Reglas de Asociación Difusas para la Detección de Anomalías

M.D. Ruiz, D. Sánchez, M.J. Martin-Bautista, M.A. Vila, M. Delgado

6 de Febrero de 2014

Motivación

- Las Reglas de Asociación permiten identificar conocimiento potencialmente nuevo, útil y comprensible para el usuario.
- Representan la aparición conjunta de un conjunto de ítems en la mayoría de las transacciones de una base de datos.
- Anteriores propuestas usan técnicas de minería de datos para:
 - Descubrir los perfiles usuales del comportamiento de los clientes
 - Después, buscan anomalías asociadas a estos comportamientos con técnicas como el clustering.

Motivación

- Las Reglas de Asociación Anómalas permiten la extracción de conocimiento mediante reglas de asociación, obteniendo:
 - el patrón usual/normal
 - el patrón anómalo asociado al usual/normal.
- Mucha de la información disponible es imprecisa, ambigua o incierta → Uso de la Teoría de Subconjuntos Difusos
- Propuesta: Reglas Difusas Anómalas
- Ventajas:
 - Conocimiento comprensible y semánticamente significante para el usuario.
 - 2. Comportamiento usual y el anómalo asociado a éste.
 - 3. Menos cantidad de reglas obtenidas.

Campos de Aplicación

- Seguridad, detección de fraude
- Análisis de datos financieros
- Análisis de flujos en redes de datos
- Procesos biológicos y químicos...

Resumen

- 1. Trabajos relacionados
- 2. Breve Introducción a las Reglas de Asociación Crisp y Difusas
- 3. Reglas de Asociación Anómalas Reglas Anómalas Difusas
- 4. Experimentos y Resultados
- 5. Conclusiones y Trabajos Futuros
- 6. Referencias

Trabajos relacionados

Existen otros tipos de reglas infrecuentes que capturan conocimiento que puede ser de interés para el usuario:

- Reglas Peculiares
- Reglas Infrecuentes
- Reglas de Excepción
- ► Reglas Anómalas

Reglas de Asociación Crisp

- ▶ Una base de datos D estará compuesta por transacciones t_i (filas) y atributos (columnas).
- ► Llamaremos *ítem* a un par del tipo ⟨*atributo*, *valor*⟩ or ⟨*atributo*, *intervalo*⟩.

\overline{D}	$ i_1 $	i_2		i_j	i_{j+1}		i_m
t_1	1	0		0	1		0
t_2	0	1		1	1 1		1
÷	:	÷	٠	:	: 1	٠	÷
t_n	1	1		0	1		1

- ▶ Una Regla de Asociación es una expresión de la forma $A \rightarrow B$ donde A, B son conjuntos no vacíos de ítems con intersección vacía.
- ▶ Una Regla de asociación representa la aparición conjunta de *A* y *B*.

Reglas de Asociación Crisp

lacktriangle El soporte de un itemset A se define como la probabilidad de que una transacción contenga a A

$$supp(A) = \frac{|t \in D : A \subseteq t|}{|D|}$$

Para validar la regla, se suele utilizar el soporte (probabilidad conjunta $P(A \cup B)$) y la confianza (probabilidad condicionada P(B|A))

$$\operatorname{Sop}(A \to B) = \frac{\operatorname{sop}(A \cup B)}{|D|}; \quad \operatorname{Conf}(A \to B) = \frac{\operatorname{sop}(A \cup B)}{\operatorname{sop}(A)}$$

que deben ser $\geq minsop$ y $\geq minconf$ resp. (umbrales impuestos por el usuario), i.e, la regla es frecuente y confidente.

Reglas de Asociación Crisp

▶ Debido a algunos problemas al usar la confianza, usaremos como alternativa el uso del *factor de certeza*, $FC(A \rightarrow B)$

$$\begin{cases} \frac{\operatorname{Conf}(A \to B) - \operatorname{sop}(B)}{1 - \operatorname{sop}(B)} & \text{if } \operatorname{Conf}(A \to B) > \operatorname{sop}(B) \\ \frac{\operatorname{Conf}(A \to B) - \operatorname{sop}(B)}{\operatorname{sop}(B)} & \text{if } \operatorname{Conf}(A \to B) < \operatorname{sop}(B) \\ 0 & \text{en otro caso}. \end{cases}$$

- ► El FC mide cómo nuestra creencia de que B está en una transacción cambia cuando sabemos que A está en dicha transacción.
- ► El Factor de Certeza posee mejores propiedades que la confianza y que otras medidas, en particular, reduce el número de reglas obtenidas filtrando aquellas que corresponden a dependencias negativas o independencia estadística.
- ▶ Si una regla es $\geq minFC$ diremos que es fiable.

- ▶ *I* un conjunto finito de ítems.
- ▶ Una transacción difusa es un subconjunto difuso no vacío $\tilde{\tau} \subseteq I$.
- ▶ Un ítem $i \in I$ pertenecerá a $\tilde{\tau}$ con grado $\tilde{\tau}(i) \in [0,1]$.
- ▶ Un itemset $A \subset I$ pertenecerá a $\tilde{\tau}$ con grado

$$\tilde{\tau}(A) = \min_{i \in A} \tilde{\tau}(i)$$

lacktriangle Una regla de asociación difusa A o B se cumplirá en $ilde D\Leftrightarrow$

$$\tilde{\tau}(A) \le \tilde{\tau}(B) \quad \forall \ \tilde{\tau} \in \tilde{D}$$

Esta definición preserva el significado original de regla de asociación crisp.

Las medidas de soporte, confianza y factor de certeza se generalizan al caso difuso mediante la evaluación de sentencias cuantificadas con el cuantificador Q(x)=x de la forma:

- ▶ Dado A conjunto de ítems, $\tilde{\Gamma}_A(\tilde{\tau}) = \tilde{\tau}(A)$.
- ▶ Soporte de A es la evaluación de la sentencia cuantificada "Q de los \tilde{D} son $\tilde{\Gamma}_A$ ".
- Fsop $(A \to B)$ en \tilde{D} es la evaluación de la sentencia cuantificada "Q de los \tilde{D} son $(\tilde{\Gamma}_A \cap \tilde{\Gamma}_B)$ ".
- FConf $(A \to B)$, es la evaluación de la sentencia cuantificada "Q de los $\tilde{\Gamma}_A$ son $\tilde{\Gamma}_B$ " .
- ▶ $FFC(A \rightarrow B)$ se obtiene usando Fsop y FConf usando la definición anterior.

Para evaluar la sentencia cuantificada "Q de los F son G" usaremos el método GD:

$$GD_Q(G/F) = \sum_{\alpha_i \in \Lambda(G/F)} (\alpha_i - \alpha_{i+1}) \ Q\left(\frac{|(G \cap F)_{\alpha_i}|}{|F_{\alpha_i}|}\right)$$

donde $\Lambda(G/F)=\Lambda(G\cap F)\cup\Lambda(F)$, siendo $\Lambda(F)$ el conjunto de niveles de F, y $\Lambda(G/F)=\{\alpha_1,\ldots,\alpha_p\}$ con $\alpha_i>\alpha_{i+1}$ para cualquier $i\in\{1,\ldots,p-1\}$ donde $\alpha_{p+1}=0$. El conjunto F deberá estar normalizado. Si no, F se normalizará y el mismo factor de normalización se le aplicará a $G\cap F$.

Ejemplo:

- lacksquare Conjunto de ítems $I=\{i_1,i_2,i_3,i_4\}$
- ► Conjunto de transacciones difusas

	i_1	i_2	i_3	i_4	i_5
$ ilde{ au}_1$	1	0.2	1	0.9	0.9
$ ilde{ au}_2$	1	1	0.8	0	0
$ ilde{ au}_3$	0.5	0.1	0.7	0.6	0
$ ilde{ au}_4$	0.6	0	0	0.5	0.5
$ ilde{ au}_5$	0.4	0.1	0.6	0	0
$ ilde{ au}_6$	0	1	0	0	0

- $ightharpoonup ilde{ au}_6$ es una transacción crisp.
- ▶ Algunos grados de pertenencia son: $\tilde{\tau}_1(\{i_3, i_4\}) = 0.9$, $\tilde{\tau}_1(\{i_2, i_3, i_4\}) = 0.2$ and $\tilde{\tau}_2(\{i_1, i_2\}) = 1$.

Algunas reglas difusas que pueden encontrarse:

Regla	Fsop	FConf	FFC
$\{i_1, i_2\} \to \{i_3\}$	0.167	0.8	0.6
$\{i_4\} \to \{i_5\}$	0.2	0.767	0.68

Reglas de Asociación Anómalas

Idea: Las Reglas Anómalas surgen cuando se elimina el efecto dominante producido por la regla frecuente (csr) [Berzal et al., 2004]

Interpretación:

Cuando se da X, entonces tendremos Y (usual) o A (inusual)

Esta semántica se captura con el conjunto de reglas:

X implica de forma fuerte a Y, pero en los casos donde X implica $\neg Y$, entonces X implica confidentemente A

Ejemplo:

"SI un paciente tiene síntomas X, ENTONCES normalmente tendrá la enfermedad Y, SI NO, tendrá la enfermedad A",

A será el comportamiento alternativo cuando el "usual" o "normal" falla (representado por $X \to Y$).

Reglas Anómalas Difusas

- Formalmente, let $\tilde{D}_X = \{t \in \tilde{D} : X \subset t\}.$
- Una regla anómala difusa será una terna (Fcsr, Fanom, Fref) cumpliendo:
 - $X \to Y$ (Fcsr) es frecuente y fiable en \tilde{D} .
 - $\neg Y \to A$ (Fanom) es fiable en \tilde{D}_X .
 - $A \to \neg Y$ (Fref) es fiable in \tilde{D}_X .
- Ventajas:
 - La cantidad de ternas (csr, anom, ref) se reduce al usar el Factor de Certeza.
 - El conjunto de reglas obtenidas son más fiables.

Algunos problemas de implementación:

- La extracción de reglas difusas es algorítmicamente más costoso que extraer reglas crisp.
- ► Las reglas anómalas son infrecuentes ~ Las técnicas de poda no pueden usarse.

Solución:

- Extraer reglas difusas mediante una paralelización por niveles.
- Adaptarlo para la extracción de reglas anómalas difusas.

Bases de datos: Auto-mpg y German-statLog del repositorio UCI Machine Learning.

- Auto-mpg (cilindrada, peso, aceleración,...)
- 398 tuplas
- ▶ 8 atributos que han sido fuzzificados con las etiquetas lingüísticas: bajo, medio y bajo.

German-statLog (sobre créditos y clientes de un banco alemán)

- ▶ 1000 transacciones
- ▶ 21 atributos: 18 categóricos o numéricos, 3 continuos (fuzzificados)

► Ejemplo de regla obtenida en Auto-mpg

```
"SI consumo=alto ENTONCES cilindrada = 4 (Fsop = 0.206 & FFC = 0.912) O n. de cilindros = en la media (inusual FFC_1 = 1, FFC_2 = 1
```

Interpretación:

SI el consumo de gasolina es alto ENTONCES la cilindrada es 4 con soporte 0.206 y factor de certeza 0.912, O BIEN inusualmente el número de cilindros está en la media con factor de certeza 1.

Conclusiones y Trabajos Futuros

- Hemos propuesto el uso de reglas anómalas difusas pare representar el comportamiento anómalo o inusual que se desvía del normal.
- Usamos el Factor de Certeza, obteniendo un conjunto más pequeño y fiable de reglas.
- ▶ Proponemos adaptar un algoritmo ya conocido para reglas difusas.
- Probado en distintas bases de datos donde se han fuzzificado varios atributos continuos.

Futuro: Desarrollar algoritmos más eficientes.

Extender otras propuestas parecidas, e.g. reglas de excepción, que pueden ser de utilidad para aplicarlas en contextos de detección de fraude y seguridad.

Referencias

[Berzal et al., 2004] F. Berzal, J.C. Cubero, N. Marín, and M. Gámez. **Anomalous association rules.** In *IEEE ICDM Workshop Alternative Techniques for Data Mining and Knowledge Discovery*, 2004.

[Delgado et al., 2011] M. Delgado, M.D. Ruiz, and D. Sánchez. **New Approaches for Discovering Exception and Anomalous Rules.** *International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems*, Vol. 19, No. 2 pp. 361-399, 2011.

ESTYLF 2014

Muchas gracias. ¿Alguna pregunta?