

第一章半导体物理基础

固体材料的分类(宏观)——导电性能

分类	电阻率ρ (Ω·cm)	
导体	<10-4	
半导体	10-4-10-9	
绝缘体	>109	

晶体实际的能带图比较复杂,可以把复杂的能带图简化

一般用"Ec" 表示导带底的 能量,用Ev表 示价带顶的能 量,Eg表示禁 带宽度。

半导体能带简化表示

a)能带简化表示 b)能带最简化表示

固体材料的分类(微观) 能带结构

绝缘体、半导体的能带示意图

能带被电 子部分占 满,在电 场作用下 这些电子 可以导电

禁带比较窄,常 温下,部分价带 电子被激发到空 的导带,形成有 少数电子填充的 导带和留有少数 空穴的价带,都 能带电

硅1.12eV 价带

禁带

 E_{g}

(c) 半导体

锗0.67 eV

砷化镓

1.42 eV

半导体的种类及特性

半导体的种类

- □元素半导体和化合物半导体
- □晶态半导体、非晶及多晶半导体
- □无机半导体和有机半导体
- □本征半导体和杂质半导体

半导体的基本特性

- ✓温度效应-----负温度系数
- √掺杂效应----杂质敏感性
- ✓光电效应----光电导
- ✓电场、磁场效应

主要的元素和化合物半导体			
元素半 导体	IV族化合 物半导体	III-V族化 合物半导体	II-VI族化 合物半导体
Si	SiC	AIP	ZnS
Ge	SiGe	AlAs	ZnSe
		AlSb	ZnTe
		GaP	CdS
		GaAs	CdSe
		GaSb	CdTe
		InP	
		InAs	
		InSb	

固体(半导体)材料的分类——原子空间排列

■ 单晶:原子排列长程有序,内部结构有周期性(长程有序:um量级),例如:单晶硅

■ 非晶:原子排列无序,例如:玻璃(无序SiO₂)

■ 多晶:原子排列短程有序,由不同取向的单晶颗粒组成,例如:多晶硅

(a) Crystalline

单晶:周期性

25.0%

(b) Amorphous

非晶:无周期性

10.1%

(c) Polycrystalline

多晶:小区域周期性

20.4%

硅太阳能 电池效率 (实验室)

晶体结构的基本概念*

晶体结构 =结构基元 + 点阵

■ 基元:组成晶体的最小单元。

■ 布拉非格子(点阵)

(1)晶体一定具有平移周期性

(2)每个格点周围环境完全相同

■ 晶体 = 基元 + 布拉菲点阵。

例如:Cu的面心立方晶格,Si的金刚石晶格和NaCl晶格布拉菲格子都是面心立方格子,每个格点的基元分别为一个Cu、两个Si和一对Na+、Cl-离子。

一般格子和布拉菲格子

一 两个不等价位点 基元

一般格子

连接最近等价原子 描述周期结构 布拉菲格子

原胞 与晶 胞的 区别 与联 系

原 胞 晶格中体积最小的周期单元 每个原胞中实际上只包含一个格 点。 每个原胞有8个顶角, 每个顶角为相邻8个原胞所共有, 所以, 每个原胞所含格点数为8×1/8=1 原胞的体积可表示为: $v = \overrightarrow{a_1} \cdot (\overrightarrow{a_2} \times \overrightarrow{a_3})$ 面心立方晶格的原胞体积=a³/4

晶 胞 体积较大的周期单元 每个晶胞中所含格点数因结构 而异。 例: 面心立方晶格 晶胞结构——立方体, 面心格点:两个相邻晶胞共有,只 有1/2属于一个晶胞; 顶角格点:只有1/8属于一个晶胞; 总格点数=8×1/8+6×1/2=4 晶胞体积是原胞体积的n倍(n 是该结构每个晶胞所含格点数) 面心立方结构晶胞体积=a³

小结:三种原胞特点

固体物理学原胞

结晶学原胞

维格纳-赛兹原胞

是体积最小的 原胞,格点只在 **顶角上,每个原** 胞平均只含一个 格点,其基矢常 用 $\vec{a}_1, \vec{a}_2, \vec{a}_3$ 来表 示;

为同时反映晶体的 微观周期结构和晶体 对称性,通常选取体 积较大的原胞,常称 为"晶胞", 其格点 不只在顶角上, 还可 分布在**体心和面心**处, 每个原胞平均不只含 一个格点,其基矢常 用 \vec{a},b,\vec{c} 来表示;

是以一格点为中心, 画中心到最近邻格点的 连线的垂直平分面,围 成的多面体称维格纳-赛兹原胞。它也是体积 最小的原胞,其格点只 在中心,每个原胞平均 只含一个格点;