Universidad Santo Tomás, Facultad de Ingeniería

Álgebra: Taller 1

Profesor: Gustavo Ahumada

Problema 1 (10 puntos).

Simbolizar completamente las premisas y la conclusión del razonamiento y dar una deducción formal de la conclusión:

- Si no ocurre que si un objeto flota en el agua entonces es menos denso que el agua, entonces se puede caminar sobre el agua.
- Pero no se puede caminar sobre el agua.
- Si un objeto es menos denso que el agua, entonces puede desplazarse una cantidad de agua a su propio peso.
- Si puede desplazar una cantidad de agua igual a su propio peso, entonces el objeto flotará en el agua.
- Por lo tanto, un objeto flotará si y sólo si es menos denso que el agua. (conclusión).

Problema 2. (10 puntos).

Dar una demostración formal al siguiente razonamiento. Debe ser preciso con las reglas de inferencia que se implementan.

Demostrar: $x = 4 \leftrightarrow 3x + 2 = 14$

(1)
$$3x + 2 = 14 \leftrightarrow 3x = 12$$

$$(2) 3x = 12 \leftrightarrow x = 4$$

P

Problema 3. (10 puntos).

Mostrar por medio de una tabla de certeza si la siguiente inferencia es valida. Construir toda la tabla de certeza completa.

- Si Isabel se retrasa, entonces Cristina es puntual.
- Si Isabel no se retrasa, entonces Cristina no es puntual.
- Por lo tanto, O Isabel se retrasa o Cristina es puntual.

Problema 4. (10 puntos).

Mostrar por medio de una tabla de certeza si las siguientes inferencias son validas. Construir la tabla de certeza completa.

1.

2.

$$\begin{array}{cccc} P \rightarrow \neg Q & & & P \\ \neg Q & & P \\ \hline \hline & & & \\ \hline \neg P & & & Conclusion \end{array}$$

Problema 5. (10 puntos).

Completa la tabla de certeza dada a continuación para mostrar que la let del silogismo hipotético es una buena regla.

Ρ	Q	R	$R \to Q$	$Q \to R$	$P \to R$
С	С	С			
\mathbf{C}	\mathbf{C}	F			
\mathbf{C}	F	\mathbf{C}			
\mathbf{C}	F	F			
\mathbf{F}	\mathbf{C}	\mathbf{C}			
\mathbf{F}	\mathbf{C}	F			
\mathbf{F}	F	\mathbf{C}			
\mathbf{F}	F	\mathbf{F}			

Problema 6. (10 puntos).

a. Demostrar la propiedad distributiva de la intersección respecto de la unión.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

b. Demostrar que:

$$A \cap A = A$$
.