OPTIMIZATIONS USING LINEAR PROGRAMMING

Sai Krishna Kanneti Yashas JS Shamraju

Find an schedule for the satellite that maximizes the number of photographs taken, subject to the on-board recording capacity

Maximize Returns
Subject to
the investment risk is minimized

Optimization lies at the heart of machine learning:

- Minimize the loss function subject to overfitting of the model and under fitting of the model.
- Find the parameters that minimize loss function

Similar wide range of optimization problems can be seen in:

- Supply Chain Industry
- Transportation Industry(Uber)
- Gambling

Types of Optimization:

- I. Convex Optimization
- II. Non Convex Optimization

Examples of convex optimization in ML(Global minimum is guaranteed)

Linear Regression/ Ridge regression, Lasso, SVM

Examples of non-convex optimization in ML:

- neural networks
- Gaussians mixtures

Support Vector Machines:

• Learning the SVM can be formulated as an optimization:

$$\max_{\mathbf{w}} \frac{2}{||\mathbf{w}||} \text{ subject to } \mathbf{w}^{\top} \mathbf{x}_i + b \overset{\geq}{\leq} 1 \quad \text{ if } y_i = +1 \\ \leq -1 \quad \text{if } y_i = -1 \quad \text{for } i = 1 \dots N$$

Or equivalently

$$\min_{\mathbf{w}} ||\mathbf{w}||^2$$
 subject to $y_i \left(\mathbf{w}^{\top} \mathbf{x}_i + b \right) \geq 1$ for $i = 1 \dots N$

Addressing optimization problems:

- linear, quadratic and convex programming methods can be used to solve convex problems.
- Inear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints.

$$egin{array}{ll} {
m maximize} & {f c}^{
m T}{f x} \ {
m subject\ to} & A{f x} \leq {f b} \ {
m and} & {f x} \geq {f 0} \end{array}$$

Linear Constraints

Fantasy Football using Linear Programming:

Build an ideal Fantasy Football team out of 465 players.

Objective:

- Maximize the score of the team
- Subject to:
 - **>** Budget<=20 M\$
 - > 1 keeper,
 - > 5 defenders,
 - > 5 midfielders,
 - > 3 scorers.

Data set: comunio.de, German fantasy football site

	Name	Position	Score	MarketValue	buy
1	Arnautovic	3	68	3980000	0
2	Arnold	2	18	2830000	0
3	Arslan	2	0	380000	0
4	Aubameyang	3	0	13200000	0
5	Audel	2	0	200000	0
6	Avdic	3	0	160000	0
7	Avevor	1	0	170000	0
8	Ayhan	1	0	480000	0
9	B. Röcker	1	0	220000	0
10	Badelj	2	49	2260000	0
11	Badstuber	1	56	1550000	0
12	Baier	2	72	2260000	1
13	Bajner	3	0	320000	0

ggplot of market value vs score of players:

Solving optimization using Ipsolve package in R

```
f.obj <- football_data\Score ###objective max team score
|f.con <- t(football_data$MarketValue) ### constraints max MV <= Budget
player <- rep(1, nrow(football_data)) ## constraints max number of players!</pre>
f.con <- rbind(f.con, player)
## constrain that per postion can only be a certain number of players be set up. (e.g. just one keeper)
## define matrix - as a one hot (dummy coding what position the player holds)
A <- as.data.frame(model.matrix(MarketValue ~ Position -1, football_data) )
f.con <- rbind(f.con, t(as.matrix(A)))
f.dir <- c("<=", "<=", "=", "<=", "<=", "<=")
f.rhs \leftarrow c(20000000, 13, 1, 5, 5, 3) ## right hand side .. not more than Budget, Players, and players per
### solve the problem
solved<- lp("max", f.obj, f.con, f.dir, f.rhs, all.bin=TRUE) ## just binary variables!
```

Final team:

- ❖ Team Market value: 19800000
- Team total score: 784
- Number of players bought: 13
- ❖ Players: Badstuber, Baier, Balitsch, Ede,Gomez, Hasebe, klavan, krmas, piszczek,R. SchAfer, Soto, Svensson, Werner

```
> sum(df[df$buy == 1,]$MarketValue) ## what is the Budget
[1] 19800000
> sum(df[df$buy == 1,]$Score) ## what is the Score
[1] 784
> sum(df[df$buy == 1,]$buy) ## number of players bought
[1] 13
> paste(df[df$buy == 1,]$Name, collapse=", ")
[1] "Badstuber, Baier, Balitsch, Ede, Gomez, Hasebe, Klavan, Krmas, Piszczek, R. Schä¤fer, Soto, Svensson, Werner"
```

Uber Network Optimization:

Transcript profiling data→ sparse linear genetic network

3. Bayesian Network Structure Learning

linear programming: estimate the structure of network from: transcript profiling data

maximize Score(G) s.t. $G \in DAGS(V)$

V:-nodes corresponding to the variables X1, . . . , Xn DAGS(V) is the space of DAGs over V.

A scoring function is a function whose outcome is a measure related to the probability of the substructure (sv \rightarrow v) to be in the network, according to the dataset D.

