$Mathematical\ Logic_Assignment_1$

Hongli SHEN

March 2024

Contents

1	Set Operations	2
	Find the Equivalence Classes 2.1 </td <td>2 2 2</td>	2 2 2
3	Partial Order and Total Order Relation	2
4	One-to-one and Onto Functions	3
5	Proof by Induction	3

1 Set Operations

- $A = \{1, 2, 3, 4, 6, 12\}$ $B = \{2, 4, 6, 8, 10\}$ $A \cup B = \{1, 2, 3, 4, 6, 8, 10, 12\}$ $A \cap B = \{2, 4, 6\}$ $A - B = \{1, 3, 12\}$
- $A = \{F, E, A, S, T\}$ $B = \{T, A, S, T, E\}$ $A \cup B = \{F, E, A, S, T\}$ $A \cap B = \{T, A, S, E\}$ $A - B = \{F\}$

2 Find the Equivalence Classes

2.1

```
S = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\} [\emptyset]_R = \{\emptyset\} [\{1\}]_R = \{\{1\}, \{2\}, \{3\}\}\} [\{1, 2\}]_R = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\} These four sets are disjoint
```

2.2

- : |m-3| = |n-3|: the distance from m, n to 3 are the same every m, n with the same distance are in the same equivalent class. $[3]_R = \{3\}$ $[2]_R = \{2, 4\}$... $[3-i]_R = \{3-i, 3+i\}$
- ∴ m + n is an even number
 ∴ there are only two cases.
 ① m, n ∈ 2ℤ + 1.
 ② m, n ∈ 2ℤ.
 [1]_R = {i | i ∈ 2ℤ + 1}.
 [0]_R = {i | i ∈ 2ℤ}.

3 Partial Order and Total Order Relation

• the relation is not a partial order we can guarantee that in the antisymmetric case, a must equal to c. However, the question does not require anything about b and d. Therefore, (a, b) and (c, d) may not equal.

e.g (a,b)=(1,2) (c,d)=(1,3). It obviously against the antisymmetric rule.

In conclusion, it is not a partial order relation and thus it is not a total order relation.

• : for all $(a,b) \in \mathbb{N} \times \mathbb{N}$, $(a,b) \leq (a,b)$. : $\leq is \ reflective$.

 \therefore for all $(a,b), (c,d), (e,f) \in \mathbb{N} \times \mathbb{N}$, if $(a,b) \leq (c,d)$, $(c,d) \leq (e,f)$, then $(a,b) \leq (e,f)$. $\therefore \leq is\ transitive$

 $for\ all\ (a,b), (c,d) \in \mathbb{N} \times \mathbb{N},\ if\ (a,b) \leq (c,d)\ and\ (c,d) \leq (a,b),\ then\ (a,b) = (c,d).$ $for\ all\ (a,b), (c,d) \in \mathbb{N} \times \mathbb{N},\ if\ (a,b) \leq (c,d)\ and\ (c,d) \leq (a,b),\ then\ (a,b) = (c,d).$

In conclusion, it is a partial order relation. But it is not a total order relation. e.g if (a,b) = (1,2) and (c,d) = (3,4), then neither (a,b) nor (c,d) is $in \leq a$.

4 One-to-one and Onto Functions

• for every \mathbb{Z} in the domain, there exists a corresponding f(x) in \mathbb{Z} . But if f(x) > 0 and $f(x) \neq 2\mathbb{Z}$, then $x \notin \mathbb{Z}$

In conclusion: the function is one-to-one.

• $\forall (x,y) \in \mathbb{R} \times \mathbb{R}$, there exists only one $(x+y,3y) \in \mathbb{R} \times \mathbb{R}$ $\forall (x+y,3y) \in \mathbb{R} \times \mathbb{R}$, there exists only one $(x,y) \in \mathbb{R} \times \mathbb{R}$

In conclusion: the function is both one-to-one and onto, which also called bijective.

5 Proof by Induction

① when
$$n = 1$$
, $1 = \frac{n(n+1)}{2}$, satisfied.

② for any
$$n \in \mathbb{N}$$
, suppose $1 + 2 + \ldots + n = \frac{n(n+1)}{2}$

$$f(n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{n^2 + 3n + 2}{2} = \frac{(n+1)(n+2)}{2}$$
, satisfied.

Then, for any $\bar{n} \in \mathbb{N}$, satisfies the equation.