ENV 710

binomial logistic regression or log-linear models

- download: pheno.csv
- load packages:

COUNT

DHARMa

boot

vcdExtra

ResourceSelection

ggplot2

pscl

where we are

multivariate linear models

interactions
centering/scaling explanatory
variables
random effects and mixed models

generalized linear models

logistic regression

- binary response variable
 - success or failure (1 or 0)
 - model the probability of success (π)

$$\pi = \beta_0 + \beta_1 X_1$$

model log odds

$$logit(\pi) = log[\pi/(1-\pi)]$$

$$logit(\pi) = \beta_0 + \beta_1 X_k + \dots + \beta_k X_k$$

calculate probabilities

$$\pi = \frac{exp(\beta_0 + \beta_1 X_k + \dots + \beta_k X_k)}{1 + exp(\beta_0 + \beta_1 X_k + \dots + \beta_k X_k)}$$

goal is to model the probability of 'success'

transform response to be linearly related to the IV's through the logit transform

back transform to probability using the inverse logit

logistic regression for binomial counts

- binomial count = sum of independent binary responses
- $Y \sim \text{binomial}(n, \pi)$, with population proportion, π , and n trials
- observed proportion of I's is Y/n binomial proportion
- continuous proportions of amounts cannot be modeled
 - e.g., the proportion of fat that is saturated fat
 - numerator and denominator are not integers, and no n is involved
 - when response variable is a continuous proportion, use ordinary regression methods

 model how population proportion depends on the explanatory variables through a nonlinear link function

$$logit(\pi) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

 interpretation of model is same as for binary logistic regression, which is a special case of the binomial model in which all n_i's are I

e.g., Titanic

	survive	cases	age	sex	class
1	1	1	0	0	1
2	13	13	0	0	2
3	14	31	0	0	3
4	5	5	0	1	1
5	11	11	0	1	2
6	13	48	0	1	3
7	140	144	1	0	1
8	80	93	1	0	2
9	76	165	1	0	3
10	57	175	1	1	1
11	14	168	1	1	2
12	75	462	1	1	3

binomial regression

Y = x out of *n* trials

```
pclass survived
                  sex
                         age surv
 1st survived female
                      29.00
                       0.91
 1st survived
               male
                       2.00
 1st
         died female
 1st
      died
               male
                      30.00
 1st
      died female
                      25.00
 1st survived
                      48.00
                male
```

logistic regression

$$Y = 1 \text{ or } 0$$

Do minimum nighttime temperature and height of trees influence proportion of trees that flower?

- 20 samples of 20 trees surveyed in each zone
- czone: 3 climate zones (hi, med, low nighttime temps)
- height: average tree height of each sample of trees
- n: number of trees sampled

Do minimum nighttime temperature and height of trees influence proportion of trees that flower?

	tr	ht	czone	n
1	13	18.09	1	20
2	13	25.31	1	20
3	15	26.39	1	20
4	15	29.98	1	20
5	15	30.61	1	20
6	15	33.27	1	20

```
0.10 -
                                       Corr:
                                      0.718***
0.05 -
  50 -
```

czone

Coefficients:

Estimate Std. Error z value Pr(>|z|) (Intercept) -0.326077 0.515127 -0.633 0.52673 factor(czone)2 -1.403413 0.733661 -1.913 0.05576 . factor(czone)3 -0.937770 0.616617 -1.521 0.12830 ht 0.047032 0.014231 3.305 0.00095 *** factor(czone)2:ht 0.021752 0.020764 1.048 0.29482 factor(czone)3:ht -0.004873 0.016824 -0.290 0.77208

Null deviance: 114.2732 on 59 degrees of freedom Residual deviance: 5.8137 on 54 degrees of freedom AIC: 211.19

b1<-update(b0,.~.-factor(czone):ht)</pre>

Coefficients:

Estimate Std. Error z value Pr(>|z|) (Intercept) -0.38963 0.27057 -1.440 0.15 factor(czone)2 -0.66316 0.16544 -4.008 6.11e-05 *** factor(czone)3 -1.11444 0.16438 -6.779 1.21e-11 *** ht 0.04884 0.00683 7.152 8.58e-13 ***

Null deviance: 114.2732 on 59 degrees of freedom Residual deviance: 8.1554 on 56 degrees of freedom AIC: 209.53

```
Compare models

lrtest(b0, b1)
Likelihood ratio test

Model 1: cbind(tr, n - tr) ~ factor(czone) * ht
Model 2: cbind(tr, n - tr) ~ factor(czone) + ht
    #Df LogLik Df Chisq Pr(>Chisq)
1 6 -99.595
2 4 -100.766 -2 2.3417 0.3101
```

```
Check model fit
pchisq(b1$deviance, b1$df.residual, lower.tail = F)
1
```

```
Check for overdispersion

d2 = sum(residuals(b1, "pearson")^2)
  disp = d2/df.residual(b1)
  phi = sqrt(disp)

[1] 0.3801822
```

```
DHARMa::testDispersion(b1)

DHARMa nonparametric dispersion test via sd of residuals fitted vs. simulated

data: simulationOutput dispersion = 0.67906, p-value = 0.024 alternative hypothesis: two.sided
```

```
Coefficients as log-odds
coef(b1)
Intercept) factor(czone) 2 factor(czone) 3
                                         ht.
-0.38962645 -0.66315645 -1.11443652 0.04884507
Coefficients as odds
exp(coef(b1))
(Intercept) factor(czone) 2 factor(czone) 3
                                          ht.
0.6773098 0.5152225
                             0.3281001 1.0500577
Coefficients as probability
inv.logit(coef(b1))
(Intercept) factor(czone) 2 factor(czone) 3
                                         ht.
0.4038072
              0.3400309
                            0.2470447 0.5122088
```

Coefficients as log-odds

coef(b1)

```
Intercept) factor(czone)2 factor(czone)3 ht -0.38962645 -0.66315645 -1.11443652 0.048845
```

- Intercept is log-odds of flowering at czone I when tree height is 0
- czone 2 is the difference in the log-odds of flowering for czone 2 compared to czone 1: log-odds of flowering decreases by -0.66 from czone 1 to 2.
- log-odds of flowering in czone 2 is -0.389+-0.663 = -1.052.
- ht is the change in log-odds of flowering for every additional meter of tree height.

Coefficients as odds

- Intercept is the odds of flowering at czone I when tree height is 0
- czone 2 is the odds ratio of flowering between czone 2 and czone I
- mean odds of flowering in czone 2 is 0.349
 [exp(-0.38962645+-0.66315645)]
- ht, the odds of flowering increase by a factor of 1.05 for every meter, or approximately 5% increase in odds of flowering for each additional unit of tree height

Coefficients as probability

```
inv.logit(coef(b1))
(Intercept) factor(czone)2 factor(czone)3 ht
  0.4038072   0.3400309   0.2470447   0.5122088
```

- log-odds coefficients can be converted into probabilities with the inv.logit(), but can't be directly interpreted because the relationship is not linear
- best to evaluate probability at specific values of predictors

```
p = \frac{1}{(1+1/e^{\beta})}
```

"I'll do algebra, I'll do trigonometry, I'll even do statistics...

But graphing is where I draw the line."

```
jcoPalette <- c("#0073C2FF", "#EFC000FF", "#868686FF", "#CD534CFF",
"#7AA6DCFF", "#003C67FF", "#8F7700FF", "#3B3B3BFF", "#A73030FF",
"#4A6990FF")
b <- coef(b1)
qqplot(data = trees, aes(x = ht, y = log(tr/(n-tr)))) +
  geom point(aes(color = czone)) +
     stat function(fun = function(x){b[1]+b[4]*x}, colour =
icoPalette[1]) +
     stat function (fun = function (x) \{b[1]+b[2]+b[4]*x\}, colour =
jcoPalette[2]) +
     stat function(fun = function(x)\{b[1]+b[3]+b[4]*x\}, colour =
jcoPalette[3]) +
  theme bw() + scale colour manual("Climate\n Zone",
values=icoPalette) +
  theme(legend.position = c(0.2, 0.8)) +
  labs(x = "height, m", y = "log-odds of flowering")
```



```
## plot as odds with ggplot
qqplot(data = trees, aes(x = ht, y = tr/(n-tr))) +
  geom point(aes(color = czone)) +
     stat function(fun = function(x) \{exp(b[1]+b[4]*x)\},
                   colour = jcoPalette[1]) +
     stat function (fun = function (x) \{\exp(b[1]+b[2]+b[4]*x)\},
                   colour = jcoPalette[2]) +
     stat function (fun = function (x) \{\exp(b[1]+b[3]+b[4]*x)\},
                   colour = jcoPalette[3]) +
  theme bw() + scale colour manual("Climate\n Zone", values=jcoPalette) +
  theme(legend.position = c(0.2, 0.8)) +
  labs(x = "height, m", y = "odds of flowering")
## plot as probabilities with ggplot
ggplot(data = trees, aes(x = ht, y = tr/n)) +
  geom point(aes(color = czone)) +
     stat function(fun = function(x) \{inv.logit(b[1]+b[4]*x)\},
                   colour = jcoPalette[1]) +
     stat function(fun = function(x) \{inv.logit(b[1]+b[2]+b[4]*x)\},
                   colour = jcoPalette[2]) +
     stat function(fun = function(x) \{inv.logit(b[1]+b[3]+b[4]*x)\},
                   colour = icoPalette[3]) +
  theme bw() + scale colour manual("Climate\ Zone", values=jcoPalette) +
  theme(legend.position = c(0.2, 0.8)) +
  labs(x = "height, m", y = "probability of flowering")
```

What variables result in low birth weight?

- low: I=low birthweight baby; 0=normal weight
- smoke: I=history of mother smoking;
 0=mother nonsmoker
- age: age of mother: 14-45
- lwt: weight (lbs) at last menstrual period: 80-250 lbs
- ftv: number of physician visits in 1st trimester: 0-6

Build model, reduce it, check its goodness of fit, and interpret the results


```
lr1 <- glm(low ~ factor(smoke) + age + ftv + lwt,</pre>
           family = "binomial", data = lbw)
lr2 <- update(lr1, .~.-ftv)</pre>
 1r3 <- update(lr2, .~.-age)</pre>
 summary(1r3)
Call:
glm(formula = low ~ factor(smoke) + lwt,
   family = "binomial", data = lbw)
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
              0.619201 0.795870 0.778 0.4366
(Intercept)
factor(smoke)1 0.676579 0.324685 2.084 0.0372 *
              -0.013301 0.006088 -2.185 0.0289 *
lwt.
   Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 224.36 on 186 degrees of freedom
AIC: 230.36
```

```
Irtest(lr1, lr2, lr3)
Likelihood ratio test

Model 1: low ~ factor(smoke) + age + ftv + lwt
Model 2: low ~ factor(smoke) + age + lwt
Model 3: low ~ factor(smoke) + lwt
    #Df LogLik Df Chisq Pr(>Chisq)
1    5 -111.42
2    4 -111.45 -1 0.0645    0.7995
3    3 -112.18 -1 1.4634    0.2264
```

```
pchisq(lr3$deviance, lr3$df.residual,
lower.tail = F)
[1] 0.02868237
```

```
lr1 <- glm(low ~ factor(smoke) + age + ftv + lwt,</pre>
            family = "binomial", data = lbw)
 lr2 <- update(lr1, .~.-ftv)</pre>
 1r3 <- update(lr2, .~.-age)</pre>
  summary(1r3)
Call:
glm(formula = low ~ factor(smoke) + lwt,
    family = "binomial", data = lbw)
Coefficients:
                Estimate Std. Error z value Pr(>|z|)
               0.619201 0.795870 0.778
                                            0.4366
(Intercept)
factor(smoke)1 0.676579 0.324685 2.084 0.0372 *
               -0.013301 0.006088 -2.185
                                              0.0289 *
lwt.
    Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 224.36 on 186 degrees of freedom
AIC: 230.36
```

How does smoking affect the odds of having a low birthweight baby?

What is the effect of low mother weight on the odds of having a low birthweight baby?

What is the probability of having a low birthweight baby for a smoker weighing in the lowest 25% of women?

```
lr1 <- glm(low ~ factor(smoke) + age + ftv + lwt,</pre>
            family = "binomial", data = lbw)
lr2 <- update(lr1, .~.-ftv)</pre>
 1r3 <- update(lr2, .~.-age)</pre>
  summary(1r3)
Call:
glm(formula = low ~ factor(smoke) + lwt,
    family = "binomial", data = lbw)
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
               0.619201 0.795870 0.778
                                            0.4366
(Intercept)
factor(smoke) 1 0.676579 0.324685 2.084 0.0372 *
              -0.013301 0.006088 -2.185
                                              0.0289 *
lwt.
    Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 224.36 on 186 degrees of freedom
AIC: 230.36
```

Smoking increases the odds of having a low birthweight baby by 1.97 times or 97% (z = 2.08, p = 0.037).

Every additional pound of weight decreases the odds of a woman having a low birthweight child by 1.3% (z = -2.19, p = 0.029).

The probability of having a low birthweight child for a smoker in the 25th percentile of weights is 45.8%.

