5. 2连续函数的运算性质

- ■和、差、积、商的连续性
- 复合函数的连续性
- 反函数的连续性
- 初等函数的连续性
- 幂指函数的连续性 (一类特殊的初等函数)

和、差、积、商的连续性

定理5.1 如果f(x),g(x)在 x_0 处连续,则

$$f(x) \pm g(x), f(x) \cdot g(x), \frac{f(x)}{g(x)} (g(x_0) \neq 0)$$
 在 x_0 处都连续.

例:

tan x

 $\sin x$ 连续 $\cot x$

cos x 连续 sec

在定义域内都连续

csc x

定理5.2 复合函数的连续性

g(x) 在 x_0 处连续 f(x) 在 $g(x_0)$ 处连续 y = f(g(x))

连续性定义
$$\Longrightarrow$$
 $\lim_{x \to x_0} f(x) = f(x_0) = f\left(\lim_{x \to x_0} x\right)$

复合函数连续性
$$\longrightarrow$$
 $\lim_{x\to x_0} f(g(x)) = f(g(x_0)) = f\left(\lim_{x\to x_0} g(x)\right)$

连续性就意味着函数运算和极限运算的换序!

定理5.3 反函数的连续性

若f(x): $I \to \mathbb{R}$ 是严格单调增(减)的连续函数,则其反函数 $f^{-1}(x)$ 存在,并且也是f(I)上严格单调增(减)的连续函数

 a^x 连续 \rightarrow 对数函数连续 \rightarrow $x^a = e^{a \ln x}$ 连续

1.初等函数的连续性

所有的基本初等函数在定义域内都是连续的

所有的初等函数在**定义域内的任何区间**上都是连续的

注:由于初等函数的定义域可能含有孤立点,因此不能够说在定义域内连续

称为 定义区间 例5.9 讨论函数 $f(x) = \frac{x}{\tan x}$ 的连续性,并判断间断点的类型.

例 5.10 讨论函数
$$f(x) = \begin{cases} \frac{1}{1-e^{\frac{x}{x-1}}}, & x \neq 1 \\ 1-e^{\frac{x}{x-1}} & \text{ 的连续性} \end{cases}$$

幂指函数的连续性

幂指函数
$$f(x)^{g(x)}$$
, $f(x) > 0$ 一类特殊的初等函数

$$= e^{g(x)\ln f(x)}$$

若 $\lim g(x) \ln f(x)$ 存在

$$\lim_{x \to \infty} f(x)^{g(x)} = e^{\lim_{x \to \infty} g(x) \ln f(x)}$$

例: 求极限 $\lim_{x\to 0} (1+\sin x)^{\frac{1}{x}}$

例5.11 计算下列极限

1.
$$\lim_{x\to 0} \frac{\ln(1+x)}{x}$$
 2. $\lim_{x\to 0} \frac{e^x - 1}{x}$

2.
$$\lim_{x\to 0} \frac{e^x - 1}{x}$$

3.
$$\lim_{x\to 0} \frac{(1+x)^{w}-1}{x}$$

$$\ln(1+x) \sim x$$
, $e^x - 1 \sim x$, $(1+x)^a - 1 \sim ax$

5. 3闭区间上连续函数的性质

- ■有界性定理
- ■最值定理
- ■零点存在定理 (二分法)
- ■介值定理

一、有界性定理

定理5.4(有界性)在闭区间上连续的函数一定在该区间上有界.

反证法 + Weiestrass 定理

练习:利用闭区间套定理证明有界性定理。

二、最大值和最小值定理

定义: 对于在区间I上有定义的函数f(x), 如果有 $x_0 \in I$,使得对于任 $-x \in I$ 都有 $f(x) \le f(x_0) \qquad (f(x) \ge f(x_0))$ 则称 $f(x_0)$ 是函数 f(x)在区间I上的最大(小)值. 例如, $y = 1 + \sin x$, 在[0,2 π]上, $y_{max} = 2$, $y_{min} = 0$; y = sgn x, 在 $(-\infty, +\infty)$ 上, $y_{\text{max}} = 1$, $y_{\text{min}} = -1$; 在 $(0,+\infty)$ 上、 $y_{\text{max}} = y_{\text{min}} = 1$.

定理5.5(最大值和最小值定理)在闭区间上连续的函数一定有最大值和最小值.

若 $f(x) \in C[a,b]$, 则 $\exists \xi_1, \xi_2 \in [a,b]$, 使 得 $\forall x \in [a,b]$, 有 $f(\xi_1) \geq f(x)$, $f(\xi_2) \leq f(x)$.

定理5.5(最大值和最小值定理) 在闭区间上连续的函数一定有最大值和最小值.

注意:1.若区间是开区间, 定理不一定成立;

2.若区间内有间断点, 定理不一定成立.

三、零点存在定理

「定义:如果 x_0 使 $f(x_0) = 0$,则 x_0 称为函数 f(x)的零点.

定理 5. 6(零点定理) 设函数 f(x)在闭区间 [a,b] 上连续,且 f(a)与 f(b)异号(即 $f(a)\cdot f(b)<0$),那末在开区间(a,b)内至少有函数 f(x)的一个零点,即至少有一点 $\xi(a<\xi< b)$,使 $f(\xi)=0$.

即方程 f(x) = 0在 (a,b)内至少存在一个实根.

几何解释:

连续曲线弧y = f(x)的两个端点位于x轴的不同侧,则曲线弧与x轴至少有一个交点.

例1 证明方程 $x^3 - 4x^2 + 1 = 0$ 在区间(0,1)内至少有一根.

证 令 $f(x) = x^3 - 4x^2 + 1$,则f(x)在[0,1]上连续,又 f(0) = 1 > 0, f(1) = -2 < 0, 由零点定理, $\exists \xi \in (a,b)$,使 $f(\xi) = 0$,即 $\xi^3 - 4\xi^2 + 1 = 0$, \therefore 方程 $x^3 - 4x^2 + 1 = 0$ 在(0,1)内至少有一根 ξ .

求方程的近似解 —— 二分法

1)问题:

给定方程f(x)=0,设f(x)在区间[a,b]连续,且f(a)f(b)<0,则方程f(x)在(a,b)内至少有一根,为便于讨论,不妨设方程f(x)=0在(a,b)内只有一个(重根视为一个)实根x*,求满足精度要求的的近似值实根x。

2) 解题思路

取[a,b]区间二等分的中点 $c = \frac{a+b}{2}$:

若f(a)f(c)<0,则x*在区间(a,c)内,取 $a_1 = a,b_1 = c$;

若f(b)f(c)<0,则x*在区间(c,b)内,取 $a_1 = c, b_1 = b$.

这样,得到新区间 $[a_1,b_1]$,其长度为[a,b]的一半,如此继续下去,进行n次等分后,得到一组不断缩小的区间 $[a,b],[a_1,b_1],\cdots,[a_n,b_n]$

2) 解题思路

由于 $|a_n-b_n|=\frac{|a-b|}{2^n}$,对于给定精度 ε , 当n充分大时,有 $|a_n-b_n|<\varepsilon$.

此时, $\forall \tilde{x} \in [a_n, b_n]$ 均满足 $|x^* - \tilde{x}| < \varepsilon$,即为所求方程的近似解

以上方法就是用于求方程实根近似值的二分法

3) 迭代步数n的确定

由于
$$|b_n - a_n| = b_n - a_n = \frac{b - a}{2^n}$$
根据 $\frac{b - a}{2^n} \le \varepsilon \Leftrightarrow n \ge \log_2(\frac{b - a}{\varepsilon})$
因此只要取 $n = [\log_2(\frac{b - a}{\varepsilon})] + 1$
则 $\forall \tilde{x} \in [a_n, b_n], \$ 都有 $|x^* - \tilde{x}| \le \varepsilon$

4)计算框架图

例5.13 证明方程 $x^3 + x^2 - 4x + 1 = 0$ 的三个根都在区间(-3,2)内.

例5.14 设函数f(x):[0,1] \rightarrow [0,1]连续,证明存在 $t \in$ [0,1],使f(t) = t.

四、介值定理

定理 5.7(介值定理)

设函数 f(x) 在闭区间 [a,b] 上连续,且在这区间的端点取不同的函数值

$$f(a) = A$$
 及 $f(b) = B$,

那末,对于A与B之间的任意一个数C,在开区间 (a,b)内至少有一点 ξ ,使得 $f(\xi) = C$ $(a < \xi < b)$.

几何解释:

连续曲线弧y = f(x)与水平直线y = C至少有一个交点.

证 设 $\varphi(x) = f(x) - C$,

则 $\varphi(x)$ 在 [a,b]上连续,
且 $\varphi(a) = f(a) - C$ = A - C, $\varphi(b) = f(b) - C = B - C,$ $\varphi(a) = f(a) - C = B - C$

 $\therefore \varphi(a) \cdot \varphi(b) < 0$, 由零点定理, $\exists \xi \in (a,b)$, 使

 $\varphi(\xi)=0,\quad \mathbb{P} \varphi(\xi)=f(\xi)-C=0,\quad \therefore f(\xi)=C.$

推论5.1 在闭区间上连续的函数必取得介于最大值M 与最小值m 之间的任何值.

推论5.2 闭区间上非常数的连续函数的值域为闭区间.

例5.16 若 f(x) 在 [a,b] 上连续,

$$a < x_1 < x_2 < \dots < x_n < b$$
 则在 $[x_1, x_n]$ 上必有
 ξ ,使 $f(x) = \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n}$.

例2 设函数 f(x)在区间 [a,b]上连续,且f(a) < a, f(b) > b. 证明 $\exists \xi \in (a,b)$,使得 $f(\xi) = \xi$.

证 令
$$F(x) = f(x) - x$$
,则 $F(x)$ 在[a,b]上连续,而 $F(a) = f(a) - a < 0$, $F(b) = f(b) - b > 0$,由零点定理, $\exists \xi \in (a,b)$,使 $F(\xi) = f(\xi) - \xi = 0$,即 $f(\xi) = \xi$.

思考题

下述命题是否正确?

如果 f(x) 在 [a,b] 上有定义,在 (a,b) 内连续,且 $f(a) \cdot f(b) < 0$,那么 f(x) 在 (a,b) 内必有零点.

思考题解答

不正确.

例函数
$$f(x) = \begin{cases} e, & 0 < x \le 1 \\ -2, & x = 0 \end{cases}$$

$$f(x)$$
在(0,1)内连续, $f(0)\cdot(1) = -2e < 0$.

但f(x)在(0,1)内无零点.

5.4 函数的一致连续性

连续的定义:

$$\forall \varepsilon > 0$$
, $\exists \delta > 0$, 使当 $|x - x_0| < \delta$ 时, 恒有 $|f(x) - f(x_0)| < \varepsilon$. 与 x_0 有关

是一个局部概念

一致连续——在某个区间上"一起"连续

一致连续的定义

定义:设f(x)为区间I上的函数,若 $\forall \varepsilon > 0$, $\exists \delta > 0$,使得 $\forall x_1, x_2 \in I$,当 $|x_1 - x_2| < \delta$ 时,恒有 $|f(x_1) - f(x_2)| < \varepsilon$,则称f(x)是区间I上的一致连续函数

例 5.17 $\sin x$ 和 $\cos x$ 在 $(-\infty, +\infty)$ 上一致连续; 例 5.18 $\sin \frac{1}{x}$ 在 (0,1] 上连续但不一致连续.

一致连续性定理

定理5.8 设 $f(x) \in C[a,b]$,则f(x)在[a,b]上一致连续.

反证法 + Weiestrass 定理

闭区间上的连续函数都是一致连续的

- **练习题**一、证明方程 $x = a \sin x + b$,其中 a > 0 , b > 0 ,至
 少有一个正根,并且它不超过 a + b .
 - 二、 若 f(x) 在 [a,b] 上连续, $a < x_1 < x_2 < \dots < x_n < b$ 则在 $[x_1, x_n]$ 上必有 ξ , $\oint f(x) = \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{f(x_n)}$.
 - 三、 设 f(x) 在 [a,b] 上连续, a < c < d < b,试证 明:对任意正数 p和q;至少有一点 $\xi \in [c,d]$,使 $pf(c) + qf(d) = (p+q)f(\xi)$