Time Series Modeling

ARIMA Model

Contents

- 1. Box-Jenkins (ARIMA) Models
- 2. Five Step Iterative Procedure
 - i. Stationarity Checking
 - Differencing, Correlograms, and Dickey Fuller Test in Python
 - ii. Model Identification
 - iii. Parameter Estimation
 - Simple and Automated Model Estimation in Python
 - Running ARIMA in Python
 - iv. Diagnostic Checking
 - Residual plot in Python
 - v. Forecasting
 - Predictions on ARIMA Model in Python

Box-Jenkins (ARIMA) Models

• ARIMA (Auto Regressive Integrated Moving Average) models are Regression models that use lagged values of the dependent variable and/or random disturbance term as explanatory variables.

• ARIMA models rely heavily on the autocorrelation pattern in the data.

• ARIMA models can also be developed in the presence of seasonality in the time series.

• ARIMA models thus essentially ignore domain theory (by ignoring "traditional" explanatory variables)

When to Use ARIMA Models

Little or nothing is known about the dependent variable being forecasted

Basic ARIMA Models

1. Autoregressive model of order p (AR(p)):

$$y_t = \delta + \phi_1 y_{t-1} + \phi_2 y_{t-2} + ... + \phi_p y_{t-p} + \varepsilon_t$$

Where y_{t} depends on its p previous values

2. Moving Average model of order q (MA(q))

$$y_t = \, \delta + \, \epsilon_t - \theta_1 \epsilon_{t-1} - \theta_2 \epsilon_{t-2} - \cdots - \theta_q \epsilon_{t-q}$$

y, depends on q previous random error terms

3. Autoregressive-Moving Average model of order p and q (ARMA(p,q))

$$y_{t} = \delta + \phi_{1}y_{t-1} + \phi_{2}y_{t-2} + ... + \phi_{p}y_{t-p} + \epsilon_{t} - \theta_{1}\epsilon_{t-1} - \theta_{2}\epsilon_{t-2} - \cdots - \theta_{q}\epsilon_{t-q}$$

 y_{t} depends on its p previous values and q previous random error terms

Five-Step Iterative Procedure

Step 1: Stationarity Checking

Differencing

Differencing continues until stationarity is achieved

$$\Delta y_t = y_t - y_{t-1}$$

$$\Delta^{2} y_{t} = \Delta(\Delta y_{t}) = \Delta(y_{t} - y_{t-1}) = y_{t} - 2y_{t-1} + y_{t-2}$$

- The differenced series has n-1 values after taking the first-difference, n-2 values after taking the second difference, and so on
- The number of times that the original series must be differenced in order to achieve stationarity is called the order of integration, denoted by d

Case Study

Background

Annual Sales for a specific company from year 1961 to 2017

Objective

• To develop time series model and forecast sales for next 3 years

Available Information

- Number of cases: 57
- Variables: Year, sales(in 10's GBP)

Data Snapshot

Columns	Description	Type	Measurement	Possible values
Year	Financial Year	Numeric	-	-
sales	sales(in 10's GBP)	Numeric	In British Pound	Positive values
		19/4	364834	
		1975	392503	

Creating and Plotting Time Series in Python

#Importing turnover_annual data

```
import pandas as pd
salesdata=pd.read_csv('turnover_annual.csv')

#Creating and Plotting a Time Series Object

rng = pd.date_range('01-01-1961','31-12-2017',freq='Y')
s = salesdata.sales.values
salesseries = pd.Series(s, rng)

salesseries.plot(color='red', title ="Sales Time Series (Simple Plot)")
```

- date_range() creates pandas date object.
- freq ='Y' indicates yearly data
- pd.Series() creates time series object
- Plot function gives line chart

Interpretation:

The time-series clearly shows a positive trend.

Checking Stationarity – Correlogram

ACF Plot

```
import matplotlib.pyplot as plt
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
plot_acf(salesseries)

plot_acf() returns an ACF (Auto
```

Correlation Function) plot.

Output

Interpretation:

 We can observe that there is a very slow decay which is a sign of Non-stationarity.

Plot of 1st Order Differenced Time Series

Creating and Plotting a Difference Series

```
from statsmodels.tsa.statespace.tools import diff
salesdiff = diff(salesseries)
salesdiff.plot()

diff() gives 1st order differences
plot function gives line chart for
differenced series
```


Interpretation:

 Even after first order differencing, the series looks non-stationary.

Plot of 2nd Order Differenced Time Series

#Creating and Plotting 2nd Difference Series

```
salesdiff2 = diff(salesdiff)
salesdiff2.plot(color='red')
```

Output

Interpretation:

 After 2nd order differencing, the series looks stationary.

Correlogram for 2nd Order Differenced Time Series

```
# ACF Plot
```

plot_acf(salesdiff2)

Output

Interpretation:

 Stationarity is achieved with 2nd order difference.

Dickey Fuller Test

```
# Install "arch"
pip install arch
# Import "ADF" from library "arch"
from arch.unitroot import ADF
adf = ADF(salesseries,lags=0,trend='nc')
adf.summary()
```

- ADF() performs a Dickey Fuller unit root test on time series data.
- lags= allows to mention the number of lags to use in the ADF regression. We have used zero.
- trend='nc' specifies no trend and constant in regression

Output

Interpretation:

 Time series is non-stationary as value of test statistic is greater than 5% critical value.

Dickey Fuller Test

```
# Checking stationarity for series with difference of order 2
adf = ADF(salesdiff2,lags=0,trend='nc')
adf.summary()
```

Output

Trend: No Trend

Critical Values: -2.61 (1%), -1.95 (5%), -1.61 (10%)

Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

Interpretation:

 Time series is stationary as value of test statistic is less than 5% critical value.

Step 2: Model Identification

Model Identification

• When the data are confirmed stationary, proceed to tentative identification of models through visual inspection of correlogram and partial correlogram

Model	AC	PAC
	Dies down	Cuts off after lag p
	Cuts off after lag q	Dies down
	Dies down	Dies down

Model Identification

- ARIMA model is expressed as arima (p,d,q) where
 - p = no. of autoregressive terms
 - d = order of differencing
 - q = no. of moving average terms

ACF Plot

PACF Plot

 ACF and PACF correlograms will help in determining the MA and AR values respectively.

<u>Indicative Model :</u> arima(2,2,2)

Step 3: Parameter Estimation

Parameter Estimation in Python

```
# Simple Estimation
from statsmodels.tsa.arima model import ARIMA
model = ARIMA(salesseries, order=(2, 2, 2)).fit(trend='nc')
                     ARIMA() fits a model to a univariate time series.
                     order= argument gives the model (p,d,g) order.
model.params
                    params() and aic() return the model coefficients and
model.aic
                    AIC value.
# Output
ar. L1.D2.None
               -1.235413
                           Interpretation:
ar.L2.D2.None
              -0.670320
                              Smaller the AIC value, better is the
ma.L1.D2.None
              0.785072
                               model. We need to try out various
ma.L2.D2.None
                0.330062
dtype: float64
                               combinations of AR and MA terms to
                              arrive at final model.
# Output
 1285.9836066562698
```

Automatic Estimation of Model Parameters

Automatic Model Identification and Parameter Estimation

- auto_arima() generates the best order arima model. The function conducts a search over possible model within the order constraints provided.
- trace= True returns the list of all models considered.
- max_p and max_q gives maximum values of p and q respectively.
- seasonal = allows you to specify whether to fit a seasonal ARIMA or not.

Automatic Estimation of Model Parameters

Output

ARIMA(order=(2, 2, 0))

```
Fit ARIMA: order=(2, 2, 2) seasonal order=(0, 0, 0, 0); AIC=1294.586, BIC=1306.630, Fit
time=0.056 seconds
Fit ARIMA: order=(0, 2, 0) seasonal order=(0, 0, 0, 0); AIC=1295.387, BIC=1299.402, Fit
time=0.006 seconds
Fit ARIMA: order=(1, 2, 0) seasonal order=(0, 0, 0, 0); AIC=1291.568, BIC=1297.590, Fit
time=0.019 seconds
Fit ARIMA: order=(0, 2, 1) seasonal order=(0, 0, 0, 0); AIC=1292.152, BIC=1298.174, Fit
time=0.018 seconds
Fit ARIMA: order=(0, 2, 0) seasonal order=(0, 0, 0, 0); AIC=1294.532, BIC=1296.540, Fit
time=0.006 seconds
Fit ARIMA: order=(2, 2, 0) seasonal order=(0, 0, 0, 0); AIC=1291.358, BIC=1299.387, Fit
time=0.022 seconds
Fit ARIMA: order=(2, 2, 1) seasonal order=(0, 0, 0, 0); AIC=1292.717, BIC=1302.754, Fit
time=0.044 seconds
Fit ARIMA: order=(1, 2, 1) seasonal_order=(0, 0, 0, 0); AIC=1293.092, BIC=1301.122, Fit
time=0.029 seconds
Total fit time: 0.203 seconds
```

Lowest AIC

Interpretation:

 Model with the lowest AIC value is selected as the best model.

ARIMA Model Using BEST Order

```
# Run arima() for cross checking parameters based on model suggested
# by auto.arima
from statsmodels.tsa.arima model import ARIMA
model = ARIMA(salesseries, order=(2, 2, 0)).fit(trend='nc')
model.params
model.aic
# Output
ar.L1.D2.None
               -0.506320
ar.L2.D2.None -0.101797
dtype: float64
# Output
```

1285.114088844849

Step 4: Diagnostic Checking

Residual Analysis

If an ARMA(p,q) model is an adequate representation of the data generating process then the residuals should be 'White Noise'

- White Noise time series has zero mean, constant variance and zero covariance with lagged time series.
- Residual plot is commonly used method for checking if the residuals are white noise process.

Residual Plot In Python

resi = model.resid
resi.plot()

resid() calculates residual values.

Output

Interpretation:

Errors follow white noise process.

Step 5: Forecasting

Forecasting

```
# Forecast for next 3years

model.forecast(steps=3)

forecast() function here gives predicted values for 3 years

# Output

(array([3072357.58495709, 3303466.18670477, 3533054.4598124 ]),
    array([27092.85937931, 48699.96239955, 75757.91735836]),
    array([[3019256.55633543, 3125458.61357874],
        [3208016.0143532 , 3398916.35905634],
        [3384571.67024626, 3681537.24937854]]))
```

Interpretation:forecast() returns three arrays:array of three forecasts

- array of these standard error of the forecasts
- array of the confidence interval for the forecast

Quick Recap

Stationarity Checking	 Plot correlogram using plot_acf() and ADF() for Dickey-Fuller Test
Model Identification	 Tentative identification of models through visual inspection of correlogram and partial correlogram
Parameter Estimation	auto_arima() is recommended for obtaining best ARIMA modelIt uses AIC as the model selection criteria
Diagnostic Checking	 Residual plot for checking whether errors follow white noise process
Forecasting	• Use forecast() to generate forecasts