CLIPPEDIMAGE= JP404256758A

PAT-NO: JP404256758A

DOCUMENT-IDENTIFIER: JP 04256758 A TITLE: QUANTITATIVE DISPENSER

PUBN-DATE: September 11, 1992

INVENTOR-INFORMATION:

NAME

SAIKI, MASARU

ASSIGNEE-INFORMATION:

NAME

COUNTRY

TERUMO CORP

N/A

APPL-NO: JP03016327

APPL-DATE: February 7, 1991

INT-CL (IPC): A61M005/315; A61M005/24

ABSTRACT:

PURPOSE: To obtain the quantitative dispenser which can be continuously used and has the improved operability without requiring the need for setting an injection amt. at every dosing by integrally and freely movably providing a jaw holder and a presser and energizing the jaw holder so as to face toward a display means.

CONSTITUTION: A cartridge exchanger is detached from a cylindrical body and the piston of the cartridge is put into the state of being pressed by a plunger 9. The plunger 9 is detained to a return preventive means which is formed movably in the moving direction of the piston and immobile in an opposite direction. Then, a pair of the jaws 12 having the energizing force to be put into the detained state and non-detained state with the detaining part of the plunger 9 are held by the jaw holder 13 and are kept freely movably in a longitudinal direction. The jaws 12 are, thereupon, released by actuating a sleeve 10. The moving quantity-component of the jaw holder 13 is set by acting a set dial 17 and the jaw holder 13 is moved by a spring 22 so as to move toward the display means 16.

COPYRIGHT: (C)1992,JPO&Japio

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平4-256758

(43)公開日 平成4年(1992)9月11日

(51) Int.Cl.⁵

識別記号

庁内整理番号

FI:

技術表示箇所

A 6 1 M 5/315 5/24

7720-4C

7720-4C

審査請求 未請求 請求項の数1(全 8 頁)

(21)出願番号

特願平3-16327

(22)出願日

平成3年(1991)2月7日

(71)出願人 000109543

テルモ株式会社

東京都渋谷区幡ケ谷2丁目44番1号

(72)発明者 斉木 勝

山梨県中巨摩群昭和町築地新居1727番地の

1 テルモ株式会社内

(74)代理人 弁理士 大塚 康徳 (外1名)

(54) 【発明の名称】 定量分与器

(57)【要約】

(修正有)

【目的】連続使用でき、操作性を向上した定量分与器を 提供する。

【構成】本体の一端においてカートリツジ交換体4を着 脱自在にする着脱手段6と、ピストン5を押圧する方向 には移動可能で逆方向には移動不能にする後戻り防止具 7と、戻り防止具に対して掛止するプランジヤー9と、 付勢力を有する一対のジョー12と、ジョーを保持する とともに、本体内の長手方向に移動自在にされるジョー ホルダー13と、ジヨーを掛止状態または非掛止状態を 選択して設定するためジョーを掛止状態に移動させる部 位10aを形成し、かつ本体の外周面回りに回動自在に 設けられるスリーブ10と、ジョーホルダー13の本体 内の長手方向の移動量分を設定するための設定ダイヤル と、表示部を外周に有する表示具16と、設定ダイヤル と同軸状に設けられる押子20とを備え、ジョーホルダ ー13と押子20とを一体的に移動自在に設けジョーホ ルダーを表示具に向かうように付勢させる手段22を設 ける。

1

【特許請求の範囲】

【請求項1】 内部に液状の薬剤を収容したカートリツ ジと、該カートリツジ内部において摺動自在にされて押 圧されるピストンと、前記カートリツジ内部と外部とを 挿通させる注射針とを有してなるカートリツジ交換体を 用いるために使用される定量分与器であつて、筒状の本 体と、該本体の一端において前記カートリツジ交換体を 着脱自在にする着脱手段と、前記本体内の長手方向に移 動自在に保持され、かつ前記ピストンを押圧する方向に は移動可能にし、逆方向には移動不能にする後戻り防止 10 具と、該後戻り防止具に対して掛止する掛止部を有する ブランジヤーと、前記掛止部に対して掛止しない非掛止 状態になる付勢力を有する一対のジョーと、該ジョーを 保持するとともに、前記本体内の長手方向に移動自在に されるジヨーホルダーと、前記ジヨーを前記掛止状態ま たは前記非掛止状態を選択して設定するために前記付勢 力に抗して前記ジヨーを前記掛止状態に移動させる部位 を形成し、かつ前記本体の外周面回りに回動自在に設け られるスリーブと、前記ジョーホルダーの前記本体内の 長手方向の移動量分を設定するために前記本体の他端に おいて回動自在に設けられる設定ダイヤルと、該設定ダ イヤルに連動して前記移動量分を移動するとともに、表 示部を外周に有する表示具と、前記ピストンの押圧をす るために前記本体の他端において前記設定ダイヤルと同 軸状に設けられる押子とを備え、前記ジヨーホルダーと 前記押子とを一体的に移動自在に設けるとともに、前記 ジヨーホルダーを前記表示具に向かうように付勢させる 付勢手段を、前記本体に設けることを特徴とする定量分. 与器。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、交換自在なカートリツジ内に充填された薬剤を任意量分設定して、連続使用できる定量分与器に関する。

[0002]

【従来の技術】従来より、液状の薬剤の定量分を分与するために、一般には注射器が用いられる。この種の注射器は例えば、糖尿病の治療のための液状薬剤であるインスリンの注入用として使われるインスリン注入器として用いられるものであり、注入針付のプラスチック製イン 40 スリン注入器が広く使用されている。

【0003】しかし、この針付のプラスチツク製インスリン注入器は、在宅療法用として患者が家庭において使用するので、使用後の廃棄物は針が付いた状態であり、第3者などにより再び使用される危険があり、社会問題化しつつある。さらに、インスリンの投与を1日に数回行うような場合には、注射器及び薬剤のアンプル瓶を常に持ち運ばなければならず、携帯にも不便であつた。さらにまた、携帯者自身が糖尿病であることを他人に知られてしまう不安感もあつた。

【0004】また、薬剤をアンプル瓶より注入器に補給する際に、針をアンプル瓶のゴム部へ一度刺す必要があるが、使用度数の増加にともなう針尖端部の破損・刺通抵抗の増加があり、患者にとつては、肉体的及び精神的にかなりの負担になるものであつた。そこで、カートリッジ内に充填された液状の薬剤を任意量分設定して、定量分を分与できる携帯に便利なペン型タイプの定量分与器が提案されている。

2

【0005】図に基づいて、従来の定量分与器の一例を述べると、図5は従来の定量分与器の中心断面図であり、特開昭63-318952号の「流体を計量して投与するための携帯用装置」に係る提案である。本図において、液状薬剤Mを内蔵したカートリツジ4には注射針2が設けられており、カートリツジ4の内周面内を摺動自在かつ気密状態にしたピストン5をプランジヤー90によつて、押子200を図中の矢印A方向に押圧することで、カートリツジ4内の液状薬剤Mが注射針2を介して分与する注射器の基本構成に加えて、カートリツジ4内に充填された薬剤Mの任意量分を使用の度毎に設定して、連続使用できるものである。

【0006】このために、プランジヤー90の上下面には図示のような掛止爪が長手方向に形成されており、この掛止爪に対して掛止体21が掛止しており、プランジヤー90がピストン5を押圧する方向のみ移動可能にし、逆方向には不動にして薬剤Mの消費に伴うピストン5の移動移動位置にブランジヤー90が留まるようにしている。

【0007】一方、このプランジヤー90にはスリープ100の回動作用により図中の矢印B方向に移動して、30 プランジヤー90の掛止爪に対して掛止する状態と掛止しない状態にされるジヨー120a,120bが設けられている。ジヨー120a,120bがシヨルダー60の後面に着座され前回使用の状態からゼロ位置にセツトされており、後端のスリープ170が時計方向に回転されて、外周面状に目盛りを設けた注入量表示のためのスリープ160が前進位置へと移動されると、掛止部材のラツチ部材111がジヨー120a,120bに係合される。

【0008】この状態では、目盛り窓150からはゼロ表示がされるので、スリーブ170を所望の投与分が目盛り窓150から現われるまで、逆時計方向に回動する。この結果、スリーブ160と一体移動されたジョー120a, 120bが投与分に必要となるプランジヤー90の移動に相当する距離分のジョー120a, 120bが移動されたので、スリーブ100を回動させてプランジヤー90に対してジョー120a, 120bを掛止状態にする。そして、押子200を矢印A方向に押圧して、ヒストン5を移動させることで投与を行なう。

50 【0009】 つまり、具体的には前回の使用後に、スリ

3

ーブ100を操作してジョー120a, 120bのプランジヤー90の爪部に対する掛止状態を解除し、次に後端のスリーブ170を操作して、ジョー120a, 120bを後退させて注入量の設定を行ない、再度スリーブ100を操作してジョー120a, 120bのプランジヤー90に対する掛止状態にして、最後に押子200を押圧する操作であり、使用の度に注入量のセットを行なう必要があつた。

【0010】この投与後に、以上の操作を繰り返し行ない、薬剤Mが空になつた時点でカートリツジ4を交換す 10 る。

[0011]

10

【発明が解決しようとしている課題】しかしながら、上述の提案によれば、投与の度に注入量の設定する作業があり、操作が煩雑となる問題点を有していた。したがつて、本発明は上述の問題点に鑑みてなされたものであり、その目的とするところは、連続使用ができ、かつ注入量の設定を投与の度にする必要のない操作性を向上した定量分与器を提供することにある。

[0012]

【課題を解決するための手段】上述の課題を解決し、目 的を達成するために、本発明の定量分与器は、以下の構 成を備える、即ち、内部に液状の薬剤を収容したカート リツジと、該カートリツジ内部において摺動自在にされ て押圧されるピストンと、前記カートリツジ内部と外部 とを挿通させる注射針とを有してなるカートリツジ交換 体を用いるために使用される定量分与器であつて、筒状 の本体と、該本体の一端において前記カートリツジ交換 体を着脱自在にする着脱手段と、前記本体内の長手方向 に移動自在に保持され、かつ前記ピストンを押圧する方 30 向には移動可能にし、逆方向には移動不能にする後戻り 防止具と、該後戻り防止具に対して掛止する掛止部を有 するプランジヤーと、前記掛止部に対して掛止しない非 掛止状態になる付勢力を有する一対のジョーと、該ジョ ーを保持するとともに、前記本体内の長手方向に移動自 在にされるジョーホルダーと、前記ジョーを前記掛止状 態または前記非掛止状態を選択して設定するために前記 付勢力に抗して前記ジヨーを前記掛止状態に移動させる 部位を形成し、かつ前記本体の外周面回りに回動自在に 設けられるスリーブと、前記ジョーホルダーの前記本体 40 内の長手方向の移動量分を設定するために前記本体の他 端において回動自在に設けられる設定ダイヤルと、該設 定ダイヤルに連動して前記移動量分を移動するととも に、表示部を外周に有する表示具と、前記ピストンの押 圧をするために前記本体の他端において前記設定ダイヤ ルと同軸状に設けられる押子とを備え、前記ジョーホル ダーと前記押子とを一体的に移動自在に設けるととも に、前記ジョーホルダーを前記表示具に向かうように付 勢させる付勢手段を、前記本体に設ける構成である。

[0013]

4

【作用】以上の構成において、カートリツジ交換体を筒状の本体に着脱手段により着脱し、カートリツジのピストンをプランジヤーにより押圧する状態にする。プランジヤーはより押圧方向には移動可能にし、逆方向には移動不能にする後戻り防止具に対して掛止して後戻りしない。プランジヤーの掛止部に対して掛止する掛止状態と掛止しない非掛止状態になる付勢力を有する一対のジョーはジョーホルダーに保持されるとともに、本体内の長手方向に移動自在にされる。スリーブを作用させてジョーホルダーの長手方向の移動量分を設定する。この移動量分は表示具により表示される一方、ピストンの押圧をする押子はジョーホルダーとが一体的に移動自在に設けられており、ジョーホルダーを表示具に向かうように付勢手段により移動される。

[0014]

【実施例】以下に図面を参照して実施例を詳細に説明すると、図1は1実施例の定量分与器の前半分の中心断面図である。図1において、液状薬剤Mを内蔵した透明体のカートリツジ4には注射針2が交換自在に設けられており、カートリツジホルダー3内に図示のように自由にセツトできるとともに、カートリツジホルダー3のロネジ部とは場合するネジ体2を回すことで、注射針2を図示のように固定できる構成である。注射針2には針キャツブ2aが被せられており、尖端部の保護をする一方、使用後の廃棄時における危険防止を図つている。

【0015】カートリツジ4は液状の薬剤Mを内蔵した 状態で提供可能にするために、カートリツジ4の左端に は注射針2により刺通されるゴム栓4dが設けられる一 方、右端にはカートリツジ4の内周面を長手方向に摺動 自在することで、薬剤Mを外部に押し出す気密状態を保 持したピストン5が挿入されている。一方、カートリツ ジホルダー3は図示のように、カートリツジ4の外形形 状に略一致し、かつクリアランス分の隙間を設けた内周 面を形成するとともに、全長はカートリツジ4より短く されている。

【0016】このカートリツジホルダー3の左端外周面には、ネジ体2bを螺合して注射針2を保持するようにするロネジ部3bが形成されるとともに、右端外周面には外筒体8の第1雌ネジ部8aに螺合させてカートリツジホルダー3を外筒体8に取り付ける雄ネジ部3aが形成されている。また、外筒体8には嵌合部1bが嵌合されるキャツブ1が設けられており、使用時以外にはこのキャツブ1を図示のように被せることで、注射針2の保護をして携帯性を確保し、かつクリツブ部1をポケツトに引つ掛けるようにして外見からは定量分与器であることを知られないようにしている。

【0017】以上の構成により、液状の薬剤Mを内蔵したカートリツジ4の残量が無くなると、キャツブ1を外 50 してから、カートリツジホルダー3を把持して、ネジ体

2 b を緩めて針キヤツプ2 a を被せた状態の注射針2を カートリツジ4のゴム栓4 dから抜き去つて取り外す。 次に、カートリツジホルダー3を把持回動して外筒体8 に対する螺合状態を解除して、カートリツジホルダー3 を外筒体8から取り外し、薬剤Mが充填されているカー トリツジ4をカートリツジホルダー3にセツトする。

【0018】この後に、カートリツジホルダー3の雄ネ ジ部3 aを外筒体8の第1雌ネジ部8 aに螺合させ、か つピストン 5 を押圧するプランジヤー 9 をカートリツジ 4内に挿入させた後に、カートリツジホルダー3を回動 させる。この結果、カートリツジホルダー3の内周R部 3 c がカートリツジ4を図中の矢印C方向に移動するよ うに当接し、カートリツジ4の右端部4eがカートリツ ジ受具6を作用させるようになる。以上の操作でカート リツジ4の交換が終了し、続いて行なわれるピストン5 を押圧する注入準備が行なわれる。

【0019】次に、外筒体8の内周穴部8d内には、力 ートリツジ受具6が長手方向に移動自在に設けられてお り、カートリツジ受具6の段部6bと内外筒11の雄ネ ジ部11aの間に設けられている第1押レバネ21の圧 20 縮作用により、図中のD矢印方向に付勢力を得ている。 このカートリツジ受具6は内部において上述のプランジ ヤー9を挿通する一方、内周面にテーパ部6cを図示の ように一対分形成している。このテーパ部6cにはブラ ンジヤーの後戻り防止具7の掛止部7bの外側が当接す るように設けられており、図示のようにカートリツジ4 を挿入することで、後戻り防止具7の掛止部7bがプラ ンジヤー9を所定位置に留まらせる。

【0020】図3はプランジヤーの後戻り防止具7の動 作図であり、中心線CLより上がセツト前の状態を示す 30 周面12bにはスリーブ10の凸部10aが回動により 一方、中心線CLより下が図1と同様の下がセツト後の 状態を示している。動作について説明すると、先ずカー トリツジ4を上述のようにピストン5を押圧するプラン ジヤー9をカートリツジ4内に挿入させる。この後に、 カートリツジホルダー3を回動させると、カートリツジ ホルダー3の内周R部3cがカートリツジ4を図中の矢 印C方向に移動し始める。この時点では、後戻り防止具 7の掛止部7 b はその自体の持つ弾性力によつて、図示 のようにプランジヤー9の掛止部9aに対しては掛止し ていない。

【0021】さらに、カートリツジホルダー3を回動さ せて矢印C方向に移動すると、中心線CLより下の図に おいて、カートリツジ4の右端部4 e がカートリツ受具 6 の底部 6 e に当接する。さらに、カートリツジホルダ -3を回動させて矢印C方向に移動すると、テーパ部6 cが後戻り防止具7の掛止部7bを、図中のD矢印方向 に移動させて、プランジヤー9の掛止部9aと掛止後戻 り防止具7の掛止部7bとを掛止させる状態にする。

【0022】この掛止部9aと掛止後戻り防止具7の掛 止部7bの間の掛止状態は「ペロウの手」の応用であ 50 ジョーホルダー13は、注入量表示具16の側面部16

り、プランジヤー9は図中のE矢印左方向(つまりピス トン5を押す方向)へは移動できるが、後方向へは移動 しない一方向のみ移動自在にする後戻り防止機構であ る。ここで、プランジヤーの後戻り防止具7は、上述の 構成に限定されず、歯車機構やリングを使用した後戻り 防止機構であれば何でもかまわない。

6

【0023】以上のようにして、セツトすることで、プ ランジヤー9がピストン5を押圧する方向のみ移動可能 にし、逆方向には不動になるようにして薬剤Mの消費に 伴うピストン5の移動位置にプランジヤー9が留まるこ とができるようにしている。次に、プランジヤー9の注 入量設定と注入動作をさせる機構について図2、4の― 部破断外観斜視図に基づいて説明する。

【0024】プランジヤー9には注入と注入量の設定を 切り換えるためのスリーブ10が設けられている。この スリープ10は内周面に一対の凸部10aが形成される とともに、内外筒11の外周回りに回動自在に設けられ ている。一方、内外筒 1 1 には凸部 1 0 a の作用により 図中の矢印B方向に移動して、プランジヤー9の掛止部 9 a に対して掛止する状態と掛止しない状態にされるジ ヨー12が設けられている。

【0025】スリープ10の回動操作により、プランジ ヤー9とのかみ合い及び解放状態を決定するための機構 を説明すると、図4において、ジヨー12は図示のよう に互いに対向してジョーホルダー13(図2に図示)に 保持される一方、ジヨー12を外側に付勢する第4押し パネ24の圧縮力が作用している。この第4押しパネ2 4の作用により、プランジヤー9からジョー12は解放 される状態に付勢されている、これらのジヨー12の外 当接作用する結果、ジヨー12とプランジヤー9とが掛 止状態にされる。

【0026】これらのジョー12の間には、残液量安全 片14が第3押しパネ23の圧縮付勢力得ることで図中 の矢印E方向に付勢されて設けられており、基部14a がジョー12の間に潜入して、ジョー12とブランジヤ ー9とが掛止状態になることを防止する状態にできるよ うにしている。一方、この残液量安全片14には片部1 4 c が一体形成されており、片部14 c の端部が後述の **注入量表示具16の側面部16hに当接移動されること** で、矢印E方向とは逆方向に移動されて、ジヨー12と プランジャー9とが掛止状態にできるようにされてい る。

【0027】再度図2において、注入量表示具16の側 面部16hとジョーホルダー13の側面部13bとの間 隔分がブランジヤー9の移動量となる結果、薬剤Mの分 **与量となるようにしている。このために、スリーブ10** を設定側にして、ジヨー12を解放状態にすると、内外 筒11に内蔵されている第2押しパネ22の作用により

hに当接する位置まで自動的に移動する。

4

【0028】一方、図中の矢印A方向に押圧操作される 押子20はジヨーホルダー13と一体的に設けられてい るので、連動して押子20も移動し、設定注入量距離分 だけ押子20が移動される。この状態で、スリープ10 を注入側へ操作すると、ブランジヤー9とジョー12が 掛止されるので、押子20を図中のA矢印方向に押す と、ジョーホルダー13及びジョー12は連動して移動 し、プランジヤー9がカートリツジ4のピストン5を押 圧する方向に移動する。

【0029】このジョーホルダー13の移動距離は、内 外筒11の端部により規制され、それ以上は移動できな いようにされる。以上の動作で、プランジヤー9は、注 入設定量分を移動することになる。次に、分与量の設定 は、図2において、注入量設定ダイヤル17を回転する ことによつて決定される。注入量設定ダイヤル17は外 周スプライン17bを有しており、スプラインの凹凸に 対してクリツク装置18が当接しており、回転量が制御 される。

【0030】また、内外筒11の内周面には台形ネジ1 1 dが形成されており、注入量表示具16の台形ネジ1 6 a が台形ネジ11 d に対して螺合して設けられてお り、注入量表示具16を回動することで注入量表示具1 6 が長手方向に移動される。この回動のために、注入量 表示具16は注入量設定ダイヤル17とスプライン構造 で接続されており、内外筒11に対して接続具19によ り接続されている注入量設定ダイヤル17の回転ととも に、回転して、ネジの作用により軸方向へ移動される。

【0031】このとき、注入量表示具16の外周面上に るため、内外筒11の注入量表示窓15を介して見える 数値が変化する。この注入量表示窓15は、レンズにな つており、肉眼で見える数字の大きさは、実際の大きさ より拡大される。次に、上述のカートリツジ4には充填 される薬剤Mの量に限りがある。そこで、カートリツジ 4内の薬剤Mの残量が、注入設定量よりも少ないとき は、残液量安全片14が上述のように作用して、設定注 入切り変えをおこなうスリープ10が、設定側から注入 側へ操作できない構造となつている。

【0032】この残液量安全片14に加えて、注入量設 40 定ダイヤル17にはカートリツジ4内の薬剤Mの残量 が、注入設定量よりも少ない場合に注入量設定ダイヤル 17の回転を防止する機構が設けられている。この機構 を述べると、図2において、カートリツジ4内の薬剤M の消費に伴いプランジヤー9が図中の左方向に移動して **ゆき、プランジヤー9の端部に形成されている翼部9c** が押子20の内部に形成されている翼部20eに対して 掛止する位置まで移動される。注入量設定ダイヤル17 には凹部17cが形成されており、押子20の外周面上 の凸部分20 dが長手方向に移動自在かつラジアル方向 50

には一体移動するようにされており、注入量設定ダイヤ ル17の回転に伴い同時回転される。したがつて、翼部 9 c が押子20の内部に形成されている翼部20 e に対 して掛止する位置まで移動されると、押子20が回転で きないことから、注入量設定ダイヤル17の回転ができ ないようになる。

8 .

【0033】以上説明の構成において、操作動作を説明 すると、キヤツブ1を外し、スリーブ10を設定側に把 持回動して、一対のジョー12をプランジヤー9から解 除する。そして、カートリツジ4をカートリツジホルダ ー3に内挿して、外筒体8に取り付けた後、注射針2を 取り付ける。この状態では、カートリッジ4の内部及び 注射針2の内部に、空気が入つているため、注入量設定 ダイヤル17を適当量回す(1クリツク2単位として設 定される)。これに伴なつて、押子20が矢印Aの逆方 向の後方へ移動する。

【0034】次に、注射針2の尖端を上部に向けた状態 を保持して、スリープ10を注入側へ回動し、針先から 薬剤Mが流出し出すまでゆつくりと押子20を矢印Aに 押して空気抜きをする。この後に、スリープ10を設定 側にセツトし、注入量設定ダイヤル17を回して、注入 量表示具16の外周面上に記された数字を目安にして注 入量を決定した後に、スリーブ10を注入側へ切り変え る。

【0035】ここで、空気ぬきが終了した時に、既に、 注入量が設定されており、注入量設定ダイヤル17を動 かす必要のない時は、スリーブ10を設定側にセット し、押子20が飛び出したならば、ただちに注入側へ切 り変えるだけでよい。この状態で刺針し、押子20を最 記された数字が、回転運動と軸方向の動きにより移動す 30 後まで押し切れば、設定された分与量が注入される。再 **分与時は、スリーブ10を設定側にセツトし、続いて注** 入側へ切り変えるだけでよい。一方、分与量に変更のあ る場合は、スリーブ10の設定側の状態で注入量設定ダ イヤル17を回し、分与量の変更を行う(この時、注入 **量設定ダイヤル17を決められた位置に戻す必要はな** く、注入量の変更は、増減自由であるこことは上述の構 造から明かである)。

> 【0036】注射針2、カートリツジ4を交換した場合 は、空気を薬剤Mと一緒に注入する恐れがあるので、空 気ぬきを行うが、注入量を既に設定しておき、空気ぬき 完了後、スリーブ10の操作のみで使用する方法が操作 性が向上するのでより良いと思われる。カートリツジ4 内の薬剤M残量が設定量より少ない場合は、上述の残液 量安全片14がジョー12をプランジヤー9に対して掛 止する状態を防止するので、スリーブ10を注入側へ操 作することができない結果、誤つて分与してしまうこと はない。この場合には、注入量設定ダイヤル17を 「0」位置へ戻し、分与量の設定を行う。注入量設定ダ イヤル17の動かなくなる位置が、カートリツジ4内の 薬剤の残量である。この量で分与量が足りない場合は、

9

カートリツジ4を交換し、不足分を分与する。

【0037】以上説明したように、インスリン製剤を注射器に直接移すタイプに比べ、機械的、人偽的な注入量誤差がなくなり、分与量を正確にできる。さらに、本体内部の第1押しパネ21の作用により、一度設定した分与量を設定時と注入時の切り変えをスリーブ10の操作のみで確保でき、しかも、分与量を変更する際に、現在設定されている分与量から自由に増減可能であるので、従来のカートリツジ式タイプの注入器に比べても、操作性が著しく改良される。

【0038】また、注射針を刺した状態では、注入操作は1回の押圧で行うことが好ましいために、注入量表示具16を設けており、設定ダイヤル17の操作により分与される薬剤の各々の可変量の設定が一度にできる。したがつて、1回の操作で任意量を分与することができることになる。さらに、本体の内部の接続構造、スプライン結合構造などの組み合わせにより、注入時において、注入表示量と、注射針先から分与される薬液量とが異なる危険性をなくした。

【0039】また、残液量安全片を設けており、カート 20 リツジ4内の残液量が注入量より少ない時は、分与でき ない安全構造となつている。

[0040]

【発明の効果】本発明は上述のように、投与の度に注入 量の設定を行なう作業が省略されて、操作性が向上され る効果がある。

【図面の簡単な説明】

【図1】1実施例の定量分与器の前半分の中心断面図である。

10

【図2】1実施例の定量分与器の後半分の中心断面図である。

【図3】カートリツジ受具の動作説明断面図である。

【図4】図2の定量分与器の後半分の一部破断斜視図である。

【図5】従来の定量分与器の断面図である。 【符号の説明】

10 1 キャップ

- 2 注射針
- 3 カートリッジホルダー
- 4 カートリッジ
- 5 ピストン
- 6 カートリッジ受具
- 7 後戻り防止具
- 8 外筒体
- 9 プランジヤー
- 10 スリープ
- 11 内外筒
- 12 ジョー
- 13 ジョーホルダー
- 14 残液量安全片
 - 15 注入量表示窓
 - 16 注入量表示具
 - 17 注入量設定ダイヤル
 - 20 押子

[図1]

第一図。

【図2】

第 2 図

[図3]

【図4】

【図5】

第 5 図

