Galois Theory HW04

Xianzhi

Due March 11, 2022

Exercise 5.3.9

Question 1. Is the polynomial $X^4 - 2$ irreducible over the field $\mathbb{Q}(\sqrt{3})$?

Exercise 6.4.6

Question 2. Let L be the splitting field over \mathbb{Q} of X^5-2 over \mathbb{Q} . Show that the Galois group $G := \Gamma(L : \mathbb{Q})$ has order 20, and G has a normal subgroup N with |N| = 5 such that the factor group G/N is cyclic.

Exercise 6.4.7

Question 3. Let p be an irreducible polynomial over a subfield K of \mathbb{C} , and denote by L the splitting field of p over K. Show that if the Galois group $\Gamma(L:K)$ is abelian (i.e. commutative), then its order equals the degree of p.

A question from HW02

Question 4. Show number of automorphisms of a finite degree field extension divides the degree of the field extension.

Let $K \subset L, L : K$ be a finite degree field extension. Recall

$$\Gamma(L:K) = \{g \in \Gamma(L): g(x) = x \quad \forall x \in K\}$$
 WTS: $|\Gamma(L:K)| \mid [L:K]$.

Recall Artin's theorem, let $\Gamma(L:K)$ be the finite subgroup. (Since $|\Gamma(L:K)|$ is bounded by $[L:K]<\infty$.) and

$$M = \{x \in L : \forall q \in \Gamma(L : K) : q(x) = x\}$$

so $K \subset M$, and $[L:M] = |\Gamma(L:K)|$. Thus, consider $K \subset M \subset L$,

$$[L:K] = [L:M][M:K]$$

where $[L:M] = |\Gamma(L:K)|$, so $|\Gamma(L:K)|$ divides [L:K].