

XR871GT PCB Layout Guide L2

Version 1.0

2017-08-15

Outline

Stack-up

Placement

Routing

Stack-up

- 本Guide主要针对二层板并且单面贴设计,叠层如下图所示。
- PCB具体厚度根据实际情况和阻抗要求适当调整。

层					厚度			
TOP			=====		1.8 (0.5oz+P)	lating)		
		Core			44(mil)			
BOT			=====		1.8 (0.5+Plat	ting)		
完成板厚:1.2(+0.12/-0.12) MM								

Placement (1/2)

- 总体布局如下图所示,整体靠板边放置以使RF线缩短,并保证天线位于板边。
- Flash放在XR871GT的右上角,既保证Flash远离RF,又使得Flash的SPI线尽量短。

Placement (2/2)

- 天线辐射区域尽量保证没有金属器件。
- 高频晶振和RF线尽量分开,防止晶振对RF的干扰。
- WC15和WC17滤波电容靠近WL1管脚放置,其他电容靠近XR871GT相应pin脚。旁路电容 和晶振靠近XR871GT相应pin。

Routing (1/10)

- XR871GT 推荐PCB封装如下图所示;
- 中间需要开窗处理;
- 有均匀的GND过孔以便E-PAD充分连接GND,并改善散热效果。

Routing (2/10)

- RF线需要圆滑不要换层,板载天线和外接天线的0R选择电阻其中一个焊盘进行叠加,如下图 所示。
- 天线的Pi型匹配电路要走顺,并联元件焊盘和走线重合为好。
- XR871GT的ANT pin和Pi匹配之间串联的OR电阻旁可以漏一块GND属性铜皮方便调试天线。

Routing (3/10)

- RF线有完整的参考地,从IC端出来就进行包地处理,两边均匀的打GND过孔。
- RF线的参考地和EPAD需要良好的连接,如下图所示,RF线两边的电源线从TOP层出一段再 换层走线,确保BOT层参考地完整。

Routing (4/10)

- RF线进行50 Ohm阻抗控制,可以参考TOP和BOT层的GND平面,RF线与焊盘宽度一致,阻抗没有突变,如下图所示,两边GND平面和RF线都没有突变。
- 高频晶振靠近XR871GT放置,使HXTAL1和HXTAL2长都小于400mil,电容分别靠近晶振的 HXTAL1和HXTAL2 pin管脚。

Routing (5/10)

- 电源线和信号线可以走TOP和BOT层,参考的GND采用交叉过孔连接,如下图所示,TOP和BOT同时走线时,GND平面利用过孔连接。
- VDD-SENSE输出, VDD14_TX, VDD14_RX, VDD14_DIG电源线保证有较好的交叉连接参考地,否则DCDC电源易对TX有干扰。

Routing (6/10)

- 参考天线尺寸如下图所示,单位mm。

Routing (7/10)

- 高频晶振线两边包地,以降低对电源和RF干扰。
- 低频晶振两边包地,以降低对旁边电源和Flash干扰。

Routing (8/10)

- 参考天线尺寸如下图所示。

L1	3.40 mm
L2	2.46 mm
L3	2.44 mm
L4	1.65 mm
D1	2.03 mm
D2	1.14 mm
D3	0.43 mm

W1	0.50 mm
W2	0.66 mm
H1	7.11 mm
H2	1.04 mm
H3	4.42 mm
H4	2.97 mm

Routing (9/10)

- 如PCB板形状和大小等影响天线性能参数变化,可以通过如下两种方式调整天线:
 - » 改变天线Pi型匹配值。
 - » 改变天线尺寸参数。

注:天线的性能和板大小结构有较大的联系。

- VBAT端最大电流600mA,线宽尽量保持大于25mil。
- SENSE, VLX, VDD14_TX, VDD14_RX, VDD14_DIG端总的最大电流为300mA, 线宽尽量保持大于20mil。

Routing (10/10)

- VDD-3V3电源线最大电流为400mA,线宽尽量保持大于20mil。
- VDD25-EF最大电流40mA,线宽尽量保持大于10mil。
- 建议:为了增加整板地平面的完整性和屏蔽效果,可以在空处增加地过孔。