## 1 Computation

Given a set of physicians  $\{(V_j, \tau_j, R_j(\cdot), P_j(\cdot))\}_{j=1}^J$ , the distribution functions for patient parameters  $F(\kappa)$  and  $G(\gamma)$ , and one search model parameter z, which is  $\lambda$  in the Logit model,  $\beta$  in the sequential model, we develop an algorithm to compute market equilibrium.

Equilibrium aggregates are computed on the basis of Monte-Carlo matrix calculus. Set J as the number of physicians I, I as the size of the sample drawn randomly from  $F(\kappa)$  and  $G(\gamma)$ . For both models we define a class which can output a matrix S where each column is a patient's strategy vector  $S_i$  following that model, when given as input the arrayed set of physicians' quality and visit cost  $\{(V_j, \tau_j)\}_{i=1}^J$ , an arrayed set of patients  $(\{(\kappa_i, \gamma_i)\}_{i=1}^I$ , the model parameter z and a given vector of physician strategies  $\{\bar{\kappa_j}\}_{j=1}^J$ .

We input as "patients" our I samples from  $F(\kappa)$  and  $G(\gamma)$ , then a  $J \times I$  matrix U is computed, where each component  $u_{ji}^2$  corresponds to the utility the sampled patient i would get from a visit to physician j. This step is the same for both classes.

What differs between both models is the computation of the matrix S of patient strategis out of the utility matrix U:

- Implicit search model (Logit): First, an ' $\alpha$ -matrix' is calculated over matrix U, where each  $\alpha_{ji}$  is  $e^{\lambda u_{ji}}$  if  $u_{ji} > 0$  and 0 if not. Then, for each patient i, that is, for each column, each component  $s_{ji}$  of the S matrix is evaluated as  $\alpha_{ji}/\sum_{k=1}^{J} \alpha_{ki}$ .
- Explicit search model (Sequential): Recall equation (NUMBER) characterizing patient thresholds. We first compute the I-dimensional vector of the sampled patients' respective  $\bar{U}_i$ . Define  $U_i$  as the set  $\{u_{ji}\}_{j=1}^J$  of utility patient i recieves from a visit to each physician. In matrix terms  $U_i$  would be the ith column of the  $J \times I$  matrix U. The operation to compute each  $\bar{U}_i$  is the following:

$$\bar{U}_i \equiv \underset{x \in U_i}{\operatorname{arg\,min}} \left\| x - \frac{\beta}{1 - \beta} \sum_{i=1}^J \left\{ \frac{\mathbb{1}[u_{ij} \ge x] \cdot (u_{ij} - x)}{\mathbb{1}[u_{ij} \ge x]} \right\} \right\| \tag{1}$$

where the norm  $\|\cdot\|$  is defined in  $\mathbb{R}$  as simply the absolute value  $|\cdot|$ . This is to say, for each sampled patient i we evaluate x for each  $u_{ji}$  in  $U_i$ . In plain words, if patient i where to say: "I will only visit physicians which grant me at least as much utility as physician j", the optimal choice of j and its respective  $u_{ji}$  would be the minimal in  $U_i$  for the evaluation of the absolute value in the left-hand

<sup>&</sup>lt;sup>1</sup>Or, as we'll later interpret it, as the number of bins, where each bin j is a unique combination of  $(V_j, \tau_j, R_j(\cdot), P_j(\cdot))$ .

<sup>&</sup>lt;sup>2</sup>As we have defined our matrices  $J \times I$  for ease of visualization, we will refer to matrix components as  $x_{ji}$  in this section rather than  $x_{ij}$  as we do elsewhere in the paper.

side of (1). This is computationally less intensive than seeking to compute the exact root of (NUMBER), which would be a redundant exercise, because there's a discrete number of physicians above that mark, and selecting instead to use 'the lowest  $u_{ji}$  above the root of (NUMBER)' as threshold instead of the root proper would result in the same vector of strategies  $S_i$  for each patient.<sup>3</sup>

<sup>&</sup>lt;sup>3</sup>Granted, this is not strictly true, as in our formulation a ' $u_{ji}$ ' may be selected as threshold which is actually below the root proper in  $\mathbb{R}$ , but closer to it than the first one above it. The effect of this 'estimation noise' on our overall results is negligible.



Figure 1: Coefficient  $\beta_t$  of  $log\_trade$  over  $log\_distance$  over the years, including FEs



Figure 2: Comparison of Coefficient  $\beta_t$  of  $log\_trade$  over  $log\_distance$  over the years, including FEs