BYU Electrical & Computer Engineering

UNSCENTED TRANSFORM AND THE UKF

ECEN 633: Robotic Localization and Mapping

Slides courtesy of Ryan Eustice.

KF, EKF and UKF

- ► Kalman filter requires linear models
- ► EKF linearizes via Taylor expansion

Is there a better way to linearize?

Unscented Transform

Unscented Kalman Filter (UKF)

Taylor Approximation (EKF)

Linearization of the non-linear function through Taylor expansion

Compute a set of (so-called) sigma points

Transform each sigma point through the non-linear function

Compute Gaussian from the transformed and weighted sigma points

Nonlinear Gaussian Filters

- ► Approach 2: Unscented Kalman Filter
 - ► Approximate the PDF!
 - ▶ Use the full nonlinear plant and observation models and recompute 1st and 2nd order statistics.

UKF Linearization via Unscented Transform

UKF Sigma-Point Estimate: Large Variance

UKF Sigma-Point Estimate: Narrow Variance

UKF vs. EKF

Courtesy: E.A. Wan and R. van der Merwe

Unscented Transform Overview

- Compute a set of sigma points
- Each sigma point has a weight
- ▶ Transform the point through the non-linear function
- ▶ Compute a Gaussian from weighted points
- Avoids need to linearize around the mean as Taylor expansion (and EKF) does

Sigma Points

- ► How to choose the sigma points?
- ► How to set the weights?

Sigma Points Properties

- ► How to choose the sigma points?
- ► How to set the weights?
- ightharpoonup Select $oldsymbol{\mathcal{X}}^{[i]}, w^{[i]}$ so that:

$$\sum_{i} w^{[i]} = 1$$

$$\boldsymbol{\mu} = \sum_{i} w^{[i]} \boldsymbol{\mathcal{X}}^{[i]}$$

$$\Sigma = \sum_{i} w^{[i]} (\mathcal{X}^{[i]} - \boldsymbol{\mu}) (\mathcal{X}^{[i]} - \boldsymbol{\mu})^{\top}$$

lacktriangle There is no unique solution for $oldsymbol{\mathcal{X}}^{[i]}, w^{[i]}$

Sigma Points

► Choosing the sigma points

$$\mathcal{X}^{[0]} = \mu$$

First sigma point is the mean

Sigma Points

Choosing the sigma points

Real Symmetric Matrix Square Root

- lacktriangleright Defined as $S \ \mathrm{with} \ \Sigma = SS$
- ▶ Computed via diagonalization

$$\Sigma = VDV^{-1}
= V \begin{pmatrix} d_{11} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & d_{nn} \end{pmatrix} V^{-1}
= V \begin{pmatrix} \sqrt{d_{11}} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \sqrt{d_{nn}} \end{pmatrix} \begin{pmatrix} \sqrt{d_{11}} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \sqrt{d_{nn}} \end{pmatrix} V^{-1}$$

Real Symmetric Matrix Square Root

▶ Thus, we can define

$$S = V \begin{pmatrix} \sqrt{d_{11}} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \sqrt{d_{nn}} \end{pmatrix} V^{-1}$$

 $\mathbf{P}_{y} = \mathbf{A} \mathbf{P}_{x} \mathbf{A}^{\top}$

▶ so that

$$SS = (VD^{1/2}V^{-1})(VD^{1/2}V^{-1}) = VDV^{-1} = \Sigma$$

 $lackbox{S}$ and \sum have the same Eigenvectors

Cholesky Matrix Square Root

► Alternative definition of the matrix square root

$$L \text{ with } \Sigma = LL^{\top}$$

- ► Result of the Cholesky decomposition
- ▶ Numerically stable solution
- Often used in UKF implementations
- Actually, any such square root factorization is ok, e.g., could use factorization

$$\Sigma = AA^{\top}$$
 where $A = VD^{\frac{1}{2}}$

Sigma Points and Eigenvectors

ightharpoonup Sigma points can but do not have to lie on the main axes of \sum

$$\mathcal{X}^{[i]} = \mu + \left(\sqrt{(n+\lambda)\Sigma}\right)_i \text{ for } i = 1, \dots, n$$

$$\mathcal{X}^{[i]} = \mu - \left(\sqrt{(n+\lambda)\Sigma}\right)_{i-n} \text{ for } i = n+1, \dots, 2n$$

Sigma Points Example

Sigma Point Weights

Weight sigma points

Recover the Gaussian

► Compute Gaussian from weighted and transformed points

$$\boldsymbol{\mu}' = \sum_{i=0}^{2n} w_m^{[i]} g(\boldsymbol{\mathcal{X}}^{[i]})$$

$$\boldsymbol{\Sigma}' = \sum_{i=0}^{2n} w_c^{[i]} (g(\boldsymbol{\mathcal{X}}^{[i]}) - \boldsymbol{\mu}') (g(\boldsymbol{\mathcal{X}}^{[i]}) - \boldsymbol{\mu}')^{\top}$$

(Scaled) Unscented Transform

Figure 3.2: Schematic diagram of the unscented transformation.

Source: Van Der Merwe, Thesis

Unscented Transform Summary

Sigma points

$$m{\mathcal{X}}^{[0]} = m{\mu}$$
 $m{\mathcal{X}}^{[i]} = m{\mu} + \left(\sqrt{(n+\lambda) \Sigma}\right)_i \quad \text{for } i = 1, \dots, n$
 $m{\mathcal{X}}^{[i]} = m{\mu} - \left(\sqrt{(n+\lambda) \Sigma}\right)_{i-n} \quad \text{for } i = n+1, \dots, 2n$

▶ Weights

$$w_m^{[0]} = \frac{\lambda}{n+\lambda}$$

$$w_c^{[0]} = w_m^{[0]} + (1-\alpha^2 + \beta)$$

$$w_m^{[i]} = w_c^{[i]} = \frac{1}{2(n+\lambda)} \quad \text{for } i = 1, \dots, 2n$$

SUT Parameters

- ▶ Free parameters as there is no unique solution
- Scaled Unscented Transform suggests

$$\begin{array}{lll} \kappa & \geq & 0 \\ \alpha & \in & (0,1] \end{array} \quad \begin{array}{c} \text{Influence how far the} \\ \text{sigma points are away} \\ \text{from the mean} \\ \lambda & = & \alpha^2(n+\kappa)-n \\ \beta & = & 2 \end{array} \quad \begin{array}{c} \text{Optimal choice for Gaussians} \end{array}$$

SUT Parameters

- ightharpoonup Choose $\kappa > 0$
 - ▶ to guarantee positive semi-definiteness of the covariance matrix. The specific value of κ is not critical though, so a good default choice is $\kappa = 0$.
- ▶ Choose $0 < \alpha \le 1$
 - ▶ to control the "size" of the sigma-point distribution and should be chosen to avoid sampling non-local effects when the nonlinearities are strong; a default choice is $\alpha = 1$.
- ► Choose $\beta \ge 0$
 - ▶ to incorporate knowledge of the higher-order moments of the distribution. For example, for a Gaussian prior the optimal choice is $\beta = 2$.
- ▶ The original (un-scaled) UT transform is equivalent to:
 - ▶ SUT with $\alpha = 1, \beta = 0$

(Scaled) Unscented Transform

Sigma points

Weights

$$\chi^0 = \mu$$

$$w_m^0 = \frac{\lambda}{n+\lambda}$$
 $w_c^0 = \frac{\lambda}{n+\lambda} + (1-\alpha^2 + \beta)$

$$\chi^i = \mu \pm \left(\sqrt{(n+\lambda)\Sigma}\right)_i$$

$$\chi^{i} = \mu \pm \left(\sqrt{(n+\lambda)\Sigma}\right)_{i}$$
 $w_{m}^{i} = w_{c}^{i} = \frac{1}{2(n+\lambda)}$ for $i = 1,...,2n$

for
$$i = 1,...,2n$$

Pass sigma points through nonlinear function

$$\psi^i = g(\chi^i)$$

Recover mean and covariance

$$\mu' = \sum_{i=0}^{2n} w_m^i \psi^i$$

$$\Sigma' = \sum_{i=0}^{2n} w_c^i (\psi^i - \mu') (\psi^i - \mu')^T$$

$$\lambda = \alpha^2(n+\kappa) - n$$

$$0 < \alpha \le 1$$
 Sigma point scaling

$$\beta \geq 0 \quad \begin{array}{ll} \text{Higher-order moment} \\ \text{matching} \end{array}$$

$$\kappa \ge 0$$
 Scalar tuning parameter

► How to apply UT to estimation??

UKF (Unscented Kalman Filter)

Unscented Kalman Filter

UKF uses the Kalman Update

- ► KF is the Best Linear Unbiased Estimator (BLUE)
 - ▶ i.e., if we restrict our estimator to the class of linear estimators, then the KF is the best linear MMSE estimator*

^{*} Note: a nonlinear estimator could do better!!

EKF Algorithm*

```
1: Extended_Kalman_filter(\mu_{t-1}, \Sigma_{t-1}, \mathbf{u}_t, \mathbf{z}_t):
```

2:
$$\bar{\boldsymbol{\mu}}_t = g(\mathbf{u}_t, \boldsymbol{\mu}_{t-1})$$

3:
$$\bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^\top + R_t$$

4:
$$K_t = \bar{\Sigma}_t \ H_t^{\top} (H_t \ \bar{\Sigma}_t \ H_t^{\top} + Q_t)^{-1}$$

5:
$$\mu_t = \bar{\mu}_t + K_t(\mathbf{z}_t - h(\bar{\mu}_t))$$

6:
$$\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$$

7: return
$$\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t$$

^{*} The form shown assumes additive process and observation model noise

EKF to UKF - Prediction

6: $\Sigma_t = (I - K_t H_t) \Sigma_t$

return $\boldsymbol{\mu}_t, \Sigma_t$

1: Unscented Extended Kalman_filter $(\mu_{t-1}, \Sigma_{t-1}, \mathbf{u}_t, \mathbf{z}_t)$: 2: $\bar{\mu}_t =$ replace this by sigma point $\bar{\Sigma}_t =$ propagation of the motion 4: $K_t = \bar{\Sigma}_t H_t^{\top} (H_t \bar{\Sigma}_t H_t^{\top} + Q_t)^{-1}$ 5: $\mu_t = \bar{\mu}_t + K_t (\mathbf{z}_t - h(\bar{\mu}_t))$

UKF Algorithm – Prediction*

1: Unscented_Kalman_filter(
$$\mu_{t-1}, \Sigma_{t-1}, \mathbf{u}_t, \mathbf{z}_t$$
):

2: $\boldsymbol{\mathcal{X}}_{t-1} = (\mu_{t-1} \quad \mu_{t-1} + \sqrt{(n+\lambda)\Sigma_{t-1}} \quad \mu_{t-1} - \sqrt{(n+\lambda)\Sigma_{t-1}})$

3: $\bar{\boldsymbol{\mathcal{X}}}_t^* = g(\mathbf{u}_t, \boldsymbol{\mathcal{X}}_{t-1})$

4: $\bar{\mu}_t = \sum_{i=0}^{2n} w_m^{[i]} \bar{\boldsymbol{\mathcal{X}}}_t^{*[i]}$

5: $\bar{\Sigma}_t = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\boldsymbol{\mathcal{X}}}_t^{*[i]} - \bar{\mu}_t) (\bar{\boldsymbol{\mathcal{X}}}_t^{*[i]} - \bar{\mu}_t)^\top + R_t$

^{*} The form shown assumes additive process and observation model noise

EKF to UKF - Correction

Unscented

1: Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, \mathbf{u}_t, \mathbf{z}_t$):

- 2: $\bar{\mu}_t =$ replace this by sigma point
- 3: $\bar{\Sigma}_t$ = propagation of the motion

use sigma point propagation for the expected observation and Kalman gain

5:
$$\mu_t = \bar{\mu}_t + K_t(\mathbf{z}_t - h(\bar{\mu}_t))$$

6:
$$\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$$

7: return
$$\boldsymbol{\mu}_t, \Sigma_t$$

UKF Algorithm – Correction (1)*

6:
$$\bar{\boldsymbol{\mathcal{X}}}_{t} = (\bar{\boldsymbol{\mu}}_{t} \quad \bar{\boldsymbol{\mu}}_{t} + \sqrt{(n+\lambda)\bar{\Sigma}_{t}} \quad \bar{\boldsymbol{\mu}}_{t} - \sqrt{(n+\lambda)\bar{\Sigma}_{t}})$$
7: $\bar{\boldsymbol{\mathcal{Z}}}_{t} = h(\bar{\boldsymbol{\mathcal{X}}}_{t})$
8: $\hat{\boldsymbol{z}}_{t} = \sum_{i=0}^{2n} w_{m}^{[i]} \bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]}$
9: $S_{t} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]} - \hat{\boldsymbol{z}}_{t}) (\bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]} - \hat{\boldsymbol{z}}_{t})^{\top} + Q_{t}$
10: $\bar{\Sigma}_{t}^{x,z} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\boldsymbol{\mathcal{X}}}_{t}^{[i]} - \bar{\boldsymbol{\mu}}_{t}) (\bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]} - \hat{\boldsymbol{z}}_{t})^{\top}$

^{*} The form shown assumes additive process and observation model noise

UKF Algorithm – Correction (1)*

6:
$$\bar{\boldsymbol{\mathcal{X}}}_{t} = (\bar{\boldsymbol{\mu}}_{t} \quad \bar{\boldsymbol{\mu}}_{t} + \sqrt{(n+\lambda)\bar{\Sigma}_{t}} \quad \bar{\boldsymbol{\mu}}_{t} - \sqrt{(n+\lambda)\bar{\Sigma}_{t}})$$
7: $\bar{\boldsymbol{\mathcal{Z}}}_{t} = h(\bar{\boldsymbol{\mathcal{X}}}_{t})$
8: $\hat{\boldsymbol{z}}_{t} = \sum_{i=0}^{2n} w_{m}^{[i]} \bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]}$
9: $S_{t} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]} - \hat{\boldsymbol{z}}_{t}) (\bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]} - \hat{\boldsymbol{z}}_{t})^{\top} + Q_{t} \longrightarrow \sum_{t=0}^{2n} z^{2,2}$
10: $\bar{\Sigma}_{t}^{x,z} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\boldsymbol{\mathcal{X}}}_{t}^{[i]} - \bar{\boldsymbol{\mu}}_{t}) (\bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]} - \hat{\boldsymbol{z}}_{t})^{\top}$
11: $K_{t} = \bar{\Sigma}_{t}^{x,z} S_{t}^{-1}$ (from BLUE)

^{*} The form shown assumes additive process and observation model noise

UKF Algorithm - Correction (2)

6:
$$\bar{\boldsymbol{\mathcal{X}}}_{t} = (\bar{\boldsymbol{\mu}}_{t} \quad \bar{\boldsymbol{\mu}}_{t} + \sqrt{(n+\lambda)\bar{\Sigma}_{t}} \quad \bar{\boldsymbol{\mu}}_{t} - \sqrt{(n+\lambda)\bar{\Sigma}_{t}})$$
7: $\bar{\boldsymbol{\mathcal{Z}}}_{t} = h(\bar{\boldsymbol{\mathcal{X}}}_{t})$
8: $\hat{\boldsymbol{z}}_{t} = \sum_{i=0}^{2n} w_{m}^{[i]} \bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]}$
9: $S_{t} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]} - \hat{\boldsymbol{z}}_{t}) (\bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]} - \hat{\boldsymbol{z}}_{t})^{\top} + Q_{t}$
10: $\bar{\Sigma}_{t}^{x,z} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\boldsymbol{\mathcal{X}}}_{t}^{[i]} - \bar{\boldsymbol{\mu}}_{t}) (\bar{\boldsymbol{\mathcal{Z}}}_{t}^{[i]} - \hat{\boldsymbol{z}}_{t})^{\top}$
11: $K_{t} = \bar{\Sigma}_{t}^{x,z} S_{t}^{-1}$
12: $\boldsymbol{\mu}_{t} = \bar{\boldsymbol{\mu}}_{t} + K_{t}(\mathbf{z}_{t} - \hat{\mathbf{z}}_{t})$
13: $\Sigma_{t} = \bar{\Sigma}_{t} - K_{t} S_{t} K_{t}^{\top}$
14: $\operatorname{return} \boldsymbol{\mu}_{t}, \Sigma_{t}$

UKF

This version of the algorithm implicitly assumes additive

zero-mean process and observation noise

Algorithm Unscented_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$): 1:

2:
$$X_{t-1} = (\mu_{t-1} \quad \mu_{t-1} + \gamma \sqrt{\Sigma_{t-1}} \quad \mu_{t-1} - \gamma \sqrt{\Sigma_{t-1}})$$

3:
$$\bar{\mathcal{X}}_t^* = g(u_t, \mathcal{X}_{t-1})$$

$$\bar{\mu}_t = \sum_{i=0}^{2n} w_m^{[i]} \bar{\mathcal{X}}_t^{*[i]} \qquad \qquad \text{Take care with means}$$
 of circular quantities

$$\bar{\Sigma}_t = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{X}}_t^{*[i]} - \bar{\mu}_t) (\bar{\mathcal{X}}_t^{*[i]} - \bar{\mu}_t)^T + R_t$$

$$\bar{\mathcal{X}}_t = (\bar{\mu}_t \quad \bar{\mu}_t + \gamma \sqrt{\bar{\Sigma}_t} \quad \bar{\mu}_t - \gamma \sqrt{\bar{\Sigma}_t})$$

6:
$$\bar{X}_t = (\bar{\mu}_t \quad \bar{\mu}_t + \gamma \sqrt{\bar{\Sigma}_t} \quad \bar{\mu}_t - \gamma \sqrt{\bar{\Sigma}_t})$$

7:
$$\bar{\mathcal{Z}}_t = h(\bar{\mathcal{X}}_t)$$

:
$$\hat{z}_t = \sum_{i=0}^{2n} w_m^{[i]} \bar{\mathcal{Z}}_t^{[i]}$$

$$S_{t} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\mathcal{Z}}_{t}^{[i]} - \hat{z}_{t}) (\bar{\mathcal{Z}}_{t}^{[i]} - \hat{z}_{t})^{T} + Q_{t}$$

$$\bar{\Sigma}_{t}^{x,z} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\mathcal{X}}_{t}^{[i]} - \bar{\mu}_{t}) (\bar{\mathcal{Z}}_{t}^{[i]} - \hat{z}_{t})^{T}$$

$$0: \qquad \bar{\Sigma}_{t}^{x,z} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\mathcal{X}}_{t}^{[i]} - \bar{\mu}_{t}) (\bar{\mathcal{Z}}_{t}^{[i]} - \hat{z}_{t})^{T}$$

10:
$$\bar{\Sigma}_t^{x,z} = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{X}}_t^{[i]} - \bar{\mu}_t) (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t)^T$$

11:
$$K_t = \bar{\Sigma}_t^{x,z} S_t^{-1}$$

12:
$$\mu_t = \bar{\mu}_t + K_t(z_t - \hat{z}_t)$$

13:
$$\Sigma_t = \bar{\Sigma}_t - K_t S_t K_t^T$$

14: return
$$\mu_t$$
, Σ_t

Means of Circular Quantities

- \blacktriangleright Trick is to map angles θ_i to the unit circle
- ► Take arithmetic mean of Cartesian quantities

$$\overline{\cos} = \sum_{i=0}^{2N} \cos(\theta_i) w_m^{[i]} \quad \overline{\sin} = \sum_{i=0}^{2N} \sin(\theta_i) w_m^{[i]}$$

▶ Map back to corresponding "average" angle*

$$\bar{\theta} = \operatorname{atan2}(\overline{\sin}, \overline{\cos})$$

Similarly

► Map angular differences, such as

$$(\mathcal{X}^{[i]} - \mu)$$
 to $[-\pi, \pi]$

when computing innovation and covariance expressions, e.g.:

$$\Sigma_{xx} = \sum_{i=0}^{2N} w_c^{[i]} (\boldsymbol{\mathcal{X}}^{[i]} - \boldsymbol{\mu}_x) (\boldsymbol{\mathcal{X}}^{[i]} - \boldsymbol{\mu}_x)^{\top}$$

$$\Sigma_{xz} = \sum_{i=0}^{2N} w_c^{[i]} (\boldsymbol{\mathcal{X}}^{[i]} - \boldsymbol{\mu}_x) (\boldsymbol{\mathcal{Z}}^{[i]} - \boldsymbol{\mu}_z)^{\top}$$

i.e.
$$2\pi$$
-0 = 0!!!

UKF vs. EKF

UKF vs. EKF (Small Covariance)

UKF vs. EKF – Banana Shape

UKF Summary

- ▶ **Highly efficient**: Same complexity as EKF, with a constant factor slower (sometimes significant) in typical practical applications
- ▶ Better linearization than EKF: Accurate in first two derivatives* of Taylor expansion (EKF only first term)
- ▶ Derivative-free: No Jacobians needed
- ▶ Still not optimal!

UKF vs. EKF

- ▶ Same results as EKF for linear models
- ▶ Better approximation than EKF for non-linear models
- ▶ Differences often "somewhat small"
- ▶ No Jacobians needed for the UKF
- Same complexity class
- ► Slightly slower than the EKF

Literature

Unscented Transform and UKF

- ▶ Thrun et al.: "Probabilistic Robotics", Chapter 3.4
- ► "A New Extension of the Kalman Filter to Nonlinear Systems" by Julier and Uhlmann, 1995
- "Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models", PhD Thesis, Rudolph van der Merwe, 2004