MIT OpenCourseWare http://ocw.mit.edu

18.01 Single Variable Calculus Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.01 Peadice Questions for Exam 2 Solutions. Fall 2006

1)
$$f(x) = 3x^{5} - 5x^{3} + 1$$
 $f'(x) = 0$ $x = 0, \pm 1$
 $f'(x) = 15x^{4} - 15x^{2}$ $f''(x) = 0$ $x = 0, \pm 5\frac{7}{2}$
 $f''(x) = 60x^{3} - 30x$ $f(x) \rightarrow -6 x \rightarrow -6$
 $f(x) \rightarrow +60x \rightarrow +6$

×	f	(x)	1	(x)	1	(x)	
-2	1	- 550				/	_
-1	3	70	Γ	0		-30	la. max.
-52/2	H	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1			0	inflection
0	T	1		0		0	inflaction
52/2	1	1-752	1	\		0	inflection
T		1-1		0		30	la min.
2		57	70	1	1	\	T -

There is an X, -2<x<-1, since f(-2) <0 and f(-1)>0. There is an X, 1(X(2, in f(1) 40, f(2) >0. There is ax, O(x(1, Nine f(0)), fako.

2)
$$f(x) = 4x^2 - \frac{1}{x}$$
 $f(x) = 0$, $x = \frac{1}{2}$ $f'(x) = 8x + \frac{1}{2}$ $f'(x) = 0$, $x = -\frac{1}{2}$ $f''(x) = 8 - \frac{2}{x^3}$ $f''(x) = 0$, $x = \frac{1}{3}$ $f''(x) = 0$, $f(x) \rightarrow 0$ asymptotical as $x \rightarrow -\infty$, $f(x) \rightarrow 0$ $f(x) \rightarrow 0$ $f(x) \rightarrow 0$

4"(4h)70

A = \frac{1}{2} \text{Xixt' Yixt} = 2 - \frac{2}{m} - \frac{m}{2} \frac{dA}{dm} = -\frac{1}{2} + \frac{2}{m^2}

Yint = 2-m

$$\frac{d^{2}A}{dm^{2}}\Big|_{m=-2} = -\frac{4}{m^{3}}\Big|_{m=-2} = \frac{1}{2} > 0$$

dA = 0 at m=-2 Do m=-2, A= 4 is a min.

Ato as mto nasmto. So m=-2, A=4 is the global win.

$$L = 2R + 4-x = 2\sqrt{9+x^2} + 4-x$$

$$40 \le x \le 4 \qquad dL = \frac{2x}{\sqrt{9+x^2}} - 1$$

$$L(6) = 10 \qquad dx = \frac{1}{\sqrt{9+x^2}}$$

L(4)=10 dl =0 ax x= 53 L(J3)=3J3+4 = 9.2

L153) 29.2<10

Since Lat the endpoints is lugar than at the unique inderior crit. pt., this inique orit, pt. is a min.

