પ્રશ્ન 1(અ) [3 ગુણ]

congestion control ના પ્રકારો જણાવો અને કોઈપણ એક સમજાવો

જવાબ:

увіг	વર્ણન
Open-Loop	congestion થાય તે પહેલાં અટકાવે
Closed-Loop	congestion detect થયા પછી વ્યવસ્થાપન

Open-Loop Congestion Control સમજાવટ:

- અટકાવવાનો અભિગમ: congestion થાય તે પહેલાં action લે
- Traffic shaping: sender પર data rate control કરે
- Admission control: વધુ traffic દરમિયાન નવા connections limit કરે
- Load shedding: buffer full થાય ત્યારે packets drop કરે

મેમરી ટ્રીક: "Open Prevents Traffic Admission Load"

પ્રશ્ન 1(બ) [4 ગુણ]

Address Resolution Protocol વિસ્તારપૂર્વંક સમજાવો

જવાબ:

ARP (Address Resolution Protocol) local networks માં IP addresses ને MAC addresses સાથે map કરે છે.

કાર્ય પ્રક્રિયા:

- ARP Request: "કોની પાસે IP X છે?" broadcast message
- ARP Reply: target device પોતાનું MAC address આપે
- ARP Cache: ભવિષ્ય માટે IP-MAC mappings store કરે
- **Dynamic mapping**: entries automatically update કરે

Table: ARP Message Types

Туре	Purpose	Broadcast
ARP Request	MAC address શોધવા માટે	Yes
ARP Reply	MAC address આપવા માટે	No

મેમરી ટ્રીક: "ARP Requests Broadcast, Replies Cache Dynamic"

પ્રશ્ન 1(ક) [7 ગુણ]

TCP/IP મોડેલના દરેક layers ને તેમની કાર્યક્ષમતા સાથે સમજાવો

જવાબ:

TCP/IP Model internet communication भा2 four-layer network protocol stack છે.

Layer Functions:

Layer	Function	Protocols
Application	User interface, network services	HTTP, FTP, SMTP
Transport	End-to-end communication	TCP, UDP
Internet	Routing, addressing	IP, ICMP
Network Access	Physical transmission	Ethernet, WiFi

- Application Layer: applications -i network services provide ระ
- **Transport Layer**: error control સાથે reliable data delivery ensure કરે
- Internet Layer: IP addressing વાપરીને networks વચ્ચે packets route કરે
- Network Access Layer: physical data transmission handle કરે

ਮੇਮਣੀ ਟ੍ਰੀਡ: "All Transport Internet Network"

પ્રશ્ન 1(ક OR) [7 ગુણ]

OSI model ને તેના દરેક લેચરની કાર્યક્ષમતા સાથે સમજાવો

જવાબ:

OSI Model network communication માટે seven-layer reference model છે.

Layer Functionalities:

Layer	Function	Examples
Physical (1)	Bit transmission	Cables, signals
Data Link (2)	Frame delivery	Ethernet, switches
Network (3)	Routing packets	IP, routers
Transport (4)	End-to-end delivery	TCP, UDP
Session (5)	Dialog management	NetBIOS
Presentation (6)	Data formatting	SSL, compression
Application (7)	User interface	HTTP, email

મેમરી ટ્રીક: "Physical Data Network Transport Session Presentation Application"

પ્રશ્ન 2(અ) [3 ગુણ]

Subnetting ને ટૂંકમાં સમજાવો

જવાબ:

Subnetting મોટા network ને better management માટે નાના sub-networks માં વહેંચે છે.

મુખ્ય સિદ્ધાંતો:

• **Subnet mask**: network અને host portions define કરે

• Network efficiency: broadcast traffic ยะเร้

• Address conservation: વધુ સારો IP utilization

• **Security**: network segments ને isolate કરે

Example:

Network: 192.168.1.0/24 → Subnets: 192.168.1.0/26, 192.168.1.64/26

મેમરી ટ્રીક: "Subnet Network Efficiency Address Security"

પ્રશ્ન 2(બ) [4 ગુણ]

ડેટા લીક લેચરના Stop and wait ARQ પ્રોટોકોલને ઉદાહરણ આપી સમજાવો

જવાબ:

Stop and Wait ARQ reliable data transmission ensure કરવા માટેનો flow control protocol છે.

รเข้ นเรียเ:

- Send frame: Transmitter એક frame મોકલે
- Wait for ACK: Sender acknowledgment માટે રાહ જુએ

• **Timeout**: ACK ન મળે તો retransmit કરે

• **Next frame**: ACK મળ્યા પછી next frame મોકલે

Example: File transfer માં દરેક packet confirmation માટે રાહ જુએ before sending next.

મેમરી ટ્રીક: "Send Wait Timeout Next"

પ્રશ્ન 2(ક) [7 ગુણ]

IPv4 datagram Header ની આકૃતિ દોરો અને સમજાવો

જવાબ:

IPv4 Header packet routing અને delivery માટે control information ધરાવે છે.

Field સમજાવટ:

Field	Size	Function
Version	4 bits	IP version (IPv4 หเ2 4)
IHL	4 bits	Header length
Type of Service	8 bits	Quality of service
Total Length	16 bits	Packet size
TTL	8 bits	Hop limit
Protocol	8 bits	Next layer protocol
Source/Dest Address	32 bits εὲs	IP addresses

મેમરી ટ્રીક: "Version IHL Service Total TTL Protocol Source Destination"

પ્રશ્ન 2(અ OR) [3 ગુણ]

HTTPS શું છે? HTTPSની મહત્વની વિશેષતાઓની યાદી લખો

જવાબ:

HTTPS (HTTP Secure) secure web communication માટે SSL/TLS વાપરીને encrypted HTTP છે.

મુખ્ય વિશેષતાઓ:

• Encryption: Data transit માં encrypted રહે

• Authentication: Server identity verify ອ ຂໍ

• Data integrity: Data tampering અટકાવે

• Trust: SSL certificates validation provide ระั

Security Benefits:

- Sensitive information protect ระ
- Man-in-the-middle attacks prevent sè
- Search engine ranking boost આપે

મેમરી ટ્રીક: "HTTPS Encrypts Authentication Data Trust"

પ્રશ્ન 2(બ OR) [4 ગુણ]

કોઈપણ બેના જવાબ આપો:

જવાબ:

- 1) Class B અને C દ્વારા કેટલા bits HOST ID નો ઉપયોગ થાય છે?
 - Class B: HOST ID หเ2 16 bits (65,534 hosts)

• Class C: HOST ID หเ2 8 bits (254 hosts)

2) Class A અને D ની IP રેન્જ કેટલી છે?

• Class A: 1.0.0.0 to 126.255.255.255

• Class D: 224.0.0.0 to 239.255.255.255 (Multicast)

Class	Range	Host Bits
В	128.0.0.0 - 191.255.255.255	16 bits
С	192.0.0.0 - 223.255.255.255	8 bits
А	1.0.0.0 - 126.255.255.255	24 bits
D	224.0.0.0 - 239.255.255.255	Multicast

ਮੇਮਰੀ ਟ੍ਰੀs: "B=16, C=8, A=1-126, D=224-239"

પ્રશ્ન 2(ક OR) [7 ગુણ]

Classful IPv4 એડ્રેસ સ્ક્રીમ સમજાવો

જવાબ:

Classful IPv4 Addressing first octets આધારે IP address space ને પાંચ classes માં વહેંચે છે.

Address Classes:

Class	Range	Network Bits	Host Bits	Usage
Α	1-126	8	24	Large networks
В	128-191	16	16	Medium networks
С	192-223	24	8	Small networks
D	224-239	-	-	Multicast
E	240-255	-	-	Experimental

લાક્ષણિકતાઓ:

- Class A: network εls 16.7 million hosts
- Class B: network ɛીຣ 65,534 hosts
- Class C: network ຄົຣ 254 hosts
- **มนเ้ยเ**พ้า: Address wastage, inflexible allocation

મેમરી ટ્રીક: "A-Large, B-Medium, C-Small, D-Multicast, E-Experimental"

પ્રશ્ન 3(અ) [3 ગુણ]

મોબાઇલ કમ્પ્યુટિંગનો ઉપયોગ કરતી એપ્લિકેશનોના પ્રકારોની યાદી બનાવો

જવાબ:

Mobile Computing Applications:

પ્રકાર	Examples
Communication	WhatsApp, Email, Video calls
Navigation	GPS, Google Maps
E-commerce	Shopping apps, Mobile banking
Entertainment	Games, Streaming, Social media
Business	CRM, Sales tracking
Healthcare	Health monitoring, Telemedicine

• Location-based services: GPS navigation, location sharing

• Mobile payments: Digital wallets, UPI transactions

• Social networking: Facebook, Instagram, Twitter

મેમરી ટ્રીક: "Communication Navigation E-commerce Entertainment Business Healthcare"

પ્રશ્ન 3(બ) [4 ગુણ]

Gateways નો ઉપયોગ સમજાવો અને Gateways ના પ્રકારોની યાદી આપો

જવાબ:

Gateway અલગ અલગ protocols અને architectures વાળા networks ને connect કરે છે.

Gateways ના ઉપયોગ:

• Protocol conversion: વિવિધ protocols વચ્ચે translate કરે

• Network bridging: અસમાન networks ને connect કરે

• **Security**: Firewall અને access control

• Data filtering: Traffic flow manage sè

Gateways ના પ્રકારો:

Туре	Function
Network Gateway	Networks વચ્ચે route કરે
Internet Gateway	Internet સાથે connect કરે
Protocol Gateway	Protocol translation
Application Gateway	Application-level filtering

મેમરી ટ્રીક: "Gateways Convert Bridge Secure Filter"

પ્રશ્ન 3(ક) [7 ગુણ]

Mobile Computing નું આર્કિટેક્ચર દોરો અને સમજાવો

જવાબ:

Mobile Computing Architecture એકસાથે કામ કરતા ત્રણ મુખ્ય components ધરાવે છે.

Architecture Components:

Component	Elements	Function
Mobile Unit	Devices, OS, Apps	User interface, processing
Communication Network	Wireless links, protocols	Data transmission
Fixed Infrastructure	Servers, databases	Backend services

મુખ્ય લાક્ષણિકતાઓ:

- Mobility: Users connectivity maintain કરીને move કરી શકે
- Wireless communication: Data transmission มเว้ radio waves
- **Distributed computing**: Multiple devices ५२ processing
- Location independence: કોઈપણ જગ્યાએથી services access

પડકારો:

- Limited bandwidth: Wireless networks หi capacity constraints
- Battery life: Mobile devices หi power limitations

મેમરી ટ્રીક: "Mobile Communication Fixed - Mobility Wireless Distributed Location"

પ્રશ્ન 3(અ OR) [3 ગુણ]

મોબાઇલ કમ્પ્યુટિંગમાં સુરક્ષા ધોરણોની યાદી બનાવો

જવાબ:

Mobile Computing Security Standards:

Standard	Purpose
WPA3	WiFi security protocol
SSL/TLS	Secure data transmission
IPSec	IP layer security
EAP	Authentication framework
802.11i	Wireless LAN security
FIPS 140-2	Cryptographic module standards

• Authentication protocols: User identity verify sè

• Encryption standards: Data confidentiality protect ຣ ເ

• Access control: Resource permissions manage sè

ਮੇਮਰੀ ਟ੍ਰੀs: "WPA SSL IPSec EAP 802.11i FIPS"

પ્રશ્ન 3(બ OR) [4 ગુણ]

કોમ્યુનિકેશન Gateway ના મુખ્ય કાર્યો સમજાવો

જવાબ:

Communication Gateway વિવિધ network systems વચ્ચે data exchange manage કરે છે.

મુખ્ય કાર્યો:

Function	Description
Protocol Translation	Protocols વચ્ચે convert કરે
Data Format Conversion	Data formats change sè
Routing	Messages ને destinations પર direct કરે
Security	Access control અને filtering

વિગતવાર કાર્યો:

- Message routing: Data માટે optimal path determine કરે
- **Error handling**: Transmission errors અને recovery manage કરે
- Traffic management: Data flow અને congestion control કરે

• **Authentication**: Sender અને receiver identity verify કરે

ફાયદાઓ:

- વિવિધ systems વચ્ચે interoperability enable કરે
- Network management centralize ระ
- Security checkpoint provide ระ

મેમરી ટ્રીક: "Protocol Data Routing Security - Message Error Traffic Authentication"

પ્રશ્ન 3(ક OR) [7 ગુણ]

મિડલવેરનો ઉપયોગ અને મિડલવેરના લિસ્ટ પ્રકારો સમજાવો

જવાબ:

Middleware distributed computing માટે applications અને operating system વચ્ચે software layer provide કરે છે.

Middleware ના ઉપયોગ:

- Connectivity: Distributed applications ને link કરે
- Interoperability: વિવિધ systems ને એકસાથે કામ કરવા enable કરે
- **Abstraction**: Underlying systems ની complexity hide કરે
- **Scalability**: System growth અને expansion support કરે

Middleware ના પ્રકારો:

Туре	Function	Examples
Message-Oriented	Asynchronous communication	IBM MQ, RabbitMQ
Remote Procedure Call	Synchronous communication	gRPC, XML-RPC
Object Request Broker	Object communication	CORBA
Database Middleware	Database connectivity	ODBC, JDBC
Transaction Processing	Transaction management	Tuxedo
Web Middleware	Web services	Apache, IIS

ફાયદાઓ:

- **Reduced complexity**: Application development simplify နေ
- **Reusability**: Multiple applications หเ2 common services
- Maintainability: Services ना centralized management
- Platform independence: વિવિધ systems પર કામ કરે

વિગતવાર સમજાવટ:

Message-Oriented Middleware:

- Asynchronous communication enable ระ
- Message queues ผูเข data exchange
- Reliability અને fault tolerance provide કરે

RPC Middleware:

- Remote functions ને local calls જેવા લાગે
- Synchronous communication support ອ ເ
- Network transparency provide ระ

Database Middleware:

- Multiple databases સાથે connectivity
- Data access layer abstraction
- Query optimization અને caching

Transaction Processing Middleware:

- ACID properties ensure ระ
- Distributed transactions manage sरे
- Concurrency control provide sè

Web Middleware:

• HTTP requests handle ระ

- Load balancing અને caching
- Security features provide ระ

Challenges:

- Performance overhead: Additional layer adds latency
- Complexity: System architecture વધુ complex બને
- Vendor dependency: Specific middleware vendors પર dependency

Applications:

- Enterprise systems: Large-scale business applications
- E-commerce: Online shopping platforms
- Banking systems: Financial transaction processing
- Telecommunication: Network service management

ਮੇਮਣੀ ਟ੍ਰੀs: "Message RPC Object Database Transaction Web - Connectivity Interoperability Abstraction Scalability"

પ્રશ્ન 4(અ) [3 ગુણ]

મોબાઇલ IP ના કાર્યકારી તબક્કાઓ સમજાવો

જવાબ:

Mobile IP Working Phases networks પર seamless mobility enable કરે છે.

ત્રણ મુખ્ય તબક્કાઓ:

Phase	Function
Agent Discovery	Home/foreign agents ยเโยยเ
Registration	Foreign agent સાથે register
Tunneling	Mobile node પર packets forward

Phase વિગતો:

- **Agent Discovery**: Mobile node advertisements દ્વારા available agents detect કરે
- **Registration**: Mobile node current location home agent સાથે register કરે
- Tunneling: Home agent packets encapsulate કરીને foreign agent પર forward કરે

મેમરી ટ્રીક: "Agent Registration Tunneling"

પ્રશ્ન 4(બ) [4 ગુણ]

Mobile IP માટે હેન્ડઓવર મેનેજમેન્ટ સમજાવો

જવાબ:

Handover Management mobile node networks વચ્ચે move કરે ત્યારે connectivity maintain કરે છે.

Handover Process:

• Movement detection: Network attachment માં ફેરફાર identify કરે

• New agent discovery: નવા foreign agent શોધે

• Registration update: Home agent સાથે location update કરે

• Data forwarding: Traffic ને નવા location પર redirect કરે

Handover ના પ્રકારો:

Туре	Description
Hard Handover	Break-before-make
Soft Handover	Make-before-break
Horizontal	Same technology
Vertical	Different technology

પડકારો:

• Packet loss: Handover transition દરમિયાન

• **Delay**: Registration અને tunneling setup time

• **Resource management**: Network resources नो efficient use

મેમરી ટ્રીક: "Movement Discovery Registration Forwarding"

પ્રશ્ન 4(ક) [7 ગુણ]

Mobile IP માં Registration અને Tunneling સમજાવો

જવાબ:

Registration અને Tunneling Mobile IP functionality enable કરવાના core mechanisms છે.

Registration Process:

Registration Steps:

- Request: Mobile node foreign agent ને registration request મોકલે
- Forward: Foreign agent request ને home agent પર forward કરે
- Authentication: Home agent mobile node identity verify sè
- Reply: Home agent registration confirm કરતો reply મોકલે

Tunneling Mechanism:

Component	Function
Encapsulation	Original packet ने wrap sरे
Tunnel Endpoint	Home અને foreign agents
Decapsulation	Destination પર packet unwrap કરે
Routing	Tunnel દ્વારા traffic direct કરે

Tunneling Process:

- Packet arrival: Mobile node માટે data home agent પર આવે
- Encapsulation: Home agent packet ને foreign agent address સાથે wrap કરે
- Tunnel transmission: Packet tunnel દ્વારા foreign agent પર જાય
- **Decapsulation**: Foreign agent unwrap કરીને mobile node ને deliver કરે

ફાયદાઓ:

• Transparency: Applications ને mobility ની જાણ નથી

- **Connectivity**: Movement દરમિયાન communication maintain કરે
- Scalability: Multiple mobile nodes support sè

મેમરી ટ્રીક: "Registration Request Forward Authentication - Tunneling Encapsulation Transmission Decapsulation"

પ્રશ્ન 4(અ OR) [3 ગુણ]

Snooping TCP સમજાવો

જવાબ:

Snooping TCP wireless networks પર wireless link errors handle કરીને TCP performance improve કરે છે.

કાર્ય પ્રક્રિયા:

- Base station monitoring: TCP packets observe ระ
- Local retransmission: Wireless link errors locally handle ອໍ
- Cache management: Transmitted packets ની copies store કરે
- **Error recovery**: Sender involve કર્યા વિના lost packets retransmit કરે

મુખ્ય લાક્ષણિકતાઓ:

Feature	Benefit
Transparent	TCP endpoints માં કોઈ changes નથી
Local recovery	Faster error correction
Reduced timeouts	Unnecessary retransmissions prevent ระั

મેમરી ટ્રીક: "Snooping Monitors Local Cache Recovery"

પ્રશ્ન 4(બ OR) [4 ગુણ]

Mobile IP મા પેકેટ ડિલિવરી સમજાવો

જવાબ:

Mobile IP માં Packet Delivery location ને ધ્યાન આપ્યા વિના mobile nodes પર data પહોંચાડે છે.

Delivery Process:

Delivery Scenarios:

Scenario	Path	Method
At Home	Direct	Normal IP routing
Away	Via HA/FA	Tunneling
Roaming	Triangle routing	Indirect path

Packet Flow Steps:

• Address resolution: Mobile node location determine ອຊ່

• Route selection: Direct અથવા tunneled delivery choose કરે

• Encapsulation: Tunneling જરૂરી હોય તો packet wrap કરે

• Forwarding: Appropriate destination પર send કરે

• **Decapsulation**: Foreign agent પર packet unwrap કરે

• **Final delivery**: Mobile node ને deliver કરે

મેમરી ટ્રીક: "Address Route Encapsulation Forward Decapsulation Delivery"

પ્રશ્ન 4(ક OR) [7 ગુણ]

DHCP કેવી રીતે કાર્ય કરે છે એ આકૃતિ દોરી સમજાવો

જવાબ:

DHCP (Dynamic Host Configuration Protocol) devices ਜੇ automatically IP addresses અਜੇ network configuration assign sਦੇ છે.

DHCP Working Process:

ચાર-પગલાની પ્રક્રિયા:

Step	Message	Function
1	DISCOVER	Client IP માટે broadcast request કરે
2	OFFER	Server available IP address offer કરે
3	REQUEST	Client specific IP address request કરે
4	ACK	Server IP assignment confirm કરે

DHCP Components:

- DHCP Server: IP address pool અને assignments manage કરે
- **DHCP Client**: Assigned configuration request કરે અને વાપરે
- DHCP Relay: Subnets પર DHCP messages forward કરે
- Address Pool: Available IP addresses नो range

Configuration Information Provided:

- IP Address: Unique network identifier
- Subnet Mask: Network boundary definition

• **Default Gateway**: Other networks નો route

• DNS Servers: Domain name resolution

• Lease Time: IP assignment નો duration

ફાયદાઓ:

• Automatic configuration: Manual IP assignment ની જરૂર નથી

• Centralized management: Network configuration มเ2 single point

• Efficient utilization: Dynamic allocation waste prevent ຣ₂

• Reduced errors: Manual configuration mistakes eliminate ระ

મેમરી ટ્રીક: "Discover Offer Request ACK - Server Client Relay Pool"

પ્રશ્ન 5(અ) [3 ગુણ]

WLAN ના પ્રકાર જણાવો અને કોઈપણ એક સમજાવો

જવાલ:

WLAN પ્રકારો:

Туре	Standard	Frequency
Infrastructure	802.11	2.4/5 GHz
Ad-hoc	IBSS	2.4/5 GHz
Mesh	802.11s	Multiple

Infrastructure WLAN સમજાવટ:

- Access Point (AP): બધા communications માટે central coordinator
- BSS (Basic Service Set): Single AP า่ network coverage area
- ESS (Extended Service Set): Multiple interconnected BSSs
- **Distribution System**: Multiple APs ને connect કરતું backbone

લાક્ષણિકતાઓ:

- બધા communication access point દ્વારા જાય છે
- Centralized network management
- વધુ સારું security અને performance control

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Infrastructure Ad-hoc Mesh - AP BSS ESS Distribution"

પ્રશ્ન 5(બ) [4 ગુણ]

નીચેના પ્રશ્નોના જવાબ આપો:

જવાબ:

1) Ad hoc Network ના ઉપયોગોની યાદી આપો:

Use Case	Application
Emergency	Disaster recovery, rescue operations
Military	Battlefield communications
Conferences	Temporary meeting networks
Home	Device-to-device communication
Vehicular	Car-to-car networks

2) મોબાઇલ કમ્પ્યુટિંગની Entities અને Terminology ની યાદી લખો:

Entities:

• Mobile Node (MN): Moving device

• Home Agent (HA): Permanent network representative

• Foreign Agent (FA): Temporary network coordinator

• Correspondent Node (CN): Communication partner

Terminology:

• Handover: Network switching process

• Roaming: Moving between networks

• Care-of Address: Temporary IP address

મેમરી ટ્રીક: "Emergency Military Conference Home Vehicular - MN HA FA CN"

પ્રશ્ન 5(ક) [7 ગુણ]

સ્વચ્છ આકૃતિ સાથે WLAN ના આર્કિટેક્ચરને સમજાવો

જવાબ:

WLAN Architecture access points દ્વારા communicate કરતા wireless stations ધરાવે છે.

Architecture Components:

Component	Function	Coverage
STA (Station)	Wireless device	Point
AP (Access Point)	Network coordinator	BSS area
BSS (Basic Service Set)	Single AP coverage	~100m radius
ESS (Extended Service Set)	Multiple connected BSS	Large area
DS (Distribution System)	AP interconnection	Building/campus

WLAN Architecture ના પ્રકારો:

1. Infrastructure Mode:

• **Centralized**: બધા traffic access points દ્વારા

• **Managed**: Network administration અને security

• Scalable: Coverage area expand કરવામાં easy

2. Ad-hoc Mode (IBSS):

• **Peer-to-peer**: Direct device communication

• **Decentralized**: કોઈ central coordinator નથી

• Temporary: Specific needs หเ2 quick setup

મુખ્ય લાક્ષણિકતાઓ:

• Mobility: Users coverage area માં move કરી શકે

• Wireless medium: Communication หเล้ radio waves

• Shared bandwidth: Multiple users channel capacity share ອໍ

• Security: Protection भाว WPA/WPA2/WPA3 protocols

Standards અને Frequencies:

• **802.11a**: 5 GHz, up to 54 Mbps

• **802.11b**: 2.4 GHz, up to 11 Mbps

• 802.11g: 2.4 GHz, up to 54 Mbps

• **802.11n**: 2.4/5 GHz, up to 600 Mbps

• **802.11ac**: 5 GHz, up to 6.93 Gbps

મેમરી ટ્રીક: "STA AP BSS ESS DS - Infrastructure Ad-hoc"

પ્રશ્ન 5(અ OR) [3 ગુણ]

5G ની લાક્ષણિકતાઓ લખો

જવાબ:

5G મુખ્ય લાક્ષણિકતાઓ:

Feature	Specification
Speed	Up to 10 Gbps સુધી
Latency	< 1 millisecond
Connectivity	1 million devices/km²
Reliability	99.999% availability
Bandwidth	100x વધારો
Energy	90% ยะเรì

Advanced Capabilities:

- Enhanced Mobile Broadband (eMBB): Ultra-fast data speeds
- Ultra-Reliable Low Latency (URLLC): Mission-critical applications
- Massive Machine Type Communication (mMTC): IoT connectivity

મેમરી ટ્રીક: "Speed Latency Connectivity Reliability Bandwidth Energy"

પ્રશ્ન 5(બ OR) [4 ગુણ]

નીચેના પ્રશ્નોના જવાબ આપો:

જવાબ:

1) communication middleware ની પ્રકારોની યાદી લખો:

Туре	Function
Message-Oriented	Asynchronous messaging
RPC-based	Remote procedure calls
Object-Oriented	Distributed objects
Service-Oriented	Web services
Database	Data access layer

2) Mobile IP ના સંદર્ભમાં "Home Agent" ની વ્યાખ્યા આપો:

Home Agent (HA) mobile node ના home network પરનો router છે જે:

- Registration maintain ระะ Mobile node current location track ระ
- Packets tunnel કરે: Mobile node ના foreign location પર data forward કરે
- Address management: Mobile node નું permanent IP address manage કરે
- Authentication: Registration દરમિયાન mobile node identity verify કરે

Functions:

- Mobile node home થી દૂર હોય ત્યારે proxy તરીકે કામ કરે
- Mobile node માટે destined packets intercept કરે
- Foreign agents સાથે tunnels create કરે

મેમરી ટ્રીક: "Message RPC Object Service Database - HA Maintains Tunnels Address Authentication"

પ્રશ્ન 5(ક OR) [7 ગુણ]

Bluetooth protocol stack આકૃતિ સાથે સમજાવો

જવાબ:

Bluetooth Protocol Stack short-range wireless communication માટે layered architecture provide કરે છે.

Protocol Stack Layers:

Layer	Function	Protocols
Application	User applications	Audio, File transfer
Middleware	Services	OBEX, SDP, TCS
Transport	Data delivery	RFCOMM
Network	Packet management	L2CAP
Interface	Host-Controller	HCI
Management	Link control	LMP
Data Link	Channel access	Baseband
Physical	Radio transmission	2.4 GHz ISM

Layer વિગતો:

Upper Layers:

- OBEX: File transfers หเ2 Object Exchange Protocol
- SDP: Available services ยเโยนา หเว้ Service Discovery Protocol
- TCS: Voice calls หเว้ Telephony Control Specification
- RFCOMM: Bluetooth પર serial port emulation

Lower Layers:

- L2CAP: Multiple connections manage ຣ ຂ છે Logical Link Control
- HCI: Communication standardize ອ ຂໍ છે Host Controller Interface
- LMP: Connection setup handle sè છે Link Manager Protocol
- **Baseband**: Time slots અને frequency hopping manage કરે

મુખ્ય લાક્ષણિકતાઓ:

- Frequency Hopping: 79 channels પર 1600 hops/second
- Piconet: 8 devices સુધીનું network
- **Scatternet**: Multiple overlapping piconets
- Power Classes: Class 1 (100m), Class 2 (10m), Class 3 (1m)

ફાયદાઓ:

- Low power consumption: Battery devices หเล้ suitable
- Automatic pairing: Easy device connection
- Interference resistance: Frequency hopping spread spectrum

• **Cost effective**: Low implementation cost

Applications:

• Audio streaming: Headphones, speakers

• Data transfer: Devices વચ્ચે file sharing

• Input devices: Keyboards, mice

• **IoT devices**: Sensors, smart home devices

મેમરી ટ્રીક: "Application Middleware Transport Network Interface Management DataLink Physical"