3D Object Representation

Assignment Project Exam Help

https://eduassistpro.github.io/

Intended Learning Outcomes

- Understand the concept of standard graphics object
- Able to mathematically manipulate and program in OpenGL two types of planar representation: tables and Assignment Project Exam Help
- Distinguish the and nonparametric equhttps://eduassistpro.githeublicantage of using the former in computer

 Add WeChat edu_assist_pro

 rogram in
- Able to mathematically manip OpenGL quadrics and super-quadrics

Standard Graphics Object

standard graphics object = a set of (planar) polygons

Assignment Project Exam Help

- Complicated obj https://eduassistpro.github.io/
- Dedicated hardware are designed rendering of standard graphics objects eChat edu_assist_pro

Two methods for storing standard graphics objects

 Method 1: use table (vertex, edge, polygon, attribute) Assignment Project Exam Help

https://eduassistpro.github.io/

Method 2: Quadrilateral Mesh

- A n x m array of vertex positions (X, Y, Z)
- Represent a surface of (n-1) x (m-1) quadrilaterals
 Each quadrilateral may be further subdivided into
- two trianglehttps://eduassistpro.github.io/
- Two ways t wo ways t esh WeChat edu_assist_pro Way 1: By specifying an e

 - Way 2: By 3D digitizer

3-D scanner

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChardedu_assist_triproulation

3D scanner is available in CityU Library:

http://www.cityu.edu.hk/lib/about/facility/3d/index.htm

Glut functions

- glutWire as wireframe
- glutSolid as fill area polygon patches Assignment Project Exam Help

```
glutSolidCu https://eduassistpro.github.io/
Add WeChat edu_assist_pro
```

 Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron Assignment Project Exam Help

https://eduassistpro.github.io/

Mathematical Concepts for Plane

Plane

https://eduassistpro.github.io/

- Only 3 parameters define t
 can be set to 1 or 0
- d = 1 does not pass through (0, 0, 0)
- d = 0 pass through (0, 0, 0)

Normal

- Important concept in lighting and shading
- Normal vector I to t Project Exam Help

 - "Unit vector" https://eduassistpro.github.io/
- Solving for Northal WeChat edu_assist_pro
 - \square Normal $\mathbf{n} = (a, b, c)$
 - Select 3 vertices on the plane V1, V2, V3 $\mathbf{n} = (V2 - V1) \times (V3 - V1)$

Distinguishing "Inside" from "Outside"

Useful for "collision detection"

```
Assignment Project Exam Help

Use (a, b, c

aX+bY+cZ https://eduassistpro.github.io/
Add WeChat edu_assist_the plane

< 0 side
```

Use V1, V2, V3
V1, V2, V3 selected CCW => Outside
CW => Inside

Inside-Outside Test

- To determine whether a pixel p is inside or outside an object S
- Send a ray p + t v which starts at the pixel, t is a scalar,
 v is an arbitrary direction vector
- Find all non-steigemerate interstet who between the ray and S
- If the number o https://eduassistpro.github.io/ven), p is inside (outside)
 Add WeChat edu_assist_pro
- It is not easy to check non-degenerate intersections.
 One can solve this problem by sending out n rays in random directions and then use majority voting

[†] a degenerate intersection is one which the ray grazes the surface

The yellow object is depicted as a 2D object but the technique can be applied to any n-dimensional object (n > 2)

Superquadrics

2D QUADRICS (conic section)

$$aX^2 + bYAssigNiment/ProjeVt-Extam(Help)$$

https://eduassistpro.github.io/

 3D QUADRICS Add WeChat edu_assist_pro

$$aX^{2} + bY^{2} + cZ^{2} + dXY + eXZ + fYZ + gX + hY + iZ + k = 0$$

In 2D,

$$X^2 + Y^2 = r^2$$

Ellipse

https://eduassistpro.github.io/

Parabola

Add Welch t edu_assist_pro

Hyperbola

$$X^2 - Y^2 = r^2$$

In 3D

Sphere

$$X^2 + Y^2 + Z^2 = r^2$$

Ellipsoid Assignment Project Exam Help

https://eduassistpro.github.io/

Paraboloid

Add WeChat edu_assist_pro

Hyperboloid

?

(ans. to be discussed in tut.)

"Super"-quadrics

- Introduce to additional parameters s1 and s2
- Allow continuous transformation from "circle" to "square" Addigment Project Exam Help
- Example (2D)_{https://eduassistpro.github.io/}

$$\left(\frac{X}{a}\right)^{\frac{2}{s}} + \left(\frac{Add_2WeChat edu_assist_pro}{b}\right)^{\frac{2}{s}} = 1$$

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

18

Super-ellipsoid

$$\left[\left(\frac{X}{r_x} \right)^{\frac{2}{s_2}} \right]_{s_2}^{\frac{2}{s_2}} \left[\frac{X}{s_2} \right]_{s_2}^{\frac{2}{s_2}} \left[\frac{X}{s_2} \right]_{s_1}^{\frac{2}{s_2}} = 1$$

$$\text{https://eduassistpro.github.io/}$$

$$\text{Add WeChat edu_assist_pro}$$

Assignment Project Exam Help

https://eduassistpro.github.io/

Non-parametric and Parametric forms

- Non-parametric form

 - □ Z = f(X, Y) or f(X, Y, Z) = 0
 □ Used in mathematics

https://eduassistpro.github.io/

- Parametric farm WeChat edu_assist_pro
 - Introduced two additional parameters u, v
 - \Box X = f1 (u, v) Y = f2 (u, v) Z = f3 (u, v)
 - Used in CG

Parametric form of the super-ellipsoid

$$\left[\left(\frac{X}{r_x} \right)^{\frac{2}{s_2}} + \left(\frac{Y}{r_y} \right)^{\frac{2}{s_2}} \right]^{\frac{s_2}{s_1}} + \left(\frac{Z}{r_z} \right)^{\frac{2}{s_1}} = 1$$
 Non-parametric Assignment Project Exam Help

https://eduassistpro.github.io/

$$X = r_x \cos^{s_1} \phi \cos^{s_2} \theta$$

 $Y = r_y \cos^{s_1} \phi \sin^{s_2} \theta$
 $Y = r_y \cos^{s_1} \phi \sin^{s_2} \theta$

$$Z = r_z \sin^{s_1} \phi$$

OpenGL functions

- Does not have superquadrics function
- Can display sphere, cone, cylinder Assignment Project Exam Help
- Quadrilater

https://eduassistpro.github.io/

glutWireSphere (r, r)Lo edu_assist_n Patitudes)

Assignment Project Exam Help

https://eduassistpro.github.io/

Generation of complicated shapes

- Complicated shapes can be generated using quadrilateral mesh and parametric form Two examp

 Assignment Project Exam Help
- - Generalize https://eduassistpro.github.io/
 - Generalized Symmetriyat edu_assist_pro

Generalized Cylinder

real life example

Assignment Project Exam Help

https://eduassistpro.github.io/primordial shape (α,β))

Add WeChat edu_assist_pro

cross section

axis is perpendicular to cross section

Generalized Reflectional Symmetry

real life example

Assignment Project Exam Help
b(f4(\alpha),

https://eduassistpro.github.io/
a' ----)

Add/WeChat edu_assist_proprimordial shape

Reflect a about b to get a'

quadrilateral mesh parameterized by α and

 β , with β varying linearly from a to a'

References

Ex: Practice using the index

For example, text

- OpenGL Assignment Project Exam Help
- Superquadrhttps://eduassistpro.github.io/
- Parametric and moncha edu_assispres: A-8, A-9