi} = \frac{1}{N_{-\chi}} \sum_{b: \chi \notin S_b} \hat{f}_b$$

$$N_{-\chi} = \# \text{bootsraps}$$

$$W_0 \chi$$

As far as for is concerned, x is a testing point.

So
$$\hat{y}_{OOB} = \hat{f}_{-\chi}(\chi)$$

So If I calculate accracy metrics based on Syoob, n 3 n=1

then this is basically a test error.

then this is basically a test error.

e.s.
$$MSE_{00B} = \frac{1}{N} \sum_{n=1}^{N} (y_n - \hat{y}_{00B,n})^2$$
.

Binary Classification

two paraweterizations of Y

$$(1) Y = 0 \text{ or } 1$$

$$(2) Y = \pm 1$$

7+1

0-1 loss:
$$L(y, \hat{f}(x)) = I(y \neq \hat{f}(x))$$

If I use = 1 paraweterization then

Correct class \(\infty \) signs of y \(\frac{f(x)}{match} \)

incorrect \Leftrightarrow signs differ

For ony \hat{f} there is some function h so that $\hat{f}(x) = Sign(h(x))$

idea: h(x) >> 0 fer class 1 h(x) << 0 fer class -1

margin: yh(x) = yh yh>0 (correct class yh<0 >incorrect lyh | ~ correctness ~ residual for repression

0-1 loss: L(yh)=1(yh<0)

Exponential Loss: L(yh) = e-yh

Boosting (Binary classification)

Orig. designed as way of combining a series of weak classifiers to make a stronger one.

> one whose perf. 18mt much setter than gressing

Idea:

1) Segrantially train a series of weak dassifiers /one-splittree)

weak dassifiers > (one-split tree)
stump f, fz, f3, --- , fm to repeatedly modified trains data.

Sup weight case where prev. classifier wrong prev. classifier wrong majority vote:

hxx $\hat{f}(x) = sign\left(\sum_{m=1}^{M} x_m f_m(x)\right)$ weights reflect
accuracy of each fm.

First/Simplest Boosting Algo Ada Boast:

1) $w_n = /N$ weight for nth trains point

(2) For m=1, ..., M

a) fit fin by minimizing weights who

loss Lusing weights Wn

(b) comple weighted misclass err fer fm:

 $err_m = \sum_{n} w_n \mathbb{I}(y_n \neq \hat{f}_m(x_n))$ $\sum_{n} W_{n}$

(c) $\alpha_m = \log((1 - e(r_m)/err_m))$

(d) Update weights:

 $\omega_n \leftarrow \omega_n \cdot \exp(\alpha_m \mathbb{1}(y_n \neq \hat{f}_m(x)))$

= wn if fin is correct = e wn if fin is incorrect

(3) $\hat{f}(x) = Sign(\sum_{m} x_{m} \hat{f}_{m}(x)).$