R University Statistics Exam 2021-06-22

Exam ID 00001

Nar	ne:														_	
Stu	dent	ID:													_	
Sig	natu	re:													_	
1.	(a)	X	(b)		(c)	X	(d)		(e)		(f)		(g)	X	(h)	
	(i)		[X]													
2.	(a)	X	(b)	X	(c)	X	(d)	X	(e)	X	(f)	X	(g)		(h)	X
	(i)	X	[X]													
3.	(a)		(b)	X	(c)		(d)		(e)							
4.	(a)		(b)	X	(c)		(d)	X	(e)							
5.	(a)		(b)	X	(c)	X	(d)		(e)	X	(f)					
6.	(a)	X	(b)		(c)		(d)		(e)		(f)		(g)		(h)	
	(i)		[X]													
7.	(a)		(b)		(c)	X	(d)		(e)		(f)		(g)		(h)	X
	(i)		[X]													
8.	(a)		(b)	X	(c)		(d)		(e)	X	(f)		(g)	X	(h)	X
	(i)	X	[]													
9.	(a)		(b)		(c)	X	(d)	X	(e)	X	(f)	X	(g)		(h)	X
	(i)	X	[]													

10. (a) (b) (c) **X** (d) **X** (e) **X** (f) **X** (g)

1. Problem

Welche der folgenden Aussagen sind richtig?

- a) Die Formel $(s \to k) \to (n \lor \neg s \lor k)$ ist eine Tautologie.
- b) Die Formel (s $\land \neg k$) \to True ist erfüllbar aber keine Tautologie.
- c) Die Formel $(\neg k \lor \neg s) \lor (k \land s)$ ist eine Tautologie.
- d) Die Formel $(\neg y \land (h \rightarrow y)) \rightarrow \neg h$ ist unerfüllbar.
- e) Die Formel ($s \to \neg s$) \land ($\neg s \to s$) ist erfüllbar aber keine Tautologie.
- f) Die Formel \neg False $\land \neg ((\neg k \land \neg s) \lor \neg n)$ ist unerfüllbar.
- g) Die Formel $s \land k \land ((True \lor s) \land False) \land n$ ist unerfüllbar.
- h) Die Formel $((s \to k) \land (s \to n)) \to (s \to (n \land k))$ ist unerfüllbar.
- i) Die Formel $(s \land \neg k) \lor (\neg s \land \neg k) \lor (k \land \neg s) \lor (s \land k)$ ist erfüllbar aber keine Tautologie.
- j) Die Formel $((k \to h) \land (s \to (n \land k))) \to ((n \to \neg y) \to (s \to y))$ ist erfüllbar aber keine Tautologie.

Solution

- a) Wahr.
- b) Falsch. Die Formel ist eine Tautologie.
- c) Wahr.
- d) Falsch. Die Formel ist eine Tautologie.
- e) Falsch. Die Formel ist unerfüllbar.
- f) Falsch. Die Formel ist erfüllbar aber keine Tautologie.
- g) Wahr.
- h) Falsch. Die Formel ist eine Tautologie.
- i) Falsch. Die Formel ist eine Tautologie.
- i) Wahr.

2. Problem

Betrachten Sie die folgende Belegung v der Atome p, q und r. Welche der folgenden Formeln evaluieren unter dieser Belegung zu T?

$$v(a) = \begin{cases} T & a = p \\ F & a = q \\ T & a = r \end{cases}$$

- a) $(\neg q \lor p) \land r$
- b) $p \rightarrow (q \rightarrow p)$
- c) $(q \wedge p) \vee (p \vee (q \wedge r))$
- d) $(r \land p) \rightarrow (p \lor r)$
- e) $r \rightarrow (q \land p \rightarrow q)$
- f) $\neg p \rightarrow (p \land q)$
- g) $r \wedge p \rightarrow q \wedge r$
- h) $r \lor p \lor q \lor (p \rightarrow r)$
- i) $q \lor (p \land r) \lor \neg q$
- j) $(r \lor p) \land \neg (p \rightarrow q)$

Solution

a) Wahr

- b) Wahr
- c) Wahr
- d) Wahr
- e) Wahr
- f) Wahr
- g) Falsch
- h) Wahr
- i) Wahr
- j) Wahr

3. Problem

Sei $\mathcal{B}=\langle B;+,\cdot,\sim,0,1\rangle$ eine Boolsche Algebra und sei $F=\sim(x_1)+(x_1\cdot\sim(x_2))$ ein Boolscher Ausdruck. Welche der folgenden Aussagen ist richtig?

a) F ist äquivalent zur Boolschen Funktion $f: B^2 \to B$ definiert als:

<i>S</i> ₁	S ₂	$f(s_1, s_2)$
0	0	1
0	1	0
1	0	1
1	1	1

b) F ist äquivalent zur Boolschen Funktion $f: B^2 \to B$ definiert als:

s_1	s ₂	$f(s_1, s_2)$
0	0	1
0	1	1
1	0	1
1	1	0

c) F ist äquivalent zur Boolschen Funktion $f: B^2 \to B$ definiert als:

s_1	s ₂	$f(s_1, s_2)$
0	0	0
0	1	1
1	0	1
1	1	1
	0	0 0 0 1

d) F ist äquivalent zur Boolschen Funktion $f: B^2 \to B$ definiert als:

s_1	s_2	$f(s_1, s_2)$
0	0	1
0	1	0
1	0	0
1	1	0

e) Keine der Aussagen ist stimmig.

Solution

- a) Falsch
- b) Wahr
- c) Falsch
- d) Falsch
- e) Falsch

4. Problem

Welche der folgenden Aussagen sind immer richtig, wenn $\mathcal{B} = \langle B; +, \cdot, \sim, 0, 1 \rangle$ eine Boolesche Algebra ist?

a) Für alle $a \in B$ gilt $a + \sim (a) = 0$.

b) $\langle B; \cdot, 1 \rangle$ ist ein kommutativer Monoid.

c) $\langle B; \cdot, 1 \rangle$ ist ein Ring.

d) Für alle $a \in B$ gilt $a + \sim (a) = 1$.

e) Für alle $a, b \in B$ gilt $a + b = a + \sim(b)a$.

Solution

a) Falsch.

b) Wahr. Dies ist eines der Grundgesetze der Boolschen Algebra.

c) Falsch.

d) Wahr. Dies ist eines der Grundgesetze der Boolschen Algebra.

e) Falsch.

5. Problem

Sei E die Menge mit den folgenden drei Gleichungen:

$$\sim (x) \cdot x = 0$$
 $x \cdot x = x$ $x \cdot y = y \cdot x$ (E

Markieren Sie die korrekten Aussagen.

a) $E = x \cdot 0 = 0$

b) $E \models x \cdot \sim (x) = 0$

c) Sei $\mathcal{C} = \langle \{0, 1\}; \cdot^{\mathcal{C}}, \sim^{\mathcal{C}}, 0^{\mathcal{C}} \rangle$ eine Algebra mit

Es gilt $C \models x \cdot 0 = 0$.

d) Sei $\mathcal{C} = \langle \{0,1\}; \cdot^{\mathcal{C}}, \sim^{\mathcal{C}}, 0^{\mathcal{C}} \rangle$ eine Algebra mit

	0		$\sim^{\mathcal{C}}$			$0^{\mathcal{C}}$	
0	0	1	0	1	-		0
1	1	0	1	0			

Es gilt $C \models x \cdot 0 = 0$.

e) Sei $\mathcal{C} = \langle \{0, 1\}; \cdot^{\mathcal{C}}, \sim^{\mathcal{C}}, 0^{\mathcal{C}} \rangle$ eine Algebra mit

	0		$\sim^{\mathcal{C}}$		$0^{\mathcal{C}}$	
0	0	0	0	1		0
0	0	1	1	0		

Es gilt $\mathcal{C} \models E$.

f) Sei $\mathcal{C} = \langle \{0, 1\}; \cdot^{\mathcal{C}}, \sim^{\mathcal{C}}, 0^{\mathcal{C}} \rangle$ eine Algebra mit

$\cdot^{\mathcal{C}}$	0	1	$\sim^{\mathcal{C}}$			$0^{\mathcal{C}}$	
0	0	1	0	1	_		0
1	1	0	1	_			

Es gilt $\mathcal{C} \models E$.

Solution

a) Falsch

b) Wahr

c) Wahr

- d) Falsch
- e) Wahr
- f) Falsch

6. Problem

Betrachten Sie die formalen Sprachen $L = \{\epsilon, 0, 10, 100, 110\}$, $M = \{1, 11, 101, 111\}$ und $N = \{0, 1\}^*$. Welche der folgenden Aussagen sind richtig?

- a) $L \cup M = \{\epsilon, 0, 1, 10, 11, 100, 101, 110, 111\}$
- b) $L \cup (M \cap N) = \{\epsilon, 0, 1, 10, 100, 101, 110, 111\}$
- c) $(L \cup M) \cap N = \emptyset$
- d) $L \cap N = \{\epsilon, 0, 1, 11, 100, 110\}$
- e) $L \cup M = \{0, 1, 10, 11, 100, 101, 110, 111\}$
- f) $(L \cup M) \cap N = \{\epsilon, 0, 10, 100, 110\}$
- g) $(L \cap M) \cup N = \{\epsilon, 0, 1, 10, 11, 100, 101, 110, 111\}$
- h) Keine der Antworten
- i) $(L \cup M) \cap N = \{0, 1, 10, 11, 100, 101, 110, 111\}$
- j) $(L \cup M) \cap N = \{\epsilon, 0, 1, 10, 11, 100, 101, 110, 111\}$

Solution

- a) Wahr.
- b) Falsch.
- c) Falsch.
- d) Falsch.
- e) Falsch.
- f) Falsch.
- g) Falsch.
- h) Falsch.
- i) Falsch.
- j) Wahr.

7. Problem

Welche der folgenden Aussagen bezüglich der Chomsky-Hierarchie sind wahr? Beachten Sie:

- \mathcal{L}_3 ist die Menge der regulären Sprachen.
- \mathcal{L}_2 ist die Menge der kontextfreien Sprachen.
- \mathcal{L}_1 ist die Menge der kontextsensitiven Sprachen.
- \mathcal{L}_0 ist die Menge der rekursiv aufzählbaren Sprachen.
- *L* ist die Menge der formalen Sprachen.

(Mit ⊂ bezeichnen wir die echte Mengeninklusion.)

- a) $\mathcal{L}_1 \subseteq \mathcal{L}_3 \subseteq \mathcal{L} \subseteq \mathcal{L}_2 \subseteq \mathcal{L}_0$
- b) Eine kontextfreie Sprache ist auch regulär
- c) Alle beschränkten Sprachen sind auch rekursiv aufzählbar
- d) Die Chomsky-Hierarchie ist eine Hierarchie weder über formale Sprachen noch Grammatiken
- e) $\mathcal{L}_2 \subset \mathcal{L} \subset \mathcal{L}_3$
- f) $\mathcal{L}_3 \subseteq \mathcal{L}_2 \subseteq \mathcal{L}_1 \subseteq \mathcal{L}$
- g) $\mathcal{L}_2 \subseteq \mathcal{L}_0 \subseteq \mathcal{L} \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_3$
- h) Eine reguläre Sprache ist auch kontextsensitiv

- i) Die Chomsky-Hierarchie ist eine Hierarchie über Grammatiken
- j) Alle regulären Sprachen sind auch kontextfrei

Solution

- a) Falsch
- b) Falsch
- c) Wahr
- d) Falsch
- e) Falsch
- f) Falsch
- g) Falsch
- h) Wahr
- i) Falsch
- j) Wahr

8. Problem

Betrachten Sie die folgende Grammatik $G = (\{P, F, C\}, \{\pi, e, +, -, *, /, 0, 1, 2, ..., 9\}, R, P)$ mit den Regeln:

$$\begin{array}{l} P \to C \mid F \mid (P + P) \mid (P - P) \mid (P * P) \mid (P / P) \\ F \to 0 \mid 1 \mid 2 \mid ... \mid 9 \mid FF \\ C \to \pi \mid e \end{array}$$

Beantworten Sie die folgenden Fragen bezüglich den Lücken (Einträge mit einer Box $\overline{}$) in der Tabelle des rekursiven Inferenz Verfahrens, sodass $((\pi/13) + (4*e)) \in L(P)$.

Ableitung	Schritt	Variable	Regel	Rekursion
π	1	С	C → a	
4	2	F	$F ightarrow \overline{4}$	
1	3	F	<i>F</i> → 1	
3	4	F	F ightarrow 3	
13	5	F	$ extcolor{F} ightarrow extcolor{FF}$	3, 4
е	6	e	$ extcolor{black}{C} ightarrow extcolor{black}{e}$	
b	7	P	$ extcolor{black}{ ext$	1
4	8	Р	f	2
13	9	Р	$\overrightarrow{P} \rightarrow F$	5
е	10	Р	$\boxed{c} \to c$	6
(4 * e)	11	P	$\overrightarrow{P} \rightarrow (P * P)$	8, 10
$(\pi/13)$	12	P	P o (P/P)	d
$((\pi/13) + (4*e))$	13	Р	$P \rightarrow (P + P)$	12, 11

- a) 4 gehört in Lücke a
- b) π gehört in Lücke b
- c) C gehört in Lücke a
- d) P gehört in Lücke f
- e) $P \rightarrow F$ gehört in Lücke f
- f) $P \rightarrow C$ gehört in Lücke f
- g) C gehört in Lücke e

- h) 7,9 gehört in Lücke d
- i) π gehört in Lücke a
- j) F gehört in Lücke c

Solution

Ableitung	Schritt	Variable	Regel	Rekursion
π	1	С	$ extcolor{c} o\pi$	
4	2	F	F ightarrow 4	
1	3	F	<i>F</i> → 1	
3	4	F	F ightarrow 3	
13	5	F	$ extcolor{F} ightarrow extcolor{FF}$	3, 4
е	6	С	$ extcolor{black}{C} ightarrow extcolor{black}{e}$	
π	7	P	P o C	1
4	8	P	P o F	2
13	9	P	P o F	5
е	10	P	P o C	6
(4 * e)	11	P	P o (P * P)	8, 10
$(\pi/13)$	12	P	P o (P/P)	7, 9
$((\pi/13) + (4 * e))$	13	P	$P \rightarrow (P + P)$	12, 11

- a) Falsch
- b) Wahr
- c) Falsch
- d) Falsch
- e) Wahr
- f) Falsch
- g) Wahr
- h) Wahr
- i) Wahr
- j) Falsch

9. Problem

Betrachten Sie folgende Registermaschine $R = ((x_i)_{1 \le i \le 4}, P)$ mit dem Programm P, mit Startwert in Register x_1 und Ergebnis in x_3 nach der Berechnung. (NB. Wir verwenden eine Abkürzung für

direkte Zuweisungen von Werten in ein Register, wie in der Vorlesung besprochen.)

```
x_3 := 0;
x_2 := x_1;
X_4 := X_2;
while (x_1 \neq 0) do
   x_1 := x_1 - 1;
  while (x_2 \neq 0) do
     x_2 := x_2 - 1;
     x_3 := x_3 + 1;
  end;
  x_2 := x_4;
end;
while (x_2 \neq 0) do
  x_3 := x_3 + 1;
  x_2 := x_2 - 1;
end:
X_2 := X_4;
while (x_2 \neq 0) do
  x_3 := x_3 + 1;
  x_2 := x_2 - 1;
end;
x_3 := x_3 + 1;
x_3 := x_3 + 1;
x_3 := x_3 + 1;
```

Die Antwortmöglichkeiten bestehen aus verschiedenen Spezifikationen/Aussagen, welche die Registermaschine *R* beschreiben sollen. Welche der folgenden Aussagen über die Registermaschine *R* sind korrekt?

- a) Die Registermaschine R multipliziert die Werte aus Register x_1 und x_2 und speichert das Ergebnis in Register x_3 .
- b) Das Register x₃ hat nach dem Ende der Berechnung der Registermaschine den Wert 0.
- c) Das Register x_4 hat nach dem Ende der Berechnung der Registermaschine den Startwert n der zuvor in Register x_1 war.
- d) Die Registermaschine benutzt genau 4 Register.
- e) In der Berechnung der Registermaschine kommt eine Multiplikation vor.
- f) Die Registermaschine R berechnet für den Wert n aus Register x_1 das Ergebnis des Polynoms $n^2 + n + n + 2 + 1$.
- g) Die Registermaschine R berechnet für den Wert n aus Register x_1 das Ergebnis des Polynoms $n^2 + 2n$.
- h) Das Register x_3 hat nach dem Ende der Berechnung der Registermaschine einen Wert größer als 0.
- i) Die Registermaschine R berechnet für den Wert n aus Register x_1 das Ergebnis des Polynoms $n^2 + 2n + 3$.
- j) Die Registermaschine benutzt genau 3 Register.

Solution

- a) Falsch
- b) Falsch
- c) Wahr
- d) Wahr

- e) Wahr
- f) Wahr
- g) Falsch
- h) Wahr
- i) Wahr
- j) Falsch

10. Problem

Betrachten Sie die Turingmaschine $M = (\{s, p, t, r\}, \{0, 1\}, \{\vdash, \sqcup, 0, 1\}, \vdash, \sqcup, \delta, s, t, r)$ mit δ

	H	0	1	Ш
S	(<i>s</i> , ⊢, <i>R</i>)	(s, 0, R)	(p, 1, L)	(<i>r</i> , ⊔, <i>R</i>)
р	(<i>t</i> , ⊢, <i>R</i>)	(p, 1, L)	(p, 1, L)	(r, \sqcup, R)

Wir nehmen an, dass die Turingmaschine immer auf dem Startsymbol \vdash startet und nur Eingaben der Form $\vdash x \sqcup^{\infty}$ mit $x \in \{0, 1, \sqcup\}^*$ bekommt. Die Länge des Inputs bezeichnet die Länge von x, im Folgenden also n = |x|.

Markieren Sie korrekte Aussagen.

- a) Für den Input ⊢ ⊔ ⊔ 01 hält M auf der Ausgabe ⊢ 1111.
- b) Es existiert ein Input der Länge n, so dass die Turingmaschine M mindestens $2n^2 + 5$ Schritte ausführt.
- c) Der Input ⊢ 0010 wird akzeptiert.
- d) Der Input \vdash 001 wird von M akzeptiert.
- e) Die Turingmaschine führt für jeden Input der Länge n maximal 6n + 5 Schritte aus.
- f) Für den Input \vdash 001 \sqcup 10 hält M auf der Ausgabe \vdash 111 \sqcup 10.
- g) Der Input $\vdash 0 \sqcup 1$ wird von M akzeptiert.

Solution

- a) Falsch
- b) Falsch
- c) Wahr
- d) Wahr
- e) Wahr
- f) Wahr
- g) Falsch