Metoda Programării Dinamice

Exemplu

Se consideră vectorul $w = (w_1, ..., w_n)$.

Să se determine un subșir al lui w care nu conține elemente consecutive în w și are suma elementelor maximă

Exemplu

Pentru

$$w = (1, 4, 7, 5)$$

soluția este

(4, 5)

Problemă echivalentă

Se consideră un graf de tip lanţ cu $V = \{v_1, ..., v_n\}$. Vârfurile grafului au asociate ponderile $w_1, ...,$ respectiv w_n . Să se determine o mulţime independentă de vârfuri (neadiacente) de pondere maximă

ponderea unei mulțimi de vârfuri = suma ponderilor vârfurilor

 Aplicații - probleme de alocare de resurse cu evitarea interferenței (indicată prin muchii -> graf de conflicte)

Ponderea asociată vârfurilor poate reprezenta cantitatea de date pe care stația trebuie să o transmită

Problemă - transmiterea cantității maxime de date fără interferențe

Maximum Weighted Independent Set

- Maximum Weighted Independent Set
 - pentru graful lanţ curs O(|V|)
 - pentru arbori seminar/laborator O(|V|)
 - pentru grafuri de intervale (asociate intersecției intervalelor)
 - = problema spectacolelor (planificării activităților) cu ponderi
 - tema laborator O(|V| log(|V|))
 - nu se cunosc algoritmi polinomiali în cazul general (NP-completitudine)

Abordare cu metoda Greedy

La un pas – este adăugat în soluție vârful de pondere maximă neadiacent cu cele deja selectate

Soluția: $\{v_3, v_1\}$ cu ponderile $\{7, 1\}$ – nu este optimă

Abordare cu metoda Divide et Impera

Incorect - reuniunea soluțiilor subproblemelor nu este o soluție posibilă (corectă) pentru problema inițială

Căutarea exhaustivă a soluției optime

Generarea tuturor soluțiilor posibile și determinarea celei optime - algoritm exponențial

Problema nu se poate rezolva folosind metode deja studiate

Analizăm structura unei soluții optime, evidențiind un element (primul/ultimul) al acesteia, pentru a determina subprobleme utile și relații de recurență

Fie $S \subseteq V = \{v_1, ..., v_n\}$ o soluție optimă

• Dacă $v_n \in S \Rightarrow S-\{v_n\}$ este soluție optimă pentru

$$G - \{v_n, v_{n-1}\}$$

Fie $S \subseteq V = \{v_1, ..., v_n\}$ o soluție optimă

- Dacă $v_n \in S \Rightarrow S-\{v_n\}$ este soluție optimă pentru $G-\{v_n,\,v_{n-1}\}$
- Dacă $v_n \notin S$ ⇒ S este soluție optimă pentru $G \{v_n\}$

Fie $S \subseteq V = \{v_1, ..., v_n\}$ o soluție optimă

- Dacă $v_n \in S$ ⇒ S-{ v_n } este soluție optimă pentru $G-\{v_n, v_{n-1}\}$
- Dacă $v_n \notin S \Rightarrow S$ este soluție optimă pentru $G \{v_n\}$
- Dacă am ști deja soluțiile pentru grafurile $G-\{v_n, v_{n-1}\}$ și $G-\{v_n\}$, am putea determina S alegând dintre cele două situații cazul în care se obține soluția optimă

Recurență:

- Notăm S(i) = ponderea maximă a unei mulțimi independete în graful indus de vârfurile {v₁,..., v_i}
- $S(n) = \max\{ S(n-2) + w_n, S(n-1) \}$
- \circ S(1) = W₁, S(0) = 0

Subproblemele se repetă - algoritm exponențial

Putem evita rezolvarea unei subprobleme de mai multe ori?

Recurență:

- $S(n) = max\{ S(n-2) + w_n, S(n-1) \}$
- Memorăm într-un vector rezultatele subproblemelor deja rezolvate (memoizare) ⇒ o subproblemă va fi rezolvată o singură dată - algoritm O(n)

Variantă- implementare iterativă a recurenței (bottom-up)

Implementare recursivă – memoizare

```
void sol(int n){
   if(n==0) {s[0]=0;return;}
   if(n==1) {s[1]=w[1]; return;}
   if (s[n-1]==0) //nerezolvata
          sol(n-1);
   if (s[n-2]==0) //nerezolvata
          sol(n-2);
   s[n] = max(s[n-2]+w[n],s[n-1]);
for (int i=0; i <= n; i++)
     s[i]=0; //initial-nerezolvate pt n>1
```

Implementare iterativă

```
int SolNerec(int n) {
         s[0] = 0;
         s[1] = w[1];
         for(int i=2;i<=n;i++)</pre>
                 s[i] = max(s[i-2]+w[i],s[i-1]);
         return s[n];
 int solNerecFaraVector(int n) { //similar Fibonacci
          if(n==0) return 0;
          int i,s0,s1,si;
          s0 = 0; s1 = w[1];
          for(i=2;i<=n;i++){
                  si = max(s0+w[i],s1);
                  s0 = s1; s1 = si;
          }
          return s1;
```


Cum putem determina și o submulțime optimă, nu doar ponderea?

Cum putem determina și o submulțime optimă, nu doar ponderea?

 Din relația de recurență putem deduce ce vârfuri au fost selectate în soluție

$$s[n] = max{ s[n-2]+w[n], s[n-1]}$$

•

•

Cum putem determina și o submulțime optimă, nu doar ponderea?

 Din relația de recurență putem deduce ce vârfuri au fost selectate în soluție

$$s[n] = max{ s[n-2]+w[n], s[n-1]}$$

- Dacă s[n] = s[n-2]+w[n], vârful n se adaugă în soluție și problema se reduce la primele n-2 vârfuri
- Dacă s[n] = s[n-1], nu se adaugă nici un vârf la soluție și problema se reduce la primele n-1 vârfuri

```
void afisRec(int s[],int n) {
    if(n==0) return;
    if(n==1){
           cout<<n<<" de pondere "<<w[n]<<endl;</pre>
           return;
    if(s[n] == s[n-2] + w[n]) {
          afisRec(s,n-2);
            cout<< n<<" de pondere "<w[n];</pre>
    else
          afisRec(s,n-1);
```


TEMĂ – rezolvați problema pentru un arbore oarecare O(n)

Concluzii

- Greedy nu furnizează mereu soluția optimă
- > Alte exemple:
 - Problema rucsacului, cazul discret
 - Problema monedelor, cazul general

Divide et Impera - ineficientă dacă subproblemele se repetă

Exemplu - Calculăm numărul Fibonacci F (n)

$$F(n) = F(n-1)+F(n-2)$$

 $F(0) = F(1) = 1$

F(4)

Exemplu - Calculăm numărul Fibonacci F (n)

$$F(n) = F(n-1)+F(n-2)$$

 $F(0) = F(1) = 1$

F(4)

Soluţii

- reducere la subprobleme utile + relaţii de recurenţă
- rezolvarea eficientă a subproblemelor
 - recursiv cu memoizare (salvarea rezultatelor subproblemelor deja rezolvate)
 - algoritmi iterativi buttom-up

Metoda programării dinamice