UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2006 question paper

9701 CHEMISTRY

9701/02 Paper 2 (Theory 1), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

The grade thresholds for various grades are published in the report on the examination for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2006 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

www.studyguide.pk
Syllabus Paper

Page 2		Mark Scheme	Syllabus	Paper	<u></u>
. ugo <u>-</u>		GCE A/AS LEVEL - OCT/NOV 2006	9701	2	
1 (a)	(i)	electron		(1)	
	(ii)	towards the positive pole		(1)	
	(iii)	electron has negative charge		(1)	
		electron has very small mass		(1)	[4]
(b)	(i)	the number of protons in the nucleus of an atom		(1)	
	(ii)	the nucleus usually contain protons and neutrons		(1)	[2]
(c)	neut	rons are uncharged		(1)	
	and	are not repelled by protons in the nuclei of atoms		(1)	[2]
(d)	no c	hange		(1)	
		atom/isotope formed has the same electronic iguration as the original element		(1)	[2]
				[Tota	ıl: 10]
2 (a)	mole	ecules		(1)	
	I_2			(1)	[2]
(b)	(i)	cations held in 'sea' of delocalised electrons		(1)	
		by strong metallic bonds		(1)	
	(ii)	van der Waals' forces between molecules		(1)	
		van der Waals' forces are weak		(1)	[4]
(c)	(i)	oxidising agent		(1)	
	(ii)	iodine is a weaker oxidising agent than chlorine		(1)	[2]
				[Tot	tal: 8]

www.studyquide.pk

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - OCT/NOV 2006	9701	2

3 (a) Allow names or formula throughout (a).

(i)	He or Ne or Ar or Kr	(1)	
(ii)	P or P ₄ - allow As or As ₄	(1)	
(iii)	K	(1)	
(iv)	Br/Br ₂	(1)	
(v)	Si	(1)	
(vi)	P - allow S	(1)	[6]

(b) Accept only formulae in (b)(i).

Allow names or formula throughout the rest of (b).

(i) SO_2 and SO_3 or

 P_2O_3/P_4O_6 and P_2O_5/P_4O_{10} or

 NO_2 and N_2O_5 or

 ClO_2 and Cl_2O_7

oxides must be from same element (1 + 1)

(ii) Al_2O_3 or BeO or ZnO (1)

(iii) Li or Na or K (1)

(iv) Na or Mg (1)

(v) F/F_2 or CI/CI_2 or Br/Br_2 (1) [6]

[Total: 12]

www.studyguide.pk

Page 4	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - OCT/NOV 2006	9701	2

4	(a)	high	temperature (above 450 °C)	(1)	
		use	of a catalyst	(1)	[2]
	(b)	C ₁₈ F	$H_{38} \rightarrow C_6 H_{14} + C_{12} H_{24}$	(1)	[1]
	(c)	(i)	electrophilic addition	(1)	
		(ii)	dipole on Br $_2$ clearly shown by δ + and δ -	(1)	
			curly arrow from π bond of $\text{CH}_2\text{=}\text{CH}_2$ to Br^{δ^+}	(1)	
			formation of carbocation		
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	
			Br ⁻ formed	(1)	
			attack by lone pair of Br ⁻ on carbocation	(1)	[6]
	(d)	enth	alpy change when 1 mol of a substance	(1)	
		or u	urnt in an excess of oxygen/air ndergoes complete combustion er standard conditions	(1)	[2]
	(e)	(i)	heat released = m c δT = 200 x 4.18 x 27.5	(1)	
			= 22990 J = 23.0 kJ		
			(If candidate uses 4.2 answer is 23.1 kJ.)	(1)	
		(ii)	23.0 kJ produced from 0.47 g		
			2059 kJ produced from $\frac{0.47 \times 2059}{23.0}$ g	(1)	
			= 42.08g		
			(Use of 4.2 gives 41.89 g.)		
			allow ecf from (i)	(1)	[4]
	(f)	C ₃ H ₆	6	(1)	[1]
	(g)	-CH	(CH ₃)CH ₂ CH(CH ₃)CH ₂ - as minimum		
		allov	v ecf from (f)	(1)	[1]

[Total: 15 max]

www.studyguide.pk

			7 0
Page 5	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - OCT/NOV 2006	9701	2

5 Note: In parts (a) and (b) the conditions mark is only awarded if the reagent is correct.

(a) (i) manganate(VII) ions (1)

cold, dilute (1)

(ii) oxidation (1) [3]

(b) (i) chlorine (1)

uvl **or** sunlight (1)

(ii) NaOH(aq)/OH $^{-}$ (aq) (1)

heat (1) **[4]**

Note: Throughout parts (c), (d), and (e) penalise once a wrongly drawn C–OH bond, e.g. OH-C.

(c) $lactic acid \rightarrow CH_3COCO_2H$ (1)

glycollic acid $\rightarrow HO_2CCO_2H$ (1)

(d) central C shown as chiral (C^*) (1)

two correct three dimensional structures (1)

correctly displayed (1) [3]

(e) $CH_3CH(OH)CO_2CH_2CO_2H$ (1)

HOCH₂CO₂CH(CH₃)CO₂H (1) [2]

(f) (i) hydrolysis (1)

(ii) hydrogen bonding (1) [2]

[Total: 15 max]

