第1次习题课题目

第 1 部分 课堂内容回顾

1. 确界

- (1) 非空实数集 A 的最小上界 (若存在) 叫作 A 的上确界, 记作 $\sup A$; 它的最大下界 (若存在) 叫作 A 的下确界, 记作 $\inf A$.
- (2) 上确界的刻画: $\xi = \sup A$ 当且仅当 ξ 为 A 的上界且 $\forall \varepsilon > 0$, $\exists x \in A$ 使得 $x > \xi \varepsilon$. 否定形式: $\xi \neq \sup A$ 当且仅当 ξ 不是 A 的上界或 $\exists \varepsilon > 0$ 使得 $\forall x \in A$, $x \leqslant \xi \varepsilon$.
- (3) 上确界与下确界的关系: $\sup A = -\inf(-A)$.
- (4) 确界定理: 有上界的非空数集必有上确界; 有下界的非空数集必有下确界.

2. 数列极限的定义

- (1) **极限的定义:** 称数列 $\{a_n\}$ 有极限 $A \in \mathbb{R}$, 如果 $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall n > N$, 我们 均有 $|a_n A| < \varepsilon$. 也称该数列收敛于 A, 记作 $a_n \to A$ $(n \to \infty)$ 或者 $\lim_{n \to \infty} a_n = A$. 数列有极限也称为收敛, 否则称为发散.
- (2) **否定形式:** 数列 $\{a_n\}$ 不收敛到 $A \in \mathbb{R}$ 当且仅当 $\exists \varepsilon_0 > 0$ 使得 $\forall N > 0$, $\exists n_N > N$ 满足 $|a_{n_N} A| \geqslant \varepsilon_0$.

3. 数列极限的性质

- (1) $\lim_{n \to \infty} a_n = A$ 当且仅当 $\lim_{n \to \infty} |a_n A| = 0$.
- (2) 从某项开始取常数的数列收敛到该常数, 反之不对.
- (3) 若 $\lim_{n\to\infty} a_n = 0$ 而数列 $\{b_n\}$ 有界, 则 $\lim_{n\to\infty} a_n b_n = 0$.
- (4) 唯一性: 若数列收敛,则其极限唯一.
- (5) 有限韧性: 改变数列的有限项不改变其敛散性.
- (6) **均匀性:** 数列收敛当且仅当它的任意子列均收敛到同一个实数. **该结论常用来证明数列不收敛.**
- (7) 有界性: 收敛的数列有界.
- (8) 局部保序: 设 $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$.
 - (a) 若 A > B, 则 $\exists N > 0$ 使得 $\forall n > N$, 均有 $a_n > b_n$.
 - (b) 若 $\exists N > 0$ 使得 $\forall n > N$, 均有 $a_n \ge b_n$, 则 $A \ge B$.
- (9) 局部保号: 设 $\lim a_n = A$.
 - (a) 若 A > 0, 则 $\exists N > 0$ 使得 $\forall n > N$, 均有 $a_n > 0$.
 - (b) 若 $\exists N > 0$ 使得 $\forall n > N$, 均有 $a_n \ge 0$, 则 $A \ge 0$.
 - (c) 若 $A \neq 0$, 则 $\exists N > 0$ 使得 $\forall n > N$, 均有 $a_n \neq 0$.

- (10) 四则运算法则: 若 $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$, 则
 - (a) $\forall \alpha, \beta \in \mathbb{R}$, $\lim_{n \to \infty} (\alpha a_n + \beta b_n) = \alpha A + \beta B$;

 - (b) $\lim_{n \to \infty} a_n b_n = (\lim_{n \to \infty} a_n)(\lim_{n \to \infty} b_n) = AB;$ (c) $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} = \frac{A}{B} (\stackrel{\text{#-}}{\text{-}} B \neq 0).$
- (11) **夹逼原理:** 假设数列 $\{a_n\},\{b_n\},\{x_n\}$ 满足下列条件:
 - (a) $\exists n_0 > 0$ 使得 $\forall n > n_0$, 均有 $a_n \leqslant x_n \leqslant b_n$;

(b) $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = A$. 则数列 $\{x_n\}$ 收敛且 $\lim_{n\to\infty} x_n = A$.

(12) 若数列 $\{a_n\}$ 非负且收敛于 A, 则 $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{A}$.

4. 典型例题

- (1) $\lim_{n \to \infty} \frac{1}{n} = 0;$
- (2) $\lim_{n \to \infty} q^n = 0 \ (0 < |q| < 1);$
- (3) $\lim_{n\to\infty} \sqrt[n]{n} = 1;$
- (3) $\lim_{n \to \infty} \sqrt[n]{a} = 1 \ (a > 0);$
- (4) $\lim_{n\to\infty} \left(\sum_{k=1}^m a_k^n\right)^{\frac{1}{n}} = \max_{1\leqslant k\leqslant m} a_k, \ \mbox{\sharp $\stackrel{}{\to}$ $} \ a_k\geqslant 0;$
- (5) $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n = \lim_{n \to \infty} (1 + \frac{1}{n})^{n+1}.$

5. 典型数列的增长速度比较

- (1) 对数函数比常数增长得更快: $\lim_{n\to\infty}\frac{1}{\log n}=0$;
- (2) 幂函数比对数函数增长得更快: $\lim_{n \to \infty} \frac{\log n}{n^{\alpha}} = 0$ (其中 $\alpha > 0$);
- (3) 指数函数比幂函数增长得更快: $\lim_{n\to\infty}\frac{n^{\alpha}}{a^n}=0$ (其中 $\alpha\in\mathbb{R},\ a>1$);
- (4) 连乘积比指数函数增长得更快: $\lim_{n\to\infty} \frac{a^n}{n!} = 0 \ (a \in \mathbb{R});$
- (5) $\lim_{n \to \infty} \frac{n!}{n^n} = 0$, $\lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0$.
- (6) 平均性: 若 $\lim_{n\to\infty} a_n = A$, 则 $\lim_{n\to\infty} \frac{a_1+a_2+\cdots+a_n}{n} = A$.

6. 单调有界定理

- (1) 单调有界定理: 单调有界数列收敛; 单调无界数列有极限.
- (2) 应用单调有界定理的典型例子:

(a)
$$e=\lim_{n\to\infty}(1+\frac{1}{n})^n=\lim_{n\to\infty}(1+\frac{1}{n})^{n+1},$$
 并且 $\forall n\geqslant 1,$ 我们有

$$\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}, \ \frac{1}{n+1} < \log\left(1 + \frac{1}{n}\right) < \frac{1}{n}.$$

特别地, 我们有 $2 = a_1 < e < b_5 < 3$.

- (b) 数列 $\{\sum_{k=1}^{n} \frac{1}{k^2}\}$ 收敛.
- (c) 常用于计算由递归关系定义的数列的极限:

(i)
$$\[\] c > 0, \ a_1 = \sqrt{c} \] \] \forall n \geqslant 1, \ a_{n+1} = \sqrt{c + a_n}. \] \]$$

$$\lim_{n \to \infty} a_n = \frac{1}{2} (1 + \sqrt{1 + 4c}).$$

(ii) 设 $b_1 \ge a_1 \ge 0$. $\forall n \ge 1$, 归纳定义 $a_{n+1} = \sqrt{a_n b_n}$, $b_{n+1} = \frac{1}{2}(a_n + b_n)$. 则数列 $\{a_n\}$ 和 $\{b_n\}$ 收敛到同一个极限.

7. Stolz 定理及其应用

- (1) Stolz 定理: 设 $A \in \mathbb{R} \cup \{\pm \infty\}$.
 - (a) 若 $\{b_n\}$ 严格增趋于 $+\infty$ 且 $\lim_{n\to\infty} \frac{a_n a_{n-1}}{b_n b_{n-1}} = A$, 则 $\lim_{n\to\infty} \frac{a_n}{b_n} = A$.
 - (b) 若 $\{b_n\}$ 严格单调趋于 0 且 $\lim_{n\to\infty} a_n = 0$, $\lim_{n\to\infty} \frac{a_n a_{n-1}}{b_n b_{n-1}} = A$, 则 $\lim_{n\to\infty} \frac{a_n}{b_n} = A$.
- (2) Stolz 定理的典型应用:
 - (a) 若 $\lim_{n \to \infty} x_n = A$, 则 $\lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n} = A$. (b) $\lim_{n \to \infty} \frac{1 + \sqrt{2} + \sqrt[3]{3} + \dots + \sqrt[n]{n}}{n} = 1$.

 - (c) $\lim_{n \to \infty} \frac{1+2^k+3^k+\dots+n^k}{n^{k+1}} = \frac{1}{k+1} \ (k \in \mathbb{N}).$

8. 关于实数系的基本定理

下述定理等价:

- (1) 确界定理: 有上界的非空集合有上确界, 有下界的非空集合有下确界.
- (2) 单调有界定理: 单调有界数列收敛.
- (3) 区间套定理:区间长度趋于 0 的闭区间套的交为单点集.
- (4) Cauchy 判别准则 (收敛原理): 数列 $\{x_n\}$ 收敛当且仅当它为 Cauchy 数列.
 - (a) Cauchy 数列的定义:
 - (i) $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall m, n > N$, 均有 $|x_m x_n| < \varepsilon$;
 - (ii) $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall n > N$ 以及 $\forall p \ge 1$, 均有 $|x_{n+p} x_n| < \varepsilon$;
 - (b) Cauchy 数列定义的否定表述:
 - (i) $\exists \varepsilon_0 > 0$ 使得 $\forall N > 0$, $\exists m, n > N$ 满足 $|x_m x_n| \ge \varepsilon_0$.
 - (ii) $\exists \varepsilon_0 > 0$ 使得 $\forall N > 0$, $\exists n > N$ 且 $\exists p > 0$ 满足 $|x_{n+p} x_n| \geqslant \varepsilon_0$.
- (5) Cauchy 判别准则的典型应用:
 - (a) 设 a > 0, 0 < q < 1 且 $\forall n \ge 1$, 均有 $|x_{n+1} x_n| \le aq^n$. 则数列 $\{x_n\}$ 收敛.
 - (b) 数列 $\left\{ \sum_{k=1}^{n} \frac{(-1)^k}{k^2} \right\}$ 收敛.
 - (c) $\forall n \ge 1$, 令 $x_n = \prod_{k=1}^n \left(1 + \frac{1}{2^k}\right)$. 则数列 $\{x_n\}$ 收敛.
 - (d) 若 $\exists C > 0$ 使得 $\forall n \ge 1, y_n := \sum_{k=1}^n |x_{k+1} x_k| < C$, 则数列 $\{x_n\}$ 收敛.
 - (e) 设 $0 \le \alpha \le 1$, 且 $\forall n \ge 1$, $x_{n+1} \ge x_n + \frac{1}{n^{\alpha}}$. 则数列 $\{x_n\}$ 发散.

第 2 部分 习题课题目

- 1. 求证: 具有收敛子列的单调数列收敛.
- 2. 计算下列极限:

(1)
$$\lim_{n \to \infty} (\sqrt{2n^2 + 2n - 3} - \sqrt{2n^2 + n}),$$

(2)
$$\lim_{n \to \infty} \sqrt{n}(\sqrt{n+1} - \sqrt{n}),$$

(3)
$$\lim_{n \to \infty} \sin^2 \left(\pi \sqrt{n^2 + \sqrt{n}} \right)$$

$$(4) \lim_{n \to \infty} (1+x)(1+x^2)(1+x^4) \cdots (1+x^{2^{n-1}}) (|x| < 1),$$

(5)
$$\lim_{n \to \infty} \frac{3^n + (-2)^n}{3^{n+1} + (-2)^{n+1}}$$
,

- (6) $\lim_{m \to \infty} \lim_{n \to \infty} \left(\cos(2\pi m! x) \right)^n (x \in \mathbb{R}).$
- 3. 计算下列极限:

(1)
$$\lim_{n \to \infty} \left(\left(\sum_{k=1}^{m} a_k^n \right)^{\frac{1}{n}} + \left(\sum_{k=1}^{m} a_k^{-n} \right)^{\frac{1}{n}} \right), \ \, \sharp \, \forall \ \, a_k > 0 \ \, (1 \leqslant k \leqslant m),$$

(2)
$$\lim_{n\to\infty} \sum_{k=1}^{n} \left((n^k + 1)^{-\frac{1}{k}} + (n^k - 1)^{-\frac{1}{k}} \right),$$

(3)
$$\lim_{n \to \infty} (\sqrt{2} \sqrt[4]{2} \sqrt[8]{2} \cdots \sqrt[2^n]{2}),$$

$$(4) \lim_{n \to \infty} (1 - \frac{1}{n})^n,$$

(4)
$$\lim_{n \to \infty} (1 - \frac{1}{n})^n$$
,
(5) $\lim_{n \to \infty} (1 - \frac{1}{n\sqrt{2}}) \cos(n^{10}!)$,

(6)
$$\lim_{n \to \infty} \left((\sin n!) \left(\frac{n-1}{n^2+1} \right)^{10} - \left(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1) \cdot n} \right) \frac{2n^2+1}{n^2-1} \right)$$

(7)
$$\lim (1+2^n+3^n)^{\frac{1}{n}}$$
,

$$(7) \lim_{n \to \infty} (1 + 2^n + 3^n)^{\frac{1}{n}},$$

$$(8) \lim_{n \to \infty} \underbrace{\sin \sin \cdots \sin}_{n} x \ (x \in \mathbb{R}),$$

$$(9) \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2 + k},$$

(10)
$$\lim_{n \to \infty} \sum_{k=1}^{10} \sqrt[n]{k}$$
.

4. 判断下列数列 $\{x_n\}$ 的收敛性:

(1)
$$x_n = \frac{(-1)^n n}{n+1}$$
, (2) $x_n = n^{(-1)^n}$.

5. 假设
$$\forall n \geqslant 1$$
, 均有 $x_n > 0$ 且 $\lim_{n \to \infty} x_n = a$. 求证: $\lim_{n \to \infty} \sqrt[n]{x_1 x_2 \cdots x_n} = a$.

6. 假设
$$\forall n \geqslant 1$$
, 均有 $x_n > 0$ 且 $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = a$. 求证: $\lim_{n \to \infty} \sqrt[n]{x_n} = a$.

7. 求证: (1)
$$\lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}} = e$$
,

7. 求证: (1)
$$\lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}} = e$$
, (2) $\lim_{n \to \infty} \left(\frac{1^p + 2^p + \dots + n^p}{n^p} - \frac{n}{p+1} \right) = \frac{1}{2}$ (其中 $p \geqslant 1$ 为整数).

8. 设数列
$$\{x_n\}$$
 满足 $x_1 = 1$, $x_{n+1} = \frac{1}{1+x_n}$, 求 $\lim_{n \to \infty} x_n$.

9. 设
$$\alpha \geqslant 2$$
 为常数. $\forall n \geqslant 1$, 令 $x_n = \sum_{k=1}^n \frac{1}{k^{\alpha}}$. 求证: 数列 $\{x_n\}$ 收敛.

- **10.** 设 $\{a_{n-1}\}$ 有界且 $\forall n \geq 1$, $b_n = \sum_{k=0}^n a_k q^k \ (|q| < 1)$. 求证: 数列 $\{b_n\}$ 收敛.
- 11. 若 $\forall n \geq 1, |a_{n+1} a_n| \leq b_n$, 而 $\left\{ \sum_{k=1}^n b_k \right\}$ 收敛, 求证: 数列 $\{a_n\}$ 收敛.
- **13.** $\forall n \ge 1$, 令 $a_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$. 求证: 数列 $\{a_n\}$ 收敛.
- **14.** 设 $b_1 > a_1 > 0$. $\forall n \ge 1$, 递归地定义 $a_{n+1} = \frac{2a_nb_n}{a_n+b_n}$, $b_{n+1} = \frac{a_n+b_n}{2}$. 证明: 数列 $\{a_n\}$, $\{b_n\}$ 均收敛且有相同极限.
- **15.** 设 $x_1 > x_2 > 0$ 且 $\forall n \ge 1$, 均有 $x_{n+2} = \sqrt{x_{n+1}x_n}$, 求数列 $\{x_n\}$ 的极限.

补充题 (非常难,可以不用做):

- **16.** 下述几种说法, 哪一种可以作为数列 $\{x_n\}$ 收敛的充分必要条件:
 - $(1) \forall \varepsilon > 0, \forall p > 0, \exists N > 0$ 使得 $\forall n > N, 均有 |x_{n+p} x_n| < \varepsilon$.
 - $(2) \forall \varepsilon > 0, \exists p, N > 0$ 使得 $\forall n > N, 均有 |x_{n+p} x_n| < \varepsilon$.
 - (3) $\forall \varepsilon > 0$, $\forall p > 0$ 以及 $\forall N > 0$ 使得 $\forall n \ge N$, 均有 $|x_{n+p} x_n| < \varepsilon$.
 - (4) $\forall p \ge 1$, 均有 $\lim_{n \to \infty} (x_{n+p} x_n) = 0$.
 - (5) $\forall \varepsilon > 0$, $\exists N > 0$, $\exists R \neq n > N$, $\exists R \neq N$
 - (6) $\forall \varepsilon > 0$, $\exists N_{\varepsilon} > 0$ 且 $\exists A_{\varepsilon} \in \mathbb{R}$, 只要 $n > N_{\varepsilon}$, 就有 $|x_n A_{\varepsilon}| < \varepsilon$.
- 17. 设 $\{b_n\}$ 严格增趋于 $+\infty$. 若 $\lim_{n\to\infty} \frac{a_n a_{n-1}}{b_n b_{n-1}} = A \in \mathbb{R} \cup \{\pm \infty\}$, 求证: $\lim_{n\to\infty} \frac{a_n}{b_n} = A$.
- **18.** 设 $\{b_n\}$ 严格单调趋于 0. 若 $\lim_{n\to\infty} a_n = 0$, $\lim_{n\to\infty} \frac{a_n a_{n-1}}{b_n b_{n-1}} = A \in \mathbb{R} \cup \{\pm \infty\}$, 求证: $\lim_{n\to\infty} \frac{a_n}{b_n} = A$.
- 19. 若 $\lim_{n\to\infty}\sum_{k=1}^n a_k = a \in \mathbb{R}$, 求证: $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n ka_k = 0$.
- **20.** 若 $\lim_{n\to\infty} a_n = a \in \mathbb{R}$, 求证: $\lim_{n\to\infty} \frac{1}{2^n} \sum_{k=1}^n \binom{n}{k} a_k = a$.