AULA PRÁTICA N.º 2

Objetivos:

Utilização de instruções lógicas e de deslocamento sobre inteiros no MIPS. Utilização das diretivas do *assembler* do MARS.

Conceitos básicos:

- Lógica *bitwise* e operações com máscaras. Instruções lógicas.
- Deslocamento (shift) lógico e aritmético. Instruções de deslocamento.
- Diretivas do assembler do MARS.

Guião:

- 1. Instruções lógicas.
 - a) Codifique um programa em assembly do MIPS que determine o resultado das operações lógicas bit a bit (bitwise) AND¹, OR, NOR e XOR, considerando como operandos os valores armazenados nos registos \$t0 e \$t1; os resultados devem ser armazenados nos registos \$t2, \$t3, \$t4 e \$t5, respetivamente.

b) Execute o programa no MARS, preencha a tabela e confirme (calculando manualmente) os resultados para os seguintes pares de valores:

```
val_1 = 0x1234, val_2 = 0x000F
val_1 = 0x1234, val_2 = 0xF0F0
val_1 = 0x5C1B, val_2 = 0xA3E4
```

\$t0	\$t1	\$t2 (AND)	\$t3 (OR)	\$t4 (NOR)	\$t5 (XOR)
0x1234	0x000F	0x00000004	0x0000123f	0xffffedc0	0x0000123b
0x1234	0xF0F0	0x00001030	0x0000f2f4	0xffff0d0b	0x0000e2c4
0x5C1B	0xA3E4	0x00000000	0x0000ffff	0xffff0000	0x0000ffff

c) O ISA do MIPS não disponibiliza uma instrução de negação bit a bit. Usando as instruções lógicas disponíveis, sugira uma forma de efetuar a negação bit a bit do conteúdo de um registo e implemente-a (registo de entrada \$t0, registo de saída \$t1). Teste o seu programa com os seguintes valores e confirme manualmente os resultados obtidos:

\$t0 (Val)	\$t1 (Val\)
0x0F1E	0xfffff0e1
0x0614	0xfffff9eb
0xE543	0xffff1abc

Em linguagem C, os operadores lógicos *bitwise* representam-se por: & (and); (or); ^ (xor); ~ (not)

- 2. Instruções de deslocamento.
 - **a)** Para além das instruções que implementam operações lógicas bit a bit, o MIPS disponibiliza ainda operações de deslocamento² (*shift*), nomeadamente, deslocamento à esquerda lógico, deslocamento à direita lógico e deslocamento à direita aritmético. Em todas estas instruções o número de bits a deslocar é especificado na instrução (campo **Imm**):

```
sll Rdst,Rsrc,Imm  # Shift left logical
srl Rdst,Rsrc,Imm  # Shift right logical
sra Rdst,Rsrc,Imm  # Shift right arithmetic
```

b) Escreva um programa que efetue as 3 operações de deslocamento, considerando como operandos os registos \$t0 e a constante Imm (valor e número de bits a deslocar, respetivamente) e colocando os resultados nos registos \$t2, \$t3 e \$t4. Execute o programa para os seguintes pares de valores (a instrução virtual "li" permite a inicialização de um registo com uma constante de 32 bits)³:

```
(0x12345678, 1)
(0x12345678, 4)
(0x12345678, 16)
(0x862A5C1B, 2)
(0x862A5C1B, 4)
         .data
         .text
         .globl
                 main
             $t0,0x12345678
                               # instrução virtual (decomposta
main:
                               # em duas instruções nativas)
         sll $t2,$t0,1
         srl $t3,$t0,1
                               #
         sra $t4,$t0,1
         jr
            $ra
                               # fim do programa
```

c) Preencha a tabela seguinte e confirme manualmente os resultados para cada um dos pares de valores de entrada.

\$t0	Imm	\$t2 (sll)	\$t3 (srl)	\$t4 (sra)
0x12345678	1	0x2468acf0	0x091a2b3c	0x091a2b3c
0x12345678	4	0x23456780	0x01234567	0x01234567
0x12345678	16	0x56780000	0x00001234	0x00001234
0x862A5C1B	2	0x18a9706c	0x218a9706	0xe18a9706
0x862A5C1B	4	0x62a5c1b0	0x0862a5c1	0xf862a5c1

d) A conversão de uma quantidade codificada em binário natural para o equivalente em código Gray poder ser feita do seguinte modo:

```
gray = bin ^ (bin >> 1);
```

Traduza para *assembly* a expressão anterior, usando os registos **\$t0** e **\$t1** para o armazenamento das variáveis "**bin**" e "**gray**", respetivamente. Teste o seu programa para diferentes valores de entrada (por exemplo 2, 4, 5, ...).

² Em linguagem C o deslocamento à direita representa-se por >> e o deslocamento à esquerda por <<

³ O MIPS não disponibiliza, por razões que serão compreendidas mais tarde, uma única instrução que permita o preenchimento de uma quantidade de 32 bits num registo do CPU).

e) A conversão de uma quantidade codificada em código Gray para binário natural (a operação inversa da descrita na alínea anterior) pode ser feita, de forma não iterativa e para quantidades de 8 bits, do seguinte modo:

```
num = gray;
num = num ^ (num >> 4);
num = num ^ (num >> 2);
num = num ^ (num >> 1);
bin = num;
```

Traduza para *assembly* o programa anterior, usando os registos **\$t0**, **\$t1** e **\$t2** para o armazenamento das variáveis "gray" "num" e "bin", respetivamente. Teste o seu programa para diferentes valores de entrada (por exemplo 2, 7, 13, 15, ...).

3. Diretivas do assembler.

Os programas que efetuam a tradução de código *assembly* para código máquina (designados em inglês por *assemblers*) disponibilizam um conjunto de instruções que permitem ao programador controlar alguns aspetos do processo de tradução. Estas instruções (não confundir com as instruções do CPU) são normalmente designadas por diretivas e são executadas exclusivamente pelo *assembler* durante o processo de tradução do código.

No caso do *assembler* para o MIPS usado no MARS, as diretivas são constituídas por um identificador, cujo primeiro carater é sempre o símbolo ".", e, em alguns casos, por um ou mais parâmetros. Exemplos de diretivas: .text, para definir o início da zona de código do programa; .data, para definir o início da zona de dados do programa.

A diretiva .eqv permite atribuir a um identificador literal uma quantidade numérica (por exemplo: .eqv print_string, 4). A utilização desta diretiva tem como objetivo melhorar a legibilidade do código *assembly*, ao permitir utilizar o identificador literal em vez de um número (cabe ao *assembler* a tarefa de substituir o identificador pelo valor que lhe foi atribuído na diretiva).

Para além das diretivas anteriores há uma outra que será usada com frequência e que permite a declaração de *strings* (sequências de carateres alfanuméricos delimitadas pelo carater """). Por exemplo, a declaração da *string* "AC1 — P", pode ser efetuada do seguinte modo:

```
.data
str1: .asciiz "AC1 - P"
```

em que **str1** é um identificador (*label*), que é uma sequência de carateres alfanuméricos, cujo primeiro carater não pode ser um algarismo.

A diretiva .asciiz reserva, em memória, espaço para alojar todos os carateres da *string*, e ainda para um carater especial que explicita o fim da *string*, designado por terminador. Em *assembly* e em linguagem C o terminador é o carater '\0', isto é, o *byte* 0x00. De referir ainda que cada carater é codificado, de acordo com o código ASCII, com 1 *byte*.

a) Edite e compile no MARS, o seguinte código:

```
.data
str1: .asciiz "Uma string qualquer"
str2: .asciiz "AC1 - P"
    .text
    .glob1 main
main: jr $ra
```

b) Sabendo que o segmento de dados tem início no endereço 0x10010000 da memória (os endereços no MIPS são quantidades de 32 bits), preencha a tabela seguinte com o código ASCII e o endereço onde está armazenado cada um dos carateres da *string* str2. Confirme os códigos dos carateres numa tabela ASCII e verifique a sua localização na memória através da janela de dados do MARS. Preencha a tabela seguinte com todos os endereços de memória ocupados pela *string* str2 e respetivos valores (não se esqueça que o terminador, '\0', faz parte integrante da *string*).

Endereço	Valor	Endereço	Valor
0x100100	0x41	Text	Text
Text	0 x 43	Text	Text
Text	0x31	Text	Text
Text	0x20	Text	Text
Text	Text	Text	Text

c) O identificador da string (label) permite que o endereço inicial dessa string seja referenciado por uma instrução assembly. Por exemplo, a utilização da system call print_string() requer que, antes da sua chamada, o registo \$a0 do CPU seja preenchido com o endereço inicial da string a imprimir. No MIPS, a obtenção do endereço a que corresponde o identificador da string pode ser feita através da instrução virtual "la", iniciais de load address.

O programa para imprimir a string **str2**, usando a *system call* **print_string()**, fica então:

```
.data
strl: .asciiz "So para chatear"
str2: .asciiz "AC1 - P"
              print_string, 4
     .eqv
     .text
     .globl
              main
                          # instrução virtual, decomposta pelo
main: la $a0, str2
                          # assembler em 2 instruções nativas
     ori $v0,$0,print\_string # $v0 = 4
                          # print_string(str2);
     syscall
                          # fim do programa
     jr $ra
```

Edite, compile e execute este código.

d) Traduza para assembly, e teste no MARS a seguinte sequência de código C:

```
print_string("Introduza 2 numeros ");
a = read_int();
b = read_int();
print_string("A soma dos dois numeros e': ");
print_int10(a + b);
```

Tradução incompleta para assembly:

```
.data
str1: .asciiz "Introduza 2 numeros\n"
str2: .asciiz "A soma dos dois numeros e': "
     .eqv print_string, 4
.eqv read_int, ??
.eqv print_int10, ??
      .text
      .globl main
main: la $a0, str1
     ori $v0,$0,print_string
      syscall
                            # print_string(str1);
      ori $v0,$0,read_int
                            # valor lido e' retornado em $v0
      syscall
      or $t0,$v0,$0
                           # $t0=read_int()
      (\ldots)
                           # fim do programa
      jr $ra
```

Anexo:

u	v	w = u or v	
0	Х	Х	
1	Х	1	
u	V	w = u and v	
0	Х	0	
1	Х	x	
u	٧	w = u xor v	
0	Х	Х	
1	Х	х\	
u	v	w = u nor v	
0	Х	х\	
1	Х	0	

W = U or V	V	Ū
X	Х	0
F	Χ	F
W = U and V	V	U
0	Х	0
X	Χ	F
W = U xor V	V	U
X	X	0
X\	Χ	F
W = U nor V	V	U
X\	X	0
0	Х	F

Notas:

- 1. Na tabela da esquerda apresentam-se alguns casos particulares com operandos de 1 bit das operações lógicas mais comuns (o símbolo \ significa negação).
- 2. Na tabela da direita apresentam-se alguns casos particulares com operandos de 4 bits (1 dígito hexadecimal) das operações lógicas mais comuns (o símbolo \ significa negação bit a bit, ou seja, complemento para 1 do operando; **x** + **x**\ = **F**).