CI/CD for 5G Networks on AWS

川﨑 一青

技術統括本部 シニアソリューションアーキテクト アマゾン ウェブ サービス ジャパン合同会社

自己紹介

アマゾン ウェブ サービス ジャパン シニアソリューションアーキテクト 川﨑 一青 Kawasaki Issei

通信業界のお客様の AWS 利用をご支援

本セッションの内容について

想定聴講者

- 通信事業者またはそのビジネスに関わる方で、5G ネットワークへのクラウド活用に興味をお持ちの方
- 5G ネットワーク, NFV の概要理解がある方

ゴール

- 5G ネットワークの CI/CD の実現によりもたらされる価値、 Amazon Web Services (AWS) を活用するメリットを理解いただく
- AWS 活用の方法を概要として理解いただき、 今後の検討に生かしてしていただく

アジェンダ

- CI/CD for 5G Networks
- AWS を活用した CI/CD for 5G Networks の実現
- 事例紹介

CI/CD for 5G Networks

5Gネットワークにおける CI/CD 検討の背景

5G ネットワークの特徴

- C/U 分離 (CUPS: Control and User Plane Separation)
- ステートレスアーキテクチャ
- サービスベースアーキテクチャ (マイクロサービスアーキテクチャ)
- ・ ネットワークスライシング+ オーケストレーション / 自動化
- MEC (Multi-access edge computing)

ホワイトペーパー「5G Network Evolution with AWS」より https://d1.awsstatic.com/whitepapers/5g-network-evolution-with-aws.pdf

5Gネットワークにおける CI/CD 検討の背景

5G ネットワークの特徴

- C/U 分離 (CUPS: Control and User Plane Separation)
- ステートレスアーキテクチャ
- <u>サービスベースアーキテクチャ(マイクロサー</u> ビスアーキテクチャ)
- ネットワークスライシング + オーケストレーション / 自動化
- MEC (Multi-access edge computing)

疎結合な独立したサービスを個々に アップデート可能

サービスのデプロイに関わる期待

- Network Function をより頻繁に更新 することで、アジリティを向上したい
- 機能・性能要件やセキュリティ要件を満たすことを担保しつつ、オペレーションを効率化したい

CI/CD の導入によって、継続的なデプロイの自動化とテスト・セキュリティの組み込みが期待される

CI/CD と AWS

CI/CD (継続的インテグレーションと継続的デリバリー)
パイプライン

開発 ソース と ドルド と テスト と デプロイ と モニタリング

デリバリ高速化

頻繁なデプロイ

安全なデプロイ

AWS

システムの安定性とセキュリティを維持しながら、ソフトウェアの変更を迅速に開発・デプロイできるよう、 CI/CD の実現に必要なツールを開発しサービスとして提供

AWS の活用 = これまで培ったクラウドの俊敏性を 5G ネットワークに適用

5Gネットワークの CI/CD(担当組織ビュー)

5Gネットワークの CI/CD(担当組織ビュー)

ETSI NFV フレームワークと CI/CD

(ref. ETSI GS NFV-MAN 001)

ETSI NFV フレームワークと CI/CD

5Gネットワークの CI/CD

ネットワーク、インフラストラクチャ、Network Function のデプロイ・更新の自動化により、 俊敏性やシステム安定性の向上を獲得する

AWS を活用した CI/CD for 5G Networks の実現

5Gネットワーク on AWS

Region / AWS Local Zone / AWS Outposts にわたって、 一貫したインフラストラクチャ / サービスとAPI / 運用性 / デプロイ・自動 化・セキュリティツール で、NF および 通信事業のワークロードを実行

一貫した方法で CI/CD の実装が可能

ETSI NFV フレームワークへの AWS サービスマッピング

CI/CD 観点での NFV-MANO 実装スコープ例 (1/2)

NFVO のインターフェースの 作成から全て AWS サービスで 実装を完結

AWS のマネージドサービスと サービス間の連携を生かした 実装・管理工数の削減

CI/CD 観点での NFV-MANO 実装スコープ例 (2/2)

NFVO, VNFM の機能実装を 3rd partyソフトウェアの 導入にて対応

VNF, CNF / NFVI に相対する CI/CD 以下のレイヤーで AWS サービスを利用

CI/CD 以下については、例 1 と 同様に AWS マネージドサービス のメリットを享受

CI/CD を支援する AWS サービス

ネットワークのセットアップ

ソース 〉 ビルド 〉 デプロイ 〉

laC ツールでネットワーク環境をコードとして記述・管理 0 からの環境構築を自動化・迅速化

AWS のネットワーク構築

- "Amazon VPC": プライベートな仮想ネットワーク
- "サブネット": Amazon VPC内のIPアドレス範囲。この中 に仮想サーバーやコンテナを起動
- "ルートテーブル": サブネットのトラフィックルール..

インフラストラクチャのデプロイ

ネットワーク インフラストラ 構築 クチャ 構築 NF デプロイ

AWS のインフラストラクチャ構築(Kubernetes の例)

- "Amazon EKS クラスタ": Amazon EKS により管理された Kubernetes クラスタ
- "Amazon EKS ノード": Pod (コンテナ) が実行されるコン ピュートリソース
- "Amazon EFS": NFS マウント可能なファイルストレージ...

Network Function のデプロイ先となる インフラストラクチャ構成を自動構築

ネットワーク インフラストラ 構築 クチャ 構築 NF デプロイ

監視、調査

5Gネットワーク CI/CD 構成例

可観測性

収集

AWS上オンプレミス問わず 全てのメトリクスとログを 収集

可視化しトラブルシュー ティング、アラーム設定

アクション

対応を自動化

分析

長期トレンド、リアルタイ ム分析

Amazon CloudWatch

Amazon CloudWatch

Amazon Managed Service for Prometheus

AWS Auto Scaling

Amazon CloudWatch

Amazon Managed Service for Prometheus

Amazon OpenSearch Service

Amazon Managed Grafana

Amazon EventBridge

Amazon OpenSearch Service

Amazon Managed Grafana

セキュリティ

権限管理

ユーザー、リソースへの 最低限の権限を付与 ロールベースの権限付与

安全な保管 脆弱性の検出 シークレット管理

ソースコード アーティファクト

保管時、通信時ともに 暗号化し保護

イメージ

脆弱性スキャン イミュータブルタグ トレーサビリティ

監査ログ、変更管理

AWS Identity and Access Management (IAM)

Permissions

AWS CodeCommit

AWS Key Management Service (AWS KMS)

(o)__ {<u>@</u>__

Amazon Simple Storage Service (Amazon S3)

Amazon ECR

Amazon Inspector

Amazon ECR

AWS CloudTrail

AWS Config

aws

Amazon CodeGuru

AWS Secrets Manager

事例紹介

DISH CI/CD アーキテクチャ

DISH Network

- ・ US テレコム市場に新規参入
- クラウドネイティブな 5G ネットワークを AWS 上に構築

CI/CD プロセス

- ネットワーク、コンピュート、ストレージ、 監視、セキュリティは IaC でデプロイ
- DISH と ISV のパートナーシップにより、 クラウドネイティブの原則に沿った CNF
- CNF の変更はコンテナとコンフィグのアップデートでデプロイ

AWS Blog Telco Meets AWS Cloud: Deploying DISH's 5G Network in AWS Cloud https://aws.amazon.com/blogs/industries/telco-meets-aws-cloud-deploying-dishs-5g-network-in-aws-cloud/

DISH CI/CD パイプラインによる CNF デプロイの効率化

クラウドインフラストラクチャのデプロイは平均約 20 分。

CNF (クラウドネイティブネットワーク機能) のデプロイは平均約 15 分。

CNF の更新は平均約5分。

5G CNF の迅速なテストのための統合されたテストスイート

これらは平均値であることに注意してください。実際の時間はアプリケーションによって異なり、ISVによるネットワーク機能の実装によって異なります。

従来の展開モデルと比較して、 CNF の導入と更新にかかる時間を大幅に削減

まとめ

まとめ

- CI/CD の導入では、アジリティの向上やオペレーションの効率化を目標としており、継続的なデプロイの自動化とテスト・セキュリティの組み込みが期待される
- AWS の活用 = これまで培ったクラウドの俊敏性を 5G ネットワーク に適用
- 5G ネットワークの CI/CD は、"OSS/BSS から受け取ったリクエストに基づいて VNF/CNF, NFVI へ変更を適用するプロセスの自動化"
 - 要素として、API 作成、ワークフロー、パイプライン、IaC、ソース/イメージ管理、テスト、可観測性、セキュリティ、についてご紹介しました
- DISH Network は CI/CD 導入によりデプロイ・更新時間を大幅に短縮、

Thank you!

