CS 170 Efficient Algorithms and Intractable Problems

Lecture 11 Minimum Spanning Trees and Set Cover

Nika Haghtalab and John Wright

EECS, UC Berkeley

Announcements

Midterm 1 next Tuesday 10/3

- → No class on Tuesday!
- → Midterm 1 Review Sessions: 11 2 Saturday, Sunday @ Woz Soda 411
- → There will be a logistics post on Ed
- → Use Ed, OH, HWP, and Review Session to prepare for the exam
- → Scope: Up to and including Sept 26th lecture.

HW 5 is optional and not for grade.

→ Posted with solutions, so review the solutions!

Last Lecture: Minimum Spanning Trees

Minimum Spanning Tree (MST) Problem:

Input: a weighted graph G = (V, E) with non-negative weights.

Output: A tree $T \subseteq E$ connecting all the vertices of the graph with **smallest cost**

 $\sum_{e \in T} w_e$

Recap: We prove that any algorithm that fits the following meta algorithm correctly returns an MST. Example: Kruskal's alg.

"Cut Property":

If X is a subset of an MST and has no edges from S to $V \setminus S$, then $X \cup \{e\}$ is also a subset of an MST.

Meta Algorithm for MST

$$X = \{\}$$

Repeat until $|X| = |V| - 1$

Pick $S \subset V$, s.t. X has no edges from S to $V \setminus S$ $e \leftarrow$ lightest weight edge from S to $V \setminus S$

$$X \leftarrow X \cup \{e\}$$

Today: A different greedy algorithm for MSTs

Idea:

- Keep *X* connected at all times, so *S* is the connected component representing *X*.
- Grow a tree greedily by adding the cheapest edge that can grow the tree.

"Cut Property":

If X is a subset of an MST and has no edges from S to $V \setminus S$, then $X \cup \{e\}$ is also a subset of an MST.

Meta Algorithm for MST

$$X = \{\}$$

Repeat until $|X| = |V| - 1$
Pick $S \subset V$, s.t. X has no edges from S to $V \setminus S$
 $\to e \leftarrow \text{lightest weight edge from } S \text{ to } V \setminus S$
 $X \leftarrow X \cup \{e\}$

Grow a tree greedily by adding the cheapest edge that can grow the tree.


```
Prim(G = (V, E))

S \leftarrow \{A\} // an arbitrary node A.

X = \{\}

while |X| < |V| - 1

Let e = (u, v) be the lightest edge

such that u \in S and v \in V \setminus S.

X \leftarrow X \cup \{e\}

S \leftarrow S \cup \{v\}

Return X
```

Grow a tree greedily by adding the cheapest edge that can grow the tree.


```
Prim(G = (V, E))

S \leftarrow \{A\} // an arbitrary node A.

X = \{\}

while |X| < |V| - 1

Let e = (u, v) be the lightest edge

such that u \in S and v \in V \setminus S.

X \leftarrow X \cup \{e\}

S \leftarrow S \cup \{v\}

Return X
```

n grow the tree.

Grow a tree greedily by adding the cheapest edge that can grow the tree.


```
Prim(G = (V, E))

S \leftarrow \{A\} // an arbitrary node A.

X = \{\}

while |X| < |V| - 1

Let e = (u, v) be the lightest edge

such that u \in S and v \in V \setminus S.

X \leftarrow X \cup \{e\}

S \leftarrow S \cup \{v\}

Return X
```

Grow a tree greedily by adding the cheapest edge that can grow the tree.


```
Prim(G = (V, E))
   S \leftarrow \{A\} // an arbitrary node A.
   X = \{\}
   while |X| < |V| - 1
         Let e = (u, v) be the lightest edge
                such that u \in S and v \in V \setminus S.
        X \leftarrow X \cup \{e\}
         S \leftarrow S \cup \{v\}
Return X
```

Grow a tree greedily by adding the cheapest edge that can grow the tree.


```
Prim(G = (V, E))
   S \leftarrow \{A\} // an arbitrary node A.
   X = \{\}
   while |X| < |V| - 1
         Let e = (u, v) be the lightest edge
                such that u \in S and v \in V \setminus S.
        X \leftarrow X \cup \{e\}
         S \leftarrow S \cup \{v\}
Return X
```

Grow a tree greedily by adding the cheapest edge that can grow the tree.


```
Prim(G = (V, E))
   S \leftarrow \{A\} // an arbitrary node A.
   X = \{\}
   while |X| < |V| - 1
         Let e = (u, v) be the lightest edge
                such that u \in S and v \in V \setminus S.
        X \leftarrow X \cup \{e\}
         S \leftarrow S \cup \{v\}
Return X
```

Grow a tree greedily by adding the cheapest edge that can grow the tree.

Red dotted line indicates the set S.

Here, we choose a donut to visually represent the set S so only edges crossing from S to $V \setminus S$ visually cross the


```
Prim(G = (V, E))
   S \leftarrow \{A\} // an arbitrary node A.
   X = \{\}
   while |X| < |V| - 1
         Let e = (u, v) be the lightest edge
                such that u \in S and v \in V \setminus S.
         X \leftarrow X \cup \{e\}
         S \leftarrow S \cup \{v\}
Return X
```

Grow a tree greedily by adding the cheapest edge that can grow the tree.


```
Prim(G = (V, E))
   S \leftarrow \{A\} // an arbitrary node A.
   X = \{\}
   while |X| < |V| - 1
         Let e = (u, v) be the lightest edge
                such that u \in S and v \in V \setminus S.
        X \leftarrow X \cup \{e\}
         S \leftarrow S \cup \{v\}
Return X
```

Grow a tree greedily by adding the cheapest edge that can grow the tree.


```
Prim(G = (V, E))
   S \leftarrow \{A\} // an arbitrary node A.
   X = \{\}
   while |X| < |V| - 1
         Let e = (u, v) be the lightest edge
                such that u \in S and v \in V \setminus S.
        X \leftarrow X \cup \{e\}
         S \leftarrow S \cup \{v\}
Return X
```

Grow a tree greedily by adding the cheapest edge that can grow the tree.


```
Prim(G = (V, E))
   S \leftarrow \{A\} // an arbitrary node A.
   X = \{\}
   while |X| < |V| - 1
         Let e = (u, v) be the lightest edge
                such that u \in S and v \in V \setminus S.
        X \leftarrow X \cup \{e\}
         S \leftarrow S \cup \{v\}
Return X
```

Correctness of Prim's Algorithm

Does Prim's Algorithm return a minimum spanning tree?

- *X* forms a tree and *S* refers to the set of vertices connected by this tree.
- Only edges that can "grow" a tree are those that go from S to $V \setminus S$
- →At every step, Prim adds the lightest such edge.
- So, Prim's algorithm fits the meta algorithm description, so it find an MST.

Meta Algorithm for MST -

 $X = \{\}$ Repeat until |X| = |V| - 1Pick $S \subset V$, s.t. X has no edges from S to $V \setminus S$ $e \leftarrow \text{lightest weight edge from } S$ to $V \setminus S$ $X \leftarrow X \cup \{e\}$

How to implement Prim's Algorithm

This pseudo-code seems very slow!

At most n-1 iterations of this while loop.

Runtime of at most *m* to go through all the edges and find the lightest.

Naively implementing this, take O(nm).

```
Prim(G = (V, E))

S \leftarrow \{A\} // an arbitrary node A.

X = \{\}

•while |X| < |V| - 1

• Let e = (u, v) be the lightest edge

such that u \in S and v \in V \setminus S.

X \leftarrow X \cup \{e\}

S \leftarrow S \cup \{v\}

Return X
```

How do we actually implement Prim's Algorithm?

For each vertex $v \in V \setminus S$, we need to keep track of

- Whether v has direct edge the set S of "visited" vertices.
- The cost of the lightest edge connecting v to the set S of "visited" vertices.

Once before, we had the same dilemma, in Lec. 8

Implementing Prim's Algorithm Fast

We use the same idea as we did for Dijkstra's, with small changes.

Each vertex has

- cost dist[v] instantiated to ∞ and pointer prev[v] instantiated to null
 - \rightarrow If a neighbor u is added to the visited set S and $dist[v] > w_{(u,v)}$:

```
update dist[v] \leftarrow w_{(u,v)}.
update prev[v] \leftarrow u
```

How is this different from Dijkstra?

- In Dijkstra, the condition to perform an update and the update accounted for the entire length of s-v path
 - \rightarrow e.g., if $dist[v] > dist[u] + w_{(u,v)}$, then update $dist[v] \leftarrow dist[u] + w_{(u,v)}$
- Here, we only care about distance to the closest visited node, not the entire path.

Prim's Algorithm: Efficient Implementation

	A	В	С	D	E	F	G	Н	I
dist									
prev									

```
|Fast-Prim(G = (V, E))|
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
        v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```

Prim's Algorithm: Efficient Implementation

	A	В	С	D	E	F	G	Н	I
dist	0	8	8	8	8	8	8	8	∞
prev	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

```
|Fast-Prim(G = (V, E))|
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
        v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```

Prim's Algorithm: Efficient Implementation

Red nodes: those deleted from Q

	A	В	С	D	E	F	G	Н	I
dist	Ø	∞	8	8	8	8	8	8	∞
prev	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```


	A	В	С	D	E	F	G	Н	I
dist	Ø	4	∞	8	8	8	8	8	∞
prev	Ø	A	Ø	Ø	Ø	Ø	Ø	A	Ø

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```


	A	B	С	D	Е	F	G	Н	Ι
dist	Ø	4	8	8	8	8	8	8	∞
prev	Ø	$A \setminus$	Ø	Ø	Ø	Ø	Ø	A	Ø

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```


	A	B	С	D	Е	F	G	Н	I
dist	Ø	4	∞	8	8	8	8	8	∞
prev	Ø	$A \setminus$	Ø	Ø	Ø	Ø	Ø	A	Ø

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```



```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```


	A	B	C	D	Е	F	G	Н	I
dist	Ø	4	8	8	8	8	8	8	∞
prev	Ø	$A \setminus$	$B \setminus$	Ø	Ø	Ø	Ø	A	Ø

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```


	A	В	C	D	Е	F	G	Н	I
dist	Ø	4	8	8	8	8	8	8	∞
prev	Ø	$A \setminus$	$B \setminus$	Ø	Ø	Ø	Ø	A	Ø

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```


	A	В	C	D	Е	F	G	Н	I
dist	0	4	8	7	8	4	8	8	2
prev	Ø	$A \setminus$	$B \setminus$	С	Ø	С	Ø	A	С

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```


	A	B	C	D	Е	F	G	Н	I
dist	Ø	4	8	7	∞	4	∞	8	2
prev	Ø	$A \setminus$	$B \setminus$	С	Ø	С	Ø	A	$C \setminus$

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```


	A	В	C	D	Е	F	G	Н	I
dist	Ø	4	8	7	8	4	∞	8	2
prev	Ø	$A \setminus$	$B \setminus$	С	Ø	С	Ø	A	$C\setminus$

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```


	A	В	C	D	Е	F	G	Н	I
dist	Ø	4	8	7	∞	4	6	7	2
prev	Ø	$A \setminus$	$B \setminus$	С	Ø	С	I	I	$C\setminus$

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```


	A	B	C	D	E	F	G	Н	I
dist	Ø	4	8	7	8	4	6	7	2
prev	Ø	$A \setminus$	$B \setminus$	С	Ø	$C \setminus$	I	I	$C \setminus$

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```


	A	B	C	D	E	F	G	Н	I
dist	Q	4	8	7	8	4	6	7	2
prev	Ø	$A \setminus$	$B \setminus$	С	Ø	$C \setminus$	I	I	$C \setminus$

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```



```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```


	A	B	C	D	Е	F	G	Н	I
dist	Ø	4	8	7	10	4	2	7	2
prev	Ø	$A \setminus$	$B \setminus$	С	F	$C \setminus$	F	I	$C \setminus$

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```


	A	B	C	D	Е	F	G	Н	I
dist	Ø	4	8	7	10	4	2	7	2
prev	Ø	$A \setminus$	$B \setminus$	С	F	$C \setminus$	F	I	$C \setminus$

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```


	A	B	C	D	E	F	G	Н	I
dist	Ø	4	8	7	10	4	2	1	2
prev	Ø	$A \setminus$	$B \setminus$	С	F	$C \setminus$	F	G	$C \setminus$

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```


	A	В	$\backslash C$	D	Е	F	G	H	I
dist	Ø	4	8	7	10	4	2	1	2
prev	Ø	$A \setminus$	$B \setminus$	С	F	$C \setminus$	F	G	$C \setminus$

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```


	A	В	C	D	Е	F	G	H	I
dist	Ø	4	8	7	10	4	2	1	2
prev	Ø	$A \setminus$	$B \setminus$	С	F	$C \setminus$	F	G	$C \setminus$

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```


Nothing to update

	A	В	C	D	Е	F	G	H	I
dist	Q	4	8	7	10	4	2	1	2
prev	Ø	$A \setminus$	$B \setminus$	С	F	$C \setminus$	F	G	$C \setminus$

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```


	A	B	C	D	Е	F	G	H	I
dist	Ø	4	8	X	10	4	2	1	2
prev	Ø	$A \setminus$	$B \setminus$	$C \setminus$	F	$C \setminus$	F	$G \setminus$	$C \setminus$

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```


	A	B	C	D	Е	F	G	Н	I
dist	Ø	4	8	X	10	4	2	1	2
prev	Ø	$A \setminus$	$B \setminus$	$C \setminus$	F	$C \setminus$	F	$G \setminus$	$C \setminus$

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```


	A	В	C	D	E	F	G	H	I
dist	Ø	4	8	X	9	4	2	1	2
prev	Ø	$A \setminus$	B	$C \setminus$	D	$C \setminus$	F	G	C

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```


	A	B	C	D	E	F	G	H	I
dist	Ø	4	8	X	9	4	2	1	2
prev	Ø	$A \setminus$	$B \setminus$	$C \setminus$	D	$C \setminus$	F	$G \setminus$	$C \setminus$

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```

Runtime of Prim's Algorithm

Recall Priority Queue implementations

- \rightarrow Binary heap: $\log(n)$ per operation.
- \rightarrow Fibonacci Heap: $\log(n)$ for deleteMin, O(1) for insert and decreaseKey.

Runtime of Prim's:

- *n* Q.inserts
- *n* Q.deleteMin
- *m* Q.decreaseKey

```
With binary heap: O((m+n)\log(n)). With Fibonacci heap: O(m+n\log(n))
```

```
Fast-Prim(G = (V, E))
    array dist(n) // initialize to all ∞
    array prev(n) // initialized to null
    X = \{\} and Q empty priority queue
    dist[A] = 0 // an arbitrary node A
    for v \in V, Q. insert(v, dist[v])
    while |X| < |V| - 1
       v \leftarrow Q.deleteMin
       if v \neq A, X \leftarrow X \cup \{(prev[v], v)\}
       for (v, z) \in E
            if dist[z] > w_{(v,z)} and z \in Q.
                Q. decreaseKey(z, w_{(v,z)})
                prev[z] \leftarrow v
    return X
```

Comparing MST algorithm's runtimes

- Kruskal's runtime (last lecture): $O((m+n)\log(n))$
- Prim's runtime: $O(m + n \log(n))$
- \rightarrow For sparse graphs (m = O(n)), both equally good.
- \rightarrow For dense graphs, $(m \gg (n \log(n))$, Prim is much faster than Kruskal.

Other fun facts (no need to memorize):

- O(m+n) expected runtime of a randomized algorithm: Karger, Klein, Tarjan 1995.
- Deterministic $O(m \alpha(m, n))$: Chazelle 2000
- $\rightarrow \alpha(m,n)$ is called "inverse Ackerman" function and $\alpha(m,n) \leq 5$ for m,n being # of particles in the universe!
- A deterministic algorithm with O(optimal): Pettie, Ramachandran 2002
- → What's "optimal"? No idea!

3 min break (Please close the auditorium doors)

Next up: Last greedy algorithm!

Covering

Imagine, we want to build cell towers so that we provide signal coverage to all houses in a city.

Each **possible location for a cell tower** will cover some homes.

What's the smallest number of cell towers I have to install to cover the city?

Where should these be installed?

The Set Cover Problem

Input:

 \rightarrow Universe of n elements $U = \{1, ..., n\}$, and

$$\rightarrow$$
 Subsets $S_1, S_2, \dots, S_m \subseteq U$, s.t., $\bigcup_{i=1}^m S_i = U$

Output:

A collection of subsets covering U of **minimal size**.

i.e.,
$$J \subseteq \{1, 2, ..., m\}$$
 s.t., $\bigcup_{i \in I} S_i = U$

Greedy Algorithm

Discuss

What is a good greedy algorithm?

Greedy Algorithm for Set Cover

A suggested greedy algorithm:

Repeat until all elements of \boldsymbol{U} are covered: Pick the set with the largest number of uncovered elements.

Greedy is not optimal for Set Cover

One other example where this greedy algorithm is not optimal

Claim: For any instance of the Set Cover problem. If the optimal solution uses k sets, the Greedy algorithm uses at most $k \ln(n)$ sets.

wasible kind time.

Proof: Let n_t be the number of elements not covered after t step of the Greedy algorithm. (E.g., $n_0 = n$).

Our goal: Show that for $t = k \ln(n)$, $n_t < 1$.

 \rightarrow If we achieve this goal; then we have $n_t=0$. i.e., all elements of the set are covered by Greedy after $k \ln(n)$ rounds.

Let n_t be the number of elements not covered after t step of the Greedy algorithm.

Our goal: Show that for $t = k \ln(n)$, $n_t < 1$.

Let n_t be the number of elements not covered after t step of the Greedy algorithm.

Our goal: Show that for $t = k \ln(n)$, $n_t < 1$.

Subclaim 2: For any
$$t$$
, $n_{t+1} \le n_t(1-1/k) = n_t - n_t/k$ not carefed. Upontimed Solicoversall of the n_t points optopt Ly there is a set S , S . t .

Scovers $>$, n_t of the S far uncovered points.

Picked set k elements.

Picked set k elements.

Picked set k elements.

The Greedy: largest p of uncovered p points.

The Greedy p picks some set covering $>$, n_t of the S far uncovered p picks.

The S far uncovered p picks.

 $N_t = n_t (1-1/k)$

Let n_t be the number of elements not covered after t step of the Greedy algorithm.

Our goal: Show that for $t = k \ln(n)$, $n_t < 1$.

Repeatedly applying subclaim 2, we have that for any t

$$n_{t} \leq n_{t-1} \left(1 - \frac{1}{k} \right) \leq n_{t-2} \left(1 - \frac{1}{k} \right)^{2} \leq \dots \leq n_{0} \left(1 - \frac{1}{k} \right)^{t} = n \left(1 - \frac{1}{k} \right)^{t}$$

Final subclaim: $n\left(1-\frac{1}{k}\right)^{k\ln(n)} < 1$.

Proof: We use a mathematical fact that for any $x \neq 0$, $1 - x < e^{-x}$.

$$n\left(1-\frac{1}{k}\right)^{k\ln(n)} < ne^{\frac{-1}{k} \times k\ln n} = ne^{-\ln(n)} = \frac{n}{n} = 1$$

Approximation Factor

We showed that Greedy does not find the optimal set cover.

We also showed that Greedy outputs $\leq k \ln(n)$ sets, where k = OPT is the number of sets used in the optimal solution.

"Greedy has an **approximation factor** of ln(n) for Set Cover"

What is the best polynomial time approximation algorithm for Set Cover? Greedy! Meaning, **approximation factor** $< \ln(n)$ is not achievable in polynomial time.

Show at home: Greedy's approximation factor is no better than ln(n). \rightarrow Generalize our first "bad" example showing Greedy is not optimal.

Wrap up

Done with being greedy!

- → Mastering proof by induction!
- → Scheduling, Minimum Spanning Trees, Horn-Satisfiability, MSTs, Set Cover

Next time

• Dynamic Programming