Results

Descriptives

Descriptives

	Cured	Intervention
N	113	113
Missing	0	0

Frequencies

Frequencies of Cured

Levels	Counts	% of Total	Cumulative %
Not Cured	48	42.5 %	42.5 %
Cured	65	57.5 %	100.0 %

Frequencies of Intervention

Levels	Counts	% of Total	Cumulative %
No Treatment	56	49.6 %	49.6 %
Intervention	57	50.4 %	100.0 %

Plots

Cured

Intervention

Descriptives

Descriptives

	Duration
N	113
Missing	0
Mean	7.08
Median	7.00
Standard deviation	1.18
Variance	1.40
IQR	2.00
Minimum	4.00
Maximum	10.0
Skewness	0.0419
Std. error skewness	0.227
Kurtosis	0.424
Std. error kurtosis	0.451
Shapiro-Wilk W	0.925
Shapiro-Wilk p	< .001

Plots

Duration

Relationships, Prediction, and Group Comparisons

You have entered a dichotomous dependent variable, one or more independent variables, and one or more control variables. Hence, <u>logistic regression analysis</u> seems to be a good option for you! In order to run this analysis in jamovi, go to: Regression > 2 Outcomes - Binomial

- Drop your dependent variable in the box below Dependent Variable
- Drop your independent variables and control variables in the box below Covariates. Independent/control variables of nominal or ordinal measurement level that consist of more than two groups should be transformed into code variables before they are included in the analysis. Independent/control variables of nominal or ordinal measurement level that consist of two groups can be transformed into code variables, but they don't need to be, as long as numbers are used to indicate group membership, not letters (these dichotomous variables actually are code variables already, but you may like to change the coding). In jamovi, instead of transforming your categorical independent/control variables into code variables yourself, you can also put the untransformed categorical variables in the box below Factors. jamovi will then make the code variables for you 'behind the scenes'

Click on the link to learn more about this method!

Scatter Plots of Bivariate Relationships - Dependent/Control Variables

Binomial Logistic Regression

Model Fit Measures

							Overall Model Test		
Model	Deviance	AIC	BIC	R ² McF	R ² CS	R^2_{N}	χ²	df	р
1	144	150	158	0.0644	0.0841	0.113	9.93	2	0.007

Omnibus Likelihood Ratio Tests

Predictor	χ²	df	р
Duration	0.00198	1	0.964
Intervention	9.31701	1	0.002

		95% Confidence Interval		_					nfidence erval
Predictor	Estimate	Lower	Upper	SE	Z	р	Odds ratio	Lower	Upper
Intercept	-0.23466	-2.627	2.158	1.221	-0.1923	0.848	0.791	0.0723	8.65
Duration Intervention:	-0.00784	-0.353	0.337	0.176	-0.0445	0.964	0.992	0.7028	1.40
Intervention – No Treatment	1.23353	0.421	2.046	0.415	2.9755	0.003	3.433	1.5235	7.74

Note. Estimates represent the log odds of "Cured = Cured" vs. "Cured = Not Cured"

Assumption Checks

Collinearity Statistics

	VIF	Tolerance
Duration	1.08	0.930
Intervention	1.08	0.930

[3]

Estimated Marginal Means

Duration

[4]

References

- [2] R Core Team (2020). *R: A Language and environment for statistical computing*. (Version 4.0) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2020-08-24).
- [3] Fox, J., & Weisberg, S. (2020). *car: Companion to Applied Regression*. [R package]. Retrieved from https://cran.r-project.org/package=car.
- **[4]** Lenth, R. (2020). *emmeans: Estimated Marginal Means, aka Least-Squares Means*. [R package]. Retrieved from https://cran.r-project.org/package=emmeans.