Work and potential energy

Physics 211 Syracuse University, Physics 211 Spring 2019 Walter Freeman

March 20, 2019

Announcements

- Your next homework assignment is due next Friday.
- Upcoming office hours:
 - Today, 1:45-3:45 discussing exams with students
 - Friday, 9:30-11:30 anything you'd like!
 - Tuesday, 3-5 discussing HW6

Exam 2 recap

This exam was quite difficult and most of you did very well!

Exam 2 recap

This exam was quite difficult and most of you did very well!

This is most of the class; one of the TA's hasn't uploaded their grades to Blackboard yet.

Where we've been and where we're going

- Last time: kinetic energy and the work-energy theorem
- This time: the idea of potential energy and conservation of energy
 - Potential energy: "the most meaningful bookkeeping trick in physics"
 - Lets us understand many phenomena without difficult mathematics
 - Conservation of energy: there's always the same amount of energy, and it just changes forms

Review: kinetic energy

We will see that things are often simpler when we look at something called "energy"

- Basic idea: don't treat \vec{a} and \vec{v} as the most interesting things any more
- Treat v^2 as fundamental: $\frac{1}{2}mv^2$ called "kinetic energy"

Previous methods:

- Velocity is fundamental
- Force: causes velocities to change over time
- Intimately concerned with vector quantities

Energy methods:

- v^2 (related to kinetic energy) is fundamental
- Force: causes KE to change over distance
- Energy is a *scalar*

Energy methods: useful when you don't know and don't care about time

Energy: measurements and units

Kinetic energy =
$$\frac{1}{2}mv^2$$

- Energy has units $kg m^2/s^2$
- This unit is called a *joule*
- This is also the unit for work
- 1 joule = the work required to lift an apple one meter
- 1 joule = the kinetic energy of a 2 kilogram mass traveling at 1 m/s
- 9 megajoules = the energy in the food a person eats in a day
- 350 kilojoules = the energy stored in a laptop battery
- 1.5 gigajoules = the energy in a small tank of gasoline (11 gal/44 liters)

Last time we saw the "work-energy theorem" was a consequence of simple kinematics:

$$\frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2 = F\Delta x$$

Last time we saw the "work-energy theorem" was a consequence of simple kinematics:

$$\frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2 = F\Delta x$$

Or in more than one dimension:

$$\frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2 = \vec{F} \cdot \Delta \vec{s} = (F_{\parallel})(\Delta s) = (F)(\Delta s_{\parallel})$$

Last time we saw the "work-energy theorem" was a consequence of simple kinematics:

$$\frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2 = F\Delta x$$

Or in more than one dimension:

$$\frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2 = \vec{F} \cdot \Delta \vec{s} = (F_{\parallel})(\Delta s) = (F)(\Delta s_{\parallel})$$

Or if the force is not constant:

$$\frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2 = \int \vec{F} \cdot d\vec{s}$$

Last time we saw the "work-energy theorem" was a consequence of simple kinematics:

$$\frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2 = F\Delta x$$

Or in more than one dimension:

$$\frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2 = \vec{F} \cdot \Delta \vec{s} = (F_{\parallel})(\Delta s) = (F)(\Delta s_{\parallel})$$

Or if the force is not constant:

$$\frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2 = \int \vec{F} \cdot d\vec{s}$$

Some new terminology:

- $\frac{1}{2}mv^2$ called the "kinetic energy" (positive only!)
- $\vec{F} \cdot \Delta \vec{s}$ called the "work" (negative or positive!)
- "Work is the change in kinetic energy"

The force from air pressure

How much work does air pressure do on the ping pong ball?

The force from air pressure

How much work does air pressure do on the ping pong ball?

- Work = force \times distance (W = Fd)
- Force = pressure \times area (F = PA)
 - Atmospheric pressure = $10N/cm^2$
 - Cross-sectional area of ping-pong ball = 13cm^2
- $\bullet W = P \times A \times d$

The force from air pressure

How much work does air pressure do on the ping pong ball?

- Work = force \times distance (W = Fd)
- Force = pressure \times area (F = PA)
 - Atmospheric pressure = $10N/cm^2$
 - Cross-sectional area of ping-pong ball = 13cm^2
- $\bullet W = P \times A \times d$

$$\frac{1}{2}mv_0^2 + W_{\text{pressure}} = \frac{1}{2}mv_f^2$$

(on document camera)

(on document camera)

Strategy: compute the work done by all the forces and equate that to the change in KE.

Work done by normal force = **zero**!

Work done by gravity =
$$(F)(\Delta s)_{\parallel} = mg\Delta y = mg(y_0 - y_f)$$

$$KE_f - KE_i = W_g$$

$$\frac{1}{2}mv_f^2 - 0 = mg(y_0 - y_f)$$

(on document camera)

Strategy: compute the work done by all the forces and equate that to the change in KE.

Work done by normal force = **zero**!

Work done by gravity = $(F)(\Delta s)_{\parallel} = mg\Delta y = mg(y_0 - y_f)$

$$KE_f - KE_i = W_g$$

$$\frac{1}{2}mv_f^2 - 0 = mg(y_0 - y_f)$$

$$\to v_f = \sqrt{2g(y_0 - y_f)}$$

(on document camera)

Strategy: compute the work done by all the forces and equate that to the change in KE.

Work done by normal force = **zero**!

Work done by gravity =
$$(F)(\Delta s)_{\parallel} = mg\Delta y = mg(y_0 - y_f)$$

$$KE_f - KE_i = W_g$$

$$\frac{1}{2}mv_f^2 - 0 = mg(y_0 - y_f)$$

$$\to v_f = \sqrt{2g(y_0 - y_f)}$$

No detailed knowledge of the motion required!

Potential energy: an accounting trick

- Notice that the work done by gravity depends only on the change in height.
- Some other forces are like this as well: the work done depends only on initial and final position
 - These are called *conservative forces*
 - Soon we'll see that the elastic force is like this too
- Separate out gravity and all other forces in the work-energy theorem:

$$KE_f - KE_i = W_{\text{grav}} + W_{\text{other}}$$

 $\frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2 = mg(y_0 - y_f) + W_{\text{other}}$

Potential energy: an accounting trick

- Notice that the work done by gravity depends only on the change in height.
- Some other forces are like this as well: the work done depends only on initial and final position
 - These are called *conservative forces*
 - Soon we'll see that the elastic force is like this too
- Separate out gravity and all other forces in the work-energy theorem:

$$KE_f - KE_i = W_{\text{grav}} + W_{\text{other}}$$
$$\frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2 = mg(y_0 - y_f) + W_{\text{other}}$$

• Collect all the "initial" things on the left and the "final" things on the right:

$$\frac{1}{2}mv_0^2 + mgy_0 + W_{\text{other}} = \frac{1}{2}mv_f^2 + mgy_f$$

$$KE_0 + GPE_0 + W_{\text{other}} = KE_f + GPE_f$$

• Identify mgy as "gravitational potential energy": how much work will gravity do if something falls?

Potential energy lets us easily calculate the work done by conservative forces

Potential energy: more than accounting!

- Another way to look at the roller coaster: gravitational potential energy being converted to kinetic energy.
- This perspective is universal: all forces just convert energy from one sort into another
- Some of these types are beyond the scope of this class, but we should be aware of them!

A short history of energy conversion:

- Hydrogen in the sun fuses into helium
- Hot gas emits light
- Light shines on the ocean, heating it
- Seawater evaporates and rises, then falls as rain
- Rivers run downhill
- Falling water turns a turbine
- Turbine turns coils of wire in generator
- Electric current ionizes gas
- Recombination of gas ions emits light

- Nuclear energy \rightarrow thermal energy
- Thermal energy \rightarrow light
- Light \rightarrow thermal energy
- Thermal energy → gravitational potential energy
- Gravitational PE → kinetic energy and sound
- \bullet Kinetic energy in water \rightarrow kinetic energy in turbine
- \bullet Kinetic energy \rightarrow electric energy
- Electric energy → chemical potential energy
- Chemical $PE \rightarrow light$

Potential energy: more than accounting!

- This class is just the study of motion: we can't treat light or nuclear energy here.
- ... but in physics as a whole, the *conservation of energy* that processes just change energy from one form to another is universal!
- Conservation of energy is one of the most tested, ironclad ideas in science
- Nuclear and chemical potential energy: nuclear forces do mechanical work on particles, much like gravity
- Light, and others: kinetic energy of little particles called "photons"
- Heat: kinetic energy of atoms in random motion
- Sound: kinetic energy of atoms in coordinated motion
- Food: Just chemical potential energy...
- ... so all of these things aren't as far removed from mechanics after all!
- Einstein: "Mass is just another form of energy"

Potential energy: more than accounting!

- This class is just the study of motion: we can't treat light or nuclear energy here.
- ... but in physics as a whole, the *conservation of energy* that processes just change energy from one form to another is universal!
- Conservation of energy is one of the most tested, ironclad ideas in science
- Nuclear and chemical potential energy: nuclear forces do mechanical work on particles, much like gravity
- Light, and others: kinetic energy of little particles called "photons"
- Heat: kinetic energy of atoms in random motion
- Sound: kinetic energy of atoms in coordinated motion
- Food: Just chemical potential energy...
- ... so all of these things aren't as far removed from mechanics after all!
- Einstein: "Mass is just another form of energy"
- Maybe it's all, ultimately, just kinetic energy! (I believe it is; others will argue!)

Ask a Physicist: how does a nuclear bomb work (and how is it different from a nuclear power plant)?

A new force: elasticity and Hooke's law

To best see how this can be useful, let's introduce a new force: elasticity.

- Springs have a particular length that they like to be: "equilibrium length" L_0
- A spring stretched to be longer than this pulls inward to shorten itself
- A spring compressed to be shorter than this pushes outward to lengthen itself
- Flexible things like strings and ropes only pull; they kink instead of compressing
- The force is proportional to the deviation from the optimum length

$$F_{\text{elastic}} = -k(L - L_0) = -k\Delta x$$
 (Hooke's law)

A new force: elasticity and Hooke's law

To best see how this can be useful, let's introduce a new force: elasticity.

- Springs have a particular length that they like to be: "equilibrium length" L_0
- A spring stretched to be longer than this pulls inward to shorten itself
- A spring compressed to be shorter than this pushes outward to lengthen itself
- Flexible things like strings and ropes only pull; they kink instead of compressing
- The force is proportional to the deviation from the optimum length

$$(F_{\rm sp})_s = 0$$
 Unstretched L_0 Unstretched $(F_{\rm sp})_s < 0$ $\Delta s > 0$ $\Delta s < 0$ Compressed $\Delta s < 0$

$$F_{\text{elastic}} = -k(L - L_0) = -k\Delta x$$
 (Hooke's law)

k is called the "spring constant":

- Measures the stiffness of the spring/rope
- Units of newtons per meter: "restoring force of k newtons per meter of stretch"

W. Freeman

A person of mass m = 100kg falls from a height of h = 3m onto a trampoline. If the person makes an impression d = 40 cm deep on the trampoline when he lands, what is the spring constant?

- \bullet Initial kinetic energy + work done by spring + work done by gravity = final kinetic energy
 - Need to use the integral form of the work-energy theorem since the force isn't constant
- The person begins and ends at rest, so we know the initial and final kinetic energy is zero
- The trampoline begins at its equilibrium position

15 / 21

- \bullet Initial kinetic energy + work done by spring + work done by gravity = final kinetic energy
 - Need to use the integral form of the work-energy theorem since the force isn't constant
- The person begins and ends at rest, so we know the initial and final kinetic energy is zero
- The trampoline begins at its equilibrium position
- $W_{\text{grav}} = (mg)(h+d)$

- \bullet Initial kinetic energy + work done by spring + work done by gravity = final kinetic energy
 - Need to use the integral form of the work-energy theorem since the force isn't constant
- The person begins and ends at rest, so we know the initial and final kinetic energy is zero
- The trampoline begins at its equilibrium position
- $W_{\text{grav}} = (mg)(h+d)$
- $W_{\rm elas} = \int_0^{-d} kx \, dx = -\frac{1}{2}kd^2$

- \bullet Initial kinetic energy + work done by spring + work done by gravity = final kinetic energy
 - Need to use the integral form of the work-energy theorem since the force isn't constant
- The person begins and ends at rest, so we know the initial and final kinetic energy is zero
- The trampoline begins at its equilibrium position
- $W_{\text{grav}} = (mg)(h+d)$
- $W_{\text{elas}} = \int_0^{-d} kx \, dx = -\frac{1}{2}kd^2$
- $KE_0 + W_{\text{grav}} + W_{\text{elas}} = KE_f$
- $0 + (mg)(h+d) \frac{1}{2}kd^2 = 0$
- $k = \frac{mg(h+d)}{2d^2}$

Potential energy stored in a spring

We saw that an object at height h has gravitational potential energy mgh. Can we do something similar for springs?

Potential energy stored in a spring

We saw that an object at height h has gravitational potential energy mgh. Can we do something similar for springs?

- Potential energy, remember, is the work done by some force as it returns to some "zero" position.
- A natural choice is $\Delta x = 0$, the equilibrium position of the spring.

"How much work is done by a spring as it goes from $\Delta x = a$ to $\Delta x = 0$?

$$U_{\text{elastic}} = W_{a \to 0} = \int_a^0 -kx \, dx = \int_0^a kx \, dx = \frac{1}{2}ka^2$$

Potential energy stored in a spring

We saw that an object at height h has gravitational potential energy mgh. Can we do something similar for springs?

- Potential energy, remember, is the work done by some force as it returns to some "zero" position.
- A natural choice is $\Delta x = 0$, the equilibrium position of the spring.

"How much work is done by a spring as it goes from $\Delta x = a$ to $\Delta x = 0$?

$$U_{\text{elastic}} = W_{a \to 0} = \int_a^0 -kx \, dx = \int_0^a kx \, dx = \frac{1}{2}ka^2$$

Now that we have this, we never have to do this integral again!

 $U_{\text{elastic}} = \frac{1}{2}kx^2$, where x is the distance from equilibrium

A simple spring problem: done with potential energy

A simple spring problem: done with potential energy

- Initial total energy + work done by other forces = final total energy
- We have no "other forces": we're accounting for gravity and elasticity using potential energy
- The person begins and ends at rest, so we know the initial and final kinetic energy is zero
- Put y = 0 at the surface of the trampoline

- Initial total energy + work done by other forces = final total energy
- We have no "other forces": we're accounting for gravity and elasticity using potential energy
- The person begins and ends at rest, so we know the initial and final kinetic energy is zero
- Put y = 0 at the surface of the trampoline
- $U_{\text{grav},0} = mgh$
- $U_{\text{elas},0} = 0$ (trampoline starts at equilibrium)
- $U_{\text{grav,f}} = -mgd$ (the person falls below y = 0; PE can be negative!)
- $U_{\rm elas,f} = \frac{1}{2}kd^2$ (see last slide)

- Initial total energy + work done by other forces = final total energy
- We have no "other forces": we're accounting for gravity and elasticity using potential energy
- The person begins and ends at rest, so we know the initial and final kinetic energy is zero
- Put y = 0 at the surface of the trampoline
- $U_{\text{grav},0} = mgh$
- $U_{\text{elas},0} = 0$ (trampoline starts at equilibrium)
- $U_{\text{grav,f}} = -mgd$ (the person falls below y = 0; PE can be negative!)
- $U_{\rm elas,f} = \frac{1}{2}kd^2$ (see last slide)
- $KE_0 + U_{\text{grav},0} + U_{\text{elas},0} = KE_f + U_{\text{grav},f} + U_{\text{elas},f}$

- Initial total energy + work done by other forces = final total energy
- We have no "other forces": we're accounting for gravity and elasticity using potential energy
- The person begins and ends at rest, so we know the initial and final kinetic energy is zero
- Put y = 0 at the surface of the trampoline
- $U_{\text{grav},0} = mgh$
- $U_{\text{elas},0} = 0$ (trampoline starts at equilibrium)
- $U_{\text{grav,f}} = -mgd$ (the person falls below y = 0; PE can be negative!)
- $U_{\text{elas,f}} = \frac{1}{2}kd^2$ (see last slide)
- $KE_0 + U_{\text{grav},0} + U_{\text{elas},0} = KE_f + U_{\text{grav},f} + U_{\text{elas},f}$
- $0 + mgh + 0 = 0 + (-mgd) + \frac{1}{2}kd^2$ (Same terms, maybe on different side)

- Initial total energy + work done by other forces = final total energy
- We have no "other forces": we're accounting for gravity and elasticity using potential energy
- The person begins and ends at rest, so we know the initial and final kinetic energy is zero
- Put y = 0 at the surface of the trampoline
- $U_{\text{grav},0} = mgh$
- $U_{\text{elas},0} = 0$ (trampoline starts at equilibrium)
- $U_{\text{grav,f}} = -mgd$ (the person falls below y = 0; PE can be negative!)
- $U_{\text{elas,f}} = \frac{1}{2}kd^2$ (see last slide)
- $KE_0 + U_{\text{grav},0} + U_{\text{elas},0} = KE_f + U_{\text{grav},f} + U_{\text{elas},f}$
- $0 + mgh + 0 = 0 + (-mgd) + \frac{1}{2}kd^2$ (Same terms, maybe on different side)
- $k = \frac{mg(h+d)}{2d^2}$

That spring problem: a recap

We don't care about time \rightarrow energy methods

Work-energy theorem

- Initial KE + all work done = final KE
- Need to compute work done by gravity: easy
- Need to compute work done by spring: harder (need to integrate Hooke's law)

Potential energy treatment

- Initial KE + initial PE + other work = final KE + final PE
- No "other work" in this problem; all forces have a PE associated
- Need to know the expressions for PE:
 - $U_{\text{grav}} = mgy$
 - $U_{\text{elas}} = \frac{1}{2}kx^2$ (x is the distance from the equilibrium point)
- No integrals required (they're baked into the above)

Potential energy with other forces

What about associating a potential energy with other forces?

- Friction is a no-go: the work done by friction depends on the path, not just where you start and stop
- "Ephemeral" forces like tension and normal force are easiest to deal with by computing work directly
- The other force we've studied that is easily associated with a potential energy is **universal** gravitation
 - Need to choose a point to set U=0; here we choose $r=\infty$
 - U_G = "work done by gravity on m_1 when it moves infinitely far from m_2

$$F_G = \frac{Gm_1m_2}{r^2}$$

$$W_G = \int_R^\infty -\frac{Gm_1m_2}{r^2} dr = -\frac{Gm_1m_2}{R}$$

Potential energy with other forces

What about associating a potential energy with other forces?

- Friction is a no-go: the work done by friction depends on the path, not just where you start and stop
- "Ephemeral" forces like tension and normal force are easiest to deal with by computing work directly
- The other force we've studied that is easily associated with a potential energy is **universal** gravitation
 - Need to choose a point to set U=0; here we choose $r=\infty$
 - U_G = "work done by gravity on m_1 when it moves infinitely far from m_2

$$F_G = \frac{Gm_1m_2}{r^2}$$

$$W_G = \int_R^\infty -\frac{Gm_1m_2}{r^2} dr = -\frac{Gm_1m_2}{R}$$

 \rightarrow Gravitational potential energy between two objects separated by a distance r is $-\frac{Gm_1m_2}{r}$.

Power

A new idea: power, the rate of doing work

- Sometimes we are interested in the rate at which a force does work
- \bullet This idea is called power, and it is measured in joules per second
- A joule per second is also called a watt
- If $W = \vec{F} \cdot \Delta \vec{s}$, then I can take derivatives of both sides to get...
- $\bullet \ P = \vec{F} \cdot \vec{v}$

The Earth's "gravity well"

- With this choice of the zero point at $r = \infty$, gravitational potential energy is always negative
- We have to add energy to get something away from Earth

This region of large negative potential energy is often called a "gravity well".

Summary

- Potential energy is two things:
 - An accounting device that makes it easier to keep track of work done
 - Part of conservation of total energy, a powerful statement about nature
- Gravitational potential energy (on Earth): $U_g = mgy$

Summary

- Potential energy is two things:
 - An accounting device that makes it easier to keep track of work done
 - Part of conservation of total energy, a powerful statement about nature
- Gravitational potential energy (on Earth): $U_g = mgy$
- We learned about a new force: **elasticity**
 - Restoring force in a stretched or compressed spring, or a stretched string:

$$F = -k(x - x_0)$$
 (x_0 is the equilibrium length)

- \bullet k is the spring constant, measured in force per distance, that gauges stiffness
- Elastic potential energy: $U_{\rm elas} = \frac{1}{2}k(x-x_0)^2$

Summary

- Potential energy is two things:
 - An accounting device that makes it easier to keep track of work done
 - Part of conservation of total energy, a powerful statement about nature
- Gravitational potential energy (on Earth): $U_g = mgy$
- We learned about a new force: elasticity
 - Restoring force in a stretched or compressed spring, or a stretched string:

$$F = -k(x - x_0)$$
 (x_0 is the equilibrium length)

- \bullet k is the spring constant, measured in force per distance, that gauges stiffness
- Elastic potential energy: $U_{\rm elas} = \frac{1}{2}k(x-x_0)^2$
- Gravitational potential energy in general: $U_G = -\frac{Gm_1m_2}{r}$