الدورة العادية للعام 2011	امتحانات الشهادة الثانوية العامة الفرع : علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الكيمياء المدة ساعتان	

Cette épreuve est constituée de trois exercices. Elle comporte quatre pages numérotées de 1 à 4.

L'usage d'une calculatrice non programmable est autorisé.

Traiter les trois exercices suivants:

Premier exercice (7 points) Cinétique de la réaction entre l'acide chlorhydrique et le magnésium

Le magnésium réagit, à la température ambiante, avec les ions H_3O^+ d'une solution aqueuse d'acide chlorhydrique suivant une réaction lente d'équation :

$$Mg_{(s)} + 2 H_3 O_{(aq)}^+ \rightarrow Mg_{(aq)}^{2+} + 2 H_2 O_{(l)} + H_{2(g)}$$

On introduit une masse de 2 g de magnésium dans un volume V = 100 mL d'une solution d'acide chlorhydrique de concentration C = 0.11 mol.L⁻¹. On suit l'évolution du système réactionnel au cours du temps en déterminant la quantité de matière de dihydrogène, $n(H_2)$, dégagé à différents instants.

Les résultats sont consignés dans le tableau suivant :

t (min)	0	2	4	6	8	10	14	18	22	26	30	34
n (H ₂) (10 ⁻³ mol)	0	0,85	1,6	2,2	2,9	3,4	4,2	4,7	4,9	5,1	5,2	5,3

Données:

- Masse molaire en $g.mol^{-1}$: M (Mg) = 24.
- Constante des gaz parfaits : $R = 8,31 \text{ J.mol}^{-1}.\text{K}^{-1}.$

1- Étude préliminaire

Ce suivi a été réalisé en mesurant le volume du gaz dihydrogène libéré à la température de 25 °C et sous une pression de 9.76×10^4 Pa.

- 1.1- Montrer que la concentration des ions H_3O^+ , dans le milieu réactionnel à t=10 min, est égale à 4.2×10^{-2} mol.L⁻¹. Déduire le pH de ce milieu à cet instant.
- 1.2- Trouver le réactif limitant.
- 1.3- Déterminer le volume du gaz dihydrogène libéré à la fin de la réaction.

2- Étude cinétique

2.1- Tracer, sur un papier millimétré, la courbe représentant la variation de la quantité de matière de dihydrogène en fonction du temps : $n(H_2) = f(t)$ dans l'intervalle de temps : [0-34 min]. Prendre les échelles suivantes : 1 cm pour 2 min en abscisses;

1 cm pour 5.0×10^{-4} mol en ordonnées.

- 2.2- Déterminer la vitesse de formation du dihydrogène à l'instant t = 7 min.
- 2.3- Choisir, en justifiant sans calcul, parmi les deux valeurs suivantes : 6.2×10^{-4} mol.min⁻¹ et 8.0×10^{-5} mol.min⁻¹, celle qui correspond à la vitesse de formation de H₂ à t = 18 min.

- 2.4- Déterminer graphiquement le temps de demi-réaction $t_{1/2}$.
- 2.5- On reprend la même étude expérimentale réalisée précédemment, mais à une température de 40 °C.

Tracer, en justifiant, sur le même graphe de la partie 2.1, l'allure de la courbe qui représente la variation de la quantité de matière de dihydrogène en fonction du temps : $n(H_2) = g(t)$.

Deuxième exercice (6 points) Un acide carboxylique: acide éthanoïque

Les acides carboxyliques présentent une grande importance industrielle. L'acide éthanoïque est l'un des plus importants intermédiaires organiques fabriqués en grande quantité dans le monde.

Données:

- $pK_a (CH_3COOH / CH_3 COO^-) = 4,75.$
- On néglige [X] devant [Y] si $\frac{[Y]}{[X]} \ge 100$

1- Acide éthanoïque et carbonate de calcium

On verse un volume V d'une solution d'acide éthanoïque de concentration C dans un bécher contenant de carbonate de calcium en poudre.

Une effervescence apparaît; cette effervescence diminue avec le temps et s'arrête après quelques minutes. Le pH de la solution obtenue est égal à 5,2.

L'équation de la réaction totale qui a eu lieu est :

$$2 \text{ CH}_{3}\text{COOH}_{(aq)} + \text{CaCO}_{3(s)} \rightarrow \text{Ca}^{2+}_{(aq)} + 2 \text{ CH}_{3}\text{COO}_{(aq)}^{-} + \text{CO}_{2(g)} + \text{H}_{2}\text{O}_{(l)}$$

- 1.1-Dégager, de ce qui précède, comment évolue la vitesse de cette réaction au cours du temps.
- Déterminer la valeur du rapport $\frac{[CH_3COO^-]}{[CH_3COOH]}$ 1.2dans la solution à la fin de la réaction.

Déduire que le carbonate de calcium est le réactif limitant.

2- Acide éthanoïque et un alcool (A)

On chauffe un mélange équimolaire d'un alcool (A) et d'acide éthanoïque. Une réaction a lieu dont l'équation est :

- 2.2- Identifier l'alcool (A).
- 2.3- On donne, ci-après, deux courbes représentant la variation du degré de conversion (a) de l'alcool (A), dans cette réaction, en fonction du temps à deux températures différentes, 100°C et 200 °C.

2

Déduire que cette réaction est : limitée, athermique et lente.

- 2.4- On chauffe le mélange précédent en présence d'un catalyseur. Indiquer l'effet de ce catalyseur sur le degré de conversion α .
- 2.5- Dans le but d'avoir une valeur de α proche de 1, un des deux réactifs, utilisés dans la réaction précédente, est remplacé par un autre composé organique (C).
 - 2.5.1- Ecrire les formules semi-développées possibles de (C). Nommer les.
 - 2.5.2- Ecrire, en choisissant une des formules possibles de (C), l'équation de la réaction correspondante.
 - 2.5.3- Donner deux caractéristiques de cette réaction.

Troisième exercice (7 points) Identification d'un couple acide/base

On dispose d'une solution S contenant un acide faible HA, sa base conjuguée A et des ions sodium Na⁺.

On se propose de déterminer les concentrations de cet acide HA et de sa base conjuguée A dans cette solution S, afin de les identifier.

Pour cela, on réalise les deux dosages suivants :

1- Dosage de l'acide HA

On verse, progressivement, une solution d'hydroxyde de sodium de concentration $C_b = 0.10 \; \text{mol.L}^{-1}$ dans un bécher contenant un volume $V_1 = 20.0 \; \text{mL}$ de la solution S. Un suivi pH-métrique donne les résultats groupés dans le tableau suivant :

V _b (mL)	0	1	2	3	4	4,5	5	5,2	5,5	6	7	8	9	10
pН	5,0	5,1	5,3	5,5	5,8	6,1	6,9	9,2	10,9	11,4	11,7	11,8	11,9	12,0

où V_b est le volume de la solution basique ajouté.

1.1- Choisir, de la liste donnée ci-après, le matériel indispensable pour réaliser ce dosage.

Liste de matériel :

- Béchers: 50, 100 et 150 mL.

- Éprouvettes graduées : 20 et 50 mL.

- Burette de 25 mL.

- pH-mètre et son électrode.

- Balance de précision.

- Erlenmeyers : 50, 100 et 150 mL.

- Pipettes jaugées: 10, 20 et 25 mL.

- Agitateur magnétique et son barreau.

- 1.2- Écrire l'équation de la réaction de ce dosage.
- 1.3- Tracer, sur un papier millimétré, la courbe représentant la variation du pH en fonction de V_b ajouté : pH = f (V_b).

Prendre les échelles suivantes : 1cm pour 1 mL en abscisses;

1cm pour 1 unité de pH en ordonnées.

- 1.4- Déterminer graphiquement les coordonnées du point d'équivalence.
- 1.5- Déduire la concentration de HA, [HA], dans la solution S.

2- Dosage de la base A

On dose un autre volume $V_2 = 20,0$ mL de la solution S par une solution d'acide chlorhydrique de concentration $C_a = 0,10$ mol. L^{-1} .

L'équivalence est atteinte pour un volume d'acide versé $V_{aE} = 9.3 \text{ mL}$.

- 2.1- Écrire l'équation de la réaction de ce dosage.
- 2.2- À partir des espèces chimiques présentes dans la solution obtenue à l'équivalence, préciser si cette solution est acide, basique ou neutre.
- 2.3- Déterminer la concentration des ions A⁻, [A⁻], dans la solution S.

3- Identification de l'acide HA et de sa base conjuguée A

On donne les valeurs de pK_a de quelques couples acide / base :

Couple acide/base	HCOOH / HCOO	C ₆ H ₅ COOH / C ₆ H ₅ COO	CH ₃ COOH / CH ₃ COO
pKa	3,75	4,20	4,75

- 3.1- Identifier les espèces du couple HA/A présentes dans la solution S.
- 3.2- Généralement la courbe de dosage d'un acide faible par une base forte présente deux points d'inflexion. Préciser pourquoi la courbe de la question 1.3 présente un seul point d'inflexion.