O. P. Code: 37068

Time Duration: 3Hr

Total Marks: 80

N.B.:1) Question	no.1 is	compu	sorv.

- 2) Attempt any three questions from Q.2to Q.6.
- 3) Use of statistical tables permitted.
- 4) Figures to the right indicate full marks.

Maximum Marks

[5]

- Evaluate $\int_C |z| dz$, where C is the left half of unit circle |z| = 1 from z = -i to z = i.
 - b) If $A = \begin{bmatrix} 1 & 0 \\ 2 & 4 \end{bmatrix}$, then find the eigen values of $4A^{-1} + 3A + 2I$.
 - c) If the tangent of the angle made by the line of regression of y on x is 0.6 and $\sigma_y = 2 \sigma_x$, find the correlation coefficient between x and y.
 - d) Construct the dual of the following L.P.P.

[6]

[6]

[5]

Minimise
$$z = x_2 + 3x_3$$

b)

Subject to $2x_1 + x_2 \le 3$

$$x_1 + 2x_2 + 6x_3 \ge 5$$
$$-x_1 + x_2 + 2x_3 = 2$$

$$x_1, x_2, x_3 \ge 0$$

- Evaluate $\int_C \frac{e^{2z}}{(z+1)^4} dz$, where c is the circle |z-1|=3.
 - Show that the matrix $A = \begin{bmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & 4 \end{bmatrix}$ is derogatory [6]
 - For a normal variate with mean 2.5 and standard deviation 3.5, find the probability that [8] (i) $2 \le X \le 4.5$, (ii) $-1.5 \le X \le 5.3$.
- Q3. a) The daily consumption of electric power is a random variable X with probability [6] distribution function $f(x) = \begin{cases} kxe^{-\frac{x}{3}}, & x > 0\\ 0, & x \le 0 \end{cases}$

Find the value of k, the expectation of k and the probability that on a given day the electric consumption is more than expected value.

Solve the following L.P.P. by simplex method

Maximise $z = 4x_1 + 10x_2$

Subject to
$$2x_1 + x_2 \le 10$$

$$2x_1 + 5x_2 \le 20$$

$$2x_1 + 3x_2 \le 18$$

$$x_1, x_2 \ge 0$$

- Expand $f(z) = \frac{2}{(z-1)(z-2)}$ in the regions (i) |z| < 1 (ii) 1 < |z| < 2 (iii) |z| > 2. [8]
- The incidence of an occupational disease in an industry is such that the workers have 20% chance of suffering from it. What is the probability that out of 6 workers chosen at random 4 or more will be suffering from the disease?
 - Calculate the coefficient of correlation between X and Y from the following data.

3

_	1		

X 6 4 7 Show that the matrix A =is diagonalizable. Find the transforming

matrix M and the diagonal form D.

[6]

[6]

- **Q5.a)** Can it be concluded that the average life- span of an Indian is more than 70 years, if a random sample of 100 Indians has an average life span of 71.8 years with standard deviation 8.9 years?
- [6]

b) Evaluate $\int_0^{2\pi} \frac{d\theta}{3+2\cos\theta}$, using Cauchy's residue theorem.

[6]

c) Using the Kuhn – Tucker conditions, solve the following N.L.P.P.

[8]

Maximise
$$z = x_1^2 + x_2^2$$

Subject to $x_1 + x_2 - 4 \le 0$
 $2x_1 + x_2 - 5 \le 0$
 $x_1, x_2 \ge 0$

Q6.a) A die was thrown 132 times and the following frequencies were observed.

г	1	•	1

No obtained	1	2	3	4	5	6	Total
Frequency	15	20	25	15	29	28	132

- Test the hypothesis that the die is unbiased.
- b) Two independent samples of sizes 8 and 7 gave the following results.

[6]

Sample 1	19	17	15	21	16	18	16	14
Sample 2	15	14	15	19	15	18	16	

- Is the difference between sample means significant?
- b) Using Penalty (Big-M) method solve the following L.P.P.

[8]

Maximise
$$z = 3x_1 - x_2$$

Subject to $2x_1 + x_2 \le 2$
 $x_1 + 3x_2 \ge 3$
 $x_2 \le 4$
 $x_1, x_2 \ge 0$

ALL THE BEST!