Es. 26 28162 32 64

	True	False	
$2^{\log n} + 5n^n = O(\sqrt{n} \cdot \log n)$	0	✓	
$n^2 \log n = O(\sqrt{n})$	0	✓	
$\sqrt{n} \cdot \log n = O(n \cdot \log n)$	◎ ✓	0	
$4n^2=O\left(n^{0.1} ight)$	0	✓	
$n^2 = O\left(\log n^2 ight)$	0	✓	
$2^n = O(n \cdot \log n)$	0	✓	
$n = O(\log n)$	0	✓	
$2^{3\log n} = O(n \cdot \log n)$	0	✓	
$5 = O(n \cdot \log n)$	◎ ✓	0	
$n^{0.01} = \Theta(\sqrt{n})$	0	✓	
$\log n^2 = O\left(\sqrt{n}\right)$	◎ ✓	0	
$n^2 = O\left(2^{\log n} ight)$	0	◎ ✓	

$$6\sqrt{n} = O(n\sqrt{n})$$

$$\sqrt{n} + \sqrt{n} = O(n \cdot \log n)$$

$$n \cdot \log n = O\left((\log n)^3\right)$$

$$2^n = O(\sqrt{n} \cdot \log n)$$

$$n\sqrt{n} = O\left(n^{3/2}\right)$$

$$8^{\log n} = O\left(n^{3/2}\right)$$

$$n \cdot \log n = O\left((\log n)^2\right)$$

$$n \cdot \log n = O\left((\log n)^2\right)$$

$$n^n = O(3^n)$$

$$7n \cdot \log n = \Theta(\log(n!))$$

$$\sum_{i=1}^n i = O(\sqrt{n} \cdot \log n)$$

$$O$$

Algorithm loop1(n)
$$s = 0$$
 $s = 1$ for $i = 1$ to n for $j = 1$ to $i * i$ for $j = 1$ to $n * i$ for $j = 1$ to n $s = s + 1$

Algorithm loop3(n) $i = 0$ Algorithm loop4(n) for $i = 0$ to n $j = 0$ while $s \le n$ $j = 0$ $j = 0$ while $j = 0$ $j = 0$ while $j = 0$ $j = 0$ while $j = 0$ $j = 0$

For each of the above algorithms, state its execution time as a function of n in Θ -notation.

	$\Theta\left(n^3\right)$	$\Theta\left((\log n)^2\right)$	$\Theta(\sqrt{n})$	$\Theta\left(n^2\right)$	$\Theta(n \log n)$	$\Theta(n\sqrt{n})$	$\Theta(\log n)$	$\Theta(n)$
loop4	0	0	0	0	0		0	0
loop3	0	0	• 🗸	0	0	0	0	0
loop2	0	0	0		0	0	0	0
loop1		0	0	0	0	0	0	0

Algorithm loop1(n)
$$s = 1$$
 for $i = n$ to 1 step -1 $s = s + 1$ while $j > 0$ $j = j - 1$

Algorithm loop3(n) $s = 0$ $i = n$ while $i > 0$ $j = 0$ while $i > 0$ for $j = 1$ to i if $i < j$ then $i = i + 1$ else $j = j + 1$ $i = 0$

For each of the above algorithms, state its execution time as a function of n in Θ -notation.

	$\Theta\left(n^3\right)$	$\Theta\left((\log n)^2\right)$	$\Theta(\sqrt{n})$	$\Theta\left(n^2\right)$	$\Theta(n \log n)$	$\Theta(n\sqrt{n})$	$\Theta(\log n)$	$\Theta(n)$
loop2	0	0	0		0	0	0	0
loop1	0	0	0	0	0	0	0	
loop3	0	0	0		0	0	0	0
loop4	0	0	0		0	0	0	0

$$\begin{array}{ll} \textbf{Algorithm} \ \text{loop1}(n) & \textbf{Algorithm} \ \text{loop2}(n) \\ s = 1 & i = 1 \\ \text{for } i = 1 \ \text{to } n & \text{while } i \leq n \\ s = s + 1 & i = 2 * i \\ \\ \textbf{Algorithm} \ \text{loop3}(n) & \textbf{Algorithm} \ \text{loop4}(n) \\ i = 1 & i = 1 \\ \text{while } i * i \leq n & \text{while } i \leq n \\ i = i + i & j = 0 \\ \text{while } j \leq i \\ j = j + 1 \\ i = 2 * i \end{array}$$

For each of the above algorithms, state its execution time as a function of n in Θ -notation.

	$\Theta\left(n^3\right)$	$\Theta\left((\log n)^2\right)$	$\Theta(\sqrt{n})$	$\Theta\left(n^2\right)$	$\Theta(n \log n)$	$\Theta(n\sqrt{n})$	$\Theta(\log n)$	$\Theta(n)$
loop4	0	0	0	0	0	0	0	
loop3	0	0	0	0	0	0		0
loop1	0	0	0	0	0	0	0	
loop2	0	0	0	0	0	0	•	0