

**For Reference**

**NOT TO BE TAKEN FROM THIS ROOM**

# For Reference

NOT TO BE TAKEN FROM THIS ROOM

EX LIBRIS  
UNIVERSITATIS  
ALBERTAENSIS











Thesi:  
1966  
# 23

THE UNIVERSITY OF ALBERTA

STRENGTH OF  
SHEAR PLATE CONNECTORS  
IN SLOPING GRAIN SURFACES.

by

ROBERT DAVID CAMERON

A THESIS  
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES  
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE  
OF MASTER OF SCIENCE

DEPARTMENT OF CIVIL ENGINEERING

EDMONTON, ALBERTA

MAY 1966



UNIVERSITY OF ALBERTA  
FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies for acceptance, a thesis entitled STRENGTH OF SHEAR PLATE CONNECTORS IN SLOPING GRAIN SURFACES, submitted by Robert David Cameron in partial fulfilment of the requirements for the degree of Master of Science.



## ABSTRACT

In this investigation into the strength of shear plate connectors in sloping grain surfaces, the angle of grain and the direction of load in the sloping grain surface were the variables studied. A total of 192 specimens were tested to failure. 2-5/8 inch diameter shear plates and 4 inch diameter shear plates were used. The dimensions of all specimens were identical, except that the edge distance differed in the specimens using 2-5/8 inch diameter shear plates from that of the specimens using 4 inch diameter shear plates.

Results obtained indicate that:

- (1) The load carrying capacity of shear plate connectors decreases as the grain angle varies from  $0^\circ$  to  $90^\circ$  and then increases as the grain angle varies from  $90^\circ$  to  $180^\circ$ .
- (2) The capacity of shear plates in specimens so constructed that the plates tend to "lock-in" is higher than in specimens so constructed that the plates do not "lock-in".
- (3) The effect of varying the grain angle on the slope of the load-slip curves was not well defined.
- (4) For a given grain angle the capacity is changed by varying the load angle.



### ACKNOWLEDGEMENTS

The author wishes to express appreciation for assistance he received from various sources.

The Canadian Institute of Timber Construction sponsored the investigation. Western Archrib Structures of Edmonton provided the materials and fabricated the specimens. Professor J. Longworth helped greatly throughout the course of the investigation and during the writing of the manuscript.

Associate Professor A. Peterson and Sessional Instructor R. B. Pinkney assisted in the photography and Messrs W. R. Browne, H. Panse, F. Rothbrust, and D. Whidden assisted in the testing programme.



## TABLE OF CONTENTS

|                                        | Page |
|----------------------------------------|------|
| Title Page                             | i    |
| Approval Sheet                         | ii   |
| Abstract                               | iii  |
| Acknowledgements                       | iv   |
| Table of Contents                      | v    |
| List of Tables                         | vi   |
| List of Figures                        | vii  |
| CHAPTER I        INTRODUCTION          | 1    |
| CHAPTER II      OBJECT AND SCOPE       | 7    |
| CHAPTER III     MATERIALS AND FABRI-   |      |
| CATION OF SPECIMENS                    | 10   |
| CHAPTER IV      EXPERIMENTAL PROCEDURE | 23   |
| CHAPTER V        TEST RESULTS          | 30   |
| CHAPTER VI      DISCUSSION             | 85   |
| CHAPTER VII     CONCLUSIONS            | 94   |
| Bibliography                           | 95   |
| Appendix A      Specific Gravity       | 96   |
| Corrections                            |      |
| Appendix B      Moisture Content       | 98   |
| Corrections.                           |      |



## LIST OF TABLES

| Table |                                   | Page |
|-------|-----------------------------------|------|
| I-1   | Shear Plate Dimensions            | 2    |
| II-1  | Schedule of Specimens             | 8    |
| III-1 | Tension Test Results for<br>Bolts | 19   |
| V-1   | Tabulation of Test Results        | 67   |



## LIST OF FIGURES

| Figure                                                         | Page |
|----------------------------------------------------------------|------|
| 1.1 Typical Shear Plate Assembly                               | 4    |
| 3.1 Typical Specimens                                          | 11   |
| 3.2 Specimen Fabrication                                       | 14   |
| 3.3 Bolt Testing Apparatus                                     | 15   |
| 3.4 to Load vs Elongation                                      | 16   |
| 3.6                                                            |      |
| 3.7 Test Apparatus for Small Douglas Fir Compression Specimens | 18   |
| 3.8 Stress vs Strain-Load Parallel to Grain                    | 20   |
| 3.9 Stress vs Strain-Load Perpendicular to Grain               | 21   |
| 4.1 Loading Frame with Specimen Ready for Load Testing         | 25   |
| 4.2 Side View of Loading Frame and Specimen After Load Testing | 26   |
| 4.3 Complete Testing Apparatus with Camera in Position         | 27   |
| 4.4 Complete Testing Apparatus with Camera Removed             | 28   |
| 4.5 Close-up of Loading Frame Showing Deflection Gauges        | 29   |
| 5.1 to Load vs Slip Curves                                     | 13   |
| 5.32                                                           |      |
| 5.33 & Load vs Grain Angle $\alpha$                            | 63   |
| 5.34                                                           |      |



LIST OF FIGURES (Continued)

| Figure                                                                                       | Page |
|----------------------------------------------------------------------------------------------|------|
| 5.35 Load vs Load Angle $\Theta$                                                             | 65   |
| 5.36 Slope of Load-Slip Relationship<br>vs Grain Angle $\alpha$                              | 66   |
| 5.37 to Photographs of Specimens After Load<br>5.40 Testing                                  | 78   |
| 5.41 & Photographs of Shear Plates After<br>5.42 Load Testing                                | 82   |
| 5.43 Photographs of Bolts After Load<br>Testing                                              | 84   |
| 6.1 Method of Determining Proportional<br>Limit and Offset Loads from Load<br>vs Slip Curves | 86   |
| 6.2 "Locking-In" Action of Shear Plates                                                      | 88   |
| 6.3 Load vs $\alpha$ "Best Fit" Curves                                                       | 93   |



## CHAPTER I

### INTRODUCTION

#### 1.1 Introductory Remarks.

Although wood is a very versatile material of construction, difficulty in obtaining adequate connections is often encountered. Even though a member may have sufficient cross-sectional dimensions to accommodate the design load, these dimensions may have to be increased in order to facilitate an adequate connection. This problem has led to a great amount of research in the field of timber joint efficiency. Many tests have been conducted in order to determine the strength characteristics of various timber joints. Such connector units as bolts, shear plates, split rings, etc., have been load tested in side grain surfaces. (4). The literature contains no reference to tests on connector units positioned in end grain surfaces or sloping grain surfaces. The present investigation was therefore undertaken to determine the strength characteristics of shear plate connector units in end grain and sloping grain surfaces.

#### 1.2 Shear Plate Connectors.

As outlined in the Timber Construction Manual (5) shear plate connectors are of two types:

- "(a) Pressed Steel Type - Pressed steel shear plates shall be manufactured from hot-rolled carbon steel, SAE 1010, meeting the requirements of the latest issue of the SAE Handbook. Each plate shall be a true circle with a flange around the edge, extending at right



angles to the face of the plate from one face only. The plate portion shall have a central hole and two small perforations on diametrically opposite sides of the hole each midway from the centre and circumference; or

(b) Malleable Iron Type - Malleable iron shear plates shall be manufactured according to the requirements of ASTM Standard A47 for Grade 35018, malleable-iron castings. Each casting shall consist of a perforated round plate with a flange extending at right angles to the face of the plate and projecting from one face only. The plate portion shall have a central bolt hole, reamed to size, with an integral hub concentric to the bolt hole and extending from the same face as the flange."

Shear plate dimensions shall be in accordance with Table I.1.

TABLE I-1

| Shear Plate              | 2-5/8 inch<br>Pressed Steel<br>inches | 4-inch Malleable Iron   |                          |
|--------------------------|---------------------------------------|-------------------------|--------------------------|
|                          |                                       | 3/4-inch bolt<br>inches | 7/8-inch bolt*<br>inches |
| Diameter of Plate        | 2.62                                  | 4.02                    | 4.02                     |
| Diameter of bolt<br>hole | 0.81                                  | 0.81                    | 0.94                     |
| Thickness of plate       | 0.17                                  | 0.20                    | 0.20                     |
| Depth of flange          | 0.42                                  | 0.62                    | 0.62                     |

\*Shear plates for 7/8 inch bolts were not used in this investigation.



### 1.3 Mechanics of Timber Joints with Shear Plate Connectors.

In a typical joint assembly where two or more wooden members are to be joined by use of shear plates, the shear plates are placed back to back with their flanges fitting into pre-bored grooves in the wooden members and connected by means of a bolt. (Figure 1.1). As outlined in Forest Products Bulletin 865(4) the following action takes place in the joint:

The primary stresses in the wood of the tension joint shown in Figure 1.1 may be classified as shear, compression, and tension. The shaded areas indicate the principal part of the wood (A) subjected to shear, (B and C) subjected to compression, and (D) subjected to tension. For a tension joint with two shear plate connectors in opposite faces and a concentric bolt, bearing parallel to the grain of the wood, these areas can be expressed by the following formulas:

Shear area:

$$\text{Within core: } 2 \left( \frac{\pi d_1^2}{4} \right)$$

$$\text{Below core: } 2[d_2 e - \frac{1}{2} \left( \frac{\pi d_2^2}{4} \right) + 2 \left( \frac{ae}{2} \right)]$$

$$\text{Compression area: } 2 \left( \frac{ad_2^2}{2} \right) + b(t_1 - a)$$

$$\text{Tension area: } t_1 w - \left[ 2 \frac{(ad_2)}{2} + b(t_1 - a) \right]$$

in which:

$d_1$  = inside diameter of connector,

$d_2$  = outside diameter of connector,

$e$  = end distance from center of connector to end of member,

$a$  = the depth of connector unit,

$b$  = diameter of bolt,



Fig.1.1 TYPICAL SHEAR PLATE ASSEMBLY



*Detail of connector joint, showing portions of center member subject to shear (A), compression (B&C), and tension (D). Corresponding stresses, not shown, exist in the side members. [After Scholten (4)].*



$t_1$  = thickness of member,

$w$  = width of member,

$t_2$  = thickness of metal.

The strength of the joint, apart from that of the bolt and connector is obviously controlled by one or another, or some combination, of shear compression or tension. It should be noted that the bolt shall be of sufficient cross-section to effectively transfer the load from one shear plate to the other by direct shear.

In applying the theory of elasticity to the distribution of these stresses in a timber joint, nearly all the basic assumptions are upset by the anisotropic structure of the wood, by the presence of irregularities and defects such as knots and cross grain, and by the interaction between the wood and metal. A practical analysis of the behaviour of the joint, therefore, resolves itself primarily into a correlation between the test loads, the character of failure, and the mechanical properties of the wood and metal.

#### 1.4 Design Considerations.

In the design of timber joints many variables must be taken into account. The strength of particular joint is influenced by moisture content of the wood, specific gravity of the wood (species), spacing of the connector units, end and edge distances, thickness of members, size of shear plates and connecting bolts and finally the angle of load to grain. Present day design specifications attempt to take account of these factors by applying modification factors to allowable connector unit loads for a specific shear plate and bolt size, i.e.,



$$P = X \cdot K_g \cdot K_t \cdot K_s \cdot K_m \quad (6)$$

where:  $P$  = allowable load on a connector unit in pounds

$X$  = allowable load in pounds on a connector unit when

$$K_g = K_t = K_s = K_m = 1.00$$

$K_g$  = modification factor based on species

$K_t$  = modification factor based on thickness

$K_s$  = modification factor based on spacing, end distance or edge distance

$K_m$  = modification factor based on moisture content.

## 1.5 Present Investigation.

In this investigation the variables mentioned in the previous paragraph were either eliminated or an attempt was made to control their effect. Thickness, loaded end distance, unloaded end distance and edge distance variations were eliminated by using specimens of identical size. Since only one connector unit per specimen was used the effect of spacing was not a consideration. The influence of species or specific gravity was kept to a minimum by using a high grade Douglas Fir material from one shipment. The effect of variable moisture content was minimized by handling and storing all specimens in the same manner. Samples were taken to determine specific gravity and moisture content so that their influences could be measured. One bolt size was used throughout and the shear plates of different sizes were load tested in groups with results being tabulated for each group. A separate series of load tests was run to determine the effect of varying the angle of load to grain. Strength tests were made on the wood and the bolts. The influence of strength variations in the shear plates was assumed to be negligible.



## CHAPTER II

### OBJECT AND SCOPE

The objects of the investigation presented in this thesis were:

- (1) To load test shear plate connectors set in sloping grain surfaces varying from side grain surface to end grain surface in order to investigate their strength characteristics up to ultimate load.
- (2) To investigate the strength characteristics of shear plate connectors for varying directions of load when connectors are set in a surface which is not a side grain surface.

Thirty-two groups of six specimens each were tested. 2-5/8 inch shear plates and 4-inch plates were investigated. Group 2 specimens contained 2-5/8 inch shear plates. Group 4 specimens contained 4 inch shear plates. The angle between the side surface of the grain and the plane of the shear plate was varied from  $0^\circ$  to  $180^\circ$  in increments of  $15^\circ$  for both Group 2 and Group 4 specimens. In addition specimens containing 2-5/8 inch shear plates and having an angle of  $45^\circ$  between side surface of the grain and the plane of the shear plate were fabricated and load was applied at various angles in the plane of the sloping grain surface. Table II-1 gives the details of the specimens.



TABLE II-1 SCHEDULE OF SPECIMENS

| Series     | No. of Specimens                       | $\alpha^\circ$             | $\theta^\circ$                   |
|------------|----------------------------------------|----------------------------|----------------------------------|
| 4A1<br>4A4 | 2A1<br>2A4                             | 6<br>6                     | 0<br>0                           |
| 4B1<br>4B6 | 2B1<br>2B6                             | 6<br>6                     | 15<br>15                         |
| 4C1<br>4C6 | 2C1<br>2C6                             | 6<br>6                     | 30<br>30                         |
| 4D1        | 2D1<br>2D2<br>2D3<br>2D4<br>2D5<br>2D6 | 6<br>6<br>6<br>6<br>6<br>6 | 45<br>45<br>45<br>45<br>45<br>45 |
| 4E6        | 2E1<br>2E6                             | 6<br>6                     | 60<br>60                         |
| 4F1<br>4F6 | 2F1<br>2F6                             | 6<br>6                     | 75<br>75                         |
| 4G1<br>4G6 | 2G1<br>2G6                             | 6<br>6                     | 90<br>90                         |



$\alpha$  = angle between plane of shear plate and side surface of grain or grain angle

$\theta$  = angle between load and normal to direction of laminations or load angle

Specimen Designation.

- e.g. 2C14 2 - 2-5/8"φshear plates.  
C -  $\alpha = 30^\circ$  or  $30^\circ$  between side surface of grain and plane of shear plate.
- 4 - 4th specimen to be tested in series.
- 4C64 4 - 4"φshear plates
- 4 - as above
- C - as above
- 6 -  $\theta = 180^\circ$
- 4 - as above



The dimensions of all specimens were the same except for the width, which was larger for the specimens containing 4 inch shear plates in order to provide adequate edge distance (1). Edge distance of 2-5/8 inches for 2-5/8 inch shear plates and 3-1/2 inches for 4 inch shear plates and end distances of 4 inches for unloaded end and 8 inches for loaded end were selected to meet the requirements of the National Building Code of Canada (1965), Section 4-3-10.5.(3) for side grain surfaces.



## CHAPTER III

### MATERIAL PROPERTIES AND FABRICATION OF SPECIMENS

#### 3.1 Specimen Dimensions.

After considerable preliminary testing it was decided to use the specimens as shown in Figure 3.1. The thickness of the specimens was determined on the basis of the results of the preliminary testing. An optimum thickness was used. This was the thickness at which a further increase in thickness would yield no further increase in ultimate load. The overall length of specimen was determined by practical limitations imposed in handling and fabrication.

#### 3.2 Grading of Material.

One hundred ninety-two specimens were fabricated in thirty-two groups of six specimens each. The entire one hundred ninety-two specimens were fabricated from one lot shipment of clear Douglas Fir (Coastal region), graded as dense, select structural grade. It was considered that this high grade material was required in order that localized defects, such as knots, checks and sap pockets would be at a minimum. Since specimen sizes were relatively small, a defect in the vicinity of the shear plate would invalidate any results obtained from testing.

Grading of this material is governed by the following characteristics and limiting provisions:





SPECIMEN WITH 4"  
SHEAR PLATES

Fig. 3.1

TYPICAL SPECIMENS

Scale: 1" = 4"



SPECIMEN WITH  $2\frac{5}{8}$ "  
SHEAR PLATES



- (1) Splits, if present, must be very short.
- (2) Checks, if present, must be single, or if opposite each other they must have a sum total equal to a maximum of approximately one quarter the thickness.
- (3) Medium torn grain is allowed.
- (4) Skips, if present, must be occasional and small.
- (5) Medium pitch pockets are allowed.
- (6) Wane with a maximum of approximately one eighth of any face is allowed.
- (7) Knots, if present, must be sound, tight and well spaced.
- (8) Pitch streaks may be present.
- (9) Stained sapwood may be present.
- (10) Slope of grain in the middle one third of the length must not exceed one inch in twelve inches and in the balance of the piece may be one inch in ten inches.
- (11) Close grain must be present.

"Dense Material" in Douglas Fir averages six or more annual rings per inch and, in addition, one third or more summerwood on either one side or the other of a piece. The contrast in colour between the summerwood and springwood must be distinct. Pieces that average less than six annual rings per inch are accepted as dense if they average one half or more summerwood.

### 3.3 Fabrication of Specimens.

All lumber was standard stock 1-5/8 inch in thickness. Glulam sections were fabricated and slices were cut at various angles to the grain. Each test specimen consisted of two slices. One slice was rotated



$180^{\circ}$  relative to the other in order that the shear plates would act at the same angle to the grain on either side. The slices were glued and clamped, allowed to set for approximately twenty-four hours, and then trimmed to the required length. A  $13/16$  inch hole was then drilled through the specimen and grooves for the shear plates were cut by means of a standard grooving tool. Figure 3.2 indicates the steps followed in the fabrication of the specimens. Prior to testing, a  $3/4$  inch bolt, threaded on both ends, was inserted in the specimen and two shear plates were set in the grooves as shown in Figure 3.1.

#### 3.4 Tension Tests on Bolts.

Three bolts were selected for destructive tension tests. They were placed in the loading yokes shown in Figure 3.3. Two nuts were threaded on each end so that enough shear area on the threads would be available to prevent stripping of the threads.

An automatic recorder was used to plot the load - deformation relationship. (Figures 3.4, 3.5 and 3.6).

#### 3.5 Compression Tests on Small Douglas Fir Specimens.

Twelve small Douglas Fir specimens were tested in compression to failure, six specimens parallel and six specimens perpendicular to the grain of the wood. Mercer dials and SR4 strain gages were used to measure strains. (See Figure 3.7). Results are plotted in Figures 3.8 and 3.9.



*STEP 1. Cut 2 slices from glulam member*



*STEP 2. Rotate one slice  $180^\circ$  relative to the other and glue together.*



*STEP 3. Trim to required size.*



*STEP 4. Grove and insert shear plates.*



Fig. 3.2

SPECIMEN FABRICATION

*Not to scale*





Fig. 3.3

BOLT TESTING APPARATUS

Scale: 1" = 4"



LOAD in Kips

30

25

20

15

10

5

1/0.0050"

ELONGATION in Ins.

Fig. 3.4  
LOAD vs. ELONGATION  
Bolt - 1







LOAD in Kips

30

25

20

15

10

5

Fig. 3.6  
LOAD vs. ELONGATION  
Bolt - 3

0.0050"

ELONGATION in Ins.



TABLE III-1 TENSION TEST RESULTS FOR BOLTS

| Specimen | (1)<br>Diameter<br>in inches | (2)<br>Area<br>in sq. ins. | (3)<br>Yield Load<br>in lbs | (4)<br>Yield Stress<br>in psi | (5)<br>Ultimate<br>Load<br>in lbs. | (6)<br>Ultimate<br>Stress<br>in psi | (7)<br>Initial<br>Gage<br>in | (8)<br>Final<br>Gage<br>in | (9)<br>Elongation<br>% |
|----------|------------------------------|----------------------------|-----------------------------|-------------------------------|------------------------------------|-------------------------------------|------------------------------|----------------------------|------------------------|
| (1)      | .753                         | .446                       | 26,500                      | 59,500                        | 34,050                             | 76,400                              | 2.00                         | 2.07                       | 3.5                    |
| (2)      | .750                         | .442                       | 26,750                      | 60,500                        | 34,500                             | 78,200                              | 2.00                         | 2.12                       | 6.0                    |
| (3)      | .750                         | .442                       | 30,800                      | 69,700                        | 39,150                             | 88,600                              | 2.00                         | 2.07                       | 3.5                    |





Fig. 3.7

TEST APPARATUS FOR SMALL DOUGLAS FIR COMPRESSION  
SPECIMENS  
Full scale











## CHAPTER IV

### EXPERIMENTAL PROCEDURE

#### 4.1 Preparation for Test

The specimen was placed in the loading frame as shown in Figures 4.1 and 4.2. Three inch by one-eighth inch spacer washers were inserted between the shear plates and the loading frame so as to prevent contact between the specimen and the frame. Washers and nuts were then placed on each end of the bolt. The nuts were tightened using a moderate torque on a ten-inch wrench. The brackets from the centre of the specimen to the deflection dials mounted on the front of the frame were then positioned. The frame was centered under the loading head of the 200,000 pound capacity Universal Testing Machine.

#### 4.2 Test Procedure.

A thirty-five millimeter camera taking 1/2 frame size pictures was positioned so that it focused on the deflection dials as shown in Figure 4.3. Load was applied continuously at a rate of 5,000 pounds per minute up to the ultimate load and deflection readings were taken photographically at each 1,000 pound increment. The film was later developed and placed in a micro-film viewer. The data was read and recorded. The photographic method of taking readings was employed in order that greater accuracy in dial readings might be realized, that a permanent record of the data would be available, and since readings were required every 12 seconds this proved the most effective procedure.



#### 4.3 Moisture Content and Specific Gravity Determination.

Three samples from each group of six specimens were analyzed for moisture content and specific gravity. These samples were approximately two inch cubes taken from the centre portion of the specimen just above the bolt. The samples were weighed, dried in an oven at 105°C for twenty-four hours, re-weighed, coated with paraffin and then weighed again. The volume of the specimen was obtained by the mercury displacement method. The moisture content was based on the dry weight of the sample. The specific gravity was based on the dry weight and dry volume of the sample.



Fig. 4.1 LOADING FRAME WITH SPECIMEN  
READY FOR LOAD TESTING







FIGURE 4.2  
SIDE VIEW OF LOADING FRAME AND SPECIMEN AFTER LOAD TESTING.



FIGURE 4.3  
COMPLETE TESTING APPARATUS WITH CAMERA IN POSITION





FIGURE 4.4  
COMPLETE TESTING APPARATUS WITH CAMERA REMOVED







FIGURE 4.5  
CLOSE-UP OF LOADING FRAME SHOWING DEFLECTION GAGES



## CHAPTER V

### TEST RESULTS

Test results are presented as follows:

- (1) Load vs Slip Curves. Figures 5.1 and 5.32.
- (2) Load vs Grain Angle  $\alpha$ . Figures 5.33 and 5.34.
- (3) Load vs Load Angle  $\theta$ . Figure 5.35.
- (4) Slope of Load-Slip Relationship vs Grain Angle  $\alpha$ . Figure 5.36.
- (5) Test Results in Tabular Form. Table V-1.
- (6) Photographs of Specimens After Load Testing. Figures 5.37 to 5.40.
- (7) Photographs of Shear Plates After Load Testing. Figures 5.41 and 5.42.
- (8) Photographs of Bolts After Load Testing. Figure 5.43.

The original data sheets are kept on file at the Department of Civil Engineering, University of Alberta, Edmonton, Alberta. The photographs of all the specimens after load testing are included in the copy retained by the Department of Civil Engineering.









Fig. 5.2  
LOAD vs. SLIP  
Series- 2A4

SLIP in Ins.













Fig. 5.5  
LOAD vs. SLIP  
Series-2C1

SLIP in Ins.





Fig. 5.6  
LOADvs.SLIP  
Series-2C6





SLIP in Ins.





Fig. 5.8  
LOAD vs. SLIP  
Series-2D2

SLIP in Ins.





Fig. 5.9  
LOAD vs. SLIP  
Series-2D3

SLIP in Ins.









Fig. 5.11  
LOAD vs. SLIP  
Series-2D5

SLIP in Ins.





Fig. 5.12  
LOAD vs. SLIP  
Series-2D6









Fig. 5.14  
LOAD vs. SLIP  
Series- 2E6

SLIP in Ins.





Fig. 5.15  
LOAD vs. SLIP  
Series-2F1

SLIP in Ins.





Fig. 5.16  
LOAD vs. SLIP  
Series- 2F6

SLIP in Ins.





Fig. 5.17  
LOAD vs. SLIP  
Series-2G1

SLIP in Ins.









*Fig. 5.19*  
 LOAD vs. SLIP  
 Series-4A1





Fig. 5.20  
LOAD vs. SLIP  
Series-4A4









Fig. 5.22  
LOAD vs. SLIP  
Series-4B6





Fig. 5.23  
LOAD vs. SLIP  
Series-4C1









*SLIP in Ins.*













Fig. 5.28  
LOAD vs. SLIP  
Series-4E6





Fig. 5.29  
LOAD vs. SLIP  
Series-4F1

SLIP in Ins.













Fig. 5.32  
LOAD vs. SLIP  
Series-4G4



















Year      Percentage  
1980      1985      1990      1995      2000

TABLE V - 1 TABULATION OF TEST RESULTS

| (1)<br>SPECIMEN | (2)<br>PROPORTIONAL<br>LIMIT<br>LOAD<br>in lbs. | (3)<br>0.03<br>OFFSET<br>LOAD<br>in lbs. | (4)<br>0.06<br>OFFSET<br>LOAD<br>in lbs. | (5)<br>ULTIMATE<br>in lbs. | (6)<br>SLOPE<br>in lbs per in. | (7)<br>MOISTURE<br>CONTENT<br>% | (8)<br>SPECIFIC<br>GRAVITY |
|-----------------|-------------------------------------------------|------------------------------------------|------------------------------------------|----------------------------|--------------------------------|---------------------------------|----------------------------|
| 2A11            | 11,000                                          | 17,600                                   | 20,400                                   | 33,200                     | 165,000                        | 14.19                           | 0.510                      |
| 2               | 14,000                                          | 24,400                                   | 27,000                                   | 35,500                     | 155,000                        |                                 |                            |
| 3               | 13,000                                          | 20,000                                   | 23,200                                   | 38,400                     | 182,500                        |                                 |                            |
| 4               | 13,000                                          | 20,800                                   | 22,800                                   | 41,000                     | 172,500                        |                                 |                            |
| 5               | 12,000                                          | 19,600                                   | 21,600                                   | 40,000                     | 145,000                        |                                 |                            |
| 6               | 13,000                                          | 19,500                                   | 22,200                                   | 39,500                     | 150,000                        |                                 |                            |
| Mean            | 12,700                                          | 20,300                                   | 22,900                                   | 37,900                     | 161,500                        |                                 |                            |
| Std. Dev.       | 940                                             | 2,060                                    | 2,090                                    | 2,730                      |                                |                                 |                            |
|                 |                                                 |                                          |                                          |                            |                                | 1.46                            | 0.031                      |
| 2A41            | 8,000                                           | 10,600                                   | 12,300                                   | 25,000                     | 109,000                        | 13.35                           | 0.494                      |
| 2               | 7,500                                           | 10,700                                   | 12,600                                   | 24,200                     | 100,000                        | 13.60                           | 0.496                      |
| 3               | 8,500                                           | 11,500                                   | 13,900                                   | 28,100                     | 102,500                        | 13.56                           | 0.513                      |
| 4               | 8,400                                           | 11,700                                   | 13,200                                   | 28,000                     | 74,000                         |                                 |                            |
| 5               | 8,000                                           | 12,000                                   | 14,000                                   | 23,700                     | 81,500                         |                                 |                            |
| 6               | 8,600                                           | 13,800                                   | 16,200                                   | 26,000                     | 11,100                         |                                 |                            |
| Mean            | 8,200                                           | 11,700                                   | 13,700                                   | 25,800                     | 96,500                         |                                 |                            |
| Std. Dev.       | 380                                             | 1,060                                    | 1,280                                    | 1,740                      |                                |                                 |                            |
|                 |                                                 |                                          |                                          |                            |                                | 13.50                           | 0.501                      |
|                 |                                                 |                                          |                                          |                            |                                | 0.10                            | 0.003                      |
| 2B11            | 9,500                                           | 16,000                                   | 20,000                                   | 29,500                     | 177,500                        |                                 |                            |
| 2               | 9,000                                           | 15,000                                   | 19,600                                   | 21,800                     | 177,500                        |                                 |                            |
| 3               | 12,000                                          | 16,600                                   | 19,300                                   | 27,500                     | 132,500                        |                                 |                            |
| 4               | 13,000                                          | 17,400                                   | 18,000                                   | 27,500                     | 132,500                        |                                 |                            |
| 5               | 14,000                                          | 22,000                                   | 25,000                                   | 27,000                     | 152,000                        |                                 |                            |
| 6               | 9,400                                           | 15,400                                   | 18,900                                   | 19,300                     | 194,000                        |                                 |                            |
| Mean            | 11,200                                          | 17,100                                   | 20,100                                   | 25,400                     | 161,000                        |                                 |                            |
| Std. Dev.       | 190                                             | 2,340                                    | 2,270                                    | 3,620                      |                                |                                 |                            |
|                 |                                                 |                                          |                                          |                            |                                | 0.38                            |                            |



TABLE V - 1 (Cont'd) TABULATION OF TEST RESULTS

| (1)<br>SPECIMEN | (2)<br>PROPORTIONAL<br>LIMIT<br>LOAD<br>in lbs. | (3)<br>0.03<br>OFFSET<br>LOAD<br>in lbs. | (4)<br>0.06<br>OFFSET<br>LOAD<br>in lbs. | (5)<br>ULTIMATE<br>LOAD<br>in lbs. | (6)<br>SLOPE<br>in lbs per in. | (7)<br>MOISTURE<br>CONTENT<br>% | (8)<br>SPECIFIC<br>GRAVITY |
|-----------------|-------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------|--------------------------------|---------------------------------|----------------------------|
| 2B61            |                                                 |                                          |                                          |                                    |                                |                                 |                            |
| 2               | 12,000                                          | 22,000                                   | 25,300                                   | 39,500                             | 184,000                        | 16.86                           | 0.554                      |
| 3               | 11,000                                          | 20,700                                   | 23,700                                   | 35,000                             | 135,000                        |                                 |                            |
| 4               | 14,600                                          | 20,200                                   | 22,500                                   | 35,500                             | 190,000                        | 14.85                           | 0.429                      |
| 5               | 14,000                                          | 21,600                                   | 24,200                                   | 33,800                             | 159,500                        | 17.61                           | 0.513                      |
| 6               | 14,000                                          | 22,400                                   | 25,700                                   | 39,100                             | 205,000                        |                                 |                            |
| Mean            | 12,000                                          | 18,900                                   | 21,500                                   | 36,700                             | 323,000                        |                                 |                            |
| Std. Dev.       | 12,900                                          | 21,000                                   | 23,800                                   | 36,600                             | 199,500                        |                                 |                            |
|                 | 130                                             | 1,190                                    | 1,470                                    | 2,100                              |                                | 16.44                           | 0.499                      |
| 2C11            |                                                 |                                          |                                          |                                    |                                |                                 |                            |
| 2               | 10,400                                          | 14,200                                   | 15,600                                   | 24,000                             | 139,000                        | 18.40                           | 0.419                      |
| 3               | 10,200                                          | 16,600                                   | 18,200                                   | 25,100                             | 139,000                        |                                 |                            |
| 4               | 11,500                                          | 18,000                                   | 19,600                                   | 27,600                             | 118,000                        |                                 |                            |
| 5               | 10,000                                          | 14,400                                   | 15,700                                   | 26,700                             | 194,000                        |                                 |                            |
| 6               | 13,000                                          | 17,100                                   | 17,700                                   | 25,900                             | 132,500                        |                                 |                            |
| Mean            | 11,000                                          | 15,200                                   | 16,300                                   | 24,700                             | 104,500                        | 14.50                           | 0.479                      |
| Std. Dev.       | 11,000                                          | 15,900                                   | 17,200                                   | 25,700                             | 121,000                        | 16.83                           | 0.393                      |
|                 | 100                                             | 1,410                                    | 1,450                                    | 1,260                              |                                | 16.58                           | 0.430                      |
|                 |                                                 |                                          |                                          |                                    |                                | 1.60                            |                            |
| 2C61            |                                                 |                                          |                                          |                                    |                                |                                 |                            |
| 2               | 14,600                                          | 22,000                                   | 25,100                                   | 33,300                             | 126,000                        |                                 |                            |
| 3               | 15,600                                          | 21,600                                   | 25,200                                   | 33,200                             | 91,000                         |                                 |                            |
| 4               | 14,200                                          | 19,700                                   | 22,400                                   | 30,500                             | 137,000                        |                                 |                            |
| 5               | 15,000                                          | 23,100                                   | 25,800                                   | 30,200                             | 107,000                        |                                 |                            |
| 6               | 15,000                                          | 20,700                                   | 23,600                                   | 32,200                             | 119,500                        |                                 |                            |
| Mean            | 14,000                                          | 21,200                                   | 24,300                                   | 31,400                             | 123,000                        | 14.58                           | 0.469                      |
| Std. Dev.       | 14,700                                          | 21,400                                   | 24,400                                   | 31,800                             | 117,500                        | 14.80                           | 0.479                      |
|                 | 540                                             | 1,060                                    | 1,140                                    | 1,210                              |                                | 14.73                           | 0.478                      |
|                 |                                                 |                                          |                                          |                                    |                                | 0.10                            |                            |



TABLE V - 1 (Cont'd) TABULATION OF TEST RESULTS

| (1)<br>SPECIMEN | (2)<br>PROPORTIONAL<br>LIMIT<br>LOAD<br>in lbs. | (3)<br>0.03<br>OFFSET<br>LOAD<br>in lbs. | (4)<br>0.06<br>OFFSET<br>LOAD<br>in lbs. | (5)<br>ULTIMATE<br>LOAD<br>in lbs | (6)<br>SLOPE<br>in lbs per in. | (7)<br>MOISTURE<br>CONTENT<br>% | (8)<br>SPECIFIC<br>GRAVITY |
|-----------------|-------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------|--------------------------------|---------------------------------|----------------------------|
| 2D11            | 11,000                                          | 14,100                                   | 16,000                                   | 22,200                            | 103,000                        | 18.55                           | 0.426                      |
| 2               | 9,400                                           | 13,000                                   | 15,400                                   | 20,700                            | 106,500                        |                                 |                            |
| 3               | 11,000                                          | 17,700                                   | 18,200                                   | 19,100                            | 78,000                         |                                 |                            |
| 4               | 8,400                                           | 11,700                                   | 13,500                                   | 21,900                            | 99,000                         |                                 |                            |
| 5               | 11,000                                          | 13,000                                   | 14,700                                   | 18,700                            | 90,500                         | 17.56                           | 0.448                      |
| 6               | 9,800                                           | 14,500                                   | 15,800                                   | 19,500                            | 98,500                         | 15.82                           | 0.470                      |
| Mean            | 10,100                                          | 14,000                                   | 15,600                                   | 20,300                            | 94,500                         | 17.31                           | 0.448                      |
| Std. Dev.       | 990                                             | 1,880                                    | 1,430                                    | 1,580                             |                                | 1.13                            |                            |
| 2D21            | 7,000                                           | 11,100                                   | 14,400                                   | 21,400                            | 101,000                        | 17.75                           | 0.505                      |
| 2               | 8,000                                           | 12,700                                   | 15,700                                   | 20,500                            | 140,000                        |                                 |                            |
| 3               | 9,000                                           | 13,000                                   | 16,000                                   | 20,900                            | 135,000                        |                                 |                            |
| 4               | 9,000                                           | 13,300                                   | 15,800                                   | 21,100                            | 88,000                         |                                 |                            |
| 5               | 9,000                                           | 17,400                                   | 21,100                                   | 22,400                            | 109,000                        | 18.13                           | 0.480                      |
| 6               | 8,000                                           | 12,000                                   | 16,000                                   | 24,500                            | 141,500                        | 16.94                           | 0.473                      |
| Mean            | 8,300                                           | 13,300                                   | 16,500                                   | 21,800                            | 119,000                        | 17.61                           | 0.486                      |
| Std. Dev.       | 750                                             | 1,990                                    | 2,130                                    | 1,340                             |                                | 0.50                            |                            |
| 2D31            | 5,200                                           | 8,600                                    | 10,600                                   | 19,100                            | 74,000                         | 15.86                           | 0.468                      |
| 2               | 7,200                                           | 10,500                                   | 12,600                                   | 17,100                            | 104,000                        | 15.55                           | 0.460                      |
| 3               | 6,400                                           | 9,500                                    | 11,300                                   | 17,300                            | 93,000                         | 14.74                           | 0.460                      |
| 4               | 5,100                                           | 8,800                                    | 10,400                                   | 18,300                            | 112,000                        |                                 |                            |
| 5               | 6,200                                           | 9,000                                    | 10,800                                   | 18,300                            | 119,000                        |                                 |                            |
| 6               | 6,600                                           | 9,400                                    | 10,800                                   | 17,400                            | 74,000                         |                                 |                            |
| Mean            | 6,100                                           | 9,300                                    | 11,100                                   | 17,900                            | 96,000                         | 15.38                           | 0.475                      |
| Std. Dev.       | 750                                             | 620                                      | 730                                      |                                   |                                | 0.47                            |                            |



TABLE V - 1 (Cont'd) TABULATION OF REST RESULTS

| (1)<br>SPECIMEN | (2)<br>PROPORTIONAL<br>LIMIT<br>LOAD<br>in lbs. | (3)<br>0.03<br>OFFSET<br>LOAD<br>in lbs. | (4)<br>0.06<br>OFFSET<br>LOAD<br>in lbs. | (5)<br>ULTIMATE<br>LOAD<br>in lbs. | (6)<br>SLOPE<br>in lbs per in | (7)<br>MOISTURE<br>CONTENT<br>% | (8)<br>SPECIFIC<br>GRAVITY |
|-----------------|-------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------|-------------------------------|---------------------------------|----------------------------|
| 2D41            |                                                 |                                          |                                          |                                    |                               |                                 |                            |
| 2               | 5,000                                           | 10,100                                   | 12,100                                   | 17,500                             | 87,000                        | 16.85                           | 0.517                      |
| 3               | 6,500                                           | 10,700                                   | 12,200                                   | 16,500                             | 73,500                        | 15.65                           | 0.475                      |
| 4               | 6,200                                           | 10,000                                   | 12,000                                   | 17,700                             | 108,000                       |                                 |                            |
| 5               | 6,000                                           | 9,100                                    | 11,300                                   | 18,300                             | 84,000                        |                                 |                            |
| 6               | 5,400                                           | 9,900                                    | 11,800                                   | 17,400                             | 150,000                       |                                 |                            |
| Mean            | 11,000                                          | 14,100                                   | 15,400                                   | 17,800                             | 73,000                        |                                 |                            |
| Std. Dev.       | 6,700                                           | 10,600                                   | 12,500                                   | 17,500                             | 96,000                        |                                 |                            |
|                 | 1,990                                           | 1,610                                    | 1,340                                    | 560                                |                               |                                 |                            |
| 2D51            |                                                 |                                          |                                          |                                    |                               |                                 |                            |
| 2               | 7,000                                           | 9,400                                    | 11,300                                   | 17,100                             | 124,500                       |                                 |                            |
| 3               | 7,100                                           | 10,600                                   | 12,300                                   | 15,300                             | 97,000                        |                                 |                            |
| 4               | 10,100                                          | 13,000                                   | 13,800                                   | 16,500                             | 104,500                       |                                 |                            |
| 5               | 7,100                                           | 10,300                                   | 12,200                                   | 15,200                             | 101,000                       |                                 |                            |
| 6               | 7,400                                           | 11,700                                   | 14,100                                   | 16,200                             | 80,000                        |                                 |                            |
| Mean            | 6,500                                           | 9,500                                    | 10,800                                   | 12,400                             | 17,500                        |                                 |                            |
| Std. Dev.       | 7,500                                           | 10,800                                   | 11,260                                   | 1,200                              | 16,300                        |                                 |                            |
|                 | 1,180                                           |                                          |                                          | 880                                | 98,000                        |                                 |                            |
| 2D61            |                                                 |                                          |                                          |                                    |                               |                                 |                            |
| 2               | 16,400                                          | 20,500                                   | 22,500                                   | 25,400                             | 100,000                       | 17.85                           | 0.416                      |
| 3               | 17,000                                          | 22,300                                   | 24,700                                   | 28,400                             | 96,000                        |                                 |                            |
| 4               | 17,400                                          | 21,400                                   | 23,400                                   | 27,500                             | 83,500                        |                                 |                            |
| 5               | 15,100                                          | 20,700                                   | 23,300                                   | 26,200                             | 89,000                        |                                 |                            |
| 6               | 16,500                                          | 21,300                                   | 22,700                                   | 23,500                             | 93,500                        |                                 |                            |
| Mean            | 15,600                                          | 19,800                                   | 22,000                                   | 23,900                             | 77,000                        |                                 |                            |
| Std. Dev.       | 16,300                                          | 21,000                                   | 23,100                                   | 25,800                             | 90,000                        |                                 |                            |
|                 | 780                                             | 790                                      | 890                                      | 1,790                              | 1,790                         |                                 |                            |



TABLE V - 1 (Cont'd) TABULATION OF TEST RESULTS

| (1)<br>SPECIMEN | (2)<br>PROPORTIONAL<br>LIMIT<br>LOAD<br>in lbs | (3)<br>0.03<br>OFFSET<br>LOAD<br>in lbs. | (4)<br>0.06<br>OFFSET<br>LOAD<br>in lbs. | (5)<br>ULTIMATE<br>LOAD<br>in lbs. | (6)<br>SLOPE<br>in lbs per in | (7)<br>MOISTURE<br>CONTENT<br>% | (8)<br>SPECIFIC<br>GRAVITY |
|-----------------|------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------|-------------------------------|---------------------------------|----------------------------|
| 2E11            | 9,600                                          | 14,400                                   | 17,500                                   | 19,100                             | 104,000                       | 16.20                           | 0.573                      |
| 2               | 10,100                                         | 13,700                                   | 15,000                                   | 16,500                             | 73,000                        |                                 |                            |
| 3               | 9,000                                          | 11,700                                   | 13,600                                   | 17,700                             | 128,000                       |                                 |                            |
| 4               | 9,300                                          | 12,600                                   | 13,900                                   | 15,800                             | 78,000                        |                                 |                            |
| 5               | 10,000                                         | 13,000                                   | 14,700                                   | 17,100                             | 69,000                        |                                 |                            |
| 6               | 10,200                                         | 13,300                                   | 14,100                                   | 15,500                             | 82,000                        |                                 |                            |
| Mean            | 9,700                                          | 13,100                                   | 14,800                                   | 17,000                             | 89,000                        |                                 |                            |
| Std. Dev.       | 440                                            | 850                                      | 1,300                                    | 1,200                              |                               |                                 |                            |
|                 |                                                |                                          |                                          |                                    |                               |                                 |                            |
| 2E61            | 10,200                                         | 17,000                                   | 17,800                                   | 18,500                             | 80,000                        | 16.54                           | 0.594                      |
| 2               | 8,400                                          | 14,000                                   | 16,800                                   | 18,800                             | 92,000                        | 16.05                           | 0.587                      |
| 3               | 10,000                                         | 15,100                                   | 17,200                                   | 19,700                             | 84,000                        |                                 |                            |
| 4               | 10,400                                         | 16,000                                   | 17,300                                   | 18,600                             | 110,000                       |                                 |                            |
| 5               | 12,000                                         | 15,400                                   | 17,100                                   | 18,900                             | 119,500                       |                                 |                            |
| 6               | 11,400                                         | 17,600                                   | 18,200                                   | 18,900                             | 95,000                        |                                 |                            |
| Mean            | 10,400                                         | 15,900                                   | 17,400                                   | 18,900                             | 97,000                        |                                 |                            |
| Std. Dev.       | 1,140                                          | 1,200                                    | 470                                      | 400                                |                               |                                 |                            |
|                 |                                                |                                          |                                          |                                    |                               |                                 |                            |
| 2F11            | 6,400                                          | 11,100                                   | 13,300                                   | 15,600                             | 83,000                        | 15.00                           | 0.562                      |
| 2               | 6,400                                          | 11,000                                   | 13,000                                   | 14,800                             | 97,000                        |                                 |                            |
| 3               | 7,000                                          | 11,600                                   | 12,500                                   | 14,100                             | 73,000                        |                                 |                            |
| 4               | 8,000                                          | 12,400                                   | 14,400                                   | 16,700                             | 93,000                        |                                 |                            |
| 5               | 7,000                                          | 11,000                                   | 12,200                                   | 13,500                             | 75,000                        |                                 |                            |
| 6               | 6,400                                          | 10,800                                   | 12,100                                   | 14,200                             | 77,000                        |                                 |                            |
| Mean            | 6,900                                          | 11,300                                   | 12,900                                   | 14,800                             | 83,000                        |                                 |                            |
| Std. Dev.       | 570                                            | 540                                      | 790                                      | 1,090                              |                               |                                 |                            |



TABLE V - 1 (Cont'd) TABULATION OF TEST RESULTS

| (1)<br>SPECIMEN | (2)<br>PROPORTIONAL<br>LIMIT<br>LOAD<br>in lbs. | (3)<br>0.03<br>OFFSET<br>LOAD<br>in lbs. | (4)<br>0.06<br>OFFSET<br>LOAD<br>in lbs. | (5)<br>ULTIMATE<br>LOAD<br>in lbs. | (6)<br>SLOPE<br>in lbs per in | (7)<br>MOISTURE<br>CONTENT<br>% | (8)<br>SPECIFIC<br>GRAVITY |
|-----------------|-------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------|-------------------------------|---------------------------------|----------------------------|
| 2F61            | 7,400                                           | 12,000                                   | 13,500                                   | 16,300                             | 90,000                        |                                 |                            |
| 2               | 9,700                                           | 12,500                                   | 13,300                                   | 15,100                             | 102,000                       |                                 |                            |
| 3               | 7,400                                           | 11,700                                   | 14,800                                   | 17,000                             | 82,000                        | 13.99                           | 0.550                      |
| 4               | 7,300                                           | 12,000                                   | 14,400                                   | 17,200                             | 100,000                       | 15.00                           | 0.550                      |
| 5               | 6,200                                           | 10,800                                   | 11,500                                   | 13,800                             | 124,500                       |                                 |                            |
| 6               | 8,100                                           | 11,600                                   | 12,800                                   | 15,800                             | 125,500                       | 14.03                           | 0.606                      |
| Mean            | 7,600                                           | 11,800                                   | 13,400                                   | 15,900                             | 104,000                       | 14.34                           | 0.569                      |
| Std. Dev.       | 910                                             | 520                                      | 1,080                                    | 1,200                              |                               | 0.47                            |                            |
| 2G11            | 5,200                                           | 8,800                                    | 10,300                                   | 14,400                             | 86,500                        |                                 |                            |
| 2               | 6,100                                           | 9,200                                    | 9,900                                    | 13,900                             | 96,000                        | 14.49                           | 0.442                      |
| 3               | 5,200                                           | 9,300                                    | 10,500                                   | 14,500                             | 130,000                       |                                 |                            |
| 4               | 6,300                                           | 10,200                                   | 11,800                                   | 12,700                             | 121,000                       |                                 |                            |
| 5               | 8,100                                           | 11,800                                   | 13,500                                   | 14,600                             | 132,500                       |                                 |                            |
| 6               | 7,000                                           | 10,300                                   | 12,200                                   | 15,200                             | 6,200                         | 12.12                           | 0.439                      |
| Mean            | 6,300                                           | 9,900                                    | 11,400                                   | 14,200                             | 104,500                       | 13.92                           | 0.472                      |
| Std. Dev.       | 1,020                                           | 990                                      | 1,260                                    | 540                                |                               | 13.51                           | 0.451                      |
| 2G41            | 7,200                                           | 9,500                                    | 10,400                                   | 13,100                             | 58,500                        |                                 |                            |
| 2               | 6,600                                           | 9,300                                    | 10,300                                   | 12,200                             | 64,500                        |                                 |                            |
| 3               | 6,000                                           | 8,000                                    | 9,600                                    | 13,900                             | 92,000                        |                                 |                            |
| 4               | 5,500                                           | 9,000                                    | 10,200                                   | 13,300                             | 62,500                        |                                 |                            |
| 5               | 6,000                                           | 8,300                                    | 9,400                                    | 12,000                             | 71,500                        |                                 |                            |
| 6               | 5,300                                           | 8,700                                    | 9,600                                    | 13,400                             | 68,500                        |                                 |                            |
| Mean            | 6,100                                           | 8,800                                    | 9,900                                    | 13,000                             | 69,500                        | 13.15                           | 0.488                      |
| Std. Dev.       | 640                                             | 530                                      | 390                                      | 690                                |                               | 0.25                            |                            |



TABLE V - 1 (Cont'd) TABULATION OF TEST RESULTS

| (1)<br>SPECIMEN | (2)<br>PROPORTIONAL<br>LIMIT<br>LOAD<br>in lbs. | (3)<br>0.03<br>OFFSET<br>LOAD<br>in lbs. | (4)<br>0.06<br>OFFSET<br>LOAD<br>in lbs. | (5)<br>ULTIMATE<br>LOAD<br>in lbs. | (6)<br>SLOPE<br>in lbs per in | (7)<br>MOISTURE<br>CONTENT<br>% | (8)<br>SPECIFIC<br>GRAVITY |
|-----------------|-------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------|-------------------------------|---------------------------------|----------------------------|
| 4A11            | 14,200                                          | 21,000                                   | 24,400                                   | 35,300                             | 144,500                       | 16.50                           | 0.504                      |
|                 | 17,000                                          | 22,700                                   | 26,400                                   | 39,700                             | 144,500                       |                                 |                            |
|                 | 17,200                                          | 22,000                                   | 26,300                                   | 30,400                             | 140,000                       |                                 |                            |
|                 | 17,000                                          | 25,200                                   |                                          | 26,700                             | 111,000                       |                                 |                            |
|                 | 17,200                                          | 27,000                                   | 33,400                                   | 41,700                             | 226,000                       |                                 |                            |
|                 | 22,000                                          | 31,700                                   | 34,300                                   | 40,100                             | 107,000                       |                                 |                            |
| Mean            | 17,400                                          | 24,900                                   | 29,000                                   | 35,700                             | 145,500                       |                                 |                            |
| Std. Dev.       | 2,300                                           | 3,630                                    | 4,070                                    | 5,520                              |                               |                                 |                            |
|                 |                                                 |                                          |                                          |                                    |                               | 0.83                            |                            |
| 4A41            | 10,000                                          | 23,500                                   | 24,700                                   | 30,200                             | 109,000                       | 11.05                           | 0.485                      |
|                 | 10,300                                          | 17,000                                   | 20,100                                   | 28,400                             | 95,000                        |                                 |                            |
|                 | 10,000                                          | 13,500                                   | 15,700                                   | 32,700                             | 132,500                       | 10.56                           | 0.498                      |
|                 | 12,000                                          | 17,000                                   | 19,000                                   | 33,600                             | 136,500                       |                                 |                            |
|                 | 8,100                                           | 10,300                                   |                                          | 26,500                             | 108,000                       | 14.72                           | 0.560                      |
|                 | 11,000                                          | 16,900                                   | 19,100                                   | 33,000                             | 90,500                        |                                 |                            |
| Mean            | 10,200                                          | 16,400                                   | 19,700                                   | 30,700                             | 112,000                       |                                 |                            |
| Std. Dev.       | 1,180                                           | 4,020                                    | 2,900                                    | 2,620                              |                               |                                 |                            |
|                 |                                                 |                                          |                                          |                                    |                               | 1.86                            |                            |
| 4B11            | 13,000                                          | 19,400                                   | 22,500                                   | 33,600                             | 169,500                       |                                 |                            |
|                 | 11,000                                          | 17,400                                   | 20,200                                   | 25,600                             | 200,000                       | 19.55                           | 0.487                      |
|                 | 8,000                                           | 15,400                                   | 19,600                                   | 27,200                             | 129,500                       | 17.49                           | 0.464                      |
|                 | 12,000                                          | 22,000                                   | 23,500                                   | 33,700                             | 102,000                       |                                 |                            |
|                 | 12,000                                          | 23,100                                   | 25,500                                   | 34,000                             | 102,000                       | 17.20                           | 0.468                      |
|                 | 13,000                                          | 20,600                                   | 23,500                                   | 27,400                             | 160,000                       |                                 |                            |
| Mean            | 11,500                                          | 19,700                                   | 22,500                                   | 30,200                             | 144,000                       |                                 |                            |
| Std. Dev.       | 1,840                                           | 2,720                                    | 2,130                                    | 3,590                              |                               |                                 |                            |
|                 |                                                 |                                          |                                          |                                    |                               | 1.05                            |                            |



TABLE V - 1 (Cont'd) TABULATION OF TEST RESULTS

| (1)<br>SPECIMEN | (2)<br>PROPORTIONAL<br>LIMIT<br>LOAD<br>in lbs | (3)<br>0.03<br>OFFSET<br>LOAD<br>in lbs | (4)<br>0.06<br>OFFSET<br>LOAD<br>in lbs | (5)<br>ULTIMATE<br>LOAD<br>in lbs | (6)<br>SLOPE<br>in lbs per in | (7)<br>MOISTURE<br>CONTENT<br>% | (8)<br>SPECIFIC<br>GRAVITY |
|-----------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------|-------------------------------|---------------------------------|----------------------------|
| 4B61            | 17,300                                         | 28,100                                  | 32,600                                  | 43,400                            | 92,000                        |                                 |                            |
| 2               | 22,000                                         | 30,000                                  | 34,500                                  | 43,300                            | 105,000                       | 13.76                           | 0.444                      |
| 3               | 21,000                                         | 28,500                                  | 31,700                                  | 43,800                            | 198,000                       |                                 |                            |
| 4               | 23,000                                         | 30,000                                  | 33,500                                  | 44,600                            | 160,000                       |                                 |                            |
| 5               | 13,000                                         | 21,200                                  | 26,100                                  | 46,400                            | 192,000                       | 15.31                           | 0.568                      |
| 6               | 12,000                                         | 19,000                                  | 23,300                                  | 46,600                            | 128,000                       | 15.78                           | 0.509                      |
| Mean            | 18,100                                         | 26,100                                  | 30,300                                  | 44,700                            | 146,000                       | 14.95                           | 0.507                      |
| Std. Dev.       | 4,310                                          | 4,370                                   | 4,120                                   | 1,360                             |                               | 0.86                            |                            |
| 4C11            | 10,900                                         | 18,900                                  | 20,500                                  | 29,100                            | 98,000                        | 17.20                           | 0.535                      |
| 2               | 11,200                                         | 17,600                                  | 21,000                                  | 29,700                            | 117,500                       |                                 |                            |
| 3               | 9,400                                          | 15,600                                  | 18,300                                  | 31,800                            | 120,000                       | 17.31                           | 0.536                      |
| 4               | 9,400                                          | 16,500                                  | 20,600                                  | 30,900                            | 100,000                       |                                 |                            |
| 5               | 16,000                                         | 19,500                                  | 21,200                                  | 30,900                            | 106,000                       |                                 |                            |
| 6               | 16,000                                         | 24,500                                  | 25,800                                  | 28,200                            | 133,500                       | 15.08                           | 0.476                      |
| Mean            | 12,200                                         | 18,800                                  | 21,200                                  | 30,100                            | 112,500                       | 16.53                           | 0.516                      |
| Std. Dev.       | 2,810                                          | 2,890                                   | 2,250                                   | 1,240                             |                               | 1.03                            |                            |
| 4C61            | 19,000                                         | 32,000                                  | 36,800                                  | 42,300                            | 183,500                       | 15.70                           | 0.584                      |
| 2               | 14,400                                         | 24,000                                  | 33,000                                  | 42,700                            | 150,000                       | 15.20                           | 0.498                      |
| 3               | 16,000                                         | 23,000                                  | 26,000                                  | 40,000                            | 152,000                       |                                 |                            |
| 4               | 13,500                                         | 26,400                                  | 36,200                                  | 45,700                            | 104,000                       |                                 |                            |
| 5               | 16,000                                         | 26,000                                  | 30,900                                  | 42,000                            | 132,000                       | 15.83                           | 0.498                      |
| 6               | 14,000                                         | 21,000                                  | 24,700                                  | 41,000                            | 157,000                       |                                 |                            |
| Mean            | 15,500                                         | 25,400                                  | 31,300                                  | 42,300                            | 146,500                       | 15.58                           | 0.527                      |
| Std. Dev.       | 1,840                                          | 3,460                                   | 4,640                                   | 1,790                             |                               | 0.26                            |                            |



TABLE V - 1 (Cont'd) TABULATION OF TEST RESULTS

| (1)<br>SPECIMEN | (2)<br>PROPORTIONAL<br>LIMIT<br>LOAD<br>in lbs | (3)<br>0.03<br>OFFSET<br>LOAD<br>in lbs | (4)<br>0.06<br>OFFSET<br>LOAD<br>in lbs | (5)<br>ULTIMATE<br>LOAD<br>in lbs | (6)<br>SLOPE<br>in lbs per in | (7)<br>MOISTURE<br>CONTENT<br>% | (8)<br>SPECIFIC<br>GRAVITY |
|-----------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------|-------------------------------|---------------------------------|----------------------------|
| 4D11            | 10,000                                         | 16,200                                  | 19,000                                  | 33,000                            | 157,000                       | 15.15                           | 0.483                      |
|                 | 9,600                                          | 16,000                                  | 19,400                                  | 28,200                            | 197,000                       | 14.25                           | 0.485                      |
|                 | 12,000                                         | 20,400                                  | 22,200                                  | 27,600                            | 146,000                       |                                 |                            |
|                 | 13,000                                         | 20,700                                  | 25,300                                  | 28,200                            | 146,000                       |                                 |                            |
|                 | 11,000                                         | 16,400                                  | 19,000                                  | 26,800                            | 146,000                       |                                 |                            |
|                 | 9,400                                          | 16,700                                  | 20,400                                  | 26,600                            | 154,000                       |                                 |                            |
| Mean            | 10,800                                         | 17,700                                  | 20,900                                  | 28,400                            | 157,500                       | 14.65                           | 0.490                      |
| Std. Dev.       | 1,310                                          | 2,010                                   | 2,270                                   | 2,180                             |                               | 14.68                           | 0.486                      |
|                 |                                                |                                         |                                         |                                   |                               | 0.37                            | 0.37                       |
| 4D61            | 11,000                                         | 19,600                                  | 22,800                                  | 31,900                            | 277,000                       | 13.42                           | 0.479                      |
|                 | 13,000                                         | 22,000                                  | 25,000                                  | 34,200                            | 183,000                       |                                 |                            |
|                 | 12,500                                         | 25,700                                  | 29,100                                  | 33,400                            | 236,000                       | 13.93                           | 0.476                      |
|                 | 13,500                                         | 20,800                                  | 23,800                                  | 30,800                            | 237,000                       |                                 |                            |
|                 | 13,500                                         | 21,500                                  | 27,000                                  | 34,900                            | 158,000                       | 13.06                           | 0.487                      |
|                 | 13,500                                         | 20,800                                  | 24,800                                  | 33,300                            | 240,000                       |                                 |                            |
| Mean            | 12,800                                         | 21,700                                  | 25,400                                  | 33,100                            | 222,000                       | 13.47                           | 0.481                      |
| Std. Dev.       | 900                                            | 1,920                                   | 2,090                                   | 1,380                             |                               | 0.36                            | 0.36                       |
|                 |                                                |                                         |                                         |                                   |                               |                                 |                            |
| 4E11            | 9,000                                          | 15,000                                  | 19,300                                  | 21,300                            | 113,000                       | 15.95                           | 0.474                      |
|                 | 9,000                                          | 13,400                                  | 15,900                                  | 21,500                            | 113,000                       | 16.51                           | 0.461                      |
|                 | 9,000                                          | 12,600                                  | 15,200                                  | 20,300                            | 82,000                        |                                 |                            |
|                 | 10,000                                         | 15,800                                  | 16,700                                  | 21,300                            | 102,000                       |                                 |                            |
|                 | 12,000                                         | 17,500                                  | 19,800                                  | 21,400                            | 111,000                       |                                 |                            |
|                 | 8,400                                          | 18,000                                  | 21,300                                  | 22,600                            | 79,000                        | 17.42                           | 0.488                      |
| Mean            | 9,600                                          | 15,400                                  | 18,000                                  | 21,400                            | 100,000                       | 16.63                           | 0.474                      |
| Std. Dev.       | 1,190                                          | 1,970                                   | 2,230                                   | 690                               |                               | 0.60                            | 0.60                       |



TABLE V - 1 (Cont'd) TABULATION OF TEST RESULTS

| (1)<br>SPECIMEN | (2)<br>PROPORTIONAL<br>LIMIT<br>LOAD<br>in lbs | (3)<br>0.03<br>OFFSET<br>LOAD<br>in lbs | (4)<br>0.06<br>OFFSET<br>LOAD<br>in lbs | (5)<br>ULTIMATE<br>LOAD<br>in lbs | (6)<br>SLOPE<br>in lbs per in | (7)<br>MOISTURE<br>CONTENT<br>% | (8)<br>SPECIFIC<br>GRAVITY |
|-----------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------|-------------------------------|---------------------------------|----------------------------|
| 4E61            |                                                |                                         |                                         |                                   |                               |                                 |                            |
| 2               | 11,000                                         | 16,400                                  | 19,400                                  | 25,700                            | 142,000                       |                                 |                            |
| 3               | 10,000                                         | 15,500                                  | 17,700                                  | 24,100                            | 158,000                       | 16.82                           | 0.479                      |
| 4               | 9,200                                          | 14,000                                  | 18,800                                  | 25,000                            | 111,500                       |                                 |                            |
| 5               | 11,000                                         | 15,100                                  | 18,600                                  | 23,900                            | 118,000                       |                                 |                            |
| 6               | 9,000                                          | 14,000                                  | 18,000                                  | 21,200                            | 126,000                       | 17.52                           | 0.504                      |
| Mean            | 11,000                                         | 17,000                                  | 20,400                                  | 25,500                            | 117,000                       | 16.86                           | 0.486                      |
| Std. Dev.       | 10,200                                         | 15,300                                  | 18,800                                  | 24,200                            | 129,000                       | 17.07                           | 0.490                      |
|                 |                                                |                                         |                                         | 1,520                             |                               | 0.32                            |                            |
| 4F11            |                                                |                                         |                                         |                                   |                               |                                 |                            |
| 2               | 8,400                                          | 11,500                                  | 14,200                                  | 19,900                            | 209,000                       | 19.02                           | 0.511                      |
| 3               | 7,600                                          | 11,200                                  | 14,100                                  | 19,900                            | 146,000                       | 18.83                           | 0.503                      |
| 4               | 8,000                                          | 13,000                                  | 16,000                                  | 21,800                            | 182,000                       |                                 |                            |
| 5               | 10,000                                         | 13,000                                  | 16,700                                  | 19,200                            | 101,500                       |                                 |                            |
| 6               | 8,000                                          | 14,700                                  | 17,000                                  | 18,100                            | 100,000                       |                                 |                            |
| Mean            | 9,000                                          | 13,700                                  | 18,200                                  | 19,900                            | 98,000                        | 18.93                           | 0.505                      |
| Std. Dev.       | 8,500                                          | 12,900                                  | 16,000                                  | 19,800                            | 139,500                       | 18.93                           | 0.506                      |
|                 | 800                                            | 1,210                                   | 1,480                                   | 1,110                             |                               | 0.14                            |                            |
| 4F61            |                                                |                                         |                                         |                                   |                               |                                 |                            |
| 2               | 10,000                                         | 12,900                                  | 16,100                                  | 19,900                            | 152,500                       | 15.16                           | 0.478                      |
| 3               | 11,500                                         | 15,300                                  | 18,000                                  | 19,900                            | 98,000                        |                                 |                            |
| 4               | 8,000                                          | 15,000                                  | 16,000                                  | 19,100                            | 100,500                       |                                 |                            |
| 5               | 10,000                                         | 16,600                                  | 18,800                                  | 22,000                            | 109,000                       |                                 |                            |
| 6               | 8,000                                          | 12,700                                  | 15,700                                  | 21,200                            | 138,500                       | 18.70                           | 0.494                      |
| Mean            | 9,000                                          | 12,700                                  | 15,000                                  | 19,500                            | 198,000                       | 19.42                           | 0.495                      |
| Std. Dev.       | 9,400                                          | 14,200                                  | 16,600                                  | 20,300                            | 133,000                       | 17.76                           | 0.489                      |
|                 | 1,740                                          | 1,520                                   | 1,340                                   | 1,030                             |                               | 1.86                            |                            |



TABLE V - 1 (Cont'd) TABULATION OF TEST RESULTS

| (1)<br>SPECIMEN | (2)<br>PROPORTIONAL<br>LIMIT<br>LOAD<br>in lbs | (3)<br>0.03<br>OFFSET<br>LOAD<br>in lbs | (4)<br>0.06<br>OFFSET<br>LOAD<br>in lbs | (5)<br>ULTIMATE<br>LOAD<br>in lbs | (6)<br>SLOPE<br>in lbs per in | (7)<br>MOISTURE<br>CONTENT<br>% | (8)<br>SPECIFIC<br>GRAVITY |
|-----------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------|-------------------------------|---------------------------------|----------------------------|
| 4G11            |                                                |                                         |                                         |                                   |                               |                                 |                            |
| 2               | 6,000                                          | 13,300                                  | 15,400                                  | 20,200                            | 175,000                       | 11.57                           | 0.471                      |
|                 | 10,000                                         | 15,200                                  | 17,900                                  | 20,500                            | 160,000                       | 12.66                           | 0.481                      |
| 3               | 8,000                                          | 11,800                                  | 13,700                                  | 17,300                            | 168,000                       |                                 |                            |
| 4               | 8,500                                          | 13,300                                  | 15,700                                  | 18,800                            | 167,000                       | 12,41                           | 0.477                      |
| 5               | 6,000                                          | 12,000                                  | 13,700                                  | 17,200                            | 124,000                       |                                 |                            |
| 6               | 10,000                                         | 13,000                                  | 15,000                                  | 17,600                            | 105,000                       |                                 |                            |
| Mean            | 8,100                                          | 13,100                                  | 15,200                                  | 18,600                            | 150,000                       | 12.21                           | 0.476                      |
| Std. Dev.       | 1,640                                          | 1,090                                   | 1,420                                   | 1,360                             |                               | 0.47                            |                            |
| 4G41            |                                                |                                         |                                         |                                   |                               |                                 |                            |
| 2               | 11,000                                         | 16,300                                  | 17,300                                  | 18,500                            | 96,500                        |                                 |                            |
|                 | 7,000                                          | 10,500                                  | 14,500                                  | 20,000                            | 72,000                        | 15.98                           | 0.431                      |
| 3               | 7,000                                          | 17,400                                  |                                         | 18,100                            | 88,500                        | 15.78                           | 0.458                      |
| 4               | 9,000                                          | 12,700                                  | 15,700                                  | 19,300                            | 124,000                       |                                 |                            |
| 5               | 7,000                                          | 12,600                                  | 16,000                                  | 20,000                            | 95,000                        | 13.82                           | 0.537                      |
| 6               | 8,200                                          | 13,700                                  | 15,700                                  | 18,700                            | 88,000                        |                                 |                            |
| Mean            | 8,200                                          | 13,700                                  | 15,700                                  | 18,700                            | 94,000                        | 15.19                           | 0.475                      |
| Std. Dev.       | 1,460                                          | 2,610                                   | 930                                     | 1,280                             |                               | 0.97                            |                            |





FIGURE 5.37  
GROUP 2C1 SPECIMENS AFTER LOAD TESTING





FIGURE 5.38  
GROUP 2C6 SPECIMENS AFTER LOAD TESTING





FIGURE 5.39  
GROUP 4F1 SPECIMENS AFTER LOAD TESTING





FIGURE 5.40  
GROUP 4F6 SPECIMENS AFTER LOAD TESTING





FIGURE 5.41  
2-5/8 INCH SHEAR PLATES AFTER LOAD TESTING





FIGURE 5.42  
4 INCH SHEAR PLATES AFTER LOAD TESTING





**FIGURE 8.43**  
**BOLTS AFTER LOAD TESTING**



## CHAPTER VI

### DISCUSSION

#### 6.1 Load Slip Curves.

The load slip curves exhibited the normal load versus slip relationship: i.e. as load was applied slip remained proportional to load up to a point at which slip increased at a greater rate than did load, followed by failure. The curves obtained followed this pattern with one major exception, a zone of initial slip was noted as in Figure 6.1. This slip was most likely due to a taking up of the slack in the joint assembly. Minor variations from the theoretical load-slip relationship were likely due to flaws in the specimens.

The proportional limit, the point at which slip is no longer proportional to load, is rather difficult to define in a material such as wood. The proportional limit was considered to be the initial departure of the curve from a straight line drawn through that portion of the curve immediately after the zone of initial slip. The proportional limit may be difficult to define. For this reason it may be desirable to also study loads producing certain offset slips. For the purposes of this investigation loads were established for offset slips of 0.03 inches and 0.06 inches as indicated in Figure 6.1.

#### 6.2 Load vs Grain Angle.

Mean results obtained from the load-slip curves are summarized in Figure 5.33 for 2-5/8 inch shear plates and in Figure 5.34





Fig. 6.1  
METHOD of DETERMINING  
PROPORTIONAL LIMIT and  
OFFSET LOADS from  
LOAD vs. SLIP CURVES



for 4 inch shear plates. In general, as the grain angle  $\alpha$  is increased from  $0^\circ$  to  $90^\circ$  the load decreases and as the grain angle  $\alpha$  is increased from  $90^\circ$  to  $180^\circ$  the load increases. However, an increase in proportional limit load was noted for group 2 specimens as  $\alpha$  increased from  $0^\circ$  to  $45^\circ$  and for group 4 specimens as  $\alpha$  increased from  $0^\circ$  to  $30^\circ$ . The ultimate load for group 4 specimens increased as  $\alpha$  increased from  $0^\circ$  to  $15^\circ$ . This phenomenon was likely caused by a "locking-in" action of the shear plate into the grain of the wood as shown in Figure 6.2. Since the 2-5/8 inch shear plates are shallower and smaller, and therefore more easily embedded into the grain, this phenomenon was more apparent in the group 2 specimens. Figures 5.37 to 5.40 inclusive verify this behaviour. For the specimens with load angle  $\theta$  equal to  $180^\circ$ , the shear plates tend to wedge into the specimens whereas for specimens with load angle  $\theta$  equal to  $0^\circ$  the wood tended to shear off immediately above the shear plates.

The variation of load with grain angle  $\alpha$  is non-linear, with a minimum load value at grain angle  $\alpha$  equal to  $90^\circ$ .

### 6.3 Load vs Load Angle.

These curves were similar to the load vs grain angle  $\alpha$  curves except that the minimum load values were not as well defined. The minimum ultimate load value occurred at load angle  $\theta$  equal to  $135^\circ$  while the minimum proportional limit load value occurred at load angle  $\theta$  equal to  $60^\circ$  as shown in Figure 5.35. Minimum load values for 0.03 inch offset slip and the 0.06 inch offset slip also occurred at load angle  $\theta$  equal to  $60^\circ$ .



Fig. 6.2 "LOCKING-IN" ACTION OF SHEAR PLATES



Specimen 6 has higher strength characteristics than specimen 1.



#### 6.4 Slope vs Grain Angle.

The variation of the slope of the load-slip curves with the grain angle  $\alpha$  is summarized in Figure 5.36. The curve obtained for the 2-5/8 inch shear plates seems to follow quite closely the general shape of the load vs grain angle curves, while that for the 4 inch shear plates bears little or no resemblance to the load vs grain angle curves. It might be expected that the slope vs grain angle curves should exhibit the same general shape as the load vs grain angle curves. The author has no explanation for the marked deviation exhibited by the specimens with 4 inch shear plates and therefore can draw no conclusions from this aspect of the investigation.

#### 6.5 Failure Modes.

Failures in general seemed to follow a specific pattern; i.e. shearing of the wood fibres enclosed by the shear plate followed by crushing of the wood immediately above the bolt and/or shear plate and finally splitting induced by the bearing action of the bolt. Excessive bending of the bolts was noted for specimens which had high ultimate loads. In some cases the bolts broke at the root of the threads (Figure 5.43). This occurred only for specimens which had extremely high ultimate loads. Specimens in groups 2A4 and 4A4 failed due to excessive compression perpendicular to the grain since the load was applied at 90° to the grain. Some damage of the shear plates due to bearing was noted (Figures 5.41 and 5.42). Again, this occurred for only the very heavily loaded specimens.



## 6.6 Criticism of Test Procedure.

Although fairly rigid controls were applied during the testing program certain hind-sight criticisms can now be leveled. The test program was scheduled in accordance with the fabrication of specimens. This led to the testing of partial groups of specimens. Since it was desirable to photograph the specimens as a group considerable time might elapse between the load test and the moisture content and specific gravity test. During this time the moisture content could change appreciably. Only three moisture content and specific gravity specimens were taken for each group of six specimens. The average strength results for the group were obtained, and corrected with the average moisture content and specific gravity results for the group.

Had all specimens been fabricated at one time and if storage facilities with constant temperature and humidity had been readily available the problem of varying moisture content could have been avoided. If moisture content and specific gravity determinations had been made for each specimen, more accurate corrections for these variables could have been made.

## 6.7 Effect of Specific Gravity and Moisture Content Variations.

The effects of varying specific gravity and moisture content upon test results are shown in Appendices A and B.

If the procedure outlined in Appendix A is applied to the mean proportional limit load of specimen group 2E6, which has the greatest deviation from the base value of 0.48, the maximum expected variation due to specific gravity can be calculated.



$$S = S_1 \times \left( \frac{g}{g_1} \right)^{1.25}$$

$$= 10,400 \times \left( \frac{0.480}{0.591} \right)^{1.25}$$

$S = 8040$  lbs or 77.3% of test value.

If the procedure outlined in Appendix B is applied to the mean proportional limit load of specimen group 4F1, which has the greatest moisture content deviation from the base value of 15%, the maximum expected variation due to moisture content can be calculated.

$$\begin{aligned} \text{Log } S_3 &= \text{log } S_2 + (M_2 - M_3) \frac{\log \left( \frac{S_{12}}{S_g} \right)}{(M_p - 12)} \\ &= \text{log } 8500^* + (18.93 - 15.00) \frac{\log 1.94^{**}}{(24 - 12)} \end{aligned}$$

$S_3 = 10,300$  lbs or 121.2% of test value.

\*load was not previously corrected for specific gravity as shown in Appendix B.

$$^{**} \frac{S_{12}}{S_g} = 1.94 \text{ (See Figure B-1)}$$

It is evident from the calculations that the effect of varying specific gravity and moisture content can be appreciable. Although it might appear from the previous calculations that the combined effect might produce up to a 40% change in load values obtained from test results, it is more likely that maximum variations in the order of 10% to 15% would prevail. Since the formulae used for specific gravity and moisture content corrections are empirical and since insufficient moisture and specific gravity data was available it was decided not to adjust the



test results .

#### 6.8 Simplified Trend Curves.

For the purpose of expressing the trend of the results obtained two types of trend curves will be examined:

1. a parabolic curve fitted between loads obtained for grain angle values of  $90^\circ$  and  $90^\circ$ .
2. a "Hankinson's Type" curve fitted between loads obtained for grain angle values of  $0^\circ$  to  $90^\circ$ .

These curves are shown for ultimate load and for proportional limit load results for the 4" shear plates only. (Figure 6.3). It is evident that no account is taken in these simplified equations of the "locking-in action" exhibited by some specimens . It appears that either of these simplified curves could be used to establish a lower bound for the ultimate or proportional limit loads based on test test results for values of  $0^\circ$  and  $90^\circ$ .







## CHAPTER VII

### CONCLUSIONS

The major conclusions of this investigation are as follows:

1. The strength of shear plate connections varies with grain angle. The strength in general is reduced as the grain angle is increased from  $0^\circ$  to  $90^\circ$ , and increases as the grain angle is further increased from  $90^\circ$  to  $180^\circ$ .
2. If the specimen is fabricated so that the shear plates tend to wedge into the wood material, higher strengths will be realized than if the specimen is fabricated so that the shear plates tend to shear away the wood material.
3. The effect of the grain angle on the slope of the load-slip curves was not well defined. For the specimens containing 2-5/8 inch shear plates the Slope vs Grain Angle curve was of the same general shape as the Load vs Grain Angle curve while the Slope vs Grain Angle curve for the specimens containing 4 inch shear plates did not follow any particular pattern.
4. The strength of shear plate connections varies with load angle. The strength was reduced as the load angle was varied from  $0^\circ$  to  $60^\circ$  then remained fairly constant up to a load angle of  $135^\circ$  after which it again increased.
5. Simplified trend curves based on a parabolic equation or a "Hankinson's Type" equation may be used to establish a lower bound for ultimate loads and proportional limit loads for varying grain angle.



## BIBLIOGRAPHY

- (1) National Building Code of Canada, Section 4.3.10.
- (2) British Columbia Lumber Manufacturers Association, 1959.  
Standard Grading and Dressing Rules for Lumber,  
British Columbia Lumber Manufacturers Association,  
Vancouver, B.C.
- (3) Wood Handbook, No. 72. U. S. Department of Agriculture -  
Forest Products. Laboratory - Forest Service.
- (4) Technical Bulletin No. 865 - United States Department of  
Agriculture, Washington D.C. Timber-Connector Joints;  
Their Strength and Design - by John A. Scholten.
- (5) Timber Construction Manual. Canadian Institute of Timber  
Construction.



## APPENDIX A

### SPECIFIC GRAVITY CORRECTION

#### A.1 Effect of Specific Gravity on Strength.

Wood is a cellular material, composed of a relatively dense material with a specific gravity of about 1.5. However this material forms cell cavities which may contain air or water. Variations in the size of these cavities and in the thickness of the cell walls cause some species to have more wood substance than others and therefore to have higher specific gravity values. Specific Gravity thus is an excellent index of the amount of wood substance a piece of dry wood contains and hence is an index of its strength properties.

#### A.2 Specific Gravity Correction.

Any variation in the specific gravity between the specimens tested must therefore be accounted for. The following formula from the Wood Handbook (3) to adjust the strength values obtained in the tests:

$$\frac{S}{S_1} = \left( \frac{g}{g_1} \right)^n$$

where:  $S$  = property at specific gravity  $g$ ,

$S_1$  = property at specific gravity  $g_1$ ,

$n = 1.25$

All values were corrected to a constant specific gravity of 0.48 which is average for Douglas Fir.

As an example, the correction for specimen 2A1 for the 0.03 offset load would be computed as follows:



0.03 offset load = 20,300 lbs (from data)

Mean specific gravity = 0.466

$$S = S_1 \times \left( \frac{g}{g_1} \right)^{1.25} = 20,300 \times \left( \frac{0.48}{0.466} \right)^{1.25}$$
$$= 20,317 \times 1.038 = 21,100 \text{ lbs.}$$



## APPENDIX B

### MOISTURE CONTENT CORRECTION

#### B.1 Effect of Moisture Content on Strength.

Wood increases in strength as it dries.(3) For small, clear pieces, the strength in compression parallel to grain, for example, is about twice as great for a moisture content of 12 percent as for green wood, and drying to about 5 percent moisture content will sometimes triple this value. Increase in strength does not occur unless the moisture content is below the fiber saturation point. The fiber saturation point, which is at approximately 30 percent moisture content, is reached when the free water in the cell cavities has been evaporated and the cell walls are still saturated. As the cell walls continue to lose moisture the strength of the wood increases.

#### B.2 Moisture Content Correction.

Strength values obtained during testing should be adjusted to a common moisture content value, since variations in moisture content between different specimens existed. In order that these adjustments could be made the following formula from the Wood Handbook (3) was used:

$$\log S_3 = \log S_1 + \left( \frac{M_1 - M_3}{M_1 - M_2} \right) \log \left( \frac{S_2}{S_1} \right)$$

where  $S_1$  and  $M_1$  are one pair of corresponding strength and moisture content values as found from test,  $S_2$  and  $M_2$  are another pair, and  $S_3$  is the strength value adjusted to the moisture content  $M_3$ . If one



strength value is for green wood, the moisture content that must be used is that corresponding to the intersection of straight lines giving strength-moisture content relations when strength values are plotted as ordinates and moisture content values as abscissas on semilogarithmic paper. This value which is somewhat lower than the fiber saturation point, is designated as  $M_p$ . Since the corrections required in this test are to be based on the mean value of moisture content for an individual specimen group (i.e. only 1 pair of  $M$  and  $S$ ) we must use;

$$\log S_3 = \log S_2 + (M_2 - M_3) \frac{\log \left( \frac{S_{12}}{S_g} \right)}{(M_p - 12)}$$

where  $S_g$  and  $S_{12}$  are values pertaining to green wood and wood at 12 percent moisture content, respectively. It is desired to correct 0.03 offset loads to a value at  $M_3 = 15\%$ . The correction as applied to specimen group 2A1 for the 0.03 offset load is as follows:

$$S_2 = 0.03 \text{ load} = 21,100 \text{ lbs (previously corrected for specific gravity).}$$

$$M_2 = 15.78\%$$

$$M_3 = 15.00\%$$

$$M_p = 24\%$$

$$\frac{S_{12}}{S_g} = 1.86 \text{ (Compression parallel to grain and fiber stress at proportional limit).}$$

$$\text{Therefore } \log S_3 = \log 21,100 + (15.78 - 15.00) \frac{\log 1.86}{(24 - 12)}$$

$$S_3 = 22,000 \text{ lbs.}$$

The value of  $M_3 = 15\%$  was chosen because the National Building Code of Canada, Section 4.3.10(1) uses this value as the maximum moisture content with a modification factor equal to 1.00. For values of moisture content greater than 15% the modification factor is lowered. The value



$\frac{S_{12}}{S_g} = 1.96$  is for compression perpendicular to grain. It is desired that we obtain values that are intermediate as we have compression at various angles to the grain. If a linear relationship is assumed we have as follows:

FIGURE B-1



ANGLE BETWEEN LOAD AND SIDE SURFACE GRAIN.

Any value of  $\frac{S_{12}}{S_g}$  may be read directly from Figure B.1.





B29844