Calcul exact de cosinus en des angles commensurables avec π

 \mathbb{Q} On montre comment obtenir de nouvelles valeurs remarquables du cosinus (on passerait alors au sinus et à la tangente grâce aux formules $\sin^2 = 1 - \cos^2$ et $\tan = \frac{\sin}{\cos}$). La formule d'Euler est la clé, parce que les exponentielles complexes (d'arguments commensurables avec π) vérifient des équations extrêmement simples, dont on déduit des équations polynomiales qu'on sait résoudre, vérifiées par des cosinus d'angles commensurables avec π . Nous nous sommes limités à des équations polynomiales d'ordre 2, ce qui limite la variété des exercices, mais la méthode permettrait par duplication d'avoir d'autres valeurs remarquables.

Exercice 1.

 \rightarrow page 16

- 1. Montrer que $z = e^{\frac{9}{5}\pi}$ vérifie: $z^4 z^3 + z^2 z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{9}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{9}{5}\pi\right)$.

Exercice 2.

 \rightarrow page 16

- 1. Montrer que $\cos\left(\frac{5}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2 = -\frac{1}{4}\sqrt{2} + \frac{1}{2}$, d'inconnue $x \in \mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{5}{8}\pi\right)$.

Exercice 3.

 \rightarrow page 16

- 1. Montrer que $z=e^{\frac{8}{5}\pi}$ vérifie: $z^4+z^3+z^2+z+1=0$.
- 2. En déduire que $2\cos\left(\frac{8}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{8}{5}\pi\right)$.

Exercice 4.

 \rightarrow page 17

- 1. Montrer que $z = e^{\frac{4}{5}\pi}$ vérifie: $z^4 + z^3 + z^2 + z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{4}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{4}{5}\pi\right)$.

Exercice 5.

 \rightarrow page 17

- 1. Montrer que $\cos\left(\frac{1}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, d'inconnue $x \in \mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{1}{8}\pi\right)$.

Exercice 6.

- 1. Montrer que $z = e^{\frac{4}{5}\pi}$ vérifie: $z^4 + z^3 + z^2 + z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{4}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{4}{5}\pi\right)$.

Exercice 7.

 \rightarrow page 18

- 1. Montrer que $z = e^{\frac{8}{5}\pi}$ vérifie: $z^4 + z^3 + z^2 + z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{8}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{8}{5}\pi\right)$.

Exercice 8.

 \rightarrow page 19

- 1. Montrer que $z=e^{\frac{7}{5}\pi}$ vérifie : $z^4-z^3+z^2-z+1=0$.
- 2. En déduire que $2\cos\left(\frac{7}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{7}{5}\pi\right)$.

Exercice 9.

 \rightarrow page 19

- 1. Montrer que $z = e^{\frac{3}{5}\pi}$ vérifie : $z^4 z^3 + z^2 z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{3}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{3}{5}\pi\right)$.

Exercice 10.

 \rightarrow page 20

- 1. Montrer que $z=e^{\frac{3}{5}\,\pi}$ vérifie : $z^4-z^3+z^2-z+1=0.$
- 2. En déduire que $2\cos\left(\frac{3}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{3}{5}\pi\right)$.

Exercice 11.

 \rightarrow page 20

- 1. Montrer que $z=e^{\frac{9}{5}\,\pi}$ vérifie : $z^4-z^3+z^2-z+1=0.$
- 2. En déduire que $2\cos\left(\frac{9}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{9}{5}\pi\right)$.

Exercice 12.

 \rightarrow page 21

- 1. Montrer que $z = e^{\frac{6}{5}\pi}$ vérifie: $z^4 + z^3 + z^2 + z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{6}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{6}{5}\pi\right)$.

Exercice 13.

- 1. Montrer que $z=e^{\frac{6}{5}\pi}$ vérifie : $z^4+z^3+z^2+z+1=0$.
- 2. En déduire que $2\cos\left(\frac{6}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.

3. En déduire une expression simple et exacte de $\cos\left(\frac{6}{5}\pi\right)$.

Exercice 14.

 \rightarrow page 22

- 1. Montrer que $z = e^{\frac{9}{5}\pi}$ vérifie: $z^4 z^3 + z^2 z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{9}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{9}{5}\pi\right)$.

Exercice 15.

 \rightarrow page 22

- 1. Montrer que $z=e^{\frac{3}{5}\pi}$ vérifie: $z^4-z^3+z^2-z+1=0$.
- 2. En déduire que $2\cos\left(\frac{3}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{3}{5}\pi\right)$.

Exercice 16.

 \rightarrow page 23

- 1. Montrer que $z=e^{\frac{3}{5}\pi}$ vérifie : $z^4-z^3+z^2-z+1=0$.
- 2. En déduire que $2\cos\left(\frac{3}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{3}{5}\pi\right)$.

Exercice 17.

 \rightarrow page 23

- 1. Montrer que $z=e^{\frac{9}{5}\,\pi}$ vérifie : $z^4-z^3+z^2-z+1=0.$
- 2. En déduire que $2\cos\left(\frac{9}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{9}{5}\pi\right)$.

Exercice 18.

 \rightarrow page 24

- 1. Montrer que $z = e^{\frac{6}{5}\pi}$ vérifie: $z^4 + z^3 + z^2 + z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{6}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{6}{5}\pi\right)$.

Exercice 19.

 \rightarrow page 24

- 1. Montrer que $z=e^{\frac{6}{5}\,\pi}$ vérifie : $z^4+z^3+z^2+z+1=0.$
- 2. En déduire que $2\cos\left(\frac{6}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{6}{5}\pi\right)$.

Exercice 20.

- 1. Montrer que $\cos\left(\frac{1}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, d'inconnue $x \in \mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{1}{8}\pi\right)$

Exercice 21.

 \rightarrow page 25

- 1. Montrer que $\cos\left(\frac{5}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2=-\frac{1}{4}\sqrt{2}+\frac{1}{2}$, d'inconnue $x\in\mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{5}{8}\pi\right)$.

Exercice 22.

 \rightarrow page 26

- 1. Montrer que $z = e^{\frac{1}{5}\pi}$ vérifie: $z^4 z^3 + z^2 z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{1}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{1}{5}\pi\right)$.

Exercice 23.

 \rightarrow page 26

- 1. Montrer que $z = e^{\frac{6}{5}\pi}$ vérifie: $z^4 + z^3 + z^2 + z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{6}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{6}{5}\pi\right)$.

Exercice 24.

 \rightarrow page 27

- 1. Montrer que $z=e^{\frac{2}{5}\,\pi}$ vérifie : $z^4+z^3+z^2+z+1=0.$
- 2. En déduire que $2\cos\left(\frac{2}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{2}{5}\pi\right)$.

Exercice 25.

 \rightarrow page 27

- 1. Montrer que $z = e^{\frac{2}{5}\pi}$ vérifie: $z^4 + z^3 + z^2 + z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{2}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{2}{5}\pi\right)$

Exercice 26.

 \rightarrow page 27

- 1. Montrer que $z = e^{\frac{9}{5}\pi}$ vérifie: $z^4 z^3 + z^2 z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{9}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{9}{5}\pi\right)$.

Exercice 27.

- 1. Montrer que $\cos\left(\frac{3}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2 = -\frac{1}{4}\sqrt{2} + \frac{1}{2}$, d'inconnue $x \in \mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{3}{8}\pi\right)$.

Exercice 28.

 \rightarrow page 28

- 1. Montrer que $z = e^{\frac{8}{5}\pi}$ vérifie: $z^4 + z^3 + z^2 + z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{8}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{8}{5}\pi\right)$.

Exercice 29.

 \rightarrow page 29

- 1. Montrer que $z = e^{\frac{9}{5}\pi}$ vérifie: $z^4 z^3 + z^2 z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{9}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{9}{5}\pi\right)$.

Exercice 30.

 \rightarrow page 29

- 1. Montrer que $z = e^{\frac{3}{5}\pi}$ vérifie: $z^4 z^3 + z^2 z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{3}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{3}{5}\pi\right)$.

Exercice 31.

 \rightarrow page 30

- 1. Montrer que $\cos\left(\frac{13}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2=-\frac{1}{4}\sqrt{2}+\frac{1}{2}$, d'inconnue $x\in\mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{13}{8}\pi\right)$.

Exercice 32.

 \rightarrow page 30

- 1. Montrer que $z=e^{\frac{8}{5}\,\pi}$ vérifie: $z^4+z^3+z^2+z+1=0.$
- 2. En déduire que $2\cos\left(\frac{8}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{8}{5}\pi\right)$.

Exercice 33.

 \rightarrow page 31

- 1. Montrer que $\cos\left(\frac{5}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2 = -\frac{1}{4}\sqrt{2} + \frac{1}{2}$, d'inconnue $x \in \mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{5}{8}\pi\right)$.

Exercice 34.

- 1. Montrer que $z=e^{\frac{6}{5}\pi}$ vérifie: $z^4+z^3+z^2+z+1=0$.
- 2. En déduire que $2\cos\left(\frac{6}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{6}{5}\pi\right)$

Exercice 35.

 \rightarrow page 32

- 1. Montrer que $z = e^{\frac{9}{5}\pi}$ vérifie: $z^4 z^3 + z^2 z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{9}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{9}{5}\pi\right)$.

Exercice 36.

 \rightarrow page 32

- 1. Montrer que $z = e^{\frac{6}{5}\pi}$ vérifie: $z^4 + z^3 + z^2 + z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{6}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{6}{5}\pi\right)$.

Exercice 37.

 \rightarrow page 33

- 1. Montrer que $z = e^{\frac{4}{5}\pi}$ vérifie: $z^4 + z^3 + z^2 + z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{4}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{4}{5}\pi\right)$.

Exercice 38.

 \rightarrow page 33

- 1. Montrer que $\cos\left(\frac{3}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2=-\frac{1}{4}\sqrt{2}+\frac{1}{2}$, d'inconnue $x\in\mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{3}{8}\pi\right)$.

Exercice 39.

 \rightarrow page 34

- 1. Montrer que $z = e^{\frac{3}{5}\pi}$ vérifie: $z^4 z^3 + z^2 z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{3}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{3}{5}\pi\right)$.

Exercice 40.

- 1. Montrer que $z = e^{\frac{8}{5}\pi}$ vérifie: $z^4 + z^3 + z^2 + z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{8}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{8}{5}\pi\right)$.

Exercice 41.

 \rightarrow page 35

- 1. Montrer que $z=e^{\frac{1}{5}\pi}$ vérifie: $z^4-z^3+z^2-z+1=0.$
- 2. En déduire que $2\cos\left(\frac{1}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{1}{5}\pi\right)$.

Exercice 42.

 \rightarrow page 35

- 1. Montrer que $z=e^{\frac{2}{5}\,\pi}$ vérifie : $z^4+z^3+z^2+z+1=0.$
- 2. En déduire que $2\cos\left(\frac{2}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{2}{5}\pi\right)$.

Exercice 43.

 \rightarrow page 36

- 1. Montrer que $z=e^{\frac{9}{5}\pi}$ vérifie : $z^4-z^3+z^2-z+1=0$.
- 2. En déduire que $2\cos\left(\frac{9}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{9}{5}\pi\right)$.

Exercice 44.

 \rightarrow page 36

- 1. Montrer que $z = e^{\frac{9}{5}\pi}$ vérifie: $z^4 z^3 + z^2 z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{9}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{9}{5}\pi\right)$.

Exercice 45.

 \rightarrow page 37

- 1. Montrer que $\cos\left(\frac{1}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, d'inconnue $x \in \mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{1}{8}\pi\right)$.

Exercice 46.

 \rightarrow page 37

- 1. Montrer que $z=e^{\frac{2}{5}\,\pi}$ vérifie: $z^4+z^3+z^2+z+1=0.$
- 2. En déduire que $2\cos\left(\frac{2}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{2}{5}\pi\right)$.

Exercice 47.

- 1. Montrer que $z = e^{\frac{6}{5}\pi}$ vérifie: $z^4 + z^3 + z^2 + z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{6}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.

3. En déduire une expression simple et exacte de $\cos\left(\frac{6}{5}\pi\right)$.

Exercice 48.

 \rightarrow page 38

- 1. Montrer que $z = e^{\frac{3}{5}\pi}$ vérifie: $z^4 z^3 + z^2 z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{3}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{3}{5}\pi\right)$.

Exercice 49.

 \rightarrow page 39

- 1. Montrer que $z=e^{\frac{3}{5}\pi}$ vérifie : $z^4-z^3+z^2-z+1=0$.
- 2. En déduire que $2\cos\left(\frac{3}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{3}{5}\pi\right)$.

Exercice 50.

 \rightarrow page 39

- 1. Montrer que $z = e^{\frac{9}{5}\pi}$ vérifie: $z^4 z^3 + z^2 z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{9}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{9}{5}\pi\right)$.

Exercice 51.

→ page 40

- 1. Montrer que $\cos\left(\frac{9}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, d'inconnue $x \in \mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{9}{8}\pi\right)$.

Exercice 52.

\ no.co 40

- 1. Montrer que $\cos\left(\frac{11}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2 = -\frac{1}{4}\sqrt{2} + \frac{1}{2}$, d'inconnue $x \in \mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{11}{8}\pi\right)$.

Exercice 53.

 \rightarrow page 41

- 1. Montrer que $z=e^{\frac{4}{5}\,\pi}$ vérifie: $z^4+z^3+z^2+z+1=0.$
- 2. En déduire que $2\cos\left(\frac{4}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{4}{5}\pi\right)$.

Exercice 54.

 \rightarrow page 41

1. Montrer que $\cos\left(\frac{15}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, d'inconnue $x \in \mathbb{R}$.

2. En déduire une expression simple et exacte de $\cos\left(\frac{15}{8}\pi\right)$.

Exercice 55.

 \rightarrow page 41

- 1. Montrer que $z = e^{\frac{3}{5}\pi}$ vérifie: $z^4 z^3 + z^2 z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{3}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x \in \mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{3}{5}\pi\right)$.

Exercice 56.

 \rightarrow page 42

- 1. Montrer que $\cos\left(\frac{13}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2 = -\frac{1}{4}\sqrt{2} + \frac{1}{2}$,
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{13}{8}\pi\right)$.

Exercice 57.

 \rightarrow page 42

- 1. Montrer que $z = e^{\frac{2}{5}\pi}$ vérifie: $z^4 + z^3 + z^2 + z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{2}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$,
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{2}{5}\pi\right)$.

Exercice 58.

 \rightarrow page 43

- 1. Montrer que $\cos\left(\frac{1}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$,
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{1}{8}\pi\right)$

Exercice 59.

 \rightarrow page 43

- 1. Montrer que $z = e^{\frac{4}{5}\pi}$ vérifie: $z^4 + z^3 + z^2 + z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{4}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$,
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{4}{5}\pi\right)$

Exercice 60.

 \rightarrow page 44

- 1. Montrer que $\cos\left(\frac{13}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2=-\frac{1}{4}\sqrt{2}+\frac{1}{2}$, d'inconnue $x\in\mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{13}{8}\pi\right)$.

Exercice 61.

- 1. Montrer que $z = e^{\frac{7}{5}\pi}$ vérifie: $z^4 z^3 + z^2 z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{7}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x \in \mathbb{R}$.

3. En déduire une expression simple et exacte de $\cos\left(\frac{7}{5}\pi\right)$.

Exercice 62.

 \rightarrow page 45

- 1. Montrer que $\cos\left(\frac{13}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2=-\frac{1}{4}\sqrt{2}+\frac{1}{2}$, d'inconnue $x\in\mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{13}{8}\pi\right)$.

Exercice 63.

 \rightarrow page 45

- 1. Montrer que $z=e^{\frac{6}{5}\,\pi}$ vérifie : $z^4+z^3+z^2+z+1=0.$
- 2. En déduire que $2\cos\left(\frac{6}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{6}{5}\pi\right)$.

Exercice 64.

 \rightarrow page 45

- 1. Montrer que $z=e^{\frac{3}{5}\,\pi}$ vérifie : $z^4-z^3+z^2-z+1=0.$
- 2. En déduire que $2\cos\left(\frac{3}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{3}{5}\pi\right)$.

Exercice 65.

→ nage 4

- 1. Montrer que $\cos\left(\frac{7}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, d'inconnue $x \in \mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{7}{8}\pi\right)$.

Exercice 66.

 \rightarrow page 46

- 1. Montrer que $\cos\left(\frac{1}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, d'inconnue $x \in \mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{1}{8}\pi\right)$.

Exercice 67.

 \rightarrow page 47

- 1. Montrer que $z = e^{\frac{1}{5}\pi}$ vérifie: $z^4 z^3 + z^2 z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{1}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{1}{5}\pi\right)$.

Exercice 68.

- 1. Montrer que $\cos\left(\frac{3}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2=-\frac{1}{4}\sqrt{2}+\frac{1}{2}$, d'inconnue $x\in\mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{3}{8}\pi\right)$.

Exercice 69.

 \rightarrow page 48

- 1. Montrer que $z=e^{\frac{8}{5}\pi}$ vérifie : $z^4+z^3+z^2+z+1=0$.
- 2. En déduire que $2\cos\left(\frac{8}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$,
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{8}{5}\pi\right)$.

Exercice 70.

 \rightarrow page 48

- 1. Montrer que $\cos\left(\frac{3}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2 = -\frac{1}{4}\sqrt{2} + \frac{1}{2}$,
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{3}{8}\pi\right)$

Exercice 71.

 \rightarrow page 48

- 1. Montrer que $z = e^{\frac{1}{5}\pi}$ vérifie: $z^4 z^3 + z^2 z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{1}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$,
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{1}{5}\pi\right)$

Exercice 72.

 \rightarrow page 49

- 1. Montrer que $\cos\left(\frac{1}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2=\frac{1}{4}\sqrt{2}+\frac{1}{2}$, d'inconnue $x\in\mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{1}{8}\pi\right)$

Exercice 73.

 \rightarrow page 49

- 1. Montrer que $z = e^{\frac{2}{5}\pi}$ vérifie: $z^4 + z^3 + z^2 + z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{2}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x \in \mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{2}{5}\pi\right)$

Exercice 74.

 \rightarrow page 50

- 1. Montrer que $z=e^{\frac{7}{5}\pi}$ vérifie : $z^4-z^3+z^2-z+1=0$.
- 2. En déduire que $2\cos\left(\frac{7}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x \in \mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{7}{5}\pi\right)$.

Exercice 75.

- 1. Montrer que $z = e^{\frac{1}{5}\pi}$ vérifie: $z^4 z^3 + z^2 z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{1}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x \in \mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{1}{5}\pi\right)$.

Exercice 76.

 \rightarrow page 51

- 1. Montrer que $\cos\left(\frac{7}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, d'inconnue $x \in \mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{7}{8}\pi\right)$.

Exercice 77.

 \rightarrow page 51

- 1. Montrer que $\cos\left(\frac{9}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, d'inconnue $x \in \mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{9}{8}\pi\right)$.

Exercice 78.

 \rightarrow page 52

- 1. Montrer que $z=e^{\frac{6}{5}\pi}$ vérifie: $z^4+z^3+z^2+z+1=0$.
- 2. En déduire que $2\cos\left(\frac{6}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{6}{5}\pi\right)$

Exercice 79.

 \rightarrow page 52

- 1. Montrer que $z=e^{\frac{2}{5}\pi}$ vérifie: $z^4+z^3+z^2+z+1=0$.
- 2. En déduire que $2\cos\left(\frac{2}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{2}{5}\pi\right)$.

Exercice 80.

 \rightarrow page 53

- 1. Montrer que $z = e^{\frac{8}{5}\pi}$ vérifie: $z^4 + z^3 + z^2 + z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{8}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{8}{5}\pi\right)$.

Exercice 81.

 \rightarrow page 53

- 1. Montrer que $z=e^{\frac{9}{5}\pi}$ vérifie : $z^4-z^3+z^2-z+1=0$.
- 2. En déduire que $2\cos\left(\frac{9}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{9}{5}\pi\right)$.

Exercice 82.

- 1. Montrer que $z = e^{\frac{6}{5}\pi}$ vérifie: $z^4 + z^3 + z^2 + z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{6}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x\in\mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{6}{5}\pi\right)$.

Exercice 83.

 \rightarrow page 54

- 1. Montrer que $z=e^{\frac{8}{5}\pi}$ vérifie : $z^4+z^3+z^2+z+1=0$.
- 2. En déduire que $2\cos\left(\frac{8}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$,
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{8}{5}\pi\right)$.

Exercice 84.

 \rightarrow page 55

- 1. Montrer que $z=e^{\frac{4}{5}\pi}$ vérifie : $z^4+z^3+z^2+z+1=0$.
- 2. En déduire que $2\cos\left(\frac{4}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$,
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{4}{5}\pi\right)$.

Exercice 85.

 \rightarrow page 55

- 1. Montrer que $z=e^{\frac{9}{5}\pi}$ vérifie : $z^4-z^3+z^2-z+1=0$.
- 2. En déduire que $2\cos\left(\frac{9}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$, d'inconnue $x \in \mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{9}{5}\pi\right)$.

Exercice 86.

 \rightarrow page 56

- 1. Montrer que $z = e^{\frac{8}{5}\pi}$ vérifie: $z^4 + z^3 + z^2 + z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{8}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$,
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{8}{5}\pi\right)$.

Exercice 87.

 \rightarrow page 56

- 1. Montrer que $z=e^{\frac{7}{5}\,\pi}$ vérifie : $z^4-z^3+z^2-z+1=0.$
- 2. En déduire que $2\cos\left(\frac{7}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$,
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{7}{5}\pi\right)$

Exercice 88.

 \rightarrow page 57

- 1. Montrer que $\cos\left(\frac{9}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2=\frac{1}{4}\sqrt{2}+\frac{1}{2}$, d'inconnue $x\in\mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{9}{8}\pi\right)$.

Exercice 89.

- 1. Montrer que $\cos\left(\frac{9}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, d'inconnue $x \in \mathbb{R}$
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{9}{8}\pi\right)$.

Exercice 90.

 \rightarrow page 57

- 1. Montrer que $z=e^{\frac{7}{5}\pi}$ vérifie : $z^4-z^3+z^2-z+1=0$.
- 2. En déduire que $2\cos\left(\frac{7}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$,
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{7}{5}\pi\right)$.

Exercice 91.

 \rightarrow page 58

- 1. Montrer que $z=e^{\frac{4}{5}\pi}$ vérifie : $z^4+z^3+z^2+z+1=0$.
- 2. En déduire que $2\cos\left(\frac{4}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$,
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{4}{5}\pi\right)$.

Exercice 92.

 \rightarrow page 58

- 1. Montrer que $\cos\left(\frac{9}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$,
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{9}{8}\pi\right)$

Exercice 93.

 \rightarrow page 59

- 1. Montrer que $z = e^{\frac{2}{5}\pi}$ vérifie: $z^4 + z^3 + z^2 + z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{2}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$,
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{2}{5}\pi\right)$

Exercice 94.

 \rightarrow page 59

- 1. Montrer que $z = e^{\frac{8}{5}\pi}$ vérifie: $z^4 + z^3 + z^2 + z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{8}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x \in \mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{8}{5}\pi\right)$

Exercice 95.

 \rightarrow page 60

- 1. Montrer que $\cos\left(\frac{7}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2=\frac{1}{4}\sqrt{2}+\frac{1}{2}$, d'inconnue $x\in\mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{7}{8}\pi\right)$.

Exercice 96.

- 1. Montrer que $z = e^{\frac{6}{5}\pi}$ vérifie: $z^4 + z^3 + z^2 + z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{6}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x \in \mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{6}{5}\pi\right)$.

Exercice 97.

 \rightarrow page 61

- 1. Montrer que $z = e^{\frac{7}{5}\pi}$ vérifie: $z^4 z^3 + z^2 z + 1 = 0$.
- 2. En déduire que $2\cos\left(\frac{7}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2-x-1=0$,
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{7}{5}\pi\right)$.

Exercice 98.

- 1. Montrer que $\cos\left(\frac{9}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$,
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{9}{8}\pi\right)$.

Exercice 99.

 \rightarrow page 61

- 1. Montrer que $\cos\left(\frac{13}{8}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2=-\frac{1}{4}\sqrt{2}+\frac{1}{2}$, d'inconnue $x\in\mathbb{R}$.
- 2. En déduire une expression simple et exacte de $\cos\left(\frac{13}{8}\pi\right)$.

Exercice 100.

- 1. Montrer que $z=e^{\frac{6}{5}\,\pi}$ vérifie : $z^4+z^3+z^2+z+1=0.$
- 2. En déduire que $2\cos\left(\frac{6}{5}\pi\right)$ est solution de l'équation polynomiale du second degré : $x^2+x-1=0$, d'inconnue $x \in \mathbb{R}$.
- 3. En déduire une expression simple et exacte de $\cos\left(\frac{6}{5}\pi\right)$.

Corrigé 1.

 \leftarrow page 1

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{9}{5}i\pi}\right)^5 = -e^{9i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x=2\cos\left(\frac{9}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{9}{5}\pi\right)=e^{\frac{9}{5}i\pi}+e^{-\frac{9}{5}i\pi}=z+\frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{9}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{9}{5}\pi \in \left[\frac{3\pi}{2},2\pi\right]$, donc : $2\cos\left(\frac{9}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{9}{5}\pi\right) = \frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{9}{5}\,\pi\right) = \frac{1}{4}\,\sqrt{5} + \frac{1}{4}.$$

Corrigé 2.

 \leftarrow page 1

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{5}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{5}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{5}{4}\pi\right) + 1}{2} = \frac{-\frac{1}{2}\sqrt{2} + 1}{2} = -\frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{5}{8}\pi\right)$ est bien solution de : $x^2 = -\frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} > 0$ et : $x_2 = -\sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} < 0$ (bien noter que $-\frac{1}{4}\sqrt{2} + \frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{5}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{5}{8}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $\cos\left(\frac{5}{8}\pi\right) < 0$. On en déduit :

$$\cos\left(\frac{5}{8}\pi\right) = -\frac{1}{2}\sqrt{-\sqrt{2}+2}.$$

Corrigé 3.

 \leftarrow page 1

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{8}{5}i\pi}\right)^5 = e^{8i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{8}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{8}{5}\pi\right) = e^{\frac{8}{5}i\pi} + e^{-\frac{8}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont: $x_1 = \frac{-1 + \sqrt{5}}{2} > 0$ et: $x_2 = \frac{-1 - \sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{8}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe: on a $\frac{8}{5}\pi \in \left[\frac{3\pi}{2}, 2\pi\right]$, donc: $2\cos\left(\frac{8}{5}\pi\right) > 0$. On en déduit: $2\cos\left(\frac{8}{5}\pi\right) = \frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis:

$$\cos\left(\frac{8}{5}\pi\right) = \frac{1}{4}\sqrt{5} - \frac{1}{4}$$

Corrigé 4.

 \leftarrow page 1

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{4}{5}i\pi}\right)^5 = e^{4i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{4}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{4}{5}\pi\right) = e^{\frac{4}{5}i\pi} + e^{-\frac{4}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont: $x_1 = \frac{-1+\sqrt{5}}{2} > 0$ et: $x_2 = \frac{-1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{4}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe: on a $\frac{4}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc: $2\cos\left(\frac{4}{5}\pi\right) < 0$. On en déduit: $2\cos\left(\frac{4}{5}\pi\right) = -\frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis:

$$\cos\left(\frac{4}{5}\pi\right) = -\frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 5.

 \leftarrow page 1

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{1}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{1}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{1}{4}\pi\right) + 1}{2} = \frac{\frac{1}{2}\sqrt{2} + 1}{2} = \frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{1}{8}\pi\right)$ est bien solution de : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont: $x_1 = \frac{1}{2}\sqrt{\sqrt{2}+2} > 0$ et: $x_2 = -\frac{1}{2}\sqrt{\sqrt{2}+2} < 0$ (bien noter que $\frac{1}{4}\sqrt{2} + \frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{1}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe: on a $\frac{1}{8}\pi \in \left[0, \frac{\pi}{2}\right]$, donc: $\cos\left(\frac{1}{8}\pi\right) > 0$. On en déduit:

$$\cos\left(\frac{1}{8}\pi\right) = \frac{1}{2}\sqrt{\sqrt{2}+2}.$$

Corrigé 6.

 \leftarrow page 1

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc:

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{4}{5}i\pi}\right)^5 = e^{4i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{4}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{4}{5}\pi\right) = e^{\frac{4}{5}i\pi} + e^{-\frac{4}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{-1 + \sqrt{5}}{2} > 0$ et : $x_2 = \frac{-1 - \sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{4}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{4}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{4}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{4}{5}\pi\right) = -\frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{4}{5}\,\pi\right) = -\frac{1}{4}\,\sqrt{5} - \frac{1}{4}.$$

Corrigé 7.

 \leftarrow page 2

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{8}{5}i\pi}\right)^5 = e^{8i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{8}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{8}{5}\pi\right) = e^{\frac{8}{5}i\pi} + e^{-\frac{8}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

3. On résout l'équation de la question précédente. Ses solutions sont: $x_1 = \frac{-1 + \sqrt{5}}{2} > 0$ et: $x_2 = \frac{-1 - \sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{8}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe: on a $\frac{8}{5}\pi \in \left[\frac{3\pi}{2}, 2\pi\right]$, donc: $2\cos\left(\frac{8}{5}\pi\right) > 0$. On en déduit: $2\cos\left(\frac{8}{5}\pi\right) = \frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis:

$$\cos\left(\frac{8}{5}\pi\right) = \frac{1}{4}\sqrt{5} - \frac{1}{4}$$

Corrigé 8.

 $\leftarrow \text{page 2}$

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{7}{5}i\pi}\right)^5 = -e^{7i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{7}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{7}{5}\pi\right) = e^{\frac{7}{5}i\pi} + e^{-\frac{7}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{7}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{7}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{7}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{7}{5}\pi\right) = -\frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{7}{5}\pi\right) = -\frac{1}{4}\sqrt{5} + \frac{1}{4}.$$

Corrigé 9.

 $\leftarrow \text{page } 2$

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{3}{5}i\pi}\right)^5 = -e^{3i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{3}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{3}{5}\pi\right) = e^{\frac{3}{5}i\pi} + e^{-\frac{3}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^2 - x - 1 = \left(z + \frac{1}{z}\right)^2 - z - \frac{1}{z} - 1 = z^2 - z - \frac{1}{z} + \frac{1}{z^2} + 1 = \frac{z^4 - z^3 + z^2 - z + 1}{z^2} = 0,$$

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{3}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{3}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{3}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{3}{5}\pi\right) = -\frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{3}{5}\,\pi\right) = -\frac{1}{4}\,\sqrt{5} + \frac{1}{4}$$

Corrigé 10.

 $\leftarrow \text{page 2}$

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{3}{5}i\pi}\right)^5 = -e^{3i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{3}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{3}{5}\pi\right) = e^{\frac{3}{5}i\pi} + e^{-\frac{3}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{3}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{3}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{3}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{3}{5}\pi\right) = -\frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{3}{5}\pi\right) = -\frac{1}{4}\sqrt{5} + \frac{1}{4}.$$

Corrigé 11.

 \leftarrow page 2

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{9}{5}i\pi}\right)^5 = -e^{9i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{9}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{9}{5}\pi\right) = e^{\frac{9}{5}i\pi} + e^{-\frac{9}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{9}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{9}{5}\pi \in \left[\frac{3\pi}{2},2\pi\right]$, donc : $2\cos\left(\frac{9}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{9}{5}\pi\right) = \frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{9}{5}\pi\right) = \frac{1}{4}\sqrt{5} + \frac{1}{4}.$$

Corrigé 12.

 \leftarrow page 2

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc:

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{6}{5}i\pi}\right)^5 = e^{6i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{6}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{6}{5}\pi\right) = e^{\frac{6}{5}i\pi} + e^{-\frac{6}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^2 + x - 1 = \left(z + \frac{1}{z}\right)^2 + z + \frac{1}{z} - 1 = z^2 + z + \frac{1}{z} + \frac{1}{z^2} + 1 = \frac{z^4 + z^3 + z^2 + z + 1}{z^2} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{6}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{6}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{6}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{6}{5}\pi\right) = -\frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{6}{5}\,\pi\right) = -\frac{1}{4}\,\sqrt{5} - \frac{1}{4}.$$

Corrigé 13.

 $\leftarrow \text{page } 2$

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{6}{5}i\pi}\right)^5 = e^{6i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{6}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{6}{5}\pi\right) = e^{\frac{6}{5}i\pi} + e^{-\frac{6}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{6}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{6}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{6}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{6}{5}\pi\right) = -\frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{6}{5}\,\pi\right) = -\frac{1}{4}\,\sqrt{5} - \frac{1}{4}.$$

Corrigé 14.

 \leftarrow page 3

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}$$

Or: $(-z)^5 = -\left(e^{\frac{9}{5}i\pi}\right)^5 = -e^{9i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x=2\cos\left(\frac{9}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{9}{5}\pi\right)=e^{\frac{9}{5}i\pi}+e^{-\frac{9}{5}i\pi}=z+\frac{1}{z}$ (formule d'Euler). Alors:

$$x^2 - x - 1 = \left(z + \frac{1}{z}\right)^2 - z - \frac{1}{z} - 1 = z^2 - z - \frac{1}{z} + \frac{1}{z^2} + 1 = \frac{z^4 - z^3 + z^2 - z + 1}{z^2} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{9}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{9}{5}\pi \in \left[\frac{3\pi}{2},2\pi\right]$, donc : $2\cos\left(\frac{9}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{9}{5}\pi\right) = \frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{9}{5}\pi\right) = \frac{1}{4}\sqrt{5} + \frac{1}{4}.$$

Corrigé 15.

 \leftarrow page 3

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{3}{5}i\pi}\right)^5 = -e^{3i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{3}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{3}{5}\pi\right) = e^{\frac{3}{5}i\pi} + e^{-\frac{3}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{3}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{3}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{3}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{3}{5}\pi\right) = -\frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{3}{5}\pi\right) = -\frac{1}{4}\sqrt{5} + \frac{1}{4}$$

Corrigé 16.

 \leftarrow page 3

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{3}{5}i\pi}\right)^5 = -e^{3i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{3}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{3}{5}\pi\right) = e^{\frac{3}{5}i\pi} + e^{-\frac{3}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{3}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{3}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{3}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{3}{5}\pi\right) = -\frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{3}{5}\pi\right) = -\frac{1}{4}\sqrt{5} + \frac{1}{4}.$$

Corrigé 17.

 \leftarrow page 3

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{9}{5}i\pi}\right)^5 = -e^{9i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{9}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{9}{5}\pi\right) = e^{\frac{9}{5}i\pi} + e^{-\frac{9}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{9}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{9}{5}\pi \in \left[\frac{3\pi}{2},2\pi\right]$, donc : $2\cos\left(\frac{9}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{9}{5}\pi\right) = \frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis : $\cos\left(\frac{9}{5}\pi\right) = \frac{1}{4}\sqrt{5} + \frac{1}{4}$.

Corrigé 18.

 \leftarrow page 3

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc:

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{6}{5}i\pi}\right)^5 = e^{6i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{6}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{6}{5}\pi\right) = e^{\frac{6}{5}i\pi} + e^{-\frac{6}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{6}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{6}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{6}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{6}{5}\pi\right) = -\frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{6}{5}\pi\right) = -\frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 19.

 \leftarrow page 3

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{6}{5}i\pi}\right)^5 = e^{6i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{6}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{6}{5}\pi\right) = e^{\frac{6}{5}i\pi} + e^{-\frac{6}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{6}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{6}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{6}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{6}{5}\pi\right) = -\frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{6}{5}\,\pi\right) = -\frac{1}{4}\,\sqrt{5} - \frac{1}{4}.$$

Corrigé 20.

 \leftarrow page 3

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{1}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{1}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{1}{4}\pi\right) + 1}{2} = \frac{\frac{1}{2}\sqrt{2} + 1}{2} = \frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{1}{8}\pi\right)$ est bien solution de : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1}{2}\sqrt{\sqrt{2}+2} > 0$ et : $x_2 = -\frac{1}{2}\sqrt{\sqrt{2}+2} < 0$ (bien noter que $\frac{1}{4}\sqrt{2}+\frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{1}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{1}{8}\pi \in \left[0,\frac{\pi}{2}\right]$, donc : $\cos\left(\frac{1}{8}\pi\right) > 0$. On en déduit :

$$\cos\left(\frac{1}{8}\pi\right) = \frac{1}{2}\sqrt{\sqrt{2} + 2}.$$

Corrigé 21.

 \leftarrow page 4

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{5}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{5}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{5}{4}\pi\right) + 1}{2} = \frac{-\frac{1}{2}\sqrt{2} + 1}{2} = -\frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{5}{8}\pi\right)$ est bien solution de : $x^2 = -\frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} > 0$ et : $x_2 = -\sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} < 0$ (bien noter que $-\frac{1}{4}\sqrt{2} + \frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{5}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{5}{8}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $\cos\left(\frac{5}{8}\pi\right) < 0$. On en déduit :

$$\cos\left(\frac{5}{8}\pi\right) = -\frac{1}{2}\sqrt{-\sqrt{2}+2}.$$

Corrigé 22.

 \leftarrow page 4

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{1}{5}i\pi}\right)^5 = -e^{i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{1}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{1}{5}\pi\right) = e^{\frac{1}{5}i\pi} + e^{-\frac{1}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{1}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{1}{5}\pi \in \left[0, \frac{\pi}{2}\right]$, donc : $2\cos\left(\frac{1}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{1}{5}\pi\right) = \frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{1}{5}\pi\right) = \frac{1}{4}\sqrt{5} + \frac{1}{4}.$$

Corrigé 23.

 \leftarrow page 4

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{6}{5}i\pi}\right)^5 = e^{6i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{6}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{6}{5}\pi\right) = e^{\frac{6}{5}i\pi} + e^{-\frac{6}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{6}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{6}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{6}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{6}{5}\pi\right) = -\frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{6}{5}\,\pi\right) = -\frac{1}{4}\,\sqrt{5} - \frac{1}{4}.$$

Corrigé 24.

 \leftarrow page 4

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{2}{5}i\pi}\right)^5 = e^{2i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{2}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{2}{5}\pi\right) = e^{\frac{2}{5}i\pi} + e^{-\frac{2}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{2}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{2}{5}\pi \in \left[0,\frac{\pi}{2}\right]$, donc : $2\cos\left(\frac{2}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{2}{5}\pi\right) = \frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{2}{5}\pi\right) = \frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 25.

 \leftarrow page 4

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{2}{5}i\pi}\right)^5 = e^{2i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x=2\cos\left(\frac{2}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{2}{5}\pi\right)=e^{\frac{2}{5}i\pi}+e^{-\frac{2}{5}i\pi}=z+\frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{2}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{2}{5}\pi \in \left[0, \frac{\pi}{2}\right]$, donc : $2\cos\left(\frac{2}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{2}{5}\pi\right) = \frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{2}{5}\pi\right) = \frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 26.

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{9}{5}i\pi}\right)^5 = -e^{9i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{9}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{9}{5}\pi\right) = e^{\frac{9}{5}i\pi} + e^{-\frac{9}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{9}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{9}{5}\pi \in \left[\frac{3\pi}{2},2\pi\right]$, donc : $2\cos\left(\frac{9}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{9}{5}\pi\right) = \frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{9}{5}\pi\right) = \frac{1}{4}\sqrt{5} + \frac{1}{4}.$$

Corrigé 27.

 \leftarrow page 4

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{3}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{3}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{3}{4}\pi\right) + 1}{2} = \frac{-\frac{1}{2}\sqrt{2} + 1}{2} = -\frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{3}{8}\pi\right)$ est bien solution de : $x^2=-\frac{1}{4}\sqrt{2}+\frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} > 0$ et : $x_2 = -\sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} < 0$ (bien noter que $-\frac{1}{4}\sqrt{2} + \frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{3}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{3}{8}\pi \in \left[0,\frac{\pi}{2}\right]$, donc : $\cos\left(\frac{3}{8}\pi\right) > 0$. On en déduit :

$$\cos\left(\frac{3}{8}\,\pi\right) = \frac{1}{2}\,\sqrt{-\sqrt{2}+2}.$$

Corrigé 28.

 \leftarrow page 5

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{8}{5}i\pi}\right)^5 = e^{8i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

 \leftarrow page 5

 \leftarrow page 5

2. Posons: $x = 2\cos\left(\frac{8}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{8}{5}\pi\right) = e^{\frac{8}{5}i\pi} + e^{-\frac{8}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont: $x_1 = \frac{-1 + \sqrt{5}}{2} > 0$ et: $x_2 = \frac{-1 - \sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{8}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe: on a $\frac{8}{5}\pi \in \left[\frac{3\pi}{2}, 2\pi\right]$, donc: $2\cos\left(\frac{8}{5}\pi\right) > 0$. On en déduit: $2\cos\left(\frac{8}{5}\pi\right) = \frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis:

$$\cos\left(\frac{8}{5}\pi\right) = \frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 29.

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{9}{5}i\pi}\right)^5 = -e^{9i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{9}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{9}{5}\pi\right) = e^{\frac{9}{5}i\pi} + e^{-\frac{9}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{9}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{9}{5}\pi \in \left[\frac{3\pi}{2},2\pi\right]$, donc : $2\cos\left(\frac{9}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{9}{5}\pi\right) = \frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{9}{5}\pi\right) = \frac{1}{4}\sqrt{5} + \frac{1}{4}.$$

Corrigé 30.

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}$$

Or: $(-z)^5 = -\left(e^{\frac{3}{5}i\pi}\right)^5 = -e^{3i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{3}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{3}{5}\pi\right) = e^{\frac{3}{5}i\pi} + e^{-\frac{3}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{3}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{3}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{3}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{3}{5}\pi\right) = -\frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{3}{5}\,\pi\right) = -\frac{1}{4}\,\sqrt{5} + \frac{1}{4}.$$

Corrigé 31.

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{13}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{13}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{13}{4}\pi\right) + 1}{2} = \frac{-\frac{1}{2}\sqrt{2} + 1}{2} = -\frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{13}{8}\pi\right)$ est bien solution de : $x^2 = -\frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} > 0$ et : $x_2 = -\sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} < 0$ (bien noter que $-\frac{1}{4}\sqrt{2} + \frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{13}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{13}{8}\pi \in \left[\frac{3\pi}{2}, 2\pi\right]$, donc : $\cos\left(\frac{13}{8}\pi\right) > 0$. On en déduit :

$$\cos\left(\frac{13}{8}\,\pi\right) = \frac{1}{2}\,\sqrt{-\sqrt{2}+2}.$$

Corrigé 32.

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{8}{5}i\pi}\right)^5 = e^{8i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x=2\cos\left(\frac{8}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{8}{5}\pi\right)=e^{\frac{8}{5}i\pi}+e^{-\frac{8}{5}i\pi}=z+\frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

 \leftarrow page 5

 \leftarrow page 5

3. On résout l'équation de la question précédente. Ses solutions sont: $x_1 = \frac{-1 + \sqrt{5}}{2} > 0$ et: $x_2 = \frac{-1 - \sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{8}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe: on a $\frac{8}{5}\pi \in \left[\frac{3\pi}{2}, 2\pi\right]$, donc: $2\cos\left(\frac{8}{5}\pi\right) > 0$. On en déduit: $2\cos\left(\frac{8}{5}\pi\right) = \frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis:

$$\cos\left(\frac{8}{5}\pi\right) = \frac{1}{4}\sqrt{5} - \frac{1}{4}$$

Corrigé 33.

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{5}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{5}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{5}{4}\pi\right) + 1}{2} = \frac{-\frac{1}{2}\sqrt{2} + 1}{2} = -\frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{5}{8}\pi\right)$ est bien solution de : $x^2=-\frac{1}{4}\sqrt{2}+\frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} > 0$ et : $x_2 = -\sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} < 0$ (bien noter que $-\frac{1}{4}\sqrt{2} + \frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{5}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{5}{8}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $\cos\left(\frac{5}{8}\pi\right) < 0$. On en déduit :

$$\cos\left(\frac{5}{8}\pi\right) = -\frac{1}{2}\sqrt{-\sqrt{2}+2}.$$

Corrigé 34.

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}$$
.

Or: $z^5 = \left(e^{\frac{6}{5}i\pi}\right)^5 = e^{6i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{6}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{6}{5}\pi\right) = e^{\frac{6}{5}i\pi} + e^{-\frac{6}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente,

 \leftarrow page 5

 \leftarrow page 5

 $2\cos\left(\frac{6}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{6}{5}\pi\in\left[\frac{\pi}{2},\frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{6}{5}\pi\right)<0$. On en déduit : $2\cos\left(\frac{6}{5}\pi\right)=-\frac{1}{2}\sqrt{5}-\frac{1}{2}$, puis :

$$\cos\left(\frac{6}{5}\pi\right) = -\frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 35.

 \leftarrow page 6

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{9}{5}i\pi}\right)^5 = -e^{9i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{9}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{9}{5}\pi\right) = e^{\frac{9}{5}i\pi} + e^{-\frac{9}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{9}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{9}{5}\pi \in \left[\frac{3\pi}{2}, 2\pi\right]$, donc : $2\cos\left(\frac{9}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{9}{5}\pi\right) = \frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{9}{5}\,\pi\right) = \frac{1}{4}\,\sqrt{5} + \frac{1}{4}.$$

Corrigé 36.

 \leftarrow page 6

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc:

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}$$
.

Or: $z^5 = \left(e^{\frac{6}{5}i\pi}\right)^5 = e^{6i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{6}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{6}{5}\pi\right) = e^{\frac{6}{5}i\pi} + e^{-\frac{6}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{6}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{6}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{6}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{6}{5}\pi\right) = -\frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{6}{5}\pi\right) = -\frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 37.

 \leftarrow page 6

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{4}{5}i\pi}\right)^5 = e^{4i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{4}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{4}{5}\pi\right) = e^{\frac{4}{5}i\pi} + e^{-\frac{4}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{-1 + \sqrt{5}}{2} > 0$ et : $x_2 = \frac{-1 - \sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{4}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{4}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{4}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{4}{5}\pi\right) = -\frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{4}{5}\pi\right) = -\frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 38.

 \leftarrow page 6

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{3}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{3}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{3}{4}\pi\right) + 1}{2} = \frac{-\frac{1}{2}\sqrt{2} + 1}{2} = -\frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{3}{8}\pi\right)$ est bien solution de : $x^2 = -\frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} > 0$ et : $x_2 = -\sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} < 0$ (bien noter que $-\frac{1}{4}\sqrt{2} + \frac{1}{2}$ est effectivement positif, ce qui permet de

considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{3}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{3}{8}\pi\in\left[0,\frac{\pi}{2}\right]$, donc : $\cos\left(\frac{3}{8}\pi\right)>0$. On en déduit :

$$\cos\left(\frac{3}{8}\pi\right) = \frac{1}{2}\sqrt{-\sqrt{2}+2}.$$

Corrigé 39.

 \leftarrow page 6

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{3}{5}i\pi}\right)^5 = -e^{3i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{3}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{3}{5}\pi\right) = e^{\frac{3}{5}i\pi} + e^{-\frac{3}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{3}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{3}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{3}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{3}{5}\pi\right) = -\frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{3}{5}\,\pi\right) = -\frac{1}{4}\,\sqrt{5} + \frac{1}{4}.$$

Corrigé 40.

 \leftarrow page 6

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc:

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{8}{5}i\pi}\right)^5 = e^{8i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x=2\cos\left(\frac{8}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{8}{5}\pi\right)=e^{\frac{8}{5}i\pi}+e^{-\frac{8}{5}i\pi}=z+\frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

3. On résout l'équation de la question précédente. Ses solutions sont: $x_1 = \frac{-1 + \sqrt{5}}{2} > 0$ et: $x_2 = \frac{-1 - \sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{8}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe: on a $\frac{8}{5}\pi \in \left[\frac{3\pi}{2}, 2\pi\right]$, donc: $2\cos\left(\frac{8}{5}\pi\right) > 0$. On en déduit: $2\cos\left(\frac{8}{5}\pi\right) = \frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis:

$$\cos\left(\frac{8}{5}\pi\right) = \frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 41.

 \leftarrow page 7

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{1}{5}i\pi}\right)^5 = -e^{i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{1}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{1}{5}\pi\right) = e^{\frac{1}{5}i\pi} + e^{-\frac{1}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^2 - x - 1 = \left(z + \frac{1}{z}\right)^2 - z - \frac{1}{z} - 1 = z^2 - z - \frac{1}{z} + \frac{1}{z^2} + 1 = \frac{z^4 - z^3 + z^2 - z + 1}{z^2} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{1}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{1}{5}\pi \in \left[0,\frac{\pi}{2}\right]$, donc : $2\cos\left(\frac{1}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{1}{5}\pi\right) = \frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{1}{5}\pi\right) = \frac{1}{4}\sqrt{5} + \frac{1}{4}.$$

Corrigé 42.

 \leftarrow page 7

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{2}{5}i\pi}\right)^5 = e^{2i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{2}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{2}{5}\pi\right) = e^{\frac{2}{5}i\pi} + e^{-\frac{2}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{2}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{2}{5}\pi \in \left[0, \frac{\pi}{2}\right]$, donc : $2\cos\left(\frac{2}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{2}{5}\pi\right) = \frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{2}{5}\pi\right) = \frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 43.

 \leftarrow page 7

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{9}{5}i\pi}\right)^5 = -e^{9i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{9}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{9}{5}\pi\right) = e^{\frac{9}{5}i\pi} + e^{-\frac{9}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{9}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{9}{5}\pi \in \left[\frac{3\pi}{2},2\pi\right]$, donc : $2\cos\left(\frac{9}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{9}{5}\pi\right) = \frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{9}{5}\,\pi\right) = \frac{1}{4}\,\sqrt{5} + \frac{1}{4}.$$

Corrigé 44.

 \leftarrow page 7

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{9}{5}i\pi}\right)^5 = -e^{9i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{9}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{9}{5}\pi\right) = e^{\frac{9}{5}i\pi} + e^{-\frac{9}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{9}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{9}{5}\pi \in \left[\frac{3\pi}{2},2\pi\right]$, donc : $2\cos\left(\frac{9}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{9}{5}\pi\right) = \frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{9}{5}\pi\right) = \frac{1}{4}\sqrt{5} + \frac{1}{4}.$$

Corrigé 45.

 $\leftarrow \text{page } 7$

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{1}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{1}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{1}{4}\pi\right) + 1}{2} = \frac{\frac{1}{2}\sqrt{2} + 1}{2} = \frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{1}{8}\pi\right)$ est bien solution de : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1}{2}\sqrt{\sqrt{2}+2} > 0$ et : $x_2 = -\frac{1}{2}\sqrt{\sqrt{2}+2} < 0$ (bien noter que $\frac{1}{4}\sqrt{2}+\frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{1}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{1}{8}\pi \in \left[0,\frac{\pi}{2}\right]$, donc : $\cos\left(\frac{1}{8}\pi\right) > 0$. On en déduit :

$$\cos\left(\frac{1}{8}\pi\right) = \frac{1}{2}\sqrt{\sqrt{2} + 2}.$$

Corrigé 46.

 $\leftarrow \text{page } 7$

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc:

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{2}{5}i\pi}\right)^5 = e^{2i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{2}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{2}{5}\pi\right) = e^{\frac{2}{5}i\pi} + e^{-\frac{2}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{2}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux

racines il est égal grâce à son signe : on a $\frac{2}{5}\pi\in\left[0,\frac{\pi}{2}\right]$, donc : $2\cos\left(\frac{2}{5}\pi\right)>0$. On en déduit : $2\cos\left(\frac{2}{5}\pi\right)=\frac{1}{2}\sqrt{5}-\frac{1}{2}$, puis :

$$\cos\left(\frac{2}{5}\,\pi\right) = \frac{1}{4}\,\sqrt{5} - \frac{1}{4}.$$

Corrigé 47.

 \leftarrow page 7

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{6}{5}i\pi}\right)^5 = e^{6i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{6}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{6}{5}\pi\right) = e^{\frac{6}{5}i\pi} + e^{-\frac{6}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{6}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{6}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{6}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{6}{5}\pi\right) = -\frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{6}{5}\,\pi\right) = -\frac{1}{4}\,\sqrt{5} - \frac{1}{4}.$$

Corrigé 48.

 $\leftarrow \text{page } 8$

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{3}{5}i\pi}\right)^5 = -e^{3i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{3}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{3}{5}\pi\right) = e^{\frac{3}{5}i\pi} + e^{-\frac{3}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente,

 $2\cos\left(\frac{3}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{3}{5}\pi\in\left[\frac{\pi}{2},\frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{3}{5}\pi\right)<0$. On en déduit : $2\cos\left(\frac{3}{5}\pi\right)=-\frac{1}{2}\sqrt{5}+\frac{1}{2}$, puis :

$$\cos\left(\frac{3}{5}\pi\right) = -\frac{1}{4}\sqrt{5} + \frac{1}{4}.$$

Corrigé 49.

 \leftarrow page 8

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{3}{5}i\pi}\right)^5 = -e^{3i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{3}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{3}{5}\pi\right) = e^{\frac{3}{5}i\pi} + e^{-\frac{3}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{3}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{3}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{3}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{3}{5}\pi\right) = -\frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{3}{5}\,\pi\right) = -\frac{1}{4}\,\sqrt{5} + \frac{1}{4}.$$

Corrigé 50.

 \leftarrow page 8

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{9}{5}i\pi}\right)^5 = -e^{9i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{9}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{9}{5}\pi\right) = e^{\frac{9}{5}i\pi} + e^{-\frac{9}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{9}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{9}{5}\pi \in \left[\frac{3\pi}{2}, 2\pi\right]$, donc : $2\cos\left(\frac{9}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{9}{5}\pi\right) = \frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{9}{5}\pi\right) = \frac{1}{4}\sqrt{5} + \frac{1}{4}.$$

Corrigé 51.

 \leftarrow page 8

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{9}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{9}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{9}{4}\pi\right) + 1}{2} = \frac{\frac{1}{2}\sqrt{2} + 1}{2} = \frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{9}{8}\pi\right)$ est bien solution de : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1}{2}\sqrt{\sqrt{2}+2} > 0$ et : $x_2 = -\frac{1}{2}\sqrt{\sqrt{2}+2} < 0$ (bien noter que $\frac{1}{4}\sqrt{2}+\frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{9}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{9}{8}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $\cos\left(\frac{9}{8}\pi\right) < 0$. On en déduit :

$$\cos\left(\frac{9}{8}\pi\right) = -\frac{1}{2}\sqrt{\sqrt{2}+2}.$$

Corrigé 52.

 \leftarrow page 8

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{11}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{11}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{11}{4}\pi\right) + 1}{2} = \frac{-\frac{1}{2}\sqrt{2} + 1}{2} = -\frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{11}{8}\pi\right)$ est bien solution de : $x^2 = -\frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} > 0$ et : $x_2 = -\sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} < 0$ (bien noter que $-\frac{1}{4}\sqrt{2} + \frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{11}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{11}{8}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $\cos\left(\frac{11}{8}\pi\right) < 0$. On en déduit :

$$\cos\left(\frac{11}{8}\,\pi\right) = -\frac{1}{2}\,\sqrt{-\sqrt{2}+2}.$$

Corrigé 53.

 \leftarrow page 8

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}$$
.

Or: $z^5 = \left(e^{\frac{4}{5}i\pi}\right)^5 = e^{4i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{4}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{4}{5}\pi\right) = e^{\frac{4}{5}i\pi} + e^{-\frac{4}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{-1 + \sqrt{5}}{2} > 0$ et : $x_2 = \frac{-1 - \sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{4}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{4}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{4}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{4}{5}\pi\right) = -\frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{4}{5}\,\pi\right) = -\frac{1}{4}\,\sqrt{5} - \frac{1}{4}.$$

Corrigé 54.

 \leftarrow page 8

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{15}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{15}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{15}{4}\pi\right) + 1}{2} = \frac{\frac{1}{2}\sqrt{2} + 1}{2} = \frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{15}{8}\pi\right)$ est bien solution de : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1}{2}\sqrt{\sqrt{2}+2} > 0$ et : $x_2 = -\frac{1}{2}\sqrt{\sqrt{2}+2} < 0$ (bien noter que $\frac{1}{4}\sqrt{2}+\frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{15}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{15}{8}\pi \in \left[\frac{3\pi}{2},2\pi\right]$, donc : $\cos\left(\frac{15}{8}\pi\right) > 0$. On en déduit :

$$\cos\left(\frac{15}{8}\,\pi\right) = \frac{1}{2}\,\sqrt{\sqrt{2}+2}.$$

Corrigé 55.

 \leftarrow page 9

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{3}{5}i\pi}\right)^5 = -e^{3i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{3}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{3}{5}\pi\right) = e^{\frac{3}{5}i\pi} + e^{-\frac{3}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{3}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{3}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{3}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{3}{5}\pi\right) = -\frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{3}{5}\,\pi\right) = -\frac{1}{4}\,\sqrt{5} + \frac{1}{4}.$$

Corrigé 56.

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{13}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{13}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{13}{4}\pi\right) + 1}{2} = \frac{-\frac{1}{2}\sqrt{2} + 1}{2} = -\frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{13}{8}\pi\right)$ est bien solution de : $x^2 = -\frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} > 0$ et : $x_2 = -\sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} < 0$ (bien noter que $-\frac{1}{4}\sqrt{2} + \frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{13}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{13}{8}\pi \in \left[\frac{3\pi}{2}, 2\pi\right]$, donc : $\cos\left(\frac{13}{8}\pi\right) > 0$. On en déduit :

$$\cos\left(\frac{13}{8}\,\pi\right) = \frac{1}{2}\,\sqrt{-\sqrt{2}+2}.$$

Corrigé 57.

. .

 \leftarrow page 9

 \leftarrow page 9

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{2}{5}i\pi}\right)^5 = e^{2i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{2}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{2}{5}\pi\right) = e^{\frac{2}{5}i\pi} + e^{-\frac{2}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{2}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{2}{5}\pi \in \left[0, \frac{\pi}{2}\right]$, donc : $2\cos\left(\frac{2}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{2}{5}\pi\right) = \frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{2}{5}\pi\right) = \frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 58.

 \leftarrow page 9

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{1}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{1}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{1}{4}\pi\right) + 1}{2} = \frac{\frac{1}{2}\sqrt{2} + 1}{2} = \frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{1}{8}\pi\right)$ est bien solution de : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1}{2}\sqrt{\sqrt{2}+2} > 0$ et : $x_2 = -\frac{1}{2}\sqrt{\sqrt{2}+2} < 0$ (bien noter que $\frac{1}{4}\sqrt{2}+\frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{1}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{1}{8}\pi \in \left[0,\frac{\pi}{2}\right]$, donc : $\cos\left(\frac{1}{8}\pi\right) > 0$. On en déduit :

$$\cos\left(\frac{1}{8}\pi\right) = \frac{1}{2}\sqrt{\sqrt{2} + 2}.$$

Corrigé 59.

 \leftarrow page 9

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{4}{5}i\pi}\right)^5 = e^{4i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{4}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{4}{5}\pi\right) = e^{\frac{4}{5}i\pi} + e^{-\frac{4}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont: $x_1 = \frac{-1 + \sqrt{5}}{2} > 0$ et: $x_2 = \frac{-1 - \sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{4}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle

des deux racines il est égal grâce à son signe : on a $\frac{4}{5}\pi\in\left[\frac{\pi}{2},\frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{4}{5}\pi\right)<0$. On en déduit : $2\cos\left(\frac{4}{5}\pi\right)=-\frac{1}{2}\sqrt{5}-\frac{1}{2}$, puis :

$$\cos\left(\frac{4}{5}\pi\right) = -\frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 60.

 \leftarrow page 9

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{13}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{13}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{13}{4}\pi\right) + 1}{2} = \frac{-\frac{1}{2}\sqrt{2} + 1}{2} = -\frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{13}{8}\pi\right)$ est bien solution de : $x^2 = -\frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} > 0$ et : $x_2 = -\sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} < 0$ (bien noter que $-\frac{1}{4}\sqrt{2} + \frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{13}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{13}{8}\pi \in \left[\frac{3\pi}{2}, 2\pi\right]$, donc : $\cos\left(\frac{13}{8}\pi\right) > 0$. On en déduit :

$$\cos\left(\frac{13}{8}\,\pi\right) = \frac{1}{2}\,\sqrt{-\sqrt{2}+2}$$

Corrigé 61.

 $\leftarrow \text{page } 9$

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}$$

Or: $(-z)^5 = -\left(e^{\frac{7}{5}i\pi}\right)^5 = -e^{7i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{7}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{7}{5}\pi\right) = e^{\frac{7}{5}i\pi} + e^{-\frac{7}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{7}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{7}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{7}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{7}{5}\pi\right) = -\frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{7}{5}\pi\right) = -\frac{1}{4}\sqrt{5} + \frac{1}{4}.$$

Corrigé 62.

 \leftarrow page 10

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{13}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{13}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{13}{4}\pi\right) + 1}{2} = \frac{-\frac{1}{2}\sqrt{2} + 1}{2} = -\frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{13}{8}\pi\right)$ est bien solution de : $x^2=-\frac{1}{4}\sqrt{2}+\frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} > 0$ et : $x_2 = -\sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} < 0$ (bien noter que $-\frac{1}{4}\sqrt{2} + \frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{13}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{13}{8}\pi \in \left[\frac{3\pi}{2}, 2\pi\right]$, donc : $\cos\left(\frac{13}{8}\pi\right) > 0$. On en déduit :

$$\cos\left(\frac{13}{8}\pi\right) = \frac{1}{2}\sqrt{-\sqrt{2}+2}.$$

Corrigé 63.

 \leftarrow page 10

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{6}{5}i\pi}\right)^5 = e^{6i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{6}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{6}{5}\pi\right) = e^{\frac{6}{5}i\pi} + e^{-\frac{6}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{6}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{6}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{6}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{6}{5}\pi\right) = -\frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{6}{5}\,\pi\right) = -\frac{1}{4}\,\sqrt{5} - \frac{1}{4}.$$

Corrigé 64.

 \leftarrow page 10

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{3}{5}i\pi}\right)^5 = -e^{3i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{3}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{3}{5}\pi\right) = e^{\frac{3}{5}i\pi} + e^{-\frac{3}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{3}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{3}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{3}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{3}{5}\pi\right) = -\frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{3}{5}\pi\right) = -\frac{1}{4}\sqrt{5} + \frac{1}{4}.$$

Corrigé 65.

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{7}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{7}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{7}{4}\pi\right) + 1}{2} = \frac{\frac{1}{2}\sqrt{2} + 1}{2} = \frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{7}{8}\pi\right)$ est bien solution de : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1}{2}\sqrt{\sqrt{2}+2} > 0$ et : $x_2 = -\frac{1}{2}\sqrt{\sqrt{2}+2} < 0$ (bien noter que $\frac{1}{4}\sqrt{2}+\frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{7}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{7}{8}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $\cos\left(\frac{7}{8}\pi\right) < 0$. On en déduit :

$$\cos\left(\frac{7}{8}\pi\right) = -\frac{1}{2}\sqrt{\sqrt{2}+2}.$$

Corrigé 66.

 \leftarrow page 10

 \leftarrow page 10

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{1}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{1}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{1}{4}\pi\right) + 1}{2} = \frac{\frac{1}{2}\sqrt{2} + 1}{2} = \frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{1}{8}\pi\right)$ est bien solution de : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1}{2}\sqrt{\sqrt{2}+2} > 0$ et : $x_2 = -\frac{1}{2}\sqrt{\sqrt{2}+2} < 0$ (bien noter que $\frac{1}{4}\sqrt{2} + \frac{1}{2}$ est effectivement positif, ce qui permet de

considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{1}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{1}{8}\pi \in \left[0, \frac{\pi}{2}\right]$, donc : $\cos\left(\frac{1}{8}\pi\right) > 0$. On en déduit :

$$\cos\left(\frac{1}{8}\pi\right) = \frac{1}{2}\sqrt{\sqrt{2}+2}.$$

Corrigé 67.

 \leftarrow page 10

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{1}{5}i\pi}\right)^5 = -e^{i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{1}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{1}{5}\pi\right) = e^{\frac{1}{5}i\pi} + e^{-\frac{1}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^2 - x - 1 = \left(z + \frac{1}{z}\right)^2 - z - \frac{1}{z} - 1 = z^2 - z - \frac{1}{z} + \frac{1}{z^2} + 1 = \frac{z^4 - z^3 + z^2 - z + 1}{z^2} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{1}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{1}{5}\pi \in \left[0, \frac{\pi}{2}\right]$, donc : $2\cos\left(\frac{1}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{1}{5}\pi\right) = \frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{1}{5}\,\pi\right) = \frac{1}{4}\,\sqrt{5} + \frac{1}{4}.$$

Corrigé 68.

 $\leftarrow \text{page } 10$

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{3}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{3}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{3}{4}\pi\right) + 1}{2} = \frac{-\frac{1}{2}\sqrt{2} + 1}{2} = -\frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{3}{8}\pi\right)$ est bien solution de : $x^2=-\frac{1}{4}\sqrt{2}+\frac{1}{2},$ ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} > 0$ et : $x_2 = -\sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} < 0$ (bien noter que $-\frac{1}{4}\sqrt{2} + \frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{3}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{3}{8}\pi \in \left[0, \frac{\pi}{2}\right]$, donc : $\cos\left(\frac{3}{8}\pi\right) > 0$. On en déduit :

$$\cos\left(\frac{3}{8}\,\pi\right) = \frac{1}{2}\,\sqrt{-\sqrt{2}+2}.$$

Corrigé 69.

 \leftarrow page 11

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}$$
.

Or: $z^5 = \left(e^{\frac{8}{5}i\pi}\right)^5 = e^{8i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{8}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{8}{5}\pi\right) = e^{\frac{8}{5}i\pi} + e^{-\frac{8}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont: $x_1 = \frac{-1 + \sqrt{5}}{2} > 0$ et: $x_2 = \frac{-1 - \sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{8}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe: on a $\frac{8}{5}\pi \in \left[\frac{3\pi}{2}, 2\pi\right]$, donc: $2\cos\left(\frac{8}{5}\pi\right) > 0$. On en déduit: $2\cos\left(\frac{8}{5}\pi\right) = \frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis:

$$\cos\left(\frac{8}{5}\pi\right) = \frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 70.

 \leftarrow page 11

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{3}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{3}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{3}{4}\pi\right) + 1}{2} = \frac{-\frac{1}{2}\sqrt{2} + 1}{2} = -\frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{3}{8}\pi\right)$ est bien solution de : $x^2=-\frac{1}{4}\sqrt{2}+\frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} > 0$ et : $x_2 = -\sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} < 0$ (bien noter que $-\frac{1}{4}\sqrt{2} + \frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{3}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{3}{8}\pi \in \left[0,\frac{\pi}{2}\right]$, donc : $\cos\left(\frac{3}{8}\pi\right) > 0$. On en déduit :

$$\cos\left(\frac{3}{8}\pi\right) = \frac{1}{2}\sqrt{-\sqrt{2}+2}.$$

Corrigé 71.

 \leftarrow page 11

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{1}{5}i\pi}\right)^5 = -e^{i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{1}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{1}{5}\pi\right) = e^{\frac{1}{5}i\pi} + e^{-\frac{1}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^2 - x - 1 = \left(z + \frac{1}{z}\right)^2 - z - \frac{1}{z} - 1 = z^2 - z - \frac{1}{z} + \frac{1}{z^2} + 1 = \frac{z^4 - z^3 + z^2 - z + 1}{z^2} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{1}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{1}{5}\pi \in \left[0, \frac{\pi}{2}\right]$, donc : $2\cos\left(\frac{1}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{1}{5}\pi\right) = \frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{1}{5}\,\pi\right) = \frac{1}{4}\,\sqrt{5} + \frac{1}{4}.$$

Corrigé 72.

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{1}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{1}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{1}{4}\pi\right) + 1}{2} = \frac{\frac{1}{2}\sqrt{2} + 1}{2} = \frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{1}{8}\pi\right)$ est bien solution de : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1}{2}\sqrt{\sqrt{2}+2} > 0$ et : $x_2 = -\frac{1}{2}\sqrt{\sqrt{2}+2} < 0$ (bien noter que $\frac{1}{4}\sqrt{2} + \frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{1}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{1}{8}\pi \in \left[0, \frac{\pi}{2}\right]$, donc : $\cos\left(\frac{1}{8}\pi\right) > 0$. On en déduit :

$$\cos\left(\frac{1}{8}\pi\right) = \frac{1}{2}\sqrt{\sqrt{2}+2}.$$

Corrigé 73.

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{2}{5}i\pi}\right)^5 = e^{2i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{2}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{2}{5}\pi\right) = e^{\frac{2}{5}i\pi} + e^{-\frac{2}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

 \leftarrow page 11

 \leftarrow page 11

 \leftarrow page 11

 \leftarrow page 11

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{2}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{2}{5}\pi \in \left[0, \frac{\pi}{2}\right]$, donc : $2\cos\left(\frac{2}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{2}{5}\pi\right) = \frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{2}{5}\pi\right) = \frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 74.

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{7}{5}i\pi}\right)^5 = -e^{7i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{7}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{7}{5}\pi\right) = e^{\frac{7}{5}i\pi} + e^{-\frac{7}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^2 - x - 1 = \left(z + \frac{1}{z}\right)^2 - z - \frac{1}{z} - 1 = z^2 - z - \frac{1}{z} + \frac{1}{z^2} + 1 = \frac{z^4 - z^3 + z^2 - z + 1}{z^2} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{7}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{7}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{7}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{7}{5}\pi\right) = -\frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{7}{5}\,\pi\right) = -\frac{1}{4}\,\sqrt{5} + \frac{1}{4}.$$

Corrigé 75.

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{1}{5}i\pi}\right)^5 = -e^{i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{1}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{1}{5}\pi\right) = e^{\frac{1}{5}i\pi} + e^{-\frac{1}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{1}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{1}{5}\pi \in \left[0, \frac{\pi}{2}\right]$, donc : $2\cos\left(\frac{1}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{1}{5}\pi\right) = \frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{1}{5}\pi\right) = \frac{1}{4}\sqrt{5} + \frac{1}{4}.$$

Corrigé 76.

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{7}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{7}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{7}{4}\pi\right) + 1}{2} = \frac{\frac{1}{2}\sqrt{2} + 1}{2} = \frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{7}{8}\pi\right)$ est bien solution de : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1}{2}\sqrt{\sqrt{2}+2} > 0$ et : $x_2 = -\frac{1}{2}\sqrt{\sqrt{2}+2} < 0$ (bien noter que $\frac{1}{4}\sqrt{2} + \frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{7}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{7}{8}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $\cos\left(\frac{7}{8}\pi\right) < 0$. On en déduit :

$$\cos\left(\frac{7}{8}\pi\right) = -\frac{1}{2}\sqrt{\sqrt{2}+2}.$$

Corrigé 77.

 \leftarrow page 12

 \leftarrow page 12

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{9}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{9}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{9}{4}\pi\right) + 1}{2} = \frac{\frac{1}{2}\sqrt{2} + 1}{2} = \frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{9}{8}\pi\right)$ est bien solution de : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1}{2}\sqrt{\sqrt{2}+2} > 0$ et : $x_2 = -\frac{1}{2}\sqrt{\sqrt{2}+2} < 0$ (bien noter que $\frac{1}{4}\sqrt{2} + \frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{9}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{9}{8}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $\cos\left(\frac{9}{8}\pi\right) < 0$. On en déduit :

$$\cos\left(\frac{9}{8}\pi\right) = -\frac{1}{2}\sqrt{\sqrt{2}+2}.$$

Corrigé 78.

 \leftarrow page 12

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{6}{5}i\pi}\right)^5 = e^{6i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{6}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{6}{5}\pi\right) = e^{\frac{6}{5}i\pi} + e^{-\frac{6}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{6}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{6}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{6}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{6}{5}\pi\right) = -\frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{6}{5}\pi\right) = -\frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 79.

 \leftarrow page 12

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}$$
.

Or: $z^5 = \left(e^{\frac{2}{5}i\pi}\right)^5 = e^{2i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{2}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{2}{5}\pi\right) = e^{\frac{2}{5}i\pi} + e^{-\frac{2}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{2}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{2}{5}\pi \in \left[0,\frac{\pi}{2}\right]$, donc : $2\cos\left(\frac{2}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{2}{5}\pi\right) = \frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{2}{5}\pi\right) = \frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 80.

 \leftarrow page 12

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{8}{5}i\pi}\right)^5 = e^{8i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{8}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{8}{5}\pi\right) = e^{\frac{8}{5}i\pi} + e^{-\frac{8}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont: $x_1 = \frac{-1+\sqrt{5}}{2} > 0$ et: $x_2 = \frac{-1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{8}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe: on a $\frac{8}{5}\pi \in \left[\frac{3\pi}{2}, 2\pi\right]$, donc: $2\cos\left(\frac{8}{5}\pi\right) > 0$. On en déduit: $2\cos\left(\frac{8}{5}\pi\right) = \frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis:

$$\cos\left(\frac{8}{5}\pi\right) = \frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 81.

 \leftarrow page 12

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{9}{5}i\pi}\right)^5 = -e^{9i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{9}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{9}{5}\pi\right) = e^{\frac{9}{5}i\pi} + e^{-\frac{9}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{9}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{9}{5}\pi \in \left[\frac{3\pi}{2},2\pi\right]$, donc : $2\cos\left(\frac{9}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{9}{5}\pi\right) = \frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{9}{5}\pi\right) = \frac{1}{4}\sqrt{5} + \frac{1}{4}.$$

Corrigé 82.

 \leftarrow page 12

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{6}{5}i\pi}\right)^5 = e^{6i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{6}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{6}{5}\pi\right) = e^{\frac{6}{5}i\pi} + e^{-\frac{6}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{6}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{6}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{6}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{6}{5}\pi\right) = -\frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{6}{5}\pi\right) = -\frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 83.

 \leftarrow page 13

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{8}{5}i\pi}\right)^5 = e^{8i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{8}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{8}{5}\pi\right) = e^{\frac{8}{5}i\pi} + e^{-\frac{8}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^2 + x - 1 = \left(z + \frac{1}{z}\right)^2 + z + \frac{1}{z} - 1 = z^2 + z + \frac{1}{z} + \frac{1}{z^2} + 1 = \frac{z^4 + z^3 + z^2 + z + 1}{z^2} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont: $x_1 = \frac{-1 + \sqrt{5}}{2} > 0$ et: $x_2 = \frac{-1 - \sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{8}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe: on a $\frac{8}{5}\pi \in \left[\frac{3\pi}{2},2\pi\right]$, donc: $2\cos\left(\frac{8}{5}\pi\right) > 0$. On en déduit: $2\cos\left(\frac{8}{5}\pi\right) = \frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis:

$$\cos\left(\frac{8}{5}\pi\right) = \frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 84.

 \leftarrow page 13

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{4}{5}i\pi}\right)^5 = e^{4i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{4}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{4}{5}\pi\right) = e^{\frac{4}{5}i\pi} + e^{-\frac{4}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont: $x_1 = \frac{-1+\sqrt{5}}{2} > 0$ et: $x_2 = \frac{-1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{4}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe: on a $\frac{4}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc: $2\cos\left(\frac{4}{5}\pi\right) < 0$. On en déduit: $2\cos\left(\frac{4}{5}\pi\right) = -\frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis:

$$\cos\left(\frac{4}{5}\pi\right) = -\frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 85.

 \leftarrow page 13

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{9}{5}i\pi}\right)^5 = -e^{9i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{9}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{9}{5}\pi\right) = e^{\frac{9}{5}i\pi} + e^{-\frac{9}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{9}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{9}{5}\pi \in \left[\frac{3\pi}{2},2\pi\right]$, donc : $2\cos\left(\frac{9}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{9}{5}\pi\right) = \frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{9}{5}\pi\right) = \frac{1}{4}\sqrt{5} + \frac{1}{4}.$$

Corrigé 86.

 \leftarrow page 13

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{8}{5}i\pi}\right)^5 = e^{8i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{8}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{8}{5}\pi\right) = e^{\frac{8}{5}i\pi} + e^{-\frac{8}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont: $x_1 = \frac{-1+\sqrt{5}}{2} > 0$ et: $x_2 = \frac{-1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{8}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe: on a $\frac{8}{5}\pi \in \left[\frac{3\pi}{2}, 2\pi\right]$, donc: $2\cos\left(\frac{8}{5}\pi\right) > 0$. On en déduit: $2\cos\left(\frac{8}{5}\pi\right) = \frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis:

$$\cos\left(\frac{8}{5}\pi\right) = \frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 87.

 \leftarrow page 13

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{7}{5}i\pi}\right)^5 = -e^{7i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{7}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{7}{5}\pi\right) = e^{\frac{7}{5}i\pi} + e^{-\frac{7}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^2 - x - 1 = \left(z + \frac{1}{z}\right)^2 - z - \frac{1}{z} - 1 = z^2 - z - \frac{1}{z} + \frac{1}{z^2} + 1 = \frac{z^4 - z^3 + z^2 - z + 1}{z^2} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{7}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{7}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{7}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{7}{5}\pi\right) = -\frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{7}{5}\pi\right) = -\frac{1}{4}\sqrt{5} + \frac{1}{4}.$$

Corrigé 88.

 \leftarrow page 13

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{9}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{9}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{9}{4}\pi\right) + 1}{2} = \frac{\frac{1}{2}\sqrt{2} + 1}{2} = \frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{9}{8}\pi\right)$ est bien solution de : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1}{2}\sqrt{\sqrt{2}+2} > 0$ et : $x_2 = -\frac{1}{2}\sqrt{\sqrt{2}+2} < 0$ (bien noter que $\frac{1}{4}\sqrt{2} + \frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{9}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{9}{8}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $\cos\left(\frac{9}{8}\pi\right) < 0$. On en déduit :

$$\cos\left(\frac{9}{8}\pi\right) = -\frac{1}{2}\sqrt{\sqrt{2} + 2}.$$

Corrigé 89.

 \leftarrow page 13

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{9}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{9}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{9}{4}\pi\right) + 1}{2} = \frac{\frac{1}{2}\sqrt{2} + 1}{2} = \frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{9}{8}\pi\right)$ est bien solution de : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1}{2}\sqrt{\sqrt{2}+2} > 0$ et : $x_2 = -\frac{1}{2}\sqrt{\sqrt{2}+2} < 0$ (bien noter que $\frac{1}{4}\sqrt{2}+\frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{9}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{9}{8}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $\cos\left(\frac{9}{8}\pi\right) < 0$. On en déduit :

$$\cos\left(\frac{9}{8}\,\pi\right) = -\frac{1}{2}\,\sqrt{\sqrt{2}+2}.$$

Corrigé 90.

 \leftarrow page 14

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{7}{5}i\pi}\right)^5 = -e^{7i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{7}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{7}{5}\pi\right) = e^{\frac{7}{5}i\pi} + e^{-\frac{7}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{7}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{7}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{7}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{7}{5}\pi\right) = -\frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{7}{5}\,\pi\right) = -\frac{1}{4}\,\sqrt{5} + \frac{1}{4}.$$

Corrigé 91.

 \leftarrow page 14

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{4}{5}i\pi}\right)^5 = e^{4i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{4}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{4}{5}\pi\right) = e^{\frac{4}{5}i\pi} + e^{-\frac{4}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{-1 + \sqrt{5}}{2} > 0$ et : $x_2 = \frac{-1 - \sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{4}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{4}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{4}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{4}{5}\pi\right) = -\frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{4}{5}\pi\right) = -\frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 92.

 \leftarrow page 14

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{9}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{9}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{9}{4}\pi\right) + 1}{2} = \frac{\frac{1}{2}\sqrt{2} + 1}{2} = \frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{9}{8}\pi\right)$ est bien solution de : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1}{2}\sqrt{\sqrt{2}+2} > 0$ et : $x_2 = -\frac{1}{2}\sqrt{\sqrt{2}+2} < 0$ (bien noter que $\frac{1}{4}\sqrt{2} + \frac{1}{2}$ est effectivement positif, ce qui permet de

considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{9}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{9}{8}\pi\in\left[\frac{\pi}{2},\frac{3\pi}{2}\right]$, donc : $\cos\left(\frac{9}{8}\pi\right)<0$. On en déduit :

$$\cos\left(\frac{9}{8}\,\pi\right) = -\frac{1}{2}\,\sqrt{\sqrt{2}+2}.$$

Corrigé 93.

 \leftarrow page 14

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{2}{5}i\pi}\right)^5 = e^{2i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{2}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{2}{5}\pi\right) = e^{\frac{2}{5}i\pi} + e^{-\frac{2}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{2}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{2}{5}\pi \in \left[0,\frac{\pi}{2}\right]$, donc : $2\cos\left(\frac{2}{5}\pi\right) > 0$. On en déduit : $2\cos\left(\frac{2}{5}\pi\right) = \frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{2}{5}\pi\right) = \frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 94.

 \leftarrow page 14

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{8}{5}i\pi}\right)^5 = e^{8i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{8}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{8}{5}\pi\right) = e^{\frac{8}{5}i\pi} + e^{-\frac{8}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont: $x_1 = \frac{-1 + \sqrt{5}}{2} > 0$ et: $x_2 = \frac{-1 - \sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question

 \leftarrow page 14

 \leftarrow page 14

précédente, $2\cos\left(\frac{8}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{8}{5}\pi\in\left[\frac{3\pi}{2},2\pi\right]$, donc : $2\cos\left(\frac{8}{5}\pi\right)>0$. On en déduit : $2\cos\left(\frac{8}{5}\pi\right)=\frac{1}{2}\sqrt{5}-\frac{1}{2}$, puis :

$$\cos\left(\frac{8}{5}\pi\right) = \frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 95.

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{7}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{7}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{7}{4}\pi\right) + 1}{2} = \frac{\frac{1}{2}\sqrt{2} + 1}{2} = \frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{7}{8}\pi\right)$ est bien solution de : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1}{2}\sqrt{\sqrt{2}+2} > 0$ et : $x_2 = -\frac{1}{2}\sqrt{\sqrt{2}+2} < 0$ (bien noter que $\frac{1}{4}\sqrt{2} + \frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{7}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{7}{8}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $\cos\left(\frac{7}{8}\pi\right) < 0$. On en déduit :

$$\cos\left(\frac{7}{8}\pi\right) = -\frac{1}{2}\sqrt{\sqrt{2}+2}.$$

Corrigé 96.

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{6}{5}i\pi}\right)^5 = e^{6i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{6}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{6}{5}\pi\right) = e^{\frac{6}{5}i\pi} + e^{-\frac{6}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{6}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{6}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{6}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{6}{5}\pi\right) = -\frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{6}{5}\pi\right) = -\frac{1}{4}\sqrt{5} - \frac{1}{4}.$$

Corrigé 97.

 \leftarrow page 15

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $-z \neq 1$. On a donc :

$$z^4 - z^3 + z^2 - z + 1 = \frac{1 - (-z)^5}{1 - (-z)}.$$

Or: $(-z)^5 = -\left(e^{\frac{7}{5}i\pi}\right)^5 = -e^{7i\pi} = 1$, et donc: $z^4 - z^3 + z^2 - z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{7}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{7}{5}\pi\right) = e^{\frac{7}{5}i\pi} + e^{-\frac{7}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} - x - 1 = \left(z + \frac{1}{z}\right)^{2} - z - \frac{1}{z} - 1 = z^{2} - z - \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} - z^{3} + z^{2} - z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{7}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{7}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{7}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{7}{5}\pi\right) = -\frac{1}{2}\sqrt{5} + \frac{1}{2}$, puis :

$$\cos\left(\frac{7}{5}\pi\right) = -\frac{1}{4}\sqrt{5} + \frac{1}{4}.$$

Corrigé 98.

 \leftarrow page 15

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{9}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{9}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{9}{4}\pi\right) + 1}{2} = \frac{\frac{1}{2}\sqrt{2} + 1}{2} = \frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{9}{8}\pi\right)$ est bien solution de : $x^2 = \frac{1}{4}\sqrt{2} + \frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1}{2}\sqrt{\sqrt{2}+2} > 0$ et : $x_2 = -\frac{1}{2}\sqrt{\sqrt{2}+2} < 0$ (bien noter que $\frac{1}{4}\sqrt{2}+\frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{9}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{9}{8}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $\cos\left(\frac{9}{8}\pi\right) < 0$. On en déduit :

$$\cos\left(\frac{9}{8}\pi\right) = -\frac{1}{2}\sqrt{\sqrt{2}+2}.$$

Corrigé 99.

 \leftarrow page 15

1. On utilise l'identité: $(\cos(\theta))^2 = \frac{\cos(2\theta) + 1}{2}$, avec: $\theta = \frac{13}{8}\pi$. Cela donne ici:

$$\left(\cos\left(\frac{13}{8}\pi\right)\right)^2 = \frac{\cos\left(\frac{13}{4}\pi\right) + 1}{2} = \frac{-\frac{1}{2}\sqrt{2} + 1}{2} = -\frac{1}{4}\sqrt{2} + \frac{1}{2},$$

donc $\cos\left(\frac{13}{8}\pi\right)$ est bien solution de : $x^2=-\frac{1}{4}\sqrt{2}+\frac{1}{2}$, ce qu'il fallait démontrer.

2. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} > 0$ et : $x_2 = -\sqrt{-\frac{1}{4}\sqrt{2} + \frac{1}{2}} < 0$ (bien noter que $-\frac{1}{4}\sqrt{2} + \frac{1}{2}$ est effectivement positif, ce qui permet de considérer sa racine carrée). D'après la question précédente, $\cos\left(\frac{13}{8}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{13}{8}\pi \in \left[\frac{3\pi}{2}, 2\pi\right]$, donc : $\cos\left(\frac{13}{8}\pi\right) > 0$. On en déduit :

$$\cos\left(\frac{13}{8}\,\pi\right) = \frac{1}{2}\,\sqrt{-\sqrt{2}+2}.$$

Corrigé 100.

 \leftarrow page 15

1. On reconnaît dans le membre de gauche une somme géométrique, de raison $z \neq 1$. On a donc :

$$z^4 + z^3 + z^2 + z + 1 = \frac{1 - z^5}{1 - z}.$$

Or: $z^5 = \left(e^{\frac{6}{5}i\pi}\right)^5 = e^{6i\pi} = 1$, et donc: $z^4 + z^3 + z^2 + z + 1 = 0$, d'où le résultat.

2. Posons: $x = 2\cos\left(\frac{6}{5}\pi\right)$. On utilise le fait que: $2\cos\left(\frac{6}{5}\pi\right) = e^{\frac{6}{5}i\pi} + e^{-\frac{6}{5}i\pi} = z + \frac{1}{z}$ (formule d'Euler). Alors:

$$x^{2} + x - 1 = \left(z + \frac{1}{z}\right)^{2} + z + \frac{1}{z} - 1 = z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1 = \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0,$$

d'où le résultat.

3. On résout l'équation de la question précédente. Ses solutions sont : $x_1 = \frac{1+\sqrt{5}}{2} > 0$ et : $x_2 = \frac{1-\sqrt{5}}{2} < 0$ (on a calculé le discriminant, etc., vous savez faire). D'après la question précédente, $2\cos\left(\frac{6}{5}\pi\right)$ est aussi une solution, donc est égal à x_1 ou x_2 . On détermine à laquelle des deux racines il est égal grâce à son signe : on a $\frac{6}{5}\pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donc : $2\cos\left(\frac{6}{5}\pi\right) < 0$. On en déduit : $2\cos\left(\frac{6}{5}\pi\right) = -\frac{1}{2}\sqrt{5} - \frac{1}{2}$, puis :

$$\cos\left(\frac{6}{5}\pi\right) = -\frac{1}{4}\sqrt{5} - \frac{1}{4}.$$