승용차용 2차 전지 화성 공정 최적화를 통한 불량률 개선

23기 C반 2조 POBA

김주보 권태준 신가현 여한솔 차우아

1. POBA 2차 전지 공정과정 소개

전지 종류		
1차 전지	2차 전지	
일회성	충전가능	
재활용 불가	반복, 장기간 사용 가능	
건전지, 알칼리전지	니켈계, 리튬이온 배터리 등	

5. 분석 결과 - 유의성 검정1

공정과정별 설비위치 구분에 따른 불량률

가설 1) 설비 위치에 따라 불량률 차이는 있다.

[검정결과 - 유의함] 설비 위치별 불량률 차이가 있다고 할 수 있다.

Good vs Bad 간 설비, 공정 조건 유의차 분석

구분	검정방법	변수	검정 결과
가설 1	ANOVA	[Aging, Formation, Grading, 출하 Aging] 공정과정 열, 연, 단 간의 불량률 차이 검정	Aging, 출하 Aging : 유의하지 않음 Formation, Grading : 유의함
가설 2	카이제곱 검정	[Formation] 충·방전 1 ~ 4 단계 평균온도 [Grading] PowerGrading 평균온도	Formation 온도 : 유의함 Grading 온도 : 유의함

5. 분석 결과 - 공정조건 ~ 검사정보 관계성

공정조건 ~ 검사정보 ~ 불량판정의 관계성

공정조건 ~ 검사정보

온도 & 적합용량 상관관계

검사정보 불량판정 영향인자

공정조건 & 검사조건 상관분석 결과

- 전압 & 일부 검사정보 강한 상관관계 도출

불량판정 분석결과

- 상관관계가 높은 검사정보가 낮은 영향인자로 도출

결론

- 전압 & 일부 검사정보는 상관관계가 존재함
- 그러나 불량판정에 유의미한 검사정보가 도출되지 않음

공정조건 & 검사조건 상관분석 결과

- 온도 & 적합용량이 음의 강한 상관관계로 도출
- 온도 상승에 따라 적합용량이 감소하는 경향을 의미

불량판정 분석결과

- 검사정보인 적합용량이 높은 영향인자로 도출
- 적합용량이 불량판정에 중요한 변수로 도출된 것은 공정조건 온도의 영향

공정조건 (온도)

불량판정

결론

- 온도 상승에 따라 적합용량이 감소하고 이에 불량판정이 증가
- 적합용량을 최적화하기 위한 온도 조건 설정의 필요성, 온도 조절 시스템 개선 필요

6. 개선안 및 적용방안

Pilot Test 계획

구분	내용	
목적	최적 온도에 대한 실제 적용을 통한 개선 결과 검증 확대 적용 비용 예측 및 추가 적용	
Pilot Test 적용 개요	 적용 대상: Formation 공정 충/방전 설비 적용 대상: Grading 공정 PowerGrading 설비 적용 프로세스: 공정 작업 조건 중 최적 온도 적용 일정:3개월간 매월 1일부터 일주일간 실시 2023년 07월 01일 ~ 2023년 07월 07일 2023년 08월 01일 ~ 2023년 08월 07일 2023년 09월 01일 ~ 2023년 09월 07일 검증 도구: ANOVA, Chi-square, 관리도 	
요청 사항	 공장 대표: 공정 설비에 개선안 적용 협조 요청 공정 엔지니어: 개선안으로의 공정 파라미터 조정 및 모니터링 협조 요청 시스템 파트: 7월, 8월, 9월 개선안 적용 cell에 대한 양품/불량품 데이터 수집 	

공정 모니터링 및 관리계획

- 주요 공정 설비 조건은 지속적으로 관리가 필요
- 관리도를 통해 3시그마 범위로 관리

6. 개선안 및 적용방안

데이터 분석 결과를 바탕으로 불량률을 낮추기 위한 개선안을 도출함

설비 내 온도 편차 해소

AS-IS

설비 내 위치에 따라 온도 편차 발생

TO-BE

복수 공정 활용(작업 Box 위치이동) 설비 단계를 이분화하여 온도 편차 개선

충전 1-1

충전 1-2

최적화된 공정 온도 적용

AS-IS

공정 단계별 최적 온도 파악 & 적용 미흡

TO-BE

최적 온도 공정 적용 공정단계별 불량률 개선

최적 온도: 28.25

통합적 품질관리체계 구축

AS-IS

단일 공정 중심 관리체계 전 공정과 후 공정의 연계 미흡

TO-BE

전 공정의 검사정보, 불량 예측정보 기반 후 공정의 공정조건 조정

충전 1

 \rightarrow

충전 2

특정 설비 위치 적합 용량 높음 →

불량 발생 확률 ①

해당 설비 위치 적용 온도 상향

불량 발생 확률 🖟