# Bit-precise Reasoning via Int-Blasting

Yoni Zohar

Joint work with:

Ahmed Irfan, Makai Mann, Aina Niemetz, Andres Nötzli, Mathias Preiner, Andrew Reynolds, Clark Barrett, Cesare Tinelli







### Bit-precise Reasoning

- Variables: x,y,z,...
- Constants: 0000, 01000010, 11111111, ...
- Relations: =, bvult (unsigned), bvslt (signed), ...
- BV Operators: bvadd (+), bvmul (⋅), bvand (&), bvshl (<<), ...</li>
- Logical Operators: ∧, ∨, ¬, ∀, ...
- All terms are **sorted**: BV[1], BV[2], ...



### Bit-vector Solving in SMT

- Bit-blasting (state-of-the-art)
  - bits Boolean variables
  - operators circuits
  - Scalability problems:
    - Large bit-widths (e.g., 256)
    - "Normal" bit-widths (e.g., 32) with multiplication/division
- MC-SAT
- Local Search
- Integer approaches









# Integers: Inside or Outside?



| Application Level            | Solver Level                        |
|------------------------------|-------------------------------------|
| Eager                        | Flexible                            |
| Abstract bit-wise operations | Abstract/refine bit-wise operations |
| Black box                    | More control                        |
| Application-specific         | General                             |

### Int-blasting



### Int-blasting



### Arith + iand

- Non-linear integer arithmetic
- iand
  - countably many binary operators  $\&_1,\&_2,\ldots$
  - semantics of bit-wise "and"





### Int-blasting



### 



- BV variables -> Integer variables
- BV constants -> unsigned integer constants
- BV operators -> integer terms, based on SMT-LIB
- BV bit-wise "and" -> iand
- Some operators are eliminated

```
(theory FixedSizeBitVectors
:smt-lib-version 2.6
:smt-lib-release "2017-11-24"
:written-by "Silvio Ranise, Cesare Tinelli, and Clark Barrett'
:date "2010-05-02"
:last-updated "2017-06-13"
:update-history
 'Note: history only accounts for content changes, not release
 2020-05-20 Fixed minor typo
 2017-06-13 Added :left-assoc attribute to byand, byor, byadd,
 2017-05-03 Updated to version 2.6; changed semantics of divisi
            remainder operators.
 2016-04-20 Minor formatting of notes fields.
 2015-04-25 Updated to Version 2.5.
 2013-06-24 Renamed theory's name from Fixed_Size_Bit_Vectors
            for consistency.
            Added : value attribute.
```



$$\frac{\mathcal{T}\,\varphi}{\mathcal{C}\,\varphi}$$
\htherefore LEM\leq(\varphi)

### $\underline{C} \underline{e}$ : Match e:

$$\begin{array}{ccc}
x & \rightarrow & \chi(x) \\
c & \rightarrow & [c]_{\mathbb{N}} \\
t_1 = t_2 & \rightarrow & \mathcal{C} t_1 = \mathcal{C} t_2
\end{array}$$

 $\chi$  is a 1-1 mapping between BV variables and integer variables  $[\cdot]_{\mathbb{N}}$  translates bit-vectors to unsigned integers



$$\frac{\mathcal{T}\,\varphi}{\mathcal{C}\,\varphi}$$
\\tag{Lem\$\leq(\varphi)\$

### $\underline{C} \underline{e}$ : Match e:

$$t_{1}\bowtie^{\mathrm{BV}}t_{2} \longrightarrow \mathcal{C} \ t_{1}\bowtie \mathcal{C} \ t_{2}$$

$$t_{1}\bowtie_{s}^{\mathrm{BV}}t_{2} \longrightarrow \mathsf{uts}_{k}(\mathcal{C} \ t_{1})\bowtie \mathsf{uts}_{k}(\mathcal{C} \ t_{2})$$

$$\bowtie \in \{ <, \leq, >, \geq \}$$

#### $uts_k(\cdot)$ : from unsigned to signed



$$\mathsf{uts}_k(x) = 2 \cdot (x \bmod 2^{k-1}) - x$$



$$\frac{\mathcal{T}\,\varphi}{\mathcal{C}\,\varphi}$$
\\cdot\text{Lem}\leq(\varphi)

### $\underline{C} \underline{e}$ : Match e:

$$\begin{array}{lll} t_1 +^{\mathrm{BV}} t_2 & \to & (\mathcal{C} \, t_1 + \mathcal{C} \, t_2) \bmod 2^k \\ t_1 -^{\mathrm{BV}} t_2 & \to & (\mathcal{C} \, t_1 - \mathcal{C} \, t_2) \bmod 2^k \\ t_1 \cdot^{\mathrm{BV}} t_2 & \to & (\mathcal{C} \, t_1 \cdot \mathcal{C} \, t_2) \bmod 2^k \\ \sim^{\mathrm{BV}} t_1 & \to & 2^k - (\mathcal{C} \, t_1 + 1) \\ -^{\mathrm{BV}} t_1 & \to & (2^k - \mathcal{C} \, t_1) \bmod 2^k \end{array}$$

k is the bit-width



```
\frac{\mathcal{T}\,\varphi}{\mathcal{C}\,\varphi}\\cdot\text{Lem}\leq(\varphi)
```

### $\underline{C} \underline{e}$ : Match e:

```
t_1 \operatorname{div}^{\operatorname{BV}} t_2 \longrightarrow \operatorname{ite}(\mathcal{C} t_2 = 0, 2^k - 1, \mathcal{C} t_1 \operatorname{div} \mathcal{C} t_2)
t_1 \operatorname{mod}^{\operatorname{BV}} t_2 \longrightarrow \operatorname{ite}(\mathcal{C} t_2 = 0, \mathcal{C} t_1, \mathcal{C} t_1 \operatorname{mod} \mathcal{C} t_2)
t_1 \circ^{\operatorname{BV}} t_2 \longrightarrow \mathcal{C} t_1 \cdot 2^k + \mathcal{C} t_2
t_1[u:l]^{\operatorname{BV}} \longrightarrow \mathcal{C} t_1 \operatorname{div} 2^l \operatorname{mod} 2^{u-l+1}
```

ite — if then else



$$\frac{\mathcal{T}\,\varphi}{\mathcal{C}\,\varphi}$$
\htimes LEM\leq(\varphi)

<u>Ce</u>: Match

Match e:

$$t_1 \ll^{\mathrm{BV}} t_2 \longrightarrow (\mathcal{C} t_1 \cdot \mathrm{pow2}(\mathcal{C} t_2)) \bmod 2^k$$
  
 $t_1 \gg^{\mathrm{BV}} t_2 \longrightarrow \mathcal{C} t_1 \operatorname{div} \mathrm{pow2}(\mathcal{C} t_2)$ 

pow2 is eliminated using 'ite'

$$pow2(x) = ite(x = 0, 1, ite(x = 1, 2, ite(..., ite(x = k, 2^k, 0)...)$$



$$\frac{\mathcal{T}\,\varphi}{\mathcal{C}\,\varphi}$$
\\cdot\\Lem\leq(\varphi)

 $\underline{C} \underline{e}$ :

Match e:

$$t_1 \&^{\mathrm{BV}} t_2 \longrightarrow \&_k^{\mathbb{N}} (\mathcal{C} t_1, \mathcal{C} t_2)$$

k is the bit-width  $\&_k^{\mathbb{N}}$  is an **iand** operator

$$\frac{\mathcal{T}\,\varphi}{\mathcal{C}\,\varphi}$$
\\cdot\ \Lem\\leq(\varphi)

#### $\underline{C} \underline{e}$ :

Match e:

$$x \mid^{\text{BV}} y = (x +^{\text{BV}} y) -^{\text{BV}} (x \&^{\text{BV}} y)$$
  
 $x \oplus^{\text{BV}} y = (x \mid^{\text{BV}} y) -^{\text{BV}} (x \&^{\text{BV}} y)$ 





bvor and bvxor are eliminated



# $\frac{\mathcal{T}\,\varphi}{\mathcal{C}\,\varphi} \wedge \mathrm{LEM}^{\leq}(\varphi)$

#### $Lem \leq (e)$ :

#### $\overline{\text{Match } e}$ :

$$\begin{array}{ccc} x & \to & 0 \leq \chi(x) < 2^{\kappa(x)} \\ \hline c & \to & \top \\ t_1 = t_2 & \to & \operatorname{LEM}^{\leq}(t_1) \wedge \operatorname{LEM}^{\leq}(t_2) \end{array}$$

$$f^{\mathrm{BV}}(t_1, t_2)$$
  $\rightarrow \begin{array}{c} 0 \leq \&_k^{\mathbb{N}}(\mathcal{C} \ t_1, \mathcal{C} \ t_2) < 2^k \wedge \\ \mathrm{LEM}^{\leq}(t_1) \wedge \mathrm{LEM}^{\leq}(t_2) \end{array}$ 

$$g^{\mathrm{BV}}(t_1,\ldots,t_n) \to \bigwedge_{i=1}^n \mathrm{Lem}^{\leq}(t_i)$$
  
 $\diamond(\varphi_1,\ldots,\varphi_n) \to \bigwedge_{i=1}^n \mathrm{Lem}^{\leq}(\varphi_i)$ 

 $LEM^{\leq}$  includes range constraints  $0 \leq t < 2^k$ 

$$f^{\mathbf{BV}} \in \{ \&^{\mathbf{BV}}, |^{\mathbf{BV}}, \bigoplus^{\mathbf{BV}} \}$$

 $g^{\mathbf{BV}}$ : other BV operators

♦ : Boolean operators

 $\chi$  maps BV variables to integer variables

### Int-blasting



### 



| orithm<br>Surofing | 5 Um                        | bit wise   |
|--------------------|-----------------------------|------------|
| eager              | <u></u>                     | \\ \[ \] = |
| 122                | S(···)= ···<br>S(···) = ··· | 1          |

# Arith + iand — Arith + UF

### Eager Version

#### $\underline{\mathcal{T}_A \, \varphi}$ : $\operatorname{LEM}_A^{\&}(\varphi) \wedge \varphi$

#### $Lem_A^{\&}(e)$ :

Match 
$$e$$
:  
 $x o T$   
 $c o T$   
 $t_1 = t_2 o LEM_A^{\&}(t_1) \wedge LEM_A^{\&}(t_2)$   
 $\diamond(\varphi_1, \dots, \varphi_n) o \bigwedge_{i=1}^n LEM_A^{\&}(\varphi_i)$   
 $f(t_1, \dots, t_n) o \bigwedge_{i=1}^n LEM_A^{\&}(t_i)$   
 $\&_k^{\mathbb{N}}(t_1, t_2) o IAND_A(t_1, t_2) \wedge \bigwedge_{i \in \{1, 2\}} LEM_A^{\&}(t_i)$ 

#### $A \in \{\text{sum}, \text{bitwise}\}$





### Arith + iand ——Arith + UF | //

### Eager-sum Version

```
\mathcal{T}_A \varphi:
Lem_A^{\&}(\varphi) \wedge \varphi
Lem_A^{\&}(e):
Match e:
                                    \rightarrow \top
 c
 t_1 = t_2 \qquad \rightarrow \operatorname{LEM}_A^{\&}(t_1) \wedge \operatorname{LEM}_A^{\&}(t_2)
\diamond(\varphi_1,\ldots,\varphi_n)\to \bigwedge_{i=1}^n \operatorname{LEM}_A^{\&}(\varphi_i)
 f(t_1,\ldots,t_n) \to \bigwedge_{i=1}^n \operatorname{LEM}_A^{\&}(t_i)
 \&_k^{\mathbb{N}}(t_1, t_2) \longrightarrow \operatorname{IAND}_A(t_1, t_2) \land \bigwedge_{i \in \{1, 2\}} \operatorname{LEM}_A^{\&}(t_i)
```

 $A \in \{\text{sum}, \text{bitwise}\}$ 



IAND<sub>sum</sub> $(t_1, t_2)$ :

$$\&_k^{\mathbb{N}}(t_1, t_2) = \Sigma_{i=0}^{k-1} 2^i \cdot \text{ITE}(a_i, b_i)$$

$$a_i = t_1 \ div \ 2^i \ mod \ 2$$
 $b_i = t_2 \ div \ 2^i \ mod \ 2$ 
 $ITE(x, y) = ite(x = y = 1, 1, 0)$ 

 $a_i$ : ith bit of  $t_1$ 

 $b_i$ : ith bit of  $t_2$ 

### Arith + iand ——Arith + UF

### Eager-bitwise Version

```
\mathcal{T}_A \varphi:
Lem_A^{\&}(\varphi) \wedge \varphi
Lem_A^{\&}(e):
Match e:
                                    \rightarrow \top
 c
t_1 = t_2 \qquad \rightarrow \operatorname{LEM}_A^{\&}(t_1) \wedge \operatorname{LEM}_A^{\&}(t_2)
\diamond(\varphi_1,\ldots,\varphi_n)\to \bigwedge_{i=1}^n \operatorname{LEM}_A^{\&}(\varphi_i)
f(t_1,\ldots,t_n) \to \bigwedge_{i=1}^n \operatorname{Lem}_A^{\&}(t_i)
\&_k^{\mathbb{N}}(t_1, t_2) \longrightarrow \operatorname{IAND}_A(t_1, t_2) \land \bigwedge_{i \in \{1, 2\}} \operatorname{LEM}_A^{\&}(t_i)
```





$$\frac{\text{IAND}_{\text{bitwise}}(t_1, t_2)}{\bigwedge_{i=0}^{k-1} c_i = \text{ITE}(a_i, b_i)}$$

$$a_i = t_1 \ div \ 2^i \ mod \ 2$$
 $b_i = t_2 \ div \ 2^i \ mod \ 2$ 
 $c_i = \&_k^{\mathbb{N}}(t_1, t_2) \ div \ 2^i \ mod \ 2$ 
 $ITE(x, y) = ite(x = y = 1, 1, 0)$ 

### Arith + iand ——Arith + UF

### Lazy Versions

$$\Gamma := \{ \mathcal{T} \varphi \} 
\Delta := \{ \&_k^{\mathbb{N}}(t_1, t_2) \mid \&_k^{\mathbb{N}}(t_1, t_2) \text{ occurs in } \mathcal{T} \varphi \} 
\Lambda := Prop(\Delta) \cup \{ \text{IAND}_A(t_1, t_2) \mid \&_k^{\mathbb{N}}(t_1, t_2) \in \Delta \}$$

#### Repeat:

- 1. If  $P_{T_{\text{IAUF}}}(\bigwedge \Gamma)$  is "unsat", then return "unsat".
- 2. Otherwise, let  $\mathcal{I} = P_{T_{\text{IAUF}}}(\bigwedge \Gamma)$

/\* check  $\mathcal{I}$  against properties of  $\&_k^{\mathbb{N}}$  \*/

- (a) If  $\mathcal{I}$  satisfies  $\Lambda$ , return "sat".
- (b) Otherwise:

/\* refine abstraction 
$$\Gamma$$
 \*/

$$\Gamma := \Gamma \cup \{ \psi \in \Lambda \mid \mathcal{I} \not\models \psi \}$$





### 

### Lazy Versions



$$\Gamma := \{ \mathcal{T} \varphi \} 
\Delta := \{ \&_k^{\mathbb{N}}(t_1, t_2) \mid \&_k^{\mathbb{N}}(t_1, t_2) \text{ occurs in } \mathcal{T} \varphi \} 
\Lambda := Prop(\Delta) \cup \{ \text{IAND}_A(t_1, t_2) \mid \&_k^{\mathbb{N}}(t_1, t_2) \in \Delta \} 
\text{Repeat:}$$

- 1. If  $P_{T_{\text{IAUF}}}(\bigwedge \Gamma)$  is "unsat", then return "unsat".
- 2. Otherwise, let  $\mathcal{I} = P_{T_{\text{IAUF}}}(\bigwedge \Gamma)$

/\* check  $\mathcal{I}$  against properties of  $\&_k^{\mathbb{N}}$  \*/

- (a) If  $\mathcal{I}$  satisfies  $\Lambda$ , return "sat".
- (b) Otherwise:

/\* refine abstraction 
$$\Gamma$$
 \*/

$$\Gamma := \Gamma \cup \{ \psi \in \Lambda \mid \mathcal{I} \not\models \psi \}$$

$$Prop(\Delta) = \left\{ Prop(t_1, t_2) \mid \&_k^{\mathbb{N}}(t_1, t_2) \in \Delta \right\}$$

$$Prop(t_1, t_2):$$

$$\&_k^{\mathbb{N}}(t_1, t_2) \leq t_1 \wedge \&_k^{\mathbb{N}}(t_1, t_2) \leq t_2 \wedge$$
 bounds
$$(t_1 = t_2 \Rightarrow \&_k^{\mathbb{N}}(t_1, t_2) = t_1) \wedge$$
 idempotence
$$\&_k^{\mathbb{N}}(t_1, t_2) = \&_k^{\mathbb{N}}(t_2, t_1) \wedge$$
 symmetry
$$(t_1 = 0 \Rightarrow \&_k^{\mathbb{N}}(t_1, t_2) = 0) \wedge$$

$$(t_1 = 2^k - 1 \Rightarrow \&_k^{\mathbb{N}}(t_1, t_2) = t_2) \wedge$$

$$(t_2 = 0 \Rightarrow \&_k^{\mathbb{N}}(t_1, t_2) = 0) \wedge$$

$$(t_2 = 2^k - 1 \Rightarrow \&_k^{\mathbb{N}}(t_1, t_2) = t_1)$$

$$\&_k^{\mathbb{N}}(t_1, t_2) = \sum_{i=0}^{k-1} 2^i \cdot \text{ITE}(a_i, b_i)$$

$$\frac{\text{IAND}_{\mathsf{sum}}(t_1, t_2):}{\&_k^{\mathbb{N}}(t_1, t_2) = \Sigma_{i=0}^{k-1} 2^i \cdot \text{ITE}(a_i, b_i)} \frac{\underline{\text{IAND}_{\mathsf{bitwise}}(t_1, t_2):}}{\bigwedge_{i=0}^{k-1} c_i = \text{ITE}(a_i, b_i)}$$

### 

eagerlazy

eagerlazy

- Both modes utilize the SAT-solver and Arith-solver
  - "The ith bit of x"  $-(x \ div \ 2^i) \ mod \ 2$
- bitwise mode relies more on the SAT-solver
- sum mode relies more on the Arith-solver



| orithm<br>orithm | 5 Um               | bitwije |
|------------------|--------------------|---------|
| eager            | <u>√</u> ≥ () =    | \\\\\\= |
| 1a27             | ≥(···)=<br>≥(···)= |         |

### Evaluation

Int-blasting is implemented in cvc5 (successor of CVC4)



### Evaluation

- Other tools:
  - Bitwuzla first place in QF\_BV 2020
  - Yices second place in QF\_BV 2020
  - cvc5 eager bit-blaster baseline
  - (bw-ind our integer-based bit-width independent prototype)
- Benchmarks:
  - SMT-LIB
  - Rewrite-rule Candidates
  - Certora Smart Contracts Verification











### SMT-LIB

- QF\_BV family
- 41,713 benchmarks
- Very diverse
- Not many large bit-widths



### Rewrite Rule Candidates

- Hand-crafted but represents a real application rewrite rules for SMT-solvers
- Benchmark generation using SyGuS:

- Term Rewriting and All That
- Synthesize pairs of terms that are equivalent for bit-width 4
- Prove correctness for larger bit-widths
- Benchmarks:
  - 5491 equivalence checks
  - Each one instantiated with 10 bit-widths (16, 32, ... 8192)
  - Total 54,910 benchmarks

### **Smart Contracts Verification**

- 35 benchmarks
- Given to us by Certora team

- QF\_UFBV benchmarks with 256-bit bit-vectors
- Employ arithmetic and bitwise operators
- Encode algebraic properties (e.g., commutativity) of low-level methods

### Results

|           | SMT-LIB |       |       |    |       | EC  | CRW   | SC    |      |     |     |   |
|-----------|---------|-------|-------|----|-------|-----|-------|-------|------|-----|-----|---|
|           | slvd    | sat   | uns   | m  | slvd  | sat | uns   | m     | slvd | sat | uns | m |
| $eager_b$ | 35031   | 10447 | 24584 | 38 | 41989 | 119 | 41870 | 0     | 24   | 9   | 15  | 0 |
| $eager_s$ | 35035   | 10459 | 24576 | 28 | 41435 | 119 | 41316 | 77    | 24   | 9   | 15  | 0 |
| $lazy_b$  | 35001   | 10383 | 24618 | 23 | 47071 | 119 | 46952 | 0     | 24   | 9   | 15  | 0 |
| $lazy_s$  | 34819   | 10297 | 24522 | 27 | 45350 | 119 | 45231 | 138   | 24   | 9   | 15  | 0 |
| Bitwuzla  | 41220   | 14233 | 26987 | 19 | 37297 | 265 | 37032 | 11120 | 16   | 8   | 8   | 0 |
| cvc5      | 40543   | 14204 | 26339 | 36 | 33187 | 220 | 32967 | 17535 | -    | -   | -   | - |
| Yices     | 41228   | 14280 | 26948 | 11 | 31646 | 255 | 31391 | 15801 | 9    | 3   | 6   | 0 |
| bw-ind    | _       | _     | _     | -  | 25608 | 0   | 25608 | 0     | _    | -   | _   | _ |

### Results — SMTLIB

- Timeout: 10 minutes
- Not competative on SMT-LIB
  - Expected Bit-blasting is state of the art
- Better on UNSAT than on SAT
  - Expected Lemmas are aimed at finding conflicts

|           | 1            |       |         |     |       |     |       |       |      |     |     |   |
|-----------|--------------|-------|---------|-----|-------|-----|-------|-------|------|-----|-----|---|
| 1         |              |       | EC      | CRW | SC    |     |       |       |      |     |     |   |
|           | slvd         | sat   | uns     | m   | slvd  | sat | uns   | m     | slvd | sat | uns | m |
| $eager_b$ | 35031        | 10447 | 24584 3 | 38  | 41989 | 119 | 41870 | 0     | 24   | 9   | 15  | 0 |
| $eager_s$ | 35035        | 10459 | 24576   | 28  | 41435 | 119 | 41316 | 77    | 24   | 9   | 15  | 0 |
| $lazy_b$  | 35001        | 10383 | 24618 2 | 23  | 47071 | 119 | 46952 | 0     | 24   | 9   | 15  | 0 |
| $lazy_s$  | 34819        | 10297 | 245222  | 27  | 45350 | 119 | 45231 | 138   | 24   | 9   | 15  | 0 |
| Bitwuzla  | 41220        | 14233 | 26987 1 | 19  | 37297 | 265 | 37032 | 11120 | 16   | 8   | 8   | 0 |
| cvc5      | 40543        | 14204 | 26339 3 | 36  | 33187 | 220 | 32967 | 17535 | -    | -   | -   | - |
| Yices     | <b>41228</b> | 14280 | 26948   | 11  | 31646 | 255 | 31391 | 15801 | 9    | 3   | 6   | 0 |
| bw-ind    | _            | -     | -       | _   | 25608 | 0   | 25608 | 0     | _    | -   | -   | - |



### Results — Rewrite Rules

- Timeout: 5 minutes
- All int-blasting approaches are better
- Best int-blasting approach: lazy bitwise

|           |       |       |         |    | 1     |     |       |       |      |     |     |   |
|-----------|-------|-------|---------|----|-------|-----|-------|-------|------|-----|-----|---|
| 1         |       | SMT-l | -IB     |    |       | EC  | CRW   | SC    |      |     |     |   |
|           | slvd  | sat   | uns     | m  | slvd  | sat | uns   | m     | slvd | sat | uns | m |
| $eager_b$ | 35031 | 10447 | 24584 3 | 38 | 41989 | 119 | 41870 | 0     | 24   | 9   | 15  | 0 |
| $eager_s$ | 35035 | 10459 | 24576 2 | 28 | 41435 | 119 | 41316 | 77    | 24   | 9   | 15  | 0 |
| $lazy_b$  | 35001 | 10383 | 24618 2 | 23 | 47071 | 119 | 46952 | 0     | 24   | 9   | 15  | 0 |
| $lazy_s$  | 34819 | 10297 | 245222  | 27 | 45350 | 119 | 45231 | 138   | 24   | 9   | 15  | 0 |
| Bitwuzla  | 41220 | 14233 | 26987 1 | 19 | 37297 | 265 | 37032 | 11120 | 16   | 8   | 8   | 0 |
| cvc5      | 40543 | 14204 | 26339 3 | 36 | 33187 | 220 | 32967 | 17535 | _    | -   | -   | - |
| Yices     | 41228 | 14280 | 26948   | 11 | 31646 | 255 | 31391 | 15801 | 9    | 3   | 6   | 0 |
| bw-ind    | _     | -     | _       | -  | 25608 | 0   | 25608 | 0     | _    | -   | -   | _ |

# Results — Rewrite Rules With byand

eager-bitwise
eager-sum
lazy-bitwise
lazy-sum
lazy-sum
bw-ind
Bitwuzla
CVC4
CVC4

- with bvand: best starting from bit-width 512
- int-blasting approaches differ
- Lazy approaches are bit-width independent



# Results — Rewrite Rules

#### Without byand

eager-bitwise
eager-sum
lazy-bitwise
lazy-sum
lazy-sum
bw-ind
Bitwuzla
CVC4
Vices

- with bvand: best starting from bit-width 128
- int-blasting approaches are identical
- bit-width independent



### Results — Rewrite Rules

#### Full Set



- Full set: best starting from bit-width 256
- int-blasting approaches are similar
- Almost bit-width independent



### Results — Certora

- Timeout: 1 hour
- Int-blasting solved the most
- Int-blasting was faster:
  - 24 benchmarks in 232 seconds
  - 22 benchmarks in 20 seconds
  - Bitwuzla: 16 benchmarks in 5900 seconds
  - Yices: 9 benchmarks in 3900 seconds

|           |       |       |       |     |        |     |       |       | . 7  |     |     |   |
|-----------|-------|-------|-------|-----|--------|-----|-------|-------|------|-----|-----|---|
| 1         | :     |       | EC    | CRW | sc )   |     |       |       |      |     |     |   |
|           | slvd  | sat   | uns   | m   | $slvd$ | sat | uns   | m     | slvd | sat | uns | m |
| $eager_b$ | 35031 | 10447 | 24584 | 38  | 41989  | 119 | 41870 | 0     | 24   | 9   | 15  | 0 |
| $eager_s$ | 35035 | 10459 | 24576 | 28  | 41435  | 119 | 41316 | 77    | 24   | 9   | 15  | 0 |
| $lazy_b$  | 35001 | 10383 | 24618 | 23  | 47071  | 119 | 46952 | 0     | 24   | 9   | 15  | 0 |
| $lazy_s$  | 34819 | 10297 | 24522 | 27  | 45350  | 119 | 45231 | 138   | 24   | 9   | 15  | 0 |
| Bitwuzla  | 41220 | 14233 | 26987 | 19  | 37297  | 265 | 37032 | 11120 | 16   | 8   | 8   | 0 |
| cvc5      | 40543 | 14204 | 26339 | 36  | 33187  | 220 | 32967 | 17535 | _    | -   | -   | - |
| Yices     | 41228 | 14280 | 26948 | 11  | 31646  | 255 | 31391 | 15801 | 9    | 3   | 6   | 0 |
| bw-ind    | _     | -     | -     | -   | 25608  | 0   | 25608 | 0     | _    | -   | -   | _ |



### Conclusion

- We have seen:
  - Int-blasting is a complement to bit-blasting
  - 4 Configurations (eager/lazy, sum/bitwise)
  - Useful for large bit-widths
- Future Work:
  - Abstraction of other operations
  - More benchmarking
  - Improve non-linear integer solvers







