

SEARVII

Routing permite que el tráfico de una red pueda ser enviado hacia otra red en cualquier parte del mundo. Hay que diferenciar entre:

- Routing o forwarding: es el acto de reenviar paquetes a un host basado en la información almacenada en las tablas de ruteo.
- Protocolos de routing: son programas que intercambian información entre routers para construir las tablas de ruteo.

Las configuraciones de routing más comunes son:

- → Routing mínimo: una red aislada de otras redes TCP/IP
- → Routing estático: la tabla de ruteo es construída por un administrador en forma estática.
- → Routing dinámico: la tabla de ruteo es construída en base a información intercambiada por protocolos de routing.

Las tablas de ruteo también se pueden actualizar en base a paquetes ICMP Redirect.

CONTENT

Las tablas de ruteo también se pueden actualizar en base a paquetes ICMP Redirect.

Formato de un paquete ICMP Redirect

Type=5	Code	Checksum
Gateway Internet address (192.168.10.1)		
Internet header + 64 bits Data		

 \bigcirc 0 = Redirect datagrams for the Network.

1 = Redirect datagrams for the Host.

2 = Redirect datagrams for the ToS and Network.

3 = Redirect datagrams for the ToS and Host.

6

O

D

E

Se dividen en dos categorías:

- Routing interno (IGP): diseñados para una red controlada por una sola organización. Los más usados son RIP y OSPF.
- Routing externo (EGP): diseñados para intercambiar información entre redes controladas por distintas organizaciones (sistemas autónomos). Se usa BGP.

CONTENT

SEARVIT

WEBSITE

Routing dinámico

SEARVIT

WEBSITE

Protocolos de transporte

Protocolos de routing

Utiliza algoritmos adaptativos

- Camino más corto (Dijkstra)
- Inundación (flooding)
- Papa caliente
- Vector de distancia (Distance vector)
- Estado de enlace (*Link state*)

Cada router recibe de sus vecinos una tabla de enrutamiento. En base a ella actualiza su tabla y la envía a sus vecinos.

_	_	_	
Tal	าไว	de	Δ
1 at	na	uc	\Box

R	D	Sale
A	0	ı
В	2	В
С	2	С

Informa B

R	D
A	2
В	0
D	4

Informa C

R	D	
A	2	
C	0	
D	4	
F	1	
-		

Cada router recibe de sus vecinos una tabla de enrutamiento. En base a ella actualiza su tabla y la envía a sus vecinos.

 1 1	1	1	
Tabl	la	de	Α

R	D	Sale
A	0	ı
В	2	В
С	2	С
D	6	В
F	3	С

Informa B

R	D
A	2
В	0
С	4
D	4
Е	5

Informa C

R	D
A	2
В	4
С	0
D	4
Е	2
F	1
G	3

Cada router recibe de sus vecinos una tabla de enrutamiento. En base a ella actualiza su tabla y la envía a sus vecinos.

Tabla de A		
R	D	

R	D	Sale
A	0	-
В	2	В
С	2	С
D	6	В
Е	4	С
F	3	C
G	5	C

Informa B

R	D
A	2
В	0
C	4
D	4
Е	5
F	5

Informa C

R	D
A	2
В	4
C	0
D	3
Е	2
F	1
G	3

Cada router recibe de sus vecinos una tabla de enrutamiento. En base a ella actualiza su tabla y la envía a sus vecinos.

Tabl	a (de	A

R	D	Sale
A	0	-
В	2	В
С	2	С
D	5	С
Е	4	С
F	3	С
G	5	C

Informa B

R	D	
A	2	
В	0	
С	4	
D	4	
Е	5	
F	5	
G	7	

Informa C

R	D
A	2
В	4
С	0
D	3
Е	2
F	1
G	3

CONTENT

Problemas: Contar hasta infinito

Supongamos que A estaba inactivo y vuelve a la actividad

Intercambios	Dist(B-A)	Dist(C-A)	Dist(D-A)	Dist(E-A)	
0	∞	∞	∞	∞	Las buenas noticias
1	1	∞	∞	∞	viajan rápido.
2	1	2	∞	∞	
3	1	2	3	∞	
4	1	2	3	4	

Problemas: Contar hasta infinito

Supongamos que A estaba activo y pierde conectividad con B

Intercambios		Dist(C-	A) +	
	1	Dist(B	-C)	4
1	3	2	3	4
2	3	4	3	4
3	5	4	5	4
4	5	6	5	6
5	7	6	7	6
•••	•••			

¡ Incrementa hasta infinito!

Problemas: Contar hasta infinito

Posibles soluciones:

- → Split horizon: no enviarle a mi vecino lo que mi vecino me está enviando.
- \bullet Ruta envenenada: lo que mi vecino me envía se lo envío con salto ∞ , para que no actualice.
- → Enviar rápido las malas noticias: si un router detecta un problema en el vínculo, enviar en forma inmediata esa entrada "envenenada".

18

RIP (Routing Information Protocol)

- Pertenece a los algoritmos distance vector
- ♦ Selecciona una ruta en base a la cantidad de <u>saltos</u> a usar para llegar a destino.
- Simple de configurar.
- Adecuado para redes pequeñas
- ♦ El demonio en Linux es **routed**.
 - → Cuando se inicia envía un pedido de actualizaciones de ruteo.
 - → Cada router envía en forma periódica paquetes con información basada en su table de ruteo.

Características de RIP v1

- ♦ Intercambia información con sus vecinos cada 30 segundos
- → Limitado a un diámetro de red de 15 saltos
- Los paquetes son broadcast
- Usa notación classfull

19

CONTENT

Direcciones IP de red con máscara natural (classful)

RIP v1

Los paquetes no tienen autenticación

RIP v2 (RFC 2453)

CONTENT

SEARVI

WEBSITE

CONTENT

- ☐ Informa direcciones CIDR.
- ☐ Updates en forma multicast
- ☐ Updates con autenticación (opcional)
- ☐ Compatible con RIP v1

RIP v2: sin autenticación

CONTENT

SEARVIT

WEBSITE

1 a 25 entradas

Protocolos de routing

RIP v2: con autenticación

CONTENT

SEARVI

WEBSITE

CONTENT

Configuración de RIP

- → Implementado con el demonio routed.
- ♦ No necesita parámetros ni archivos de configuración.
- → Puede crearse en forma opcional el archivo /etc/gateways que provee seteos iniciales.

Cada línea de /etc/gateways contiene una entrada similar a la tabla de ruteo, por ejemplo

net 192.160.14.0 gateway 172.14.88.12 metric 1 passive

Cada router recibe del resto de los routers información sobre sus vecinos. En base a ella arma un grafo de la red y calcula el o los caminos más cortos.

Cada router debe hacer lo siguiente:

- 1. Descubrir sus vecinos
- 2. Medir la distancia (demora o costo) a cada vecino
- 3. Construir un paquete con lo que aprendió
- 4. Enviar el paquete a <u>todos</u> los routers de la red
- 5. Calcular el camino más corto a cada router

SEARVII

OSPF (open shortest path first) RFC 2328

- Modelo jerárquico
- ♦ Intercambia información sobre sus vecinos con toda la red
- ♦ Se envía información cuando se detecta un cambio en la topología.
- Permite asignar peso a los enlaces que unen áreas o routers
- ◆ Cada router construye un grafo de la red y utiliza Dijkstra para construir el camino más corto.
- → Permite definir áreas. Un área es una colección interconectada de redes.
 Cada área intercambia información con otras áreas a través de un *router* de borde.

OSPF: definición de áreas RESOURCE

SEARVIT

- Cada área está conectada con el área cero (área backbone) a través de los routers de borde (ABR)
- **♦** Los routers de borde sumarizan las redes de un área
- Reduce las entradas en las tablas de ruteo
- **♦** El impacto por los cambios de topología está localizado

Las áreas "stub" no requieren un router de borde con gran capacidad, generalmente su tabla de ruteo se configuran en forma estática y con información sobre una subred local y una ruta por defecto.

OSPF

ORING CONTENT

SEARVIT

WEBSITE

30

Configuración de OSPF

OSPF es implementado con el demonio **gated**, que soporta múltiples protocolos (RIP v1, RIP v2, OSPF, BGP). Para configurar gated se debe usar el archivo /**etc/gated.conf**.

Routing dinámico

CONTENT

SEARYH

WEBSITE

Distance vector	Link state
Visualiza la topología de red en base a la visión de sus vecinos	Visualiza la topología completa de la red
Suma distancias de router a router	Calcula la ruta más corta hacia otros routers
Actualizaciones frecuentes y en forma periódica	Actualizaciones activadas por cambios
Envía copia de la tabla de enrutamiento a los vecinos	Envía estado de enlace a todos los routers
Limita el diámetro de la red (15 "saltos" en RIP).	No tiene límite para el diámetro de la red.

CONTENT WEBSIT

SEARVI

Capítulos 4.5 y 4.6 de la bibliografía