データマイニング

Data Mining

7: 分類② Classification

土居 裕和 Hirokazu Doi

長岡技術科学大学 Nagaoka University of Technology

箱1 Box 1

箱2 Box 2

どちらかの箱から、1個ずつ玉をとりだし、その色を確認する

Take one ball out from either one of the boxes, and check its color

赤玉 Red Ball: 70

青玉 Blue Ball: 30

赤玉 Red Ball: 40

青玉 Blue Ball: 60

- $| 1 | H_1$: 玉を箱1から取り出した Ball was taken out from box 1
- |2| H_2 : 玉を箱2から取り出した Ball was taken out from box 2

- $lackbrace D_1$: 取り出した玉が赤色だった Color of the ball taken out was red
- $lacksymbol{lack}$ D_2 : 取り出した玉が青色だった Color of the ball taken out was blue

条件付き確率 Conditional Probability

P(A|B): 事象Bが起こっているという条件の下で、事象Aが起こる確率 Probability of event A under the condition that event B occurs

cf. P(A∩B): 同時確率 Joint Probability

事象AとBが共に起こる確率 Boccur

Probability that both event A and Boccur

 $P(H_1|D_1)$: 取り出した玉の色が赤の時、玉を取り出した箱が箱1である確率 Probability that you took out a ball from box 1 when the ball taken out from a box was red.

取り出した玉の色が赤の時、玉を取り出した箱が箱1である確率

Probability that you took out a ball from box 1 when the ball taken out from a box was red.

$$P(H_1 \cap D_1) = P(H_1|D_1)P(D_1)$$

$$P(H_1 \cap D_1) = P(D_1|H_1)P(H_1)$$

$$P(H_1|D_1)P(D_1) = P(D_1|H_1)P(H_1)$$

$$P(H_1|D_1) = \frac{P(D_1|H_1)P(H_1)}{P(D_1)}$$

$$P(H_1|D_1) = \frac{P(D_1|H_1)P(H_1)}{P(D_1)}$$

	箱1 Box 1	箱2 Box 2
赤玉 Red Ball	70	40
青玉 Blue Ball	30	60

$$P(D_1|H_1) = \frac{70}{100} \quad P(D_1) = \frac{70 + 40}{(70 + 30) + (40 + 60)}$$

$$P(H_1) = \frac{70 + 30}{(70 + 30) + (40 + 60)}$$

$$P(H_1|D_1) = \frac{70}{100} \times \frac{100}{200} \times \frac{200}{110} = 63.7\%$$

$$P(H_1|D_1) = \frac{P(D_1|H_1)P(H_1)}{P(D_1)}$$

$$P(D_1) = P(D_1 \cap H_1) + P(D_1 \cap H_2) = \sum P(D_1 \cap H_k)$$
$$= \sum P(D_1 \cap H_k) = \sum P(D_1 | H_k) P(H_k)$$

$$P(H_1|D_1) = \frac{P(D_1|H_1)P(H_1)}{\sum P(D_1|H_k)P(H_k)}$$

事前確率と事後確率 Prior Probability and Posterior Probability

事前確率 Prior Probability

データを観察する**"前に"**推定した、箱が箱1である確率 Probability that the box is box 1 estimated **"before"** observing the data

$$P(H_1|D_1) = \frac{P(D_1|H_1)P(H_1)}{\sum P(D_1|H_k)P(H_k)}$$

事後確率 Posterior Probability

データを観察した**"後に"**推定した、箱が箱1である確率 Probability that the box is box 1 estimated **"after"** observing the data

箱から取り出した玉が赤色だった The color of ball taken out from a box was red

箱1から玉を取り出した確率 Probability that the box was box 1

$$P(H_1|D_1) = \frac{P(D_1|H_1)P(H_1)}{\sum P(D_1|H_k)P(H_k)}$$

箱2から玉を取り出した確率 Probability that the box was box 2

$$P(H_2|D_1) = \frac{P(D_1|H_2)P(H_2)}{\sum P(D_1|H_k)P(H_k)}$$

$$\frac{P(H_1|D_i)}{P(H_2|D_i)} = \frac{P(D_i|H_1)P(H_1)}{P(D_i|H_2)P(H_2)} \quad i = 1, 2$$

ベイズ更新 Bayesian Updating

箱からボールを取り出し、その色を確認する。

Take out one ball from a box and check its color

この操作を3回繰り返す。 Repeat this procedure three times

	箱1 Box 1	箱2 Box 2
赤玉 Red Ball	7	4
青玉 Blue Ball	3	6

箱が箱1である事後確率はどう変化するか?

How does the posterior probability that the box is box 1 change?

ベイズ更新 Bayesian Updating

		H_1	H_2
		箱1 Box 1	箱2 Box 2
D_1	赤玉 Red Ball	7	4
D_2	青玉 Blue Ball	3	6

$$P(D_1|H_1) = \frac{7}{10}$$

$$P(D_2|H_1) = \frac{3}{10}$$

$$P(D_1|H_2) = \frac{4}{10}$$

$$P(D_2|H_2) = \frac{6}{10}$$

ベイズ更新-1回目 Bayesian Updating-1st round

$$P(H_1|D_1) = \frac{P(D_1|H_1)P(H_1)}{\sum P(D_1|H_k)P(H_k)} \quad P(H_2|D_1) = \frac{P(D_1|H_2)P(H_2)}{\sum P(D_1|H_k)P(H_k)}$$

玉を取り出す前は、どちらの箱か手がかりがない

Before taking out a ball, we have no clue as to which box it is taken out from

$$P(H_1) = \frac{1}{2}$$
 $P(H_2) = \frac{1}{2}$

ベイズ更新-1回目 Bayesian Updating-1st round

$$P(H_1|D_1) = \frac{P(D_1|H_1)P(H_1)}{P(D_1|H_1)P(H_1) + P(D_1|H_2)P(H_2)} = \frac{7 \times 1}{7 \times 1 + 4 \times 1} = \frac{7}{11}$$

$$P(H_2|D_1) = \frac{P(D_1|H_2)P(H_2)}{P(D_1|H_1)P(H_1) + P(D_1|H_2)P(H_2)} = \frac{4}{11}$$

ベイズ更新-2回目 Bayesian Updating-2nd round

$$P(H_1|D_2) = \frac{P(D_2|H_1)P(H_1)}{\sum P(D_2|H_k)P(H_k)} \quad P(H_2|D_2) = \frac{P(D_2|H_2)P(H_2)}{\sum P(D_2|H_k)P(H_k)}$$

1回目のベイズ更新で計算した事後確率を、事前確率として用いる

Use as Prior Probability the posterior probabilities calculated in the first round of Bayesian updating

$$P(H_1) = \frac{7}{11} P(H_2) = \frac{4}{11}$$

ベイズ更新-2回目 Bayesian Updating-2nd round

$$P(H_1|D_2) = \frac{P(D_2|H_1)P(H_1)}{P(D_2|H_1)P(H_1) + P(D_2|H_2)P(H_2)} = \frac{\frac{3}{10} \times \frac{7}{11}}{\frac{3}{10} \times \frac{7}{11} + \frac{6}{10} \times \frac{4}{11}}$$
$$= \frac{21}{21 + 24} = \frac{21}{45} \qquad P(H_2|D_2) = \frac{24}{45}$$

ベイズ更新-3回目 Bayesian Updating-3rd round

$$P(H_1|D_1) = \frac{P(D_1|H_1)P(H_1)}{\sum P(D_1|H_k)P(H_k)} \quad P(H_2|D_1) = \frac{P(D_1|H_2)P(H_2)}{\sum P(D_1|H_k)P(H_k)}$$

2回目のベイズ更新で計算した事後確率を、事前確率として用いる

Use as Prior Probability the posterior probabilities calculated in the second round of Bayesian updating

$$P(H_1) = \frac{21}{45} P(H_2) = \frac{24}{45}$$

ベイズ更新-3回目 Bayesian Updating-3rd round

$$P(H_1|D_1) = \frac{P(D_1|H_1)P(H_1)}{P(D_1|H_1)P(H_1) + P(D_1|H_2)P(H_2)} = \frac{21 \times 7}{21 \times 7 + 24 \times 4} = \frac{147}{243}$$

$$P(H_2|D_2) = \frac{96}{243}$$

ベイズ更新 Bayesian Updating

	箱1 Box 1	箱2 Box 2
赤玉 Red Ball	7	4
青玉 Blue Ball	3	6

スパムメールの分類 Classification of spam mail

メールに"秘密""技術""大当たり"という3つの単語が含まれていた。 An e-mail contains three words, "Secret", "Technology" and "Jackpot"

このメールはスパムメールだろうか?

Is this e-mail a spam mail?

https://pc-yougo.com/spam-mail/

スパムメールかどうかの事後確率をベイズ更新で計算する

"秘密' Secret "技術" Technology "大当たり" Jackpot

スパムメール Spam Mail	普通のメール Authentic Mail	P_1
60%	40%	P_1

$$P_1(H_S) = 0.6$$

$$P_1(H_a) = 0.4$$

		スパムメール Spam Mail	普通のメール Authentic Mail
単語1 Word 1	"秘密" Secret	60%	40%
単語2 Word 2	"技術" Technology	20%	80%
単語3 Word 3	"大当たり" Jackpot	90%	10%

$$P(W_1|H_S) = 0.6, P(W_1|H_a) = 0.4$$

$$P(W_2|H_S) = 0.2, P(W_2|H_a) = 0.8$$

$$P(W_3|H_s) = 0.9, P(W_3|H_a) = 0.1$$

メールの文章に、単語 1 "秘密"が含まれていた Contents in an e-mail contained word 1 "Secret"

そのメールがスパムである事後確率 Posterior probability that the e-mail is a spam

$$P_1(H_S|W_1) = \frac{P(W_1|H_S)P_1(H_S)}{P_1(W_1)}$$

そのメールが普通のメールである事後確率 Posterior probability that the e-mail is authentic one

$$P_1(H_a|W_1) = \frac{P(W_1|H_a)P_1(H_a)}{P_1(W_1)}$$

$$P_1(H_S|W_1) = \frac{P(W_1|H_S)P_1(H_S)}{P_1(W_1)} \qquad P_1(H_a|W_1) = \frac{P(W_1|H_a)P_1(H_a)}{P_1(W_1)}$$

 $P_1(W_1)$: 受信したメールの文章に単語 1 "秘密"が含まれる確率 Probability that contents of a received e-mail contain word 1 "secret"

両式から $P_1(W_1)$ を消去する Remove $P_1(W_1)$ from both equations

$$\frac{P_1(H_s|W_1)}{P_1(H_a|W_1)} = \frac{P(W_1|H_s)P_1(H_s)}{P(W_1|H_a)P_1(H_a)}$$

メールの文章に、単語 2 "技術"が含まれていた Contents in an e-mail contained word 2 "Technology"

$$\frac{P_{1}(H_{s}|W_{1}) = \frac{P(W_{1}|H_{s})P_{1}(H_{s})}{P_{1}(W_{1})}}{P_{2}(H_{a}|W_{2})} = \frac{P(W_{2}|H_{s})P_{2}(H_{s})}{P(W_{2}|H_{a})P_{2}(H_{a})}$$

$$P_{1}(H_{a}|W_{1}) = \frac{P(W_{1}|H_{a})P_{1}(H_{a})}{P_{1}(W_{1})}$$

メールの文章に、単語 2 "技術"が含まれていた Contents in an e-mail contained word 2 "Technology"

$$\frac{P_2(H_s|W_2)}{P_2(H_a|W_2)} = \frac{P(W_2|H_s)P(W_1|H_s)P_1(H_s)}{P(W_2|H_a)P(W_1|H_a)P_1(H_a)}$$

メールの文章に、単語 3 "大当たり"が含まれていた Contents in an e-mail contained word 3 "Jackpot"

$$\frac{P_3(H_s|W_3)}{P_3(H_a|W_3)} = \frac{P(W_3|H_s)P(W_2|H_s)P(W_1|H_s)P_1(H_s)}{P(W_3|H_a)P(W_2|H_a)P(W_1|H_a)P_1(H_a)}$$

メールに"秘密""技術""大当たり"という3つの単語が含まれていた。 An e-mail contains three words, "Secret", "Technology" and "Jackpot"

$$\frac{P_3(H_s|W_3)}{P_3(H_a|W_3)} = \frac{P(W_3|H_s)P(W_2|H_s)P(W_1|H_s)P_1(H_s)}{P(W_3|H_a)P(W_2|H_a)P(W_1|H_a)P_1(H_a)} = \frac{628 \times 10^{-4}}{128 \times 10^{-4}}$$

Probability of being a spam =
$$\frac{628}{628 + 128} = 0.83$$

メールに $\{W_1,W_2,\cdots W_n\}$ というn個の単語が含まれていた。 An e-mail contains n words, $\{W_1,W_2,\cdots W_n\}$

$$P(H_S|W_1, W_2, \dots W_n) = \frac{P(W_1, W_2, \dots W_n | H_S)P(H_S)}{P(W_1, W_2, \dots W_n)}$$

$$P(W_1, W_2, \dots W_n | H_S) P(H_S) = P(W_1, W_2, \dots W_{n-1} | W_n, H_S) P(W_n | H_S) P(H_S)$$

$$= P(W_1, W_2, \dots W_{n-2} | W_{n-1}, W_n, H_S) P(W_{n-1} | W_n, H_S) P(W_n | H_S) P(H_S)$$

$$= P(W_1, W_2, \dots W_{n-3} | W_{n-2}, W_{n-1}, W_n, H_S) P(W_{n-2} | W_{n-1}, W_n, H_S) P(W_n | H_S) P(W_n | H_S) P(H_S)$$

• • •

$$P(W_1, W_2, \cdots W_n | H_s) P(H_s)$$

$$= P(W_1, W_2, \cdots W_{n-3} | W_{n-2}, W_{n-1}, W_n, H_s) P(W_{n-2} | W_{n-1}, W_n, H_s) P(W_{n-1} | W_n, H_s) P(W_n | H_s) P(H_s)$$

スパムメールに単語 W_j が出現する条件付確率は、他の単語 $\{W_1, W_2, \cdots W_{j-1}, W_{j+1}, \cdots W_n\}$ とは独立であると仮定すると

Under the assumption that the conditional probability of occurrence of the word W_j in a spam-mail is independent of the occurrence of the other words $\{W_1, W_2, \cdots W_{j-1}, W_{j+1}, \cdots W_n\}$

$$P(W_j|W_{j+1}\cdots W_n,H_s)=P(W_j|H_s)$$

"単純化した"仮定 Naïve Assumption

スパムメールに単語 W_j が出現する条件付確率は、他の単語 $\{W_1, W_2, \cdots W_{j-1}, W_{j+1}, \cdots W_n\}$ とは独立であると仮定すると

Under the assumption that the conditional probability of occurrence of the word W_j in a spam-mail is independent of the occurrence of the other words $\{W_1, W_2, \cdots W_{j-1}, W_{j+1}, \cdots W_n\}$

$$P(W_1, W_2, \dots W_n | H_S) P(H_S)$$

$$= P(W_1 | H_S) \dots P(W_n | H_S) P(H_S) = P(H_S) \prod_{j=1}^{n} P(W_j | H_S)$$

メールに $\{W_1,W_2,\cdots W_n\}$ というn個の単語が含まれていた。 An e-mail contains n words, $\{W_1,W_2,\cdots W_n\}$

"単純化した"仮定をおくと Under the naïve assumption

$$P(H_{S}|W_{1},W_{2},\cdots W_{n}) = \frac{P(H_{a})\prod_{j=1}^{n}P(W_{j}|H_{a})}{P(W_{1},W_{2},\cdots W_{n})} \qquad P(H_{a}|W_{1},W_{2},\cdots W_{n}) = \frac{P(H_{a})\prod_{j=1}^{n}P(W_{j}|H_{a})}{P(W_{1},W_{2},\cdots W_{n})}$$

$$\frac{P(H_s|W_1, W_2, \cdots W_n)}{P(H_a|W_1, W_2, \cdots W_n)} = \frac{P(H_s) \prod_{j=1}^n P(W_j|H_s)}{P(H_a) \prod_{j=1}^n P(W_j|H_a)}$$

メールに"秘密""技術""大当たり"という3つの単語が含まれていた。 An e-mail contains three words, "Secret", "Technology" and "Jackpot"

$$\frac{P_3(H_s|W_3)}{P_3(H_a|W_3)} = \frac{P(W_3|H_s)P(W_2|H_s)P(W_1|H_s)P_1(H_s)}{P(W_3|H_a)P(W_2|H_a)P(W_1|H_a)P_1(H_a)} = \frac{628 \times 10^{-4}}{128 \times 10^{-4}}$$

Probability of being a spam =
$$\frac{628}{628 + 128} = 0.83$$

スパムメールと判定するかどうかは閾値による It depends on the threshold whether the e-mail is judged to be a spam or not

閾値と偽陽性 Threshold and False Positives

正解 Answer

判定 Judgment

	スパムメール Spam Mail	普通のメール Authentic Mail
スパムメール Spam Mail	真陽性 True Positive	偽陽性 False Positive
普通のメール Authentic Mail	偽陰性 False Negative	真陰性 True Negative

スパムと判定する閾値を下げる

Lowering threshold for judging to be a spam

偽陽性率が上がる Higher false positive rate