Announcements for Wednesday, 16OCT2024

- Exam 2 Location Requests due by Friday, 18OCT2024, 11:59 PM (EDT)
 - for students having a class ending at 7:00 PM or later on exam day
- Exam 1 is now available for reviewing through *Gradescope*
- Requests for Exam Question Regrades Now Open
 - Monday, 14OCT2024, 12:01 AM (EDT) Wednesday, 16OCT2024, 11:59 PM (EDT)
 - MUST be submitted through Gradescope (do not email instructors)
 - see Canvas announcement from Oct 11 for regrading policies and procedure
 - after the deadline, Exam 1 grades will not be changed

ANY GENERAL QUESTIONS? Feel free to see me after class!

Try This On Your Own

Draw the different Lewis structures for the fulminate ion (CNO⁻) (nitrogen is central atom) and determine the BEST structure based on formal charges.

- BEST Resonance structure
 - minimized formal charges
- the true structure has negative charge on both ends of the ion

- Bad Resonance structure
 - excessive formal charge on carbon
- this structure has negative charge localized only on carbon

- WORST Resonance structure
 - excessive formal charges
 - (+!) on oxygen and (3!!)
 on carbon
- this structure has negative charge localized only on carbon

Try This On Your Own

How many resonance structures can be drawn for the selenate ion (SeO_4^{2-}) in which the central atom has zero formal charge?

Average Bond Length

I₂
266 pm

© 2018 Pearson Education, Inc.

TABLE 5.4 Average Bond Lengths

Bond	Bond Length (pm)	Bond	Bond Length (pm)	Bond	Bond Length (pm)
H-H	74	c-c	154	N = N	110
H—C	110	c=c	134	0-0	145
H-N	100	C≡C	120	0=0	121
H-0	97	c—o	143	F—F	143
H-F	92	c=0	120	CI—CI	199
H—CI	127	C—CI	178	Br—Br	228
H—Br	141	N-N	145	1—1	266
н—і	161	N=N	123		

- bond length = distance between the nuclei of the two atoms taking part in the covalent bond
 - an average of the bond length from several different compounds containing a particular bond
- closely (though not perfectly) related to atomic radius
 - F₂ vs. Cl₂ vs. Br₂ vs. I₂ and HF vs. HCl vs. HBr vs. HI
- in general when comparing the same two atoms, bond length decreases as the number of bonds increase
 - C-C vs. C=C vs. C≡C and C-O vs. C=O

Try This On Your Own

Rank the following species in order of increasing N-O bond length: NO_2^- , NO_2^+

Hint: Start by drawing the Lewis structures

Shapes of Molecules

- shape is responsible for many properties of a molecule
 - shape impacts polarity which impacts intermolecular forces which impacts physical properties
 - the shape of drug molecules and enzymes are responsible for their bioactivity
 - the shapes of large, complex molecules can be understood by focusing on the shape around each central atom

valence shell electron pair repulsion (VSEPR) theory

- electron groups (?!?) around an atom want to get as far away from one another to minimize repulsion
 - a single bond is one electron group
 - a double bond is one electron group
 - a triple bond is one electron group
 - a lone pair is one electron group
 - a single electron (in a radical species) is an electron group
- the maximum separation of electron groups around an interior/central atom leads to the shape of a molecule

Electron Group Geometry vs. Molecular Geometry

 electron group geometry (e.g.g.) = the spatial arrangement taken by the electron groups around a central atom

 molecular geometry (m.g.) = the spatial arrangement of ONLY the BONDS around a central atom

- sometimes the e.g.g. and the m.g. can be the same
 - CO₂ and CH₄
- sometimes they can be different
 - H₂O and SF₄
- electron groups repel one another and try to get as far away from one another to minimize repulsions
 - the ideal geometry of electron groups depends on the total number of them around the central atom

Two Electron Groups – Linear

- all of the atoms and bonds lie along the same line
- bond angles of 180°

Two Electron Groups

2 bonds, 0 lone pairs

electron group geometry: linear

molecular geometry:

linear

Three Electron Groups – Trigonal Planar

- trigonal = "triangle" and planar = "flat"
- all of the atoms/bonds lie in the same plane
 - a flat molecule
- bond angles of 120°

Three Electron Groups

3 bonds, 0 lone pairs

electron group geometry: trigonal planar

molecular geometry: trigonal planar

2 bonds, 1 lone pair

electron group geometry: trigonal planar

molecular geometry:

bent

Four Electron Groups – Tetrahedral

- three-dimensional shape
- bond angles of 109.5°

Four Electron Groups

4 bonds, 0 lone pairs

electron group geometry: tetrahedral

molecular geometry: tetrahedral

3 bonds, 1 lone pair

electron group geometry: tetrahedral

molecular geometry: trigonal pyramidal

2 bonds, 2 lone pairs

electron group geometry: tetrahedral

molecular geometry: bent

Five Electron Groups – Trigonal Bipyramidal

- trigonal = "triangle" and bipyramidal = "two pyramids"
- axial positions vs.
 equatorial positions
- bond angles of 90°,
 120°, and 180°

Five Electron Groups

5 bonds, 0 lone pairs

4 bonds, 1 lone pair

3 bonds, 2 lone pairs

electron group geometry: electron group geometry: trigonal bipyramidal

molecular geometry:

seesaw

electron group geometry: trigonal bipyramidal

molecular geometry:

T-shape

2 bonds, 3 lone pairs

electron group geometry: trigonal bipyramidal

molecular geometry:

linear

molecular geometry: trigonal bipyramidal

trigonal bipyramidal

Six Electron Groups – Octahedral

- all positions are equivalent
- bond angles of 90° and 180°

Six Electron Groups

6 bonds, 0 lone pairs

electron group geometry: octahedral

molecular geometry: octahedral

5 bonds, 1 lone pair

electron group geometry: octahedral

molecular geometry: square pyramidal

4 bonds, 2 lone pairs

electron group geometry: octahedral

molecular geometry: square planar

Electron Group Geometry

MEMORIZE THESE					
number of electron groups	electron group geometry	ideal bond angles			
2	linear	180°			
3	trigonal planar	120°			
4	tetrahedral	109.5°			
5	trigonal bipyramidal	90°, 120°, and 180°			
6	octahedral	90° and 180°			

Molecular Geometry

DON'T MEMORIZE THESE – DERIVE THEM from the e [–] group geometries					
number of electron groups	possible molecular geometries	bond angles			
2	linear	180°			
2	trigonal planar	120°			
3	bent	< 120°			
	tetrahedral	109.5°			
4	trigonal pyramidal	< 109.5°			
	bent	< 109.5°			
	trigonal bipyramidal	90° (axial/equatorial), 120° (equatorial/equatorial), and 180° (axial/axial)			
5	seesaw	< 90°(axial/equatorial), < 120°(equatorial/equatorial), and < 180° (axial/axial)			
J	T-shaped	< 90° (axial/equatorial) and < 180° (axial/axial)			
	linear	180°(axial)			
	octahedral	90° and 180°			
6	square pyramidal	< 90° and < 180°			
	square planar	90° and 180°			

Molecular Geometries

know 'em...

© 2018 Pearson Education, Inc.

© 2018 Pearson Education, Inc.

© 2018 Pearson Education, Inc.

Deviation from Ideal Bond Angles

- the presence of lone pairs *unsymmetrically* around the central atom will cause the bond geometries to deviate from their ideal values
 - the H–O–H bond angle of water is 104.5° (5° less than what it is predicted to be)
- lone pairs repel bonding electrons, causing compression of bond angles

lp/lp repulsion > lp/bp repulsion > bp/bp repulsion
lp = lone pair and bp = bonding pair

- in general, more lone pairs around the central atom = more angle compression
 - CH₄ vs. NH₃ vs. H₂O
- if lone pairs are *symmetrically* distributed, then bond angles won't deviate
 - XeF₂ (180°) and XeF₄ (90°)

Deriving Molecular Geometry from Electron Group Geometry

- 1. establish the number of electron groups around the central atom
- 2. establish the electron group geometry and ideal bond angles
- mentally replace the necessary bonds around the central atom with lone pairs according to the Lewis structure of the molecule
 - in trigonal bipyramidal, only replace equatorial bonds with lone pairs, not axial bonds
 - b. in octahedral, maximize distance between lone pairs by replacing bonds that are 180° apart from each other
- 4. adjust bond angles due to the presence of lone pairs around central atom
- 5. see what geometry the molecule has by focusing only on the arrangement of bonds (not lone pairs)

Shapes of Larger Molecules

- molecules with two or more interior/central atoms
- the overall shape of the molecule will be determined by the shape around each interior atom
 - example: acetic acid (CH₃COOH)

Copyright © 2005 Pearson Prentice Hall, Inc.

Try This On Your Own

Predict the electron geometry, molecular geometry, and approximate bond angle(s) for the following species:

