1/10

HPV 58 L1 Nucleotide Sequence Alignment

58 L1 wt 58 L1 R	(1) (1)	ATGTCCGTGTGGCGGCCTAGTGAGGCCACTGTGTACCTGCCTCCTGTGCCCA.AATCCATCCTAAT
58 L1 wt 58 L1 R	(51) (51)	TGTGTCTAAGGTTGTAAGCACTGATGAATATGTGTCACGCACAAGCATTTACCCCCCCTA.ACTCTC.
58 L1 wt 58 L1 R	(101) (101)	ATTATTATGCTGGCAGTTCCAGACTTTTGGCTGTTGGCAATCCATATTTT .CCCTTCCTT.GTCCC
58 L1 wt 58 L1 R	(151) (151)	TCCATCAAAAGTCCCAATAACAATAAAAAAGTATTAGTTCCCAAGGTATCGTCACCGGCGAC
58 L1 wt 58 L1 R	(201) (201)	AGGCTTACAGTATAGGGTCTTTAGGGTGCGTTTACCTGATCCCAATAAAT TTGACACACA.AGACACG.
58 L1 wt 58 L1 R	(251) (251)	TTGGTTTTCCTGATACATCTTTTTATAACCCTGATACACAACGTTTGGTC .CCACTCCCACTA.A
58 L1 wt 58 L1 R	(301) (301)	TGGGCATGTGTAGGCCTTGAAATAGGTAGGGGACAGCCATTGGGTGTTGGTCTT.GCATA
58 L1 wt 58 L1 R	(351) (351)	CGTAAGTGGTCATCCTTATTTCAATAAATTTGATGACACTGAAACCAGTA TCTCCACCGCCTCC.
58 L1 wt 58 L1 R	(401) (401)	ACAGATATCCCGCACAGCCAGGGTCTGATAACAGGGAATGCTTATCTATGCATATCATGC
58 L1 wt 58 L1 R	(451) (451)	GATTATAAACAAACACAATTATGTTTAATTGGCTGTAAACCTCCCACTGG CCGCGGCTGAA
58 L1 wt 58 L1 R	•	TGAGCATTGGGGTAAAGGTGTTGCCTGTAACAATAATGCAGCTGCTACTGACGTCCT
58 L1 wt 58 L1 R	•	ATTGTCCTCCATTGGAACTTTTTAATTCTATTATTGAGGATGGTGACATG .CAT.GCCCCAC
58 L1 wt		GTAGATACAGGGTTTGGATGCATGGACTTTGGTACATTGCAGGCTAATAACCTTCTT

58 L1 wt 58 L1 R	(651) (651)	AAGTGATGTGCCTATTGATATTTGTAACAGTACATGCAAATATCCAGATT GTCCCTACCCTCCCTGCC.
58 L1 wt 58 L1 R	(701) (701)	ATTTAAAAATGGCCAGTGAACCTTATGGGGATAGTTTGTTCTTTTTCTT .CGGTTCACTCTCCCCT.G
58 L1 wt 58 L1 R	(751) (751)	AGACGTGAGCAGATGTTTGTTAGGCACTTTTTTAATAGGGCCGGAAAACT
58 L1 wt 58 L1 R	(801) (801)	TGGCGAGGCTGTCCCGGATGACCTTTATATTAAAGGGTCCGGTAATACTG GTATACT.GCCGTTCC.
58 L1 wt 58 L1 R	(851) (851)	CAGTTATCCAAAGTAGTGCATTTTTTCCAACTCCTAGTGGCTCTATGGTT .TCTCCTCTCCATCTCC
58 L1 wt 58 L1 R	(901) (901)	ACCTCAGAATCACAATTATTTAATAAGCCTTATTGGCTACAGCGTGCACATTGCCACT.GAA.AT
58 L1 wt 58 L1 R	(951) (951)	AGGTCATAACAATGGCATTTGCTGGGGCAATCAGTTATTTGTTACCGTAGCCTCTCAGCCTC.
58 L1 wt 58 L1 R	(1001) (1001)	TTGATACCACTCGTAGCACTAATATGACATTATGCACTGAAGTAACTAAG .CCA.ATCCCGTCC
58 L1 wt 58 L1 R	(1051) (1051)	GAAGGTACATATAAAAATGATAATTTTAAGGAATATGTACGTCATGTTGACCGCCCCCCA.ACC
58 L1 wt 58 L1 R	(1101) (1101)	AGAATATGACTTACAGTTTGTTTTTCAGCTTTGCAAAATTACACTAACTG GCGACCCAT.GTGCCT.G
58 L1 wt 58 L1 R	(1151) (1151)	CAGAGATAATGACATATATACATACTATGGATTCCAATATTTTGGAGGAC .TACCCCCCCTCA
58 L1 wt 58 L1 R	(1201) (1201)	TGGCAATTTGGTTTAACACCTCCTCCGTCTGCCAGTTTACAGGACACATACGTAAATTCCGAC
58 L1 wt 58 L1 R	(1251) (1251)	TAGATTTGTTACCTCCCAGGCTATTACTTGCCAAAAAACAGCACCCCCTACCCTAA.

FIG.1B

58 L1 wt 58 L1 R	(1301) (1301)	AAGAAAAGGAAGATCCATTAAATAAATATACTTTTTGGGAGGTTAACTTA .GACG
58 L1 wt 58 L1 R	(1351) (1351)	AAGGAAAAGTTTTCTGCAGATCTAGATCAGTTTCCTTTGGGACGAAAGTTCTCT.GCACATA
58 L1 wt 58 L1 R	(1401) (1401)	TTTATTACAATCAGGCCTTAAAGCAAAGCCCAGACTAAAACGTTCGGCCCCCGGTT.GGTT.GGA.ATT.
58 L1 wt 58 L1 R	(1451) (1451)	CTACTACCCGTGCACCACCACACGCAAAAAGGTTAAAAAATAA (SEQ ID NO:3: .ACTA.ATGA.AGCGG (SEQ ID NO:1:

FIG.1C

4/10

Synthetic HPV 58 L1 Nucleotide and Amino Acid Sequences.

1	M S V W ATGTCCGTCT G TACAGGCAGA G	GGAGACCATC	CGAAGCTACC		CACCAGTTCC
51		V S T GTCGTCTCCA	D E Y CTGACGAATA	V S R CGTCTCTAGA	T S I Y ACCTCTATCT
101	Y Y A ACTACTACGC T TGATGATGCG A	G S S FGGTTCCTCT	R L L A AGATTGTTGG	V G N CTGTTGGTAA	P Y F CCCATACTTC
151	S I K S TCCATCAAGT C AGGTAGTTCA G	P N N CTCCAAACAA	N K K CAACAAGAAG	V L V P GTCTTGGTTC	K V S CAAAGGTCTC
201	g L Q Y TGGTTTGCAA T	R V F	R V R TCAGAGTCAG	L P D ATTGCCAGAC	P N K F CCAAACAAGT
251	TCGGTTTCCC A	D T S AGACACTTCC	F Y N P	D T Q CAGACACTCA	R L V AAGATTGGTC
301	AGCCAAAGGG T W A C V TGGGCTTGTG T	G L E	I G R	G Q P L	G V G
351	ACCCGAACAC A V S G H TGTCTCTGGT C	I P Y F	N K F	D D T	E T S N
401	ACAGAGACCA G R Y P ACAGATACCC A	A Q P	G S D N	REC	L S M
451	TGTCTATGGG T D Y K Q GACTACAAGC A	CGAGTTGGT T Q L	CCAAGACTGT C L I	TGTCTCTTAC G C K P	AAACAGGTAC P T G
	CTGATGTTCG T E H W G	TTGGGTTAA K G V	CACAAACTAG A C N	CCAACATTCG N N A	GTGGTTGACC A A T D
501		CATTCCCAC L E L	AACGAACATT F N S I	GTTGTTGCGA I E D	CGACGATGGC G D M
551	ACTGTCCACC AT TGACAGGTGG T V D T G		AAGTTGAGGT		

601	GTCGACACTG	GTTTCGGTTG	TATGGACTTC	GGTACCTTGC	AAGCTAACAA
	CAGCTGTGAC	CAAAGCCAAC	ATACCTGAAG	CCATGGAACG	TTCGATTGTT
	S D V	P I D I	C N S	T C K	Y P D Y
651	GTCCGACGTT	CCAATCGACA	TCTGTAACTC	CACCTGTAAG	TACCCAGACT
	CAGGCTGCAA	GGTTAGCTGT	AGACATTGAG	GTGGACATTC	ATGGGTCTGA
	LKM	A S E	P Y G D	SLF	F F L
701	ACTTGAAGAT	GGCTTCTGAA	CCATACGGTG	ACTCCTTGTT	CTTCTTCTTG
	TGAACTTCTA	CCGAAGACTT	GGTATGCCAC	TGAGGAACAA	GAAGAAGAAC
	RREQ	M F V	RHF	F N R A	G K L
751	AGAAGAGAAC	AAATGTTCGT	CAGACACTTC	TTCAACAGAG	CTGGTAAGTT
	TCTTCTCTTG	TTTACAAGCA	GTCTGTGAAG	AAGTTGTCTC	GACCATTCAA
	G E A	V P D D	LYI	KGS	G N T A
801	GGGTGAAGCT	GTTCCAGACG	ACTTGTACAT	CAAGGGTTCT	GGTAACACCG
	CCCACTTCGA	CAAGGTCTGC	TGAACATGTA	GTTCCCAAGA	CCATTGTGGC
	VIQ	SSA	FFPT	PSG	S M V
851	CTGTCATCCA	ATCCTCTGCT	TTCTTCCCAA	CTCCATCTGG	TTCCATGGTC
	GACAGTAGGT	TAGGAGACGA	AAGAAGGGTT	GAGGTAGACC	AAGGTACCAG
	TSES	QLF	N K P	YWLQ	R A Q
901	ACCTCTGAAT	CTCAATTGTT	CAACAAGCCA	TACTGGTTGC	AAAGAGCTCA
		GAGTTAACAA			
	GHN	N G I C	WGN	QLF	V T V V
951		AACGGTATCT			
	TCCAGTGTTG	TTGCCATAGA		GGTTAACAAG	
	DTT	RST	NMTL	CTE	V T K
1001		TAGATCCACT			
	AGCTGTGGTG	ATCTAGGTGA			
	EGTY	K N D	NFK	E Y V R	H V E
1051		ACAAGAACGA			
		TGTTCTTGCT			
		LQFV			
1101		TTGCAATTCG			
		AACGTTAAGC			
		TYI			
1151		GACCTACATC			
		CTGGATGTAG			
		LTP			
1201		GTTTGACTCC		•	
		CAAACTGAGG			
	R F V	T S Q A	I T C	QKT	APPK

1251	CAGATTO	CGTC	ACC.	TCTC	AAG	CTA	ATCA	CCTG	TCA	AAA G	ACT	GCT	CCA	CCAA			
	GTCTAA	GCAG	TGG	AGAG	TTC	GAT	AGT	GGAC	AGT	TTC	TGA	CGA	GGT	GGTT			
	ΕK	Ε	D	Ρ	L	N	K	Y . T	F	W	Ε	٧	N	L			
1301	AGGAAA	AGGA	AGA	CCCA	TTG	AAC	CAAG	TACA	CCT	TCTG	GGA	AGT	CAA	CTTG			
	TCCTTT	ГССТ	TCT	GGGT	AAC	TTG	TTC	ATGT	GGA	AGAC	CCT	TCA	GTT	GAAC			
	KEI	(F	S	Α	D	L	D	Q	F	P L	. G	R	k K	F			
1351	AAGGAAA	AAGT	TCT	CTGC	TGA	СТТ	GGA	CCAA	TTC	CCAT	TGG	GTA	GAA	AGTT			
	TTCCTT	ГТСА	AGA	GACG	ACT	GAA	CCT	GGTT	AAG	GGTA	ACC	CAT	CTT	TCAA			
	LL	Q	S (G L	. K	A	\ K	P	R	L	K	R	S	A P			
1401	CTTGTT	CAA	TCT	GGTT	TGA	AGG	CTA	AGCC	AAG	ATTG	AAG	AGA	TCT	GCTC			
	GAACAA	CGTT			ACT	TCC	GAT	TCGG	TTC	TAAC	TTC	TCT	AGA	CGAG			
	TT	R	Α	Р	S	T	K	R K	K	٧	Κ	K	*	(SEQ	ID	NO:	2)
1451	CAACCA	CTAG	AGC	TCCA	TCC	ACC	CAAG	agaa	AGA	AGGT	CAA	GAA	GTA	A (SEQ	ID	NO:	1)
	GTTGGT	ATC	TCG/	AGGT	AGG	TGG	TTC	TCTT	TCT	TCCA	GTT	CTT	CAT	T (SEO	ID	NO:	10

FIG.2C

7/10

Northern Blot of HPV 58 L1 wt and 58 L1 R transcripts.

FIG.3

8/10

Western Blot Analysis

		10 μg			5 μg		2.5 μ g			
	16	58	58R	16	58	58R	16	58	58R	
	PS/A			~	•					
				i				r		
60 →	William States	dog en mointeith		dimensional sho	deformational		distriction (Mercan security (1774)	<)minimizer	
		·	danna da 🕰							
						•	•.			
42 →				٠						

FIG.4

10/10

Transmission EM of VLPs Composed of HPV 58 L1 R Protein Molecules.

FIG.6