Foreword

Usage

• Notes are presented in two columns: main notes on the left, and sidenotes on the right. Main notes will have a larger margin.

• The following is the color code for the notes:

Blue Definitions

Red Important points

Yellow Points to watch out for / comment for incompletion

Green External definitions, theorems, etc.

Light Blue Regular highlighting
Brown Secondary highlighting

• The following is the color code for boxes, that begin and end with a line of the same color:

Blue Definitions
Red Warning

Yellow Notes, remarks, etc.

Brown Proofs

Magenta Theorems, Propositions, Lemmas, etc.

Hyperlinks are underlined in magenta. If your PDF reader supports it, you can follow the links to either be redirected to an external website, or a theorem, definition, etc., in the same document.
Note that this is only reliable if you have the full set of notes as a single document, which you can find on:

https://japorized.github.io/TeX_notes

17 Lecture 17 Jun 08 2018

17.1 *Group Action (Continued 2)*

17.1.1 Group Action (Continued 2)

Note (Recall Theorem 46)

Let G act on a finite set $X \neq \emptyset$. Let¹

$$X_f = \{x \in X : a \cdot x = x, a \in G\}$$

Let $G \cdot x_1, G \cdot x_2, ..., G \cdot x_n$ be distinct nonsingleton orbits (ie. $|G \cdot x_i| > 1$). Then

$$|X| = |X_f| + \sum_{i=1}^n [G:S(x_i)].$$

Example 17.1.1 (Conjugacy Class & Centralizer)

Let G be a finite group acting on itself by conjugation. In the context of Theorem 46, we have that

$$X = G$$

 $G_f = \{x \in G : gxg^{-1} = x, g \in G\}$
 $= \{x \in G : gx = xg, g \in G\} = Z(G),$

where we recall that Z(G) is the center of G. Now for any $x \in G$, we have

$$G \cdot x = \{gxg^{-1} : g \in G\},$$

which is known as the conjugacy class of x. We also have

$$S(x) = \{g \in G : gxg^{-1} = x\} = \{g \in G : gx = xg\} = C_G(x),$$

 $^{\scriptscriptstyle \mathrm{I}}$ X_f is also called the set of elements of X that are fixed by the action of G.

which is called the centralizer of x.

Putting the above example with Theorem 46, we have the following corollary.

Corollary 47 (Class Equation)

Let G be a finite group and $\{gx_1g^{-1}:g\in G\}$, ..., $\{gx_ng^{-1}:g\in G\}$ denote the distinct nonsingleton conjugacy classes. Then

$$|G| = |Z(G)| + \sum_{i=1}^{n} [G : C_G(x_i)].$$

Lemma 48

Let G be a group of order o^m , where p prime and $m \in \mathbb{N}$, which acts on a finite set X. Let

$$X_f = \{x \in X : a \cdot x = x, a \in G\}.$$

Then we have

$$|X| \equiv \left| X_f \right| \mod p$$

Proof

By the Orbit Decomposition Theorem, we have that

$$|X| = \left| X_f \right| + \sum_{i=1}^n [G:S(x_i)],$$

where $[G:S(x_i)] > 1$ for $1 \le i \le n$. For any x_i , by Lagrange's Theorem, $[G:S(x_i)] \mid |G| = p^m$. Since $[G:S(x_i)] > 1$, we have, by the Fundamental Theorem of Arithmetic, that $[G:S(x_i)]$ must be a multiple of p, i.e. p divides $[G:S(x_i)]$, for all i. Therefore, $p \mid (|X| - |X_f|)$, i.e.

$$|X| \equiv \left| X_f \right| \mod p,$$

as required.

RECALL Lagrange's Theorem: If G is finite and $g \in G$, then

$$o(g) \mid |G|$$
.

An interesting question to ask here is: Is the converse true? I.e., given a group G with an integer m such that $m \mid |G|$, does G contain an element of order m?

Consider K_4 , the Klein 4-group. Note that all elements of K_4 have order at most 2, but $4|K_4| = 4$.

Now if *m* is some prime, is the converse still true?

Theorem 49 (Cauchy)

Let p be a prime, G be a finite group. If $p \mid |G|$, then G contains an element of order p.

Proof (McKay)

Let |G| = n. Suppose $p \mid n$. Let

$$X = \{(a_1, ..., a_p) : a_i \in G, a_1 ... a_p = 1\}.$$

Note that $X \neq \emptyset$ *, since* $(1,...,1) \in X$ *(so the proof is not vacuous). Take* any $a_1, ..., a_{p-1} \in G$, then a_p is uniquely determined, i.e.

$$a_p = (a_1 \dots a_{p-1})^{-1}.$$

Now for each a_i , we have n choices, thus $|X| = n^{p-1}$.

Let $\mathbb{Z}_p = (\mathbb{Z}_p, +)$ act on X by "cycling", i.e. $\forall k \in \mathbb{Z}_p$,

$$k \cdot (a_1, a_2, ..., a_p) = (a_{k+1}, a_{k+2}, ..., a_p, a_1, ..., a_k).$$

³ Note that

³ We want to use Theorem 46 from here.

$$(a_1,...,a_p) \in X_f \iff every \ cycled \ shift \ of \ (a_1,...,a_p) \ is \ itself$$
 i.e. all $\iff a_1 = a_2 = ... = a_p \ and \ a_1a_2...a_p = 1$ of the components of the p-tuple are the same. Now if $(a_1,...,a_p)$ has at least 2 distinct components, then its orbits must have p elements. In other words, for some $r \in \mathbb{N}$, for each $1 \le i \le r$, we have that $[G:S(x_i)] = p$.

² Convince yourself why this is true.

Then, by the Orbit Decomposition Theorem,

$$n^{p-1} = |X| = \left| X_f \right| + \sum_{i=1}^r [G : S(x_i)]$$
$$\left| X_f \right| = n^{p-1} - rp.$$

We observe that $|X_f|$ is indeed divisible by p and is non-zero, since $(1,...,1) \in X_f$. Therefore, there exists some $a \neq 1 \in G$, such that $(a,...,a) \in X_f$, i.e. $a^p = 1$. We know that p is the smallest power by construction, and therefore o(a) = p as required.