Latent Variable Models & Expectation Maximisation Interacting Particle Langevin Algorithm (IPLA) Proximal Interacting Particle Langevin Algorithm (PIPLA) References

Proximal Interacting Particle Langevin Algorithms

Francesca R. Crucinio

King's College London

Joint work with Deniz Akyildiz, Paula Cordero Encinar, Mark Girolami, Tim Johnston, Sotirios Sabanis Latent Variable Models & Expectation Maximisation Interacting Particle Langevin Algorithm (IPLA) Proximal Interacting Particle Langevin Algorithm (PIPLA) References

Outline

- 1 Latent Variable Models & Expectation Maximisation
- Interacting Particle Langevin Algorithm (IPLA)
- 3 Proximal Interacting Particle Langevin Algorithm (PIPLA)

Latent Variable Models (LVM)

Consider the following data-generating process

$$x \sim p_{\theta}(\cdot)$$

 $y \sim p_{\theta}(\cdot|x)$

for some parameter $\theta \in \mathbb{R}^{d_{\theta}}$, where $x \in \mathbb{R}^{d_x}$ is a latent variable which cannot be observed.

Given a data point y we want to find θ_\star maximising the marginal log-likelihood

$$\log p_{\theta}(y) = \log \int_{\mathbb{R}^{d_X}} p_{\theta}(x, y) dx,$$

where
$$p_{\theta}(x, y) = p_{\theta}(x)p_{\theta}(y|x)$$
.

Expectation Maximisation (EM)

E-step w.r.t. *latent variables* x: compute for fixed θ

$$Q(\theta|\theta^{(n)}) = \int_{\mathbb{R}^{d_x}} \log p_{\theta}(x, y) p_{\theta^{(n)}}(x|y) dx,$$

with
$$p_{\theta^{(n)}}(x|y) = p_{\theta^{(n)}}(x,y)/p_{\theta^{(n)}}(y)$$

M-step w.r.t. parameters θ : maximise $Q(\cdot|\theta^{(n)})$

An Optimisation Point of View

Our aim is to find θ_{\star} maximising

$$k(\theta) := p_{\theta}(y) = \int p_{\theta}(x, y) dx = \int e^{-U(\theta, x)} dx,$$

with $U(\theta, x) := -\log p_{\theta}(x, y)$.

This is a well-studied problem in optimisation, one solution is to find a **measure** which concentrates around θ_{\star} and use standard tools to **sample** from this measure.

E.g. **simulated annealing**, set $k(\theta)^N$ and let $N \to \infty$.

Simulated Annealing for LVM

The extended target

$$\pi^N(\theta, x_1, x_2, ..., x_N) \propto \exp\left(-\sum_{i=1}^N U(\theta, x_i)\right)$$

admits as θ -marginal

$$\pi_{\Theta}^{N}(\theta) \propto \int_{\mathbb{R}^{d_{x}}} \dots \int_{\mathbb{R}^{d_{x}}} \exp\left(-\sum_{i=1}^{N} U(\theta, x_{i})\right) dx_{1} dx_{2} \dots dx_{N}$$
$$= \left(\int_{\mathbb{R}^{d_{x}}} e^{-U(\theta, x)} dx\right)^{N} = k(\theta)^{N},$$

which as $N \to \infty$ concentrates on θ_{\star} .

Latent Variable Models & Expectation Maximisation
Interacting Particle Langevin Algorithm (IPLA)
Proximal Interacting Particle Langevin Algorithm (PIPLA)
References

Outline

- Latent Variable Models & Expectation Maximisation
- 2 Interacting Particle Langevin Algorithm (IPLA)
- 3 Proximal Interacting Particle Langevin Algorithm (PIPLA)

Langevin Dynamics

The Langevin diffusion

$$\mathrm{d}X_t = -\nabla U(X_t)\mathrm{d}t + \sqrt{2}\mathrm{d}W_t$$

has invariant measure $\pi \propto e^{-U}$.

Langevin Dynamics

The Langevin diffusion

$$\mathrm{d}X_t = -\nabla U(X_t)\mathrm{d}t + \sqrt{2}\mathrm{d}W_t$$

has invariant measure $\pi \propto e^{-U}$.

The diffusion

$$\mathrm{d}X_t = -\nabla U(X_t)\mathrm{d}t + \sqrt{2/\beta}\mathrm{d}W_t$$

has invariant measure $\pi_{\beta} \propto e^{-\beta U}$, where β is known as the *inverse temperature parameter*.

As $\beta \to \infty$, π_{β} concentrates around its modal points.

Interacting Particle Langevin Algorithm (IPLA)

To sample from our target measure we use the following interacting particle system (IPS) of N particles

$$d\boldsymbol{\theta}_{t}^{N} = -\frac{1}{N} \sum_{j=1}^{N} \nabla_{\boldsymbol{\theta}} U(\boldsymbol{\theta}_{t}^{N}, \boldsymbol{X}_{t}^{j,N}) dt + \sqrt{\frac{2}{N}} d\boldsymbol{B}_{t}^{0,N}, \qquad (1)$$
$$d\boldsymbol{X}_{t}^{i,N} = -\nabla_{x} U(\boldsymbol{\theta}_{t}^{N}, \boldsymbol{X}_{t}^{i,N}) dt + \sqrt{2} d\boldsymbol{B}_{t}^{i,N}, i = 1, 2, ..., N.$$

Although (1) is an IPS, we consider it a diffusion evolving on $\mathbb{R}^{d_{\times}} \times (\mathbb{R}^{d_{\theta}})^N$ and use techniques from **Langevin-based** algorithms.

Algorithm

Euler–Maruyama discretisation of Langevin IPS with stepsize γ

$$\theta_{n+1}^{N} = \theta_{n}^{N} - \frac{\gamma}{N} \sum_{j=1}^{N} \nabla_{\theta} U(\theta_{n}^{N}, X_{n}^{j,N}) + \sqrt{\frac{2}{N}} \xi_{n+1}^{0,N}$$

$$X_{n+1}^{i,N} = X_{n}^{i,N} - \gamma \nabla_{x} U(\theta_{n}^{N}, X_{n}^{i,N}) + \sqrt{2} \xi_{n+1}^{i,N}$$

Assumptions

A1. (Lipschitz) Let $v = (\theta, x)$ and $v' = (\theta', x')$. We assume that there exist L > 0 such that

$$\|\nabla U(v) - \nabla U(v')\| \le L\|v - v'\|.$$

A2. (Convexity) Let $v = (\theta, x)$. Then, there exists $\mu > 0$ such that

$$\langle v - v', \nabla U(v) - \nabla U(v') \rangle \ge \mu ||v - v'||^2,$$

for all $v, v' \in \mathbb{R}^{d_{\theta}} \times \mathbb{R}^{d_{x}}$.

Main Convergence Result

$$\begin{split} \mathbb{E}[\|\theta_{n}^{N} - \theta_{\star}\|^{2}]^{1/2} \leq & \sqrt{\frac{d_{\theta}}{N\mu}} \\ & + e^{-\mu n\gamma} \bigg(\mathbb{E}[\|Z_{0}^{N} - z_{\star}\|^{2}]^{1/2} + \Big(\frac{d_{x}N + d_{\theta}}{N\mu}\Big)^{1/2} \Big) \\ & + C(1 + \sqrt{d_{\theta}/N + d_{x}}) \gamma^{1/2}, \end{split}$$

- $z_{\star} = (\bar{\theta}_{\star}, N^{-1/2}x_{\star}, \dots, N^{-1/2}x_{\star})$ and $(\bar{\theta}_{\star}, x_{\star})$ is the minimiser of U
- Z_0^N is the initial condition
- C > 0 is a constant independent of $n, N, \gamma, d_{\theta}, d_{x}$

Proof Idea

We split the error of the algorithm as

$$W_2(\delta_{\theta_{\star}}, \mathcal{L}(\theta_n^N)) \leq W_2(\delta_{\theta_{\star}}, \pi_{\Theta}^N) + W_2(\pi_{\Theta}^N, \mathcal{L}(\theta_{\gamma n})) + W_2(\mathcal{L}(\theta_{\gamma n}), \mathcal{L}(\theta_n^N))$$

- ▶ $W_2(\delta_{\theta_{\star}}, \pi_{\Theta}^{N})$ is the *concentration* of the invariant measure on θ_{\star}
- ▶ $W_2(\pi_{\Theta}^N, \mathcal{L}(\theta_{\gamma n}))$ is the *convergence* of the continuous time process to its invariant measure
- ▶ $W_2(\mathcal{L}(\theta_{\gamma n}), \mathcal{L}(\theta_n^N))$ is error due to time discretisation

Toy Example

Bayesian logistic regression LVM where for $\theta \in \mathbb{R}^{d_{\theta}}$

$$p_{\theta}(x) = \mathcal{N}(x; \theta, \sigma^{2} \mathrm{Id}_{d_{x}}),$$

$$p_{\theta}(y|x) = \prod_{j=1}^{d_{y}} s(v_{j}^{T}x)^{y_{j}} (1 - s(v_{j}^{T}x))^{1-y_{j}},$$

with $d_{\theta} = d_{x}$, $s(u) := e^{u}/(1 + e^{u})$ the logistic function and $\{v_{j}\}_{j=1}^{d_{y}} \in \mathbb{R}^{d_{x}}$ a set of covariates with corresponding binary responses $\{y_{j}\}_{j=1}^{d_{y}} \in \{0,1\}$.

IPLA vs PGD

Francesca R. Crucinio

Latent Variable Models & Expectation Maximisation Interacting Particle Langevin Algorithm (IPLA) Proximal Interacting Particle Langevin Algorithm (PIPLA) References

Outline

- 1 Latent Variable Models & Expectation Maximisation
- 2 Interacting Particle Langevin Algorithm (IPLA)
- 3 Proximal Interacting Particle Langevin Algorithm (PIPLA)

Non-differentiable Targets

Consider the case in which

$$U(\theta, x) = -\log p_{\theta}(x, y) = g_1(\theta, x) + g_2(\theta, x),$$

with $g_1 \in \mathcal{C}^1$ and g_2 not \mathcal{C}^1 but convex and lower semi-continuous.

- Lasso regularisation
- the elastic net
- total-variation norm

What's the need?

Figure: Normal vs Laplace prior. Histogram and density estimation of the weights of a BNN for a randomly chosen particle from the final (500 steps) cloud of 100 particles.

Proximity map

Proximity map

For U convex, proper and lower semi-continuous and $\lambda>0$

$$\operatorname{prox}_U^{\lambda}(x) := \arg\min_{z \in \mathbb{R}^d} \, \left\{ \mathit{U}(z) + \|z - x\|^2 / (2\lambda)
ight\}.$$

Moves points in the direction of the minimum of U acting as a "gradient".

Moreau-Yosida envelope

Moreau-Yosida envelope

For any $\lambda > 0$, define the λ -Moreau-Yosida approximation of U as

$$U^{\lambda}(x) := \min_{z \in \mathbb{R}^d} \left\{ U(z) + \|z - x\|^2 / (2\lambda) \right\}.$$

Take $\pi(x) \propto \exp(-U(x))$. We we define the λ -Moreau-Yosida approximation of π as the following density

$$\pi_{\lambda}(x) \propto \exp(-U^{\lambda}(x))$$

Moreau-Yosida envelope

Moreau-Yosida envelope

For any $\lambda > 0$, define the λ -Moreau-Yosida approximation of U as

$$U^{\lambda}(x) := \min_{z \in \mathbb{R}^d} \left\{ U(z) + \|z - x\|^2 / (2\lambda) \right\}.$$

Take $\pi(x) \propto \exp(-U(x))$. We we define the λ -Moreau-Yosida approximation of π as the following density

$$\pi_{\lambda}(x) \propto \exp(-U^{\lambda}(x))$$

- \blacktriangleright converge (pointwise, in TV, ...) to π as $\lambda \to 0$
- ▶ π_{λ} is continuously differentiable with $\nabla \log \pi_{\lambda}(x) = \lambda^{-1}(x \text{prox}_{U}^{\lambda}(x))$

Moreau-Yosida envelope

Figure: Moreau-Yoshida envelope for the Laplace distribution $\pi(x) \propto \exp(-|x|)$ (Pereyra, 2016).

Moreau-Yosida Langevin Dynamics

Since $\pi_{\lambda} \propto e^{-U^{\lambda}}$ is now continuously differentiable, we can write the Langevin diffusion

$$\mathrm{d}X_{\lambda,t} = -\nabla U^{\lambda}(X_{\lambda,t})\mathrm{d}t + \sqrt{2}\mathrm{d}B_t,$$

or, equivalently,

$$\mathrm{d}X_{\lambda,t} = \lambda^{-1}(\mathrm{prox}_U^{\lambda}(X_{\lambda,t}) - X_{\lambda,t})\mathrm{d}t + \sqrt{2}\mathrm{d}B_t.$$

The resulting algorithm is known as MY-ULA (Durmus et al., 2018; Pereyra, 2016).

Proximal Interacting Particle Langevin SDE

We consider as target measure π_N^{λ} , the Moreau-Yosida envelope of π_N and obtain

$$\begin{split} \mathrm{d}\boldsymbol{\theta}_t^N &= -\frac{1}{N} \sum_{j=1}^N \nabla_{\boldsymbol{\theta}} U^{\lambda}(\boldsymbol{\theta}_t^N, \boldsymbol{X}_t^{j,N}) \mathrm{d}t + \sqrt{\frac{2}{N}} \mathrm{d}\mathsf{B}_t^{0,N} \\ \mathrm{d}\boldsymbol{X}_t^{i,N} &= -\nabla_{\boldsymbol{x}} U^{\lambda}(\boldsymbol{\theta}_t^N, \boldsymbol{X}_t^{i,N}) \mathrm{d}t + \sqrt{2} \mathrm{d}\mathsf{B}_t^{i,N}. \end{split}$$

For regular enough U this SDE approaches the IPLA SDE as $\lambda \to 0$.

Moreau-Yosida Interacting Particle Langevin Algorithm (MYIPLA)

If
$$U=g_1+g_2$$
, we can take $U^\lambda=g_1+g_2^\lambda$ so that
$$\nabla U^\lambda(v)=\nabla g_1(v)+\lambda^{-1}(v-{\rm prox}_{g_2}^\lambda(v))$$

and obtain

$$d\boldsymbol{\theta}_{t}^{N} = \frac{1}{N} \sum_{j=1}^{N} \left(-\nabla_{\theta} g_{1}(\boldsymbol{\theta}_{t}^{N}, \boldsymbol{X}_{t}^{j,N}) + \lambda^{-1} (\operatorname{prox}_{g_{2}}^{\lambda}(\boldsymbol{\theta}_{t}^{N}, \boldsymbol{X}_{t}^{j,N})_{\theta} - \boldsymbol{\theta}_{t}^{N}) \right) dt$$

$$+ \sqrt{\frac{2}{N}} dB_{t}^{0,N}$$

$$d\boldsymbol{X}_{t}^{i,N} = \left(-\nabla_{x} g_{1}(\boldsymbol{\theta}_{t}^{N}, \boldsymbol{X}_{t}^{i,N}) + \lambda^{-1} (\operatorname{prox}_{g_{2}}^{\lambda}(\boldsymbol{\theta}_{t}^{N}, \boldsymbol{X}_{t}^{i,N})_{x} - \boldsymbol{X}_{t}^{i,N}) \right) dt$$

$$+ \sqrt{2} dB_{t}^{i,N}.$$

Algorithm

Euler–Maruyama discretisation of proximal Langevin IPS with stepsize γ

$$\begin{split} \theta_{n+1}^{N} &= \Big(1 - \frac{\gamma}{\lambda}\Big)\theta_{n}^{N} + \frac{\gamma}{N}\sum_{i=1}^{N}\Big(-\nabla_{\theta}g_{1}(\theta_{n}^{N}, X_{n}^{i,N}) + \frac{1}{\lambda}\operatorname{prox}_{g_{2}}^{\lambda}(\theta_{n}^{N}, X_{n}^{i,N})_{\theta}\Big) \\ &+ \sqrt{\frac{2\gamma}{N}}\xi_{n+1}^{0,N} \\ X_{n+1}^{i,N} &= \Big(1 - \frac{\gamma}{\lambda}\Big)X_{n}^{i,N} - \gamma\nabla_{\mathbf{x}}g_{1}(\theta_{n}^{N}, X_{n}^{i,N}) + \frac{\gamma}{\lambda}\operatorname{prox}_{g_{2}}^{\lambda}(\theta_{n}^{N}, X_{n}^{i,N})_{\mathbf{x}} + \sqrt{2\gamma}\;\xi_{n+1}^{i,N} \end{split}$$

Assumptions – g_1

A1. (Lipschitz) Let $v = (\theta, x)$ and $v' = (\theta', x')$. We assume that there exist L > 0 such that

$$\|\nabla g_1(v) - \nabla g_1(v')\| \le L\|v - v'\|.$$

A2. (Convexity) Let $v = (\theta, x)$. Then, there exists $\mu > 0$ such that

$$\langle v - v', \nabla g_1(v) - \nabla g_1(v') \rangle \ge \mu \|v - v'\|^2$$

for all $v, v' \in \mathbb{R}^{d_{\theta}} \times \mathbb{R}^{d_{x}}$.

Assumptions – g_2

- **A3.** g_2 is proper, convex, lower semi-continuous and lower bounded.
- **A4.** Let $v = (\theta, x)$ and $v' = (\theta', x')$. We assume that

$$||g_2(v) - g_2(v')|| \le ||g_2||_{Lip} ||v - v'||.$$

Main Convergence Result

$$\begin{split} \mathbb{E}[\|\theta_{n}^{N} - \theta_{\star}\|^{2}]^{1/2} \leq & \frac{\lambda}{\mu} \Big(\frac{\|g_{2}\|_{\mathsf{Lip}}^{2}}{2} A + B \Big) + \sqrt{\frac{d_{\theta}}{N\mu}} \\ & + e^{-\mu n\gamma} \Big(\mathbb{E}[\|Z_{0}^{N} - z_{\star}\|^{2}]^{1/2} + \Big(\frac{d_{x}N + d_{\theta}}{N\mu} \Big)^{1/2} \Big) \\ & + C(1 + \sqrt{d_{\theta}/N + d_{x}}) \gamma^{1/2}, \end{split}$$

- $z_{\star} = (\bar{\theta}_{\star}, N^{-1/2}x_{\star}, \dots, N^{-1/2}x_{\star})$ and $(\bar{\theta}_{\star}, x_{\star})$ is the minimiser of U^{λ}
- Z_0^N is the initial condition
- A, B, C > 0 is a constant independent of $n, N, \gamma, \lambda, d_{\theta}, d_{x}$

Proof Idea

Overall, we split the error of the algorithm as

$$W_2(\delta_{\theta_{\star}}, \mathcal{L}(\theta_n^N)) \leq \|\theta_{\star} - \theta_{\star,\lambda}\| + W_2(\delta_{\theta_{\star,\lambda}}, \mathcal{L}(\theta_n^N))$$

- ▶ $\|\theta_{\star} \theta_{\star,\lambda}\|$ distance between the minimiser of $p_{\theta}(y)$ and that of its MY envelope
- ▶ $W_2(\delta_{\theta_{\star}}, \mathcal{L}(\theta_n^N))$ combines concentration, convergence and time discretisation error

Toy Example

Bayesian logistic regression LVM where for $\theta \in \mathbb{R}^{d_{ heta}}$

$$\begin{split} p_{\theta}(x) &= \prod_{i=1}^{d_x} \mathsf{Laplace}(x_i|\theta,1), \\ p_{\theta}(y|x) &= \prod_{j=1}^{d_y} s(v_j^T x)^{y_j} (1 - s(v_j^T x))^{1-y_j}, \end{split}$$

with $d_{\theta} = d_{x}$, $s(u) := e^{u}/(1 + e^{u})$ the logistic function and $\{v_{j}\}_{j=1}^{d_{y}} \in \mathbb{R}^{d_{x}}$ a set of covariates with corresponding binary responses $\{y_{j}\}_{j=1}^{d_{y}} \in \{0,1\}$.

Toy Example: Results

Figure: MYIPLA. Approximate vs Iterative solver for prox.

Bayesian Neural Network: Laplace prior

Bayesian two-layer neural network to classify MNIST images. The latent variables are the weights, $w \in \mathbb{R}^{d_w := 40 \times 784}$, of the input layer and those, $v \in \mathbb{R}^{d_v := 2 \times 40}$, of the output layer.

$$p(I|f,x) \propto \exp\left(\sum_{j=1}^{40} v_{Ij} \tanh\left(\sum_{i=1}^{784} w_{ji} f_i\right)\right)$$
 $p_{lpha}(w) = \prod_{i} \mathsf{Laplace}(w_i|0,e^{2lpha})$
 $p_{eta}(v) = \prod_{i} \mathsf{Laplace}(v_i|0,e^{2eta})$

with
$$\theta = (\alpha, \beta)$$
.

Bayesian Neural Network: Laplace prior

Prior	% of zero weights		Thresholds		Error (%)	LPD
	Layer 1	Layer 2	Layer 1	Layer 2		
Laplace	74	48	0.2	0.2	7	-0.23
Normal	74 16	48 15	0.5 0.2	1.1 0.2	15 16	-0.74 -0.78

Bayesian Neural Network: Laplace prior

Figure: MYIPLA vs IPLA prior. Histogram and density estimation of the weights of a BNN with Laplace prior for a randomly chosen particle from the final (500 steps) cloud of 100 particles.

Conclusions I

We propose a family of algorithms to find the MLE in LVM which exploits

- ► scaling of Langevin diffusions
- ▶ optimisation perspective
- ▶ combines expectation and maximisation steps
- ▶ allows for non-differentiable prior/likelihoods
- ▶ returns approximations of both θ_{\star} and $p_{\theta_{\star}}(x|y)$

Conclusions II

There's more to do!

- lacktriangle other algorithms to sample from π^N can be constructed
- ▶ for ProxIPLA other discretisations exists (as well as a PGD equivalent)
- ▶ it should be possible to extend the analysis to the non-convex case

Both papers are on arXiv:

- IPLA https://arxiv.org/abs/2303.13429
- ProxIPLA https://arxiv.org/abs/2406.14292

Both papers are on arXiv:

- IPLA https://arxiv.org/abs/2303.13429
- ProxIPLA https://arxiv.org/abs/2406.14292

Thank you!

Latent Variable Models & Expectation Maximisation Interacting Particle Langevin Algorithm (IPLA) Proximal Interacting Particle Langevin Algorithm (PIPLA) References

Bibliography I

Alain Durmus, Éric Moulines, and Marcelo Pereyra. Efficient Bayesian Computation by Proximal Markov Chain Monte Carlo: When Langevin Meets Moreau. SIAM Journal on Imaging Sciences, 11(1):473–506, 2018.

Marcelo Pereyra. Proximal Markov chain Monte Carlo algorithms. Statistics and Computing, 26(4):745-760, 2016.