

OVERVIEW

- Input to dose calculation
- Collapsed Cone (CC) dose algorithm:
 - 1. TERMA
 - 2. PSK superposition
- Electron contamination dose algorithm
- GPU computation
- Singular Value Decomposition (SVD) dose engine

INPUT TO DOSE CALCULATION

Geometry and density

 Effective density: Essentially a 3D distribution of relative electron density slightly modified to take effects of pair production into account.

Fluence

- Primary source
- Flattening filter source
- (Wedge scatter source)
- Electron sources

Machine parameters (from commissioning)

- Effective energy spectrum on central axis
- Flattening filter attenuation (Off-axis softening)
- (Wedge attenuation)

TOTAL CLINICAL DOSE CALCULATION

- Photon dose computation is performed in 3 steps:
 - The energy fluence computation (see Photon fluence model PPT)
 - 2. TERMA computation
 - 3. Point Spread Kernel (PSK) tracing dose computation
- An electron contamination component is computed separately and added to the dose

$$D(x, y, z) = D(x, y, z)_{photon} + D(x, y, z)_{contamination electrons}$$

COLLAPSED CONE DOSE COMPUTATION

- Collapsed Cone dose algorithm:
 - TERMA distribution by ray trace of primary radiation through the patient, taking inhomogenities into account
 - Superposition of <u>Point Spread Kernel (PSK)</u> describing the secondary scatter collapsed along radial rays, taking inhomogenities into account

$$D(\vec{r}) = \sum_{\vec{r_i}'} TERMA(\vec{r_i}', ...) PSK(\vec{r_i} - \vec{r_i}', ...)$$

TERMA

• TERMA is the

<u>Total Energy Released per unit Mass</u>

TERMA

• TERMA is the

<u>Total energy released per unit mass</u>

TERMA – ENERGY FLUENCE

$$\Psi(\bar{r}, E_i) = \Psi_0(E_i) \cdot \frac{\bar{r}_0^2}{\bar{r}^2} \cdot \exp\left(-\int_{\bar{r}_0}^{\bar{r}} \mu(\bar{r}, E_i) dl\right)$$

TERMA - ENERGY FLUENCE

Ψ₀ from beam model

TERMA - ENERGY FLUENCE

- Ψ₀ from beam model
- Takes divergence into account

$$\Psi(\bar{r}, E_i) = \Psi_0(E_i) \left(\frac{\bar{r}_0^2}{\bar{r}^2} \right) \exp\left(-\int_{\bar{r}_0}^{\bar{r}} \mu(\bar{r}, E_i) dl \right)$$

Inverse square law

TERMA - ENERGY FLUENCE

- Ψ₀ from beam model
- Takes divergence into account
- Off-axis softening TOTAL energy fluence

TERMA- ENERGY FLUENCE

- TERMA is computed using the fluence distribution at isocenter level, tracing it back to the surface and then down into the patient
- As if all rays originate from the primary source
- TERMA is then calculated for each voxel intersected by a ray trace in the dose grid

TERMA

TERMA is the

<u>Total Energy Released per unit Mass</u>

- Describes the distribution of the primary energy deposit, i.e. energy released by primary photons to secondary particles:
 - Electrons from photoelectric effect
 - Electrons from Comptom scattering
 - Scattered Compton photons
 - Electrons and positrons from pair production
- No explicit separation into interaction components, but taken into account calculating the effective density of materials in the linear attenuation coefficient

TERMA

• TERMA is the

<u>Total Energy Released per unit Mass</u>

TERMA – LINEAR MASS ATTENUATION COEFFICIENT

Off-axis softening

• Water:

The linear attenuation of water, $\mu_0(E)$, uses the energy spectrum that takes both <u>off-axis</u> softening and <u>depth hardening</u> into account

Materials other than water:

Effective density calculation: using beam energy spectrum at isocentre, NO depth hardening or off-axis softening is taken into account

$$\mu(\bar{r}, E) = \frac{\mu_0(E) \cdot \rho_{effective}(\bar{r}, E)}{\rho_{effectiveH_2O}(E)}$$

Depth hardening

A typical conversion from mass density to electron and effective density for a 6 MV beam. The effective density is used both in TERMA-tracing, point spread kernel tracing and electron dose computation.

COLLAPSED CONE (CC)

- The CC dose engine calculates dose by means of a convolution-superposition method which is thoroughly described in literature by:
 - Mackie et. al., 9th ICCR (1987)
 - Ahnesjö, Med. Phys. 16 577 (1989)
- Once TERMA is determined describing the primary interaction taking place, the secondary scatter will be described using Point Spread Kernels (PSK)

POINT SPREAD KERNELS

- Primary interaction usually Compton
 - Short range free electron, ionize tissue in a surrounding volume
 - Long range lower energy photon
- The point spread kernel, <u>PSK(r,θ,E)</u>
 describes the <u>statistical energy deposit</u>
 <u>distribution</u> in an 3D spherical grid from a
 primary energy deposit, i.e. the spread of
 secondary particles
- In RayStation, PSK(r,θ,E) are <u>Monte Carlo</u> <u>pre-calculated using EGSnrc</u>

The origin of the spherical coordinate system is the interaction point. The photon enters the plot from above

POINT SPREAD KERNELS

- Monte Carlo pre-computed using EGSnrc:
 - In water
 - One simulation per energy level
- The simulated <u>mono-energetic kernels</u> are <u>combined into poly-energetic kernels</u>.
 These are weighted so that they correspond to the beam energy distribution at different radiological depths
- When applied to a heterogenous geometry, the radial distance r is replaced by the radiological distance d

The origin of the spherical coordinate system is the interaction point. The photon enters the plot from above

COLLAPSED CONE – CONVOLUTION

- The point kernels are divided into a number of cones, each emenating from its origin, where he energy deposited within a cone is collapsed to the central ray of that cone
- This will speed up the calculation significantly
- 8 angular intervals are used in θ and 16 angular intervals in φ, resulting in 128 rays in total
- To achieve adequate dose accuracy for the lowest beam energies: 12 angular intervals in θ for energies below 6 MV, resulting in 192 rays in total
- Since more energy is directed in forward direction, the number of rays are also more frequent in this direction

 $PSK(r, \theta_i, \varphi_j, d_{TERMA-voxel})$

COLLAPSED CONE – SUPERPOSITION

- For each voxel with significant TERMA, a point kernel is created and aligned along the z-axis (no kernel tilt approximation).
- The energy spectrum of each point kernel is chosen to correspond to correct radiological distance of the TERMA voxel, this way the off-axis softening and beam hardening is taken into consideration
- The point spread kernels are then collapsed into ray traces which will collect dose contributions from the intersected surrounding TERMA voxels
- The dose is finally computed as a set of dose contributions summed over the trace directions

SUMMARY OF CC DOSE CALCULATION

TERMA voxel

$$\Psi_{E_i}(\vec{r}') = \Psi_{0E_i} \times \frac{\vec{r}_0^2}{\vec{r}'^2} \times exp\left(-\mu_{0E_i}d(\vec{r}')\right)$$

$$TERMA(\vec{r}') = \frac{\mu\left(E_{spectrum}(\vec{r}')\right)}{\rho_{m}(\vec{r}')} \times \sum_{E_{i}} \Psi_{E_{i}}(\vec{r}')$$

CC ALGORITHM – NO KERNEL TILT APPROXIMATION

- At the edges of a large field, the forward direction of beam photons will not be parallel to the central axis
- In the sphere point kernel tracing in RayStation all kernels are aligned with the central beam axis in order to speed up the calculation time
- This is done by:
 - Rescaling the TERMA dose to remove divergence
 - Computing the CC dose on the rescaled TERMA
 - Rescaling the dose to re-apply the divergence
- Using this no kernel tilt approximation will make the dose contribution narrower than it actually is

DOSE ENGINE SPEED-UPS

Calculation mask:

- Unnecessary computation is avoided by application of a calculation mask around the TERMA region
- When there is no TERMA above 0.5% of the maximum TERMA within a 5 cm radiological distance: the ray trace is terminated and the dose in remaining voxels further away are taken as TERMA dose.
- Calculate TERMA ebery voxel of the dose grid

Adaptive dose interpolation

- Computing dose in some voxels: every 4th (2nd) voxel
 if resolution is better than 0.26 cm (0.51 cm)
- In remaining voxels:
 - Interpolate the dose if TERMA gradient is low
 - Compute dose by CC if TERMA gradient is high

ELECTRON CONTAMINATION

Electron energy distribution

$$f(E) \propto E^c e^{-E/E_0}$$

- The contamination electrons arise due to interactions between the photons of the beam, the machine head and the air
- The electron contamination component is calculated separately and added to the dose

$$D(x, y, z) = D(x, y, z)_{photon} + D(x, y, z)_{contamination \ electrons}$$

ELECTRON CONTAMINATION

- The electron interactions for the electron contamination are computed using pencil beam kernels with effective density scaling
- Cylindrical electron kernel A(E,r,d) pre-computed for a set of electron energies by the EGSnrc Monte Carlo package (DOSRZnrc)
- Mono-energetic pencil kernels are used to create a poly-energetic electron depth dose curve
- Semi-infinite slab approximation: lateral inhomogeneities not accounted for in the electron contamination dose. Important for:
 - Inclined beam arrangements
 - Inhomogeneous regions in the beam entry region
- Voxel electron dose is then computed as the product of the electron fluence and the electron depth dose at the voxel radiological depth

Figure 28. The electron pencil beam.

GPU COMPUTATION

- From RayStation 8B, both fluence and CC dose computed only on GPU
- From RayStation 9B, photon optimization and gradient algorithm (SVD or Singular Value Decomposition) moved to GPU computation
- ~ 3-7 times faster than CPU (depends on hardware, dose grid resolution, treatment technique)
- Source code implementation → identical for different GPU models
- No major differences between doses computed on different GPU models
- Minor differences of up to 0.2% of dose maximum possible due to differences in precision of floating-point operations on various hardware
- Minor differences can be expected, in some cases, between different operating system versions and GPU driver versions

SINGULAR VALUE DECOMPOSITION DOSE ENGINE

- Used for optimization
- Pencil beam convolution technique with a more simplified fluence model compared to collapsed cone
 - Primary source fluence
 - Scattering source fluence
 - NO contamination electrons, reduces the accuracy in the build-up region
- Cylindrical pencil beam kernels where the radial components are convolved with the energy fluence.
- Scaling of kernel by radiological path length only in depth, taking inhomogeneities into account only in depth and not laterally
- Lateral dose cut-off close to the border of the fluence field.
 - For treatments with many control points, the sum of the missing out-of-field dose can become significant
- Dose computed with the singular value decomposition (SVD) dose engine is always considered unclinical in RayStation

