The 27th Nordic Mathematical Contest Måndagen, den 8 april 2013

Varje problem är värt 5 poäng.

PROBLEM 1. Låt $\{a_n\}_{n\geq 1}$ vara en följd med $a_1=1$ och

$$a_{n+1} = \left| a_n + \sqrt{a_n} + \frac{1}{2} \right|,$$

för alla $n \ge 1$, där $\lfloor x \rfloor$ betecknar det största heltalet mindre än eller lika med x. Bestäm alla $n \le 2013$ sådana att a_n är en jämn kvadrat.

PROBLEM 2. I en fotbollsturnering deltar n lag, där $n \ge 4$, och varje lag möter varje annat lag exakt en gång. Antag att resultaten efter det att turneringen är avslutad bildar en aritmetisk följd, där varje lag har 1 poäng mer än laget som kommer direkt efter i tabellen. Avgör det största möjliga poängtalet för laget som kommer sist, om poängen delas ut på det vanliga sättet för fotbollsturneringar (vinnaren i en match får 3 poäng, förloraren får 0, och vid oavgjort får vart och ett av lagen 1 poäng).

PROBLEM 3. Definiera följden $\{n_k\}_{k\geq 0}$ med $n_0=n_1=1$, och $n_{2k}=n_k+n_{k-1}$, samt $n_{2k+1}=n_k$, för $k\geq 1$. Definiera dessutom $q_k=\frac{n_k}{n_{k-1}}$, för alla $k\geq 1$. Visa att varje positivt rationellt tal förekommer exakt en gång i följden $\{q_k\}_{k\geq 1}$.

PROBLEM 4. Låt $\triangle ABC$ vara en spetsig triangel, och låt H vara en punkt i triangelns inre. Beteckna spegelbilderna av H i sidorna AB respektive AC med H_c respektive H_b , samt låt H'_c respektive H'_b vara punkterna symmetriska till H med avseende på mittpunkterna på sidorna AB respektive AC. Visa att punkterna H_b , H'_b , H_c och H'_c ligger på en cirkel om och endast om minst två av dem sammanfaller eller om H ligger på höjden från A i $\triangle ABC$.

Skrivtid: 4 timmar. Inga hjälpmedel utom passare och linjal är tillåtna.