MOD-I2C-GPIO

Olimex Ltd.

May 3, 2019

Contents

1	Des	cription	2						
2	Men	emory map							
3	Dev	ice registers	3						
	3.1	Device ID	3						
	3.2	Firmware version	3						
	3.3	Serial number	3						
	3.4	Pin function	3						
	3.5	Data direction	4						
	3.6	Input data	5						
	3.7	Output data	5						
	3.8	Pull-up enable	6						
	3.9	Output mode	7						
	3.10	Input buffer	8						
	3.11	Input slew-rate control	ç						
L		of Figures							
	1	Memory layout							
	2	Device ID register							
	3	Firmware revision register							
	4	Serial number register							
	5	Pin function register							
	6	Data direction register							
	7	Input data register							
	8	Output data register							
	9	Pull-up control register							
	10	Output mode control register							
	11	Input buffer control register							
	12	Input slew-rate control register	9						

1 Description

MOD-I2C-GPIO implements simple GPIO expander. The project is based on PIC16F18324 with following capabilities:

- 8 GPIOs
 - Input level can be ether CMOS or TTL
 - Output can be OD or PP
 - All pins supports weak-pull ups
 - Interrupts can be used on all pins
- 1 configurable DAC
- 1 configurable ADC

2 Memory map

The device has memory map as shown on Figure 1.

Figure 1: Memory layout

3 Device registers

sdasd

3.1 Device ID

Address:

This register holds the unique device identification. It can be used for detection. The register is read-only, so it cannot change.

Default: 0x43

7 6 5 4 3 2 1 0

ID

Figure 2: Device ID register

3.2 Firmware version

0×00

Each new firmware release has its own revision. It's stored to this read-only register. The first release is 0x01, the second - 0x02, etc.

Address: 0x01
Default:
7 6 5 4 3 2 1 0

FW

Figure 3: Firmware revision register

3.3 Serial number

This is unique serial number. The length is 4 bytes.

Address: 0x02 Default: -

7	6	5	4	3	2	1	0
SN [31:24]							
SN [23:16]							
SN [15:8]							
			SN	[7:0]			

Figure 4: Serial number register

3.4 Pin function

Some of the GPIOs can be configure as alternative function: DAC and ADC. The register allows this to be configured. By default all function is GPIO.

Address: 0×06 Default: 0×00

> 7 6 5 4 3 2 1 0 - - - FUN2 - FUN0

Figure 5: Pin function register

- FUN2: PIN2 function control bit
 - 1: Setup PIN2 as ADC
 - 0: Setup PIN2 as GPIO
- FUNO: PINO data direction control bit
 - 1: Setup PIN0 as DAC
 - 0: Setup PIN0 as GPIO

3.5 Data direction

Each GPIO can be input or output. Setting a bit will make the corresponding pin input. Clearing it - output.

Address: 0x07 Default: 0x00

7	6	5	4	3	2	1	0	
DIR7	DIR6	DIR5	DIR4	DIR3	DIR2	DIR1	DIR0	

Figure 6: Data direction register

- DIR7: GPIO7 data direction control bit
 - 1: Setup GPIO7 as input
 - 0: Setup GPIO7 as output
- DIR6: GPIO6 data direction control bit
 - 1: Setup GPIO6 as input
 - 0: Setup GPIO6 as output
- DIR5: GPIO5 data direction control bit
 - 1: Setup GPIO5 as input
 - 0: Setup GPIO5 as output
- DIR4: GPIO4 data direction control bit
 - 1: Setup GPIO4 as input
 - 0: Setup GPIO4 as output
- DIR3: GPIO3 data direction control bit
 - 1: Setup GPIO3 as input
 - 0: Setup GPIO3 as output
- DIR2: GPIO2 data direction control bit
 - 1: Setup GPIO2 as input
 - 0: Setup GPIO2 as output
- DIR1: GPIO1 data direction control bit
 - 1: Setup GPIO1 as input
 - 0: Setup GPIO1 as output
- DIRO: GPIO0 data direction control bit
 - 1: Setup GPIO0 as input
 - 0: Setup GPIO0 as output

3.6 Input data

This register holds input levels.

Address: 0x08 Default: - - - -

7	6	5	4	3	2	1	0
IN7	IN6	IN5	IN4	IN3	IN2	IN1	IN0

Figure 7: Input data register

• IN7: GPIO7 input value

- 0: Input level on GPIO7 is low

- 1: Input level on GPIO7 is high

• IN6: GPIO6 input value

- 0: Input level on GPIO6 is low

- 1: Input level on GPIO6 is high

• IN5: GPIO5 input value

- 0: Input level on GPIO5 is low

- 1: Input level on GPIO5 is high

• IN4: GPIO4 input value

- 0: Input level on GPIO4 is low

- 1: Input level on GPIO4 is high

• IN3: GPIO3 input value

- 0: Input level on GPIO3 is low

- 1: Input level on GPIO3 is high

• IN2: GPIO2 input value

- 0: Input level on GPIO2 is low

- 1: Input level on GPIO2 is high

• IN1: GPIO1 input value

- 0: Input level on GPIO1 is low

- 1: Input level on GPIO1 is high

• INO: GPIO0 input value

- 0: Input level on GPIO0 is low

- 1: Input level on GPIO0 is high

3.7 Output data

This register sets output GPIO level.

Address: 0x09 Default: 0x00

7	6	5	4	3	2	1	0	_
OUT7	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0	

Figure 8: Output data register

- OUT7: GPIO7 output value
 - 0: Drive GPIO low
 - 1: Drive GPIO high
- OUT6: GPIO6 output value
 - 0: Drive GPIO low
 - 1: Drive GPIO high
- OUT5: GPIO5 output value
 - 0: Drive GPIO low
 - 1: Drive GPIO high
- OUT4: GPIO4 output value
 - 0: Drive GPIO low
 - 1: Drive GPIO high
- OUT3: GPIO3 output value
 - 0: Drive GPIO low
 - 1: Drive GPIO high
- OUT2: GPIO2 output value
 - 0: Drive GPIO low
 - 1: Drive GPIO high
- OUT1: GPIO1 output value
 - 0: Drive GPIO low
 - 1: Drive GPIO high
- OUTO: GPIO0 output value
 - 0: Drive GPIO low
 - 1: Drive GPIO high

3.8 Pull-up enable

All GPIOs has internal weak pull-up resistors. They are enabled by default, to minimize noise and power consumption. The can be disabled by either writing 0 to the corresponding bit or making the direction output.

Special case is when GPIO is configure as open-drain. If the bit for given GPIO is set, then the pull-up is enabled is DAT bit is set. On DAT clear, the pull-up becomes inactive.

Address: 0x0A Default: 0xFF

Figure 9: Pull-up control register

- PU7: GPIO7 data direction control bit
 - 0: Disables GPIO7 internal pull-up resistor
 - 1: Enables GPIO7 internal pull-up resistor
- PU6: GPIO6 data direction control bit
 - 0: Disables GPIO6 internal pull-up resistor
 - 1: Enables GPIO6 internal pull-up resistor

- PU5: GPIO5 data direction control bit
 - 0: Disables GPIO5 internal pull-up resistor
 - 1: Enables GPIO5 internal pull-up resistor
- PU4: GPIO4 data direction control bit
 - 0: Disables GPIO4 internal pull-up resistor
 - 1: Enables GPIO4 internal pull-up resistor
- PU3: GPIO3 data direction control bit
 - 0: Disables GPIO3 internal pull-up resistor
 - 1: Enables GPIO3 internal pull-up resistor
- PU2: GPIO2 data direction control bit
 - 0: Disables GPIO2 internal pull-up resistor
 - 1: Enables GPIO2 internal pull-up resistor
- PU1: GPIO1 data direction control bit
 - 0: Disables GPIO1 internal pull-up resistor
 - 1: Enables GPIO1 internal pull-up resistor
- PU0: GPIO0 data direction control bit
 - 0: Disables GPIO0 internal pull-up resistor
 - 1: Enables GPIO0 internal pull-up resistor

3.9 Output mode

All outputs can be configured either as push-pull or open-drain.

Address: $0 \times 0B$ Default: 0×00

7	6	5	4	3	2	1	0
OM7	OM6	OM5	OM4	OM3	OM2	OM1	OM0

Figure 10: Output mode control register

- OM7: GPIO7 output mode control bit
 - 0: Drive GPIO7 as push-pull
 - 1: Drive GPIO7 as open-drain
- OM6: GPIO6 output mode control bit
 - 0: Drive GPIO6 as push-pull
 - 1: Drive GPIO6 as open-drain
- OM5: GPIO5 output mode control bit
 - 0: Drive GPIO5 as push-pull
 - 1: Drive GPIO5 as open-drain
- OM4: GPIO4 output mode control bit
 - 0: Drive GPIO4 as push-pull
 - 1: Drive GPIO4 as open-drain
- OM3: GPIO5 output mode control bit
 - 0: Drive GPIO3 as push-pull

- 1: Drive GPIO3 as open-drain
- OM2: GPIO2 output mode control bit
 - 0: Drive GPIO2 as push-pull
 - 1: Drive GPIO2 as open-drain
- OM1: GPIO1 output mode control bit
 - 0: Drive GPIO1 as push-pull
 - 1: Drive GPIO1 as open-drain
- OM0: GPIO0 output mode control bit
 - 0: Drive GPIO0 as push-pull
 - 1: Drive GPIO0 as open-drain

3.10 Input buffer

Input levels can be configured for either CMOS or TTL operation.

Address: 0x0C Default: 0xFF

 7	6	5	4	3	2	1	0
IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0

Figure 11: Input buffer control register

- IB7: GPIO7 input buffer control bit
 - 0: TTL input on GPIO7
 - 1: CMOS ST input on GPIO7
- IB6: GPIO6 input buffer control bit
 - 0: TTL input on GPIO6
 - 1: CMOS ST input on GPIO6
- IB5: GPIO5 input buffer control bit
 - 0: TTL input on GPIO5
 - 1: CMOS ST input on GPIO5
- IB4: GPIO4 input buffer control bit
 - 0: TTL input on GPIO4
 - 1: CMOS ST input on GPIO4
- IB3: GPIO3 input buffer control bit
 - 0: TTL input on GPIO3
 - 1: CMOS ST input on GPIO3
- IB2: GPIO2 input buffer control bit
 - 0: TTL input on GPIO2
 - 1: CMOS ST input on GPIO2
- IB1: GPIO1 input buffer control bit
 - 0: TTL input on GPIO1
 - 1: CMOS ST input on GPIO1
- IB0: GPIO0 input buffer control bit

- 0: TTL input on GPIO0
- 1: CMOS ST input on GPIO0

3.11 Input slew-rate control

Address: 0x0D Default: 0xFF

7	6	5	4	3	2	1	0	
SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0	

Figure 12: Input slew-rate control register

- SR7: GPIO7 input slew-rate control bit
 - 0: Port pin slews at maximum rate
 - 1: Port pin slew rate is limited
- SR6: GPIO6 input slew-rate control bit
 - 0: Port pin slews at maximum rate
 - 1: Port pin slew rate is limited
- SR5: GPIO5 input slew-rate control bit
 - 0: Port pin slews at maximum rate
 - 1: Port pin slew rate is limited
- SR4: GPIO4 input slew-rate control bit
 - 0: Port pin slews at maximum rate
 - 1: Port pin slew rate is limited
- SR3: GPIO3 input slew-rate control bit
 - 0: Port pin slews at maximum rate
 - 1: Port pin slew rate is limited
- SR2: GPIO2 input slew-rate control bit
 - 0: Port pin slews at maximum rate
 - 1: Port pin slew rate is limited
- SR1: GPIO1 input slew-rate control bit
 - 0: Port pin slews at maximum rate
 - 1: Port pin slew rate is limited
- SR0: GPIO0 input slew-rate control bit
 - 0: Port pin slews at maximum rate
 - 1: Port pin slew rate is limited