令和3年7月26日(月) M1前期発表会

ダブルレイヤーLSTMを用いた翻訳システムの構築

ソフトウェアシステム研究グループ

陳 偉斉

- 1.はじめに
- 2.要素技術
- 3.データセット
- 4.実験の流れ
- 5.まとめと今後の課題

1.はじめに

- 2.要素技術
- 3.データセット
- 4.実験の流れ
- 5.まとめと今後の課題

はじめに

はじめに(研究目的)

手法

・Attentionメカニズムを使ったモデルは時間と性能の要求が高い,故にLSTMで実験する

課題

LSTMで機械翻訳を理解する

- 1.はじめに
- 2.要素技術
- 3.データセット
- 4.実験の流れ
- 5.まとめと今後の課題

Recurrent Neural Netword (RNN)

- ・回帰構造を持つニューラルネットワーク
- ・逆伝播による勾配消失と勾配爆発問題,故に長期的な記憶はできない

Long Short-term Memory (LSTM)

$$C_t = Zf \odot C_{t-1} + Zi \odot Z$$

$$h_t = Zo \odot tanh(C_t)$$

$$y_t = \sigma(Wh_t)$$

Sequence to Sequence (seq2seq)

• 時系列データを処理するネットワーク構造

jieba(中国語テキスト分かち書き)・

・全モード

我来到东京大学

我,来到,东京,东京大学,京大,大学

・精確モード

我来到东京大学

我,来到,东京大学

- 1.はじめに
- 2.要素技術
- 3.データセット
- 4.実験の流れ
- 5.まとめと今後の課題

データセット

- ManyThingsデータセット
- ManyThings Bilingual Sentence Pairsの 英語-中国語本文を使用
- ・全データセットは英語-中国語本文24360ペア, 最長文本は33文字、最短文本は1

データセット

データセットの例

英語	中国語
Where are the strawberries	草莓在哪裡
What's the matter with you	你怎么了
You can count on her	你可以相信她
You don't need money	你不需要錢
We haven't lost hope	我们没有失望
Tom wanted to see me	汤姆想见我

- 1.はじめに
- 2.要素技術
- 3.データセット
- 4.実験の流れ
- 5.まとめと今後の課題

データ処理

・データセット文本を4:1の比率で分ける

DataSet	Training	Testing
Pairs	19488	4872

•Tokenizeで単語のディクショナリを構築する

DataSet	Training	Testing
Cmn_Vocab	12973	5814
Eng_Vocab	6750	3541

Encoder ・始めと終わりのトー LSTM LSTM LSTM LSTM **LSTM** クン<SOS>と<EOS>を 加入 LSTM **EMB EMB EMB** EMB EMB **EMB** -二層LSTMで実装 Stol Stol Stol Stol Stol Stol "<SOS>" "<EOS>" •Context Vectorは出 力hと記憶cを示す **TOKENIZE** "我愛機器學習"

Teach Force Ratio

- •Encoderが予測した結果が間違えると,続きの実験によくない
- 先生のように正確な答えをモデルに教える

評価指標

- bilingual evaluation understudy(BLEU)
- ・機械翻訳に広く使わる評価手法

$$BLEU(\mathcal{H}, \mathcal{R}) = BP \cdot \exp\left(\frac{1}{N} \sum_{n=1}^{N} \log P_n\right)$$

$$P_n = \frac{\sum_{i=1}^{S} \sum_{t_n \in h_i} \min(\operatorname{count}(h_i, t_n), \max_{-1} \operatorname{count}(R_i, t_n))}{\sum_{i=1}^{S} \sum_{t_n \in h_i} \operatorname{count}(h_i, t_n)}$$

$$BP = \min\left(1, \exp\left(1 - \frac{\operatorname{closest_len}(\mathcal{R})}{\operatorname{len}(\mathcal{H})}\right)\right)$$

実験結果

Training Loss

Bleu score: 16.94

モデルパラメータ

パラメータ	值
Input_size	12973
Hidden_Size	1024
Output_size	6075
Embedding_size	300
Batch_size	32
Epoch	100
Loss Function	Cross Entropy
Optimizer	Adam
Learning Rate	0.001

- 1.はじめに
- 2.要素技術
- 3.データセット
- 4.実験の流れ
- 5.まとめと今後の課題

まとめと今後の課題

まとめ

•ダブルレイヤーLSTMで翻訳システムの実装

今後の課題

- ・日本語-中国語翻訳に関する取り組み
- ・Transformerの導入
- ・機械翻訳を漫画に利用する可能性の探索

ご清聴ありがとうございました