```
% Number of simulations to average over
numSimulations = 1000;
% Array to hold values of L
L_values = [10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240];
% Arrays to store results for the average and standard deviation of the sum
of squares of increments
avgSumSquaresIncrements = zeros(size(L values));
stdSumSquaresIncrements = zeros(size(L values));
% Loop over different values of L
for j = 1:length(L_values)
    L = L_values(j);
    dt = 2 / L; % delta t
    % Temporary array to store the sum of squares of increments for each
simulation
    tempSumSquares = zeros(1, numSimulations);
    % Perform simulations
    for i = 1:numSimulations
        % Generate Wiener increments
        dW = sqrt(dt) * randn(1, L);
        % Compute the sum of squares of increments
        tempSumSquares(i) = sum(dW.^2);
    end
    % Compute the average and standard deviation of the sum of squares of
increments
    avqSumSquaresIncrements(j) = mean(tempSumSquares);
    stdSumSquaresIncrements(j) = std(tempSumSquares);
end
% Display the table of L, averages, and standard deviations
T = table(L_values', avgSumSquaresIncrements', stdSumSquaresIncrements', ...
          'VariableNames', {'L', 'Average', 'Standard_Deviation'});
disp(T);
```

L	Average	Standard_Deviation
10	2.0442	0.96153
20	2.0007	0.65113
40	2.0187	0.47457
80	1.9903	0.31852
160	1.9929	0.22465
320	1.9957	0.15678
640	1.9995	0.11208
1280	1.9972	0.07806
2560	2.0022	0.056457

5120 1.9987 0.040946 10240 1.9997 0.026844

```
% Plotting the results with error bars
figure;
errorbar(L_values, avgSumSquaresIncrements, stdSumSquaresIncrements, 's-');
xlabel('Number of intervals L');
ylabel('Average of Sum of Squares of Increments');
title('Sum of (dWi)^2 vs. L with Standard Deviation');
set(gca, 'XScale', 'log');
grid on;
hold on;
plot(L_values, repmat(2, size(L_values)), 'r--'); % Line at the theoretical
limit 2
legend('Numerical Result with Std Dev', 'Theoretical Limit');
```

