Homework 3, MATH 9010

Due on Thursday, September 15 Shuai Wei

Problem 1 Let $(\Omega, \mathcal{B}, P) = ((0,1], \mathcal{B}((0,1]), \lambda)$ where λ is Lebesgue measure. Define

$$X_1(\omega) = 0, \forall \omega \in \Omega,$$

$$X_2(\omega) = 1_{\{1/2\}}(\omega),$$

$$X_3(\omega) = 1_{\mathbb{Q}}(\omega)$$

where $\mathbb{Q} \in (0,1]$ are rational numbers in (0,1]. Note

$$P[X_1 = X_2 = X_3 = 0] = 1$$

and give

$$\sigma(X_i), \quad i = 1, 2, 3.$$

- 1. $X_1(\omega) = 0, \forall \omega \in \Omega$. Note X_1 has range 0, then $X_1^{-1}(\{0\}) = \emptyset$. So $\sigma(X_1) = \sigma(\emptyset, \Omega) = \{\emptyset, \Omega\}$.
- 2. $X_2(\omega) = 1_{\{1/2\}}(\omega)$. Note X_2 has range $\{0,1\}$, then $X_1^{-1}(\{0\}) = \{(0,1/2) \cup (1/2,1]\}, X_2^{-1}(\{1\}) = \{1/2\}$. So $\sigma(X_2) = \{(0,1/2) \cup (1/2,1], 1/2, \emptyset, \Omega\}$.
- 3. $X_3(\omega) = 1_{\mathbb{Q}}(\omega)$. Note, X_3 has range $\{0,1\}$, then $X_1^{-1}(\{0\}) = \{\mathbb{Q}\}$, $X_1^{-1}(\{1\}) = \{\mathbb{Q}^c \cap (0,1]\}$. So $\sigma(X_3) = \{\mathbb{Q}, \mathbb{Q}^c \cap (0,1], \emptyset, \Omega\}$. where $\mathbb{Q} \in (0,1]$ are rational numbers in (0,1].