

用于USB PD的65W有源钳位 反激式适配器方案

Mike Chen 陈伟 工业电源及能源技术创新中心 意法半导体 亚太区

Power & Energy
Competence
Center

议程

1 USB PD适配器发展

5 氮化镓 (GaN)在电源中的应用

2 USB PD适配器中使用的拓扑

6 ST MasterGaN简介

3 ACF控制方法

7 65W 方案关键测试结果和设 计注意事项

4 ST 65W ACF USB PD适配器

8 采用MasterGaN的意法半导体 解决方案

USB PD适配器的发展

功率等级增加

5W

65W

120W

*USB PD3.1扩展功率范围: 高达48V 240W

功率密度增加

5W/in³

 $20\text{W/in}^3 \longrightarrow 30\text{W/in}^3$

开关频率增加

60kHz

USB PD适配器中使用的拓扑

USB PD适配器中使用的拓扑

为符合EN61000-3-2欧洲标准,额定功率≥75W的电源需要PFC

通常采用的拓扑	QR反激	ACF QR反激	PFC+LLC PFC+ACF PFC+AHB
输出类型	1C 1A1C	1C 1A1C 2A1C	2C1A 2A1C 2A2C
功率密度	0.3W~1W/CC	0.7W~1.5W/CC	0.5W-1W/CC

ACF控制方法

典型波形	8 7 6 5 7 6 5 7 6 5 7 6 7 6 7 7 6 7 7 7 7	I _s I _p V _{ds} V _{gsw} V _{gsa} V _{gsr}	Isec Ipri VIsd VIsg Vhsg Vhsg Vsrg
控制原理	互补式	经典 非互补	ST采用了新的 非互补式控制
工作方式	钳位开关和主开关互补导通	钳位开关副边电流过零开启一次	钳位开关开启两次: • 主开关关断后 • 副边电流过零
特性	• ZVS	• ZVS • 降低钳位开关的RMS电流	 ZVS 降低钳位开关的RMS电流 降低钳位开关的反向导通损耗 特别适合GaN应用场合

应用MasterGaN2的65W ACF方案

使用平面变压器技术的65W有源钳位反激式变换器 推出时间: Q4/21

• 输入电压: 90VAC到264 VAC的交流, 47Hz到63Hz

• 输出电压: Type-C输出5 VDC-20 VDC

• 输出功率: 最大65W

• 效率:满足CoC Tier 2和DoE 6级效率要求

• 符合EMC标准: CISPR22B / EN55022B

• 支持USB-PD、PPS、SCP、FCP和QC协议

关键器件

ACF控制器 ACF专用数字控制器

MasterGaN2 集成2个GaN管及其驱动

电路的IC

STL90N10F7 PowerFLAT 5x6

封装 100V SR MOSFET

STL260N4LF7 PowerFLAT 5x6 封装低压MOSFET

- 高开关频率实现高功率密度 >30W/inch3
- 有效减小器件数量
- 非常紧凑且简便的PCB布局

65W ACF主拓扑

GaN vs.硅基晶体管

- •氮化镓 (GaN) 宽带隙 (WBG) 材料
- •GaN HEMT-高电子迁移率晶体管,代表着电力电子技术的重大进步
- •用于更高频的工作
- •提高效率
- •与硅基晶体管相比, 功率密度更高

特征	GaN	硅	注释
Qg-栅极电荷	低	高	驱动损耗更低, 频率和效率更高
Coss-输出电容	低	高	开关损耗更低, 频率和效率更高
Qrr-反向恢复电荷	低	高	GaN适用于更高的频率和效率要求的应用
Vgs-栅极电压	复杂	简单	GaN需要更出色的栅极驱动电路和PCB布 局
Vsd-体二极管导通	高	低	GaN需要更好地控制死区时间

集成式GaN芯片的应用优势

分离式GaN解决方案

栅极驱动环路电感 包括Kelvin引脚

- · 栅极驱动环路杂散电感会导致栅 极振铃并增加误导通的可能性
- · 电源回路杂散电感会导致更高的 电压峰值

需要使用栅极泄放电阻和优化布局的多层PCB来减少上述影响。

半桥结构中电源回路电感

集成GaN解决方案

栅极驱动环路电感

极低栅极驱动回路杂散电感

大幅减少Vgs振铃:

- 降低栅极结构上的应力 → 提高可靠性
- 降低驱动器输出的阻尼电阻 →更快开关, 更低开关损耗

电源回路中的杂散电感较低

大幅减少Vds峰值:

- 开关损耗较低
- EMI较低
- Vds电压应力较低

半桥结构中电源回路电感

集成GaN晶体管和驱动器

高效率

降低了功率损耗、功耗, 满足最严苛的能源要求

高功率密度

开关速度更快, 有助于降低系统尺寸和成本

市场投放速度更快

系统解决方案简化了设计 并提高了性能

MASTERGAN2

先进的电源解决方案 在半桥结构中集成了栅极驱动器和两个增强模式GaN管

已经量产

紧凑型

- •集成了功率GaN
- •嵌入式栅极驱动器 可以由内部自举 二极管轻松供电

VDS 600 V

 RDS_{ON} 150 m Ω (LS)

+ 225 mΩ (HS)

IDS_{MAX} 10 A (LS) + 6.5 A (HS) (@25C)

可靠

- •上下驱动部分都有UVLO保护,防止电源开关在低效率或危险条件 下运行
- •互锁功能避免上下管直通
- •过温保护

GQFN 9x9 mm² 引脚到引脚可扩展

- •采用GQFN 9x9 mm² 封装的智能解决方案
- •输入引脚扩展范围-3.3至15 V,具有滞回和下拉功能:方便与微控制器、DSP或霍尔传感器连接
- •使能功能专用引脚
- •精确的内部时序控制

MASTERGAN*平台

业界首款集成600 V半桥驱动器的解决方案 使用GaN HEMT: 紧凑、灵活且易于设计应用

大规模量产

可到45 W

225mΩ + 450mΩ 非对称HB结构

MasterGaN2

大规模量产

可到65 W

150mΩ + 225mΩ 非对称HB结构

通常用于有源钳位反激

MasterGaN5

大规模量产

可到100 W

450mΩ + 450mΩ 对称HB结构

MasterGaN4

大规模量产

可到200 W

225mΩ + 225mΩ 对称HB结构

MasterGaN1

大规模量产

150mΩ + 150mΩ 对称HB结构

通常用于LLC谐振和有源钳位反激

MASTERGAN引脚排列

Pin Number	Pin Name	Туре	Function
15, 16, 17, 18, 19	VS	Power Supply	High voltage supply (high-side GaN Drain)
12, 13, 14, EP3	OUT	Power Output	Half-bridge output
4, 5, 6, 7, 8, 9, 10, 11, EP2	SENSE	Power Supply	Half-bridge sense (low-side GaN Source)
22	BOOT	Power Supply	Gate driver high-side supply voltage
21	OUTb	Power Supply	Gate driver high-side reference voltage, used only for Bootstrap capacitor connection. Internally connected to OUT.
27	VCC	Power Supply	Logic supply voltage
1	PVCC	Power Supply	Gate driver low-side supply voltage
28, EP1	GND	Power Supply	Logic ground
3	PGND	Power Supply	Gate driver low-side driver reference. Internally connected to SENSE.
26	HIN	Logic Input	High-Side driver logic input
24	LIN	Logic Input	Low-Side driver logic input
25	SD/OD	Logic Input-Output	Driver Shutdown input and Over-Temperature
2	GL	Output	Low-Side GaN gate.
20	GH	Output	High-Side GaN gate.
23, 29, 30, 31	N.C.	Not Connected	Leave floating

65W ACF应用举例

65W ACF USB PD 适配器效率曲线

230Vac输入时候的效率-满足DoE 6级& CoC 二级能效要求

	% Loading	5V	9V	12V	15V	20V
EU CoC Rev.05-Tier2						
Limit for 10% Loading		72.48%	77.30%	78.30%	78.85%	78.85%
	10%	76.01%	84.14%	84.80%	84.07%	84.58%
	25%	82.50%	87.90%	89.68%	90.00%	89.91%
230Vac 50Hz Input	50%	86.17%	89.74%	91.12%	91.43%	91.95%
	75%	88.86%	91.20%	92.19%	92.42%	92.83%
	100%	90.00%	92.11%	92.76%	93.01%	93.60%
Result-4 Points		00.000/	00.040/	04 440/	04.700/	00.070/
Average		86.88%	90.24%	91.44%	91.72%	92.07%
EU CoC Rev.05-Tier2		04.0407	07.000/	00.000/	00.050/	00.050/
DoE Level VI		81.84%		-	88.85%	88.85%
	WHERE					
					300	
	Regulates power supplies shipping into the United States			Covers powe	r supplies shippir	ng into the EU

65W ACF USB PD适配器效率曲线

115Vac输入时候的效率-满足DoE 6级& CoC 二级能效要求

	% Loading	5V	9V	12V	15V	20V
EU CoC Rev.05-Tier2 Limit for 10% Loading		72.48%	77.30%	78.30%	78.85%	78.85%
	10%	82.25%	84.92%	86.56%	86.45%	85.64%
115Vac 60Hz Input	25%	87.74%	89.83%	90.73%	90.73%	90.45%
	50%	89.59%	91.32%	91.91%	91.89%	91.50%
	75%	90.47%	91.39%	92.25%	92.21%	91.80%
	100%	90.16%	91.90%	91.88%	91.95%	92.01%
Result-4 Points Average		89.49%	91.11%	91.69%	91.70%	91.44%
EU CoC Rev.05-Tier2 DoE Level VI		81.84%	87.30%	88.30%	88.85%	88.85%

١7

65W ACF USB PD适配器效率曲线

实际效率vs.DoE 6级& CoC 二级能效要求

65W ACF USB PD适配器典型波形

ACF在轻载时工作在Valley Skipping及Burst模式,以提高轻载效率

从满载到轻载

65W ACF USB PD适配器典型波形

230VAC 20V/1.5A

65W ACF USB PD适配器典型波形

230VAC 20V/3.25A

- SR MOSFET无振荡
- 最大应力为:

Vin*1.414/n + Vout=82V

• 可以使用100Vds MOSFET

MASTERGAN栅极驱动逻辑输入——真值表

逻辑输入-互锁

MASTERGAN互锁功能可防止上下管同时导通

• 当互锁条件应用于输入时,驱动在T (OFF) 后关闭

GL和GH低

• 当互锁条件解除时,驱动在T (OFF) 之后应用于输出

防止噪声的PCB布局技巧

VCC滤波电容器置于VCC-GND引脚附近

防止噪声的PCB布局技巧

dv/dt调节

在功率变换器的设计过程中,输出引脚中点dv/dt的调整非常重要

- 减少EMI
- 当寄生参数不能进一步减小时,避免不必要的振荡
- 降低二次侧应力

在GaN栅上增加电容器

- 在GL (GH) 和PGND (OUTb) 之间增加一个电容器相当于增加GaN的栅极电荷
- 为避免驱动器动态过载,并考虑工作频率Fsw,必须限定最 大值
- CGx<80mW/(Pvcc^2*Fsw)-(330pF)
- Fsw=500kHz CGL & CGH 最大=3.9nF

优点	缺点
通过电容值测量其效果 电容精度可保证效果的高度可重复性 对正常工作情况下的EMI有优化	给PVCC和Vbo带来额外的运行消耗,特别是在高频条件下 不适合特高频率应用

Cboot -RGOFF PVCC PGND Cpvcc .

在PVCC上串联电阻

 在PVCC或VBO串联一个电阻器可降低驱动电流。在驱动器开启时, PVCC / VBO会有明显的超短时间下降

优点	缺点
微调串联不同电阻的效果 电阻的精度确保效果的可重复性 对正常工作情况下的EMI有优化	PVCC / VBO下降会增加信号传输延迟 由于Gan的栅极电压(即PVCC-Vgsth)下降 ,可能导致Rdson增加 为了防止UVLO触发,VBO下降时间必须小于 2µs

添加dv/dt 限制电路

- 在OUT节点和GL之间增加RC电路,在dv/dt 较大时降低GL电压。
- 考虑使用PCB (特别是较薄的PCB) ,而不是增加Ck

举例如下:

- 0.8mm 4层PCB, 0.1mm层间厚度, εr=4.4
- 10pF -> 30mm2:可用于MasterGaN方案

优点	缺点
仅在dV/dt值较高的情况下起作用:然后dV/dt值在整个工作条件下获得平衡	需要高压元件

添加dv/dt限制器 – 设计建议

- 由于米勒效应, 电容 (Ck) 的值限制硬开关期间的dv/dt
 - 在导通期间,比值限制为 $\sim \frac{V_{PVCC}-V_{TH}}{R_{ONG}Ck} = \frac{V_{PVCC}-1.7}{77\cdot Ck}$
 - 在断开期间,比值限制为 $\sim \frac{V_{TH}}{R_{OFFG}Ck} = \frac{0.85}{Ck}$
- 为了避免杂散电感引起的振荡,需要串联一个电阻
 - $R_{DAMP} \gg \sqrt{\frac{L_{stray}}{C_k}}$
- 需要的电容器通常为5pF 10pF (额定值600V)
 - 例如: 使用PVCC = 6V, 且最大dv/dt = 10V/ns → Ck = 8.6pF

dv/dt限制电路的效果波形

230Vac的启动波形 dv/dt从37V/ns降至6V/ns

dv/dt限制到6V/ns

dv/dt调整-典型波形

65W方案示例: Rpvcc=15Ω, Cg=470pF, R43=200Ω, C57=10pF 220V/50Hz输入, 20V/3.25A输出

采用MasterGaN的意法半导体解决方案

可在意法半导体网站获取

EVLMG1-250WLLC 评估板

MASTERGAN1 无需散热器!

-60% 空间占用率

针对选定客户

350W+150W 超薄 LLC

OLED TV应用 L6599A + MasterGaN1

开发中(2021年第4季度推出)

200W TM PFC+LLC

游戏适配器 STCMB1 + MasterGaN1

扫描以下二维码 获得功率及模拟产品更多资讯

PDSA 微信公众号

能以致动子网站

Our technology starts with You

了解更多信息,请访问www.st.com

© STMicroelectronics - 保留所有权利。

ST徽标是STMicroelectronics International NV或其附属公司在欧盟和/或其他国家的商标或注册商标。若需意法半导体商标的更多信息,请参考

www.st.com/trademarks.

其他所有产品或服务名称是其各自所有者的财产。

