	RTU, ETF			
Maketa Nr.: 8	Elektrība un magnētisms			
	Laboratorijas darbs Nr. 1.			
	Iepazīšanās ar laboratorijas darbu			
	mēraparātiem			
	Kārlis Kreilis			
	1. kurss, REBC01			
	181REB260			

Darba mērķis:

- darba drošības noteikumu apgūšana;
- praktisku iemaņu iegūšana darbā ar mēraparātiem.

Darba uzdevumi:

- 1. Apgūt osciloskopa sagatavošanu darbam un maiņsprieguma (signāla) amplitūdas, perioda un frekvences mērīšanas būtību.
- 2. Ar izveidotās mērķēdes (1.1.att.) palīdzību noteikt dažādas formas maiņsprieguma signālu, amplitūdu U_m , efektīvo vērtību U_{ef} , kā arī periodu T, frekvenci T=1/f ar osciloskopa palīdzību (spriegumu efektīvo vērtību U_{ef} nomērīt ar voltmetru).

1.1. att. Mērījumu struktūrshēma.

Laboratorijas iekārtas:

Signālģenerators, voltmetrs, osciloskops.

Īss darba apraksts:

Ar signālģeneratoru tiek radīti 3 veida periodiski maiņspriegumi — sinusoidāls, zāģveida un taisnstūra, kas nonāk osciloskopā caur struktūrshēmu, kas nodrošina nepārtrauktu signāla padevi, jo nav shēma nav ieslēgta indukcijas spole. Osciloskops ar elektrostaru lampu spēj izveidot sprieguma attēlu, ko nodrošina asi nofokusēti elektroni. Ar iebūvētajām novirzes platēm radīto attēlu var pārveidot, nobīdīt, nofokusēt tā, lai ar

ekrāna iedaļām noteiktu maksimālo spriegumu un signāla periodu. No iegūtā perioda var izrēķināt signāla frekvenci f=1/T.

Tā kā maiņspriegums sasniedz maksimālo vērtību tikai 2 reizes periodā, tad nepieciešams izrēķināt sprieguma paveikto darbu, izmantojot vidējo kvadrātisko jeb efektīvo vērtību $Uef=U_m/\sqrt{2}$, tāpēc, ka spriegums mainās sinusoidāli.

Zāģveida signālam efektīvās vērtības formula ir: $Uef=U_m/\sqrt{3}$, jo spriegums mainās ar lineāru taisni.

Taisnstūra signāla efektīvās vērtības sakrīt ar maksimālo spriegumu, jo signāls nepārtraukti ir maksimālajā spriegumā.

Ar voltmetru tiek noteikts maiņspriegums, ko var salīdzināt ar iegūtajām vērtībām no osciloskopa.

Mērījumu rezultāti

1. tabula. Maiņsprieguma vērtības

		No osciloskopa		Aprēķ	No voltmetra	
Nr.	Signāla forma	Mērogs (V/iedaļas)	Amplitūda U _m (iedaļas)	Amplitūda <i>U_m</i> (V)	Efektīvā vērtība <i>U_{ef}</i> (V)	Efektīvā vērtība <i>U_{ef}</i> (<i>V</i>)
1.		2	2.8	5.6	3.96	3.92
2.		2	3.5	7.0	4.04	4.06
3.		2	2.2	4.4	4.40	4.58

1) Amplitūdas $U_m(V)$ aprēķina formula un piemērs:

$$U_m = m\bar{e}rogs * U_m(iedaļas)$$

$$2 * 2.8 = 5.6 = U_m(V)$$

2) Efektīvā vērtība U_{ef}(V):

1.
$$U_{ef} = \frac{U_m}{\sqrt{2}}$$
 $\frac{5.6}{\sqrt{2}} = 3.96$

$$2. U_{ef} = \frac{U_m}{\sqrt{3}} \qquad \frac{7.0}{\sqrt{3}} = 4.04$$

3.
$$U_{ef} = \frac{U_m}{\sqrt{1}}$$
 $\frac{4.4}{1} = 4.40$

2. tabula. Signāla perioda un frekvences vērtības

		No osciloskop	Apr	No frekvenču mērītāja		
Nr.	Signāla forma	Graduējums (s, ms, μs / iedaļas)	T (iedaļas)	Τ (s, ms, μs)	f (Hz, kHz, MHz,)	f (Hz, kHz, MHz)
1.		20 μs	4.3	86 μs	0.0116 MHz	11.46 kHz
2.	\sim	0.2 ms	3.1	0.62 ms	1.613 kHz	1.607 kHz
3.		2 ms	6.2	12.4 ms	0.080 kHz	79.39 Hz

1) Signāla periods *T*, piemērs:

$$T = gradu\bar{e}jums(s/ms/\mu s) * T(iedaļas)$$

 $20\mu s * 4.3 = 86 \mu s$

2) Signāla frekvence f, piemērs:

$$f = \frac{1}{T}$$

$$1/86 \,\mu s = 0.0116 \,MHz$$

Rezultātu analīze un secinājumi:

- Aprēķinātās efektīvās sprieguma vērtības ir aptuveni vienādas ar voltmetra noteiktajām, tādēļ rezultāti ir pareizi.
- Aprēķinātās signāla frekvences ir tuvu frekvenču mērītāja vērtībām, kas nozīmē, ka tās ir pareizi izrēķinātas.

1. laboratorijas darbs Iepazīšanās ar laboratorijas darbu mēraparātiem

Datums:

13 03 2019

Maketa Nr.:

Pasniedzēja paraksts:

(Grupa)

1. att. Mērījumu struktūrshēma

2. att. Maiņsprieguma oscilogramma un attiecīgie parametri

1. tabula.

Nr. Signāla		No osciloskopa		Apr	No voltmetra	
p.k.	forma	Graduējums (V / iedaļas)	U_m (iedaļas)	U_m (V)	U _{ef} (V)	U_{ef} (V)
1.	\sim	2	\$ \$292,8	65,6 5,6	4.400 3,96	3,92
2.	$\wedge\wedge$	2	3,5	7	4,041	4,06
3.	N	2	2,2	4,4	4,4	4,58

		No osciloskopa		Ap	No frekvenču mērītāja	
Nr. p.k.	Signāla forma	Graduējums (s, ms, µs / iedaļas)	T (iedaļas)	T $(s, ms, \mu s)$	f (Hz, kHz, MHz)	f (Hz, kHz, MHz)
1.	\wedge	4.320 Ms	4,3	86 ps	0,0116 MHZ	11,46 KHZ
2.	$\wedge\wedge$	9,2 ms	3,1	0,62 ms	1,613 KHX	1,607 KHQ
3.	N	2 ms	6,2	12,4ms	0,080× H/2	79,39 Hz