МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа радиотехники и компьютерных технологий

Лабораторная работа 2.3.1 Получение и измерение вакуума

Автор: Григорьев Даниил Б01-407

1 Аннотация

Цель работы: 1) измерение объемов форвакуумной и высоковакуумной частей установки; 2) определение скорости откачки системы в стационарном режиме, а также по ухудшению и улучшению вакуума.

В работе используются: вакуумная установка с манометрами: масляным, термопарным и ионизационным.

2 Теоретическая часть

2.1 Процесс откачки

Пусть W — объем газа, удаляемого из сосуда при данном давлении за единицу времени, Q_i для различных значений i обозначим различные притоки газа в сосуд (в единицах PV), такие как течи извне $Q_{\rm u}$, десорбция с поверхностей внутри сосуда $Q_{\rm d}$, обратный ток через насос $Q_{\rm h}$. Тогда имеем:

$$-VdP = \left(PW - \sum Q_i\right)dt\tag{1}$$

При достижении предельного вакуума устанавливается $P_{\rm np}$, и dP=0. В таком случае:

$$W = \frac{\sum Q_i}{P_{\text{np}}} \tag{2}$$

Поскольку обычно $Q_{\text{и}}$ постоянно, а $Q_{\text{н}}$ и $Q_{\text{д}}$ слабо зависят от времени, также считая постоянной W, можем проинтегрировать (1) и получить:

$$P - P_{\pi p} = (P_0 - P_{\pi p}) \exp\left(-\frac{W}{V}t\right) \tag{3}$$

Полная скорость откачки W, собственная скорость откачки насоса $W_{\rm H}$ и проводимости элементов системы C_1, C_2, \ldots соотносятся согласно формуле (4), и это учтено в конструкции установки.

$$\frac{1}{W} = \frac{1}{W_{\rm H}} + \frac{1}{C_1} + \frac{1}{C_2} + \dots \tag{4}$$

2.2 Течение газа через трубу

Характер течения газа существенно зависит от соотношения между размерами системы и длиной свободного пробега молекул. При атмосферном и форвакуумном давлениях длина свободного пробега меньше диаметра трубок, и течение газа определяется его вязкостью, т.е. взаимодействием молекул. При переходе к высокому вакууму столкновения молекул между собой начинают играть меньшую роль, чем соударения со стенками.

Для количества газа, протекающего через трубу длины l и радиуса r в условиях высокого вакуума, справедлива формула:

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3\sqrt{\frac{2\pi RT}{\mu}} \cdot \frac{P_2 - P_1}{l} \tag{5}$$

Если труба соединяет установку с насосом, то давлением P_1 у его конца можно пренебречь. Давление в сосуде $P = P_2$. Тогда пропускная способность трубы:

$$C_{\rm Tp} = \left(\frac{dV}{dt}\right)_{\rm Tp} = \frac{4r^3}{3l}\sqrt{\frac{2\pi RT}{\mu}} \tag{6}$$

3 Экспериментальная установка

Установка изготовлена из стекла, и состоит из форвакуумного баллона (ФБ), высоковакуумного диффузионного насоса (ВН), высоковакуумного баллона (ВБ), масляного (М) и ионизационного (И) манометров, термопарных манометров (M_1 и M_2), форвакуумного насоса (ФН) и соединительных кранов ($K_1, K_2, \ldots K_6$) (Рис. 1). Кроме того, в состав установки входят: реостат и амперметр для регулирования тока нагревателя диффузионного насоса.

Рис. 1. Схема экспериментальной установки

4 Ход работы

4.1 Определение объема форвакуумной и высоковакуумной частей установки

- 1. Атмосферное давление равно $P_{\rm A} = (752 \pm 1)$ торр.
- 2. Впустим в установку атмосферный воздух через краны К1 и К2.
- 3. Закроем краны К5 и К6, запрем $V_{\text{зап}} = 50 \text{ см}^3$ воздуха.
- 4. Закроем краны K1 и K2, включим форвакуумный насос. Подключим установку к форвакуумному насосу краном K2 и откачаем ее до давления 10^{-2} торр.
- 5. Повернув рукоятку крана K2, отсоединим установку от форвакуумного насоса. Откроем кран K1.
- 6. Перекрыв К3, отделим ВБ от ФБ.
- 7. Закроем К4.
- 8. Откроем К5, измерим уровень масла слева и справа, которые дадут нам давление P_1 . Из закона Бойля-Мариотта $V_{\Phi \text{B}} = V_{\text{зап}} P_{\text{A}}/P_1$.
- 9. Аналогичным методом измерим объем $V_{\text{вв}}$, открыв кран K3.

10. Результаты первого измерения в таблице 1. Погрешность измерения уровня примем $\Delta h = 0.1~\mathrm{cm}$.

h_1 , см	h_2 , cm	P_1 , Topp	h_3 , cm	h_4 , cm	P_2 , торр
35,0	15,0	13,0	31,6	18,8	8,3

Таблица 1. Таблица первых показаний масляного манометра.

Сотрудник лаборатории сразу понял, что измерения неверны, поэтому измерим второй раз, более внимательно. Результаты в таблице 2.

h_1 , см	h_2 , см	P_1 , Topp	h_3 , cm	h_4 , cm	P_2 , торр
38,3	11,3	18,6	33,7	16,3	11,8

Таблица 2. Таблица вторых показаний масляного манометра.

Расхождения в измерениях скорее всего связаны с тем, что в первом случае при снятии измерений мы поторопились и не дождались равновесного положения жидкости в масляном манометре.

11. Получим $V_{\rm фв}=(2139\pm40)~{\rm cm}^3,~V_{\rm вв}=(1180\pm30)~{\rm cm}^3.$ Относительная погрешность может быть вычислена в обоих случаях как $\varepsilon_V=\varepsilon_P+\varepsilon_{P\rm A}.~\varepsilon_{V_{\rm фв}}=0,2,~\varepsilon_{V_{\rm вв}}=0,3.$