Name: <u>Caleb McWhorter — Solutions</u>

MATH 307 Spring 2023

HW 14: Due 04/26

"Geometry is the science of correct reasoning on incorrect figures"

– George Pólya

Problem 1. (10pt) Consider the right triangles shown below. Find the value of d.

Solution.

$$\frac{d+7}{12} = \frac{7}{5}$$

$$5d + 35 = 84$$

$$5d = 49$$

$$d = \frac{49}{5} \approx 9.8$$

Problem 2. (10pt) For the triangles $\triangle ABC$ and $\triangle DEF$, shown below, assume that $\triangle ABC \sim \triangle DEF$. Find the missing sides of $\triangle DEF$.

Solution. Because $\Delta ABC \sim \Delta DEF$, there is a k such that if S is the length of a side of ΔABC , then s=kS is the length of a side of the corresponding side of ΔDEF . But then we know that 8k=4, so that $k=\frac{4}{8}=\frac{1}{2}$. But then we know that $|\overline{ED}|=20\cdot\frac{1}{2}=10$ and $|\overline{AC}|=26\cdot\frac{1}{2}=13$.

Problem 3. (10pt) Consider the triangles shown below.

- (a) Explain why $\Delta ADB \sim \Delta ABC$ and $\Delta BDC \sim \Delta ABC$.
- (b) Does (a) imply that $\Delta ADB \sim \Delta BDC$? Explain.
- (c) Find h.

Solution.

- (a) Notice that $\triangle ADB$ and $\triangle ABC$ share $\angle BAD$ and both are right triangles. Therefore, they share two angles so that they are similar. Similarly, both $\triangle BDC$ and $\triangle ABC$ share $\angle DCB$ and are right triangles. Therefore, they share two angles so that they are similar.
- (b) If two triangles are similar to some triangle, they are similar to each other. Therefore, $\Delta ADB\sim\Delta BDC.$
- (c) We have...

$$\frac{h}{4} = \frac{25}{h}$$

$$h^2 = 100$$

$$h = \sqrt{100}$$

$$h = 10$$