

S6B0107

64CH COMMONDRIVER FOR DOT MATRIX LCD

July 2001

Ver. 0.0

Contents in this document are subject to change without notice. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of LCD Driver IC Team.

Precautions for Light

Light has characteristics to move electrons in the integrated circuitry of semiconductors, therefore may change the characteristics of semiconductor devices when irradiated with light. Consequently, the users of the packages which may expose chips to external light such as COB, COG, TCP and COF must consider effective methods to block out light from reaching the IC on all parts of the surface area, the top, bottom and the sides of the chip. Follow the precautions below when using the products.

- 1. Consider and verify the protection of penetrating light to the IC at substrate (board or glass) or product design stage.
- 2. Always test and inspect products under the environment with no penetration of light.

	S6B0107 Specification Revision History							
Version	Content	Date						
0.0	Original	July.2001						

CONTENTS

INTRODUCTION	
BLOCK DIAGRAM	2
PIN CONFIGURATION	3
100-QFP	3
PAD DIAGRAM (CHIP LAYOUT FOR THE 100QFP)	4
PAD CENTER COORDINATES (100QFP)	5
100-TQFP (S6B2107)	
PAD DIAGRAM (CHIP LAYOUT FOR THE 100-TQFP)	
PAD CENTER COORDINATES (100-TQFP)	8
PIN DESCRIPTION	10
ELECTRICAL CHARACTERISTICS	13
DC CHARACTERISTICS	13
AC CHARACTERISTICS (V_{DD} = 5V \pm 10%, TA = -30°C to +85°C)	14
FUNCTIONAL DESCRIPTION	17
TIMING DIAGRAM	19
1/48 DUTY TIMING (MASTER MODE)	19
1/128 DUTY TIMING (MASTER MODE)	
1/48 DUTY TIMING (SLAVE MODE)	21
POWER DRIVER CIRCUIT	
APPLICATION CIRCUIT	23

INTRODUCTION

The S6B0107 (TQFP type: S6B2107) is a LCD driver LSI with 64 channel outputs for dot matrix liquid crystal graphic display systems. This device provides 64 shift registers and 64 output drivers. It generates the timing signal to control the S6B0108 (64 channel segment driver - TQFP type: S6B2108). The S6B0107 is fabricated by low power CMOS high voltage process technology, and is composed of the liquid crystal display system in combination with the S6B0108 (64 channel segment driver).

FEATURES

- Dot matrix LCD common driver with 64 channel output
- 64-bit shift register at internal LCD driver circuit
- Internal timing generator circuit for dynamic display
- Selection of master/slave mode
- Applicable LCD duty: 1/48, 1/64, 1/96, 1/128
- Power supply voltage: + 5V \pm 10%
- LCD driving voltage: 8V 17V (V_{DD}-V_{FF})
- Interface

Dr	iver	Controller		
COMMON	SEGMENT	Controller		
Other S6B0107	S6B0108	MPU		

- High voltage CMOS process
- 100QFP/100TQFP and bare chip available

BLOCK DIAGRAM

PIN CONFIGURATION

100-QFP

PAD DIAGRAM (CHIP LAYOUT FOR THE 100QFP)

There is the mark S6B0107 on the center of the chip.

PAD CENTER COORDINATES (100QFP)

Pad	Pad	Coord	dinate	Pad	Pad	Coord	dinate	Pad	Pad	Coord	dinate
Number	Name	Х	Y	Number	Name	Х	Υ	Number	Name	Х	Y
1	C22	-1314.5	1775.4	32	DS2	-677.6	-1775	71	C52	1500.9	630
2	C21	-1499.9	1630	33	С	-527.6	-1775	72	C51	1500.9	755
3	C20	-1499.9	1505	35	R	-377.6	-1775	73	C50	1500.9	880
4	C19	-1499.9	1380	37	CR	-227.6	-1775	74	C49	1500.9	1005
5	C18	-1499.9	1255	39	SHL	-77.6	-1775	75	C48	1500.9	1130
6	C17	-1499.9	1130	40	V_{SS}	113.8	-1775	76	C47	1500.9	1255
7	C16	-1499.9	1005	42	MS	308.7	-1775	77	C46	1500.9	1380
8	C15	-1499.9	880	43	CLK2	458.7	-1775	78	C45	1500.9	1505
9	C14	-1499.9	755	44	CLK1	608.7	-1775	79	C44	1500.9	1630
10	C13	-1499.9	630	46	FRM	758.7	-1775	80	C43	1310.5	1775.4
11	C12	-1499.9	505	47	М	908.7	-1775	81	C42	1185.5	1775.4
12	C11	-1499.9	380	49	PCLK2	1058.7	-1775	82	C41	1060.5	1775.4
13	C10	-1499.9	255	50	DI02	1208.7	-1775	83	C40	935.5	1775.4
14	C9	-1499.9	130	52	CL2	1358.7	-1775	84	C39	810.5	1775.4
15	C8	-1499.9	5	54	V0R	1500.9	-1495	85	C38	685.5	1775.4
16	C7	-1499.9	-120	55	V5R	1500.9	-1370	86	C37	560.5	1775.4
17	C6	-1499.9	-245	56	V4R	1500.9	-1245	87	C36	435.5	1775.4
18	C5	-1499.9	-370	57	V1R	1500.9	-1120	88	C35	310.5	1775.4
19	C4	-1499.9	-495	58	V_{EE}	1500.9	-995	89	C34	185.5	1775.4
20	C3	-1499.9	-620	59	C64	1500.9	-870	90	C33	60.5	1775.4
21	C2	-1499.9	-745	60	C63	1500.9	-745	91	C32	-64.5	1775.4
22	C1	-1499.9	-870	61	C62	1500.9	-620	92	C31	-189.5	1775.4
23	V_{EE}	-1499.9	-995	62	C61	1500.9	-495	93	C30	-314.5	1775.4
24	V1L	-1499.9	-1120	63	C60	1500.9	-370	94	C29	-439.5	1775.4
25	V4L	-1499.9	-1245	64	C59	1500.9	-245	95	C28	-564.5	1775.4
26	V5L	-1499.9	-1370	65	C58	1500.9	-120	96	C27	-689.5	1775.4
27	V0L	-1499.9	-1495	66	C57	1500.9	5	97	C26	-814.5	1775.4
28	V_{DD}	-1345.6	-1775	67	C56	1500.9	130	98	C25	-939.5	1775.4
29	DI01	-1127.6	-1775	68	C55	1500.9	255	99	C24	-1064.5	1775.4
30	FS	-977.6	-1775	69	C54	1500.9	380	100	C23	-1189.5	1775.4
31	DS1	-827.6	-1775	70	C53	1500.9	505				

100-TQFP (S6B2107)

PAD DIAGRAM (CHIP LAYOUT FOR THE 100-TQFP)

NOTE: There is the mark S6B2107 on the center of the chip.

PAD CENTER COORDINATES (100-TQFP)

Pad	Pad	Coord	dinate	Pad	Pad	Coor	dinate	Pad	Pad	Coord	dinate
Number	Name	Х	Υ	Number	Name	Х	Υ	Number	Name	Х	Υ
1	C19	-1697	1534	35		NC		69	C51	1697	784
2	C18	-1697	1409	36	SHL	-195	-1821	70	C50	1697	909
3	C17	-1697	1284	37	V _{SS}	0	-1821	71	C49	1697	1034
4	C16	-1697	1159	38		NC		72	C48	1697	1159
5	C15	-1697	1034	39	MS	195	-1821	73	C47	1697	1284
6	C14	-1697	909	40	CLK2	345	-1821	74	C46	1697	1409
7	C13	-1697	784	41	CLK1	495	-1821	75	C45	1697	1534
8	C12	-1697	659	42		NC		76	C44	1500	1822
9	C11	-1697	534	43	FRM	645	-1821	77	C43	1375	1822
10	C10	-1697	409	44	М	795	-1821	78	C42	1250	1822
11	C9	-1697	284	45		NC		79	C41	1125	1822
12	C8	-1697	159	46	PCLK2	945	-1821	80	C40	1000	1822
13	C7	-1697	34	47	DIO2	1095	-1821	81	C39	875	1822
14	C6	-1697	-91	48		NC		82	C38	750	1822
15	C5	-1697	-216	49	CL2	1245	-1821	83	C37	625	1822
16	C4	-1697	-341	50		NC		84	C36	500	1822
17	C3	-1697	-466	51	V0R	1697	-1466	85	C35	375	1822
18	C2	-1697	-591	52	V5R	1697	-1341	86	C34	250	1822
19	C1	-1697	-716	53	V4R	1697	-1216	87	C33	125	1822
20	VEE	-1697	-841	54	V1R	1697	-1091	88	C32	0	1822
21	V1L	-1697	-966	55	VEE	1697	-966	89	C31	-125	1822
22	V4L	-1697	-1091	56	C64	1697	-841	90	C30	-250	1822
23	V5L	-1697	-1216	57	C63	1697	-716	91	C29	-375	1822
24	V0L	-1697	-1341	58	C62	1697	-591	92	C28	-500	1822
25	V_{DD}	-1697	-1466	59	C61	1697	466	93	C27	-625	1822
26	DIO1	-1245	-1821	60	C60	1697	-341	94	C26	-750	1822
27	FS	-1095	-1821	61	C59	1697	-216	95	C25	-875	1822
28	DS1	-945	-1821	62	C58	1697	-91	96	C24	-1000	1822
29	DS2	-795	-1821	63	C57	1697	34	97	C23	-1125	1822

30	С	-645	-1821	64	C56	1697	159	98	C22	-1250	1822
31	NC		65	C55	1697	284	99	C21	-1375	1822	
32	R	-495	-1821	66	C54	1697	409	100	C20	-1500	1822
33	NC		67	C53	1697	534					
34	CR	-345	-1821	68	C52	1697	659				

PIN DESCRIPTION

Table 1. Pin Description

Pin Number QFP (TQFP)	Symbol	I/O	Description					
28(25) 40(37) 23(20), 58(55)	V _{DD} V _{SS} V _{EE}	Power	For internal logic circuit (+5V \pm 10%) GND (= 0 V) For LCD driver circuit					
27(24), 54(51) 24(21), 57(54) 25(22), 56(53) 26(23), 55(52)	V0L, V0R V1L, V1R V4L, V4R V5L, V5R	Power	Bias supply voltage terminals to drive LCD. Slelect Level Non-Select Level V0L (R), V5L (R) V1L (R), V4L (R) V0L and V0R (V1L & V1R, V4L & V4R, V5L & V5R) should be connected by the same voltage.					
42(39)	MS	Input	Selection of master/slave mode - Master mode (MS = 1) DIO1, DIO2, CL2 and M is output state Slave mode (MS = 0) SHL = 1 → DIO1 is input state (DIO2 is output state) SHL = 0 → DIO2 is input state (DIO1 is output state) CL2 and M are input state.					
39(36)	SHL	Input						
49(46)	PCLK2	Input	Selection of shift clock (CL2) phase. PCLK2 Shift Clock (CL2) Phase H Data shift at the rising edge of CL2 L Data shift at the falling edge of CL2					
30(27)	FS	Input	Selection of oscillation frequency. - Master mode When the frame frequency is 70 Hz, the oscillation frequency should be fosc = 430kHz at FS = $1(V_{DD})$ fosc = 215kHz at FS = $0(V_{SS})$ - Slave mode Connect to V_{DD} .					

Table 1. Pin Description (Continued)

Pin Number QFP (TQFP)	Symbol	I/O		Γ	Description					
31(28)	DS1	Input	Selection of dis	splay duty.						
32(29)	DS2		- Master mode							
			DS1	DS2	Duty					
			L	L	1/48					
			L	Н	1/64					
			Н	L	1/96					
			Н	Н	1/128					
			- Slave mode Connect to V	DD						
33(30)	С		RC Oscillator							
35(32) 37(34)	R CR		- Master mode							
			S6B0107 R							
			- Slave mode: S	Stop the osc	illator as sho	wn below.				
			R CR Open OVDD	C Open						
44(41) 43(40)	CLK1 CLK2	Output	Operating clock - Master mode: S6B0108 - Slave mode:	: connection						
46(43)	FRM	Output	Synchronous fire - Master mode - Slave mode:	: connection	to FRM of th	ne S6B0108				
47(44)	М	Input/ Output	Alternating sigr - Master mode - Slave mode:	: output state	e Connection					
52(49)	CL2	Input / Output	Data shift clock - Master mode - Slave mode: the controller.	: output state input state C						
29(26)	DIO1	Input/	· · · ·							
50(47)	DIO2	Output	MS	DS2	DIO1	DIO2				
			Н	Н	Output	Output				
				L	Output	Output				
				H	Input	Output				
				L	Output	Input				

Table 1. Pin Description (Continued)

Pin Number QFP (TQFP)	Symbol	I/O	Description					
22-1(19-1)	C1-C64	Output	Common signal ou	Common signal output for LCD driving.				
100-59(100-56)			Data	M	Out			
			L	L	V ₁			
			L	Н	V ₄			
			Н	L	V ₅			
			Н	Н	V _o			
34(31), 36(33) 38(35), 41(38) 45(42), 48(45) 51(48), 53(50)	NC		No connection					

MAXIMUM ABSOLUTE LIMIT

Characteristic	Symbol	Value	Unit	Note
Operating voltage	V _{DD}	-0.3 - +7.0	V	(1)
Supply voltage	V _{EE}	V _{DD} -19.0 - V _{DD} +0.3	V	(4)
Driver supply voltage	V _B	-0.3 - V _{DD} +0.3	V	(1), (2)
	V _{LCD}	V _{EE} -0.3 - V _{DD} +0.3	V	(3), (4)
Operating temperature	T _{OPR}	-30 - +85	°C	_
Storage temperature	T _{STG}	-55 - +125	°C	_

NOTES:

- 1. Based on $V_{SS} = 0V$
- 2. Applies to input terminals and I/O terminals at high impedance. (Except V0L(R), V1L(R), V4L(R) and V5L(R)).
- 3. Applies to V0L(R), V1L(R), V4L(R) and V5L(R).
- 4. Voltage level: $V_{DD} \ge V0L = V0R \ge V1L = V1R \ge V4L = V4R \ge V5L = V5R \ge V_{EE}$.

ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS

 $(V_{DD} = +5V \pm 10\%, V_{SS} = 0V, |V_{DD}-V_{EE}| = 8 - 17V, Ta = -30 \text{ to } +85^{\circ}\text{C})$

Charac	teristic	Symbol	Condition	Min	Тур	Max	Unit	Note
Input	High	V _{IH}	-	0.7V _{DD}	_	V _{DD}	V	(1)
Voltage	Low	V _{IL}		V _{SS}	_	0.3V _{DD}		
Output	High	V _{OH}	I _{OH} = -0.4mA	V _{DD} -0.4	-	_	V	(2)
Voltage	Low	V _{OL}	I _{OL} = 0.4mA	_	_	0.4		
Input leakage	current	I _{LKG}	$V_{IN} = V_{DD} - V_{SS}$	-1.0	-	1.0	μΑ	(1)
OSC frequency		fosc	$Rf = 47k\Omega \pm 2\%$ $Cf = 20pf \pm 5\%$	315	450	585	kHz	
On resistance (VDIV-CI)		R _{ON}	V_{DD} - V_{EE} = 17V Load current = ± 150 μ A	_	_	1.5	ΚΩ	
Operating cu	rrent	I _{DD1}	Master mode 1/128 Duty	_	-	1.0	mA	(3)
		I _{DD2}	Slave mode 1/128 Duty	_	_	200	μΑ	(4)
Supply current		I _{EE}	Master mode 1/128 Duty	-	-	100		(5)
Operating		f _{op1}	Master mode External clock	50	-	600	kHz	
Frequency		f _{op2}	Slave mode	0.5	_	1500		

NOTES:

- 1. Applies to input terminals FS, DS1, DS2, CR, SHL, MS and PCLK2 and I/O terminals DIO1, DIO2, M and CL2 in the input state.
- 2. Applies to output terminals CLK1, CLK2 and FRM and I/O terminals DIO1, DIO2, M and CL2 in the output state.
- 3. This value is specified at about the current flowing through V_{SS} . Internal oscillation circuit: Rf = 47k Ω , Cf = 20pF Each terminal of DS1, DS2, FS, SHL and MS is connected to V_{DD} and out is no load.
- 4. This value is specified at about the current flowing through V_{SS} . Each terminal of DS1, DS2, FS, SHL, PCLK2 and CR is
 - connected to V_{DD}, and MS is connected to V_{SS}. CL2, M, DIO1 is external clock.
- 5. This value is specified at about the current flowing through V_{EE} . Don't connect to V_{LCD} (V1-V5).

AC CHARACTERISTICS (V $_{DD}$ = 5V \pm 10%, TA = -30°C to +85°C)

Master Mode

(MS = V_{DD} , PCLK2 = V_{DD} , Cf = 20pF, Rf = 47k Ω)

Master Mode

Characteristic	Symbol	Min	Тур	Max	Unit
Data setup time	t _{SU}	20	_	-	μs
Data hold time	t _{DH}	40	_	_	
Data delay time	t _D	5	_	_	
FRM delay time	t _{DF}	-2	_	2	
M delay time	t _{DM}	-2	_	2	
CL2 low level width	t _{WLC}	35	_	_	
CL2 high level width	t _{WHC}	35	_	-	
CLK1 low level width	t _{WL1}	700	_	-	ns
CLK2 low level width	t _{WL2}	700	_	-	
CLK1 high level width	t _{WH1}	2100	_	_	
CLK2 high level width	t _{WH2}	2100	_	_	
CLK1-CLK2 phase difference	t _{D12}	700	_	_	
CLK2-CLK1 phase difference	t _{D21}	700	-	_	
CLK1, CLK2 rise/fall time	t _R /t _F	_	-	150	

Slave Mode (MS = V_{SS})

Characteristics	Symbol	Min	Тур	Max	Unit	Note
CL2 low level width	t _{WLC1}	450	_	_	ns	PCLK2 = V _{SS}
CL2 high level width	t _{WHC1}	150	-	_	ns	PCLK2 = V _{SS}
CL2 low level width	t _{WLC2}	150	-	_	ns	PCLK2 = V _{DD}
CL2 high level width	t _{WHL}	450	-	_	ns	PCLK2 = V _{DD}
Data setup time	t _{SU}	100	-	_	ns	
Data hold time	t _{DH}	100	-	_	ns	
Data delay time	t _D	-	-	200	ns	(NOTE)
Output data hold time	t _H	10	_	_	ns	
CL2 rise/fall time	t _R /t _F	_	_	30	ns	

NOTE: Connect load CL = 30pF

FUNCTIONAL DESCRIPTION

RC Oscillator

The RC Oscillator generates CL2, M, FRM of the S6B0107, and CLK1 and CLK2 of the S6B0108 by the oscillation resister R and capacitor C.

When selecting the master/slave mode, the oscillation circuit is as following:

Master Mode: In the master mode, use these terminals as shown below.

Slave Mode: In the slave mode, stop the oscillator as shown below.

Timing Generation Circuit

It generates CL2, M, FRM, CLK1 and CLK2 by the frequency from the oscillation circuit.

Selection of Master/Slave (M/S) Mode

- When M/S is "H", it generates CL2, M, FRM, CLK1 and CLK2 internally.
- When M/S is "L", it operates by receiving M and CL2 from the mater device

Frequency Selection (FS)

To adjust FRM frequency by 70Hz, the oscillation frequency should be as follows:

FS	Oscillation Frequency		
Н	f _{OSC} = 430kHz		
L	f _{OSC} = 215kHz		

In the slave mode, it is connected to V_{DD} .

Duty Selection (DS1, DS2)

It provides various duty selections according to DS1 and DS2.

DS1	DS2	DUTY
L	L	1/48
	Н	1/64
Н	L	1/96
	Н	1/128

Data Shift & Phase Select Control

Phase Selection

It is a circuit to shift data on synchronization or rising edge, or falling edge of the CL2 according to PCLK2.

PCLK2	Phase Selection		
Н	Data shift on rising edge of CL2		
L	Data shift on falling edge of CL2		

Data Shift Direction Selection

When M/S is connected to $\mathrm{V}_{\mathrm{DD}}\!,$ DIO1 and DIO2 terminal is only output.

When M/S is connected to V_{SS} , it depends on the SHL.

MS	SHL	DIO1	DIO2	Direction of Data
Н	Н	Output	Output	C1 → C64
	L	Output	Output	C64 → C1
L	Н	Input	Output	$DIO1 \to C1 \to C64 \to DIO2$
	L	Output	Input	$DIO2 \rightarrow C64 \rightarrow C1 \rightarrow DIO1$

TIMING DIAGRAM

1/48 DUTY TIMING (MASTER MODE)

Condition: DS1 = L, DS2 = L, SHL = H(L), PCLK2 = H

1/128 DUTY TIMING (MASTER MODE)

Condition: DS1 = H, DS2 = H, SHL = H(L), PCLK2 = H

1/48 DUTY TIMING (SLAVE MODE)

Condition: PCLK2 = L, SHL = H(L)

POWER DRIVER CIRCUIT

Relation of Duty & Bias

Duty	Bias	RDIV
1/48	1/8	R2 = 4R1
1/64	1/9	R2 = 5R1
1/96	1/11	R2 = 7R1
1/128	1/12	R2 = 8R1

When duty factor is 1/48, the value of R1 & R2 should satisfy.

$$R1/(4R1 + R2) = 1/8$$

$$R1 = 3k\Omega$$
, $R2 = 12k\Omega$

APPLICATION CIRCUIT

1/128 duty segment drive (S6B0108) interface circuit

