Probability and Random Process (SWE3026)

Multiple Random Variables

JinYeong Bak
jy.bak@skku.edu
College of Computing, SKKU

H. Pishro-Nik, "Introduction to probability, statistics, and random processes", available at https://www.probabilitycourse.com, Kappa Research LLC, 2014.

- 1) Union Bound and its Extensions
- 2) Markov and Chebyshev's Inequalities
- 3) Chernoff Bounds
- 4) Cauchy-Schwarz Inequality
- 5) Jenson's Inequality

Usefulness:

- 1) Generality
- 2) When exact computation is not possible.

Remember:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\leq P(A) + P(B).$$

More generally:

$$P(A \cup B \cup C \cup \cdots) \leq P(A) + P(B) + P(C) + \cdots$$

The Union Bound

For any events $A_1, A_2, ..., A_n$, we have

$$P\Big(\bigcup_{i=1}^n A_i\Big) \leq \sum_{i=1}^n P(A_i).$$

Example. Random Graphs: G(n, p).

n: The number of nodes

P: Probability of connection between two nodes (independent from other edges).

Example. Let B_n be the event that a graph randomly generated according to G(n,p) model has at least one isolated node (a node that is not connected to any other nodes). Show that

$$P(B_n) \le n(1-p)^{n-1}.$$

b) And conclude that for any $\,\epsilon>0$, if $\,p=p_n=(1+\epsilon)rac{\ln(n)}{n}\,\,$ then

$$\lim_{n\to\infty}P(B_n)=0.$$

It is an interesting exercise to calculate $P(B_n)$ exactly using the inclusion-exclusion principle:

$$Pigg(igcup_{i=1}^n A_iigg) = \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i \cap A_j) \ + \sum_{i < j < k} P(A_i \cap A_j \cap A_k) - \cdots + (-1)^{n-1} Pigg(igcap_{i=1}^n A_iigg).$$

Generalization of the Union Bound: Bonferroni Inequalities

For any events $A_1, A_2, ..., A_n$, we have

$$\begin{split} P\Big(\bigcup_{i=1}^n A_i\Big) &\leq \sum_{i=1}^n P(A_i); \\ P\Big(\bigcup_{i=1}^n A_i\Big) &\geq \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i \cap A_j); \\ P\Big(\bigcup_{i=1}^n A_i\Big) &\leq \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k). \\ \vdots \end{split}$$

Markov's Inequality

If X is any nonnegative random variable, then

$$P(X \ge a) \le \frac{EX}{a}$$
, for any $a > 0$.

Let X be any positive continuous random variable, we can write

$$EX = \int_0^\infty x f_X(x) dx \geq \int_a^\infty x f_X(x) dx$$
 (for any $a>0$ and $x>a$) $\geq \int_a^\infty a f_X(x) dx = a \underbrace{\int_a^\infty f_X(x) dx}_{P(X \geq a)}$

$$\Rightarrow P(X \ge a) \le \frac{EX}{a}$$
, for any $a > 0$.

Chebyshev's Inequality

If X is any random variable, then for any $\,b>0$, we have

$$P(|X - EX| \ge b) \le \frac{Var(X)}{b^2}$$
.

Let X be any random variable. If $Y=(X-EX)^2$, then Y is a nonnegative random variable.

$$P(Y \geq b^2) \leq rac{EY}{b^2} = rac{ ext{Var}(X)}{b^2},$$

$$Pig((X-EX)^2 \ge b^2ig) = Pig(|X-EX| \ge big).$$

Chernoff Bounds

$$P(X \ge a) \le e^{-sa} M_X(s)$$
, for all $s > 0$

$$P(X \le a) \le e^{-sa} M_X(s)$$
, for all $s < 0$

For s>0 , we can write

$$P(X \ge a) = P(e^{sX} \ge e^{sa})$$
 $\leq \frac{E[e^{sX}]}{e^{sa}}, \quad ext{by Markov's inequality.}$ $= \frac{M_X(s)}{e^{sa}}$

Comparison between Bounds

Let's find upper bounds on $P(X \ge \alpha n)$ for $X \sim Binomial(n, p)$ where $p = \frac{1}{2}$, $\alpha = \frac{3}{4}$.

- 1) Markov Inequalities $P(X \ge a) \le \frac{EX}{a}$, for any a > 0.
- 2) Chebyshev's Inequalities $P(|X-EX| \geq b) \leq rac{Var(X)}{b^2}$.
- 3) Chernoff Bounds $P(X \ge a) \le e^{-sa} M_X(s), \quad \text{for all } s > 0$

Cauchy-Schwarz Inequality

For any two random variables $oldsymbol{X}$ and $oldsymbol{Y}$, we have

$$|EXY| \leq \sqrt{E[X^2]E[Y^2]},$$

where equality holds if and only if X=lpha Y, for some constant $lpha\in\mathbb{R}$.

$$|\rho(X,Y)| \leq 1$$
:

assuming
$$EX = EY = 0$$

$$|
ho(X,Y)| = \left|rac{ ext{Cov}(X,Y)}{\sqrt{ ext{Var}(X) ext{Var}(Y)}}
ight| = \left|rac{EXY}{\sqrt{E[X^2]E[Y^2]}}
ight| \leq 1$$

$$\Rightarrow |EXY| \leq \sqrt{E[X^2]E[Y^2]}.$$

Jensen's Inequality

Remember

$$Var(X) = EX^2 - (EX)^2 \ge 0 \implies EX^2 \ge (EX)^2.$$

If
$$g(x) = x^2$$
,

$$E[g(X)] \ge g(E[X]).$$

Jensen's Inequality

$$\Rightarrow \text{ Convex}: \frac{g(x) + g(y)}{2} \ge g(\frac{x+y}{2})$$

Definition. Consider a function $g:I o\mathbb{R}$, where I is an interval in \mathbb{R} . We say that g is a convex function if, for any two points x and y in I and any $lpha\in[0,1]$, we have

$$g(\alpha x + (1 - \alpha)y) \le \alpha g(x) + (1 - \alpha)g(y).$$

We say that g is concave if

$$g(\alpha x + (1 - \alpha)y) \ge \alpha g(x) + (1 - \alpha)g(y).$$

Jensen's Inequality

If g(x) is a convex function on R_X , and E[g(X)] and g(E[X]) are finite, then

$$E[g(X)] \ge g(E[X]).$$

A twice-differentiable function $g:I o\mathbb{R}$ is convex if and only if $g''(x)\geq 0$ for all $x\in I.$