Rank-65611 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_3^3 + X_0^2 X_3 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(8) is 1227396173

General information

Number of lines	5
Number of points	81
Number of singular points	3
Number of Eckardt points	2
Number of double points	2
Number of single points	35
Number of points off lines	42
Number of Hesse planes	0
Number of axes	0
Type of points on lines	9^{5}
Type of lines on points	$3^2, 2^2, 1^{35}, 0^{42}$

Singular Points

The surface has 3 singular points:

$$0: P_1 = \mathbf{P}(0,1,0,0) = \mathbf{P}(0,1,0,0) 1: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{64} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{64} = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_2$$

$$\ell_2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4672} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4672} = \mathbf{Pl}(0, 0, 0, 0, 0, 1)_{649}$$

$$\ell_3 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{584} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{584} = \mathbf{Pl}(1, 0, 0, 1, 0, 0)_{18}$$

$$\ell_4 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{648} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{648} = \mathbf{Pl}(0, 1, 1, 0, 0, 0)_{10}$$

Rank of lines: (0, 64, 4672, 584, 648)

Rank of points on Klein quadric: (0, 2, 649, 18, 10)

Eckardt Points

The surface has 2 Eckardt points: $0: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0),$ $1: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0).$

Double Points

The surface has 2 Double points: The double points on the surface are:

$$P_0 = (1, 0, 0, 0) = \ell_0 \cap \ell_1$$

$$P_{75} = (1, 0, 0, 1) = \ell_3 \cap \ell_4$$

Single Points

The surface has 35 single points: The single points on the surface are:

 $0: P_5 = (1, 1, 0, 0)$ lies on line ℓ_0 1: $P_6 = (2, 1, 0, 0)$ lies on line ℓ_0 2: $P_7 = (3, 1, 0, 0)$ lies on line ℓ_0 3: $P_8 = (4, 1, 0, 0)$ lies on line ℓ_0 4: $P_9 = (5, 1, 0, 0)$ lies on line ℓ_0 5: $P_{10} = (6, 1, 0, 0)$ lies on line ℓ_0 6: $P_{11} = (7, 1, 0, 0)$ lies on line ℓ_0 7: $P_{12} = (1, 0, 1, 0)$ lies on line ℓ_1 8: $P_{13} = (2, 0, 1, 0)$ lies on line ℓ_1 9: $P_{14} = (3,0,1,0)$ lies on line ℓ_1 10: $P_{15} = (4, 0, 1, 0)$ lies on line ℓ_1 11: $P_{16} = (5, 0, 1, 0)$ lies on line ℓ_1 12: $P_{17} = (6,0,1,0)$ lies on line ℓ_1 13: $P_{18} = (7, 0, 1, 0)$ lies on line ℓ_1 14: $P_{19} = (0, 1, 1, 0)$ lies on line ℓ_2 15: $P_{27} = (0, 2, 1, 0)$ lies on line ℓ_2 16: $P_{35} = (0, 3, 1, 0)$ lies on line ℓ_2 17: $P_{43} = (0, 4, 1, 0)$ lies on line ℓ_2

18: $P_{51} = (0, 5, 1, 0)$ lies on line ℓ_2 19: $P_{59} = (0, 6, 1, 0)$ lies on line ℓ_2 20: $P_{67} = (0, 7, 1, 0)$ lies on line ℓ_2 21: $P_{83} = (1, 1, 0, 1)$ lies on line ℓ_3 22: $P_{91} = (1, 2, 0, 1)$ lies on line ℓ_3 23: $P_{99} = (1, 3, 0, 1)$ lies on line ℓ_3 24: $P_{107} = (1, 4, 0, 1)$ lies on line ℓ_3 25: $P_{115} = (1, 5, 0, 1)$ lies on line ℓ_3 26: $P_{123} = (1, 6, 0, 1)$ lies on line ℓ_3 27: $P_{131} = (1,7,0,1)$ lies on line ℓ_3 28: $P_{139} = (1,0,1,1)$ lies on line ℓ_4 29: $P_{202} = (1,0,2,1)$ lies on line ℓ_4 $30: P_{266} = (1,0,3,1)$ lies on line ℓ_4 31: $P_{330} = (1,0,4,1)$ lies on line ℓ_4 $32: P_{394} = (1,0,5,1)$ lies on line ℓ_4 33: $P_{458} = (1,0,6,1)$ lies on line ℓ_4 $34: P_{522} = (1,0,7,1)$ lies on line ℓ_4

The single points on the surface are:

Points on surface but on no line

The surface has 42 points not on any line: The points on the surface but not on lines are:

$0: P_{158} = (5, 2, 1, 1)$	$22: P_{382} = (5, 6, 4, 1)$
$1: P_{160} = (7, 2, 1, 1)$	$23: P_{384} = (7, 6, 4, 1)$
$2: P_{171} = (2, 4, 1, 1)$	$24: P_{412} = (3, 2, 5, 1)$
$3: P_{175} = (6, 4, 1, 1)$	$25: P_{413} = (4, 2, 5, 1)$
$4: P_{196} = (3,7,1,1)$	$26: P_{422} = (5, 3, 5, 1)$
$5: P_{197} = (4,7,1,1)$	$27: P_{424} = (7, 3, 5, 1)$
$6: P_{214} = (5, 1, 2, 1)$	$28: P_{443} = (2,6,5,1)$
$7: P_{216} = (7, 1, 2, 1)$	$29: P_{447} = (6, 6, 5, 1)$
$8: P_{219} = (2, 2, 2, 1)$	$30: P_{484} = (3, 3, 6, 1)$
$9: P_{223} = (6, 2, 2, 1)$	$31: P_{485} = (4, 3, 6, 1)$
$10: P_{244} = (3, 5, 2, 1)$	$32: P_{494} = (5, 4, 6, 1)$
$11: P_{245} = (4, 5, 2, 1)$	$33: P_{496} = (7, 4, 6, 1)$
$12: P_{310} = (5, 5, 3, 1)$	$34: P_{499} = (2, 5, 6, 1)$
$13: P_{312} = (7, 5, 3, 1)$	$35: P_{503} = (6, 5, 6, 1)$
$14: P_{316} = (3, 6, 3, 1)$	$36: P_{532} = (3, 1, 7, 1)$
15: $P_{317} = (4, 6, 3, 1)$	$37: P_{533} = (4, 1, 7, 1)$
$16: P_{323} = (2,7,3,1)$	$38: P_{547} = (2, 3, 7, 1)$
$17: P_{327} = (6,7,3,1)$	$39: P_{551} = (6, 3, 7, 1)$
$18: P_{339} = (2, 1, 4, 1)$	$40: P_{582} = (5, 7, 7, 1)$
$19: P_{343} = (6, 1, 4, 1)$	$41: P_{584} = (7,7,7,1)$
$20: P_{364} = (3, 4, 4, 1)$	001 (, , , , ,
$21: P_{365} = (4, 4, 4, 1)$	
,	

Line Intersection Graph

	01234
0	01110
1	10101
2	11011
3	10101
4	$\begin{array}{c} 0\ 1\ 2\ 3\ 4 \\ 0\ 1\ 1\ 1\ 0 \\ 1\ 0\ 1\ 0\ 1 \\ 1\ 1\ 0\ 1\ 0\ 1 \\ 0\ 1\ 1\ 1\ 0\ 1 \\ \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_0	P_1	P_1

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_4
in point	P_0	P_2	P_2

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4
in point	P_1	P_2	P_1	P_2

Line 3 intersects

Line	ℓ_0	ℓ_2	ℓ_4
in point	P_1	P_1	P_{75}

Line 4 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_2	P_2	P_{75}

The surface has 81 points: The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$28: P_{107} = (1, 4, 0, 1)$	$56: P_{364} = (3, 4, 4, 1)$
$1: P_1 = (0, 1, 0, 0)$	$29: P_{115} = (1, 5, 0, 1)$	$57: P_{365} = (4, 4, 4, 1)$
$2: P_2 = (0,0,1,0)$	$30: P_{123} = (1,6,0,1)$	$58: P_{382} = (5, 6, 4, 1)$
$3: P_5 = (1, 1, 0, 0)$	$31: P_{131} = (1,7,0,1)$	$59: P_{384} = (7, 6, 4, 1)$
$4: P_6 = (2, 1, 0, 0)$	$32: P_{139} = (1,0,1,1)$	$60: P_{394} = (1, 0, 5, 1)$
$5: P_7 = (3, 1, 0, 0)$	$33: P_{158} = (5, 2, 1, 1)$	$61: P_{412} = (3, 2, 5, 1)$
$6: P_8 = (4, 1, 0, 0)$	$34: P_{160} = (7, 2, 1, 1)$	$62: P_{413} = (4, 2, 5, 1)$
$7: P_9 = (5, 1, 0, 0)$	$35: P_{171} = (2, 4, 1, 1)$	$63: P_{422} = (5, 3, 5, 1)$
$8: P_{10} = (6, 1, 0, 0)$	$36: P_{175} = (6, 4, 1, 1)$	$64: P_{424} = (7, 3, 5, 1)$
$9: P_{11} = (7, 1, 0, 0)$	$37: P_{196} = (3, 7, 1, 1)$	$65: P_{443} = (2, 6, 5, 1)$
$10: P_{12} = (1, 0, 1, 0)$	$38: P_{197} = (4,7,1,1)$	$66: P_{447} = (6, 6, 5, 1)$
$11: P_{13} = (2, 0, 1, 0)$	$39: P_{202} = (1,0,2,1)$	$67: P_{458} = (1,0,6,1)$
$12: P_{14} = (3, 0, 1, 0)$	$40: P_{214} = (5, 1, 2, 1)$	$68: P_{484} = (3, 3, 6, 1)$
$13: P_{15} = (4, 0, 1, 0)$	$41: P_{216} = (7, 1, 2, 1)$	$69: P_{485} = (4, 3, 6, 1)$
$14: P_{16} = (5, 0, 1, 0)$	$42: P_{219} = (2, 2, 2, 1)$	$70: P_{494} = (5, 4, 6, 1)$
$15: P_{17} = (6, 0, 1, 0)$	$43: P_{223} = (6, 2, 2, 1)$	$71: P_{496} = (7, 4, 6, 1)$
$16: P_{18} = (7, 0, 1, 0)$	$44: P_{244} = (3, 5, 2, 1)$	$72: P_{499} = (2, 5, 6, 1)$
$17: P_{19} = (0, 1, 1, 0)$	$45: P_{245} = (4, 5, 2, 1)$	$73: P_{503} = (6, 5, 6, 1)$
$18: P_{27} = (0, 2, 1, 0)$	$46: P_{266} = (1, 0, 3, 1)$	$74: P_{522} = (1, 0, 7, 1)$
$19: P_{35} = (0, 3, 1, 0)$	$47: P_{310} = (5, 5, 3, 1)$	$75: P_{532} = (3, 1, 7, 1)$
$20: P_{43} = (0, 4, 1, 0)$	$48: P_{312} = (7, 5, 3, 1)$	$76: P_{533} = (4, 1, 7, 1)$
$21: P_{51} = (0, 5, 1, 0)$	$49: P_{316} = (3, 6, 3, 1)$	$77: P_{547} = (2, 3, 7, 1)$
$22: P_{59} = (0, 6, 1, 0)$	$50: P_{317} = (4, 6, 3, 1)$	$78: P_{551} = (6, 3, 7, 1)$
23: $P_{67} = (0, 7, 1, 0)$	$51: P_{323} = (2,7,3,1)$	$79: P_{582} = (5, 7, 7, 1)$
$24: P_{75} = (1, 0, 0, 1)$	$52: P_{327} = (6, 7, 3, 1)$	$80: P_{584} = (7,7,7,1)$
$25: P_{83} = (1, 1, 0, 1)$	$53: P_{330} = (1, 0, 4, 1)$	001 (, , , ,)
$26: P_{91} = (1, 2, 0, 1)$	$54: P_{339} = (2, 1, 4, 1)$	
$27: P_{99} = (1, 3, 0, 1)$	$55: P_{343} = (6, 1, 4, 1)$	