№3.ИЗМЕРЕНИЕ ЭЛЕКТРОДВИЖУЩЕЙ СИЛЫ ИСТОЧНИКА ТОКА КОМПЕНСАЦИОННЫМ МЕТОДОМ

1. ЦЕЛЬ РАБОТЫ

Изучение компенсационного метода измерения электрических величин (ЭДС, токов, сопротивлений) на примере измерения ЭДС источника тока.

2. ПРИБОРЫ И ОБОРУДОВАНИЕ

Исследуемый и эталонный гальванические элементы, батарея аккумуляторов, реохорд, гальванометр, переключатели.

3. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

В природе существует большое число химических, атомных, фотоэлектрических и других процессов, сопровождающихся разделением зарядов, т.е. возникновение ЭДС. Поэтому измерение малых ЭДС маломощных источников является не только самоцелью, но в ряде случаев и важным средством изучения явлений природы.

Если, например, опустить в раствор электролита два электрода, изготовленные из различных материалов, образуется гальванический элемент, ЭДС которого зависит от того, какие химические реакции протекают в области контакта раствора электролита с электродом. Отсюда измерение ЭДС гальванического элемента может дать сведения о протекающих в нём химических процессах.

Необходимо отметить, что измерение ЭДС с помощью вольтметра сопровождается ошибкой. Действительно, вольтметр, хотя и обладает сравнительно высоким сопротивлением, потребляет некоторый ток.

Рис.1

На рис. l вольтметр, измеряющий ЭДС источника, представлен эквивалентным внешним сопротивлением R. Согласно 2-му правилу Кирхгофа

 $IR + Ir = \varepsilon$

Поэтому вольтметр, подключенный к зажимам источника тока для измерения его ЭДС, показывает

 $U = IR = \varepsilon - Ir$.

т.с. напряжение, которое меньше ЭДС на величину падения напряжения на внутреннем сопротивлении источника.

Отсюда вилно, что измерение ЭДС вольтметром даёт ошибку, которая тем больше, чем больший ток потребляет вольтметр и чем больше внутреннее сопротивление источника тока. Наиболее совершенным методом измерения ЭДС является компенсационный метол.

Идея компенсационного метода заключается в том, что в момент измерения от источника ЭДС не потребляется ток, и тогда напряжение на его зажимах равно ЭДС.

Компенсационный метод можно осуществить с помощью электрической схемы, изображённой на рис.2

Рис.2

Исследуемый источник тока ϵ и вспомогательная батарея $\epsilon_{\mathcal{B}}$ соединены одноимёнными полюсами в точке A. Батарею замыкают реохордом AB, который представляет собой однородную проволоку длинной L и сопротивлением R. Второй полюс исследуемого источника через гальванометр Γ присоединён к подвижному контакту C реохорда. Перемещая контакт, можно найти такую точку, когда ток через гальванометр равен нулю. Тогда

т.е. ЭДС источника скомпенсировано напряжением между точками $A \bowtie C$.

Напряжение $U_{AC}\,$ можно рассчитать по закону Ома:

$$U_{AC} = Ir_{AC} = \frac{\varepsilon_{E}}{R+r} \cdot r_{AC} = \frac{\varepsilon_{E}}{R+r} \cdot \frac{R}{L} \cdot l, (1)$$

Из формулы (1) видно, что при постоянных параметрах батареи $\varepsilon_{\mathcal{S}}$ и r измеряемая ЭДС связана простой зависимостью с длинной участка реохорда l, на котором происходит компенсация ЭДС. Приборы, устроенные таким образом, называются потенциометрами постоянного тока.

Наибольшая точность в измерении ЭДС достигается при использовании компенсационного метода и относительных измерений. В этом случае дополнительно описанным методом измеряют ЭДС эталонного источника, которая известна с большей точностью.

$$\varepsilon_{9} = \frac{E_{B}}{R+r} \cdot \frac{R}{L} \cdot l_{9}, (2)$$

Из (1) и (2) ЭДС измеряемого источника

$$\overline{\varepsilon} = \varepsilon_{3} \cdot \frac{\overline{l}}{\overline{l}_{3}}$$
,(3)

При относительных измерениях влияние старения вспомогательной батареи (изменения ε_{κ} и r) не сказывается на точности измерения.

4. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

4.1 ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

В настоящей лабораторной работе относительные измерения ЭДС компенсоционным метолом проводятся с помощью схемы, приведенной на рис.3.

19

Рис.3

Компенсация эталонной и измеряемой ЭДС проводятся с помощью реохорда, проволока которого натянута на линейку с делениями, и ноль линейки совпадет с точкой A. Двойной ключ K устроен так, что при его включении сначала замыкаются контакты $\mathcal E$ цепи батареи, и только затем замыкаются контакты $\mathcal F$ цепи гальванометра. Такой порядок необходим для предохранения гальванометра от сильных токов, которые могут возникнуть при обратном порядке включения.

4.2 ВЫПОЛНЕНИЕ ЭКСПЕРИМЕНТА

- 1. Скомпенсировать ЭДС эталонного источника. Для этого перемещают подвижный контакт реохорда и, замыкая на короткое время двойной ключ, находят такое положение контакта, при котором гальванометр установится на нуле. Значение $l_{\scriptscriptstyle 3}$, отсчитанное по положению подвижного контакта на шкале реохорда, занести в таблицу 1.
- 2. Произвести компенсацию ЭДС исследуемого источника. Соответствующее значение l также занести в таблицу 1.
 - 3. Операции по пунктам 1 и 2 проделать ещё два раза.

і аблица І					,	,
Nº	l_{2} , cm	l, cm2	ε̄, в	$\frac{\Delta \varepsilon}{\overline{\varepsilon}}$,88	Δε, в	$\overline{\epsilon} \pm \Delta \epsilon$, B

1													
2]										
3													

5.ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ.

- 1. По измеренным значениям l_2 и l_1 рассчитать величины $\overline{l_2}$ и $\overline{l_2}$.
- 2. По формуле (3), пользуясь средними значениями, рассчитать величину ЭДС исследуемого источника $\bar{\epsilon}$.
 - 3. Определить относительную погрешность

$$\frac{\Delta \varepsilon}{\overline{\varepsilon}} = \frac{\Delta l_2}{\overline{l_2}} + \frac{\Delta l}{\overline{l}} \ .$$

приняв $\Delta l_{\lambda} = \Delta l_{\lambda}$ равным делению шкалы реохорда.

4. Определить абсолютную погрешность $\Delta \varepsilon$ и записать окончательный результат

$$\varepsilon = \bar{\varepsilon} \pm \Delta \varepsilon$$
, B

$$\frac{\Delta \varepsilon}{\overline{\varepsilon}} = ,\%$$

Примечание.

Технические данные установки

$$\varepsilon_1 = 1,02B$$

6.КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Сформулируйте правила Кирхгофа.
- 2. Выведите закон Ома для замкнутой цепи.
- 3. Почему нельзя измерить ЭДС источника тока вольтметра?
- 4.В чём сущность компенсационного метода измерения ЭДС?
- 5.В чём преимущество относительного компенсационного измерения ЭДС?

Список литературы

1.Савельев И.В. Курс общей физики, Т.2, М., «Наука», 2002.