Integer programming & The Travelling Salesman Problem

Orr Zwebner Baruch Hanya

TSP and IP - Definitions

TSP Formulations – MTZ, DFJ

Implementation and results

Competitive quiz

Integer Programming

 $IP \subset LP$ s.t all variables are integer, Unlike Mixed Linear Integer Programming

IP **standard** form:

maximize $c^T x$

Subject to:

$$Ax + s \leq b$$

$$s \ge 0$$

$$x \ge 0$$

Where $x \in \mathbb{Z}^n$, $c \in \mathbb{R}^n$, $s, b \in \mathbb{R}^m$, $a \in \mathbb{R}^{m \times n}$

Integer Programming

Example - Maximum independent set:

Given a graph G = (V, E), find a maximum size $S \subseteq V$ such that no 2 vertices in S have an edge between

$$(\forall v, u \in S \rightarrow (u, v) \notin E).$$

Maximize $\sum_{v \in V} x_v$

Subject to:

$$x_v \in \{\textbf{0}, \textbf{1}\}$$

$$x_u + x_v \le 1 \ \forall (u, v) \in E$$

Travelling Salesman Problem - TSP

- Goal: Find the shortest route visiting each city once and returning to the starting point
- Challenge: Number of possible routes grows fast with more cities
- Approach: Approximation methods offer quick and practical solutions
- Important Note: The starting point does not affect the

Travelling Salesman Problem - TSP

In our case the running time is approximately:

 $\sim 10^{61}$

TSP is an NPcomplete problem

Exponential time - it involves evaluating all possible permutations of the cities, which is

(n-1)! permutations

Naive Method

Number of Cities (n)	Possible Permutations ($(n-1)!$)	Approximate Running Time	
3	2	Very fast	
4	6	Very fast	
5	24	Very fast	
6	120	Very fast	
7	720	Fast	
8	5040	Moderate	
9	40320	Moderate	
10	362880	Slow	
11	3628800	Very slow	
12	39916800	Extremely slow	

Our Dataset

- We took 48 Capitals of USA's states
 Excluding Alaska and Hawaii to simplify the
 dataset
- We calculated the distances using Euclidean distance by KMs

TSP - Formulation in IP

Optimization problem:

Minimize $\sum_{i=1}^n \sum_{j\neq i,j=1}^n c_{ij} x_{ij}$

Where:

$$x_{ij} = \begin{cases} \mathbf{1} & \text{The path goes from city } i \text{ to city } j \\ \mathbf{0} & \text{Otherwise} \end{cases}$$

 $c_{ij} > 0$ The distance from city i to city j

TSP - Formulation in IP

Minimize $\sum_{i=1}^{n} \sum_{j\neq i,j=1}^{n} c_{ij} x_{ij}$

Subject to:

$$x_{ij} \in \{\mathbf{0}, \mathbf{1}\}$$

i,j=1...n;

$$\sum_{j=1,j\neq i}^n x_{ij} = 1$$

 $i = 1 \dots n;$

$$\sum_{i=1,i\neq j}^n x_{ij} = 1$$

j=1...n;

$$x_{ij} = \begin{cases} \mathbf{1} & \text{The path goes from city } i \text{ to city } j \\ \mathbf{0} & \text{Otherwise} \end{cases}$$

TSP - Formulation in IP

Minimize $\sum_{i=1}^{n} \sum_{j\neq i,j=1}^{n} c_{ij} x_{ij}$

Subject to:

 $x_{ij} \in \{0,1\}$ i,j=1...n;

 $\sum_{j=1,j\neq i}^{n} x_{ij} = 1 \qquad j = 1...n;$

 $\sum_{i=1,i\neq j}^{n} x_{ij} = 1 \qquad \qquad i = 1...n;$

TSP - Miller Tucker Zemlin formulation

Minimize $\sum_{i=1}^{n} \sum_{j\neq i,j=1}^{n} c_{ij} x_{ij}$

Subject to:

$$x_{ii} \in \{0, 1\}, u_i \in \mathbb{N}$$

$$i,j=1...n;$$

$$\sum_{j=1,j\neq i}^n x_{ij} = 1$$

$$j=1...n;$$

$$\sum_{i=1,i\neq j}^n x_{ij} = 1$$

$$i=1...n;$$

If
$$x_{ij} = 1$$
:

$$i, j = 2...n;$$
*

$$u_i = u_i + 1$$

 $x_{ij} = \begin{cases} \mathbf{1} & \text{The path goes from city } i \text{ to city } j \\ \mathbf{0} & \text{Otherwise} \end{cases}$

TSP – Miller Tucker Zemlin formulation

Minimize $\sum_{i=1}^{n} \sum_{j\neq i,j=1}^{n} c_{ij} x_{ij}$

Subject to:

$$x_{ii} \in \{0, 1\}, u_i \in \mathbb{N}$$

$$i, j = 1...n;$$

$$\sum_{j=1, j\neq i}^n x_{ij} = 1$$

$$j=1...n;$$

$$\sum_{i=1,i\neq j}^n x_{ij} = 1$$

$$i=1...n;$$

$$u_i - u_j + 1 \le (n-1)(1-x_{ij}) \ 2 \le i \ne j \le n$$

$$2 \le u_i \le n$$

$$2 \le i \le n$$

 $m{x}_{ij} = egin{cases} m{1} & ext{The path goes from city } i ext{ to city } j \ m{0} & ext{Otherwise} \end{cases}$

TSP - Miller Tucker Zemlin formulation

$$u_i - u_j + 1 \le (n-1)(1-x_{ij})$$
 s.t $x_{ij} = 0$:

$$u_i - u_j + 1 \le (n-1)(1-0) = n-1$$
 $2 \le i \ne j \le n$

*
$$2 \le u_i \le n$$
 $2 \le i \le n$

Reichman University $m{x}_{ij} = egin{cases} m{1} & ext{The path goes from city } i ext{ to city } j \ m{0} & ext{Otherwise} \end{cases}$

TSP - Miller Tucker Zemlin formulation

$$u_i - u_j + 1 \le (n-1)(1-x_{ij})$$
 s.t $x_{ij} = 0$:
 $u_i - u_j + 1 \le (n-1)(1-0) = n-1$ $2 \le i \ne j \le n$
*2 \le u_i \le n \quad 2 \le i \le n
 $u_i - u_j + 1 \le (n-1)(1-x_{ij})$ s.t $x_{ij} = 1$:
 $u_i - u_j + 1 \le (n-1)(1-1) = (n-1) * 0 = 0$ $2 \le i \ne j \le n$

If
$$x_{ij}=1$$
: $i,j=2...n;^*$ $u_j=u_i+1$

$$u_j = u_j + 1 \rightarrow u_i - u_j + 1 = 0 \rightarrow u_i - u_j + 1 \le 0$$

 $\mathbf{x}_{ij} = \begin{cases} \mathbf{1} & \text{The path goes from city } i \text{ to city } j \\ \mathbf{0} & \text{Otherwise} \end{cases}$

TSP – Miller Tucker Zemlin formulation

Minimize $\sum_{i=1}^{n} \sum_{j\neq i,j=1}^{n} c_{ij} x_{ij}$

Subject to:

$$x_{ii} \in \{0, 1\}, u_i \in \mathbb{N}$$

$$i, j = 1...n;$$

$$\sum_{j=1, j\neq i}^n x_{ij} = 1$$

$$j=1...n;$$

$$\sum_{i=1,i\neq j}^n x_{ij} = 1$$

$$i=1...n;$$

$$u_i - u_j + 1 \le (n-1)(1-x_{ij}) \ 2 \le i \ne j \le n$$

$$2 \le u_i \le n$$

$$2 \le i \le n$$

 $x_{ij} = \begin{cases} \mathbf{1} & \text{The path goes from city } i \text{ to city } j \\ \mathbf{0} & \text{Otherwise} \end{cases}$

Minimize $\sum_{i=1}^{n} \sum_{j\neq i,j=1}^{n} c_{ij} x_{ij}$

Subject to:

$$x_{ij} \in \{\mathbf{0}, \mathbf{1}\}$$

$$i,j=1...n;$$

$$\sum_{j=1,j\neq i}^n x_{ij} = 1$$

$$j=1...n$$
;

$$\sum_{i=1,i\neq j}^n x_{ij} = 1$$

$$j=1...n;$$

$$\sum_{i,j\in S, i\neq j} x_{ij} \leq |S| - 1$$

$$\forall S \subsetneq \{1, 2, \dots, n\}$$

Minimize $\sum_{i=1}^{n} \sum_{j\neq i,j=1}^{n} c_{ij} x_{ij}$

Subject to:

$$x_{ij} \in \{0, 1\}$$

$$i,j=1...n;$$

$$\sum_{j=1, j\neq i}^n x_{ij} = 1$$

$$j=1...n;$$

$$\sum_{i=1,i\neq j}^n x_{ij} = 1$$

$$j=1...n;$$

Minimize $\sum_{i=1}^{n} \sum_{j \neq i, j=1}^{n} c_{ij} x_{ij}$

Subject to:

 $x_{ii} \in \{0, 1\}$

i, j = 1...n;

 $\sum_{j=1,j\neq i}^{n} x_{ij} = 1$

j=1...n;

 $\sum_{i=1,i\neq j}^n x_{ij} = 1$

j=1...n;

There is no sub-tour - The solution is a single tour

(not a union of smaller tours)

$$x_{ij} = \begin{cases} \mathbf{1} & \text{The path goes from city } i \text{ to city } j \\ \mathbf{0} & \text{Otherwise} \end{cases}$$

> 0

The distance from city i to city j

There is no sub-tour - The solution is a single tour =

The number of arcs between nodes in the subset should be less than the number of nodes in that subset

There is no sub-tour - The solution is a single tour =

The number of arcs between nodes in the subset should be less than the number of nodes in that subset

There is no sub-tour - The solution is a single tour =

The number of arcs between nodes in the subset should be less than the number of nodes in that subset

 x_{ii} - An arc between nodes i and j

$$x_{34} + x_{45} + x_{53} \le 2$$

Branch and bound

This operation is called a branching on variable x_1 . Note that the solution (3.75, 1.25) does not belong to the linear relaxation of (P_1) or (P_2) . We can represent the subproblems and the corresponding bounds by means of a tree, called the Branch-and-Bound tree.

Cutting plane method

Cutting plane method

Start with the linear relaxation $\max\{c^T x \mid Ax \leq b, x \geq 0\}$.

- 1. Solve the current linear relaxation, and let x^* be a basic optimal solution;
- 2. If $x^* \in X$, then x^* is optimal for (P_I) ; STOP.
- 3. Otherwise, find an inequality $\alpha^T x \leq \beta$ that is valid for X and cuts off x^* ;
- 4. Add the inequality $\alpha^T x \leq \beta$ to the current linear relaxation and go to 1.

Solutions

NP HARD - Approximated solutions

- 1. Greedy randomized Nearest neighbor
 - a. Generate a start city, always choose the closest city
 - b. Try N times, choose the best tour
 - i. Each iteration with a different start city

Solutions

NP HARD - Approximated solutions

- 1. Greedy randomized Nearest neighbor
 - a. Generate a start city, always choose the closest city
 - b. Try N times, choose the best tour
- 2. Solve LP and find a relaxed solution (simplex):
 - a. Rounded
 - b. Branch and bound
 - c. Cutting plane method

* Re Unive

Solutions

NP HARD - Approximated solutions

Greedy randomized - Nov

Generate a.

COIN-OR Branch-and-Cut solver

OR OPERATION

andomized)

the closest city

Model	Formula	Objective Value (KM)	Running time
Nearest neighbor	-	20,003.87	0.1 sec
CBC*	MTZ	17,585.43	1 hr
	DFJ	17,585.43	1 hr
GUROBI	MTZ	17,083.89	4 min 25.2 sec
	DFJ**	17,083.89	0.2 sec
Optimum***	-	17,083.89	-

* Time limited

^{**} Using GUROBI lazy constraints

^{***} According to 2 online blogs

Conclusions

1. IP is a tool for formulating complex optimization problems

- 2. The simple solution is a good and efficient approximation
 - a. NN Objective value < 1.18 OPT

3. Solve IP or TSP in polynomial time and you will be a millionaire

4. Until then – Use GUROBI (with academic license)

