Classification of U.S. Supreme Court Opinions

Using various NLP techniques.

INTRODUCTION

- Thousands of court opinions are published each year.
- They have to be manually analyzed and categorized to facilitate research.
- If we can automate this process it can dramatically lower costs.

PROCESS

- Full text of some 8000 Supreme Court was gathered
- Labels were added to the opinions which classified into categories.
 - o 13 Categories
- We then tried to see if various NLP Algorithms could accurately classify opinions into the right category
- We also tried to use unsupervised learning to recreate these topics.

In order to minimize noise and improve model performance, we narrowed down the opinions to build our classifier.

We only kept opinions whose lengths were;

- greater than 5000 characters;
 - Alot of these are per curiam dismissals and affirmations of lower court decisions with no substance.
- less than 85000 characters;
 - This leaves out unusually long opinions

We also filtered out dissents, since they discuss the same subject matter, so seem redundant for the purposes of classification and may add noise.

This leaves us with 6,329 opinions to use for training and testing our model.

CLASSIFICATION PERFORMANCE

Description F1_	score 🗸 Accui	racy Model	Vectorizer	stopwords
SVC/TFIDF and english st	0.801	0.806 LinearSVC	TfidfVectorizer	english
Sup Vec with TFIDF	0.797	0.804 LinearSVC	TfidfVectorizer	
SVC/TFIDF combined sto	0.795	0.801 LinearSVC	TfidfVectorizer	English + Most Comr
SVC/TFIDF and common	0.794	0.802 LinearSVC	TfidfVectorizer	Most Common Word
Base SupVector	0.770	0.773 LinearSVC	CountVectorizer	
Base MNB	0.757	0.766 MultinomialN	B CountVectorizer	
		RandomFores	tClassifi	
Base Random Forest	0.615	0.665 er	CountVectorizer	
		RandomFores	tClassifi	
base KNN	0.610	0.661 er	CountVectorizer	
Glove	0.589	0.404 LinearSVC	customW2V clas	SS
Neural Net	0.580	NeuralNet	padded_sequen	ce

RECOMMENDATIONS & FUTURE WORK

More Training Data

- cases from other courts and jurisdictions

<u>Use advanced pre-trained models</u>

- BERT

Predict other targets.

 Judges Ideological leanings and voting tendencies.

THANKS!

Do you have any questions?

umarkhan314@outlook.com texasanalytics.net

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik.