This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 05345982 A

(43) Date of publication of application: 27 . 12 . 93

(51) Int. CI

C23C 16/50

C23F 4/00

H01L 21/205

H01L 21/31

H05H 1/48

(21) Application number: 04319223

(22) Date of filing: 05 . 11 . 92 -

(30) Priority:

08 . 11 . 91 JP 03293010

05 . 11 . 91 JP 03315266 (71) Applicant:

CANON INC

(72) Inventor:

SUZUKI NOBUMASA

(54) MICROWAVE INTRODUCING DEVICE HAVING ENDLESS ANNULAR WAVEGUIDE AND PLASMA TREATING DEVICE PROVIDED WITH ITS DEVICE COPYRIGHT: (C)1993,JPO&Japio

(57) Abstract:

PURPOSE: To uniformly and efficiently introduce microwaves into a vacuum vessel by providing the inside of an annular waveguide having a microwave introducing part with plural slots pierced at prescribed intervals.

CONSTITUTION: For introducing microwaves from a cylindrical waveguide 101 having a microwave introducing part 103 connected to a microwave power source, plural slots 102 are pierced on the inside of the cylindrical waveguide 101. The slots 102 have a rectangular shape and are provided at intervals of 1/4 of the wave length in the guide. By this microwave introducing device, microwaves can uniformly and efficiently be introduced into the vacuum vessel which is an object of the feed of microwaves from the circumference of the vacuum vessel, and by a plasma treating device provided with the device, the body to be treated can uniformly and efficiently be subjected to plasma treatment.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-345982

(43)公開日 平成5年(1993)12月27日

(51)Int.Cl. ⁵ C 2 3 C	16/50	餓別記号	庁内整理番号 7325—4K	FΙ			技術表示箇所
C 2 3 F	4/00	D	8414-4K				
H01L	21/205						•
	21/31	С					
H05H	1/48		9014-2G				
		•			審査請求	未請求	請求項の数37(全 30 頁)

(21)出願番号

特願平4-319223

(22)出願日

平成 4年(1992)11月5日

(31)優先権主張番号 特願平3-293010

(32)優先日

平3(1991)11月8日

(33)優先権主張国

日本 (JP)

(31)優先権主張番号

特願平3-315266

(32)優先日

平3(1991)11月5日

(33)優先権主張国

日本(JP)

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 鈴木 伸昌

東京都大田区下丸子3丁目30番2号 キャ

ノン株式会社内

(74)代理人 弁理士 荻上 豊規

(54)【発明の名称】 無端環状導波管を有するマイクロ波導入装置及び マ処理装置

該装置を備えたプラズ

(57)【要約】

【目的】マイクロ波の供給対象である真空容器周辺から マイクロ波を均一にして効率的に該真空容器へ導入する ことを可能にする改善されたマイクロ波導入装置及び該 マイクロ波導入装置を備えたプラズマ処理装置を提供す ること。

【構成】複数のスロットを備えた無端環状導波管を有す るマイクロ波導入装置であって、前記複数のスロット は、該環状導波管の内側に所定の間隔で穿孔されて設け られていることを特徴とするマイクロ波導入装置及び該 マイクロ波導入装置を備えたプラズマ処理装置。

【効果】マイクロ波を電磁波のまま真空容器内に周辺か ら導入できるので、均一にして効率的にマイクロ波を該 真空容器内に導入することができる。

【特許請求の範囲】

【請求項1】 複数のスロットを備えた無端環状導波管 を有するマイクロ波導入装置であって、該環状導波管 は、マイクロ波電源に接続するマイクロ波導入部を有 し、前記複数のスロットは、該環状導波管の内側に所定 の間隔で穿孔されて設けられていることを特徴とするマ イクロ波導入装置。

【請求項2】 前記複数のスロットは前記環状導波管内 に導入されたマイクロ波の管内波長の1/4の間隔で設 けられていることを特徴とする請求項1に記載のマイク 10 口波導入装置。

【請求項3】 前記マイクロ波導入部は前記環状導波管 の接線方向に向いていることを特徴とする請求項1乃至 2 に記載のマイクロ波導入装置。

【請求項4】 前記複数のスロットは、その長さがマイ クロ波の進行方向に沿って増大するように設計されてい ることを特徴とする請求項1乃至3に記載のマイクロ波 導入装置。

【請求項5】 前記マイクロ波導入部は前記環状導波管 の垂直方向に向いていて、該マイクロ波導入部は、導入 20 されるマイクロ波を二方向に分配し該環状導波管内の両 側に伝搬させる手段が設けられていることを特徴とする 請求項1乃至2に記載のマイクロ波導入装置。

【請求項6】 前記複数のスロットのそれぞれの近傍の 前記環状導波管の内側面に平行な磁界を発生する手段が 設けられていることを特徴とする請求項1乃至5に記載 のマイクロ波導入装置。

【請求項7】 減圧可能なプラズマ発生室の外周部に配 置されたマイクロ波導入装置を介して前記プラズマ発生 室内にマイクロ波を供給して前記プラズマ発生室内にブ 30 ラズマを発生させ、該プラズマ発生室内に配された被処 理基体を処理するプラズマ処理装置であって、前記マイ クロ波導入装置が複数のスロットを備えた無端環状導液 管からなり、該環状導波管は、マイクロ波電源に接続す るマイクロ波導入部を有し、前記複数のスロットは、該 環状導波管の内側に所定の間隔で穿孔されて設けられて いるマイクロ波導入装置であることを特徴とするプラズ マ処理装置。

【請求項8】 前記複数のスロットは前記環状導波管内 に導入されたマイクロ波の管内波長の1/4の間隔で設 40 けられていることを特徴とする請求項7に記載のプラズ マ処理装置。

【請求項9】 前記マイクロ波導入部は前記環状導波管 の接線方向に向いていることを特徴とする請求項7乃至 8に記載のブラズマ処理装置。

【請求項10】 前記複数のスロットは、その長さがマ イクロ波の進行方向に沿って増大するように設計されて いることを特徴とする請求項7乃至9に記載のプラズマ 処理装置。

【請求項11】

管の垂直方向に向いていて、該マイクロ波導入部は、導 入されるマイクロ波を二方向に分配し該環状導波管内の 両側に伝搬させる手段が設けられていることを特徴とす る請求項7乃至8に記載のプラズマ処理装置。

【請求項12】 前記複数のスロットのそれぞれの近傍 の前記環状導波管の内側面に平行な磁界を発生する手段 が設けられていることを特徴とする請求項7乃至11に 記載のプラズマ処理装置。

【請求項13】 滅圧可能なプラズマ発生室の外周部に 配置されたマイクロ波導入装置を介して前記プラズマ発 生室内にマイクロ波を供給して前記プラズマ発生室内に プラズマを発生させ、前記プラズマ発生室に通ずる成膜 室内に前記プラズマが発生する領域とは離隔して配され た被処理基体を処理するプラズマ処理装置であって、前 記マイクロ波導入装置が、複数のスロットを備えた無端 環状導波管からなり、該環状導波管は、マイクロ波電源 に接続するマイクロ波導入部を有し、前記複数のスロッ トは、該環状導波管の内側に所定の間隔で穿孔されて設 けられているマイクロ波導入装置であることを特徴とす るプラズマ処理装置。

【請求項14】 前記複数のスロットは前記環状導波管 内に導入されたマイクロ波の管内波長の1/4の間隔で 設けられていることを特徴とする請求項13に記載のブ ラズマ処理装置。

【請求項15】 前記マイクロ波導入部は前記環状導波 管の接線方向に向いていることを特徴とする請求項13 乃至14に記載のプラズマ処理装置。

【請求項16】 前記複数のスロットは、その長さがマ イクロ波の進行方向に沿って増大するように設計されて いることを特徴とする請求項13乃至15に記載のプラ ズマ処理装置。

【請求項17】 前記マイクロ波導入部は前記環状導波 管の垂直方向に向いていて、該マイクロ波導入部は、導 入されるマイクロ波を二方向に分配し該環状導波管内の 両側に伝搬させる手段が設けられていることを特徴とす る請求項13乃至14に記載のプラズマ処理装置。

【請求項18】 前記複数のスロットのそれぞれの近傍 の前記環状導波管の内側面に平行な磁界を発生する手段 が設けられていることを特徴とする請求項13乃至17 に記載のプラズマ処理装置。

【請求項19】 減圧可能なプラズマ発生室の外周部に 配置されたマイクロ波導入装置を介して前記プラズマ発 生室内にマイクロ波を供給 して前記プラズマ発生室内に プラズマを発生させ、被処理基体である円筒状基体を固 定もしくはその軸方向に連続的に移動させて、処理する プラズマ処理装置であって、 該マイクロ波導入装置が複 数のスロットを備えた無端環状導波管からなり、該環状 導波管は、マイクロ波電源に接続するマイクロ波導入部 を有し、前記複数のスロットは、該環状導波管の内側に 前記マイクロ波導入部は前記環状導波 50 所定の間隔で穿孔されて設けられているマイクロ波導入

3

装置であることを特徴とするプラズマ処理装置。

Į

【請求項20】 前記複数のスロットは前記環状導波管内に導入されたマイクロ波の管内波長の1/4の間隔で設けられていることを特徴とする請求項19に記載のプラズマ処理装置。

【請求項21】 前記マイクロ波導入部は前記環状導波 管の接線方向に向いていることを特徴とする請求項19 乃至20に記載のプラズマ処理装置。

【請求項22】 前記複数のスロットは、その長さがマイクロ波の進行方向に沿って増大するように設計されて 10 いることを特徴とする請求項19乃至21に記載のブラズマ処理装置。

【請求項23】 前記マイクロ波導入部は前記環状導波管の垂直方向に向いていて、該マイクロ波導入部は、導入されるマイクロ波を二方向に分配し該環状導波管内の両側に伝搬させる手段が設けられていることを特徴とする請求項19乃至20に記載のプラズマ処理装置。

【請求項24】 前記複数のスロットのそれぞれの近傍の前記環状導波管の内側面に平行な磁界を発生する手段が設けられていることを特徴とする請求項19乃至23 に記載のプラズマ処理装置。

【請求項25】 前記被処理基体が互いに平行な複数の 円筒状基体であることを特徴とする請求項19に記載の プラズマ処理装置。

【請求項26】 減圧可能な断面が矩形のブラズマ発生室の外周部に配置された矩形のマイクロ波導入装置を介して前記プラズマ発生室内にマイクロ波を供給して前記プラズマ発生室内にプラズマを発生させ、被処理基体である帯状部材または長尺基板をその長手方向に連続的に移動させて、処理するブラズマ処理装置であって、前記マイクロ波導入装置が、複数のスロットを備えた無端環状導波管からなり、該環状導波管は、マイクロ波電源に接続するマイクロ波導入部を有し、前記複数のスロットは、該環状導波管の内側に所定の間隔で穿孔されて設けられているマイクロ波導入装置であることを特徴とするプラズマ処理装置。

【請求項27】 前記複数のスロットは前記環状導波管内に導入されたマイクロ波の管内波長の1/4の間隔で設けられていることを特徴とする請求項26に記載のプラズマ処理装置。

【請求項28】 前記マイクロ波導入部は前記環状導波 管の接線方向に向いていることを特徴とする請求項26 乃至27に記載のプラズマ処理装置。

【請求項29】 前記複数のスロットは、その長さがマイクロ波の進行方向に沿って増大するように設計されていることを特徴とする請求項26乃至28に記載のブラズマ処理装置。

【請求項30】 前記マイクロ波導入部は前記環状導波 管の垂直方向に向いていて、該マイクロ波導入部は、導 入されるマイクロ波を二方向に分配し該環状導波管内の 50 両側に伝搬させる手段が設けられていることを特徴とする請求項27万至28に記載のプラズマ処理装置。

【請求項31】 前記複数のスロットのそれぞれの近傍の前記環状導波管の内側面に平行な磁界を発生する手段が設けられていることを特徴とする請求項27乃至30に記載のプラズマ処理装置。

【請求項32】 減圧可能な断面が矩形のブラズマ発生室の外周部に配置された矩形のマイクロ波導入装置を介して前記プラズマ発生室内にマイクロ波を供給して前記プラズマ発生室内にプラズマを発生させ、被処理基体である帯状部材または長尺基板を表裏二枚被処理面を該マイクロ波導入装置側に向け固定もしくはその長手方向に連続的に移動させて、処理するプラズマ処理装置であって、前記マイクロ波導入装置が、複数のスロットを備えた無端環状導波管からなり、該環状導波管は、マイクロ波電源に接続するマイクロ波導入部を有し、前記複数のスロットは、該環状導波管の内側に所定の間隔で穿孔されて設けられているマイクロ波導入装置であることを特徴とするブラズマ処理装置。

【請求項33】 前記複数のスロットは前記環状導波管内に導入されたマイクロ波の管内波長の1/4の間隔で設けられていることを特徴とする請求項32に記載のプラズマ処理装置。

【請求項34】 前記マイクロ波導入部は前記環状導波管の接線方向に向いていることを特徴とする請求項32 乃至33に記載のプラズマ処理装置。

【請求項35】 前記複数のスロットは、その長さがマイクロ波の進行方向に沿って増大するように設計されていることを特徴とする請求項32乃至34に記載のブラズマ処理装置。

【請求項36】 前記マイクロ波導入部は前記環状導波管の垂直方向に向いていて、該マイクロ波導入部には、導入されるマイクロ波を二方向に分配し該環状導波管内の両側に伝搬させる手段が設けられていることを特徴とする請求項32万至33に記載のプラズマ処理装置。

【請求項37】 前記複数のスロットのそれぞれの近傍の前記環状導波管の内側面に平行な磁界を発生する手段が設けられていることを特徴とする請求項32乃至36 に記載のプラズマ処理装置。

40 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、無端環状導波管を有するマイクロ波導入装置及び該マイクロ波導入装置を備えたプラズマ処理装置に関する。 更に詳しくは、本発明は、マイクロ波の供給対象となる真空容器の周囲壁の全域から該真空容器の中心方向に向かってマイクロ波を均一且つ効率的に導入することを可能にするマイクロ波導入装置及び該マイクロ波装置を備えたブラズマ処理装置に関する。

[0002]

【従来の技術】マイクロ波をプラズマ生起用の励起源として使用するプラズマ処理装置としては、CVD装置、エッチング装置等が知られている。こうしたいわゆるマイクロ波プラズマCVD装置を使用する成膜は例えば次のように行われる。即ち該マイクロ波プラズマCVD装置の成膜室内に成膜用の原料ガスを導入し、同時にマイクロ波エネルギーを投入して前記原料ガスを励起、分解して該成膜室内にプラズマを発生させ、該成膜室内に配された基体上に堆積膜を形成する。またマイクロ波ブラズマエッチング装置を使用する被処理基体のエッチング 10処理は例えば次のようにして行われる。即ち、該装置の処理室内にエッチャントガスを導入し、同時にマイクロ波エネルギーを投入して該エッチャントガスを励起、分解してプラズマを発生させ、これにより該処理室内に配された被処理基体の表面をエッチングする。

【0003】これらのマイクロ波を使用するいわゆるマイクロ波ブラズマ処理装置においては、ガスの励起源としてマイクロ波を使用することから、ガス中の分子が電離して生ずる電子を極めて大きな周波数の電界により連鎖的に加速励起させることができる。それ故、該マイクロ波ブラズマ処理装置については、ガスの励起効率及び分解効率が高く、高密度のブラズマを比較的容易に形成し得る、ブラズマ処理を高速で行い得るといった利点がある。また、マイクロ波が誘電体を透過する性質を有することからブラズマ処理装置を無電極放電タイプのものとして構成でき、これが故に高清浄なブラズマ処理を行い得るという利点もある。こうしたマイクロ波ブラズマ処理装置において、マイクロ波を導入するについては、大別して以下の3つの方法が採用される。

【0004】即ち、(i) マイクロ波電源から導波管を 30 介して伝送されるマイクロ波を同軸アンテナを介して導 入する方法: (i i) マイクロ波電源から導波管を介し て伝送されるマイクロ波を誘電体窓を介して導入する方 法;そして(i i i) マイクロ波電源から導波管を介し て伝送されるマイクロ波を導波管に設けられたスロット (即ち、孔)を介して導入する方法、である。 これらの マイクロ波導入方法を利用して基体をブラズマ処理する 装置としていくつかの提案がなされている。上記(i) の方法を利用する装置としては、同軸アンテナを介して マイクロ波をプラズマ発生室に導入する形態のプラズマ 処理装置が、例えば、特開昭55-131175号公報 に開示されている。 該公報に開示されたプラズマ処理装 置は、図22に示す構成のものである。図22に示した プラズマ処理装置においては、真空容器2105の内部 に絶縁性の円筒2116が配されており、該円筒211 6の内壁に試料2117が載置されている。マイクロ波 発生源2101で発生するマイクロ波は、導波管210 2を伝送され、金属性アンテナ2121を介して真空容 器2105の内部に導入される。真空容器2105内に マイクロ波が導入されると石英性筒体2122と円筒2

116の間にプラズマ2125が生起され、該プラズマ2125により試料2117にプラズマ処理が施される。図22において2106は排気口、2107はガス導入口であり、2124は金属性アンテナ2121の内部を流れる冷却ガスである。

【0005】図22に示した構成の装置においては、ア ンテナ2124の周囲の空間に 導波管2102の径より も大きなプラズマを生成することができ、プラズマガス 圧も広い範囲にわたって制御できるとされている。しか しながら、図22に示した構成のプラズマ処理装置にお いては、必然的に同軸アンテナをプラズマ発生室内に挿 入した構成となるため、該同軸アンテナにより占められ るプラズマ発生室内の部分は、実際のプラズマ処理には 供されない。従って、プラズマを発生させてプラズマ処 理を行うプラズマ発生室の領域はおのずと限られた容積 のものになってしまう。従って、ブラズマが高密度で形 成される領域を限られた容積内に可能な限り大きくし て、有効利用するといった点からすれば満足のゆくもの ではない。更に、同軸アンテナには該同軸アンテナのサ イズに応じて該同軸アンテナにかけられる電力密度には 制約があるところ、大電力のマイクロ波を投入してより 高速のプラズマ処理を行う要望にはこたえられない。

【0006】上記(ii)の方法を利用する装置としては、マイクロ波を誘電体窓を介してプラズマ発生室に導入する形態のプラズマ処理装置が、例えば特開昭60-186849号公報に開示されている。該特開昭60-186849号公報に開示されたプラズマCVD装置は、図23に示す構成のものである。図23に示したプラズマCVD装置においては、真空容器(デポジションチャンパ)222中に平行に配された複数のシャフト2238のそれぞれに、円筒状ドラム2212が回転可能なように配されている。円筒状ドラム2212はドライブチェーン2264を介して伝達されるモータ2250からの動力により回転する。

【0007】図23においては2つの円筒状ドラムのみ が示されているが、実際には6つの円筒状ドラム221 2が同心円状に、隣接するものどうし間隔をつめて配さ れており、ドラムの外面により内側チャンバ2232を 形成している。内側チャンパ2232の上方には、マイ クロ波透過窓2296が配されており、マイクロ波電源 2272より供給されるマイクロ波エネルギーはアンテ ナプローブ2276を介して導波管2280及び228 4に伝送され、該マイクロ波透過窓2296を介して内 側チャンバ2232内に供給される。内側チャンバ22 32の下方には、同様にマイクロ波透過窓2294が配 されており、マイクロ波電源2270より供給されるマ イクロ波エネルギーはアンテナプローブ2274を介し て導波管2278及び2282に伝送され、該マイクロ 波透過窓2294を介して内側チャンパ2232内に供 給される。堆積膜の形成に際しては、排気口2224よ

_

40

り真空容器2222内を所望の圧力に減圧し、ガス導入口2226及び2228より内側チャンバ2232内に原料ガスを導入する。次いで、内側チャンバ2232内に上下方向よりマイクロ波エネルギーを供給する。すると原料ガスが分解され、ブラズマ2268が生起して加熱素子2200により所望の温度に保持された円筒状ドラム2212の表面上に電子写真用の半導体材料が堆積する。

【0008】図23に示した構成のプラズマCVD装置を使用すれば円筒状ドラム2212の表面上に均一に堆 10 積膜を形成でき、ガスの利用効率も高いとされている。しかしながら、図23に示した構成のプラズマCVD装置においては、内側チャンバ2232の上方及び下方から該内側チャンバ中にマイクロ波エネルギーが供給される構成となっていることから、マイクロ波透過窓2296及び2294の近傍におけるプラズマ密度が内側チャンバ2232の中心部におけるプラズマ密度よりもかなり高くなり、内側チャンバ222中の空間に均一なプラズマを形成するのは極めて難しい。こうしたことから、円筒状ドラム2212の表面上に形成される堆積膜は、膜質が円筒状ドラム2212の端部と中心部でかなり異なったものとなってしまう。

【0009】更に、図23に示した構成のプラズマCV D装置においては、対向するマイクロ波透過窓2296 及び2294を介してマイクロ波が投入されるところ、それぞれのマイクロ波透過窓から投入されるマイクロ波が対向する他方のマイクロ波透過窓を透過して対向する 導波管、更にはマイクロ波電源に進入することがないようにマイクロ波の伝播モードと導波管の配される位置を 制御しなければならないという難点がある。

【0010】上記(iii)の方法を利用する装置としては、マイクロ波を導波管に設けられたスロット(即ち、孔)を介してプラズマ発生室に導入する形態のプラズマ処理装置が、例えば特開平3-30420号公報に開示されている。当該公報に開示されたプラズマCVD装置は、長手方向に帯状部材を連続的に移動せしめながち、その中途で移動する帯状部材を側壁とする成膜空間(即ち、ブラズマ発生室)を形成し、該成膜空間の内壁面上(即ち、帯状部材上)に堆積膜を形成するようにしたものである。

【0011】図24には前記プラズマCVD装置の成膜空間内にマイクロ波を伝送するのに使用される円形導波管2301が示されている。円形導波管2301は、末端部2303を有し、側壁面の片側には間隔をおいて複数のスロット(即ち、孔)2304乃至2308が配されている。矢印方向から進行してくるマイクロ波はスロット2304乃至2308を介して成膜空間内に導入される。当該プラズマCVD装置によれば、大面積の堆積膜を連続的に、均一性よく形成することができ、帯状部材の搬送スピードを種々変化させることにより、堆積膜50

の膜厚を任意に制御できるとされている。

【0012】しかしながら、当該プラズマCVD装置には、成膜空間内において、導波管2301に設けられたスロット近傍におけるプラズマ密度が成膜空間の他の部分におけるプラズマ密度よりもかなり高くなり、成膜空間内に均一なプラズマを形成するのは極めて難しいという問題点がある。こうしたことから、実際に大面積の帯状部材上に膜質の均一な堆積膜を形成するにはかなりの熟練を要する。尚、円形導波管2301は、マイクロ波が進行する終端部としての末端部2303を有する構成のものである。

[0013]

【発明の目的】本発明の主たる目的は、上述した従来の マイクロ波導入装置における諸問題を解決し、マイクロ 波の供給対象である真空容器周辺からマイクロ波を均一 にして効率的に該真空容器へ導入することを可能にする 改善されたマイクロ波導入装置を提供することにある。 本発明の他の目的は、複数のスロットを備えた無端環状 導波管を有するマイクロ波導入 装置であって、真空容器 に、その周辺からマイクロ波を均一にして効率的に導入 することを可能にする改善されたマイクロ波導入装置を 提供することにある。本発明の他の目的は、内部でマイ クロ波を二方向に分配し分配さ れたマイクロ波同士を干 **渉させ得る複数のスロットを 備えた無端環状導波管を有** するマイクロ波導入装置であって、真空容器に、その周 辺からマイクロ波を均一にして効率的に導入することを 可能にする改善されたマイクロ 波導入装置を提供すると とにある。本発明の更に他の目的は、上記マイクロ波導 入装置を備えたプラズマ処理 装置であって、被処理基体 を均一にして効率的にプラズマ 処理することを可能にす る改善されたプラズマ処理装置を提供することにある。 本発明の更に他の目的は、上記 マイクロ波導入装置を備 えたプラズマ処理装置であって、 プラズマ発生領域を局 在化させ、該プラズマ発生領域とは離隔して配された被 処理基体をプラズマダメージが、実質的にない状態で均一 にして効率的にプラズマ処理することを可能にする改善 されたプラズマ処理装置を提供することにある。本発明 の更に他の目的は、スロット付近のプラズマ発生室内面 に平行な磁界を発生する磁界発生手段を有する上記マイ クロ波導入装置を備えたブラズマ処理装置であって、被 処理基体を均一にして効率的に プラズマ処理することを 可能にする改善されたプラズマ処理装置を提供すること にある。本発明の更に他の目的は、上記マイクロ波導入 装置を備えたプラズマ処理装置であって、 所望の半導体 膜や絶縁体膜を均一にして効率的に形成することを可能 にする改善されたプラズマ処理装置を提供することにあ る。本発明の更に他の目的は、上記マイクロ波導入装置 を備えたプラズマ処理装置であって、ブラズマ発生領域 を局在化させ、該プラズマ発生領域とは離隔して配され た基体上にプラズマダメージが実質的にない状態で堆積 膜を均一にして効率的に形成することを可能にする改善 されたブラズマ処理装置を提供することにある。本発明 の更に他の目的は、上記マイクロ波導入装置を備えたプ ラズマ処理装置であって、比較的幅広な帯状部材または 長尺基体上に良質な堆積膜を連続して均一にして効率的 に形成することを可能にするプラズマ処理装置を提供す ることにある。

[0014]

【課題を解決するための手段及び作用】本発明者は、従 来のマイクロ波導入装置及び該装置を備えたプラズマ処 10 理装置における上述した問題点を解決し、上記目的を達 成すべく下述する実験を介して検討した。その結果、本 発明者は、概要、真空容器を包囲するように配置された 無端環状のマイクロ波導波管と、マイクロ波電源からの マイクロ波を該環状導波管内へ導入する導入部とで構成 されていて、該環状導波管の内側には複数の所定形状の スロットが所定間隔で設けられているマイクロ波導入装 置を用いることにより、該真空容器の周辺からマイクロ 波を該真空容器内に均一にして効率的に導入することが. できるという知見を得た。

【0015】また本発明者は、上記のマイクロ波導入装 置を備えたプラズマ処理装置を用いることにより、該プ ラズマ処理装置のプラズマ発生室内に配置される被処理 基体を均一にして効率的にプラズマ処理することができ るという知見を得た。また本発明者は、上記のマイクロ 波導入装置を備えたプラズマ処理装置を用いることによ り、プラズマを局在化させ、該プラズマ発生領域とは離 隔して配された被処理基体をプラズマダメージが実質的 にない状態で均一にして効率的に処理することができる という知見を得た。また更に本発明者は、上記のマイク 口波導入装置を備えたプラズマ処理装置を用いることに より、良質な堆積膜の均一にして効率的な形成ができる という知見を得た。また更に本発明者は、上記のマイク 口波導入装置を備えたプラズマ処理装置を用いることに より、プラズマを局在化させ、該プラズマ発生領域とは 離隔して配された基体上にプラズマダメージが実質的に ない状態で堆積膜を均一にして効率的に形成することが できるという知見を得た。また更に本発明者は、上記の マイクロ波導入装置を備えたプラズマ処理装置を用いる ことにより、比較的幅広な帯状部材または長尺基板上に 40 良質な堆積膜を連続して均一にして効率的に形成するこ とができるという知見を得た。

【0016】本発明は、本発明者が実験を介して得た上 記知見に基づいて更に検討を重ねた結果完成に至ったも のである。本発明は下述する構成のマイクロ波導入装置 と、該マイクロ波導入装置を備えたブラズマ処理装置を 包含する。

[0017]

【1.マイクロ波導入装置】本発明のマイクロ波導入装

包含する。

[0018]

【態様1-(1)】マイクロ波導波管と、該導波管内へ マイクロ波電源からのマイクロ波を導入するためのマイ クロ波導入部からなり、該導波管は無端環状であり、該 導波管の内側に位置する面には 複数の所定形状のスロッ トが所定間隔で設けられていることを特徴とするマイク 口波導入装置。

10

[0019]

【態様1-(2)】マイクロ波導波管と、該導波管内へ マイクロ波電源からのマイク ロ波を導入するためのマイ クロ波導入部からなり、該導波管は無端環状であり、該 導波管の内側に位置する面には 複数の所定形状のスロッ トが設けられていて、それらスロットは該マイクロ波の 管内波長の1/4に相当する間隔で設けられていること を特徴とするマイクロ波導入装置。

[0020]

20

30

【態様1-(3)】マイクロ波導波管と、該導波管内へ マイクロ波電源からのマイクロ波を導入するためのマイ クロ波導入部からなり、該導波管は無端環状であり、該 導波管の内側に位置する面には複数の所定形状のスロッ トが所定間隔で設けられていて、該導入部は該環状導波 管の接線方向に向いていること を特徴とするマイクロ波 導入装置。

[0021]

【態様1-(4)】マイクロ波導波管と、該導波管内へ マイクロ波電源からのマイクロ波を導入するためのマイ クロ波導入部からなり、該導波管は無端環状であり、該 導波管の内側に位置する面には複数の所定形状のスロッ トが所定間隔で設けられていて、それらスロットの該マ イクロ波の進行方向に垂直な方向のそれぞれの長さは該 マイクロ波の進行方向に沿って増加するようにされてい ることを特徴とするマイクロ波導入装置。

[0022]

【態様1-(5)】マイクロ波導波管と、該導波管内へ マイクロ波電源からのマイクロ波を導入するためのマイ クロ波導入部からなり、該導波管は無端環状であり、該 導波管の内側に位置する面には複数の所定形状のスロッ トが所定間隔に設けられていて、該導入部に導入される マイクロ波を二方向に分配して該導波管内の両側に伝搬 させる手段を有することを特徴とするマイクロ波導入装

[0023]

【2. プラズマ処理装置】本発明のプラズマ処理装置 は、上記態様1-(1)乃至1-(5)に述べた構成の マイクロ波導入装置を具備するものであって、下述する 態様2-(1)乃至2-(8) を包含する。

[0024]

【態様2-(1)】減圧可能なプラズマ発生室と、該ブ 置は、下述する態様1-(1)乃至1-(5)の構成を 50 ラズマ発生室を包囲するよ ろに 該プラズマ発生室の外周 部に配置されたマイクロ波導入装置とからなり、該マイクロ波導入装置は上記態様 1 - (1) 乃至 1 - (5) に記載されたいずれかのマイクロ波導入装置であって、前記プラズマ発生室内にその周囲壁を介して一様にマイクロ波を供給して前記プラズマ発生室内にプラズマを発生させ、該プラズマ発生室内に配された被処理基体を処理するプラズマ処理装置。

11

[0025]

【態様2-(2)】減圧可能なプラズマ発生室と、酸プラズマ発生室を包囲するように酸プラズマ発生室の外周 10 部に配置されたマイクロ波導入装置と、酸プラズマ発生室から離隔していて酸プラズマ発生室に連通する処理室とからなり、酸マイクロ波導入装置は上記態様1-

(1) 乃至1-(5) に記載されたいずれかのマイクロ 波導入装置であって、前記プラズマ発生室内にその周囲 壁を介して一様にマイクロ波を供給して前記プラズマ発生室内にプラズマを発生させ、該プラズマ中の活性種を前記処理室内に導入して該処理室内に配された被処理基体を処理するプラズマ処理装置。

[0026]

【態様2-(3)】減圧可能なブラズマ発生室と、該ブラズマ発生室を包囲するように該ブラズマ発生室の外周部に配置されたマイクロ波導入装置とからなり、前記マイクロ波導入装置は、上記態様1-(1)乃至1-(5)に記載されたいずれかのマイクロ波導入装置であり、該マイクロ波導入装置には、該マイクロ波導入装置に設けられた複数のスロットのそれぞれが位置する該ブラズマ発生室の内面に平行に磁界を発生する手段が設けられていて、前記ブラズマ発生室内にその周囲壁を介して一様にマイクロ波を供給して前記ブラズマ発生室内につフラズマを発生させ、該ブラズマ発生室内に配された被処理基体を処理するプラズマ処理装置。

[0027]

【態様2-(4)】減圧可能なブラズマ発生室と、該ブラズマ発生室を包囲するように該ブラズマ発生室の外周部に配置されたマイクロ波導入装置と、該ブラズマ発生室から離隔していて該ブラズマ発生室に連通する処理室とからなり、前記マイクロ波導入装置は、上記態様1-(1)乃至1-(5)に記載されたいずれかのマイクロ波導入装置であり、該マイクロ波導入装置には、該マイクロ波導入装置に設けられた複数のスロットのそれぞれが位置する該ブラズマ発生室の内面に平行に破界を発生する手段が設けられていて、前記ブラズマ発生室内にでラズマ発生室内にブラズマを発生させ、該ブラズマ中の活性種を前記処理室内に導入して該処理室内に配された被処理基体を処理するプラズマ処理装置。

[0028]

【態様2-(5)】減圧可能なプラズマ発生室と、該プラズマ発生室を包囲するように該プラズマ発生室の外周 50

部に配置されたマイクロ波導入装置とからなり、酸マイクロ波導入装置は上記態様 1 - (1) 乃至 1 - (5) に記載されたいずれかのマイクロ波導入装置であり、前記プラズマ発生室内にその周囲壁を介してマイクロ波を供給して前記プラズマ発生室内にプラズマを発生させ、被処理基体である円筒状基体を固定もしくは該円筒状基体の中心軸に平行に移動させながら処理するプラズマ処理装置。

12

[0029]

【態様2-(6)】減圧可能なプラズマ発生室と、該プラズマ発生室を包囲するように該プラズマ発生室の外周部に配置されたマイクロ波導入装置とからなり、該マイクロ波導入装置は上記態様1-(1)乃至1-(5)に記載されたいずれかのマイクロ波導入装置であり、前記プラズマ発生室内にその周囲壁を介してマイクロ波を供給して前記プラズマ発生室内にプラズマを発生させ、被処理基体である複数の円筒状基体を並行して固定もしくは該円筒状基体の中心軸に平行に移動させながら処理するプラズマ処理装置。

20 [0030]

【態様2-(7)】減圧可能な断面が矩形のプラズマ発生室と、該プラズマ発生室を包囲するように該プラズマ発生室の外周部に配置された矩形のマイクロ波導入装置とからなり、該マイクロ波導入装置が上記態様1-

(1) 乃至1-(5) に記載されたいずれかのマイクロ 波導入装置と同様の構成のものであり、前記プラズマ発 生室内にその周囲壁を介して一様にマイクロ波を供給し て前記プラズマ発生室内にプラズマを発生させ、被処理 基体である帯状部材または長尺基体をその長手方向に連 続的に移動させながら処理するプラズマ処理装置。

[0031]

【態様2-(8)】減圧可能な断面が矩形のプラズマ発生室と、該プラズマ発生室を包囲するように該プラズマ発生室の外周部に配置された矩形のマイクロ波導入装置とからなり、該マイクロ波導入装置が上記態様1-

(1) 乃至1-(5) に記載されたいずれかのマイクロ波導入装置と同様の構成のものであり、前記プラズマ発生室内にマイクロ波を供給して前記プラズマ発生室内にプラズマを発生させ、被処理基体である帯状部材または長尺基板を上下2枚ずつ被処理面を該マイクロ波導入装置側に向け、その長手方向に連続的に移動させながら処理するプラズマ処理装置。

【0032】本発明の上述した態様1-(1)乃至1-(5)からなるマイクロ波導入装置は、それぞれ従来のマイクロ波導入装置における上述した問題点を解決し、下述するような顕著な効果をもたらす。

【0033】即ち、上述の態様 1-(1)の構成のマイクロ波導入装置によれば、マイクロ波を電磁波のまま真空容器内に周辺から導入できるので、均一にして効率的にマイクロ波を該真空容器内に導入することができる。

上述の態様1-(2)の構成のマイクロ波導入装置によ れば、マイクロ波を電磁波のまま各スロットを介して均 一に真空容器内に導入できるので、均一にして効率的に マイクロ波を該真空容器内に導入することができる。上 述の態様1-(3)の構成のマイクロ波導入装置によれ ば、導波管内部でのマイクロ波電源方向へのマイクロ波 の反射を望ましい状態に抑制できるので、均一にして極 めて効率的にマイクロ波を該真空容器内に導入すること ができる。上述の態様1-(4)の構成のマイクロ波導 入装置によれば、各スロットを介して導入されるマイク ロ波の導入量を制御できるので、極めて均一にして効率 的にマイクロ波を該真空容器内に導入することができ る。上述の態様1-(5)の構成のマイクロ波導入装置 によれば、干渉により生じたる、いわゆる"腹"にスロ ットを合致させることができるので、均一にして極めて 効率的にマイクロ波を該真空容器内に導入することがで きる。

【0034】本発明の上述した態様2-(1)乃至2-(7)からなるプラズマ処理装置は、それぞれ従来のブ ラズマ処理装置における上述した問題点を解決し、下述 20 するような顕著な効果をもたらす。 即ち、上述の態様2 - (1)の構成のプラズマ処理装置によれば、マイクロ 波を該ブラズマ発生室の周囲壁の全域から均一にして効 率的に該プラズマ発生室へ導入することができることか ら、均一にして髙密度なブラズマが形成でき、これによ り均一にして効率的な基体の処理や堆積膜の形成を行う ことができる。上述の態様2-(2)の構成のプラズマ 処理装置によれば、周波数の高いマイクロ波を該プラズ マ発生室の周囲壁の全域から均一にして効率的に該ブラ ズマ発生室へ導入することができることから、プラズマ 30 発生室内に均一にして高密度に局在したブラズマを形成 することができる。 これにより該プラズマ発生領域とは 離隔して配された基体上にプラズマダメージが実質的に ない状態で均一にして効率的な基体の処理や堆積膜の形 成を行うことができる。上述の態様2-(3)の構成の ブラズマ処理装置によれば、ブラズマ中の電子を極めて 高密度に局在させる ことができるので、均一にして更に 効率的に基体の処理や堆積膜の形成を行うことができ る。上述の態様2-(4)の構成のブラズマ処理装置に よれば、プラズマ中の電子を極めて高密度に局在させる ことができるので、 該プラズマ発生領域とは離隔して配 された基体上にプラズマダメージが実質的にほとんどな い状態で均一にして効率的な基体の処理や堆積膜の形成 を行うことができる。 上述の態様2-(5)の構成のプ ラズマ処理装置によれば、マイクロ波を該ブラズマ発生 室の周囲壁の全域から均一にして効率的に該ブラズマ発 生室へ導入することができる。これにより、均一にして 髙密度なプラズマの形成を行うことができるので、円筒 状基体に対する均一にして効率的な処理や堆積膜の形成

ラズマ処理装置によれば、マイクロ波を該プラズマ発生 室の周囲壁の全域から均一にして効率的に該プラズマ発 生室へ導入することができる。 これにより、均一にして 高密度なプラズマの形成を行うことができるので、複数 の円筒状基体に対する均一に して効率的な処理や堆積膜 の形成を行うことができる。 上述の態様2 - (7)の構 成のプラズマ処理装置によれば、マイクロ波を該プラズ マ発生室の周囲壁の全域から均一にして効率的に該ブラ ズマ発生室へ導入することができる。これにより、均一 にして高密度なプラズマの形成を行うことができるの で、比較的幅広な帯状部材または長尺基体に対する連続 的で均一にして効率的な処理や堆積膜の形成を行うこと ができる。上述の態様2-(8)の構成のプラズマ処理 装置によれば、マイクロ波を該プラズマ発生室の周囲壁 の全域から均一にして効率的に該プラズマ発生室へ導入 することができる。これにより、均一にして高密度なブ ラズマの形成を行うことができるので、上下2枚の比較 的幅広な帯状部材または長尺基体に対する連続的で均一 にして効率的な処理や堆積膜の形成を行うことができ

【0035】以下に、本発明者が行った実験について説明する。

[0036]

【実験1】本実験は、プラズマ発生室内のプラズマ密度 分布に関する円筒状マイクロ波導入装置の直線状マイク 口波導入装置に対する優位性を明らかにすることを目的 として行った。本実験では、石英製の円筒状プラズマ発 生室の外周に従来例の直線状マ イクロ波導入装置と円筒 状マイクロ波導入装置とを交互に設置し、該マイクロ波 導入装置を介して該プラズマ発生室へマイクロ波を導入 し、発生したプラズマの周方向の密度分布をプローブ法 により測定することにより均一性を比較評価した。本実 験で用いた円筒状マイクロ波導入装置を図3に示す。1 01は円筒状導波管、102はマイクロ波を円筒状導波 管101からブラズマ発生室へ導入するために該円筒状 導波管101の内側に形成された複数のスロット、10 3はマイクロ波を円筒状導波管 101に導入するための マイクロ波導入部、204はマイクロ波を反射する反射 終端ブロック204である。 円筒状導波管101は、内 壁断面の寸法がWRT-2規格導波管と同じ27mm× 96mmであって、中心径が354mmである。円筒状 導波管101の材質は、機械的強度を保つためステンレ ス鋼で構成されていて、その内壁面にはマイクロ波の伝 搬損失を抑えるため銅をコーティングした上に更に銀を コーティングした二層メッキが施されている。

室の周囲壁の全域から均一にして効率的に該ブラズマ発生室へ導入することができる。これにより、均一にして 4mmの矩形であり、管内波長の1/4間隔に形成され 高密度なブラズマの形成を行うことができるので、円筒 状基体に対する均一にして効率的な処理や堆積膜の形成 按管の断面の寸法に依存するが、周波数2.45GHzを行うことができる。上述の態様2-(6)の構成のブ 50 のマイクロ波と上記の寸法の導波管を用いた場合には約

159mmである。使用した円筒状導波管101では、 スロットは約40mm間隔で28個形成されている。マ イクロ波導入部103には、4スタブチューナ、方向性 結合器、アイソレータ、2. 45GHzの周波数を持つ マイクロ波電源(不図示)が順に接続されている。

15

【0038】プラズマの発生及びプラズマ密度分布の測 定は、上記の図3に示したマイクロ波導入装置と図24 に示した従来例のマイクロ波導入装置とを交互に図2に 示したプラズマ発生装置に組み込んで行った。図2に示 したプラズマ発生装置において、111はプラズマ発生 10 室、112はブラズマ発生室111を形成する円筒状石 英管、113はプラズマ発生用のガスをプラズマ発生室 111に導入するための第一のガス導入口、141はプ ラズマ密度測定用の白金製のプローブ、142はプロー ブ141に電圧を印加し、流れる電流を測定するための I-V特性測定器である。円筒状石英管112の外径は 320mmである。プローブ141は周方向に360° 回転できるようになっている。

【0039】プラズマの発生は以下のようにして行っ た。排気系(不図示)を介してプラズマ発生室111内 20 を真空排気し、10~6 Torrの値まで減圧させた。続 いてプラズマ発生用の窒素ガスをガス導入口113を介 して1s1mの流量でプラズマ発生室111内に導入し た。次に排気系(不図示)に設けられたコンダクタンス バルブ(不図示)を調整し、プラズマ発生室111内を 50mTorrに保持した。ついで2.45GHzのマ イクロ波電源(不図示)より500Wの電力を円筒状導 波管101を介してプラズマ発生室111内に供給し た。これによりプラズマ発生室111内にプラズマが発 生した。このときの反射電力は45℃であった。

【0040】プラズマの電子密度分布の測定は、シング ルプローブ法により以下のようにして行った。プローブ 141に印加する電圧を-50から+50Vの範囲で変 化させ、プロープ 1 4 1 に流れる電流を I - V測定器 1 42により測定し、得られたI-V曲線からラングミュ アらの方法により電子密度を算出した。プローブ141 をプラズマ発生室 1 1 1内の周方向に回転してプラズマ 密度を測定することにより周方向のプラズマ密度分布を 評価した。

【0041】かくして図3に示した円筒状マイクロ波導 40 入装置と図24に示 した従来例の直線状マイクロ波導入 装置とを交互に使用 して得られた周方向のプラズマ密度 分布をそれぞれ図4及び図5に示す。図4乃至図5に示 した結果から、つぎのととが理解される。即ち、直線状 導入装置を用いた場合と比較し円筒状マイクロ波導入装 置を用いた場合の方が放電領域は広がるが、依然とし て、導入部103と終端204付近へのプラズマの片寄 りが生じる。

【0042】本実験の結果から、従来例のスロット付き 直線状導波管をプラズマ発生室を囲むように曲げたのみ 50

の構成では、均一なマイクロ波の導入には不十分である ことが判明した。

16

[0043]

【実験2】本実験は、ブラズマ発生室内のブラズマ密度 分布に関する円筒状マイクロ波導入装置の終端を外す効 果を明らかにすることを目的と して行った。本実験で は、石英製の円筒状プラズマ発生室の外周から接線方向 に導入部が向いている反射終端を有しない円筒状マイク ロ波導波管を用いて該プラズマ発生室へマイクロ波を導 入し、発生したプラズマの周方向の空間的密度分布をプ ローブ法により測定するととにより、実験1の終端があ る場合と比較評価した。

【0044】本実験で用いた円筒状マイクロ波導入装置 を図6に示す。101は円筒状導波管、102はマイク 口波を円筒状導波管101からプラズマ発生室へ導入す るために該円筒状導波管101の内側に形成された複数 のスロット、103はマイク ロ波を円筒状導波管101 に導入するためのマイクロ波導入部である。

【0045】本実験で使用した図6に示した円筒状マイ クロ波導入装置は実験1で使用した図3に示した円筒状 マイクロ波導入装置から反射終端ブロック204を外し たものであり、他の構成は実験 1 のところで説明した内 容と同様である。プラズマの発生及びプラズマ密度分布 の測定は、上記の図6に示したマイクロ波導入装置を図 2に示したブラズマ発生装置に組み込んで、実験1で示 した方法と同様な方法で行った。 ブラズマ発生の際の反 射電力は、ほぼ0℃で実験1よりも良好なマッチングが 得られた。

【0046】かくして得られた周方向のプラズマ密度分 布を図7に示す。図7に示した結果から、つぎのことが 理解される。即ち、実験1で使用した円筒状導波管を用 いた場合よりも放電領域が広がるが、導入部103から 離れた対向部にはプラズマが観測されない領域が存在す る。本実験の結果から、反射終端を外し円筒状に繋げる ことにより、マイクロ波が反射少なく円筒状導波管内を 伝搬し、反射の少ないマイクロ 波導入が可能になること が判明した。

[0047]

30

【実験3】本実験は、ブラズマ発生室内のブラズマ密度 分布に関する円筒状マイクロ波導入装置のスロットの長 さをマイクロ波の進行方向に沿って増加させる効果を明 らかにすることを目的として行った。本実験では、石英 製の円筒状プラズマ発生室の外周からスロットの長さを 変化させた円筒状マイクロ波導波管を用いて該プラズマ 発生室へマイクロ波を導入し、 発生したプラズマの周方 向の空間的密度分布をブロー ブ法により測定するととに より、実験2のスロットの長さが一定の場合と比較評価 した。

【0048】本実験では実験2で用いた図6に示した円 筒状マイクロ波導入装置を用いた。101は円筒状導波 管、102はマイクロ波を円筒状導波管101からプラズマ発生室へ導入するために該円筒状導波管101の内側に形成された複数のスロット、103はマイクロ波を円筒状導波管101に導入するためのマイクロ波導入部である。

【0049】本実験で使用した図6に示した円筒状マイクロ波導入装置は実験2で使用した円筒状マイクロ波導入装置のスロットの長さをマイクロ波の進行方向に沿って40mmから75mmの範囲で漸増させたものであり、他の構成は実験2のところで説明した内容と同様で 10ある。プラズマの発生及びプラズマ密度分布の測定は、上記の図6に示したマイクロ波導入装置を図2に示したプラズマ発生装置に組み込んで、実験1で示した方法と同様な方法で行った。

【0050】かくして得られた周方向のプラズマ密度分布を図8に示す。図8に示した結果から、つぎのことが理解される。即ち、実験2で使用した円筒状導波管を用いた場合よりも放電領域が広がり全周で放電が観られるが、均一性が±12%であり充分ではない。本実験の結果から、スロットの長さをマイクロ波の進行方向に沿っ20て増加させることにより、各スロットからのマイクロ波リーク量の均一性が改善され、発生するプラズマの均一性も改善されることが判明した。

[0051]

【実験4】本実験は、プラズマ発生室内のプラズマ密度 分布に関する二方向分配干渉型円筒状マイクロ波導入装置の効果を明らかにすることを目的として行った。本実 験では、マイクロ波導入部が円筒状導波管に垂直に接続 されていてマイクロ波が内部で二方向に分配され分配されたマイクロ波同士が干渉する円筒状マイクロ波導波管 30 を用いて、石英製の円筒状プラズマ発生室の外周から該 プラズマ発生室へマイクロ波を導入し、発生したプラズ マの周方向の空間的密度分布をプローブ法により測定することにより実験3の接線導入型と比較評価した。

【0052】本実験では図9に示した円筒状マイクロ波 導入装置を用いた。 101は円筒状導波管、102はマ イクロ波を円筒状導波管101からプラズマ発生室へ導 入するために該円筒状導波管101の内側に形成された 複数のスロット、103はマイクロ波を円筒状導波管1 01に導入するための円筒状導波管101に垂直に接続 40 されたマイクロ波導入部、405は導入部103に導入 されたマイクロ波を内部で2つに分配し円筒状導波管1 01内の両側へのマイクロ波の伝搬を促進する分配ブロ ックである。円筒状導波管101は、内壁断面の寸法が WRT-2規格導波管と同じ27mm×96mmであっ て、中心径が354mmである。円筒状導波管101の 材質は、機械的強度を保つためステンレス鋼で構成され ていて、その内壁面にはマイクロ波の伝搬損失を抑える ため銅をコーティングした上に更に銀をコーティングし た二層メッキが施されている。

18

【0053】スロット102の形状は矩形であり、約40mm間隔で28個形成されている。本実験では、スロット102の長さが28個すべて40、41、42、43、44、45mmである6種類の円筒状導波管を用い比較評価した。マイクロ波導入部103には、4スタブチューナ、方向性結合器、アイソレータ、2、45GHzの周波数を持つマイクロ波電源(不図示)が順に接続されている。分配ブロック405は、A1製で、形状が直角二等辺三角柱であり、互いに直角な2つの反射面がマイクロ波導入部403の向きに対してそれぞれ45。低き、長辺の幅が導波管101の内壁の幅と同一すなわち27mmであり、その中心が導入部403の中心と一致するように設置した。

【0054】プラズマの発生及びプラズマ密度分布の測定は、上記の図9に示したマイクロ波導入装置を図2に示したプラズマ発生装置に組み込んで、実験1で行った方法と同様な方法で行った。プラズマ発生の際、マイクロ波導入部403から導入されたマイクロ波は、分配ブロック405で二方向に分配され円筒状導波管101内の両側に伝搬し、図10に示すように導入部の対向部付近で強く干渉しあい、管内波長の1/2間隔で電界の強いいわゆる"腹"を生じ、"腹"に合致したスロット102からマイクロ波が強くプラズマ発生室111内に導入され、管内波長の1/2間隔に高濃度のプラズマが発生する。

【0055】以上のプラズマの発生と周方向のプラズマ 密度分布の測定をスロット102の長さが異なる6種の 円筒状導波管101について行った。かくして得られた 周方向のプラズマ密度分布を図11に示す。スロット1 02の長さが長い場合 (例えば45mm)、各スロット からのリーク率が上がり、マイクロ波が導入部403に 近いスロット102から導入され易くなるため、プラズ マ密度も導入部403に近い部分で濃くなる。またスロ ット102の長さが短い場合 (例えば40mm)、各ス ロットからのリーク率が下がり、マイクロ波が導入部4 03に近いスロット102から導入され難くなり対向部 分の強く干渉する部分で導入され易くなるため、プラズ マ密度も導入部403の対向部分で濃くなる。スロット 102の長さが41mmから43mmの場合にはほぼ均 一な分布が得られる。スロット 102の長さが42mm の場合、実験3で使用した円筒 状導波管を用いた場合よ りも均一性が±5%と向上し、プラズマ密度自体も平均 1. 5×10¹¹ c m⁻¹と充分な値が得られた。

【0056】本実験で得られたスロット102の長さの 最適値42mmは、本実験で用いた円筒状導波管101 の管内周長と管内波長(管内周長=管内波長の7倍)に 特有の値であり、他の円筒状導波管の場合には必ずしも 当てはまらない。一般に、円筒状導波管の管内波長に対 する管内周長の比が大きい場合は、マイクロ波をより大 きい波数だけ伝搬させる必要があるので、各スロットを

短くしてリーク率を下げる必要があり、逆に円筒状導波管の管内波長に対する管内周長の比が小さい場合は、各スロットを長くする必要がある。円筒状導波管の管内波長に対する管内周長の比が、3乃至24倍の場合、スロットの最適な長さは管内波長の1/4乃至3/8、本実験で使用した円筒状導波管101(管内波長約159mm)の場合、40mm乃至60mmである。

【0057】本実験の結果から、導入部403を円筒状 導波管101に垂直に構成し、マイクロ波を導入部付近 で二方向に分配して導波管101内の両側に伝搬させ、 分配されたマイクロ波同士を干渉させて発生した"腹" に合致させてスロットを設けることにより、さらにスロットの長さを最適化することにより、ほぼ均一にマイク 口波を導入でき均一なブラズマを発生できることが判明 した。

[0058]

【実験5】本実験は、プラズマ発生室内のプラズマ密度 分布に関する磁場の効果を明らかにすることを目的とし て行った。本実験では、石英製の円筒状プラズマ発生室 の外周から磁界発生手段を持つ円筒状マイクロ波導波管 20 を用いて該プラズマ発生室へマイクロ波を導入し、発生 したプラズマの周方向の空間的密度分布をプロープ法に より測定することにより実験4の無磁場型と比較評価し た。

【0059】本実験では図12に示した円筒状マイクロ波導入装置を用いた。101は円筒状導波管、102はマイクロ波を円筒状導波管101からプラズマ発生室へ導入するために該円筒状導波管101の内側に形成された複数のスロット、103はマイクロ波を円筒状導波管101に垂直に接30続されたマイクロ波導入部、405は導入部103に導入されたマイクロ波を二方向に分配し円筒状導波管101内の両側へのマイクロ波の伝搬を促進する分配ブロック、506はスロット102付近のプラズマ発生室101の内面に平行な磁界を発生する磁石、507は過熱による磁石506の劣化を防止するための空冷手段である

【0060】本実験で使用した図12に示した円筒状マイクロ波導入装置は実験4で使用した円筒状マイクロ波導入装置に磁界発生手段と空冷手段とを加えたものであり、他の構成は実験4のところで説明した内容と同様である。磁界発生手段506として、本実験では永久磁石を使用した。使用した永久磁石は、厚み方向に磁化された45mm×10mm×1.5mm厚の平板状の住友特殊金属(株)社製ネオマックス40(商品名)であり、円筒状導波管101のスロット102の間に導電性接着剤を用いて貼り付けてあり、スロット102付近で石英管112の内壁面に平行な約0.1Tの磁束密度を有する磁界を発生する。

【0061】プラズマの発生及びプラズマ密度分布の測

定は、上記の図12に示したマイクロ波導入装置を図2に示したブラズマ発生装置に組み込んで、実験1で行った方法と同様な方法で行った。 プラズマ発生の際に、発生したプラズマ中の電子は磁石506により発生する磁界によりE×Bドリフトを生じて閉じこめられ、高密度プラズマが生じる。

【0062】かくして得られた周方向のブラズマ密度分布を図13に示す。図13に示した結果から、つぎのことが理解される。即ち、実験4で使用した円筒状導波管を用いた場合と比較し、均一性は±6%と同様だが、ブラズマ密度は平均3×10¹¹ cm⁻³と高い値が得られた。本実験の結果から、スロット102付近で石英管112の内壁面に平行な約0.1 Tの磁束密度を有する磁界を発生する磁界発生手段を用いることにより、円筒状導波管近傍に閉じこめられた均一な高密度ブラズマ発生が可能になることが判明した。

[0063]

【実験6】本実験は、矩形のプラズマ発生室への環状導液管の適性を明らかにすることを目的として行った。本実験では石英製の矩形状プラズマ発生室の外周から矩形状マイクロ波導波管を用いて該プラズマ発生室へマイクロ波を導入し、発生したプラズマの空間的密度分布をプローブ法により測定することにより評価した。

【0064】本実験では、図14に示した矩形状マイク 口波導入装置を用いた。601は矩形状導波管、602 はマイクロ波を矩形状導波管 6 0 1からプラズマ発生室 へ導入するために該矩形状導波管601の内側に形成さ れた複数のスロット、403はマイクロ波を矩形状導波 管601に導入するための矩形状導波管601に垂直に 接続されたマイクロ波導入部、405は導入部403に 導入されたマイクロ波を二方向に分配し矩形状導波管6 01内の両側へのマイクロ波の伝搬を促進する分配ブロ ック、608は環状導波管601内の角部分での垂直反 射を促進しマイクロ波の伝搬効率を向上させる反射ブロ ックである。該反射ブロック 6 O 8は、A 1 製で、形状 が直角二等辺三角柱であり、 反射面である長辺がマイク 口波の進行方向に対して45°傾き、長辺の幅が矩形状 導波管601の内壁の幅の2倍すなわち38mmであ り、長辺の中心が矩形状導液管601の中心と一致する ように設置した。

【0065】プラズマの発生及びプラズマ密度分布の測定は、図14に示したマイクロ波導入装置を組み込んだプラズマ発生装置を使用して行った。図14に示したプラズマ発生装置において、611はプラズマ発生室、612はプラズマ発生室611を構成する外径660mm×230mmの矩形状の石英管、613はプラズマ発生用のガスをプラズマ発生室611に導入するための第一のガス導入口、641は長尺方向に移動可能なプラズマ密度測定用の白金製のプローブ、642は該プローブに電圧を印加し、流れる電流を測定するI-V測定器であ

る。

【0066】プラズマの発生は以下のようにして行っ た。排気系(不図示)を介してプラズマ発生室611内 を真空排気し、10-6 Torrの値まで減圧させた。続 いてプラズマ発生用の窒素ガスをガス導入口613を介 して1s1mの流量でプラズマ発生室611内に導入し た。次に排気系(不図示)に設けられたコンダクタンス バルブ(不図示)を調整し、プラズマ発生室611内を 50mTorrに保持した。ついで2.45GHzのマ イクロ波電源(不図示)より500Wの電力を矩形状導 10 波管601を介してプラズマ発生室611内に供給し た。これによりプラズマ発生室611内にプラズマが発 生した。このとき導入部403から導入されたマイクロ 波は、分配ブロック405で二方向に分配され環状導波 管601内の両側に伝搬し反射ブロック608で反射さ れ、導入部の対向部付近で強く干渉しあい、管内波長の 1/2間隔で電界の強いいわゆる"腹"を生じ、"腹" に合致したスロット602からマイクロ波が強くプラズ マ発生室611内に導入され、管内波長の1/2間隔に プラズマが発生する。

【0067】プラズマの電子密度はラングミュアプロー ブ法により測定した。具体的には、プローブ641に印 加する電位を-50から+50Vの範囲で変化させ、プ ローブ641に流れる電流を1-V測定器642により 測定し、得られたI-V曲線より電子密度を算出した。 プローブ641をプラズマ発生室611内の長尺方向に 移動してプラズマ密度を測定することにより長尺方向の プラズマ密度分布を評価した。

【0068】かくして得られた長尺方向のプラズマ密度 分布を図15に示す。図15に示した結果から、つぎの 30 ことが理解される。即ち、ブラズマ密度は、両端で高く なる以外はほぼ均一で、平均1.2×101cm-1の値 が得られた。本実験の結果から、環状導波管101が円 筒形以外の矩形の場合でも、必要な部分にマイクロ波反 射部材を設けることにより、均一にして効率的なマイク 口波の導入が可能であることが判明した。

【0069】以上の実験1乃至6の結果から次の知見が 得られた。即ち、(i)マイクロ波を環状導波管からプ ラズマ発生室へ導入するための管内波長の1/4間隔に 設けられた複数のスロットと、マイクロ波を環状導波管 40 に導入するためのマイクロ波導入部とを有する環状導波 管を用いることにより、反射の極めて少ないマイクロ波 の導入が可能である; (ii)スロットの長さをマイク 口波の進行方向に沿って増加させることにより、周方向 の均一性を向上させることができる;(iii)マイク 口波を環状導波管からブラズマ発生室へ導入するための 管内波長の1/4間隔に設けられた複数のスロットと、 環状導波管に垂直に接続されたマイクロ波導入部と、マ イクロ波を二方向に分配し環状導波管内の両側への伝搬 を促進させる分配 ブロックとを有する環状導波管を用

い、スロットの長さを最適化することにより、周方向に ほぼ均一なブラズマ発生が可能になる: (i v)環状導 波管のスロット間に石英管の内壁面に平行な磁界を発生 する磁界発生手段を設けることにより、周方向の均一性 を損なわず、プラズマ密度を向上させることができる; (v)マイクロ波を環状導波管からプラズマ発生室へ導 入するための管内波長の1/4間隔に設けられた複数の スロットと、マイクロ波を環状導波管に導入するための 環状導波管に垂直に接続されたマイクロ波導入部と、マ イクロ波を二方向に分配し環状導波管内の両側への伝搬 を促進させる分配ブロックと、環状導波管内の角部分で の垂直反射を促進しマイクロ波の伝搬効率を向上させる 反射ブロックとを有する矩形の環状導波管を用いること により、円筒形以外の矩形のプラズマ発生室内にも均一 にして高密度のプラズマを発生させることができる。 【0070】本発明のマイクロ波導入装置は、プラズマ 発生室を囲むように環状に形成された無端環状導波管 と、該導波管内へマイクロ波を導入する導入部と、該環 状導波管の該プラズマ発生室側内壁面に管内波長の1/ 4間隔で設けられた複数のスロットとで構成されるマイ クロ波導入装置、特に、該導入部が該環状導波管に垂直 に接続されており、導入部でマイクロ波が二方向に分配 され両側に伝搬し分配されたマイクロ波同士が干渉する マイクロ波導入装置であるこ と を特徴とするものであ

22

【0071】また、本発明のマイクロ波導入装置を備え たプラズマ処理装置は、該プラズマ処理装置を囲むよう に環状に形成された導波管と、 該導波管内へマイクロ波 を導入する導入部と、該環状導波管の該プラズマ処理装 置側内壁面に管内波長の1/4間隔で設けられた複数の スロットとで構成されるマイクロ波導入装置、特に、該 導入部が該環状導波管に垂直に 接続されており、導入部 でマイクロ波が二方向に分配され両側に伝搬し分配され たマイクロ波同士が干渉する マイクロ波導入装置を備え たプラズマ処理装置であること を特徴とするものであ る。

【0072】本発明のマイクロ波導入装置の使用におい ては、用いられるマイクロ波の周波数は、上述の実験に おいては2.45GHzを用いたが、0.8GHz乃至 20GHzの範囲から適宜選択することができる。

【0073】本発明において用いられる無端環状導波管 の形状は、上述の実験においては円筒状や矩形状のもの を用いたが、プラズマ発生室の形状によって多角形や他 の形でも良い。該環状導波管の断面の形状については、 上述の実験においてはWRT-2規格導波管と同様の寸 法で矩形のものを用いたが、寸法は任意で形状も円形で も半円形でも他の形状でも、 マイクロ波が伝搬可能であ りさえすればいずれのものも採用できる。但し均一性を 保つため、管内周長が管内波長の3から24倍の範囲の 整数倍であることが望ましい。環状導波管の構成材料に

ついては、実験においてはステンレスに銅コートした上に更に銀コートした二層メッキを施したものを用いたが、Cu、Al、Fe、Niなどの金属や合金、各種ガラス、石英、窒化シリコン、アルミナ、アクリル、ポリカーボネート、ポリ塩化ビニル、ポリイミドなどの絶縁体にAl、W、Mo、Ti、Ta、Cu、Agなどの金属薄膜をコーティングしたものなど、機械的強度が充分で表面がマイクロ波の浸透厚以上の厚さの導電層で覆われているものならいずれも使用可能である。

23

【0074】本発明のマイクロ波導入装置において設け られるスロットの形状は、実験においては長辺がマイク 口波の進行方向に垂直な40mm乃至60mm×4mm の矩形状のものを採用したが、長辺がマイクロ波の進行 方向に平行でも傾いていても、矩形ではなく円形でも多 角形でも鉄アレイ型でも星型でも、そのスロットからマ イクロ波が導入可能である限りいずれのものも採用でき る。但し、効率的な導入やリーク率の調整し易さを考慮 すると、長辺がマイクロ波の進行方向に垂直な40mm 乃至60mm×1mm乃至5mmの矩形状のものが最適 である。スロットの長さについては、各スロットからの 20 マイクロ波のリーク量がほぼ等しくなるように調整す る。スロットの長さの調整は、導電性テープを貼って も、シャッタを用いてもよい。設けられる各スロットの 間隔は、実験においては管内波長の1/4の長さのもの としたが、その整数倍であってもよく、ブラズマ発生の 必要のない部分には設けなくてもよい。なお、スロット については、実験では孔としたが、スロットに代えて誘 電体窓などマイクロ波の透過を許す手段を用いることが できる。

【0075】本発明のマイクロ波導入装置においては、 E(電界)×B(磁界)ドリフトにより電子を効果的に 加速するために、磁界発生手段を用いることができる。 磁界発生手段としては環状導波管のスロット付近の電界 (プラズマ発生室側壁に垂直) に垂直(即ちブラズマ発 生室側壁に平行)な磁界を発生できるものなら使用可能 である。実験においては永久磁石を使用したが、電磁石 も使用可能である。また実験においてはマルチカスブ磁 場を用いたが、円筒マグネトロン磁場でも、円筒ミラー 磁場でも、E×Bド リフトを生起させることができる磁 気回路であれば使用可能である。但し、E×Bドリフト を生起させる領域は狭い方がプラズマの閉じとめに効果 的なので、永久磁石を用いたマルチカスブ磁場か一重の 円筒マグネトロン磁場が最適である。磁束密度の制御は 永久磁石の個数と配列を変化させたり、磁石の着磁密度 やプラズマ発生室側壁 – 磁石間距離を変化させて行うと とができる。実験においては磁石の過熱防止のため空冷 機構を用いたが、水冷など他の冷却手段でもよく、磁石 を用いない場合でも導波管表面層の酸化防止などのため 冷却手段を用いたほうがよい。

[0076]

【装置例】以下に図面を用いて本発明の具体的装置例を 挙げて本発明のマイクロ波導入装置及び該装置を備えた プラズマ処理装置について説明するが、本発明はこれら によって何等限定されるものではない。

[0077]

【1. マイクロ波導入装置例 】

【装置例1-(1)】図6に本発明のマイクロ波導入装 置の一例である接線導入型円筒状マイクロ波導入装置の 構成を模式的に示す。本装置は実験2万至3の結果に基 づいて完成したものである。 図中、101は円筒状導波 管、102はマイクロ波を円筒状導波管101からプラ ズマ発生室へ導入するために該円筒状導波管101の内 側に穿孔して設けられた複数のスロット、103はマイ クロ波を円筒状導波管101 に導入するための円筒状導 波管101の接線方向に接続されたマイクロ波導入部で ある。円筒状導波管101は、内壁断面の寸法がWRT - 2 規格導波管と同じ2 7 m m × 9 6 mmであって、中 心径が354mmである。円筒状導波管101は、機械 的強度を保つためステンレス鋼で構成されていて、その 内壁面にはマイクロ波の伝搬損失を抑えるため銅をコー ティングした上に更に銀をコーティングした二層メッキ が施されている。

【0078】スロット102の形状は長さ40mm乃至75mm、幅4mmの矩形である。スロット102の長さは、各スロット102からのマイクロ波のリーク量が等しくなるように、マイクロ波導入部103から対向部に進むにしたがって40mmから75mmまで漸増している。この形状のスロット102が円筒状導波管101の内側に管内波長の1/4間隔で穿孔して設けられている。管内波長は、使用するマイクロ波の周波数と導波管の断面の寸法に依存するが、周波数2.45GHzのマイクロ波と上記の寸法の導波管を用いた場合には約159mmである。なお、円筒状導波管101に上記形状のスロットは約40mm間隔で28個設けられている。

【0079】マイクロ波導入部103には、4スタブチューナ、方向性結合器、アイソレータ、2.45GHzの周波数を持つマイクロ波電源(不図示)が順に接続されている。マイクロ波導入部103の断面寸法は図6においては円筒状導波管101と同様であるが、導入部103から円筒状導波管101へのマイクロ波の導入効率を低下させずに円筒状導波管101から導入部を経てマイクロ波電源への反射を低減させるために、導入部103の内壁寸法を円筒状導波管101に近づくにつれて、もしくは一定に絞っても良い。

【0080】図6に示した装置を使用してのプラズマ処理は、例えば以下のように行われる。即ち、排気系(不図示)によりプラズマ発生室(不図示)内を真空排気し、プラズマ発生用ガスをガス導入手段を介してプラズマ発生室内に導入し、コンダクタンスバルブ(不図示)50を介してプラズマ発生室内を所望の圧力に調整する。マ

イクロ波電源(不図示)より所望の電力を円筒状導波管 101を介してプラズマ発生室内に供給する。 これによ りプラズマ発生室内に均一なプラズマが発生する。この 際マイクロ波は、導入部102を介して円筒状導波管1 01内に導入され、円筒状導波管101内を主に接線方 向に伝搬し、一定のリーク量ずつ各スロット102を介 してプラズマ発生室内に導入される。一周したマイクロ 波はほとんど反射することなくして円筒状導波管内を二 周目の伝搬を行うところとなる。導波管内部でのマイク ロ波の反射が少ないので、マイクロ波を効率よくプラズ 10 マ発生室内に導入できる。

[0081]

【装置例1-(2)】図9に本発明のマイクロ波導入装 置の一例である二方向分配干渉型円筒状マイクロ波導入 装置の構成を模式的に示す。本装置は実験4乃至5の結 果に基づいて完成したものである。図中、101は円筒 状導波管、102はマイクロ波を円筒状導波管101か らブラズマ発生室へ導入するために該円筒状導波管10 1の内側に穿孔して設けられた複数のスロット、103 はマイクロ波を円筒状導波管101に導入するための円 20 筒状導波管101に垂直に接続されたマイクロ波導入 部、405は導入部103に導入されたマイクロ波を内 部で二方向に分配し円筒状導波管101内の両側へのマ イクロ波の伝搬を促進する分配ブロックである。

【0082】円筒状導波管101は、内壁断面の寸法が WRT-2規格導波管と同じ27mm×96mmであっ て、中心径が354mmである。円筒状導波管101 は、機械的強度を保つためステンレス鋼で構成されてい て、その内壁面にはマイクロ波の伝搬損失を抑えるため 銅をコーティングした上に更に銀をコーティングした二 層メッキが施されている。スロット102の形状は長さ 42mm、幅4mmの矩形である。この形状のスロット 102が円筒状導波管101の内側に約40mm間隔で 28個設けられている。

【0083】マイクロ波導入部103には、4スタブチ ューナ、方向性結合器、アイソレータ、2. 45 GHz の周波数を持つマイクロ波電源 (不図示) が順に接続さ れている。分配ブロック405は、A1製で、形状が直 角二等辺三角柱であり、互いに直角な2つの反射面がマ イクロ波導入部403の向きに対してそれぞれ45。傾 40 き、長辺の幅が導波管 101の内壁の幅と同一すなわち 27mmであり、その中心がマイクロ波導入部403の 中心と一致するように設置されている。

【0084】本装置例においては、プラズマ密度の向上 のため、実験5で述べたような磁界発生手段を設けても よい。図9に示した装置を使用してのプラズマ処理は、 例えばつぎのように行われる。即ち、排気系 (不図示) によりプラズマ発生室 (不図示) 内を真空排気する。プ ラズマ発生用ガスを ガス導入手段を介してブラズマ発生 室内に導入する。排気系(不図示)に設けられたコンダ 50 AI製で、形状が直角二等辺三角柱であり、反射面であ

クタンスパルブ (不図示) を調整し、プラズマ発生室内 を所望の圧力に調整する。マイクロ波電源(不図示)よ り所望の電力を円筒状導波管101を介してプラズマ発 生室内に供給する。 これにより プラズマ発生室内に均一 なプラズマが発生する。この際マイクロ波は、導入部1 03を介して円筒状導波管101内に導入され、分配ブ ロック405により分配ブロック405の両側二方向に 分配されて円筒状導波管101内を伝搬し、分配された マイクロ波同士が干渉して管内波長の1/2おきに電界 に強い部分いわゆる"腹"を生じ、"腹"に合致させて 形成されたスロットからプラズマ発生室内へ導入され る。干渉し合う二方向のマイクロ波の強度が近いほど干 渉は強くなるので、干渉がない場合マイクロ波強度が弱 くなる導入対向部での強度を補償でき、均一なマイクロ 波の導入が可能になる。

[0085]

【装置例1-(3)】図14に本発明のマイクロ波導入 装置の一例である二方向分配干渉型矩形状マイクロ波導 入装置の構成を模式的に示す。 本装置は実験6の結果に 基づいて完成したものである。図中、601は矩形状導 波管、602はマイクロ波を矩形状導波管601からプ ラズマ発生室へ導入するために該矩形状導波管601の 内側に穿孔して設けられた複数のスロット、403はマ イクロ波を矩形状導波管601に導入するための矩形状 導波管601に垂直に接続されたマイクロ波導入部、4 05は導入部403に導入されたマイクロ波を二方向に 分配し矩形状導波管601内の両側へのマイクロ波の伝 搬を促進する分配ブロック、 608は環状導波管601 内の角部分での垂直反射を促進しマイクロ波の伝搬効率 を向上させる反射ブロックである。

【0086】矩形状導波管101は、内壁断面の寸法が WRT-2規格導波管と同じ27mm×96mmであっ て、外寸が722mm×292mmである。矩形状導波 管601は、機械的強度を保つためステンレス鋼で構成 されていて、その内壁面にはマイクロ波の伝搬損失を抑 えるため銅をコーティングした上に更に銀をコーティン グした二層メッキが施されている。スロット602の形 状は長さ41mm、幅4mmの矩形である。この形状の スロット602が矩形状導波管601の内側に約40m m間隔で46個形成されている。マイクロ波導入部10 3には、4スタブチューナ、方向性結合器、アイソレー タ、2. 45GHzの周波数を持つマイクロ波電源(不 図示)が順に接続されている。

【0087】分配ブロック405は、A1製で、形状が 直角二等辺三角柱であり、互いに直角な2つの反射面が マイクロ波導入部403の向きに対してそれぞれ45・ 傾き、長辺の幅が導波管101の内壁の幅と同一すなわ ち27mmであり、その中心が導入部403の中心と一 致するように設置されている。反射ブロック608は、

る長辺がマイクロ波の進行方向に対して45°傾き、長 辺の幅が矩形状導波管601の内壁の幅の2倍すなわち 38mmであり、長辺の中心が矩形状導波管601の中 心と一致するように設置されている。

27

【0088】図14に示した装置を使用してのプラズマ 処理は、例えばつぎのように行われる。即ち、排気系 (不図示) によりプラズマ発生室 (不図示) 内を真空排 気する。プラズマ発生用ガスをガス導入手段を介してブ ラズマ発生室内に導入する。排気系(不図示)に設けら れたコンダクタンスバルブ (不図示) を調整し、プラズ 10 マ発生室内を所望の圧力に調整する。マイクロ波電源 (不図示)より所望の電力を矩形状導波管601を介し **てプラズマ発生室内に供給する。これによりプラズマ発** 生室内に均一なプラズマが発生する。この際マイクロ波 は、導入部603を介して矩形状導波管601内に導入 され、分配ブロック405により分配ブロック405の 両側二方向に分配されて円筒状導波管101内を伝搬 し、4つの角部では反射ブロックにより直角に反射さ れ、分配されたマイクロ波同士が干渉して管内波長の1 /2おきに電界の強い部分いわゆる"腹"を生じ、

"腹" に合致させて形成されたスロットからブラズマ発 生室内へ導入される。干渉し合う二方向のマイクロ波の 強度が近いほど干渉は強くなるので、干渉がない場合マ イクロ波強度が弱くなる導入対向部での強度を補償で き、均一なマイクロ波の導入が可能になる。

[0089]

【2. プラズマ処理装置例】

【装置例2-(1)】図16に本発明のマイクロ波ブラ ズマ処理装置の一例である円筒型プラズマCVD装置の 模式的概略図を示す。マイクロ波導入装置としては、第 30 4図に示したものを用いている。即ち、101は環状導 波管、102は環状導波管101からプラズマ処理室1 11中にマイクロ波を導入するためのスロット、103 は環状導波管101 にマイクロ波を導入する導入口、4 05は環状導波管101内にマイクロ波を二方向に分配 して伝搬させるための分配ブロック、112は反応室1 11を構成する石英管、721は表面に薄膜を形成する ための基体、723は反応ガスをブラズマ処理室111 内に導入するためのガス導入手段である。ガス導入手段 723としては、例えばリング状のガス導入管や同軸多 重管等を使用することもできる。

【0090】図16に示した装置を使用して堆積膜を形 成する手順は、例え、は以下のとおりである。堆積膜形成 用の円筒状基体72 1をプラズマ処理室111内に配置 した後、排気系(不図示)によりプラズマ処理室111 内を真空排気すると、共に、基体721を不図示の加熱手 段により所望の温度に加熱保持する。反応ガスをガス導 入手段723を介してプラズマ処理室111内に導入し た後、排気系 (不図示) に設けられたコンダクタンスバ ルブ(不図示)を調整し、ブラズマ処理室111内を所 50 用の基体821を処理室820内の基体支持体822上

望の圧力に調整する。マイクロ波電源(不図示)より所 望の電力を環状導波管101を介してブラズマ処理室1 11に供給する。これにより プラズマ処理室111内に 均一なプラズマが発生する。 ここにあって、ガス導入手 段723を介してプラズマ処理室111内に導入された 反応ガスは励起、分解されて前駆体を生成し、基体72 1上に付着し堆積膜の形成をもたらす。本装置例におい ては、円筒状基体721をその軸方向に搬送し、多数の 円筒状基体を連続して処理することも可能である。

[0091]

【装置例2-(2)】図17 に装置例2-(1)で示し た基体を複数個配するように構成した円筒型プラズマC VD装置の模式的概略図を示す。本装置例は、装置例2 - (1) で示した装置とは基体 721の数と反応ガス導 入手段723の形状が異なる だけで他の構成に違いはな アプ

【0092】ガス導入手段723にはガス放出孔が多数 あけられており、該ガス導入-手段を中心にして複数の基 体721が同心円状に配されている。基体721は不図 示の回転手段により自転できるようになっている。ガス 導入手段723には必要に応 じて直流もしくは交流バイ アスを印加し、プラズマの更 なる均一化を図ることもで きる。この場合、印加するバイアスは、プラズマの密度 と電位を制御できる範囲のも のが使用可能であり、例え ぱ-500Vから+200V の直流バイアス、周波数4 OHzから300MHzの交流等を挙げることができ る。

[0093]

【装置例2-(3)】図18 に本発明のマイクロ波ブラ ズマ処理装置を隔離プラズマ CVD装置に適用した例に ついての模式的概略図を示す。 マイクロ波導入装置とし ては、上述した図9に示したものを用いている。801 は環状導波管、802は環状等波管801からプラズマ 処理室811中にマイクロ波を導入するためのスロッ ト、812はブラズマ発生室 811を構成する石英管、 813はプラズマ発生用の第一のガスをプラズマ発生室 811に導入するための第一のガス導入手段、821は 表面に薄膜を形成するための基体、822は基体821 を支持する基体支持体、823は第二のガスを処理室8 20に導入するための第二のガス導入手段、824はブ ラズマ発生室811と成膜室820とを分離する多孔分 離板である。ガス導入手段と しては、マイクロ波プラズ マに接するガス導入口を有する ものであれば適宜使用す ることができ、例えばリング状のガス導入管や同軸多重 管を使用することができる。 本装置例における環状導波 管と基体との距離は、好ましくは50mmから300m mの範囲である。

【0094】図18に示した装置を使用して堆積膜を形 成する手順は、例えば以下のとおりである。堆積膜形成

40

に配置した後、排気系 (不図示) によりプラズマ発生室 811及び処理室820内を真空排気すると共に、加熱 手段831により基体821を所望の温度に加熱保持す る。プラズマ発生用の第一のガスを第一のガス導入手段 813を介してプラズマ発生室811内に導入すると共 に、第二のガスを第二のガス導入手段823を介して成 膜室820内に導入する。次いで排気系(不図示)に設 けられたコンダクタンスバルブ (不図示)を調整し、プ ラズマ発生室811及び成膜室820内を所望の圧力に 調整する。マイクロ波電源(不図示)より所望の電力を 10 環状導波管101を介してプラズマ発生室811に供給 する。これによりプラズマ発生室811内のみに均一な プラズマが発生する。ととにあって、第一のガス導入手 段813を介してプラズマ発生室811内に導入された 第一のガスは励起、分解されて活性種を生成する。生成 した活性種は多孔分離板824を通過して成膜室820 に輸送され、第二のガス導入手段823を介して成膜室 820に導入された第二のガスと反応して前駆体を生成 し、生成した前駆体が基体821上に付着し堆積膜の形 成をもたらす。

29

[0095]

【装置例2-(4)】図19に本発明のマイクロ波プラ ズマ処理装置を光アシストプラズマCVD装置に適用し た例についての模式的概略図を示す。本装置例は、装置 例2-(3)で示した隔離プラズマCVD装置に基体表 面に可視紫外光を照射する光照射手段を設けたもので、 他の構成は装置例2-(3)と違いがない。831は基 体821の表面に可視紫外光を照射するための照明系、 832は照明系831からの可視紫外光をプラズマ発生 室811を通して成膜室820へ導入する光導入窓であ 30 る。ととで照明系831は、光源と、光源からの光を集 光するリフレクトミ ラーと、光をミキシングし均一化す るインテグレータと、光導入窓832に平行光束を照射 するためのコリメータレンズで構成されている。本装置 例においては、基体821上に照明系831からの可視 紫外光を照射することにより、基体821上に付着した 揮発性成分や不純成分を脱離させ得るので、極めて高品 質の堆積膜が形成し得る。

【0096】照明系831の光源としては、低圧水銀ラ ンプ、髙圧水銀ランプ、超髙圧水銀ランプ、キセノン-水銀ランプ、キセノンランプ、重水素ランプ、Ar共鳴 線ランプ、Kr共鳴線ランプ、Xe共鳴線ランプ、エキ シマレーザ、Ar・レーザ2倍髙周波、Nレーザ、YA Gレーザ3倍高周波など基体表面に付着した前駆体に吸 収される波長を有する光源なら使用可能である。

[0097]

【装置例2-(5) 】図20に本発明のマイクロ波ブラ ズマ処理装置でゲート型プラズマCVD装置を構成した 例の模式的概略図を示す。マイクロ波導入装置として は、図14に示したものを用いている。601は矩形状 50

環状導波管、602はプラズマ処理室911内に環状導 波管601からのマイクロ波を導入するためのスロッ ト、403は環状導波管601にマイクロ波を導入する 導入口、405はマイクロ波を2つに分岐させて環状導 波管601中を伝搬させるための分岐ブロック、608 は環状導波管601内の角部分におけるマイクロ波の垂 直反射を促進し、マイクロ波の伝搬効率を向上させるた めの反射ブロック、912はプラズマ処理室911を構 成する矩形石英管、921は表面に薄膜を形成するため の帯状基体、922は帯状基体921を巻きとるための 巻きとりボビンである。 図20 に示したゲート型プラズ マCVD装置においては、巻きとりボビン922の反対 側に不図示の基体送り出しボビンが配され、基体送り出 しボビンと基体巻きとりボビン922は、それぞれ不図 示の真空容器中に収納された構成となっている。そして 矩形石英管912と基体送り 出しボビンが収納された真 空容器との間、及び矩形石英管 9 1 2 と基体巻きとりボ ビンが収納された真空容器との間には、不図示のガスゲ ートがそれぞれ設けられている。

【0098】図20に示した装置を使用して堆積膜を形 成する手順は例えば以下のとおりである。不図示の基体 送り出しボビンから送り出される帯状基体921を不図 示のガスゲートを介してプラズマ処理室911に通し、 該帯状基体921を更に不図示のガスゲートを介して基 体巻きとりボビン922にセットする。基体送り出しボ ビンを収納する真空容器、プラズマ処理室911及び基 体巻きとりボビンを収納する真空容器のそれぞれを、不 図示の排気手段により真空排気すると共にプラズマ処理 室911中に設けられた不図示の加熱手段により帯状基 体921を所望の温度に加熱保持する。基体送り出しボ ビン及び基体巻きとりボビン 9 2 2を回転させて帯状基 体921を所定の速度で搬送しながら、不図示のガス導 入手段を介して反応ガスを プラ ズマ処理室911内に導 入する。不図示のガスゲート にゲードガスを流し、プラ ズマ処理室911に設けられた不図示の排気手段を調整 して、プラズマ処理室911内を所望の圧力に調整す る。次いで、不図示のマイクロ波電源より所望の電力を 環状導波管601を介してプラズマ処理室911内に供 給する。これにより反応室 9 1 1 内に均一なプラズマが 発生する。ガス導入手段923を介して反応室911内 に導入された反応ガスは励起、分解されて前駆体を生成 し、該前駆体は帯状基体921上に付着し堆積膜の形成 をもたらす。

[0099]

【装置例2-(6)]図21にマルチゲート型プラズマ CVD装置の模式的概略図を示す。本装置例は、装置例 2-(5)に示したプラズマ処理室を複数並べ、多層膜 の連続的な形成を行うように構成した装置例である。図 21に示した装置においては、 3つのプラズマ処理室9 11,911′及び911″がガスゲート954を介し

て連続的に配されていて、3つのプラズマ処理室91 1, 911′及び911″内で、それぞれ異なる組成の 堆積膜を形成できるようになっている。955は基体送 り出し用真空容器、956は基体巻きとり用真空容器で あり、それらの内部には、それぞれ、基体送り出しボビ ン951、基体巻きとりボビン952が配されている。 922は帯状基体921を支持・搬送するローラーであ り、957は温度調整機構である。958は排気量調節 用のコンダクタンスパルブである。基体送り出しボビン 951から送り出された帯状基体921は、プラズマ処 10 理室911,911′及び911″を通った後、基体巻 きとりボビン952に巻きとられる。図21に示したプ ラズマCVD装置においては、マイクロ波導入装置とし て図14に示したものを使用している。923,92 3′及び923″はそれぞれ反応ガス導入手段であり、 953, 953′ 及び953″ はそれぞれ帯状基体加熱 用の加熱手段である。960,960′及び960″は それぞれプラズマ処理室911,911′及び911″ の排気手段である。図21に示した装置を使用して堆積 膜を形成する手順は例えば以下のとおりである。

【0100】基体送り出しボビン951から送り出され る帯状基体921をブラズマ処理室911,911′及 び911″を通し、基体巻きとりポピン952にセット する。基体送り出し用真空容器955、プラズマ処理室 911, 911', 911"及び基体巻き取り用真空容 器956のそれぞれを排気手段により真空排気すると共 に加熱手段953,953′及び953″により帯状基 体921を所望の温度に加熱保持する。基体送り出しボ ビン951及び基体巻きとりボビン952を回転させて 帯状基体921を所定の速度で搬送しながら、ガス導入 30 手段923,923′及び923″を介して反応ガスを プラズマ処理室911、911′及び911″内に導入 する。ガスゲート954にゲートガスを流し、プラズマ 処理室911,911′及び911″を排気手段96 0,960′及び960″を介して所望の圧力に調整す る。不図示のマイクロ波電源より所望の電力を環状導波 管601,601~及び601~を介してブラズマ処理 室911,911′及び911″に供給する。

【0101】これによりプラズマ処理室911,91 1′及び911″内に均一なプラズマが発生する。ここ 40 にあって、ガス導入手段923,923′及び923″ を介して反応室911,911′及び911″内に導入 された反応ガスは励起、分解されて前駆体を生成し、帯 状基体921上に付着して堆積膜の形成をもたらす。こ うして、プラズマ処理室911,911′及び911″ を通過した帯状基体921上には異なった組成の堆積膜 を積層し得る。ガス導入口403の対向部のプラズマを 効率的に利用するため、非被覆面を合わせた2枚の帯状 基体921を同時に搬送してもよい。

【0102】本発明のブラズマ処理装置における反応室 50

内もしくはプラズマ発生室内及び処理室内の圧力は好ましくは0.01Torr乃至0.5Torrの範囲から 選択することができる。

【0103】本発明のプラズマ処理装置により堆積膜を基体上に形成する際の基体温度は、使用する成膜用原料ガスの種類や堆積膜の種類、及び用途により多少異なるが、一般的には、好ましくは50万至600℃の範囲、最適には100万至400℃の範囲である。

【0104】本発明のプラズマ処理装置による堆積膜の形成は、使用するガスを適宜選択することによりSi,N., SiО, Та,O, Ti O, Ti N, Al,O, Al N, MgF,などの絶縁膜、a-Si, poly-Si, Si C, Ga As などの半導体膜、Al,W, Mo, Ti, Ta などの金属膜など、各種の堆積膜を効率よく形成することが可能である。

【0105】また本発明のプラズマ処理装置は表面改質にも適用できる。その場合、使用するガスを適宜選択することにより例えば基体もしくは表面層としてSi、Al、Ti、Zn、Taなどを使用してこれら基体もしくは表面層の酸化処理あるいは窒化処理さらにはB、As、Pなどのドーピング処理などが可能である。更に本発明において採用するプラズマ処理技術はクリーニング方法にも適用できる。その場合酸化物あるいは有機物や重金属などのクリーニングに使用することもできる。

【0106】本発明のプラズマ処理装置により機能性堆積膜を形成する基体は、半導体であっても、導電性のものであっても、あるいは電気絶縁性のものであってもよい。また、これらの基体には、緻密性、密着性、段差被覆性などの性能の改善のため、 - 500 V から+200 V の直流バイアスもしくは周波数40 H z から300 M H z の交流バイアスを印加してもよい。

【0107】導電性基体としては、Fe, Ni, Cr, Al, Mo, Au, Nb, Ta, V. Ti, Pt, Pb などの金属またはこれらの合金、例えば真鍮、ステンレス鋼などが挙げられる。絶縁性基体としては、SiO,系の石英や各種ガラス、Si,Na, NaCl, KCl, LiF, CaF, BaF, Al,O, AlN, MgO などの無機物の他、ポリエチレン、ポリエステル、ポリカーボネート、セルロースアセテート、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリアミド、ポリイミドなどの有機物のフィルム、シートなどが挙げられる。

【0108】堆積膜形成用ガスとしては、一般に公知のガスが使用できる。装置例2-(3)及び装置例2-(4)に示したブラズマ処理装置を使用する場合、ブラズマの作用で容易に分解され単独でも堆積し得るガスは、化学量論的組成の達成やプラズマ発生室内の膜付着防止のため処理室内の第二のガス導入手段823を介して処理室内へ導入することが望ましい。また、プラズマの作用で容易に分解されにくく単独では堆積し難いガス

は、プラズマ発生室内の第一のガス導入口813を介し てプラズマ発生室内へ導入することが望ましい。

[0109]a-Si, poly-Si, SiCなどの Si系半導体薄膜を形成する場合の第二のガス導入手段 823を介して導入するSi原子を含有する原料として は、SiH., Si,H.などの無機シラン類、テトラエ チルシラン(TES)、テトラメチルシラン(TM S), ジメチルシラン (DMS) などの有機シラン類、 SiF., Si2F., SiHF, SiH2F2, SiC1 ,, Si,Cl., SiHCl., SiH,Cl., SiH, C1. SiCl, F, などのハロシラン類など、常温常圧 でガス状態であるものまたは容易にガス化し得るものが 挙げられる。また、との場合の第一のガス導入口813 を介して導入するプラズマ発生用ガスとしては、H,, He, Ne, Ar, Kr, Xe, Rnが挙げられる。S i,N., SiO,などのSi化合物系薄膜を形成する場 合の第二のガス導入手段823を介して導入するSi原 子を含有する原料としては、SiH.、Si,H.などの 無機シラン類、テトラエトキシシラン(TEOS)、テ トラメトキシシラン (TMOS), オクタメチルシクロ 20 テトラシラン (OMCTS) などの有機シラン類、Si F., Si, F., SiHF,, SiH, F., SiCl., Si,Cl., SiHCl,, SiH,Cl., SiH,C 1, SiCl₁F₁などのハロシラン類など、常温常圧で ガス状態であるものまたは容易にガス化し得るものが挙 げられる。また、この場合の第一のガス導入口813を 介して導入する原料としては、N, NH, N, H, へ キサメチルジシラザン (HMDS), O, O, H ,O, NO, N,O, NO, などが挙げられる。

【0110】A1、W、Mo、Ti、Taなどの金属薄 膜を形成する場合の第二のガス導入手段823を介して 導入する金属原子を含有する原料としては、トリメチル アルミニウム (TMA1)、トリエチルアルミニウム (TEAI)、トリイソブチルアルミニウム (TIBA 1)、ジメチルアルミニウムハイドライド(DMA1 H)、タングステンカルボニル(W(CO)。)、モリ ブデンカルボニル (Mo(CO)。)、トリメチルガリ ウム(TMGa)、トリエチルガリウム(TEGa)な どの有機金属、AICl, WF, TiCl, TaC 1,などのハロゲン化金属などが挙げられる。また、と の場合の第一のガス導入口813を介して導入するブラ ズマ発生用ガスとしては、H₂, He, Ne, Ar, K r, Xe, Rnが挙げられる。

[0111] Al, O,, AlN, Ta, O,, TiO, TiN, WO,などの金属化合物薄膜を形成する場合の 第二のガス導入手段823を介して導入する金属原子を 含有する原料としては、トリメチルアルミニウム(TM A1)、トリエチルアルミニウム(TEA1)、トリイ ソプチルアルミニウム (TIBA1)、ジメチルアルミ ニウムハイドライ ド (DMAIH)、タングステンカル 50

ボニル (W (CO)。)、モリブデンカルボニル (Mo (CO)。)、トリメチルガリウム(TMGa)、トリ エチルガリウム (TEGa) などの有機金属、AICI 」, WF₆, TiCl₁, TaCl₅などのハロゲン化金属 などが挙げられる。また、この場合の第一のガス導入口 813を介して導入する原料ガスとしては、〇1, 〇1, H_2O , NO, N_2O , NO_2 , N_2 , NH_3 , N_2H_4 , \sim キサメチルジシラザン (HMDS) などが挙げられる。 【0112】基体を酸化表面処理する場合の第一のガス 10 導入口813を介して導入する酸化性ガスとしては、〇 ,,O,,H,O,NO,N,O,NO,などが挙げられ る。また、基体を窒化表面処理する場合のガス導入口1 09を介して導入する窒化性ガスとしては、N₂, N H₁, N₂H₄, ヘキサメチルシシラザン (HMDS) な どが挙げられる。との場合成膜しないので、第二のガス 導入手段823を介して原料ガスは導入しない、もしく は第一のガス導入口813を介して導入するガスと同様 のガスを導入する。

【0113】基体表面の有機物をクリーニングする場合 の第一のガス導入口813から導入するクリーニング用 ガスとしては、O₂, O₃, H₂O, NO, N₂O, NO, などが挙げられる。また、基板表面の無機物をクリーニ ングする場合の第一のガス導入口813から導入するク リーニング用ガスとしては、 F., CF., CH.F., C 、F。, CF、C1、, SF。, NF、などが挙げられる。 C の場合成膜しないので、第二のガス導入手段823を介 して原料ガスは導入しない、 もしくは第一のガス導入口 813を介して導入するガスと同様のガスを導入する。 【0114】尚、装置例2-(1)、2-(2)、2-(5)、2-(6)に示したプラズマ処理装置を使用す る場合は、上記に示した処理に必要なガスを1つのガス 導入口から導入する。また、 装置例2-(1)、2-(2)、2-(5)、2-(6) に示したプラズマ処理 装置を使用してマイクロ波が透過しにくい堆積膜を形成 する場合は、石英管内壁へのパージガス吹き付け、石英 管内壁へのカバーガラスもしくはフィルムの設置及び移 動もしくは除去、エッチングガスを使用したプラズマに よるセルフクリーニング、容易な石英管の交換機構など の石英管内壁への膜付着防止及び除去対策を施すことが 望ましい。

[0115]

【使用例】本発明のマイクロ波導入装置及び該装置を備 えたプラズマ処理装置の効果を以下の使用例に徴して説 明するが、これらの使用例は本発明を何等限定するもの ではない。

[0116]

【使用例1】図16に示したプラズマ処理装置を使用し て、電子写真用感光ドラムの感光層としての機能をする アモルファスシリコン膜(a-Si: H膜)の形成を行 った。前記プラズマ処理装置の環状導波管101とし

て、図9に示した構成のものを用いた。基体721とし ては、Al製の円筒状ドラムを使用した。まず、円筒状 ドラム721をプラズマ処理室111内の中央に設置し た。排気系(不図示)を介して該プラズマ処理室111 内を10-67011まで真空排気した。次いで円筒状ド ラム721を不図示の加熱手段により350℃まで加熱 し、この温度に保持した。ガス導入口723を介してモ ノシランガスを600sccm、水索ガスを350sc cmの流量でプラズマ処理室111内に導入した。不図 示の排気系を調整し、プラズマ処理室111内を10m Torrに保持した後、不図示の2. 45GHzのマイ クロ波電源より1500Wの電力を環状導波管101を 介してプラズマ処理室111内に供給し、これによりプ ラズマ処理室111内にプラズマを生起させた。 このよ うにして円筒状ドラム721上にα-Si膜を30μm の膜厚で形成した。得られた膜について、成膜速度、均 一性、水素含有量を測定した。水素含有量は金属中水素 分析計(掘場製作所製EMGA-1100)を用いて測 定した。その結果、得られたa-Si膜の成膜速度と均 一性は、750mm/分、±3.7%と良好な値を示し た。また、水素含有量は12mol%であった。これら の結果から得られた膜は良質な膜であることが確認され た。また、本実施例で得られた感光体ドラムを実験用に 改造したキャノン製複写機NP-7550に搭載し、キ ヤノン製テストチャートを原稿として、画像プロセス条 件を適宜選択して複写テストを行ったところ、高品質な 画像を得ることができた。

35

[0117]

【使用例2】図17に示したブラズマ処理装置を使用し て、アモルファスシリコン膜の形成を行った。環状導波 管101としては図9に示した構造のものを用いた。基 体721としては、A1製の円筒状ドラムを使用した。 まず、6本の円筒状ドラム721をプラズマ処理室11 1内に配置し、それぞれを自転させた。排気系(不図 示)を介して該プラズマ処理室111内を10-6Tor rまで真空排気した。 続いて円筒状ドラム721を不図 示の加熱手段により350℃まで加熱しこの温度に保持 した。ガス導入口723を介してモノシランガスを90 Osccm、水素ガスを500sccmの流量でプラズ マ処理室111内に導入した。不図示の排気系を調整 し、反応室111内を12mTorrに保持した後、不 図示の2. 45 GHz のマイクロ波電源より1500W の電力を環状導波管 1 0 1 を介してプラズマ処理室 1 1 1内に供給し、これによりプラズマ処理室111内にプ ラズマを生起させた。 このようにして6つの円筒状ドラ ム721上にアモルファスシリコン膜を30μmの膜厚 で形成した。得られた膜について、成膜速度、均一性、 水素含有量を測定した。水素含有量は金属中水素分析計 (掘場製作所製 EMGA-1100)を用いて測定し

は、330nm/分、±4.3%と良好な値を示した。 また、水素含有量は15mo1%であった。これらの結 果から得られた膜は良質な膜であることが確認された。 また、本実施例で得られた感光体ドラムを実験用に改造 したキヤノン製複写機NP-7550に搭載し、キヤノ ン製テストチャートを原稿として、画像プロセス条件を 適宜選択して複写テストを行ったところ、高品質な画像 を得ることができた。

[0118]

【使用例3】図18に示した隔離プラズマCVD装置を 使用し、半導体素子ゲート絶縁用酸化シリコン膜の形成 を行った。環状導波管801としては、図9に示した構 造のものを用いた。基体821 としては、P型単結晶シ リコン基板 (面方位 (100), 抵抗率10Ωcm)を 使用した。シリコン基板821を基体支持台822上に 設置した後、排気系851を介してプラズマ発生室81 1及び成膜室820内を10-6Torrまで真空排気し た。ヒータ831に通電し、基板821を300℃に加 熱し、との温度に保持した。第一のガス導入口813を 介して酸素ガスを500sccmの流量でプラズマ発生 室811内に導入した。これと同時に、第二のガス導入 手段823を介してモノシランガスを500sccmの 流量で成膜室820内に導入した。ついで、排気系85 1に設けられたコンダクタンスバルブ(不図示)を調整 し、プラズマ発生室811内を0.15Torrに、ま た、成膜室820内を0.05Torrに調整した。不 図示の2. 45GHzのマイクロ波電源より500Wの 電力を環状導波管101を介してプラズマ発生室811 内に供給した。かくして、プラズマ発生室811内にプ ラズマを発生させた。ととで発生したブラズマは、ブラ ズマが高密度に局在化した王冠状のものであった。第一 のガス導入口813を介して導入された酸素ガスは、プ ラズマ発生室811内で励起、分解されて酸素原子など の活性種となり、該活性種はシ リコン基板821の方向 に輸送され、第二のガス導入手段823を介して導入さ れたモノシランガスと反応して、酸化シリコン膜がシリ コン基体821上に形成された。得られた酸化シリコン 膜の膜厚は0.1μmであった。得られた堆積膜につい て、成膜速度、均一性、リーク電流、絶縁耐圧、及び界 面準位密度のそれぞれを評価した。リーク電流の測定 は、次のようにして行った。即ち、形成された堆積膜上 にA1電極を形成し、該A1電極とSi基板間に直流電 圧を印加することで該堆積膜に5MV/cmの電界をか け、との状態で流れる電流を測定した。絶縁耐圧につい ては、リーク電流が1×10-6A/cm²以上流れると きの電界により評価した。界面準位密度は、容量測定器 により得られた 1 MHzRF印加の場合のC-V曲線よ り求めた。得られた酸化シリコン膜の成膜速度及び均一 性は120 nm/分、±2. 6%であっていずれも良好 た。その結果、得られたa-Si膜の成膜速度と均一性 50 な値を示した。リーク電流は、 4×10⁻¹¹A/cm²、

絶縁耐圧は10MV/cm、界面準位密度は5×1010 cm-2であった。これらの値から該酸化シリコン膜は良 質な膜であることが確認された。

[0119]

【使用例4】図19に示した光アシストプラズマCVD 装置 (photo-assisted plasma CVD apparatus)を使用し、半導体素子保 護用の窒化シリコン膜を形成した。環状導波管801と しては、図9に示す構成のものを用いた。基体821と しては、P型単結晶シリコン基板(面方位〈100〉, 抵抗率100cm)を使用した。まず、シリコン基板8 21は基体支持台822上に設置した。排気系851を 介してプラズマ発生室811及び成膜室820内を10 - * Torrまで真空排気した。照明系831としてのX e ランプを点灯してシリコン基板821の表面における 光照度が0.6W/cm¹となるように光をシリコン基 板821の表面に照射した。ヒータ833に通電し、シ リコン基板821を300℃に加熱し、この温度に保持 した。第一のガス導入口813を介して窒素ガスを10 00sccmの流量でプラズマ発生室811内に導入し た。これと同時に、第二のガス導入手段823を介して モノシランガスを100sccmの流量で成膜室820 内に導入した。 排気系 85 1 に設けられたコンダクタン スバルブ(不図示)を調整し、プラズマ発生室811内 を0.18Torr、成膜室820内を0.03Tor r にそれぞれ調整した。不図示の2. 45 GHz のマイ クロ波電源より500Wの電力を環状導波管801を介 してプラズマ発生室811内に供給した。かくして、プ ラズマ発生室811内にプラズマを発生させた。第一の ガス導入口813を介して導入された窒素ガスはプラズ 30 マ発生室811内で励起、分解されて活性種となり、該 活性種はシリコン基板821の方向に輸送され、第二の ガス導入手段823を介して導入されたモノシランガス と反応して、窒化シリコン膜がシリコン基板821上に 形成された。得られた窒化シリコン膜の膜厚は1.0μ mであった。得られた堆積膜について、成膜速度、リー ク電流及び応力について評価した。応力の測定は成膜前 後の基板の反り量の変化をレーザ干渉計Zygo(商品 名) で測定することにより求めた。得られた窒化シリコ ン膜の成膜速度は、280nm/分と極めて大きいもの であった。リーク電流は、1×10⁻¹⁰ A/c m²、絶縁 耐圧は、8MV/c m、応力は1×10°dyn/cm² であった。これらの値から該窒化シリコン膜はプラズマ ダメージのない極めて良質な膜であることが確認され た。

[0120]

【使用例5】図19に示した光アシストプラズマCVD 装置を使用し、半導体素子層間絶縁用酸化シリコン膜の 形成を行った。環状導波管101としては、図9に示す

シリコン基板(面方位〈100〉,抵抗率10Qcm) を使用した。まず、シリコン基板821を基体支持台8 22上に設置した。排気系851を介してプラズマ発生 室811及び成膜室820内を10 *Torrまで真空 排気した。照明系831としての超高圧水銀ランプを点 灯してシリコン基板821表面における光照度が0.4 W/c m¹となるように光をシリコン基板821の表面 に照射した。ヒータ833に通電し、シリコン基板82 1を300℃に加熱し、この温度に保持した。第一のガ ス導入口813を介して酸素ガスを2000sccmの 流量でプラズマ発生室811内に導入した。これと同時 に、第二のガス導入手段823からテトラエトキシシラ ン (TEOS) ガスを500 s c cmの流量で成膜室8 20内に導入した。排気系851に設けられたコンダク タンスバルブ (不図示) を調整し、プラズマ発生室81 1内を0.3Torr、成膜室820内を0.05To rrにそれぞれ調整した。不図示の2.45GHzのマ イクロ波電源より1000Wの電力を環状導波管101 を介してプラズマ発生室811内に供給した。かくし て、プラズマ発生室811内にプラズマを発生させた。 このような状態を維持し、酸化シリコン膜をシリコン基 板821上に1.0µmの厚さで形成した。得られた堆 積膜について、成膜速度、均一性、リーク電流、絶縁耐 圧、及び段差被覆性について評価した。段差被覆性につ いては、ラインアンドスペース O . 5 μmのラインパタ ーンに形成されたA 1 段差上に成膜した酸化シリコン膜 の断面を走査型電子顕微鏡 (SEM)で観測し、段差上 の膜厚に対する段差側壁上の膜厚の比(カバーファク タ)を求めて評価した。得られた酸化シリコン膜の成膜 速度及び均一性は220nm/分、±2.7%であっ て、いずれも良好な値を示した。 リーク電流は1×10 -1°A/c m²、絶縁耐圧は9MV/c m、カバーファク タは0.9であった。これらの値から該酸化シリコン膜 は半導体素子層間絶縁膜として 良質な膜であることが確 認された。

[0121]

【使用例6】図19に示したプラズマ処理装置を表面改 質装置として使用して、シリコン基板表面を酸化し、半 導体素子ゲート絶縁用酸化シリコン膜の形成を行った。 環状導波管801としては、図9に示す構成のものを用 いた。基体821としては、 P型単結晶シリコン基板 (面方位〈100〉, 抵抗率10Ωcm)を使用した。 該シリコン基板821を基体支持台822上に設置し た。排気系851を介してプラズマ発生室811及び処 理室820内を10-1Torrまで真空排気した。ヒー タ831に通電し、シリコン基板821を500℃に加 熱し、この温度に保持した。 第一のガス導入口813を 介して酸素ガスを500sccmの流量でプラズマ発生 室811内に導入した。 排気系851に設けられたコン 構造のものを用いた。 基体821としては、P型単結晶 50 ダクタンスバルブを調整し、 プラズマ発生室811内を

0. 15 Torrに、処理室820内を0. 03 Tor r にそれぞれ調整した。不図示の2. 45GHzのマイ クロ波電源より1000Wの電力を環状導波管801を 介してプラズマ発生室811内に供給し、ブラズマ発生 室811内にプラズマを発生させた。ここで発生したプ ラズマは、プラズマが高密度に局在した王冠状のもので あった。第一のガス導入口813を介して導入された酸 素ガスはプラズマ発生室811内で励起、分解されて酸 素原子などの活性種となり、該活性種はシリコン基板8 2 1 の方向に輸送されシリコン基板821表面と反応す る。こうして50nm厚の酸化シリコン膜がシリコン基 板821上に形成された。得られた膜につき、成膜速 度、リーク電流及び絶縁耐圧について評価した。得られ た酸化シリコン膜の酸化速度及び均一性は1.2 nm/ 分、±2.2%であって、いずれも良好な値を示した。 リーク電流は、2×10⁻¹¹A/cm²、絶縁耐圧は12 MV/cmであった。これらの値から該酸化シリコン膜 は半導体素子ゲート絶縁用膜として極めて優れた膜であ ることが確認された。

39

[0122]

【使用例7】図20に示したプラズマ処理装置をゲート 型プラズマCVD装置として使用し、プラスチックフィ ルム耐摩耗層として機能するSiO,膜の形成を行っ た。環状導波管601としては図14に示した構成のも のを用いた。基体921としては、帯状プラスチックフ ィルムを使用した。不図示の基体送り出しボビンから送 り出される基体をプラズマ処理室911を通して基体巻 きとりボビンにセットした。基体送り出しボビンと基体 巻きとりボビン922とを回転させることにより、基体 921を毎分10mmの速度で搬送させた。排気系(不 30 図示) によりプラズマ処理室911内を10°Torr まで真空排気した。不図示のガス導入手段を介してモノ シランガスを200sccm、酸素ガスを1000sc cmの流量でプラズマ処理室911内に導入した。排気 系(不図示)を調整し、プラズマ処理室911内を30 mTorrの圧力に調整した。2.45GHzのマイク 口波電源(不図示)より1000Wの電力を環状導波管 601を介してプラズマ処理室911内に導入した。か くして、プラズマ処理室911内に均一なプラズマが発 生した。このような状態を維持することにより帯状基体 40 921上に厚さ10 μmのSiO₂膜が形成された。得 られた膜について、 成膜速度、均一性、耐摩耗性につい て評価した。耐摩耗性は、試験紙で1000回とすり、 擦り減った膜厚で評価した。得られたSiOz膜の成膜 速度と均一性は、 6 0 0 n m/分、± 5. 6%であっ て、いずれも良好な値を示した。耐摩耗性については摩 耗量が5 n m/l O O shotsと極めて小さく、該S i○ス膜は耐摩耗性に優れた良質な膜であることが確認 された。

[0123]

【使用例8】図21に示したプラズマ処理装置をマルチ ゲート型プラズマCVD装置として使用し、太陽電池用 pin接合型光起電力層の形成を行った。環状導波管6 01,601′及び601″としては図14に示した構 成のものを用いた。基体92 1 としては、SUS430 BA製帯状基体(幅60cm, 厚さ0.2mm)上に下 部電極としてA1膜をコーティングしたものを使用し た。基体送り出しボビン95 1から送り出された帯状基 体921を第一のプラズマ処理室911、第二のプラズ マ処理室911′及び第三のプラズマ処理室911″を 通過させた後、基体巻きとり ボ ビン952にセットし た。基体送り出しボビン95 1及び基体巻きとりボビン 952を回転させ、帯状基体 921を毎分0.8mの速 度で搬送させた。とれと同時に加熱手段953,95 3′及び953″を用いて帯状基体921を350℃に 加熱保持した。排気系960, 960′及び960″に より第一乃至第三のプラズマ処理室911,911′, 911"内を10-"Torrまで真空排気した。次いで 第一のプラズマ処理室911内へガス導入手段923を 介してモノシランガスを60 s c c m、水素ガスを10 Osccm、1%PH,/Hzを1Osccm、四弗化シ リコンガスを5sccmの流量で導入した。

40

【0124】排気系960を調整し、プラズマ処理室9 11内を15mTorrに調整した。この状態で2.4 5GHzのマイクロ波電源 (不図示)より800Wの電 力を環状導波管601を介して反応室911内に供給 し、プラズマを生起させて帯状基体921上にn型a-Si:H:F膜を形成した。第二のプラズマ処理室91 1'においては、ガス導入手段923'を介してモノシ ランガスを300sccm、水素ガスを100scc m、四弗化シリコンガスを 1 0 s c c mの流量で導入し た。排気系960′を調整し、 ブラズマ処理室911′ 内を10mTorrに調整した。この状態で2.45G Hzのマイクロ波電源(不図示)より1200Wの電力 を環状導波管601′を介して反応室911′内に供給 し、プラズマを生起させて第一のプラズマ処理室911 で形成されたn型a-Si:H:F膜上にi型a-S i:H:F膜を形成した。第三のプラズマ処理室91 1" においては、ガス導入手段923"を介してモノシ ランガスを20sccm、水素ガスを200sccm、 0. 3%B, H。/H, を10 sccm、四弗化シリコン ガスを5gccmの流量で導入した。ついで、排気系9 60"を調整し、プラズマ処理室911"内を20mT orrに調整した。この状態で 2.45GHzのマイク 口波電源 (不図示) より1200 Wの電力を環状導波管 601 を介して反応室911 内に供給し、プラズマ を生起させて第二のプラズマ処理室911′で形成され たi型a-Si:F膜上にp型a-Si:H:F膜を形 成した。とうして得られた nip 積層膜を使用して40 cm×80cmの太陽電池モジュールを作成し、光電変 *実験4の結果を説明するためのグラフである。

換効率について評価した。光電変換効率は、0.1W/cm²の強度をもつ光照射下で評価した。光電変換効率は8.8%という良好な値を示し、特性が安定していた。

【図面の簡単な説明】

【図1】図1は、本発明のマイクロ波導入装置の一例を 【図 説明するための模式図である。 例を記

【図2】図2は、本発明を完成するに際して行った実験 を説明するための模式図である。

【図3】図3は、本発明のマイクロ波導入装置の一例を 10 説明するための模式図である。

【図4】図4は、本発明を完成するに際して行った実験 1の結果を説明するためのグラフである。

【図5】図5は、本発明を完成するに際して行った実験 1における比較実験の結果を説明するためのグラフであ る。

【図6】図6は、本発明のマイクロ波導入装置の一例を 説明するための模式図である。

【図7】図7は、本発明を完成するに際して行った実験 2の結果を説明するためのグラフである。

【図8】図8は、本発明を完成するに際して行った実験 3の結果を説明するためのグラフである。

【図9】図9は、本発明のマイクロ波導入装置の一例を 説明するための模式図である。

【図10】図10は、本発明を完成するに際して行った 実験4で使用したマイクロ波導入装置の原理を説明する ためのグラフである。

【図11】図11は、本発明を完成するに際して行った*

大阪4の紀末で記りょうだけりったりのう。

【図12】図12は、本発明のマイクロ波導入装置の一例を説明するための模式図である。

【図13】図13は、本発明を完成するに際して行った 実験5の結果を説明するためのグラフである。

【図14】図14は、本発明のマイクロ波導入装置の一例を説明するための模式図である。

【図15】図15は、本発明を完成するに際して行った 実験6の結果を説明するためのグラフである。

【図16】図16は、本発明のプラズマ処理装置の一例 を説明するための模式図である。

【図17】図17は、本発明のプラズマ処理装置の一例を説明するための模式図である。

【図18】図18は、本発明のプラズマ処理装置の一例を説明するための模式図である。

【図19】図19は、本発明のプラズマ処理装置の一例を説明するための模式図である。

【図20】図20は、本発明のプラズマ処理装置の一例 を説明するための模式図である。

20 【図21】図21は、本発明のプラズマ処理装置の一例を説明するための模式図である。

【図22】図22は、従来例の同軸アンテナ型マイクロ波導入装置を説明するための模式図である。

【図23】図23は、従来例の透過窓型マイクロ波導入 装置を説明するための模式図である。

【図24】図24は、従来例のスロット型マイクロ波導 入装置を説明するための模式図である。

【図1】

【図6】

【図9】

【図10】

【図8】

【図13】

[図14]

【図15】

【図20】

[図21]

【図23】

