```
function trap0
% Integrate f(x) over [a, b] using composite trapezoidal rule
% Compares computed and exact value
% f(x) given at end of file
a=0; b=3;
exact=0.72732289075;
% calculate integral using composite trapezoidal rule
nk=11;
interv=[10 20 40 80 160 320 640 1280 2560 5120 9714];
fprintf('\n Subinervals Composite Trapezoidal Error \n')
for k=1:nk
    n=interv(k);
    % calculate I_T
    I_T(k) = trap_v(a,b,n);
    err(k)=abs(exact-I_T(k));
    fprintf(' n = %i I_T = %10.8f E_T = %8.1e
 n', interv(k), I_T(k), err(k));
    pause
end
fprintf('\n')
% function for evaluating y_i
function y_i=trap_v(a,b,n)
xd=linspace(a,b,n+1);
h=xd(2)-xd(1);
sum=0.5*trap_a(a,xd(2),1);
for j=2:n
    sum=sum+trap_a(a,xd(j),j-1);
end
y_i=h*(sum+0.5*trap_a(a,xd(n+1),n));
% function for evaluating v_i
function v_i=trap_a(a,b,n)
xd=linspace(a,b,n+1);
h=xd(2)-xd(1);
sum=0.5*f(xd(1));
for j=2:n
    sum=sum+f(xd(j));
end
v_i=h*(sum+0.5*f(xd(n+1)));
% function a(t)
function a_i=f(x)
a_i=\sin(x^4);
```

Subinervals	Composite Trapezoidal	Error
n = 10	$I_T = 0.55638462$	$E_T = 1.7e-01$
n = 20	$I_T = 0.95153832$	$E_T = 2.2e-01$
n = 40	$I_T = 0.70335191$	$E_T = 2.4e-02$
n = 80	$I_T = 0.72733859$	$E_{T} = 1.6e-05$
n = 160	$I_T = 0.72729059$	$E_T = 3.2e-05$
n = 320	$I_T = 0.72731391$	$E_{T} = 9.0e-06$
n = 640	$I_T = 0.72732060$	$E_T = 2.3e-06$
n = 1280	$I_T = 0.72732232$	$E_T = 5.8e-07$
n = 2560	$I_T = 0.72732275$	$E_T = 1.4e-07$
n = 5120	$I_T = 0.72732285$	$E_T = 3.6e-08$
n = 9714	$I_T = 0.72732288$	$E_{T} = 1.0e-08$

Published with MATLAB® R2018a