Random processes and its application in real life

Arivoli A

July 27, 2025

This content is for **educational purposes** only. It is **not** a recommendation or endorsement of betting or gambling. Always perform your own due diligence and consult with professionals if needed. Betting involves risk and is not suitable for everyone.

Problem Statement

Context: You are at a roulette table with **1000 units** of money.

Objective: Make more money !!!

Conditions:

- Bet on 37 numbers (1-36 and 0).
- Payouts vary by bet type:
 - Single number bet: 35 to 1
 - Red/Black, Even/Odd: 1 to 1
 - Other structured bets available (e.g., splits, corners).

Example of an roulette wheel

Problem:

What is the optimal way to use the 1000 units?

Types of bets

Bet Type	Payout	Probability	Description
Straight Up	35:1	$\frac{\frac{1}{37}}{\frac{3}{37}} \approx 2.70\%$ $\frac{3}{37} \approx 8.11\%$	Single number (e.g., 7)
Street	11:1	$\frac{3}{37} \approx 8.11\%$	Three numbers in a row (e.g.,
		<u>. </u>	1–2–3)
Corner (Square)	8:1	$\frac{4}{37} \approx 10.81\%$	Four numbers forming a square
		31	(e.g., 1, 2, 4, 5)
Six Line	6:1	$\frac{6}{37} \approx 16.22\%$	Two adjacent rows of three num-
		· .	bers (e.g., 1–2–3 and 4–5–6)
Column / Dozen	2:1	$\frac{12}{37} \approx 32.43\%$	Group of 12 numbers
Even/Odd, Red/Black	1:1	$\frac{12}{37} \approx 32.43\%$ $\frac{18}{37} \approx 48.65\%$	18-number bets: even vs. odd,
		31	red vs. black, etc.

Change in Wealth After a Bet

Let

- X_t Wealth at time t
- U_t Bet amount at time t
- *b* Payout ratio (e.g., 35 for 35:1)
- I_t Indicator variable: 1 if the bet wins, 0 if it loses

Then

$$X_{t+1} = X_t + (U_t(b-1))I_t - U_t(1-I_t)$$

= $X_t + U_t bI_t - U_t$

Interpretation:

- If you win $(I_t = 1)$: $\Delta X_t = U_t \cdot (b-1)$
- If you lose (I = 0): $\Delta X_t = -U_t$

Sequence vs. Random Process

$$X_{t+1} = X_t + (U_t(b-1))I_t - U_t(1-I_t)$$

Deterministic Sequence

- A sequence is an ordered list of values, usually generated by a fixed rule.
- Examples: arithmetic sequence $(x_n = a + nd)$, Fibonacci sequence, geometric sequence $(x_n = ar^n)$.
- Entirely predictable.
- Problem: This assumes we know the outcome of each bet ahead of time — unrealistic in most real-world settings.

Sequence vs. Random Process

$$X_{t+1} = X_t + (U_t(b-1))I_t - U_t(1-I_t)$$

Random Process

- A random process is a sequence of random variables indexed by time. [1]
- Each value is uncertain and governed by a probability distribution.
- Examples: temperature over time, noise in a signal, stock prices.

Possible betting strategies

We have the **wealth update** equation

$$X_{t+1} = X_t + (U_t(b-1))I_t - U_t(1-I_t)$$

= $X_t + bU_tI_t - U_t$

What are all the possible ways of making bet ? We know

$$0 \leq U_t \leq X_t$$

- $U_t = X_t$: All in
- $U_t = constant$: constant bet
- $U_t = g_t(t, X_t)$: As a function of time

• $U_t = g(X_t)$

What is Kelly Betting?

PROPORTIONAL BETTING

$$U_t = g(X_t) = fX_t, \quad 0 < f < 1$$

• Maximize long-term capital growth.

Derivation of the Kelly Betting Strategy

Setup:

- Initial wealth: X_t
- Fraction of wealth bet: f
- Odds ratio: b
- Indicator of winning: $I_t = \begin{cases} 1 & \text{with probability } p \text{ (win)} \\ 0 & \text{with probability } 1 p \text{ (loss)} \end{cases}$
- *I_t* **Bernoulli** I.I.D random variable.

Wealth update equation:

$$X_{t+1} = X_t + fX_t(b-1)I_t - fX_t(1-I_t)$$
 $\frac{X_{t+1}}{X_t} = 1 + f(b-1)I_t - f(1-I_t)$
 $\frac{X_n}{X_0} = \prod_{t=0}^{n-1} (1 + f(b-1)I_t - f(1-I_t))$

Strong Law of Large Numbers (SLLN)

Theorem: Let X_1, X_2, X_3, \ldots be a sequence of i.i.d. (independent and identically distributed) random variables with expected value $\mathbb{E}[X_i] = \mu$ and $\mathbb{E}[|X_i|] < \infty$. Then,

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{\text{a.s.}} \mu \quad \text{as } n \to \infty$$

The sample average converges almost surely (with probability 1) to the expected value μ .

Derivation of the Kelly Betting Strategy (Single bet)

Taking log:

$$\log(\frac{X_n}{X_0}) = \sum_{t=0}^{n-1} \log(1 + f(b-1)I_t - f(1-I_t))$$

The wealth at time n is of the form

$$X_n = X_0 e^{nS_n}$$

Where,

$$S_n = \frac{1}{n} \sum_{t=0}^{n-1} \log(1 + f(b-1)I_t - f(1-I_t))$$

Derivation of the Kelly Betting Strategy (Single bet)

Using SNNL, we can infer that

$$S_n \xrightarrow{\text{a.s.}} \mathbb{E}[Y_t] \quad \text{as } n \to \infty$$

as
$$Y_t = \log(1 + f(b-1)I_t - f(1-I_t))$$
 is I.I.D.

$$\mathbb{E}[Y_t] = p \log(1 + f(b-1)) + (1-p) \log(1-f) = \mu$$

If $\mu > 0$ then $X_n \to \infty$ as $n \to \infty$ else, $X_n \to 0$. Let

$$G(f) = p \log(1 + f(b-1)) + (1-p) \log(1-f)$$
 $G(f) o$ Expected growth rate

The Kelly Formula (Single Bet)

First-order condition:

$$\frac{p(b-1)}{1+f^*(b-1)}-\frac{1-p}{1-f^*}=0$$

Solve for f^* :

$$f^* = p - \frac{1-p}{b-1}$$

This is the Kelly Criterion for a single binary bet:

- p: probability of winning
- b: odds (Total payout of b for every 1 unit bet)
- q = 1 p

The Kelly fraction is:

$$f^* = p - \frac{q}{b-1}$$

Bet $f^* \times$ your capital.

Figure: Illustrative plot of G(f) [2]

Six Line Bet

$$f^* = p - \frac{q}{b-1}$$

Six Line Bet:

- Covers 6 out of 37 numbers $\rightarrow p = \frac{6}{37}$, $q = \frac{31}{37}$
- *b* = 6

$$f^* = \frac{6}{37} - \frac{\frac{31}{37}}{6 - 1}$$
$$= \frac{-1}{185} = -0.0054$$

Conclusion: The optimal Kelly bet is negative \rightarrow you should not take this bet.

Multiple mutually exclusive outcomes: only one outcome can occur,

- Derive $G(\mathbf{f}) = \mathbb{E}[\log(X_{t+1}/X_t)]$
- Find f^* by maximizing $G(\mathbf{f})$, subject to: $\sum_i f_i \leq 1, f_i \geq 0$ [3]

Wealth update equation:

$$X_{t+1} = X_t + \sum_{i=1}^m f_i X_t (b_i - 1) I_{it} - \sum_{i=1}^m f_i X_t (1 - I_{it})$$

$$\frac{X_n}{X_0} = \prod_{t=0}^{n-1} (1 + \sum_{i=1}^m f_i (b_i - 1) I_{it} - \sum_{i=1}^m f_i (1 - I_{it}))$$

SNNL:

$$egin{aligned} Y_t &= \log(1 + \sum_{i=1}^m f_i(b_i - 1) I_{it} - \sum_{i=1}^m f_i(1 - I_{it})) \ S_n &= rac{1}{n} \sum_{t=0}^{n-1} Y_t = rac{1}{n} \sum_{t=0}^{n-1} \log(1 + \sum_{i=1}^m f_i(b_i - 1) I_{it} - \sum_{i=1}^m f_i(1 - I_{it})) \ G(f) &= \mathbb{E}[Y_t] = \sum_{i=1}^m p_i \log(1 + f_i(b_i - 1) - \sum_{j \neq i} f_j) \ &+ (1 - \sum_{i=1}^m p_i) \log(1 - \sum_{j=1}^m f_j) \end{aligned}$$

Obtaining first order derivative:

$$\frac{\partial G(\mathbf{f})}{\partial f_k} = \frac{\partial}{\partial f_k} \left\{ \sum_{i=1}^m p_i \prod_{j \neq i} (1 - p_j) \log(1 + f_i(b_i - 1) - \sum_{j \neq i} f_j) \right\}
+ \frac{\partial}{\partial f_k} \left\{ \prod_{i=1}^m (1 - p_i) \log(1 - \sum_{j=1}^m f_j) \right\} = 0$$

We get m linear equations in $f_1, f_2..., f_m$.

Also, Hessian must be negative for maxima.

For m = 3:

$$f_1 = \frac{-b_1b_2b_3p_1 + b_1b_2p_1 + b_1b_3p_1 - b_2b_3p_2 - b_2b_3p_3 + b_2b_3}{-b_1b_2b_3 + b_1b_2 + b_1b_3 + b_2b_3}$$

$$f_2 = \frac{-b_1b_2b_3p_2 + b_1b_2p_2 - b_1b_3p_1 - b_1b_3p_3 + b_1b_3 + b_2b_3p_2}{-b_1b_2b_3 + b_1b_2 + b_1b_3 + b_2b_3}$$

$$f_3 = \frac{-b_1b_2b_3p_3 - b_1b_2p_1 - b_1b_2p_2 + b_1b_2 + b_1b_3p_3 + b_2b_3p_3}{-b_1b_2b_3 + b_1b_2 + b_1b_3 + b_2b_3}$$

Simulation Parameters

- Number of Steps: $n_{\text{steps}} = 40$
- Number of Samples: $n_{\text{samples}} = 1000$
- Initial Wealth: $x_0 = 1000$
- Win Probability: p = 0.162
- Payoff (Net Odds): b = 6.5
- Wager Fraction (Kelly): frac = 0.00982
- Wager Fraction : frac = 0.5
- Expected growth rate at Kelly fraction: 0.00026
- Expected growth rate at f = 0.5: -0.366

Kelly bet - single

Outcomes between the 1st and 99th percentiles

Double Street Bet (Six Line Bet):

- Covers 6 consecutive numbers on the roulette table.
- Probability of winning: $\frac{6}{37}$ (European roulette).
- Payout: 6 to 1 (total payout).

Multiple Bets:

- Three non-overlapping double street bets cover 18 unique numbers.
- Probability of winning at least one bet:

$$\frac{18}{37}\approx 0.4865$$

Overall risk is diversified.

Bet Parameters:

- $p_1 = 0.162$ (Probability of winning bet 1)
- $b_1 = 6$ (Total payout for bet 1)
- $p_2 = 0.162$ (Probability of winning bet 2)
- $b_2 = 6$ (Total payout for bet 2)
- $p_3 = 0.162$ (Probability of winning bet 3)
- $b_3 = 6$ (Total payout for bet 3)

Subtituting it in the Kelly bet fraction formulae we found [4]

- $f_1 \approx 0$ & < 0
- $f_2 \approx 0$ & < 0
- $f_3 \approx 0$ & < 0

Pros and Cons of Kelly Strategy

Pros

- Maximizes long-term capital growth
- Avoids bankruptcy in the long run
- Disciplines risk-taking

Cons

- Requires accurate estimation of probabilities
- High short-term volatility mitigated by **fractional kelly** : f^*/α , $\alpha > 1$

From Roulette to Investment Strategy

Application to Investment

- Systematic Investment Plan (SIP): regular fraction of income is invested consistently to build wealth over time.
- **Diversification:** Spreading investments across different assets (e.g., equity, gold, bonds) helps reduce overall risk.
- **Expected Value:** successful investing focuses on identifying opportunities with a positive expected growth rate over time.

Smart investing, like smart betting, is not about luck—it's about disciplined, probability-informed decisions.

Note: This discussion is for educational purposes only and does not constitute financial advice.

Reference I

P. Naghizadeh, "Ece 250: Random processes - fall 2024." https://parinazn.com/teaching/, 2025. Accessed: 2025-07-19.

E. O. Thorp, "Chaper 9 - the kelly criterion in blackjack sports betting, and the stock market*," in *Handbook of Asset and Liability Management* (S. Zenios and W. Ziemba, eds.), pp. 385–428, San Diego: North-Holland, 2008.

R. Andersen, V. Hassel, L. M. Hvattum, and M. Stålhane, "In-game betting and the kelly criterion," *Mathematics for Applications*, vol. 9, no. 2, pp. 67–81, 2020.

A. Anbarasu, "Kelly-betting." https://github.com/Arivoli-A/Kelly-betting, 2025. GitHub repository, accessed July 19, 2025.