Link Layer

• Chapter 3, Fall & Stevens

Ethernet Frame Format

(Shared) Ethernet

CSMA/CD

Carrier Sense Multiple Access with Collision Detection

Carrier Sense: do not transmit when you know someone else is.

Collision, Collision Detection

- Collision: > 1 pulse on the bus.
- Detection: hosts check for collision immediately after transmission.
- Minimum frame size (64 bytes) designed with this in mind.

Exponential Back-off

- In attempting to send a frame, f, after c^{th} collision
 - Choose a uniform integer, $i \in [0, 2^c 1]$
 - Delay by $i \times$ "slot time"
 - Usually, $c \in [0, 16]$. Give up after c = 16.

Switched Ethernet

- Switch learns and maintains a table.
- While not yet learned, switch acts as a hub.

Connected to	<u>via Port</u>
c4:8e:f5:68:10:1e	5
2e:8d:11:ee:5e:8a	2

Virtual LAN (VLAN)

- Hosts connected to same switch may not be on same VLAN.
- One way to do this: switch binds a port to a VLAN ID.
- Traffic allowed to flow within VLAN only extra column in switching table.

Extended LANs

Switching Table for Extended LAN

Station	Port	
00:17:f2:a2:10:3d	2	
00:c0:19:33:0a:2e	1	
00:0d:66:4f:02:03		
00:0d:66:4f:02:04	3	
00:30:48:2b:19:82	3	
00:30:48:2b:19:86	3	

Switch A's Database	
CWITCHT TO DUTUDUOC	

Station	Port
00:17:f2:a2:10:3d	9
00:c0:19:33:0a:2e	9
00:0d:66:4f:02:03	9
00:0d:66:4f:02:04	
00:30:48:2b:19:82	10
00:30:48:2b:19:86	11

Switch B's Database

Spanning Tree Protocol (STP) - motivation

What could go wrong?

• Assume A, B, C, D just switched on.

So two problems:

- Broadcast storm
- Oscillation of switching tables

A solution

- Switches first agree on a Spanning Tree.
- Spanning Tree Protocol (STP).
- Given an undirected connected graph *G*, a spanning tree *T* of *G* is a connected acyclic subgraph.

E.g., Switch B will forward packets on ports 6 and 7 only.

How STP works

- Special frames: Bridge Protocol Data Units (BPDUs).
- A rooted tree is built.

How STP works, contd.

State Machine for each Port

Use of the state machine (1)

- Blocking state not allowed to transmit, only receive BPDUs.
- *Listening* allowed to receive and transmit BPDUs.
- Learning allowed to Learn switching table.
- Forwarding (finally) allowed to forward data frame.

Defensive mindset. To avoid loops.

Use of state machine (2)

Wireless LAN - WiFi

Lower-layer protocols can be complex

E.g., Link Control Protocol for Point-to-Point links

Address Resolution Protocol (ARP) - Chapter 4

ARP Frame encapsulated in Ethernet Frame

DST = link-layer broadcast address in a request. Unicast in a response.