Problem 1

v(t) denotes a baseband signal to be amplitude modulated:

$$v(t) = 0.5 \cdot \cos(200 \cdot \pi \cdot t) + 1.0 \cdot \cos(400 \cdot \pi \cdot t)$$

- a. The coefficients for an ordinary AM-modulation are:
 - 1. amplitude sensitivity: 0,5
 - 2. carrier frequency: 2 kHz
 - 3. carrier amplitude: 10

Calculate the AM-signal $v_{AM}(t)$ and plot the spectrum $V_{AM}(f)$

- **b.** Determine the result of a double-sideband–suppressed-carrier modulation (DSB-SC) of v(t) with a carrier frequency and a carrier amplitude similar to "**a**". I.e. calculate the signal $v_{dsb-SC}(t)$ and plot the spectrum $V_{dsb-SC}(f)$
- **c.** Compare the spectrum $V_{AM}(f)$ with the spectrum $V_{dsb-SC}(f)$

Problem 2

Consider the signals x(t) and y(t):

$$x(t) = A_x(\sin(2\cdot\pi\cdot5.000\cdot t) + \sin(2\cdot W_x\cdot t));$$
 Bandwidth $W_x \sim 8 \text{ kHz}$
 $y(t) = A_y(\sin(2\cdot\pi\cdot14.000\cdot t) + \sin(2\cdot W_y\cdot t));$ Bandwidth $W_y \sim 12 \text{ kHz}$

Determine the Nyquist sampling rate for:

- **a.** the signals x(t) and y(t)
- **b.** the signals $x^2(t)$ and $y^2(t)$
- **c.** the signal $x(t) \cdot y(t)$

Problem 3

A FM signal with modulation index β = 2 is transmitted through an ideal bandpass filter with center frequency f_c , (carrier amplitude 1 volt) and bandwidth $7 \cdot f_m$, where f_c is the carrier frequency and f_m is the frequency of the sinusoidal modulating wave. Determine the magnitude spectrum of the filter output.