

S.I.E.S College of Arts, Science and Commerce(Autonomous) Sion(W), Mumbai – 400 022.

CERTIFICATE

This is to certify that Miss/Mr. AJAY KUMAR UTHAYA KUMAR
Roll No. TCS2324002 has successfully completed the necessary course of experiments in the subject of Data Science during the academic year 2023 – 2024 complying with the requirements of University of Mumbai, for the course of TYBSc Computer Science [Semester-VI].

Prof. In-Charge Maya Nair
Examination date:
Examiner's Signature & Date:

Head of the Department **Prof. Manoj Singh**

College Seal

Index Page

Sr. No	Description	Page No	Date	Faculty Signatu re
1	Write a python program to plot word cloud for a wikipedia page of any topic.	3	12/12/23	
2	Write a python program to perform Web Scrapping	5	19/12/23	
3	Exploratory Data Analysis of mtcars.csv Dataset in R (Use functions of dplyr like select, filter, mutate, rename, arrange, group by, summarize and data visualizations)	8	09/1/24	
4	Exploratory data analysis in Python using Titanic Dataset	19	23/1/24	
5	Exploratory data analysis in Python using Titanic Dataset	27	23/1/24	
6	Write a python program to implement multiple linear regression on the Dataset Boston.csv	31	30/2/24	
7	Write a python program to implement KNN algorithm to predict breast cancer using breast cancer wisconsin dataset	35	13/2/24	
8	Introduction to NOSQL using MongoDB	39	05/2/24	

Practical 1

Aim: Write a python program to plot word cloud for a wikipedia page of any topic.

Code:

```
from wordcloud import WordCloud, STOPWORDS import matplotlib.pyplot as plt import wikipedia as wp
```

```
result = wp.page('Computer Science')
final_result = result.content
print(final_result)

def plot_wordcloud(wc):
    plt.axis("off")
    plt.figure(figsize=(10,10))
    plt.imshow(wc)
    plt.show()

wc=WordCloud(width=500, height=500, background_color="blue",
random_state=10,stopwords=STOPWORDS).generate(final_result)
wc.to_file("cs.png")
plot_wordcloud(wc)
```

Output:

Computer science is the study of computation, information, and automation. Computer science spans theoretical disciplines (su ch as algorithms, theory of computation, and information theory) to applied disciplines (including the design and implementat ion of hardware and software). Though more often considered an academic discipline, computer science is closely related to computer programming. Algorithms and data structures are central to computer science.

The theory of computation concerns abstract models of computation and general classes of problems that can be solved using th em. The fields of cryptography and computer security involve studying the means for secure communication and for preventing s ecurity vulnerabilities. Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of repositor ies of data. Human-computer interaction investigates the interfaces through which humans and computers interact, and software engineering focuses on the design and principles behind developing software. Areas such as operating systems, networks and em bedded systems investigate the principles and design behind complex systems. Computer architecture describes the construction of computer components and computer-operated equipment. Artificial intelligence and machine learning aim to synthesize goal-orientated processes such as problem-solving, decision-making, environmental adaptation, planning and learning found in humans and animals. Within artificial intelligence, computer vision aims to understand and process image and video data, while natural language processing aims to understand and process textual and linguistic data.

The fundamental concern of computer science is determining what can and cannot be automated. The Turing Award is generally re

The fundamental concern of computer science is determining what can and cannot be automated. The Turing Award is generally re cognized as the highest distinction in computer science.

Practical 2:

Web scraping: Web scraping is the process of collecting and parsing raw data from the Web.

Aim: Write a python program to perform Web Scrapping

01.Html scrapping- use Beautiful Soup

Code:

```
import pandas as pd
from bs4 import BeautifulSoup
from urllib.request import urlopen
url = "https://en.wikipedia.org/wiki/List_of_Asian_countries_by_area"
page = urlopen(url)
html page = page.read().decode("utf-8")
soup=BeautifulSoup(html_page,"html.parser")
table=soup.find("table")
print(table)
SrNo=[]
Country=[]
Area=[]
rows=table.find("tbody").find_all("tr")
for row in rows:
  cells = row.find_all("td")
  if(cells):
     SrNo.append(cells[0].get_text().strip("\n"))
     Country.append(cells[1].get_text().strip("\xa0").strip("\n").strip("\[2]*"))
     Area.append(cells[3].get_text().strip("\n").replace(",",""))
countries df=pd.DataFrame()
countries_df["ID"]=SrNo
countries df["Country Name"]=Country
countries_df["Area"] = Area
print(countries_df.head(10))
```

Output:

	ID	Country Name	Area
0	1	Russia	13083100 (5051400)
1	2	China	9596961 (3705407)
2	3	India	3287263 (1269219)
3	4	Kazakhstan	2600000 (1000000)
4	5	Saudi Arabia	2149690 (830000)
5	6	Iran	1648195 (636372)
6	7	Mongolia	1564110 (603910)
7	8	Indonesia	1488509 (574717)
8	9	Pakistan	881913 (340509)
9	10	Turkey	759805 (293362)

02.json scrapping

Code:

```
import pandas as pd
import urllib.request
import json
```

```
url = "https://jsonplaceholder.typicode.com/users"
response = urllib.request.urlopen(url)
data = json.loads(response.read())
```

```
id=[]
username=[]
email=[]

for item in data:
   if "id" in item.keys():
       id.append(item["id"])
   else:
       id.append("NA")
   if "username" in item.keys():
```

```
username.append(item["username"])
else:
    username.append("NA")
if "email" in item.keys():
    email.append(item["email"])
else:
    email.append("NA")

user_df = pd.DataFrame()
user_df["User ID"]=id
user_df["User Name"]=username
user_df["Email Address"] = email
print(user_df.head(10))
```

Output:

	User ID	User Name	Email Address
0	1	Bret	Sincere@april.biz
1	2	Antonette	Shanna@melissa.tv
2	3	Samantha	Nathan@yesenia.net
3	4	Karianne	Julianne.OConner@kory.org
4	5	Kamren	Lucio_Hettinger@annie.ca
5	6	Leopoldo_Corkery	Karley_Dach@jasper.info
6	7	Elwyn.Skiles	Telly.Hoeger@billy.biz
7	8	Maxime_Nienow	Sherwood@rosamond.me
8	9	Delphine	Chaim_McDermott@dana.io
9	10	Moriah.Stanton	Rey.Padberg@karina.biz

Practical 3:

Aim: Exploratory Data Analysis of mtcars.csv Dataset in R (Use functions of dplyr like select, filter, mutate, rename, arrange, group by, summarize and data visualizations)

mtcars.csv:

Motor Trend Car Road Tests-The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973--74 models).

Format

A data frame with 32 observations on 12 (numeric) variables.

- [, 1] mpg Miles/(US) gallon
- [, 2] cyl Number of cylinders
- [, 3] disp Displacement (cu.in.)
- [, 4] hp Gross horsepower
- [, 5] drat Rear axle ratio
- [, 6] wt Weight (1000 lbs)
- [, 7] qsec 1/4 mile time
- [, 8] vs Engine (0 = V-shaped, 1 = straight)
- [, 9] am Transmission (0 = automatic, 1 = manual)
- [,10] gear Number of forward gears
- [,11] Carb Number of carburetors

Motor Trend is a magazine about the automobile industry. Looking at a data set of a collection of cars, they are interested in exploring the relationship between a set of variables and miles per gallon (MPG) (outcome).

Code:

```
#Do In Rstudio
cars_df=read.csv("mtcars.csv")#read
View(cars_df)
str(cars_df)
dim(cars_df)
names(cars_df)
row.names(cars_df)
row.names(cars_df)=cars_df$model
cars_df=cars_df[,-1]
View(cars_df)
library(dplyr)
#Select fuction - for extracting specific columns
#df1=select(cars_df,mpg:hp)
df1=cars_df %>% select(mpg:hp) #pipe of dplyr it will take out content of one
column to the output of other column
View(df1)
df1 = cars_df %>% select(c(mpg,disp,wt,gear))
View(df1)
#Filter function - for extracting specific rows or observation
#extract record where gears=4 and columns to be displayed are mpg, disp, wt
and gears.
df1 = cars_df %>% filter(gear==4) %>% select(c(mpg,disp,wt,gear))
View(df1)
# extract record where cyl=4 or mpg>20 and columns are required are mpg,cl
```

```
df1 = cars_df \%>\% filter(cyl==4 \mid mpg > 20) \%>\% select(c(mpg,cyl))
View(df1)
#extract records where mpg < 20 and carb = 3 and coumns needed are mpg and
carb
df1 = cars df \% > \% filter(mpg < 20 \& carb == 3) \% > \% select(c(mpg,carb))
view(df1)
# Arrange function -Sort as per specific columns
df1 =cars_df %>% arrange(cyl,desc(mpg))
View(df1)
#Rename function - change names of one or more column
df1 = cars df \% > \%
rename(MilesPerGallon=mpg,Cylinders=cyl,Displacement=disp)
View(df1)
#Mutate function - creating new columns on the basis of existing column
df1 = cars_df %>% mutate(Power=hp*wt)
View(df1)
#Group_by and summaries - segregating data as per categorical variable and
summarizing
df1\$gear = as.factor(df1\$gear)
str(df1)
summary_df = df1%>% group_by(df1$gear) %>% summarise(no=n(),
mean_mpg=mean(mpg), mean_wt=mean(wt))
summary_df
summary_df = df1%>% group_by(df1$Cylinders) %>% summarise(no=n(),
mean_mpg=mean(mpg), mean_wt=mean(wt))
summary_df
```

```
#Data Visualization
```

#histogram - for single column frequency

hist(df1\$mpg, main="Histogeam of

MilePergallon(mtcars)",col="lightgreen",xlab="Miles Per Gallon")

#box plot - diagrammatic representation of summary

summary(df1\$mpg)

boxplot(df1\$mpg)

#bar plot - categorical variable representation'

table(df1\$gear)

barplot(table(df1\$gear))

#scatter plot - plot() - plots relationship between two variable

plot(df1\$mpg~df1\$disp)

plot(df1\$mpg~df1\$cyl)

plot(df1\$mpg~df1\$wt)

Output:

^	model [‡]	mpg [‡]	cyl [‡]	disp [‡]	hp [‡]	drat [‡]	wt ‡	qsec ÷	vs [‡]	am 🗦	gear [‡]	carb
1	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	
2	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	
3	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	
4	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	
5	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	
6	Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	
7	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	
8	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	
9	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	
10	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	
11	Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	
12	Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	
13	Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	
14	Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	
	a 100 et	30.4	_	470.0	205		5.050	17.00		_	_	

```
'data.frame': 32 obs. of 12 variables:

$ model: chr "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive" ...

$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...

$ cyl : int 6 6 4 6 8 6 8 4 4 6 ...

$ disp : num 160 160 108 258 360 ...

$ hp : int 110 110 93 110 175 105 245 62 95 123 ...

$ drat : num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...

$ wt : num 2.62 2.88 2.32 3.21 3.44 ...

$ qsec : num 16.5 17 18.6 19.4 17 ...

$ vs : int 0 0 1 1 0 1 0 1 1 1 ...

$ am : int 1 1 1 0 0 0 0 0 0 0 ...

$ gear : int 4 4 4 3 3 3 3 3 4 4 4 ...

$ carb : int 4 4 1 1 2 1 4 2 2 4 ...

[1] "model" "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear" [12] "carb"

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14" "15" "16" "17" "18" [19] "19" "20" "21" "22" "23" "24" "25" "26" "27" "28" "29" "30" "31" "32"
```

^	mpg [‡]	cyl [‡]	disp ‡	hp ‡	drat ‡	wt ‡	qsec ‡	vs [‡]	am ‡	gear ‡	carb ‡
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3

^	mpg [‡]	cyl [‡]	disp ‡	hp ‡
Mazda RX4	21.0	6	160.0	110
Mazda RX4 Wag	21.0	6	160.0	110
Datsun 710	22.8	4	108.0	93
Hornet 4 Drive	21.4	6	258.0	110
Hornet Sportabout	18.7	8	360.0	175
Valiant	18.1	6	225.0	105
Duster 360	14.3	8	360.0	245
Merc 240D	24.4	4	146.7	62
Merc 230	22.8	4	140.8	95
Merc 280	19.2	6	167.6	123
Merc 280C	17.8	6	167.6	123
Merc 450SE	16.4	8	275.8	180
Merc 450SL	17.3	8	275.8	180
Merc 450SLC	15.2	8	275.8	180

Mazda RX4 Wag 21.0 160.0 2.875 4 Datsun 710 22.8 108.0 2.320 4 Hornet 4 Drive 21.4 258.0 3.215 3 Hornet Sportabout 18.7 360.0 3.440 3 Valiant 18.1 225.0 3.460 3 Duster 360 14.3 360.0 3.570 3 Merc 240D 24.4 146.7 3.190 4 Merc 230 22.8 140.8 3.150 4 Merc 280 19.2 167.6 3.440 4 Merc 280C 17.8 167.6 3.440 4 Merc 450SE 16.4 275.8 4.070 3	^	mpg [‡]	disp $^{\scriptsize \scriptsize $	wt	gear ‡
Datsun 710 22.8 108.0 2.320 4 Hornet 4 Drive 21.4 258.0 3.215 3 Hornet Sportabout 18.7 360.0 3.440 3 Valiant 18.1 225.0 3.460 3 Duster 360 14.3 360.0 3.570 3 Merc 240D 24.4 146.7 3.190 4 Merc 230 22.8 140.8 3.150 4 Merc 280 19.2 167.6 3.440 4 Merc 280C 17.8 167.6 3.440 4 Merc 450SE 16.4 275.8 4.070 3	Mazda RX4	21.0	160.0	2.620	4
Hornet 4 Drive 21.4 258.0 3.215 3 Hornet Sportabout 18.7 360.0 3.440 3 Valiant 18.1 225.0 3.460 3 Duster 360 14.3 360.0 3.570 3 Merc 240D 24.4 146.7 3.190 4 Merc 230 22.8 140.8 3.150 4 Merc 280 19.2 167.6 3.440 4 Merc 280C 17.8 167.6 3.440 4 Merc 450SE 16.4 275.8 4.070 3	Mazda RX4 Wag	21.0	160.0	2.875	4
Hornet Sportabout 18.7 360.0 3.440 3 Valiant 18.1 225.0 3.460 3 Duster 360 14.3 360.0 3.570 3 Merc 240D 24.4 146.7 3.190 4 Merc 230 22.8 140.8 3.150 4 Merc 280 19.2 167.6 3.440 4 Merc 280C 17.8 167.6 3.440 4 Merc 450SE 16.4 275.8 4.070 3	Datsun 710	22.8	108.0	2.320	4
Valiant 18.1 225.0 3.460 3 Duster 360 14.3 360.0 3.570 3 Merc 240D 24.4 146.7 3.190 4 Merc 230 22.8 140.8 3.150 4 Merc 280 19.2 167.6 3.440 4 Merc 280C 17.8 167.6 3.440 4 Merc 450SE 16.4 275.8 4.070 3	Hornet 4 Drive	21.4	258.0	3.215	3
Duster 360 14.3 360.0 3.570 3 Merc 240D 24.4 146.7 3.190 4 Merc 230 22.8 140.8 3.150 4 Merc 280 19.2 167.6 3.440 4 Merc 280C 17.8 167.6 3.440 4 Merc 450SE 16.4 275.8 4.070 3	Hornet Sportabout	18.7	360.0	3.440	3
Merc 240D 24.4 146.7 3.190 4 Merc 230 22.8 140.8 3.150 4 Merc 280 19.2 167.6 3.440 4 Merc 280C 17.8 167.6 3.440 4 Merc 450SE 16.4 275.8 4.070 3	Valiant	18.1	225.0	3.460	3
Merc 230 22.8 140.8 3.150 4 Merc 280 19.2 167.6 3.440 4 Merc 280C 17.8 167.6 3.440 4 Merc 450SE 16.4 275.8 4.070 3	Duster 360	14.3	360.0	3.570	3
Merc 280 19.2 167.6 3.440 4 Merc 280C 17.8 167.6 3.440 4 Merc 450SE 16.4 275.8 4.070 3	Merc 240D	24.4	146.7	3.190	4
Merc 280C 17.8 167.6 3.440 4 Merc 450SE 16.4 275.8 4.070 3	Merc 230	22.8	140.8	3.150	4
Merc 450SE 16.4 275.8 4.070 3	Merc 280	19.2	167.6	3.440	4
	Merc 280C	17.8	167.6	3.440	4
Merc 450SL 17.3 275.8 3.730 3	Merc 450SE	16.4	275.8	4.070	3
	Merc 450SL	17.3	275.8	3.730	3
Merc 450SLC 15.2 275.8 3.780 3	Merc 450SLC	15.2	275.8	3.780	3

^	mpg [‡]	disp [‡]	wt ‡	gear ‡
Mazda RX4	21.0	160.0	2.620	4
Mazda RX4 Wag	21.0	160.0	2.875	4
Datsun 710	22.8	108.0	2.320	4
Merc 240D	24.4	146.7	3.190	4
Merc 230	22.8	140.8	3.150	4
Merc 280	19.2	167.6	3.440	4
Merc 280C	17.8	167.6	3.440	4
Fiat 128	32.4	78.7	2.200	4
Honda Civic	30.4	75.7	1.615	4
Toyota Corolla	33.9	71.1	1.835	4
Fiat X1-9	27.3	79.0	1.935	4
Volvo 142E	21.4	121.0	2.780	4

^	mpg [‡]	cyl [‡]
Mazda RX4	21.0	6
Mazda RX4 Wag	21.0	6
Datsun 710	22.8	4
Hornet 4 Drive	21.4	6
Merc 240D	24.4	4
Merc 230	22.8	4
Fiat 128	32.4	4
Honda Civic	30.4	4
Toyota Corolla	33.9	4
Toyota Corona	21.5	4
Fiat X1-9	27.3	4
Porsche 914-2	26.0	4
Lotus Europa	30.4	4
Volvo 142E	21.4	4

_	mpg [‡]	carb ‡
Merc 450SE	16.4	3
Merc 450SL	17.3	3
Merc 450SLC	15.2	3

51C 4303LC	15.2										
^	mpg [‡]	cyl [‡]	disp [‡]	hp [‡]	drat ‡	wt ‡	qsec ‡	vs [‡]	am ‡	gear ‡	carb [‡]
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
		_	3.45.0				35.50	_		_	_

4	MilesPe	rGallon [‡]	Cylinde	ers [‡] Di	isplaceme	nt [‡] h	p	drat	÷	wt	[‡] qse	ec	[‡] VS	\$ =	am	÷	gear ‡
Mazda RX4		21.0		6		160.0	110	3	3.90	2.62	0]	16.4	16	0		1	4
Mazda RX4 Wag		21.0		6		160.0	110	3	3.90	2.87	5]	17.0)2	0		1	4
Datsun 710)	22.8		4		108.0	93	3	8.85	2.32	0]	18.6	61	1		1	4
Hornet 4 Drive		21.4		6		258.0	110	3	3.08	3.21	5]	19.4	14	1		0	3
Hornet Sportabout	:	18.7		8		360.0	175	3	3.15	3.44	0]	17.0)2	0		0	3
Valiant	:	18.1		6		225.0	105	2	2.76	3.46	0 2	20.2	22	1		0	3
Duster 360)	14.3		8		360.0	245	3	3.21	3.57	0]	15.8	34	0		0	3
Merc 240D)	24.4		4		146.7	62	3	3.69	3.19	0 2	20.0	00	1		0	4
Merc 230)	22.8		4		140.8	95	3	3.92	3.15	0 2	22.9	90	1		0	4
Merc 280)	19.2		6		167.6	123	3	3.92	3.44	0]	18.3	30	1		0	4
Merc 2800	:	17.8		6		167.6	123	3	3.92	3.44	0]	18.9	90	1		0	4
Merc 450SE		16.4		8		275.8	180	3	3.07	4.07	0]	17.4	10	0		0	3
Merc 450SL		17.3		8		275.8	180	3	3.07	3.73	0]	17.6	60	0		0	3
Merc 450SLC	:	15.2		8		275.8	180	3	3.07	3.78	0]	18.0	00	0		0	3
_	mpg [‡]	cyl [‡]	disp [‡]	hp [‡]	drat [‡]	wt ‡	qsed	¢ \$	vs	÷	am	÷	gear	÷	carb	÷	Power [‡]
Mazda RX4	21.0	6	160.0	110	3.90	2.620	10	6.46		0		1		4		4	288.200
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	1	7.02		0		1		4		4	316.250
Datsun 710	22.8	4	108.0	93	3.85	2.320	18	8.61		1		1		4		1	215.760
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19	9.44		1		0		3		1	353.650
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	1	7.02		0		0		3		2	602.000
Valiant	18.1	6	225.0	105	2.76	3.460	2	0.22		1		0		3		1	363.300
Duster 360	14.3	8	360.0	245	3.21	3.570	1	5.84		0		0		3		4	874.650
Merc 240D	24.4	4	146.7	62	3.69	3.190	20	0.00		1		0		4		2	197.780
Merc 230	22.8	4	140.8	95	3.92	3.150	2	2.90		1		0		4		2	299.250
Merc 280	19.2	6	167.6	123	3.92	3.440	18	8.30		1		0		4		4	423.120
Merc 280C	17.8	6	167.6	123	3.92	3.440	18	8.90		1		0		4		4	423.120
Merc 450SE	16.4	8	275.8	180	3.07	4.070		7.40		0		0		3		3	732.600
Merc 450SL	17.3	8	275.8	180 180	3.07	3.730		7.60 8.00		0		0		3		3	671.400
\$ cyl : \$ disp : \$ hp : \$ drat : \$ wt : \$ qsec : \$ vs : \$ am : \$ gear : \$ carb : \$ Power:	num int num int num num int int int int Facto int num	6 6 4 160 16 110 11 3.9 3. 2.62 2 16.5 1 0 0 1 1 1 1 r w/ 3 4 4 1 288 31	22.8 6 8 6 0 108 0 93 9 3.8 7 18. 1 0 1 0 0 0	21.4 5 8 4 3 258 110 1 35 3.0 2.32 3 6 19. 6 0 1 0 0 0 els "3	360 . 75 10 8 3.1 3.21 3 4 17 1 1 . 0 0 . 3","4" 2 4 .	18.1 5 245 5 2.7 .44 	14. 6 62 6 3	95 3.21	5 1 L 3	23 .69	3.9	92	3.	92			
	3 x				n_wt												

Histogeam of MilePergallon(mtcars)

Practical No:4

Aim: Exploratory data analysis in Python using Titanic Dataset

It is one of the most popular datasets used for understanding machine learning basics. It contains information of all the passengers aboard the RMS Titanic, which unfortunately was shipwrecked. This dataset can be used to predict whether a given passenger survived or not.

Data Dictionary

Variable	Definition	Key
Survival	Survival	0 = No, 1 = Yes
Pclass	Ticket class	1 = 1st, $2 = 2$ nd, $3 = 3$ rd
Sex	Sex	
Age	Age in years	
Sibsp	# of siblings / spouses aboard the Titanic	
Parch	# of parents / children aboard the Titanic	
Ticket	Ticket number	
Fare	Passenger fare	
Cabin	Cabin number	
Embarked	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton

Seaborn:

It is a python library used to statistically visualize data. <u>Seaborn</u>, built over Matplotlib, provides a better interface and ease of usage. It can be installed using the following command,

pip3 install seaborn

Features: The titanic dataset has roughly the following types of features:

• Categorical/Nominal: Variables that can be divided into multiple categories but having no order or priority.

Eg. Embarked (C = Cherbourg; Q = Queenstown; S = Southampton)

• **Binary**: A subtype of categorical features, where the variable has only two categories.

Eg: Sex (Male/Female)

• **Ordinal**: They are similar to categorical features but they have an order(i.e can be sorted).

Eg. Pclass (1, 2, 3)

• **Continuous**: They can take up any value between the minimum and maximum values in a column.

Eg. Age, Fare

- Count: They represent the count of a variable.
- Eg. SibSp, Parch
- **Useless**: They don't contribute to the final outcome of an ML model. Here, *PassengerId*, *Name*, *Cabin* and *Ticket* might fall into this category.

Code:

```
import pandas as pd
titanic = pd.read csv("train.csv")
titanic.head()
titanic.info()
titanic.describe()
titanic.isnull().sum()
titanic cleaned =
titanic.drop(['PassengerId','Name','Ticket','Fare','Cabin'],axis=1)
titanic cleaned.info()
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.catplot(x="Sex",hue="Survived",kind="count",data=titanic_cleaned)
titanic_cleaned.groupby(['Sex','Survived'])['Survived'].count())
group1 = titanic_cleaned.groupby(['Sex','Survived'])
sns.heatmap(gender_survived,annot=True,fmt="d")
sns.heatmap(gender_survived,annot=True,fmt="d")
sns.violinplot(x="Sex",y="Age",hue="Survived",data=titanic_cleaned,split=Tru
e)
print("Oldest Person on Board:",titanic_cleaned['Age'].max())
print("Youngest Person on Board:",titanic_cleaned['Age'].min())
print("Average age of Person on Board:",titanic_cleaned['Age'].mean())
```

```
titanic_cleaned.isnull().sum()
def impute(cols):
  Age = cols[0]
  Pclass = cols[1]
  if pd.isnull(Age):
    if Pclass==1:
       return 38
     elif Pclass==2:
       return 29
     else:
       return 24
  else:
     return Age
titanic_cleaned['Age']=titanic_cleaned[['Age','Pclass']].apply(impute,axis=1)
titanic_cleaned.isnull().sum()
titanic_cleaned.corr(method='pearson')
sns.heatmap(titanic_cleaned.corr(method="pearson"),annot=True,vmax=1)
import numpy as np
from sklearn import datasets
x,y,coef=datasets.make_regression(n_samples=100, n_features=1,
n_informative=1, noise=10,coef=True, random_state = 0)
x=np.interp(x,(x.min(),x.max()),(0,20))
print(len(x))
print(x)
y=np.interp(y,(y.min(),y.max()),(20000,150000))
print(len(y))
print(y)
```

Output:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtvn	es: float64(2), int64(5), obi	ect(5)

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare	
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000	
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208	
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429	
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000	
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400	
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200	
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000	
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200	

PassengerId 0 Survived 0 Pclass 0 Name 0 Sex 0 177 Age SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked 2

dtype: int64

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 7 columns):

#	Column	Non-	-Null Count	Dtype
0	Survived	891	non-null	int64
1	Pclass	891	non-null	int64
2	Sex	891	non-null	object
3	Age	714	non-null	float64
4	SibSp	891	non-null	int64
5	Parch	891	non-null	int64
6	Embarked	889	non-null	object
dtvn	ac. float6	1(1)	int64(4)	object(2)

dtypes: float64(1), int64(4), object(2)

memory usage: 48.9+ KB

Sex	Survived	
female	0	81
	1	233
male	0	468
	1	109

Name: Survived, dtype: int64

Survived 0 1

Sex		
female	81	233
male	468	109

<AxesSubplot:xlabel='Survived', ylabel='Sex'>

<AxesSubplot:xlabel='Sex', ylabel='Age'>

Oldest Person on Board: 80.0

Youngest Person on Board: 0.42

Average age of Person on Board: 29.69911764705882

Survived	0
Pclass	0
Sex	0
Age	177
SibSp	0
Parch	0
Embarked	2
dtype: int64	ļ

Survived 0
Pclass 0
Sex 0
Age 0
SibSp 0
Parch 0
Embarked 2
dtype: int64

	Survived	Pclass	Age	SibSp	Parch
Survived	1.000000	-0.338481	-0.046746	-0.035322	0.081629
Pclass	-0.338481	1.000000	-0.411805	0.083081	0.018443
Age	-0.046746	-0.411805	1.000000	-0.243877	-0.171917
SibSp	-0.035322	0.083081	-0.243877	1.000000	0.414838
Parch	0.081629	0.018443	-0.171917	0.414838	1.000000

<AxesSubplot:>


```
100
[[ 9.09621765]
[14.63742853]
 [12.25580785]
 [ 7.21515957]
 [ 6.90562848]
 [12.42799856]
 [ 6.53450315]
 [12.36358975]
 [11.45101022]
 [ 9.29527704]
 [ 8.46897323]
 [11.11359701]
 [ 4.21646281]
 [ 8.92109838]
 [13.29785748]
 [15.47570863]
 [ 9.84113925]
 [17.99332461]
 [16.61818648]
 [ 7.74737185]
 F4. C.C4300
 100
 78311.16075377 103897.6645258 97836.26101499 80550.25638039
   68555.820963 108021.44227128 55778.0199934 101586.97979347
  103966.61856971 76826.00913959 73657.03907056 96439.33831133
   43282.85644907 73119.73495559 109692.0380975 128125.74670244
   87499.26503386 136438.82955292 140414.06203468 75920.22641562
  122765.94046351 138676.79599883 90840.21480164 99453.36502726
  118663.17132396 125247.52951645 144470.99004202 98454.6493064
   92321.3919241 133162.35931048 61723.07434352 77095.35501897
   59042.68149761 109559.00643186 77206.62874325 109743.44545302
  103902.53136675 82585.66146856 81088.97054957 62200.35300958
  111971.74647069 101515.0451792
                                  47090.60230288 141613.36480828
```

72953.14343772 131312.34257614 68957.25418311

135509.14233685 90658.86260334 75147.59074288 46071.12989863

99370.060872

Practical 5

Aim: Exploratory data analysis in Python using Titanic Dataset The following figure illustrates simple linear regression:

The package **scikit-learn** is a widely used Python library for machine learning, built on top of NumPy and some other packages, It provides the means for preprocessing data, reducing dimensionality, implementing regression, classification, clustering, and more. Like NumPy, scikit-learn is also open source.

It is used as sklearn in python

1)Write a python program to build a regression model that could predict the salary of an employee from the given experience and visualize univariate linear regression on it.

Code:

```
import numpy as np
from sklearn import datasets
x,y,coef=datasets.make_regression(n_samples=100, n_features=1,
n_informative=1, noise=10,coef=True, random_state = 0)
x=np.interp(x,(x.min(),x.max()),(0,20))
print(len(x))
print(x)
y=np.interp(y,(y.min(),y.max()),(20000,150000))
print(len(y))
print(y)
import matplotlib.pyplot as plt
plt.plot(x,t,'.',label="training data")
plt.xlabel("Years of Experience")
plt.ylabel("Salary")
plt.title("Experience vs Salary")
from sklearn.linear_model import LinearRegression
reg_model = LinearRegression()
reg model.fit(x,y)
y_pred=reg_model.predict(x)
plt.plot(x,y_pred,color="black")
plt.plot(x,y,'.',label="training data")
plt.xlabel("Years of Experience")
plt.ylabel("Salary")
plt.title("Experience vs Salary")
import pandas as pd
data = {'Experience':np.round(x.flatten()),'Salary':np.round(y)}
df=pd.DataFrame(data)
df.head(10)
```

Output:

Text(0.5, 1.0, 'Experience vs Salary')

Text(0.5, 1.0, 'Experience vs Salary')

	Experience	Salary
0	9.0	78311.0
1	15.0	103898.0
2	12.0	97836.0
3	7.0	80550.0
4	7.0	68556.0
5	12.0	108021.0
6	7.0	55778.0
7	12.0	101587.0
8	11.0	103967.0
9	9.0	76826.0

2) Write a python program to simulate linear model Y=10+7*x+e for random 100 samples and visualize univariate linear regression on it.

Code:

```
x1=[[13.0]]
y1=reg_model.predict(x1)
print(np.round(y1))
reg_model1=LinearRegression()
x=np.random.rand(100,1)
yintercept=10
slope=7
error=np.random.rand(100,1)
y=yintercept+slope*x+error
reg_model1.fit(x,y)
y_pred=reg_model1.predict(x)
plt.scatter(x,y,s=10)
plt.xlabel("X")
plt.ylabel("Y")
plt.plot(x,y_pred,color="black")
```

Output:

[105534.]

[<matplotlib.lines.Line2D at 0x26fbd74c8b0>]

Practical 6

Aim: Write a python program to implement multiple linear regression on the Dataset Boston.csv

The dataset provides Housing Values in Suburbs of Boston

The medv(Price) variable is the target /dependent variable.

Data description

The Boston data frame has 506 rows and 14 columns.

This data frame contains the following columns:

crim

per capita crime rate by town.

zn

proportion of residential land zoned for lots over 25,000 sq.ft.

indus

proportion of non-retail business acres per town.

chas

Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).

nox

nitrogen oxides concentration (parts per 10 million).

rm

average number of rooms per dwelling.

age

proportion of owner-occupied units built prior to 1940.

dis

weighted mean of distances to five Boston employment centres.

rad

index of accessibility to radial highways.

tax

full-value property-tax rate per \$10,000.

ptratio

pupil-teacher ratio by town.

black

 $1000(Bk - 0.63)^2$ where Bk is the proportion of blacks by town.

lstat

lower status of the population (percent).

Medv(Price)

median value of owner-occupied homes in \\$1000s.

Code:

import pandas as pd
import matplotlib.pyplot as plt
import sklearn
boston = pd.read_csv("Boston.csv")
boston.head()

```
boston.info()
boston = boston.drop(columns="Unnamed: 0")
boston.info()
boston_x = pd.DataFrame(boston.iloc[:::13])
boston_y = pd.DataFrame(boston.iloc[:,-1])
boston_x.head()
boston_y.head()
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(boston_x, boston_y,
test size=0.3)
print("xtrain shape", X_train.shape)
print("ytrain shape", Y_train.shape)
print("xtest shape", X_test.shape)
print("ytest shape", Y_test.shape)
from sklearn.linear model import LinearRegression
regression=LinearRegression()
regression.fit(X_train,Y_train)
Y_pred_linear = regression.predict(X_test)
Y_pred_df = pd.DataFrame(Y_pred_linear,columns=["Predicted"])
Y_pred_df.head()
plt.scatter(Y_test, Y_pred_linear, c="green")
plt.xlabel("Actual Price(medv)")
plt.ylabel("Predicted Pric(medv)")
plt.title("Actual vs Prediction")
plt.show()
```

Output:

	Unnamed: 0	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat	medv
0	1	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
1	2	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
2	3	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
3	4	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
4	5	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 15 columns):
Column Non-Null Count Dtype

#	Column	Non-Null Coun	t Dtype
0	Unnamed: 0	506 non-null	int64
1	crim	506 non-null	float64
2	zn	506 non-null	float64
3	indus	506 non-null	float64
4	chas	506 non-null	int64
5	nox	506 non-null	float64
6	rm	506 non-null	float64
7	age	506 non-null	float64
8	dis	506 non-null	float64
9	rad	506 non-null	int64
10	tax	506 non-null	int64
11	ptratio	506 non-null	float64
12	black	506 non-null	float64
13	lstat	506 non-null	float64
14	medv	506 non-null	float64
44	61464	(44) :-+64(4)	

dtypes: float64(11), int64(4)

memory usage: 59.4 KB

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	crim	506 non-null	float64
1	zn	506 non-null	float64
2	indus	506 non-null	float64
3	chas	506 non-null	int64
4	nox	506 non-null	float64
5	rm	506 non-null	float64
6	age	506 non-null	float64
7	dis	506 non-null	float64
8	rad	506 non-null	int64
9	tax	506 non-null	int64
10	ptratio	506 non-null	float64
11	black	506 non-null	float64
12	lstat	506 non-null	float64
13	medv	506 non-null	float64

dtypes: float64(11), int64(3)

memory usage: 55.5 KB

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33

medv

- 0 24.0
- 1 21.6
- 2 34.7
- 3 33.4
- 4 36.2

xtrain shape (354, 13)

ytrain shape (354, 1)

xtest shape (152, 13)

ytest shape (152, 1)

Predicted

- 0 22.984672
- 1 23.549732
- **2** 19.280036
- 3 25.237437
- 4 36.235906

Practical 7:

K Nearest Neighbor classification Algorithm

Aim: Write a python program to implement KNN algorithm to predict breast cancer using breast cancer wisconsin dataset.

Data Set Information:

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image.

Attribute Information:

1) ID number 2) Diagnosis (M = malignant, B = benign) (3-32)

Ten real-valued features are computed for each cell nucleus:

- a) radius (mean of distances from center to points on the perimeter)
- b) texture (standard deviation of gray-scale values)
- c) perimeter
- d) area
- e) smoothness (local variation in radius lengths)
- f) compactness (perimeter^2 / area 1.0)
- g) concavity (severity of concave portions of the contour) h) concave points (number of concave portions of the contour)
- i) symmetry
- j) fractal dimension ("coastline approximation" 1)

Code:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import load_breast_cancer

from sklearn.metrics import confusion_matrix

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import train_test_split

import seaborn as sns

breast_cancer_df = load_breast_cancer()

x=pd.DataFrame(breast_cancer_df.data,columns=breast_cancer_df.feature_names)

x.head()

```
columns_to_select = ["mean area", "mean compactness"]
x=x[columns_to_select]
x.head()
y=pd.Categorical.from codes(breast cancer_df.target,breast cancer_df.target_n
ames)
print(y)
y=pd.get_dummies(y,drop_first=True)
X train, X test, Y train, Y test = train test split(x, y, random state=1)
knn=KNeighborsClassifier(n neighbors=5,metric="euclidewan")
knn.fit(X train, Y train)
sns.set()
sns.scatterplot(x="mean
                                                               area",y="mean
compactness",hue="benign",data=X text.join(Y test,how="outer"))
y_pred=knn.predict(X_test)
plt.scatter(X_test["mean
                                                          area"],X_test["mean
compactness"],c=y_pred,cmap="coolwarm",alpha=0.7)
cf=confusion_matrix(Y_test,y_pred)
print(cf)
labels=["True Negative", "False Positive", "False Negative", "True Positive"]
labels=np.asarray(labels).reshape(2,2)
categories=["Zero","One"]
ax=plt.subplot()
sns.heatmap(cf,annot=True,ax=ax)
ax.set_xlabel("Predicted Values")
ax.set_ylabel("Actual Values")
ax.set_title("Confusion Matrix")
ax.xaxis.set_ticklabels(["Malignant","Benign"])
ax.yaxis.set_ticklabels(["Malignant","Benign"])
```

Output:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst radius	worst texture	worst perimeter	worst area	worst smoothness
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871	 25.38	17.33	184.60	2019.0	0.1622
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	 24.99	23.41	158.80	1956.0	0.1238
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	0.05999	 23.57	25.53	152.50	1709.0	0.1444
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	0.09744	 14.91	26.50	98.87	567.7	0.2098
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	0.05883	 22.54	16.67	152.20	1575.0	0.1374

5 rows × 30 columns

mean area mean compactness

0	1001.0	0.27760
1	1326.0	0.07864
2	1203.0	0.15990
3	386.1	0.28390
4	1297.0	0.13280

['malignant', 'malignant', 'malignant', 'malignant', 'malignant', 'malignant', 'malignant', 'malignant', 'malignant', 'ben
ign']
Length: 569
Categories (2, object): ['malignant', 'benign']

benign

[569 rows x 1 columns]

<AxesSubplot:xlabel='mean area', ylabel='mean compactness'>

<matplotlib.collections.PathCollection at 0x260054d1fa0>

[[42 13] [9 79]]

[Text(0, 0.5, 'Malignant'), Text(0, 1.5, 'Benign')]

Practical 8:

Aim: Introduction to NOSQL using MongoDB

Perform the following:

1.Create a database Company ,Create a Collection Staff and Insert ten documents in it with fields: empid,empname,salary and designation.

- Display all documents in Staff and display only empid and designation.db
- Sort the documents in descending order of Salary
- Display employee with designation with "Manager" or salary greater than Rs. 50,000/-.
- Update the salary of all employees with designation as "Accountant" to Rs.45000.
- Remove the documents of employees whose salary is greater than Rs100000.
- 2. Create a database Institution .Create a Collection Student and Insert ten documents in it with fields: RollNo,Name,Class and TotalMarks(out of 500).
 - Display all documents in Student.
 - Sort the documents in descending order of TotalMarks.
 - Display students of class "MSc" or marks greater than 400.
 - Remove all the documents with TotalMarks<200

Code and Output:

1.Create a database Institution ,Create a Collection Staff and Insert ten documents in it with fields: empid,empname,salary and designation.

use Institution

db.createCollection("Staff")

```
use Institutionswitched to db Institutiondb.createCollection("Staff")
```

db

```
db.Staff.insertMany([ { "empid": 1, "empname": "John Doe", "salary": 60000, "designation": "Manager" }, { "empid": 2, "empname": "Jane Smith", "salary": 55000, "designation": "Accountant" }, { "empid": 3, "empname": "Michael Johnson", "salary": 70000, "designation": "Manager" }, { "empid": 4, "empname": "Emily Brown", "salary": 45000, "designation": "Accountant" }, {
```

```
"empid": 5, "empname": "David Wilson", "salary": 80000, "designation": "Developer" }, { "empid": 6, "empname": "Sarah Lee", "salary": 95000, "designation": "Manager" }, { "empid": 7, "empname": "Christopher Martinez", "salary": 50000, "designation": "Accountant" }, { "empid": 8, "empname": "Amanda Davis", "salary": 120000, "designation": "Manager" }, { "empid": 9, "empname": "Jason Rodriguez", "salary": 40000, "designation": "Intern" }, { "empid": 10, "empname": "Jessica Taylor", "salary": 110000, "designation": "Manager" } ])
```

Db.Staff.find().pretty()

```
> db.Staff.find().pretty()
{
        "_id" : ObjectId("65deecde8cbdbaebf7136c4f"),
        "empid" : 1,
        "empname" : "John Doe",
        "salary" : 60000,
        "designation" : "Manager"
}
{
        "_id" : ObjectId("65deecde8cbdbaebf7136c50"),
        "empid" : 2,
        "empname" : "Jane Smith",
        "salary" : 55000,
        "designation" : "Accountant"
}
{
        "_id" : ObjectId("65deecde8cbdbaebf7136c51"),
        "empid" : 3,
        "empname" : "Michael Johnson",
        "salary" : 70000,
        "designation" : "Manager"
}
{
        "_id" : ObjectId("65deecde8cbdbaebf7136c52"),
        "empid" : 4,
        "empname" : "Emily Brown",
        "salary" : 45000,
        "designation" : "Accountant"
}
```

• Display all documents in Staff and display only empid and designation.

db.Staff.find().pretty()

```
bb.Staff.find().pretty()

"_id" : ObjectId("65deecde8cbdbaebf7136c4f"),
    "empid" : 1,
    "empname" : "John Doe",
    "salary" : 60000,
    "designation" : "Manager"

"_id" : ObjectId("65deecde8cbdbaebf7136c50"),
    "empid" : 2,
    "empname" : "Jane Smith",
    "salary" : 55000,
    "designation" : "Accountant"

"_id" : ObjectId("65deecde8cbdbaebf7136c51"),
    "empid" : 3,
    "empname" : "Michael Johnson",
    "salary" : 70000,
    "designation" : "Manager"

}

{
    "_id" : ObjectId("65deecde8cbdbaebf7136c52"),
    "empid" : 4,
    "empname" : "Emily Brown",
    "salary" : 45000,
    "designation" : "Accountant"
}
```

```
"_id" : ObjectId("65deecde8cbdbaebf7136c54"),
    "empid" : 6,
    "empname" : "Sarah Lee",
    "salary" : 95000,
    "designation" : "Manager"

{
    "_id" : ObjectId("65deecde8cbdbaebf7136c55"),
    "empid" : 7,
    "empname" : "Christopher Martinez",
    "salary" : 50000,
    "designation" : "Accountant"

}
{
    "_id" : ObjectId("65deecde8cbdbaebf7136c56"),
    "empid" : 8,
    "empname" : "Amanda Davis",
    "salary" : 120000,
    "designation" : "Manager"

}
{
    "_id" : ObjectId("65deecde8cbdbaebf7136c57"),
    "empid" : 9,
    "empname" : "Jason Rodriguez",
    "salary" : 40000,
    "designation" : "Intern"
}
```

Db.staff.find({], {"_id":0, "empid":1, "designation":1}).pretty()

```
> db.Staff.find({}, { "_id": 0, "empid": 1, "designation": 1 }).pretty()
{ "empid" : 1, "designation" : "Manager" }
{ "empid" : 2, "designation" : "Accountant" }
{ "empid" : 3, "designation" : "Manager" }
{ "empid" : 4, "designation" : "Accountant" }
{ "empid" : 5, "designation" : "Developer" }
{ "empid" : 6, "designation" : "Manager" }
{ "empid" : 7, "designation" : "Accountant" }
{ "empid" : 8, "designation" : "Manager" }
{ "empid" : 9, "designation" : "Intern" }
{ "empid" : 10, "designation" : "Manager" }
```

Sort the documents in descending order of Salary

```
db.Staff.find().sort({ "salary": -1 })
```

```
> db.Staff.find().sort({ "salary": -1 })
{ "_id" : ObjectId("65deecde8cbdbaebf7136c56"), "empid" : 8, "empname" : "Amanda Davis", "salary" : 120000, "designation " : "Manager" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c58"), "empid" : 10, "empname" : "Jessica Taylor", "salary" : 110000, "designation" : "Manager" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c54"), "empid" : 6, "empname" : "Sarah Lee", "salary" : 95000, "designation" : "Manager" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c53"), "empid" : 5, "empname" : "David Wilson", "salary" : 80000, "designation" : "Developer" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c51"), "empid" : 3, "empname" : "Michael Johnson", "salary" : 70000, "designation" : "Manager" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c51"), "empid" : 1, "empname" : "John Doe", "salary" : 60000, "designation" : "Manager" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c50"), "empid" : 2, "empname" : "Jane Smith", "salary" : 55000, "designation" : "Accountant" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c55"), "empid" : 7, "empname" : "Christopher Martinez", "salary" : 50000, "designation" : "Accountant" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c52"), "empid" : 4, "empname" : "Emily Brown", "salary" : 45000, "designation" : "Accountant" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c52"), "empid" : 4, "empname" : "Emily Brown", "salary" : 45000, "designation" : "Accountant" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c52"), "empid" : 4, "empname" : "Jason Rodriguez", "salary" : 40000, "designation" : "Accountant" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c57"), "empid" : 9, "empname" : "Jason Rodriguez", "salary" : 40000, "designation" : "Tintern" }
```

• Display employee with designation with "Manager" or salary greater than Rs. 50,000/-.

```
db.Staff.find({ $or: [{ "designation": "Manager" }, { "salary": { $gt: 50000 } }] })
```

```
> db.Staff.find({ $or: [{ "designation": "Manager" }, { "salary": { $gt: 50000 } }] })
{ "_id" : ObjectId("65deecde8cbdbaebf7136c4f"), "empid" : 1, "empname" : "John Doe", "salary" : 60000, "designation" : "
Manager" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c51"), "empid" : 3, "empname" : "Michael Johnson", "salary" : 70000, "designation" : "Manager" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c53"), "empid" : 5, "empname" : "David Wilson", "salary" : 80000, "designation" : "Developer" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c54"), "empid" : 6, "empname" : "Sarah Lee", "salary" : 95000, "designation" : "Manager" }
```

• Update the salary of all employees with designation as "Accountant" to Rs.45000.

```
db.Staff.updateMany({ "designation": "Accountant" }, { $set: {
"salary": 45000 } })
```

```
> db.Staff.updateMany({ "designation": "Accountant" }, { $set: { "salary": 45000 } })
{ "acknowledged" : true, "matchedCount" : 3, "modifiedCount" : 2 }
```

db.Staff.din({"designation": "Accountant"})

```
> db.Staff.find(("designation": "Accountant"))
{ "_id" : ObjectId("65deecde8cbdbaebf7136c50"), "empid" : 2, "empname" : "Jane Smith", "salary" : 45000, "designation" :
    "Accountant" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c52"), "empid" : 4, "empname" : "Emily Brown", "salary" : 45000, "designation" : "Accountant" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c55"), "empid" : 7, "empname" : "Christopher Martinez", "salary" : 45000, "designation" : "Accountant" }
```

• Remove the documents of employees whose salary is greater than Rs100000.

```
db.Staff.deleteMany({ "salary": { $gt: 100000 } })
db.Staff.find()
```

```
b db.Staff.deleteMany({ "salary": { $gt: 100000 } })
{ "acknowledged" : true, "deletedCount" : 2 }

b db.Staff.find()
{ "_id" : ObjectId("65deecde8cbdbaebf7136c54"), "empid" : 1, "empname" : "John Doe", "salary" : 60000, "designation" : "Manager" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c50"), "empid" : 2, "empname" : "Jane Smith", "salary" : 45000, "designation" : "Accountant" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c51"), "empid" : 3, "empname" : "Michael Johnson", "salary" : 70000, "designation" : "Accountant" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c52"), "empid" : 4, "empname" : "Emily Brown", "salary" : 45000, "designation" : "Accountant" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c52"), "empid" : 5, "empname" : "David Wilson", "salary" : 80000, "designation" : "Developer" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c54"), "empid" : 6, "empname" : "Sarah Lee", "salary" : 95000, "designation" : "Manager" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c55"), "empid" : 7, "empname" : "Christopher Martinez", "salary" : 45000, "designation" : "Accountant" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c55"), "empid" : 9, "empname" : "Jason Rodriguez", "salary" : 40000, "designation" : "Intern" }
}
```

2. Create a database Institution .Create a Collection Student and Insert ten documents in it with fields: RollNo,Name,Class and TotalMarks(out of 500).

db.createCollection("Student")

db

```
> db.createCollection("Student")
{ "ok" : 1 }
> db
Institution
```

db.Student.insertMany([{ "RollNo": 101, "Name": "Alice Johnson", "Class": "BSc", "TotalMarks": 480 }, { "RollNo": 102, "Name": "Bob Smith", "Class": "MSc", "TotalMarks": 450 }, { "RollNo": 103, "Name": "Charlie Brown", "Class": "MSc", "TotalMarks": 420 }, { "RollNo": 104, "Name": "David Davis", "Class": "BSc", "TotalMarks": 400 }, { "RollNo": 105, "Name": "Eva Wilson", "Class": "MSc", "TotalMarks": 490 }, { "RollNo": 106, "Name": "Frank Martinez", "Class": "BSc", "TotalMarks": 360 }, { "RollNo": 107, "Name": "Grace Lee", "Class": "MSc", "TotalMarks": 510 }, { "RollNo": 108, "Name": "Henry Taylor", "Class": "BSc", "TotalMarks": 320 }, { "RollNo": 109, "Name": "Isabel Rodriguez", "Class": "MSc", "TotalMarks": 380 }, { "RollNo": 110, "Name": "Jack Harris", "Class": "BSc", "TotalMarks": 250 }])

db.Student.find({})

• Display all documents in Student.

db.Student.find({})

• Sort the documents in descending order of TotalMarks.

db.Student.find().sort({ "TotalMarks": -1 })

```
b db.Student.find().sort({ "TotalMarks": -1 })
{ "_id" : ObjectId("65def1918cbdbaebf7136c5f"), "RollNo" : 107, "Name" : "Grace Lee", "Class" : "MSc", "TotalMarks" : 5: 0 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c5d"), "RollNo" : 105, "Name" : "Eva Wilson", "Class" : "MSc", "TotalMarks" : 6: 0 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c59"), "RollNo" : 101, "Name" : "Alice Johnson", "Class" : "BSc", "TotalMarks" : 4: 0 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c5a"), "RollNo" : 102, "Name" : "Bob Smith", "Class" : "MSc", "TotalMarks" : 4: 0 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c5b"), "RollNo" : 103, "Name" : "Charlie Brown", "Class" : "MSc", "TotalMarks" : 4: 0 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c5c"), "RollNo" : 104, "Name" : "David Davis", "Class" : "BSc", "TotalMarks" : 4: 0 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c5c"), "RollNo" : 109, "Name" : "Isabel Rodriguez", "Class" : "MSc", "TotalMarks" : 4: 0 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c5e"), "RollNo" : 106, "Name" : "Frank Martinez", "Class" : "BSc", "TotalMarks" : 3: 3: 0 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c60"), "RollNo" : 108, "Name" : "Henry Taylor", "Class" : "BSc", "TotalMarks" : 3: 3: 0 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c60"), "RollNo" : 108, "Name" : "Henry Taylor", "Class" : "BSc", "TotalMarks" : 3: 3: 0 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c60"), "RollNo" : 108, "Name" : "Henry Taylor", "Class" : "BSc", "TotalMarks" : 3: 3: 0 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c62"), "RollNo" : 108, "Name" : "Jack Harris", "Class" : "BSc", "TotalMarks" : 3: 3: 0 }
```

• Display students of class "MSc" or marks greater than 400.

db.Student.find({ \$or: [{ "Class": "MSc" }, { "TotalMarks": { \$gt: 400 } }] })

Remove all the documents with TotalMarks
 db.Student.deleteMany({ "TotalMarks": { \$lt: 200 } })
 db.Student.find({})

```
b db.Student.deleteMany({ "TotalMarks": { $1t: 200 } })
{ "acknowledged" : true, "deletedCount" : 0 }
} db.Student.find({})
{ ".id" : ObjectId("65def1918cbdbaebf7136c59"), "RollNo" : 101, "Name" : "Alice Johnson", "Class" : "BSC", "TotalMarks" : 480 }
{ ".id" : ObjectId("65def1918cbdbaebf7136c5a"), "RollNo" : 102, "Name" : "Bob Smith", "Class" : "MSC", "TotalMarks" : 45  
}
{ ".id" : ObjectId("65def1918cbdbaebf7136c5b"), "RollNo" : 103, "Name" : "Charlie Brown", "Class" : "MSC", "TotalMarks" : 420 }
{ ".id" : ObjectId("65def1918cbdbaebf7136c5c"), "RollNo" : 104, "Name" : "David Davis", "Class" : "BSC", "TotalMarks" : 400 }
{ ".id" : ObjectId("65def1918cbdbaebf7136c5d"), "RollNo" : 105, "Name" : "Eva Wilson", "Class" : "MSC", "TotalMarks" : 400 }
{ ".id" : ObjectId("65def1918cbdbaebf7136c5d"), "RollNo" : 106, "Name" : "Frank Martinez", "Class" : "BSC", "TotalMarks" : 300 }
{ ".id" : ObjectId("65def1918cbdbaebf7136c5f"), "RollNo" : 107, "Name" : "Grace Lee", "Class" : "MSC", "TotalMarks" : 51  
0 }
{ ".id" : ObjectId("65def1918cbdbaebf7136c5f"), "RollNo" : 108, "Name" : "Henry Taylor", "Class" : "BSC", "TotalMarks" : 320 }
{ ".id" : ObjectId("65def1918cbdbaebf7136c61"), "RollNo" : 109, "Name" : "Isabel Rodriguez", "Class" : "MSC", "TotalMarks" : 330 }
{ ".id" : ObjectId("65def1918cbdbaebf7136c61"), "RollNo" : 109, "Name" : "Jack Harris", "Class" : "MSC", "TotalMarks" : 7.  
250 }
```