"Hadoop":

A Distributed Architecture, FileSystem, & MapReduce

1

Big Data Analytics, The Class

Big Data Analytics

Big Data Analytics

Classical Data Analytics

7

Classical Data Analytics

Ջ

IO Bounded

Reading a word from disk versus main memory: 10⁵ slower!

Reading many contiguously stored words is faster per word, but fast modern disks still only reach 150MB/s for sequential reads.

9

IO Bounded

Reading a word from disk versus main memory: 10⁵ slower!

Reading many contiguously stored words is faster per word, but fast modern disks still only reach 150MB/s for sequential reads.

IO Bound: biggest performance bottleneck is reading / writing to disk.

starts around 100 GBs: ~10 minutes just to read 200 TBs: ~20,000 minutes = 13 days

Classical Big Data

Classical focus: efficient use of disk. e.g. Apache Lucene / Solr

Classical limitation: Still bounded when needing to process all of a large file.

11

Classical Big Data

How to solve?

Classical limitation: Still bounded when needing to process all of a large file.

Distributed Architecture (Cluster)

Challenges for IO Cluster Computing

- Nodes fail
 in 1000 nodes fail a day
- Network is a bottleneck
 Typically 1-10 Gb/s throughput
- 3. Traditional distributed programming is often ad-hoc and complicated

Distributed Architecture (Cluster)

Challenges for IO Cluster Computing

- Nodes fail
 1 in 1000 nodes fail a day
 Duplicate Data
- Network is a bottleneck
 Typically 1-10 Gb/s throughput
 Bring computation to nodes, rather than data to nodes.
- Traditional distributed programming is often ad-hoc and complicated
 Stipulate a programming system that can easily be distributed

17

Distributed Architecture (Cluster)

Challenges for IO Cluster Computing

- Nodes fail
 1 in 1000 nodes fail a day
 Duplicate Data
- Network is a bottleneck
 Typically 1-10 Gb/s throughput
 Bring computation to nodes, rather than data to nodes.
- Traditional distributed programming is often ad-hoc and complicated
 Stipulate a programming system that can easily be distributed

HDFS with MapReduce accomplishes all!

Distributed Filesystem

The effectiveness of MapReduce, Spark, and other distributed processing systems is in part simply due to use of a <u>distributed filesystem!</u>

19

Distributed Filesystem (e.g. Apache HadoopDFS, GoogleFS, EMRFS) C, D: Two different files https://opensource.com/life/14/8/intro-apache-hadoop-big-data

21

Distributed Filesystem (e.g. Apache HadoopDFS, GoogleFS, EMRFS) C, D: Two different files (b.g. Apache HadoopDFS, GoogleFS, EMRFS) C, D: Two different files (c) (c) (d.g. Apache HadoopDFS, GoogleFS, EMRFS) (c) (d.g. Apache HadoopDFS, GoogleFS, EMRFS) (c) (d.g. Apache HadoopDFS, GoogleFS, EMRFS) (d.g. Apache HadoopDFS, GoogleFS, EMRFS)

Distributed Filesystem

(e.g. Apache HadoopDFS, GoogleFS, EMRFS)

C, D: Two different files; break into chunks (or "partitions"):

 $\begin{array}{c|c} C_0 & & D_0 \\ \hline C_1 & & D_1 \\ \hline C_2 & & D_2 \\ \hline C_3 & & D_3 \\ \hline C_4 & & D_5 \\ \hline \end{array}$

23

Distributed Filesystem

(e.g. Apache HadoopDFS, GoogleFS, EMRFS)

C, D: Two different files

(Leskovec at al., 2014; http://www.mmds.org/)

Distributed Filesystem

Chunk servers (on Data Nodes)

File is split into contiguous chunks

Typically each chunk is 16-64MB

Each chunk replicated (usually 2x or 3x)

Try to keep replicas in different racks

(Leskovec at al., 2014; http://www.mmds.org/)

27

Components of a Distributed Filesystem

Chunk servers (on Data Nodes)

File is split into contiguous chunks

Typically each chunk is 16-64MB

Each chunk replicated (usually 2x or 3x)

Try to keep replicas in different racks

Name node (aka master node)

Stores metadata about where files are stored

Might be replicated or distributed across data nodes.

(Leskovec at al., 2014; http://www.mmds.org/)

Components of a Distributed Filesystem

Chunk servers (on Data Nodes)

File is split into contiguous chunks

Typically each chunk is 16-64MB

Each chunk replicated (usually 2x or 3x)

Try to keep replicas in different racks

Name node (aka master node)

Stores metadata about where files are stored

Might be replicated or distributed across data nodes.

Client library for file access

Talks to master to find chunk servers

Connects directly to chunk servers to access data

(Leskovec at al., 2014; http://www.mmds.org/)

29

Distributed Architecture (Cluster)

Challenges for IO Cluster Computing

- Nodes fail
 1 in 1000 nodes fail a day
 Duplicate Data (Distributed FS)
- Network is a bottleneck
 Typically 1-10 Gb/s throughput
 Bring computation to nodes, rather than data to nodes.
- Traditional distributed programming is often ad-hoc and complicated
 Stipulate a programming system that can easily be distributed

What is MapReduce

noun.1 - A style of programming

```
input chunks => map tasks | group_by keys | reduce tasks => output "|" is the linux "pipe" symbol: passes stdout from first process to stdin of next.
```

31

What is MapReduce

noun.1 - A style of programming

```
input chunks => map tasks | group_by keys | reduce tasks => output "|" is the linux "pipe" symbol: passes stdout from first process to stdin of next.

E.g. counting words:
```

tokenize(document) | sort | uniq -c

What is MapReduce

noun.1 - A style of programming

input chunks => map tasks | group_by keys | reduce tasks => output

"|" is the linux "pipe" symbol: passes stdout from first process to stdin of next.

E.g. counting words:

tokenize(document) | sort | uniq -c

noun.2 - A *system* that distributes MapReduce style programs across a distributed file-system.

(e.g. Google's internal "MapReduce" or apache.hadoop.mapreduce with hdfs)

33

What is MapReduce

What is MapReduce

Easy as 1, 2, 3!

Step 1: Map Step 2: Sort / Group by Step 3: Reduce

What is MapReduce

Map: (k,v) -> (k', v')*
(Written by programmer)

Reduce: (k', (v₁', v', ...)) -> (k', v'')*
(Written by programmer)

Example: Word Count

tokenize(document) | sort | uniq -c

45

Example: Word Count

Big document

(Leskovec at al., 2014; http://www.mmds.org/)

47

Provided by the programmer

MAP: Read input and produces a set of key-value pairs

The crew of the space shuttle Endeavor recently returned to Earth as ambassadors, harbingers of a new era of space exploration. Scientists at NASA are saying that the recent assembly of the Dextre bot is the first step in a long-term space-based man/mache partnership.

"The work we're doing now -- the robotics we're doing to sead."

Big document

(The, 1) (crew, 1) (of, 1) (the, 1) (space, 1) (shuttle, 1) (Endeavor, 1) (recently, 1)

(key, value)


```
@abstractmethod
def map(k, v):
    pass

@abstractmethod
def reduce(k, vs):
    pass
```

Example: Word Count (v1)

```
def map(k, v):
    for w in tokenize(v):
        yield (w,1)

def reduce(k, vs):
    return len(vs)
```

53

Example: Word Count (v1)

Example: Word Count (v2)

55

Example: Word Count (v2)

```
def map(k, v):
    counts = dict()
    for w in tokenize(v):
        try:
        counts[w] += 1
    except KeyError:
        counts[w] = 1

for item in counts.iteritems():
    yield item
counts each word within the chunk
(try/except is faster than
"if w in counts")
```

Example: Word Count (v2)

```
def map(k, v):
    counts = dict()
    for w in tokenize(v):
        try:
            counts[w] += 1
        except KeyError:
            counts[w] = 1
    for item in counts.iteritems():
        yield item
counts each word within the chunk
(try/except is faster than
    "if w in counts")

def reduce(k, vs):
    yield item

sum of counts from different chunks
return (k, sum(vs))
```

57

Distributed Architecture (Cluster)

Challenges for IO Cluster Computing

- Nodes fail
 1 in 1000 nodes fail a day
 Duplicate Data (Distributed FS)
- Network is a bottleneck
 Typically 1-10 Gb/s throughput
 Bring computation to nodes, rather than data to nodes.
- Traditional distributed programming is often ad-hoc and complicated
 Stipulate a programming system that can easily be distributed

Distributed Architecture (Cluster)

Challenges for IO Cluster Computing

- Nodes fail
 1 in 1000 nodes fail a day
 Duplicate Data (Distributed FS)
- Network is a bottleneck
 Typically 1-10 Gb/s throughput
 Bring computation to nodes, rather than data to nodes. (Sort and Shuffle)
- Traditional distributed programming is often ad-hoc and complicated
 Stipulate a programming system that can easily be distributed

59

Distributed Architecture (Cluster)

Challenges for IO Cluster Computing

- Nodes fail
 1 in 1000 nodes fail a day
 Duplicate Data (Distributed FS)
- Network is a bottleneck
 Typically 1-10 Gb/s throughput
 Bring computation to nodes, rather than data to nodes. (Sort and Shuffle)
- Traditional distributed programming is often ad-hoc and complicated (Simply define a map Stipulate a programming system that can easily be distributed

Select

Project

Union, Intersection, Difference

Natural Join

Grouping

61

Example: Relational Algebra

Select

Project

Union, Intersection, Difference

Natural Join

Grouping

Select

 $R(A_1, A_2, A_3, ...)$, Relation R, Attributes A_* return only those attribute tuples where condition C is true

63

Example: Relational Algebra

Select

```
R(A_1,A_2,A_3,...), Relation R, Attributes A_* return only those attribute tuples where condition C is true def map(k, v): #v is list of attribute tuples: [(...,), (...,), ...] r = [] for t in v:
    if t satisfies C:
        r += [(t, t)] return r
```

Select

```
R(A_1,A_2,A_3,...), Relation R, Attributes A_* return only those attribute tuples where condition C is true def map(k, v): #v is list of attribute tuples: [(...,), (...,), ...] r = [] for t in v:
    if t satisfies C:
        r += [(t, t)] return r

    def reduce(k, vs):
        r = [] for each v in vs:
        r += [(k, v)] return r
```

65

Example: Relational Algebra

Select

```
R(A_1,A_2,A_3,...), Relation R, Attributes A_*
return only those attribute tuples where condition C is true def map(k, v): #v is list of attribute tuples for t in v:
    if t satisfies C:
    yield (t, t)

def reduce(k, vs):
    For each v in vs:
    yield (k, v)
```

Natural Join

```
Given R_1 and R_2 return R_{join} -- union of all pairs of tuples that match given attributes. def map(k, v): #k \in {R1, R2}, v is (A, B) for R1, (B, C) for R2 #B are matched attributes
```

67

Example: Relational Algebra

Natural Join

```
Given R_1 and R_2 return R_{join}
-- union of all pairs of tuples that match given attributes. def map(k, v): #k \in {R1, R2}, v is (A, B) for R1, (B, C) for R2 #B are matched attributes

if k=='R1':
    (a, b) = v
    return (b, ('R_1', a))

if k=='R2':
    (b,c) = v
    return (b, ('R_2', c))
```

Natural Join

```
Given R_1 and R_2 return R_{join}
                   -- union of all pairs of tuples that match given attributes.
def map(k, v): \#k \in \{R1, R2\}, v is (A, B) for R1, (B, C) for R2
                 #B are matched attributes
    if k=='R1':
                            def reduce(k, vs):
        (a, b) = v
                                r1, r2, rjn = [], [], []
        return (b,('R<sub>1</sub>',a))
                                 for (s, x) in vs: #separate rs
    if k=='R2':
                                  if s == R1': r1.append(x)
        (b,c) = v
        return (b,('R<sub>2</sub>',c))
                                 else: r2.append(x)
                                 for a in r1: #join as tuple
                                    for each c in r2:
                                      rjn += ('R_{ioin}', (a, k, c)) #k is b
                                  return rjn
```

69

DFS \Longrightarrow Map \Longrightarrow Map's Local FS \Longrightarrow Reduce \Longrightarrow DFS

73

Data Flow

MapReduce system handles:

- Partitioning
- Scheduling map / reducer execution
- Group by key
- Restarts from node failures
- Inter-machine communication

DFS MapReduce DFS

- Schedule map tasks near physical storage of chunk
- Intermediate results stored locally
- Master / Name Node coordinates

75

Data Flow

DFS MapReduce DFS

- Schedule map tasks near physical storage of chunk
- Intermediate results stored locally
- Masterk/statamieleNiodeogeogramatets
 - o Receives location of intermediate results and schedules with reducer
 - Checks nodes for failures and restarts when necessary
 - All map tasks on nodes must be completely restarted
 - Reduce tasks can pickup with reduce task failed

DFS MapReduce DFS

- Schedule map tasks near physical storage of chunk
- Intermediate results stored locally
- Master / Name Node coordinates
 - o Task status: idle, in-progress, complete
 - o Receives location of intermediate results and schedules with reducer
 - o Checks nodes for failures and restarts when necessary
 - All map tasks on nodes must be completely restarted
 - Reduce tasks can pickup with reduce task failed

DFS MapReduce DFS MapReduce DFS

77

Data Flow

Skew: The degree to which certain tasks end up taking much longer than others.

Handled with:

- More reducers than reduce tasks
- More reduce tasks than nodes

Key Question: How many Map and Reduce jobs?

M: map tasks, R: reducer tasks

79

Data Flow

Key Question: How many Map and Reduce jobs?

M: map tasks, R: reducer tasks

Answer: 1) If possible, one chunk per map task, and

2) M >> |nodes| ≈≈ |cores|

(better handling of node failures, better load balancing)

3) R <= M

(reduces number of parts stored in DFS)

Data Flow	Reduce Task
version 1: few reduce tasks (same number of reduce tasks as nodes) node1 node2 node3 node4 node5 Reduce tasks represented by time to complete task (some tasks take much longer)	

Communication Cost Model

How to assess performance?

- (1) Computation: Map + Reduce + System Tasks
- (2) Communication: Moving (key, value) pairs

Communication Cost Model

How to assess performance?

- (1) Computation: Map + Reduce + System Tasks
- (2) Communication: Moving (key, value) pairs

Ultimate Goal: wall-clock Time.

85

Communication Cost Model

How to assess performance?

- (1) Computation: Map + Reduce + System Tasks
 - Mappers and reducers often single pass O(n) within node
- (2) System: sort the keys is usually most expensive
 - Even if map executes on same node, disk read usually dominates
- In any case, can add more nodes

Communication Cost Model

How to assess performance?

- (1) Computation: Map + Reduce + System Tasks
- (2) Communication: Moving key, value pairs

Often dominates computation.

- Connection speeds: 1-10 gigabits per sec;
- Illimate FID read: 50-150 gigabytes per sec
 - Even reading from disk to memory typically takes longer than operating on the data.

87

Communication Cost Model

How to assess performance?

Communication Cost = input size +

(sum of size of all map-to-reducer files)

(2) Communication: Moving key, value pairs

Often dominates computation.

- Connection speeds: 1-10 gigabits per sec;
- Ultimate HD read: 50-150 gigabytes per sec
 - Even reading from disk to memory typically takes longer than operating on the data.

Communication Cost Model

How to assess performance?

Communication Cost = input size + (sum of size of all map-to-reducer files)

(2) Communication: Moving key, value pairs

Often dominates computation.

• Connection speeds: 1-10 gigabits per sec;

HD read: 50-150 gigabytes per sec

- Even reading from disk to memory typically takes longer than operating on the data.
- Output from reducer ignored because it's either small (finished summarizing data) or being passed to another mapreduce job.

89

Communication Cost: Natural Join

R, S: Relations (Tables) $R(A, B) \bowtie S(B, C)$

Communication Cost = input size +

(sum of size of all map-to-reducer files)

DFS → Map LocalFS → Network → Reduce → DFS → ?

Communication Cost: Natural Join

R, S: Relations (Tables) $R(A, B) \bowtie S(B, C)$

Communication Cost = input size + (sum of size of all map-to-reducer files)

91

Communication Cost: Natural Join

R, S: Relations (Tables) $R(A, B) \bowtie S(B, C)$

Communication Cost = input size +

(sum of size of all map-to-reducer files)

```
= |R1| + |R2| + (|R1| + |R2|)
                         def reduce(k, vs):
= O(|R1| + |R2|)
                            r1, r2 = [], []
def map(k, v):
                            for (rel, x) in vs: #separate rs
   if k=="R1":
                                 if rel == 'R': r1.append(x)
       (a, b) = v
                                 else: r2.append(x)
       yield (b,(R_{1,}a)) for a in r1: #join as tuple
   if k=="R2":
                               for each c in r2:
       (b,c) = v
                                     yield (R_{join}, (a, k, c)) #k is
       yield (b,(R_2,c))
```

MapReduce: Final Considerations

- Performance Refinements:
 - Combiners (like word count version 2 but done via reduce)
 - Run reduce right after map from same node before passing to reduce (MapTask can execute)
 - Reduces communication cost

Requires commutative and associative reducer function.

93

MapReduce: Final Considerations

- Performance Refinements:
 - o Combiners (like word count version 2 but done via reduce)
 - Run reduce right after map from same node before passing to reduce (MapTask can execute)
 - Reduces communication cost
 - o Backup tasks (aka speculative tasks)
 - Schedule multiple copies of tasks when close to the end to mitigate certain nodes running slow.
 - Override partition hash function to organize data
 E.g. instead of hash(url) use hash(hostname(url))