Temporary Doc Calc 3

Giacomo Cappelletto
23/10/24

Contents

Chapter 1	Vector Valued Functions $f: \mathbb{R} \to \mathbb{R}^n$	Page 2
1.1	Arc Length in Polar Coordinates	2
1.2	Multivariate Case	2
1.3	General Procedure for Polar Integration	3

Chapter 1

Vector Valued Functions $f: \mathbb{R} \to \mathbb{R}^n$

1.1 Arc Length in Polar Coordinates

The position vector in polar coordinates is given by:

$$\vec{r}(t) = \langle f(\theta) \cos \theta, f(\theta) \sin \theta \rangle$$

The magnitude of the derivative of the position vector is:

$$|\vec{r}'(t)| = \sqrt{\left(f'(\theta)\cos\theta - f(\theta)\sin\theta\right)^2 + \left(f'(\theta)\sin\theta + f(\theta)\cos\theta\right)^2}$$

Simplifying, this becomes:

$$|\vec{r}'(t)| = \sqrt{(f'(\theta))^2 + (f(\theta))^2}$$

The arc length S_r is then calculated as:

$$S_r = \int_{\theta_1}^{\theta_2} \sqrt{\left(f'(\theta)\right)^2 + \left(f(\theta)\right)^2} d\theta$$

Example 1.1.1 (Circle of Radius *a*)

Example: Let $r(\theta) = a$, where:

$$r'(\theta) = 0$$
, $r(\theta) = a$

The arc length is:

$$S = \int_{0}^{2\pi} \sqrt{a^2} d\theta = a \int_{0}^{2\pi} 1 d\theta = 2\pi a$$

1.2 Multivariate Case

The double integral over a region R:

$$\iint_{R} f(x,y) \, dA$$

If converted to polar coordinates:

$$\iint_{R} f(x,y) dA = \iint_{R} f(r\cos\theta, r\sin\theta) r dr d\theta$$

Example 1.2.1 (Volume under $z = 9 - x^2 - y^2$:)

$$R = \{(x, y) : x^2 + y^2 \le 9\}$$

In polar coordinates:

$$R = \{(r,\theta): 0 \le \theta \le 2\pi, 0 \le r \le 3\}$$

The function in polar coordinates:

$$f(r,\theta) = 9 - r^2$$

The volume is then:

$$\int_{R} f(r,\theta) \, dA = \int_{0}^{2\pi} \int_{0}^{3} r(9 - r^{2}) \, dr \, d\theta$$

Simplified Polar Volume Calculation:

$$\int_{R} f(r,\theta) \, dA = \int_{0}^{2\pi} \int_{0}^{3} r(9 - r^{2}) \, dr \, d\theta$$

1.3 General Procedure for Polar Integration

Given a region $R = \{(r, \theta) : \theta_1 \le \theta \le \theta_2, q(\theta) \le r \le h(\theta)\}$, the volume is calculated as:

$$V = \iint_{R} f(r,\theta) dA = \int_{\theta_{1}}^{\theta_{2}} \int_{q(\theta)}^{h(\theta)} r f(r,\theta) dr d\theta$$

where the area element is $\Delta A = r \Delta r \Delta \theta$.

Example 1.3.1 (Example: Region Outside $r = \frac{1}{2}$ and Inside $r = 1 + \cos \theta$)

The bounds are:

$$\frac{1}{2} \leqslant r \leqslant 1 + \cos \theta$$

$$-\frac{2\pi}{3} \leqslant \theta \leqslant \frac{2\pi}{3}$$

Cosine conditions are determined by:

$$\cos\theta = -\frac{1}{2}, \quad \theta = -\frac{2\pi}{3}, \frac{2\pi}{3}$$

The integral for the volume is:

$$\iint_{R} q(r,\theta) dA = \int_{-\frac{2\pi}{3}}^{\frac{2\pi}{3}} \int_{\frac{1}{3}}^{1+\cos\theta} r \, q(r,\theta) \, dr \, d\theta$$

