

Policy Learning Using Weak Supervision

Jingkang Wang*^{1,2}, Hongyi Guo*³, Zhaowei Zhu*⁴, Yang Liu⁴

¹University of Toronto, ²Vector Institute, ³Northwestern University, ⁴University of California, Santa Cruz wangjk@cs.toronto.edu, hongyiguo2025@u.northwestern.edu, {zwzhu,yangliu}@ucsc.edu,

Code available at: https://github.com/wangjksjtu/PeerPL

Motivation

• Weak supervision signals are everywhere in sequential learning problems (e.g., noisy reward or low-quality demonstrations)!

- Weak
 RL: The reward may be collected through sensors thus noisy
 Supervision:
 IL: The demonstrations by an expert are often imperfect due to limited resources
- Most existing reinforcement learning (RL) and behavioral cloning (BC) algorithms rely on high-quality supervision signals, resulting in unstable or sub-optimal results when meeting weak supervisions.

Policy Learning from Weak Supervision

- We use \tilde{Y} to denote a weak supervision. It could be noisy reward \tilde{r} for RL or noisy action \tilde{a} from an imperfect expert policy $\tilde{\pi}_E$ for BC.
- Assumptions:
- 1. We consider a discrete noise model where the noise corruption can be characterized via a unknown confusion matrix: $\mathbf{C}^{\mathrm{RL}}_{|\mathcal{R}| \times |\mathcal{R}|}$ or $\mathbf{C}^{\mathrm{BC}}_{|\mathcal{A}| \times |\mathcal{A}|}$.
- 2. Only deterministic reward or expert policy is considered as it is hard to distinguish a clean case with noisy one without addition knowledge.
- **Objective**: Learning the optimal policy π^* with only a weak supervision sequence denoted as $\{(s_t, a_t), \tilde{Y}_t\}_{t=1}^T$ (RL) or $\{(s_i, a_i), \tilde{Y}_i\}_{i=1}^N$ (BC).

PeerPL with Correlated Agreement

- A unified evaluation function: Eva_{π} to evaluate a taken policy π at agent state (s_i, a_i) using the weak supervision \tilde{Y}_i .
- (RL) instance-wise measure (negative loss): a function of the noisy reward \tilde{r} received at (s_i, a_i) : Eva $_{\pi}^{\mathrm{RL}}((s, a), \tilde{r}) = -\ell(\pi, (s, a, \tilde{r}))$
- (BC) loss to evaluate the predicted action given the expert action \tilde{a}_i : Eva $_{\pi}^{\mathrm{BC}}((s,a),\tilde{a}) = \log \pi(\tilde{a}|s)$
- Goal: maximize $J(\pi) = \mathbb{E}_{(s,a)\sim \tau}[\mathsf{Eva}_{\pi}((s,a),\tilde{Y})]$, where τ is the trajectories collected by learned policy π or the demonstration dataset.
- **Solution:** Correlated Agreement with Weak supervision. For each weakly supervised state-action pair $((s_i, a_i), \widetilde{Y}_i)$, we randomly sample a state-action pair $(s_j, a_j), j \neq i$, as well as another supervision signal $\widetilde{Y}_k, k \neq i, j$ from a different state-action pair. Then we evaluate $((s_i, a_i), \widetilde{Y}_i)$ according to the following:

CA with Weak Supervision : $\mathsf{Eva}_\pi((s_i,a_i), \tilde{Y}_i) - \mathsf{Eva}_\pi((s_j,a_j), \tilde{Y}_k)$

• Intuition: (a) the first term above encourages an "agreement" with the weak supervision (b) the second term punishes a "blind" agreement that happens when the agent's policy always matches with the weak supervision even on randomly paired traces.

Why Peer Reward Works?

• **Hypothesis 1:** PeerRL reduces the bias (while with larger variance like Wang et al., 2020).

- **Hypothesis 2:** PeerRL helps break ties
- 1. "tie" states indicate that the rewards for different states are the same unstable and uncertain
- 2. randomness in discretization model thus breaking ties more informative for optimization

Experimental Results

Environment		Pong	Boxing	Enduro	Freeway	Lift (↑)
Expert		15.1 ± 6.6	67.5 ± 8.5	150.1 ± 23.0	21.9 ± 1.7	-
Standard BC		14.7 ± 3.2	56.2 ± 7.7	138.9 ± 14.1	22.0 ± 1.3	-6.6%
PeerBC	$\xi = 0.2$	$oxed{18.8\pm0.6}$	67.2 ± 8.4	177.9 ± 29.3	22.5 ± 0.6	-+11.3%
	$\xi = 0.5$	16.6 ± 4.0	$\textbf{75.6} \pm \textbf{5.4}$	230.9 ± 73.0	22.4 ± 1.3	+19.5%
	$\xi = 1.0$	16.7 ± 4.3	69.7 ± 4.7	230.4 ± 61.6	8.9 ± 4.9	+2.0%
Fully converged PPO		20.9 ± 0.3	89.3 ± 5.4	389.6 ± 216.9	33.3 ± 0.8	_

Conclusion

- We formulated "weakly supervised policy learning" to unify a series of RL/BC problems with low-quality supervision signals.
- A theoretical principled framework PeerPL that builds on evaluating a learning policy's correlated agreements with the weak supervisions.

Past
Works:

1. Reinforcement Learning with Perturbed Reward. Wang et al., AAAI 2020.

2. Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates. Liu et al., ICML 2020.