Bearing Design

ME 313: Mechanical Design Week 10

Today's Topics

- Overview of Bearings
- Rolling-contact bearings
 - Principles of rolling contact bearings
 - Type of rolling-contact bearings
 - Bearing life
 - Bearing reliability
- Journal bearings
 - Principles of journal bearings
 - ▶ Theory of lubrication

Bearing Uses

 Device that allows constrained motions between two or more components

Dr. Sappinandana Akamphon

Bearing Categories

 Can be divided based on principles of operation or by allowed motions

Bearing Types by Allowed Motions

- Axial rotation
 - Shaft rotation
- Linear motion
 - drawer
- Spherical rotation
 - Ball and socket joint (shoulder)
- Hinged motion
 - Door, elbow, knee, etc.

Dr. Sappinandana Akamphon

Bearing Types by Principles of Operation

- Plain bearing
- Rolling-contact bearing
- Fluid bearing
- Jewel bearing
- Magnetic bearing
- Flexure bearing

Main Focus

- Rolling-contact bearings
- Journal bearings

Dr. Sappinandana Akamphon

Rolling Element Bearings

- Bearing have rolling elements, which allows relative motions between two surfaces without sliding
- ▶ Rolling elements can be:
 - ▶ Balls
 - Needles
 - Cylinders (rollers)
 - ▶ Tapered rollers

Ball Bearings

 Use to reduce rotational friction and support radial and axial loads

Dr. Sappinandana Akamphon

Typical Construction of Ball Bearing

- Angular Contact
 - For radial and axial load
- Axial
 - Mainly for axial load
- Deep groove
 - Groove size is close to ball diameter, enhancing load resistance but limiting misalignment

Roller/Needle Bearings

- Rollers are cylinders with slightly longer length than diameter
- Needles are cylindrical rollers but with small diameter and long

Dr. Sappinandana Akamphon

Tapered Roller Bearings

- Use to support large axial and radial load simultaneously
- Rollers are tapered
 - Each is a part of a cone

Rolling Element Bearing Failure

- ▶ There are 3 major failure modes
 - Abrasion: heavy scratching on race surface
 - Fatigue: race or ball fracture due to repeated contact stress
 - Pressure-induced welding: metal bonding due to high pressure

Dr. Sappinandana Akamphon

Bearing Life

- Bearing life is usually defined by
 - Number of revolutions of inner ring until first sign of failure
 - > Number of hours of use at standard angular speed
- Rating life is a term used by most manufacturers
 - > number of revolutions or hours than 90% of bearings will achieve before failure develops, L_{10}

Bearing Load-Life Tradeoff at Constant Reliability

Data from regression shows that

$$FL^{1/a} = constant$$

- Fis exerted load on bearing
- ▶ *L* is bearing life
 - \Box *a* = 3 for ball bearing
 - \Box a = 10/3 for roller bearings (cylindrical and tapered rollers)
- Manufacturer choose to rate the load based on a set number of revolutions
 - The rated load is usually called catalog load rating, C₁₀

Dr. Sappinandana Akamphon

Catalog Load Rating and Rating Life

 We can relate load requirement to expected bearing life by

$$C_{10}L_{10}^{1/a} = FL^{1/a}$$

Also can be converted to number of revolutions

$$C_{10}(60L_R n_R)^{1/a} = F_D(60L_D n_D)^{1/a}$$

- □ *L* is life, in hours
- \square *n* is angular speed, rev/min
- Subscript:
 - □ R for rated
 - □ *D* for *desired*

Example

Dr. Sappinandana Akamphon

Bearing Survival: Reliability-Life Tradeoff

- At constant load, the longer bearing works, the lower its chance to continue working
 - follows a Weibull distribution

$$R = \exp \left[-\left(\frac{x - x_0}{\theta - x_0}\right)^b \right]$$

- R = reliability
- x = life
- $\rightarrow x0$ = guaranteed or minimum value of life
- theta = characteristic parameter
- b = shape parameter

Load-Life-Reliability

Combine the two previous equations, we have

$$C_{10} = F_D \left[\frac{x_D}{x_0 + (\theta - x_0)(1 - R_D)^{1/b}} \right]^{1/a}$$

Dr. Sappinandana Akamphon

Combined Radial and Thrust Loading

 When there are both radial and thrust loads, equivalent load needs to be calculated to determine bearing life

$$\frac{F_e}{VF_r} = 1 \quad \text{when } \frac{F_a}{VF_r} \le e$$

$$\frac{F_e}{VF_r} = X + Y \frac{F_a}{VF_r} \quad \text{when } \frac{F_a}{VF_r} > e$$

 depends on relative axial to radial load and whether inner or outer ring is rotating

General Form of Equivalent Load

General form can be written as

$$F_e = X_i V F_r + Y_i F_a$$

- \Box V=1 for inner ring rotates, = 1.2 for outer
- \Box i = 1 when $F_a/VF_r < e$ and i = 2 when $F_a/VF_r > e$
- ▶ dependent on axial load compared to basic static load rating C₀

F _a /C ₀	e	$F_{\rm a}/VF_{\rm r} < e$		$F_{\rm a}/VF_{\rm r}>e$	
		X_1	Y_1	X_2	Y ₂
0.014	0.19	1	0	0.56	2.30
0.028	0.22	1	0	0.56	1.99
0.07	0.27	1	0	0.56	1.63
0.17	0.34	1	0	0.56	1.31
0.56	0.44	1	0	0.56	1.00

Dr. Sappinandana Akamphon

Example

Journal Bearing

- Make uses of lubrication to reduce friction
 - > no direct contact between two surfaces

Dr. Sappinandana Akamphon

Types of Journal Bearings

- Hydrostatically lubricated
 - > external pump is needed to keep lubricant correctly pressurized
- Hydrodynamically lubricated
 - lubricant is pressurized by the motion of surfaces

Theory of Lubrication

- Required to understand the basics of how journal bearing works
 - Directly related to fluid mechanics

$$\tau = \frac{F}{A} = \mu \frac{du}{dy}$$
$$= \mu \frac{u}{h}$$

Dr. Sappinandana Akamphon

Petroff's Equation

Assuming concentric shaft and housing

$$\tau = \mu \frac{u}{h} = \frac{2\pi r \mu N}{c}$$

- □ N is rotational speed (rev/s)
- □ r is shaft radius
- □ c is shaft-housing clearance
- Torque on the shaft is

$$T = (\tau A)(r) = \left(\frac{2\pi r \mu n}{c} \times 2\pi r l\right)(r) = \frac{4\pi^2 r^3 l \mu N}{c}$$

Frictional Torque

▶ Consider for W on bearing

pressure on shaft projected area is

$$P = \frac{W}{2rl}$$

frictional force is

$$friction = fW$$

torque due to friction is

$$frictional torque = fWr = f(2rlP)(r)$$

= $2r^2 flP$

Dr. Sappinandana Akamphon

Equivalent Coefficient of Friction

$$f = 2\pi^2 \frac{\mu N}{P} \frac{r}{c}$$

- ▶ This is called Petroff's equation
 - provides quick estimates for coefficient of friction of lightly loaded bearing
- Two important quantities to lubrication are

$$\frac{\mu N}{P}$$
 and $\frac{r}{c}$

Heat Generated in Journal Bearing

Constant shearing increases temperature of lubricant

> flow rate of lubricant through a clearance is

$$\dot{m} = \frac{lc\rho u}{2} = lc\rho\pi rN$$

Heat loss by convection and radiation is

$$\dot{Q}_{loss} = U_0 A_0 (T_b - T_0) = \frac{U_0 A_0 (T_f - T_0)}{2}$$

Heat generated is from frictional torque

$$\dot{Q}_{gen} = 2\pi TN = 2\pi fWrN = 8\pi^3 \frac{\mu r^3 N^2 l}{c}$$

Dr. Sappinandana Akamphon

Lubricant Temperature

At steady state, heat generated is equal to heat loss

$$\dot{Q}_{loss} = \dot{Q}_{gen}$$

$$T_f = T_0 + \frac{16\pi^3 \mu N^2 lr^3}{U_0 A_0 c}$$

- Lubricant temperature usually should not go above approximately 120 C
 - > unless lubricant manufacturer states a higher number

Example	
<u></u>	De Consissadore Akomphos
	Dr. Sappinandana Akamphon