The μ -calculus' collapse on variations of S5

Leonardo Pacheco *TU Wien*

June 6, 2023

Available at: leonardopacheco.xyz/slides/lc2023.pdf

μ -CALCULUS

μ -calculus = modal logic + fixed points

$$\varphi := P \mid X \mid \bot \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \varphi \rightarrow \varphi \mid \Box \varphi \mid \Diamond \varphi \mid \mu X.\varphi \mid \nu X.\varphi$$

Example

$$\nu X.P \wedge \Diamond \mu Y.(X \vee \Diamond Y)$$

holds at M, w iff there is a path starting from w where P holds infinitely many times.

ALTERNATION HIERARCHY

Let Σ_n^{μ} be the set of formulas with n-many alternating least and greatest fixed-point operators and starting with μ .

Theorem (Bradfield)

For all n, there is a μ -formula in Σ_{n+1}^{μ} which is not equivalent to any formula in Σ_n^{μ} .

Theorem (Alberucci, Facchini)

Over equivalence relations, every μ -formula is equivalent to a modal formula.

SEMANTICS

Fix a Kripke model $M = \langle W, R, V \rangle$. Given $\varphi(X)$ where X is positive, define

$$\Gamma_{\varphi}: A \mapsto \|\varphi(A)\|.$$

Then

- ▶ $\|\mu X.\varphi\|$ is the least fixed-point of Γ_{φ} .
- ▶ $\|\nu X.\varphi\|$ is the greatest fixed-point of Γ_{φ} .

The evaluation game $\mathcal{G}(M, w \models \varphi)$

- ► Two players: Verifier and Refuter.
- ▶ Positions are of the form $\langle v, \psi \rangle$ with:
 - $\triangleright v \in W$,
 - $\blacktriangleright \ \psi \in \operatorname{Sub}(\varphi).$
- ▶ Game starts at $\langle w, \varphi \rangle$
- ► Some types of play:
 - ▶ at $\langle v, P \rangle$, V wins iff $v \in V(P)$.
 - ▶ at $\langle v, \psi_0 \lor \psi_1 \rangle$, V chooses one of $\langle v, \psi_0 \rangle$ and $\langle v, \psi_1 \rangle$.
 - ightharpoonup at $\langle v, \Box \psi \rangle$, R moves to $\langle v', \psi \rangle$ with vRv'.
 - ightharpoonup at $\langle v, \mu X. \psi \rangle$, move to $\langle v, \psi \rangle$.
 - ightharpoonup at $\langle v, \psi \rangle$, move to $\langle v, \mu X. \psi \rangle$.
- ▶ V wins a play iff the outermost infinitely often regenerating operator is ν .

Theorem

V wins $G(M, w \models \varphi)$ iff $M, w \models \varphi$.

Intuitionistic semantics for \$5

An intuitionistic Kripke model is a tuple $M = \langle W, \preceq, \equiv, V \rangle$ where

- ► *W* is a set of worlds;
- $ightharpoonup \leq$ is reflexive and transitive relation on *W*;
- ightharpoonup \equiv is an equivalence relation on W;
- ► *V* is a valuation function.

Furthermore, we require:

- ▶ $w \leq w'$ and $w \in V(P)$ imply $w' \in V(P)$;
- $w \leq w'$ and $w \equiv v$ imply there is v' such that $v \leq v'$ and $w' \equiv v'$;
- $w \equiv w' \leq v'$ implies there is v such that $w \leq v \equiv v'$.

SEMANTICS

The modal semantics are defined as follows:

- ► $M, w \models \Diamond \varphi$ iff, for all $v \succeq w$, there is $u \equiv v$ such that $M, u \models \varphi$;
- ► $M, w \models \Box \varphi$ iff, for all v and u, if $w \leq v \equiv u$ then $M, u \models \varphi$.

Theorem (Ono, Fischer Servi)

IS5 is complete over birelational models $M = \langle W, \preceq, \equiv, V \rangle$, where \equiv is an equivalence relation.

KEY LEMMA FOR S5

Lemma

Let $M = \langle W, R, V \rangle$ be an S5 model, w' be accessible from w, φ be a μ -formula, and $\Delta \in \{\Box, \Diamond\}$. Then $w \in \|\Delta \varphi\|^M$ iff $w' \in \|\Delta \varphi\|^M$.

Theorem (Alberucci, Facchini)

 $\mu X.\varphi$ is equivalent to $\varphi(\varphi(\bot))$.

Intuitively, given a long enough game on an S5 frame:

$$\cdots \rightarrow \langle w, \Diamond \psi \rangle \rightarrow \cdots \rightarrow \langle w', \Diamond \psi \rangle \rightarrow \cdots$$

then V wins at $\langle w, \Diamond \psi \rangle$ iff they win at $\langle w', \Diamond \psi \rangle$.

KEY LEMMA FOR IS5

This lemma does not hold on intuitionistic semantics, but we can get a good enough version:

Lemma

Let $M = \langle W, \prec, \equiv, V \rangle$ be a bi-relational model and $w \prec \equiv w'$. Then

$$M, w \models \triangle \varphi \text{ implies } M, w' \models \triangle \varphi,$$

where $\triangle \in \{\Box, \Diamond\}$.

- ► Suppose $w \leq :\equiv w'$ and $M, w \models \Diamond \varphi$.
- ► For all $v \succeq w$, there is $u \equiv v$ such that $M, u \models \varphi$.
- ▶ Let $v' \succeq w'$, then:

$$w \longrightarrow \cdots \longrightarrow w' \longrightarrow v'$$

- ► Suppose $w \leq :\equiv w'$ and $M, w \models \Diamond \varphi$.
- ▶ For all $v \succeq w$, there is $u \equiv v$ such that $M, u \models \varphi$.
- ▶ Let $v' \succeq w'$, then:

- ► Suppose $w \leq \equiv w'$ and $M, w \models \Diamond \varphi$.
- ► For all $v \succeq w$, there is $u \equiv v$ such that $M, u \models \varphi$.
- ▶ Let $v' \succeq w'$, then:

- ► Suppose $w \leq :\equiv w'$ and $M, w \models \Diamond \varphi$.
- ► For all $v \succeq w$, there is $u \equiv v$ such that $M, u \models \varphi$.
- ▶ Let $v' \succeq w'$, then:

- ▶ Suppose $w \leq :\equiv w'$ and $M, w \models \Diamond \varphi$.
- ► For all $v \succeq w$, there is $u \equiv v$ such that $M, u \models \varphi$.
- ▶ Let $v' \succeq w'$, then:

▶ So $M, w' \models \Diamond \varphi$.

THE COLLAPSE

- ▶ Suppose $M, w \models \varphi(\varphi(\top))$ and $M, w \not\models \varphi(\varphi(\varphi(\top)))$.
- ▶ Play games for both $\varphi(\varphi(\top))$ and $\varphi(\varphi(\varphi(\top)))$ simultaneously.
- ▶ Write φ as $\theta(\triangle \psi(X))$.
- ► Eventually, the players will reach positions as follows:

$$\mathcal{G}(M, w \models \varphi(\varphi(\top))) :
\cdots \to \langle w', \triangle \psi(\varphi(\top)) \rangle \to \cdots \to \langle w'', \triangle \psi(\top) \rangle
\mathcal{G}(M, w \models \varphi(\varphi(\varphi(\top)))) :
\cdots \to \langle w', \triangle \psi(\varphi(\varphi(\top))) \rangle \to \cdots \to \langle w'', \triangle \psi(\varphi(\top)) \rangle$$

- ▶ By the key lemma, $M, w'' \models \triangle \psi(\varphi(\top))$; since $w' \preceq ;\equiv w''$ and $M, w' \models \triangle \psi(\varphi(\top))$.
- ► Therefore $\|\varphi(\varphi(\top))\| = \|\varphi(\varphi(\varphi(\top)))\|$.

Parity game: $\mathcal{P} = \langle V_{\exists}, V_{\forall}, v_0, E, \Omega \rangle$

- ▶ Two players: \exists and \forall
- ▶ Positions on the graph $\langle V_\exists \cup V_\forall, E \rangle$
- ▶ Game starts at v_0 .
- ▶ \exists moves at nodes of V_{\exists} .
- ▶ \forall moves at nodes of V_{\forall} .
- ▶ $\Omega: V_{\exists} \cup V_{\forall} \rightarrow n$ assigns parities to nodes.
- ▶ \exists wins $\rho = v_0, v_1, v_2, ...$ iff the greatest $\Omega(v_i)$ which appears infinitely often in ρ is even.

EVALUATION GAMES AS KRIPKE MODELS

WINNING REGION FORMULAS

Bradfield described W_n , which defines the winning region for \exists in parity games with $\Omega(v) \le n$:

$$W_n := \eta X_n \dots \nu X_0. \bigvee_{0 \le j \le n} [(P_j \wedge P_{\exists} \wedge \Diamond X_j) \vee (P_j \wedge P_{\forall} \wedge \Box X_j)].$$

Theorem (Bradfield)

Let $n \in \omega$, then W_n is not equivalent to any formula in $\Sigma_n^{\mu} \cup \Pi_n^{\mu}$. Therefore the alternation hierarchy is strict (over K).

Proof sketch.

- ▶ Let *n* be even. Then $W_n \in \Pi_{n+1}^{\mu}$.
- Suppose that W_n is equivalent to some formula in Π_n^{μ} . Let $\varphi \in \Sigma_n^{\mu}$ be equivalent to $\neg W_n$.
- ▶ Define $f_{\varphi}(M, w) = (\mathcal{G}^{K}(M, w \models \varphi), \langle w, \varphi \rangle).$
- ▶ Let (M, w) be a fixed-point of $f_{\varphi \land \varphi}$. Then

$$M, w \models \neg W_n \iff M, w \models \varphi \land \varphi$$
$$\iff f_{\varphi \land \varphi}(M, w) \models W_n$$
$$\iff M, w \models W_n.$$

► This is a contradiction.

EVALUATION GAMES AS MULTIMODAL KRIPKE MODELS

MULTIMODAL WINNING REGION FORMULAS

$$W'_n := \eta X_n \dots \nu X_0. \bigvee_{0 \le j \le n} [(P_j \wedge P_{\exists} \wedge \blacklozenge X_j) \vee (P_j \wedge P_{\forall} \wedge \blacksquare X_j)].$$

Where

- ▶ **■** $\varphi := \nu Y.\text{pre}_0 \wedge \text{bd} \rightarrow \square_0(\text{nxt}_0 \wedge \text{pre}_1 \wedge \text{bd} \rightarrow \square_1(\text{nxt}_1 \wedge \text{bd} \rightarrow ((Y \wedge \neg \text{st}) \wedge (\varphi \wedge \text{st})))),$

Theorem

Let $n \in \omega$, then W'_n is not equivalent to any formula in $\Sigma^{\mu}_n \cup \Pi^{\mu}_n$. Therefore the alternation hierarchy is strict (over bimodal S5).

REFERENCES

- [1] L. Alberucci, A. Facchini, "The modal μ -calculus hierarchy over restricted classes of transition systems", 2009.
- [2] J.C. Bradfield, "Simplifying the modal mu-calculus alternation hierarchy", 1998.
- [3] L. Pacheco, "Exploring the difference hierarchies on μ -calculus and arithmetic—from the point of view of Gale–Stewart games", PhD Thesis, 2023.