Data-Efficient and Hardware Decentralized Visual SLAM

Jincheng Yu¹ and Feng Gao¹

Abstract—Decentralized simultaneous localization and mapping (DSLAM) is essential to a multi-robot system, especially in environments lacking absolute positioning equipments like GPS. Visual based SLAM is a widely adopted solution in industry for its low cost and high flexibility. There are two essential components need to be efficiently deplyed on each agent: 1) Visual Odometr(VO) and 2) Place Recognition. However, both of these components require intensive computation and storage on embedded system. The place recognition task is usually done with CNN based methods. We adopt CNN as the VO to provide 6-D pose between different frames, for both intrarobot or inter-robot. Thus we can use the CNN accelerator based on FPGA to execute these two components. In this work, we propose a hardware-software co-design DSLAM framwork and use embedded FPGA to accelerator these two components.

We evaluate our framework on the hardware platform Xilinx ZU9 SoC and we can perform DSLAM in real time on each agent. We also evaluate our system on publicly available dataset.

I. INTRODUCTION

In recent years, with the development of the hardware and algorithms, the capabilities of a single agent have been greatly improved. To further expand the capabilities of intelligent robots, using several robots can accelerate many tasks, such as localization, exploration, and mapping. As simultaneous localization and mapping(SLAM) is an essential component in many tasks, it is important to do SLAM across different robots in many multi-agent applications. The camera is a widely used snesor in SLAM for its rich information and low cost. However, in many scenarios, communication is limited, so that there is no server or an agent can stably collect all of the visual data from each robot.

Therefore, to reduce communication requirements, the previous work [1] proposes a data-efficient decentralized SLAM(DSLAM) system. The DSLAM frame in [1] is illustrated in fig 1(a). It makes improvements in three typical components in the DSLAM system: 1) Using ORB-SLAM [2] in stereo configuration as the visual odometry (VO) algorithm which provides basic intra-robot pose estimation. 2) Using NetVLAD [3] algorithm to do place recognition which relates the current observation to previous scenes and other robots. 3) Using distributed Gauss-Seidel algorithm [4] as the optimization back-end which optimizes the intra-robot position and fuses the inter-robot locations and maps. Each agent executes the ORB-SLAM which contains three steps for each input frame: feature extraction, feature matching and RANSAC. The NetVLAD method can encode the camera frame to a short vector which can be transformed to the server or a central agent with low communication cost.

¹Electronic Engineering Department, Tsinghua University, Beijing, China yjc16@mails.tsinghua.edu.cn

However, both ORB-SLAM and NetVLAD require tremendous computation and storage resources, and thus, the deployment of DSLAM on embedded system is challaged by the limited resources and power supply.

Though NetVLAD consumes huge computation, with the development of FPGA accelerators, we use the embedded CNN accelerator on FPGA [5] to perform NetVLAD for each frame. We also notice that there are also some previous works regression the 6-D pose directly from the input setero camera [6] or monocular camera [7], [8], With the development of CNN. We adopt Depth-VO-Feat [8] in DSLAM system to estimate the pose from the input monocular camera. Because Depth-VO-Feat is trained with stereo input frames and inferenced with monocular camera, the CNN method can provide absolute scale from monocular camera, and also be accelerated with our CNN accelerator. Thus we do not need to execute ORB-SLAM on embedded CPUs.

The proposed DSLAM framework is illustrated in fig 1(b). To make the DSLAM system more energy efficient and hardware friendly, we propose a novel hardware-software codesign DSLAM framework with the following contributions:

- We implement NetVLAD on an embedded SoC platform with CPU cores and FPGA fabric.
- We use an end-to-end CNN based method to estimate the 6-DoF pose between intra-robot successive frames and matched scenes between different robots.
- We demonstrate that our proposed hardware-software co-design decentralized SLAM system can achieve a similar accuracy with the current state-of-the-art DSLAM system without increase of communication.

The rest part of this article is orgnized as follows. Section II will give the basic idea of CNN based methods and the hardware architecture of embedded FPGA. Section III will detail the implementation of our hardware-software codesign DSLAM system. The experiment result will be given in Section IV. Section V will conclude this paper.

II. BACKGROUND AND MOTIVATION

A. CNN based methods in DSLAM

As described before, there are two essential components on each agent: 1) Visual Odometr(VO) and 2) Place Recognition.

- 1) Visual Odometr (VO):
- 2) Place Recognition: The gaol of place recognition is to calculate a given frame into a limited set of places. Each places can be encoded as a very short code which can be easy transformed with low communication cost. Tranditional place recognition method usually translate the input frame

(b) Our hardware-software co-design DSLAM

Fig. 1. Overview of the DSLAM in [1] and our hardware-software co-design DSLAM. Each agent (blue drones) will send the result of 6-D pose estimation and scene descriptor to a server or a central agent (red server or drone in figure) to do inter-robot place recognition and optimization. We use CNN instead of feature points to do pose estimation so that we can use CNN accelerator to speed up the whole process.

as the aggregation of handcrafted feature point and local descriptors, like SIFT [9] or ORB [2], using vectorization techniques like bag-of-words (BoW) [10] or vector of locally aggregated descriptors(VLAD) [11].

Recent advances in the deep learning and the convolution neural network (CNN) enable powerful end-to-end mode for place recognition [12], [3], and the NetVLAD method is one of the most accurate method based on CNN. The NetVLAD algorithm based on VGG-16 model [13] consumes more than 80G operations for a single 300×300 input image (each operation means an addition or a multiplication). It is very challaging to deploy the NetVLAD on a tranditional embedded hardware platform.

B. Hardware architecture of Zync MPSoC

The Xilinx Zync MPSoC is a chip with ARM cores and FPGA fabric. The system is illustrated in section II-B. The ARM cores with an embedded Linux operation system are called Processing System (PS). The FPGA fabric is called Programmable Logic (PL). The peripherals like camera and communication unit (WiFi or others) are accessable with PS. The high-bandwidth on-chip AXI interface is used to communicate between PS and PL. PS and PL can also share the DDR to transfer large volume of data such as each frame of camera. Deephi CNN accelerator [5] is one of the state-of-the-art accelerators and is famous for high energy efficiency on various of CNN structure. We deploy the accelerator on the PL side of Zynq SoC.

Though FPGA can greatly improve the performance and energy efficiency of CNN inference, FPAG cannot efficiently calculate float-point number and requires fixed-point parameters and intermediate data in CNN.

C. Motivation

Though previous work [1] proposes data-efficient DSLAM system, it is difficult to implement the two essential components, VO and place recognition smultaneously on a communication-limited and energy-constrained embedded

Fig. 2. Hardware architecture of Zynq SoC

hardware platform on a real rebot. We propose this hardwaresoftware co-design DSLAM system to use Xilinx Zynq MP-SoC and Deephi accelerator to execute these two components on real system.

III. HARDWARE-SOFTWARE CO-DESIGN DSLAM

Our hardware-software co-design DSLAM system contains two essential improvements in the pose estimation and the place recognition tasks. As illustrate in fig 1(b), both of these two components are divide into two stages: 1) CNN front end to extact features which is deployed to the CNN acclerator on PL and 2) geometric operations to present final results which is depoyed on the PS ARM core. To make full use of the Zynq MPSoC (illustrated in section II-B), we optimize the data follow for both of these components.

A. Pose Estimation

We adopt Depth-VO-Feat [8] in DSLAM system to estimate the pose from the input monocular camera.

B. Place Recognition

As described in section II, CNN has achieved great improvements in place recognition tasks.

IV. EXPERIMENTS

The experiment results shows our proposed DSLAM system can perform in real time and achieves similar accuracy with previous work.

V. CONCLUSION

ACKNOWLEDGMENT

This work is not supported by any fund.

REFERENCES

- T. Cieslewski, S. Choudhary, and D. Scaramuzza, "Data-Efficient Decentralized Visual SLAM," 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 2466–2473, 2018.
- [2] R. Mur-Artal and J. D. Tards, "ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras," *IEEE Transactions on Robotics*, vol. 33, pp. 1255–1262, 2016.
- [3] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, "NetVLAD: CNN Architecture for Weakly Supervised Place Recognition," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 40, pp. 1437–1451, 2017.
- [4] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: numerical methods, 1989.
- [5] "Boards Deephi Tech," 2019. [Online]. Available: http://www.deephi.com/technology/boards
- [6] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A. Bachrach, and A. Bry, "End-to-end learning of geometry and context for deep stereo regression," in *Proceedings of the IEEE International Conference on Computer Vision*, 2017, pp. 66–75.
- [7] R. Li, S. Wang, Z. Long, and D. Gu, "UnDeepVO: Monocular Visual Odometry Through Unsupervised Deep Learning," 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 7286–7291, 2018.
- [8] H. Zhan, R. Garg, C. S. Weerasekera, K. Li, H. Agarwal, and I. Reid, "Unsupervised learning of monocular depth estimation and visual odometry with deep feature reconstruction," *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2018.
- [9] D. G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," *International Journal of Computer Vision*, vol. 60, pp. 91–110, 2004.
- [10] D. Gálvez-López and J. D. Tardos, "Bags of binary words for fast place recognition in image sequences," *IEEE Transactions on Robotics*, vol. 28, 2012.
- [11] H. Jégou, M. Douze, C. Schmid, and P. Pérez, "Aggregating local descriptors into a compact image representation," CVPR 2010-23rd IEEE Conference on Computer Vision & Pattern Recognition, 2010.
- [12] H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han, "Large-scale image retrieval with attentive deep local features," *Proceedings of the IEEE International Conference on Computer Vision*, 2017.
- [13] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," arXiv preprint arXiv:1409.1556, 2014