Locally Ringed Space

1 Sheaves

Definition 1. Let X be a topological space. A *presheaf* of sets (resp. abelian groups, rings, etc.) on X is a contravariant functor \mathcal{F} : **Open**(X) \rightarrow **Set** (resp. **Ab**, **Ring**, etc.), where **Open**(X) is the category of open subsets of X with inclusions as morphisms.

A presheaf \mathcal{F} is a *sheaf* if sections can be glued uniquely. More precisely, for every open covering $\{U_i\}_{i\in I}$ of an open set $U\subset X$ and every family of sections $s_i\in\mathcal{F}(U_i)$ such that $s_i|_{U_i\cap U_j}=s_j|_{U_i\cap U_j}$ for all $i,j\in I$, there exists a unique section $s\in\mathcal{F}(U)$ such that $s|_{U_i}=s_i$ for all $i\in I$.

For two open sets $V \subset U \subset X$, the morphism $\mathcal{F}(U) \to \mathcal{F}(V)$, often denoted by res_V^U , is called the restriction map.

Example 2. Let X be a real (resp. complex) manifold. The assignment $U \mapsto \mathcal{C}^{\infty}(U, \mathbb{R})$ (resp. $U \mapsto \{\text{holomorphic functions on } U\}$) defines a sheaf of rings on X.

Example 3. Let X be a non-connected topological space. The assignment

$$U \mapsto \{\text{constant functions on } U\}$$

defines a presheaf \mathcal{C} of rings on X but not a sheaf.

For a concrete example, let $X=(0,1)\cup(2,3)$ with the subspace topology from \mathbb{R} . Consider the open covering $\{(0,1),(2,3)\}$ of X. The sections $s_1=1\in\mathcal{C}((0,1))$ and $s_2=2\in\mathcal{C}((2,3))$ agree on the intersection (which is empty), but there is no global section $s\in\mathcal{C}(X)$ such that $s|_{(0,1)}=s_1$ and $s|_{(2,3)}=s_2$.

Definition 4. Let X be a topological space and \mathcal{F}, \mathcal{G} be presheaves on X with values in the same category (e.g., **Set**, **Ab**, **Ring**, etc.). A morphism of presheaves $\varphi : \mathcal{F} \to \mathcal{G}$ is a natural transformation between the functors \mathcal{F} and \mathcal{G} . In other words, for every open set $U \subset X$, there is a morphism $\varphi(U) : \mathcal{F}(U) \to \mathcal{G}(U)$ such that for every inclusion of open sets $V \subset U$, the following diagram commutes:

$$\begin{array}{ccc} \mathcal{F}(U) & \xrightarrow{\varphi(U)} & \mathcal{G}(U) \\ \operatorname{res}_{V}^{U} & & & \downarrow \operatorname{res}_{V}^{U} \\ \mathcal{F}(V) & \xrightarrow{\varphi(V)} & \mathcal{G}(V). \end{array}$$

If \mathcal{F} and \mathcal{G} are sheaves, then φ is called a *morphism of sheaves*.

Fix a topological space X and a category \mathbf{C} . The sheaves (resp. presheaves) on X with values in \mathbf{C} form a category, denoted by $\mathbf{Sh}(X,\mathbf{C})$ (resp. $\mathbf{PSh}(X,\mathbf{C})$), where the objects are sheaves (resp. presheaves) on X with values in \mathbf{C} and the morphisms are morphisms of sheaves (resp. presheaves).

Definition 5. Let X be a topological space and \mathcal{F} a presheaf on X with values in a category \mathbf{C} . For

Date: October 21, 2025, Author: Tianle Yang, My Homepage

a point $x \in X$, the stalk of \mathcal{F} at x, denoted by \mathcal{F}_x , is defined as the colimit

$$\mathcal{F}_x := \varinjlim_{U \ni x} \mathcal{F}(U),$$

where the colimit is taken over all open neighborhoods U of x. An element of \mathcal{F}_x is called a *germ* of sections of \mathcal{F} at x.

More concretely, we have

$$\mathcal{F}_{x} = \{(U, s) : U \in \mathbf{Open}(X), U \ni x, s \in \mathcal{F}(U)\}/\sim,$$

where $(U,s) \sim (V,t)$ if there exists an open neighborhood $W \subset U \cap V$ of x such that $s|_{W} = t|_{W}$.

Definition 6. Let X be a topological space and \mathcal{F} a presheaf on X with values in **Set** (resp. **Ab**, **Ring**, etc.). A *sheafification* of \mathcal{F} is a sheaf \mathcal{F}^{\dagger} on X together with a morphism of presheaves $\eta: \mathcal{F} \to \mathcal{F}^+$ such that for every sheaf \mathcal{G} on X and every morphism of presheaves $\varphi: \mathcal{F} \to \mathcal{G}$, there exists a unique morphism of sheaves $\varphi^+: \mathcal{F}^+ \to \mathcal{G}$ such that $\varphi = \varphi^+ \circ \eta$.

In other words, the following diagram commutes:

Yang: To be checked.

Yang: The concrete describe of sheafification.

Definition 7. Let X be a topological space and $\varphi : \mathcal{F} \to \mathcal{G}$ be a homomorphism of sheaves of abelian groups on X. The morphism φ is called *injective* (resp. *surjective*) if for every $x \in X$, the map $\varphi_x : \mathcal{F}_x \to \mathcal{G}_x$ is injective (resp. surjective).

Proposition 8. Let X be a topological space and $\varphi : \mathcal{F} \to \mathcal{G}$ be a homomorphism of sheaves of abelian groups on X. Then φ is injective if and only if for every open set $U \subset X$, the map $\varphi(U) : \mathcal{F}(U) \to \mathcal{G}(U)$ is injective. Yang: To be checked.

Remark 9. The surjectivity on stalks cannot imply the surjectivity on sections. A counterexample is given by the exponential map $\exp: \mathcal{O}_{\mathbb{C}} \to \mathcal{O}_{\mathbb{C}}^*$ defined by $\exp(f) = e^f$, where $\mathcal{O}_{\mathbb{C}}$ is the sheaf of holomorphic functions on \mathbb{C} and $\mathcal{O}_{\mathbb{C}}^*$ is the sheaf of non-vanishing holomorphic functions on \mathbb{C} . The induced map on stalks $\exp_z: \mathcal{O}_{\mathbb{C},z} \to \mathcal{O}_{\mathbb{C},z}^*$ is surjective for every $z \in \mathbb{C}$ by the existence of logarithm locally. However, the map on global sections $\exp(\mathbb{C}): \mathcal{O}_{\mathbb{C}}(\mathbb{C}) \to \mathcal{O}_{\mathbb{C}}^*(\mathbb{C})$ is not surjective since there is no entire function f such that $e^{f(z)} = z$ for all $z \in \mathbb{C}^*$. Yang: To be continued.

Proposition 10. Let X be a topological space and $\varphi : \mathcal{F} \to \mathcal{G}$ be a homomorphism of sheaves of abelian groups on X. Then φ is an isomorphism if and only if it is injective and surjective.

Yang: Now we consider sheaves with values in an abelian category.

Definition 11. Let X be a topological space and $\varphi : \mathcal{F} \to \mathcal{G}$ be a homomorphism of sheaves of abelian groups on X. The kernel of φ , denoted by $\ker \varphi$, is the sheaf defined by

$$(\ker \varphi)(U) := \ker(\varphi(U) : \mathcal{F}(U) \to \mathcal{G}(U))$$

for every open set $U \subset X$.

The cokernel of φ , denoted by $\operatorname{coker} \varphi$, is the sheafification of the presheaf defined by

$$(\operatorname{coker} \varphi)_{\operatorname{pre}}(U) := \operatorname{coker}(\varphi(U) : \mathcal{F}(U) \to \mathcal{G}(U))$$

for every open set $U \subset X$. Yang: To be continued.

Theorem 12. Let X be a topological space and \mathbf{C} be an abelian category (e.g., \mathbf{Ab}). Then the category of sheaves on X with values in \mathbf{C} is an abelian category.

Proof. Yang: To be continued.

Yang: To be checked and continuous.

2 Locally ringed space

Definition 13. Let $f: X \to Y$ be a continuous map between topological spaces. The *push-forward* functor $f_*: \mathbf{Sh}(X, \mathbf{C}) \to \mathbf{Sh}(Y, \mathbf{C})$ is defined by

$$(f_*\mathcal{F})(V) := \mathcal{F}(f^{-1}(V))$$

for every open set $V \subset Y$ and sheaf $\mathcal{F} \in \mathbf{Sh}(X, \mathbf{C})$.

Definition 14. A locally ringed space is a pair (X, \mathcal{O}_X) where X is a topological space and \mathcal{O}_X is a sheaf of rings on X such that for every $x \in X$, the stalk $\mathcal{O}_{X,x}$ is a local ring.

A morphism of locally ringed spaces $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ consists of a continuous map $f:X\to Y$ and a morphism of sheaves of rings $f^{\sharp}:\mathcal{O}_Y\to f_*\mathcal{O}_X$ such that for every $x\in X$, the induced map on stalks $f_x^{\sharp}:\mathcal{O}_{Y,f(x)}\to\mathcal{O}_{X,x}$ is a local homomorphism, i.e., it maps the maximal ideal of $\mathcal{O}_{Y,f(x)}$ to the maximal ideal of $\mathcal{O}_{X,x}$.

Example 15. Let p be a prime number. Then the inclusion $\mathbb{Z}_{(p)} \to \mathbb{Q}$ is a homomorphism of local rings but not a local homomorphism. Here $\mathbb{Z}_{(p)}$ is the localization of \mathbb{Z} at the prime ideal (p).

Example 16 (Glue morphisms). Let $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ be a morphism of locally ringed spaces. If $U\subset X$ and $V\subset Y$ are open subsets such that $f(U)\subset V$, then the restriction $f|_U:(U,\mathcal{O}_X|_U)\to (V,\mathcal{O}_Y|_V)$ is a morphism of locally ringed spaces. Conversely, if $\{U_i\}_{i\in I}$ is an open covering of X and for each $i\in I$, we have a morphism $f_i:(U_i,\mathcal{O}_X|_{U_i})\to (Y,\mathcal{O}_Y)$ such that $f_i|_{U_i\cap U_j}=f_j|_{U_i\cap U_j}$ for all $i,j\in I$, then there exists a unique morphism $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ such that $f|_{U_i}=f_i$ for all $i\in I$.

Example 17 (Glue locally ringed space). We construct a locally ringed space by gluing open subspaces. Let (X_i, \mathcal{O}_{X_i}) be locally ringed spaces for $i \in I$ and $(U_{ij}, \mathcal{O}_{X_i}|_{U_{ij}})$ be open subspaces for $i, j \in I$. Suppose we have isomorphisms $\varphi_{ij}: (U_{ij}, \mathcal{O}_{X_i}|_{U_{ij}}) \to (U_{ji}, \mathcal{O}_{X_j}|_{U_{ji}})$ such that

- (a) $\varphi_{ii} = \mathrm{id}_{X_i}$ for all $i \in I$;
- (b) $\varphi_{ij}(U_{ij} \cap U_{ik}) = U_{ji} \cap U_{jk}$ for all $i, j \in I$;
- (c) $\varphi_{jk} \circ \varphi_{ij} = \varphi_{ik}$ on $U_{ij} \cap U_{ik}$ for all $i, j, k \in I$.

Then there exists a locally ringed space (X, \mathcal{O}_X) and open immersions $\psi_i: (X_i, \mathcal{O}_{X_i}) \to (X, \mathcal{O}_X)$ uniquely up to isomorphism such that

- (a) $\varphi_i(U_{ij}) = \psi_i(X_i) \cap \psi_i(X_i)$ for all $i, j \in I$;
- (b) the following diagram

$$(U_{ij}, \mathcal{O}_{X_i}|_{U_{ij}}) \longleftrightarrow (X_i, \mathcal{O}_{X_i}) \xrightarrow{\psi_i} (X, \mathcal{O}_X)$$

$$\downarrow^{\varphi_{ij}} \qquad \qquad \downarrow^{=}$$

$$(U_{ji}, \mathcal{O}_{X_j}|_{U_{ji}}) \longleftrightarrow (X_j, \mathcal{O}_{X_j}) \xrightarrow{\psi_j} (X, \mathcal{O}_X)$$

commutes for all $i, j \in I$;

(c)
$$X = \bigcup_{i \in I} \psi_i(X_i)$$
.

Such (X, \mathcal{O}_X) is called the locally ringed space obtained by gluing the (X_i, \mathcal{O}_{X_i}) along the φ_{ij} .

First φ_{ij} induces an equivalence relation \sim on the disjoint union $\coprod_{i\in I} X_i$. By taking the quotient space, we can glue the underlying topological spaces to get a topological space X. The structure sheaf \mathcal{O}_X is given by

$$\mathcal{O}_X(V):=\left\{(s_i)_{i\in I}\in\prod_{i\in I}\mathcal{O}_{X_i}(\psi_i^{-1}(V))\;\middle|\; s_i|_{U_{ij}}=\varphi_{ij}^\sharp(s_j|_{U_{ji}}) \text{ for all } i,j\in I\right\}.$$

Easy to check that (X, \mathcal{O}_X) is a locally ringed space and satisfies the required properties. If there is another locally ringed space $(X', \mathcal{O}_{X'})$ with ψ'_i satisfying the same properties, then by gluing $\psi'_i \circ \psi_i^{-1}$ we get an isomorphism $(X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$.

3 Manifolds as locally ringed spaces

4 Vector bundles and \mathcal{O}_X -modules

Let (X,\mathcal{O}_X) be a manifold (real or complex) and (\mathcal{E},π,X) a vector bundle over X.

Yang: It can regard as a sheaf on X.

Definition 18. Let (X, \mathcal{O}_X) be a ringed space. A *sheaf of* \mathcal{O}_X -modules is a sheaf \mathcal{F} of abelian groups on X such that for every open set $U \subseteq X$, $\mathcal{F}(U)$ is an $\mathcal{O}_X(U)$ -module, and for every inclusion of open sets $V \subseteq U$, the restriction map $\operatorname{res}_{UV} : \mathcal{F}(U) \to \mathcal{F}(V)$ is $\mathcal{O}_X(U)$ -linear, where the $\mathcal{O}_X(U)$ -module structure on $\mathcal{F}(V)$ is induced by the restriction map $\operatorname{res}_{UV} : \mathcal{O}_X(U) \to \mathcal{O}_X(V)$.

A morphism of \mathcal{O}_X -modules is a morphism of sheaves of abelian groups $\varphi : \mathcal{F} \to \mathcal{G}$ such that for every open set $U \subseteq X$, the map $\varphi(U) : \mathcal{F}(U) \to \mathcal{G}(U)$ is $\mathcal{O}_X(U)$ -linear. Yang: To be checked...

Yang: We will try to construct a sequence of subcategories of $\mathbf{Mod}_{\mathcal{O}_X}$.

Definition 19. A sheaf of \mathcal{O}_X -modules \mathcal{F} is said to be *finitely generated* if for every open set $U \subseteq X$, the $\mathcal{O}_X(U)$ -module $\mathcal{F}(U)$ is finitely generated. Yang: To be continued.

Remark 20. There are many versions of "local" properties for sheaves of \mathcal{O}_X -modules. Yang: To be continued.

Definition 21. A sheaf of \mathcal{O}_X -modules \mathcal{F} is said to be *locally free of rank* r if for every point $x \in X$, there exists an open neighborhood U of x such that $\mathcal{F}|_U$ is isomorphic to \mathcal{O}_U^r , where \mathcal{O}_U^r is the direct sum of r copies of \mathcal{O}_U . Yang: To be continued.

Definition 22. A sheaf of \mathcal{O}_X -modules \mathcal{F} is said to be *quasi-coherent* if for every point $x \in X$, there exists an open neighborhood U of x such that $\mathcal{F}|_U$ is isomorphic to the cokernel of a morphism of free \mathcal{O}_U -modules, i.e., there exists an exact sequence of sheaves of \mathcal{O}_U -modules

$$\mathcal{O}_{U}^{(I)} \to \mathcal{O}_{U}^{(J)} \to \mathcal{F}|_{U} \to 0,$$

where I,J are (possibly infinite) index sets. Yang: To be checked...

Definition 23. A sheaf of \mathcal{O}_X -modules \mathcal{F} is said to be *coherent* if it is finitely generated, and for every open set $U \subseteq X$ and every morphism of sheaves of \mathcal{O}_U -modules $\varphi : \mathcal{O}_U^n \to \mathcal{F}|_U$, the kernel of φ is finitely generated. Yang: To be checked...

Appendix