

概率论与数理统计 A 浙江理工大学期末试题汇编 (试卷册 五套精装版)

学校:	
专业:	
班级:	
姓名:	
学号:	

(此试卷为 2022 年第二版 第 1 次发行)

写在前面

亲爱的小伙伴们:

你们好!我是张创琦,这是我第二次写序言,现在是 2022 年上半年,我已经在读大二下学期了。我很欣慰的是,现在开学才四周,群里有很多人在找我要下册高数期中试卷了。我为什么要坚持写序言呢?因为我觉得或许试题是没有感情的,试题的快乐来源于最终对答案的正确与否,而在学习路上身边人的鼓励或许才是动力之源,你会发现,原来身边有这么多志同道合的小伙伴和我在走一样的道路。

学习之路注定是孤独的,或许你每天晚上在学校学习结束到宿舍后看到的是舍友在打游戏,而你还在苦逼地敲代码或写作业;或许你身边的小伙伴一周内有好几天都可以睡大觉,而你天天早八;或许你每天坐到空教室或者实验室里,面对实验室、教学楼、餐厅、宿舍四点一线的生活早已怀疑自己当初的选择是否正确,但是亲爱的朋友,"Stormy rainbow, sonorous rose."风雨彩虹,铿锵玫瑰。没有谁能随随便便成功。或许你不聪明,别人一天学习的内容要比你多很多,别人的反应速度比你要快很多,别人的做事效率要比你高很多,但是上天给予你最美好的东西就是你自己,这谁都无法替代。每次难受,我都会告诉自己,"张创琦,你现在一无所有,你拥有的就是你的专业知识和你手中的电脑。而你,要在这所城市拼出一条自己的道路,你不像他们一样拥有殷实的家底和丰富的童年,生命给予最美好的东西叫生活,还有一样东西叫未来。"

这个故事看起来或许是洗脑的,但我并不这样觉得,一个斗士的一生是充满能量和挑战的。谁都有怀疑自我的时候,谁也都有想从众的时候,谁都知道不学习享受生活是轻松的,但他们更知道,这个社会给予爱学习的人更多的机会——选择的机会,而这个前提是你要有充足的知识储备。B 站发布的《后浪三部曲》中的《后浪》和《入海》给我的感触很深。《后浪》的各种美好生活我确实没有享受过,我从小接受的教育就是"知识改变命运",但这有错吗?每个人的出身不尽相同,刘媛媛曾说过,"命运给你一个低的起点,是想让你用你的一生,去奋斗出一个绝地反击的故事。"

身处计算机专业,他们给我的感觉不是聪明的人多,而是奋斗的人多。有多少人算法题目不知道刷了多少遍,有多少人为了开发项目不知道奋斗了多少,有多少人看了数不清的技术书籍,又有多少人为了一个小 bug 不知道翻阅了多少的文章。当然,其它专业的同学们又谈何容易,生化环材的同学们为了一个数据测量不知道要准备多少材料,实验结果错误不知道要排除多少因素……

未来生活美好吗?我有想过好多次未来。他们给程序员的定义是"秃头"、"加班"、"呆",但,现实的生活只有自己经历才知道。B站采访了几位即将毕业的毕业的大学生,他们的问题如下:"我的专业真的有前途吗?""努力真的有收获吗?""现在选的这条路走错了吗?""没有老师再教我了,该怎样自学自立?""大城市能留得住我的梦想吗?""他们说毕业后就会分手,我们可以逃过这个定律吗?""我还能保留住自己的初心吗?""学历真的决定一切吗?""怎样才算不虚度光阴?""喜欢打游戏,就是玩物丧志吗?""毕业之后,我还可以像学校这么快乐吗?""我可以成为想要成为的那个人吗?"

"时间会回答成长,成长会回答梦想。梦想会回答生活,生活回答你我的模样。"我亲爱的朋友,时间无语,但回答了所有的梦想。

最终,感谢小伙伴们与我一起经历了这本资料的第二个版本的发行,共勉!

张创琦

目录

1	2021-2022 学年第 1 学期	《概率论与数理统计 A》	期末 A 卷	1
			期末A卷	
3	2020-2021 学年第 1 学期	《概率论与数理统计 A》	期末 A 卷	9
4	2019-2020 学年第 2 学期	《概率论与数理统计A》	期末 A 卷1	3
5	2018-2019 学年第 2 学期	《概率论与数理统计A》	期末 A 卷1	7

2022年所有试卷版本见尾页。如需资料获取请添加下方的 QQ 群获取。

送给大家一段文摘:

当欢笑淡成沉默,当信心变成失落,我走近梦想的脚步,是否依旧坚定执着;当笑颜流 失在心的沙漠,当霜雪冰封了亲情承诺,我无奈的心中,是否依然碧绿鲜活。

有谁不渴望收获,有谁没有过苦涩,有谁不希望生命的枝头挂满丰硕,有谁愿意让希望 变成梦中的花朵。现实和理想之间,不变的是跋涉,暗淡与辉煌之间,不变的是开拓。

甩掉世俗的羁绊,没谁愿意,让一生在碌碌无为中度过。整理你的行装,不同的起点,可以达到同样辉煌的终点。人生没有对错,成功永远属于奋斗者。

——汪曾祺《生活》

更多信息

试卷整理人: 张创琦 微信公众号: 创琦杂谈 试卷版次: 2022 年 5 月 12 日 第二版 第 1 次发行 本人联系 QQ 号: 1020238657 (勘误请联系本人) 创琦杂谈学习交流群 (QQ 群) 群号: 749060380 cq 数学物理学习群 (QQ 群) 群号: 967276102 cq 计算机编程学习群 (QQ 群) 群号: 653231806

创琦杂谈公众号优秀文章:

曾发布了《四级备考前要注意什么?创琦请回答!(一)》、《走!一起去春季校园招聘会看看,感受人间真实》、《送给即将期末考试的你》、《那些你不曾在选课中注意到的事情》、《身为大学生,你的劳动价值是多少?》(荐读)、《如何找到自己的培养计划》以及信息学院本科阶段五个专业的分流经验分享(来自 20 多位学长学姐的亲身经历与分享,文章过多,就不贴链接啦),公众号也可以帮忙大家发布相关社会实践的问卷。

我最近在写关于 github 使用技巧的文章,并且在开发网站,争取给大家提供更优质的学习讨论平台。

00群:

"创琦杂谈学习交流群"主要为大家更新各种科目的资料,群里可以讨论问题、也可以发布社会实践的调查问卷互相帮助,目前群成员不到千人,相信您的问题会有人解答的。

"cq 数学物理学习群"更适合讨论数学物理相关的题目等,数学科目包括但不限于: 高等数学、线性代数、概率论与数理统计等,物理包括但不限于:普通物理、普通物理实验。

"cq 计算机编程学习群"适用于讨论编程语言相关内容,包括但不限于: C语言、C++语言、Java语言、matlab语言、python语言等,也可以讨论计算机相关课程,包括但不限于:数据结构、算法、计算机网络、操作系统、计算机组成原理等。

版权声明: 试卷整理人: 张创琦, 试卷首发于 QQ 群"创琦杂谈学习交流群"和"cq数学物理学习群", 并同时转发到各个辅导员的手里。转发前需经过本人同意, 侵权后果自负。本资料只用于学习交流使用, 禁止进行售卖、二次转售等违法行为, 一旦发现, 本人将追究法律责任。解释权归本人所有。

考试承诺:本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿意在考试中自觉遵守这些规定,保证按规定的程序和要求参加考试,如有违反,自愿按《浙江理工大学学生违纪处分规定》有关条款接受处理。

最终感谢我的高数老师,我的朋友,还要感谢各位朋友们对我的大力支持。

本人尽全力为大家寻找、整理考试资料,但因时间仓促以及本人水平有限,本练习册中 必有许多不足之处,还望各位不吝赐教。

浙理羊同学 YOUNG

大家好,这里是浙理羊同学 YOUNG,一个致力于打造成为浙理校内最全最大的信息发布平台。如果你有爆料吐槽、闲置交易、失物招领、表白脱单、树洞聊天、互推捞人等需求,就来找羊羊聊天吧~ (下面是浙理羊同学 YOUNG 的微信号,有需求可以加哈)

1 2021-2022 学年第 1 学期《概率论与数理统计 A》期末 A 卷

一、填空题 (共 24 分,每题 4 分) 1. 设 P(A)=0.3, P(B)=0.4, P(A B)=0.5, 则 P(B AUB)=
$\int x, \qquad 0 \le x \le 1$
2. 已知连续型随机变量的密度函数为 $f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2-x, & 1 < x \le 2 \end{cases}$ 则 其他
$P\{X \leq 1.5\} = $
3. 已知离散型随机变量的概率分布为 $P(X=1)=0.2$, $P(X=2)=0.3$, $P(X=3)=0.5$,
则 $P(0.5 \le X \le 2) =$.
4.设随机变量 X 与 Y 的相关系数为 0.9,若 $Z=X$ - 0.4,则 $\rho_{YZ}=$
5. 对随机变量 X, E(X)=2, D(X)=9, 由切比雪夫不等式, 有
$P(-2 < X < 6) \ge _{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$
$\hat{\theta}_1$ 和 $\hat{\theta}_2$ 均为未知参数 $\hat{\theta}$ 的无偏估计量,则当
二、单项选择题(共20分,每题4分)
1. 设 $B \subset A$,则下面正确的等式是。
(A) $P(\overline{AB}) = 1 - P(A)$; (B) $P(\overline{B} - \overline{A}) = P(\overline{B}) - P(\overline{A})$;
(C) $P(B A) = P(B)$; (D) $P(A \overline{B}) = P(A)$
2. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} Ax^2 & 0 < x < 1 \\ 0 & 其它 \end{cases}$, 则常数 A 取值为 ()。
(A) 3 (B) 2 (C) 1 (D) -1
3. 设随机变量 (X,Y) 的方差 $D(X)=4$, $D(Y)=1$,相关系数 $\rho_{XY}=0.6$,则方差
$D(3X-2Y) = \underline{\hspace{1cm}}.$
(A) 40 (B) 34 (C) 25.6 (D) 17.6
4. 设 $\xi \sim N(\mu, \sigma^2)$,其中 μ 已知, σ^2 未知, X_1, X_2, X_3 为其样本,下列各项 不是
统计量的是 ()
(A) $\frac{1}{\sigma^2}(X_1^2 + X_2^2 + X_3^2)$ (B) $X_1 + 3\mu$
(C) $\max(X_1, X_2, X_3)$ (D) $\frac{1}{3}(X_1 + X_2 + X_3)$

5. 设 $(X_1, X_2, ..., X_n)$ 为总体 $N(1, 2^2)$ 的一个样本, \overline{X} 为样本均值,则下列结论中正确的是_____.

(A)
$$\frac{\overline{X}-1}{2/\sqrt{n}} \sim t(n)$$
 (B) $\frac{1}{4} \sum_{i=1}^{n} (X_i - 1)^2 \sim F(n, 1)$

(C)
$$\frac{\overline{X}-1}{\sqrt{2}/\sqrt{n}} \sim N(0,1)$$
 (D) $\frac{1}{4} \sum_{i=1}^{n} (X_i - 1)^2 \sim \chi^2(n)$

三、解答题(共56分)

1. 甲、乙、丙 3 位同学同时独立参加《概率论与数理统计》考试,不及格的概率分别为 0.4, 0.3, 0.5, (1) 求恰有两位同学不及格的概率; (2) 如果已经知道这 3 位同学中有 2 位 不及格, 求其中一位是同学乙的概率. (8 分)

2. 设(X,Y)的可能取值为(0,0),(-1,2),(-1,1),(2,0),(2,1),相应的概率为 $\frac{1}{6}$, $\frac{1}{3}$, $\frac{1}{12}$, $\frac{1}{4}$, $\frac{1}{6}$.

(1)列表表示其联合分布律: (2)求关于X、Y的边缘分布律: (3) 求协方差Cov(X,Y). (12分)

- 3. 设(X,Y)的联合密度为 $f(x,y) = Ay(1-x), 0 \le x \le 1, 0 \le y \le x$,
- (1) 求常数 A; (2) 求关于 X 及 Y 的边缘密度; (3) X 与 Y 是否相互独立? (12 分)

4.某厂生产某产品 1000 件,其价格为 P=2000 元/件,其使用寿命 X (单位: 天) 的 分布密度函数为 $f(x) = \begin{cases} \frac{1}{200000} e^{-\frac{1}{200000}(x-365)} & x \geq 365 \\ 0 & x < 365 \end{cases}$,现由某保险公司为

其质量进行保险: 厂方向保险公司交保费 P_0 元/件, 若每件产品若寿命小于 1095 天 (3 年),则由保险公司按原价赔偿 2000 元/件. 试由中心极限定理计算

- (1) 若保费 $P_0 = 100$ 元/件, 保险公司亏本的概率;
- (2) 试确定保费 P_0 ,使保险公司亏本的概率不超过1%.(9分) (参考数据: $e^{-0.0365}\approx 0.96$, $\Phi(1.45)=0.926$, $\Phi(1.61)=0.946$, $\Phi(2.33)=0.99$, Φ 是标准正太分布函数)

5. 设总体 N(72,100) 有容量为n 的样本,为使样本均值大于 70 的概率不小于 90%,则n 至少应取多大? (7分)(参考数据: $\Phi(1.28) = 0.9$)

6. 设总体 X 的分布律为

X	X 1 2		3
p_k	θ^2	$2\theta(1-\theta)$	$(1-\theta)^2$

其中 θ 为未知参数, $0<\theta<1$,已知取得总体的一组样本观测值为 1,2,1,3,2,1,求参数 θ 的 矩估计值和最大似然估计值. (8 分)

2	2020—	·2021 -	学年第 2	学期	《概率论与	ョ数理统证	† A 》	期末	k A Ξ	卷
单	.项选择题	(共18	分,每是	03分)						
, ,	B重供 / R	·潘兄 P	$\rho(A) > 0$	$P(R) \sim$	0 下面条/	件 () 成分	r 11 1	重件	1 E

1. 设事件 A, B 满足 P(A) > 0 , P(B) > 0 , 下面条件 () 成立时,事件 A 与 B 一定独立。

A.
$$P(\overline{AB}) = P(\overline{A})P(\overline{B})$$

A.
$$P(\overline{AB}) = P(\overline{A})P(\overline{B})$$
 B. $P(\overline{A \cup B}) = P(\overline{A})P(\overline{B})$

C.
$$P(A|\overline{B}) = 1$$

D.
$$P(\overline{A}|B) = 1$$

2.设 $f_1(x)$ 为标准正态分布的概率密度函数, $f_2(x)$ 为均匀分布 U[-1,3] 上的概率密

度函数。若 $f(x) = \begin{cases} af_1(x), & x \le 0 \\ bf_2(x), & x > 0 \end{cases}$, (a > 0, b > 0) 为概率密度函数,则 a, b 应满

足()

A.
$$a + b = 1$$

B.
$$a + b = 2$$

A.
$$a+b=1$$

B. $a+b=2$
C. $2a+3b=4$
D. $3a+2b=1$

D.
$$3a + 2b = 4$$

3. 设随机变量X的分布律为:

X	1	2	3
$P(X=x_i)$	1_	1_	1_
	6	3	2

令随机变量 $Y \sim U(0, X)$, 则 $P(Y \le 0.5) = ($

A.
$$\frac{1}{2}$$
 B. $\frac{1}{4}$ C. $\frac{1}{6}$ D. $\frac{1}{8}$

B.
$$\frac{1}{4}$$

C.
$$\frac{1}{6}$$

D.
$$\frac{1}{8}$$

4. 设随机变量 $X \sim B(10, \frac{1}{2})$, $Y \sim N(2,10)$, 又 E(XY) = 14 , 则 X 与 Y 的相

关系数 ρ_{XY} = (

- A. 0.8 B. 0.16 C. -0.8 D. -0.16

5. 设总体 X 服从 $[1,\theta]$ 上的均匀分布,若样本均值 $\bar{x}=2$,则 θ 的矩估计值

 $\hat{\theta} = ($).

- B. 2 C. 3 D.

6.设 (X_1, X_2, \dots, X_n) 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本, μ 和 σ^2 是未知参数,

记 \overline{X} , S^2 分别表示样本均值和样本方差,则 μ 的置信度为 $1-\alpha$ 的置信区间 $(0 < \alpha < 1)$ 是(

A.
$$(\overline{X} - u_{\alpha} \frac{\sigma}{\sqrt{n}}, \overline{X} + u_{\alpha} \frac{\sigma}{\sqrt{n}})$$

A.
$$(\overline{X} - u_{\alpha} \frac{\sigma}{\sqrt{n}}, \overline{X} + u_{\alpha} \frac{\sigma}{\sqrt{n}})$$
 B. $(\overline{X} - u_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + u_{\alpha/2} \frac{\sigma}{\sqrt{n}})$

C.
$$(\overline{X} - t_{\alpha}(n-1)\frac{S}{\sqrt{n}}, \overline{X} + t_{\alpha}(n-1)\frac{S}{\sqrt{n}})$$
 D. $(\overline{X} - t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}}, \overline{X} + t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}})$

- 二 填空题(共24分,每空3分)
- 1.甲,乙,丙三人同时破译一份密码,已知三人能译出的概率分别为 $\frac{1}{3}$, $\frac{1}{4}$ 和 $\frac{1}{5}$, 则密码能译出的概率为
- 2.设随机变量 $X \sim U(2,5)$,现对 X 进行 3 次独立观测,则至少有两次观测值大于 3
- 3.设随机变量 X 服从参数为 $\lambda > 0$ 的泊松分布, 即 $X \sim \pi(\lambda)$, 已知 $P(X = 2) = 2e^{-2}$, 由切比雪夫不等式知,P(-1 < X < 5) ≥______
- 4. 设随机变量 $X \sim N(1,2)$, $Y \sim N(3,4)$, 且 X 与 Y 独立,令 Z = 2X + 3Y + 4 , 则 Z服从的分布为____。(必须写出分布的参数)
- 5. 设随机变量 X 服从参数为 $\lambda=2$ 的指数分布, $Y=\frac{1}{V}$,则 $P(\max(X,Y) \le 2) =$
- 6.设随机变量 X = Y 独立同分布, 且期望, 方差均存在。记 U = X + Y, V = X Y, 则随机变量U 与 V 的相关系数 $\rho(U,V) =$ 。
- 7.设 X_1, X_2, \dots, X_9 是分布为 $N(0, \sigma^2)$ 的正态总体容量为9的样本,则统计量

的概率分布为____。(必须写出分布的参数)

三 计算题。

1.某商店拥有某产品共计12件,其中4件次品,已经售出2件,现从剩下的10 件产品中任取一件。(1) 求取到的这件产品是正品的概率;(2) 若经检验发现取 到的这件产品为正品, 求已经售出2件产品均为正品的概率。(10分)

2.设随机变量
$$X$$
 的概率密度函数为:
$$f(x) = \begin{cases} a+x, & -1 \le x < 0 \\ b-x, & 0 \le x \le 1 \\ 0, & \sharp \text{ } \end{cases}$$

若已知E(X) = 0。求:(1)常数a,b;(2)概率 $P(|X| \le \frac{1}{3})$;(3)方差D(X)。(10分)

3.设二维随机变量(X, Y)的联合分布律为:

XY	-1	0	1
-1	a	0.1	0
0	0	ь	0.2
1	0.2	0.1	c

且 $P(XY \neq 0) = 0.4$; $P(Y \leq 0 | X \leq 0) = 2/3$ 。试求: (1) a, b, c 的值; (2) X, Y 的 边缘分布律; (3) X + Y 的概率分布律。(10 分)

4.设二维随机变量(X,Y)的联合概率密度函数为:

$$f(x,y) = \begin{cases} 1, & 0 < x < 1, -x < y < x \\ 0, & \text{ 其他} \end{cases}$$

求 X、Y 的边缘概率密度 $f_X(x)$, $f_Y(y)$, 并说明 X 与 Y 是否独立,是否相关?(10 分)

5.某校有 1000 名学生,在某段时间内每个学生去阅览室自修的概率是 0.05,且每个学生去阅览室自修与否相互独立。问至少在该阅览室设多少座位,才能保证来自修的每位同学都有座位的概率不低于 0.95。(已知 Φ(1.65) = 0.95,

$$\sqrt{47.5} = 6.892$$
) (8 $\%$)

6. 设总体
$$X$$
 的概率密度函数为:
$$f(x;\theta) = \begin{cases} \frac{x}{\theta^2} e^{-\frac{x}{\theta}}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

其中 $\theta > 0$ 为未知参数, X_1, X_2, \cdots, X_n 为取自总体 X 的简单随机样本,样本均值 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \circ \vec{x} \colon (1) \; \theta \; \text{的极大似然估计量} \; \hat{\theta} \; ; \; (2) \; \text{判断} \; \hat{\theta} \; \text{是否为} \; \theta \; \text{的无偏估计,}$

说明理由;(3)求 $D(\hat{\theta})$ 。(10分)

3 2020-2021 学年第 1 学期《概率论与数理统计 A》期末 A 卷

一、填空题(每小题 4 分满分 20 分)

- 1. 若在 n 次独立试验中,A 至少出现一次的概率为 p ,则在一次试验中 A 出现的概率为
- 2. 设离散型随机变量 X 具有分布函数

$$F(x) = \begin{cases} 0, & x < -1 \\ a, & -1 \le x < 1 \\ \frac{2}{3} - a, & 1 \le x < 2 \\ a + b, & x \ge 2 \end{cases}$$

且
$$P(\frac{3}{2} < X < 5) = \frac{1}{2}$$
,则 $a = _____$, $b = _____$

- 3. 设 X 与 Y 为随机变量, D(X) = 25, D(Y) = 36, $\rho_{YY} = 0.4$,则 D(X + 2Y) =
- 4. 设 X_1, X_2, \dots, X_{16} 是来自总体 $X \sim N(4, \sigma^2)$ 的简单随机样本, σ^2 已知,令

5. 设测量零件的长度产生的误差 X 服从正态分布 $N(\mu,\sigma^2)$,今随机地测量 16 个零件,得 样本方差 $s^2=2$. 在置信度 0.95 下, μ 的置信区间为______. ($\sum_{i=1}^{10} X_i=8$,

$$\sum_{i=1}^{16} X_i^2 = 34.$$

$$(t_{0.05}(15) = 1.7531, t_{0.025}(15) = 2.1315, t_{0.05}(16) = 1.7459, t_{0.025}(16) = 2.1199)$$

二、选择题(每小题 4 分,满分 20 分)

1. 设A与B互为对立事件,且P(A)>0,P(B)>0,则下列各式中错误的是(

$$(A) P (B|A) = 0$$

(A)
$$P(B|A) = 0$$
 (B) $P(\overline{A}|B) = 0$ (C) $P(AB) = 0$ (D) $P(A \cup B) = 1$

$$(C) P (AB) = 0$$

(D)
$$P(A \cup B) = 1$$

2.设 X 与 Y 相互独立,有相同的分布律

X	0	1	2
p_i	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

则下列正确的是()

(A)
$$X = Y$$
 (B) $P(X = Y) = 1/3$ (C) $P(X = Y) = 1$ (D) $P(X = Y) = 1/9$

(B)
$$P(X = Y) = 1/3$$

$$(C)$$
 $P(V-V)-1$

(D)
$$P(X = Y) = 1/9$$

3. 设 X 的密度函数为 f(x) ,分布函数为 F(x) ,且 f(x) = f(-x) 。那么对任意给定的 a

都有____

(A)
$$f(-a) = 1 - \int_{0}^{a} f(x) dx$$

(B)
$$F(a) = F(-a)$$

(C)
$$F(-a) = \frac{1}{2} - \int_0^a f(x) dx$$

(D)
$$F(-a) = 2F(a) - 1$$

4. 设 X 和 Y 为随机变量,满足 D(X+Y) = D(X-Y),则必有(

(A) X与Y不相关

(B) X与Y独立

(C) D(Y) = 0

(D) D(XY) = D(X) + D(Y)

5.设 X_1, X_2, \cdots, X_n 是来自总体 X 的样本, $E(X) = \mu, D(X) = \sigma^2$,并且 μ , σ^2 未知, \overline{X} 为样本 均值,则以下结论中错误的是(

(A) $\hat{\mu}_1 = \overline{X}$ 是 μ 的无偏估计

(B) $\hat{\mu}_2 = X_1 \in \mu$ 的无偏估计

(C) û₁ 比 û₂ 更有效

(D) $\frac{1}{n}\sum_{i=1}^{n}(\overline{X}-\mu)^{2}$ 是 σ^{2} 的最大无偏估计

三、解答题(满分60分)

1(共8分)设10件产品中有4件不合格品,现从中任取两件.求(1)两件中至少有一件是不 合格品的概率; (2) 已知两件中有一件是不合格品,另一件也是不合格品的概率.

2 (共10分)设随机变量 X 的概率密度函数为

$$f(x) = \begin{cases} ax, & 0 < x < 1, \\ 2 - x, & 1 \le x \le 2, \\ 0, & 其他 \end{cases}$$

求(1)常数 a; (2) F(x); (3) $P(1/2 \le x \le 3)$

3 (共12分)设(X,Y)的联合分布律表为

Y	-1	0	1	2
X				
-1	4	3	2	6
	$\overline{20}$	$\overline{20}$	20	20
1	2	0	2	1
	$\frac{2}{20}$		$\frac{2}{20}$	20

求:(1) $Z_1 = X + Y$; (2) $Z_2 = XY$; (3) $Z_3 = \max\{X,Y\}$; (4) $Z_4 = \min\{X,Y\}$ 的分布律。

4 (共8分)设二维随机变量(X,Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} 12x^2, & 0 \le x \le 1, x \le y \le 1 \\ 0, & 其他 \end{cases}$$

求 X、Y 的边缘概率密度 $f_X(x), f_Y(y)$,并说明 X 与 Y 是否独立?

5(共12分)设二维随机变量(X,Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} 1, & x > 0, y > 0, x + y < 1 \\ 0, & \text{其他} \end{cases}$$

求 E(X),E(Y)与 E(XY),并说明 X 与 Y 是否相关?

6 (共 10 分) 设总体 X 的分布函数为: $F(x, β) = \begin{cases} 1 - \frac{1}{x^β}, & x > 1, \text{ 其中 } β > 1, X_1, \cdots X_n \\ 0, & x \le 1 \end{cases}$

来自于X的简单随机样本,如果取得样本观测值为 $x_1,x_2,\cdots x_n$,求 β 的矩估计值和极大似然估计值。

4	2019—2020 学年第	2 学期《概率论与数理统计 A》	期末A卷
一单项	顶选择题(共20分,每题4	4分)	
1 设事	A,B 互不相容,且 $P(A)$	f(x) > 0, $P(B) > 0$, 则一定有 ()	
A	A. P(A) = 1 - P(B)	B. $P(A B) = P(A)$	
C	$P(A \overline{B}) = 1$	D. $P(\overline{A} B) = 1$	
2 设 <i>p</i>	$p_k = \frac{b}{k(k+1)}, \ k = 1, 2$	2, 是离散型随机变量的分布律,则 b =()
A.	2 B. 1	C. $\frac{1}{2}$ D. 3	
3 若随	見机变量 X 与 Y 的协方差满	i足 $cov(X,Y)=0$,则下列与其等价的是	()
	A. E(XY) = E(X)E(Y)	B. D(X - Y) = D(X) - D(Y)	

4 设 X_i 是总体 N(0,1)的样本(i=1,2,3,4,5),若 $\frac{k(X_1+X_2)}{\sqrt{X_2^2+X_4^2+X_5^2}}$ 服从 t(n) 分布,则下面结

 $C. D(XY) = D(X)D(Y) \qquad D. E(X + Y) = E(X) + E(Y)$

论正确的是()

A.
$$k = \frac{\sqrt{6}}{2}, n = 2$$
 B. $k = \frac{\sqrt{6}}{2}, n = 3$ C. $k = \frac{1}{3}, n = 3$ D. $k = \sqrt{2}, n = 4$

5 设总体 X 服从 $[\theta,3]$ 上的均匀分布,若样本均值 $\bar{x}=1$,则 θ 的矩估计值 $\hat{\theta}=($

- B. 1 C. -1 D. 2
- 二 填空题(共24分,每题4分,每空2分)
 - 1. 盒中放有 6 个红球, 4 个白球, (1) 若一次取两个球, 则取到两个白球的概率 ____,(2)若进行不放回取样,每次取一球,连取两次,则第二次才取到
- 红球的概率为____。
 2.设 X 的概率密度为 $f(x) = \begin{cases} ax + b & 0 < x < 1 \\ 0 &$ 其他 \end{cases} ,已知 E(X) = 0.4,则 a =______,

- D(2X-Y)=____。 4 设随机变量(X,Y) 服从二维均匀分布,密度函数为:

$$f(x,y) = \begin{cases} A, & 0 \le x \le 1, 0 \le y \le 1 \\ 0, & 其它 \end{cases}$$

- 则常数 A = _______。 ,概率 $P(Y \le X) =$ _____。 5. 设总体 $X \sim N(\mu, \sigma^2)$, (X_1, X_2, \dots, X_n) 是取自该总体 X 的样本,则 $\overline{X} \sim$ ______,
- 6. 设总体 X 的期望为 μ ,方差为 σ , X_1, X_2, X_3 是取自总体 X 的样本。下列三个估计量 $\hat{\mu}_1 = \frac{1}{3}(X_1 + X_2 + X_3), \hat{\mu}_2 = \frac{1}{6}X_1 + \frac{2}{6}X_2 + \frac{1}{2}X_3, \hat{\mu}_3 = \frac{1}{3}X_1 + \frac{1}{4}X_2 + \frac{1}{4}X_3 + \frac{1$

三 计算题

1已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个 次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率; (2) 一个经检查后被认为是合格品的产品的确是合格品的概率. (10分)

- 2 已知随机变量 $X \sim N(0,1)$.试求:
- (1) $\vec{x} Y = e^X$ 的概率密度; (2) $\vec{x} Y = 2X^2 + 1$ 的概率密度。(10 分)

3 设二维随机变量(X,Y)的联合分布列为:

XX	0	1	2
1	0.1	a	0.12
2	0.15	0.25	b

已知 P $(X=1)=0.35;\ F(x,y)$ 为其联合分布函数。求: (1) a,b 的值; (2) X,Y 的边缘分布

律; (3) F(2,1)的值。(10分)

4.某学校有 20000 名住校生,每人以 80%的概率去本校食堂就餐,每个学生是否去就餐相互独立,问:食堂应至少设多少个座位,才能以 99%的概率保证去就餐的同学都有座位?(已知 $\Phi(2.33)=0.9901$)(8 分)

5.设某高校女生血清总蛋白含量 $X\sim N(\mu,64)$,现任取 9 名学生,测得其血清总蛋白(单位:g/L)为:70.4,69.9,72.3,76.8,83.0,75.9,81.3,72.1,73.3,求 μ 的置信度为 0.95 的置信区间。($u_{0.05}=1.65$, $u_{0.025}=1.96$)(8 分)

6. 设总体 X 服从标准正态分布 N(0,1) , X_1 , X_2 , … , X_n (n>2) 为来自总体 X 的简单 随机样本,记样本均值为 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $Y_i = X_i - \overline{X}$, $(i=1,2,\cdots,n)$ 。

- 求: (1) Y_i 的方差 $D(Y_i)$, $(i=1,2,\dots,n)$;
 - (2) Y_1 与 Y_n 的协方差 $Cov(Y_1,Y_n)$;
 - (3) $P(Y_1 + Y_n \le 0) \circ (10 \, \%)$

5 2018-2019 学年第 2 学期《概率论与数理统计 A》期末 A 卷

注:本次考试不可以使用计算器。本试卷可能用到以下数据:

$$\Phi(0.5) = 0.6915$$
; $\Phi(1) = 0.8413$; $\Phi(2) = 0.9772$; $u_{0.05} = 1.645$; $u_{0.025} = 1.96$;

$$t_{0.05}(15) = 1.7531$$
; $t_{0.025}(15) = 2.1314$; $t_{0.05}(16) = 1.7459$; $t_{0.025}(16) = 2.1199$

一 填空题 (每空 2 分, 共 20 分)

1袋内有3个白球和2个黑球,从中任取3个,取得的恰好是两白一黑的概率为。

2 设 A , B 为随机事件, 若 P(A) = 0.4 , P(B) = 0.6 , P(A - B) = 0.3 ,则

$$P(A \cup B) = ____, P(B|A) = _____$$

3 设离散型随机变量 X 的分布律为:

X	-1	1	2
$P(X=x_i)$	0.2	0.3	а

则
$$a=$$
_______, $E(X)=$ _______

4设二维随机变量(X,Y)的联合密度函数为:

$$f(x,y) = \begin{cases} bxy^2, & 0 \le x \le 2, 0 \le y \le 1 \\ 0, & others \end{cases}$$

则常数b=_____,边缘密度函数 $f_{X}(x)=$ ______。

5 设
$$X \sim N(3, \sigma^2)$$
,且 $P(3 \le X \le 7) = 0.35$,则 $P(X \le -1)$ ______

6 设随机变量 $X_1, X_2, \cdots, X_{n+m}$ (n > m) 独立同分布,且方差存在。记 $X = \sum_{i=1}^n X_i$,

$$Y = \sum_{i=1}^{n} X_{m+i}$$
,则 $X 与 Y$ 的相关系数 $\rho(X,Y) =$ _____。

7 已知某班级的学生身高(cm) $X \sim N(\mu,6^2)$, 现抽取 9 名学生, 测得平均身高

 $\bar{x}=165~(cm)$,则 μ 的置信度为 0.95 的双侧置信区间是

二 选择题(每小题3分,共18分)

1 设离散型随机变量 X 的分布律为 $P\{X=k\}=a^nC_n^k2^{n-k}, k=0,1,\cdots,n$, n 为正整数,则 a=(

(A). 2; (B).
$$\frac{1}{2}$$
; (C). 3; (D). $\frac{1}{3}$

2设二维离散型随机变量(X,Y)的联合概率分布律为:

Y	1	2	3
1	1/6	1/9	1/18
2	1/3	α	β

若X与Y相互独立,则 α 与 β 的值为(

(A).
$$\alpha = 2/9, \beta = 1/9$$
 (B). $\alpha = 1/9, \beta = 2/9$

(B).
$$\alpha = 1/9$$
, $\beta = 2/9$

(C).
$$\alpha = 1/6, \beta = 1/6$$

(C).
$$\alpha = 1/6, \beta = 1/6$$
 (D). $\alpha = 5/18, \beta = 1/18$

3 若随机变量 X , Y 满足 D(X+Y) = D(X-Y) , 则必有 ()

(A).
$$X 与 Y$$
 相互独立 (B). $X 与 Y$ 不相关 (C). $D(X) = 0$ (D). $D(Y) = 0$

(C).
$$D(X) = 0$$

(D).
$$D(Y) =$$

4 设
$$X_1, X_2, \dots, X_n$$
 是 正 态 总 体 $X \sim N(\mu, \sigma^2)$ 的 一 个 样 本 , 且 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$,

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$
, 则下列结论错误的是(

(A).
$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$

(A).
$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$
 (B). $\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$

(C).
$$\frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n)$$

(C).
$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n)$$
 (D). $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$

5 设总体 X 的概率分布律为:

X	1	2	3
$P(X=x_i)$	θ^2	2θ (1-θ)	$(1-\theta)^2$

其中 θ 为未知参数 $(0<\theta<1)$,现抽得一个样本 $x_1=1$, $x_2=2$, $x_3=3$, $x_4=1$ 。则 θ 的

极大似然估计值为(

(A).
$$\frac{1}{2}$$
; (B). $\frac{1}{4}$; (C). $\frac{3}{8}$; (D). $\frac{5}{8}$

(B).
$$\frac{1}{4}$$

(C).
$$\frac{3}{8}$$

(D).
$$\frac{5}{8}$$

6 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, X_3 是总体的一个样本,下面四个 μ 的估计量中,哪个最 有效()

(A).
$$\hat{\mu}_1 = \frac{1}{4}X_1 + \frac{1}{4}X_2 + \frac{1}{4}X_3$$
 (B). $\hat{\mu}_2 = \frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3$

(B).
$$\hat{\mu}_2 = \frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3$$

(C).
$$\hat{\mu}_3 = \frac{1}{4}X_1 + \frac{1}{4}X_2 + \frac{1}{2}X_3$$

(C).
$$\hat{\mu}_3 = \frac{1}{4}X_1 + \frac{1}{4}X_2 + \frac{1}{2}X_3$$
 (D). $\hat{\mu}_4 = \frac{1}{2}X_1 + \frac{1}{3}X_2 + \frac{1}{6}X_3$

 Ξ (10分) 一考生接连参加同一课程的两次考试,设其第一次及格的概率为p。若第一次及格则第二次及格的概率也为p,若第一次不及格则第二次及格的概率为0.5p。假定至少有一次及格他就取得某种资格。1. 求他取得某种资格的概率;2.已知他第二次考试及格,求他第一次考试也及格的概率。

四 $(8\, \mathcal{D})$ 某商场每天的客流量服从参数为 1 的泊松分布,假定每位顾客在该商场消费的概率为 p $(0 ,且他们在该商场消费是相互独立的。求:某天在该商场至少有<math>^1$ 人消费的概率?

五. (8 分) 设随机变量 X 的概率密度函数为:

$$f(x) = \begin{cases} a+x, & -1 \le x < 0 \\ b-x, & 0 \le x \le 1 \\ 0, & \sharp \text{ th} \end{cases}$$

若已知 E(X) = 0。求: 1.常数 a , b ; 2. 概率 $P(|X| \le \frac{1}{3})$, 3. $E(X^2 + 1)$ 。

六. (8分) 设(X,Y)的联合分布律表为:

X Y	3	4	5
1	0.2	0.1	а
2	0.1	b	0.1

已知: E(XY)=6。 1.求 a,b 的值; 2.求分别关于 X 与 Y 的边缘分布律; 3.求 Cov(X,Y)。

七. (8分) 某厂生产的电子元件合格率为 0.9,求 10000 个该厂生产的电子元件中不合格电子元件数小于 970 的概率?

八. $(8\,

ota)$ 设某种玻璃的厚度 (mm) $X \sim N(\mu, \sigma^2)$,接规定玻璃的厚度为 8 (mm) 。现随机抽取 16 块玻璃,测得样本平均厚度 $\bar{x}=8.2$ (mm) ,样本标准差 s=0.4 (mm) ,在 $\alpha=0.05$ 的显著性水平下,检验该批玻璃厚度的期望 μ 是否符合规定?

九. (12 分) 设总体X 的概率密度函数为:

$$f(x) = \begin{cases} \frac{6x}{\theta^3}(\theta - x), & 0 < x < \theta \\ 0, & others \end{cases}$$

 $ar{X}=rac{1}{n}\sum_{i=1}^{n}X_{i}$,则 1.求 θ 的矩估计量 $\hat{\theta}$; 2.判断矩估计量 $\hat{\theta}$ 是否为 θ 的无偏估计,并说明理由; 3.求 $D(\hat{\theta})$ 。

数学通识必修课系列试卷汇总

(试题册和答案册配套,为两个小册子,这里为了节省空间,就将两本册子写在了一块儿) (版本号与年份有关,发行次数会根据当年发行情况进行修改)

高等数学 A2 期末系列: (具体内容请见高等数学 A2 试题册尾页) 高等数学 A2 期末试题册、答案册上 2022 第二版第 1 次发行.pdf 高等数学 A2 期末试题册、答案册下 2022 第二版第 1 次发行.pdf 高等数学 A2 期末试题册、答案册五套 2022 第二版第 1 次发行.pdf

高等数学 B2 期末系列: (具体内容请见高等数学 B2 试题册尾页) 高等数学 B2 期末试题册、答案册 2022 第二版第 1 次发行.pdf 高等数学 B2 期末试题册、答案册五套 2022 第二版第 1 次发行.pdf

线性代数 A 期末系列:

线性代数 A 期末试题册、答案册 2022 第二版第 1 次发行.pdf 线性代数 A 期末试题册、答案册五套 2022 第二版第 1 次发行.pdf

线性代数 B 期末系列:

线性代数 B 期末试题册、答案册上 2022 第二版第 1 次发行.pdf 线性代数 B 期末试题册、答案册下 2022 第二版第 1 次发行.pdf 线性代数 B 期末试题册、答案册五套 2022 第二版第 1 次发行.pdf

概率论与数理统计 A 期末系列:

概率论与数理统计 A 期末试题册、答案册上 2022 第二版第 1 次发行.pdf 概率论与数理统计 A 期末试题册、答案册下 2022 第二版第 1 次发行.pdf 概率论与数理统计 A 期末试题册、答案册五套 2022 第二版第 1 次发行.pdf

概率论与数理统计 B 期末系列:

概率论与数理统计 B 期末试题册、答案册 2022 第二版第 1 次发行.pdf

概率论与数理统计期末练习系列:

概率论与数理统计练习试题册、答案册 2022 第二版第 1 次发行.pdf