Ne soyez pas avares de mots : détaillez vos réponses, prouvez vos affirmations.

IMPORTANT : Pensez à noter le numéro du sujet sur votre copie.

Durée : 1h30. Une seule feuille de notes recto-verso autorisée. Pas de calculettes. Pas d'ordinateur. Pas de téléphone.

Question 1

La théorie des treillis est la théorie écrite sur le langage formé des deux symboles binaires \cup (join) et \cap (meet), et contenant les six axiomes (toutes les variables sont quantifiées avec \forall)

Commutativité : $x \cup y = y \cup x$, et $x \cap y = y \cap x$,

Associativité : $x \cup (y \cup z) = (x \cup y) \cup z$, et $x \cap (y \cap z) = (x \cap y) \cap z$,

Absorption : $x \cup (x \cap y) = x$, et $x \cap (x \cup y) = x$.

- (a) Prouver que les entiers avec \cup interprété par min et \cap interprété par max sont un modèle pour cette théorie.
- (b) Donner un autre modèle pour la théorie des treillis différent du précédent.
- (c) Prouver les deux formules $x \cup x = x$ et $x \cap x = x$ dans la théorie des treillis.

Question 2

On rappelle les axiomes de Peano et la définition de l'ordre \leq à la fin du sujet. On définit la propriété « x est pair » par le prédicat $\exists y.\ x=y\times SS0$. Prouver dans le système de Peano que si x est pair, alors il existe un z tel que x=z+z.

Question 3

En utilisant les deux lemmes

Commutativité : $\forall x, y. \ x + y = y + x,$

Associativité: $\forall x, y, z. \ x + (y + z) = (x + y) + z$,

- (a) Prouver dans le système de Peano que pour tout entier $z \neq 0$, on a $x \times z \leq y \times z$ si et seulement si $x \leq y$. (Suggestion: faites une induction sur z).
- (b) Donner une définition récursive de la fonction « puissance n-ième » pour n entier.
- (c) À l'aide du point (a), montrer que $x^n \leq y^n$ si et seulement si $x \leq y$ pour tout $n \neq 0$.

Question 4

Prouver par induction les propriétés suivantes

- (a) $11^n 1$ est divisible par 10,
- (b) $n^2 4$ est divisible par 3 si et seulement si n ne l'est pas (suggestion : utilisez l'induction forte).

Question 5

La relation \subset (inclusion non stricte) sur les éléments de $\mathcal{P}(\mathbb{N})$ (l'ensemble des parties de \mathbb{N}) est-elle un ordre? Est-elle totale? Est-elle bien fondée? Justifier.

Annexe : axiomes de Peano et définition de l'ordre

Fondation $\forall x. \ Sx \neq 0$ Injectivité $\forall x, y. \ (Sx = Sy) \rightarrow (x = y)$ Neutre $\forall x. \ x + 0 = x$ Addition $\forall x, y. \ x + Sy = S(x + y)$ Nilpotence $\forall x. \ x \times 0 = 0$ Distributivité $\forall x, y. \ x \times Sy = x \times y + x$ Induction $(p[0/x] \land \forall y. \ p[y/x] \rightarrow p[Sy/x]) \rightarrow \forall x. \ p$

Définition de l'ordre $x \le y \leftrightarrow \exists z. (z + x = y)$

Solutions

Solution 2

- (a) Il suffit de vérifier que les axiomes sont vérifiés dans cette interprétation. On a bien
 - $-\min(x,y) = \min(y,x),$
 - $-\min(\min(x,y),z) = \min(x,\min(y,z)),$
 - $--\min(x, \max(x, y)) = x,$

et les mêmes avec min et max échangés.

- (b) Comme les symboles le suggèrent, les ensembles avec ∪ interprété par l'union et ∩ interprété par l'intersection sont un modèle de cette théorie (la vérification est immédiate). Un autre modèle plus exotique ce sont les entiers avec ∪ interprété par le ppcm et ∩ par le pgcd. Enfin, un modèle encore plus exotique, mais très important, est donné par les formules booléennes, ∪ interprété par ∨, ∩ par ∧, et l'égalité étant l'égalité sémantique (équivalence de formules).
- (c) Il suffit d'utiliser deux fois l'absorption. En instanciant y par $x \cup x$ (introduction, puis élimination du \forall) dans le premier des deux axiomes on a

$$x \cup (x \cap (x \cup x)) = x.$$

Maintenant on applique le deuxième axiome à la partie entre parenthèses (élimination du =) pour obtenir

$$x \cup (x) = x$$
.

Solution 2 Pour un x quelconque, on suppose la formule

$$\exists y. \ x = y \times SS0$$

et on essave de démontrer $\exists z.\ x=z+z$. Soit y l'entier tel que

$$x = y \times SS0$$

(élimination du ∃). Par distributivité

$$x = y \times S0 + y.$$

Toujours par distributivité

$$x = (y \times 0 + y) + y.$$

Maintenant par nilpotence

$$x = (0+y) + y.$$

enfin par le neutre

$$x = y + y$$
.

On peut donc affirme qu'il existe z (et en plus z = y) tel que x = z + z.

Solution 3

1. On commence par prouver $x \le y \to x \times z \le y \times z$ (ceci est vrai même pour z=0), on suppose donc $x \le y$. On procède par induction (récurrence) sur z. Pour z=0 on a $x \times z \le y \times 0$, donc par nilpotence $0 \le 0$, ce qui est vrai.

Supposons maintenant, pour x et y quelconques, que $x \times z \le y \times z$ et prouvons que $x \times Sz \le y \times Sz$. Par définition de \le il existe u tel que

$$x \times z + u = y \times z$$
.

De la même façon, l'hypothèse $x \leq y$ implique qu'il existe v tel que x + v = y.

En ajoutant x + v à droite et à gauche de l'équation (lemme vu en cours) on a

$$x \times z + u + (x + v) = y \times z + (x + v).$$

Par hypothèse x + v = y, donc

$$x \times z + u + (x + v) = y \times z + y.$$

Avec assez d'applications de la commutativité et de l'associativité on réécrit cela comme

$$(x \times z + x) + (u + v) = y \times z + y.$$

On applique maintenant la distributivité des deux côtés pour obtenir

$$x \times Sz + (u+v) = y \times Sz.$$

On conclut par la définition de \leq que $x \times Sz \leq y \times Sz$.

On procède de façon similaire pour la direction $x \times z \le y \times z \to x \le y$. Ceci est faux pour z=0, on commence donc l'induction à z=S0. Formellement, ceci revient à prouver la formule

$$x \times Sz \le y \times Sz \to x \le y$$

. Il n'y a pas besoin d'induction ici. On suppose $x\times Sz\leq y\times Sz,$ par distributivité et définition de \leq on a

$$(x \times z + x) + u = y \times z + y.$$

Avec suffisamment d'applications de l'associativité et de la distributivité on arrive à

$$x + (x \times z + u) = u + u \times z$$
.

Par la définition de \leq on conclut que $x \leq y$.

2. On peut définir x^n de la façon suivante :

$$x^{n} = \begin{cases} S0 & \text{si } n = 0, \\ x \times x^{m} & \text{si } n = Sm. \end{cases}$$

3. On montre $x^n \leq y^n \leftrightarrow x \leq y$ par induction sur n. Pour n=S0, on a par la définition précédente

$$x \le y \leftrightarrow x \le y$$
,

ce qui est évident.

Pour n = Sm, on a par définition

$$x \times x^m \le y \times y^m \leftrightarrow x \le y.$$

Ceci est une conséquence du point (a).

Solution 4

(a) Pour n = 0 on a 1 - 1 divisible par 10, ce qui est vrai. Pour tout n on a

$$11^{n+1} - 1 = 11^n \cdot (10+1) - 1 = 11^n \cdot 10 + (sagea[0][0]^n - 1).$$

En supposant que $10|(11^n-1)$, on voit que les deux membres de la somme sont aussi divisibles par 10, ce qui conclut la preuve.

(b) Pour n = 0, 1, 2 on a

$$n^2 - 4 = \begin{cases} -4, \\ -3, \\ 0. \end{cases}$$

On voit bien que le premier n'est pas divisible par 3, alors que les deux autres le sont. n+3 est divisible par 3 si et seulement si n l'est. On voit

$$(n+3)^2 - 4 = (n^2 - 4) + 9n^2 + 27n + 3,$$

ce qui est divisible par 3 si et seulement si n^2-4 est divisible par 3. Par le principe d'induction, ceci termine la preuve.

Solution 5 La relation \subset est un ordre partiel bien fondé. Pour voir qu'il s'agit d'un ordre, il suffit de vérifier qu'elle est

- réflexive : $A \subset A$ pour tout A,
- transitive : $A \subset B$ et $B \subset C$ implique $A \subset C$,
- anti-symétrique : si $A \subset B$ et $B \subset A$ alors A = B.

Pour voir qu'elle n'est pas totale il suffit d'observer que $\{1\}$ et $\{2\}$ ne sont pas inclus l'un dans l'autre.

Pour la bonne fondation, il faut vérifier qu'il n'existe pas de chaîne d'inclusions strictes infinie $A_0 \supset A_1 \supset \cdots$. Pour cela il suffit de montrer que toute collection de sous-ensembles de $\mathbb N$ a un minorant par \subset .

Il est immédiat de voir que si A_0, A_1, \ldots sont des éléments de \mathcal{P} , alors

$$\bigcap_i A_i$$

est contenu dans tout les A_j , il s'agit donc d'un minorant.