KEY POINTS

Trees- an abstract model of a mierarchical

Structure.

- · A tree will have generic, accessor, query numods.
- One can use presider and portoider traversal.

NAME/DATE/SUBJECT

Trees Introduction.

NOTES

Portorder traversal

Preorder Traversal:

SUMMARY

KEY POINTS

- · Each node has at most two children.
 - ⇒ A proper binary tree will have exactly 2 unildren per node.
 - e.g. an thmetic or deution trees.

ADT Functions

All return position

Left(p) right(p) | null

Sibling(p) | failure

Traversal

- Inorder traversal means that a node is printed after the Left subtree and before the right subtree.
- Useful for printing anithmetic expressions use pothorder trave to evaluate the tree.

Linked Structure:

NAME/DATE/SUBJECT

Binary Trees

NOTES

Properties of proper binary trees:

Inorder traversal:

SUMMARY

KEY POINTS

You can store binary trees in an array by having f(p) store the node p.

f(p) = 2 · f(2) + 2

NAME/DATE/SUBJECT

Array based tree

NOTES

Binary tree in an array:

