

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI TRƯỜNG CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

BÀI 7 KHÁI NIỆM BỘ LỌC SỐ

TS. Nguyễn Hồng Quang PGS. TS. Trịnh Văn Loan TS. Đoàn Phong Tùng Khoa Kỹ thuật máy tính

■ Nội dung bài học

- 1. Các đặc điểm cơ bản của hệ thống số biểu diễn bởi PT-SP-TT-HSH.
- 2. Khái niệm bộ lọc số.

■ Mục tiêu bài học

Sau khi học xong bài này, các em sẽ nắm được những vấn đề sau:

- Các đặc điểm cơ bản của hệ thống số
- Khái niệm và nguyên lý cơ bản của bộ lọc số.

1. Hệ thống số biểu diễn bằng PT-SP-TT-HSH

$$y(n) = h(n) * x(n) = \sum_{m=-\infty}^{\infty} h(m)x(n-m) = x(n) * h(n) = \sum_{m=-\infty}^{\infty} x(m)h(n-m)$$

- h(n): đáp ứng xung của hệ thống
- Phương trình sai phân:

$$\sum_{k=0}^{n} a_k y(n-k) = \sum_{r=0}^{M} b_r x(n-r)$$

• Hàm truyền H(z):

$$H(Z) = ZT[h(n)] = \frac{Y(Z)}{X(Z)} = \frac{\sum_{r=0}^{M} b_r Z^{-r}}{\sum_{k=0}^{N} a_k Z^{-k}}$$

• Đáp ứng tần số: $H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{\sum_{r=0}^{M} b_r e^{-J\omega r}}{\sum_{k=0}^{N} a_k e^{-J\omega k}} \qquad Y(e^{J\omega}) = H(e^{j\omega}). X(e^{j\omega})$

Hệ thống FIR

- Phương trình sai phân: y(n) = h(0).x(n) + h(1).x(n-1) + ... + h(N).x(n-N)
- Đáp ứng xung có chiều dài hữu hạn: h(n) bằng không bên ngoài khoảng từ 0 đến N 1 $\frac{N-1}{2}$
- Hàm truyền:
 - Hàm đáp ứng tần số:
- $H(Z)=\sum_{n=0}^{N-1}h(n)Z^{-n}$ H(ω) = $\sum_{n=0}^{N-1}h(n)e^{-j\omega n}$
 - Tính nhân quả: hệ luôn nhân quả vì $h(n) = 0, \forall n < 0$
 - Tính ổn định: hệ luôn ổn định vì h(n) thoả mãn điều kiện kiểm tra tính ổn định

$$\sum_{n=-\infty}^{\infty} |h(n)| = \sum_{n=0}^{N-1} |h(n)| < \infty$$

Hệ thống IIR

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{r=0}^{M} b_r x(n-r)$$

- Đáp ứng xung h(n) có chiều dài vô hạn
- Hệ nhân quả với h(n) = 0, $\forall n < 0$ tuy nhiên tính ổn định cần phải khảo sát.

2. Khái niệm bộ lọc số

- Trong nhiều ứng dụng khác nhau, thường phải loại bỏ đi một số thành phần tần số nào đó.
- Các hệ thống như vậy được gọi là bộ lọc số.
- Ví dụ: bộ lọc nhiễu tín hiệu.

0.015

Time (sec)

0.02

0.025

0.03

IT 4172 Xử lý tín hiệu Chương 3. Bộ lọc số

0.005

0.01

Nguyên lý cơ bản của bộ lọc

- Hệ thống điều chỉnh biên độ của các thành phần tần số đầu vào thông qua đáp ứng biên độ
- Thiết kế bộ lọc số: thiết kế đáp ứng biên độ theo những tiêu chí kỹ thuật của bộ
 lọc

4. Tổng kết

- Bộ lọc số là một hệ thống số có khả năng làm suy giảm và loại bỏ các thành
 phần tần số không mong muốn trong tín hiệu vào.
- Hệ thống điều chỉnh biên độ và độ trễ của các thành phần tần số đầu vào thông qua đáp ứng biên độ và đáp ứng pha.

5. Bài tập

☐ Hãy tìm hiểu và lấy ví dụ về các bộ lọc số trong thực tế

Bài học tiếp theo. BÀI 18 CÁC BỘ LỌC SỐ LÝ TƯỚNG

Tài liệu tham khảo:

- Nguyễn Quốc Trung (2008), Xử lý tín hiệu và lọc số, Tập 1, Nhà xuất bản Khoa học và Kỹ thuật, Chương 1 Tín hiệu và hệ thống rời rạc.
- J.G. Proakis, D.G. Manolakis (2007), Digital Signal Processing, Principles, Algorithms, and Applications, 4th Ed, Prentice Hall, Chapter 1 Introduction.

Chúc các bạn học tốt!