12. Given that L is Turing recognizable, some enumerator E enumerates L. Consider another TM D that operates as follows. For a given input i, D runs E until it prints $\langle M_i \rangle$, the ith item. Then D runs M_i on input i. Finally, if M_i accepts, D rejects, and if M_i rejects, D accepts. Clearly, D always terminates on all inputs, and is thus a decider itself. Let's call the (decidable) language of D as L_D .

Now, let's assume that there is some $\langle M \rangle \in L$ such that M decides L_D . Then $\langle M \rangle$ must appear at some index k in the enumeration done by E. Now, since M and D are both deciders for L_D , M must accept input k iff D accepts input k. However, by definition, D rejects k if M accepts k. Therefore, our supposition that such a TM M exists is wrong, which implies that the language L_D has no decider in L. This concludes the proof.

- 20. Consider the following transformation procedure on any DFA D.
 - 1. Create an NFA N^r as follows.
 - 2. Copy over all states from D into N^r .
 - 3. If there exists a transition $\delta_D(q,a) \to q'$ in D, add correspondingly the transition $\delta_{N^r}(q',a) \to q$. This is visually equivalent to reversing the transition edges.
 - 4. Add a new state s and mark it as a start state of N^r . Add transitions of the form $\delta_{N^r}(s,\epsilon) \to f$ for each state f that is an accept state in D.
 - 5. Make the start state of D the only accept state of N^r .
 - 6. Finally, convert the NFA N^r into an equivalent DFA D^r .

Now, we can see from the above construction that N^r (and thus also D^r) accepts w^r iff D accepts w. Therefore, N^r (and thus also D^r) accepts both w^r and w iff D too accepts both w and w^r . Taking this to its conclusion, we can see that N^r (and thus also D^r) and D are equivalent iff for any string w, D accepts w^r iff it accepts w.

Now, consider a TM M that for any given DFA description < d >, performs the above DFA transformation procedure on d, and then checks whether d and d^r are equivalent. The transformation procedure itself takes a finite number of steps. Further, we know (from chapter 4 text) that the problem of determining whether two DFAs are equivalent is decidable, and thus can also be done in a finite number of steps. Therefore the TM M is a decider. In fact, it decides the language $S = \{< D > | D$ is a DFA that accepts w^r iff it accepts $w\}$. This concludes the proof.