Theoretical Backgrounds of Audio & Graphics

Pitch / Wavetable synth / Subtractive Synthesis

Till Bovermann | Dr.-Ing. *Audio & Interactive Media Technologies*

Filmuniversität Babelsberg KONRAD WOLF

Winter term 2019/2020

Terminology

- Frequency Physical measure of vibrations per second
- Pitch A corresponding perceptual experience of frequency as well as a musical sound
- Tone A discrete musical sound of a musical system
- Interval The ratio of two frequencies
- Scale An ordered subset of theoretically infinite num of pitches
- Note Something that is notated in a score of music

Relationships & Terminology

General

Frequency f is perceived as pitch

The higher the frequency,
 the higher the perceived
 pitch & vice versa

Human hearing ranges
 between ~20Hz to ~20kHz

Image credit: http://acousticslab.org/psychoacoustics/PMFiles/PMImages/PitchVsFrequency.jpg

Image credit: https://www.olympus-ims.com/en/ndt-tutorials/thickness-gage/introduction/operation/

Frequency & Pitch

Frequency & Pitch

- Pitch is perceived logarithmically—this means, it takes more of a change in frequency to produce the same perceived change in pitch or, phrased differently, to go from pitch to pitch you cannot simply add a constant number to frequency; rather, you have to multiply the frequency by a constant number instead
- For example, when a sound at a certain frequency f (i.e., 440Hz) is being played back at 2*f, 4*f, 8*f (i.e., 2*440Hz, 2*2*440Hz, etc.) it is being perceived as the same pitch that increases linearly—the frequency, however, increase exponentially

Frequency & Pitch

- Human sense of pitch is proportional to frequency and influenced by
 - frequency range
 - presence of higher and lower frequencies
- Listeners associate a range of frequencies with one pitch

Image credit: http://acousticslab.org/psychoacoustics/PMFiles/PMImages/PitchVsFrequency.jpg

Musical Tones

- Every note name/pitch represents a tone at a different frequency & the periodic pattern is defined by frequency ratios or intervals
- An interval is the difference from one tone to another and is defined by the ratio of 2 frequencies, i.e., 880Hz / 440Hz = 2/1

Musical Tones

- The fundamental interval that forms the basis for generally any musical system is the octave
- The octave relates two frequencies that have a ratio of 2/1 or 1/2, i.e., 880Hz/440Hz or 220Hz/440Hz, etc.

Intervals

 Mathematically, an octave can be represented as

$$f_x = f_R \cdot 2^x, \quad x \in I$$

f_r — reference frequency

f_x — the frequency of any **octave** x of f_r

Image credit: http://acousticslab.org/psychoacoustics/PMFiles/PMImages/PitchVsFrequency.jpg

Intervals

 Mathematically, an octave can be represented as

$$f_x = f_R \cdot 2^x, \quad x \in I$$

For example, for $f_r = 440$ Hz, x = -1, 0, 1 the following f_x and intervals are calculated:

Image credit: http://acousticslab.org/psychoacoustics/PMFiles/PMImages/PitchVsFrequency.jpg

Intervals

Mathematically, any interval can be represented as x becomes element of R

$$f_x = f_R \cdot 2^x, \quad x \in R$$

f_r — reference frequency

f_x — the frequency of any

arbitrary interval 0<=x<1 of f_r

Image credit: http://acousticslab.org/psychoacoustics/PMFiles/PMImages/PitchVsFrequency.jpg

Intervals

 Fundamental intervals in nearly all musical cultures

Unison: 1/1

Octave up: 2/1

Octave down: 1/2

Image credit: http://acousticslab.org/psychoacoustics/PMFiles/PMImages/PitchVsFrequency.jpg

Intervals

- Unison's musical quality is identity
- Octave's musical quality is equivalence
- Whereas any other interval's quality is referred to as individuality

Image credit: http://acousticslab.org/psychoacoustics/PMFiles/PMImages/PitchVsFrequency.jpg

Intervals

- Octaves occur naturally and form the basis for most musical systems
- All other tone intervals that occur within the range of an octave form the basis for what is known as scales

Image credit: http://acousticslab.org/psychoacoustics/PMFiles/PMImages/PitchVsFrequency.jpg

Intervals — Example

Note name (for example)	Interval	Frequency ratio
A4	Unison	A4/A4
B4	Second (minor, major)	B4/A4
C4	Third (minor, major)	C4/A4
D4	Fourth	D4/A4
E4	Fifth	E4/A4
F4	Sixth (minor, major)	F4/A4
G4	Seventh (minor, major)	G4/A4
A4	Octave	A5/A4

Scales

- A scale is an ordered set
 of pitches together with a
 pattern that specifies the
 individual frequencies
- The first note of a scale determines its tonal center

 All other notes of that scale relate to the tonal center

Image credit: http://acousticslab.org/psychoacoustics/PMFiles/PMImages/PitchVsFrequency.jpg

Scales

- Prototypical scale in Western music is the diatonic scale (also referred to as Major scale)
 - 7 pitches per octave
 - C, D, E, F, G, A, B
- Intervals between adjacent tones are defined by
 - whole tone/whole step (w)
 - semitone/half step (h)
 corresponding to major and minor second

Image credit: http://acousticslab.org/psychoacoustics/PMFiles/PMImages/PitchVsFrequency.jpg

Scales

Scales

- The chromatic scale
 breaks up whole tones into
 half tones & adds semitones
 between all whole tones of
 the diatonic scale
- It divides an octave into12 semitones
 - # raises degree by semitone
 - b lowers a degree by a semitone

https://www.quora.com/Why-does-the-chromatic-scale-have-both-sharps-and-flats

Scales

- Chromatic scale allows to play many other (mostly Western music) scales like, i.e.,
 - harmonic minor
 - melodic minor
 - whole tone scale
 - pentatonic
 - ...

https://www.quora.com/Why-does-the-chromatic-scale-have-both-sharps-and-flats

Tuning

- A4 is used in Western music as reference pitch to tune all instruments
- All other musical tones are related to the reference pitch
- Reference pitch became standardized at 440Hz in the early 20th century

Image credit: http://acousticslab.org/psychoacoustics/PMFiles/PMImages/PitchVsFrequency.jpg

Tuning

- Western music is based on equal tempered tuning (artificial tuning, not natural)
- An octave is divided into
 12 semitones of
 relatively equal size

Image credit: http://acousticslab.org/psychoacoustics/PMFiles/PMImages/PitchVsFrequency.jpg

Tuning

 How can we adapt the equation to compute frequencies corresponding to equally tempered tuning?

$$f_x = f_R \cdot 2^x, \quad x \in R$$

f_r — reference frequency

f_x — the frequency of any
arbitrary interval 0<=x<1 of f_r</pre>

Image credit: http://acousticslab.org/psychoacoustics/PMFiles/PMImages/PitchVsFrequency.jpg

Tuning

The exponent x needs to be divided by 12

$$f_k = f_R \cdot 2^{k/12}, \quad k=0,1,2,...,11$$

f_r — reference frequency

Image credit: http://acousticslab.org/psychoacoustics/PMFiles/PMImages/PitchVsFrequency.jpg

Tuning

The exponent x needs to be divided by 12

$$f_k = f_R \cdot 2^{k/12}, \quad k=0,1,2,...,11$$

Image credit: http://acousticslab.org/psychoacoustics/PMFiles/PMImages/PitchVsFrequency.jpg

Tuning

 For calculating the frequency in any octave we add v

$$f_k = f_R \cdot 2^{v+k/12}, v \in I, k=0,1,2,...,11$$

f_r — reference frequency

Image credit: http://acousticslab.org/psychoacoustics/PMFiles/PMImages/PitchVsFrequency.jpg

Tuning

 For calculating the frequency in any octave we add v

$$f_k = f_R \cdot 2^{v+k/12}, v \in I, k=0,1,2,...,11$$

Image credit: http://acousticslab.org/psychoacoustics/PMFiles/PMImages/PitchVsFrequency.jpg

Tuning

 To conform with Western practice of naming octaves after their order of appearance on a standard 88-key piano, adapt

$$f_k = f_R \cdot 2^{(v-4)+k/12}, v \in I, k=0,1,2,...,11$$

f_r — reference frequency

f_k — the frequency of any

arbitrary interval k within any

octave conform to 88-key practice

Tuning

 To conform with Western practice of naming octaves after their order of appearance on a standard 88-key piano, adapt

$$f_k = f_R \cdot 2^{(v-4)+k/12}, v \in I, k=0,1,2,...,11$$

- Any musical sound (natural, periodic vibration) is composited out
 of several frequencies starting with a fundamental frequency
 that makes the pitch of the sound & weaker frequencies at integer
 multiples of that fundamental frequency: f, 2f, 3f, 4f, ...
- The additional frequencies are called overtones of the fundamental and — together with the fundamental — form the partials or harmonics of the musical sound

 Musical sounds consist of a fundamental tone as well as a (theoretically) infinite number of overtones

Frequency	Order	Name 1	Name 2	Name 3
1 · f = 440 Hz	n = 1	fundamental tone	1st harmonic	1st partial
2 · f = 880 Hz	n = 2	1st overtone	2nd harmonic	2nd partial
<i>3</i> ⋅ <i>f</i> = 1320 Hz	n = 3	2nd overtone	3rd harmonic	3rd partial
<i>4 · f</i> = 1760 Hz	n = 4	3rd overtone	4th harmonic	4th partial

https://en.wikipedia.org/wiki/Overtone

 Partials are individual sinusoids that collectively make up an instrumental tone — they need not be multiple integers of the fundamental tone

Frequency	Order	Name 1	Name 2	Name 3
1 · f = 440 Hz	n = 1	fundamental tone	1st harmonic	1st partial
2 · f = 880 Hz	n = 2	1st overtone	2nd harmonic	2nd partial
<i>3</i> ⋅ <i>f</i> = 1320 Hz	n = 3	2nd overtone	3rd harmonic	3rd partial
<i>4 · f</i> = 1760 Hz	n = 4	3rd overtone	4th harmonic	4th partial

https://en.wikipedia.org/wiki/Overtone

 Harmonics or harmonic partials denote partials of harmonic instruments that consist of a fundamental frequency and positive integer multiples of the fundamental tone

Frequency	Order	Name 1	Name 2	Name 3
1 · f = 440 Hz	n = 1	fundamental tone	1st harmonic	1st partial
2 · f = 880 Hz	n = 2	1st overtone	2nd harmonic	2nd partial
<i>3</i> ⋅ <i>f</i> = 1320 Hz	n = 3	2nd overtone	3rd harmonic	3rd partial
<i>4 · f</i> = 1760 Hz	n = 4	3rd overtone	4th harmonic	4th partial

https://en.wikipedia.org/wiki/Overtone

- The harmonic series of the fundamental frequency at 110Hz (A2)
- This series is a natural phenomenon occurring as a result of a vibrating string or air column of any musical string or wind instrument

https://www.oberton.org/en/ overtone-singing/harmonic-series/

https://www.youtube.com/watch?v=XPbLYD9KFAo

 There is a direct antiproportional relationship between the length of a string (or air column) & the resulting frequency at which it vibrates—the greater the frequency, the shorter the string length

https://www.oberton.org/en/ overtone-singing/harmonic-series/

https://www.youtube.com/watch?v=XPbLYD9KFAo

 The overtones of a fundamental tone are positive integer multiples of the fundamental frequency

https://www.youtube.com/watch?v=XPbLYD9KFAo

- The fundamental frequency determines the pitch of the sound
- The overtones make it more complex, they are not perceived as separate notes but as part of the timbre of the sound

- The first eight harmonics can be perceived clearly the intensity of the rest of the harmonics diminishes
- Lower tones sound usually more complex than higher tones;
 this is due to higher overtones reinforcing lower tones

- Each harmonic equals an particular musical tone
- The depicted intervals refer to adjacent pitches
- With increasing harmonics, the tones & intervals deviate
 from the tones of the (artificially) equal tempered tuning system

- The first partials of the harmonic series and corresponding intervals (left)
- The frequency ratios of the harmonic series with corresponding musical intervals (right)

Harmonic	Frequency	Ratio	Note
Fundamental	110 Hz	NA	A ₂
1st Overtone	220 Hz	220:110 = 2:1	A ₃
2nd Overtone	330 Hz	330:220 = 3:2	E ₄
3rd Overtone	440 Hz	440:220 = 2:1	A ₄
4th Overtone	550 Hz	550:440 = 5:4	C#5
5th Overtone	660 Hz	660:440 = 3:2	E ₅

Interval	Ratio
Perfect 8av	2:1
Perfect 5th	3:2
Perfect 4th	4:3
Major 6th	5:3
Major 3rd	5:4
Minor 3rd	6:5
Minor 6th	8:5
Minor 7th	9:5
Major 2nd	9:8
Major 7th	15:8
Minor 2nd	16:15
Tritone	45:32
	

https://www.youtube.com/watch?v=0lmS5lQ5MSU

- The harmonic or overtone series is a natural phenomenon that occurs for any musical instrument and determines the relationship of the individual harmonics of a musical sound
- Overtones, partials and harmonics refer to the partial sound waves that form a complex musical tone
- The harmonic or overtone series does not correspond
 to the equal temperament tuning used in Western music however
 it has critical influence on the evolvement of scales, tuning and
 composition as well as on our perception of musical tones

References & Further Reading

- Burg, J., Romney, J. & Schwartz, E. (2014): Digital Sound and Music. Concepts, Applications, and Science.
 http://digitalsoundandmusic.com
- Levitin, Daniel J. (2006): This is Your Brain on Music. The Science of a Human Obsession. Dutton. Penguin Group, New York.
- Loy, Gareth (2006 & 2007): Musimathics. The mathematical foundations of music. Vol 1 & Vol 2. Cambridge,
 MA, USA: MIT Press.
- Sethares, William A. (2005): Tuning, Timbre, Spectrum, Scale. 2nd Edition. Springer, London.
- Walk That Bass at https://www.youtube.com/channel/UCk24OnGLcP5XITBjZ9WBWvw/about
 Last access 18/11/18
- Bain, Reginald (2003): The Harmonic Series. http://in.music.sc.edu/fs/bain/atmi02/hs/hs.pdf