Elsőrendű logika alapjai Gyakorlat

Logika

2021/2022 1. félév

Milyen elemekből állhat egy elsőrendű formula?

Milyen elemekből állhat egy elsőrendű formula?

Műveleti jelek: $\land, \lor, \supset, \lnot$

Milyen elemekből állhat egy elsőrendű formula?

Műveleti jelek: $\land, \lor, \supset, \lnot$

 $\mathsf{Kvantorok} \colon \qquad \forall, \exists$

Milyen elemekből állhat egy elsőrendű formula?

Műveleti jelek: $\land, \lor, \supset, \lnot$

Kvantorok: \forall, \exists Zárójelek: (,)

Milyen elemekből állhat egy elsőrendű formula?

Műveleti jelek: $\land, \lor, \supset, \lnot$

Kvantorok: \forall , \exists Zárójelek: (,)

Individuum változók: pl.: x, y, z

Milyen elemekből állhat egy elsőrendű formula?

Műveleti jelek: $\land, \lor, \supset, \lnot$

Kvantorok: \forall , \exists Zárójelek: (,)

Individuum változók: pl.: x, y, z

Egy I interpretáció:

Milyen elemekből állhat egy elsőrendű formula?

Műveleti jelek: $\land, \lor, \supset, \lnot$

Kvantorok: \forall, \exists Zárójelek: (,)

Individuum változók: pl.: x, y, z

Egy I interpretáció: Univerzum: U

Milyen elemekből állhat egy elsőrendű formula?

Műveleti jelek: $\land, \lor, \supset, \lnot$

Kvantorok: \forall , \exists Zárójelek: (,)

Individuum változók: pl.: x, y, z

Egy I interpretáció:

Univerzum: U

Predikátumok: Logikai függvények, $U^n \rightarrow L$

$$|P(x)|^I$$
 - x páros szám,
 $|Q(x,y)|^I$ - x osztója y

2021/2022 1. félév

Milyen elemekből állhat egy elsőrendű formula?

```
Műveleti jelek: \land, \lor, \supset, \lnot
```

Kvantorok: \forall , \exists Zárójelek: (,)

Individuum változók: pl.: x, y, z

Egy I interpretáció:

Univerzum:

Predikátumok: Logikai függvények, $U^n \to L$ $|P(x)|^I - x$ páros szám,

 $|Q(x,y)|^I$ - x osztója y

Függvények: Matematikai függvények, $U^n o U - |f(x)|^I$ - x rákövetkezője

Milyen elemekből állhat egy elsőrendű formula?

Műveleti jelek: $\land, \lor, \supset, \lnot$

Kvantorok: \forall, \exists Zárójelek: (,)

Individuum változók: pl.: x, y, z

Egy I interpretáció:

Függvények:

Univerzum: U

Predikátumok: Logikai függvények, $U^n \rightarrow L$

 $|P(x)|^{I}$ - x páros szám, $|Q(x,y)|^{I}$ - x osztója y

Matematikai függvények, $U^n o U = |f(x)|^I - x_rákövetkezője$

Konstansok: $c \in U$ $|\bar{a}|^I - 2$, $|\bar{b}|^I - 3$

Formalizáljuk a következő állításokat ítéletlogikában:

• "Ha valaki fiatal, akkor kávézik."

Formalizáljuk a következő állításokat ítéletlogikában:

• "Ha valaki fiatal, akkor kávézik."

$$F \supset K$$
, ahol
 $F' = \text{"fiatal"}$
 $K' = \text{"kávézik"}$

Formalizáljuk a következő állításokat ítéletlogikában:

• "Ha valaki fiatal, akkor kávézik."

$$F \supset K$$
, ahol
 $F^I =$ "fiatal"
 $K^I =$ "kávézik"

"Minden fiatal kávézik."

Formalizáljuk a következő állításokat ítéletlogikában:

• "Ha valaki fiatal, akkor kávézik."

$$F \supset K$$
, ahol
 $F' =$ "fiatal"
 $K' =$ "kávézik"

"Minden fiatal kávézik."

A ítéletváltozó, ahol A^{I} = "Minden fiatal kávézik"

Formalizáljuk a következő állításokat ítéletlogikában:

• "Ha valaki fiatal, akkor kávézik."

$$F \supset K$$
, ahol
 $F' =$ "fiatal"
 $K' =$ "kávézik"

"Minden fiatal kávézik."

A ítéletváltozó, ahol $A^{I} =$ "Minden fiatal kávézik"

"Van, aki nem kávézik."

Formalizáljuk a következő állításokat ítéletlogikában:

• "Ha valaki fiatal, akkor kávézik."

$$F \supset K$$
, ahol
 $F' =$ "fiatal"
 $K' =$ "kávézik"

"Minden fiatal kávézik."

A ítéletváltozó, ahol $A^{I} =$ "Minden fiatal kávézik"

"Van, aki nem kávézik."

B ítéletváltozó, ahol $B^I = "Van, aki nem kávézik."$

Formalizáljuk a következő állításokat most elsőrendben:

• "Ha valaki fiatal, akkor kávézik."

Formalizáljuk a következő állításokat most elsőrendben:

• "Ha valaki fiatal, akkor kávézik."

$$F(x)^I = "x \text{ fiatal"}$$

 $K(x)^I = "x \text{ kávézik"}$

Formalizáljuk a következő állításokat most elsőrendben:

• "Ha valaki fiatal, akkor kávézik."

$$F(x)^I = "x \text{ fiatal"}$$

 $K(x)^I = "x \text{ kávézik"}$

"Minden fiatal kávézik."

Formalizáljuk a következő állításokat most elsőrendben:

• "Ha valaki fiatal, akkor kávézik."

$$F(x)^I = "x \text{ fiatal"}$$

 $K(x)^I = "x \text{ kávézik"}$

"Minden fiatal kávézik."

$$\forall x (F(x) \supset K(x))$$

Formalizáljuk a következő állításokat most elsőrendben:

• "Ha valaki fiatal, akkor kávézik."

$$F(x)^I = "x \text{ fiatal"}$$

 $K(x)^I = "x \text{ kávézik"}$

"Minden fiatal kávézik."

$$\forall x (F(x) \supset K(x))$$

"Van, aki nem kávézik."

Formalizáljuk a következő állításokat most elsőrendben:

• "Ha valaki fiatal, akkor kávézik."

$$F(x)^I = "x \text{ fiatal"}$$

 $K(x)^I = "x \text{ kávézik"}$

"Minden fiatal kávézik."

$$\forall x (F(x) \supset K(x))$$

"Van, aki nem kávézik."

$$\exists x \neg K(x)$$

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

 $U = \{\text{rovarok}\}$

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

 $U = \{\text{rovarok}\}\$ Predikátumok:

Függvények:

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

 $U = \{ rovarok \}$

Predikátumok:

B(x) - x bogár

Függvények:

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

 $U = \{\text{rovarok}\}$

Predikátumok:

B(x) - x bogár

K(x) - x kitines a szárnyfedele

Függvények:

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

 $U = \{\text{rovarok}\}$

Predikátumok:

B(x) - x bogár

K(x) - x kitines a szárnyfedele

S(x) - x szarvasbogár

Függvények:

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

 $U = \{\text{rovarok}\}$

Predikátumok:

B(x) - x bogár

K(x) - x kitines a szárnyfedele

S(x) - x szarvasbogár

Függvények:

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

 $U = \{\text{rovarok}\}$

Predikátumok:

B(x) - x bogár

K(x) - x kitines a szárnyfedele

S(x) - x szarvasbogár

Függvények:

f(x) - x legjobb barátja

Konstans:

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

 $U = \{\text{rovarok}\}$

Predikátumok:

B(x) - x bogár

K(x) - x kitines a szárnyfedele

S(x) - x szarvasbogár

Függvények:

f(x) - x legjobb barátja

Konstans: ā - Szarvas

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

 $U = \{\text{rovarok}\}$

Predikátumok:

B(x) - x bogár

K(x) - x kitines a szárnyfedele

S(x) - x szarvasbogár

Függvények:

f(x) - x legjobb barátja

Konstans: ā - Szarvas

Formalizált állítások:

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

 $U = \{ rovarok \}$

Predikátumok:

B(x) - x bogár

K(x) - x kitines a szárnyfedele

S(x) - x szarvasbogár

Függvények:

f(x) - x legjobb barátja

Konstans: ā - Szarvas

Formalizált állítások:

1) $\neg \forall x B(x)$

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

 $U = \{\text{rovarok}\}$

Predikátumok:

B(x) - x bogár

K(x) - x kitines a szárnyfedele

S(x) - x szarvasbogár

Függvények:

f(x) - x legjobb barátja

Konstans: ā - Szarvas

Formalizált állítások:

- 1) $\neg \forall x B(x)$
- 2) $S(\bar{a}) \wedge K(\bar{a})$

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

 $U = \{rovarok\}$

Predikátumok:

B(x) - x bogár

K(x) - x kitines a szárnyfedele

S(x) - x szarvasbogár

Függvények:

f(x) - x legjobb barátja

Konstans: ā - Szarvas

Formalizált állítások:

- 1) $\neg \forall x B(x)$
- 2) $S(\bar{a}) \wedge K(\bar{a})$
- 3) $\forall x(\neg K(x) \lor B(x))$

2021/2022 1. félév

Formalizálás - Egyfajtájú megközelítés

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

 $U = \{\text{rovarok}\}$

Predikátumok:

B(x) - x bogár

K(x) - x kitines a szárnyfedele

S(x) - x szarvasbogár

Függvények:

f(x) - x legjobb barátja

Konstans: ā - Szarvas

Formalizált állítások:

- 1) $\neg \forall x B(x)$
- 2) $S(\bar{a}) \wedge K(\bar{a})$
- 3) $\forall x(\neg K(x) \lor B(x))$
- 4) $B(f(\bar{a}))$

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

Lehetne-e másik univerzummal leírni ugyanezt? (bővítés/szűkítés)

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

$$U = \{$$
élőlények $\}$

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

 $U = \{ \text{élőlények} \}$ **Predikátumok**:

Predikatumok:

Függvények:

Konstans:

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

 $U = \{ \text{\'el\"ol\'enyek} \}$

Predikátumok:

R(x) - x rovar

Függvények:

Konstans:

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

 $U = \{ \text{\'el\'ol\'enyek} \}$

Predikátumok:

R(x) - x rovar

B(x) - x bogár

Függvények:

Konstans:

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

```
U = \{élőlények\}
```

Predikátumok:

R(x) - x rovar

B(x) - x bogár

K(x) - x kitines a szárnyfedele

Függvények:

Konstans:

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

```
U = \{élőlények\}
```

Predikátumok:

R(x) - x rovar

B(x) - x bogár

K(x) - x kitines a szárnyfedele

S(x) - x szarvasbogár

Függvények:

Konstans:

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

```
U = \{élőlények\}
```

Predikátumok:

R(x) - x rovar

B(x) - x bogár

K(x) - x kitines a szárnyfedele

S(x) - x szarvasbogár

Függvények:

f(x) - x legjobb barátja

Konstans:

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

```
U = \{élőlények\}
```

Predikátumok:

R(x) - x rovar

B(x) - x bogár

K(x) - x kitines a szárnyfedele

S(x) - x szarvasbogár

Függvények:

f(x) - x legjobb barátja

Konstans: ā - Szarvas

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

 $U = \{\text{\'el\"ol\'enyek}\}$

Predikátumok:

R(x) - x rovar

B(x) - x bogár

K(x) - x kitines a szárnyfedele

S(x) - x szarvasbogár

Függvények:

f(x) - x legjobb barátja

Konstans: ā - Szarvas

Formalizált állítások:

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

 $U=\{\text{\'el\'ol\'enyek}\}$

Predikátumok:

R(x) - x rovar

B(x) - x bogár

K(x) - x kitines a szárnyfedele

S(x) - x szarvasbogár

Függvények:

f(x) - x legjobb barátja

Konstans: ā - Szarvas

Formalizált állítások:

1)

$$\forall x (B(x) \supset R(x)) \land \neg \forall x (R(x) \supset B(x))$$

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

 $U=\{\text{\'el\"ol\'enyek}\}$

Predikátumok:

R(x) - x rovar

B(x) - x bogár

K(x) - x kitines a szárnyfedele

S(x) - x szarvasbogár

Függvények:

f(x) - x legjobb barátja

Konstans: ā - Szarvas

Formalizált állítások:

1)

$$\forall x (B(x) \supset R(x)) \land \neg \forall x (R(x) \supset B(x))$$
2) $S(\bar{a}) \land K(\bar{a})$

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

 $U=\{\text{\'el\'ol\'enyek}\}$

Predikátumok:

R(x) - x rovar

B(x) - x bogár

K(x) - x kitines a szárnyfedele

S(x) - x szarvasbogár

Függvények:

f(x) - x legjobb barátja

Konstans: ā - Szarvas

Formalizált állítások:

1)

$$\forall x (B(x) \supset R(x)) \land \neg \forall x (R(x) \supset B(x))$$

2)
$$S(\bar{a}) \wedge K(\bar{a})$$

3)
$$\forall x (R(x) \supset (\neg K(x) \lor B(x)))$$

Logika

- 1) Minden bogár rovar, de nem minden rovar bogár.
- 2) Szarvasnak, a szarvasbogárnak kitines a szárnyfedője.
- 3) Egy rovarnak nincsen kitines szárnyfedője vagy bogár.
- 4) Szarvas legjobb barátja bogár.

 $U = \{$ élőlények $\}$

Predikátumok:

R(x) - x rovar

B(x) - x bogár

K(x) - x kitines a szárnyfedele

S(x) - x szarvasbogár

Függvények:

f(x) - x legjobb barátja

Konstans: ā - Szarvas

Formalizált állítások:

1)

$$\forall x (B(x) \supset R(x)) \land \neg \forall x (R(x) \supset B(x))$$

2)
$$S(\bar{a}) \wedge K(\bar{a})$$

3)
$$\forall x (R(x) \supset (\neg K(x) \lor B(x)))$$

4)
$$B(f(\bar{a}))$$

Vegyük a következő gráfot: $G_1 = < V_1; E_1 >$:

Ebben a G_1 irányítatlan gráfban:

Vegyük a következő gráfot: $G_1 = < V_1; E_1 >$:

Ebben a G_1 irányítatlan gráfban: **Univerzum:**

Vegyük a következő gráfot: $G_1 = < V_1; E_1 >$:

Ebben a G_1 irányítatlan gráfban: **Univerzum:** $U = \{0,1,2,3,4\}$

Vegyük a következő gráfot: $G_1 = < V_1; E_1 >$:

Ebben a G_1 irányítatlan gráfban: Univerzum: $U = \{0,1,2,3,4\}$ Predikátumszimbólumok:

Vegyük a következő gráfot: $G_1 = \langle V_1; E_1 \rangle$:

Ebben a G_1 irányítatlan gráfban: **Univerzum:** $U = \{0,1,2,3,4\}$ **Predikátumszimbólumok:** E(x,y) - x és y csúcsok között van él

Vegyük a következő gráfot: $G_1 = \langle V_1; E_1 \rangle$:

Ebben a G_1 irányítatlan gráfban: Univerzum: $U = \{0,1,2,3,4\}$ Predikátumszimbólumok:

Predikátumszimbólumok: E(x,y) - x és y csúcsok között van él = (x,y) - x és y csúcsok megegyeznek

Vegyük a következő gráfot: $G_1 = \langle V_1; E_1 \rangle$:

Ebben a G_1 irányítatlan gráfban:

Univerzum: $U = \{0,1,2,3,4\}$

Predikátumszimbólumok:

E(x, y) - x és y csúcsok között van él = (x, y) - x és y csúcsok megegyeznek

1. Fogalmazzuk meg a következő formulákat leíró állításokat és gondoljuk át az igazságértékük:

1.
$$\forall x \exists y E(x, y)$$

2021/2022 1. félév

Vegyük a következő gráfot: $G_1 = \langle V_1; E_1 \rangle$:

Ebben a G_1 irányítatlan gráfban:

Univerzum: $U = \{0,1,2,3,4\}$

Predikátumszimbólumok:

E(x, y) - x és y csúcsok között van él = (x, y) - x és y csúcsok megegyeznek

- 1. Fogalmazzuk meg a következő formulákat leíró állításokat és gondoljuk át az igazságértékük:
 - 1. $\forall x \exists y E(x, y)$
 - 2. $\exists x \forall y E(x, y)$

Vegyük a következő gráfot: $G_1 = \langle V_1; E_1 \rangle$:

Ebben a G_1 irányítatlan gráfban:

Univerzum: $U = \{0,1,2,3,4\}$

Predikátumszimbólumok:

E(x, y) - x és y csúcsok között van él = (x, y) - x és y csúcsok megegyeznek

- 1. Fogalmazzuk meg a következő formulákat leíró állításokat és gondoljuk át az igazságértékük:
 - 1. $\forall x \exists y E(x, y)$
 - 2. $\exists x \forall y E(x, y)$
 - 3. $\forall x \forall y [E(x,y) \supset E(y,x) \land \neg = (x,y)]$

Vegyük a következő gráfot: $G_1 = \langle V_1; E_1 \rangle$:

Ebben a G_1 irányítatlan gráfban:

Univerzum: $U = \{0,1,2,3,4\}$

Predikátumszimbólumok:

E(x,y) - x és y csúcsok között van él = (x,y) - x és y csúcsok megegyeznek

- 1. Fogalmazzuk meg a következő formulákat leíró állításokat és gondoljuk át az igazságértékük:
 - 1. $\forall x \exists y E(x, y)$
 - 2. $\exists x \forall y E(x, y)$
 - 3. $\forall x \forall y [E(x,y) \supset E(y,x) \land \neg = (x,y)]$
 - 4. $\forall x \exists y \exists z [E(x,y) \land E(x,z) \supset E(y,z)]$

Vegyük a következő gráfot: $G_1 = < V_1; E_1 >$:

Ebben a G_1 irányítatlan gráfban:

Univerzum: $U = \{0,1,2,3,4\}$

Predikátumszimbólumok:

E(x, y) - x és y csúcsok között van él = (x, y) - x és y csúcsok megegyeznek

2. Készítsünk formulákat a következő állításokból, szükség esetén egészítsük ki az interpretációnkat!

Vegyük a következő gráfot: $G_1 = \langle V_1; E_1 \rangle$:

Ebben a G_1 irányítatlan gráfban: **Univerzum:** $U = \{0,1,2,3,4\}$

Predikátumszimbólumok:

E(x, y) - x és y csúcsok között van él =(x,y) - x és y csúcsok megegyeznek

- 2. Készítsünk formulákat a következő állításokból, szükség esetén egészítsük ki az interpretációnkat!
 - 1. Ha két csúcs szomszédos, akkor van köztük él.

Vegyük a következő gráfot: $G_1 = \langle V_1; E_1 \rangle$:

Ebben a G_1 irányítatlan gráfban:

Univerzum: $U = \{0,1,2,3,4\}$

Predikátumszimbólumok:

E(x, y) - x és y csúcsok között van él = (x, y) - x és y csúcsok megegyeznek

- 2. Készítsünk formulákat a következő állításokból, szükség esetén egészítsük ki az interpretációnkat!
 - 1. Ha két csúcs szomszédos, akkor van köztük él.
 - 2. Ha a "2"-es csúcs és a "3"-mas csúcs között van él, akkor ők szomszédosak.

Vegyük a következő gráfot: $G_1 = \langle V_1; E_1 \rangle$:

Ebben a G_1 irányítatlan gráfban:

Univerzum: $U = \{0,1,2,3,4\}$

Predikátumszimbólumok:

E(x, y) - x és y csúcsok között van él = (x, y) - x és y csúcsok megegyeznek

- 2. Készítsünk formulákat a következő állításokból, szükség esetén egészítsük ki az interpretációnkat!
 - 1. Ha két csúcs szomszédos, akkor van köztük él.
 - 2. Ha a "2"-es csúcs és a "3"-mas csúcs között van él, akkor ők szomszédosak.
 - 3. Minden csúcs és a szomszádja között él van.

- 1) Minden informatikus tud logikusan gondolkozni.
- 2) Aki tud logikusan gondolkozni, az okos.
- 3) Van olyan, aki okos és nem informatikus.
- 4) Az informatikusok főnöke egy okos informatikus.

- 1) Minden informatikus tud logikusan gondolkozni.
- 2) Aki tud logikusan gondolkozni, az okos.
- 3) Van olyan, aki okos és nem informatikus.
- 4) Az informatikusok főnöke egy okos informatikus.

Univerzum:

- 1) Minden informatikus tud logikusan gondolkozni.
- 2) Aki tud logikusan gondolkozni, az okos.
- 3) Van olyan, aki okos és nem informatikus.
- 4) Az informatikusok főnöke egy okos informatikus.

Univerzum: {emberek}

- 1) Minden informatikus tud logikusan gondolkozni.
- 2) Aki tud logikusan gondolkozni, az okos.
- 3) Van olyan, aki okos és nem informatikus.
- 4) Az informatikusok főnöke egy okos informatikus.

Univerzum: {emberek}

Predikátumok:

- 1) Minden informatikus tud logikusan gondolkozni.
- 2) Aki tud logikusan gondolkozni, az okos.
- 3) Van olyan, aki okos és nem informatikus.
- 4) Az informatikusok főnöke egy okos informatikus.

Univerzum: {emberek}

Predikátumok:

• I(x) - x informatikus

- 1) Minden informatikus tud logikusan gondolkozni.
- 2) Aki tud logikusan gondolkozni, az okos.
- 3) Van olyan, aki okos és nem informatikus.
- 4) Az informatikusok főnöke egy okos informatikus.

Univerzum: {emberek}

Predikátumok:

- I(x) x informatikus
- L(x) x tud logikusan gondolkozni

2021/2022 1. félév

- 1) Minden informatikus tud logikusan gondolkozni.
- 2) Aki tud logikusan gondolkozni, az okos.
- 3) Van olyan, aki okos és nem informatikus.
- 4) Az informatikusok főnöke egy okos informatikus.

Univerzum: {emberek}

Predikátumok:

- I(x) x informatikus
- L(x) x tud logikusan gondolkozni
- O(x) x okos

- 1) Minden informatikus tud logikusan gondolkozni.
- 2) Aki tud logikusan gondolkozni, az okos.
- 3) Van olyan, aki okos és nem informatikus.
- 4) Az informatikusok főnöke egy okos informatikus.

Univerzum: {emberek}

Predikátumok:

- I(x) x informatikus
- L(x) x tud logikusan gondolkozni
- O(x) x okos

Függvények:

- 1) Minden informatikus tud logikusan gondolkozni.
- 2) Aki tud logikusan gondolkozni, az okos.
- 3) Van olyan, aki okos és nem informatikus.
- 4) Az informatikusok főnöke egy okos informatikus.

Univerzum: {emberek}

Predikátumok:

- I(x) x informatikus
- L(x) x tud logikusan gondolkozni
- O(x) x okos

Függvények:

f(x) - x főnöke

- 1) Minden informatikus tud logikusan gondolkozni.
- 2) Aki tud logikusan gondolkozni, az okos.
- 3) Van olyan, aki okos és nem informatikus.
- 4) Az informatikusok főnöke egy okos informatikus.

Univerzum: {emberek}

Predikátumok:

- I(x) x informatikus
- L(x) x tud logikusan gondolkozni
- O(x) x okos

Függvények:

• f(x) - x főnöke

Formalizált állítások:

- 1) Minden informatikus tud logikusan gondolkozni.
- 2) Aki tud logikusan gondolkozni, az okos.
- 3) Van olyan, aki okos és nem informatikus.
- 4) Az informatikusok főnöke egy okos informatikus.

Univerzum: {emberek}

Predikátumok:

- I(x) x informatikus
- L(x) x tud logikusan gondolkozni
- O(x) x okos

Függvények:

f(x) - x főnöke

Formalizált állítások:

1)
$$\forall x(I(x) \supset L(x))$$

- 1) Minden informatikus tud logikusan gondolkozni.
- 2) Aki tud logikusan gondolkozni, az okos.
- 3) Van olyan, aki okos és nem informatikus.
- 4) Az informatikusok főnöke egy okos informatikus.

Univerzum: {emberek}

Predikátumok:

- I(x) x informatikus
- L(x) x tud logikusan gondolkozni
- O(x) x okos

Függvények:

f(x) - x főnöke

Formalizált állítások:

- 1) $\forall x (I(x) \supset L(x))$
- 2) $\forall x(L(x) \supset O(x))$

- 1) Minden informatikus tud logikusan gondolkozni.
- 2) Aki tud logikusan gondolkozni, az okos.
- 3) Van olyan, aki okos és nem informatikus.
- 4) Az informatikusok főnöke egy okos informatikus.

Univerzum: {emberek}

Predikátumok:

- I(x) x informatikus
- L(x) x tud logikusan gondolkozni
- O(x) x okos

Formalizált állítások:

- 1) $\forall x (I(x) \supset L(x))$
- 2) $\forall x(L(x) \supset O(x))$
- 3) $\exists x (O(x) \land \neg I(x))$

Függvények:

f(x) - x főnöke

- 1) Minden informatikus tud logikusan gondolkozni.
- 2) Aki tud logikusan gondolkozni, az okos.
- 3) Van olyan, aki okos és nem informatikus.
- 4) Az informatikusok főnöke egy okos informatikus.

Univerzum: {emberek}

Predikátumok:

- I(x) x informatikus
- L(x) x tud logikusan gondolkozni
- O(x) x okos

Függvények:

f(x) - x főnöke

Formalizált állítások:

- 1) $\forall x(I(x) \supset L(x))$
- 2) $\forall x(L(x) \supset O(x))$
- 3) $\exists x (O(x) \land \neg I(x))$
- 4) $\forall x (I(x) \supset O(f(x)) \land I(f(x)))$

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum:

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: {élőlények}

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: {élőlények}

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: {élőlények}

Predikátumok:

• K(x) - x kutya

- Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: {élőlények}

- K(x) x kutya
- E(x) x ember

- Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: {élőlények}

- K(x) x kutya
 - E(x) x ember
 - R(x) x kertben él

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: {élőlények}

- K(x) x kutya
 - E(x) x ember
 - R(x) x kertben él
 - H(x) x házban él

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: {élőlények}

- K(x) x kutya
 - E(x) x ember
 - R(x) x kertben él
 - H(x) x házban él
 - G(x, y) x gazdája y

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: {élőlények}

Predikátumok:

- K(x) x kutya
- E(x) x ember
- R(x) x kertben él
- H(x) x házban él
- G(x, y) x gazdája y

Konstansok:

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: {élőlények}

Predikátumok:

- K(x) x kutya
- E(x) x ember
- R(x) x kertben él
- H(x) x házban él
- G(x, y) x gazdája y

Konstansok:

• ā - Zokni

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: {élőlények}

Predikátumok:

- K(x) x kutya
- E(x) x ember
- R(x) x kertben él
- H(x) x házban él
- G(x, y) x gazdája y

Konstansok:

- ā Zokni
- \bullet \bar{b} Norbi

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: {élőlények}

Predikátumok:

Függvények:

- K(x) x kutya
- E(x) x ember
- R(x) x kertben él
- H(x) x házban él
- G(x, y) x gazdája y

Konstansok:

- ā Zokni
- \bullet \bar{b} Norbi

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: {élőlények}

Predikátumok:

- K(x) x kutya
- E(x) x ember
- R(x) x kertben él
- H(x) x házban él
- G(x, y) x gazdája y

Konstansok:

- ā Zokni
- \bar{b} Norbi

Függvények:

• f(x) : x szomszédja

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: {élőlények}

Predikátumok:

- K(x) x kutya
- E(x) x ember
- R(x) x kertben él
- H(x) x házban él
- G(x, y) x gazdája y

Konstansok:

- ā Zokni
- \bar{b} Norbi

Függvények:

f(x) : x szomszédja

Formalizált állítások:

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: {élőlények}

Predikátumok:

- K(x) x kutya
- E(x) x ember
- R(x) x kertben él
- H(x) x házban él
- G(x, y) x gazdája y

Konstansok:

- ā Zokni
- \bar{b} Norbi

Függvények:

• f(x) : x szomszédja

Formalizált állítások:

1) $K(\bar{a}) \wedge R(\bar{a})$

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: {élőlények}

Predikátumok:

- K(x) x kutya
 - E(x) x ember
 - R(x) x kertben él
 - H(x) x házban él
 - G(x, y) x gazdája y

Konstansok:

- ā Zokni
- \bar{b} Norbi

Függvények:

• f(x) : x szomszédja

Formalizált állítások:

- 1) $K(\bar{a}) \wedge R(\bar{a})$
- 2) $K(f(\bar{a})) \wedge H(f(\bar{a}))$

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: {élőlények}

Predikátumok:

- K(x) x kutya
 - E(x) x ember
 - R(x) x kertben él
 - H(x) x házban él
 - G(x, y) x gazdája y

Konstansok:

- ā Zokni
- \bar{b} Norbi

Függvények:

• f(x) : x szomszédja

Formalizált állítások:

- 1) $K(\bar{a}) \wedge R(\bar{a})$
- 2) $K(f(\bar{a})) \wedge H(f(\bar{a}))$
- 3) $K(\bar{a}) \wedge E(\bar{b}) \wedge G(\bar{a}, \bar{b})$

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: {élőlények}

Predikátumok:

- K(x) x kutya
 - E(x) x ember
 - R(x) x kertben él
 - H(x) x házban él
 - G(x, y) x gazdája y

Konstansok:

- ā Zokni
- \bar{b} Norbi

Függvények:

f(x) : x szomszédja

Formalizált állítások:

- 1) $K(\bar{a}) \wedge R(\bar{a})$
- 2) $K(f(\bar{a})) \wedge H(f(\bar{a}))$
- 3) $K(\bar{a}) \wedge E(\bar{b}) \wedge G(\bar{a}, \bar{b})$
- 4) $\forall x(K(x) \supset \exists y(E(y) \land G(x,y)))$

- 1) Zokni kerti kutva.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: {élőlények}

Predikátumok:

- K(x) x kutya
 - E(x) x ember
 - R(x) x kertben él
 - H(x) x házban él
 - G(x, y) x gazdája y

Konstansok:

- \bar{a} Zokni
- \bullet \bar{h} Norbi

Függvények:

f(x): x szomszédja

Formalizált állítások:

- 1) $K(\bar{a}) \wedge R(\bar{a})$
- 2) $K(f(\bar{a})) \wedge H(f(\bar{a}))$
- 3) $K(\bar{a}) \wedge E(\bar{b}) \wedge G(\bar{a}, \bar{b})$
- 4) $\forall x (K(x) \supset \exists y (E(y) \land G(x, y)))$
- 5) $\exists x (K(x) \land H(x)) \land \exists x (K(x) \land R(x))$

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

}

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum:

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: $\{ \{ emberek \}, \{ kutyák \} \}$

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: { {emberek} , {kutyák} } Predikátumok:

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

```
Univerzum: { {emberek} , {kutyák} } Predikátumok:
```

• K(x : kutya) - x kertben él

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

```
Univerzum: { {emberek} , {kutyák} } Predikátumok:
```

- K(x : kutya) x kertben él
- H(x : kutya) x házban él

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

```
Univerzum: { {emberek} , {kutyák} } Predikátumok:
```

- K(x : kutya) x kertben él
- H(x : kutya) x házban él
- G(x : kutya, y : ember) x gazdája y

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

```
Univerzum: { {emberek}, {kutyák} } Predikátumok:
```

- K(x : kutya) x kertben él
- H(x : kutya) x házban él
- G(x : kutya, y : ember) x gazdája y

Konstansok:

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

```
Univerzum: { {emberek}, {kutyák} } Predikátumok:
```

- K(x : kutya) x kertben él
- H(x : kutya) x házban él
- G(x : kutya, y : ember) x gazdája y

Konstansok:

• \bar{a} : kutya - Zokni

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

```
Univerzum: { {emberek}, {kutyák} } Predikátumok:
```

- K(x : kutya) x kertben él
- H(x : kutya) x házban él
- G(x : kutya, y : ember) x gazdája y

Konstansok:

- \bar{a} : kutya Zokni
- \bullet \bar{b} : ember Norbi

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: { {emberek} , {kutyák} } Predikátumok:

- K(x : kutya) x kertben él
- H(x : kutya) x házban él
- G(x : kutya, y : ember) x gazdája y

Konstansok:

- \bar{a} : kutya Zokni
- \bullet \bar{b} : ember Norbi

Függvények:

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: { {emberek} , {kutyák} } Predikátumok:

redikatumok

- K(x : kutya) x kertben él
- H(x : kutya) x házban él
- G(x : kutya, y : ember) x gazdája y

Konstansok:

- \bar{a} : kutya Zokni
- \bullet \bar{b} : ember Norbi

Függvények:

 f(x : kutya) : kutya x kutya szomszédja

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: { {emberek} , {kutyák} } Predikátumok:

- K(x : kutya) x kertben él
- H(x : kutya) x házban él Formalizált állítások:
 - G(x : kutya, y : ember) x gazdája v

Konstansok:

- \bar{a} : kutya Zokni
- \bullet \bar{b} : ember Norbi

Függvények:

 f(x : kutya) : kutya x kutya szomszédja

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: { {emberek}, {kutyák} } Predikátumok:

- K(x : kutya) x kertben él
- H(x: kutya) x házban él

Formalizált állítások: G(x : kutya, y : ember) -1) K(ā)

x gazdája y

Konstansok:

- \bar{a} : kutya Zokni
- \bar{h} · ember Norbi

Függvények:

f(x : kutya) : kutya x kutya szomszédja

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: { {emberek}, {kutyák} } Predikátumok:

- K(x : kutya) x kertben él
- H(x: kutya) x házban él
- G(x : kutya, y : ember)
 - x gazdája v

Konstansok:

- \bar{a} : kutya Zokni
- \bar{h} · ember Norbi

Függvények:

f(x : kutya) : kutya x kutya szomszédja

Formalizált állítások:

- 1) $K(\bar{a})$
- 2) $H(f(\bar{a}))$

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: { {emberek} , {kutyák} } Predikátumok:

- K(x : kutya) x kertben él
- H(x : kutya) x házban él
- G(x : kutya, y : ember) x gazdája v
- Konstansok:
 - \bar{a} : kutya Zokni
 - \bullet \bar{b} : ember Norbi

Függvények:

f(x : kutya) : kutya x kutya szomszédja

Formalizált állítások:

- 1) K(ā)
- 2) $H(f(\bar{a}))$
- 3) $G(\bar{a},b)$

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: { {emberek}, {kutyák} } Predikátumok:

- K(x : kutya) x kertben él
- H(x: kutya) x házban él
- G(x : kutya, y : ember) x gazdája y

Konstansok:

- \bar{a} : kutya Zokni
- \bar{h} · ember Norbi

Függvények:

f(x : kutya) : kutya x kutya szomszédja

Formalizált állítások:

- 1) $K(\bar{a})$
- 2) $H(f(\bar{a}))$
- 3) $G(\bar{a},b)$
- 4) $\forall x \exists y G(x, y)$

- 1) Zokni kerti kutya.
- 2) Zokni szomszédjában lakó kutya házban lakik.
- 3) Zokni egy kutya, akinek gazdája Norbi (, aki ember).
- 4) Minden kutyának van gazdája (, aki ember).
- 5) Van olyan kutya, amelyik házban és van amelyik kertben lakik.

Univerzum: { {emberek} , {kutyák} } Predikátumok:

- K(x : kutya) x kertben él
- H(x: kutya) x házban él
- G(x : kutya, y : ember) x gazdája y

Konstansok:

- \bar{a} : kutya Zokni
- \bar{b} : ember Norbi

Függvények:

f(x : kutya) : kutya x kutya szomszédja

Formalizált állítások:

- 1) K(ā)
- 2) $H(f(\bar{a}))$
- 3) $G(\bar{a}, \bar{b})$
- 4) $\forall x \exists y G(x, y)$
- 5) $\exists x H(x) \land \exists x K(x)$

Értéktábla

Felépítése:

	prímkomponensek	
változókiértékelés	helyettesítési érték	helyettesítési érték

Értéktábla

Felépítése:

szabad változók	prímkomponensek	formula
változókiértékelés	helyettesítési érték	helyettesítési érték

Mit ad meg?

Értéktábla

Felépítése:

szabad változók	prímkomponensek	formula
változókiértékelés	helyettesítési érték	helyettesítési érték

Mit ad meg? Egy formula helyettesítési értékeit a különböző változó kiértékelések mellett, **1 interpretációban**.

- Változók előfordulása:
 - kötött: Ha kvantor által kötve van.
 - szabad: Ha nincs kvantor által kötve.

- Változók előfordulása:
 - kötött: Ha kvantor által kötve van.
 - szabad: Ha nincs kvantor által kötve.
- Változó típusa:
 - kötött: Ha minden előfordulása kötött.
 - szabad: Ha minden előfordulása szabad.
 - vegyes: Ha van kötött és szabad előfordulása is.

- Változók előfordulása:
 - kötött: Ha kvantor által kötve van.
 - szabad: Ha nincs kvantor által kötve.
- Változó típusa:
 - kötött: Ha minden előfordulása kötött.
 - szabad: Ha minden előfordulása szabad.
 - vegyes: Ha van kötött és szabad előfordulása is.

$$\forall x (P(x) \land Q(x,y)) \supset \forall y Q(z,y)$$

- Változók előfordulása:
 - kötött: Ha kvantor által kötve van.
 - szabad: Ha nincs kvantor által kötve.
- Változó típusa:
 - kötött: Ha minden előfordulása kötött.
 - szabad: Ha minden előfordulása szabad.
 - vegyes: Ha van kötött és szabad előfordulása is.

$$\forall x (P(x) \land Q(x,y)) \supset \forall y Q(z,y)$$

► X:

- Változók előfordulása:
 - kötött: Ha kvantor által kötve van.
 - szabad: Ha nincs kvantor által kötve.
- Változó típusa:
 - kötött: Ha minden előfordulása kötött.
 - szabad: Ha minden előfordulása szabad.
 - vegyes: Ha van kötött és szabad előfordulása is.

$$\forall x (P(x) \land Q(x,y)) \supset \forall y Q(z,y)$$

- ► X:
- * 1. előfordulása: kötött

- Változók előfordulása:
 - kötött: Ha kvantor által kötve van.
 - szabad: Ha nincs kvantor által kötve.
- Változó típusa:
 - kötött: Ha minden előfordulása kötött.
 - szabad: Ha minden előfordulása szabad.
 - vegyes: Ha van kötött és szabad előfordulása is.

$$\forall x (P(x) \land Q(x,y)) \supset \forall y Q(z,y)$$

- ► X:
- ★ 1. előfordulása: kötött
- ★ 2. előfordulása: kötött

- Változók előfordulása:
 - kötött: Ha kvantor által kötve van.
 - szabad: Ha nincs kvantor által kötve.
- Változó típusa:
 - kötött: Ha minden előfordulása kötött.
 - szabad: Ha minden előfordulása szabad.
 - vegyes: Ha van kötött és szabad előfordulása is.

$$\forall x (P(x) \land Q(x,y)) \supset \forall y Q(z,y)$$

- x: kötött
 - ★ 1. előfordulása: kötött
 - ★ 2. előfordulása: kötött

- Változók előfordulása:
 - kötött: Ha kvantor által kötve van.
 - szabad: Ha nincs kvantor által kötve.
- Változó típusa:
 - kötött: Ha minden előfordulása kötött.
 - szabad: Ha minden előfordulása szabad.
 - vegyes: Ha van kötött és szabad előfordulása is.

$$\forall x (P(x) \land Q(x,y)) \supset \forall y Q(z,y)$$

- - ★ 1. előfordulása: kötött
 - * 2. előfordulása: kötött

- Változók előfordulása:
 - kötött: Ha kvantor által kötve van.
 - szabad: Ha nincs kvantor által kötve.
- Változó típusa:
 - kötött: Ha minden előfordulása kötött.
 - szabad: Ha minden előfordulása szabad.
 - vegyes: Ha van kötött és szabad előfordulása is.

$$\forall x (P(x) \land Q(x,y)) \supset \forall y Q(z,y)$$

- - ★ 1. előfordulása: kötött

* 1. előfordulása:

★ 2. előfordulása: kötött

szabad

- Változók előfordulása:
 - kötött: Ha kvantor által kötve van.
 - szabad: Ha nincs kvantor által kötve.
- Változó típusa:
 - kötött: Ha minden előfordulása kötött.
 - szabad: Ha minden előfordulása szabad.
 - vegyes: Ha van kötött és szabad előfordulása is.

y:

$$\forall x (P(x) \land Q(x,y)) \supset \forall y Q(z,y)$$

- x: kötött
 - * 1 előfordulása: kötött
 - * 2. előfordulása: kötött

- ★ 1 előfordulása:
 - szabad
- 2 előfordulása: kötött

- Változók előfordulása:
 - kötött: Ha kvantor által kötve van.
 - szabad: Ha nincs kvantor által kötve.
- Változó típusa:
 - kötött: Ha minden előfordulása kötött.
 - szabad: Ha minden előfordulása szabad.
 - vegyes: Ha van kötött és szabad előfordulása is.

$$\forall x (P(x) \land Q(x,y)) \supset \forall y Q(z,y)$$

- x: kötött
 - ★ 1. előfordulása: kötött
 - ★ 2. előfordulása: kötött
- y: vegyes
 - ★ 1. előfordulása: szabad
 - * 2. előfordulása: kötött

- Változók előfordulása:
 - kötött: Ha kvantor által kötve van.
 - szabad: Ha nincs kvantor által kötve.
- Változó típusa:
 - kötött: Ha minden előfordulása kötött.
 - szabad: Ha minden előfordulása szabad.
 - vegyes: Ha van kötött és szabad előfordulása is.

$$\forall x (P(x) \land Q(x,y)) \supset \forall y Q(z,y)$$

* 1 alőfordulása: kötött

x: kötött

- ★ 1. előfordulása: kötött
- * 2. előfordulása: kötött
- y: vegyes
 - ★ 1. előfordulása: szabad
 - * 2. előfordulása: kötött

7:

- Változók előfordulása:
 - kötött: Ha kvantor által kötve van.
 - szabad: Ha nincs kvantor által kötve.
- Változó típusa:
 - kötött: Ha minden előfordulása kötött.
 - szabad: Ha minden előfordulása szabad.
 - vegyes: Ha van kötött és szabad előfordulása is.

$$\forall x (P(x) \land Q(x,y)) \supset \forall y Q(z,y)$$

± 1 -1"f---1-14--- 1-"±"

x: kötött

- ★ 1. előfordulása: kötött
- * 2. előfordulása: kötött
- y: vegyes
 - 1. előfordulása: szabad
 - * 2. előfordulása: kötött

- ► Z:
 - ★ 1. ef.: szabad

- Változók előfordulása:
 - kötött: Ha kvantor által kötve van.
 - szabad: Ha nincs kvantor által kötve.
- Változó típusa:
 - kötött: Ha minden előfordulása kötött.
 - szabad: Ha minden előfordulása szabad.
 - vegyes: Ha van kötött és szabad előfordulása is.

$$\forall x (P(x) \land Q(x,y)) \supset \forall y Q(z,y)$$

- x: kötött
 - ★ 1. előfordulása: kötött
 - ★ 2. előfordulása: kötött
- y: vegyes
 - 1. előfordulása: szabad
 - * 2. előfordulása: kötött
- z: szabad
 - ★ 1. ef.: szabad

Legkisebb részei a formulának, amelyhez "helyes" igazságérték társítható. Ezek egy része atomi formula, másik része kvantált formula.

•
$$\forall x (P(x) \land Q(x,y)) \supset \forall y Q(z,y) \supset P(\bar{a}) \lor Q(w)$$

•
$$\forall x (P(x) \land Q(x,y)) \supset \forall y Q(z,y) \supset P(\bar{a}) \lor Q(w)$$

prímkomponensek:
$$\forall x (P(x) \land Q(x,y)), \forall y Q(z,y), P(\bar{a}), Q(w)$$

•
$$\forall x (P(x) \land Q(x,y)) \supset \forall y Q(z,y) \supset P(\bar{a}) \lor Q(w)$$

prímkomponensek:
$$\forall x (P(x) \land Q(x,y)), \forall y Q(z,y), P(\bar{a}), Q(w)$$

•
$$\forall z (P(x) \land \forall x (Q(x,y) \supset P(z))) \supset \forall y Q(z,y) \supset P(\bar{a})$$

•
$$\forall x (P(x) \land Q(x,y)) \supset \forall y Q(z,y) \supset P(\bar{a}) \lor Q(w)$$

prímkomponensek:
$$\forall x (P(x) \land Q(x,y)), \forall y Q(z,y), P(\bar{a}), Q(w)$$

•
$$\forall z (P(x) \land \forall x (Q(x,y) \supset P(z))) \supset \forall y Q(z,y) \supset P(\bar{a})$$

prímkomponensek:
$$\forall z (P(x) \land \forall x (Q(x,y) \supset P(x))), \forall y Q(z,y), P(\bar{a})$$

- $\forall x (P(x) \land Q(x,y)) \supset \forall y Q(z,y) \supset P(\bar{a}) \lor Q(w)$ prímkomponensek: $\forall x (P(x) \land Q(x,y)), \forall y Q(z,y), P(\bar{a}), Q(w)$
- $\forall z (P(x) \land \forall x (Q(x,y) \supset P(z))) \supset \forall y Q(z,y) \supset P(\bar{a})$ prímkomponensek: $\forall z (P(x) \land \forall x (Q(x,y) \supset P(x))), \ \forall y Q(z,y), \ P(\bar{a})$
- $\forall z (\forall x (P(x) \land Q(x,y)) \supset \forall y Q(z,y) \supset P(\bar{a}) \lor Q(\bar{a}))$

Legkisebb részei a formulának, amelyhez "helyes" igazságérték társítható. Ezek egy része atomi formula, másik része kvantált formula.

•
$$\forall x (P(x) \land Q(x,y)) \supset \forall y Q(z,y) \supset P(\bar{a}) \lor Q(w)$$

prímkomponensek: $\forall x (P(x) \land Q(x,y)), \forall y Q(z,y), P(\bar{a}), Q(w)$

•
$$\forall z (P(x) \land \forall x (Q(x,y) \supset P(z))) \supset \forall y Q(z,y) \supset P(\bar{a})$$

prímkomponensek:
$$\forall z (P(x) \land \forall x (Q(x,y) \supset P(x))), \ \forall y Q(z,y), \ P(\bar{a})$$

•
$$\forall z (\forall x (P(x) \land Q(x,y)) \supset \forall y Q(z,y) \supset P(\bar{a}) \lor Q(\bar{a}))$$

prímkomponensek: maga a formula

Kvantált formulák értéke

Kvantált formulák értéke

Univerzálisan kvantált formula - egy tulajdonság az univerzum minden elemére teljesül. pl.: $\forall x P(x)$

Univerzálisan kvantált formula - egy tulajdonság az univerzum minden elemére teljesül. pl.: $\forall x P(x)$

Egzisztenciálisan kvantált formula - van olyan elem az univerzumban, amire a tulajdonság teljesül. pl.: $\exists x P(x)$

Univerzálisan kvantált formula - egy tulajdonság az univerzum minden elemére teljesül. pl.: $\forall x P(x)$

Egzisztenciálisan kvantált formula - van olyan elem az univerzumban, amire a tulajdonság teljesül. pl.: $\exists x P(x)$

Legyen $U = \{0, 1, 2\}$ és $|P(x)|^I = \{0, 2\}$

Univerzálisan kvantált formula - egy tulajdonság az univerzum minden elemére teljesül. pl.: $\forall x P(x)$

Egzisztenciálisan kvantált formula - van olyan elem az univerzumban, amire a tulajdonság teljesül. pl.: $\exists x P(x)$

Legyen
$$U = \{0, 1, 2\}$$
 és $|P(x)|^I = \{0, 2\}$

Ekkor

Univerzálisan kvantált formula - egy tulajdonság az univerzum minden elemére teljesül. pl.: $\forall x P(x)$

Egzisztenciálisan kvantált formula - van olyan elem az univerzumban, amire a tulajdonság teljesül. pl.: $\exists x P(x)$

Legyen
$$U = \{0, 1, 2\}$$
 és $|P(x)|^I = \{0, 2\}$

Ekkor

$$|\forall x P(x)|^{I} = |P(0)|^{I} \wedge |P(1)|^{I} \wedge |P(2)|^{I} = i \wedge h \wedge i = h$$

Logika

Univerzálisan kvantált formula - egy tulajdonság az univerzum minden elemére teljesül. pl.: $\forall x P(x)$

Egzisztenciálisan kvantált formula - van olyan elem az univerzumban, amire a tulajdonság teljesül. pl.: $\exists x P(x)$

Legyen
$$U = \{0, 1, 2\}$$
 és $|P(x)|^I = \{0, 2\}$

Ekkor

$$|\forall x P(x)|^{I} = |P(0)|^{I} \wedge |P(1)|^{I} \wedge |P(2)|^{I} = i \wedge h \wedge i = h$$

$$|\exists x P(x)|^I = |P(0)|^I \vee |P(1)|^I \vee |P(2)|^I = i \vee h \vee i = i$$

Logika

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x,y) \land Q(\bar{a}) \lor P(\bar{a},z)$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^{I} - (x < y), |Q(x)|^{I} - (x == 0), |\bar{a}|^{I} = 0$$

16/28

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x,y) \land Q(\bar{a}) \lor P(\bar{a},z)$

A következő interpretáció alapján:

$$U = \{0,1\}, |P(x,y)|^{I} - (x < y), |Q(x)|^{I} - (x == 0), |\bar{a}|^{I} = 0$$

z

16/28

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x,y) \land Q(\bar{a}) \lor P(\bar{a},z)$

A következő interpretáció alapján:

$$U = \{0,1\}, |P(x,y)|^{I} - (x < y), |Q(x)|^{I} - (x == 0), |\bar{a}|^{I} = 0$$

$$z \parallel \forall x \exists y P(x, y) (1) \mid$$

16/28

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x,y) \land Q(\bar{a}) \lor P(\bar{a},z)$

A következő interpretáció alapján:

$$U = \{0,1\}, |P(x,y)|^I - (x < y), |Q(x)|^I - (x == 0), |\bar{a}|^I = 0$$

$$z \parallel \forall x \exists y P(x, y) (1) \mid Q(\bar{a}) (2) \mid$$

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x,y) \land Q(\bar{a}) \lor P(\bar{a},z)$

A következő interpretáció alapján:

$$U = \{0,1\}, |P(x,y)|^I - (x < y), |Q(x)|^I - (x == 0), |\bar{a}|^I = 0$$

$$z \parallel \forall x \exists y P(x, y) (1) \mid Q(\bar{a}) (2) \mid P(\bar{a}, z) (3) \parallel$$

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x,y) \land Q(\bar{a}) \lor P(\bar{a},z)$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^{l} - (x < y), |Q(x)|^{l} - (x == 0), |\bar{a}|^{l} = 0$$

$$z \parallel \forall x \exists y P(x, y) \ (1) \mid Q(\bar{a}) \ (2) \mid P(\bar{a}, z) \ (3) \parallel 1 \land 2 \lor 3$$

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x,y) \land Q(\bar{a}) \lor P(\bar{a},z)$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^{l} - (x < y), |Q(x)|^{l} - (x == 0), |\bar{a}|^{l} = 0$$

Logika

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x,y) \land Q(\bar{a}) \lor P(\bar{a},z)$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^{l} - (x < y), |Q(x)|^{l} - (x == 0), |\bar{a}|^{l} = 0$$

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x,y) \land Q(\bar{a}) \lor P(\bar{a},z)$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^{l} - (x < y), |Q(x)|^{l} - (x == 0), |\bar{a}|^{l} = 0$$

$$\forall x \exists y P(x, y) =$$

Logika

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x,y) \land Q(\bar{a}) \lor P(\bar{a},z)$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^{l} - (x < y), |Q(x)|^{l} - (x == 0), |\bar{a}|^{l} = 0$$

$$\forall x \exists y P(x, y) = \exists y P(0, y) \land \exists y P(1, y) =$$

Logika

1 Feladat

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x, y) \land Q(\bar{a}) \lor P(\bar{a}, z)$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^{l} - (x < y), |Q(x)|^{l} - (x == 0), |\bar{a}|^{l} = 0$$

$$U = \{0, 1\}, |P(x, y)|^{I} - (x < y), |Q(x)|^{I} - (x == 0), |\bar{a}|^{I} = 0$$

$$\frac{z \parallel \forall x \exists y P(x, y) \ (1) \mid Q(\bar{a}) \ (2) \mid P(\bar{a}, z) \ (3) \parallel 1 \land 2 \lor 3}{0 \parallel}$$

$$1 \parallel$$

$$\forall x \exists y P(x, y) = \exists y P(0, y) \land \exists y P(1, y) = (P(0, 0) \lor P(0, 1)) \land (P(1, 0) \lor P(1, 1)) =$$

1 Feladat

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x, y) \land Q(\bar{a}) \lor P(\bar{a}, z)$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^{l} - (x < y), |Q(x)|^{l} - (x == 0), |\bar{a}|^{l} = 0$$

$$U = \{0, 1\}, |P(x, y)|^{I} - (x < y), |Q(x)|^{I} - (x == 0), |\bar{a}|^{I} = 0$$

$$\frac{z \parallel \forall x \exists y P(x, y) \ (1) \mid Q(\bar{a}) \ (2) \mid P(\bar{a}, z) \ (3) \parallel 1 \land 2 \lor 3}{0 \parallel}$$

$$1 \parallel$$

$$\forall x \exists y P(x, y) = \exists y P(0, y) \land \exists y P(1, y) = (P(0, 0) \lor P(0, 1)) \land (P(1, 0) \lor P(1, 1)) = (h \lor i) \land (h \lor h) = (P(0, 0) \lor P(0, 1)) \land (P(0, 0) \lor P(0, 1)) = (h \lor i) \land (h \lor h) = (h \lor h) \land$$

2021/2022 1. félév 16 / 28 Logika

1 Feladat

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x, y) \land Q(\bar{a}) \lor P(\bar{a}, z)$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^{l} - (x < y), |Q(x)|^{l} - (x == 0), |\bar{a}|^{l} = 0$$

$$U = \{0, 1\}, |P(x, y)|^{I} - (x < y), |Q(x)|^{I} - (x == 0), |\bar{a}|^{I} = 0$$

$$\frac{z \parallel \forall x \exists y P(x, y) \ (1) \mid Q(\bar{a}) \ (2) \mid P(\bar{a}, z) \ (3) \parallel 1 \land 2 \lor 3}{0 \parallel}$$

$$1 \parallel$$

$$\forall x \exists y P(x, y) = \exists y P(0, y) \land \exists y P(1, y) = (P(0, 0) \lor P(0, 1)) \land (P(1, 0) \lor P(1, 1)) = (h \lor i) \land (h \lor h) = h$$

Logika

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x, y) \land Q(\bar{a}) \lor P(\bar{a}, z)$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^{l} - (x < y), |Q(x)|^{l} - (x == 0), |\bar{a}|^{l} = 0$$

$$U = \{0,1\}, |P(x,y)|^{I} - (x < y), |Q(x)|^{I} - (x == 0), |\bar{a}|^{I} = 0$$

$$\frac{z \parallel \forall x \exists y P(x,y) \ (1) \mid Q(\bar{a}) \ (2) \mid P(\bar{a},z) \ (3) \parallel 1 \land 2 \lor 3}{0 \parallel h}$$

$$1 \parallel h$$

$$\forall x \exists y P(x, y) = \exists y P(0, y) \land \exists y P(1, y) = (P(0, 0) \lor P(0, 1)) \land (P(1, 0) \lor P(1, 1)) = (h \lor i) \land (h \lor h) = h$$

Logika

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x,y) \land Q(\bar{a}) \lor P(\bar{a},z)$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^{l} - (x < y), |Q(x)|^{l} - (x == 0), |\bar{a}|^{l} = 0$$

Z	$\forall x \exists y P(x,y) (1)$	$Q(\bar{a})$ (2)	$P(\bar{a},z)$ (3) $ 1 \wedge 2 \vee 3$
0	h	i	
1	h	i	

$$\forall x \exists y P(x, y) = \exists y P(0, y) \land \exists y P(1, y) = (P(0, 0) \lor P(0, 1)) \land (P(1, 0) \lor P(1, 1)) = (h \lor i) \land (h \lor h) = h$$

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x,y) \land Q(\bar{a}) \lor P(\bar{a},z)$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^{l} - (x < y), |Q(x)|^{l} - (x == 0), |\bar{a}|^{l} = 0$$

Z	$\forall x \exists y P(x,y) (1)$	$Q(\bar{a})$ (2)	$P(\bar{a},z)$ (3)	1 \lambda 2 \lor 3
0	h	i	h	
1	h	i	,	

$$\forall x \exists y P(x, y) = \exists y P(0, y) \land \exists y P(1, y) = (P(0, 0) \lor P(0, 1)) \land (P(1, 0) \lor P(1, 1)) = (h \lor i) \land (h \lor h) = h$$

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x,y) \land Q(\bar{a}) \lor P(\bar{a},z)$

A következő interpretáció alapján:

Logika

$$U = \{0, 1\}, |P(x, y)|^{l} - (x < y), |Q(x)|^{l} - (x == 0), |\bar{a}|^{l} = 0$$

Z	$\forall x \exists y P(x, y) (1)$	$Q(\bar{a})$ (2)	$P(\bar{a},z)$ (3)	1 \(2 \times 3 \)
0	h	i	h	
1	h	i	i	

$$\forall x \exists y P(x, y) = \exists y P(0, y) \land \exists y P(1, y) = (P(0, 0) \lor P(0, 1)) \land (P(1, 0) \lor P(1, 1)) = (h \lor i) \land (h \lor h) = h$$

16/28

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x,y) \land Q(\bar{a}) \lor P(\bar{a},z)$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^{l} - (x < y), |Q(x)|^{l} - (x == 0), |\bar{a}|^{l} = 0$$

Z	$\forall x \exists y P(x, y) (1)$	$Q(\bar{a})$ (2)	$P(\bar{a},z)$ (3)	$1 \land 2 \lor 3$
0	h	i	h	h
1	h	i	i	

$$\forall x \exists y P(x, y) = \exists y P(0, y) \land \exists y P(1, y) = (P(0, 0) \lor P(0, 1)) \land (P(1, 0) \lor P(1, 1)) = (h \lor i) \land (h \lor h) = h$$

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x,y) \land Q(\bar{a}) \lor P(\bar{a},z)$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^{l} - (x < y), |Q(x)|^{l} - (x == 0), |\bar{a}|^{l} = 0$$

Z	$\forall x \exists y P(x, y) (1)$	$Q(\bar{a})$ (2)	$P(\bar{a},z)$ (3)	$1 \land 2 \lor 3$
0	h	i	h	h
1	h	i	i	i

$$\forall x \exists y P(x, y) = \exists y P(0, y) \land \exists y P(1, y) = (P(0, 0) \lor P(0, 1)) \land (P(1, 0) \lor P(1, 1)) = (h \lor i) \land (h \lor h) = h$$

• **Kielégíthető** egy formula, ha van olyan interpretáció és változókiértékelés, ami kielégíti.

 Kielégíthető egy formula, ha van olyan interpretáció és változókiértékelés, ami kielégíti.

Másképp: Van olyan értéktábla és annak sora, ahol igaz a formula.

- Kielégíthető egy formula, ha van olyan interpretáció és változókiértékelés, ami kielégíti.
 - Másképp: Van olyan értéktábla és annak sora, ahol igaz a formula.
- **Kielégíthetetlen** egy formula, ha nincs olyan interpretáció és változókiértékelés, ami kielégítené.

 Kielégíthető egy formula, ha van olyan interpretáció és változókiértékelés, ami kielégíti.

Másképp: Van olyan értéktábla és annak sora, ahol igaz a formula.

• **Kielégíthetetlen** egy formula, ha nincs olyan interpretáció és változókiértékelés, ami kielégítené.

Másképp: Minden értéktábla minden sorában hamis a helyettesítési értéke a formulának.

- Kielégíthető egy formula, ha van olyan interpretáció és változókiértékelés, ami kielégíti.
 - Másképp: Van olyan értéktábla és annak sora, ahol igaz a formula.
- **Kielégíthetetlen** egy formula, ha nincs olyan interpretáció és változókiértékelés, ami kielégítené.
 - Másképp: Minden értéktábla minden sorában hamis a helyettesítési értéke a formulának.
- Logikai törvény egy formula, ha minden interpretáció és változókiértékelés kielégíti.

 Kielégíthető egy formula, ha van olyan interpretáció és változókiértékelés, ami kielégíti.

Másképp: Van olyan értéktábla és annak sora, ahol igaz a formula.

• **Kielégíthetetlen** egy formula, ha nincs olyan interpretáció és változókiértékelés, ami kielégítené.

Másképp: Minden értéktábla minden sorában hamis a helyettesítési értéke a formulának.

 Logikai törvény egy formula, ha minden interpretáció és változókiértékelés kielégíti.

Másképp: Minden értéktábla minden sorában igaz a formula helyettesítési értéke.

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x, y) \land Q(\bar{a}) \lor P(\bar{a}, z)$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^{I} - (x < y), |Q(x)|^{I} - (x == 0), |\bar{a}|^{I} = 0$$

Z	$\forall x \exists y P(x,y) (1)$	$Q(\bar{a})$ (2)	$P(\bar{a},z)$ (3)	$1 \land 2 \lor 3$
0	h	i	h	h
1	h	i	i	i

Mit tudunk leolvasni a szemantikus tulajdonságokról?

Szemantikus tulajdonságok:

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x, y) \land Q(\bar{a}) \lor P(\bar{a}, z)$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^{l} - (x < y), |Q(x)|^{l} - (x == 0), |\bar{a}|^{l} = 0$$

Z	$\forall x \exists y P(x, y) (1)$	$Q(\bar{a})$ (2)	$P(\bar{a},z)$ (3)	$1 \land 2 \lor 3$
0	h	i	h	h
1	h	i	i	i

Mit tudunk leolvasni a szemantikus tulajdonságokról?

Szemantikus tulajdonságok:

Kielégíthető - az adott interpretációban volt változókiértékelés, ahol igaz.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

18 / 28

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x, y) \land Q(\bar{a}) \lor P(\bar{a}, z)$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^{l} - (x < y), |Q(x)|^{l} - (x == 0), |\bar{a}|^{l} = 0$$

Z	$\forall x \exists y P(x, y) (1)$	$Q(\bar{a})$ (2)	$P(\bar{a},z)$ (3)	$1 \land 2 \lor 3$
0	h	i	h	h
1	h	i	i	i

Mit tudunk leolvasni a szemantikus tulajdonságokról?

Szemantikus tulajdonságok:

Kielégíthető - az adott interpretációban volt változókiértékelés, ahol igaz.

Nem kielégíthetetlen

4□ > 4□ > 4 = > 4 = > = 90

Készítsünk értéktáblát a következő formulához: $\forall x \exists y P(x, y) \land Q(\bar{a}) \lor P(\bar{a}, z)$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^{l} - (x < y), |Q(x)|^{l} - (x == 0), |\bar{a}|^{l} = 0$$

Z	$\forall x \exists y P(x, y) (1)$	$Q(\bar{a})$ (2)	$P(\bar{a},z)$ (3)	$1 \land 2 \lor 3$
0	h	i	h	h
1	h	i	i	i

Mit tudunk leolvasni a szemantikus tulajdonságokról?

Szemantikus tulajdonságok:

Kielégíthető - az adott interpretációban volt változókiértékelés, ahol igaz.

Nem kielégíthetetlen

Nem logikai törvény - Volt olyan változókiértékelés, ahol hamis.

イロト (個) (重) (重) (型) のQの

Logika Elsőrendű logika alapjai

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

$$x \parallel$$

Készítsünk értéktáblát a következő formulához:

$$\exists z \exists y (P(z,y) \land Q(f(\bar{a}))) \supset \forall v P(v,\bar{a}) \land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

$$x \parallel \exists z \exists y (P(z,y) \land Q(f(\bar{a}))) (1) \mid$$

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

$$x \parallel \exists z \exists y (P(z,y) \land Q(f(\bar{a}))) \ (1) \mid \forall v P(v,\bar{a}) \ (2) \mid$$

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

$$x \parallel \exists z \exists y (P(z,y) \land Q(f(\bar{a}))) \ (1) \mid \forall v P(v,\bar{a}) \ (2) \mid P(f(x),\bar{b}) \ (3) \parallel$$

19 / 28

Logika Elsőrendű logika alapjai 2021/2022 1. félév

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

$$x \parallel \exists z \exists y (P(z,y) \land Q(f(\bar{a}))) \ (1) \mid \forall v P(v,\bar{a}) \ (2) \mid P(f(x),\bar{b}) \ (3) \parallel 1 \supset (2 \land 3)$$

Készítsünk értéktáblát a következő formulához:

$$\exists z \exists y (P(z,y) \land Q(f(\bar{a}))) \supset \forall v P(v,\bar{a}) \land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

$$\frac{x \parallel \exists z \exists y (P(z,y) \land Q(f(\bar{a}))) \ (1) \mid \forall v P(v,\bar{a}) \ (2) \mid P(f(x),\bar{b}) \ (3) \parallel 1 \supset (2 \land 3)}{1 \parallel}$$

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

Készítsünk értéktáblát a következő formulához:

$$\exists z \exists y (P(z,y) \land Q(f(\bar{a}))) \supset \forall v P(v,\bar{a}) \land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|'-x==y,|Q(x)|'-x$$
 páros, $|ar{a}|'=1,|ar{b}|'=3,|f(x)|'-x$ rákövetkezője univerzumon belü

$$U = \{1, 2, 3\}, |P(x, y)|^I - x == y, |Q(x)|^I - x \text{ páros,}$$

$$|\bar{a}|^I = 1, |\bar{b}|^I = 3, |f(x)|^I - x \text{ rákövetkezője univerzumon belül}$$

$$\frac{x \parallel \exists z \exists y (P(z, y) \land Q(f(\bar{a}))) \ (1) \parallel \forall v P(v, \bar{a}) \ (2) \parallel P(f(x), \bar{b}) \ (3) \parallel 1 \supset (2 \land 3)}{1 \parallel}$$

$$\frac{1}{2} \parallel$$

$$\frac{1}{3} \parallel$$

$$\exists z \exists y (P(z,y) \land Q(f(\bar{a}))) =$$

Feladat

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|'-x==y,|Q(x)|'-x$$
 páros, $ar{a}|'=1,|ar{b}|'=3,|f(x)|'-x$ rákövetkezője univerzumon belül

$$U = \{1, 2, 3\}, |P(x, y)|^I - x == y, |Q(x)|^I - x \text{ páros,}$$

$$|\bar{a}|^I = 1, |\bar{b}|^I = 3, |f(x)|^I - x \text{ rákövetkezője univerzumon belül}$$

$$\frac{x \parallel \exists z \exists y (P(z, y) \land Q(f(\bar{a}))) \ (1) \parallel \forall v P(v, \bar{a}) \ (2) \parallel P(f(x), \bar{b}) \ (3) \parallel 1 \supset (2 \land 3)}{1 \parallel}$$

$$\frac{1}{2} \parallel$$

$$\frac{1}{3} \parallel$$

$$\exists z \exists y (P(z,y) \land Q(f(\bar{a}))) = \\ \exists y (P(1,y) \land Q(f(\bar{a}))) \lor \exists y (P(2,y) \land Q(f(\bar{a}))) \lor \exists y (P(3,y) \land Q(f(\bar{a}))) = \\ \exists z \exists y (P(z,y) \land Q(f(\bar{a}))) \lor \exists y (P(z,y) \land Q(f(\bar{a}))) \lor \exists y (P(z,y) \land Q(f(\bar{a}))) = \\ \exists z \exists y (P(z,y) \land Q(f(\bar{a}))) \lor \exists y (P(z,y$$

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

$$\exists z \exists y (P(z,y) \land Q(f(\bar{a}))) = \\ \exists y (P(1,y) \land Q(f(\bar{a}))) \lor \exists y (P(2,y) \land Q(f(\bar{a}))) \lor \exists y (P(3,y) \land Q(f(\bar{a}))) = \\ [(P(1,1) \land Q(f(\bar{a}))) \lor (P(1,2) \land Q(f(\bar{a}))) \lor (P(1,3) \land Q(f(\bar{a})))] \lor$$

Logika

19 / 28

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

$$\exists z \exists y (P(z,y) \land Q(f(\bar{a}))) = \\ \exists y (P(1,y) \land Q(f(\bar{a}))) \lor \exists y (P(2,y) \land Q(f(\bar{a}))) \lor \exists y (P(3,y) \land Q(f(\bar{a}))) = \\ [(P(1,1) \land Q(f(\bar{a}))) \lor (P(1,2) \land Q(f(\bar{a}))) \lor (P(1,3) \land Q(f(\bar{a})))] \lor \\ [(P(2,1) \land Q(f(\bar{a}))) \lor (P(2,2) \land Q(f(\bar{a}))) \lor (P(2,3) \land Q(f(\bar{a})))] \lor$$

◆ロト ◆団ト ◆草ト ◆草ト 草 めなぐ

19 / 28

Logika Elsőrendű logika alapjai 2021/2022 1. félév

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

$$\exists z \exists y (P(z,y) \land Q(f(\bar{a}))) = \\ \exists y (P(1,y) \land Q(f(\bar{a}))) \lor \exists y (P(2,y) \land Q(f(\bar{a}))) \lor \exists y (P(3,y) \land Q(f(\bar{a}))) = \\ [(P(1,1) \land Q(f(\bar{a}))) \lor (P(1,2) \land Q(f(\bar{a}))) \lor (P(1,3) \land Q(f(\bar{a})))] \lor \\ [(P(2,1) \land Q(f(\bar{a}))) \lor (P(2,2) \land Q(f(\bar{a}))) \lor (P(2,3) \land Q(f(\bar{a})))] \lor \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,3) \land Q(f(\bar{a})))] = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,3) \land Q(f(\bar{a})))] = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,3) \land Q(f(\bar{a})))] = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,3) \land Q(f(\bar{a})))] = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,3) \land Q(f(\bar{a})))] = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,3) \land Q(f(\bar{a})))] = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,3) \land Q(f(\bar{a})))] = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,3) \land Q(f(\bar{a})))] = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,3) \land Q(f(\bar{a})))] = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,3) \land Q(f(\bar{a})))] = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,3) \land Q(f(\bar{a})))) = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,3) \land Q(f(\bar{a}))))] = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,3) \land Q(f(\bar{a}))))] = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))))] = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))))] = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))))] = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))))] = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))))] = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))))] = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))))] = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))))] = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))))] = \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))))] = \\ [(P(3,1) \land Q$$

Logika Elsőrendű I

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

```
\exists z \exists y (P(z,y) \land Q(f(\bar{a}))) = \\ \exists y (P(1,y) \land Q(f(\bar{a}))) \lor \exists y (P(2,y) \land Q(f(\bar{a}))) \lor \exists y (P(3,y) \land Q(f(\bar{a}))) = \\ [(P(1,1) \land Q(f(\bar{a}))) \lor (P(1,2) \land Q(f(\bar{a}))) \lor (P(1,3) \land Q(f(\bar{a})))] \lor \\ [(P(2,1) \land Q(f(\bar{a}))) \lor (P(2,2) \land Q(f(\bar{a}))) \lor (P(2,3) \land Q(f(\bar{a})))] \lor \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,3) \land Q(f(\bar{a})))] = i
```

10 + 4A + 4B + 4B + B + 990

Logika Elsőrendű

Készítsünk értéktáblát a következő formulához:

$$\exists z \exists y (P(z,y) \land Q(f(\bar{a}))) \supset \forall v P(v,\bar{a}) \land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U = \{1, 2, 3\}, |P(x, y)|^l - x == y, |Q(x)|^l - x$$
 páros, $|\bar{a}|^l = 1, |\bar{b}|^l = 3, |f(x)|^l - x$ rákövetkezője univerzumon belül

X	$\exists z \exists y (P(z,y) \land Q(f(\bar{a}))) (1)$	$\forall v P(v, \bar{a}) (2)$	$P(f(x), \overline{b})$ (3)	$1\supset (2\wedge 3)$
1	i			
2	i			
3	i			

$$\exists z \exists y (P(z,y) \land Q(f(\bar{a}))) = \\ \exists y (P(1,y) \land Q(f(\bar{a}))) \lor \exists y (P(2,y) \land Q(f(\bar{a}))) \lor \exists y (P(3,y) \land Q(f(\bar{a}))) = \\ [(P(1,1) \land Q(f(\bar{a}))) \lor (P(1,2) \land Q(f(\bar{a}))) \lor (P(1,3) \land Q(f(\bar{a})))] \lor \\ [(P(2,1) \land Q(f(\bar{a}))) \lor (P(2,2) \land Q(f(\bar{a}))) \lor (P(2,3) \land Q(f(\bar{a})))] \lor \\ [(P(3,1) \land Q(f(\bar{a}))) \lor (P(3,2) \land Q(f(\bar{a}))) \lor (P(3,3) \land Q(f(\bar{a})))] = i$$

イロト 4回 ト 4 恵 ト 4 恵 ト ・ 恵 ・ 夕久 (や)

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

_ x	$\exists z\exists y(P(z,y)\wedge Q(f(\bar{a})))$ (1)	$\forall v P(v, \bar{a}) (2)$	$P(f(x), \bar{b})$ (3)	$1\supset (2\wedge 3)$
1	i			
2	i			
3	i			

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

_ x	$\exists z\exists y(P(z,y)\wedge Q(f(\bar{a})))$ (1)	$\forall v P(v, \bar{a})$ (2)	$P(f(x), \bar{b})$ (3)	$1\supset (2\wedge 3)$
1	i			
2	i			
3	i			

$$\forall v P(v, \bar{a}) =$$

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

_ x	$\exists z\exists y(P(z,y)\wedge Q(f(\bar{a})))$ (1)	$\forall v P(v, \bar{a})$ (2)	$P(f(x), \bar{b})$ (3)	$1\supset (2\wedge 3)$
1	i			
2	i			
3	i			

$$\forall v P(v, \bar{a}) = P(1, \bar{a}) \wedge P(2, \bar{a}) \wedge P(3, \bar{a}) =$$

Készítsünk értéktáblát a következő formulához:

$$\exists z \exists y (P(z,y) \land Q(f(\bar{a}))) \supset \forall v P(v,\bar{a}) \land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

_ x	$\exists z\exists y(P(z,y)\wedge Q(f(\bar{a})))$ (1)	$\forall v P(v, \bar{a})$ (2)	$P(f(x), \bar{b})$ (3)	$1\supset (2\wedge 3)$
1	i			
2	i			
3	i			

$$\forall v P(v, \bar{a}) = P(1, \bar{a}) \wedge P(2, \bar{a}) \wedge P(3, \bar{a}) = i \wedge h \wedge h = 0$$

Logika

20 / 28

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

_ x	$\exists z\exists y(P(z,y)\wedge Q(f(\bar{a})))$ (1)	$\forall v P(v, \bar{a}) (2)$	$P(f(x), \bar{b})$ (3)	$1\supset (2\wedge 3)$
1	i			
2	i			
3	i			

$$\forall v P(v, \bar{a}) = P(1, \bar{a}) \wedge P(2, \bar{a}) \wedge P(3, \bar{a}) = i \wedge h \wedge h = h$$

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

_ x	$\exists z\exists y(P(z,y)\wedge Q(f(\bar{a})))$ (1)	$\forall v P(v, \bar{a})$ (2)	$P(f(x), \bar{b})$ (3)	$1\supset (2\wedge 3)$
1	i	h		
2	i	h		
3	i	h		

$$\forall v P(v, \bar{a}) = P(1, \bar{a}) \wedge P(2, \bar{a}) \wedge P(3, \bar{a}) = i \wedge h \wedge h = h$$

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

_ x	$\exists z\exists y(P(z,y)\wedge Q(f(\bar{a})))$ (1)	$\forall v P(v, \bar{a})$ (2)	$P(f(x), \bar{b})$ (3)	$1\supset (2\wedge 3)$
1	i	h	h	
2	i	h		
3	i	h		

$$\forall v P(v, \bar{a}) = P(1, \bar{a}) \wedge P(2, \bar{a}) \wedge P(3, \bar{a}) = i \wedge h \wedge h = h$$

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

_ x	$\exists z\exists y(P(z,y)\wedge Q(f(\bar{a})))$ (1)	$\forall v P(v, \bar{a})$ (2)	$P(f(x), \bar{b})$ (3)	$1\supset (2\wedge 3)$
1	i	h	h	
2	i	h	i	
3	i	h		

$$\forall v P(v, \bar{a}) = P(1, \bar{a}) \wedge P(2, \bar{a}) \wedge P(3, \bar{a}) = i \wedge h \wedge h = h$$

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

_ x	$\exists z\exists y(P(z,y)\wedge Q(f(\bar{a})))$ (1)	$\forall v P(v, \bar{a})$ (2)	$P(f(x), \bar{b})$ (3)	$1\supset (2\wedge 3)$
1	i	h	h	
2	i	h	i	
3	i	h	h	

$$\forall v P(v, \bar{a}) = P(1, \bar{a}) \wedge P(2, \bar{a}) \wedge P(3, \bar{a}) = i \wedge h \wedge h = h$$

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

X	$\exists z\exists y(P(z,y)\wedge Q(f(\bar{a})))$ (1)	$\forall v P(v, \bar{a}) (2)$	$P(f(x), \bar{b})$ (3)	$1\supset (2\wedge 3)$
1	i	h	h	
2	i	h	i	
3	i	h	h	

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

X	$\exists z\exists y(P(z,y)\wedge Q(f(\bar{a})))$ (1)	$\forall v P(v, \bar{a}) (2)$	$P(f(x), \bar{b})$ (3)	$1\supset (2\wedge 3)$
1	i	h	h	h
2	i	h	i	
3	i	h	h	

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

X	$\exists z\exists y(P(z,y)\wedge Q(f(\bar{a})))$ (1)	$\forall v P(v, \bar{a})$ (2)	$P(f(x), \bar{b})$ (3)	$1\supset (2\wedge 3)$
1	i	h	h	h
2	i	h	i	h
3	i	h	h	

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

X	$\exists z\exists y(P(z,y)\wedge Q(f(\bar{a})))$ (1)	$\forall v P(v, \bar{a}) (2)$	$P(f(x), \bar{b})$ (3)	$1\supset (2\wedge 3)$
1	i	h	h	h
2	i	h	i	h
3	i	h	h	h

21 / 28

Logika Elsőrendű logika alapjai 2021/2022 1. félév

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

X	$\exists z\exists y(P(z,y)\wedge Q(f(\bar{a})))$ (1)	$\forall v P(v, \bar{a})$ (2)	$P(f(x), \bar{b})$ (3)	$1\supset (2\wedge 3)$
1	i	h	h	h
2	i	h	i	h
3	i	h	h	h

Szemantikus tulajdonságok:

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

X	$\exists z\exists y(P(z,y)\wedge Q(f(\bar{a})))$ (1)	$\forall v P(v, \bar{a})$ (2)	$P(f(x), \bar{b})$ (3)	$1\supset (2\wedge 3)$
1	i	h	h	h
2	i	h	i	h
3	i	h	h	h

Szemantikus tulajdonságok:

Lehet kielégíthető - az adott interpretációban mindenhol hamis, de lehet másik, ahol van igaz helyettesítés.

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

_ x	$\exists z\exists y(P(z,y)\wedge Q(f(\bar{a})))$ (1)	$\forall v P(v, \bar{a}) (2)$	$P(f(x), \bar{b})$ (3)	$1\supset (2\wedge 3)$
1	i	h	h	h
2	i	h	i	h
3	i	h	h	h

Szemantikus tulajdonságok:

Lehet kielégíthető - az adott interpretációban mindenhol hamis, de lehet másik, ahol van igaz helyettesítés.

Lehet kielégíthetetlen - A többi interpretációban kérdéses

Logika

21/28

Készítsünk értéktáblát a következő formulához:

$$\exists z\exists y(P(z,y)\land Q(f(\bar{a})))\supset \forall vP(v,\bar{a})\land P(f(x),\bar{b})$$

A következő interpretáció alapján:

$$U=\{1,2,3\},|P(x,y)|^I-x==y,|Q(x)|^I-x$$
 páros, $|\bar{a}|^I=1,|\bar{b}|^I=3,|f(x)|^I-x$ rákövetkezője univerzumon belül

X	$\exists z\exists y(P(z,y)\wedge Q(f(\bar{a})))$ (1)	$\forall v P(v, \bar{a}) (2)$	$P(f(x), \bar{b})$ (3)	$1\supset (2\wedge 3)$
1	i	h	h	h
2	i	h	i	h
3	i	h	h	h

Szemantikus tulajdonságok:

Lehet kielégíthető - az adott interpretációban mindenhol hamis, de lehet másik, ahol van igaz helyettesítés.

Lehet kielégíthetetlen - A többi interpretációban kérdéses

Nem logikai törvény - Volt olyan változókiértékelés, ahol hamis.

4□▶
 4□▶
 4□▶
 4□▶
 4□▶

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y), \bar{a}) \supset Q(z) \supset P(z,x) \vee P(v, \bar{a})$$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y), \bar{a}) \supset Q(z) \supset P(z,x) \vee P(v, \bar{a})$$

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y), \bar{a}) \supset Q(z) \supset P(z,x) \vee P(v, \bar{a})$$

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

$$z \mid x \mid$$

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y), \bar{a}) \supset Q(z) \supset P(z,x) \vee P(v, \bar{a})$$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

$$z \mid x \mid v \parallel$$

Logika

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y), \bar{a}) \supset Q(z) \supset P(z,x) \vee P(v, \bar{a})$$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

$$z \mid x \mid v \parallel \exists w \forall y P(f(w, y), \bar{a}) \mid$$

Logika

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y), \bar{a}) \supset Q(z) \supset P(z,x) \lor P(v, \bar{a})$$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

$$z \mid x \mid v \parallel \exists w \forall y P(f(w, y), \bar{a}) \mid Q(z) \mid$$

Logika

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y), \bar{a}) \supset Q(z) \supset P(z,x) \lor P(v, \bar{a})$$

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

$$z \mid x \mid v \parallel \exists w \forall y P(f(w, y), \bar{a}) \mid Q(z) \mid P(z, x) \mid$$

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y), \bar{a}) \supset Q(z) \supset P(z,x) \lor P(v, \bar{a})$$

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

$$z \mid x \mid v \parallel \exists w \forall y P(f(w, y), \bar{a}) \mid Q(z) \mid P(z, x) \mid P(v, \bar{a}) \parallel$$

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y), \bar{a}) \supset Q(z) \supset P(z,x) \vee P(v, \bar{a})$$

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

$$z \mid x \mid v \parallel \exists w \forall y P(f(w, y), \bar{a}) \mid Q(z) \mid P(z, x) \mid P(v, \bar{a}) \parallel 1 \supset (2 \supset (3 \lor 4))$$

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y), \bar{a}) \supset Q(z) \supset P(z,x) \vee P(v, \bar{a})$$

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

$$z \mid x \mid v \parallel \exists w \forall y P(f(w,y),\bar{a}) \mid Q(z) \mid P(z,x) \mid P(v,\bar{a}) \parallel 1 \supset (2 \supset (3 \lor 4))$$

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y), \bar{a}) \supset Q(z) \supset P(z,x) \vee P(v, \bar{a})$$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

$$U = \{0,1\}, |P(x,y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x,y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\mid \exists w \forall y P(f(w,y), \bar{a}) \mid Q(z) \mid P(z,x) \mid P(v,\bar{a}) \parallel 1 \supset (2 \supset (3 \lor 4))$
0	0	0	
0	0	1	

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

$$U = \{0,1\}, |P(x,y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x,y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\mid \exists w \forall y P(f(w,y), \bar{a}) \mid Q(z) \mid P(z,x) \mid P(v,\bar{a}) \parallel 1 \supset (2 \supset (3 \lor 4))$
0	0	0	
0	0	1	
0	1	0	

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

$$U = \{0,1\}, |P(x,y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x,y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\mid \exists w \forall y P(f(w,y), \bar{a}) \mid Q(z) \mid P(z,x) \mid P(v,\bar{a}) \mid 1 \supset (2 \supset (3 \lor 4))$
0	0	0	
0	0	1	
0	1	0	
1	0	0	

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

$$U = \{0,1\}, |P(x,y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x,y)|^I$$
 - összeadás univerzumon belül.

Z	x	v	$\mid \exists w \forall y P(f(w,y), \bar{a}) \mid Q(z) \mid P(z,x) \mid P(v,\bar{a}) \mid 1 \supset (2 \supset (3 \lor 4))$
0	0	0	
0	0	1	
0	1	0	
1	0	0	
0	1	1	

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y), \bar{a}) \supset Q(z) \supset P(z,x) \vee P(v, \bar{a})$$

A következő interpretáció alapján:

$$U = \{0,1\}, |P(x,y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x,y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\mid \exists w \forall y P(f(w,y), \bar{a}) \mid Q(z) \mid P(z,x) \mid P(v,\bar{a}) \parallel 1 \supset (2 \supset (3 \lor 4))$
0	0	0	
0	0	1	
0	1	0	
1	0	0	
0	1	1	
1	0	1	

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y), \bar{a}) \supset Q(z) \supset P(z,x) \vee P(v, \bar{a})$$

$$U = \{0,1\}, |P(x,y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x,y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\exists w \forall y P(f(w,y), \bar{a}) \mid Q(z) \mid P(z,x) \mid P(v,\bar{a}) \parallel 1 \supset (2 \supset (3 \lor 4))$
0	0	0	
0	0	1	
0	1	0	
1	0	0	
0	1	1	
1	0	1	
1	1	0	

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y), \bar{a}) \supset Q(z) \supset P(z,x) \vee P(v, \bar{a})$$

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\mid \exists w \forall y P(f(w,y), \bar{a}) \mid Q(z) \mid P(z,x) \mid P(v,\bar{a}) \mid 1 \supset (2 \supset (3 \lor 4))$
0	0	0	
0	0	1	
0	1	0	
1	0	0	
0	1	1	
1	0	1	
1	1	0	
1	1	1	

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\exists w \forall y P(f(w,y), \bar{a})$	$Q(z) \mid P(z,x) \mid P(v,\bar{a}) \parallel 1 \supset (2 \supset (3 \lor 4))$
0	0	0	i	
0	0	1	i	
0	1	0	i	
1	0	0	i	
0	1	1	i	
1	0	1	i	
1	1	0	i	
1	1	1	i	

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	$ P(z,x) P(v,\bar{a}) 1\supset (2\supset (3\vee 4))$
0	0	0	i	i	
0	0	1	i	i	
0	1	0	i	i	
1	0	0	i		
0	1	1	i	i	
1	0	1	i		
1	1	0	i		
1	1	1	i		

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	$P(z,x) \mid P(v,\bar{a}) \parallel 1 \supset (2 \supset (3 \lor 4))$
0	0	0	i	i	
0	0	1	i	i	
0	1	0	i	i	
1	0	0	i	i	
0	1	1	i	i	
1	0	1	i	i	
1	1	0	i	i	
1	1	1	i	i	

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v, \bar{a}) \parallel 1 \supset (2 \supset (3 \lor 4))$
0	0	0	i	i	i	
0	0	1	i	i		
0	1	0	i	i		
1	0	0	i	i		
0	1	1	i	i		
1	0	1	i	i		
1	1	0	i	i		
1	1	1	i	i		

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v, \bar{a}) \parallel 1 \supset (2 \supset (3 \lor 4))$
0	0	0	i	i	i	
0	0	1	i	i	i	
0	1	0	i	i		
1	0	0	i	i		
0	1	1	i	i		
1	0	1	i	i		
1	1	0	i	i		
1	1	1	i	i		

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

A következő interpretáció alapján:

$$U = \{0,1\}, |P(x,y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x,y)|^I$$
 - összeadás univerzumon belül.

Z	Х	v	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v, \bar{a}) \parallel 1 \supset (2 \supset (3 \lor 4))$
0	0	0	i	i	i	
0	0	1	i	i	i	
0	1	0	i	i	h	
1	0	0	i	i		
0	1	1	i	i		
1	0	1	i	i		
1	1	0	i	i		
1	1	1	i	i		

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v,\bar{a}) \parallel 1 \supset (2 \supset (3 \lor 4))$
0	0	0	i	i	i	
0	0	1	i	i	i	
0	1	0	i	i	h	
1	0	0	i	i	i	
0	1	1	i	i		
1	0	1	i	i		
1	1	0	i	i		
1	1	1	i	i		

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v,\bar{a}) \parallel 1 \supset (2 \supset (3 \lor 4))$
0	0	0	i	i	i	
0	0	1	i	i	i	
0	1	0	i	i	h	
1	0	0	i	i	i	
0	1	1	i	i	h	
1	0	1	i	i		
1	1	0	i	i		
1	1	1	i	i		

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v,\bar{a}) \parallel 1 \supset (2 \supset (3 \lor 4))$
0	0	0	i	i	i	
0	0	1	i	i	i	
0	1	0	i	i	h	
1	0	0	i	i	i	
0	1	1	i	i	h	
1	0	1	i	i	i	
1	1	0	i	i		
1	1	1	i	i		

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v,\bar{a}) \parallel 1 \supset (2 \supset (3 \lor 4))$
0	0	0	i	i	i	
0	0	1	i	i	i	
0	1	0	i	i	h	
1	0	0	i	i	i	
0	1	1	i	i	h	
1	0	1	i	i	i	
1	1	0	i	i	i	
1	1	1	i	i		

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y), \bar{a}) \supset Q(z) \supset P(z,x) \vee P(v, \bar{a})$$

A következő interpretáció alapján:

$$U = \{0,1\}, |P(x,y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x,y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v,\bar{a}) \parallel 1 \supset (2 \supset (3 \lor 4))$
0	0	0	i	i	i	
0	0	1	i	i	i	
0	1	0	i	i	h	
1	0	0	i	i	i	
0	1	1	i	i	h	
1	0	1	i	i	i	
1	1	0	i	i	i	
1	1	1	i	i	i	

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

Z	Х	v	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v,\bar{a})$	$1\supset (2\supset (3\vee 4))$
0	0	0	i	i	i	i	
0	0	1	i	i	i		
0	1	0	i	i	h		
1	0	0	i	i	i		
0	1	1	i	i	h		
1	0	1	i	i	i		
1	1	0	i	i	i		
1	1	1	i	i	i		

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v,\bar{a})$	$1\supset (2\supset (3\vee 4))$
0	0	0	i	i	i	i	
0	0	1	i	i	i	i	
0	1	0	i	i	h		
1	0	0	i	i	i		
0	1	1	i	i	h		
1	0	1	i	i	i		
1	1	0	i	i	i		
1	1	1	i	i	i		

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y), \overline{a}) \supset Q(z) \supset P(z,x) \vee P(v, \overline{a})$$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v,\bar{a})$	$1\supset (2\supset (3\vee 4))$
0	0	0	i	i	i	i	
0	0	1	i	i	i	i	
0	1	0	i	i	h	i	
1	0	0	i	i	i		
0	1	1	i	i	h		
1	0	1	i	i	i		
1	1	0	i	i	i		
1	1	1	i	i	i		

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v,\bar{a})$	$1\supset (2\supset (3\vee 4))$
0	0	0	i	i	i	i	
0	0	1	i	i	i	i	
0	1	0	i	i	h	i	
1	0	0	i	i	i	i	
0	1	1	i	i	h		
1	0	1	i	i	i		
1	1	0	i	i	i		
1	1	1	i	i	i		

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v,\bar{a})$	$1\supset (2\supset (3\vee 4))$
0	0	0	i	i	i	i	
0	0	1	i	i	i	i	
0	1	0	i	i	h	i	
1	0	0	i	i	i	i	
0	1	1	i	i	h	i	
1	0	1	i	i	i		
1	1	0	i	i	i		
1	1	1	i	i	i		

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v,\bar{a})$	$1\supset (2\supset (3\vee 4))$
0	0	0	i	i	i	i	
0	0	1	i	i	i	i	
0	1	0	i	i	h	i	
1	0	0	i	i	i	i	
0	1	1	i	i	h	i	
1	0	1	i	i	i	i	
1	1	0	i	i	i		
1	1	1	i	i	i		

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v,\bar{a})$	$1\supset (2\supset (3\vee 4))$
0	0	0	i	i	i	i	
0	0	1	i	i	i	i	
0	1	0	i	i	h	i	
1	0	0	i	i	i	i	
0	1	1	i	i	h	i	
1	0	1	i	i	i	i	
1	1	0	i	i	i	i	
1	1	1	i	i	i		

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

A következő interpretáció alapján:

$$U = \{0, 1\}, |P(x, y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x, y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v,\bar{a})$	$1\supset (2\supset (3\vee 4))$
0	0	0	i	i	i	i	
0	0	1	i	i	i	i	
0	1	0	i	i	h	i	
1	0	0	i	i	i	i	
0	1	1	i	i	h	i	
1	0	1	i	i	i	i	
1	1	0	i	i	i	i	
1	1	1	i	i	i	i	

Logika

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

A következő interpretáció alapján:

$$U = \{0,1\}, |P(x,y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x,y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v,\bar{a})$	$1\supset (2\supset (3\lor 4))$
0	0	0	i	i	i	i	i
0	0	1	i	i	i	i	i
0	1	0	i	i	h	i	i
1	0	0	i	i	i	i	i
0	1	1	i	i	h	i	i
1	0	1	i	i	i	i	i
1	1	0	i	i	i	i	i
1	1	1	i	i	i	i	i

Logika

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y), \bar{a}) \supset Q(z) \supset P(z,x) \vee P(v, \bar{a})$$

A következő interpretáció alapján:

$$U = \{0,1\}, |P(x,y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x,y)|^I$$
 - összeadás univerzumon belül.

_ Z	X	V	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v,\bar{a})$	$1\supset (2\supset (3\vee 4))$
0	0	0	i	i	i	i	i
0	0	1	i	i	i	i	i
0	1	0	i	i	h	i	i
1	1	1	i	i	i	i	i

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y), \bar{a}) \supset Q(z) \supset P(z,x) \lor P(v, \bar{a})$$

A következő interpretáció alapján:

$$U = \{0,1\}, |P(x,y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x,y)|^I$$
 - összeadás univerzumon belül.

Z	X	V	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v,\bar{a})$	$1 \supset (2 \supset (3 \lor 4))$
0	0	0	i	i	i	i	i
0	0	1	i	i	i	i	i
0	1	0	i	i	h	i	i
1	1	1	i	i	i	i	i

Szemantikus tulajdonságok:

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y), \bar{a}) \supset Q(z) \supset P(z,x) \vee P(v, \bar{a})$$

A következő interpretáció alapján:

$$U = \{0,1\}, |P(x,y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x,y)|^I$$
 - összeadás univerzumon belül.

Z	X	V	$\parallel \exists w \forall y P(f(w,y), \bar{a}) \mid$	Q(z)	P(z,x)	$P(v,\bar{a})$	$1\supset (2\supset (3\vee 4))$
0	0	0	i	i	i	i	i
0	0	1	i	i	i	i	i
0	1	0	i	i	h	i	i
1	1	1	i	i	i	i	i

Szemantikus tulajdonságok:

Kielégíthető - Van olyan interpretáció és változókiértékelés, ahol igaz.

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y), \bar{a}) \supset Q(z) \supset P(z,x) \vee P(v, \bar{a})$$

A következő interpretáció alapján:

$$U = \{0,1\}, |P(x,y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x,y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v,\bar{a})$	$\mid 1 \supset (2 \supset (3 \lor 4))$
0	0	0	i	i	i	i	i
0	0	1	i	i	i	i	i
0	1	0	i	i	h	i	i
1	1	1	i	i	i	i	i

Szemantikus tulajdonságok:

Kielégíthető - Van olyan interpretáció és változókiértékelés, ahol igaz.

Nem kielégíthetetlen

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

24 / 28

Készítsünk értéktáblát a következő formulához:

$$\exists w \forall y P(f(w,y),\bar{a}) \supset Q(z) \supset P(z,x) \vee P(v,\bar{a})$$

A következő interpretáció alapján:

$$U = \{0,1\}, |P(x,y)|^I = (x \ge y), |Q(x)|^I = (x \ge 0), |\bar{a}|^I = 0, |f(x,y)|^I$$
 - összeadás univerzumon belül.

Z	X	v	$\exists w \forall y P(f(w,y), \bar{a})$	Q(z)	P(z,x)	$P(v,\bar{a})$	$\mid 1 \supset (2 \supset (3 \lor 4))$
0	0	0	i	i	i	i	i
0	0	1	i	i	i	i	i
0	1	0	i	i	h	i	i
1	1	1	i	i	i	i	i

Szemantikus tulajdonságok:

Kielégíthető - Van olyan interpretáció és változókiértékelés, ahol igaz.

Nem kielégíthetetlen

Lehet logikai törvény - Attól függ, hogy a többi interpretációban milyen helyettesítési értékek vannak.

4 □ > 4 □ > 4 필 > 4 필 > 4 필 > 2 □

Egy formula változóiban tiszta, ha egy változó csak szabad változóként, vagy csak 1 kvantor által van kötve.

Az átalakítás a kvantor által kötött változók átnevezésével lehetséges.

Egy formula változóiban tiszta, ha egy változó csak szabad változóként, vagy csak 1 kvantor által van kötve.

Az átalakítás a kvantor által kötött változók átnevezésével lehetséges.

Egy formula változóiban tiszta, ha egy változó csak szabad változóként, vagy csak 1 kvantor által van kötve.

Az átalakítás a kvantor által kötött változók átnevezésével lehetséges.

•
$$\forall x P(x) =$$

Egy formula változóiban tiszta, ha egy változó csak szabad változóként, vagy csak 1 kvantor által van kötve.

Az átalakítás a kvantor által kötött változók átnevezésével lehetséges.

Egy formula változóiban tiszta, ha egy változó csak szabad változóként, vagy csak 1 kvantor által van kötve.

Az átalakítás a kvantor által kötött változók átnevezésével lehetséges.

- $\forall x (P(x) \land Q(x)) =$

Egy formula változóiban tiszta, ha egy változó csak szabad változóként, vagy csak 1 kvantor által van kötve.

Az átalakítás a kvantor által kötött változók átnevezésével lehetséges.

Változó átnevezés:

- $\forall x (P(x) \land Q(x)) = \forall y (P(y) \land Q(y))$

Logika

Egy formula változóiban tiszta, ha egy változó csak szabad változóként, vagy csak 1 kvantor által van kötve.

Az átalakítás a kvantor által kötött változók átnevezésével lehetséges.

- $\forall x P(x) = \forall y P(y)$
- $\forall x (P(x) \land Q(x)) = \forall y (P(y) \land Q(y))$
- $\forall x (P(x) \land Q(y))$

Egy formula változóiban tiszta, ha egy változó csak szabad változóként, vagy csak 1 kvantor által van kötve.

Az átalakítás a kvantor által kötött változók átnevezésével lehetséges.

- $\forall x (P(x) \land Q(x)) = \forall y (P(y) \land Q(y))$
- $\forall x (P(x) \land Q(y)) \quad \forall y (P(y) \land Q(y))$

Egy formula változóiban tiszta, ha egy változó csak szabad változóként, vagy csak 1 kvantor által van kötve.

Az átalakítás a kvantor által kötött változók átnevezésével lehetséges.

- $\forall x P(x) = \forall y P(y)$
- $\forall x (P(x) \land Q(x)) = \forall y (P(y) \land Q(y))$
- $\forall x (P(x) \land Q(y)) \neq \forall y (P(y) \land Q(y))$

Egy formula változóiban tiszta, ha egy változó csak szabad változóként, vagy csak 1 kvantor által van kötve.

Az átalakítás a kvantor által kötött változók átnevezésével lehetséges.

- $\forall x P(x) = \forall y P(y)$
- $\forall x (P(x) \land Q(x)) = \forall y (P(y) \land Q(y))$
- $\forall x (P(x) \land Q(y)) \neq \forall y (P(y) \land Q(y))$
- $\forall x (P(x) \land Q(y)) =$

Egy formula változóiban tiszta, ha egy változó csak szabad változóként, vagy csak 1 kvantor által van kötve.

Az átalakítás a kvantor által kötött változók átnevezésével lehetséges.

- $\forall x P(x) = \forall y P(y)$
- $\forall x (P(x) \land Q(x)) = \forall y (P(y) \land Q(y))$
- $\forall x (P(x) \land Q(y)) \neq \forall y (P(y) \land Q(y))$
- $\forall x (P(x) \land Q(y)) = \forall z (P(z) \land Q(y))$

Egy formula változóiban tiszta, ha egy változó csak szabad változóként, vagy csak 1 kvantor által van kötve.

Az átalakítás a kvantor által kötött változók átnevezésével lehetséges.

Változó átnevezés:

- $\forall x P(x) = \forall y P(y)$
- $\forall x (P(x) \land Q(x)) = \forall y (P(y) \land Q(y))$
- $\forall x (P(x) \land Q(y)) \neq \forall y (P(y) \land Q(y))$
- $\forall x (P(x) \land Q(y)) = \forall z (P(z) \land Q(y))$

Egy formula változóiban tiszta, ha egy változó csak szabad változóként, vagy csak 1 kvantor által van kötve.

Az átalakítás a kvantor által kötött változók átnevezésével lehetséges.

Változó átnevezés:

- $\forall x P(x) = \forall y P(y)$
- $\forall x (P(x) \land Q(x)) = \forall y (P(y) \land Q(y))$
- $\forall x (P(x) \land Q(y)) \neq \forall y (P(y) \land Q(y))$
- $\forall x (P(x) \land Q(y)) = \forall z (P(z) \land Q(y))$

•
$$\forall x P(x) \supset \forall x Q(x) =$$

Egy formula változóiban tiszta, ha egy változó csak szabad változóként, vagy csak 1 kvantor által van kötve.

Az átalakítás a kvantor által kötött változók átnevezésével lehetséges.

Változó átnevezés:

- $\forall x P(x) = \forall y P(y)$
- $\forall x (P(x) \land Q(x)) = \forall y (P(y) \land Q(y))$
- $\forall x (P(x) \land Q(y)) \neq \forall y (P(y) \land Q(y))$
- $\forall x (P(x) \land Q(y)) = \forall z (P(z) \land Q(y))$

•
$$\forall x P(x) \supset \forall x Q(x) = \forall x P(x) \supset \forall y Q(y)$$

Egy formula változóiban tiszta, ha egy változó csak szabad változóként, vagy csak 1 kvantor által van kötve.

Az átalakítás a kvantor által kötött változók átnevezésével lehetséges.

Változó átnevezés:

- $\forall x P(x) = \forall y P(y)$
- $\forall x (P(x) \land Q(x)) = \forall y (P(y) \land Q(y))$
- $\forall x (P(x) \land Q(y)) \neq \forall y (P(y) \land Q(y))$
- $\forall x (P(x) \land Q(y)) = \forall z (P(z) \land Q(y))$

Változóiban tisztává alakítás:

- $\forall x P(x) \supset \forall x Q(x) = \forall x P(x) \supset \forall y Q(y)$
- $\forall x P(x) \land \exists x Q(x) \land P(x) =$

Logika

25 / 28

Egy formula változóiban tiszta, ha egy változó csak szabad változóként, vagy csak 1 kvantor által van kötve.

Az átalakítás a kvantor által kötött változók átnevezésével lehetséges.

Változó átnevezés:

- $\forall x P(x) = \forall y P(y)$
- $\forall x (P(x) \land Q(x)) = \forall y (P(y) \land Q(y))$
- $\forall x (P(x) \land Q(y)) \neq \forall y (P(y) \land Q(y))$
- $\forall x (P(x) \land Q(y)) = \forall z (P(z) \land Q(y))$

- $\forall x P(x) \supset \forall x Q(x) = \forall x P(x) \supset \forall y Q(y)$
- $\forall x P(x) \land \exists x Q(x) \land P(x) = \forall y P(y) \land \exists z Q(z) \land P(x)$

Egy formula változóiban tiszta, ha egy változó csak szabad változóként, vagy csak 1 kvantor által van kötve.

Az átalakítás a kvantor által kötött változók átnevezésével lehetséges.

Változó átnevezés:

- $\forall x P(x) = \forall y P(y)$
- $\forall x (P(x) \land Q(x)) = \forall y (P(y) \land Q(y))$
- $\forall x (P(x) \land Q(y)) \neq \forall y (P(y) \land Q(y))$
- $\forall x (P(x) \land Q(y)) = \forall z (P(z) \land Q(y))$

Változóiban tisztává alakítás:

- $\forall x P(x) \supset \forall x Q(x) = \forall x P(x) \supset \forall y Q(y)$
- $\forall x P(x) \land \exists x Q(x) \land P(x) = \forall y P(y) \land \exists z Q(z) \land P(x)$
- $\forall x P(x) \land Q(x) =$

Logika

Egy formula változóiban tiszta, ha egy változó csak szabad változóként, vagy csak 1 kvantor által van kötve.

Az átalakítás a kvantor által kötött változók átnevezésével lehetséges.

Változó átnevezés:

- $\forall x P(x) = \forall y P(y)$
- $\forall x (P(x) \land Q(x)) = \forall y (P(y) \land Q(y))$
- $\forall x (P(x) \land Q(y)) \neq \forall y (P(y) \land Q(y))$
- $\forall x (P(x) \land Q(y)) = \forall z (P(z) \land Q(y))$

Változóiban tisztává alakítás:

- $\forall x P(x) \supset \forall x Q(x) = \forall x P(x) \supset \forall y Q(y)$
- $\forall x P(x) \land \exists x Q(x) \land P(x) = \forall y P(y) \land \exists z Q(z) \land P(x)$
- $\forall x P(x) \land Q(x) = \forall y P(y) \land Q(x)$

Logika

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

Ha valami tautológia, akkor biztos, hogy logikai törvény.

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

Ha valami tautológia, akkor biztos, hogy logikai törvény.

$$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

Logika

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

Ha valami tautológia, akkor biztos, hogy logikai törvény.

$$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

Prímkomponensek: $\forall x P(x)$ és $\forall x R(x)$ legyenek A és B

Logika

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

Ha valami tautológia, akkor biztos, hogy logikai törvény.

$$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

$$\forall x P(x)$$

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

Ha valami tautológia, akkor biztos, hogy logikai törvény.

$$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

$$\forall x P(x) \mid \forall x R(x) \parallel$$

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

Ha valami tautológia, akkor biztos, hogy logikai törvény.

$$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

$$\forall x P(x) \mid \forall x R(x) \parallel \forall x P(x) \land \forall x R(x) \supset \forall x P(x)$$

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

Ha valami tautológia, akkor biztos, hogy logikai törvény.

$$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

$$\begin{array}{c|cccc} \forall x P(x) & \forall x R(x) & \forall x P(x) \land \forall x R(x) \supset \forall x P(x) \\ \hline A & & \end{array}$$

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

Ha valami tautológia, akkor biztos, hogy logikai törvény.

$$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

$$\begin{array}{c|cccc} \forall x P(x) & \forall x R(x) & \forall x P(x) \land \forall x R(x) \supset \forall x P(x) \\ \hline A & B & \end{array}$$

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

Ha valami tautológia, akkor biztos, hogy logikai törvény.

$$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

$$\begin{array}{c|cccc} \forall x P(x) & \forall x R(x) & \forall x P(x) \land \forall x R(x) \supset \forall x P(x) \\ \hline A & B & (A \land B \supset A) \end{array}$$

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

Ha valami tautológia, akkor biztos, hogy logikai törvény.

$$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

$\forall x P(x)$	$\forall x R(x)$	$ \forall x P(x) \land \forall x R(x) \supset \forall x P(x)$
A	В	$(A \wedge B \supset A)$
i	i	

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

Ha valami tautológia, akkor biztos, hogy logikai törvény.

$$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

$\forall x P(x)$	$\forall x R(x)$	$ \forall x P(x) \land \forall x R(x) \supset \forall x P(x)$
Α	В	$(A \wedge B \supset A)$
i	i	
i	h	

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

Ha valami tautológia, akkor biztos, hogy logikai törvény.

$$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

+	$\forall x P(x)$	$\forall x R(x)$	$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$
	Α	В	$(A \wedge B \supset A)$
	i	i	
	i	h	
	h	i	

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

Ha valami tautológia, akkor biztos, hogy logikai törvény.

$$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

$\forall x P(x)$	$\forall xR(x)$	$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$
Α	В	$(A \land B \supset A)$
i	i	
i	h	
h	i	
h	h	

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

Ha valami tautológia, akkor biztos, hogy logikai törvény.

$$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

Prímkomponensek: $\forall x P(x)$ és $\forall x R(x)$ legyenek A és B

$\forall x P(x)$	$\forall xR(x)$	$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$
Α	В	$(A \land B \supset A)$
i	i	i
i	h	
h	i	
h	h	

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

Ha valami tautológia, akkor biztos, hogy logikai törvény.

$$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

Prímkomponensek: $\forall x P(x)$ és $\forall x R(x)$ legyenek A és B

$\forall x P(x)$	$\forall x R(x)$	$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$
Α	В	$(A \wedge B \supset A)$
i	i	i
i	h	i
h	i	
h	h	

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

Ha valami tautológia, akkor biztos, hogy logikai törvény.

$$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

Prímkomponensek: $\forall x P(x)$ és $\forall x R(x)$ legyenek A és B

	$\forall x P(x)$	$\forall x R(x)$	$ \forall x P(x) \land \forall x R(x) \supset \forall x P(x)$
	Α	В	$(A \wedge B \supset A)$
•	i	i	i
	i	h	i
	h	i	i
	h	h	

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

Ha valami tautológia, akkor biztos, hogy logikai törvény.

$$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

Prímkomponensek: $\forall x P(x)$ és $\forall x R(x)$ legyenek A és B

$\forall x P(x)$	$\forall xR(x)$	$\forall x P(x) \land \forall x R(x) \supset \forall x P(x)$
Α	В	$(A \land B \supset A)$
i	i	i
i	h	i
h	i	i
h	h	i

A tábla alapján leolvasható, hogy tautológia.

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

 $\forall x (P(x) \land R(x)) \supset \forall x P(x)$ - biztos, hogy logikai törvény

Logika

27 / 28

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

$$\forall x (P(x) \land R(x)) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

Prímkomponensek: $\forall x (P(x) \land R(x))$ és $\forall x P(x)$ legyenek A és B

27 / 28

Logika Elsőrendű logika alapjai 2021/2022 1. félév

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

$$\forall x (P(x) \land R(x)) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

Prímkomponensek:
$$\forall x (P(x) \land R(x))$$
 és $\forall x P(x)$ legyenek A és B

$$\forall x (P(x) \land R(x))$$

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

$$\forall x (P(x) \land R(x)) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

Prímkomponensek:
$$\forall x (P(x) \land R(x))$$
 és $\forall x P(x)$ legyenek A és B

$$\forall x (P(x) \land R(x)) \mid \forall x P(x) \parallel$$

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

$$\forall x (P(x) \land R(x)) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

Prímkomponensek: $\forall x (P(x) \land R(x))$ és $\forall x P(x)$ legyenek A és B

$$\forall x (P(x) \land R(x)) \mid \forall x P(x) \parallel \forall x (P(x) \land R(x)) \supset \forall x P(x)$$

Logika

27 / 28

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

$$\forall x (P(x) \land R(x)) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

$$\begin{array}{c|c} \forall x (P(x) \land R(x)) & \forall x P(x) \parallel \forall x (P(x) \land R(x)) \supset \forall x P(x) \\ \hline A & \end{array}$$

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

$$\forall x (P(x) \land R(x)) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

$$\begin{array}{c|cccc} \forall x (P(x) \land R(x)) & \forall x P(x) & \forall x (P(x) \land R(x)) \supset \forall x P(x) \\ \hline A & B & \end{array}$$

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

$$\forall x (P(x) \land R(x)) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

Prímkomponensek: $\forall x (P(x) \land R(x))$ és $\forall x P(x)$ legyenek A és B

$$\begin{array}{c|cccc} \forall x (P(x) \land R(x)) & \forall x P(x) & \forall x (P(x) \land R(x)) \supset \forall x P(x) \\ \hline A & B & (A \supset B) \end{array}$$

Logika

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

$$\forall x (P(x) \land R(x)) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

$\forall x (P(x) \land R(x))$	$\forall x P(x)$	$\forall x (P(x) \land R(x)) \supset \forall x P(x)$
Α	В	$(A\supset B)$
i	i	
i	h	
h	i	
h	h	

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

$$\forall x (P(x) \land R(x)) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

$\forall x (P(x) \land R(x))$	$\forall x P(x)$	$\forall x (P(x) \land R(x)) \supset \forall x P(x)$
Α	В	$(A\supset B)$
i	i	i
i	h	h
h	i	i
h	h	i

Logikai törvény: A formula minden interpretáció és minden változókiértékelés esetén igaz.

Tautológia: A prímkomponensekhez rendelhető összes igazságérték esetén a formula helyettesítési értéke igaz.

$$\forall x (P(x) \land R(x)) \supset \forall x P(x)$$
 - biztos, hogy logikai törvény

Prímkomponensek: $\forall x (P(x) \land R(x))$ és $\forall x P(x)$ legyenek A és B

$\forall x (P(x) \land R(x))$	$\forall x P(x)$	$\forall x (P(x) \land R(x)) \supset \forall x P(x)$
Α	В	$(A\supset B)$
i	i	i
i	h	h
h	i	i
h	h	i

A tábla alapján leolvasható, hogy nem tautológia.

2021/2022 1. félév

27 / 28

Nézzük meg, hogy a következő formulák tautológiák-e!

•
$$P(x, y) \vee \neg Q(x) \supset \exists x Q(x) \vee (\exists x Q(x) \supset P(x, y) \vee \neg Q(x))$$

- $P(x,y) \supset \neg Q(x) \land Q(x) \supset P(x,y)$
- $(\exists y P(a, y) \supset \neg \forall x Q(x)) \lor \exists z P(a, z)$
- $(\exists y P(a, y) \supset \neg \forall x Q(x)) \lor \exists y P(a, y)$

Egy plusz diasor canvasben elérhető az anyaghoz!