Corso di Algebra per Ingegneria

Lezione 08: Esercizi

- (1) Se a e b sono due insiemi, quando è vero che $a \times b = \emptyset$?
- (2) È vero che $(\mathbb{N} \times \mathbb{N}) \cup (\mathbb{Z} \setminus \mathbb{N} \times \mathbb{Z} \setminus \mathbb{N}) = \mathbb{Z} \times \mathbb{Z}$? E

$$(\mathbb{N} \times \mathbb{N}) \cup (\mathbb{N} \times \mathbb{Z} \setminus \mathbb{N}) \cup (\mathbb{Z} \setminus \mathbb{N} \times \mathbb{N}) \cup (\mathbb{Z} \setminus \mathbb{N} \times \mathbb{Z} \setminus \mathbb{N}) = \mathbb{Z} \times \mathbb{Z}?$$

- (3) Scrivi esplicitamente il grafico della corrispondenza ρ da $\mathbb N$ ad $\mathbb N$ così definita: $(\forall m, n \in \mathbb N)(m\,\rho\,n\longleftrightarrow (m+1\le n\land n^2\le 5))$. ρ è un'applicazione?
- (4) Sia $\rho = (P(\mathbb{N}) \times P(\mathbb{N}), \subseteq)$ la relazione di inclusione su $P(\mathbb{N})$. Descrivere ρ^2 .
- (5) Verificare se le seguenti corrispondenze sono funzioni (se a è un insieme, qui indichiamo con $P_n(a)$ l'insieme delle parti di a che hanno esattamente n elementi (dette anche le n-parti di a)):
 - (i) $\rho = (\mathbb{N} \times \mathbb{N}, g)$, dove $(\forall m, n \in \mathbb{N})(m \rho n \longleftrightarrow ((m+1 \le n) \land (n^2 \le 5)))$;
 - (ii) $\rho = (\mathbb{N} \times P(\mathbb{N}), g)$, dove $(\forall m, p) (m \in \mathbb{N} \land p \in P(\mathbb{N}) \land (m \rho p \longleftrightarrow p = \{m\}))$;
 - (iii) $\rho = (\mathbb{N} \times \mathbb{N}, g)$, dove $(\forall m, n \in \mathbb{N})((m, n) \in g \longleftrightarrow m + n \in \mathbb{N})$;
 - (iv) $\rho = (\mathbb{N} \times \mathbb{N} \times \mathbb{N}, g)$, dove $(\forall l, m, n \in \mathbb{N})((l, m, n) \in g \longleftrightarrow l + m = n)$;
 - (v) $\rho = (\mathbb{Z} \times \mathbb{N} \times \mathbb{N}, g)$, dove $(\forall l, m, n \in \mathbb{N})((l, m, n) \in g \longleftrightarrow l + m = n)$;
 - (vi) $\rho = (\mathbb{Z} \times \mathbb{N} \times \mathbb{N}, g)$, dove $(\forall l \in \mathbb{Z})(\forall m, n \in \mathbb{N})((l, m) \rho n \longleftrightarrow l + m = n)$;
 - (vii) $\rho = (\mathbb{N} \times \mathbb{N} \times \mathbb{N}, g)$, dove $(\forall l, m, n \in \mathbb{N})((l, m, n) \in g \longleftrightarrow l^m = n)$;
 - (viii) $\rho = (P_2(\mathbb{N}) \times \mathbb{N}, g)$, dove $(\forall \{a, b\} \in P_2(\mathbb{N}) (\forall n \in \mathbb{N}) ((\{a, b\}, n) \in g \longleftrightarrow a^b = n);$
 - (ix) $\rho = (P(\mathbb{N}) \times P(\mathbb{N}), g)$, dove $(\forall x, y \in P(\mathbb{N})(x \rho y \longleftrightarrow y = \mathbb{N} \setminus x);$
 - (x) $\rho = (P(\mathbb{N}) \times P(\mathbb{N}), g)$, dove $(\forall x, y \in P(\mathbb{N})(x \rho y \longleftrightarrow y = x\Delta \mathbb{N})$.
- (6) Sia ρ_x la corrispondenza definita all'esercizio 4(x). Descrivere ρ_{iii}^2 , ρ_{ix}^2 , ρ_{ix}^2 , $\rho_{i}\rho_{viii}$, $\rho_{ii}\rho_{ix}$, $\rho_{iii}\rho_{ii}$, .
- (7) Siano a e b due insiemi. In che caso $(a \times b, \emptyset)$ è una funzione?