Thomas Haslwanter

An Introduction to Statistics With Python

– Errata –

June 23, 2020

Springer

Python

p. 26, *IPython Tips #4*: Newer versions of Python no longer use Qt4, but rather Qt5. To switch between inline and external graphs, one now has to use %matplotlib inline and %matplotlib qt5.

p. 38, *Grouping* The printout of grouped.describe() is not formatted a bit different, and looks as follows:

	TV							
	count	mean	std	min	25%	50%	75%	max
Gender								
f	5.0	4.080000	0.769415	3.4	3.500	3.7	4.7	5.1
m	6.0	3.516667	0.926103	2.1	2.925	4.0	4.1	4.3

p. 42, p. 49, p. 246 Online location of GLM_data.zip This file has moved from (old) http://cdn.crcpress.com/downloads/C9500/GLM_data.zip to (new) https://www.crcpress.com/downloads/K32369/GLM.dobson.data.zip

Input from other formats

On p. 49, the file data.mat mentioned in 3.3.1 Matlab has been added to the folder ISP\Exercise_Solutions in the github repository.

And in the corresponding code segment, the last variable should be struct_string, not strunct_string.

Background

On p. 78, the beginning of a) Expected Value should be

The PDF also defines the *expected value* E[X] of a continuous distribution of X:

$$E[X] = \int_{-\infty}^{\infty} x p(x) \, \mathrm{d}x. \tag{0.1}$$

For discrete distributions, the integral over *x* is replaced by the sum over all possible values:

$$E[X] = \sum_{i} x_i P_i. \tag{0.2}$$

where x_i represents all possible values that the measured variable can have.

Distributions of One Variable

- On p. 101, only Eq. (6.11) is correct. Eq. (6.12) is wrong!
- On p. 108, the wrong figure has been inserted. Fig. 6.11 should be

Fig. 0.1 Demonstration of the Central Limit Theorem for a uniform distribution: Left) Histogram of uniformly distributed random data between 0 and 1. Center) Histogram of average over two data points.) Right) Histogram of average over 10 data points.

- On pp. 96, 104, 116, and 118 it may be also clearer to replace f(x) with p(x), since the functions addressed are probability distributions.
- On p. 137, care has to be taken with Fig. 7.10, explaining the ROC curve: here the blue curve (left) indicates the *patients/True positive/Population_2*. In contrast, in Figs. 7.5 and 7.6, the left curve indicates the *normals/Population_1*.

Tests of Means of Numerical Data

Comparison of Two Groups

• On p. 143, Eq.(8.1) should read

$$sd(\bar{x}_1 \pm \bar{x}_2) = \sqrt{\text{var}(\bar{x}_1) + \text{var}(\bar{x}_2)}$$

$$= \sqrt{\{sd(\bar{x}_1)\}^2 + \{sd(\bar{x}_2)\}^2}$$

$$= \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

where \bar{x}_i is the mean of the i^{th} sample, and $sd(\bar{x})$ indicates the *standard error of* the mean.

 On p. 155, the Summary: Selecting the Right Test for Comparing Groups should read

No. of Groups Compared	Independent Samples	Paired Samples
Groups of Nominal Data		
2 or more	Fisher's exact test or Chi-Square	McNemar's test
	test	
Groups of Ordinal Data		
1	Wilcoxon signed rank sum test	_
2	Mann-Whitney U test	Wilcoxon signed rank sum test
3 or more	Kruskal-Wallis test	Friedman test
Groups of Continuous Data		
1	one-sample t-test or Wilcoxon	_
	signed rank sum test	
2	Student's t-test or Mann-Whitney	Paired t-test or Wilcoxon signed-
	U test	rank sum test
3 or more	ANOVA or Kruskal-Wallis test	Repeated Measures ANOVA or
		Friedman test

Table 0.1 Typical tests for statistical problems, for nominal and ordinal data. Note that the tests for comparing one group to a fixed value are the same as comparing two groups with paired samples.

Hypothetical Examples

- 2 groups, nominal male/female, blond-hair/black-hair. E.g. "Are females more blond than males?"
- 2 groups, nominal, paired 2 labs, analysis of blood samples. E.g. "Does the blood analysis from Lab1 indicate more infections than the analysis from Lab2?"
- 1 group, ordinal Sequence of giant-planets. E.g. "In our solar system, are giant planets further out than average in the sequence of planets?"
- 2 groups, ordinal Jamaican/American, ranking 100m sprint. E.g. "Are Jamaican sprinters more successful than American sprinters?"
- 2 groups, ordinal, paired sprinters, before/after diet. E.g. "Does a chocolate diet make sprinters more successful?"
- 3 groups, ordinal single/married/divorces, ranking 100m sprint. E.g. "Does the marital status have an effect on the success of sprinters?"
- 3 groups, ordinal, paired sprinters, before/after diet. E.g. "Does a rice diet make Chinese sprinters more successful?"
- 1 group, continuous Average calory intake. E.g. "Do our children eat more than they should?"
- 2 groups, continuous male/female, IQ. E.g. "Are women more intelligent than men?"

- 2 groups, continuous, paired male, looking at sport cars. E.g. "Does looking at sports cars raise the male heart-beat?
- 3 groups, continuous Tyrolians, Viennese, Styrians; IQ. E.g. "Are Tyrolians smarter than people from other Austrian federal states?"
- 3 groups, continuous, paired Tyrolians, Viennese, Styrians; looking at mountains. E.g. "Does looking at mountains raise the heartbeat of Tyrolians more than those of other people?"
- 2-factor ANOVA male/female, looking at diamonds. E.g. "Does looking at diamonds raise the female heart-beat more than the male?
- On p. 157, The heading of the first exercise in 8.1 should be
 One sample t-test for the mean and Wilcoxon signed rank sum test

Tests on Categorical Data

- On p. 170, in Table 9.5, Subject 9 should be listed only once.
- On p. 171, the code line obs = [[a,b], [c, d]] is wrong. However, the ISP-Quantlet listed there is correct.

Linear Regression Models

On p. 191, Eqs. (11.18) and (11.19) have left away the offset, and should read

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i = \beta_0 + \mathbf{x}_i^{\mathrm{T}} \boldsymbol{\beta} + \varepsilon_i, \qquad i = 1, \dots, n,$$
 and

$$\mathbf{y} = \beta_0 + \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon},$$

And on p. 192, in the last paragraph of Section a), the *simple linear regression* is described by

```
"p = 1".
and not by
"i = 1 and p = 1"
```

Solutions: 6.3 Other Continuous Distributions

On p. 253, the calculation of the F-value is incorrect. The correct calculation should read

```
fval = np.var(apples1, ddof=1)/np.var(apples2, ddof=1)
```