#IRIS FLOWER CLASSIFICATION

#IMPORTING REQUIRED LIBRARIES

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

#LOADING THE DATASET

d=pd.read_csv("/content/Iris.csv")

d.head()

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	1
0	1	5.1	3.5	1.4	0.2	Iris-setosa	
1	2	4.9	3.0	1.4	0.2	Iris-setosa	
2	3	4.7	3.2	1.3	0.2	Iris-setosa	
3	4	4.6	3.1	1.5	0.2	Iris-setosa	
4	5	5.0	3.6	1.4	0.2	Iris-setosa	

d.tail()

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	7
145	146	6.7	3.0	5.2	2.3	Iris-virginica	
146	147	6.3	2.5	5.0	1.9	Iris-virginica	
147	148	6.5	3.0	5.2	2.0	Iris-virginica	
148	149	6.2	3.4	5.4	2.3	Iris-virginica	
149	150	5.9	3.0	5.1	1.8	Iris-virginica	

d=d.drop(columns =["Id"])
d.head()

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	7
0	5.1	3.5	1.4	0.2	Iris-setosa	
1	4.9	3.0	1.4	0.2	Iris-setosa	
2	4.7	3.2	1.3	0.2	Iris-setosa	
3	4.6	3.1	1.5	0.2	Iris-setosa	
4	5.0	3.6	1.4	0.2	Iris-setosa	

#TO KNOW THE STATS ABOUT DATA
d.describe()

d.shape

(150, 5)

#CHECKING FOR NULL VALUES

IIIII 4.000000 2.000000 1.000000 0.100000

d.isnull().sum()

SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0
dtype: int64

#CORRELATION MATRIX

d.corr()

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
SepalLengthCm	1.000000	-0.109369	0.871754	0.817954
SepalWidthCm	-0.109369	1.000000	-0.420516	-0.356544
PetalLengthCm	0.871754	-0.420516	1.000000	0.962757
PetalWidthCm	0.817954	-0.356544	0.962757	1.000000

1

corr = d.corr()
fig, ax = plt.subplots(figsize = (8,6))
sns.heatmap(corr, annot = True, ax = ax)

<Axes: >

#TRAINING THE MODEL

from sklearn.model_selection import train_test_split
X = d.drop(columns = ["Species"])
Y = d['Species']
x_train, x_test,y_train, y_test = train_test_split(X ,Y ,test_size = 0.30)

×