列型空間

Q-rad.heart

2020年12月11日

この文書は Q-rad.heart が個人的な使用を目的として作成したものであり、内容についての正確性は保証しない。また参考文献などは示されない。

記法に関する注意:

• 写像 $f\colon X\to Y$ と $A\subset X$ について、 $f[A]:=\{f(a)|a\in A\}$ と定める。

目次

第1章		3
1.1	点列閉包作用素	3
	1.1.1 収束列	3

第1章

1.1 点列閉包作用素

1.1.1 収束列

定義 1.1.1.1

全順序集合 $P=(P_{\mathrm{Set}},\leq)$ について、P 上の順序位相とは、 P_{Set} 上に以下のように定まる位相のことである。

• $a \leq b \in P$ について $(a,b) := \{a < c < b | c \in P\}$ とおき、また $a \in P$ について $(-\infty,a) := \{c < a | c \in P\}$, $(a,\infty) := \{a < c | c \in P\}$ とおく。このとき、(a,b) もしくは $(-\infty,a)$, (a,∞) の形で表される P_{Set} の部分集合全体を $\mathcal B$ とおいたとき、 $\mathcal B$ を開基とする P_{Set} 上の位相がただ一つ存在する。

注意 1.1.1.2

以下順序数 α が与えられたとき、明示的に言及せずに α を位相空間とみなす場合は、順序位相が入れられているものとする。

観察 1.1.1.3

順序数 ω には離散位相が入っているため、位相空間 X に対して、任意の集合としての射 $\omega \to X$ は連続写像を誘導する。しかし、 $\omega+1$ には離散位相が入っていない。従って、次のような図式

について、

を可換にするような \tilde{f} が存在するとは限らない。ここで、i は $n \in \omega$ を $n \in \omega + 1$ へ移す包含写像である。

定義 1.1.1.4

位相空間 X に対して、X 上の点列とは、 ω から X への連続写像のことである。また、 $A\subset X$ に対し、A 内の点列とは、値域が A に含まれるような X 上の点列のことである。

定義 1.1.1.5

位相空間 X に対して、X 上の収束列とは、 ω から X への連続写像 f であって、以下の図式

を可換にするような \tilde{f} が存在することをいう。また、点 $x\in X$ が点列 f の収束先であるとは、このような \tilde{f} として $\tilde{f}(\omega)=x$ が成り立つようなものが取れることをいう。

観察 1.1.1.6

一般に、点列の収束先は、存在したとしても一意であるとは限らない。実際、密着位相の入った空間 X においては、任意の点列 f と任意の点 x に対し、x は f の収束先となる。