Learn to Move with Deep Reinforcement Learning

Samet Demir Kemal Bektaş Mechanical Eng. Computer Eng. Boğaziçi University

Introduction

This project is based on NIPS (Neural Information Processing Systems) 2017 challenge named Learning to Run by Stanford Neuromuscular Biomechanics Laboratory. The task is developing a controller to move a physiologically-based human model. We decided to use deep reinforcement learning method because the task seemed suitable for it.

- State: R⁴ vector with coordinates and velocities of various body parts and obstacle locations.
- Action: R¹⁸ vector with muscles activations, 9 per leg, each in [0, I] range.
- Reward: Change in x location of Pelvis minus small penalty for using ligament forces

Observation Parameters^[5] Action Parameters^[5] English Index hamstring biceps femoris gluteus maximus /toes.right. iliopsoas rectus femoris talus.left. talus.left.y vastus ? gastrocnemius soleus tibialis anterior r = rotation around z axis * = wrong value because of bug in osim-rl

~ = redundant, pelvis is on indices 1-2 already

Results

We ran all models for ~1.000.000 steps and DDPG agent produced the most promising results by learning to take a step.

Max Rewards

	DDPG	0.020	
	TD3	0.025	
	SAC	0.021	
Learning Curve	e Comparison	Policy Loss	Graph for DDPG and TD3
0.0100 -	MAMMAN	0.0 - -0.1 -	— DDPG — TD3
0.0050 - O.0025 - O.0000 - O.0	M	Policy Loss -0.2 -	
호 0.0000 - -0.0025 -	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-0.4 1 Wy	
-0.0050 -	— DDPG — TD3 — SAC	-0.5 -0.6	V/WV/V/V/V
-0.0075 -L	600000 800000 1000000 Steps	0 200000	400000 600000 800000 1000000 Training Steps

Hyperparameters

	DDPG	SAC	TD3
reward discount	0.99-0.995	0.99	0.99-0.995
qf learning rate	IE-03	3E-03	IE-03
pol. learning rate	IE-04	3E-03	IE-03
batch size	128	128	128
size of hidden layers	64-256	64	256
number of steps	~IM	~IM	~IM

Training System

The environment is computationally expensive. Therefore, a system with multiple environment running in parallel is necessary.

RLKIT: Reinforcement learning framework OpenSim-RL: Simulation environment, extension of OpenSim to RL Pyro4: Communication library

Feature Engineering

- Velocities of body parts are added to observations
- Noise is added to actions

Discussion & Future Work

There is a big space to improve our results since the parallel data collecting system is still slow and we couldn't try long training.

References

- I. Kidzinski, Lukasz and Mohanty, Sharada P and Ong, Carmichael and Hicks, Jennifer and Francis, Sean and Levine, Sergey and Salath'e, Marcel and Delp, Scott. (2018) "Learning to Run challenge: Synthesizing physiologically accurate motion using deep reinforcement learning". NIPS 2017 Competition Book. Springer.
- 2. Lillicrap, Timothy P, Hunt, Jonathan J, Pritzel, Alexander, Heess, Nicolas, Erez, Tom, Tassa, Yuval, Silver, David, and Wierstra, Daan. (2015). Continuous control with deep reinforcement learning. arXiv:1509.02971
- 3. Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor arXiv:1801.01290
- 4. Fujimoto, S., van Hoof, H., & Meger, D. (2018). Addressing Function Approximation Error in Actor-Critic Methods. arXiv:1802.09477.
- 5. Stelmaszczyk, Adam. "Our NIPS 2017: Learning to Run Approach". Medium-MLReview. 19 Nov. 2017. https://medium.com/mlreview/our-nips-2017-learning-to-run-approachb80a295d3bb5