Projektowanie Algorytmów i Metody Sztucznej Inteligencji Sprawozdanie Grafy

Bartosz Rudyk 241160

Cel ćwiczenia

Celem ćwiczenia było stworzenie grafów w postaci macierzowej i listy, o różnej liczbie wierzchołków() i różnych gęstościach(25%, 50%, 75%, 100%). Następnie należało napisać dwa algorytmy przeszukujące grafy i znajdujące najkrótszą ścieżkę do poszczególnych wierzchołków, od wierzchołka startowego.

Algorytmy

Algorytmy, które należało napisać:

- 1. Algorytm Dijkstry
- 2. Algorytm Bellmana Forda

Dijkstra jest algorytmy szukającym najkrótszej ścieżki w grafie o nieujemnych wagach krawędzi. W skrócie polega na przechodzeniu do sąsiadów wierzchołka, o najmniejszej wartości krawędzi oraz sprawdzanie czy koszt takiego dojścia jest mniejszy od wcześniej ustalonego kosztu dojścia do tego wierzchołka.

Algorytm Bellmana – Forda ma ten sam cel co algorytm Dijkstry lecz działa równie dla ujemnych wag krawędzi grafu. Jeżeli jednak koszt dojścia do danego wierzchołka jest ujemny co do wartości to oznacza to, że jest to cykl ujemny i takiej drogi nie bierze się pod uwagę. Ustalając koszt dojścia do wierzchołków, sprawdza się wszystkie wierzchołki i ich sąsiadów po kolei i od razu stawia się koszt ich dojścia jeżeli jest on mniejszy niż wcześniej ustalony koszt dojścia.

W obu algorytmach początkowy koszt dojścia do każdego wierzchołka, zanim zaczniemy szukać drogi do nich, ustawiamy na maksymalną wartość int.

Przebieg badań

W lewej kolumnie znajdują się czasy wykonania operacji, a w prawej kolumnie liczby wierzchołków. Wyniki są kolejna dla gęstości : 25%, 50%, 75%, 100%

2.10845	5
3.34311	10
55.4231	50
189.231	100
8.91245	5
12.7413	10
73.9316	50
150.157	100
3.16533	5
7.96711	10
55.7556	50
143.16	100
5.124	5
9.04134	10
61.5094	50
162.089	100

W lewej kolumnie znajdują się czasy wykonania operacji, a w prawej kolumnie liczby wierzchołków. Wyniki są kolejna dla gęstości : 25%, 50%, 75%, 100%

1.28	5
4.604	10
58.8094	50
171.607	100
5.20267	5
12.752	10
102.206	50
138.348	100
5.31467	5
8.89378	10
58.0276	50
147.734	100
2.35689	5
7.27689	10
66.3894	50
163.299	100

W lewej kolumnie znajdują się czasy wykonania operacji, a w prawej kolumnie liczby wierzchołków. Wyniki są kolejna dla gęstości : 25%, 50%, 75%, 100%

4.79422	5
13.5716	10
133.04	50
205.412	100
6.20489	5
12.4178	10
79.9938	50
202.853	100
6.76934	5
13.5618	10
75.3858	50
153.73	100
3.54489	5
7.10623	10
40.6827	50
80.34	100

W lewej kolumnie znajdują się czasy wykonania operacji, a w prawej kolumnie liczby wierzchołków. Wyniki są kolejna dla gęstości : 25%, 50%, 75%, 100%

8.35867	5
15.0489	10
234.464	50
856.835	100
5.97156	5
20.9756	10
401.096	50
1560.87	100
10.1258	5
20.5018	10
501.633	50
1097.2	100
1.78845	5
10.3547	10
313.947	50
1248.06	100

Wnioski

Analizując wykresy można zauważyć jak bardzo czas wykonywania znajdywania drogi do poszczególnych wierzchołków jest zależny od ich liczby. Porównując czasy wykonania się algorytmu Dijkstra dla reprezentacji grafu macierzowej oraz listowej można zauważyć, że są do siebie bardzo zbliżone. Prowadzi to do wniosków, że algorytm jest praktycznie tak samo wydajny dla obu

reprezentacji. Skoki w wartościach czasów wykonania algorytmów Bellman – Ford są spowodowane prawdopodobnym błędnym działaniem algorytmu dla większej liczby wierzchołków. Algorytm Bellmana – Forda był badany na grafach o dodatnich wartościach krawędzie, ze względu na problemy z generatorem grafów skierowanych o dodatnich i ujemnych wartościach krawędzi.