

IIC2343 - Arquitectura de Computadores

Ayudantía 2

Profesor: Yadran Francisco Eterovic Solano Ayudante: Germán Leandro Contreras Sagredo (glcontreras@uc.cl)

Temas a tratar

Los temas a tratar dentro de esta ayudantía son:

- Representación de números enteros.
- Representación de números racionales.
- Operaciones aritméticas y lógicas.
- Almacenamiento de datos.
- Arquitecturas de computadores.

El formato de esta ayudantía es de **guía**, por lo que se tratarán diversos ejercicios de los temas antes mencionados.

Representación de números enteros

- 1. (II II/2014) Describa el valor decimal del número 0x94A6, si este se interpreta como binario con signo.
- 2. (I1 II/2011) Dados A=45 y B=57, ¿cuál es el resultado, en binario, de la operación A-B?
- 3. (I1 II/2017) Sea x un número binario de 8 bits; y sea \tilde{x} una secuencia de 8 bits tal que cada bit de \tilde{x} es la negación del correspondiente bit de x; p.ej., si x=01101001, entonces $\tilde{x}=10010110$. ¿Cuál es la relación aritmética/algebraica entre -x y \tilde{x} ?
- 4. (I1 II/2017) Sea x un número binario de 8 bits; ¿cómo se lo lleva a 16 bits?, tanto para números positivos como para números negativos.
- 5. (II II/2017) ¿Cómo se detecta *overflow* después de una operación aritmética?, tanto para números positivos como para números negativos. Justifica.

- 6. Suponga que tiene un total de N bits, y desea representar tanto números positivos como números negativos. ¿Cuál es la cota superior y la cota inferior de los números que se pueden representar?
- 7. Suponga que tiene un total de N trits (dígitos trinarios), y desea representar tanto números positivos como números negativos. ¿Cuál es la cota superior y la cota inferior de los números que se pueden representar?

Representación de números racionales

- (I1 I/2013) ¿Cuál es el valor del número 11000001100000000000000000000000, representado mediante el tipo de dato float?
- 2. (II II/2012) Escriba en formato float el número 16,375 (decimal). Indique cómo se divide y qué significa cada una de las partes del string de bits.
- 3. (II II/2011) Se tienen dos números de punto flotante de precisión simple en formato IEEE754: A = 0x3E200000 y B = 0x000000000. ¿Cuál es el resultado, en formato IEEE754, de A : B?
- 4. (C1 II/2017) Multiplica los números 0,5₁₀ y -0,4375₁₀ en notación científica normalizada *en binario*, siguiendo los pasos del algoritmo de multiplicación en punto flotante estudiado en clase; muestra el resultado al ejecutar cada paso.

Operaciones aritméticas y lógicas

1. Implemente, utilizando solo las compuertas lógicas AND, OR y NOT, el conectivo binario condicional (\rightarrow) , que está definido por la siguiente tabla de verdad:

A	В	$A \rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

- 2. (Apuntes Operaciones aritméticas y lógicas) Implemente un circuito 2 bit Multiplier, que realice la multiplicación entre dos valores de 2 bits
- 3. (I1 I/2017) Construya un circuito que permita detectar la ocurrencia de *oveflow* al sumar o restar dos números enteros de 8 bits en una ALU.
- 4. (I1 II/2017) Dibuja el circuito correspondiente a una ALU de 1 bit, con tres entradas, a, b y CarryIn, y dos resultados, Result y CarryOut. La ALU debe ser capaz de ejecutar las operaciones AND, OR y suma sobre a y b o ã y b, de acuerdo con tres señales de control que determinan qué valores se usan y qué operación se ejecuta. Tu circuito puede contener compuertas AND, OR y NOT y multiplexores (selectores) de 2 y 3 bits.

- 5. (I1 I/2017) ¿Qué número entero es generado al realizar cuatro operaciones shift right seguidas de cinco operaciones rotate left a un registro de 8 bits que inicialmente almacena el número entero 79?
- 6. (I1 I/2017) Dado un número entero x de 32 bits almacenado en una memoria con palabras de 1 byte, determine el valor de x tal que el error en valor absoluto es máximo si se confunde el endianness del número al ser leído e interpretado.

Almacenamiento de datos

- 1. (I1 II/2016) Modifique un latch tipo RS agregando una señal de control C, tal que los cambios en el estado del latch solo se realicen cuando C = 1.
- 2. (I1 II/2012) Implemente mediante compuertas lógicas, elementos de control y latches, un flip-flop tipo D que funcione con flanco de bajada.
- 3. (I1 I/2012) Implemente mediante compuertas lógicas y *flip-flops* tipo D, el registro de la figura, con señales de control (C), carga (Load) y reset (Reset), que funciona con flanco de subida.

- 4. (I1 I/2012) Diseñe un De-Multiplexor con bus de datos de 1 bit y bus de control de 2 bits.
- 5. (I1 II/2012) Implemente mediante compuertas lógicas, elementos de control y *flip-flops*, una memoria RAM de 16 palabras de 1 byte.
- 6. (I1 II/2012) ¿Cuántas direcciones tiene una memoria RAM de 4.5 KB que utiliza palabras de 3 bytes? (1KB = 1024 bytes).
- 7. Suponga que se tiene una matriz almacenada en la dirección de memoria 0x0A. Esta posee un total de 4 filas y 5 columnas. Si se sabe que en una dirección de memoria se puede almacenar 1 byte, y la matriz almacena en cada celda un dato de 2 bytes, ¿cuál es la dirección del dato que se encuentra en la tercera columna de la segunda fila de la matriz? Asuma que se utiliza la convención de filas.

Arquitecturas de computadores

- 1. (I2 II/2015) Compare las arquitecturas Harvard y Von Neumann desde el punto de vista del tiempo de ejecución de las instrucciones. Fundamente y explique claramente las diferencias.
- 2. (I2 II/2014) Modifique el computador básico, para que este utilice un esquema Von Neumann, *i.e.*, memoria de datos e instrucciones unificadas en una sola.
- 3. (I2 I/2017) ¿Cuántos ciclos como mínimo puede tomar en un computador con arquitectura Von Neumann, una instrucción que lea y luego modifique el contenido de una posición de memoria?
- 4. (I2 II/2014) Dada la microarquitectura del computador básico, ¿es posible crear una ISA distinta la actual? Argumente su respuesta.
- 5. (I2 I/2015) ¿Es posible agregar al Assembly del computador básico la instrucción MOV A, (A+B), sin modificar la microarquitectura? Justifique su respuesta en cualquiera de los dos casos.
- 6. (I2 II/2016) Modifique (solo) la ISA del computador básico para soportar la instrucción CALL reg, que permite llamar a la subrutina ubicada en la dirección de memoria almacenada en el registro reg.