- The general problem addressed by logistic negression is that of establishing nelationship between curtain explanatory variables (can be both numeric and categorical variables) with a categorical nestorme variable.
- · Logistic negremion addresses the problem of classification. It also used to estimate assess nisk.

DATA COLLECTION:

Scenamio-1: In certain data collection frameworks, the explanatory variables related to a subject are observed at a point of time and the outcomes are observed later. In such a case the subjects being studied may have to be followed-up over a period of time. Such a studied may have to be followed-up studies:

Example 1: He observe a set of people with centain lifestyle habits over a period of time. He then observe how many of these people have developed a particular disease.

Example 2: We observe a set of people who have been recomited.

We note their characteristics and follow them up for a period of time to see how long they stay with the company (on how many of them leave within a given time frame).

Scenamo-2: In other data collection formats we observe the outcomes of certain subjects. We then find the value of the explanatory variables pertaining to the subject.

CONCEPT OF LIGHTSTIC REGRESSION:

The function $f(x) = \frac{1}{1+e^{-\frac{\pi}{2}}}$, $z \in \mathbb{R} \left(-\infty < z < \infty\right)$ is called the logistic function". Note that f(z) has the following graph:

- Note that 0≤ f(Z)≤1.
- Note-further that f(z) has an S-shaped curve (often neferred to as the sigmoidal curve).

USAGE OF SIGMOIDAL CURVE:

- The dosage of insecticide has an impact of killing insects. The probability is low when dosage is very small. From a threshold, the probability increases fast.
- The probability of a customers neturning a loan may depend on factors like value of loan and level of disposable income. In this case, the variable 7 may be considered to be a linear combination of these varriables.

LOGISTIC MODEL: In general, the logistic model may be comidered to be the following function:

$$Z = \beta + \sum_{i=1}^{p} \beta_i X_i$$
; where $X_1, X_2, ..., X_p$ are the explanatory variables.

In essense than Z is an index that combines the explanatory variables.

- Consider a binary classification problem with the explanatory variables as X1, X2,..., Xp and y being the neopone variable.
- suppose y takes values a and 1.

Suppose
$$Y$$
 takes Y alm Y and Y .

Then $P(Y=1|X_1,X_2,...,X_p) = \frac{1}{1+e^{-(\beta_0+\frac{7}{2}\beta_1X_1)}}$.

- The coefficients Bo, B1, B2,..., Bb are the unknown parameters.

LOGIT TRANSFORMATION: Logit
$$(P(X)) = In \left(\frac{P(Y=1|X)}{I-P(Y=1|X)}\right)$$
.

Note that
$$P(Y=1|X) = \frac{1}{1+e^{-(\beta_0+Z\beta_1X_1)}}$$

 $\Rightarrow 1-P(Y=1|X) = \frac{e^{-(\beta_0+Z\beta_1X_1)}}{1+e^{-(\beta_0+Z\beta_1X_1)}}$

$$\Rightarrow \ln\left(\frac{P(Y=1|X)}{1-P(Y=1|X)}\right) = \beta_0 + \sum_{i} \beta_i X_i$$

Note further that $\frac{P(Y=1|X)}{P(Y=0|X)}$ gives the odds of P(Y=1) Vs. P(Y=0) for a given explanatory set up.

BASELINE ODDS: Note that Bo gives the baseline odds. This refers to the odds that would negult for a logistic model without any odds at all.

INTERPRETATION OF Bj: Suppose Xj is a variable measured in the natio

scale. Then
$$\ln\left(0 \operatorname{dds}\left(Y=1 \middle| X_1=x_1, X_2=x_2, \dots, X_j=x_j, \dots, X_p=x_p\right)\right) = \beta_0 + \sum_{j=1}^{p} \beta_j X_i \cdot \prod_{j=1}^{p} \left(0 \operatorname{dds}\left(Y=1 \middle| X_1=x_1, X_2=x_2, \dots, X_j=x_j+1, \dots, X_p=x_p\right)\right) = \beta_0 + \sum_{i=1}^{p} \beta_i X_i + \prod_{j=1}^{p} \beta_j \left(x_j+1\right) + \sum_{i=1}^{p} \beta_i X_i$$

$$\Rightarrow \ln\left(0dds\left(\gamma=1\left|X_{j}=\alpha_{j}+1\right.\right)\right) - \ln\left(0dds\left(\gamma=1\left|X_{j}=\alpha_{j}\right.\right)\right) = \beta_{j}^{2}$$

$$\Rightarrow \frac{0dds\left(\gamma=1\left|X_{j}=\alpha_{j}\right.\right|}{0dds\left(\gamma=1\left|X_{j}=\alpha_{j}\right.\right)} = e^{\beta_{j}^{2}}$$
Thus, logistic beginning model is one of 'comtant odds patio'.

MAXIMUM LIKELHOOD ESTIMATES:

Note that
$$\pi(x_i) = P(Y=1 | X_1=x_{i1}, X_2=x_{i2}, \ldots, X_p=x_{ip})$$

$$= \frac{1}{1-e^{-(\beta_0+\frac{1}{\beta_2}\beta_jx_{ij})}}$$

gives the brobability that the purpose takes the value 1 for a given setting of explanatory variables. Likelihood function is: $l(\hat{\beta}) = \prod_{i=1}^{n} \pi(x_i)^{j_i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly from the } \\ l(\hat{\beta}) = \prod_{i=1}^{n} \pi(x_i)^{j_i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly from the } \\ l(\hat{\beta}) = \lim_{i=1}^{n} \pi(x_i)^{j_i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly from the } \\ l(\hat{\beta}) = \lim_{i=1}^{n} \pi(x_i)^{j_i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly from the } \\ l(\hat{\beta}) = \lim_{i=1}^{n} \pi(x_i)^{j_i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly from the } \\ l(\hat{\beta}) = \lim_{i=1}^{n} \pi(x_i)^{j_i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly from the } \\ l(\hat{\beta}) = \lim_{i=1}^{n} \pi(x_i)^{j_i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly from the } \\ l(\hat{\beta}) = \lim_{i=1}^{n} \pi(x_i)^{j_i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly from the } \\ l(\hat{\beta}) = \lim_{i=1}^{n} \pi(x_i)^{j_i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly from } \\ l(\hat{\beta}) = \lim_{i=1}^{n} \pi(x_i)^{j_i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly from } \\ l(\hat{\beta}) = \lim_{i=1}^{n} \pi(x_i)^{j_i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly } \\ l(\hat{\beta}) = \lim_{i=1}^{n} \pi(x_i)^{j_i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly } \\ l(\hat{\beta}) = \lim_{i=1}^{n} \pi(x_i)^{j_i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly } \\ l(\hat{\beta}) = \lim_{i=1}^{n} \pi(x_i)^{n-i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly } \\ l(\hat{\beta}) = \lim_{i=1}^{n} \pi(x_i)^{n-i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly } \\ l(\hat{\beta}) = \lim_{i=1}^{n} \pi(x_i)^{n-i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly } \\ l(\hat{\beta}) = \lim_{i=1}^{n} \pi(x_i)^{n-i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly } \\ l(\hat{\beta}) = \lim_{i=1}^{n} \pi(x_i)^{n-i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly } \\ l(\hat{\beta}) = \lim_{i=1}^{n} \pi(x_i)^{n-i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly } \\ l(\hat{\beta}) = \lim_{i=1}^{n} \pi(x_i)^{n-i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly } \\ l(\hat{\beta}) = \lim_{i=1}^{n} \pi(x_i)^{n-i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly } \\ l(\hat{\beta}) = \lim_{i=1}^{n} \pi(x_i)^{n-i} \left(1 - \pi(x_i)\right)^{1-j_i} \text{ follows directly } \\ l(\hat{\beta}) = \lim_{i=1}^{n} \pi(x_i)^{n$

$$l(\hat{\beta}) = \prod_{i=1}^{n} \pi(z_i)^{ji} \left(1 - \pi(z_i)\right)^{1-ji}$$
 follows directly from the Bernoulli PMF.

- Likelihood of the null model: Lo = $\hat{p}^2 Z_j^{i} (1-\hat{p}^i) Z_j^{i} (1-\hat{p}^i)$, where \hat{p}^i is the estimated proportion of the personne variable taking value 1. Saturated model: Ls = $T_j^i Z_j^{i} (1-\hat{p}^i) Z_j^{$
- D = -2In [Likelihood of the fitted model]
 Likelihood of the estimated model
- Likelihood Ratio (LR): LR = -2In [Likelihood of the fitted model]

4

Logit transformation: The transformation

$$g(x) = \ln \left(\frac{\pi(x)}{1 - \pi(x)} \right)$$
; where $\pi(x) = P(Y=1 | X=x)$

g(x) has many desimable proporties. The proporties are given below:

- (a) The logit $q(x) = \beta + \sum \beta i x i$ are linear in its parameters.
- (b) The logit q(x) is a continuous function.
- (c) ≈ < q(%) < ∞.

Ennons in Logistic Regneration (Binary): We estimate y by $\pi(z) = P(Y=1|z)$.

If Y=1 then $E=1-\Pi(x)$ with probability $\Pi(x)$. If Y=0 then $E=-\Pi(x)$ with probability $\left(1-\Pi(x)\right)$.

Then $E(\mathcal{E}) = \pi(\mathcal{X}) \left(1 - \pi(\mathcal{X}) \right) - \pi(\mathcal{X}) \left(1 - \pi(\mathcal{X}) \right) = 0$.

Note that each E: may be comidered to be a Bernoulli trial.
The variance is not comtant.

Since, if X ~ Bernoulli(b), P(X=1)=p, P(X=0)=1-b;

Evaluation of a somening test:

Let B = Risk event

Bc = Risk event does not happen

T = Test nesult is positive

Prob (T | B) is called sensitivity. This is the probability of the test showing positive nesult given that the nisk event temm out to be true.

Examples:

- i. Suppose on the basis of a logistic regretion model, a tramaction is classified to be fradulant! Sensitivity is the probability that the model identifies a transaction to be fraudulant when it actually
- is fraudulant. ii. Similar logic is applicable when a model is used to classify a loan
- application. Prob(T(B) is called specificity. This is the probability of a false alarm, i.e., the model identifies a transaction to be fraudulant when in reality it is NOT.

Groodness of Fit: Basic emiteria for goodness-of-fit is that the distances between the observed and estimated values be unsystematic and within the variation of the model. This criteria is not satisfied in classification

Dnawbacks of classification Table:

- (a) Classification is sensitive to the nelative size of the component groups and always favours classification into the larger group (i.e., probability of connectly classifying when a subject belongs to the larger group is high).
- (b) The classification matrix converts a probability an outcome measured on a continuum into a dichotomous variable leading to substantial loss of information.
- (c) The sensitivity and specificity measured from a 2x2 classification table depends entirely on the distribution of the subjects nather than superiority of a model.

Example of a classification Table: Consider the following hypothetical case:

alassification	Observed valus Total		Total
Classification through model	1	0	27
1	16		548
0	131	417	340
	147	428	575
Total	111		, ,

Specificity = Prob (Predicted disease-free | No disease)

Overall connect classification = $\frac{16+417}{575} = 0.753$.

From the above table, the distribution of the subjects with disease probability >0.50 actually had about 40% of the subjects without disease. This implies (1-that the estimated probabilities were > 0.50 but sufficiently close to 0.5.

NOTE: Suppose among n subjects, the probability of a disease is a constant, say ft. Then nft subjects are expected to actually have the disease and n(1-17) would not develop the disease. Thus, when it >0.50, n (1-17) subjects are expected to be misclassified.

. In the last example, we slightly modify the table as follows:

		•	
a. disalian	Observation		Total
Classification	1	٥	1
1	26	1	27
	27	521	548
0		522	इन्ड
Total	53		
		0	^

Sensitivity =
$$\frac{26}{53}$$
 = 49.1%.

Specificity = $\frac{521}{522}$ = 99%.

Thus, the sensitivity and specificity depend heavily on the subject matrix.

· Another measure of "goodnen-of-fil" for classification model is ROC-AUC.

AREA UNDER RECEIVER OPERATING CHARACTERISTIC CURVE:

Sensitivity = Pro (Model predicts disease | disease)

Specificity = Pro (Model predicts no disease | no disease) 1 - Specificity = Pro (Model predicts disease no disease)

- · Higher the sensitivity than (1 specificity); better is the ability of the model to discriminate true positives and false positives.
- The ROC is the graph of servitivity Vs. (1-specificity) drawn over all possible cut points.
- · When the ROC is on the diagonal line (area = 0.5) there is no discrimination.

