S&DS 365 / 665 Intermediate Machine Learning

Variational Inference and VAEs

March 9

Reminders

- Assignment 2 due today at midnight
- Practice midterm posted tomorrow
- Multiple review sessions

For Today

- Variational inference: The ELBO
- Derivations (partial) and examples
- Variational autoencoders (VAEs)

Inverting generative models

Template for generative model:

- ↑ Choose Z
- ② Given z, generate (sample) X

We often want to invert this:

- Given x
- What is Z that generated it?

Inverting models

Bayesian setup:

- **1** Choose θ
- 2 Given θ , generate (sample) X

Posterior inference:

- Given x
- **2** What is θ that generated it?

Approximate inference

If we have a random vector $Z \sim p(Z \mid x)$, we might want to compute the following:

- marginal probabilities $\mathbb{P}(Z_i = z \mid x)$
- marginal means $\mathbb{E}(Z_i = z \mid x)$
- most probable assignments $z^\star = \operatorname{\mathsf{arg}} \max_{Z} \mathbb{P}(\{Z_i = z_i\} \,|\, x)$
- maximum marginals $z_i^* = \arg \max_{z_i} \mathbb{P}(Z_i = z_i \mid x)$
- joint probability $\mathbb{P}(Z \mid x)$
- joint mean $\mathbb{E}(Z \mid x)$

Each of these quantities is intractable to calculate exactly, in general.

6

Variational methods

- Gibbs sampling is stochastic approximation
- Variational methods iteratively refine deterministic approximations
- Variational and Markov chain approximations originated in physics

Example 1: Interacting particles

We have a graph with edges E and vertices V. Each node i has a random variable Z_i that can be "up" (Z_i) or "down" $(Z_i = 0)$

$$\mathbb{P}_{\beta}(z_1,\ldots,z_n) \propto \exp\left(\sum_{s\in V} \beta_s z_s + \sum_{(s,t)\in E} \beta_{st} z_s z_t\right)$$

This is called an "Ising model" and is central to statistical physics.

8

Example 1: Interacting particles

We have a graph with edges E and vertices V. Each node i has a random variable Z_i that can be "up" (Z_i) or "down" $(Z_i = 0)$

$$\mathbb{P}_{\beta}(z_1,\ldots,z_n) \propto \exp\left(\sum_{s\in V} \beta_s z_s + \sum_{(s,t)\in E} \beta_{st} z_s z_t\right)$$

E are the set of edges, V are the vertices. Imagine the Z_i are votes of politicians, and the edges encode the social network of party affiliations

8

Stochastic approximation

Gibbs sampler

Iterate until converged:

- **1** Choose vertex $s \in V$ at random
- 2 Sample z_s holding others fixed

$$egin{aligned} heta_{\mathcal{S}} &= \mathsf{sigmoid}\left(eta_{\mathcal{S}} + \sum_{t \in \mathcal{N}(\mathcal{S})} eta_{\mathit{st}} z_{t}
ight) \ Z_{\mathcal{S}} \,|\, heta_{\mathcal{S}} \sim \mathsf{Bernoulli}(heta_{\mathcal{S}}) \end{aligned}$$

Determinnistic approximation

Mean field variational algorithm

Iterate until converged:

- **1** Choose vertex $s \in V$ at random
- 2 Update mean μ_s holding others fixed

$$\mu_{s} = \operatorname{sigmoid}\left(\beta_{s} + \sum_{t \in N(s)} \beta_{st} \, \mu_{t}\right)$$

10

Determinnistic vs. stochastic approximation

- The z_s variables are random
- The μ_s variables are deterministic
- The Gibbs sampler convergence is in distribution
- The mean field convergence is numerical
- The Gibbs sampler approximates the full distribution
- The mean field algorithm approximates the mean of each node

Think of how to interpret this with Z_s the vote of politician s

Example 2: A finite mixture model

Fix two distributions F_0 and F_1 , with densities $f_0(x)$ and $f_1(x)$, and form the mixture model

$$heta \sim \mathrm{Beta}(lpha, eta) \ X \mid heta \sim heta F_1 + (1 - heta) F_0.$$

The likelihood for data x_1, \ldots, x_n is

$$p(x_{1:n}) = \int_0^1 \text{Beta}(\theta \mid \alpha, \beta) \prod_{i=1}^n (\theta f_1(x_i) + (1-\theta) f_0(x_i)) d\theta.$$

Our goal is to approximate the posterior $p(\theta \mid x_{1:n})$

Stochastic approximation

Gibbs sampler

- **1** Sample $Z_i \mid \theta, x_{1:n}$ for i = 1, ..., n
- **2** Sample $\theta \mid z_{1:n}, x_{1:n}$

The first step is carried out by sampling

$$Z_i = \begin{cases} 1 & \text{with probability } \propto \theta f_1(x_i) \\ 0 & \text{with probability } \propto (1 - \theta) f_0(x_i) \end{cases}$$

Stochastic approximation

Gibbs sampler

- **1** Sample $Z_i \mid \theta, x_{1:n}$ for i = 1, ..., n
- **2** Sample $\theta \mid z_{1:n}, x_{1:n}$

The second step is carried out by sampling

$$\theta \sim \text{Beta}\left(\sum_{i=1}^{n} z_i + \alpha, n - \sum_{i=1}^{n} z_i + \beta\right).$$

Posterior over θ is approximated as *mixture* of Beta distributions; number of components is n+1

Variational inference: Strategy

- We'd like to compute $p(\theta, z | x)$, but it's too complicated.
- Strategy: Approximate as $q(\theta, z)$ that has a "nice" form
- q is a function of variational parameters, optimized for each x.
- Maximize a lower bound on p(x).

Variational inference: The ELBO

The ELBO is the following lower bound on $\log p(x)$:

$$\log p(x) = \int \sum_{z} q(z,\theta) \log p(x) d\theta$$

$$= \sum_{z} \int q(z,\theta) \log \left(\frac{p(x,z,\theta) q(z,\theta)}{p(z,\theta \mid x) q(z,\theta)} \right) d\theta$$

$$= \sum_{z} \int q(z,\theta) \log \left(\frac{p(x,z,\theta)}{q(z,\theta)} \right) d\theta + \sum_{z} \int q(z,\theta) \log \left(\frac{q(z,\theta)}{p(z,\theta \mid x)} \right) d\theta$$

$$\geq \sum_{z} \int q(z,\theta) \log \left(\frac{p(x,z,\theta)}{q(z,\theta)} \right) d\theta$$

$$= H(q) + \mathbb{E}_{q}(\log p(x,z,\theta))$$

We maximize this over the parameters of q

Variational inference: The ELBO

The inequality above uses concavity of the logarithm:

$$\log\left(\sum_{\alpha} w_{\alpha} x_{\alpha}\right) \ge \sum_{\alpha} w_{\alpha} \log x_{\alpha}$$

So, if $q_{\alpha} \geq 0$ and $p_{\alpha} \geq 0$ sum (or integrate) to one, then

$$0 = \log \left(\sum_lpha oldsymbol{p}_lpha
ight) = \log \left(\sum_lpha oldsymbol{q}_lpha rac{oldsymbol{p}_lpha}{oldsymbol{q}_lpha}
ight) \geq \sum_lpha oldsymbol{q}_lpha \log \left(rac{oldsymbol{p}_lpha}{oldsymbol{q}_lpha}
ight)$$

Therefore

$$\sum_{lpha} q_lpha \log \left(rac{q_lpha}{p_lpha}
ight) \geq 0$$

16

Variational inference: The ELBO

The ELBO is $H(q) + \mathbb{E}_q(\log p)$

The entropy term H(q) encourages q to be spread out:

The cross-entropy $\mathbb{E}_q \log p$ tries to match q to p

Example 2: A finite mixture model

Fix two distributions F_0 and F_1 , with densities $f_0(x)$ and $f_1(x)$, and form the mixture model

$$heta \sim \mathrm{Beta}(lpha, eta) \ X \mid heta \sim heta F_1 + (1 - heta) F_0.$$

The likelihood for data x_1, \ldots, x_n is

$$p(x_{1:n}) = \int_0^1 \text{Beta}(\theta \mid \alpha, \beta) \prod_{i=1}^n (\theta f_1(x_i) + (1-\theta) f_0(x_i)) d\theta.$$

Our goal is to approximate the posterior $p(\theta \mid x_{1:n})$

Variational approximation

Our variational approximation is

$$q(z,\theta) = q(\theta \mid \gamma_1, \gamma_2) \prod_{i=1}^n q_i^{z_i} (1-q_i)^{(1-z_i)}$$

where $q(\theta \mid \gamma_1, \gamma_2)$ is a Beta (γ_1, γ_2) distribution, and $0 \le q_i \le 1$ are n free parameters.

Need to maximize ELBO $H(q) + \mathbb{E}_q \log p$

Let's sketch part of the calculation

Variational approximation

First, we have

$$\log p(x,\theta,z) = \log p(\theta \mid \alpha,\beta) + \sum_{i=1}^{n} \left\{ \log \left(\theta^{z_i} f_1(x_i) \right) + \log \left(\theta^{1-z_i} f_0(x_i) \right) \right\}$$

Next we use identities such as

$$\mathbb{E}_q \log \theta = \psi(\gamma_1) - \psi(\gamma_1 + \gamma_2)$$

for the digamma function $\psi(\cdot)$.

After some calculus and algebra 💓 , we end up with the following algorithm

Variational algorithm for mixture

Variational inference

Iterate the following steps for variational parameters $q_{1:n}$ and (γ_1, γ_2) :

1 Holding q_i fixed, set $\gamma = (\gamma_1, \gamma_2)$ to

$$\gamma_1 = \alpha + \sum_{i=1}^n q_i$$
 $\gamma_2 = \beta + n - \sum_{i=1}^n q_i$

2 Holding γ_1 and γ_2 fixed, set q_i to

$$q_i = \frac{f_1(x_i) \exp \psi(\gamma_1)}{f_1(x_i) \exp \psi(\gamma_1) + f_0(x_i) \exp \psi(\gamma_2)}$$

After convergence, approximate posterior distribution over θ is

$$\widehat{p}(\theta \mid x_{1:n}) = \mathsf{Beta}(\theta \mid \gamma_1, \gamma_2)$$

Digamma function

 $\psi(x)$ is the digamma function https://en.wikipedia.org/wiki/Digamma_function

Deterministic approximation

- Convergence is numerical, not stochastic
- Posterior is approximated as a single Beta
- Very similar algorithm is used for topic models distribution

Example 3: More general mixtures

$$heta \sim \mathsf{Dirichlet}(lpha_1, \dots, lpha_k)$$
 $X \mid heta \sim heta_1 F_1 + \dots + heta_k F_k$

The likelihood for single data point x is

$$p(x) = \int \text{Dirichlet}(\theta \mid \alpha_1, \dots, \alpha_k) \left(\sum_{j=1}^k \theta_j f_j(x) \right) d\theta.$$

When distributions F_j are learned, this is a "topic model." Variational inference is one of the most useful ways of training topic models

Variational autoencoders

- Variational autoencoders are generative models that are trained using variational inference
- The "decoder" is a neural net that generates from a latent variable
- The "encoder" approximates the posterior distribution with another neural network trained using variational inference

Variational autoencoders

Start with a generative model

$$z \sim N(0, I_K)$$
$$x \mid z = G(z)$$

G(z) is the *generator network* or *decoder*

For example, use a 2-layer network

$$G(z) = A_2 \operatorname{ReLU}(A_1 z + b_1) + b_2$$

Posterior inference

How do we train the generative network?

$$Z \sim N(0, I_k)$$
$$X \mid z = G(z)$$

We want the posterior distribution $p(z \mid x)$

But this is intractable, because $G(\cdot)$ is nonlinear

Approach: Use variational inference

Using variational inference

For variational inference we take

$$q(z \mid x) = N(\mu(x), diag(\sigma^2(x)))$$

where now $\mu_j(x)$ and $\sigma_j^2(x)$ are the *variational parameters* for $j = 1 \dots, k$.

Using neural networks

Rather than estimate $\mu(x)$ for each x, we build an encoder neural network that outputs the mean and variance.

For example:

$$\mu(x) = B_2 \text{ ReLU}(B_1 x + d_1) + d_2$$

and similarly for $\log \sigma^2(x)$.

VAE architecture

Training the neural networks

Decoder network: $z \mapsto x$, weights A, b

Decoder network: $x \mapsto \mu(x)$, $\log \sigma^2(x)$, weights B, d

Train both networks simultaneously, to maximize the ELBO

- Decoder trained with $\mathbb{E}_q \log p(x, Z_s)$ over weights A, b
- Encoder trained with $H(q) + \mathbb{E}_q \log p(x, Z_s)$ over weights B, d

The entropy of a multivariate Gaussian with covariance Σ is $\frac{1}{2} \log |\Sigma| + \text{constant}$

The entropy term here is $\log \sigma^2(x)$, which is taken to be an output of the encoder network.

Using neural networks

Now, approximate $\mathbb{E}_q(\log p(x, Z))$ by sampling (weak law of large numbers)

$$\mathbb{E}_q(\log p(x,Z)) \approx \frac{1}{N} \sum_{s=1}^N \log p(x,Z_s)$$

Problem: The parameters of the recognition network have disappeared!

Solution: Reparameterize the samples by $Z_i = \mu(x) + \sigma(x)\epsilon_i$ where $\epsilon_i \sim N(0, I_k)$.

This is called "the reparameterization trick." D. Kingma and M. Welling, "Autoencoding Variational Bayes," $\verb|https://arxiv.org/abs/1312.6114|.$

Simple example

Suppose $x \mid z \sim N(G(z), I)$ where generator network is

$$G(z) = \text{ReLU}(Az + b).$$

Then $-\log p(x \mid z)$ is

$$\frac{1}{2}\|x - \text{ReLU}(Az + b)\|^2$$

Simple example (continued)

Next, suppose the approximate posterior is

$$q(z \mid x) = N(\mu(x), \sigma^2 I_k)$$

where recognition network is $\mu(x) = \text{ReLU}(Bx + d)$. Then

$$-\mathbb{E}_{q} \log p(x \mid Z) = \frac{1}{N} \sum_{s=1}^{N} \frac{1}{2} \|x - \text{ReLU}(AZ_{s} + b)\|^{2}$$

$$\stackrel{d}{=} \frac{1}{N} \sum_{s=1}^{N} \frac{1}{2} \|x - \text{ReLU}(A(\text{ReLU}(Bx + d) + \epsilon_{s}\sigma(x)) + b)\|^{2}$$

Overall training objective

The (negative) ELBO objective is then

$$\sum_{i=1}^{n} \left\{ \frac{1}{N} \sum_{s=1}^{N} \frac{1}{2} \|x_i - \text{ReLU}(A(\text{ReLU}(Bx_i + d) + \epsilon_s \sigma(x_i)) + b)\|^2 - \log \sigma^2(x_i) \right\}$$

- The entropy term serves to "spread out" the Gaussian in the variational approximation
- This objective is optimized by alternating stochastic gradient steps on the weights in the decoder and encoder networks

Demo

Variational Autoencoder on MNIST data

This is a Tensorflow implementation of Variational Autoencoder (VAE) on MNIST data, based on Auto-Encoding Variational Bayes (Kingma and Welling 2014).

It uses probabilistic encoders and decoders realized by Multilayer Perceptrons (MLP) with a single hidden layer. The VAE was trained incrementally with minibatches using partial fit.

The MNIST dataset, distributed by Yann Lecun's THE MNIST DATARASE of handwritten digits website, consists of pair 'handwritten digit image' and 'label'. The image is a gray scale image with 28 x 28 pixels. Pixel values range from 0 (black) to 255 (white), scaled in the [0, 1] interval. The label is the actual digit, ranging from 10 x) the image represents.

The original notebook was composed by Jan Hendrik Metzen. Modifications were made by Sunnie Kim on May 24th, 2018.

In [1]: import numpy as np import tensorflow as ff import matplotlib.pyplot as plt tmatplotlib inline np.random.seed(0) ff.set random seed(0)

Load MNIST data in a format suited for Tensorflow

The 'input_data' script is available at: https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/examples/tutorials/mnist/input_data.py

In [2]: from tensorflow.examples.tutorials.mnist import input_data
tf.logging.set_verbosity(tf.logging.ERROR)
mnist = input_data.read_data_sets("NNIST_data/", one_hot=True)
n_samples = mnist.train.num_examples

Visualizing a 2-dim latent space

Summary

- Gibbs sampling makes stochastic approximations
- Variational methods make deterministic approximations
- General recipe: Maximize ELBO over variational parameters
- VAEs: Variational mean is output of a second neural network
- Gives a powerful approach to generative modeling