Introduction to Data Mining

Lab 1: Introduction to Weka

Name: Phạm Đức Đạt

ID Student: ITITIU20184

1.1. Introduction

Weka is an open-source software available at www.cs.waikato.ac.nz/ml/weka. Weka stands for the Waikato Environment for Knowledge Analysis. It offers clean, spare implementation of the simplest techniques, designed to aid understanding of the data mining techniques. It also provides a work-bench that includes full, working, state-of-the-art implementations of many popular learning schemes that can be used for practical data mining or for research.

In the first class, we are going to get started with Weka: exploring the "Explorer" interface, exploring some datasets, building a classifier, using filters, and visualizing your dataset. (See the lecture of class 1 by Ian H. Witten, [1])

Task: Taking notes how you find the Explorer, and answering questions in the following sections

1.2. Exploring the Explorer

Follow the instructions in [1]

1.3. Exploring datasets

Follow the instructions in [1]

In dataset weather.nominal.arff, how many attributes are there in the relation? What are their values? What is the class and its values? Counting instances for each attribute value.

Dataset	Attributes	Values	#Instances
	Outlook	sunny	5
Relation:		overcast	4
weather.nominal		rainy	5
#Instances:14			Distinct: 3
#Attributes: 5	Temparature	hot	4
		mid	6
		cold	4
		Cold	Distinct: 3
	Humidity	high	7
		normal	7
			Distinct: 2
	Windy	TRUE, FALSE	6
		,	8
			Disctinct: 2
Class (Play)	Play	Yes	9
		No	5
			Distinct: 2

Similarly, examine datasets: weather.numeric.arff and glass.arff.

Dataset	Attributes	Values	#Instances
	Outlook	sunny	5
Relation: weather		overcast	4
#Instances: 14		rainy	5
#Attributes: 5			Distinct: 3
	Temparature	Minimum 64	Distinct: 12
		Maximum 85	
		Mean 73.571	
		StdDev 6.572	
	Humidity	Minimum 65	Distinct: 10
		Maximum 96	
		Mean 81.643	
		StdDev 10.285	
	Windy	True	6
		False	10
			Distinct: 2
Class (Play)	Play	Yes	9
		No	5
			Distinct: 2

Dataset	Attributes	Values	#Instances
	RI	Minimum 1.511	
Relation: glass		Maximum 1.534	
#Instances: 214		Mean 1.518	
#Attributes:10		StdDev 0.003	
	Na	Minimum 10.73	
		Maximum 17.38	
		Mean 13.408	
		StdDev 0.817	
	Mg	Minimum 0	
		Maximum 4.49	
		Mean 2.685	
		StdDev 1.442	
	Al	Minimum 0.29	
		Maximum 3.5	
		Mean 1.445	
		StdDev 0.499	
	Si	Minimum 69.81	
		Maximum 75.41	
		Mean 72.651	
		StdDev 0.775	
	K	Minimum 0	
		Maximum 6.21	

	1	1	1
		Mean 0.497	
		StdDev 0.652	
	Ca	Minimum 5.43	
		Maximum 16.19	
		Mean 8.957	
		StdDev 1.423	
	Ва	Minimum 0	
		Maximum 3.15	
		Mean 0.175	
		StdDev 0.497	
	Fe	Minimum 0	
		Maximum 0.51	
		Mean 0.057	
		StdDev 0.097	
Class		build wind float	70
		build wind non-float	76
		vehic wind float	17
	Typo	vehic wind non-float	0
	Туре	containers	13
		tableware	9
		headlamps	29
		Tieaulallips	Distince: 6

Create a file of ARFF format and examine it.

Dataset	Attributes	Values	#Instances
	Name	Nominal	Continuous
Relation: attandanse #Instances: 5			
#Attributes: 5			
#Attributes. 5	Class	Nominal	continuous
	Average_Score	Numeric	Continuous
		Nomnal	Continuous
	Extracurricular		
	Special_Achievement	Nominal	Continuous
Class	Attandance	Yes	Continuous
		No	

1.4. Building a classifier

Follow the instructions in [1]

Examine the output of J48 vs. RandomTree applied to dataset glass.arff

Algorithm	Pruned/unpruned	minNumObj	No. of Leaves	Correctly
				Classified
				Instances
J48	unpruned	15	8	131 (61.215%)
Random Tree	N/A	15	11	134 (62.6168%)

Evaluate the confusion matrix every time running an algorithm.

```
=== Confusion Matrix ===

a b c d e f g <-- classified as
43 25 1 0 0 0 1 | a = build wind float
19 41 3 0 5 6 2 | b = build wind non-float
9 6 2 0 0 0 0 0 | c = vehic wind float
0 0 0 0 0 0 0 | d = vehic wind non-float
0 0 0 0 11 1 1 | e = containers
1 0 0 0 0 8 0 | f = tableware
1 0 0 0 1 1 26 | g = headlamps
```

```
=== Confusion Matrix ===

a b c d e f g <-- classified as

48 19 3 0 0 0 0 | a = build wind float

17 48 3 0 6 1 1 | b = build wind non-float

6 4 7 0 0 0 0 | c = vehic wind float

0 0 0 0 0 0 0 | d = vehic wind non-float

0 6 0 0 5 1 1 | e = containers

0 3 0 0 1 3 2 | f = tableware

2 3 0 0 0 1 23 | g = headlamps
```

1.5. Using a filter

Follow the instructions in [1], and remark

_Use a filter to remove an attribute →

What are attributeIndices? – Range of attributes to be acted upon by the filter.

Remove instances where humidity is high →

- What are nominalIndices? - Range of label indices to be used for selection on nominal attribute.

_Fewer attributes, better classification:

This is not true for all cases. If it is true, then it is highly possible that the removed attributes prove to be no more than unnecessary complications to the model, or it is because the model cannot find the global optimum by including those attributes. However, in cases where important attributes are removed (such as attribute=size-measures to classify cats or tigers) then there will be major blows that deteriorate the classification results. Either way, the notion that fewer attributes can lead to better classification requires observations and experiments to confirm, it depends both on the model and the set of attributes.

Follow the instructions in [1], review the outputs of J48 applied to glass.arff:

Filter	Leaf size	Correctly Classified	Remark
		Instances	
Original	30	66.8224%	Fewer attributes, higher
Remove Fe	26	67.2897%	accuracy

Remove all			
attributes	21	68.6916%	
except RI and			
MG			

1.6. Visualizing your data

Follow the instructions in [1], how do you find "Visualize classifier errors"?

After running **J48** for *iris.arff*, determine:

- How many instances are predicted wrong? 9 (given J48 classifier unpruned minNumObj=15).
- What are they?

Instance	Predicted class	Actual class
119	Iris-virginica	Iris-versicolor
98	Iris-versicolor	Iris-setosa
15	Iris-virginica	Iris-versicolor
109	Iris-versicolor	Iris-virginica
73	Iris-virginica	Iris-versicolor