Теоретико-модельные методы извлечения и порождения знаний для построения онтологических моделей

Д.Е.Пальчунов

1

План

- Правила соответствия между уровнями представления понятий
- Поиск оптимальных тарифов и услуг мобильной связи
- Онтологическая модель мобильной связи
- Теоретико-модельное описание абонентов сотовой связи
- Поиск ассоциативных правил

1

План

- Правила соответствия между уровнями представления понятий
- Поиск оптимальных тарифов и услуг мобильной связи
- Онтологическая модель мобильной связи
- Теоретико-модельное описание абонентов сотовой связи
- Поиск ассоциативных правил

M

Уровни представления знаний

- Знания верхнего уровня общности:
 - □ Состояние здоровья, болезни, синдромы, ...
 - Экономические прогнозы, ожидание стабильности или нестабильности, валютных кризисов и т.д.
- Знания нижнего уровня общности:
 - □ Симптомы, результаты анализов, ...
 - Конкретные данные о курсах валют, ценах на нефть, ...

Цены на нефть

Нефть и драгметаллы

v

Уровни представления знаний

- Представление и извлечение знаний различной степени общности
- Использование понятий различной степени общности:
 - □ Эмпирические понятия
 - □ Теоретические понятия
- Пополнение сигнатуры «верхнеуровневыми» понятиями

Уровни представления знаний

Взаимосвязь уровней общности понятий

- Определение понятий одного уровня через понятия другого уровня
- Принцип редукции vs. принцип несводимости понятий верхнего уровня к понятиям нижних уровней:
 - несводимость биологического уровня к физическому
 - □ несводимость сознания к реакциям нейронов

Эмпирические и теоретические термины

- Р.Карнап: «Философские основания физики»
- Эмпирические термины понятия, которые являются непосредственно наблюдаемыми: цвет, температура, давление, объем
- Смысл теоретических терминов является абстрактным и гипотетическим: энтропия, кинетическая энергия, масса электрона

Эмпирические и теоретические термины

- Свойство быть эмпирическим или теоретическим является относительным: один набор терминов является эмпирическим относительно другого; в этом случае второй набор терминов будет теоретическим относительно первого – понятия и метапонятия
- Теоретические термины нужны для того, чтобы с их помощью формулировать теоретические законы, из которых, в свою очередь, можно получать эмпирические следствия

Эмпирические и теоретические понятия

- На языке эмпирических понятий описываются:
 - □ Результаты анализов и симптомы больного
 - □ Тарифные планы, услуги сотового оператора
- На языке теоретических понятий описываются:
 - □ Болезни и синдромы
 - □ Потребности абонента мобильной связи
- Необходимо использовать «правила соответствия» между эмпирическими и теоретическими понятиями

Правила соответствия

- Р.Карнап: невозможно определить теоретические понятия через эмпирические
- Для установления связи между эмпирическими и теоретическими понятиями вводятся правила соответствия
- Правила соответствия не являются определениями в каком-либо строгом смысле
- Цель правил соответствия «построить мостик» между теоретическими и эмпирическими понятиями так, чтобы утверждения, записанные на одном языке, можно было транслировать на другой язык

Способы введения правил соответствия

- Один способ использование импликаций между формулами разных сигнатур σ_1 и σ_2 : $(\varphi \to \psi)$, причем $\varphi \in S(\sigma_1)$, а $\psi \in S(\sigma_2)$.
- Другой способ введения правил соответствия между понятиями – использование онтологической проекции.

м

Онтологическая проекция

- Используется для установления связей между низкоуровневыми и высокоуровневыми понятиями
- Например, для установления связей между понятиями, описывающими свойства сервисов и услуг мобильной связи, и понятиями, описывающими цели, потребности и желания абонентов мобильной связи.

r,

План

- Правила соответствия между уровнями представления понятий
- Поиск оптимальных тарифов и услуг мобильной связи
- Онтологическая модель мобильной связи
- Теоретико-модельное описание абонентов сотовой связи
- Поиск ассоциативных правил

Проблемы

- Мобильные операторы разрабатывают разнообразные тарифные планы и сервисы для того, чтобы удовлетворить потребности клиентов
- Однако для абонента сотовой связи часто бывает сложно найти необходимую ему актуальную информацию
- Мобильные операторы рассылают SMSсообщения о новых тарифах и услугах, но, вопервых, это дорого и, во-вторых, всё равно не решает проблемы

Цели

- Разработка методов для выяснения, какие тарифные планы и услуги сотового оператора являются наилучшими для данного абонента
- Такое знание позволит мобильному оператору делать действительно полезные рекомендации абонентам

M

План

- Правила соответствия между уровнями представления понятий
- Поиск оптимальных тарифов и услуг мобильной связи
- Онтологическая модель мобильной связи
- Теоретико-модельное описание абонентов сотовой связи
- Поиск ассоциативных правил

Четырехуровневая модель представления знаний

Онтология

Общие знания

Прецеденты

Оценочные знания

Четырёхуровневая модель представления знаний

- Описание структуры и смысла ключевых понятий, их определения
- Универсальные (общие) теоретические знания
- Частные, эмпирические знания (прецеденты)
- Оценочные, вероятностные знания

Четырехуровневая модель представления знаний

Онтология

Общие знания

Прецеденты

Оценочные знания

M

Онтологическая модель

- (1) Онтология предметной области
- (2) Общие знания и закономерности предметной области, предложения, которые истинны для любого прецедента
- (3) Множество прецедентов предметной области, которые могут быть рассмотрены в настоящий момент времени
- (4) Вероятностные и оценочные утверждения и закономерности, предложения, имеющие нечёткое значение истинности

Онтологическая модель

Онтология Общие знания Прецеденты Оценочные знания Онтологическая модель

Онтологическая модель

Предметная область мобильной связи

- Онтологическая модель предметной области мобильной связи разрабатывается на основе интеграции данных, извлечённых из деперсонализированных профилей абонентов
- Сигнатура онтологической модели состоит из одноместных предикатов, описывающих как тарифные планы и сервисы, так и поведение абонентов
- К сигнатуре онтологической модели добавляются новые предикаты, описывающие интересы и потребности пользователей

Онтология предметной области

- Сигнатура σ предметной области "Сети мобильной связи" состоит из двух видов понятий, представленных одноместными предикатами:
 - □ σ_ℙ параметры, описывающие характеристики абонента
 - $\sigma_{\mathbb{Q}}$ параметры, описывающие тарифные планы и услуги.

м

Характеристики абонентов

Более115 параметров:

- 1) Личные параметры абонента: пол, возраст и пр.
- 2) Параметры, описывающие совершенные звонки
- 3) Параметры, описывающие использование WAP
- 4) Параметры, описывающие использование SMS
- 5) Параметры, описывающие использование ММS
- 6) Параметры, описывающие использование LBS
- 7) Список услуг, подключенных абонентом: «Конференц-звонки», «Видео-звонки», «Определитель номера», «Оповещение о абоненте в сети» и пр.
- 8) Тарифные планы

$\sigma_{\mathbb{P}}$ и $\sigma_{\mathbb{O}}$

- Сигнатура σ_ℙ «Характеристики абонента» делится на три подкласса :
 - $\square \sigma_{\mathbb{P}_1}$ «трафики»,
 - $\square \sigma_{\mathbb{P}_2}$ «начисления»,
 - $\square \sigma_{\mathbb{P}_3}$ «тарифный план».
- lacktriangle Сигнатура $\sigma_{\mathbb{Q}}$ «Тарифные планы и услуги»:
 - $\square \sigma_{\mathbb{Q}_1}$ «Тарифные планы»,
 - $\square \sigma_{\mathbb{Q}_2}$ «Услуги, снижающие расходы по тарифным планам»,
 - $\Box \sigma_{\mathbb{Q}_3}$ «Услуги, не влияющие на тарифный план»

Сигнатура предметной области

$\sigma_{\mathbb{P}}$									$\sigma_{\mathbb{Q}}$											
$\sigma_{\mathbb{P}_1}$		$\sigma_{\mathbb{P}_2}$		•••		$\sigma_{\mathbb{Q}_1}$		L	$\sigma_{\mathbb{Q}_2}$											

Онтологические аксиомы

$$Ax_a$$

Для того, чтобы описать онтологию предметной области мы определяем множество онтологических аксиом

$$\mathcal{A}x_a \subseteq F_1(\sigma_{\mathbb{P}} \cup \sigma_{\mathbb{Q}}).$$

Аксиомы частное-общее:

$$(Q_{ijk}^n(x) \to Q_{ij}^n(x))$$
 и $(Q_{ij}^n(x) \to Q_i(x))$

Аксиомы полноты:

$$\vee \{P(x) \mid P \in \sigma_{\mathbb{P}_{ijk}}\}$$
 и $\vee \{Q(x) \mid Q \in \sigma_{\mathbb{Q}_1}\}$

9

Онтологические аксиомы Ax_a

Аксиомы включения

$$(Q_{ijk}^{n_1}(x) \to Q_{ijk}^{n_2}(x))$$
, где $n_2 < n_1$.

■ Пример: если тарифный план *t* содержит "*не менее 500 бесплатных SMS*" то он содержит "*не менее 300 бесплатных SMS*".

План

- Правила соответствия между уровнями представления понятий
- Поиск оптимальных тарифов и услуг мобильной связи
- Онтологическая модель мобильной связи
- Теоретико-модельное описание абонентов сотовой связи
- Поиск ассоциативных правил

М

Алгебраическая система и сигнатура

Алгебраическая система (модель)

 $\mathfrak{A} = \langle A; P_1, ..., P_n \rangle$, с основным множеством $|\mathfrak{A}| = A$, предикатами $P_1, ..., P_n$, определёнными на множестве A и константами $c_1, ..., c_k$.

Кортеж $\sigma = \langle P_1, ..., P_n, c_1, ..., c_k \rangle$ — это сигнатура модели \mathfrak{A} .

Обозначения

- $FV(\varphi)$ множество свободных переменных формулы φ .
- $F(\sigma) \leftrightharpoons \{ \varphi \mid \varphi \phi \text{ ормула сигнатуры } \sigma \}$,
- $F_1(\sigma) \leftrightharpoons \{ \varphi \mid \varphi \in F(\sigma) \text{ и } FV(\varphi) = \{x\} \},$
- $S(\sigma) \leftrightharpoons$ $\{\varphi \mid \varphi$ предложение сигнатуры σ : $FV(\varphi) = \emptyset\}$
- $K(\sigma) \leftrightharpoons \{ \mathfrak{A} \mid \mathfrak{A} \text{модель сигнатуры } \sigma \}.$

м

Теоретико-модельное описание абонентов сотовой связи

Рассмотрим множество $A = \{e_1, ..., e_n\}$ абонентов мобильной сети и сигнатуру $\sigma = \sigma_{\mathbb{P}} \cup \sigma_{\mathbb{Q}}$, где $\sigma_{\mathbb{P}}$ — это множество характеристик абонента и $\sigma_{\mathbb{Q}}$ — множество характеристик тарифных планов, сервисов и опций.

Для каждого абонента e_i определим одноэлементную модель $e_i = \langle \{e_i\}, \sigma \rangle$, рассматриваемую как прецедент предметной области M мобильной связи.

w

Прецедентная модель

- Прецедентная модель $\mathfrak{A} = \langle A, \sigma \rangle$ задаётся множеством прецедентов $\{e_1, ..., e_n\}$: $|\mathfrak{A}| = A = \{e_1, ..., e_n\}$.
- На модели \mathfrak{A} для каждого сигнатурного предиката $P \in \sigma$ и произвольного элемента $e \in A$ выполнено $\mathfrak{A} \models P(e)$ тогда и только тогда, когда предикат P(x) является истинным на модели (прецеденте) e (т.е., когда $e \models \forall x P(x)$).

Прецедентная модель

$K_{\mathfrak{A}}$		σ	P			σ	\mathbb{Q}	
N	P_1	P_2	P_3		Q_1	Q_2	Q_3	
e_1	+		+				+	
e_2		+		+		+		
e_3			+					+
e_4		+		+			+	
			+		+			+
e_n	+						+	

Прецедентная модель

- Прецедентная модель строится на основе имеющейся информации о поведении абонентов мобильной связи
- Мы рассматриваем прецедентную модель как относительно аксиоматизируемый класс одноэлементных моделей; на основе прецедентной модели мы определяем формальный контекст

r,

Формальное определение онтологической модели

Определение. Онтологической моделью предметной области называется кортеж $(\mathfrak{A}, T^a, T^s, T^f)$, где \mathfrak{A} — прецедентная модель, T^a — аналитическая теория, T^s — теория предметной области и T^f — нечеткая теория модели \mathfrak{A} .

M

Формальное определение онтологической модели

Аналитическая теория предметной области T^a задаётся множеством предложений $\mathcal{A}x_a$ – аксиомами онтологии.

Теория предметной области T^s задаётся множеством предложений $\mathcal{A}x_S$ — аксиомами предметной области.

Онтологическая модель

$$\mathcal{OM} = \langle \mathfrak{A}, T^a, T^s, T^f \rangle,$$

- T^a аналитическая теория,
- T^{s} теория предметной области,
- T^f нечеткая теория.

План

- Правила соответствия между уровнями представления понятий
- Поиск оптимальных тарифов и услуг мобильной связи
- Онтологическая модель мобильной связи
- Теоретико-модельное описание абонентов сотовой связи
- Поиск ассоциативных правил

Формальные контексты

- Для того, чтобы получить содержательные рекомендации абонентам по выбору тарифных планов и услуг, мы рассматриваем формальные контексты: объектами являются модели пользователей, а атрибутами – описывающие их поведение формулы логики предикатов первого порядка
- Исследуются решётки понятий и ассоциативные правила таких формальных контекстов
- Рассматриваются расширения множеств атрибутов формальных контекстов

Поиск ассоциативных правил

- По прецедентной модели строится формальный контекст; он расширяется за счёт обогащения сигнатуры
- В расширенном формальном контексте ищутся ассоциативные правила с высокой достоверностью и поддержкой
- Данные методы позволяют находить ассоциативные правила, которые можно использовать для порождения рекомендаций

ĸ,

Класс прецедентов

Обозначим через $K_{\mathfrak{A}} = \{e_1, ..., e_n\}$ класс прецедентов (одноэлементных моделей), порождённых прецедентной моделью \mathfrak{A} , т.е., множеством абонентов $\{e_1, ..., e_n\}$.

м

Формальный контекст, порождённый прецедентной моделью

- Рассматриваются различные множества формул $\Delta \subseteq F_1(\sigma)$.
- В частности, рассматривается множество $\Delta_{\sigma} = \{P(x) | P \in \sigma\} \subseteq F_1(\sigma).$
- Через $C_{\mathfrak{A}}^{\Delta} = (K_{\mathfrak{A}}, \Delta, \vDash)$ обозначим формальный контекст с множеством объектов $K_{\mathfrak{A}}$, множеством атрибутов Δ и отношением инцидентности \vDash .
- Обозначим $C_{\mathfrak{A}}^{\sigma} = (K_{\mathfrak{A}}, \Delta_{\sigma}, \vDash).$

M

Добавление конъюнкций

Предложение. а) Множества ассоциативных правил формальных контекстов (K_0, Δ, \vDash) и $(K_0, \Delta \cup \{\varphi_1 \& ... \& \varphi_n\}, \vDash)$ совпадают по модулю замены формул $(\varphi_1 \& ... \& \varphi_n)$ множествами $\{\varphi_1, ..., \varphi_n\}$.

б) Множества импликаций формальных контекстов (K_0, Δ, \vDash) и $(K_0, \Delta \cup \{\varphi_1 \& ... \& \varphi_n\}, \vDash)$ совпадают по модулю замены формул $(\varphi_1 \& ... \& \varphi_n)$ множествами $\{\varphi_1, ..., \varphi_n\}$.

M

Добавление конъюнкций

Предложение. Если $\Delta, \Delta_1 \subseteq F(\sigma_0), \Delta \subseteq \Delta_1$ и множество $\Delta_1 \setminus \Delta$ состоит из некоторых конъюнкций формул из 🛕 то множества импликаций, а также множества ассоциативных правил формальных контекстов (K_0, Δ, \vDash) и (K_0, Δ_1, \vDash) совпадают по модулю замены конъюнкций формул из $\Delta_1 \setminus \Delta$ соответствующими множествами формул.

.

Добавление дизъюнкций

Предложение. В общем случае если добавляются дизъюнкции

$$(P_1(x) \lor \cdots \lor P_k(x))$$

к множеству формул Δ_{σ} , где $P_1, ..., P_k \in \sigma$, то множество ассоциативных правил формального контекста $(K_{\mathfrak{A}}, \Delta_{\sigma}, \vDash)$ изменится.

M

Добавление дизъюнкций

- Обозначим $\Delta_{\sigma}^{\vee} = \Delta_{\sigma} \cup \{(P_1(x) \vee \cdots \vee P_k(x)), | P_i \in \sigma\}.$
- Мы добавляем дизъюнкции сигнатурных предикатов к множеству Δ_σ для улучшения качества извлекаемых ассоциативных правил
- Таким образом мы рассматриваем множество формул Δ_{σ}^{\vee} вместо множества формул Δ_{σ} и, соответственно, формальный контекст $(K_{\mathfrak{A}}, \Delta_{\sigma}^{\vee}, \models)$ вместо формального контекста $(K_{\mathfrak{A}}, \Delta_{\sigma}, \models)$.

Добавление дизъюнкций

$K_{\mathfrak{A}}$	σ	P		σ	Q	
11 W	P_1		Q_1	Q_2	Q_3	
e_1	+				+	
•••		+		+		
e_n						+

K_{\sim}	σ	P	σ	Q	$\Delta^{ee}_{(\sigma_{\mathbb{P}} \cup$	$\sigma_{\mathbb{Q}})$
$K_{\mathfrak{A}}$	$P_1 \dots$		Q_1		$P_1 \vee P_2$:
e_1	+				+	
		+			+	+
e_n				+		

w

Предложение. Решётка формальных понятий $\mathfrak{B}(K_{\mathfrak{A}}, \Delta_{\sigma}^{\vee}, \vDash)$ дистрибутивна.

Замечание. В общем случае решётка формальных понятий the $\mathfrak{B}(K_{\mathfrak{A}}, \Delta_{\sigma}, \vDash)$ не дистрибутивна. А именно, найдётся класс $K_{\mathfrak{A}}$ такой, что решётка $\mathfrak{B}(K_{\mathfrak{A}}, \Delta_{\sigma}, \vDash)$ не является дистрибутивной.

Предложение. 1) Решётка формальных понятий $\mathfrak{B}(K_{\mathfrak{A}}, F_1(\sigma), \models)$ дистрибутивна.

2) Решётка формальных понятий $\mathfrak{B}(K_{\mathfrak{A}}, F(\sigma), \models)$ дистрибутивна.

Данные об абонентах мобильной сети

- Ассоциативные правила ищутся в формальном контексте $(K_{\mathfrak{A}}, \Delta_{(\sigma_{\mathbb{P}} \cup \sigma_{\mathbb{Q}})}^{\vee}, \vDash)$.
- Более 10 миллионов абонентов
- Более 1200 различных тарифных планов
- Более 90 сервисов
- Таким образом, более 10 миллионов объектов и около 1400 атрибутов

Формальный контекст

$$(K_{\mathfrak{A}}, \Delta^{\vee}_{(\sigma_{\mathbb{P}} \cup \sigma_{\mathbb{Q}})}, \vDash)$$

$K_{\mathfrak{A}}$		σ	\mathbb{P}			σ	Q				Ĺ	$\Delta^{\vee}_{(\sigma}$	$T_{\mathbb{P}}\cup\sigma_{\mathbb{Q}})$			
11:21	P_1	P_2	P_3		Q_1	Q_2	Q_3		$P_1 \vee P_2$		$P_1 \vee Q_1$		$P_k \vee \cdots P_l \vee Q_m \vee \cdots \vee Q_s$			
e_1	+		+				+		+		+		+	+		
e_2		+		+		+			+	+		+	+			
e_3			+					+						+		
e_4		+		+			+		+			+				
			+		+			+	+ + + +							
e_n	+						+		+ + +							

Расширение сигнатуры

- Для повышения качества ассоциативных правил мы рассматриваем формальный контекст, расширенный дизъюнкциями $(K_{\mathfrak{A}}, \Delta_{\sigma}^{\vee}, \models)$.
- В этом формальном контексте мы можем найти ассоциативные правила с высокой достоверностью; однако, не все такие правила будут осмысленными

м

Расширение $\sigma_{\mathbb{M}}$ сигнатуры $\sigma_{\mathbb{P}} \cup \sigma_{\mathbb{Q}}$

- Сигнатура _{¬R} высокоуровневые характеристики тарифных планов и услуг
 - □ Например: «Позволяет смотреть онлайн фильмы в HD-качестве»
- Понятия сигнатуры $\sigma_{\mathbb{I}}$ описывают интересы пользователя
 - □ Например: «Нужна низкая стоимость звонков»,
 «Не интересует стоимость звонков в роуминге»
- $\bullet \quad \boldsymbol{\sigma}_{\mathbb{M}} = (\boldsymbol{\sigma}_{\mathbb{P}} \cup \boldsymbol{\sigma}_{\mathbb{Q}}) \cup (\boldsymbol{\sigma}_{\mathbb{I}} \cup \boldsymbol{\sigma}_{\mathbb{R}})$

Метаонтология

Онтология

Сигнатура $\sigma_{\mathbb{M}}$

	$\sigma_{\mathbb{P}}$			$\sigma_{\mathbb{Q}}$							
$\sigma_{\mathbb{P}_1}$	$\sigma_{\mathbb{P}_2}$		$\sigma_{\mathbb{Q}_1}$	$\sigma_{\mathbb{Q}_2}$							
						σ_{π}					
					$\sigma_{\mathbb{I}}$						
	$\sigma_{\mathbb{R}}$										

$K_{\mathfrak{A}}$		σ	P			σ	Q			σ	IR			0	F _{II}	
11 थ	P_1	$P_1 \mid P_2 \mid P_3 \mid \dots$			Q_1	$Q_1 \mid Q_2 \mid Q_3 \mid$			R_1	R_2	R_3		I_1	I_2	I_3	
e_1	+	+ + +					+					+	+			+
	+	+		+		+			+		+				+	
e_n			+					+	+	+			+		+	

Формальный контекст в расширенной сигнатуре

K		σ	P		$\sigma_{\mathbb{Q}}$			$\sigma_{\mathbb{R}}$				$\sigma_{\mathbb{I}}$				
$K_{\mathfrak{A}}$	P_1	P_2	P_3		Q_1	Q_2	Q_3		R_1	R_2	R_3		I_1	I_2	I_3	
e_1	+		+				+					+	+			+
e_2	+	+		+		+			+		+				+	
e_3			+					+	+	+			+		+	
e_4		+		+			+			+		+		+		+
			+		+			+		+	+					
e_n	+						+							+	+	

Онтология предметной области М

 Понятия из (σ_ℝ ∪ σ_I) используются для автоматического порождения осмысленных формул – атрибутов формального контекста для поиска ассоциативных правил

■ Пара $\langle \sigma_{\text{M}}, \mathcal{A}x \rangle$ образует онтологию предметной области **M**.

Расширенный формальный контекст

$K_{\mathfrak{A}}$	$\sigma_{\mathbb{P}}$ $\sigma_{\mathbb{Q}}$			σ	IR			0	I		$\Delta^{ee}_{(\sigma_{\mathbb{P}}\cup\sigma_{\mathbb{Q}})}$									
11 था	P_1	P_2	P_3		Q_1	Q_2	Q_3		R_1	R_2	R_3		I_1	I_2	I_3					
e_1	+		+				+					+	+			+	+		+	
e_2	+	+		+		+			+		+				+		+	+		+
e_3			+					+	+	+			+		+					
e_4		+		+			+			+		+		+		+	+			+
			+		+			+		+	+							+	+	
e_n	+						+							+	+		+		+	+

Суженый формальный контекст

$K_{\mathfrak{A}}$		σ	P		$\sigma_{\mathbb{Q}}$				σ	IR			0	Ī		
M	P_1	P_2	P_3		Q_1	Q_2	Q_3		R_1	R_2	R_3		I_1	I_2	I_3	
e_1	+		+				+					+	+			+
e_2	+	+		+		+			+		+				+	
e_3			+					+	+	+			+		+	
e_4		+		+			+			+		+		+		+
			+		+			+		+	+					
e_n	+						+							+	+	

Онтологическая проекция

Определение. Рассмотрим онтологическую модель $\langle \mathfrak{A}, T^a, T^S, T^f \rangle$, пусть $Q \in \sigma_{\mathbb{Q}}$. Обозначим

$$S_Q = \{ \varphi \in F_1(\sigma_{\mathbb{R}}) \mid T^a \vdash (Q(\mathbf{x}) \rightarrow \varphi(\mathbf{x})) \}.$$

Онтологической проекцией предиката Q на сигнатуру $\sigma_{\mathbb{R}}$ назовем множество формул

$$S_Q^{\sigma_{\mathbb{R}}} = \{ P(\mathbf{x}) \mid P \in \sigma_{\mathbb{R}} \text{ и } P(\mathbf{x}) \in S_Q \}$$

или формулу

$$\varphi_Q^{\sigma_{\mathbb{R}}}(\boldsymbol{x}) = \&\{P(\boldsymbol{x}) \mid P \in \sigma_{\mathbb{R}} \text{ и } P(\boldsymbol{x}) \in S_Q\}.$$

$K_{\mathfrak{A}}$	σ	P	σ	\mathbb{Q}	
11 _U	P_1	•••	Q_1	•••	
e_1	+				
:		+			
e_n				+	

Kor	σ	\mathbb{P}	σ	\mathbb{Q}	$\Delta^{ee}_{(\sigma_{\mathbb{P}}\cup \sigma_{\mathbb{P}})}$	$\sigma_{\mathbb{Q}})$
$K_{\mathfrak{A}}$	P_1				$P_1 \vee P_2$:
e_1	+				+	
		+			+	+
e_n				+		

$K_{\mathfrak{A}}$	σ	\mathbb{P}	σ	\mathbb{Q}	σ	\mathbb{R}	O	Ī
N	P_1	P_1			R_1		I_1	
e_1	+					+	+	+
	+	+			+			
e_n				+	+		+	

$K_{\mathfrak{A}}$	$\sigma_{\mathbb{P}}$		$\sigma_{\mathbb{Q}}$		$\sigma_{\mathbb{R}}$		$\sigma_{\mathbb{I}}$		$igg \Delta_{\left(\sigma_{\mathbb{P}}\cup\sigma_{\mathbb{Q}} ight)}^{ee}$	
	P_1		Q_1		R_1		I_1		$P_1 \vee P_2$	
e_1	+					+	+	+	+	
•••	+	+			+				+	+
e_n				+	+		+			

Порождение дизъюнкций

Спасибо за внимание!

