Two mark in DS game

Steven Clontz

May 17, 2018

Let
$$[f, F, \epsilon] = \{g \in C_p(X) : |g(x) - f(x)| < \epsilon \text{ for all } x \in F\}.$$

Game 1. Let G be the following game. During round n, player I chooses $\beta_n < \omega_1$, and player II chooses $F_n \in [\omega_1]^{<\aleph_0}$. II wins if whenever $\gamma < \beta_n$ for co-finitely many $n < \omega$, $\gamma \in F_n$ for infinitely many $n < \omega$.

For
$$f \in \omega^{\alpha}$$
, let $f^{\leftarrow}[n] = \{\beta < \alpha : f(\beta) < n\}$.

Proposition 2. II $\uparrow_{2\text{-mark}} G$.

Proof. Let $\{f_{\alpha} \in \omega^{\alpha} : \alpha < \omega_1\}$ be a collection of pairwise almost-compatible finite-to-one functions. Define a 2-mark σ for II by

$$\sigma(\langle \alpha \rangle, 0) = \emptyset$$

and

$$\sigma(\langle \alpha, \beta \rangle, n+1) \ = f_{\beta}^{\leftarrow}[n] \cup \{ \gamma < \alpha \cap \beta : f_{\alpha}(\gamma) \neq f_{\beta}(\gamma) \}.$$

Let ν be an attack by I against σ , and let $\gamma < \nu(n)$ for $N \leq n < \omega$. If $f_{\nu(n)}(\gamma) \neq f_{\nu(n+1)}(\gamma)$ for infinitely-many $N \leq n < \omega$, then $\gamma \in \sigma(\langle \nu(n), \nu(n+1) \rangle, n+1)$ for infinitely-many $N \leq n < \omega$. Otherwise $f_{\nu(n)}(\gamma) = f_{\nu(n+1)}(\gamma) = M$ for cofinitely-many $N \leq n < \omega$, so $\gamma \in \sigma(\langle \nu(n), \nu(n+1) \rangle, n+1)$ for cofinitely-many $N \leq n < \omega$. Therefore σ is a winning 2-mark.

Theorem 3. I
$$\uparrow_{2\text{-mark}} DS(C_p(\omega_1+1))$$

Proof. Let σ be a winning 2-mark for II in G.

Given a point $f \in C_p(\omega_1 + 1)$, let $\alpha_f < \omega_1$ satisfy $f(\beta) = f(\gamma)$ for all $\alpha_f \le \beta \le \gamma \le \omega_1$. Let $\tau(\emptyset, 0) = [\mathbf{0}, \{\omega_1\}, 4], \tau(\langle f \rangle, 1) = [\mathbf{0}; \sigma(\langle \alpha_f \rangle, 0) \cup \{\omega_1\}; 2]$, and

$$\tau(\langle f, g \rangle, n+2) = [\mathbf{0}; \sigma(\langle \alpha_f, \alpha_g \rangle, n+1) \cup \{\omega_1\}; 2^{-n}].$$

Let ν be a legal attack by II against σ . For $\beta \leq \omega_1$, if $\beta < \alpha_{\nu(n)}$ for co-finitely many $n < \omega$, then $\beta \in \sigma(\langle \alpha_{\nu(n)}, \alpha_{\nu(n+1)} \rangle)$ for infinitely-many $n < \omega$, and thus $0 \in \operatorname{cl}\{\nu(n)(\beta) : n < \omega\}$. Otherwise $\beta \geq \alpha_{\nu(n)}$ for infinitely many $n < \omega$, and thus $0 \in \operatorname{cl}\{\nu(n)(\beta) : n < \omega\}$ as well. Thus $\mathbf{0} \in \operatorname{cl}\{\nu(n) : n < \omega\}$.