2. A map $T \in L(M)$ is called <u>positive</u> (in symbols $T \ge 0$) if $T(M_+) \subseteq M_+$. $T \in L(M)$ is called <u>n-positive</u> $(n \in N)$ if $T \otimes Id_n$ is positive from $M \otimes M_n$ in $M \otimes M_n$, where Id_n is the identity map on the C*-algebra M_n of all n×n-matrices. Obviously, every n-positive map is positive. We call $T \in L(M)$ a <u>Schwarz map</u> if T satisfies the inequality

$$T(x)T(x)* \leq T(xx*)$$
 , $x \in M$.

Note that such T is necessarily a contraction. It is well known that every n-positive contraction, $n \ge 2$ and that every positive contraction on a commutative C*-algebra is a Schwarz map [Takesaki (1979), Corollary IV. 3.8.]. As we shall see, the Schwarz inequality is crucial for our investigations.

3. If M is a C*-algebra we assume $T = (T(t))_{t \ge 0}$ to be a <u>strongly continuous semigroup</u> (abbreviated <u>semigroup</u>) while on W*-algebras we consider <u>weak*-semigroups</u>, i.e. the mapping $(t \to T(t)x)$ is continuous from \mathbb{R}_+ into $(M,\sigma(M,M_*))$, M_* the predual of M , and every $T(t) \in T$ is $\sigma(M,M_*)$ -continuous. Note that the preadjoint semigroup

$$T_{\star} = \{ T(t)_{\star} : T(t) \in T \}$$

is weakly, hence strongly continuous on M_{\star} (see e.g., Davies (1980), Prop.1.23). We call T identity preserving if T(t)1 = 1 and of Schwarz type if every $T(t) \in T$ is a Schwarz map.

For the notations concerning one-parameter semigroups we refer to Part A. In addition we recommend to compare the results of this section of the book with the corresponding results for commutative C*-algebras, i.e. for $C_{O}(X)$, C(K) and $L^{\infty}(\mu)$ (see Part B).

2. A FUNDAMENTAL INEQUALITY FOR THE RESOLVENT

If $T=(T(t))_{t\geq 0}$ is a strongly continuous semigroup of Schwarz maps on a C*-algebra M (resp. a weak*-semigroup of Schwarz type on a W*-algebra M) with generator A , then the spectral bound $s(A) \leq 0$. Then for $\lambda \in \mathbb{C}$, $Re(\lambda) > 0$, there exists a representation for the resolvent $R(\lambda,A)$ given by the formula

$$R(\lambda,A)x = \int_0^\infty e^{-\lambda t} T(t) x dt$$
 , $x \in M$

where the integral exists in the norm topology.