1

3

4

CLAIMS

We claim:

- 1. A method for post-etch treatment of a semiconductor structure following a dielectric etch process, wherein said semiconductor structure includes an overlying dielectric layer into which openings have been etched, wherein the method comprises exposing said semiconductor structure to a plasma generated from a source gas comprising oxygen, a nitrogen-comprising gas, and a reactive gas comprising hydrogen, carbon, and fluorine.
 - The method of Claim 1, wherein said reactive gas comprises at least one hydrogencontaining fluorocarbon gas.
 - The method of Claim 2, wherein said hydrogen-containing fluorocarbon gas is selected from the group consisting of CHF₃, CH₂F₂, CH₃F, C₃H₂F₆, and combinations thereof.
- The method of Claim 1, wherein said reactive gas comprises at least one
 fluorocarbon gas and hydrogen.
- 1 5. The method of Claim 4, wherein said fluorocarbon gas is selected from the group consisting of C_2F_6 , C_3F_6 , C_3F_6 , C_4F_6 , C_4F_8 , and combinations thereof.
- The method of Claim 1 or Claim 2, or Claim 4, wherein said nitrogen-comprising
 gas is N₂.

1

2

4

5

6

7

8

- The method of Claim 1, wherein said method further comprises a flushing step
 performed prior to said post-etch treatment.
- The method of Claim 7, wherein said flushing step comprises exposing said
 semiconductor structure to a high-flow plasma comprising oxygen.
- 1 9. The method of Claim 1 or Claim 8, wherein said method further comprises a cleaning step subsequent to said post-etch treatment.
 - 10. The method of Claim 9, wherein said cleaning step is performed while said semiconductor structure is present in said process chamber.
 - 11. The method of Claim 1, wherein said cleaning step is performed after said semiconductor structure is removed from said process chamber.
 - 12. The method of Claim 1, wherein said post-etch treatment method removes a photoresist layer overlying said dielectric layer.
 - 13. A method of post-etch treatment of a semiconductor structure following a dielectric etch process, wherein said semiconductor structure includes an overlying dielectric layer into which openings have been etched, wherein the method comprises the steps of:
 - a) a flushing step comprising exposing said semiconductor structure to a highflow plasma comprising oxygen:
 - a post-etch treatment step comprising exposing said semiconductor structure
 to a plasma generated from a source gas comprising oxygen, a nitrogen-comprising gas, and
 a reactive gas comprising hydrogen, carbon, and fluorine: and

- 1 c) a cleaning step comprising exposing at least a process chamber in which said
- 2 dielectric etch process was performed to a medium-flow plasma comprising oxygen.
- 1 14. The method of Claim 13, wherein said reactive gas comprises at least one hydrogen-
- 2 containing fluorocarbon gas.
- 1 15. The method of Claim 14, wherein said hydrogen-containing fluorocarbon gas is
- selected from the group consisting of CHF₃, CH₂F₂, CH₃F, C₃H₂F₆, and combinations
- 3 thereof.
- 1 16. The method of Claim 13, wherein said reactive gas comprises at least one
- 2 fluorocarbon gas and hydrogen.
- 1 17. The method of Claim 16, wherein said fluorocarbon gas is selected from the group
- 2 consisting of C₂F₆, C₃F₆, C₃F₈, C₄F₆, C₄F₈, and combinations thereof.
- 1 18. The method of Claim 13, wherein said nitrogen-comprising gas is N₂.
- 1 19. A controller apparatus programmed to carry out the method of Claim 1 or Claim 13.
- 1 20. A medium containing data which enables a controller apparatus to carry out the
- 2 method of Claim 1 or Claim 13.