Analyse des biais dans les études observationnelles avec episensr

Denis Haine

21 janvier 2016

Causalité

- Pas de perdu de vue
- Observance totale
- Maintien de l'aveugle

Causalité et contrefactualité

Sources des biais

Erreur aléatoire

Erreur aléatoire et taille échantillon

Erreur systématique

Erreur systématique

- Facteurs de confusion
- Biais de sélection
- Biais d'information (misclassification)
- Réduire l'erreur systématique:
 - modèle d'étude
 - analyse
 - ajustement post-hoc

Alors que faisons-nous?

- On analyse nos données en déclarant que:
 - pas de variable confusionnelle non mesurée
 - la sélection est aléatoire, comme les valeurs manquantes
 - pas d'erreur de mesure
- Puis peut-être que les suppositions faites ne sont pas respectées et blah blah ce qui permet d'ajouter des paragraphes à la discussion de l'article

Que pourrions-nous faire?

- Ignorer les biais en espérant qu'ils s'annulent
- Faire remarquer qu'il y a peut-être des biais dans notre étude
- Discuter qualitativement des effets de ces biais
- Analyser quantitativement l'effet de ces biais
 - Jurek et al. (2006) Eur J Epidemiol

Mettons la table

	Exposition à X	Non-exposition	Total
Cas	a_1	a ₀	m_1
Non-cas	b_1	b_0	m ₀

Cas-contrôle OR Cohorte RR

Erreur de classement de l'exposition

Sensibilité (Se): probabilité que l'exposé soit réellement classé comme exposé

Spécificité (Sp): probabilité que le non-exposé soit réellement classé comme tel

• $RR_c = RR_0/K$ où K est fonction de Se et Sp

Biais de sélection

• $RR_c = RR_0/K$ où K représente les probabilités de sélectionner des cas et non-cas parmi les exposés et non-exposés

Biais dû à une variable de confusion non mesurée (ou non contrôlée)

- $RR_c = RR_0/K$ où K est fonction de
 - la prévalence du facteur de confusion parmi les exposés
 - la prévalence du facteur de confusion parmi les non-exposés
 - le risque relatif entre le facteur de confusion et l'outcome

Info

```
https:
  //cran.r-project.org/web/packages/episensr/index.html
```

https://github.com/dhaine/episensr

```
install.packages('episensr')
devtools::install_github('dhaine/episensr', ref = "develop")
```