Álgebra computacional. Tarea 4. Fecha límite: 21/05/2019 Universidad de El Salvador, ciclo impar 2019

Se puede usar Macaulay2 para comprobar algunos cálculos, pero hay que justificar todas las respuestas.

Descomposiciones primarias

Ejercicio 1. Demuestre que en el anillo $A = \mathbb{Z}[x]$ el ideal $\mathfrak{m} := (2, x)$ es maximal y el ideal $\mathfrak{q} = (4, x)$ es \mathfrak{m} -primario, pero no es una potencia de \mathfrak{m} .

Ejercicio 2. Para dos ideales $I \in J = (f_1, ..., f_s)$, demuestre que

$$(I:J)=\bigcap_{1\leq i\leq s}(I:f_i),$$

y para $f \neq 0$ se tiene

$$(I:f) = \left\{ \frac{g}{f} \mid g \in I \cap (f) \right\}.$$

Ejercicio 3. Calcule el ideal cociente (I:J) para $I=(xy^2,x^2z)$ y J=(xy,z) en el anillo k[x,y,z].

Ejercicio 4. Demuestre que si *I* es un ideal radical, entonces *I* no tiene ideales asociados encajados.

Ejercicio 5. Consideremos el ideal monomial $I = (x^2, xy^2z, yz^2) \subset k[x, y, z]$.

- 1) Encuentre una descomposición primaria minimal para *I*.
- 2) Encuentre los primos asociados.
- 3) Exprese cada primo asociado como $\mathfrak{p} = (I:f)$ para algún polinomio $f \in k[x, y, z]$.
- 4) Encuentre los primos minimales y encajados correspondientes.
- 5) ¿Cómo se ve el conjunto algebraico $V(I) \subset \mathbb{A}^3(k)$?

Ejercicio 6. Para un anillo A y un ideal $I \subseteq A$, denotemos por $I[x] \subseteq A[x]$ el ideal formado por los polinomios con coeficientes en I. Demuestre las siguientes propiedades.

- 1) Si \mathfrak{p} es un ideal primo en A, entonces $\mathfrak{p}[x]$ es un ideal primo en A[x].
- 2) Si q es un ideal p-primario en A, entonces q[x] es un ideal p[x]-primario en A[x].
- 3) Si $I = \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_s$ es una descomposición primaria minimal en A, entonces $I[x] = \mathfrak{q}_1[x] \cap \cdots \cap \mathfrak{q}_s[x]$ es una descomposición primaria minimal en A[x].
- 4) Si p es un ideal primo minimal asociado a I, entonces p[x] es un ideal primo minimal asociado a I[x].

Ejercicio 7. Demuestre que en el anillo de polinomios $k[x_1,...,x_n]$ para los ideales primos $\mathfrak{p}_i:=(x_1,...,x_i)$ (donde i=1,...,n) todas las potencias \mathfrak{p}_i^m son ideales primarios.

Dimensión

Ejercicio 8. Demuestre que si $X \neq \emptyset$ es un espacio noetheriano y Z_1, \ldots, Z_s son sus componentes irreducibles, entonces

$$\dim X = \max\{\dim Z_1, \ldots, \dim Z_s\}.$$

Ejercicio 9. Demuestre que para un subespacio $Y \subseteq X$ se tiene

$$\dim Y \leq \dim X$$
.

Ejercicio 10. Sean *A* un anillo e $I \subseteq A$ un ideal. Demuestre que $\dim(A/I) \le \dim A$.

Ejercicio 11. Demuestre que para el producto de dos anillos se tiene

$$\dim(A \times B) = \max{\dim A, \dim B}.$$

Ejercicio 12. Sea k un cuerpo. Demuestre que el anillo de las series formales k[[x]] y el anillo de polinomios de Laurent $k[x, x^{-1}]$ tienen dimensión 1.

Ejercicio 13. Demuestre que el anillo $\mathbb{Z}[x]$ tiene dimensión 2.

Ejercicio 14. Encuentre la dimensión de las *k*-álgebras

$$k[x, y, z]/(xz, xy-1), \quad k[x, y, z, w]/(zw-y^2, xy-z^3)$$

usando la eliminación de variables.