

Lindeberg-Feller CLT and Lyapunov's Condition

Arnab Rakshit Rupanjan Mukherjee Sourav Biswas

Contents

1	Line	deberg-Feller Central Limit Theorem.	2
	1.1	About the Theorem	2
	1.2	Lindeberg - Feller CLT	2
	1.3	Prerequisites	2
2	If p	art	3
	2.1	Proof of Lindeberg-Feller CLT contd	3
	2.2	Proof of Lindeberg-Feller CLT contd	4
3	Onl	y If Part.	4
	3.1	Proof of the only if part	4
	3.2	Proof of the only if part contd	5
4	Lya	punov's Condition.	6
	4.1	Lyapunov's Condition	6
	4.2	Lyapunov's Condition ⇒ Lindeberg's Condition	6

5	Mu	ltivariate Version.	7
	5.1	Multivariate Lindeberg-Feller CLT	7
	5.2	Proof of Multivariate Lindeberg-Feller CLT	7

1 Lindeberg-Feller Central Limit Theorem.

1.1 About the Theorem.

Sufficiency is proved by Lindeberg in 1922 and necessity by Feller in 1935. *Lindeberg-Feller CLT* is one of the most far-reaching results in probability theory. Nearly all generalizations of various types of central limit theorems spin from Lindeberg-Feller CLT.

The insights of the Lindeberg condition are that the "wild" values of the random variables, compared with s_n , the standard deviation of S_n as the normalizing constant, are insignificant and can be truncated off without affecting the general behavior of the partial sum S_n .

1.2 Lindeberg - Feller CLT.

Suppose $X_1, X_2, ..., X_n$ are independent r.v.s with mean 0 and variance σ_n^2 . Let $s_n^2 = \sum_{i=1}^n \sigma_j^2$ denote the variance of partial sum $S_n = X_1 + X_2 + ... + X_n$. If, for every $\epsilon > 0$,

$$\frac{1}{s_n^2} \sum_{j=1}^n \mathbb{E}\left(X_j^2 \mathbf{1}_{\{|X_j| > \epsilon s_n\}}\right) \to 0,$$

then $\frac{S_n}{s_n} \xrightarrow{\mathcal{D}} \mathcal{N}(0,1)$.

Conversely, if $\max_{1 \leq j \leq n} \frac{\sigma_j^2}{s_n^2} \to 0$ and $\frac{S_n}{s_n} \xrightarrow{\mathcal{D}} \mathcal{N}(0,1)$, then Lindeberg Condition holds.

1.3 Prerequisites

1.

$$\forall x > 0, \left| e^{-x} - 1 + x \right| \le x^2/2$$

2. For complex z_j and w_j with $|z_j| \le 1$ and $|w_j| \le 1$, $\left|\prod_{j=1}^n z_j - \prod_{j=1}^n w_j\right| \le \sum_{j=1}^n |z_j - w_j|$

3.

$$\forall x \in \mathbb{R} \ \cos x - 1 \ge -\frac{x^2}{2}$$

4.

$$|\log(x+1) - x| < x^2 \text{ for } x > 0$$

5. $\forall k \geq 1$

$$\left| \varphi_X \left(\lambda \right) - 1 - \sum_{j=1}^k \frac{\left(i \lambda \right)^j}{j!} \mathbb{E} \left(X^j \right) \right| \le \min \left\{ \frac{2 \left| \lambda \right|^k \mathbb{E} \left| X \right|^k}{k!}, \frac{\left| \lambda \right|^{k+1} \mathbb{E} \left| X \right|^{k+1}}{(k+1)!} \right\} \quad \forall \lambda \in \mathbb{R}$$

2 If part

2.1 Proof of Lindeberg-Feller CLT contd.

"←" The Lindeberg Condition implies,

$$\sigma_{j}^{2} = \mathbb{E}\left(X_{j}^{2}\mathbf{1}_{\{|X_{j}|>\epsilon s_{n}\}}\right) + \mathbb{E}\left(X_{j}^{2}\mathbf{1}_{\{|X_{j}|\leq\epsilon s_{n}\}}\right)$$

$$\leq \mathbb{E}\left(X_{j}^{2}\mathbf{1}_{\{|X_{j}|>\epsilon s_{n}\}}\right) + \epsilon^{2}s_{n}^{2} \ \forall j$$

$$\leq \sum_{i=1}^{n} \mathbb{E}\left(X_{j}^{2}\mathbf{1}_{\{|X_{j}|>\epsilon s_{n}\}}\right) + \epsilon^{2}s_{n}^{2} \ \forall j$$

$$\implies \frac{\sigma_{j}^{2}}{s_{n}^{2}} \leq \frac{1}{s_{n}^{2}} \sum_{i=1}^{n} \mathbb{E}\left(X_{j}^{2}\mathbf{1}_{\{|X_{j}|>\epsilon s_{n}\}}\right) + \epsilon^{2} \ \forall j$$

$$\therefore \max_{1\leq j\leq n} \left(\frac{\sigma_{j}^{2}}{s_{n}^{2}}\right) \leq \underbrace{\frac{1}{s_{n}^{2}} \sum_{i=1}^{n} \mathbb{E}\left(X_{j}^{2}\mathbf{1}_{\{|X_{j}|>\epsilon s_{n}\}}\right) + \epsilon^{2}}_{\longrightarrow 0}$$

by letting $n \to \infty$ and then $\epsilon \downarrow 0$,

$$\max_{1 \le j \le n} \left(\frac{\sigma_j^2}{s_n^2} \right) \longrightarrow 0$$

For any $\epsilon > 0$, then $\forall j$

$$\left| \mathbb{E} \left(e^{itX_j/s_n} \right) - e^{-t^2 \sigma_j^2/2s_n^2} \right|$$

$$\begin{split} & = \left| \mathbb{E} \left(e^{itX_j/s_n} \right) - \mathbb{E} \left(1 + it \frac{X_j}{s_n} - \frac{t^2}{2} \frac{X_j^2}{s_n^2} \right) + 1 + it \mathbb{E} \left(\frac{X_j}{s_n} \right) - \frac{t^2}{2} \mathbb{E} \left(\frac{X_j^2}{s_n^2} \right) - e^{-t^2 \sigma_j^2/2s_n^2} + 1 - \frac{t^2 \sigma_j^2}{2s_n^2} - 1 + \frac{t^2 \sigma_j^2}{2s_n^2} \right| \\ & \leq \left| \mathbb{E} \left(e^{itX_j/s_n} \right) - \mathbb{E} \left(1 + it \frac{X_j}{s_n} - \frac{t^2}{2} \frac{X_j^2}{s_n^2} \right) \right| + \left| e^{-t^2 \sigma_j^2/2s_n^2} - 1 + \frac{t^2 \sigma_j^2}{2s_n^2} \right| \\ & \leq \mathbb{E} \left[\min \left(\frac{t^2 X_j^2}{s_n^2}, \frac{|tX_j|^3}{6s_n^3} \right) \right] + \frac{t^4 \sigma_j^4}{8s_n^4} \\ & \leq \mathbb{E} \left[\min \left(\frac{t^2 X_j^2}{s_n^2}, \frac{|tX_j|^3}{6s_n^3} \right) \mathbf{1}_{\{|X_j| > \epsilon s_n\}} \right] + \mathbb{E} \left[\min \left(\frac{t^2 X_j^2}{s_n^2}, \frac{|tX_j|^3}{6s_n^3} \right) \mathbf{1}_{\{|X_j| \le \epsilon s_n\}} \right] + \frac{t^4 \sigma_j^4}{8s_n^4} \\ & \leq \mathbb{E} \left[\frac{t^2 X_j^2}{s_n^2} \mathbf{1}_{\{|X_j| > \epsilon s_n\}} \right] + \mathbb{E} \left[\frac{|tX_j|^3}{6s_n^3} \mathbf{1}_{\{|X_j| \le \epsilon s_n\}} \right] + \frac{t^4 \sigma_j^4}{8s_n^4} \\ & \leq \frac{t^2}{s_n^2} \mathbb{E} \left[X_j^2 \mathbf{1}_{\{|X_j| > \epsilon s_n\}} \right] + \frac{|t|^3 \epsilon}{6s_n^2} \mathbb{E} \left[X_j^2 \right] + \frac{t^4 \sigma_j^2}{s_n^2} \max_{1 \le k \le n} \left(\frac{\sigma_k^2}{s_n^2} \right) \end{split}$$

2.2 Proof of Lindeberg-Feller CLT contd.

Then for any fixed t,

$$\left| \mathbb{E} \left(e^{itS_n/s_n} \right) - e^{-t^2/2} \right|$$

$$= \left| \prod_{j=1}^n \mathbb{E} \left(e^{itX_j/s_n} \right) - \prod_{j=1}^n \left(e^{-t^2\sigma_j^2/2s_n^2} \right) \right|$$

$$\leq \sum_{j=1}^n \left| \mathbb{E} \left(e^{itX_j/s_n} \right) - e^{-t^2\sigma_j^2/2s_n^2} \right|$$

$$\leq \sum_{j=1}^n \left(\frac{t^2}{s_n^2} \mathbb{E} \left[X_j^2 \mathbf{1}_{\{|X_j| > \epsilon s_n\}} \right] + \frac{|t|^3 \epsilon}{6s_n^2} \mathbb{E} \left[X_j^2 \right] + \frac{t^4 \sigma_j^2}{s_n^2} \max_{1 \leq k \leq n} \left(\frac{\sigma_k^2}{s_n^2} \right) \right)$$

$$\leq \left(\frac{t^2}{s_n^2} \sum_{j=1}^n \mathbb{E} \left[X_j^2 \mathbf{1}_{\{|X_j| > \epsilon s_n\}} \right] + \frac{|t|^3 \epsilon}{6} + t^4 \max_{1 \leq k \leq n} \left(\frac{\sigma_k^2}{s_n^2} \right) \right)$$

$$\to \frac{\epsilon |t|^3}{6} \text{ as } n \to \infty$$

Since, $\epsilon > 0$ is arbitrary, it follows that, $\mathbb{E}\left(e^{itS_n/s_n}\right) \to e^{-t^2/2}$ for all t. Levy's continuity theorem implies,

$$\frac{S_n}{S_n} \xrightarrow{\mathcal{D}} \mathcal{N}(0,1)$$

3 Only If Part.

3.1 Proof of the only if part.

" \Longrightarrow " Let ψ_j be the Characteristic Function of X_j . The asymptotic normality is equivalent to,

$$\prod_{j=1}^{n} \psi_j\left(\frac{t}{s_n}\right) \to e^{-\frac{t^2}{2}}$$

Notice that,

$$\left| \psi_j \left(\frac{t}{s_n} \right) - 1 \right| \le \frac{t^2 \sigma_j^2}{2s_n^2}$$

Write as $n \to \infty$,

$$\sum_{j=1}^{n} \left(\psi_j \left(\frac{t}{s_n} \right) - 1 \right) + \frac{t^2}{2}$$

$$= \sum_{j=1}^{n} \left(\psi_j \left(\frac{t}{s_n} \right) - 1 - \log \psi_j \left(\frac{t}{s_n} \right) \right) + \underbrace{\sum_{i=1}^{n} \log \psi_j \left(\frac{t}{s_n} \right) + \frac{t^2}{2}}_{=o(1)}$$

$$\leq \sum_{j=1}^{n} \left| \psi_j \left(\frac{t}{s_n} \right) - 1 \right|^2 + o(1)$$

$$\leq \max_{1 \leq j \leq n} \left| \psi_j \left(\frac{t}{s_n} \right) - 1 \right| \times \sum_{j=1}^{n} \left| \psi_j \left(\frac{t}{s_n} \right) - 1 \right| + o(1)$$

$$\leq \max_{1 \leq j \leq n} \frac{t^2 \sigma_j^2}{2s_n^2} \times \sum_{j=1}^{n} \frac{t^2 \sigma_j^2}{2s_n^2} + o(1) = o(1)$$

by the assumption, $\max_{1 \le k \le n} \left(\frac{\sigma_k^2}{s_n^2} \right) \to 0$

3.2 Proof of the only if part contd.

On the other hand, by definition of characteristic function, the above expression is, as $n \to \infty$,

$$o(1) = \sum_{j=1}^{n} \left(\psi_j \left(\frac{t}{s_n} \right) - 1 \right) + \frac{t^2}{2}$$

$$= \sum_{j=1}^{n} \mathbb{E} \left(e^{itX_j/s_n} - 1 \right) + \frac{t^2}{2}$$

$$= \sum_{j=1}^{n} \mathbb{E} \left(\cos \left(\frac{tX_j}{s_n} \right) - 1 \right) + \frac{t^2}{2} + i \sum_{j=1}^{n} \mathbb{E} \left(\sin \left(\frac{tX_j}{s_n} \right) \right)$$

$$= \sum_{j=1}^n \mathbb{E}\left\{\left(\cos\left(\frac{tX_j}{s_n}\right) - 1\right)\mathbf{1}_{\{|X_j| > \epsilon s_n\}}\right\} + \sum_{j=1}^n \mathbb{E}\left\{\left(\cos\left(\frac{tX_j}{s_n}\right) - 1\right)\mathbf{1}_{\{|X_j| \le \epsilon s_n\}}\right\} + \frac{t^2}{2} + \text{imaginary part (immaterial)}$$

Since, $\cos x - 1 \ge -\frac{x^2}{2}$ for all real x,

$$\frac{1}{s_n^2} \sum_{i=1}^n \mathbb{E}\left(X_j^2 \mathbf{1}_{\{|X_j| > \epsilon s_n\}}\right) = 1 - \frac{2}{t^2} \sum_{j=1}^n \mathbb{E}\left(\frac{t^2 X_j^2}{2s_n^2} \mathbf{1}_{\{|X_j| \le \epsilon s_n\}}\right)$$

$$\leq \frac{2}{t^2} \left(\frac{t^2}{2} + \sum_{j=1}^n \mathbb{E}\left\{\left(\cos\left(\frac{t X_j}{s_n}\right) - 1\right) \mathbf{1}_{\{|X_j| \ge \epsilon s_n\}}\right\}\right)$$

$$\leq \frac{2}{t^2} \left(\left|\sum_{j=1}^n \mathbb{E}\left\{\left(\cos\left(\frac{t X_j}{s_n}\right) - 1\right) \mathbf{1}_{\{|X_j| > \epsilon s_n\}}\right\}\right| + o(1)\right)$$

$$\leq \frac{2}{t^2} \sum_{j=1}^n 2\mathbb{P}\left(|X_j| > \epsilon s_n\right) + o(1)$$

$$\leq \frac{4}{t^2} \sum_{j=1}^n \left(\frac{\sigma_j^2}{\epsilon^2 s_n^2}\right) + o(1) \text{ by Chebyshev's Inequality}$$

$$\leq \frac{4}{t^2 \epsilon^2} + o(1).$$

Since t can be chosen arbitrarily large, Lindeberg condition holds.

4 Lyapunov's Condition.

4.1 Lyapunov's Condition.

Suppose X_1, X_2, \ldots, X_n are independent r.v.s with mean 0 and variance σ_n^2 . Let $s_n^2 = \sum_{i=1}^n \sigma_j^2$ denote the variance of partial sum $S_n = X_1 + X_2 + \ldots + X_n$ and $\mathbb{E}\left(\left|X_j\right|^{2+\delta}\right) < \infty \ \forall j$. Then,

$$\frac{1}{s_n^{2+\delta}} \sum_{j=1}^n \mathbb{E}\left(|X_j|^{2+\delta}\right) \longrightarrow 0 \text{ as } n \to \infty$$

for some $\delta > 0$.

4.2 Lyapunov's Condition \implies Lindeberg's Condition.

Note that,

$$\frac{1}{s_n^2} \sum_{j=1}^n \mathbb{E}\left(X_j^2 \mathbf{1}_{\{|X_j| > \epsilon s_n\}}\right) = \frac{1}{s_n^2} \sum_{j=1}^n \mathbb{E}\left(X_j^2 \mathbf{1}_{\{\left|\frac{X_j}{\epsilon s_n}\right| > 1\}}\right)$$

$$= \frac{1}{s_n^2} \sum_{j=1}^n \mathbb{E}\left(X_j^2 \mathbf{1}_{\left\{\frac{|X_j|^{\delta}}{\epsilon^{\delta} s_n^{\delta}} > 1\right\}}\right)$$

$$\leq \frac{1}{s_n^2} \sum_{j=1}^n \mathbb{E}\left(X_j^2 \frac{|X_j|^{\delta}}{\epsilon^{\delta} s_n^{\delta}}\right) \leq \frac{1}{\epsilon^{\delta} s_n^{\delta}} \sum_{j=1}^n \mathbb{E}\left(|X_j|^{2+\delta}\right) \longrightarrow 0$$

if Lyapunov's Condition holds.

5 Multivariate Version.

5.1 Multivariate Lindeberg-Feller CLT.

Let X_1, X_2, \ldots, X_n be independent random vectors with $\mathbb{E}(X_j) = 0$ and $\operatorname{Var}(X_j) = \Sigma_j$. Suppose that, $\frac{1}{n}(\Sigma_1 + \Sigma_2 + \ldots + \Sigma_n) \to \Sigma$ as $n \to \infty$ and,

$$\forall \epsilon > 0 \ \frac{1}{n} \sum_{j=1}^{n} \mathbb{E}\left(\|\boldsymbol{X}_{j}\|^{2} \, \mathbf{1}_{\left\{\|\boldsymbol{X}_{j}\| > \epsilon \sqrt{n}\right\}}\right) \longrightarrow 0 \ \text{as } n \to \infty$$

Then,

$$\frac{\mathbf{S}_n}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}_d(\mathbf{0}, \mathbf{\Sigma}) \text{ as } n \to \infty$$

where $S_n = X_1 + X_2 + ... + X_n$.

5.2 Proof of Multivariate Lindeberg-Feller CLT.

We have $S_n = \sum_{j=1}^n X_j$, where $X_j \sim (\mathbf{0}, \Sigma_j)$ independently. We shall use *Cramer-Wold Device* to establish the theorem. We have to show, $\forall a \in \mathbb{R}^d \setminus \{\mathbf{0}\}$, $(0, a'\Sigma a)$.

$$\frac{\boldsymbol{a}'\boldsymbol{S_n}}{\sqrt{n}} \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}\left(0, \boldsymbol{a}'\boldsymbol{\Sigma}\boldsymbol{a}\right)$$

Define, $Y_j = \mathbf{a}' \mathbf{X}_j \ \forall j = 1(1)n$. Then, $Y_j \sim (0, \sigma_j^2)$ where $\sigma_j^2 = \mathbf{a}' \mathbf{\Sigma}_j \mathbf{a}, \ \forall j = 1(1)n$. Say,

$$ilde{S}_n = \sum_{j=1}^n Y_j, \quad s_n^2 = \sum_{j=1}^n \sigma_j^2 = oldsymbol{a}' \left(\sum_{j=1}^n oldsymbol{\Sigma}_{oldsymbol{j}}
ight) oldsymbol{a}$$

For any $\epsilon > 0$

$$\frac{1}{s_n^2} \sum_{j=1}^n \mathbb{E}\left(Y_j^2 \mathbf{1}_{\{|Y_j| > \epsilon s_n\}}\right)$$

$$\frac{1}{s_n^2} \sum_{j=1}^n \mathbb{E}\left(\left(\boldsymbol{a}' \boldsymbol{X}_j \boldsymbol{X}_j' \boldsymbol{a}\right) \mathbf{1}_{\{(\boldsymbol{a}' \boldsymbol{X}_j \boldsymbol{X}_j' \boldsymbol{a}) > \epsilon^2 s_n^2\}}\right)$$

$$\leq \frac{\|\boldsymbol{a}\|^2}{s_n^2} \sum_{j=1}^n \mathbb{E}\left(\|\boldsymbol{X}_j\|^2 \mathbf{1}_{\{\|\boldsymbol{X}_j\|^2 \ge \epsilon'^2 s_n^2\}}\right) \text{ where } \epsilon'^2 = \frac{\epsilon^2}{\|\boldsymbol{a}\|^2}$$

$$= \frac{1}{n} \sum_{j=1}^n \mathbb{E}\left(\|\boldsymbol{X}_j\|^2 \mathbf{1}_{\{\|\boldsymbol{X}_j\|^2 \ge \epsilon'^2 s_n^2\}}\right) \frac{\|\boldsymbol{a}\|^2}{s_n^2/n}$$

Now,

$$\frac{s_n}{\sqrt{n}} \longrightarrow \sqrt{\boldsymbol{a}' \Sigma \boldsymbol{a}} = c \text{ (say)}$$

Then, $\exists K \in \mathbb{N} \ni \forall n \geq K, \ \frac{s_n}{\sqrt{n}} > \frac{c}{2}$

$$\implies \forall n \geq K, \quad \frac{1}{n} \sum_{j=1}^{n} \mathbb{E}\left(\|\boldsymbol{X}_{j}\|^{2} \mathbf{1}_{\left\{\|\boldsymbol{X}_{j}\|^{2} \geq \epsilon'^{2} s_{n}^{2}\right\}}\right) \leq \frac{1}{n} \sum_{j=1}^{n} \mathbb{E}\left(\|\boldsymbol{X}_{j}\|^{2} \mathbf{1}_{\left\{\|\boldsymbol{X}_{j}\|^{2} \geq \epsilon''^{2} n\right\}}\right) \quad \text{where } \epsilon'' = \epsilon' c/2$$

Taking $\limsup as n \to \infty$ on both side, we get,

$$\frac{1}{n} \sum_{j=1}^{n} \mathbb{E}\left(\|\boldsymbol{X_j}\|^2 \, \mathbf{1}_{\left\{ \|\boldsymbol{X_j}\|^2 \geq \epsilon'^2 s_n^2 \right\}} \right) \longrightarrow 0 \ \text{as } n \to \infty$$

from the given conditions.

$$\therefore \sum_{j=1}^{n} \frac{Y_j}{s_n} \xrightarrow{\mathcal{D}} \mathcal{N}(0,1)$$

also,

$$\frac{s_n}{\sqrt{n}} \longrightarrow \sqrt{\boldsymbol{a}' \Sigma \boldsymbol{a}}$$

Combining, by Slutsky's Theorem, we get,

$$\sum_{j=1}^{n} \frac{Y_{j}}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}\left(0, \boldsymbol{a}' \Sigma \boldsymbol{a}\right)$$

i.e.

$$\frac{\boldsymbol{a}'\boldsymbol{S_n}}{\sqrt{n}} \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}\left(0, \boldsymbol{a}'\boldsymbol{\Sigma}\boldsymbol{a}\right)$$