Instrumentation amplifier

Instrumentation amplifier

$$V_{out} = \left(1 + \frac{2R_1}{R_{gain}}\right) \left(\frac{R_3}{R_2}\right) [V_2 - V_1]$$

Dr. E Paul Braineard

Problem: Superposition theorem

 Use the superposition principle to find the output voltage of the circuit shown in Fig.

$$v_o = 6v_1 + 4v_2$$

$$y_1 = \frac{1 \text{ k}\Omega}{2 \text{ k}\Omega}$$

Dr. E Paul Braineard

Problem: find V_o

• For the circuit in Fig. find the values of i_I , v_1 , i_1 , i_2 , v_o , i_L , and i_o . Also find the voltage gain v_o/v_I , the current gain i_L/i_I , and the power gain P_L/P_I

0; 1 V; 1 mA; 1 mA; 10 V; 10 mA; 11 mA; 10 V/V (20 dB);∞;∞

$$v_{i} = 1 \text{ V}$$

$$v_{i} = 1 \text{ V}$$

$$v_{i} = 1 \text{ V}$$

$$90 = (1 + 9K)IV$$

$$= 10V$$

$$91 = 10M$$

$$1 = 10M$$

JOK is in lives