SCC0661 – Multimídia & Hipermídia

Prof.: Dr. Marcelo Manzato

(mmanzato@icmc.usp.br)

Aula 3 – Percepção, Cor e Imagens.

Instituto de Ciências Matemáticas e de Computação - ICMC Sala 3-111

Sumário

- 1 Introdução
- 2 O Sistema Visual Humano
- 3 Luz e Cor
- 4 Aquisição de Imagens
- 5 − Representação de Imagens
- 6 Compressão de Imagens

1. Introdução

- 70% das informações que coletamos vêm da visão.
- A visão é o nosso sentido mais importante
 - Relativamente à audição, olfato, tato e paladar.
 - É o mais usado nos sistemas multimídia.
 - É importante estudar o sistema humano de visão.
 - Para usarmos efetivamente a tecnologia multimídia.

Formação da imagem no olho

- Bastonetes: fotorreceptores para intensidade luminosa (brilho).
 - 75 a 150 milhões.
 - Espalhados por toda a retina.
 - Resposta para baixa iluminação
- Cones: fotorreceptores para cor.
 - 6 a 7 milhões.
 - Concentrados na fóvea.
 - Resposta para alta iluminação

- Adaptação ao brilho
 - Percepção de ampla faixa de intensidades de luz
 - Não é simultâneo: ocorre uma mudança da sensibilidade global de acordo com as propriedades da cena
 - Brilho perceptível não é simplesmente uma função de intensidade.
 - Olho humano tende a destacar regiões próximas com diferentes intensidades.

Faixas de Mach:

Contraste simultâneo:

- Cor é importante:
 - Identificação de objetos.
 - Podemos discernir milhares de cores e intensidades comparados a algumas dúzias de cinza.
- Percepção de cores pelo cérebro:
 - É um fenômeno fisiopsicológico, não completamente entendido.

4

2. Sistema Visual Humano

Espectro Eletromagnético

Cones:

- Teoria tristimulus da visão (tristimulus theory of vision)
- Possuem três tipos de fotopigmentos:
 - Azul, Verde e Vermelho.
 - Sensibilidade: 430nm, 530nm e 560nm
 - Espectro visível: ~400nm a 700nm de comprimento de onda.
 - Porcentagem de cones: 4%, 32% e 64%.

3. Luz e Cor

- A cor de um objeto depende:
 - Da luz que ilumina esse objeto
 - De propriedades específicas de sua superfície e textura

- Diferença entre luz colorida e matéria colorida
 - Cores do arco-íris vs. corantes em uma pintura

3. Luz e Cor

- Produção de cores:
 - Cores primárias aditivas luz
 - Obtidas diretamente da decomposição da luz solar e focos emissores de luz (monitor)
 - Azul, verde e vermelho
 - Cores primárias subtrativas pigmento
 - Luz refletida de objetos, sendo uma parte absorvida (pintura)
 - Magenta, amarelo e ciano

3. Luz e Cor

- Além da frequência, três outros aspectos são considerados:
 - Radiância
 - Total de energia que flui da fonte luminosa. Media em watts (W)
 - Luminosidade
 - Quantidade de energia de uma fonte de luz percebida por um observador. Medida em lumens (lm)
 - Brilho
 - Noção acromática de intensidade. Subjetivo.

- Como as imagens são capturadas?
 - Tecnologia tenta "imitar" o olho humano.

Olho	Câmera
Cristalino	Lente
Íris	Íris
Cones	CCD
Bastonetes	CCD

CCD = charge-coupled device

- Imagem é "entendida" como uma matriz de pontos.
 - Pixel ou Pel = Picture element.
- A luz proveniente de cada ponto da imagem é capturada por um sensor (CCD).
 - É composto por uma malha de material fotossensível. Cada célula da malha corresponde a um ponto da imagem.
 - A intensidade da luz incidente em cada célula é convertida em sinal elétrico.
 - Amostragem e quantização.
 - Informação digitalizada é armazenada no Frame Buffer como uma matriz de pontos.

- Imagens coloridas:
 - Utilizam um CCD para cada primária (RGB).
 - Um filtro separa a luz incidente direcionando as componentes para o CCD correto.
 - Cada posição do frame buffer armazena informação dos três componentes.

- Imagem com resolução 640 x 480 com 24 bits por pixel:
 - 921.600 bytes (~1MB)
 - 7.372.800 bits (~7Mbits)

- Uma imagem na forma digital não apresenta, tecnicamente, uma resolução (dimensão)
 - Exemplo: a que tamanho podemos imprimir uma imagem com 600 x 300 pixels?
- Necessário saber a capacidade do equipamento em reproduzir um número de pixels por unidade de medida
 - Pixels por polegada (ppi) ou Pontos por polegada (dpi)
- Imagem de 600 pixels de largura
 - Impressora de 200dpi: 3" de largura
 - Impressora de 100 dpi: 6" de largura

- Outro exemplo
 - Scanners: 600dpi
 - Impressoras: 300dpi
- Foto 6" x 4" escaneada a 600dpi:
 - Impressora 300dpi: imprime como 12" x 8".

5. Representação de Imagens

- Representação de imagens:
 - Na memória do computador:
 - Matriz de pixels armazenada no frame-buffer.

- Em arquivos:
 - Geradas por computador:
 - Gráficos.
 - Digitalizadas:
 - Documentos.
 - Imagens.

5. Representação de Imagens

- Gráficos
 - Dois modos de representação:
 - Mapas de bits
 - Arquivos maiores.
 - Não necessita de interpretadores.
 - BMP, TIFF (tagged image file format), ...
 - Comandos de alto nível.
 - Arquivos menores (somente instruções).
 - Necessita de interpretadores.
 - SVG (Scalable Vector Graphics), ...

5. Representação de Imagens

- Imagens
 - Adquiridas por scanners ou câmeras.
 - Imagens de tom contínuo.
 - Tons de cinza: 8 bits por pixel.
 - Coloridas: de 8, 16, 24 ou 32 bits por pixel.
 - Conteúdo do frame-buffer em um arquivo.
 - Normalmente aplica-se compressão.
 - Diversos formatos
 - GIF, PNG, JPEG, ...

6. Compressão de Imagens

- O que é compressão de imagens?
- Necessidade de compressão.
- Princípios de compressão de imagens

6.1 O quê é compressão de imagens?

 "O termo compressão de imagens refere-se ao processo de reduzir a quantidade de dados necessários para representar uma imagem com uma qualidade subjetiva aceitável."

Dados x informação

- Dados de imagem são altamente redundantes.
 - Remover redundâncias ajuda a alcançar compressão.
 - Redundâncias são matematicamente quantificáveis.
- Redundâncias em imagens:
 - Redundância estatística.
 - Também conhecida como redundância de codificação.
 - Redundância Espacial.
 - Também conhecida como redundância interpixel.
 - Redundância Psicovisual.
 - Utiliza conceitos do HVS.

- Redundância Estatística.
 - Função de Densidade de Probabilidade (pdf).
 - Valores dos pixels em uma imagem tem pdf não uniforme.
 - Métodos de codificação estatística podem ser usados para compressão de imagens.

Redundância estatística.

Valores dos pixels: Irão variar de modo não uniforme.

- Redundância Estatística.
 - Codificação estatística.
 - Ou Variable Length Coding.
 - Lossless.
 - Códigos menores para símbolos (valores) mais frequentes.
 - Huffman, codificação aritmética.

- Redundância Espacial
 - Refere-se à correlação entre pixels vizinhos em uma imagem.
 - Relação geométrica ou estrutural entre os objetos em uma imagem.

- Redundância Espacial
 - O valor de um pixel pode ser razoavelmente "adivinhado" por meio dos valores de seus vizinhos.
 - Para remover redundância espacial:
 - Matriz de pixels deve ser transformada em um formato mais conveniente.
 - Diferenças entre pixels para representar a imagem.
 - Lossless: Codificação por diferença, codificação runlength.
 - Lossy: codificação preditiva, codificação por transformada.

- Redundância Psicovisual
 - Percepção de brilho.
 - Olho não responde com igual sensibilidade a toda informação visual.
 - Algumas informações tem mais importância relativa que outras.
 - Informação psicovisual redundante.
 - Diferente das outras redundâncias.
 - Está associada com informação visual de fato.
 - Então como é possível eliminá-la?

- Redundância Psicovisual
 - Sua eliminação implica em perda de informação visual quantitativa (real).
 - Daí o nome quantização.
 - É uma operação irreversível.

- Redundância Psicovisual
 - Propriedades do sistema visual humano (HSV).
 - Maior sensibilidade a distorções em áreas suaves (com baixa freqüência espacial).
 - Maior sensibilidade a distorções em áreas escuras de imagens.
 - Em imagens coloridas, maior sensibilidade a mudanças na luminância do que na crominância.

- Técnicas podem ser combinadas!
 - Estatísticas + Espaciais + propriedades do HSV
 - Vantagem?

Para Saber Mais

- Gonzales & Woods. Digital Image Processing. 2nd ed. Prentice-Hall, 2002. Capítulo 8, seção 8.1.
- Halsall, F. Multimedia Communications: Applications, Networks, Protocols, and Standards, Addison-Wesley Publishing, 2001. ISBN: 0201398184. Capítulo 2, seção 2.4 e capítulo 3, seções 3.2 e 3.4.
- Pennebaker & Mitchell. JPEG Still Image Data Compression Standard. Van Nostrand Reinhold, 1993.