ADAR: Assignment 2

Jorge Melo e Xavier Pinho

Maio 2019

1 Introdução

Neste projeto, foi utilizado um dispositivo aproximado a um secador de cabelo à escala laboratorial, o Feedback's Process Trainer PT326. Neste dispositivo, o ar circula por um tubo, é aquecido à entrada e a sua temperatura é medida por um sensor que pode ser colocado em três posições distintas, introduzindo delays temporais. O input deste sistema é a voltagem aplicada ao sistema de aquecimento no início do tubo e o output é a temperatura obtida pela amplificação da voltagem obtida pelo termístor [1 – Guião do prof].

Figura 1: Secador de cabelo à escala laboratorial.

O objetivo deste projeto é controlar a temperatura do ar através da variação da tensão introduzida. Para isso, foram obtidos dados do sistema em funcionamento e foi modelado um sistema de controlo para este. Por fim, a performance foi avaliada.

2 Aquisição de Dados

Utilizando o sistema anteriormente referido e um modelo *Simulink*, foram adquiridos os valores das tensões de entrada e saída, em função de um vetor

V1		V2		V3		
V (V)	T(°C)	V (V)	T(°C)	V (V)	T(°C)	
6.12	45	6.34	50	6.43	55	
4.64	40	4.82	40	4.90	40	
8.41	48	8.72	43	8.75	42	
5.26	43	5.53	45	5.49	45	
4.38	38	4.63	39	4.68	40	
7.68	49	7.86	45	8.00	42	
6.90	46	6.92	50	7.07	48	
9.13	54	8.96	48	9.09	50	
6.21	49	6.33	47	6.37	49	
4.66	39	4.89	40	4.94	42	
8.55	47	8.59	41	8.75	43	
5.27	42	5.45	42	5.63	50	
4.44	39	4.57	39	4.75	40	
7.73	47	7.82	45	7.93	45	
6.90	45	6.87	48	7.16	50	
8.99	47	9.13	50	9.08	48	

Tabela 1: Dados da voltagem na entrada e Temperatura na saída.

temporal. A entrada foi definida como uma sequência de *inputs* periódica, com período de 48 segundos, constituída por um conjunto de degraus com diferentes voltagens no intervalo entre 1.5 e 4 V. O tempo de amostragem foi estabelecido como 0.08 segundos. Este procedimento foi repetido três vezes, cada um com uma duração de 288 segundos, ou seja, 6 períodos. Na figura 1 está representado um dos resultados da simulação.

Para que fosse possível estabelecer a relação entre a tensão de saída e o valor correspondente da temperatura, foram registados os valores de temperatura apresentados no *display* analógico do aparelho, com um intervalo de 6 segundos. Estes dados estão apresentados na tabela 1.

Partindo dos dados da tabela 1, recorreu-se ao programa aplot0 [2 – link para o aplot0] que permite a obtenção da relação entre temperatura e tensão, expressa pela reta de regressão linear. As regressões obtidas para cada um dos casos estão representadas nas figuras 2 a 4.

Figura 2: Curva de calibração nº1 tensão-temperatura e respetiva regressão linear.

Figura 3: Curva de calibração nº2 tensão-temperatura e respetiva regressão linear.

Figura 4: Curva de calibração nº 1 tensão-temperatura e respetiva regressão linear.

Foram calculados os coeficientes de correlação para cada um dos casos, com o objetivo de averiguar se estes dados apresentam uma relação linear forte ou fraca e inferir quais destes dados deverão ser utilizados nos próximos passos deste projeto. Os resultados obtidos estão de acordo com as imagens e foram r1 = 0.8882, r2 = 0.3449 e r3 = 0.2429. Assim sendo, apenas o primeiro caso foi escolhido para os próximos cálculos, uma vez que os restantes não apresentam uma relação linear entre tensão de entrada e temperatura de saída.

A partir daqui, foi obtida a equação linear (equação 1) que representa a temperatura $T(^{\circ}C)$ à saída do sistema em função da tensão V(V) à entrada do sistema e com m=2,396 e b=29,20:

$$T(^{\circ}C) = 2,396 \times V(V) + 29,20$$
 (1)

E a respetiva inversa, com a tensão à entrada do sistema em função da temperatura na saída (equação 2):

$$V(V) = \frac{T(^{\circ}C) - 29,20}{2,396}$$
 (2)

Estes valores serão utilizados na Parte 2 deste projeto.

3 Parte 1

O primeiro passo nesta parte do projeto foi o pré-processamento de dados. Para isso, foi removida a componente DC a partir da função detrend, nos valores de tensão na entrada e na saída.

Para a obtenção do modelo representativo do problema em questão, usou-se um modelo ARX, com número de polos, zeros e de atraso a variar entre 1 e 20. Numa primeira fase, procedeu-se ao encapsulamento dos dados, através da função *iddata* (procedimento necessário para a utilização da função *arx-truct*).

De seguida, definiram-se todas as combinações possíveis de datasets de treino, datasets de teste e datasets de validação, com base nas 3 posições distintas do termístor na saída. Usando a função arxstruct foram obtidas as funções de perdas para todos os modelos ARX possíveis, dados os datasets escolhidos e tendo em conta todas as combinações possíveis de polos, zeros e de amostras de atraso.

Foram gerados diferentes modelos ARX com cada combinação de dataset de treino e teste e as funções de perda foram avaliadas usando a função selstruct. A melhor estrutura do modelo, isto é, a combinação mais adequada de polos (na), zeros (nb) e amostras de atraso (nk), foi determinada usando o Critério de Informação de Akaike.

Com base na melhor estrutura obtida, foi criado um modelo ARX com o dataset de treino em análise e o mesmo foi testado recorrendo ao dataset de validação e à função compare, tendo-se obtido o ajuste do modelo ARX ao dataset de validação, definido pelo fit do modelo e pelo erro mínimo quadrático.

Este procedimento foi realizado 6 vezes, fazendo combinações entre os três datasets referentes às três simulações. Na tabela 2 são apresentados os valores obtidos em cada uma das execuções, bem como os respetivos datasets de treino, validação e teste e os números de zeros, polos e amostras de atraso.

Após uma breve análise à tabela 2, observa-se que o melhor ajuste é obtido usando a combinação da linha número 1, dataset 1 para treino, dataset 3 para validação e dataset 2 para teste. O respetivo gráfico é apresentado na figura 5.

Treino	Validação	Teste	$\operatorname{Fit}(\%)$	na	nb	nk	MSE
Dataset 1	Dataset 3	Dataset 2	95.74	2	7	3	0.007
Dataset 1	Dataset 2	Dataset 3	95.73	2	7	3	0.007
Dataset 2	Dataset 3	Dataset 1	95.73	2	14	3	0.007
Dataset 2	Dataset 1	Dataset 3	95.72	2	7	3	0.007
Dataset 3	Dataset 2	Dataset 1	95.67	4	14	3	0.007
Dataset 3	Dataset 1	Dataset 2	95.63	4	4	3	0.007

Tabela 2: Resultados obtidos para cada uma das combinações com os três datasets.

Figura 5: Melhor modelo ARX e respetivo ajuste (fit) ao teste.

A função de trasnferência é dada por B(Z)/A(Z), os polinómios desta função estão representados na figura 5.

```
A(z) = 1 - 1.021 \ (+/-\ 0.01646) \ z^{-1} + 0.1495 \ (+/-\ 0.01435) \ z^{-2} B(z) = 0.04266 \ (+/-\ 0.006952) \ z^{-3} + 0.05445 \ (+/-\ 0.009793) \ z^{-4} + 0.05999 \ (+/-\ 0.009847) \ z^{-6} + 0.0131 \ (+/-\ 0.00982) \ z^{-7} + 0.02125 \ (+/-\ 0.009757) Sample time: 0.08 seconds
```

Figura 6: Polinómios da equação do modelo ARX.

Discrete-time ARX model: A(z)y(t) = B(z)u(t) + e(t)

Dada a transformada de Z de $x[n-n_0]$ ser $X[Z]^{-n_0}$, podemos obter a equação das diferenças, equação essa que está representada na equação 3.

$$y[n] = 1.021x[n-1] - 0.1495x[n-2] + 0.04266x[n-3] + 0.05445x[n-4] + 0.05999x[n-5] + 0.04977x[n-6] + 0.0131x[n-7] + 0.02125x[n-8] + 0.01109x[n-9]$$
(3)

4 Parte 2

A segunda parte deste projeto envolve a criação de uma estrutura ARX com 2 polos, 2 zeros e um atraso de 3 amostras. Os parâmteros n_a (2), n_b (3) e n_k (3) foram fixados e utilizámos a combinação de datasets de treino, teste e validação que apresentaram melhores resultados na Parte 1. O valor de fit está registado na tabela 4.

Treino	Validação	Teste	Fit(%)	na	nb	nk	MSE
Dataset 1	Dataset 3	Dataset 2	95.56	2	2	3	0.008

Tabela 3: Resultados obtidos para a melhor combinação de datasets da parte 1, utilizando 2 polos, 2 zeros e um atraso de 3 amostras.

O gráfico correspondente é apresentado na figura 7 e a respetiva equação 4.

Figura 7: Melhor modelo e respetivo ajuste (fit) ao teste.

Na construção do controlador de três blocos são utilizados blocos com as funções $\frac{1}{P(z)}$ e L(z).

Por forma a determinar as mesmas, recorre-se à equação diofantina (4):

$$P \times A + B \times L = T. \tag{4}$$

Discrete-time ARX model:
$$A(z)y(t) = B(z)u(t) + e(t)$$

 $A(z) = 1 - 1.153 (+/- 0.01518) z^{-1} + 0.2394 (+/- 0.01389) z^{-2}$
 $B(z) = 0.0441 (+/- 0.007214) z^{-3} + 0.1279 (+/- 0.008194) z^{-4}$

Figura 8: Polinómios da equação do modelo ARX.

Sample time: 0.08 seconds

$$T(z) = (z - z_1)(z - z_2)$$
(5)

$$T(z^{-1}) = 1 - 1.17z^{-1} + 0.28z^{-2}$$
(6)

Pelas equações de A e B, figura 8, podemos observar que têm, respetivamente, 2 e 4 graus de liberdade, pelo que $n_a=2$ e $n_b=4$. Dado que $n_p=n_b-1$, $n_l=n_a-1$ e $n_t\leq n_a+n_b-1$, temos que $n_p=3$, $n_l=1$ e $n_t\leq 5$, respeitando assim o número de parâmetros na equação de T $(n_t=2)$. Deste modo,

$$L(z^{-1}) = l_0 + l_1 z^{-1} (7)$$

$$P(z^{-1}) = p_0 + p_1 z^{-1} + p_2 z^{-2} + p_3 z^{-3} + p_4 z^{-4}, p_0 = 1$$
 (8)

Considerando as equações de A(Z) e B(Z) e de T(z^{-1}), os valores desconhecidos de L(z^{-1}) e P(z^{-1}) foram determinados usando a equação Diofantina, equação 4. Obtendo-se:

$$L(z^{-1}) = 0.5750 - 0.1483z^{-1} (9)$$

$$P(z^{-1}) = 1 + 0.0530z^{-1} + 0.1017z^{-2} + 0.0792z^{-3}$$
(10)

Avaliando as raízes de P(Z) verificamos que todas se encontram dentro do círculo unitário, ou seja, o nosso sistema tem estabilidade garantida. Calculou-se também o ganho para um erro final de zero para uma referência em degrau unitário, isto é, para M(1)=1

$$M = \frac{BH}{PA + BL} = \frac{BH}{T} = H(1) = \frac{T(1)M(1)}{L(1)}$$
 (11)

Onde H(1) = 1.0465 Após os cálculos foi construído um modelo simulink com o intuito de avaliar a performance do controlador e, para isso, foi feita uma simulação no computador e posteriormente o teste real no aparelho. O modelo de simulink criado neste projeto está representado na figura 9. Na figura 10 é possível observar o resultado da simulação no computador.

Figura 9: Modelo Simulink.

Figura 10: Curvas de tensão: referência a azul e resposta a amarelo.

O teste real inclui dois tipos de entrada: Uma entrada sinusoidal e outra sequencial de pulsos quadrados. Na figura 11 está representado o resultado do nosso modelo para a entrada sinusoidal e na figura 12 o resultado para a entrada sequencial de pulsos quadrados.

Figura 11: Curvas de temperatura referência (azul) e respetiva temperatura de resposta do sistema (laranja) no teste real.

Figura 12: Curvas de temperatura referência (azul) e respetiva temperatura de resposta do sistema (laranja) no teste real.

5 Conclusão

Obersvando as figuras 11 e 12, denota-se um bom ajuste por parte do sistema ao sinal de entrada, o que nos permite concluir que o modelo criado apresenta resultados razoáveis. Após uma análise dos resultados chegamos à conclusão que, possivelmente se o ganho fosse inferior, o sistema seria capaz de se aproximar ainda mais da referência e com isso demonstrar melhores resultados. Os fatores que provavelmente levaram ao afastamento da resposta do sistema em relação à entrada são: a diferença de condições atmosféricas do

dia em que recolhemos os dados e o dia em que testamos o sistema e um possível erro num dos parâmetros. Observa-se também que o sistema responde melhor para temperaturas mais elevadas comparativamente às mais baixas, diferença essa proveniente do facto de termos mais dados para temperaturas mais altas do que de baixas, desta forma o sistema consegue responder melhor a essas porque está melhor "treinado". Ainda assim, e uma vez que o objetivo deste trabalho era criar um sistema capaz de se ajustar a uma temperatura de referência, concluímos que o trabalho e as suas respetivas metas foram positivamente atingidas.