Configuración cluster MPI

Iñigo Manuel Diez Canseco Fuentes Univesidad Católica San Pablo Arequipa, Perú

Email: inigo.diezcanseco@ucsp.edu.pe

I. INTRODUCCIÓN DEL TRABAJO

El trabajo a realizar se trata de un clúster MPI el cual debe juntarse con el algoritmo *odd-even sort* y hacer que funcione de manera paralela y distribuida.

- Subir su informe de todo lo realizado en la configuración del cluster en MPI.
- Probar su cluster con el algoritmo odd-even sort paralelo.[1]

Los códigos de prueba y del cuadro que se mostrara más adelante del documento se encuentran en el siguiente GITHUB.¹

II. CLUSTER MPI

Este algoritmo es similar al *bubble sort* tradicional, la diferencia es que en lugar de comparar los elementos contiguos en la lista, se comparan los elementos con índices pares/impares en momentos distintos. Con esta idea se utiliza un array de bools para poder verificar si es que con el primer *for* se ordenó todo y si no pasar al siguiente.

Se trató de utilizar las funciones MPI para hacer que la función Odd-even pudiera enviarse mensajes a través de cada proceso y separar los *threads* para mejorar su eficiencia, la cual se vería reflejada en el cuadro a continuación.

III. CUADRO COMPARATIVO

A continuación se presentará un cuadro comparativo del algoritmo de Odd-Even sort con sus diferentes variaciones en tiempo microsegundos(us):

Cluster MPI			
Tamaño del Array (microsegundos us)			
100	1000	10000	100000
18	1473	1692261	17838391
37	3555	338621	15596659
х	х	х	Х
֡	Tamaño 100 18	Tamaño del Array (mi 100 1000 18 1473	Tamaño del Array (microsegundos 100 1000 10000 18 1473 1692261

Figura 1. Uniform Memory Access, Referencia de las diapositivas.

REFERENCIAS

[1] P. Pacheco, An introduction to parallel programming. Elsevier, 2011.

¹https://github.com/inigomanuel/Computacion_Paralela_y_Distribuida/tree/main/04_Cuarta_Tarea