Белорусский государственный университет

Факультет прикладной математики и информатики

Кафедра высшей математики

М.М. Васьковский

ЛЕКЦИИ

по курсу «Обыкновенные дифференциальные уравнения»

для специальности 1-31 03 07-01 прикладная информатика (программное обеспечение компьютерных систем)

ЛЕКЦИЯ 1

§1. Основные понятия теории дифференциальных уравнений

Определение. Уравнение относится к *дифференциальным*, если оно содержит неизвестную функцию и её производные или дифференциалы.

Примеры: 1)
$$x'(t) = t$$
; 2) $tdt + x(t)dx(t) = 0$; 3) $x'''(t) - x'(t) = \sin t$; 4)
$$\frac{\partial u(x,y)}{\partial x} + \frac{\partial u(x,y)}{\partial y} = 0$$
.

Определение. *Порядком* дифференциального уравнения (ДУ) называется порядок старшей производной (дифференциала), входящих в это уравнение.

Пример: 1)
$$x'''(t) + x''(t) - 2x(t) = \cos t$$
 - ДУ 3 порядка; 2) $\frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} = 0$ - ДУ 2 порядка.

Определение. ДУ называется *обыкновенным* (OДУ), если неизвестная функция зависит от одного аргумента. Если неизвестная функция зависит от нескольких аргументов, то такое ДУ называется ДУ c частными производными (ДУЧП).

Пример: 1)
$$x'(t) = t$$
 - ОДУ; 2) $\frac{\partial u(x,y)}{\partial x} + \frac{\partial u(x,y)}{\partial y} = 0$ - ДУЧП.

Общий вид ОДУ:

 $F(t,x(t),x'(t),...,x^{(n)}(t))=0$ (1.1), где F - заданная функция.

Уравнение (1.1) может быть записано, как

$$G(t, dt, dx(t), d^2x(t), ..., d^nx(t)) = 0 \ (1.1').$$

Пример: уравнение t + x'(t) + x''(t) = 0 можно записать следующим образом: $t(dt)^2 + dx(t) \cdot dt + d^2x(t) = 0$.

Определение. Решением ОДУ (1.1) порядка n называется функция $x: I \to R$, заданная на связном множестве I, дифференцируемая на множестве I до порядка n включительно и обращающая уравнение (1.1) в тождество на множестве I.

Отметим, что связными множествами на числовой прямой являются промежутки [a,b], [a,b[, [a,b[, [a,b[, [a,b], [a,b[, [a,b], [a,b],

Пример: $x'(t) = -x^2(t)$. 1) функция $x_1(t) = 1/t$, $t \neq 0$, не является решением ОДУ, так как она задана на несвязном множестве; 2) каждая из функций $x_2(t) = 1/t$, t > 0, $x_3(t) = 1/t$, t < 0, $x_4(t) = 1/t$, $t \in [1,2]$, является решением ОДУ. При этом решение $x_4(t)$ является сужением решения $x_2(t)$.

Определение. Решение $x_1(t)$, $t \in I$, ОДУ (1.1) называется *сужением* решения $x_2(t)$, $t \in J$, ОДУ (1.1), если $I \subseteq J$ и $x_1(t) = x_2(t)$ для любого $t \in I$. Если решение x(t) ОДУ (1.1) не является сужением ни одного решения этого уравнения, отличного от решения x(t), то решение x(t) называется *непродолжимым*.

Определение. Совокупность решений ОДУ (1.1), заданную формулой, содержащей n существенных произвольных постоянных, называют *общим решением* (*OP*) уравнения (1.1). Решение уравнения (1.1), полученное из *OP* при конкретных значениях произвольных постоянных, называют *частным решением* (*ЧP*) уравнения (1.1). Совокупность всех решений уравнения (1.1) называют *полным решением* (*ПP*).

Пример: $x(t) = C_1 \cos t + C_2 \sin t$ - OP уравнения x''(t) + x(t) = 0.

Пример: $x'(t) = 3x^{2/3}(t)$; $x(t) = (t+C)^3$ - OP; $x(t) \equiv 0$ - не является ЧР.

Пример: $x'(t) = e^t$; $x(t) = e^t + C - \Pi P$.

Определение. Если дополнительные условия на решение относятся к одному и тому же значению аргумента, то такие дополнительные условия называются *начальными условиями*. Если дополнительные условия на решение относятся к различным значениям аргумента — *граничными условиями*, те и другие вместе называются *краевыми условиями*.

Определение. Начальной задачей будем называть ДУ вместе с начальными условиями на неизвестную функцию. Граничной задачей будем называть ДУ вместе с граничными условиями на неизвестную функцию. Аналогично для краевой задачи.

Определение. Если начальные условия для неизвестной функции ОДУ (1.1) состоят в задании значения функции и её первых (n-1) производных в некоторой точке, то такие начальные условия называются *условиями Коши*, и соответствующая начальная задача – *задачей Коши*:

$$\begin{cases} F(t, x(t), x'(t), ..., x^{(n)}(t)) = 0, \\ x(s) = \xi_0, \\ x'(s) = \xi_1, \\ ... \\ x^{(n-1)}(s) = \xi_{n-1}. \end{cases}$$

Основной вопрос теории дифференциальных уравнений заключается в том, когда задача Коши имеет решение, и когда оно единственно.

Пример: $x'(t) = 3x^{2/3}(t)$, x(0) = 0. Данная задача Коши имеет бесконечно много решений.

Определение. График решения называется интегральной кривой.

Приведем некоторые математические модели реальных процессов, приводящие к изучению дифференциальных уравнений.

Модель 1. Материальная точка движется по прямой с ускорением a. Найти закон движения.

Введём на прямой начала отсчёта O. Обозначим через $t_0=0$ время начала движения, через x_0 начальное положение точки, через v_0 начальную скорость, через x(t) положение точки в момент времени t ($t \ge t_0$). Как известно из курса физики, x''(t)=a, скорость в момент времени t равна x'(t). Получаем задачу Коши:

$$\begin{cases} x''(t) = a, \\ x(0) = x_0, \\ x'(0) = v_0. \end{cases}$$

Полное решение уравнения x''(t) = a есть $x(t) = \frac{at^2}{2} + C_1t + C_2$. Решение зада-

чи Коши:
$$x(t) = \frac{at^2}{2} + v_0 t + x_0$$
.

Модель 2. Скорость распада радиоактивного вещества пропорциональна имеющемуся количеству вещества. Определить количество вещества в момент времени t, если в начальный момент $t_0=0$ количество вещества составляло x_0 , а период полураспада равен T.

Обозначим через x(t) количество вещества в момент времени t. Обозначим через β отношение скорости распада x'(t) к количеству вещества x(t), то есть $x'(t) = \beta x(t)$. Отсюда получаем, что $x(t) = ce^{\beta t}$. Подставляя начальное значение, получим, что $c = x_0$, то есть $x(t) = x_0 e^{\beta t}$. Поскольку $\frac{x_0}{2} = x_0 e^{\beta T}$, то $\beta = -\frac{\ln 2}{T}$. Окончательно получаем, что $x(t) = x_0 \cdot 2^{-t/T}$.

Оператор дифференцирования:

$$D = \frac{d}{dt}$$
, $Dx = \frac{dx}{dt} = x' = x'$.

Свойства оператора дифференцирования:

- 1) D линейный оператор, то есть $D(\alpha x + \beta y) = \alpha Dx + \beta Dy$;
- 2) $D^{0}x \equiv x$;
- 3) $D^n D^m = D^{n+m} = D^m D^n$.

§2. Простейшие ДУ 1-го порядка (П-1)

$$Dx = f(t), t \in I, (2.1)$$

$$x(t) = \int f(t)dt = \int_0^t f(\tau)d\tau + C$$
, $s \in I$, - полное решение уравнения (2.1).

Рассмотрим задачу Коши для уравнения (2.1):

$$Dx = f(t), \ t \in I,$$

$$x(s) = \xi, s \in I.$$
 (2.2)

Теорема (об однозначной разрешимости задачи Коши для П-1).

Пусть функция f(t) непрерывна на I, тогда для любого $s \in I$ задача Коши

(2.2) имеет единственное решение
$$x(t) = \xi + \int_{s}^{t} f(\tau)d\tau$$
.

Доказательство.
$$x(t) = \int_{s}^{t} f(\tau)d\tau + C$$
, отсюда $\xi = x(s) = C$.

Рассмотрим уравнение Π -n:

$$D^n x = f(t), t \in I.$$
 (2.3)

Интегрируя уравнение (2.3), получаем $D^{n-1}x = C_1 + \int_1^t f(\tau)d\tau$.

Далее
$$D^{n-2}x = C_2 + C_1t + \int\limits_{s}^{t}d\sigma\int\limits_{s}^{\sigma}f(\tau)d\tau$$
 .

Поэтому
$$x(t) = C_0 + C_1 t + ... + C_{n-1} t^{n-1} + \int_{s}^{t} \int_{s}^{\tau_1} ... \int_{s}^{\tau_{n-1}} f(\tau_n) d\tau_n ... d\tau_2 d\tau_1$$

Докажем, что
$$\int_{s}^{t} \int_{s}^{\tau_{n-1}} f(\tau_n) d\tau_n ... d\tau_2 d\tau_1 = \int_{s}^{t} \frac{(t-\tau)^{n-1}}{(n-1)!} f(\tau) d\tau$$
.

При n = 1 формула очевидна. Пусть она верна при n = k, то есть

$$\int_{s}^{t} \int_{s}^{\tau_{1}} \dots \int_{s}^{\tau_{k-1}} f(\tau_{k}) d\tau_{k} \dots d\tau_{2} d\tau_{1} = \int_{s}^{t} \frac{(t-\tau)^{k-1}}{(k-1)!} f(\tau) d\tau.$$

Докажем, что

$$\int_{s}^{t} \int_{s}^{\tau_{1}} ... \int_{s}^{\tau_{k-1}} \int_{s}^{\tau_{k}} f(\tau_{k+1}) d\tau_{k+1} d\tau_{k} ... d\tau_{2} d\tau_{1} = \int_{s}^{t} \frac{(t-\tau)^{k}}{k!} f(\tau) d\tau.$$

Достаточно проверить, что

$$\int_{s}^{t} \int_{s}^{\tau_{1}} \frac{(\tau_{1} - \tau)^{k-1}}{(k-1)!} f(\tau) d\tau d\tau_{1} = \int_{s}^{t} \frac{(t-\tau)^{k}}{k!} f(\tau) d\tau.$$

Изменим порядок интегрирования в интеграле левой части:

$$\int_{s}^{t} \int_{s}^{\tau_{1}} \frac{(\tau_{1} - \tau)^{k-1}}{(k-1)!} f(\tau) d\tau d\tau_{1} = \int_{s}^{t} d\tau f(\tau) \int_{\tau}^{t} \frac{(\tau_{1} - \tau)^{k-1}}{(k-1)!} d\tau_{1} = \int_{s}^{t} f(\tau) \frac{(t-\tau)^{k}}{k!} d\tau.$$

Таким образом, полное решение Π -n (2.3) задается формулой:

$$x(t) = C_0 + C_1 t + \dots + C_{n-1} t^{n-1} + \int_{0}^{t} \frac{(t-\tau)^{n-1}}{(n-1)!} f(\tau) d\tau.$$

ЛЕКЦИЯ 2

§3. Комплекснозначные решения простейших уравнений

Определение. Комлекснозначной называется функция $h: R \to C$. Для любой комплекснозначной функции $h: R \to C$ существуют единственные функции $f,g: R \to R$, такие, что h(t) = f(t) + ig(t).

Обозначают $f(t) = \operatorname{Re} h(t), g(t) = \operatorname{Im} h(t).$

 $\deg P_2 = \deg P + 1$.

Если функции $f,g:R\to R$ дифференцируемы на промежутке I, то функция h(t)=f(t)+ig(t) также дифференцируема на I и Dh(t)=Df(t)+iDg(t).

Если функции $f,g:R\to R$ интегрируемы по Риману на промежутке I , то функция h(t)=f(t)+ig(t) также интегрируема по Риману на I и $\int\limits_I h(t)dt=\int\limits_I f(t)dt+i\int\limits_I g(t)dt$.

Пусть $v \in C$, $v = \lambda + i\mu$, тогда $e^{vt} = e^{\lambda t}(\cos \mu t + i\sin \mu t)$ и $D(e^{vt}) = D(e^{\lambda t}\cos \mu t) + iD(e^{\lambda t}\sin \mu t) =$

 $D(e^{\lambda t} = D(e^{\lambda t} \cos \mu t) + iD(e^{\lambda t} \sin \mu t) =$ $= (\lambda e^{\lambda t} \cos \mu t - \mu e^{\lambda t} \sin \mu t) + i(\lambda e^{\lambda t} \sin \mu t + \mu e^{\lambda t} \cos \mu t) = (\lambda + i\mu)e^{\lambda t}(\cos \mu t + i\sin \mu t)$ $= ve^{vt}.$

Рассмотрим П-1: Dz = h(t), $t \in I$ (3.1), где $z: I \to C$, $h: I \to C$.

Решением уравнения (3.1) на промежутке I называется комплекснозначная функция z(t), дифференцируемая на I и обращающая уравнение (3.1) в тождество на I.

Полное решение на I уравнения (3.1) задаётся формулой $z(t) = C + \int\limits_{s}^{t} h(\tau) d\tau$ (3.2), где C - произвольная постоянная, $s \in I$.

Квазиполиномы

Пусть
$$P(t) = \sum_{k=0}^{n} c_k t^k$$
, $c_k = a_k + ib_k$, $a_k, b_k \in R$, $t \in R$, $c_n \neq 0$.
$$P(t) = R(t) + iQ(t), \ R(t) = \operatorname{Re} P(t), \ Q(t) = \operatorname{Im} P(t).$$
 Если $D(P(t)) = P_1(t)$, то $\deg P_1 = \deg P - 1$; если $\int_s^t P(\tau) d\tau = P_2(t)$, то

Определение. Квазиполиномом называется функция вида $R(t) = \sum_{l=1}^m P_l(t) \mathrm{e}^{v_l t}$, где $P_l(t)$ ($l = \overline{1,m}$) — комлекснозначные полиномы, v_l ($l = \overline{1,m}$) — попарно различные комплексные числа.

Если $v \neq 0$, то

$$D(P(t)e^{vt}) = e^{vt}(DP(t) + vP(t)) = Q(t)e^{vt} \implies \deg Q = \deg P,$$

$$\int_{s}^{t} P(\tau) e^{v\tau} d\tau = P(\tau) \frac{e^{v\tau}}{v} \bigg|_{s}^{t} - \frac{1}{v} \int_{s}^{t} DP(\tau) e^{v\tau} d\tau = \dots = Q(t) e^{vt} + c \implies \deg Q = \deg P.$$

Теорема. (критерий совпадения квазиполиномов).

Квазиполиномы

$$h_1(t) = \sum_{j=1}^m P_j(t) e^{v_j t} = \sum_{j=1}^m \left(\sum_{k=0}^{n_j} p_{k,j} t^k \right) e^{v_j t} \quad \text{if} \quad h_2(t) = \sum_{j=1}^m Q_j(t) e^{v_j t} = \sum_{j=1}^m \left(\sum_{k=0}^{n_j} q_{k,j} t^k \right) e^{v_j t}$$

тождественно равны тогда и только тогда, когда $p_{k,j}=q_{k,j}$ для любых $j=\overline{1,m}\,,\;k=\overline{0,n_j}\,.$

Доказательство. Достаточно убедиться, что $\sum_{j=1}^{m} P_{j}(t) e^{v_{j}t} \equiv 0 \iff P_{j}(t) \equiv 0$

 $\forall j=\overline{1,m}$. Если m=1, то $P(t)\mathrm{e}^{vt}\equiv 0 \Leftrightarrow P(t)\equiv 0$. Если m=2, то имеем $P_1(t)\mathrm{e}^{v_1t}+P_2(t)\mathrm{e}^{v_2t}\equiv 0$, $v_1\neq v_2$. Отсюда получаем, что $P_1(t)+P_2(t)\mathrm{e}^{(v_2-v_1)t}\equiv 0$. Продифференцировав последнее тождество $\deg P_1+1$ раз, получим, что $Q_2(t)\mathrm{e}^{(v_2-v_1)t}\equiv 0$, где $\deg Q_2=\deg P_2$. Следовательно, $Q_2\equiv 0$ и $P_2\equiv 0$. Случай m>2 рассматривается аналогично. \blacksquare

Простейшие уравнения с квазиполиномами

Рассмотрим уравнение $Dz = h(t), t \in I$, (3.3), где $h(t) = P_0(t) + \sum_{j=1}^m P_j(t) \mathrm{e}^{v_j t}$, P_0, P_j - комлекснозначные полиномы, v_j ($j = \overline{1,m}$) – попарно различные ненулевые комплексные числа.

Лемма 1. Пусть $z_1(t),...,z_r(t)$ - решения уравнений $Dz=h_1(t),...,Dz=h_r(t)$, тогда функция $z(t)=\sum_{k=1}^r z_k(t)$ является решением уравнения Dz=h(t), где $h(t)=\sum_{k=1}^r h_k(t)$.

Доказательство. $Dz_k(t) = h_k(t), \ k = \overline{1,r}$, тогда

$$Dz(t) = D\left(\sum_{k=1}^{r} z_k(t)\right) = \sum_{k=1}^{r} Dz_k(t) = \sum_{k=1}^{r} h_k(t) = h(t). \blacksquare$$

Лемма 2. Полное комплекснозначное решение на I уравнения $Dz = P_0(t)$ определяется по формуле $z(t) = C + tQ_0(t)$, где C - комплексная произвольная

постоянная, $Q_0(t)$ - комплекснозначный многочлен, $\deg Q_0 = \deg P_0$ и коэффициенты многочлена Q_0 однозначно определяются коэффициентами многочлена P_0 .

Доказательство. Пусть $P_0(t) = \sum_{k=0}^n a_k t^k$, $a_k \in C$, $a_n \neq 0$, тогда

$$z(t) = C_1 + \int_{s}^{t} P_0(\tau) d\tau = C_2 + \sum_{k=1}^{n+1} \frac{a_{k-1}}{k} t^k = C_2 + t \sum_{k=0}^{n} \frac{a_k}{k+1} t^k = C_2 + t Q_0(t). \blacksquare$$

Лемма 3. Полное комплекснозначное решение на I уравнения $Dz = P(t)e^{vt}$ ($v \neq 0$) определяется по формуле $z(t) = C + Q(t)e^{vt}$, где C - комплексная произвольная постоянная, Q(t) - комплекснозначный многочлен, $\deg Q = \deg P$ и коэффициенты многочлена Q однозначно определяются коэффициентами многочлена P.

Доказательство.
$$z(t) = C_1 + \int_{s}^{t} P(\tau) e^{v\tau} d\tau = C_2 Q(t) e^{vt}$$
.

Теорема. Полное комплекснозначное решение на I уравнения (3.3) определяется по формуле $z(t) = C + tQ_0(t) + \sum_{j=1}^m Q_j(t) \mathrm{e}^{v_j t}$, где C - комплексная произвольная постоянная, Q_j ($j = \overline{0,m}$) — комплекснозначные полиномы, $\deg Q_j = \deg P_j \ \forall \ j = \overline{0,m}$, коэффициенты многочлена Q_j однозначно определяются коэффициентами многочлена $P_j \ \forall \ j = \overline{0,m}$.

Доказательство. Вытекает из лемм 1 - 3.

§4. Стационарные линейные дифференциальные уравнения первого порядка (СтЛУ-1)

Уравнение $D^nx+p_{n-1}(t)D^{n-1}x+...+p_1(t)Dx+p_0(t)x=f(t)$, $t\in I$, (4.1), где $p_j(t),f(t)$ - известные функции, называется линейным дифференциальным уравнением порядка n.

Дифференциальный оператор

$$L_n = D^n + p_{n-1}(t)D^{n-1} + \dots + p_1(t)D + p_0(t)D^0$$

является линейным, то есть $L_n(\alpha x(t) + \beta y(t)) = \alpha L_n x(t) + \beta L_n y(t)$ для любых $\alpha, \beta \in C$ и любых дифференцируемых на I функций x(t), y(t).

Если $f(t) \equiv 0$, то уравнение (4.1) называется линейным однородным уравнением порядка n.

Если $p_k(t) \equiv a_k \in C$, $\forall k = \overline{0, n-1}$, то уравнение (4.1) называется стационарным линейным уравнением порядка n (СтЛУ-n).

СтЛУ-1

Рассмотрим СтЛУ-1: Dz - vz = h(t), $t \in I$, (4.2), где $v \in C$ - заданное число. $L_1 = D - vD^0$, $L_1z = h(t)$.

Лемма. $L_1 z = \mathrm{e}^{vt} D(\mathrm{e}^{-vt} z)$. Доказательство. $\mathrm{e}^{vt} D(\mathrm{e}^{-vt} z) = \mathrm{e}^{vt} (\mathrm{e}^{-vt} Dz - v \mathrm{e}^{-vt} z) = Dz - vz = L_1 z$.

Таким образом, $L_1z=h(t) \iff \mathrm{e}^{vt}D(\mathrm{e}^{-vt}z)=h(t) \iff D(\mathrm{e}^{-vt}z)=\mathrm{e}^{-vt}h(t)$. Обозначим $y=\mathrm{e}^{-vt}z$, тогда $Dy=\mathrm{e}^{-vt}h(t)$. Отсюда находим, что $y(t)=C+\int\limits_s^t\mathrm{e}^{-v\tau}h(\tau)d\tau$, где C - произвольная комплексная постоянная, $s\in I$. Окончательно получаем, что $z(t)=C\mathrm{e}^{vt}+\int\limits_s^t\mathrm{e}^{v(t-\tau)}h(\tau)d\tau$ - полное решение уравнения (4.2).

Теорема. (ТОР для СтЛУ-1).

Пусть функция h(t) непрерывна на I , $v \in C$, тогда для любых $s \in I$, $\xi \in C$ задача Коши $\begin{cases} Dz - vz = h(t), t \in I, \\ z(s) = \xi, \end{cases}$ (4.3) имеет единственное решение на I ,

определяемое формулой $z(t) = \xi e^{v(t-s)} + \int_{-\infty}^{t} e^{v(t-\tau)} h(\tau) d\tau$.

Доказательство. Полное решение на I уравнения $Dz - vz = h(t), t \in I$, задается формулой $z(t) = C\mathrm{e}^{vt} + \int\limits_s^t \mathrm{e}^{v(t-\tau)}h(\tau)d\tau$. Далее $\xi = z(s) = C\mathrm{e}^{vs}$, следовательно, $C = \xi\mathrm{e}^{-vs}$. Поэтому $z(t) = \xi\mathrm{e}^{v(t-s)} + \int\limits_s^t \mathrm{e}^{v(t-\tau)}h(\tau)d\tau$ - единственное решение задачи Коши (4.3). \blacksquare

Рассмотрим случай, когда правая часть СтЛУ-1 – квазиполином:

Dz - vz = h(t), $t \in I$ (4.4), где $h(t) = P_0(t)e^{vt} + \sum_{j=1}^m P_j(t)e^{v_jt}$, P_0, P_j - комлексно-

значные полиномы, v_j $(j=\overline{1,m})$ — попарно различные комплексные числа, отличные от v .

Так как $Dz - vz = e^{vt}D(e^{-vt}z)$, то

$$Dz - vz = h(t) \iff D(e^{-vt}z) = P_0(t) + \sum_{i=1}^m P_i(t)e^{(v_i - v)t}.$$

Поэтому
$$e^{-vt}z = C + tQ_0(t) + \sum_{j=1}^m Q_j(t)e^{(v_j-v)t}$$
,

$$z(t) = C\mathrm{e}^{vt} + tQ_0(t)\mathrm{e}^{vt} + \sum_{j=1}^m Q_j(t)\mathrm{e}^{v_j t}$$
 (4.5), где C - комплексная произвольная

постоянная, Q_j ($j=\overline{0,m}$) — комплекснозначные полиномы, $\deg Q_j=\deg P_j$ $\forall \ j=\overline{0,m}$, коэффициенты многочлена Q_j однозначно определяются коэффициентами многочлена P_j $\forall \ j=\overline{0,m}$.

Теорема. Полное решение на I уравнения (4.4) определяется по формуле (4.5).

$\S 5$. Факторизация стационарного линейного оператора L_n

$$L_n = D^n + a_{n-1}D^{n-1} + \ldots + a_1D + a_0D^0$$
 (5.1), где $a_i \in C$.

Уравнение $v^n + a_{n-1}v^{n-1} + ... + a_1v + a_0 = 0$ (5.2) называется характеристическим уравнением оператора (5.1).

Рассмотрим случай n=2: $L_2=D^2+a_1D+a_0D^0$. (5.3)

Рассмотрим характеристическое уравнение $v^2 + a_1 v + a_0 = 0$ (5.4) оператора (5.3).

Пусть v_1, v_2 - корни уравнения (5.4). Согласно теореме Виета: $v_1 + v_2 = -a_1$, $v_1 v_2 = a_0$.

$$v^2 + a_1v + a_0 = (v - v_1)(v - v_2)$$
.

Докажем, что $L_2 = (D - v_1 D^0)(D - v_2 D^0)$.

Отметим, что два линейных оператора A и B называются равными, если их области определения совпадают: dom(A) = dom(B) и Ax = Bx для любого $x \in dom(A)$.

Очевидно, что $dom(L_2)$ и $dom((D-v_1D^0)(D-v_2D^0))$ совпадают и образуют множество функций дифференцируемых на I до второго порядка. Кроме того,

$$L_2 x = D^2 x + a_1 Dx + a_0 x = D^2 x - (v_1 + v_2) Dx + v_1 v_2 x$$
,

$$(D - v_1 D^0)(D - v_2 D^0)x = (D - v_1 D^0)(Dx - v_2 x) = D^2 x - v_2 Dx - v_1 Dx + v_1 v_2 x = L_2 x.$$

Рассмотрим характеристическое уравнение (5.2) оператора (5.1):

$$v^{n} + a_{n-1}v^{n-1} + ... + a_{1}v + a_{0} = 0$$
. (5.5)

Находим его корни $v_1,...,v_m$ с кратностями $n_1,...,n_m$, где $n_1+...+n_m=n$,

тогда
$$v^n + a_{n-1}v^{n-1} + ... + a_1v + a_0 = (v - v_1)^{n_1}...(v - v_m)^{n_m}$$

и
$$L_n = (D - v_1 D^0)^{n_1} ... (D - v_m D^0)^{n_m}$$
.

ЛЕКЦИЯ 3

§6. Построение решений однородных СТЛУ-*n*

Рассмотрим однородное СтЛУ-n: $L_n z = 0$ (6.1).

Если z = x + iy, то $L_n x = 0$ и $L_n y = 0$, поэтому действительная и мнимая части комплескнозначного решения z(t) уравнения (6.1) также являются решениями уравнения (6.1).

Рассмотрим случай n = 3.

$$L_3 z = 0 \iff D^3 z + a_2 D^2 z + a_1 Dz + a_0 z = 0$$
 (6.2).

Пусть v_1, v_2, v_3 - корни характеристического уравнения

$$v^3 + a_2 v^2 + a_1 v + a_0 = 0,$$

тогда
$$L_3 = (D - v_1 D^0)(D - v_2 D^0)(D - v_3 D^0)$$
.

Уравнение (6.2) примет следующий вид:

$$(D-v_1D^0)(D-v_2D^0)(D-v_3D^0)z=0$$
.

Обозначим
$$\omega(t) = (D - v_2 D^0)(D - v_3 D^0)z(t)$$
,

тогда получим СтЛУ-1: $(D-v_1D^0)\omega=0$, полным решением которого является семейство функций: $\omega(t)=C_1\mathrm{e}^{v_1t}$.

Поэтому уравнение (6.2) равносильно уравнению

$$(D-v_2D^0)(D-v_3D^0)z = C_1e^{v_1t}$$
.

Обозначим $u(t) = (D - v_3 D^0) z(t)$, тогда получим неоднородное СтЛУ-1:

$$(D - v_2 D^0)u = C_1 e^{v_1 t}$$
.

Случай 1: $v_1 \neq v_2$. Тогда $u(t) = C_2 e^{v_2 t} + \overline{C}_1 e^{v_1 t}$.

Случай 2: $v_1 = v_2$. Тогда $u(t) = C_2 e^{v_1 t} + t \overline{C}_1 e^{v_1 t} = (C_1 t + C_2) e^{v_1 t}$.

Рассмотрим случай 1. Имеем $(D-v_3D^0)z = C_2e^{v_2t} + C_1e^{v_1t}$.

Случай 1.1. $v_1 \neq v_2$, $v_3 \neq v_1$, $v_3 \neq v_2$. Тогда $z(t) = C_3 e^{v_3 t} + C_2 e^{v_2 t} + C_1 e^{v_1 t}$.

Случай 1.2. $v_1 \neq v_2$, $v_3 = v_1$, $v_3 \neq v_2$. Тогда $z(t) = C_2 e^{v_2 t} + (C_3 t + C_1) e^{v_1 t}$.

Случай 1.3. $v_1 \neq v_2$, $v_3 \neq v_1$, $v_3 = v_2$. Тогда $z(t) = C_1 e^{v_1 t} + (C_2 t + C_3) e^{v_2 t}$.

Рассмотрим случай 2. Имеем $(D - v_3 D^0)z = (C_1 t + C_2)e^{v_1 t}$.

Случай 2.1. $v_1 = v_2$, $v_3 \neq v_1$. Тогда $z(t) = C_3 e^{v_3 t} + (C_1 t + C_2) e^{v_1 t}$.

Случай 2.2. $v_1 = v_2 = v_3$. Тогда $z(t) = C_3 e^{v_1 t} + t(C_1 t + C_2) e^{v_1 t}$.

Таким образом, $z(t) = \sum_{k=1}^m Q_k(t) \mathrm{e}^{\nu_k t}$, где $\nu_1,...,\nu_m$ - попарно различные корни ха-

рактеристического уравнения с кратностями $n_1,...,n_m$, $Q_k(t)$ - произвольный комплекснозначный многочлен, $\deg Q_k = n_k - 1$.

12

Выпишем характеристическое уравнение для уравнения (6.1):

$$v^{n} + a_{n-1}v^{n-1} + ... + a_{1}v + a_{0} = 0$$
 (6.3).

Пусть $v_{1,2}=\lambda_1\pm i\mu_1,\ldots,\ v_{2r-1,2r}=\lambda_r\pm i\mu_r$ - пары комплексно-сопряженных корней уравнения (6.3), где корни $v_{2i-1},\ v_{2i}$ имеют кратности n_i , $i=\overline{1,r}$, и пусть v_{2r+1},\ldots,v_m - действительные корни уравнения (6.3) с кратностями n_{2r+1},\ldots,n_m . Очевидно, $2(n_1+\ldots+n_r)+n_{2r+1}+\ldots+n_m=n$.

Тогда полное комлекснозначное решение уравнения (6.1) задаётся формулой:

$$z(t) = \sum_{k=1}^{r} (Q_k(t) e^{(\lambda_k + i\mu_k)t} + R_k(t) e^{(\lambda_k - i\mu_k)t}) + \sum_{j=2r+1}^{m} T_j(t) e^{v_j t}, \quad \text{где} \quad Q_k(t), R_k(t), \quad k = \overline{1, r},$$

 $T_{j}(t), j = \overline{2r+1,m}$ - произвольные комплекснозначные многочлены соответственно степеней n_{k}, n_{k}, n_{j} .

Найдем действительную часть x(t) комплекснозначного решения z(t).

Пусть
$$Q_k(t) = A_k(t) + iB_k(t)$$
, $R_k(t) = C_k(t) + iD_k(t)$, тогда

$$\operatorname{Re}(Q_{k}(t)e^{v_{k}t}+R_{k}(t)e^{\overline{v}_{k}t})=$$

$$=\operatorname{Re}\left(e^{\lambda_k t}\left((A_k+iB_k)(\cos\mu_k t+i\sin\mu_k t)+(C_k+iD_k)(\cos\mu_k t-i\sin\mu_k t)\right)\right)=$$

$$= e^{\lambda_k t} \left((A_k + C_k) \cos \mu_k t - (B_k + D_k) \sin \mu_k t \right) = e^{\lambda_k t} \left(M_k(t) \cos \mu_k t + N_k(t) \sin \mu_k t \right),$$

где $M_k(t)$, $N_k(t)$ - произвольные многочлены с действительными коэффициентами степеней n_k-1 .

Пусть
$$T_i(t) = E_i(t) + iF_i(t)$$
, тогда

$$\operatorname{Re}(T_{j}(t)e^{v_{j}t}) = E_{j}(t)e^{v_{j}t}.$$

Таким образом, общее действительнозначное решение уравнения (6.1) задаётся формулой:

$$x(t) = \sum_{k=1}^{r} (M_k(t)\cos\mu_k t + N_k(t)\sin\mu_k t)e^{\lambda_k t} + \sum_{j=2r+1}^{m} P_j(t)e^{V_j t},$$

где $M_k(t), N_k(t), \ k=\overline{1,r}, \ P_j(t), \ j=\overline{2r+1,m},$ - произвольные действительные многочлены, $\deg M_k=\deg N_k=n_k-1,\ \deg P_j=n_j-1.$

Рассмотрим задачу Коши:

$$L_n z = 0$$
, $t \in R$,

$$D^k z(s) = 0, k = \overline{0, n-1}$$
 (6.4), где $s \in R$ - фиксированная точка.

При построении ОР каждый раз вводили функцию, для которой получали СтЛУ-1 с непрерывной неоднородностью (квазимногочленом). На основании ТОР для СтЛУ-1 каждая задача Коши для СтЛУ-1 имеет единственное решение. Следовательно, задача Коши (6.4) также имеет единственное решение. Очевидно, этим решением является функция $z(t) \equiv 0$.

§7. Принцип суперпозиции

Рассмотрим однородное СтЛУ-n: $L_n x = 0$ (7.1).

Теорема. Пусть $x_1(t), x_2(t)$ - решения уравнения (7.1), тогда функция $x(t) = x_1(t) + x_2(t)$ также является решением уравнения (7.1).

Доказательство.
$$L_n x_1(t) \equiv 0, \;\; L_n x_2(t) \equiv 0, \;\; \text{тогда} \;\; L_n x(t) = L_n x_1(t) + L_n x_2(t) \equiv 0$$
.

Теорема. Если $x_1(t)$ - решение уравнения (7.1), тогда функция $x(t) = cx_1(t)$ является решением уравнения (7.1).

Доказательство.
$$L_n x_1(t) \equiv 0$$
, тогда $L_n x(t) = L_n (c x_1(t)) = c L_n x_1(t) \equiv 0$.

Таким образом, множество решений уравнения (7.1) образует линейное пространство.

Следствие. Если $x_1(t),...,x_r(t)$ - решения уравнения (7.1), то функция $x(t) = \sum_{i=1}^r c_i x_i(t)$ также является решением уравнения (7.1).

§8. Определитель Вронского

Рассмотрим однородное СтЛУ-n: $D^n x + a_{n-1} D^{n-1} x + ... + a_1 D x + a_0 x = 0$ (8.1). Пусть функции $\psi_0(t),...,\psi_{n-1}(t)$ дифференцируемы на промежутке |a,b| до порядка n-1 включительно.

Функциональный определитель

$$W(t) = \begin{vmatrix} \psi_0 & \psi_1 & \dots & \psi_{n-1} \\ D\psi_0 & D\psi_1 & \dots & D\psi_{n-1} \\ \dots & \dots & \dots & \dots \\ D^{n-1}\psi_0 & D^{n-1}\psi_1 & \dots & D^{n-1}\psi_{n-1} \end{vmatrix}$$

называется определителем Вронского или вронскианом и обозначается $W(t) = \left| \psi_0 \quad \psi_1 \quad ... \quad \psi_{n-1} \right|.$

Правило дифференцирования определителя: производная определителя Δ равна сумме определителей Δ_i , $i = \overline{1,n}$, где определитель Δ_i получается из Δ заменой i-й строки на строку из производных.

Теорема. Пусть $\psi_k(t)$, $k=\overline{0,n-1}$, - решения уравнения (8.1), тогда имеет место формула Остроградского-Лиувилля: $W(t)=W(s)\mathrm{e}^{-a_{n-1}(t-s)} \ \ \forall t,s\in R$ (8.2). Доказательство.

$$DW(t) = \begin{vmatrix} D\psi_0 & D\psi_1 & \dots & D\psi_{n-1} \\ D\psi_0 & D\psi_1 & \dots & D\psi_{n-1} \\ \dots & \dots & \dots & \dots \\ D^{n-1}\psi_0 & D^{n-1}\psi_1 & \dots & D^{n-1}\psi_{n-1} \\ \end{pmatrix} + \begin{vmatrix} \psi_0 & \psi_1 & \dots & \psi_{n-1} \\ D^2\psi_0 & D^2\psi_1 & \dots & D^2\psi_{n-1} \\ \dots & \dots & \dots & \dots \\ D^{n-1}\psi_0 & D^{n-1}\psi_1 & \dots & D^{n-1}\psi_{n-1} \\ \dots & \dots & \dots & \dots & \dots \\ D^{n-1}\psi_0 & D^{n-1}\psi_1 & \dots & D^{n-1}\psi_{n-1} \\ D^{n-1}\psi_0 & D^{n-1}\psi_1 & \dots & D^{n-1}\psi_{n-1} \\ \end{pmatrix} + \begin{vmatrix} \psi_0 & \psi_1 & \dots & \psi_{n-1} \\ \dots & \dots & \dots & \dots \\ D^{n-2}\psi_0 & D^{n-2}\psi_1 & \dots & D^{n-2}\psi_{n-1} \\ D^n\psi_0 & D^n\psi_1 & \dots & D^n\psi_{n-1} \\ \end{pmatrix} = \begin{vmatrix} \psi_0 & \psi_1 & \dots & \psi_{n-1} \\ \dots & \dots & \dots & \dots \\ D^{n-2}\psi_0 & D^{n}\psi_1 & \dots & D^n\psi_{n-1} \\ \end{pmatrix} = \begin{vmatrix} \psi_0 & \psi_1 & \dots & \psi_{n-1} \\ \dots & \dots & \dots & \dots \\ D^{n-2}\psi_0 & D^{n-2}\psi_1 & \dots & D^{n-2}\psi_{n-1} \\ \dots & \dots & \dots & \dots \\ D^{n-2}\psi_0 & D^{n-2}\psi_1 & \dots & D^{n-2}\psi_{n-1} \\ \end{pmatrix} = \begin{vmatrix} \psi_0 & \psi_1 & \dots & \psi_{n-1} \\ \dots & \dots & \dots & \dots \\ D^{n-2}\psi_0 & D^{n-2}\psi_1 & \dots & D^{n-2}\psi_{n-1} \\ -\sum_{i=0}^{n-1}a_iD^i\psi_0 & -\sum_{i=0}^{n-1}a_iD^i\psi_0 & \dots & -\sum_{i=0}^{n-1}a_iD^i\psi_0 \end{vmatrix}.$$

Умножим первую строку a_0 , вторую строку на a_1 , ..., предпоследнюю – на a_{i-1} и прибавим к последней строке. Имеем:

$$DW(t) = \begin{vmatrix} \psi_0 & \psi_1 & \dots & \psi_{n-1} \\ \dots & \dots & \dots & \dots \\ D^{n-2}\psi_0 & D^{n-2}\psi_1 & \dots & D^{n-2}\psi_{n-1} \\ -a_{n-1}D^{n-1}\psi_0 & -a_{n-1}D^{n-1}\psi_1 & \dots & -a_{n-1}D^{n-1}\psi_{n-1} \end{vmatrix} = -a_{n-1}W(t).$$

Получили СтЛУ-1: $DW + a_{n-1}W = 0$. Отсюда находим, что $W(t) = Ce^{-a_{n-1}t}$. Так как $W(s) = Ce^{-a_{n-1}s}$, то $C = W(s)e^{a_{n-1}s}$. Следовательно, $W(t) = W(s)e^{-a_{n-1}(t-s)}$.

Следствие. Если существует $s \in R$, такое, что $W(s) \neq 0$, то $W(t) \neq 0$ для любых $t \in R$.

§9. Линейная зависимость решений однородного СтЛУ-n

Рассмотрим однородное СтЛУ-n: $D^n x + a_{n-1} D^{n-1} x + ... + a_1 D x + a_0 x = 0$ (9.1).

Определение. Система решений $z_0(t),...,z_{n-1}(t)$ уравнения (9.1) называется линейно зависимой, если существуют постоянные b_k , $k=\overline{0,n-1}$, не все равные 0, такие, что $\sum_{k=0}^{n-1}b_kz_k(t)\equiv 0$. В противном случае система решений $z_0(t),...,z_{n-1}(t)$ называется линейно независимой.

Теорема. Система решений $z_0(t), \ldots, z_{n-1}(t)$ уравнения (9.1) является линейно зависимой тогда и только тогда, когда определитель Вронского $W(t) = \begin{vmatrix} z_0 & z_1 & \ldots & z_{n-1} \end{vmatrix}$ обращается в 0 хотя бы в одной точке.

Доказательство.

1) Необходимость. Система $z_0(t),..., z_{n-1}(t)$ линейно зависима, т.е. $\sum_{k=0}^{n-1} b_k z_k(t) \equiv 0 \text{ , где } (b_0,...,b_{n-1}) \neq (0,...,0) \text{ . Не нарушая общности, можно считать,}$

что
$$b_{n-1} \neq 0$$
, тогда $z_{n-1}(t) = -\sum_{k=0}^{n-2} \frac{b_k}{b_{n-1}} z_k(t)$.

Имеем:

$$W(t) = \begin{vmatrix} z_0 & z_1 & \dots & z_{n-1} \\ Dz_0 & Dz_1 & \dots & Dz_{n-1} \\ \dots & \dots & \dots & \dots \\ D^{n-1}z_0 & D^{n-1}z_1 & \dots & D^{n-1}z_{n-1} \end{vmatrix} = \begin{vmatrix} z_0 & \dots & z_{n-2} & -\sum_{k=0}^{n-2} \frac{b_k}{b_{n-1}} z_k \\ Dz_0 & \dots & Dz_{n-2} & -\sum_{k=0}^{n-2} \frac{b_k}{b_{n-1}} Dz_k \\ \dots & \dots & \dots \\ D^{n-1}z_0 & \dots & D^{n-1}z_{n-2} & -\sum_{k=0}^{n-2} \frac{b_k}{b_{n-1}} D^{n-1}z_k \end{vmatrix} = 0.$$

2) Достаточность.

Пусть
$$W(t_0) = \begin{vmatrix} z_0(t_0) & z_1(t_0) & \dots & z_{n-1}(t_0) \\ Dz_0(t_0) & Dz_1(t_0) & \dots & Dz_{n-1}(t_0) \\ \dots & \dots & \dots & \dots \\ D^{n-1}z_0(t_0) & D^{n-1}z_1(t_0) & \dots & D^{n-1}z_{n-1}(t_0) \end{vmatrix} = 0.$$

Рассмотрим линейную алгебраическую систему порядка n:

$$\begin{cases} z_0(t_0)x_0 + \dots + z_{n-1}(t_0)x_{n-1} = 0, \\ Dz_0(t_0)x_0 + \dots + Dz_{n-1}(t_0)x_{n-1} = 0, \\ \dots \\ D^{n-1}z_0(t_0)x_0 + \dots + D^{n-1}z_{n-1}(t_0)x_{n-1} = 0. \end{cases}$$

так как определитель этой системы равен $W(t_0)=0$, то система имеет ненулевое решение: $(\tilde{x}_0,...,\tilde{x}_{n-1})$.

Функция $z(t) = \sum_{k=0}^{n-1} \tilde{x}_k z_k(t)$ является решением уравнения (9.1).

Имеем:
$$D^j z(t_0) = \sum_{k=0}^{n-1} \tilde{x}_k D^j z_k(t_0) = 0$$
 для любого $j = \overline{0, n-1}$.

Следовательно, $z(t) \equiv 0$ и поэтому система $z_0(t), ..., z_{n-1}(t)$ линейно зависима

§10. Базис пространства решений однородного СтЛУ-*n*

Рассмотрим однородное СтЛУ-n: $D^n x + a_{n-1} D^{n-1} x + ... + a_1 D x + a_0 x = 0$ (10.1).

Лемма. (о сдвиге). Пусть x(t) - решение уравнения (10.1), тогда для любого $s \in R$ функция y(t) = x(t-s) является решением уравнения (10.1).

Доказательство. (для случая n=2). Имеем y(t)=x(u(t)), где u(t)=t-s, тогда $Dy(t)=Dx(u(t))\cdot Du(t)=Dx(u(t))=Dx(t-s)$,

$$D^2 y(t) = D(Dx(u(t))) = D^2 x(u(t)) \cdot Du(t) = D^2 x(u(t)) = D^2 x(t-s)$$

поэтому $D^2y(t) + a_1Dy(t) + a_0y(t) = D^2x(t-s) + a_1Dx(t-s) + a_0x(t-s) \stackrel{t \in \mathbb{R}}{=} 0$. В случае n > 2 доказательство аналогично.

Определение. *Базисом пространства решений* уравнения (10.1) называется система из n линейно независимых решений уравнения (10.1).

Базис пространства решений также называется фундаментальной системой решений уравнения (10.1).

Рассмотрим n специальных задач Коши:

$$\begin{cases} L_{n}x = 0, \\ x(0) = 1, \\ D^{k}x(0) = 0, k = \overline{1, n - 1}, \end{cases} \begin{cases} L_{n}x = 0, \\ x(0) = 0, Dx(0) = 1, \\ D^{k}x(0) = 0, k = \overline{2, n - 1}, \end{cases} \begin{cases} L_{n}x = 0, \\ D^{k}x(0) = 0, k = \overline{0, n - 2}, \\ D^{n-1}x(0) = 1. \end{cases}$$

На основании ТОР для задачи Коши для СтЛУ-1 и способа построения ОР СтЛУ-n каждая из специальных задач Коши имеет единственное решение $\varphi_i(t)$, $i = \overline{0, n-1}$.

Для каждого
$$i=\overline{0,n-1}$$
 имеем: $L_n\varphi_i(t)\equiv 0$, $D^j\varphi_i(0)=\delta_{j,i}=\begin{cases} 1, j=i,\\ 0, j\neq i, \end{cases}$ $j=\overline{0,n-1}$.

На основании леммы о сдвиге функции $\varphi_i(t-s)$ являются решениями уравнения (10.1). Так как вронскиан W(t) системы функций $\varphi_i(t-s)$, $i=\overline{0,n-1}$, вычисленный в точке s равен 1, то система функций $\varphi_i(t-s)$, $i=\overline{0,n-1}$, является линейно независимой.

Теорема. Пусть $\varphi_i(t)$, $i=\overline{0,n-1}$, - решения специальных задач Коши, тогда решение задачи Коши: $\begin{cases} L_n x = 0, \\ D^j x(s) = \xi_j, j = \overline{0,n-1}, \end{cases}$ определяется формулой:

$$x(t) = \sum_{k=0}^{n-1} \xi_k \varphi_k(t-s).$$

Доказательство. Имеем $L_n x(t) = L_n \left(\sum_{k=0}^{n-1} \xi_k \varphi_k(t-s) \right) = \sum_{k=0}^{n-1} \xi_k L_n \varphi_k(t-s) \equiv 0 \; ,$ $D^j x(s) = D^j \left(\sum_{k=0}^{n-1} \xi_k \varphi_k(t-s) \right) = \sum_{k=0}^{n-1} \xi_k D^j \varphi_k(t-s) \Big|_{t=s} = \sum_{k=0}^{n-1} \xi_k D^j \varphi_k(0) = \sum_{k=0}^{n-1} \xi_k \delta_{j,k} = \xi_j \; .$

Из теоремы вытекает, что функция $x(t) = \sum_{k=0}^{n-1} c_k \varphi_k(t)$ является общим решением уравнения (10.1).

Говорят, что система функций $\varphi_i(t-s)$, $i=\overline{0,n-1}$, образует базис пространства решений уравнения (10.1), нормированный в точке s.

ЛЕКЦИЯ 4 §11. Неоднородные СТЛУ-*n*

Рассмотрим уравнения $L_n x = f(t)$ (11.1), $t \in I$, $L_n x = 0$ (11.2).

Пусть $x_{_{\!\mathit{u}\!H}}(t)$ - частное решение уравнения (11.1), то есть $L_{_{\!\mathit{n}}}x_{_{\!\mathit{u}\!H}}(t)\equiv f(t)$. Пусть $x_{_{\!\mathit{o}\!H}}(t)$ - произвольное решение уравнения (11.1), тогда $L_{_{\!\mathit{n}}}(x_{_{\!\mathit{o}\!H}}(t)-x_{_{\!\mathit{u}\!H}}(t))=L_{_{\!\mathit{n}}}(x_{_{\!\mathit{o}\!H}}(t))-L_{_{\!\mathit{n}}}(x_{_{\!\mathit{u}\!H}}(t))\equiv f(t)-f(t)=0$. Следовательно, функция $x_{_{\!\mathit{o}\!H}}(t)-x_{_{\!\mathit{u}\!H}}(t)$ является решением уравнения (11.2). С другой стороны, для любого решения $x_{_{\!\mathit{o}\!o}}(t)$ уравнения (11.2) функция $x_{_{\!\mathit{u}\!H}}(t)+x_{_{\!\mathit{o}\!o}}(t)$ является решением уравнения (11.1).

Поэтому общее решение неоднородного уравнения (11.1) равно сумме общего решения однородного уравнения (11.2) и частного решения неоднородного уравнения (11.1):

$$x_{oH}(t) = x_{vH}(t) + x_{oO}(t)$$
.

§12. Метод вариации произвольных постоянных (метод Лагранжа)

Рассмотрим уравнения

$$L_n x = f(t)$$
 (12.1), $t \in I$, $L_n = D^n + a_{n-1} D^{n-1} + ... + a_1 D + a_0 D^0$, $L_n x = 0$ (12.2).

Частное решение $x_{_{v_H}}(t)$ уравнения (12.1) строится по структуре общего решения $x_{oo}(t) = \sum_{k=0}^{n-1} c_k \psi_k(t)$ однородного уравнения (12.2):

$$x_{_{YH}}(t) = \sum_{k=0}^{n-1} u_k(t) \psi_k(t),$$

где $\psi_k(t)$, $k = \overline{0, n-1}$, - базис пространства решений однородного уравнения (12.2).

Теорема. Пусть функция f(t) непрерывна на промежутке I, функции $u_k(t)$, $k = \overline{0, n-1}$, удовлетворяют следующей системе Лагранжа:

19

$$\begin{cases} Du_{0} \cdot \psi_{0} + \dots + Du_{n-1} \cdot \psi_{n-1} = 0, \\ Du_{0} \cdot D\psi_{0} + \dots + Du_{n-1} \cdot D\psi_{n-1} = 0, \\ \dots & (12.3) \\ Du_{0} \cdot D^{n-2}\psi_{0} + \dots + Du_{n-1} \cdot D^{n-2}\psi_{n-1} = 0, \\ Du_{0} \cdot D^{n-1}\psi_{0} + \dots + Du_{n-1} \cdot D^{n-1}\psi_{n-1} = f(t), \end{cases}$$

Доказательство. (для случая n = 2).

Имеем $L_2\psi_0(t)\equiv 0$, $L_2\psi_1(t)\equiv 0$. Так как система решений $\{\psi_0,\psi_1\}$ образует базис, то она линейно независима и её определитель Вронского $W(t)=\begin{vmatrix} \psi_0 & \psi_1 \\ D\psi_0 & D\psi_1 \end{vmatrix}$ не обращается в нуль. Определитель системы (12.3) равен

W(t). Поэтому система (12.3) имеет решение $(Du_0(t), Du_1(t))$, которое является непрерывной функцией. Следовательно, $u_0(t)$, $u_1(t) \in C^1(I)$.

Покажем, что $L_2(u_0\psi_0 + u_1\psi_1) \equiv f(t)$.

Имеем $D(u_0\psi_0+u_1\psi_1)=Du_0\cdot\psi_0+u_0D\psi_0+Du_1\cdot\psi_1+u_1D\psi_1=u_0D\psi_0+u_1D\psi_1$, поэтому функция $D(u_0\psi_0+u_1\psi_1)$ дифференцируема на I и

$$D^{2}(u_{0}\psi_{0} + u_{1}\psi_{1}) = D(u_{0}D\psi_{0} + u_{1}D\psi_{1}) = Du_{0}D\psi_{0} + u_{0}D^{2}\psi_{0} + Du_{1}D\psi_{1} + u_{1}D^{2}\psi_{1} = f(t) + u_{0}D^{2}\psi_{0} + u_{1}D^{2}\psi_{1}.$$

Таким образом,

$$\begin{split} &L_2(u_0\psi_0+u_1\psi_1)=D^2(u_0\psi_0+u_1\psi_1)+a_1D(u_0\psi_0+u_1\psi_1)+a_0(u_0\psi_0+u_1\psi_1)=\\ &=f(t)+u_0D^2\psi_0+u_1D^2\psi_1+a_1u_0D\psi_0+a_1u_1D\psi_1+a_0u_0\psi_0+a_1u_1\psi_1=\\ &=f(t)+u_0L_2\psi_0+u_1L_2\psi_1=f(t)\;. \end{split}$$

Поэтому функция $u_0\psi_0 + u_1\psi_1$ является частным решением уравнения (12.1). \blacksquare

Пример. Найти общее решение уравнения $D^2x - Dx = \frac{e^t}{1 + e^t}$, $t \in R$.

Решение. $v^2 - v = 0 \implies v_1 = 0$, $v_2 = 1$, $n_1 = n_2 = 1$. Поэтому $x_{oo}(t) = C_1 + C_2 e^t$. Найдем частное решение неоднородного уравнения методом Лагранжа. Система функций $\psi_0 = 1$, $\psi_1 = e^t$ образуют базис пространства решений однородного уравнения. Составляем систему:

$$\begin{cases} Du_0 \cdot 1 + Du_1 \cdot e^t = 0, \\ Du_0 \cdot 0 + Du_1 \cdot e^t = \frac{e^t}{1 + e^t}. \end{cases}$$

Отсюда
$$Du_1 = \frac{1}{1 + e^t}$$
, $Du_0 = -\frac{e^t}{1 + e^t}$. Далее

$$u_{1} = \int \frac{dt}{1 + e^{t}} = [1 + e^{t} = z, t = \ln(z - 1), dt = dz/(z - 1)] = \int \frac{dz}{z(z - 1)} = \int \frac{dz}{z - 1} - \int \frac{dz}{z} = \ln\left(\frac{z - 1}{z}\right) + C = t - \ln(1 + e^{t}) + C;$$

$$u_{0} = -\int \frac{e^{t}dt}{1 + e^{t}} = -\ln(1 + e^{t}) + C.$$

Поэтому $x_{uu}(t) = -\ln(1+e^t) + e^t(t-\ln(1+e^t))$.

Окончательно $x_{_{YH}}(t) = C_1 + C_2 e^t - \ln(1 + e^t) + e^t (t - \ln(1 + e^t))$.

§13. Неоднородные СтЛУ-*n* с правой частью в виде квазимногочлена (метод Эйлера)

Рассмотрим уравнение

$$L_n z = h(t)$$
 (13.1), $t \in I$,

где $h(t) = \sum_{k=1}^{m} P_k(t) e^{\gamma_k t}$, $P_k(t)$ - комплекснозначные многочлены, γ_k - попарно различные комплексные числа.

Если $z_k(t)$ - решение уравнения $L_n z = P_k(t) \mathrm{e}^{\gamma_k t}$, $k = \overline{1,m}$ то функция $z(t) = \sum_{k=1}^m z_k(t)$ является решением уравнения (13.1).

Рассмотрим уравнение

$$L_n z = P(t)e^{\gamma t}$$
 (13.2).

Число γ называется *контрольным числом* правой части уравнения (13.2).

Теорема. Уравнение (13.2) имеет частное решение вида $z_{_{\!\mathit{u}\!\mathit{H}}}(t) = t^j Q(t) \mathrm{e}^{\gamma t}$, где Q(t) - комплекснозначный многочлен, $\deg(Q) = \deg(P)$, коэффициенты многочлена Q однозначно определяются коэффициентами многочлена P, число j равно 0, если γ не является собственным значением оператора L_n , число j равно кратности γ , если γ является собственным значением оператора L_n . Доказательство. (для случая n=2).

$$L_2 z = P(t) e^{\gamma t}.$$

Пусть v_1, v_2 - собственные значения оператора L_2 .

Тогда
$$(D-v_1D^0)(D-v_2D^0)z = P(t)e^{\gamma t}$$
.

Обозначим
$$w = (D - v_2 D^0)z$$
, тогда $(D - v_1 D^0)w = P(t)e^{\gamma t}$.

Случай 1: $\gamma \neq v_1$. Тогда $w_{_{^{\prime\prime}H}}(t) = Q_1(t)\mathrm{e}^{\gamma t}$, где $\deg Q_1 = \deg P$ и коэффициенты многочлена Q_1 однозначно определяются коэффициентами многочлена P.

Случай 2: $\gamma = v_1$. Тогда $w_{u_H}(t) = tQ_0(t)e^{\gamma t}$, где $\deg Q_0 = \deg P$ и коэффициенты многочлена Q_0 однозначно определяются коэффициентами многочлена P.

Получаем уравнение $(D - v_2 D^0)z = w_{_{q_H}}$.

Случай 1.1: $\gamma \neq v_1$, $\gamma \neq v_2$. Тогда $z_{_{\mathit{VH}}}(t) = Q(t)\mathrm{e}^{\gamma t}$, где $\deg Q = \deg Q_1 = \deg P$ и коэффициенты многочлена Q однозначно определяются коэффициентами многочлена Q_1 , а значит, и коэффициентами многочлена P.

Случай 1.2: $\gamma \neq v_1$, $\gamma = v_2$. Тогда $z_{un}(t) = tQ(t)\mathrm{e}^{\gamma t}$, где $\deg Q = \deg Q_1 = \deg P$ и коэффициенты многочлена Q однозначно определяются коэффициентами многочлена Q_1 , а значит, и коэффициентами многочлена P.

Случай 2.1: $\gamma = v_1$, $\gamma \neq v_2$. Аналогично предыдущему случаю $z_{\mathit{чн}}(t) = tQ(t)\mathrm{e}^{\gamma t}$, где $\deg Q = \deg Q_1 = \deg P$ и коэффициенты многочлена Q однозначно определяются коэффициентами многочлена Q_1 , а значит, и коэффициентами многочлена P.

Случай 2.2: $\gamma = v_1 = v_2$.

Общее решение уравнения $(D - v_1 D^0)w = P(t)e^{\gamma t}$ имеет вид:

$$W_{_{O\!H}}(t) = C\mathrm{e}^{v_1 t} + t Q_0(t) \mathrm{e}^{v_1 t}$$
, где $\deg Q_0 = \deg P$.

Обозначим $R(t) = tQ_0(t)$, $\deg R = \deg P + 1$.

Общее решение уравнения $(D - v_1 D^0)z = Ce^{v_1 t} + R(t)e^{v_1 t}$ имеет вид:

$$z_{\scriptscriptstyle O\!H}(t) = C_2 \mathrm{e}^{v_1 t} + t C_1 \mathrm{e}^{v_1 t} + t G(t) \mathrm{e}^{v_1 t}$$
, где $\deg G = \deg R$.

Пусть $\deg P = m$, тогда

$$\begin{split} z_{\scriptscriptstyle OH}(t) &= C_2 \mathrm{e}^{\nu_1 t} + t C_1 \mathrm{e}^{\nu_1 t} + t (b_{\scriptscriptstyle m+1} t^{\scriptscriptstyle m+1} + \ldots + b_1 t + b_0) \mathrm{e}^{\nu_1 t} = \\ &= C_2 \mathrm{e}^{\nu_1 t} + t (C_1 + b_1) \mathrm{e}^{\nu_1 t} + t^2 (b_{\scriptscriptstyle m+1} t^{\scriptscriptstyle m} + \ldots + b_1) \mathrm{e}^{\nu_1 t} = C_2 \mathrm{e}^{\nu_1 t} + t C_3 \mathrm{e}^{\nu_1 t} + t^2 Q(t) \mathrm{e}^{\nu_1 t} \;. \end{split}$$
 Так как $z_{\scriptscriptstyle OO}(t) = C_2 \mathrm{e}^{\nu_1 t} + t C_3 \mathrm{e}^{\nu_1 t} \;, \; \text{то} \; z_{\scriptscriptstyle UH}(t) = t^2 Q(t) \mathrm{e}^{\nu_1 t} \;, \; \text{где} \; \deg Q = m \;. \blacksquare$

Рассмотрим уравнение:

 $L_n x = P(t) \mathrm{e}^{\gamma t}$, где P(t) - действительный многочлен $\gamma \in R$, тогда $x_{_{Y\! H}}(t) = t^j Q(t) \mathrm{e}^{\gamma t}$,

где
$$\deg Q = \deg P$$
 , $j = \begin{cases} 0, & \text{если } \gamma \text{ - не собственное значение } L_n, \\ & \text{кратность } \gamma, & \text{если } \gamma \text{ - собственное значение } L_n. \end{cases}$

Рассмотрим уравнение:

 $L_n x = (M(t)\cos\mu t + N(t)\sin\mu t)\mathrm{e}^{\lambda t}$, где M(t), N(t) - действительные многочлены, $\gamma = \lambda + i\mu$, тогда

$$x_{_{\mathit{UH}}}(t) = t^{j}(A(t)\cos\mu t + B(t)\sin\mu t)e^{\lambda t},$$

где $\max\{\deg A, \deg B\} \le \max\{\deg M, \deg N\}$,

$$j = \begin{cases} 0, \text{ если } \gamma \text{ - не собственное значение } L_{\scriptscriptstyle n}, \\ \text{кратность } \gamma, \text{ если } \gamma \text{ - собственное значение } L_{\scriptscriptstyle n}. \end{cases}$$

Пример. Найти общее решение уравнения

$$D^4x - 6D^3x + 10D^2x - 6Dx + 9x = \sin t + \cos 2t + te^t$$
, $t \in \mathbb{R}$.

Решение.
$$v^4 - 6v^3 + 10v^2 - 6v + 9 = 0$$
; $v_{1,2} = \pm i$, $n_{1,2} = 1$, $v_3 = 3$, $n_3 = 2$. Поэтому $x_{00}(t) = C_1 \cos t + C_2 \sin t + (C_3 t + C_4)e^{3t}$.

Найдем частное решение неоднородного уравнения методом Эйлера.

$$x_{4t}(t) = t(c_1 \cos t + c_2 \sin t) + (c_3 \cos 2t + c_4 \sin 2t) + (c_5 t + c_6)e^t.$$

$$Dx_{yy}(t) = c_1 \cos t - c_1 t \sin t + c_2 \sin t + c_2 t \cos t - 2c_3 \sin 2t + 2c_4 \cos 2t + c_5 e^t + c_6 e^t + c_5 t e^t$$

$$D^{2}x_{yy}(t) = 2c_{2}\cos t - c_{2}t\sin t - 2c_{1}\sin t - c_{1}t\cos t - 4c_{4}\sin 2t - 4c_{3}\cos 2t + 2c_{5}e^{t} + c_{6}e^{t} + c_{5}te^{t}$$

$$D^{3}x_{yy}(t) = -3c_{1}\cos t + c_{1}t\sin t - 3c_{2}\sin t - c_{2}t\cos t + 8c_{3}\sin 2t - 8c_{4}\cos 2t + 3c_{5}e^{t} + c_{6}e^{t} + c_{5}te^{t}$$

$$D^{4}x_{yy}(t) = -4c_{2}\cos t + c_{2}t\sin t + 4c_{1}\sin t + c_{1}t\cos t + 16c_{4}\sin 2t + 16c_{3}\cos 2t + 4c_{5}e^{t} + c_{6}e^{t} + c_{5}te^{t}$$

Подставляя в уравнение, получим:

$$t\sin t: 0=0$$
,

$$t\cos t: 0=0$$
,

$$\sin t$$
: $-16c_1 + 12c_2 = 1$,

$$\cos t$$
: $12c_1 - 16c_2 = 0$,

$$\cos 2t$$
: $-15c_3 + 36c_4 = 1$,

$$\sin 2t: -36c_3 - 15c_4 = 0,$$

$$te^{t}: 8c_{5} = 1$$
,

$$e^t: 8c_6 = 0$$
.

Таким образом,
$$x_{ut}(t) = t \left(-\frac{1}{7} \cos t - \frac{3}{28} \sin t \right) + \left(-\frac{5}{507} \cos 2t + \frac{4}{169} \sin 2t \right) + \frac{1}{8} t e^t$$
.

Тогда

$$x_{on}(t) = C_1 \cos t + C_2 \sin t + (C_3 t + C_4)e^{3t} + t\left(-\frac{1}{7}\cos t - \frac{3}{28}\sin t\right) + \left(-\frac{5}{507}\cos 2t + \frac{4}{169}\sin 2t\right) + \frac{1}{8}te^{t}$$

ЛЕКЦИИ 5-6

§14. Интегральная непрерывность решений СТЛУ-*n*

Рассмотрим неоднородное СтЛУ- n:

$$L_n x = f(t), t \in I, f(t) \in C(I)$$
 (14.1)

и однородное СтЛУ-и:

$$L_n x = 0$$
 (14.2).

Пусть $\varphi_0, \varphi_1, ..., \varphi_{n-1}$ - нормированный в точке t = 0 базис пространства решений уравнения (14.2).

Рассмотрим две задачи Коши:

$$\begin{cases}
L_n x = f(t), \\
D^k x(s) = \xi_k, k = \overline{0, n-1},
\end{cases} (14.3) \text{ M} \begin{cases}
L_n x = f(t), \\
D^k x(s) = \xi_k + \Delta \xi_k, k = \overline{0, n-1},
\end{cases} (14.4)$$

где s - фиксированная точка промежутка I .

На основании ТОР для СтЛУ-1 задачи Коши (14.3) и (14.4) однозначно разрешимы.

Обозначим через $\psi(t)$ единственное решение задачи Коши

$$\begin{cases}
L_n x = f(t), \\
D^k x(s) = 0, k = \overline{0, n-1}.
\end{cases}$$

Можно доказать, что $\psi(t) = \int\limits_{s}^{t} \varphi_{n-1}(t-\tau) f(\tau) d\tau$.

Задача Коши

$$\begin{cases} L_n x = 0, \\ D^k x(s) = \xi_k, k = \overline{0, n-1}, \end{cases}$$

имеет единственное решение $x(t) = \sum_{k=0}^{n-1} \xi_k \varphi_k(t-s)$.

Решения задач Коши (14.3) и (14.4) задаются формулами:

$$x(t,\xi) = \sum_{k=0}^{n-1} \xi_k \varphi_k(t-s) + \psi(t),$$

$$x(t,\xi+\Delta\xi) = \sum_{k=0}^{n-1} (\xi_k + \Delta\xi_k) \varphi_k(t-s) + \psi(t),$$

где
$$\xi = (\xi_0, ..., \xi_{n-1}), \ \Delta \xi = (\Delta \xi_0, ..., \Delta \xi_{n-1}).$$

Задача Коши (14.3) называется невозмущенной задачей Коши, задача Коши (14.4) — возмущенной. Определим отклонение решений возмущенной и невозмущенной задач Коши:

24

$$\rho(t,\Delta\xi) = \sum_{j=0}^{n-1} |D^{j}x(t,\xi + \Delta\xi) - D^{j}x(t,\xi)| \quad (14.5).$$
Tak kak
$$D^{j}x(t,\xi + \Delta\xi) - D^{j}x(t,\xi) =$$

$$= D^{j} \left(\sum_{k=0}^{n-1} (\xi_{k} + \Delta\xi_{k}) \varphi_{k}(t-s) + \psi(t) \right) - D^{j} \left(\sum_{k=0}^{n-1} \xi_{k} \varphi_{k}(t-s) + \psi(t) \right) =$$

$$= \sum_{k=0}^{n-1} \Delta\xi_{k} D^{j} \varphi_{k}(t-s),$$
To $\rho(t,\Delta\xi) = \sum_{j=0}^{n-1} \left| \sum_{k=0}^{n-1} \Delta\xi_{k} D^{j} \varphi_{k}(t-s) \right|.$

Отклонение $\rho(t,\Delta\xi)$ не зависит от начальных значений ξ_k и неоднородности f(t), а зависит от возмущений начальных условий $\Delta\xi_k$ и собственных значений оператора L_n . Таким образом, при исследовании отклонения решений возмущенной и невозмущенной задач Коши, без ограничения общности можно считать, что $f(t)\equiv 0$ и $\xi_0=...=\xi_{n-1}=0$.

Определение. Решение $x(t,\xi)$ задачи Коши (14.3) *непрерывно зависит* от начальных условий на множестве $J \subseteq I$, если $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) \ \forall t \in J$ $\forall \Delta \xi = (\Delta \xi_0,...,\Delta \xi_{n-1}) \in \mathbb{R}^n$, $\|\Delta \xi\| \coloneqq \left(\sum_{i=0}^{n-1} |\Delta \xi_i|^2\right)^{1/2} \le \delta$, выполняется $\rho(t,\Delta \xi) \le \varepsilon$.

Определение. Если решение $x(t,\xi)$ задачи Коши (14.3) непрерывно зависит от начальных условий на каждом отрезке [a,b] из промежутка I, то решение $x(t,\xi)$ называют *интегрально непрерывным* на I.

Теорема. Решение $x(t,\xi)$ задачи Коши (14.3) интегрально непрерывно на I. Доказательство. Рассмотрим произвольный отрезок $[a,b]\subseteq I$. Так как функции $\varphi_0,\varphi_1,...,\varphi_{n-1}$ непрерывно дифференцируемы до n-1 порядка включительно, то существует постоянная $M=M_{[a,b]}$, такая, что $|D^j\varphi_k(t-s)|\leq M$ для любых $t\in [a,b],\ j,k=\overline{0,n-1}$. Выберем произвольное $\varepsilon>0$. Имеем

$$\begin{split} & \rho(t, \Delta \xi) = \sum_{j=0}^{n-1} \left| \sum_{k=0}^{n-1} \Delta \xi_k D^j \varphi_k(t-s) \right| \leq \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} |\Delta \xi_k| \|D^j \varphi_k(t-s)| \leq \\ & \leq M \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} |\Delta \xi_k| = M n \sum_{k=0}^{n-1} |\Delta \xi_k| \leq M n^{3/2} \|\Delta \xi\| \leq \varepsilon . \end{split}$$

(В предпоследнем переходе воспользовались неравенством Коши-Буняковского: $(|a_1|+...|a_n|)^2 \le (a_1^2+...+a_n^2)(1+...+1) = n(a_1^2+...+a_n^2)$).

Достаточно выбрать $\delta(\varepsilon) = \frac{\varepsilon}{Mn^{3/2}}$.

Пример:
$$D^2x - x = 0$$
, $x(0) = \xi_0$, $Dx(0) = \xi_1$, $t \ge 0$.

Покажем, что решение задачи Коши не является непрерывно зависимым от начальных условий на промежутке $[0,+\infty)$.

Функции $\varphi_0(t) = \operatorname{ch} t$, $\varphi_0(t) = \operatorname{sh} t$ образуют базис пространства решений исходного уравнения, нормированный в точке t = 0.

$$\begin{split} &\exists \ \mathcal{E}_0 = 1 \ \ \forall \ \mathcal{\delta} > 0 \ \ \exists t_0 = \max \left\{ -\ln \mathcal{\delta}, 0 \right\} \ \ \exists \ \Delta \xi_0 = \mathcal{\delta} \ , \ \Delta \xi_1 = 0 \ , \ \text{такие, что} \\ &\rho(t, \Delta \xi) = \mid \Delta \xi_0 \text{ch} \ t + \Delta \xi_1 \text{sh} \ t \mid + \mid \Delta \xi_0 \text{sh} \ t + \Delta \xi_1 \text{ch} \ t \mid \leq \mid \Delta \xi_0 + \Delta \xi_1 \mid (\text{ch} \ t + \text{sh} \ t) = \\ &= \mid \Delta \xi_0 \mid \text{e}^t \geq 1 = \mathcal{E}_0 \ . \end{split}$$

Тем не менее, решение задачи Коши является интегрально непрерывным на промежутке $[0, +\infty)$.

§15. Устойчивость по Ляпунову решений СТЛУ-n

Рассмотрим невозмущенную и возмущенную задачи Коши на полуоси $I = [s, +\infty)$:

$$\begin{cases} L_n x = 0, \\ D^k x(s) = 0, k = \overline{0, n - 1}, \end{cases} (15.1) \text{ u} \begin{cases} L_n x = 0, \\ D^k x(s) = \Delta \xi_k, k = \overline{0, n - 1}, \end{cases} (15.2)$$

и отклонение решений возмущенной и невозмущенной задач Коши:

$$\rho(t,\Delta\xi) = \sum_{j=0}^{n-1} \left| \sum_{k=0}^{n-1} \Delta \xi_k D^j \varphi_k(t-s) \right|.$$

Определение. Решение задачи Коши (15.1) $x(t) \equiv 0$ называется *устойчивым по Ляпунову* на полуоси $[s,+\infty)$, если решение $x(t) \equiv 0$ непрерывно зависит от начальных данных на полуоси $[s,+\infty)$, то есть: $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) \ \forall t \in [s,+\infty)$

$$\forall \Delta \xi = (\Delta \xi_0, ..., \Delta \xi_{n-1}) \in R^n \,, \ \left\| \Delta \xi \right\| \coloneqq \left(\sum_{i=0}^{n-1} |\Delta \xi_i|^2 \right)^{1/2} \le \delta \,, \text{ выполняется } \rho(t, \Delta \xi) \le \varepsilon \,.$$

Определение. Многочлен $v^n + a_{n-1}v^{n-1} + ... + a_1v + a_0$ называется ляпуновским, если для любого корня v_j выполняется условие: $\text{Re}v_j \leq 0$ и если $\text{Re}v_j = 0$, то кратность корня v_j равна 1.

Теорема. (*критерий устойчивости по Ляпунову*). Решение задачи Коши (15.1) устойчиво по Ляпунову на полуоси $[s,+\infty)$ тогда и только тогда, когда характеристический многочлен оператора L_n ляпуновский.

Доказательство.

1) Необходимость. Имеем $\forall \varepsilon > 0$ $\exists \delta = \delta(\varepsilon)$ $\forall t \in [s, +\infty)$ $\forall \Delta \xi = (\Delta \xi_0, ..., \Delta \xi_{n-1}) \in \mathbb{R}^n$, $\|\Delta \xi\| := \left(\sum_{i=0}^{n-1} |\Delta \xi_i|^2\right)^{1/2} \le \delta$, выполняется $\rho(t, \Delta \xi) \le \varepsilon$.

Допустим, что существует собственное значение $v_0 = \lambda_0 + i\mu_0$ оператора L_n , такое, что $\text{Re} v_0 > 0$. Задача Коши (15.2) имеет решение вида $e^{\lambda_0 t} P(t)$ или $e^{\lambda_0 t} P(t) \sin \mu_0 t$, или $e^{\lambda_0 t} P(t) \cos \mu_0 t$, где P(t) - ненулевой действительный многочлен. Поэтому $\rho(t, \Delta \xi) \xrightarrow[t \to +\infty]{} + \infty$ - противоречие.

Допустим, что существует собственное значение $v_1 = i\mu_1$ оператора L_n , такое, что кратность корня v_1 больше 1. Задача Коши (15.2) имеет решение вида $t^\gamma \cos \mu_1 t$ или $t^\gamma \sin \mu_1 t$, где $\gamma \ge 1$. Поэтому $\rho(t, \Delta \xi) \xrightarrow[t \to +\infty]{} + \infty$ - противоречие.

2) Достаточность. Пусть $v_j = \lambda_j + i\mu_j$, $\lambda_j \le 0$. Решение задачи Коши (15.2) имеет вид:

$$x(t) = \sum_{\lambda_{j} < 0} (P_{j}(t) \cos \mu_{j} t + Q_{j}(t) \sin \mu_{j} t) e^{\lambda_{j} t} + \sum_{\lambda_{j} = 0} (b_{j} \cos \mu_{j} t + c_{j} \sin \mu_{j} t).$$

В равенстве $\rho(t,\Delta\xi) = \sum_{j=0}^{n-1} \left| \sum_{k=0}^{n-1} \Delta \xi_k D^j \varphi_k(t-s) \right|$ все коэффициенты при $\Delta \xi_k$ равномерно ограничены постоянной M, не зависящей от t,k,j. Поэтому $\rho(t,\Delta\xi) \underset{\|\Delta\xi\| \to 0}{\longrightarrow} 0$ равномерно по $t \in [s,\infty)$.

Теорема. (необходимое условие устойчивости по Ляпунову).

Если решение задачи Коши (15.1) устойчиво по Ляпунову на полуоси $[s,+\infty)$, то все коэффициенты характеристического многочлена оператора L_n неотрицательные.

Доказательство.

Рассмотрим пару комплексно сопряженных корней: $v_j = \lambda_j + i\mu_j$, $\overline{v}_j = \lambda_j - i\mu_j$, где $\lambda_j \leq 0$. Тогда $(v - v_j)(v - \overline{v}_j) = v^2 - 2\lambda_j v + \lambda_j^2 + \mu_j^2$. Поэтому $v^n + a_{n-1}v^{n-1} + ... + a_1v + a_0 = \prod_{\mu_j \neq 0} (v^2 - 2\lambda_j v + \lambda_j^2 + \mu_j^2) \prod_{\mu_j = 0} (v - \lambda_j)$.

Аналогично вводится определение устойчивости по Ляпунову решения задачи Коши (15.1) на полуоси $(-\infty, s]$, а также устойчивость на оси $(-\infty, +\infty)$.

Критерий устойчивости по Ляпунову на полуоси $(-\infty, s]$:

Решение задачи Коши (15.1) устойчиво по Ляпунову на полуоси $(-\infty, s]$ тогда и только тогда, когда для собственных значений оператора L_n выполняется условие: $\text{Re} v_j \ge 0$ и если $\text{Re} v_j = 0$, то кратность корня v_j равна 1.

Критерий устойчивости по Ляпунову на оси $(-\infty, +\infty)$:

Решение задачи Коши (15.1) устойчиво по Ляпунову на оси $(-\infty, +\infty)$ тогда и только тогда, когда для собственных значений оператора L_n выполняется условие: $\text{Re} v_i = 0$ и кратность всех корней равна 1.

Пример: $D^4x + 13D^2x + 36x = t^2 - 2t$, $t \in R$. Имеем $v_{1,2} = \pm 2i$, $v_{1,2} = \pm 3i$. Уравнение обладает двусторонней устойчивостью.

§16. Асимптотическая устойчивость решений СТЛУ-*n*

Рассмотрим невозмущенную и возмущенную задачи Коши на полуоси $I = [s, +\infty)$:

$$\begin{cases} L_n x = 0, \\ D^k x(s) = 0, k = \overline{0, n - 1}, \end{cases} (16.1) \text{ M} \begin{cases} L_n x = 0, \\ D^k x(s) = \Delta \xi_k, k = \overline{0, n - 1}, \end{cases} (16.2)$$

и отклонение решений возмущенной и невозмущенной задач Коши:

$$\rho(t,\Delta\xi) = \sum_{j=0}^{n-1} \left| \sum_{k=0}^{n-1} \Delta \xi_k D^j \varphi_k(t-s) \right|.$$

Определение. Решение задачи Коши (16.1) $x(t) \equiv 0$ называется *асимптотически устойчивым* на полуоси $[s,+\infty)$, если: 1) решение x(t) устойчиво по Ляпунову на полуоси $[s,+\infty)$, 2) существует $\delta > 0$, такое, что $\rho(t,\Delta\xi) \to 0$ для любых $\Delta \xi \in \mathbb{R}^n$, $\|\Delta \xi\| \leq \delta$.

Определение. Многочлен $v^n + a_{n-1}v^{n-1} + ... + a_1v + a_0$ называется *гурвицевым*, если действительные части всех его корней отрицательные.

Теорема. (критерий асимптотической устойчивости). Решение задачи Коши (16.1) асимптотически устойчиво на полуоси $[s,+\infty)$ тогда и только тогда, когда характеристический многочлен оператора L_n гурвицевый.

Доказательство.

- 1) Необходимость. Из асимптотической устойчивости следует, что характеристический многочлен ляпуновский. Допустим, существует корень v_0 , такой, что $\mathrm{Re}v_0=0$. Среди слагаемых, входящих в решение возмущенной задачи Коши, присутствуют слагаемые: c или $c_1\cos\mu t+c_2\sin\mu t$. Но эти слагаемые не стремятся к нулю при $t\to +\infty$, что противоречит асимптотической устойчивости.
- 2) Достаточность. Так как характеристический многочлен гурвицевый, то решение задачи Коши (16.1) устойчиво по Ляпунову на полуоси $[s,+\infty)$.

Кроме того, при $\|\Delta\xi\| \le 1$ имеем: $|P_j(t)\sin\mu_j t + Q_j(t)\sin\mu_j t| e^{\lambda_j t} \xrightarrow[t \to +\infty]{} 0$ так как $\lambda_j < 0$. Поэтому $\rho(t, \Delta\xi) \xrightarrow[t \to +\infty]{} 0$ при $\|\Delta\xi\| \le 1$.

Определение. Гурвицианом многочлена $v^n + a_{n-1}v^{n-1} + ... + a_1v + a_0$ называется определитель

$$\Delta = \begin{vmatrix} a_{n-1} & 1 & 0 & 0 & 0 & \dots & 0 \\ a_{n-3} & a_{n-2} & a_{n-1} & 1 & 0 & \dots & 0 \\ a_{n-5} & a_{n-4} & a_{n-3} & a_{n-2} & a_{n-1} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & a_0 \end{vmatrix},$$

где $a_{i} = 0$ при j < 0

Например, для многочлена четвертой степени $v^4 + a_3 v^3 + a_2 v^2 + a_1 v + a_0$ гурвициан имеет вид:

$$\Delta = \begin{vmatrix} a_3 & 1 & 0 & 0 \\ a_1 & a_2 & a_3 & 1 \\ 0 & a_0 & a_1 & a_2 \\ 0 & 0 & 0 & a_0 \end{vmatrix}.$$

Теорема. (*критерий Гурвица*). Многочлен $v^n + a_{n-1}v^{n-1} + ... + a_1v + a_0$ является гурвицевым тогда и только тогда, когда все главные миноры его гурвициана положительные.

Теорема. (необходимое условие асимптотической устойчивости).

Если решение задачи Коши (16.1) асимптотически устойчиво на полуоси $[s,+\infty)$, то все коэффициенты характеристического многочлена оператора L_n положительные.

Доказательство.

Рассмотрим пару комплексно сопряженных корней: $v_j = \lambda_j + i\mu_j$, $v_j = \lambda_j - i\mu_j$, где $\lambda_j < 0$. Тогда $(v - v_j)(v - v_j) = v^2 - 2\lambda_j v + \lambda_j^2 + \mu_j^2$. Поэтому $v^n + a_{n-1}v^{n-1} + ... + a_1v + a_0 = \prod_{\mu_j \neq 0} (v^2 - 2\lambda_j v + \lambda_j^2 + \mu_j^2) \prod_{\mu_j = 0} (v - \lambda_j)$.

Пример. $D^3x + D^2x + Dx + 0.5x = t$, $t \in [0, +\infty)$.

$$\Delta = \begin{vmatrix} 1 & 1 & 0 \\ 0.5 & 1 & 1 \\ 0 & 0 & 0.5 \end{vmatrix} \Rightarrow \Delta_1 = |1| = 1 > 0, \Delta_2 = \begin{vmatrix} 1 & 1 \\ 0.5 & 1 \end{vmatrix} = 0.5 > 0, \Delta_3 = \Delta = 0.25 > 0.$$

Решение любой задачи Коши асимптотически устойчиво на полуоси $[0,+\infty)$.

§17. Дифференциальное уравнение вынужденных колебаний

Задача. Определить закон движения материальной частицы массой m под влиянием силы, направленной к центру O и прямо пропорциональной удалению x частицы от центра притяжения, силы сопротивления среды и возбуждающей силы f(t), если заданы начальное отклонение точки x_0 и начальная скорость v_0 .

Решение. Если на материальную частицу массы m действует сила $f_{_{\rm B}}(t)$, пропорциональная удалению x частицы от центра притяжения O, то такая сила называется восстанавливающей. Восстанавливающая сила для рассматриваемой задачи равна: $f_{_{\rm B}}(t) = -bx(t)$, где b>0 - коэффициент упругости восстанавливающей силы. Сила трения среды пропорциональна скорости частицы:

$$f_{\rm rp}(t) = -c \frac{dx(t)}{dt}$$
, где $c \ge 0$ - коэффициент сопротивления среды.

Согласно второму закону Ньютона результирующая сила равна:

$$f_{\rm p}(t) = m \frac{d^2x}{dt^2} \, .$$

Следовательно, получаем задачу Коши для дифференциального уравнения второго порядка:

$$m\frac{d^{2}x}{dt^{2}} = -c\frac{dx(t)}{dt} - bx(t) + f(t), \ t > 0, (17.1)$$

$$x(t)\Big|_{t=0} = x_{0}, (17.2)$$

$$\frac{dx(t)}{dt}\Big|_{t=0} = v_{0}. (17.3)$$

Рассмотрим случай: $m=1,\ c=0,\ b=k^2,\ f(t)=H\sin(\omega t+\gamma)$ (трение среды ничтожно мало, возбуждающая сила периодическая), здесь $\omega>0$ - частота внешней силы, k>0 - частота собственных колебаний.

Тогда уравнение (17.1) примет вид:

$$\frac{d^2x}{dt^2} + k^2x = H\sin(\omega t + \gamma).$$

Находим $x_{oo}(t) = C_1 \cos kt + C_2 \sin kt$.

Если
$$k \neq \omega$$
, то $x_{uh}(t) = \frac{H}{k^2 - \omega^2} \sin(\omega t + \gamma)$,

если
$$k = \omega$$
, то $x_{_{^{_{\mathit{YH}}}}}(t) = -\frac{H}{2\omega}t\cos(\omega t + \gamma)$.

Таким образом,
$$x(t) = \begin{cases} \xi_0 \cos kt + \xi_1 \sin kt + \frac{H}{k^2 - \omega^2} \sin(\omega t + \gamma), k \neq \omega, \\ \xi_0 \cos kt + \xi_1 \sin kt - \frac{H}{2\omega} t \cos(\omega t + \gamma), k = \omega, \end{cases}$$
 где постоянные ξ_0, ξ_1 однозначно выражаются через

постоянные $x_0, v_0, k, \omega, \gamma, H$.

Если частота ω близка к частоте k, то амплитуда вынужденных колебаний $\frac{H}{k^2 - m^2}$ очень велика, вследствие чего может произойти разрушение колеба-

тельной системы. Это явление носит название резонанса.

Исследуем устойчивость по Ляпунову решения уравнения (17.1). Характеристическое уравнение имеет вид:

$$v^2 + \frac{c}{m}v + \frac{b}{m} = 0$$
. Так как $v_1 + v_2 = -c/m$, $v_1v_2 = b/m$, то в случае $c > 0$ корни

характеристического уравнения имеют отрицательные действительные части, поэтому решение является асимптотически устойчивым на полуоси $[0,+\infty)$; в случае c = 0 корни характеристического уравнения имеют нулевые действительные части, поэтому решение является устойчивым по Ляпунову, но не является асимптотически устойчивым.

ЛЕКЦИЯ 7

§18. Однородные стационарные линейные векторные уравнения размерности n (ОСтЛВУ-n)

Рассмотрим систему стационарных дифференциальных уравнений:

$$\begin{cases} Dx_1 = a_{11}x_1 + \dots + a_{1n}x_n + f_1, \\ \dots \\ Dx_n = a_{n1}x_1 + \dots + a_{nn}x_n + f_n, \end{cases}$$
(18.1)

где $a_{ii} \in R$, $f_i : I \to R$, I - промежуток на числовой оси R , $x_i : I \to R$ - неизвестные функции. Если $f_1 = ... = f_n \equiv 0$, то система (18.1) называется однородной.

Условия Коши в точке $s \in I$ для системы (18.1) ставятся следующим образом: $x_1(s) = \xi_1, ..., x_n(s) = \xi_n$ (18.2), где $\xi_i \in R$.

Систему (18.1) и условия Коши (18.2) можно записать в векторной форме:

Систему (18.1) и условия Коши (18.2) можно записать в векторной форм
$$Dx = Ax + f(t) \text{ (18.3), где } A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}, \ f(t) = \begin{pmatrix} f_1(t) \\ \dots \\ f_n(t) \end{pmatrix}, \ x = \begin{pmatrix} x_1(t) \\ \dots \\ x_n(t) \end{pmatrix},$$

$$x(s) = \xi$$
 (18.4), где $\xi = \begin{pmatrix} \xi_1 \\ \dots \\ \xi_n \end{pmatrix} \in R_{n,1}$.

Правила дифференцирования и интегрирования векторных функций:

Если $S \in R_{n,n}$, $x: I \to R_{n,1}$, то

1)
$$D(S \cdot x(t)) = S \cdot Dx(t)$$
, $D(x^{T}(t) \cdot S) = Dx^{T}(t) \cdot S$;

2)
$$\int S \cdot x(t)dt = S \cdot \int x(t)dt$$
, $\int x^{T}(t) \cdot Sdt = \int x^{T}(t)dt \cdot S$.

Если $P: I \to R_{n,n}$, то

1)
$$(DP(t))_{i,j} = DP_{i,j}(t);$$

2)
$$\left(\int P(t)dt\right)_{i,j} = \int P_{i,j}(t)dt$$
.

Рассмотрим случай, когда в уравнении (18.3) матрица A треугольная:

$$A = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 или
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}.$$

Теорема. (ТОР для СтЛВУ-*n* с треугольной матрицей).

Пусть матрица A треугольная, $f(t) \in C(I)$, тогда для любых $s \in I$, $\xi \in R_{n,1}$ задача Коши (18.3) - (18.4) имеет единственное решение на I.

32

Доказательство. Пусть матрица A нижнетреугольная. Перепишем задачу Коши (18.3) - (18.4) в координатной форме:

$$\begin{cases} Dx_1 = a_{11}x_1 + f_1, \\ Dx_2 = a_{21}x_1 + a_{22}x_2 + f_2, \\ \dots \\ Dx_n = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n + f_n, \\ x_1(s) = \xi_1, \dots, x_n(s) = \xi_n. \end{cases}$$

В силу ТОР для СтЛУ-1 задача Коши $Dx_1 - a_{11}x_1 = f_1$, $x_1(s) = \xi_1$ имеет единственное решение $x_1(t)$ на I. Аналогично из ТОР для СтЛУ-1 вытекает, что задача Коши $Dx_2 - a_{22}x_2 = a_{21}x_1 + f_2$, $x_2(s) = \xi_2$ имеет единственное решение $x_2(t)$ на I. Продолжая эти рассуждения, получаем, что из задачи Коши (18.3) - (18.4) можно однозначно найти $x_3(t),...,x_n(t)$. Случай верхнетреугольной матрицы A рассматривается аналогично. \blacksquare

Исследуем структуру решения задачи Коши (18.3) - (18.4) в случае $f(t) \equiv 0$ и треугольной матрицы A.

Пусть A - нижнетреугольная матрица. Из доказательства теоремы вытекает,

$$x_{1}(t) = \xi_{1}e^{a_{11}(t-s)} ::= \xi_{1}y_{11}(t),$$

$$x_{2}(t) = \xi_{2}e^{a_{22}(t-s)} + \int_{s}^{t}e^{a_{22}(t-\tau)}a_{21}x_{1}(\tau)d\tau = \xi_{2}e^{a_{22}(t-s)} + \int_{s}^{t}e^{a_{22}(t-\tau)}a_{21}\xi_{1}a_{11}e^{a_{11}(\tau-s)}d\tau ::=$$

$$= \xi_{2}y_{22}(t) + \xi_{1}y_{21}(t),$$

$$x_{3}(t) = \xi_{3}e^{a_{33}(t-s)} + \int_{s}^{t}e^{a_{33}(t-\tau)}(a_{31}x_{1}(\tau) + a_{32}x_{2}(\tau))d\tau ::= \xi_{3}y_{33}(t) + \xi_{2}y_{32}(t) + \xi_{1}y_{31}(t),$$

и так далее.

Таким образом,
$$x(t)=Y(t)\xi$$
 , где $Y(t)=\begin{pmatrix} y_{11} & 0 & \dots & 0 \\ y_{21} & y_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ y_{n1} & y_{n2} & \dots & y_{nn} \end{pmatrix}$. Если A - верхнетреугольная матрица, то $x(t)=Y(t)\xi$,

$$Y(t) = \begin{pmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ 0 & y_{22} & \cdots & y_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & y_{nn} \end{pmatrix}. (18.5)$$

Теорема. (ТОР для СтЛВУ-*n* с произвольной матрицей). Пусть $f(t) \in C(I)$, тогда для любых $s \in I$, $\xi \in R_{n,1}$ задача Коши (18.3) — (18.4)

имеет единственное решение на I .

Доказательство. Для любой матрицы $A \in R_{n,n}$ существует матрица S, $\det S \neq 0$, такая, что $A = SJS^{-1}$, где J - матрица Жордана для матрицы A. Сделаем в задаче Коши (18.3) — (18.4) замену переменных $x = S \cdot z$, тогда уравнение (18.3) перепишется следующим образом:

$$D(Sz) = ASz + f(t), S \cdot Dz = ASz + f(t).$$

Так как $\det S \neq 0$, то существует S^{-1} , поэтому

$$Dz = S^{-1}ASz + S^{-1}f(t), Dz = Jz + S^{-1}f(t).$$

Условие Коши примет вид: $z(s) = S^{-1}\xi$.

На основании ТОР для СтЛВУ-n с треугольной матрицей задача Коши $Dz = Jz + S^{-1}f(t)$, $z(s) = S^{-1}\xi$ имеет единственное решение z(t) на I. Отсюда вытекает, что задача Коши (18.3), (18.4) также имеет единственное решение x(t).

Если $f(t) \equiv 0$, то задача Коши Dz = Jz, $z(s) = S^{-1}\xi$ имеет единственное решение: $z(t) = Y(t)S^{-1}\xi$, где Y(t) - матрица вида (18.5), поэтому задача Коши (18.3), (18.4) для однородного уравнения имеет единственное решение

$$x=SY(t)S^{-1}\xi=\Phi(t)\xi$$
 , где $\Phi(t)=egin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \dots & \dots & \dots & \dots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{pmatrix}$.

§19. Пространство решений ОСтЛВУ-п

Рассмотрим задачу Коши

$$Dx = Ax$$
, (19.1)

$$x(s) = \xi . (19.2)$$

Задача Коши (19.1) – (19.2) имеет единственное решение $x(t) = \Phi(t)\xi$ (19.3).

Заметим, что i-тый столбец матрицы $\Phi(t)$ является решением задачи Коши

$$(19.1)-(19.2) \text{ с начальным условием } \xi = \begin{pmatrix} \xi_1 \\ \dots \\ \xi_n \end{pmatrix}, \text{ где } \xi_j = \delta_{i,j} = \begin{cases} 1, j = i, \\ 0, j \neq i. \end{cases}$$

Таким образом $\Phi(t)$ - матрица решений $[x_1(t),...,x_n(t)]$ уравнения (19.1), где

$$x_k(t) = \begin{pmatrix} x_{1k} \\ \dots \\ x_{nk} \end{pmatrix}$$
. Рассмотрим $W(t) = \det \Phi(t)$.

Теорема. (формула Остроградского-Лиувилля для ОСтЛВУ-*n*).

Пусть $\Phi(t)$ - матрица решений уравнения (19.1), тогда имеет место формула Остроградского-Лиувилля: $W(t) = W(s)e^{(a_{11}+...+a_{nn})(t-s)}$ для любых $t,s \in I$.

Доказательство. (для случая n = 2).

$$\Phi(t) = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}, A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, x_1 = \begin{pmatrix} x_{11} \\ x_{21} \end{pmatrix}, x_2 = \begin{pmatrix} x_{12} \\ x_{22} \end{pmatrix}.$$

Так как $Dx_1 = Ax_1$, $Dx_2 = Ax_2$, то $Dx_{11} = a_{11}x_{11} + a_{12}x_{21}$, $Dx_{21} = a_{21}x_{11} + a_{22}x_{21}$,

$$\begin{split} Dx_{12} &= a_{11}x_{12} + a_{12}x_{22}, \ Dx_{22} = a_{21}x_{12} + a_{22}x_{22}. \\ \text{Тогда } DW(t) &= \begin{vmatrix} Dx_{11} & Dx_{12} \\ x_{21} & x_{22} \end{vmatrix} + \begin{vmatrix} x_{11} & x_{12} \\ Dx_{21} & Dx_{22} \end{vmatrix} = \begin{vmatrix} a_{11}x_{11} + a_{12}x_{21} & a_{11}x_{12} + a_{12}x_{22} \\ x_{21} & x_{22} \end{vmatrix} + \\ & + \begin{vmatrix} x_{11} & x_{12} \\ a_{21}x_{11} + a_{22}x_{21} & a_{21}x_{12} + a_{22}x_{22} \end{vmatrix} = \begin{vmatrix} a_{11}x_{11} & a_{11}x_{12} \\ x_{21} & x_{22} \end{vmatrix} + \begin{vmatrix} x_{11} & x_{12} \\ a_{22}x_{21} & a_{22}x_{22} \end{vmatrix} = (a_{11} + a_{22})W(t) \,. \end{split}$$

Следовательно, $W(t) = Ce^{(a_{11}+a_{22})t}$. Отсюда W(t) = W(t)

Следствие. Если существует $s \in I$, $W(s) \neq 0$, то $W(t) \neq 0$ для любого $t \in I$.

Пусть $x_1(t),...,x_n(t)$ - решения уравнения тогда $D\left(\sum_{k=1}^{n}c_{k}x_{k}(t)\right)=\sum_{k=1}^{n}c_{k}Dx_{k}(t)=\sum_{k=1}^{n}c_{k}Ax_{k}(t)=A\sum_{k=1}^{n}c_{k}x_{k}(t)$, поэтому для любых $c_i \in R$ линейная комбинация $\sum_{k=1}^{n} c_k x_k(t)$ решений также является решением уравнения (19.1). Следовательно, множество решений уравнения (19.1) образует линейное пространство.

Определение. Множество решений $x_1(t),...,x_n(t)$ уравнения (19.1) образует базис пространства решений, если $W(t) = \det \Phi(t) = \det [x_1(t), ..., x_n(t)] \neq 0$ для любого $t \in I$, матрицу $\Phi(t)$ называют базисной (фундаментальной).

Теорема. Пусть $x_1(t),...,x_n(t)$ - базис пространства решений уравнения (19.1), тогда функция $x(t) = \sum_{k=1}^{n} c_k x_k(t), c_k \in R$, является полным решением уравнения (19.1).

Доказательство. С одной стороны, любая функция $x(t) = \sum_{k=1}^{n} c_k x_k(t)$ является решением уравнения (19.1). Остаётся доказать, что для любой задачи Коши Dx = Ax, $x(s) = \xi$ найдутся постоянные c_k , такие, $x(t) = \sum_{k=0}^{\infty} c_k x_k(t)$ является решением этой задачи Коши. Выберем произволь-

ные
$$s \in I$$
 , $\xi = \begin{pmatrix} \xi_1 \\ \dots \\ \xi_n \end{pmatrix} \in R_{n,1}$. Пусть $x_k(t) = \begin{pmatrix} x_{1k} \\ \dots \\ x_{nk} \end{pmatrix}$, $k = \overline{1,n}$, тогда имеем систему:

$$\begin{cases} \xi_{1} = c_{1}x_{11}(s) + \dots + c_{n}x_{1n}(s), \\ \dots \\ \xi_{n} = c_{1}x_{n1}(s) + \dots + c_{n}x_{nn}(s), \end{cases}$$
(19.3)

определитель этой системы равен W(s). Так как $x_1(t),...,x_n(t)$ - базис, то $W(s) \neq 0$. Поэтому система (19.3) разрешима.

Полное решение уравнения (19.1) задается формулой $x(t) = \Phi(t) \cdot C$, где $\Phi(t)$ - базисная матрица, C - вектор произвольных постоянных.

ЛЕКЦИЯ 8

§20. Правило Эйлера построения базисной матрицы

Рассмотрим уравнение Dx = Ax (20.1). Для того чтобы построить базисную матрицу $\Phi(t)$, нужно построить n линейно независимых решений уравнения (20.1).

Решение будем искать в виде: $x(t) = \gamma e^{vt}$ (20.2), где $\gamma \in R_{n,1}$, $\gamma \neq \overline{0}$, $v \in R$. Подставим в уравнение (20.1): $\gamma v e^{\gamma t} = A \gamma e^{\gamma t}$, отсюда получаем, что $A \gamma = v \gamma$, то есть $(A - v E) \gamma = 0$. Поэтому v - собственное значение матрицы A, γ - собственный вектор матрицы A, отвечающий собственному значению v.

1) Случай 1:

Все собственные значения матрицы A действительны и различны: $v_k \in R$, $k=\overline{1,n}$, $v_i \neq v_j$, если $i \neq j$. Для каждого собственного значения v_k строим собственный вектор γ_k и полагаем $x_k(t) = \gamma_k \mathrm{e}^{v_k t}$, $k=\overline{1,n}$. Так как собственные вектора, отвечающие различным собственным значениям, линейно независимы, то $W(0) = [\gamma_1, ..., \gamma_n] \neq 0 \Rightarrow$ базис построен.

2) Случай 2:

Все собственные значения матрицы A действительные, но есть кратные: $v_k \in R$, k = 1, n, $\exists v_i$ с кратностью $n_i > 1$. Для каждого простого (кратность равна 1) собственного значения строим решение в виде (20.2). В зависимости от $\operatorname{rank}(A-v_iE)$ собственному значению v_i соответствует m линейно независимых собственных значений. Если $m = n_i$, то построение заканчивается. Пусть $m < n_j$; в этом случае решение будем искать в виде $x(t) = (\alpha_0 t + \alpha_1) e^{v_j t}$ (20.3), где $\alpha_0, \alpha_1 \in R_{n,1}$. Подставляя в уравнение (20.1), получим: $(\alpha_0 + \nu_i \alpha_0 t + \nu_i \alpha_1) \mathrm{e}^{\nu_j t} = A(\alpha_0 t + \alpha_1) \mathrm{e}^{\nu_j t}. \quad \text{Отсюда} \quad \text{находим,} \quad \text{что} \quad A\alpha_0 = \nu_j \alpha_0,$ $Alpha_1=v_{j}lpha_1+lpha_0$. Поэтому $lpha_0$ - собственный вектор, соответствующий v_{j} ; $lpha_1$ присоединенный вектор к α_0 , т.е. $(A-v_iE)\alpha_1=\alpha_0$. Построим r линейно независимых решений вида (20.3). Если окажется, что $m+r=n_{j}$, то построение заканчивается. Если $m+r < n_i$ решение TO строим вида: $x(t) = (\beta_0 t^2 + \beta_1 t + \beta_2) e^{v_j t}$ и так далее.

Если $u_1,u_2,...,u_k$ - жорданова цепочка матрицы A (т.е. $Au_1=vu_1$, $(A-vE)u_2=u_1,...$, $(A-vE)u_k=u_{k-1}$), соответствующая собственному значению v, то уравнение (20.1) имеет решение $x(t)=\left(u_1\frac{t^{k-1}}{(k-1)!}+u_2\frac{t^{k-2}}{(k-2)!}+...+u_k\right)\mathrm{e}^{vt}$.

3) Случай 3:

Среди собственных значений матрицы A есть комплексные: $v_k \in C$. По описанной схеме строим комплекснозначные решения $z_k(t) = x_k(t) + iy_k(t)$, $k = \overline{1,n}$. Очевидно, что функции $x_k(t)$, $y_k(t)$ являются решениями уравнения (20.1). Из системы решений $x_1(t),...,x_n(t),y_1(t),...,y_n(t)$ можно выбрать n линейно независимых решений.

Из приведенных ниже рассуждений вытекает, что для действительных собственных значений строим решения, как указано в п. 2. Для каждой пары комплексно сопряженных корней $v_{1,2} = \lambda \pm i\mu$ выбираем одно из собственных значений (например, $v_1 = \lambda + i\mu$), строим для v_1 линейно независимые комплекснозначные решения $z_1(t) = x_1(t) + iy_1(t),...,z_k(t) = x_k(t) + iy_k(t)$ и в качестве искомых линейно независимых действительнозначных решений выбираем $x_1(t), y_1(t),...,x_k(t), y_k(t)$.

Теорема 1. Пусть A и B - действительные $(n \times n)$ -матрицы, такие, что $\det(A+iB) \neq 0$, тогда $\operatorname{rank}(A B) \geq n$ над полем R.

Доказательство. Пусть $a_1,...,a_n$ - столбцы матрицы A, $b_1,...,b_n$ - столбцы матрицы B , тогда $a_1+ib_1,...,a_n+ib_n$ - столбцы матрицы A+iB . Так как $\det(A+iB)\neq 0$, то $\operatorname{rank}(a_1+ib_1,...,a_n+ib_n)=n$ над полем C . Докажем, что из системы столбцов $a_1,...,a_n$, $b_1,...,b_n$ можно выбрать n линейно независимых столбцов над полем C. Допустим, это не так, тогда размерность векторного $L_1 = L(a_1, ..., a_n, b_1, ..., b_n)$, порожденного системой пространства $a_1, ..., a_n$ b_1, \dots, b_n , над полем C меньше, чем n. Рассмотрим векторное пространство $L_2 = L(a_1 + ib_1, ..., a_n + ib_n)$, порожденное системой $a_1 + ib_1, ..., a_n + ib_n$, над полем C. Очевидно, что пространство L_2 есть подпространство пространства L_1 , противоречит $\dim L_2 \leq \dim L_1 < n$, что $\operatorname{rank}(a_1 + ib_1, ..., a_n + ib_n) = n$. Так как из системы столбцов $a_1, ..., a_n$, $b_1, ..., b_n$ можно выбрать n линейно независимых столбцов над полем C, то выбранная подсистема столбцов линейно независима и над полем R, поэтому $\operatorname{rank}(A B) \ge n$ над полем R.

Теорема 2. Пусть $u_1 = v_1 + iw_1, ..., u_k = v_k + iw_k$ - жорданова цепочка действительной $(n \times n)$ -матрицы A, соответствующая собственному значения $\alpha = \lambda + i\mu$, тогда $h_1 = -v_1 + iw_1, ..., h_k = -v_k + iw_k$ - жорданова цепочка матрицы A, соответствующая собственному значению $\alpha = \lambda - i\mu$.

Доказательство. По условию $A(v_1+iw_1)=(\lambda+i\mu)(v_1+iw_1)$. Отсюда получаем, что $Av_1=\lambda v_1-\mu w_1$, $Aw_1=\lambda w_1+\mu v_1$. Но тогда

$$A(-v_1 + iw_1) = (\lambda - i\mu)(-v_1 + iw_1).$$

Далее $(A - (\lambda + i\mu)E)(v_2 + iw_2) = v_1 + iw_1$, отсюда имеем:

$$Av_2 + \mu w_2 = v_1$$
, $Aw_2 - \mu v_2 = w_1$.

Поэтому

$$(A - (\lambda - i\mu)E)(-v_2 + iw_2) = -v_1 + iw_1$$

Продолжая эти рассуждения, получим, что

$$(A-\alpha E)u_{\scriptscriptstyle m}=u_{\scriptscriptstyle m-1}$$
 для любого $m\in 2,k$. \blacksquare

Пусть матрица A системы (20.1) имеет следующие характеристические числа: $v_{1,2} = \lambda_1 \pm \mu_1$, ..., $v_{2r-1,2r} = \lambda_r \pm i\mu_r$, v_{2r+1} ,..., v_m с кратностями $d_{1,2}$,..., $d_{2r-1,2r}$, d_{2r+1} ,..., d_m . Используя схему, описанную в пп. 1)-2), строим базис пространства решений над полем C системы (20.1). Если $u_1 = v_1 + iw_1$,..., $u_k = v_k + iw_k$ - жорданова цепочка для собственного значения $\lambda_s + i\mu_s$, то в качестве жордановой цепочки для собственного значения $\lambda_s - i\mu_s$ возьмем следующую: $h_1 = -v_1 + iw_1$,..., $h_k = -v_k + iw_k$. Собственному значению $\lambda_s + i\mu_s$ соответствует t^{k-1} ...

решение:
$$\left(u_1 \frac{t^{k-1}}{(k-1)!} + u_2 \frac{t^{k-2}}{(k-2)!} + \dots + u_k \right) e^{(\lambda_s + i\mu_s)t} = (x(t) + iy(t)) e^{(\lambda_s + i\mu_s)t} .$$
 Тогда

для собственного значения $\lambda_s - i\mu_s$ строим решение:

$$\left(h_1 \frac{t^{k-1}}{(k-1)!} + h_2 \frac{t^{k-2}}{(k-2)!} + \dots + h_k\right) e^{(\lambda_s - i\mu_s)t} = (-x(t) + iy(t))e^{(\lambda_s - i\mu_s)t}.$$

Так как $(x(t) + iy(t))e^{(\lambda_s + i\mu_s)t} = (x\cos\mu_s t - y\sin\mu_s t)e^{\lambda_s t} + i(y\cos\mu_s t + x\sin\mu_s t)e^{\lambda_s t},$ $(-x(t) + iy(t))e^{(\lambda_s - i\mu_s)t} = (-x\cos\mu_s t + y\sin\mu_s t)e^{\lambda_s t} + i(y\cos\mu_s t + x\sin\mu_s t)e^{\lambda_s t}.$

Поэтому если собственному значению $\lambda_s + i\mu_s$ соответствует решение $z_1(t) = x_1(t) + iy_1(t)$, то для собственного значения $\lambda_s - i\mu_s$ берем решение $z_2(t) = -x_1(t) + iy_1(t)$.

Таким образом, построим комплексный базис пространства решений:

$$\begin{split} z_1(t) &= x_1(t) + i y_1(t) \,, \qquad z_2(t) = -x_1(t) + i y_1(t) \,, \dots, \qquad z_{2p-1}(t) = x_p(t) + i y_p(t) \,, \\ z_{2p}(t) &= -x_p(t) + i y_p(t) \,, \ z_{2p+1}(t) = x_{p+1}(t) \,, \dots, \ z_{p+q}(t) = x_q(t) \,, \text{ где } p+q=n \,. \end{split}$$

Докажем, что система функций $x_1(t), y_1(t), ..., x_p(t), y_p(t), x_{p+1}(t), ..., x_q(t)$ образует действительный базис пространства решений. Допустим система $x_1(0), y_1(0), ..., x_p(0), y_p(0), x_{p+1}(0), ..., x_q(0)$ линейно зависима над полем C. Тогда $\dim L\{x_1(0), y_1(0), ..., x_p(0), y_p(0), x_{p+1}(0), ..., x_q(0)\} < n$ над полем C.

Так как пространство

$$L_2 = L\{x_1(0) + iy_1(0), -x_1(0) + iy_1(0), ..., x_p(0) + iy_p(0), -x_p(0) + iy_p(0), x_{p+1}(0), ..., x_q(0)\}$$
 является подпространством пространства

$$L_1 = L\{x_1(0), y_1(0), ..., x_p(0), y_p(0), x_{p+1}(0), ..., x_q(0)\},\$$

то $\dim L_2 \leq \dim L_1 < n$, что противоречит условию $\det[z_1(0),...,z_{p+q}(0)] \neq 0$. Так как система $x_1(0),\ y_1(0),...,\ x_p(0),\ y_p(0),\ x_{p+1}(0),...,\ x_q(0)$ линейно независима над C, то она линейно независима над R. Поэтому система функций

 $x_1(t), y_1(t), ..., x_p(t), y_p(t), x_{p+1}(t), ..., x_q(t)$ образует базис пространства решений системы (20.1).

Алгоритм построения жордановой нормальной формы заданной матрицы A над полем комплексных чисел

Клеткой Жордана $J_k(\alpha)$ называется $(k \times k)$ -матрица

$$\begin{pmatrix} \alpha & 1 & 0 & \dots & 0 & 0 \\ 0 & \alpha & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \alpha & 1 \\ 0 & 0 & 0 & \dots & 0 & \alpha \end{pmatrix}.$$

- 1) Составляем характеристическое уравнение $\det(A \lambda E_n) = 0$ матрицы A.
- 2) Вычисляем характеристические числа λ_i и их кратности k_i .
- 3) Каждому характеристическому числу λ_i кратности k_i соответствует число клеток Жордана, равное $\dim L_{\lambda_i}$ размерности подпространства собственных векторов L_{λ_i} , отвечающих характеристическому числу λ_i . Отметим, что $\dim L_{\lambda_i} = n \operatorname{rank}(A \lambda_i E_n)$.
- 4) Число $l_m(\lambda_i)$ клеток Жордана порядка m, отвечающих характеристическому числу λ_i , определяется по формуле:

$$l_m(\lambda_i) = \operatorname{rank}(A - \lambda_i E_n)^{m-1} - 2\operatorname{rank}(A - \lambda_i E_n)^m + \operatorname{rank}(A - \lambda_i E_n)^{m+1}.$$

5) Каждому характеристическому числу λ_i ставим в соответствие клетки Жордана $J_m(\alpha)$ и из этих клеток строим блочно-диагональную матрицу $J_{\scriptscriptstyle A}$.

Матрица Жордана определяется единственным образом с точностью до порядка следования клеток Жордана.

Пример. Для матрицы
$$A = \begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}$$
 построить жорданову нормальную

форму $J_{\scriptscriptstyle A}$.

Решение. Характеристическое уравнение имеет вид $(2-\lambda)^3=0$. Отсюда находим единственное характеристическое число $\lambda_1=2$ кратности $k_1=3$. Так

как ранг матрицы
$$A-\lambda_1 E_3=\begin{pmatrix} -2 & 1 & 0\\ -4 & 2 & 0\\ -2 & 1 & 0 \end{pmatrix}$$
 равен 1, то число клеток Жордана

равно 3-1=2 . Очевидно, что размерность этих клеток 1 и 2. Таким образом,

$$J_{\scriptscriptstyle A} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \text{ или } J_{\scriptscriptstyle A} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Пример. Построить базисную матрицу для системы Dx = Ax, где

$$A = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}.$$

Решение. Находим характеристический многочлен

 $\det(A - \lambda E) = -\lambda^3 + 3\lambda^2 - 3\lambda + 1 = (1 - \lambda)^3$. Собственное значение $\nu = 1$ имеет кратность d = 3. Находим собственные вектора:

$$A - E =$$

$$\begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 2 \\ 3 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} -1 & 0 & 2 \\ 1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \Rightarrow \gamma = (0, \alpha, 0),$$
где $\alpha \in R$.

Можно построить лишь один линейно независимый собственный вектор. По-

лагаем $x_1(t) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} e^t$. Далее строим решение в виде $x_2(t) = (\alpha_0 t + \alpha_1) e^t$, где

$$lpha_0 = egin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \; lpha_1$$
 - присоединенный вектор к вектору $lpha_0$.

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ -1 & 0 & 2 & 1 \\ 3 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 0 & 0 & 1 & 1/2 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow \alpha_1 = (0, \beta, 1/2).$$
 Полагаем $\alpha_1 = \begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}.$

Поэтому
$$x_2(t) = \begin{pmatrix} 0 \\ t \\ 1/2 \end{pmatrix} e^t$$
.

Далее строим решение в виде: $x_3(t) = (\alpha_0 t^2/2 + \alpha_1 t + \alpha_2)e^t$, где α_2 - присоединенный вектор к вектору α_1 .

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ -1 & 0 & 2 & 0 \\ 3 & 0 & 0 & 1/2 \end{pmatrix} \sim \begin{pmatrix} 0 & 0 & 1 & 1/12 \\ 1 & 0 & 0 & 1/6 \end{pmatrix} \Rightarrow \alpha_1 = (1/6, \delta, 1/12).$$
 Полагаем $\alpha_2 = \begin{pmatrix} 1/6 & 0 \\ 0 & 1/12 \end{pmatrix}.$

Тогда
$$x_3(t) = \begin{pmatrix} 1/6 \\ t^2/2 \\ t/2 + 1/12 \end{pmatrix} e^t \implies \Phi(t) = \begin{pmatrix} 0 & 0 & e^t/6 \\ e^t & te^t & t^2e^t/2 \\ 0 & e^t/2 & (t/2 + 1/12)e^t \end{pmatrix}.$$

Пример. Построить базисную матрицу для системы Dx = Ax, где $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Решение. Находим характеристический многочлен

 $\det(A - \lambda E) = \lambda^2 + 1$. Собственные значение $v_{1,2} = \pm i$ имеет кратность $d_{1,2} = 1$. Находим собственные вектора:

$$A-v_1E = \begin{pmatrix} -i & -1 \\ 1 & -i \end{pmatrix} \sim (1 & -i) \implies \gamma_1 = (i,1)\,;$$

$$A-v_2E = \begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix} \sim (1 & i) \implies \gamma_2 = (i,-1)\,;$$
 поэтому $z_1(t) = \begin{pmatrix} i \\ 1 \end{pmatrix} \mathrm{e}^{it} = \begin{pmatrix} i\cos t - \sin t \\ \cos t + i\sin t \end{pmatrix}, \ z_2(t) = \begin{pmatrix} i \\ -1 \end{pmatrix} \mathrm{e}^{-it} = \begin{pmatrix} i\cos t + \sin t \\ -\cos t + i\sin t \end{pmatrix}.$ Отсюда $x_1(t) = \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix}, x_2(t) = \begin{pmatrix} \sin t \\ -\cos t \end{pmatrix}, \ y_1(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}, y_2(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}.$ В качестве двух линейно независимых решений можно выбрать $x_1(t)$, $y_1(t)$, тогда
$$\Phi(t) = \begin{pmatrix} -\sin t & \cos t \\ \cos t & \sin t \end{pmatrix}.$$

§21. Неоднородные СтЛВУ-*n*.

Метод сведения линейной системы к одному линейному уравнению

Рассмотрим уравнения

$$Dx = Ax + f(t)$$
, (21.1)

$$Dx = Ax \cdot (21.2)$$

Пусть $x_{oo}(t)$ - произвольное решение уравнения (21.2), $x_{up}(t)$ - частное решение уравнения (21.1). Докажем, что общее решение уравнения (21.1) находится по формуле: $x_{on}(t) = x_{oo}(t) + x_{up}(t)$. (21.3).

С одной стороны, $D(x_{oo}(t)+x_{vp}(t))=Dx_{oo}(t)+Dx_{vp}(t)=0+f(t)=f(t)$, поэтому $x_{oo}(t)+x_{vp}(t)$ содержится во множестве $x_{oh}(t)$, с другой стороны, $D(x_{oh}(t)-x_{vh}(t))=D(x_{oh}(t))-D(x_{vh}(t))=f(t)-f(t)=0$, поэтому $x_{oh}(t)-x_{vh}(t)$ содержится во множестве $x_{oo}(t)$, а следовательно, $x_{oh}(t)$ содержится во множестве $x_{oo}(t)+x_{vp}(t)$. Таким образом, формула (21.3) доказана.

Пусть
$$n = 2$$
:

$$\begin{cases}
Dx_1 = a_{11}x_1 + a_{12}x_2 + f_1(t), \\
Dx_2 = a_{21}x_1 + a_{22}x_2 + f_2(t).
\end{cases}$$
 (21.4)

Если $a_{12}=a_{21}=0$, то система (21.4) распадается на два независимых уравнения. Предположим, что $a_{12}\neq 0$, тогда выразим из первого уравнения x_2 :

$$x_2 = \frac{Dx_1 - a_{11}x_1 - f_1(t)}{a_{12}}$$
 (21.5)

и подставим во второе уравнение системы (21.4):

$$\frac{1}{a_{12}}D^2x_1 - \frac{a_{11}}{a_{12}}Dx_1 - \frac{1}{a_{12}}Df_1(t) = a_{21}x_1 + \frac{a_{22}}{a_{12}}Dx_1 - \frac{a_{22}a_{11}}{a_{12}}x_1 - \frac{a_{22}}{a_{12}}f_1(t) + f_2(t) \Leftrightarrow D^2x_1 - (a_{11} + a_{22})Dx_1 + (a_{11}a_{22} - a_{12}a_{21})x_1 = Df_1(t) - a_{22}f_1(t) + a_{12}f_2(t) \quad (21.6).$$
 Из уравнений (21.6) и (21.5) находим общее решение $x_1(t)$, $x_2(t)$.

§22. Правило Лагранжа нахождения частного решения неоднородного СтЛВУ-*n*.

Рассмотрим уравнения

$$Dx = Ax + f(t)$$
, (22.1)

$$Dx = Ax . (22.2)$$

Как было показано в предыдущем параграфе, $x_{on}(t) = x_{oo}(t) + x_{up}(t)$. Кроме того, $x_{oo}(t) = \Phi(t)C$, где $\Phi(t)$ - базисная матрица уравнения (22.2). Частное решение $x_{up}(t)$ уравнения (22.1) будем искать в виде: $x_{up}(t) = \Phi(t)U(t)$ (22.3), где $U: I \to R_{n,1}$ - неизвестная функция.

Имеем
$$D(\Phi(t)U(t)) = A\Phi(t)U(t) + f(t)$$
,

$$D\Phi(t)U(t) + \Phi(t)DU(t) = A\Phi(t)U(t) + f(t),$$

$$(D\Phi(t) - A\Phi(t))U(t) + \Phi(t)DU(t) = f(t),$$

$$\Phi(t)DU(t) = f(t),$$

$$DU(t) = \Phi^{-1}(t)f(t) \Rightarrow U(t) = \int_{c}^{t} \Phi^{-1}(\tau)f(\tau)d\tau,$$

поэтому
$$x_{up}(t) = \Phi(t) \int_{s}^{t} \Phi^{-1}(\tau) f(\tau) d\tau = \int_{s}^{t} \Phi(t) \Phi^{-1}(\tau) f(\tau) d\tau$$
.

Следовательно,
$$x_{\scriptscriptstyle OH}(t) = \Phi(t)C + \int\limits_{-t}^{t} \Phi(t)\Phi^{-1}(\tau)f(\tau)d\tau$$
.

Решение задачи Коши Dx = Ax + f(t), $x(s) = \xi$ определяется по формуле:

$$x(t) = \Phi(t)\Phi^{-1}(s)\xi + \int_{s}^{t} \Phi(t)\Phi^{-1}(\tau)f(\tau)d\tau.$$

ЛЕКЦИИ 9-10

§23. Построение базисной матрицы однородного СтЛВУ-*n* с помощью экспоненты матрицы

Рассмотрим уравнения Dx = Ax (23.1). Dx = Ax + f(t) (23.2).

Обозначим $||A|| = \left(\sum_{i,j=1}^n a_{ij}^2\right)^{1/2}$ - евклидову норму матрицы.

Определение. Экспонентой матрицы $A \in R_{n,n}$ называется матрица $\exp(A) = \mathrm{e}^A := \sum_{k=0}^\infty \frac{A^k}{k!}$.

Так как $\|A^k\| \le \|A\|^k$, то $\|\mathbf{e}^A\| = \left\|\sum_{k=0}^\infty \frac{A^k}{k!}\right\| \le \sum_{k=0}^\infty \frac{\|A\|^k}{k!} = \mathbf{e}^{\|A\|} < \infty$. Поэтому определение экспоненты матрицы корректно.

Лемма. $D(e^{At}) = Ae^{At}$.

Доказательство. Так как степенные ряды $\sum_{k=0}^{\infty} \frac{A^k t^k}{k!}$ и $\sum_{k=0}^{\infty} D \left(\frac{A^k t^k}{k!} \right)$ сходятся локально равномерно на R, то возможно почленное дифференцирование ряда $\sum_{k=0}^{\infty} \frac{A^k t^k}{k!}$, т.е.:

$$D(e^{At}) = D\left(\sum_{k=0}^{\infty} \frac{A^k t^k}{k!}\right) = \sum_{k=0}^{\infty} D\left(\frac{A^k t^k}{k!}\right) = \sum_{k=0}^{\infty} \frac{A^{k+1} t^k}{k!} = Ae^{At}. \blacksquare$$

Так как $\det(\mathrm{e}^{A\cdot 0}) = \det(E) = 1 \neq 0$, то матрица e^{At} является базисной матрицей для уравнения (23.1). Следовательно, общее решения уравнения (23.2) находится по формуле: $x_{on}(t) = \mathrm{e}^{At}C + \int\limits_{s}^{t} \mathrm{e}^{A(t-\tau)}f(\tau)d\tau$, а решение задачи Коши Dx = Ax + f(t), $x(s) = \xi$, находится следующим образом: $x(t) = \mathrm{e}^{A(t-s)}\xi + \int\limits_{s}^{t} \mathrm{e}^{A(t-\tau)}f(\tau)d\tau$.

Обозначим через J жорданову нормальную форму для матрицы A, тогда $A = SJS^{-1}$, где S - трансформирующая матрица, $\det S \neq 0$. Тогда $A^k = SJ^kS^{-1}$ и $\mathrm{e}^{At} = \sum_{k=0}^\infty \frac{SJ^kS^{-1}t^k}{k!} = S\sum_{k=0}^\infty \frac{J^kt^k}{k!}S^{-1} = S\mathrm{e}^{Jt}S^{-1}$.

Пусть $J=diag\{J_1,...,J_l\}$, где J_i - клетки Жордана, тогда $\mathrm{e}^{Jt}=diag\{\mathrm{e}^{J_lt},...,\mathrm{e}^{J_lt}\}$.

Лемма. Пусть $J_m(v)$ - $m \times m$ -клетка Жордана, соответствующая собственному значению v , тогда

$$e^{J_m(v)t} = e^{vt} \begin{pmatrix} 1 & t & t^2/2! & \dots & t^{m-1}/(m-1)! \\ 0 & 1 & t & \dots & t^{m-2}/(m-2)! \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}.$$

Доказательство. Так как $J_{\scriptscriptstyle m}(v) = v E_{\scriptscriptstyle m} + H_{\scriptscriptstyle 1,m}$, где

$$H_{1,m} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix},$$

TO

$$e^{J_{m}(v)t} = e^{vE_{m}t}e^{H_{1,m}t} = e^{vt}e^{H_{1,m}t} = e^{vt}\sum_{k=0}^{\infty} \frac{H_{1,m}^{k}t^{k}}{k!} =$$

$$e^{vt}\begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix} + e^{vt}t\begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix} + \dots + e^{vt}\frac{t^{m-1}}{m!}\begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix} + \dots + e^{vt}\frac{t^{m-1}}{m!}\begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix} =$$

$$e^{vt}\begin{bmatrix} 1 & t & t^{2}/2! & \dots & t^{m-1}/(m-1)! \\ 0 & 1 & t & \dots & t^{m-2}/(m-2)! \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}.$$

Здесь мы использовали тот факт, что $H_{1,m}^k = O_m$ при $k \geq m$. lacktriangle

Пример. Построить базисную матрицу для уравнения Dx = Ax с матрицей

$$A = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}.$$

Решение. Находим характеристический многочлен

 $\det(A - \lambda E) = -\lambda^3 + 3\lambda^2 - 3\lambda + 1 = (1 - \lambda)^3$. Собственное значение $\nu = 1$ имеет кратность d = 3. Так как

 $\operatorname{rank}(A-E)=2$, то матрица Жордана J состоит из одной клетки, т.е.:

$$J = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Трансформирующая матрица S состоит из собственного и присоединенных векторов, которые были найдены в примере из параграфа 20:

$$S = \begin{pmatrix} 0 & 0 & 1/6 \\ 1 & 0 & 0 \\ 0 & 1/2 & 1/12 \end{pmatrix}.$$

Следовательно,

$$\Phi(t) = e^{At} = Se^{Jt}S^{-1} = \begin{pmatrix} 0 & 0 & 1/6 \\ 1 & 0 & 0 \\ 0 & 1/2 & 1/12 \end{pmatrix} \begin{pmatrix} e^{t} & te^{t} & t^{2}e^{t}/2 \\ 0 & e^{t} & te^{t} \\ 0 & 0 & e^{t} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 2 \\ 6 & 0 & 0 \end{pmatrix} =$$

$$= e^{t} \begin{pmatrix} 1 & 0 & 0 \\ 3t^{2} - t & 1 & 2t \\ 3t & 0 & 1 \end{pmatrix}.$$

§24. Интегральная непрерывность решений СтЛВУ-*n*

Рассмотрим невозмущенную и возмущенную задачи Коши:

$$Dx = Ax + f(t), \ x(s) = \xi, (24.1)$$

$$Dx = Ax + f(t), \ x(s) = \xi + \Delta \xi . (24.2)$$

Эти задачи Коши имеют единственные решения:

$$x(t) = e^{A(t-s)}\xi + \int_{s}^{t} e^{A(t-\tau)}f(\tau)d\tau \text{ if } \tilde{x}(t) = e^{A(t-s)}(\xi + \Delta\xi) + \int_{s}^{t} e^{A(t-\tau)}f(\tau)d\tau \text{ (24.3)}.$$

Определим отклонение решений (24.3):

$$\rho(t,\Delta\xi) = \left\| \tilde{x}(t) - x(t) \right\| = \left\| e^{A(t-s)} \Delta\xi \right\|.$$

Определение. Решение x(t) задачи Коши (24.1) *непрерывно зависит* от начальных условий на промежутке I, если $\lim_{\|\Delta\xi\|\to 0} \rho(t,\Delta\xi) = 0$ равномерно по

 $t \in I$. Решение x(t) задачи Коши (24.1) *интегрально непрерывно* на промежутке I, если на любом отрезке $[a,b] \subseteq I$ оно непрерывно зависит от начальных условий.

Теорема. Пусть функция f(t) непрерывна на промежутке I, тогда решение x(t) задачи Коши (24.1) интегрально непрерывно на I.

Доказательство. Зафиксируем произвольный отрезок [a,b] из промежутка I, тогда существует постоянная M, такая, что $\|\mathbf{e}^{A(t-s)}\| \leq M$ для любых $t \in [a,b]$. Так как $\|\mathbf{e}^{A(t-s)}\Delta \xi\| \leq \|\mathbf{e}^{A(t-s)}\| \|\Delta \xi\| \leq M \|\Delta \xi\|$, то $\lim_{\|\Delta \xi\| \to 0} \rho(t,\Delta \xi) = 0$ равномерно по $t \in [a,b]$.

§25. Устойчивость решений СтЛВУ-*n*

Рассмотрим невозмущенную и возмущенную задачи Коши:

$$Dx = Ax + f(t), \ x(s) = \xi, (25.1)$$

$$Dx = Ax + f(t), \ x(s) = \xi + \Delta \xi, (25.2)$$

и отклонение решений возмущенной и невозмущенной задач Коши:

$$\rho(t,\Delta\xi) = \|\tilde{x}(t) - x(t)\| = \|e^{A(t-s)}\Delta\xi\|.$$

Так как отклонение не зависит от f(t) и ξ , то, не нарушая общности, будем считать, что $f(t) \equiv 0$, $\xi = 0$.

Определение. Решение $x(t) \equiv 0$ задачи Коши (25.1) *устойчиво по Ляпунову* на полуоси $[s,+\infty)$, если оно непрерывно зависит от начальных условий на промежутке $[s,+\infty)$, т.е. $\lim_{\|\Delta\xi\|\to 0} \rho(t,\Delta\xi) = 0$ равномерно по $t \in [s,+\infty)$.

Лемма. Пусть матрицы $A, B \in R_{n,n}$ подобны, т.е. $\exists S \in R_{n,n}$: $\det S \neq 0$, $A = SBS^{-1}$. Решение задачи Коши Dx = Ax, x(s) = 0 устойчиво по Ляпунову на полуоси $[s, +\infty)$ тогда и только тогда, когда решение задачи Коши Dx = Bx, x(s) = 0 устойчиво по Ляпунову на полуоси $[s, +\infty)$.

Доказательство. Пусть нулевое решение задачи Коши Dx = Bx, x(s) = 0 устойчиво по Ляпунову на полуоси $[s, +\infty)$. Обозначим $\rho_A(t, \Delta \xi) = \left\| \mathbf{e}^{A(t-s)} \Delta \xi \right\|$, $\rho_B(t, \Delta \xi) = \left\| \mathbf{e}^{B(t-s)} \Delta \xi \right\|$. Так как $A = SBS^{-1}$, то

$$ho_A(t,\Delta\xi) = \|Se^{B(t-s)}S^{-1}\Delta\xi\| \le \|S\|\|e^{B(t-s)}\Delta\eta\| = \|S\|\rho_B(t,\Delta\eta)$$
, где $\Delta\eta = S^{-1}\Delta\xi$.

Для любого $\varepsilon > 0$ существует $\delta = \delta(\varepsilon)$, такое, что для любых $\Delta \eta$, $\|\Delta \eta\| \le \delta$, выполняется неравенство $\|S\| \rho_B(t, \Delta \eta) \le \varepsilon$ для всех $t \in [s, +\infty)$. Так как $\|\Delta \eta\| \le \|S^{-1}\| \|\Delta \xi\|$, то для любых $\|\Delta \xi\|$, $\|\Delta \xi\| \le \delta / \|S^{-1}\|$, выполняется неравенство $\rho_A(t, \Delta \xi) \le \varepsilon$ для всех $t \in [s, +\infty)$. Поэтому нулевое решение задачи Коши Dx = Ax, x(s) = 0 устойчиво по Ляпунову на полуоси $[s, +\infty)$. Аналогично доказывается обратное утверждение.

Теорема. (критерий устойчивости по Ляпунову).

Решение задачи Коши (25.1) устойчиво по Ляпунову на полуоси $[s,+\infty)$ тогда и только тогда, когда выполняются условия: 1) все собственные значения матрицы A имеют неположительные действительные части; 2) если собственное значение v матрицы A имеет нулевую действительную часть, то все

клетки Жордана J(v) жордановой нормальной формы матрицы A имеют размер 1.

Доказательство.

Не нарушая общности, можно считать, что матрица A совпадает с матрицей Жордана J для матрицы A. Тогда $\rho(t,\Delta\xi) = \|\mathbf{e}^{J(t-s)}\Delta\xi\|$.

1) Необходимость. Допустим, существует собственное значение $v_{_1},\ \mathrm{Re}v_{_1}>0$.

1) Необходимость. Допустим, существует собственное значение
$$v_1$$
, $\operatorname{Re} v_1 > 0$.
Тогда $e^{J_l} = \begin{pmatrix} e^{v_1 l} & * & \dots & * \\ 0 & * & \dots & * \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & * \end{pmatrix}$; выберем $\Delta \xi = \begin{pmatrix} \delta \\ 0 \\ \dots \\ 0 \end{pmatrix}$, где $\delta > 0$. В таком случае $\delta = \begin{pmatrix} \delta \\ 0 \\ \dots \\ 0 \end{pmatrix}$

$$ho(t,\Delta\xi) = egin{pmatrix} \delta \mathrm{e}^{v_1(t-s)} \\ 0 \\ \dots \\ 0 \end{pmatrix}, \ \text{поэтому} \ \left\|
ho(t,\Delta\xi) \right\| = \delta \ | \ \mathrm{e}^{v_1(t-s)} | = \delta \mathrm{e}^{\mathrm{Re}v_1(t-s)} \,.$$
 Следовательно,

 $ho(t,\Delta\xi)$ не стремится равномерно к 0 при $\delta
ightarrow 0$.

Допустим, существует собственное значение v_1 , $\text{Re}v_1 = 0$, и в матрице Жордана J есть клетка $J(v_1)$ размерности, большей 1.

Тогда
$$e^{J_l}=\begin{pmatrix} e^{v_1t} & te^{v_1t} & \dots & * \\ 0 & e^{v_1t} & \dots & * \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & * \end{pmatrix}$$
; выберем $\Delta \xi=\begin{pmatrix} 0 \\ \delta \\ \dots \\ 0 \end{pmatrix}$, где $\delta>0$. В этом случае

$$ho(t,\Delta\xi) = egin{pmatrix} \delta(t-s) e^{v_1(t-s)} \\ \delta e^{v_1(t-s)} \\ ... \\ 0 \end{pmatrix}, \ \text{поэтому} \ \left\|
ho(t,\Delta\xi) \right\| = \delta((t-s)^2+1)^{1/2} \,. \ \text{Следователь-}$$

но, $\rho(t, \Delta \xi)$ не стремится равномерно к 0 при $\delta \to 0$.

2) Достаточность. По условию теоремы:

$$e^{Jt} = diag\{\Omega_1(t),...,\Omega_k(t),\omega_1(t),...,\omega_m(t)\}$$
, где

2) Достаточность. По условию теоремы:
$$e^{Jt} = \operatorname{diag}\{\Omega_1(t),...,\Omega_k(t),\omega_1(t),...,\omega_m(t)\}, \text{ где}$$

$$\Omega_j(t) = e^{(\lambda_j + i\mu_j)(t-s)} \begin{pmatrix} 1 & t-s & ... & (t-s)^{\alpha_j-1}/(\alpha_j-1)! \\ 0 & 1 & ... & (t-s)^{\alpha_j-2}/(\alpha_j-2)! \\ ... & ... & ... \\ 0 & 0 & ... & 1 \end{pmatrix} = e^{(\lambda_j + i\mu_j)(t-s)} P_j(t-s),$$

 $lpha_{_{j}}$ - кратность собственного значения $\lambda_{_{i}}+i\mu_{_{i}},\;\omega_{_{r}}(t)=\mathrm{e}^{i\mu_{_{r}}(t-s)}$

Так как $\lambda_j < 0$, то $\|\Omega_j(t)\| \le M$ для любых $t \in [s, +\infty)$. Кроме того, $|\omega_r(t)| = 1$. Следовательно, $\rho(t, \Delta \xi) \le \|\mathbf{e}^{J(t-s)}\| \|\Delta \xi\| \le M_1 \|\Delta \xi\|$. Поэтому $\lim_{\|\Delta \xi\| \to 0} \rho(t, \Delta \xi) = 0$ равномерно по $t \in [s, +\infty)$.

§26. Асимптотическая устойчивость решений СтЛВУ-*n*

Рассмотрим невозмущенную и возмущенную задачи Коши:

$$Dx = Ax$$
, $x(s) = 0$, (26.1)

$$Dx = Ax$$
, $x(s) = \Delta \xi$, (26.2)

и отклонение решений возмущенной и невозмущенной задач Коши:

$$\rho(t,\Delta\xi) = \left\| e^{A(t-s)} \Delta \xi \right\|.$$

Определение. Решение $x(t) \equiv 0$ задачи Коши (26.1) асимптотически устойчиво на полуоси $[s,+\infty)$, если оно устойчиво по Ляпунову на полуоси $[s,+\infty)$ и существует $\delta > 0$, такое, что $\lim_{t \to +\infty} \rho(t,\Delta \xi) = 0$ для любых $\Delta \xi$, $\|\Delta \xi\| \leq \delta$.

Лемма. Пусть матрицы $A, B \in R_{n,n}$ подобны. Решение задачи Коши Dx = Ax, x(s) = 0 асимптотически устойчиво на полуоси $[s, +\infty)$ тогда и только тогда, когда решение задачи Коши Dx = Bx, x(s) = 0 асимптотически устойчиво на полуоси $[s, +\infty)$.

Доказательство леммы аналогично доказательству леммы из предыдущего параграфа.

Теорема. (критерий асимптотической устойчивости).

Решение задачи Коши (26.1) асимптотически устойчиво на полуоси $[s, +\infty)$ тогда и только тогда, когда характеристический многочлен матрицы A гурвицевый.

Доказательство.

Не нарушая общности, можно считать, что матрица A совпадает с матрицей Жордана J для матрицы A. Тогда $\rho(t, \Delta \xi) = \left\| \mathbf{e}^{J(t-s)} \Delta \xi \right\|$.

1) Необходимость. По условию решение задачи Коши (26.1) устойчиво по Ляпунову. Допустим, существует собственное значение v_1 , $\text{Re}v_1 = 0$.

Тогда
$$e^{\jmath_t}=\begin{pmatrix} e^{\nu_1 t} & * & \dots & * \\ 0 & * & \dots & * \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & * \end{pmatrix};$$
 выберем $\Delta \xi=\begin{pmatrix} \delta \\ 0 \\ \dots \\ 0 \end{pmatrix},$ где $\delta>0$. В этом случае

$$ho(t,\Delta\xi) = egin{pmatrix} \delta \mathrm{e}^{v_1(t-s)} \\ 0 \\ \dots \\ 0 \end{pmatrix}, \ \mathrm{поэтомy} \ \|
ho(t,\Delta\xi) \| = \delta \ . \ \mathrm{C}$$
ледовательно, $\
ho(t,\Delta\xi)$ не стре-

мится к 0 при $t \to +\infty$ ни при каких $\Delta \xi$.

2) Достаточность. Так как характеристический многочлен гурвицевый, то решение задачи Коши (26.1) устойчиво по Ляпунову.

Кроме того, $e^{Jt} = diag\{\Omega_1(t),...,\Omega_k(t)\}$, где

$$\Omega_{j}(t) = e^{(\lambda_{j} + i\mu_{j})(t-s)} \begin{pmatrix} 1 & t-s & \dots & (t-s)^{\alpha_{j}-1}/(\alpha_{j}-1)! \\ 0 & 1 & \dots & (t-s)^{\alpha_{j}-2}/(\alpha_{j}-2)! \\ \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} = e^{(\lambda_{j} + i\mu_{j})(t-s)} P_{j}(t-s),$$

 α_i - кратность собственного значения $\lambda_i + i\mu_i$.

Так как $\lambda_j < 0$, то $\Omega_j(t) \to O_{\alpha_j,\alpha_j}$ при $t \to +\infty$. Следовательно, $\mathrm{e}^{Jt} \to O_{n,n}$ при $t \to +\infty$. Поэтому $\rho(t,\Delta\xi) = \left\| \mathrm{e}^{J(t-s)} \Delta \xi \right\| \leq \left\| \mathrm{e}^{J(t-s)} \right\| \left\| \Delta \xi \right\|_{t \to +\infty} = 0$ для любых $\Delta \xi$, $\left\| \Delta \xi \right\| \leq 1$.

§27. Математическая модель разложения химического вещества

Задача. Некоторое вещество A разлагается на два вещества P и Q. Скорость образования каждого из них пропорциональна количеству неразложившегося вещества. Пусть x(t) и y(t) - количества веществ P и Q, образовавшихся к моменту t. Определить закон их изменений, зная, что в начальный момент x=0,y=0, а через 1 секунду $x=\frac{3}{8}c$, $y=\frac{1}{8}c$, где c - первоначальное количество вещества A.

Решение. В момент времени t скорости образования веществ P и Q равны:

$$\begin{cases} Dx = k_1(c - x - y), \\ Dy = k_2(c - x - y), \end{cases}$$

так как к этому моменту количество неразложившегося вещества A равно c-x-y .

Дифференцируя первое уравнение системы по t, получим:

$$D^2x = -k_1Dx - k_1Dy.$$

Подставим из второго уравнения системы значение Dy:

$$D^{2}x = -k_{1}Dx - k_{1}k_{2}c + k_{1}k_{2}x + k_{1}k_{2}y$$
 (27.1).

Теперь из первого уравнения выразим $k_1 y = k_1 c - k_1 x - Dx$ и подставим в (27.1):

$$D^{2}x = -k_{1}Dx - k_{1}k_{2}c + k_{1}k_{2}x + k_{1}k_{2}c - k_{1}k_{2}x - k_{2}Dx \iff D^{2}x + (k_{1} + k_{2})Dx = 0$$
 (27.2).

Находим общее решение уравнения (27.2): $x(t) = C_1 + C_2 e^{-(k_1 + k_2)t}$. Отсюда находим, что

$$y = c - x - \frac{1}{k_1} Dx = c - C_1 - C_2 e^{-(k_1 + k_2)t} + C_2 \frac{k_1 + k_2}{k_1} e^{-(k_1 + k_2)t} = c - C_1 + C_2 \frac{k_2}{k_1} e^{-(k_1 + k_2)t}.$$

Подставляя начальные условия, находим, что:

$$C_1+C_2=0\,,\;\;c-C_1+C_2\frac{k_2}{k_1}=0\,.\;\;\text{Откуда}\;\;C_1=\frac{k_1c}{k_1+k_2}\,,\;\;C_2=-\frac{k_1c}{k_1+k_2}\,.\;\;\text{Следователь-}$$
 но, $x(t)=\frac{k_1c}{k_1+k_2}\Big(1-\mathrm{e}^{-(k_1+k_2)t}\Big),\;\;y(t)=\frac{k_2c}{k_1+k_2}\Big(1-\mathrm{e}^{-(k_1+k_2)t}\Big).$

Неизвестные коэффициенты k_1 и k_2 найдем из дополнительных условий задачи: при t=1 $x=\frac{3}{8}c$, $y=\frac{1}{8}c$. Имеем:

$$\frac{3c}{8} = \frac{k_1c}{k_1 + k_2} \left(1 - e^{-(k_1 + k_2)} \right), \quad \frac{c}{8} = \frac{k_2c}{k_1 + k_2} \left(1 - e^{-(k_1 + k_2)} \right).$$

Отсюда определяем, что $k_1 = 3k_2$ и тогда $\frac{c}{8} = \frac{c}{4} \left(1 - \mathrm{e}^{-4k_2} \right)$. Откуда $k_2 = \frac{\ln 2}{4}$,

$$k_1 = \frac{3\ln 2}{4}.$$

Окончательно получаем, что

$$x(t) = \frac{3c}{4} \left(1 - \frac{1}{2^t} \right), \ y(t) = \frac{c}{4} \left(1 - \frac{1}{2^t} \right).$$

Исследуем устойчивость и асимптотическую устойчивость решения. Матрица системы имеет вид:

$$A = \begin{pmatrix} -k_1 & -k_1 \\ -k_2 & -k_2 \end{pmatrix}.$$

Находим характеристический многочлен: $\det(A-\lambda E)=\lambda^2+(k_1+k_2)\lambda$. Характеристические числа: $\lambda_1=0$, $\lambda_2=-k_1-k_2$. Так как по смыслу задачи $k_1>0$, $k_2>0$, то решение задачи является устойчивым по Ляпунову на полуоси $[0,+\infty)$, но не является асимптотически устойчивым.

ЛЕКЦИЯ 11

§28. Дифференциальные уравнения первого порядка в нормальной дифференциальной форме

Рассматривается уравнение вида

P(x,y)dx + Q(x,y)dy = 0, (28.1) — уравнение в нормальной дифференциальной форме,

где P(x,y), Q(x,y) - функции, определенные в области $D \subseteq \mathbb{R}^2$.

Если $Q(x,y) \neq 0$ в области D, то уравнение (28.1) можно записать так:

$$y' = f(x, y). (28.2)$$

Аналогично, если $P(x,y) \neq 0$ в области D, то уравнение (28.1) можно записать следующим образом:

$$x' = g(x, y)$$
. (28.3)

Уравнение (28.2), (28.3) – уравнения с выделенными производными.

Определение.

- I) Функция y = y(x), заданная на промежутке I, называется решением уравнения (28.1) в явном виде, если: 1) $(x, y(x)) \in D \ \forall x \in I$; 2) $y(x) \in D(I)$; 3)
- $P(x, y(x))dx + Q(x, y(x))y'(x)dx \equiv 0$. Аналогично определяется решение в явном виде как функция x = x(y).
- II) Пара функций x = x(t), y = y(t), $t \in I$, называется решением уравнения (28.1) в параметрическом виде, если:
- 1) $(x(t), y(t)) \in D \quad \forall t \in I ; 2) \quad x(t), \quad y(t) \in D(I), \quad (x'(t))^2 + (y'(t))^2 \neq 0 \quad \forall t \in I ; 3)$ $P(x(t), y(t))x'(t)dt + Q(x(t), y(t))y'(t)dt \equiv 0.$
- III) Соотношение u(x,y) = 0 называется решением уравнения (28.1) в явном виде, если его можно записать либо в явном, либо в параметрическом виде. Если соотношение u(x,y) = 0 является решением уравнения (28.1) в неявном виде, то его называют интегралом уравнения (28.1). Кривая, представляющая график некоторого решения уравнения (28.1) называется интегральной кривой.

Определение.

Соотношения 1) y = y(x,C) (или x = x(y,C)); 2) x = x(t,C), y = y(t,C); 3) $\Phi(x,y,C) = 0$, где $C \in \Gamma \subseteq R$, называются общим решением уравнения (28.1) в 1) явном; 2) параметрическом; 3) неявном виде, если: для любого $C \in \Gamma$ эти соотношения являются решениями уравнения (28.1) соответствующего вида. Решение, полученное из ОР при фиксированном C, называется частным решением. Совокупность всех решений уравнения (28.1) называется полным решением. Если для любого $C \in \Gamma$ решение в неявном виде записывается в виде u(x,y) = C, то его называют общим интегралом уравнения (28.1).

Классификация точек

- 1. Точка $(x,y) \in D$ называется точкой существования уравнения (28.1), если существует интегральная кривая уравнения (28.1), проходящая через точку (x,y).
- 2. Точка существования (x, y) уравнения (28.1) называется точкой единственности, если существует окрестность этой точки, в которой все интегральные кривые, проходящие через точку (x, y), совпадают. Иначе точка существования (x, y) называется точкой неединственности.
- 3. Точка существования (x, y) уравнения (28.1) называется точкой ветвления, если через точку проходят по крайней мере две интегральные кривые с общей касательной в точке (x, y) и отличающиеся друг от друга в любой окрестности точки (x, y).
- 4. Точка $(x_0, y_0) \in D$, такая, что $P(x_0, y_0) = Q(x_0, y_0) = 0$, называется особой точкой уравнения (28.1). В противном случае точка $(x_0, y_0) \in D$ называется неособой.

§29. Уравнения в полных дифференциалах

Определение. Любая замкнутая кривая γ на плоскости делит плоскость на две области: ограниченную и неограниченную (ограниченную область будем называть внутренней относительно кривой γ). Область $D \subseteq R^2$ называется односвязной, если для любой замкнутой кривой $\gamma \subset D$ внутренняя область относительно кривой γ содержится в D.

Рассмотрим уравнение

P(x,y)dx + Q(x,y)dy = 0, (29.1), $(x,y) \in D$, D - односвязная область в R^2 .

Определение.

Если существует дифференцируемая функция u(x,y), такая, что $du(x,y) = P(x,y)dx + Q(x,y)dy \quad \forall (x,y) \in D$, то уравнение (29.1) называется уравнением в полных дифференциалах (УПД).

Криволинейный интеграл второго рода (КРИ-2) и независимость КРИ-2 от формы пути интегрирования

Пусть $\gamma:[a,b]\to R^2$ - кривая на плоскости, $\{A_k\}_{k=0}^n$ - разбиение кривой γ , точки которого имеют координаты $A_k(x_k,y_k)$ и расположены последовательно, δ - диаметр разбиения. Обозначим $\Delta x_k = x_k - x_{k-1}$, $\Delta y_k = y_k - y_{k-1}$. Пусть $M_k(u_k,v_k)$ - внутренняя точка дуги $A_{k-1}A_k$ кривой γ . Для функций P(x,y),

$$Q(x,y)$$
, определенных на γ , построим суммы $\sum_{k=1}^n P(u_k,v_k) \Delta x_k$, $\sum_{k=1}^n Q(u_k,v_k) \Delta y_k$.

Конечные пределы этих сумм при $\delta \to 0$ обозначают соответственно $\int\limits_{\gamma} P(x,y) dx$, $\int\limits_{\gamma} Q(x,y) dy$.

Обычно рассматривают сумму таких интегралов, обозначая её $\int P(x,y) dx + Q(x,y) dy$

и называют криволинейным интегралом второго рода (КРИ-2).

Теорема. Пусть $\gamma:[a,b] \to R^2$, $\gamma(t) = (x(t),y(t))$, - гладкая кривая, P(x,y),Q(x,y) - непрерывные функции в точках дуги γ . Тогда $\int_{a}^{b} P(x,y)dx + Q(x,y)dy = \int_{a}^{b} (P(x(t),y(t))x'(t) + Q(x(t),y(t))y'(t))dt.$

Теорема. (о независимости КРИ-2 от формы пути интегрирования).

Пусть в односвязной области D заданы функции P(x,y), Q(x,y), имеющие непрерывные частные производные первого порядка. Тогда следующие четыре условия равносильны:

- 1) Для любой замкнутой кривой $\gamma \subset D$ выполняется условие $\int P(x,y) dx + Q(x,y) dy = 0 \ .$
- 2) для любых точек $A, B \in D$ интеграл $\int_{AB} P(x,y) dx + Q(x,y) dy$ не зависит от формы пути, соединяющего точки A, B.
- 3) Выражение P(x,y)dx + Q(x,y)dy является полным дифференциалом в области D, т.е. существует дифференцируемая функция u(x,y), такая, что du(x,y) = P(x,y)dx + Q(x,y)dy для любых $(x,y) \in D$.
- 4) Выполняется условие Эйлера: $P_{y}(x,y) = Q_{x}(x,y) \ \forall (x,y) \in D$.

Если выражение P(x,y)dx + Q(x,y)dy является полным дифференциалом, то первообразную u(x,y) можно найти двумя способами:

Способ 1: $u(x,y) = \int_{(x_0,y_0)}^{(x,y)} P(x,y) dx + Q(x,y) dy = \int_{x_0}^x P(\tau,y_0) d\tau + \int_{y_0}^y Q(x,\xi) d\xi$, где (x_0,y_0) - фиксированная точка области D (при условии, что ломаная $A_1(x_0,y_0)A_2(x_0,y)A_3(x,y)$ лежит в D).

Способ 2: так как $du(x,y) = u_x^{'}(x,y)dx + u_y^{'}(x,y)dy = P(x,y)dx + Q(x,y)dy$, то $u_x^{'} = P$, $u_y^{'} = Q$. Поэтому $u(x,y) = \int P(x,y)dx + \varphi(y) = \overline{P}(x,y) + \varphi(y)$. Дифференцируем по $y: u_y^{'} = \overline{P}_y^{'}(x,y) + \varphi'(y) = Q(x,y)$. Отсюда находим $\varphi(y) = \int (Q(x,y) - \overline{P}_y^{'}(x,y))dy$.

Теорема. Пусть уравнение (29.1) – УПД, тогда полное решение уравнения (29.1) в неявном виде задается формулой:

$$\int\limits_{(x_0,y_0)}^{(x,y)} P(x,y) dx + Q(x,y) dy = C \,, \, \text{где} \, \left(x_0,y_0 \right) \, \text{- фиксированная точка области } \, D \,.$$

Доказательство.

Уравнение (29.1) эквивалентно уравнению du(x, y) = 0, где u(x, y) - семейство первообразных для выражения P(x,y)dx + Q(x,y)dy в области D. Кроме

того,
$$du(x,y) = 0 \Leftrightarrow u(x,y) = C \Leftrightarrow \int_{(x_0,y_0)}^{(x,y)} P(x,y) dx + Q(x,y) dy = C$$
.

Рассмотрим задачу Коши для УПД:

$$P(x,y)dx + Q(x,y)dy = 0$$
, (29.2), $(x,y) \in D$,
 $y(x_0) = y_0$, (29.3), $(x_0, y_0) \in D$.

Решение задачи Коши задается формулой: $\int\limits_{(x_0,y_0)}^{(x,y)} P(x,y) dx + Q(x,y) dy = 0 \, .$ **Пример.** Найти решение задачи Коши $2xy^3 dx + (5y^4 + 3x^2y^2 + 1) dy = 0 \, ,$

 $v(0) = 1, D = R^2$.

Решение. Так как $P_{y}^{'} = Q_{x}^{'} = 6xy^{2}$, то уравнение является УПД, следовательно, решение задачи Коши задается формулой:

$$\int\limits_{(0,1)}^{(x,y)} 2xy^3 dx + (5y^4 + 3x^2y^2 + 1)dy = 0$$
. Вычислим криволинейный интеграл:

$$\int_{(0,1)}^{(x,y)} 2xy^3 dx + (5y^4 + 3x^2y^2 + 1)dy = \int_{0}^{x} 2\tau d\tau + \int_{1}^{y} (5\xi^4 + 3x^2\xi^2 + 1)d\xi =$$

$$= x^{2} + y^{5} + x^{2}y^{3} + y - 1 - x^{2} - 1 = y^{5} + x^{2}y^{3} + y - 2$$

Следовательно, соотношение $y^5 + x^2y^3 + y - 2 = 0$ задает решение задачи Коши в неявном виде.

Приведем альтернативный способ нахождения решения этой задачи Коши.

Так как $du(x,y) = u'_x(x,y)dx + u'_y(x,y)dy = P(x,y)dx + Q(x,y)dy$, то

$$u(x, y) = \int 2xy^3 dx + \varphi(y) = x^2y^3 + \varphi(y)$$
.

Далее
$$u_y(x,y) = 3x^2y^2 + \varphi'(y) = 5y^4 + 3x^2y^2 + 1$$
. Следовательно, $\varphi(y) = y^5 + y$.

Поэтому соотношение $3x^2y^2 + y^5 + y = C$ задает полное решение уравнения в неявном виде. Подставляя начальное условие, находим, что C = 2.

§30. Интегрирующий множитель

Рассмотрим уравнение

P(x,y)dx + Q(x,y)dy = 0, (30.1), $(x,y) \in D$, D - односвязная область в R^2 .

Определение. Непрерывная функция $\mu(x,y)$, не обращающаяся в 0 в области D, называется интегрирующим множителем для уравнения (30.1), если уравнение $\mu(x,y)P(x,y)dx + \mu(x,y)Q(x,y)dy = 0$ является УПД.

Если функции P(x,y), Q(x,y) непрерывно дифференцируемы в области D и уравнение (30.1) не имеет особых точек в D, то интегрирующий множитель существует. Но способ его нахождения неизвестен.

Однако иногда удаётся найти интегрирующий множитель в виде $\mu = \mu(\omega(x,y))$, где $\omega = \omega(x,y)$ - некоторая функция.

Пусть $\mu = \mu(\omega)$, $\omega = \omega(x, y)$, $\mu P dx + \mu Q dy = 0$ - УПД.

Тогда выполняется условие Эйлера: $(\mu P)_{y}^{'} = (\mu Q)_{x}^{'}$,

следовательно,
$$\mu_{y}P + \mu P_{y}' = \mu_{x}Q + \mu Q_{x}', \frac{d\mu}{d\omega}\omega_{y}'P + \mu P_{y}' = \frac{d\mu}{d\omega}\omega_{x}'Q + \mu Q_{x}',$$

$$\frac{d\mu}{d\omega}(\omega_{y}P - \omega_{x}Q) = \mu(Q_{x} - P_{y}), \quad \frac{d\mu}{\mu} = \frac{Q_{x} - P_{y}}{\omega_{y}P - \omega_{x}Q}d\omega.$$

Если
$$\frac{Q_x^{'} - P_y^{'}}{\omega_y^{'} P - \omega_x^{'} Q} = \Psi(\omega(x, y))$$
 (30.2), то $\frac{d\mu}{\mu} = \Psi(\omega) d\omega$. Отсюда

$$\ln \mid \mu \mid = \int_{\omega_0}^{\omega} \Psi(\tau) d\tau + C$$
 . Следовательно, $\mu(\varpi) = C_1 \exp \left(\int_{\omega_0}^{\omega} \Psi(\tau) d\tau \right)$.

Таким образом, если найдется непрерывно дифференцируемая функция $\omega(x,y)$, такая, что выполняется условие (30.2), то интегрирующий множи-

тель можно выбрать следующим образом:
$$\mu(x,y) = \exp\left(\int\limits_{\omega_0}^{\omega(x,y)} \Psi(\tau) d\tau\right)$$
.

Пример. Найти полное решение уравнение $(x-xy)dx+(x^2+y)dy=0$ в области $D=\{(x,y)\,|\,x,y>0\}$.

Решение. Найдем интегрирующий множитель $\mu = \mu(\omega(x,y))$

$$\omega(x,y) = x^2 + y^2$$
. Находим $\frac{Q_x^{'} - P_y^{'}}{\omega_y^{'} P - \omega_x^{'} Q} = -\frac{3}{2(x^2 + y^2)} = -\frac{3}{2\omega}$. Следовательно,

$$\mu(x,y) = C \exp\left(-\int_{\omega_0}^{x^2+y^2} \frac{3}{2\tau} d\tau\right) = \frac{C_1}{(x^2+y^2)^{3/2}}$$
. Возьмем $C_1 = 1$. Тогда имеем УПД:

$$\frac{x-xy}{(x^2+y^2)^{3/2}}dx + \frac{x^2+y}{(x^2+y^2)^{3/2}}dy = 0$$
. Найдем первообразную $u(x,y)$ для левой

части УПД:
$$u(x,y) = \int \frac{x-xy}{(x^2+y^2)^{3/2}} dx + \varphi(y) = \frac{y-1}{(x^2+y^2)^{1/2}} + \varphi(y)$$
. Далее

$$\left(\frac{y-1}{(x^2+y^2)^{1/2}}+\varphi(y)\right)_y = \frac{x^2+y}{(x^2+y^2)^{3/2}}.$$
 Отсюда находим, что $\varphi'(y)=0$. Следова-

тельно, $\frac{y-1}{(x^2+y^2)^{1/2}}=C$ - полное решение исходного уравнения в неявном виде.

ЛЕКЦИЯ 12

§31. Уравнения с разделенными и разделяющимися переменными

Уравнение

P(x)dx + Q(y)dy = 0 (31.1), $(x, y) \in D$, D - односвязная область в R^2 ,

называется уравнением с разделенными переменными.

Уравнение (31.1) – частный случай УПД, поэтому полное решение задается

формулой:
$$\int\limits_{x_0}^x P(\tau)d\tau + \int\limits_{y_0}^y Q(\xi)d\xi = C$$
 , где $(x_0,y_0) \in D$.

Решение задачи Коши

$$P(x)dx + Q(y)dy = 0, (x, y) \in D,$$

$$y(x_0) = y_0$$
, (31.2)

задается формулой:
$$\int\limits_{x_0}^x P(\tau)d\tau + \int\limits_{y_0}^y Q(\xi)d\xi = 0$$
 .

Уравнение

$$P_1(x)P_2(y)dx + Q_1(x)Q_2(y)dy = 0$$
 (31.3), $(x,y) \in D$, D - односвязная область в R^2 ,

называется уравнением с разделяющимися переменными.

Предположим, что функции $P_2(x)$ и $Q_1(x)$ имеют лишь изолированные нули α_i , β_i соответственно.

Будем рассматривать уравнение (31.3) на каждом из прямоугольников $\Pi_{i,j} = (\alpha_{i-1}, \alpha_i) \times (\beta_{j-1}, \beta_j)$.

Функция $\mu(x,y) = \frac{1}{P_2(y)Q_1(x)}$ является интегрирующим множителем для

уравнения (31.3) в области $\Pi_{i,j}$.

Имеем уравнение с разделенными переменными:

$$\frac{P_1(x)}{P_2(x)}dx + \frac{Q_2(y)}{Q_1(y)}dy = 0, (x,y) \in \Pi_{i,j},$$

которое имеет полное решение $\int\limits_{x_0}^x \frac{P_1(\tau)}{P_2(\tau)}d\tau + \int\limits_{y_0}^y \frac{Q_2(\xi)}{Q_1(\xi)}d\xi = C \;,\; (x_0,y_0), (x,y) \in \Pi_{ij} \,.$

Кроме того, решениями уравнения (31.3) являются функции $x \equiv \alpha_i$, $y \equiv \beta_j$.

Пример. Построить полное решение уравнения $dy - 2e^y x dx = 0$, $(x, y) \in \mathbb{R}^2$.

Решение. Умножая уравнение на интегрирующий множитель $\mu(x,y) = e^{-y}$, получим уравнение с разделенными переменными $e^{-y}dy - 2xdx = 0$, полное решение которого задается формулой: $e^{-y} + x^2 = C$.

57

Пример. Построить полное решение уравнения $dy + y^2 dx = 0$, $(x, y) \in \mathbb{R}^2$.

Решение. Функция $y \equiv 0$ является решением уравнения. Рассмотрим уравнение в областях $D_1 = \{(x,y) \mid y > 0\}$, $D_2 = \{(x,y) \mid y < 0\}$. В этих областях функция $\mu(x,y) = \frac{1}{v^2}$ является интегрирующим множителем уравнения. Умножая уравнение на интегрирующий множитель, получаем уравнение с разделенными переменными: $\frac{dy}{v^2} + dx = 0$, $(x, y) \in D_i$, $i \in \{1, 2\}$, полное решение которого задается соотношением $-\frac{1}{y} + x = C$. Отсюда находим, что $y = \frac{1}{x - C}$.

Таким образом, полное решение исходного уравнения имеет вид:

$$y \equiv 0,$$

$$y = \frac{1}{x - C}, x > C,$$

$$y = \frac{1}{x - C}, x < C.$$

Пример. Построить полное решение уравнения $dy - 3y^{2/3}dx = 0$, $(x, y) \in \mathbb{R}^2$. **Решение.** Функция y = 0 является решением уравнения. Рассмотрим уравнение в областях $D_1 = \{(x,y) | y > 0\}$, $D_2 = \{(x,y) | y < 0\}$. В этих областях функция $\mu(x,y) = \frac{1}{3v^{2/3}}$ является интегрирующим множителем уравнения. Умножая уравнение на интегрирующий множитель, получаем уравнение с разделенными переменными: $\frac{dy}{3v^{2/3}} - dx = 0$, $(x, y) \in D_i$, $i \in \{1, 2\}$, полное решение которого задается соотношением $y^{1/3} - x = C$. Отсюда находим, $y = (x + C)^3$. Полным решением исходного уравнения являются следующие функции:

$$y = \begin{cases} (x + C_1)^3, x \le -C_1, \\ 0, x \in (-C_1, -C_2), \\ (x + C_2)^3, x \ge -C_2, \end{cases}$$
 где $-\infty \le C_2 \le C_1 \le +\infty$.

§32. Линейные уравнения первого порядка

Уравнение вида

(p(x)y+q(x))dx+dy=0 (32.1), $(x,y)\in D$, D - односвязная область в R^2 , называется линейным уравнением первого порядка относительно переменной у. Считаем, что функции p(x), q(x) определены и непрерывны на промежутке $I \subseteq R$. Выясним существование интегрирующего множителя для

уравнения (32.1). Проверяем условие:
$$\frac{P_y^{'} - Q_x^{'}}{\omega_x^{'} Q - \omega_y^{'} P} = \Psi(\omega)\,, \quad \text{где}$$

$$P(x,y) = p(x)y + q(x)\,, \; Q(x,y) = 1\,.$$

Будем искать интегрирующий множитель вида $\mu = \mu(x)$, т.е. $\omega = x$. Тогда

$$\Psi(x)=p(x)$$
. Следовательно, $\mu(x)=\exp\left(\int\limits_{x_0}^x p(\tau)d\tau\right)$, где $x_0,x\in I$.

Умножаем уравнение (32.1) на интегрирующий множитель:

$$\exp\left(\int_{x_0}^x p(\tau)d\tau\right)(p(x)y+q(x))dx + \exp\left(\int_{x_0}^x p(\tau)d\tau\right)dy = 0. (32.2)$$

Находим полное решение уравнения (32.2):

$$\int_{(x_0,0)}^{(x,y)} \exp\left(\int_{x_0}^x p(\tau)d\tau\right) (p(x)y + q(x))dx + \exp\left(\int_{x_0}^x p(\tau)d\tau\right) dy = C.$$

Вычислим интеграл в левой части:

$$\int_{x_0}^x \exp\left(\int_{x_0}^\sigma p(\tau)d\tau\right) q(\sigma)d\sigma + y \exp\left(\int_{x_0}^x p(\tau)d\tau\right) = C.$$

Окончательно находим, что

$$y(x) = \exp\left(-\int_{x_0}^x p(\tau)d\tau\right) \left(C - \int_{x_0}^x \exp\left(\int_{x_0}^\sigma p(\tau)d\tau\right) q(\sigma)d\sigma\right).$$

Метод Лагранжа

Перепишем уравнение (32.1) в следующем виде:

y'(x) = P(x)y + Q(x) (32.3), где функции P(x),Q(x) определены и непрерывны на промежутке $I \subseteq R$. Если $Q(x) \equiv 0$, то уравнение (32.3) называется линейным однородным, иначе линейным неоднородным.

Легко видеть, что $y_{oH}(t) = y_{oo}(t) + y_{vH}(t)$.

Найдем общее решение $y_{oo}(t)$ однородного уравнения y' = P(x)y (32.4).

Функция $y \equiv 0$ является решением. Рассмотрим уравнение (32.4) в областях $D_1 = \{(x,y) \mid y>0\}$, $D_2 = \{(x,y) \mid y<0\}$.

1)
$$\frac{dy}{y} = P(x)dx, \ y > 0;$$

$$\ln y = \int_{x_0}^x P(\tau)d\tau + C \implies y(x) = C_1 \exp\left(\int_{x_0}^x P(\tau)d\tau\right),$$
где $C_1 > 0, x_0, x \in I;$

$$2) \frac{dy}{y} = P(x)dx, \ y < 0;$$

$$\ln(-y) = \int_{x_0}^x P(\tau)d\tau + C \implies y(x) = C_2 \exp\left(\int_{x_0}^x P(\tau)d\tau\right),$$
где $C_2 < 0, x_0, x \in I$.

Таким образом,
$$y_{oo}(t) = C \exp\left(\int_{x_0}^x P(\tau) d\tau\right)$$
, где $C \in R$, $x_0, x \in I$.

Частное решение $y_{uh}(t)$ неоднородного уравнения (32.3) будем искать в виде:

$$y_{_{^{_{\mathit{UH}}}}}(t) = u(x) \exp \left(\int_{x_0}^x P(\tau) d\tau \right)$$
. Подставляя в уравнение (32.3), получим:

$$u'(x)\exp\left(\int_{x_0}^x P(\tau)d\tau\right) + u(x)\exp\left(\int_{x_0}^x P(\tau)d\tau\right)P(x) = P(x)u(x)\exp\left(\int_{x_0}^x P(\tau)d\tau\right) + Q(x).$$

Следовательно,
$$u(x) = \int_{x_0}^x Q(\tau) \exp\left(-\int_{x_0}^{\sigma} P(\sigma) d\sigma\right) d\tau$$
.

Пример. Найти общее решение уравнения $(-y-x^2)dx + xdy = 0$, $y \in R$, x > 0.

Решение. Перепишем уравнение: $y' = \frac{1}{x}y + x$. Имеем

$$y_{oo}(x) = C \exp\left(\int_{x_0}^x \frac{1}{\tau} d\tau\right) = Cx$$
. Ищем $y_{u_H}(x) = u(x)x$.

Так как u'(x)x + u(x) = u(x) + x, то u(x) = x.

Следовательно, $y_{uu}(x) = x^2 \Rightarrow y_{ou}(x) = Cx + x^2$.

§33. Уравнение Бернулли

Уравнение вида

 $y'(x) = P(x)y + Q(x)y^{\alpha}$ (33.1), где функции P(x),Q(x) определены и непрерывны на промежутке $I \subseteq R$, $\alpha \in R$,

называется уравнением Бернулли.

Если $\alpha = 1$, то уравнение (33.1) — линейное однородное, если $\alpha = 0$, то уравнение (33.1) — линейное неоднородное.

Пусть $\alpha \notin \{0,1\}$. Уравнение имеет решение $y \equiv 0$. Рассмотрим уравнение (33.1) в областях $D_1 = \{(x,y) \mid y > 0\}$, $D_2 = \{(x,y) \mid y < 0\}$.

Разделим уравнение (33.1) на y^{α} :

$$\frac{y'}{v^{\alpha}} = P(x)y^{1-\alpha} + Q(x), (x,y) \in D_i.$$

Положим $u(x) = y^{1-\alpha}(x)$, тогда $u' = (1-\alpha)y^{-\alpha}y'$. Следовательно, $\frac{u'}{1-\alpha} = P(x)u + Q(x)$, $(x,u) \in D_i$, - линейное неоднородное уравнение.

ЛЕКЦИИ 13-14

§34. Интегральный критерий

Рассмотрим задачу Коши

$$y' = f(x,y), (x,y) \in D$$
 (34.1), D - область в R^2 , $y(x_0) = y_0, (x_0,y_0) \in D$ (34.2).

Теорема (интегральный критерий).

Пусть функция f(x,y) непрерывна в области D, $x_0 \in |\alpha,\beta|$. Непрерывная функция $y:|\alpha,\beta| \to R$ является решением задачи Коши (34.1), (34.2) тогда и только тогда, когда выполняется равенство $y(x) = y_0 + \int_{x_0}^x f(\tau,y(\tau))d\tau$ (34.3) для любого $x \in |\alpha,\beta|$.

Доказательство.

1) Необходимость. Имеем $y'(x) = f(x, y(x)) \Leftrightarrow dy(x) = f(x, y(x))dx$. Проинтегрируем последнее равенство от x_0 до x:

$$\int_{x_0}^x dy(\tau) = \int_{x_0}^x f(\tau, y(\tau)) d\tau,$$

$$y(x) - y(x_0) = \int_{x_0}^x f(\tau, y(\tau)) d\tau.$$

2) Достаточность. Так как функция $f(\tau,y(\tau))$ непрерывна на промежутке $|\alpha,\beta|$, то функция $\int\limits_{x_0}^x f(\tau,y(\tau))d\tau$ дифференцируемая на промежутке $|\alpha,\beta|$.

Следовательно, можно продифференцировать соотношение (34.3):

$$y'(x) = f(x, y(x)) \ \forall x \in [\alpha, \beta].$$

Кроме того, $y(x_0) = y_0$. ■

§35. Лемма Гронуолла

Теорема.

Пусть $\alpha \ge 0$, $\beta \in R$, $x_0 \in |a,b|$. Если непрерывная неотрицательная функция $u:|a,b| \to R$ удовлетворяет неравенству $u(x) \le \alpha + \left| \int\limits_{x_0}^x \beta u(\tau) d\tau \right|$ (35.1) для любого $x \in |a,b|$, то $u(x) \le \alpha \mathrm{e}^{|\beta(x-x_0)|}$ (35.2). **Доказательство.**

1) Пусть
$$x \ge x_0$$
. Тогда (35.1) $\Rightarrow u(x) \le \alpha + \int_{x_0}^x |\beta| u(\tau) d\tau$ и (35.2) $\Leftrightarrow u(x) \le \alpha e^{|\beta|(x-x_0)}$.

Обозначим
$$v(x) := \alpha + \int_{x_0}^{x} |\beta| u(\tau) d\tau$$
, тогда $u(x) \le v(x)$ (35.3) $\forall x \in |a,b|$.

Функция v(x) является дифференцируемой на промежутке | a,b |:

$$\frac{dv(x)}{dx} = |\beta| u(x).$$

Учитывая неравенство (35.3), имеем:

$$\frac{dv(x)}{dx} \le |\beta| v(x),$$

$$\frac{dv(x)}{dx} - |\beta| v(x) \le 0.$$

Умножим последнее неравенство на $e^{-|\beta|x}$:

$$\frac{\mathrm{e}^{-|\beta|x}dv(x)}{dx} - |\beta| \,\mathrm{e}^{-|\beta|x}v(x) \le 0.$$

Так как
$$\frac{d}{dx} \left(v(x) e^{-|\beta|x} \right) = \frac{e^{-|\beta|x} dv(x)}{dx} - |\beta| e^{-|\beta|x} v(x)$$
, то $\frac{d}{dx} \left(v(x) e^{-|\beta|x} \right) \le 0$.

Следовательно, функция v(x) монотонно убывает на промежутке $[x_0,x]$. Поэтому $v(x)e^{-|\beta|x} \le v(x_0)e^{-|\beta|x_0}$.

Так как $v(x_0) = \alpha$, то $v(x) \le \alpha e^{|\beta|(x-x_0)}$. И, следовательно, $u(x) \le \alpha e^{|\beta|(x-x_0)}$

2) Случай $x < x_0$ рассматривается аналогично. ■

Следствие. Пусть $\beta \in R$, $x_0 \in |a,b|$. Если непрерывная неотрицательная функция $u:|a,b| \to R$ удовлетворяет неравенству $u(x) \le \left| \int_{x_0}^x \beta u(\tau) d\tau \right|$ для любого $x \in |a,b|$, то $u(x) \equiv 0 \ \forall x \in |a,b|$.

§36. Теорема Пикара-Линделёфа

Рассмотрим задачу Коши

$$y' = f(x,y), (x,y) \in D$$
 (36.1), D - область в R^2 , $y(x_0) = y_0, (x_0, y_0) \in D$ (36.2).

Окрестностью точки $(x_0, y_0) \in D$ называется открытый круг с центром в точке (x_0, y_0) .

Определение. Функция f(x,y) удовлетворяет по переменной y условию Липшица в области G, если существует постоянная L>0, такая, что $|f(x,y_1)-f(x,y_2)| \le L\,|y_1-y_2|$ для любых $(x,y_1),(x,y_2) \in G$.

Теорема (локальная теорема Пикара-Линделёфа).

Пусть в некоторой окрестности $U = U(x_0, y_0)$ точки (x_0, y_0) функция f(x, y) непрерывна и удовлетворяет по переменной y условию Липшица. Тогда в некоторой окрестности $V = V(x_0, y_0)$, $V \subseteq U$, задача Коши (36.1), (36.2) имеет единственное решение y(x), $x \in [x_0 - \delta, x_0 + \delta]$, $\delta > 0$, которое может быть найдено методом последовательных приближений: $y_0(x) = y_0$,

$$y_n(x) = y_0 + \int_{x_0}^x f(\tau, y_{n-1}(\tau)) d\tau, \quad n = 0, 1, 2, ..., \quad y(x) = \lim_{n \to \infty} y_n(x) \quad (36.3).$$

Доказательство.

Шаг 1. Выберем число $\rho > 0$, такое, что прямоугольник $\Pi = \{(x,y) \mid |x-x_0| \leq \rho, |y-y_0| \leq \rho\}$ содержится в окрестности $U = U(x_0,y_0)$. Так как функция f(x,y) непрерывна в прямоугольнике Π , то существует постоянная M, такая, что $|f(x,y)| \leq M \ \forall (x,y) \in \Pi$. Выберем $\delta = \min\{\rho,\rho/M\}$ и докажем индукцией по n, что $|y_n(x)-y_0| \leq \rho$ для любого $x \in [x_0-\delta,x_0+\delta]$ и для любого $n \in N \cup \{0\}$, где последовательность $y_n(x)$ определена соотношениями (36.3). Имеем $|y_0(x)-y_0| = 0 < \rho \ \forall x \in [x_0-\delta,x_0+\delta]$. Пусть $|y_{n-1}(x)-y_0| \leq \rho \ \forall x \in [x_0-\delta,x_0+\delta]$. Далее

$$|y_{n}(x) - y_{0}| = \left| y_{0} + \int_{x_{0}}^{x} f(\tau, y_{n-1}(\tau)) d\tau - y_{0} \right| = \left| \int_{x_{0}}^{x} f(\tau, y_{n-1}(\tau)) d\tau \right| \le M |x - x_{0}| \le M \frac{\rho}{M} = \rho$$

$$\forall x \in [x_{0} - \delta, x_{0} + \delta].$$

Шаг 2. Докажем индукцией по n, что $|y_n(x) - y_{n-1}(x)| \le ML^{n-1} \frac{|x - x_0|^n}{n!}$ $\forall x \in [x_0 - \delta, x_0 + \delta], n \in N \cup \{0\}$ (36.4), где L - постоянная, такая, что $|f(x, y_1) - f(x, y_2)| \le L |y_1 - y_2|$ для любых $(x, y_1), (x, y_2) \in U_{(x_0, y_0)}$.

1)
$$n=1$$
: $|y_1(x)-y_0(x)| = \left| \int_{x_0}^x f(\tau,y_0) d\tau \right| \le M |x-x_0|$.

2) пусть верно неравенство (36.4) при n = k:

$$|y_k(x) - y_{k-1}(x)| \le ML^{k-1} \frac{|x - x_0|^k}{k!}.$$

3)
$$n = k + 1$$
: $|y_{k+1}(x) - y_k(x)| = \left| \int_{x_0}^x f(\tau, y_k(\tau)) d\tau - \int_{x_0}^x f(\tau, y_{k-1}(\tau)) d\tau \right| \le 1$

$$\leq \left| \int_{x_0}^x L \left| y_k(\tau) - y_{k-1}(\tau) \right| d\tau \right| \leq L \left| \int_{x_0}^x M L^{k-1} \frac{|\tau - x_0|^k}{k!} d\tau \right| = M L^k \frac{|x - x_0|^{k+1}}{(k+1)!}.$$

Шаг 3. Докажем, что последовательность $y_n(x)$, $n \ge 0$, сходится к непрерывной функции y(x) равномерно по $x \in [x_0 - \delta, x_0 + \delta]$.

Рассмотрим функциональный ряд $y_0 + \sum_{k=1}^{\infty} (y_k(x) - y_{k-1}(x))$ (36.5). Обозначим

$$S_n(x) = y_0 + \sum_{k=1}^n (y_k(x) - y_{k-1}(x))$$
. Очевидно, $S_n(x) = y_n(x)$.

Так как
$$|y_0| + \sum_{k=1}^{\infty} |y_k(x) - y_{k-1}(x)| \le |y_0| + \sum_{k=1}^{\infty} ML^{k-1} \frac{|x - x_0|^k}{k!} \le |y_0| + \sum_{k=1}^{\infty} ML^{k-1} \frac{\delta^k}{k!} = 0$$

 $=|y_0|+\frac{M}{L}(e^{L\delta}-1)$, то согласно признаку Вейерштрасса ряд (36.5) сходится равномерно по $x \in [x_0 - \delta, x_0 + \delta]$.

Следовательно, $y_n(x) = S_n(x) \underset{n \to \infty}{\longrightarrow} y(x)$ равномерно по $x \in [x_0 - \delta, x_0 + \delta]$. Так как функции $y_n(x)$ непрерывны на отрезке $[x_0 - \delta, x_0 + \delta]$, то по теореме Стокса-Зейделя предельная функция y(x) непрерывна на отрезке $[x_0 - \delta, x_0 + \delta]$.

Шаг 4. Докажем, что функция y(x), $x \in [x_0 - \delta, x_0 + \delta]$, является решением задачи Коши (36.1), (36.2). Перейдем к пределу при $n \to \infty$ в соотношении:

$$y_n(x) = y_0 + \int_{x_0}^x f(\tau, y_{n-1}(\tau)) d\tau$$
, $x \in [x_0 - \delta, x_0 + \delta]$. Так как функции $f(x, y_{n-1}(x))$

непрерывны на отрезке $[x_0 - \delta, x_0 + \delta]$, то для перехода к пределу под знаком интеграла нужно убедиться, что последовательность $f(x, y_{n-1}(x))$ сходится при $n \to \infty$ равномерно на отрезке $[x_0 - \delta, x_0 + \delta]$.

Рассмотрим функциональный ряд $f(x_0, y_0) + \sum_{k=1}^{\infty} (f(x, y_k(x)) - f(x, y_{k-1}(x)))$

(36.6). Имеем
$$A_n(x) = f(x_0, y_0) + \sum_{k=1}^n (f(x, y_k(x)) - f(x, y_{k-1}(x))) = f(x, y_n(x)).$$

Так как

$$|f(x_0, y_0)| + \sum_{k=1}^{\infty} |f(x, y_k(x)) - f(x, y_{k-1}(x))| \le |f(x_0, y_0)| + L \sum_{k=1}^{\infty} |y_k(x) - y_{k-1}(x)| + L \sum_{k=1}^{\infty} |y_k(x) - y_{k$$

$$\left| f(x_0, y_0) \right| + L \sum_{k=1}^{\infty} M L^{k-1} \frac{\left| x - x_0 \right|^k}{k!} \le \left| f(x_0, y_0) \right| + \sum_{k=1}^{\infty} M L^k \frac{\delta^k}{k!} = \left| f(x_0, y_0) \right| + M (e^{L\delta} - 1),$$

то ряд (36.6), а, следовательно, и последовательность $f(x,y_{n-1}(x))$ сходятся равномерно при $n\to\infty$ по $x\in[x_0-\delta,x_0+\delta]$.

Таким образом,

$$y(x) = \lim_{n \to \infty} y_n(x) = \lim_{n \to \infty} \left(y_0 + \int_{x_0}^x f(\tau, y_{n-1}(\tau)) d\tau \right) = y_0 + \lim_{n \to \infty} \int_{x_0}^x f(\tau, y_{n-1}(\tau)) d\tau = y_0 + \int_{x_0}^x \lim_{n \to \infty} f(\tau, y_{n-1}(\tau)) d\tau = y_0 + \int_{x_0}^x f(\tau, y_{n-1}(\tau)) d\tau = y_0 + \int_{x_0}^x f(\tau, y_{n-1}(\tau)) d\tau, \quad x \in [x_0 - \delta, x_0 + \delta].$$

Согласно, интегральному критерию функция y(x), $x \in [x_0 - \delta, x_0 + \delta]$, является решением задачи Коши (36.1), (36.2).

Шаг 5. Докажем единственность решения задачи Коши (36.1), (36.2) в некоторой окрестности точки (x_0, y_0) . Пусть функции $u_1(x)$, $u_2(x)$, $x \in [x_0 - \delta_1, x_0 + \delta_1]$, являются решениями задачи Коши (36.1), (36.2) и интегральные кривые, соответствующие этим решениям лежат в окрестности $U = U(x_0, y_0)$.

Тогда
$$\left| u_1(x) - u_2(x) \right| = \left| \int\limits_{x_0}^x f(\tau, u_1(\tau)) d\tau - \int\limits_{x_0}^x f(\tau, u_2(\tau)) d\tau \right| \leq \left| \int\limits_{x_0}^x L \left| u_1(\tau) - u_2(\tau) \right| d\tau \right|$$

$$\forall x \in [x_0 - \delta_1, x_0 + \delta_1].$$
 Согласно неравенству Гронуолла
$$u_1(x) - u_2(x) \equiv 0$$

$$\forall x \in [x_0 - \delta_1, x_0 + \delta_1].$$

Теорема. (локальная теорема Пеано). Пусть функция f(x,y) непрерывна в некоторой окрестности $U = U(x_0, y_0)$ точки (x_0, y_0) , тогда задача Коши (36.1), (36.2) имеет решение в некоторой окрестности $V = V(x_0, y_0)$, $V \subseteq U$.

Рассмотрим задачу Коши

$$y' = f(x, y), (x, y) \in R^2$$
 (36.7),
 $y(x_0) = y_0, (x_0, y_0) \in R^2$ (36.8).

Определение. Функция f(x,y) имеет линейный порядок роста по переменной y, если существует постоянная C > 0, такая, что $|f(x,y)| \le C(1+|y|)$ для любых $(x,y) \in \mathbb{R}^2$.

Теорема. (глобальная теорема Пикара-Линделефа).

Пусть функция f(x,y) непрерывна, по переменной y имеет линейный порядок роста и удовлетворяет по y условию Липшица в R^2 . Тогда задача Коши (36.7), (36.8) имеет единственное решение $y(x), x \in R$.

Теорема. (глобальная теорема Пеано).

Пусть функция f(x,y) непрерывна и по переменной y имеет линейный порядок роста, тогда задача Коши (36.7), (36.8) имеет решение $y(x), x \in R$.

§37. Лемма об условии Липшица

Рассмотрим задачу Коши

$$y' = f(x,y), (x,y) \in D$$
 (37.1), D - область в R^2 ,

$$y(x_0) = y_0, (x_0, y_0) \in D$$
 (37.2).

Лемма. (об условии Липшица).

Пусть функция $f_y(x,y)$ непрерывна на компакте $V \subset \mathbb{R}^2$, тогда функция f(x,y) по переменной y на V удовлетворяет условию Липшица.

Доказательство. Для любых $(x,y_1),(x,y_2) \in V$ имеем $|f(x,y_1)-f(x,y_2)|=|f_y^{'}(x,\eta)(y_1-y_2)|=|f_y^{'}(x,\eta)\|y_1-y_2|$, где точка η лежит между $y_1,\ y_2$. Так как функция $f_y^{'}(x,y)$ непрерывна на V, то $|f_y^{'}(x,y)| \leq M$ для любых $(x,y) \in R^2$. Следовательно, $|f(x,y_1)-f(x,y_2)| \leq M \, |y_1-y_2|$.

Пример (функции удовлетворяющей условию Липшица по y, но не дифференцируемой по y).

$$f(x,y) = \sin x + |y|.$$

Тогда $|f(x,y_1)-f(x,y_2)|=||y_1|-|y_2||\leq |y_1-y_2|$. Кроме того, функция f(x,y) непрерывна и имеет линейный порядок роста по переменной y. Следовательно, задача Коши $y'=f(x,y),\ y(x_0)=y_0$, имеет единственное решение $y(x),x\in R$.

Теорема (об однозначной разрешимости задачи Коши).

Пусть функции f(x,y), $f_y(x,y)$ непрерывны в некоторой окрестности $U = U(x_0, y_0)$ точки (x_0, y_0) , тогда задача Коши (37.1), (37.2) имеет единственное решение в некоторой окрестности $V = V(x_0, y_0)$, $V \subseteq U$.

Доказательство вытекает из локальной теоремы Пикара-Линделефа и леммы об условии Липшица.

Пример.

Задача Коши $y' = \sin(xy)$, $y(x_0) = y_0$, имеет единственное решение в некоторой окрестности точки $(x_0, y_0) \in R^2$, так как функции $f(x, y) = \sin(xy)$, $f_y'(x, y) = x\cos(xy)$ непрерывны в R^2 .

§38. Существенность условий теорем существования

Приведем примеры, показывающие, что нарушение условий в теоремах Пикара-Линделёфа и Пеано приводит либо к неразрешимости задачи Коши, либо к существованию неединственного решения.

Пример.

Задача Коши $y' = 3y^{2/3}$, y(0) = 0, имеет решение $y \equiv 0$ в некоторой окрестности точки (0,0). Тем не менее, в любой окрестности точки (0,0) имеется бес-

конечно много различных интегральных кривых: $y = \begin{cases} (x+C_1)^3, x \le -C_1, \\ 0, x \in (-C_1, -C_2), \end{cases}$ где $(x+C_2)^3, x \ge -C_2,$

 $C_2 < 0 < C_1$. Отметим, что функция $f(x,y) = 3y^{2/3}$ непрерывна в R^2 , имеет ли-

нейный порядок роста по y, но не удовлетворяет условию Липшица по y ни в какой окрестности точки $(x_0,y_0)=(0,0)$. Действительно, для любого $n\in N$ найдутся точки $(x,y_1)=(0,0)$, $(x,y_2)=(0,27/n^3)$, такие, что $|f(x,y_1)-f(x,y_2)|\ge n\,|y_1-y_2|$. Следовательно, нарушены условия локальной теоремы Пикара-Линделефа, в то время, как условия глобальной теоремы Пеано выполнены.

Пример.

Задача Коши $y'=y^2$, y(0)=1, не имеет глобального решения $y(x), x \in R$. Допустим, это не так. Проинтегрируем уравнение, как уравнение с разделяющимися переменными: $\frac{dy}{y^2}-dx=0$ в областях y>0 или y<0. Далее находим

общее решение в указанных областях: $-\frac{1}{y} - x = C$. Учитывая начальное ус-

ловие, находим C = -1. Отсюда $y = \frac{1}{1-x}$. Функция y = 0 не удовлетворяет

начальному условию. Решение $y = \frac{1}{1-x}$ определено лишь при x < 1. Функ-

ция $f(x,y) = y^2$ не имеет линейного порядка роста по y, поэтому условия глобальной теоремы Пеано нарушены. Однако в окрестности точки (0,1) функция f(x,y) удовлетворяет условиям теоремы об однозначной разрешимости, следовательно, точка (0,1) является точкой локальной единственности (т.е. в некоторой достаточно малой окрестности существует единственное решение) задачи Коши.

Пример.

Докажем, что задача Коши $y'=1-2\mathrm{sign}(y),\ y(0)=0$, не имеет решения ни в какой окрестности точки $(x_0,y_0)=(0,0).$ При y>0 имеем: $y'=-1\Rightarrow y=-x+C_1$; при y<0 имеем: $y'=3\Rightarrow y=3x+C_2$. В полуплоскости y>0 решение строго убывает, в полуплоскости y<0 решение строго возрастает. Следовательно, при попадании решения на прямую y=0 невозможно сойти с прямой y=0, но функция $y\equiv0$, не является решением уравнения, так как $0\neq1$. Отметим, что функция $f(x,y)=1-2\mathrm{sign}(y)$ не является непрерывной в окрестности точки (0,0), поэтому условия локальной теоремы Пеано нарушены.

§39. Рост денежных вкладов

Задача. Некоторая сумма денег положена в банк под r % в год. Составьте дифференциальное уравнение для закона изменения суммы при условии, что приращение начисляется непрерывно. На основании полученного закона решить следующие частные задачи: 1) сумма \$10000 положена в банк под 2 % в

год. Через сколько лет она составит \$20000? 2) сумма \$1 положена в банк под 3 % в год. Через сколько лет сумма удвоится?

Решение.

Общая сумма P вклада в результате начисления процентов один раз в конце года составит $P = A \left(1 + \frac{r}{100} \right)$, где A - первоначальная сумма вклада. Если

проценты будут начисляться m раз в течение года, то $P(1) = A \left(1 + \frac{r}{100m} \right)^m$.

По истечении n лет общая сумма составит $P(n) = A \left(\left(1 + \frac{r}{100m} \right)^m \right)^n$. Если

число начислений процентов в год будет беспредельно увеличиваться, то

$$P(n) = \lim_{m \to \infty} A \left(\left(1 + \frac{r}{100m} \right)^m \right)^n = A \lim_{m \to \infty} \left(\left(1 + \frac{r}{100m} \right)^{\frac{100m}{r}} \right)^{\frac{nr}{100}} = A e^{\frac{nr}{100}}.$$

Таким образом, $P(t) = Ae^{\frac{rt}{100}}$. В течение короткого промежутка времени dt приращение суммы P составит:

$$dP = d(Ae^{\frac{rt}{100}}) = \frac{r}{100}Ae^{\frac{rt}{100}}dt = \frac{r}{100}Pdt$$
.

Получили уравнение с разделяющимися переменными:

$$\frac{dP}{dt} = \frac{rP}{100}$$
 (39.1).

- 1) Так как $P(t) = Ae^{0.02t}$ и P(0) = 10000, то A = 10000. Имеем уравнение $20000 = Ae^{0.02t}$. Отсюда находим, что $e^{0.02t} = 2$, следовательно, $t \approx 34$ года и 8 месяцев.
- 2) Так как $P(t) = A \mathrm{e}^{0.03t}$ и P(0) = 1, то A = 1. Имеем уравнение $2 = A \mathrm{e}^{0.03t}$. Отсюда находим, что $e^{0.03t} = 2$, следовательно, $t \approx 23$ года и 1 месяц.

ЛЕКЦИЯ 15

§40. Теоремы существования решений нелинейных систем ОДУ

Рассмотрим задачу Коши для системы ОДУ первого порядка

$$Dx(t) = f(t, x(t)), (t, x) \in G, G$$
 - область в R^{1+n} (40.1),

$$x(t_0) = x_0, (t_0, x_0) \in G, (40.2),$$

где
$$(t,x(t)) = (t,x_1(t),...,x_n(t)), f(t,x) = (f_1(t,x),...,f_n(t,x)).$$

Определение. Функция f(t,x) удовлетворяет в области G условию Липшица по переменной x, если существует постоянная Липшица L>0, такая, что $\|f(t,x_1)-f(t,x_2)\| \le L\|x_1-x_2\|$ для любых $(t,x_1),(t,x_2)\in G$.

Определение. Функция $f: R^{1+n} \to R^n$ имеет линейный порядок роста, если существует постоянная C, такая, что $\|f(t,x)\| \le C \Big(1+\|x\|\Big)$ для любых $(t,x) \in R^{1+n}$.

Если функция f(t,x) дифференцируемая по x , то можно рассмотреть матрицу Якоби $f_x^{'}:R^{1+n}\to R^{n\times n}$:

$$f_{x}'(t,x) = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \cdots & \cdots & \cdots \\ \frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}} \end{pmatrix}.$$

Теорема Пикара-Линделефа.

1) Пусть в некоторой окрестности $U=U(t_0,x_0)$ точки (t_0,x_0) функция f(t,x) непрерывна и удовлетворяет по переменной x условию Липшица. Тогда в некоторой окрестности $V=V(t_0,x_0)$, $V\subseteq U$, задача Коши (40.1), (40.2) имеет единственное решение $x(t),\ t\in [t_0-\delta,t_0+\delta],\ \delta>0$, которое может быть найдено методом последовательных приближений: $x_0(t)=x_0$,

$$x_n(t) = x_0 + \int_{t_0}^t f(\tau, x_{n-1}(\tau)) d\tau, \quad n = 0, 1, 2, ..., \quad x(t) = \lim_{n \to \infty} x_n(t).$$

2) Пусть $G = R^{1+n}$, функция f(t,x) непрерывна, по переменной x имеет линейный порядок роста и удовлетворяет по x условию Липшица в R^{1+n} . Тогда задача Коши (40.1), (40.2) имеет единственное решение $x(t), t \in R$.

Доказательство получается из доказательства аналогичной теоремы при n=1 заменой модуля на норму.

Теорема об однозначной разрешимости.

Пусть функции f(t,x), $f_x^{'}(t,x)$ непрерывны в некоторой окрестности $U=U(t_0,x_0)$ точки (t_0,x_0) , тогда задача Коши (40.1), (40.2) имеет единственное решение в некоторой окрестности $V=V(t_0,x_0)$, $V\subseteq U$.

Теорема Пеано.

- 1) Пусть функция f(t,x) непрерывна в некоторой окрестности $U=U(t_0,x_0)$ точки (t_0,x_0) , тогда задача Коши (40.1), (40.2) имеет решение в некоторой окрестности $V=V(t_0,x_0)$, $V\subseteq U$.
- 2) Пусть $G = R^{1+n}$, функция f(t,x) непрерывна и по переменной x имеет линейный порядок роста, тогда задача Коши (40.1), (40.2) имеет решение $x(t), t \in R$.

§41. Первые интегралы

Рассмотрим систему

$$Dx(t) = f(t, x(t)), (t, x) \in G, G$$
 - область в R^{1+n} (41.1), где $(t, x(t)) = (t, x_1(t), ..., x_n(t)), f(t, x) = (f_1(t, x), ..., f_n(t, x))$.

Система (41.1) называется автономной (стационарной), если функция f(t,x) не зависит от переменной t. Отметим, что любую неавтономную систему можно свести к автономной следующим образом: положим $x_{n+1} = t$, $f_{n+1}(x_{n+1},x_1,...,x_n) \equiv 1$, $X = (x_{n+1},x_1,...,x_n)$, $F(X) = (f_1,...,f_n,f_{n+1})$. Тогда система (41.1) эквивалентна автономной системе DX = F(X), $X \in G \subseteq \mathbb{R}^{1+n}$.

Рассмотрим автономную систему

$$\begin{cases} Dx_1 = f_1(x_1, ..., x_n), \\ Dx_2 = f_2(x_1, ..., x_n) \\ ... \\ Dx_n = f_n(x_1, ..., x_n), \end{cases}$$

эту систему можно переписать в виде:

$$\frac{dx_1}{f_1(x_1,...,x_n)} = \frac{dx_2}{f_2(x_1,...,x_n)} = ... = \frac{dx_n}{f_n(x_1,...,x_n)} = dt.$$
Систему
$$\frac{dx_1}{f_1(x_1,...,x_n)} = \frac{dx_2}{f_2(x_1,...,x_n)} = ... = \frac{dx_n}{f_n(x_1,...,x_n)}$$

называют системой в симметрической форме. Решение этой системы представляет интегральную кривую в пространстве R^{1+n} .

Рассматриваем систему (41.1) в предположении, что функция f(t,x) непрерывна в области G. В силу теоремы Пеано через каждую точку $(s,\xi) \in G$ проходит интегральная кривая системы (41.1).

Определение. Непрерывно дифференцируемая функция $\Phi: G \to R$ называется первым интегралом системы (41.1), если функция Φ отлична от константы на любой непустой подобласти области G и $\Phi(t,x_1(t),...,x_n(t)) \equiv C$ для любого решения $x(t) = (x_1(t),...,x_n(t))$, $t \in I$, системы (41.1).

Теорема (о первом интеграле).

Для того чтобы функция $\Phi: G \to R$ была первым интегралом системы (41.1), необходимо и достаточно, чтобы выполнялось равенство

$$\frac{\partial \Phi(t, x_1, \dots, x_n)}{\partial t} + \frac{\partial \Phi(t, x_1, \dots, x_n)}{\partial x_1} f_1(t, x_1, \dots, x_n) + \dots + \frac{\partial \Phi(t, x_1, \dots, x_n)}{\partial x_n} f_n(t, x_1, \dots, x_n) = 0$$

для всех $(t, x_1, ..., x_n) \in G$ (41.2).

Доказательство.

1) Необходимость. Возьмем произвольную точку $(s,\xi) \in G$, через эту точку проходит решение $x(t), t \in I$, такое, что $(t,x(t)) \in G$ для любого $t \in I$. Тогда $\Phi(t,x(t)) \equiv C$ для любого $t \in I$ (41.3). Продифференцируем тождество по t:

$$d\Phi(t,x(t)) \equiv 0 \iff \frac{\partial \Phi}{\partial t} + \frac{\partial \Phi}{\partial x_1} \frac{dx_1}{dt} + \dots + \frac{\partial \Phi}{\partial x_n} \frac{dx_n}{dt} \equiv 0 \quad (41.4).$$

Так как $\frac{dx_i(t)}{dt} = f_i(t, x(t))$ для любого $i = \overline{1, n}$ и любого $t \in I$, то соотношение (41.4) равносильно требуемому равенству (41.2).

2) Достаточность. Возьмем произвольное решение x(t), $t \in I$, такое, что $(t,x(t)) \in G$ для любого $t \in I$. Тогда выполняется равенство (41.2). Так как $\frac{dx_i(t)}{dt} = f_i(t,x(t))$, то, заменяя в равенстве (41.2), $f_i(t,x(t))$ на $\frac{dx_i(t)}{dt}$, получим равенство (41.4). И, следовательно, $\Phi(t,x(t)) \equiv C$ для любого $t \in I$.

Пример. Доказать, что функция $\Phi(t, x_1, x_2) = \operatorname{arctg}\left(\frac{x_1}{x_2}\right) - t$ является первым

интегралом системы

$$\begin{cases} Dx_1 = \frac{x_1^2}{x_2}, \\ Dx_2 = -\frac{x_2^2}{x_1}, \end{cases} t \in R, \ x_1 > 0, x_2 > 0,$$

и построить общее решение системы.

Решение.

$$\begin{split} &\frac{\partial \Phi(t,x_1,x_2)}{\partial t} + \frac{\partial \Phi(t,x_1,x_2)}{\partial x_1} f_1(t,x_1,x_2) + \frac{\partial \Phi(t,x_1,x_2)}{\partial x_2} f_2(t,x_1,x_2) = \\ &= -1 + \frac{x_2}{x_1^2 + x_2^2} \cdot \frac{x_1^2}{x_2} + \frac{-x_1}{x_1^2 + x_2^2} \cdot \frac{-x_2^2}{x_1} \equiv 0 \; . \end{split}$$

Следовательно, $\Phi(t, x_1, x_2)$ - первый интеграл системы. Таким образом,

$$rctg\left(rac{x_1}{x_2}
ight) - t = C$$
 . Тогда $x_1 = x_2 \operatorname{tg}(t + C_1)$, $t \in \left(-C_1, rac{\pi}{2} + \pi n - C_1
ight)$, $n \in \mathbb{Z}$.

Подставим во второе уравнение системы: $Dx_2 = -\frac{x_2}{\operatorname{tg}(t+C_1)}$.

Следовательно,
$$x_2(t) = C_2 \exp\left(-\int_{t_0}^t \frac{d\tau}{\operatorname{tg}(\tau + C_1)}\right) = \frac{C_2}{\sin(t + C_1)},$$
 $t \in \left(-C_1, \frac{\pi}{2} + 2\pi n - C_1\right).$ Тогда $x_1(t) = \frac{C_2}{\cos(t + C_1)}, \ C_2 > 0.$

§42. Интегрируемые комбинации

Рассмотрим систему

$$Dx(t)=f(t,x(t)),\;(t,x)\in G\;,\;G\;$$
 - область в R^{1+n} (42.1), где $(t,x(t))=(t,x_1(t),...,x_n(t))\;,\;f(t,x)=(f_1(t,x),...,f_n(t,x))\;.$

Первый интеграл системы (42.1) называется стационарным, если он не зависит от t.

Теорема (об интегрируемых комбинациях).

Пусть существуют непрерывные функции $\varphi_1,...,\varphi_n: R^n \to R$ такие, что $\varphi_1(x)dx_1+...+\varphi_n(x)dx_n=d\Phi(x)$ (42.2) и $\varphi_1(x)f_1(t,x)+...+\varphi_n(x)f_n(t,x)\equiv 0$ для любых $(t,x)\in G$ (42.3), тогда функция $\Phi(x)$ является стационарным первым интегралом системы (42.1).

Доказательство.

Так как выполняется равенство (42.2), то
$$\frac{\partial \Phi(x)}{\partial x_k} = \varphi_k(x)$$
, $\frac{\partial \Phi(x)}{\partial t} = 0$, поэтому

$$\frac{\partial \Phi(x)}{\partial t} + \frac{\partial \Phi(x)}{\partial x_1} f_1(t, x) + \dots + \frac{\partial \Phi(x)}{\partial x_n} f_n(t, x) = \varphi_1(x) f_1(t, x) + \dots + \varphi_n(x) f_n(t, x) \equiv 0.$$

В силу теоремы о первом интеграле функция $\Phi(x)$ является первым интегралом системы (42.1). \blacksquare

Выражения вида $\varphi_1(x)dx_1 + ... + \varphi_n(x)dx_n$ называются интегрируемыми комбинациями. Для нахождения интегрируемых комбинаций пользуются свойст-

вами пропорций
$$\frac{dx_1}{f_1} = ... = \frac{dx_n}{f_n} = \frac{\varphi_1 dx_1 + ... + \varphi_n dx_n}{\varphi_1 f_1 + ... + \varphi_n f_n}$$
.

§43. Базис первых интегралов

Рассмотрим систему

$$Dx(t) = f(t, x(t)), (t, x) \in G, G$$
 - область в R^{1+n} (43.1), где $(t, x(t)) = (t, x_1(t), ..., x_n(t)), f(t, x) = (f_1(t, x), ..., f_n(t, x))$.

Пусть $\Phi_1(t,x),...,\Phi_k(t,x)$ - первые интегралы системы (43.1), тогда для любой непрерывно дифференцируемой функции $H:R^k\to R$, которая отлична от постоянной на любой непустой подобласти из R^k , функция $H(\Phi_1(t,x),...,\Phi_k(t,x))$ является первым интегралом системы (43.1).

Определение. Совокупность функционально независимых первых интегралов $\Phi_1(t,x),...,\Phi_n(t,x)$ системы (43.1) называется базисом первых интегралов в области G, если для любого первого интеграла $\Psi(t,x)$ системы (43.1) существует непрерывно дифференцируемая функция $H: \mathbb{R}^n \to \mathbb{R}$, такая, что $\Psi(t,x) = H(\Phi_1(t,x),...,\Phi_n(t,x))$ для любых $(t,x) \in G$.

Теорема (о базисе первых интегралов).

Пусть векторная функция $\Phi = (\Phi_1, ..., \Phi_n)$, компонентами которой являются первые интегралы системы (43.1), непрерывно дифференцируемы в окрестности $U_{(s,\xi)}$ точки $(s,\xi) \in G$ и

$$\det \frac{\partial \Phi}{\partial x}\Big|_{(s,\xi)} = \det \begin{bmatrix} \frac{\partial \Phi_1}{\partial x_1} & \cdots & \frac{\partial \Phi_1}{\partial x_n} \\ \cdots & \cdots & \cdots \\ \frac{\partial \Phi_n}{\partial x_1} & \cdots & \frac{\partial \Phi_n}{\partial x_n} \end{bmatrix}_{(s,\xi)} \neq 0. \quad (43.2)$$

Тогда для любого первого интеграла $\Psi(t,x)$ системы (43.1) существует непрерывно дифференцируемая функция $H: \mathbb{R}^n \to \mathbb{R}$, такая, что $\Psi(t,x) = H(\Phi_1(t,x),...,\Phi_n(t,x))$ в некоторой окрестности $V_{(s,\xi)}$ точки (s,ξ) .

Доказательство.

Так как функция $\Phi(t,x)$ непрерывно дифференцируемая в области G, то условие (43.2) выполняется в некоторой окрестности $V_{(s,\xi)}$ точки (s,ξ) . Следовательно, при каждом фиксированном t_0 , таком, что $(t_0,\xi) \in V_{(s,\xi)}$, функция $y = \Phi(t_0,x)$, $x \in W(t_0) = \{x \in R^n \mid (t_0,x) \in V_{(s,\xi)}\}$, имеет обратную функцию $x = F(t_0,y) = (F_1(t_0,y),...,F_n(t_0,y))$, которая также является непрерывно дифференцируемой на множестве определения.

Положим $H(t_0,y)=\Psi(t_0,F(t_0,y))$. Тогда $\Psi(t_0,x)=H(t_0,\Phi(t_0,x))$ для любого $x\in W(t_0)$. Таким образом, $\Psi(t,x)=H(t,\Phi(t,x))$ для любых $(t,x)\in V_{(s,\xi)}$. Докажем, что $\frac{\partial H}{\partial t}\equiv 0$.

Имеем $y_i = \Phi_i(t,x) = \Phi_i(t,F_1(t,y),...,F_n(t,y))$, $i = \overline{1,n}$. Продифференцируем эти соотношения по $t: 0 = \frac{\partial \Phi_i}{\partial t} + \frac{\partial \Phi_i}{\partial x_1} \frac{\partial F_1}{\partial t} + ... + \frac{\partial \Phi_i}{\partial x_n} \frac{\partial F_n}{\partial t}$, $i = \overline{1,n}$.

В силу теоремы о первом интеграле имеем

$$\frac{\partial \Phi_i}{\partial t} + \frac{\partial \Phi_i}{\partial x_1} f_1 + \dots + \frac{\partial \Phi_i}{\partial x_n} f_n = 0, \ i = \overline{1, n}.$$

Следовательно,
$$\sum_{k=1}^{n} \frac{\partial \Phi_{i}}{\partial x_{k}} \left(\frac{\partial F_{k}}{\partial t} - f_{k} \right) = 0$$
, $i = \overline{1, n}$.

Так как матрица $\frac{\partial \Phi}{\partial x}$ невырожденная в окрестности $V_{(s,\xi)}$, то $\frac{\partial F_k}{\partial t} - f_k = 0$ для любого $k = \overline{1,n}$. Так как $H(t,y) = \Psi(t,F(t,y))$, то

$$\frac{\partial H}{\partial t} = \frac{\partial \Psi}{\partial t} + \sum_{k=1}^{n} \frac{\partial \Psi}{\partial x_{k}} \frac{\partial F_{k}}{\partial t} = \frac{\partial \Psi}{\partial t} + \sum_{k=1}^{n} \frac{\partial \Psi}{\partial x_{k}} f_{k} \equiv 0. \blacksquare$$

Пример. Построить два функционально независимых первых интеграла системы

$$\begin{cases}
Dx_1 = x_3 - x_2, \\
Dx_2 = x_1 - x_3, & t, x_1, x_2, x_3 \in \mathbb{R}, & x_1 > x_2, \\
Dx_3 = x_2 - x_1.
\end{cases}$$

Решение.

Будем использовать теорему об интегрируемых комбинациях.

Так как $f_1 + f_2 + f_3 \equiv 0$, то можно выбрать $\varphi_1 = \varphi_2 = \varphi_3 \equiv 1$. Следовательно, $d\Phi_1(x) = dx_1 + dx_2 + dx_3$. Поэтому $\Phi_1(x_1, x_2, x_3) = x_1 + x_2 + x_3$. Для нахождения другого первого интеграла составим систему в симметрической форме и используем свойства пропорций:

$$\frac{dx_1}{x_3 - x_2} = \frac{dx_2}{x_1 - x_3} = \frac{dx_3}{x_2 - x_1} = \frac{x_1 dx_1 + x_2 dx_2 + x_3 dx_3}{x_1 (x_3 - x_2) + x_2 (x_1 - x_3) + x_3 (x_2 - x_1)},$$

$$\frac{dx_1}{x_2 - x_2} = \frac{x_1 dx_1 + x_2 dx_2 + x_3 dx_3}{0},$$

отсюда $x_1dx_1+x_2dx_2+x_3dx_3=0$. Следовательно, $\Phi_2(x_1,x_2,x_3)=\frac{x_1^2+x_2^2+x_3^2}{2}$.

Так как $\operatorname{rank} \frac{\partial \Phi}{\partial x} = \operatorname{rank} \begin{pmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \end{pmatrix} = 2$, при $x_1 > x_2$, то $\Phi = (\Phi_1, \Phi_2)$ - система

функционально независимых первых интегралов.

Пример. Показать, что функции $\Phi_1(t,x_1,x_2) = (x_1 - x_2)e^t$, $\Phi_2(x_1,x_2) = x_1^2 - x_2^2$ являются базисом первых интегралов системы

$$\begin{cases}
Dx_1 = x_2, \\
Dx_2 = x_1,
\end{cases} x_1 > x_2,$$

и проинтегрировать систему.

Решение. Так как $\frac{\partial \Phi_1}{\partial t} + \frac{\partial \Phi_1}{\partial x_1} f_1 + \frac{\partial \Phi_1}{\partial x_2} f_2 = (x_1 - x_2) e^t + x_2 e^t - x_1 e^t \equiv 0$,

$$\frac{\partial \Phi_2}{\partial t} + \frac{\partial \Phi_2}{\partial x_1} f_1 + \frac{\partial \Phi_2}{\partial x_2} f_2 = 0 + 2x_1 x_2 - 2x_2 x_1 \equiv 0 \quad \text{if } rank \frac{\partial \Phi}{\partial x} = rank \begin{pmatrix} e^t & -e^t \\ 2x_1 & -2x_2 \end{pmatrix} = 2,$$

то Φ_{1}, Φ_{2} - базис первых интегралов системы.

Решая алгебраическую систему:

$$\begin{cases} (x_1 - x_2)e^t = C_1, \\ x_1^2 - x_2^2 = C_2, \end{cases}$$

находим, что

$$x_1 = C_3 e^t + C_4 e^{-t}, \ x_2 = C_3 e^t - C_4 e^{-t}, \ C_4 > 0.$$

ЛЕКЦИЯ 16

§44. Классификация уравнений в частных производных первого порядка

Уравнение в частных производных для функции $u(x_1,...,x_n)$ имеет вид:

$$F\left(x_1,...,x_n,u,\frac{\partial u}{\partial x_1},...,\frac{\partial u}{\partial x_n}\right)=0, \quad x=(x_1,...,x_n)\in G\,, \quad G \text{ - область в } R^n\,, \quad u:G\to R \text{ --}$$

искомая функция (44.1).

Классификация для уравнений в частных производных первого порядка по способам вхождения искомой функции и ее производных в уравнение:

$$f_1(x,u)\frac{\partial u}{\partial x_1}+...+f_n(x,u)\frac{\partial u}{\partial x_n}=g(x,u)$$
 - квазилинейное (44.2),

$$f_1(x)\frac{\partial u}{\partial x_1}+...+f_n(x)\frac{\partial u}{\partial x_n}+g(x)u=h(x)$$
 - линейное (44.3),

$$f_1(x)\frac{\partial u}{\partial x_1} + ... + f_n(x)\frac{\partial u}{\partial x_n} = 0$$
 - линейное однородное (44.4),

все остальные уравнения в частных производных первого порядка называются нелинейными.

§45. Построение общего решения однородного линейного уравнения в частных производных первого порядка

Рассмотрим уравнение

$$f_1(x_1,...,x_n)\frac{\partial u}{\partial x_1}+...+f_n(x_1,...,x_n)\frac{\partial u}{\partial x_n}=0$$
, $(x_1,...,x_n)\in G$, G - область в R^n , (45.1),

где функции $f_1,...,f_n$ непрерывны в области G и не обращаются одновременно в 0 ни в какой точке области G .

Определение. Функция $u(x_1,...,x_n)$, заданная на области $D \subseteq \mathbb{R}^n$, называется решением уравнения (45.1), если функция u непрерывно дифференцируемая в области D и обращает уравнение (45.1) в тождество на D.

Пример. Функция $u = \varphi(xy)$ является решением уравнения $x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} = 0$,

где $\varphi(t)$ - произвольная непрерывно дифференцируемая функция.

Решение. Функция $u(x,y) = \varphi(xy)$ является непрерывно дифференцируемой в

$$R^2$$
 и $x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} = x \varphi'(xy) y - y \varphi'(xy) x \equiv 0$ в R^2 .

Теорема. Непрерывно дифференцируемая функция $u(x_1,...,x_n)$, заданная на области D, является решением уравнения (45.1) тогда и только тогда, когда

75

функция $u(x_1,...,x_n)$ является первым интегралом системы ОДУ в симметрической форме: $\frac{dx_1}{f_1(x)} = \frac{dx_2}{f_2(x)} = ... = \frac{dx_n}{f_n(x)}$ (45.2).

Доказательство.

Зафиксируем произвольную точку $x_0 \in D$. Не нарушая общности, полагаем, что $f_1(x_0) \neq 0$. Тогда $f_1(x)$ не обращается в 0 в некоторой окрестности U_{x_0} точки x_0 . Рассматриваем уравнение (45.1) и систему (45.2) в окрестности U_{x_0} . Перепишем систему (45.2) в нормальной дифференциальной форме:

$$\begin{cases} \frac{dx_2}{dx_1} = \frac{f_2}{f_1}, \\ \dots & (45.3). \\ \frac{dx_n}{dx_1} = \frac{f_n}{f_1}. \end{cases}$$

1) Необходимость. Так как $u(x_1,...,x_n)$ - решение уравнения (45.1), то

$$f_1(x_1,...,x_n) \frac{\partial u(x_1,...,x_n)}{\partial x_1} + ... + f_n(x_1,...,x_n) \frac{\partial u(x_1,...,x_n)}{\partial x_n} \equiv 0 \text{ B } U_{x_0}. (45.4)$$

Докажем, что функция u(x) является первым интегралом системы (45.2). Так как $f_1(x) \neq 0$ в U_{x_0} , то из соотношения (45.4) получаем, что

$$\frac{\partial u}{\partial x_1} + \frac{f_2}{f_1} \frac{\partial u}{\partial x_2} + \dots + \frac{f_n}{f_1} \frac{\partial u}{\partial x_n} \equiv 0 \quad \text{B} \ U_{x_0} \ (45.5).$$

В силу теоремы о первом интеграле функция u(x) - первый интеграл системы (45.3), а значит, и системы (45.2).

2) Достаточность. Пусть u(x) - первый интеграл системы (45.2), тогда u(x) - первый интеграл системы (45.3). Следовательно, справедливо тождество (45.5). Умножая тождество (45.5) на $f_1(x)$, получим, что функция u(x) - решение уравнения (45.1).

Отметим, что система (45.2) имеет размерность n-1. Первые интегралы системы (45.2) находят, используя теорему об интегрируемых комбинациях.

Алгоритм построения общего решения уравнения (45.1)

- 1) Составляем систему в симметрической форме (45.2), соответствующую уравнению (45.1).
- 2) Находим базис первых интегралов этой системы: $\Phi_1(x), \Phi_2(x), ..., \Phi_{n-1}(x)$.
- 3) Выписываем общее решение уравнения (45.1): $u(x) = H(\Phi_1(x),...,\Phi_{n-1}(x))$, где H произвольная непрерывно дифференцируемая функция, отличная от константы на области определения.

Пример. Построить общее решение уравнения

$$(x-z)\frac{\partial u}{\partial x} + (y-z)\frac{\partial u}{\partial y} + 2z\frac{\partial u}{\partial z} = 0, \ z > 0.$$

Решение.

- 1) Составляем систему в симметрической форме: $\frac{dx}{x-z} = \frac{dy}{v-z} = \frac{dz}{2z}$.
- 2) Находим базис первых интегралов:

$$\frac{dz}{2z} = \frac{dx - dy}{x - y}$$
, $\frac{dz}{2z} = \frac{d(x - y)}{x - y}$ - уравнение с разделенными переменными. На-

ходим решение: $\ln |x-y| = \frac{1}{2} \ln |z| + C$, отсюда $\Phi_1 = \frac{x-y}{\sqrt{z}}$ - первый интеграл.

Далее
$$\frac{dx+dy+2dz}{x+y+2z} = \frac{dz}{2z}$$
; $\frac{d(x+y+2z)}{x+y+2z} = \frac{dz}{2z}$; $\ln|x+y+2z| = \frac{1}{2}\ln|z| + C$, от-

сюда
$$\Phi_2 = \frac{x+y+2z}{\sqrt{z}}$$
 - первый интеграл. Так как

базис первых интегралов

3)
$$u(x,y,z) = H\left(\frac{x-y}{\sqrt{z}}, \frac{x+y+2z}{\sqrt{z}}\right)$$
 - общее решение уравнения.

§46. Задача Коши для однородного линейного уравнения в частных производных первого порядка

Рассмотрим уравнение

$$f_1(x_1,...,x_n)\frac{\partial u}{\partial x_1}+...+f_n(x_1,...,x_n)\frac{\partial u}{\partial x_n}=0\;,\;(x_1,...,x_n)\in G\;,G\;$$
 - область в R^n , (46.1),

где функции $f_1,...,f_n$ непрерывны в области G и не обращаются одновременно в 0 ни в какой точке области G,

с начальным условием:

$$u(x_1,...,x_{n-1},a)=\varphi(x_1,...,x_{n-1})\,,\;a\in R\,,\;\varphi$$
 - заданная функция (46.2).

Строим общее решение уравнения (46.1): $u(x) = H(\Phi_1(x),...,\Phi_{n-1}(x))$, где $\Phi_1,...,\Phi_{n-1}$ - базис первых интегралов системы (45.2). Необходимо подобрать функцию H так, чтобы: $H(\Phi_1(x_1,...,x_{n-1},a),...,\Phi_{n-1}(x_1,...,x_{n-1},a)) = \varphi(x_1,...,x_{n-1})$. Составим систему функциональных уравнений:

$$\begin{cases}
\Phi_{1}(x_{1},...,x_{n-1},a) = C_{1}, \\
... \\
\Phi_{n-1}(x_{1},...,x_{n-1},a) = C_{n-1}.
\end{cases}$$
(46.3)

Из этой системы находим $x_i = F_i(C_1,...,C_{n-1})$, $i = \overline{1,n-1}$. Положим теперь $u(x_1,...,x_n) = \varphi(F_1(\Phi_1(x_1,...,x_n),...,\Phi_{n-1}(x_1,...,x_n)),...,F_{n-1}(\Phi_1(x_1,...,x_n),...,\Phi_{n-1}(x_1,...,x_n)))$ (46.4). Докажем, что (46.4) — решение задачи Коши (46.1), (46.2).

Так как $\Phi_1,...,\Phi_{n-1}$ - первые интегралы системы (45.2), то $F_i(\Phi_1,...,\Phi_{n-1})$, $i=\overline{1,n-1}$, также первые интегралы, следовательно, правая часть соотношения (46.4) также является первым интегралом системы (45.2) и поэтому (46.4) – решение уравнения (46.1). Докажем теперь, что функция (46.4) удовлетворяет начальному условию.

$$\varphi(F_{1}(\Phi_{1}(x_{1},...,x_{n-1},a),...,\Phi_{n-1}(x_{1},...,x_{n-1},a)),...,F_{n-1}(\Phi_{1}(x_{1},...,x_{n-1},a),...,\Phi_{n-1}(x_{1},...,x_{n-1},a))) = \\ = \varphi(F_{1}(C_{1},...,C_{n-1}),...,F_{n-1}(C_{1},...,C_{n-1})) = \varphi(x_{1},...,x_{n-1}).$$

Алгоритм нахождения решения задачи Коши (46.1), (46.2)

- 1) Составляем систему в симметрической форме (45.2), соответствующую уравнению (46.1).
- 2) Находим базис первых интегралов этой системы: $\Phi_1(x), \Phi_2(x), ..., \Phi_{n-1}(x)$.
- 3) Составляем систему функциональных уравнений (46.3), которую решаем относительно переменных $x_1,...,x_{n-1}$.
- 4) Выписываем решение задачи Коши по формуле (46.4).

Замечание. При рассмотрении задачи Коши для уравнения (46.1) можно фиксировать любую из переменных x_i .

Пример. Найти решение задачи Коши:

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + xy\frac{\partial u}{\partial z} = 0, \ u(x, y, 0) = x^2 + y^2, \ x > 0, y > 0$$

Решение.

- 1) Составляем систему в симметрической форме: $\frac{dx}{x} = \frac{dy}{v} = \frac{dz}{xv}$.
- 2) Находим базис первых интегралов:

$$\frac{dx}{x} = \frac{dy}{y} \implies \frac{x}{y} = C_1, \ \Phi_1 = \frac{x}{y};$$

$$\frac{dx}{x} = \frac{dz}{xy} \implies \frac{dx}{1} = \frac{dz}{y} \implies \frac{x}{C_1} dx = dz \implies \frac{x^2}{2C_1} - z = C_2 \implies \frac{xy}{2} - z = C_2 \implies \Phi_2 = \frac{xy}{2} - z. \quad \text{Tak kak rank} \frac{\partial(\Phi_1, \Phi_2)}{\partial(x, y, z)} \ge \text{rank} \frac{\partial(\Phi_1, \Phi_2)}{\partial(x, y)} = \text{rank} \left(\frac{y^{-1} - xy^{-2}}{y/2 - x/2}\right) = 2$$

при x,y>0, то Φ_1,Φ_2 - базис первых интегралов.

3) Составляем и решаем систему:

$$\begin{cases} x/y = C_1, \\ xy/2 = C_2. \end{cases}$$
 Отсюда $x = \sqrt{2C_1C_2} = F_1(C_1, C_2), \ y = \sqrt{2\frac{C_2}{C_1}} = F_2(C_1, C_2).$

4) Выписываем решение задачи Коши:

$$u(x,y,z) = \left(\sqrt{2\frac{x}{y}\left(\frac{xy}{2} - z\right)}\right)^2 + \left(\sqrt{2\frac{\frac{xy}{2} - z}{\frac{x}{y}}}\right)^2 = x^2 + y^2 - 2z\left(\frac{x}{y} + \frac{y}{x}\right).$$

Основная и дополнительная литература

No	Список литературы	Год издания
	Основная	
1	Альсевич Л.А., Черенкова Л.П. Практикум по диф-	1990 г.
	ференциальным уравнениям. Мн.	
2	Альсевич Л.А., Мазаник С.А., Черенкова Л.П.	2000 г.
	Практикум по дифференциальным уравнениям. Мн.	
3	Богданов Ю.С., Мазаник С.А., Сыроид Ю.Б. Курс	1996 г.
	дифференциальных уравнений. Мн.	
4	Мазаник С.А. Лекции по курсу Обыкновенные	2005 г.
	дифференциальные уравнения. Мн. (в электронном	
	виде)	
	Дополнительная	
4	Богданов Ю.С., Сыроид Ю.Б. Дифференциальные	1983 г.
	уравнения. Мн.	
5	Камке Э. Справочник по обыкновенным дифферен-	1976 г.
	циальным уравнениям. М.	
6	Пономарев К.К. Составление дифференциальных	1973 г.
	уравнений. Мн.	

Список вопросов к экзамену по курсу «Дифференциальные уравнения» Специальность «Прикладная информатика», 2011/2012 учебный год

- 1. Основные понятия теории дифференциальных уравнений.
- 1.1. Определения: дифференциального уравнения, обыкновенного дифференциального уравнения, уравнения в частных производных, решения, непродолжимого решения, общего решения, частного решения, полного решения, начальных/граничных/краевых условий, начальной/граничной/краевой задачи, условий Коши, задачи Коши, интегральной кривой.
- 1.2. Постановка задачи Коши для ОДУ.
- 1.3. Математические модели движения материальной точки с постоянным ускорением и процесса распада радиоактивного вещества.
- 2. Простейшие ДУ 1-го порядка.
- 2.1. Полное решение Π -1 и теорема об однозначной разрешимости задачи Коши для Π -1.
- 2.2. Полное решение П-п.
- 3. Комплекснозначные решения простейших уравнений.
- 3.1. Дифференцирование и интегрирование комплекснозначных функций.
- 3.2. Полное комлекснозначного решение П-1.
- 3.3. Квазиполиномы: определение, критерий равенства квазиполиномов.
- 3.4. Структура полного решения П-1 с правой частью в виде квазиполинома.
- 4. Стационарные линейные дифференциальные уравнения первого порядка.
- 4.1. Лемма о представлении $L_1 z$.
- 4.2. Полное решение СТЛУ-1.
- 4.3. ТОР задачи Коши для СТЛУ-1.
- 4.4. Структура полного решения СТЛУ-1 с правой частью в виде квазиполинома.
- 5. Факторизация стационарного линейного оператора $L_{\scriptscriptstyle n}$.
- 5.1. Определение равных операторов.
- 5.2. Факторизация оператора L_3 (с обоснованием).
- 5.3. Факторизация оператора L_n .
- 6. Построение решений однородных СТЛУ-п.
- 6.1. Построение полного решения уравнения $L_3 z = 0$ (с обоснованием).
- 6.2. Построение полного решения уравнения $L_n z = 0$.
- 6.3. ТОР для нулевой задачи Коши.
- 7. Принцип суперпозиции.
- 7.1. Линейное пространство решений ОСТЛУ-п.

- 8. Определитель Вронского.
- 8.1. Определение вронскиана.
- 8.2. Правило дифференцирования определителя.
- 8.3. Формула Остроградского-Лиувилля.
- 9. Линейная зависимость решений однородного СТЛУ-п.
- 9.1. Определение линейно зависимой и линейно независимой систем решений.
- 9.2. Теорема о линейной зависимости системы решений.
- 10. Базис пространства решений однородного СТЛУ-п.
- 10.1. Лемма о сдвиге.
- 10.2. Определение базиса пространства решений.
- 10.3. Теорема о представлении решения задачи Коши через решения специальных задач Коши.
- 10.4. Нормированный базис пространства решений.
- 11. Неоднородные СТЛУ-п.
- 11.1. Представление общего решения неоднородного СТЛУ-п через общее решение однородного и частное решение неоднородного уравнений.
- 12. Метод Лагранжа нахождения ЧР неоднородного СТЛУ-п.
- 12.1. Вид частного решения неоднородного СТЛУ-п.
- 12.2. Система Лагранжа.
- 12.3. Теорема о существовании частного решения вида п. 12.1 (с обоснованием для n=2).
- 13. Метод Эйлера нахождения ЧР неоднородного СТЛУ-п с правой частью в виде квазимногочлена.
- 13.1. Определение контрольного числа правой части.
- 13.2. Вид комплекснозначного частного решения неоднородного СТЛУ-п.
- 13.3. Теорема о существовании частного решения вида п. 13.2 (с обоснованием для n=2).
- 13.4. Вид действительнозначного решения неоднородного СТЛУ-п.
- 14. Интегральная непрерывность решений СТЛУ-п.
- 14.1. Невозмущенная и возмущенная задачи Коши.
- 14.2. Отклонение решений: определение и доказательство независимости отклонения от правой части и начальных условий.
- 14.3. Определения: непрерывной зависимости решений от начальных условий и интегральной непрерывности.
- 14.4. Теорема об интегральной непрерывности решения задачи Коши.
- 15. Устойчивость по Ляпунову решений СТЛУ-п.
- 15.1. Определение устойчивости по Ляпунову на полуоси.

- 15.2. Определение ляпуновского многочлена.
- 15.3. Критерий устойчивости по Ляпунову.
- 15.4. Необходимое условие устойчивости по Ляпунову.
- 16. Асимптотическая устойчивость решений СТЛУ-п.
- 16.1. Определение асимптотической устойчивости на полуоси.
- 16.2. Определение гурвицевого многочлена.
- 16.3. Критерий асимптотической устойчивости.
- 16.4. Критерий Гурвица (без доказательства).
- 16.5. Необходимое условие асимптотической устойчивости.
- 17. Дифференциальное уравнение вынужденных колебаний.
- 17.1. Постановка задачи.
- 17.2. Вывод уравнения вынужденных колебаний.
- 17.3. Решение уравнение вынужденных колебаний при отсутствии силы трения и в случае периодической возбуждающей силы.
- 17.4. Явление резонанса.
- 17.5. Исследование устойчивости.
- 18. Однородные стационарные линейные векторные уравнения размерности п.
- 18.1. Постановка задачи Коши для СТЛВУ-п.
- 18.2. Правила дифференцирования и интегрирования векторных функций.
- 18.3. ТОР для СТЛВУ-п с треугольной матрицей. Структура решения ОСТ-ЛВУ-п с треугольной матрицей.
- 18.4. ТОР для СТЛВУ-п с произвольной матрицей. Структура решения ОСТ-ЛВУ-п с произвольной матрицей.
- 19. Пространство решений ОСТЛВУ-п.
- 19.1. Матрица решений ОСТЛВУ-п.
- 19.2. Формула Остроградского-Лиувилля (с обоснованием для n=2).
- 19.3. Линейное пространство решений ОСТЛВУ-п.
- 19.4. Полное решение ОСТЛВУ-п.
- 20. Правило Эйлера построения базисной матрицы.
- 20.1. Построение базисной матрицы в случае простых действительных и различных собственных значений.
- 20.2. Построение базисной матрицы в случае наличия действительных кратных собственных значений.
- 20.3. Построение комлекснозначной базисной матрицы в случае наличия комплексных собственных значений.
- 20.4. Построение действительнозначной базисной матрицы в случае наличия комплексных собственных значений.

¹ Вопрос не является обязательным и может быть задан в качестве дополнительного на отличную оценку.

- 21. Неоднородные СТЛВУ-п. Метод сведения линейной системы к одному линейному уравнению.
- 21.1. Представление общего решения неоднородного СТЛВУ-п через общее решение однородного и частное решение неоднородной систем.
- 21.2. Метод сведения неоднородной системы второго порядка к линейному уравнению.
- 22. Правило Лагранжа нахождения ЧР неоднородного СТЛВУ-п.
- 22.1. Вид частного решения неоднородного СТЛВУ-п.
- 22.2. Существование частного решения вида п. 22.1.
- 22.3. Полное решение неоднородного СТЛВУ-п и решение задачи Коши.
- 23. Построение базисной матрицы ОСТЛВУ-п с помощью экспоненты матрицы.
- 23.1. Определение экспоненты матрицы.
- 23.2. Лемма о дифференцировании e^{At} .
- 23.3. Представление полного решения неоднородного СТЛВУ-п с помощью экспоненты матрицы.
- 23.4. Вычисление $e^{J_m(v)t}$, e^{Jt} , e^{At} .
- 24. Интегральная непрерывность решений СТЛВУ-п.
- 24.1. Невозмущенная и возмущенная задачи Коши.
- 24.2. Отклонение решений: определение и доказательство независимости отклонения от правой части и начальных условий.
- 24.3. Определения: непрерывной зависимости решений от начальных условий и интегральной непрерывности.
- 24.4. Теорема об интегральной непрерывности решения задачи Коши.
- 25. Устойчивость по Ляпунову решений СТЛВУ-п.
- 25.1. Определение устойчивости по Ляпунову на полуоси.
- 25.2. Лемма об устойчивости систем с подобными матрицами.
- 25.3. Критерий устойчивости по Ляпунову.
- 26. Асимптотическая устойчивость решений СТЛВУ-п.
- 26.1. Определение асимптотической устойчивости.
- 26.2. Лемма об асимптотической устойчивости систем с подобными матрицами.
- 26.3. Критерий асимптотической устойчивости.
- 27. Математическая модель разложения химического вещества.
- 27.1. Постановка задачи.
- 27.2. Вывод системы.
- 27.3. Нахождение решения.
- 27.4. Исследование устойчивости.

- 28. Дифференциальные уравнения первого порядка в нормальной дифференциальной форме.
- 28.1. Общий вид уравнения первого порядка в нормальной дифференциальной форме.
- 28.2. Определения: решения в явном, параметрическом, неявном виде; интеграла уравнения; интегральной кривой; общего решения в явном, параметрическом, неявном виде; полного решения; общего интеграла.
- 28.3. Классификация точек: точка существования, точка единственности, точка ветвления, особая точка уравнения.
- 29. Уравнения в полных дифференциалах.
- 29.1. Определение односвязной области.
- 29.2. Определение УПД.
- 29.3. Формулировка теоремы о независимости КРИ-2 от формы пути интегрирования.
- 29.4. Нахождение первообразной для выражения Pdx + Qdy.
- 29.5. Полное решение УПД. Постановка и решение задачи Коши для УПД.
- 30. Интегрирующий множитель.
- 30.1. Определение интегрирующего множителя.
- 30.2. Условие существования интегрирующего множителя вида $\mu(\omega(x,y))$.
- 30.3. Нахождение интегрирующего множителя вида п. 30.2
- 31. Уравнения с разделенными и разделяющимися переменными.
- 31.1. Полное решение уравнения с разделенными переменными. Решение задачи Коши.
- 31.2. Вид интегрирующего множителя для уравнения с разделяющимися переменными. Общее решение уравнения с разделяющимися переменными.
- 32. Линейные уравнения первого порядка.
- 32.1. Существование и вид интегрирующего множителя для линейного уравнения первого порядка.
- 32.2. Построение общего решения с использованием интегрирующего множителя.
- 32.3. Представление общего решения неоднородного линейного уравнения через общее решение однородного и частное решение неоднородного уравнений.
- 32.4. Нахождение общего решения однородного уравнения.
- 32.5. Метод Лагранжа нахождения частного решения неоднородного уравнения.
- 33. Уравнение Бернулли.
- 33.1. Сведение уравнения Бернулли к линейному уравнению.

- 34. Интегральный критерий.
- 34.1. Постановка задачи Коши для уравнения с выделенными производными.
- 34.2. Интегральный критерий.
- 35. Лемма Гронуолла.
- 35.1. Неравенство Гронуолла.
- 35.2. Следствие.
- 36. Теорема Пикара-Линделефа.
- 36.1. Условие Липшица. Линейный порядок роста.
- 36.2. Локальная теорема Пикара-Линделефа.
- 36.3. Локальная теорема Пеано (формулировка).
- 36.4. Глобальные теоремы Пикара-Линделефа и Пеано (формулировки).
- 37. Лемма об условии Липшица.
- 37.1. Лемма об условии Липшица.
- 37.2. Теорема об однозначной разрешимости задачи Коши.
- 38. Существенность условий теорем существования.
- 38.1. Пример задачи Коши, имеющей глобальное решение, но не имеющей локально единственного решения в окрестности начального условия.
- 38.2. Пример задачи Коши, не имеющей глобального решения, но имеющей локально единственное решение в окрестности начального условия.
- 38.3. Пример задачи Коши, не имеющей локального решения ни в какой окрестности начального условия.
- 39. Рост денежных вкладов.
- 39.1. Постановка задачи.
- 39.2. Вывод уравнения.
- 39.3. Частные случаи.
- 40. Теоремы существования решений систем нелинейных ОДУ.
- 40.1. Постановка задачи Коши.
- 40.2. Условие Липшица. Линейный порядок роста.
- 40.3. Формулировки теорем Пикара-Линделефа, Пеано, об однозначной разрешимости.
- 41. Первые интегралы.
- 41.1. Определение автономной системы, система ОДУ в симметрической форме.
- 41.2. Определение первого интеграла.
- 41.3. Теорема о первом интеграле.
- 42. Интегрируемые комбинации.
- 42.1. Определение стационарного первого интеграла.

- 42.2. Теорема об интегрируемых комбинациях.
- 42.3. Свойство равных отношений (пропорций).
- 43. Базис первых интегралов.
- 43.1. Определение базиса первых интегралов системы.
- 43.2. Теорема о базисе первых интегралов.
- 44. Классификация уравнений в частных производных первого порядка.
- 44.1. Общий вид уравнения в частных производных первого порядка.
- 44.2. Квазилинейные, линейные однородные уравнения в частных производных первого порядка.
- 45. Построение общего решения однородного линейного уравнения в частных производных первого порядка.
- 45.1. Определение решения.
- 45.2. Теорема о связи решений линейного уравнения в частных производных первого порядка и первых интегралов системы ОДУ в симметрической форме.
- 45.3. Алгоритм построения общего решения.
- 46. Задача Коши для однородного линейного уравнения в частных производных первого порядка.
- 46.1. Постановка задачи Коши.
- 46.2. Алгоритм нахождения решения задачи Коши с обоснованием.

Основные типы задач:

- 1. Нахождения полного решения простейшего уравнения порядка п.
- 2. Построение полного решения однородного СТЛУ-п.
- 3. Построение решений неоднородных СТЛУ-п с использованием методов Лагранжа и Эйлера.
- 4. Построение базисной матрицы однородных СТЛВУ-п методами Эйлера и с помощью экспоненты матрицы.
- 5. Построение общего решения неоднородных СТЛВУ-п с использованием метода Лагранжа, а также сведением системы к линейному уравнению порядка n.
- 6. Исследование устойчивости решений СТЛУ-п и СТЛВУ-п.
- 7. Интегрирование УПД, уравнений с разделенными и разделяющимися переменными.
- 8. Сведение уравнения к УПД, зная вид интегрирующего множителя.
- 9. Решение линейных уравнений первого порядка методом Лагранжа.
- 10. Интегрирование уравнений Бернулли.
- 11. Построение базиса первых интегралов системы ОДУ.
- 12. Построение общего решения однородного линейного уравнения в частных производных первого порядка. Решение задачи Коши.