#### 1

# AI1103 Assignment 7

## Nagubandi Krishna Sai MS20BTECH11014

Download LaTex file from below link:

https://github.com/KRISHNASAI1105/demo/blob/main/Assignment\_7/LaTex/Assignment\_7.tex

## Problem number CSIR UGC NET 2014 Q.106

Consider a Markov chain with state space 1,2,...,100. Suppose states 2i and 2j communicate with each other and states 2i-1 and 2j-1 communicate with each other for every i,j = 1,2,...,50. Further suppose that  $p_{3,3}^{(2)} > 0, p_{4,4}^{(3)} > 0$  and  $p_{2,5}^{(7)} > 0$ . Then

- 1) The Markov chain is irreducible.
- 2) The Markov chain is aperiodic.
- 3) State 8 is recurrent.
- 4) State 9 is recurrent.

### Solution

**Definition 1.** We say that Markov chain is irreducible if and only if all states belong to one communication class and all states communicate with each other.

**Definition 2.** In an irreducible chain all states belong to a single communicating class. This means that, if one of the states in an irreducible Markov chain is aperiodic. Then, all the remaining states are also aperiodic.

- 1) If  $p_{i,j}^{(n)} > 0$ , for  $n \ge 0$ , then we say that the state j is accessible from state i. Communication means state j is accessible from state i and state i is accessible from state j.
- 2) According to the question, all even and odd positioned states communicate with each other

Consider, the communication classes of the given Markov chain as follows:

| Communication class | set of elements |
|---------------------|-----------------|
| $C_1(1)$            | {1,3,5,7,,49}   |
| $C_1(2)$            | {2,4,6,8,,50}   |
| $C_1(51)$           | {51}            |
| $C_1(52)$           | {52}            |
| :                   | :               |
| $C_1(100)$          | {100}           |

TABLE 2: Communication class

... As there are 52 communication classes, the given Markov chain is reducible.



Regarding periodicity,

$$d(K)=gcd(m\geq 1:P_{k,k}^m>0).$$

If d(K) = 1, then the state K is aperiodic. If d(K) = 0, then the state K is periodic.

1) Hence, by the above figure, states from 1 to 50 are recurrent. Because as it is given in question  $p_{2.5}^{(7)} > 0$ , this means that state 5 is accessible from state 2. As all even states communicate with each other, from state 2 the process continues with state 5. As all odd states communicate with each other, this means all the odd states return to their respective states again.

| Periodicity of elements | set of elements |
|-------------------------|-----------------|
| d(1)                    | {1,3,5,7,,49}   |
| d(2)                    | {2,4,6,8,,50}   |

TABLE 1: Periodicity of some of elements of set S

$$d(1) = d(2) = gcd{2,3,...,50} = 1.$$

 $\therefore$  The states 1 to 50 are **Aperiodic**.

$$d(51) = d(52) = \dots = d(100) = 0.$$

.. The states 51 to 100 are **Periodic**. Hence, we can concluded that {1,3,5,7,...,49,51,52,53,....,100} are **recurrent** states. And {2,4,6,8,....,50} are **transient** states. Hence, The given **Markov chain** is **reducible** and not a **aperiodic** chain.

:. Option 4 is a correct answer