CƠ SỞ LOGIC ĐẶC TẢ CỦA OWL

Nhắc lại

- □ OWL dựa trên logic đặc tả
 - Với ngữ nghĩa hình thức ở dang frame
- ☐ OWL tương thích với các đặc tính của RDF(S)
- ☐ 3 dạng:
 - OWL Lite
 - □ Ngôn ngữ ontology đơn giản với cơ chế suy diễn hiệu quả
 - ☐ Không có dữ liệu ở dạng lớp (class)
 - OWL DL
 - □ Ngôn ngữ ontology với cơ chế suy diễn mạnh hơn
 - cho phép tham chiếu đến các kiểu dữ liệu, các URI, bao gồm cả tên từ RDF, RDFS và kiểu dữ liệu lược đồ XML.
 - OWL full
 - □ Ngôn ngữ ontology mạnh nhất
 - □ Không có sự kế thừa

2

Hê CSTT

- Các hệ thống dựa trên các phương pháp và kỹ thuật của TTNT
- ☐ Để thao tác với CSTT
 - Biểu diễn CSTT dựa trên logic hoặc không
- Các hệ thống không dựa trên logic sử dụng các cấu trúc dữ liệu để thao tác với tri thức
 - Các hê thống Frame
 - Mạng ngữ nghĩa
- Các hệ thống dựa trên logic dựa trên biến thể của logic vị từ cấp 1 (first-order logic) hoặc logic khác để thao tác
 - Định nghĩa ngữ nghĩa tốt để suy luận

First Order Logic

Extracts from slides of Bruijn

- "Classical" logic
 - ► Based on propositional logic (Aristotle, ¿300 BC)
 - ► Developed in 19th century (Frege, 1879)
- Semi-decidable logic
 - ► Enumerate all true sentences
 - ▶ If a sentence is false, the algorithm might not terminate
- ▶ FOL is the basis for
 - ► Logic Programming: Horn Logic
 - Description Logics: 2-variable fragment
- ▶ A logic for describing *object*, *functions* and *relations*
 - Objects are "things" in the world: persons, cars, etc.
 - Functions take a number of objects as argument and "return" an object, depending on the arguments: addition, father-of,
 - ▶ Relations hold between objects: distance, marriage, etc.
 - ▶ Often, a function can also be modeled as a relation

FOL syntax (1)

Every constant is a term

a, b, john

Every variable is a term

► X, J

If f is an n-place function symbol and $t_1,...,t_n$ are terms, then $f(t_1,...,t_n)$ is a term

- f(x), f(a), f(g(a))
- ► fatherOf(john), marriedTo(mary)

5

FOL syntax (2)

If p is an n-place predicate symbol and $t_1, ..., t_n$ are terms, then $p(t_1, ..., t_n)$ is an atomic formula

Examples:

- $\triangleright p(x), q(f(a), y)$
- marriage(fatherOf(john), mary, date(2005, 4, 6))

If t_1, t_2 are terms, then $t_1 = t_2$ is an atomic formula

• f(x) = a, marriedTo(mary) = fatherOf(john)

Any atomic formula is a formula

If A, B are formulas and $x_1, ..., x_n$ are variables then:

- $ightharpoonup \neg A$ is a formula
- ▶ $A \land B$ is a formula
- $ightharpoonup A \lor B$ is a formula
- ▶ $A \leftarrow B$ is a formula
- ightharpoonup A
 ightharpoonup B is a formula
- A ↔ B is a formula
- $\forall x_1,...,x_n.A$ is a formula
- $\rightarrow \exists x_1, ..., x_n.A$ is a formula

16.

 $\forall x, y, d.marriage(x, y, d) \rightarrow marriedTo(x) =$

 $y \wedge marriedTo(y) = x$

 $\forall x : number(x) \rightarrow \exists y.y > x$

6

FOL semantics (1)

- ► The meaning of a First-Order formula is assigned using an interpretation
- ▶ An interpretation \mathcal{I} consists of:
 - ▶ Domain ∆: a set of objects
 - ▶ A set of relations $R: \Delta \times ... \times \Delta$
 - ▶ A set of functions $F: \Delta \times ... \times \Delta^n \mapsto \Delta$
 - ► A mapping function · which:
 - ▶ Maps constants to objects: $c^{\mathcal{I}} \in \Delta$
 - ▶ Maps predicate symbols to relations: $p^{\mathcal{I}} \subseteq \Delta^n$
 - ▶ Maps function symbols to functions: $f^{\mathcal{I}} \subset \Delta^n \to \Delta$
- ▶ An interpretation is a *model* of a formula *A* if it makes the formula *true*:
 - $ightharpoonup \mathcal{I} \models A$

7

FOL semantics (2)

FOL semantics (3)

- ▶ We have not discussed semantics of variables
- ▶ Variables have no semantics
- ▶ What to do with variables?
- ► Assign values to variables using an assignment B
 - ▶ e.g., $\{x \mapsto a, y \mapsto john\}$
- ► An interpretation *T* makes a formula *A true* under a variable assignment *B*:
 - $\triangleright \mathcal{I} \models_{\mathcal{B}} A$
- Quantifiers:
 - $ightharpoonup \exists x.A$: there exists an assignment for x which makes A true
 - \blacktriangleright $\forall x.A$: for all possible assignments of x, A is true

9

Ví du

Biểu thức $A = \forall x.man(x) \rightarrow person(x)$

- \square Miền $\triangle = \{b, h, c, d, e\}$
- ☐ Cho phép dich I sau:
 - bill¹ = b, hillary¹ = h, chelsea¹ = c
 - person! = {b, h, c}
 - man¹ = {b}
- ☐ Theo phép dịch đó, biểu thức A có giá trị *true*, vì vậy, I là một mô hình của A
- Nếu chọn l' giống I nhưng man^{1'} = {b,d}, khi đó A có giá trị false, l' không là một mô hình của A

10

Logic mô tả - Description Logics

- □ Dựa trên khái niệm (concept) và vai trò (role)
 - Khái niệm là tập các đối tượng
 - Vai trò là các quan hệ nhị phân trên các đối tượng
- □ DL cho phép xây dựng các khái niệm và vai trò phức tạp từ những cái đơn giản hơn, bao gồm
 - Conjunction, disjunction, negation
 - Một số dạng của lượng từ
- ☐ Là tập con của First Order Logic

.1

Các khái niệm cơ bản của DL

- □ Concepts (classes)
 - vd., Person, Doctor, Parent
- □ Roles (properties)
 - vd., hasChild, hasName, hasAncestor
- □ Individuals (objects)
 - vd., John, Mary, Italy
- □ Constructors
 - Để tạo các khái niệm: vd., cộng gộp, kết nối, tách, ...
 - Để tạo các vai trò (axiom): vd., đảo, đối xứng, ...

Ví dụ về cú pháp và ngữ nghĩa của DL

Semantics given by interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$

Constructor	Syntax	Example	Semantics
atomic concept	A	Human	$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
atomic role	R	has-child	$R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
and for C, D con	cepts and	R a role name	l
conjunction	$C \sqcap D$	Human ⊓ Male	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$
disjunction	$C \sqcup D$	Doctor ⊔ Lawyer	$C^{\mathcal{I}} \cup D^{\mathcal{I}}$
negation	$\neg C$	−Male	$\Delta^{\mathcal{I}} \setminus C$
exists restr.	$\exists R.C$	∃has-child.Male	$\{x \mid \exists y.\langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$
value restr.	$\forall R.C$	∀has-child.Doctor	$\{x \mid \forall y. \langle x, y \rangle \in R^{\mathcal{I}} \implies y \in C^{\mathcal{I}}\}$

13

Các tầng ngôn ngữ trong OWL

- OWL DL
 - Có cách biểu diễn chuẩn trong DL
 - Tương đương với SHOIN
- □ OWL Lite
 - Là tập con "dễ cài đặt" của OWL DL
 - Tương đương với SHIN
- OWL Full
 - là hợp của OWL DL và RDFS
 - Ngữ nghĩa RDF mở rộng với các điều kiện ngữ nghĩa liên quan và các biểu diễn dưới dạng bộ ha

14

OWL Constructs

Constructor	DL Syntax	Example
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$	Human
unionOf	$C_1 \sqcup \ldots \sqcup C_n$	Doctor ⊔ Lawyer
complementOf	$\neg C$	¬Male
oneOf	$\{x_1\} \sqcup \ldots \sqcup \{x_n\}$	{john} ⊔ {mary}
allValuesFrom	$\forall P.C$	∀hasChild.Doctor
someValuesFrom	$\exists P.C$	∃hasChild.Lawyer
maxCardinality	$\leq nP$	≤1hasChild
minCardinality	$\geqslant nP$	≥2hasChild

15

OWL Axioms

Axiom	DL Syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human ⊑ Animal □ Biped
equivalentClass	$C_1 \equiv C_2$	Man ≡ Human ⊓ Male
disjointWith	$C_1 \sqsubseteq \neg C_2$	Male ⊑ ¬Female
sameIndividualAs	$\{x_1\} \equiv \{x_2\}$	${President_Bush} \equiv {G_W_Bush}$
differentFrom	$\{x_1\} \sqsubseteq \neg \{x_2\}$	{john} ⊑ ¬{peter}
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter hasChild
equivalentProperty	$P_1 \equiv P_2$	cost ≡ price
inverseOf	$P_1 \equiv P_2^-$	hasChild ≡ hasParent ⁻
transitiveProperty	$P^+ \sqsubseteq \tilde{P}$	ancestor ⁺ ⊑ ancestor
functionalProperty	$\top \sqsubseteq \leqslant 1P$	T ⊑ ≤1hasMother
inverseFunctionalProperty	$\top \sqsubseteq \leq 1P^-$	T ⊑ ≤1hasSSN ⁻

OWL and DL

- ightharpoonup OWL Lite corresponds to the DL $SHIN(\mathbf{D})$
 - ▶ Named classes (A)
 - ► Named properties (P)
 - ► Individuals (C(o))
 - ► Property values (P(o, a))
 - ▶ Intersection $(C \sqcap D)$
 - **▶** Union(!) (C ⊔ D)
 - ▶ Negation(!) $(\neg C)$
 - ► Existential value restrictions (∃P.C)
 - ▶ Universal value restrictions $(\forall P.C)$
 - ▶ Unqualified number restrictions ($\geq nP$, $\leq nP$, = nP)
- ightharpoonup OWL DL corresponds to the DL $SHOIN(\mathbf{D})$
 - ▶ Property value $(\exists P.\{o\})$
 - ▶ Enumeration $({o_1, ..., o_n})$

17

OWL Species

- OWL Full for users who want maximum expressiveness and the syntactic freedom of RDF
 - E.g., Classes as instances
- Every legal OWL Lite ontology is a legal OWL DL ontology
- □ Every legal OWL DL ontology is a legal OWL Full ontology
- Every OWL (Lite, DL, Full) document is an RDF document, and every RDF document is an OWL Full document
- ☐ But only some RDF documents will be a legal OWL Lite or OWL DL document

18

Syntaxes of OWL

- Abstract syntax
 - Human readable
 - Not defined for OWL Full
- □ RDF/XML
 - Official exchange syntax (for the Semantic Web)
 - Harder for human reading

19

OWL Abstract syntax

- □ DL syntax
 - associateProfessor ⊆ academicStaffMember
 - fullProfessor

 academicStaffMember
 - fullProfessor ⊆ ¬associateProfessor
 - facultyMember = academicStaffMember
- OWL Abstract syntax
 - Class(associateProfessor partial academicStaffMember)
 - Class(fullProfessor partial academicStaffMember)
 - DisjointClasses (fullProfessor associateProfessor)
 - Class(facultyMember complete academicStaffMember)

RDF/XML syntax

21

More example

☐ In DL

Wine ⊆ PotableLiquid ∩ ∀hasMaker.Winery

☐ In abstract syntax

Class (Wine partial intersectionOf (PotableLiquid restriction (hasMaker allValuesFrom (Winery))

))

☐ In RDF/XML

22

Bài tập

- □ "Tác giả" bao gồm tất cả những người viết sách hoặc một phần cuốn sách
- ☐ Tacqia, nguoi, viet, sach, motphancua.sach
- $\ \ \, \square \ \ \, \mathsf{Tacgia} = \mathsf{nguoi} \, \cap \, \, \forall \mathsf{viet.}(\mathsf{sach} \, \cup \exists \mathsf{motphancua.sach})$
- □ Happy parent is a person all of whose children are either Doctors or have a child who is a Doctor
- ☐ {Doctor ⊆ Person,

 $HappyParent \equiv Person \cap \forall hasChild.(Doctor \cup \exists hasChild.Doctor)\}$

Further reading

- ☐ Jos de Bruijn: Using Ontologies. Enabling Knowledge Sharing and Reuse on the Semantic Web. DERI Technical Report DERI-2003-10-29, 2003.
 - http://www.deri.org/publications/techpapers/documents/DERI-TR-2003-10-29.pdf
- □ OWL Guide: http://www.w3.org/TR/owl-guide/
- OWL Reference: http://www.w3.org/TR/owl-ref/
- OWL Abstract syntax and Semantics: http://www.w3.org/TR/owl-semantics/