Simple predictive models: Linear and logistic regression

Montserrat Guillen

14 de diciembre 2017

Contents

troduction	
Reading the data	
near regression	
Linear model (quantitative regressors)	
Linear model (quantitative and qualitative regressors)	
Compare goodnes-of-fit	
Prediction	
ogistic regression model	
Estimation of the model	
Prediction with this model	
Improve the model	
ROC curve	

In this document we continue with simple Data Analysis linked to the article by S. Moro, P. Cortez and P. Rita. A Data-Driven Approach to Predict the Success of Bank Telemarketing. Decision Support Systems, Elsevier, 62:22-31, June 2014. The two datasets ontain similar information, but not exactly the same.. Here we will analyse the smaller data set (called **bank.csv**). The file can be downloaded from: https://archive.ics.uci.edu/ml/datasets/bank+marketing

or (for this course)

http://www.ub.edu/rfa/docs/DATA/bank.csv

We will see linear regression and logistic regression.

Introduction

Here we set up some options for the Rmarkdown ouput. We want to see the R programme (echo=TRUE), but sometime we do not want to see the output, then we set include=FALSE.

Reading the data

Here we read the data and check the names.

```
## $ job
             <fctr> unemployed, services, management, management, blue-...
## $ marital
             <fctr> married, married, single, married, married, single,...
## $ education <fctr> primary, secondary, tertiary, tertiary, secondary, ...
## $ default
             ## $ balance
             <int> 1787, 4789, 1350, 1476, 0, 747, 307, 147, 221, -88, ...
## $ housing
             <fctr> no, yes, yes, yes, no, yes, yes, yes, yes, yes, yes...
             <fctr> no, yes, no, yes, no, no, no, no, yes, no, no, ...
## $ loan
             <fctr> cellular, cellular, cellular, unknown, unknown, cel...
## $ contact
## $ day
             <int> 19, 11, 16, 3, 5, 23, 14, 6, 14, 17, 20, 17, 13, 30,...
## $ month
             <fctr> oct, may, apr, jun, may, feb, may, may, may, apr, m...
## $ duration <int> 79, 220, 185, 199, 226, 141, 341, 151, 57, 313, 273,...
             <int> 1, 1, 1, 4, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 5, 1...
## $ campaign
## $ pdays
             <int> -1, 339, 330, -1, -1, 176, 330, -1, -1, 147, -1, -1,...
## $ previous
             <int> 0, 4, 1, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 2...
## $ poutcome
             <fctr> unknown, failure, failure, unknown, unknown, failur...
## $ y
```

We have previously analysed the data. Just recall that the data contain 4521 cases and 17 variables. The variable names are: age, job, marital, education, default, balance, housing, loan, contact, day, month, duration, campaign, pdays, previous, poutcome, y.

Linear regression

We will study the duration of the telephone call as a function of age.

Linear model (quantitative regressors)

We introduce two variables: **age**, **balance** and days since last call (**pdays**).

```
# Model estimation
attach (mydata)
Model.1.1<- lm(duration~age+ balance+pdays, data=mydata )
summary(Model.1.1)
##
## Call:
## lm(formula = duration ~ age + balance + pdays, data = mydata)
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                         Max
## -281.86 -159.95
                    -78.95
                              64.60 2760.60
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 265.782426
                            15.635701
                                       16.998
                                                 <2e-16 ***
                -0.022964
                             0.366818
                                       -0.063
                                                  0.950
## age
                                       -1.070
                                                  0.285
## balance
                -0.001379
                             0.001289
## pdays
                 0.027311
                             0.038614
                                        0.707
                                                  0.479
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 259.9 on 4517 degrees of freedom
## Multiple R-squared: 0.0003662, Adjusted R-squared: -0.0002977
## F-statistic: 0.5515 on 3 and 4517 DF, p-value: 0.6471

qplot(balance,duration, data = mydata,geom = c("smooth", "point"))
```

`geom_smooth()` using method = 'gam'


```
qplot(age,duration, data = mydata,geom = c("smooth", "point"))
```

`geom_smooth()` using method = 'gam'

`geom_smooth()` using method = 'gam'

The goodness-of-fit coefficient is 0.00037

Linear model (quantitative and qualitative regressors)

We now also include month, loan (yes/no) and contact (telephone/cellular/other).

```
monthR=relevel(month, ref = 'mar')
loanR=relevel(loan, ref = 'no')
contactR=relevel(contact, ref = 'telephone')
Model.1.2<- lm(duration~age+ balance+factor(monthR)+factor(loanR)+factor(contactR), data=mydata)
summary(Model.1.2)
##
## Call:
## lm(formula = duration ~ age + balance + factor(monthR) + factor(loanR) +
       factor(contactR), data = mydata)
##
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
  -353.60 -158.81 -78.40
                             62.85 2746.30
##
## Coefficients:
##
                              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                            171.242123 44.030023
                                                    3.889 0.000102 ***
                              0.197277
                                         0.377299
                                                  0.523 0.601092
## age
```

```
## balance
                            -0.001513
                                      0.001311 -1.154 0.248443
                            92.949051 40.207779
## factor(monthR)apr
                                                   2.312 0.020838 *
                                                   1.053 0.292590
## factor(monthR)aug
                            40.641928 38.611697
## factor(monthR)dec
                           218.572502 68.940605
                                                  3.170 0.001532 **
## factor(monthR)feb
                            54.871529 41.062446
                                                  1.336 0.181520
## factor(monthR) jan
                            68.562270 42.866071
                                                   1.599 0.109790
                            72.012452 38.542344
## factor(monthR) jul
                                                  1.868 0.061771 .
## factor(monthR)jun
                            52.273360 40.104623
                                                   1.303 0.192496
## factor(monthR)may
                            66.457346
                                       38.499819
                                                  1.726 0.084385 .
## factor(monthR)nov
                            73.249744 39.458837
                                                   1.856 0.063468 .
## factor(monthR)oct
                            73.640188 47.112642
                                                   1.563 0.118107
## factor(monthR)sep
                                                   0.274 0.783798
                            14.211828 51.794399
## factor(loanR)yes
                            -7.471544 10.950277 -0.682 0.495075
## factor(contactR)cellular 27.257131 16.167606
                                                   1.686 0.091882 .
## factor(contactR)unknown
                            24.269113 19.035798
                                                   1.275 0.202403
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 259.5 on 4504 degrees of freedom
## Multiple R-squared: 0.005938,
                                   Adjusted R-squared: 0.002407
## F-statistic: 1.682 on 16 and 4504 DF, p-value: 0.04299
```

Compare goodnes-of-fit

```
summary(Model.1.1)$adj.r.squared*100

## [1] -0.02977405
summary(Model.1.2)$adj.r.squared*100

## [1] 0.2406728
```

The goodness-of-fit coefficient is in the first model -3e-04 and in the second model 0.0024.

Prediction

Assume we have a new observation and want to predict the duration pf the call.

```
newdata=data.frame(age=30, balance=100.0, monthR='jun', loanR='yes', contactR='cellular', pdays=30)
predict(Model.1.1, newdata)

## 1
## 265.7749
predict(Model.1.2, newdata)

## 1
## 249.0681
```

Logistic regression model

Estimation of the model

We estimate the model for the dependent variable $y = Term \ Diposit$. We only consider age and duration of the call.

```
Model.2.1=glm(y~age+duration, family=binomial)
summary(Model.2.1)
##
## Call:
## glm(formula = y ~ age + duration, family = binomial)
## Deviance Residuals:
##
      Min
                1Q
                     Median
                                  3Q
                                          Max
## -3.9345 -0.4331 -0.3550 -0.3053
                                       2.5960
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -3.8606442 0.2141070 -18.03 < 2e-16 ***
               0.0144683 0.0046083
                                       3.14 0.00169 **
               0.0035526 0.0001713
                                     20.73 < 2e-16 ***
## duration
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 3231.0 on 4520 degrees of freedom
## Residual deviance: 2692.1 on 4518 degrees of freedom
## AIC: 2698.1
## Number of Fisher Scoring iterations: 5
```

Prediction with this model

```
newdata=data.frame(age=30, balance=100.0, monthR='jun', loanR='yes', contactR='cellular', pdays=30, dur
predict(Model.2.1, newdata, type="response")
## 1
## 0.07320616
```

The prediction for that custmer and the logistic model is 0.073.

Improve the model

We can improve the model now with more information

```
Model.2.2=glm(y~age+duration+factor(month), family=binomial)
summary(Model.2.2)

##
## Call:
## glm(formula = y ~ age + duration + factor(month), family = binomial)
##
```

```
## Deviance Residuals:
##
      Min 1Q Median
                                 30
                                         Max
## -4.1203 -0.4102 -0.3028 -0.2340
                                       2.8635
##
## Coefficients:
##
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                   -3.0065925 0.2583671 -11.637 < 2e-16 ***
                    0.0049704 0.0047033
## age
                                         1.057 0.290612
## duration
                    0.0039210 0.0001856 21.131 < 2e-16 ***
## factor(month)aug -0.3975137 0.2136124 -1.861 0.062757
## factor(month)dec 1.0696658 0.5424684
                                         1.972 0.048627 *
## factor(month)feb 0.0273859 0.2553147
                                          0.107 0.914580
## factor(month)jan -0.6592617 0.3442742 -1.915 0.055501 .
## factor(month)jul -1.0758984 0.2245574 -4.791 1.66e-06 ***
## factor(month)jun -0.7430330 0.2331552 -3.187 0.001438 **
## factor(month)mar 1.7134677 0.3447136
                                         4.971 6.67e-07 ***
## factor(month)may -1.3384223   0.2038424   -6.566   5.17e-11 ***
## factor(month)nov -0.8687405 0.2532264 -3.431 0.000602 ***
## factor(month)oct 1.5898738 0.2928645
                                         5.429 5.68e-08 ***
## factor(month)sep 1.1940001 0.3496861
                                         3.414 0.000639 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 3231.0 on 4520 degrees of freedom
## Residual deviance: 2465.5 on 4507
                                     degrees of freedom
## AIC: 2493.5
##
## Number of Fisher Scoring iterations: 6
```

The Akaike Information Criterion (AIC) in the first model was 2698 and now it is 2494.

ROC curve

Predictive performance

```
#install.packages("pROC")
library(pROC)

## Type 'citation("pROC")' for a citation.

##
## Attaching package: 'pROC'

## The following objects are masked from 'package:stats':

##
## cov, smooth, var

prob=predict(Model.2.2,type=c("response"))
mydata$prob=prob
g=roc(y,prob, data=mydata)
plot(g)
```


auc(g)

Area under the curve: 0.8618

The AUROC is 0.86.