Balanza de corriente

Alejandro Zubiri

2025-04-01

```
library("knitr")
library("readODS")
data = read_ods("./BalanzaCorriente.ods")
```

Balanza de Corriente

1. Objetivo

- Estudiar la ley de Laplace aplicada a la interacción entre corrientes eléctricas y campos magnéticos.
- Determinar experimentalmente el módulo del campo magnético generado por un imán permanente.
- Observar y analizar el **principio de acción y reacción** de Newton en un sistema magnético.

2. Materiales

- Generador de corriente continua: Para suministrar una corriente estable.
- Balanza digital: Medir variaciones de masa debido a fuerzas magnéticas.
- Soporte y barra metálica: Estructura para fijar componentes.
- Set de circuitos impresos (6 modelos): Diferentes longitudes de conductores para variar el parámetro L.
- Unidad de sujeción: Dispositivo para fijar los circuitos impresos cerca del imán.
- Cables y amperímetro: Conectar y medir la corriente en el circuito.
- Imán permanente: Fuente del campo magnético.

Figura 1: Esquema de los componentes principales: generador, balanza, soporte, circuitos impresos e imán.

3. Fundamentos Teóricos

Ley de Laplace

Cuando un conductor de longitud L, por el que circula una corriente I, se coloca en un campo magnético \vec{B} , experimenta una fuerza magnética \vec{F} . Esta fuerza es perpendicular al plano formado por \vec{B} y el vector longitud \vec{L} , y se expresa como:

$$\vec{F} = I \cdot (\vec{L} \times \vec{B})$$

Donde:

- $-\vec{L}$: Vector con magnitud igual a la longitud del conductor y dirección igual al sentido de la corriente.
- \vec{B} : Campo magnético del imán.

4. Procedimiento Experimental

Montaje Inicial

- 1. Fijación de componentes:
 - Unir la barra metálica a la base del soporte.
 - Enroscar la unidad de sujeción en la barra.
 - Acoplar el circuito impreso seleccionado en la parte frontal de la unidad de sujeción (ver Figura 2).
- 2. Configuración eléctrica:
 - Conectar el generador en modo corriente continua.
 - Colocar el amperímetro en serie entre el generador y la unidad de sujeción (Figura 3).
 - Asegurar que el circuito esté abierto hasta comenzar las mediciones.

Medición de la Masa del Imán

• Pesar el imán con la balanza y registrar su masa (m) junto con la precisión del instrumento.

Colocación del Circuito Impreso

- Posicionar el circuito impreso entre los polos del imán sin contacto físico (Figura 4.a).
- Asegurar que solo la sección horizontal del circuito (dentro del contorno rojo en Figura 4.b) esté expuesta al campo magnético.

Ejecución del Experimento

- 1. Encender el generador para establecer una corriente I en el circuito.
- 2. Registrar la masa aparente (m') mostrada por la balanza, que disminuirá debido a la fuerza de reacción magnética $\vec{F_r}$.

Análisis de Fuerzas

En equilibrio estático, las fuerzas sobre el imán cumplen:

$$\sum \vec{F_i} = \vec{F}_N + \vec{P} + \vec{F}_r = \vec{0}$$

- \vec{F}_N : Fuerza normal de la balanza.
- $\vec{P} = m \cdot q$: Peso del imán.
- $\vec{F_r} = I \cdot L \cdot |\vec{B}|$: Fuerza de reacción (módulo igual a la fuerza magnética).

La relación entre la masa aparente y el campo magnético se obtiene de:

$$m' \cdot g = m \cdot g - I \cdot L \cdot |\vec{B}|$$

Figura 5: Diagrama de fuerzas sobre el imán en equilibrio. # Tratamiento de datos Los datos recogidos fueron los siguientes:

Table 1: Balanza de corriente, variando el circuito.

$\overline{I(A)}$	m (kg)	F (N)	L (m)	Circuito
1.5	0.160270000000000002	1.5705885111510001	7.8000000000000005E-3	SF40
1.5	0.160110000000000003	1.5690205685430001	2.01E-2	SF37
1.5	0.160030000000000001	1.568236597239	2.7525000000000001 E2	SF39
1.5	0.15975999999999999	1.5655906940879998	0.03	SF38
1.5	0.159650000000000001	1.564512733545	3.7749999999999999E-2	SF41
1.5	0.159129999999999999999999999999999999999	1.5594169200689998	0.04	SF42

Sin embargo, antes de representar los datos, vamos a desarrollar la propagación de errores. Tenemos que:

$$F_N = m'g$$

Por tanto, desarrollando, tenemos que:

$$\Delta F_N = \left| \frac{\partial F_N}{\partial m'} \right| \Delta m' + \left| \frac{\partial F_N}{\partial g} \right| \Delta g = g \Delta m' + m' \Delta g$$

Y, sabiendo que $\Delta m' = 0,00001$, y que $\Delta g = 0,0000001$, ya tenemos el error en la fuerza normal F_N . Por otro lado, el error en la longitud del circuito ΔL es $\Delta L = 0.00005$ (m). Ahora podemos representar los datos con los respectivos errores:

```
fn = as.numeric(t.data.frame(data[1:6, 3]))
long = as.numeric(t.data.frame(data[1:6,4]))
plot(long, fn, xlab="Longitud (m)", ylab="F_N (N)")
arrows(
  long,
  fn - as.numeric(t.data.frame(data[1:6,8])),
  fn + as.numeric(t.data.frame(data[1:6,8])),
  angle = 90, # Ángulo de las líneas transversales
  code = 3,
                # Barras en ambos extremos
  length = 0.05, # Longitud de las líneas transversales
  col = "darkred"
arrows(
  long - 0.00005,
  long+0.00005,
  angle=90,
  code=3,
  length=0.05,
  col="darkgreen"
```


Como se puede observar, el error es minúsculo, por lo que los datos son muy representativos, por lo que podemos pasar a realizar el ajuste lineal. ## Ajuste lineal. Teniendo que

$$m'g = mg - ILB$$

deberíamos esperar una ordenada en el origen n=mg, y una pendiente m=IB, de donde podremos obtener el campo magnético generado. Si realizamos este ajuste, obtenemos:

```
m = lm(fn ~ as.numeric(long), data = data)
plot(long, fn, xlab="Longitud (m)", ylab="F_N (N)")
arrows(
  as.numeric(long),
  fn -as.numeric(t.data.frame(data[1:6,8])),
  as.numeric(long),
  fn + as.numeric(t.data.frame(data[1:6,8])),
  angle = 90,
                 # Ángulo de las líneas transversales
  code = 3,
                 # Barras en ambos extremos
  length = 0.05, # Longitud de las líneas transversales
  col = "darkred"
)
arrows(
  long - 0.00005,
  fn,
  long+0.00005,
  fn,
  angle=90,
  code=3,
  length=0.05,
```

```
col="darkgreen",
)
abline(m)
```


Obteniendo una ordenada en el origen de n=1.57431, y una pendiente de -0.297, con un coeficiente de correlación $R^2=0.7213$, obteniendo un error porcentual $\varepsilon=(1-R^2)\cdot 100=27.87\%$. En este caso, la ordenada en el origen representa el peso del objeto. Este peso, cuando se midió en el laboratorio con intensidad nula, resultó ser de mg=1.6041~(N), o una masa $m=\frac{n}{g}=0.160649758$. Comparándolo con este resultado, tenemos el error porcentual:

$$\varepsilon_P = \left| \frac{mg - n}{mg} \right| \cdot 100 = 1.85\%$$

Con esto, podemos pasar a medir el campo magnético. Con la ecuación

$$m = IB$$

Podemos despejar B para obtener

$$B = \frac{m}{I} = \frac{-0.297}{1.5} = -0.198 \ (T)$$

Que es el campo magnético deseado.\ Con esto vamos a pasar a analizar los datos de la balanza de corriente, manteniendo el circuito constante y variando la intensidad. Con esto, se obtuvieron los siguientes datos:

Table 2: Balanza de corriente, variando la intensidad.

$\overline{\mathrm{I}(\mathrm{A})}$	m (kg)	F (N)	L (m)	Circuito
$\overline{I(A)}$	m (kg)	F (N)	L (m)	Circuito
1.75	0.15964	1.5644147371319999	0.03	SF38
2	0.159560000000000001	1.563630765828	0.03	SF38
2.25	0.15947	1.562748798111	0.03	SF38
2.5	0.15936	1.561670837568	0.03	SF38
2.75	0.159260000000000001	1.5606908734380001	0.03	SF38
3	0.15914	1.5595149164819999	0.03	SF38

Antes de representar tenemos que el amperímetro tiene una precisión $\Delta I = 10^{-3} \ (A)$, si representamos F_N frente a I, obtenemos:

```
fn = as.numeric(t.data.frame(data[11:16, 3]))
intens = as.numeric(t.data.frame(data[11:16, 1]))
plot(intens, fn, xlab ="Intensidad (A)", ylab ="Fuerza normal (N)")
arrows(
  intens,
  fn - as.numeric(t.data.frame(data[11:16,8])),
  fn + as.numeric(t.data.frame(data[11:16,8])),
  angle = 90, # Ángulo de las líneas transversales
  code = 3,
               # Barras en ambos extremos
  length = 0.05, # Longitud de las líneas transversales
  col = "darkred"
arrows(
  intens - 0.001,
  intens+0.001,
  fn,
  angle=90,
  code=3,
  length=0.05,
  col="darkgreen"
```


Donde se observa una clara dependencia lineal. Si ahora utilizamos el método de mínimos cuadrados, y representamos dicha recta, obtenemos:

```
fn = as.numeric(t.data.frame(data[11:16, 3]))
intens = as.numeric(t.data.frame(data[11:16, 1]))
plot(intens, fn, xlab ="Intensidad (A)", ylab ="Fuerza normal (N)")
arrows(
  intens,
  fn - as.numeric(t.data.frame(data[11:16,8])),
  intens,
  fn + as.numeric(t.data.frame(data[11:16,8])),
              # Ángulo de las líneas transversales
  angle = 90,
  code = 3,
                 # Barras en ambos extremos
  length = 0.05, # Longitud de las líneas transversales
  col = "darkred"
)
arrows(
  intens - 0.001,
  fn,
  intens+0.001,
  fn,
  angle=90,
  code=3,
  length=0.05,
  col="darkgreen"
)
m2 = lm(fn - intens, data = data)
```


summary(m2)

```
##
## Call:
## lm(formula = fn ~ intens, data = data)
##
  Residuals:
                            3
##
##
  -0.0001540
            ##
##
  Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
  (Intercept) 1.5714481 0.0003093 5080.33 9.01e-15 ***
##
  intens
            ##
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 0.0001341 on 4 degrees of freedom
## Multiple R-squared: 0.9958, Adjusted R-squared: 0.9947
## F-statistic: 940.5 on 1 and 4 DF, p-value: 6.736e-06
```

Obteniendo una ordenada sobre el origen n=1.5714481 (que coincide con la obtenida anteriormente) y una pendiente m=-0.0039311. Con esto, obtenemos un valor $R^2=0.9947$, teniendo así un error $(1-R^2)\cdot 100=0.53\%$. De nuevo, obtenemos que la masa del imán es $m_{iman}=\frac{n}{q}=0,160357716$.

Comparando con la masa obtenida en el laboratorio, obtenemos que el error porcentual es

$$\varepsilon_P = |\frac{p - \tilde{p}}{p}| \cdot 100 = 2.0355\%$$

y ahora el campo magnético es

$$LB = m \implies B = \frac{m}{L} = -0.13103 \ (T)$$

Cuestiones - ¿Por qué no contribuye a la fuerza de reacción los segmentos verticales de los circuitos impresos? Estos no contribuyen ya que el campo magnético tiene como dirección el vector perpendicular entre la dirección de la corriente y el vector que une la corriente y el imán. Como estos son paralelos, el campo magnético es 0.