RLChina Reinforcement Learning Summer School

Opportunities and Challenges in Applying Multi-Agent Reinforcement Learning

Prof. FANG Fei

Leonardo Assistant Professor School of Computer Science Carnegie Mellon University

August 25, 2022

Machine Learning + Game Theory for Societal Challenges

Security & Safety

Environmental Sustainability

Zero Hunger

Transportation

Artificial Intelligence

Computational Game Theory

Machine Learning

Societal Challenges

Protect Ferry Line from Potential Attacks

- Defender-attacker security game
- Randomized patrol strategy
- Minimize attacker's maximum expected utility
 - Solve through linear programming

Reduce potential risk by 50%

Optimal Patrol Strategy for Protecting Moving Targets with Multiple Mobile Resources. Fei Fang, Albert Xin Jiang, Milind Tambe. In AAMAS-13 In collaboration with US Coast Guard

Deployed by US Coast Guard

Protect Wildlife from Poaching

- Learn poacher behavior from data
- Ranger-poacher game to plan patrols
- Deployed in Uganda, China, Malaysia
- Increased detection of poaching
- Available to more than 600 sites worldwide

Data from past patrols & satellite imagery

Machine Learning Methods

Ensemble Learning, Decision Trees, Neural Networks, Gaussian Process, Markov Random Field, ...

Predicted poaching threat

Improve Efficiency for Food Rescue Platform

Predict whether a rescue will be claimed by a specific volunteer

Deployed by 412 Food Rescue

Outline

- Opportunities and Challenges in Applying Multi-Agent Reinforcement Learning
 - MARL for Security and Sustainability
 - Interpretable MARL
- Discussion and Summary

Basic Security Game Model

- N targets
- r (<N) defender resources, each can cover one target
- Attacker choose one target to attack
- Randomized defender strategy
- Strong Stackelberg Equilibrium
 - Coincide with Nash Equilibrium when zero-sum
- Used for security and sustainability problems
- Solved through mathematical programming Adversary

		Target #1	Target #2
55.6%	Target #1	5, -3	-1, 1
Defender 44.4%	Target #2	-5, 4	2, -1

MARL for Security and Sustainability

- MARL can help tackle more complex scenarios in security and sustainability
 - Patrol with real-time information
 - Robust sequential patrol planning
 - Repeated interaction with unknown attacker
 - Patrol in continuous area

Patrol with Real-Time Information

- Rangers and poachers react to real-time information
- Model the sequential interaction as a Markov game

Footprints

Lighters

Poacher camp

Tree marking

Markov Game Formulation

Deep Q Network Trained Against Heuristic Poacher

Deep Q Network (DQN): Game state → Q-value

Deep Q Network Trained Against Heuristic Poacher

Approximate Equilibrium: DQN + Double Oracle

Train $f^d = DQN(\sigma^a)$

Train a new DQN that best responds to poacher's strategy

Ranger

Train $f^a = DQN(\sigma^a)$

 \Longrightarrow

Add f^d , f^a to G^d , G^a

Train a new DQN that best responds to ranger's strategy

Update sets of DQNs

Enhancements

- Use local modes for efficient training
- Start with domain-specific heuristic strategies

Deep Reinforcement Learning for Green Security Games with Real-Time Information Yufei Wang, Zheyuan Ryan Shi, Lantao Yu, Yi Wu, Rohit Singh, Lucas Joppa, Fei Fang In AAAI-19

DeDOL Framework

Experiments

- More scalable than counterfactual regret minimization (CFR)
- Better solution quality than vanilla PSRO

	Random	Vanilla	DeDOL Deve Clab al Mada	DeDOL	DeDOL Devolution of Market	CFR
	Sweeping	PSRO	Pure Global Mode	Local + Global Mode	Pure Local Mode	
3×3 Random	-0.04	0.65 (16)	0.73 (16)	0.85 (10 + 2)	0.71 (20)	1.01 (3500)
3×3 Gaussian	-0.09	0.52 (16)	0.75 (16)	0.86 (10 + 2)	0.75(20)	1.05 (3500)
5×5 Random	-1.91	-8.98 (4)	-1.63 (4)	-0.42 (4 + 1)	-0.25 (5)	-
5×5 Gaussian	-1.16	-9.09 (4)	-0.43 (4)	0.60 (4 + 1)	-2.41 (5)	-
7×7 Random	-4.06	-10.65 (4)	-2.00 (4)	-0.54 (3 + 1)	-1.72(5)	-
7×7 Gaussian	-4.25	-10.08 (4)	-4.15 (4)	-2.35 (3 + 1)	-2.62(5)	-

MARL for Security and Sustainability

- MARL can help tackle more complex scenarios in security and sustainability
 - Patrol with real-time information
 - Robust sequential patrol planning
 - Repeated interaction with unknown attacker
 - Patrol in continuous area

Robust sequential patrol planning

- Data from Queen Elizabeth National Park in Uganda:
 - Poachers are not perfectly rational!
 - Patrol strategies used now will have impact on poachers' behavior in the future!
- Furthermore, wildlife distribution might change due to past poaching activities and impact future poaching
- Learning Poacher Behavior Model + Sequential patrol planning

Robust sequential patrol planning

- Uncertainty in Poacher's Behavior Model
 - Poacher's behavior model learned from data is imperfect
 - Poacher's behavior model might change
- Sequential planning → Robust sequential planning

Model

- N targets
- Patrol policy $\pi: S \to A$
 - State s_t = (previous actions & wildlife density, current time)
 - Action $a_t \in [0,1]^N$ describes how much patrol effort will be spent on each target
- Poacher behavior model known, with uncertain parameters $z \in Z$ where Z is the uncertainty region
- Goal: learn a minimax regret policy π

$$\min_{\pi} \max_{\mathbf{z}} \left(r(\pi^{\star}(\mathbf{z}), \mathbf{z}) - r(\pi, \mathbf{z}) \right)$$

Model

$$\min_{\pi} \max_{\mathbf{z}} \left(r(\pi^{\star}(\mathbf{z}), \mathbf{z}) - r(\pi, \mathbf{z}) \right)$$

- Alternative View: Zero-sum game between planner and Nature
 - Planner: choose π
 - Nature: choose \mathbf{z} & alternative policy $\hat{\pi}$
- Any deterministic choice can be easily exploited
- Need randomized policy

MIRROR – A Double Oracle Approach

Robust Reinforcement Learning Under Minimax Regret for Green Security. Lily Xu, Andrew Perrault, Fei Fang, Haipeng Chen, Milind Tambe In UAI-21

Experiments

Regret Across Time Horizons

Robust Reinforcement Learning Under Minimax Regret for Green Security. Lily Xu, Andrew Perrault, Fei Fang, Haipeng Chen, Milind Tambe In UAI-21

MARL for Security and Sustainability

- MARL can help tackle more complex scenarios in security and sustainability
 - Patrol with real-time information
 - Robust sequential patrol planning
 - Repeated interaction with unknown attacker
 - Patrol in continuous area

Repeated Interaction with Unknown Attacker

- Attackers in cyber security: diverse, with varying sophistication and intent unknown to the defender
- In repeated interaction, defender can infer from attacker's previous actions and plan defense
- Attacker plans actions carefully to maintain informational advantage
- Sequential decision making on both sides!

Finitely Repeated Bayesian Security Game Model

- T round game
- Defender: allocate K resources to N targets in each round
- Attacker: attack a target
 - Reward for successfully attacking a target is determined by type λ

Bayesian

- Exact attacker type unknown to defender
- Type distribution is public information
- What strategy should defender use?

Equilibrium Refinement

- There might exist many Nash Equilibria in a game
- Equilibrium Refinement: Get a "desirable" subset of NEs
- Example: Subgame perfect equilibrium
 - Ensure optimality from any point onward

Bayesian Equilibrium

- Solution Concept for Bayesian games
- Ensure
 - Rationality
 - Belief Consistency: the belief is updated followed the Bayes' rule

Perfect Bayesian Equilibrium

- Perfect Bayesian Equilibrium
 - Equilibrium refinement for Bayesian Equilibrium
 - Extends Perfect NE to Bayesian games
 - Sequential rationality starting from any information set
- Our goal: Find PBE for Finitely Repeated Bayesian Security Game
- Most existing work solve using Mathematical Programming-based method (Nguyen et al. 2019^[1]; Guo et al. 2017^[2])
 - Very precise
 - Lacks scalability: long time and large memory to solve

An RL Approach: Temporal Induced Self-Play

- Temporal Induced Self-Play (TISP)
 - A framework that can be combined with different learning algorithms

Belief-based representation

- Use belief instead of history: $\pi(s, b)$ instead of $\pi(h)$
 - π (attack Target 1 in (l-1) round, 2 in (l-2) round, ...) is now $\pi(0.2$ prob. of being attacker type a)
- Helps in the case with long history

Backward Induction

- Reverse the training process
 - From round L-1 to round L-2, to ..., to round 0
 - Use trained value network V and policy network π in round l+1 when training round l
 - Do not sample the whole trajectory from round 0 to round L − 1, but one step trajectory from round l to round l + 1.
 - Using a special reset function to help

Belief Space Approximation

- Training: Sample K belief vectors, and train the strategies specifically conditioning on the belief and round,
- Query:

$$\pi(a|b,s) = \frac{\sum_{k=1}^{K} \pi_{\theta_k}(a|s;b_k) w(b,b_k)}{\sum_{k=1}^{K} w(b,b_k)}$$

where $w(b, b') = 1/\max\{\epsilon, \|b - b'\|^2\}$

Policy Learning

- Policy gradient:
 - Update rule changed:

$$\nabla_{\theta} V^{\lambda}(\pi, b, s) = \sum_{a \in A} \nabla_{\theta} (\pi_{\theta} (a \mid b, s) Q^{\lambda}(\pi, b, s, a))$$

$$= E[Q^{\lambda}(\pi, b, s, a) \nabla_{\theta} \ln \pi_{\theta} (a \mid b, s) + \boxed{\gamma \nabla_{\theta} b' \nabla_{b'} V^{\lambda}(\pi, b', s')}]$$

Regret matching:

$$\pi^{t+1}(a|s,b) = \frac{(R^{t+1}(s,b,a))^+}{\sum_{a'}(R^{t+1}(s,b,a'))^+}$$

where

$$R^{t+1}(s,b,a) = \sum_{\tau=1}^{t} Q^{\tau}(\pi^{\tau},s,b,a) - V_{\phi}^{\tau}(\pi^{\tau},s,b)$$

Temporal Induced Self-play Training

Algorithm 1 Temporal-Induced Self-Play

```
1: for l = L - 1, \dots, 0 do
           for k = 1, 2, ... K do
                                                                 for t = 1, \dots, T do
                      Initialize replay buffer D = \{\} and \pi^0
                      for j = 1, \ldots, batch size do
                                                                            ▷ parallel
                            s \leftarrow sub\_reset(l, b_k);
                           a \leftarrow \pi_{\theta_{l,k}}^{t-1}(s;b_k);
                            get next state s' and utility u from env;
                            D \leftarrow D + (s, a, s', u);
 9:
                      Update V_{\phi_{l,k}}^t and \pi_{\theta_{l,k}}^t using D;
10:
                V_{\phi_{l,k}} \leftarrow V_{\phi_{l,k}}^n, \pi_{\theta_{l,k}} \leftarrow \pi_{\theta_{l,k}}^n
11:
12: return \{\pi_{\theta_{l,k}}, V_{\phi_{l,k}}\}_{0 \leq l < L, 1 \leq k \leq K};
```

Test-time Policy Transformation

Algorithm 2 Compute Test-Time Strategy

- 1: **function** GETSTRATEGY $(h^l, \pi_{\theta_1}, \dots, \pi_{\theta_L})$
- 2: $b^0 \leftarrow p^0$
- 3: **for** $j \leftarrow 0, ..., l-1$ **do**
- 4: update b^{j+1} using b^j , s^j , a^j and π_{θ_j} with

$$b_{\lambda}^{l+1} = \frac{\pi_{1,l} \left(a_1^l | s^l, b_{\lambda}^l, \lambda \right) b_{\lambda}^l}{\sum_{\lambda' \in \Lambda} \pi_{1,l} \left(a_1^l | s^l, b_{\lambda'}^l, \lambda' \right) b_{\lambda'}^l}$$

5: **return** $\pi(a|b^l, s^l)$ with

$$\pi(a|b,s) = \frac{\sum_{k=1}^{K} \pi_{\theta_k}(a|s;b_k)w(b,b_k)}{\sum_{k=1}^{K} w(b,b_k)}$$

Experiment: Grid-World Games

Can solve larger repeated security games

L	2	4	6	8	10
MP	$\approx 10^{-8}$	$\approx 10^{-6}$	$\approx 10^{-5}$	N/A	N/A
TISP-PG	0.053	0.112	0.211	0.329	0.473
TISP-CFR	0.008	0.065	0.190	0.331	0.499
	'	(a) $ A = 2$	2		
L	2	4	6	8	10
MP	$\approx 10^{-6}$	$\approx 10^{-6}$	$\approx 10^{-3}$	N/A	N/A
	~ 10	~ 10	≈ 10	IN/A	IN/A
TISP-PG	0.120	0.232	0.408	0.599	0.842
TISP-PG TISP-CFR	I				,

- Can generalize to grid-world games
 - Much higher quality than other learning-based method

	TISP-PG	RNN	BPG
P2 reward	-1.90	-1.67	-0.98
P1 reward (ally)	-2.55	-2.87	-3.26
P1 reward (enemy)	-2.41	-2.71	-9.29

Agents' reward when P2 (approx.) best responding to P1's trained policy. Higher P1 reward, lower P2' reward is better

MARL for Security and Sustainability

- MARL can help tackle more complex scenarios in security and sustainability
 - Patrol with real-time information
 - Robust sequential patrol planning
 - Repeated interaction with unknown attacker
 - Patrol in continuous area

Patrol in Continuous Area: Combat Illegal Logging

OptGradFP: CNN + Fictitious Play

DeepFP: Generative network + Fictitious

Play $\frac{\partial L_{r_p}}{\partial \theta_p}$ $z_p \sim \mathcal{N}(0, I)$ $BR_p \qquad u_p$ $(\theta_p) \qquad Game \qquad model \quad network$ $u_{-p} \sim \bar{\sigma}_{-p} \qquad (\phi)$ \hat{r}_{-p}

Policy Learning for Continuous Space Security Games using Neural Networks. Nitin Kamra, Umang Gupta, Fei Fang, Yan Liu, Milind Tambe. In AAAI-18

DeepFP for Finding Nash Equilibrium in Continuous Action Spaces. Nitin Kamra, Umang Gupta, Kai Wang, Fei Fang, Yan Liu, Milind Tambe. In GameSec-19

Outline

- Opportunities and Challenges in Applying Multi-Agent Reinforcement Learning
 - MARL for Security and Sustainability
 - Interpretable MARL
- Discussion and Summary

MARL for Real-World Applications

Cyber defense [Malialis & Kudenko, 2015]

Anti-Poaching
[Wang et al., 2019]

Train scheduling
[Mohanty et al., 2020]

Interpretable RL

- Neural networks are difficult to understand
- An increasing interest in interpretable RL!
 - See our recent survey: A Survey of Explainable Reinforcement Learning (https://arxiv.org/abs/2202.08434)
- Need to understand, verify, and predict the behavior of machine learning models for real-world problems
- One interpretable model: decision trees

Decision Trees for Interpretable RL

- Interpretable model family used in reinforcement learning [Lipton, 2018]
 - Simulatable
 - Decomposable
 - Algorithmically transparent
- Used to represent policies [Pyeatt, 2003]

Interpretable MARL

- Interpretable MARL is underexplored!
- Some work generates explanations from noninterpretable policies
 - Use attention to select and focus on critical factors [lqbal&Sha, 2019, Li et al. 2019, Motokawa& Sugawara 2021]
 - Generates explanations as verbal explanations with predefined rules or Shapley values [Wang et al. 2020, Heuillet et al., 2022]
- Some approximates noninterpretable MARL policies to interpretable ones
 - Construct argument preference graphs given manually-provided arguments [Kazhdan et al. 2020]

Interpretable MARL

We contribute...

- IVIPER and MAVIPER, two portable algorithms for learning interpretable decision tree policies in the multi-agent setting
- An analysis of these algorithms on three different environments

Independent VIPER (IVIPER) trains policies independently

MAVIPER: Learning Decision Tree Policies for Interpretable Multi-Agent Reinforcement Learning Stephanie Milani*, Zhicheng Zhang*, Nicholay Topin, Zheyuan Ryan Shi, Charles Kamhoua, Evangelos E. Papalexakis, Fei Fang ECML-PKDD, 2022

[1] Bastani, O., et al.: Verifiable reinforcement learning via policy extraction. In: NeurIPS (2018)

Algorithm 1 IVIPER in Multi-Agent Setting

```
Input: (X, A, P, R), \pi^*, Q^{\pi^*} = (Q_1^{\pi^*}, ..., Q_N^{\pi^*}), K, M

Output: \hat{\pi}_1, ..., \hat{\pi}_N

1: for i=1 to N do

2: Initialize dataset \mathcal{D}_i \leftarrow \emptyset and policy \hat{\pi}_i^0 \leftarrow \pi_i^*

3: for m=1 to M do

4: Sample K trajectories: \mathcal{D}_i^m \leftarrow \{(x, \pi_1^*(o_1), ..., \pi_N^*(o_N)) \sim d^{\hat{\pi}_i^{m-1}, \pi_{-i}^*}\}

5: Aggregate dataset \mathcal{D}_i \leftarrow \mathcal{D}_i \cup \mathcal{D}_i^m

6: Resample dataset according to loss:
\mathcal{D}_i' \leftarrow \{(x, \overrightarrow{d}) \sim p((x, \overrightarrow{d})) \propto \tilde{l}_i(x)\mathbb{I}[(x, \overrightarrow{d}) \in \mathcal{D}_i]\}

7: Train decision tree \hat{\pi}_i^m \leftarrow \text{TrainDecisionTree}(\mathcal{D}_i')

8: Get best policies for each agent \hat{\pi} = (\hat{\pi}_1, ..., \hat{\pi}_N)
```

Good news and bad news...

- Independent learning is parallelizable!
- But it ignores coordination...

- How to address the issue of coordination in IVIPER?
- Emphasize states where coordination matters
 - A bad move of one agent can impact greatly all agents
 - Jointly learn the decision trees
- Joint accuracy sometimes matters more than individual accuracy
 - When one agent mispredicts, the accurate prediction of other agents is less meaningful
 - Predict whether or not the other agents might mispredict

Multi-Agent VIPER (MAVIPER) trains policies jointly

Algorithm 2 MAVIPER (Joint Training)

```
Input: (\mathcal{X}, A, P, R), \pi^*, Q^{\pi^*} = (Q_1^{\pi^*}, \dots, Q_N^{\pi^*}), K, M

Output: (\hat{\pi}_1, \dots, \hat{\pi}_N)

1: Initialize dataset \mathcal{D} \leftarrow \emptyset and policy for each agent \hat{\pi}_i^0 \leftarrow \pi_i^* \ \forall i \in N

2: for m = 1 to M do

3: Sample K trajectories: \mathcal{D}^m \leftarrow \{(x, \pi_1^*(o_1), \dots, \pi_N^*(o_N)) \sim d^{(\hat{\pi}_1^{m-1}, \dots, \hat{\pi}_N^{m-1})}\}

4: Aggregate dataset \mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}^m

5: For each agent i, resample \mathcal{D}_i according to loss: \mathcal{D}_i \leftarrow \{(x, \vec{a}) \sim p((x, \vec{a})) \propto \tilde{l}_i(x)\mathbb{I}[(x, \vec{a}) \in \mathcal{D}]\}\forall i \in N

6: Jointly train DTs: (\hat{\pi}_1^m, \dots, \hat{\pi}_N^m) \leftarrow \text{TrainJointTrees}(\mathcal{D}_1, \dots, \mathcal{D}_N)

7: return Best set of agents \hat{\pi} = (\hat{\pi}_1, \dots, \hat{\pi}_N) \in \{(\hat{\pi}_1^1, \dots, \hat{\pi}_N^1), \dots, (\hat{\pi}_1^M, \dots, \hat{\pi}_N^M)\}
```

- MAVIPER incorporates a novel resampling scheme
- Insight: agents should care most about states with a large gap between worst-case and expert performance

$$ilde{l}\left(x
ight) = ilde{\mathbb{E}}_{a_{-i}} \left[Q_i^{\pi^*}\left(x,\pi_i^*(o_i),a_{-i}
ight) - ilde{\min}_{a_i \in \mathcal{A}_i} Q_i^{\pi^*}\left(x,a_i,a_{-i}
ight)
ight]$$

Best case performance of agent i Worst case performance of agent i

Expectation taken over other the actions of other agents

Algorithm 2 MAVIPER (Joint Training)

```
Input: (\mathcal{X}, A, P, R), \pi^*, Q^{\pi^*} = (Q_1^{\pi^*}, \dots, Q_N^{\pi^*}), K, M

Output: (\hat{\pi}_1, \dots, \hat{\pi}_N)

1: Initialize dataset \mathcal{D} \leftarrow \emptyset and policy for each agent \hat{\pi}_i^0 \leftarrow \pi_i^* \ \forall i \in N

2: for m = 1 to M do

3: Sample K trajectories: \mathcal{D}^m \leftarrow \{(x, \pi_1^*(o_1), \dots, \pi_N^*(o_N)) \sim d^{(\hat{\pi}_1^{m-1}, \dots, \hat{\pi}_N^{m-1})}\}

4: Aggregate dataset \mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}^m

5: For each agent i, resample \mathcal{D}_i according to loss:
   \mathcal{D}_i \leftarrow \{(x, \vec{a}) \sim p((x, \vec{a})) \propto \tilde{l}_i(x)\mathbb{I}[(x, \vec{a}) \in \mathcal{D}]\}\forall i \in N

6: Jointly train DTs: (\hat{\pi}_1^m, \dots, \hat{\pi}_N^m) \leftarrow \text{TrainJointTrees}(\mathcal{D}_1, \dots, \mathcal{D}_N)

7: return Best set of agents \hat{\pi} = (\hat{\pi}_1, \dots, \hat{\pi}_N) \in \{(\hat{\pi}_1^1, \dots, \hat{\pi}_N^1), \dots, (\hat{\pi}_1^M, \dots, \hat{\pi}_N^M)\}
```

- 8: **function** TrainJointTrees($\mathcal{D}_1, \ldots, \mathcal{D}_N$)
 9: Initialize decision trees $\hat{\pi}_1^m, \ldots, \hat{\pi}_N^m$.
 10: **repeat**11: Grow one more level for agent i's tree $\hat{\pi}_i^m \leftarrow \text{Build}(\hat{\pi}_1^m, \ldots, \hat{\pi}_N^m, \mathcal{D}_i)$ 12: Move to the next agent: $i \leftarrow (i+1)\% N$
- 13: **until** all trees have grown to the maximum depth allowed 14: **return** decision trees $\hat{\pi}_1^m, \dots, \hat{\pi}_N^m$

- MAVIPER filters out training data that may not yield much benefit
- Insight: the correct prediction of one agent alone may not yield much benefit if the other agents are incorrect
- For each data point:
 - What action would each decision-tree agent take? Does it align with the expert?
 - Do most agents correctly identify the action to take? If not, remove the data from the dataset.

MAVIPER incorporates a prediction module for joint training

- Example evaluation environment: Physical Deception
- Defenders spread out to protect targets
- Attacker wants to reach green target (but does not know which of two targets is correct)

We want high-performing interpretable policies

Performance	Performance of the agent when it uses a DT policy	5
Ratio =	Performance of the agent when it uses a NN policy	

 How well do MAVIPER and IVIPER perform when measuring the performance of individual decision-tree agents?

 How well do MAVIPER and IVIPER perform when measuring the performance of a team of decision-tree agents?

MAVIPER and IVIPER policies utilize different features

MAVIPER teams are more robust

Team	MAVIPER	IVIPER _	Imitation	Fitted
Million		, with	DT	Q-Iteration
Defender	.77 (.01)	.33 (.01)	.24 (.03)	.004 (.00)
Adversary	.42 (.03)	.41 (.03)	.42 (.03)	.07(.01)

Outline

- Opportunities and Challenges in Applying Multi-Agent Reinforcement Learning
 - MARL for Security and Sustainability
 - Interpretable MARL
- Discussion and Summary

Summary

- MARL has great potential for real-world challenges in security and sustainability domains
- Fundamental challenges need to be addressed to fulfill the potential
 - Equilibrium refinement
 - Interpretability
 - ... (sim2real gap, scalability, etc)
- Discussion: Other application domains? Other key challenges?

Acknowledgment

Advisors, postdocs, students and all co-authors!

Collaborators and partners

Funding support

References

- [Lipton, 2018] Lipton, Zachary C. "The Mythos of Model Interpretability: In machine learning, the concept of interpretability is both important and slippery." Queue 16.3 (2018): 31-57.
- [Pyeatt, 2003] Pyeatt, Larry D. "Reinforcement learning with decision trees." 21 st IASTED International Multi-Conference on Applied Informatics. 2003.
- [Malias & Kudenko, 2015] Malialis, Kleanthis, and Daniel Kudenko. "Distributed response to network intrusions using multiagent reinforcement learning." Engineering Applications of Artificial Intelligence 41 (2015): 270-284.
- [Molnar, 2020] Molnar, Christoph. Interpretable machine learning. Lulu. com, 2020.
- [Milani & Topin, et al., 2022] Milani, Stephanie, Nicholay Topin, Manuela Veloso, and Fei Fang. "A survey of explainable reinforcement learning." arXiv preprint arXiv:2202.08434 (2022).
- [Bastani et al., 2018] Bastani, Osbert, Yewen Pu, and Armando Solar-Lezama. "Verifiable reinforcement learning via policy extraction." arXiv preprint arXiv:1805.08328 (2018).
- [Terry, 2021] Multi-Agent Deep Reinforcement Learning in 13 Lines of Code Using PettingZoo | by J K Terry | Towards Data Science