Име:

PH:

KH 09.07.2013

- 1. Нека A и B са несъвместими събития. Тогава е изпълнено:
 - А и В са независими
- \odot A в B не са нито зависими, нито независими
- ⊙ А и В са зависими
- ⊙ не може да се определи
- 2. Нека \overline{A} и \overline{B} са пезависими. Докажете, че A и B също са независими.
- 3. Вероятността на събитието B^c (B^c е допълнителното събитие на B) е равна на 3/4. Намерете функцията на разпределение на индикатора му I_{B^c} и начертайте графиката и.

Индикатор на събитието B е функцията $I_B(\omega)=1$, ако $\omega\in B$ и $I_B(\omega)=0$, ако $\omega\in B^c$.

$$F_{I_{BC}}(x) =$$

- 4. Опишете модел, в които сл. в. ξ е биномно разпределена $\xi \in Bi(100, \frac{1}{2})$.
- 5. Нека ξ и η са равномерно разпределени в интервала (5,15) и $cov(\xi,\eta)=\frac{1}{2}.$ Намерете дисперсията на случайната величина $\xi = 2\eta$.

6. Дискретните сл.в. X, Y и Z са независими, когато...

- 7. Случайна величина X е нормално разпределена със средно $\mu=2$ и неизвестно стандартно отклонения σ стандартно отклонение σ . Ако вероятността X да надхвърля 9.5 е 0.0602, намерете
- 8. Пльтностите на сл.в. $\xi_1 \in N(\mu_1, \sigma_1^2)$ и $\xi_2 \in N(\mu_2, \sigma_2^2)$ са дадени на схемата.

- 9. Нека сл.в. ξ има очакване 0 и дисперсия 4. Коя е най-голямата стойност, която може да достигне вого може да достигне вероятността $P(|\xi| > 8)$ съгласно неравенството на Чебишов. $\frac{1}{8}$ \odot $\frac{1}{4}$ \odot $\frac{3}{4}$ \odot $\frac{15}{16}$
- 10. Какво наричаме грешка от първи род при проверката на хипотези?
- 11. Намерете коефициентите и R^2 за модел на проста линейна регресия с предиктор X=(0,0,1,2,2)X = (0, 0, 1, 2, 2) и отклик Y = (0, 1, 0, 0, 1).
- 12. Опишете алгоритъм за генериране на случайна извадка от непрекъсната случайн величина с известна ϕ .р. F(x) - обратима функция.
- 13. Коя точкова оценка наричаме неизместена за неизвестния параметър θ . Да пример за неизместена оценка на математическото очакване и дисперсията на в. Х, построена по наблюденията X_1, \dots, X_n .
- 14. Формулирайте и докажете Централната гранична теорема за независими и во разпределени случайни величини.