ACEMFS FUT Minna Bioinformatics Workshop

Sequence Retrieval & Quality Control using Galaxy

Itunuoluwa Isewon PhD
Covenant University

Workshop Outline

By the end of this session, participants will be able to:

- Retrieve sequences of mycotoxins & fungal enzymes from databases.
- Upload & organize datasets in <u>Galaxy</u>.
- Perform QC using Galaxy tools (<u>FastQC</u>)

Introduction to Galaxy

- Web-based platform for bioinformaticians.
- No coding required.
- Supports reproducible research.
- Widely used for genomics, proteomics and transcriptomics analysis.

NCBI Exploration:

- 1. Go to NCBI
- 2. In the search bar, paste the **Icc9** gene.
- 3. Click on the dropdown arrow next to the search bar and select **Nucleotide**.
- 4. Click the search button.

- Sequence Retrieval
- 5. On the results page click the **first hit**.
- 6. What is the name of the **organism**?
- 7. How many **base pairs** does it have?
- 8. What is its accession and version numbers?

- 9. On the right, click on the dropdown arrow next to Send to:
- 10. Select file under, Choose **Destination**.
- 11. Change the format to **FASTA**
- 12. Click on Create File to download the FASTA File.
- 13. Repeat this process for a gene interesting to you.

BLAST

- BLAST stands for Basic Local Alignment Search Tool.
- It identifies similarities between biological sequences by comparing nucleotide or protein sequences to a database of sequences.

BLAST

- BLASTn (Nucleotide BLAST): compares one or more nucleotide query sequences to a subject nucleotide sequence or a database of nucleotide sequences.
- BLASTx (translated nucleotide sequence searched against protein sequences): compares a nucleotide query sequence that is translated in six reading frames against a database of protein sequences.
- And many others.

BLAST

- 1.Choose blastn.
- 2.Paste the accession number **EF990898.1** in the Enter Query Sequence box.
- 3. Select **Nucleotide collection nr/nt** under Database in Choose Search Set section.
- 4. Under Program Selection choose Highly similar sequences (megablast).
- 5. Set the max target sequences under General Parameters to 50.
- 6. Click the **BLAST** button.

Important update

The ClusteredNR database is now the default Protein BLAST database. Learn more about ClusteredNR

Alignments

Taxonomy

Summary

Descriptions

▼ Next ▲ Previous ≪ Descriptions

Fusarium acuminatum isolate 1A chromosome 5

Sequence ID: CP151264.1 Length: 4969144 Number of Matches: 2

Range	1:	2399923	to	2402423	GenBank	Graphics
-------	----	---------	----	---------	---------	----------

▼ Next Match	Previous I	Match
--------------	------------	-------

Score 1760 bits(953)		Expect 0.0	Identities 2013/2530(80%)	Gaps 51/2530(2%)	Strand Plus/Minus	
Query	986	TTTGCTGCCC	GCGGCGTTAGCTGCGACGG	TGTCTTATGACTTTTCTA	TTGATTGGGTTCG	1045
Sbjct	2402423	TTTGATGCCG	GCGGCTTTGGCTGCTACGG	TGTCTTATGATTTCACTA	TTGAATGGGTCAG	2402364
Query	1046	AGCAAATCCA	AGATGGCGCGTTTGAGAGGTG	CGACGATAGGCATTAATA	GAGAGTGGCCGAT	1105
Sbjct	2402363	AGCGAATCCT	TITITITI TITITITI	TACGATTGGCATCAATG	GGCGGTGGCCGAT	2402304
Query	1106	ACCGAGGATT	GAAGCGAGTATTGGGGATAG	CGGTTTTGGTTTATGTGA	GGAATAATTTGGG	1165
Sbjct	2402303	TCCCAGGATO		 CGATTTTGGTGAATGCGA	GGAATAATCTGGG	2402244
Query	1166	GAATCAGTCT	ACGAGTTTGCATTTTCATG	GGCTTTTCATGAATGGCT	CGAATCATATGGA	1225
Sbjct	2402243	GAATCAGTC	CACGTCGTTGCATTTTCACG	 GTCTGTTTATGAATGGTT	CAAACCATATGGA	2402184
Query	1226	TGGGCCGTCG	CAGGTTACGCAGTGCCCTA	TTCAACCTGGAGAGTCAT	TTCTCTATAACTT	1285
Shict	2/02103	Tececcetce	CAAGTGACGCAATGTCCAA		TCCTCTATAACTT	2402124

Obtain **FASTQ** files:

- 1. Go to Galaxy
- 2. In the tool Bar, click on Get Data
- 3. Choose "Faster Download and Extract Reads in FASTA/Q format from NCBI SRA".
- 4. In the Accession tab, write the accession number of the fastq file: SRR18453616.

4

Perform **QC**:

- 1. On the search bar, type **fastqc**.
- 2. Choose the desired fastq file (paired end) in the raw read tab.
- 3. Leave all other tabs unchanged.

- 4
- 4. Once it runs, two files are generated, a raw data file and a Web Page file.
- 5. View the result by clicking on the web page file produced.

Quality Control Result

Summary

- Basic Statistics
- Per base sequence quality
- Per sequence quality scores
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels

Quality Control (MultiQC)

Why: It helps us to obtain a more intuitive comparison

- 1. On the search bar, type multiqc
- 2. On the "Which tool was used generate logs?" tab, choose **Fastqc**
- 3. Then click on "Insert FastQC output"

Quality Control (MultiQC)

- 4. Type of output is raw data
- 5. Add the raw data files generated earlier
- 6. **Leave** all other parameters at default
- 7. Run tool
- 8. **View** the result by clicking on the web page file produced

Quality Control (MultiQC)

Quality Control Result

Why QC is Important

- Ensures data integrity before downstream analysis.
- Detects contamination, errors, or poor-quality sequences.
- Prevents misleading results.

Why QC is Important

- Ensures data integrity before downstream analysis.
- Detects contamination, errors, or poor-quality sequences.
- Prevents misleading results.