VE203 Review Class Week 7

Tianyi Ge

Fall 2018

Outline

- RC Week 7
 - Induction
 - Counting
 - Group Theory

Pure Set Theory

- The only objects are sets
- Like $\{\emptyset\}$, $\{\{\emptyset\},\emptyset\}$, etc.

Definition

Let V be the set of all sets. I is the set of all sets that have \emptyset as a member.

$$L = \{x \in V | \emptyset \in X\}$$

• (L,\subseteq) is a complete lattice because every subset $A\subseteq L$ has both l.u.b. (\A) and g.l.b (\A) .

Successor Operation

Definition

 $S: V \rightarrow V$.

$$S(x) = x \cup \{x\}, \quad \forall x \in V$$

Definition

 $F: I \rightarrow I$.

$$F(A) = A \cup S"A, \forall A \in L$$

- Successor operation operates sets (object-level).
- F treats A the set of sets (set-level).
- E.g. $S(\emptyset) = \emptyset \cup \{\emptyset\} = \{\emptyset\}$
- E.g. $F(\{\emptyset\}) = \{\emptyset\} \cup \{S(\emptyset)\} = \{\emptyset, \{\emptyset\}\}\}$

A flawed definition of \mathbb{N}

- Further, *F* is order-preserving.
- According to Tarski-Knaster Theorem, F has at least a fixed point, i.e. $F(X) = X \cup S$ " X = X.
- In other words, if you take arbitrary element x in X and do successor operation once, you will find that the result S(x) is still in X.
- We define the \subseteq -least fixed point as \mathbb{N}_{def} .

$$0 := \emptyset$$

$$1 := S(\emptyset) = \{\emptyset\}$$

$$2 := S(S(\emptyset)) = \{\emptyset, \{\emptyset\}\}$$

$$\vdots$$

A flawed definition of \mathbb{N}

Example

$$\{0,1,2\} \Leftrightarrow \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}\$$

$$F(\{0,1,2\}) = \{0,1,2,3\}$$

• To get 3, we treat the current set $\{0,1,2\}$ as the new element and put it into our new set.

$$3 \Leftrightarrow \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$$

$$\Downarrow$$

$$\{0, 1, 2, \mathbf{3}\} \Leftrightarrow \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}\}$$
 }

• The natural number matches the cardinality of the corresponding set

- 4 中 4 伊 4 伊 4 伊 4 伊 4 伊 4

A flawed definition of \mathbb{N}

- Now we know that $F(\mathbb{N}_{def}) = \mathbb{N}_{def}$
- \mathbb{N}_{def} is the \subseteq -least fixed point, which means any other fixed point X $(\emptyset \in X)$ satisfies that $\mathbb{N}_{def} \subseteq X$.

Theorem

The order < is a well ordering of \mathbb{N}_{def} .

Theorem

 \mathbb{N}_{def} satisfies the principle of induction: If a property P(x) is such that P(0) holds, and for all n N def, if P(n) holds, then P(n+1) holds, then for all $n \in \mathbb{N}_{def}$, P(n) holds

Principle of Induction in \mathbb{N}_{def}

• If principle of induction does not hold, then for some $n \in \mathbb{N}_{def} P(n)$ does not hold.

Proof.

Let $A=\{n\in\mathbb{N}_{def}|P(n)\}\subset\mathbb{N}_{def}$, also $\emptyset\in A$. Thus A becomes the least fixed point rather than \mathbb{N}_{def} .

Steps for Induction

Steps

- **1** Define the property P(n) properly.
- ② Show that $P(n_0)$ holds. n_0 is not necessarily 0.
- **3** Show that $\forall n \in \mathbb{N}$ with $n \ge n_0$, $P(n) \Rightarrow P(n+1)$. Use the result from P(n) to derive P(n+1).
- Onclusion.

Strong Induction

Steps

- **1** Define A(n) properly.
- 2 Show that $A(n_0)$ holds.
- **3** Show that $\forall n \geq n_0$, if for all $n_0 \leq k \leq n$, A(k) holds, then A(n+1) holds.
- Conclusion.
- Strong induction allows using all the proved previous conclusions to derive the next, rather than only the previous one.

Recursive Defined Functions

- $f(0) = n_0$ (initial condition).
- ② G(n, f(n)) = (n+1, f(n+1)) (rule).
- $3 X = \{ R \in \mathcal{P}(\mathbb{N} \times \mathbb{N}) | (0, n_0) \in R \}$
- **③** X is a complete lattice because arbitrary set $A \subseteq X$ satisfies that $\bigwedge A = \bigcap A$ and $\bigvee A = \bigcup A$ ((0, n_0) ∈ $\bigcap A$).
- **⑤** $F: X \to X$ with $F(R) = R \cup G''R$ is order preserving $(R \subseteq T \Rightarrow F(R) \subseteq F(T))$.
- **1** There exists a least f in X s.t. $F(f) = f \cup G''f = f$ (why least?).
- **1** Thus f represents $\{(0, f(0)), (1, f(1)), \ldots\}$.

Structural Induction

Definition

- A is \subseteq -least, $B \subseteq A$, A is closed under C_1, \dots, C_n .
- For all $b \in B$, P(b) holds
- For all a_1, \dots, a_m and c and $1 \le i \le n$, if $P(a_1), \dots, P(a_m)$ all hold and c is obtained from a_1, \dots, a_m by a single application of C_i , then P(c) holds
- Use part of the proved conclusions to derive the next one. The index of next conclusion is determined by some defined principle C_i .

Outline

- RC Week 7
 - Induction
 - Counting
 - Group Theory

Subsets of size *k*

Definition

Let A be a finite set and $0 \le k \le |A|$, then

$$\mathscr{P}_k(A) = \{x \in \mathscr{P}(A) | |x| = k\}$$

Definition

$$\binom{n}{k} = |\mathscr{P}_k([n])|, \quad 0 \le k \le n$$

- The notation $\binom{n}{m}$ is more powerful than C_n^m .
- Please notice the order of n and m.

Pascal's Triangle

Lemma

For all $n \in \mathbb{N}$ and for all $0 \le k \le n$, $\binom{n}{k} = \binom{n}{n-k}$

Theorem

For all $n \in \mathbb{N}$ and for all 0 < k < n,

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

• To understand the proof, imagine that you pick a special item and split the items to two parts.

Binomial Theorem

Theorem

For $n \in \mathbb{N}$ with $n \geq 1$,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

You can prove by induction.

Corollary

$$(1+y)^n = \sum_{k=0}^n \binom{n}{k} y^k$$
$$\sum_{k=0}^n \binom{n}{k} = 2^n$$

Other finite sets

Theorem

$$|\mathscr{P}_n([2n])| = \sum_{k=0}^n \binom{n}{k}^2$$

To understand the proof, remind Cauchy Product.

Theorem

$$|\mathscr{P}([n])| = 2^n$$

Counting

Theorem

The number of solutions to the equation $x_1 + \cdots + x_n = r$ with $x_1, \cdots, x_n \in \mathbb{N}$ is

$$\binom{n+r-1}{r}$$

Proof.

Construct a bijection between the set of solutions and $\mathcal{P}_{n-1}([n+r-1])$

$$F(x_1, \dots, x_n) = \{x_1, x_1 + x_2 + 1, \dots, n-2 + \sum_{i=1}^{n-1} x_i\}$$

Only consider the subsets of size n-1 because x_n is automatically determined after the first n-1 variables are determined.

Counting

- Of course many other methods to prove this are available.
- What if $x_1, \dots, x_n \in \mathbb{N} \setminus \{0\}$?

Example

Prove that if $x_i > 0$, the number of solutions to

$$x_1 + \cdots + x_n = r$$

is equal to

$$\binom{2n+r-1}{r+n}$$

• Hint: denote $y_i = x_i - 1$

Counting

• The problem of $x_1 + \cdots + x_n = r$ is equivalent to deliver r items into *n* different parts.

Theorem

Let $n \in \mathbb{N}$ and 0 < k < n. The number of of ordered k-tuples of distinct elements of [n] is

$$\binom{n}{k} k!$$

- An advanced tool called Generating functions ($\leftarrow Hyperlink$) will greatly enhance your counting abilities. Maybe it will help you with assignments.
- Hyperlink → Ordinary generating functions
- Hyperlink → Exponential generating functions

Generating Functions (Extra Part)

You are not required to understand this page. Only for interests.

Example

If we have many coins. 5 of \$1, 3 of \$2, 2 of \$5. How many compositions do we have to get \$15?

Solution

We define the Ordinary Generating Function for each type of coins:

$$G_1(x) = 1 + x + x^2 + x^3 + x^4 + x^5$$

$$G_2(x) = 1 + x^2 + x^4 + x^6$$

$$G_5(x) = 1 + x^5 + x^{10}$$

The answer is the **coefficient** in front of the term x^{15} in the expansion of $G_1(x)G_2(x)G_5(x)$

Generating Functions (Extra Part)

Solution (continued.)

$$G_1(x)G_2(x)G_5(x)$$
= $(1 + x + x^2 + x^3 + x^4 + x^5)(1 + x^2 + x^4 + x^6)(1 + x^5 + x^{10})$
= $1 + x + 2x^2 + 2x^3 + 3x^4 + 4x^5 + 4x^6 + \dots + 4x^{15} + \dots + x^{21}$

Thus there are 4 compositions in total.

 Although it seems tedious, it's extremely useful when you have infinite coins:

$$G_1(x) = 1 + x + x^2 + x^3 + \dots = \frac{1}{1 - x}$$

Exponential Generating Function is even more interesting.

Outline

- RC Week 7
 - Induction
 - Counting
 - Group Theory

Groups

Figure: The Big Bang Theory Season 11

Groups

Definition

A group is a pair (G,\cdot) where G is a set and $\cdot: G \times G \to G$, called the group operation and pronounced as the product", that satisfies:

- $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- There exists an **identity** $e \in G$ such that for all $x \in G$

$$x \cdot e = e \cdot x = x$$

and for all $x \in G$, there exists the inverse of x: $y \in G$ such that

$$x \cdot y = y \cdot x = e$$

- · is essentially a function and closed on G.
- Is it possible to have two identities? Two inverses?

Abelian Groups

Definition

Let (G,\cdot) be a group, then (G,\cdot) is Abelian if for all $x,y\in G$,

$$x \cdot y = y \cdot x$$

Example

- $(\mathbb{Q}\setminus\{0\},\cdot)$ is an abelian group.
- Let $X = \{x \in \mathbb{C} \mid |x| = 1\}$. (X, \cdot) is an abelian group.
- Let $X = \{f : \mathbb{R} \to \mathbb{R} \mid f(x) = ax, a \neq 0\}$. (X, \circ) is an abelian group.
- Let $X = \{M \text{ is a matrix } | M \text{ is a square matrix with size } n \times n\}$. Is (X, \cdot) a group? What if only inversible $M_{n \times n}$?

Algebra in Groups

Lemma

Let (G, \cdot) be a group. If $a, b, c \in G$ and $a \cdot b = a \cdot c$, then b = c.

Cancellation Law

Corollary

Let (G, \cdot) be a group and $a \in G$. If $a \cdot a = a$, then a = e

Definition

Let $X = \{f : [n] \to [n] | f \text{ is a bijection} \}$. (X, \circ) is called the symmetric group on n elements and is written as S_n .

- Cycle Notation is used to clearly indicate a bijection.
- The Composition of bijections is still a bijection. Using cycle, we see $(k_1 \cdots k_m)(p_1 \cdots p_q)$ (\circ is usually omitted).
- Thus, the multiplication between cycles is essentially the compositions of functions.

Cycles

Example

If $f \in S_6$ is defined as

$$0 \rightarrow 4$$

$$1 \rightarrow 5$$

$$2 \rightarrow 0 \\$$

$$3 \rightarrow 3$$

$$4 \rightarrow 2$$

$$5 \rightarrow 1$$

Then f is written as (15)(042). However, it's not the only expression.

• E.g. (15)(02)(04), (15)(042)(34)(34), (15)(024)(024), ···

Other Groups in Our Life

Example

- If you have a horse on an infinite x y
 map and encode all the eight directions
 that the horse can go...
- If you are interested in rubik's cube, you
 will find that each formula is a cycle,
 which is a bijection of several cubes
 from one position to another. The
 identity is the initial status.

The End

Thank You!