Homework Set #1

Solutions

2) Solid State Physics

(5 points)

- (a) We worked out in class $r_{\text{atom}} \sim \frac{1}{Z\alpha m_e}$. (using $E \sim -\frac{Z\alpha}{r} + \frac{p^2}{m_e}$ and $p \times r \sim 1$) So a solid has a spacing of r_{atom} .
- (b) To probe distances of order $r_{\rm atom}$ need to photons with Energy $\sim \frac{1}{r_{\rm atom}} \sim Z \alpha m_{\rm electron}$. Assuming $Z \sim 10$, Energy $\sim 10 \cdot 10^{-2} \cdot 10^{-3}$ GeV $\sim 10^{-4}$ GeV $\sim 10^2$ keV
- (c) 10^2 keV photons are x-rays.

3) Strength of Gravity on Earth

(5 points)

(a) From class,
$$R_{\text{Planet}} \sim \sqrt{\frac{\alpha}{\alpha_G}} \times r_{\text{atom}}$$
, $\rho_{\text{solid}} \sim \frac{Zm_{\text{proton}}}{r_{\text{atom}}^3}$, and $M_{\text{Planet}} \sim \rho_{\text{Solid}} \times R_{\text{Planet}}^3$

$$g_{
m local} \sim G_N rac{M_{
m Planet}}{R_{Planet}^2} \sim rac{G_N Z m_{
m proton} R_{
m Planet}}{r_{
m atom}^3} \sim \sqrt{lpha_G lpha} rac{Z}{m_{
m proton} r_{
m atom}^2}$$

(b)

$$g_{\text{local}} \sim (\alpha_G \alpha)^{1/2} \cdot Z \cdot r_{\text{atom}}^{-2} \cdot m_{\text{proton}}^{-1}$$

 $\sim (10^{-39} 10^{-2})^{1/2} \cdot 10 \cdot 10^{-8} \text{ GeV}^{-2} \cdot \text{GeV}$
 $\sim 10^{-27.5} \text{GeV}$

Need to convert GeV to $\frac{m}{s^2}$ which has units of [distance]×[time]⁻². c has units of [distance]×[time]⁻¹, h has units of [energy]×[time]. So, can convert from [energy] to [distance]×[time]⁻² by multiplying by c/h. c = 10^8 m/s, h = 10^{-15} eV·s = 10^{-24} GeV·s. So, $c/h = 10^8 \cdot 10^{24} = 10^{32} \frac{m}{\text{GeV} \cdot s^2}$

$$g_{\text{local}} \sim 10^{-27.5} \text{GeV} \times (1)$$

 $\sim 10^{-27.5} \text{GeV} \times \frac{c}{h}$
 $\sim 10^{-27.5} \text{GeV} \times 10^{32} \frac{m}{\text{GeV} s^2}$
 $\sim 10^4 \frac{m}{s^2}$

(c) Not so close to $10\frac{m}{s^2}$, If we has used $r_{\text{atom}} \sim 10^{-10} m$ instead of 10^{-12} which accounts for the screening of multple electrons in the atom. Would have calculated factor of 10^{-4} smaller or g_{local} 1, which is pretty close.

4) Neutron Stars (5 points)

(a) Estimate the radius, mass, and speed of sound for neutron stars in terms of α , α_G , m_{proton} , and m_{electron} . (Assume: A neutron star is a solid made of neutrons and $m_{\text{proton}} \sim m_{\text{neutron}}$)

- (b) What are you estimated values in mks units?
- (c) Compare your estimates to actual values for Neutron Stars quoted online.
- (d) Look up m_{neutron} . How does this compare with the assumption of $m_{\text{proton}} \sim m_{\text{neutron}}$?

5) 2D Rotations (3 points)

- (a) Show that $R(\Theta) = e^{I\Theta} = cos(\Theta) + Isin(\Theta)$ where, $I = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
- (b) Show that 2D rotations commute. (ie: $R(\Theta_1)R(\Theta_2) = R(\Theta_2)R(\Theta_1)$)

6) 3D Rotations (5 points)

(a) Work out the "algebra" of the generators of 3D rotations J_i .

Where
$$J_3 = \begin{bmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, $J_2 = \begin{bmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{bmatrix}$ $J_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{bmatrix}$

(These generators different from the T's derived in class by a factor of i)

Working out the algebra means calculating the commutation relations $[J_i, J_j]$.

(b) Let M be a traceless 2×2 hermitian matrix and U be a 2×2 hermitian matrix with determinant = 1. Show that $M' = U^{\dagger}MU$ is also traceless and hermitian and that is has the same determinant as M.

2