

Poręba Wielka, 29.09.2024

Autor: Daniela Spurtacz Prowadzący: Daniela Spurtacz

Teoria Liczb

Teoria

Podzielność: Mówi się, że b jest podzielne przez a jeśli dla pewnego całkowitego k jest b=ka. Zapisujemy wtedy $a \mid b$. Możemy też dzielić z resztą, pisząc b=ka+r gdzie $0 \le r < a$. Jeśli $a \mid b$ są dodatnie, to $a \le b$, z czego wnioskujemy, że jedyna liczba podzielna przez wszystkie liczby naturalne jest 0.

NWD: Teorioliczbowa definicja to d = NWD(a, b) jeśli $d \mid a$ i $d \mid b$ (czyli jest wspólnym dzielnikiem) oraz dla każdego wspólnego dzielnika e liczb a i b, $e \mid d$ (czyli każdy wspólny dzielnik dzieli NWD). NWD(a, b) jest najmniejszą dodatnią liczbą postaci ax + by dla x, y całkowitych (inaczej mówiąc jest ich najmniejszą kombinacją liniową). Można udowodnić, że jest ta definicja daje nam to samo NWD co definicja szkolna.

Algorytm Euklidesa pozwala znaleźć NWD bez rozkładania liczb na czynniki pierwsze (w szczególności nawet nie trzeba wiedzieć czym jest liczba pierwsza). Jest on wielokrotnym wykorzystaniem zależności NWD(a,b) = NWD(a-kb,b). Można też, odwracając ten algorytm, uzyskać NWD jako kombinację liniową a i b.

Liczba pierwsza to liczba różna od jedynki, której jedynimi dzielnikami są 1 oraz ona sama. Każda liczba może być przedstawiona jako iloczyn liczb pierwszych (jednoznaczność tego rozkładu udowodnić można dopiero korzystając z następnego lemaciku). Liczb pierwszych jest nieskończenie wiele co udowodnić można rozważając $p_1 \cdot p_2 \cdot \cdots \cdot p_k + 1$.

Ważne lemaciki: Jeśli $a \perp n$ (tzn a jest względnie pierwsze z n) i $n \mid ab$ to $n \mid b$. Jeśli $p \nmid a$ to $a \perp p$. Jeśli $p \mid ab$ to $p \mid a$ lub $p \mid b$. Gdzie p jest liczb pierwszą a n, a, b są liczbami całkowitymi.

Zadania

- 1. Dla jakich naturalnych n ułamek $\frac{21n+4}{14n+3}$ jest nieskracalny?
- 2. Udowodnij, że $F_n \perp F_{n+1}$ dla każdego naturalnego n, gdzie F_n to n-ta liczba Fibonacciego. To jest $F_0 = 0$, $F_1 = 1$ oraz dla n > 1 rekurencyjnie definiujemy $F_n = F_{n-1} + F_{n-2}$.
- 3. Czy istnieje 1000 kolejnych liczb naturalnych takich, że dokładnie 5 z nich jest liczbą pierwszą?
- 4. Czy liczba $4^6 + 4 \cdot 6^5 + 9^5$ jest złożona?
- 5. Wybrano n+1 liczb ze zbioru $\{1,\ 2,\ 3,\ \dots 2n\}$. Udowodnij, że pewne dwie z nich są względnie pierwsze.
- 6. Udowodnij, że istnieje nieskończenie wiele liczb pierwszych dających resztę 3 modulo 4. Czy ten sam dowód zadziała jeśli będziemy rozważali liczby pierwsze postaci 4k + 1 dla naturalnych k?
- 7. Udowodnij, że $F_n \mid F_{nk}$ dla każdych naturalnych n oraz k.
- 8. Udowodnij, że dla naturalnych m i n

$$NWD(a^m - 1, a^n - 1) = a^{NWD(m, n)} - 1$$

- 9. Udowodnij, że dla każdej liczby naturalnej n liczba $2^{2^n}-1$ ma co najmniej n różnych dzielników pierwszych
- 10. Udowodnij, że dla \boldsymbol{n} naturalnego i \boldsymbol{k} nieparzystego

$$1 + 2 + 3 + \dots + n \mid 1^k + 2^k + 3^k + \dots + n^k$$

11. Udowodnij, że różne liczby Fermata, czyli liczby postaci $G_n = 2^{2^n} + 1$, są względnie pierwsze.

Poręba Wielka, 29.09.2024

Autor: Daniela Spurtacz Prowadzący: Daniela Spurtacz

- 1. Sprawdź NWD(21n + 4, 14n + 3).
- 2. Rozpisz F_{n+1} .
- 3. Znajdź najpierw 1000 kolejnych liczb złożonych. Na przykład, niech pierwsza z nich będzie podzielna przez 2, druga przez 3, trzecia przez 4 i tak dalej.
- 4. Wzór skróconego mnożenia.
- 5. Udowodnij, że wybrano pewną parę kolejnych liczb.
- 6. Jeśli byłoby ich skończenie wiele, powiedzmy p_1, p_2, \ldots, p_n , rozważ liczbę $4p_1p_2\cdots p_n+3$.
- 7. Rozpisz $F_{kn+2} = F_{kn} + F_{kn+1}$, $F_{kn+3} = F_{kn} + 2F_{kn+1}$, $F_{kn+4} = 2F_{kn} + 3F_{kn+1}$ aż zauważysz zależność między współczynnikami.
- 8. Dla $m \ge n$ zobacz $NWD(a^m-1, a^n-1) = NWD(a^m-a^{m-n}(a^n-1)-1, a^n-1) = NWD(a^{m-n}-1, a^n-1)$.
- 9. Rozpisz różnicę kwadratów i sprawdź NWD dwóch otrzymanych czynników.
- 10. Zauważ, że $n \mid a^k + (n-a)^k$ i znajdź analog dla n+1.
- 11. Kontynuuj równość $NWD(2^{2^m}-1,2^{2^n}-1)=NWD((-1)^12^{2^m-1\cdot 2^n}-1,2^{2^n}-1)$