# The Research Lifecycle

From Idea to Paper



#### **Mansura Naznine**

#### **Research Assistant**



**Email:** naznine31@gmail.com linkedIn-mansura-naznine; googleScholar-mansura-naznine

#### **About Me**

Al/ML researcher focused on computer vision, biomedical imaging, and data-driven healthcare. Published, project-driven; blends research with competitive programming rigor and real-world automation.

#### **Education**

Master of Science, Electrical Electronic & System Engineering National University of Malaysia (UKM)
Mar 2025 - Present; Research (Computer Vision)

**Bachelor's Degree**, Computer Science & Engineering Rajshahi University of Engineering & Technology (RUET) Jan 2018 - Sep 2023; Research (Video Compression)

#### **Experience**

Research Assistant, Qatar University National University of Malaysia (UKM) Mar 2024 – Present

**Lecturer**, Computer Science & Engineering Lalon University of Science and Arts, Kushtia Aug 2014 - Apr 2025

#### **Outcomes — What You'll Leave With**



#### **Prerequisites for AI/ML Research**



# You don't need mastery before starting—treat these as parallel tracks while you work on your first research.

- https://www.youtube.com/@programmingwithmosh
- https://www.programiz.com/
- https://www.youtube.com/c/3blue1brown
- <a href="https://www.youtube.com/@statquest">https://www.youtube.com/@statquest</a>

#### **End-to-End AI/ML Research Flow**



## How to Read a Paper: THE THREE-PASS APPROACH



#### Where to Find and Download Research Papers?

- Google Scholar The go-to place for free access to papers!
- ♦ IEEE Xplore For cutting-edge tech and engineering papers.
- ♦ ArXiv Free preprints for the latest in AI, ML, and more!
- ♦ ACM Digital Library A treasure trove for CSE research.
- ResearchGate Connect with researchers and request papers directly.
- ♦ PubMed, Scopus, Web of Science.
- ♦ Your University Library Access to journals, paid papers, and more!
- Pro Tip: Keep an eye on references in papers they'll lead you to more gems!

|   | Open Access Journals                   |
|---|----------------------------------------|
|   | a Open Access southus                  |
|   | ResearchGate                           |
| ] | Sci-Hub: The Boss of Accessing Papers! |
|   | ☐ ArXiv                                |
|   | University Library Access              |
|   | ☐ From Your Network                    |

#### **Literature Review**

- Choose Papers from Different Categories
- Summarize Key Points: Focus on Title, Abstract, Problem Domain, and Techniques Used.
- Analyze Dataset & Methods: Understand the data and visualize the methodology with flowcharts.
- Identify Limitations & Gaps: Spot common gaps, limitations, and areas for further research.
- Look for New Research Questions: Use identified gaps to guide your own research direction.

| Publisher | Journal<br>Title | Publication<br>Date | Impact factor/<br>(Quartile) | Article<br>Title | Dataset | Method/<br>Architecture | Results | Code<br>availability |
|-----------|------------------|---------------------|------------------------------|------------------|---------|-------------------------|---------|----------------------|
|           |                  |                     |                              |                  |         |                         |         |                      |

Gather Domain Knowledge: Before you dive in, know your stuff!"

#### Data — Source → Prep → Explore → Split



#### **Experiment Phase**

Baselines & Evaluation Setup

Phase 01.

**Task & objective**: define loss, primary metric, and success criterion (effect size, CI method).

Data protocol: fixed train/val/test splits; stratification or time-aware as appropriate; seeded for reproducibility.

Baselines: trivial → classical → strongest prior you can run;

replicate published baseline if feasible.

**Reporting standard**: median (or mean) ± confidence interval over multiple seeds; document compute, versions, and splits.

(cap/log/winsorize) with justification. Balancing: stratified sampling, class weights, focal loss; SMOTE (tabular) when appropriate. Preprocessing: scaling/normalization; tokenization; image normalization: consistent channels. Augmentation (train only): vision (flip/rotate/crop/jitter), NLP (back-translation/synonym), time-series (jitter/time-warp). Post-processing: threshold tuning on validation; calibration (Platt/Isotonic); task-specific steps (e.g., NMS). Governance: prevent leakage; compute statistics on train only; keep a data card with license and caveats. Phase 02. Data-Centric **Improvements** 

Cleaning: types, duplicates, missingness; outlier handling

#### **Experiment Phase (Cont.)**

Model Training & Tuning

Find the Phase 03.

**Optimization**: optimizer, learning-rate schedule, batch size, weight decay, dropout, gradient clipping. **Sanity checks**: tiny-subset run; overfit a single batch; inspect learning curves.

**Search strategy**: small, bounded random search or Bayesian optimization; predefined budget.

Ablations & evidence: remove components to quantify contribution; keep runs config-driven; log metrics and artifacts; checkpoint best-on-validation.

**Contribution**: clearly state the novel element (module/loss/pipeline/eval protocol) and the hypothesis it tests. Controlled comparisons: evaluate against the strongest baseline under identical settings. Cost-benefit: report accuracy vs. parameters/FLOPs/latency and memory. Robustness & fairness: stress tests (noise/shift/OOD), subgroup analysis, error taxonomy. Finalization: evaluate test once with frozen config; export; release code, configs, seeds, splits, checkpoints, and a reproducibility README. Phase 04. Novelty, Robustness & Release

#### Writing

#### Figure-First Workflow

- ➤ Decide first: 4 plots + 1 table
  Main results table with Cis; Training curve
  (loss/metric vs steps); Ablation bar chart; Error
  analysis (confusion/failure grid)
- ➤ Storyboard each figure: question → data → takeaway → caption
- Table schema: rows = methods; cols = primary metric (+ CI), key seconds metrics, params/FLOPs
- Style: consistent notation, units, axis labels; readable font sizes; highlight primary metric

#### Paper Structure & Paragraph

Paragraph: Claim → Evidence → Takeaway

- Abstract: Problem → Gap → Method → Results (with numbers) → Impact
- Introduction: Importance → Gap/limits → Contributions (measurable bullets)
- Literature Review
- Method: assumptions, model/data pipeline, training details reproducible by others, datasets, baselines, metrics + CI method, protocol, ablations
- Results: table/plots first, then analysis + failure cases
- Limitations & Ethics, Related Work, Conclusion

#### **Conference vs Journal: Writing Differences**

☐ Scope & Length

Conference: concise, sharp contribution; strict page limits; appendices for extras Journal: comprehensive, extended experiments/theory; more space for proofs & surveys

■ Novelty & Rigor

Conference: clear delta vs prior work; tight ablations, strong baseline parity
Journal: deeper rigor (theory/derivations), broader datasets, sensitivity studies, reproducibility audit

☐ Artifacts & Transparency

Conference: code/checkpoints encouraged; minimal dataset card acceptable Journal: full reproducibility package, data cards, ethics statements, extended error/bias analysis

□ Timeline & Tone

Conference: faster cycles; punchy, result-driven narrative Journal: slower cycles; exhaustive background, complete method proofs, expanded limitations



### Thank you

"TODAY IS THE BEST DAY TO START"