

Background

Parameter Server Framework

A centralized distribution framework

Dataset

- Data parallelism
- Train DNN model
- Iterative convergent optimization

Problems for Distributed Deep Learning

- Synchronization among worker costs (waiting time)
 - Faster worker waits for slower worker
- Learning performance (convergence speed and final accuracy)
 - Reducing synchronizations
 - Decrease waiting time
 - Increase iteration throughput --- usually leads to fast convergence
 - Reducing synchronizations produces staled gradients to the DNN model updates
 - Fast convergence but low accuracy
 - Hinder the DNN model from learning
- How to balance between fast convergence and high accuracy?

Priors: BSP, SSP and ASP

Bulk Synchronous Parallel (BSP)

- Distributed Deep Neural Networks Training
 - Iterative convergent optimization
 - Stochastic Gradient Descent (SGD)
- BSP guarantees convergence by using SGD
 - Parameters synchronization is mandatary on every iteration
 - Good for homogeneous environment
 - Bad for heterogeneous environment

Straggler Problem: fast worker waiting for the slowest worker

Stale Synchronous Parallel (SSP)

- Blind to each machine's processing capacity
- Staleness threshold s is a fixed hyper-parameter requiring fine-tuning to find the optimal value of s
- Fine-tuning is required again to find optimal s when changes happen to
 - Other hyper-parameters (e.g., learning rate, decay)
 - DNN Model
 - Running environment

Asynchronous Parallel (ASP)

- Each worker computing gradients independently
- No synchronizations among workers
 - Maximum iteration throughput
 - The largest number of stale gradients updates to the DNN models
 - Fast convergence but usually end up getting low accuracy

Our Method

Objective: Elastic Bulk Synchronous Parallel

Intuition about Our Algorithm

Prediction and Search Method of ElasticBSP

The recorded run time of a worker to compute a mini-batch

The predicted time of a worker to compute a mini-batch

Search optimal waiting time for all *n* workers

ZipLine Algorithm – Step 1: Preprocess Data

ZipLine Algorithm – Step 2: Scan the Data in $O(Rn \cdot logn)$

ZipLine searching for the set Z* with the minimum difference d*

Optimized ZipLine: ZipLineOpt and ZipLineOptBS

- ZipLineOpt: optimize 'add' operation of the scanning set Z
 - Using pruning to skip the search time of adding new element to set Z
 - Skip the search if new element has the same color as the leftmost element of Z
- ZipLineOptBS: further optimize 'add' operation of the scanning set Z
 - Using a Matrix containing info (e.g., timestamps) of data points to enable binary searching in set Z
 - Matrix: n (workers) x R (future iterations)

ZipLine searching for the set Z* with the minimum difference d*

Experimental Results

ZipLine Computing Time per Search/Synchronization

Vgg16 on ImageNet1K with 4 workers

Conclusion

- ElasticBSP provides faster convergence to higher accuracy than BSP via
 - Increasing the iteration throughput
 - Limiting the staled gradients by elastic bulk synchronization
- ZipLine finds the optimal waiting time per synchronization
 - A greedy one-pass algorithm
 - Optimized versions: ZipLineOpt and ZipLineOptBS
 - ZipLineOptBS has linearithmic time complexity, $O(Rn \cdot logn)$
 - *R* is the # of predicted future iterations per worker
 - n is the number of workers in a cluster

