Acceptance Criteria

Hardware Acceptance Criteria $\,\mathscr{O}\,$

No.	User story	Justification	Estimated Story Points	Task Rating
1	US-D1: Display thermal imaging in real-time	 Real-time Display: The system must display the FLIR camera's thermal imaging in real-time on the Raspberry Pi operating system. Display Quality: Thermal imaging must maintain high clarity and refresh rate to enable effective monitoring. Remote Monitoring Capability: The system should have the capability to stream the thermal imaging to the web application for remote monitoring. 	3	High
2	US-D2: Understand FLIR camera's data interface	 Interface Identification: The system must identify and document the data interface type (Ethernet or USB) of the FLIR camera. Compatibility Assessment: A compatibility check with FarmBot's mainboard for the identified interface type must be conducted and documented. Communication Strategy Development: Develop a detailed communication strategy that ensures seamless data exchange between the FLIR camera and FarmBot's mainboard. 	2	High
3	US-D3: Know sensor's dimensions and mounting details	 Sensor Specifications: Document the sensor's dimensions and mounting details. Design Solution: Create a design for a stable and easily installable mounting solution for the sensor that fits within FarmBot's operational environment. Installation Guide: Provide a comprehensive installation guide that includes step-by-step instructions and necessary safety precautions. 	3	Mediu m
4	US-D4: Adjust hardware integration for adaptability	 Hardware Integration Flexibility: Ensure the FLIR camera and its integration components support hardware adjustments for adaptability. Plug-and-Play Functionality: The FLIR camera must be easily connectable to FarmBot without the need for additional drivers or complex configuration steps. User Experience: Evaluate and ensure that the integration process is user-friendly, minimizing technical barriers. 	3	Mediu m
5	US-D5: Ensure camera's	Power Cable Design: Design a power cable for the camera that is flexible and long enough to accommodate the full range of motion of FarmBot's robotic arm.	3	High

	power cable compatibility	 Efficiency Assessment: Test the thermal imaging capture process to ensure efficiency and reliability throughout FarmBot's range of motion. Safety and Durability: Ensure the power cable's design adheres to safety standards and is durable under operational conditions. 		
6	US-D6: Specify new sensor's power specifications	 Power Specification Documentation: Clearly document the required voltage and current specifications for the new sensor. Compatibility Check: Verify that the sensor's power specifications are compatible with FarmBot's electrical system. Safety Protocols: Implement and document safety protocols to prevent equipment damage due to power incompatibility. 	2	Mediu m

Software Acceptance Criteria 🔗

No.	User story	Justification	Estimated Story Points	Task Rating
7	US-D7: Design efficient server architecture	 Server Architecture Design: Design an efficient server architecture that can handle data requests and responses for thermal imaging data. Performance Metrics: Establish performance metrics for the server architecture, including response times and data handling capacity. Scalability Assessment: Evaluate and ensure that the server architecture is scalable to accommodate future increases in data volume. 	3	High
8	US-D8: Design a database for thermal imaging data	 Database Design: Develop a database schema capable of storing and efficiently retrieving thermal imaging data. Data Security: Implement security measures to protect thermal imaging data from unauthorized access. Data Integrity Checks: Establish routines for regular data integrity checks to ensure the accuracy and consistency of stored thermal imaging data. 	4	High
9	US-D9: Integrate thermal imaging in the web application	 Web Application Integration: Seamlessly integrate thermal imaging functionality into the existing FarmBot web application, including a user-friendly interface for real-time viewing. Feature Testing: Conduct thorough testing to ensure the new thermal imaging page is fully functional and integrates seamlessly with other features of the web application. User Feedback: Implement a mechanism to collect user feedback on the thermal imaging functionality to guide future improvements. 	3	High

10	US-D10:	Al Integration: Integrate Al-driven algorithms to analyze	4	Mediu
	Integrate AI	environmental parameters and adjust camera settings		m
	for	automatically for optimal imaging.		
	environment al parameter analysis	Environmental Adaptability: The system must demonstrate the ability to adjust imaging settings in response to varying environmental conditions, validated through testing under different scenarios. User Interface for AI Settings: Provide an interface for users to view and, if necessary, override AI-driven camera settings adjustments.		

Non-Functional Acceptance Criteria 🔗

No.	User story	Justification	Estimated Story Points	Task Rating
11	US-U1: Simple and easy-to-use web application interface	 Simplicity and Usability: The FarmBot web application interface for viewing thermal imaging must be straightforward and easy to use. Real-time Access: Users should be able to view thermal imaging in real-time with minimal latency. Instructional Content: Provide clear instructions or tooltips within the web application to assist users in navigating and understanding the thermal imaging features. 	5	Low
22	US-U2: Automaticall y recognize patterns and anomalies	 Pattern Recognition: Implement AI algorithms that can automatically recognize patterns and anomalies in thermal imaging data indicative of changes in crop health. Alert System: Develop a system to alert users in real-time to significant anomalies detected in the thermal imaging data. User Customization: Allow users to customize what constitutes a significant anomaly and the preferred method of receiving alerts. 	5	Low
13	US-U3: View and download historical data	 Historical Data Access: Users must be able to easily access and view historical thermal imaging data within the web application. Data Export Functionality: Provide functionality for users to download historical thermal imaging data for offline analysis and record-keeping. 	3	Mediu m