Credit Card Transaction Detection

Image from Stockvault via <u>link</u>

Group 5

Fangyu Lo, MSBA

Qing Gong, MSBA

Biyun Jing, MSBA

Chenyue Wang, MSBA

Ryan DiBenedetto, MSBA

June 10th, 2021

Project Advisor: Professor Stephen Coggeshall

Table of Contents

EXE	CUTIVE SUMMARY	3
1.	DATA DESCRIPTION	4
	1.1 Dataset Description	4
2.	DATA CLEANING	12
	2.1 Data Exclusions	
3.	VARIABLE CREATION	13
	3.1 Consolidated Variables	14 14 15
4.	FEATURE SELECTION	17
	4.1 Filter4.2 Wrapper	
5.	FRAUD MODEL ALGORITHMS	21
	5.1 Logistic Regression	23 24
6.	RESULTS	26
7.	SUMMARY AND CONCLUSIONS	32
8.	REFERENCES	33
APP	PENDIX I. DATA QUALITY REPORT	34
	Appendix I-1. Data Set Description	34
APP	PENDIX II. TABLE OF ALL CANDIDATE VARIABLES	41
APP	PENDIX III. VARIABLE STATISTICS	46

Executive Summary

Credit card transaction fraud is a common type of financial fraud during the account usage process. It can happen through a variety of ways: theft of physical credit cards or numbers and PINs intercepted credit card information by dishonest waiters, information leak when offered fake travel packages, and hacked websites with critical account information. Credit card issuers are aware of these frauds and keep developing better methods to supervise credit card transactions.

This project will be focusing on building supervised learning models on the card transaction data to predict fraud in the credit card transaction process. The overall goal of the project is to utilize different machine learning algorithms to predict and identify fraudulent transactions effectively and efficiently.

This report includes the complete development process of fraud detection machine learning algorithms. The credit card transaction dataset was cleaned by removing exclusions and filling in missing values. Moreover, new features were created based on existing data entities to better capture suspicious card transactions and train machine learning models. Next, we ran a filter to reduce the number of candidates features to 80 and then applied a wrapper to get the number down to 30. After feature selection, we got a list of ranked-ordered features by multivariate importance. Later, we trained and tested different machine learning models to discover the best-performing model. We then showed the results of the final algorithm and hyperparameter selection. Last but not least, conclusions were made to summarize the model and make recommendations for the future fraud identification process.

Our team decided to apply different machine learning algorithms to fit the data, including Logistic Regression, Random Forest, Boosted Tree, and Neural Network. We achieved an FDR@3% of 0.674, which means our fraud algorithm is capable of removing up to 2/3 of fraudulent transactions, saving an estimated \$473,450.

1. Data Description

1.1 Dataset Description

The "card transactions.csv" is a dataset that contains actual credit card purchases from a US government organization. Each entry of the data has a label indicating whether the transaction is a fraud. The purpose of this dataset is to detect potential credit card transaction fraud. For more information on the data, please see Appendix I for reference.

• Name: Credit Card Transaction Data

 Purpose: Actual credit card purchases from a US government organization to look for credit card transaction fraud

• Source: US government organization

• Time period: January 1st, 2010 to December 31st, 2010

• Number of fields: 10

• Number of records: 96,753

1.2 Data Summary

The variables in the dataset contain both categorical variables and numeric variables. We summarized the categorical data in Table 1.2.1 and the numeric variables in Table 1.2.2.

Table 1.2.1 Categorical Variable

Item	Column name	# of	% populated	Unique values	Most common field value
		records			
1	Recnum	96,753	100.00%	96,753	N/A
2	Cardnum	96,753	100.00%	1,645	5142148452
3	Date	96,753	100.00%	365	2/28/10
4	Merchnum	93,378	96.51%	13,091	930090121224
5	Merch description	96,753	100.00%	13,126	GSA-FSS-ADV
6	Merch state	95,558	98.76%	227	TN
7	Merch zip	92,097	95.19%	4,567	38118
8	Transtype	96,753	100.00%	4	Р
9	Fraud	96,753	100.00%	2	0

Table 1.2.2 Numeric Variable

ltem	Column name	# of records	% populated	Unique values	Mean	Standard deviation	Minimum value	Maximum value	# of zeros
1	Amount	96,753	100.00%	34,909	427.89	10006.14	0.01	3,102,045.53	0

The transactions over time in the data are presented in Figure 1.2.1 and Figure 1.2.2. The volume of the transactions increases in time until the end of September. It drops significantly at the end of September but follows by another increase. The cause is that this is government transaction

data with government-issued credit cards, and the end of a fiscal year for the US government is in September. To be more specific, as the end of a fiscal year approaching, people in the government department usually charge more and more to burn up their budget. When a new fiscal year starts, the budget got reset, and they become relatively conservative. For more information on the data summary, please see Appendix I for reference.

2750 2500 number of transactions 2250 2000 1750 1500 1250 1000 10 20 Ó 40 50 30 week

Figure 1.2.2 Weekly volume of the transactions

1.3 Histograms of Important Fields

This dataset contains a total of 10 fields. Before introducing our methodology and analysis, we will first present the histogram of the import fields for examining their distribution. We will also describe some idiosyncrasies in the fields.

Field 1.

Name: Cardnum

Description: unique identifier of the card that made each purchase

• Count plot: (top 15 categories)

Field 2.

Name: Merchnum

• Description: specific merchandise type number

• Count plot: (top 15 categories)

Field 3.

Name: Merch description

- Description: description of the specific merchandise type. There is FedEx related merchandise, and we notice they violate Benford's Law, the non-intuitive fact that the first digit of many measurements is not uniformly distributed.
- Count plot: (top 15 categories)

Field 4.

Name: Merch state

• Description: the state of the merchandise

• Count plot: (top 15 categories)

Field 5.

Name: Merch zip

• Description: the zip code of the location of the merchandise

• Count plot: (top 15 categories)

Field 6.

Name: Amount

• Description: the amount of the transaction

• Histogram: (data in the histogram excludes outliers > 9000 and is 99.91% populated)

Field 7.

Name: Fraud

• Description: indication of a fraud. The fraud labels are unbalanced from the plot.

• Count plot:

2. Data Cleaning

2.1 Data Exclusions

The number of records in the dataset is 96,753. However, this data includes some records that we are not interested in as part of this transaction fraud detection or that are a significant outlier.

To be more specific, among the four transaction types in the data, we are only interested in the "P" type transactions, representing a purchasing transaction. Thus, we first removed all the records that were not in the transaction type of "P".

Moreover, we found that in the transaction amount field, there was a transaction that had a significantly large amount (\$3,102,045.53). We considered this record as an outlier. In order not to affect the model performance, we removed this single record for further analysis.

2.2 Data Imputations

In this data set, the merchandise state, merchandise number, and merchandise ZIP code are containing missing values. We chose to fill these 3 fields because they are important for us to create variables and build algorithms for fraud detection.

The first is the merchandise state (Merch state). If a record had a merchandise ZIP code but was missing a merchandise state, we used the state for that ZIP code if known. In addition, if the ZIP code is in the range 00600 - 00799 or 00900 - 00999, we filled in the state as PR, representing Puerto Rico. Then, if a record was missing a ZIP code with a known state or PR, we filled in with the mode of state of the Merchnum or Merch description it belonged to. Finally, if none of the above methodologies worked, we imputed the state of the record with" Unk", which means unknown state.

Secondly, we imputed the records with missing merchandise numbers (Merchnum). If the merchandise number was 0, we replaced then with Nan, representing the missing merchandise number because 0 is not a normal merchandise number. We then filled in the missing merchandise number of a record with the mode of merchandise number based on the merchandise description (Merch description) that the record belonged to. Finally, if the methodology didn't work (e.g., having multiple modes), we imputed the merchandise number of the record with" Unk", which means unknown merchandise number.

Last but not least, we imputed the merchandise ZIP code (Merch zip). If a record was missing a merchandise ZIP code, we filled in it with the mode of the merchandise ZIP code of the merchandise number it had. If the methodology didn't work, we imputed the merchandise ZIP code of the record with" Unk", which means an unknown ZIP code.

3. Variable Creation

To better capture unusual amount or frequency credit card transaction activities, 6 categories and a total of 495 candidate variables were created based on existing fields. Table 3.0.1 describes the category and the number of variables in each category.

Table 3.0.1: Summary 5 New Consolidated Variables

Category	Description	# of Variables
Consolidated Variables	Combination of existing fields (card, merchnum, zip	5
	and state)	
Amount Variables	Basic statistic (mean, max, medium and sum) of field	384
	values	
Frequency Variables	Number of transactions with the same transaction	48
	character used over a certain time frame	40
Day-since Variables	Number of days since the same transaction character	8
	been used last time	
Velocity Change Variables	Ratio of shorter time frequency over a longer time	48
	frequency	
Target Encoded Variables	Probability of transaction fraud happen for each	2
	date/state	

3.1 Consolidated Variables

Since we only have a limited amount of fields that are available (Cardnum, Merchnum, Merch Zip and State), there are still other transaction activities that cannot be captured by existing fields. We first made combinations of existing fields to create our consolidated variables, Table 3.1.1 below contains formula and description of each.

Table 3.1.1: Summary 5 New Consolidated Variables

Variable Name	Formula	Description
card_merch	Merchnum + Cardnum	card at this merchant
card_zip	Merch Zip + Cardnum	card in this zip code
card_state	Merch State + Cardnum	card in this state
merchnum_zip	Cardnum + Merch Zip	merchant in this zip
merchnum_state	Merchnum + Merch State	merchant in this state

With the 5 new variables that we just created, we have a total of 8 character variables. Each character variable is a unique feature belonging to a transaction record.

Cardnum Merch zip card_zip merchnum_zip

Merchnum card_merch card_state merchnum_state

3.2 Amount Variables

We then created amount variables to gain insight from statistical measurements of transaction amounts. For example, suppose for a credit card, the amount (average amount, maximum amount, median amount and total amount) of the transaction was significantly higher than others' over the same time frame. In this case, this transaction is more likely to be a fraud activity.

Therefore, the greater the amount variables are, the more likely the transaction is unusual. Figure 3.2.1 below shows how 384 amount variables are created.

Variable Name **Character Name** Description # of Days average cardnum card number merchant account number merchnum maximum 1 merchant zip code merch_zip median 3 card_merch card at this merchan total 7 over the card_zip card in this zip code actual / average amount past 14 by/at this card_state card in this state actual / maximum 30 merchnum_zip merchant in this zip actual / median merchnum_state merchant in this state actual / total

Figure 3.2.1: Creation of 384 amount Variables

• $8 \times 8 \times 6 = 384$ amount variables

3.3 Frequency Variables

Frequency of a character being used within a certain period of time is another important measurement for transaction activities. A transaction is considered suspicious if one of the transaction characters occurred a lot more than others. A bigger frequency value means frequent transactions of the same character, hence a higher chance of unusual activity.

We calculated frequency for each character over the past 0, 1, 3, 7, 14, 30 days. Figure 3.3.1 shows how the 48 frequency variables are built.

Figure 3.3.1: Creation of 48 *frequency* Variables # of records with the same

Character Name	Description
cardnum	card number
merchnum	merchant account
	number
merch_zip	merchant zip code
card_merch	card at this merchan

card_zip	card in this zip code
card_state	card in this state
merchnum_zip	merchant in this zip
merchnum_state	merchant in this state

over the past 0, 1, 3, 7, 14, 30 days

• 6 x 8 = 48 frequency variables

3.4 Days-since Variables

Day since last transaction, means the number of days since the last occurrence of the same character. The smaller the *days-since* value, the closer the previous occurrence of the same character, the higher likelihood of unusual transaction activity for this record. If a character does not have a previous value, which means that this character is the first time seen, 365 will be used for this variable.

Figure 3.4 below shows how 8 days-since variables are created.

Figure 3.4.1: Creation of 8 *days-since* Variables # of days since the last occurrence of

Character Name	Description
	•
cardnum	card number
merchnum	merchant account number
merch_zip	merchant zip code
card_merch	card at this merchant
card_zip	card in this zip code
card_state	card in this state
merchnum_zip	merchant in this zip
merchnum_state	merchant in this state

3.5 Velocity Change Variables

Based on the frequency variables we already created, we further made velocity change variables. Velocity change variables measure the number of occurrences of one character in a short period relative to a longer time frame. A transaction may be fraud if in a short period of time, it occurred too many times compared to a longer time frame. The detailed calculation process is shown in figure 3.5.1 below, and a total of 48 velocity change variables were created.

Figure 3.5.1: Creation of 48 *velocity change* Variables

• 2 x 3 x 8 = 48 *velocity change* variables

3.6 Target Encoded Variables

Categorical fields *Date* and *State* help us better understand what are the chances of transaction fraud by date or by state. We applied target encoding here to fit these categorical variables into machine learning models.

In target encoding, we calculated the average probability of fraud happening by grouping data by date. Similarly, we grouped data by state and calculated the likelihood of fraud happening in that state. Table 3.6.1 below shows the variable name and description.

Table 3.6.1: Table of Target Encoded Variables

Variable Name	Description
day_fraud_prob	probability of fraud happened on this day
state_fraud_prob	probability of fraud happened in this state

4. Feature Selection

After creating the candidate variables, we used the feature selection to get the number of variables down. The purpose of this step is to select the most important independent variables to the dependent variable y and to help the fraud models perform efficiently. Before starting the selection process, we first removed the out-of-time records (last 4 months) and the first 2 weeks of records as well as added fraud label and a random set of numbers in the variable set for a purpose of comparison.

The feature selection process mainly contains two steps, filter, and wrapper. Figure 4.0.1 is a high-level summary of the feature selection process. We first used a filter to apply univariate testing that ignores correlations and scales the variables linearly with the number of variables. The filter is independent of any modeling method and is fast and simple. We then selected the most important 80 variables to put into the wrapper that builds many models with moderate speed and complexity to remove correlations. After the wrapper, we got down the number of variables to 30, and those 30 variables are the only variables that we used for modeling.

Thousands

Filter
Univariate. Fast, simple measure

~Hundred

Wrapper
Multivariate.
Stepwise selection with a simple model

Tens

Regularization

Figure 4.0.1 high-level summary of feature selection

Start with as many variables as possible

Complex models, fully multivariate, nonlinear

4.1 Filter

We used two measures in the filter: univariate KS and FDR. The univariate KS is a filter feature selection method for binary classification problems and a global measure for variables that are continuous or have a metric/ordering. KS is short for Kolmogorov-Smirnov and is a statistical measure of how well two distributions are separated. For each variable, it makes separate distributions for the two populations (good, bad) as figure 4.1.1 showed. The more different the

good and bad curves, the better the variable for separating, and thus the more important the variable is. It then independently measures the distance between two distributions as KS score (the maximum of the difference of the cumulative). The calculation function is presented below:

$$KS = \max_{x} \left| \int_{x_{min}}^{x} P_{\text{good}} dx - \int_{x_{mi}}^{x} P_{\text{bad}} dx \right|$$
$$= \max_{x} \left| \int_{x_{min}}^{x} \left[P_{\text{good}} - P_{\text{bad}} \right] dx \right|$$

Figure 4.1.1 KS (Kolmogorov-Smirnov) measurement

The second measure we used in the filter is FDR (Fraud Detection Rate), a main measure of goodness for fraud. FDR is the percentage of all the frauds caught at a particular examination cutoff location. For example, FDR 50% at 5% means the model catches 50% of all the frauds in 5% of the population. In the project, we first sorted the values of a column (independent variable) and got the head 3% and the tail 3% of the data to examine subpopulations. Then, we divided the number of frauds into the two subpopulations by the total number of frauds in all the data. Finally, we chose the maximum between the two subpopulations as the FDR score. Figure 4.1.2 is a fraud detection rate plot that explains the % fraud detected by this method.

We then ranked the KS and FDR scores for all records in descending order. Since the two measures are both typical business measures for the binary classification model, we calculated the average ranking of the KS and FDR scores and selected the variables that ranked the highest (except Fraud label) by this average ranking. The number of variables we selected in this filter step is 80, which

is a reasonable number of variables that work well in the wrapper step with a reasonable amount of computing time.

Figure 4.1.2 fraud detection rate plot

4.2 Wrapper

We then moved the selected top 80 variables into a wrapper. There are 3 types of wrapper process, forward selection, backward selection, and general stepwise selection. Our goal of this step is to get a short but conservative list of variables in the order of multivariate importance. In other words, the correlations among independent variables must be considered in the wrapper. With the ranked order by multivariate importance, we can remove or increase variables in the given order to test nonlinear algorithms on various numbers of input and to see how performance changes. Both forward and backward selection work well in achieving the above goal and expectation, and we chose to use forward selection in our project.

The forward selection started with no variables selected. Since we had 80 variables to input the wrapper, it first built 80 separate 1D models and tried adding in each variable that we didn't already have. It kept the best variable by the overall model performance as a measure of strength. It then continued the process as Figure 4.2.1 showed. In the wrapper, we used the Sequential Feature Selector in the Python mlxtend package with a forward selection and a random forest classifier, a simple non-linear tree-based model. We used FDR as the measure of goodness and used 2-fold cross-validation in the selection process. In each step of selecting variables, the forward selection removed the correlation and used a greedy search to look for the next best position given the current location.

After building all possible models, it had selected all the 80 variables in an order of multivariate importance. We chose the best 30 variables to move on to our fraud algorithm. Table 4.2.2 is a list of final variables in ranked order of importance.

Figure 4.2.1 forward selection process

Figure 4.2.2 ranked importance of final variables

Item	Variable
1	card_zip_total_7
2	card_zip_total_3
3	card_state_total_7
4	card_merch_total_14
5	card_merch_total_3
6	card_state_total_1
7	card_merch_total_30
8	card_zip_total_1
9	card_zip_max_14
10	card_zip_max_30
11	card_state_max_7
12	card_zip_max_7
13	card_state_max_14
14	cardnum_total_7
15	card_merch_max_14
16	card_zip_max_3
17	card_merch_max_7
18	card_zip_max_1
19	card_merch_max_1
20	card_state_max_1
21	cardnum_total_0
22	merchnum_state_total_1
23	merchnum_state_total_0
24	merchnum_zip_total_0
25	merchnum_zip_max_0
26	card_merch_max_0
27	cardnum_max_0
28	merchnum_zip_max_3
29	card_state_avg_14
30	merchnum_total_0

5. Fraud Model Algorithms

The best 30 variables in order of ranked importance are now ready for our model training and parameter tuning purposes. We compared different algorithms, including Logistic Regression, Random Forests, XGboost and Neural Network, and all the model results are in Figure 6.0.8 in the 6. Results section.

For each of these models, we tried different combinations of hyperparameters and train/test split, to acquire the best performance and robustness. 10-fold cross-validation was implemented to prevent overfitting. The reason why we chose to run each model 10 times is that our data set is small with a small number of frauds in it. Each model run even with the same hyperparameters can give very different results, because the algorithms start with a random set of initial internal fitting parameters. The cross validation was implemented in following steps:

- 1. Randomly shuffle the train set and split it into 10 groups.
- 2. For each group, we take it as the validate group. Then, the model is trained based on the remaining records.
- 3. Evaluate the scores in each of the 10 rounds, based on the FDR at 3% of train set, validation set and OOT data, making sure there is no significant variance.
- 4. Calculate the average evaluation score.

We also used a voting classifier which trains on an ensemble of numerous models and predicts an output (class) based on their highest probability of chosen class as the output.

5.1 Logistic Regression

Logistic Regression is a commonly used binary classification method to estimate the probability that a given entity belongs to a particular class. If the estimated probability is greater than the cutoff value(often 50%), then the classifier predicts the instance to belong to the positive class, labeled 1. If the estimated probability is less than the cutoff value, then the classifier predicts the instance to belong to the negative class, labeled 0. Thus the output belongs to either 1 or 0, making it a binary classifier. A graph that indicates the logics of the Logistic Regression is shown below.

Figure 5.1.1: Logistic Model and Linear Model Illustration

Similar to a linear regression model, a Logistic Regression model takes input features and outputs a weighted sum of them and a bias term. However, instead of directly outputting results, the Logistic Regression uses a sigmoid function to output a number between 0 and 1.

Due to the simplicity of logistic regression, we decided to use it as the baseline model, taking our best candidate variables as the independent variables and output the fraud label as the dependent variable. In our case, the instance is either fraudulent(1) or non-fraudulent(0).

The choice of hyperparameters we tuned in model training is shown in the following table.

Package: sklearn.linear_model.LogisticRegression

Table 5.1.1: Essential Parameters in Logistic Regression

Name	Description
penalty	Used to specify the norm used in the penalization.
С	Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization.
solver	Algorithm to use in the optimization problem.
max_iter	Maximum number of iterations taken for the solvers to converge.
l1_ratio	The Elastic-Net mixing parameter, with 0 <= 11_ratio <= 1. Only used when penalty='elasticnet'.

5.2 Random Forest

Random forest is an ensemble of decision trees. Random Forest is constructed by a multitude of decision trees and outputs the results selected by most trees in classification. Compared to decision trees, Random Forest is better in beating overfitting, but it is generally less accurate than Gradient boosting trees.

Random Forest is generally trained via the bagging algorithm, and it has all the hyperparameters of decision trees and all the hyperparameters of bagging classifiers. It introduces extra randomness because instead of searching for the best feature when splitting a node, it searches for the best feature among a random subset of features.

Figure 5.2.1 Diagram of a Random Forest

We used the following hyperparameters:

• Package: sklearn.ensemble.RandomForestClassifier

Table 5.2.1: Essential Parameters in Random Forest

Name	Description
n_estimators	The number of trees in the forest.
max_depth	The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.
max_features	The number of features to consider when looking for the best split
min_samples_leaf	The minimum number of samples required to be at a leaf node.
min_samples_split	The minimum number of samples required to split an internal node
criterion	The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. Note: this parameter is treespecific.

5.3 Boosted Tree

The gradient boosting uses an ensemble of weak learners such as decision trees to predict the outcome variable. Each subsequent tree in the series tries to capture the residual errors of the previous tree.

We used XGBoost, which is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework.

We tuned the below parameters (see Table 5.3.1):

• Package: xgboost

Table 5.3.1: Essential Parameters in Boosted Tree

Name	Description
n_estimators	Number of gradient boosted trees. Equivalent to
	number of boosting rounds.
max_depth	Maximum tree depth for base learners.
learning_rate	Boosting learning rate
eval_metric	Evaluation metrics for validation data, a default
	metric will be assigned according to objective

5.4 Neural Network

An Artificial neural network is a loose model of neurons in a human brain. It is based on a collection of nodes and each node in the network can transmit a signal to other nodes. A Neural Network has an input layer, hidden layers and an output layer. Each neuron in the structure gets a signal from the previous layer's nodes, applies a transfer function to it, and then sends a new signal to the following layer's nodes. In general, the signal received from the previous layer is a linear combination of the previous layer nodes' outputs.

For a binary classification problem in our case, we just need a single output node using the logistic activation function. It outputs a number between 0 and 1, which could be interpreted as the estimated probability of the positive class, the frauds , and the estimated probability of the negative class(non-frauds) is 1 minus this number.

Figure 5.4.1 <u>Diagram of a Neural Network</u>

The parameters used for Neural Network are as belows (see table 5.4.1).

• Package: sklearn.neural_network.MLPClassifier

Table 5.4.1: Essential Parameters in Neural Network

Name	Description
hidden_layer_sizes	The ith element represents the number of neurons in the ith hidden layer.
activation	Activation function for the hidden layer.
max_iter	Maximum number of iterations.
alpha	L2 penalty (regularization term) parameter.
solver	The solver for weight optimization.
verbose	Whether to print progress messages to stdout.
learning_rate	Learning rate schedule for weight updates.

6. Results

The logistic regression model achieved the lowest scores of the five classifiers used on all datasets. Using the best parameters of the top 20 variables, L1 penalty, C of 0.5, SAGA solver, the logistic regression model's scores were 0.676 on the training data, 0.756 on the test data, and 0.511 on the oot data.

Next, the best neural network parameters were the top 20 variables, 2 layers, verbosity of 3, 20 nodes, RELU activation function, and Adam solver. The neural network scored 0.808 on the training data, 0.862 on the test data, and 0.615 on the oot data.

XG boosted trees placed third using the top 20 variables, 500 estimators, maxdepth of 2, and a learning rate of 0.1. This model scored 0.933 on the training data, 0.916 on the test data, and 0.64 on the oot data.

As the highest performing single model, the random forest's best parameters were the top 20 variables, 500 estimators, no warm start, a verbosity of 4, True for the oob score parameter, and min sample leaves of 3. The random forest scored 1 on the training data, 0.916 on the test data, and 0.657 on the oot data.

Various ensemble models were tried in the form of voting classifiers: a combination of all four prior models, a combination of all three non-linear models, and several combinations of two of the nonlinear models. The voting classifier model consisting of the neural network and random forest was selected as the final model and achieved the highest performance of all models tested with scores of 1 on training. 0.899 on validation, and 0.674 on the oot data (see fig).

Performance statistics such as false positive rate, KS, and fraud detection rate for the top performing model are listed in Figure 6.0.1, Figure 6.0.2, and Figure 6.0.3 for the top 20th percentiles.

Figure 6.0.1: Population bins with performance statistics for the training data set used to train the final voting classifier model. Top 20 bins shown.

voting classifier frieder. Top 20 birts showin.												
	# Rec	ords	# @	ioods		# Bads	Fraud F	Rate				
	459	95	45	5527		468	0.010	02				
Training		Bin	Statisti	CS			Cu	mulative Stati	stics			
Population Bin %	# Records	# Goods	# Bads	% Goods	% Bads	Total # Records	Cumulative Good	Cumulative Ba	id % Good	% Bad (FDR)	KS	FPR
1	460	68	392	14.78	85.22	460	68	392	0.15	83.76	83.61	0.17
2	460	384	76	83.48	16.52	920	452	468	0.99	100.00	99.01	0.97
3	460	460	0	100.00	0.00	1380	912	468	2.00	100.00	98.00	1.95
4	460	460	0	100.00	0.00	1840	1372	468	3.01	100.00	96.99	2.93
5	460	460	0	100.00	0.00	2300	1832	468	4.02	100.00	95.98	3.91
6	460	460	0	100	0	2760	2292	468	5.03	100.00	94.97	4.90
7	460	460	0	100	0	3220	2752	468	6.04	100.00	93.96	5.88
8	460	460	0	100	0	3680	3212	468	7.06	100.00	92.94	6.86
9	460	460	0	100	0	4140	3672	468	8.07	100.00	91.93	7.85
10	460	460	0	100	0	4600	4132	468	9.08	100.00	90.92	8.83
11	460	460	0	100	0	5060	4592	468	10.09	100.00	89.91	9.81
12	460	460	0	100	0	5520	5052	468	11.10	100.00	88.90	10.79
13	460	460	0	100	0	5980	5512	468	12.11	100.00	87.89	11.78
14	460	460	0	100	0	6440	5972	468	13.12	100.00	86.88	12.76
15	460	460	0	100	0	6900	6432	468	14.13	100.00	85.87	13.74
16	460	460	0	100	0	7360	6892	468	15.14	100.00	84.86	14.73
17	459	459	0	100	0	7819	7351	468	16.15	100.00	83.85	15.71
18	460	460	0	100	0	8279	7811	468	17.16	100.00	82.84	16.69
19	460	460	0	100	0	8739	8271	468	18.17	100.00	81.83	17.67
20	460	460	0	100	0	9199	8731	468	19.18	100.00	80.82	18.66

Figure 6.0.2: Population bins with performance statistics for the test data set used to test the final voting classifier model. Top 20 bins shown.

	# Rec	ords	# G	oods		# Bads	Fraud Rat	te				
	197	13	19	490		223	0.0113					
Testing		Bin S	Statistic	cs			Cum	ulative Statist	ics			
Population Bin %	# Records	# Goods	# Bads	% Goods	% Bads	Total # Records	Cumulative Good Cu	mulative Bad	% Good	% Bad (FDR)	KS	FPR
1	198	46	152	23.23	76.77	198	46	152	0.24	68.16	67.93	0.30
2	197	165	32	83.76	16.24	395	211	184	1.08	82.51	81.43	1.15
3	197	190	7	96.45	3.55	592	401	191	2.06	85.65	83.59	2.10
4	197	193	4	97.97	2.03	789	594	195	3.05	87.44	84.40	3.05
5	197	197	0	100.00	0.00	986	791	195	4.06	87.44	83.39	4.06
6	197	196	1	99.49	0.51	1183	987	196	5.06	87.89	82.83	5.04
7	197	195	2	98.98	1.02	1380	1182	198	6.06	88.79	82.72	5.97
8	197	196	1	99.49	0.51	1577	1378	199	7.07	89.24	82.17	6.92
9	198	197	1	99.49	0.51	1775	1575	200	8.08	89.69	81.61	7.88
10	197	194	3	98.48	1.52	1972	1769	203	9.08	91.03	81.95	8.71
11	197	197	0	100.00	0.00	2169	1966	203	10.09	91.03	80.94	9.68
12	197	194	3	98.48	1.52	2366	2160	206	11.08	92.38	81.29	10.49
13	197	196	1	99.49	0.51	2563	2356	207	12.09	92.83	80.74	11.38
14	197	196	1	99.49	0.51	2760	2552	208	13.09	93.27	80.18	12.27
15	197	197	0	100.00	0.00	2957	2749	208	14.10	93.27	79.17	13.22
16	197	196	1	99.49	0.51	3154	2945	209	15.11	93.72	78.61	14.09
17	198	197	1	99.49	0.51	3352	3142	210	16.12	94.17	78.05	14.96
18	197	194	3	98.48	1.52	3549	3336	213	17.12	95.52	78.40	15.66
19	197	196	1	99.49	0.51	3746	3532	214	18.12	95.96	77.84	16.50
20	197	197	0	100.00	0.00	3943	3729	214	19.13	95.96	76.83	17.43

Figure 6.0.3: Population bins with performance statistics for the OOT variables using the final voting classifier model. Top 20 bins shown.

					SILICI I		ZU DILIS SHOW					
	# Rec			oods		# Bads	Fraud F					
	273	51	26	995		356	0.013	80				
OOT		Bin	Statistic	S			Cu	mulative Stati	stics			
Population Bin % #	# Records	# Goods	# Bads	% Goods	% Bads	Total # Records	Cumulative Good (Cumulative Ba	d % Good 9	% Bad (FDR)	KS	FPR
1	274	97	177	35.40	64.60	274	97	177	0.36	49.72	49.36	0.55
2	273	221	52	80.95	19.05	547	318	229	1.18	64.33	63.15	1.39
3	274	258	16	94.16	5.84	821	576	245	2.13	68.82	66.69	2.35
4	273	264	9	96.70	3.30	1094	840	254	3.11	71.35	68.24	3.31
5	274	266	8	97.08	2.92	1368	1106	262	4.10	73.60	69.50	4.22
6	273	267	6	97.80	2.20	1641	1373	268	5.09	75.28	70.19	5.12
7	274	270	4	98.54	1.46	1915	1643	272	6.09	76.40	70.32	6.04
8	273	261	12	95.60	4.40	2188	1904	284	7.05	79.78	72.72	6.70
9	274	267	7	97.45	2.55	2462	2171	291	8.04	81.74	73.70	7.46
10	273	271	2	99.27	0.73	2735	2442	293	9.05	82.30	73.26	8.33
11	274	270	4	98.54	1.46	3009	2712	297	10.05	83.43	73.38	9.13
12	273	270	3	98.90	1.10	3282	2982	300	11.05	84.27	73.22	9.94
13	274	273	1	99.64	0.36	3556	3255	301	12.06	84.55	72.49	10.81
14	273	272	1	99.63	0.37	3829	3527	302	13.07	84.83	71.77	11.68
15	274	273	1	99.64	0.36	4103	3800	303	14.08	85.11	71.04	12.54
16	273	270	3	98.90	1.10	4376	4070	306	15.08	85.96	70.88	13.30
17	274	272	2	99.27	0.73	4650	4342	308	16.08	86.52	70.43	14.10
18	273	270	3	98.90	1.10	4923	4612	311	17.08	87.36	70.27	14.83
19	274	270	4	98.54	1.46	5197	4882	315	18.08	88.48	70.40	15.50
20	273	270	3	98.90	1.10	5470	5152	318	19.09	89.33	70.24	16.20

Predictions were made for each record in the oot and were binned in percentiles based on the fraud probability. Based on the model's predictions, it was found that the 9th percentile bin was the best cutoff to maximize profits and fraud records caught (saving \$2000 each time) while minimizing false positives (costing \$50 everytime). Selecting the records in the 9th percentile and above results in fraud savings of \$473,450. You can see Figure 6.0.4 to Figure 6.0.8 below for reference.

Figure 6.0.4 shows the transactions per week with card number 5142199009. The top graph highlights that usage experiences a small spike before week 40 and a large spike around week 50. During the periods of week 34 onward, average fraud score (red trend line) increases with higher card usage. This indicates that unusually high numbers of transactions in a small period are associated with fraudulent activity.

Figure 6.0.5 shows the transactions per week with card number 5142199009. The top graph highlights that usage experiences a small spike before week 40 and a large spike around week 50. During the periods of week 34 onward, average fraud score (red trend line) increases with higher card usage. This indicates that unusually high numbers of transactions in a small period are associated with fraudulent activity.

Figure 6.0.6 shows the transactions per week with merchant number 8834000000000. The top graph highlights that the merchant experiences a large spike between weeks 30 and 40. During the periods of week 30-40, average fraud score (red trend line) increases with the large increase in transactions. Like card transactions, higher than usual numbers of transactions with merchants in a short period are indicative of fraudulent activity.

Figure 6.0.7: Savings from the fraud model are highest with a cutoff of 9% on the OOT records. \$2000 is saved with every fraudulent transaction discovered. \$50 is lost with every good transaction declared fraudulent.

Model				Paramet	ers		Avera	age FDR	at 3%
Logistic Regression	Variables	Per	nalty	С		Solver	Train	Validate	OOT
1	10	l	L2	1		LBFGS	0.676	0.753	0.499
2	15	l	L2	1		LBFGS	0.663	0.764	0.492
3	20	l	L2	1		LBFGS	0.669	0.784	0.507
4	25	l	L2	1		LBFGS	0.673	0.783	0.493
5	30	l	L2	1		LBFGS	0.684	0.785	0.492
6	20	l	L1	2		Liblinear	0.668	0.785	0.501
7	20	l	L1	0.5		SAGA	0.676	0.756	0.511
8	20	l	L2	0.1		SAGA	0.689	0.744	0.507
9	20	l	L1	0.5		Liblinear	0.674	0.760	0.497
10	20	Elast	ticNet	0.1		SAGA	0.674	0.765	0.509
Neural Network	Variables	Layers	Verbose	Nodes	Activation	Solver	Train	Validate	OOT
1	10	1	0	10	Relu	Adam	0.706	0.843	0.564
2	15	1	0	10	Relu	Adam	0.721	0.812	0.563
3	20	1	0	10	Relu	Adam	0.740	0.835	0.596
4	25	1	0	10	Relu	Adam	0.775	0.838	0.602
5	30	1	0	10	Relu	Adam	0.777	0.850	0.586
6	20	1	0	20	Tanh	SGD	0.663	0.743	0.551
7	20	2	2	15	Relu	Adam	0.798	0.847	0.610
8	20	2	3	20	Relu	Adam	0.808	0.862	0.615
9	20	2	4	30	Relu	Adam	0.815	0.846	0.605
10	20	3	3	15	Logistic	LBFGS	0.861	0.848	0.585

Figure 6.0.8: Model selection processing with scoring for various hyperparameters and variable counts. The best performing model was a voting classifier with a neural network and random forest.

Boosted Trees	Variables		Estimators	Classific	Max Depth	Learning Rate		Validate	ООТ
1	10		500		2	0.1	0.918		0.632
2	15		500		2	0.1	0.919	0.899	0.635
3	20		500		2	0.1	0.933		0.640
4	25		500		2	0.1	0.934	0.925	0.633
5	30		500		2	0.1	0.941	0.927	0.638
6	20		600		3	0.01	0.837	0.903	0.635
7	20		750		4	0.5	1.000	0.932	0.584
8	20		800		3	0.1	0.999	0.935	0.623
9	20		400		2	0.1	0.918	0.916	0.639
10	20		100		5	0.01	0.760	0.774	0.615
Random Forest	Variables	Estimators	Warm Start	Verbose	OOB Score	Min Samples Leaves	Train	Validate	ООТ
1	10	500	FALSE	0	FALSE	2	1	0.929	0.634
2	15	500	FALSE	0	FALSE	2	1	0.912	0.630
3	20	500	FALSE	0	FALSE	2	1	0.920	0.654
4	25	500	FALSE	0	FALSE	2	1	0.925	0.648
5	30	500	FALSE	0	FALSE	2	1	0.925	0.638
6	20	600	TRUE	1	FALSE	3	1	0.912	0.653
7	20	750	TRUE	2	TRUE	4	1	0.914	0.654
8	20	800	FALSE	3	TRUE	3	1	0.912	0.657
9	20	500	FALSE	4	TRUE	3	1	0.916	0.657
10	20	100	FALSE	3	FALSE	2	1	0.925	0.646
Voting Classifier	Variables			•	st from Abov	•	Train	Validate	
1	20	_	_			d Trees, Random Forest	1		0.653
2	20					indom Forest	1		0.664
3	20				s, Random Fo		1	0.926	0.654
4	20				s, Neural Net		0.912	0.903	0.647
5	20		Neur	al Netwo	rk, Random F	orest	1	0.899	0.674

7. Summary and Conclusions

To sum up, we used the credit card transaction data with labels of fraudulent and not fraudulent to create algorithms to predict fraudulent records. This transaction data contained details about the transactions such as date of occurrence, card details, merchant details, and the amount. These fields were cleaned by removing errors, eliminating uninteresting records, and filling missing values.

5 Consolidated variables, 384 amount variables, 48 frequency variables, 8 day-since variables, 48 velocity change variables, and 2 target encoded variables were created for a total of 495 new variables to aid in predicting fraudulent transactions. In time variables and out of time variables were created by separating the dataset by transactions before and after September 1st. In time was before September 1st and out of time was after September first. Next, using the in-time data, these new variables were run through a feature selection process, beginning with a univariate filter to provide a quick usefulness ranking. The top 80 ranked variables were then passed through a stepwise selection wrapper that isolated the top 30 most useful variables.

Varying amounts of these variables were then used with hyperparameter testing and 4 different algorithms to produce the highest performing fraud detection model on the out of time data. This model was then extensively analyzed and used to produce predictions for the out of time data. These predictions were binned by fraud probability percentiles. It is imperative that the fraud models not misclassify a harmfully large amount of clean transactions as fraudulent to prevent lost business opportunities. Annoyed clients may choose to discontinue contracts due to transactions being canceled, which is harmful for both clients and the host business. However, it is also important to block as many fraudulent transactions as possible to reduce losses. Clients will also leave if fraudulent transactions remain unchecked. This is why it is so important to use fraud detection algorithms to strike a balance between these two extremes and to choose the right percentile as a cutoff value. Using the highest savings percentile of 9, \$473,450 can be saved through the use of this fraud detection model.

Given more time, we would create more variables and further optimize our models to achieve higher OOT scores. We would also consult industry experts and produce more sophisticated code to streamline usage.

8. References

- Figure 5.1.1 https://www.javatpoint.com/linear-regression-vs-logistic-regression-in-machine-learning
- Figure 5.2.1

 By Venkata Jagannath https://community.tibco.com/wiki/random-forest-template-tibco-spotfirer-wiki-page
- Figure 5.4.1 https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o fig1 321259051

Appendix I. Data Quality Report

Appendix I-1. Data Set Description

• Name: Credit Card Transaction Data

• Purpose: Actual credit card purchases from a US government organization to look for credit card transaction fraud

• Source: US government organization

• Time period: January 1st, 2010 to December 31st, 2010

• Number of fields: 10

• Number of records: 96,753

Appendix I-2. Data Set Summary

• Numeric Fields

ltem	Column	# of	%	Unique	Mean	Standard	Minimum	Maximum	# of
	name	records	populated	values		deviation	value	value	zeros
1	Amount	96,753	100.00%	34,909	427.89	10006.14	0.01	3,102,045.53	0

Categorical Fields

Item	Column name	# of	% populated	Unique values	Most common field value
		records			
1	Recnum	96,753	100.00%	96,753	N/A
2	Cardnum	96,753	100.00%	1,645	5142148452
3	Date	96,753	100.00%	365	2/28/10
4	Merchnum	93,378	96.51%	13,091	930090121224
5	Merch description	96,753	100.00%	13,126	GSA-FSS-ADV
6	Merch state	95,558	98.76%	227	TN
7	Merch zip	92,097	95.19%	4,567	38118
8	Transtype	96,753	100.00%	4	Р
9	Fraud	96,753	100.00%	2	0

Appendix I-3. Data Field Exploration

Field 8.

Name: Recnum

• Description: unique identifier of each entry in the data

Field 9.

Name: Cardnum

• Description: unique identifier of the card that made each purchase

• Count plot: (top 15 categories)

Field 10.

Name: Date

• Description: the date when each transaction made

• Count plot: (top 20 categories)

Field 11.

Name: Merchnum

• Description: specific merchandise type number

• Count plot: (top 15 categories)

Field 12.

• Name: Merch description

- Description: description of the specific merchandise type
- Count plot: (top 15 categories)

Field 13.

Name: Merch state

• Description: the state of the merchandise

• Count plot: (top 15 categories)

Field 14.

Name: Merch zip

• Description: the zip code of the location of the merchandise

• Count plot: (top 15 categories)

Field 15.

• Name: Transtype

• Description: the type of the transaction

• Count plot:

Field 16.

• Name: Amount

• Description: the amount of the transaction

• Histogram: (data in the histogram excludes outliers > 9000 and is 99.91% populated)

Field 17.

Name: Fraud

• Description: indication of a fraud

• Count plot:

Appendix II. Table of All Candidate Variables

Variable Name	Variable Name	Variable Name	Variable Name	Variable Name
card_merch	card_zip	card_state	merchnum_zip	merchnum_state
Cardnum_day_sinc e	Cardnum_count_0	Cardnum_avg_0	Cardnum_max_0	Cardnum_med_0
Cardnum_total_0	Cardnum_actual/avg_ 0	Cardnum_actual/max_ 0	Cardnum_actual/med _0	Cardnum_actual/toal_ 0
Cardnum_count_1	Cardnum_avg_1	Cardnum_max_1	Cardnum_med_1	Cardnum_total_1
Cardnum_actual/avg_ 1	Cardnum_actual/max_ 1	Cardnum_actual/med _1	Cardnum_actual/toal_ 1	Cardnum_count_3
Cardnum_avg_3	Cardnum_max_3	Cardnum_med_3	Cardnum_total_3	Cardnum_actual/avg_ 3
Cardnum_actual/max _3	Cardnum_actual/med _3	Cardnum_actual/toal_ 3	Cardnum_count_7	Cardnum_avg_7
Cardnum_max_7	Cardnum_med_7	Cardnum_total_7	Cardnum_actual/avg_ 7	Cardnum_actual/max_ 7
Cardnum_actual/med _7	Cardnum_actual/toal_ 7	Cardnum_count_14	Cardnum_avg_14	Cardnum_max_14
Cardnum_med_14	Cardnum_total_14	Cardnum_actual/avg_ 14	Cardnum_actual/max_ 14	Cardnum_actual/med _14
Cardnum_actual/toal _14	Cardnum_count_30	Cardnum_avg_30	Cardnum_max_30	Cardnum_med_30
Cardnum_total_30	Cardnum_actual/avg_ 30	Cardnum_actual/max_ 30	Cardnum_actual/med _30	Cardnum_actual/toal_ 30
merchnum_day_since	merchnum_count_0	merchnum_avg_0	merchnum_max_0	merchnum_med_0
merchnum_total_0	merchnum_actual/avg _0	merchnum_actual/ma x_0	merchnum_actual/me d_0	merchnum_actual/toa l_0
merchnum_count_1	merchnum_avg_1	merchnum_max_1	merchnum_med_1	merchnum_total_1
merchnum_actual/av g_1	merchnum_actual/ma x_1	merchnum_actual/me d_1	merchnum_actual/toa l_1	merchnum_count_3
merchnum_avg_3	merchnum_max_3	merchnum_med_3	merchnum_total_3	merchnum_actual/avg _3
merchnum_actual/m ax_3	merchnum_actual/me d_3	merchnum_actual/toa l_3	merchnum_count_7	merchnum_avg_7
merchnum_max_7	merchnum_med_7	merchnum_total_7	merchnum_actual/avg _7	merchnum_actual/ma x_7

Variable Name	Variable Name	Variable Name	Variable Name	Variable Name
merchnum_actual/m ed_7	merchnum_actual/toa l_7	merchnum_count_14	merchnum_avg_14	merchnum_max_14
merchnum_med_14	merchnum_total_14	merchnum_actual/avg _14	merchnum_actual/ma x_14	merchnum_actual/me d_14
merchnum_actual/to al_14	merchnum_count_30	merchnum_avg_30	merchnum_max_30	merchnum_med_30
merchnum_total_30	merchnum_actual/avg _30	merchnum_actual/ma x_30	merchnum_actual/me d_30	merchnum_actual/toa l_30
merch_zip_day_since	merch_zip_count_0	merch_zip_avg_0	merch_zip_max_0	merch_zip_med_0
merch_zip_total_0	merch_zip_actual/avg _0	merch_zip_actual/max _0	merch_zip_actual/me d_0	merch_zip_actual/toal _0
merch_zip_count_1	merch_zip_avg_1	merch_zip_max_1	merch_zip_med_1	merch_zip_total_1
merch_zip_actual/avg _1	merch_zip_actual/max _1	merch_zip_actual/me d_1	merch_zip_actual/toal _1	merch_zip_count_3
merch_zip_avg_3	merch_zip_max_3	merch_zip_med_3	merch_zip_total_3	merch_zip_actual/avg _3
merch_zip_actual/ma x_3	merch_zip_actual/me d_3	merch_zip_actual/toal _3	merch_zip_count_7	merch_zip_avg_7
merch_zip_max_7	merch_zip_med_7	merch_zip_total_7	merch_zip_actual/avg _7	merch_zip_actual/max _7
merch_zip_actual/me d_7	merch_zip_actual/toal _7	merch_zip_count_14	merch_zip_avg_14	merch_zip_max_14
merch_zip_med_14	merch_zip_total_14	merch_zip_actual/avg _14	merch_zip_actual/max _14	merch_zip_actual/me d_14
merch_zip_actual/toa l_14	merch_zip_count_30	merch_zip_avg_30	merch_zip_max_30	merch_zip_med_30
merch_zip_total_30	merch_zip_actual/avg _30	merch_zip_actual/max _30	merch_zip_actual/me d_30	merch_zip_actual/toal _30
card_merch_day_sinc e	card_merch_count_0	card_merch_avg_0	card_merch_max_0	card_merch_med_0
card_merch_total_0	card_merch_actual/av g_0	card_merch_actual/m ax_0	card_merch_actual/m ed_0	card_merch_actual/to al_0
card_merch_count_1	card_merch_avg_1	card_merch_max_1	card_merch_med_1	card_merch_total_1
card_merch_actual/a vg_1	card_merch_actual/m ax_1	card_merch_actual/m ed_1	card_merch_actual/to al_1	card_merch_count_3
card_merch_avg_3	card_merch_max_3	card_merch_med_3	card_merch_total_3	card_merch_actual/av g_3

Variable Name	Variable Name	Variable Name	Variable Name	Variable Name
card_merch_actual/m ax_3	card_merch_actual/m ed_3	card_merch_actual/to al_3	card_merch_count_7	card_merch_avg_7
card_merch_max_7	card_merch_med_7	card_merch_total_7	card_merch_actual/av g_7	card_merch_actual/m ax_7
card_merch_actual/m ed_7	card_merch_actual/to al_7	card_merch_count_14	card_merch_avg_14	card_merch_max_14
card_merch_med_14	card_merch_total_14	card_merch_actual/av g_14	card_merch_actual/m ax_14	card_merch_actual/m ed_14
card_merch_actual/t oal_14	card_merch_count_30	card_merch_avg_30	card_merch_max_30	card_merch_med_30
card_merch_total_30	card_merch_actual/av g_30	card_merch_actual/m ax_30	card_merch_actual/m ed_30	card_merch_actual/to al_30
card_zip_day_since	card_zip_count_0	card_zip_avg_0	card_zip_max_0	card_zip_med_0
card_zip_total_0	card_zip_actual/avg_0	card_zip_actual/max_ 0	card_zip_actual/med_ 0	card_zip_actual/toal_ 0
card_zip_count_1	card_zip_avg_1	card_zip_max_1	card_zip_med_1	card_zip_total_1
card_zip_actual/avg_ 1	card_zip_actual/max_ 1	card_zip_actual/med_ 1	card_zip_actual/toal_ 1	card_zip_count_3
card_zip_avg_3	card_zip_max_3	card_zip_med_3	card_zip_total_3	card_zip_actual/avg_3
card_zip_actual/max_ 3	card_zip_actual/med_ 3	card_zip_actual/toal_ 3	card_zip_count_7	card_zip_avg_7
card_zip_max_7	card_zip_med_7	card_zip_total_7	card_zip_actual/avg_7	card_zip_actual/max_ 7
card_zip_actual/med _7	card_zip_actual/toal_ 7	card_zip_count_14	card_zip_avg_14	card_zip_max_14
card_zip_med_14	card_zip_total_14	card_zip_actual/avg_1 4	card_zip_actual/max_ 14	card_zip_actual/med_ 14
card_zip_actual/toal_ 14	card_zip_count_30	card_zip_avg_30	card_zip_max_30	card_zip_med_30
card_zip_total_30	card_zip_actual/avg_3 0	card_zip_actual/max_ 30	card_zip_actual/med_ 30	card_zip_actual/toal_ 30
card_state_day_since	card_state_count_0	card_state_avg_0	card_state_max_0	card_state_med_0
card_state_total_0	card_state_actual/avg _0	card_state_actual/ma x_0	card_state_actual/me d_0	card_state_actual/toal _0
card_state_count_1	card_state_avg_1	card_state_max_1	card_state_med_1	card_state_total_1

Variable Name	Variable Name	Variable Name	Variable Name	Variable Name	
card_state_actual/av	card_state_actual/ma	card_state_actual/me	card_state_actual/toal	card_state_count_3	
g_1	x_1	d_1	_1		
card_state_avg_3	card_state_max_3	card_state_med_3	card_state_total_3	card_state_actual/avg _3	
card_state_actual/ma x_3	card_state_actual/me d_3	card_state_actual/toal _3	card_state_count_7	card_state_avg_7	
card_state_max_7	card_state_med_7	card_state_total_7	card_state_actual/avg _7	card_state_actual/ma x_7	
card_state_actual/me d_7	card_state_actual/toal _7	card_state_count_14	card_state_avg_14	card_state_max_14	
card_state_med_14	card_state_total_14	card_state_actual/avg _14	card_state_actual/ma x_14	card_state_actual/me d_14	
card_state_actual/toa l_14	card_state_count_30	card_state_avg_30	card_state_max_30	card_state_med_30	
card_state_total_30	card_state_actual/avg	card_state_actual/ma	card_state_actual/me	card_state_actual/toal	
	_30	x_30	d_30	_30	
merchnum_zip_day_s	merchnum_zip_count	merchnum_zip_avg_0	merchnum_zip_max_	merchnum_zip_med_	
ince	_0		0	0	
merchnum_zip_total_	merchnum_zip_actual	merchnum_zip_actual	merchnum_zip_actual	merchnum_zip_actual	
0	/avg_0	/max_0	/med_0	/toal_0	
merchnum_zip_count	merchnum_zip_avg_1	merchnum_zip_max_	merchnum_zip_med_	merchnum_zip_total_	
_1		1	1	1	
merchnum_zip_actua	merchnum_zip_actual	merchnum_zip_actual	merchnum_zip_actual	merchnum_zip_count	
l/avg_1	/max_1	/med_1	/toal_1	_3	
merchnum_zip_avg_3	merchnum_zip_max_	merchnum_zip_med_	merchnum_zip_total_	merchnum_zip_actual	
	3	3	3	/avg_3	
merchnum_zip_actua	merchnum_zip_actual	merchnum_zip_actual	merchnum_zip_count	merchnum_zip_avg_7	
I/max_3	/med_3	/toal_3	_7		
merchnum_zip_max_	merchnum_zip_med_	merchnum_zip_total_	merchnum_zip_actual	merchnum_zip_actual	
7	7	7	/avg_7	/max_7	
merchnum_zip_actua	merchnum_zip_actual	merchnum_zip_count	merchnum_zip_avg_1	merchnum_zip_max_	
I/med_7	/toal_7	_14	4	14	
merchnum_zip_med_	merchnum_zip_total_	merchnum_zip_actual	merchnum_zip_actual	merchnum_zip_actual	
14	14	/avg_14	/max_14	/med_14	
merchnum_zip_actua	merchnum_zip_count	merchnum_zip_avg_3	merchnum_zip_max_	merchnum_zip_med_	
l/toal_14	_30	0	30	30	
merchnum_zip_total_	merchnum_zip_actual	merchnum_zip_actual	merchnum_zip_actual	merchnum_zip_actual	
30	/avg_30	/max_30	/med_30	/toal_30	
merchnum_state_day	merchnum_state_cou	merchnum_state_avg	merchnum_state_max	merchnum_state_me	
_since	nt_0	_0	_0	d_0	

Variable Name	Variable Name	Variable Name	Variable Name	Variable Name
merchnum_state_tot	merchnum_state_actu	merchnum_state_actu	merchnum_state_actu	merchnum_state_actu
al_0	al/avg_0	al/max_0	al/med_0	al/toal_0
merchnum_state_cou	merchnum_state_avg _1	merchnum_state_max	merchnum_state_me	merchnum_state_tota
nt_1		_1	d_1	l_1
merchnum_state_act	merchnum_state_actu	merchnum_state_actu	merchnum_state_actu	merchnum_state_cou
ual/avg_1	al/max_1	al/med_1	al/toal_1	nt_3
merchnum_state_avg	merchnum_state_max	merchnum_state_me	merchnum_state_tota	merchnum_state_actu
_3	_3	d_3	I_3	al/avg_3
merchnum_state_act	merchnum_state_actu	merchnum_state_actu	merchnum_state_cou	merchnum_state_avg
ual/max_3	al/med_3	al/toal_3	nt_7	_7
merchnum_state_ma	merchnum_state_me	merchnum_state_tota	merchnum_state_actu	merchnum_state_actu
x_7	d_7	I_7	al/avg_7	al/max_7
merchnum_state_act	merchnum_state_actu	merchnum_state_cou	merchnum_state_avg	merchnum_state_max
ual/med_7	al/toal_7	nt_14	_14	_14
merchnum_state_me	merchnum_state_tota	merchnum_state_actu	merchnum_state_actu	merchnum_state_actu
d_14	l_14	al/avg_14	al/max_14	al/med_14
merchnum_state_act	merchnum_state_cou	merchnum_state_avg	merchnum_state_max	merchnum_state_me
ual/toal_14	nt_30	_30	_30	d_30
merchnum_state_tot	merchnum_state_actu	merchnum_state_actu	merchnum_state_actu	merchnum_state_actu
al_30	al/avg_30	al/max_30	al/med_30	al/toal_30
Cardnum_count_0_b	Cardnum_count_0_by	Cardnum_count_0_by	Cardnum_count_1_by	Cardnum_count_1_by
y_7	_14	_30	_7	_14
Cardnum_count_1_b	merchnum_count_0_	merchnum_count_0_	merchnum_count_0_	merchnum_count_1_
y_30	by_7	by_14	by_30	by_7
merchnum_count_1_	merchnum_count_1_	merch_zip_count_0_b	merch_zip_count_0_b	merch_zip_count_0_b
by_14	by_30	y_7	y_14	y_30
merch_zip_count_1_	merch_zip_count_1_b	merch_zip_count_1_b	card_merch_count_0_	card_merch_count_0_
by_7	y_14	y_30	by_7	by_14
card_merch_count_0	card_merch_count_1_	card_merch_count_1_	card_merch_count_1_	card_zip_count_0_by_
_by_30	by_7	by_14	by_30	7
card_zip_count_0_by	card_zip_count_0_by_	card_zip_count_1_by_	card_zip_count_1_by_	card_zip_count_1_by_
_14	30	7	14	30
card_state_count_0_	card_state_count_0_b	card_state_count_0_b	card_state_count_1_b	card_state_count_1_b
by_7	y_14	y_30	y_7	y_14
card_state_count_1_	merchnum_zip_count	merchnum_zip_count	merchnum_zip_count	merchnum_zip_count
by_30	_0_by_7	_0_by_14	_0_by_30	_1_by_7
merchnum_zip_count	merchnum_zip_count	merchnum_state_cou	merchnum_state_cou	merchnum_state_cou
_1_by_14	_1_by_30	nt_0_by_7	nt_0_by_14	nt_0_by_30
merchnum_state_cou nt_1_by_7	merchnum_state_cou nt_1_by_14	merchnum_state_cou nt_1_by_30	day_fraud_prob	state_fraud_prob

Appendix III. Variable Statistics

Variable Name	Max	Min	Mean	Standard Deviation
card_zip_total_7	306633.41	0.01	710.2010873	4111.683788
card_zip_total_3	306633.41	0.01	641.8643164	4066.681882
card_state_total_7	306633.41	0.01	901.8398092	4245.027357
card_merch_total_14	306633.41	0.01	798.2842114	4184.495688
card_merch_total_3	306633.41	0.01	639.9634921	4065.295416
card_zip_total_1	306633.41	0.01	605.9346134	4022.737371
card_zip_max_30	47900	0.01	533.9894551	1086.531219
card_state_max_7	47900	0.01	540.1076961	1121.831453
card_state_max_14	47900	0.01	604.5318782	1190.44609
cardnum_total_7	312616.06	0.14	2384.036098	7158.500841
card_zip_max_3	47900	0.01	446.3101365	1018.056985
card_merch_max_7	47900	0.01	465.7542958	1028.76437
card_zip_max_1	47900	0.01	435.4758389	1011.950734
card_state_max_1	47900	0.01	457.4100003	1030.02531
cardnum_total_0	218301.83	0.01	741.6455649	3431.446131
merchnum_state_total_1	306633.41	0.01	1192.065963	4437.529402
merchnum_zip_total_0	217467.18	0.01	807.0714059	2881.862756
card_merch_max_0	47900	0.01	423.0262353	936.0123468
cardnum_max_0	47900	0.01	498.2058087	1030.95736
merchnum_zip_max_3	47900	0.01	706.487517	1319.096124