On the deletion channel with small deletion probability

Yashodhan Kanoria

Stanford University

joint work with Andrea Montanari

Outline

Introduction

Main results

Proof Sketch

Outline

Introduction

2 Main results

3 Proof Sketch

The deletion channel

- n input bits X^n , each bit deleted independently w.p. d
- Output $Y(X^n)$ of length Binomial(n, 1 d)

The deletion channel

- n input bits X^n , each bit deleted independently w.p. d
- Output $Y(X^n)$ of length Binomial(n, 1 d)

```
X^n: 1 1 1 0 1 1 0 0 0 1 0 ...
```

The deletion channel

- n input bits X^n , each bit deleted independently w.p. d
- Output $Y(X^n)$ of length Binomial(n, 1 d)

Capacity of the deletion channel

$$C_n = \frac{1}{n} \max_{p_{X^n}} I(X^n; Y(X^n))$$

Lemma (Dobrushin '67)

 $\lim_{n\to\infty} C_n$ exists and is equal to $\inf_{n\geq 1} C_n$.

Define capacity C as this limit.

Capacity of the deletion channel

$$C_n = \frac{1}{n} \max_{p_{X^n}} I(X^n; Y(X^n))$$

Lemma (Dobrushin '67)

 $\lim_{n\to\infty} C_n$ exists and is equal to $\inf_{n\geq 1} C_n$.

Define capacity C as this limit.

Problems:

- Don't know how to compute capacity
- Optimal p_{X^n} not known for any d > 0

What's so hard?

LACK OF SYNCHRONIZATION!

Problems:

- Don't know how to compute capacity
- Optimal p_{X^n} not known for any d > 0

What's so hard?

LACK OF SYNCHRONIZATION!

Problems:

- Don't know how to compute capacity
- Optimal p_{X^n} not known for any d > 0

What's so hard?

LACK OF SYNCHRONIZATION!

Bounds on Capacity

- $(1-d)/9 \le C \le (1-d)$ [Mitzenmacher et al '06]
- Upper bounds: augmented channels [Diggavi et al '07, Fertonani-Duman '09].
- Best computed lower bds: Markov sources + Jigsaw decoding [Mitzenmacher-Drinea '07]

New Idea

New Idea

I know how to solve d = 0!

New Idea

I know how to solve d = 0!

Can we expand C for $d \rightarrow 0^+$?

Optimal input distribution for small d?

- [Kalai, Mitzenmacher & Sudan, ISIT '10] addresses same problem!
- Shows $C = 1 d \log(1/d) + o(d \log(1/d))$
- Very different proof technique

We obtain in addition:

- (i) Order d term (in paper)
- (ii) Order d^2 term and optimal coding scheme (updated result)

- [Kalai, Mitzenmacher & Sudan, ISIT '10] addresses same problem!
- Shows $C = 1 d \log(1/d) + o(d \log(1/d))$
- Very different proof technique

We obtain in addition:

- (i) Order d term (in paper)
- (ii) Order d^2 term and optimal coding scheme (updated result)

- [Kalai, Mitzenmacher & Sudan, ISIT '10] addresses same problem!
- Shows $C = 1 d \log(1/d) + o(d \log(1/d))$
- Very different proof technique

We obtain in addition:

- (i) Order *d* term (in paper)
- (ii) Order d^2 term and optimal coding scheme (updated result)

Outline

1 Introduction

2 Main results

3 Proof Sketch

Main result: Capacity expansion

Result in our ISIT paper:

Theorem

For small d,

- $C(d) = 1 d \log(1/d) A_1 d + O(d^{1.4})$ where $A_1 = \log(2e) \sum_{\ell=1}^{\infty} 2^{-\ell-1} \ell \log_2 \ell \approx 1.154$
- ② The iid Bernoulli(1/2) process achieves rate $C O(d^{1.4})$.

Main result: Capacity expansion

Result in our ISIT paper:

Theorem

For small d,

- $C(d) = 1 d \log(1/d) A_1 d + O(d^{1.4})$ where $A_1 = \log(2e) \sum_{\ell=1}^{\infty} 2^{-\ell-1} \ell \log_2 \ell \approx 1.154$
- ② The iid Bernoulli(1/2) process achieves rate $C O(d^{1.4})$.

But the expansion can go further!

Main result: Capacity expansion

Updated result:

Theorem

For small d,

$$C(d) = 1 - d \log(1/d) - A_1 d + A_2 d^2 + O(d^{2.9})$$
where $A_1 = \log(2e) - \sum_{\ell=1}^{\infty} 2^{-\ell-1} \ell \log_2 \ell \approx 1.154$
 $A_2 = \dots \text{ (multi-line expression)} \approx 1.792$

2 The process X^* (coming up!) achieves $C - O(d^{2.9})$.

- Previous best upper bound off by $(1/4)d \log(1/d)$
- Previous computed lower bound off by 0.904d²:
 Bounds based on Markov sources + Jigsaw decoding
 [Diggavi et al '01, Mitzenmacher-Drinea '07]

Fact

• The maximum rate achieved by a first order Markov source is

$$R_{\rm Mkv} = C - 0.100d^2 + O(d^{2.9})$$

• 'Jigsaw decoding' incurs asymptotic rate loss of $0.804d^2 + O(d^{2.9})$.

Thus, previous computed lower bounds off by 0.904d² asymptotically.

- Previous best upper bound off by $(1/4)d \log(1/d)$
- Previous computed lower bound off by 0.904d²:
 Bounds based on Markov sources + Jigsaw decoding
 [Diggavi et al '01, Mitzenmacher-Drinea '07]

Fact

• The maximum rate achieved by a first order Markov source is

$$R_{\rm Mkv} = C - 0.100d^2 + O(d^{2.9})$$

• 'Jigsaw decoding' incurs asymptotic rate loss of $0.804d^2 + O(d^{2.9})$.

Thus, previous computed lower bounds off by 0.904d² asymptotically

- Previous best upper bound off by $(1/4)d \log(1/d)$
- Previous computed lower bound off by 0.904d²:
 Bounds based on Markov sources + Jigsaw decoding
 [Diggavi et al '01, Mitzenmacher-Drinea '07]

Fact

• The maximum rate achieved by a first order Markov source is

$$R_{\rm Mkv} = C - 0.100d^2 + O(d^{2.9})$$
.

• 'Jigsaw decoding' incurs asymptotic rate loss of $0.804d^2 + O(d^{2.9})$.

Thus, previous computed lower bounds off by 0.904d2 asymptotically

- Previous best upper bound off by $(1/4)d \log(1/d)$
- Previous computed lower bound off by 0.904d²:
 Bounds based on Markov sources + Jigsaw decoding
 [Diggavi et al '01, Mitzenmacher-Drinea '07]

Fact

• The maximum rate achieved by a first order Markov source is

$$R_{\rm Mkv} = C - 0.100d^2 + O(d^{2.9})$$
.

• 'Jigsaw decoding' incurs asymptotic rate loss of $0.804d^2 + O(d^{2.9})$.

Thus, previous computed lower bounds off by 0.904d² asymptotically.

Capacity Expansion

Capacity Expansion

d	LB	C_{exp} upto d^2	$C_{\rm exp}$ upto d	UB
0.05	0.7283	0.7307	0.7262	0.8160
0.10	0.5620	0.5703	0.5524	0.6890
0.15	0.4392	0.4566	0.4163	0.5790

• 'Runs' of 0s and 1s

- $L \equiv$ Length of randomly selected run in stationary X
- \mathbb{X} is iid Bernoulli(1/2): $L \sim \text{Geo}(1/2)$, i.e. $p_L(\ell) = 2^{-\ell}$.

• 'Runs' of 0s and 1s

- $L \equiv \text{Length of randomly selected run in stationary } X$
- X is iid Bernoulli(1/2): $L \sim \text{Geo}(1/2)$, i.e. $p_L(\ell) = 2^{-\ell}$

• 'Runs' of 0s and 1s

```
\mathcal{R}_1 \mathcal{R}_2 \mathcal{R}_3 \mathcal{R}_4 \mathcal{R}_5 ... 0 1 1 1 0 1 1 0 0 0 1 0 ...
```

- $L \equiv \text{Length of randomly selected run in stationary } X$
- \mathbb{X} is iid Bernoulli(1/2): $L \sim \text{Geo}(1/2)$, i.e. $p_L(\ell) = 2^{-\ell}$.

Input distribution to achieve d^2 term:

Theorem

The stationary process X^* consisting of iid runs with distribution

$$p_L^*(\ell) = 2^{-\ell} \big(1 + d(\ell \ln \ell - c\ell) \big)$$

(where
$$c = \sum_{\ell=1}^{\infty} 2^{-\ell-1} \ell \ln \ell \approx 0.893$$
.) achieves rate $R_* = C - O(d^{2.9})$.

First optimal coding result for deletion channel

Input distribution to achieve d^2 term:

Theorem

The stationary process X^* consisting of iid runs with distribution

$$p_L^*(\ell) = 2^{-\ell} \big(1 + d(\ell \ln \ell - c\ell) \big)$$

(where
$$c = \sum_{\ell=1}^{\infty} 2^{-\ell-1} \ell \ln \ell \approx 0.893$$
.) achieves rate $R_* = C - O(d^{2.9})$.

First optimal coding result for deletion channel.

Outline

Introduction

2 Main results

Proof Sketch

Theorem

For small d and any $\epsilon > 0$,

$$C(d) = 1 - d \log(1/d) - 1.154 d + O(d^{1.4})$$

and the iid Bernoulli(1/2) process achieves rate $C - O(d^{1.4})$.

Preliminaries

Lemma

Stationary ergodic sources suffice to achieve C.

$$I(X^n; Y(X^n)) = H(Y) - H(Y|X^n)$$

Let $D^n \equiv$ channel realization.

$$H(Y|X^n) = H(D^n, Y|X^n) - H(D^n|X^n, Y)$$

= $nh(d) - H(D^n|X^n, Y)$

since $Y = f(X^n, D^n)$, and D^n is iid Bernoulli(d) independent of X^n .

Main problem: $H(D^n|X^n, Y)$

$$I(X^n; Y(X^n)) = H(Y) - H(Y|X^n)$$

Let $D^n \equiv$ channel realization.

$$H(Y|X^n) = H(D^n, Y|X^n) - H(D^n|X^n, Y)$$

= $nh(d) - H(D^n|X^n, Y)$

since $Y = f(X^n, D^n)$, and D^n is iid Bernoulli(d) independent of X^n .

Main problem: $H(D^n|X^n, Y)$

$$I(X^n; Y(X^n)) = H(Y) - H(Y|X^n)$$

Let $D^n \equiv$ channel realization.

$$H(Y|X^n) = H(D^n, Y|X^n) - H(D^n|X^n, Y)$$

= $nh(d) - H(D^n|X^n, Y)$

since $Y = f(X^n, D^n)$, and D^n is iid Bernoulli(d) independent of X^n .

Main problem: $H(D^n|X^n, Y)$

$$I(X^n; Y(X^n)) = H(Y) - H(Y|X^n)$$

Let $D^n \equiv$ channel realization.

$$H(Y|X^n) = H(D^n, Y|X^n) - H(D^n|X^n, Y)$$

= $nh(d) - H(D^n|X^n, Y)$

since $Y = f(X^n, D^n)$, and D^n is iid Bernoulli(d) independent of X^n .

Main problem: $H(D^n|X^n, Y)$.

What is conditional entropy rate $\lim_{n\to\infty} H(D^n|X^n,Y)/n$?

 X^n : 1 1 1 0 1 1 0 0 0 1 0 ...

 $Y(X^n)$: 1 1 1 1 0 1 0 ...

What is conditional entropy rate $\lim_{n\to\infty} H(D^n|X^n,Y)/n$?

What is conditional entropy rate $\lim_{n\to\infty} H(D^n|X^n,Y)/n$?

What is conditional entropy rate $\lim_{n\to\infty} H(D^n|X^n, Y)/n$?

What is conditional entropy rate $\lim_{n\to\infty} H(D^n|X^n, Y)/n$?

Key Lemma

Lemma

$$\lim_{n\to\infty}\frac{1}{n}H(D^n|X^n,Y(X^n))=d\frac{\mathbb{E}[L\log L]}{\mathbb{E}[L]}+O(d^{1.9})$$

provided $\mathbb{E}[L^2 \log L] < d^{-0.05}$.

- Lemma holds uniformly for all processes X
- Key to showing both achievability and upper bound

Key Lemma

Lemma

$$\lim_{n\to\infty}\frac{1}{n}H(D^n|X^n,Y(X^n))=d\frac{\mathbb{E}[L\log L]}{\mathbb{E}[L]}+O(d^{1.9})$$

provided $\mathbb{E}[L^2 \log L] < d^{-0.05}$.

- Lemma holds uniformly for all processes X.
- Key to showing both achievability and upper bound.

Simple case: no runs of length 1.

Imagine no run in X^n has > 1 deletion in total

Simple case: no runs of length 1.

Imagine no run in X^n has > 1 deletion in total.

Simple case: no runs of length 1.

Imagine no run in X^n has > 1 deletion in total.

No run disappears completely

Given $(X^n, Y(X^n))$

- We know which runs have (one) deletion
- Each bit of run equally likely candidate for deletion

Simple case: no runs of length 1.

Imagine no run in X^n has > 1 deletion in total.

No run disappears completely

Given $(X^n, Y(X^n))$

- We know which runs have (one) deletion
- Each bit of run equally likely candidate for deletion

Simple case: no runs of length 1.

Imagine no run in X^n has > 1 deletion in total.

No run disappears completely

Given $(X^n, Y(X^n))$:

- We know which runs have (one) deletion
- Each bit of run equally likely candidate for deletion

Simple case: no runs of length 1.

Imagine no run in X^n has > 1 deletion in total.

No run disappears completely

$$X^{n}$$
: $\begin{bmatrix} \mathcal{R}_{1} & \mathcal{R}_{2} & \mathcal{R}_{3} & \mathcal{R}_{4} \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & \dots \end{bmatrix}$
 $Y(X^{n})$: $\begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & \dots \\ S_{1} & S_{2} & S_{3} & S_{4} & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

Given $(X^n, Y(X^n))$:

- We know which runs have (one) deletion
- Each bit of run equally likely candidate for deletion

Simple case: no runs of length 1.

Imagine no run in X^n has > 1 deletion in total.

No run disappears completely

$$X^{n}$$
: $\begin{bmatrix} \mathcal{R}_{1} & \mathcal{R}_{2} & \mathcal{R}_{3} & \mathcal{R}_{4} \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & \dots \end{bmatrix}$
 $Y(X^{n})$: $\begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & \dots \\ S_{1} & S_{2} & S_{3} & S_{4} & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

Given $(X^n, Y(X^n))$:

- We know which runs have (one) deletion
- Each bit of run equally likely candidate for deletion

Simple case: no runs of length 1.

Imagine no run in X^n has > 1 deletion in total.

Run of length ℓ has:

- probability $p_L(\ell)$ of occurring.
- probability $\approx \ell d$ of suffering a deletion.
- Contribution $\log \ell$ to $H(D^n|X^n, Y)$ if deletion

$$\lim_{n\to\infty}\frac{1}{n}H(D^n|X^n,Y) \approx \frac{d}{\mathbb{E}[L]}\sum_{\ell=2}^{\infty}p_L(\ell)\ell\log\ell = d\frac{\mathbb{E}[L\log L]}{\mathbb{E}[L]}$$

Simple case: no runs of length 1.

Imagine no run in X^n has > 1 deletion in total.

Run of length ℓ has:

- probability $p_L(\ell)$ of occurring.
- probability $\approx \ell d$ of suffering a deletion.
- Contribution $\log \ell$ to $H(D^n|X^n, Y)$ if deletion

$$\lim_{n\to\infty}\frac{1}{n}H(D^n|X^n,Y) \approx \frac{d}{\mathbb{E}[L]}\sum_{\ell=2}^{\infty}p_L(\ell)\ell\log\ell = d\frac{\mathbb{E}[L\log L]}{\mathbb{E}[L]}$$

General case

- Only runs of length 1 can disappear
- Runs in Y unambiguously associated with runs in X'

General case

- Only runs of length 1 can disappear
- Runs in Y unambiguously associated with runs in X^n

- We know \mathcal{R}_3 and \mathcal{R}_6 have deletion
- \mathcal{R}_3 has no contribution to $H(D^n|X^n,Y)$

General case

- Only runs of length 1 can disappear
- Runs in Y unambiguously associated with runs in X^n

- We know \mathcal{R}_3 and \mathcal{R}_6 have deletion
- \mathcal{R}_3 has no contribution to $H(D^n|X^n,Y)$

General case

- Only runs of length 1 can disappear
- Runs in Y unambiguously associated with runs in X^n

$$X^{n}$$
: 0 0 1 1 0 1 1 1 0 1 1 1 0 ...

 $Y(X^{n})$: 0 0 1 1 1 1 1 0 1 1 0 ...

 S_{1}
 S_{2}
 S_{3}
 S_{4}
 S_{4}
 S_{5}
 S_{6}
 S_{1}
 S_{1}
 S_{2}
 S_{1}
 S_{2}
 S_{1}
 S_{2}
 S_{1}
 S_{2}
 S_{1}
 S_{2}
 S_{3}
 S_{4}

- We know \mathcal{R}_3 and \mathcal{R}_6 have deletion
- \mathcal{R}_3 has no contribution to $H(D^n|X^n,Y)$

General case

- Only runs of length 1 can disappear
- Runs in Y unambiguously associated with runs in X^n

- We know \mathcal{R}_3 and \mathcal{R}_6 have deletion
- \mathcal{R}_3 has no contribution to $H(D^n|X^n,Y)$

General case

- Only runs of length 1 can disappear
- Runs in Y unambiguously associated with runs in X^n

- We know \mathcal{R}_3 and \mathcal{R}_6 have deletion
- \mathcal{R}_3 has no contribution to $H(D^n|X^n,Y)$

General case

- Only runs of length 1 can disappear
- Runs in Y unambiguously associated with runs in X^n

- We know \mathcal{R}_3 and \mathcal{R}_6 have deletion
- \mathcal{R}_3 has no contribution to $H(D^n|X^n,Y)$

General case

- Only runs of length 1 can disappear
- Runs in Y unambiguously associated with runs in X^n

- We know \mathcal{R}_3 and \mathcal{R}_6 have deletion
- \mathcal{R}_3 has no contribution to $H(D^n|X^n,Y)$

General case

- Only runs of length 1 can disappear
- Runs in Y unambiguously associated with runs in X^n

- We know \mathcal{R}_3 and \mathcal{R}_6 have deletion
- \mathcal{R}_3 has no contribution to $H(D^n|X^n,Y)$

General case

- Only runs of length 1 can disappear
- Runs in Y unambiguously associated with runs in X^n

- We know \mathcal{R}_3 and \mathcal{R}_6 have deletion.
- \mathcal{R}_3 has no contribution to $H(D^n|X^n,Y)$

General case

- Only runs of length 1 can disappear
- Runs in Y unambiguously associated with runs in X^n

- We know \mathcal{R}_3 and \mathcal{R}_6 have deletion
- \mathcal{R}_3 has no contribution to $H(D^n|X^n,Y)$

General case

- Only runs of length 1 can disappear
- Runs in Y unambiguously associated with runs in X^n

- We know \mathcal{R}_3 and \mathcal{R}_6 have deletion.
- \mathcal{R}_3 has no contribution to $H(D^n|X^n,Y)$.

General case

- Only runs of length 1 can disappear
- Runs in Y unambiguously associated with runs in X^n

```
x_1 x_2 x_3 x_4 x_5 x_6

x_7 : 0 0 1 1 0 1 1 1 0 1 1 1 0 ...

Y(x_7): 0 0 1 1 1 1 1 0 1 1 0 ...
```

- We know \mathcal{R}_3 and \mathcal{R}_6 have deletion.
- \mathcal{R}_3 has no contribution to $H(D^n|X^n,Y)$.

Upper bound

Achievability of
$$1-d\log(1/d)$$
 \Downarrow $H(\mathbb{X}_{ ext{opt}}) > 1-d^{1-\epsilon}$. \Downarrow

 $\mathbb{X}_{\mathrm{opt}}$ is 'close' to Bernoulli(1/2) process.

Conclusion

We obtained for deletion channel with small d:

- Asymptotic expansion of capacity upto order d^2 .
- Optimal coding scheme.

Further directions:

- Explicit upper and lower bounds.
- Next terms in expansion.
- Is the series convergent?
- Series expansion for other 'hard' channels ... ?

Conclusion

We obtained for deletion channel with small d:

- Asymptotic expansion of capacity upto order d^2 .
- Optimal coding scheme.

Further directions:

- Explicit upper and lower bounds.
- Next terms in expansion.
- Is the series convergent?
- Series expansion for other 'hard' channels ... ?

Conclusion

We obtained for deletion channel with small d:

- Asymptotic expansion of capacity upto order d^2 .
- Optimal coding scheme.

Further directions:

- Explicit upper and lower bounds.
- Next terms in expansion.
- Is the series convergent?
- Series expansion for other 'hard' channels ... ?

THANK YOU!