## Sheet1

| Число ядер | 1 вариант      |                  | 2 вариант    |           |
|------------|----------------|------------------|--------------|-----------|
|            | Время работы   | Ускорение        | Время работы | Ускорение |
| 1          | 81.531         | 1.000            | 82.658       | 1.000     |
| 2          | 41.579         | 1.961            | 41.491       | 1.992     |
| 3          | 28.246         | 2.886            | 28.173       | 2.934     |
| 4          | 21.327         | 3.823            | 21.925       | 3.770     |
| 5          | 17.867         | 4.563            | 17.081       | 4.839     |
| 6          | 14.192         | 5.745            | 14.337       | 5.765     |
| 7          | 12.210         | 6.678            | 12.165       | 6.795     |
| 8          | 10.721         | 7.605            | 10.722       | 7.709     |
| 9          | 9.503          | 8.580            | 9.894        | 8.354     |
| 10         | 9.230          | 8.833            | 9.208        | 8.976     |
| 11         | 8.261          | 9.869            | 7.942        | 10.407    |
| 12         | 7.153          | 11.397           | 7.180        | 11.511    |
| 13         | 6.655          | 12.251           | 6.608        | 12.508    |
| 14         | 6.079          | 13.412           | 6.174        | 13.387    |
| 15         | 5.709          | 14.282           | 5.749        | 14.376    |
| 16         | 5.390          | 15.125           | 5.398        | 15.312    |
| 17         | 5.112          | 15.949           | 5.134        | 16.099    |
| 18         | 4.802          | 16.979           | 4.918        | 16.807    |
| 19         | 4.567          | 17.852           | 4.610        | 17.930    |
| 20         | 4.350          | 18.743           | 4.380        | 18.872    |
| 21         | 4.220          | 19.320           | 4.320        | 19.134    |
| 22         | 4.050          | 20.131           | 4.096        | 20.180    |
| 23         | 3.990          | 20.434           | 4.030        | 20.511    |
| 24         | 3.870          | 21.068           | 3.900        | 21.194    |
| 25         | 3.760          | 21.684           | 3.740        | 22.101    |
| 26         | 3.670          | 22.216           | 3.600        | 22.960    |
| 27         | 3.530          | 23.097           | 3.580        | 23.089    |
| 28         | 3.490          | 23.358           | 3.472        | 23.806    |
| 29         | 3.317          | 24.582           | 3.438        | 24.042    |
| 30         | 3.243          | 25.139           | 3.357        | 24.624    |
| 31         | 3.175          | 25.681           | 3.222        | 25.651    |
| 32         | 3.100          | 26.299           | 3.251        | 25.423    |
| 33         | 3.059          | 26.651           | 3.087        | 26.776    |
| 34         | 2.969          | 27.461           | 3.036        | 27.223    |
| 35         | 2.918          | 27.944           | 2.965        | 27.881    |
| 36         | 2.873          | 28.377           | 2.975        | 27.787    |
| 37         | 2.823          | 28.881           | 2.980        | 27.735    |
| 38         | 2.849          | 28.619           | 2.981        | 27.733    |
| 39         | 2.750          | 29.643           | 2.920        | 28.305    |
| 40         | 2.702          | 29.043<br>30.176 | 2.729        | 30.292    |
| 40         | 2.702<br>3.631 | 30.176<br>22.454 | 3.671        | 22.516    |
| 41 42      | 3.625          |                  | 3.646        | 22.516    |
| 42         |                | 22.493<br>22.999 |              |           |
|            | 3.545          |                  | 3.591        | 23.019    |
| 44<br>45   | 3.468          | 23.511           | 3.573        | 23.134    |
| 45<br>46   | 3.409          | 23.916           | 3.463        | 23.868    |
| 46         | 3.347          | 24.361           | 3.561        | 23.209    |
| 47         | 3.298          | 24.719           | 3.299        | 25.055    |

Sheet1

| 1  | 1     |        | ı     | •      |
|----|-------|--------|-------|--------|
| 48 | 3.213 | 25.373 | 3.296 | 25.079 |
| 49 | 3.173 | 25.693 | 3.350 | 24.674 |
| 50 | 3.203 | 25.451 | 3.130 | 26.410 |
| 51 | 3.048 | 26.752 | 3.306 | 25.003 |
| 52 | 3.007 | 27.115 | 3.024 | 27.331 |
| 53 | 2.961 | 27.533 | 3.032 | 27.259 |
| 54 | 2.916 | 27.962 | 2.928 | 28.235 |
| 55 | 2.858 | 28.528 | 3.123 | 26.470 |
| 56 | 2.822 | 28.896 | 2.845 | 29.058 |
| 57 | 2.801 | 29.110 | 2.796 | 29.564 |
| 58 | 2.728 | 29.883 | 3.033 | 27.252 |
| 59 | 2.680 | 30.427 | 2.823 | 29.285 |
| 60 | 2.648 | 30.786 | 2.785 | 29.675 |
| 61 | 2.628 | 31.023 | 2.710 | 30.501 |
| 62 | 2.585 | 31.545 | 2.765 | 29.895 |
| 63 | 2.565 | 31.780 | 2.859 | 28.907 |
| 64 | 2.533 | 32.188 | 2.654 | 31.147 |
| 65 | 2.508 | 32.508 | 2.520 | 32.796 |
| 66 | 2.464 | 33.083 | 2.492 | 33.168 |
| 67 | 2.430 | 33.547 | 2.721 | 30.376 |
| 68 | 2.393 | 34.070 | 2.698 | 30.640 |
| 69 | 2.481 | 32.861 | 2.842 | 29.083 |
| 70 | 2.452 | 33.248 | 2.465 | 33.533 |
| 71 | 2.428 | 33.580 | 2.423 | 34.119 |
| 72 | 2.284 | 35.694 | 2.688 | 30.749 |
| 73 | 2.270 | 35.918 | 2.350 | 35.171 |
| 74 | 2.235 | 36.480 | 2.594 | 31.865 |
| 75 | 2.224 | 36.662 | 2.398 | 34.463 |
| 76 | 2.216 | 36.797 | 2.383 | 34.681 |
| 77 | 2.175 | 37.481 | 2.305 | 35.863 |
| 78 | 2.174 | 37.499 | 2.291 | 36.079 |
| 79 | 2.173 | 37.524 | 2.343 | 35.277 |
| 80 | 2.129 | 38.296 | 2.348 | 35.198 |





## Второй вариант



Sheet1





## Ускорение в сравнении



Вывод: программа работает почти одинаково при использовании первого и второго варианта. Когда используется примерно 40 ядер, эффективность резко падает на двух вариантах, но потом снова вырастает. Удалось устаановить единственное преимущество первого варианта: на большом количестве ядер целесообразнее использовать его, так как ускорение выше, чем при использовании второго варианта.