Appignment - 1 Dix crete Mathematics

Name: & DEEPAK BHAKATHWAJ

Roll: CH.SC. U4CSE 24015

O Determine whether these conditional statements are a tautology are not by using truth tables.

a) -1 P -> C P -> 0/)

6) [(R(-9) ~ (Q->R)] -> (P->R)]

№: a)	P 9		79	p -> 2	-b -> (b -> d)		
	T	T	F	T	ular south		
		F	F	F	A PARTIE THE REAL PROPERTY.		
		-	T	T	T		
	F			Т	Т		
	F	F	T		Silvenia Bash La		
					CKLTKILY		

[7p -> (p->a)] ix a tautology

P	19	18	p->9	19-2	(p-29) N(q-22)	10->>	(b-20)	(9-22)-
Т	T	T	Т	7	T	TE		+
Т	T	F	Т	F	F	7		Т
_	F	T	F	Т	F	F		T
Г	F	F	F	Т	T	T		T
-	-	T	T	T	E	T		_
	+	F	Т	F	7	T		7
	F	7	Т	T	+	T		
	-	-	T					

[(p-)a) (q-)2)] -> (p-)2) ip a tautology

(2) what is the truth value of $\forall x(x^2) x$) if the domain consists of all real numbers? What is the truth value of this statement if the domain consists of all integers.

nd: + Domain in all Real numbers

Let, P(n) : 4 n (n2) n)

for x = 1(0.1)² > 0.1 is false

(1)² > 2 is false

.. Truth value ix False

* Domain in all Integers

Let, P(X): \(X^2)X)

for x = 2

(2)2 > 2 is true

but, for x = 1

(1)2 > 1 is false

```
: Touth value is False
3 Place that if n ix a popitive integer; then n is
   even of and only if In+4 is even.
```

And: P(n): nix even P(n): 7n+4 is even

To place: P(n) (-) q(n)

we are plaving p(n) -> q(n) and q(n) -> p(n)

() p(n) -> q(n)

let P(n) if even

There exist an integer K where

n = 2 K

7n+4 = 7(2K)+43 = 14K+4 = 2(714+2) = ak' (K'=7K+2) It is in the form of all

-- 7n+4 ix even. :. p(n) -> p(n)

ii) q(n) -> p(n)

let qun be even 7n+4 = 2K 7n = 2k - 4 = a(K-2) = 2K' CK=1K-2] : q(n) -> p(n)

which implies p(n) (-) q(n)

- (a) show that these these statements are equivalent, when a and b are real numbers.
 - (i) a ix less than b
 - (ii) The average of a and b is greater than a and
 - (iii) The average of a and b ix less than b

And :

Let us consider.

P.Q.1 he the conditions

p:a<b

9: a+b > a

 $\lambda: \frac{a+b}{2} < b$

To plove:

There statement are equivalent;

(i) To place:

P->9

P: a < b

Adding (a) on both sides

a+a (a+b

aa ca+b

a < a+6

```
where atb >a
:. p->9 ix true
ii) To plave:
       p-> &
      p:acb
    Adding (b) on both xides
       a+b < b+b
       a+b < 2 b
       \frac{a+b}{2}
   where a+b < b
   -- P-> lis the
   To place:
(11)
       9, -> p
      9 2 a+6 > a
       a+6 > 2a
      subtracting (a) on both sides
        a+b-a > 2a-a
             bsa
       where, a < b
         · 9->p is true
    To place:
iv)
      8->P
        a+b < b
        a+6 < 2 b
       subtracting (b) on both sides
```

a+b-b < 2b-b

where azb

·. 8-> p ix true

which implies that the three statements are equivalent.

- 5) Determine if these definitions are valid recursive definitions of a function and prove that your formula is valid.
 - a) f(0) = 1; f(n) = -f(n-1) for n > = 1
 - b) f(0) = 1; f(1) = 0; f(2) = 2; f(n) = 2 f(n-3) fol n = 3

And:

a)
$$f(n) = -f(n-1)$$

 $f(1) = -f(1-1)$
 $f(1) = -f(0)$
 $f(1) = -1$ ($f(0) = 1$)

$$f(2) = -f(2-1)$$

 $f(2) = -f(1)$

lis) = 2 (f(0)=1)

1(2) = 1

It follows the pattern of fin) = (-1)^

b) f(0) = 2; f(1) = 0; f(2) = 2; f(n) = 2f(n-3) f(3) = 2f(3-3) f(3) = 2f(3-3)f(3) = 2f(0)

f(u) = 2 f(u-3) fin) = 2 fin) f(4) = 0 (f(1) = 0] f(5) = 2f(5-3) f(5) = 2f(2) f(5) = 2.2 (f(2) = 2] f(5) = 4 B

we can see that the values depend on the previous values.

-. It ip a recursive function.