

# Sous-groupes de $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ Projet Mathématiques - Informatique

Kevin Garnier Charly Martin Avila

Dirigé par Olivier Bruna

Année 2023

## Matrices à coefficients entier et forme normale de Hermite

## Proposition

Soient  $A \in \mathscr{M}_{m,n}(\mathbb{Z})$  et  $Q \in GL_n(\mathbb{Z})$ , alors  $\operatorname{Im} AQ = \operatorname{Im} A$ 

#### **Definition**

Soit  $A \in \mathcal{M}_{m,n}(\mathbb{Z})$ . Alors, il existe une unique matrice échelonnée réduite suivant les colonnes  $H \in \mathcal{M}_{m,n}(\mathbb{Z})$  telle qu'il existe  $Q \in GL_n(\mathbb{Z})$  avec H = AQ. La matrice H s'appelle la forme normale de Hermite de A.

## Example

$$\begin{pmatrix} 2 & 1 \\ 4 & 10 \\ 5 & 13 \\ 13 & 12 \end{pmatrix} \xrightarrow{C_2 \leftrightarrow C_1} \begin{pmatrix} 1 & 2 \\ 10 & 4 \\ 13 & 5 \\ 12 & 13 \end{pmatrix} \xrightarrow{C_2 \leftarrow C_2 - 2C_1} \begin{pmatrix} 1 & 0 \\ 10 & -16 \\ 13 & 3 \\ 12 & -14 \end{pmatrix} \xrightarrow{C_2 \leftarrow -C_2} \begin{pmatrix} 1 & 0 \\ 10 & 16 \\ 13 & -3 \\ 12 & 14 \end{pmatrix}$$

# Génération des sous-groupes

#### Théorème

Les seules matrices dont les colonnes génèrent un sous-groupe de  $\mathbb{Z}^2/p^m\mathbb{Z} \times p^m\mathbb{Z}$  sont les matrices de la forme  $H = \begin{pmatrix} p^a & 0 \\ j & p^b \end{pmatrix}$  avec  $a \le m$ ,  $b \le m$  et  $j < p^b$  ou

$$H = \begin{pmatrix} p^a & 0 \\ jp^k & p^b \end{pmatrix}$$
 avec  $a \le m$ ,  $b \le m$ ,  $k \le m$  et  $j < p^{b-k}$ 

#### Corollaire

Soit la suite  $(A_k)_{0 \le k \le n}$  telle que  $A_0 = \{ (a, b) \mid a + b \le m \}$ 

$$A_k = \left\{ (a, b) \middle| \begin{array}{l} a \le m, b \le m \\ a + b = m + k \end{array} \right\}$$

Alors, l'ensemble des matrices du théorème, c'est-à-dire, les matrices dont les colonnes génèrent les sous-groupes de  $\mathbb{Z}^2/p^m\mathbb{Z} \times p^m\mathbb{Z}$  est  $M = \bigsqcup_{k=0}^m M_k$  où

$$M_k = \left\{ egin{pmatrix} p^a & 0 \ jp^k & p^b \end{pmatrix} \middle| egin{matrix} (a,b) \in A_k \ 0 \leq j < p^{b-k} \end{matrix} 
ight\}$$

# Énumération des sous-groupes

#### Théorème

Soit

$$\psi: \mathbb{N}^2 \to \mathbb{N}$$

$$(p,n) \mapsto \sum_{i=0}^n (n-i)p^i + \sum_{i=0}^n \frac{1-p^{n-i+1}}{1-p}$$

Alors, le nombre de sous groupe de  $\mathbb{Z}/p^m\mathbb{Z} \times \mathbb{Z}/p^m\mathbb{Z}$  est  $\psi(p,m)$ 

### Proposition

Soit  $n = \prod_{i=1}^{n} p_i^{\alpha_i}$  avec  $p_i$  des nombres premiers distincts

Le nombre total de sous-groupes de  $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$  est

$$\prod_{i=0}^k \psi(p_i, \alpha_i) = \prod_i^k \left( \sum_{j=0}^{\alpha_i} (\alpha_i - j) p_i^j + \sum_{j=0}^{\alpha_i} \frac{1 - p_i^{\alpha_i - j + 1}}{1 - p_i} \right)$$

## Quelques résultats générés

| n                                                        | 0        | 1 | 2 | 3 | 4  | 5 | 6  | 7  | 8  | 9  | 10 |
|----------------------------------------------------------|----------|---|---|---|----|---|----|----|----|----|----|
| $ \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} $ | $\infty$ | 1 | 5 | 6 | 15 | 8 | 30 | 10 | 37 | 23 | 40 |



FIGURE – Treillis des sous-groupes de  $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$  avec les formes normales de Hermite correspondantes