Marking scheme: Each of the four main questions is worth 1/4 of the total mark

ECT 3551 YOUNN

In the feedback system shown, k is a constant gain, and the compensator block labelled C in the return path has transfer function $\dot{c}(s) = (s+\alpha)/(s+\beta)$. The parameters α, β are positive constants.

- 1.1 What is the differential equation relating g to y?
- 1.2 Determine the impulse response function c(u) of C. Provide a formula for the compensator output signal g(t) $(t \ge 0)$ in terms of its initial value $g(0) = \gamma$ and the input y(t') for $0 \le t' \le t$.
- .3 Let H denote the feedback system with input signal taken to be r and output e. Calculate the transfer function $\hat{h}(s)$ of H. For what range of values of α, β, k is H BIBO stable?
- 1.4 Find the (critical) frequency of spontaneous oscillation of the system H when the parameters are adjusted so that H is on the boundary between stability and instability. If the input signal r is a sinusoid at the critical frequency, what is the general form of the output e(t) for large t?
- 1.5 Let $r(t) = t^2$, $t \ge 0$. If H is stable, find $\lim e(t)$ $(t \to \infty)$.
- 2. Consider a filter with differential equation

$$T\frac{dg(t)}{dt} + g(t) = f(t), \quad t \ge 0$$

and initial condition g(0) = 0.

- 2.1 If the input signal is $f(t) = \cos(\omega t)$ $(t \ge 0)$ find the output g(t) for all $t \ge 0$. Check your answer when $\omega = 0$.
- 2.2 Suppose the input signal is $f(t) = |\sin(t)|, t \ge 0$. Let the Fourier series (corresponding to base interval $[0,\pi]$) be

$$f(t) = a_o/2 + \sum_{n=1}^{\infty} [a_n \cos(n\omega_o t) + b_n \sin(n\omega_o t)]$$

Find ao/2, we and bn.

- 2.3 Using the results from 2.1 and 2.2, find the 'steady-state' filter output, say $g_{\infty}(t)$ (in terms of T and the a_n for $n \ge 1$), accurate for sufficiently large t. What would be a reasonable numerical assessment of 'sufficiently large' here?
- 2.4 Write expressions for the 'd.c.' power and the average 'a.c.' power corresponding to the solution $g_{\infty}(t)$ in 2.3. Given the time constant $T=3\pi$, and $a_n=-4/(\pi(4n^2-1))$, estimate the summation limit required to compute the a.c. power numerically, with error no greater than 10^{-6} in magnitude.

3. Let f(t) $(-\infty < t < \infty)$ be the signal whose Fourier transform is

$$j(\omega) = \begin{cases} 1, & |\omega| \le 1\\ 0, & |\omega| > 1 \end{cases}$$

- 3.1 Calculate f and sketch its graph.
- 3.2 Calculate the total energy of f.
- 3.3 Suppose f is sampled at times $n\tau$ (n=...,-1,0,1,...), and call the sampled signal g. Setting $\Omega:=\pi/\tau$, provide a formula for the Fourier transform \hat{g} , in terms of \hat{f} . Sketch the graph of \hat{g} when (i) $\Omega=1.1$, and (ii) $\Omega=0.9$.
- 3.4 With g as in 3.3, an attempt is made to recover f from g by passing g through an ideal low-pass filter with gain k and passband $-B \le \omega \le B$. Denote the filter output by h(t) ($-\infty < t < \infty$), with Fourier transform h. For a general value Ω , write (i) a formula for h in terms of g, and (ii) a formula for h in terms of the samples $f(n\tau)$.
- 3.5 For what range of Ω will there exist suitable k and B as in 3.4 such that the signal h is identical with f? In particular evaluate your formula for h(t) when $B = \Omega = 1$ and $k = \pi$.
- 3.6 In the case $B=\Omega=0.9$, and $k=\pi/\Omega$, calculate the energy of h. How does your result differ from the energy of f? Discuss briefly.

חירם ליה לי מחירם

4. Consider a data-processing system S with input signal f and output signal g, where

$$g(t) = \alpha e^{t-1} f(t-1) + \beta [f(t+1)]^2 + \gamma df(t)/dt + \int_{-\infty}^{\infty} k(t, v) f(v) dv$$

for $-\infty < t < \infty$. Here α, β, γ are real parameters, and the weighting function k is an ordinary real-valued function of t and v. The input signal class $\mathcal F$ consists of all real-valued signals f defined on $-\infty < t < \infty$ for which the above derivative and integral exist, and the output signal class $\mathcal G$ is chosen large enough to contain all the signals Sf. Assume that $\mathcal F$ and $\mathcal G$ are linear vector spaces.

- 4.1 Provide the 'best' condition(s) you can find, on the constants α, β, γ and the function k, which guarantee that S is linear. Taking a simple instance of S, show that linearity can fail if your condition fails.
 - 4.2 Repeat 4.1, for the property of time invariance of S.
 - 4.3 Repeat 4.1, for the causality of S.
- 4.4 Repeat 4.1, for the BIBO stability of S. Hint: Can you invent a signal f for which $\|f\|_{\infty} < \infty$, but whose derivative df(t)/dt is an unbounded function of t?