No of Pages Course Code: 15XW43

Roll No:

(To be filled in by the candidate)

PSG COLLEGE OF TECHNOLOGY, COIMBATORE - 641 004

SEMESTER EXAMINATIONS, APRIL 2017

MSc - SOFTWARE SYSTEMS Semester: 4

15XW43 OPTIMIZATION TECHNIQUES

Time: 3 Hours **Maximum Marks: 100**

INSTRUCTIONS:

- 1. Answer **ALL** questions from GROUP–I.
- 2. Answer any **FOUR** questions from GROUP-II.
- 3. Answer any **ONE** question from GROUP III.
- 4. Ignore the box titled as "Answers for Group III" in the Main Answer Book.
- 5. Graph sheets shall be provided.

GROUP - I Marks: $10 \times 3 = 30$

- 1. Under what circumstances the condition f'(x) = 0 cannot be used to find the maximum or minimum of the function f(x)?
- 2. What is a convex programming problem? What is its significance?
- 3. What are artificial variables in linear programming problem (LPP)? What is their use?
- 4. What is an assignment problem? How do you interpret it as a linear programming model?
- Distinguish between decision under risk and decision under uncertainty in decision making.
- How is "utility" a superior criterion as compared to expected value criterion in decision theory?
- 7. What is a multi-stage decision problem? Give an example.
- 8. How can you estimate the area of the lake in Fig.1 using Monte-Carlo method? Just state the procedure. No need to find the area.

- 9. What is meant by discrete event simulation?
- 10. What is the difference between Dichotomous method and Golden section method for solving non-linear programming problem?

GROUP - II

- Marks: $4 \times 12.5 = 50$
- 11. Minimize $f(x_1, x_2) = (x_1 4)^2 + (x_2 4)^2$ subject to the constraints $x_1 + x_2 \le 4$ and $x_1 + 3x_2 \le 9$, using Kuhn-Tucker conditions.
- 12. A construction contractor estimates that the size of the work force needed over the next 5 weeks will be 6, 5, 3, 6, and 8 respectively. Excess labor kept will cost '300 per worker per week and new hiring in any week will incur a fixed cost of `400 plus `200 per worker.

No of Pages :2 Course Code : 15XW43

Use dynamic programming technique to find the policy that minimizes total costs. Initially no workers are available.

- 13. a) You are the author of what promises to be a successful novel. You have the option to either publish the novel yourself or use a publisher. The publisher is offering you \$20,000 for signing the contract. If the novel is successful, it will sell 200,000 copies. Otherwise, it will sell only 10,000 copies. The publisher pays a \$1 royalty per copy. A market survey by the publisher indicates that there is a 70% chance that the novel will be successful. If you publish yourself, you will incur an initial cost of \$90,000 for printing and marketing, but each copy sold will net you \$2. Based on the given information, would you accept the publisher's offer or publish the book yourself? [5]
 - b) Consider the decision problem in (a). Suppose that you contract a literary agent to conduct a survey concerning the potential success of the novel. From past experience, the agent advises you that when a novel is successful, the survey will predict the wrong outcome 20% of the time. When the novel is not successful, the survey will give the correct prediction 85% of the time. How would this information affect your decision? [7.5]
- 14. a) Explain the Acceptance-rejection method for generating successive random samples from a probability distribution for simulation. [5]
 - b) A military equipment is to be transported from origins O₁, O₂, and O₃ to destinations D₁, D₂, D₃, and D₄. The supply at the origins, the demand at the destinations, and the time required for shipment are given as in Table.1. Work out a transportation plan in order to minimize the total time required for shipment. [7.5]

Table.1

	-6	W_1	W_2	W_3	W_4
	A	10	22	0,5	22
-	В	15	20	12	8
	С	20	12	10	15
٠	Demand	5	(11	8	8

15. Using Steepest ascent method, solve the nonlinear programming problem:

Maximize $f(x_1, x_2) = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$, starting with initial point $X_0 = (1, 1)$. Carry out at most six iterations.

GROUP - III Marks: $1 \times 20 = 20$

Supply

13

11

- 16. a) A company produces two products A and B on two machines M_1 and M_2 . One unit of product A requires 2 hours on M_1 and 1 hour on M_2 , while product B requires 1 hour on M_1 and 3 hours on M_2 . The revenue per unit of products A and B are 30\$ and 20\$ respectively. The total daily processing time available for each machine is 8 hours. Formulate this problem as an LPP and solve it using simplex method. [14]
 - b) For the problem in (a), using graphical method, perform the following sensitivity analysis: (i) Determine the range of the ratio c_1/c_2 that will keep the optimum unchanged; (ii) Find the optimality ranges for c_1 and c_2 , assuming that the other coefficient is kept constant at its present value.

Note: c_1 and c_2 are coefficients in the objective function of the LPP. [6]

17. a) Using artificial variables technique, solve the LPP:

Maximize $z=6x_1+4x_2$ subject to $2x_1+3x_2\leq 30$, $3x_1+2x_2\leq 24$, $x_1+x_2\geq 3$, and x_1 , $x_2\geq 0$. [14]

ps^GTECH of Pages :2

Course Code : 15XW43

b) Verify the solution obtained for the LPP in (a) by solving it using graphical method. [6] PSG TECH PSG PP in (a) b
/END/
PSG TECH
PSG TECH
PSG TECH
PSG TECH PSG

PSG TECH PSG

PSG TECH PSG