5. 선도,선물 계약 가격의 결정

5.1 선물계약과 선도계약

선도계약은 이해관계 맞는 사람끼리 거래하고, 선물계약은 시장에서 이루어진다.

선도계약	선물계약
이해관계가 맞는 2명이서 거래	exchange가 중간에서 거래를 이행
비표준화된 거래	표준화된 거래
Usually 1 specified delivery date	range of delivery dates
만기일에 정산됨	매일매일 정산됨
delivery or final cash settlement usually occurs	Contract usually closed out prior to maturity

5.2 공매도

공매도는 판매자가 소유하지 않는 증권이나 상품을 판매하는 것이다. 그러기 때문에 누군가로부터 빌려야한다. 그러므로 다시 갚아야함. 상품 채무자는 채권자에게 배당금이나 다른 이익들을 지불해야 한다.

- 1. A는 B로부터 주식을 공매도한다.
- 2. A는 공매도한 주식을 판다. (+S원) 그 시점에 "만기일이 되면 주식을 F원에 사겠습니다"라는 선물계약을 체결한다.
- 3. 만기일이 되고, A는 F원에 주식을 구매한다. 그 사이 돈은 불려져있다. $(Se^{rt} F)$
- 4. 그 구매한 주식을 B에게 되돌려준다.

5.3 Assumptions and Notation

선도 가격의 가정

- 시장 참가자들끼리 거래할 땐 거래비용이 들지 않는다.
- 모든 사람들은 공평하게 똑같은 세김을 지불한다.
- 시장참가자들이 돈을 빌릴 땐 동일한 무위험이자율로 돈을 빌린다.
- 시장참가자들은 차익거래로 이득을 취할 수 있다.

Notation

t	time, 현재 시점은 t=0
T	선물, 선도계약의 만기일
$S(S_t)$	기초 자산의 현물가격 (주가)
K	선물, 선도 계약의 행사가격
$f(f_t)$	t시점에서 선도계약의 long position의 가치
$F(F_t)$	t시점에서의 선도가격
r	무위험 이자율, 연속복리임

5.4 Forward price for an investment asset

만약 $F > Se^{r(T-t)}$ 인 경우 (short position)

- 선물가격이 적정가격보다 높아졌으므로 높은 가격에 팔 수 있기 때문에 매도 포지션을 취한다.
- (T-t)기간 동안 이자율 r을 지불하면서 S라는 돈을 빌린다. 그리고 자산을 구입한다.
- 이렇게 되면 만기일이 되었을 때 $F Se^{r(T-t)}$ 만큼의 이익을 얻는다.

만약 $F < Se^{r(T-t)}$ 인 경우 (long position)

- 선물가격이 적정가격보다 낮아졌으므로 낮은 가격에 사면 된다. 이런 경우 매수 포지션을 취한다.
- 현물 시장에서 공매도한 주식을 판다. 그리고 판 돈으로 (T-t)기간 동안 이자율 r을 지불하면서 S 라는 돈을 빌린다. 그리고 자산을 구입한다.
- 이렇게 되면 만기일이 되었을 때 $F Se^{r(T-t)}$ 만큼의 이익을 얻는다.

연습문제

zero-coupon 채권의 4개월 선도계약을 가정한다. 현재 채권의 가격은 930달러이며, 4개월동안 6%의 무위험 이자율을 가정한다. 이때 적정가격은?

$$F = 930e^{0.06*\frac{4}{12}} = 948.79$$

No income

연습문제

주식의 현물가가 40달러라고 하자. 만기는 3개월 후이며, 무위험 이자율은 5% per annum이라고 할 때 선물가격이 43달러일 때와 39달러일 때 arbitrage 전략은?

우선 위의 상황에서 적정가격은 $40*e^{0.05*\frac{3}{12}}=40.5$ 달러이다.

(1) 선물가격이 43달러일 때

위의 상황은 선물가격이 적정가격 40.5달러보다 비싸므로 비싼 값에 팔기 위해서는 매도 포지션을 취해야 한다.

1. 주식을 현물가격인 40달러를 주고 구입한다. (-40) 이때 선물계약을 체결한다.

- 2. 만기일 후, 투자자는 주식을 선물가격인 43달러를 받고 판다. (43-40.5=2.5)
- => 결과적으로 2.5달러/계약의 이득을 얻는다.

(2) 선물가격이 39달러일 때

위의 상황은 선물가격이 적정가격 39달러보다 싸므로 싼 가격에 사기 위해서는 매수 포지션을 취해야 한다.

- 1. 다른 사람으로부터 주식을 공매도한다.
- 2. 공매도한 주식을 팔아 돈을 챙긴다 (+40) 이때 선물계약을 체결한다.
- 3. 만기일 후, 주식을 39달러를 주고 산다. 이 시기가 되면 은행에 있는 돈이 불려져있다. (40.5-39=1.5)
- 4. 39달러를 주고 산 주식을 공매도한 사람에게 돌려준다.
- => 따라서 결과적으로 이 방법도 1.5달러/계약이라는 이득을 얻게 된다.

Known Cash income

연습문제

기초자산은 채권이며, 그 채권의 현물가격은 900달러이다. 만기는 1년이며 6개월 동안의 무위험이자율은 9% per annum, 1년 동안의 무위험이자율은 10% per annum이다. 채권은 6개월 그리고 1년마다 40달러라는 쿠폰을 받는다. 이 경우 선물가격이 930달러인 경우와 905달러일 때arbitrage 전략은?

이때 위 상황에서 주목해야 할 점은 바로 6개월과 1년마다 40달러라는 돈을 지불받는다는 것이다. 이를 통해 2가지의 방법으로 900달러를 빌릴 수 있다.

- (1) 1년 만기로 900달러 빌리기
- 이런 방법으로 빌리게 되면 1년 후에는 $900e^{0.1} = 994.653$ 달러나 갚아야 한다.
- (2) 일부 금액은 6개월 만기로, 나머지 금액은 1년 만기로 빌리기
- 어차피 6개월 뒤에 40달러를 받으니, 이 40달러와 퉁치는 정도로 6개월 만기로 빌린다.
- $xe^{0.045} = 40$ 을 만족시키는 x값은 38.24달러이다.
- 따라서 38.24달러는 6개월 만기로 빌리고, 나머지 861.76달러는 1년 만기로 빌린다.
- 이런 방법으로 빌리게 되면 총 갚아야 하는 금액은 $40+861.76*e^{0.1}=992.392$ 달러만 갚으면 된다.
- 따라서 (2) 방법으로 900달러를 빌리게 되면 2.261달러나 절약하게 된다.

(1) 선물가격이 930달러인 경우

위의 상황은 적정가격보다 비싸므로 비싸게 팔기 위해서는 매도 포지션을 취해야 한다.

- 1. 주식을 900달러를 주고 산다. 이 때 두 번째 방법을 사용하는 것 잊지 말기. 이 시기에 선물계약을 체결한다.
- 2

6개월 후, 투자자는 이 주식(채권)을 가지고 있으므로 40달러를 얻는다. 동시에 40달러를 갚는다. (+40-40)

- 3. 1년 후, 투자자는 여전히 이 주식을 가지고 있으므로 40달러를 받는다. 그리고 이 주식을 930 달러에 판다. 그리고 900달러를 빌렸으니 갚는다. (40+930-952.392=17.608)
- => 따라서 최종적으로 17.608달러의 이익을 얻게 된다.

(2) 선물가격이 905달러인 경우

위의 상황은 적정가격보다 싸므로, 싼 가격에 사기 위해서는 매수 포지션을 취해야 한다.

- 1. 다른 사람으로부터 채권을 공매도한다.
- 2. 그 공매도한 채권을 시장에 판다. 이로 인해 900달러를 얻게 되며, 선물계약을 체결한다. (+900)
- 3. 매도해서 얻은 900달러 중, 38.24달러는 6개월 만기로 예치하고, 861.76달러는 1년 만기로 예치한다.

4.

6개월 후, 40달러를 원래 주인에게 돌려준다.

- 5. 1년 후, 투자자는 905달러에 주식을 구매하며, 그 돈은 861.76달러에서 불려진 $861.76e^{0.1} = 952.392$ 에서 빼간다. 그 결과 투자자는 47.392달러와 채권을 얻게 된다.
- 6. 투자자는 원래 주인에게 40달러와 채권을 주며, 최종적으로 7.392달러를 얻게 된다.
- => 따라서 최종적으로 7.392달러의 이익을 얻게 된다.

따라서 채권의 경우는 다음과 같이 정리할 수 있다.

경우	계산
선도가격이 적정가격보다 높은 경우의 이익	40+forward-952.39
선도가격이 적정가격보다 낮은 경우의 이익	952.39-40-forward

따라서 선도가격이 912.39달러가 아니게 되면 차익거래 기회가 발생한다.

Formula

 $F = (S - I)e^{r(T - t)}$ 가 되어야 차익거래가 불가능하다.

연습문제

S=900, T-t=1, r = 9% per six months, 10% per annum 일때

F의 값은? (주식 소유자는 6개월 뒤, 1년 뒤마다 40달러를 받는다)

따라서 $F = (S - I)e^{rt} = (900 - 74.43)e^{0.1} = 912.395$

연습문제

S = 50, T - t = 1, r = 0.08 (1년), 3개월, 6개월, 9개월마다 배당금 0.75달러씩 지급

적절한 Forward price는?

$$| = 0.75e^{-0.08*3/12} + 0.75e^{-0.08*6/12} + 0.75e^{-0.08*9/12} = 2.16$$

$$F = (S - I)e^{rt} = (50 - 2.16)e^{0.08*10/12} = 51.14$$

Known Dividend Yield

q: annual rate of dividend yield

만약 자산의 가격이 10달러이고, q=0.05이면, 작은 간격으로 배당금이 연간 0.5달러의 비율로 지급된다.

연습문제

6 months forward contract on an asset which provides income equal to 2% once during 6months.

 $S=25,\,T-t=0.5,\,r=0.1$, 문제에서 6개월마다 2%씩 지급한다 했으므로 1년에 2번씩 총 4%를 지급한다. 이는 $R_c=m*ln(1+R_m/m)$ 공식을 이용해서 q=2*ln(1+0.04/2)=0.0396이다.

따라서 $F = Se^{(r-q)(T-t)} = 25 * e^{(0.1-0.0396)*0.5} = 25.77$ 이다.

연습문제

2007년 9월 17일 주가지수가 236.25달러이다. 3개월 후 선물 가격이 238.7일때 이자율과 배당률의 차이는 다음과 같다.

 $238.7 = 236.25 * e^{(r-q)*3/12}$

따라서 r - q = 4 * ln(238.7/236.25) = 0.04126 = 4.13

5.7 Valuing Forward Contracts

맨 처음 계약할 때는 가치는 0이다. 그렇지 않으면 arbitrage 기회가 제공될 수 있기 때문이다.

그러나 시간이 지나면, 선도계약의 가치는 0이 아니다. 현재 행사가격이 K라면, 미래에 선물가격은 $F=Ke^{rt}$ 이어야 한다. 만약 사기로 한 가격 K보다 F가 더 높으면 만기 시점에서의 이익이 발생한다.

위와 같은 경우 투자자는 (F-K)의 이익을 만기 시점에 낼 수 있으며, long forward contract의 현재가 치는

$$f=(F-K)e^{-rt}$$
이다. ($F-K=fe^{rt}$)

만약 중간에 변화가 없이 수익이 없을 때 현재가치 f	$f = (F - K)e^{-rt} = S - Ke^{-rt}$
중간에 I 라는 수입이 있는 경우의 선물가치 f	$f = (S-I) - Ke^{-rt}$
중간에 배당률 q 를 제공받는 선물가치 f	$f = Se^{-qt} - Ke^{-rt}$

Futures on currencies

연습문제

달러선물을 하는 계약에서 6개월 만기의 달러 1만불을 선물계약한다고 한다. A는 Long Position을 취하고 B는 Short Position을 취한다.

달러금리가 연 6%라면, Short Position을 취한 투자자 B가 6개월 후 달러를 인도하기 위해 선물계약에서 필요한 금액은 얼마인가?

Futures on commodities

연습문제

금선물의 계약 크기는 100온스이고, 현물가격은 450달러/온스이며, 만기는 1년이라고 한다. 무위험 이자율은 7% per annum이며, 금을 저장하는데 드는 비용은 연말에 2달러/온스 씩 년마다 나간다. 위의 선물가격 F는 얼마이어야 하는가?

이 문제는 수입이 있을 때와 완전히 반대의 문제이다.

수입 I가 있는 경우에 선물가격 F는 $F=(S-I)e^{rt}$ 이다. 여기서는 I를 빼주었지만 위의 문제에 서는 더해주어야 한다.

- 1. $U = 200e^{-0.07} = 186.47$
- 2. $F = (S + U)e^{0.07} = 48463$