

Sequence space

In <u>functional analysis</u> and related areas of <u>mathematics</u>, a **sequence space** is a <u>vector space</u> whose elements are infinite <u>sequences</u> of <u>real</u> or <u>complex numbers</u>. Equivalently, it is a <u>function space</u> whose elements are functions from the <u>natural numbers</u> to the <u>field</u> K of real or complex numbers. The set of all such functions is naturally identified with the set of all possible <u>infinite sequences</u> with elements in K, and can be turned into a <u>vector space</u> under the operations of <u>pointwise addition</u> of functions and pointwise scalar multiplication. All sequence spaces are <u>linear subspaces</u> of this space. Sequence spaces are typically equipped with a norm, or at least the structure of a topological vector space.

The most important sequence spaces in analysis are the ℓ^p spaces, consisting of the p-power summable sequences, with the p-norm. These are special cases of \underline{L}^p spaces for the counting measure on the set of natural numbers. Other important classes of sequences like convergent sequences or \underline{null} sequences form sequence spaces, respectively denoted c and c_0 , with the \underline{sup} norm. Any sequence space can also be equipped with the $\underline{topology}$ of $\underline{pointwise}$ convergence, under which it becomes a special kind of Fréchet space called FK-space.

Definition

A <u>sequence</u> $x_{\bullet} = (x_n)_{n \in \mathbb{N}}$ in a set X is just an X-valued map $x_{\bullet} : \mathbb{N} \to X$ whose value at $n \in \mathbb{N}$ is denoted by x_n instead of the usual parentheses notation x(n).

Space of all sequences

Let \mathbb{K} denote the field either of real or complex numbers. The set $\mathbb{K}^{\mathbb{N}}$ of all <u>sequences</u> of elements of \mathbb{K} is a vector space for componentwise addition

$$(x_n)_{n\in\mathbb{N}}+(y_n)_{n\in\mathbb{N}}=(x_n+y_n)_{n\in\mathbb{N}},$$

and componentwise scalar multiplication

$$lpha(x_n)_{n\in\mathbb{N}}=(lpha x_n)_{n\in\mathbb{N}}.$$

A **sequence space** is any linear subspace of $\mathbb{K}^{\mathbb{N}}$.

As a topological space, $\mathbb{K}^{\mathbb{N}}$ is naturally endowed with the <u>product topology</u>. Under this topology, $\mathbb{K}^{\mathbb{N}}$ is <u>Fréchet</u>, meaning that it is a <u>complete</u>, <u>metrizable</u>, <u>locally convex topological vector space</u> (TVS). However, this topology is rather pathological: there are no <u>continuous</u> norms on $\mathbb{K}^{\mathbb{N}}$ (and thus the product topology cannot <u>be defined</u> by any <u>norm</u>). Among Fréchet spaces, $\mathbb{K}^{\mathbb{N}}$ is minimal in having no continuous norms:

Theorem[1] — Let X be a Fréchet space over \mathbb{K} . Then the following are equivalent:

- 1. X admits no continuous norm (that is, any continuous seminorm on X has a nontrivial null space).
- 2. X contains a vector subspace TVS-isomorphic to $\mathbb{K}^{\mathbb{N}}$.
- 3. X contains a complemented vector subspace TVS-isomorphic to $\mathbb{K}^{\mathbb{N}}$.

But the product topology is also unavoidable: $\mathbb{K}^{\mathbb{N}}$ does not admit a <u>strictly coarser</u> Hausdorff, locally convex topology. [1] For that reason, the study of sequences begins by finding a strict <u>linear subspace</u> of interest, and endowing it with a topology *different* from the subspace topology.

ℓ^p spaces

For $0 , <math>\ell^p$ is the subspace of $\mathbb{K}^{\mathbb{N}}$ consisting of all sequences $x_{\bullet} = (x_n)_{n \in \mathbb{N}}$ satisfying $\sum_n |x_n|^p < \infty$.

If $p \geq 1$, then the real-valued function $\|\cdot\|_p$ on ℓ^p defined by

$$\|x\|_p \; = \; \left(\sum_n |x_n|^p
ight)^{1/p} \qquad ext{ for all } x \in \ell^p$$

defines a <u>norm</u> on ℓ^p . In fact, ℓ^p is a <u>complete metric space</u> with respect to this norm, and therefore is a Banach space.

If p=2 then ℓ^2 is also a <u>Hilbert space</u> when endowed with its canonical <u>inner product</u>, called the **Euclidean inner product**, defined for all $x_{\bullet}, y_{\bullet} \in \ell^p$ by

$$\langle x_{ullet}, y_{ullet} \rangle = \sum_n \overline{x_n} y_n.$$

The canonical norm induced by this inner product is the usual ℓ^2 -norm, meaning that $\|\mathbf{x}\|_2 = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ for all $\mathbf{x} \in \ell^p$.

If $p=\infty$, then ℓ^{∞} is defined to be the space of all <u>bounded sequences</u> endowed with the norm $\|x\|_{\infty} = \sup_{n} |x_n|$,

 ℓ^{∞} is also a Banach space.

If $0 , then <math>\ell^p$ does not carry a norm, but rather a metric defined by

$$d(x,y) = \sum_n |x_n - y_n|^p.$$

c, c_0 and c_{00}

A <u>convergent sequence</u> is any sequence $x_{\bullet} \in \mathbb{K}^{\mathbb{N}}$ such that $\lim_{n \to \infty} x_n$ exists. The set c of all convergent sequences is a vector subspace of $\mathbb{K}^{\mathbb{N}}$ called the <u>space of convergent sequences</u>. Since every convergent sequence is bounded, c is a linear subspace of ℓ^{∞} . Moreover, this sequence space is a closed subspace of ℓ^{∞} with respect to the <u>supremum norm</u>, and so it is a Banach space with respect to this norm.

A sequence that converges to $\mathbf{0}$ is called a <u>null sequence</u> and is said to <u>vanish</u>. The set of all sequences that converge to $\mathbf{0}$ is a closed vector subspace of \mathbf{c} that when endowed with the <u>supremum norm</u> becomes a Banach space that is denoted by $\mathbf{c_0}$ and is called the <u>space of null sequences</u> or the <u>space of vanishing sequences</u>.

The space of eventually zero sequences, c_{00} , is the subspace of c_0 consisting of all sequences which have only finitely many nonzero elements. This is not a closed subspace and therefore is not a Banach space with respect to the infinity norm. For example, the sequence $(x_{nk})_{k\in\mathbb{N}}$ where $x_{nk}=1/k$ for the first n entries (for $k=1,\ldots,n$) and is zero everywhere else (that is, $(x_{nk})_{k\in\mathbb{N}}=(1,1/2,\ldots,1/(n-1),1/n,0,0,\ldots)$) is a <u>Cauchy sequence</u> but it does not converge to a sequence in c_{00} .

Space of all finite sequences

Let

$$\mathbb{K}^{\infty} = ig\{(x_1, x_2, \ldots) \in \mathbb{K}^{\mathbb{N}} : ext{all but finitely many } x_i ext{ equal } 0ig\},$$

denote the **space of finite sequences over** \mathbb{K} . As a vector space, \mathbb{K}^{∞} is equal to c_{00} , but \mathbb{K}^{∞} has a different topology.

For every <u>natural number</u> $n \in \mathbb{N}$, let \mathbb{K}^n denote the usual <u>Euclidean space</u> endowed with the Euclidean topology and let $\mathbf{In}_{\mathbb{K}^n} : \mathbb{K}^n \to \mathbb{K}^{\infty}$ denote the canonical inclusion

$$\operatorname{In}_{\mathbb{K}^n}(x_1,\ldots,x_n)=(x_1,\ldots,x_n,0,0,\ldots)$$

The image of each inclusion is

$$\operatorname{Im}(\operatorname{In}_{\mathbb{K}^n}) = \{(x_1, \dots, x_n, 0, 0, \dots) : x_1, \dots, x_n \in \mathbb{K}\} = \mathbb{K}^n \times \{(0, 0, \dots)\}$$

and consequently,

$$\mathbb{K}^{\infty} = igcup_{n \in \mathbb{N}} \mathrm{Im}(\mathrm{In}_{\mathbb{K}^n}).$$

This family of inclusions gives \mathbb{K}^{∞} a <u>final topology</u> τ^{∞} , defined to be the <u>finest topology</u> on \mathbb{K}^{∞} such that all the inclusions are continuous (an example of a <u>coherent topology</u>). With this topology, \mathbb{K}^{∞} becomes a <u>complete</u>, <u>Hausdorff</u>, <u>locally convex</u>, <u>sequential</u>, <u>topological vector space</u> that is <u>not Fréchet-Urysohn</u>. The topology τ^{∞} is also <u>strictly finer</u> than the <u>subspace topology</u> induced on \mathbb{K}^{∞} by $\mathbb{K}^{\mathbb{N}}$.

Convergence in τ^{∞} has a natural description: if $v \in \mathbb{K}^{\infty}$ and v_{\bullet} is a sequence in \mathbb{K}^{∞} then $v_{\bullet} \to v$ in τ^{∞} if and only v_{\bullet} is eventually contained in a single image $\operatorname{Im}(\operatorname{In}_{\mathbb{K}^n})$ and $v_{\bullet} \to v$ under the natural topology of that image.

Often, each image $\operatorname{Im}(\operatorname{In}_{\mathbb{K}^n})$ is identified with the corresponding \mathbb{K}^n ; explicitly, the elements $(x_1,\ldots,x_n)\in\mathbb{K}^n$ and $(x_1,\ldots,x_n,0,0,0,\ldots)$ are identified. This is facilitated by the fact that the subspace topology on $\operatorname{Im}(\operatorname{In}_{\mathbb{K}^n})$, the quotient topology from the map $\operatorname{In}_{\mathbb{K}^n}$, and the Euclidean topology on \mathbb{K}^n all coincide. With this identification, $((\mathbb{K}^\infty,\tau^\infty),(\operatorname{In}_{\mathbb{K}^n})_{n\in\mathbb{N}})$ is the direct limit of the directed system $((\mathbb{K}^n)_{n\in\mathbb{N}},(\operatorname{In}_{\mathbb{K}^m\to\mathbb{K}^n})_{m< n\in\mathbb{N}},\mathbb{N})$, where every inclusion adds trailing zeros:

$$ext{In}_{\mathbb{K}^m o \mathbb{K}^n}(x_1, \ldots, x_m) = (x_1, \ldots, x_m, 0, \ldots, 0).$$

This shows $(\mathbb{K}^{\infty}, \tau^{\infty})$ is an LB-space.

Other sequence spaces

The space of bounded series, denote by bs, is the space of sequences \boldsymbol{x} for which

$$\sup_n \left| \sum_{i=0}^n x_i
ight| < \infty.$$

This space, when equipped with the norm

$$\|x\|_{bs}=\sup_n\left|\sum_{i=0}^nx_i
ight|,$$

is a Banach space isometrically isomorphic to ℓ^{∞} , via the linear mapping

$$(x_n)_{n\in\mathbb{N}}\mapsto \left(\sum_{i=0}^n x_i
ight)_{n\in\mathbb{N}}.$$

The subspace cs consisting of all convergent series is a subspace that goes over to the space c under this isomorphism.

The space Φ or c_{00} is defined to be the space of all infinite sequences with only a finite number of non-zero terms (sequences with finite support). This set is dense in many sequence spaces.

Properties of ℓ^p spaces and the space c_0

The space ℓ^2 is the only ℓ^p space that is a <u>Hilbert space</u>, since any norm that is induced by an <u>inner</u> product should satisfy the parallelogram law

$$\|x+y\|_p^2 + \|x-y\|_p^2 = 2\|x\|_p^2 + 2\|y\|_p^2.$$

Substituting two distinct unit vectors for x and y directly shows that the identity is not true unless p = 2.

Each ℓ^p is distinct, in that ℓ^p is a strict <u>subset</u> of ℓ^s whenever p < s; furthermore, ℓ^p is not linearly <u>isomorphic</u> to ℓ^s when $p \neq s$. In fact, by Pitt's theorem (<u>Pitt 1936</u>), every bounded linear operator from ℓ^s to ℓ^p is <u>compact</u> when p < s. No such operator can be an isomorphism; and further, it cannot be an isomorphism on any infinite-dimensional subspace of ℓ^s , and is thus said to be strictly singular.

If $1 , then the <u>(continuous) dual space</u> of <math>\ell^p$ is isometrically isomorphic to ℓ^q , where q is the <u>Hölder conjugate</u> of p: 1/p + 1/q = 1. The specific isomorphism associates to an element x of ℓ^q the functional

$$L_x(y) = \sum_n x_n y_n$$

for y in ℓ^p . Hölder's inequality implies that L_x is a bounded linear functional on ℓ^p , and in fact

$$|L_x(y)| \leq \|x\|_q \, \|y\|_p$$

so that the operator norm satisfies

$$\|L_x\|_{(\ell^p)^*} \stackrel{ ext{def}}{=} \sup_{y \in \ell^p, y
eq 0} rac{|L_x(y)|}{\|y\|_p} \leq \|x\|_q.$$

In fact, taking y to be the element of ℓ^p with

$$y_n = \left\{egin{array}{ll} 0 & ext{if } x_n = 0 \ x_n^{-1} |x_n|^q & ext{if } x_n
eq 0 \end{array}
ight.$$

gives $L_x(y) = ||x||_q$, so that in fact

$$\|L_x\|_{(\ell^p)^*} = \|x\|_q.$$

Conversely, given a bounded linear functional L on ℓ^p , the sequence defined by $x_n = L(e_n)$ lies in ℓ^q . Thus the mapping $x \mapsto L_x$ gives an isometry

$$\kappa_q:\ell^q o (\ell^p)^*.$$

The map

$$\ell^q \stackrel{\kappa_q}{\longrightarrow} (\ell^p)^* \stackrel{(\kappa_q^*)^{-1}}{\longrightarrow} (\ell^q)^{**}$$

obtained by composing κ_p with the inverse of its <u>transpose</u> coincides with the <u>canonical injection</u> of ℓ^q into its <u>double dual</u>. As a consequence ℓ^q is a <u>reflexive space</u>. By <u>abuse of notation</u>, it is typical to identify ℓ^q with the dual of ℓ^p : $(\ell^p)^* = \ell^q$. Then reflexivity is understood by the sequence of identifications $(\ell^p)^{**} = (\ell^q)^* = \ell^p$.

The space c_0 is defined as the space of all sequences converging to zero, with norm identical to $||x||_{\infty}$. It is a closed subspace of ℓ^{∞} , hence a Banach space. The <u>dual</u> of c_0 is ℓ^1 ; the dual of ℓ^1 is ℓ^{∞} . For the case of natural numbers index set, the ℓ^p and c_0 are <u>separable</u>, with the sole exception of ℓ^{∞} . The dual of ℓ^{∞} is the <u>ba</u> space.

The spaces c_0 and ℓ^p (for $1 \le p < \infty$) have a canonical unconditional <u>Schauder basis</u> $\{e_i \mid i = 1, 2,...\}$, where e_i is the sequence which is zero but for a 1 in the i^{th} entry.

The space ℓ^1 has the <u>Schur property</u>: In ℓ^1 , any sequence that is <u>weakly convergent</u> is also <u>strongly convergent</u> (<u>Schur 1921</u>). However, since the <u>weak topology</u> on infinite-dimensional spaces is strictly weaker than the <u>strong topology</u>, there are <u>nets</u> in ℓ^1 that are weak convergent but not strong convergent.

The ℓ^p spaces can be <u>embedded</u> into many <u>Banach spaces</u>. The question of whether every infinite-dimensional Banach space contains an isomorph of some ℓ^p or of c_0 , was answered negatively by <u>B. S. Tsirelson</u>'s construction of <u>Tsirelson space</u> in 1974. The dual statement, that every separable Banach space is linearly isometric to a <u>quotient space</u> of ℓ^1 , was answered in the affirmative by <u>Banach & Mazur (1933)</u>. That is, for every separable Banach space X, there exists a quotient map $Q: \ell^1 \to X$, so that X is isomorphic to ℓ^1 / $\ker Q$. In general, $\ker Q$ is not complemented in ℓ^1 , that is, there does not exist a subspace Y of ℓ^1 such that $\ell^1 = Y \oplus \ker Q$. In fact, ℓ^1 has uncountably many uncomplemented subspaces that are not isomorphic to one another (for example, take $X = \ell^p$; since there are uncountably many such X's, and since no ℓ^p is isomorphic to any other, there are thus uncountably many $\ker Q$'s).

Except for the trivial finite-dimensional case, an unusual feature of ℓ^p is that it is not <u>polynomially</u> reflexive.

ℓ^p spaces are increasing in p

For $p \in [1, \infty]$, the spaces ℓ^p are increasing in p, with the inclusion operator being continuous: for $1 \le p < q \le \infty$, one has $\|x\|_q \le \|x\|_p$. Indeed, the inequality is homogeneous in the x_i , so it is sufficient to prove it under the assumption that $\|x\|_p = 1$. In this case, we need only show that $\sum |x_i|^q \le 1$ for q > p. But if $\|x\|_p = 1$, then $|x_i| \le 1$ for all i, and then $\sum |x_i|^q \le \sum |x_i|^p = 1$.

ℓ^2 is isomorphic to all separable, infinite dimensional Hilbert spaces

Let H be a <u>separable Hilbert space</u>. Every orthogonal set in H is at most countable (i.e. has finite dimension or \aleph_0). The following two items are related:

• If H is infinite dimensional, then it is isomorphic to ℓ^2

• If $\dim(H) = N$, then H is isomorphic to \mathbb{C}^N

Properties of l¹ spaces

A sequence of elements in ℓ^1 converges in the space of complex sequences ℓ^1 if and only if it converges weakly in this space. If K is a subset of this space, then the following are equivalent:

- 1. *K* is compact;
- 2. K is weakly compact;
- 3. K is bounded, closed, and equismall at infinity.

Here K being equismall at infinity means that for every $\varepsilon > 0$, there exists a natural number $n_{\varepsilon} \geq 0$ such that $\sum_{n=n_{\varepsilon}}^{\infty} |s_n| < \varepsilon$ for all $s = (s_n)_{n=1}^{\infty} \in K$.

See also

- L^p space
- Tsirelson space
- beta-dual space
- Orlicz sequence space
- Hilbert space

References

- 1. Jarchow 1981, pp. 129-130.
- 2. Debnath, Lokenath; Mikusinski, Piotr (2005). *Hilbert Spaces with Applications*. Elsevier. pp. 120–121. ISBN 978-0-12-2084386.
- 3. Trèves 2006, pp. 451-458.

Bibliography

- Banach, Stefan; Mazur, S. (1933), "Zur Theorie der linearen Dimension", Studia Mathematica, 4: 100–112.
- Dunford, Nelson; Schwartz, Jacob T. (1958), Linear operators, volume I, Wiley-Interscience.
- Jarchow, Hans (1981). *Locally convex spaces*. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342 (https://search.worldcat.org/oclc/8210342).
- Pitt, H.R. (1936), "A note on bilinear forms", *J. London Math. Soc.*, **11** (3): 174–180, doi:10.1112/jlms/s1-11.3.174 (https://doi.org/10.1112%2Fjlms%2Fs1-11.3.174).
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666.
 OCLC 144216834 (https://search.worldcat.org/oclc/144216834).
- Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135 (https://search.worldcat.org/oclc/840278135).

- Schur, J. (1921), "Über lineare Transformationen in der Theorie der unendlichen Reihen", *Journal für die reine und angewandte Mathematik*, **151**: 79–111, doi:10.1515/crll.1921.151.79 (https://doi.org/10.1515%2Fcrll.1921.151.79).
- Trèves, François (2006) [1967]. *Topological Vector Spaces, Distributions and Kernels*. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322 (https://search.worldcat.org/oclc/853623322).

Retrieved from "https://en.wikipedia.org/w/index.php?title=Sequence_space&oldid=1209790551"