	MATH 322	Exam I – In Class	February 24, 2020
	Name:		
		following questions, and make sure you sign work will be counted as incorrect. When nglish sentences.	
(12pts)	1. Suppose α is a real number such	that $[\mathbb{Q}(\alpha):\mathbb{Q}]=3$. What does this tell	you about
	(a) the number α in terms of	of polynomials? Be as specific as possible.	
	(b) about the field $\mathbb{Q}(\alpha)$? W	What does the field look like (i.e., what doe	es a basis look like)?
		$G(\mathbb{Q}(\alpha)/\mathbb{Q})$, if you know also that $\mathbb{Q}(\alpha)$ s of things and how many of them are in the	

(d) ... about whether it is possible to construct a line segment of length α using a compass

and straight edge? Briefly explain.

(12pts) 2. Consider the field $\mathbb{Q}(\sqrt[3]{5})$. This field contains the number $\sqrt[3]{5}$. What else does it contain? For each item below, say whether the elements described are in $\mathbb{Q}(\sqrt[3]{5})$ and briefly justify your answer.

(a)
$$4 + \frac{2}{7}\sqrt[3]{5} - \sqrt[3]{5}^2$$
.

(b)
$$\sqrt{1+\sqrt[3]{5}}$$
.

(c) $\sqrt{5}$. Hint: tower rule.

(d) All the roots of $x^3 - 5$.

- (12pts) 3. Consider the field $E = \mathbb{Q}(\sqrt{5} + \sqrt[3]{7})$ and its subfields. In each part below, find the degree of the field extension and explain how you know you are correct.
 - (a) $[\mathbb{Q}(\sqrt{5}):\mathbb{Q}].$

(b) $[\mathbb{Q}(\sqrt[3]{7}):\mathbb{Q}].$

(c) $[E:\mathbb{Q}(\sqrt{5})]$. You can assume that E is an extension of both $\mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(\sqrt[3]{7})$.

(d) $[E:\mathbb{Q}]$.

(4pts) 4. Use the previous question to prove that $x^6 - 15x^4 - 14x^3 + 75x^2 - 210x - 76$ is irreducible. Hint: the polynomial has $\sqrt{5} + \sqrt[3]{7}$ as a root.

- 5. Let $p(x) = (x^2 5)(x^3 7)$, and let K be the splitting field of p(x).
- (5pts) (a) Prove that there is no automorphism of K which sends $\sqrt{5}$ to $\sqrt[3]{7}$. Show specifically what goes wrong using the homomorphism property.

(5pts) (b) Give an example of a non-trivial automorphism of K and briefly explain how you know your example works.

(5bn-pts) (c) Bonus: Could $G(K/\mathbb{Q})$ be isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_3$? Explain.