Structure of linear algebraic groups

1 Jordan-Chevalley Decomposition of elements

Recall that for a linear operator $T: V \to V$ of finite-dimensional \mathbb{k} -vector space V is called *semisimple* if it is diagonalizable, and unipotent if $T - \mathrm{id}_V$ is nilpotent.

Definition 1. Let G be a linear algebraic group and $g \in G(\mathbb{k})$. We say that g is *semisimple* (resp. *unipotent*) if its image under some (equivalently, any) faithful linear representation of G is a semisimple (resp. unipotent) linear operator.

Lemma 2. The notion of semisimple and unipotent elements in Definition 1 does not depend on the choice of faithful linear representation.

Proof. Yang: To be added.

Theorem 3 (Jordan-Chevalley Decomposition). Let G be a linear algebraic group and $g \in G(\mathbb{k})$. Then there exist unique commuting elements $g_s, g_u \in G(\mathbb{k})$ such that $g = g_s g_u$, where g_s is semisimple and g_u is unipotent.

Moreover, this decomposition is functorial in the sense that for any homomorphism of linear algebraic groups $\varphi : G \to H$, we have $\varphi(g)_s = \varphi(g_s)$ and $\varphi(g)_u = \varphi(g_u)$. Yang: To be checked

2 Decomposition of linear algebraic groups

Definition 4. Let G be a linear algebraic group over a field \mathbb{k} . The radical of G, denoted by rad(G), is defined to be the unique maximal connected normal solvable subgroup of G.

Definition 5. Let G be a linear algebraic group. The *unipotent radical* of G, denoted by $rad_u(G)$, is defined to be the subgroup of rad(G) consisting of all unipotent elements.

Definition 6. Let G be a linear algebraic group over a field k. We say that G is *semisimple* if rad(G) is trivial.

Definition 7. Let G be a linear algebraic group over a field k. We say that G is *reductive* if the unipotent radical of G is trivial.

Slogan "unipotent radical" $\rightarrow \leftarrow$ "reductive" $\downarrow \qquad \qquad \uparrow$ "solvable radical" $\rightarrow \leftarrow$ "semisimple"

Date: October 28, 2025, Author: Tianle Yang, My Homepage

Theorem 8 (Levi Decomposition). Let G be a linear algebraic group over an algebraically closed field \mathbb{R} . Then there exists a reductive subgroup H of G such that the multiplication map $\mathrm{rad}_u(G) \rtimes H \to G$ is an isomorphism of algebraic groups. Such a subgroup H is called a *Levi subgroup* of G. Yang: To be checked.

3 Solvable groups and Borel subgroups

Definition 9. A group G is said to be *solvable* if there exists a finite sequence of algebraic subgroups

$$G = G_0 \triangleright G_1 \triangleright G_2 \triangleright \cdots \triangleright G_n = \{e\}$$

such that each G_{i+1} is normal in G_i and the quotient group G_i/G_{i+1} is commutative for all $0 \le i < n$. Yang: to be checked.

Theorem 10. Let G be a solvable linear algebraic group acting on a proper variety X. Then there exists a fixed point $x \in X(\mathbb{k})$ such that $g \cdot x = x$ for all $g \in G(\mathbb{k})$.

Corollary 11 (Lie-Kolchin Theorem). Let $G < GL_n(\mathbb{k})$ be a solvable linear algebraic group over an algebraically closed field \mathbb{k} . Then there exists a basis of \mathbb{k}^n such that G is contained in the group of upper triangular matrices with respect to this basis.

Theorem 12. Let G be a linear algebraic group of dimension 1 over an algebraically closed field k. Then G is isomorphic to either \mathbb{G}_m or \mathbb{G}_a .

4 Semisimple and reductive algebraic groups