1.7. Electric Fields between Conducting Materials

1.7.1. Electrostatic Induction

Classification of materials according to their electric conductivity

Electric conductor (without external electric field)

- * Large number of mobile Charge Carnins $10^{21} \cdots 10^{23} \frac{1}{\text{cm}^3}$
- * no external field: if fluctuation of mobile

 negtive charges occur (e.g. by thermal motion)

 => they are immediately attracted by positive charge
- * negative Charge always Screens / Cancels out

 the positive Charge (= fixed background charge)

 \Rightarrow in total space charge density $P(\bar{r}) = 0$ (positive charge = negative charge)

div $E\bar{E} = 0$ - grad $\phi = 0 \Rightarrow \phi = Constant$; Potential on a Conductor is

Nielectric material

Electric conductor with external electric field

Dielectric materials (insulators, see 1.5)

+

- * Sielectric material 1s inside

 an \vec{E} field

 Upolar form \Rightarrow Polarization P \vec{E} in side 1s not zero $\vec{E} = \frac{1}{5.5}$ \vec{E}
- * inside Conducting material, highly mobile

 negative charges are present
- * E-field lines end at the Conductor

 Surface and internal field is Compensated/Shielded

 == E; = 0

parallel components of E would vanish, because

G 1.63)

(i) Consider:

- Two electric conductors L1 and L2
- Charge located on L1: Q1 Charge located on L2: Q2
- Electric field inside conductors: $\vec{E} = \vec{E}_2 = 0$

Surfaces of L1,L2 are equipotential surfaces

$$\phi_{L_1} = \phi_1 = \text{Const.}$$
 $\phi_{L_2} = \phi_2 = \text{Const.}$

• Calculated voltage between L1 und L2 and the charge Q, which is stored on the conductors:

$$U = \int \vec{E} d\vec{r} = U_{12}$$

· Define Capacitance of a Configuration of Conducting electrodes

= Capability to store Charge Q per Voltage U12 Capaci fance

between electrodes

Consideration on which parameters (depends:

=> Capacitance C is a function of the geometry and material only!

C = f(geometry, E)

(ii) Example 1: plate capacitor

Q = JD. da = Dz. A = EEz. A

- Two parallel conductor plates with area A and at distance
- Plates are charged with opposite charge : +Q, -Q
- ullet Between the plates: dielectric material with permittivity ullet
- To calculate: voltage U between the plates and hereof the capacitance C: $C = \frac{Q}{U}$

For Conductors:

de = Ex. dz

(iii) example 2: spherical capacitor

 $C = \frac{Q}{U} = \underbrace{\xi E_z \cdot A}_{E_z \cdot d} = \underbrace{\xi A}_{d}$ $C = \underbrace{\xi A}_{d}$

Circuit Symbol: IF (Farad)

- Two concentric, perfectly conducting hollow spheres with radius b and a, respectively (b>a)
- Spheres carry opposite charge +⊘, -⊘
- Between the spheres: dielectric material with permittivity

. spherical symmetry => Use spherical Coordinates

• To calculate: voltage U between the spheres, and hereof the capacitance:

$$U_{12} = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \overline{E} \, d\overline{r}$$

$$= 7 C = U = 2 Cb-a$$

$$C = \frac{4\pi \xi \cdot ab}{b-a} \leftarrow \frac{0}{b-a}$$
 dimension and ξ

(iii)
$$C = \frac{Q}{U}$$