Nichtlineare Effekte in der linearen Regression Visualisierung Regression

Jan-Philipp Kolb

Freitag, 20.06.2014

Inhalt

Einführung

Graphiken mit R

Ergebnisse mit LaTeX

Graphische Analyse zur Vorbereitung der Regression

Datenanalyse

Regressionsdiagnostik Konstante Varianz Normalität

Gliederung

Einführung

Graphiken mit R

Ergebnisse mit LaTeX

Graphische Analyse zur Vorbereitung der Regression

Datenanalyse

Regressionsdiagnostil

Worum geht es in diesem Abschnitt?

▶ Visualisierung und linearen Regression

Exkurs - R und LaTeX

Table 1: The Importance of Clustering Standard Errors

	M1	M2	М3
(Intercept)	4.35***	4.35***	4.35***
	(1.32)	(0.76)	(1.32)
X	2.26*	2.26***	2.26*
	(1.27)	(0.73)	(1.32)
\mathbb{R}^2	0.00	0.00	0.00
$Adj. R^2$	0.00	0.00	0.00
Num. obs.	1000	3000	3000

^{***}p < 0.01, **p < 0.05, *p < 0.1

 $\textbf{Quelle:} \ \texttt{http://diffuseprior.wordpress.com/tag/stargazer/}$

Das R-Paket xtable

- ▶ R bietet tolle Möglichkeiten mit LaTeX zu interagieren
- Zusammen mit word funktioniert das leider weniger gut (höchstens Paket R2wd)

```
N <- 1000

a <-sample(1:5,N,replace=T)
b <-sample(1:3,N,replace=T)

tabAB <- table(a,b)

xtable(tabAB)
```

Das R-Paket stargazer

stargazer(attitude)

Table:

Statistic	N	Mean	St. Dev.	Min	Max
rating	30	64.633	12.173	40	85
complaints	30	66.600	13.315	37	90
privileges	30	53.133	12.235	30	83
learning	30	56.367	11.737	34	75
raises	30	64.633	10.397	43	88
critical	30	74.767	9.895	49	92
advance	30	42.933	10.289	25	72

Mehr zu reproducible research mit R

- Das R-Paket library(texreg)
- ▶ Das R-Paket library(R2wd)
- http://knutur.at/wsmt/slides/long-slides.pdf
- R Task View zu reproducible research:

CRAN Task View: Reproducible Research

Maintainer: Max Kuhn

Contact: max.kuhn at pfizer.com

Version: 2014-01-20

Pakete - deskriptive Datenanalyse

Vorbereitung einer Regression

Vor jeder Analyse, dollten die Daten auf folgende Punkte untersucht werden:

- Dateneingabe Fehler
- Fehlende Werte
- Ausreißer
- Unübliche (e.g. unsymetrische) Verteilungen
- Veränderungen in der Variabilität
- Cluster-Effekte
- Nicht-linear bivariate Zusammenhänge
- Unerwartete Muster

Der Prestige Datensatz

- Benötigte library: car
- Als Datenmaterial werden die Prestige Daten verwendet.
- Zugrunde liegen 102 Beobachtungen.
- Variablen des Datensatzes:
 - ▶ income
 - education
 - women
 - prestige
 - census
 - type

Der Prestige Datensatz

```
library(car)
data(Prestige)
attach(Prestige)
```

Prestige {car}

R Documentation

Prestige of Canadian Occupations

Description

The Prestige data frame has 102 rows and 6 columns. The observations are occupations.

Der Prestige Datensatz

education Average education of occupational incumbents, years (1971) income

Average income of incumbents, dollars, in 1971.

Percentage of incumbents who are women. women

Prestige score for occupation prestige

Canadian Census occupational code. census

Type of occupation. A factor with levels type

Eine Beispielsession in R

Ausschnitt des Datensatzes:

> Prestige

	education	income	women	prestige	census	type
GOV.ADMINISTRATORS	13.11	12351	11.16	68.8	1113	prof
GENERAL.MANAGERS	12.26	25879	4.02	69.1	1130	prof
ACCOUNTANTS	12.77	9271	15.70	63.4	1171	prof
PURCHASING.OFFICERS	11.42	8865	9.11	56.8	1175	prof
CHEMISTS	14.62	8403	11.68	73.5	2111	prof
PHYSICISTS	15.64	11030	5.13	77.6	2113	prof
BIOLOGISTS	15.09	8258	25.65	72.6	2133	prof
TAXI.DRIVERS	7.93	4224	3.59	25.1	9173	bc
LONGSHOREMEN	8.37	4753	0.00	26.1	9313	bc
TYPESETTERS	10.00	6462	13.58	42.2	9511	bc
BOOKBINDERS	8.55	3617	70.87	35.2	9517	bc
>						

Graphische Analyse zur Vorbereitung der Regression

Univariate Datenanalyse

Histogramm der Variable income

hist(income)

hist(income, probability=T)
points(density(income),
type="1",col="red")

Univariate Datenanalyse

Boxplot der Variable income

Boxplot

- Einen einfachen Boxplot erstellt man mit boxplot()
- Auch boxplot() muss mindestens ein Beobachtungsvektor übergeben werden

?boxplot

boxplot(Chem97\$gcsescore, horizontal=TRUE)

Gruppierte Boxplots

- Ein sehr einfacher Weg, einen ersten Eindruck über bedingte Verteilungen zu bekommen ist über sog. Gruppierte notched Boxplots
- Dazu muss der Funktion boxplot() ein sog. Formel-Objekt übergeben werden
- Die bedingende Variable steht dabei auf der rechten Seite einer Tilde

Die Funktion boxplot()

```
boxplot (Chem97$gcsescore~Chem97$gender)
```

Gruppierte Boxplots

Violinplot - *library(vioplot)*

- Baut auf Boxplot auf
- Zusätzlich Informationen über Dichte der Daten
- Dichte wird über Kernel Methode berechnet.
- weißer Punkt Median
- Je weiter die Ausdehnung, desto größer ist die Dichte an dieser Stelle.

Edgar Anderson's Iris Daten

Edgar Anderson's Iris Daten

petal length and width | Blütenblatt Länge und Breite sepal length and width | Kelchblatt Länge und Breite

```
head(iris)
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1
2
3
4
5
6
            5.1
                         3.5
                                       1.4
                                                    0.2
                                                         setosa
            4.9
                         3.0
                                       1.4
                                                    0.2
                                                         setosa
            4.7
                         3.2
                                       1.3
                                                    0.2
                                                         setosa
            4.6
                         3.1
                                       1.5
                                                    0.2 setosa
            5.0
                        3.6
                                       1.4
                                                    0.2 setosa
            5.4
                         3.9
                                       1.7
                                                    0.4
                                                         setosa
```

Scatterplots

- Ein einfacher two-way scatterplot kann mit der Funktion plot() erstellt werden
- plot() muss mindestens ein x und ein y Beobachtungsvektor übergeben werden
- ► Um die Farbe der Plot-Symbole anzupassen gibt es die Option col (Farbe als character oder numerisch)
- ▶ Die Plot-Symbole selbst k\u00f6nnen mit pch (plotting character) angepasst werden (character oder numerisch)
- Die Achenbeschriftungen (labels) werden mit xlab und ylab definiert

Scatterplot

Pearson Korrelationskoeffizient

```
cor(iris$Sepal.Length,iris$Petal.Length)
```

- Korrelation zwischen Länge Kelchblatt und Blütenblatt 0,87
- Der Pearson'sche Korrelationskoeffizient ist die default methode in cor():

Zusammenhang zwischen mehreren Variablen

pairs(iris[,1:4])

Zusammenhang zwischen mehreren Variablen

```
pairs.panels(iris[1:4],bg=c("red","yellow","blue")
[iris$Species],pch=21,main="Iris Datensatz")
```

Iris Datensatz

Multivariate Datenanalyse

Zusammenhang - corrplot

```
library(corrplot)
M <- cor(iris[,1:4])
corrplot(M)</pre>
```


Regressionsdiagnostik

Regressionsdiagnostik

```
plot(x1,y)
abline(mod1)
segments(x1, y, x1, pre, col="red")
textxy(x1,y, res, cx=0.7)
```


Annahmen der Linearen Einfachregression

Annahmen bezüglich des Störterms

1. Die Störterme haben den Erwartungswert 0:

$$E(\varepsilon_i|x_i)=0$$

Die Störterme weisen eine konstante Varianz auf (Homoskedastizität)

$$\operatorname{var}(\varepsilon_i|x_i) = \sigma_{\varepsilon}^2$$

3. Die Störvariablen sind unkorreliert

$$cov(\varepsilon_i, \varepsilon_j | x_i) = 0$$
 für alle $i \neq j$

4. Normalverteilungsannahme

$$\varepsilon_i|x_i\sim N(0;\sigma_{\varepsilon}^2)$$

- Wenn man nur auf die Residuen schaut kann man die Annahme der konstanten Varianz nicht überprüfen
- Man muss die Residuen zu etwas in Relation setzen
- ▶ → Plot der Residuen gegen die gefitteten Werte

Zur Verdeutlichung wird folgendes Regressionsmodell gerechnet:

```
data(savings)
g <- lm(sr ~ pop15+pop75+dpi+ddpi,savings)</pre>
```

Überprüfung anhand von Graphiken:

- Regressionsdiagnostik
 - └ Konstante Varianz

- ► Linker Plot Nichtlinearität?
- Rechter Plot Nichtkonstante Varianz?


```
Regressionsdiagnostik
Konstante Varianz
```

 Folgende Regression bietet eine einfache Möglichkeit zu testen.

```
summary(lm(abs(residuals(g)) ~ fitted(g)))
```

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.8398 1.1865 4.079 0.00017 ***
fitted(g) -0.2035 0.1185 -1.717 0.09250 .
```

Regressionsdiagnostik - Normalität

- ► Tests und KI die bei der Regression verwendet werden basieren auf der Annahme der Normalität.
- Die Residuen k\u00f6nnen mit dem Q-Q plot auf Normalit\u00e4t untersucht werden

```
qqnorm(residuals(g),ylab="Residuals")
qqline(residuals(g))
```

- Regressionsdiagnostik
 - └ Normalität

Q-Q plot

- Es scheint keine Ausreißer zu geben
- Wenn die Residuen normalverteilt sind sollten sie auf einer Linie liegen.

— Regressionsdiagnostik

└ Normalität

Regressionsdiagnostik - Normalverteilung der Residuen

Regressionsdiagnostik
Normalität

Q-Q plot - verschiedene Verteilungen

Regressionsdiagnostik - Normalität

- Wenn die Residuen nicht normalverteilt sind, ist die KQ-Regression evtl. nicht die richtige Wahl.
- Tests und KI's sind nicht exakt
- ► Leichte Nichtnormalität kann ignoriert werden
- ▶ Je größer der zu Grunde liegende Datensatz, je geringer ist das Problem mit Nichtlinearität

Handlungsmöglichkeiten:

- ▶ Evtl. können robuste Regressionen eingesetzt werden
- Transformation der abhängigen Variable

— Regressionsdiagnostik

└ Normalität

Regressionsdiagnostik

Artikel, der die wichtigsten Annahmen aufzählt und darstellt, wie sie überprüft werden können.

Testing the assumptions of linear regression

http://people.duke.edu/~rnau/testing.htm

Aufgabe C1 - Visualisierung Regression

- ▶ Laden Sie den Prestige Datensatz aus dem Paket car ein.
- ► Finden Sie das beste Regressionsmodell für die Variable Prestige als abhängige Variable.
- Testen Sie ob die Residuen normalverteilt sind.

In dieser Aufgabe soll mittels simulierten Daten untersucht werden, wie eine Verletzung der Annahmen des linearen Modells in den Diagnoseplots zu erkennen ist

- ► Erstellen Sie eine Hilfsvariable h1 der Länge n= 181, die das Intervall von [1;10] in 0.05 Schritten abdeckt.
- Simulieren Sie die n Beobachtungen der erklärenden Variable X als X=h1+ eine normalverteilte Zufallsgröße mit Erwartungswert 0 und Standardabweichung 1.

Berechnen Sie für die folgenden drei Szenarien das lineare Mo dell und untersuchen Sie die An- nahmen mit den geeigneten Diagnoseplots. Versuchen Sie die Verletzung der Annahmen in den Diagnoseplots zu erkennen.

► Simulieren Sie einen normalverteilten Fehler epsilon1 der Länge n= 181 mit Erwartungswert 0 und Standardabweichung 1 und konstruieren Sie die Zielgröße Y1 als

$$Y1 = log(X) + epsilon1$$

▶ Simulieren Sie einen Cauchy-verteilten Fehler epsilon2 der Länge n= 181 mit dem Befehl rcauchy(n, location=0, scale=1) und konstruieren Sie die Zielgröße Y2 als

$$Y2 = X + epsilon2$$

Plotten Sie die Kerndichteschätzer für epsilon2 und epsilon1 in einer Graphik. Wie unterscheiden sich Cauchy und Normalverteilung?

▶ Simulieren Sie einen normalverteilten Fehler epsilon3 der Länge n= 181 mit Erwartungswert 0 und einer Standardabweichung, die ein Zehntel des entsprechendes X-Wertes ist (Hinweis: Der Funktion rnorm können b ei der Option mean und sd Vektoren identischer Längen übergeb en werden. Dann werden auch n normalverteilte Zufallszahlen mit dem in mean und sd spezifizierten Parametern erzeugt). Konstruieren Sie die Zielgröße Y3 als:

$$Y3 = X + epsilon3$$