PCT/JP03/09154

18.07.03

日本国特許庁 JAPAN PATENT OFFICE

REC'D 0 5 SEP 2003

WIPO

PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年 7月22日

出 願 番 号 Application Number:

特願2002-212681

[ST. 10/C]:

[JP2002-212681]

出 願 人
Applicant(s):

横浜ゴム株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年 8月21日

今井康

Best Available Copy

【書類名】

特許願

【整理番号】

P2002131

【提出日】

平成14年 7月22日

【あて先】

特許庁長官 殿

【国際特許分類】

A61B 5/0488

A61B 5/22

【発明者】

【住所又は居所】

神奈川県平塚市追分2番1号 横浜ゴム株式会社 平塚

製造所内

【氏名】

倉森 章

【発明者】

【住所又は居所】 神奈川県平塚市追分2番1号 横浜ゴム株式会社 平塚

製造所内

【氏名】

高口 紀貴

【発明者】

【住所又は居所】 長野県上田市常田3-15-1 信州大学 繊維学部内

【氏名】

上條 正義

【発明者】

【住所又は居所】 長野県上田市常田3-15-1 信州大学 繊維学部内

【氏名】

佐渡山 亜兵

【発明者】

【住所又は居所】 長野県上田市常田3-15-1 信州大学 繊維学部内

【氏名】

細谷 聡

【発明者】

【住所又は居所】 長野県上田市常田3-15-1 信州大学 繊維学部内

【氏名】

清水 義雄

【特許出願人】

【識別番号】 000006714

【氏名又は名称】

横浜ゴム株式会社

【代理人】

【識別番号】

100080159

【弁理士】

【氏名又は名称】

渡辺 望稔

【電話番号】

3864-4498

【選任した代理人】

【識別番号】

100090217

【弁理士】

【氏名又は名称】 三和 晴子

【電話番号】

3864-4498

【手数料の表示】

【予納台帳番号】

006910

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9710081

【プルーフの要否】

要

明細書

【発明の名称】

作業快適度評価装置および作業快適度評価方法

【特許請求の範囲】

【請求項1】

左右対称に備えた人体の一対の筋が拮抗して行う作業時の筋電位を測定するこ とによって作業の快適度を評価する作業快適度評価装置であって、

人体の左右対称に配置された一対の筋の、作業時の人体の筋活動によって生じ る筋電位を検出する一対の検出センサと、

この検出センサによって検出された一対の筋電位を増幅するアンプと、

増幅された一対の筋電位の時系列波形から、前記一対の筋の同期的収縮波形を 生成する波形処理部と、

生成された同期的収縮波形の強度情報、あるいは、所定の強度範囲に含まれる 頻度情報から、作業の快適度の高低を評価する評価部と、を有することを特徴と する作業快適度評価装置。

【請求項2】

前記評価部は、生成された同期的収縮波形の前記強度情報あるいは前記頻度情 報を所定時間間隔毎に算出し、この算出結果により所定時間間隔毎に作業の快適 度の高低を評価する請求項1に記載の作業快適度評価装置。

【請求項3】

前記波形処理部は、前記一対の筋電位の時系列波形を全波整流した後、同時刻 における全波整流された前記―対の筋電位の時系列波形各々の値のうち、小さい 方の値を前記同期的収縮波形の信号値とする請求項1または2に記載の作業快適 度評価装置。

【請求項4】

前記波形処理部は、前記一対の筋電位波形の信号値の幾何平均値を前記同期的 収縮波形の信号値とする請求項1または2に記載の作業快適度評価装置。

【請求項5】

前記作業は、車両の運転における操舵である請求項1~4のいずれか1項に記 載の作業快適度評価装置。

前記一対の筋は、人体の肩部に位置する三角筋である請求項 5 に記載の作業快 適度評価装置。

【請求項7】

左右対称に配置された人体の一対の筋が拮抗して行う作業時の筋電位を測定することによって作業の快適度を評価する作業快適度評価方法であって、

人体の左右対称に配置された一対の筋の、作業時の人体の筋活動によって生じる筋電位を検出し、増幅するステップと、

増幅された一対の筋電位の時系列波形から、前記一対の筋の同期的収縮波形を 生成するステップと、

生成された同期的収縮波形の強度情報、あるいは、所定の強度範囲に含まれる 頻度情報から、作業の快適度の高低を評価するステップと、を有することを特徴 とする作業快適度評価方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、左右対称に備えた人体の一対の筋(筋肉)が拮抗して行う作業時の 筋電位を測定することによって作業の快適度を評価する作業快適度評価装置およ び作業快適度評価方法に関し、例えば、ドライバが車両を操舵する際の、操舵の 快適度を評価する評価装置および評価方法に関する。

[0002]

【従来の技術】

今日、快適に操舵できる自動車等の車両やタイヤを提供するために、自動車製造業者やタイヤ製造業者は、車両の操舵のし易さを追求し、種々の方法を用いて車両やタイヤの開発を行っている。

この車両の開発やタイヤの開発において、操舵が快適であるか否かを評価する場合、一般に、ドライバの主観的な官能評価を用いたり、車両に加速度等の計測センサを設けて車両の挙動を表す物理計測データを収集して、車両の挙動を定量的に計測して評価する場合が多い。

[0003]

ところで、今日、一定の作業を行う際の作業の負担の程度を評価するために、 作業者の筋電位の波形を表した筋電図を収集することで、作業者の筋肉の負担を 定量的に把握することも行われている。筋電位は、測定自体が簡便で即応性を備 えるため一定の作業を行う際の作業の負担の程度を適切に評価できるものも考え られている。この筋電図を用いた作業の負担の程度を評価する方法をドライバの 車両の操舵に適用することも考えられる。

[0004]

【発明が解決しようとする課題】

しかし、ドライバが車両の操舵は、左右対称に備えた人体の一対の筋である三 角筋が拮抗して行う作業であり、必ずしも筋肉の負担の少ない方が操舵時の快適 度に結びつかないという事実がある。

例えば、操舵力が軽い場合、ドライバの筋肉の負担は少なくなるが、軽い力で 絶えずハンドルを保持しなければならないといった問題がある。また、操舵力が 重い場合、ドライバが操舵する際の筋肉の負担は大きくなるが、ハンドルは安定 しているためハンドルを常時保持する必要性が少なくなる。

このため、筋電図の計測によって得られる筋負担の指標から、操舵の快適度を 適切に評価することができない。

[0005]

一方において、ドライバの生体情報として、脳波の変動、心拍数の変動、血圧 等を計測する方法もあるが、いずれの場合も、例えば、呼吸を一定に保つ等ドラ イバに一定の統制を与える必要が有り、ドライバに余計な負担を掛けるといった 問題がある。また、これらの生体情報は、後処理として行う解析の点からある程 度の計測時間を必要とし、即応性のある結果を得ることができないといった問題 がある。このため、実際の操舵の快適度を正しく評価することはできない。

このような問題は、車両の操舵に限らず、左右対称に備えた人体の一対の筋が 拮抗して一定の作業を行う場合の作業の快適度を評価する場合にも同様に発生す る。

[0006]

[0007]

【課題を解決するための手段】

上記目的を達成するために、本発明は、左右対称に備えた人体の一対の筋が拮抗して行う作業時の筋電位を測定することによって作業の快適度を評価する作業 快適度評価装置であって、

人体の左右対称に配置された一対の筋の、作業時の人体の筋活動によって生じる筋電位を検出する一対の検出センサと、

この検出センサによって検出された一対の筋電位を増幅するアンプと、

増幅された一対の筋電位の時系列波形から、前記一対の筋の同期的収縮波形を 生成する波形処理部と、

生成された同期的収縮波形の強度情報、あるいは、所定の強度範囲に含まれる 頻度情報から、作業の快適度の高低を評価する評価部と、を有することを特徴と する作業快適度評価装置を提供する。

[0008]

ここで、前記評価部は、生成された同期的収縮波形の前記強度情報あるいは前 記頻度情報を所定時間間隔毎に算出し、この算出結果により所定時間間隔毎に作 業の快適度の高低を評価するのが好ましい。

また、前記波形処理部は、前記一対の筋電位の時系列波形を全波整流した後、同時刻における前記一対の筋電位の時系列波形各々の値のうち、小さい方の値を前記同期的収縮波形の信号値とするのが好ましい。あるいは、前記波形処理部は、前記一対の筋電位波形の信号値の幾何平均値を前記同期的収縮波形の信号値とするのも同様に好ましい。

[0009]

なお、前記作業は、例えば、車両の運転における操舵である。この場合、前記

[0010]

また、本発明は、左右対称に配置された人体の一対の筋が拮抗して行う作業時 の筋電位を測定することによって作業の快適度を評価する作業快適度評価方法で あって、

人体の左右対称に配置された一対の筋の、作業時の人体の筋活動によって生じ る筋電位を検出し、増幅するステップと、

増幅された一対の筋電位の時系列波形から、前記一対の筋の同期的収縮波形を 生成するステップと、

生成された同期的収縮波形の強度情報、あるいは、所定の強度範囲に含まれる 頻度情報から、作業の快適度の高低を評価するステップと、を有することを特徴 とする作業快適度評価方法を提供する。

[0011]

【発明の実施の形態】

以下、本発明の作業快適度評価装置および作業快適度評価方法について、添付 の図面に示される好適実施例を基に詳細に説明する。

[0012]

図1は、本発明の作業快適度評価装置をドライバの操舵作業に適用した操縦快 適性評価装置10の概略の構成図である。

操縦快適性評価装置10は、車両を運転するドライバの操舵の快適度を評価す る装置で、ドライバの左右の三角筋の筋電位を検出する検出センサ12および1 4と、電極16と、検出センサ12および14からの筋電位を増幅するアンプ1 8と、増幅された左右の三角筋の筋電位の時系列波形から操舵の快適度を評価す る処理ユニット20と、評価結果をモニタ表示するモニタ22とを有して構成さ れる。

[0013]

検出センサ12は、ドライバの左肩の三角筋の筋電位を検出するセンサであっ て、皮膚表面電極(例えば、Ag/AgC1皿型電極、Ag電極あるいはステン レス電極)が対になって構成され、この一対の皮膚表面電極が所定の間隔、例え

検出センサ14は、ドライバの右肩の三角筋の筋電位を検出するセンサであっ て、検出センサ12と同様に、皮膚表面電極が対になって構成され、この一対の 皮膚表面電極が所定の間隔、例えば2cm離間して三角筋の位置する右肩の表面 に貼り付けられる。

ここで、ドライバの皮膚表面への貼り付けは、スクラブで擦り、アルコールで 汚れをおとして電極糊を用いて行う。その際、電気抵抗は30kΩ(5kΩが望 ましい)以下にするまで汚れを落とす。二つの電極は測定する筋の筋腹に、筋繊 維に対し平行に装着する。貼り付け位置は、神経支配帯部を避け、図2に示すよ うに、肩峰の端部Aから指三本分、腕長手方向に離れた位置Pに、所定の間隔を 開けて貼り付ける。

[0014]

一方、電極16は、ドライバの電位を一定に保つために電気的に不活性な位置 であるドライバの耳たぶに貼り付けられるアース電極であり、検出センサ12お よび14による測定を正確に行うために設けられる。なお、アンプ18に接続さ れた電極16は、アンプ18を介してアースされる。

アンプ18は、検出センサ12、14で検出された筋電位を増幅する公知の作 動増幅器である。

検出センサ12および14にて検出され、増幅された筋電位は処理ユニット2 0に送られる。

[0015]

処理ユニット20は、波形処理部24と快適性評価部26とを有して構成され る。

処理ユニット20は、コンピュータにて構成されたユニットであり、波形処理 部24および快適性評価部26は、プログラムを実行することによって各機能を 発揮するように構成されている。

なお、波形処理部24および快適性評価部26は、専用回路によって構成され たものであってもよい。

[0016]

波形処理部24は、筋電位の時系列波形をサンプリングし、全波整流を行った 後、検出センサ12および14にて予め測定されて記録保持されている最大筋電 位を用いて筋電位の時系列波形をそれぞれ規格化して指数(Index)を算出 するとともに、規格化された左右一対の三角筋の筋電位の指数の同時刻の値のう ち、小さい方の値を選択して生成される波形を同期的収縮波形として出力する部 位である。同期的収縮波形については後述する。

[0017]

ここで、最大筋電位とは、ドライバが三角筋に最大負荷を掛けて筋活動を与え た場合の筋電位であり、最大筋電位の測定は検出センサ12、14を貼り付ける たびに行われる。最大筋電位を用いて筋電位の時系列波形を規格化するのは、検 出センサ12、14を貼り付けるたびに検出センサ12、14の電気抵抗が微妙 に変わり、検出される筋電位の大きさが変わるからである。

なお、波形処理部24は、左右の三角筋の一対の筋電位の信号値の幾何平均値 を信号値とする同期的収縮波形を生成するように構成してもよい。この場合、最 大筋電位を用いて左右の筋電位の時系列波形を規格化して調整する必要がなく、 最大筋電位の測定を不要とする。

[0018]

快適性評価部26は、波形処理部24にて生成された同期的収縮波形から、一 定時間間隔毎に強度情報を算出し、この選出結果からドライバの操舵の快適度の 高低を評価する部位である。

ここで、同期的収縮波形の強度情報とは、例えば、所定時間間隔、例えば0. 1~0.5秒間隔毎に算出する、同期的収縮波形のRMS (root means suguare)値(実効値)、積分値、あるいは、同期的収縮波形の包絡線の積分値等をいう

同期的収縮波形の強度情報の替わりに、同期的収縮波形の頻度情報を算出し、 この頻度情報に基づいて操舵の快適度を評価してもよい。同期的収縮波形の頻度 情報とは、例えば、所定のRMS値の範囲に入る同期的収縮波形の信号値の確率 や回数等をいう。

[0019]

快適性評価部26は、例えば、同期的収縮波形のRMS値を、ドライバの操舵 の快適度を段階的に区分けするために予め設定された各段階の設定値と比較する ことによってドライバの操舵の快適度の高低を評価する。また、同期的収縮波形 の頻度情報を、ドライバの操舵の快適度を段階的に区分けするために予め設定さ れた各段階の設定確率と比較することによってドライバの操舵の快適度の高低を 評価する。

このような評価結果は、同期的収縮波形、左右の三角筋の筋電位の時系列波形 とともにモニタ22に送られ表示に供される。

[0020]

このように操縦快適性評価装置10は、左右の三角筋の筋電位の時系列波形か ら、同期的収縮波形を生成し、この同期的収縮波形の強度情報あるいは頻度情報 を用いてドライバの操舵の快適度を評価することを特徴とする。

一般に、ドライバによる操舵は、車両のハンドル(ステア)を操舵する動作に よって行われるが、ハンドルの操舵は、例えば車両の右旋回の場合ハンドルを握 る左手を上方向にまわすために、ドライバの左肩の三角筋が収縮する。一方、右 手はハンドルに添える程度であるため、ドライバの右肩の三角筋は弛緩する。一 方、車両の左旋回の場合、ドライバの左肩の三角筋は弛緩し、ドライバの右肩の 三角筋が収縮する。このように、左右対称に人体が備える一対の三角筋のうち一 方の筋を収縮させ、他方の筋を弛緩させて行うドライバの操舵は、本発明におけ る、左右対称に備えた人体の一対の筋が拮抗して行う作業に対応する。

[0021]

しかし、何らかのドライバの精神的負担等に起因してハンドルを握る手に余分 な力が入る場合やハンドルの操舵が難しく力む場合、左右一対の三角筋が拮抗し て行うハンドルの操舵においても左右一対の三角筋が同期して収縮する。この時 の筋電位の波形を同期的収縮波形という。

このような三角筋の収縮によりドライバがハンドルを保持する力が得られるが 、この場合のハンドルを保持する力は、加速度やロードセル等の計測センサを設 けて車両の挙動を表す物理計測データで得ることのできない情報である。

本願発明者らは、この同期的収縮の強度や頻度によって、ハンドルの操舵のし

[0022]

このような操縦快適性評価装置10を用いて操縦快適度の評価を行う場合、図 3に示すように、まず、検出センサ12、14がドライバの右肩、左肩の三角筋 の位置する肩表面に貼り付けられる(ステップ100)。同時に電極16が耳た ぶに貼り付けられる。

検出センサ12、14が貼り付けられた後、ドライバが左右両側の三角筋を最 大に収縮させたときの最大筋電位が測定される(ステップ102)。最大筋電位 は、アンプ18を介して波形処理部24に送られ記録保持される。これにより、 以降測定される筋電位を規格化し、検出センサ12、14の貼り付けの度に変わ る筋電位の情報を一定にすることができる。

[0 0 2 3]

次に、ドライバによる車両の運転が開始され、ドライバの操舵が行われ、ドラ イバの左右の三角筋の筋電位が常時測定される(ステップ104)。

筋電位の測定では、アンプ18にて筋電位が増幅された後、波形処理部24に 供給される。

波形処理部24では、まず、左右の三角筋の筋電位の時系列波形がそれぞれ全 波整流され、値がすべて0以上となった信号波形が生成された後、記録保持され た最大筋電位を用いて、全波整流された筋電位の時系列波形が規格化される。さ らに、同時刻における全波整流された2つの時系列波形の値のうち、小さい方の 値を同期的収縮波形の信号値とすることにより、同期的収縮波形が生成される(ステップ106)。このように、一対の三角筋が拮抗して行う操舵の作業におい て、弛緩状態に近い側の三角筋に生じる筋電位の情報を選択することで、同期的 に三角筋が収縮する時の筋電位の情報を得ることができる。

[0024]

生成された同期的収縮波形は、快適性評価部26において、同期的収縮波形の RMS値が、所定時間間隔、例えば、0.1~0.5秒間隔毎に逐次算出され(ステップ108)、快適度を段階的に区分けするために予め設定された各段階の

このように、左右対称に備えた人体の一対の三角筋が拮抗して行う操舵時の筋電位を測定することによって、時々刻々変化する操舵時のドライバの快適度を、ドライバの統制を行うことなく、短時間の計測結果から評価する。

[0025]

図4(a)~(d)には、上記方法を行った時の各種時間波形の一例が示されている。図4(a)は、ドライバが行ったハンドルの操舵角の時系列波形の一例である。図4(b)および(c)は、図4(a)に示すハンドルの操舵を行った時のドライバの左右両側の三角筋の筋電位の時系列波形(最大筋電位との比をとり指数化したもの(Index))の一例を全波整流したものである。図4(d)は図4(b)および(c)に示す筋電位の時系列波形から生成される同期的収縮波形(Index)の例を示したものである。

[0026]

この場合、図4(a)に示される操舵角の時系列波形からわかるように、ドライバは最大操舵角度を約20~30度とするレーンチェンジの操舵を2回行っている。

図4 (a) において、操舵角の正側はハンドルを右側に操舵する状態を、負側はハンドルを左側に操舵する状態を指す。従って、右側にハンドルを操舵する場合、図4 (c) に示されるように、左側の三角筋の収縮は大きく、これに対応して図4 (b) に示されるように、右側の三角筋は筋電位が殆ど発生せず弛緩状態あるいは弛緩状態に近いことを示している。

従って、同期的収縮波形は、右旋回の場合図4 (c) に示す波形が略選択される。同様に、左旋回の場合図4 (b) に示す波形が略選択される。

[0027]

生成された、図4(d)に示される同期的収縮波形から、所定時間間隔毎に、この波形のRMS値が逐次求められ、ドライバの操舵の快適度を段階的に区分けするために予め設定された各段階の設定値と比較することによってドライバの操舵の快適度の程度が評価される。

図5は、車両の旋回特性としてUS(アンダーステア)、OS(オーバステア) およびNS (ニュートラルステア) の3種類の条件を設定し、この各条件において得られる同期的収縮波形のRMS値を図4 (e) に示すように、操舵角に対応して区切って算出した結果を示している。

領域 S_a は、操舵角0の領域、領域 L_1 は操舵角が正で時間と共に増加する領域、領域 L_2 は操舵角が正で時間と共に減少する領域、領域 L_3 は操舵角が負で時間と共に絶対値が増加する領域、領域 L_4 は操舵角が負で時間と共に絶対値が減少する領域、領域 S_b は操舵角0の領域、領域 L_5 は操舵角が負で時間と共に絶対値が増加する領域、領域 L_6 は操舵角が負で時間と共に絶対値が減少する領域、領域 L_7 は操舵角が正で時間と共に増加する領域、領域 L_8 は操舵角が正で時間と共に減少する領域、領域 S_c は操舵角が0の領域である。

[0029]

図4(a)に示す操舵をUS、OSおよびNSの各条件について5回ずつ繰り返して、各領域のRMS値を求め、分散分析を行って、US、OSおよびNS間でRMS値に有意差があるか否かを調べた。

一方、操舵したドライバに操舵の快適度について官能評価を行ってもらった。 官能評価の結果、NSが最も快適に操舵でき、その次に、USであった。

なお、USとは、車両の旋回特性の1つであって、一定の操舵角を維持して円 弧形状に沿って車両が走行している状態から車両の旋回速度をあげたとき、車両 の走行が上記円弧形状から外側に向かって膨らんでしまい、旋回半径が大きくな る特性をいう。

一方、OSとは、車両の旋回特性の1つであって、一定の操舵角を維持して円 弧形状に沿って車両が走行している状態から車両の旋回速度をあげたとき、車両 の走行が上記円弧形状から内側に向かい、旋回半径が小さくなる特性をいう。

また、NSは、車両の旋回特性の1つであって、一定の操舵角を維持して円弧形状に沿って車両が走行している状態から車両の旋回速度をあげたても、車両の走行が上記円弧形状からはずれることがなく、旋回半径も変化しない特性をいう

[0030]

図5は、領域 S_a 、 L_1 、 L_2 、・・・、 S_c のRMS値(I_n dex)の平均値をOS、USおよびNSの別に示している。

図6は、求められたRMS値を用いて5%水準による分散分析の結果を示している。図6中の「<」、「>」は、比較対に有意差がある場合の大小関係を示す。

図 6 に示す結果によると、領域 L_1 、領域 L_3 および領域 L_7 において、NS の RMS 値は OS の RMS 値に比べて小さく、また、領域 L_1 、領域 L_4 および領域 L_7 において、NS の RMS 値が US の RMS 値に比べて小さく、さらに、領域 L_3 および領域 L_6 において、US の RMS 値が OS の RMS 値に比べて小さいことがわかった。

これより、NSにおける同期的収縮波形のRMS値が有意差のある領域(領域 L_1 、領域 L_3 、領域 L_4 、領域 L_7)で、いずれにおいてもUSおよびOSの RMS値に比べて小さく、また、OSとUSにおけるRMS値についても、有意 差のある領域(領域 L_3 、領域 L_6)においてUSのRMS値がOSのRMS値 よりも小さいことがわかった。

[0031]

この分散分析の結果は、上記ドライバの操舵の快適度の官能評価とも対応するものである。

従って、同期的収縮波形の強度情報を用いることで、操舵の快適度を適切に評価することができることがわかる。

これより、同期的収縮波形において所定の強度範囲に含まれる頻度情報を用いることで、操舵の快適度を適切に評価することができるといえる。

さらに、図5に示すように、RMS値は時間と共に変動することから、RMS値を所定時間間隔毎に算出することによって、時間と共に変化する快適度も評価することができる。例えば、快適度がUS、OSおよびNSの中で最も良好なNSであっても、RMS値が大きくなって快適度が悪化する領域を求めることができ、操舵の快適度を追求する車両の開発やタイヤの開発に役立てることができる

なお、上記例は、車両を運転し、ドライバがハンドルを操舵するときの快適度 を評価する例を説明したが、本発明では、快適度を評価する対象はハンドルの操 舵に限定されるわけでなく、左右対称に備えた人体の一対の筋が拮抗して行う作 業であればいずれの作業であってもよい。

[0033]

以上、本発明の作業快適度評価装置および作業快適度評価方法について詳細に 説明したが、本発明は上記実施例に限定はされず、本発明の要旨を逸脱しない範 囲において、各種の改良および変更を行ってもよいのはもちろんである。

[0034]

【発明の効果】

以上、詳細に説明したように、本発明は、左右対称に備えた人体の一対の筋が 拮抗して行う作業時の筋電位を測定し、この一対の筋の同期的収縮波形を生成し 、この生成された同期的収縮波形の強度情報あるいは頻度情報から、作業の快適 度の高低を評価するので、従来のように作業者に呼吸の統制等を行うことなく、 短時間の計測結果から作業の快適度を評価することができる。

【図面の簡単な説明】

- 【図1】 本発明の作業快適度評価装置の一例である操縦快適性評価装置の構成を示す概略構成図である。
- 【図2】 図1に示す操縦快適性評価装置において筋電位が測定される三角筋を説明する図である。
- 【図3】 本発明の作業快適度評価方法の一例のフローを示すフローチャートである。
- 【図4】 (a)~(d)は、図1に示す操縦快適性評価装置で得られる時系列波形の一例を示す図であり、(e)は、(a)~(d)に示す時系列波形を区切る領域を説明する図である。
- 【図5】 図1に示す操縦快適性評価装置で得られる同期的収縮波形のRMS 値の変化の一例を示す図である。
 - 【図6】 図1に示す操縦快適性評価装置で得られる同期的収縮波形のRMS

値の分散分析の結果の一例を説明する図である。

【符号の説明】

- 10 操縦快適性評価装置
- 12, 14 検出センサ
- 16 電極
- 18 アンプ
- 20 処理ユニット
- 22 モニタ
- 2 4 波形処理部
- 26 快適性評価部

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

比較対	Sa	Lı	L ₂	L ₃	L ₄	Sb	L ₅	L6	L ₇	L ₈	S _c
NS-OS		<		<					<		
NS-US		<			<				<		·
os-us				>				>	•		

(5%水準)

【書類名】

要約書

【要約】

【課題】左右対称に備えた人体の一対の筋が拮抗して行う作業時の筋活動を測定することによって作業の快適度を評価する作業快適度評価装置であって、作業者の統制を行うことなく、短時間の計測結果から作業の快適度を評価する。

【解決手段】操縦快適性評価装置10は、ドライバの左右対称に配置された一対の三角筋の、操舵時の筋活動によって生じる筋電位を検出する一対の検出センサ12、14と、検出センサ12、14によって検出された一対の三角筋の筋電位を増幅するアンプ18と、増幅された一対の筋電位の時系列波形から、一対の三角筋の同期的収縮波形を生成する波形処理部24と、生成された同期的収縮波形の強度情報、あるいは、所定の強度範囲に含まれる頻度情報から、操舵の快適度の高低を評価する快適性評価部26とを有する。

【選択図】図1

特願2002-212681

出願人履歴情報

識別番号

[000006714]

1. 変更年月日 [変更理由] 住 所

1990年 8月 7日 新規登録

任所氏名

東京都港区新橋5丁目36番11号

横浜ゴム株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

0.00000 100 0.0000 0.0000 0.000 0.0000 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.