

Příklad 2 Napište kód v jazyce C pro implementaci filtru z příkladu 1 off-line. Předpokládejte, že vstupní signál je v poli float x[N], výstupní signál uložte do pole float y[N] — tato pole nemusíte deklarovat. Proměnná int N je již naplněna a obsahuje počet vzorků.

 \mathbf{P} říklad 3 Napište impulsní odezvu h[n] filtru z příkladu 1.

Viz A. 1 0,3 0,1

 \mathbf{P} říklad 4 Filtrem z příkladu 1 filtrujte zadaný vstupní signál x[n]. Výsledek zapište do tabulky.

n	-2	-1	0	1	2	3	4	5
x[n]	0	0	1	-1	1	0	0	0
y[n]	0	0	1	-0,7	0,8	0,2	0,1	0

Příklad 5 Impulsní odezva filtru je 100 vzorků dlouhá. Pro $n \in 0...99$ je dána jako $h[n] = \sin(\pi \frac{1}{100}n)\cos(2\pi \frac{6}{100}n)$ a je zobrazena na obrázku. Odhadněte, jak budete vypadat frekvenční charakteristika takového filtru a buď ji popište slovně nebo nakreslete. Vzorkovací frekvence je $F_s = 10$ kHz.

Příklad 6 Napište vztah pro diskrétní cosinusovku x[n], která za N=400 vzorků vykoná čtyři periody.

 $x[n] = \cos(2\pi \frac{4}{400} n)$

Příklad 7 Na obrázku jsou neznámý signál x[n] a báze (nebo analyzační signál) a[n], oba o délce N=100. Určete hodnotu koeficientu $c=\sum_{n=0}^{N-1}x[n]a[n]$.

- Sirvas

10

Příklad 8 Nakreslete průběh reálné a imaginární složky komplexní exponenciály $a[n] = e^{-j2\pi \frac{k}{N}n}$ pro N = 100 a k = 2 v závislosti na n. Můžete kreslit do jednoho obrázku nebo do dvou. Kreslete jako

Příklad 9 V Matlabu je definován počet vzorků N a vzorkovací frekvence Fs. Doplňte kód tak, aby se spektrum signálu zobrazilo se správnou frekvenční osou v Hertzích.

X = fft(x);

viz A

plot (f,abs(X));

Příklad 10 Provádíme výpočet spektra pomocí diskrétní Fourierovy transformace. Počet vzorků je N=1024, vzorkovací frekvence je $F_s=64$ kHz. Zajímá nás frekvence 19 kHz. Který koeficient X[k] budeme zobrazovat ?

k = 304

19.16