Introduction to Nuclear Physics

Vaibhavi Gawas

Horizon Club Centre for Innovation, IIT Madras

July, 2021

Introduction

What are we made of- Revisit Basics

Discoveries

• Electron: J. Thomson, 1897

• Proton: Goldstein, 1986

Neutron : J. Chadwick, 1932

Introduction

Nucleons, Isotopes, Isobars, Isotones, Isomers

300 Stable, 3000 Unstable, 7000 Predicted

Why Nuclear Physics

Key Problems

- Understanding nuclear processes that drive evolution of stars and galaxies and Universe
- Emergence of simple and regular patterns in complex nuclei
- Limits on nuclear existence: heaviest nucleus, maximum number of nuclei?
- Understanding nuclear structure
- Nucleon-Nucleon interaction arising from QCD
- Applications: Nuclear Energy, Medical Physics

Nuclear Physics: Timeline

- 1896: Becquerel discovers X-rays, followed by 'uranic' rays
- 2 1897: Rutherford: 'uranic' rays are mixture of positive and negative charges, α and β rays. Thomson discovers electron.
- 1898: Curie couple observed 'uranic' rays from few other elements. Coins radioactivity.
- **1899**: P. Villard discovers gamma rays. Becquerel realises β rays are high energy electrons
- **1906**: Discovery of α particles
- 1909: Rutherford'd gold foil experiment
- **1915**: Helium's mass deficit (1905: Einstein $E = mc^2$)
- 1930: Dirac's equation
- 1931: Problem with beta decay, neutrino theorized
- 1932: Neutron discovery, positron discovery

What will we discuss

- Nuclear Mass
- Radius and Density
- Nuclear Charge
- Binding Energy
- Oipole Moment
- Quadrupole Moment
- Spin and Parity
- Nuclear Force
- Nuclear States

Mass and Size

mass of all protons plus neutrons Size around $10^{-15} \mathrm{m}$

Radius, Density, Mass Distribution

- The density of all nuclei is approximately same, $10^{17} \frac{kg}{m^3}$
- $D = \frac{M}{4\Pi R^3}$
- $R = R_o A^{1/3}$
- This given the Volume $\propto A$

How or Why is the density almost constant

Will get there soon!

Nuclear MAss and Charge Distribution

- Charge and Matter radii are nearly equal
- Charge distribution also shows $A^{\frac{1}{3}}$ dependence
- This happens because the coulomb repulsion tends to push the protons outwards

Binding Energy and Mass defect

- If Mass of Nuclei is M,
- While the sum of mass of nucleons is A,
- The *M* < *A*;
- and $A M = \Delta m$
- ullet Or $Zm_p + Nm_n M_A = \Delta m$
- Binding energy = Δmc^2

• Evidently, more the B.E, more stable is the nuclei

Binding Energy Per Nucleon

Binding energy per nucleon = B.E/AEnergy required to release a nucleon

Nuclear Spin and Parity

- Total angular momentum of nucleus is represented by its Spin-I
- Even-Even: Zero Spin, even parity
- Odd A: spin is equal to half integer and parity is -1^{\prime})
- Odd-Odd: Integral Spin, and parity depends on angular momentum of the unpaired proton and neutron.

Neutrons and Protons tend to pair up in such a way that the pair has 0 spin and parity equal to 1.

Dipole Moment

- Arises from the spin of protons and neutrons
- $\bullet \ \mu = \mathrm{g} \ \tfrac{\mathrm{e}}{2m_{\mathrm{p}}} \mathrm{I}$

Neutron Magnetic Moment

- g = 5.5856947
- $\mu = -1.9130418$

Proton Magnetic Moment

- g = -3.8260837
- $\mu = 2.7928456$

Quadrupole Moment

Shape of nuclei are not entirely spherical. They are influenced by the quadrupole moment.

- Classically: $Q = \int \rho(3z^2 r^2)dV$
- Quantum Mechanics: $Q = \frac{3k^2 I(I+1)}{(I+1)(2I+3)}Q_0$

Nuclear Force

Residual color force

Properties

- Bind the Nucleons together
- Very Short Range (1 fm)
- Repulsive at inter-nucleonic distances- 0.5fm
- Mediated by mesons (pions)
- Not a central force
- Spin dependent
- Charge Independent

Nuclear Saturation: Far, then Forgotten

Almost all nucleons

Nuclear Saturation arises due to an interplay between the attractive nuclear force and repulsive coloumbic interactions

Nuclear States- Isomers

There is one ground state and several excited states

- Characterized by half-life
- Decay modes and probabilities
- Excitation energies
- Nuclear Spin and Parity

Nuclear Models

Nuclear Models

Shell Model Liquid Drop Model

For explaining the stability, occurrences and behaviour of nuclei and to mathematically predict the binding energies, reactions, decay channels etc

Liquid Drop Model

Facts

- Constant density
- Molecules too close: Repulsion
- Molecules too far: No attraction
- Assumes that liquid drop has uniform distribution of positive charge
- A liquid drop changes shape in presence of forces

Liquid Drop Model

- $R = R_o A^{1/3}$
- ullet Volume : $V \propto A$
- Surface: $S \propto A^{2/3}$: distribution at surface
- \bullet Cuolomb: $S \propto \frac{Z(Z-1)}{A^{1/3}}$: proton repulsion
- Symmetry: $\frac{(N-Z)^2}{A}$: Neutrons and protons
- Pairing: $\frac{1}{A^{1/2}}$: Pauli exclusions

Binding Energy: Semi Empirical Mass Formula

B.E = a_v A - a_s
$$A^{2/3}$$
 - a_c $\frac{Z(Z-1)}{A^{1/3}}$ - a_a $\frac{(N-Z)^2}{A}$ + δ $\frac{1}{A^{1/2}}$

Liquid Drop Model

Properties Well explained by Liquid-drop model

Radioactivity: Fission

Binding energies of most nuclei

Shell Model

- Based on the Pauli Exclusion principle and analogous to electronic shell model.
- Tries to explain the stability of nucleus based on the 'magic number' of nucleons that fill different energy levels
- Shells of protons and neutrons are treated separately
- The nuclear potential considered is something in between of square well and harmonic oscillator potential.

Shell Model

Properties explained by shell model

- Increase in Binding energy at predicted magic number values
- Explains Spin and parity of nuclear ground states
- Nuclear magnetic moment

Nuclear Fusion

Proton-Proton fusion in Sun

- Formation of deuterium
- Then Helium-3
- Helium 4 and Berrylium-6

Energy

- Formation of Helium-4 from 4 protons with a mass deficit (0.7% of mass)
- 3.8 x 10²⁶ Joules of energy/second

Fun-Fact: Gamow Window

How probable is the fusion of two protons inside Sun?

Alpha Decay

How it occurs

- The alpha is exists and is trapped inside a nucleus
- It has a finite probability to tunnel through the coulombic barrier
- Considering the height of the potential barrier the half life of the decay can be derived.

Nuclear Fission

- An unstable Nucleus splits into two or more smaller nuclei
- Its a different process compared to quantum tunneling processes like alpha decay or proton emission.
- Fission can either be spontaneous or induced(shooting neutrons for eg.)

How it Occurs

- Requires some amount of initial energy that can overcome the nuclear force and deform the nucleus
- The electromagnetic repulsion takes over after some critical separation length

Nuclear Fission

How fission splits the uranium atom

Source: Adapted from National Energy Education Development Project (public domain)

Fission

The End

Of course, we are not experts, but okay

