normal: ③ ⇒ ○ ⑤ ♦ ② ○ + ② ♦ ③ ○ ♦ ② ○ + ⑤ ⇒ ③

Seperable: ○ + ② = ③ ○ ⊕ + ⑤ = ⑥

Cialois: ○ ⇒ ○ ⑤ ♦ ② ○ + ② ♦ ⑤ ○ ♦ ② ○ ⊕ + ⑤ ⇒ ⑥

purely inseparable ○ + ② = ③ ○ ⊕ + ⑤ = ⑥

Conly 1 root for minimal poly

[GTM 167, Thm 4.13] char F=p. then
F perfect \$\Rightarrow F^P = F

open subgroup \subseteq closed subgroup = $\lceil G_a | (\overline{K}/L) | L/k \text{ ext } \rceil \subseteq Subgroup$

Lem. A subgroup of a profinite group is open iff it's closed and has finite index.

Ref: https://ctnt-summer.math.uconn.edu/wp-content/uploads/sites/1632/2020/06/CTNT-InfGaloisTheory.pdf

Q: Do we have any finite index gp of Gal (K/K) which is not open?

In general,

https://groupprops.subwiki.org/wiki/Closed_subgroup_of_finite_index_implies_open In a topological group, any closed subgroup of finite index must be an open subgroup. https://groupprops.subwiki.org/wiki/Open_subgroup_implies_closed Any open subgroup of a topological group is closed.

https://math.stackexchange.com/questions/4350043/open-subgroup-and-finite-index-subgroup-of-topological-group https://math.stackexchange.com/questions/1092974/finite-index-subgroup-g-of-mathbbz-p-is-open https://math.stackexchange.com/questions/3734250/are-normal-subgroups-of-finite-index-in-an-absolute-galois-groups-open

Some wonderful exercises for Galois correspondence:

Let E/F be Galois field ext of deg n, mln. prove. I subfield ext of deg m. (Sylow thm & Z(G) # for a p-gp & classification of f.g. abelian gp) Cor For p prime, F field, one can define $F := \bigcup_{(E:F)=p^k} E$, and

F = TF

Sadly this is totally wrong. Notice that a Sylow p-subgroup may be not normal.

https://math.stackexchange.com/questions/1068327/is-bar-mathbb-q-bar-mathbb-q-cap-mathbb-r-2

Are there any other subfield of Q with finite index (except Q & Q \ R)?