

Gaining confidence in inferred networks

Leo P.M. Diaz¹, Thalia E. Chan² and Michael P.H. Stumpf^{1,2}

- ¹ Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Parkville VIC 3010, Australia
- ² Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK

1. Uncertainty in models

Discrepancies between models (Figure 1) demonstrate the extent of structural uncertainty and call for reliable validation procedures.

Different algorithms produce very different models – how to reliably choose one?

2. Mixing patterns

A reasonable **assumption** is to expect mixing patterns: genes involved in related biological processes preferentially interacting together.

What properties can we expect biological networks to display?

3. Assortativity

The assortativity coefficient is a **heuristic** measuring the presence of mixing patterns.

How to detect and measure mixing patterns?

Background

Reverse-engineering of networks is fraught with uncertainty: in the absence of ground truth, in silico modelling approaches are the most reliable model validation avenues; however, they are only informed by our current, most likely partial, and potentially misleading knowledge of the system.

This circularity can lead to **biases** when benchmarking inference algorithms by favouring the most suitable in the given context. Here we investigate a more reliable validation criterion.

Figure 1. Networks including the top 250 edges. **A.** Ml. **B.** CLR. **C.** PIDC.

Methods

We compare the output of 5 inference algorithms (MI [1], CLR [2], PUC [3], PIDC [3], GENIE3 [4]), on one single-cell dataset of mouse ESCs differentiating into neurons [5].

We look at networks in the context of the **edge threshold**, that is the number of edges to be included from the top of the ranked list of edges.

Confidence in networks is measured via the assortativity coefficient $r = \frac{\mathrm{Tre} - \|\mathbf{e}^2\|}{1 - \|\mathbf{e}^2\|}$ [6] where \mathbf{e} is a square matrix counting the number of edges between nodes with any given property and $\|x\|$ is the sum of all elements in x.

Assortativity

The assortativity coefficient $r \in [0, 1]$ measures the preferential interaction between nodes with similar properties. Properties are defined here via biologically meaningful labels assigned to each gene. **Assortativity**:

- tends to 0 as the network becomes complete;
- is higher for the first few hundred edges (Figure 2).

Figure 2. Assortativity coefficient for the 5 inference algorithms and for increasing number of edges (edge threshold).

Simulating **noise** and **randomness** allows us to study the behaviour of the assortativity coefficient (**Figure 3**). It is:

- informative the signal dissipates with noise; assortativity is a function of the non-random network topology and label assignment, and not an artefact of e.g. high modularity;
- reliable robust to low levels of noise i.e. tends to 0 gradually.

Figure 3. Impact of noise on assortativity for top 200 edges. **A.** PIDC. **B.** Expectation for random PIDC, CLR, and MI networks.

Conclusion

The assumption of mixing patterns measured via the assortativity coefficient allows us to **gain confidence** in inferred networks: fixing a relatively high assortativity threshold produces biologically **meaningful** networks (**Figure 4**).

This allows to **validate** models in the absence of ground truth.

Figure 4. Example networks with assortativity coefficient of r=0.2. **A.** CLR at 111 edges. **B.** PIDC at 214 edges.

Future work:

- quantify the level of similarity between node properties for finer measure;
- implement a local measure of assortativity, for any given nodes.

References

- 1. S.S. Mc Mahon et al., *Semin. Cell Dev. Biol.* **35**, 98 (2014).
- 2. J.J. Faith et al, *PLoS Biol.* **5**, e8 (2007).
- 3. T.E. Chan, M.P.H. Stumpf & A.C. Babtie, *Cell Syst.* **5**, 251 (2017).
- 4. V.A. Huynh-Thu et al., *PLoS One* **5**, e12776 (2010).
- 5. P.S. Stumpf et al., *Cell Syst.* **5**, 268 (2017).
- 6. M.E.J. Newman, *Phys. Rev. Lett.* **89**, 208701 (2002).