

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

(19)

JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11) Publication number: **08263096 A**

(43) Date of publication of application: **11.10.96**

(51) Int. Cl
G10L 7/04
G10L 9/14
G10L 9/18

(21) Application number: **07065622**
(22) Date of filing: **24.03.95**

(71) Applicant: **NIPPON TELEGR & TELEPH CORP <NTT>**
(72) Inventor: **JIN AKIO**
MORIYA TAKEHIRO
MIKI SATOSHI

(54) ACOUSTIC SIGNAL ENCODING METHOD AND DECODING METHOD

(57) Abstract:

PURPOSE: To encode a sound at a high compression rate and to encode a musical tone with high quality by using a CELP system and a conversion coding system.

CONSTITUTION: An input signal 11 of a sampling frequency $f_s=24\text{kHz}$ is made a low band signal of $f_s=16\text{kHz}$ by a converter 22₁, and it is encoded by a CELP coder 24₁, and a resultant code C_1 is outputted, and the code C_1 is decoded by a decoder 25₁, and the decoded signal is made the signal of $f_s=24\text{kHz}$ by a converter 26, and it is subtracted from the input signal 11, and a high band signal and a quantization error signal are coded by a conversion coding coder 24₂, and the code C_2 is outputted. Only the code C_1 , or both of C_1 and C_2 are decoded to be used.

COPYRIGHT: (C)1996,JPO

(51) Int.Cl. ⁶ G 10 L 9/14 9/18	識別記号 7/04	府内整理番号	F I G 10 L 9/14 9/18	技術表示箇所 G G J E C
---	--------------	--------	-------------------------------	---------------------------------

審査請求 未請求 請求項の数 6 O L (全 11 頁)

(21)出願番号 特願平7-65622

(22)出願日 平成7年(1995)3月24日

(71)出願人 000004226

日本電信電話株式会社

東京都新宿区西新宿三丁目19番2号

(72)発明者 神 明夫

東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内

(72)発明者 守谷 健弘

東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内

(72)発明者 三樹 聰

東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内

(74)代理人 弁理士 草野 卓

(54)【発明の名称】 音響信号符号化方法及び復号化方法

(57)【要約】

【目的】 C E L P 方式と、変換符号化方式とを用い、音声を高い圧縮率で符号化し、楽音を高い品質で符号化する。

【構成】 標本化周波数 $f_s = 24 \text{ kHz}$ の入力信号 1 を変換器 2 1 で $f_s/16 \text{ kHz}$ の低域信号とし、これを C E L P 符号器 2 4 1 で符号化して符号 C_1 を出し、その符号 C_1 を復号器 2 5 1 で復号し、その復号信号を変換器 2 6 で $f_s = 24 \text{ kHz}$ の信号とし、これを入力信号 1 1 から差引き、高域信号と量子化誤差信号とを変換符号化符号器 2 4 2 で符号化して符号 C_2 を出す。符号 C_1 のみ、又は C_1 と C_2 の両方を復号して利用する。

【特許請求の範囲】

【請求項1】 楽音や音声などの最高周波数が f_n の音響入力信号を周波数 f_1, f_2, \dots, f_{n-1} ($f_1 < f_2 < \dots < f_{n-1} < f_n$) の n 個の区分 (n は 2 以上の整数) に分割して符号化する符号化方法において、上記入力信号から周波数が f_i 以下の第1帯域信号を選出す第1帯域選択過程と、上記第1帯域信号を第1符号化方法で符号化して第1符号を出力する第1符号化過程と、第 $i - 1$ 以下の各符号 ($i = 2, 3, \dots, n$) から周波数が f_{i-1} 以下の第 $i - 1$ 復号信号を得る第 $i - 1$ 復号化過程と、上記入力信号から周波数 f_i 以下の第 i 帯域信号を選出す第 i 選択過程と、上記第 i 帯域信号から上記第 $i - 1$ 復号信号を差し引いて第 i 差信号を得る第 i 差過程と、上記第 i 差信号を第 i 符号化方法で符号化して第 i 符号を出力する第 i 符号化過程と、を有する音響信号符号化方法。

【請求項2】 上記第 $i - 1$ 復号化過程は上記第 $i - 1$ 符号を復号する過程と、その復号された信号と第 $i - 2$ 復号信号とを加算する過程と、その加算された信号を標本化周波数が $2 f_i$ の信号に変換して上記第 $i - 1$ 復号信号を得る過程と、を有することを特徴とする請求項1記載の音響信号符号化方法。

【請求項3】 楽音、音声などの最高周波数が f_n の音響入力信号を、周波数 f_1, f_2, \dots, f_{n-1} ($f_1 < f_2 < \dots < f_{n-1} < f_n$) ($n = 2$ 以上の整数) で区分してそれぞれを符号化する符号化方法において、上記入力信号より標本化周波数が $2 f_i$ の第1帯域信号を得る第1帯域選択過程と、上記第1帯域信号を第1符号化法により符号化して第1符号を出力する第1符号化過程と、上記 $i - 1$ 符号化過程 ($i = 2, 3, \dots, n$) の符号誤差として第 $i - 1$ 誤差信号を得る第 $i - 1$ 誤差取り出し過程と、上記第 $i - 1$ 誤差信号を標本化周波数が $2 f_i$ の第 $i - 1$ 変換誤差信号に変換する第 $i - 1$ 変換過程と、上記入力音響信号より周波数帯域が $f_{i-1} \sim f_i$ 、標本化周波数が $2 f_i$ の第 i 帯域信号を得る第 i 帯域選出過程と、上記第 $i - 1$ 変換誤差信号と上記第 i 帯域信号とを加算して第 i 加算信号を得る第 i 加算過程と、上記第 i 加算信号を第 i 符号化法により符号化して第 i 符号を出力する第 i 符号化過程と、を有する音響信号符号化方法。

【請求項4】 上記第1符号化法は符号駆動線形予測符号化法であり、上記 n 符号化法は変換符号化法である

ことを特徴とする請求項1乃至3の何れかに記載の音響信号符号化方法。

【請求項5】 上記音響入力信号中の周波数 f_i 以下のほぼ全域の成分のスペクトル包絡を重みの基準として、上記第 i 符号化過程において心理聴覚重み付け量子化を行うことを特徴とする請求項1乃至4の何れかに記載の音響信号符号化方法。

【請求項6】 入力符号を第1乃至第 n 符号 (n は 2 以上の整数) に分離する分離過程と、

10 上記第1符号を復号して、標本化周波数 $2 f_i$ の第1復号信号を第1復号化出力として出力する第1復号過程と、上記第 $i - 1$ 復号化出力 ($i = 2, 3, \dots, n$) を標本化周波数が $2 f_i$ の第 $i - 1$ 変換復号化出力に変換する第 $i - 1$ 変換過程と、上記第 i 符号を復号して標本化周波数 $2 f_i$ の第 i 復号信号を得る第 i 復号過程と、上記第 i 復号信号と上記第 $i - 1$ 変換復号化出力とを加算して第 i 復号化出力を出力する第 i 加算過程と、20 を有する音響信号復号化方法。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 この発明は、楽音や音声などの音響信号を周波数領域で帯域分割して階層符号化する符号化方法及びその復号化方法に関する。

【0002】

【従来の技術】 音響信号を周波数領域で帯域分割して符号化する方法として、サブバンド符号化方法がある。サブバンド符号化方法はQMF (Quadrature

30 Mirror Filter) を用いて入力信号を複数の周波数帯域に分割し、その各帯域に適切なビット割り当てを行いつつ各帯域を独立に符号化する。

【0003】 現在、楽音及び音声などの音響信号の符号化方法は使用目的、復号品質、符号化速度などに応じて多種多様な方法が有るが、1つの音響信号に対して複数の符号化方法を得ることなく1つの符号化方法でのみ符号化するのが普通である。しかし、例えば図1Aに示すように音響信号11を周波数軸上で低域側から3つのサブバンドSB₁, SB₂, SB₃に分割して階層化し、

40 図2に示すようにその下位層(階層1)であるサブバンドSBは符号化品質は低い、すなわち復号再生音の周波数帯域が狭く、量子化誤差も大きい符号化方法、例えば符号駆動線形の予測符号化法: CELPにより高压縮率で符号化し、逆に上位層(階層3)であるサブバンドSB₃の符号化は符号化品質が高く、すなわち復号再生音の周波数帯域が広く、量子化誤差が小さい符号化方法(例えば離散コサイン変換符号化方法などの変換符号化法で低圧縮率で符号化し、中位層(階層2)であるサブバンドSB₂に対しては下位層の符号化方法と、上位層の符号化方法との中間の符号化方法とし、利用者の要求

に応じて階層1のみを符号化送出し、あるいは階層1と2を符号化送出し、又は全ての階層を符号化送出するという符号化方法も、考えられる。

【0004】あるいは前述のように3つに階層符号化された各種の楽音又は音声信号を例えばデータベースとして設け、利用者からのそのデータベースをアクセスし、所望の楽音信号を受け取り、その利用者の復号器に応じて、階層1の符号のみを復号して狭帯域かつ量子化誤差の大きい低品質の再生音を得、あるいは階層1及び2の符号を復号、又は階層1, 2, 3の全ての符号を復号して広帯域かつ量子化誤差の小さい高品質な再生音を得ることが考えられる。

【0005】又は、例えば、音声が支配的な広帯域の音響信号を2階層に分けて符号化し、その下位層符号のみを復号すれば主に音声的な性質を有する音響信号をきれいに復号し、下位層と上位層との両符号を復号すれば、更に、非音声的な性質を有する音響信号も含めた信号の復号ができる、ということが考えられる。またこれらの場合において、下位層符号のみを受け取り、その際の伝送路の利用時間を短かくしたまゝ、伝送容量の小さな伝送路を使用し、かつ実時間で復号したり、長い時間かけて上位層符号をも受けとり、一度蓄積した後、改めて再生復号することにより高品質の復号信号を得ることもできる。

【0006】あるいは、これらの場合において、下位・上位層の全ての符号を一度蓄積した後、下位層符号のみを、小型かつ経済的な遅延時間の小さい復号器により実時間で復号したり、高品質な音を再生したい時には、上位層符号をも含めて、大型かつ遅延時間の大きな復号器により、時間をかけて復号し、その後で一度に再生することもできる。

【0007】前述のように復号品質や符号化圧縮率に選択性をもたせる符号化方法はスケーラブルな階層符号化方法と称せられる。スケーラブルな階層符号化方法としては図1Aに示したサブバンド符号化方法が考えられる。すなわち符号化方法1によってサブバンドSB₁の周波数帯域を符号化し、同様にして帯域SB₂, SB₃を各々独立した符号化方法2, 3により符号化を実行する。図1Bに示すように、復号化の際には、例えば、広帯域の復号音を必要としない時には、サブバンドSB₁の符号のみを符号化方法1の復号器により復号化して、サブバンドSB₁の帯域のみの音の復号信号1₂を得、また広帯域復号音を必要とする場合はサブバンドSB₁, SB₂, SB₃の各符号をそれぞれ符号化方法1, 2, 3と対応した復号量により復号して復号信号1₂, 1₂, 1₂を得てこれらの合成信号1₂を出力する。

【0008】

【発明が解決しようとする課題】しかし、このようなサブバンド符号化方法による階層符号化では、各帯域(す

なわち各層)に発声する量子化誤差、すなわち符号器の入力信号とその局部復号器の出力信号、つまり伝送路などの影響を受けていない復号信号との誤差が図1Cに示すように各帯域SB₁, SB₂, SB₃にそれぞれ量子化誤差1₃₁, 1₃₂, 1₃₃として保存され、よって全周波数帯域の復号信号1₂には各帯域毎に独立に歪みや雑音が発生してしまう。従って、全帯域を復号する場合(すなわち上位層までの復号化)でさえも、下位層の大きな量子化誤差1₃₁も、そのまま発生するため、高品質のものは得られない。広帯域復号信号を高品質に得るには各サブバンドSB₁, SB₂, SB₃での各符号化圧縮率を小さくしなければ、量子化雑音を低減させることができない。従ってこのような階層符号化方法では、スケーラブルな符号化を実現できない。

【0009】従来のサブバンド符号化方法によるスケーラブルな符号化ができないことを図3を参照して更に具体的に説明する。即ち原音響信号1₁の帯域を2分割し、第1階層(低域領域)をCELP方式で符号化し、第2階層(高域領域)を変換符号化方法により符号化している。第1階層では、音声の圧縮効率の高いCELP符号化が実行されているため、その局部復号信号1₂、(図3B)の量子化誤差信号1₃₁は図3Cに示すように比較的大きい。一方第2階層では様々な波形に対して符号化可能な変換符号化が実行されているため、その曲部復号信号1₂は図3Bに示すように原音信号1₁に近く、量子化誤差信号1₃₂は図3Cに示すように小さい。しかし第1階層の符号及び第2階層の符号をそれぞれ復号して広域復号信号を得ても、図3Dに示すようにその復号信号の量子化誤差の低域部分1₄₁は第1階層の量子化誤差1₃₁と変わらない。すなわち、第2階層までの復号品質は低周波数の帯域においてCELP符号化方法の符号化性能に依存してしまう。よって、サブバンド符号化方法で階層符号化を行い高品質な符号化品質を実現するためには、各階層全てを圧縮率が小さいか、または演算量の大きな高品質符号化方法によって符号化しなければならない。

【0010】この発明の目的は、下位層での符号化を高圧縮率、低復号品質とし、しかも上位層までの復号信号に下位層の低復号品質の影響を受けない高品質のものを得ることができるスケーラブルな符号化方法及びその復号化方法を提供することにある。

【0011】

【課題を解決するための手段】請求項1の発明によれば、楽音や音声などの最高周波数がf_nの音響入力信号を周波数f₁, f₂, …, f_{n-1}(f₁ < f₂ < … < f_{n-1} < f_n)のn個の区分(nは2以上の整数)に分割して符号化する符号化方法において、入力信号から周波数がf_i以下の第1帯域信号を選出し、その第1帯域信号を第1符号化方法で符号化して第1符号を出力し、第i-1以下の各符号(i=2, 3, …,

n) から周波数が f_{i-1} 以下の第 $i - 1$ 復号信号を得、上記入力信号から周波数 f_i 以下の第 i 帯域信号を選出し、その第 i 帯域信号から上記第 $i - 1$ 復号信号を差し引いて第 i 差信号を得、その第 i 差信号を第 i 符号化方法で符号化して第 i 符号を出力する。

【0012】第 $i - 1$ 復号信号は例えば、第 $i - 1$ 符号を復号化した信号と、第 $i - 2$ 復号信号とを加算し、その加算信号を標本化周波数が $2 f_i$ の信号に変換して得る。請求項3の発明の符号化方法によれば樂音、音声などの最高周波数が f_n の音響入力信号を、周波数 f_1, f_2, \dots, f_{n-1} ($f_1 < f_2 < \dots < f_{n-1} < f_n$)

($n = 2$ 以上の整数) で区分してそれぞれ符号化する符号化方法において、上記音響入力信号より標本化周波数が $2 f_1$ の第1帯域音響信号を得、その第1帯域信号を第1符号化法により符号化して第1符号を出力し、その第1符号の符号化誤差を第 $i - 1$ 誤差信号を得 ($i = 2, 3, \dots, n$)、その第 $i - 1$ 誤差信号を標本化周波数が $2 f_i$ の第 $i - 1$ 変換誤差信号に変換し、上記音響入力信号より周波数帯域が $f_{i-1} \sim f_i$ 、標本化周波数が $2 f_i$ の第 i 帯域信号を得、上記第 $i - 1$ 変換誤差信号と上記第 i 帯域信号とを加算して第 i 加算信号を得、その第 i 加算信号と第 i 符号化法により符号化して第 i 符号を出力する。

【0013】請求項4の発明のよれば、請求項1乃至3の何れかの発明において上記第1符号化法は符号駆動線形予測符号化法であり、上記第 n 符号化法は変換符号化法である。請求項5の発明では請求項1乃至4の何れかの発明において、上記音響入力信号中の周波数 f_i 以下のほぼ全域の成分のスペクトル包絡を重みの基準として、上記第 i 符号の符号化過程において心理聴覚重み付け量子化を行う。

【0014】請求項6の発明の復号化方法によれば、入力符号を第1乃至第 n 符号 (n は2以上の整数) に分離し、上記第1符号を復号して、標本化周波数 $2 f_1$ の第1復号信号を出力し、上記第 $i - 1$ 復号信号 ($i = 2, 3, \dots, n$) を標本化周波数が $2 f_i$ の第 $i - 1$ 変換復号信号に変換し、上記第 i 符号を復号して標本化周波数 $2 f_i$ の第 i 復号信号を得、その第 i 復号信号と上記第 $i - 1$ 変換復号信号とを加算して第 i 加算信号を出力する。

【0015】

【実施例】図4Aに請求項1の発明の符号化方法の実施例を適用した符号化器の例を示す。この例では原音信号を2つの周波数帯域に分けて符号化、つまり2階層符号化する場合である。入力端子21からの原音入力信号11は標本化周波数が 24 kHz 、つまり最高周波数 f_2 が 12 kHz のデジタル信号であり、この入力信号は第1帯域選択手段としてのサンプルレート変換器22₁で標本化周波数が 16 kHz の信号に変換されて第1帯域信号23が取出される。このサンプルレート変換はいわ

ゆるダウンサンプリングであり、例えば変換標本化周波数比に応じた間隔でサンプルが除去された後、デジタル低域通過フィルタを通されて実行される。このサンプルレート変換器22₁よりの周波数が $f_1 = 8 \text{ kHz}$ 以下の第1帯域信号23が取出され、この第1帯域信号23は第1符号化方法による第1符号器24₁で符号化される。この例では第1符号器24₁としてCELP(符号駆動線形予測符号化)符号方法により符号化する。この符号化の結果である第1符号C₁が出力される。

10 【0016】この実施例では局部復号器25₁で復号され、周波数が f_1 以下の第1復号信号12₁が得られ、その復号信号12₁は第1サンプルレート変換器26₁で標本化周波数が 24 kHz の変換復号信号27に変換される。このサンプルレート変換器26₁はいわゆるアップサンプリングを行うものであり、例えば、変換周波数比に応じた間隔でゼロサンプルを加えた後デジタル低域通過フィルタに通せばよい。差回路28で入力信号11からこの変換復号信号27が差引かれ、その差信号29が第2符号化方法による第2符号器24₂で符号化される。この実施例では第2符号器24₂で変形離散コサイン変換などの変換符号化(Transform coding)により符号化される。この符号化結果の第2符号C₂は出力される。第1符号C₁と第2符号C₂は多重化回路31で、例えば図4bに示すように符号化フレームごとに時分割的に多重化され、符号化符号Cとして出力される。利用者の要求によっては第1符号C₁のみを出力してもよい。

20 【0017】標本化周波数 24 kHz の原音入力信号11の周波数スペクトルは例えば図5Aに示され、この信号11中の 8 kHz 以下の信号が標本化周波数 16 kHz の信号23(図5B)として下位層の第1符号器24₁に入力され、高い圧縮効率で符号化される。その符号化符号C₁の局部復号器25₁により復号された復号信号12₁は図5Bに示すように、下位層入力信号23に対しても少なからず量子化誤差13₁が図5Cに示すように生じる。差回路28からこの誤差信号13₁と、原音入力信号11の 8 kHz 以上の高域信号33となりなる信号29が上位層の第2符号器24₂に入力され、あらゆる性質の入力信号を高品質に符号化可能な変換符号化方法により符号化される。

【0018】このようにこの実施例では下位層の符号化符号C₁は原音をそれ程忠実には符号化しないが、上位層では下位層の量子化誤差も含めて符号化されるため、後述で明らかにするように、上位層まで復号する場合に、下位層をも高い忠実度で復号再生することが可能となる。つまり下位層では高い圧縮効率で符号化し、しかも上位層をも復号する場合は、高品質の復号信号を得ることができる。

【0019】特に前記実施例では下位層の符号化にCELP方式を用いているため符号化対象が音声の場合、下

位層の第1符号 C_1 のみを復号しても比較的良好な品質が得られ、また演算量が少なく、実時間処理が容易である。第1、第2符号 C_1, C_2 を復号して、符号化対象が楽音であっても、上位層の変換符号の復号により、かつ下位層のCELP符号の符号化誤差の補償により、広帯域にわたり、品質の高い復号信号が得られる。

【0020】符号化を行う場合に、人間の心理聴覚、例えば大きいレベルのスペクトルによるマスキング特性などを考慮して、心理聴覚重み付けをして符号化することにより聴覚的に量子化誤差を抑圧した効率的な符号化をすることがよくある。例えば符号器24₁のCELP符号化方法においては図6に示すように、制御部35により指定される周期(ピッチ)のベクトルが適応符号帳36から取出され、また指定された雑音符号帳37から雑音ベクトルが取出され、これらはそれぞれ利得が付与された後、合成されて線形予測合成フィルタ38に励振ベクトルとして入力される。一方図4Aのサンプルレート変換器22₁よりの入力信号は符号化フレーム周期で線形予測分析部39で線形予測分析され、その線形予測係数が量子化部41で量子化され、その量子化線形予測係数に応じて合成フィルタ38のフィルタ係数が設定される。また聴覚重み付け係数演算部43で線形予測係数より求めたスペクトル包絡に基づいて心理聴覚重み付けのためのフィルタ係数を求めて、聴覚重み付けフィルタ42に設置する。サンプルレート変換器22₁よりの入力信号から合成フィルタ38よりの合成信号が差し引かれ、その差信号が聴覚重み付けフィルタ42へ通され、その出力のエネルギーが最小になるように制御部35により適応符号帳36、雑音符号帳37に対する選択が行われる。

【0021】変換符号器24₁の変換符号化方法においては、例えば図7に示すように差回路器28の出力が離散コサイン変換器45で直交コサイン変換されて周波数領域の係数に変換され、そのスペクトル包絡成分が線形予測分析部46で線形予測分析され、これよりスペクトル包絡を得、そのスペクトル包絡で変換器45の出力係数が割算されて正規化され、その平均化された係数が聴覚重み付け部47で聴覚重み付けがなされ、更に量子化部48で例えばベクトル量子化される。聴覚重み付け係数を得るため、この実施例について入力端子21から原音入力信号11が離散コサイン変換器49で直交コサイン変換して、周波数領域に変換され、その変換係数のスペクトル包絡にもとづいて聴覚重み付け係数が係数演算部51で演算されて聴覚重み付け部47に与えられ、正規化係数の対応する成分に対する乗算がなされる。

【0022】つまり、上位層の第2の符号器24₁では図5Cに示すスペクトルの信号29を符号化するが、この信号29のスペクトル包絡にもとづいて聴覚重み付けを行うのではなく、原音入力信号11のスペクトル包絡(図5D)を求め、これに基づいて聴覚重み付け符号化

を行う。次にこの発明の復号化方法の実施例を図8を参照して説明する。この実施例は図4に示した符号化法による符号化符号の復号化に適用した場合である。入力端子55より入力された入力符号に分離回路56で第1符号 C_1 と第2符号 C_2 とに分離され、第1符号 C_1 は第1復号器57₁によりこの例ではCELP復号化方法により最高信号周波数 f_1 (標本化周波数16kHz)の第1復号信号58₁に復号されて下位層(低域)復号化出力63₁として出力される。

10 【0023】この第1復号化出力58₁はサンプルレート変換器59により最高信号周波数 f_1 (標本化周波数が24kHz)の変換復号信号61₁に変換される。一方分離回路56よりの第2符号 C_2 は第2復号器57₂によりこの例では変換符号復号化がなされ、最高信号周波数 f_2 (標本化周波数が24kHz)の第2復号信号58₂が得られて、この第2復号信号58₂は第1変換復号信号61₁と加算器62₁で加算されて上位層(全帯域)復号化出力63₁として出力される。

【0024】つまり下位層復号化出力63₁としては理想的な場合は図5B中の復号信号12₁が得られる。一方第2復号器57₂の復号信号58₂は理想的には図5Eに示すように、下位層(低域)の量子化誤差信号13₁の復号信号60₁と、高域信号33の復号信号64₁とである。よって加算器62₁よりの復号化出力63₁には低域の復号信号58₁に対し、その量子化誤差13₁と対応する復号信号60₁が加算され、量子化誤差が著しく軽減され、かつ高域復号信号64₁に高い忠実度のものであるから、加算器62₁から得られる上位層までの復号化出力63₁は原音入力信号11に著しく近く、その量子化誤差信号は例えば図5Fに示すように全帯域にわたり、著しく小さなものとなる。

【0025】次にこの発明の符号化方法をn階層(n帯域)分割符号化に適用した例としてn=4の場合について図9を参照して説明する。図9において図4Aと対応する部分に同一符号を付けてある。この例では原音入力信号11は最高周波数が $f_n = f_1$ でその標本化周波数が $2f_1$ であり、第1サンプルレート変換器(第1帯域選択手段)22₁で標本化周波数が $2f_1$ (但し $f_1 < f_2 < f_3 < f_4$)の入力信号23₁に変換され、つまり周波数 f_1 以下の第1帯域信号23₁が選出され、その第1帯域信号23₁は第1符号器24₁で符号化され、第1符号 C_1 として出力されると共にその第1符号 C_1 は第1復号器25₁で標本化周波数 $2f_1$ の信号に復号され、その復号信号12₁は第1サンプルレート変換器26₁で標本化周波数が $2f_1$ の第1変換復号信号に変換される。一方入力信号11が第2帯域選択手段としてのサンプルレート変換器22₂で標本化周波数が $2f_2$ の信号に変換されて、周波数 f_1 以下の第2帯域信号23₂が取出される。この第2帯域信号23₂から第50 1サンプルレート変換器26₁よりの第1変換復号信号

(6)

9

が第2差回路28,で引算され、その第2差信号29,が第2符号器24,で符号化され、第2符号C_iが出力される。

【0026】以下同様の処理を行うが、第3符号C_iを得る処理を、i=3(i=2,3,…,n、この例では4まで)を例として説明する。第i-1(=第2)符号C_{i-1}(=C₂)が第i-1(=第2)復号器25,で復号されて標本化周波数2f_{i-1}(=2f₂)の第i-1(=第2)復号信号を得、この第i-1(=第2)復号信号と第i-2(=第1)サンプルレート変換器26_{i-2}(=26₁)よりの第i-2(=第1)変換復号信号との和が加算器60_{i-1}(=60₁)でとられ、その和信号は第i-1(=第2)サンプルレート変換器26_{i-1}(=26₁)で標本化周波数2f_i(=2f₁)、周波数がf_{i-1}(=f₂)以下の第i-1(=第2)変換復号信号に変換される。一方、第i(=第3)帯域選択手段としてのサンプルレート変換器22_i(=22₁)により入力信号11から、周波数がf_i(=f₃)、標本化周波数が2f_i(=2f₃)の第i(=第3)帯域信号23_i(=23₁)が取出され、その第i(=第3)帯域信号23_i(=23₁)は第i-1(=第2)サンプルレート変換器26_{i-1}(=26₁)よりの変換復号信号が第i(=第3)差回路28_i(=28₁)で減算され、その第i(=第3)減算信号29_iが第i(=第3)符号器24_i(=24₁)で符号化され、第i(=第3)符号C_i(=C₃)を出力する。なお、第i-1(=第2)復号器25_{i-1}(=25₁)と、加算器60_{i-1}(=60₁)と第i-1(=第2)サンプルレート変換器26_{i-1}(=26₁)は第i-1(=第2)復号化手段40_{i-1}(=40₁)を構成する。ただ第1復号化手段40₁は第i-2層が存在せず加算器60₁は省略される。また最上位層、この例では第i(=第4)帯域信号23_iは周波数f_i以下の信号であるため第i帯域選択手段としてのサンプルレート変換器22_iは省略される。

【0027】このようにしてこの発明は入力信号帯域をn区間に分割して符号化する場合に適用できる。第1～第n(=第4)符号C₁～C_n(=C₄)は多重化回路31でフレームごとに多重化されて符号化符号Cとして出力される。この場合多重化回路31は第1又は第1～第i符号の何れでも選択して出力することができるようになる。第1～第n(=第4)符号器24₁～24_i(=24₁)は符号器24_iのiが大となる程圧縮率が小さくなる、という使い方をすれば広帯域、高品質の符号化をする。これを満たせばその符号化方法は、例えば全てを変換符号化としてもよい。

【0028】第1～第4符号器24₁～24_iにおいて聴覚重み付け符号化を行う場合はサンプルレート変換器22₁,22_i,22_iよりの各周波数がf₁,f₂,f₃以下の信号が聴覚重み付け係数演算部72₁,72_i

10

,72_iへそれぞれ供給され、それぞれそのスペクトル包絡に基づく聴覚重み付け係数が演算され、また入力信号が聴覚重み付け係数演算部72_iに入力されて同様に聴覚重み付け係数が演算され、これら聴覚重み付け係数演算部72₁～72_iでそれぞれ演算された聴覚重み付け係数が第1～第4符号器24₁～24_iへ供給され、前述したように聴覚重み付け符号化が行われる。

【0029】この発明の符号化方法をn階層分割符号化への適用例としてn=4の場合を図10に示す。この例10も原音入力信号11の最高周波数がf₁=f₄でその標本化周波数が2f₁の場合で、第1サンプルレート変換器(第1帯域選択手段)22₁で標本化周波数が2f₁(但し f₁ < f₂ < f₃ < f₄)の入力信号23₁に変換され、つまり周波数f₁以下の第1帯域信号23₁が選出され、その第1帯域信号23₁は第1符号器24₁で符号化され、第1符号C₁として出力されると共にその第1符号C₁は第1復号器25₁で標本化周波数2f₁の信号に復号され、その復号信号12₁と第1帯域信号23₁との差が第1差回路65₁でとられ、その差信号20(第1誤差信号)13₁は第1サンプルレート変換器26₁で標本化周波数が2f₁の第1変換誤差信号に変換される。

【0030】一方入力信号11から第2帯域選択手段66₁で周波数帯域がf₁～f₂、標本化周波数が2f₁の第2帯域信号23₂が取出される。例えば入力信号11がサンプルレート変換器22₁で標本化周波数2f₁の信号に変換され、その信号が遮断周波数f₁の高域通過フィルタ67₁に通されて第2帯域信号23₂が得られる。この第2帯域信号23₂は第1サンプルレート変換器26₁よりの第1変換誤差信号と第2加算器68₁で加算され、その第2加算信号29₁が第2符号器24₁で符号化され、第2符号C₁が出力される。

【0031】以下同様の処理を行うが、第3符号C_iを得る処理を、i=3(i=2,3,…,n、この例では4まで)を例として説明する。第i-1(=第2)符号C_{i-1}(=C₂)が第i-1(=第2)復号器25_iで復号されて標本化周波数2f_{i-1}(=2f₂)の第i-1(=第2)復号信号を得、この第i-1(=第2)復号信号と第i-1(=第2)加算器68_{i-1}(=68₂)より第i-1(=第2)加算信号29_{i-1}(=29₂)との差が差回路65_{i-1}(=65₂)でとられ、その第i-1(=第2)誤差信号13₂は第i-1(=第2)サンプルレート変換器26_{i-1}(=26₂)で標本化周波数2f_i(=2f₃)の第i-1(=第2)変換誤差信号に変換される。一方、第i(=第3)帯域選択手段66_i(=66₃)により入力信号11から、帯域がf_{i-1}～f_i(=f₂～f₃)、標本化周波数が2f_i(=f₃)の第i(=第3)帯域信号23_i(=23₃)が取出され、その第i(=第3)帯域信号23_i(=23₃)は第i-1(=第2)変換誤差信号と第i50

(=第3) 加算器68_i (=68_i) で加算され、その第i (=第3) 加算信号29_iが第i (=第3) 符号器24_i (=24_i) で符号化され、第i (=第3) 符号C_i (=C_i) を出力する。

【0032】このようにしてこの発明は入力信号帯域をn区間に分割して符号化する場合に適用できる。最上位層、つまり周波数f_{n-1}～f_n (=f₃～f₄) の帯域を選出する第n (=第4) 帯域選択手段66_n (=66_n) は単なる遮断周波数がf_{n-1} (=f₃) の高域通過フィルタ67_n (=67_n) でよい。第1～第n (=第4) 符号C₁～C_n (=C_i) は多重化回路31でフレームごとに多重化されて符号化符号Cとして出力される。この場合多重化回路31は第1又は第1～第i符号の何れでも選択して出力することができるようになっている。

【0033】第1～第n (=第4) 符号器24₁～24_n (=24_i) は符号器24_iのiが大となる程圧縮率が小さくなる、という使い方を行えば広帯域、高品質の符号化をする。これを満せばその符号化方法は、例えば全てを変換符号化としてもよい。第1～第4符号器24₁～24_nにおいて聴覚重み付け符号化を行う場合はサンプルレート変換器71₁, 71₂, 71₃により入力信号がそれぞれ標本化周波数が2f₁, 2f₂, 2f₃の信号により変換されることにより、入力信号11からそれぞれ周波数がf₁, f₂, f₃以下の信号が取出されて聴覚重み付け係数演算部72₁, 72₂, 72₃へそれぞれ供給され、それぞれそのスペクトル包絡に基づく聴覚重み付け係数が演算され、また入力信号が聴覚重み付け係数演算部72₄に入力されて同様に聴覚重み付け係数が演算され、これら聴覚重み付け係数演算部72₁～72₄でそれぞれ演算された聴覚重み付け係数が第1～第4符号器24₁～24_nへ供給され、前述したように聴覚重み付け符号化が行われる。

【0034】この発明による復号化方法の一般的な方法を適用した復号化器の例として、n=4、つまり入力符号が第1～第4符号C₁～C₄が入力される場合を図11に図8と対応する部分に同一符号を付けて示す。符号分離手段56で入力符号Cは第1～第4符号C₁～C₄に分離されて、それぞれ第1～第4復号器57₁～57₄へ供給される。第1復号器57₁の第1復号信号58₁は第1復号化出力63₁として出力されると共にサンプルレート変換器59₁で標本化周波数がそれぞれ2f₁、第1変換復号信号61₁に変換され、その第1変換復号信号61₁は第2復号器57₂より第2復号信号58₂に第2加算器62₂で加算されて第2復号化出力63₂として出力されると共に第2サンプルレート変換器59₂で標本化周波数が2f₂の変換復号信号に変換される。一般には第i-1 (i=2, 3, …, n、例えばi=3) 加算器62_{i-1} (=62_{i-1}) よりの第i-1

* (=第3) 復号化出力63_{i-1} (=63_{i-1}) が第i-1 (第2) サンプルレート変換器59_{i-1} (=59_{i-1}) で標本化周波数が2f_i (=2f_i) の第i-1 (=第2) 変換復号信号61_{i-1} (=61_{i-1}) に変換され、その後の第i-1 (=第2) 変換復号信号61_{i-1} (=61_{i-1}) と第i (=第3) 復号器57_i (=57_i) から第i (=第3) 復号信号58_i (=58_i) とが第i (=第3) 加算器62_i (=62_i) で加算されて第i (=第3) 復号化出力63_i (=63_i) を得、これが10出力される。

【0035】

【発明の効果】以上説明したように、この発明によれば、階層符号化方法において下位層の量子化誤差を上位層で符号化しているため、CELP符号化方法と変換符号化方法などの、圧縮方法の異なる符号化方法によって階層を構成しても、上位層までの復号信号において符号化品質を低下させない、という効果がある。また、下位層の量子化誤差を上位層で符号化する、という操作を繰り返すことにより、複数階層化において量子化誤差を階層数に応じて減少させることができる。更に、このような符号化方法によって、どの階層で復号しても聴感上の復号品質が最適となり、スケーラブルな階層符号化を実現できる。

【図面の簡単な説明】

【図1】サブバンド符号化方法を3つの周波数帯域に分割する方法によって実現した場合の原音(A)と符号化再生音(B)、および量子化誤差(C)の例を示す図。

【図2】スケーラブルな階層構造を持つ階層符号化方法の特徴を説明するための図。

【図3】サブバンド符号化方法によって階層符号化を実現した場合の原音、復号信号、量子化誤差の様子を示す図。

【図4】Aはこの発明による符号化方法を2階層符号化法に適用した場合の符号化器の例を示すブロック図、Bは多重化された符号の例を示す図である。

【図5】A～Dは図4 Aの符号化動作における原音、復号信号、上位層符号化入力、上位層聴覚重み付けの基準の各例を示す図、E, Fは上位層の復号信号、上位層までの復号の量子化誤差の例を示す図である。

【図6】CELP符号化器の概略を示すブロック図。

【図7】変換符号化器の概略を示すブロック図。

【図8】この発明の復号化方法を2階層符号化の復号法に適用した復号器の例を示すブロック図。

【図9】この発明の符号化方法を4階層符号化方法として実現した場合の符号器の例を示すブロック図。

【図10】この発明による4階層符号化方法を実現する符号器の他の例を示すブロック図。

【図11】この発明の復号化方法を4階層符号化方法として実現した場合の復号器の例を示すブロック図。

【図1】

図1

【図7】

図7

【図2】

図2

【図3】

図3

【図6】

図6

【図4】

図4

【図5】

【図8】

図8

【図9】

図9

【図10】

【図11】

図11