SSerxhs 的 ICPC 模板

SSerxhs

2024年11月2日

ver: 3.9.11

目录

1	前言		6
2	2 数据结构		
	2.1 杈	时状数组	7
	2.2 绉	· · · · · · · · · · · · · · · · · · ·	7
	2.3 時	·····································	10
	2.4 F	· · · · · · · · · · · · · · · · · · ·	11
			12
	2.6 前	$\hat{1}_k$ 大的和	13
		Ţ持久化数组	$\frac{14}{14}$
		E偏树/可并堆	15
		对状数组区间加区间求和	16
		二维树状数组矩形加矩形求和	17
		持修莫队(功能:区间数有多少种不同的数字)	19
		二次离线莫队	20
		· · · · · · · · · · · · · · · · · · ·	22
	•	≥超树	23
	-	· 超树(动态开点)	25
	•	olay	26
	-	《间线性基	30
		olay 重构	32
		らん。 大线性基	36
		ng-treap	36
		5卡尔树的线性建树	38
		日描线	38
	-	egmenttree Beats!	40
		-d 树(二进制分组)	45
		X端队列全局查询	48
		争态矩形加矩形和	49
		战 段树分裂	52
		itset(手写,未验证)	54
		《间众数	58
	_	是达式树	59

3	数学		62
	3.1	单情况矩阵 (+)	62
	3.2	矩阵求逆(要求质数)	62
	3.3	任意模数矩阵求逆(未验证)	63
	3.4	矩阵的特征多项式	64
	3.5	矩阵类(较新)	66
	3.6	最短递推式 (BM 算法)	69
	3.7	在线 O(1) 逆元	70
	3.8	Strassen 矩阵乘法	71
	3.9	扩展欧拉定理	73
	3.10	$\operatorname{exgcd} \dots $	75
	3.11	exCRT	76
	3.12	exBSGS	76
	3.13	exLucas	78
	3.14	杜教筛	80
	3.15	线性规划	81
	3.16	斐波那契数列	83
	3.17	线性插值(k 次幂和)	84
	3.18	单原根(仅手动验证质数)	85
	3.19	稍快单原根(仅验证质数)	86
	3.20	筛全部原根	87
	3.21	高斯消元(通解)	89
	3.22	高斯消元(列主元)	90
	3.23	行列式求值(任意模数)	90
	3.24	行列式求值(质数模数)	91
	3.25	稀疏矩阵系列	92
	3.26	Min_25 筛	95
		Min_25 筛 (卡常,素数个数,注意评测机 double 性能)	96
	3.28	扩展 min-max 容斥(重返现世)	97
	3.29	模数为偶数 FWT & 光速乘	97
		二次剩余	98
		k 次剩余	99
	3.32	FWT/子集卷积	105
		NTT	
	3.34	MTT	128
	3.35	FFT	130
		约数个数和	
		万能欧几里得	
		高斯整数类	
	3.39	Miller Rabin/Pollard Rho	135
4	字符		L38
4	了 1可 4.1	中 字典树(trie 树)	
	4.1	AC 自动机	
	4.2	hash	
	4.4	KMP	
		KMP (重构, 未验证)	
	4.6	manacher	

	4.7	SA	44
	4.8	SAM	45
	4.9	SqAM	46
	4.10	ukkonen 后缀树	46
		ukkonen 后缀树(重构)	
		Z 函数	
	4.13	最小表示法	
		带通配符的字符串匹配	
		MACHELLIA 1 17 1 Electricity of the control of the	01
5	图论	1:	5 5
	5.1	最小密度环	55
	5.2	全源最短路与判负环	55
	5.3	三/四元环计数	56
	5.4	最短路系列	57
	5.5	弦图	59
		5.5.1 代码	59
	5.6	最小割树	
	5.7	二分图与网络流建图	62
		5.7.1 二分图边染色	
		5.7.2 二分图最小点集覆盖	
		5.7.3 二分图最大独立集	
		5.7.4 二分图最小边覆盖	
		5.7.5 有向无环图最小不相交链覆盖	
		5.7.6 有向无环图最大互不可达集	
		5.7.7 最大权闭合子图	
	5.8	二分图匹配(时间戳写法)	
	5.9	二分图最大权匹配	
		一般图最大匹配	
		一般图最大权匹配	
	5.12	网络流代码	
	J	费用流(SPFA)	
		费用流(Dijkstra)	
		假花树	
		Stoer-Wagner 全局最小割	
		点双	
		边双	
		双极分解	
		输出负环	
	5.21	(基环)树哈希	
		无向图最小环	
		切比雪夫距离最小生成树1	
		点分治	
		点分树	
		prufer 与树的互相转化	
		LCT	
		LCT (重构, 代码为动态割边割点)	
	5.29	带子树的 LCT 2	02
	5 30	轻重链剖分	05

		14 10 1 1 2 1	
	0.0-	换根树剖	
		树上启发式合并,DSU on tree	
		长链剖分 (k 级祖先)	
		长链剖分 (dp 合并)	
	5.35	动态 dp(全局平衡二叉树)	210
	5.36	全局平衡二叉树(修改版)	213
	5.37	虚树	215
	5.38	圆方树	215
	5.39	广义圆方树	218
	5.40	支配树 (DAG 版)	218
		支配树(一般图)	
		最小乘积生成树	
		最小斯坦纳树	
		2-sat	
		Kosaraju 强连通分量(bitset 优化)	
		Tarjan 强连通分量(bitset 尼尼):	
		动态强连通分量	
		欧拉路径(字典序最小)	
		欧拉回/通路构造	
		有向图欧拉回路计数(BEST 定理)/生成树计数	
		点染色	
	5.52	最大独立集	233
6	计算	ा <i>।</i> ज्ञ	
			99 A
U		· -· •	234
U	6.1	自适应 simpson 法	234
U		· -· •	234
	6.1 6.2	自适应 simpson 法	234 234
	6.1 6.2 公式	自适应 simpson 法	234 234 242
	6.1 6.2 公式 7.1	自适应 simpson 法	234 234 242 242
	6.1 6.2 公式 7.1 7.2	自适应 simpson 法	234 234 242 242 242
	6.1 6.2 公式 7.1 7.2 7.3	自适应 simpson 法	234 234 242 242 242 242
	6.1 6.2 公式 7.1 7.2 7.3 7.4	自适应 simpson 法 计算几何全 与杂项 枚举大小为 k 的集合 min plus 卷积 所有区间 GCD 整体二分(区间 k-th)	234 234 242 242 242 242 243
	6.1 6.2 公式 7.1 7.2 7.3 7.4 7.5	自适应 simpson 法 计算几何全 与杂项 枚举大小为 k 的集合 min plus 卷积 所有区间 GCD 整体二分(区间 k-th) cdq 分治(三维偏序)	234 234 242 242 242 243 244
	6.1 6.2 公式 7.1 7.2 7.3 7.4 7.5 7.6	自适应 simpson 法 计算几何全	234 234 242 242 242 243 244 245
	6.1 6.2 公式 7.1 7.2 7.3 7.4 7.5 7.6 7.7	自适应 simpson 法 计算几何全	234 234 242 242 242 243 244 245 250
	6.1 6.2 公式 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	自适应 simpson 法 计算几何全	234 234 242 242 242 243 244 245 250 251
	6.1 6.2 公式 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	自适应 simpson 法 计算几何全 与杂项 枚举大小为 k 的集合 min plus 卷积 所有区间 GCD 整体二分(区间 k-th) cdq 分治(三维偏序) 高精度 分散层叠算法(Fractional Cascading) 圆上整点(二平方和定理) 模意义真分数还原	234 234 242 242 242 243 244 245 250 251 255
	6.1 6.2 公式 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10	自适应 simpson 法 计算几何全 与杂项 枚举大小为 k 的集合 min plus 卷积 所有区间 GCD 整体二分(区间 k-th) cdq 分治(三维偏序) 高精度 分散层叠算法(Fractional Cascading) 圆上整点(二平方和定理) 模意义真分数还原 快速取模	234 234 242 242 242 243 244 245 250 251 255 255
	6.1 6.2 公式 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10	自适应 simpson 法 计算几何全 与杂项 枚举大小为 k 的集合 min plus 卷积 所有区间 GCD 整体二分(区间 k-th) cdq 分治(三维偏序) 高精度 分散层叠算法(Fractional Cascading) 圆上整点(二平方和定理) 模意义真分数还原 快速取模 IO 优化	234 234 242 242 242 243 244 245 250 251 255 255
	6.1 6.2 公式 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10	自适应 simpson 法 计算几何全 与杂项 枚举大小为 k 的集合 min plus 卷积 所有区间 GCD 整体二分(区间 k-th) cdq 分治(三维偏序) 高精度 分散层叠算法(Fractional Cascading) 圆上整点(二平方和定理) 模意义真分数还原 快速取模 IO 优化 7.11.1 WDOI	234 234 242 242 242 243 244 245 250 251 255 255 255
	6.1 6.2 公式 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11	自适应 simpson 法 计算几何全 与杂项 校举大小为 k 的集合 min plus 卷积 所有区间 GCD 整体二分(区间 k-th) cdq 分治(三维偏序) 高精度 分散层叠算法(Fractional Cascading) 圆上整点(二平方和定理) 模意义真分数还原 快速取模 IO 优化 7.11.1 WDOI 7.11.2 自用	234 234 242 242 242 243 244 250 251 255 255 255 256
	6.1 6.2 公式 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11	自适应 simpson 法 计算几何全 与杂项 枚举大小为 k 的集合 min plus 卷积 所有区间 GCD 整体二分(区间 k-th) cdq 分治(三维偏序) 高精度 . 分散层叠算法(Fractional Cascading) 圆上整点(二平方和定理) 模意义真分数还原 快速取模 IO 优化 7.11.1 WDOI 7.11.2 自用 手动开栈	234 234 242 242 242 243 244 245 250 255 255 255 255 255
	6.1 6.2 公式 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11	自适应 simpson 法 计算几何全 与杂项 校举大小为 k 的集合 min plus 卷积 所有区间 GCD 整体二分(区间 k-th) cdq 分治(三维偏序) 高精度 分散层叠算法(Fractional Cascading) 圆上整点(二平方和定理) 模意义真分数还原 快速取模 IO 优化 7.11.1 WDOI 7.11.2 自用	234 234 242 242 242 243 244 245 250 255 255 255 255 255
	6.1 6.2 公式 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11	自适应 simpson 法 计算几何全 与杂项 枚举大小为 k 的集合 min plus 卷积 所有区间 GCD 整体二分(区间 k-th) cdq 分治(三维偏序) 高精度 . 分散层叠算法(Fractional Cascading) 圆上整点(二平方和定理) 模意义真分数还原 快速取模 IO 优化 7.11.1 WDOI 7.11.2 自用 手动开栈	234 234 242 242 242 243 244 245 255 255 255 255 256 257 257
	6.1 6.2 公式 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11	自适应 simpson 法 计算几何全 与杂项	234 234 242 242 242 243 244 245 255 255 255 255 255 257 257 257

8	语言	基础	262
	8.1	Makefile	262
	8.2	初始代码	262
	8.3	bitset	262
	8.4	pb_ds 和一些奇怪的用法	263
	8.5	python 使用方法	266
9	其他	人的板子(补充)	268
	9.1	MTT+exp	268
	9.2	半平面交	270
	9.3	旋转卡壳	271
	9.4	多项式复合 (yurzhang)	272
	9.5	下降幂多项式乘法	275
	9.6	平面欧几里得距离最小生成树	277
	9.7	弦图找错	279
	9.8	最长公共子序列	281
	9.9	区间 LIS (排列)	283
	9.10	区间 LCS	286
	0.11	手手中剖分	287

1 前言

6

1 前言

此模板的初衷是个人使用,因此已有的模板可能未列出。建议结合 Heltion 模板和 HDU 模板使用。

模板需要的版本为 cpp17 或 cpp20。

大部分情况下,涉及取模的都需要使用 unsigned long long,即使类型名是 11。这是因为值域较大有利于合理减少取模次数。

optional 的用法:一个 optional 变量 r 可以用 if (r) 判断其是否有值。取出值的方法是 *r。常见于包含无解又包含空集解的代码中,便于区分无解和空集解。 常见的被漏掉的初始代码:

常见的缺漏算法: 回文自动机。 2 数据结构 "

2 数据结构

2.1 树状数组

支持单点修改、求前缀和、二分前缀和大于等于 x 的第一个位置。 二分这部分没有验证过。

```
template<typename typC> struct bit
   vector<typC> a;
   int n;
   bit() { }
   bit(int nn):n(nn), a(nn+1) { }
   template<typename T> bit(int nn, T *b):n(nn), a(nn+1)
       for (int i=1; i<=n; i++) a[i]=b[i];</pre>
       for (int i=1; i<=n; i++) if (i+(i&-i)<=n) a[i+(i&-i)]+=a[i];</pre>
   void add(int x, typC y)
       //cerr<<"add "<<x<" by "<<y<endl;
       assert(1 \le x \& x \le n);
       a[x] += y;
       while ((x+=x\&-x)<=n) a[x]+=y;
   typC sum(int x)
       //cerr<<"sum "<<x;
       assert(0 \le x \& x \le n);
       typC r=a[x];
       while (x^=x\&-x) r+=a[x];
       //cerr<<"= "<<r<<endl;
       return r;
   typC sum(int x, int y)
       return sum(y)-sum(x-1);
   int lower_bound(typC x)
       if (n==0) return 0;
       int i=__lg(n), j=0;
       for (; i>=0; i--) if ((1<<i|j)<=n&&a[1<<i|j]<x) j|=1<<i, x-=a[j];</pre>
       return j+1;
};
```

2.2 线段树

包含标记的线段树,支持线段树上二分,采用左闭右闭。但只支持求左侧第一个符合条件的下标。

要求:具有 info+info, info+=tag, tag+=tag。info, tag 需要有默认构造,但不必有正确的值。

```
template<class info, class tag> struct sgt
```

```
{
   int n, shift;
   info *a;
   info tmp;
   vector<info> s;
   vector<tag> tg;
   vector<int> lz;
   bool flg;
   void build(int x, int 1, int r)
      if (l==r)
         s[x]=(flg?tmp:a[1]);
         return;
      }
      int c=x*2, m=1+r>>1;
      build(c, 1, m); build(c+1, m+1, r);
      s[x]=s[c]+s[c+1];
   }
   flg=0;
      build(1, 1, n);
   sgt(info b, int L, int R):n(R-L+1), shift(L-1), s(R-L+1<<2), tg(R-L+1<<2), lz(R-L+1<<2)
      tmp=b;
      flg=1;
      build(1, 1, n);
   }//[L,R]
   int z, y;
   info res;
   tag dt;
   bool fir;
private:
   void _modify(int x, int 1, int r)
      if (z<=1&&r<=y)</pre>
         s[x] += dt;
         if (lz[x]) tg[x]+=dt; else tg[x]=dt;
         lz[x]=1;
         return;
      }
      int c=x*2, m=1+r>>1;
      if (lz[x])
         if (lz[c]) tg[c]+=tg[x]; else tg[c]=tg[x];
         lz[c]=1; s[c]+=tg[x]; c^=1;
         if (lz[c]) tg[c]+=tg[x]; else tg[c]=tg[x];
         lz[c]=1; s[c]+=tg[x]; c^=1;
         lz[x]=0;
      }
      if (z<=m) _modify(c, 1, m);</pre>
      if (m<y) _modify(c+1, m+1, r);</pre>
      s[x]=s[c]+s[c+1];
```

```
void ask(int x, int 1, int r)
       if (z<=1&&r<=y)</pre>
          res=fir?s[x]:res+s[x];
          fir=0;
          return;
       }
       int c=x*2, m=1+r>>1;
       if (lz[x])
       {
          if (lz[c]) tg[c]+=tg[x]; else tg[c]=tg[x];
          lz[c]=1; s[c]+=tg[x]; c^=1;
          if (lz[c]) tg[c]+=tg[x]; else tg[c]=tg[x];
          lz[c]=1; s[c]+=tg[x]; c^=1;
          lz[x]=0;
       if (z<=m) ask(c, 1, m);</pre>
       if (m<y) ask(c+1, m+1, r);</pre>
   function<bool(info)> check;
   void find_left_most(int x, int 1, int r)
       if (r<z||!check(s[x])) return;</pre>
       if (l==r) { y=1; res=s[x]; return; }
       int c=x*2, m=1+r>>1;
       if (lz[x])
       {
          if (lz[c]) tg[c]+=tg[x]; else tg[c]=tg[x];
          lz[c]=1; s[c]+=tg[x]; c^=1;
          if (lz[c]) tg[c]+=tg[x]; else tg[c]=tg[x];
          lz[c]=1; s[c]+=tg[x]; c^=1;
          lz[x]=0;
       }
       find_left_most(c, 1, m);
       if (y==n+1) find_left_most(c+1, m+1, r);
   }
   void find_right_most(int x, int 1, int r)
       if (l>y||!check(s[x])) return;
       if (l==r) { z=1; res=s[x]; return; }
       int c=x*2, m=1+r>>1;
       if (lz[x])
          if (lz[c]) tg[c]+=tg[x]; else tg[c]=tg[x];
          lz[c]=1; s[c]+=tg[x]; c^=1;
          if (lz[c]) tg[c]+=tg[x]; else tg[c]=tg[x];
          lz[c]=1; s[c]+=tg[x]; c^=1;
          lz[x]=0;
       }
       find_right_most(c+1, m+1, r);
       if (z==0) find_right_most(c, 1, m);
   }
public:
   void modify(int 1, int r, const tag &x)//[1,r]
   {
```

```
z=l-shift; y=r-shift; dt=x;
       // cerr<<"modify ["<<l<<','<<r<<"] "<<'\n';
       assert(1 \le z \& z \le y \& y \le n);
       _modify(1, 1, n);
   void modify(int pos, const info &o)
       pos-=shift;
       int l=1, r=n, m, c, x=1;
       while (l<r)</pre>
           c=x*2; m=1+r>>1;
           if (lz[x])
              if (lz[c]) tg[c]+=tg[x]; else tg[c]=tg[x];
              lz[c]=1; s[c]+=tg[x]; c^=1;
              if (lz[c]) tg[c]+=tg[x]; else tg[c]=tg[x];
              lz[c]=1; s[c]+=tg[x]; c^=1;
              1z[x]=0;
           }
           if (pos<=m) x=c, r=m; else x=c+1, l=m+1;</pre>
       s[x]=o;
       while (x>>=1) s[x]=s[x*2]+s[x*2+1];
   info ask(int 1, int r)//[1,r]
       z=l-shift; y=r-shift; fir=1;
       // cerr<<"ask ["<<l<<','<<r<<"] "<<'\n';
       assert(1 \le z \& z \le y \& y \le n);
       ask(1, 1, n);
       return res;
   pair<int, info> find_left_most(int 1, const function<bool(info)> &_check)
       check=_check;
       z=l-shift; y=n+1;
       assert(1<=z&&z<=n+1);
       find_left_most(1, 1, n);
       return {y+shift, res};
   }
   pair<int, info> find_right_most(int r, const function<bool(info)> &_check)
       check= check;
       z=0; y=r-shift;
       assert(0<=y&&y<=n);
       find_right_most(1, 1, n);
       return {z+shift, res};
   }
};
```

2.3 哈希表

支持如同 map 一样使用 [] 访问。default 指的是未赋值情形的值。新版本未验证。

```
template<class Tx,class Ty> struct hashtable //定义域, 值域
```

```
const static int N=2e6+5,p=1e6+7;//元素个数,模数
   Tx X[N];
   Ty Y[N],default;
   int fir[p],nxt[N],sz;
   ht(Ty default=Ty{}):val(default):sz(0),{memset(fir,-1,sizeof fir);}
   Ty &operator[](T x)
   {
      int index=(x%p+p)%p;
      for (int i=fir[index];i!=-1;i=nxt[i]) if (X[i]==x) return Y[i];//若 x 不重复,可以省略这个
          for
      X[cnt]=x;
      Y[cnt]=default;
      nxt[cnt]=fir[index];
      fir[index]=cnt++;
      return Y[cnt-1];
   void clear()
      cnt=0;
      while (sz) fir[((X[--sz])\%p+p)\%p]=0;
   void iterate()//遍历。用于自行修改
      for (int i=0;i<sz;i++)</pre>
          T x=X[i];
          TT y=Y[i];
          //(x,y)
      }
   }
};
```

2.4 珂朵莉树

支持区间赋值、单点访问。维护每个连续段的范围和值。

如果希望维护所有连续段的整体信息(如长度的最大值),修改 add 和 del 函数即可,分别表示连续段被加入和被删去。

特别注意一开始 insert 的不会触发 add, 只有 modify 会触发。

```
namespace chtholly_tree {
    using T=int;//可以把 T 修改为任意想要的类型。
    struct node
    {
        int 1;
        mutable int r;
        mutable T v;
        int len() const { return r-l+1; }
        bool operator<(const node &x) const { return l<x.l; }
    };
    void add(const node &a) {}
    void del(const node &a) {}
    class odt: public set<node>
    {
        public:
            typedef odt::iterator iter;
```

```
iter split(int x)
          iter it=lower_bound({x});
          if (it!=end()&&it->l==x) return it;
          node t=*--it,a=\{t.l,x-1,t.v\},b=\{x,t.r,t.v\};
          del(*it); add(a); add(b);
          erase(it); insert(a);
          return insert(b).first;
      }
      void modify(int l,int r,T v)//[l,r]
          iter lt,rt,it;
          rt=r==rbegin()->r?end():split(r+1); lt=split(l);//[lt,rt)
          while (lt!=begin()&&(it=prev(lt))->v==v) l=(lt=it)->l;
          while (rt!=end()\&\&rt->v==v) r=(rt++)->r;
          for (it=lt; it!=rt; it++) del(*it);
          add(\{1,r,v\});
          erase(lt,rt); insert({1,r,v});
      }
      T operator[](const int x) const { return prev(upper_bound({x}))->v; }//直接访问单点
      iter find(int x) const {return prev(upper_bound({x}));}//找到对应的线段
   };
}
using chtholly_tree::node,chtholly_tree::odt;
typedef odt::iterator iter;
int main()
{
   s.insert({0,5,1}); // 先 insert({L,R,x}) 表示整个下标范围和初始值。 左闭右闭。
                    // s={1,1,1,1,1,1}
   s.modify(2,3,2); // 左闭右闭。s={1,1,2,2,1,1}
   for (auto [1,r,v]:s)
      //(1,r,v)=(0,1,1)
      //(1,r,v)=(2,3,2)
      //(1,r,v)=(4,5,1)
   }
}
```

2.5 带删堆

本质是额外维护一个堆 q 表示要被删除的元素,当 p 的最值和 q 一样时删除。需要保证每次 pop 的元素都存在于堆中。 本代码的用法和 priority_queue 一致。

```
}
       else p.push(x);
   }
   void pop()
      p.pop();
       while (!q.empty()&&p.top()==q.top()) p.pop(), q.pop();
   void pop(const T &x)
       if (p.top()==x)
          p.pop();
          while (!q.empty()&&p.top()==q.top()) p.pop(), q.pop();
       else q.push(x);
   T top() const { return p.top(); }
   int size() const { return p.size()-q.size(); }
   bool empty() const { return p.empty(); }
   vector<T> to_vector() const
       vector<T> a;
       auto P=p, Q=q;
       while (P.size())
          a.push_back(P.top()); P.pop();
          while (Q.size()&&P.top()==Q.top()) P.pop(), Q.pop();
      return a;
   }
};
```

2.6 前 k 大的和

本质是用小根堆维护前 k 大的数, 用大根堆维护其余数。

如果需要支持删除,结合前面一个使用,或者直接用 multiset 进行 extract。

为了方便起见,直接给出支持删除的版本,并且使用 long long。如果不需要支持删除,类型改为优先队列并去掉 pop 函数即可。

注意:复杂度为 O(k-k'),其中 k' 是上一次询问的 k。也就是说,多组询问时询问的 k 的差值应该尽可能小。

其用法与 priority_queue 保持一致,可以用同样的方法改写成前 k 小。

```
using ll=long long;
template<class T, class T1=vector<T>, class T2=less<T>> struct ksum_pop
{
    private:
        struct __cmp
        {
            bool operator()(const T &x, const T &y) const
              {
                 return x!=y&&!T2()(x, y);
              }
        };
        heap<T, T1, __cmp> p;
```

! 数据结构 14

```
heap<T, T1, T2> q;
   ll cur;
public:
   ksum_pop():cur(0) { }
   void push(const T &x)
       if (!q.size()||!T2()(x, q.top())) p.push(x), cur+=x; else q.push(x);
   int size() const { return p.size()+q.size(); }
   void pop(const T &x)
       if (q.size()&&!T2()(q.top(), x)) q.pop(x);
       else p.pop(x), cur-=x;
   11 sum(int k)
       while (p.size()<k)</pre>
          cur+=q.top();
          p.push(q.top());
          q.pop();
       while (p.size()>k)
          cur-=p.top();
          q.push(p.top());
          p.pop();
       return cur;
   }
};
```

2.7 可持久化数组

历史遗留产物,无意义,仅作留存,不会更新。 $O((n+q)\log(n)), O((n+q)\log(n))$ 。

```
struct arr
{
    int c[M][2],rt[0],s[M],b[N];
    int ds,n,ver,v,p,i;
    void build(int &x,int l,int r)
    {
        x=++ds;
        if (l==r) {s[x]=b[l];return;}
        build(c[x][0],l,l+r>>1);
        build(c[x][1],(l+r>>1)+1,r);
    }
    void rebuild(int &x,int pre)
    {
        x=++ds;int l=1,r=n,mid,now=x;
        while (l<r)
        {
            mid=l+r>>1;
            if (mid>=p){c[now][1]=c[pre][1];now=c[now][0]=++ds;r=mid;pre=c[pre][0];} else {c[now][0]=c[pre][0];now=c[now][1]=++ds;l=mid+1;pre=c[pre][1];}
```

```
}
       s[now]=v;
   void init(int *a,int nn)
       for (i=1;i<=n;i++) b[i]=a[i];</pre>
       build(rt[0],1,n);
   int mdf(int pv,int pos,int val)
       p=pos,v=val;
       rebuild(rt[++ver],rt[pv]);
       return ver;
   int ask(int ve,int pos)
       int l=1,r=n,x=rt[ve],mid;
       rt[++ver]=rt[ve];
       while (l<r)</pre>
          mid=l+r>>1;
           if (mid>=pos) {x=c[x][0];r=mid;} else {x=c[x][1];l=mid+1;}
       return s[x];
   }
};
```

2.8 左偏树/可并堆

建议不要使用。 pb_ds 可以替代这个功能。我完全没有使用过这个板子。 $O((n+q)\log n)$,O(n)。

```
struct left_tree//小根堆,大根堆需要改的地方注释了
   int jl[N],v[N],f[N],c[N][2],tf[N],n;//tf只有删非堆顶才用
   bool ed[N];
   void init(const int nn,const int *a)
      jl[0]=-1;n=nn;
      memset(jl+1,0,n<<2);
      memset(tf+1,0,n<<2);//同上
      memset(c+1,0,n << 3);
      memset(ed+1,0,n);
      for (int i=1;i<=n;i++) v[f[i]=i]=a[i];</pre>
   int mg(int x,int y)
      if (!(x&&y)) return x|y;
      if (v[x]>v[y]||v[x]==v[y]&&x>y) swap(x,y);//改
      tf[c[x][1]=mg(c[x][1],y)]=x;//同上
      if (jl[c[x][0]]<jl[c[x][1]]) swap(c[x][0],c[x][1]);</pre>
      jl[x]=jl[c[x][1]]+1;
      return x;
   int getf(int x)
```

```
if (f[x]==x) return x;
      return f[x]=getf(f[x]);
   int merge(int x,int y)
       if (ed[x]||ed[y]||(x=getf(x))==(y=getf(y))) return x;
      int z=mg(x,y);return f[x]=f[y]=z;
   int getv(int x)//需要自行判断是否存在
      return v[getf(x)];
   int del(int x)//删除堆内最值
      tf[c[x][0]]=tf[c[x][1]]=0;
      f[c[x][0]]=f[c[x][1]]=f[x]=mg(c[x][0],c[x][1]);
      ed[x]=1;c[x][0]=c[x][1]=tf[x]=0;return f[x];
   }
   int del_all(int x)//删除堆内非最值(没验证过)
      int fa=tf[x];
      if (f[c[x][0]]==x) f[c[x][0]]=getf(tf[x]);
      if (f[c[x][1]]==x) f[c[x][1]]=f[tf[x]];
      tf[x]=tf[c[x][0]]=tf[c[x][1]]=0;
      tf[c[fa][c[fa][1]==x]=mg(c[x][0],c[x][1])]=fa;
      c[x][0]=c[x][1]=0;
      while (jl[c[fa][0]]<jl[c[fa][1]])</pre>
          swap(c[fa][0],c[fa][1]);
          jl[fa]=jl[c[fa][1]]+1;
          fa=tf[fa];
      }
   void out(int n)
      for (int i=1;i<=n;i++) printf("%d:_c%d&%d_f%d_v%d\n",i,c[i][0],c[i][1],f[i],v[i]);</pre>
   }
};
```

2.9 树状数组区间加区间求和

```
本质: a_n 区间加等价于差分数组 d_n 的单点加。  \sum_{i=1}^m a_i = \sum_{i=1}^m \sum_{j=1}^i d_j = \sum_{j=1}^m d_j (m-j+1) = ((m+1) \sum_{j=1}^m d_j) - (\sum_{j=1}^m j d_j) \circ 分别维护 d_j 和 jd_j 的前缀和。 O(n) \sim O(q \log n), O(n)。
```

```
struct bit
{
    ll a[N],b[N],s[N];//有初始值
    int n;
    void init(int nn,int *a)//初始值
    {
        n=nn;s[0]=0;
        for (int i=1;i<=n;i++) s[i]=s[i-1]+a[i];
```

```
void mdf(int l,int r,ll dt)
       int i;++r;
       ll j=dt*l;
       a[1] += dt; b[1] += j;
       while ((1+=1\&-1)<=n)
          a[1]+=dt;
          b[1]+=j;
       if (r<=n)
          j=dt*r;
          a[r]-=dt;b[r]-=j;
          while ((r+=r\&-r)<=n)
              a[r]-=dt;
              b[r]-=j;
          }
       }
   11 presum(int x)
       11 r=a[x],rr=b[x];
       int y=x;
       while (x^=x\&-x)
          r+=a[x];
          rr+=b[x];
       return r*(y+1)-rr+s[y];
   11 sum(int 1,int r)
       return presum(r)-presum(l-1);
};
```

2.10 二维树状数组矩形加矩形求和

本质还是差分,只不过这次要维护 $d_{i,j}, d_{i,j}i, d_{i,j}i, d_{i,j}ij$ 。 $O(n^2) \sim O(q \log^2 n)$, $O(n^2)$

```
if ((x<=0)||(y<=0)) return 0;</pre>
       int i,j;
       11 z=0,w=0;
       for (i=x;i;i-=(i\&(-i))) for (j=y;j;j-=(j\&(-j))) z+=a[i][j];
       z*=(x+1)*(y+1);
       for (i=x;i;i==(i\&(-i))) for (j=y;j;j==(j\&(-j))) w+=b[i][j];
       z=w*(y+1);
       w=0;
       for (i=x;i;i==(i&(-i))) for (j=y;j;j==(j&(-j))) w+=c[i][j];
       z -= w*(x+1);
       for (i=x;i;i==(i\&(-i))) for (j=y;j;j==(j\&(-j))) z+=d[i][j];
       return z;
   }
   public:
   void init(int x,int y)
   {
       n=x; m=y;
   }
   void add(int u,int v,int x,int y,int z)//(x1,y1,x2,y2,dt)
       cha(a,u,v,z);
       cha(b,u,v,u*z);//小心乘爆
       cha(c,u,v,v*z);
       cha(d,u,v,u*v*z);
       ++x;++y;
       if (x \le n)
          cha(a,x,v,-z);
          cha(b,x,v,-z*x);
          cha(c,x,v,-z*v);
          cha(d,x,v,-z*x*v);
       }
       if (y \le m)
       {
          cha(a,u,y,-z);
          cha(b,u,y,-z*u);
          cha(c,u,y,-z*y);
          cha(d,u,y,-z*u*y);
          if (x \le n)
          {
              cha(a,x,y,z);
              cha(b,x,y,z*x);
              cha(c,x,y,z*y);
              cha(d,x,y,z*x*y);
          }
       }
   }
   ll sum(int u,int v,int x,int y)//(x1,y1,x2,y2)
       --u;--v;
       return (he(x,y)+he(u,v)-he(u,y)-he(x,v));
   }
};
```

2.11 带修莫队(功能:区间数有多少种不同的数字)

按照 $n^{\frac{2}{3}}$ 分块,排序关键字是 l,r,t 所在的块(t 是版本号,每次修改都会增加一个版本),可以奇偶分块优化。

相比于传统莫队多了一个 modify。 $O(n^{\frac{5}{3}})$, O(n)。

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
#define all(x) (x).begin(),(x).end()
const int N=1.4e5,M=1e6+2;
int a[N],ans[N],bel[N],cnt[M],sum,z,y,cur;
struct P
   int p,v;
};
struct Q
{
   int l,r,t,p;
   bool operator<(const Q &o) const</pre>
       if (bel[1]!=bel[0.1]) return bel[1] < bel[0.1];</pre>
       if (bel[r]!=bel[o.r]) return (bel[1]&1)^bel[r]<bel[o.r];</pre>
       return (bel[r]&1)?t<o.t:t>o.t;
};
Q b[N];
P d[N];
void add(const int &x) {sum+=!(cnt[a[x]]++);}
void del(const int &x) {sum-=!(--cnt[a[x]]);}
void mdf(const int &x)
   auto &[p,v]=d[x];
   if (z<=p&&p<=y) del(p);</pre>
   swap(a[p],v);
   if (z \le p \& p \le y) add(p);
}
int main()
   ios::sync_with_stdio(0);cin.tie(0);
   int n,m,q1=0,q2=0,i,ksiz;
   cin>>n>>m;
   for (i=1;i<=n;i++) cin>>a[i];
   for (i=1;i<=m;i++)</pre>
       char c;
       int 1,r;
       cin>>c>>l>>r;
       if (c=='Q') ++q1,b[q1]={1,r,q2,q1};
       else d[++q2]=\{1,r\};
   ksiz=max(1.0,round(cbrt((ll)n*n)));
   for (i=1;i<=n;i++) bel[i]=i/ksiz;</pre>
   sort(b+1,b+q1+1);
   z=b[1].1;y=z-1;cur=0;
   for (i=1;i<=q1;i++)</pre>
```

```
{
    auto [1,r,t,p]=b[i];
    while (z>1) add(--z);
    while (y<r) add(++y);
    while (z<1) del(z++);
    while (y>r) del(y--);
    while (cur<t) mdf(++cur);
    while (cur>t) mdf(cur--);
    ans[p]=sum;
}
for (i=1;i<=q1;i++) cout<<ans[i]<<'\n';
}</pre>
```

2.12 二次离线莫队

直接摘录题解,用途不大。

 $O(n\sqrt{n})$, O(n).

珂朵莉给了你一个序列 a,每次查询给一个区间 [l,r],查询 $l \leq i < j \leq r$,且 $a_i \oplus a_j$ 的二进制表示下有 $k \uparrow 1$ 的二元组 (i,j) 的个数。 \oplus 是指按位异或。

二次离线莫队,通过扫描线,再次将更新答案的过程离线处理,降低时间复杂度。假设更新答案的复杂度为 O(k),它将莫队的复杂度从 $O(nk\sqrt{n})$ 降到了 $O(nk+n\sqrt{n})$,大大简化了计算。设 x 对区间 [l,r] 的贡献为 f(x,[l,r]),我们考虑区间端点变化对答案的影响:以 [l..r] 变成 [l..(r+k)] 为例, $\forall x \in [r+1,r+k]$ 求 f(x,[l,x-1])。我们可以进行差分: f(x,[l,x-1])=f(x,[1,x-1])-f(x,[1,l-1]),这样转化为了一个数对一个前缀的贡献。保存下来所有这样的询问,从左到右扫描数组计算就可以了。但是这样做,空间是 $O(n\sqrt{n})$ 的,不太优秀,而且时间常数巨大。。这样的贡献分为两类:

1. 减号左边的贡献永远是一个前缀和它后面一个数的贡献。这可以预处理出来。2. 减号右边的贡献对于一次移动中所有的 x 来说,都是不变的。我们打标记的时候,可以只标记左右端点。

这样,减小时间常数的同时,空间降为了 O(n) 级别。是一个很优秀的算法了。处理前缀询问的时候,我们利用异或运算的交换律,即 a xor $b=c \iff a$ xor c=b 开一个桶 t, t[i] 表示当前前缀中与 i 异或有 k 个数位为 1 的数有多少个。则每加入一个数 a[i],对于所有 popcount(x)=k 的 x, t[a[i] xor $x] \leftarrow t[a[i]$ xor x]+1 即可。

```
typedef long long 11;
const int N=1e5+2,M=1<<14;</pre>
11 f[N],ans[N],ta[N];
int a[N],cnt[M],bel[N],pc[M],st[N];
int n,m,ksiz;
struct Q
                     int z,y,wz;
                     bool operator < (const Q\& x) const \{return (bel[z] < bel[x.z]) | | (bel[z] = bel[x.z]) \& \& ((y < x.y) \& \& (bel[x.z]) | (bel[z] = bel[x.z]) & \& ((y < x.y) & \& (bel[x.z]) | (bel[x.z]) | (bel[x.z]) | (bel[x.z]) & \& ((y < x.y) & \& (bel[x.z]) | (bel[x.z]) | (bel[x.z]) | (bel[x.z]) & \& ((y < x.y) & \& (bel[x.z]) | (bel[x.z]) | (bel[x.z]) | (bel[x.z]) | (bel[x.z]) | (bel[x.z]) & \& ((y < x.y) & \& (bel[x.z]) | (b
                                                [z]&1)||(y>x.y)&&(1^bel[z]&1));}
Q mq(const int x,const int y,const int z)
{
                     a.z=x;a.y=y;a.wz=z;
                     return a;
Q q[N];
vector<Q> b[N];
int main()
{
```

```
int i,j,k,l=1,r=0,tp=0,x,na;
read(n);read(m);read(k);ksiz=sqrt(n);
for (i=1;i<=n;i++) {read(a[i]);bel[i]=(i-1)/ksiz+1;}</pre>
if (k==0) st[++tp]=0;
for (i=1;i<16384;i++)</pre>
   if (i&1) pc[i]=pc[i>>1]+1; else pc[i]=pc[i>>1];
   if (pc[i]==k) st[++tp]=i;
}
for (i=1;i<=n;i++)</pre>
   j=tp+1;f[i]=f[i-1];
   while (--j) f[i]+=cnt[st[j]^a[i]];
   ++cnt[a[i]];
for (i=1;i<=m;i++) {read(q[i].z);read(q[q[i].wz=i].y);}</pre>
sort(q+1,q+m+1);
for (i=1;i<=m;i++)</pre>
   ans[i]=f[q[i].y]-f[r]+f[q[i].z-1]-f[l-1];
   if (k==0) ans[i]+=q[i].z-l;
   if (r<q[i].y)</pre>
       b[1-1].push_back(mq(r+1,q[i].y,-i));
       r=q[i].y;
   }
   if (1>q[i].z)
       b[r].push_back(mq(q[i].z,l-1,i));
       l=q[i].z;
   if (r>q[i].y)
       b[l-1].push_back(mq(q[i].y+1,r,i));
      r=q[i].y;
   }
   if (1<q[i].z)</pre>
       b[r].push_back(mq(1,q[i].z-1,-i));
       l=q[i].z;
   }
memset(cnt,0,sizeof(cnt));
for (i=1;i<=n;i++)</pre>
   j=tp+1;x=a[i];
   while (--j) ++cnt[x^st[j]];
   for (j=0;j<b[i].size();j++)</pre>
      na=0;l=b[i][j].z;r=b[i][j].y;
       for (k=1;k<=r;k++) na+=cnt[a[k]];</pre>
       }
}
for (i=2;i<=m;i++) ans[i]+=ans[i-1];</pre>
for (i=1;i<=m;i++) ta[q[i].wz]=ans[i];</pre>
for (i=1;i<=m;i++) printf("%lld\n",ta[i]);</pre>
```

}

2.13 回滚莫队

不删除的莫队,比如求 max。

做法: 块内询问暴力。对于 l 所在块相同的询问,按照 r 升序排序,并且将左指针固定在 l 所在块的最右侧。(由于块内询问暴力,这不会导致左指针更大)

回答每个询问的时候,先右端点右移到 r,然后左端点左移到 l。询问完成后,把左端点移回去。移回去的过程虽然涉及删除,但不需要维护答案变成什么了(因为在左端点左移之前已经求过了)。换句话说,相当于"撤销"而不是删除,完全可以记录移动过程中的所有变化来撤销。

 $O(n\sqrt{n}), O(n)$

```
#include <bits/stdc++.h>
using namespace std;
const int N=2e5+2;
int a[N],z[N],y[N],wz[N],b[N],d[N],bel[N],ans[N],st[N][2],pos[N][2];
void qs(int l,int r)
          int i=1,j=r,m=bel[z[l+r>>1]],mm=y[l+r>>1];
          while (i<=j)</pre>
                     while ((bel[z[i]] < m) | | (bel[z[i]] == m) & (y[i] < mm)) ++i;
                     while ((bel[z[j]]>m)||(bel[z[j]]==m)\&\&(y[j]>mm)) --j;
                     if (i<=j)
                     {
                                swap(wz[i],wz[j]);
                                swap(z[i],z[j]);
                                swap(y[i++],y[j--]);
                     }
          if (i<r) qs(i,r);</pre>
          if (l<j) qs(l,j);</pre>
int main()
{
          read(n);ksiz=sqrt(n);
          for (i=1;i<=n;i++) {read(a[i]);b[i]=a[i];bel[i]=(i-1)/ksiz+1;}</pre>
          sort(b+1,b+n+1);
          d[gs=1]=b[1];
          for (i=2;i<=n;i++) if (b[i]!=b[i-1]) d[++gs]=b[i];</pre>
          for (i=1;i<=n;i++) a[i]=lower_bound(d+1,d+gs+1,a[i])-d;</pre>
          read(m);assert(int(n/sqrt(m)));
          for (i=1;i<=m;i++) {read(z[i]);read(y[wz[i]=i]);}</pre>
          qs(1,m);
          for (i=1;i<=m;i++)</pre>
                     if (bel[z[i]]>bel[z[i-1]])
                                while (l<=r) {pos[a[1]][0]=pos[a[1]][1]=0;++1;}na=0;</pre>
                                if (bel[z[i]] == bel[y[i]])
                                           for (j=z[i];j<=y[i];j++) if (pos[a[j]][0]) na=max(na,j-pos[a[j]][0]); else pos[a[j</pre>
                                           ans[wz[i]] = na; \\ for (j=z[i]; j <= y[i]; j++) pos[a[j]][0] = 0; \\ na=0; \\ l=ksiz*bel[z[i]]; \\ r=l-1; \\ l=ksiz*bel[z[i]]; \\ r=l-1
                                           continue;
```

```
}
          l=ksiz*bel[z[i]];r=l-1;na=0;
       }
       if (bel[z[i]] == bel[y[i]])
          while (l<=r) {pos[a[1]][0]=pos[a[1]][1]=0;++1;}na=0;</pre>
          for (j=z[i];j<=y[i];j++) if (pos[a[j]][0]) na=max(na,j-pos[a[j]][0]); else pos[a[j</pre>
              ]][0]=j;
          ans[wz[i]]=na;for (j=z[i];j<=y[i];j++) pos[a[j]][0]=0;
          l=ksiz*bel[z[i]];r=l-1;na=0;
          continue;
       }
       while (r<y[i])</pre>
          x=a[++r];pos[x][1]=r;
          if (!pos[x][0]) pos[x][0]=r; else na=max(na,r-pos[x][0]);
       }c=na;
       while (1>z[i])
          x=a[--1];st[++tp][0]=x;st[tp][1]=pos[x][0];
          pos[x][0]=1;
          if (!pos[x][1])
              st[++tp][0]=x+n;st[tp][1]=0;
              pos[x][1]=1;
          } else na=max(na,pos[x][1]-1);
       ans[wz[i]]=na;na=c;++tp;l=ksiz*bel[z[i]];
       while (--tp) if (st[tp][0]<=n) pos[st[tp][0]][0]=st[tp][1]; else pos[st[tp][0]-n][1]=st[tp
           ][1];
   for (i=1;i<=m;i++) printf("%d\n",ans[i]);</pre>
}
```

2.14 李超树

题意:插入线段,查询某个x的最大y(输出最小编号)

算法核心:修改时,线段树每个点只维护在中点取值最大的线段,中点取值较小的线段只会在至多一侧有用,递归下去插入,复杂度 $O(\log^2)$ 。查询时询问线段树上 \log 个点的线段中最大的。

```
return a.id>b.id;
const int inf=1e9;
int ans;
namespace seg
   const int N=4e4+2,M=N*4;
   Q s[M], X[N];
   int n,z,y;
   void init(int nn) {n=nn;for (int i=1;i<=n*4;i++) s[i]=Q();}</pre>
   void insert(int x,int 1,int r,Q dt)
       int c=x*2,m=1+r>>1;
       if (z<=1&&r<=y)</pre>
          if (cmp(s[x],dt,m)) swap(s[x],dt);
          if (l==r) return;
          if (cmp(s[x],dt,l)) insert(c,l,m,dt);
          else if (cmp(s[x],dt,r)) insert(c+1,m+1,r,dt);
          return;
       if (z<=m) insert(c,1,m,dt);</pre>
       if (y>m) insert(c+1,m+1,r,dt);
   void insert(const Q &o)
       z=o.x0;y=z+o.dx;
       assert(1<=z&&z<=y&&y<=n);
       if (z==y)
          if (cmp2(X[z],o)) X[z]=o;
          return;
       insert(1,1,n,o);
   }
   Q askmax(int p)
       Q ans=s[1].contains(p)?s[1]:Q();
       int x=1,l=1,r=n,c,m;
       while (1<r)
       {
          c=x*2,m=1+r>>1;
          if (p<=m) x=c,r=m; else x=c+1,l=m+1;</pre>
          if (s[x].contains(p)&&cmp(ans,s[x],p)) ans=s[x];
       Q o(X[p].x0,X[p].y0+X[p].dy,1,0,0);
       return cmp(ans,o,p)?X[p]:ans;
   }
}
int main()
   ios::sync_with_stdio(0);cin.tie(0);
   cout<<setiosflags(ios::fixed)<<setprecision(15);</pre>
   int n=4e4,m,i;
   seg::init(n);
   cin>>m;
   while (m--)
```

```
{
       int op;
       cin>>op;
       if (op)
       {
          int x[2],y[2];
          cin>>x[0]>>y[0]>>x[1]>>y[1];
          for (int &v:x) v=(v+ans-1)%39989+1;
          for (int &v:y) v=(v+ans-1)%inf+1;
          if (x[0]>x[1]||x[0]==x[1]&&y[0]>y[1]) swap(x[0],x[1]),swap(y[0],y[1]);
          static int id;
          seg::insert(\{x[0],y[0],x[1]-x[0],y[1]-y[0],++id\});
       }
       else
          int x;
          cin>>x;
          x=(x+ans-1)%39989+1;
          cout << (ans=max(0,seg::askmax(x).id)) << '\n';
       }
   }
}
```

2.15 李超树(动态开点)

```
struct Q
   int k;
   11 b;
   11 y(const int &x) const {return (ll)k*x+b;}
};
const int inf=1e9;
const 11 INF=1e18;
struct seg//可以析构,不能并行
   const static int N=4e5+2,M=N*8*8+(1<<23);</pre>
   const static ll npos=9e18;
   static Q s[M];
   static int c[M][2],id;
   int z,y,L,R;
   seg(int 1,int r)
       L=1;R=r;id=1;
       s[1]={0,npos};
       assert(L<=R&&(11)R-L<111<<32);
   }
private:
   void insert(int &x,int 1,int r,Q o)
       if (!x)
       {
          x=++id;
          assert(id<M);</pre>
          s[x]={0,npos};
       int m=l+(r-l>>1);
```

```
if (z<=1&&r<=y)</pre>
          if (s[x].y(m)>o.y(m)) swap(s[x],o);
          if (s[x].y(1)>o.y(1)) insert(c[x][0],1,m,o);
          else if (s[x].y(r)>o.y(r)) insert(c[x][1],m+1,r,o);
          return;
       }
       if (z<=m) insert(c[x][0],1,m,o);</pre>
       if (y>m) insert(c[x][1],m+1,r,o);
   }
public:
   void insert(const Q &x,const int &l,const int &r)//[1,r]
       z=1;y=r;int tmp=1;
       insert(tmp,L,R,x);
       assert(tmp==1);
   11 askmin(const int &p)
       11 res=s[1].y(p);
       int l=L,r=R,m,x=1;
       while (1<r)
          m=1+(r-1>>1);
          if (p<=m) x=c[x][0],r=m; else x=c[x][1],l=m+1;</pre>
          if (!x) return res;
          res=min(res,s[x].y(p));
       return res;
   }
   ~seg()
       ++id;
       while (--id) c[id][0]=c[id][1]=0;
   }
};
Q seg::s[seg::M];
int seg::c[seg::M][2],seg::id;
```

2.16 splay

```
没啥用。O(n), O((n+q)\log n)。
```

```
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned int ui;
const int N=1e6+20,p=998244353;
void inc(int &x,const int y){if ((x+=y)>=p) x-=p;}
void dec(int &x,const int y){if ((x-=y)<0) x+=p;}
void mul(int &x,const int y){x=(ll)x*y%p;}
template<int N> struct _splay
{
   int c[N][2],plz[N],clz[N],siz[N],siz[N],v[N],f[N];
   bool fg[N],flz[N];
```

```
int tp,rt;
void allout(int x)
   if (!x) return;
   pushdown(x);
   allout(c[x][0]);
   if (x>2) printf("%d_",v[x]);
   allout(c[x][1]);
}
void out(int x)
   if (c[x][0]) out(c[x][0]);
   if (c[x][1]) out(c[x][1]);
   if (x==rt) puts("----");
void iinit()
{
   for (int i=1;i<N;i++) st[N-i]=i;</pre>
   tp=N-1;
void init()
{
   tp=N-3;
   c[1][0]=c[1][1]=flz[1]=plz[1]=fg[1]=v[1]=f[1]=s[1]=0;clz[1]=1;
   c[2][0]=c[2][1]=flz[2]=plz[2]=fg[2]=v[2]=f[2]=s[2]=0;clz[2]=1;
   c[1][1]=2;f[2]=1;rt=1;siz[2]=1;siz[1]=2;
void pushup(int x)
   s[x]=((ui)s[c[x][0]]+s[c[x][1]]+v[x])%p;
   siz[x]=siz[c[x][0]]+siz[c[x][1]]+1;
void pushdown(int x)
   int lc=c[x][0],rc=c[x][1];
   if (flz[x])
      if (lc) flz[lc]^=1,swap(c[lc][0],c[lc][1]);
      if (rc) flz[rc]^=1,swap(c[rc][0],c[rc][1]);
      flz[x]=0;
   }
   if (fg[x])
      clz[x]=1;plz[x]=0;
      if (lc) fg[lc]=1,v[lc]=v[x],s[lc]=(ll)v[x]*siz[lc]%p;
      if (rc) fg[rc]=1,v[rc]=v[x],s[rc]=(ll)v[x]*siz[rc]%p;
      fg[x]=0;
   }
   else
      if (clz[x]!=1)
         if (lc) mul(clz[lc],clz[x]),mul(s[lc],clz[x]),mul(plz[lc],clz[x]),mul(v[lc],clz[x])
         if (rc) mul(clz[rc],clz[x]),mul(s[rc],clz[x]),mul(plz[rc],clz[x]),mul(v[rc],clz[x])
             ;
```

```
clz[x]=1;
      }
      if (plz[x])
         if (rc) inc(plz[rc],plz[x]),inc(v[rc],plz[x]),s[rc]=(s[rc]+(11)siz[rc]*plz[x])%p;
         plz[x]=0;
      }
   }
void zigzag(int x)
   int y=f[x],z=f[y],typ=(c[y][0]==x);
   if (z) c[z][c[z][1]==y]=x;
   f[x]=z;f[y]=x;c[y][typ^1]=c[x][typ];
   if (c[x][typ]) f[c[x][typ]]=y;
   c[x][typ]=y;
   pushup(y);
}
void allpd(int x)
   static int st[N],tp;
   st[tp=1]=x;
   while (x=f[x]) st[++tp]=x;
   while (tp) pushdown(st[tp--]);
}
void splay(int x,int tar)
   if (!tar) rt=x;
   int y;
   while ((y=f[x])!=tar)
      if (f[y]!=tar) zigzag(c[f[y]][0]==y^c[y][0]==x?x:y);
      zigzag(x);
   }
   pushup(x);
void find(int kth,int tar)
   int x=rt;
   while (siz[c[x][0]]+1!=kth)
      pushdown(x);
      if (siz[c[x][0]]>=kth) x=c[x][0]; else
         kth-=siz[c[x][0]]+1;
         x=c[x][1];
      }
   }
   pushdown(x);
   splay(x,tar);
int rk(int x)
{
   allpd(x);
   splay(x,0);
   return siz[c[x][0]];
```

```
void split(int x,int y)
   find(x,0); find(y+2,rt);
int npt()
{
   int x=st[tp--];
   c[x][0]=c[x][1]=plz[x]=siz[x]=s[x]=v[x]=fg[x]=flz[x]=0;
   clz[x]=1;
   return x;
}
int build(int *a,int 1,int r)
   if (1>r) return 0;
   int m=l+r>>1,x;
   v[x=npt()]=a[m];
   //printf("build %d %d %d\n",1,r,x);
   if (l==r)
   {
      siz[x]=1;
       s[x]=v[x];
      return x;
   c[x][0]=build(a,1,m-1);
   c[x][1]=build(a,m+1,r);
   if (c[x][0]) f[c[x][0]]=x;
   if (c[x][1]) f[c[x][1]]=x;
   pushup(x);
   return x;
void ins(int pos,int *a,int n)//在pos后插入
   if (!n) return;
   split(pos+1,pos);
   // out(rt);
   int x=c[rt][1];
   c[x][0]=build(a,1,n);
   // printf("%d %d\n",x,c[x][0]);
   f[c[x][0]]=x;
   pushup(x);pushup(rt);
void del(int l,int r)//删除[l,r]
   split(1,r);
   c[c[rt][1]][0]=0;
   pushup(c[rt][1]);
   pushup(rt);
}
void rev(int l,int r)
   split(l,r);
   int x=c[c[rt][1]][0];
   swap(c[x][0],c[x][1]);
   flz[x]^=1;
void add(int l,int r,int val)
```

```
{
       split(l,r);
       int x=c[c[rt][1]][0];
       inc(v[x],val);inc(plz[x],val);
       s[x]=(s[x]+(ll)val*siz[x])%p;
       pushup(f[x]);pushup(rt);
   }
   void multi(int 1,int r,int val)
       split(1,r);
       int x=c[c[rt][1]][0];
       mul(v[x],val);mul(plz[x],val);
       mul(s[x],val);mul(clz[x],val);
       pushup(f[x]);pushup(rt);
   void mov(int l1,int r1,int l2)//都是原下标
       if (12>11) 12-=r1-l1+1;
       split(l1,r1);int x=c[c[rt][1]][0];
       allpd(x);c[f[x]][0]=0;
       pushup(f[x]);pushup(rt);
       split(12+1,12);
       allpd(c[rt][1]);
       c[c[rt][1]][0]=x;f[x]=c[rt][1];
       pushup(f[x]);pushup(rt);
   }
   int sum(int 1,int r)
       split(l,r);//puts("spe ");out(rt);
       return s[c[c[rt][1]][0]];
};
_splay<N> s;
int a[N];
int n,q,i,x,y,z;
int main()
   read(n);read(q);s.iinit();
   for (i=1;i<=n;i++) a[i]=i;</pre>
   s.init(); s.ins(0,a,n); //s.out(s.rt);
   while (q--)
       read(x);read(y);s.rev(x,y);
   s.allout(s.rt);
```

2.17 区间线性基

 $O((n+q)\log a)$, $O(n\log a)$.

```
template<class T,int M=sizeof(T)*8> struct base//线性基
{
    array<T,M> a;
    base():a{ } { }
    bool insert(T x)//线性基插入
    {
```

```
if (x==0) return 0;
       for (int i=__lg(x); x; i=__lg(x))
          if (!a[i])
          {
              a[i]=x;
              return 1;
          x^=a[i];
       }
       return 0;
   base & operator += (const base & o) // 合并线性基
       for (ll x:o.a) if (x) insert(x);
       return *this;
   base operator+(base o) const { return o+=*this; }//合并线性基
   bool contains(T x) const//查询是否能 xor 出 x
       if (x==0) return 1;
       for (int i=__lg(x); x; i=__lg(x))
          if (!a[i]) return 0;
          x^=a[i];
       }
       return 1;
   T \max(T = 0) \operatorname{const}//查询子集 \operatorname{xor} 的最大值。若有传入参数 \operatorname{x},表示子集 \operatorname{xor} x 的最大值。
       for (int i=M-1; i>=0; i--) if (1^x>>i&1) x^=a[i];
       return x;
   }
};
template<class T=11,int M=sizeof(T)*8> struct rangebase//[0,...)
   vector<array<pair<T,int>,M>> a;
   rangebase():a{{ }} { }
   rangebase(const vector<T> &b):a{{ }} { for (T x:b) insert(x); }//直接用一个 vector 构造
   void push_back(T x)//在最后插入 x
       int n=a.size()-1;
       a.push_back(a.back());
       if (x==0) return;
       for (int i=__lg(x); x; i=__lg(x))
          auto &[v,p]=a.back()[i];
          if (v)
          {
              if (n>p)
              {
                 swap(x,v);
                  swap(n,p);
              }
              x^=v;
          }
          else
```

2.18 splay 重构

```
O(n), O((n+q)\log n).
```

```
template < class info, class tag> struct splay
#define _rev
   struct node
       node *c[2],*f;
       int siz;
       info s,v;
       tag t;
       node():c\{\},f(0),siz(1),s(),v(),t() \{\}
       node(info x):c\{\},f(0),siz(1),s(x),v(x),t() \{\}
       void operator+=(const tag &o)
          s+=o; v+=o; t+=o;
#ifdef _rev
          if (o.rev) swap(c[0],c[1]);
#endif
       }
       void pushup()
          if (c[0]) s=c[0]->s+v,siz=c[0]->siz+1; else s=v,siz=1;
          if (c[1]) s=s+c[1]->s,siz+=c[1]->siz;
       void pushdown()
          for (auto x:c) if (x) *x+=t;
          t={};
       void zigzag()
          node *y=f,*z=y->f;
          int typ=y->c[0]==this;
          if (z) z->c[z->c[1]==y]=this;
```

```
f=z; y->f=this;
                    y \rightarrow c[typ^1] = c[typ];
                    if (c[typ]) c[typ]->f=y;
                    c[typ]=y;
                    y->pushup();
          void splay(node *tar)//不要在 makeroot 以外调用
                    for (node *y=f; y!=tar; zigzag(),y=f) if (node *z=y->f; z!=tar) (z->c[1]==y^y->c[1]==y^y->c[1]==y^y->c[1]==y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y^y->c[1]=y
                                this?this:y)->zigzag();
                    pushup();
          }
         void clear()
                    for (node *x:c) if (x) x->clear();
                    delete this;
          }
};
node *rt;
void debug()
         map<node *,int> id;
          id[0]=0; id[rt]=1;
          int cnt=1:
          function<void(node *)> out=[&](node *x)
                    if (!x) return;
                    for (auto y:x->c) if (!id.count(y)) id[y]=++cnt;
                    for (auto y:x->c) out(y);
          };
          out(rt);
node *build(info *a,int n)
          if (n==0) return 0;
          int m=n-1>>1;
         node *x=new node(a[m]);
         x->c[0]=build(a,m);
          x->c[1]=build(a+m+1,n-1-m);
          for (node *y:x->c) if (y) y->f=x;
          x->pushup();
         return x;
}
splay()
{
         rt=new node;
         rt->c[1]=new node;
         rt->c[1]->f=rt;
         rt->siz=2;
}
int shift;
splay(info *a, int 1, int r)//[1,r)
          shift=l-1;
          rt=new node;
          rt->c[1]=new node;
```

```
rt->c[1]->f=rt;
       if (1<r)</pre>
          rt->c[1]->c[0]=build(a+1,r-1);
          rt->c[1]->c[0]->f=rt->c[1];
       rt->c[1]->pushup();
      rt->pushup();
   }
   void makeroot(node *u,node *tar)
       if (!tar) rt=u;
      u->splay();
   void findnth(int k,node *tar)
      node *x=rt;
      while (1)
          x->pushdown();
          int v=x->c[0]?x->c[0]->siz:0;
          if (v+1==k) { x->splay(tar); if (!tar) rt=x; return; }
          if (v>=k) x=x->c[0]; else x=x->c[1],k-=v+1;
      }
   }
   void split(int l,int r)
       assert(1<=l&&r<=rt->siz-2&&l-1<=r);
       findnth(1,0);
       findnth(r+2,rt);
#ifdef _rev
   void reverse(int 1,int r)
      l-=shift; r-=shift+1;
      if (1-1==r) return;
       assert(1<=1&&1<=r&&r<=rt->siz-2);
       split(1,r);
       *(rt->c[1]->c[0])+=tag(1);
#endif
   void insert(int pos,info x)//insert before pos
      pos-=shift;
       assert(1<=pos&&pos<=rt->siz-1);
       split(pos,pos-1);
       rt->c[1]->c[0]=new node(x);
       rt->c[1]->c[0]->f=rt->c[1];
      rt->c[1]->pushup();
      rt->pushup();
   void insert(int pos,info *a,int n)//insert before pos, [1,n]
       pos-=shift;
       assert(1<=pos&&pos<=rt->siz-1);
       split(pos,pos-1);
       rt->c[1]->c[0]=build(a,n);
```

```
rt->c[1]->c[0]->f=rt->c[1];
       rt->c[1]->pushup();
      rt->pushup();
   void erase(int pos)
      pos-=shift;
       assert(1<=pos&&pos<=rt->siz-2);
       split(pos,pos);
       delete rt->c[1]->c[0];
       rt->c[1]->c[0]=0;
       rt->c[1]->pushup();
      rt->pushup();
   void erase(int l,int r)
      l-=shift; r-=shift+1;
       if (1-1==r) return;
       assert(1<=1&&1<=r&&r<=rt->siz-2);
       split(1,r);
      rt->c[1]->c[0]->clear();
       rt->c[1]->c[0]=0;
      rt->c[1]->pushup();
      rt->pushup();
   void modify(int pos,info x)//not checked
      pos-=shift;
       assert(1<=pos&&pos<=rt->siz-2);
      findnth(pos+1,0);
      rt->v=x; rt->pushup();
   }
   void modify(int l,int r,tag w)
      l-=shift; r-=shift+1;
      if (1-1==r) return;
       assert(1<=1&&1<=r&&r<=rt->siz-2);
       split(1,r);
      node *x=rt->c[1]->c[0];
       *x+=w;
      rt->c[1]->pushup();
      rt->pushup();
   info ask(int 1,int r)
       l-=shift; r-=shift+1;
       assert(1<=l&&l<=r&&r<=rt->siz-2);
       split(1,r);
       return rt->c[1]->c[0]->s;
   ~splay() { rt->clear(); }
#undef _rev
};
struct Q
{
   bool rev;
   Q():rev(0) {}
```

! 数据结构 36

```
Q(bool c):rev(c) {}
void operator+=(const Q &o)
{
    rev^=o.rev;
}

};
struct P
{
    11 s;
    void operator+=(const Q &o) const
    {
     }
    P operator+(const P &o) const { return{s+o.s}; }
};
```

2.19 第 k 大线性基

注意数字大于 2^50 时可能要修改循环范围。 $O((n+q)\log a)$, $O(\log a)$ 。

```
void ins(ll x)
   if (x==0) return con=1,void();//con=1:有0
   int i;
   for (i=50;x;i--) if (x>>i&1)
      if (!ji[i]) {ji[i]=x;i=-1;break;}x^=ji[i];
   if (!x) con=1;
11 \, kmax(11 \, x) // 查询第 k 大 (本质不同,不允许空集)的 xor 结果,若有初始值改 r 即可
   11 r=0;
   int m=0,i;
   for (i=50;~i;i--) if (ji[i]) a[++m]=i;
   if (111<<m<=x-con) return -1;//个数少于k
   for (i=1;i<=m;i++) if ((x>>m-i^r>>a[i])&1) r^=ji[a[i]];
   return r;
}
11 kmin(11 x)//查询第 k 小(本质不同,不允许空集)的 xor 结果,若有初始值改 r 即可
   ll r=0;
   int m=0,i;
   for (i=50;~i;i--) if (ji[i]) a[++m]=i;
   x-=con;
   if (111<<m<=x) return -1;//个数少于k
   for (i=1;i<=m;i++) if ((x>>m-i^r>>a[i])&1) r^=ji[a[i]];
   return r;
}
```

2.20 fhq-treap

```
洛谷模板: 普通平衡树。 O((n+q)\log n), O(n)。
```

```
const int N=1.1e6+2;
int c[N][2],v[N],w[N],s[N];
int n,i,x,y,ds,val,kth,p,q,z,rt,la,m,ans;
void pushup(const int x)
   s[x]=s[c[x][0]]+s[c[x][1]]+1;
}
void split_val(int now,int &x,int &y)//调用外部val,相等归入y
{
   if (!now) return x=y=0,void();
   if (val<=v[now]) split_val(c[y=now][0],x,c[now][0]);</pre>
   else split_val(c[x=now][1],c[now][1],y);
   pushup(now);
void split_kth(int now,int &x,int &y)//调用外部kth, 左子树大小为 kth
{
   if (!now) return x=y=0,void();
   if (kth<=s[c[now][0]]) split_kth(c[y=now][0],x,c[now][0]);</pre>
   else kth-=s[c[now][0]]+1,split_kth(c[x=now][1],c[now][1],y);
   pushup(now);
int merge(int x,int y)//小根ver.
   if (!(x&&y)) return x|y;
   if (w[x]<w[y]) {c[x][1]=merge(c[x][1],y);pushup(x);return x;}</pre>
   else {c[y][0]=merge(x,c[y][0]);pushup(y);return y;}
}
int main()
   read(n); read(m); srand(998244353);
   for (i=1;i<=n;i++)</pre>
       read(x); val=v[++ds]=x; w[ds]=rand(); s[ds]=1; split_val(rt,p,q); rt=merge(merge(p,ds),q);
   }
   while (m--)
       read(y);read(x);x^=la;
       if (y==4)//找到第 x 小的
          kth=x;split_kth(rt,p,q);x=p;
          while (c[x][1]) x=c[x][1];
          ans^=(la=v[x]);rt=merge(p,q);
          continue;
       val=x;//注意这一步
       if (y==1)//插入 x
          v[++ds]=x;w[ds]=rand();s[ds]=1;
          split_val(rt,p,q);rt=merge(merge(p,ds),q);
          continue;
       if (y==2)//删除一个 x
          split_val(rt,p,q);kth=1;split_kth(q,i,z);
          rt=merge(p,z);continue;
       }
```

2.21 笛卡尔树的线性建树

p[1,2,...,n] 是原序列,c 表示子结点。 笛卡尔树满足堆性质(权值小于等于子结点权值),并且中序遍历是原序列。 O(n),O(n)。

```
int c[N][2],p[N],st[N];
int main()
{
    int i,n,tp=0;
    ll la=0,ra=0;
    read(n);
    for (i=1;i<=n;i++)
    {
        read(p[i]);st[tp+1]=0;
        while ((tp)&&(p[st[tp]]>p[i])) --tp;
        c[c[st[tp]][1]=i][0]=st[tp+1];st[++tp]=i;
    }
    for (i=1;i<=n;i++) la^=(ll)i*(c[i][0]+1);
    for (i=1;i<=n;i++) ra^=(ll)i*(c[i][1]+1);
    printf("%lld_\%lld",la,ra);
}</pre>
```

2.22 扫描线

求矩形并的面积和周长(包括内周长) $O((n+q)\log n)$,O(n+q)。

```
using T=11;
vector<T> fun(vector<tuple<T, T, T, T>> &a)
{
    vector<T> x;
    for (auto [x1, y1, x2, y2]:a)
    {
        x.push_back(x1);
        x.push_back(x2);
    }
}
```

```
sort(all(x)); x.resize(unique(all(x))-x.begin());
   for (auto &[x1, y1, x2, y2]:a)
       x1=lower_bound(all(x), x1)-x.begin();
       x2=lower_bound(all(x), x2)-x.begin();
   return x;
}
struct sgt
   int n, z, y, d;
   vector<T> cnt, &p;
   vector<int> mn, lz;
   void build(int x, int 1, int r)
       cnt[x]=p[min(r, n-1)]-p[1];
       if (l+1==r) return;
       int c=x*2, m=1+r>>1;
       build(c, 1, m); build(c+1, m, r);
   sgt(vector<T> \&p):n(p.size()), p(p), cnt(n*4), mn(n*4), lz(n*4) { build(1, 0, n); }
   void dfs(int x, int 1, int r)
   {
       if (z<=l&&r<=y)</pre>
          mn[x] +=d;
          lz[x]+=d;
          return;
       int c=x*2, m=1+r>>1;
       if (lz[x])
          lz[c]+=lz[x]; lz[c+1]+=lz[x];
          mn[c] += lz[x]; mn[c+1] += lz[x];
          lz[x]=0;
       }
       if (z<m) dfs(c, 1, m);</pre>
       if (m<y) dfs(c+1, m, r);</pre>
       mn[x]=min(mn[c], mn[c+1]);
       cnt[x]=cnt[c]*(mn[x]==mn[c])+cnt[c+1]*(mn[x]==mn[c+1]);
   }
   void modify(int 1, int r, int dt)
       z=1;
       y=r;
       d=dt;
       dfs(1, 0, n);
   }
};
T area(vector<tuple<T, T, T, T>> a)//[x1,y1,x2,y2], x1<y1, x2<y2
   int n=a.size(), i;
   auto X=fun(a);
   vector<tuple<T, int, T, T>> b(n*2);
   for (i=0; i<n; i++)</pre>
   {
       auto [x1, y1, x2, y2]=a[i];
```

```
b[i]={y1, -1, x1, x2};
       b[i+n]={y2, 1, x1, x2};
   }
   sort(all(b), greater<>());
   sgt s(X);
   T lst=0, ans=0;
   for (auto [y, d, l, r]:b)
       ans+=(lst-y)*(X.back()-X[0]-s.cnt[1]);
       s.modify(l, r, d);
       lst=y;
   }
   return ans;
}
T perimeter_x(vector<tuple<T, T, T, T>> a)
   int n=a.size(), i;
   auto X=fun(a);
   vector<tuple<T, int, T, T>> b(n*2);
   for (i=0; i<n; i++)</pre>
       auto [x1, y1, x2, y2]=a[i];
       b[i]={y1, -1, x1, x2};
       b[i+n]={y2, 1, x1, x2};
   sort(all(b), greater<>());
   sgt s(X);
   T lst=s.cnt[1], ans=0;
   for (auto [y, d, 1, r]:b)
       s.modify(l, r, d);
       T cur=s.cnt[1];
       ans+=abs(lst-cur);
       lst=cur;
   return ans;
T perimeter(vector<tuple<T, T, T, T>> a)//[x1,y1,x2,y2], x1<y1, x2<y2
   T ansx=perimeter_x(a);
   for (auto &[x1, y1, x2, y2]:a)
       swap(x1, y1);
       swap(x2, y2);
   T ansy=perimeter_x(a);
   return ansx+ansy;
}
```

2.23 Segmenttree Beats!

核心是 P(tag)和 Q(info)的维护。线段树部分是套的模板,并非全都有用。

- 1. l, r, k: 对于所有的 $i \in [l, r]$, 将 A_i 加上 k (k 可以为负数)。
- 2. l, r, v: 对于所有的 $i \in [l, r]$, 将 A_i 变成 $min(A_i, v)$ 。

```
3. l, r: x = \sum_{i=l}^{r} A_i.
```

- 4. l,r: 对于所有的 $i \in [l,r]$, 求 A_i 的最大值。
- 5. l,r: 对于所有的 $i \in [l,r]$, 求 B_i 的最大值。

其中 B_i 是 A_i 的历史最大值。

```
struct P
{
   11 tg,L,R;
   P(ll a=0,ll b=-inf,ll c=inf):tg(a),L(b),R(c) { }
   void operator+=(P o)
       o.L-=tg; o.R-=tg; tg+=o.tg;
       if (L>=o.R) L=R=o.R;
       else if (R<=o.L) L=R=o.L;</pre>
       else cmax(L,o.L),cmin(R,o.R);
   }
};
struct Q
   11 mx0,cmx,mx1,mn0,cmn,mn1,cnt,sum;
   Q():mx0(-inf),cmx(0),mx1(-inf),mn0(inf),cmn(0),mn1(inf),cnt(0),sum(0) { }
   Q(11 x):mx0(x),cmx(1),mx1(-inf),mn0(x),cmn(1),mn1(inf),cnt(1),sum(x) { }
   bool operator+=(const P &o)
       if (o.L==o.R)
          11 c=cnt;
          *this=Q(o.L+o.tg);
          cnt=cmx=cmn=c;
          sum=cnt*(o.L+o.tg);
          return 1;
       if (o.L>=mn1||o.R<=mx1) return 0;</pre>
       if (mx0==mn0)
          mn0=min(o.R,max(mx0,o.L));
          sum+=cnt*(mn0-mx0);
          mx0=mn0;
       }
       else
          if (o.L>mn0)
              sum+=(o.L-mn0)*cmn;
              mn0=o.L;
              cmax(mx1,o.L);
          if (o.R<mx0)</pre>
          {
              sum+=(o.R-mx0)*cmx;
              mx0=o.R;
              cmin(mn1,o.R);
          }
       }
```

```
if (o.tg)
          sum+=o.tg*cnt;
          mx0+=o.tg;
          mx1+=o.tg;
          mn0+=o.tg;
          mn1+=o.tg;
      return 1;
   }
};
Q operator+(const Q &a,const Q &b)
   Q res;
   res.sum=a.sum+b.sum;
   res.cnt=a.cnt+b.cnt;
   res.mx0=max(a.mx0,b.mx0);
   res.mx1=max(a.mx1,b.mx1);
   if (res.mx0==a.mx0) res.cmx+=a.cmx; else cmax(res.mx1,a.mx0);
   if (res.mx0==b.mx0) res.cmx+=b.cmx; else cmax(res.mx1,b.mx0);
   res.mn0=min(a.mn0,b.mn0);
   res.mn1=min(a.mn1,b.mn1);
   if (res.mn0==a.mn0) res.cmn+=a.cmn; else cmin(res.mn1,a.mn0);
   if (res.mn0==b.mn0) res.cmn+=b.cmn; else cmin(res.mn1,b.mn0);
   return res;
template < class info, class tag> struct sgt
{
   int n,shift;
   vector<info> s;
   vector<tag> tg;
   vector<char> lz;
   template<class T> void build(T *a,int x,int l,int r)
       if (l==r)
       {
          s[x]=a[1];
          return;
       }
       int c=x*2,m=l+r>>1;
       build(a,c,1,m); build(a,c+1,m+1,r);
      s[x]=s[c]+s[c+1];
   template<class T> sgt(T *b,int L,int R):n(R-L+1),shift(L-1),s(R-L+1<<2),tg(R-L+1<<2),lz(R-L
       +1<<2)
      build(b+L-1,1,1,n);
   }//[L,R]
   int z,y;
   info res;
   tag dt;
   bool fir;
private:
   void pushdown(int x)
```

```
int c=x*2;
   if (lz[x])
       if (lz[c]) tg[c]+=tg[x]; else tg[c]=tg[x];
       lz[c]=1;
       if (!(s[c]+=tg[x]))
           pushdown(c);
           s[c]=s[c*2]+s[c*2+1];
       }
       c^=1;
       if (lz[c]) tg[c]+=tg[x]; else tg[c]=tg[x];
       lz[c]=1;
       if (!(s[c]+=tg[x]))
           pushdown(c);
           s[c]=s[c*2]+s[c*2+1];
       }
       c^=1;
       lz[x]=0;
   }
void _modify(int x,int l,int r)
   if (z<=1&&r<=y)</pre>
       if (lz[x]) tg[x]+=dt; else tg[x]=dt;
       lz[x]=1;
       if (!(s[x]+=dt))
       {
           pushdown(x);
           s[x]=s[x*2]+s[x*2+1];
       }
       return;
   }
   int c=x*2,m=1+r>>1;
   pushdown(x);
   if (z<=m) _modify(c,1,m);</pre>
   if (m<y) _modify(c+1,m+1,r);</pre>
   s[x]=s[c]+s[c+1];
}
void ask(int x,int 1,int r)
   if (z<=l&&r<=y)</pre>
       res=fir?s[x]:res+s[x];
       fir=0;
       return;
   }
   int c=x*2,m=l+r>>1;
   pushdown(x);
   if (z<=m) ask(c,1,m);</pre>
   if (m<y) ask(c+1,m+1,r);</pre>
}
function<bool(info)> check;
void find_left_most(int x,int 1,int r)
```

```
if (r<z||!check(s[x])) return;</pre>
       if (l==r) { y=1; res=s[x]; return; }
       int c=x*2,m=1+r>>1;
       pushdown(x);
       find_left_most(c,1,m);
       if (y==n+1) find_left_most(c+1,m+1,r);
   }
   void find_right_most(int x,int 1,int r)
       if (l>y||!check(s[x])) return;
       if (l==r) { z=1; res=s[x]; return; }
       int c=x*2,m=1+r>>1;
       pushdown(x);
       find_right_most(c+1,m+1,r);
       if (z==0) find_right_most(c,1,m);
   }
public:
   void modify(int l,int r,const tag &x)//[1,r]
       z=l-shift; y=r-shift; dt=x;
       // cerr<<"modify ["<<l<<','<r<<"] "<<'\n';
       assert(1 \le z\&\&z \le y\&\&y \le n);
       _modify(1,1,n);
   void modify(int pos,const info &o)
       pos-=shift;
       int l=1,r=n,m,c,x=1;
       while (1<r)
          c=x*2; m=l+r>>1;
          pushdown(x);
          if (pos<=m) x=c,r=m; else x=c+1,l=m+1;</pre>
       s[x]=o;
       while (x>>=1) s[x]=s[x*2]+s[x*2+1];
   info ask(int l,int r)//[l,r]
       z=l-shift; y=r-shift; fir=1;
       // cerr<<"ask ["<<l<<','<<r<'"] "<<'\n';
       assert(1<=z&&z<=y&&y<=n);
       ask(1,1,n);
       return res;
   pair<int,info> find_left_most(int 1,const function<bool(info)> &_check)//y=n+1 第二个参数是乱
       给的
       check=_check;
       z=l-shift; y=n+1;
       assert(1 \le z\&\&z \le n+1);
       find_left_most(1,1,n);
       return {y+shift,res};
   pair<int,info> find_right_most(int r,const function<bool(info)> &_check)//z=0 第二个参数是乱给
```

```
check=_check;
       z=0; y=r-shift;
       assert(0<=y&&y<=n);
       find_right_most(1,1,n);
       return {z+shift,res};
   }
};
//要求: 具有 info+info, info+=tag, tag+=tag。info, tag 需要拥有默认构造, 但不必拥有正确的值。
//采用左闭右闭
mt19937 rnd(345);
int main()
   ios::sync_with_stdio(0); cin.tie(0);
   cout<<fixed<<setprecision(15);</pre>
   int n,q,i;
   cin>>n>>q;
   vector<ll> a(n);
   cin>>a;
   sgt<Q,P> s(a.data(),0,n-1);
   while (q--)
       int op,1,r;
      cin>>op>>l>>r;
       --r;
       if (op==3)
          11 res=s.ask(1,r).sum;
          cout<<res<<'\n';</pre>
       }
       else
          11 b;
          cin>>b;
          if (op==0) s.modify(1,r,{0,-inf,b});
          else if (op==1) s.modify(1,r,\{0,b\});
          else s.modify(1,r,{b});
   }
}
```

2.24 k-d 树(二进制分组)

均摊 $O(\log^2 n)$ 插入, $O(\sqrt{n})$ 矩形查询。

```
#define tmpl template<class T>
typedef long long ll;
tmpl struct P
{
    ll x,y;
    T v;
};
tmpl struct Q
{
    ll x[2],y[2];
    bool t;
    T s;
    Q() {}
```

```
Q(const P<T> &a)
       x[0]=x[1]=a.x;
       y[0]=y[1]=a.y;
       s=a.v;
   }
};
tmpl bool cmp0(const P<T> &a,const P<T> &b) { return a.x<b.x; }</pre>
tmpl bool cmp1(const P<T> &a,const P<T> &b) { return a.y<b.y; }</pre>
tmpl struct kdt
{
   vector<P<T>> c;
   vector<Q<T>> a;
   ll m,u,d,l,r;
   T ans;
   bool fir;
   void build(int x,P<T> *b,int n)
   {
       if (x==1)
       {
           a.resize(m=n<<1);
          a[x].t=0;
          c.resize(n);
          for (int i=0; i<n; i++) c[i]=b[i];</pre>
       }
       if (n==1)
           a[x]=Q<T>(b[0]);
          return;
       }
       int mid=n>>1,c=x<<1;</pre>
       nth_element(b,b+mid,b+n,a[x].t?cmp1<T>:cmp0<T>);
       a[c].t=a[c|1].t=a[x].t^1;
       build(c,b,mid);
       build(c|1,b+mid,n-mid);
       a[x].s=a[c].s+a[c|1].s;
       a[x].x[0]=min(a[c].x[0],a[c|1].x[0]);
       a[x].x[1]=max(a[c].x[1],a[c|1].x[1]);
       a[x].y[0]=min(a[c].y[0],a[c|1].y[0]);
       a[x].y[1]=max(a[c].y[1],a[c|1].y[1]);
   }
   void find(int x)
       if (x>=m||a[x].x[1]<u||a[x].x[0]>d||a[x].y[1]<1||a[x].y[0]>r) return;
       if (u \le a[x].x[0] \&\&a[x].x[1] \le d\&\&l \le a[x].y[0] \&\&a[x].y[1] \le r)
           ans=fir?a[x].s:ans+a[x].s;
           fir=0;
          return;
       find(x<<1); find(x<<1|1);
   pair<bool,T> find(ll x1,ll y1,ll x2,ll y2)
   {
       fir=1;
       ans=\{\};
       u=x1; d=x2;
```

```
l=y1; r=y2;
       find(1);
       return {!fir,ans};
   }
};
const int N=2e5+2,M=18;
tmpl struct KDT
{
   kdt<T> s[M];
   P<T> a[N];
   int n,m,i;
   KDT() \{ n=0; \}
   KDT(int N, 11 *x, 11 *y, T *w)//[0,n)
       n=N;
       int i,j;
       for (i=0; i<n; i++) a[i]={x[i],y[i],w[i]};</pre>
       for (i=j=0; n>>i; i++) if (n>>i&1) s[i].build(1,a+j,1<<i),j+=1<<i;</pre>
   }
   void insert(ll x,ll y,T w)//插入 (x,y) 的一个数 w
       a[0]=\{x,y,w\}; m=1;
       for (i=0; n&1<<i; i++) for (auto u:s[i].c) a[m++]=u;</pre>
       s[i].build(1,a,m);
       ++n;
   }
   pair<bool,T> ask(ll x,ll y,ll xx,ll yy)//查询 [x,xx]*[y,yy] 的和
       T ans;
       bool fir=1;
       for (i=0; 1<<i<=n; i++) if (1<<i&n)</pre>
          auto [_,tmp]=s[i].find(x,y,xx,yy);
          if (!_) continue;
          ans=fir?tmp:ans+tmp;
          fir=0;
       return {!fir,ans};
   }
};
int x[N],y[N],w[N];
int main()
   ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
   int n,q,i;
   cin>>n>>q;
   for (i=0; i<n; i++) cin>>x[i]>>y[i]>>w[i];
   KDT<11> s(n,x,y,w);
   while (q--)
       int op,x,y,w;
       cin>>op>>x>>y>>w;
       if (op==0) s.insert(x,y,w); else
       {
          cin>>op;
          cout << s.ask(x,y,w-1,op-1) << ' n';
       }
```

· 数据结构 48

```
return 0;
}
```

2.25 双端队列全局查询

对一个支持结合律的信息 T,维护 deque 内信息的和。总复杂度线性。

```
template < class T > struct dq
   vector<T> 1,sl,r,sr;
   void push_front(const T &o)
       sl.push_back(sl.size()?o+sl.back():o);
       1.push_back(o);
   }
   void push_back(const T &o)
       sr.push_back(sr.size()?sr.back()+o:o);
       r.push_back(o);
   void pop_front()
       if (1.size()) sl.pop_back(),l.pop_back();
       else
          assert(r.size());
          int n=r.size(),m,i;
          if (m=n-1>>1)
              l.resize(m); sl.resize(m);
              for (i=1; i<=m; i++) l[m-i]=r[i];</pre>
              s1[0]=1[0];
              for (i=1; i<m; i++) sl[i]=l[i]+sl[i-1];</pre>
          for (i=m+1; i<n; i++) r[i-(m+1)]=r[i];</pre>
          m=n-(m+1);
          r.resize(m); sr.resize(m);
          if (m)
              sr[0]=r[0];
              for (i=1; i<m; i++) sr[i]=sr[i-1]+r[i];</pre>
          }
       }
   }
   void pop_back()
       if (r.size()) sr.pop_back(),r.pop_back();
       else
          assert(l.size());
          int n=1.size(),m,i;
          if (m=n-1>>1)
          {
              r.resize(m); sr.resize(m);
              for (i=1; i<=m; i++) r[m-i]=l[i];</pre>
              sr[0]=r[0];
```

```
for (i=1; i<m; i++) sr[i]=sr[i-1]+r[i];</pre>
          for (i=m+1; i<n; i++) l[i-(m+1)]=l[i];</pre>
          m=n-(m+1);
          l.resize(m); sl.resize(m);
          if (m)
              s1[0]=1[0];
              for (i=1; i<m; i++) sl[i]=l[i]+sl[i-1];</pre>
          }
       }
   }
   template<class TT> TT ask(TT r)
       if (sl.size()) r=r+sl.back();
       if (sr.size()) r=r+sr.back();
       return r;
   T ask()
   {
       assert(sl.size()||sr.size());
       if (sl.size()&&sr.size()) return sl.back()+sr.back();
       return sl.size()?sl.back():sr.back();
};//参数: 类型。结合使用 + 运算符
```

2.26 静态矩形加矩形和

```
const 11 p=998244353;
struct Q
   int n,m;
   11 w;
   int typ;
   bool operator<(const Q &o) const</pre>
       if (n!=o.n) return n<o.n;</pre>
       return typ<o.typ;</pre>
   }
template<class T> struct tork
{
   vector<T> a;
   int n;
   tork(const vector<T> &b):a(all(b))
       sort(all(a));
       a.resize(unique(all(a))-a.begin());
       n=a.size();
   tork(const T *first,const T *last):a(first,last)
       sort(all(a));
       a.resize(unique(all(a))-a.begin());
       n=a.size();
   }
```

```
void get(T &x) { x=lower_bound(all(a),x)-a.begin()+1; }
   T operator[](const int &x) { return a[x]; }
};
struct bit
   vector<ll> a;
   int n;
   bit() {}
   bit(int nn):n(nn),a(nn+1) {}
   template < class T > bit(int nn,T *b):n(nn),a(nn+1)
       for (int i=1; i<=n; i++) a[i]=b[i];</pre>
       for (int i=1; i<=n; i++) if (i+(i&-i)<=n) a[i+(i&-i)]+=a[i];</pre>
   }
   void add(int x,ll y)
       // cerr<<"add "<<x<" by "<<y<endl;
       assert(1<=x&&x<=n);
       if ((a[x]+=y)>=p) a[x]-=p;
       while ((x+=x\&-x)<=n) if ((a[x]+=y)>=p) a[x]-=p;
   11 sum(int x)
       // cerr<<"sum "<<x:
       assert(0<=x&&x<=n);
       11 r=a[x];
       while (x^=x\&-x) r+=a[x];
       // cerr<<"= "<<r<<endl;
       return r%p;
   }
   11 sum(int x,int y)
       return (sum(y)+p-sum(x-1))%p;
};
struct matrix
{
   int l,d,r,u;
   ll w;
};
vector<11> rec_add_rec_sum(const vector<matrix> &op,const vector<matrix> &query)
{
   vector<Q> a[4];
   int n=op.size(),m=query.size(),i;
   for (auto &v:a) v.reserve(n+m<<2);</pre>
   for (auto [1,d,r,u,w]:op)//[1,r)*[d,u) += w
   {
       a[0].push_back(\{1,d,w*1\%p*d\%p,-1\});
       a[1].push_back({1,d,w*1%p,-1});
       a[2].push_back({1,d,w*d%p,-1});
       a[3].push_back({1,d,w,-1});
       w=(p-w)%p;
       a[0].push_back({1,u,w*l\%p*u\%p,-1});
       a[1].push_back(\{1,u,w*1\%p,-1\});
       a[2].push_back({1,u,w*u%p,-1});
       a[3].push_back({1,u,w,-1});
       a[0].push_back({r,d,w*r%p*d%p,-1});
```

```
a[1].push_back({r,d,w*r\%p,-1});
       a[2].push_back({r,d,w*d\%p,-1});
       a[3].push_back(\{r,d,w,-1\});
       w=(p-w)%p;
       a[0].push_back({r,u,w*r%p*u%p,-1});
       a[1].push_back(\{r,u,w*r\%p,-1\});
       a[2].push_back({r,u,w*u%p,-1});
       a[3].push_back({r,u,w,-1});
   }
   i=0;
   for (auto [1,d,r,u,w]:query)//ask sum of [1,r)*[d,u)
       a[0].push_back({1,d,1,i});
       a[1].push_back({1,d,(p*2-d)%p,i});
       a[2].push_back(\{1,d,(p*2-1)\%p,i\});
       a[3].push_back(\{1,d,(11)1*d%p,i\});
       a[0].push_back({1,u,p-1,i});
       a[1].push_back({1,u,u%p,i});
       a[2].push_back({1,u,1%p,i});
       a[3].push_back({1,u,(p*2-1)*u\%p,i});
       a[0].push_back({r,u,1,i});
       a[1].push_back({r,u,(p*2-u)\%p,i});
       a[2].push_back({r,u,(p*2-r)%p,i});
       a[3].push_back({r,u,(11)u*r\%p,i});
       a[0].push_back({r,d,p-1,i});
       a[1].push_back({r,d,d%p,i});
       a[2].push_back({r,d,r%p,i});
       a[3].push_back({r,d,(p*2-d)*r\%p,i});
       ++i;
   }
   assert(a[0].size()==n+m<<2);
   vector<ll> ans(m);
   auto cal=[&](vector<Q> a)
       int n=a.size(),i;
       vector<int> b(n);
       for (i=0; i<n; i++) b[i]=(a[i].m-=a[i].typ>=0),a[i].n-=a[i].typ>=0;
       sort(all(a));
       tork t(b);
       for (i=0; i<n; i++) t.get(a[i].m);</pre>
       int m=t.a.size();
       bit s(m);
       for (auto [n,m,w,typ]:a) if (typ>=0) ans[typ]=(ans[typ]+s.sum(m)*w)%p; else s.add(m,w);
   for (auto &v:a) cal(v);
   return ans;
}
int main()
{
   ios::sync_with_stdio(0); cin.tie(0);
   cout<<setiosflags(ios::fixed)<<setprecision(15);</pre>
   int n,m,i;
   cin>>n>>m;
   vector<matrix> a(n),b(m);
   for (auto &[1,d,r,u,w]:a) cin>>l>>d>>r>>u>>w;
   for (auto &[1,d,r,u,w]:b) cin>>l>>d>>r>>u;
   auto ans=rec_add_rec_sum(a,b);
```

```
for (i=0; i<m; i++) cout<<ans[i]<<'\n';
}</pre>
```

2.27 线段树分裂

```
namespace sgt
{
#define ask_kth
   int L=0,R=1e9;
   void set_bound(int 1,int r) { L=1; R=r; }
   typedef ll info;
   const info E=0;//找不到会返回 E
   const int N=8e6+5;
#define lc(x) (a[x].lc)
#define rc(x) (a[x].rc)
#define s(x) (a[x].s)
   struct node
       int lc,rc;
       info s;
   };
   node a[N];
   vector<int> id;
   int ids=0,pos,z,y;
   bool fir;
   info tmp;
   int npt()
       int x;
      if (id.size()) x=id.back(),id.pop_back();
       else x=++ids;
      lc(x)=rc(x)=0;
      return x;
   void pushup(int &x)
       if (lc(x)\&\&rc(x)) s(x)=s(lc(x))+s(rc(x));
       else if (lc(x)) s(x)=s(lc(x));
       else if (rc(x)) s(x)=s(rc(x));
       else id.push_back(x),x=0;
   void insert(int &x,int 1,int r)
      if (l==r)
          if (!x) x=npt(),s(x)=tmp;
          else s(x)=s(x)+tmp;
          return;
       }
       if (!x) x=npt();
       int mid=l+r>>1;
       if (pos<=mid)</pre>
       {
          insert(lc(x),1,mid);
          if (rc(x)) s(x)=s(lc(x))+s(rc(x)); else s(x)=s(lc(x));
       }
```

```
else
       insert(rc(x),mid+1,r);
       if (lc(x)) s(x)=s(lc(x))+s(rc(x)); else s(x)=s(rc(x));
}
void modify(int &x,int 1,int r)
   if (!x) x=npt();
   if (l==r)
       s(x)=tmp;
       return;
   }
   int mid=l+r>>1;
   if (pos<=mid)</pre>
   {
       insert(lc(x),1,mid);
       if (rc(x)) s(x)=s(lc(x))+s(rc(x)); else s(x)=s(lc(x));
   }
   else
       insert(rc(x),mid+1,r);
       if (lc(x)) s(x)=s(lc(x))+s(rc(x)); else s(x)=s(rc(x));
   }
}
int merge(int x1,int x2,int 1,int r)
   if (!(x1&&x2)) return x1|x2;
   if (l==r) { s(x1)=s(x1)+s(x2); return x1; }
   int mid=l+r>>1;
   lc(x1)=merge(lc(x1),lc(x2),l,mid);
   rc(x1)=merge(rc(x1),rc(x2),mid+1,r);
   pushup(x1);
   return x1;
}
void ask(int x,int 1,int r)
   if (!x) return;
   if (z<=1&&r<=y)</pre>
       if (fir) tmp=s(x),fir=0; else tmp=tmp+s(x);
       return;
   }
   int mid=l+r>>1;
   if (z<=mid) ask(lc(x),1,mid);</pre>
   if (y>mid) ask(rc(x),mid+1,r);
void split(int &x1,int &x2,int 1,int r)
   assert(!x1);
   if (!x2) return;
   if (z<=l&&r<=y) { x1=x2; x2=0; return; }</pre>
   x1=npt();
   int mid=l+r>>1;
   if (z<=mid) split(lc(x1),lc(x2),l,mid);</pre>
   if (y>mid) split(rc(x1),rc(x2),mid+1,r);
```

```
pushup(x1); pushup(x2);
   info *b;
   void build(int &x,int 1,int r)
       x=npt();
       if (l==r) { s(x)=b[l]; return; }
       int mid=l+r>>1;
      build(lc(x),1,mid); build(rc(x),mid+1,r);
       s(x)=s(lc(x))+s(rc(x));
   struct set
      int rt;
       set():rt(0) {}
       set(info *a):rt(0) { b=a; build(rt,L,R); }
       void modify(int p,const info &o) { pos=p; tmp=o; sgt::modify(rt,L,R); }
       void insert(int p,const info &o) { pos=p; tmp=o; sgt::insert(rt,L,R); }
       void join(const set &o) { rt=merge(rt,o.rt,L,R); }
       info ask(int 1,int r)
          z=1; y=r; fir=1;
          sgt::ask(rt,L,R);
          return fir?E:tmp;
       set split(int l,int r)
          z=1; y=r; set p;
          sgt::split(p.rt,rt,L,R);
          return p;
#ifdef ask_kth
       int kth(info k)
          int x=rt,l=L,r=R,mid;
          if (k>s(x)) return -1;
          s(0)=0;
          while (1<r)</pre>
              mid=l+r>>1;
              if (s(lc(x))>=k) x=lc(x),r=mid;
              else k=s(lc(x)), x=rc(x), l=mid+1;
          return 1;
#endif
   };
#undef lc
#undef rc
#undef s
typedef sgt::set tree;
```

2.28 bitset (手写, 未验证)

```
{
        typedef unsigned int ui;
         typedef unsigned long long 11;
#define all(x) (x).begin(),(x).end()
        const static 11 B=-11lu;
        vector<ll> a;
        int n;
        Bitset() { }
        Bitset(int _n):n(_n), a(_n+63>>6) { }
        bool test(int x) const { assert(x>=0&&x<n); return a[x>>6]>>(x&63)&1; }
        bool operator[](int x) const { return test(x); }
         void \ set(int \ x, \ bool \ y) \ \{ \ assert(x>=0\&\&x<n); \ a[x>>6]=(a[x>>6]\&(B^11)u<<(x\&63)))|((11)y<<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63))|((11)y<(x\&63)|((11)y<(x\&63)|((11)y<(x\&63)|((11)y<(x\&63)|((11)y<(x\&63)|((1
                  ); }
        void set(int x) { assert(x>=0&&x<n); a[x>>6] |=111u<<(x&63); }</pre>
        void set() { memset(a.data(), 0xff, a.size()*sizeof a[0]); a.back()&=(11lu<<1+(n-1&63))-1; }</pre>
        void reset(int x) { assert(x>=0&&x<n); a[x>>6]&=~(1llu<<(x&63)); }
        void reset() { memset(a.data(), 0, a.size()*sizeof a[0]); }
        int count() const
                 int r=0;
                 for (ll x:a) r+=__builtin_popcountll(x);
                 return r;
        Bitset &operator|=(const Bitset &o)
                 assert(n==o.n);
                 for (int i=0; i<a.size(); i++) a[i] |=o.a[i];</pre>
                 return *this;
        }
        Bitset operator|(Bitset o) { o|=*this; return o; }
        Bitset &operator&=(const Bitset &o)
                 assert(n==o.n);
                 for (int i=0; i<a.size(); i++) a[i]&=o.a[i];</pre>
                 return *this;
        }
        Bitset operator&(Bitset o) { o&=*this; return o; }
        Bitset &operator^=(const Bitset &o)
                 assert(n==o.n);
                 for (int i=0; i<a.size(); i++) a[i]^=o.a[i];</pre>
                 return *this;
        Bitset operator^(Bitset o) { o^=*this; return o; }
        Bitset operator~() const
        {
                 auto r=*this;
                 for (ll &x:r.a) x=~x;
                 return r;
        Bitset &operator<<=(int x)</pre>
                 if (x>=n)
                          fill(all(a), 0);
                          return *this;
```

```
assert(x>=0);
   int y=x>>6;
   x\&=63;
   if (x==0)
       for (int i=(int)a.size()-1; i>=y; i--) a[i]=a[i-y]<<x;</pre>
       if (n&63) a.back()&=(11lu<<1+(n-1&63))-1;</pre>
       memset(a.data(), 0, y*sizeof a[0]);
       return *this;
   }
   for (int i=(int)a.size()-1; i>y; i--) a[i]=a[i-y]<<x|a[i-y-1]>>64-x;
   a[y]=a[0]<< x;
   memset(a.data(), 0, y*sizeof a[0]);
   // fill_n(a.begin(),y,0);
   if (n&63) a.back()&=(11lu<<1+(n-1&63))-1;</pre>
   return *this;
Bitset operator<<(int x)</pre>
   auto r=*this;
   r<<=x;
   return r;
Bitset &operator>>=(int x)
   if (x>=n)
       fill(all(a), 0);
       return *this;
   }
   assert(x>=0);
   int y=x>>6, R=(int)a.size()-y-1;
   for (int i=0; i<R; i++) a[i]=a[i+y]>>x|a[i+y+1]<<64-x;</pre>
   a[R]=a.back()>>x;
   memset(a.data()+R+1, 0, y*sizeof a[0]);
   // fill(R+1+all(a),0);
   return *this;
}
Bitset operator>>(int x)
   auto r=*this;
   r>>=x;
   return r;
void range_set(int 1, int r)//[1,r) to 1
{
   if (1>>6==r>>6)
       a[1>>6] = (111u << r-1) - 1 << (1&63);
       return;
   }
   if (1&63)
       a[1>>6] = ((111u < (1&63))-1); //[1&63,64)
       1=(1>>6)+1<<6;
   }
```

```
if (r&63)
          a[r>>6] |=(11lu<<(r&63))-1;
          r=(r>>6)-1<<6;
       memset(a.data()+(1>>6), 0xff, (r-1>>6)*sizeof a[0]);
   }
   void range_reset(int 1, int r)//[1,r) to 0
       if (1>>6==r>>6)
          a[1>>6] \&= ((111u << r-1) - 1 << (1\&63));
          return;
       }
       if (1&63)
          a[1>>6] &=(111u<<(1&63))-1;//[1&63,64)
          1=(1>>6)+1<<6;
       }
       if (r&63)
          a[r>>6] \&= ((111u << (r\&63))-1);
          r=(r>>6)-1<<6;
       memset(a.data()+(1>>6), 0, (r-1>>6)*sizeof a[0]);
   }
   void range_set(int 1, int r, bool x)//[1,r)
       if (x) range_set(1, r);
       else range_reset(1, r);
   int size() const { return n; }
   int _Find_first() const
       for (int i=0; i<a.size(); i++) if (a[i]) return i*64+__lg(a[i]&-a[i]);
       return n;
   }
};
istream &operator>>(istream &cin, Bitset &o)
{
   string s;
   cin>>s;
   int n=s.size(), i;
   assert(n<=o.size());
   for (i=0; i<n; i++) o.set(i, s[n-i-1]-'0');</pre>
   return cin;
ostream &operator<<(ostream &cout, const Bitset &o)
{
   int n=o.size(), i;
   string s(n, '0');
   for (i=0; i<n; i++) s[n-i-1]+=o.test(i);</pre>
   return cout;
}
```

2.29 区间众数

```
template<class T> struct mode//[0,n)
   int n,ksz,m;
   vector<T> b;
   vector<vector<int>> pos,f;
   vector<int> a,blk,id,l;
   mode(const vector<T> &c):n(c.size()),ksz(max<int>(1,sqrt(n))),m((n+ksz-1)/ksz),b(c),
       pos(n), f(m, vector < int > (m)), a(n), blk(n), id(n), l(m+1)
       int i,j,k;
       sort(all(b)); b.resize(unique(all(b))-b.begin());
       for (i=0; i<n; i++)</pre>
           a[i]=lower_bound(all(b),c[i])-b.begin();
           id[i]=pos[a[i]].size();
           pos[a[i]].push_back(i);
       for (i=0; i<n; i++) blk[i]=i/ksz;</pre>
       for (i=0; i<=m; i++) l[i]=min(i*ksz,n);</pre>
       vector<int> cnt(b.size());
       for (i=0; i<m; i++)</pre>
           fill(all(cnt),0);
           pair<int,int> cur={0,0};
           for (j=i; j<m; j++)</pre>
              for (k=l[j]; k<l[j+1]; k++) cmax(cur,pair{++cnt[a[k]],a[k]});</pre>
              f[i][j]=cur.second;
           }
       }
   pair<T,int> ask(int L,int R)//返回最大众数
       assert(0 \le L\&\&L \le R\&\&R \le n);
       int val=blk[L]==blk[R-1]?0:f[blk[L]+1][blk[R-1]-1],i;
       int cnt=lower_bound(all(pos[val]),R)-lower_bound(all(pos[val]),L);
       for (i=min(R,1[blk[L]+1])-1; i>=L; i--)
       {
           auto &v=pos[a[i]];
           while (id[i]+cnt<v.size()&&v[id[i]+cnt]<R) ++cnt,val=a[i];</pre>
           if (a[i]>val&&id[i]+cnt-1<v.size()&&v[id[i]+cnt-1]<R) val=a[i];</pre>
       for (i=max(L,1[blk[R-1]]); i<R; i++)</pre>
           auto &v=pos[a[i]];
           while (id[i]>=cnt&&v[id[i]-cnt]>=L) ++cnt,val=a[i];
           if (a[i]>val&&id[i]>=cnt-1&&v[id[i]-cnt+1]>=L) val=a[i];
       return {b[val],cnt};
   }
};
```

2.30 表达式树

传入表达式,输出表达式树。

输入的第二个参数是全体括号以外的运算符,每个运算符要记录字符优先级和是否右结合。优 先级数字越大,越优先计算,且优先级必须为正整数。

输出的第一个参数是子结点数组,第二个参数是每个结点对应的字符,第三个参数是根。结点编号从1开始。

输出的表达式树满足每个结点对应一个字符。若包含数字串,则视为相邻数码之间加一个井 号,表示"数码链接"这个运算符。你不需要,也不应该手动加入这个井号。

如果表达式非法,将返回根为 0。不允许一元运算符(负号),不允许省略乘号,不允许出现字母(除非字母是运算符)。

如果需要支持字母作为数字,修改所有包含 isdigit 的部分。

由于存在"数码链接",在 dfs 树的时候最好记录一下子树大小,便于链接时计算(你不能在链接时直接看右子树的数字大小,因为有可能有前导 0)。

```
struct Q
{
   char ch;
   int prec;
   bool right;
};
tuple<vector<array<int, 2>>, vector<char>, int> parse_expr(string s, vector<Q> op) {
   static int idx[128];
   int maxp = 0, pos = 0, n, err = 0, i;
   {
       string t;
       for (char c : s)
          if (t.size() && isdigit(t.back()) && isdigit(c)) t += '#';
          t += c;
       }
       swap(s, t);
       n = s.size();
   for (i = 0; i < op.size(); ++i)</pre>
       idx[op[i].ch] = i + 1;
       cmax(maxp, op[i].prec);
   op.push_back({'#', ++maxp, 0});
   idx['#'] = op.size();
   vector<array<int, 2>> c(1);
   vector<char> ch(1);
   auto node = [&](char x) {
       c.push back(\{0, 0\});
       ch.push_back(x);
       return c.size() - 1;
   function<int(int)> parse = [&](int lv) -> int {
       int u;
       if (lv > maxp)
          if (pos < n && s[pos] == '(')</pre>
          {
              pos++;
              u = parse(1);
```

```
if (err |= (pos >= n || s[pos++] != ')')) return 0;
              return u;
          }
          else if (pos < n && isdigit(s[pos])) return u = node(s[pos++]);</pre>
          else return err = 1, 0;
       }
       else
       {
          u = parse(lv + 1);
          while (!err && pos < n)</pre>
              char ch = s[pos];
              int i = idx[ch] - 1;
              if (i >= 0 && op[i].prec == lv)
                  int v = node(ch), w = parse(lv + !op[i].right);
                  c[v] = \{u, w\};
                  u = v;
              }
              else break;
          return u;
       }
   };
   int root = parse(0);
   for (auto [ch, _, __] : op) idx[ch] = 0;
   if (err || pos != n) return {{ }, { }, 0};
   return {c, ch, root};
}
int main()
{
   ios::sync_with_stdio(0); cin.tie(0);
   cout << fixed << setprecision(15);</pre>
   string s;
   getline(cin, s);
   vector<Q> op = {
       {'|', 1, 0},
       {'&', 2, 0},
   auto [c, ch, root] = parse_expr(s, op);
   assert(root);
   function<array<int, 3>(int)> dfs = [&](int u)->array<int, 3> {
       if (isdigit(ch[u])) return {ch[u] - '0', 0, 0};
       auto [1, r1, r2] = dfs(c[u][0]);
       if (ch[u] == '|')
       {
          if (1) return {1, r1, r2 + 1};
          auto [r, r3, r4] = dfs(c[u][1]);
          return {r, r1 + r3, r2 + r4};
       }
       else
       {
          if (!1) return {0, r1 + 1, r2};
          auto [r, r3, r4] = dfs(c[u][1]);
          return {r, r1 + r3, r2 + r4};
       }
```

```
};
auto [r0, r1, r2] = dfs(root);
cout << r0 << endl << r1 << 'u' << r2 << endl;
}</pre>
```

3 数学

3.1 单情况矩阵 (+)

没啥用。特殊的 ddp 有用。

```
template < class T, int n > struct matrix
   #define all(x) (x).begin(),(x).end()
   array<pair<int,T>,n> a;
   matrix(char c='E')
       int i;
       if (c=='E') for (i=0;i<n;i++) a[i]={i,0};</pre>
       else assert(0);
   matrix(char c,int x)
   matrix operator+(const matrix &o) const
       matrix r;
       int i,j,k;
       for (i=0;i<n;i++)</pre>
           auto [x,y]=a[i];
          r.a[i]={o.a[x].first,o.a[x].second+y};
       }
       return r;
   }
};
```

3.2 矩阵求逆(要求质数)

一种原地算法,总体效率更高。 $O(n^3)$,O(n)。

```
#include <bits/stdc++.h>
using namespace std;
typedef long long l1;
const int N=402,p=1e9+7;
void inv(int &x)
{
    int y=p-2,r=1;
    while (y)
    {
        if (y&1) r=(11)r*x%p;
        x=(11)x*x%p;
        y>>=1;
    }
    x=r;
}
int a[N][N],ih[N],jh[N];
int main()
{
    ios::sync_with_stdio(0);cin.tie(0);
```

```
int i,j,k,n;
   cin>>n;
   for (i=0;i<n;i++) for (j=0;j<n;j++) cin>>a[i][j];
   memset(ih,-1,sizeof ih);
   memset(jh,-1,sizeof jh);
   for (k=0; k< n; k++)
   {//ih,jh要清空
       for (i=k;i<n;i++) if (ih[k]==-1) for (j=k;j<n;j++) if (a[i][j])
           ih[k]=i;
           jh[k]=j;
           break;
       }
       if (ih[k]==-1) return cout<<"No_Solution"<<endl,0;</pre>
       for (j=0;j<n;j++) swap(a[k][j],a[ih[k]][j]);</pre>
       for (i=0;i<n;i++) swap(a[i][k],a[i][jh[k]]);</pre>
       if (!a[k][k]) return cout<<"No_Solution"<<endl,0;inv(a[k][k]);</pre>
       for (i=0;i<n;i++) if (i!=k) a[k][i]=(ll)a[k][i]*a[k][k]%p;</pre>
       for (i=0;i< n;i++) if (i!=k) for (j=0;j< n;j++) if (j!=k) a[i][j]=(a[i][j]+(11)(p-a[i][k])*a
           [k][j])%p;
       for (i=0;i<n;i++) if (i!=k) a[i][k]=(ll)(p-a[i][k])*a[k][k]%p;</pre>
   for (k=n-1;k>=0;k--)
       for (j=0;j<n;j++) swap(a[k][j],a[jh[k]][j]);</pre>
       for (i=0;i<n;i++) swap(a[i][k],a[i][ih[k]]);</pre>
   }
}
/*
输入
1 2 8
2 5 6
5 1 2
输出
718750005 718750005 968750007
171875001 671875005 296875002
117187501 867187506 429687503
*/
```

3.3 任意模数矩阵求逆(未验证)

 $O(n^3)$, $O(n^2)$ 。 原理和任意模数行列式类似,辗转相除。注意仍然要求对角线元素是有逆的。

```
int ksm(int x,int y)
{
    int r=1;
    while (y)
    {
        if (y&1) r=(l1)r*x%p;
        y>>=1;x=(l1)x*x%p;
    }
    return r;
}
int phi(int n)
```

```
{
   int r=n;
   for (int i=2;i*i<=n;i++) if (n%i==0)</pre>
       r=r/i*(i-1);n/=i;
       while (n%i==0) n/=i;
   }
   if (n>1) r=r/n*(n-1);
   return r;
void cal(int a[][N],int b[][N],int n)
   int i,j,k,r,ph=phi(p);
   for (i=1;i<=n;i++) memset(b+1,0,n<<2);</pre>
   for (i=1;i<=n;i++) b[i][i]=1;</pre>
   for (i=1;i<=n;i++)</pre>
   {
       k=i;
       for (j=i+1;j \le n;j++) if (a[j][i] \& a[j][i] \le a[k][i]) k=j;
       if (!a[k][i]) {puts("No_Solution");exit(0);}
       swap(a[i],a[k]);swap(b[i],b[k]);
       for (j=i+1;j<=n;j++) if (a[j][i])</pre>
       {
           r=p-a[j][i]/a[i][i];
           for (k=i;k<=n;k++) a[j][k]=(a[j][k]+(l1)r*a[i][k])%p;</pre>
           for (k=1;k<=n;k++) b[j][k]=(b[j][k]+(ll)r*b[i][k])%p;</pre>
           while (a[j][i])
               swap(a[i],a[j]);swap(b[i],b[j]);
               r=p-a[j][i]/a[i][i];
               for (k=i;k<=n;k++) a[j][k]=(a[j][k]+(ll)r*a[i][k])%p;</pre>
               for (k=1;k<=n;k++) b[j][k]=(b[j][k]+(l1)r*b[i][k])%p;</pre>
           }
       }
       if (__gcd(a[i][i],p)!=1) {puts("No_Solution");exit(0);}
       r=ksm(a[i][i],ph-1);
       for (j=i;j\leq n;j++) a[i][j]=(l1)a[i][j]*r%p;
       for (j=1;j<=n;j++) b[i][j]=(l1)b[i][j]*r%p;</pre>
       assert(a[i][i]==1);
       for (j=1;j<i;j++)</pre>
           r=p-a[j][i];
           for (k=i;k<=n;k++) a[j][k]=(a[j][k]+(ll)r*a[i][k])%p;</pre>
           for (k=1;k<=n;k++) b[j][k]=(b[j][k]+(l1)r*b[i][k])%p;</pre>
       }
   }
}
```

3.4 矩阵的特征多项式

 $O(n^3)$, $O(n^2)$ 。 封装版本见矩阵类。

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
```

```
const int N=502,p=998244353;
int a[N][N],f[N];
int n,i,j,k,x,y,r;
void inc(int &x,const int y)
{
   if ((x+=y)>=p) x-=p;
}
void dec(int &x,const int y)
   if ((x-=y)<0) x+=p;
int ksm(int x,int y)
   int r=1;
   while (y)
       if (y&1) r=(ll)r*x%p;
       x=(11)x*x%p;y>>=1;
   }
   return r;
void calmatrix(int a[N][N],int n)
{
   int i,j,k,r;
   for (i=2;i<=n;i++)</pre>
       for (j=i;j<=n&&!a[j][i-1];j++);</pre>
       if (j>n) continue;
       if (j>i)
           swap(a[i],a[j]);
           for (k=1;k<=n;k++) swap(a[k][j],a[k][i]);</pre>
       r=a[i][i-1];
       for (j=1;j<=n;j++) a[j][i]=(ll)a[j][i]*r%p;</pre>
       r=ksm(r,p-2);
       for (j=i-1;j<=n;j++) a[i][j]=(ll)a[i][j]*r%p;</pre>
       for (j=i+1;j<=n;j++)</pre>
       {
           r=a[j][i-1];
           for (k=1;k<=n;k++) a[k][i]=(a[k][i]+(l1)a[k][j]*r)%p;</pre>
           for (k=i-1;k<=n;k++) a[j][k]=(a[j][k]+(ll)a[i][k]*r)%p;</pre>
       }
   }
void calpoly(int a[N][N],int n,int *f)
   static int g[N][N];
   memset(g,0,sizeof(g));
   g[0][0]=1;
   int i,j,k,r,rr;
   for (i=1;i<=n;i++)</pre>
   {
       r=p-1;
       for (j=i;j;j--)//第 j 行选第 n 列
       {
```

```
rr=(ll)r*a[j][i]%p;
          for (k=0;k<j;k++) g[i][k]=(g[i][k]+(ll)rr*g[j-1][k])%p;</pre>
          r=(ll)r*a[j][j-1]%p;
       for (k=1;k<=i;k++) inc(g[i][k],g[i-1][k-1]);</pre>
   memcpy(f,g[n],n+1<<2);
   //if (n&1) for (i=0;i<=n;i++) if (f[i]) f[i]=p-f[i];//若注释掉则为 |kE-A|
int main()
   ios::sync_with_stdio(0);cin.tie(0);
   cin>>n;
   for (i=1;i<=n;i++) for (j=1;j<=n;j++) cin>>a[i][j];
   calmatrix(a,n); calpoly(a,n,f);
   for (i=0;i\leq n;i++) cout<< f[i]<<"x^"<< i<<"+\n"[i==n];
}
/*
3
1 2 3
4 5 6
7 8 9
输出: 0x^0+998244335x^1+998244338x^2+1x^3
```

3.5 矩阵类(较新)

```
typedef unsigned long long 11;
const 11 p=998244353;
11 \text{ ksm}(11 \text{ x}, 11 \text{ y})
   ll r=1;
   while (y)
       if (y&1) r=r*x%p;
       x=x*x%p; y>>=1;
   }
   return r;
struct matrix:vector<vector<1l>>
{
   explicit matrix(int n=0, int m=0):vector(n, vector<ll>(m)) { }
   pair<int, int> sz() const { if (size()) return {size(), back().size()}; return {0, 0}; }
   int rank() const//秩
       vector<vector<ll>> a=*this;
       auto [n, m]=sz();
       int i, j, k, l, r=0;
       for (i=0, j=0; i<n&&j<m; j++)</pre>
           for (k=i; k<n; k++) if (a[k][j]) break;</pre>
           if (k==n) continue;
           ::swap(a[i], a[k]);
           11 iv=ksm(a[i][j], p-2);
           for (k=j; k<m; k++) a[i][k]=a[i][k]*iv%p;</pre>
           for (k=i+1; k<n; k++) for (l=j+1; l<m; l++) a[k][l]=(a[k][l]+(p-a[k][j])*a[i][l])%p;
```

```
++i; ++r;
       return r;
   vector<ll> poly()//特征多项式
       auto [n, m]=sz();
       vector<vector<ll>> a=*this;
       assert(n==m);
       int i, j, k;
       for (i=1; i<n; i++)</pre>
          for (j=i; j<n&&!a[j][i-1]; j++);</pre>
          if (j==n) continue;
          if (j>i)
              ::swap(a[i], a[j]);
              for (k=0; k<n; k++) ::swap(a[k][j], a[k][i]);</pre>
          }
          11 r=a[i][i-1];
          for (j=0; j<n; j++) a[j][i]=a[j][i]*r%p;</pre>
          r=ksm(r, p-2);
          for (j=i-1; j<n; j++) a[i][j]=a[i][j]*r%p;</pre>
          for (j=i+1; j<n; j++)</pre>
              r=a[j][i-1];
              for (k=0; k<n; k++) a[k][i]=(a[k][i]+a[k][j]*r)%p;</pre>
              for (k=i-1; k<n; k++) a[j][k]=(a[j][k]+a[i][k]*r)%p;</pre>
          }
       }
       vector g(n+1, vector<ll>(n+1));
       g[0][0]=1;
       for (i=0; i<n; i++)</pre>
          ll r=p-1, rr;
          for (j=i; j>=0; j--)//第 j 行选第 n 列
              rr=r*a[j][i]%p;
              for (k=0; k<=j; k++) g[i+1][k]=(g[i+1][k]+rr*g[j][k])%p;</pre>
              if (j) r=r*a[j][j-1]%p;
          }
          for (k=1; k<=i+1; k++) (g[i+1][k]+=g[i][k-1])%=p;</pre>
       auto f=g[n];
       //if (n&1) for (i=0;i<=n;i++) if (f[i]) f[i]=p-f[i];//若注释掉则为 |kE-A|
       return f;
   }
};
istream & operator>>(istream & cin, matrix &r) { for (auto &v:r) for (ll &x:v) cin>>x; return cin;
ostream &operator<<(ostream &cout, const matrix &r) { auto [n, m]=r.sz(); for (int i=0; i<n; i++)
     for (int j=0; j<m; j++) cout<<r[i][j]<<"\\n"[j+1==m]; return cout; }
matrix &operator+=(matrix &a, const matrix &b)
   assert(a.size()==b.size());
   auto [n, m]=a.sz();
```

```
for (int i=0; i<n; i++) for (int j=0; j<m; j++) (a[i][j]+=b[i][j])%=p;</pre>
   return a;
}
matrix &operator == (matrix &a, const matrix &b)
{
   assert(a.size()==b.size());
   auto [n, m]=a.sz();
   for (int i=0; i<n; i++) for (int j=0; j<m; j++) (a[i][j]+=p-b[i][j])%=p;</pre>
matrix operator*(const matrix &a, const matrix &b)
   auto [n, m]=a.sz();
   auto [_, q]=b.sz();
   assert(m== );
   int i, j, k;
   matrix c(n, q);
   for (k=0; k<m; k++)</pre>
       for (i=0; i<n; i++) for (j=0; j<q; j++) c[i][j]+=a[i][k]*b[k][j];</pre>
       if (!((k^q-1)&15)) for (auto &v:c) for (ll &x:v) x%=p;
   return c;
}
matrix operator+(matrix a, const matrix &b) { return a+=b; }
matrix operator-(matrix a, const matrix &b) { return a-=b; }
matrix &operator*=(matrix &a, const matrix &b) { return a=a*b; }
matrix &operator*=(matrix &a, ll k) { for (auto &v:a) for (ll &x:v) x=x*k%p; return a; }
matrix operator*(matrix a, ll k) { return a*=k; }
matrix E(int n) { matrix r(n, n); for (int i=0; i<n; i++) r[i][i]=1; return r; }
matrix pow(matrix a, long long k)//普通的快速幂
{
   assert(k>=0);
   auto [n, m]=a.sz();
   assert(n==m);
   matrix r=k&1?a:E(n);
   k>>=1;
   while (k)
       a*=a;
      if (k&1) r*=a;
      k >> = 1;
   }
   return r;
matrix pow2(matrix a, long long k)//较快的快速幂。运用了一些技巧。
{
   vector<ll> f=a.poly();
   int n=f.size()-1, i, j;
   if (!n) return matrix();
   if (n==1) return E(1)*ksm(a[0][0], k);
   assert(f[n]==1);
   vector<ll> r(n), x(n), t(n*2);
   r[0]=x[1]=1;
   for (11 &x:f) x=(p-x)\%p;
   reverse(all(f));
   fill(all(t), 0);
```

```
if (k&1)
   for (i=0; i<n; i++) for (j=0; j<n; j++) t[i+j]=(t[i+j]+r[i]*x[j])%p;</pre>
   for (i=n*2-2; i>=n; i--) for (j=1; j<=n; j++) t[i-j]=(t[i-j]+f[j]*t[i])%p;
   for (i=0; i<n; i++) r[i]=t[i];</pre>
}
k >> = 1;
while (k)
   fill(all(t), 0);
   for (i=0; i<n; i++) for (j=0; j<n; j++) t[i+j]=(t[i+j]+x[i]*x[j])%p;</pre>
   for (i=n*2-2; i>=n; i--) for (j=1; j<=n; j++) t[i-j]=(t[i-j]+f[j]*t[i])%p;
   for (i=0; i<n; i++) x[i]=t[i];</pre>
   if (k&1)
       fill(all(t), 0);
       for (i=0; i<n; i++) for (j=0; j<n; j++) t[i+j]=(t[i+j]+r[i]*x[j])%p;</pre>
       for (i=n*2-2; i>=n; i--) for (j=1; j<=n; j++) t[i-j]=(t[i-j]+f[j]*t[i])%p;</pre>
       for (i=0; i<n; i++) r[i]=t[i];</pre>
   }
   k >> = 1;
matrix res(n, n);
int b=ceil(sqrt(n));
vector<matrix> s(b+1);
s[0]=E(n); s[1]=a;
for (i=2; i<=b; i++) s[i]=s[i-1]*a;</pre>
for (i=b-1; i>=0; i--)
   res*=s[b];
   for (j=min(n, (i+1)*b)-1; j>=i*b; j--) res+=s[j-i*b]*r[j];
}
return res;
```

3.6 最短递推式(BM 算法)

给定 $\{a\}$,求最短的 $\{r\}$ 满足 $\sum_{j=0}^{m-1} a_{i-j-1}r_j = a_i$ 。

```
auto v=r;
ui x=(ll)cur*ksm(D,p-2)%p;
if (m<q+i-k) r.resize(m=q+i-k);
(r[i-k-1]+=x)%=p;
ui *b=r.data()+i-k;
x=(p-x)%p;
for (j=0;j<q;j++) b[j]=(b[j]+(ll)x*lst[j])%p;
if (v.size()+k<lst.size()+i)
{
    lst=v;
    q=v.size();
    k=i;
    D=cur;
}
return r;
}
</pre>
```

3.7 在线 O(1) 逆元

预处理复杂度为 $O(p^{\frac{2}{3}})$ 。

```
namespace online_inv
   typedef unsigned int ui;
   typedef unsigned long long 11;
   const ll p=1e9+7,n=1010,m=n*n,N=m+2;
   int 1[N],r[N];
   11 y[N];
   bool s[N];
   ll _inv[N*2],i,j,k;
   void init_inv()
       assert(n*n*n>p);
       _inv[1]=1;
       for (i=2;i<m*2;i++)</pre>
           j=p/i;
           _inv[i]=(p-j)*_inv[p-i*j]%p;
       s[0]=y[0]=1;
       for (i=1;i<n;i++) for (j=i;j<n;j++) if (!s[k=i*m/j])</pre>
           y[k]=j;
           s[k]=1;
       1[0]=1;
       for (i=1;i<=m;i++) 1[i]=s[i]?y[i]:1[i-1];</pre>
       r[m]=1;
       for (i=m-1;~i;i--) r[i]=s[i]?y[i]:r[i+1];
       for (i=0;i<=m;i++) y[i]=min(l[i],r[i]);</pre>
   inline 11 inv(const 11 &x)
   {
       assert(x&&x<p);</pre>
       if (x<m*2) return _inv[x];</pre>
```

```
k=x*m/p;
    j=y[k]*x%p;
    return (j<m*2?_inv[j]:p-_inv[p-j])*y[k]%p;
}
using online_inv::init_inv,online_inv::p;</pre>
```

3.8 Strassen 矩阵乘法

没用,不如卡常。 $O(n^{\log_2 7})$ 。

```
#include <bits/stdc++.h>
using namespace std;
typedef unsigned int ui;
typedef unsigned long long ull;
const ui p=998244353;
const ull fh=1ull<<31;</pre>
struct Q
           ui **a;
           int n;
           Q(){n=0;}
           void clear()
                       for (int i=0;i<n;i++) delete a[i];</pre>
                       if (n) delete a;n=0;
           Q(int nn)//不能传入不是 2 的幂的数!
                      n=nn;
                      assert(n==(n\&-n));
                       a=new ui*[n];
                      for (int i=0;i<n;i++) a[i]=new ui[n],memset(a[i],0,n*sizeof a[0][0]);</pre>
           const Q & operator=(const Q& b)
                      clear();n=b.n;
                       a=new ui*[n];
                       for (int i=0;i<n;i++) a[i]=new ui[n],memcpy(a[i],b.a[i],n*sizeof a[0][0]);</pre>
                       return *this;
           ~Q(){clear();}
           Q operator+(const Q &b)
                       Qc(n);
                       for (int i=0;i<n;i++) for (int j=0;j<n;j++) if ((c.a[i][j]=a[i][j]+b.a[i][j])>=p) c.a[i][j
                                    ]-=p;
                      return c;
           }
           Q operator-(const Q &b)
                       Qc(n);
                        for \ (int \ i=0; i < n; i++) \ for \ (int \ j=0; j < n; j++) \ if \ ((c.a[i][j]=a[i][j]-b.a[i][j]) \& fh) \ c.a[i][j] = a[i][j] + a[i
                       return c;
           Q operator*(Q &b)
```

```
{
       Qc(n);
       if (n<=128)
          for (int i=0;i<n;i++) for (int k=0;k<n;k++) for (int j=0;j<n;j++) c.a[i][j]=(c.a[i][j
              ]+(ull)a[i][k]*b.a[k][j])%p;
          return c;
       }
       Q A[2][2],B[2][2],s[10],p[5];
       n >> = 1;
       int i,j,k,l;
       for (i=0;i<2;i++) for (j=0;j<2;j++)</pre>
          A[i][j]=Q(n);
          for (k=0;k<n;k++) memcpy(A[i][j].a[k],a[k+i*n]+j*n,n*sizeof a[0][0]);
          B[i][j]=Q(n);
          for (k=0; k< n; k++) memcpy(B[i][j].a[k],b.a[k+i*n]+j*n,n*sizeof a[0][0]);
       s[0]=B[0][1]-B[1][1];
       s[1]=A[0][0]+A[0][1];
       s[2]=A[1][0]+A[1][1];
       s[3]=B[1][0]-B[0][0];
       s[4]=A[0][0]+A[1][1];
       s[5]=B[0][0]+B[1][1];
       s[6] = A[0][1] - A[1][1];
       s[7]=B[1][0]+B[1][1];
       s[8]=A[0][0]-A[1][0];
       s[9]=B[0][0]+B[0][1];
       p[0]=A[0][0]*s[0];
       p[1]=s[1]*B[1][1];
       p[2]=s[2]*B[0][0];
       p[3]=A[1][1]*s[3];
       p[4]=s[4]*s[5];
       A[0][0]=p[4]+p[3]-p[1]+s[6]*s[7];
       A[0][1]=p[0]+p[1];
       A[1][0]=p[2]+p[3];
       A[1][1]=p[4]+p[0]-p[2]-s[8]*s[9];
       for (i=0;i<2;i++) for (j=0;j<2;j++) for (k=0;k<n;k++) memcpy(c.a[k+i*n]+j*n,A[i][j].a[k],n
           *sizeof a[0][0]);
       n <<=1;
       return c;
   }
};
int main()
   int i,j,n,m,k;
   ios::sync_with_stdio(0);cin.tie(0);
   cin>>n>>m>>k;
   int N=1<<32-min({__builtin_clz(n-1),__builtin_clz(m-1),__builtin_clz(k-1)});</pre>
   for (i=0;i<n;i++) for (j=0;j<m;j++) cin>>a.a[i][j];
   for (i=0;i<m;i++) for (j=0;j<k;j++) cin>>b.a[i][j];
   a=a*b;
   for (i=0;i<n;i++) for (j=0;j<k;j++) cout<<a.a[i][j]<<"u\n"[j+1==k];
```

3.9 扩展欧拉定理

求 $a \uparrow b \mod c$ 。前面的 Prime 命名空间只是求 φ 用的。

```
namespace Prime
   typedef unsigned int ui;
   typedef unsigned long long 11;
   const int N=1e6+2;
   const ll M=(ll)(N-1)*(N-1);
   ui pr[N],mn[N],phi[N],cnt;
   int mu[N];
   void init_prime()
       ui i,j,k;
       phi[1]=mu[1]=1;
       for (i=2;i<N;i++)</pre>
          if (!mn[i])
              pr[cnt++]=i;
              phi[i]=i-1;mu[i]=-1;
              mn[i]=i;
          for (j=0;(k=i*pr[j])<N;j++)</pre>
              mn[k]=pr[j];
              if (i%pr[j]==0)
                 phi[k]=phi[i]*pr[j];
                  break;
              phi[k]=phi[i]*(pr[j]-1);
              mu[k] = -mu[i];
          }
       //for (i=2;i<N;i++) if (mu[i]<0) mu[i]+=p;
   template<class T> T getphi(T x)
       assert(M>=x);
       for (ui i=0;i<cnt&&(T)pr[i]*pr[i]<=x&&x>=N;i++) if (x%pr[i]==0)
          ui y=pr[i],tmp;
          x/=y;
          while (x==(tmp=x/y)*y) x=tmp;
          r=r/y*(y-1);
       if (x>=N) return r/x*(x-1);
       while (x>1)
          ui y=mn[x],tmp;
          x/=y;
          while (x==(tmp=x/y)*y) x=tmp;
          r=r/y*(y-1);
       return r;
```

```
template<class T> vector<pair<T,ui>> getw(T x)
       assert(M>=x);
       vector<pair<T,ui>> r;
       for (ui i=0;i<cnt&&(T)pr[i]*pr[i]<=x&&x>=N;i++) if (x%pr[i]==0)
          ui y=pr[i],z=1,tmp;
          x/=y;
          while (x==(tmp=x/y)*y) x=tmp,++z;
          r.push_back({y,z});
       }
      if (x>=N)
          r.push_back({x,1});
          return r;
       while (x>1)
          ui y=mn[x],z=1,tmp;
          x/=y;
          while (x==(tmp=x/y)*y) x=tmp,++z;
          r.push_back({y,z});
      return r;
   }
using Prime::pr,Prime::phi,Prime::getw,Prime::getphi;
using Prime::mu,Prime::init_prime;
ui ksm(ll x,ui y,ui p)
   x=x%p+(x>=p)*p;
   ll r=1;
   while (y)
       if (y&1)
          if ((r*=x)>=p) r=r%p+p; else r%=p;
      if ((x*=x)>=p) x=x%p+p; else x%=p;
      y>>=1;
   }
   return r;
struct Q
{
   vector<ui> p;
   Q(const ui &P)
      p.push_back(P);
       while (p.back()>1) p.push_back(getphi(p.back()));
   ui operator()(ll a,ll b)
       if (!a) return (1^b&1)%p[0];
       ui r=1;
       int i=min(b,(ll)p.size());
```

```
while ((--i)>=0) r=ksm(a,r,p[i]);
       return r%p[0];
   }
};
int main()
{
   ios::sync_with_stdio(0);cin.tie(0);
   cout<<setiosflags(ios::fixed)<<setprecision(15);</pre>
   int n,i;
   init_prime();
   int T;
   cin>>T;
   while (T--)
       ui a,b,c;
       cin>>a>>b>>c;
       cout << Q(c)(a,b) << ' n';
   }
}
```

3.10 exgcd

```
O(\log p),O(\log p)。
递归版:
```

```
int exgcd(int a,int b,int c)//ax+by=c,return x
{
   if (a==0) return c/b;
   return (c-(ll)b*exgcd(b%a,a,c))/a%b;
}
```

递推重构版:

```
pair<ll,ll> exgcd(ll a,ll b,ll c)//ax+by=c, {-1,-1} 无解, b=0 返回 {c/a,0}, 否则返回最小非负 x
{
   assert(a||b);
   if (!b) return {c/a,0};
   if (a<0) a=-a,b=-b,c=-c;</pre>
   11 d=gcd(a,b);
   if (c%d) return {-1,-1};
   11 x=1,x1=0,p=a,q=b,k;
   b=abs(b);
   while (b)
      k=a/b;
       x==k*x1;a==k*b;
       swap(x,x1);
       swap(a,b);
   b=abs(q/d);
   x=x*(c/d)\%b;
   if (x<0) x+=b;
   return {x, (11)((c-(111)p*x)/q)};
ll fun(ll a, ll b, ll p)//ax=b(mod p)
   return exgcd(a, -p, b).first%p;
```

}

$3.11 \quad \text{exCRT}$

实现了一个类 Q,表示一条方程,支持合并。

```
namespace CRT
{
   typedef long long 11;
   pair<ll,ll> exgcd(ll a,ll b,ll c)
       assert(a||b);
       if (!b) return {c/a,0};
       11 d=gcd(a,b);
       if (c%d) return {-1,-1};
       11 x=1,x1=0,p=a,q=b,k;
       b=abs(b);
       while (b)
          k=a/b;
          x-=k*x1;a-=k*b;
          swap(x,x1);
          swap(a,b);
       b=abs(q/d);
       x=x*(c/d)%b;
       if (x<0) x+=b;
       return \{x,(c-p*x)/q\};
   struct Q
       ll p,r;//0<=r<p
       Q operator+(const Q &o) const
          if (p==0||o.p==0) return {0,0};
          auto [x,y]=exgcd(p,-o.p,r-o.r);
          if (x==-1&&y==-1) return {0,0};
          11 q=lcm(p,o.p);
          return {q,((r-x*p)%q+q)%q};
   };
}
using CRT::Q;
```

3.12 exBSGS

 $O(\sqrt{n})$ 。哈希表 ht 可以用 map 代替。

```
namespace BSGS
{
    typedef unsigned int ui;
    typedef unsigned long long ll;
    template<int N,class T,class TT> struct ht//个数,定义域,值域
    {
        const static int p=1e6+7,M=p+2;
        TT a[N];
```

```
T v[N];
   int fir[p+2],nxt[N],st[p+2];//和模数相适应
   int tp,ds;//自定义模数
   ht(){memset(fir,0,sizeof fir);tp=ds=0;}
   void mdf(T x,TT z)//位置, 值
      ui y=x%p;
       for (int i=fir[y];i;i=nxt[i]) if (v[i]==x) return a[i]=z,void();//若不可能重复不需要 for
       v[++ds]=x;a[ds]=z;
       if (!fir[y]) st[++tp]=y;
      nxt[ds]=fir[y];fir[y]=ds;
   }
   TT find(T x)
      ui y=x%p;
       int i;
       for (i=fir[y];i;i=nxt[i]) if (v[i]==x) return a[i];
       return 0;//返回值和是否判断依据要求决定
   }
   void clear()
       ++tp;
      while (--tp) fir[st[tp]]=0;
      ds=0;
   }
};
const int N=5e4;
ht<N,ui,ui> s;
int exgcd(int a,int b)
{
   if (a==1) return 1;
   return (1-(long long)b*exgcd(b%a,a))/a;//not 11
int bsgs(ui a,ui b,ui p)
{
   s.clear();
   a%=p;b%=p;
   if (!a) return 1-min((int)b,2);//含 -1
   ui i,j,k,x,y;
   x=sqrt(p)+2;
   for (i=0,j=1;i<x;i++,j=(11)j*a%p)</pre>
       if (j==b) return i;
       s.mdf((11)j*b%p,i+1);
   }
   k=j;
   for (i=1;i<=x;i++,j=(l1)j*k%p) if (y=s.find(j)) return (l1)i*x-y+1;</pre>
   return -1;
}
bool isprime(ui p)
   if (p<=1) return 0;</pre>
   for (ui i=2;i*i<=p;i++) if (p%i==0) return 0;</pre>
   return 1;
}
int exbsgs(ui a,ui b,ui p)//a^x=b(mod p)
{
```

```
//if (isprime(p)) return bsgs(a,b,p);
       a%=p;b%=p;
       ui i,j,k,x,y=_{-}lg(p),cnt=0;
       for (i=0,j=1%p;i<=y;i++,j=(l1)j*a%p) if (j==b) return i;</pre>
       y=1;
       while (1)
          if ((x=gcd(a,p))==1) break;
          if (b%x) return -1;//no sol
          ++cnt;
          p/=x;b/=x;
          y=(11)y*(a/x)%p;
       }
       a%=p;
       b=(11)b*(p+exgcd(y,p))%p;
       int r=bsgs(a,b,p);
       return r==-1?-1:r+cnt;
   }
}
using BSGS::bsgs,BSGS::exbsgs;
```

3.13 exLucas

求组合数。包含多个不同的版本,按需使用。

```
namespace exlucas
{
   typedef long long 11;
   typedef pair<int,int> pa;
   int P,p,q,i;
   vector<pa> a;
   vector<vector<int> > b;
   vector<int> ph;
   vector<int> xs;
   int ksm(unsigned int x,ll y,const unsigned int p)
      unsigned int r=1;
      while (y)
          if (y&1) r=(unsigned long long)r*x%p;
          x=(unsigned long long)x*x%p;
          y>>=1;
      }
      return r;
   void init(int x)//分解质因数,如有必要可以使用更快的方法
      a.clear();b.clear();
      int i,y,z;
      vector<int> v;
      for (i=2;i*i<=x;i++) if (x%i==0)</pre>
          z=i;x/=i;
          while (1)
          {
             y=x/i;
             if (i*y==x) x=y; else break;
```

```
z*=i;
       }
       a.push_back(pa(i,z));
       b.push_back(v);
   if (x>1) a.push_back(pa(x,x)),b.push_back(v);
   ph.resize(a.size());
   xs.resize(a.size());
   for (int k=0;k<a.size();k++)</pre>
       tie(q,p)=a[k];
       ph[k]=p/q*(q-1);
       xs[k]=(11)ksm(P/p,ph[k]-1,p)*(P/p)%P;
   }
void spinit(int x)//O(p) space
   for (int k=0;k<a.size();k++)</pre>
       int q,p;
       tie(q,p)=a[k];
       b[k].resize(p);
       b[k][0]=1;
       for (int i=1, j=q; i < p; i++) if (i==j) j+=q, b[k][i]=b[k][i-1]; else b[k][i]=(l1)b[k][i-1]*
           i%p;
   }
}
11 g(11 n)
   ll r=0,s;
   while (n>=q)
       n/=q;
       r+=n;
   }
   return r;
// int f(ll n)
// {
// if (n==0) return 1;
// int r=1;//若 p>1e9 j 要 unsigned
// for (int i=1,j=q;i<p;i++) if (i==j) j+=q; else r=(ll)r*i%p;
// r=(11)ksm(r,n/p,p)*f(n/q)%p;
   n\%=p;
// for (int i=1,j=q;i<=n;i++) if (i==j) j+=q; else r=(ll)r*i%p;
// return r;
// }//O(T\sum p) time,O(1) space ver.
int f(ll n)
{
   int r=1;
   11 cs=0;
   while (n)
       r=(ll)r*b[i][n%p]%p;
       cs+=n/p;
       n/=q;
```

```
return (11)ksm(b[i][p-1],cs%ph[i],p)*r%p;
}//O(\sum p) time,O(p) space ver.
int C(11 n,11 m,int M)
{
    if (n<m) return 0;
    int r=0,w;
    if (P!=M) init(P=M),spinit(P);//sp for O(p) space
    for (i=0;i<a.size();i++)
    {
        tie(q,p)=a[i];
        w=(11)ksm(q,g(n)-g(m)-g(n-m),p)*f(n)%p*ksm((11)f(m)*f(n-m)%p,ph[i]-1,p)%p;
        r=(r+(11)xs[i]*w)%M;
    }
    return r;
}
#define C(x,y,z) exlucas::C(x,y,z)</pre>
```

3.14 杜教筛

```
求 \varphi(n) 的前缀和。
核心: 构造 g 满足 h(n) = \sum_{d \mid n} f(d) g(\frac{n}{d}) 容易计算,
则有 \sum_{i=1}^{n} h(i) = \sum_{i=1}^{n} g(i) \sum_{j=1}^{\lfloor n/i \rfloor} f(j),
故 g(1) \sum_{j=1}^{n} f(j) = \sum_{i=1}^{n} h(i) - \sum_{i=2}^{n} g(i) \sum_{j=1}^{\lfloor n/i \rfloor} f(j),
则 f 前缀和可以递归求解。
```

```
namespace du_seive
   typedef unsigned int ui;
   typedef unsigned long long 11;
   unordered_map<ll,ui> mp;
   const int N=1e7+2;
   const ui p=998244353;
   ui pr[N],phi[N];
   ui cnt;
   void init()
       cnt=0;phi[1]=1;
       int i,j;
       for (i=2;i<N;i++)</pre>
           if (!phi[i])
              pr[cnt++]=i;
              phi[i]=i-1;
           for (j=0;i*pr[j]<N;j++)</pre>
              if (i%pr[j]==0)
                  phi[i*pr[j]]=phi[i]*pr[j];
                  break;
```

```
}
             phi[i*pr[j]]=phi[i]*(pr[j]-1);
          if ((phi[i]+=phi[i-1])>=p) phi[i]-=p;
   }
   ui get_phi_sum(ll n)
      if (n<N) return phi[n];</pre>
      if (mp.count(n)) return mp[n];
      ui sum=0;
      for (ll i=2,j,k;i<=n;i=j+1)</pre>
          j=n/(k=n/i);
          sum=(sum+(l1)get_phi_sum(k)*(j-i+1))%p;
      ui nn=n%p;
      mp[n]=sum;
      return sum;
   }
using du_seive::init,du_seive::get_phi_sum;
```

3.15 线性规划

用法:构造函数指明目标函数系数,add函数增加限制。额外的限制是 $x_i \ge 0$ 。

```
typedef long double db;//_float128
struct linear
   static const int N=45;//n+m
   db r[N][N];
   int col[N],row[N];
   const db eps=1e-10,inf=1e9;//1e-17
   template < class T > linear (const vector < T > &a) // target: maximize \sum a(i-1)xi
       memset(r,0,sizeof r);
       memset(col,0,sizeof col);
       memset(row,0,sizeof row);
       n=a.size(); m=0;
       for (int i=1;i<=n;i++) r[0][i]=-a[i-1];</pre>
   template<class T> void add(const vector<T> &a,db b)//limit: \sum a(i-1)xi<=b</pre>
       assert(a.size()==n);
       for (int i=1;i<=n;i++) r[m][i]=-a[i-1];</pre>
       r[m][0]=b;
   }
   void pivot(int k, int t)
       swap(row[k+n],row[t]);
       db rkt=-r[k][t];
       int i,j;
       for (i=0;i<=n;i++) r[k][i]/=rkt;</pre>
```

82

```
r[k][t]=-1/rkt;
   for (i=0;i<=m;i++) if (i!=k)</pre>
       db rit=r[i][t];
       if (rit>=-eps&&rit<=eps) continue;</pre>
       for (j=0; j \le n; j++) if (j!=t) r[i][j]+=rit*r[k][j];
       r[i][t]=r[k][t]*rit;
   }
}
bool init()
   int i;
   for (i=1;i<=n+m;i++) row[i]=i;</pre>
   while(1)
       int q=1;
       auto b_min=r[1][0];
       for (i=2;i<=m;i++) if (r[i][0]<b_min) b_min=r[i][0],q=i;</pre>
       if (b_min+eps>=0) return 1;
       int p=0;
       for (i=1;i<=n;i++) if (r[q][i]>eps&&(!p||row[i]>row[p])) p=i;
       if (!p) break;
       pivot(q,p);
   }
   return 0;
}
bool simplex()
   while (1)
   {
       int t=1,k=0,i;
       for (i=2;i<=n;i++) if (r[0][i]<r[0][t]) t=i;</pre>
       if (r[0][t]>=-eps) return 1;
       db ratio_min=inf;
       for (i=1;i<=m;i++) if (r[i][t]<-eps)</pre>
           db ratio=-r[i][0]/r[i][t];
           if (!k||ratio<ratio_min||ratio<=ratio_min+eps&&row[i]>row[k])
              ratio_min=ratio;
              k=i;
           }
       }
       if (!k) break;
       pivot(k,t);
   return 0;
}
void solve(int type)
   if (!init())
       cout<<"Infeasible\n";</pre>
       return;
   }
   if (!simplex())
   {
```

```
cout<<"Unbounded\n";
    return;
}
cout<<(long double)(-r[0][0])<<'\n';
if (type)
{
    int i;
    memset(col+1,0,n*sizeof col[0]);
    for (i=n+1;i<=n+m;i++) col[row[i]]=i;
    for (i=1;i<=n;i++) cout<<(long double)(col[i]?r[col[i]-n][0]:0)<<"_\\n"[i==n];
}
};</pre>
```

3.16 斐波那契数列

使用生日攻击的方法寻找循环节,一种更通用的方法是 bsgs。

```
const int NN=3e7+2,M=4e5,N=1e6+10;
char c[NN];
11 n;
11 y,mo,x,z;
int p,i,j,k;
struct Q
{
   int a[2][2];
   Q(int b=0,int c=0,int d=0,int e=0){a[0][0]=b,a[0][1]=c,a[1][0]=d,a[1][1]=e;}
   Q operator*(const Q &o)
      return Q(((11)a[0][0]*o.a[0][0]+(11)a[0][1]*o.a[1][0])%p,
             ((11)a[0][0]*o.a[0][1]+(11)a[0][1]*o.a[1][1])%p,
             ((11)a[1][0]*o.a[0][0]+(11)a[1][1]*o.a[1][0])%p,
             ((ll)a[1][0]*o.a[0][1]+(ll)a[1][1]*o.a[1][1])%p);
   }
};
struct ht
   11 v[N],a[N];
   int fir[N],nxt[N],st[N];//和模数相适应
   int tp,p,ds;//自定义模数
   ht()\{tp=0,p=1e6+7,ds=0;\}
   void mdf(const ll x,const ll z)//位置, 值
   {
      const int y=x%p;
      for (int i=fir[y];i;i=nxt[i]) if (v[i]==x) return a[i]=z,void();//若不可能重复不需要这一步
          if, 但需要for?
      v[++ds]=x;a[ds]=z;if (!fir[y]) st[++tp]=y;
      nxt[ds]=fir[y];fir[y]=ds;
   }
   11 find(const ll x)
      const int y=x%p;int i;
      for (i=fir[y];i;i=nxt[i]) if (v[i]==x) break;
      if (!i) return 0;//返回值和是否判断依据要求决定
      return a[i];
   void clear()
```

```
++tp;
       while (--tp) fir[st[tp]]=0;ds=0;
};
ht mp;
Q f[M],g[M],ji;
int fib(ll n)
   Q x=f[n\%k]*g[n/k];
   return x.a[0][1];
ll spefib(ll n)
{
   Q x=f[n\%k]*g[n/k];
   return (ll)x.a[0][1]*p+x.a[1][1];
}
11 sj()
   11 x=rand();
   x=x<<15^rand();</pre>
   x=x<<15^rand();
   x=x<<15^rand();</pre>
   return x>0?x:-x;
}
11 ab(11 x)
   return x>0?x:-x;
}
int main()
   srand(383778817);
   scanf("%s\n%d",c+1,&p);
   k=sqrt((11)20*p)+1; ji=Q(0,1,1,1);
   f[0]=Q(1,0,0,1); for (i=1;i<=k;i++) f[i]=f[i-1]*ji;
   g[0]=Q(1,0,0,1); for (i=1;i<=k;i++) g[i]=g[i-1]*f[k];
   while (1)
       x=sj()%(2011*p)+1;y=spefib(x);
       if (z=mp.find(y))
           if (z!=x)
              mo=ab(x-z);
              break;
       } else mp.mdf(y,x);
   }
   n=0;
   for (i=1;c[i]>=48\&\&c[i]<=57;i++) n=(n*10+(c[i]^48))%mo;
   printf("%d",fib(n));
```

3.17 线性插值(k 次幂和)

```
O(m), O(m).
```

```
ll interpolation(vector<ll> a, ll n)
   int m = a.size(), i;
   vector<11> ans(2);
   n %= p;
   if (n < m) return a[n];</pre>
   ll k = ifac[m - 1];
   for (i = m - 1; i \ge 0; i--)
       (a[i] *= k) \%= p;
       (k *= n - i) %= p;
   k = 1;
   for (i = 0;i < m;i++)</pre>
       (ans[(m ^ i) & 1] += a[i] * k) %= p;
       k = k * inv[i + 1] % p * (n - i) % p * (m - i - 1) % p;
   return (ans[1] + p - ans[0]) % p;
}
ll sum_of_kth_power(ll n, ll k)
   if (n == 0) return 0;
   11 m = min(n + 1, k + 2);
   int i;
   vector<ll> s(m);
   vector<int> pr, ed(m);pr.reserve(m / 4);
   s[1] = 1;
   for (i = 2;i < m;i++)</pre>
   {
       if (!ed[i]) s[i] = ksm(i, k);
       for (int j : pr) if (i * j < m)</pre>
           s[i * j] = s[i] * s[j] % p;
           if (i % j == 0) break;
       else break;
   for (i = 1; i < m; i++) (s[i] += s[i - 1]) \%= p;
   return interpolation(s, n);
```

3.18 单原根(仅手动验证质数)

```
namespace get_root
{
    typedef unsigned int ui;
    typedef unsigned long long ll;
    ui ksm(ui x,ui y,ui p)
    {
        ui r=1;
        while (y)
        {
            if (y&1) r=(ll)r*x%p;
            x=(ll)x*x%p;y>>=1;
        }
}
```

```
}
       return r;
   }
   vector<ui> getw(ui n)
       vector<ui> w;
       for (ui i=2;i*i<=n;i++) if (n%i==0)</pre>
          w.push_back(i);
          n/=i;
          for (ui j=n/i;n==i*j;j=n/i) n/=i;
       if (n>1) w.push_back(n);
       return w;
   int getrt(ui n)
       if (n<=2) return n-1;</pre>
       auto w=getw(n);
       ui ph=n;
       for (ui x:w) ph=ph/x*(x-1);
       w=getw(ph);
       for (ui &x:w) x=ph/x;
       for (ui i=2;i<n;i++) if (gcd(i,n)==1)</pre>
           for (ui x:w) if (ksm(i,x,n)==1) goto no;
          return i;
          no:;
       }
       return -1;
   }
using get_root::getrt;
```

3.19 稍快单原根(仅验证质数)

```
namespace get_root
   typedef unsigned int ui;
   typedef unsigned long long 11;
   bool ied=0;
   const int N=1e5+5;
   vector<ui> pr;
   bool ed[N];
   void init()
       pr.reserve(N);
       for (ui i=2;i<N;i++)</pre>
          if (!ed[i]) pr.push_back(i);
          for (ui x:pr)
              if (i*x>=N) break;
              ed[i*x]=1;
              if (i%x==0) break;
          }
```

```
}
   ui ksm(ui x,ui y,ui p)
       ui r=1;
       while (y)
          if (y&1) r=(ll)r*x%p;
          x=(11)x*x%p;y>>=1;
       }
       return r;
   }
   vector<ui> getw(ui n)
       vector<ui> w;
       for (ui x:pr)
          if (x*x>n) break;
          if (n\%x==0)
              w.push_back(x);
              n/=x;
              for (ui i=n/x;n==x*i;i=n/x) n/=x;
          }
       }
       if (n>1) w.push_back(n);
       return w;
   int getrt(ui n)
       if (n<=2) return n-1;</pre>
       if (!ed[4]) init();
       auto w=getw(n);
       ui ph=n;
       for (ui x:w) ph=ph/x*(x-1);
       w=getw(ph);
       for (ui &x:w) x=ph/x;
       for (ui i=2;i<n;i++) if (gcd(i,n)==1)</pre>
          for (ui x:w) if (ksm(i,x,n)==1) goto no;
          return i;
          no:;
       }
       return -1;
   }
using get_root::getrt;
```

3.20 筛全部原根

```
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e6+2;
int ss[N],mn[N],fmn[N],phi[N];
int t,n,gs,i,d;
```

```
bool ed[N],av[N],yg[N],hv[N];
double inv[N];
void getfac(int x,int *a,int &n)
   int y=x,z;
   if (1^x&1)
       a[n=1]=2;x>>=1;while (1^x&1) x>>=1;
   }
   while (x>1)
       x=1e-9+(x*inv[a[++n]=z=mn[x]]);
       while (x\%z==0) x=1e-9+x*inv[z];
   for (i=1;i<=n;i++) av[a[i]]=0,a[i]=1e-9+(y*inv[a[i]]);</pre>
int ksm(int x,int y,int p)
{
   int r=1;
   while (y)
       if (y&1) r=(11)r*x%p;
       x=(11)x*x%p;y>>=1;
   return r;
bool ck(int x,int *a,int n,int p)
   for (int i=1;i<=n;i++) if (ksm(x,a[i],p)==1) return 0;</pre>
   return 1;
void getrt(int x,int d)
   if (!hv[x]) return puts("0\n"),void();
   static int a[30];
   int n=0,y,i,g=0,c=d;y=phi[x];
   fill(av+1,av+y+1,1);
   getfac(y,a,n);
   for (i=1;i<x;i++) if (__gcd(i,x)==1&&ck(i,a,n,x)) break;</pre>
   yg[g=i]=1;//g就是最小原根
   int j=(11)g*g%x;
   for (i=2;i< y;i++,j=(11)j*g%x) yg[j]=av[i]=av[mn[i]]&av[fmn[i]];
   printf("%d\n",phi[y]);
   for (i=1;i<x;i++) if (yg[i])</pre>
       yg[i]=0;
       if (--c==0) printf("%d<sub>□</sub>",i),c=d;
   }puts("");
}
void init()
   int i,j,k,n=N-1;
   mn[1]=phi[1]=1;
   for (i=1;i<=n;i++) inv[i]=1.0/i;</pre>
   for (i=2;i<=n;i++)</pre>
       if (!ed[i]) phi[mn[i]=ss[++gs]=i]=i-1,hv[i]=1;
```

```
for (j=1;j<=gs&&(k=ss[j]*i)<=n;j++)</pre>
          ed[k]=1;mn[k]=ss[j];
          if (i%ss[j]==0) {phi[k]=phi[i]*ss[j];hv[k]=hv[i];break;}
          phi[k]=phi[i]*(ss[j]-1);
       }
   }
   for (i=n;i;i--) fmn[i]=1e-9+(i*inv[mn[i]]),hv[i]|=(1^i&1)&&hv[i>>1];
   for (i=8;i<=n;i<<=1) hv[i]=0;</pre>
int main()
   init();
   scanf("%d",&t);
   while (t--)
       scanf("%d%d",&n,&d);
       getrt(n,d);
   }
}
```

3.21 高斯消元 (通解)

返回方程的一组解和自由元。

```
tuple<int, vector<ui>, vector<vector<ui>>> gauss(vector<vector<vi>>> a)//sum = a[i][m], rank of base
    , one sol, base
{
   int n=a.size(),m=a[0].size()-1,i,j,k,R=m;
   vector<int> fix(m,-1);
   for (i=k=0;i<m;i++)</pre>
       for (j=k;j<n;j++) if (a[j][i]) break;</pre>
       if (j==n) continue;
       fix[i]=k;--R;
       swap(a[k],a[j]);
       ui *u=a[k].data();
       ui x=ksm(u[i],p-2);
       for (j=i;j<=m;j++) u[j]=(11)u[j]*x%p;</pre>
       for (auto &v:a) if (v.data()!=a[k].data())
           x=p-v[i];
           for (j=i;j<=m;j++) v[j]=(v[j]+(l1)x*u[j])%p;</pre>
       }
       ++k;
   for (i=k;i<n;i++) if (a[i][m]) return {-1,{},{}};</pre>
   vector<ui> r(m);
   vector<vector<ui>>> c;
   for (i=0;i<m;i++) if (fix[i]!=-1) r[i]=a[fix[i]][m];</pre>
   for (i=0;i<m;i++) if (fix[i]==-1)</pre>
       vector<ui> r(m);
       r[i]=1;
       for (j=0;j<m;j++) if (fix[j]!=-1) r[j]=(p-a[fix[j]][i])%p;</pre>
       c.push_back(r);
   }
```

```
return {R,r,c};
}
```

3.22 高斯消元(列主元)

 $O(n^3)$, $O(n^2)$ 。 浮点数的版本。

```
namespace Gauss
{
   typedef double db;
   const db eps=1e-8;
   template<class T> pair<vector<db>,int> solve(const vector<vector<T>> &A)//和为 0。返回秩,负数
       无解
       assert(A.size());
       int n=A.size(),m=A[0].size()-1,i,j,k,l,r,fg=1;
       db a[n][m+1],b;
       for (i=0;i<n;i++) for (j=0;j<=m;j++) a[i][j]=A[i][j];</pre>
       for (i=l=r=0;i<n&&l<m;i++,l++)</pre>
           k=i;
           for (j=i+1;j<n;j++) if (fabs(a[j][l])>fabs(a[k][l])) k=j;
           if (fabs(a[k][1]) < eps) {--i; continue;}</pre>
           if (i!=k) for (j=1;j<=m;j++) swap(a[i][j],a[k][j]);</pre>
           b=1/a[i][l];++r;a[i][l]=1;
           for (j=l+1;j<=m;j++) a[i][j]*=b;</pre>
           for (j=0;j<n;j++) if (i!=j)</pre>
              b=a[j][1];a[j][1]=0;
              for (k=1+1;k<=m;k++) a[j][k]-=b*a[i][k];</pre>
           }
       vector<db> X(m);
       for (j=0;j<1;j++) for (k=0;k<i;k++) if (a[k][j]==1)</pre>
           X[j]=-a[k][m];
           break;
       for (j=i;j<n&&~fg;j++)</pre>
           b=a[j][m];
           for (k=0;k<m;k++) b+=X[k]*a[j][k];</pre>
           if (fabs(b)>eps) fg=-1;
       return {X,r*fg};
   }
}
```

3.23 行列式求值(任意模数)

```
O(n^3),O(n^2)。
原理: 辗转相除。注意这个 \log p 并不在 n^3 上。
```

```
#include <bits/stdc++.h>
```

```
using namespace std;
typedef long long 11;
const int N=502,p=998244353;
int cal(int a[][N],int n)
{
   int i,j,k,r=1,fh=0,l;
   for (i=1;i<=n;i++)</pre>
       k=i;
       for (j=i+1;j<=n;j++) if (a[j][i]) {k=j;break;}</pre>
       if (a[k][i]==0) return 0;
       if (i!=k) {swap(a[k],a[i]);fh^=1;}
       for (j=i+1;j<=n;j++)</pre>
           if (a[j][i]>a[i][i]) swap(a[j],a[i]),fh^=1;
           while (a[j][i])
           {
              l=a[i][i]/a[j][i];
              for (k=i;k<=n;k++) a[i][k]=(a[i][k]+(ll)(p-l)*a[j][k])%p;</pre>
              swap(a[j],a[i]);fh^=1;
          }
       }
       r=(ll)r*a[i][i]%p;
   if (fh) return (p-r)%p;
   return r;
int main()
   ios::sync_with_stdio(0);cin.tie(0);
   int n,i,j;
   static int a[N][N];
   cin>>n;
   for (i=1;i<=n;i++) for (j=1;j<=n;j++) cin>>a[i][j];
   cout<<cal(a,n)<<endl;</pre>
```

3.24 行列式求值(质数模数)

```
O(n^3), O(n^2).
```

```
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=502,p=998244353;
int ksm(int x,int y)
{
    int r=1;
    while (y)
    {
        if (y&1) r=(ll)r*x%p;
        y>>=1;x=(ll)x*x%p;
    }
    return r;
}
int cal(int a[][N],int n)
{
```

```
int i,j,k,r=1,fh=0,1;
   for (i=1;i<=n;i++)</pre>
       for (j=i;j<=n;j++) if (a[j][i]) break;</pre>
       if (j>n) return 0;
       if (i!=j) swap(a[j],a[i]),fh^=1;
       r=(ll)r*a[i][i]%p;
       k=ksm(a[i][i],p-2);
       for (j=i;j<=n;j++) a[i][j]=(ll)a[i][j]*k%p;</pre>
       for (j=i+1; j<=n; j++)</pre>
           a[j][i]=p-a[j][i];
           for (k=i+1;k<=n;k++) a[j][k]=(a[j][k]+(ll)a[j][i]*a[i][k])%p;</pre>
           a[j][i]=0;
       }
   }
   if (fh) return (p-r)%p;
   return r;
}
int main()
   ios::sync_with_stdio(0);cin.tie(0);
   int n,i,j;
   static int a[N][N];
   cin>>n;
   for (i=1;i<=n;i++) for (j=1;j<=n;j++) cin>>a[i][j];
   cout<<cal(a,n)<<endl;</pre>
}
/*
3
3 1 4
1 5 9
2 6 5
998244263
*/
```

3.25 稀疏矩阵系列

safe 宏用于验证结果正确性,可不定义。实现了稀疏矩阵的行列式和求解方程组。

```
}
       auto v=r;
       ui x=(11)cur*ksm(D,p-2)%p;
       if (m<q+i-k) r.resize(m=q+i-k);</pre>
       (r[i-k-1]+=x)\%=p;
       ui *b=r.data()+i-k;
       x=(p-x)%p;
       for (j=0;j<q;j++) b[j]=(b[j]+(l1)x*lst[j])%p;</pre>
       if (v.size()+k<lst.size()+i)</pre>
          lst=v;
           q=v.size();
          k=i;
          D=cur;
       }
   return r;
#define safe
struct Q
   int x,y;
   ui w;
};
mt19937_64 rnd(9980);
vector<ui> minpoly(int n,const vector<Q> &a)//[0,n),max:1
{
   for (auto [x,y,w]:a) assert(min(x,y)>=0&&max(x,y)<n);
   vector\langle u(n), v(n), b(n*2+1), tmp(n);
   int i;
   for (ui &x:u) x=rnd()%p;
   for (ui &x:v) x=rnd()%p;
   assert(*min_element(all(u))&&*min_element(all(v)));
   for (ui &r:b)
   {
       for (i=0;i<n;i++) r=(r+(l1)u[i]*v[i])%p;</pre>
       fill(all(tmp),0);
       for (auto [x,y,w]:a) tmp[x]=(tmp[x]+(l1)w*v[y])%p;
       swap(v,tmp);
   auto r=bm(b);
   #ifdef safe
       for (ui &x:u) x=rnd()%p;
       for (ui &x:v) x=rnd()%p;
       for (ui &r:b)
       {
           for (i=0;i<n;i++) r=(r+(l1)u[i]*v[i])%p;</pre>
           fill(all(tmp),0);
           for (auto [x,y,w]:a) tmp[x]=(tmp[x]+(l1)w*v[y])%p;
           swap(v,tmp);
       }
       auto rr=bm(b);
       assert(r==rr);
   #endif
   reverse(all(r));
   for (ui &x:r) if (x) x=p-x;
   r.push_back(1);
```

```
return r;
}
ui det(int n,vector<Q> a)//[0,m)
   vector<ui> b(n);
   for (ui &x:b) x=rnd()%p;
   assert(*min_element(all(b)));
   for (auto &[x,y,w]:a) w=(11)w*b[x]%p;
   ui r=minpoly(n,a)[0],tmp=1;
   for (ui x:b) tmp=(11)tmp*x%p;
   r=(11)r*ksm(tmp,p-2)%p;
   #ifdef safe
       for (ui &x:b) x=rnd()%p;
       assert(*min_element(all(b)));
       for (auto &[x,y,w]:a) w=(11)w*b[x]%p;
       ui rr=minpoly(n,a)[0],tmpp=1;
       for (ui x:b) tmpp=(ll)tmpp*x%p;
       rr=(11)rr*ksm(tmpp,p-2)%p*ksm(tmp,p-2)%p;
       assert(r==rr);
   #endif
   return n&1?(p-r)%p:r;
vector<ui> gauss(const vector<Q> &a,vector<ui> v)
   int n=v.size(),i,j;
   for (auto [x,y,w]:a) assert(0<=x&&x<n&&0<=y&&y<n);</pre>
   vector\langle u(n),b(2*n+1),tmp(n),tv=v;
   for (ui &x:u) x=rnd()%p;
   assert(*min_element(all(u)));
   for (ui &r:b)
       for (i=0;i<n;i++) r=(r+(ll)u[i]*v[i])%p;</pre>
       fill(all(tmp),0);
       for (auto [x,y,w]:a) tmp[x]=(tmp[x]+(l1)w*v[y])%p;
       swap(v,tmp);
   }
   auto f=bm(b);
   f.insert(f.begin(),p-1);
   int m=(int)f.size()-2;
   v=tv;fill(all(u),0);
   ui x;
   for (i=0;i<=m;i++)</pre>
       x=f[m-i];
       for (j=0;j<n;j++) u[j]=(u[j]+(l1)v[j]*x)%p;</pre>
       fill(all(tmp),0);
       for (auto [x,y,w]:a) tmp[x]=(tmp[x]+(l1)w*v[y])%p;
       swap(v,tmp);
   }
   x=ksm((p-f.back())%p,p-2);
   for (ui &y:u) y=(11)y*x%p;
   #ifdef safe
       for (auto [x,y,w]:a) tv[x]=(tv[x]+(11)(p-w)*u[y])%p;
       assert(!*min_element(all(tv)));
   #endif
   return u;
}
```

3.26 Min 25 筛

 $f(p^k) = p^k(p^k - 1)$,求 $\sum_{i=1}^n f(i)$ 。这个的原理我了解的不多,因此没有更多注释。

```
const int N=1e5+2,p=1e9+7,i6=166666668;
11 fs[N<<1],m;</pre>
int ss[N],ys[N<<1],s[N],f[N<<1],g[N<<1],ls[N<<1],cs[N<<1];</pre>
int gs,n,i,j,k,cnt,ct,ans,sq;
bool ed[N];
int S(11 n,int x)
   int r,i,j,l;
   11 k;
   if (ss[x]>=n) return 0;
   if (n>sq) r=g[ys[m/n]]; else r=g[n];
   if ((r=r-s[x])<0) r+=p;</pre>
   for (i=x+1;(ll)ss[i]*ss[i]<=n;i++) for (j=1,k=ss[i];k<=n;j++,k*=ss[i])
       l=(k-1)%p;
       r=(r+(l1)l*(l+1)%p*((j!=1)+S(n/k,i)))%p;
   }
   return r;
}
int main()
   n=1e5;
   for (i=2;i<=n;i++)</pre>
       if (!ed[i]) ss[++gs]=i;
       for (j=1;(j<=gs)&&(i*ss[j]<=n);j++)</pre>
          ed[i*ss[j]]=1;
          if (i%ss[j]==0) break;
       }
   }ss[gs+1]=1e6;
   s[1]=ss[1]*ss[1];
   for (i=2;i<=gs;i++) s[i]=(s[i-1]+(11)ss[i]*ss[i])%p;//s 是多项式在素数位置的前缀和
   memcpy(cs,s,sizeof(s));
   11 i,j,k,x,z; scanf("%11d",&m);
   sq=n=sqrt(m); while ((ll)(n+1)*(n+1)<=m) ++n;
   cnt=n-1:
   for (i=n;i<=m;i=j+1) {j=m/(m/i);++cnt;}ct=cnt++;</pre>
   for (i=1;i<=m;i=j+1)</pre>
   {
       j=m/(k=m/i);
       if (k<=n) g[fs[k]=k]=(k*(k+1)*(k<<1|1)/6-1)%p;//这里是多项式前缀和(不含1)
       else
       {
          z=k%p;//一样
          g[ys[j]=-cnt]=(z*(z+1)%p*(z<<1|1)%p+p-6)*i6%p;fs[cnt]=k;
       }
   }
   cnt=ct;
   for (j=1;(j<=gs)&&(z=(11)ss[j]*ss[j]);j++) for (i=cnt;z<=fs[i];i--)
       x=fs[i]/ss[j]; if (x>n) x=ys[m/x];
       g[i]=(g[i]+(ll)(p-ss[j])*ss[j]%p*(g[x]-s[j-1]+p))%p;//另一处需要修改的
   }
```

```
memcpy(ls,g,sizeof(g));
s[1]=ss[1];
for (i=2;i<=gs;i++) s[i]=s[i-1]+ss[i];</pre>
cnt=n-1;
for (i=n;i<=m;i=j+1) {j=m/(m/i);++cnt;}ct=cnt++;</pre>
for (i=1;i<=m;i=j+1)</pre>
   j=m/(k=m/i);
   if (k \le n) g[fs[k] = k] = ((k*(k+1) >> 1) - 1)%p;
   else
   {
       z=k\%p;
       g[ys[j]=--cnt]=(z*(z+1)-2>>1)%p;fs[cnt]=k;
}
cnt=ct;
for (j=1;(j\leq gs)\&\&(z=(ll)ss[j]*ss[j]);j++) for (i=cnt;z\leq fs[i];i--)
   x=fs[i]/ss[j]; if (x>n) x=ys[m/x];
   g[i]=(g[i]+(11)(p-ss[j])*(g[x]-s[j-1]+p))%p;
for (i=1;i<=cnt;i++) if ((g[i]=ls[i]-g[i])<0) g[i]+=p;</pre>
for (i=1;i<=gs;i++) if ((s[i]=cs[i]-s[i])<0) s[i]+=p;</pre>
ans=S(m,0)+1; if (ans==p) ans=0; printf("%d",ans);
```

3.27 Min 25 筛 (卡常,素数个数,注意评测机 double 性能)

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N=3.2e5+2;
ll s[N];
int ss[N],ys[N],gs=0;
bool ed[N];
11 cal(11 m)
   static ll g[N<<1],fs[N<<1];</pre>
   ll i,j,k,x;
   int n;
   int p,q,cnt;
   n=round(sqrt(m));
   q=lower_bound(ss+1,ss+gs+1,n)-ss;
   memset(g,0,sizeof(g));memset(ys,0,sizeof(ys));cnt=n-1;
   for (i=n;i<=m;i=j+1) {j=m/(m/i);++cnt;}int ct=cnt++;</pre>
   for (i=1;i<=m;i=j+1)</pre>
   {
       j=m/(k=m/i);
       if (k<=n) g[fs[k]=k]=k-1; else {g[ys[j]=--cnt]=k-1;fs[cnt]=k;}</pre>
   for (j=1;j<=q;j++) for (i=cnt;(l1)ss[j]*ss[j]<=fs[i];i--)</pre>
       x=fs[i]/ss[j];if (x>n) x=ys[m/x];
       g[i] -= g[x] - j + 1;
   return g[cnt];//这里 g[cnt-i+1] 表示的是 [1,m/i] 的答案
```

3.28 扩展 min-max 容斥(重返现世)

```
k-th \max\{S\} = \sum_{T \subseteq S} (-1)^{|T|-k} {|T|-1 \choose k-1} \min\{T\}
```

```
scanf("%d%d%d",&n,&q,&m);inv[1]=1;q=n+1-q;
for (i=2;i<=m;i++) inv[i]=p-(1l)p/i*inv[p%i]%p;
for (i=1;i<=n;i++) scanf("%d",a+i);f[0][0]=1;
for (j=1;j<=n;j++) for (i=q;i;i--) for (k=m;k>=a[j];k--) if ((f[i][k]=f[i][k]+f[i-1][k-a[j]]-f
        [i][k-a[j]])>=p) f[i][k]-=p; else if (f[i][k]<0) f[i][k]+=p;
for (i=1;i<=m;i++) ans=(ans+(1l)f[q][i]*inv[i])%p;
ans=(1l)ans*m%p;printf("%d",ans);</pre>
```

3.29 模数为偶数 FWT & 光速乘

```
O(n2^n),O(2^n)。
原理: 让模数变为 p2^n,就可以正常做除法了。
```

```
const int N=1<<20,M=21;
int x[M];
ll p,f[N],g[N];
int n,m,c;
ll mul(ll x,ll y)
{
    x=x*y-(ll)((ldb)x/p*y+le-8)*p;
    if (x<0) return x+p;return x;
}
void dft(ll *a)
{
    int i,j,k,l;
    ll b;
    for (i=1;i<n;i=1)
    {
        l=i<<1;
        for (j=0;j<n;j+=1) for (k=0;k<i;k++)</pre>
```

```
{
           b=a[j|k|i];
           a[j|k|i]=(a[j|k]-b+p)%p;
           a[j|k]=(a[j|k]+b)%p;
   }
}
int main()
   ios::sync_with_stdio(0);cin.tie(0);
   11 t;int i;
   cin>>m>>t>>p;p*=(n=1<<m);
   for (i=0;i<n;i++) cin>>f[i];
   dft(f);
   for (i=0;i<=m;i++) cin>>x[i];
   for (i=1;i<n;i++) g[i]=g[i>>1]+(i&1);
   for (i=0;i<n;i++) g[i]=x[g[i]];dft(g);</pre>
   while (t)
   {
       if (t&1) for (i=0;i<n;i++) f[i]=mul(f[i],g[i]);</pre>
       for (i=0;i<n;i++) g[i]=mul(g[i],g[i]);t>>=1;
   dft(f);
   for (i=0;i<n;i++) cout<<(f[i]>>m)<<'\n';</pre>
}
```

3.30 二次剩余

```
namespace cipolla
   typedef unsigned int ui;
   typedef unsigned long long 11;
   ui p,w;
   struct Q
       11 x,y;
       Q operator*(const Q &o) const {return {(x*o.x+y*o.y%p*w)%p,(x*o.y+y*o.x)%p};}
   };
   ui ksm(ll x,ui y)
      ll r=1;
      while (y)
          if (y&1) r=r*x%p;
          x=x*x%p;y>>=1;
       }
      return r;
   }
   Q ksm(Q x,ui y)
       Q r={1,0};
       while (y)
          if (y&1) r=r*x;
          x=x*x;y>>=1;
       }
```

```
return r;
}
ui mosqrt(ui x,ui P)//0<=x<P
{
    if (x==0||P==2) return x;
    p=P;
    if (ksm(x,p-1>>1)!=1) return -1;
    ui y;
    mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());
    do y=rnd()%p,w=((ll)y*y+p-x)%p; while (ksm(w,p-1>>1)<=1);//not for p=2
    y=ksm({y,1},p+1>>1).x;
    if (y*2>p) y=p-y;//两解取小
    return y;
}
using cipolla::mosqrt;
```

3.31 k 次剩余

```
namespace get_root
   typedef unsigned int ui;
   typedef unsigned long long 11;
   bool ied=0;
   const int N=1e5+5;
   vector<ui> pr;
   bool ed[N];
   void init()
       pr.reserve(N);
       for (ui i=2;i<N;i++)</pre>
          if (!ed[i]) pr.push_back(i);
          for (ui x:pr)
          {
              if (i*x>=N) break;
              ed[i*x]=1;
              if (i%x==0) break;
       }
   ui ksm(ui x,ui y,ui p)
       ui r=1;
       while (y)
          if (y&1) r=(ll)r*x%p;
          x=(11)x*x%p;y>>=1;
       }
       return r;
   vector<ui> getw(ui n)
       vector<ui> w;
       for (ui x:pr)
       {
```

```
if (x*x>n) break;
          if (n\%x==0)
             w.push_back(x);
             n/=x;
             for (ui i=n/x;n==x*i;i=n/x) n/=x;
          }
      }
      if (n>1) w.push_back(n);
      return w;
   int getrt(ui n)
      if (n<=2) return n-1;</pre>
      if (!ed[4]) init();
      auto w=getw(n);
      ui ph=n;
      for (ui x:w) ph=ph/x*(x-1);
      w=getw(ph);
      for (ui &x:w) x=ph/x;
      for (ui i=2;i<n;i++) if (gcd(i,n)==1)</pre>
          for (ui x:w) if (ksm(i,x,n)==1) goto no;
          return i;
          no:;
      }
      return -1;
   }
}
namespace BSGS
   typedef unsigned int ui;
   typedef unsigned long long 11;
   template<int N,class T,class TT> struct ht//个数,定义域,值域
      const static int p=1e6+7,M=p+2;
      TT a[N];
      T v[N];
      int fir[p+2],nxt[N],st[p+2];//和模数相适应
      int tp,ds;//自定义模数
      ht(){memset(fir,0,sizeof fir);tp=ds=0;}
      void mdf(T x,TT z)//位置, 值
          ui y=x%p;
          for (int i=fir[y];i;i=nxt[i]) if (v[i]==x) return a[i]=z,void();//若不可能重复不需要 for
          v[++ds]=x;a[ds]=z;
          if (!fir[y]) st[++tp]=y;
          nxt[ds]=fir[y];fir[y]=ds;
      }
      TT find(T x)
          ui y=x%p;
          int i;
          for (i=fir[y];i;i=nxt[i]) if (v[i]==x) return a[i];
          return 0;//返回值和是否判断依据要求决定
      }
      void clear()
```

```
{
           ++tp;
           while (--tp) fir[st[tp]]=0;
           ds=0;
   };
   const int N=5e4;
   ht<N,ui,ui> s;
   int exgcd(int a,int b)
       if (a==1) return 1;
       return (1-(long long)b*exgcd(b%a,a))/a;//not 11
   }
   int bsgs(ui a,ui b,ui p)
       s.clear();
       a%=p;b%=p;
       if (!a) return 1-min((int)b,2);//含 -1
       ui i,j,k,x,y;
       x=sqrt(p)+2;
       for (i=0,j=1;i<x;i++,j=(11)j*a%p)</pre>
           if (j==b) return i;
           s.mdf((ll)j*b%p,i+1);
       }
       k=j;
       for (i=1;i \le x;i++,j=(11)j*k\%p) if (y=s.find(j)) return (11)i*x-y+1;
       return -1;
   }
   bool isprime(ui p)
       if (p<=1) return 0;</pre>
       for (ui i=2;i*i<=p;i++) if (p%i==0) return 0;</pre>
       return 1;
   }
   int exbsgs(ui a,ui b,ui p)//a^x=b(mod p)
   {
       //if (isprime(p)) return bsgs(a,b,p);
       a%=p;b%=p;
       ui i,j,k,x,y=_{-}lg(p),cnt=0;
       for (i=0,j=1%p;i<=y;i++,j=(l1)j*a%p) if (j==b) return i;
       y=1;
       while (1)
           if ((x=gcd(a,p))==1) break;
           if (b%x) return -1;//no sol
          ++cnt;
          p/=x;b/=x;
           y=(11)y*(a/x)%p;
       }
       a%=p;
       b=(11)b*(p+exgcd(y,p))%p;
       int r=bsgs(a,b,p);
       return r==-1?-1:r+cnt;
   }
|pair<ll,ll> exgcd(ll a,ll b,ll c)//ax+by=c, {-1,-1} 无解, b=0 返回 {c/a,0},否则返回最小非负 x
```

```
{
   assert(a||b);
   if (!b) return {c/a,0};
   if (a<0) a=-a,b=-b,c=-c;</pre>
   11 d=gcd(a,b);
   if (c%d) return {-1,-1};
   11 x=1,x1=0,p=a,q=b,k;
   b=abs(b);
   while (b)
       k=a/b;
       x-=k*x1;a-=k*b;
       swap(x,x1);
       swap(a,b);
   b=abs(q/d);
   x=x*(c/d)\%b;
   if (x<0) x+=b;
   return \{x,(c-p*x)/q\};
}
ll fun(ll a,ll b,ll p)//ax=b(mod p)
   return exgcd(-p,a,b).second%p;
}
using get_root::getrt;
using BSGS::bsgs,BSGS::exbsgs;
int nth_root(ui k,ui y,ui p)//x^k=y(mod p)
   if (k==0) return y==1?0:-1;
   if (y==0) return 0;
   ui g=getrt(p);
   ui z=bsgs(g,y,p);
   ll x=fun(k,z,p-1);
   if (x==-1) return -1;
   return get_root::ksm(g,x,p);
}
```

网上的超快版本

```
#define popcount __builtin_popcount
using namespace std;
typedef long long int 11;
//using ll=__int128_t;
typedef pair<ll, int> P;
11 gcd(ll a, ll b){
   if (b==0) return a;
   return gcd(b, a%b);
ll powmod(ll a, ll k, ll mod){
   11 ap=a, ans=1;
   while(k){
       if (k&1){
          ans*=ap;
          ans%=mod;
       ap=ap*ap;
       ap%=mod;
       k >> = 1;
```

```
return ans;
}
ll inv(ll a, ll m){
   ll b=m, x=1, y=0;
   while(b>0){
       11 t=a/b;
       swap(a-=t*b, b);
       swap(x-=t*y, y);
   return (x%m+m)%m;
}
vector<P> fac(ll x){
   vector<P> ret;
   for(ll i=2; i*i<=x; i++){</pre>
       if (x\%i==0){
           int e=0;
           while (x\%i==0) {
              x/=i;
              e++;
          ret.push_back({i, e});
       }
   }
   if (x>1) ret.push_back({x, 1});
   return ret;
//mt19937_64 mt(334);
mt19937 mt(334);
11 solve1(11 p, 11 q, int e, 11 a){
   int s=0;
   ll r=p-1, qs=1, qp=1;
   while(r%q==0){
       r/=q;
       qs*=q;
       s++;
   for(int i=0; i<e; i++) qp*=q;</pre>
   11 d=qp-inv(r%qp, qp);
   11 t=(d*r+1)/qp;
   11 at=powmod(a, t, p), inva=inv(a, p);
   if (e>=s){
       if (powmod(at, qp, p)!=a) return -1;
       else return at;
   //uniform_int_distribution<long long> rnd(1, p-1);
   uniform_int_distribution<> rnd(1, p-1);
   ll rv;
   while(1){
       rv=powmod(rnd(mt), r, p);
       if (powmod(rv, qs/q, p)!=1) break;
   }
   int i=0;
   ll qi=1, sq=1;
   while(sq*sq<q) sq++;</pre>
   while(i<s-e){</pre>
       11 qq=qs/qp/qi/q;
```

```
vector<P> v(sq);
       ll rvi=powmod(rv, qp*qq*(p-2)%(p-1), p), rvp=powmod(rv, sq*qp*qq, p);
       ll x=powmod(powmod(at, qp, p)*inva%p, qq*(p-2)%(p-1), p), y=1;
       for(int j=0; j<sq; j++){</pre>
          v[j]=P(x, j);
          (x*=rvi)%=p;
       }
       sort(v.begin(), v.end());
       11 z=-1;
       for(int j=0; j<sq; j++){</pre>
          int l=lower_bound(v.begin(), v.end(), P(y, 0))-v.begin();
          if (v[1].first==y){
              z=v[1].second+j*sq;
              break;
          (y*=rvp)%=p;
       if (z==-1) return -1;
       (at*=powmod(rv, z, p))%=p;
       i++;
       qi*=q;
       rv=powmod(rv, q, p);
   return at;
11 solve0(11 p, 11 q, 11 r, 11 a){
   11 d=q-inv(r\%q, q);
   11 t=(d*r+1)/q;
   11 at=powmod(a, t, p), inva=inv(a, p);
   if (powmod(at, q, p)!=a) return -1;
   else return at;
ll solve(ll p, ll k, ll a)//p k y
{
   if (k==0)
   {
       if (a==1) return 1;
       return -1;
   }
   if (a==0) return 0;
   if (p==2 || a==1) return 1;
   ll a1=a;
   11 g=gcd(p-1, k);
   ll c=inv(k/g\%((p-1)/g), (p-1)/g);
   a=powmod(a, c, p);
   if (g==1){
       if (powmod(a, k, p)==a1) return a;
       else return -1;
   }
   ll g1=gcd(g, (p-1)/g), g2=g;
   vector<P> f1=fac(g1), f;
   for(auto r:f1){
       11 q=r.first;
       int e=0;
       while(g2%q==0){
          g2/=q;
          e++;
```

```
f.push_back({q, e});
   }
   ll ret=1, gp=1;
   if (g2>1){
       ll x=solve0(p, g2, (p-1)/g2, a);
       if (x==-1) return -1;
       ret=x, gp*=g2;
   }
   for(auto r:f){
       ll qp=1;
       for(int i=0; i<r.second; i++) qp*=r.first;</pre>
       ll x=solve1(p, r.first, r.second, a);
       if (x==-1) return -1;
       if (gp==1){
          ret=x, gp*=qp;
          continue;
       ll s=inv(gp%qp, qp), t=(1-gp*s)/qp;
       if (t>=0) ret=powmod(ret, t, p);
       else ret=powmod(ret, p-1+t%(p-1), p);
       if (s>=0) x=powmod(x, s, p);
       else x=powmod(x, p-1+s\%(p-1), p);
       (ret*=x)\%=p;
       gp*=qp;
   if (powmod(ret, k, p)!=a1) return -1;
   return ret;
}
```

3.32 FWT/子集卷积

 $O(n2^n)$, $O(2^n)$ 。注意全都是无符号的。 这里混合了两个版本的代码,但只有 ui 和 ull 的差异。容易自行调整。

```
void fwt_and(vector<1l> &A)//本质: 母集和
{
    ll n=A.size(), *a=A.data(), i, j, k, l, *f, *g;
    for (i=1; i<n; i=1)
    {
        l=i*2;
        for (j=0; j<n; j+=1)
        {
             f=a+j; g=a+j+i;
             for (k=0; k<i; k++) f[k]+=g[k];
        }
        if (l==n||i==1<<10) for (ll &x:A) x%=p;
    }
}
void ifwt_and(vector<1l> &A)
{
    ll n=A.size(), *a=A.data(), i, j, k, l, *f, *g;
    for (i=1; i<n; i=1)
    {
        l=i*2;
        for (j=0; j<n; j+=1)</pre>
```

106

```
f=a+j; g=a+j+i;
           for (k=0; k<i; k++) f[k]+=p*i-g[k];</pre>
       if (l==n||i==1<<10) for (l1 &x:A) x%=p;</pre>
   }
}
void fwt_or(vector<ll> &A)//本质: 子集和
   11 n=A.size(), *a=A.data(), i, j, k, l, *f, *g;
   for (i=1; i<n; i=1)</pre>
   {
       1=i*2;
       for (j=0; j<n; j+=1)</pre>
           f=a+j; g=a+j+i;
           for (k=0; k<i; k++) g[k]+=f[k];</pre>
       if (l==n||i==1<<10) for (ll &x:A) x%=p;</pre>
   }
void ifwt_or(vector<11> &A)
   ll n=A.size(), *a=A.data(), i, j, k, l, *f, *g;
   for (i=1; i<n; i=1)</pre>
       1=i*2;
       for (j=0; j<n; j+=1)</pre>
           f=a+j; g=a+j+i;
           for (k=0; k<i; k++) g[k]+=p*i-f[k];</pre>
       if (l==n||i==1<<10) for (ll &x:A) x%=p;</pre>
void fwt_xor(vector<ui> &A)
   ui n=A.size(),*a=A.data(),i,j,k,l,*f,*g;
   for (i=1;i<n;i=1)</pre>
       1=i*2;
       for (j=0;j<n;j+=1)</pre>
           f=a+j;g=a+j+i;
           for (k=0;k<i;k++)</pre>
           {
               if ((f[k]+=g[k])>=p) f[k]-=p;
               g[k]=(f[k]+2*(p-g[k]))%p;
           }
       }
   }
void ifwt_xor(vector<ui> &A)
   ui n=A.size(),*a=A.data(),i,j,k,l,*f,*g,x=p+1>>1,y=1;
   for (i=1;i<n;i=1)</pre>
    {
```

```
1=i*2;
       for (j=0;j<n;j+=1)</pre>
           f=a+j;g=a+j+i;
           for (k=0;k<i;k++)</pre>
               if ((f[k]+=g[k])>=p) f[k]-=p;
               g[k]=(f[k]+2*(p-g[k]))%p;
       y=(11)y*x%p;
   for (i=0;i<n;i++) a[i]=(l1)a[i]*y%p;</pre>
}
vector<ui> fst(const vector<ui> &s,const vector<ui> &t)
   int n=s.size(),m=__builtin_ctz(n),i,j,k;
   vector<ui> a[m+1],b[m+1],c[m+1],r(n);
   for (i=0;i<=m;i++) a[i].resize(n),b[i].resize(n),c[i].resize(n);</pre>
   for (i=0;i<n;i++)</pre>
       k=__builtin_popcount(i);
       a[k][i]=s[i];
       b[k][i]=t[i];
   for (i=0;i<m;i++) fwt_or(a[i]),fwt_or(b[i]);</pre>
   for (i=0;i<=m;i++) for (j=0;j<=i;j++) for (k=0;k<n;k++) c[i][k]=(c[i][k]+(11)a[j][k]*b[i-j][k
   for (i=1;i<=m;i++) ifwt_or(c[i]);</pre>
   for (i=0;i<n;i++) r[i]=c[_builtin_popcount(i)][i];</pre>
   return r;
}
```

3.33 NTT

一种较快的 NTT (尤其是对于卷积以外的用途),但不推荐在不熟悉的情况下直接使用。一般的卷积可以参照字符串部分通配符的字符串匹配,其余的用途可以参照其他板子。

如果确实需要卡常,建议先抄写需要的函数,并递归地找到需要补的内容。

注意事项: 所有 11 为无符号。始终保证数组大小为 2^n ,不应当使用 resize 而应该使用取模来调整长度。三种卷积对应的运算符见注释。

需要特别小心其长度的变化,注意不要越界。如果修改模数,dft 和 hf_dft 处有一个参数也要修改。

常见函数如下(带 new 的基本上都是较快但较长的):

卷积 operator*,循环卷积 operator&,差卷积 operator^,求逆 operator~/ (包含一个较短版,被注释了),分治 cdq,对数 ln,指数 exp,exp_cdq,exp_new,开方 sqrt,sqrt_new,幂函数pow(Q,11),pow(Q,string),pow2(Q,11),pow(Q,11,Q),整除与取模 div,mod,div_mod,线性递推recurrent_new,recurrent_interval,连乘 prod,prod_new,

多点求值 evaluation, evaluation_new,阶乘 factorial,快速插值 interpolation,复合(逆)comp,comp_inv,多项式平移 shift,区间点值平移 shift,Z 变换 Z_transform,贝尔数([n] 划分等价类方案数)Bell,斯特林数 S1_row,S1_column,S2_row,S2_column,signed_S1_row,伯努利数 Bernoulli,划分数 Partition,最大公因式 gcd,求根 root,模多项式意义的逆 inverse。

108

```
namespace NTT
{
   using ll = unsigned long long;
   const 11 g = 3, p = 998244353;
   const int N = 1 << 22;//务必修改
   ll inv[N], fac[N], ifac[N];//非必要
   void getfac(int n)//非必要
       static int pre = -1;
       if (pre == -1) pre = 1, ifac[0] = fac[0] = fac[1] = ifac[1] = inv[1] = 1;
       if (n <= pre) return;</pre>
       for (int i = pre + 1, j; i <= n; i++)</pre>
          j = p / i;
          inv[i] = (p - j) * inv[p - i * j] % p;
          fac[i] = fac[i - 1] * i % p;
          ifac[i] = ifac[i - 1] * inv[i] % p;
      pre = n;
   }
   ll w[N];
   int r[N];
   ll ksm(ll x, ll y)
       11 r = 1;
       while (y)
          if (y \& 1) r = r * x % p;
          x = x * x % p;
          y >>= 1;
      return r;
   void init(int n)
       static int pr = 0, pw = 0;
       if (pr == n) return;
       int b = _{lg}(n) - 1, i, j, k;
       for (i = 1; i < n; i++) r[i] = r[i >> 1] >> 1 | (i & 1) << b;
       if (pw < n)
       {
          for (j = 1; j < n; j = k)
              k = j * 2;
              ll wn = ksm(g, (p - 1) / k);
              w[j] = 1;
              for (i = j + 1; i < k; i++) w[i] = w[i - 1] * wn % p;
          }
          pw = n;
      }
      pr = n;
   int cal(int x) { return 1 << __lg(max(x, 1) * 2 - 1); }</pre>
   struct Q :vector<11>
       bool flag;
       Q& operator%=(int n) { assert((n & -n) == n); resize(n); return *this; }
```

```
Q operator%(int n) const
   assert((n \& -n) == n);
   if (size() <= n)</pre>
       auto f = *this;
       return f %= n;
   return Q(vector(begin(), begin() + n));
int deg() const
   int n = size() - 1;
   while (n \ge 0 \&\& begin()[n] == 0) --n;
   return n;
explicit Q(int x = 1, bool f = 0) :flag(f), vector<ll>(cal(x)) { }//小心: {}会调用这条而非
Q(\text{const vector}<11>\& o, bool f = 0) : Q(o.size(), f) { copy(all(o), begin()); }
Q(const initializer_list<ll>% o, bool f = 0) :Q(vector(o), f) { }
11 fx(11 x)
{
   11 r = 0;
   for (auto it = rbegin(); it != rend(); ++it) r = (r * x + *it) % p;
   return r;
}
void dft()
   int n = size(), i, j, k;
   ll y, * f, * g, * wn, * a = data();
   init(n);
   for (i = 1; i < n; i++) if (i < r[i]) ::swap(a[i], a[r[i]]);</pre>
   for (k = 1; k < n; k *= 2)</pre>
   {
       wn = w + k;
       for (i = 0; i < n; i += k * 2)
          g = (f = a + i) + k;
          for (j = 0; j < k; j++)
              y = g[j] * wn[j] % p;
              g[j] = f[j] + p - y;
              f[j] += y;
       }//此处要求 12*p*p<=2^64。如果调整模数,需要修改 12。
       if (__lg(n / k) % 12 == 1) for (i = 0; i < n; i++) a[i] %= p;</pre>
   }
   if (flag)
   {
       y = ksm(n, p - 2);
       for (i = 0; i < n; i++) a[i] = a[i] * y % p;</pre>
       reverse(a + 1, a + n);
   flag ^= 1;
}
void hf_dft()
```

```
assert(size() >= 2 && flag);
       int n = size() / 2, i, j, k;
       11 x, y, * f, * g, * wn, * a = data();
       init(n);
       for (i = 1; i < n; i++) if (i < r[i]) ::swap(a[i], a[r[i]]);</pre>
       for (k = 1; k < n; k *= 2)
       {
           wn = w + k;
           for (i = 0; i < n; i += k * 2)
              g = (f = a + i) + k;
              for (j = 0; j < k; j++)
                  y = g[j] * wn[j] % p;
                  g[j] = f[j] + p - y;
                  f[j] += y;
              }
           if (__lg(n / k) % 12 == 1) for (i = 0; i < n; i++) a[i] %= p;</pre>
       }
       if (flag)
          x = ksm(n, p - 2);
           for (i = 0; i < n; i++) a[i] = a[i] * x % p;</pre>
          reverse(a + 1, a + n);
       }
       flag ^= 1;
   Q operator<<(int m) const
       int n = deg(), i;
       Q r(n + m + 1);
       for (i = 0; i <= n; i++) r[i + m] = at(i);</pre>
       return r;
   }
   Q operator>>(int m) const
       int n = deg(), i;
       if (n < m) return Q();</pre>
       Q r(n + 1 - m);
       for (i = m; i \le n; i++) r[i - m] = at(i);
       return r;
   }
};
Q shrink(Q f) { return f %= cal(f.deg() + 1); }
ostream& operator<<(ostream& cout, const Q& o)
{
   int n = o.deg();
   if (n < 0) return cout << "[0]";</pre>
   cout << "[" << o[n];
   for (int i = n - 1; i \ge 0; i--) cout << ", " << o[i];
   return cout << "]";</pre>
Q der(const Q& f)
   ll n = f.size(), i;
   Q r(n);
```

```
for (i = 1; i < n; i++) r[i - 1] = f[i] * i % p;</pre>
   return r;
}
Q integral(const Q& f)
   ll n = f.size(), i;
   getfac(n);
   Qr(n);
   for (i = 1; i < n; i++) r[i] = f[i - 1] * inv[i] % p;
   return r;
Q& operator+=(Q& f, ll x) { (f[0] += x) %= p; return f; }
Q operator+(Q f, ll x) { return f += x; }
Q& operator-=(Q& f, 11 x) { (f[0] += p - x) \% p; return f; }
Q operator-(Q f, ll x) { return f -= x; }
Q& operator*=(Q& f, ll x) { for (ll& y : f) (y *= x) \%= p; return f; }
Q operator*(Q f, ll x) { return f *= x; }
Q& operator+=(Q& f, const Q& g)
   f %= max(f.size(), g.size());
   for (int i = 0; i < g.size(); i++) f[i] = (f[i] + g[i]) % p;
   return f;
Q operator+(Q f, const Q& g) { return f += g; }
Q& operator-=(Q& f, const Q& g)
   f %= max(f.size(), g.size());
   for (int i = 0; i < g.size(); i++) f[i] = (f[i] + p - g[i]) % p;
   return f;
Q operator-(Q f, const Q& g) { return f -= g; }
Q& operator*=(Q& f, Q g)//卷积
   if (f.flag | g.flag)
   {
       int n = f.size(), i;
       assert(n == g.size());
       if (!f.flag) f.dft();
       if (!g.flag) g.dft();
       for (i = 0; i < n; i++) (f[i] *= g[i]) %= p;</pre>
       f.dft();
   }
   else
   {
       int n = cal(f.size() + g.size() - 1), i, j;
       int m1 = f.deg(), m2 = g.deg();
       if ((11)m1 * m2 > (11)n * __lg(n) * 8)
          (f %= n).dft(); (g %= n).dft();
          for (i = 0; i < n; i++) (f[i] *= g[i]) %= p;
          f.dft();
       }
       else
          vector<ll> r(max(0, m1 + m2 + 1));
          for (i = 0; i \le m1; i++) for (j = 0; j \le m2; j++) (r[i + j] += f[i] * g[j]) %= p;
          f = Q(n);
```

```
copy(all(r), f.begin());
      }
   }
   return f;
Q operator*(Q f, const Q& g) { return f *= g; }
Q& operator&=(Q& f, Q g)//循环卷积
   assert(f.size() == g.size());
   int n = f.size(), i;
   if (!f.flag) f.dft();
   if (!g.flag) g.dft();
   for (i = 0; i < n; i++) (f[i] *= g[i]) %= p;</pre>
   f.dft();
   return f;
Q operator&(Q f, const Q& g) { return f &= g; }
Q& operator~=(Q& f, Q g)//差卷积
   int n = f.size();
   g %= n;
   reverse(all(g));
   f *= g;
   rotate(f.begin(), n - 1 + all(f));
   return f %= n;
}
Q operator^(Q f, const Q& g) { return f ^= g; }
Q sqr(Q f)
{
   assert(!f.flag);
   int n = f.size() * 2, i;
   (f %= n).dft();
   for (i = 0; i < n; i++) f[i] = f[i] * f[i] % p;</pre>
   f.dft();
   return f;
}
/*Q operator~(const Q &f)
   Qr;
   r[0]=ksm(f[0],p-2);
   for (int i=1; i<=f.size(); i*=2) r=(-((f\%i)*r-2)*r)\%i;
   return r;
}//trivial, 5e5 750ms*/
Q operator~(const Q& f)
   Q q, r, g;
   int n = f.size(), i, j, k;
   r[0] = ksm(f[0], p - 2);
   for (j = 2; j \le n; j *= 2)
      k = j / 2;
      g = (r \%= j) \% k;
      r.dft();
       q = f \% j * r;
       fill_n(q.begin(), k, 0);
       r *= q;
       copy(all(g), r.begin());
```

```
for (i = k; i < j; i++) r[i] = (p - r[i]) % p;
   }
   return r;
}//5e5 200ms, inv(1 6 3 4 9)=(1 998244347 33 998244169 1020)
Q& operator/=(Q& f, const Q& g) { int n = f.size(); return (f *= \simg) %= n; }
Q operator/(Q f, const Q& g) { return f /= g; }
void cdq(Q& f, Q& g, int l, int r)//g_0=1,i*g_i=g_{i-j}*f_j,use for cdq
{
   static vector<Q> cd;
   int i, m = 1 + r >> 1, n = r - 1, nn = n >> 1;
   if (r - l == f.size())
       getfac(n - 1);
       g = Q(n);
       cd.clear();
       for (i = 2; i <= n; i *= 2)</pre>
       {
          cd.emplace_back(i);
          Q\& h = cd.back();
          h \%= i;
          copy_n(f.begin(), i, h.begin());
          h.dft();
       }
   }
   if (1 + 1 == r)
       g[1] = 1 ? g[1] * inv[1] % p : 1;
       return;
   cdq(f, g, 1, m);
   Q h(n);
   copy_n(g.begin() + 1, nn, h.begin());
   h *= cd[__lg(n) - 1];
   for (i = m; i < r; i++) (g[i] += h[i - 1]) \% = p;
   cdq(f, g, m, r);
}
Q exp_cdq(Q f)
   Qg;
   int n = f.size(), i;
   for (i = 1; i < n; i++) f[i] = f[i] * i % p;
   cdq(f, g, 0, n);
   return g;
}//5e5 455ms
Q ln(const Q& f) { return integral(der(f) / f); }
//5e5 330ms, ln(1 2 3 4 5)=(0 2 1 665496236 499122177)
Q exp(Q f)
{
   Q r; r[0] = 1;
   for (int i = 1; i <= f.size(); i *= 2) (r *= f % i - ln(r % i) + 1) %= i;
   return r;
}//5e5 700ms, exp(0 4 2 3 5)=(1 4 10 665496257 665496281)
Q exp_new(Q b)
{
   Q h, f, r, u, v, bj;
   int n = b.size(), i, j, k;
   r[0] = h[0] = 1;
```

```
for (j = 2; j \le n; j *= 2)
      f = bj = der(b \% j); k = j / 2; fill(k + all(bj), 0);
      h.dft(); u = der(r) & h;
      v = (r \& h) \% j - 1 \& bj;
      for (i = 0; i < k; i++) f[i + k] = (p * p + u[i] - v[i] - f[i] - f[i + k]) % p, f[i] =
      f[k-1] = (f[j-1] + v[k-1]) % p;
      u = (r \% = j) \& integral(f);
      for (i = k; i < j; i++) r[i] = (p - u[i]) % p;
      if (j < n) h = ~r;
   }
   return r;
}//5e5 420ms
optional<ll> mosqrt(ll x)
   static mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());
   static 11 W;
   struct P
      11 x, y;
      P operator*(const P& a) const
          return {(x * a.x + y * a.y % p * W) % p, (x * a.y + y * a.x) % p};
      }
   };
   if (x == 0) return \{0\};
   if (ksm(x, p - 1 >> 1) != 1) return { };
   11 y;
   do y = rnd() % p; while (ksm(W = (y * y % p + p - x) % p, p - 1 >> 1) <= 1);//not for p=2
   y = [\&](P x, ll y)
      {
          P r{1, 0};
          while (y)
             if (y \& 1) r = r * x;
             x = x * x; y >>= 1;
          }
          return r.x;
      \{(y, 1), p + 1 >> 1);
   return \{y * 2 
}
optional<Q> sqrt(Q f)
   const static 11 i2 = p + 1 >> 1;
   Qr;
   int n = f.size(), i, 1;
   for (i = 0; i < n; i++) if (f[i]) break;</pre>
   if (i == n) return f;
   if (i & 1) return { };
   1 = i / 2;
   copy(i + all(f), f.begin());
   fill(n - i + all(f), 0);
   auto rt = mosqrt(f[0]);
   if (rt) r[0] = rt.value(); else return { };
```

```
for (i = 2; i <= n; i *= 2) r = (sqr(r) + f % i) / (r % i) % i * i2;
   copy_backward(all(r) - 1, r.end());
   fill_n(r.begin(), 1, 0);
   return {r};
}//5e5 530ms, sqrt(0 0 4 2 3)=(0 2 499122177 311951361 171573248)
optional<Q> sqrt_new(Q f)
   const static 11 i2 = p + 1 >> 1;
   Q q, r;
   int n = f.size(), i, j, k, l;
   for (i = 0; i < n; i++) if (f[i]) break;</pre>
   if (i == n) return f;
   if (i & 1) return { };
   1 = i / 2;
   copy(i + all(f), f.begin());
   fill(n - i + all(f), 0);
   auto rt = mosqrt(f[0]);
   if (rt) r[0] = rt.value(); else return { };
   for (j = 2; j <= n; j *= 2)</pre>
       k = j / 2; (q = r).dft(); (q &= q) %= j;
       for (i = k; i < j; i++) q[i] = (q[i - k] + p * 2 - f[i] - f[i - k]) * i2 % p, q[i - k]
           = 0;
       q &= ~r % j; r %= j;
       for (i = k; i < j; i++) r[i] = (p - q[i]) % p;
   }
   copy_backward(all(r) - 1, r.end());
   fill_n(r.begin(), 1, 0);
   return {r};
}//5e5 280ms
Q pow(Q b, 11 m)//不应传入超过 int 内容
   assert(m <= 111u << 32);
   int n = b.size(), i, j = n, k;
   for (i = 0; i < n; i++) if (b[i]) { j = i; break; }</pre>
   if (j == n) return b[0] = !m, b;
   if (j * m \ge n) return Q(n);
   copy(j + all(b), b.begin());
   fill(n - j + all(b), 0);
   k = b[0]; j *= m;
   b = \exp_{new}(\ln(b * ksm(k, p - 2)) * m) * ksm(k, m);
   copy_backward(all(b) - j, b.end());
   fill_n(b.begin(), j, 0);
   return b;
Q pow(Q b, string s)
   int n = b.size(), i, j = n, k;
   for (i = 0; i < n; i++) if (b[i]) { j = i; break; }</pre>
   if (j == n) return b[0] = s == "0", b;
   if (j \&\& (s.size() > 8 \mid | j * stoll(s) >= n)) return Q(n);
```

```
11 m0 = 0, m1 = 0;
   for (auto c : s) m0 = (m0 * 10 + c - '0') \% p, m1 = (m1 * 10 + c - '0') \% (p - 1);
   copy(j + all(b), b.begin());
   fill(n - j + all(b), 0);
   k = b[0]; j *= m0;
   b = \exp_{new}(\ln(b * ksm(k, p - 2)) * m0) * ksm(k, m1);
   copy_backward(all(b) - j, b.end());
   fill_n(b.begin(), j, 0);
   return b;
}//5e5 1e18 700ms
Q pow2(Q b, 11 m)
   int n = b.size();
   Q r(n); r[0] = 1;
   while (m)
       if (m & 1) (r *= b) %= n;
       if (m >>= 1) b = sqr(b) % n;
   }
   return r;
}//5e5 1e18 7425ms
Q div(Q f, Q g)
   int n = 0, m = 0, i;
   for (i = f.size() - 1; i >= 0; i--) if (f[i]) { n = i + 1; break; }
   for (i = g.size() - 1; i >= 0; i--) if (g[i]) { m = i + 1; break; }
   assert(m);
   if (n < m) return Q(1);
   reverse(f.begin(), f.begin() + n);
   reverse(g.begin(), g.begin() + m);
   n = n - m + 1; m = cal(n);
   f = (f \% m) / (g \% m) \% m;
   fill(n + all(f), 0);
   reverse(f.begin(), f.begin() + n);
   return f;
}
Q mod(const Q& a, const Q& b)
   if (a.deg() < b.deg()) return shrink(a);</pre>
   Q r = (a - b * div(a, b));
   return shrink(r %= min(r.size(), b.size()));
Q pow(Q x, 11 y, Q f)
   Qr(1);
   r[0] = 1;
   while (y)
       if (y \& 1) r = mod(r * x, f);
       if (y \gg 1) x = mod(sqr(x), f);
   }
   return r;
pair Q, Q > div_mod(const Q \& a, const Q \& b) { Q q = div(a, b); Q r = (a - b * q); return {q, r
    %= min(r.size(), b.size())}; }
//5e5 430ms (1 2 3 4)=(916755018 427819009)*(5 6 7)+(407446676 346329673)
// Q cdq_inv(const Q &f) { return (~(f-1))*(p-1); }//g_0=1,g_i=g_{i-j}*f_j ?
```

117

```
ll recurrent(const vector<ll>& f, const vector<ll>& a, ll m)//常系数齐次线性递推, find a_m,a_n=
   a_{n-i}*f_i,f_1...k,a_0...k-1
   if (m < a.size()) return a[m];</pre>
   assert(f.size() == a.size() + 1 && f[0] == 0);
   int k = a.size(), n = cal(k + 1) * 2, i;
   11 \text{ ans} = 0;
   Q h(n), g(2);
   for (i = 1; i \le k; i++) h[k - i] = (p - f[i]) % p;
   h[k] = g[1] = 1;
   Q r = pow(g, m, h);
   k = min(k, (int)r.size());
   for (i = 0; i < k; i++) ans = (ans + a[i] * r[i]) % p;
   return ans;
}//1e5 1e18 8500ms
ll recurrent_new(const vector<ll>& f, const vector<ll>& a, ll m)//常系数齐次线性递推, find a_m,
   a_n=a_{n-i}*f_i,f_1...k,a_0...k-1
   const static 11 i2 = p + 1 >> 1;
   if (m < a.size()) return a[m];</pre>
   assert(f.size() == a.size() + 1 && f[0] == 0);
   int k = a.size(), n = cal(k + 1), i;
   Q g(n * 2), h(n * 2);
   for (h[0] = i = 1; i \le k; i++) h[i] = (p - f[i]) % p;
   copy(all(a), g.begin());
   g \&= h; fill(k++ + all(g), 0);
   vector<ll> res(n);
   while (m)
   {
      if (m & 1)
          11 x = p - g[0];
          for (i = 1; i < k; i += 2) res[i >> 1] = x * h[i] % p;
          copy_n(g.begin() + 1, k - 1, g.begin());
          g[k - 1] = 0;
      }
       g.dft(); h.dft();
       11* a = g.data(), * b = h.data(), * c = a + n, * d = b + n;
       for (i = 0; i < n; i++) g[i] = (a[i] * d[i] + b[i] * c[i]) % p * i2 % p;
       for (i = 0; i < n; i++) h[i] = h[i] * h[i ^ n] % p;</pre>
       g.hf_dft(); h.hf_dft();
       fill(k + all(g), 0);
       if (m & 1) for (i = 0; i < k; i++) (g[i] += res[i]) %= p;</pre>
      fill(k + all(h), 0);
       m >>= 1;
   assert(h[0] == 1);
   return g[0];
}//1e5 1e18 1000ms
vector<ll> recurrent_interval(const vector<ll>& f, const vector<ll>& a, ll L, ll R)//常系数齐
   次线性递推, find a_[L,R),a_n=a_{n-i}*f_i,f_1...k,a_0...k-1
   assert(f.size() == a.size() + 1 && f[0] == 0);
   int k = a.size(), n = cal(k + 1) * 2, i, len = R - L;
   ll ans = 0, m = L;
   Q h(n), g(2), r;
   for (i = 1; i \le k; i++) h[k - i] = (p - f[i]) % p;
```

```
h[k] = g[1] = r[0] = 1;
   while (m)
       if (m \& 1) r = mod(r * g, h);
       if (m >>= 1) g = mod(sqr(g), h);
   Q F(f), A(a);
   F[0] = p - 1;
   A *= F;
   A %= cal(k);
   fill(k + all(A), 0);
   n = cal(len + k);
   F \%= n;
   A *= ~F;
   r %= cal(k);
   reverse(r.begin(), r.begin() + k);
   r *= A;
   r.erase(r.begin(), r.begin() + k - 1);
   r.resize(len);
   return r;
}//1e5 1e18 5e5 10000ms
Q prod(const vector<Q>& a)
   if (!a.size()) return {1};
   function<Q(int, int)> dfs = [&](int 1, int r)
          if (r - 1 == 1) return a[1];
          int m = 1 + r >> 1;
          return shrink(dfs(l, m) * dfs(m, r));
       };
   return dfs(0, a.size());
}//not check
Q prod_new(const vector<Q>& a)
   if (!a.size()) return {1};
   struct cmp
       bool operator()(const Q& f, const Q& g) const { return f.size() > g.size(); }
   priority\_queue < Q, \ vector < Q>, \ cmp> \ q(all(a));
   while (q.size() > 1)
       auto f = q.top(); q.pop();
       f = shrink(f * q.top()); q.pop();
       q.push(f);
   return q.top();
}//not check
vector<ll> evaluation(const Q& f, const vector<ll>& X)
   int m = X.size(), n = f.size() - 1, i, j;
   vector < Q > pro(m * 4 + 4);
   while (n > 1 \&\& !f[n]) --n;
   vector<ll> y(m);
   function<void(int, int, int)> build = [&](int x, int 1, int r)
          if (1 + 1 == r)
```

```
{
              pro[x] = Q(vector{(p - X[1]) % p, 1llu});
              return;
          int mid = 1 + r >> 1, c = x * 2;
          build(c, l, mid); build(c + 1, mid, r);
          pro[x] = shrink(pro[c] * pro[c + 1]);
       };
   function < void(int, int, int, Q, int) > dfs = [&](int x, int 1, int r, Q f, int d)
          const static int limit = 256;
          if (d \ge r - 1) f = shrink(mod(f, pro[x]));
          if (r - 1 < limit)
              for (int i = 1; i < r; i++) y[i] = f.fx(X[i]);</pre>
              return;
          }
          int mid = 1 + r >> 1, c = x * 2;
          dfs(c, 1, mid, f, d);
          dfs(c + 1, mid, r, f, d);
      };
   build(1, 0, m);
   dfs(1, 0, m, f, n);
   return y;
}//131072 880ms
vector<ll> evaluation_new(Q f, const vector<ll>& X)//多项式多点求值
   int m = X.size(), i, j;
   vector<ll> y(m);
   if (X.size() <= 10)</pre>
       for (i = 0; i < m; i++) y[i] = f.fx(X[i]);
       return y;
   int n = f.size();
   while (n > 1 && !f[n - 1]) --n;
   f.resize(cal(n));
   vector < Q > pro(m * 4 + 4);
   function<void(int, int, int)> build = [&](int x, int 1, int r)
       {
          if (1 == r)
              pro[x] = Q(vector{11lu, (p - X[1]) % p});
              return;
          int m = 1 + r >> 1, c = x * 2;
          build(c, l, m); build(c + 1, m + 1, r);
          pro[x] = shrink(pro[c] * pro[c + 1]);
      };
   function<void(int, int, int, Q)> dfs = [&](int x, int 1, int r, Q f)
          const static int limit = 30;
          if (r - 1 + 1 <= limit)</pre>
              int m = r - 1 + 1, m1, m2, mid = 1 + r >> 1, i, j, k;
              static ll g[limit + 2], g1[limit + 2], g2[limit + 2];
              m1 = m2 = r - 1;
```

copy_n(f.data(), m, g1);

```
copy_n(g1, m, g2);
              for (i = mid + 1; i \le r; i++, --m1) for (k = 0; k \le m1; k++) g1[k] = (g1[k] +
                  g1[k + 1] * (p - X[i])) % p;
              for (i = 1; i <= mid; i++, --m2) for (k = 0; k < m2; k++) g2[k] = (g2[k] + g2[k])
                  + 1] * (p - X[i])) % p;
              for (i = 1; i <= mid; i++)</pre>
                  copy_n(g1, (m = m1) + 1, g);
                 for (j = 1; j <= mid; j++) if (i != j)</pre>
                     for (k = 0; k < m; k++) g[k] = (g[k] + g[k + 1] * (p - X[j])) % p;
                 }
                 y[i] = g[0];
              for (i = mid + 1; i <= r; i++)</pre>
                  copy_n(g2, (m = m2) + 1, g);
                 for (j = mid + 1; j \le r; j++) if (i != j)
                     for (k = 0; k < m; k++) g[k] = (g[k] + g[k + 1] * (p - X[j])) % p;
                 }
                 y[i] = g[0];
              }
              return;
          int mid = 1 + r >> 1, c = x * 2, n = f.size();
          for (auto [x, len] : {pair{c, r - mid}, {c + 1, mid - 1 + 1})
          {
              pro[x] %= n;
              reverse(all(pro[x])); pro[x] &= f;
              rotate(all(pro[x]) - 1, pro[x].end());
              pro[x] %= cal(len);
              fill(len + all(pro[x]), 0);
          dfs(c, 1, mid, pro[c + 1]);
          dfs(c + 1, mid + 1, r, pro[c]);
       };
   build(1, 0, m - 1);
   pro[1] %= f.size();
   (f ^= ~pro[1]) %= cal(m);
   fill(min(m, n) + all(f), 0);
   dfs(1, 0, m - 1, f);
   return y;
}//131072 460ms
ll factorial(ll n)
   if (n \ge p) return 0;
   if (n <= 1) return 1 % p;</pre>
   11 B = ::sqrt(n), i;
   vector F(B, Q({0, 1}));
   for (i = 0; i < B; i++) F[i][0] = i + 1;</pre>
   auto f = prod(F);
   vector<ll> x(B);
```

```
for (i = 0; i < B; i++) x[i] = i * B;
   11 r = 1;
   auto y = evaluation(f, x);
   for (i = 0; i < B; i++) r = r * y[i] % p;
   for (i = B * B + 1; i \le n; i++) r = r * i % p;
   return r;
}//998244352 170ms
vector<ll> getinvs(vector<ll> a)
   int n = a.size(), i;
   if (n <= 2)
       for (i = 0; i < n; i++) a[i] = ksm(a[i], p - 2);
       return a;
   vector<ll> l(n), r(n);
   l[0] = a[0]; r[n - 1] = a[n - 1];
   for (i = 1; i < n; i++) l[i] = l[i - 1] * a[i] % p;</pre>
   for (i = n - 2; i; i--) r[i] = r[i + 1] * a[i] % p;
   11 x = ksm(1[n - 1], p - 2);
   a[0] = x * r[1] % p; a[n - 1] = x * 1[n - 2] % p;
   for (i = 1; i < n - 1; i++) a[i] = x * l[i - 1] % p * r[i + 1] % p;
   return a;
}
Q interpolation(const vector<11>& X, const vector<11>& y)//多项式快速插值
   assert(X.size() == y.size());
   int n = X.size(), i, j;
   if (n \le 1) return Q(y);
   if (1)
       auto vv = X; sort(all(vv));
       assert(unique(all(vv)) - vv.begin() == n);
   vector<Q> sum(4 * n + 4), pro(4 * n + 4);
   function<void(int, int, int)> build = [&](int x, int 1, int r)
       {
          if (1 == r)
              sum[x] = Q(vector{(p - X[1]) % p, 11lu});
              return;
          }
          int mid = 1 + r >> 1, c = x * 2;
          build(c, 1, mid); build(c + 1, mid + 1, r);
          sum[x] = shrink(sum[c] * sum[c + 1]);
       };
   build(1, 0, n - 1);
   auto v = evaluation_new(sum[1] = der(sum[1]), X);
   assert(v.size() == n);
   auto Y = getinvs(v);
   for (i = 0; i < n; i++) Y[i] = Y[i] * y[i] % p;</pre>
   function<void(int, int, int)> dfs = [&](int x, int 1, int r)
          if (1 == r)
          {
              pro[x][0] = Y[1];
              return;
```

```
}
          int c = x * 2, mid = 1 + r >> 1;
          dfs(c, l, mid); dfs(c | 1, mid + 1, r);
          pro[x] = shrink((pro[c] * sum[c | 1]) + (pro[c | 1] * sum[c]));
       };
   dfs(1, 0, n - 1);
   return pro[1] %= cal(n);
}//131072 1150ms
Q comp(const Q& f, Q g)//多项式复合 f(g(x))=[x^i]f(x)g(x)^i
   int n = f.size(), l = ceil(::sqrt(n)), i, j;
   assert(n >= g.size());//返回 n-1 次多项式
   vector<Q> a(1 + 1), b(1);
   a[0] %= n; a[0][0] = 1; a[1] = g;
   g \% = n * 2;
   Q u = g, v(n);
   g.dft();
   for (i = 2; i <= 1; i++) a[i] = ((u &= g) %= n), u %= n * 2;
   for (i = 2; i < 1; i++)</pre>
       u.dft(); b[i - 1] = u;
       u \&= b[1]; fill(n + all(u), 0);
   u.dft(); b[1 - 1] = u;
   for (i = 0; i < 1; i++)</pre>
       fill(all(v), 0);
       for (j = 0; j < 1; j++) if (i * 1 + j < n) v += a[j] * f[i * 1 + j];
       if (i == 0) u = v; else u += ((v \% = n * 2) \&= b[i]) \% = n;
   }
   return u;
\frac{1}{n^2+n} \operatorname{sqrt} n \log n, 8000 350ms
Q comp_inv(Q f)//多项式复合逆 g(f(x))=x, 求 g, [x^n]g=([x^{n-1}](x/f)^n)/n, 要求常数 0 一次非 0
{
   assert(!f[0] && f[1]);
   int n = f.size(), l = ceil(::sqrt(n)), i, j, k, m;//1>=2
   rotate(f.begin(), 1 + all(f));
   f = ~f;
   getfac(n * 2);
   vector<Q> a(1 + 1), b(1);
   Qu, v;
   u = a[1] = f;
   u \% = n * 2; (v = u).dft();
   for (i = 2; i <= 1; i++)</pre>
       u &= v;
       fill(n + all(u), 0);
       a[i] = u;
   }
   b[0] \% = n; b[0][0] = 1; b[1] = u; (v = u).dft();
   for (i = 2; i < 1; i++)</pre>
       u &= v;
       fill(n + all(u), 0);
       b[i] = u;
   }
   u \% = n; u[0] = 0;
```

```
for (i = 0; i < 1; i++) for (j = 1; j <= 1; j++) if (i * 1 + j < n)
       m = i * l + j - 1;
       ll r = 0, * f = b[i].data(), * g = a[j].data();
       for (k = 0; k \le m; k++) r = (r + f[k] * g[m - k]) % p;
       u[m + 1] = r * inv[m + 1] % p;
   }
   return u;
}//8000 200ms
Q shift(Q f, ll c)//get f(x+c), c \in [0,p)
   int n = f.size(), i, j;
   Q g(n);
   getfac(n);
   for (i = 0; i < n; i++) (f[i] *= fac[i]) %= p;</pre>
   for (i = 1; i < n; i++) g[i] = g[i - 1] * c % p;
   for (i = 0; i < n; i++) (g[i] *= ifac[i]) %= p;</pre>
   f ^= g;
   for (i = 0; i < n; i++) (f[i] *= ifac[i]) %= p;</pre>
   return f;
}//5e5 200ms (1 2 3 4 5) 3 -> (547 668 309 64 5)
vector<ll> shift(vector<ll> y, ll c, ll m)//[0,n) 点值 -> [c,c+m) 点值
   assert(y.size());
   if (y.size() == 1) return vector(m, y[0]);
   vector<ll> r, res;
   r.reserve(m);
   int n = y.size(), i, j, mm = m;
   while (c < n \&\& m) r.push_back(y[c++]), --m;
   if (c + m > p)
       res = shift(y, 0, c + m - p);
       m = p - c;
   if (!m) { r.insert(r.end(), all(res)); return r; }
   int len = cal(m + n - 1), l = m + n - 1;
   for (i = n \& 1; i < n; i += 2) y[i] = (p - y[i]) % p;
   getfac(n);
   for (i = 0; i < n; i++) y[i] = y[i] * ifac[i] % p * ifac[n - 1 - i] % p;</pre>
   y.resize(len);
   Qf,g;
   vector<ll> v(m + n - 1);
   c = n - 1;
   for (i = 0; i < 1; i++) v[i] = (c + i) % p;</pre>
   f = Q(y); g = Q(getinvs(v)) % len;
   f *= g;
   vector<ll> u(m);
   for (i = n - 1; i < 1; i++) u[i - (n - 1)] = f[i];
   v.resize(m);
   for (i = 0; i < m; i++) v[i] = c + i;
   v = getinvs(v); c += n;
   11 \text{ tmp} = 1;
   for (i = c - n; i < c; i++) tmp = tmp * i % p;
   for (i = 0; i < m; i++) (u[i] *= tmp) %= p, tmp = tmp * (c + i) % p * v[i] % p;
   r.insert(r.end(), all(u));
   r.insert(r.end(), all(res));
```

```
assert(r.size() == mm);
   return r;
}//5e5 430ms, (1 4 9 16) 3 5 -> (16 25 36 49 64)
vector<11> Z_transform(Q f, 11 c, 11 m)//求 f(c^[0,m))。核心 ij=C(i+j,2)-C(i,2)-C(j,2)
{
   const static ll B = 1e5;
   static 11 a[B + 2], b[B + 2];
   int i, n = f.size();
   if (n * m < B * 5)
      vector<ll> r(m);
      for (i = 0, j = 1; i < m; i++) r[i] = f.fx(j), j = j * c % p;
      return r;
   auto mic = [&](11 x) { return a[x % B] * b[x / B] % p; };
   11 1 = cal(m += n - 1);
   Q g(1);
   assert(B * B > p);
   a[0] = b[0] = g[0] = g[1] = 1;
   for (i = 1; i <= B; i++) a[i] = a[i - 1] * c % p;</pre>
   for (i = 1; i \le B; i++) b[i] = b[i - 1] * a[B] % p;
   for (i = 2; i < n; i++) f[i] = f[i] * mic((p * 2 - 2 - i) * (i - 1) / 2 % (p - 1)) % p;
   for (i = 2; i < m; i++) g[i] = mic(i * (i - 111u) / 2 % (p - 1));
   reverse(all(f)); (f %= 1) &= g;
   vector<ll> r(f.begin() + n - 1, f.begin() + m); m -= n - 1;
   for (i = 2; i < m; i++) r[i] = r[i] * mic((p * 2 - 2 - i) * (i - 1) / 2 % (p - 1)) % p;
   return r;
}//luogu 1e6 500ms
vector<ll> Bell(int n)//B(0...n)
   ++n;
   getfac(n - 1);
   Q f(n);
   int i;
   for (i = 1; i < n; i++) f[i] = ifac[i];</pre>
   f = \exp_new(f);
   for (i = 2; i < n; i++) f[i] = f[i] * fac[i] % p;</pre>
   return vector<ll>(f.begin(), f.begin() + n);
vector<11> S1_row(int n, int m)//S1(n,0...m),O(nlogn),unsigned
   int cm = cal(++m);
   if (n == 0)
       vector<ll> r(m);
      r[0] = 1;
      return r;
   function<Q(int)> dfs = [&](int n)
          if (n == 1)
          {
              Q f(2);
              f[1] = 1;
              return f;
          }
```

```
Q f = dfs(n / 2);
          f *= shift(f, n / 2);
          if (n & 1)
              f \% = cal(n + 1);
              for (int i = n; i; i--) f[i] = f[i - 1];
              // for (int i=1; i<=n; i++) f[i]=f[i-1];
              for (int i = 0; i <= n; i++) f[i] = (f[i] + f[i + 1] * n) % p;
          if (f.size() > cm) f %= cm;
          return f;
       };
   Q f = dfs(n);
   if (f.size() < cm) f %= cm;</pre>
   return vector<ll>(f.begin(), f.begin() + m);
vector<ll> S1_column(int n, int m)//S1(0...n,m),O(nlogn)
   if (m == 0)
   {
       vector<ll> r(n + 1);
       r[0] = 1;
       return r;
   }
   Q f(n + 1);
   getfac(max(n, m));
   int i;
   for (i = 1; i <= n; i++) f[i] = inv[i];</pre>
   f = pow(f, m);
   for (i = m; i <= n; i++) f[i] = f[i] * fac[i] % p * ifac[m] % p;</pre>
   return vector<ll>(f.begin(), f.begin() + n + 1);
vector<11> S2_{row(int n, int m)/S2(n,0...m),0(mlogm)}
   int tm = ++m, i, j, cnt = 0;
   if (n == 0)
       vector<ll> r(m);
       r[0] = 1;
       return r;
   m = min(m, n + 1);
   vector<ll> pr(m), pw(m);
   pw[1] = 1;
   for (i = 2; i < m; i++)</pre>
       if (!pw[i]) pr[cnt++] = i, pw[i] = ksm(i, n);
       for (j = 0; i * pr[j] < m; j++)</pre>
          pw[i * pr[j]] = pw[i] * pw[pr[j]] % p;
          if (i % pr[j] == 0) break;
       }
   }
   getfac(m - 1);
   Q f(m), g(m);
   for (i = 0; i < m; i += 2) f[i] = ifac[i];</pre>
```

126

```
for (i = 1; i < m; i += 2) f[i] = p - ifac[i];</pre>
   // for (i=1; i<m; i++) g[i]=pw[i]*ifac[i]%p;
   for (i = 1; i < m; i++) g[i] = ksm(i, n) * ifac[i] % p;</pre>
   f *= g;
   vector<ll> r(f.begin(), f.begin() + m);
   r.resize(tm);
   return r;
}//5e5 150ms
vector<11> S2 column(int n, int m)//S2(0...n,m),0(nlogn)
   if (m == 0)
   {
       vector<ll> r(n + 1);
       r[0] = 1;
       return r;
   }
   Q f(n + 1);
   getfac(max(n, m));
   int i;
   for (i = 1; i <= n; i++) f[i] = ifac[i];</pre>
   f = pow(f, m);
   for (i = m; i <= n; i++) f[i] = f[i] * fac[i] % p * ifac[m] % p;</pre>
   return vector<ll>(f.begin(), f.begin() + n + 1);
}//5e5 640ms
vector<ll> signed_S1_row(int n, int m)
   auto v = S1_{row}(n, m);
   for (int i = 1 ^ n & 1; i <= m; i += 2) v[i] = (p - v[i]) % p;
   return v;
}//5e5 190ms
vector<ll> Bernoulli(int n)//B(0...n)
   getfac(++n);
   int i;
   Q f(n);
   for (i = 0; i < n; i++) f[i] = ifac[i + 1];</pre>
   f = ~f;
   for (i = 0; i < n; i++) f[i] = f[i] * fac[i] % p;</pre>
   return vector<ll>(f.begin(), f.begin() + n);
}//5e5 180ms
vector<ll> Partition(int n)//P(0...n), 拆分数
{
   Q f(++n);
   int i, 1 = 0, r = 0;
   while (--1) if (3 * 1 * 1 - 1 >= n * 2) break;
   while (++r) if (3 * r * r - r >= n * 2) break;
   for (i = 1 + abs(1) % 2; i < r; i += 2) f[3 * i * i - i >> 1] = 1;
   for (i = 1 + abs(1 + 1) % 2; i < r; i += 2) f[3 * i * i - i >> 1] = p - 1;
   return vector<ll>(f.begin(), f.begin() + n);
}//5e5 150ms
struct reg
   Q a00, a01, a10, a11;
   reg operator*(const reg& o) const
   {
```

```
return {
          shrink(a00 * o.a00 + a01 * o.a10),
          shrink(a00 * o.a01 + a01 * o.a11),
          shrink(a10 * o.a00 + a11 * o.a10),
          shrink(a10 * o.a01 + a11 * o.a11)};
   pair<Q, Q> operator*(const pair<Q, Q>& o) const
       const auto& [b0, b1] = o;
       return {shrink(a00 * b0 + a01 * b1), shrink(a10 * b0 + a11 * b1)};
} E = {{vector{11lu}}, Q(), Q(), {vector{11lu}}};
ostream& operator<<(ostream& cout, const reg& o)
   return cout << "[" << o.a00 << "," << o.a01 << "]\n"
       << "[" << o.a10 << ",_{\sqcup}" << o.a11 << "]\n";
reg hgcd(Q a, Q b)
   int m = a.deg() + 1 >> 1;
   if (b.deg() < m) return E;</pre>
   reg r = hgcd(a \gg m, b \gg m);
   auto [c, d] = r * pair{a, b};
   if (d.deg() < m) return r;</pre>
   auto [q, e] = div_mod(c, d);
   r.a00 = shrink(q * r.a10);
   r.a01 = shrink(q * r.a11);
   swap(r.a00, r.a10);
   swap(r.a01, r.a11);
   if (e.deg() < m) return r;</pre>
   int k = 2 * m - d.deg();
   auto s = hgcd(d \gg k, e \gg k);
   return s * r;
Q gcd(Q a, Q b)
   if (a.deg() < b.deg()) swap(a, b);</pre>
   while (b.deg() >= 0)
       a = mod(a, b);
       swap(a, b);
       auto tmp = hgcd(a, b);
       tie(a, b) = tmp * pair{a, b};
   }
   if (a.deg() == -1) return a;
   11 k = ksm(a[a.deg()], p - 2);
   for (int i = 0; i < a.size(); i++) a[i] = a[i] * k % p;</pre>
   return a;
}
vector<ll> root(Q f)
   Q x(2);
   x[1] = 1;
   x = pow(x, p, f);
   if (x.size() < 2) x %= 2;</pre>
   (x[1] += p - 1) \%= p;
   f = gcd(f, x);
```

```
vector<ll> res;
       static mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());
       function < void(Q) > dfs = [\&](Q f)
              int n = f.deg(), i;
              if (n <= 0) return;</pre>
              if (n == 1)
                 res.push_back((p - f[0]) % p);
                 return;
              }
              Q g(n);
              for (i = 0; i < n; i++) g[i] = rnd() % p;</pre>
              g = gcd(pow(g, (p - 1) / 2, f) - 1, f);
              dfs(g); dfs(div(f, g));
          };
       dfs(f);
       sort(all(res));
       assert(unique(all(res)) == res.end());
       return res;
   }//4000 950ms
   optional<Q> inverse(Q a, Q m)
   {
       Q b = m;
       vector<pair<reg, Q>> buf;
       a = mod(a, b);
       swap(a, b);
       while (b.deg() >= 0)
       {
          auto [q, r] = div_mod(a, b);
          swap(a, r); swap(a, b);
          auto tmp = hgcd(a, b);
          tie(a, b) = tmp * pair{a, b};
          buf.emplace_back(move(tmp), q);
       }
       if (a.deg()) return { };
       reg res = E;
       reverse(all(buf));
       for (const auto& [tmp, q] : buf)
          res = res * tmp;
          res.a00 -= shrink(q * res.a01);
          res.a10 -= shrink(q * res.a11);
          swap(res.a00, res.a01);
          swap(res.a10, res.a11);
       return {res.a01 * ksm(a[0], p - 2)};
   }//5e4 950ms
}
using NTT::p;
using poly = NTT::Q;
```

3.34 MTT

```
namespace MTT {
```

```
template<11 p> constexpr 11 ksm(11 x,11 y=p-2)
   ll r=1;
   while (y)
       if (y&1) r=r*x%p;
       x=x*x%p;
       y>>=1;
   return r;
int cal(int x) { return 1<<__lg(max(x,1)*2-1); }</pre>
const int N=1<<22;</pre>
const 11 p=1e9+7,g=3,
   p1=469'762'049,p2=998'244'353,p3=1004'535'809,//三模,原根都是 3,非常好
   inv_p1=ksm<p2>(p1),inv_p12=ksm<p3>(p1*p2%p3),_p12=p1*p2%p;//三模, 1 关于 2 逆, 1*2 关于 3
       逆, 1*2 mod 3
int r[N];
struct P
   ll v1, v2, v3;
   P operator+(const P &o) const { return {v1+o.v1,v2+o.v2,v3+o.v3}; }
   P operator-(const P &o) const { return {v1+p1-o.v1,v2+p2-o.v2,v3+p3-o.v3}; }
   P operator*(const P &o) const { return {v1*o.v1,v2*o.v2,v3*o.v3}; }
   void operator+=(const P &o) { v1+=o.v1, v2+=o.v2, v3+=o.v3; }
   void operator==(const P &o) { v1+=p1-o.v1,v2+=p2-o.v2,v3+=p3-o.v3; }
   void operator*=(const P &o) { v1*=o.v1, v2*=o.v2, v3*=o.v3; }
   void mod() { v1%=p1, v2%=p2, v3%=p3; }
};
P w[N];
void init(int n)
   static int pr=0,pw=0;
   if (pr==n) return;
   int b=_lg(n)-1,i,j,k;
   for (i=1; i<n; i++) r[i]=r[i>>1]>>1|(i&1)<<b;</pre>
   if (pw<n)</pre>
       for (j=1; j<n; j=k)</pre>
       {
          k=j*2;
           P \text{ wn}=\{ksm < p1 > (g, (p1-1)/k), ksm < p2 > (g, (p2-1)/k), ksm < p3 > (g, (p3-1)/k)\};
           w[j] = \{1,1,1\};
           for (i=j+1; i<k; i++) w[i]=w[i-1]*wn,w[i].mod();</pre>
       }
       pw=n;
   }
   pr=n;
void dft(vector<P> &a,int o=0)
   int n=a.size(),i,j,k;
   P *f,*g,*wn,*b=a.data(),x,y;
   init(n);
   for (i=1; i<n; i++) if (i<r[i]) swap(a[i],a[r[i]]);</pre>
   for (k=1; k<n; k*=2)</pre>
   {
```

```
wn=w+k;
           for (i=0; i<n; i+=k*2)</pre>
               f=b+i; g=b+i+k;
               for (j=0; j<k; j++)</pre>
                  y=g[j]*wn[j];
                  y.mod();
                  g[j]=f[j]-y;
                  f[j]+=y;
               }
           }
           if (k*2==n||k==1<<14) for (P &x:a) x.mod();
       }
       if (o)
           x = \{ksm < p1 > (n), ksm < p2 > (n), ksm < p3 > (n)\};
           for (P &y:a) y*=x,y.mod();
           reverse(1+all(a));
       }
   }
   struct Q:vector<ll>
       Q(int x=1):vector(x) { }
       Q &operator%=(int n) { resize(n); return *this; }
   };
   Q &operator*=(Q &f,const Q &g)
       int n=f.size()+g.size()-1,m=cal(n),i;
       vectorP> F(m,\{0,0,0\}),G(m,\{0,0,0\});
       for (i=0; i<f.size(); i++) F[i]={f[i]%p1,f[i]%p2,f[i]%p3};</pre>
       for (i=0; i<g.size(); i++) G[i]={g[i]%p1,g[i]%p2,g[i]%p3};</pre>
       dft(F); dft(G);
       for (i=0; i<m; i++) F[i]*=G[i],F[i].mod();</pre>
       dft(F,1);
       f%=n;
       11 x;
       for (i=0; i<n; i++)</pre>
           auto [r1,r2,r3]=F[i];
           x=(r2+p2-r1)*inv_p1%p2*p1+r1;
           f[i]=((x+p3-r3)\%p3*(p3-inv_p12)\%p3*_p12+x)\%p;
       }
       return f;
   }//5e5 440ms
   Q operator*(Q f,const Q &g) { return f*=g; }
using MTT::p;
using poly=MTT::Q;
```

3.35 FFT

```
namespace FFT
{
    #define all(x) (x).begin(),(x).end()
    typedef double db;
```

```
const int N=1<<21;</pre>
const db pi=3.14159265358979323846;
struct comp
   db x,y;
   comp operator+(const comp &o) const {return {x+o.x,y+o.y};}
   comp operator-(const comp &o) const {return {x-o.x,y-o.y};}
   comp operator*(const comp &o) const {return {x*o.x-y*o.y,o.x*y+x*o.y};}
   comp operator*(const db &o) const {return {x*o,y*o};}
   void operator*=(const comp &o) {*this={x*o.x-y*o.y,o.x*y+x*o.y};}
   void operator*=(const db &o) {x*=o;y*=o;}
   void operator/=(const db &o) {x/=o;y/=o;}
   comp operator/(const comp &o) const
       db z=1/(o.x*o.x+o.y*o.y);
       return {z*(x*o.x+y*o.y),z*(o.x*y-x*o.y)};
   }//not necessary, no check
long long dtol(const double &x) {return fabs(round(x));}
const comp I{0,-1};
ostream & operator<<(ostream &cout,const comp &o) {cout<<o.x;if (o.y>=0) cout<<'+';return cout
    <<o.y<<'i';}
int r[N];
char c:
comp Wn[N];
void init(int n)
   static int preone=-1;
   if (n==preone) return;
   preone=n;
   int b,i;
   b=_builtin_ctz(n)-1;
   for (i=1;i<n;i++) r[i]=r[i>>1]>>1|(i&1)<<b;</pre>
   for (i=0;i<n;i++) Wn[i]={cos(pi*i/n),sin(pi*i/n)};</pre>
int cal(int x) {return 1u<<32-_builtin_clz(max(x,2)-1);}</pre>
struct Q
   vector<comp> a;
   int deg;
   comp* pt() {return a.data();}
   Q(int n=0)
       deg=n;
       a.resize(cal(n));
   void dft(int xs=0)//1,0
       int i,j,k,l,n=a.size(),d;
       comp w,wn,b,c,*f=pt(),*g,*a=f;
       init(n);
       if (xs) reverse(a+1,a+n);//spe
       for (i=0;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);</pre>
       for (i=1,d=0;i<n;i=1,d++)</pre>
          //wn={\cos(pi/i),(xs?-1:1)*\sin(pi/i)};
          l=i<<1;
```

```
for (j=0;j<n;j+=1)</pre>
               //w={1,0};
               f=a+j;g=f+i;
               for (k=0;k<i;k++)</pre>
                  w=Wn[k*(n>>d)];
                  b=f[k];c=g[k]*w;
                  f[k]=b+c;
                  g[k]=b-c;
                  //w*=wn;
              }
           }
       }
       if (xs) for (i=0;i<n;i++) a[i]/=n;</pre>
   void operator|=(Q o)
       int n=deg+o.deg-1,m=cal(n),i;
       a.resize(m); o.a.resize(m);
       dft();o.dft();
       for (i=0;i<m;i++) a[i]*=o.a[i];</pre>
       dft(1);
       for (i=n;i<m;i++) a[i]={};</pre>
       deg=n;
   }
   Q operator|(Q o) const {o|=*this;return o;}
Q mul(Q a, const Q &b)//三次变两次, 仅实数, 注意精度
   int n=a.deg+b.deg-1,m=cal(n),i;
   a.a.resize(m);
   for (i=0;i<b.deg;i++) a.a[i]={a.a[i].x,b.a[i].x};</pre>
   a.dft();
   for (i=0;i<m;i++) a.a[i]*=a.a[i];</pre>
   a.dft(1);
   for (i=0;i<n;i++) a.a[i]={a.a[i].y*.5};</pre>
   for (i=n;i<m;i++) a.a[i]={};</pre>
   a.deg=n;
   return a;
}
void ddt(Q &a,Q &b)//double dft, 仅实数, 注意精度
   comp x,y;
   int n=a.a.size(),i;
   assert(n==b.a.size());
   for (i=0;i<n;i++) a.a[i]={a.a[i].x,b.a[i].x};</pre>
   a.dft();
   for (i=0;i<n;i++) b.a[i]={a.a[i].x,-a.a[i].y};</pre>
   reverse(b.pt()+1,b.pt()+n);
   for (i=0;i<n;i++)</pre>
   {
       x=a.a[i];y=b.a[i];
       a.a[i]=(x+y)*.5;
       b.a[i]=(y-x)*.5*I;
   }
}
```

```
lusing FFT::dtol;
```

3.36 约数个数和

 $O(\sqrt[3]{n}\log n)$.

```
#include<bits/stdc++.h>
#define 11 long long
#define 111 __int128
using namespace std;
void myw(lll x){
   if(!x) return;
   myw(x/10);printf("%d",(int)(x%10));
}
struct vec{
   11 x,y;
   vec (11 x0=0,11 y0=0)\{x=x0,y=y0;\}
   vec operator +(const vec b){return vec(x+b.x,y+b.y);}
};
11 N;
vec stk[1000005];int len;
vec P;
vec L,R;
bool ninR(vec a){return N<(111)a.x*a.y;}</pre>
bool steep(ll x,vec a){return (lll)N*a.x<=(lll)x*x*a.y;}</pre>
111 Solve(){
   len=0;
   11 cbr=cbrt(N),sqr=sqrt(N);
   P.x=N/sqr,P.y=sqr+1;
   lll ans=0;
   stk[++len]=vec(1,0);stk[++len]=vec(1,1);
   while(1){
       L=stk[len--];
       while(ninR(vec(P.x+L.x,P.y-L.y)))
           ans+=(111)P.x*L.y+(111)(L.y+1)*(L.x-1)/2,
          P.x+=L.x,P.y-=L.y;
       if(P.y<=cbr) break;</pre>
       R=stk[len];
       while(!ninR(vec(P.x+R.x,P.y-R.y))) L=R,R=stk[--len];
       while(1){
          vec mid=L+R;
          if(ninR(vec(P.x+mid.x,P.y-mid.y))) R=stk[++len]=mid;
          else if(steep(P.x+mid.x,R)) break;
          else L=mid;
       }
   for(int i=1;i<P.y;i++) ans+=N/i;</pre>
   return ans*2-sqr*sqr;
}
int T;
```

```
int main(){
    scanf("%d",&T);
    while(T--){
        scanf("%lld",&N);
        myw(Solve());printf("\n");
    }
}
```

3.37 万能欧几里得

題意:
$$\sum_{i=0}^{n-1} \lfloor \frac{ai+b}{m} \rfloor \quad (0 \le a,b)$$

注意若 b > m 需要增加先往上走一步。

原理:考虑紧贴着斜线的折线的答案。每个 nd 表示的是一段折线,你需要实现 operator+来 计算出拼接两个折线之后的答案。除此以外的原理不必了解。

你需要传入的 a 和 b 表示向上和向右的折线的答案(也就是边界)。

如果你发现横竖反了,自行调整。你可以通过在 nd 中加一个 string 记录当前是什么折线来确认这一点。

```
struct nd
   11 x,y,sy;
   nd operator+(const nd &o) const
       return {x+o.x,y+o.y,sy+o.sy+y*o.x};
   }
};
nd ksm (nd a, int k)
   nd res{};
   while (k)
       if (k&1) res=res+a;
       a=a+a;k>>=1;
   return res;
nd sol (int p,int q,int r,int l,nd a,nd b)//(0,1],(pi+r)/q
   if (!1) return {};
   if (p>=q) return sol(p\%q,q,r,l,a,ksm(a,p/q)+b);
   int m=((11)1*p+r)/q;
   if (!m) return ksm(b,1);
   int cnt=l-((ll)q*m-r-1)/p;
   return ksm(b,(q-r-1)/p)+a+sol(q,p,(q-r-1)%p,m-1,b,a)+ksm(b,cnt);
}
int main()
{
   ios::sync_with_stdio(0);cin.tie(0);
   cout<<setiosflags(ios::fixed)<<setprecision(15);</pre>
   int T;cin>>T;
   while (T--)
   {
       int n,m,a,b;
       cin>>n>>m>>a>>b;
```

```
nd nx={1,0,0},ny={0,1,0};
  nd ans=sol(a,m,b,n-1,ny,nx);
  cout<<ans.sy<<'\n';
}
</pre>
```

3.38 高斯整数类

圆上整点的基础。

```
ll roundiv(ll x,ll y)
   return x \ge 0?(x+y/2)/y:(x-y/2)/y;
}
struct Q
   11 x,y;
   Q operator~() const { return {x,-y}; }
   11 len2() const { return x*x+y*y; }
   Q operator+(const Q &o) const { return {x+o.x,y+o.y}; }
   Q operator-(const Q &o) const { return {x-o.x,y-o.y}; }
   Q operator*(const Q &o) const { return {x*o.x-y*o.y,x*o.y+y*o.x}; }
   Q operator/(const Q &o) const
       Q t=*this*~o;
       11 1=o.len2();
       return {roundiv(t.x,1),roundiv(t.y,1)};
   Q operator%(const Q &o) const { return *this-*this/o*o; }
};
Q gcd(Q a,Q b)
   if (a.len2()>b.len2()) swap(a,b);
   while (a.len2())
      b=b\%a;
       swap(a,b);
   return b;
```

3.39 Miller Rabin/Pollard Rho

1s: 200 组 10¹⁸。 如果你只需要做 int 以内的分解, 你可以改为

```
typedef int 11;
typedef long long 111;
```

```
namespace pr
{
   typedef long long ll;
   typedef __int128 lll;
   typedef pair<ll,int> pa;
   ll ksm(ll x,ll y,const ll p)
```

```
{
   ll r=1;
   while (y)
       if (y&1) r=(lll)r*x%p;
       x=(111)x*x%p; y>>=1;
   }
   return r;
}
namespace miller
   const int p[7]={2,3,5,7,11,61,24251};
   11 s,t;
   bool test(ll n,int p)
       if (p>=n) return 1;
       ll r=ksm(p,t,n),w;
       for (int j=0; j<s&&r!=1; j++)</pre>
          w=(lll)r*r%n;
          if (w==1&&r!=n-1) return 0;
          r=w;
       return r==1;
   }
   bool prime(ll n)
       if (n<2||n==46'856'248'255'981) return 0;</pre>
       for (int i=0; i<7; ++i) if (n%p[i]==0) return n==p[i];</pre>
       s=_builtin_ctz(n-1); t=n-1>>s;
       for (int i=0; i<7; ++i) if (!test(n,p[i])) return 0;</pre>
       return 1;
   }
using miller::prime;
mt19937_64 rnd(chrono::steady_clock::now().time_since_epoch().count());
namespace rho
   void nxt(ll &x,ll &y,ll &p) { x=((lll)x*x+y)%p; }
   11 find(ll n,ll C)
   {
       ll l,r,d,p=1;
       l=rnd()%(n-2)+2,r=1;
       nxt(r,C,n);
       int cnt=0;
       while (l^r)
          p=(111)p*llabs(1-r)%n;
          if (!p) return gcd(n,llabs(l-r));
          ++cnt;
          if (cnt==127)
          {
              cnt=0;
              d=gcd(llabs(l-r),n);
              if (d>1) return d;
          nxt(1,C,n); nxt(r,C,n); nxt(r,C,n);
```

```
}
          return gcd(n,p);
       }
      vector<pa> w;
       vector<ll> d;
       void dfs(ll n,int cnt)
          if (n==1) return;
          if (prime(n)) return w.emplace_back(n,cnt),void();
          11 p=n,C=rnd()%(n-1)+1;
          while (p==1||p==n) p=find(n,C++);
          int r=1; n/=p;
          while (n\%p==0) n/=p,++r;
          dfs(p,r*cnt); dfs(n,cnt);
       vector<pa> getw(ll n)
          w=vector<pa>(0); dfs(n,1);
          if (n==1) return w;
          sort(w.begin(),w.end());
          int i,j;
          for (i=1,j=0; i<w.size(); i++) if (w[i].first==w[j].first) w[j].second+=w[i].second;</pre>
              else w[++j]=w[i];
          w.resize(j+1);
          return w;
       }
      void dfss(int x,ll n)
          if (x==w.size()) return d.push_back(n),void();
          dfss(x+1,n);
          for (int i=1; i<=w[x].second; i++) dfss(x+1,n*=w[x].first);</pre>
      vector<ll> getd(ll n)
          getw(n); d=vector<11>(0); dfss(0,1);
          sort(d.begin(),d.end());
          return d;
      }
   using rho::getw,rho::getd;
   using miller::prime;
using pr::getw,pr::getd,pr::prime;
```

4 字符串

4.1 字典树(trie 树)

```
struct trie
   const static int N=3e6+2, M=62;
   int c[N][M], sz[N];//sz 维护有多少个以当前字符串为前缀的字符串。
   int cnt;
   void insert(string s)
      int u=0;
      ++sz[u];
      for (char ch:s)
         assert(ch>=0&&ch<M);</pre>
         int &v=c[u][ch];
         if (!v) v=++cnt;
         u=v;
         ++sz[u];
      //此时 u 是字符串结束位置。你可以在此存储结点信息。
   int match(string s)//返回字符串结束位置。可能为 0。
   {
      int u=0;
      for (char ch:s)
         assert(ch>=0&&ch<M);
         u=c[u][ch];
         if (!u) return 0;
      }
      return u;
   }
   void clear()
      memset(c, 0, (cnt+1)*sizeof c[0]);
      memset(sz, 0, (cnt+1)*sizeof sz[0]);
      cnt=0;
   }
} s;
```

4.2 AC 自动机

注意 AC 自动机与 trie 不同的地方在于,根必须是 0。

题意:给你一个文本串 S 和 n 个模式串 $T_{1\sim n}$,请你分别求出每个模式串 T_i 在 S 中出现的次数。

```
struct AC
{
    const static int N=3e6+2, M=26;
    int c[N][M], sz[N], pos[N], f[N], app[N];//sz 维护有多少个以当前字符串为前缀的字符串。
    int cnt=0, id=0;
    vector<int> q;
    void insert(string s)
    {
```

```
int u=0;
       ++sz[u];
       for (char ch:s)
          assert(ch>=0&&ch<M);
          int &v=c[u][ch];
          if (!v) v=++cnt;
          u=v;
          ++sz[u];
      pos[id++]=u;
       //此时 u 是字符串结束位置。你可以在此存储结点信息。
   vector<int> match(string s)//返回答案。复杂度 O(结点数)
       int u=0, i;
      for (char ch:s)
          assert(ch>=0&&ch<M);
          u=c[u][ch];
          ++app[u];
      for (int u:q) app[f[u]]+=app[u];
       vector<int> r(id);
       for (i=0; i<id; i++) r[i]=app[pos[i]];</pre>
      memset(app, 0, (cnt+1)*sizeof app[0]);
      return r;
   void clear()
   {
       memset(c, 0, (cnt+1)*sizeof c[0]);
       memset(f, 0, (cnt+1)*sizeof f[0]);
      memset(sz, 0, (cnt+1)*sizeof sz[0]);
       cnt=id=0;
   }
   void build()
       q.clear();
       int ql=0;
       for (int i=0; i<M; i++) if (c[0][i]) q.push_back(c[0][i]);</pre>
       while (ql<q.size())</pre>
          int u=q[q1++];
          for (int i=0; i<M; i++) if (c[u][i])</pre>
              q.push_back(c[u][i]);
              f[c[u][i]]=c[f[u]][i];
          else c[u][i]=c[f[u]][i];
       reverse(all(q));
   }
} s;
int main()
   ios::sync_with_stdio(0); cin.tie(0);
   int n, i;
```

```
cin>>n;
while (n--)
{
    string t;
    cin>>t;
    for (char &c:t) c-='a';
    s.insert(t);
}
s.build();
string t;
cin>>t;
for (char &c:t) c-='a';
auto res=s.match(t);
for (int x:res) cout<<x<<'\n';
}</pre>
```

4.3 hash

在调试时,可以把 base 设置为 10 的幂方便输出。可能建议把第一个模数也设置为 1,但未测试是否有奇怪的问题。但要注意,此时不应当使用接近 10 的幂次的模数。

```
O(n), O(n).
```

双模数版本:注意使用的是无符号数,效率比 int128 高,但不卡常建议抄 int128 版本。

特别注意这里 m 数组预处理的不是幂次,而是幂次的相反数。如果有复杂的变换需要建议用 int128 版本。

其返回值是两个32位数拼接而成的,要改动比较麻烦。

```
namespace sh
   typedef unsigned int ui;
   typedef unsigned long long 11;
   const int N=1e6+5;
   const 11 p1=2'034'452'107, \( \text{p2=2'013'074'419} \);
   struct pa
       ll v1, v2;
       pa(11 v=0):v1(v), v2(v) { }
       pa(ll v1, ll v2):v1(v1), v2(v2) { }
       pa operator*(const pa &o) const { return {v1*o.v1%p1, v2*o.v2%p2}; }
   };
   pa fma(const pa &a, const pa &b, const pa &c) { return {(a.v1*b.v1+c.v1)%p1, (a.v2*b.v2+c.v2)%
   const pa b=\{137, 149\}, inv=\{1'603'801'661, 1'024'053'074\};
   pa m[N];
   void init()
       m[0] = \{p1-1, p2-1\};
       for (int i=1; i<N; i++) m[i]=m[i-1]*b;</pre>
   int i=(init(), 0);
   struct str
   {
       int n;
       template<class T> str(const vector<T> &s):n(s.size()), a(n+1)
       {
```

```
for (i=0; i<n; i++) a[i+1]=fma(a[i], b, s[i]);</pre>
       template<class T> str(const basic_string<T> &s):n(s.size()), a(n+1)//直接去掉模板换成
           string 也可以
          for (i=0; i<n; i++) a[i+1]=fma(a[i], b, s[i]);</pre>
       }
       ll getv(int l, int r)//[l,r)
          auto [x, y]=fma(a[1], m[r-1], a[r]);
          return x<<32|y;</pre>
       }
   };
}
using sh::str;
int main()
{
   ios::sync_with_stdio(0); cin.tie(0);
   int T; cin>>T;
   set<ull> s;
   while (T--)
       string t;
       cin>>t;
       s.insert(str(t).getv(0, t.size()));
   cout<<s.size()<<endl;</pre>
}
```

__int128 版本:

```
namespace sh
{
   typedef __uint128_t 111;
   const int N=1e6+5;
   const 111 p=1'80'143'985'094'819'841, b=137;
   lll m[N];
   void init()
       m[0]=1;
       for (int i=1; i<N; i++) m[i]=m[i-1]*b%p;</pre>
   int i=(init(), 0);
   struct str
   {
       int n;
       vector<lll> a;
       template<class T> str(const vector<T> &s):n(s.size()), a(n+1)
          for (i=0; i<n; i++) a[i+1]=(a[i]*b+s[i])%p;</pre>
       template<class T> str(const basic_string<T> &s):n(s.size()), a(n+1)//直接去掉模板换成
           string 也可以
       {
          for (i=0; i<n; i++) a[i+1]=(a[i]*b+s[i])%p;</pre>
       lll getv(int l, int r)//[l,r)
       {
```

```
return (a[r]+(p-a[1])*m[r-1])%p;
};
};
using sh::str;
```

4.4 KMP

O(n), O(n).

```
struct str
{
   vector<int> nxt,s;
   int n;
   str(int *S,int _n)//[1,n]
       n=_n;
       nxt.resize(n+1);
       s=vector<int>(S,S+n+1);
       int i,j=0;
       nxt[1]=0;
       for (i=2;i<=n;i++)</pre>
          while (j&&s[i]!=s[j+1]) j=nxt[j];
          nxt[i]=j+=s[i]==s[j+1];
       }
   }
   vector<int> match(int *t,int m)//find s(str) in t (start pos)
       vector<int> r;
       int i,j=0;
       for (i=1;i<=m;i++)</pre>
           while (j&&t[i]!=s[j+1]) j=nxt[j];
          if ((j+=t[i]==s[j+1])==n) j=nxt[j],r.push_back(i-n+1);
       return r;
   }
};
int main()
{
   ios::sync_with_stdio(0);cin.tie(0);
   string s,t;
   cin>>s>>t;
   int n=s.size(),m=t.size(),i;
   vector<int> a(n+1),b(m+1);
   for (i=1;i<=n;i++) a[i]=s[i-1];</pre>
   for (i=1;i<=m;i++) b[i]=t[i-1];</pre>
   str q(b.data(),m);
   auto r=q.match(a.data(),n);
   for (int x:r) cout<<x<<'\n';</pre>
   for (i=1;i<=m;i++) cout<<q.nxt[i]<<"_\n"[i==m];</pre>
}
```

4.5 KMP(重构,未验证)

```
O(n), O(n).
```

```
struct str//[0,n)
   vector<int> nxt,s;
   str(const vector<int> &_s):nxt(_s.size(),-1),s(all(_s)),n(_s.size())
       int i,j=-1;
       for (i=1;i<n;i++)</pre>
          while (j!=-1&&s[i]!=s[j+1]) j=nxt[j];
          nxt[i]=j+=s[i]==s[j+1];
   }
   vector<int> match(const vector<int> &t)//find s(str) in t (start pos)
       int m=t.size();
       vector<int> r;
       int i,j=-1;
       for (i=0;i<m;i++)</pre>
          while (j!=-1&&t[i]!=s[j+1]) j=nxt[j];
          if ((j+=t[i]==s[j+1])==n-1) j=nxt[j],r.push_back(i-n+1);
       return r;
   }
};
```

4.6 manacher

```
O(n), O(n).
```

```
vector<int> manacher(const string &t)//ex[i](total length) centered at i/2
{
   string S="$#";
   int n=t.size(),i,r=1,m=0;
   for (i=0;i<n;i++) S+=t[i],S+='#';</pre>
   S+='#';
   char *s=S.data()+2;
   n=n*2-1;
   vector<int> ex(n);
   ex[0]=2;
   for (i=1;i<n;i++)</pre>
       ex[i]=i < r?min(ex[m*2-i],r-i+1):1;
       while (s[i+ex[i]]==s[i-ex[i]]) ++ex[i];
       if (i+ex[i]-1>r) r=i+ex[m=i]-1;
   for (i=0;i<n;i++) --ex[i];</pre>
   return ex;
```

4.7 SA

```
O((n + \sum) \log n),O(n + \sum)。
功能: 查询两个后缀的 lcp。单次询问复杂度 O(1)。
下标从 1 开始。
```

```
namespace SA
{
   const int N=1e6+2;
   int x[N],y[N],s[N];
   int m,cnt;
   struct Q
       vector<vector<int>> st;
       vector<int> sa,rk,h;
       int lcp(int x,int y)
           assert(x^y);
           x=rk[x];y=rk[y];
           if (x>y) swap(x,y);
           ++x;
           int z=_lg(y-x+1);
           return min(st[z][x],st[z][y-(1<<z)+1]);</pre>
       \label{eq:Q(int *a,int n):sa(n+1),rk(n+1),h(n+1),st(__lg(n)+1,vector<int>(n+1))/[1,n]} Q(int *a,int n):sa(n+1),rk(n+1),h(n+1),st(__lg(n)+1,vector<int>(n+1))/[1,n]
           int i,j,k;
           m=*min_element(a+1,a+n+1);--m;
           for (i=1;i<=n;i++) a[i]-=m;</pre>
           m=*max_element(a+1,a+n+1);
           assert(n<N);assert(m<N);</pre>
           memset(s+1,0,m*sizeof s[0]);
           for (i=1;i<=n;i++) ++s[x[i]=a[i]];</pre>
           for (i=2;i<=m;i++) s[i]+=s[i-1];</pre>
           for (i=n;i;i--) sa[s[x[i]]--]=i;
           memset(s+1,0,m*sizeof s[0]);
           for (j=1;j<=n;j<<=1)</pre>
           {
               cnt=0;
               for (i=n-j+1;i<=n;i++) y[++cnt]=i;</pre>
               for (i=1;i<=n;i++) if (sa[i]>j) y[++cnt]=sa[i]-j;
               for (i=1;i<=n;i++) ++s[x[i]];</pre>
               for (i=2;i<=m;i++) s[i]+=s[i-1];</pre>
               for (i=n;i;i--) sa[s[x[y[i]]]--]=y[i];
               y[sa[1]]=cnt=1;
               memset(s+1,0,m*sizeof s[0]);
               for (i=2;i<=n;i++)</pre>
                  y[sa[i]]=cnt;
                  else
                      y[sa[i]]=++cnt;
               memcpy(x,y,(n+1)*sizeof y[0]);
               if ((m=cnt)==n) break;
           for (i=1;i<=n;i++) rk[sa[i]]=i;</pre>
           j=0;
           for (i=1;i<=n;i++) if (x[i]>1)
           {
```

```
cnt=sa[x[i]-1];
    while (i+j<=n&&cnt+j<=n&&a[i+j]==a[cnt+j]) ++j;
    h[x[i]]=j;
    if (j) --j;
}

for (i=1;i<=n;i++) st[0][i]=h[i];
    for (j=1;j<=__lg(n);j++) for (i=1,k=n-(1<<j)+1;i<=k;i++) st[j][i]=min(st[j-1][i],st[j-1][i+(1<<j-1)]);
}
};
}using str=SA::Q;</pre>
```

4.8 SAM

 $O(n\sum)$, $O(2n\sum)$.

```
template<int M> struct sam//M: 字符集大小
   vector<array<int,M>> c;
   vector<int> len,fa,ep;
   int np,cd;
   sam():c(2),len(2),fa(2),ep(2),np(1),cd(0) { }
   void insert(int ch)
      int p=np,q,nq;
      np=c.size();
      len.push_back(++cd);
      fa.push_back(0);
      c.push_back({ });
      ep.push_back(cd);
      while (p&&!c[p][ch]) c[p][ch]=np,p=fa[p];
      if (!p)
          fa[np]=1;
          return;
      q=c[p][ch];
      if (len[q] == len[p] + 1)
          fa[np]=q;
          return;
      nq=c.size();
      len.push_back(len[p]+1);
      c.push_back(c[q]);
      fa.push_back(fa[q]);
      ep.push_back(ep[q]);
      fa[np]=fa[q]=nq;
      c[p][ch]=nq;
      while (c[p=fa[p]][ch]==q) c[p][ch]=nq;
   vector<int> match(const string &s)//返回每个前缀最长匹配长度
      vector<int> r;
      r.reserve(s.size());
      int p=1,nl=0;
```

```
for (auto ch:s)
          if (c[p][ch]) ++nl,p=c[p][ch];
          else
          {
             while (p&&c[p][ch]==0) p=fa[p];
             if (p==0) p=1,nl=0; else nl=len[p]+1,p=c[p][ch];
          r.push_back(nl);
      }
      return r;
   }
   array<int,3> max_match(const string &s)//返回长度,结尾(开)
      array<int,3> r{0,0,0};
      int p=1,nl=0,i=0;
      for (auto ch:s)
          if (c[p][ch]) ++nl,p=c[p][ch];
          else
             while (p&&c[p][ch]==0) p=fa[p];
             if (p==0) p=1,nl=0; else nl=len[p]+1,p=c[p][ch];
          cmax(r,array{nl,ep[p],i+1});
          ++i;
      if (r[0]==0) return { };
      return r;
   }
};
```

4.9 SqAM

 $O(n\sum)$, $O(n\sum)$.

```
struct sqam
{
   int c[N][26],ds,i,j,lst[26],pre[N];
   void csh()
   {
       ds=1;
   }
   void ins(int zf)
   {
       ++ds;
       for (i=0;i<=25;i++) if (lst[i]) for (j=lst[i];(j)&&(c[j][zf]==0);j=pre[j]) c[j][zf]=ds;
       if (!lst[zf]) c[1][zf]=ds; else pre[ds]=lst[zf];
       lst[zf]=ds;
   }
};</pre>
```

4.10 ukkonen 后缀树

```
O(n), O(2n\sum).
```

```
void dfs(int x,int lf)
   if (!fir[x])
       siz[x][1]=1;
       return;
   }
   int i,j;
   for (i=fir[x];i;i=nxt[i])
       j=c[x][lj[i]];
       if ((f[j] \le m) \& \& (t[j] \ge m)) + +siz[x][0];
       dfs(zd[j],t[j]-f[j]+1);
       siz[x][0]+=siz[zd[j]][0];
       siz[x][1]+=siz[zd[j]][1];
       if ((t[j]==n)&&(f[j]<=m)) --siz[x][1];
   ans+=(11)siz[x][0]*siz[x][1]*lf;
void add(int a,int b,int cc,int d)
{
   zd[++bbs]=b;
   t[bbs]=d;
   c[a][s[f[bbs]=cc]]=bbs;
}
void add(int x,int y)
   lj[++bs]=y;
   nxt[bs]=fir[x];
   fir[x]=bs;
}
   s[++m]=26;
   fa[1]=point=ds=1;
   for (i=1;i<=m;i++)</pre>
       ad=0;++remain;
       while (remain)
          if (r==0) edge=i;
          if ((j=c[point][s[edge]])==0)
              fa[++ds]=1;
              fa[ad]=point;
              add(ad=point,ds,edge,m);
              add(point,s[edge]);
          }
          else
          {
              if ((t[j]!=m)&&(t[j]-f[j]+1<=r))</pre>
              {
                  r-=t[j]-f[j]+1;
                  edge+=t[j]-f[j]+1;
                  point=zd[j];
                  continue;
              }
              if (s[f[j]+r]==s[i]) {++r;fa[ad]=point;break;}
```

```
fa[fa[ad]=++ds]=1;
    add(ad=ds,zd[j],f[j]+r,t[j]);
    add(ds,s[i]);add(ds,s[f[j]+r]);fa[++ds]=1;
    add(ds-1,ds,i,m);
    zd[j]=ds-1;t[j]=f[j]+r-1;
}
--remain;
if ((r)&&(point==1))
{
    --r;edge=i-remain+1;
} else point=fa[point];
}

for (i=1;i<=ds;i++) for (j=fir[i];j;j=nxt[j]) {len[j]=t[c[i][j]]]-f[c[i][j]]]+1;lj[j]=zd[c[i][j][j]]];}</pre>
```

4.11 ukkonen 后缀树(重构)

```
struct suffixtree
   const static int M=27;
   struct P
      int v,w;
   };
   struct Q
       int f,t,v;//t=0: n
   };
   vector<Q> edges;
   vector<vector<P>> e;
   vector<array<int,M>> c;
   vector<int> s,fa,dep,siz;
   int n,point,ds,remain,r,edge;
   bool bd;
   suffixtree():c(2),fa({0,1}),edges(1),e(2)
      n=remain=r=edge=bd=0;
      point=ds=1;
   suffixtree(const string \&s):c(2),fa({0,1}),edges(1),e(2)
       n=remain=r=edge=bd=0;
      point=ds=1;
       reserve(s.size());
       for (auto c:s) insert(c-'a');
       insert(26);
   void reserve(int len)
      ++len;
       s.reserve(len);
      len=len*2+2;
       c.reserve(len);
       fa.reserve(len);
       e.reserve(len);
```

```
inline void add(int a,int b,int cc,int d)
   assert(edges.size());
   c[a][s[cc]]=edges.size();
   edges.push_back({cc,d,b});
}
void insert(int ch)//[0,|S|)
   assert(ds=fa.size()-1&ds=c.size()-1&dn=s.size()&ds=e.size()-1);
   assert(ch>=0&&ch<M);
   s.push_back(ch);
   int ad=0;
   ++remain;
   while (remain)
       if (!r) edge=n;
       if (int m=c[point][s[edge]];!m)
          assert(!m);
          fa.push_back(1);c.push_back({});e.push_back({});
          fa[ad]=point;
          add(ad=point,++ds,edge,-1);
          e[point].push_back({s[edge]});
          //add(point,s[edge]);
       }
       else
          assert(m);
          auto [f,t,v]=edges[m];
          if (t>=0&&t-f+1<=r)</pre>
              assert(t!=n);
              r-=t-f+1;
              edge+=t-f+1;
              point=v;
              continue;
          }
          assert(f+r<=n);</pre>
          if (s[f+r]==s[n])
          {
              ++r;
              fa[ad]=point;
              break;
          fa.push_back(1);c.push_back({});e.push_back({});
          fa.push_back(1);c.push_back({});e.push_back({});
          fa[ad]=++ds;
          add(ad=ds,v,f+r,t);
          e[ds].push_back({s[n]});
          e[ds].push_back({s[f+r]});
          //add(ds,s[n]);add(ds,s[f+r]);
          ++ds;add(ds-1,ds,n,-1);
          edges[m] = \{f, f+r-1, ds-1\};
       --remain;
       if (r&&point==1)
```

```
{
              --r;
              edge=n-remain+1;
          } else point=fa[point];
       }
       ++n;
   }
   void build_edge()
       bd=1;
       //其余信息
       dep.resize(ds+1);
       siz.resize(ds+1);
       int i,j;
       for (i=1;i<=ds;i++) for (auto &[v,w]:e[i])</pre>
           j=c[i][v];
          v=edges[j].v;
          w=(edges[j].t>=0?edges[j].t:n-1)-edges[j].f+1;
       }
   }
   void out()
       int i;
       for (i=1;i<=ds;i++) for (int j:c[i]) if (j)</pre>
          auto [f,t,v]=edges[j];
          if (t==-1) t=n-1;
           cerr<<i<<'u'<<v<<'u';
           //cerr<<i<" -> "<<v<": ";
          for (int k=f;k<=t;k++) cerr<<char('a'+s[k]);</pre>
          cerr<<endl;</pre>
       }
   }
   ll ans;
   void dfs(int u)
       assert(bd);
       ++ans;
       for (auto [v,w]:e[u])
           //dep[v]=dep[u]+w;
          dfs(v);
          ans+=w-1;
       }
   }
   11 fun()
       ans=0;
       build_edge();
       dfs(1);
       return ans-n;
   }
};
```

4.12 Z 函数

表示每个后缀和母串的 lcp。

```
vector<int> Z(const string &s)
{
    int n=s.size(),i,l,r;
    vector<int> z(n);
    z[0]=n;
    for (i=1,l=r=0; i<n; i++)
    {
        if (i<=r&&z[i-l]<r-i+1) z[i]=z[i-l];
        else
        {
            z[i]=max(0,r-i+1);
            while (i+z[i]<n&&s[i+z[i]]==s[z[i]]) ++z[i];
        }
        if (i+z[i]-1>r) l=i,r=i+z[i]-1;
    }
    return z;
}
```

4.13 最小表示法

找到一个串的循环同构串中字典序最小的那个,将这个串直接变过去。常见应用:环哈希(基环树哈希)。

如果只需要找到起点下标,在 rotate 前返回 $\min\{i,j\}$ 即可。

O(n), O(1).

```
template < class T > void min_order(vector < T > & a)
{
    int n = a.size(), i, j, k;
    a.resize(n * 2);
    for (i = 0;i < n;i++) a[i + n] = a[i];
    i = k = 0;j = 1;
    while (i < n & & j < n & & k < n)
    {
        T x = a[i + k], y = a[j + k];
        if (x == y) ++k; else
        {
            (x > y ? i : j) += k + 1;
            j += (i == j);
            k = 0;
        }
    }
    a.resize(n);
    //[min(i,j),n)+[0,min(i,j))
    rotate(a.begin(), min(i, j) + all(a));
}
```

4.14 带通配符的字符串匹配

原理: 匹配等价于 $\sum (f_i - g_i)^2 = 0$ 。带通配符等价于 $\sum f_i g_i (f_i - g_i)^2 = 0$,展开即可。 这里也是较为推荐的 NTT 版本,直接实现任意长度的多项式相乘,便于一般情况的运用。不需要提前做任何 init。

```
namespace NTT
   typedef unsigned ui;
   typedef unsigned long long 11;
   const int N=1<<22;</pre>
   const ui p=998244353, g=3;
   inline ui ksm(ui x, ui y)
       ui ans=1;
       while (y)
           if (y&1) ans=1llu*ans*x%p;
           y>>=1; x=1llu*x*x%p;
       return ans;
   }
   ui r[N], w[N];
   void ntt(vector<ui> &a)
       int n=a.size(), i, j, k;
       for (i=0; i<n; i++) if (i<r[i]) swap(a[i], a[r[i]]);</pre>
       for (k=1; k<n; k<<=1)</pre>
           for (i=0; i<n; i+=k<<1)</pre>
               for (j=0; j<k; j++)</pre>
                  ui x=a[i+j], y=1llu*a[i+j+k]*w[j+k]%p;
                  a[i+j]=(x+y)%p; a[i+j+k]=(x+p-y)%p;
           }
       }
   }
   vector<ui> mul(vector <ui> a, vector <ui> b)
       if (a.size()==0||b.size()==0) return { };
       int m=a.size()+b.size()-1;
       int n=1<<__lg(m*2-1);</pre>
       int i, j, base=_{-}lg(n)-1;
       ui inv=ksm(n, p-2);
       for (i=1; i<n; i++) r[i]=r[i>>1]>>1|(i&1)<<base;</pre>
       for (j=1; j<n; j<<=1)</pre>
       {
           ui wn=ksm(3, (p-1)/(j << 1));
           w[j]=1;
           for (i=1; i<j; i++) w[j+i]=1llu*w[j+i-1]*wn%p;</pre>
       a.resize(n); b.resize(n);
       ntt(a); ntt(b);
       for (i=0; i<n; i++) a[i]=1llu*a[i]*b[i]%p;</pre>
       ntt(a); reverse(1+all(a)); a.resize(n=m);
       for (i=0; i<n; i++) a[i]=1llu*a[i]*inv%p;</pre>
       return a;
   }
vector<int> match(const string &s, const string &t)
```

```
using NTT::p, NTT::mul;
   static mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());
   static array<ui, 256> c;
   static bool inited=0;
   if (!inited)
       inited=1;
       for (ui &x:c) x=rnd()%NTT::p;
       c['*']=0;//通配符
   int n=s.size(), m=t.size(), i, j;
   if (n<m) return { };</pre>
   vector<int> ans;
   vector\langle ui \rangle f(n), ff(n), fff(n), g(m), gg(m), ggg(m);
   for (i=0; i<n; i++)</pre>
   {
       f[i]=c[s[i]];
       ff[i]=1llu*f[i]*f[i]%p;
       fff[i]=1llu*ff[i]*f[i]%p;
   for (i=0; i<m; i++)</pre>
       g[i]=c[t[m-i-1]];
       gg[i]=1llu*g[i]*g[i]%p;
       ggg[i]=1llu*gg[i]*g[i]%p;
   auto fffg=mul(fff, g), ffgg=mul(ff, gg), fggg=mul(f, ggg);
   for (i=0; i<=n-m; i++) if ((ffffg[m-1+i]+fggg[m-1+i]+2*(NTT::p-ffgg[m-1+i]))%NTT::p==0) ans.
       push_back(i);
   return ans;
}
```

快一些的版本, 手动拆开了多项式乘法。

```
const int N=1<<22;
const ui p=998244353, g=3;
inline ui ksm(ui x, ui y)
{
    ui ans=1;
    while (y)
    {
        if (y&1) ans=1llu*ans*x%p;
        y>>=1; x=1llu*x*x%p;
    }
    return ans;
}
ui r[N], w[N];
void ntt(vector <ui> &a)
{
    int n=a.size(), i, j, k;
    for (k=1; k<n; k<<=1)
    {
        for (j=0; j<k; j++)
        {
            ui x=a[i+j], y=1llu*a[i+j+k]*w[j+k]%p;
        }
</pre>
```

```
a[i+j]=(x+y)%p; a[i+j+k]=(x+p-y)%p;
          }
       }
   }
vector<int> match(string s, string t, char ch='*')
   static mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());
   static array<ui, 256> c;
   static bool inited=0;
   if (!inited)
   {
       inited=1;
       for (ui &x:c) x=rnd()%p;
       // for (int i=0; i<256; i++) c[i]=i-96;
       c[ch]=0;//通配符
   int n=s.size(), m=t.size(), i, j;
   if (n<m) return { };</pre>
   vector<int> ans;
   int N=1 << __lg(n*2-1), base=__lg(N)-1;
   vector<ui> f(N), ff(N), fff(N), g(N), gg(N), ggg(N);
   reverse(all(t));
   s.resize(N, ch), t.resize(N, ch);
   for (i=0; i<N; i++)</pre>
       r[i]=r[i>>1]>>1|(i&1)<<base;
       if (i<r[i])</pre>
       {
           swap(s[i], s[r[i]]);
           swap(t[i], t[r[i]]);
       }
   for (j=1; j<N; j<<=1)</pre>
       ui wn=ksm(3, (p-1)/(j << 1));
       w[j]=1;
       for (i=1; i<j; i++) w[j+i]=1llu*w[j+i-1]*wn%p;</pre>
   for (i=0; i<N; i++)</pre>
   {
       f[i]=c[s[i]];
       ff[i]=1llu*f[i]*f[i]%p;
       fff[i]=1llu*ff[i]*f[i]%p;
       g[i]=c[t[i]];
       gg[i]=1llu*g[i]*g[i]%p;
       ggg[i]=1llu*gg[i]*g[i]%p;
   ntt(f); ntt(ff); ntt(fff); ntt(g); ntt(gg); ntt(ggg);
   for (i=0; i<N; i++) f[i]=(1llu*fff[i]*g[i]+1llu*f[i]*ggg[i]+2llu*(p-ff[i])*gg[i])%p;</pre>
   for (i=0; i<N; i++) if (i<r[i]) swap(f[i], f[r[i]]);</pre>
   ntt(f); reverse(1+all(f));
   for (i=0; i<=n-m; i++) if (f[m+i-1]==0) ans.push_back(i);</pre>
   return ans;
```

5 图论

5.1 最小密度环

求所有环中边权和除以边数最少的,O(nm)。更常用的做法是二分 spfa。

```
#include <bits/stdc++.h>
using namespace std;
const int N=3e3+5,M=1e4+5;
const double inf=1e18;
int u[M],v[M];
double f[N][N],w[M];
int main()
   ios::sync_with_stdio(0);cin.tie(0);
   cout<<setiosflags(ios::fixed)<<setprecision(8);</pre>
   int n,m,i,j;
   cin>>n>>m;
   for (i=1;i<=m;i++) cin>>u[i]>>v[i]>>w[i];
   ++n;
   for (i=1;i<=n;i++)</pre>
       fill_n(f[i]+1,n,inf);
       for (j=1;j<=m;j++) f[i][v[j]]=min(f[i][v[j]],f[i-1][u[j]]+w[j]);</pre>
   double ans=inf;
   for (i=1;i<n;i++) if (f[n][i]!=inf)</pre>
       double r=-inf;
       for (j=1;j<n;j++) r=max(r,(f[n][i]-f[j][i])/(n-j));</pre>
       ans=min(ans,r);
   cout<<ans<<endl;</pre>
}
```

5.2 全源最短路与判负环

使用 floyd 实现全源最短路与判负环。注意边权较大时可能需要考虑 int128.

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
typedef pair<int,int> pa;
typedef tuple<int,int,int> tp;
const int N=152;
const 11 inf=5e8;
11 dis[N][N],d[N][N];
int main()
   ios::sync_with_stdio(0);cin.tie(0);
   while (1)
       int n,m,q,i,j,k;
       cin>>n>>m>>q;
       if (tp(n,m,q)==tp(0,0,0)) return 0;
       for (i=0;i<n;i++) fill_n(dis[i],n,inf*inf);</pre>
       for (i=0;i<n;i++) dis[i][i]=0;</pre>
```

```
while (m--)
       int u,v,w;
       cin>>u>>v>>w;
       dis[u][v]=min(dis[u][v],(11)w);
   for (k=0;k<n;k++) for (i=0;i<n;i++) for (j=0;j<n;j++) dis[i][j]=max(min(dis[i][j],dis[i][k
       ]+dis[k][j]),-inf*2);
   for (i=0;i<n;i++) copy_n(dis[i],n,d[i]);</pre>
   for (k=0;k<n;k++) for (i=0;i<n;i++) for (j=0;j<n;j++) dis[i][j]=max(min(dis[i][j],dis[i][k
       ]+dis[k][j]),-inf*2);
   while (q--)
       int u,v;
       cin>>u>>v;
       if (d[u][v]>inf) cout<<"Impossible\n"; else if (dis[u][v]!=d[u][v]!|d[u][v]<-inf) cout
           <<"-Infinity\n"; else cout<<d[u][v]<<'\n';
   cout<<'\n';</pre>
}
```

5.3 三/四元环计数

 $O(m\sqrt{m})$,O(n+m)。 注意四元环数的是边四元环。点四元环需要去掉四点完全图个数 *2,似乎不太能做? 三元环是可以枚举的,你可以在 ans 改变处记录三元环 (i,u,v)。

```
11 triple(const vector<pair<int,int>> &edges)//start from 0
   int n=0,i;
   for (auto [u,v]:edges) n=max({n,u,v});
   vector d(n,0),id(d),rk(d),cnt(d);
   vector e(n,vector(0,0));
   for (auto [u,v]:edges) ++d[u],++d[v];
   iota(all(id),0); sort(all(id),[&](int x,int y) { return d[x]<d[y]; });</pre>
   for (i=0; i<n; i++) rk[id[i]]=i;</pre>
   for (auto [u,v]:edges)
       if (rk[u]>rk[v]) swap(u,v);
       e[u].push_back(v);
   ll ans=0;
   for (i=0; i<n; i++)</pre>
       for (int u:e[i]) cnt[u]=1;
       for (int u:e[i]) for (int v:e[u]) ans+=cnt[v];
       for (int u:e[i]) cnt[u]=0;
   }
   return ans;
11 quadruple(const vector<pair<int,int>> &edges)
   int n=0,i;
   for (auto [u,v]:edges) n=max({n,u,v});
```

```
++n;
vector d(n,0),id(d),rk(d),cnt(d);
vector e(n,vector(0,0)),lk(n,vector(0,0));
for (auto [u,v]:edges) ++d[u],++d[v];
iota(all(id),0); sort(all(id),[&](int x,int y) { return d[x]<d[y]; });</pre>
for (i=0; i<n; i++) rk[id[i]]=i;</pre>
for (auto [u,v]:edges)
   if (rk[u]>rk[v]) swap(u,v);
   e[u].push_back(v);
   lk[u].push_back(v);
   lk[v].push_back(u);
}
ll ans=0;
for (i=0; i<n; i++)</pre>
   for (int u:lk[i]) for (int v:e[u]) if (rk[v]>rk[i]) ans+=cnt[v]++;
   for (int u:lk[i]) for (int v:e[u]) cnt[v]=0;
}
return ans;
```

5.4 最短路系列

Johnson 不适用于图中存在负环的情况,因为负环不一定是可以经过的。 $O(nm \log m)$, O(n+m)。

```
vector<ll> spfa(const vector<vector<pair<int, ll>>> &e, int s)
   int n=e.size(), i;
   assert(n);
   queue<int> q;
   vector<int> len(n), ed(n);
   vector<ll> dis(n, inf);
   q.push(s); dis[s]=0;
   while (q.size())
       int u=q.front(); q.pop();
       ed[u]=0;
       for (auto [v, w]:e[u]) if (cmin(dis[v], dis[u]+w))
          len[v]=len[u]+1;
          if (len[v]>n) return { };
          if (!ed[v])
          {
              ed[v]=1;
              q.push(v);
          }
       }
   return dis;
vector<ll> spfa(const vector<vector<pair<int, ll>>> &e)
   int n=e.size(), i;
   assert(n);
```

```
queue<int> q;
   vector<int> len(n), ed(n, 1);
   vector<ll> dis(n);
   for (i=0; i<n; i++) q.push(i);</pre>
   while (q.size())
       int u=q.front(); q.pop();
       ed[u]=0;
       for (auto [v, w]:e[u]) if (cmin(dis[v], dis[u]+w))
          len[v]=len[u]+1;
          if (len[v]>n) return { };
          if (!ed[v])
              ed[v]=1;
              q.push(v);
          }
       }
   }
   return dis;
vector<11> dijk(const vector<vector<pair<int, 11>>> &e, int s)
   int n=e.size();
   using pa=pair<ll, int>;
   vector<ll> d(n, inf);
   vector<int> ed(n);
   priority_queue<pa, vector<pa>, greater<pa>> q;
   d[s]=0; q.push({0, s});
   while (q.size())
       int u=q.top().second; q.pop();
       ed[u]=1;
       for (auto [v, w]:e[u]) if (cmin(d[v], d[u]+w)) q.push({d[v], v});
       while (q.size()&&ed[q.top().second]) q.pop();
   }
   return d;
}
vector<vector<ll>>> dijk(const vector<vector<pair<int, ll>>> &e)
   vector<vector<ll>> r;
   for (int i=0; i<e.size(); i++) r.push_back(dijk(e, i));</pre>
   return r;
vector<vector<ll>> john(vector<vector<pair<int, ll>>> e)
   int n=e.size(), i, j;
   assert(n);
   auto h=spfa(e);
   if (!h.size()) return { };
   for (i=0; i<n; i++) for (auto &[v, w]:e[i]) w+=h[i]-h[v];</pre>
   auto r=dijk(e);
   for (i=0; i<n; i++) for (j=0; j<n; j++) if (r[i][j]!=inf) r[i][j]-=h[i]-h[j];
   return r;
```

5.5 弦图

单纯点: v 和 v 邻点构成团。

完美消除序列: v_i 在 $\{v_i, v_{i+1}, \cdots, v_n\}$ 为单纯点。

 $N(v_i) = \{v_i | j > i \land (v_i, v_j) \in E\}, next(v_i) \ni N(v_i)$ 最靠前的点。

极大团一定是 $\{v\} \cup N(v)$ 。

最大团大小等于色数。

弦图判定: 等价于是否存在完美消除序列。首先求出一个完美消除序列,然后判定是否合法。 判定方法: 设 v_{i+1}, \dots, v_n 中与 v_i 相邻的依次为 v_1', \dots, v_m' 。只需判断是否 v_1' 与 v_2', \dots, v_m' 相邻。

LexBFS 算法 (我不会写)

每个点有一个字符串 label,初始为 0。从 i=n 到 i=1 确定,选 label 字典序最大的 u,再 把 u 邻点的 label 后面接一个 i。

最大势算法: 从 v_n 求到 v_1 ,设 $label_i$ 表示 i 与多少个已选点相邻,每次选 $label_i$ 最大的点。弦图极大团: $\{v|\forall next(w)=v, |N(v)|\geq |N(w)|\}$ 。选出的集合为基本点,按上述极大团构造。弦图染色: 从 v_n 到 v_1 依次选最小可染的色。

最大独立集: $\bigcup v_1$ 到 v_n 能选就选。

最小团覆盖:设最大独立集为 $\{p_m\}$,最小团覆盖为 $\{\{p_i\} \cup N(p_i)\}$ 。

区间图:两个区间有边当且仅当交集非空。

区间图是弦图。

5.5.1 代码

```
namespace chordal_graph//下标从 1 开始
{
   const int N=1e5+2;//点数
   bool ed[N];
   vector<int> e[N];
   void init(const vector<pair<int,int>> &edges)
       n=0;
       for (auto [u,v]:edges) n=\max(\{n,u,v\});
       for (int i=1;i<=n;i++) e[i].clear();</pre>
       for (auto [u,v]:edges) e[u].push_back(v),e[v].push_back(u);
   vector<int> perfect_seq(const vector<pair<int,int>> &edges)//MCS
   {
       init(edges);
       static int d[N];
       static vector<int> buc[N];
       int i,mx=0;
       memset(d+1,0,n*sizeof d[0]);
       memset(ed+1,0,n*sizeof ed[0]);
       for (i=1;i<=n;i++) buc[i].clear();</pre>
       buc[0].resize(n);
       iota(all(buc[0]),1);
       vector<int> r(n);
       for (i=n-1;i>=0;i--)
          int u=0;
          while (!u)
          {
```

```
while (buc[mx].size()) if (ed[buc[mx].back()]) buc[mx].pop_back();
          else
          {
             ed[u=buc[mx].back()]=1;
             buc[mx].pop_back();
             goto yes;
          }
          --mx;
      }
      yes:;
      r[i]=u;
      for (int v:e[u]) if (!ed[v]) buc[++d[v]].push_back(v),mx=max(mx,d[v]);
   }
   return r;
}
bool check_perfect_seq(vector<int> a)
   static bool ee[N];
   memset(ed+1,0,n*sizeof ed[0]);
   memset(ee+1,0,n*sizeof ee[0]);
   reverse(all(a));
   for (int u:a)
   {
      ed[u]=1;
      int w=0;
      for (int v:e[u]) if (ed[v]) {w=v;break;}
      if (!w) continue;
      ee[w]=1;
      for (int v:e[w]) ee[v]=1;
      for (int v:e[u]) if (ed[v]&&!ee[v]) return 0;
      ee[w]=0;
      for (int v:e[w]) ee[v]=0;
   }
   return 1;
bool check_chordal(const vector<pair<int,int>> &edges) {return check_perfect_seq(perfect_seq(
   edges));}
vector<int> color(int _n,const vector<pair<int,int>> &edges)//返回长度为 _n+1。其中 0 无意义
   auto a=perfect_seq(edges);
   reverse(all(a));
   memset(ed+1,0,n*sizeof ed[0]);
   vector<int> r(_n+1);
   for (int u:a)
      for (int v:e[u]) ed[r[v]]=1;
      int x=1;
      while (ed[x]) ++x;
      r[u]=x;
      for (int v:e[u]) ed[r[v]]=0;
   for (int i=n+1;i<=_n;i++) r[i]=1;</pre>
   return r;
vector<int> max_independent(int _n,const vector<pair<int,int>> &edges)//注意有孤立点这种奇怪东
```

```
auto a=perfect_seq(edges);
    memset(ed+1,0,n*sizeof ed[0]);
    vector<int> r;
    for (int u:a) if (!ed[u])
    {
        r.push_back(u);
        for (int v:e[u]) ed[v]=1;
    }
    for (int i=n+1;i<=_n;i++) r.push_back(i);
    return r;
}
using chordal_graph::check_chordal,chordal_graph::color,chordal_graph::max_independent;</pre>
```

5.6 最小割树

结论:两个点之间的最小割等于最小割树上两点间最小边权。 直接返回任意两点最小割。

```
template<class T> vector<vector<T>> min_cut(int n, const vector<tuple<int, int, T>> &edges)//[0,n
   )
{
   int m=edges.size(), i, s, t, cnt=0;
   vector\langle int \rangle fir(n, -1), nxt(m*2, -1), fc(n), q(n);
   vector<pair<int, T>> e(m*2);
   vector<tuple<T, int, int>> eg;
   auto add=[&](int u, int v, T w)
       {
          e[cnt]={v, w};
          nxt[cnt]=fir[u];
          fir[u]=cnt++;
   for (auto [u, v, w]:edges) add(u, v, w), add(v, u, w);
   auto E=e;
   auto bfs=[&]()
       {
          fill(all(fc), 0);
          int ql=0, qr=0, u, i;
          fc[q[0]=s]=1;
          while (ql<=qr)</pre>
              u=q[ql++];
              for (int i=fir[u]; i!=-1; i=nxt[i])
                  if (auto &[v, w]=e[i]; w&&!fc[v]) fc[q[++qr]=v]=fc[u]+1;
          }
          return fc[t];
       };
   function<T(int, T)> dfs=[&](int u, T maxf)
          if (u==t) return maxf;
          T j=0, k;
          for (int i=fir[u]; i!=-1; i=nxt[i])
              if (auto &[v, w]=e[i]; w&&fc[v]==fc[u]+1&&(k=dfs(v, min(maxf-j, w))))
                  j+=k;
                  w-=k;
```

```
e[i^1].second+=k;
              if (j==maxf) return j;
          }
       fc[u]=0;
       return j;
function<void(vector<int>)> solve=[&](vector<int> id)
       static mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());
       if (id.size()<=1) return;</pre>
       vector<int> u(2);
       sample(all(id), u.begin(), 2, rnd);
       s=u[0], t=u[1], e=E;
       T ans=0;
       while (bfs()) ans+=dfs(s, numeric_limits<T>::max());
       auto it=partition(all(id), [&](int u) { return fc[u]; });
       eg.emplace_back(ans, s, t);
       solve(vector(id.begin(), it));
       solve(vector(it, id.end()));
   };
solve(range(0, n));
sort(all(eg), greater<>());
vector<basic_string<int>> ver(n);
vector ans(n, vector<T>(n));
vector<int> f(n);
for (i=0; i<n; i++) ver[i]={f[i]=i};</pre>
function<int(int)> getf=[&](int u) { return f[u]==u?u:f[u]=getf(f[u]); };
for (auto [w, u, v]:eg)
{
   u=getf(u);
   v=getf(v);
   for (int w1:ver[u]) for (int w2:ver[v]) ans[w1][w2]=ans[w2][w1]=w;
   ver[u]+=ver[v];
   f[v]=u;
return ans;
```

5.7 二分图与网络流建图

以下约定,若为二分图则 n, m 表示两侧点数,否则仅 n 表示全图点数。

5.7.1 二分图边染色

留坑待填。

结论: $\Delta(G) \le \chi'(G) \le \Delta(G) + 1$,二分图时 $\chi'(G) = \Delta(G)$ 。 $\Delta(G)$ 为图的最大度。

5.7.2 二分图最小点集覆盖

ans = maxmatch,方案如下。

```
#include <bits/stdc++.h>
using namespace std;
const int N=5e3+2;
vector<int> e[N];
int ed[N], lk[N], flg[N], now;
```

```
bool dfs(int u)
   for (int v:e[u]) if (ed[v]!=now)
       ed[v]=now;
       if (!lk[v]||dfs(lk[v])) return lk[v]=u;
   return 0;
}
void dfs2(int u)
   for (int v:e[u]) if (!flg[v]) flg[v]=1,dfs2(lk[v]);
}
int main()
{
   int n,m,i,r=0;
   cin>>n>>m;
   while (m--)
       int u,v;
       cin>>u>>v;
       e[u].push_back(v);
   for (i=1;i<=n;i++) dfs(now=i);</pre>
   for (i=1;i<=n;i++) kl[lk[i]]=i;</pre>
   for (i=1;i<=n;i++) if (!kl[i]) dfs2(i);</pre>
   vector<int> A[2];
   for (i=1;i<=n;i++) if (lk[i])</pre>
       if (flg[i]) A[1].push_back(i); else A[0].push_back(lk[i]);
   for (int j=0;j<2;j++)</pre>
       cout<<A[j].size();</pre>
       for (int x:A[j]) cout<<'u'<<x;cout<<'\n';</pre>
   }
```

5.7.3 二分图最大独立集

ans = n + m - maxmatch,方案是最小点集覆盖的补集。

5.7.4 二分图最小边覆盖

ans = n + m - maxmatch,方案是最大匹配加随便一些边(用于覆盖失配点)。无解当且仅当有孤立点,算法会视为单选孤立点(无边)。这个定理对一般图也成立。

5.7.5 有向无环图最小不相交链覆盖

ans = n - maxmatch,其中二分图建图方法是拆入点和出点(实现时直接跑一次二分图就行,不用额外处理),注意**不**需要传递闭包。方案如下。

```
#include <bits/stdc++.h>
using namespace std;
const int N=152;
vector<int> e[N];
```

```
int lk[N],kl[N],ed[N],now;
bool dfs(int u)
   for (int v:e[u]) if (ed[v]!=now)
       ed[v]=now;
       if (!lk[v]||dfs(lk[v])) return lk[v]=u;
   return 0;
int main()
{
   int n,m,i;
   ios::sync_with_stdio(0);cin.tie(0);
   cin>>n>>m;
   while (m--)
       int u,v;
       cin>>u>>v;
       e[u].push_back(v);
   int r=0;
   for (i=1;i<=n;i++) r+=dfs(now=i);</pre>
   for (i=1;i<=n;i++) kl[lk[i]]=i;</pre>
   for (i=1;i<=n;i++) if (ed[i]!=-1&&!lk[i])</pre>
       vector<int> ans;
       int u=i;
       while (u)
           ed[u] = -1;
           ans.push_back(u);
           u=kl[u];
       }
       for (int j=0;j<ans.size();j++) cout<<ans[j]<<"u\n"[j+1==ans.size()];</pre>
   }
   cout<<n-r<<endl;</pre>
```

5.7.6 有向无环图最大互不可达集

ans = n - maxmatch,其中二分图建图方法是拆入点和出点(实现时直接跑一次二分图就行,不用额外处理),注意**需要**传递闭包。方案?

5.7.7 最大权闭合子图

5.8 二分图匹配(时间戳写法)

```
bool dfs(int u)
{
   for (int v:e[u]) if (ed[v]!=now)
```

```
{
    ed[v]=now;
    if (!lk[v]||dfs(lk[v])) return lk[v]=u;
}
return 0;
}
```

5.9 二分图最大权匹配

```
namespace KM
   const int N=405;//点数
   typedef long long ll;//答案范围
   const ll inf=1e16;
   int lk[N],kl[N],pre[N],q[N],n,h,t;
   11 sl[N],e[N][N],lx[N],ly[N];
   bool edx[N],edy[N];
   bool ck(int v)
   {
       if (edy[v]=1,kl[v]) return edx[q[++t]=kl[v]]=1;
       while (v) swap(v,lk[kl[v]=pre[v]]);
       return 0;
   void bfs(int u)
   {
       fill_n(sl+1,n,inf);
       memset(edx+1,0,n*sizeof edx[0]);
       memset(edy+1,0,n*sizeof edy[0]);
       q[h=t=1]=u;edx[u]=1;
       while (1)
          while (h<=t)</pre>
              int u=q[h++],v;
              11 d;
              for (v=1;v<=n;v++) if (!edy[v]&&sl[v]>=(d=lx[u]+ly[v]-e[u][v])) if (pre[v]=u,d) sl[
                  v]=d; else if (!ck(v)) return;
          }
          int i;
          11 m=inf;
          for (i=1;i<=n;i++) if (!edy[i]) m=min(m,sl[i]);</pre>
          for (i=1;i<=n;i++)</pre>
              if (edx[i]) lx[i]-=m;
              if (edy[i]) ly[i]+=m; else sl[i]-=m;
          for (i=1;i<=n;i++) if (!edy[i]&&!sl[i]&&!ck(i)) return;</pre>
       }
   template<class TT> 11 max_weighted_match(int N,const vector<tuple<int,int,TT>> &edges)//lk[[1,
       n]] -> [1, n]
       int i;n=N;
       memset(lk+1,0,n*sizeof lk[0]);
       memset(kl+1,0,n*sizeof kl[0]);
       memset(ly+1,0,n*sizeof ly[0]);
```

```
for (i=1;i<=n;i++) fill_n(e[i]+1,n,0);//若不需保证匹配边最多,置 0 即可,否则 -inf/N for (auto [u,v,w]:edges) e[u][v]=max(e[u][v],(ll)w); for (i=1;i<=n;i++) lx[i]=*max_element(e[i]+1,e[i]+n+1); for (i=1;i<=n;i++) bfs(i); ll r=0; for (i=1;i<=n;i++) r+=e[i][lk[i]]; return r; }
}
using KM::max_weighted_match,KM::lk,KM::e;
```

5.10 一般图最大匹配

```
namespace blossom_tree
{
   const int N=1005;
   vector<int> e[N];
   int lk[N],rt[N],f[N],dfn[N],typ[N],q[N];
   int id,h,t,n;
   int lca(int u,int v)
      ++id;
      while (1)
       {
          if (u)
              if (dfn[u]==id) return u;
              dfn[u]=id;u=rt[f[lk[u]]];
          swap(u,v);
      }
   }
   void blm(int u,int v,int a)
      while (rt[u]!=a)
          f[u]=v;
          v=lk[u];
          if (typ[v]==1) typ[q[++t]=v]=0;
          rt[u]=rt[v]=a;
          u=f[v];
       }
   }
   void aug(int u)
      while (u)
          int v=lk[f[u]];
          lk[lk[u]=f[u]]=u;
          u=v;
      }
   void bfs(int root)
   {
       memset(typ+1,-1,n*sizeof typ[0]);
       iota(rt+1,rt+n+1,1);
```

```
typ[q[h=t=1]=root]=0;
       while (h<=t)</pre>
          int u=q[h++];
          for (int v:e[u])
              if (typ[v]==-1)
              {
                  typ[v]=1;f[v]=u;
                  if (!lk[v]) return aug(v);
                  typ[q[++t]=lk[v]]=0;
              } else if (!typ[v]&&rt[u]!=rt[v])
                  int a=lca(rt[u],rt[v]);
                  blm(v,u,a);blm(u,v,a);
              }
          }
       }
   }
   int max_general_match(int N,vector<pair<int,int>> edges)//[1,n]
       n=N;id=0;
       memset(f+1,0,n*sizeof f[0]);
       memset(dfn+1,0,n*sizeof dfn[0]);
       memset(lk+1,0,n*sizeof lk[0]);
       int i;
       for (i=1;i<=n;i++) e[i].clear();</pre>
       mt19937 rnd(114);
       shuffle(all(edges),rnd);
       for (auto [u,v]:edges)
          e[u].push_back(v),e[v].push_back(u);
          if (!(lk[u]||lk[v])) lk[u]=v,lk[v]=u;
       }
       int r=0;
       for (i=1;i<=n;i++) if (!lk[i]) bfs(i);</pre>
       for (i=1;i<=n;i++) r+=!!lk[i];</pre>
       return r/2;
   }
using blossom_tree::max_general_match,blossom_tree::lk;
```

5.11 一般图最大权匹配

n = 400: UOJ 600ms, Luogu 135ms

```
#include<bits/stdc++.h>
using namespace std;
#define all(x) (x).begin(),(x).end()
namespace weighted_blossom_tree
{
    #define d(x) (lab[x.u]+lab[x.v]-e[x.u][x.v].w*2)
    const int N=403*2;//两倍点数
    typedef long long ll;//总和大小
    typedef int T;//权值大小
    //均不允许无符号
    const T inf=numeric_limits<int>::max()>>1;
```

```
struct Q
   int u,v;
   T w;
} e[N][N];
T lab[N];
int n,m=0,id,h,t,lk[N],sl[N],st[N],f[N],b[N][N],s[N],ed[N],q[N];
vector<int> p[N];
void upd(int u,int v) {if (!sl[v]||d(e[u][v]) < d(e[sl[v]][v])) sl[v] = u;}</pre>
void ss(int v)
   sl[v]=0;
   for (int u=1;u<=n;u++) if (e[u][v].w>0&&st[u]!=v&&!s[st[u]]) upd(u,v);
void ins(int u) {if (u \le n) q[++t]=u; else for (int v:p[u]) ins(v);}
void mdf(int u,int w)
{
   st[u]=w;
   if (u>n) for (int v:p[u]) mdf(v,w);
}
int gr(int u,int v)
   if ((v=find(all(p[u]),v)-p[u].begin())&1)
      reverse(1+all(p[u]));
      return (int)p[u].size()-v;
   }
   return v;
}
void stm(int u,int v)
   lk[u]=e[u][v].v;
   if (u<=n) return;</pre>
   Q w=e[u][v];
   int x=b[u][w.u],y=gr(u,x),i;
   for (i=0;i<y;i++) stm(p[u][i],p[u][i^1]);</pre>
   stm(x,v);
   rotate(p[u].begin(),y+all(p[u]));
void aug(int u,int v)
   int w=st[lk[u]];
   stm(u,v);
   if (!w) return;
   stm(w,st[f[w]]);
   aug(st[f[w]],w);
int lca(int u,int v)
   for (++id;u|v;swap(u,v))
      if (!u) continue;
       if (ed[u]==id) return u;
       ed[u]=id;//????????v?? 这是原作者的注释, 我也不知道是啥
       if (u=st[lk[u]]) u=st[f[u]];
   }
   return 0;
```

```
void add(int u,int a,int v)
   int x=n+1,i,j;
   while (x<=m&&st[x]) ++x;</pre>
   if (x>m) ++m;
   lab[x]=s[x]=st[x]=0; lk[x]=lk[a];
   p[x].clear();p[x].push_back(a);
   for (i=u;i!=a;i=st[f[j]]) p[x].push_back(i),p[x].push_back(j=st[lk[i]]),ins(j);//复制,改一
       处
   reverse(1+all(p[x]));
   for (i=v;i!=a;i=st[f[j]]) p[x].push_back(i),p[x].push_back(j=st[lk[i]]),ins(j);
   mdf(x,x);
   for (i=1;i<=m;i++) e[x][i].w=e[i][x].w=0;</pre>
   memset(b[x]+1,0,n*sizeof b[0][0]);
   for (int u:p[x])
   {
       for (v=1;v<=m;v++) if (!e[x][v].w||d(e[u][v])<d(e[x][v])) e[x][v]=e[u][v],e[v][x]=e[v][</pre>
       for (v=1;v<=n;v++) if (b[u][v]) b[x][v]=u;</pre>
   }
   ss(x);
void ex(int u) // s[u] == 1
   for (int x:p[u]) mdf(x,x);
   int a=b[u][e[u][f[u]].u],r=gr(u,a),i;
   for (i=0;i<r;i+=2)</pre>
   {
       int x=p[u][i],y=p[u][i+1];
       f[x]=e[y][x].u;
       s[x]=1;s[y]=0;
       sl[x]=0;ss(y);
       ins(y);
   s[a]=1;f[a]=f[u];
   for (i=r+1;i<p[u].size();i++) s[p[u][i]]=-1,ss(p[u][i]);</pre>
   st[u]=0;
bool on(const Q &e)
   int u=st[e.u],v=st[e.v],a;
   if(s[v]==-1)
       f[v]=e.u;s[v]=1;
       a=st[lk[v]];
       sl[v]=sl[a]=s[a]=0;
       ins(a);
   }
   else if(!s[v])
       a=lca(u,v);
       if (!a) return aug(u,v),aug(v,u),1;
       else add(u,a,v);
   }
   return 0;
```

```
bool bfs()
       memset(s+1,-1,m*sizeof s[0]);
       memset(sl+1,0,m*sizeof sl[0]);
       h=1; t=0;
       int i,j;
       for (i=1;i<=m;i++) if (st[i]==i&&!lk[i]) f[i]=s[i]=0,ins(i);</pre>
       if (h>t) return 0;
       while (1)
          while (h<=t)</pre>
              int u=q[h++],v;
              if (s[st[u]]!=1) for (v=1; v<=n;v++) if (e[u][v].w>0&&st[u]!=st[v])
                  if (d(e[u][v])) upd(u,st[v]); else if (on(e[u][v])) return 1;
              }
          }
          T x=inf;
          for (i=n+1;i<=m;i++) if (st[i]==i&&s[i]==1) x=min(x,lab[i]>>1);
          for (i=1;i<=m;i++) if (st[i]==i&&sl[i]&&s[i]!=1) x=min(x,d(e[sl[i]][i])>>s[i]+1);
          for (i=1;i \le n;i++) if (\sim s[st[i]]) if ((lab[i]+=(s[st[i]]*2-1)*x) \le 0) return 0;
          for (i=n+1;i<=m;i++) if (st[i]==i&&~s[st[i]]) lab[i]+=(2-s[st[i]]*4)*x;</pre>
          h=1:t=0:
          for (i=1;i<=m;i++) if (st[i]==i&&sl[i]&&st[sl[i]]!=i&&!d(e[sl[i]][i])&&on(e[sl[i]][i]))
               return 1;
          for (i=n+1;i<=m;i++) if (st[i]==i&&s[i]==1&&!lab[i]) ex(i);</pre>
       return 0;
   }
   template<class TT> 11 max_weighted_general_match(int N,const vector<tuple<int,int,TT>> &edges)
       //[1,n],返回权值
   {
       memset(ed+1,0,m*sizeof ed[0]);
       memset(lk+1,0,m*sizeof lk[0]);
       n=m=N;id=0;
       iota(st+1,st+n+1,1);
       int i,j;
       T wm=0;
       11 r=0;
       for (i=1;i<=n;i++) for (j=1;j<=n;j++) e[i][j]={i,j,0};
       for (auto [u,v,w]:edges) wm=max(wm,e[v][u].w=e[u][v].w=max(e[u][v].w,(T)w));
       for (i=1;i<=n;i++) p[i].clear();</pre>
       for (i=1;i<=n;i++) for (j=1;j<=n;j++) b[i][j]=i*(i==j);</pre>
       fill_n(lab+1,n,wm);
       while (bfs());
       for (i=1;i<=n;i++) if (lk[i]) r+=e[i][lk[i]].w;</pre>
       return r/2;
   }
   #undef d
using weighted_blossom_tree::max_weighted_general_match,weighted_blossom_tree::lk;
   ios::sync_with_stdio(0);cin.tie(0);
   int n,m;
   cin>>n>>m;
```

```
vector<tuple<int,int,long long>> edges(m);
for (auto &[u,v,w]:edges) cin>>u>>v>>w;
cout<<max_weighted_general_match(n,edges)<<'\n';
for (int i=1;i<=n;i++) cout<<lk[i]<<"\\n"[i==n];
}</pre>
```

5.12 网络流代码

```
namespace net
{
   const int N = 4e5 + 50;//number of nodes
   namespace flow
       const 11 inf = 4e18;
       struct Q
          int v;
          ll w;
          int id;
       };
       vector<Q> e[N];
       vector<Q>::iterator fir[N];
       int fc[N], q[N];
       int n, s, t;
       int bfs()
          for (int i = 0;i < n;i++)</pre>
              fir[i] = e[i].begin();
              fc[i] = 0;
          }
          int p1 = 0, p2 = 0, u;
          fc[s] = 1; q[0] = s;
          while (p1 <= p2)</pre>
              int u = q[p1++];
              for (auto [v, w, id] : e[u]) if (w && !fc[v])
                  q[++p2] = v;
                  fc[v] = fc[u] + 1;
              }
          return fc[t];
       }
       11 dfs(int u, ll maxf)
          if (u == t) return maxf;
          11 j = 0, k;
          for (auto& it = fir[u];it != e[u].end();++it)
              auto& [v, w, id] = *it;
              if (w \&\& fc[v] == fc[u] + 1 \&\& (k = dfs(v, min(maxf - j, w))))
              {
                  j += k;
                  w = k;
                  e[v][id].w += k;
```

```
if (j == maxf) return j;
          }
       }
       fc[u] = 0;
       return j;
   11 max_flow(int _n, const vector<tuple<int, int, ll>>& edges, int _s, int _t)//[0,n]
       s = _s; t = _t; n = _n + 1;
       for (int i = 0; i < n; i++) e[i].clear();</pre>
       for (auto [u, v, w] : edges) if (u != v)
       {
          e[u].push_back({v, w, (int)e[v].size()});
          e[v].push_back({u, 0, (int)e[u].size() - 1});
       }
       11 r = 0;
       while (bfs()) r += dfs(s, inf);
       return r;
   }
}
using flow::max_flow, flow::fc;
namespace match
   int lk[N], kl[N], ed[N];
   vector<int> e[N];
   int max_match(int n, int m, const vector<pair<int, int>>& edges)//lk[[0,n]]->[0,m]
   {
       ++n; ++m;
       int s = n + m, t = n + m + 1, i;
       vector<tuple<int, int, ll>> eg;
       eg.reserve(n + m + edges.size());
       for (i = 0; i < n; i++) eg.push_back({s, i, 1});</pre>
       for (i = 0; i < m; i++) eg.push_back({i + n, t, 1});</pre>
       for (auto [u, v] : edges) eg.push_back({u, v + n, 1});
       int r = max_flow(t, eg, s, t);
       fill_n(lk, n, -1);
       for (i = 0; i < n; i++) for (auto [v, w, id] : flow::e[i]) if (v < s && !w)
          lk[i] = v - n;
          break;
       }
       return r;
   void dfs(int u)
       for (int v : e[u]) if (!ed[v]) ed[v] = 1, dfs(kl[v]);
   pair<vector<int>, vector<int>> min_cover(int n, int m, const vector<pair<int, int>>& edges
       )//[0,n]-[0,m]
       max_match(n, m, edges);
       ++n; ++m;
       fill_n(kl, m, -1); fill_n(ed, m, 0);
       for (i = 0; i < n; i++)</pre>
          e[i].clear();
```

```
if (lk[i] != -1) kl[lk[i]] = i;
       for (auto [u, v] : edges) e[u].push_back(v);
       for (i = 0; i < n; i++) if (lk[i] == -1) dfs(i);</pre>
       vector<int> r[2];
       for (i = 0; i < m; i++) if (kl[i] != -1)
          if (ed[i]) r[1].push_back(i); else r[0].push_back(kl[i]);
       }
       sort(all(r[0]));
       return {r[0], r[1]};
   }
}
using match::max_match, match::min_cover, match::lk, match::kl;
namespace cost_flow
   const 11 inf = 4e18;
   struct Q
       int v;
      11 w, c;
       int id;
   };
   vector<Q> e[N];
   11 dis[N];
   int pre[N], pid[N], ipd[N];
   bool ed[N];
   int n, s, t;
   pair<ll, ll> spfa()
       queue<int> q;
       fill_n(dis, n, inf);
       memset(ed, 0, n * sizeof ed[0]);
       q.push(s); dis[s] = 0;
       while (q.size())
          int u = q.front(); q.pop(); ed[u] = 0;
          for (auto [v, w, c, id] : e[u]) if (w && dis[v] > dis[u] + c)
          {
              dis[v] = dis[u] + c;
              pre[v] = u;
              pid[v] = e[v][id].id;
              ipd[v] = id;
              if (!ed[v]) q.push(v), ed[v] = 1;
          }
       }
       if (dis[t] == inf) return {0, 0};
       11 mw = 9e18;
       for (int i = t; i != s; i = pre[i]) mw = min(mw, e[pre[i]][pid[i]].w);
       for (int i = t; i != s; i = pre[i]) e[pre[i]][pid[i]].w -= mw, e[i][ipd[i]].w += mw;
       return {mw, mw * dis[t]};
   pair<11, 11> mcmf_spfa(int _n, const vector<tuple<int, int, 11, 11>>& edges, int _s, int
       _t)//[0,n]
   {
       s = _s; t = _t; n = _n + 1;
       for (int i = 0; i < n; i++) e[i].clear();</pre>
```

```
for (auto [u, v, w, c] : edges) if (u != v)
       e[u].push_back({v, w, c, (int)e[v].size()});
       e[v].push_back({u, 0, -c, (int)e[u].size() - 1});
   pair<ll, 11> r{0, 0}, rr;
   while ((rr = spfa()).first) r = {r.first + rr.first, r.second + rr.second};
   return r;
}
pair<ll, 11> mcmf_dijk(int _n, const vector<tuple<int, int, 11, 11>>& edges, int _s, int
    _t)//[0,n]
{
   s = _s; t = _t; n = _n + 1;
   for (int i = 0; i < n; i++) e[i].clear();</pre>
   for (auto [u, v, w, c] : edges) if (u != v)
       e[u].push_back({v, w, c, (int)e[v].size()});
       e[v].push_back({u, 0, -c, (int)e[u].size() - 1});
   }
   static ll h[N];
   auto get_h = [&]()
       {
           fill_n(h, n, inf);
          memset(ed, 0, n * sizeof ed[0]);
           queue<int> q;
           q.push(s); h[s] = 0;
           while (q.size())
              int u = q.front(); q.pop(); ed[u] = 0;
              for (auto [v, w, c, id] : e[u]) if (w && h[v] > h[u] + c)
                  h[v] = h[u] + c;
                  if (!ed[v]) q.push(v), ed[v] = 1;
           }
           return;
       };
   auto dijkstra = [&]() -> pair<ll, ll>
           static int fl[N], zl[N];
           int i;
           memset(ed, 0, n * sizeof ed[0]);
           fill_n(dis, n, inf);
           typedef pair<ll, int> pa;
           priority_queue<pa, vector<pa>, greater<pa>> q;
           dis[s] = 0; q.push({0, s});
           while (q.size())
              int u = q.top().second;
              q.pop(); ed[u] = 1;
              i = 0;
              for (auto [v, w, c, id] : e[u])
                  if (w \&\& dis[v] > dis[u] + c) fl[v] = id, zl[v] = i, q.push(\{dis[v] = dis[v] = dis[v] = dis[v] = dis[v] = dis[v] = dis[v]
                      [pre[v] = u] + c, v);
                  ++i;
              }
```

```
while (q.size() && ed[q.top().second]) q.pop();
              }
              if (dis[t] == inf) return {0, 0};
              ll tf = numeric_limits<ll>::max();
              for (i = t; i != s; i = pre[i]) tf = min(tf, e[pre[i]][zl[i]].w);
              for (i = t; i != s; i = pre[i]) e[pre[i]][zl[i]].w -= tf, e[i][fl[i]].w += tf;
              for (int u = 0; u < n; u++) for (auto& [v, w, c, id] : e[u]) c += dis[u] - dis[v]
              return {tf, tf * (h[t] += dis[t])};
          };
       get_h();
       for (int u = 0; u < n; u++) for (auto& [v, w, c, id] : e[u]) c += h[u] - h[v];
       pair<ll, 11> r{0, 0}, rr;
       while ((rr = dijkstra()).first) r = {r.first + rr.first, r.second + rr.second};
       return r;
}
using cost_flow::mcmf_spfa, cost_flow::mcmf_dijk;
namespace bounded_flow
   bool valid_flow(int n, const vector<tuple<int, int, ll, ll>>& edges)//方案需加上 1
       if (!edges.size()) return 1;
       ++n:
       int i;
       11 \text{ tot} = 0;
       static ll cd[N];
       memset(cd, 0, n * sizeof cd[0]);
       for (auto [u, v, 1, r] : edges) cd[u] += 1, cd[v] -= 1;
       vector<tuple<int, int, ll>> eg;
       eg.reserve(n + edges.size());
       for (i = 0; i < n; i++) if (cd[i] > 0) eg.push_back({i, n + 1, cd[i]}), tot += cd[i];
       else if (cd[i] < 0) eg.push_back({n, i, -cd[i]});</pre>
       for (auto [u, v, 1, r] : edges) eg.push_back({u, v, r - 1});
       return tot == flow::max_flow(n + 1, eg, n, n + 1);
   }
   ll valid_flow_st(int n, vector<tuple<int, int, ll, ll>> edges, int s, int t)//-1 invalid,
       11=11
       11 \text{ tot} = 0;
       for (auto [u, v, 1, r] : edges) tot += (u == s) * r;
       edges.push_back({t, s, 0, tot});
       if (!valid_flow(n, edges)) return -1;
       assert(flow::e[s].back().v == t);
       assert(flow::e[t].back().v == s);
       return tot - flow::e[t].back().w;
   ll valid_max_flow(int n, const vector<tuple<int, int, ll, ll>>& edges, int s, int t)//-1
       invalid, ll=ll
       ll r = valid_flow_st(n, edges, s, t);
       if (r < 0) return r;</pre>
       flow::s = s; flow::t = t;
       flow::e[s].pop_back(); flow::e[t].pop_back();
       while (flow::bfs()) r += flow::dfs(s, flow::inf);
       return r;
   }
```

```
ll valid_min_flow(int n, const vector<tuple<int, int, ll, ll>>& edges, int s, int t)//-1
       invalid, ll=ll
       ll r = valid_flow_st(n, edges, s, t);
       if (r < 0) return r;
       flow::s = t; flow::t = s;
       flow::e[s].pop_back(); flow::e[t].pop_back();
       while (flow::bfs()) r -= flow::dfs(t, flow::inf);
       return r:
   }//not check
using bounded_flow::valid_flow, bounded_flow::valid_flow_st, bounded_flow::valid_max_flow,
   bounded_flow::valid_min_flow;
namespace bounded_cost_flow
   pair<ll, ll> valid_mcf(int n, const vector<tuple<int, int, ll, ll, ll>>& edges, int s, int
        t)//[u,v,l,r,c],mincost flow
       ++n;
       int ss = n, tt = n + 1;
       static ll cd[N];
       memset(cd, 0, n * sizeof cd[0]);
       for (auto [u, v, 1, r, c] : edges) cd[u] += 1, cd[v] -= 1;
       vector<tuple<int, int, 11, 11>> e;
       11 t1 = 0, t2 = 0;
       for (int i = 0; i < n; i++) if (cd[i] > 0) e.push_back({i, tt, cd[i], 0}), t2 += cd[i];
       else if (cd[i] < 0) e.push_back({ss, i, -cd[i], 0});</pre>
       for (auto [u, v, 1, r, c] : edges) e.push_back({u, v, r - 1, c});
       for (auto [u, v, w, c] : e) t1 += (u == s) * w;
       e.push_back({t, s, t1, 0});
       auto res = mcmf_spfa(tt, e, ss, tt);//checked dijk
       if (res.first != t2) return {-1, -1};
       res.first = cost_flow::e[s].back().w;
       for (auto [u, v, 1, r, c] : edges) res.second += 1 * c;
       return res;
   }
   pair<11, 11> valid_mcmf(int n, const vector<tuple<int, int, 11, 11, 11>>& edges, int s,
       int t)//[u,v,l,r,c],mincost max_flow
       auto r = valid_mcf(n, edges, s, t);
       if (r.first < 0) return {-1, -1};</pre>
       cost_flow::e[s].pop_back();
       cost_flow::e[t].pop_back();
       cost_flow::s = s; cost_flow::t = t;
       pair<ll, ll> rr;
       while ((rr = cost_flow::spfa()).first) r = {r.first + rr.first, r.second + rr.second};
           //spfa ver. not checked dijk
       return r;
   }
using bounded_cost_flow::valid_mcf, bounded_cost_flow::valid_mcmf;
namespace ne_cost_flow
   pair<11, 11> ne_mcmf(int n, const vector<tuple<int, int, 11, 11>>& edges, int s, int t)
       vector<tuple<int, int, 11, 11, 11>> e;
       for (auto [u, v, w, c]: edges) if (c \ge 0) e.push_back(\{u, v, 0, w, c\}); else
```

```
{
        e.push_back({u, v, w, w, c});
        e.push_back({v, u, 0, w, -c});
    }
    return valid_mcmf(n, e, s, t);
}
using ne_cost_flow::ne_mcmf;
}
```

5.13 费用流(SPFA)

```
bool dfs()
   memset(j1,-0x3f,sizeof(j1));
   jl[dl[tou=wei=1]=0]=0;
   while (tou<=wei)</pre>
       ed[x=d1[tou++]]=0;
       for (i=fir[x];i;i=nxt[i]) if ((lj[i][1])&&(jl[lj[i][0]]<jl[x]+lj[i][2]))</pre>
          jl[lj[i][0]]=jl[x]+lj[i][2];
          qq[lj[i][0]]=x;
          dy[lj[i][0]]=i;
          if (!ed[lj[i][0]]) ed[dl[++wei]=lj[i][0]]=1;
       }
   }
   zg=m;
   if (jl[t]==jl[t+1]) return 0;
   for (i=t;i;i=qq[i]) zg=min(zg,lj[dy[i]][1]);
   for (i=t;i;i=qq[i])
       lj[dy[i]][1]-=zg;
       ans+=zg*lj[dy[i]][2];
       if (dy[i]&1) lj[dy[i]+1][1]+=zg; else lj[dy[i]-1][1]+=zg;
   }
   return 1;
while (dfs());
```

5.14 费用流(Dijkstra)

```
priority_queue<pa,vector<pa>,greater<pa> > heap;
const int N=5e3+2,M=1e5+2;
pa ans;
int lj[M][3],nxt[M],fir[N],dis[N],h[N],pre[N],fl[N];
int n,m,s,t,bs,x,y,z,w,ans1,ans2;
bool ed[N];
void add(const int u,const int v,const int y)
{
    lj[++bs][0]=v;
    lj[bs][1]=x;
    lj[bs][2]=y;
    nxt[bs]=fir[u];
```

```
fir[u]=bs;
   lj[++bs][0]=u;
   lj[bs][1]=0;
   lj[bs][2]=-y;
   nxt[bs]=fir[v];
   fir[v]=bs;
}
void spfa()//本题中用dijkstra代替,目的是处理 h 数组。
   int x,i,j;
   memset(h,0x3f,sizeof(h));h[s]=0;
   heap.push(make_pair(0,s));
   while (!heap.empty())
      ed[x=heap.top().second]=1;heap.pop();
      for (i=fir[x];i;i=nxt[i]) if ((lj[i][1])&&(h[lj[i][0]]>h[x]+lj[i][2]))
          heap.push(make_pair(h[lj[i][0]]=h[x]+lj[i][2],lj[i][0]));
      while ((!heap.empty())&&(ed[heap.top().second])) heap.pop();
   }
   for (i=1;i<=n;i++) for (j=fir[i];j;j=nxt[j]) lj[j][2]++h[i]-h[lj[j][0]];
   memset(ed,0,sizeof(ed));
pa dijkstra()
   int i,j,x,tf=1e9;
   memset(dis,0x3f,sizeof(dis));memset(pre,0,sizeof(pre));dis[s]=0;heap.push(make_pair(0,s));
   while (!heap.empty())
      ed[x=heap.top().second]=1;heap.pop();
      for (i=fir[x];i;i=nxt[i]) if ((lj[i][1])&&(dis[lj[i][0]]>dis[x]+lj[i][2]))
          heap.push(make_pair(dis[1j[i][0]]=dis[pre[1j[i][0]]=x]+1j[i][2],1j[i][0])),f1[1j[i
              ][0]]=i;
      while ((!heap.empty())&&(ed[heap.top().second])) heap.pop();
   if (dis[t]==dis[t+1]) return make_pair(0,0);
   for (i=t;i!=s;i=pre[i]) tf=min(tf,lj[f1[i]][1]);
   for (i=t;i!=s;i=pre[i]) lj[fl[i]][1]-=tf,lj[fl[i]^1][1]+=tf;
   for (i=1;i<=n;i++) for (j=fir[i];j;j=nxt[j]) lj[j][2]+=dis[i]-dis[lj[j][0]];</pre>
   h[t]+=dis[t];memset(ed,0,sizeof(ed));
   return make_pair(tf,tf*h[t]);
}
signed main()
{
   while (!heap.empty()) heap.pop();
   read(n);read(m);read(s);read(t);bs=1;
   while (m--)
      read(x);read(y);read(z);read(w);
      add(x,y,z,w);
   spfa();
   while ((ans=dijkstra()).first) ans1+=ans.first,ans2+=ans.second;
   printf("%du%d",ans1,ans2);
```

5.15 假花树

一种错误的一般图最大匹配算法,但较难卡掉。推荐在时间不足时作为乱搞使用。

```
mt19937 rnd(3214);
vector<int> lj[N];
int lk[N],ed[N];
int n,m,cnt,i,t,x,y,ans,la;
bool dfs(int x)
   ed[x]=cnt;int v;
   shuffle(lj[x].begin(),lj[x].end(),rnd);
   for (auto u:lj[x]) if (ed[v=lk[u]]!=cnt)
       lk[v]=0, lk[u]=x, lk[x]=u;
       if (!v||dfs(v)) return 1;
       lk[v]=u, lk[u]=v, lk[x]=0;
   }
   return 0;
int main()
{
   srand(time(0));la=-1;
   read(n); read(m);
   while (m--) read(x),read(y),lj[x].push_back(y),lj[y].push_back(x);
   while (la!=ans)
       memset(ed+1,0,n<<2); la=ans;
       for (i=1;i<=n;i++) if (!lk[i]) ans+=dfs(cnt=i);</pre>
   printf("%d\n",ans);
   for (i=1;i<=n;i++) printf("%d_",lk[i]);</pre>
```

5.16 Stoer-Wagner 全局最小割

无向图 G 的最小割为:一个去掉后可以使 G 变成两个连通分量,且边权和最小的边集的边权和。

 $O(n^3)$ 。可优化到 $O(nm \log n)$ 。

```
#include <bits/stdc++.h>
using namespace std;
namespace StoerWagner
{
    const int N=602;//点数
    typedef int T;//边权和
    T e[N][N],w[N];
    int ed[N],p[N],f[N];//f 权输出方案用
    int getf(int u){return f[u]==u?u:f[u]=getf(f[u]);}
    template<class TT> pair<T,vector<int>> mincut(int n,const vector<tuple<int,int,TT>> &edges)//
        [1,n], 返回某一集合
    {
        vector<int> ans;ans.reserve(n);
        int i,j,m;
        T r;
        r=numeric_limits<T>::max();
        for (i=1;i<=n;i++) memset(e[i]+1,0,n*sizeof e[0][0]);
```

```
for (auto [u,v,w]:edges) e[u][v]+=w,e[v][u]+=w;
       fill_n(ed+1,n,0);
       iota(f+1,f+n+1,1);
       for (m=n;m>1;m--)
           fill_n(w+1,n,0);
           for (i=1;i<=n;i++) ed[i]&=2;</pre>
           for (i=1;i<=m;i++)</pre>
              int x=0;
              for (j=1;j<=n;j++) if (!ed[j]) break;x=j;</pre>
              for (j++;j<=n;j++) if (!ed[j]*w[j]>w[x]) x=j;
              ed[p[i]=x]=1;
              for (j=1;j<=n;j++) w[j]+=!ed[j]*e[x][j];</pre>
           int s=p[m-1],t=p[m];
           if (r>w[t])
              r=w[t];ans.clear();
              for (i=1;i<=n;i++) if (getf(i)==getf(t)) ans.push_back(i);</pre>
           for (i=1;i<=n;i++) e[i][s]=e[s][i]+=e[t][i];</pre>
           ed[t]=2;
           f[getf(s)]=getf(t);
       return {r,ans};
   }
int main()
   ios::sync_with_stdio(0);cin.tie(0);
   int n,m;
   cin>>n>>m;
   vector<tuple<int,int,int>> e(m);
   for (auto &[u,v,w]:e) cin>>u>>v>>w;
   auto [_,v]=StoerWagner::mincut(n,e);
   cout<<_<<endl;
   static int ed[602];
   for (int x:v) ed[x]=1;
   for (auto [u,v,w]:e) _-=w*(ed[u]^ed[v]);
   assert(!_);
}
```

5.17 点双

一些结论:

判定一个图里是否有(点不重复)偶环:看其所有点双,若存在点数为偶数的或边数多于点数的点双,则存在偶环。

(无自环时)点双的边不交,边双的点不交。点双内的总点数 O(n),总边数为 m,边双内的总点数为 n,总边数不超过 m。

构造函数传入邻接表和边数,其中 pair 的 second 是边的标号。

所有标号从 0 开始。

不能处理有自环的情况, 因为此时点双内的总边数不是线性的。

bcc_node:每个点双包含的点(已验证);bcc_edge:每个点双包含的边;bcc_n:新图点数;

cur_e:新图边表; ct:是否割点(已验证); blk:边所属点双标号。

```
struct node_bcc
{
   int n, id, tp, bcc_n;
   vector<vector<pair<int, int>>> e;
   vector<vector<int>> bcc_node, bcc_edge;
   vector<int> dfn, low, st, ed, blk, ct;
   node_bcc(const vector<vector<pair<int, int>>> &e, int m) :
       n(e.size()), id(0), tp(0), bcc_n(0), e(e), dfn(n, -1), low(n, -1), st(m), ed(m), blk(m),
           ct(n)
   {
       for (int i = 0;i < n;i++) if (dfn[i] == -1) dfs(i, 1);</pre>
       bcc_node.resize(bcc_n);
       for (int i = 0;i < n;i++) for (auto [v, w] : e[i]) bcc_node[blk[w]].push_back(i);</pre>
       vector<int> flg(n);
       for (auto &v : bcc_node)
          vector<int> t;
          for (int x : v) if (!exchange(flg[x], 1)) t.push_back(x);
          for (int x : v) flg[x] = 0;
       for (int i = 0;i < n;i++) if (e[i].size() == 0)</pre>
          bcc_node.push_back({i});
          bcc_edge.push_back({ });
          ++bcc_n;
       }
   }
   void dfs(int u, bool rt)
       dfn[u] = low[u] = id++;
       int cnt = 0;
       for (auto [v, w] : e[u]) if (!ed[w])
          st[tp++] = w;
          ed[w] = 1;
          if (dfn[v] == -1)
              dfs(v, 0);
              ++cnt;
              cmin(low[u], low[v]);
              if (dfn[u] <= low[v])</pre>
                 ct[u] = cnt > rt;
                 bcc_edge.push_back({ });
                 do
                     bcc_edge[bcc_n].push_back(st[--tp]);
                     blk[st[tp]] = bcc_n;
                 } while (st[tp] != w);
                 ++bcc_n;
              }
          else cmin(low[u], dfn[v]);
      }
   }
```

};

5.18 边双

O(n+m),O(n+m)。 构造函数传入邻接表和边数,其中 pair 的 second 是边的标号。 所有标号从 0 开始。

bcc_node:每个边双包含的点(已验证);bcc_edge:每个边双包含的边;bcc_n:新图点数;cur_e:新图边表;ct:是否割边;blk:点所属边双标号。

```
struct edge_bcc
{
   int n, id, tp, bcc_n;
   vector<vector<pair<int, int>>> e, cur_e;
   vector<vector<int>> bcc_node, bcc_edge;
   vector<int> dfn, low, st, blk, ct;
   edge_bcc(const vector<vector<pair<int, int>>> &e, int m) :
      n(e.size()), id(0), tp(0), bcc_n(0), e(e), dfn(n, -1), low(n, -1), st(n), blk(n), ct(m)
      for (int i = 0;i < n;i++) if (dfn[i] == -1) dfs(i, -1);</pre>
      cur_e.resize(bcc_n);
      [v], w});
      else bcc_edge[blk[i]].push_back(w);
      vector<int> flg(m);
      for (auto &v : bcc_edge)
         vector<int> t;
         for (int x:v) if (!exchange(flg[x],1)) t.push_back(x);
         swap(t,v);
      }
   }
   void dfs(int u, int fw)
      dfn[u] = low[u] = id++;
      st[tp++] = u;
      for (auto [v, w] : e[u]) if (w != fw)
         if (dfn[v] == -1)
            dfs(v, w);
            cmin(low[u], low[v]);
            ct[w] = (dfn[u] < low[v]);
         }
         else cmin(low[u], dfn[v]);
      if (dfn[u] == low[u])
         bcc_node.push_back({ });
         bcc_edge.push_back({ });
         do
            bcc_node[bcc_n].push_back(st[--tp]);
            blk[st[tp]] = bcc_n;
         } while (st[tp] != u);
         ++bcc_n;
```

```
}
};
int main()
{
   ios::sync_with_stdio(0);cin.tie(0);
   int n, m, i;
   cin >> n >> m;
   vector<vector<pair<int, int>>> e(n);
   for (i = 0;i < m;i++)</pre>
       int u, v;
       cin >> u >> v;
       --u, --v;
       e[u].push_back({v, i});
       e[v].push_back({u, i});
   edge_bcc s(e, m);
   cout << s.bcc_n << '\n';
   for (auto &v : s.bcc_node)
       for (int &x : v) ++x;
       cout << v.size() << '\_' << v << '\n';
}
```

5.19 双极分解

无向图,图点双连通时对任意 s,t 存在。

含义:确定一个拓扑序,使得按这个拓扑序定向后,入度为 0 的只有 s,出度为 0 的只有 t。

```
vector<int> bipolar_orientation(const vector<pair<int, int>> &edges, int n, int s, int t)//[0,n)
{
   assert(s!=t);
   vector e(n, vector<int>());
   for (auto [u, v]:edges)
       e[u].push_back(v);
       e[v].push_back(u);
   }
   int cur=1, i;
   vector<int> pre(n), low(n), p(n);
   pre[s]=1;
   vector<int> id;
   bool flg=0;
   function<void(int)> dfs=[&](int x)
          pre[x]=++cur;
          low[x]=x;
          for (int y:e[x])
          {
              flg|=y==s;
              if (pre[y]==0)
                 id.push_back(y);
                 dfs(y);
```

```
p[y]=x;
                  if (pre[low[y]]<pre[low[x]]) low[x]=low[y];</pre>
              else if (pre[y]!=0&&pre[y]<pre[low[x]]) low[x]=y;</pre>
       };
   dfs(t);
   if (!flg) return { };
   vector<int> sign(n, -1);
   vector<int> l(n), r(n);
   r[s]=t;
   1[t]=s;
   for (int v:id)
       if (sign[low[v]]==-1)
          l[v]=l[p[v]];
          r[l[v]]=v;
          1[p[v]]=v;
          r[v]=p[v];
           sign[p[v]]=1;
       }
       else
       {
          r[v]=r[p[v]];
          1[r[v]]=v;
          r[p[v]]=v;
          1[v]=p[v];
           sign[p[v]]=-1;
       }
   }
   vector<int> a(n);
   int x;
   for (i=0, x=s; i<n; x=r[x], i++) a[i]=x;</pre>
   vector < int > ia(n, -1), rd(n), cd(n);
   for (i=0; i<n; i++) ia[a[i]]=i;</pre>
   if (count(all(ia), -1)) return { };
   for (auto [u, v]:edges)
       if (ia[u]>ia[v]) swap(u, v);
       ++cd[u]; ++rd[v];
   for (i=0; i<n; i++) if (i!=s&&i!=t&&(!cd[i]||!rd[i])) return { };</pre>
   return a;
}
```

5.20 输出负环

```
#include <bits/stdc++.h>
using namespace std;
const int N=34;
struct Q
{
   int v,w,c;
   Q(){}
   Q(int x,int y,int z):v(x),w(y),c(z){}
```

```
};
vector<Q> lj[N];
int dis[N],cnt[N],pt[N],S;
Q pre[N],st[N];
int n,m,ans,tp;
bool ed[N];
int main()
{
   freopen("arbitrage.in", "r", stdin);
   freopen("arbitrage.out", "w", stdout);
   ios::sync_with_stdio(0);cin.tie(0);
   cin>>n>>m;
   while (m--)
       int x,y,z,w;
       cin>>x>>y>>z>>w;
       lj[x].emplace_back(y,w,z);
       lj[y].emplace_back(x,0,-z);
   }
   for (int i=1;i<=n;i++) lj[0].emplace_back(i,1,0);</pre>
   while (1)
   {
       memset(dis,-0x3f,sizeof dis);dis[0]=0;
       for (int i=0;i<=n;i++) ed[i]=cnt[i]=0;S=-1;</pre>
       queue<int> q;q.push(0);
       while (!q.empty())
           int u=q.front();q.pop();ed[u]=0;
           for (auto &[v,w,c]:lj[u]) if (w&&dis[v]<dis[u]+c)</pre>
           {
              dis[v]=dis[u]+c;pre[v]=Q(u,w,c);
              if (!ed[v])
                  if (++cnt[v]>n+1) {S=v;goto aa;}
                  ed[v]=1;q.push(v);
              }
           }
       }
       aa:;
       if (S==-1) break;
           static bool ed[N];
          memset(ed,0,sizeof ed);
           while (!ed[S]) ed[S]=1,S=pre[S].v;
       st[tp=1]=pre[S];pt[1]=S;
       int x=pre[S].v;
       while (x!=S)
       {
           st[++tp]=pre[x];pt[tp]=x;
           x=pre[x].v;
           assert(tp<=n+5);</pre>
       }
       int fl=1e9;
       for (int j=1;j<=tp;j++) fl=min(fl,st[j].w);</pre>
       assert(fl);
       for (int j=1;j<=tp;j++)</pre>
```

5.21 (基环) 树哈希

有根树返回每个子树的哈希值,无根树返回树的哈希值(长度至多为 2 的 vector),基环树返回图的哈希值(长度等于环长的 vector)。

```
vector<int> tree_hash(const vector<vector<int>>& e, int root)//[0,n)
{
   int n = e.size();
   static map<vector<int>, int> mp;
   static int id = 0;
   vector<int> h(n), ed(n);
   function<void(int)> dfs = [&](int u)
          ed[u] = 1;
          vector<int> c;
          for (int v : e[u]) if (!ed[v])
              dfs(v);
              c.push_back(h[v]);
          sort(all(c));
          if (!mp.count(c)) mp[c] = id++;
          h[u] = mp[c];
       };
   dfs(root);
   return h;
vector<int> tree_hash(const vector<vector<int>>& e)//[0,n)
   int n = e.size();
   if (n == 0) return { };
   vector<int> sz(n), mx(n);
   function<void(int)> dfs = [&](int u)
       {
          sz[u] = 1;
          for (int v : e[u]) if (!sz[v])
              dfs(v);
              sz[u] += sz[v];
              cmax(mx[u], sz[v]);
          cmax(mx[u], n - sz[u]);
       };
   dfs(0);
```

```
int m = *min_element(all(mx)), i;
   vector<int> rt;
   for (i = 0;i < n;i++) if (mx[i] == m) rt.push_back(i);</pre>
   for (int& u : rt) u = tree_hash(e, u)[u];
   sort(all(rt));
   return rt;
}
template<class T> void min_order(vector<T>& a)
   int n = a.size(), i, j, k;
   a.resize(n * 2);
   for (i = 0; i < n; i++) a[i + n] = a[i];
   i = k = 0; j = 1;
   while (i < n \&\& j < n \&\& k < n)
       T x = a[i + k], y = a[j + k];
       if (x == y) ++k; else
          (x > y ? i : j) += k + 1;
          j += (i == j);
          k = 0;
       }
   a.resize(n);
   //[min(i,j),n)+[0,min(i,j))
   rotate(a.begin(), min(i, j) + all(a));
vector<int> pseudotree_hash(const vector<vector<int>>& e)//[0,n)
{
   int n = e.size();
   static map<vector<int>, int> mp;
   static int id = 0;
   vector<int> f(n), ed(n), h(n);
   pair lp{-1, -1};
   function<void(int)> dfs = [&](int u)
          ed[u] = 1;
          for (int v : e[u]) if (!ed[v])
              f[v] = u;
              dfs(v);
          else if (v != f[u]) lp = {u, v};
       };
   dfs(0);
   auto [x, y] = lp;
   vector<int> node = {y};
   do node.push_back(y = f[y]); while (y != x);
   fill(all(ed), 0);
   for (int u : node) ed[u] = 1;
   dfs = [\&](int u)
       {
          ed[u] = 1;
          vector<int> c;
          for (int v : e[u]) if (!ed[v])
          {
              dfs(v);
```

```
c.push_back(h[v]);
          }
          sort(all(c));
          if (!mp.count(c)) mp[c] = id++;
          h[u] = mp[c];
       };
   vector<int> r0;
   for (int u : node)
       dfs(u);
       r0.push_back(h[u]);
   auto r1 = r0;
   reverse(all(r1));
   min_order(r0);
   min_order(r1);
   return min(r0, r1);
}
```

5.22 无向图最小环

原理: floyd 外层循环本质是计算只经过 $\leq k$ 的点的最短路。因此枚举环上标号最大的,在做这一轮转移之前正好是不经过它的最短路。

```
O(n^3), O(n^2).
```

```
int f[N][N],jl[N][N];
int n,m,c,ans=inf,i,j,k,x,y,z;
int main()
{
   read(n); read(m);
   memset(f,0x3f,sizeof(f));
   memset(j1,0x3f,sizeof(j1));
   while (m--)
       read(x);read(y);read(z);
       jl[x][y]=jl[y][x]=f[x][y]=f[y][x]=min(f[y][x],z);
   for (k=1;k<=n;k++)</pre>
       for (i=1;i<k;i++) if (jl[k][i]!=jl[0][0]) for (j=1;j<i;j++)</pre>
           if (j1[k][j]!=j1[0][0]) ans=min(ans,j1[k][i]+j1[k][j]+f[i][j]);
       for (i=1;i<=n;i++) if (i!=k) for (j=1;j<=n;j++)</pre>
           if ((j!=i)&&(j!=k)) f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
   if (ans==inf) puts("No<sub>□</sub>solution."); else printf("%d",ans);
```

5.23 切比雪夫距离最小生成树

原理: 先转曼哈顿距离,再用曼哈顿的板子。 $O(n \log n)$, O(n)。

```
const int N=3e5+2,M=N<<2;
struct P
{</pre>
```

```
int u,v,w;
   P(int a=0,int b=0,int c=0):u(a),v(b),w(c){}
   bool operator<(const P &o) const {return w<o.w;}</pre>
};
struct Q
{
   int x,y,id;
   Q(int a=0,int b=0,int c=0):x(a),y(b),id(c){}
   bool operator<(const Q &o) const {return x!=o.x?x>o.x:y>o.y;}
};
ll ans;
P lb[M];
Q a[N],b[N];
int f[N],c[N];
int n,m,i,x,y;
struct bit
{
   int a[N],pos[N],n;
   void init(int &nn)
       memset(a+1,0x7f,(n=nn)*sizeof a[0]);
       memset(pos+1,0,n*sizeof pos[0]);
   void mdf(int x,const int y,const int z)
       if (a[x]>y) a[x]=y,pos[x]=z;
       while (x-=x\&-x) if (a[x]>y) a[x]=y,pos[x]=z;
   int sum(int x)
   {
       int r=a[x],rr=pos[x];
       while ((x+=x\&-x)<=n) if (a[x]<r) r=a[x],rr=pos[x];
       return rr;
};
bit s;
void cal()
   int i,x,y;
   s.init(n);
   memcpy(b+1,a+1,sizeof(Q)*n);
   sort(a+1,a+n+1);
   for (i=1;i<=n;i++) c[i]=a[i].y-a[i].x;</pre>
   sort(c+1,c+n+1);
   for (i=1;i<=n;i++)</pre>
   {
       if (x=s.sum(y=lower_bound(c+1,c+n+1,a[i].y-a[i].x)-c))
          lb[++m]=P(a[x].id,a[i].id,a[x].x+a[x].y-a[i].x-a[i].y);//谨防 int 爆
       s.mdf(y,a[i].y+a[i].x,i);
   memcpy(a+1,b+1,sizeof(Q)*n);
int getf(int x) {return f[x]==x?x:f[x]=getf(f[x]);}
int main()
   read(n);
   for (i=1;i<=n;i++) {read(a[f[i]=a[i].id=i].x);read(a[i].y);</pre>
```

```
swap(a[i].x,a[i].y);a[i]=Q(a[i].x+a[i].y,a[i].x-a[i].y,i);}
cal();for (i=1;i<=n;i++) swap(a[i].x,a[i].y);
cal();for (i=1;i<=n;i++) swap(a[i].x,a[i].y);
cal();for (i=1;i<=n;i++) swap(a[i].x,a[i].y);
cal();sort(lb+1,lb+m+1);
for (i=1;i<=m;i++) if ((x=getf(lb[i].u))!=(y=getf(lb[i].v))) f[x]=y,ans+=lb[i].w;
printf("%lld\n",ans>>1);
}
```

5.24 点分治

点分治板子的参考意义不大。 $O(n \log n)$, O(n)。

```
int siz[N],dep[N];
   int n,ksiz,md,rt,mn;
   bool ed[N];
   void find(int u)
      ed[u]=1;siz[u]=1;
      int mx=0;
      for (int v:e[u]) if (!ed[v])
          find(v);
          siz[u]+=siz[v];
          mx=max(mx,siz[v]);
      mx=max(mx,ksiz-siz[u]);
      if (mn>mx) mn=mx,rt=u;
      ed[u]=0;
   }
   void cal(int u)
      md=max(md,dep[u]);
      ed[u]=1;++cnt[dep[u]];
      for (int v:e[u]) if (!ed[v])
          dep[v]=dep[u]+1;
          cal(v);
      }
      ed[u]=0;
   void solve(int u)
      mn=1e9;
      find(u);
      ed[rt]=1;
      vector<int> c;
      for (int v:e[rt]) if (!ed[v])
          c.push_back(v);
          if (siz[v]>=siz[rt]) siz[v]=siz[u]-siz[rt];
      sort(all(c),[&](const int &a,const int &b){return siz[a]<siz[b];});</pre>
      NTT::Q a(vector<ui>{1});
      NT::Q b(vector<ui>{1});
```

```
for (int v:c)
       md=0;dep[v]=1;
       cal(v);++md;
       vector<ui> d(cnt,cnt+md);
       NTT::Q e(d);
       NT::Q f(d);
       auto g=e&a;
       auto h=f&b;
       for (int i=0;i<g.a.size();i++) r1[i]=(r1[i]+g.a[i])%NTT::p;</pre>
       for (int i=0;i<h.a.size();i++) r2[i]=(r2[i]+h.a[i])%NT::p;</pre>
       a+=e;b+=f;
       fill_n(cnt,md,0);
   for (int v:c)
       ksiz=siz[v];
       solve(v);
   }
}
```

5.25 点分树

在一片土地上有 n 个城市,通过 n-1 条无向边互相连接,形成一棵树的结构,相邻两个城市的距离为 1,其中第 i 个城市的价值为 $value_i$ 。

不幸的是,这片土地常常发生地震,并且随着时代的发展,城市的价值也往往会发生变动。接下来你需要在线处理 m 次操作:

 $0 \times k$ 表示发生了一次地震,震中城市为 x,影响范围为 k,所有与 x 距离不超过 k 的城市都将受到影响,该次地震造成的经济损失为所有受影响城市的价值和。

 $1 \times y$ 表示第 x 个城市的价值变成了 y 。

为了体现程序的在线性,操作中的 x、y、k 都需要异或你程序上一次的输出来解密,如果之前没有输出,则默认上一次的输出为 0 。

 $O(n\log^2 n)$, $O(n\log n)$.

```
namespace DFS
   template<class typC> struct bit0
       vector<typC> a;
       int n;
       bit0() {}
       bit0(int nn):n(nn),a(nn+1) {}
       template < class T > bit0(int nn,T *b):n(nn),a(nn+1)
           for (int i=1; i<=n; i++) a[i]=b[i-1];</pre>
           for (int i=1; i<=n; i++) if (i+(i&-i)<=n) a[i+(i&-i)]+=a[i];</pre>
       void add(int x,typC y)
           ++x;
           //cerr<<"add "<<x<<" by "<<y<<endl;
           assert(1 \le x\&x \le n);
           a[x] += y;
           while ((x+=x\&-x)<=n) a[x]+=y;
       }
```

```
typC sum(int x)
       ++x;
       //cerr<<"sum "<<x;
       if (x>n) x=n;
       assert(0 \le x \& x \le n);
       typC r=a[x];
       while (x^=x\&-x) r+=a[x];
       //cerr<<"= "<<r<<endl;
       return r;
   typC sum(int x,int y)
       return sum(y)-sum(x-1);
   }
};
typedef long long 11;
const int N=1e5+5,M=18;
ll a[N];
bit0<11> s[N],rc[N];
int st[M][N*2],lg[N*2];
int dep[N],dfn[N],siz[N],f[N];
vector<int> e[N],c[N];
bool ed[N];
int n,ksiz,rt,mn,id;
int lca(int u,int v)
   u=dfn[u]; v=dfn[v];
   if (u>v) swap(u,v);
   int z=lg[v-u+1];
   return dep[st[z][u]] < dep[st[z][v-(1<<z)+1]]?st[z][u]:st[z][v-(1<<z)+1];</pre>
}
int dis(int u,int v)
   return dep[u]+dep[v]-dep[lca(u,v)]*2;
}
void findroot(int u)
   ed[u]=siz[u]=1;
   int mx=0;
   for (int v:e[u]) if (!ed[v])
       findroot(v);
       siz[u]+=siz[v];
       mx=max(mx,siz[v]);
   mx=max(mx,ksiz-siz[u]);
   ed[u]=0;
   if (mn>mx) mn=mx,rt=u;
}
int fun(int u)
   mn=1e9;
   findroot(u);
   u=rt;
   ed[u]=1;
   for (int v:e[u]) if (!ed[v]&&siz[v]>siz[u]) siz[v]=ksiz-siz[u];
```

```
for (int v:e[u]) if (!ed[v])
       ksiz=siz[v];
       c[u].push_back(fun(v));
       f[c[u].back()]=u;
   return u;
void pre_dfs(int u)
   st[0][dfn[u]=++id]=u;
   ed[u]=1;
   for (int v:e[u]) if (!ed[v])
       dep[v]=dep[u]+1;
       pre_dfs(v);
       st[0][++id]=u;
   ed[u]=0;
}
void clear(int _n)
   n=_n; id=0;
   int i;
   for (int i=1; i<=n; i++)</pre>
       e[i].clear();
       a[i]=f[i]=ed[i]=0;
}
void new_dfs(int u)
   siz[u]=1;
   for (int v:c[u]) new_dfs(v),siz[u]+=siz[v];
   static int nd[N];
   vector<int> q={u};
   int mx=0,ql=0;
   nd[u]=0;
   while (ql<q.size())</pre>
       int x=q[q1++];
       for (int v:c[x]) q.push_back(v),mx=max(mx,nd[v]=nd[u]+1);
   static ll tmp[N];
   static int ds[N];
   mx=0;
   for (int v:q) mx=max(mx,ds[v]=dis(u,v));
   fill_n(tmp,mx,0);
   for (int v:q) tmp[ds[v]]+=a[v];
   s[u]=bit0<11>(mx,tmp);
   if (u!=rt)
   {
       for (int v:q) mx=max(mx,ds[v]=dis(f[u],v));
       ++mx;
       fill_n(tmp,mx,0);
```

```
for (int v:q) tmp[ds[v]]+=a[v];
           rc[u]=bit0<11>(mx,tmp);
       }
   }
   void init()
       pre_dfs(1);
       int i,j;
       for (i=2; i<=id; i++) lg[i]=lg[i>>1]+1;
       for (j=0; j<lg[id]; j++)</pre>
           int R=id-(2<<j)+1;</pre>
           for (i=1; i<=R; i++) st[j+1][i]=dep[st[j][i]]<dep[st[j][i+(1<<j)]]?st[j][i]:st[j][i</pre>
               +(1<<j)];
       }
       ksiz=n;
       int tmp=fun(1);
       rt=tmp;
       new_dfs(rt);
   }
   void add(int u,ll val)
       static int st[N],ds[N];
       int tp=1,i; st[1]=u;
       while (u=f[u]) st[++tp]=u;
       u=st[1];
       for (i=1; i<=tp; i++) ds[i]=dis(u,st[i]);</pre>
       for (i=1; i<=tp; i++)</pre>
       {
           s[st[i]].add(ds[i],val);
           if (i<tp) rc[st[i]].add(ds[i+1],val);</pre>
       }
   }
   11 ask(int u,int k)
       ll res=0;
       static int st[N],ds[N];
       int tp=1,i; st[1]=u;
       while (u=f[u]) st[++tp]=u;
       u=st[1];
       for (i=1; i<=tp; i++) ds[i]=dis(u,st[i]);</pre>
       for (i=1; i<=tp; i++)</pre>
           if (ds[i]<=k) res+=s[st[i]].sum(k-ds[i]);</pre>
           if (i<tp&&ds[i+1]<=k) res-=rc[st[i]].sum(k-ds[i+1]);</pre>
       return res;
   }
//核心: 点分树上 1ca 出现在原树路径上
int main()
{
   ios::sync_with_stdio(0); cin.tie(0);
   cout<<setiosflags(ios::fixed)<<setprecision(15);</pre>
   int n,m,i;
   cin>>n>>m;
   DFS::clear(n);
```

```
for (i=1; i<=n; i++) cin>>DFS::a[i];
   for (i=1; i<n; i++)</pre>
       int u,v;
       cin>>u>>v;
       DFS::e[u].push_back(v);
       DFS::e[v].push_back(u);
   }
   DFS::init();
   ll ans=0;
   while (m--)
       int op,x,y;
       cin>>op>>x>>y; x^=ans; y^=ans;
       if (op==1) DFS::add(x,y-DFS::a[x]),DFS::a[x]=y;
       else cout<<(ans=DFS::ask(x,y))<<'\n';</pre>
   }
}
```

5.26 prufer 与树的互相转化

O(n), O(n).

```
vector<int> edges_to_prufer(const vector<pair<int,int>> &eg)//[1,n], 定根为 n
   int n=eg.size()+1,i,j,k;
   vector<int> fir(n+1),nxt(n*2+1),e(n*2+1),rd(n+1);
   int cnt=0;
   for (auto [u,v]:eg)
       e[++cnt]=v;nxt[cnt]=fir[u];fir[u]=cnt;++rd[v];
       e[++cnt]=u;nxt[cnt]=fir[v];fir[v]=cnt;++rd[u];
   for (i=1;i<=n;i++) if (rd[i]==1) break;</pre>
   int u=i;
   vector<int> r;r.reserve(n-2);
   for (j=1;j<n-1;j++)</pre>
       for (k=fir[u],u=rd[u]=0;k;k=nxt[k]) if (rd[e[k]])
          r.push_back(e[k]);
          if ((--rd[e[k]]==1)\&\&(e[k]<i)) u=e[k];
       if (!u) { while (rd[i]!=1) ++i;u=i;}
   }
   return r;
vector<pair<int,int>> prufer_to_edges(const vector<int> &p)//[1,n], 定根为 n
   int n=p.size(),i,j,k;
   int m=n+3;
   vector<int> cs(m);
   for (i=0;i<n;i++) ++cs[p[i]];</pre>
   i=0;
   while (cs[++i]);
   int u=i,v;
   vector<pair<int,int>> r;
```

```
r.reserve(n-2);
for (j=0;j<n;j++)
{
    cs[u]=1e9;
    r.push_back({u,v=p[j]});
    if ((--cs[v]==0)&&(v<i)) u=v;
        if (v!=u) {while (cs[i]) ++i;u=i;}
}
r.push_back({u,n+2});
return r;
}</pre>
```

5.27 LCT

 $O(n \log n)$, O(n)。
makeroot 会变根, split 会把 y 变根, findroot 会把根变根, link 会把 x,y 变根 (y 是新的), cut 会把 x,y 变根 (x 是新的), 注意 swap 子节点可能要 pushup。

```
template<int N,class Q> struct LCT
   int f[N],c[N][2],siz[N],st[N];
   Q s[N],v[N];
   #ifdef Rev
   Q rs[N];
   #endif
   //heap g[N]; //虚子树
   bool lz[N];
   void init(int n)
   {
       for (int i=0;i<n;i++)</pre>
          f[i]=c[i][0]=c[i][1]=lz[i]=0;
          s[i]=v[i]=Q();
          #ifdef Rev
          rs[i]=Q();
          #endif
          siz[i]=!!i;
   void modify(int x,const Q &o)
       makeroot(x);
      v[x]=0;
      pushup(x);
   bool nroot(int x) const
       return c[f[x]][0]==x||c[f[x]][1]==x;
   void pushup(int x)
       int lc=c[x][0],rc=c[x][1];
       s[x]=v[x];siz[x]=1;
       #ifdef Rev
       rs[x]=v[x];
```

```
#endif
            if (1c)
                        s[x]=s[lc]+s[x];
                        siz[x]+=siz[lc];
                        #ifdef Rev
                       rs[x]=rs[x]+rs[lc];
                        #endif
           }
           if (rc)
                        s[x]=s[x]+s[rc];
                        siz[x]+=siz[rc];
                       #ifdef Rev
                       rs[x]=rs[rc]+rs[x];
                        #endif
           }
void swp(int x)
            swap(c[x][0],c[x][1]);
            #ifdef Rev
            swap(s[x],rs[x]);
            #endif
            lz[x]^=1;
}
void pushdown(int x)
            int lc=c[x][0],rc=c[x][1];
            if (lz[x])
                       if (lc) swp(lc);
                       if (rc) swp(rc);
                       lz[x]=0;
           }
}
void zigzag(int x)
            int y=f[x],z=f[y],typ=(c[y][0]==x);
            if (nroot(y)) c[z][c[z][1]==y]=x;
            f[x]=z;f[y]=x;
            if (c[x][typ]) f[c[x][typ]]=y;
            c[y][typ^1]=c[x][typ];c[x][typ]=y;
           pushup(y);
void splay(int x)
            int y,tp=0;
            st[tp=1]=y=x;
            while (nroot(y)) st[++tp]=y=f[y];
            while (tp) pushdown(st[tp--]);
            for \ (; nroot(x); zigzag(x)) \ if \ (!nroot(f[x])) \ continue; \ else \ zigzag((c[f[x]][0] == x)^(c[f[f[x]][x] = x)) \ (c[f[x]][x] = x)^* \ (c[f[x][x][x] = x)^* \ (c[f[x][x][x]
                         ]]][0]==f[x]) ? x:f[x]);
           pushup(x);
}
void access(int x)
```

```
for (int y=0;x;x=f[y=x])
          splay(x);
          //g[x].ins(s[c[x][1]]);g[x].del(s[y]);虚子树变化
          c[x][1]=y;pushup(x);
      }
   }
   int findroot(int x)
      access(x); splay(x); pushdown(x);
      while (c[x][0]) pushdown(x=c[x][0]);
      splay(x);
      return x;
   }
   void split(int x,int y)//x 为树新根, y 为 splay 新根
      makeroot(x);
      access(y);
      splay(y);
   }
   void makeroot(int x)
      access(x); splay(x);
      swp(x);
   void link(int x,int y)//y 为新根
      makeroot(x);
      if (x!=findroot(y))//可能已经连通
         makeroot(y);f[x]=y;//虚子树变化
      }
   void cut(int x,int y)
      makeroot(x);
      if (x==findroot(y))//可能本不连通
          pushdown(x);
          if (c[x][1]==y&&!c[y][0]&&!c[y][1])//可能连通但无边
             c[x][1]=f[y]=0;//可能需要修改
             pushup(x);
      }
   }
};
```

5.28 LCT(重构,代码为动态割边割点)

```
#include "bits/stdc++.h"
using namespace std;
template<int N,class info,class tag> struct LCT
{
   int f[N],c[N][2];
   info s[N],v[N];
```

199

```
#ifdef Rev
   info rs[N];
#endif
   tag tg[N];
   bool rev[N],lz[N];
   void init(int n,info *a)
       for (int i=0; i<=n; i++)</pre>
          rev[i]=lz[i]=0;
          f[i]=c[i][0]=c[i][1]=0;
          s[i]=v[i]=a[i];
#ifdef Rev
          rs[i]=a[i];
#endif
       }
   bool nroot(int x) const
       return c[f[x]][0]==x||c[f[x]][1]==x;
   void pushup(int x)
       int lc=c[x][0],rc=c[x][1];
       s[x]=v[x];
#ifdef Rev
       rs[x]=v[x];
#endif
       if (lc)
          s[x]=s[lc]+s[x];
#ifdef Rev
          rs[x]=rs[x]+rs[lc];
#endif
       }
       if (rc)
          s[x]=s[x]+s[rc];
#ifdef Rev
          rs[x]=rs[rc]+rs[x];
#endif
       }
   }
   void swp(int x)
       swap(c[x][0],c[x][1]);
#ifdef Rev
       swap(s[x],rs[x]);
#endif
       rev[x]^=1;
   void pushdown(int x)
       if (rev[x])
          for (int y:c[x]) if (y) swp(y);
          rev[x]=0;
```

```
}
   if (lz[x])
      for (int y:c[x]) if (y)
          if (lz[y]) tg[y]+=tg[x]; else tg[y]=tg[x],lz[y]=1;
          s[y] += tg[x];
      1z[x]=0;
   }
void zigzag(int x)
   int y=f[x],z=f[y],typ=(c[y][0]==x);
   if (nroot(y)) c[z][c[z][1]==y]=x;
   f[x]=z; f[y]=x;
   if (c[x][typ]) f[c[x][typ]]=y;
   c[y][typ^1]=c[x][typ]; c[x][typ]=y;
   pushup(y);
}
void splay(int x)
   static int st[N];
   int y,tp;
   st[tp=1]=y=x;
   while (nroot(y)) st[++tp]=y=f[y];
   while (tp) pushdown(st[tp--]);
   for (; nroot(x); zigzag(x)) if (nroot(y=f[x])) zigzag((c[y][0]=x)^(c[f[y]][0]=y)?x:f[x])
   pushup(x);
}
int access(int x)
   int y=0;
   for (; x; x=f[y=x]) splay(x),c[x][1]=y,pushup(x);
   return y;
int findroot(int x)//splay 根为树根, splay 维护树根到 x 的链
   access(x); splay(x); pushdown(x);
   while (c[x][0]) pushdown(x=c[x][0]);
   splay(x); return x;
void split(int x,int y)//x 为树新根, y 为 splay 新根
{ makeroot(x); access(y); splay(y); }
void makeroot(int x)//x 为树、splay 新根
{ access(x); splay(x); swp(x); }
void modify(int x,const info &o)
{ makeroot(x); v[x]=o; pushup(x); }
void modify(int x,int y,const tag &o)
   split(x,y); s[y]+=o;
   if (lz[y]) tg[y]+=o; else tg[y]=o,lz[y]=1;
info ask(int x,int y) { split(x,y); return s[y]; }
bool connected(int x,int y)//注意会改变形态
{ makeroot(x); return findroot(y)==x; }
```

```
void link(int x,int y)//y 为新根
   { if (!connected(x,y)) makeroot(f[x]=y); }
   void cut(int x,int y)
      if (connected(x,y))//可能本不连通
          pushdown(x);
          if (c[x][1]==y&&!c[y][0]&&!c[y][1])//可能连通但无边
             c[x][1]=f[y]=0;
             pushup(x);
          }
      }
   }
   int lca(int x,int y) { access(x); return access(y); }
   vector<int> res;
   void dfs(int x)
   {
      if (!x) return;
      pushdown(x);
      dfs(c[x][0]); res.push_back(x); dfs(c[x][1]);
   vector<int> get_path(int x,int y)
   {
      res.clear(); split(x,y); dfs(y);
      if (res[0]!=x) return {};
      return res;
};
const int N=2e5+5,M=4e5+5;
struct Q
   void operator+=(const Q &o) const {}
};
void operator+=(int &x,const Q &o) { x=0; }
LCT<N,int,Q> s;
LCT<M,int,Q> t;
int a[N],b[M];
int main()
{
   ios::sync_with_stdio(0); cin.tie(0);
   int n,m,i,r=0;
   cin>>n>>m;
   fill_n(a+n+1,n,1);
   fill_n(b+1,n,1);
   s.init(n*2,a);
   t.init(n+m,b);
   int bs=n,ds=n;
   while (m--)
      int op,u,v;
      cin>>op>>u>>v;
      u^=r; v^=r;
      // dbg(op,u,v);
      if (u<1||u>n||v<1||v>n) return 0;
      if (op==1)
       {
```

```
if (s.connected(u,v))
              s.modify(u,v,{});
              auto c=t.get_path(u,v);
              for (i=1; i<c.size(); i++) t.cut(c[i-1],c[i]);</pre>
              for (int x:c) t.link(ds,x);
          }
           else
              s.link(++bs,u);
              s.link(bs,v);
              t.link(++ds,u);
              t.link(ds,v);
       }
       else
           if (!s.connected(u,v))
           {
              cout << "-1 \n";
              continue;
           r=op==2?s.ask(u,v):t.ask(u,v);
           cout<<r<'\n';
       }
   }
}
```

5.29 带子树的 LCT

 $O(n \log n)$, O(n).

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
template<int N> struct LCT
   ll s[N],v[N],sg[N];
   int f[N],c[N][2],siz[N],st[N];
   //heap g[N]; //虚子树
   bool lz[N];
   void init(int n)
      memset(f,0,n+1<<2);
      memset(c,0,n+1<<3);
      memset(s,0,n+1<<3);
       memset(v,0,n+1<<3);
      memset(lz,0,n+1);
   bool nroot(int x)
       return c[f[x]][0]==x||c[f[x]][1]==x;
   void pushup(int x)
       s[x]=s[c[x][0]]+s[c[x][1]]+v[x]+sg[x];
```

```
siz[x]=siz[c[x][0]]+siz[c[x][1]]+1;
void pushdown(int x)
          if (lz[x])
                     swap(c[c[x][0]][0],c[c[x][0]][1]);
                     swap(c[c[x][1]][0],c[c[x][1]][1]);
                     lz[c[x][0]]^=1;
                     lz[c[x][1]]^=1;
                     lz[x]=0;
          }
}
void zigzag(int x)
          int y=f[x],z=f[y],typ=(c[y][0]==x);
          if (nroot(y)) c[z][c[z][1]==y]=x;
          f[x]=z;f[y]=x;
          if (c[x][typ]) f[c[x][typ]]=y;
          c[y][typ^1]=c[x][typ];c[x][typ]=y;
          pushup(y);
void splay(int x)
          int y,tp=0;
          st[tp=1]=y=x;
          while (nroot(y)) st[++tp]=y=f[y];
          while (tp) pushdown(st[tp--]);
          for (;nroot(x);zigzag(x)) if (!nroot(f[x])) continue; else zigzag((c[f[x]][0]==x)^(c[f[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]==x)^(c[f[x]][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c[x][0]=x)^(c
                      ]]][0]==f[x]) ? x:f[x]);
          pushup(x);
}
void access(int x)
          for (int y=0;x;x=f[y=x])
                     splay(x); sg[x] -= s[y]; s[x] -= s[y];
                     sg[x]+=s[c[x][1]];s[x]+=s[c[x][1]];
                     //g[x].ins(s[c[x][1]]);g[x].del(s[y]);虚子树变化
                     c[x][1]=y;pushup(x);
          }
}
int findroot(int x)
          access(x); splay(x); pushdown(x);
          while (c[x][0]) pushdown(x=c[x][0]);
          splay(x);
          return x;
}
void split(int x,int y)
          makeroot(x);
          access(y);
          splay(y);
void makeroot(int x)
```

```
access(x); splay(x); lz[x]^=1; swap(c[x][0],c[x][1]); pushup(x);
   }
   void link(int x,int y)
      makeroot(x);
       if (x!=findroot(y))//可能已经连通
          makeroot(y);f[x]=y;//虚子树变化
          sg[y] += s[x]; s[y] += s[x];
       }
   void cut(int x,int y)
      makeroot(x);
       if (x==findroot(y))//可能本不连通
          pushdown(x);
          if (c[x][1]==y&&!c[y][0]&&!c[y][1])//可能连通但无边
              c[x][1]=f[y]=0;//可能需要修改
              pushup(x);
          }
      }
   }
};
const int N=2e5+2;
LCT<N>s;
int n,q,i,x,y,z,w;
int main()
   read(n);read(q);s.init(n);
   for (i=1;i<=n;i++) read(x),s.s[i]=s.v[i]=x;</pre>
   for (i=1;i<n;i++)</pre>
   {
       read(x);read(y);++x;++y;
       s.link(x,y);
   while (q--)
       read(x);read(y);read(z);++y;
       if (x==0)
       {
          read(x);read(w);
          ++z;++x;++w;
          s.cut(y,z);s.link(x,w);
          continue;
       }
       if (x==1)
       {
          s.split(y,y);
          s.s[y]=(s.v[y]+=z);
       }
       else
       {
          ++z;
          s.split(y,z);
          printf("%lld\n",s.s[y]);
```

```
}
}
}
```

5.30 轻重链剖分

首先 init(n),然后正常存边([1,n]),然后 fun(root)。 get path 会返回这条路径上的 dfn 区间。

```
namespace HLD
{
   const int N=5e5+2;
   vector<int> e[N];
   int dfn[N],dep[N],f[N],siz[N],hc[N],top[N];
   void dfs1(int u)
       siz[u]=1;
       for (int v:e[u]) if (v!=f[u])
          dep[v]=dep[f[v]=u]+1;
          dfs1(v);
          siz[u]+=siz[v];
          if (siz[v]>siz[hc[u]]) hc[u]=v;
       }
   void dfs2(int u)
       dfn[u]=++id;
       if (hc[u])
          top[hc[u]]=top[u];
          dfs2(hc[u]);
          for (int v:e[u]) if (v!=hc[u]&&v!=f[u]) dfs2(top[v]=v);
       }
   }
   int lca(int u,int v)
       while (top[u]!=top[v])
          if (dep[top[u]] < dep[top[v]]) swap(u,v);</pre>
          u=f[top[u]];
       if (dep[u]>dep[v]) swap(u,v);
       return u;
   int dis(int u,int v)
       return dep[u]+dep[v]-(dep[lca(u,v)]<<1);</pre>
   void init(int n)
       for (int i=1;i<=n;i++)</pre>
          e[i].clear();
          f[i]=hc[i]=0;
```

```
}
      id=0;
   }
   void fun(int root)
      dep[root]=1;dfs1(root);dfs2(top[root]=root);
   }
   vector<pair<int,int>> get_path(int u,int v)//u->v, 注意可能出现 [r>1] (表示反过来走)
      //cerr<<"path from "<<u<<" to "<<v<<": ";
      vector<pair<int,int>> v1,v2;
      while (top[u]!=top[v])
          if (dep[top[u]]>dep[top[v]]) v1.push_back({dfn[u],dfn[top[u]]}),u=f[top[u]];
          else v2.push_back({dfn[top[v]],dfn[v]}),v=f[top[v]];
      v1.reserve(v1.size()+v2.size()+1);
      v1.push_back({dfn[u],dfn[v]});
      reverse(v2.begin(), v2.end());
      for (auto v:v2) v1.push_back(v);
      //for (auto [x,y]:v1) cerr<<"["<<x<<','<<y<<"] ";cerr<<endl;
      return v1;
   }
}
using HLD::e,HLD::lca,HLD::dis,HLD::dfn,HLD::dep,HLD::f,HLD::siz,HLD::get_path;
using HLD::fun;//5e5
```

5.31 换根树剖

本质是对普通树剖在换根后的子树进行分类讨论。 设预处理的根是 u, 当前根是 v, 那么 w 的子树如下:

- 1. w = v, dfn 区间为 [1, n]。
- 2. w 在 u,v 之间,dfn 区间为 [1,n] 去掉 w 前往 v 方向的子树。找到这个子树的方法见 find 函数。
- 3. 其余情况, dfn 区间和原来一致。

```
O(n+q\log n), O(n).
```

```
void dfs1(int x)
{
    int i;
    siz[x]=1;
    for (i=fir[x];i;i=nxt[i]) if (lj[i]!=f[x])
    {
        dep[lj[i]]=dep[f[lj[i]]=x]+1;
        dfs1(lj[i]);
        siz[x]+=siz[lj[i]];
        if (siz[hc[x]]<siz[lj[i]]) hc[x]=lj[i];
    }
}
void dfs2(int x)
{
    nfd[dfn[x]=++bs]=x;</pre>
```

```
if (hc[x])
       int i;
       top[hc[x]]=top[x];
       dfs2(hc[x]);
       for (i=fir[x];i;i=nxt[i]) if ((lj[i]!=f[x])&&(lj[i]!=hc[x])) dfs2(top[lj[i]]=lj[i]);
   }
}
void mdf(int xx,int yy)
   while (top[xx]!=top[yy])
       if (dep[top[xx]] < dep[top[yy]]) swap(xx,yy);</pre>
       z=dfn[top[xx]];y=dfn[xx];xdsmdf(1);
       xx=f[top[xx]];
   if (dep[xx]>dep[yy]) swap(xx,yy);
   z=dfn[xx];y=dfn[yy];
   xdsmdf(1);
int find(int x, int y)//找到 y 向 x 的子树
   while ((top[x]!=top[y])&&(f[top[x]]!=y)) x=f[top[x]];
   if (top[x]==top[y]) return hc[y];
   return top[x];
}
int main()
   read(n); read(m);
   for (i=2;i<=n;i++)</pre>
       read(x);read(y);
       add();
   }bs=0;
   for (i=1;i<=n;i++) read(v[i]);</pre>
   dfs1(dep[1]=1);dfs2(top[1]=1);
   read(rt);r[1[1]=1]=n;build(1);
   while (m--)
   {
       read(x);read(y);
       if (x==1) {rt=y;continue;}
       if (x==2)
          read(x); read(dt);
          mdf(x,y);continue;
       x=y;dt=inf;
       if (x==rt)
          z=1;y=n;sum(1);
       else if ((dfn[x]<dfn[rt])&&(dfn[x]+siz[x]>dfn[rt]))
          c=find(rt,x);
          z=1;y=dfn[c]-1;if (z<=y) sum(1);
          z=dfn[c]+siz[c];y=n;if (z<=y) sum(1);
       }
```

```
else
{
    z=dfn[x];y=z+siz[x]-1;sum(1);
}
printf("%d\n",dt);
}
```

5.32 树上启发式合并, DSU on tree

一种过时的、基于两次 dfs 的写法, 在复杂度要求不严时不如直接存储 set。 流程:

- 1. dfs 轻子树计算答案,并清空全局统计信息。
- 2. dfs 重子树统计答案和全局信息。
- 3. dfs 轻子树统计全局信息。

```
void dfs1(int x)
   siz[x]=zdep[x]=1;
   int i;
   for (i=fir[x];i;i=nxt[i]) if (lj[i]!=f[x])
      dep[lj[i]]=dep[f[lj[i]]=x]+1;
      dfs1(lj[i]);
      siz[x] += siz[lj[i]];
      if (siz[hc[x]]<siz[lj[i]]) hc[x]=lj[i];</pre>
      zdep[x]=max(zdep[x],zdep[lj[i]]+1);
   }
}
void cal(int x)
   int i;
   dl[tou=wei=1]=x;
   while (tou<=wei)</pre>
      ++dp[dep[x=dl[tou++]]];
      for (i=fir[x];i;i=nxt[i]) if (lj[i]!=f[x]) dl[++wei]=lj[i];
   }
void dfs2(int x)
   if (!hc[x])
      if (++dp[dep[x]]>dp[zd]) zd=dep[x];
      return;
   }
   int i;
   for (i=fir[x];i;i=nxt[i]) if ((lj[i]!=f[x])&&(lj[i]!=hc[x]))
      dfs2(lj[i]);
      memset(dp+dep[lj[i]],0,zdep[lj[i]]<<2);</pre>
```

```
}
dfs2(hc[x]);
dp[dep[x]]=1;
if (dp[zd]<=1) zd=dep[x];
for (i=fir[x];i;i=nxt[i]) if ((lj[i]!=f[x])&&(lj[i]!=hc[x])) cal(lj[i]);
ans[x]=zd-dep[x];
}</pre>
```

5.33 长链剖分(*k* 级祖先)

 $O(n\log n + q)$, O(n).

```
void dfs1(int x)
{
   int i;
   for (i=1;i<=er[dep[x]-1];i++) f[x][i]=f[f[x][i-1]][i-1];md[x]=dep[x];</pre>
   for (i=fir[x];i;i=nxt[i]) {dep[lj[i]]=dep[x]+1;dfs1(lj[i]);if (md[lj[i]]>md[dc[x]]) dc[x]=lj[i
       ];}
   if (dc[x]) md[x]=md[dc[x]];
}
void dfs2(int x)
   int i;
   if (dc[x])
       top[dc[x]]=top[x];
       dfs2(dc[x]);
       for (i=fir[x];i;i=nxt[i]) if (lj[i]!=dc[x]) dfs2(top[lj[i]]=lj[i]);
   if (x==top[x])
       c=md[x]-dep[x];y=x;up[x].push_back(x);down[x].push_back(x);
       for (i=1;(i<=c)&&(y=f[y][0]);i++) up[x].push_back(y);y=x;</pre>
       for (i=1;i<=c;i++) down[x].push_back(y=dc[y]);</pre>
   }
}
int main()
{
   int n,q,ans=0,x,y,c,i;
   11 ta=0;
   read(n);read(q);read(s);
   for (i=1;i<=n;i++) {read(f[i][0]);if (f[i][0]==0) rt=i; else add(f[i][0],i);}</pre>
   for (i=2;i<=n;i++) er[i]=er[i>>1]+1;dep[rt]=1;
   dfs1(rt);dfs2(top[rt]=rt);
   for (i=1;i<=q;i++)</pre>
       x=(get(s)^ans)^n+1; y=(get(s)^ans)^dep[x];
       //此时计算 x 的 y 级祖先。结果在 ans 中。
       if (y==0) {ans=x;ta^=(11)i*ans;continue;}
       c=dep[x]-y; x=top[f[x][er[y]]];
       if (dep[x]>c) ans=up[x][dep[x]-c]; else ans=down[x][c-dep[x]];
       ta^=(11)i*ans;
   printf("%lld",ta);
```

5.34 长链剖分(dp 合并)

一种常见的实现方法是用指针指向同一片数组区域,使得从链头到链尾正好指向连续的一段 数组,就不需要计算偏移量了。

O(n), O(n).

```
void dfs1(int x)
   top[x]=1;
   for (int i=fir[x];i;i=nxt[i]) if (!top[lj[i]])
       dfs1(lj[i]);
       if (len[lj[i]]>len[hc[x]]) hc[x]=lj[i];
   len[x]=len[hc[x]]+1;top[hc[x]]=0;
void dfs2(int x)
   *f[x]=1;gs[x]=1;
   if (!hc[x]) return;
   ed[x]=1;f[hc[x]]=f[x]+1;
   for (int i=fir[x];i;i=nxt[i]) if (!ed[lj[i]]) dfs2(lj[i]);
   ans[x]=ans[hc[x]]+1;gs[x]=gs[hc[x]];
   if (gs[x]==1) ans[x]=0;
   for (int i=fir[x];i;i=nxt[i]) if ((!ed[lj[i]])&&(lj[i]!=hc[x]))
       int v=lj[i],*p;
       for (int j=0;j<len[v];j++)</pre>
          *(p=f[x]+j+1)+=*(f[v]+j);
          if (j+1==ans[x]) {gs[x]=*p;continue;}
          if ((*p>gs[x])||(*p==gs[x])&&(j+1<ans[x])) {gs[x]=*p;ans[x]=j+1;}
       }
   gs[x]=*(f[x]+ans[x]);
   ed[x]=0;
```

5.35 动态 dp(全局平衡二叉树)

```
意义不大。 O((n+q)\log n), O(n)。
```

```
#include <stdio.h>
#include <algorithm>
#include <fstream>
using namespace std;
const int N=1e6+2,M=6e7+2,INF=-1e9;
struct matrix
{
    int a[2][2];
};
matrix s[N],js;
matrix operator *(matrix x,matrix y)
{
    js.a[0][0]=max(x.a[0][0]+y.a[0][0],x.a[0][1]+y.a[1][0]);
```

```
js.a[0][1]=max(x.a[0][0]+y.a[0][1],x.a[0][1]+y.a[1][1]);
   js.a[1][0]=max(x.a[1][0]+y.a[0][0],x.a[1][1]+y.a[1][0]);
   js.a[1][1]=max(x.a[1][0]+y.a[0][1],x.a[1][1]+y.a[1][1]);
   return js;
int st[N],c[N][2],hc[N],lj[N<<1],nxt[N<<1],fir[N],siz[N],v[N],g[N][2],fa[N],f[N],val[N];
int n,m,i,j,x,y,z,dtp,stp,tp,fh,bs,rt,aaa,la;
char dr[M+5],sc[M];
void pushup(int x)
{
   s[x].a[0][0]=s[x].a[0][1]=g[x][0];
   s[x].a[1][0]=g[x][1];s[x].a[1][1]=INF;
   if (c[x][0]) s[x]=s[c[x][0]]*s[x];
   if (c[x][1]) s[x]=s[x]*s[c[x][1]];
void add(int x,int y)
{
   lj[++bs]=y;
   nxt[bs]=fir[x];
   fir[x]=bs;
   lj[++bs]=x;
   nxt[bs]=fir[y];
   fir[y]=bs;
}
bool nroot(int x)
   return ((c[f[x]][0]==x)||(c[f[x]][1]==x));
void dfs1(int x)
{
   siz[x]=1;
   int i;
   for (i=fir[x];i;i=nxt[i]) if (lj[i]!=fa[x])
       fa[lj[i]]=x;
       dfs1(lj[i]);
       siz[x] += siz[lj[i]];
       if (siz[hc[x]]<siz[lj[i]]) hc[x]=lj[i];</pre>
   }
int build(int 1,int r)
   if (1>r) return 0;
   int i,tot=0,upn=0;
   for (i=1;i<=r;i++) tot+=val[i];tot>>=1;
   for (i=1;i<=r;i++)</pre>
       upn+=val[i];
       if (upn>=tot)
          f[c[st[i]][0]=build(1,i-1)]=st[i];
          f[c[st[i]][1]=build(i+1,r)]=st[i];
          pushup(st[i]);
          ++aaa;
          return st[i];
       }
   }
```

```
int dfs2(int x)
   int i,j;
   for (i=x;i;i=hc[i]) for (j=fir[i];j;j=nxt[j]) if ((lj[j]!=fa[i])&&(lj[j]!=hc[i]))
       f[y=dfs2(lj[j])]=i;
       g[i][0] += max(s[y].a[0][0],s[y].a[1][0]);
       g[i][1] += s[y].a[0][0];
   }
   tp=0;
   for (i=x;i;i=hc[i]) st[++tp]=i;
   for (i=1;i<tp;i++) val[i]=siz[st[i]]-siz[st[i+1]];</pre>
   val[tp]=siz[st[tp]];
   return build(1,tp);
void change(int x,int y)
   g[x][1] += y - v[x]; v[x] = y;
   while (f[x])
       if (nroot(x)) pushup(x);
       else
       {
           g[f[x]][0] = max(s[x].a[0][0],s[x].a[1][0]);
           g[f[x]][1]=s[x].a[0][0];
          pushup(x);
           g[f[x]][0] += max(s[x].a[0][0],s[x].a[1][0]);
           g[f[x]][1] += s[x].a[0][0];
       }
       x=f[x];
   pushup(x);
int main()
   scanf("%d%d",&n,&m);
   fread(dr+1,1,min(M,n*20+m*20),stdin);
   for (i=1;i<=n;i++)</pre>
       read(g[i][1]);
       v[i]=g[i][1];
   for (i=1;i<n;i++)</pre>
       read(x);read(y);
       add(x,y);
   dfs1(1);
   rt=dfs2(1);tp=0;
   while (m--)
   {
       read(x);read(y);
       change(x^la,y);
       x=la=max(s[rt].a[0][0],s[rt].a[1][0]);
       while (x)
       {
```

5.36 全局平衡二叉树(修改版)

```
O((n+q)\log n), O(n).
```

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
typedef pair<int,int> pa;
const int N=1e6+2,M=1e6+2;
ll ans;
pa w[N];
int c[N][2],f[N],fa[N],v[N],s[N],lz[N],lj[M],nxt[M],siz[N],hc[N],fir[N],st[N];
int a[N],top[N];
int n,i,x,y,z,bs,tp,rt;
void add()
   lj[++bs]=y;nxt[bs]=fir[x];fir[x]=bs;
   lj[++bs]=x;nxt[bs]=fir[y];fir[y]=bs;
void pushup(int &x)
{
   s[x]=min(v[x],min(s[c[x][0]],s[c[x][1]]));
}
void pushdown(int &x)
   if (lz[x]<0)</pre>
       int cc=c[x][0];
       if (cc)
          lz[cc]+=lz[x];s[cc]+=lz[x];v[cc]+=lz[x];
       cc=c[x][1];
       if (cc)
          v[cc]+=lz[x];lz[cc]+=lz[x];s[cc]+=lz[x];
       }1z[x]=0;
       return;
   }
}
bool nroot(int &x) {return c[f[x]][0]==x||c[f[x]][1]==x;}
bool cmp(pa &o,pa &p) {return o>p;}
void dfs1(int x)
   siz[x]=1;
   for (int i=fir[x];i;i=nxt[i]) if (lj[i]!=fa[x])
       fa[lj[i]]=x;dfs1(lj[i]);siz[x]+=siz[lj[i]];
```

```
if (siz[hc[x]]<siz[lj[i]]) hc[x]=lj[i];</pre>
}
int build(int 1,int r)
   if (l>r) return 0;
   if (l==r)
       l=st[l];s[l]=v[l]=siz[l]>>1;
       return 1;
   int x=lower_bound(a+1,a+r+1,a[l]+a[r]>>1)-a,y=st[x];
   c[y][0]=build(1,x-1);
   c[y][1]=build(x+1,r);
   v[y]=siz[y]>>1;
   if (c[y][0]) f[c[y][0]]=y;
   if (c[y][1]) f[c[y][1]]=y;
   pushup(y);
   return y;
void dfs2(int x)
   if (!hc[x]) return;
   int i;
   top[hc[x]]=top[x];
   if (top[x] == x)
   {
       st[tp=1]=x;
       for (i=hc[x];i;i=hc[i]) st[++tp]=i;
       for (i=1;i<=tp;i++) a[i]=siz[st[i]]-siz[hc[st[i]]]+a[i-1];</pre>
       f[build(1,tp)]=fa[x];
   }
   dfs2(hc[x]);
   for (i=fir[x];i;i=nxt[i]) if (lj[i]!=fa[x]&&lj[i]!=hc[x]) dfs2(top[lj[i]]=lj[i]);
void mdf(int x)
{
   int y=x;
   st[tp=1]=x;
   while (y=f[y]) st[++tp]=y;y=x;
   while (tp) pushdown(st[tp--]);
   while (x)
       --v[x]; --1z[c[x][0]]; --v[c[x][0]]; --s[c[x][0]];
       while (c[f[x]][0]==x) x=f[x];x=f[x];
   pushup(y);
   while (y=f[y]) pushup(y);
int ask(int x)
   int y=x;
   st[tp=1]=x;
   while (y=f[y]) st[++tp]=y;
   while (tp) pushdown(st[tp--]);
   int r=v[x];
   while (x)
```

```
{
    r=min(r,min(v[x],s[c[x][0]]));
    while (c[f[x]][0]==x) x=f[x];x=f[x];
}
    return r;
}
signed main()
{
    read(n);s[0]=1e9;
    for (i=1;i<=n;i++) read(w[w[i].second=i].first);
    for (i=1;i<n;i++) read(x),read(y),add();
    sort(w+1,w+n+1,cmp);dfs1(1);dfs2(top[1]=1);rt=1;while (f[rt]) rt=f[rt];
    for (i=1;i<=n&&v[rt];i++) if (ask(w[i].second)) mdf(w[i].second),ans+=w[i].first;
    printf("%lld",ans);
}</pre>
```


传入点标号列表,返回虚树边表。自动认为 1 是根,标号从 1 开始。 需要注意的是:在清空的时候需要同时考虑点列表和边表,都清空一下。 你需要提供的是: dep, lca, dfn。 $O(n + \sum k \log n)$, O(n)。

```
vector<pair<int, int>> get_tree(vector<int> a)
{
   vector<pair<int, int>> edges;
   sort(all(a), [&](int u, int v) { return dfn[u]<dfn[v]; });</pre>
   vector<int> st(a.size()+2);
   int tp=0;
   auto ins=[&](int u)
          if (tp==0)
              st[tp=1]=u;
              return;
          int v=lca(st[tp], u);
          while (tp>1&&dep[v]<dep[st[tp-1]])</pre>
              edges.emplace_back(st[tp-1], st[tp]);
              --tp;
          if (dep[v] < dep[st[tp]]) edges.emplace_back(v, st[tp--]);</pre>
          if (!tp||st[tp]!=v) st[++tp]=v;
          st[++tp]=u;
       };
   if (a[0]!=1) st[tp=1]=1;//先行添加根节点
   for (int u:a) ins(u);
   if (tp) while (--tp) edges.emplace_back(st[tp], st[tp+1]);//回溯
   return edges;
```

5.38 圆方树

题意:求仙人掌上两点最短路。

```
O(n+m), O(n+m).
```

```
#include <bits/stdc++.h>
using namespace std;
#if !defined(ONLINE_JUDGE)&&defined(LOCAL)
#include "my_header\debug.h"
#else
#define dbg(...); 1;
#endif
typedef unsigned int ui;
typedef long long 11;
#define all(x) (x).begin(),(x).end()
const int N=3e4+2,M=3e4+2;//M 包括方点
struct P
{
   int v,w,id;
   P(int a,int b,int c):v(a),w(b),id(c){}
};
struct Q
{
   int v,w;
   Q(int a,int b):v(a),w(b){}
};
vector<P> e[N];
vector<Q> fe[M];
int dfn[M],low[N],st[N],len[M],top[M],siz[M],hc[M],dep[M],f[M],rb[N];
bool ed[M];//ed,dfn,loop,sum,fe,hc,tp,id,cnt,dep[1] 需初始化(注意倍率), ed 大小为边数
int tp,id,cnt,n;
void dfs1(int u)
   dfn[u]=low[u]=++id;
   st[++tp]=u;
   for (auto [v,w,id]:e[u]) if (!ed[id])
       if (dfn[v]) low[u]=min(low[u],dfn[v]),rb[v]=w; else
       {
          ed[id]=1;
          dfs1(v);
          if (dfn[u]>low[v]) low[u]=min(low[u],low[v]),rb[v]=w; else
              int ntp=tp;
              while (st[ntp]!=v) --ntp;
              if (ntp==tp)//圆圆边
              {
                 --tp;
                 fe[u].emplace_back(v,w);
                 f[v]=u;
                 continue;
              ++cnt;f[cnt]=u;
              for (int i=ntp;i<=tp;i++) f[st[i]]=cnt;</pre>
              len[st[ntp]]=w;
              for (int i=ntp+1;i<=tp;i++) len[st[i]]=len[st[i-1]]+rb[st[i]];</pre>
              len[cnt] = len[st[tp]] + rb[u];
              fe[u].emplace_back(cnt,0);
              for (int i=ntp;i<=tp;i++) fe[cnt].emplace_back(st[i],min(len[st[i]],len[cnt]-len[st</pre>
                  [i]]));
              tp=ntp-1;
```

```
}
       }
   }
void dfs2(int u)
   siz[u]=1;
   for (auto [v,w]:fe[u])
       dep[v]=dep[u]+w;
       dfs2(v);
       siz[u]+=siz[v];
       if (siz[v]>siz[hc[u]]) hc[u]=v;
   }
void dfs3(int u)
   dfn[u]=++id;
   if (hc[u])
       top[hc[u]]=top[u];
       dfs3(hc[u]);
       for (auto [v,w]:fe[u]) if (v!=hc[u]) dfs3(top[v]=v);
   }
}
int lca(int u,int v)
   while (top[u]!=top[v]) if (dfn[top[u]]>dfn[top[v]]) u=f[top[u]]; else v=f[top[v]];//注意不能用
        dep
   return dfn[u] < dfn[v]?u:v;</pre>
}
int find(int u,int v)//u 是根
   if (dfn[hc[u]]+siz[hc[u]]>dfn[v]) return hc[u];
   while (f[top[v]]!=u) v=f[top[v]];
   return top[v];
int dis(int u,int v)
   int o=lca(u,v),r=dep[u]+dep[v];
   if (o<=n) return r-(dep[o]<<1);</pre>
   u=find(o,u);v=find(o,v);
   if (len[u]>len[v]) swap(u,v);
   return r+min(len[v]-len[u],len[o]-(len[v]-len[u]))-dep[u]-dep[v];
int main()
{
   ios::sync_with_stdio(0);cin.tie(0);
   int m,q,i;
   cin>>n>>m>>q;cnt=n;
   for (i=1;i<=m;i++)</pre>
   {
       int u,v,w;
       cin>>u>>v>>w;
       e[u].emplace_back(v,w,i);
       e[v].emplace_back(u,w,i);
   }
```

```
mt19937 rnd(time(0));
for (i=1;i<=n;i++) shuffle(all(e[i]),rnd);
dfs1(1);id=0;
dfs2(1);
dfs3(top[1]=1);
while (q--)
{
   int u,v;
   cin>>u>>v;
   cout<<dis(u,v)<<'\n';
}</pre>
```

5.39 广义圆方树

```
O(n+m), O(n+m).
```

5.40 支配树 (DAG 版)

```
其定义见一般图版。 O(m \log n), O(n \log n)。
```

```
int lca(int x,int y)
{
    int i;
    if (dep[x] < dep[y]) swap(x,y);
    for (i=lm[x];dep[x]!=dep[y];i--) if (dep[f[x][i]]>=dep[y]) x=f[x][i];
    if (x==y) return x;
    for (i=lm[x];f[x][0]!=f[y][0];i--) if (f[x][i]!=f[y][i])
    {
        x=f[x][i];y=f[y][i];
    }
    return f[x][0];
}
void dfs(int x)
{
```

```
s[x]=1;
   int i;
   for (i=sfir[x];i;i=snxt[i])
       dfs(slj[i]);
       s[x] += s[slj[i]];
   }
}
int main()
   dep[0] = -1;
   read(n);
   for (i=1;i<=n;i++)</pre>
       read(x);
       while (x)
           add(x,i);
           read(x);
       }
   dl[tou=wei=1]=++n;
   for (i=1;i<n;i++) if (!rd[i]) add(n,i);</pre>
   while (tou<=wei)</pre>
       for (i=fir[x=dl[tou++]];i;i=nxt[i]) if (--rd[lj[i]]==0) dl[++wei]=lj[i];
       if (i=ffir[x])
           y=flj[i];
           while (i=fnxt[i]) y=lca(y,flj[i]);
           f[x][0]=y;
       } else y=0;
       sadd(y,x);
       f[x][0]=y;
       for (i=1;i<=16;i++) if (0==(f[x][i]=f[f[x][i-1]][i-1]))</pre>
           lm[x]=i;
           break;
       dep[x]=dep[y]+1;
   }
   dfs(n);
   for (i=1;i<n;i++) printf("%d\n",s[i]-1);</pre>
}
```

5.41 支配树(一般图)

u 支配 v 指的是从 S 到 v 的路径必然经过 u。支配树是保持支配关系不变的树,其中 S 是根, idom[u] 是 u 的父节点。

```
#include <bits/stdc++.h>
using namespace std;
const int N=2e5+2;
vector<int> lj[N],llj[N],fl[N],tl[N],buc[N],c[N];
int f[N],mn[N],siz[N],sdom[N],idom[N],dfn[N],nfd[N],pv[N];
int n,m,cnt,i,j,x,y,na;
```

```
bool reach[N];
void dfs1(int x)
   nfd[dfn[x]=++cnt]=x;
   for (auto v:lj[x]) if (!dfn[v]) dfs1(v),c[x].push_back(v);
int getf(int x)
{
   if (f[x]==x) return x;
   int u=getf(f[x]);
   mn[x]=dfn[sdom[mn[x]]] < dfn[sdom[mn[f[x]]]]?mn[x]:mn[f[x]];
void dfs0(int u)
   reach[u]=1;
   for (auto &v:lj[u]) if (!reach[v]) dfs0(v);
int main()
{
   ios::sync_with_stdio(0);cin.tie(0);
   int S;
   cin>>n>>m>>S;++S;
   while (m--) cin>>x>>y,++x,++y,lj[x].push_back(y);
   for (i=1;i<=n;i++) mn[i]=f[i]=i;</pre>
   dfs0(S);
   for (i=1;i<=n;i++) if (reach[i]) for (auto &v:lj[i]) if (reach[v]) llj[i].push_back(v),fl[v].</pre>
       push_back(i);
   for (i=1;i<=n;i++) lj[i]=llj[i];</pre>
   dfs1(S);dfn[0]=1e9;
   for (i=cnt;i;i--)
       x=nfd[i];na=0;
       for (auto v:fl[x])
           sdom[x]=dfn[sdom[x]]<dfn[v]?sdom[x]:v;</pre>
           if (dfn[v]>dfn[x])
              getf(v);
              na=dfn[sdom[na]] < dfn[sdom[mn[v]]]?na:mn[v];</pre>
           }
       sdom[x]=dfn[sdom[x]]<dfn[sdom[na]]?sdom[x]:sdom[na];</pre>
       buc[sdom[x]].push_back(x);
       for (auto v:buc[x]) getf(v),pv[v]=mn[v];
       for (auto v:c[x]) f[v]=x,mn[v]=dfn[sdom[mn[v]]]<dfn[sdom[mn[x]]]?mn[v]:mn[x];</pre>
   for (i=1;i<=n;i++) idom[nfd[i]]=(sdom[pv[nfd[i]]]==sdom[nfd[i]])?sdom[nfd[i]]:idom[pv[nfd[i]]</pre>
       ]]];
   for (i=1;i<=n;i++) cout<<(i==S?S:idom[i])-1<<"_\\n"[i==n];</pre>
}
```

5.42 最小乘积生成树

题意: 每条边有两个属性 x_i, y_i ,你需要最小化 $(\sum x_i)(\sum y_i)$ 。 你需要实现的是 sol1,即按照 val 为权值的答案。 val_i 是根据 x_i, y_i 计算的。

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N=202,M=10002;
struct P
{
   int x,y;
   P(int a=0, int b=0):x(a),y(b){}
   bool operator<(const P &o) const {return (ll)x*y<(ll)o.x*o.y||(ll)x*y==(ll)o.x*o.y&&x<o.x;}</pre>
};
struct Q
   int u,v,x,y,val;
   bool operator<(const Q &o) const {return val<o.val;}</pre>
};
P ans=P(1e9,1e9),1,r;
Q a[M];
int f[N];
int n,m,i;
int getf(int x)
   if (f[x]==x) return x;
   return f[x]=getf(f[x]);
P sol1()
   P r=P(0,0);
   for (i=1;i<=n;i++) f[i]=i;</pre>
   sort(a+1,a+m+1);
   for (i=1;i<=m;i++) if (getf(a[i].u)!=getf(a[i].v))</pre>
       f[f[a[i].u]]=f[a[i].v];
       r.x+=a[i].x,r.y+=a[i].y;
   return r;
void sol2(P 1,P r)
{
   for (i=1;i<=m;i++) a[i].val=(r.x-l.x)*a[i].y+(l.y-r.y)*a[i].x;</pre>
   P np=sol1();
   ans=min(ans,np);
   if ((11)(r.x-1.x)*(np.y-1.y)-(11)(r.y-1.y)*(np.x-1.x)>=0) return;
   sol2(1,np);sol2(np,r);
int main()
   read(n); read(m);
   for (i=1;i<=m;i++) read(a[i].u),read(a[i].v),read(a[i].x),read(a[i].y),++a[i].u,++a[i].v;</pre>
   for (i=1;i<=m;i++) a[i].val=a[i].x;l=sol1();</pre>
   for (i=1;i<=m;i++) a[i].val=a[i].y;r=sol1();</pre>
   ans=min(ans,min(1,r)); sol2(1,r);
   printf("%du%d",ans.x,ans.y);
}
```

5.43 最小斯坦纳树

题意: 让给定点集连通的最小生成树(不要求全图连通) $O(3^k n + 2^k m \log m)$ 。

```
const int N=102,M=1002,K=1024;
typedef long long 11;
typedef pair<ll,int> pa;
priority_queue<pa,vector<pa>,greater<pa> > heap;
pa cr;
11 f[K][N],inf;
int lj[M],len[M],nxt[M],fir[N];
int n,m,q,i,j,k,x,y,z,bs,c;
void add()
{
   lj[++bs]=y;
   len[bs]=z;
   nxt[bs]=fir[x];
   fir[x]=bs;
   lj[++bs]=x;
   len[bs]=z;
   nxt[bs]=fir[y];
   fir[y]=bs;
void dijk(int s)
{
   int i;
   while (!heap.empty())
       x=heap.top().second;heap.pop();
       for (i=fir[x];i;i=nxt[i]) if (f[s][lj[i]]>f[s][x]+len[i])
          cr.first=f[s][cr.second=lj[i]]=f[s][x]+len[i];
          heap.push(cr);
       while ((!heap.empty())&&(heap.top().first!=f[s][heap.top().second])) heap.pop();
   }
}
int main()
   memset(f,0x3f,sizeof(f));inf=f[0][0];
   read(n);read(m);read(q);
   while (m--)
       read(x);read(y);read(z);
       add();
   for (i=1;i<=q;i++)</pre>
       read(x);
       f[1 << i-1][x]=0;
   q=(1<<q)-1;
   for (i=1;i<=q;i++)</pre>
       for (k=1;k<=n;k++)</pre>
          for (j=i&(i-1); j; j=i&(j-1)) f[i][k]=min(f[i][k],f[j][k]+f[i^j][k]);
```

5.44 2-sat

支持添加一个条件 add(u,x,v,y),表示 $a_u=x\Rightarrow a_v=y$ 。支持设定一个变量的值。O(n+m),O(n+m)。

```
struct sat
   vector<vector<int>> e;
   vector<int> dfn,low,st,f,ed;
   int fs,tp,id,n;
   sat(int n):n(n),e(n*2),dfn(n*2,-1),low(n*2),st(n*2),f(n*2,-1),ed(n*2),fs(0),tp(-1),id(0)
   void dfs(int u)
       dfn[u]=low[u]=id++;
       ed[u]=1;st[++tp]=u;
       for (int v:e[u]) if (dfn[v]!=-1)
          if (ed[v]) low[u]=min(low[u],dfn[v]);
       } else dfs(v),low[u]=min(low[u],low[v]);
       if (dfn[u]==low[u])
       {
          do
          {
              f[st[tp]]=fs;
              ed[st[tp]]=0;
          } while (st[tp--]!=u);
          ++fs;
       }
   }
   void add(int u,bool x,int v,bool y)
       assert(u>=0\&\&u<n\&\&v>=0\&\&v<n);
       e[u+x*n].push_back(v+y*n);
       e[v+(y^1)*n].push_back(u+(x^1)*n);
   void set(int u,bool x)
   {
       assert(u>=0\&\&u<n);
       e[u+(x^1)*n].push_back(u+x*n);
   }
   vector<int> getans()
       int i;
       for (i=0;i<n*2;i++) if (dfn[i]==-1) dfs(i);</pre>
       vector<int> r(n);
       for (i=0;i<n;i++)</pre>
          if (f[i]==f[i+n]) return {};
```

```
r[i]=f[i]>f[i+n];
}
return r;
}
};
```

5.45 Kosaraju 强连通分量(bitset 优化)

```
实用意义不大。O(\frac{n^2}{w}),O(\frac{n^2}{w})。
```

```
void dfs1(int x)
   int i;ed[x]=0;
   for (i=(lj[x]&ed)._Find_first();i<=n;i=(lj[x]&ed)._Find_next(i)) dfs1(i);</pre>
   sx[--tp]=x;
void dfs2(int x)
{
   int i;ed[x]=0;tv[f[x]=f[0]]+=v[x];
   for (i=(fj[x]&ed)._Find_first();i<=n;i=(fj[x]&ed)._Find_next(i)) dfs2(i);</pre>
int main()
   read(n);read(m);tp=n+1;
   for (i=1;i<=n;i++) {ed[i]=1;read(v[i]);}</pre>
   for (i=1;i<=m;i++)</pre>
   {
       read(x); read(y); lj[x][y]=1; fj[y][x]=1; lb[i][0]=x; lb[i][1]=y;
   }
   for (i=1;i<=n;i++) if (ed[i]) dfs1(i);</pre>
   ed.set();
   for (i=1;i<=n;i++) if (ed[sx[i]]) {++f[0];dfs2(sx[i]);}</pre>
   for (i=1;i<=m;i++) if (f[lb[i][0]]!=f[lb[i][1]])</pre>
       flj[f[lb[i][0]]].push_back(f[lb[i][1]]);++rd[f[lb[i][1]]];
   for (i=1;i<=f[0];i++) if (!rd[i]) dl[++wei]=i;</pre>
   while (tou<=wei)</pre>
       x=dl[tou++];g[x]+=tv[x];
       for (i=0;i<flj[x].size();i++)</pre>
           g[flj[x][i]]=max(g[flj[x][i]],g[x]);
           if (--rd[flj[x][i]]==0) dl[++wei]=flj[x][i];
   }
   for (i=1;i<=f[0];i++) ans=max(ans,g[i]);printf("%d",ans);</pre>
```

5.46 Tarjan 强连通分量

```
O(n+m), O(n+m).
```

```
int dfn[N],low[N],st[N],f[N],fs,tp,id;
bool ed[N];
```

5.47 动态强连通分量

给出一个加边序列,solve 会返回每个时间进入强连通分量的边。点标号范围是 [0,n)

```
struct union_set
   vector<int> f;
   int n;
   union_set() { }
   union_set(int nn) :n(nn), f(nn+1)
   {
       iota(all(f), 0);
   int getf(int u) { return f[u] == u ? u : f[u] = getf(f[u]); }
   bool merge(int u, int v)
       u = getf(u); v = getf(v);
       if (u==v) return 0;
      f[u] = v;
      return 1;
   bool connected(int u, int v) { return getf(u)==getf(v); }
};
struct edge
   int u, v, t;
};
vector<vector<edge>> solve(int n, const auto& eg)//[0,n)
   int m = eg.size(), tp = -1, id = 0, fs = 0;
   vector<vector<edge>> res(m);
   vector e(n, vector<int>());
   vector < int > dfn(n, -1), low(n, -1), st(n), ed(n), blk(n), node;
   union_set s(n-1);
   function<void(int)> dfs = [&](int u)
          dfn[u] = low[u] = id++;
```

```
ed[st[++tp] = u] = 1;
          for (int v : e[u]) if (dfn[v]!=-1)
              if (ed[v]) cmin(low[u], dfn[v]);
          else dfs(v), cmin(low[u], low[v]);
          if (dfn[u] == low[u])
              do
              {
                  ed[st[tp]] = 0;
                 blk[st[tp]] = fs;
              } while (st[tp--]!=u);
              ++fs;
          }
       };
   auto ztef = [&](auto ztef, int 1, int r, const vector<edge>& q)
          if (eg.size()==0) return;
          if (1+1==r)
              if (1<m)</pre>
              {
                  res[1].insert(res[1].end(), all(q));
                  for (auto [u, v, t]:q) s.merge(u, v);
              }
              return;
          int m = (1+r)/2;
          node.clear();
          for (auto [u, v, t]:q) if (t<m)</pre>
              u = s.getf(u);
              v = s.getf(v);
              e[u].push_back(v);
              node.push_back(u);
              node.push_back(v);
          }
          else break;
          for (int u : node) if (dfn[u]==-1) dfs(u);
          vector<vector<edge>> g(2);
          for (auto [u, v, t]:q) g[t<m&&blk[s.f[u]]==blk[s.f[v]]].push_back({u, v, t});</pre>
          for (int u : node)
              e[u].clear();
              dfn[u] = low[u] = -1;
          }
          id = fs = 0;
          ztef(ztef, 1, m, g[1]);
          ztef(ztef, m, r, g[0]);
       };
   ztef(ztef, 0, m+1, eg);
   return res;
}
int main()
{
   ios::sync_with_stdio(0); cin.tie(0);
```

```
cout<<fixed<<setprecision(15);</pre>
   int n, m, i, j;
   cin>>n>>m;
   vector<ll> x(n);
   cin>>x;
   vector<edge> edges(m);
   for (i = 0;i<m;i++)</pre>
       auto& [u, v, t] = edges[i];
       cin>>u>>v;
       t = i;
   }
   auto event = solve(n, edges);
   union_set s(n-1);
   11 \text{ ans} = 0;
   for (auto e:event)
       for (auto [u, v, t]:e)
           u = s.getf(u);
           v = s.getf(v);
           if (u==v) continue;
           s.f[v] = u;
           (ans += x[u]*x[v]) %= p;
           (x[u] += x[v]) \% = p;
       cout<<ans<<'\n';</pre>
   }
}
```

5.48 欧拉路径(字典序最小)

```
#include <bits/stdc++.h>
using namespace std;
#if !defined(ONLINE_JUDGE)&&defined(LOCAL)
#include "my_header\debug.h"
#else
#define dbg(...); 1;
#endif
typedef unsigned int ui;
typedef long long 11;
#define all(x) (x).begin(),(x).end()
const int N=1e5+2;
vector<int> e[N];
int rd[N],cd[N];
vector<int> ans;
void dfs(int u)
   while (e[u].size())
       int v=e[u].back();
       e[u].pop_back();
       dfs(v);
       ans.push_back(v);
   }
}
```

```
int main()
   ios::sync_with_stdio(0);cin.tie(0);
   int n,m,i,x=0;
   cin>>n>>m;ans.reserve(m);
   while (m--)
       int u,v;
       cin>>u>>v;
       e[u].push_back(v);
       ++cd[u];++rd[v];
   for (i=1;i<=n;i++) if (cd[i]!=rd[i])</pre>
       if (abs(cd[i]-rd[i])>1) goto no;
       ++x;
   }
   if (x>2) goto no; x=1;
   for (i=1;i<=n;i++) if (cd[i]>rd[i]) {x=i;break;}
   for (i=1;i<=n;i++) sort(all(e[i])),reverse(all(e[i]));</pre>
   dfs(x);ans.push_back(x);reverse(all(ans));
   for (i=0;i<ans.size();i++) cout<<ans[i]<<"_\\n"[i+1==ans.size()];</pre>
   return 0;
   no:cout<<"No"<<endl;</pre>
```

5.49 欧拉回/通路构造

```
O(n+m), O(n+m).
```

```
optional<vector<int>> undirected_euler_cycle(int n,const vector<pair<int,int>> &edges)//[1,n]/[1,
   m], 正数表示正向, 负数表示反向
{
   int i=0;
   vector<int> rd(n+1),ed(edges.size()+1),r;
   vector<vector<pair<int,int>>> e(n+1);
   for (auto [u,v]:edges)
       ++rd[u],++rd[v];
       e[u].push_back({v,++i});
       e[v].push_back({u,-i});
   for (i=1;i<=n;i++) if (rd[i]&1) return {};</pre>
   function<void(int)> dfs=[&](int u)
       while (e[u].size())
          auto [v,w]=e[u].back();
          e[u].pop_back();
          if (ed[abs(w)]) continue;
          ed[abs(w)]=1;
          dfs(v);
          r.push_back(w);
       }
   for (i=1;i<=n;i++) if (rd[i]) {dfs(i);break;}</pre>
   reverse(all(r));
```

```
if (r.size()!=edges.size()) return {};
   return {r};
optional<vector<int>> directed_euler_cycle(int n,const vector<pair<int,int>> &edges)//[1,n]/[1,m]
{
   int i=0;
   vector<int> rd(n+1),cd(n+1),r;
   vector<vector<pair<int,int>>> e(n+1);
   for (auto [u,v]:edges)
       ++cd[u],++rd[v];
       e[u].push_back({v,++i});
   for (i=1;i<=n;i++) if (rd[i]!=cd[i]) return {};</pre>
   function<void(int)> dfs=[&](int u)
       while (e[u].size())
          auto [v,w]=e[u].back();
          e[u].pop_back();
          dfs(v);
          r.push_back(w);
   };
   for (i=1;i<=n;i++) if (cd[i]) {dfs(i);break;}</pre>
   reverse(all(r));
   if (r.size()!=edges.size()) return {};
   return {r};
optional<vector<int>> undirected_euler_trail(int n,const vector<pair<int,int>> &edges)//[1,n]/[1,
   m], 正数表示正向, 负数表示反向
{
   int i=0;
   vector<int> rd(n+1),ed(edges.size()+1),r;
   vector<vector<pair<int,int>>> e(n+1);
   for (auto [u,v]:edges)
   {
       ++rd[u],++rd[v];
       e[u].push_back({v,++i});
       e[v].push_back({u,-i});
   }
   int odd=0;
   for (i=1; i<=n; i++) odd+=rd[i]&1;</pre>
   if (odd>2) return { };
   function<void(int)> dfs=[&](int u)
          while (e[u].size())
              auto [v,w]=e[u].back();
              e[u].pop_back();
              if (ed[abs(w)]) continue;
              ed[abs(w)]=1;
              dfs(v);
              r.push_back(w);
          }
       };
   for (i=1; i<=n; i++) if (rd[i]&1) { dfs(i); break; }</pre>
```

```
if (i>n)
       for (i=1; i<=n; i++) if (rd[i]) { dfs(i); break; }</pre>
   reverse(all(r));
   if (r.size()!=edges.size()) return { };
   return {r};
optional<vector<int>> directed_euler_trail(int n,const vector<pair<int,int>> &edges)//[1,n]/[1,m]
   int i=0;
   vector<int> rd(n+1),cd(n+1),r;
   vector<vector<pair<int,int>>> e(n+1);
   for (auto [u,v]:edges)
       ++cd[u],++rd[v];
       e[u].push_back({v,++i});
   int diff=0;
   for (i=1; i<=n; i++)</pre>
       if (abs(rd[i]-cd[i])>1) return { };
       if (rd[i]!=cd[i]) ++diff;
   if (diff>2) return { };
   function<void(int)> dfs=[&](int u)
          while (e[u].size())
              auto [v,w]=e[u].back();
              e[u].pop_back();
              dfs(v);
              r.push_back(w);
   for (i=1; i<=n; i++) if (cd[i]>rd[i]) { dfs(i); break; }
   if (i>n)
       for (i=1; i<=n; i++) if (cd[i]) { dfs(i); break; }</pre>
   reverse(all(r));
   if (r.size()!=edges.size()) return { };
   return {r};
}
```

5.50 有向图欧拉回路计数(BEST 定理)/生成树计数

 $O(n^3)$, $O(n^2)$.

以 u 为起点的欧拉回路个数 $sum=T(u)\times\prod_{v=1}^n(out(v)-1)!$,其中 T(u) 是以 u 为根的内向树个数(出度矩阵-邻接矩阵),out(v) 是 v 的出度。若允许循环同构(如 $1\to 2\to 1\to 3\to 1$ 与 $1\to 3\to 1\to 2\to 1$),还需多乘 out(u)。

这里的部分代码是未经验证的。

```
11 det(vector<vector<ll>>> b)
{
```

```
ll r=1;
   int n=b.size(), i, j, k;
   for (i=0; i<n; i++)</pre>
       for (j=i; j<n; j++) if (b[j][i]) break;</pre>
       if (j==n) return 0;
       swap(b[j], b[i]);
       if (j!=i) r=(p-r)%p;
       r=r*b[i][i]%p;
       b[i][i]=ksm(b[i][i], p-2);
       for (j=n-1; j>=i; j--) b[i][j]=b[i][j]*b[i][i]%p;
       for (j=i+1; j<n; j++) for (k=n-1; k>=i; k--) b[j][k]=(b[j][k]+(p-b[j][i])*b[i][k])%p;
   }
   return r;
11 eular_path_count(vector<vector<int>> a, int s, int t)
{
   int n=a.size(), i, j, k;
   ++a[t][s]; s=t;
   vector<int> rd(n), cd(n);
   for (i=0; i<n; i++) for (j=0; j<n; j++) cd[i]+=a[i][j], rd[j]+=a[i][j];
   for (i=0; i<n; i++) if (cd[i]!=rd[i]) return 0;</pre>
   vector<int> f(n);
   iota(all(f), 0);
   function<int(int)> getf=[&](int u) { return f[u]==u?u:f[u]=getf(f[u]); };
   for (i=0; i<n; i++) for (j=0; j<n; j++) if (a[i][j]) f[getf(i)]=getf(j);</pre>
   ll r=1;
   vector<int> id;
   for (i=0; i<n; i++) if (cd[i])</pre>
       if (getf(i)!=getf(s)) return 0;
       r=r*fac[cd[i]-1]%p;
       if (i!=s) id.push_back(i);
   n=id.size();
   vector b(n, vector<ll>(n));
   for (i=0; i<n; i++)</pre>
       b[i][i]=cd[id[i]]-a[id[i]][id[i]];
       for (j=0; j<n; j++) if (i!=j) b[i][j]=(p-a[id[i]][id[j]])%p;</pre>
   return r*det(b)%p;
}
11 eular_path_count(vector<vector<int>>> a)
   int n=a.size(), i, j, s=-1, t=-1;
   vector<int> rd(n), cd(n), d(n);
   for (i=0; i<n; i++) for (j=0; j<n; j++) cd[i]+=a[i][j], rd[j]+=a[i][j];
   if (count(all(cd), 0)==n) return 1;
   for (i=0; i<n; i++) d[i]=cd[i]-rd[i];</pre>
   s=max_element(all(d))-d.begin();
   t=min_element(all(d))-d.begin();
   ll r=0;
   if (s==t)
       for (i=0; i<n; i++) if (cd[i]) r+=eular_path_count(a, i, i);</pre>
   }
```

```
else r=eular_path_count(a, s, t);
   return r%p;
}
11 eular_circuit_count(vector<vector<int>> a)
   int n=a.size(), i, j;
   for (i=0; i<n; i++) for (j=0; j<n; j++) if (a[i][j]) return eular_path_count(a, i, i)*ksm(
      accumulate(all(a[i]), Ollu)%p, p-2)%p;
   return 1;
11 directed_spanning_tree_count(vector<vector<int>> a, int s)
   int n=a.size(), i, j;
   vector b(n-1, vector<ll>(n-1));
   for (i=0; i<n; i++) a[i][i]=0;</pre>
   j])%p;
   for (i=0; i<n; i++) if (i!=s) for (j=0; j<n; j++) (b[i-(i>s)][i-(i>s)]+=a[j][i])%=p;
   return det(b);
}//外向
11 undirected_spanning_tree_count(vector<vector<int>>> a)
   int n=a.size(), i, j;
   --n:
   vector b(n, vector<ll>(n));
   for (i=0; i<n; i++) a[i][i]=0;</pre>
   for (i=0; i<n; i++) for (j=0; j<n; j++) if (i!=j) b[i][j]=(p-a[i][j])%p;
   for (i=0; i<n; i++) b[i][i]=reduce(all(a[i]), Ollu)%p;</pre>
   return det(b);
}
```

5.51 点染色

结论: $\chi(G) \leq \Delta(G) + 1$,其中 $\Delta(G)$ 是图的最大度。只有奇圈和完全图取等。构造方案只能爆搜。

```
vector<int> chromatic_number(int n,const vector<pair<int,int>> &edges)//[0,n)
   vector r(n,-1), cur(n,-1);
   vector<vector<int>> e(n);
   int ans=0,i;
   for (auto [u,v]:edges) e[u].push_back(v),e[v].push_back(u);
   for (i=0;i<n;i++) ans=max(ans,(int)e[i].size());</pre>
   ans+=2;
   vector p(n,vector(ans,0));
   function<void(int)> dfs=[&](int u)
       int col=u?*max_element(cur.begin(),cur.begin()+u)+1:0;
       if (col>=ans) return;
       if (u==n)
          r=cur;
          ans=col;
          return;
       }
       int i;
```

5.52 最大独立集

爆搜。

```
vector<int> indep_set(int n,const vector<pair<int,int>> &edges)//[0,n)
   vector<vector<int>> e(n);
   mt19937 rnd(998);
   vector<int> p(n),q(n),ed(n);
   iota(all(p),0);
   shuffle(all(p),rnd);
   for (int i=0;i<n;i++) q[p[i]]=i;</pre>
   for (auto [u,v]:edges)
       e[p[u]].push_back(p[v]);
       e[p[v]].push_back(p[u]);
   vector<int> r,cur;
   function<void(int)> dfs=[&](int u)
       if (cur.size()+n-u<=r.size()) return;</pre>
       if (u==n)
       {
          r=cur;
          return;
      }
      if (!ed[u])
          cur.push_back(u);
          for (int v:e[u]) ++ed[v];
          dfs(u+1);
          for (int v:e[u]) --ed[v];
          cur.pop_back();
       if (ed[u]||e[u].size()) dfs(u+1);
   };dfs(0);
   for (int &x:r) x=q[x];
   sort(all(r));
   return r;
```

6 计算几何

6.1 自适应 simpson 法

sim(l,r) 计算 $\int_{l}^{r} f(x) dx$

```
const db eps=1e-7;
db sl,sr,sm,a;
db f(db x)
{
    return pow(x,a/x-x);
}
db g(db l,db r)
{
    db mid=(l+r)*0.5;
    return (f(l)+f(r)+f(mid)*4)/6*(r-1);
}
db sim(db l,db r)
{
    db mid=(l+r)*0.5;
    sl=g(l,mid);sr=g(mid,r);sm=g(l,r);
    if (abs(sl+sr-sm)<eps) return sl+sr;
    return sim(l,mid)+sim(mid,r);
}</pre>
```

6.2 计算几何全

功能其实比较少,因为实际遇到的几何题不多。最有用的可能是闵可夫斯基和合并凸包,和常规的线段判交之类的。其余功能最好直接使用 HDU 板。

```
namespace geometry//不要用 int!
#define tmpl template<class T>
   typedef long long 11;
   typedef long double db;
   const db eps=1e-6;
#define all(x) (x).begin(),(x).end()
   inline int sgn(const 11 &x)
       if (x<0) return -1;</pre>
       return x>0;
   inline int sgn(const db &x)
       if (fabs(x) < eps) return 0;</pre>
       return x>0?1:-1;
   tmpl struct point//* 为叉乘, & 为点乘, 只允许使用 (long )double 和 11
       T x, y;
       point() { }
       point(T a, T b):x(a), y(b) { }
       operator point<ll>() const { return point<ll>(x, y); }
       operator point<db>() const { return point<db>(x, y); }
       point<T> operator+(const point<T> &o) const { return point(x+o.x, y+o.y); }
       point<T> operator-(const point<T> &o) const { return point(x-o.x, y-o.y); }
       point<T> operator*(const T &k) const { return point(x*k, y*k); }
```

```
point<T> operator/(const T &k) const { return point(x/k, y/k); }
   T operator*(const point<T> &o) const { return x*o.y-y*o.x; }
   T operator&(const point<T> &o) const { return x*o.x+y*o.y; }
   void operator+=(const point<T> &o) { x+=o.x; y+=o.y; }
   void operator==(const point<T> &o) { x==o.x; y==o.y; }
   void operator*=(const T &k) { x*=k; y*=k; }
   void operator/=(const T &k) { x/=k; y/=k; }
   bool operator==(const point<T> &o) const { return x==o.x&&y==o.y; }
   bool operator!=(const point<T> &o) const { return x!=o.x||y!=o.y; }
   db len() const { return sqrt(len2()); }//模长
   T len2() const { return x*x+y*y; }
};
const point<db> npos=point<db>(514e194, 9810e191), apos=point<db>(145e174, 999e180);
const int DS[4]={1, 2, 4, 3};
tmpl int quad(const point<T> &o)//坐标轴归右上象限,返回值 [1,4]
   return DS[(sgn(o.y)<0)*2+(sgn(o.x)<0)];</pre>
tmpl bool angle_cmp(const point<T> &a, const point<T> &b)
   int c=quad(a), d=quad(b);
   if (c!=d) return c<d;</pre>
   return a*b>0;
tmpl db dis(const point<T> &a, const point<T> &b) { return (a-b).len(); }
tmpl T dis2(const point<T> &a, const point<T> &b) { return (a-b).len2(); }
tmpl point<T> operator*(const T &k, const point<T> &o) { return point<T>(k*o.x, k*o.y); }
tmpl bool operator<(const point<T> &a, const point<T> &b)
{
   int s=sgn(a*b);
   return s>0||s==0&&sgn(a.len2()-b.len2())<0;</pre>
}
istream &operator>>(istream &cin, point<11> &o) { return cin>>o.x>>o.y; }
istream &operator>>(istream &cin, point<db> &o)
{
   string s;
   cin>>s;
   o.x=stod(s);
   cin>>s;
   o.y=stod(s);
   return cin;
tmpl ostream &operator<<(ostream &cout, const point<T> &o)
   if ((point<db>)o==apos) return cout<<"all_position";</pre>
   if ((point<db>)o==npos) return cout<<"no_position";</pre>
   return cout<<'('<<o.x<<','<<o.y<<')';</pre>
}
tmpl struct line
   point<T> o, d;
   line() { }
   line(const point<T> &a, const point<T> &b, int twopoint);
   bool operator!=(const line<T> &m) { return !(*this==m); }
template<> line<ll>::line(const point<ll> &a, const point<ll> &b, int twopoint)
```

```
o=a;
   d=twopoint?b-a:b;
   11 tmp=gcd(d.x, d.y);
   assert(tmp);
   if (d.x<0||d.x==0&&d.y<0) tmp=-tmp;</pre>
   d.x/=tmp; d.y/=tmp;
}
template<> line<db>::line(const point<db> &a, const point<db> &b, int twopoint)
   o=a;
   d=twopoint?b-a:b;
   int s=sgn(d.x);
   if (s<0||!s&&d.y<0) d.x=-d.x, d.y=-d.y;</pre>
}
tmpl line<T> rotate_90(const line<T> &m) { return line(m.o, point(m.d.y, -m.d.x), 0); }
tmpl line<db> rotate(const line<T> &m, db angle)
{
   return {(point<db>)m.o, {m.d.x*cos(angle)-m.d.y*sin(angle), m.d.x*sin(angle)+m.d.y*cos(
       angle)}, 0};
}
tmpl db get_angle(const line<T> &m, const line<T> &n) { return asin((m.d*n.d)/(m.d.len()*n.d.
   len())); }
tmpl bool operator<(const line<T> &m, const line<T> &n)
   int s=sgn(m.d*n.d);
   return s?s>0:m.d*m.o<n.d*n.o;</pre>
bool operator==(const line<11> &m, const line<11> &n) { return m.d==n.d&&(m.o-n.o)*m.d==0; }
bool operator == (const line < db > &m, const line < db > &n) { return fabs(m.d*n.d) < eps&&fabs((n.o-m.
   o)*m.d)<eps; }
tmpl ostream &operator<<(ostream &cout, const line<T> &o) { return cout<<'('<<o.d.x<<"uku+tu"<<
   tmpl point<db> intersect(const line<T> &m, const line<T> &n)
{
   if (!sgn(m.d*n.d))
      if (!sgn(m.d*(n.o-m.o))) return apos;
      return npos;
   }
   return (point<db>)m.o+(n.o-m.o)*n.d/(db)(m.d*n.d)*(point<db>)m.d;
}
tmpl db dis(const line<T> &m, const point<T> &o) { return abs(m.d*(o-m.o)/m.d.len()); }
tmpl db dis(const point<T> &o, const line<T> &m) { return abs(m.d*(o-m.o)/m.d.len()); }
struct circle
   point<db> o;
   db r;
   circle() { }
   circle(const point<db> &0, const db &R=0):o(point<db>((db)0.x, (db)0.y)), r(R) { }//圆心半
   circle(const point<db> &a, const point<db> &b)//直径构造
      o=(a+b)*0.5;
      r=dis(b, o);
   circle(const point<db> &a, const point<db> &b, const point<db> &c)//三点构造外接圆(非最小
       圆)
```

```
{
       auto A=(b+c)*0.5, B=(a+c)*0.5;
       o=intersect(rotate_90(line(A, c, 1)), rotate_90(line(B, c, 1)));
       r=dis(o, c);
   circle(vector<point<db>> a)
       int n=a.size(), i, j, k;
       mt19937 rnd(75643);
       shuffle(all(a), rnd);
       *this=circle(a[0]);
       for (i=1; i<n; i++) if (!cover(a[i]))</pre>
          *this=circle(a[i]);
          for (j=0; j<i; j++) if (!cover(a[j]))</pre>
              *this=circle(a[i], a[j]);
              for (k=0; k<j; k++) if (!cover(a[k])) *this=circle(a[i], a[j], a[k]);</pre>
          }
       }
   }
   circle(const vector<point<ll>> &b)
       vector<point<db>> a(b.size());
       int n=a.size(), i, j, k;
       for (i=0; i<a.size(); i++) a[i]=(point<db>)b[i];
       *this=circle(a);
   tmpl bool cover(const point<T> &a) { return sgn(dis((point<db>)a, o)-r)<=0; }</pre>
};
tmpl struct segment
   point<T> a, b;
   segment() { }
   segment(point<T> o, point<T> p)
       int s=sgn(o.x-p.x);
       if (s>0||!s&&o.y>p.y) swap(o, p);
       a=o; b=p;
};
tmpl bool intersect(const segment<T> &m, const segment<T> &n)
   auto a=n.b-n.a, b=m.b-m.a;
   auto d=n.a-m.a;
   if (sgn(n.b.x-m.a.x)<0||sgn(m.b.x-n.a.x)<0) return 0;</pre>
   if (sgn(max(n.a.y, n.b.y)-min(m.a.y, m.b.y))<0||sgn(max(m.a.y, m.b.y)-min(n.a.y, n.b.y))</pre>
       <0) return 0;
   return sgn(b*d)*sgn((n.b-m.a)*b)>=0&&sgn(a*d)*sgn((m.b-n.a)*a)<=0;</pre>
}
tmpl struct convex
   vector<point<T>> p;
   convex(vector<point<T>> a);
   db peri()//周长
   {
       int i, n=p.size();
```

```
db C=(p[n-1]-p[0]).len();
   for (i=1; i<n; i++) C+=(p[i-1]-p[i]).len();</pre>
   return C;
}
db area() { return area2()*0.5; }//面积
T area2()//两倍面积
   int i, n=p.size();
   T S=p[n-1]*p[0];
   for (i=1; i<n; i++) S+=p[i-1]*p[i];</pre>
   return abs(S);
}
db diam() { return sqrt(diam2()); }
T diam2()//直径平方
   T r=0;
   int n=p.size(), i, j;
   if (n<=2)
       for (i=0; i<n; i++) for (j=i+1; j<n; j++) r=max(r, dis2(p[i], p[j]));</pre>
       return r;
   p.push_back(p[0]);
   for (i=0, j=1; i<n; i++)</pre>
       while ((p[i+1]-p[i])*(p[j]-p[i])<=(p[i+1]-p[i])*(p[j+1]-p[i])) if (++j==n) j=0;
       r=max({r, dis2(p[i], p[j]), dis2(p[i+1], p[j])});
   p.pop_back();
   return r;
bool cover(const point<T> &o) const//点是否在凸包内
   if (o.x<p[0].x||o.x==p[0].x&&o.y<p[0].y) return 0;</pre>
   if (o==p[0]) return 1;
   if (p.size()==1) return 0;
   11 tmp=(o-p[0])*(p.back()-p[0]);
   if (tmp==0) return dis2(o, p[0])<=dis2(p.back(), p[0]);</pre>
   if (tmp<0||p.size()==2) return 0;</pre>
   int x=upper_bound(1+all(p), o, [&](const point<T> &a, const point<T> &b) { return (a-p
        [0])*(b-p[0])>0; })-p.begin()-1;
   return (o-p[x])*(p[x+1]-p[x])<=0;
}
convex<T> operator+(const convex<T> &A) const
   int n=p.size(), m=A.p.size(), i, j;
   vector<point<T>> c;
   if (\min(n, m) \le 2)
   {
       c.reserve(n*m);
       for (i=0; i<n; i++) for (j=0; j<m; j++) c.push_back(p[i]+A.p[j]);</pre>
       return convex<T>(c);
   }
   point<T> a[n], b[m];
   for (i=0; i+1<n; i++) a[i]=p[i+1]-p[i];</pre>
   a[n-1]=p[0]-p[n-1];
   for (i=0; i+1<m; i++) b[i]=A.p[i+1]-A.p[i];</pre>
```

```
b[m-1]=A.p[0]-A.p[m-1];
       c.reserve(n+m);
       c.push_back(p[0]+A.p[0]);
       for (i=j=0; i<n&&j<m;) c.push_back(c.back()+(a[i]*b[j]>0?a[i++]:b[j++]));
       while (i<n-1) c.push_back(c.back()+a[i++]);</pre>
       while (j<m-1) c.push_back(c.back()+b[j++]);</pre>
       return convex<T>(c);
   void operator+=(const convex &a) { *this=*this+a; }
};
tmpl convex<T>::convex(vector<point<T>> a)
   int n=a.size(), i;
   if (!n) return;
   p=a;
   for (i=1; i<n; i++) if (p[i].x<p[0].x||p[i].x==p[0].x&&p[i].y<p[0].y) swap(p[0], p[i]);</pre>
   a.resize(0); a.reserve(n);
   for (i=1; i<n; i++) if (p[i]!=p[0]) a.push_back(p[i]-p[0]);</pre>
   sort(all(a));
   for (i=0; i<a.size(); i++) a[i]+=p[0];</pre>
   point<T> *st=p.data()-1;
   int tp=1;
   for (auto &v:a)
       while (tp>1&&sgn((st[tp]-st[tp-1])*(v-st[tp-1]))<=0) --tp;</pre>
       st[++tp]=v;
   p.resize(tp);
template<> bool convex<db>::cover(const point<db> &o) const//点是否在凸包内
   if (o.x<p[0].x||o.x==p[0].x&&o.y<p[0].y) return 0;</pre>
   if (o==p[0]) return 1;
   if (p.size()==1) return 0;
   11 tmp=(o-p[0])*(p.back()-p[0]);
   if (tmp==0) return dis2(o, p[0]) <= dis2(p.back(), p[0]);</pre>
   if (tmp<0||p.size()==2) return 0;</pre>
   int x=upper_bound(1+all(p), o, [&](const point<db> &a, const point<db> &b) { return (a-p
       [0])*(b-p[0])>eps; })-p.begin()-1;
   return (o-p[x])*(p[x+1]-p[x])<=0;
}
tmpl struct half_plane//默认左侧
   point<T> o, d;
   operator half_plane<11>() const { return {(point<11>)0, (point<11>)d, 0}; }
   operator half_plane<db>() const { return {(point<db>)o, (point<db>)d, 0}; }
   half_plane() { }
   half_plane(const point<T> &a, const point<T> &b, bool twopoint)
   {
       o=a;
       d=twopoint?b-a:b;
   bool operator<(const half_plane<T> &a) const
       int p=quad(d), q=quad(a.d);
       if (p!=q) return p<q;</pre>
       p=sgn(d*a.d);
```

```
if (p) return p>0;
       return sgn(d*(a.o-o))>0;
   }
};
tmpl ostream &operator<<(ostream &cout, half_plane<T> &m) { return cout<<m.o<<"u||u"<<m.d; }
tmpl point<db> intersect(const half_plane<T> &m, const half_plane<T> &n)
   if (!sgn(m.d*n.d))
       if (!sgn(m.d*(n.o-m.o))) return apos;
       return npos;
   }
   return (point<db>)m.o+(n.o-m.o)*n.d/(db)(m.d*n.d)*(point<db>)m.d;
}
const db inf=1e9;
tmpl convex<db> intersect(vector<half_plane<T>> a)
{
   T I=inf;
   a.push_back(\{\{-I, -I\}, \{I, -I\}, 1\});
   a.push_back({{I, -I}, {I, I}, 1});
   a.push_back({{I, I}, {-I, I}, 1});
   a.push_back({{-I, I}, {-I, -I}, 1});
   sort(all(a));
   int n=a.size(), i, h=0, t=-1;
   half_plane<db> q[n];
   point<db> p[n];
   vector<point<db>> r;
   for (i=0; i<n; i++) if (i==n-1||sgn(a[i].d*a[i+1].d))</pre>
   {
       auto x=(half_plane<db>)a[i];
       while (h<t\&\&sgn((p[t-1]-x.o)*x.d)>=0) --t;
       while (h<t\&\&sgn((p[h]-x.o)*x.d)>=0) ++h;
       q[++t]=x;
       if (h<t) p[t-1]=intersect(q[t-1], q[t]);</pre>
   while (h<t\&\&sgn((p[t-1]-q[h].o)*q[h].d)>=0) --t;
   if (h==t) return convex<db>(vector<point<db>>(0));
   p[t]=intersect(q[h], q[t]);
   return convex<db>(vector<point<db>>(p+h, p+t+1));
tmpl db dis(const point<db> &o, const segment<T> &1)
   if ((1.b-l.a&o-l.a)<0||(1.a-l.b&o-l.b)<0) return min(dis(o, 1.a), dis(o, 1.b));</pre>
   return dis(o, line(l.a, l.b, 1));
tmpl db dis(const segment<T> &1, const point<db> &o)
   if ((1.b-l.a&o-l.a)<0||(1.a-l.b&o-l.b)<0) return min(dis(o, 1.a), dis(o, 1.b));
   return dis(o, line(l.a, l.b, 1));
pair<11, 11> __sqrt(11 x)
   11 y=sqrtl(x);
   while (y*y>x) --y;
   while ((y+1)*(y+1) \le x) ++y;
   return {y, y+(y*y<x)};
}
```

```
pair<int, int> closest_pair(const vector<point<ll>>> &a)
      int n=a.size(), i, j;
      assert(n>=2);
      auto b=a;
      sort(all(b), [&](auto p, auto q)
             return p.x==q.x?p.y<q.y:p.x<q.x;</pre>
          });
      tuple<ll, int, int> ans={dis2(b[0], b[1]), 0, 1};
      set<pair<ll, int>> s;
      for (i=j=0; i<n; i++)</pre>
          auto [x, y]=b[i];
          11 d=_sqrt(get<0>(ans)).first;
          if (d==0) break;
          for (auto it=s.lower_bound({y-d, 0}); it!=s.end(); ++it)
             auto [q, k]=*it;
             cmin(ans, tuple{dis2(b[k], b[i]), i, k});
          s.emplace(y, i);
          while (b[j].x<x-d) s.erase(\{b[j].y, j\}), ++j;
      auto [_, j1, j2]=ans;
      int i1, i2;
      for (i1=0; i1<n; i1++) if (a[i1]==b[j1]) break;</pre>
      for (i2=0; i2<n; i2++) if (i2!=i1&&a[i2]==b[j2]) break;</pre>
      return {i1, i2};
   pair<int, int> furthest_pair(const vector<point<ll>>> &a)
      int n=a.size(), i, j;
      assert(n>=2);
      auto b=convex(a).p;
      int m=b.size();
      if (m==1) return {0, 1};
      b.push_back(b[0]);
      tuple<ll, int, int> ans{dis2(b[0], b[1]), 0, 1};
      for (i=0, j=1; i<m; i++)</pre>
      {
          cmax(ans, tuple{dis2(b[i], b[j]), i, j});
          cmax(ans, tuple{dis2(b[i+1], b[j]), i+1, j});
      auto [_, j1, j2]=ans;
      int i1, i2;
      for (i1=0; i1<n; i1++) if (a[i1]==b[j1]) break;</pre>
      for (i2=0; i2<n; i2++) if (i2!=i1&&a[i2]==b[j2]) break;</pre>
      return {i1, i2};
#undef tmpl
using geometry::point, geometry::line, geometry::circle, geometry::convex, geometry::half_plane;
using geometry::db, geometry::sgn, geometry::eps, geometry::segment;
using geometry::intersect, geometry::dis;
```

7 公式与杂项

7.1 枚举大小为 k 的集合

思路:通过进位创造 1,再把一串 1 移到最后。

```
for (int s=(1<<k)-1,t;s<1<<n;t=s+(s&-s),s=(s&-t)>>__lg(s&-s)+1|t) {}
```

7.2 min plus 卷积

```
计算 c_i = \min_{j=0}^i a_j + b_{i-j}。
要求 b 是凸的,即 b_{i+1} - b_i 不降。
```

```
template <class T> vector<T> min_plus_convolution(const vector<T> &a,const vector<T> &b)
   int n=a.size(),m=b.size(),i;
   vector<T> c(n+m-1);
   function<void(int,int,int,int)> dfs=[&](int l,int r,int ql,int qr)
          if (l>r) return;
          int mid=l+r>>1;
          while (ql+m<=l) ++ql;</pre>
          while (qr>r) --qr;
          int qmid=-1;
          c[mid]=inf;
          for (int i=ql; i<=qr; i++) if (mid-i>=0&&mid-i<m&&cmin(c[mid],a[i]+b[mid-i])) qmid=i;</pre>
          dfs(l,mid-1,ql,qmid);
          dfs(mid+1,r,qmid,qr);
      };
   dfs(0,n+m-2,0,n-1);
   return c;
```

7.3 所有区间 GCD

需要自定义 fun,如 gcd, and, or。

```
for (j=i; j>=0; j=1[j]) res[i].push_back({1[j], v[j]});
    reverse(all(res[i]));
}

T ask(int l, int r)//[l,r]
{
    return res[r].prev(upper_bound(1))->second;
}
};
```

7.4 整体二分(区间 k-th)

```
O((n+q)\log a), O(n+q).
```

```
struct cz
   int x,y,kth,pos,typ;
};
cz q[M],st1[M],st2[M];
int a[N],b[N],d[N],ans[N],s[N];
int n,m,t1,t2,i,j,c,gs;
int lb(int x)
   return x&(-x);
}
void add(int x,int y)
{
   for (;x<=n;x+=lb(x)) s[x]+=y;</pre>
int sum(int x)
   int ans=0;
   for (;x;x-=lb(x)) ans+=s[x];
   return ans;
void ztef(int ql,int qr,int l,int r)
   if (ql>qr) return;
   int mid=l+r>>1,i,midd;
   t1=t2=0;
   if (l==r)
       for (i=ql;i<=qr;i++) if (q[i].typ) ans[q[i].pos]=d[1];</pre>
       return;
   }
   for (i=ql;i<=qr;i++) if (q[i].typ)</pre>
       midd=sum(q[i].y)-sum(q[i].x-1);
       if (midd>=q[i].kth) st1[++t1]=q[i]; else
           st2[++t2]=q[i];
           st2[t2].kth-=midd;
   }
   else if (q[i].pos<=mid)</pre>
       add(q[i].x,1);
```

```
st1[++t1]=q[i];
   else st2[++t2]=q[i];
   for (i=1;i<=t1;i++) if (!st1[i].typ) add(st1[i].x,-1);</pre>
   for (i=1;i<=t1;i++) q[i+ql-1]=st1[i];</pre>
   midd=ql+t1-1;
   for (i=1;i<=t2;i++) q[i+midd]=st2[i];</pre>
   ztef(ql,midd,l,mid);ztef(midd+1,qr,mid+1,r);
}
int main()
   read(n); read(m);
   for (i=1;i<=n;i++)</pre>
       read(a[i]);b[i]=a[i];
   }
   sort(b+1,b+n+1);
   d[gs=1]=b[1];
   for (i=2;i<=n;i++) if (b[i]!=b[i-1]) d[++gs]=b[i];</pre>
   for (i=1;i<=n;i++) a[i]=lower_bound(d+1,d+gs+1,a[i])-d;</pre>
   for (i=1;i<=n;i++)</pre>
       q[i].x=i;q[i].pos=a[i];q[i].typ=0;
   for (i=1;i<=m;i++)</pre>
       \verb|read|(q[i+n].x|); \verb|read|(q[i+n].y|); \verb|read|(q[i+n].kth|); q[i+n].pos=i; q[i+n].typ=1; \\
   ztef(1,n+m,1,gs);
   for (i=1;i<=m;i++) printf("%d\n",ans[i]);</pre>
```

7.5 cdq 分治(三维偏序)

本质:统计跨越区间中点的贡献,此时左右就不必保持原本的下标顺序了,可以按下一个维度排序。

 $O(n\log^2 n)$, O(n).

```
int lb(int x)
{
    return x&(-x);
}
void add(int x,int y)
{
    for (;x<=mx;x+=lb(x)) a[x]+=y;
}
int sum(int x)
{
    int ans=0;
    for (;x;x^=lb(x)) ans+=a[x];
    return ans;
}
void gb(int l,int r)
{
    int i=l,m=l+r>>1,j=m+1,p=l;
    if (i<m) gb(i,m);</pre>
```

```
if (j<r) gb(j,r);</pre>
   while ((i \le m) | | (j \le r)) if ((j \ge r) | | (i \le m) \& (q[i].x \le q[j].x))
       if (!q[i].typ) add(q[i].y,1);
       qq[p++]=q[i++];
   }
   else
   {
       if (q[j].typ) ans[q[j].pos]+=q[j].typ*sum(q[j].y);
       qq[p++]=q[j++];
   for (i=1;i<=m;i++) if (!q[i].typ) add(q[i].y,-1);</pre>
   for (i=1;i<=r;i++) q[i]=qq[i];</pre>
}
int main()
   read(n); read(m);
   for (i=1;i<=n;i++)</pre>
       read(q[i].x);read(q[i].y);++q[i].y;
       yc[i]=q[i].y;
       if (q[i].y>mx) mx=q[i].y;
   qs=ys=n;
   for (i=1;i<=m;i++)</pre>
       read(x);read(y);read(z);read(j);
       q[++qs].x=x-1;q[qs].y=y;q[qs].pos=i;q[qs].typ=1;
       q[++qs].x=z;q[qs].y=y;q[qs].pos=i;q[qs].typ=-1;
       {\tt q[++qs].x=x-1;q[qs].y=j+1;q[qs].pos=i;q[qs].typ=-1;}\\
       q[++qs].x=z;q[qs].y=j+1;q[qs].pos=i;q[qs].typ=1;
       if (j+1>mx) mx=j+1;
   gb(1,qs);
   for (i=1;i<=m;i++) printf("%d\n",ans[i]);</pre>
```

7.6 高精度

除法和取模有点问题,但 gcd 是对的。

```
struct bigint
{
    using ll=unsigned long long;
    using lll=unsigned __int128;
    const static ll base=1e6;
    const static ll sign=1llu<<63;
    const static lll p=4179340454199820289;
    const static lll g=5;
    const static int N=1<<23;
    static int r[N];
    static lll w[N];
    bool neg;
    vector<ll> a;
private:
    static lll ksm(lll x,ll y)
    {
```

```
lll r=1;
   while (y)
       if (y&1) r=r*x%p;
       x=x*x%p; y>>=1;
   return r;
static void init(int n)
   static int pr=0,pw=0;
   if (pr==n) return;
   int b=__lg(n)-1,i,j,k;
   for (i=1; i<n; i++) r[i]=r[i>>1]>>1|(i&1)<<b;</pre>
   if (pw<n)</pre>
       for (j=1; j<n; j=k)</pre>
       {
           k=j*2;
           ll wn=ksm(g,(p-1)/k);
           w[j]=1;
           for (i=j+1; i<k; i++) w[i]=w[i-1]*wn%p;</pre>
       }
       pw=n;
   }
   pr=n;
static void dft(vector<lll> &a,int o=0)
   int n=a.size(),i,j,k;
   111 y,*f,*g,*wn,*A=a.data();
   init(n);
   for (i=1; i<n; i++) if (i<r[i]) swap(A[i],A[r[i]]);</pre>
   for (k=1; k<n; k*=2)</pre>
   {
       wn=w+k;
       for (i=0; i<n; i+=k*2)</pre>
           f=A+i; g=A+i+k;
           for (j=0; j<k; j++)</pre>
           {
              y=g[j]*wn[j]%p;
               g[j]=f[j]+p-y;
              f[j]+=y;
           }
       }
       if (k*2==n||k==1<<10) for (lll &x:a) x%=p;</pre>
   }
   if (o)
       y=ksm(n,p-2);
       for (lll &x:a) x=x*y%p;
       reverse(1+all(a));
   }
}
11 &operator[](const int &x) { return a[x]; }
const ll &operator[](const int &x) const { return a[x]; }
```

```
static void plus_by(vector<ll> &a,const vector<ll> &b)
       int n=a.size(),m=b.size(),i,j;
       cmax(n,m);
       a.resize(++n);
       for (i=0; i<m; i++) if ((a[i]+=b[i])>=base) a[i]-=base,++a[i+1];
       for (i=m; i<n&&a[i]>=base; i++) a[i]-=base,++a[i+1];
       if (a[n-1]==0) a.pop_back();
   }
   static void minus_by(vector<ll> &a,const vector<ll> &b)
       int n=a.size(),m=b.size(),i,j;
       for (i=0; i<m; i++) if (!(a[i]&sign)&&a[i]>=b[i]) a[i]-=b[i];
       else --a[i+1],a[i]+=base-b[i];
       for (; i<n&&(a[i]&sign); i++) --a[i+1],a[i]+=base-b[i];</pre>
       while (a.size()>1&&!a.back()) a.pop_back();
   static bool less(const vector<ll> &a,const vector<ll> &b)
       if (a.size()!=b.size()) return a.size()<b.size();</pre>
       for (int i=a.size()-1; i>=0; i--) if (a[i]!=b[i]) return a[i] <b[i];</pre>
       return 0;
   static int cal(int x) { return 1<<__lg(max(x,1)*2-1); }</pre>
public:
   bigint &operator+=(const bigint &o)
       if (neg==o.neg) plus_by(a,o.a);
       else if (neg)
          if (less(o.a,a)) minus_by(a,o.a);
          else
          {
              neg=0;
              auto t=o.a;
              swap(a,t);
              minus_by(a,t);
          }
       }
       else
       {
          if (less(a,o.a))
          {
              neg=1;
              auto t=o.a;
              swap(a,t);
              minus_by(a,t);
          }
          else minus_by(a,o.a);
       }
       return *this;
   bigint &operator-=(const bigint &o)
       neg^=1;
       *this+=o;
       neg^=1;
```

```
if (a==vector<11>{0}) neg=0;
   return *this;
}
bigint &operator*=(const bigint &o)
   neg^=o.neg;
   int n=a.size(),m=o.a.size(),i,j;
   assert(min(n,m) \le p/((base-1)*(base-1)));
   if (\min(n,m) \le 64)
       vector<ll> c(n+m);
       for (i=0; i<n; i++) for (j=0; j<m; j++) c[i+j]+=a[i]*o[j];</pre>
       for (i=0; i<n+m-1; i++)</pre>
          c[i+1]+=c[i]/base;
          c[i]%=base;
       swap(a,c);
       while (a.size()>1&&!a.back()) a.pop_back();
       if (a==vector<11>{0}) neg=0;
       return *this;
   }
   int len=cal(n+m-1);
   vector<lll> f(len),g(len);
   copy_n(a.begin(),n,f.begin());
   copy_n(o.a.begin(),m,g.begin());
   dft(f); dft(g);
   for (i=0; i<len; i++) f[i]=f[i]*g[i]%p;</pre>
   dft(f,1);
   a.resize(n+m-1);
   copy_n(f.begin(),n+m-1,a.begin());
   for (i=0; i<n+m-2; i++)</pre>
       a[i+1]+=a[i]/base;
       a[i]%=base;
   }
   while (a.size()>1&&!a.back()) a.pop_back();
   if (a==vector<11>{0}) neg=0;
   return *this;
bigint &operator/=(long long x)//to zero
   if (x<0) x=-x,neg^=1;</pre>
   for (int i=a.size()-1; i; i--)
       a[i-1]+=a[i]%x*base;
       a[i]/=x;
   }
   a[0]/=x;
   while (a.size()>1&&!a.back()) a.pop_back();
   if (a==vector<11>{0}) neg=0;
   return *this;
}
bigint operator+(bigint o) const { return o+=*this; }
bigint operator-(bigint o) const { o-=*this; if (o.a!=vector<ll>{0}) o.neg^=1; return o; }
bigint operator*(bigint o) const { return o*=*this; }
bigint operator/(long long x) const { auto res=*this; return res/=x; }
```

```
long long operator%(long long x) const
       bool flg=neg;
       if (x<0) flg^=1,x=-x;</pre>
       ll res=0;
       for (int i=(base%x==0?0:a.size()-1); i>=0; i--) res=(res*base+a[i])%x;
       return (long long)res*(flg?-1:1);
   bigint(long long x=0):neg(0)
       if (x<0) x=-x,neg=1;</pre>
       a.push_back(x%base);
       while (x/=base) a.push_back(x%base);
   bool operator<(const bigint &o) const</pre>
       if (neg!=o.neg) return neg;
       if (neg) return less(o.a,a);
       return less(a,o.a);
   }
   bool operator>(const bigint &o) const { return o<*this; }</pre>
   bool operator==(const bigint &o)const { return neg==o.neg&&a==o.a; }
   bool operator!=(const bigint &o)const { return neg!=o.neg||a!=o.a; }
   bool operator<=(const bigint &o) const { return !(*this>o); }
   bool operator>=(const bigint &o) const { return !(*this<o); }</pre>
};
istream &operator>>(istream &cin,bigint &x)
   x.neg=0;
   x.a.clear();
   string s;
   cin>>s;
   const int length=round(log10(bigint::base));
   if (s[0] == '-') x.neg=1, s.erase(s.begin());
   reverse(all(s));
   ll base=1;
   for (int i=0; i<s.size(); i++)</pre>
       if (i%length==0) x.a.push_back(0),base=1;
       x.a.back()=x.a.back()+(s[i]-'0')*base;
       base*=10;
   }
   return cin;
ostream & operator << (ostream & cout, const bigint &x)
   if (x.neg) cout<<"-";</pre>
   cout<<x.a.back();</pre>
   int length=round(log10(bigint::base));
   for (int i=x.a.size()-2; i>=0; i--) cout<<setfill('0')<<setw(length)<<x.a[i];</pre>
   return cout;
bigint abs(bigint x)
   x.neg=0;
   return x;
}
```

```
bigint gcd(bigint x,bigint y)
   x.neg=y.neg=0;
   if (x==bigint(0)) return y;
   if (y==bigint(0)) return x;
   int c1=0,c2=0;
   while (x\%2==0) x/=2,++c1;
   while (y\%2==0) y/=2,++c2;
   cmin(c1,c2);
   if (x>y) swap(x,y);
   while (x!=y)
       y-=x;
       y/=2;
       while (y\%2==0) y/=2;
       if (x>y) swap(x,y);
   while (c1--) y*=bigint(2);
   return y;
bigint::lll bigint::w[bigint::N];
int bigint::r[bigint::N];
```

7.7 分散层叠算法(Fractional Cascading)

```
O(n + q(k + \log n)),O(n)。
给出 k 个长度为 n 的有序数组。
现在有 q 个查询: 给出数 x,分别求出每个数组中大于等于 x 的最小的数 (非严格后继)。
若后继不存在,则定义为 0。你需要在线地回答这些询问。
```

```
int a[M][N],b[M][N<<1],c[M][N<<1][2],len[M],ans[M];</pre>
int n,m,qs,p,q,d,i,j,x,y,la;
int main()
{
   read(n);read(m);read(qs);read(d);
   for (j=1;j<=m;j++) for (i=0;i<n;i++) read(a[j][i]);</pre>
   for (j=1;j<=m;j++) a[j][n]=inf+j;++n;</pre>
   for (i=0;i<n;i++) b[m][i]=a[m][i],c[m][i][0]=i;</pre>
   len[m]=n;
   for (j=m-1; j; j--)
       p=0,q=1;
       while (p<n&&q<len[j+1])</pre>
       if (a[j][p]<b[j+1][q]) b[j][len[j]]=a[j][p],c[j][len[j]][0]=p++,c[j][len[j]++][1]=q;</pre>
       else b[j][len[j]]=b[j+1][q],c[j][len[j]][0]=p,c[j][len[j]++][1]=q,q+=2;
       while (p<n) b[j][len[j]]=a[j][p],c[j][len[j]][0]=p++,c[j][len[j]++][1]=q;
       while (q \le [j+1]) b[j] [len[j]] = b[j+1][q], c[j][len[j]][0] = p, c[j][len[j]++][1] = q, q+=2;
   for (int ii=1;ii<=qs;ii++)</pre>
       read(x);x^=la;
       y=lower_bound(b[1],b[1]+len[1],x)-b[1];
       ans[1]=a[1][c[1][y][0]];y=c[1][y][1];//下标是c[1][y][0]
       for (j=2;j<=m;j++)</pre>
           if (y&&b[j][y-1]>=x) --y;
```

7.8 圆上整点(二平方和定理)

```
x^2 + y^2 = n 的整数解的数目的四分之一 f(n) 是积性数论函数,且对于素数幂有: f(p^k) = \begin{cases} 1 & p \equiv 2 \\ k+1 & p \equiv 1 \pmod 4 \\ (k+1) \mod 2 & p \equiv 3 \pmod 4 \end{cases}以下代码给出所有的非负整数解。注意非负整数解个数不等于 f(n)。时间复杂度为 O(n^{\frac{1}{4}} + f(n)),其中 O(n^{\frac{1}{4}}) 是 pollard-rho 的复杂度。f(n) 的量级不好分析,但不会超过约数个数 O(d(n)) \approx O(n^{\frac{1}{3}}),且可以推测不能达到。
```

```
namespace pr
{
   typedef long long 11;
   typedef __int128 111;
   typedef pair<ll, int> pa;
   ll ksm(ll x, ll y, const ll p)
       ll r=1;
       while (y)
          if (y&1) r=(lll)r*x%p;
          x=(111)x*x%p; y>>=1;
       return r;
   namespace miller
       const int p[7]={2, 3, 5, 7, 11, 61, 24251};
       ll s, t;
       bool test(ll n, int p)
          if (p>=n) return 1;
          ll r=ksm(p, t, n), w;
          for (int j=0; j<s&&r!=1; j++)</pre>
              w=(111)r*r%n;
              if (w==1&&r!=n-1) return 0;
              r=w;
          return r==1;
       bool prime(ll n)
          if (n<2||n==46'856'248'255'98111) return 0;</pre>
          for (int i=0; i<7; ++i) if (n%p[i]==0) return n==p[i];</pre>
          s=_builtin_ctz(n-1); t=n-1>>s;
```

```
for (int i=0; i<7; ++i) if (!test(n, p[i])) return 0;</pre>
       return 1;
   }
}
using miller::prime;
mt19937_64 rnd(chrono::steady_clock::now().time_since_epoch().count());
namespace rho
   void nxt(ll &x, ll &y, ll &p) { x=((lll)x*x+y)%p; }
   ll find(ll n, ll C)
       11 l, r, d, p=1;
       l=rnd()%(n-2)+2, r=1;
       nxt(r, C, n);
       int cnt=0;
       while (l^r)
          p=(lll)p*llabs(l-r)%n;
          if (!p) return gcd(n, llabs(l-r));
          ++cnt;
          if (cnt==127)
              cnt=0;
              d=gcd(llabs(l-r), n);
              if (d>1) return d;
          }
          nxt(1, C, n); nxt(r, C, n); nxt(r, C, n);
       return gcd(n, p);
   }
   vector<pa> w;
   vector<ll> d;
   void dfs(ll n, int cnt)
       if (n==1) return;
       if (prime(n)) return w.emplace_back(n, cnt), void();
       ll p=n, C=rnd()%(n-1)+1;
       while (p==1||p==n) p=find(n, C++);
       int r=1; n/=p;
       while (n\%p==0) n/=p, ++r;
       dfs(p, r*cnt); dfs(n, cnt);
   }
   vector<pa> getw(ll n)
       w=vector < pa > (0); dfs(n, 1);
       if (n==1) return w;
       sort(w.begin(), w.end());
       int i, j;
       for (i=1, j=0; i<w.size(); i++) if (w[i].first==w[j].first) w[j].second+=w[i].second;</pre>
           else w[++j]=w[i];
       w.resize(j+1);
       return w;
   }
   void dfss(int x, ll n)
       if (x==w.size()) return d.push_back(n), void();
       dfss(x+1, n);
```

```
for (int i=1; i<=w[x].second; i++) dfss(x+1, n*=w[x].first);</pre>
       vector<ll> getd(ll n)
          getw(n); d=vector<ll>(0); dfss(0, 1);
          sort(d.begin(), d.end());
          return d;
       }
   }
   using rho::getw, rho::getd;
   using miller::prime;
using pr::getw, pr::getd, pr::prime;
lll roundiv(lll x, lll y)
   return x \ge 0?(x+y/2)/y:(x-y/2)/y;
}
struct G
   111 x, y;
   G operator~() const { return {x, -y}; }
   111 len2() const { return x*x+y*y; }
   G operator+(const G &o) const { return {x+o.x, y+o.y}; }
   G operator-(const G &o) const { return {x-o.x, y-o.y}; }
   G operator*(const G &o) const { return {x*o.x-y*o.y, x*o.y+y*o.x}; }
   G operator/(const G &o) const
       G t=*this*~o;
      lll l=o.len2();
       return {roundiv(t.x, 1), roundiv(t.y, 1)};
   G operator%(const G &o) const { return *this-*this/o*o; }
};
G gcd(G a, G b)
   if (a.len2()>b.len2()) swap(a, b);
   while (a.len2())
      b=b%a;
       swap(a, b);
   return b;
}
namespace cipolla
   typedef unsigned long long ui;
   typedef __uint128_t 11;
   ui p, w;
   struct Q
       11 x, y;
       Q operator*(const Q &o) const { return {(x*o.x+y*o.y%p*w)%p, (x*o.y+y*o.x)%p}; }
   };
   ui ksm(ll x, ui y)
       ll r=1;
       while (y)
```

```
{
          if (y&1) r=r*x%p;
          x=x*x%p; y>>=1;
       return r;
   }
   Q ksm(Q x, ui y)
       Q r=\{1, 0\};
       while (y)
          if (y&1) r=r*x;
          x=x*x; y>>=1;
       }
       return r;
   ui mosqrt(ui x, ui P)//0<=x<P
       if (x==0||P==2) return x;
       p=P;
       if (ksm(x, p-1>>1)!=1) return -1;
       mt19937_64 rnd(chrono::steady_clock::now().time_since_epoch().count());
       do y=rnd()\%p, w=((11)y*y+p-x)\%p; while (ksm(w, p-1>>1)<=1);//not for p=2
       y=ksm({y, 1}, p+1>>1).x;
       if (y*2>p) y=p-y;//两解取小
       return y;
   }
}
using cipolla::mosqrt;
vector<pair<ll, ll>> two_sqr_sum(ll n)//只会返回非负解,按照字典序排序
   if (n<0) return { };</pre>
   if (n==0) return {{0, 0}};
   ll m = __ lg(n\&-n), d = 1 << m/2, i;
   n >> = m;
   auto w=getw(n);
   vector<G> r((m&1)?vector{G{1, 1}}:vector{G{0, 1}, G{1, 0}});
   for (auto [p, k]:w) if (p%4==1)
   {
       vector<G> pw(k+1);
       pw[0]={1, 0};
       pw[1]=gcd(G(p, 0), G(mosqrt(p-1, p), 1));
       assert(pw[1].len2()==p);
       for (i=2; i<=k; i++) pw[i]=pw[i-1]*pw[1];</pre>
       vector<G> rr; rr.reserve(r.size()*(k+1));
       for (i=0; i<=k; i++)</pre>
          G x=pw[i]*~pw[k-i];
          for (G y:r) rr.push_back(x*y);
       }
       swap(r, rr);
   }
   else
       if (k%2) return { };
       k/=2;
```

```
while (k--) d*=p;
}
vector<pair<11, 11>> ans;
ans.reserve(r.size());
for (auto [x, y]:r) ans.push_back({abs((11)x*d), abs((11)y*d)});
sort(all(ans));
ans.resize(unique(all(ans))-ans.begin());
return ans;
}
```

7.9 模意义真分数还原

```
没啥用。q \equiv \frac{x}{a} \pmod{p}, |a| \le A.
```

```
pair<int, int> approx(int p,int q,int A)
{
    int x=q,y=p,a=1,b=0;
    while (x>A)
    {
        swap(x,y);swap(a,b);
        a-=x/y*b;x%=y;
    }
    return make_pair(x,a);
}
```

7.10 快速取模

```
__uint128_t brt=((__uint128_t)1<<64)/mod;
for(int i=1;i<=n;i++)</pre>
{
   ans*=i;
   ans=ans-mod*(brt*ans>>64);
   while(ans>=mod) ans-=mod;//可以替换为 if, 但据说会变慢。如果循环展开则需要替换
}
struct barret{
   11 p,m; //p 表示上面的模数, m 为取模参数
   int c=0;
   inline void init(ll t){
      c=48+log2(t),p=t;
      m=(ll((ulll(1) << c)/t));
   friend inline ll operator % (ll n,const barret &d) { // get n % d
      return n-((ulll(n)*d.m)>>d.c)*d.p;
}modp;
```

7.11 IO 优化

7.11.1 WDOI

```
class fast_iostream{
private:
   const int MAXBF = 1 << 20; FILE *inf, *ouf;</pre>
   char *inbuf, *inst, *ined;
   char *oubuf, *oust, *oued;
   inline void _flush(){fwrite(oubuf, 1, oued - oust, ouf);}
   inline char _getchar(){
       if(inst == ined) inst = inbuf, ined = inbuf + fread(inbuf, 1, MAXBF, inf);
       return inst == ined ? EOF : *inst++;
   }
   inline void _putchar(char c){
       if(oued == oust + MAXBF) _flush(), oued = oubuf;
       *oued++ = c;
   }
public:
    fast_iostream(FILE *_inf = stdin, FILE * _ouf = stdout)
   :inbuf(new char[MAXBF]), inf(_inf), inst(inbuf), ined(inbuf),
    oubuf(new char[MAXBF]), ouf(_ouf), oust(oubuf), oued(oubuf){}
   ~fast_iostream(){_flush(); delete inbuf; delete oubuf;}
   template <class Int>
   fast_iostream& operator >> (Int &n){
       static char c;
       while((c = _{getchar}()) < '0' || c > '9');n = c - '0';
       while((c = _{getchar}()) >= '0' && c <= '9') n = n * 10 + c - '0';
       return *this;
   }
   template <class Int>
   fast_iostream& operator << (Int n){</pre>
       if(n < 0) _putchar('-'), n = -n; static char S[20]; int t = 0;</pre>
       do{S[t++]} = '0' + n \% 10, n /= 10;} while(n);
       for(int i = 0;i < t;++i) _putchar(S[t - i - 1]);</pre>
       return *this;
   }
   fast_iostream& operator << (char c){_putchar(c); return *this;}</pre>
   fast_iostream& operator << (const char *s){</pre>
       for(int i = 0;s[i];++i) _putchar(s[i]); return *this;
   }
}fio;//unsigned
```

7.11.2 自用

```
c[fread(c+1,1,N,stdin)+1]=0;char *cc=c;
void read(int &x)
{
    char *c=cc;
    while ((*c<48)||(*c>57)) ++c;
    x=*(c++)^48;
    while ((*c>=48)&&(*c<=57)) x=x*10+(*(c++)^48);cc=c;
}
void read(int &x)
{
    char *c=cc;fh=1;
    while ((*c<48)||(*c>57)){if (*c=='-') {++c;fh=-1;break;}++c;}
    x=*(c++)^48;
    while ((*c>=48)&&(*c<=57)) x=x*10+(*(c++)^48);</pre>
```

```
x*=fh;cc=c;
}
void write(const int x)
{
    while (x)
    {
        st[++tp]=x%10;
        x/=10;
    }
    char *c=nc;
    while (tp) *(++c)=st[tp--]|48;
    *(++c)=10;nc=c;
}
    char *nc=sc;
    fwrite(sc+1,1,stp,stdout);
```

7.12 手动开栈

一种写法是文件开头放,但部分 OJ 会失效。

```
#pragma comment(linker, "/STACK:102400000,102400000")
```

另一种写法是在 main 开头写, 但必须以 exit(0) 结束程序。

```
{
    static int OP=0;
    if (OP++==0)
    {
        int size=128<<20;//128MB
        char* p=new char[size]+size;
        __asm__ __volatile__("movq_\%0,\\%\rsp\n""pushq_\$exit\n""jmp_\main\n"::"r"(p));
    }
}</pre>
```

7.13 德扑

solve 返回按照出现次数排序的 vector<int>(0下标处为牌型),这样就可以字典序比较了。

```
struct Q
{
   int suit, rank;
   bool operator<(const Q &o) const { return pair{rank, suit}<pair{o.rank, o.suit}; }</pre>
   bool operator==(const Q &o) const { return pair{rank, suit}==pair{o.rank, o.suit}; }
};
auto solve=[&](vector<Q> a)
{
   vector<int> res;
   vector<int> cnt(15);
   for (auto [s, r]:a) ++cnt[r];
   sort(all(a));
   int i;
   bool is_flush=1, is_str=0;
   for (i=1; i<5; i++) is_flush&=a[i].suit==a[0].suit;</pre>
   is_str=*max_element(all(cnt))==1&&a[0].rank+4==a[4].rank;
   vector<int> b(6);
   for (i=1; i<6; i++) b[i]=a[i-1].rank;</pre>
```

```
sort(1+all(b), [&](int x, int y)
           return pair{cnt[x], x}>pair{cnt[y], y};
       });
   if (b==vector{0, 12, 3, 2, 1, 0}) is_str=1, b[1]=0;
   if (is_flush&&is_str) return b[0]=9, b;
   if (cnt[b[1]]==4) return b[0]=8, b;
   if (cnt[b[1]]==3&&cnt[b[4]]==2) return b[0]=7, b;
   if (is_flush) return b[0]=6, b;
   if (is_str) return b[0]=5, b;
   if (cnt[b[1]]==3) return b[0]=4, b;
   if (cnt[b[1]]==2&&cnt[b[3]]==2) return b[0]=3, b;
   if (cnt[b[1]]==2) return b[0]=2, b;
   return b;
};
auto turn=[&](string s)
    \label{eq:quantum_state}  Q \ \text{res=Q\{"SHDC"s.find(s[0]), "23456789TJQKA"s.find(s[1])\}; } 
   return res;
};
```

7.14 约数个数表

\overline{n}	□ 前第一个质数	□	$ \max\{\omega(n)\} $	$\max\{d(n)\}$	$\pi(n)$
10^{1}	$10^1 - 3$	$10^1 + 1$	2	d(6) = 4	4
10^{2}	$10^2 - 3$	$10^2 + 1$	3	d(60) = 12	25
10^{3}	$10^3 - 3$	$10^3 + 13$	4	d(840) = 32	168
10^{4}	$10^4 - 27$	$10^4 + 7$	5	d(7560) = 64	1229
10^{5}	$10^5 - 9$	$10^5 + 3$	6	d(83160) = 128	9592
10^{6}	$10^6 - 17$	$10^6 + 3$	7	d(720720) = 240	7.9×10^{4}
10^{7}	$10^7 - 9$	$10^7 + 19$	8	d(8648640) = 448	6.7×10^{5}
10^{8}	$10^8 - 11$	$10^8 + 7$	8	d(73513440) = 768	5.8×10^{6}
10^{9}	$10^9 - 63$	$10^9 + 7$	9	d(735134400) = 1344	5.1×10^{7}
10^{10}	$10^{10} - 33$	$10^{10} + 19$	10	d(6983776800) = 2304	4.6×10^{8}
10^{11}	$10^{11} - 23$	$10^{11} + 3$	10	d(97772875200) = 4032	4.2×10^{8}
10^{12}	$10^{12} - 11$	$10^{12} + 39$	11	d(963761198400) = 6720	3.8×10^{9}
10^{13}	$10^{13} - 29$	$10^{13} + 37$	12	d(9316358251200) = 10752	3.5×10^{10}
10^{14}	$10^{14} - 27$	$10^{14} + 31$	12	d(97821761637600) = 17280	3.3×10^{11}
10^{15}	$10^{15} - 11$	$10^{15} + 37$	13	d(866421317361600) = 26880	3×10^{12}
10^{16}	$10^{16} - 63$	$10^{16} + 61$	13	d(8086598962041600) = 41472	2.8×10^{13}
10^{17}	$10^{17} - 3$	$10^{17} + 3$	14	d(74801040398884800) = 64512	
10^{18}	$10^{18} - 11$	$10^{18} + 3$	15	d(897612484786617600) = 103680	
10^{19}	$10^{19} - 39$	$10^{19} + 51$	16	d(9200527969062830400) = 161280	

7.15 NTT 质数

$p = r \times 2^k + 1$	$\mid r \mid$	k	g (最小原根)
17	1	4	3
97	3	5	5
193	3	6	5
257	1	8	3
7681	15	9	17
12289	3	12	11
40961	5	13	3
65537	1	16	3
786433	3	18	10
5767169	11	19	3
7340033	7	20	3
23068673	11	21	3
104857601	25	22	3
167772161	5	25	3
469762049	7	26	3
998244353	119	23	3
1004535809	479	21	3
2013265921	15	27	31
2281701377	17	27	3
3221225473	3	30	5
75161927681	35	31	3
77309411329	9	33	7
206158430209	3	36	22
2061584302081	15	37	7
2748779069441	5	39	3
6597069766657	3	41	5
39582418599937	9	42	5
79164837199873	9	43	5
263882790666241	15	44	7
1231453023109121	35	45	3
1337006139375617	19	46	3
3799912185593857	27	47	5
4222124650659841	15	48	19
7881299347898369	7	50	6
31525197391593473	7	52	3
180143985094819841	5	55	6
1945555039024054273	27	56	5
4179340454199820289	29	57	3

7.16 公式

向上取整的整除分块 $[i, \lfloor \frac{n-1}{\lceil \frac{n}{i} \rceil - 1} \rfloor]$

n 个点 k 个连通块的生成树方案 $n^{k-2}\prod_{i=1}^k siz_i$

(x,y) 曼哈顿距离 $\to (x+y,x-y)$ 切比雪夫距离 (x,y) 切比雪夫距离 $\to (\frac{x+y}{2},\frac{x-y}{2})$ 曼哈 顿距离

错排数 = $[0.5 + \frac{n!}{e}]$

Kummer's Theorem: $\binom{n+m}{n}$ 含 p $(p \in \text{prime})$ 的次数是 n+m 在 p 进制下的进位数

$$\ln(1 - x^{V}) = -\sum_{i \ge 1} \frac{x^{Vi}}{i}$$

$$x^{\bar{n}} = \sum_{i} S_1(n, i) x^{i}$$

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \end{cases}$$

$$\dots$$

$$x \equiv a_1 \pmod{m_2}$$

 m_i 为不同的质数。设 $M=\prod_{i=1}^n m_i$, $t_i imes \frac{M}{m_i}\equiv 1\pmod{m_i}$,则 $x\equiv \sum_{i=1}^n a_i t_i \frac{M}{m_i}$ 。 V-E+F=2, $S=n+\frac{s}{2}-1$ 。(n 为内部,s 为边上)

用途:对于相邻的不相等的值,在中间画一条线(最外也画),连通块个数 = 1 + E - V +内部框个数

注意全都是不含矩形边界上的。

五边形数 GF: $\frac{x(2x+1)}{(1-x)^3}$ 五边形数: $\frac{3n^2-n}{2}$,广义含非正,逆为分拆数 GF (注意系数正负和 n 取值奇偶性相同)

贝尔数(划分集合方案数)EGF: $\exp(e^x-1)$, $B_n = \sum_{i=0}^n S_2(n,i)$, 伯努利数 EGF: $\frac{x}{e^x-1}$

$$S_1(i,m)$$
 EGF: $\frac{(\sum\limits_{i\geq 0}\frac{x^i}{i})^m}{m!}$, $S_2(i,m)$ EGF: $\frac{(e^x-1)^m}{m!}$ 多项式牛顿迭代: 如果已知 $G(F(x))\equiv 0\pmod{x^{2n}}$, $G(F_*(x))\equiv 0\pmod{x^n}$, 则有 $F(x)\equiv 0$

 $F_*(x) - \frac{G(F_*(x))}{G'(F_*(x))} \pmod{x^{2n}}$ 。求导时孤立的多项式视为常数。

$$\int_0^1 t^a (1-t)^b dt = \frac{a!b!}{(a+b+1)!}, \quad \sum_{i=0}^{n-1} i^{\underline{k}} = \frac{n^{\underline{k+1}}}{k+1}$$

Burnside 引理: 等价类数量为 $\sum_{g \in G} \frac{X^g}{|G|}$, X^g 表示 g 变换下不动点的数量。

Polya 定理: 染色方案数为 $\sum_{g \in G} \frac{m^{c(g)}}{|G|}$,其中 c(g) 表示 g 变换下环的数量。

矩阵树定理:有向图内向生成树个数计算用出度矩阵-邻接矩阵

假设已经只保留了一个牛人酋长,其名字为 $A = a_1 a_2 \cdots a_l$ 。

假设王国旁边开了一座赌场,每单位时间(就称为"秒"吧)会有一个赌徒带着1铜币进入赌 场。

赌场规则很简单:支付x铜币赌下一秒会唱出y,如果猜对了就返还nx铜币,否则钱就没了。 每个赌徒会如下行动: 支付 1 铜币赌下一秒会唱出 a_1 , 如果赌对了就支付得到的 n 铜币赌下 一秒会唱出 a_2 , 如果还对了就支付得到的 n^2 铜币赌下一秒会唱出 a_3 , 等等,以此类推,最后支付 n^{l-1} 铜币赌下一秒会唱出 a_l 。

一旦连续唱出了 $a_1a_2\cdots a_l$, 赌场老板就会认为自己亏大了而关门,并驱散所有赌徒。

那么关门前发生了什么呢?以 $A = \{1,4,1,5,1,1,4,1\}, n = 5$ 为例:

- 最后一位赌徒拿着 5 铜币离开; - 倒数第三位赌徒拿着 53 铜币离开; - 倒数第八位赌徒拿着 58 铜币离开; - 其他所有赌徒空手而归。

我们可以发现 1,3 恰好是原序列的所有 border 的长度,而且对于其他的名字也有这样的规律。这时候最神奇的一步来了:由于这个赌博游戏是公平的,因此赌场应该期望下不赚不赔,因此关门时期望来了 $5+5^3+5^8$ 个赌徒,因此期望需要 $5+5^3+5^8$ 单位时间唱出这个名字。

同理,即可知道对于一般的 A,答案为:

$$\sum_{a_1 a_2 \cdots a_c = a_{l-c+1} a_{l-c+2} \cdots a_l} n^c$$

8 语言基础

8.1 Makefile

```
%:%.cpp %.in
g++ $< -o $@ -std=c++17 -D_GLIBCXX_DEBUG -D_GLIBCXX_DEBUG_PEDANTIC
./$@ < $@.in</pre>
```

8.2 初始代码

```
#include "bits/stdc++.h"
using namespace std;
typedef long long ll;
#define all(x) (x).begin(),(x).end()
int main()
{
   ios::sync_with_stdio(0); cin.tie(0);
   int T; cin>>T;
   while (T--)
   {
   }
}
```

8.3 bitset

```
#include <bits/stdc++.h>
using namespace std;
bitset<10> f(12);
char s2[]="100101";
bitset<10> g(s2);
string s="100101";//reverse 7
bitset<10> h(s);
int main()
{
   for (int i=0;i<=9;i++) if (f[i]) printf("1"); else printf("0");puts("");</pre>
   for (int i=0;i<=9;i++) if (g[i]) printf("1"); else printf("0");puts("");</pre>
   for (int i=0;i<=9;i++) if (h[i]) printf("1"); else printf("0");puts("");</pre>
   cout<<h<<endl;</pre>
   foo.count();//1的个数
   foo.flip();//全部翻转
   foo.set();//变1
   foo.reset();//变0
   foo.to_string();
   foo.to_ulong();
   foo.to_ullong();
   foo._Find_first();
   foo._Find_next();
   //位运算: << 变大, >> 变小
}
```

输出:

8.4 pb_ds 和一些奇怪的用法

```
#pragma GCC optimize("Ofast")
#pragma GCC target("popcnt","sse3","sse2","sse","avx","sse4","sse4.1","sse4.2","sse3","f16c","
   fma","avx2","xop","fma4")
#pragma GCC optimize("inline", "fast-math", "unroll-loops", "no-stack-protector")
#include "bits/stdc++.h"
#include "ext/pb_ds/assoc_container.hpp"
#include "ext/pb_ds/tree_policy.hpp" //balanced tree
#include "ext/pb ds/hash policy.hpp" //hash table
#include "ext/pb_ds/priority_queue.hpp" //priority_queue
using namespace __gnu_pbds;
using namespace std;
typedef tree<int,null_type,less<int>,rb_tree_tag,tree_order_statistics_node_update> rbtree;
cc_hash_table<string,int>mp1;//拉链法
gp_hash_table<string,int>mp2;//查探法
rbtree s1,s2;//注意是不可重的
//null_type无映射(低版本g++为null_mapped_type)
//less<int>从小到大排序
//插入t.insert();
//删除t.erase();
//求有多少个数比 k 小:t.order_of_key(k);
//求树中第 k+1 小:t.find_by_order(k);
//a.join(b) b并入a, 前提是两棵树的 key 的取值范围不相交, b 会清空但迭代器没事, 如不满足会抛出异常。我
   听说复杂度是线性???
//a.split(v,b) key 小于等于 v 的元素属于 a, 其余的属于 b
//T.lower_bound(x) >=x 的 min 的迭代器
//T.upper_bound(x) >x 的 min 的迭代器
__gnu_pbds::priority_queue<int,greater<int>,pairing_heap_tag> pq;
//join(priority_queue &other) //合并两个堆,other会被清空
//split(Pred prd, priority_queue &other) //分离出两个堆
//modify(point_iterator it,const key) //修改一个节点的值
inline char gc()
{
   static char buf[1048576], *p1, *p2;
   return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1048576, stdin),
   p1 == p2) ? EOF : *p1++;
inline int read()
   char ch = gc(); int r = 0, w = 1;
   for (; ch < '0' \mid | ch > '9'; ch = gc()) if (ch == '-') w = -1;
   for (; '0' <= ch && ch <= '9'; ch = gc()) r = r * 10 + (ch - '0');
   return r * w;
struct my_bit
   // ll v[Len];
   __m256i V[Len/4];
   void reset()
   {
```

```
V[0] = mm256 set_epi64x(0, 0, 0, 0);
   V[1] = mm256 set_epi64x(0, 0, 0, 0);
   V[2] = mm256 set_epi64x(0, 0, 0, 0);
   V[3] = mm256 set_epi64x(0, 0, 0, 0);
   V[4] = mm256 set_epi64x(0, 0, 0, 0);
   V[5] = mm256 set_epi64x(0, 0, 0, 0);
   V[6] = mm256 set_epi64x(0, 0, 0, 0);
   V[7] = mm256_set_epi64x(0, 0, 0, 0);
   V[8] = mm256 set_epi64x(0, 0, 0, 0);
   V[9] = mm256 set_epi64x(0, 0, 0, 0);
   V[10] = mm256_set_epi64x(0, 0, 0, 0);
   V[11] = mm256_set_epi64x(0, 0, 0, 0);
   V[12] = mm256_set_epi64x(0, 0, 0, 0);
   V[13] = mm256_set_epi64x(0, 0, 0, 0);
}
void set(int u)
{
   switch (u>>6&3)
   {
   case 0:
       V[u>>8] = mm256_set_epi64x(1ull<<(u&63), 0, 0, 0);
       break;
   case 1:
       V[u>>8] = mm256_set_epi64x(0, 1ull << (u&63), 0, 0);
       break;
   case 2:
       V[u>>8] = mm256_set_epi64x(0, 0, 1ull << (u&63), 0);
       break;
   case 3:
       V[u>>8] = mm256_set_epi64x(0, 0, 0, 1ull << (u&63));
       break;
   }
       // v[u>>6] |=(1ull<<(u&63));
void operator |= (const my_bit &B)
{
   V[0]|=B.V[0];
   V[1] |=B.V[1];
   V[2] = B.V[2];
   V[3] = B.V[3];
   V[4] = B.V[4];
   V[5] = B.V[5];
   V[6] = B.V[6];
   V[7] = B.V[7];
   V[8]|=B.V[8];
   V[9] = B.V[9];
   V[10] = B.V[10];
   V[11] \mid =B.V[11];
   V[12] |=B.V[12];
   V[13] |=B.V[13];
   // V[6] = B.V[6];
   // V[7] = B.V[7];
   // V[8]|=B.V[8];
   // V[9]|=B.V[9];
   // V[10]|=B.V[10];
   // V[11]|=B.V[11];
```

```
// V[12]|=B.V[12];
     // V[13]|=B.V[13];
     // V[14]|=B.V[14];
     // V[15]|=B.V[15];
     // V[16]|=B.V[16];
     // V[17]|=B.V[17];
     // V[18]|=B.V[18];
     // V[19]|=B.V[19];
     // V[20]|=B.V[20];
     // V[21]|=B.V[21];
     // V[22]|=B.V[22];
     // V[23]|=B.V[23];
}
int count()
     return
            __builtin_popcountl1(((11 *)&(V[0]))[0])+__builtin_popcountl1(((11 *)&(V[0]))[1])
           +__builtin_popcountl1(((11 *)&(V[0]))[2])+__builtin_popcountl1(((11 *)&(V[0]))[3])
           +__builtin_popcountll(((11 *)&(V[1]))[0])+__builtin_popcountll(((11 *)&(V[1]))[1])
           +__builtin_popcountll(((11 *)&(V[1]))[2])+__builtin_popcountll(((11 *)&(V[1]))[3])
           +__builtin_popcountll(((11 *)&(V[2]))[0])+__builtin_popcountll(((11 *)&(V[2]))[1])
           + \_builtin\_popcountll(((ll *)&(V[2]))[2]) + \_builtin\_popcountll(((ll *)&(V[2]))[3]) + \_builtin\_popcountll(((ll *
           +__builtin_popcountll(((11 *)&(V[3]))[0])+__builtin_popcountll(((11 *)&(V[3]))[1])
           +__builtin_popcountl1(((11 *)&(V[3]))[2])+__builtin_popcountl1(((11 *)&(V[3]))[3])
           +\_builtin\_popcountll(((ll *)&(V[4]))[0])+\_builtin\_popcountll(((ll *)&(V[4]))[1])
           +__builtin_popcountl1(((11 *)&(V[4]))[2])+__builtin_popcountl1(((11 *)&(V[4]))[3])
           +\_builtin\_popcountll(((ll *)&(V[5]))[0])+\_builtin\_popcountll(((ll *)&(V[5]))[1])
           +__builtin_popcountll(((11 *)&(V[5]))[2])+__builtin_popcountll(((11 *)&(V[5]))[3])
           +__builtin_popcountll(((11 *)&(V[6]))[0])+__builtin_popcountll(((11 *)&(V[6]))[1])
           +__builtin_popcountl1(((11 *)&(V[6]))[2])+__builtin_popcountl1(((11 *)&(V[6]))[3])
           +__builtin_popcountll(((11 *)&(V[7]))[0])+__builtin_popcountll(((11 *)&(V[7]))[1])
           +__builtin_popcountl1(((11 *)&(V[7]))[2])+__builtin_popcountl1(((11 *)&(V[7]))[3])
           +__builtin_popcountll(((11 *)&(V[8]))[0])+__builtin_popcountll(((11 *)&(V[8]))[1])
           +__builtin_popcountl1(((11 *)&(V[8]))[2])+__builtin_popcountl1(((11 *)&(V[8]))[3])
           +__builtin_popcountl1(((11 *)&(V[9]))[0])+__builtin_popcountl1(((11 *)&(V[9]))[1])
           +__builtin_popcountl1(((11 *)&(V[9]))[2])+__builtin_popcountl1(((11 *)&(V[9]))[3])
           +\_builtin\_popcountll(((ll *)&(V[10]))[0])+\_builtin\_popcountll(((ll *)&(V[10]))[1])
           +__builtin_popcountl1(((11 *)&(V[10]))[2])+__builtin_popcountl1(((11 *)&(V[10]))[3])
           +__builtin_popcountll(((l1 *)&(V[11]))[0])+__builtin_popcountll(((l1 *)&(V[11]))[1])
           +\_builtin\_popcountll(((ll *)&(V[11]))[2])+\_builtin\_popcountll(((ll *)&(V[11]))[3])
           +__builtin_popcountl1(((11 *)&(V[12]))[0])+__builtin_popcountl1(((11 *)&(V[12]))[1])
           +\_builtin\_popcountll(((ll *)&(V[12]))[2])+\_builtin\_popcountll(((ll *)&(V[12]))[3])
           +__builtin_popcountll(((11 *)&(V[13]))[0])+__builtin_popcountll(((11 *)&(V[13]))[1])
           +__builtin_popcountl1(((11 *)&(V[13]))[2])+__builtin_popcountl1(((11 *)&(V[13]))[3]);
     // int ans=0;
     // return __builtin_popcountll(v[0])
     // +__builtin_popcountll(v[1])
      // +__builtin_popcountll(v[2])
      // +_builtin_popcountll(v[3])
     // +__builtin_popcountll(v[4])
     // +__builtin_popcountll(v[5])
     // +_builtin_popcountll(v[6])
     // +_builtin_popcountll(v[7])
     // +__builtin_popcountll(v[8])
     // +_builtin_popcountll(v[9])
     // +_builtin_popcountll(v[10])
     // +_builtin_popcountll(v[11])
```

```
// +_builtin_popcountll(v[12])
       // +__builtin_popcountll(v[13])
      // +__builtin_popcountll(v[14])
      // +_builtin_popcountll(v[15])
       // +_builtin_popcountll(v[16])
      // +_builtin_popcountll(v[17])
       // +__builtin_popcountll(v[18])
       // +__builtin_popcountll(v[19])
      // +_builtin_popcountll(v[20])
       // +__builtin_popcountll(v[21])
      // +__builtin_popcountll(v[22])
       // +__builtin_popcountll(v[23]);
          // return ans;
   }
}r[N];
int main()
   __builtin_clz();//前导 0
   __builtin_ctz();//后面的 0
   ios::sync_with_stdio(0);cin.tie(0);
   mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());
   cout<<fixed<<setprecision(15);</pre>
   rbtree::iterator it;
   string s="abc",t="dabce";
   boyer_moore_horspool_searcher S(all(s));
   if (search(all(t),S)!=t.end())
      cout<<"find\n";</pre>
   uniform_real_distribution<> a(1,2);
   numeric_limits<int>::max();
}
```

8.5 python 使用方法

注意事项: python 容易爆栈,且引用与赋值较为混乱。注意局部变量的 global 怎么写(如果需要修改全局内容)。

文件操作

```
fi = open("discuss.in", "r")
fo = open("discuss.out", "w")
n=int(fi.readline())
fo.write(str(ans))
```

类的构造, 重载运算符

```
class Q:
    def __init__(self,x,y):
        self.x=x
        self.y=y
    def __add__(self,o):
        r=Q(self.x+o.x,self.y+o.y)
        return r
    def __sub__(self,o):
        r=Q(self.x-o.x,self.y-o.y)
        return r
    def __mul__(self,o):
```

```
return self.x*o.y-self.y*o.x
def __lt__(self,o):
    if self.x!=o.x:
        return self.x<o.x
    return self.y<o.y
n,m=map(int,input().split())
c=list(map(int,input().split()))
print(*c)
a=Q(0,0)
b=Q(1,1)
if a<b-a:
    pass</pre>
```

9 其他人的板子(补充)

9.1 MTT+exp

```
#include<bits/stdc++.h>
using namespace std;
typedef long long 11;
typedef double db;
int read(){
   int res=0;
   char c=getchar(),f=1;
   while (c<48||c>57) {if (c=='-')f=0; c=getchar();}
   while(c = 48\&\&c < 57)res=(res<<3)+(res<<1)+(c&15),c=getchar();
   return f?res:-res;
}
const int L=1<<19,mod=1e9+7;</pre>
const db pi2=3.141592653589793*2;
int inc(int x,int y){return x+y>=mod?x+y-mod:x+y;}
int dec(int x,int y){return x-y<0?x-y+mod:x-y;}</pre>
int mul(int x,int y){return (11)x*y%mod;}
int qpow(int x,int y){
   int res=1;
   for(;y;y>>=1)res=y&1?mul(res,x):res,x=mul(x,x);
int inv(int x){return qpow(x,mod-2);}
struct cp{
   db x,y;
   cp(){}
   cp(db a,db b){x=a,y=b;}
   cp operator+(const cp& p)const{return cp(x+p.x,y+p.y);}
   cp operator-(const cp& p)const{return cp(x-p.x,y-p.y);}
   cp operator*(const cp& p)const{return cp(x*p.x-y*p.y,x*p.y+y*p.x);}
   cp conj(){return cp(x,-y);}
}w[L];
int re[L];
int getre(int n){
   int len=1,bit=0;
   while(len<n)++bit,len<<=1;</pre>
   for(int i=1;i<len;++i)re[i]=(re[i>>1]>>1)|((i&1)<<(bit-1));</pre>
   return len;
void getw(){
   for(int i=0;i<L;++i)w[i]=cp(cos(pi2/L*i),sin(pi2/L*i));</pre>
void fft(cp* a,int len,int m){
   for(int i=1;i<len;++i)if(i<re[i])swap(a[i],a[re[i]]);</pre>
   for(int k=1,r=L>>1;k<len;k<<=1,r>>=1)
       for(int i=0;i<len;i+=k<<1)</pre>
           for(int j=0;j<k;++j){</pre>
              cp &L=a[i+j],&R=a[i+j+k],t=w[r*j]*R;
              R=L-t, L=L+t;
           }
   if(!~m){
       reverse(a+1,a+len);
```

```
cp tmp=cp(1.0/len,0);
       for(int i=0;i<len;++i)a[i]=a[i]*tmp;</pre>
   }
}
void mul(int* a,int* b,int* c,int n1,int n2,int n){
   static cp f1[L],f2[L],f3[L],f4[L];
   int len=getre(n1+n2-1);
   for(int i=0;i<len;++i){</pre>
       f1[i]=i<n1?cp(a[i]>>15,a[i]&32767):cp(0,0);
       f2[i]=i<n2?cp(b[i]>>15,b[i]&32767):cp(0,0);
   fft(f1,len,1),fft(f2,len,1);
   cp t1=cp(0.5,0),t2=cp(0,-0.5),r=cp(0,1);
   cp x1,x2,x3,x4;
   for(int i=0;i<len;++i){</pre>
       int j=(len-i)&(len-1);
       x1=(f1[i]+f1[j].conj())*t1;
       x2=(f1[i]-f1[j].conj())*t2;
       x3=(f2[i]+f2[j].conj())*t1;
       x4=(f2[i]-f2[j].conj())*t2;
       f3[i]=x1*(x3+x4*r);
       f4[i]=x2*(x3+x4*r);
   fft(f3,len,-1),fft(f4,len,-1);
   11 c1,c2,c3,c4;
   for(int i=0;i<n;++i){</pre>
       c1=(11)(f3[i].x+0.5) \mod, c2=(11)(f3[i].y+0.5) \mod;
       c3=(11)(f4[i].x+0.5)\mbox{mod}, c4=(11)(f4[i].y+0.5)\mbox{mod};
       c[i] = ((((c1 << 15) + c2 + c3) << 15) + c4) \text{mod};
   }
void inv(int* a,int* b,int n){
   if(n==1){b[0]=1;return;}
   static int c[L];
   int l=(n+1)>>1;
   inv(a,b,1);
   mul(a,b,c,n,l,n);
   for(int i=0;i<n;++i)c[i]=mod-c[i];</pre>
   c[0] += 2;
   mul(b,c,b,n,n,n);
void der(int* a,int n){
   for(int i=1;i<n;++i)a[i-1]=mul(a[i],i);</pre>
   a[n-1]=0;
void its(int* a,int n){
   for(int i=n-1;i;--i)a[i]=mul(a[i-1],inv(i));
   a[0]=0;
}
void ln(int* a,int* b,int n){
   static int c[L];
   for(int i=0;i<n;++i)c[i]=a[i];</pre>
   der(c,n);
   inv(a,b,n);
   mul(b,c,b,n,n,n);
   its(b,n);
}
```

```
void exp(int* a,int* b,int n){
   if(n==1){b[0]=1;return;}
   static int c[L];
   int l=(n+1)>>1;
   exp(a,b,1);
   ln(b,c,n);
   for(int i=0;i<n;++i)c[i]=dec(a[i],c[i]);</pre>
   ++c[0];
   mul(b,c,b,l,n,n);
   for(int i=0;i<n;++i)c[i]=0;</pre>
}
int n,k,a[L],f[L],g[L];
int main(){
   getw();
   n=read(),k=read();
   for(int i=1;i<=k;++i)a[i]=inv(i);</pre>
   for(int i=2;i<=n;++i)</pre>
       for(int j=1;i*j<=k;++j)</pre>
           f[i*j]=inc(f[i*j],a[j]);
   for(int i=1;i<=k;++i)f[i]=mod-f[i];</pre>
   for(int i=1;i<=k;++i)f[i]=inc(f[i],mul(n-1,a[i]));</pre>
   exp(f,g,k+1);
   printf("%d\n",g[k]);
```

9.2 半平面交

```
const int N=305;
const db inf=1e15,eps=1e-10;
int sign(db x){
   if(fabs(x)<eps)return 0;</pre>
   return x>0?1:-1;
}
struct vec{
   db x,y;
   vec(){}
   vec(db a,db b){x=a,y=b;}
   vec operator+(const vec& p)const{
       return vec(x+p.x,y+p.y);
   vec operator-(const vec& p)const{
       return vec(x-p.x,y-p.y);
   db operator*(const vec& p)const{
       return x*p.y-y*p.x;
   vec operator*(const db& p)const{
       return vec(x*p,y*p);
}p1[N],p2[N];
struct line{
   vec s,t;
   line(){}
```

```
line(vec a,vec b){s=a,t=b;}
}a[N],q[N];
db ang(vec v){
   return atan2(v.y,v.x);
db ang(line 1){
   return ang(1.t-1.s);
bool cmp(line x,line y){
   int s=sign(ang(x)-ang(y));
   return s?s<0:sign((x.t-x.s)*(y.t-x.s))>0;
}
vec inter(line x,line y){
   vec a=y.s-x.s,b=x.t-x.s,c=y.t-y.s;
   return y.s+c*((a*b)/(b*c));
bool out(line 1,vec p){
   return sign((1.t-1.s)*(p-1.s))<0;</pre>
}
int n,tot=0;
db ans=inf;
int main(){
   scanf("%d",&n);
   for(int i=1;i<=n;++i)scanf("%lf",&p1[i].x);</pre>
   for(int i=1;i<=n;++i)scanf("%lf",&p1[i].y);</pre>
   for(int i=1;i<n;++i)a[i]=line(p1[i],p1[i+1]);</pre>
   a[n]=line(vec(p1[1].x,inf),vec(p1[1].x,p1[1].y));
   a[n+1]=line(vec(p1[n].x,p1[n].y),vec(p1[n].x,inf));
   sort(a+1,a+n+2,cmp);
   for(int i=1;i<=n;++i){</pre>
       if(!sign(ang(a[i])-ang(a[i+1])))continue;
       a[++tot]=a[i];
   }a[++tot]=a[n+1];
   int l=1,r=0;
   q[++r]=a[1],q[++r]=a[2];
   for(int i=3;i<=tot;++i){</pre>
       while(l<r&&out(a[i],inter(q[r],q[r-1])))--r;</pre>
       while (1<r\&\&out(a[i],inter(q[1],q[1+1])))++1;
       q[++r]=a[i];
   }
   while(1<r&&out(q[1],inter(q[r],q[r-1])))--r;</pre>
   while(l<r&&out(q[r],inter(q[l],q[l+1])))++l;</pre>
//.....
}
```

9.3 旋转卡壳

```
if(top==3)return !printf("%d\n",dis(a[sta[1]],a[sta[2]]));
for(int i=1,j=2;i<top;++i){
    while(area(a[sta[i]],a[sta[i+1]],a[sta[j]])>=area(a[sta[i]],a[sta[i+1]],a[sta[j%top+1]]))j=j%
        top+1;
    ans=max(ans,max(dis(a[sta[i]],a[sta[j]]),dis(a[sta[i+1]],a[sta[j]])));
```

```
}printf("%d\n",ans);
```

9.4 多项式复合 (yurzhang)

 $O(n \log n \sqrt{n \log n})$, 奇慢无比, 慎用

```
#pragma GCC optimize("Ofast,inline")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,sse4.1,sse4.2,popcnt,abm,mmx,avx,avx2,tune=native")
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define MOD 998244353
#define G 332748118
#define N 262210
#define re register
#define gc pa==pb&&(pb=(pa=buf)+fread(buf,1,100000,stdin),pa==pb)?EOF:*pa++
typedef long long 11;
static char buf[100000],*pa(buf),*pb(buf);
static char pbuf[3000000],*pp(pbuf),st[15];
int read() {
   re int x(0); re char c(gc);
   while(c<'0'||c>'9')c=gc;
   while(c>='0'&&c<='9')
       x=x*10+c-48,c=gc;
   return x;
}
void write(re int v) {
   if(v==0)
       *pp++=48;
   else {
       re int tp(0);
       while(v)
          st[++tp]=v\%10+48, v/=10;
       while(tp)
          *pp++=st[tp--];
   *pp++=32;
}
int pow(re int a,re int b) {
   re int ans(1);
   while(b)
       ans=b&1?(ll)ans*aMOD:ans,a=(ll)a*aMOD,b>>=1;
   return ans;
}
int inv[N],ifac[N];
void pre(re int n) {
   inv[1]=ifac[0]=1;
   for(re int i(2);i<=n;++i)</pre>
       inv[i]=(11)(MOD-MOD/i)*inv[MOD%i]%MOD;
   for(re int i(1);i<=n;++i)</pre>
       ifac[i]=(ll)ifac[i-1]*inv[i]%MOD;
}
```

```
int getLen(re int t) {
   return 1<<(32-__builtin_clz(t));</pre>
}
int lmt(1),r[N],w[N];
void init(re int n) {
   re int 1(0);
   while(lmt<=n)</pre>
       lmt<<=1,++1;
   for(re int i(1);i<lmt;++i)</pre>
       r[i]=(r[i>>1]>>1)|((i&1)<<(1-1));
   re int wn(pow(3,(MOD-1)/lmt));
   w[lmt>>1]=1;
   for(re int i((lmt>>1)+1);i<lmt;++i)</pre>
       w[i] = (11) w[i-1] * wn%MOD;
   for(re int i((lmt>>1)-1);i;--i)
       w[i] = w[i << 1];
}
void DFT(int*a,re int 1) {
   static unsigned long long tmp[N];
   re int u(__builtin_ctz(lmt)-__builtin_ctz(l)),t;
   for(re int i(0);i<1;++i)</pre>
       tmp[i]=(a[r[i]>>u])%MOD;
   for(re int i(1);i<1;i<<=1)</pre>
       for(re int j(0),step(i<<1);j<1;j+=step)</pre>
           for(re int k(0); k<i; ++k)</pre>
               t=(11)w[i+k]*tmp[i+j+k]%MOD,
               tmp[i+j+k]=tmp[j+k]+MOD-t,
               tmp[j+k]+=t;
   for(re int i(0);i<1;++i)</pre>
       a[i]=tmp[i]%MOD;
}
void IDFT(int*a,re int 1) {
   std::reverse(a+1,a+1);DFT(a,1);
   re int bk(MOD-(MOD-1)/1);
   for(re int i(0);i<1;++i)</pre>
       a[i]=(ll)a[i]*bk%MOD;
}
int n,m;
int a[N],b[N],c[N];
void getInv(int*a,int*b,int deg) {
   if(deg==1)
       b[0] = pow(a[0], MOD-2);
   else {
       static int tmp[N];
       getInv(a,b,(deg+1)>>1);
       re int l(getLen(deg<<1));</pre>
       for(re int i(0);i<1;++i)</pre>
           tmp[i]=i<deg?a[i]:0;</pre>
       DFT(tmp,1),DFT(b,1);
       for(re int i(0);i<1;++i)</pre>
           b[i]=(211-(11)tmp[i]*b[i]%MOD+MOD)%MOD*b[i]%MOD;
       IDFT(b,1);
```

```
for(re int i(deg);i<1;++i)</pre>
           b[i]=0;
   }
}
void getDer(int*a,int*b,int deg) {
   for(re int i(0);i+1<deg;++i)</pre>
       b[i]=(11)a[i+1]*(i+1)%MOD;
   b[deg-1]=0;
}
void getComp(int*a,int*b,int k,int m,int&n,int*c,int*d) {
   if(k==1) {
       for(re int i(0);i<m;++i)</pre>
           c[i]=0,d[i]=b[i];
       n=m,c[0]=a[0];
   } else {
       static int t1[N],t2[N];
       int nl(n),nr(n),*cl,*cr,*dl,*dr;
       getComp(a,b,k>>1,m,nl,cl=c,dl=d);
       getComp(a+(k>>1),b,(k+1)>>1,m,nr,cr=c+nl,dr=d+nl);
       n=std::min(n,nl+nr-1);
       re int _l(getLen(nl+nr));
       for(re int i(0);i<_1;++i)</pre>
           t1[i]=i<nl?dl[i]:0;
       for(re int i(0);i<_1;++i)</pre>
           t2[i]=i<nr?cr[i]:0;
       DFT(t1,_1),DFT(t2,_1);
       for(re int i(0);i<_1;++i)</pre>
           t2[i]=(11)t1[i]*t2[i]%MOD;
       IDFT(t2,_1);
       for(re int i(0);i<n;++i)</pre>
           c[i]=((i<n1?c1[i]:0)+t2[i])%MOD;
       for(re int i(0);i<_1;++i)</pre>
           t2[i]=i<nr?dr[i]:0;
       DFT(t2,_1);
       for(re int i(0);i<_1;++i)</pre>
           t2[i]=(l1)t1[i]*t2[i]%MOD;
       IDFT(t2,_1);
       for(re int i(0);i<n;++i)</pre>
           d[i]=t2[i];
   }
}
void getComp(int*a,int*b,int*c,int deg) {
   static int ts[N],ps[N],c0[N],_t1[N],idM[N];
   int M(std::max((int)ceil(sqrt(deg/log2(deg))*2.5),2)),_n(deg+deg/M);
   getComp(a,b,deg,M,_n,c0,_t1);
   re int _l(getLen(_n+deg));
   for(re int i(_n);i<_l;++i)</pre>
       c0[i]=0;
   for(re int i(0);i<_l;++i)</pre>
       ps[i]=i==0;
   for(re int i(0);i<_1;++i)</pre>
       ts[i]=M<=i&&i<deg?b[i]:0;
   getDer(b,_t1,M);
   for(re int i(M-1);i<deg;++i)</pre>
```

```
_t1[i]=0; /// Important!!!
   getInv(_t1,idM,deg);
   for(int i=deg;i<_l;++i)</pre>
       idM[i]=0;
   DFT(ts,_1),DFT(idM,_1);
   for(re int t(0);t*M<deg;++t) {</pre>
       for(re int i(0);i<_1;++i)</pre>
           _t1[i]=i<deg?c0[i]:0;
       DFT(ps,_1),DFT(_t1,_1);
       for(re int i(0);i<_1;++i)</pre>
           _t1[i]=(ll)_t1[i]*ps[i]%MOD,
           ps[i]=(11)ps[i]*ts[i]%MOD;
       IDFT(ps,_1),IDFT(_t1,_1);
       for(re int i(deg);i<_l;++i)</pre>
           ps[i]=0;
       for(re int i(0);i<deg;++i)</pre>
           c[i]=((ll)_t1[i]*ifac[t]+c[i])%MOD;
       getDer(c0,c0,_n);
       for(re int i(_n-1);i<_1;++i)</pre>
           c0[i]=0;
       DFT(c0,_1);
       for(re int i(0);i<_l;++i)</pre>
           c0[i]=(11)c0[i]*idM[i]%MOD;
       IDFT(c0,_1);
       for(re int i(_n-1);i<_1;++i)</pre>
           c0[i]=0;
   }
}
int main() {
   n=read(),m=read();
   for(re int i(0);i<=n;++i)</pre>
       a[i]=read();
   for(re int i(0);i<=m;++i)</pre>
       b[i]=read();
   m=(n>m?n:m)+1;
   pre(m);init(m*5);
   getComp(a,b,c,m);
   for(re int i(0);i<=n;++i)</pre>
       write(c[i]);
   fwrite(pbuf,1,pp-pbuf,stdout);
   return 0;
}
```

9.5 下降幂多项式乘法

 $O(n \log n)$.

```
#include<cstdio>
#include<algorithm>
const int N=524288,md=998244353,g3=(md+1)/3;
typedef long long LL;
int n,m,A[N],B[N],fac[N],iv[N],rev[N],C[N],g[20][N],lim,M;
int pow(int a,int b){
   int ret=1;
```

```
for(;b;b>>=1,a=(LL)a*a%md)if(b&1)ret=(LL)ret*a%md;
   return ret;
}
void upd(int&a){a+=a>>31&md;}
void init(int n){
   int l=-1;
   for(lim=1;lim<n;lim<<=1)++1;M=1+1;</pre>
   for(int i=1;i<lim;++i)</pre>
   rev[i]=((rev[i>>1])>>1)|((i&1)<<1);
void NTT(int*a,int f){
   for(int i=1;i<lim;++i)if(i<rev[i])std::swap(a[i],a[rev[i]]);</pre>
   for(int i=0;i<M;++i){</pre>
       const int*G=g[i],c=1<<i;</pre>
       for(int j=0; j<lim; j+=c<<1)</pre>
       for(int k=0;k<c;++k){</pre>
           const int x=a[j+k],y=a[j+k+c]*(LL)G[k]%md;
           upd(a[j+k]+=y-md), upd(a[j+k+c]=x-y);
       }
   }
   if(!f){
       const int iv=pow(lim,md-2);
       for(int i=0;i<lim;++i)a[i]=(LL)a[i]*iv%md;</pre>
       std::reverse(a+1,a+lim);
   }
}
int main(){
   scanf("%d%d",&n,&m);++n,++m;
   for(int i=0;i<20;++i){</pre>
       int*G=g[i];
       G[0]=1;
       const int gi=G[1]=pow(3,(md-1)/(1<<i+1));</pre>
       for(int j=2;j<1<<i;++j)G[j]=(LL)G[j-1]*gi\md;</pre>
   for(int i=0;i<n;++i)scanf("%d",A+i);</pre>
   for(int i=0;i<m;++i)scanf("%d",B+i);</pre>
   for(int i=*fac=1;i<N;++i)</pre>
   fac[i]=fac[i-1]*(LL)i%md;
   iv[N-1] = pow(fac[N-1], md-2);
   for(int i=N-2;~i;--i)iv[i]=(i+1LL)*iv[i+1]%md;
   init(n+m<<1);
   for(int i=0;i<n+m-1;++i)C[i]=iv[i];</pre>
   NTT(A,1),NTT(B,1),NTT(C,1);
   for(int i=0;i<lim;++i)A[i]=(LL)A[i]*C[i]%md,B[i]=(LL)B[i]*C[i]%md;</pre>
   NTT(A,0),NTT(B,0);
   for(int i=0;i<lim;++i)C[i]=0;</pre>
   for(int i=0;i<n+m-1;++i)</pre>
   C[i]=(i\&1)?md-iv[i]:iv[i];
   for(int i=0;i<lim;++i)A[i]=(LL)A[i]*B[i]%md*fac[i]%md;</pre>
   for(int i=n+m-1;i<lim;++i)A[i]=0;</pre>
   NTT(A,1),NTT(C,1);
   for(int i=0;i<lim;++i)A[i]=(LL)A[i]*C[i]%md;</pre>
   NTT(A,0);
   for(int i=0;i<n+m-1;++i)printf("%d%c",A[i],"_\\n"[i==n+m-2]);</pre>
   return 0;
```

9.6 平面欧几里得距离最小生成树

```
10<sup>5</sup>, 400ms.
By Claris.
```

```
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long 11;
const int N=100010;
const 11 inf=2000000000000000001LL;
const double eps=1e-9;
inline int sgn(double x){
 if(x>eps)return 1;
 if(x<-eps)return -1;</pre>
 return 0;
}
struct P{
 double x,y;
 P(){}
 P(double _x,double _y) {x=_x,y=_y;}
 bool operator<(const P&a)const{return sgn(x-a.x)<0||sgn(x-a.x)==0&&sgn(y-a.y)<0;}
 P operator-(const P&a)const{return P(x-a.x,y-a.y);}
 double operator&(const P&a)const{return x*a.y-y*a.x;}
 double operator|(const P&a)const{return x*a.x+y*a.y;}
}p[N];
struct PI{
 11 x,y;
 PI(){}
 PI(11 _x,11 _y){x=_x,y=_y;}
}loc[N],pool[N];
inline double check(const P&a,const P&b,const P&c){return (b-a)&(c-a);}
inline double dis2(const P&a){return a.x*a.x+a.y*a.y;}
inline bool cross(int a,int b,int c,int d){
 ],p[a],p[b]))<0;
inline ll dis(const PI&a,const PI&b){return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);}
inline bool cmpx(const PI&a,const PI&b){return a.x<b.x;}</pre>
inline bool cmpy(int a,int b){return pool[a].y<pool[b].y;}</pre>
struct P3{
 double x,y,z;
 P3(){}
 P3(double _x,double _y,double _z){x=_x,y=_y,z=_z;}
 bool operator < (const P3&a) const \{return sgn(x-a.x) < 0 \mid |sgn(x-a.x) = 0 \& sgn(y-a.y) < 0;\}
 P3 operator-(const P3&a)const{return P3(x-a.x,y-a.y,z-a.z);}
 double operator|(const P3&a)const{return x*a.x+y*a.y+z*a.z;}
 P3 operator&(const P3&a)const{return P3(y*a.z-z*a.y,z*a.x-x*a.z,x*a.y-y*a.x);}
}ori[N];
inline P3 check(const P3&a,const P3&b,const P3&c){return (b-a)&(c-a);}
inline P3 gp3(const P&a){return P3(a.x,a.y,a.x*a.x+a.y*a.y);}
inline int cal(double x){
 int y=x;
 for(int i=y-2;i<=y+2;i++)if(!sgn(x-i))return i;</pre>
}
bool incir(int a,int b,int c,int d){
 P3 aa=gp3(p[a]),bb=gp3(p[b]),cc=gp3(p[c]),dd=gp3(p[d]);
```

```
if(sgn(check(p[a],p[b],p[c]))<0)swap(bb,cc);</pre>
 return sgn(check(aa,bb,cc)|(dd-aa))<0;</pre>
int n,i,j,et,la[N],tot,l,r,q[N<<2];</pre>
struct E{
 int to,1,r;
 E()\{\}
 E(int _to,int _l,int _r=0){to=_to,l=_l,r=_r;}
inline void add(int x,int y){
  e[++et]=E(y,la[x]),e[la[x]].r=et,la[x]=et;
 e[++et]=E(x,la[y]),e[la[y]].r=et,la[y]=et;
inline void del(int x){
 e[e[x].r].l=e[x].1;
  e[e[x].1].r=e[x].r;
 la[e[x^1].to] == x?la[e[x^1].to] = e[x].l:1;
void delaunay(int 1,int r){
 if(r-1<=2){
   for(int i=1;i<r;i++)for(int j=i+1;j<=r;j++)add(i,j);</pre>
   return;
 }
  int i,j,mid=(l+r)>>1,ld=0,rd=0,id,op;
  delaunay(1,mid),delaunay(mid+1,r);
 for(tot=0,i=1;i<=r;q[++tot]=i++)</pre>
   \label{lem:while} \begin{tabular}{ll} while (tot>1\&\&sgn(check(p[q[tot-1]],p[q[tot]],p[i]))<0)tot--; \end{tabular}
  for(i=1;i<tot&&!ld;i++)if(q[i]<=mid&&mid<q[i+1])ld=q[i],rd=q[i+1];</pre>
 for(;add(ld,rd),1;){
   id=op=0;
   for(i=la[ld];i;i=e[i].1)
     if(sgn(check(p[ld],p[rd],p[e[i].to]))>0)
       if(!id||incir(ld,rd,id,e[i].to))op=-1,id=e[i].to;
   for(i=la[rd];i;i=e[i].1)
     if(sgn(check(p[rd],p[ld],p[e[i].to]))<0)</pre>
       if(!id||incir(ld,rd,id,e[i].to))op=1,id=e[i].to;
   if(op==0)break;
   if(op==-1){
     for(i=la[ld];i;i=e[i].1)
     if(cross(rd,id,ld,e[i].to))del(i),del(i^1),i=e[i].r;
     ld=id;
   }else{
     for(i=la[rd];i;i=e[i].1)
     if(cross(ld,id,rd,e[i].to))del(i),del(i^1),i=e[i].r;
     rd=id;
   }
 }
}
namespace DS{
int m,tot,a[N],f[N],g[N],v[N<<1],nxt[N<<1],ed,col[N];ll w[N<<1];</pre>
double ans;
struct E{int x,y;ll w;E(){}E(int _x,int _y,ll _w){x=_x,y=_y,w=_w;}}e[N<<3];</pre>
inline bool cmp(const E&a,const E&b){return a.w<b.w;}</pre>
inline void newedge(int x,int y,ll z){e[++tot]=E(x,y,z);}
int F(int x){return f[x]==x?x:f[x]=F(f[x]);}
inline void merge(int x,int y,ll z){
  if(F(x)==F(y))return;
```

```
f[f[x]]=f[y];
 v[++ed]=y;w[ed]=z;nxt[ed]=g[x];g[x]=ed;
 v[++ed]=x;w[ed]=z;nxt[ed]=g[y];g[y]=ed;
  ans+=sqrt(z);
inline void work(){
 sort(e+1,e+tot+1,cmp);
 for(ed=0,i=1;i<=n;i++)f[i]=i,g[i]=0;</pre>
 for(i=1;i<=tot;i++)merge(e[i].x,e[i].y,e[i].w);</pre>
 printf("%.15f\n",ans);
int main(){
 while(~scanf("%d",&n)){
   for(i=0;i<=n+1;i++)la[i]=0;</pre>
   et=1;
   DS::tot=0;
   for(i=1;i<=n;i++){</pre>
     11 x,y;
     scanf("%lld%lld",&x,&y);
     p[i]=P(x,y);
     loc[i]=PI(x,y);
     ori[i]=P3(x,y,i);
   sort(p+1,p+n+1);
   sort(ori+1,ori+n+1);
   delaunay(1,n);
   for(i=1;i<=n;i++)for(j=la[i];j;j=e[j].1){</pre>
     int x=cal(ori[i].z),y=cal(ori[e[j].to].z);
     DS::newedge(x,y,dis(loc[x],loc[y]));
   DS::work();
 }
```

9.7 弦图找错

```
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 200005;
using lint = long long;
using pi = pair<int, int>;
// the algorithm may be wrong. if you have any ideas for proving / disproving this, please
   contact me.
vector<int> gph[MAXN];
int n, m, cnt[MAXN], idx[MAXN];
int mark[MAXN], vis[MAXN], par[MAXN];
void report(int x, int y){
   gph[x].erase(find(gph[x].begin(), gph[x].end(), y));
   gph[y].erase(find(gph[y].begin(), gph[y].end(), x));
   for(int i=1; i<=n; i++){</pre>
       if(binary_search(gph[i].begin(), gph[i].end(), x) &&
          binary_search(gph[i].begin(), gph[i].end(), y)){
          mark[i] = 1;
       }
   }
```

```
queue<int> que;
   vis[x] = 1;
   que.push(x);
   while(!que.empty()){
       int x = que.front(); que.pop();
       for(auto &i : gph[x]){
           if(!mark[i] && !vis[i]){
              par[i] = x;
              vis[i] = 1;
              que.push(i);
          }
       }
   }
   assert(vis[y]);
   vector<int> v;
   while(y){
       v.push_back(y);
       y = par[y];
   }
   printf("NO\n\%d\n", v.size());
   for(auto &i : v) printf("%d", i-1);
}
int main(){
   scanf("%d_{\sqcup}%d",&n,&m);
   for(int i=0; i<m; i++){</pre>
       int s, e; scanf("%d_\%d",&s,&e);
       s++, e++;
       gph[s].push_back(e);
       gph[e].push_back(s);
   for(int i=1; i<=n; i++) sort(gph[i].begin(), gph[i].end());</pre>
   priority_queue<pi> pq;
   for(int i=1; i<=n; i++) pq.emplace(cnt[i], i);</pre>
   vector<int> ord;
   while(!pq.empty()){
       int x = pq.top().second, y = pq.top().first;
       pq.pop();
       if(cnt[x] != y || idx[x]) continue;
       ord.push_back(x);
       idx[x] = n + 1 - ord.size();
       for(auto &i : gph[x]){
          if(!idx[i]){
              cnt[i]++;
              pq.emplace(cnt[i], i);
          }
       }
   }
   reverse(ord.begin(), ord.end());
   for(auto &i : ord){
       int minBef = 1e9;
       for(auto &j : gph[i]){
           if(idx[j] > idx[i]) minBef = min(minBef, idx[j]);
       }
       minBef--;
       if(minBef < n){</pre>
          minBef = ord[minBef];
```

9.8 最长公共子序列

复杂度 $O(\frac{nm}{\omega})$ 。

```
/*
* Author : _Wallace_
* Source : https://www.cnblogs.com/-Wallace-/
* Problem : LOJ #6564. 最长公共子序列
* Standard : GNU C++ 03
* Optimal : -Ofast
*/
#include <algorithm>
#include <cstddef>
#include <cstdio>
#include <cstring>
typedef unsigned long long ULL;
const int N = 7e4 + 5;
int n, m, u;
struct bitset {
 ULL t[N / 64 + 5];
 bitset() {
   memset(t, 0, sizeof(t));
 bitset(const bitset &rhs) {
   memcpy(t, rhs.t, sizeof(t));
 bitset& set(int p) {
   t[p >> 6] \mid = 111u << (p & 63);
   return *this;
 bitset& shift() {
   ULL last = Ollu;
   for (int i = 0; i < u; i++) {</pre>
     ULL cur = t[i] >> 63;
     (t[i] <<= 1) |= last, last = cur;
   }
   return *this;
 int count() {
```

```
int ret = 0;
   for (int i = 0; i < u; i++)</pre>
     ret += __builtin_popcountll(t[i]);
   return ret;
 bitset& operator = (const bitset &rhs) {
   memcpy(t, rhs.t, sizeof(t));
   return *this;
 }
 bitset& operator &= (const bitset &rhs) {
   for (int i = 0; i < u; i++) t[i] &= rhs.t[i];</pre>
   return *this;
 bitset& operator |= (const bitset &rhs) {
   for (int i = 0; i < u; i++) t[i] |= rhs.t[i];</pre>
   return *this;
 bitset& operator ^= (const bitset &rhs) {
   for (int i = 0; i < u; i++) t[i] ^= rhs.t[i];</pre>
   return *this;
 }
 friend bitset operator - (const bitset &lhs, const bitset &rhs) {
   ULL last = Ollu; bitset ret;
   for (int i = 0; i < u; i++){</pre>
     ULL cur = (lhs.t[i] < rhs.t[i] + last);</pre>
     ret.t[i] = lhs.t[i] - rhs.t[i] - last;
     last = cur;
   }
   return ret;
 }
} p[N], f, g;
signed main() {
 scanf("%d%d", &n, &m), u = n / 64 + 1;
 for (int i = 1, c; i <= n; i++)</pre>
   scanf("%d", &c), p[c].set(i);
 for (int i = 1, c; i <= m; i++) {</pre>
   scanf("%d", &c), (g = f) |= p[c];
   f.shift(), f.set(0);
   ((f = g - f) = g) &= g;
 printf("%d\n", f.count());
 return 0;
```

另一个实现

```
#include <bits/stdc++.h>
#pragma GCC target("popcnt,bmi")

using namespace std;
using ull = uint64_t;

const int N = 70005, M = 1136;
int n, m;
```

```
ull g[N][M], f[M];
int read() {
   const int M = 1e6;
   static streambuf *in = cin.rdbuf();
#define gc (p1 == p2 && (p2 = (p1 = buf) + in \rightarrow sgetn(buf, M), p1 == p2) ? -1 : *p1++)
   static char buf[M], *p1, *p2;
   int c = gc, r = 0;
   while (c < 48)
       c = gc;
   while (c > 47)
       r = r * 10 + (c & 15), c = gc;
   return r;
int main() {
   cin.tie(0)->sync_with_stdio(0);
   cin >> n >> m;
   for (int i = 0; i < n; i++)</pre>
       g[read()][i / 62] = 1ULL << (i % 62);
   int lim = (n - 1) / 62;
   for (int i = 0; i < m; i++) {</pre>
       int c = 1;
       auto can = g[read()];
       for (int j = 0; j <= lim; j++) {</pre>
           ull x = f[j], y = x \mid can[j];
           x += x + c + (~y & (1ULL << 62) - 1);
           f[j] = x & y, c = x >> 62;
       }
   }
   int ans = 0;
   for (int i = 0; i <= lim; i++)</pre>
       ans += __builtin_popcountll(f[i]);
   cout << ans;</pre>
}
```

9.9 区间 LIS (排列)

```
#include<bits/stdc++.h>
using namespace std;
//dengyaotriangle!

const int maxn=100005;

int pool[(int)5e7];int ps;
inline int *aloc(int x){
    ps+=x;return pool+ps-x;
```

```
void unit_monge_mult(int *a,int *b,int *r,int n){
   if(n==2){
       if(a[0]==0\&\&b[0]==0)r[0]=0,r[1]=1;
       else r[0]=1,r[1]=0;
       return;
   }
   if(n==1){r[0]=0;return;}
   int lps=ps;
   int d=n/2;
   int *a1=aloc(d),*a2=aloc(n-d),*b1=aloc(d),*b2=aloc(n-d);
   int *mpa1=aloc(d),*mpa2=aloc(n-d),*mpb1=aloc(d),*mpb2=aloc(n-d);
   int p[2]={0,0};
   for(int i=0;i<n;i++){</pre>
       if(a[i]<d)a1[p[0]]=a[i],mpa1[p[0]]=i,p[0]++;</pre>
       else a2[p[1]]=a[i]-d,mpa2[p[1]]=i,p[1]++;
   p[0]=p[1]=0;
   for(int i=0;i<n;i++){</pre>
       if(b[i]<d)b1[p[0]]=b[i],mpb1[p[0]]=i,p[0]++;</pre>
       else b2[p[1]]=b[i]-d,mpb2[p[1]]=i,p[1]++;
   int *c1=aloc(d),*c2=aloc(n-d);
   unit_monge_mult(a1,b1,c1,d),unit_monge_mult(a2,b2,c2,n-d);
   int *cpx=aloc(n),*cpy=aloc(n),*cqx=aloc(n),*cqy=aloc(n);
   for(int i=0;i<d;i++)cpx[mpa1[i]]=mpb1[c1[i]],cpy[mpa1[i]]=0;</pre>
   for(int i=0;i<n-d;i++)cpx[mpa2[i]]=mpb2[c2[i]],cpy[mpa2[i]]=1;</pre>
   for(int i=0;i<n;i++)r[i]=cpx[i];</pre>
   for(int i=0;i<n;i++)cqx[cpx[i]]=i,cqy[cpx[i]]=cpy[i];</pre>
   int hi=n,lo=n,his=0,los=0;
   for(int i=0;i<n;i++){</pre>
       if(cqy[i]^(cqx[i]>=hi))his--;
       while(hi>0&&his<0){</pre>
          hi--;
          if(cpy[hi]^(cpx[hi]>i))his++;
       }
       while(lo>0&&los<=0){</pre>
          lo--;
          if(cpy[lo]^(cpx[lo]>=i))los++;
       if(los>0&&hi==lo)r[lo]=i;
       if(cqy[i]^(cqx[i]>=lo))los--;
   }
   ps=lps;
void subunit_monge_mult(int*a,int*b,int*c,int n){
   int lps=ps;
   int *za=aloc(n),*zb=aloc(n),*res=aloc(n),*vis=aloc(n),*mpa=aloc(n),*mpb=aloc(n),*rb=aloc(n);
   memset(vis,0,sizeof(int)*n);
   memset(mpa,-1,sizeof(int)*n);
   memset(mpb,-1,sizeof(int)*n);
   memset(rb,-1,sizeof(int)*n);
   int ca=n;
   for(int i=n-1;i>=0;i--)if(a[i]!=-1){
       vis[a[i]]=1;ca--;za[ca]=a[i];mpa[ca]=i;
   for(int i=n-1;i>=0;i--)if(!vis[i])za[--ca]=i;
```

```
memset(vis,-1,sizeof(int)*n);
   for(int i=0;i<n;i++)if(b[i]!=-1)vis[b[i]]=i;</pre>
   ca=0;
   for(int i=0;i<n;i++)if(vis[i]!=-1){</pre>
       mpb[ca]=i;rb[vis[i]]=ca++;
   for(int i=0;i<n;i++)if(rb[i]==-1)rb[i]=ca++;</pre>
   for(int i=0;i<n;i++)zb[rb[i]]=i;</pre>
   unit monge mult(za,zb,res,n);
   memset(c,-1,sizeof(int)*n);
   for(int i=0;i<n;i++)if(mpa[i]!=-1&&mpb[res[i]]!=-1)c[mpa[i]]=mpb[res[i]];</pre>
   ps=lps;
}
void solve(int *p,int *ret,int n){
   if(n==1){ret[0]=-1;return;}
   int lps=ps,d=n/2;
   int *pl=aloc(d),*pr=aloc(n-d);
   for(int i=0;i<d;i++)pl[i]=p[i];</pre>
   for(int i=0;i<n-d;i++)pr[i]=p[i+d];</pre>
   int *vis=aloc(n);memset(vis,-1,sizeof(int)*n);
   for(int i=0;i<d;i++)vis[pl[i]]=i;</pre>
   int *tl=aloc(d),*tr=aloc(n-d),*mpl=aloc(d),*mpr=aloc(n-d);
   int ca=0;
   for(int i=0;i<n;i++)if(vis[i]!=-1)mpl[ca]=i,tl[vis[i]]=ca++;</pre>
   ca=0;memset(vis,-1,sizeof(int)*n);
   for(int i=0;i<n-d;i++)vis[pr[i]]=i;</pre>
   for(int i=0;i<n;i++)if(vis[i]!=-1)mpr[ca]=i,tr[vis[i]]=ca++;</pre>
   int *vl=aloc(d),*vr=aloc(n-d);
   solve(t1,v1,d),solve(tr,vr,n-d);
   int *sl=aloc(n),*sr=aloc(n);
   iota(sl,sl+n,0);iota(sr,sr+n,0);
   for(int i=0;i<d;i++)sl[mpl[i]]=(vl[i]==-1?-1:mpl[vl[i]]);</pre>
   for(int i=0;i<n-d;i++)sr[mpr[i]]=(vr[i]==-1?-1:mpr[vr[i]]);</pre>
   subunit_monge_mult(sl,sr,ret,n);
   ps=lps;
int invp[maxn],res_monge[maxn];
int main(){
   ios::sync_with_stdio(0);cin.tie(0);
   int n,q;
   cin>>n>>q;
   vector<int> a(n);
   for(int i=0;i<n;i++)cin>>a[i],invp[a[i]]=i;
   solve(invp,res_monge,n);
   vector<int> fwk(n+1),ans(q);
   vector<vector<pair<int,int> > qry(n+1);
   for(int i=0;i<q;i++){</pre>
       int 1,r;
       cin>>l>>r;
       qry[1].push_back({r,i});
       ans[i]=r-1;
   }
   for(int i=n-1;i>=0;i--){
       if(res_monge[i]!=-1){
           for(int p=res_monge[i]+1;p<=n;p+=p&-p)fwk[p]++;</pre>
```

```
}
    for(auto& z:qry[i]){
        int id,c;tie(id,c)=z;
        for(int p=id;p;p-=p&-p)ans[c]-=fwk[p];
    }
}
for(int i=0;i<q;i++)cout<<ans[i]<<'\n';
    return 0;
}
</pre>
```

9.10 区间 LCS

 $s_{[0,a)}$ 和 $t_{[b,c)}$ 的 LCS

```
#include<bits/stdc++.h>
using namespace std;
//dengyaotriangle!
const int maxn=1005;
const int maxq=500005;
int n,m,q;
char a[maxn],b[maxn];
struct qryt{
   int x,nxt;
}z[maxq];
int qry[maxn] [maxn];
int ans[maxq];
int r[maxn];
int bit[maxn];
int main(){
   ios::sync_with_stdio(0);cin.tie(0);
   cin>>q>>b>>a;n=strlen(a);m=strlen(b);
   //q,s,t
   for(int i=1;i<=q;i++){</pre>
       int a,b,c;
       cin>>a>>b>>c;
       if(a){
           ans[i]=c-b;
           z[i].x=b;z[i].nxt=qry[a][c];
           qry[a][c]=i;
       }
   for(int i=0;i<n;i++)r[i]=i;</pre>
   for(int i=0;i<m;i++){</pre>
       int lp=-1;
       for(int j=0;j<n;j++)if(a[j]==b[i]){lp=j;break;}</pre>
       if(lp!=-1){
           for(int j=lp+1;j<n;j++){</pre>
               if(a[j]!=b[i]){
                  if(r[j-1]<r[j])swap(r[j-1],r[j]);</pre>
               }
           for(int i=n-1;i>lp;i--)r[i]=r[i-1];
           r[lp]=-1;
       for(int i=0;i<=n;i++)bit[i]=0;</pre>
```

```
for(int j=0;j<n;j++){
    if(r[j]!=-1){
        for(int p=n-r[j];p<=n;p+=p&-p)bit[p]++;
    }
    for(int y=qry[i+1][j+1];y;y=z[y].nxt){
        for(int p=n-z[y].x;p;p-=p&-p)ans[y]-=bit[p];
    }
    }
}
for(int i=1;i<=q;i++)cout<<ans[i]<<'\n';
return 0;
}</pre>
```

9.11 毛毛虫剖分

毛毛虫剖分,一种由轻重链剖分(HLD)推广而成的树上结点重标号方法,支持修改 / 查询一只毛毛虫的信息,并且可以对毛毛虫的身体和足分别修改 / 查询不同信息.

严格强于树剖,而且复杂度和树剖一样哦!

一些定义 (默认在一棵树上):

毛毛虫: 一条链和与这条链邻接的所有结点构成的集合. 虫身(身体): 毛毛虫的链部分. 虫足(足): 毛毛虫除虫身的部分. 重标号方法首先重剖求出重链. DFS, 若现在处理到结点 u: 若 u 还未被标号,则为其标号. 若 u 是重链头,遍历这条重链,将邻接这条链的结点依次标号. 先递归重儿子,再递归轻儿子. 重标号性质对于重链,除链头外的结点标号连续. 对于任意结点,其轻儿子标号连续. 对于以重链头为根的子树,与这条重链邻接的所有结点标号连续. 这样就可以随便维护毛毛虫信息了,顺便还能维护链信息,子树信息等.

时间复杂度同轻重链剖分.

以 SAM 为例,若我们只保留所有的转移边 (u,v) ,满足到达 u 的路径数目大于到达 v 的路径数目一半,且从 v 出发的路径数目大于从 u 出发的路径数目一半,这样剩余的子图显然会形成若干条链,且每个点恰好在一条链上。这样,我们容易证明,从根结点出发的任何一条路径,至多经过 $O(\log n)$ 条不在链上的转移边(也意味着至多经过 $O(\log n)$ 条链)。

以下是一段示例代码,展示了将一条链对应区间取出来的过程

```
vector<int> e[N];
vector<pair<int, int>> seg[N], qu[N];
int ans[Q];
int dfn[N], dep[N], nfd[N], top[N], f[N], sz[N], hc[N], pre[N], fir[N], lst2[N], rt[N];
int
void insert()
void dfs1(int u)
{
    sz[u] = 1;
    for (int v : e[u]) if (v != f[u])
    {
        dep[v] = dep[u] + 1;
        f[v] = u;
        dfs1(v);
        sz[u] += sz[v];
        if (sz[v] > sz[hc[u]]) hc[u] = v;
    }
    if (f[u]) erase(e[u], f[u]);
}
void dfs2(int u)
```

```
static int id = 0;
   //dbg(u);
   if (!dfn[u])
       dfn[u] = ++id;
       nfd[id] = u;
   if (top[u] == u)
       vector<int> stk;
       for (int v = u; v; v = hc[v])
          for (int w : e[v]) if (w != hc[v])
              dfn[w] = ++id;
              nfd[id] = w;
              pre[v] = id;
              cmin(fir[v], id);
              lst2[v] = id;
          stk.push_back(v);
       for (int i = (int)stk.size() - 2;i >= 0;i--)
          cmin(fir[stk[i]], fir[stk[i + 1]]);
          cmax(lst2[stk[i]], lst2[stk[i + 1]]);
       for (int i = 1;i < stk.size();i++)</pre>
          cmax(pre[stk[i]], pre[stk[i - 1]]);
       }
   //dbg(u);
   top[hc[u]] = top[u];
   if (hc[u]) dfs2(hc[u]);
   for (int v : e[u]) if (v != hc[u]) dfs2(top[v] = v);
mt19937 rnd(245);
int main()
{
   memset(fir, 0x3f, sizeof fir);
   ios::sync_with_stdio(0); cin.tie(0);
   cout << fixed << setprecision(15);</pre>
   int n, m, q, i, j;
   cin >> n >> m >> q;
   for (i = 1;i < n;i++)</pre>
       int u, v;
       //cin >> u >> v;
       u = i + 1;
       v = rnd() % i + 1;
       //v = (i + 1) / 2;
       //v = i / 2 + 1;
       //dbg(u, v);
       e[u].push_back(v);
       e[v].push_back(u);
```

```
dfs1(dep[1] = 1);
//dbg("??");
dfs2(top[1] = 1);
//for (i = 1;i <= n;i++) cerr << i << ": " << dfn[i] << endl;
for (i = 1;i <= m;i++)</pre>
{
   int u, v;
   //cin >> u >> v;
   u = rnd() % n + 1;
   v = rnd() % n + 1;
   int uu = u, vv = v;
   //dbg(uu, vv);
   auto& w = seg[i];
   while (top[u] != top[v])
       if (dep[top[u]] < dep[top[v]]) swap(u, v);</pre>
       w.push_back({fir[top[u]], pre[u]});
       //else w.push_back({fir[top[u]], lst2[top[u]]});
       if (hc[u]) w.push_back({dfn[hc[top[u]]], dfn[hc[u]]});
       else if (top[u] != u) w.push_back({dfn[hc[top[u]]], dfn[u]});
       //dbg(u, v, w);
       //[fir[top[u]],lst[u]]
       u = f[top[u]];
   }
   if (dep[u] < dep[v]) swap(u, v);</pre>
   w.push_back({fir[v], pre[u]});
   //else if (!hc[u]) w.push_back({fir[v], lst2[v]});
   //dbg(v, lst2[v], fir[v]);
   if (hc[u]) w.push_back({dfn[hc[v]], dfn[hc[u]]});
   else if (u != v) w.push_back({dfn[hc[v]], dfn[u]});
   //dbg(w);
   w.push_back({dfn[v], dfn[v]});
   if (f[v]) w.push_back({dfn[f[v]], dfn[f[v]]});
   erase_if(w, [&](const auto& x) {return x.first > x.second;});
   //int len = 0;
   //for (auto [l, r] : w) len += r - l + 1;
   //for (auto [1, r] : w)
   //{
   // for (int j = 1; j <= r; j++) cerr << nfd[j] << ' '; cerr << " | ";
   //cerr << endl;</pre>
   //int tl = 0;
   //set<int> s = {uu, vv};
   //while (uu != vv)
   //{
   // if (dep[uu] < dep[vv]) swap(uu, vv);</pre>
   // s.insert(all(e[uu]));s.insert(f[uu]);uu = f[uu];
   //}
   //s.insert(all(e[uu]));
   //if (f[uu]) s.insert(f[uu]);
   ///dbg(s);
   //assert(len == s.size());
for (i = 1;i <= q;i++)
   int 1, r;
```

```
cin >> 1 >> r;
    qu[l].push_back({r, i});
}
for (i = m;i;i--)
{

for (i = 1;i <= q;i++) cout << ans[i] << '\n';
    //cerr << "??\n";
}</pre>
```