CS 120: Intro to Algorithms and their Limitations

Problem Set 8

Due: November 29, 2023 11:59pm Denny Cao

Collaborators:

No. of late days used on previous psets: 3

No. of late days used after including this pset: 6

§1 Positive Monotone SAT

(a) *Proof.* Let $\Gamma = k$ -False PositiveMonotoneSAT.

We will show that Γ is $\mathtt{NP}_{\mathtt{search}}$ -complete by showing that

- 1. $\Gamma \in NP_{\text{search}}$:
 - Solutions are of polynomial size, as an assignment α is of n variables that correspond to the value associated for each of the n inputs.
 - Our verifier can check if at least k = n/2 variables are set to 0 in polynomial time O(n) by iterating over an assignment α and incrementing a variable count if the current literal is 0 and after iterating through α , checking if count $\leq k$. We can then check if α satisfies the input to Π , the positive monotone CNF formula φ (This uses the same verifier as for SAT, which from the Cook-Levin Theorem, is NP_{search}-complete) which will be polynomial time O(m) where m is the amount of clauses. Thus, it runs in polynomial time, as the total runtime is O(n+m).
- 2. $\Gamma \in \mathtt{NP}_{\mathtt{search}}$ -hard: Since every problem in $\mathtt{NP}_{\mathtt{search}}$ reduces to SAT, all we need to show is SAT $\leq_p \Gamma$ since reductions are transitive. We provide a reduction R:

SAT instance $\varphi \xrightarrow{\text{polytime } R} k$ -False PositiveMonotoneSAT instance φ'

We first describe the reduction R for a CNF formula $\varphi(x_0,\ldots,x_{n-1})$:

- Create new variables x'_0, \ldots, x'_{n-1} to represent the negation of the literals x_0, \ldots, x_{n-1} respectively.
- Form a new CNF formula φ' by replacing all negated literals $\neg x_i, i \in [n]$ with x_i' and adding a new clause $(x_i \lor x_i')$.
- Make an oracle call to Γ with instance φ' and k = n'/2 = n, where n' = 2n is the number of literals in φ' , as we keep the n literals from φ and add another literal corresponding to each.
- If the oracle returns a satisfying assignment α' to φ' , we transform α' into a satisfying assignment φ . If it returns \bot , we return \bot .

Runtime: We check that R runs in polynomial time. Creating n literals takes O(n) time. We then iterate over each clause of φ and replace at most n literals in each clause, and thus takes time O(nm). We then add n clauses for each x_i, x_i' pair which takes O(n) time. We assign the constant k a value n which takes O(1). We then make a single oracle call taking O(1) time. Thus, in total, the run time is O(n) + O(nm) + O(n) + O(1) + O(1) = O(n(1+m)) which is polynomial time.

Claim — If φ is satisfiable, then $\varphi' = R(\varphi)$ is satisfiable.

Proof of claim. As $R(\varphi)$ transforms the CNF formula by replacing negated literals $\neg x_i$ with x_i' , it follows that the assignment for φ would satisfy φ' .

 $R(\varphi)$ then adds n clauses of the form $(x_i \vee x_i')$. As k=n, there are at least n literals that are 0. There are 2n literals with each of the n clauses consisting of 2 literals, and thus each clause must have 1 literal that is 0 and the other that is 1, as if both are 0, then the clause would not be satisfied. If $x_i' = \alpha_i'$, then it follows that $x_i = \neg \alpha_i'$, and thus x_i' is in fact the negation of x_i . Thus, we have shown that the first m clauses of φ' are satisfied if φ , since x_i' is the negation of x_i , and the last n clauses are satisfied since one of x_i and x_i' is 1, and the other is 0.

Claim — If α' satisfies $R(\varphi)$, then $\alpha' \mid_{\varphi}$ also satisfies φ , where $\alpha' \mid_{\varphi}$ is the restriction of the assignment α' to the variables in φ , and $\alpha' \mid_{\varphi}$ can be obtained in polynomial time.

Proof of claim. Assume $\alpha' = (\alpha_0, \dots \alpha_{n-1}) \cup (\alpha'_0, \dots, \alpha'_{n-1})$, where α_i is the assignment for x_i and $\alpha'_i = \neg \alpha_i$ is the assignment for x'_i . Let m be the number of clauses in φ . Then, φ' will have m + n clauses, as $R(\varphi)$ adds n more clauses.

Consider all assignments for φ' $x_i = \alpha_i, x_i' = \neg \alpha_i, i \in [n]$. We guarantee that for all x_i, x_i' is the corresponding negation through the last n clauses of the form $(x_i \vee x_i')$ and assigning k = 2n/2 = n. In total, there are 2n literals, and this assignment of k ensures that, for each clause $(x_i \vee x_i')$, if $x_i = \alpha_i$, then $x_i' = \neg \alpha_i$, as we join the n clauses with \wedge and thus by the Pigeonhole Principle, at least one of the variables must be true since k = n, meaning at least n literals must be 0, and thus 1 literal in each clause will be 0 and the other will be 1.

As we have shown that $x_i = \neg x_i'$, it follows that, since the first m clauses are the same as the clauses of φ but the negations $\neg x_i$ replaced with x_i' , if we set $\alpha' \mid_{\varphi} = (a_0, \ldots, a_{n-1}), \varphi$ will be satisfied. The removal of $\alpha'_0, \ldots, \alpha'_{n-1}$ takes polynomial time, as desired.

This completes the proof that k-False PositiveMonotoneSAT is NP_{search}-complete.

(b) *Proof.* We first prove the following claim:

Claim — There exists an assignment α' satisfying the CNF formula consisting of exactly 3 variables as 0 if and only if there exists an assignment α satisfying the CNF formula consisting of at least 3 variables as 0.

Proof of claim. We will prove the claim by proving both directions:

 (\Longrightarrow) An assignment of 3 variables as 0 is an assignment of at least 3 variables as 0.

(\Leftarrow) Assume there is an assignment of x variables that are $0, x \geq 3$. As it is a CNF, if a clause is satisfied where one variable is 0, the other must be 1. Thus, the clause will remain satisfied if we replace the variable assigned to 0 with an assignment to 1. We can do this for all variables equal to 0 until we reach only 3 variables assigned to 0.

Using the claim, we can solve k-False PositiveMonotoneSAT with k=3 by exhaustive search. We iterate through all possible combinations of setting 3 variables to 0, leaving the rest as 1. There are $\binom{n}{3}$ possible combinations, and for each combination we take O(m) to verify if the assignment satisfies the CNF formula. Thus, the total runtime is

$$\binom{n}{3}O(m) = \frac{n!}{(n-3)!3!}O(m)$$

$$= \frac{n(n-1)(n-2)}{6}O(m)$$

$$= O(n^3)O(m)$$

$$= O(n^3m)$$

As $O(n^3m)$ is polynomial time, we have shown that, if we fix k=3, then k-False PositiveMonotoneSAT $\in P_{\text{search}}$, and the proof is complete.

(c) *Proof.* Let $\Gamma = k$ -False PositiveMonotone 2-SAT.

We will show that Γ is NP_{search} -complete by showing that:

- 1. $\Gamma \in NP_{search}$: We use the same verifier as from 1.a for k=False PositiveMonotoneSAT which will check if there are at least k assignments with 0 and satisfies the CNF formula in polynomial time.
- 2. $\Gamma \in \mathsf{NP}_{\mathsf{search}}$ -complete: Since every problem in $\mathsf{NP}_{\mathsf{search}}$ reduces to Independent Set, all we need to show is Independent Set $\leq_p \Gamma$ since reductions are transitive. We provide a reduction R:

Independent Set instance
$$\varphi \xrightarrow{\text{polytime } R} \Gamma$$
 instance φ'

We first describe the reduction R for $\varphi(G, k)$, where G is a graph and k is the size of the independent set:

- We form a CNF formula $\phi = \bigwedge_{v_i, v_j \in E} (x_i \vee x_j)$. This represents each edge. If we restrict the CNF to have k zeroes, then it will result in an independent set of size k, as, for k edges, only one of the two vertices are 0. We can thus create an instance $\varphi'(\phi, k)$.
- Make an oracle call to Γ on φ' . If the oracle returns a satisfying assignment, we select only k variables to set to 0 (if there are more than k) and then return an independent set $S = \{v_i \mid \alpha_i = 0\}$. If the oracle returns \bot , then return \bot .

Runtime: We check that R runs in polynomial time. To create the CNF, we iterate through all edges to create clauses, taking time O(|E|). Setting k takes O(1). Iterating through all vertices for post-processing takes time O(|V|), and thus in total, the runtime is O(|E| + |V|) which is polynomial time.

Remark. No time for proof of correctness:

Claim — If φ has a solution, then $\varphi' = R(\varphi)$ is satisfiable.

Claim — If α satisfies $R(\varphi)$, then $\alpha' \mid_{\varphi}$ is a solution for φ , where $\alpha \mid_{\varphi}$ is the conversion from α to an independent set, and $\alpha \mid_{\varphi}$ can be obtained in polynomial time.

This completes the proof that k-False PositiveMonotone 2SAT is NP_{search} -complete.

§2 Reductions and Complexity Classes

(a) Proof. If $\Pi \in P_{\text{search}}$, then there exists a program P that can solve Π in polynomial time. Let G be an oracle that can solve Γ . Then, we can solve Π by calling G once and then running P.

Correctness: The proof of correctness is that we call G but do not use the output, and then run P which solves Π .

Runtime: The oracle call takes O(1), and then P runs in polynomial time, and thus the total runtime is polynomial time.

Thus, if $\Pi \in P_{\text{search}}$, then $\Pi \leq_p \Gamma$, and the proof is complete.

- (b) Proof. Assume $NP_{\text{search}} \subseteq P_{\text{search}}$. Then, for all computational problems $\Pi \in NP_{\text{search}}$, it follows that $\Pi \in P_{\text{search}}$. To prove that, if $\Pi \in NP_{\text{search}}$ then $\Pi \in NP_{\text{search}}$ -complete, we must show that:
 - 1. $\Pi \in NP_{\text{search}}$: We know $\Pi \in NP_{\text{search}}$.
 - 2. $\Pi \in \operatorname{NP}_{\operatorname{search}}$ -hard: From the previous question, 2.1, we know that, if $\Pi \in \operatorname{P}_{\operatorname{search}}$, then $\Pi \leq_p \Gamma$. From our assumption, every problem Π in $\operatorname{NP}_{\operatorname{search}}$ is in $\operatorname{P}_{\operatorname{search}}$, and thus every problem in $\operatorname{NP}_{\operatorname{search}}$ can reduce to every other problem in $\operatorname{NP}_{\operatorname{search}}$, and thus all problems in $\operatorname{NP}_{\operatorname{search}}$ are $\operatorname{NP}_{\operatorname{search}}$ -hard.

This completes the proof that, if $NP_{search} \subseteq P_{search}$, then all problems in NP_{search} are NP_{search} -complete.

(c) Proof.

Reduction: Since Π reduces in polynomial time to Γ , there exists a reduction R solving Γ which runs in time $O(n^c)$ for some c on inputs of size n given an oracle that solves Γ .

Algorithm, by oracle replacement: We assume that $\Gamma \in \text{EXP}_{\text{search}}$, or for some constant d, there is an $O(2^{n^d})$ algorithm A solving Γ on inputs of length n. Then, we can create an algorithm that, given an input x to Π , runs R on x. Whenever R calls the oracle on a value y_i , we instead evaluate $A(y_i)$.

Overall runtime: Since R runs in time $O(n^c)$ and calls the oracle at most once per step, it makes at most $O(n^c)$ calls to the oracle. If each of those calls takes time at most B, then the overall runtime, including reduction and oracle calls, is

$$O(n^c + n^c \cdot B)$$

We now bound B for the oracle calls.

Since R starts with memory of size n, runs in time $O(n^c)$, and increases the size of memory by at most w bits per MALLOC call, the size of R's memory is at most $O(n + n^c w)$. As the initial word size w_0 is at most n + 1 and w increases by at

most 1 per MALLOC call, after $O(n^c)$ steps, we will have $w \leq O(n^c)$. Thus, the size of memory is always $O(n^c n^c) = O(n^{2c})$. As each oracle calls' input is a subset of the memory, each oracle call is on an input of size at most $O(n^{2c})$ as well.

With an input size of $O(n^{2c})$, the algorithm A which we replaced the oracle with runs in time $O(2^{(n^{2c})^d})$. We substitute this bound for B, giving a runtime bound of

$$O(n^c + n^c \cdot (2^{(n^{2c})^d})) = O(n^c 2^{(n^{2c})^d})$$

which is exponential, and the proof is complete.

§3 Variant of VectorSubsetSum

Proof. Let $\Pi = \texttt{VectorSubsetSum}$ and $\Gamma = \texttt{VectorSubsetSumVariant}$. We will show that Γ is $\texttt{NP}_{\texttt{search}}$ -complete by showing that

- 1. $\Gamma \in \mathtt{NP}_{\mathtt{search}}$:
 - Solutions are of polynomial size, as the size of the vector subset S is bounded by n since $S \subseteq [n]$.
 - Our verifier can check if a vector subset S by summing corresponding entries for each vector and checking if the sum is equal to the corresponding entry for t_0 . This takes O(nd) time, as we sum n entries for each dimension of the vectors, which is polynomial time.
- 2. $\Gamma \in \operatorname{NP}_{\operatorname{search}}$ -hard: Since VectorSubsetSum is $\operatorname{NP}_{\operatorname{search}}$ -complete, it follows that every problem in $\operatorname{NP}_{\operatorname{search}}$ reduces to VectorSubsetSum, and thus all we need to show is that VectorSubsetSum $\leq_p \Gamma$ since reductions are transitive. We provide a reduction R:

 $\texttt{VectorSubsetSum} \ instance} \ \varphi \xrightarrow{\text{polytime } R} \texttt{VectorSubsetSumVariant} \ instance} \ \varphi'$

We first describe the reduction R for instance φ with vectors $\vec{v}_0, \ldots, \vec{v}_{n-1}, \vec{t}$:

- Add an additional coordinate 0 for each vector $\vec{v_i}, i \in [n]$, extending the dimension of each vector from d to d+1 to form $\vec{v_i'}$. Thus, $\vec{v_i'}[d] = 0$.
- Find $m = \max(\vec{t}[0], \dots, \vec{t}[n-1])$ and create a new vector $\vec{t'}$ of length d+1 and set each entry to m.
- Add a new vector $\vec{v_n}$ by adding an additional coordinate to \vec{t} , $\vec{t}[d] = 0$ and then computing coordinate-wise subtraction $\vec{t'} \vec{t}$. Thus

$$\begin{aligned} \vec{v_n'}[0] &= \vec{t'}[0] - \vec{t}[0] \\ &\vdots \\ \vec{v_n'}[d] &= \vec{t'}[d] - \vec{t}[d] \end{aligned}$$

- Make an oracle call to Γ with instance φ' with $\vec{v'}_0, \dots, \vec{v'}_{n-1}, \vec{v'}_n, \vec{t'}$.
- If the oracle returns a subset S' to φ' , we transform S' into a subset for φ . If it returns \bot , we return \bot .

Runtime: We check that R runs in polynomial time. Adding an additional coordinate for vectors $\vec{v_i}$, $i \in [n]$ to form $\vec{v_i'}$ as well as adding an additional coordinate for \vec{t} to be used to form $\vec{v_n'}$ takes time O(n). Finding the maximum value of the entries for \vec{t} takes time O(d), and we create $\vec{t'}$ by setting all d+1 entries to m which takes O(d) time. Subtracting $\vec{t'}$ and \vec{t} to form $\vec{v_n'}$ takes time O(d). We make a single oracle call taking O(1) time. Thus, in total, the run time is O(n) + O(d) + O(d) + O(d) + O(d) + O(1) = O(n+d), which is polynomial time.

Claim — If φ has a solution, then $\varphi' = R(\varphi)$ has a solution.

Proof of claim. If φ has a solution, then if we set \vec{t} to a vector $\vec{t'}$ where all entries are the same, we add a vector $\vec{v_n}$ to \vec{t} , where the entries no longer need to be in $\{0,1\}$. Thus, if we add $\vec{v_n}$ to the solution set S, then it will satisfy φ' . We add an additional coordinate to the vectors, where for $\vec{v_i}$, $i \in [n]$ we add 0, and for $\vec{v_n'}$ as well as $\vec{t'}$ we add m. For this dimension, the sum will still remain m, as $0+\cdots+0+m=m$, which is the value of $\vec{v_n'}[d]$ and thus φ' still has a solution.

Claim — If φ' has a solution, then φ has a solution and we can transform valid solutions to φ' into valid solutions to φ in polynomial time.

Proof of claim. If φ' has a solution, then if we subtract $\vec{t'}$ by the vector whose last coordinate is equal to m and then remove the last coordinate, we can obtain a vector \vec{t} . We can then remove that vector from the solution set S' and then remove the last coordinate for all remaining vectors to obtain a solution set S for φ on \vec{t} .

The solution set S' has at most n+1 vectors, and thus we can bound the time it takes to find the vector $\vec{v_i'}$ where $\vec{v_i'}[d] = m$ by O(n). Subtracting this vector from $\vec{t'}$ will take O(d), and then removing the vector $\vec{v_i'}$ from S' as well as removing the last coordinate for all remaining vectors will take O(n), and thus the total runtime is O(n) + O(d) + O(n) = O(n+d), which is polynomial time.

This completes the proof that VectorSubsetSumVariant is NP_{search}-complete.