Appendix 2

The inverse robot

The n degree-of-freedom robot whose set of geometric parameters are $(\sigma_j', \alpha_j', d_j', \theta_j', r_j')$ is defined as the inverse of the robot $(\sigma_j, \alpha_j, d_j, \theta_j, r_j)$ if the transformation matrix ${}^0T_n(\sigma_j', \alpha_j', d_j', \theta_j', r_j')$ is equal to ${}^0T_n^{-1}(\sigma_j, \alpha_j, d_j, \theta_j, r_j)$.

Table A2.1 gives the geometric parameters of a general six degree-of-freedom robot. Table A2.2 gives those of the corresponding inverse robot. Indeed, let us write the transformation matrix ${}^{O}\mathbf{T}_{6}$ under the following form:

$${}^{0}T_{6} = Rot(z,\theta_{1}) \ Trans(z,r_{1}) \ Rot(x,\alpha_{2}) \ Trans(x,d_{2}) \ Trans(z,r_{2}) \ Rot(z,\theta_{2}) \dots Rot(x,\alpha_{6})$$

$$Trans(x,d_{6}) \ Trans(z,r_{6}) \ Rot(z,\theta_{6}) \qquad [A2.1]$$

Table A2.1. Geometric parameters of a general six degree-of-freedom robot

j	σ_{j}	α_{j}	dj	$\theta_{\rm j}$	Гj
1	σ_1	0	0	θ_1	rı
2	σ_2	α_2	d ₂	θ_2	r ₂
3	σ3	α3	d ₃	θ_3	r ₃
4	σ4	α4	d ₄	θ ₄	14
5	σ ₅	α ₅	d ₅	θ ₅	r ₅
6	σ ₆	α ₆	d ₆	θ ₆	r ₆

The inverse transformation matrix ${}^{6}T_{0}$ can be written as:

$$^{6}T_{0} = Rot(z, -\theta_{6}) Trans(z, -r_{6}) Trans(x, -d_{6}) Rot(x, -\alpha_{6}) Rot(z, -\theta_{5})$$

$$Trans(z, -r_{5}) \dots Trans(x, -d_{2}) Rot(x, -\alpha_{2}) Rot(z, -\theta_{1}) Trans(z, -r_{1})$$
[A2.2]

The parameters of Table A2.2 result from comparing equations [A2.1] and [A2.2]. The corresponding elementary transformation matrices are denoted by $^{j-1}T_i$ ' such that:

$${}^{0}\mathbf{T}_{6}' = {}^{0}\mathbf{T}_{1}' {}^{1}\mathbf{T}_{2}' \dots {}^{5}\mathbf{T}_{6}' = {}^{0}\mathbf{T}_{6}^{-1}$$
 [A2.3]

Table A2.2. Geometric parameters of the six degree-of-freedom inverse robot

j	σ_{j}	$\alpha_{\mathbf{j}}$	dj'	θj'	r _j '
1	σ ₆	0	0	- θ ₆	-r ₆
2	σ ₅	-06	-d ₆	- θ ₅	-r ₅
3	σ4	- α ₅	-d ₅	-04	-r ₄
4	σ3	-α ₄	-d₄	-0 3	-r ₃
5	σ_2	- α ₃	-d ₃	-θ 2	-r ₂
6	σι	-α ₂	-d ₂	- 0 1	-r ₁