@Int.Cl. C 07 c B 01 j

62日本分類 16 B 612 16 B 511.2 13(9) G 112 13(9)G 113

日本国特許庁

公

m 特 許 出 願 公 告

昭46-6763

(4)公告 昭和46年(1971)2月20日

発明の数 1 (全6頁)

2

許 16 B 011 2

⑩特

報

1

69酢酸の製造方法

昭43-16195 204年

昭43(1968)3月14日 (23)出

(72)発 明 者 中西良之

池田市石橋町1の7の10 冏 食田直次

西宮市能登町37の21

奥田幸雄 冏

豊中市岡町南8の52

人 日本触媒化学工業株式会社 60出 顧 大阪市東区高麗橋 5 の 1

代 理 人 吉田善彦

発明の詳細な説明

この発明は、酢酸の製造方法に関するものであ る。詳しく述べると、水蒸気の存在下にエチレン を分子状酸素含有ガスにより気相で接触酸化して、 酢酸を高収率、かつ、高純度で製造する方法に関 するものである。

従来、酢酸の製造に関しては種々の方法が提案 され、かつ、実用化されている。たとえば、エチ レンよりアセトアルデヒドを経て酢酸を製造する 方法、メタノールおよび一酸化炭素より酢酸を直 接製造する方法、低級パラフインを液相酸化して 25 も1種の元素よりなる酸素化合物を触媒として使 他の多数の副生成物とともに酢酸を製造する方法 などがある。これらのうち、現在、もつとも広く 採用されつつあるのが、エチレンよりアセトアル デヒトを経て酢酸を製造する二段酸化方法であるが、 日的物質を一段の化学的または物理的処理でえら れるならば、工業的製造工程上ならびに経済的に 種々の点で有利である。

最近の文献によれば、エチレンから酢酸を一段 たとえば、フランス特許第1448361号その 他に記載されているようなパラジウムーコバルト、 鉄などの金属イオン対の酸化還元系にエチレンと

分子状酸素とを吹き込んで酢酸を製造しようとす る液相一酸化方法、米国特許第3293291号、 ベルギー特許第623229号、同第623399 号、ドイツ特許第1123310号などに記載さ 5 れているようなパラジウム系触媒を用いた気相一 段接触酸化法、イタリア特許第631868号、同 第640456号、フランス特許第1395378 号などに記載されているような異核縮合酸系触媒 を用いた気相一段接触酸化法などが提案されている。 しかしながら、これらの特許明細書に記載され ている実施例から明らかなように、あるものは高 転化率であつても酢酸の選択率が、アセトアルデ ヒドを経て酢酸を製造する二段法に比してかなり 低く、また、あるものは低転化率で、しかも選択 15 室が低く、アセトアルデヒドなどの副生成物が多 く、酢酸の精製分離および未反応エチレンの回収 循環使用などの点において、未だ欠点が多い。 この発明者らは酢酸をエチレンより気相接触反 応により直接高収率でうる目的をもつて鋭意研究

20 を行つた結果、(a)パナジウム、モリブデンおよび

タングステンよりなる群から選ばれた少くとも 1

種の元素、(b)アンチモン、砒素およびリンよりな

る群から選ばれた少くとも1種の元素および(c)パ

ラジウム および ロジウムよりなる群から 選ばれた少くと

用し、エチレン、分子状酸素および水蒸気をこれ

と接触反応させて、エチレンの転化率100%と

いう未反応エチレンを循環使用することの不必要

な理想的な反応条件下において酢酸が高収率でえ 一般に、目的物質の如何を問わず、原科物質から 30られることを見出し、この発明を完成したものである。 この発明方法において使用する触媒は、(a)バナ ジゥム、モリプデンおよびタングステンよりなる 群から選ばれた少くとも1種の元素、(b)アンチモ ン、砒素およびリンよりなる群から選ばれた少く 酸化法で製造しようとする試みがなされている。 35 とも 1 種の元素および(c)パラジウムおよびロジウ ムよりなる群から選ばれた少くとも1種の元素よ りなる3群系酸素化合物である。その構造は、正

確にはわからないが、各元素の酸化物の混合物あ

るいは種々の形の酸素化合物であるものと考えら れる。そして前記の(a),(b)および(c)で表わされる 各群の元素は同じような作用を有するので、たと えば、バナジウムの代りにモリプデンやタングス するなど、第1群に属する元素の任意の1種また は2種以上を使用することができる。同様にアン チモンの代りに砒素やリンあるいは砒素とリンを 使用するなど、第2群に属する元素の任意の1種 第3群に属する元素パラジウムの代りにロジウム あるいはパラジウムとロジウムとを併用すること もできる。前記の(a),(b)および(c)よりなる3群系 触媒の各群の組成比は、それぞれ原子比で100: 1~100:1~50が好ましく、とくに、

この触媒は、上記組成の触媒物質のみを単独に 用いても有効であるが、アルミナ、炭化硅素、硅 藻土、シリカ、軽石、アルミニウムスポンジ、成 20 いてもなんら支障なく行うことができる。 形ステンレス網、酸化チタン、酸化ジルコニウム などの球状、ペレット状その他任意の形状の相体 とともに使用するとさらに有利である。

100:2~50:2~20に近いものがもつと

も好ましい結果を与える。

この発明方法において使用する触媒は、前記組 成であるかぎり、いかなる調製方法を行つてもよ 25 素とのモル比は1:1~1:60の範囲が好まし いが、その一般的な製法の一例を示すと、つぎの とおりである。すなわち、(a)の第1群のバナジウ ム、モリブデンおよびタングステンは、どのよう なものを用いてもよいが、通常、バナジン酸、モ リプデン酸、タングステン酸などのような酸素酸 30 剤あるいは反応生成物の脱着促進剤として用いられ バナジン酸アンモニウム、モリブデン酸アンモニ ウム、タングステン酸アンモニウムなどのような 酸素酸塩などのように酸化物に転化しうるものが 用いられる。(b)の第2群のアンチモン、砒素およ びリンは、いかなるものを用いてもよいが、通常,35 とも好ましくは、20~60%である。この発明 酸素酸、硫酸塩、硝酸塩、有機酸塩、パロゲン化 物などが使用され好ましい結果を与える。また、 モルプデンおよびタングステンは、リン、アンチ モン、砒素などのような周期律表第 Vb 族の元素 と異核縮合酸を形成しやすいので、異核縮合酸の 40 形で第1群と第2群の元素を加えてもよい。(c)の 第3群のパラジウムおよびロジウムはどのような ものを用いても酢酸の収率には影響はないが、通 常、金属単体、ハロゲン化物、硝酸塩などが用い られる。

これら3群から選ばれた金属化合物は、各々別 個にまたは一緒に、塩酸、硝酸、シユウ酸などの ような無機酸または有機酸に溶解し、これに必要 により担体を含變し、濃縮する。この触媒を空気

テンあるいはモリブデンとタングステンを使用す 5 のような酸化性雰囲気中で300~600℃、好 ましくは350~450℃に1~30時間、好ま しくは2~20時間焼成して、触媒をうる。上記 記載の調製法の他に、含浸濃縮する代りに、加熱 した担体上に、これら3群系混合溶液を吹き付け または2種以上を使用することができる。さらに、10て、焼き付け調製を行うこともできる。焼き付け 法は、これら三群系金属化合物を同時に媒質中に 溶解できない場合に、とくに有利である。すなわ ち、このような場合には、それぞれの金属化合物 を適当な媒質に溶解させ、これらの溶液を加熱担 15 体上に同時に吹き付けることによつて、分散度の よい触媒をうることができる。

この発明方法においては、触媒は、固定床およ び流動床のいずれの方式も採用できる。また、反 応は、通常、大気圧にて行われるが、加圧下にお

この発明方法における反応ガスは、エチレン、 酸素および水蒸気からなり、必要に応じて窒素、 炭酸ガス、低級不飽和炭化水素などを希釈剤とし て使用することもできる。そして、エチレンと酸 いが、1:5~1:30の範囲においてより好ま しい結果を与える。酸素源としては、純酸素の他 に空気や純酸素と空気との混合物も使用できる。 水蒸気は、一般に気相酸化反応においては、希釈 るが、この反応においてはエチレンの転化率およ び酢酸の選択率に大きな影響を与え、反応中間体 牛成段階に不可欠の存在であり、涌常、反応ガス 中に5~80%含まれるのが好適であるが、もつ 方法における反応ガスと接触時間は、1~10秒 が有利である。また反応温度は、150~350 ℃であるが、とくに、200~300℃において 好ましい結果がえられる。

以下、実施例をあげて、この発明方法をさらに 詳細に説明するが、その実施例中の転化率、選択 率および接触時間については、つぎの定義に従う ものとする。

6

転化率 (%) = 供給エチレンのモル数 - 未反応エチレンのモル数 × 100

各生成物のモル数× <u>各生成物の炭素数</u> 機約エチレンの炭素数 及応エチレンのモル数 × 1 0 0

接 触 時 間 - 反応器中における触媒の見掛け容積 毎秒反応器に供給する原料ガスの標準状態における全容債

実施例 1		*	アセトア	ルデヒド			1.0
バナ ジン酸アンモニウム 1 0.5	0 8、塩化	パラ	炭酸ガス	その他			1 3.0
ジゥム 0.5 5 g、硫酸アンチモン	0.95 まを	濃塩	なお、反応	ガス中の水	蒸気をすべ	くて音	2素に置換
酸100ccに加熱溶解する。これ	に値径3~	·5 mm さ	せて行つた	反応の結果	は、つぎの) 논 :	おりである
の溶融アルミナ60ccに浸漬し、	濃縮付着さ	せた 15	エチレンの	転化率(%	;)		4 7, 1
のち、空気気流中で400~45	0℃の温度	で4	選択率	(%	;)		
時間焼成して触媒を調製した。			酢酸				2 7.7
この触媒 5 0 ccを、内径 2 5 mi	8のステンレ	⁄ス製	ギ 酸				3.1
上字管内に充塡し、これを硝酸塩	浴中に浸漬	LT	アセトア	ルデヒド			5.0
250℃に加熱し、この管内に、	容量でエチ	レン 20	炭酸ガス	その他			6 4.2
2.1%、酸素 2 1.0%、水蒸気 4	5.0%およ	び空 実	施例 2~	7			
素 3 1.9 %の組成の混合ガスを導	入して、接	触時	バナジン酸	アンモニウ	74 1 0.5 C	9.	塩化パラ
間7.2秒で反応させた。その結果	はつぎのと	おり シ	ウム 1.5 0	タに、硫酸	マンチモン	/を:	各々0 8、
である。		1	.0 9. 2.0	g. 5.0 g	1 0.0 8	1お.	よび25.0
エチレンの転化率(%)	100	.0 25 9	と添加量を	変えて実施	物1と同様	(の)	方法で触媒
選 択 率 (%)		查	調整し、実	施例1と同	様の反応の	6件	で反応を行
酢 酸	8 4	.5	た。その結	果は、つき	のとおりて	であ:	る。
ギ 酸	1	.5 **					
実施例番号	2	3	4	5	6	7	7
硫酸アンチモン(g)	0	1.0	2.0	5.0	1 0.0	2 5	5.0
エチレンの転化率(%)	1 0 0.0	1 0 0.0	1 0 0.0	1 0 0.0	1 0 0.0	9 2	2. 8
選 択 率 (%)							
酢 酸	1 9.0	5 9.8	7 5.1	8 0.6	8 0.0	7 (0. 1
ギー酸	8. 0	4. 1	2.3	1.9	1.6	J	1. 1
アセトアルデヒド	0	0	0.2	1. 1	2.9	1 6	5. 8
炭酸ガスその他	7 3.0	3 6.1	2 2.4	1 6.4	5.5	1 2	2. 0

実施例 8~12

バナジン酸アンモニウム 1 0.5 0 g、硫酸アン チモン 5.0 0 g に、塩化バラジウムを各々0 g、 0.1 g、 0.5 g、 1.0 g および 5.0 gと 添加量を 変えて実施例 1 と同様の方法で触媒を諷製し、実 45

施例1と同様の反応条件で反応を行つた。その結果は、つぎのとおりである。

	(4)	特公 昭46-6	763
7			8	
実施例番号	8 9	1 0	1 1 1 2	
塩化パラジウム(g)	0 (0.1	1.0 5.0	
エチレンの転化率(%)	5.1 8 9	0.8 1 0 0.0 1	0 0.0 1 0 0.0	
選 択 率 (%)				
酢 酸	2 0.8 7 0	0.1 8 1.6	8 3.6 7 7.0	
ギー酸	1 0.8	1.5 1.4	1.6 2.6	
アセトアルデヒド	7.6 1	0.1 1.9	0.9 0.5	
炭酸ガスその他	6 0.8 1	5.3 1 5.1	1 3.9 1 9.9	
実施例 13		ある。		
実施例1において、溶融アルフアアル	ミナ担体	エチレンの転化	率(%)	9 3.0
の代りに直径3~5㎜の炭化硅素を用い		選 択 率	(%)	
調製し、実施例1と同様の反応条件で反		酢酸		5 3.0
た。その結果は、つぎのとおりである。		ギ 酸		4.2
	0.0	アセトアルデ	∟ ∤*	5.8
選 択 率 (%)		炭酸ガスその	他	3 6.5
酢 酸	8 3.9	実施例 16		
ギ 酸	1.4 20	パナジン酸アン	モニウム 1 0.5 0 🛭 、	塩化ロジ
アセトアルデヒド	1.4	ウム 1.0 gおよび	85%リン酸 2.0 タを	濃塩酸
炭酸ガスその他	1 3.3	10000に溶解し	、これに直径3~5 🛤	の溶融ア
実施例 14		ルフアアルミナ 6	0 ccを浸漬させ、濃縮	、付着さ
バナジン酸アンモニウム 1 2.2 1 9、	塩化ロジ	せたのち、空気気	流中で450℃の温度	で 4 時間
ゥム 0.5 0 g および硫酸アンチモンを濃	塩酸100 25	焼成して触媒を調	製した。反応は実施例	1と同様
ccに加熱溶解し、これに直径3~5㎜の	溶融アル	な条件で行つた。	その結果は、つぎのと	おりであ
フアアルミナ60ccを浸漬させ、濃縮、	付着させ	る。		
たのち、空気気流中で400℃の温度で	4時間焼	エチレンの転化	率(%)	8 2.3
成して触媒を調製した。反応は実施例1	と同様な	選択率	(%),	
条件で行なつた。その結果は、つぎのと	おりであ 30) 酢酸		5 3.7
る。		ギ 酸		2.6
エチレンの転化率(%)	7 9.5	アセトアルデ	'E F'	5.2
選 択 率 (%)		炭酸ガスその	他	3 8.5
酢 酸	5 1.0	実施例 17		
ギ 酸	2.8 3		モニウム10.50分、	
アセトアルデヒド	1 1.1		よび砒酸 1.0 g を濃塩	
炭酸ガスその他	3 5.1		.れに直径3~5 mmの着	
実施例 15			を浸漬させ、機縮、作	
バナジ ン酸 アンモニウム10.50g	、塩化バ	のち、空気気流中	で360℃で6時間期	を成して触

ラジウム 1.0 g および 8 5 % リン酸 2.0 g を濃塩 40 媒を調製した。反応は実施例 1 と同様な条件で行 酸100ccに溶解し、これに直径3~5mmの溶融 アルフアアルミナ60ccを浸瘡させ、機縮、付着 させたのち、空気気流中で450℃の温度で4時 間焼成して触媒を調製した。反応は実施例1と同 様な条件で行つた。その結果は、つぎのとおりで 45

つた。その結果は、つぎのとおりである。 エチレンの転化率(%) (%) 選 択 塞 7 3.0 酢 砂

酸 2.8 ギ

10

リンモリプデン酸1 0.0 2 gを水1 0 0 cc に溶 解させ、一方、塩化パラジウム 1.0 9を濃塩酸

50ccに溶解させ、これら2種の溶液を、加熱し

た直径3~5 MMの溶融アルフアアルミナ担体上に

同時に吹き付け、焼き付け付着させたのち、空気

調製した。反応は実施例1と同様な条件で行つた。

アセトアルデヒド	3.4	ギ 酸	1.5
炭酸ガスその他	2 0.8	アセトアルデヒド	6.5
実施例 18		炭酸ガスその他	3 1.0
パナジン酸アンモニウム1 0.5	09、塩化ロジ	実施例 21	

15

30

パナジン酸アンモニウム10.509、塩化ロジ ウム 0.50g および砒酸 1.0 g を濃塩酸 1 0 0 ccに 5 溶解する。これに直径3~5mmの溶融アルフアア ルミナ60ccを浸償させ、濃縮、付着させたのち、 空気気流中で3500の温度で6時間焼成して触 媒を諷製した。反応は実施例と同様な条件で行つ た。その結果は、つぎのとおりである。 10 気流中で400℃の温度で4時間焼成して触媒を

エチレンの転化率(%)	8 6.5
選 択 率 (%)	
酢 酸	6 3.5
ギ 酸	3.5
アセトアルデヒド	4.1
炭酸ガスその他	2 8.9
車施例 19	

モリプデン酸アンモニウム12.0分を水150 ccに溶解させ、一方、塩化パラジウム 1.0 gおよ び硫酸アンチモン 1.0 gを濃塩酸 5 0 cc に溶解さ 20 せ、これら2種の溶液を、同時に加熱した直径3 ~5 mmの溶融アルフアアルミナ担体上に吹きつけ、 焼き付け付着させたのち、空気気流中で430℃ の温度で4時間焼成して触媒を調製した。反応は 実施例1と同様な条件で行つた。その結果は、つ 25 気気流中で400℃の温度で4時間焼成して触媒 ぎのとおりである。

2	エチレ	/ンの転(上率(%)	8 2.5
i	遐步	率	(%)	
	酢	酸		6 9.5
	*	酸		3.5
	アセ	・トアル	デヒド	1 1.1
	炭酸	ミガスその	り他	1 5.9
実加	面例	2 0		
	- 11	e and a vieto -		

モリプデン酸アンモニウム1 2.0 gを水150 ccに溶解させ、一方、塩化ロジウム 1.0 g および 35 硫酸アンチモン 2.0 gを濃塩酸 5 0 cc に溶解させ、 これら2種の溶液を、加熱した直径3~5mmの溶 融アルフアアルミナ担体上に同時に吹き付け、焼 き付け付着させたのち、空気気流で430℃の温 度で4時間焼成して触媒を調製した。反応は実施40付け付着させたのち、空気気流中で380℃の温 例1と同様な条件で行つた。その結果は、つぎの とおりである。

x	テレ	ンの転1	七率(%)	7 6.
選	択	率	(%)	

M: 酚

その結果は、つぎのとおりである。

エチレンの転化率(%) 7 8.5 選 択 窓 (%) 酸 6 5.0 酸 4.5 アセトアルデヒド 8.9 炭酸ガスその他 2 1.6

実施例 22

リンモリブデン酸1 0.0 5 9を水1 0 0 cc に終 解させ、一方、塩化ロジウム 0.5 0 gを濃塩酸 50ccに溶解させ、これら2種の溶液を、加熱し た直径3~5 00 00 00 00 cc に 同時に吹き付けて、焼き付け付着させたのち、空 を調製した。反応は実施例1と同様な条件で行つ た。その結果は、つぎのとおりである。

エチレンの転化率(%) 7 2.0 (%) 選択変 5 6.1 酸 5. 1 アセトアルデヒド 7.3 炭酸ガスその他 3 1.5

実施例 23

モリプデン酸アンモニウム12.29を水100 ccに答解させ、一方、金属パラジウム 0.6 5 g お よび砒酸 1.0 g を濃塩酸 5 0 cc に溶解させ、これ ら2種の溶液を、加熱した直径3~5mmの溶融ア ルフアアルミナ60ck同時に吹き付けて、焼き 度で4時間焼成して、触媒を調製した。反応は実 施例1と同様な条件で行つた。その結果は、つぎ のとおりである。

エチレンの転化率(%) 8 5.3

(%) 6 1.0 選 択 家

2.1

4.3

3 3.1

12

	酢	酸						6	4.5			
	#	酸							2.8			ě
	アセ	・トアノ	レデヒー	h*					8.6			1
	炭單	リガス そ	の他					2	4.1			4
庚	施例	2 4									5	5
	モリフ	デン質	タアン-	モン1	2.2	g &	水1	0	0 cc	K		
溶	解させ	·. 一	5、塩(Łロジ	ウム	1.0	g *i	J.	び砒値	敩		
1	.0 g t	: 濃塩質	2500	cに容	解さ	t.	これ	5	2種	の		
產	液を、	加熱し	た直径	≩ 3 ~	5 nm	の溶	融ァ	n	ファ	7		
л	ミナも	0 cc#	て同時に	て吹き	付け	て、	焼き	付	け付え	着	10	
ż	せたの	oち、3	经负负额	布中で	3 8	0 ℃	の温	脧	で41	時		
fli	焼成し	て触ぬ	某を調整	関した	。反	応は	実施	例	الح 1	司		
枂	な条件	‡で行~	った。	その結	果は		ぎの	の	とお	ŋ		
7	ある。											
	エチリ	/ンの#	妘化率	(%)				8	8.5		15	
	選生	率刃		(%)								
	酢	酸						6	0.5			

リンモリプデン酸 6.9 タおよびリンタングステ ン酸 1.2 g を水100 cc に溶解させ、一方、塩化 パラジウム 0.5 1 9、塩化ロジウム 0.2 9 および 硫酸アンチモン 0.5 gを濃塩酸 5 0 cc に溶解させ、25

実施例 25

酸

アセトアルデヒド

炭酸ガスその他

これら 2種の溶液を、加熱した直径 3~5㎜の溶 融アルフアアルミナ60ccに同時に吹き付けて、 焼き付け付着させたのち、空気気流中で450℃ の温度で4時間焼成して触媒を調製した。反応は 実施例1と同様な条件で行つた。その結果は、つ

ぎのとおりである。 エチレンの転化率(%) 1 0 0.0 選 択 率 (%) 酢 **E** 7 0.1 酸 8.8 アセトアルデヒド 1.5 1 9.6 炭酸ガスその他

特許請求の範囲

方法。

1 (a)パナジウム、モリプデンおよびタングステ ンよりなる群から選ばれた少くとも1種の元素、 (b)アンチモン、砒素およびリンよりなる群から選 ばれた少くとも1種の元素および(c)パラジウムお よびロジウムよりなる群から選ばれた少くとも1 種の元素よりなり、(a),(b)および(c)の各群の元素 20 の原子比が100:1~100:1~50である 3 群系酸素化合物触媒の存在下に、エチレン、分 子状酸素および水蒸気を気相高温にて接触させて 酢酸を直接製造することを特徴とする酢酸の製造