

ACV – Applied Computer Vision

Bachelor Medientechnik & Creative Computing

Matthias Zeppelzauer matthias.zeppelzauer@fhstp.ac.at

Djordje Slijepcevic djordje.slijepcevic@fhstp.ac.at

Roadmap

- Compute a function of the local neighborhood at each pixel in the image
 - Function specified by a "filter" or mask saying how to combine values from neighbors.
- Uses of filtering:
 - Enhance an image (denoise, resize, etc)
 - Extract information (texture, edges, etc)
 - Detect patterns (template matching)

Idea: take current pixel value plus values of its neighbors and compute something...

- Idea: take current pixel value plus values of its neighbors and compute something...
- Simplest case: linear filtering
 - Operation = Convolution
 - Sum of point-wise product between filter values and pixels

How is the computation scheme?

- Compute point wise product of filter weights and pixels
- Sum all products

Lets make an example

Calculate by hand

	٠٠.		

calculate the convolution on a piece of paper!

Boundary issues

- What is the size of the output?
- Output size options:
 - 'full': output size is sum of sizes of f and g
 - 'same': output size is same as f
 - 'valid': output size is difference of sizes of f and g

yalid g f

Source: S. Lazebnik

Filtering in Python

- f is the image, h is the filter.
 - from scipy import signal
 - imConv = signal.convolve2d(f,h, mode='same'):does the convolution
 - Attribute 'mode':
 - same: zero padding, result image has same size as input image
 - valid: only locations are evaluated where the filter fits in completely → result image smaller than input image
 - full: filtering takes place at all possible locations. Missing values are replaced by zeros \rightarrow result image is larger than input image

/fh/// st.pölten

Mathematical Formulation

At each location (i, j) in the image, compute:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$
filter weights

- This is the result of convolution for one location
- Example for k = 1:
 - u=-1,...,+1; v=-1,...,+1, kernel size = $2*k+1 = 3 (\rightarrow 3x3 \text{ filter})$
 - H = filter kernel, H(-1,-1): top left corner, H(1,1): bottom right corner
 - In first iteration we get: $u=-1, v=-1 \rightarrow H(-1,-1)*F(i-1,j-1)$
 - In second iteration we get: u=-1, v=0 \rightarrow H(-1,0)*F(i-1,j+0)
 - How does the third iteration look like?

Mathematical Formulation

At each location (i, j) in the image, compute:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$
filter weights

In Pseudocode (no handling boundary issues)

```
sum=0
k=1
For u = -1 to +1
For v = -1 to +1
product=H(u+k,v+k)*F(i+u,j+v)
sum=sum+product
```


Mathematical Formulation

At each location (i, j) in the image, compute:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$
filter weights

- This is the result of convolution for one location
- Filtering an image: replace each pixel with a linear combination of its neighbors.
- The filter "kernel" or "mask" H[u,v] is the prescription for the weights in the linear combination.

Applications of Filtering

- Template Matching
- Noise Reduction
- Edge Detection
- Corner Detection
- • •
- And: Representation Learning (Convolutional Neural Networks)

Template Matching

Find the chair in this image

This is a chair

Convolution yields high values where it finds similar patterns!

Motivation: noise reduction

- Even multiple images of the same static scene will not be identical.
- Reason: sensor noise

17

Common types of noise

- Salt and pepper noise: random occurrences of black and white pixels
- Impulse noise: random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Original

Impulse noise

Salt and pepper noise

Gaussian noise

Gaussian noise

$$f(x,y) = \overbrace{\widehat{f}(x,y)}^{\text{Ideal Image}} + \overbrace{\eta(x,y)}^{\text{Noise process}}$$

Gaussian i.i.d. ("white") noise: $\eta(x,y) \sim \mathcal{N}(\mu,\sigma)$

What is impact of the sigma?

19 Fig: M. Hebert

Effect of sigma on Gaussian noise

Effect of sigma on Gaussian noise

Motivation: noise reduction

Even multiple images of the same static scene will not be identical.

How can we remove the Gaussian noise from an image?

First Attempt at a Solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Assumptions:
 - Expect pixels to be like their neighbors
 - Expect noise processes to be independent from pixel to pixel, i.e. in average (over the neighborhood) the noise will cancel itself out

First Attempt at a Solution

- Let's replace each pixel with an average of all the values in its neighborhors
- How does the filter has to look like?

"box filter"

"averaging filter"

- One of the simplest filters
- Why the multiplication with 1/9?

$$G = H \otimes F$$

 Moving average in 2D: compute average in each neighborhood and replace center value

G[x,y]

0	10				

G[x,y]

0	10	20			

G[x,y]

0	10	20	30			

G[x,y]

0	10	20	30	30		

G[x,y]

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Smoothing by averaging

original

filtered

What if the filter size was 5 x 5 instead of 3 x 3?

Gaussian filter

What if we want nearest neighboring pixels to have the most influence on the output?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

This kernel is an approximation of a Gaussian function:

$$h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}$$

Smoothing with a Gaussian

Gaussian filters

- What parameters matter here?
- Standard deviation (sigma) of Gaussian: determines extent of smoothing

Smoothing with a Gaussian

• Parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.

Properties of smoothing filters

- Values positive
- Sum to 1 → constant regions same as input
- Amount of smoothing proportional to mask size
- Remove "high-frequency" components → "low-pass" filter

1	1	1	1
	1	1	1
9	1	1	1

Original

Filtered (no change)

55

`	0	0	0
\mathcal{G}	0	0	1
	0	0	0

_

?

Original

Original

Shifted left by 1 pixel with correlation

57

convolution

58

Original

Blur (with an averaging filter)

?

Original

Source: D. Lowe

Playing with filters

)	0	0	0
	0	2	0
	0	0	0

Original

62

Sharpening filter:
accentuates differences with local average

Sharpening Filter

before after

Effect of Smoothing Filters

5x5

Salt and pepper noise

- Works great for Gaussian noise
- But fails for salt and pepper noise why?

Image Filtering

- Idea: take current pixel value plus values of its neighbors and compute something...
- Simplest case: linear filtering
- Alternative: non-linear filtering
 - Example: median filter (take median of all values in the neighborhood of a pixel

Median Filter

- Note: this filter works different than the filters before!
- It is also a sliding window operation BUT: cannot be computed by correlation / convolution
- The median filter has no weights. It takes the values of the underlying images as inputs:

Median filter

Median filtered

Plots of a row of the image

Python:

scipy.ndimage.filters.median_filter(image, size=(3,3))

67 Source: M. Hebert

Median Filter vs. Average Filter

Median Filter

- Median filter preserves edges it does not smooth over them
- No new pixel values introduced
- Removes spikes: good for salt & pepper noise
- Non-linear filter

Applications of Filtering / Convolution

- Denoising: removing artifacts/noise/distortions in images
- Smoothing, Sharpening
- **Template Matching**
- Detection of basic image structures, such as edges and corners (next time)
- Image Effects, e.g. Hybrid Images...
- Convolutional Neural Networks ©

Finally, let's have some fun with filtering

How to create your own hybrid image?

A hybrid image is...

https://www.youtube.com/watch?v=OlumoQ05gS8

Application: Hybrid Images

Laplacian Filter

Hybrid Image Result

Another Result

Summary

- Challenges of Computer Vision
- How are images generated
- How do we represent images digitally
- Point-wise image operations
 - Arithmetic operations (add, subtract, multiply...)
 - Logical operations (and, or,...)
 - Histograms
- Filtering
 - Convolution and Correlation filtering
 - Smoothing, Sharpening,
 - Median filters

Most important thing to remember: the process of filtering:

- Position filter on image (start top left corner)
- Move filter over image: row-by-row
- At each location: multiply values of filter with the values of the image
- Add all multiplied numbers together

 Optionally: divide sum by a constant (normalization)

 Add result at current location in new image

Roadmap

