Solución Trabajo Práctico Nº 10

Ejercicio 1 Nos otorgan un préstamo por el Sistema Francés por un importe de \$ 30.000 a devolver en 6 meses, mediante cuotas mensuales vencidas, con una tasa de interés del 2% mensual. Teniendo en cuenta que la tasa del IVA es del 21%, determinar las cuotas constantes que cancelan el préstamo y realizar el cuadro de marcha de la amortización.

$$V_0=30000$$
 i= 0,02 n= 6 IVA= 0,21 i_g = 0,0242

$$30000 = \alpha \times \left(\frac{1 - (1 + 0.0242)^{-6}}{0.0242}\right)$$
 \$5.431,94

n	α	IK	IVA	CK	EK	RK
0						\$ 30.000,00
1	\$ 5.431,94	\$ 600,00	\$ 126,00	\$ 4.705,94	\$ 4.705,94	\$ 25.294,06
2	\$ 5.431,94	\$ 505,88	\$ 106,24	\$ 4.819,82	\$ 9.525,76	\$ 20.474,24
3	\$ 5.431,94	\$ 409,48	\$ 85,99	\$ 4.936,46	\$ 14.462,21	\$ 15.537,79
4	\$ 5.431,94	\$ 310,76	\$ 65,26	\$ 5.055,92	\$ 19.518,14	\$ 10.481,86
5	\$ 5.431,94	\$ 209,64	\$ 44,02	\$ 5.178,27	\$ 24.696,41	\$ 5.303,59
6	\$ 5.431,94	\$ 106,07	\$ 22,28	\$ 5.303,59	\$ 30.000,00	\$ 0,00

Ejercicio 2 Si un préstamo de \$ 30.000- puede ser cancelado en cinco cuotas mensuales, con una tasa del 3% mensual de interés y al momento de abonar la tercera cuota se realiza un pago adicional de \$ 8.000-, determinar:

- a) La cuota que cancela el préstamo original.
- b) Manteniendo la cuota original en que tiempo se cancela el préstamo y cual es el valor de la última cuota.
- c) La nueva cuota que cancela el préstamo a partir del pago adicional, manteniendo constante la cantidad de cuotas.
- d) Realizar los cuadros para ambos casos.

$$V_0 = 30000 \qquad \qquad \text{i= 0,03} \qquad \qquad \text{n= 5}$$

$$V_0 = \alpha \times \left(\frac{1-(1+i)^{-n}}{i}\right)$$

$$30000 = \alpha \times \left(\frac{1 - (1 + 0.03)^{-5}}{0.03}\right)$$

$$R_K = \alpha \times \left(\frac{1 - (1 + i)^{-(n - K)}}{i}\right)$$
\$\frac{\\$ \\$ \(\frac{1 - (1 + i)^{-(n - K)}}{i} \)}{\}

b-	K= 3	$R_3 = 6550,64 \times \left(\frac{1 - (1 + 0.03)^{-(5 - 3)}}{0.03}\right)$	\$ 12.534,45 -\$ 8.000,00
			\$ 4.534,45

n	α	IK	CK	EK	RK
0					\$ 30.000,00
1	\$ 6.550,64	\$ 900,00	\$ 5.650,64	\$ 5.650,64	\$ 24.349,36
2	\$ 6.550,64	\$ 730,48	\$ 5.820,16	\$ 11.470,79	\$ 18.529,21
3	\$ 6.550,64	\$ 555,88	\$ 5.994,76	\$ 25.465,55	\$ 12.534,45
Pago a Adic	\$ 8.000,00		\$ 8.000,00		\$ 4.534,45
4	\$ 4.670,48	\$ 136,03	\$ 4.534,45	\$ 30.000,00	\$ 0,00

C-

n= 2
$$4534,45 = \alpha \times \left(\frac{1 - (1 + 0.03)^{-2}}{0.03}\right)$$

\$ 2.369,75

n	α	IK	CK	EK	RK
0					\$ 30.000,00
1	\$ 6.550,64	\$ 900,00	\$ 5.650,64	\$ 5.650,64	\$ 24.349,36
2	\$ 6.550,64	\$ 730,48	\$ 5.820,16	\$ 11.470,79	\$ 18.529,21
3	\$ 6.550,64	\$ 555,88	\$ 5.994,76	\$ 17.465,55	\$ 12.534,45
Pago a Adic	\$ 8.000,00		\$ 8.000,00	\$ 25.465,55	\$ 4.534,45
4	\$ 2.369,75	\$ 136,03	\$ 2.233,72	\$ 27.699,27	\$ 2.300,73
5	\$ 2.369,75	\$ 69,02	\$ 2.300,73	\$ 30.000,00	\$ 0,00

Ejercicio 3 Para cancelar una deuda de \$ 22.500- optamos por hacerlo en cinco meses, con pagos asincrónicos e iguales al vencimiento del 2º, 3º y 5º mes operando a una tasa del 3% mensual vencida.

Determinar el importe de las cuotas y confeccionar el cuadro de marcha de la amortización.

$$V_0 = 22500$$
 i= 0,03

2 3

$$V_0 = \frac{c}{(1+i)^n} + \frac{c}{(1+i)^n} + \frac{c}{(1+i)^n}$$

$$22500 = \frac{c}{(1+0,03)^2} + \frac{c}{(1+0,03)^3} + \frac{c}{(1+0,03)^5}$$
 \$8.271,01

n= 5

α	IK	CK	EK	RK
				\$ 22.500,00
\$ 0,00	\$ 675,00	-\$ 675,00	-\$ 675,00	\$ 23.175,00
\$ 8.271,01	\$ 695,25	\$ 7.575,76	\$ 6.900,76	\$ 15.599,24
\$ 8.271,01	\$ 467,98	\$ 7.803,03	\$ 14.703,78	\$ 7.796,22
\$ 0,00	\$ 233,89	-\$ 233,89	\$ 14.469,90	\$ 8.030,10
\$ 8.271,01	\$ 240,90	\$ 8.030,10	\$ 22.500,00	\$ 0,00
	\$ 0,00 \$ 8.271,01 \$ 8.271,01 \$ 0,00	\$ 0,00 \$ 675,00 \$ 8.271,01 \$ 695,25 \$ 8.271,01 \$ 467,98 \$ 0,00 \$ 233,89	\$ 0,00 \$ 675,00 -\$ 675,00 \$ 8.271,01 \$ 695,25 \$ 7.575,76 \$ 8.271,01 \$ 467,98 \$ 7.803,03 \$ 0,00 \$ 233,89 -\$ 233,89	\$ 0,00 \$ 675,00 -\$ 675,00 -\$ 675,00 \$ 8.271,01 \$ 695,25 \$ 7.575,76 \$ 6.900,76 \$ 8.271,01 \$ 467,98 \$ 7.803,03 \$ 14.703,78 \$ 0,00 \$ 233,89 -\$ 233,89 \$ 14.469,90

Ejercicio 4 Para cancelar un préstamo de \$50.000 se abonan 10 cuotas bimestrales vencidas que contienen un interés bimestral del 12%. Al momento de obtener el préstamo se pactan dos pagos a cuenta de \$ 2.500 en la cuota 5 y en la 8. Determinar la cuota que cancela el préstamo y realizar el cuadro de marcha de la amortización.

$$V_0 = 50000 \qquad \qquad \text{i= 0,12} \qquad \qquad \text{n= 10}$$

$$V_0 = \alpha \times \left(\frac{1 - (1 + i)^{-n}}{i}\right) + \frac{PC_1}{(1 + i)^n} + \frac{PC_2}{(1 + i)^n} \qquad \qquad \text{PC1=} \qquad 2500 \qquad \qquad 8$$

$$50000 = \alpha \times \left(\frac{1 - (1 + 0.12)^{-10}}{0.12}\right) + \frac{2500}{(1 + 0.12)^5} + \frac{2500}{(1 + 0.12)^8}$$
 \$8.419,44

n	α	IK	CK	EK	RK
0					\$ 50.000,00
1	\$ 8.419,44	\$ 6.000,00	\$ 2.419,44	\$ 2.419,44	\$ 47.580,56
2	\$ 8.419,44	\$ 5.709,67	\$ 2.709,77	\$ 5.129,22	\$ 44.870,78
3	\$ 8.419,44	\$ 5.384,49	\$ 3.034,95	\$ 8.164,16	\$ 41.835,84
4	\$ 8.419,44	\$ 5.020,30	\$ 3.399,14	\$ 11.563,31	\$ 38.436,69
5	\$ 8.419,44	\$ 4.612,40	\$ 3.807,04	\$ 15.370,35	\$ 34.629,65
Pago a Cta	2.500,00		2.500,00	17.870,35	32.129,65
6	8.419,44	3.855,56	4.563,88	22.434,23	27.565,77
7	8.419,44	3.307,89	5.111,55	27.545,78	22.454,22
8	8.419,44	2.694,51	5.724,94	33.270,71	16.729,29
Pago a Cta	2.500,00		2.500,00	35.770,71	14.229,29
9	8.419,44	1.707,51	6.711,93	42.482,64	7.517,36
10	8.419,44	902,08	7.517,36	50.000,00	0,00

Ejercicio 5 Se abona un préstamo de \$130.000, con cuatro cuotas cuatrimestrales, con una tasa de interés cuatrimestral del 8,5%. Luego de la segunda cuota se realiza un pago a cuenta de \$10.000. Determinar:

- a) La nueva cuota que cancela el crédito,
- b) Mantener la misma cuota pactada y
- c) Realizar el cuadro de marcha de la amortización en ambos casos.

$$V_0=$$
 130000 i= 0,085 n= 4
$$V_0=\alpha\times\left(\frac{1-(1+i)^{-n}}{i}\right)$$

$$130000 = \alpha \times \left(\frac{1 - (1 + 0.085)^{-4}}{0.085}\right)$$

$$R_K = \alpha \times \left(\frac{1 - (1 + i)^{-(n - K)}}{i}\right)$$

$$K = 2$$

$$R_2 = 39687,41 \times \left(\frac{1 - (1 + 0.085)^{-(4 - 2)}}{0.085}\right)$$

$$539.687,43$$

$$570.290,97$$

$$510.000.00$$

-\$ 10.000,00 \$ 60.290,97

n= 2
$$60290,97 = \alpha \times \left(\frac{1 - (1 + 0.085)^{-2}}{0.085}\right)$$
 \$ 34.041,26

n	α	IK	CK	EK	RK
0					\$ 130.000,00
1	\$ 39.687,43	\$ 11.050,00	\$ 28.637,43	\$ 28.637,43	\$ 101.362,57
2	\$ 39.687,43	\$ 8.615,82	\$ 31.071,61	\$ 59.709,03	\$ 70.290,97
Pago a Adic	\$ 10.000,00		\$ 10.000,00	\$ 69.709,03	\$ 60.290,97
3	\$ 34.041,26	\$ 5.124,73	\$ 28.916,53	\$ 98.625,56	\$ 31.374,44
4	\$ 34.041,26	\$ 2.666,83	\$ 31.374,44	\$ 130.000,00	\$ 0,00

 $R_2 = 39687,43 \times \left(\frac{1-(1+0,085)^{-(4-2)}}{0,085}\right)$ \$ 70.290,97 -\$ 10.000,00 \$60.290,97 RK ΙK CK EΚ n \$ 130.000,00 0 \$ 39.687,43 \$ 11.050,00 \$ 28.637,43 \$ 28.637,43 \$ 101.362,57 1 2 \$ 39.687,43 \$8.615,82 \$ 31.071,61 \$ 59.709,03 \$70.290,97 Pago a Adic \$ 10.000,00 \$ 10.000,00 \$ 69.709,03 \$60.290,97 \$ 25.728,27 \$5.124,73 \$ 34.562,69 \$ 104.271,73 3 \$ 39.687,43 \$ 2.186,90 \$ 25.728,27 \$ 130.000,00 \$ 27.915,18

Ejercicio 6 La empresa CALOR SRL adquirió una camioneta por medio de un préstamo de \$ 500.000 con la condición de devolverlos en 6 cuotas anuales al 36% anual vencido. Luego de haber pagado la cuarta cuota se conviene con el prestamista y como consecuencia de un aumento en los precios en aumentar la tasa original en un 15%. Calcular el valor de la nueva cuota y realizar el cuadro de marcha de la amortización.

$$V_0 = 500000 \qquad \qquad \text{i= 0,36} \qquad \qquad \text{n= 6}$$

$$V_0 = \alpha \times \left(\frac{1-(1+i)^{-n}}{i}\right)$$

$$500000 = \alpha \times \left(\frac{1 - (1 + 0.36)^{-6}}{0.036}\right)$$
 \$213.786,83

$$R_{K} = \alpha \times \left(\frac{1 - (1 + i)^{-(n - K)}}{i}\right)$$

$$K = 4$$

$$R_{4} = 213786,83 \times \left(\frac{1 - (1 + 0,36)^{-(6 - 4)}}{0,36}\right)$$
\$\frac{\\$272.781,64}{\}

i = 0,414
n= 2

$$272781,64 = \alpha \times \left(\frac{1-(1+0,414)^{-2}}{0.414}\right)$$
 \$ 225.931,45

\$ 272.781,64

n	α	IK	CK	EK	RK
0					\$ 500.000,00
1	\$ 213.786,83	\$ 180.000,00	\$ 33.786,83	\$ 33.786,83	\$ 466.213,17
2	\$ 213.786,83	\$ 167.836,74	\$ 45.950,10	\$ 79.736,93	\$ 420.263,07
3	\$ 213.786,83	\$ 151.294,71	\$ 62.492,13	\$ 142.229,06	\$ 357.770,94
4	\$ 213.786,83	\$ 128.797,54	\$ 84.989,30	\$ 227.218,36	\$ 272.781,64
3	\$ 225.931,45	\$ 112.931,60	\$ 112.999,85	\$ 340.218,21	\$ 159.781,79
4	\$ 225.931,45	\$ 66.149,66	\$ 159.781,79	\$ 500.000,00	\$ 0,00

Ejercicio 7

45000/(1,003)¹⁵+60000/(1,003)¹⁴²= 82234,76

i': 0,102041641 tasa equivalente $(1+0,475)^1 = (1+im)^{12/3}$

 α = 82234,76 * 0,102041641 = 26057,41 1-(1+0,102041641)⁻⁴

n	α	1	С	E	R
0					82234,76
1	26057,41	8391,37	17666,04	17666,04	64568,72
2	26057,41	6588,7	19468,71	37134,75	45100,01
3	26057,41	4602,08	21455,33	58590,08	23644,68
4	26057,41	2412,74	23644,67	82234,75	0,01

<u>Ejercicio 8</u>

120000= $\frac{\alpha^*(1-(1,045)^{-3})}{0,045} + \frac{\alpha^*((1,025)^3-1)}{0,025}$

cuota = 20602,31 **120.000,00**

120000= α (2,748964354 + 3,075625)

Cuota = 20602,31

n		α	interes		total	E	R	
0			ganado	ā	acumulado			
1	\$	20.602,31	\$ -	\$	20.602,31			i = 0,025
2	\$	20.602,31	\$ 515,06	\$	41.719,68			
3	\$	20.602,31	\$ 1.042,99	\$	63.364,98			
ACREDITACION	PRE	STAMO	\$ -	\$	-	\$ -	\$ 56.635,02	
4	\$	20.602,31	\$ 2.548,58	\$	18.053,73	\$ 18.053,73	\$ 38.581,29	i = 0,045
5	\$	20.602,31	\$ 1.736,16	\$	18.866,15	\$ 18.866,15	\$ 19.715,13	
6	\$	20.602,31	\$ 887,18	\$	19.715,13	\$ 19.715,13	\$ 0,01	
								- '

50.000 =	α*	1-(1,04) ⁻⁴ 0,04	+	α*	((1,04) ⁴ -1) 0,04			i =	: 0,45/12	0,04
α=		6348,11		(5)	0000/7,876	359	224)			50.000,00
n		α	interes		total		E		R	
0			ganado	а	cumulado					
1	. \$	6.348,11	\$ -	\$	6.348,11					i = 0,04
2	\$	6.348,11	\$ 253,92	\$	12.950,14					
3	\$	6.348,11	\$ 518,01	\$	19.816,26					
4	\$	6.348,11	\$ 792,65	\$	26.957,02					
ACREDITACION	I PRE	STAMO	\$ -	\$	-	\$	-	\$	23.042,98	
4	\$	6.348,11	\$ 921,72	\$	5.426,39	\$	5.426,39	\$	17.616,59	i = 0,04
5	\$	6.348,11	\$ 704,66	\$	5.643,45	\$	5.643,45	\$	11.973,14	
6	\$	6.348,11	\$ 478,93	\$	5.869,18	\$	5.869,18	\$	6.103,96	
_	'\$	6.348,11	\$ 244,16	\$	6.103,95	\$	6.103,95	ς	0,01	