THE XXI INTERNATIONAL MATHEMATICAL OLYMPIAD LONDON 1979

Понеделник, 2 юли 1979

Време за работа 4 часа.

(1) Нека p и q са естествени числа, такива че $\frac{p}{q} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots - \frac{1}{1318} + \frac{1}{1319}.$

Да се докаже, че p се дели на 1979.

- (2) Дадена е петотгълна призма с основи $A_1A_2A_3A_4A_5$ и $B_1B_2B_3B_4B_5$. Ръбовете на двете основи и отсечките A_iB_j за всички i,j=1,2,3,4,5 са оцветени или в червено, или в зелено, така че във всеки триъгълник с върхове във върховете на призмата, всичките страни на който са оцветени, има две страни с различен цвят. Да се докаже, че всичките десет ръба на двете основи са оцветени с един и същ цвят.
- (3) В равнината са дадени две пресичащи се окръжности с₁ и с₂. Нека A е една от техните пресечни точки. От A едновременно започват да се движат две точки М₁ и М₂ съответно по окръжностите с₁ и с₂. Точките М₁ и М₂ се движат с постоянна скорост по посока на часовниковата стрелка. След една обиколка двете точки едновременно се завръщат в точка A. Да се докаже, че в равнината съществува неподвижна точка Р, такава, че разстоянията от Р до М₁ и М₂ са равни във всеки момент на движението.

THE XXI INTERNATIONAL MATHEMATICAL OLYMPIAD LONDON 1979

Вторник, 3 юли 1979 г.

Време за работа 4 часа.

- (4) Дадени са равнина π , точка P в π и точка Q вън от π . Да се намерят всички точки R в равнината π , за които частното (QP + PR)/QR е максимално.
- (5) Да се намерят всички реални числа а, за които съществуват реални неотрицателни числа x_1 , x_2 , x_3 , x_4 , x_5 , удовлетворяващи условията :

$$\sum_{k=1}^{5} kx_{k} = a, \qquad \sum_{k=1}^{5} k^{3}x_{k} = a^{2}, \qquad \sum_{k=1}^{5} k^{5}x_{k} = a^{3}.$$

(6) Нека A и E са два противоположни върха на правилен осмоъгълник. В точката A се намира кенгуру. От всеки връх на
осмоъгълника освен върха E кенгуруто може да скочи във всеки от двата съседни върха. Ако скочи във върха E, кенгуруто
престава да се движи. Нека a_n е броят на начините, по
които кенгуруто може да премине от точката A в точката E
точно с n скока. Да се докаже, че $a_{2n-1} = 0$,

$$a_{2n} = \frac{1}{\sqrt{2}} (x^{n-1} - y^{n-1}), n = 1,2,3,...$$
, KEZETO $x = 2 + \sqrt{2}, y = 2 - \sqrt{2}$

(Начин за преминаване от върха A във върха E с n скока наричаме редица от върхове (P_0, \ldots, P_n) , която удовлетворява следните условия :

- 1) $P_0 = A$
- $2) P_n = E,$
- 8) за всяко i, $0 \le i \le n 1$, $P_i \neq E$,
- 4) за всяко i, $0 \le i \le n$ i, P_i и P_{i+1} са съседни върхове на многоъгълника.)