Name: Motwkel Mhmoud Mohmed

NIM: L200184220

Class: X

Experiment 1

- 1. Make and simulate the NOR latch!
- 2. Based on your simulation, fill the blanks!

	S	R	Output		
	S		Q	Q'	
1	0	1	0	1	
2	0	0	0	1	
3	1	0	1	0	
4	0	0	1	0	
5	1	1	0	0	

- 3. Answer the following questions!
 - a. What will happen if the condition given was S = R = 0?

The output value depends on the output in the previous condition

Why the condition S = R = 1 is not allowed?

Because the output of this condition will be Q = Q' = 0 (Q can't be the same with Q')

Experiment 2

1. Make and simulate the NAND latch!

2. Based on your simulation, fill the blanks!

	C	R	Output		
	S		Q	Q'	
1	0	1	1	0	
2	1	1	1	0	
3	1	0	0	1	
4	1	1	0	1	

- 3. Answer the following questions!
 - a. What will happen if we gave the S = R = 1 condition?

The output value depends on the output in the previous condition

b. Why the condition S = R = 1 is not allowed?

Because the output of this condition will be Q = Q' = 1 (Q can't be the same with Q')

4. Based on the flip-flop circuit above, what's your opinion about "Flip-flop and latch are used to data storing element"

True, because it can memorize / save the state / condition value when asked (use the Reset switch)

Experiment 3

1. Make and simulate the RS Flip-flop!

2. Based on your simulation, fill the blanks!

	S	R CLO	S D CLOCK	Output		tput
	۵	K	R CLOCK	Q	Q'	
1	0	0	0	-	-	
2	0	0	1	-	-	
3	0	1	0	-	-	
4	0	1	1	0	1	
5	1	0	0	0	1	
6	1	0	1	1	0	
7	1	1	0	1	0	
8	1	1	1	0	0	

- 3. Answer the following questions!
 - a. What will happen if the condition S = R = 1 was given and the clock changes from 1 to 0?

Error will occur; "Logic race condition detected during transient analysis"

b. How was that happened?

The flip-flop saved the wrong value, Q = Q(t+1) = 0

4. Explain how the RS Flip-flop works!

Clock will lock / store / save the previous output condition whenever the clock was turned from 1 to $\boldsymbol{0}$

Experiment 4

1. Make and simulate the D Flip-flop

2. Based on your simulation, fill the blanks!

	D	CLOCK	Output		
	D	CLOCK	Q	Q(t+1)	
1	0	0	-	-	
2	0	1	0	1	
3	1	0	0	1	
4	1	1	1	0	
5	0	0	1	0	
6	0	1	0	1	
7	1	0	0	1	
8	1	1	1	0	

- 3. Explain how does D Flip-flop works!

 D Flip-flop have 1 condition input only. Clock is used to store / lock the previous output condition.
- 4. What is the function of the NOT gate?

 RS Flip-flop has 2 condition input that determine each other output values (Q and Q'), meanwhile D Flip-flop only has one. So the NOT gate is used to make all the output (Q and Q') has a different value.

Experiment 5

1. Make and simulate the JK Flip-flop!

2. Based on your simulation, fill the blanks!

	т	K	CLOCK	Output	
	J			Q	Q(t+1)
1	0	0	0	0	1
2	0	0	1	0	1
3	0	1	0	0	1
4	0	1	1	0	1
5	1	0	0	1	0
6	1	0	1	1	0
7	1	1	0	0	1
8	1	1	1	0	1

- 3. Answer the following questions!
 - a. What will happen if J = K = 0, and the clock rise up (change from 0 to 1)?

Clock will lock / store / save the previous output condition

b. What will happen if J = K = 1 and the clock rises up? The flip-flop can be adjusted or reset.

4. Explain how JK flip-flop works!

J and K are control inputs that determine whatever the flip-flop is going to do when receiving increased clock pulse. The RC circuit has short time constants that transform the clock pulse into narrow impulses.