

-

S6 LOGICAL CHANNEL SYMBOLS	639 CHANNET. SYMBOLS	311 SIGICAL CHANNEL SYMBOLS	151 LOGICAL CHANNEL SYMBOLS	75 LOGICAL CHANNEL SYMBOLS	35 LOGICAL CHANNEL SYMBOLS	15 LOGICAL CHANNEL SYMBOLS
	ل ا پر	TPC SYMBOL	TPC SYMBOL	TPC SYMBOL	TPC SYMBOL	1LOT TPC
(f) FORWARD COMMON CONTROL PHYSICAL 64ksps PILOT CHANNEL	(g) DEDICATED PHYSICAL CHANNEL 1024ksps	(h) DEDICATED PHYSICAL 512ksps 811	(i)DEDICATED PHYSICAL CHANNEL 256ksps PILOT SYMBOLS	(j) DEDICATED PHYSICAL CHANNEL 128ksps Call Pilor SYMBOLS	(k) DEDICATED PHYSICAL 64ksps PILOT SYMBOLS	(I) DEDICATED PHYSICAL 32ksps CHANNEL 32ksps P

FIG.5

FIG.6

FIG.7A

FIG.7B

FIG.8

		7	
	ВССН2		
	<u> </u>	₽	
	<u> </u>	i i	
	BCCH2 BCCH1 BCCH1 BCCH2		
	H		
) N		
	CCH1		FTC 9
	2 B	,	
	ВССН		7
1		·	
	67		
	BCCH1 BCCH1 BCCH2		
	H		
	ည္ထ		
	CCH1	RADIO	
	<u> </u>		

...)

FIG.10

FIG.13A

	#64	32 DIVISIONS	ACCH UNIT #32		
	#63		AC		
	#62	32 DIVISIONS	ACCH UNIT #31		
	#61	DIVI	ACC		
SUPER FRAME (64 RADIO FRAMES)			•		
4 KAUI	8#	SNO	#4		
CALUE (O	#1	32 DIVISIONS	ACCH UNIT #4		
טיים אם אם	9#	32 DIVISIONS	ACCH UNIT #3		
Ω	#2	DIVIE	ACC		
	#4	32 VISIONS	ACCH UNIT #2		
	#3	DIVI	ANI		
AME	# # # # # # # # # # # # # # # # # # # #	#2 310NS			
RADIO FRAME	##	32 DIVISI	ACCH UNIT#		

FIG.13B

MAPPING INTO 128ksps DEDICATED PHYSICAL CHANNEL

	#64	16 IVI- IONS	UNIT #64 ACCH
	-#F	SD	[<u></u> 5]*
	#63	16 DIVI- SIONS	UNIT #63 ACCH
	#62	16 DIVI- SIONS	UNIT #62 ACCH
	#61	16 DIVI- SIONS	UNIT #61 ACCH
			•
			•
			•
	æ #=	16 DIVI- SIONS	UNIT #8 ACCH
	#7	16 DIVI- SIONS	UNIT #7
	9#	16 IVI- IONS	TUNIT #6 ACCH
		ΟΩ	
	S#	16 DIVI- SIONS	UNIT #5
	#4	16 IVI- IONS	UNIT #4 ACCH
		18	
	#3	16 SION	ACC #3
幫	#2	16 DIVI- SIONS	WITT #2
RADIO FRAME	#1	16 IVI- IONS	UNIT #1
3	L	1	

SUPER FRAME (64 RADIO FRAMES)

FIG.13C

MAPPING INTO 256ksps DEDICATED PHYSICAL CHANNEL

FIG.14

FIG.15A

ENCODING RATE = 1/3 CONSTRAINT LENGTH = 9

FIG.15B

	-		
16 17	BCCH2 SFN = 16		٠
10 11 12 13 14 15 16 17	BCCH2 SFN = 14		
12 13	BCCH2 SFN = 12		
10 11	BCCH1 SFN = 10		
6	BCCH2 SFN = 8		/ * Z 1 L
6 7	BCCH2 SFN = 6		
4 5	BCCH2 SFN = 4	ener maark reury	 المسامين ــ ا
2 3	BCCH2 SFN = 2	BCCH UNIT	
= 0 1	BCCH1 SFN = 0	RADIO FRAME	
SFN VALUE = 0 1	PERCH CHANNEL		

FIG.19

FIG.22

FIG.24

FIG.26

		SPREADING CODE 1	SPREADING CODE 2		SPREADING CODE 3	SPREADING CODE 4	
TPC SYMBOLS IS		SPREAD- ING CODE 1	 SPREAD- ING CODE 1		SPŘEAD- ING CODE 1	 SPREAD- ING CODE 1	
PILOT SYMBOLS	TRANASMISSION TIMING	DEDICATED PHYSICAL CHANNEL 1	DEDICATED PHYSICAL CHANNEL 2		DEDICATED PHYSICAL CHANNEL 3	DEDICATED PHYSICAL CHANNEL 4	
				SPREADING			

FIG.27

FIG.28B

-PERFORMANCE MONITORING(CRC-6) -TRANSMISSION OF FERF AND LOC

-PERFORMANCE REPORTING

PULSE AMPLITUDE

COORDINATES OF INTERSECTION POINTS

A	:	(. 0,	2.3)	F	•	1	0.	1.7)
		(2.4,	•			•	•	1.7)
		(2.4,	•			•	•	0.9)
		(3.2,					•	0.3)
		(4.0.		_	•	ι	,	0.57

	CHANNEL NUMBER VCI=A: CONTROL SIGNAL VC BETWEEN BTS AND MCC	MCC
	VCI=64 : TIMING CELL VC	
	VCI=B : PAGING VC	
	VCI=C ₁ ,C ₂ ··: CONTROL SIGNAL VC BETWEEN MS AND MCC	
	CID=0~255 : FOR USERS	
BTS		BSC-SW
	CHANNEL NUMBER VCI=E ₁ , E ₂ · · : CONTROL SIGNAL VC BETWEEN MS AND MCC	
	!	
	CHANNEL NUMBER VCI=G ₁ , G ₂ ··: CONTROL SIGNAL VC BETWEEN MS AND MCC	
	CHANNEL NUMBER	·
	VCI=I ₁ , I ₂ ··: CONTROL SIGNAL VC BETWEEN MS AND MCC	

FIG.31

BIT	8 0	
OCT 1	00н	7 \
OCT 2	00н	
OCT 3	00н	CELL
OCT 4	01H	neader
OCT 5	52H	1)
OCT 6	6АН	7
·		
OCT 1	6АН	

FIG.32

43

• START FIELD (1 OCTET) OSF:OFFSET FIELD

FIG.35

FIG.36

FIG.37

				43/.	134					
FIG.38 FIG.38A	FIG.38B			•						
		ATM HEADER		· `						
energianis en	I&A	NCI	PTI CLP	MESSAGE ID	NUMBER OF TIMES OF CORRECTIONS (1 OCTET)	CORRECTION RANGE (1 OCTET)	TRANSMISSION DELAY (2 OCTET)	SF TIME INFORMATION (RECEPTION) (MASTER SIDE) (2 OCTETS)	SF TIME INFORMATION (TRANSMISSION) (MASTER SIDE) (2 OCTETS)	

FIG.38A

	SF TIME INFORMATION (TRANSMISSION) (SLAVE SIDE) (2 OCTETS) SF PHASE SHIFT VALITE	(2 OCTETS) OUNTER INFORM (RECEPTION)	LC COUNTER INFORMATION (TRANSMISSION) (MASTER SIDE) (3 OCTETS)	LC COUNTER INFORMATION (RECEPTION) (SLAVE SIDE) (3 OCTETS)	LC COUNTER INFORMATION (TRANSMISSION) (SLAVE SIDE) (3 OCTETS)	LC COUNTER SHIFT VALUE (3 OCTETS)	UNUSED (6A (h))	000000	CRC-10	
--	--	--------------------------------------	---	--	--	-----------------------------------	-----------------	--------	--------	--

FIG.38B

FIG.39

47/134

REVERSE CHANNEL

P(MS) • • REVERSE TRANSMISSION POWER

Pmax(MS) · • • MAXIMUM REVERSE TRANSMISSION POWER

P(BS) • • FORWARD TRANSMISSION POWER
PMax(BS) • • • MAXIMUM FORWARD TRANSMISSION POWER
Pmin(BS) • • • MINIMUM FORWARD TRANSMISSION POWER

FIG.41A

FIG.41B

,)

FIG.44

RECEIVE TPC BITS FROM MULTIPLE BASE
STATIONS INDEPENDENTLY
MEASURE RELIABILITY OF TPC BITS OF
EACH BASE STATION
DECIDE REVERSE TRANSMISSION POWER
FROM TPC BITS OF EACH BASE STATION, AND CONTROL IT

START MONITORING OF FORWARD

TRANSMISSION MODE

• DECIDE WHETHER RATIO OF AVERAGE
RECEIVED POWER OF PILOT AND TPC
SYMBOLS TO AVERAGE RECEIVED
POWER OF LOGICAL CHANNEL SYMBOLS
IS EQUAL TO OR GREATER THAN PDTX
dB, OR WHETHER CRC IS CORRECT

DETECT NORMAL FORWARD TRANSNISSION

START USING OF FORWARD RECEIVED INFORMATION

PREDETERMINED CONDITIONS SUCH AS TRANSFER, TO CONTROLLER OR TERMINAL INTERFACE, RECEIVED INFORMATION SATISFYING

START NORMAL REVERSE TRANSMISSION
• STOP TARNSMISSION OF IDLE
PATTERN

- STOP TARNSMISSION OF LOGICAL CHANNEL SYMBOLS WHEN NO TRANSMISSION INFORMATION IS PRESENT
- INFORMATION WHEN IT IS PRESENT TRANSMIT TRANSMISSION

START NORMAL FORWARD TRANSMISSION

STOP TRANSMISSION OF IDLE
PATTERN

STOP TRANSMISSION OF LOGICAL
CHANNEL SYMBOLS WHEN NO
TRANSMISSION INFORMATION IS
PRESENT TRANSMIT TRANSMISSION INFORMATION WHEN IT IS PRESENT

START MONITORING OF REVERSE
TRANSMISSION MODE
DECIDE WHETHER RATIO OF AVERAGE
RECEIVED POWER OF PILOT
AND TPC SYMBOLS TO AVERAGE
RECEIVED POWER OF LOGICAL
CHANNEL SYMBOLS IS EQUAL TO OR
GREATER THAN PDIX dB, OR WHETHER
CRC IS CORRECT

TRANSMISSION REVERSE DETECT NORMAL

START USING OF REVERSE RECEIVED INFORMATION

SUCH AS • TRANSFER, TO CONTROLLER OR TERMINAL INTERFACE, RECEIVED INFORMATION SATISFYING PREDETERMINED CONDITIONS CRC IS OK.

FIG.47

REVERSE DEDICATED PHYSICAL CHANNEL (UPCH) FIG.48

FORWARD DEDICATED PHYSICAL CHANNEL (UPCH)

REVERSE COMMON CONTROL PHYSICAL CHANNEL (RACH)

FROM COMMON CONTROL PHYSICAL CHANNEL TO DEDICATED PHYSICAL CHANNEL

BSC

FIG.54

FIG.56

FIG.57

66/134

ATM CELL TRANSMISSION SEQUENCE TABLE

TRANSMISSION ORDER (ABOUT 256 AT MAXIMUM)

PRIORITY

E	F	A	E	F	В	E	F	С	E	•	•	•
F	A	В	F	A	C	F	A	D	F	•	•	•
A	В	U	A	В	D	A	В	E	A	•	•	•
В	C	ם	В	C	E	В	C	F	В	•	•	•
С	D	E	C	D	F	С	D	A	C	. •	•	•
D	E	F	D	E	A	D	E	В	D	•	•	•

FIG.58A

SHORT CELL TRANSMISSION SEQUENCE TABLE (QUALITY CLASS (6))

TRANSMISSION ORDER (ABOUT 128 AT MAXIMUM)

PRIORITY

	E1	E1	E1	E2	E1	E1	E1	E3	•	•	•
	E2	E2	E2	E 3	E 2	E 2	E 2	E4	•	•	•
1	E3	E 3	E 3	E4	E 3	E3	E 3	E1	•	•	•
	E4	E4	E4	E1	E4	E4	E4	E 2	•	•	•

FIG.58B

SHORT CELL TRANSMISSION SEQUENCE TABLE (QUALITY CLASS (7))

TRANSMISSION ORDER (ABOUT 128 AT MAXIMUM)

PRIORITY

F1	F1	F2	F1	F1	F3	F1	F1	•	•	•
F2	F2	F3	F2	F2	F4	F2	F2	•	•	•
F3	F3	F4	F3	F3	F1	F3	F3	•	•	•
F4	F4	F1	F4	F4	F2	F4	F4	•	•	•

FIG.58C

- CARRY OUT CELL EXTRACTION PROCESSING IN ACCORDANCE WITH TRANSMISSION SEQUENCE DETERMINED FOR EACH OUTPUT TIMING.
- IF NO CELL IS PRESENT IN HIGHER PRIORITY QUALITY CLASS, A CELL IN THE NEXT PRIORITY IS EXTRACTED.

PAD: PADDING BITS (ALL "0s")
Len: NUMBER OF BYTES OF EFFECTIVE DATA LENGTH OF USER FRAME CRC-32: CRC CHECKING BITS OVER 32 BITS

CRC-32: GENERATOR POLYNOMIAL $G(X) = X^{32} + X^{26} + X^{23} + X^{24} + X^{16} + X^{16}$

FIG.59

FIG.60

FIG.62

72/134 IDENTIFICATION INFORMATION CCH1, 1 : BCCH2 **FIG.64A** FIG.64B ** DESIGNATED BY MACRO ONLY AT INITIAL SETTING, AND CONTINUOUSLY TRANSMITTED AUTOMATICALLY BY HARDWARE AFTER THE SETTING 16BITS 8BITS CRC TA ם SBITS 16BITS SE . 130CT LENGTH ? 104BITS Pag / INTERFERING AMOUNT 2BITS × **FIG.64A** ---- 130CT CPS SDU 16BITS SFN 130CT TRANSNISSION POWER 1BIT DIVIDE INTO INTERNAL ENCODING UNITS CONVOLUTIONAL ENCODING R = 1/2 K = 9 ADD W BITS AND TAIL BITS LAYER 3 INFORMATION CPS PDU BTS HARDWARE

BTS AP

320BIT

FIG.64B

FIG.66B

	80/134
FIG.68B Mo: MODE DESIGNATION D: DUMNY NA: NUMBER OF TIMES OF ACK TRANSMISSION IN UNIT (1-7) TRANSMISSION IS 16BITS 16BITS 8BITS 16BITS	WRITE 4 288BITS WITH ALL "08" 288BITS 288BITS 288BITS
ASSEMBLE ACK AND CRC BITS 1BIT 3BITS 1617	CONVOLUTIONAL ENCODING R = 1/2 K = 9 BIT INTERLEAVING A X 72 FACH-S RADIO UNIT

FIG.68 FIG.68A

FIG.68B

 $[\cdot,\cdot]$

86/134 DETECT W BITS, AND DISCARD TAIL BITS FIG.71B FIG.71A COMBINE INTERNAL ENCODING UNITS LAYER 2 CPS PDU 8BITS 16BITS D : DUMIY 27BITS PAD ALENGTH CRC 2BITS CRC TRA 14BITS BBITS CPS SDU 216BITS 270CT 2BITS DIVIDE INTO INTERNAL ENCODING UNITS ADD W BITS AND TAIL BITS LAYER 2 **FIG.71A** CPS PDU HARDWARE HARDWARE TRANSMISSION PATH MCC AP

+:)

FIG.71B

FIG.72B

94/134 DETECT W BITS, CARRY OUT CRC CHECKING AND DISCARD TAIL BITS FIG.75B SELECTION COMBINING COMBINE SELECTION COMBINING UNITS USER INFO. **FIG.75A** TA 8BITS 88BITS 110CT 110CT CRC 1 DIVIDE INTO SELECTION COMBINING UNITS ADD CRC AND TAIL BITS DISTRIBUTION USER INFO. CODEC.etc) HARDWARE TRANSMISSION PATH DHI

FIG.75A

96/134 **FIG.76 FIG.76A** DETECT W BITS, CARRY OUT CRC CHECKING AND DISCARD TAIL BITS FIG.76B SELECTION COMBINING COMBINE SELECTION COMBINING UNITS USER INFO. **FIG.76A** 8BITS TA 320BITS 400CT 400CT CRC 13BITS DIVIDE INTO SELECTION COMBINING UNITS ADD CRC AND TAIL BITS DISTRIBUTION USER INFO. CODEC.etc) HARDWARE ATM TRANSMISSION PATH DHT

(-)

FIG.77C

FIG.80C

·...)

FIG.81B

FIG.83B

FIG.84B

FIG.85

	•		•		•			•			•			•					
	FN = 2		FN = 2		RACH RADIO FRAME	0		ME RACH RADIO FRAME			FRAME RACH RADIO FRAME	0		RACH RADIO FRAME	0				
	FN = 1	SLAY .	N = 1		RACH RADIO FRAME	0 40959		E RACH RADIO FRAME	-62607 0 40929		RAME RACH RADIO FRAME	0 40959		RACH RADIO FRAME	65607 0				
	FN = 0	TRANSMISSION DELAY	FN = 0		RACH RADIO FRAME	0 40959	10240chip	RACH RADIO FRAME	- 62607 0	20480chip	AME RACH RADIO FRAME	0 40959	30720chip	RACH RADIO FRAME	65607 0	70 214			
10msec	FN = 216-1	*	FN = 216-1		RACH RADIO, FRAME	0 40959	chip ↓	RACH RADIO FRAME	0 40959	† dia ↑	RACH RADIO FRAME	0 40959	chip	RACH RADIO FRAME R	65607 0				
בינומס ב	OF BIS ON	TROE PRISECAL	MS ON TROL PHYSICAL -		RADIO FRAMES	LONG CODE	PHASE	RADIO FRAMES	LONG CODE	PHASE	RADIO FRAMES	LONG CODE	PHASE	RADIO FRAMES	LONG CODE	PHASE			
mD ANCWTHING	FRAMES OF ECHANNEL CONT		CHANNEL RECEIVED RA FRAMES OF N COMMON CONT		RECEIVED RAFAMES OF RECOMMON CONT		RECEIVED RA FRAMES OF IN COMMON CONT CHANNEL		TRANSMISSION TIMING 0	_	į	RACH TRANSMISSION TIMING 1			RACH TRANSMISSION TIMING 2	_	į	RACH TRANSMISSION TIMING 3	

FIG.86

FIG.87A FIG.87B

FIG.87A

		•		•						•	
		SFN = 2		FN = 2		FN = 2	920			FN = 0	
			$SFN = 0 \qquad SFN = 1$ $\leftarrow T_{FRAME} + T_{SLOT} \text{ (chips)}$	FN = 1	1280chip = 0.3125msec	FN = 1	81920			FN = 0	
		SFN = 1		0		0	40960	TRANSMISSION DELAY	Trame + Tsiot + 1280 + Transmission Delay X 2chip	0 =	
	TRANSMISSION DELAY	SFN = 0		FN = 0		FN = 0		TRANSMIS	ANSMISSION I	FN = 0	
	TRANSI		∤	1-91	<u> </u>	16-1			1280 +	FN = 216-1	
	***	SFN = 216-1	1	$FN = 2^{16}-1$	•	FN = 216-1	K(2 ¹⁶ -1)		Tslor +	EW	
	•	SEN				FN = 216-1	40960X(2 ¹⁶ -1)	ďido*	Terame +	FN = 216-1	
	SCEIVED RADIO RAMES OF MS ON ERCH CHANNEL SCEIVED RADIO RAMES OF MS ON RWARD DEDICATED INSICAL CHANNEL					RADIO FRAMES	LONG CODE	PHASE	EIVED RADIO	ERSE DEDICATED SICAL CHANNEL	
	RE DEDICATED FROM SOLVE WE WE WE WANTED FROM NG OF MS FROM FROM FROM FROM FROM FROM FROM FROM									REVI	

FIG.87E

FIG.88A FIG.88B

FIG.88A

	1	22/13	34							
	•		•	•	•		•		•	
	SFN = 2		SFN = 2		SFN = 2		1 FN = 2 •		1 FN = 2 •	MS FRAME TIME DIFFERENCE MEASURED VALUE = T _{DHO}
			П				EN =		FN = 1	MEAS
	SFN = 1		SFN = 1		SFN = 1					DIFFERENCE
		pips	Ш	···**			FN := 0	<u>ക</u>	E L L	TI.
	0 =	A = Tsect (c	SFN = 0	TRANSMISSION DELAY	SFN = 0		FN	1280chip + β	E	MS FRAME
	SFN = 0	CH SECTO	SI	TRANSMI	S		1-91	†	$FN = 2^{16} - 1$	Ţ
S	16-1	OFFSET FOR EACH SECTOR = TSECT (chips)	$SFN = 2^{16} - 1$	↑	216-1		$FN = 2^{16}-1$		FN =	
10msec	$SFN = 2^{16}-1$	OFF	SFN =		SFN = 2 ¹⁶ -1		216-2		N = 216-2	™ - ' '- ' ' ' ' ' ' ' ' ' ' '
_	BIS REFERENCE SFN	TRANSMITTED RADIO FRAMES ON PERCH	CHANNEL OF DHO DESTINATION BIS	124		RECEIVED RADIO FRAMES OF MS ON	DHO ORIGINATING FN	PHYSICAL CHANNEL TRANSMITTED	FRAMES OF MS ON FIN	3~

FIG.88B

FIG.89

FIG.90A FIG.90B

FIG.90A

FIG.90B

FIG.92

32 KSPS DEDICATED PHYSICAL CHANNEL (DTX CONTROL)

FIG.94

