Importing the Dependencies

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans

Data Collection & Analysis

loading the data from csv file to a pandas DataFrame
customer_data = pd.read_csv('/content/Mall_Customers.csv')

first 5 rows in the dataFrame
customer_data.head()

→		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40

finding the number of rows and columns
customer_data.shape

→ (200, 5)

getting some informations about the dataset
customer_data.info()

<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype				
0	CustomerID	200 non-null	int64				
1	Gender	200 non-null	object				
2	Age	200 non-null	int64				
3	Annual Income (k\$)	200 non-null	int64				
4	Spending Score (1-100)	200 non-null	int64				
<pre>dtypes: int64(4), object(1)</pre>							
memory usage: 7.9+ KB							

checking for missing values
customer_data.isnull().sum()

Choosing the Annual Income Column & Spending Score column

X = customer_data.iloc[:,[3,4]].values

print(X)

Show hidden output

Choosing the number of clusters

plt.ylabel('WCSS')

plt.show()

```
WCSS -> Within Clusters Sum of Squares
```

```
# finding wcss value for different number of clusters
wcss = []

for i in range(1,11):
    kmeans = KMeans(n_clusters=i, init='k-means++', random_state=42)
    kmeans.fit(X)
    wcss.append(kmeans.inertia_)

# plot an elbow graph
sns.set()
plt.plot(range(1,11), wcss)
plt.title('The Elbow Point Graph')
plt.xlabel('Number of clusters')
```


Optimum Number of Clusters = 5

Training the k-Means Clustering Model

5 Clusters-0,1,2,3,4

Visualizing all the Clusters

plotting all the clusters and their Centroids

```
plt.figure(figsize=(8,8))
plt.scatter(X[Y==0,0], X[Y==0,1], s=50, c='green', label='Cluster 1')
plt.scatter(X[Y==1,0], X[Y==1,1], s=50, c='red', label='Cluster 2')
plt.scatter(X[Y==2,0], X[Y==2,1], s=50, c='yellow', label='Cluster 3')
plt.scatter(X[Y==3,0], X[Y==3,1], s=50, c='violet', label='Cluster 4')
plt.scatter(X[Y==4,0], X[Y==4,1], s=50, c='blue', label='Cluster 5')

# plot the centroids
plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1], s=100, c='cyan', label='Centroids
plt.title('Customer Groups')
plt.xlabel('Annual Income')
plt.ylabel('Spending Score')
plt.show()
```


Start coding or generate with AI.