Zeitreihenanalyse und Prognose

Zeitreihenanalyse

R Package für die Analyse

```
motor.df <- read.csv("~/Dokumente/R-Alle Data1/motororg.dat", header = TRUE)
head(motor.df)
##
     complaints
## 1
## 2
## 3
             31
## 4
## 5
             18
## 6
             19
Ein Datum Spalte einfügen
motor.df<-motor.df%>%
mutate(Date= seq.Date(from=as.Date("2016-01-01"), by="months",length.out = 48))%>%
  mutate(jahr=as.factor(year(Date)))
motor_tsibble<-as_tsibble(motor.df,key=complaints,index = Date)</pre>
motor_tsibble
## # A tsibble: 48 x 3 [1D]
## # Key:
               complaints [24]
##
      complaints Date
                            jahr
##
          <int> <date>
                            <fct>
## 1
              4 2017-11-01 2017
## 2
              6 2019-04-01 2019
## 3
              9 2019-05-01 2019
## 4
             10 2017-05-01 2017
## 5
             10 2017-10-01 2017
## 6
             10 2018-07-01 2018
## 7
              11 2018-09-01 2018
## 8
             11 2018-10-01 2018
## 9
             12 2016-08-01 2016
## 10
              12 2019-07-01 2019
## # ... with 38 more rows
Farben <- c("#E7B800", "#2E9FDF", "#FC4E07", "red", "green")
p <- ggplot(motor.df, aes(x =jahr, y = complaints))</pre>
bxp <- p + geom_boxplot(aes(color = jahr)) +</pre>
 scale_color_manual(values = Farben)
```

```
scale_color_manual(values = Farben) +
 scale_fill_manual(values = Farben)
bxp
  30 -
                                                              jahr
complaints
00-
                                                                 2016
                                                                 2017
                                                                 2018
                                                                 2019
  10 -
                       2017
                                     2018
                                                  2019
          2016
                              jahr
```

`stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.

dр

Including Plots

Hier wurde ein tserie kreiert

```
ts.df<- ts(motor.df$complaints,start = c(2016,01,01), freq=12)
plot(ts.df,col="blue",xlab="Zeit",ylab="Beschwerde_Anzahl")</pre>
```


Stationarität Prüfung

layout(1:2)
acf(ts.df)
pacf(ts.df)

Series ts.df

Series ts.df

Die Zerlegung der Time Serie in Trend, Saisonalität und Random, dabei kann man die jährliche Saisonalität erkennen und der senkende Trend

ts.decom<-decompose(ts.df)
plot(decompose(ts.df))</pre>

Decomposition of additive time series

Wir haben eine deutliche 6 Monatige Saisonalität

plot(ts.decom\$figure,type="1",ylab="Seasonality index")

Die jährliche Saisonalität ist ganz klar zu erkennen, während die halb jährliche Saisonalität ist nicht ganz deutlich zu erkennen.

ggseasonplot(ts.df)+ggtitle("Saisonalität-Darstellung")

Saisonalität-Darstellung


```
## ARIMA(0,1,2)(1,0,0)[12]
## Box Cox transformation: lambda= TRUE
##
## Coefficients:
##
                     ma2
            ma1
                             sar1
##
         -0.6564 -0.2707
                          0.3509
## s.e.
         0.1528
                  0.1546 0.1578
##
## sigma^2 estimated as 46.54: log likelihood=-156.89
## AIC=321.78 AICc=322.74 BIC=329.18
```

Die Resudien der Zeitreihe haben ein p
_Value von 3%,sodass die Nullhypothese beibehalten kann. Das Diagramm bestätigt, dass die Residuen weiß Rausch sind. Schließlich kann man mit der Prognose Anfangen

checkresiduals(df.arima)

Forecasts from ARIMA(0,1,2)(1,0,0)[12]

df.arima%>%forecast(h=12)

##			Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
##	Jan	2020		18.54142	9.798248	27.28459	5.1698913	31.91295
##	Feb	2020		18.57151	9.326461	27.81657	4.4324259	32.71060
##	Mar	2020		18.92243	9.655432	28.18942	4.7497820	33.09507
##	Apr	2020		13.65875	4.369865	22.94763	-0.5473721	27.86487
	_	2020		14.71148	5.400763	24.02220	0.4719656	28.95100
##	Jun	2020		21.72972	12.397213	31.06223	7.4568827	36.00256
##	Jul	2020		15.76422	6.409976	25.11846	1.4581394	30.07030
##	Aug	2020		18.22060	8.844674	27.59653	3.8813573	32.55985
##	Sep	2020		16.46604	7.068479	25.86361	2.0937097	30.83838
##	Oct	2020		18.22060	8.801453	27.63975	3.8152564	32.62595
##	Nov	2020		17.16787	7.727181	26.60855	2.7295839	31.60615
##	Dec	2020		19.62425	10.162076	29.08642	5.1531048	34.09539