Datenbanken Übungsserie 1

Merlin Streilein 20-118-402

Florin Achermann 20-122-131

Lukas Ingold 20-123-998

Aufgabe 1:

a	b	$\neg a \lor b$	$\neg(a \land \neg b)$	$a \Longrightarrow b$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	1	1	1

Alle Wahrheitstabellen sind gleich da es sich hier nur um Umformungen von $\neg a \lor b$ handelt.

Aufgabe 2:

a)

 $A \cup B$: $\varphi(x) = x \in A \ oder \ x \in B$

 $A \backslash B$: $\varphi(x) = x \in A \text{ und } x \notin B$

 \emptyset : $\varphi(x) = x \notin M \text{ und } x \in M$

b)

Dies folgt aus der Definition der Komprehensionsformel, die Menge M besteht aus allen x welche die Komprehensformel erfüllen.

Aufgabe 3:

- a) {(3, e, A, 2, c), (3, e, A, 2, d), (3, f, B, 2, c), (3, f, B, 2, d)}
- b) {(1, a, 2, c, 3, e, A), (1, a, 2, c, 3, f, B), (1, a, 2, d, 3, e, A), (1, a, 2, d, 3, f, B), (1, b, 2, c, 3, f, B), (1, b, 2, d, 3, e, A), (1, b, 2, d, 3, f, B)}
- c) Aufgrund der Assoziativität ist die Lösung die Gleiche wie in Teilaufgabe b)
- d) {(2, c, 3, e, A, 1, a), (2, c, 3, e, A, 1, b), (2, c, 3, f, B, 1, a), (2, c, 3, f, B, 1, b), (2, d, 3, e, A, 1, a), (2, d, 3, e, A, 1, b), (2, d, 3, f, B, 1, a), (2, d, 3, f, B, 1, b)}

Aufgabe 4:

a) A := {a, b, c}, B:= A und C:= {}. Somit folgt: $A \cup B = \{a, b, c\} = A \cup C$

b) R := {(1, a), (1, b)} und P:= {(2, c), (2, d)} Somit folgt:
P x R = {(1, a, 2, c), (1, a, 2, d), (1, b, 2, c), (1, b, 2, d)
R x P = {(2, c, 1, a), (2, c, 1, b), (2, d, 1, a), (2, d, 1, b)
Da es sich hier um Tupel handelt spielt die Reihenfolge eine wichtige Rolle.