I214 System Optimization Chapter 6: Combinatorial Optimization (Part A)

Brian Kurkoski

Japan Advanced Institute of Science and Technology

2023 January

Outline

6.1 Greedy Method

- 6.1.1 Minimum Spanning Tree
- 6.1.2 Kruskal's Algorithm
- 6.1.3 Knapsack Problem

6.2 Branch-and-Bound Method

6.2.1 Knapsack Problem

Combinatorial Optimization

In combinatorial optimization, the feasible set is a discrete set, and often a finite set.

We find the minimum value of an objective function over all discrete values in the feasible set.

For example, a problem has n variables, and each variable can be either 0 or 1.

6.1 Greedy Method

Most algorithms follow a step-by-step procedure. In a greedy algorithm,

- ▶ at each step make a locally optimal decision
- without considering the global solution.
- In special cases, greedy algorithms may give an optimal solution
- ▶ In general, greedy algorithms are not optimal, but provide acceptable approximations of the optimal solution.

Example: making change problem

6.1.1 Minimum Spanning Tree

An example of a problem that can be solved by a greedy algorithm is finding the minimum-spanning tree.

Definition

Given an undirected graph $(\mathcal{V}, \mathcal{E})$, a spanning tree T is a subgraph that is a tree which include all nodes \mathcal{V} .

Definition

Given a **weighted** undirected graph, a *minimum spanning tree* (MST) is a spanning tree with minimum weight.

 $\bigstar 1$

Example of Minimum Spanning Tree (MST)

Figure 1: An instance of the minimum spanning tree problem, and its one of the optimum solutions.

6.1.2 Kruskal's Algorithm

Kruskal Algorithm

1. Sort edges with their weights, and let its result be $e_{I_1}, e_{I_2}, \cdots, e_{I_m}$. That is,

$$\lambda(e_{I_1}) \le \lambda(e_{I_2}) \le \dots \le \lambda(e_{I_m})$$

- 2. $E_T = \{e_{I_1}\}, k = 2.$
- 3. If the set of edges $E_T \cup \{e_{I_k}\}$ does not include cycles, then $E_T \leftarrow E_T \cup \{e_{I_k}\}$.
- 4. If (V, E_T) is a spanning tree of G, then quit $((V, E_T)$ is a cost-minimum spanning tree).

Otherwise, $k \leftarrow k+1$ and go to Step 3.

6.1.3 Knapsack Problem

Problem

Given a set of n items, each with given weight a_i and utility $c_i \ge 0$, select the items to maximize the total utility while having total weight not greater than W.

Figure 2: Knapsack Problem

Knapsack Problem Example

Using the following example

$$n = 4$$

$$(c_1, c_2, c_3, c_4) = (7, 8, 1, 2)$$

$$(a_1, a_2, a_3, a_4) = (4, 5, 1, 3)$$

$$W = 6$$

solve the problem using a greedy approach.

6.2 Branch-and-Bound Method

- A combinatorial optimization problem has a finite number of feasible solutions,
- an optimum solution can be found by enumerating and evaluating all feasible solutions.
- However, a naive enumeration has exponential complexity.
- ▶ In **branch-and-bound**, the computation time is shortened by skipping hopeless candidate solutions.

Branch-and-Bound Method

- Branch-and-bound can be represented on a tree
- ► Each level of the tree corresponds to a variable
- ► The algorithm explores branches of this tree
- ▶ The branch is checked against upper and lower estimated bounds on the optimal solution, and the branch is discarded if it cannot produce a better solution than the best one found so far.

Branch-and-Bound Method

- 0. Find a tentative solution by some appropriate method, and let z^* be the value of the objective function for this tentative solution. (The tentative solution and its corresponding tentative minimum value may be updated afterward.)
- 1. Generate subproblems P_1 , P_2 , \cdots , P_m from the original problem P_0 . $A \leftarrow \{P_1, P_2, \cdots, P_m\}$
- 2. Choose one subproblem P_i from A and A \leftarrow A\{P_i}.
 - 2-1. If P_i has no feasible solution, then go to Step 4, otherwise go to Step 2-2.
 - 2-2. If the optimum solution of P_i is obtained, let z_i be the value of the objective function achieved by this solution, otherwise go to Step 2-3. When $z_i < z^*$, then update the tentative solution and $z^* \leftarrow z_i$.
 - After that, go to Step 4.
 - 2-3. A lower bound $\underline{z_i}$ of the value of the objective function for solutions of P_i is computed.
 - If $z_i < z^*$, then go to Step 3.
 - If $\underline{z_i} \geq z^*$, then go to Step 4.

Branch-and-Bound Method

- 3. Generate subproblems P_j , \cdots , P_k from the subproblem P_i , update A as $A \leftarrow A \cup \{P_j, \cdots, P_k\}$, and go to Step 2.
- 4. If $A = \emptyset$, then quit (the tentative solution at this time is an optimum (minimum) solution of the original problem P_0). Otherwise, go to Step 2.

6.2.1 Knapsack Problem

- ▶ The branch-and-bound method may be used to solve the knapsack problem.
- Upper bound using relaxation
- ► Lower bound using best-found solution

(1) With respect to the original problem $P(\emptyset,\emptyset)$, compute an initial tentative solution (this example uses the solution (1,0,1,0) computed from a greedy method) and a lower bound LB=8 for the objective value achieved by the optimum solution of $P(\emptyset,\emptyset)$.

Generate a subproblem $P(\{x_1\},\emptyset)$ from $P(\emptyset,\emptyset)$ with fixing $x_1=0$.

P(
$$\{x_1\},\emptyset$$
) Objective: $8x_2+x_3+2x_4\to\max$ Constraints: $5x_2+x_3+3x_4\le 6$ $x_i=0,1 \ (i=2,3,4)$

In order to find the upper bound on the objective value achieved by the optimum solution for $P(\{x_1\}, \emptyset)$, we will solve the relaxed continuous version of $P(\{x_1\}, \emptyset)$.

$$\mathsf{P}(\{x_1\},\emptyset)_{relax}$$
 Objective: $8x_2+x_3+2x_4\to \max$ Constraints: $5x_2+x_3+3x_4\le 6$ $0\le x_i\le 1 \ (i=2,3,4)$

Step 2 continued

Comparing the upper bound UB=9 on the objective value for $P(\{x_1\},\emptyset)$ with the lower bound LB=8 for $P(\emptyset,\emptyset)$, UB>LB indicates the possibility of the presence of the optimum solution for $P(\emptyset,\emptyset)$ in the subproblem $P(\{x_1\},\emptyset)$, and the search of the subproblems below this node will follow.

(3) Subproblem $P(\{x_1,x_2\},\emptyset)$ is generated from $P(\{x_1\},\emptyset)$ with fixing $x_2=0$. With respect to this new subproblem, we find the optimum solution (0,0,1,1) for the relaxed continuous problem, which means that the upper bound for $P(\{x_1,x_2\},\emptyset)$ is UB=1+2=3. Since UB=3 < LB=8, we will skip the search of subproblems below this node, and go back to $P(\{x_1\},\emptyset)$ (and generate another subproblem).

and move to another subproblem.

the current tentative solution. Hence we stop the search of subtree below this node,

(4) Subproblem $P(\{x_1\}, \{x_2\})$ is generated from $P(\{x_1\}, \emptyset)$ with fixing $x_2 = 1$. The upper bound UB = 9 on the objective value for this new subproblem is then computed by solving the relaxed continuous problem (the solution is (0, 1, 1, 0)). Since UB = 9 > LB = 8, the search of subproblems below this node will follow.

- (5) and (6) are omitted
- (7) Generate a new subproblem from $P(\{x_1\}, \{x_2, x_3\})$ fixing $x_4 = 0$, the result $P(\{x_1, x_4\}, \{x_2, x_3\})$ is a compute 0-1 assignment, i.e., a complete solution, for the original problem $P(\emptyset, \emptyset)$. This solution provides the objective value 9, which is larger than the current tentative solution for $P(\emptyset, \emptyset)$. The tentative solution is updated from (1, 0, 1, 0) to (0, 1, 1, 0) and the lower bound is updated from 8 to 9.

Class Info

- ► Tutorial Hours: Today at 13:30.
- ▶ Homework 6. Deadline: Friday, January 27 at 18:00.
- ▶ Homework 7 will be on LMS soon. Deadline: February 3 at 18:00
- Next lecture: Monday, January 30. Continue Combinatorial Optimization