Estructuras de Datos y Algoritmos Grados en Ingeniería Informática

Examen Extraordinario, 25 de enero de 2017, Parte Algoritmos Nota : VARIACIÓN EN LA REDACCIÓN SOBRE ORIGINAL

Nombre:		Grupo:
Laboratorio:	Puesto:	Usuario de DOMjudge:

1. (4 puntos) Sea un vector V[0..N) ordenado de enteros con N >= 0. Se puede observar que siempre tiene forma de escalera, en el sentido de que sus elementos se repiten un número e_i de veces, dando lugar a peldaños o escalones. Definimos el ancho de un escalón como el número de repeticiones $(e_i > 0)$ del elemento que forma ese escalón. Así, el siguiente vector tendría forma de escalera, con 6 peldaños de anchos 4, 2, 4, 1, 2 y 1:

1	1	1	1	2	2	3	3	3	3	4	7	7	8	1
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

Decimos que una escalera tiene peldaños de *ancho creciente* si el número de elementos de cada escalón es mayor o igual que los del escalón anterior. El caso anterior NO es un ejemplo de escalera de *ancho creciente*; si lo es, en cambio el siguiente, con anchos 2,2,4,6.

1	1	2	2	3	3	3	3	4	4	4	4	4	4	l
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

Implementa un algoritmo iterativo que, dado un vector v de enteros de longitud $0 < n \le 1000$ que representa una escalera válida, (es decir, vector ordenado) diga si es una escalera con peldaños de ancho creciente. Además de implementar el algoritmo, deberás escribir su precondición, postcondición, invariante y función de cota de los bucles y calcular su complejidad.

Entrada	Salida
n v	
3 1 2 2	SI
3 1 2 3	SI
3 1 1 2	NO
3 1 1 1	SI
6 2 2 4 4 6 6	SI
6 2 3 3 4 4 5	NO
1 3	SI
2 3 3	SI
0	