

ORGANISASI KOMPUTER

Materi 3: Instruction Set

I Nyoman Kusuma Wardana Sistem Informasi STMIK STIKOM Bali

MATERI PERKULIAHAN

- Lokasi dan Pengalamatan Memori
- Tipe-tipe Instruksi
- Mode Pengalamatan

MATERI PERKULIAHAN

- Lokasi dan Pengalamatan Memori
- Tipe-tipe Instruksi
- Mode Pengalamatan

- Memori → terdiri dr jutaan sel penyimpanan
- Setiap sel dpt menyimpan informasi > berupa data 0 atau 1
- 1 bit tunggal → tdk cukup utk menyimpan informasi
- Oleh karena itu, memori bekerja dgn total bit tertentu

- Asumsi -> memori diorganisasikan dgn n-bit
- Setiap grup n-bit disebut → word
- n → panjang word (umumnya 16 -64)

- Asumsi panjang word adlh 32
- Jadi, 1 word → dpt menyimpan 32-bit bilangan bertanda

- 8-bit = 1byte
- Kalau n = 32-bit, maka dpt menyimpan 4 karakter ASCII

- Utk mengakses memori → digunakan alamat (address) utk setiap lokasi
- Asumsi jika kita mempunyai k-bit alamat, maka:
- Banyak ruang yg bisa dialamati: 2^k
- Dgn alokasi alamat: 0 sampai 2k 1

Penyederhanaan:

```
2^{10} = 1024 ≈ 10<sup>3</sup> → 1 kilobyte (1 KB)

2^{11} = 2048 ≈ 2 x 10<sup>3</sup> → 2 kilobyte (2 KB)
```

- Contoh: tanpa menggunakan kalkulator, estimasi nilai 2²⁴ byte.
- Jawab :

$$2^{24} = 2^{20} \times 2^4$$

 $2^{20} \approx 1$ juta sedangkan $2^4 = 16$
Jadi sekitar 16 juta \rightarrow 16 MB

Mohon diingat:

$$2^{10} = 1K (Kilo)$$

$$2^{20} = 1M (Mega)$$

$$2^{30} = 1G (Giga)$$

$$2^{40} = 1T$$
 (Tera)

Contoh: estimasikan 2³⁵

Jawab: 32 Giga

■ Big-Endian & Little-Endian

(a) Big-endian assignment
Kusuma Wardana, M.Sc.

(b) Little-endian assignment

MATERI PERKULIAHAN

Lokasi dan Pengalamatan Memori

Kusuma Wardana, M.Sc.

- <u>Tipe-tipe Instruksi</u>
- Mode Pengalamatan

- Informasi yg terlibat dlm berbagai bentuk operasi CPU harus dialamati
- Informasi ini dsbt → operand
- Paling tidak informasi ini terdiri dr 2 jenis:
 - Opcode: operasi yg akan dijalankan
 - 2. Address: alamat dlm proses operasi tsb

Instruksi dpt digolongkan berdasarkan jumlah operand:

Kusuma Wardana, M.Sc.

- Three-address
- 2. Two-address
- 3. One-and-half-address
- 4. One-address
- 5. Zero-address

- Dalam suatu instruksi, terdapat istilah:
 - 1. Operation
 - 2. Source
 - 3. Destination
- Sedangkan jenis operasi yg mungkin dijalankan, misalnya: add, subtract, write atau read
- Source bisa berupa:
 - Konstanta
 - 2. **Nilai** yg tersimpan di **register**
 - 3. Nilai yg tersimpan di memori

Three-address

Penjelasan:

add-1, add-2, add-3 → alamat register atau memori

Contoh:

ADD R1, R2, R3

Jumlahkan isi R1 dengan R2 kemudian simpan hasilnya di R3

Two-address

operation add-1, add-2

Penjelasan:

■ add-1, add-2 → alamat register atau memori

Contoh:

ADD R1, R2

Jumlahkan isi R1 dengan R2 kemudian simpan hasilnya di R2

Ekuivalen dgn: ADD R1, R2, R2

One-address

operation add-1

Penjelasan:

■ add-1 → alamat register atau memori

Contoh:

ADD R1

Jumlahkan isi R1 dengan Racc (akumulator) kemudian simpan hasilnya di Racc

- Ekuivalen dgn: ADD R1, Racc, Racc
- atau: ADD R1, Racc

One-and-half-address

operation add-1,add-2

Penjelasan:

■ add-1 → alamat register atau memori

Contoh:

ADD B, R1

Jumlahkan isi register R1 dgn isi dr memori yg berlokasi di B dan simpan hasilnya di R1

Memakai 2 pengalamatan yg berbeda, yaitu register dan memori

Zero-address

operation (SP)+,(SP)

Penjelasan:

- SP→ stack pointer
- Operasi ini melibatkan proses: push dan pop
- Push → nilai SP mengindikasikan lokasi dimana nilai tertentu akan disimpan
- Pop → nilai SP dikurangi satu dulu, kemudian nilai pd alamat SP tersebut selanjutnya diambil

Zero-address

Contoh:

$$ADD (SP) +, (SP)$$

Jumlahkan isi pd lokasi SP tersebut dgn isi lokasi SP+1 dan simpan kembali di SP.

Misal, isi SP = -52, isi SP+1 = 39. Hasil -52+39 = -13

22

Rangkuman tipe instruksi

klasifikasi instruksi	Contoh
Three-address	$ADD R_1,R_2,R_3$
	$ADD\ A,B,C$
Two-address	$ADD R_1,R_2$
	ADD A,B
One-and-half-address	$ADD B,R_1$
One-address	$ADD R_1$
Zero-address	ADD(SP)+, (SP)

MATERI PERKULIAHAN

- Lokasi dan Pengalamatan Memori
- Tipe-tipe Instruksi
- Mode Pengalamatan

- Berdasarkan bagaimana cara alamat dirujuk, mode pengalamatan dapat dibagi menjadi:
 - Immediate mode
 - Direct(Absolute) mode
 - Indirect mode
 - Mode lainnya (tidak dibahas)

Immediate mode

 Nilai dr operand secara langsung sudah tersedia

Contoh:

LOAD #1000, R1

- Masukkan nilai desimal 1000 ke R1
- R1 scr langsung (immediate) dimasukkan dgn nilai 1000
- Tanda # menunjukkan nilai dlm desimal, bukan mrpkn nilai lokasi tertentu

Direct mode

 Nilai dr operand diambil dari lokasi tertentu di memori

Contoh:

LOAD 1000, R1

- Masukkan isi dari memori yg berlokasi 1000 ke R1
- Misal, isi dr lokasi 1000 adalah -345, maka nilai -345 akan dimasukkan ke R1

Direct mode

 Nilai dr operand diambil dari lokasi tertentu di memori

Indirect mode

Informasi yg terdpt dlm instruksi tidak menujukkan alamat dr operand, tapi menunjukkan alamat register atau memori yg menyimpan alamat dr operand

Contoh:

LOAD (1000), R1

- Pergi ke memori dgn alamat 1000, kemudian cek disana alamat apa yg menunjukkan operand sebenarnya
- Bisa berupa: register indirect addressing atau memory indirect addressing

Memory indirect addressing

DAFTAR PUSTAKA

- Abd-El-Barr, M., El-Rewini, H., Fundamentals of Computer Organization and Architecture, John Wiley&Sons, Inc.
- Stallings, W., 2010, Computer Organization and Architecture: Designing for Performance 8th edition, Prentice Hall
- Hamacher, C., Vranezic, Z., Zaky, S., Manjikian, N., 2012, Computer Organization and Embedded Systems 6th edition, McGrawHill