THE ROLE OF VARIABILITY IN LEARNING GENERALIZATION: A COMPUTATIONAL MODELING APPROACH

Thomas E. Gorman

Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree

Doctor of Philosophy in the Cognitive Science Program and Department of Psychological and Brain Sciences,

Indiana University

October 2024

Accepted by the Graduate Faculty, Indiana University, in partial for the degree of Doctor of Philosophia	
Doctoral Committee	
	Robert L. Goldstone, Ph.D.
	Robert M. Nosofsky, Ph.D.
	Peter M. Todd, Ph.D.
	Michael N. Jones, Ph.D.
May 28th, 2024	

@2024

Thomas E. Gorman

Acknowledgements

My dissertation would not have been possible without the support and guidance of numerous individuals who have shaped my academic and personal growth.

First, I am deeply grateful to my advisor, Rob Goldstone, for his nearly limitless patience, clear thinking, and unwavering guidance. His ability to effortlessly demonstrate the power of so many tools has been awe-inspiring, and I am forever thankful for his mentorship. I also extend my heartfelt thanks to Dr. Rob Nosofsky for his sharp questions and encouragement of model-based thinking, and to Dr. Peter Todd for being a constant source of encouragement.

My foundation in psychological science was laid at the University of Wisconsin-Madison. I am indebted to Dr. Shawn Green, who took a chance on me despite my mediocre grades and lack of experience, introducing me to the world of psychological research. Special thanks to Aaron Cochrane for answering my countless questions, introducing me to R, and advanced data analysis techniques.

I am grateful for the camaraderie and intellectual stimulation provided by my friends at Indiana University, particularly those in the Geolab and Psychology department. Johnathan Avery, Eleanor Schille-Hudson, Mahi Luthra, Dan Levitas, Sam Nordli, Brad Rogers, Marina Dubova, Eeshan Hasan, and many others have been integral to my graduate school experience. A special mention goes to Jack Avery for introducing me to rock climbing and engaging in fun conversations that often led to unexpected ideas.

The teachers at Pardeeville High School played an essential role in nurturing my curiosity and establishing the educational foundation that shaped my early learning. The professors at UW-Madison and Indiana University further cultivated that curiosity, profoundly influencing my academic development.

I would also like to extend my heartfelt thanks to my family. My parents, Mary and Jim Gorman, have always been a source of love and unwavering belief in my abilities. My brother, Joseph, played a pivotal role in helping me through the final stages of my dissertation by providing a supportive environment and the encouragement I needed. Their collective support has made this journey not only possible but meaningful, and I will always be deeply grateful for it.

Thomas E. Gorman

THE ROLE OF VARIABILITY IN LEARNING GENERALIZATION: A COMPUTATIONAL MODELING APPROACH

Researchers and educators have long been interested in how the variability of training examples experienced during learning influences subsequent generalization. However, previous studies have reported both beneficial and detrimental effects, leaving the nature of this relationship unclear. Furthermore, a formal computational modeling approach to account for the effects of training variability has been largely lacking within the domain of visuomotor skill learning. The current work presents two projects which shed light on this issue, each consisting of several experiments which compare varied training (i.e., multiple training items) in comparison to constant training (training with a single item). The empirical results, much like those of the broader literature, provide evidence both for and against a benefit of variable training in visuomotor skill learning, highlighting the complex interplay between training conditions and generalization performance. To provide a theoretical account of these findings, this dissertation employs both instance-based and connectionist computational modeling approaches. The instance-based modeling approach introduced in project 1 provides a theoretically justifiable method of quantifying/controlling for similarity between training and testing conditions, while also demonstrating that varied training may induce broader generalization in the similarity function relating training and test items. In project 2, the Extrapolation- Association Model (EXAM) provided the best account of the testing data across all experiments, capturing the constant groups' ability to extrapolate linearly to novel regions despite limited training experience, while also revealing potential detriments of varied training for simple extrapolation tasks. By integrating empirical findings with computational modeling approaches, this dissertation sheds light on the complex relationship between training variability and generalization performance.

Table of contents

Introduction	1
Varied Training and Generalization	1
References	2
Curriculum Vitae	

Introduction

Varied Training and Generalization

Varied training has been shown to influence learning in a wide array of different tasks and domains, including categorization (Hahn et al., 2005; Maddox & Filoteo, 2011; Morgenstern et al., 2019; Nosofsky et al., 2019; Plebanek & James, 2021; Posner & Keele, 1968), language learning (Brekelmans et al., 2022; Jones & Brandt, 2020; Perry et al., 2010; Twomey et al., 2018; Wonnacott et al., 2012), anagram completion (Goode et al., 2008), perceptual learning (Lovibond et al., 2020; Manenti et al., 2023; Robson et al., 2022; Zaman et al., 2021), trajectory extrapolation (Fulvio et al., 2014), cognitive control tasks (Moshon-Cohen et al., 2024; Sabah et al., 2019), associative learning (Fan et al., 2022; Lee et al., 2019; Livesey & McLaren, 2019; Prada & Garcia-Marques, 2020; Reichmann et al., 2023), visual search (George & Egner, 2021; Gonzalez & Madhavan, 2011; Kelley & Yantis, 2009), voice identity learning (Lavan et al., 2019), face recognition (Burton et al., 2016; Honig et al., 2022; Menon et al., 2015), the perception of social group heterogeneity (Gershman & Cikara, 2023; Konovalova & Le Mens, 2020; Linville & Fischer, 1993; Park & Hastie, 1987) , simple motor learning (Braun et al., 2009; Kerr & Booth, 1978; Roller et al., 2001; Willey & Liu, 2018), sports training (Breslin et al., 2012; Green et al., 1995; North et al., 2019), and complex skill learning (Hacques et al., 2022; Huet et al., 2011; Seow et al., 2019). See Czyż (2021) or Raviv et al. (2022) for more detailed reviews.

References

- Braun, D. A., Aertsen, A., Wolpert, D. M., & Mehring, C. (2009). Motor Task Variation Induces Structural Learning. Current Biology, 19(4), 352–357. https://doi.org/10.1016/j.cub.2009.01.036
- Brekelmans, G., Lavan, N., Saito, H., Clayards, M., & Wonnacott, E. (2022). Does high variability training improve the learning of non-native phoneme contrasts over low variability training? A replication. *Journal of Memory and Language*, 126, 104352. https://doi.org/10.1016/j.jml. 2022.104352
- Breslin, G., Hodges, N. J., Steenson, A., & Williams, A. M. (2012). Constant or variable practice: Recreating the especial skill effect. *Acta Psychologica*, 140(2), 154–157. https://doi.org/10.1016/j.actpsy.2012.04.002
- Burton, A. M., Kramer, R. S. S., Ritchie, K. L., & Jenkins, R. (2016). Identity From Variation: Representations of Faces Derived From Multiple Instances. *Cognitive Science*, 40(1), 202–223. https://doi.org/10.1111/cogs.12231
- Czyż, S. H. (2021). Variability of Practice, Information Processing, and Decision Making—How Much Do We Know? Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.639131
- Fan, M., Zhang, D., Zhao, S., Xie, Q., Chen, W., Jie, J., Wang, Y., & Zheng, X. (2022). Stimulus diversity increases category-based fear generalization and the effect of intolerance of uncertainty. Behaviour Research and Therapy, 159, 104201. https://doi.org/10.1016/j.brat.2022.104201
- Fulvio, J. M., Green, C. S., & Schrater, P. R. (2014). Task-Specific Response Strategy Selection on the Basis of Recent Training Experience. *PLOS Computational Biology*, 10(1), e1003425. https://doi.org/10.1371/journal.pcbi.1003425
- George, N., & Egner, T. (2021). Stimulus variability and task relevance modulate binding-learning.

 Attention, Perception, & Psychophysics. https://doi.org/10.3758/s13414-021-02338-6
- Gershman, S. J., & Cikara, M. (2023). Structure learning principles of stereotype change. *Psychonomic Bulletin & Review*, 30(4), 1273–1293. https://doi.org/10.3758/s13423-023-02252-y
- Gonzalez, C., & Madhavan, P. (2011). Diversity during training enhances detection of novel stimuli. *Journal of Cognitive Psychology*, 23(3), 342–350. https://doi.org/10.1080/20445911.2011. 507187
- Goode, M. K., Geraci, L., & Roediger, H. L. (2008). Superiority of variable to repeated practice in transfer on anagram solution. *Psychonomic Bulletin & Review*, 15(3), 662–666. https:

- //doi.org/10.3758/PBR.15.3.662
- Green, D. P., Whitehead, J., & Sugden, D. A. (1995). Practice Variability and Transfer of a Racket Skill. *Perceptual and Motor Skills*, 81(3_suppl), 1275–1281. https://doi.org/10.2466/pms.1995. 81.3f.1275
- Hacques, G., Dicks, M., Komar, J., & Seifert, L. (2022). Visual control during climbing: Variability in practice fosters a proactive gaze pattern. PLOS ONE, 17(6), e0269794. https://doi.org/10. 1371/journal.pone.0269794
- Hahn, U., Bailey, T. M., & Elvin, L. B. C. (2005). Effects of category diversity on learning, memory, and generalization. *Memory & Cognition*, 33(2), 289–302. https://doi.org/10.3758/BF03195318
- Honig, T., Shoham, A., & Yovel, G. (2022). Perceptual similarity modulates effects of learning from variability on face recognition. Vision Research, 201, 108128. https://doi.org/10.1016/j. visres.2022.108128
- Huet, M., Jacobs, D. M., Camachon, C., Missenard, O., Gray, R., & Montagne, G. (2011). The education of attention as explanation of variability of practice effects: Learning the final approach phase in a flight simulator. *Journal of Experimental Psychology: Human Perception and Performance*, 37(6), 1841–1854. https://doi.org/10.1037/a0024386
- Jones, S. D., & Brandt, S. (2020). Density and Distinctiveness in Early Word Learning: Evidence From Neural Network Simulations. *Cognitive Science*, 44(1), e12812. https://doi.org/10.1111/cogs.12812
- Kelley, T. A., & Yantis, S. (2009). Learning to attend: Effects of practice on information selection. Journal of Vision, 9(7), 16. https://doi.org/10.1167/9.7.16
- Kerr, R., & Booth, B. (1978). Specific and varied practice of motor skill. *Perceptual and Motor Skills*, 46(2), 395–401. https://doi.org/10.1177/003151257804600201
- Konovalova, E., & Le Mens, G. (2020). An information sampling explanation for the in-group heterogeneity effect. *Psychological Review*, 127(1), 47–73. https://doi.org/10.1037/rev0000160
- Lavan, N., Knight, S., Hazan, V., & McGettigan, C. (2019). The effects of high variability training on voice identity learning. *Cognition*, 193, 104026. https://doi.org/10.1016/j.cognition.2019. 104026
- Lee, J. C., Lovibond, P. F., & Hayes, B. K. (2019). Evidential diversity increases generalisation in predictive learning. *Quarterly Journal of Experimental Psychology*, 72(11), 2647–2657. https://doi.org/10.1177/1747021819857065

- Linville, P. W., & Fischer, G. W. (1993). Exemplar and Abstraction Models of Perceived Group Variability and Stereotypicality. *Social Cognition*, 11(1), 92–125. https://doi.org/10.1521/soco. 1993.11.1.92
- Livesey, E. J., & McLaren, I. P. (2019). Revisiting peak shift on an artificial dimension: Effects of stimulus variability on generalisation. *Quarterly Journal of Experimental Psychology*, 72(2), 132–150. https://doi.org/10.1177/1747021817739832
- Lovibond, P. F., Lee, J. C., & Hayes, B. K. (2020). Stimulus discriminability and induction as independent components of generalization. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 46(6), 1106–1120. https://doi.org/10.1037/xlm0000779
- Maddox, W. T., & Filoteo, J. V. (2011). Stimulus range and discontinuity effects on information-integration category learning and generalization. *Attention, Perception, & Psychophysics*, 73(4), 1279–1295. https://doi.org/10.3758/s13414-011-0101-2
- Manenti, G. L., Dizaji, A. S., & Schwiedrzik, C. M. (2023). Variability in training unlocks generalization in visual perceptual learning through invariant representations. *Current Biology*, 33(5), 817–826.e3. https://doi.org/10.1016/j.cub.2023.01.011
- Menon, N., White, D., & Kemp, R. I. (2015). Variation in Photos of the Same Face Drives Improvements in Identity Verification. *Perception*, 44(11), 1332–1341. https://doi.org/10.1177/0301006615599902
- Morgenstern, Y., Schmidt, F., & Fleming, R. W. (2019). One-shot categorization of novel object classes in humans. *Vision Research*, 165, 98–108. https://doi.org/10.1016/j.visres.2019.09.005
- Moshon-Cohen, T. E., Weinbach, N., & Bitan, T. (2024). Stimulus variability improves generalization following response inhibition training. *Psychological Research*, 1–17. https://doi.org/10.1007/s00426-023-01913-w
- North, J. S., Bezodis, N. E., Murphy, C. P., Runswick, O. R., Pocock, C., & Roca, A. (2019). The effect of consistent and varied follow-through practice schedules on learning a table tennis backhand. *Journal of Sports Sciences*, 37(6), 613–620. https://doi.org/10.1080/02640414.2018. 1522683
- Nosofsky, R. M., Sanders, C. A., Zhu, X., & McDaniel, M. A. (2019). Model-guided search for optimal natural-science-category training exemplars: A work in progress. *Psychonomic Bulletin & Review*, 26(1), 48–76. https://doi.org/10.3758/s13423-018-1508-8
- Park, B., & Hastie, R. (1987). Perception of variability in category development: Instance-versus abstraction-based stereotypes. *Journal of Personality and Social Psychology*, 53(4), 621.

- Perry, L. K., Samuelson, L. K., Malloy, L. M., & Schiffer, R. N. (2010). Learn Locally, Think Globally: Exemplar Variability Supports Higher-Order Generalization and Word Learning. *Psychological Science*, 21(12), 1894–1902. https://doi.org/10.1177/0956797610389189
- Plebanek, D. J., & James, K. H. (2021). The Effects of Frequency, Variability, and Co-occurrence on Category Formation in Neural Systems. *Journal of Cognitive Neuroscience*, 1–16. https://doi.org/10.1162/jocn_a_01738
- Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. *Journal of Experimental Psychology*, 77(3), 353–363. https://doi.org/10.1037/h0025953
- Prada, M., & Garcia-Marques, T. (2020). Experienced category variability modulates the impact of context on evaluative judgments. *Experimental Psychology*, 67(1), 5–13. https://doi.org/10. 1027/1618-3169/a000469
- Raviv, L., Lupyan, G., & Green, S. C. (2022). How variability shapes learning and generalization.

 Trends in Cognitive Sciences, S1364661322000651. https://doi.org/10.1016/j.tics.2022.03.007
- Reichmann, K., Hütter, M., Kaup, B., & Ramscar, M. (2023). Variability and abstraction in evaluative conditioning: Consequences for the generalization of likes and dislikes. *Journal of Experimental Social Psychology*, 108, 104478. https://doi.org/10.1016/j.jesp.2023.104478
- Robson, S. G., Tangen, J. M., & Searston, R. A. (2022). Specific versus varied practice in perceptual expertise training. *Journal of Experimental Psychology: Human Perception and Performance*, 48(12), 1336–1346. https://doi.org/10.1037/xhp0001057
- Roller, C. A., Cohen, H. S., Kimball, K. T., & Bloomberg, J. J. (2001). Variable practice with lenses improves visuo-motor plasticity. *Cognitive Brain Research*, 12(2), 341–352. https://doi.org/10.1016/S0926-6410(01)00077-5
- Sabah, K., Dolk, T., Meiran, N., & Dreisbach, G. (2019). When less is more: Costs and benefits of varied vs. Fixed content and structure in short-term task switching training. *Psychological Research*, 83(7), 1531–1542. https://doi.org/10.1007/s00426-018-1006-7
- Seow, R. Y. T., Betts, S., & Anderson, J. R. (2019). Transfer effects of varied practice and adaptation to changes in complex skill acquisition. *Proceedings of the 17th International Conference on Cognitive Modelling*, 222–227.
- Twomey, K. E., Ma, L., & Westermann, G. (2018). All the Right Noises: Background Variability Helps Early Word Learning. *Cognitive Science*, 42(S2), 413–438. https://doi.org/10.1111/cogs. 12539
- Willey, C. R., & Liu, Z. (2018). Limited generalization with varied, as compared to specific, practice

- in short-term motor learning. Acta~Psychologica,~182,~39-45.~ https://doi.org/10.1016/j.actpsy. 2017.11.008
- Wonnacott, E., Boyd, J. K., Thomson, J., & Goldberg, A. E. (2012). Input effects on the acquisition of a novel phrasal construction in 5year olds. *Journal of Memory and Language*, 66(3), 458–478. https://doi.org/10.1016/j.jml.2011.11.004
- Zaman, J., Chalkia, A., Zenses, A.-K., Bilgin, A. S., Beckers, T., Vervliet, B., & Boddez, Y. (2021).

 Perceptual variability: Implications for learning and generalization. *Psychonomic Bulletin & Review*, 28(1), 1–19. https://doi.org/10.3758/s13423-020-01780-1

Curriculum Vitae

Education

2017 - May 2024 Indiana University - Bloomington

PhD in Psychology and Cognitive Science

Dissertation: The Role of Variability in Learning Generalization: A

Computational Modeling Approach

2011 - 2015 University of Wisconsin - Madison

B.Sc. in Psychology

Thesis: Short-term mindfulness intervention reduces the negative at-

tentional effects associated with heavy media multitasking

Journal Articles and Conference Proceedings

• Gorman, T. E., & Goldstone, R. L. (2022). An instance-based model account of the benefits of varied practice in visuomotor skill. *Cognitive Psychology*, 137, 101491.

- Kattner, F., Cochrane, A., Cox, C. R., **Gorman**, T. E., & Green, C. S. (2017). Perceptual learning generalization from sequential perceptual training as a change in learning rate. *Current Biology*, 27(6), 840-846.
- Gorman, T.E., & Green, C.S. (2016). Short-term mindfulness intervention reduces the negative attentional effects associated with heavy media multitasking. *Scientific Reports*, 6.

Reviews and Book Chapters

- Gorman, T.E., Gentile, D.A., & Green, C.S. Problem gaming: a short primer (2018). American Journal of Play, 10 (3), 309-327
- Gorman, T.E., & Green, C.S. (2017). Young minds on video games. In *Cognitive development in digital contexts*. 121-143. Academic Press.
- Green, C. S., Gorman, T., & Bavelier, D. (2016). Action Video-Game Training and Its Effects on Perception and Attentional Control. In *Cognitive Training* (pp. 107-116). Springer International Publishing.

Presentations

 Half Day Tutorial on Measuring Mindfulness Behaviorally: Onsite/Online Data Col-lection with jsPsych - Cognitive Science Conference – 2018

 Does interleaving go the distance? Exploring the effect of dissimilarity on interleaved category learning - Math Psych/ICCM 2018

 Short term mindfulness intervention reduces cognitive deficits in heavy media multi-taskers -Undergraduate Research Symposium - UW-Madison - April 16th, 2015

Awards

IU-Bloomington – Development Training Grant – Fall 2019

IU-Bloomington - Steinmetz Summer Research Award - 2018

UW-Madison - Undergraduate Research Scholar Award -2015

UW-Madison - Hilldale Undergraduate/Faculty Research Fellowship - 2014

Ad-hoc Reviewer

Cognitive Science

Journal of Experimental Psychology: General

Journal of Experimental Psychology: Human Perception and Performance

Conferences

Cognitive Science Conference - 2021

Cognitive Science Conference - 2018

Mathematical Psychology & ICCM 2018

Boston Meeting on Methods in Cognitive Training (NSF Sponsored) – May 2017