Correction: 7.9

1. (5x-3)(2x+1) > (2x+1)(x-4)

On met tout à gauche :

$$(5x-3)(2x+1) - (2x+1)(x-4) > 0$$

On met en facteur:

$$[(5x-3) - (x-4)] (2x+1) > 0$$
$$(4x+1)(2x+1) > 0$$

On étudie le signe de ce produit :

x	$-\infty$		$-\frac{1}{2}$		$-\frac{1}{4}$		+∞
4x + 1		_		_	0	+	
2x+1		_	0	+		+	
(4x + 1)(2x + 1)		+	0	_	0	+	

Donc
$$S = \left] -\infty, -\frac{1}{2} \right[\cup \left] -\frac{1}{4}, +\infty \right[$$

2. $x^2 \ge 4x$

On met tout à gauche:

$$x^2 - 4x \ge 0 \quad \Leftrightarrow \quad x(x - 4) \ge 0$$

On fait le tableau de signes :

x	$-\infty$		0		4		+∞
x		_		_	Ö	+	
x-4		_	0	+		+	
x(x-4)		+	0	_	0	+	

Donc
$$S =]-\infty, 0] \cup [4, +\infty[$$

3. (x+5)(x+3) > 15

On met tout à gauche :

$$(x+5)(x+3) - 15 > 0 \Leftrightarrow x^2 + 8x > 0 \Leftrightarrow x(x+8) > 0$$

Tableau de signes :

x	$-\infty$		-8		0		$+\infty$
x		_		_	0	+	
x + 8		_	0	+		+	
x(x+8)		+	0	_	0	+	

Donc $S =]-\infty, -8[\cup]0, +\infty[$

Correction: 7.10

1.
$$\frac{x-4}{x+8} > -1$$

On passe tout à gauche :

$$\frac{x-4}{x+8}+1>0 \Rightarrow \frac{x-4+x+8}{x+8}=\frac{2x+4}{x+8}>0$$

x	$-\infty$	-8		-2		+∞
2x+4	_	-	_	0	+	
x + 8	_	- 0	+		+	
$\frac{2x+4}{x+8}$	+	-	_	0	+	

Donc
$$S =]-2, -8[\cup]-2, +\infty[$$

$$2. \ \frac{x}{2x - 10} \ge 2$$

On passe tout à gauche :

$$\frac{x}{2x-10}-2 \geq 0 \Rightarrow \frac{x-2(2x-10)}{2x-10} = \frac{x-4x+20}{2x-10} = \frac{-3x+20}{2x-10} \geq 0$$

x	$-\infty$		5		$\frac{20}{3}$		+∞
-3x + 20		+		+	0	_	
2x - 10		_	0	+		+	
$\frac{-3x+20}{2x-10}$		_		+	0	_	

Donc
$$S = \left[5; \frac{20}{3}\right]$$

$$3. \ \frac{1-4x}{x-3} < -4$$

On passe tout à gauche :

$$\frac{1-4x}{x-3}+4<0 \Rightarrow \frac{1-4x+4(x-3)}{x-3}=\frac{1-4x+4x-12}{x-3}=\frac{-11}{x-3}<0$$

x	$-\infty$		3		+∞
x-3		_	0	+	
$\frac{-11}{x-3}$		+		_	

Donc
$$S =]3, +\infty[$$