

CHIMIE NIVEAU SUPÉRIEUR ÉPREUVE 1

Lundi 19 mai 2014 (après-midi)

1 heure

INSTRUCTIONS DESTINÉES AUX CANDIDATS

- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Répondez à toutes les questions.
- Choisissez pour chaque question la réponse que vous estimez la meilleure et indiquez votre choix sur la feuille de réponses qui vous est fournie.
- Le tableau périodique est inclus pour référence en page 2.
- Le nombre maximum de points pour cette épreuve d'examen est [40 points].

0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)		
٢		9 F 19,00	17 Cl 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93
ts 4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26
de la classification périodique des éléments 3		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93
e des é				30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50
odiqu				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92
n péri				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25
ficatio				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96
ı classi				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35
		9		25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92
Le tableau	atomique	Element tomique relativ		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24
Le	Numéro atomique	Element Masse atomique relative		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91
	[22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	÷-
2		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)	
-	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)	

71 Lu 174,97		3	r (0)
7 L		10	Lr (260)
70 Yb 173,04		102	No (259)
69 Tm 168,93		101	Md (258)
68 Er 167,26		100	Fm (257)
67 Ho 164,93		66	Es (254)
66 Dy 162,50		86	Cf (251)
65 Tb 158,92		76	Bk (247)
64 Gd 157,25		96	Cm (247)
63 Eu 151,96		95	Am (243)
62 Sm 150,35		94	Pu (242)
61 Pm 146,92		93	Np (237)
60 Nd 144,24		92	U 238,03
59 Pr 140,91		91	Pa 231,04
58 Ce 140,12		06	Th 232,04
-!	-	**	

1. On fournit les valeurs suivantes exprimant les masses atomiques relatives. Quelle est la masse, en g, d'une mole de sulfate de cuivre(II) hydraté, CuSO₄•5H₂O ?

-3-

Élément	Cu	S	Н	О
Masse atomique relative	64	32	1	16

- A. 160
- B. 178
- C. 186
- D. 250

2. On ajoute un excès de carbonate de calcium à une solution contenant 0,10 mol de HCl(aq). Quelle masse de carbonate de calcium réagit et quelle masse de dioxyde de carbone est formée ?

Masse d'une mole de
$$CaCO_3 = 100 g$$

Masse d'une mole de $CO_2 = 44 g$

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

	CaCO ₃ (s) / g	CO ₂ (g) / g
A.	10	4,4
B.	10	2,2
C.	5,0	2,2
D.	5,0	4,4

- 3. Pour quels composés la formule empirique est-elle la même que la formule moléculaire ?
 - I. Méthane
 - II. Éthène
 - III. Éthanol
 - A. I et II seulement
 - B. I et III seulement
 - C. II et III seulement
 - D. I, II et III
- **4.** Quelle est la configuration électronique abrégée de l'ion cobalt(II), Co²⁺?
 - A. $[Ar] 3d^7$
 - B. $[Ar] 4s^2 3d^5$
 - C. [Ar] $4s^2 3d^7$
 - D. $[Ar] 4s^1 3d^6$
- 5. Quelle proposition décrit correctement le spectre d'émission atomique de l'hydrogène ?
 - A. C'est un spectre continu qui converge vers une fréquence élevée.
 - B. C'est un spectre de raies qui convergent vers une fréquence élevée.
 - C. C'est un spectre continu qui converge vers une basse fréquence.
 - D. C'est un spectre de raies qui convergent vers une basse fréquence.

- **6.** Quelle équation représente l'énergie de deuxième ionisation du potassium ?
 - A. $K(g) \to K^{2+}(g) + 2e^{-}$
 - B. $K^{+}(g) \to K^{2+}(g) + e^{-}$
 - C. $K(s) \to K^{2+}(g) + 2e^{-}$
 - D. $K^{+}(s) \to K^{2+}(g) + e^{-}$
- 7. Quelle paire d'éléments présente la plus grande différence d'électronégativité ?
 - A. Mg et O
 - B. Li et F
 - C. K et F
 - D. Li et I
- **8.** Quelles propositions expliquent pourquoi un catalyseur est utilisé dans le procédé de contact (illustré ci-dessous) ?

$$SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$$

- I. Un catalyseur abaisse l'énergie d'activation.
- II. Un catalyseur déplace la position d'équilibre vers le produit.
- III. Un catalyseur permet d'obtenir la même vitesse à une température plus basse.
- A. I et II seulement
- B. I et III seulement
- C. II et III seulement
- D. I, II et III

9. Quelles propriétés possèdent les composés ioniques typiques ?

	Point de fusion	Conductivité du solide
A.	élevé	bonne
B.	bas	bonne
C.	élevé	faible
D.	bas	faible

- **10.** Quelle est la différence entre la force et la longueur de la liaison carbone-oxygène dans le butanal et le butan-1-ol ?
 - A. La liaison est plus forte et plus longue dans le butanal que dans le butan-1-ol.
 - B. La liaison est plus faible et plus courte dans le butanal que dans le butan-1-ol.
 - C. La liaison est plus faible et plus longue dans le butanal que dans le butan-1-ol.
 - D. La liaison est plus forte et plus courte dans le butanal que dans le butan-1-ol.
- 11. Quels allotropes du carbone présentent de l'hybridation sp²?
 - I. Le diamant
 - II. Le graphite
 - III. Le fullerène C₆₀
 - A. I et II seulement
 - B. I et III seulement
 - C. II et III seulement
 - D. I, II et III

- 12. Quelle molécule possède la forme bipyramidale à base triangulaire ?
 - A. PCl₃
 - B. SiCl₄
 - C. PCl₅
 - D. SF₆
- 13. Quel schéma représente les liaisons dans ${
 m SiO_2}$?

14. Quelle est la valeur de ΔH de la réaction exothermique représentée par le diagramme ci-dessous ?

Coordonnées de la réaction

A.
$$y-z$$

B.
$$z-y$$

C.
$$x-z$$

D.
$$z-x$$

15. Quelle combinaison de variation d'enthalpie et de variation d'entropie produit une réaction non spontanée à **toutes** les températures ?

	ΔH	ΔS
A.	+	_
B.	+	+
C.	-	-
D.	-	+

- 16. Quelle équation représente l'enthalpie de réseau du chlorure de calcium ?
 - A. $CaCl(s) \rightarrow Ca^{+}(g) + Cl^{-}(g)$
 - B. $\operatorname{CaCl}_{2}(s) \to \operatorname{Ca}^{2+}(g) + 2\operatorname{Cl}^{-}(g)$
 - C. $\operatorname{CaCl}_{2}(g) \rightarrow \operatorname{Ca}^{2+}(g) + 2\operatorname{Cl}^{-}(g)$
 - D. $\operatorname{CaCl}_{2}(s) \rightarrow \operatorname{Ca}^{2+}(aq) + 2\operatorname{Cl}^{-}(aq)$
- 17. Dans quelle réaction l'entropie du système augmente-t-elle de façon importante ?
 - A. $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
 - B. $H_2O(g) \rightarrow H_2O(l)$
 - C. $HCl(g) + NH_3(g) \rightarrow NH_4Cl(s)$
 - D. $NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$
- 18. Quelle équation représente la deuxième affinité électronique de l'oxygène ?
 - A. $\frac{1}{2}O_2(g) + 2e^- \rightarrow O^{2-}(g)$
 - B. $O(g) + 2e^{-} \rightarrow O^{2-}(g)$
 - C. $O_2(g) + 4e^- \rightarrow 2O^{2-}(g)$
 - D. $O^{-}(g) + e^{-} \rightarrow O^{2-}(g)$
- 19. Quelle est l'augmentation de température quand une énergie de 2100 J est fournie à 100 g d'eau ? (Capacité calorifique massique de l'eau = $4,2 \text{ J g}^{-1} \text{ K}^{-1}$.)
 - A. 5 °C
 - B. 278 K
 - C. 0,2°C
 - D. 20 °C

- 20. Quelle propriété n'est pas influencée par une augmentation de température ?
 - A. La vitesse de réaction
 - B. La fréquence des collisions
 - C. La géométrie des collisions
 - D. Le % de molécules ayant $E \ge E_a$
- **21.** Quelle combinaison indique une expression de vitesse d'ordre deux avec les bonnes unités de la constante de vitesse ?

	Expression de la vitesse	Unités de k
A.	vitesse = $k[NH_3][BF_3]$	$mol dm^{-3} s^{-1}$
B.	vitesse = $k[N_2O_5]$	s^{-1}
C.	vitesse = $k[N_2O_5]$	dm ³ mol ⁻¹ s ⁻¹
D.	vitesse = $k[CH_3COCH_3][H^+][I_2]^0$	$dm^3 mol^{-1} s^{-1}$

Quelle paire de graphiques indique une réaction de décomposition de X qui obéit à une cinétique 22. d'ordre un?

[X]

[X]

[X]

D.

[X]

23. Quelle est l'expression de la constante d'équilibre, K_c , de cette réaction ?

$$2NO(g) + H_2(g) \rightleftharpoons N_2O(g) + H_2O(g)$$

A.
$$K_c = \frac{[N_2O] + [H_2O]}{2[NO] + [H_2]}$$

B.
$$K_{c} = \frac{[NO]^{2} [H_{2}]}{[N_{2}O][H_{2}O]}$$

C.
$$K_c = \frac{[2NO] + [H_2]}{[N_2O] + [H_2O]}$$

D.
$$K_c = \frac{[N_2O][H_2O]}{[NO]^2[H_2]}$$

24. Quelle combinaison de propriétés est correcte?

	Enthalpie de vaporisation	Point d'ébullition	Forces intermoléculaires	Volatilité
A.	élevée	élevé	fortes	faible
B.	élevée	bas	faibles	élevée
C.	faible	bas	faibles	faible
D.	faible	élevé	faibles	faible

- 25. Quel composé réagit avec l'oxyde de calcium, CaO?
 - A. K₂O
 - B. Na₂O
 - C. SO₂
 - D. MgO

- **26.** Quelle est la base conjuguée du phénol, C₆H₅OH?
 - A. $C_6H_4^-$ OH
 - B. $C_6H_5 \mathring{O}H_2$
 - C. $C_6H_5-O^-$
 - D. $C_6H_6^+$ —OH
- **27.** Quels composés peuvent être mélangés sous forme de solutions aqueuses de concentration et de volume égaux pour former une solution tampon acide ?
 - A. Hydrogénosulfate de sodium et acide sulfurique
 - B. Propanoate de sodium et acide propanoïque
 - C. Chlorure d'ammonium et solution d'ammoniac
 - D. Chlorure de sodium et acide chlorhydrique
- 28. Quelles sont les propositions correctes concernant un indicateur acide-base?
 - I. La substance peut être un acide faible.
 - II. C'est une substance dans laquelle les couleurs du couple acide-base conjugués sont différentes.
 - III. La substance peut être une base faible.
 - A. I et II seulement
 - B. I et III seulement
 - C. II et III seulement
 - D. I, II et III

- **29.** Quelle est l'expression de la constante de produit ionique de l'eau, $K_{\rm e}$?
 - A. $K_e = K_a \times K_b$
 - B. $K_{\rm e} = K_{\rm a} + K_{\rm b}$
 - $C. K_{\rm e} = \frac{K_{\rm a}}{K_{\rm b}}$
 - D. $K_e = K_a K_b$
- **30.** Quel graphique obtient-on en ajoutant HCl(aq) 0,10 mol dm⁻³ à 25 cm³ de NaOH(aq) 0,10 mol dm⁻³ ?

A.

В.

C.

D.

31. Quelles espèces sont les agents oxydant et réducteur dans la réaction suivante ?

$$SO_3^{2-}(aq) + PbO_2(s) + H_2O(l) \rightarrow SO_4^{2-}(aq) + Pb(OH)_2(s)$$

	Agent oxydant	Agent réducteur
A.	${\rm PbO}_2$	${ m H_2O}$
B.	SO ₃ ²⁻	PbO ₂
C.	$\mathrm{H_{2}O}$	SO ₃ ²⁻
D.	PbO ₂	SO ₃ ²⁻

32. Le zinc est plus réactif que le cuivre. Dans la pile voltaïque suivante, quelle espèce est réduite et dans quel sens les ions négatifs circulent-ils dans le pont salin ?

	Espèce réduite	ite Sens du déplacement des ions négatifs dans le pont salir		
A.	Cu^{2+}	de la demi-pile de cuivre vers la demi-pile de zinc		
B.	Cu^{2+}	de la demi-pile de zinc vers la demi-pile de cuivre		
C.	Zn^{2+}	de la demi-pile de cuivre vers la demi-pile de zinc		
D.	Zn^{2+}	de la demi-pile de zinc vers la demi-pile de cuivre		

2214-6119 Tournez la page

- 33. Quelles composantes sont utilisées dans la fabrication de l'électrode standard d'hydrogène?
 - A. $H_2(g)$, $H^+(aq)$, Pt(s)
 - B. $H_2(g), H^+(aq), Ni(s)$
 - C. $H_2(g)$, $HO^-(aq)$, Pt(s)
 - D. $H_2(g)$, $HO^-(aq)$, Ni(s)
- **34.** Quelle est la force électromotrice, en V, de la réaction ci-dessous ?

$$I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$$

$$\frac{1}{2}S_4O_6^{2-}(aq) + e^- \rightleftharpoons S_2O_3^{2-}(aq)$$

$$E^{\ominus} = +0,09\,\mathrm{V}$$

$$I_2(aq) + 2e^- \rightleftharpoons 2I^-(aq)$$

$$E^{\ominus} = +0,54 \,\mathrm{V}$$

- A. +0,63
- B. +0.45
- C. -0.45
- D. -0.63
- 35. Dans les mécanismes de réactions organiques, que représente une flèche courbe ?
 - A. Le mouvement d'une paire d'électrons vers un nucléophile
 - B. Le mouvement d'une paire d'électrons vers une espèce chargée positivement
 - C. Le mouvement d'une paire d'électrons qui s'éloigne d'une espèce chargée positivement
 - D. Le mouvement d'une paire d'électrons vers une base de Lewis

36.	Quelles r	propriétés s	ont des ca	ractéristiques	d'une	série l	homologue	?
------------	-----------	--------------	------------	----------------	-------	---------	-----------	---

- I. Même formule générale
- II. Similitudes des propriétés chimiques
- III. Gradation des propriétés physiques
- A. I et II seulement
- B. I et III seulement
- C. II et III seulement
- D. I, II et III
- **37.** Qu'est-ce qu'un polarimètre mesure ?
 - A. La couleur d'un mélange réactionnel
 - B. La polarité d'une molécule
 - C. La configuration R ou S d'une molécule
 - D. La rotation du plan de polarisation de la lumière
- **38.** Quel composé peut exister sous forme de stéréoisomères ?
 - A. 1,2-dichloroéthane
 - B. 1,1-dichloroéthène
 - C. Butan-2-ol
 - D. Propan-2-ol

39. Quelle est la formule structurale de l'ester formé par la réaction de l'acide propanoïque avec le 2-méthylbutan-2-ol dans des conditions appropriées ?

-18-

- A. H_5C_2 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_3 C_4 C_5 C_5 C_7 C_8 C_8
- C.
- Quelle est la proposition correcte concernant les erreurs ? **40.**
 - Une erreur aléatoire est toujours exprimée sous forme d'un pourcentage. A.
 - Une erreur systématique peut être réduite en effectuant plus de lectures. В.
 - C. Une erreur systématique est toujours exprimée sous forme d'un pourcentage.
 - D. Une erreur aléatoire peut être réduite en effectuant plus de lectures.