FÍSICA 2N BATXILLERAT

Artur Arroyo i Pascual§

Col·legi Sant Josep Obrer
C. Covadonga, s/n 08906 L'Hospitalet del Llobregat

Resum

En aquest curs es presenten tot un seguit de temes nous que corresponen a la culminació del currículum de Batxillerat. En qualsevol cas, cal tenir una bona fonamentació dels continguts relatius al curs anterior de 1r de Batxillerat.

 $[\]S_{\text{artur.sjo@gmail.com}}$

${\rm \acute{I}ndex}$

1	El n	noviment harmònic simple	3										
	1.1	Introducció	3										
	1.2	Cinemàtica del moviment harmònic simple	3										
		1.2.1 Deducció de l'equació del moviment	3										
		1.2.2 Velocitat en el moviment harmònic simple	5										
		1.2.3 Acceleració en el moviment harmònic simple	6										
		1.2.4 Espai de fases per l'oscil·lador harmònic simple	6										
		1.2.5 Valors màxims i mínims de les quantitats cinemàtiques											
		associades al MHS	7										
	1.3	Dinàmica del moviment harmònic simple	8										
	1.4	Energia en el moviment harmònic simple	9										
2	One	S	11										
_	2.1		11										
	2.2		11										
		2.2.1 Ones electromagnètiques	11										
		2.2.2 Ones mecàniques	11										
		2.2.3 Ones transversals	11										
		2.2.4 Ones longitudinals	12										
	2.3	Equació d'una ona harmònica. Magnituds que caracteritzen											
		una ona	12										
	2.4 Diferència de fase												
		2.4.1 Velocitat i acceleració en ones transversals	14										
		2.4.2 Velocitat de fase	14										
	2.5	Propagació de l'energia en el moviment ondulatori	14										
		2.5.1 Front d'ona i raig	14										
		2.5.2 Potència i intensitat d'una ona	15										
	2.6	Atenuació i absorció	16										
	2.7	Lleis d'Snell	17										
	2.8	Interferències i difracció	18										
	2.9	Ones estacionàries	19										
			20										
		2.9.2 Corda lligada per un extrem. Tub obert per un extrem	21										
	2.10	~ <u>-</u>	21										
			21										
		2.10.2 Efecte Doppler	22										

3	Car	np gravitatori											
	3.1	Introducció											
	3.2	1 10											
	3.3	Principi de superposició											
	3.4	El moviment dels cossos celestes											
		3.4.1 Pes d'un cos											
		3.4.2 Energia cinètica, potencial gravitatòria i mecànica											
		3.4.3 Orbites circulars estables											
		3.4.4 Orbites geoestacionàries											
		3.4.5 Canvis d'òrbita											
		3.4.6 Velocitat d'escapament											
		3.4.7 Tipus d'òrbita segons l'energia total											
		3.4.8 Caiguda lliure											
	3.5	Les lleis de Kepler											
4	Car	np elèctric											
	4.1	Introducció											
	4.2	Camp elèctric creat per una càrrega puntual											
	4.3	Principi de superposició											
	4.4	Potencial electroestàtic											
		4.4.1 Pous de potencial											
	4.5	Energia potencial electroestàtica											
	4.6	~ -											
	4.7												
	4.8	8 Moviment de càrregues en condensadors											
		4.8.1 Moviment paral·lel al camp elèctric											
		4.8.2 Moviment perpendicular al camp elèctric											
5	Car	np magnètic											
	5.1	Introducció											
		5.1.1 Comportament de la matèria davant el magnetisme											
	5.2	Llei de Lorentz											
	5.3	Moviment de partícules carregades al sí d'un camp magnètic .											
	5.4	Aplicacions I. El selector de velocitats											
	5.5	Aplicacions II. L'espectròmetre de masses											
	5.6	Efecte d'un camp magnètic sobre un fil de corrent											
	5.7	Camp magnètic creat per càrregues i corrents											
		5.7.1 Camp creat per una càrrega puntual en moviment											
		5.7.2 Camp creat per un fil de corrent. Llei de Biot-Savart .											
		5.7.3 Camp creat per un fil infinit de corrent											
		5.7.4 Camp creat per una espira circular											

	5.8 Camp magnètic creat per agrupacions de corrents															62					
		5.8.1	Camp) mag	gnèt	ic c	ereat	ре	er u	ın s	sole	eno	$\mathrm{id}\epsilon$)							62
		5.8.2	Camp) mag	gnèt	ic c	ereat	p€	er u	ın t	tore	oid	е								63
6	Inducció electromagnètica														64						
	6.1	Introdu	ıcció																		64
	6.2	El flux																			
	6.3 Lleis de la inducció electromagnètica															65					
			Llei d																		
			Llei d																		
			L'exp																		
	6.4	Aplicac																			
			Gener							_											
			El mo																		
		6.4.3	Funci	onam	ent	ďί	ın t	ran	sfo	rma	ado	or .									66
7	Relativitat 67																				
	7.1	Introdu	ıcció										•								67
8	Física quàntica 68																				
	8.1	Introdu														•		•			68
9	Física de partícules 69														69						
	9.1	_				•		•													69
10	Físi	Física nuclear 7													74						
	10.1	Introdu	ıcció					•					•	•			•			•	74
11	Història de l'univers 79																				
	11 1	Introdu	ıcció																		70

1 El moviment harmònic simple

1.1 Introducció

La importància del moviment harmònic simple (o MHS), rau en que és un dels pocs sistemes dinàmics a Física, no trivials, que es pot resoldre exactament. En cursos posteriors es fa ús d'aquesta característica per aproximar el comportament de sistemes dinàmics més complexos al d'un oscil·lador i poder així obtenir solucions aproximades que poden suposar un punt de partida.

1.2 Cinemàtica del moviment harmònic simple

1.2.1 Deducció de l'equació del moviment

Suposem que tenim un punt que descriu un moviment circular de radi A amb velocitat angular constant ω . Llavors, la projecció sobre un eix horitzontal en un instant qualsevol del temps val

$$x = A\cos\varphi$$

on φ és l'angle que forma el radi vector que assenyala la posició del punt que es mou i l'eix horitzontal. Com és $\varphi = \omega t$, podem escriure

$$x(t) = A\cos\omega t$$

Podem presentar un resultat més general que permetrà fixar les condicions inicials, i tenim finalment, que l'equació de l'oscil·lador harmònic simple és

$$x(t) = A\cos(\omega t + \varphi_0)$$

on A s'anomena amplitud del moviment i es mesura en metres (m), ω s'anomena pulsació o freqüència angular, i es mesura en rad/s i φ_0 és l'anomenada fase inicial, mesurada en rad.

És important destacar que en la deducció anterior de l'equació de l'oscil·lador, el que segueix el moviment harmònic simple és la projecció del punt que es mou amb moviment circular sobre l'eix horitzontal. Alternativament, podríem haver considerat la projecció sobre un eix vertical, d'aquesta manera l'equació es podria escriure en funció del sinus enlloc del cosinus. En qualsevol cas, aquest detall és irrellevant, ja que ambdúes funcions estan relacionades per una fase de valor $\pi/2$.

En tot el que seguirà a continuació en aquest tema, és fonamental recordar les relacions $\omega = 2\pi f$ i $T = \frac{1}{f}$, on f (Hertz) és la freqüència i T (segons) el període del moviment.

Exemple 1

Trobeu l'equació d'un oscil·lador que té una amplitud de 2 m un període de 10 s i a l'instant inicial es troba en la posició d'equilibri (x = 0).

De l'enunciat sabem que $A=2\,m,$ i com $T=10\,s,$ tenim que $\omega=\frac{2\pi}{T}=\frac{2\pi}{10}=\frac{\pi}{5}\,rad/s.$ Amb aquesta informació podem escriure

$$x(t) = 2\cos\left(\frac{\pi}{5}t + \varphi_0\right)$$

Per una altra banda ha de ser x(0) = 0 de forma que tenim

$$0=2\cos(\varphi_0)$$

d'on

$$cos(\varphi_0) = 0 \longrightarrow \varphi_0 = \frac{\pi}{2}$$

llavors l'equació demanada és

$$x(t) = 2\cos\left(\frac{\pi}{5}t + \frac{\pi}{2}\right)$$

Notem que l'equació

$$cos(\varphi_0) = 0$$

té en realitat dues solucions, el valor principal $\frac{\pi}{2}$ i $\frac{3\pi}{2}$, amb les condicions inicials donades no podem fixar de forma única el valor de φ_0 . Sovint aquest serà el cas i prendrem el valor principal[†] com a solució.

[†]El valor principal del sinus és l'angle α tal que $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ i el del cosinus, l'angle α tal que $0 \le \alpha \le \pi$

1.2.2 Velocitat en el moviment harmònic simple

L'equació de la velocitat es pot obtenir a partir de la relació

$$v(t) = \dot{x}(t) = \frac{dx}{dt}$$

de forma que tenim

$$v(t) = -A\omega\sin(\omega t + \varphi_0)$$

Exemple 2

Trobeu l'equació d'un oscil·lador harmònic simple sabent que la seva amplitud és de 10 metres, la seva pulsació val $\pi rad/s$ i per t=0 la seva elongació val $x=5\,m$ i s'està movent cap a la dreta.

De les dades de l'enunciat es pot escriure

$$x(t) = 10\cos(\pi t + \varphi_0)$$

imposant condicions inicials

$$5 = 10\cos\varphi_0$$

d'on

$$\varphi_0 = \arccos \frac{1}{2} = \frac{\pi}{3} rad$$

com a valor principal, però també és solució de l'equació anterior

$$\varphi_0 = \frac{5\pi}{3} \, rad$$

a diferència de l'exemple 1, ara podem triar entre aquestes dues solucions.

L'equació de la velocitat és

$$v(t) = -10\pi \sin(\pi t + \varphi_0)$$

i per t = 0

$$v(0) = -10\pi \sin(\varphi_0)$$

Resultat que només és positiu si $\varphi_0 = \frac{5\pi}{3} rad$.

1.2.3 Acceleració en el moviment harmònic simple

A partir de la definició d'acceleració

$$a(t) = \dot{v}(t) = \frac{dv}{dt} = \ddot{x}(t) = \frac{d^2x}{dt^2}$$

tenim

$$a(t) = -A\omega^2 \cos(\omega t + \varphi_0) = -\omega^2 x(t)$$

Exemple 3

El moviment d'un determinat objecte obeeix l'equació

$$\ddot{x} + 169x = 0$$

Es demana mostrar que es tracta d'un oscil·lador harmònic simple i calcular el període del moviment.

L'equació es pot escriure com

$$a + 169x = 0 \longrightarrow a = -169x \longrightarrow a = -13^2x$$

que és clarament l'equació que relaciona l'acceleració i l'elongació d'un oscil·lador harmònic simple de freqüència $\omega = 13 \, rad/s$ i per tant, amb període

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{13} s$$

1.2.4 Espai de fases per l'oscil·lador harmònic simple

L'espai de fases d'un sistema dinàmic és una eina molt útil que relaciona la posició d'un objecte o partícula amb el seu moment lineal, en general o amb la seva velocitat, en particular. La relació entre l'elongació i la velocitat d'un oscil·lador harmònic simple es pot trobar de la següent manera, partint de les equacions de l'elongació i la velocitat i ignorant les dependències temporals per no sobrecarregar la notació

$$\begin{cases} x = A\cos(\omega t + \varphi_0) \\ v = -A\omega\sin(\omega t + \varphi_0) \end{cases}$$
$$\begin{cases} \frac{x}{A} = \cos(\omega t + \varphi_0) \\ \frac{v}{-A\omega} = \sin(\omega t + \varphi_0) \end{cases}$$

elevem al quadrat

$$\begin{cases} \left(\frac{x}{A}\right)^2 = \cos^2(\omega t + \varphi_0) \\ \left(\frac{v}{-A\omega}\right)^2 = \sin^2(\omega t + \varphi_0) \end{cases}$$

d'on

$$\frac{x^2}{A^2} + \frac{v^2}{(A\omega)^2} = 1$$

que és l'equació d'una el·lipse de semieixos A i $A\omega$ a l'espai de fases.

Exemple 4

Trobeu, en funció de A, ω la velocitat d'un oscil·lador harmònic simple quan la seva elongació val x=A/2 i es troba movent-se cap a l'esquerra.

A partir de

$$\frac{x^2}{A^2} + \frac{v^2}{(A\omega)^2} = 1$$

tenim

$$\frac{\left(\frac{A}{2}\right)^2}{A^2} + \frac{v^2}{(A\omega)^2} = 1$$

d'on simplificant

$$\frac{\frac{\lambda^2}{4}}{\lambda^2} + \frac{v^2}{(A\omega)^2} = 1$$

$$\frac{1}{4} + \frac{v^2}{(A\omega)^2} = 1 \longrightarrow \frac{v^2}{(A\omega)^2} = 1 - \frac{1}{4} \longrightarrow v = \pm \frac{\sqrt{3}}{2} A\omega$$

tenint en compte les condicions de l'enunciat, ens hem de quedar amb la solució negativa.

1.2.5 Valors màxims i mínims de les quantitats cinemàtiques associades al MHS

Els valors màxims de l'elongació, velocitat i acceleració al MHS es troben molt fàcilment, ja que tant el sinus com el cosinus són funcions acotades, és a dir

$$-1 \le \sin \alpha \le 1$$
 $-1 \le \cos \alpha \le 1$, $\forall \alpha$

- L'elongació màxima $x_{max} = \pm A$ es dona als extrems del moviment. La mínima, $x_{min} = 0$ al punt d'equilibri.
- La velocitat màxima $v_{max} = \pm A\omega$ és dona al punt d'equilibri mentre que la mínima $v_{min} = 0$ es dona als extrems del moviment.
- L'acceleració màxima es dona quan l'elongació és màxima, i val $a_{max} = \pm A\omega^2$ i la mínima es dona al punt d'equilibri, i val $a_{min} = 0$

Exemple 5

Trobeu la distància total recorreguda per un oscil·lador harmònic simple d'amplitud A al llarg d'un període.

Si suposem que l'ocil·lador comença a l'esquerra de tot, és a dir a x = -A, ha de recorrer una distància 2A per arribar a l'altre extrem del moviment, a x = A i després tornar a la posició inicial per completar un període, de forma que en total ha recorregut una distància 4A.

Exemple 6

L'agulla d'una màquina de cosir oscil·la entre dos punts separats una distància vertical de $20 \, mm$. Suposant que descriu un moviment harmònic simple de freqüència $30 \, Hz$, quina és la seva acceleració màxima?

Com el recorregut complet és de $20\,mm$, deduïm que l'amplitud val $A=10\,mm$. Llavors

$$a_{max} = -A\omega^2 \longrightarrow a_{max} = -10 \cdot 10^{-3} (2\pi \cdot 30)^2 = 355, 3 \cdot 10^{-2} \, m/s^2$$

1.3 Dinàmica del moviment harmònic simple

Un exemple de MHS és el d'un objecte de massa m lligat a una molla de constant elàstica k. Recordem que la llei de Hooke relaciona la força que fa la molla amb l'elongació segons

$$F = -kx$$

aplicant la segona llei de Newton

$$F = ma \longrightarrow -kx = -m\omega^2 x$$

d'on es pot deduïr

$$\omega = \sqrt{\frac{k}{m}}$$

Amb un raonament semblant es pot provar que per un pèndol de longitud l en un lloc on la gravetat val g es té

$$\omega = \sqrt{\frac{g}{l}} \longrightarrow T = 2\pi \sqrt{\frac{l}{g}}$$

Exemple 7

Trobeu la constant elàstica d'una molla sabent que quan se li acopla una massa de 1,00 kg i es fa oscil·lar, ho fa amb pulsació $\omega = \sqrt{2\pi} \, rad/s$

A partir de

$$\omega = \sqrt{\frac{k}{m}} \longrightarrow k = m\omega^2$$

és fàcil calcular

$$k = 1 \cdot 2\pi = 2\pi = 6,28 \, N/m$$

1.4 Energia en el moviment harmònic simple

En el cas d'un objecte de massa m unit a una molla de constant elàstica k tenim per l'energia cinètica

$$E_c = \frac{1}{2}mv^2$$

i per l'energia potencial elàstica

$$E_p = \frac{1}{2}kx^2$$

L'energia total d'aquest sistema serà

$$E = E_c + E_p$$

el valor de l'energia total es pot deduir fàcilment, ja que per exemple, al punt d'equilibri, l'energia potencial elàstica val zero, mentre que la cinètica és màxima i val

$$E_{c_{max}} = \frac{1}{2}m(A\omega)^2$$

de forma que tenim

$$\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}m(A\omega)^2$$

alternativament podem veure que als extrems la velocitat és zero i l'energia potencial elàstica és màxima, de forma que podem escriure

$$\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2$$

Exemple 8

L'amplitud en un moviment harmònic simple originat per una molla de constant recuperadora $k=500\,N/m$ és de $40,0\,cm$. Quina serà l'energia total del mòbil? Quant val la seva energia cinètica a l'instant en què l'elongació és de $30,0\,cm$?

Podem expresar l'energia total en funció de la potencial elàstisca com

$$\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2$$

de forma que tenim

$$E_c + E_{p_{el}} = \frac{1}{2}kA^2$$

i llavors, quan $x = 30 \, cm$

$$E_c = \frac{1}{2}kA^2 - \frac{1}{2}kx^2 = \frac{1}{2}k(A+x)(A-x) = \frac{1}{2}500(0,700)(0,100) = 17,5 J$$

2 Ones

2.1 Introducció

2.2 Tipus d'ones

2.2.1 Ones electromagnètiques

No necessiten cap medi material per a propagar-se. En el buit ho fan a la velocitat de la llum $c=3\cdot 10^8\,m/s$. La descripció clàssica considera aquestes ones formades per un camp elèctric i un camp magnètic que oscil·len perpendicularment. Només el camp elèctric condiciona les propietats òptiques en la interacció entre ones electromagnètiques i la matèria.

Amb

$$\frac{|\vec{E}_{max}|}{|\vec{B}_{max}|} = c$$

Per una altra banda, la teoria quàntica (que tractarem breument al Tema 8) considera que les ones electromagnètiques, i en particular la llum, es troben "empaquetades" en partícules anomenades fotons amb energia $E = h \cdot \nu$ on $h = 6,626 \cdot 10^{-34} \, Js$ és la constant de Planck, i $\nu \, (\equiv f)$, la freqüència. En tot aquest capítol estudiarem les ones segons la teoria clàssica.

2.2.2 Ones mecàniques

Necessiten un medi material per a propagar-se. La seva velocitat de propagació depèn de les característiques físiques del medi, i en general, disminueix amb la densitat d'aquest però per altra banda, és proporcional al grau de cohesió de les molècules del medi. Un exemple d'ona mecànica és el so, que més endevant tractarem amb més detall.

2.2.3 Ones transversals

La direcció de la vibració és perpendicular a la direcció de propagació. Per exemple, les ones electromagnètiques que hem vist abans, ones estacionàries en una corda de guitarra, etc.

2.2.4 Ones longitudinals

La direcció de propagació i vibració és la mateixa. Exemple, el so.

2.3 Equació d'una ona harmònica. Magnituds que caracteritzen una ona

L'equació d'una ona harmònica transversal unidimensional que es desplaça cap a la dreta es pot escriure com

$$y(x,t) = A\sin(kx - wt + \varphi_0)$$

on A és l'amplitud de l'ona (en metres), $k=2\pi/\lambda$ és el nombre d'ona (en rad/m), λ la longitud d'ona o minima distància entre dos punts que es troben al mateix estat de vibració (en metres) i φ_0 la fase inicial (en radians), que es fixa amb les condicions inicials. És habitual considerar per simplicitat $\varphi_0=0$ i així ho farem sovint en aquests apunts. Noteu que, fent servir relacions conegudes, podem escriure l'equació de l'ona de forma alternativa com

$$y(x,t) = A\sin 2\pi \left(\frac{x}{\lambda} - \frac{t}{T}\right)$$

ja que $\omega = 2\pi f = 2\pi/T$ i $k = 2\pi/\lambda$.

Exemple 1

L'equació d'una ona harmònica és

$$y(x,t) = 15\sin\pi(3x - 10t)$$

es demana trobar: amplitud, longitud d'ona i període.

Si reescrivim l'equació

$$y(x,t) = 15\sin 2\pi \left(\frac{3x}{2} - \frac{10t}{2}\right) = 15\sin 2\pi \left(\frac{x}{\frac{2}{3}} - \frac{t}{\frac{2}{10}}\right)$$

de forma que es poden identificar directament $A=15\,m,\ \lambda=\frac{2}{3}\,m$ i $T=\frac{2}{10}=\frac{1}{5}\,s.$

Alternativament podriem haver fet, a partir de l'equació proporcionada

$$y(x,t) = 15\sin\pi(3x - 10t) = 15\sin(3\pi x - 10\pi t)$$

d'on s'obté directament $A=15\,m,\,k=3\pi\,rad/m$ i $\omega=10\pi\,rad/s$ i indirectament, els valors trobats anteriorment de λ i T.

2.4 Diferència de fase

Anomenarem fase, φ a l'expressió $kx - \omega t + \varphi_0$. En general, la diferència de fase $\Delta \varphi$ entre dos punts x_1 , x_2 i dos temps t_1 , t_2 es calcula com

$$\Delta \varphi = \varphi_2 - \varphi_1 = kx_2 - \omega t_2 + \aleph_0 - (kx_1 - \omega t_1 + \aleph_0) = k(x_2 - x_1) - \omega(t_2 - t_1)$$

De manera que si volem calcular $\Delta \varphi$ entre dos punts diferents en el mateix instant del temps tindrem

$$\Delta \varphi = k(x_2 - x_1) - \omega(t_1 - t_1) = k(x_2 - x_1)$$

de forma que, en particular, si els punts estan separats un nombre n enter de longituds d'ona, direm que es troben en fase, ja que

$$\Delta \varphi = k(x_2 - x_1) = kn\lambda = \frac{2\pi}{\lambda}n\lambda = 2\pi n$$

i si ho estan un nombre semisenar de longitud
s d'ona, $\frac{2n+1}{2}$ direm que es troben en oposició de fase, ja que

$$\Delta \varphi = k(x_2 - x_1) = k \frac{2n+1}{2} \lambda = \frac{2\pi}{\lambda} \frac{2n+1}{2} \lambda = (2n+1)\pi$$

Un raonament semblant permet discutir els casos en que volem calcular $\Delta \varphi$ per un punt determinat en dos instants de temps diferents, quan aquests corresponen a múltiples enters o semisenars del període T de l'ona.

Exemple 2

L'equació d'una ona harmònica és

$$y(x,t) = 10\sin 2\pi \left(\frac{x}{4} - \frac{t}{20}\right)$$

es demana trobar la diferència de fase entre dos punts separats $2\,m$ en el mateix instant del temps.

Com que és $\lambda = 4 m$, per punts separats 2 m és trivial veure que la diferència de fase és π , és a dir es troben en oposició de fase.

2.4.1 Velocitat i acceleració en ones transversals

A partir de l'equació d'una ona transversal

$$y(x,t) = A\sin(kx - wt + \varphi_0)$$

es pot escriure la de la velocitat[†] dels seus punts

$$v_y = \frac{\partial y(x,t)}{\partial t} = -A\omega\cos(kx - wt + \varphi_0)$$

i la de l'acceleració com

$$a_y = \frac{\partial^2 y(x,t)}{\partial t^2} = \frac{\partial v_y(x,t)}{\partial t} = -A\omega^2 \sin(kx - wt + \varphi_0) = -\omega^2 y(x,t)$$

2.4.2 Velocitat de fase

En les ones harmòniques, anomenem la velocitat de fase o de grup, v a la velocitat amb que es desplaça l'ona, que no és la mateixa que la velocitat amb que vibra cada punt, material o no, de l'ona.

$$\lambda = vT$$

també pot ser útil el resultat

$$\omega = vk$$

2.5 Propagació de l'energia en el moviment ondulatori

2.5.1 Front d'ona i raig

Anomenem **front d'ona** el lloc geomètric dels punts de l'espai que estan en el mateix estat de vibració. Els **raigs** són línies vectorials perpendiculars als fronts d'ona i apunten en el sentit en què avança la pertorbació.

[†]El símbol ∂t denota la derivada parcial respecte el temps, que aquí cal especificar ja que y(x,t) és una funció de dues variables.

En una ona unidimensional (una corda vibrant, per exemple), el front d'ona és un punt, mentre que a una ona bidimensional (pertorbació en un estany al llençar una pedra, per exemple), el front d'ona és una línia (possiblement un cercle), i en una ona tridimensional (ona de xoc que es propaga en una explosió), el front d'ona és una superfície (possiblement una esfera).

2.5.2 Potència i intensitat d'una ona

Anomenem **potència** d'una ona a l'energia que transporta per unitat de temps. En el SI, la potència es mesura en watt (**W**). Recordem que 1W = 1 J/s. Definim **intensitat d'una ona (I)** com la potència per unitat de la magnitud que defineix el front d'ona. Segons aquesta definició tenim

1. Ones unidimensionals

$$I = P$$

per dos punts 1 i 2 diferents

$$P_1 = P_2 \longrightarrow I_1 = I_2$$

2. Ones bidimensionals

$$I = \frac{P}{L} \longrightarrow P = IL = I2\pi R$$

de forma que per dos punts 1 i 2 diferents

$$P_1 = P_2 \longrightarrow I_1 2\pi R_1 = I_2 2\pi R_2 \longrightarrow I_1 R_1 = I_2 R_2$$

3. Ones tridimensionals

$$I = \frac{P}{S} \longrightarrow P = IS = I4\pi R^2$$

per dos punts 1 i 2 diferents

$$P_1 = P_2 \longrightarrow I_1 4\pi R_1^2 = I_2 4\pi R_2^2 \longrightarrow I_1 R_1^2 = I_2 R_2^2$$

Per una altra banda, es pot comprovar que per qualsevol dels tres tipus d'ona es compleix que la intensitat és proporcional al quadrat de l'amplitud

$$I \propto A^2$$

de forma que podem afegir les relacions

$$I_1 = I_2 \longrightarrow A_1^2 = A_2^2 \longrightarrow A_1 = A_2$$

per ones unidimensionals, i

$$\frac{I_1}{I_2} = \frac{R_2}{R_1} \longrightarrow \frac{A_1^2}{A_2^2} = \frac{R_2}{R_1} \longrightarrow \frac{A_1}{A_2} = \sqrt{\frac{R_2}{R_1}}$$

per ones bidimensionals. Finalment, per ones tridimensionals tenim

$$\frac{I_1}{I_2} = \frac{R_2^2}{R_1^2} \longrightarrow \frac{A_1^2}{A_2^2} = \frac{R_2^2}{R_1^2} \longrightarrow \frac{A_1}{A_2} = \frac{R_2}{R_1}$$

Exemple 3

Una font sonora emet un so tal que a 1 metre de l'emissor la intensitat és $I_1 = 10^4 \, W/m^2$. A quina distància de la font aquesta intensitat s'haurà reduit fins a $I_2 = 10^{-12} \, W/m^2$?

Tenim

$$\frac{I_1}{I_2} = \frac{R_2^2}{R_1^2}$$

llavors

$$R_2 = R_1 \sqrt{\frac{I_1}{I_2}} = 1 \sqrt{\frac{10^4}{10^{-12}}} = 10^8 \, m$$

2.6 Atenuació i absorció

Com a conclusió fonamental del final de l'apartat anterior podem veure que en les ones bidimensionals i tridimensionals es produeix una disminució de l'amplitud de la pertorbació a mesura que el front d'ona s'allunya del focus. Aquest fenòmen s'anomena **atenuació**. A banda, quan les ones travessen un medi es produeix una pèrdua d'energia que fa disminuïr encara més la seva intensitat, ho anomenem **absorció**. L'absorció depèn de les característiques del medi i de la freqüència de l'ona. Es pot demostrar la relació

$$I = I_0 \cdot e^{-\beta x}$$

on I_0 és la intensitat que té l'ona abans d'entrar al medi, β l'anomenat coeficient d'absorció del medi, i x la distància recorregida dins el medi. Anomenem **gruix de semiabsorció** a la distància que ha de recórrer l'ona per tal que la intensitat es redueixi a la meitat

$$D_{1/2} = \frac{\ln 2}{\beta}$$

2.7 Lleis d'Snell

Diem que hi ha reflexió quan una ona xoca amb la superfície que separa dos medis diferents i es desvia avançant pel medi original. La refracció es produeix quan una ona arriba a la superfície que separa dos medis diferents i avança pel segon medi. En cadascun dels medis l'ona es mou amb velocitat diferent i canvia la direcció de propagació. És important constatar que la freqüència de l'ona no varia.

Les lleis d'Snell ens diuen com es comporta una ona al arribar a la interfície de separació de dos medis diferents. El curs passat es va tractar aquest tema en el context de les ones electromagnètiques. Aquest any, hem de parlar d'ones en general, i això fa que no podem fer servir l'índex de refracció, ja que aquest es definia només per aquell tipus d'ones. En qualsevol cas, segueixen sent vàlides les següents lleis:

- El raig incident, el reflectit i la normal estan continguts al mateix pla.
- L'angle que forma el raig incident (θ_1) amb la normal és igual al que forma el raig reflectit amb la normal.
- El raig incident, el refractat i la normal estan continguts en el mateix pla.
- Quant el raig incident es progaga a més velocitat que el refractat, l'angle d'incidència θ_1 és més gran que l'angle de refracció (θ_2) , en altres paraules, el raig refractat s'acosta a la normal.

Tenim que

$$\frac{\sin \theta_1}{v_{inci}} = \frac{\sin \theta_2}{v_{refr}}$$

És important establir que, quan una ona travessa la interfície de separació de dos medis, la freqüència no varia, i com la velocitat (en principi) sí ho fa, llavors es conclou que la longitud d'ona també varia.

Exemple 4

La velocitat del so en l'aire és d'uns $340 \, m/s$ metre que en aigua, és de $1600 \, m/s$ aproximadament. Si una ona sonora incideix sobre la superfície d'un estany desde dins de l'aigua amb un angle de 45° , amb quin angle es refractarà un cop surti de l'aigua?

A partir de

$$\frac{\sin \theta_1}{v_{inci}} = \frac{\sin \theta_2}{v_{refr}}$$

tenim

$$\sin \theta_2 = v_{refr} \frac{\sin \theta_1}{v_{inci}} = 340 \frac{\sin 45^o}{1600} = 0, 15$$

d'on

$$\theta_2 = \arcsin 0, 15 = 8,64^{\circ}$$

2.8 Interferències i difracció

Farem un estudi molt qualitatiu dels fenòmens de interferències i difracció d'ones. En quant a les interferències, ens interessa conèixer el que succeeix quan en un punt determinat es troben dues ones harmòniques. Per simplicitat suposarem que aquestes ones tenen la mateixa amplitud i frequència. Considerem doncs que un punt P rep la interferència de dues ones originades en punts S_1 i S_2 , tots dos a una distància x_1 i x_2 de P, respectivament. Llavors, anomenant x_2-x_1 la diferència de camí, tindrem interferència constructiva quan

$$x_2 - x_1 = n\lambda$$

i interferència destructiva quan

$$x_2 - x_1 = (2n+1)\frac{\lambda}{2}$$

En quant al fenòmen de difracció, ens interessa saber que es produeix quan una ona que es propaga en un medi troba obertures o obstacles de mida comparable a la seva longitud d'ona. Llavors, aquesta obertura o obstacle, es comporta com un emissor puntual.

2.9 Ones estacionàries

Per l'estudi de les ones estacionàries suposarem que resulten de la superposició de dues ones idèntiques que es propaguen en el mateix medi en sentits oposats. Llavors la seva suma

$$y = A\sin(kx + \omega t) + A\sin(kx - \omega t)$$

es pot reescriure fent ús de la relació trigonomètrica

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

per obtenir

$$y = 2A\sin(kx)\cos(\omega t)$$

El terme $2A\sin(kx)$ s'anomena amplitud efectiva, ja que en les ones estacionàries l'amplitud depèn de la posició, no només del temps. Els punts que els que l'amplitud val zero per qualsevol temps s'anomenen nodes. Els punts que assoleixen l'amplitud màxima de l'ona estacionària $(\pm 2A)$ s'anomenen ventres.

Per localitzar els nodes demanem

$$2A\sin(kx) = 0$$

d'on

$$kx = n\pi \longrightarrow \frac{2\pi}{\lambda}x = n\pi \longrightarrow x = n\frac{\lambda}{2}$$

Per localitzar els ventres, ha de ser

$$\sin(kx) = \pm 1$$

d'on

$$kx = (2n+1)\frac{\pi}{2} \longrightarrow \frac{2\pi}{\lambda}x = (2n+1)\frac{\pi}{2} \longrightarrow x = (2n+1)\frac{\lambda}{4}$$

En quant a la velocitat de fase de les ones estacionàries, l'expressió

$$\lambda = vT$$

segueix sent vàlida, però ara cal tenir present que la aquesta velocitat depèn de paràmetres físics del suport de l'ona i per tant, és constant. Llavors, al canviar la longitud d'ona, la freqüència canvia d'acord amb el la fórmula anterior. Noteu el contrast amb la situació que teníem quan una ona travessava la interfície de dos medis diferents.

Exemple 5

L'equació d'una ona estacionària és

$$y(x,t) = 6\cos\left(\frac{\pi}{2}x\right)\sin(100\pi t)$$

es demana trobar: amplitud de les ones components, longitud d'ona i periode.

L'amplitud de les ones components és $A=3\,m$. Com és $k=\pi/2$ es dedueix que $\lambda=4\,m$ i finalment, com és $\omega=100\pi$ es veu que $T=0,002\,s$.

2.9.1 Corda lligada pels extrems. Tub obert pels dos extrems

Els dos casos són semblants. La condició perquè es formi una ona estacionària és que en la longitud (de la corda o el tub) hi hagi un nombre semienter de longituds d'ona.

$$L = n\frac{\lambda}{2}$$

de forma que les diferents longituds d'ona que es poden donar són

$$\lambda = \frac{2L}{n} \qquad n = 1, 2, 3 \dots$$

Expressió que genera els diferents harmònics. Per n=1, l'harmònic corresponent rep el nom de fonamental.

Exemple 6

Una corda de longitud 2m lligada pels extems vibra en el segon harmònic amb una freqüència $f=440\,Hz$. Es demana calcular amb quina freqüència vibra el tercer harmònic i la velocitat de les ones estacionàries en aquesta corda.

Com que el segon harmònic *omple* amb una longitud d'ona la separació entre els punts de suport de la corda vibrant, podem deduir que $\lambda=2\,m$. Ara, fent servir les dades de l'enunciat

$$\lambda = vT = v/f \longrightarrow v = \lambda f = 2 \cdot 440 = 880 \, m/s$$

El tercer harmònic omple la separació entre extrems amb una longitud d'ona i mitja (d'on $\lambda = 2L/3 = 4/3$), i com la velocitat és la mateixa per tots els harmònics, la nova freqüència serà

$$f = v/\lambda = \frac{880}{4/3} = 660 \, Hz$$

2.9.2 Corda lligada per un extrem. Tub obert per un extrem

Els dos casos són semblants, ara la condició sobre la longitud (del tub o corda) per tal que s'estableixin ones estacionàries és

$$L = (2n+1)\frac{\lambda}{4}$$

d'on les longituds d'ona possibles són

$$\lambda = \frac{4L}{2n+1}$$
 $n = 0, 1, 2, 3 \dots$

Exemple 7

Calculeu la freqüència que tindrà l'aire vibrant en el segon harmònic en un tub semi obert de 3 metres de longitud. Podeu considerar que la velocitat del so és de $340\,m/s$.

En un tub semiobert, el segon harmònic omple el tub amb $\frac{3}{4}\lambda,$ de forma que serà

$$\frac{3}{4}\lambda = L \longrightarrow \frac{3}{4}\lambda = 3 \longrightarrow \lambda = 4m$$

 $f = \frac{v}{\lambda} = 85 \, Hz$

2.10 El so

i

El so és una pertorbació que apareix quan es fan vibrar les partícules d'un medi elàstic de manera que s'hi produeixen variacions en la densitat o en la pressió i es propaga a través del medi en forma d'ones. El so és una ona mecànica longitudinal de caràcter tridimendional.

2.10.1 Qualitats del so

El to és la qualitat del so que permet distingir els sons aguts dels greus. Està relacionat amb la freqüència de l'ona sonora: els sons aguts corresponen a freqüències altes i els sons greus, a baixes. El timbre és la qualitat del so que permet distingir sons de la mateixa freqüència i amplitud produits per instruments musicals difefents. La intensitat és la qualitat del so que permet identificar-lo com fort o feble. Està relacionada amb l'amplitud de l'ona: els sons forts es corresponen amb amplituds elevades i els febles, amb baixes.

La resposta de l'oïda humana a la intensitat sonora és logarítmica, és a dir, per percebre un so el doble de fort, la seva intensitat s'ha de multiplicar per deu. Aquesta característica es fa servir per definir una magnitud anomenada nivell d'intensitat sonora o sonoritat d'un so:

$$\beta = 10 \log \frac{I}{I_0}$$

que es mesura en decibels (dB) i on $I_0 = 10^{-12} W/m^2$ és l'anomenada intensitat llindar.

Exemple 8

Suposant que una persona cridant pot arribar a produir una sonoritat de $70 \, dB$, calculeu la sonoritat d'un conjunt de $100 \, 000$ persones cridant en un estadi de futbol.

Per una sola persona podem escriure

$$70 = 10 \log \frac{I}{I_0}$$

si anomenem $I' = 10^5 I$ la intensitat del conjunt de l'estadi cridant, tenim

$$\beta' = 10 \log \frac{I'}{I_0} = 10 \log \frac{10^5 I}{I_0} = 10 \log 10^5 + 10 \log \frac{I}{I_0} = 50 + 70 = 120 dB$$

2.10.2 Efecte Doppler

Anomenem efecte Doppler el canvi que en la freqüència observada per un receptor com a conseqüèncoa del moviment de l'emisor, el receptor o tots dos.

Podem resumir la casuística amb la següent fórmula (suposem que la velocitat de l'ona en el medi és v, la freqüència de l'emissor és f_E i la freqüència observada pel receptor és f_R)

$$f_R = f_E \frac{v \pm v_R}{v + v_E}$$

Si el receptor s'acosta o allunya o l'emissor s'allunya o acosta amb velocitats v_R , v_E respectivament.

3 Camp gravitatori

3.1 Introducció

La coneguda anècdota que va protagonitzar Newton amb la poma va servir perquè s'adonés de quelcom que potser a nosaltres ens sembla trivial, però que llavors ningú havia pensat, que la força que governa la dinàmica de l'univers i la que atrau els objectes cap al centre de la Terra són la mateixa. Així, Newton va escriure la que es coneix com llei de gravitació universal

$$F = G \frac{Mm}{r^2}$$

que descriu com calcular la força amb que s'atrauen dos objectes de masses M i m separats una distància r. La constant $G=6,67\cdot 10^{-11}Nm^2/kg^2$ es coneix com constant de gravitació universal.

3.2 El concepte de camp gravitatori. Potencial gravitatori

L'expressió de l'apartat anterior presenta un problema conceptual que és l'anomenada acció a distància, ja que se suposa que la força apareix de forma instantània entre dues masses independentment de la distància que les separa. Per tal de superar aquest detall, es va proposar descriure el concepte de camp, com una condició que crea un objecte, pel sol fet de tenir massa, al seu voltant i que després afecta a altres objectes fent que aparegui una força entre ells.

D'aquesta manera, el camp gravitatori que crea un objecte de massa M al seu voltant a una distància r es calcula com

$$\vec{g} = -G\frac{M}{r^3}\vec{r} = -G\frac{M}{r^2} \cdot \frac{\vec{r}}{r} = -G\frac{M}{r^2}\hat{r}$$

amb mòdul

$$|\vec{g}| = G \frac{M}{r^2}$$

i la força amb que s'atrauran M i una altra massa m situades a distància r val

$$\vec{F} = m\vec{g} = -G\frac{Mm}{r^3}\vec{r}$$

amb mòdul

$$F = |\vec{F}| = mg = G\frac{Mm}{r^2}$$

Per una altra banda, definim el potencial gravitatori que crea un objecte de massa M a una distància r d'ell com

$$V = -G\frac{M}{r}$$

on hem suposat que el potencial gravitatori val zero a l'infinit.

3.3 Principi de superposició

Si tenim n masses situades en punts diferents, llavors el camp total que creen sobre un determinat punt el calcularem com la suma **vectorial** dels camps gravitatoris individuals, és a dir

$$\vec{g}_{total} = \sum_{i=1}^{n} \vec{g}_i$$

Cal notar que al ser el camp gravitatori un vector, no es pot aplicar el principi de superposició amb els mòduls dels camps gravitatoris creats per cada massa individual.

Exemple 1

Considereu una massa $M_1 = 3 \cdot 10^{12} \, kg$ situada al punt $P_1 = (2,4)$ i una altra de valor $M_2 = 7 \cdot 10^{12} \, kg$ situada al punt $P_2 = (1,5)$. Es demana calcular el camp gravitatori que creen al punt Q = (5,8). Considereu tots els valors en metres.

Per calcular el camp total \vec{g}_Q farem

$$\vec{g}_Q = \vec{g}_1 + \vec{g}_2 = -G \frac{M_1}{r_1^3} \vec{r}_1 - G \frac{M_2}{r_2^3} \vec{r}_2$$

on
$$\vec{r_1} = \overrightarrow{P_1Q} = (3,4)$$
 i $\vec{r_2} = \overrightarrow{P_2Q} = (4,3)$, llavors

$$r_1 \equiv |\vec{r}_1| = |\overrightarrow{P_1Q}| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \, m$$

i de forma semblant

$$r_2 \equiv |\vec{r_2}| = |\overrightarrow{P_2Q}| = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \, m$$

de forma que

$$\vec{g}_Q = \vec{g}_1 + \vec{g}_2 = -6,67 \cdot 10^{-11} \cdot \frac{3 \cdot 10^{12}}{5^3} (3,4) - 6,67 \cdot 10^{-11} \cdot \frac{7 \cdot 10^{12}}{5^3} (4,3)$$

$$= \frac{-6,67 \cdot 10^{-11} \cdot 10^{12}}{5^3} \left(3(3,4) + 7(4,3) \right)$$

$$= (-19.74, -17.6) N/kq$$

Exemple 2

Feu servir les dades de l'exemple anterior per calcular el potencial gravitatori que creen les masses M_1 , M_2 en el punt Q.

Ara és

$$\begin{split} V_Q &= V_1 + V_2 = -G \frac{M_1}{r_1} - G \frac{M_2}{r_2} \\ &= -6,67 \cdot 10^{-11} \frac{3 \cdot 10^{12}}{5} - 6,67 \cdot 10^{-11} \frac{7 \cdot 10^{12}}{5} \\ &= -\frac{6,67 \cdot 10^{-11} \cdot 10^{12}}{5} (3+7) \\ &= -133,4 \, J/kg \end{split}$$

3.4 El moviment dels cossos celestes

3.4.1 Pes d'un cos

Considerem ara un objecte de massa m situat sobre la superfície de la Terra. Amb quina força és atret tal objecte? El resultat de l'apartat anterior ens diu que hem d'aplicar la fórmula

$$F = G \frac{Mm}{r^2}$$

on com a r hem de considerar el radi de la Terra i no zero, ja que encara que l'objecte es trobi a la superfície (a distància "zero" de la Terra), en realitat

hem considerar que la Terra és un objecte puntual (amb la mateixa massa), que crea el mateix camp. Així

$$F = G \frac{M_{\oplus} m}{R_{\oplus}^2}$$

Si avaluem la quantitat

$$G\frac{M_{\oplus}}{R_{\oplus}^2} = 6,67 \cdot 10^{-11} \frac{5,97 \cdot 10^{24}}{(6,37 \cdot 10^6)^2} = 9,81 \, m/s^2 \equiv g_0$$

llavors tenim

$$F = mq_0 = P$$

És a dir, la força amb que la Terra atrau un objecte de massa m coindideix amb el seu pes.

Del resultat anterior se'n deriva una relacio útil entre les constants que hi apareixen

$$GM_{\oplus} = g_0 R_{\oplus}^2$$

Per una altra banda, la variació de g amb l'altura sobre la superfície de la Terra es caracteritza per

$$g(h) = G \frac{M_{\oplus}}{\left(R_{\oplus} + h\right)^2}$$

Exemple 3

Trobeu a quina altura sobre la superfície terrestre el camp gravitatori s'ha reduït n vegades, $n \in \mathbb{N}$.

Hem de resoldre l'equació

$$\frac{GM_{\oplus}}{\left(R_{\oplus}+h\right)^2} = \frac{g_0}{n}$$

d'on

$$\frac{GM_{\oplus}}{\left(R_{\oplus}+h\right)^2} = \frac{GM_{\oplus}}{nR_{\oplus}^2}$$

i

$$nR_{\oplus}^2 = \left(R_{\oplus} + h\right)^2$$

fent l'arrel quadrada a banda i banda

$$\pm \sqrt{n}R_{\oplus} = R_{\oplus} + h$$

finalment

$$h = \pm \sqrt{n}R_{\oplus} - R_{\oplus} = R_{\oplus} \left(\pm \sqrt{n} - 1\right)$$

on, per les condicions del problema, és clar que les solucions admissibles són

$$h = R_{\oplus} \left(\sqrt{n} - 1 \right)$$

3.4.2 Energia cinètica, potencial gravitatòria i mecànica

Suposem un objecte de massa m que es troba en un tipus d'òrbita qualsevol al voltant d'un altre objecte de massa M. Definim l'energia cinètica de m com

$$E_c = \frac{1}{2}mv^2$$

i l'energia potencial gravitatòria com

$$E_{pg} = mV = -G\frac{Mm}{r}$$

L'energia mecànica és doncs

$$E_M = E_c + E_{pg} = \frac{1}{2}mv^2 - G\frac{Mm}{r}$$

Exemple 5

Considereu un objecte de massa $m=300\,kg$ que es troba en un moment donat a una altura sobre la superfície terrestre $h=2\,R_\oplus$ allunyant-se en direcció radial amb velocitat $v=200\,m/s$. Es demana calcular per aquest instant:

- 1. La seva energia cinètica.
- 2. La seva energia potencial gravitatòria.
- 3. La seva energia mecànica.

En quant a l'energia cinètica, tenim

$$E_c = \frac{1}{2}mv^2 = \frac{1}{2}300 \cdot 200^2 = 6 \cdot 10^6 J$$

L'energia potencial gravitatòria es calcula com

$$E_{pg} = -\frac{GM_{\oplus}m}{R_{\oplus} + h} = -\frac{6,67 \cdot 10^{-11} \cdot 5,97 \cdot 10^{24} \cdot 300}{6,37 \cdot 10^{6} + 2 \cdot 6,37 \cdot 10^{6}} = -6,25 \cdot 10^{9} J$$

Llavors, l'energia mecànica val

$$E_M = E_c + E_{pg} = 6 \cdot 10^6 - 6,25 \cdot 10^6 = -2,5 \cdot 10^5 J$$

3.4.3 Orbites circulars estables

Les òrbites circulars estables d'un objecte de massa m al voltant d'un cos celest de massa M i radi R, a una alçada h sobre la superfície d'aquest es poden trobar per aplicació de la segona llei de Newton

$$F = ma_c$$

$$\frac{GMm}{\left(R+h\right)^{2}} = m\frac{v^{2}}{R+h}$$

d'on

$$v = \sqrt{\frac{GM}{R+h}}$$

És important destacar que aquesta velocitat no depèn de la massa de l'objecte en òrbita i que **disminueix** amb la distància al centre de forces.

Al calcular l'energia mecànica d'un objecte en una òrbita d'aquestes característiques tenim

$$E_{M} = \frac{1}{2}mv^{2} - G\frac{Mm}{r} = \frac{1}{2}m\frac{GM}{r} - G\frac{Mm}{r} = -\frac{1}{2}G\frac{Mm}{r}$$

Noteu que l'energia mecànica és negativa, com correspon als sistemes lligats. Cal insistir en que l'expressió obtinguda només és vàlida per les òrbites circulars estables. En qualsevol altre situació, caldrà usar l'expressió més general de l'apartat **3.4.2**

Noteu les relacions

$$E_M = -E_c$$

i

$$E_c = -\frac{1}{2}E_{pg}$$
 (Teorema del virial)

Exemple 7

Considereu un objecte de massa $m=100\,kg$ que es troba en una òrbita circular estable a una altura sobre la superfície de la Terra $h=15R_{\oplus}$. Es demana calcular l'energia cinètica, potencial gravitatòria i mecànica. Dada: $R_{\oplus}=6,37\cdot 10^6\,m$.

Tenim

$$E_c = \frac{1}{2}mv^2 = \frac{1}{2}m\left(\sqrt{\frac{GM_{\oplus}}{R_{\oplus} + 15R_{\oplus}}}\right)^2 = \frac{100}{32}\frac{GM_{\oplus}}{R_{\oplus}} = \frac{100}{32}\frac{g_0R_{\oplus}^2}{R_{\oplus}} = 1,95\cdot10^8 J$$

En quant a l'energia potencial gravitatòria, del teorema del virial sabem que és

$$E_{pq} = -2E_c = -3,90 \cdot 10^8 J$$

i finalment, per l'energia mecànica tenim

$$E_M = -E_c = -1,95 \cdot 10^8 J$$

Exemple 8

Raoneu què passarà amb l'objecte de l'exemple anterior si la seva velocitat es redueix un 1%.

Tant és quina sigui la disminució de la velocitat. Si aquesta disminueix, l'òrbita circular estable que correspon a aquell valor estarà *per sobre* de l'òrbita actual, i per accedir-hi, hauria d'augmentar la seva energia potencial gravitatòria. Si no té mitjans autònoms per fer-ho, llavors caurà cap a la Terra seguint una trajectòria en espiral.

3.4.4 Orbites geoestacionàries

Per determinats usos civils, comercials, científics o fins i tot militars, cal tenir un satèl·lit en una òrbita tal que estogui permanentment sobre un punt de la superfície terrestre. Aquestes òrbites s'anomenen geoestaciònàries. Per poder caracteritzar-les hem de demanat que el període de translació del satèl·lit sigui el mateix que el de rotació terrestre, 24 hores. Com que les òrbites (en aquest curs les considerarem així per simplicitat) són circulars, la relació entre l'espai recorregut en una volta, el temps i la velocitat s'escriu com

$$2\pi r = vT$$

on $r = R_{\oplus} + h$ és el radi de l'òrbita, v la velocitat i T el període del moviment. Llavors, fent servir el resultat de l'apartat **3.3.3** per la velocitat de les òrbites circulars estables tenim,

$$2\pi(R_{\oplus} + h) = \sqrt{\frac{GM_{\oplus}}{R_{\oplus} + h}} \cdot T$$

d'on

$$4\pi^{2}(R_{\oplus} + h)^{2} = \frac{GM_{\oplus}}{R_{\oplus} + h}T^{2}$$

reordenant termes

$$(R_{\oplus} + h)^3 = \frac{GM_{\oplus}T^2}{4\pi^2}$$

i finalment

$$h = \sqrt[3]{\frac{GM_{\oplus}T^2}{4\pi^2}} - R_{\oplus}$$

Es deixa com a exercici calcular el valor numèric amb les dades proporcionades al llarg del tema.

És important adonar-se que les òrbites circulars estables que estiguin *per sota* de les geoestacionàries tindran una velocitat de translació més gran que la de la rotació terrestre, i que les que estan *per sobre*, tindran una velocitat menor que la de la rotació terrestre.

Exemple 9

Ens trobem a la vora del mar i volem llançar una pedra horitzontalment a un metre sobre la superfície de l'aigua de forma que descrigui una òrbita circular estable al voltant de la Terra. Es demana calcular la velocitat a la que cal llançar-la. Compareu-la amb la velocitat de rotació terrestre.

A partir de la fórmula

$$v = \sqrt{\frac{GM_{\oplus}}{R_{\oplus} + h}}$$

tenim

$$v = \sqrt{\frac{6,67 \cdot 10^{-11} \cdot 5,97 \cdot 10^{24}}{6,37 \cdot 10^6 + 1}} = 7,91 \cdot 10^3 \, m/s$$

Per una altra banda, la velocitat de rotació terrestre es pot calcular a partir de $2\pi R_{\oplus} = vT_{\oplus}$ d'on

$$v = \frac{2\pi R_{\oplus}}{T_{\oplus}} = \frac{2\pi \cdot 6, 37 \cdot 10^6}{24 \cdot 3600} = 463, 24 \, m/s$$

de manera que la velocitat de l'òrbita és

$$\frac{7,91 \cdot 10^3}{463,24} \approx 17$$

vegades més gran que la de la rotació terrestre.

3.4.5 Canvis d'òrbita

En qualsevol exercici de canvi d'òrbita és convenient treballar mitjançant balanços d'energia. Vegem uns quants exemples.

Exemple 10

Calculeu el treball que s'ha de proporcionar a un satèl·lit de massa m que es troba en una òrbita circular estable a distància h_1 sobre la superfície terrestre si el volem situar en una altra òrbita més llunyana a altura h_2 .

El treball demanat coincideix amb la diferència d'energia mecànica del satèl·lit al canviar d'òrbita. Així

$$\begin{split} W_{h_1 \to h_2} &= -\frac{1}{2} G \frac{M_{\oplus} m}{R_{\oplus} + h_2} - \left(-\frac{1}{2} G \frac{M_{\oplus} m}{R_{\oplus} + h_1} \right) \\ &= -\frac{1}{2} G M_{\oplus} m \left(\frac{1}{R_{\oplus} + h_2} - \frac{1}{R_{\oplus} + h_1} \right) \\ &= -\frac{1}{2} G M_{\oplus} m \frac{R_{\otimes} + h_1 - R_{\otimes} - h_2}{(R_{\oplus} + h_2)(R_{\oplus} + h_1)} \\ &= -\frac{1}{2} G M_{\oplus} m \frac{h_1 - h_2}{(R_{\oplus} + h_2)(R_{\oplus} + h_1)} \\ &= \frac{1}{2} G M_{\oplus} m \frac{h_2 - h_1}{(R_{\oplus} + h_2)(R_{\oplus} + h_1)} \end{split}$$

que com es pot veure fàcilment, és una quantitat positiva sempre que $h_2 > h_1$. És a dir, encara que l'energia potencial gravitatòria sempre pren valors negatius, quan ens allunyem del centre de forces, l'energia potencial gravitatòria augmenta. Recordem que el zero és a l'infinit.

Exemple 11

Calculeu el treball que cal fer per tal de posar en òrbita un satèl·lit des de la superfície terrestre fins a una altura h.

Suposarem sempre, si no es diu el contrari, que els objectes quan es llencen des de la superfície d'un planeta, només tenen energia potencial gravitatòria. És a dir, ignorarem l'energia cinètica que poguéssin tenir per efecte de la rotació del planeta. Aquesta energia cinètica que estem ignorant depèn de la latitud del lloc de llançament, ja que a l'equador la velocitat de rotació és màxima, i als pols, zero. Així, per calcular el treball demanat calcularem la diferència d'energia mecànica entre el punt de destinació del satèl·lit, i el de partida. S'ha de tenir present que la destinació del satèl·lit no té perquè ser en general una òrbita circular estable, (en aquest exemple sí ho és). En definitiva, en el cas que ens ocupa podem escriure

$$\begin{split} W_{R_{\oplus} \to h} &= -\frac{1}{2} G \frac{M_{\oplus} m}{R_{\oplus} + h} - \left(-G \frac{M_{\oplus} m}{R_{\oplus}} \right) \\ &= -G M_{\oplus} m \left(\frac{1}{2(R_{\oplus} + h)} - \frac{1}{R_{\oplus}} \right) \\ &= -G M_{\oplus} m \frac{R_{\oplus} - 2(R_{\oplus} + h)}{(R_{\oplus} + h)R_{\oplus}} \\ &= G M_{\oplus} m \frac{2(R_{\oplus} + h) - R_{\oplus}}{(R_{\oplus} + h)R_{\oplus}} \\ &= G M_{\oplus} m \frac{R_{\oplus} + 2h}{(R_{\oplus} + h)R_{\oplus}} \end{split}$$

3.4.6 Velocitat d'escapament

Suposem que volem llançar un objecte de massa m des d'una altura h sobre la superfície terrestre amb prou velocitat perquè no torni mai més. Per calcular aquesta velocitat, anomenada velocitat d'escapament v_e , demanarem que l'energia mecànica valgui zero, que és la condició perquè deixi d'estar lligat a la terra gravitatòriament

$$0 = E_M = \frac{1}{2}mv^2 - \frac{GM_{\oplus}m}{R_{\oplus} + h}$$

d'on sobté fàcilment

$$v_e = \sqrt{\frac{2GM_{\oplus}}{R_{\oplus} + h}}$$

En el cas que la velocitat d'escapament d'un objecte estelar arribi a assolir un valor tant gran com $v_e = 3 \cdot 10^8 \, m/s \equiv c$, llavors ni tan sols la llum pot sortir de la seva superfície i podem identificar-lo com un forat negre. Anomenem radi d'Schwarzschild (R_S) d'un cos celest, al radi que haria de tenir per tal que la seva velocitat d'escapament fos la de la llum, suposant que la seva massa no varia.

Exemple 12

Calculeu el radi d'Schwarzschild de la Terra. Podeu considerar coneguda la dada $R_{\oplus}=6,37\cdot 10^6\,m$.

Del resultat

$$c = \sqrt{\frac{2GM_{\oplus}}{R_S}}$$

tenim

$$R_S = \frac{2GM_{\oplus}}{c^2} = \frac{2g_0R_{\oplus}^2}{c^2} = 8,884 \cdot 10^{-3} \, m \approx 9 \, mm$$

Noteu que estem parlant de que tota la massa de la Terra estigui concentrada en una esfera de $9\,mm$ de radi. Com es veu, els valors de la densitat que s'assoleixen en els forats negres són elevadíssims. La distorsió que produeixen al seu voltant en l'espai-temps és tant gran que, de l'estructura espai-temporal habitual que tenim a l'univers, tres dimensions espacials i una temporal, es passa a tres temporals i una espacial, un cop travessat l'horitzó d'esdeveniments del forat negre.

3.4.7 Tipus d'òrbita segons l'energia total

El valor de l'energia total d'un cos respecte un altre, que considerem el centre de forces, condiciona els diferents tipus d'òrbites que aquell pot descriure. Així, si $E_M < 0$, llavors el sistema està lligat gravitatòriament i les òrbites poden ser circulars, o el·liptiques. Si $E_M = 0$ el sistema no està lligat i les òrbites són parabòles (aquest, no és el cas de trajectòries parabòliques estudiades a primer de batxillerat). Finalment, si $E_M > 0$, llavors el sistema tampoc està lligat gravitatòriament i ara les òrbites són hipèrboles.

3.4.8 Caiguda lliure

Els problemes de moviment vertical no es poden resoldre, tal i com s'ha vist al llarg del capítol, amb els resultats del curs de Física de primer de batxillerat. La raó fonamental és que per variacions d'altura prou grans, el fet que la g no sigui constant s'ha de tenir en compte. Aquest advertiment ha de quedar molt clar, especialment en els exercicis de caiguda lliure. De tota manera s'ha de fer servir el sentit comú, ja que és possible trobar exercicis en els que sí puguem fer servir la coneguda relació

$$mgh = \frac{1}{2}mv^2$$

Exemple 13

Un objecte de massa m cau amb velocitat v des d'una altura h sobre la superfície terrestre. Calculeu amb quina velocitat arriba al terra.

Suposem que la velocitat amb que arriba és v' i plantegem un balanç d'energia per resoldre la qüestió,

$$\frac{1}{2}mv^2 - G\frac{M_{\oplus}m}{R_{\oplus} + h} = \frac{1}{2}mv'^2 - G\frac{M_{\oplus}m}{R_{\oplus}}$$

$$\frac{1}{2}mv'^2 = \frac{1}{2}mv^2 - G\frac{M_{\oplus}m}{R_{\oplus} + h} + G\frac{M_{\oplus}m}{R_{\oplus}}$$

$$mv'^2 = mv^2 - 2G\frac{M_{\oplus}m}{R_{\oplus} + h} + 2G\frac{M_{\oplus}m}{R_{\oplus}}$$

$$v' = \sqrt{v^2 - 2GM_{\oplus}\left(\frac{1}{R_{\oplus} + h} - \frac{1}{R_{\oplus}}\right)}$$

$$v' = \sqrt{v^2 - 2GM_{\oplus}\frac{R_{\oplus} - R_{\oplus} - h}{(R_{\oplus} + h)R_{\oplus}}}$$

$$v' = \sqrt{v^2 + 2GM_{\oplus}\frac{h}{(R_{\oplus} + h)R_{\oplus}}}$$

Exemple 14

Un objecte de massa m cau amb velocitat v des d'una altura $h=100\,m$ sobre la superfície terrestre. Calculeu amb quina velocitat arriba al terra.

Ara plantegem el balanç

$$\frac{1}{2}mv^2 + mgh = \frac{1}{2}mv^2$$

d'on s'arriba fàcilment a un resultat conegut en cursos anteriors (estem suposant $g = g_0 = 9,81 \, m/s^2$)

$$v' = \sqrt{v + 2gh}$$

3.5 Les lleis de Kepler

Les lleis de Kepler van ser obtenides experimentalment per Johannes Kepler uns 80 anys abans que Newton formulés la llei de gravitació universal i les seves lleis del moviment. Les lleis de Kepler milloren radicalment el model heliocentrista de Copèrnic, vigent fins llavors i que presentava nombroses complicacions degut a que bàsicament, era incorrecte. Aquí convé recordar el criteri d'Occam "Pluralitas non est ponenda sine neccesitate".

Les tres lleis de Kepler són

- 1. Els planetes es mouen en òrbites el·líptiques al voltant del Sol amb aquest situat en un dels focus de l'el·lipse.
- 2. Les òrbites dels planetes són planes i la corda que uneix la posició d'un planeta i el Sol escombra àrees iguals en temps iguals.
- 3. La relació entre el periode de translació dels planetes al voltant del Sol i el radi mitjà de la seva òrbita és

$$T^2 = \frac{4\pi^2}{GM_{\odot}}r^3$$

on $G=6,67\cdot 10^{-11}\frac{Nm^2}{kg^2}$ és l'anomenada constant universal de gravitació.

• Consequència important de la segona és que la velocitat dels planetes és més gran al *periheli* (punt de l'òrbita més proper al Sol) que l'afeli (punt més llunyà).

• La tercera llei es pot aplicar a qualsevol parell d'objects estel·lars sotmesos a la força gravitatòria, només cal posar a l'expressió la massa del que es considera el centre de forces. La quantitat r es considera típicament la distància entre centres.

Exemple 15

Sabent que el període orbital de Júpiter és de 12 anys (terrestres), trobeu a quina distància del Sol es troba, en funció de la distància Terra-Sol (r_{\oplus}) .

Escrivim la tercera llei de Kepler per les parelles Terra-Sol, Júpiter-Sol, ja que en aquest cas el Sol és el centre de forces i considerem que la Terra i Júpiter orbiten al seu voltant

$$T_{\oplus}^2 = \frac{4\pi^2}{GM_{\odot}}r_{\oplus}^3$$

$$T_{+}^{2} = \frac{4\pi^{2}}{GM_{\odot}}r_{+}^{3}$$

dividim les equacions d'abaix a dalt

$$\frac{T_{\downarrow}^2}{T_{\oplus}^2} = \frac{r_{\downarrow}^3}{r_{\oplus}^3}$$

d'on

$$r_{\uparrow} = r_{\oplus} \sqrt[3]{\frac{T_{\uparrow}^2}{T_{\oplus}^2}} = r_{\oplus} \sqrt[3]{\left(\frac{T_{\uparrow}}{T_{\oplus}}\right)^2} = r_{\oplus} \sqrt[3]{12^2} \approx 5,24r_{\oplus}$$

Aquesta idea de dividir les equacions que representen la tercera llei de Kepler aplicada a dos objectes diferents (per exemple planetes), es fa servir molt. Cal però, tenir cura de no confondre la distància dels planetes al centre de forces amb el seu radi. També cal tenir clar *qui és* el centre de forces en cada exercici.

4 Camp elèctric

4.1 Introducció

La càrrega elèctrica és una propietat fonamental i característica de les partícules elementals que formen la matèria. De fet, tot matèria està formada fonamentalment de protons, neutrons i electrons i dues d'aquestes partícules tenen càrrega elèctrica. Molts objectes macroscòpics són electricament neutres i tenen càrrega total neta igual a zero. Si hi ha un excés d'electrons o de protons, llavors tindran càrrega negativa o positiva respectivament. Al sistema internacional la unitat de càrrega elèctrica és el $Coulomb\ C$, que es defineix com la quantitat de càrrega que transporta un corrent d'un ampere en un segon.

$$I = \frac{Q}{t}$$

Les càrregues elèctriques creen a l'espai del seu voltant una condició que anomenem *camp elèctric* i que es manifesta quan situem una altra càrrega de forma que apareix una força entre elles.

4.2 Camp elèctric creat per una càrrega puntual

Sigui una càrrega q situada en un punt P del pla cartesià, llavors, el camp que crea en un altre punt P' es pot calcular com

$$\vec{E} = \frac{1}{4\pi\epsilon_0 \epsilon_r} \frac{q}{r^3} \vec{r}$$

amb $\vec{r} = \overrightarrow{PP'}$, $\epsilon_0 = 8.85 \cdot 10^{-12} \frac{C^2}{Nm^2}$, la permitivitat o constant dielèctrica del buit i ϵ_r permitivitat relativa del medi. Per calcular el mòdul del camp elèctric fem

$$\vec{E} = \frac{1}{4\pi\epsilon_0\epsilon_r} \frac{q}{r^3} \vec{r} = \frac{1}{4\pi\epsilon_0\epsilon_r} \frac{q}{r^2} \frac{\vec{r}}{r} = \frac{1}{4\pi\epsilon_0\epsilon_r} \frac{q}{r^2} \hat{r}$$

de forma que queda

$$|\vec{E}| = \frac{1}{4\pi\epsilon_0\epsilon_r} \frac{q}{r^2} |\hat{r}|$$

$$E = \frac{1}{4\pi\epsilon_0\epsilon_r} \frac{q}{r^2}$$

El camp elèctric és d'abast infinit, *surt* de les càrregues positives i *entra* en les negatives. Les línies de camp no es poden tallar mai, ja que llavors en aquell punt hi hauria dos valors diferents del camp elèctric, cosa que és impossible.

Les superfícies equipotencials tallen perpendicularment les línies de camp en tot punt. En dues dimensions són corbes tancades similars a les corbes de nivell d'un mapa topogràfic. Les superfícies equipotencials tampoc es poden tallar en cap punt per la mateixa raó que les línies de camp elèctric no ho podien fer.

4.3 Principi de superposició

Si tenim n càrregues situades en punts diferents, llavors el camp total que creen sobre un determinat punt el calcularem com la suma **vectorial** dels camps elèctrics individuals, és a dir

$$\vec{E}_{total} = \sum_{i=1}^{n} \vec{E}_{i}$$

Cal notar que al ser el camp elèctric un vector, no es pot aplicar el principi de superposició amb els mòduls dels camps elèctric creats per cada càrrega individual.

Exemple 1

Calculeu el camp elèctric que creen al punt A=(6,15) dues càrregues $q_1=2\,nC$ i $q_2=-5\,nC$ situades als punts $P_1=(1,3)$ i $P_2=(-6,10)$.

Per calcular el camp total \vec{E}_A farem

$$\vec{E}_A = \vec{E}_1 + \vec{E}_2 = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{r_1^3} \vec{r}_1 + \frac{1}{4\pi\varepsilon_0} \frac{q_2}{r_2^3} \vec{r}_2$$

on
$$\vec{r_1} = \overrightarrow{P_1 A} = (5, 12)$$
 i $\vec{r_2} = \overrightarrow{P_2 A} = (12, 5)$, llavors

$$r_1 \equiv |\vec{r_1}| = |\overrightarrow{P_1 A}| = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13 \, m$$

i de forma semblant

$$r_2 \equiv |\vec{r}_2| = |\overrightarrow{P_2A}| = \sqrt{12^2 + 5^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \, m$$

de forma que

$$\vec{E}_A = \vec{E}_1 + \vec{E}_2 = 9 \cdot 10^9 \cdot \frac{2 \cdot 10^{-9}}{13^3} (5, 12) - 9 \cdot 10^9 \cdot \frac{5 \cdot 10^{-9}}{13^3} (12, 5)$$

$$= \frac{9}{13^3} \left(2(5, 12) - 5(12, 5) \right)$$

$$= (-0.205, -0.004) N/C$$

4.4 Potencial electroestàtic

Per calcular el potencial que crea una càrrega q situada en un punt P del pla cartesià sobre un altre punt P', farem servir el següent resultat

$$V = \frac{1}{4\pi\epsilon_0\epsilon_r} \frac{q}{r}$$

on s'ha triat l'origen de potencial a infinit $(V_{\infty} = 0)$ i $\vec{r} = \overrightarrow{PP'}$. Notem que el potencial hereta el signe de la càrrega que el crea i que es tracta d'un escalar. D'aquesta manera, per calcular el potencial que crea un sistema de càrregues en un cert punt, n'hi haurà prou de sumar els potencials (escalars) que crea cadascuna individualment.

4.4.1 Pous de potencial

Podem representar el potencial electroestàtic que crea una càrrega positiva +Q amb ajut de la següent figura, on s'ha representat la càrrega que crea el potencial en color verd.

El potencial val $+\infty$ al punt de l'espai on és la càrrega +Q i disminueix cap a zero al seu voltant. Una càrrega de prova[†] positiva +q (assenyalada en color vermell) que estigués a prop, es mouria espontàniament cap a potencials més baixos, allunyant-se de +Q. És com si una pilota estigués en el pendent d'una muntanya, cauria cap avall. Una altra càrrega de prova negativa -q (representada en color blau) es mouria espontàniament pendent amunt, acostant-se a +Q. En els dos casos l'energia potencial del parell de càrregues +Q/+q i +Q/-q disminueix.

[†]Anomenem *càrrega de prova* a una càrrega que té un valor massa petit per alterar el camp i potencial que crea una altra.

En el cas d'una càrrega negativa -Q, el perfil del potencial que crea es pot representar de la següent manera.

És infinit $(-\infty)$ al punt on es troba -Q i tendeix a zero al allunyar-se d'ella. Una càrrega de prova +q cauria al pou de potencial, cap a potencials més baixos. Una càrrega de prova -q pujaria per les parets del pou allunyant-se de la càrrega -Q.

Amb això veiem que independentment del signe de la càrrega que crea el potencial electroestàtic, les càrregues de prova positives es comporten com ho faria una pilota de massa m rodolant per un pendent o pou avall, sempre movent-se cap a potencials més baixos. En aquest sentit, el comportament de les càrregues de prova negatives trenquen aquest paral·lelisme amb el camp gravitatori, ja que sempre es mouen pendent amunt cap a potencials més elevats.

Exemple 2

Calculeu el potencial electroestàtic que creen les càrregues de l'exemple anterior en el punt A.

Ara és

$$V_Q = V_1 + V_2 = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{r_1} + \frac{1}{4\pi\varepsilon_0} \frac{q_2}{r_2}$$

$$= 9 \cdot 10^9 \cdot \frac{2 \cdot 10^{-9}}{13} - 9 \cdot 10^9 \cdot \frac{5 \cdot 10^{-9}}{13}$$

$$= \frac{9}{13} (2 - 5)$$

$$= -2,077 J/C$$

4.5 Energia potencial electroestàtica

L'energia potencial electrostàtica que adquireix una càrrega Q situada en un punt on existeix un potencial V es calcula com

$$E_p = Q \cdot V$$

i coincideix amb el treball que s'ha de fer per dur-la desde l'infinit fins el punt en qüestió. En general, per calcular el treball que cal fer per moure una càrrega Q d'un punt A a un punt B en el si d'un camp elèctric farem

$$W_{A\to B} = Q(V_B - V_A)$$

4.6 Energia de configuració d'un sistema de càrregues

Per calcular el treball que cal fer per obtenir una determinada configuració de càrregues el que farem és calcular el treball necessari per portar-les d'una en una desde l'infinit fins el seu lloc de destí. Aquest treball no depèn de l'ordre escollit.

Exemple 3

Suposem que tenim tres càrregues elèctriques $q_1 = 2 nC$, $q_2 = -3 nC$ i $q_3 = 5 nC$ situades als punts $P_1 = (1,2)$, $P_1 = (4,7)$ i $P_3 = (-5,8)$ respectivament. Es demana calcular l'energia associada a tal configuració.

Calculem el treball que cal fer per portar cada càrrega des de l'infinit fins al punt de destinació de cadascuna.

Per la primera càrrega aquest treball val

$$W_1 = W_{\infty \to P_1} = q_1(V_{P_1} - V_{\infty}) = 2 \cdot 10^{-9}(0 - 0) = 0 J$$

ja que abans que q_1 arribi al seu punt de destí, no hi ha cap altre càrrega present i per tant, el potencial electroestàtic al punt P_1 val zero. Noteu que estem ignorant expressament el potencial electroestàtic que la mateixa q_1 pogués crear a P_1 durant el seu viatge des de l'infinit fins a P_1 . Si el volguéssim tenir en compte hauríem de resoldre l'exercici en el context de l'electrodinàmica, tema que queda fora de l'abast d'aquest curs. També, recordem que $V_{\infty} = 0$ per definició.

En quant a la segona càrrega, quan aquesta arribi a P_2 , sí sentirà els efectes del potencial que crea q_1 en aquest punt, perquè q_1 ja està al seu lloc quan q_2 arriba a P_2 . Llavors

$$W_2 = W_{\infty \to P_2} = q_2(V_{P_2} - V_{\infty})$$

Necessitem doncs calcular el potencial que crea q_1 en P_2 , que anomenarem $V_{P_2}^{q_1}$.

Comencem calculant $\overrightarrow{P_1P_2}=(3,5)$, amb mòdul $|\overrightarrow{P_1P_2}|=\sqrt{3^2+5^2}=\sqrt{34}$, aleshores

$$V_{P_2}^{q_1} = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{|\overrightarrow{P_1 P_2}|} = \frac{18}{\sqrt{34}}$$

i

$$W_2 = 2 \cdot 10^{-9} \left(\frac{18}{\sqrt{34}} - 0 \right) = 6,174 \cdot 10^{-9} J$$

Ara hem de portar q_3 fins a la seva destinació. Per calcular el treball que cal per fer-ho, hem de calcular el potencial electroestàtic present en P_3 i creat ara tant per q_1 com per q_2 .

Necessitem els vectors $\overrightarrow{P_1P_3}=(-6,6)$ i $\overrightarrow{P_2P_3}=(-9,1)$, amb mòduls $|\overrightarrow{P_1P_3}|=\sqrt{72}$ i $|\overrightarrow{P_2P_3}|=\sqrt{82}$. Amb la mateixa notació que abans tenim

$$W_3 = W_{\infty \to P_3} = q_3(V_{P_3} - V_{\infty})$$

a banda, ara V_{P_3} té dues contribucions, tal com hem dit abans, i és

$$V_{P_3} = V_{P_3}^{q_1} + V_{P_3}^{q_2} = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{|\overline{P_1}P_3|} + \frac{1}{4\pi\varepsilon_0} \frac{q_2}{|\overline{P_2}P_3|} = 9 \cdot 10^9 \cdot \frac{2 \cdot 10^{-9}}{\sqrt{72}} - 9 \cdot 10^9 \cdot \frac{3 \cdot 10^{-9}}{\sqrt{82}}$$

$$V_{P_3} = -0.86 V$$

i finalment

$$W_3 = W_{\infty \to P_3} = q_3(V_{P_3} - V_{\infty}) = 5 \cdot 10^{-9}(-0.86 - 0) = -4.3 \cdot 10^{-9} J$$

El treball total doncs serà

$$W_T = W_1 + W_2 + W_3 = 0 + 6.174 \cdot 10^{-9} - 4.3 \cdot 10^{-9} = 1.872 \cdot 10^{-9} J$$

i correspon a l'energia de configuració del sistema de càrregues.

4.7 Camps elèctrics uniformes

Fins ara hem descrit el camp que creen càrregues puntuals. Aquest camp tenia direcció radial i sortia de les càrregues positives i entrava en les negatives. Els camps elèctrics uniformes són una idealització on suposarem que les linies de camp elèctric són paral·leles. Això es pot aconseguir en part, per exemple, disposant dues plaques conductores paral·leles. Si la distància entre plaques és prou petita comparada amb l'àrea de les plaques, es pot considerar que el camp que es crea entre elles (un cop polaritzades adequadament) és un camp uniforme.

Hi ha efectes frontera a les vores de les plaques, perquè en aquestes zones el camp es radial, però en els exercicis s'ignora aquest fet habitualment.

En aquestes condicions la relació entre el potencial que polaritza les plaques (V), el mòdul del camp elèctric uniforme creat (E) i la distància entre les plaques (d) s'escriu com

$$V = Ed$$

4.8 Moviment de càrregues en condensadors

La disposició de dues plaques conductores paral·leles constitueix el que s'anomena condensador, i constitueix un dispositiu capaç d'emmagatzemar càrrega elèctrica. El moviment de càrregues al seu interior es pot descriure amb dues situacions diferents.

4.8.1 Moviment paral·lel al camp elèctric

En aquest cas el moviment és perpendicular a les plaques i les qüestions plantejades al voltant d'aquesta situació s'acostumen a resoldre mitjançant balanços d'energia.

Exemple 4

Es deixa anar un electró des de la placa negativa d'un condensador polaritzat amb 15 V. Es demana calcular la velocitat amb que arriba a la placa positiva si aquesta es troba a una distància de $10^{-5} m$ de la negativa. Raoneu què succeeix si la distància entre plaques es duplica. Podeu suposar coneguts $m_{e^-} = 9, 11 \cdot 10^{-31} \, kg$ i $q_{e^-} = -1, 602 \cdot 10^{-19} \, C$.

Plantejarem un balanç d'energia entre el treball que fa el camp elèctric present al condensador sobre el electró i l'energia cinètica que guanya (noteu que escriurem el valor absolut de la càrrega al balanç)

$$q_{e^-}V = \frac{1}{2}mv^2$$

d'on

$$v = \sqrt{\frac{2q_{e^-}V}{m}} = \sqrt{\frac{2 \cdot 1,602 \cdot 10^{-19} \cdot 15}{9,11 \cdot 10^{-31}}} = 2,3 \cdot 10^6 \, m/s.$$

Com es veu, la distància no influeix en el càlcul de la velocitat. Sí que té influència en l'acceleració, ja que el camp depèn de la distància entre plaques.

Per tant, si la distància es duplica, la velocitat d'arribada seria la mateixa però ho faria amb la meitat d'acceleració.

4.8.2 Moviment perpendicular al camp elèctric

Ara la trajectòria de les càrregues és parabòlica. Vegem un exemple.

Exemple 4

Un positró entra amb velocitat $v=10^3\,m/s$ en un condensador en direcció paral·lela a les plaques i per la seva línia mitja. Es demana trobar les equacions del moviment i l'equació de la trajectòria sabent que les plaques estan connectades a una bateria de $20\,V$ i es troben separades una distància $d=1\,mm$. Considereu conegudes les dades $m_{e^+}=9,11\cdot 10^{-31}\,kg$ i $q_{e^+}=1,602\cdot 10^{-19}\,C$.

Si suposem que la placa superior és positiva i la inferior negativa, podem representar la situació com

Prenent l'origen d'altura a la placa negativa les equacions del moviment s'escriuen

$$\begin{cases} x = vt \\ y = \frac{d}{2} - \frac{1}{2}at^2 \end{cases}$$

amb

$$a = \frac{F_e}{m_{e^+}} = \frac{Eq_{e^+}}{m_{e^+}} = \frac{Vq_{e^+}}{dm_{e^+}}$$

ara, podem reescriure les equacions del moviment com

$$\left\{ \begin{array}{l} x=vt \\ \\ y=\frac{d}{2}-\frac{1}{2}\frac{Vq_{e^+}}{dm_{e^+}}t^2 \end{array} \right.$$

i aïllant el temps de les dues equacions, obtenim l'equació de la trajectòria

$$y = \frac{d}{2} - \frac{1}{2} \frac{V q_{e^+}}{d m_{e^+}} \left(\frac{x}{v}\right)^2$$

o també

$$y = \frac{d}{2} - \frac{1}{2} \frac{Vq_{e^+}}{dm_{e^+}v^2} x^2$$

i, fent servir els valors de l'enunciat

$$y = 5 \cdot 10^{-4} - 1,76 \cdot 10^9 x^2$$

que és l'equació d'una paràbola amb les banyes cap avall.

Exemple 4

A partir de l'exemple anterior, calculeu el temps que tarda la càrrega a arribar a l'altura de la placa negativa. Raoneu a més si impactarà amb ella sabent que la longitud de les plaques és de $20 \, mm$.

Demanarem que sigui y = 0 a l'equació

$$y = \frac{d}{2} - \frac{1}{2} \frac{V q_{e^+}}{d m_{e^+}} t^2$$

per obtenir

$$t = \sqrt{\frac{\frac{\frac{d}{2}}{\sqrt{Vq_{e^{+}}}}}{\frac{2dm_{e^{+}}}{2dm_{e^{+}}}}} = \sqrt{\frac{d^{2}m_{e^{+}}}{Vq_{e^{+}}}} = 5,33 \cdot 10^{-10} \, s$$

en aquest temps, el positró recorre una distància

$$x = vt = 10^3 \cdot 5.33 \cdot 10^{-10} = 5.33 \cdot 10^{-7} m$$

és a dir que impactarà a la placa negativa encara dins el condensador.

5 Camp magnètic

5.1 Introducció

L'origen dels camps magnètics es troba en el moviment de càrregues. És a dir, tota càrrega en moviment genera un camp magnètic al seu voltant. Si considerem un imant

Per conveni acceptem que les línies de camp surten del pol nord i entren en el pol sud. El camp magnètic \vec{B} és sempre tangent a les línies de camp representades. Les línies de camp magnètic sempre es tanquen, a diferència de les línies de camp elèctric. Això és degut a que no existeixen monopols magnètics, és a dir, si dividim l'imant per la meitat, amb la idea d'obtenir un pol nord i un pol sud, ens trobarem que cada pol es converteix en un altre imant amb pols nord i sud.

5.1.1 Comportament de la matèria davant el magnetisme

Tots els materials es poden considerar compostos de petits imants, que en absència de camps magnètics externs, en general estan orientats a l'atzar

i la majoria d'ells responen a l'aplicació d'un camp magnètic \vec{B} extern produïnt la seva pròpia magnetització, i per tant, el seu propi camp magnètic al seu interior. Segons el seu comportament magnètic els materials es poden classificar en:

Ferromagnètics: produeixen una magnetització, (que pot romandre al desactivar el camp extern), en el mateix sentit que el camp extern, de forma que fan augmentar el valor total del camp en el seu interior. Per exemple, el μ -metall pot multiplicar per un factor 10^5 el camp aplicat. Això es degut a la seva alta permeabilitat magnètica i el fa molt útil com a escut magnètic ja que condueix el camp extern pel seu interior, aconseguint així un efecte d'apantallament.

Paramagnètics: produeixen una magnetització lleu en el seu interior en el mateix sentit que el camp aplicat. A diferència dels materials ferromagnètics, perden la magnetització al eliminar el camp extern. El moviment tèrmic interior és suficient per desordenar els àtoms que s'haguessin alineat amb el camp extern.

Diamagnètics: produeixen una magnetització en el seu interior que s'oposa al camp aplicat extern. Tots els materials són diamagnètics. Aquesta propietat queda "amagada" quan un material és paramagnètic o ferromagnètic, ja que aquests efectes són més potents que el diamagnetisme i dominen sobre aquest.

5.2 Llei de Lorentz

La llei de Lorentz dona idea de la força que sent una partícula amb càrrega q que es mou amb velocitat \vec{v} en el si d'un camp magnètic \vec{B}

$$\vec{F} = q \cdot \vec{v} \times \vec{B}$$

amb mòdul

$$|\vec{F}| = |q||\vec{v}||\vec{B}|\sin\alpha$$

$$F = |q|vB\sin\alpha$$

on |q| és el valor absolut de la càrrega elèctrica, i α l'angle que formen la velocitat i el camp magnètic. La direcció de la força és perpendicular al pla que formen \vec{v} i \vec{B} i el sentit es pot trobar recordant les relacions de commutació dels vectors unitaris de la base canònica a \mathbb{R}^3

$$\hat{\imath} \times \hat{\jmath} = \hat{k}$$
$$\hat{\jmath} \times \hat{k} = \hat{\imath}$$
$$\hat{k} \times \hat{\imath} = \hat{\jmath}$$

També cal recordar que el producte vectorial de dos vectors, anticommuta, és a dir

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a} \qquad \forall \vec{a}, \vec{b}$$

Conseqüència de la forma que adopta la Llei de Lorentz és que la força que actua sobre la càrrega elèctrica és sempre perpendicular a la seva velocitat i per tant, el camp magnètic *no fa treball*.

De l'expressió de la llei de Lorentz es pot definir la unitat de camp magnètic, Tesla

$$[B] = \frac{[F]}{[q] \cdot [v]} = \frac{N}{C \cdot m/s} = \frac{N}{A \cdot m} \equiv T$$

una altra unitat que no és del Sistema Internacional però que s'utilitza sovint és el Gauss, ${\cal G}$

$$1T = 10^4 G$$

La expressió més general de la llei de Lorentz quan hi ha presència de camps magnètics i elèctrics al mateix temps és

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

5.3 Moviment de partícules carregades al sí d'un camp magnètic

Al ser la força que apareix sobre una càrrega en presència d'un camp magnètic resultat del producte vectorial de dos vectors, necessitaríem una representació en tres dimensions en la majoria de situacions. Sovint, per simplificar aquesta representació, es pren el camp magnètic perpendicular al paper, de forma que la velocitat de les partícules carregades en sigui perpendicular. Sota aquestes condicions, la trajectòria de les càrregues queda confinada al pla del paper, i la seva descripció és més senzilla.

Així, per conveni, si el camp magnètic (per extensió, qualsevol camp vectorial) surt del paper, el representarem de la següent manera

i si és entrant al paper, ho representarem així

Ara, considerem una càrrega que es dirigeix amb velocitat v cap a una regió on existeix un camp magnètic \vec{B} , perpendicular a la velocitat de la càrrega i entrant al paper tal com es representa a la figura

Si escrivim la segona llei de Newton

$$F = ma$$

El mòdul de la força es pot calcular a partir de la llei de Lorentz

$$\vec{F} = q \cdot \vec{v} \times \vec{B}$$

que en mòdul s'escriu

$$F = |q|vB\sin\alpha$$

i finalment

$$F = qvB$$

ja que \vec{v} i \vec{B} són perpendiculars.

Llavors

$$F = ma \longrightarrow qvb = ma$$

d'on

$$qvb = m\frac{v^2}{R}$$

$$R = \frac{mv}{qB}$$

El sentit de la força magnètica sobre la càrrega es troba considerant el producte vectorial $\vec{v} \times \vec{B}$ i les relacions de commutació dels vectors de la base canònica. Pot ser interessant trobar el temps que tarda a donar cada volta, és a dir el període. Tenim per una banda

$$2\pi R = vT$$

d'on

$$T = \frac{2\pi R}{v} = \frac{2\pi \cancel{R}}{\cancel{RqB}} = \frac{2\pi m}{qB}$$

En el cas que la velocitat de la partícula i el camp magnètic forméssin un angle no perpendicular, el moviment d'aquesta seria helicoidal, ja que podem descomposar la velocitat en una component paral·lela al camp (que no es veu afectada) i una perpendicular (que obliga la càrrega a descriure cercles).

$$\vec{v} = \vec{v}_{\parallel} + \vec{v}_{\perp}$$

La combinació ambdúes defineix la trajectòria abans descrita. Aquesta situació s'aprofita, per exemple, en les anomenades ampolles magnètiques, que fan servir un camp magnètic deformat adequadament per tal de confinar un plasma[†] al seu interior i poder tenir-lo a temperatures que no suportarien les parets d'un recipient convencional.

Exemple 1

Un positró es mou amb velocitat $\vec{v} = 100 \,\hat{k} \, m/s$ quan s'endinsa en una regió de l'espai sotmesa a un camp magnètic $\vec{B} = 200 \,\hat{\imath} \, T$. Es demana calcular la força que sent i el radi del moviment circular que descriurà. Discutiu a més, què canviaria en el cas que fos un electró enlloc d'un positró. I si fos un protó? Podeu considerar conegudes les dades: $m_{e^+} = 9, 11 \cdot 10^{-31} \, kg$ i $q_{e^+} = 1,602 \cdot 10^{-19} \, C$.

[†]Un plasma és un gas ionitzat i per tant, sensible a camps elèctrics i magnètics degut a les càrregues que conté.

De la llei de Lorentz tenim

$$\vec{F} = q\vec{v} \times \vec{B} = 1,602 \cdot 10^{-19} (100\hat{k}) \times (200\hat{\imath}) = 3,2 \cdot 10^{-15} (\hat{k} \times \hat{\imath}) = 3,2 \cdot 10^{-15} \, \hat{\jmath} \, N$$

i en quant al radi de la trajectòria

$$R = \frac{mv}{aB} = \frac{9,11 \cdot 10^{-31} \cdot 100}{1,602 \cdot 10^{-19} \cdot 200} = 2,84 \cdot 10^{-12} \, m$$

Donat que electró i positró tenen la mateixa massa i càrregues iguals però de diferent signe, per un electró el valor de la força seria el mateix però el sentit el donat pel vector $-\hat{\jmath}$. El radi de gir seria el mateix que el del positró.

En el cas del protó, la força seria exactament la mateixa que la calculada pel positró, ja que protó i positró tenen la mateixa càrrega, en canvi el radi seria més gran, ja que la massa del protó és aproximadament 1800 vegades la del positró i electró.

5.4 Aplicacions I. El selector de velocitats

Per determinades aplicacions es necessita obtenir un feix d'ions tal que tots ells tinguin la mateixa velocitat. Per tal d'aconseguir-ho es fa servir l'anomenat selector de velocitats. Aquest dispositiu consisteix en un camp magnètic i un elèctric creuats, de forma que les forces sobre els ions són oposades.

Només les partícules del feix que pateixen la mateixa força elèctrica i magnètica, passen el selector sense desviar-se. És a dir, aquelles per les quals es compleix

$$F_e = F_m \longrightarrow qE = qvB \longrightarrow v = \frac{E}{B}$$

Com E i B es poden controlar externament, podem "triar" la velocitat que volem de les partícules emergents. Cal tenir en compte que aquestes partícules segurament tindran masses diferents. Per poder destriar-les posteriorment es pot fer servir l'anomenat espectròmetre de masses, que s'explica en el punt següent.

Exemple 2

Un selector de velocitats deixa passar ions de He^+ amb una velocitat de $3,00 \cdot 10^5 \, m/s$, que no es desvien de la trajectòria rectilínia inicial. El camp elèctric té un mòdul de $2,00 \cdot 10^5 \, N/C$. Sabent que el camp magnètic és perpendicular al pla del paper i entra en ell, indiqueu, d'una manera justificada, la direcció i el sentit del camp elèctric i de la força magnètica que actua sobre un ió He^+ amb una càrrega d' $1,60\cdot 10^{-19}\,C$. Calculeu també el mòdul del camp magnètic en aquest dispositiu.

Si suposem que les partícules entren d'esquerra a dreta, llavors el camp magnètic fa una força cap a dalt (es comprova) i el camp elèctric l'ha de fer cap a baix. Com que les càrregues que entren al selector són positives, voldrem que la placa superior tingui càrrega positiva i la inferior, negativa.

Per les partícules que no es desvien, es compleix

$$F_e = F_m \longrightarrow qE = qvB$$

llavors

$$B = \frac{E}{v} = \frac{2,00 \cdot 10^5}{3,00 \cdot 10^5} = 0,67 \, T$$

5.5 Aplicacions II. L'espectròmetre de masses

Tal com hem vist abans, podem arribar a obtenir un feix d'ions amb la mateixa càrrega i velocitat. Per poder separar-los en funció de la seva massa, farem passar el feix per un espectròmetre de masses.

Recordem que d'aquesta situació es podia deduir que

$$R = \frac{mv}{qB}$$

fixats els valor de q, v, B, resulta que el radi que descriuen les partícules que entren en el selector depèn de la seva massa, de manera que podem separar-les per aquest criteri.

Exemple 3

Els ions He^+ de l'exemple anterior entren en un espectròmetre de masses que fa servir un camp magnètic de mòdul B=2T. Calculeu el radi de l'òrbita que descriuen aquests ions. Suposeu que la seva massa és de $6,68 \cdot 10^{-27} \, kg$.

La força magnètica sobre els ions els farà descriure una trajectòria circular. Aplicant la segona llei de Newton, tenim

$$F_c = ma_c \longrightarrow qvB = m\frac{v^{2}}{R}$$

d'on

$$R = \frac{mv}{qB} = \frac{6,68 \cdot 10^{-27} \cdot 3,20 \cdot 10^5}{1,6 \cdot 10^{-19} \cdot 2} = 6,7 \cdot 10^{-3} \, m$$

5.6 Efecte d'un camp magnètic sobre un fil de corrent

Considerem la següent situació

en la que un fil de corrent es troba sotmés a un camp magnètic. El mòdul de la força que el camp fa sobre les càrregues que es mouen al llarg del fil val

$$F = qvB = ItvB = IlB$$

on s'ha considerat que en un temps t les càrregues han recorregut una distància l movent-se a velocitat v. La direcció i sentit de la força es poden trobar fent servir consideracions ja conegudes i resulta ser perpendicular al fil i al camp i dirigida cap a l'esquerra.

Podem reescriure el resultat anterior com

$$\vec{F} = I \cdot \vec{l} \times \vec{B}$$

Exemple 4

Considereu un fil de corrent de longitud $\vec{l} = 50 \,\hat{\jmath} \, cm$ i massa $m = 100 \, g$ pel qual passa una intensitat $I = 2 \, A$ i es troba sotmés a l'acció d'un camp magnètic $\vec{B} = -9, 8 \,\hat{\imath} \, T$. Es demana calcular la massa M extra que pot suportar el fil mantenint-se en equilibri.

Com hem vist, la força que actua sobre un fil de corrent sotmés a un camp magnètic val

$$\vec{F} = I \cdot \vec{l} \times \vec{B} = 2 \cdot (0, 5\,\hat{\jmath}) \times (-9, 8\,\hat{\imath}) = -2 \cdot 0, 5 \cdot 9, 8(\hat{\jmath} \times \hat{\imath}) = 9, 8\,\hat{k}\,N$$

ja que és

$$\hat{j} \times \hat{i} = -\hat{k}$$

llavors, la força magnètica va dirigida cap adalt, equilibrant el pes del fil i finalment

$$(m+M)g = IlB \longrightarrow M = \frac{IlB}{g} - m = \frac{2 \cdot 0, 5 \cdot 9, 8}{9, 8} - 0, 1 = 0, 9 \, kg$$

5.7 Camp magnètic creat per càrregues i corrents

5.7.1 Camp creat per una càrrega puntual en moviment

Les càrregues en moviment creen un camp magnètic. Sigui una càrrega situada en el punt P_1 , que es mou amb velocitat \vec{v} . El camp magnètic que crea aquesta càrrega en un punt P_2 es calcula com

$$\vec{B} = \frac{\mu}{4\pi} \frac{q \cdot \vec{v} \times \overrightarrow{P_1 P_2}}{|\overrightarrow{P_1 P_2}|^3} = \frac{\mu}{4\pi} \frac{q \cdot \vec{v} \times \vec{r}}{r^3}$$

amb $\vec{r} = \overrightarrow{P_1P_2}$ i μ la permebilitat magnètica del medi que s'expressa en funció de la permeabilitat en el buit μ_0 i μ_r la permeabilitat relativa del medi. És a dir

$$\mu = \mu_r \mu_0$$

amb

$$\mu_0 = 4\pi \cdot 10^{-7} \, \frac{Tm}{A}$$

Si no es diu res, en la resolució dels exemples suposarem $\mu_r = 1$.

Exemple 5

Calculeu el camp magnètic que crea en el punt $P_2 = (2, 3, -4)$ un electró que es mou amb velocitat $\vec{v} = 3 \cdot 10^6 \,\hat{\imath} \, m/s$ quan es troba al punt $P_1 = (-1, 2, 7)$.

Fent servir l'expressió que acabem de presentar

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q \cdot \vec{v} \times \vec{r}}{r^3}$$

trobem primer

$$\vec{r} = \overrightarrow{P_1P_2} = (3, 1, -11) \longrightarrow |\vec{r}| = \sqrt{131} m$$

ara podem calcular

$$\vec{v} \times \vec{r} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 3 \cdot 10^6 & 0 & 0 \\ 3 & 1 & -11 \end{vmatrix} = -33 \cdot 10^6 \hat{\jmath} + 3 \cdot 10^6 \hat{k} = (0, -33 \cdot 10^6, 3 \cdot 10^6)$$

i finalment

$$\vec{B} = \frac{4\pi \cdot 10^{-7}}{4\pi} \frac{-1.6 \cdot 10^{-19} (0, -33 \cdot 10^6, 3 \cdot 10^6)}{\left(\sqrt{131}\right)^3} = (0, 3.52 \cdot 10^{-22}, -3.20 \cdot 10^{-23})$$

5.7.2 Camp creat per un fil de corrent. Llei de Biot-Savart

En el cas d'un fil de corrent, no tenim una única càrrega sinó que es tracta d'una distribució contínua, el que obliga a escriure una equació diferencial (llei de Biot-Savart) que s'haurà d'integrar per tal d'obtenir el camp magnètic en cada cas (per geometries del fil diferents). Com que no es coneixen els detalls del càlcul integral ens limitarem a presentar l'expressió de la llei de Biot-Savart i els diferents resultats.

$$d\vec{B} = \frac{\mu}{4\pi} \frac{I \cdot d\vec{l} \times \vec{r}}{r^3}$$

5.7.3 Camp creat per un fil infinit de corrent

En aquest cas el resultat que s'obté pel mòdul del camp magnètic creat és

$$|\vec{B}| = \frac{\mu I}{2\pi r}$$

L'anomenada regla de la $m\grave{a}$ dreta ens proporciona el sentit del camp magnètic.

Exemple 6

Calculeu el mòdul del camp que crea a 1 metre de distància un fil infinit pel qual passa una intensitat $I=2\,A$.

De l'expressió

$$B = \frac{\mu_0 I}{2\pi r}$$

calculem

$$B = \frac{4\pi \cdot 10^{-7}}{2\pi \cdot 1} = 10^{-7} \, T$$

Exemple 7

Dos fils infinits separats una distància d s'atrauen quan passen per ells intensitats paral·leles; I_1 , I_2 . Demostreu que aquesta força (per unitat de longitud) val

$$\frac{F}{l} = \frac{\mu_0 I_1 I_2}{2\pi d}$$

Calculeu després la força amb que es repel·leixen dos fils separats d=2m, sobre una part de 1cm de la seva longitud pels quals passen intensitats $antiparal·leles\ I_1=3\ A$ i $I_2=5\ A$.

El camp que crea el fil que transporta I_1 en un punt del fil que transporta I_2 val

$$B = \frac{\mu_0 I_1}{2\pi d}$$

ara, la força deguda a aquest camp sobre un segment de longitud l del fil que transporta I_2 es pot calcular com

$$F = I_2 lB = I_2 l \frac{\mu_0 I_1}{2\pi d} \longrightarrow \frac{F}{l} = \frac{\mu_0 I_1 I_2}{2\pi d}$$

Ara, quan les intensitats són antiparal·leles els fils es repel·leixen (es comprova) i la força valdrà

$$F = l \frac{\mu_0 I_1 I_2}{2\pi d} = 0.01 \frac{4\pi 10^{-7} \cdot 3 \cdot 2}{2\pi \cdot 2} = 6 \cdot 10^{-5} N$$

5.7.4 Camp creat per una espira circular

Sigui una espira circular de radi R per la qual circula una intensitat I. Suposem que l'eix de l'espira es troba alineat amb l'eix OX, llavors, la llei de Biot-Savart proporciona com a resultat pel mòdul del camp magnètic creat per aquesta espira en els punts del seu eix

$$B = \frac{\mu I}{2} \frac{R^2}{\sqrt{(R^2 + x^2)^3}}$$

En el cas que ens interessi exclusivament el valor del camp al *centre* de l'espira, l'expressió anterior queda reduïda a

$$B = \frac{\mu I}{2R}$$

El sentit del camp s'obté com una versió dual de la regla de la mà dreta que permetia obtenir el sentit del camp magnètic creat per un fil infinit de corrent.

Exemple 8

Per una espira circular de radi $R=0,50\,m$ que es troba en el pla del paper, circula una intensitat de valor $I=3,0\,A$, en sentit horari. Calculeu el mòdul, direcció i sentit del camp magnètic que crea en el seu centre.

El càlcul és directe

$$B = \frac{\mu_0 I}{2R} = \frac{4\pi \cdot 10^{-7} \cdot 3}{2 \cdot 0.5} = 3,8 \cdot 10^{-6} T$$

5.8 Camp magnètic creat per agrupacions de corrents

Un resultat, la demostració del qual queda fora de l'abast d'aquest curs, és l'anomenada llei d'Ampère que s'expressa com

$$\oint \vec{B} \cdot d\vec{l} = \mu \sum_{i} I_{i}$$

i ens diu d'entrada, que el camp magnètic no és conservatiu, i per tant no es podrà definir un *potencial magnètic*, i el treball necessari per desplaçar una càrrega en un camp magnètic dependrà del camí escollit (en comparació amb els camps gravitatori i elèctric que sí són conservatius). Per una altra banda, la llei d'Ampère permet calcular el camp magnètic creat per agrupacions de corrents, per exemple el solenoide i el toroide.

5.8.1 Camp magnètic creat per un solenoide

Un solenoide o bobina, està format per un fil de corrent enrotllat en espiral. Quan per el solenoide passa un corrent I, cada espira crea el seu camp magnètic i l'efecte combinat de totes es pot calcular amb la llei d'Ampère per donar

$$B = \mu \frac{N \cdot I}{l} = \mu \cdot n \cdot I$$

on N és el nombre d'espires i l la longitud del solenoide. També es fa servir n, el nombre d'espires per unitat de longitud.

5.8.2 Camp magnètic creat per un toroide

Un toroide és un solenoide curvat de forma que el seu eix forma una circumferència. La llei d'Ampère permet calcular el camp magnètic al centre del toroide com

$$B = \mu \frac{N \cdot I}{2\pi \cdot R}$$

on N és el nombre d'espires, I la intensitat que circula pel fil de corrent i R el radi del toroide.

6 Inducció electromagnètica

6.1 Introducció

Les experiències de Faraday

Anomenem inducció electromagnètica la producció de corrent elèctric a partir de l'interacció d'un camp magnètic i un conductor. Fins els nostres dies, la generació de corrent elèctric a nivell industrial es basa en aquest fenòmen. En el seu afany per produïr corrent a partir d'un camp elèctric, Faraday va fer un sèrie d'experiments que es poden resumir en els següents.

1a experiència

Faraday va disposar una espira conductora connectada a un galvanòmetre. Com que no hi hi ha cap generador al circuit, el galvanòmetre no marca pas de corrent. Ara bé, al acostar o allunyar un imant a l'espira, llavors l'agulla del galvanòmetre es desvia, assenyalant el pas de corrent per l'espira.

2a experiència

Ara Faraday va usar un solenoide en lloc d'un imant, amb resultats semblants (ja que el solenoide crea un camp magnètic con l'imant.)

3a experiència

En aquesta experiència, Faraday va col·locar dues espires enfrontades, una connectada a un galvanòmetre i l'altra connectada a una bateria amb un iterruptor. Al accionar l'interruptor el galvanòmetre marcava pas de corrent per l'espira.

Faraday es va adonar que el que hi havia en comú era que sempre que apareixia corrent induit hi havia una variació de flux del camp magnètic.

6.2 El flux magnètic.

Donat un camp magnètic \vec{B} i una superfície, es defineix el flux magnètic Φ_B que travessa la superfície, com

$$\Phi_B = \vec{B} \cdot \vec{S} = B \cdot S \cos \theta$$

on \vec{S} és un vector normal a la superfície i θ , l'angle que formen \vec{B} i \vec{S} . El mòdul de \vec{S} és l'àrea de la superfície. La unitat del flux magnètic és tesla per metre quadrat, i s'anomena **weber** (**Wb**, pronunciat "béber"),

$$1 Wb = 1 T \cdot 1 m^2$$

6.3 Lleis de la inducció electromagnètica

6.3.1 Llei de Lenz

(indica el sentit del corrent induit): el sentit de la intensitat que s'indueix en els experiments de Farady és tal que crea un camp magnètic que s'oposa a l'aplicat externament. L'acció en la figura a) indueix un corrent en l'espira. Aquest corrent crea un camp tal i com es mostra en la figura b). Clarament, aquest camp s'oposa a la variació de flux que s'observava en la figura a). Una cosa semblant succeeix en les figures c) i d).

6.3.2 Llei de Faraday

(indica el valor de la força electromotriu induïda ε)

$$\varepsilon = -\frac{d\Phi_B}{dt}$$

Si no coneixem la dependència de B amb el temps, podem usar

$$\varepsilon = -\frac{\Delta \Phi_B}{\Delta t}$$

i gràcies a la llei d'Ohm podem relacionar la intensitat induïda I amb aquesta força electromotriu ε i la resistència R de l'espira

$$\varepsilon = I \cdot R$$

- 6.3.3 L'experiència de Henry
- 6.4 Aplicacions de la inducció electromagnètica
- 6.4.1 Generadors elèctrics
- 6.4.2 El motor elèctric
- 6.4.3 Funcionament d'un transformador

7 Relativitat

7.1 Introducció

- 8 Física quàntica
- 8.1 Introducció

9 Física de partícules

9.1 Introducció

LES PARTÍCULES ELEMENTALS

1. Introducció. No qualsevol reacció entre partícules elementals que puguem escriure té perquè donar-se en la natura. L'energia, el moment lineal i l'angular, i la càrrega electrica, per exemple, s'han de conservar. La importància d'aquestes lleis de conservació ja s'havia establert a escala macroscòpica i la seva validesa s'ha d'estendre al nivell de les partícules elementals també. Per exemple, considerem la hipotètica reacció següent

$$p \Rightarrow n$$

aquesta reacció viola la conservació de la càrrega (a banda de la conservació del moment angular i l'energia, com ja veurem), de forma que no es pot donar per cap dels canals permesos; força nuclear forta, nuclear feble o electromagnètica.

Hi ha reaccions que aparentment no violen les lleis de conservació abans esmentades, per exemple

$$n \Rightarrow e^+ + e^-$$

O

$$p + e^- \Rightarrow \gamma + \gamma$$

O

$$p \Rightarrow \pi^+ + \pi^0$$

Considerem per exemple la darrera. Es veu que la càrrega es conserva, el moment també i l'energia es pot conservar. De tota manera, totes les partícules són hadrons (senten la força nuclear forta) i per tant les reaccions haurien de donar-se amb un temps $\approx 10^{-23}$ segons. Ara bé, la nostra mateixa existència és testimoni de que aquesta reacció no és

dóna, com a mínim a aquesta velocitat, els protons no es desintegren espontàniament, de fet es considera que la seva vida mitja és infinita ($\approx 10^{31}$ anys, comparada amb edat de l'univers $\approx 4 \cdot 10^{9}$ anys). Tot això suggereix que hi ha d'haver altres lleis de conservació a aquesta escala que no eren evidents a escala macroscòpica.

2. Nombres quantics.

• Conservació del nombre bariònic. Una llei de conservació que explica l'estabilitat del protó és la conservació del nombre bariònic, B. Això també explica que el neutró i totes altres partícules elementals més pesades, els barions, es desintegren de manera que el resultat final és el protó. De la mateixa manera que les partícules poden tenir càrrega elèctrica amb valors $0, \pm 1$ o ± 2 , etc., en unitats de la càrrega elemental (la del protó), cada partícula posseeix un valor de la çàrrega bariònica", B=0, B=+1 o B=-1. Més encara, el nombre bariònic s'ha de conservar en totes les reaccions. El protó és la partícula més lleugera amb nombre bariònic +1, cosa que explica la seva estabilitat. Tots els barions tenen B=1, les seves antipartícules B=-1, i tots els mesons, leptons i fotons tenen B=0. D'aquesta manera

$$p \Rightarrow \pi^+ + \pi^0$$

és una reacció prohibida perquè el nombre bariònic no es conserva mentre que, per exemple

$$\Delta^{++} \Rightarrow p + \pi^{+}$$

respecta la conservació del nombre bariònic. Aquesta reacció involucra només hadrons i es dóna amb temps típics de $\approx 10^{23}$ segons. De forma semblant, l'anomenada desintegració β , que retrobarem al tema següent de desintegració radioactiva,

$$n \Rightarrow p + e^- + \bar{\nu}_e$$

també és permesa per la conservació del nombre bariònic. De tota manera, com involucra leptons, aquest procés es dóna a una velocitat molt més lenta ≈ 1000 segons.

• Conservació del nombre leptònic. La descripció relativista de les interaccions implica que cada interacció porta associada l'intercanvi d'una partícula, que ha de ser un bosó (el valor de l'spin ha de ser un nombre sencer). En el cas de la interacció electromagnètica la partícula intercanviada és un fotó (spin zero). En quant a la interacció entre partícules de massa M, generada per missatgers de massa $m \ll M$, el potencial és de la forma

$$V(r) = V_0 \frac{e^{\frac{r}{\lambda}}}{\frac{r}{\lambda}}$$

on
$$\lambda = \frac{\hbar}{mc}$$

L'expressió anterior, que es demostra estrictament en Teoria Quàntica de Camps, es pot interpretar de la següent forma. Per crear una partícula de massa m cal una energia mc^2 . D'acord amb el principi d'indeterminació de Heisenberg, aquesta energia es pot crear durant un temps prou curt $\tau = \hbar/(mc^2)$ i durant aquest temps, la partícula viatja una distància donada per $\lambda = \tau c = \hbar/(mc^2)$, que és l'abast de la interacció. Com la interacció forta té un abast $\lambda \simeq 1$ fm, ha de tenir associada una partícula de massa $mc^2 \simeq 200$ MeV. Aquest argument, plantejat per Yukawa, va dur a la recerca de partícules de massa intermitja entre el protó i l'electró, i a partir d'aquí es van començar a trobar moltes més partícules noves.

Hideki Yukawa prediu l'any 1935 l'existència d'una partícula que actuaria com a missatger en la interacció forta, el valor de la seva massa essent inversament proporcional al rang de la interacció $m=\frac{\hbar c}{a}$. Com que aquest rang és d' 1 fm, aquestes partícules han de tenir una massa d'uns 200 MeV. Els anomena mesons. L'any 1937, tenim el decobriment del muó, de massa 107 MeV. No és la partícula de Yukawa perquè no interacciona amb la materia fortament. Al 1947, tenim el descobriment dels pions, de massa 140 MeV. Sí corresponen a la partícula de Yukawa. Més endevant, es van trobar partícules de masses intermitges entre els pions i els protons, com els mesons K (m= 500 MeV), i d'altres més pesants que el protó, anomenades hiperons, com la Λ (m=1110 MeV). Aquestes partícules són inestables i es descomposen en temps de l'ordre de 10⁻⁸ segons per donar protons, neutros, electrons i neutrins. Posteriorment, amb el desenvolupament dels acceleradors de partícules, es produeixen moltes més partícules, de vida cada cop més curta.

• Conservació del nombre leptònic. Els leptons es caracteritzen perquè no senten la interacció forta. L'electró, el muó i el

tau tenen càrrega elèctrica negativa. Els neutrins tenen càrrega elèctrica nul·la. Tots tenen spin 1/2, i per tant, són fermions. Les partícules que tenen spin enter s'anomenen bosons. Per cada partícula existeix la seva antipartícula. Els leptons es consideren partícules elementals. Els neutrins només senten la interacció feble. L'electró és la partícula més lleugera amb càrrega elèctrica. La conservació de la càrrega obliga a que l'electró sigui estable.

- **Muó**: El muó es desintegra per interacció feble en $e^- + \bar{\nu}_e + \nu_\mu$. El procés $\mu^- \to e^- + \gamma$ no s'observa experimentalment. Si aquest procés fos el més important, hauriem de pensar que el muó és un estat excitat de l'electró.
- Tau: el tau, al tenir una massa relativament gran, pot desintegrarse, per interacció feble, en moltes combinacions de partícules, encara que sempre apareix un ν_{τ} .

Als processos d'interacció feble, quan desapareix un electró, un muó o un tau, apareix el neutrí corresponent. Per una altra banda, també existeixen processos (com la desintegració beta) en els que es crea un electró, muó o tau i l'antineutrí corresponent, això va portar a introduir un nombre quàntic leptònic, que es conserva en la interacció feble.

- Nombre leptònic electrònic (L_e): val 1 per a e^- i ν_e , -1 per a e^+ i $\bar{\nu}_e$, i zero per la resta de partícules.
- Nombre leptònic muónic (L_{μ}) : val 1 per a μ^- i ν_{μ} , -1 per a μ^+ i $\bar{\nu}_{\mu}$, i zero per la resta de partícules.
- Nombre leptònic tauónic (L_{τ}) : val 1 per a τ^- i ν_{τ} , -1 per a τ^+ i $\bar{\nu}_{\tau}$, i zero per la resta de partícules.

La interacció electromagnètica no afecta als neutrins, però pot aniquilar o crear parells leptó-antileptó, de manera que es conservan els nombres leptònics. La interacció forta no actua sobre els leptons.

• Estranyesa.

L'estranesa s'introdueix per explicar el fet que alguns hadrons $(K, \Lambda, \Sigma, \ldots)$, tinguin vides relativament llargues, el que implica que no decauen a altres hadrons més lleugers (p, π) per la interacció forta o la electromagnètica, sinó per la feble. Als experiments en la cambra de boira es va observar una paradoxa, ja que aquestes partícules sentien la interacció forta quan eren produides, però no quan es desintegraven. La solució de la paradoxa va sorgir

de l'observació que les partícules estranyes sempre apareixien per parelles. Es va introduir un nombre quàntic S, que havia de ser conservat per les interaccions forta i electromagnètica, però podia ser violat per la interacció feble. L'estranyesa S val zero pels hadrons "normals" (p, n, π) , i es va assignar el valor S=1 pels kaons K^0 i K^+ . Degut a la conservació de S per la interacció forta, en els processos de col·lisió entre hadrons normals que produeixen K^0 o K^+ , l'altre partícula estranya ha de tenir S=1. Així, es va assignar S=-1 per a \bar{K}^0 , K^- , Λ , Σ^+ , Σ^- , Σ^0 . Les partícules anomenades "cascades" Ξ^0 , Ξ^- tenen S=-2. Les antipartícules tenen estranyesa oposada a les partícules, per a que puguin aniquilar-se sense violació de S.

• L'isospín.

S'introdueix a partir del fet que els hadrons apareixen en grups de partícules, anomenats multiplets, amb massa i propietats molt semblants (mateix spin, nombre bariónic, estranyesa), llevat que tenen càrrega elèctrica que varia d'un en un. Per exemple, tenim el neutró i el protó, els pions (π^+, π^-, π^0) , etc. Per descriure aquest fet s'introdueix l'isospín com $I_3 = -Y/2 + Q/e$, on Y és una constant per a cada multiplet, anomenada hipercàrrega, que és dues vegades la càrrega mitja del multiplet. Gell-Mann i Nishijima van trobar experimentalment que la hipercàrrega estava relacionada amb l'estranyesa i el nombre bariónic a través de la relació Y = B + S. D'aquesta manera pels nucleons, Y = 1, $I_3 = 1/2$ pel protó i -1/2 pel neutró. Pels pions, Y = 0 i $I_3 = +1$ pel π^+ , 0 pel π^0 i -1 pel π^- .

10 Física nuclear

10.1 Introducció

FÍSICA NUCLEAR

1. Propietats dels nuclis

Tots els nuclis es troben formats per dos tipus de partícules: protons i neutrons. El nucli atòmic es descriu amb el nombre de protons i neutrons que conté, fent servir les següents quantitats:

- el **nombre atòmic Z**, que és igual al nombre de protons al nucli
- el **nombre de neutrons N**, que és igual al nombre de neutrons al nucli
- el **nombre màssic A**, A = Z + N que és igual al nombre de nucleons al nucli

Quan representem nuclis, resulta convenient fer servir el símbol ${}_Z^AX$ per a mostrar quants protons i neutrons hi són presents, on X representa el símbol químic de l'element. Per exemple, ${}^{56}_{26}Fe$ té nombre màssic 56 i nombre atòmic 26; per tant, conté 26 protons i 30 neutrons. Els nuclis de tots els àtoms d'un element particular contenen el mateix nombre de protons, però poden tenir diferent nombre de neutrons. Els nuclis relacionats així s'anomenen isòtops. Els isòtops d'un element tenen el mateix valor de Z, però diferent valor de A. L'abundància natural d'isòtops pot variar molt. Per exemple, ${}^{11}_6C$, ${}^{12}_6C$, ${}^{13}_6C$ i ${}^{14}_6C$ són alguns dels isòtops del carboni. L'abundància relativa de l'isòtop $\frac{12}{6}$ és d'aproximadament 98,9%, en tant que la de l'isòtop ${}_{6}^{13}C$ és només del 1,1%. L'isòtop ${}_{6}^{11}C$ es produeix artificialment fent servir reaccions nuclears i es fa servir en mètodes de diagnòstic per la imatge, en particular en l'anomenada TEP (tomografia per emissió de positrons). L'isòtop ${}^{14}_{6}C$ es forma contínuament en l'atmòsfera per interacció dels raigs còsmics amb $\frac{14}{7}N$, component majoritari de l'aire. La radiació còsmica està formada per protons, partícules alfa, partícules beta i radiació electromagnètica. Quan els raigs còsmics penetren a l'atmosfera pateixen diverses transformacions, entre elles la producció de neutrons, que interaccionen amb el nitrogen present de la manera següent

$${}^{1}_{0}n + {}^{14}_{7}N \rightarrow {}^{14}_{6}C + {}^{1}_{1}H$$

la vida mitja del $^{14}_{7}C$ és de 5730 anys, i es desintegra mitjançant la interacció feble

$$^{14}_{6}C \rightarrow ^{14}_{7}N + ^{0}_{-1}e^{-} + \bar{\nu_{e}}$$

Càrrega i massa.

El protó té una càrrega positiva individual e igual en magnitud a la càrrega -e, de l'electró ($e=1,6\cdot 10^{-19}\,C$). El neutró és elèctricament neutre. És possible mesurar amb gran precissió les masses nuclears fent servir espectròmetres de masses. El protó té aproximadament una massa 1836 vegades la de l'electró i les masses del protó i el neutró són molt semblants. La **unitat de massa atòmica** u, es defineix de tal forma que la massa d'un àtom de ${}^{12}_6C$ és exactament $12\,u$, amb $1\,u=1,660\,539\cdot 10^{-27}\,kg$. Sovint convé expressar la massa d'una partícula o nucli en funció de l'equivalent a l'energia en repòs. Per la unitat de massa atòmica

$$E = mc^2 = (1,660\,539 \cdot 10^{-27}\,kg)(2,997\,92 \cdot 10^8\,m/s)^2 = 931,494\,MeV$$

on

$$1 \, eV = 1,602\,176 \cdot 10^{-19} \, J$$

El tamany i l'estructura dels nuclis.

Als experiments de dispersió de Rutherford es llançaven nuclis d'àtoms d'Heli (partícules alfa) contra una làmina molt prima de metall. Suposant que l'energia cinètica de les partícules alfa s'invertia en potencial electroestàtica al acostar-se als nuclis del metall, podem escriure

$$\frac{1}{2}mv^2 = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{d}$$

aïllant la d obtenim

$$d = 2\frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{mv^2} = 2\frac{1}{4\pi\varepsilon_0} \frac{(2e)(Ze)}{mv^2} = \frac{1}{\pi\varepsilon_0} \frac{Ze^2}{mv^2}$$

on Z és el nombre atòmic del nucli objectiu. D'aquesta expressió, Rutherford va descobrir que les partícules alfa s'acostaven als nuclis a

una distància de $3, 2 \cdot 10^{-14} \, m$ quan el metall era or. Dels resultats dels seus experiments de dispersió, Rutherford va arribar a la conclusió que la càrrega positiva d'un àtom es trovaba concentrada en una petita regió que ell va anomenar nucli i que tenia un radi aproximat de $10^{-14} \, m$. Com en física nuclear aquestes dimensions són habituals, es fa servir amb freqüència el femtòmetre (fm), també anomenat **fermi** i que es defineix com

$$1 fm \equiv 10^{-15} m$$

Per explicar la massa nuclear, Rutherford va propossar que cada nucli havia de tenir també A-Z partícules neutres, que va anomenar neutrons. En l'any 1932, el físic James Chadwick va descobrir el neutró, raó per la qual va ser mereixedor del premi Nobel. A partir dels experiments de Rutherford i d'altres, s'ha demostrat que la major part dels nuclis són aproximadament esfèrics i tenen un radi promig donat per

$$r = r_0 A^{1/3}$$

on r_0 és una constant de valor $1, 2 \cdot 10^{-15} \, m$ i A és el nombre màssic.

Energia d'enllaç nuclear.

Experimentalment s'observa que la massa total d'un nucli és inferior a la suma de les masses dels seus nucleons individuals. Aquesta diferència d'energia es coneix com l'energia d'enllaç del nucli i es pot interpretar com l'energia que cal donar per separar els constituents del nucli. A aquesta diferència de massa entre els nucleons per separat i una vegada units al nucli se l'anomena defecte de massa Δm i es pot calcular en general com

$$\Delta m = Zm_p + (A - Z)m_n - m_{nucli}$$

A partir de la relació entre massa i energia proposada per Einstein

$$E = mc^2$$

podem calcular l'energia d'enllaç coneixent el defecte de massa. Per caracteritzar l'energia d'enllaç podem fer servir la lletra B, enlloc de la E habitual.

Exemple Calculeu el defecte de massa i l'energia d'enllaç per nucleó del nucli ${}_{6}^{12}C$. Dades: $m_p = 1,0076 u, m_n = 1,0089 u$.

Recordem que la massa de ${}^{12}_6C$ era $12\,u$, per definició d'unitat de massa atòmica. Llavors en quant al defecte de massa

$$\Delta m = Zm_p + (A - Z)m_n - m_{nucli}$$

$$= 6 \cdot 1,0076 + (12 - 6) \cdot 1,0089 - 12$$

$$= 12,099 - 12$$

$$= 0,099 u \cdot \frac{1,66 \cdot 10^{-27} kg}{1 u} = 1,64 \cdot 10^{-28} kg$$

ara, per calcular l'energia d'enllaç

$$B = mc^2 = 1,64 \cdot 10^{-28} (3 \cdot 10^8)^2 = 1,48 \cdot 10^{-11} J$$

També, recordant l'equivalència entre unitats de massa atòmica i electronvolts,

$$B = 0,099 u \cdot \frac{931 \, MeV}{1 \, u} = 92,169 \, MeV$$

i

$$92,169\,MeV \cdot \frac{10^6\,eV}{1\,MeV} \cdot \frac{1,6 \cdot 10^{-19}\,J}{1\,eV} = 1,47 \cdot 10^{-11}\,J$$

Finalment, l'energia d'enllaç per nucleó serà

$$B/A = \frac{92,169}{12} = 8,01 \, MeV/nucleó$$

Aquesta darrera dada és la que caracteritza adequadament l'energia d'enllaç dels nuclis atòmics.

Notem que estem ignorant l'energia d'enllaç dels electrons del àtom, donat que aquestes són típicament de l'ordre del eV, mentre que les energies d'enllaç dels nuclis són, com hem vist, de l'ordre dels MeV.

Corba d'estabilitat nuclear.

Si es representa l'energia d'enllaç per nucleó en funció del nombre màssic per tots els elements de la taula periòdica s'observa que la corba que s'obté presenta un màxim al voltant de A = 60. D'aquesta manera, els elements que tenen nombre màssic majors que 60 alliberaran energia quan es divideixin o *fisionin* en elements més lleugers, ja que els nuclis fills són més estables, mentre que els que tenen nombre màssic més petits que 60 alliberen energia si es fusionen, ja que el nucli resultant és més estable que els de partida. D'aquesta manera, els estels produeixen la seva energia per fusió dels nuclis atòmics presents, comencen cremant hidrògen i la majoria arribarà com a molt a produir ferro. El núclid ${}^{62}_{28}Ni$ és el que té l'energia d'enllaç més gran per nucleó, però rarament s'arriba a produir als estels. Per crear elements amb nombre màssic superior a 62 es necessita energia addicional, que s'obté quan al final de la seva vida alguns estels exploten en forma de supernova. D'aquesta manera, tots els àtoms pesats que existeixen a la natura tenen el seu origen en l'explosió d'estels, per aixó es diu que som pols d'estels.

2. Radioactivitat

En les substàncies radioactives es presenten tres tipus de desintegració

- (a) Desintegració alfa (α): les partícules emeses són nuclis d'heli ${}_{2}^{4}He$.
- (b) Desintegració beta (β) : les partícules emeses són electrons (β^-) o positrons (β^+) d'alta energia.
- (c) Desintegració gamma (γ): les partícules emeses són fotons d'alta energia.

En tots els casos el procés de desintegració és totalment aleatori, no se sap *quan* es desintegrarà un nucli, el que es coneix amb exactitud és la quantitat de nuclis que queden *sense* desintegrar en funció del temps

$$N(t) = N_0 e^{-\lambda t}$$

On N_0 és el nombre de nuclis presents inicialment, t és el temps transcorregut, i λ és

- 11 Història de l'univers
- 11.1 Introducció