Discrete Math Ass 2 1231040 主子恒

$$Q_1 \mid (a)$$
 False. counter example: $A = \{1, 2, 3\}$ $B = \{4, 5\}$

(b) True
$$A \land B \land C = \{x \mid x \in A \land x \in B \land x \in C\}$$

 $\subseteq \{x \mid x \in A \land x \in B\}$
 $\subseteq \{x \mid x \in A \lor x \in B\}$
 $= A \lor B$

(c) False

$$\overline{(A-B)} \cap (B-A) = \{x \mid (x \in A \land x \notin B) \land (x \in B \land x \notin A)\}$$

Q.2.
1) Disproof: conterexample:

$$A = \{1, 2, 3, 4\}$$
 $B = \{2, 3, 5, 6\}$ $C = \{3, 4, 7, 8\}$
 $C - (A \land B) = \{4, 7, 8\}$

$$(C-A) \wedge (C-B) = \{7,8\}$$

(2) Proof:

$$X \in P(A) \land P(B)$$
 means $X \in P(A)$ and $X \in P(B)$, implies that $X \in A$ and $X \subseteq B$, then $X \subseteq A \land B$, thus $X \in P(A \land B)$. So $P(A) \land P(B) \subseteq P(A \land B)$

 $X \in P(A \land B)$ means that X is a subset of both A and B, which implies $X \in P(A)$ and $X \in P(B)$ Then we get $X \in P(A) \land P(B)$ $S \land P(A \land B) \subseteq P(A) \land P(B)$ Since two statement above, we have $P(A) \land P(B) = P(A \land B)$

$$P(AUB) = \{11\}, \{2\}, \{1,2\}\}$$

 $P(A)UP(B) \neq P(AUB)$

From the truth table, we can get AB(BBC) = (ABB) BC.

When IX, XEANX &B ADC= IDC=7C, BDC= ODC=C.

ADC + BOC

When IT, TEANXER ABC=DBC=C, BBC=1BC=O
ABC=BBC.

By contradiction, A = B

Q.4. (a) finity => countable

(b) countable

contistructing the list: first list (a,b) with a+b=0, then list (a,b) with a+b=1, and so on

$$(0,0)$$
 $(1,0)$ $(2,0)$...
 $(0,1)$ $(1,1)$ \vdots ...
 $(0,2)$ \vdots ...

(c) uncountable.

Because for any $a_0 \in N$, it has a subset $\{(a_0,b) | b \in R\}$ which is an uncountable set.

```
Q.5
(a) A = B = R
(b) A = R
B = R - N
(c) A = R
B = (0, 1)
```

Q.b. only if: Because $A \subseteq P(A)$, $P(A) \subseteq P(B)$, we have $A \subseteq P(B)$.

which means A is a subset of B, Thus $A \subseteq B$ if: Let $X \in P(A)$ which means $X \subseteq A$. Since $X \subseteq A$, $A \subseteq B$ Therefore $X \subseteq B$. Thus $X \in P(B)$

Therefore $X \subseteq B$. Thus $X \in P(B)$ Since for all element X in P(A) we can show that $X \in P(B)$ Hence, $P(A) \subseteq P(B)$

Q.7. f is one-to-one => Proof every f(x) = f(y) implies x = y for $x, y \in A$.

Proof: Assume f(x) = f(y), $x, y \in A$

Since $g \circ f = 1 A$, we have $g \circ f(x) = g(f(x)) = x$ $g \circ f(y) = g(f(y)) = y$

since f(x) = f(y), thus g(f(x)) = g(f(y))Hence, x = y. So f is one-to-one.

g is onto: for every $a \in A$, there exists an $b \in B$ that g(b) = asince $g \circ f(a) = g(f(a)) = a$

Thus for every $a \in A$, there exists $f(a) \in B$ that g(f(a)) = a. Hence g is onto.

(b) 9 must be one-to-one

Suppose g is not one-to-one, then there exists $a_1 \neq a_2 \in A$ and $g(a_1) = g(a_2)$. Thus $f(g(a_1)) = f(g(a_1))$ which means that $\exists a_1 \neq a_2 \in A$ $f \circ g(a_1) = f \circ g(a_2)$. Contradict to $f \circ g$ is one-to-one. Hence g must be one-to-one.

cc) g must be one-to-one. Let α_1 , $\alpha_2 \in A$ that $g(\alpha_1)=g(\alpha_2)$ then $f(g(\alpha_1))=f(g(\alpha_1))$, Because $f\circ g$ is one-to-one, thus $\alpha_1=\alpha_2$, Hence g is one-to one.

do Yes

If fog is onto, then for every $C \in C$, there exist an $a \in A$ that $f \circ g(a) = C$. Since for every a, we have $a \cdot b \in B$ that $b \in B$ Thus for every $c \in C$, we have $a \cdot b \in g(b)$ let f(b) = C, Hence f is onto

ce) No.

$$Q.9. \quad n^{3} - (n-1)^{3} = 3n^{2} - 3n + | \qquad (n-1)^{2} - (n-2)^{2} = 3(n-1)^{2} - 3(n-1) + | \qquad (n-1)^{2} - (n-2)^{2} = 3(n-1)^{2} - 3(n-1) + | \qquad (n-1)^{2} - (n-2)^{2} = 3(n-1)^{2} - 3(n-1) + | \qquad (n-1)^{2} - (n-2)^{2} = 3 \times 2^{2} - 3 \times 2 + | \qquad (n-1)^{2} - n^{2} = 3 \times | + | \qquad (n-1)^{2} - n^{2} = 3 \times | + | \qquad (n-1)^{2} - n^{2} = 3 \times | + | \qquad (n-1)^{2} - n^{2} = 3 \times | + | \qquad (n-1)^{2} - n^{2} = 2n^{2} + 3n^{2} + n = 2n^{2} + 2n^{2} 2n^{2} +$$

Q.11. we have
$$(n+1)^2 - n^2$$
 numbers of n

thus if $\lim_{k=1}^{n} = n+1$

$$= \sum_{k=1}^{n} i \cdot (i+1)^2 - i^2 + \sum_{k=n+1}^{n} (k) = \sum_{k=1}^{n} i \cdot (2i+1) + (m-(n+1)+1) \cdot (n+1) = \frac{n(n+1)(2n+1)}{3} + \frac{n(n+1)}{2} + (n+1) \cdot (m-(n+1)^2 + 1) = \frac{4n^3 + 9n^2 + 5n}{6} + (m+1) \cdot (n+1) - (n+1)^3$$

$$= \frac{n(n+1)(4n+1) + (m+1) \cdot (n+1) - (n+1)^3}{6}$$

$$= \frac{(\lfloor \frac{n}{m} \rfloor - 1) \cdot \lfloor \frac{n}{m} \rfloor \cdot (4\lfloor \frac{n}{m} \rfloor + 1)}{6} + (m+1) \cdot \lfloor \frac{n}{m} \rfloor - (\frac{n}{m} \rfloor \cdot \frac{1}{m} \rfloor^3$$

Q.12.
$$|A \times C| = |A| \times |C|$$

$$|B \times D| = |B| \times |D|$$
Since
$$|A| = |B|$$
,
$$|C| = |D|$$
we have
$$|A| \times |C| = |B| \times |D|$$
Hence
$$|A \times C| = |B \times D|$$

*Q.13 If |A| = |B| we can find a bijetion $f: A \Rightarrow B$ Thus we have an in jection $f: A \Rightarrow B$, so $|A| \le |B|$. Meanwhile we have another injection $f^{-1}B \Rightarrow A$. so $|B| \le |A|$

 Q_{14} . We proof a lemma first: If f and g are both onto function, then fog is also an onto function.

Proof: Assume $g: A \rightarrow B$ $f: B \rightarrow C$. Let $y \in C$. Because f is onto , y = f(b) for some $b \in B$. And Because g is onto b = g(a) for some $a \in A$. Hence y = f(b) = f(g(a)) = fog(a) which means fog is onto.

Solution: If A is finite, then |A|=k. And because there is an autofunction from A to B, then $|B| \le |A| = k$ B is finite. Hence B is countable.

If A is countably infinite, Let f be the outo function from A to B and g be the $Z^{+} \rightarrow A$ onto function. Thus we can find an onto function $f \circ g : Z^{+} \rightarrow B$. Hence B is countable.

- Q.15. If we fix m+n=x, then the value of f(m,x) is $\left[\frac{(x-2)(x-1)}{2} + 1 \right], \frac{(x-2)(x-1)}{2} + x-1 \right]$ when $\left[\frac{m=1}{n=x-1} \right]$ and $\left[\frac{m=x-1}{n=1} \right]$ get "=" Thus the images of fixed m+n are continues integers. Because $g(x) = \frac{(x-2)(x-1)}{2}$ covers $\mathbb{Z}^+, \text{ to prove } f \text{ is one-to-one and onto only need to show the values of } x \text{ and } x+1 \text{ is precisely connected}. Which means show <math display="block"> \frac{(x-2)(x-1)}{2} + x-1+1 = \frac{(x+1-2)(x+1-1)}{2} + 1$ left: $\frac{(x-2)(x-1)}{2} + x-1+1 = \frac{x^2-3x+2+2x}{2} = \frac{x^2-x+2}{2}$ $\frac{(x+1-2)(x+1-1)}{2} + 1 = \frac{(x-1)x+1}{2} = \frac{x^2-x+2}{2}$ left = right. Proof Done
- Q.1b. Define $f: (0,1) \rightarrow [0,1]$ by f(x) = x thus $|(0,1)| \le |[0,1]|$.

 Define $g: [0,1] \rightarrow (0,1)$ by $g(x) = \frac{x}{2} + \frac{1}{4}$ thus $|[0,1]| \le |[0,1]|$. |[0,1)| = |[0,1]|
- Q. Π . f(x) is $\Theta(g(\pi)) \rightarrow c_1g(\pi) \leq f(\pi) \leq c_2g(\pi)$ $c_1 \geq 0$. $g(\pi)$ is $\Theta(h(\pi)) \rightarrow c_3h(\pi) \leq g(\pi) \leq c_4h(\pi)$ $c_3 > 0$.

 Then $C_1C_3h(\pi) \leq f(\pi) \leq C_2C_4h(\pi)$ $c_1C_3 > 0$.

 Thus $f(\pi) = \Theta(h(\pi))$.
- Q.18. Counter example: $f_1(x) = x^2 + x$ $f_2(x) = x^2$, $g(x) = x^2$ $(f_1 - f_1)x = x = \theta(x) \neq \theta(x^2)$.

Q.19. |f(x)| = | anx" + an-1x" + ... + a,x+a. = | an | x" + [an-1 | x" + ... + |a1 | x + a. < | an | x" + | an -1 | x" + ... + | a | x" + | a | x" Let M= max { [an], [an-1], ... [a]} < M x + M x + ... + M x + M x * $= (n+1) M \chi^n = C_1 \chi^n -$ Besides: |f(x)| = |anx" + an-1x" + ... + a, x + a. | $= \chi^n \left| A_n + \frac{A_{n-1}}{\chi} + \cdots + \frac{A_1}{\chi} + \frac{A_n}{\chi^n} \right|$ let $\left|\frac{a_{n-i}}{a^n} + \cdots + \frac{a_n}{a^{n-1}}\right| < \left|\frac{a_n}{2}\right|$ we should have $\left|\frac{nM}{x}\right| < \left[\frac{A_n}{2}\right]$ Therefore: when $\chi > \frac{2nM}{a_n}$ $|f(x)| = \chi^n |a_n + \frac{a_{n-1}}{x} + \dots + \frac{a_1}{x} + \frac{a_n}{x}|$

Q. 20. Definition C_1 . $\log_a n \in \Omega \log_a n$) $\in C_2 \log_a n$ (a>1) $C_1 \cdot \frac{\ln 2}{\ln a} \cdot \frac{\ln n}{\ln a} \cdot \frac{\ln a}{\ln 2} \neq \Omega (\log_a n) \in C_2 \cdot \frac{\ln 2}{\ln a} \cdot \frac{\ln n}{\ln a} \cdot \frac{\ln a}{\ln 2}$ $C_1 \cdot \frac{\ln 2}{\ln a} \cdot \log_2 n \in \Omega (\log_a n) \in C_2 \cdot \frac{\ln 2}{\ln a} \cdot \log_2 n$ $C_3 \quad C_4$ $C_3 \quad C_4$ $C_4 \quad C_5 \log_2 n \in \Omega (\log_a n) \in C_4 \log_2 n$ Thus, $\Omega (\log_a n) = \Omega (\log_2 n)$.

Q21. multiplication: 2n addition: n total: 2n+n=3n Q22. multiplication: N

addition: n

total: n+n=2n

Q23. (1) $2^{\lfloor \log n \rfloor \log \lfloor \log n \rfloor} = 2^{\lfloor \log (\log n) \rfloor \log \log \log n} = 2^{\lfloor \log (\log n) \rfloor} = 2^{\lfloor \log (\log n) \rfloor} = 2^{\lfloor \log (\log n) \rfloor} = 2^{\lfloor \log (\log n) \rfloor}$ Since $2^{\prime \prime}$ is monotonous increasing

Thus $(\log n)^{\log(\log n)} \leq \log(n^n)$. Hence $(\log n)^{\log(\log n)} = O(\log(n^n))$

(2) $f_1(n) = \log n$ $f_2(n) = (\log n) \log \log n$ $f_3(n) = (\log \log n) \log n$ $f_4(n) = (\log n) \log n$ $f_5(n) = n \log n$ $f_5(n) = (\log n)$

 $f_{\eta}(n) = n^{2}$ $f_{\theta}(n) = n^{\log n}$ $f_{\theta}(n) = 3^{\frac{n}{2}}$

Q24. A. C. E