Boolean Logic and Boolean Algebra

CSE 4205: Digital Logic Design

Aashnan Rahman

Junior Lecturer

Department of Computer Science and Engineering (CSE)
Islamic University of Technology

Algebra

A mathematical system, defined with a set of elements, operators and a number of axioms or postulates.

- A set of elements : Objects having common properties
- Operators: A set of rules defined on the elements.
- Postulates: Basic assumptions from where rules, theorems, etc. are deduced.

Binary Logic

Binary Algebra consists of binary variables and set of logical operation

Binary variables take on only one of two possible values -

High or 1

Low or 0

Logical Operations?

AND, OR, NOT, NAND, NOR, X-OR, X-NOR

A postulate (also called an axiom) is a basic, foundational assumption that is accepted as true without proof and serves as a starting point for further reasoning or theory-building.

1. Closure

A set is said to satisfy closure property if it is closed under an operation or collection of operations.

In other words, A set is closed with respect to binary operation if performance of that operation on the members of the set always produce a result from the same set.

2. Associative Law

$$(x # y) # z = x # (y # z)$$

for all, $x,y,z \in S$

3. Commutative Law

$$x # y = y # x$$

for all, $x,y \in S$

4. Distributive Law

$$x # (y $ z) = (x # y) $ (x # z)$$

for all, x,y,z ∈ S

5. Identity

$$x # e = e # x = x$$

for all, $x,e \in S$

6. Inverse

$$x # y = e$$

for all, $x,y,e \in S$

History

- In 1854, George Boole introduced systematic treatment of logic and developed Boolean algebra.
- In 1938, C. E. Shannon materialized a two-level Boolean algebra. Also called switching circuit/algebra.
- For formal definition of Boolean algebra, we follow the postulates formulated by E. V. Huntington (1904).

Boolean algebra is a field (implementation of algebraic structure) with a set of elements B, together with two binary operators (+) and (.) and follows the **Huntington postulates**.

Huntington Postulates

- 1. a. Closure with respect to binary operator +
 - **b.** Closure with respect to binary operator .
- 2. a. An identity element with respect to +, is designated by 0:

$$x + 0 = 0 + x = x$$

b. An **identity element** with respect to ., is designated by 1:

$$x \cdot 1 = 1 \cdot x = x$$

- 3. a. Commutative with respect to +: x + y = y + x
 - **b.** Commutative with respect to .: $x \cdot y = y \cdot x$
- 4. a. is Distributed over +: $x \cdot (y+z) = (x \cdot y) + (x \cdot z)$
 - **b.** + is Distributed over .: $x + (y \cdot z) = (x + y) \cdot (x + z)$

Huntington Postulates

5. For every element $x \in B$ there exists an inverse element $x' \in B$ (complement of B) such that :

$$x + x' = 1$$

$$x \cdot x' = 0$$

6. There exists at least **two elements** $x,y \in B$ such that: $x \neq y$

Boolean Algebra vs Ordinary Algebra

- Huntington postulates do not mention associative law, but it holds here.
- Distributive law of (+) over (-) is only valid for boolean algebra but not ordinary algebra.

$$x + (y \cdot z) = (x + y) \cdot (x + z)$$

- No existence of additive or multiplicative inverse in boolean algebra.
- No existence of division or multiplication in boolean algebra either.
- Complement is only available in Boolean algebra.
- For boolean algebra, $x \in B$ where B = [0,1]
- For ordinary algebra, $x \in R$

Laws	Exan	nples
Identity Laws	A+0=A	$A \cdot 1 = A$
	A+1=1	$A \cdot 0 = 0$
Idempotent Law	A + A = A	A.A = A
Complement Law	$A + \overline{A} = 1$	$A + \overline{A} = 1$
Commutative Law	A+B=B+A	$A\cdot B=B\cdot A$
Associative Law	A + (B+C) = (A+B) + C	$A\cdot (B\cdot C)=(A\cdot B)\cdot C$
Distributive Law	$A\cdot (B+C)=(A\cdot B)+(A\cdot C)$	$A+B\cdot C=(A+B)\cdot (A+C)$

Laws	Exam	nples
Double Negation	$ar{ar{A}}=A$	
Absorption Law	A + AB = A	$A\cdot (A+B)=A$
De Morgan's Law	$\overline{A+B}=\overline{A}\cdot\overline{B}$	$\overline{A\cdot B}=\overline{A}+\overline{B}$

Duality

Every algebraic expression deducible from the postulates of the Boolean algebra remains **valid** if the operators and identity elements are interchanged.

$$x+x'=1 o x \cdot x'=0$$

Self-Dual

If the dual expression = the original expression.

Find the dual of the following expressions, and determine if its there is a self dual.

1.
$$F = (A + C) \cdot B + 0$$

2.
$$G = X \cdot Y + (W + Z)$$

3.
$$H = A \cdot B + A \cdot C + B \cdot C$$

Ans:
$$A \cdot C + B$$

Ans:
$$(X+Y) \cdot (W \cdot Z)$$

Ans:
$$(A + B)(A + C)(B + C)$$

THEOREM 1(a):
$$x + x = x$$
.

Statement	Justification
$x + x = (x + x) \cdot 1$	postulate 2(b)
= (x+x)(x+x')	5(a)
= x + xx'	4(b)
=x+0	5(b)
= x	2(a)

THEOREM 1(b):
$$x \cdot x = x$$
.

Statement	Justification
$x \cdot x = xx + 0$	postulate 2(a)
= xx + xx'	5(b)
=x(x+x')	4(a)
$=x\cdot 1$	5(a)
= x	2(b)

CANCELLAND

You are the search and

THEOREM 2(a):
$$x + 1 = 1$$
.

Statement	Justification
$x+1=1\cdot(x+1)$	postulate 2(b)
= (x+x')(x+1)	5(a)
$=x+x'\cdot 1$	4(b)
= x + x'	2(b)
= 1	5(a)

THEOREM 2(b): $x \cdot 0 = 0$ by duality.

THEOREM 6(a):
$$x + xy = x$$
.

Statement	Justification
$x + xy = x \cdot 1 + xy$	postulate 2(b)
=x(1+y)	4(a)
=x(y+1)	3(a)
$=x\cdot 1$	2(a)
= x	2(b)

THEOREM 6(b): x(x + y) = x by duality.

De-Morgan's Law

The complement of a sum is the product of the complements.

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

The complement of a product is the sum of the complements.

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

Truth Tables

A truth table shows all possible input combinations of Boolean variables and their corresponding output for a given Boolean expression.

For **n inputs**, there will be **2**ⁿ **possible input** and **output combinations**.

Proof using Truth Tables

Absorption Rule : A + AB = A

Α	В	AB	A+AB
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

Proof using Truth Tables

De-Morgan's Law : $\overline{A+B} = \overline{A} \cdot \overline{B}$

Α	В	A+B	(A+B)'	A'	B'	A'B'
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Operator Precedence

A Boolean function is a mathematical expression that takes binary inputs (0s and 1s) and produces a binary output (0 or 1) using Boolean operations.

$$L(D, X, A) = D\overline{X} + A$$

Truth Table for the Function $L = D\overline{X} + A$

D	Х	A	L
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

FIGURE 2-5 Logic Circuit Diagram for $L = D\overline{X} + A$

$$F = \overline{X}YZ + \overline{X}Y\overline{Z} + XZ$$

$$F = \overline{X}Y + XZ$$

$$F_2 = x'y'z + x'yz + xy'$$

$$F_2 = x'y'z + x'yz + xy' = x'z(y' + y) + xy' = x'z + xy'$$

x	y	z	F ₂
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

For practice

$$1. X + XY = X$$

$$2. XY + XY = X$$

$$3. X + XY = X+Y$$

4.
$$X(X+Y)=X$$

5.
$$(X+Y)(X+Y)=X$$

6.
$$X(X+Y)=XY$$

7.
$$XY + \overline{X}Z + YZ = XY + \overline{X}Z$$

8.
$$(X+Y)(\overline{X}+Z)(Y+Z)=(X+Y)(\overline{X}+Z)$$

$$x(x' + y) = xx' + xy = 0 + xy = xy.$$

 $x + x'y = (x + x')(x + y) = 1(x + y) = x + y.$

(x + y)(x + y') = x + xy + xy' + yy' = x(1 + y + y') = x.

Worksheet 1: https://web.mit.edu/6.111/www/s2007/PSETS/pset1.pdf

Worksheet 2: https://uomustansiriyah.edu.iq/media/lectures/6/6 2024 04 04!02 36 02 PM.pdf

Algebraic Manipulation

- In any Boolean expression,
 - A **Term** is represented by a **gate with inputs**.
 - Each **literal/variable** within a term designate an **input** in **primed** or **unprimed form**.

For example

$$F_1=\overline{xy}z+\overline{x}yz+x\overline{y}$$
 3 terms, 8 literals $F_2=\overline{x}z+x\overline{y}$ 2 terms, 4 literals

Complement

Interchanging the output of function F produces F'.

Methods

- 1. Apply De-Morgan's Law
- 2. Complement each literal and take its dual

$$F_{1} = \overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z \qquad F_{1} = (X + \overline{Y} + Z)(X + Y + \overline{Z})$$

$$F_{2} = X(\overline{Y}\overline{Z} + YZ) \qquad \overline{F_{2}} = \overline{X} + (Y + Z)(\overline{Y} + \overline{Z})$$

Thank You!!

Feel free to ask any questions