Business Helper App — ML-Based Forecasting

Bishnu Agarwal (Roll No: 24MA60R25)

M.Tech, Computer Science and Data Processing Department of Mathematics, IIT Kharagpur

Jun-Aug 2025

Problem Statement

• **Context:** Small and medium retailers need reliable sales forecasts to plan inventory, cash flow, and staffing.

• Pain points:

- Naïve "history-only" methods miss holidays, seasonality, and market conditions.
- Manual spreadsheets are time-consuming and error-prone.
- Goal: Build a forecasting tool that integrates context features (holiday flags, market index proxy) with strong time-series baselines to produce accurate, actionable predictions.
- Success criteria: Lower MAE/RMSE/MAPE vs. baseline; interpretable components for planning; easy pipeline.

Model & How It Works

Two complementary models

- **Prophet:** Additive model with trend g(t), seasonality s(t), holidays h(t); produces forecasts with uncertainty bands.
- XGBoost Regressor: Supervised learner on engineered features {month, year, holiday}.

How it works (pipeline)

- Preprocess: Parse Date, sort, handle missing (FFill/Interpolation); align to monthly frequency.
- Enrich: Add holiday flags (India/US/UK) and market index proxy (min-max scaled).
- Train:
 - Prophet on (ds,y) with holiday dataframe.
 - XGBoost on feature matrix with TimeSeriesSplit; tune trees, depth, learning rate.
- Forecast: Generate forward predictions; visualize trend, seasonality, and uncertainty bands (Prophet) and feature-driven outputs (XGBoost).
- **Solution Evaluate:** Chronological folds; metrics = MAE, RMSE, MAPE, R^2 ; inspect component plots/feature importance.

Results (Cross-Validation)

- Both models trained on the enriched dataset; evaluated on future folds.
- XGBoost achieved lower error on average; Prophet offered clear component interpretation.

Model	MAE	RMSE	MAPE (%)	R ²
Prophet	215.4	302.7	8.9	0.82
XGBoost	178.2	250.5	7.1	0.88

Visual checks

- Prophet: trend/seasonality/holiday components + 95% intervals.
- XGBoost: validation fit curves; feature importance consistent with holidays & market effects.

Architecture

XGBoost Architecture

Prophet Architecture

Model Results — Visual Comparison

XGBoost Results

Prophet Results

GitHub Repository:

github.com/bishnu1710/SME_business_helper_app