DÉTERMINANTS

Dans tout ce chapitre, n désigne un entier naturel non nul.

1 Groupe symétrique

1.1 Permutation

Définition 1.1 Permutation, groupe symétrique

On appelle permutation de [1, n] toute bijection de [1, n] dans lui-même.

On note \mathfrak{S}_n l'ensemble des permutations de $[\![1,n]\!]$. (\mathfrak{S}_n,\circ) est un groupe appelé groupe symétrique de degré n.

Notation 1.1

On représente généralement une permutation de $[\![1,n]\!]$ par un tableau dont la première ligne est consituée par les entiers de $[\![1]\!]$ à $[\![n]\!]$ n rangés par ordre croissant et dont la seconde ligne est constituée de leurs images respectives. Par

exemple,
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 & 1 & 4 \end{pmatrix}$$
 représente la permutation σ de \mathfrak{S}_5 telle que : $\sigma(1) = 2$, $\sigma(2) = 5$, $\sigma(3) = 3$, $\sigma(4) = 1$, $\sigma(5) = 4$.

Proposition 1.1

Montrer que le cardinal de \mathfrak{S}_n est n!.

1.2 Transpositions et cycles

Définition 1.2 Cycle

Soit $p \in [2,n]$. On appelle p-cycle ou cycle de longueur p toute permutation circulaire de p éléments de [1,n] i.e. toute permutation σ telle qu'il existe p entiers distincts $a_1,a_2\ldots,a_p$ de [1,n] vérifiant :

$$\forall i \in [1, p], \ \sigma(\alpha_i) = (\alpha_{i+1}), \ \sigma(\alpha_p) = \alpha_1$$

Un tel cycle est noté $(a_1, a_2, ..., a_p)$. L'ensemble $\{a_1, ..., a_p\}$ est appelé le *support* du cycle. Un 2-cycle est appelé une *transposition*.

Remarque. Le même cycle peut s'écrire de plusieurs manières. Par exemple, (1,2,3) = (2,3,1) = (3,1,2).

Remarque. Si c est un p-cycle, alors $c^p = \mathrm{Id}_{\llbracket 1, n \rrbracket}$. Notamment, si τ est une transposition, $\tau^2 = \mathrm{Id}_{\llbracket 1, n \rrbracket}$ i.e. $\tau^{-1} = \tau$.

Remarque. \mathfrak{S}_n est non commutatif dès que $n \ge 3$. Par exemple, $(1,2,3) \circ (1,2) \ne (1,2) \circ (1,2,3)$.

Proposition 1.2

Deux cycles à supports disjoints commutent.

Théorème 1.1

Toute permutation peut s'écrire comme une composée commutative de cycles de supports disjoints. De plus, cette écriture est unique à l'ordre des cycles près.

Exemple 1.1

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 6 & 1 & 4 & 3 \end{pmatrix} = (1,5,4)(3,6) = (3,6)(1,5,4)$$

Exercice 1.1

Écrire sous la forme usuelle (tableau) et sous forme de composée de cycles disjoints la permutation $(2,3) \circ (4,3,1) \circ (5,2,3)$.

Théorème 1.2

Toute permutation [1, n] peut s'écrire comme une composée d'au plus n transpositions.

Remarque. On dit que le groupe \mathfrak{S}_n est engendré par les transpositions.

ATTENTION! Cette décomposition n'est pas unique. Par exemple, (1,2,3) = (1,2)(2,3) = (3,1)(1,2).

Exemple 1.2

Décomposition d'un p-cycle en une composée de transpositions :

$$(\mathfrak{a}_1,\mathfrak{a}_2,\ldots,\mathfrak{a}_p)=(\mathfrak{a}_1,\mathfrak{a}_2)\circ(\mathfrak{a}_2,\mathfrak{a}_3)\circ\cdots\circ(\mathfrak{a}_{p-1},\mathfrak{a}_p)$$

Exercice 1.2

Énumérer tous les éléments de \mathfrak{S}_3 .

1.3 Signature

Théorème 1.3 Signature

Si $n \ge 2$, il existe un unique morphisme σ non trivial (i.e. non constant égal à 1) du groupe (\mathfrak{S}_n, \circ) dans le groupe $(\{-1, +1\}, \times)$.

On l'appelle la signature.

REMARQUE. Le noyau de la signature est appelé *groupe alterné de degré* n et noté \mathfrak{A}_n . Une permutation de signature +1 est dite *paire* et une permutation de signature -1 est dite *impaire*.

Exercice 1.3

Montrer que pour $n \ge 2$, le cardinal de \mathfrak{A}_n est $\frac{n!}{2}$.

Exercice 1.4

Montrer que \mathfrak{A}_n est engendré par les 3-cycles.

Proposition 1.3 Signature d'un cycle

La signature d'un p-cycle est $(-1)^{p-1}$. En particulier, la signature d'une transposition est -1.

Remarque. Il suffit donc de savoir décomposer une permutation en une composée de cycles disjoints pour calculer sa signature. ■

Exemple 1.3 Calcul de signature

Soit
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$$
. Alors $\sigma = (1,3,5) \circ (2,4)$ donc $\epsilon(\sigma) = (-1)^2 \times (-1) = -1$.

Inversions

La signature d'une permutation peut se faire au moyen du nombre d'inversions. Soit $\sigma \in \mathfrak{S}_n$. On appelle *inversion* de σ toute paire $\{i,j\}$ d'éléments de $[\![1,n]\!]$ telle que i-j et $\sigma(i)-\sigma(j)$ soient de signes opposés. Si on note $I(\sigma)$ le nombre d'inversions de σ , alors $\varepsilon(\sigma)=(-1)^{I(\sigma)}$.

2 Applications multilinéaires

Définition 2.1 Application multilinéaire

Soient E_1, E_2, \ldots, E_n et F des \mathbb{K} -espaces vectoriels. On dit que $f: E_1 \times E_2 \times \cdots \times E_n \to F$ est une application n-linéaire si elle est linéaire par rapport à chacune de ses variables.

Si $F = \mathbb{K}$, on dit que f est une forme n-linéaire.

Remarque. L'ensemble des applications \mathfrak{n} -linéaires de $E_1 \times \cdots \times E_n$ dans F est un \mathbb{K} -espace vectoriel. Plus précisément, c'est un sous-espace vectoriel de $F^{E_1 \times \cdots \times E_n}$.

Remarque. Une application bilinéaire est une application 2-linéaire.

Une application trilinéaire est une application 3-linéaire.

Remarque. Si $f: E_1 \times \cdots \times E_n \to F$ est une application n-linéaire, elle est nulle sur tout n-uplet comportant le vecteur nul.

Exemple 2.1

En géométrie :

- ▶ Dans le plan et l'espace, le produit scalaire est une forme bilinéaire.
- ▶ Dans le plan, le déterminant est une forme bilinéaire.
- ▶ Dans l'espace, le déterminant est une forme trilinéaire.
- ▶ Dans l'espace, le produit vectoriel est une application bilinéaire.

Exemple 2.2

En algèbre :

- ▶ Le produit est une application bilinéaire de \mathbb{K}^2 dans \mathbb{K} .
- ▶ La multiplication matricielle est une application bilinéaire de $\mathcal{M}_{n,p}(\mathbb{K}) \times \mathcal{M}_{p,q}(\mathbb{K})$ dans $\mathcal{M}_{n,q}(\mathbb{K})$.
- ▶ La composition d'applications linéaires est une application bilinéaire de $\mathcal{L}(E,F) \times \mathcal{L}(F,G)$ dans $\mathcal{L}(E,G)$.

Exemple 2.3

En analyse:

- $\blacktriangleright \ \ \text{Le produit de fonctions d'un ensemble X à valeurs dans } \mathbb{K} \ \text{est une application bilinéaire de } \left(\mathbb{K}^X\right)^2 \ \text{dans } \mathbb{K}^X.$
- $\label{eq:Lapplication} \begin{tabular}{ll} \blacktriangleright L'application $\left\{ \begin{array}{ccc} \mathcal{C}^0([\mathfrak{a},\mathfrak{b}],\mathbb{R})^2 & \longrightarrow & \mathbb{R} \\ (f,g) & \longmapsto & \int_{\mathfrak{a}}^{\mathfrak{b}} f(t)g(t)dt \end{array} \right.$ est une application bilinéaire. $ \end{tabular}$

A partir de maintenant, on considère que $E_1 = E_2 = \cdots = E_n$.

Définition 2.2 Application multilinéaire symétrique, anti-symétrique, alternée

Soit $f: E^n \to F$ une application n-linéaire.

(i) On dit que f est symétrique si :

$$\forall \sigma \in \mathfrak{S}_n, \ \forall (x_1, x_2, \dots, x_n), \ f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}) = f(x_1, x_2, \dots, x_n)$$

(ii) On dit que f est antisymétrique si :

$$\forall \sigma \in \mathfrak{S}_n, \ \forall (x_1, x_2, \dots, x_n), \ f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}) = \varepsilon(\sigma) f(x_1, x_2, \dots, x_n)$$

(iii) On dit que f est alternée si :

$$\forall \sigma \in \mathfrak{S}_n, \ \forall (x_1, x_2 \dots, x_n), \ \forall i \neq j, \ x_i = x_j \Rightarrow f(x_1, x_2, \dots, x_n)) = 0$$

Remarque. L'ensemble des applications n-linéaires symétriques (resp. antisymétriques, alternées) est un sous-espace vectoriel de l'espace vectoriel des applications n-linéaires de Eⁿ dans F. ■

Proposition 2.1

Une application multilinéaire alternée est antisymétrique. La réciproque est vraie si $\mathbb{K}=\mathbb{R}$ ou $\mathbb{K}=\mathbb{C}$.

REMARQUE. En ce qui nous concerne, il y aura donc équivalence parfaite ente «alternée» et «antisymétrique».

Exemple 2.4

- ▶ Le produit scalaire est une forme bilinéaire symétrique.
- ▶ Le produit vectoriel est une application bilinéaire antisymétrique ou alternée.
- ▶ Le déterminant dans le plan est une forme bilinéaire antisymétrique ou alternée.
- ▶ Le déterminant dans l'espace est une forme trilinéaire antisymétrique ou alternée.

Proposition 2.2

Soit $f: E^n \to F$ une application n-linéaire antisymétrique (ou alternée). Soit (u_1, \dots, u_n) une famille *liée* de E. Alors $f(u_1, \dots, u_n) = 0_F$.

3 Déterminant d'une famille de vecteurs

Définition 3.1 Déterminant d'une famille de vecteurs dans une base

Soient E un \mathbb{K} -espace vectoriel de dimension \mathfrak{n} et $\mathcal{B}=(e_1,\ldots,e_n)$ une base de E. On définit une application $\det_{\mathcal{B}}:$ $\mathbb{E}^n\to\mathbb{K}$ appelée *déterminant dans la base* \mathcal{B} par

$$\forall (x_1, \dots, x_n) \in E^n, \ \det_{\mathcal{B}}(x_1, \dots, x_n) = \sum_{\sigma \in \mathfrak{S}_n} \epsilon(\sigma) \prod_{i=1}^n e_{\sigma(i)}^*(x_i)$$

Remarque. Pour tout $j \in [\![1,n]\!]$, notons $(x_{1j},\ldots,x_{nj}) \in \mathbb{K}^n$ les coordonnées de x_j dans la base \mathcal{B} i.e. $x_j = \sum_{j=1}^n x_{i,j} e_i$. Alors

$$\det_{\mathcal{B}}(x_1,\ldots,x_n) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n x_{\sigma(i)i}$$

Lemme 3.1

Soient E un \mathbb{K} -espace vectoriel de dimension n, \mathcal{B} une base de E et $\phi: E^n \to \mathbb{K}$ une forme n-linéaire alternée. Alors $\phi = \phi(\mathcal{B}) \det_{\mathcal{B}}$.

Théorème 3.1

Soient E un \mathbb{K} -espace vectoriel de dimension n. Alors $\det_{\mathcal{B}}$ est l'unique forme n-linéaire alternée valant 1 en \mathcal{B} . L'ensemble des formes n-linéaires alternées sur E^n est $\mathsf{vect}(\det_{\mathcal{B}})$.

Proposition 3.1 Changement de base

Soit E un K-espace vectoriel de dimension n. Soit \mathcal{B} et \mathcal{B}' deux bases de E. Soit \mathcal{F} une famille de n vecteurs de E. Alors

$$\det_{\mathcal{B}'}(\mathcal{F}) = \det_{\mathcal{B}'}(\mathcal{B}) \det_{\mathcal{B}}(\mathcal{F})$$

Proposition 3.2 Caractérisation des bases

Soit E un \mathbb{K} -espace vectoriel de dimension n. Soit $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base de E. Soit $(\mathfrak{u}_1, \dots, \mathfrak{u}_n)$ une famille de vecteurs de E. Alors $(\mathfrak{u}_1, \dots, \mathfrak{u}_n)$ est une base de E si et seulement si $\det_{\mathcal{B}}(\mathfrak{u}_1, \dots, \mathfrak{u}_n) \neq 0$.

Remarque. Réciproquement, la famille (u_1, \ldots, u_n) est liée si et seulement si $\det_{\mathcal{B}}(u_1, \ldots, u_n) = 0$.

Proposition 3.3 Pivot de Gauss

Le déterminant d'une famille de vecteurs est :

- ▶ multiplié par −1 lorsqu'on échange deux vecteurs de la famille ;
- ▶ inchangé lorsqu'on ajoute à un vecteur une combinaison linéaire des autres vecteurs ;
- ▶ multiplié par α si on multiplie un vecteur de la famille par $\alpha \in \mathbb{K}$.

Interprétation géométrique d'un déterminant d'ordre 2 -

Si \vec{u} et \vec{v} sont deux vecteurs de \mathbb{R}^2 , alors la valeur absolue de leur déterminant dans la base canonique de \mathbb{R}^2 est l'aire du parallélogramme porté par ces vecteurs

- Interprétation géométrique d'un déterminant d'ordre 3

Si \vec{u} , \vec{v} , \vec{w} sont trois vecteurs de \mathbb{R}^3 , alors la valeur absolue de leur déterminant dans la base canonique de \mathbb{R}^3 est le volume du parallélépipède porté par ces vecteurs.

Définition 3.2 Orientation d'un ℝ-espace vectoriel

Soit E un \mathbb{R} -espace vectoriel. Soient \mathcal{B}_1 et \mathcal{B}_2 deux bases de E. On dit que \mathcal{B}_2 a la même orientation que \mathcal{B}_1 si $\det_{\mathcal{B}_1}(\mathcal{B}_2) > 0$.

La relation binaire «avoir la même orientation que» est une relation d'équivalence sur l'ensemble des bases de E pour laquelle il existe deux classes d'équivalence.

De manière arbitraire, on convient que l'une des classes d'équivalence sera formée des bases dites *directes* tandis que l'autre sera formée des bases dites *indirectes*.

Orienter un \mathbb{R} -espace vectoriel

Pour orienter concrètement un \mathbb{R} -espace vectoriel, on choisit une base de référence \mathcal{B}_0 . Toutes les base de même orientation que \mathcal{B}_0 seront dites directes tandis que les autres seront dites indirectes.

Il n'existe que deux orientations possibles d'un même espace vectoriel.

ATTENTION! L'orientation n'a de sens que pour les espaces vectoriels *réels* puisqu'il y est question de *signe* d'un déterminant.

4 Déterminant d'un endomorphisme

Définition 4.1 Déterminant d'un endomorphisme

Soit E un \mathbb{K} -espace vectoriel de dimension n. Soient \mathcal{B} une base de E et $f \in \mathcal{L}(E)$. Alors le scalaire $\det_{\mathcal{B}}(f(\mathcal{B}))$ ne dépend pas de la base \mathcal{B} choisie. On l'appelle le *déterminant* de f noté $\det(f)$.

Exemple 4.1

 $det(Id_E) = 1.$

Exercice 4.1

Calculer le déterminant d'une symétrie, d'un projecteur.

Proposition 4.1 Propriétés du déterminant d'un endomorphisme

Soit E un \mathbb{K} -espace vectoriel de dimension \mathfrak{n} . Soient \mathcal{B} une base de E et \mathcal{F} une famille de \mathfrak{n} vecteurs de E. Soit $\lambda \in \mathbb{K}$. Soient enfin $f, g \in \mathcal{L}(E)$.

- (i) $det_{\mathcal{B}}(f(\mathcal{F})) = det(f) det_{\mathcal{B}}(\mathcal{F})$;
- (ii) $det(f \circ g) = det(f) det(g)$;
- (iii) f est un automorphisme de E si et seulement si $\det(f) \neq 0$ et dans ce cas, $\det(f^{-1}) = \det(f)^{-1}$.
- (iv) $det(\lambda f) = \lambda^n det(f)$

5 Déterminant d'une matrice carrée

5.1 Définition et premières propriétés

Définition 5.1

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On appelle *déterminant* de A, noté $\det(A)$, le déterminant des vecteurs colonnes de A dans la base canonique de $\mathcal{M}_{n,1}(\mathbb{K})$ ou, de manière équivalente, le déterminant de l'endomorphisme de \mathbb{K}^n canoniquement associé à A. Il s'ensuit que si $A = (\mathfrak{a}_{i,j})_{1 \leq i,j \leq n}$

$$det(A) = \sum_{\sigma \in \mathfrak{S}_n} \epsilon(\sigma) \prod_{i=1}^n \alpha_{\sigma(i)i}$$

Notation 5.1

Soit $A = (a_{i,j})_{1 \le i,j \le n}$. Le déterminant de A peut se noter

$$\begin{vmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,j} & \dots & a_{1,p} \\ a_{2,1} & a_{2,2} & \dots & a_{2,j} & \dots & a_{2,p} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i,1} & a_{i,2} & \dots & a_{i,j} & \dots & a_{i,p} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,j} & \dots & a_{n,n} \end{vmatrix}$$

Proposition 5.1 Lien entre les différentes notions de déterminant

Soit E un espace vectoriel de dimension $\mathfrak n$ et $\mathcal B$ une base de E.

- (i) Soit \mathcal{F} une famille de n vecteurs de E . Alors $\det_{\mathcal{B}}(\mathcal{F}) = \det(\max_{\mathcal{B}}(\mathcal{F}))$.
- (ii) Soit $f \in \mathcal{L}(E)$. Alors $det(f) = det(mat_{\mathcal{B}}(f))$.

- Déterminant d'ordre 2 : règle du γ -

$$\begin{vmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{vmatrix} = a_{1,1}a_{2,2} - a_{2,1}a_{1,2}$$

- Déterminant d'ordre 3 : règle de Sarrus

$$\begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,1} & a_{2,2} & a_{2,3} \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{3,1} & a_{3,2} & a_{3,3} & a_{3,1} & a_{3,2} & a_{3,3} \\ a_{3,1} & a_{3,2} & a_{3,3} & + & \underbrace{a_{2,1}a_{3,2}a_{1,3}}_{a_{2,1}a_{1,2}a_{2,3}} & + & \underbrace{a_{3,1}a_{1,2}a_{2,3}}_{a_{1,1}a_{1,2}a_{1,3}} & + & \underbrace{a_{3,1}a_{1,2}a_{2,3}}_{a_{1,1}a_{1,2}a_{2,3}} & - & \underbrace{a_{1,1}a_{3,2}a_{2,3}}_{a_{1,1}a_{1,2}a_{1,3}} & - & \underbrace{a_{1,1}a_{3,2}a_{2,3}}_{a_{2,1}a_{2,2}a_{2,3}} & \underbrace{a_{2,1}a_{1,2}a_{2,3}}_{a_{2,1}a_{2,2}a_{2,3}} & \underbrace{a_{2,1}a_{2,2}a_{2,3}}_{a_{2,1}a_{2,2}a_{2,3}} & \underbrace{a_{2,1}a_{2,2}a_{2,3}}_{a_{3,1}a_{3,2}a_{3,3}} & \underbrace{a_{2,1}a_{2,2}a_{2,3}}_{a_{2,1}a_{2,2}a_{2,3}} & \underbrace{a_{2,1}a_{2,2}a_{2,3}}_{a_{2,1}a_{2,2$$

Exercice 5.1

Montrer que le déterminant d'une matrice à coefficients dans $\mathbb Z$ est un entier.

Proposition 5.2 Propriétés du déterminant d'une matrice carrée

Soit $\lambda \in \mathbb{K}$. Soient $A, B \in \mathcal{L}(E)$.

- (i) det(AB) = det(A) det(B);
- (ii) A est inversible *si et seulement si* $\det(A) \neq 0$ et dans ce cas, $\det(A^{-1}) = \det(A)^{-1}$;
- (iii) $det(\lambda A) = \lambda^n det(A)$;

ATTENTION! Le déterminant n'est pas linéaire! En général, $\det(\lambda A + \mu B) \neq \lambda \det(A) + \mu \det(B)$.

Proposition 5.3 Déterminant d'une transposée

Soit $A = (a_{i,j})_{1 \leqslant i,j \leqslant n} \in \mathcal{M}_n(\mathbb{K})$. Alors

$$\sum_{\sigma \in \mathfrak{S}_n} \epsilon(\sigma) \prod_{i=1}^n \alpha_{i\sigma(i)} = \sum_{\sigma \in \mathfrak{S}_n} \epsilon(\sigma) \prod_{i=1}^n \alpha_{\sigma(i)i}$$

Autrement dit, $det({}^{t}A) = det(A)$.

Exercice 5.2

Montrer qu'une matrice antisymétrique de taille impaire est non inversible.

Factorisation

Le déterminant d'une matrice est linéaire en chaque colonne (par définition) ou ligne (puisque le déterminant d'une matrice est égal au déterminant de sa transposée). Ceci permet de factoriser des déterminants.

Exemple 5.1

$$\begin{vmatrix} \lambda & 2 & 0 \\ 2\lambda & -1 & 3 \\ -\lambda & 2 & 1 \end{vmatrix} = \lambda \begin{vmatrix} 1 & 2 & 0 \\ 2 & -1 & 3 \\ -1 & 2 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 0 \\ 2\lambda & -\lambda & 3\lambda \\ -1 & 2 & 1 \end{vmatrix} = \lambda \begin{vmatrix} 1 & 2 & 0 \\ 2 & -1 & 3 \\ -1 & 2 & 1 \end{vmatrix}$$

5.2 Opérations sur les lignes et les colonnes d'une matrice

L'objectif est de se ramener au calcul du déterminant d'une matrice triangulaire dont on verra qu'il est simple à calculer.

Proposition 5.4

Notons $(C_i)_{1 \le i \le n}$ la famille des vecteurs colonnes d'une matrice A. Soient $i, j \in [1, n]$ avec $i \ne j$. Soit $\alpha \in \mathbb{K}$.

- (i) L'opération $C_i \leftrightarrow C_j$ multiplie le déterminant par -1.
- (ii) L'opération $C_i \leftarrow C_i + \alpha C_j$ laisse le déterminant invariant.
- (iii) L'opération $C_i \leftarrow \alpha C_i$ multiplie le déterminant par α .

De même, si on note $(L_i)_{1 \le i \le n}$ la famille des vecteurs lignes d'une matrice A :

- (i) L'opération $L_i \leftrightarrow L_j$ multiplie le déterminant par -1.
- (ii) L'opération $L_i \leftarrow L_i + \alpha L_j$ laisse le déterminant invariant.
- (iii) L'opération $L_i \leftarrow \alpha L_i$ multiplie le déterminant par α .

5.3 Développement par rapport à une ligne ou une colonne

Définition 5.2 Mineur, cofacteur

Soient $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{K})$ et $i,j \in [1,n]$.

- ▶ On appelle *mineur* de $a_{i,j}$ le déterminant $\Delta_{i,j}$ de la matrice obtenue en supprimant la $i^{\text{ème}}$ ligne et la $j^{\text{ème}}$ colonne de A.
- $\blacktriangleright\,$ On appelle cofacteur de $\alpha_{i,j}$ le scalaire $(-1)^{i+j}\Delta_{i,j}.$

Proposition 5.5

Soit $A = (a_{i,j})_{1 \leqslant i,j \leqslant n} \in \mathcal{M}_n(\mathbb{K}).$

lackbox Développement par rapport à une ligne : soit $i \in [\![1,n]\!]$;

$$det(A) = \sum_{j=1}^n (-1)^{i+j} \alpha_{i,j} \Delta_{i,j}$$

▶ Développement par rapport à une colonne : soit $j \in [1, n]$;

$$det(A) = \sum_{i=1}^n (-1)^{i+j} \alpha_{i,j} \Delta_{i,j}$$

Exemple 5.2

En développant par rapport à la première colonne :

$$\begin{vmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{vmatrix} = +1 \begin{vmatrix} 5 & 8 \\ 6 & 9 \end{vmatrix} - 2 \begin{vmatrix} 4 & 7 \\ 6 & 9 \end{vmatrix} + 3 \begin{vmatrix} 4 & 7 \\ 5 & 8 \end{vmatrix} = 0$$

En développant par rapport à la deuxième ligne :

$$\begin{vmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{vmatrix} = -2 \begin{vmatrix} 4 & 7 \\ 6 & 9 \end{vmatrix} + 5 \begin{vmatrix} 1 & 7 \\ 3 & 9 \end{vmatrix} - 8 \begin{vmatrix} 1 & 4 \\ 3 & 6 \end{vmatrix} = 0$$

Remarque. Cette technique de calcul de déterminant révèle tout son intérêt lorsque l'on développe par rapport à une ligne ou une colonne qui comporte beaucoup de zéros. ■

Exercice 5.3

Calcul de | a b b | b a b | b b a |

Corollaire 5.1 Déterminant d'une matrice triangulaire

Le déterminant d'une matrice triangulaire (supérieure ou inférieure) est égal au produit de ses coefficients diagonaux.

REMARQUE. On retrouve le fait qu'une matrice triangulaire est inversible *si et seulement si* ses coefficients diagonaux sont non nuls. ■

Méthode Calcul du déterminant par pivot de Gauss et développement

On a tout intérêt à développer par rapport à une ligne ou une colonne comportant beaucoup de zéros. On utilise donc le pivot de Gauss pour faire apparaître des zéros.

$$\begin{vmatrix} 1 & 2 & -2 & 3 \\ -3 & 2 & 4 & 1 \\ 2 & 2 & 1 & 0 \\ 1 & -2 & -3 & -4 \end{vmatrix} = \begin{vmatrix} 1 & 2 & -2 & 3 \\ 0 & 8 & -2 & 10 \\ 0 & -2 & 5 & -6 \\ 0 & -4 & -1 & -7 \end{vmatrix}$$

$$= \begin{vmatrix} 8 & -2 & 10 \\ -2 & 5 & -6 \\ -4 & -1 & -7 \end{vmatrix}$$
 en développant par rapport à la première colonne
$$= -2 \begin{vmatrix} -4 & -2 & 10 \\ 1 & 5 & -6 \\ 2 & -1 & -7 \end{vmatrix}$$
 en factorisant par -2 la première colonne
$$= 2 \begin{vmatrix} 1 & 5 & -6 \\ -4 & -2 & 10 \\ 2 & -1 & -7 \end{vmatrix}$$
 $L_1 \leftrightarrow L_2$

$$= 2 \begin{vmatrix} 1 & 5 & -6 \\ 0 & 18 & -14 \\ 0 & -11 & 5 \end{vmatrix}$$
 $L_2 \leftarrow L_2 + 4L_1$

$$L_3 \leftarrow L_3 - 2L_1$$

$$= 2 \begin{vmatrix} 18 & -14 \\ -11 & 5 \end{vmatrix}$$
 en développant par rapport à la première colonne
$$= 2(18 \times 5 - 14 \times 11) = -128$$

Proposition 5.6 Déterminants de Vandermonde

Soient x_0, \ldots, x_n n + 1 complexes.

$$\begin{vmatrix} 1 & 1 & \dots & 1 \\ x_0 & x_1 & \dots & x_n \\ x_0^2 & x_1^2 & \dots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_0^n & x_1^n & \dots & x_n^n \end{vmatrix} = \prod_{0 \le i < j \le n} (x_j - x_i)$$

Proposition 5.7 Déterminants par blocs

Le déterminant d'une matrice *triangulaire par blocs* (et a fortiori *diagonale par blocs*) est le produit des déterminants des blocs diagonaux.

ATTENTION! En général $\begin{vmatrix} A & B \\ C & D \end{vmatrix} \neq \det(A) \det(D) - \det(B) \det(C)$.

5.4 Comatrice

Définition 5.3 Comatrice

 $\text{Soit } A \in \mathcal{M}_n(\mathbb{K}). \text{ On appelle } \textit{comatrice} \text{ de } A \text{ la matrice des cofacteurs de } A \text{ i.e. } \textit{com}(A) = ((-1)^{i+j} \Delta_{i,j})_{1\leqslant i,j\leqslant n}.$

Proposition 5.8

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors ${}^t \operatorname{com}(A)A = A^t \operatorname{com}(A) = \det(A) \operatorname{I}_n$. En particulier, si A est inversible : $A^{-1} = \frac{1}{\det(A)} {}^t \operatorname{com}(A)$.

Remarque. Cette formule est souvent inutilisable en pratique. Néanmoins pour n=2, il convient de retenir la formule suivante.

Si
$$A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
 est inversible (i.e. si $ad - bc \neq 0$) alors $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$.

Exercice 5.4

Montrer que $A \in GL_n(\mathbb{Z}) \iff det(A) = \pm 1$.

6 Systèmes linéaires (hors programme)

Proposition 6.1 Formules de Cramer

 $\text{Soient } A \in GL_n(\mathbb{K}) \text{ et } B \in \mathbb{K}^n. \text{ Pour } j \in [\![1,n]\!], \text{ on note } A_j \text{ la matrice obtenue en remplaçant la } j^{\text{\`e}me} \text{ colonne de } A_j \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ colonne de } A_j \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ colonne de } A_j \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ colonne de } A_j \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ colonne de } A_j \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ colonne de } A_j \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ colonne de } A_j \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ colonne de } A_j \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ colonne de } A_j \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ colonne de } A_j \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ colonne de } A_j \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ colonne de } A_j \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ colonne de } A_j \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ colonne de } A_j \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ colonne de } A_j \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ colonne de } A_j \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ la matrice obtenue en remplaçant la } j^{\text{\'e}me} \text{ la matrice obtenue en remplacant la } j^{\text{$

par B. L'unique solution
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 du système $AX = B$ est donnée par :

$$\forall j \in [\![1,n]\!], \ x_j = \frac{\det A_j}{\det A}$$

ATTENTION! Ce résultat a un intérêt purement théorique. Il est *hors de question* d'utiliser cette méthode pour résoudre en pratique un système linéaire dès que $n \ge 4$. En effet, cela nécessiterait le calcul de n + 1 déterminants de taille n, ce qui est bien plus long que notre bon vieux pivot de Gauss!

Néanmoins, pour n = 2, on peut retenir les formules suivantes.

Résolution d'un système de deux équations à deux inconnues -

Le système $\begin{cases} ax + by = e \\ cx + dy = f \end{cases}$ admet une unique solution *si et seulement si* ad $-bc \neq 0$ et dans ce cas :

$$x = \frac{\begin{vmatrix} e & b \\ f & d \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} = \frac{ed - fb}{ad - bc}$$

$$y = \frac{\begin{vmatrix} a & e \\ c & f \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} = \frac{af - ce}{ad - bc}$$