

## Introduction



# Plan

- Généralités sur les Systèmes de stockage d'énergie éolienne
  - Analyse comparative des batteries

- Batterie lithium ion
- 4 Conclusion

### Généralités



Principaux systèmes de stockage d'énergie électrique



Différents systèmes de stockage les plus répandus dans les énergies renouvelables.

# Analyse comparatives des batteries



| Types de batterie/Critère: | Plomb                                       | Ni-Cd          | Li-ion                    |
|----------------------------|---------------------------------------------|----------------|---------------------------|
| Nombre de cycles:          | 400-800                                     | 1500-2000      | 500-1000                  |
| Rapport<br>énergie/volume: | +                                           | ++             | ++++                      |
| Rapport énergie/poids:     | +                                           | ++             | ++++                      |
| Durée de vie (ans):        | 4-5                                         | 2-3            | 2-3                       |
| Inconvénients:             | -acide sulfurique<br>dangereux<br>-polluant | -effet mémoire | -surchauffe<br>- sécurité |

Les batteries lithium ion ont plusieurs avantages par rapport aux autres types de batteries.

Définition et utilisation

Choix du lithium

Modélisation et simulation

Sécurité





Définition et utilisation

Choix du lithium

Modélisation et simulation

Sécurité





 $1s^2 2s^1$ 

Potentiel standard (Li/Li+) vaut -3,045 V vs ESH

Elément le plus léger des métaux alcalin

Potentiel électrochimique fort

Faiblement électronégatif

Définition et utilisation

Choix du lithium

Modélisation et simulation

Sécurité

#### **Electrode Negative**



Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>

Modélisation chimique



#### Electrolyte

Lithium hexafluorophosphate, LiPF<sub>6</sub> D B. C

Lithium bis(oxalato) borate, LiBOB

#### **Electrode Positive**







Li<sub>2</sub>FeSiO<sub>4</sub> 2D



Layered LiCoO<sub>2</sub> 2D

> Olivine LiFePO<sub>4</sub>

2D

R

R. Chen, T. Zhao, X. Zhang, L. Li, F. Wu, Nanoscale Horiz., 2016, 1, 423 – 444

**Graphite** 

X. Zhang, L. Ji, O. Toprakci, Y. Liang, M. Alcoutlabi, 2011, 51, 3, 239 – 264

Choix du lithium

Modélisation et simulation

Sécurité



Choix du lithium

Modélisation et simulation

Sécurité

Charge: énergie chimique vers énergie électrique.  $\Delta G>0$ 

Electrode Négative (cathode):  $xLi^+ + C_6 + xe^- \rightarrow Li_xC_6$ 

Electrode Positive (anode):  $LiMO_2 \rightarrow xLi^+ + Li_{1-x}MO_2 + xe^-$ 

Bilan Redox : $C_6 + LiMO_2 \rightarrow Li_xC_6 + Li_{1-x}MO_2$ 



Choix du lithium

Modélisation et simulation

Sécurité





Définition et utilisation

Choix du lithium

Modélisation et simulation

Sécurité



Variation de SOC (state of charge d'une batterie lors de sa sa charge SOC initiale vaux 35%



Choix du lithium

Modélisation et simulation

Sécurité



Visualisation de variation de tension du batterie au cours du temps lors de décharge par Matlab



**15** 

Définition et utilisation

Choix du lithium

Modélisation et simulation

Sécurité

- Tension max de fin de charge
- Cut off de fin de décharge
- Surintensité
- Surchauffe



la nécessité d'un système de sécurité appelé BMS (battery management system)







### Conclusion

