Teorema di Rouché-Capelli #GAL

Teorema di Rouché-Capelli:

sia $A\underline{x} = \underline{b}$ un sistema lineare con $A \in Mat(m,n) => m = equazioni, n = variabili$

- 1. Il sistema ha soluzioni se e soltanto se il rango rk(A) = rk(A|b)
- 2. In questo caso esistono dei vettori w, v_1 , v_2 , ..., $v_s \in \mathbb{R}^n$ tali che l'insieme delle soluzioni è:

rk(A) (rango maggiore -> meno soluzioni)

3. Il sistema ha un'unica soluzione se e soltanto se rk(A) = rk(A|b) = n

Osservazione: \underline{w} è una soluzione particolare del sistema cioè \underline{w} = S ottenuto da $t_1 = t_2 = ... = t_s = 0$

Dimostrazione: usando l'algoritmo di Gauss-Jordan

- Trasforma $A\underline{x} = \underline{b}$ in un sistema equivalente $A'\underline{x} = \underline{b}'$ dove $(A'|\underline{b}')$ è la riduzione a scala di $(A|\underline{b})$
- Tutti i pivot sono uguali a 1 e sono gli unici elementi non nulli della propria colonna
- $rk(A|\underline{b}) = rk(A'|\underline{b}')$ dato che una matrice è la riduzione a scala dell'altra
- Inoltre restringendo l'algoritmo di Gauss-Jordan alle prime n colonne segue che A' è una riduzione a scala di A rk(A) = rk(A')
- 1. $A\underline{x} = \underline{b}$ ha soluzioni se e soltanto se $A'\underline{x} = \underline{b}'$ ha soluzioni quindi se e soltanto se non ci sono pivot nella colonna b' (teorema sui sistemi a scala) <=> tutti i pivot della matrice completa di $(A'|\underline{b}')$ sono nella stessa matrice A' <=> $rk(A'|\underline{b}') = rk(A')$ <=> $rk(A|\underline{b}) = rk(A)$
- 2. Il sistema $A'\underline{x} = \underline{b}'$ ha rk(A) equazioni non nulle, che risolvono le variabili pivot in funzione elle variabili libere -> numero variabili libere = (numero variabili) (variabili pivot) = n rk(A)
- 3. Segue immediatamente da 1) e 2): \exists unica soluzione <=> rk(A) = rk(A| \underline{b}) = n

Esempi di corollari del Teorema Rouché-Capelli:

Se $A \in Mat(m,n)$ con m < n (numero equazioni < numero variabili) Ax = b non può avere un'unica soluzione => $rk(A) \le m$ -> s = n - rk(A)

sempre >0 => esclusa unica soluzione

Corollario: sia $A \in Mat(m,n)$, $b \in \mathbb{R}^n$

il sistema $A\underline{x} = \underline{b}$ ha un'unica soluzione se e solo se rk(A) = n ->

-> l'unicità della soluzione non dipende dal vettore dei termini noti

Dimostrazione:

- => caso particolare del teorema di Rouché-Capelli
- \leq supponiamo rk(A) = n allora n = rk(A) \leq rk(A|b) \leq min(n, n+1) = n =>

 $rk(A) = rk(A|\underline{b}) = n$ la conclusione segue dal Teorema di Rouché-Capelli 3)