Modular construction system for furniture

Patent number:

DE19708844

Publication date:

1998-09-17

Inventor:

REINSCH WALTER DR ING (FR)

Applicant:

OTTO KIND METALLBAU GMBH (DE)

Classification:

- international:

F16B12/50; H05K5/00; H02B1/26; A47B47/02;

A47B96/00

- european:

A47B47/03, F16B12/50

Application number: DE19971008844 19970305

Priority number(s): DE19971008844 19970305

Abstract of **DE19708844**

The modular construction system for housings, especially for furniture. It consists of vertical and horizontal frame struts of plate bent to angle profiles, incorporating the sides and back walls as well as the upper and lower covers. A common detachable connection is made between the side wall (1) as well as the back wall. The connection is made via the upper horizontal frame strut (5) and the lower horizontal frame strut (6) of the housing through the vertical frame strut (3) by pins (4). These are located at a certain spacing on the side piece of the vertical strut, engage with study of the horizontal frame struts. The studs can be designed as single or double ones.

Data supplied from the esp@cenet database - Worldwide

(fi) Int. Cl.⁶:

19 BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENTAMT

Offenlegungsschrift

₁₀ DE 197 08 844 A 1

(21) Aktenzeichen:

197 08 844.9

(2) Anmeldetag:

(43) Offenlegungstag:

17. 9.98

5. 3.97

F 16 B 12/50 H 05 K 5/00 H 02 B 1/26 A 47 B 47/02 A 47 B 96/00

(7) Anmelder:

Otto Kind Metallbau GmbH, 99867 Gotha, DE

(14) Vertreter:

Grünbeck, G., Dipl.-Jur. Ing., Pat.-Anw., 99099 Erfurt

② Erfinder:

Reinsch, Walter, Dr.-Ing., Vincennes, FR

56 Entgegenhaltungen:

DE 33 44 598 C1 DE 30 24 676 A1 DE 85 22 931 U1 GB 7 33 959 EP 03 03 194 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- Modulares Bausystem für Gehäuse
- Bei bekannten modularen Bausystemen für Gehäuse, insbesondere für Möbel, besteht das Konstruktionsprinzip auf der Grundlage von Rahmen, in die flächige Elemente gesteckt oder eingelegt werden. Die Rahmen bestehen im allgemeinen aus stranggepreßten Aluminiumoder Blechprofilen, deren Querschnittsform so konzipiert ist, daß in den Knotenpunkten der Rahmen Knotenelemente aus Kunststoff oder Aluminiumguß eingesteckt und/oder durch Verschraubung befestigt werden. Die flächigen Elemente werden in Nuten geführt oder in einen Falz eingelegt und gegebenenfalls durch Klemmen oder Schrauben mit dem Rahmen verbunden. All diese modularen Bausysteme haben den Nachteil, daß die Verbindungen zwischen den Rahmenprofilen in den Knotenpunkten als auch zwischen den Rahmenprofilen und den Füllungen längs der Berührungslinien verhältnismäßig nachgiebig sind. Dieser Nachteil soll ohne Einsatz von Schrauben und Knotenelementen durch eine spielfreie und kraftschlüssige Verbindung zwischen den einzelnen Bauteilen ausgeschlossen werden. Dies wird dadurch erreicht, daß eine gemeinsame Verbindung zwischen den Seitenwänden als auch der Rückwand sowie den oberen und unteren horizontalen Rahmenstielen eines Gehäuses über die vertikalen Rahmenstiele durch Bolzen hergestellt wird, die, in bestimmten Abständen am Stielschenkel der vertikalen Rahmenstiele angeordnet, in Bohrungen der Seitenwände, Rückwand und in Bohrungen der horizontalen Rahmenstiele gesteckt, eingreifen.

Beschreibung

Die Erfindung betrifft ein modulares Bausystem für Gehäuse, insbesondere für Möbel, bestehend aus Blech zu Winkelprofilen gekanteten, die Seiten – und Rückwände als auch die oberen und unteren Abdeckungen verbindenden, vertikalen und horizontalen Rahmenstielen.

In der Möbelbranche werden modulare Bausysteme eingesetzt, deren Konstruktionsprinzip auf der Grundlage von Rahmen besteht, in die flächige Elemente gesteckt oder ein10 gelegt werden.

Die Rahmen bestehen im allgemeinen aus stranggepreßten Aluminium- oder Blechprofilen, deren Querschnittsform so konzipiert ist, daß in den Knotenpunkten der Rahmen Knotenelemente aus Kunststoff oder Aluminiumguß eingesteckt und/oder durch Verschraubung befestigt werden. Die flächigen Elemente werden in Nuten geführt oder in einen Falz eingelegt und gegebenenfalls durch Klemmen oder Schrauben mit dem Rahmen verbunden.

Die Stabilität der Gesamtkonstruktion wird dabei vorran- 20 gig durch die biegesteife Verbindung der Rahmenprofile in den Knotenpunkten gewährleistet.

Eine sich daran orientierende Möbelfront mit Rahmen ist aus dem Gbm 85 22 931 bekannt. Der Rahmen ist aus Winkelprofilen aus Metall, die einen L-förmigen Querschnitt 25 aufweisen und mit ihren auf Gehrung geschnittenen Enden stumpf aneinanderstoßen, zusammengesetzt. An diesen Enden, welche die Ecken des Rahmens bilden, sind die Rahmenstiele über Winkelverbinder, die je zwei zueinander rechtwinkelige Arme besitzen, steckbar miteinander verbunden.

All diese modularen Bausysteme haben zwar den Vorteil vielseitiger Gestaltungsmöglichkeiten, sind aber mit dem Nachteil behaftet, daß die Verbindungen zwischen Rahmenprofilen in den Knotenpunkten sowie die Verbindungen zwischen den Rahmenprofilen und den Füllungen längs der Berührungslinien verhältnismäßig nachgiebig sind und daher nur für Schränke und Vitrinen mit relativ kleinen Abmessungen zu gebrauchen sind.

Ein weiterer Nachteil ist, daß Rahmenkonstruktionen aus 40 stranggepreßten Aluminium wegen des hohen Grundpreises dieses Werkstoffes sehr teuer sind. Sofern die ebenfalls teuren Knotenelemente aus Aluminiumguß durch billigere Kunststoffelemente ersetzt werden, wird die Stabilität der tragenden Rahmen wegen der Duktilität der Kunststoffe er- 45 heblich reduziert.

Für den konventionellen Möbelbau werden weiterhin eine Vielzahl von Verbindungselementen angeboten, die es erlauben, flächige Elemente ohne Zuhilfenahme der oben beschriebenen tragenden Rahmenkonstruktion wirkungsvoll 50 zu verbinden. Diese Verbindungstechniken setzen jedoch stets aufwendige Bearbeitung der Plattenränder und der sichtbaren Kanten voraus, insbesondere dann, wenn Preßspanplatten oder ähnliche Materialien statt Massivholzplatten verwandt werden.

Eine klassische Eckverbindung, insbesondere für Möbel aus Massivholz, wird dadurch erreicht, daß die Enden der Rahmenstiele sich überlappen und die feste Verbindung durch Verleimung oder durch Dübel hergestellt wird.

Weitere Eckverbindungen sind aus dem Schaltschrankbau 60 bekannt.

So wird in der OS 30 24 676 ein Schaltzellengerüst mit Eckverbindern in Form von Würfeln und unter Zwischenlage von Druckplatten verschraubten Metallprofilen beschrieben.

Diese Lösung ist sehr aufwendig und hat noch den Nachteil, daß die Verkleidungselemente an die Winkelprofile mit hohen Aufwand gesondert geschraubt werden müssen. Ein Rahmengestell dieser Art ist auch aus der DE 33 44 598 bekannt. Danach sind die Rahmenschenkel mit senkrecht zu ihren Längsachsen ausgerichteten Stirnseiten versehen und als Hohlprofilabschnitte ausgebildet. In jedem Eckbereich des Rahmengestelles werden die drei aufeinander stoßenden Rahmenschenkel mittels eines Eckverbinders miteinander verbunden. Der Eckverbinder trägt dabei drei senkrecht zueinander stehende Steckansätze, die in die Innenaufnahme der Hohlprofilabschnitte eingeführt werden. Die Rahmenschenkel können dabei mit den Eckverbindern verschraubt oder verschweißt werden. Im ersteren Fall kann das Rahmengestell und die mit dem Rahmengestell verbindbaren Verkleidungsteile zerlegt gelagert werden. Im zweiten Fall wird der Schrank im Herstellerwerk komplett zusammengebaut und so gelagert und geliefert.

Bei der Verschraubung der Rahmenschenkel an den Eckverbindern läßt die Verwindungsteifigkeit des Rahmengestelles stark zu wünschen übrig und außerdem ist der Teile – und Montageaufwand für das Rahmengestell und der Aufwand für das Anbringen der Verkleidungselemente beachtlich.

Der Erfindung liegt die Aufgabe zugrunde, die Nachteile der verschiedenen modularen Bausysteme für Gehäuse zu vermeiden bzw. auf ein Minimum zu reduzieren und ein Bausystem für Gehäuse, insbesondere für Möbel vorzuschlagen, das ohne Einsatz von Schrauben und Knotenelementen eine einfache und schnelle Montage erlaubt und durch eine spielfreie und kraftschlüssige Verbindung zwischen den einzelnen Bauteilen eine lösbare und schubfeste Konstruktion gewährleistet.

Erfindungsgemäß wird das dadurch erreicht, daß eine gemeinsame lösbare Verbindung zwischen den Seitenwänden als auch der Rückwand sowie den oberen horizontalen Rahmenstielen als auch den unteren horizontalen Rahmenstielen eines Gehäuses über die vertikalen Rahmenstiele durch Bolzen hergestellt wird, die, in bestimmten Abständen am Stielschenkel der vertikalen Rahmenstiele angeordnet, in Bohrungen der Seitenwände, Rückwand und in Bohrungen der horizontalen Rahmenstiele gesteckt eingreifen. Die Bolzen können als Einzel- oder Doppelbolzen ausgebildet sein. Die am Stielschenkel der vertikalen Rahmenstiele angeordneten Bolzen sind mit diesem fest verbunden oder durch eine Bohrung im Stielschenkel gesteckt wobei der Bolzen für diesen Fall einen Anschlag besitzt, der die Einstecktiefe des Bolzen begrenzt.

Die Sicherung der lösbaren Verbindung zwischen den einzelnen Bauteilen kann durch einen in eine Bohrung des Bolzens eingeführten Splint oder durch einen in ein Langloch des Bolzens

50 eingeführten Keil erfolgen. Eine weitere Möglichkeit der Sicherung der lösbaren Verbindung besteht darin, daß ein mit einem konischen Langloch ausgestatteter Schieber oder ein innen liegendes und der Höhe des Gehäuses angepaßtes Winkelblech, welches im Bereich der Bolzen konische
 55 Langlöcher besitzt, über eine unilaufende Nut im Bolzen geschoben wird. Gleichzeitig besitzt das Winkelblech in seiner Winkelzone Ausstanzungen zur Aufnahme von im Schrank benötigten Bodenträgern.

Diese Lösung zeichnet sich dadurch aus, daß sie, im Gegensatz zu den in diesem Zusammenhang bereits bekannten Bausystemen, durch den Einsatz von Bolzen eine einfache und schnelle Montage ohne Verwendung von Schrauben und ohne Verwendung von Knotenelementen erlaubt und die Montage lediglich darin besteht, die Bolzen in dafür vorgesehene Bohrungen einzuführen und die Verbindung durch Splinte oder Keile als auch durch Schieber zu sichern. Sie unterscheidet sich weiterhin von vergleichbaren Bausätzen durch die Herstellung einer spielfreien und kraftschlüssigen

Verbindung zwischen den Bauteilen, die zu einer besonders verwindungsfreien Konstruktion führt.

Die praktisch spielfreie Verbindung zwischen den Rahmenstielen und den darin liegenden und befestigten Verkleidungselementen, wie Seitenwände, Rückwand als auch oberer und unterer Abdeckung hat zur Folge, daß die Verkleidungselemente als schubsteife Elemente zur Aussteifung der Gesamtkonstruktion herangezogen werden. Sie übernehmen die Funktion von zug- und druckfesten Diagonalen, die insbesondere bei Rahmenkonstruktionen zu besonders 10 steifen Systemen führen, ohne daß eine gegenseitige Einspannung der Rahmenstiele erforderlich ist.

Gemäß der Forderung, die offene Vorderfront des Gehäuses durch konstruktive Elemente so auszusteifen, daß die beiden vertikalen Rahmenstiele unter Torsionsbeanspru- 15 chung des Gehäuses keine oder nur eine geringe gegenseitige Verschiebung ausführen können, ist an der Vorderfront des Gehäuses zwischen den vertikalen Rahmenstielen eine obere Traverse und eine untere Traverse gesetzt, die mit den vertikalen Rahmenstielen durch jeweils zwei Bolzen verbunden sind. Damit wird eine biegesteife Verbindung gewährleistet.

Als Montagehilfe sind am oberen horizontalen Rahmenstiel und am unteren horizontalen Rahmenstiel Klemmblöcke gesetzt, die mit einer Schraube fixiert werden. Die 25 Klemmblöcke sind entsprechend der Profilform der horizontalen Rahmenstiele unterschiedlich geformt. Damit wird erreicht, daß der Zusammenhalt der vormontierten Elemente gewährleistet ist und die Aufnahmen für die Sicherungselemente, wie Splint, Keil oder Schieber, freigehalten werden. 30

Zur Aufnahme und Befestigung der mit Bohrungen versehenen Abdeckungen, sind an den rechtwinkligen Abkantungen der oberen und unteren horizontalen Rahmenstiele in bestimmten Abständen Bolzen unverlierbar oder gesteckt angeordnet.

Durch die Art der Verbindung zwischen den oberen horizontalen Rahmenstielen bzw. den unteren horizontalen Rahmenstielen mit den vertikalen Rahmenstielen sowie durch die Verbindung der oberen und unteren Abdeckung mit horizontalen Rahmenstielen wird erreicht, daß eine Verfor- 40 mung des Gehäuses zum Parallelogramm, im Gegensatz zu anderen bekannten Konstruktionen, nahezu ausgeschlossen wird.

Nach einer weiteren möglichen Ausführungsform, die für weitgehenst aus Blech aufgebauten Gehäusen gedacht ist, besitzen die Seitenwände eine obere und untere Abkantung, die die Funktion der oberen und unteren horizontalen Rahmenstiele übernehmen, als auch eine hintere und vordere Abkantung, die die Funktion der vertikalen Rahmenstiele übernehmen. Damit sind in ein einziges Blechelement die 50 Keil, vertikalen Rahmenstiele, die Seitenwand als auch die oberen und unteren horizontalen Rahmenstiele integriert.

Die Erfindung soll anhand verschiedener Ausführungsbeispiele näher erläutert werden.

In den dazu gehörigen Zeichnungen zeigen:

Fig. 1 einen Horizontalschnitt durch einen vertikalen Rahmenstiel eines Gehäuses mit durch Bolzen befestigter Seiten- und Rückwand,

Fig. 2 einen Vertikalschnitt durch den oberen und unteren horizontalen Rahmenstiel eines Gehäuses mit durch Bolzen 60 befestigter Seitenwand sowie oberer und unterer Abdeckung

Fig. 3a, 3b, 3c einen Horizontalschnitt durch verschiedenartig geformte vertikale Rahmenstiele eines Gehäuses,

Fig. 4a, 4b, 4c einen Horizontalschnitt durch einen vertikalen Rahmenstiel eines Gehäuses mit unterschiedlicher 65 zone Ausstanzungen 21 zur Aufnahme von im Schrank be-Bolzensicherung,

Fig. 5 einen Vertikalschnitt durch einen oberen und unteren horizontalen Rahmenstiel eines Gehäuses mit den die Seiten- bzw. Rückwand haltenden Klemmblöcken,

Fig. 6 einen Vertikalschnitt durch die offene Vorderfront eines Gehäuses,

Fig. 7 einen Vertikalschnitt durch eine Seitenwand eines 5 Gehäuses mit integrierten Rahmenstielen,

Fig. 8 einen Horizontalschnitt durch eine Seitenwand eines Gehäuses nach Fig. 7.

Die einfachste Ausführungsform der erfindungsgemäßen Lösung besteht zunächst darin, ein offenes Gehäuse herzustellen, das aus zwei Seitenwänden 1 und einer Rückwand 2 aufgebaut ist, die durch vier vertikale Rahmenstiele 3 verbunden werden.

Die Verbindung zwischen den Seitenwänden 1 bzw. der Rückwand 2 und den vertikalen Rahmenstielen 3 wird durch Bolzen 4 hergestellt, die, in bestimmten Abständen am Stielschenkel 15 der vertikalen Rahmenstiele 3 angeordnet, in die Seitenwände 1 bzw. Rückwand 2 gesteckt werden. Die senkrechten Schnittkanten der Seitenwände 1 und der Rückwand 2 werden dabei durch Stielschenkel 15 der vertikalen Rahmenstiele 3 überdeckt,

Die Fig. 1 zeigt einen vorgefertigten rechtwinklig ausgeführten vertikalen Rahmenstiel 3 an dessen Stielschenkeln 15 in bestimmten Abständen Bolzen 4 angeordnet sind.

Die Bolzen 4 können, wie aus Fig. 4a ersichtlich, durch Schmelzschweißung 14 unverlierbar, aber auch durch Bohrungen in den Stielschenkel 15 der vertikalen Rahmenstiele 3 gesteckt, befestigt sein.

Zu letzteren ist es erforderlich, daß der Bolzen 4 nach Fig. 4a an seinem einen Ende einen Anschlag 17 besitzt, durch den die Einstecktiefe des Bolzen 4 begrenzt wird. Die Befestigung der Seitenwand 1 bzw. der Rückwand 2 am vertikalen Rahmenstiel 3 erfolgt derart, daß in den Randzonen der vorgefertigten Seitenwand 1 bzw. Rückwand 2 Bohrungen eingebracht sind in die die am vertikalen Rahmenstiel 3 angeordneten Bolzen 4 eingeführt werden.

Gleichzeitig erfolgt nach Fig. 2 neben der Befestigung der Seitenwand 1 bzw. der Rückwand 2 am vertikalen Rahmenstiel 3 über die Bolzen 4 die Befestigung der horizontalen Rahmenstiele 5 des oberen Horizontalrahmens bzw. der horizontalen Rahmenstiele 6 des unteren Horizontalrahmens.

Die Sicherung der lösbare Verbindung zwischen dem vertikalen Rahmenstiel 3 und der Seitenwand 1 bzw. Rückwand 2 als auch der horizontalen Rahmenstiele 5 des oberen bzw. der horizontalen Rahmenstiele 6 des unteren Horizontalrahmens kann, gemäß den Fig. 4a. . . 4c, verschiedenartig erfolgen. So erfolgt die Sicherung nach Fig. 4a durch einen in eine Bohrung 12 des Bolzens 4 eingeführten Splint oder durch einen in ein Langloch 13 im Bolzen 4 eingeführten

Nach Fig 4b besitzt der Bolzen 4 eine umlaufende Nut 16 die zur Aufnahme eines mit einem konischen Langloch 19 ausgestatteten Schiebers 18 dient bzw., wie aus Fig. 4c ersichtlich, zur Aufnahme eines innen liegenden schrankhohen Winkelbleches 20, welches im Bereich der Bolzen 4 konische Langlöcher 26 besitzt, die über die Nut 16 der Bolzen 4 geschoben werden. Das Winkelblech 20 dient gleichzeitig bei der Montage als Sicherung gegen Auseinanderfallen der vorerst zusammengesteckten Elemente, wie Seiten- und Rückwand 1,2 mit den vertikalen Rahmenstielen 3 als auch der oberen und unteren Horizontalrahmen und als innerer Abschluß und Sichtschutz der unbearbeiteten Schmalflächen der Seiten- und Rückwände 1; 2.

Gleichzeitig besitzt das Winkelblech 20 in seiner Winkelnötigten Bodenträgern.

Daß aus ästhetischen Gründen den Gestaltungsformen der vertikalen Rahmenstiele 3 keine Grenzen gesetzt sind, sollen die Fig. 3a. . .3c beispielhaft deutlich machen.

So zeigt die Fig. 3a einen abgestuften, die Fig. 3b einen abgeplatteten und die Fig. 3c einen gerundeten vertikalen Rahmenstiel 3. Allen möglichen Gestaltungsformen der vertikalen Rahmenstiele 3 ist aber gemeinsam, daß sie an ihren winklig abgekanteten Stielschenkel 15 Bolzen 4 zur Aufnahme und Befestigung der Seiten- und Rückwände 1; 2 und der oberen und unteren horizontalen Rahmenstiele 5; 6 be-

Das Schließen des Gehäuses erfolgt über eine im horizon- 10 talen Rahmenstiel 5 des oberen Horizontalrahmens liegende obere Abdeckung 7 und eine im horizontalen Rahmenstiel 6 des unteren Horizontalrahmens liegende untere Abdeckung

Fig. 2 zeigt die Befestigung der Abdeckung 7 am hori- 15 zontalen Rahmenstiel 5 des oberen Horizontalrahmens bzw. der Abdeckung 8 am horizontalen Rahmenstiel 6 des unteren Horizontalrahmens. Danach sind auf der rechtwinkligen Abkantung der horizontalen Rahmenstiele 5; 6 ebenfalls in bestimmten Abständen Bolzen 27 unverlierbar oder gesteckt, gemäß Fig. 4a, angeordnet, die in die vorgefertigten und mit Bohrungen versehenen Abdeckungen 7; 8 eingeführt werden und eine kraftschlüssige Verbindung zwischen den Abdeckungen 7; 8 und den horizontalen Rahmenstielen

Die horizontalen Rahmenstiele 5; 6 haben ein solches Profil, daß sie gleichzeitig die horizontalen Schnittkanten der Seitenwände 1 als auch die Schnittkanten der Abdekkungen 7; 8 verdecken.

Die Sicherung der lösbaren aber schubfesten Verbindung 30 zwischen den horizontalen Rahmenstielen 5; 6 und den Abdeckungen 7; 8 erfolgt analog wie in den Fig. 4a. . . 4c beschrieben.

Durch die Art der Verbindung zwischen den horizontalen Rahmenstielen 5 des oberen Horizontalrahmen bzw. den ho- 35 1 Seitenwand rizontalen Rahmenstielen 6 des unteren Horizontalrahmen mit den vertikalen Rahmenstielen 3 sowie durch die Verbindung zwischen den Abdeckungen 7; 8 und den horizontalen Rahmenstielen 5, 6 wird erreicht, daß eine Verformung des Gehäuses zum Parallelogramm nahezu ausgeschlossen 40 wird.

Die Statik lehrt, daß ein nach vorn offenes Gehäuse sehr torsionsweich ist. Daraus ergibt sich die Forderung, die offene Vorderfront des Gehäuses durch konstruktive Elemente so auszusteifen, daß die beiden vertikalen Rahmenstiele 3 45 unter Torsionsbeanspruchung des Gehäuses keine oder nur eine geringe gegenseitige Verschiebung ausführen können. Dies geschieht nach Fig. 6 am einfachsten durch das Anbringen von jeweils einer oberen Traverse 9 und einer unteren Traverse 10, die zwischen die beiden vertikalen Rah- 50 16 Nut menstiele 3 gesetzt mit diesen durch jeweils zwei Bolzen 4 biegesteif verbunden werden.

Die obere Traverse 9 und die untere Traverse 10 weisen ein solches Profil auf, daß sie, analog der horizontalen Rahmenstiele 5; 6 des oberen bzw. unteren Horizontalrahmens, 55 die Schnittkanten der horizontalen Abdeckungen 7; 8 verdecken.

Nach einer bevorzugten Montageform werden die Seitenwände 1 mit jeweils zwei vertikalen Rahmenstielen 3 sowie mit einem oberen und unteren horizontalen Rahmenstiel 5; 6 60 des oberen bzw. unteren Horizontalrahmens vormontiert. Um die Nuten 16 zur Aufnahme der innen liegenden Bolzen 4 frei zu halten, wird der Zusammenhalt der vormontierten Elemente gemäß Fig. 5 durch einen oberen Klemmblock 22 und einen unteren Klemmblock 24 gewährleistet. Die 65 Klemmblöcke 22; 24 werden mit einer Schraube 23; 25 fixiert. Aufgrund der unterschiedlichen Profilform der horizontalen Rahmenstiele 5; 6 sind die Klemmblöcke 22; 24

entsprechend gestaltet.

Die Klemmblöcke 22; 24 sind in der Zeichnung mit gestrichelten Linien dargestellt, da sie gegenüber den Bolzen 4 etwas versetzt angeordnet sind um die weitere Montage nicht zu behinderen.

Die raumabschließenden flächigen Elemente wie Seitenwände 1, Rückwand 2 und Abdeckungen 7; 8 können aus Glas, Holz, Span- oder Kunststoffplatten, aber auch aus Blech oder einem anderen geeigneten Material als auch aus einer Kombination dieser verschiedenen Materialien beste-

Eine weitere mögliche Ausführungsform für weitgehenst aus Blech aufgebauten Gehäusen zeigt die Fig. 7. Danach besitzen die Seitenwände 28 eine obere Abkantung 29, eine untere Abkantung 30, eine hintere Abkantung 31 und eine vordere Abkantung 32. Während die Abkantungen 29 und 30 der Seitenwände 28 die Funktion der oberen und unteren horizontalen Rahmenstiele 5; 6 übernehmen und zur Aufnahme der oberen Abdeckung 7 und der unteren Abdeckung 8 dienen, übernehmen nach Fig. 8 die Abkantungen 31 und 32 der Seitenwand 28 die Funktion der vertikalen Rahmenstiele 3. Die hintere Abkantung 31 ist danach zur Aufnahme des oberen horizontalen Rahmenstieles 5 mit der Rückwand 2 und die vordere Abkantung 32 zur Aufnahme der oberen Traverse 9 vorgesehen. Die Verbindung des horizontalen Rahmenstieles 5 und der Rückwand 2 mit der Seitenwand 28 als auch der oberen Traverse 9 erfolgt, wie schon weiter oben beschrieben, analog über die Bolzen 4. Gleiches gilt für die Befestigung der oberen Abdeckung 7 und der unteren Abdeckung 8 an der oberen Abkantung 29 und der unteren Abkantung 30, die über die Bolzen 27 vorgenommen wird.

Bezugszeichenliste

- 2 Rückwand
- 3 vertikaler Rahmenstiel
- 4 Bolzen
- 5 oberer horizontaler Rahmenstiel
- 6 unterer horizontaler Rahmenstiel
 - 7 Abdeckung
 - 8 Abdeckung
 - 9 obere Traverse
 - 10 untere Traverse
- 11 Türrahmen
- 12 Bohrung
- 13 Langloch
- 14 Schmelzschweißung
- 15 Stielschenkel
- - 17 Anschlag
 - 18 Schieber
 - 19 Langloch
- 20 Winkelblech
- 21 Ausstanzung
 - 22 Klemmblock
 - 23 Schraube
 - 24 Klemmblock
 - 25 Schraube
 - 26 Langloch
- 27 Bolzen
- 28 Seitenwand
- 29 obere Abkantung
- 30 untere Abkantung
- 31 hintere Abkantung
- 32 vordere Abkantung

Patentansprüche

- 1. Modulares Bausystem für Gehäuse, insbesondere für Möbel, bestehend aus Blech zu Winkelprofilen gekanteten, die Seiten und Rückwände als auch die oberen und unteren Abdeckungen aufnehmenden, vertikalen und horizontalen Rahmenstielen, dadurch gekennzeichnet, daß eine gemeinsame lösbare Verbindung zwischen den Seitenwänden (1) als auch der Rückwand (2) sowie den oberen horizontalen Rahmenstielen (5) als auch den unteren horizontalen Rahmenstielen (6) eines Gehäuses über die vertikalen Rahmenstiele (3) durch Bolzen (4) hergestellt wird, die, in bestimmten Abständen am Stielschenkel (15) der vertikalen Rahmenstiele (3) angeordnet, in Bohrungen der Seitenwände (1), Rückwand (2) und in Bohrungen der horizontalen Rahmenstiele (5; 6) gesteckt eingreifen.
- 2. Modulares Bausystem für Gehäuse nach Anspruch 1, dadurch gekennzeichnet, daß der Bolzen (4) als Einzel- oder Doppelbolzen ausgebildet sein kann.
- 3. Modulares Bausystem für Gehäuse nach Anspruch 1, dadurch gekennzeichnet, daß die am Stielschenkel (15) der vertikalen Rahmenstiele (3) angeordneten Bolzen (4) mit diesem fest verbunden oder durch eine Bohrung im Stielschenkel (15) gesteckt sind und der Bolzen (4) für diesen Fall einen Anschlag (17) besitzt, der die Einstecktiefe des Bolzen (4) begrenzt.
- 4. Modulares Bausystem für Gehäuse nach Anspruch 1, dadurch gekennzeichnet, daß die Sicherung der lösbaren Verbindung zwischen den einzelnen Bauteilen 30 durch einen in eine Bohrung (12) des Bolzen (4) eingeführten Splint erfolgen kann.
- 5. Modulares Bausystem für Gehäuse nach Anspruch 1, dadurch gekennzeichnet, daß die Sicherung der lösbaren Verbindung zwischen den einzelnen Bauteilen 35 durch einen in ein Langloch (13) des Bolzen (4) eingeführten Keil erfolgen kann.
- 6. Modulares Bausystem für Gehäuse nach Anspruch 1, dadurch gekennzeichnet, daß die Sicherung der lösbaren Verbindung zwischen den einzelnen Bauteilen 40 durch einen, mit einem konischen Langloch (19) ausgestatteten, Schieber (18) erfolgen kann, der über eine umlaufende Nut (16) im Bolzen (4) geschoben wird. 7. Modulares Bausystem für Gehäuse nach Anspruch
- 1, dadurch gekennzeichnet, daß die Sicherung der lösbaren Verbindung zwischen den einzelnen Bauteilen durch ein innen liegendes und der Höhe des Gehäuses angepaßtes Winkelblech (20) erfolgen kann, welches im Bereich der Bolzen (4) konische Langlöcher (26) besitzt, die über die Nut (16) der Bolzen (4) geschoben 50 werden.
- 8. Modulares Bausystem für Gehäuse nach Anspruch 7, dadurch gekennzeichnet, daß das Winkelblech (20) in seiner Winkelzone Ausstanzungen (21) zur Aufnahme von im Schrank benötigten Bodenträgern besitzt.
- 9. Modulares Bausystem für Gehäuse nach Anspruch 1, dadurch gekennzeichnet, daß an der Vorderfront des Gehäuses zwischen den vertikalen Rahmenstielen (3) eine obere Traverse (9) und eine untere Traverse 10 gesetzt ist, die mit den vertikalen Rahmenstielen (3) durch jeweils zwei Bolzen (4) verbunden sind.
- 10. Modulares Bausystem für Gehäuse nach Anspruch 1, dadurch gekennzeichnet, daß als Montagehilfe am oberen horizontalen Rahmenstiel (5) und am unteren 65 horizontalen Rahmenstiel (6) Klemmblöcke (22; 24) gesetzt sind, die mit einer Schraube (23; 25) fixiert werden.

- Modulares Bausystem für Gehäuse nach Anspruch
 dadurch gekennzeichnet, daß die Klemmblöcke (22;
 entsprechend der Profilform der horizontalen Rahmenstiele (5; 6) unterschiellich geformt sind.
- 12. Modulares Bausystem für Gehäuse nach Anspruch 1, dadurch gekennzeichnet, daß zur Aufnahme und Befestigung der mit Bohrungen versehenen oberen und unteren Abdeckung (7; 8) an den rechtwinkligen Abkantungen der horizontalen Rahmenstiele (5; 6) in bestimmten Abständen Bolzen (27) unverlierbar oder gesteckt angeordnet sind.
- 13. Modulares Bausystem für Gehäuse nach Anspruch 1, dadurch gekennzeichnet, daß die vertikalen Rahmenstiele (3) aus gestalterischen Gründen ein unterschiedliches Profil besitzen können.
- 14. Modulares Bausystem für Gehäuse, insbesondere für Möbel, bestehend aus Blech zu Winkelprofilen gekannteten, die Seiten und Rückwände als auch die oberen und unteren Abdeckungen aufnehmenden, vertikalen und horizontalen Rahmenstielen, dadurch gekennzeichnet, daß die Seitenwände (28) eine obere Abkantung (29) und eine untere Abkantung (30) aufweisen, die die Funktion der oberen und unteren horizontalen Rahmenstiele übernehmen, als auch eine hintere Abkantung (31) und eine vordere Abkantung (32) besitzen, die die Funktion der vertikalen Rahmenstiele übernehmen.

Hierzu 9 Seite(n) Zeichnungen

Fig. 1

Fig. 2

Fig. 4b

Fig. 4c

Fig. 5

Fig. 6

Fig. 7

Fig. 8