Friday 01/17/2025: Theorems

CSCI 246: Discrete Structures

Textbook reference: Sec. 4, Scheinerman

Quiz

Replace each ? with a checkmark ✓ if the combination of truth values for propositions A and B is *possible* under the given logical connective. Replace it with a X if the combination is *impossible*.

Prop	ositions	Logical Connectives			
Α	В	if A then B	if B then A	A if and only if B	
Т	Т	?	?	?	
Т	F	?	?	?	
F	Т	?	?	?	
F	F	?	?	?	

2

Quiz

Replace each ? with a checkmark \checkmark if the combination of truth values for propositions A and B is *possible* under the given logical connective. Replace it with a \checkmark if the combination is *impossible*.

Prop	ositions	Logical Connectives			
Α	В	if A then B	if B then A	A if and only if B	
Т	Т	?	?	?	
Т	F	?	?	?	
F	Т	?	?	?	
F	F	?	?	?	

See whiteboard for solution.

Propositional logic

Origir	nal propositions	New propositions			
Α	В	if A then B	if B then A	A if and only if B	
Т	Т	Т	Т	Т	
Т	F	F	Т	F	
F	Ţ	Т	F	F	
F	F	Т	Т	Т	

- The column headings show 3 new propositions, formed from the original propositions by logical connectives.
- The first two columns combined with one remaining column gives the truth table for that logical connective.
- Each logical connective can be thought of as a **function** or mapping $\{T,F\} \times \{T,F\} \to \{T,F\}.$
- There are other such functions (and, or, xor, etc.), some of which were discussed in the text.
- The study of how to combine and change propositions under logical connectives to form more complex propositions is called **propositional** logic.

Group work!

Students are randomly assigned into groups of 3 on the next slide.

Each group gets $\frac{1}{2}$ of a white board.

If the $\frac{1}{2}$ white board is inconvenient, feel free to write on a window!

- Group 1: timothy.true,conner.reed1,connor.mizner
- Group 2: jacob.ruiz1,evan.barth,evan.schoening
- Group 3: matthew.nagel,connor.graville,adam.wyszynski
- ${\sf Group\ 4:\ lynsey.read,connor.yetter,ryan.barrett2}$
- Group 5: caitlin.hermanson,james.brubaker,peter.buckley1
- Group 6: derek.price4,alexander.goetz,jacob.ketola
- Group 7: tristan.nogacki, jeremiah.mackey, michael.oswald
- Group 8: nicholas.harrington1,aaron.loomis,joseph.windmann
- Group 9: samuel.rollins,zeke.baumann,samuel.hemmen
- Group 10: erik.moore3,colter.huber,devon.maurer
- Group 11: jonas.zeiler,luke.donaldson1,carver.wambold
- Group 12: jett.girard,carsten.brooks,justice.mosso
- Group 13: luka.derry,nolan.scott1,owen.obrien
- Group 14: anthony.mann,samuel.mosier,blake.leone
- Group 15: yebin.wallace,peyton.trigg,emmeri.grooms
- Group 16: julia.larsen,tyler.broesel,sarah.periolat
- Group 17: bridger.voss,jack.fry,micaylyn.parker
- Group 18: jacob.shepherd1,ethan.johnson18,joseph.triem
- Group 19: cameron.wittrock,lucas.jones6,jada.zorn
- Group 20: reid.pickert,delaney.rubb,alexander.knutson
- Group 21: griffin.short,jakob.kominsky,john.fotheringham
- Group 22: mason.barnocky,william.elder1,kaden.price
- Group 23: pendleton.johnston,joseph.mergenthaler

Group exercises

- It is a common mistake to confuse the following two statements (i) If A, then B and (ii) If B, then A. Find two conditions A and B such that statement (i) is true but statement (ii) is false. Then find two conditions A and B such that both statements are true.
- 2. Two propositions are considered *equivalent* if they have the same truth table values. Show that the biconditional $A \iff B$ is equivalent to $(A \implies B)$ and $(B \implies A)$.
- Consider these two statements: (i) If A, then B, (ii) If (not B), then (not A). Under what circumstances are these statements true? When are they false? Explain whether these statements are identical or not. [Note: (ii) is called the contrapositive of (i).]
- 4. (Challenge problem, from philosopher Norman Swartz.) Is the following statement true or false, and why? A's-being-a-necessary-condition-for-B is both a necessary and sufficient condition for B's-being-a-sufficient-condition-for-A.

Question 1: Solution

 $A \Longrightarrow B \text{ but } B \not\Longrightarrow A$:

 $\mathsf{A} = \mathsf{I} \mathsf{\ lived\ in\ Los\ Angeles}$

 $\mathsf{B} = \mathsf{I}$ lived in California.

 $A \iff B$:

 $\mathsf{A} = \mathsf{Valentine's} \; \mathsf{Day} \; \mathsf{is} \; \mathsf{this} \; \mathsf{month}$

 $\mathsf{B} = \mathsf{This} \ \mathsf{month} \ \mathsf{is} \ \mathsf{February}.$

Question 2: Solution

The truth table for the "and" operator (also written $\land)$ is given by

Origina	I propositions	New propositions
Χ	Υ	$X \wedge Y$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Now we apply the \land operator to the results of the \implies and \iff operators.

Orig	. props.	New props.			
Α	В	$A \Longrightarrow B$	$\overrightarrow{B} \Longrightarrow \overrightarrow{A}$	$(A \Longrightarrow B) \land (B \Longrightarrow A)$	
	Т	T	T	T	
Т	F	F	Т	F	
F	Т	Т	F	F	
F	F	Т	Т	Т	

Note that $(A \Longrightarrow B) \land (B \Longrightarrow A)$ gives the same results as $A \iff B$ as on Slide 3.

Question 2: Solution

The truth table for the "and" operator (also written $\land)$ is given by

Origina	l propositions	New propositions
Χ	Υ	$X \wedge Y$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Now we apply the \land operator to the results of the \implies and \iff operators.

Orig	. props.	New props.			
		\sim	Y	X∧Y	
Α	В	$A \Longrightarrow B$	$B \implies A$	$(A \Longrightarrow B) \land (B \Longrightarrow A)$	
Т	Т	Т	Т	Т	
Т	F	F	T	F	
F	Т	Т	F	F	
F	F	Т	Т	Т	

Note that $(A \Longrightarrow B) \land (B \Longrightarrow A)$ gives the same results as $A \iff B$ as on Slide 3.

So what? This guides us towards how we'll prove $A \iff B$ in Sec. 5.

Question 3: Solution

Recall from Slide 3 that the truth table for the \implies operator is given by

X	Υ	$\overbrace{X \Longrightarrow Y}^{\text{If X, then Y}}$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Now we apply the \implies operator to the results of the "not" operator (also written \neg).

Orig	. props.	New props.			
А	В	$\overrightarrow{\neg A}$	$\overrightarrow{\neg B}$	$\overbrace{\neg B \implies \neg A)}^{X \implies Y}$	
Т	Т	F	F	Т	
Т	F	F	T	F	
F	Т	T	F	Т	
F	F	T	T	Т	

Note that $\neg B \implies \neg A$ gives the same results as $A \implies B$ as on Slide 3.

Question 3: Solution

Recall from Slide 3 that the truth table for the \implies operator is given by

X	Υ	$\overbrace{X \Longrightarrow Y}^{\text{If X, then Y}}$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Now we apply the \implies operator to the results of the "not" operator (also written \neg).

Orig	. props.		New	props.
Α	В	$\overrightarrow{\neg A}$	$\overrightarrow{\neg B}$	$\overbrace{\neg B \implies \neg A)}^{X \implies Y}$
Т	Т	F	F	Т
Т	F	F	T	F
F	Т	T	F	Т
F	F	ΙT	Т	T

Note that $\neg B \implies \neg A$ gives the same results as $A \implies B$ as on Slide 3.

Remark: We've shown that a proposition is logically equivalent to its contrapositive. So what? Sometimes it's easier to verify the contrapositive version.

Question 4: Solution

The simplest way to see this is as follows:

- A's-being-a-necessary-condition-for-B can be expressed as $B \implies A$.
- B's-being-a-sufficient-condition-for-A can be expressed as $B \implies A$.
- In other words, both propositions are the same: B

 A. And a proposition is always necessary and sufficient for itself.