Panopticon: Reaping the benefits of Incremental SDN Deployment in Enterprise Networks

Dan Levin

withMarco Canini, Stefan Schmid, Fabian Schaffert, Anja Feldmann

Enterprise Network Management

Global Network View

Software Defined Networking

Principled Network Policy Orchestration

- Consistent Network Updates [Reitblatt'12]
- Modular Policy Composition [Monsanto'13]
- Network Invariants Static Checking [Kazemian'12]
- Automated Dataplane Troubleshooting [Zeng'12]
- And more...

All leverage an existing SDN deployment

The SDN Deployment Problem

SDN is not a feature to be "switched on"

Chicken and egg: Building confidence

Deployment must be Incremental

Key Questions

1. How can we incrementally deploy the SDN interface into enterprise networks?

2. What benefits can be realized from a hybrid SDN deployment?

3. What **limitations** or performance costs?

PANOPTICON

Incrementally Deployable SDN Architecture

- Systematic approach to operate a hybrid network as a (nearly) full SDN
- Prototype Implementation
- Planning tool

Key Questions

1. How can we incrementally deploy the SDN interface into enterprise networks?

2. What benefits can be realized from a hybrid SDN deployment?

3. What limitations or performance costs?

The Existing Network

Network Topology

Traffic L Estimates

Hybrid SDN Deployment

- Path Delay
- Link Utilizations
- Resource

Constraints

The Hybrid SDN Deployment (29)

Key Questions

1. How can we incrementally deploy the SDN interface into enterprise networks?

2. What benefits can be realized from a hybrid SDN deployment?

3. What limitations or performance costs?

Main benefits of **SDN**= Principle d'orchestration of network policy

Realizing the Benefits of SDN

2. Realizing the Benefits of SDN

Insight #1: ≥ 1 SDN switch →
Policy enforcement Insight #2: ≥ 2 SDN switches →
Fine-grained control

Ensure that all traffic to/from an SDN-controlled port always traverses at least one SDN switch

SDN Waypoint Enforcement

Legacy devices must direct traffic to SDN switches

The **PANOPTICON** SDN Architecture

The **PANOPTICON** SDN Architecture

Per-port spanning trees that ensure waypoint enforcement

The **PANOPTICON** SDN Architecture

PANOPTICON

PANOPTICON provides the abstraction of a (nearly) fully-deployed SDN in a partially upgraded network

Evaluation

Simulation

Emulation

Testbed

How many SDNc ports do I get as the deployment grows?

How will Panopticon Affect Network Traffic?

Prototype Implementation See our **Fault Tolerance**

Simulation Methodology

Topology: Real Enterprise Network

- 1296 Access Switches
- 412 Distrib. Switches

1296 SDNc Port Candidates

- Map randomly, but preserve prefix locality
- Scale up traffic demands: max link util at 50%
- Each src-dst pair consumes avg. 10 fwd rules

Resource Constraints

How many SDNc ports do I get?

How many SDNc ports do I get?

Feasibility with VOL heuristic

How will Panopticon affect my traffic?

How will Panopticon affect my traffic?

How will Panopticon affect my traffic?

Key Evaluation Results

Optimistically at 2% deployed SDN switches

Conservatively at 10% deployed SDN switches

- Every access port controlled via SDN
- Moderate Path Stretch
- Moderate increase in link utilization
- Traffic Emulation: results support simulations
- Testbed: validate system and fault-tolerance

Summary

SDN

ARCHITECTUREOperate

the network as a (nearly) full SDN

Planning

TOOLDetermine the partial **SDN** deployment

Packet Forwarding

Current Hybrid Networks

Dual-stack approach

Current Hybrid Networks

Dual-stack approach

Edge-only approach

The edge is legacy access switches

Hybrid SDN Use Cases

Automated Planned Maintenance Tool

- Lightweight IP Subnet Mobility
- ACL refactorization
- Middle-box Traversal

Use Case: Planned Maintenance

Use Case: Planned Maintenance

Use Case Testbed Evaluation

2x NEC IP8800 (OF 1.0)

1x Cisco C3550XL

3x Cisco

2x HP 54

1x Pica8

TCP Connection Recovery Time

Locations of "port-down" events along one path traversing SDN switch.

Use Case Testbed Evaluation

2x NEC IP8800 (OF 1.0)

1x Cisco C3550XL

3x Cisco C2960G

2x HP 5406zl

1x Pica8 3290

Functionally Equivalent Deployment

How will Panopticon affect my traffic?

How will Panopticon affect my traffic?

How will Panopticon affect my traffic?

33 SDN switches → 90th stretch < 1.9x & max util. < 60%

Simulation Methodology

- Real network topology
 - 1296 Access / 412 Distribution / 3 Core
- Traffic estimates from LBNL packet traces
 - Map randomly while preserving prefix locality
 - Scale traffic projection so that the most utilized link is 50%
- SDN deployment strategies: RANDOM vs. VOL
 - VOL: iteratively upgrade switch that forwards most traffic

Benefits of Hybrid Deployment?

Global Network View

Controller Platform

