Chapter 12 Entity-Relationship Modeling

Objectives

- What is Entity-Relationship modelling?
- How to use Entity–Relationship (ER) modeling in database design.

COMP211

- Basic concepts associated with ER model.
- Diagrammatic technique for displaying ER model using Unified Modeling Language (UML).

2

What is Entity-Relationship modelling?

- Entity—Relationship (ER) modeling is a topdown database design approach.
- Starts with identification of entities and relationships between the entities, which are of interest to the organization.
- And then applies successive top-down refinements to identify lower-level entities, relationships, and the associated attributes.

3

COMP211

ER diagram of Branch user views of DreamHome (Fig. 12.1)

2

Concepts of the ER Model

- Entity types
- Relationship types
- Attributes

COMP211

Entity Type

- Entity type
 - Group of objects with same properties, identified by enterprise as having an independent existence.
 - The basic concept of ER model.
 - Each uniquely identifiable object of an entity type is referred to as an entity occurrence.

6

- · Entity types
- · Relationship types

Diagrammatic representation of Relationship types Staff and Branch entity types

 Each entity type is shown as a rectangle, labeled with the name of the entity, which is usually a singular noun.

 In UML, the first letter of each word in the entity name is uppercase.

7

COMP211

Entity types

Attributes

Strong and Weak Entity Types

- Strong Entity Type
 - Entity type that is not existence-dependent on some other entity type.
 - A characteristic is that each entity occurrence is uniquely identifiable using the primary key attribute(s) of that entity type.
- Weak Entity Type
 - Entity type that is existence-dependent on some other entity type.
 It cannot exist without the entity with which it has a relationship.
 - Such weak entity has a primary key that is partially or totally derived from the owner entity in the relationship.
 - A characteristic is that each entity occurrence has a mandatory foreign key — a foreign key attribute that cannot be null.

8

Relationship types

Example on Strong and Weak entity type

Entity types
 Relationship types
 Attributes

Weak entity

- Note that there is no primary key for the Preference entity.
- We can uniquely identify each preference only through the relationship that a preference has with a client who is uniquely identifiable using the primary key for the Client entity type, namely clientNo.

Strong entity

 In the example, the Preference entity is described as having existence dependency for the Client entity, which is referred to as being the owner entity.

9 COMP211

Other Examples of weak entity types

- Entity types
 Relationship types
 Attributes
- Can you think of any other examples of weak entities?
 - A company insurance policy insures an employee and any dependents, the DEPENDENT cannot exist without the EMPLOYEE; that is, a person cannot get insurance coverage as a dependent unless the person is a dependent of an employee. DEPENDENT is the weak entity in the relationship "EMPLOYEE has DEPENDENT".
 - An Order has OrderItems

10

Relationship Types

- Relationship types
- Δttributes

- Relationship type
 - Set of meaningful associations among entity types.
 - Each relationship type is given a name that describes its function.
 - A uniquely identifiable association which includes one occurrence from each participating entity type is called relationship occurrence.

11

COMP211

Semantic net of *Has* relationship type

- Entity types
- · Relationship types
- Attributes

12

ER diagram of Branch *Has* Staff relationship

- Entity types
 Relationship types
 Attributes
- The concepts of ER model can be used to represent the relationships between entities.
- Each relationship type is shown as a line connecting the associated entity types and labeled with the name of the relationship.
- Usually, a relationship name is a verb, with the first letter of each word shown in upper case.
- An arrow symbol is placed beside the relationship name indicating the correct direction.
- Whenever possible, a relationship name should be unique for a given ER model.

Entity types
 Relationship types
 Attributes

13

Degree of Relationship Types

- Number of participating entity types (also referred to as <u>participants</u>) in a relationship is called the <u>degree of relationship type</u>.
- Relationship of degree
 - two is binary
 - three is ternary
 - four is quaternary.

14

Recursive Relationship

- Recursive Relationship
 - Relationship type where the same entity type participates more than once in different roles.
 - Sometimes called *unary* relationships.
- Relationships may be given role names to indicate the purpose that each participating entity type plays in a relationship.

18 COMP211

Entity types

· Relationship types

Attributes

Attributes

- Entity typesRelationship types
- Attributes

- Attribute
 - Property of an entity or a relationship type.
- Attribute Domain
 - Data type and set of allowable values for one or more attributes.
- Simple Attribute
 - Attribute composed of a single component with an independent existence. E.g. salary
- Composite Attribute
 - Attribute composed of multiple components, each with an independent existence.
 - For example, address attribute can be subdivided into street, city.

COMP211

21

- Entity types
- · Relationship types
- Attributes

Multi-valued Attributes

- Single-valued Attribute
 - Attribute that holds a single value for each occurrence of an entity type.
 - For example, each occurrence of Branch entity type has a single value for the branch number.
- Multi-valued Attribute
 - Attribute that holds multiple values for each occurrence of an entity type.
 - For example
 - each occurrence of the Branch entity type can have multiple values for the telNo attribute;
 - a person may have several college degrees
 - A multi-valued attribute may have a set of numbers with upper and lower limits.

22

Derived Attributes

- Entity typesRelationship types
- Attributes

Derived Attribute

- Attribute that represents a value that is derivable from the value of a related attribute, or set of attributes, not necessarily in the same entity type.
- For example,
 - the duration attribute of the Lease entity is calculated from the rentStart and rentFinish attributes
 - an employee's age may be found by computing the integer value of the difference between the current date and employee's date of birth

23

COMP211

- Entity types
- · Relationship types
- Attributes

Storing Derived Attributes?

- Should Derived Attribute be stored?
 - The decision to store derived attributes in database tables depends on the processing requirements and the constraints placed on a particular application. The designer should be able to balance the design in accordance with such constraints.

	DERIVED ATTRIBUTE						
	STORED	NOT STORED					
Advantage	Saves CPU processing cycles	Saves storage space					
	Saves data access time	Computation always yields current value					
	Data value is readily available						
	Can be used to keep track of historical data						
Disadvantage	Requires constant maintenance to ensure	Uses CPU processing cycles					
	derived value is current, especially if any values	Increases data access time					
	used in the calculation change	Adds coding complexity to queries					

COMP211

24

ER diagram of Staff and Branch entities and their attributes

Attributes on Relationships

- The presence of one or more attributes assigned to a relationship may indicate that the relationship conceals an unidentified entity type.
- The diagram shows a relationship called Advertises with attributes dateAdvert and cost.

 Newspaper advertises property for rent Propriet Proprie
- The presence of these two attributes on the relationship indicates the presence of an entity called Advert.

26 COMP211

Entity types

· Relationship types

PropertyForRent

propertyNo

dateAdvert

Attributes

Examples of Attributes on Relationships

- Entity types
- Relationship types
 Attributes
- Can you think of any other examples of attributes on relationships?
 - A student enrolls in courses
 - A customer books flight tickets

27

COMP211

Different ER notation

Structural Constraints

- Main type of constraint on relationships is called multiplicity.
- Multiplicity
 - number (or range) of possible occurrences of an entity type that may relate to a single occurrence of an associated entity type through a particular relationship.
 - Represents policies (called business rules) established by user or enterprise.

29

COMP211

Structural Constraints (cont'd)

- The most common degree for relationships is binary.
- Binary relationships are generally referred to as being:
 - one-to-one (1:1)
 - one-to-many (1:*)
 - many-to-many (*:*)
- Examples:
 - A member of staff manages a branch (1:1)
 - A member of staff oversees properties for rent (1:*)
 - Newspapers advertise properties for rent (*:*)

30

One-to-Many (1:*) Relationships

Staff oversees PropertyForRent

K —	s	taffNo	fName	IName	position	sex	ОВ	sala	ry branch	1140	Foreign key implementation	
Selation	S	L21	John	White	Manager	M 1	-Oct-45	3000	0 B005	•	"each property is overseen by 01	
	l s	G37	Ann	Beech	Assistant	F 1	0-Nov-60	1200	0 B003	- 1		
	G14	David	Ford	Supervisor	M 2	4-Mar-58	1800	0 B003		staff", thus		
	S	49	Mary	Howe	Assistant	F 1	9-Feb-70	900	0 B007	- 1	allowing nulls to	
	S	G5	Susan	Brand	Manager	F 3	-Jun-40	2400	0 B003	ľ	exist.	
	S	.41	Julie	Lee	Assistant	F 1	3-Jun-65	900	0 B005			
Property	ForF	Pont										
ALLESSAN S		Cont					ment auto	ne ler	dend with		a tomo de de	
property	0.00	street	L.	city	postcode	type	rooms	rent	ownerNo	staff	No branchN	
property PA14	0.00	and the last	BKIDANS	city	10 107 7	type	PACE AND DESCRIPTION	rent 650	ownerNd	staff SA9	No branchN B007	
10000000	0.00	street	lhead	No. of the last of	10 107 7	1000000	PACE AND DESCRIPTION		CT VEGUE		B007	
PA14	0.00	street 16 Ho 6 Argy	lhead	Aberdeen	AB7 5SU	House	6	650	CO46	SA9	B007	
PA14 PL94	0.00	street 16 Ho 6 Argy 6 Law	lhead yll St	Aberdeen London	AB7 5SU NW2	House	6 4	650 400	CO46 CO87	SA9	B007 B005 B003	
PA14 PL94 PG4	0.00	street 16 Ho 6 Argy 6 Law	olhead vll St rence St nor Rd	Aberdeen London Glasgow	AB7 5SU NW2 G11 9QX	House Flat Flat	6 4 3 3	650 400 350	CO46 CO87 CO40	SA9 SL41	B007 B005 B003 B003	

One-to-Many (1:*) Relationships (cont'd)

- If we know the actual minimum and maximum values for the multiplicity, we can display these instead.
- For example, if a member of staff oversees a minimum of zero and a maximum of 100 properties for rent, we can write "0..*" with "0..100"

34 COMP211

33

Many-to-Many (*:*) Relationships ER diagram showing 'Each newspaper the multiplicity of the Each property for rent is advertises one or more advertised in zero or Newspaper Advertises more newspapers properties for rent' PropertyForRent manyto-many (*:*) relationship. PropertyForRent Newspaper Advertises ► newspaperName propertyNo

COMP211

Question to Reflect on

- Compare the difference between the two models we have discussed:
 - Relational model
 - Entity-relationship model

Summary

We have covered the following:

- Binary relationships
 - One-to-one (1:1)
 - One-to-many(1:*)
 - Many-to-many (*:*)

• Terms:

Composite attribute, Multi-valued attribute, Derived attribute

37