What is claimed is:

25

$$(Q - L_1)_p \longrightarrow A - \left[L_3 - (L_1 - Q)_{p1} \right]_t$$

$$(B - L_2)_q - (L_2 - B)_{q1}$$

$$(1),$$

5 wherein A is a hydrophobic polysiloxane or perfluoroalkyl polyether segment;

B is a surface-modifying hydrophilic segment having a weight average molecular weight of ≥100 that is devoid of a crosslinkable group;

Q is a moiety comprising at least one crosslinkable ethylenically unsaturated group;

(alk) is C₂-C₂₀-alkylene which is unsubstituted or substituted by hydroxy;

L₁, L₂ and L₃ are each independently of the other a linking group;

p1 and q1 are each independently of the other an integer from 1 to 12; and either t is 0 and p and q are each independently of the other an integer from 1 to 25; or t is an integer from 1 to 8 and p and q are each 0.

2. An amphiphilic block copolymer according to claim 1 of formula

$$\frac{(Q - L_1)_{p1}}{(B - L_2)_{q1}} (alk) - L_3 - A - L_3 - (alk) - (L_1 - Q)_{p1}$$

$$(L_2 - B)_{q1}$$
(1a),

wherein A, B, L₁, L₂, L₃, Q, (alk), p1 and q1 are each as defined in claim 1.

3. An amphiphilic block copolymer according to claim 1 of formula

(B -
$$L_2$$
)_q —— (L₁ - Q)_p (1b),

wherein A, B, L_1 , L_2 and Q are each as defined in claim 1, and p and q are each independently of the other an integer from 2 to 20.

4. An amphiphilic block copolymer according to claim 1, wherein A is a polysiloxane segment of formula

wherein (alk') is alkylene having 1 to 20 carbon atoms which may be interrupted by -O-; x is 0 or 1;

80 to 100 % of the radicals R_1 , R_1 ', R_2 ', R_2 ', R_2 ', R_2 '', R_3 and R_4 , independently of one another, are C_1 - C_8 -alkyl, and 0-20% of the radicals R_1 , R_1 ', R_1 '', R_2 , R_2 ', R_2 '', R_3 and R_4 , independently of one another, are unsubstituted or C_1 - C_4 alkyl- or C_1 - C_4 - alkoxy-substituted phenyl, fluoro(C_1 - C_{18} -alkyl) or cyano(C_1 - C_{12} -alkyl),

s₁ is an integer from 5 to 700;

 s_2 is the sum of (p+q+t-2) if x is 0, and is the sum of (p+q+t) if x is 1; wherein p, q and t are as defined in claim 1, and

the sum (s_1+s_2) is from 5 to 700.

5. An amphiphilic block copolymer according to claim 1, wherein L_1 , L_2 and L_3 are each independently of the other a bivalent linking group of formula

$$-X_{1} - C(O) - NH - R_{10} - NH - C(O) - X_{2} - (4a),$$

$$-X_{1} - C(O) - R_{10} - C(O) - X_{2} - (4b),$$

$$-X_{1} - C(O) - (4c),$$

$$-C(O) - X_{2} - (4d), \text{ or }$$

$$-X_{1} - C(O) - X_{2} - (4e),$$

wherein X_1 and X_2 are each independently of the other a group -O-, -S- or -NR₀-, R₀ is hydrogen or C₁-C₄-alkyl, and R₁₀ is linear or branched C₁-C₁₈-alkylene or unsubstituted or C₁-C₄-alkyl- or C₁-C₄-alkoxy-substituted C₆-C₁₀-arylene, C₇-C₁₈-aralkylene, C₆-C₁₀-arylene-C₁-C₂-alkylene-C₆-C₁₀-arylene, C₃-C₈-cycloalkylene, C₃-C₈-cycloalkylene-C₁-C₆-alkylene, C₃-C₈-cycloalkylene-C₁-C₆-alkylene-C₁-C₆-alkylene-C₁-C₆-alkylene.

-6. An amphiphilic block copolymer according to claim 5, wherein L_1 is a linking group of formula (4a), (4c) or (4e), L_2 is a linking group of formula (4a), and L_3 is a linking group of formula (4b) or (4c).

- 7. An amphiphilic block copolymer according to claim 1, wherein B is a non-ionic segment selected from the group consisting of a polyoxyalkylene, polysaccharid, polypeptide, poly(vinylpyrrolidone), polyalkylacrylate or -methacrylate, polyhydroxyalkylacrylate or -methacrylate, polyacyl alkylene imine, polyacryl amide, polyvinyl alcohol, polyvinyl ether and a polyol, or is a polyionic segment selected from the group consisting of a polyallylammonium, polyethyleneimine, polyvinylbenzyltrimethylammonium, polyaniline, sulfonated polyaniline, polypyrrole and polypyridinium segment, and a polyacrylic and polymethacrylic acid, a polythiophene-acetic acid, a polystyrenesulfonic acid and a zwitterionic segment, or a suitable salt thereof.
- 8. An amphiphilic block copolymer according to claim 1, wherein Q is a radical Q1 of formula

$$\frac{1}{70410} - \left[(Alk) - X - C \right]_{W} R_{11}$$
 (7),

wherein (Alk) is linear or branched C_1 - C_{12} -alkylene, X is -O- or -NH-, R_{11} is an olefinically unsaturated copolymerisable radical having from 2 to 24 carbon atoms which is unsubstituted or further substituted by C_1 - C_4 alkoxy, halogen, phenyl or carboxy, and w is the number 0 or 1.

9. An amphiphilic block copolymer according to claim 1, wherein Q is a polyoxyalkylene, poly(vinylpyrrolidone), poly(hydroxyethylacrylate), poly(hydroxyethylmethacrylate), polyacrylamide, poly(N,N-dimethylacrylamide), polyacrylic acid, polymethacrylic acid, polyacyl alkylene imine or a copolymeric mixture of two or more of the above-mentioned polymers which in each case comprises one or more ethylenically unsaturated bond and has a weight average molecular weight of, for example, ≥100.

25

40

5

10. An amphiphilic block copolymer according to claim 9, wherein Q is a hydrophilic segment of formula

$$-((alk'')-O)_{c}-[(CH_{2}-CH_{2}-O)_{a}-(CHR_{6}-CH_{7}-O)_{b}]-(alk'')-L_{1}'-Q_{2}$$
 (5a)

$$\begin{array}{c|c}
Q_3 & O \\
\hline
C & C \\
CH_2 - CH_2 - N \\
\hline
Z & R_9
\end{array}$$
(6a) or

$$-\frac{1}{C}CH_{2}-CH_{2}-\frac{1}{N}-\frac{1}{Z}Q_{4}$$
(6b),

wherein L₁' is a bivalent linking group of formula

$$-X_1 - C(O) - NH - R_{10} - NH - C(O) - X_2 -$$
 (4a),

$$-X_1 - C(O) - R_{10} - C(O) - X_2 -$$

 $-X_1 - C(O) - X_2 -$ (4e),

wherein X₁ and X₂ are each independently of the other a group -O-, -S- or -NR₀-, R₀ is hydrogen or C₁-C₄-alkyl, and R₁₀ is linear/or branched C₁-C₁₈-alkylene or unsubstituted or C₁-C₄-alkyl- or C_1-C_4 -alkoxy-substituted C_6-C_{10} -arylene, C_7-C_{18} -aralkylene, C_6-C_{10} -arylene- C_1-C_2 -alkylene- C_6 -C₁₀-arylene, C₃-C₈-cycloalkyléne, C₃-C₈-cycloalkylene-C₁-C₆-alkylene, C₃-C₈-cycloalkylene-C₁-C₂-alkylene-C₃-C₀-cycloalky/ene or C₁-C₀-alkylene-C₃-C₀-cycloalkylene-C₁-C₀-alkylene, Q₂ is a radical of formula

$$-\left\{ Alk \right\} - X - C - \left\{ W - R_{11} \right\}$$

$$(7)$$

wherein (Alk) is linear or branched C₁-C₁₂-alkylene, X is -O- or -NH-, R₁₁ is an olefinically 20 unsaturated copolymerisable radical having from 2 to 24 carbon atoms which is unsubstituted or further substituted by C₁-C₄alkoxy, halogen, phenyl or carboxy, and w is the number 0 or 1,

15

 Q_3 is C_3 - C_{12} -alkenyl or a radical -(CH₂)₁₋₄-O-R₁₆ wherein R₁₆ is acryloyl, methacryloyl or a group -C(O)-NH-(CH₂)₂₋₄-O-C(O)-C(R₁₇)=CH₂ and R₁₇ is hydrogen or methyl,

Q₄ is a radical of formula

$$\begin{array}{c|c}
-R_{\overline{18}} & X_3 - C \xrightarrow{} C = CH_2 \\
O & H. CH_2
\end{array}$$
(9a),

$$--R_{18}-X_{4}-(Alk')-X_{3}-C-C=CH_{2}$$
|| / | (9b),

$$\begin{array}{c|c}
SUB & --c - c = cH_2 \\
 & | & | \\
 & O & H, CH_2
\end{array}$$
(9d),

- wherein X_3 is -O- or -NR, R is hydrogen or C_1 - C_4 -alkyl, X_4 is a group -C(O)-O-, -O-C(O)-NH- or -NH-C(O)-O-, (Alk') is C_1 - C_8 -alkylene, e is an integer of 0 or 1, and R_{18} is C_1 - C_{12} -alkylene, phenylene or C_7 - C_{12} -phenylenealkylene,
- one of the radicals R₆ and R₇ is hydrogen and the other is methyl,
- (alk") is C₁-C₆-alkylene, c is the number 0 or 1, and each of a and b independently of the other is a number from 0 to 100, the sum of (a+b) being from 2 to 100,
- R₈ is hydrogen; C₁-C₁₂-alkyl unsubstituted or substituted by hydroxy or fluoro and/or uninterrupted or interrupted by oxygen; C₅-C₈-cycloalkyl; phenyl; or benzyl, R₉ is C₁-C₁₂-alkyl, benzyl, C₂-C₄-alkanoyl, benzoyl or phenyl, and z is an integer from 2 to 150.
 - 11. An amphiphilic block copolymer according to claim 2 of formula (1a), wherein
- 20 A is a polysiloxane segment of formula

20

wherein x and s₂ are each 0, and R₁, R₁', R₁", R₂, R₂", R₃ and R₄ are each independently of one another C₁-C₄-alkyl, B is a polyoxyalkylene, poly(vinylpyrrolidone), poly(hydroxyethylacrylate), poly(hydroxyethylmethacrylate), polyacrylamide, poly(N,N-dimethylacrylamide), polyacrylic acid, polymethacrylic acid, polyacyl alkylene imine or a copolymeric mixture of two or more of the above-mentioned polymers,

L₁ is a linking group of formula

$$-X_1 - C(O) - NH - R_{10} + NH - C(O) - X_2 - (4a),$$

 $-X_1 - C(O) - (4c),$

$$-X_1 - C(O) -$$
 (4c), or

$$-X_1 - C(O) - X_2 -$$
 (4e),

 L_2 is a linking group of the above formula/(4a), and L_3 is a linking group of the above formula (4c) or of the formula

$$-X_1 - C(O) - R_{10} - C(O) - X_2 -$$
 (4b),

wherein X₁ and X₂ are each independently of the other a group -O-, -S- or -NR₀-, R₀ is hydrogen or C₁-C₄-alkyl, and R₁₀ is linear or branched C₁-C₁₈-alkylene or unsubstituted or C₁-C₄-alkyl- or C₁-C₄-alkoxy-substituted C₆-C₁₀-arylene, C₇-C₁₈-aralkylene, C₆-C₁₀-arylene-C₁-C₂-alkylene-C₆-C₁₀-arylene, C₃-C₈-cycloalkylene/C₃-C₈-cycloalkylene-C₁-C₆-alkylene, C₃-C₈-cycloalkylene-C₁-C₂-alkylene-C₃-C₀-cycloalkylene or C₁-C₀-alkylene-C₃-C₀-cycloalkylene-C₁-C₀-alkylene,

Q is a radical Q₁ of formula

$$- \left(A | k \right) - X - C - \left|_{W} R_{11} \right|$$
 (7)

wherein (Alk) is linear or/branched \hat{C}_1 - C_{12} -alkylene, X is -O- or -NH-, R_{11} is an olefinically unsaturated copolymer/sable radical having from 2 to 24 carbon atoms which is unsubstituted or further substituted by C₁-C₄alkoxy, halogen, phenyl or carboxy, and w is the number 0 or 1, or Q

54B

20

is a polyoxyalkylene, poly(vinylpyrrolidone), poly(hydroxyethylacrylate), poly(hydroxyethylmeth-acrylate), polyacrylamide, poly(N,N-dimethylacrylamide), polyacrylic acid, polymethacrylic acid, polyacyl alkylene imine or a copolymeric mixture of two or more of the above-mentioned polymers which in each case comprises one or more ethylenically unsaturated bond and has a weight average molecular weight of, for example, ≥100, and p1 is an integer from 1 to 6, and q1 is an integer from 1 to 8.

- 12. An amphiphilic block copolymer according to claim 3 of formula (1b), wherein A, B, L_1 , L_2 and Q are as defined in claim 11, and p and q are each independently of the other an integer 2 to 15.
- 13. A process for the manufacture of a molding, which comprises crosslinking an amphiphilic block copolymer of formula (1) according to claim 1 in a mold.
- 14. A process according to claim 1/3 wherein the molding is an ophthalmic molding and wherein the block copolymer is photo-crosslinked in an ophthalmic mold using actinic radiation.
- 15. A molding obtained by the process according to claim 13.
- 16. A molding according to claim 15, which is an ophthalmic molding, intraocular lens, or artificial cornea.
- 17. A molding according to claim 15, which is a contact lens.