MC数据产生及 本周进展

张中华 2024.7.31

Corsika模拟monopole范围探索

注:KM2A能够接受的末态数量最大为1e7,以此确定不同质量monopole的最大能量

CORSIKA							
末态规模数量级		磁单极子质量					
		1e2 GeV	1e4 GeV	1e5 GeV	1e7 GeV		
	1e6~1e7	1e5~1e6					
能量	1e7~1e8	1e6~1e7	1e3~1e4				
	1e8~1e9	1e7~1e8	1e4~1e5	1e3~1e4			
	1e9~1e10		1e5~1e6	1e4~1e5			
	1e10~1e11		1e6~1e7	1e5~1e6			
	1e11~1e12			1e6~1e7			
	1e12~1e13				1e3~1e4		
note: 其他质量对应能量与规模有待尝试							

· mass=1e7 GeV:monopole与大气第一次相互作用所需的距离变长,此能量下, 走了一大半才开始发展,但是一旦发展就很快

mass=1e10 GeV: 在能量高达1e25GeV下,仍没有相互作用发生,故此已经超出模拟极限,故更大质量不予考虑

生成数据所需时间

Corsika输入:

- 天顶角= 0°
- 方位角=0~50°
- 能谱=幂指数为0

时间h/100 events		CORSIKA		KM2A			
		磁单极子质量					
		1e2 GeV	1e5 GeV		1e5 GeV		
	1e6~1e7	2.1					
	1e7~1e8	16.3					
能量	1e8~1e9	148.4	0.1		0.1		
肥里	1e9~1e10		0.3		2.3		
	1e10~1e11		1.8		56.1		
	1e11~1e12		14.4		more		
Lorentz Factor: 1e3~1e7							
note: 其他质量所需时间有待尝试							

KM2A最终得到如下数据: 激发的探测器ID, 接受到的光电子数, 位置(x,y)

	EDid	EDpe	EDx	EDy
0	7.0	126.330002	349.002991	63.367001
1	71.0	11.000000	-520.392029	245.276993
2	81.0	10.000000	-84.915001	193.324005
3	462.0	13.000000	-78.403999	-340.072998
4	518.0	13.000000	-100.473999	245.182999
104	5007.0	9.000000	41.969002	595.807007
105	5214.0	127.000000	-123.030998	621.786987
106	5363.0	9.000000	-71.138000	374.766998
107	5396.0	26.000000	-40.530998	297.027008
108	5416.0	39.000000	-74.018997	337.136993

分析KM2A产生的数据,如下图

以下比较monopole, gamma, proton 区别

能量 (GeV) :

Monopole: 1e9~1e10, mass = 1e5GeV

Gamma: 1e4~1e5 Proton: 1e4~1e5

1. pe(光电子)径向分布

分析:

- EM粒子径向分布:monopole簇射EM数量随r衰减更快
- Muon径向分布: monopole簇射在<mark>距芯很近的地方较多</mark>
- 不同于区别gamma与proton簇射使用的如:距芯40米外的muon分布
- 区别mn簇射时靠近芯区域的muon分布也许更重要

$$R = \frac{\sum_{i} \rho_{i} \times r_{i}}{\sum_{i} \rho_{i}}$$
, (rho为数密度)

2. R参数(1)

R表示一个簇射的径向延展度, R越小,簇射越集中

(1) https://iopscience.iop.org/article/10.1088/2632-2153/ad3a33

分析:

- mn簇射中EM粒子R更小,说明其末态更集中
- · 其muon的R参数范围与gamma, proton相差不大

3.

- 正在学习如何使用CNN
- 将KM2A结果图像化,得到二维数组作为输入,如:

谢谢