ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА»

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ТЕОРИИ ПЛАСТИЧНОСТИ

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (ДИПЛОМНАЯ РАБОТА)

специалиста

Сравнение асимптотической теории с различными теориями изгиба пластин

Москва 12 мая 2021 г.

Содержание

1	Вве	едение										
2	Acı	Асимптотическая теория 2.1 Обоснование применения метода в задаче с двумя малыми параметрами										
	2.1											
	2.2 Перемещения											
	2.3	Задачи на локальные функции										
	2.4	Моменты и перерезывающие силы										
	2.5											
	2.6	Задача на нахождение прогиба										
		2.6.1 Первое приближение										
		2.6.2 Второе приближение										
		2.6.3 Третье приближение										
3	Teo	рия Кирхгофа-Лява										
	3.1	Поле перемещений										
	3.2	Дифференциальное уравнение изгиба пластины										
4	Teo	ррия Рейсснера-Миндлина	10									
-	4.1	Гипотезы	1									
	4.2	Коэффицент сдвига	1									
	4.3	Дифференциальное уравнение изгиба пластины	1									
	1.0	4.3.1 Плоско-напряженное состояние	1									
		4.3.2 Трехмерное состояние	1									
5	Тоо	ория Родии	1									
J												
	$5.1 \\ 5.2$	Дифференциальное уравнение изгиба пластины	1.									
	ا.∠		1.									
		5.2.1 Плоско-напряженное состояние 5.2.2 Трехмерное состояние	1									
	5.3	Граница применимости теории	1									
	5.5	т раница применимости теории	1									
6	•	Цилиндрический изгиб пластины										
	6.1	Равномерно-распределенная нагрузка	2									
		6.1.1 Асимптотическая теория	2									
		6.1.2 Теория Кирхгофа-Лява	2									
		6.1.3 Теория Рейсснера-Миндлина	2									
		6.1.4 Теория Редди	2									
	6.2	Сосредоточенная нагрузка	2									
		6.2.1 Асимптотическая теория	2									
		6.2.2 Теория Кирхгофа-Лява	2									
		6.2.3 Теория Рейсснера-Миндлина	2									
		6.2.4 Теория Редди	2									
7	Mo,	делирование	2									
8	Заключение 4											
9	Пъ	иложения	4									

1 Введение

Определение напряженно-деформированного состояния тонкой упругой анизотропной пластины в терминах линейной теории упругости сводится к решению трехмерной краевой задачи. Однако решение краевых задач для пластин и оболочек на основе трехмерных уравнений теории упругости может представлять определенные трудности. Вырожденный характер области, занимаемой пластиной, дает основание для сведения задачи к двумерной. В этом состоит основная проблема общей теории оболочек: в приближенном сведении трехмерной краевой задачи к некоторой двумерной задаче [9]. Общая схема конструирования двумерной модели сводится к построению аналитических выражений, учитывающих специфику геометрии и напряженно-деформированного состояния. Таким образом редукция к двумерной модели позволяет существенно упростить математическую задачу, уменьшая число пространственных переменных на единицу, а также учитывать особенности строения полей деформаций и напряжений.

Одним из методов понижения размерности является метод асимптотического анализа [1, 2], заменяющий традиционные гипотезы теории пластин. В рамках данного метода производится исследование асимптотического поведения уравнений равновесия при помощи рядов специального вида, которые применяются при осреднении уравнений с периодическими быстроосциллирующими коэффициентами [1, 2, 3]. Это позволяет при некоторых допущениях о граничных условиях на боковой поверхности построить решение, асимптотически сходящееся к решению задач трехмерной теории упругости. Разложение в асимптотический ряд даёт возможность разделить трехмерную задачу линейной теории упругости на серию одномерных задач, заключающихся в нахождении так называемых локальных функций жесткости, а также двумерную задачу, аналогичную по своей структуре классическим теориям.

Основа метода осреднения для упругих пластин, периодических в плане, заложена в работе [4], в которой рассматривается изгиб однородной пластины с периодически неровной верхней и нижней поверхностью. Асимптотический анализ упругих периодических в плане пластин представлен в [5, 6]. В данных работах рассматривается три асимптотических приближения, для которых получены локальные задачи на ячейке периодичности, и доказана разрешимость этих задач. В работе [6] приведено асимптотическое исследование слоистых симметричных изотропных пластин.

Целью настоящей работы является проведение сравнительного анализа численных решений, полученных на основе асимптотического анализа, в котором исследуются члены до третьего приближения включительно, с теориями изгиба пластин Кирхгофа-Лява [10], Рейсснера-Миндлина [11, 12] и Редди [13], а также с численным решением задачи трехмерной теории упругости на основе конечно-элементного метода, реализованного в программном комплексе ANSYS.

В данной работе рассматривается применение метода осреднения в третьем приближении к трехмерной задаче теории упругости. Приводится обоснование применения метода в задаче с двумя малыми параметрами в случае тонкой сильно-ортотропной пластины. Также описана общая процедура получения локальных функций и уравнений произвольного приближения для изгиба ортотропной пластины. В работе показано, что первое приближение дает классическую теорию Кирхгофа-Лява, а третье приближение совпадает с теориями Рейсснера-Миндлина и Редди и позволяет находить сдвиговые и поперечное напряжение. Следует отметить, что при выводе уравнений не используются гипотезы, которые свойственны классическим теориям пластин. Также в работе описана процедура получения уравнений изгиба пластины для классической теории Кирхгофа-Лява, а также уточненных теорий Рейсснера-Миндлина и Редди. Рассмотрение касается только случая линейной теории.

С целью сравнения полученных результатов рассматривается цилиндрический изгиб сильноортотрнопной пластины постоянной толщины под действием равномерно-распределенной или сосредоточенной нагрузки. При моделировании материала пластины используется модель однослойного волокнистого композита, а также полидисперсной среды с цилиндрическими включениями.

2 Асимптотическая теория

2.1 Обоснование применения метода в задаче с двумя малыми параметрами

Рассмотрим дифференциальные уравнения равновесия:

$$C_{ijkl}u_{k,lj} + f_i = 0$$

Здесь и далее малые индексы i, j, k, l принимают значения 1,2,3, а большие I, J, K, L — значения 1, 2. Тогда с учетом ортотропии материала:

$$\begin{cases}
C_{IJKL}u_{K,LJ} + C_{I3K3}u_{K,33} + C_{IJ33}u_{3,3J} = 0 \\
C_{3J3L}u_{3,JL} + C_{33KL}u_{K,3L} + C_{3333}u_{3,33} = 0
\end{cases}$$
(2.1)

Поскольку мы рассматриваем случай сильно-ортотропной пластины, то упругие модули в плоскости пластины сильно превышают упругие модули в поперечном направлении. Введём малый параметр δ — параметр, задающий сильную ортотропию и пусть безразмерные модули \widetilde{C}_{ijkl} имеют порядок O(1). Тогда для упругих модулей исходной задачи можно записать

$$C_{IJKL} = \frac{1}{\delta} \widetilde{C}_{IJKL}$$
 $C_{I3J3} = \widetilde{C}_{I3J3}$ $C_{3333} = \widetilde{C}_{3333}$

Сделаем замену:

$$x_1 = \widetilde{x_1}$$
 $x_2 = \widetilde{x_2}$ $x_3 = \sqrt{\delta} \cdot \widetilde{x_3}$
 $u_1 = \widetilde{u_1}$ $u_2 = \widetilde{u_2}$ $u_3 = \frac{1}{\sqrt{\delta}} \cdot \widetilde{u_3}$

Пусть также все C^*_{ijkl} те же, что и \widetilde{C}_{ijkl} , но $C^*_{3333} = \widetilde{C}_{3333}/\delta$. После подстановки в систему (2.1) и тождественных преобразований получим систему в координатах \widetilde{x}_i :

$$\begin{cases}
C_{IJKL}^* \widetilde{u}_{K,LJ} + C_{I3K3}^* \widetilde{u}_{K,33} + C_{IJ33}^* \widetilde{u}_{3,3J} = 0 \\
C_{3J3L}^* \widetilde{u}_{3,JL} + C_{33KL}^* \widetilde{u}_{K,3L} + C_{3333}^* \widetilde{u}_{3,33} = 0
\end{cases}$$
(2.2)

Поскольку $x_I \in [0,1], x_3 \in [-h/2, h/2]$ и в рамках задачи $\varepsilon = h$, следовательно в соответствии со сделанной ранее заменой $\widetilde{x}_I \in [0,1]$ и $\widetilde{x}_3 \in [-\widetilde{\varepsilon}/2,\,\widetilde{\varepsilon}/2]$, где $\widetilde{\varepsilon} = \varepsilon/\sqrt{\delta}$. Таким образом, систему (2.2), записанную в координатах \widetilde{x}_i , можно рассматривать как систему для «новой» пластины с «обычными» модулями C^*_{ijkl} порядка O(1) (за исключением модуля $C^*_{3333} = \widetilde{C}_{3333}/\delta$), толщина которой равна $\widetilde{\varepsilon}$. А исходная сильно-ортотропная пластина с модулями C_{ijkl} , для которой выполняется система (2.1), имела толщину ε .

Численные расчеты показывают (см. пункт 9 "Приложения"), что решение системы (2.2) слабо зависит от модуля C^*_{3333} . Следовательно, вместо данного коэффицента в системе (2.2) можно взять не $C^*_{3333} = \widetilde{C}_{3333}/\delta$, а $C^*_{3333} = \widetilde{C}_{3333}$, и тогда из двух изначальных малых параметров h и δ останется лишь один. А для задач такого класса применим и строго обоснован метод осреднения.

Соответственно, к системе (2.2) с модулем $C_{3333}^* = \widetilde{C}_{3333}$ мы можем применить асимптотический метод, получить выражения для перемещений $\widetilde{u}_1, \widetilde{u}_2, \widetilde{u}_3$ «новой» пластины, а затем пересчитать выражения для перемещений u_1, u_2, u_3 исходной задачи.

2.2 Перемещения

Введем быструю координату $\xi_3 = x_3/\varepsilon$. При этом запятой обозначается производная как по координатам x_i , так и по координате ξ_3 в зависимости от контекста. Решение задачи в перемещениях ищем в виде:

$$\begin{cases} u_{I} = -x_{3}w_{,I} + \sum_{m=2}^{M} \varepsilon^{m} N_{I}^{PQ_{0}...Q_{m-2}} w_{,PQ_{0}...Q_{m-2}} \\ u_{3} = w + \sum_{m=2}^{M} \varepsilon^{m} N_{3}^{PQ_{0}...Q_{m-2}} w_{,PQ_{0}...Q_{m-2}} \end{cases}$$

где:

 $N_i^{PQ_0...Q_k}=N_i^{PQ_0...Q_k}(\xi_3)$ — функции жесткости $w=w(x_1,x_2)$ — гладкая составляющая прогиба «новой» пластины $u_i=u_i(\xi,x)$ — компоненты перемещений «новой» пластины

Запишем общую формулу для трех компонент перемещения:

$$u_{i} = \delta_{i3}w - \varepsilon \xi_{3}w_{,i} + \sum_{m=2}^{M} \varepsilon^{m} N_{i}^{PQ_{0}...Q_{m-2}} w_{,PQ_{0}...Q_{m-2}}$$

Введём функции:

$$P_{ij}^{PQ_0}(\xi_3) = -C_{ijPQ_0}\xi_3 + C_{ijk3} \left(N_k^{PQ_0}\right)'$$

$$P_{ij}^{PQ_0..Q_{m-1}}(\xi_3) = C_{ijkQ_{m-1}}N_k^{PQ_0..Q_{m-2}} + C_{ijk3} \left(N_k^{PQ_0..Q_{m-1}}\right)'$$

Подставив общую формулу для трех компонент перемещений в закон Гука, записаннный в виде $\sigma_{ij} = C_{ijkl}u_{k,l}$, получим:

$$\sigma_{ij} = \sum_{m=1}^{M} \varepsilon^m P_{ij}^{PQ_0...Q_{m-1}} w_{PQ_0...Q_{m-1}}$$

Продифференцируем данное выражение для напряжений и подставим полученное в уравнение равновесия. С учетом того, что массовые силы равны нулю в силу пренебрежительной малости относительно тех нагрузок, которые испытывает пластина, получим:

$$\left(P_{i3}^{PQ_0}\right)' w_{,PQ_0} + \sum_{m=1}^{M} \varepsilon^m \left[P_{iQ_m}^{PQ_0..Q_{m-1}} + \left(P_{i3}^{PQ_0..Q_{m-1}Q_m}\right)'\right] w_{,PQ_0..Q_{m-1}Q_m} = 0$$
 (2.3)

2.3 Задачи на локальные функции

Рассмотрим уравнение (2.3): приравняем члены при производных прогиба к нулю, получим задачи для нахождения функций P, а через них найдем и локальные функции жесткости N:

1. При второй производной:

$$\begin{cases}
\left(P_{i3}^{PQ_0}\right)' = 0 & \xi_3 \in V^{cell} \\
P_{ij}^{PQ_0} n_j = 0, & \xi_3 \in \Sigma^{cell}
\end{cases}$$
(2.4)

2. При третьей производной:

$$\begin{cases} P_{iQ_1}^{PQ_0} + \left(P_{i3}^{PQ_0Q_1}\right)' = 0 & \xi_3 \in V^{cell} \\ P_{ij}^{PQ_0Q_1} n_j = 0 & \xi_3 \in \Sigma^{cell} \end{cases}$$
(2.5)

3. При четвертой производной:

$$\begin{cases}
P_{iQ_2}^{PQ_0Q_1} + \left(P_{i3}^{PQ_0Q_1Q_2}\right)' = 0 & \xi_3 \in V^{cell} \\
P_{ij}^{PQ_0Q_1Q_2} n_j = 0 & \xi_3 \in \Sigma^{bottom} \\
P_{ij}^{PQ_0Q_1Q_2} n_j = D_{PQ_0Q_1Q_2}/\varepsilon^3 & \xi_3 \in \Sigma^{top}
\end{cases}$$
(2.6)

Здесь $V^{\rm cell}$ - ячейка периодичности, $\Sigma^{\rm top/bottom}$ - ее верхняя/нижняя поверхность, n_j - компоненты внешней нормали к границе. Поскольку $N=N(\xi_3)$, то решения систем (2.4), (2.5), (2.6) находятся аналитически.

Первое приближение. Решая систему (2.4), получим:

$$N_3^{PQ_0}(\xi_3) = \int_{-\frac{1}{2}}^{\xi_3} \frac{C_{33PQ_0}}{C_{3333}} \zeta \, d\zeta + C$$

Константа C находится из соотношения $\langle N_3^{PQ_0} \rangle = 0$, где:

$$\langle \Phi(\zeta) \rangle = \int_{-\frac{1}{2}}^{\frac{1}{2}} \Phi(\zeta) d\zeta$$

С учетом того, что локальная функция жесткости $N_3^{PQ_0}$ найдена, можно найти функции $P_{ij}^{PQ_0}$. Решение этой задачи позволит получить выражения для нахождения компонент σ_{11} , σ_{12} и σ_{22} .

Второе приближение. Решая систему (2.5), получим:

$$N_I^{PQ_0Q_1}(\xi_3) = -\frac{1}{C_{I3I3}} \int_{-\frac{1}{2}}^{\xi_3} \left[\int_{-\frac{1}{2}}^{\zeta} P_{IQ_1}^{PQ_0}(\eta) \, d\eta + C_{I33Q_0} N_3^{PQ_0}(\zeta) \right] d\zeta + C$$

Константа C находится из того же соотношения $\langle N_I^{PQ_0Q_1} \rangle = 0$. Таким образом, через функцию $N_I^{PQ_0Q_1}$ можно найти функции $P_{ij}^{PQ_0Q_1}$, которые позволят получить выражения для компонент σ_{13} и σ_{23} .

Третье приближение. Решая систему (2.6), получим:

$$N_3^{PQ_0Q_1Q_2}(\xi_3) = -\frac{1}{C_{3333}} \int_{-\frac{1}{2}}^{\xi_3} \left[\int_{-\frac{1}{2}}^{\zeta} P_{3Q_2}^{PQ_0Q_1}(\eta) \, d\eta + C_{33IQ_2} N_I^{PQ_0Q_1}(\zeta) \right] d\zeta + C$$

Константа C находится из того же соотношения $\langle N_I^{PQ_0Q_1Q_2} \rangle = 0$. Таким образом, через функцию $N_I^{PQ_0Q_1Q_2}$ можно найти функции $P_{ij}^{PQ_0Q_1Q_2}$, которые позволят получить выражения для компоненты σ_{33} , а также уточнения уже найденных ранее компонент σ_{11} , σ_{12} , σ_{22} .

2.4 Компоненты напряжений

Следует отметить, что рассмотрение каждого следующего приближения позволяет найти или же уточнить компоненты тензора напряжений.

Таблица 1: Возможность определения компоненты напряжений в n-ом приближении

σ_{ij}	Первое приближение	Второе приближение	Третье приближение
σ_{11}	Принципиальное уточнение	Без уточнений	Уточнение
σ_{12}	Принципиальное уточнение	Без уточнений	Уточнение
σ_{13}	Определить невозможно	Принципиальное уточнение	Без уточнений
σ_{22}	Принципиальное уточнение	Без уточнений	Уточнение
σ_{23}	Определить невозможно	Принципиальное уточнение	Без уточнений
σ_{33}	Определить невозможно	Определить невозможно	Принципиальное уточнение

Таким образом, третье приближение позволяет найти все компоненты тензора напряжений.

2.5 Моменты и перерезывающие силы

Введем моменты и перерезывающие силы:

$$M_{IJ} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{IJ} x_3 dx_3 \qquad Q_I = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{I3} dx_3$$

Из уравнения равновесия: $\sigma_{3J,J}+\sigma_{33,3}=0$. Проинтегрируем его по x_3 от $-\frac{h}{2}$ до $\frac{h}{2}$:

$$\begin{bmatrix}
\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{3J} dx_3 \\
-\frac{h}{2}
\end{bmatrix} + \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{33,3} dx_3 = 0 \qquad \Rightarrow \qquad Q_{I,I} + \sigma_{33} \Big|_{-\frac{h}{2}}^{\frac{h}{2}} = 0$$

Из условий нагрузки на верхей и нижней поверхности пластины $\sigma_{33}|_{-\frac{h}{2}}^{\frac{h}{2}}=q(x,y)$. Аналогично, рассматривая уравнение равновесия $\sigma_{IJ,J}+\sigma_{I3,3}=0$, получим:

$$\left[\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{IJ} x_3 dx_3\right]_{,J} + \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{I3,3} x_3 dx_3 = 0$$

Поскольку выполняется:

$$\int_{-\frac{h}{3}}^{\frac{h}{2}} \sigma_{I3,3} x_3 dx_3 = \int_{-\frac{h}{3}}^{\frac{h}{2}} \left[(\sigma_{I3} x_3)_{,3} - \sigma_{I3} \right] dx_3 = -\int_{-\frac{h}{3}}^{\frac{h}{2}} \sigma_{I3} dx_3$$

Тогда окончательно из уравнений равновесия и из условий нагрузки на верхней и нижней поверхности пластины получаем:

$$M_{IJ,J} - Q_I = 0$$
 $Q_{I,I} + q(x,y) = 0$ (2.7)

2.6 Задача на нахождение прогиба

Для решения задачи на изгиб представим прогиб в n-ом приближении в виде:

$$w = w^0 + \varepsilon w^1 + \varepsilon^2 w^2 + \ldots + \varepsilon^n w^n$$

2.6.1 Первое приближение

В первом приближении:

$$\sigma_{IJ} = \varepsilon P_{IJ}^{PQ} w_{,PQ}^0$$

Домножив на x_3 и проинтегрировав по толщине пластины, получим:

$$M_{IJ} = \varepsilon^3 \langle \xi_3 P_{IJ}^{PQ} \rangle w_{.PQ}^0$$

Обозначим $D_{IJ}^{PQ_0...Q_m} = \langle \xi_3 \cdot P_{IJ}^{PQ_0...Q_m} \rangle$ — тензор изгибных жесткостей. Тогда:

$$D_{IJ}^{PQ} w_{,IJPQ}^0 = \frac{1}{\varepsilon^3} M_{IJ,JI} = -\frac{q}{\varepsilon^3}$$
 (2.8)

2.6.2 Второе приближение

Во втором приближении:

$$\sigma_{IJ} = \varepsilon P_{IJ}^{PQ} \left(w^0 + \varepsilon w^1 \right)_{PQ} + \varepsilon^2 P_{IJ}^{PQQ_1} \left(w^0 + \varepsilon w^1 \right)_{PQQ_1}$$

Домножив на x_3 и проинтегрировав по толщине пластины, получим:

$$M_{IJ} = \varepsilon^3 D_{IJ}^{PQ} \left(w_{,PQ}^0 + \varepsilon w_{,PQ}^1 \right) + \varepsilon^4 D_{IJ}^{PQQ_1} \left(w_{,PQQ_1}^0 + \varepsilon w_{,PQQ_1}^1 \right)$$

Откуда с учетом уравнения, полученного в первом приближении, получим:

$$D_{IJ}^{PQ} w_{IJPQ}^1 + D_{IJ}^{PQQ_1} w_{IJPQQ_1}^0 = 0 (2.9)$$

2.6.3 Третье приближение

В третьем приближении:

$$\begin{split} \sigma_{IJ} &= \varepsilon P_{IJ}^{PQ} \left(w^0 + \varepsilon w^1 + \varepsilon^2 w^2 \right)_{,PQ} + \varepsilon^2 P_{IJ}^{PQQ_1} \left(w^0 + \varepsilon w^1 + \varepsilon^2 w^2 \right)_{,PQQ_1} + \\ &+ \varepsilon^3 P_{IJ}^{PQQ_1Q_2} \left(w^0 + \varepsilon w^1 + \varepsilon^2 w^2 \right)_{,PQQ_1Q_2} \end{split}$$

Домножив на x_3 и проинтегрировав по толщине пластины, получим:

$$\begin{split} M_{IJ} &= \varepsilon^{3} D_{IJ}^{PQ} \left(w_{,PQ}^{0} + \varepsilon w_{,PQ}^{1} + \varepsilon^{2} w_{,PQ}^{2} \right) + \varepsilon^{4} D_{IJ}^{PQQ_{1}} \left(w_{,PQQ_{1}}^{0} + \varepsilon w_{,PQQ_{1}}^{1} + \varepsilon^{2} w_{,PQQ_{1}}^{2} \right) + \\ &+ \varepsilon^{5} D_{IJ}^{PQQ_{1}Q_{2}} \left(w_{,PQQ_{1}Q_{2}}^{0} + \varepsilon w_{,PQQ_{1}Q_{2}}^{1} + \varepsilon^{2} w_{,PQQ_{1}Q_{2}}^{2} \right) \end{split}$$

Откуда с учетом уравнений, полученных в первых двух приближениях, получим:

$$D_{IJ}^{PQ} w_{,IJPQ}^2 + D_{IJ}^{PQQ_1} w_{,IJPQQ_1}^1 + D_{IJ}^{PQQ_1Q_2} w_{,IJPQQ_1Q_2}^0 = 0 (2.10)$$

Прогиб пластины

Таким образом прогиб пластины в третьем приближении ищется в виде $w = w^0 + \varepsilon w^1 + \varepsilon^2 w^2$, где функции w^i в соответствии с (2.8), (2.9), (2.10) удовлетворяют дифференциальным уравнениям:

$$\begin{split} D_{IJ}^{PQ} \, w^0_{,IJPQ} &= -\frac{q}{\varepsilon^3} \\ D_{IJ}^{PQ} \, w^1_{,IJPQ} + D_{IJ}^{PQQ_1} \, w^0_{,IJPQQ_1} &= 0 \\ D_{IJ}^{PQ} \, w^2_{,IJPQ} + D_{IJ}^{PQQ_1} \, w^1_{,IJPQQ_1} + D_{IJ}^{PQQ_1Q_2} \, w^0_{,IJPQQ_1Q_2} &= 0 \end{split}$$

3 Теория Кирхгофа-Лява

Классическая теория пластин и оболочек, называемая теорией Кирхгофа-Лява, является теорией первого приближения и основывается на следующих предположениях:

- 1. Прямолинейные волокна пластины, нормальные к недеформированной срединной поверхности, остаются прямолинейными и нормальными к деформированной поверхности и не меняют своей длины. При прогибе пластины срединная плоскость не деформируется. Эта кинематическая гипотеза равносильна тождественному равенству нулю компонент ε_{i3} тенора деформаций.
- 2. Нормальным напряжением, ортогональным к срединной плоскости пластины, можно пренебречь по сравнению с другими напряжениями, действующими в пластине, положив $\sigma_{33} = 0$.

Теория Кирхгофа-Лява, основанная на данных предположениях, в целом правильно описывает состояние упругой изотропной пластины, однако при сильно-выраженной ортотропии, как это будет показано позже, приводит к значительной неточности. Это связано с некоторыми противоречиями, являющимися следствием слишком стеснительных ограничений предполагаемых гипотез. Так, например, в рамках данной теории не учитываются упругие поперечные взаимодействия волокон, а также нет возможности определить поперечные усилия на основании обобщенного закона Гука (из него и из первого предположения следует, что эти усилия равны нулю). Однако модель Кирхгофа-Лява находит самое широкое применение, так как сочетает в себе достаточную в определенных случаях точность для практических целей с простотой аналитического исследования и решения уравнений.

Далее для упрощения записи принято: $x_1 = x, x_2 = y, x_3 = z$

3.1 Поле перемещений

На основании предположений поле перемещений в рамках данной теории представляется в виде:

$$\begin{cases} u_1 = -z \frac{\partial w}{\partial x} \\ u_2 = -z \frac{\partial w}{\partial y} \\ u_3 = w(x, y) \end{cases}$$

Здесь: u_1, u_2, u_3 — перемещения, параллельные осям x, y, z w = w(x, y) — прогиб срединной плоскости

3.2 Дифференциальное уравнение изгиба пластины

Используя Закон Гука для плоско-напряженного состояния, последовательно имеем:

$$\begin{split} M_{11} &= \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{11} \, z \, \, dz \overset{\text{\tiny 3. } \Gamma_{\text{YKa}}}{=} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \left[\frac{1}{1 - \nu_{12}\nu_{21}} \left(E_1 \varepsilon_{11} + E_2 \nu_{12} \varepsilon_{22} \right) \right] z \, dz = \frac{E_1}{1 - \nu_{12}\nu_{21}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \left[-z \cdot \frac{\partial^2 w}{\partial x^2} \right] z \, dz + \\ &+ \frac{E_2 \nu_{12}}{1 - \nu_{12}\nu_{21}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \left[-z \cdot \frac{\partial^2 w}{\partial y^2} \right] z \, dz = -\frac{E_1 h^3}{12(1 - \nu_{12}\nu_{21})} \cdot \frac{\partial^2 w}{\partial x^2} - \frac{E_2 \nu_{12} h^3}{12(1 - \nu_{12}\nu_{21})} \cdot \frac{\partial^2 w}{\partial y^2} \end{split}$$

Для M_{22} проводятся аналогичные вычисления.

$$M_{12} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{12} z \, dz = -2 \, G_{12} \cdot \frac{\partial^2 w}{\partial x \partial y} \int_{-\frac{h}{2}}^{\frac{h}{2}} z^2 \, dz = -\frac{G_{12} h^3}{6} \frac{\partial^2 w}{\partial x \partial y}$$

Таким образом получаем систему:

$$\begin{cases}
M_{11} = -\frac{h^3}{12(1 - \nu_{12}\nu_{21})} \left(E_1 \frac{\partial^2 w}{\partial x^2} + E_2\nu_{12} \frac{\partial^2 w}{\partial y^2} \right) \\
M_{22} = -\frac{h^3}{12(1 - \nu_{12}\nu_{21})} \left(E_2 \frac{\partial^2 w}{\partial y^2} + E_1\nu_{21} \frac{\partial^2 w}{\partial x^2} \right) \\
M_{12} = -\frac{G_{12}h^3}{6} \frac{\partial^2 w}{\partial x \partial y}
\end{cases} (3.1)$$

Для упрощения записи и последующего сравнения с другими теориями введём обозначения:

$$D_1 = \frac{E_1 h^3}{12(1 - \nu_{12}\nu_{21})} \qquad D_2 = \frac{E_2 h^3}{12(1 - \nu_{12}\nu_{21})} \qquad D_3 = \frac{E_2 \nu_{12} h^3}{12(1 - \nu_{12}\nu_{21})} \qquad D_{12} = \frac{G_{12} h^3}{12}$$

Поскольку $E_2\nu_{12}=E_1\nu_{21},$ то в таком случае система будет записана в следующем виде:

$$\begin{cases}
M_{11} = -D_1 \frac{\partial^2 w}{\partial x^2} - D_3 \frac{\partial^2 w}{\partial y^2} \\
M_{22} = -D_2 \frac{\partial^2 w}{\partial y^2} - D_3 \frac{\partial^2 w}{\partial x^2} \\
M_{12} = -2D_{12} \frac{\partial^2 w}{\partial x \partial y}
\end{cases} (3.2)$$

В соответствии с уравнениями (2.7):

$$M_{IJ,J} = Q_I \quad \Rightarrow \quad M_{IJ,JI} = Q_{I,I} = -q(x,y)$$

Подставим в это уравнение выражения для моментов системы (3.2):

$$-D_1 \frac{\partial^4 w}{\partial x^4} - D_3 \frac{\partial^4 w}{\partial x^2 \partial y^2} - 4D_{12} \frac{\partial^4 w}{\partial x^2 \partial y^2} - D_2 \frac{\partial^4 w}{\partial y^4} - D_3 \frac{\partial^4 w}{\partial x^2 \partial y^2} = -q$$

Окончательно получаем дифференциальное уравнение изгиба ортотропной пластины:

$$D_1 \frac{\partial^4 w}{\partial x^4} + 2(D_3 + 2D_{12}) \frac{\partial^4 w}{\partial x^2 \partial y^2} + D_2 \frac{\partial^4 w}{\partial y^4} = q$$

Замечание: В частном случае изотропии:

$$D_1 = D_2 = \frac{Eh^3}{12(1-\nu^2)}, \qquad D_3 + 2D_{12} = \frac{h^3}{12} \left(\frac{\nu E}{1-\nu^2} + \frac{E}{1+\nu} \right) = \frac{Eh^3}{12(1-\nu^2)}$$

Тогда уравнение примет вид:

$$rac{\partial^4 w}{\partial x^4} + 2rac{\partial^4 w}{\partial x^2 \partial y^2} + rac{\partial^4 w}{\partial y^4} = rac{q}{D}$$
 или $\Delta \Delta w = rac{q}{D}$

4 Теория Рейсснера-Миндлина

Как было отмечено ранее, в случае сильно ортотропной пластины теория Кирхгофа-Лява неспособна обеспечить достаточную точность расчетов. Поэтому с появлением новых композиционных материалов возникла необходимость в создании новых теорий, свободных от противоречий, присущих классической теории, и, в частности, учитывающих поперечный сдвиг и деформации. Одной из таких теорий является теория Рейсснера-Миндлина или теория второго порядка. Уравнения данной теории построены на менее «жестком» предположении о поведении нормали: нормальный к недеформированной срединной поверхности элемент оболочки не остается нормальным к деформированной срединной поверхности, а поворачивается на некоторый угол, не искривляясь и не изменяя свою длину. Также в соответствии с данной теорией распределение напряжений σ_{IJ} по толщине пластины полагается линейным.

4.1 Гипотезы

В соответствии с [11, 12], в рамках данной теории поле перемещений представляется в виде:

$$\begin{cases} u_1 = -z\varphi_1 \\ u_2 = -z\varphi_2 \\ u_3 = w(x, y) \end{cases}$$

Также в соответствии с данной теорией распределение компонент напряжений σ_{11} , σ_{12} и σ_{22} по толщине пластинки принимается по линейному закону:

$$\sigma_{IJ} = \alpha \cdot z$$

$$M_{IJ} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{IJ} \cdot z \, dz = \alpha \frac{h^3}{12} \qquad \Rightarrow \qquad \alpha = \frac{12M_{IJ}}{h^3}$$

Это предположение позволяет в явном виде выписать выражения для компонент напряжений σ_{i3} . Из уравнений равновесия имеем:

$$\sigma_{IJ,J} + \sigma_{I3,3} = 0 \quad \Rightarrow \quad \sigma_{I3,3} = -\sigma_{IJ,J} = -\left(\frac{12M_{IJ}}{h^3}z\right)_{,J} = -\frac{12Q_I}{h^3} \cdot z$$

$$\sigma_{I3} = \int_{-\frac{h}{2}}^{z} \left[-\frac{12Q_I}{h^3} \cdot z \right] dz = \frac{3Q_I}{2h} \left[1 - \left(\frac{2z}{h}\right)^2 \right]$$

$$\sigma_{I3,I} + \sigma_{33,3} = 0 \quad \Rightarrow \quad \sigma_{33,3} = -\sigma_{I3,I} = \frac{3q}{2h} \left[1 - \left(\frac{2z}{h}\right)^2 \right]$$

$$\sigma_{33} = -\int_{-\frac{h}{2}}^{z} \sigma_{I3,I} dz = \frac{3q}{2h} \int_{-\frac{h}{2}}^{z} \left[1 - \left(\frac{2z}{h}\right)^2 \right] dz = \frac{3q}{4} \left[\frac{2}{3} + \frac{2z}{h} - \frac{1}{3} \left(\frac{2z}{h}\right)^3 \right]$$

Таким образом:

$$\sigma_{I3} = \frac{3Q_I}{2h} \left[1 - \left(\frac{2z}{h}\right)^2 \right] \qquad \sigma_{33} = \frac{3q}{4} \left[\frac{2}{3} + \frac{2z}{h} - \frac{1}{3} \left(\frac{2z}{h}\right)^3 \right]$$
(4.1)

4.2 Коэффицент сдвига

В рамках теории Рейсснера-Миндлина вводится так называемый сдвиговой (корректирующий) коэффицент κ :

$$Q_1 = \kappa G_{13} h \left(-\varphi_1 + \frac{\partial w}{\partial x} \right) \qquad Q_2 = \kappa G_{23} h \left(-\varphi_2 + \frac{\partial w}{\partial y} \right)$$

Сдвиговой коэффицент зависит от формы поперечного сечения и коэффицента Пуассона. Было сделано множество попыток дать точные выражения для данного коэффицента, однако все предложенные приемы были приближенными, а какого-то общепринятого значения не существует. Так, в статье [17] приводятся обзор результатов расчета сдвигового коэффицента различных авторов:

Таблица 2: Результаты расчета сдвигового коэффицента κ

		Выражение для κ				
Автор	Год	Прямоугольное сечение	Круглое сечение			
Timoshenko	1921	2/3				
Timoshenko	1922	$(5+5\nu)/(6+5\nu)$	$(6+12\nu+6\nu^2)/(7+12\nu+4\nu^2)$			
Goens	1931	5/6	9/10			
Olsson	1934	$(20+20\nu)/(24+15\nu)$				
Cowper	1966	$(10+10\nu)/(12+11\nu)$	$(6+6\nu)/(7+6\nu)$			
Tanji et al	1972	$\approx (6 + 12\nu + 6\nu^2)/(7 + 12\nu + 4\nu^2)$	$\approx (6 + 12\nu + 6\nu^2)/(7 + 12\nu + 4\nu^2)$			

Среди работ, использующих метод асимптотического разложения, следует выделить статью [7], в которой рассматривается третье приближение и приводится следующий результат для сдвигового коэффицента:

$$\kappa = \frac{5}{6} + \frac{29}{6} \frac{\nu}{12 - 7\nu}$$

В текущей работе будет использоваться значение $\kappa=5/6$, типичное для оригинальных работ Стивена Тимошенко, Эрика Рейсснера и Рэймонда Миндлина. Действительно, в соответствии с формулами (4.1):

$$G_{I3}\gamma_{I3} \stackrel{\text{3. }}{=} \stackrel{\Gamma_{\text{yka}}}{=} \sigma_{I3} = \frac{3Q_I}{2h} \left[1 - \left(\frac{2z}{h}\right)^2 \right]$$

Домножив левую и правую часть уравнения на $\left[1-\left(\frac{2z}{h}\right)^2\right]$ и проинтегрироввав по толщине пластины, получим:

$$Q_1 = \frac{5G_{13}h}{6} \left(-\varphi_1 + \frac{\partial w}{\partial x} \right) \qquad Q_2 = \frac{5G_{23}h}{6} \left(-\varphi_2 + \frac{\partial w}{\partial y} \right)$$

4.3 Дифференциальное уравнение изгиба пластины

При получении дифференциального уравнения изгиба пластины можно использовать закон Гука как для плоско-напряженного, так и для трехмерного состояния.

4.3.1 Плоско-напряженное состояние

Используем закон Гука для плоско-напряженного состояния:

$$\sigma_{11} = \frac{1}{1 - \nu_{12}\nu_{21}} \left[E_1 \varepsilon_{11} + E_2 \nu_{12} \varepsilon_{22} \right]$$

$$\sigma_{22} = \frac{1}{1 - \nu_{12}\nu_{21}} \left[E_2 \varepsilon_{22} + E_1 \nu_{21} \varepsilon_{11} \right]$$

$$\sigma_{12} = G_{12} \gamma_{12}$$

Домножим каждое уравнение на z и проинтегрируем по толщине пластины:

$$M_{11} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{11} \cdot z \, dz = -\frac{E_1 h^3}{12(1 - \nu_{12}\nu_{21})} \cdot \varphi_{1,1} - \frac{E_2 \nu_{12} h^3}{12(1 - \nu_{12}\nu_{21})} \cdot \varphi_{2,2} = -D_1 \varphi_{1,1} - D_3 \varphi_{2,2}$$

$$M_{22} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{22} \cdot z \, dz = -\frac{E_2 h^3}{12(1 - \nu_{12}\nu_{21})} \cdot \varphi_{2,2} - \frac{E_1 \nu_{21} h^3}{12(1 - \nu_{12}\nu_{21})} \cdot \varphi_{1,1} = -D_2 \varphi_{2,2} - D_3 \varphi_{1,1}$$

$$M_{12} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{12} \cdot z \, dz = -\frac{G_{12} h^3}{12} \left(\varphi_{1,2} + \varphi_{2,1} \right) = -D_{12} \left(\varphi_{1,2} + \varphi_{2,1} \right)$$

В соответствии с пунктом (4.2):

$$-\varphi_1 + w_{,1} = \frac{6Q_1}{5G_{13}h} \qquad -\varphi_2 + w_{,2} = \frac{6Q_2}{5G_{23}h}$$
 (4.2)

Данные уравнения позволяют выразить функции φ_I через производные прогиба $w_{,I}$. Таким образом получаем систему:

$$\begin{cases} M_{11} = -D_1 \frac{\partial^2 w}{\partial x^2} - D_3 \frac{\partial^2 w}{\partial y^2} + \frac{6D_1}{5G_{13}h} Q_{1,1} + \frac{6D_3}{5G_{23}h} Q_{2,2} \\ M_{22} = -D_2 \frac{\partial^2 w}{\partial y^2} - D_3 \frac{\partial^2 w}{\partial x^2} + \frac{6D_2}{5G_{23}h} Q_{2,2} + \frac{6D_3}{5G_{13}h} Q_{1,1} \\ M_{12} = -2D_{12} \frac{\partial^2 w}{\partial x \partial y} + \frac{6D_{12}}{5h} \cdot \left(\frac{1}{G_{13}} Q_{1,2} + \frac{1}{G_{23}} Q_{2,1}\right) \end{cases}$$

В соответствии с уравнениями (2.7):

$$Q_{1,1} + Q_{2,2} + q = 0$$

Тогда система примет вид:

$$\begin{cases}
M_{11} = -D_1 \frac{\partial^2 w}{\partial x^2} - D_3 \frac{\partial^2 w}{\partial y^2} + \frac{6}{5h} \left[\frac{D_1}{G_{13}} - \frac{D_3}{G_{23}} \right] Q_{1,1} - \frac{6D_3}{5G_{23}h} q \\
M_{22} = -D_2 \frac{\partial^2 w}{\partial y^2} - D_3 \frac{\partial^2 w}{\partial x^2} + \frac{6}{5h} \left[\frac{D_2}{G_{23}} - \frac{D_3}{G_{13}} \right] Q_{2,2} - \frac{6D_3}{5G_{13}h} q \\
M_{12} = -2D_{12} \frac{\partial^2 w}{\partial x \partial y} + \frac{6D_{12}}{5h} \left(\frac{1}{G_{13}} Q_{1,2} + \frac{1}{G_{23}} Q_{2,1} \right)
\end{cases} (4.3)$$

В соответствии с уравнениями (2.7):

$$M_{IJ,JI} = -q$$

Подставив в данное уравнение выражения для моментов системы (4.3), получим дифференциальное уравнение изгиба ортотропной пластины в рамках теории Рейсснера-Миндлина для плоско-напряженного состояния.

$$-D_{1}\frac{\partial^{4}w}{\partial x^{4}} - 2\left(D_{3} + 2D_{12}\right)\frac{\partial^{4}w}{\partial x^{2}\partial y^{2}} - D_{2}\frac{\partial^{4}w}{\partial y^{4}} + \frac{6}{5h}\left[\frac{D_{1}}{G_{13}} - \frac{D_{3}}{G_{23}}\right]Q_{1,111} + \frac{6}{5h}\left[\frac{D_{2}}{G_{23}} - \frac{D_{3}}{G_{13}}\right]Q_{2,222} + \frac{12D_{12}}{5h}\left[\frac{1}{G_{13}}Q_{1,212} + \frac{1}{G_{23}}Q_{2,112}\right] - \frac{6D_{3}}{5h}\left[\frac{q_{,11}}{G_{23}} + \frac{q_{,22}}{G_{13}}\right] = -q$$

4.3.2 Трехмерное состояние

Используем Закон Гука для трехмерного состояния:

$$\varepsilon_{11} = \frac{1}{E_1} (\sigma_{11} - \nu_{12}\sigma_{22} - \nu_{13}\sigma_{33})$$

$$\varepsilon_{22} = \frac{1}{E_2} (\sigma_{22} - \nu_{23}\sigma_{33} - \nu_{21}\sigma_{11})$$

$$\varepsilon_{12} = \frac{\sigma_{12}}{G_{12}}$$

Поскольку распределение компонент напряжений σ_{i3} по толщине пластины известно, то выразим из записанных выше соотношений компоненты σ_{11} , σ_{12} и σ_{22} через ε_{11} , ε_{22} , γ_{12} и σ_{33} :

$$\sigma_{11} = \frac{1}{1 - \nu_{12}\nu_{21}} \left[E_1 \varepsilon_{11} + E_2 \nu_{12} \varepsilon_{22} + (\nu_{13} + \nu_{12}\nu_{23}) \, \sigma_{33} \right]$$

$$\sigma_{22} = \frac{1}{1 - \nu_{12}\nu_{21}} \left[E_2 \varepsilon_{22} + E_1 \nu_{21} \varepsilon_{11} + (\nu_{23} + \nu_{13}\nu_{21}) \, \sigma_{33} \right]$$

$$\sigma_{12} = G_{12} \varepsilon_{12}$$

Домножим каждое уравнение на z и проинтегрируем по толщине пластины. Поскольку выполняется:

$$\int_{-\frac{h}{2}}^{\frac{n}{2}} \sigma_{33} \cdot z \, dz = \frac{3q}{4} \int_{-\frac{h}{2}}^{\frac{n}{2}} \left[\frac{2}{3} + \frac{2z}{h} - \frac{1}{3} \left(\frac{2z}{h} \right)^3 \right] \cdot z \, dz = \frac{3q}{4} \cdot \frac{2h^2}{15} = \frac{qh^2}{10}$$

To:

$$M_{11} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{11} \cdot z \, dz = -\frac{E_1 h^3}{12(1 - \nu_{12}\nu_{21})} \cdot \varphi_{1,1} - \frac{E_2 \nu_{12} h^3}{12(1 - \nu_{12}\nu_{21})} \cdot \varphi_{2,2} + \frac{\nu_{13} + \nu_{12}\nu_{23}}{1 - \nu_{12}\nu_{21}} \cdot \frac{qh^2}{10}$$

$$M_{22} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{22} \cdot z \, dz = -\frac{E_2 h^3}{12(1 - \nu_{12}\nu_{21})} \cdot \varphi_{2,2} - \frac{E_1 \nu_{21} h^3}{12(1 - \nu_{12}\nu_{21})} \cdot \varphi_{1,1} + \frac{\nu_{23} + \nu_{13}\nu_{21}}{1 - \nu_{12}\nu_{21}} \cdot \frac{qh^2}{10}$$

$$M_{12} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{12} \cdot z \, dz = -\frac{G_{12} h^3}{12} \left(\varphi_{1,2} + \varphi_{2,1}\right)$$

Для получения дифференциального уравнения относительно прогиба пластины используем уравнения (4.2), связывающие функции φ_I и $w_{,I}$. Выражая из них φ_I через $w_{,I}$, получим систему:

$$\begin{cases} M_{11} = -D_1 \frac{\partial^2 w}{\partial x^2} - D_3 \frac{\partial^2 w}{\partial y^2} + \frac{6D_1}{5G_{13}h} Q_{1,1} + \frac{6D_3}{5G_{23}h} Q_{2,2} + \frac{\nu_{13} + \nu_{12}\nu_{23}}{1 - \nu_{12}\nu_{21}} \cdot \frac{qh^2}{10} \\ M_{22} = -D_2 \frac{\partial^2 w}{\partial y^2} - D_3 \frac{\partial^2 w}{\partial x^2} + \frac{6D_2}{5G_{23}h} Q_{2,2} + \frac{6D_3}{5G_{13}h} Q_{1,1} + \frac{\nu_{23} + \nu_{13}\nu_{21}}{1 - \nu_{12}\nu_{21}} \cdot \frac{qh^2}{10} \\ M_{12} = -2D_{12} \frac{\partial^2 w}{\partial x \partial y} + \frac{6D_{12}}{5h} \cdot \left(\frac{1}{G_{13}} Q_{1,2} + \frac{1}{G_{23}} Q_{2,1}\right) \end{cases}$$

В соответствии с уравнениями (2.7):

$$Q_{1,1} + Q_{2,2} + q = 0$$

Тогда система примет вид:

$$\begin{cases}
M_{11} = -D_1 \frac{\partial^2 w}{\partial x^2} - D_3 \frac{\partial^2 w}{\partial y^2} + \frac{6}{5h} \left[\frac{D_1}{G_{13}} - \frac{D_3}{G_{23}} \right] Q_{1,1} + \left[\frac{h^2 (\nu_{13} + \nu_{12}\nu_{23})}{10 (1 - \nu_{12}\nu_{21})} - \frac{6D_3}{5G_{23}h} \right] q \\
M_{22} = -D_2 \frac{\partial^2 w}{\partial y^2} - D_3 \frac{\partial^2 w}{\partial x^2} + \frac{6}{5h} \left[\frac{D_2}{G_{23}} - \frac{D_3}{G_{13}} \right] Q_{2,2} + \left[\frac{h^2 (\nu_{23} + \nu_{13}\nu_{21})}{10 (1 - \nu_{12}\nu_{21})} - \frac{6D_3}{5G_{13}h} \right] q \\
M_{12} = -2D_{12} \frac{\partial^2 w}{\partial x \partial y} + \frac{6D_{12}}{5h} \left(\frac{1}{G_{13}} Q_{1,2} + \frac{1}{G_{23}} Q_{2,1} \right)
\end{cases} (4.4)$$

В соответствии с уравнениями (2.7):

$$M_{IJJI} = -q$$

Подставив в данное уравнение выражения для моментов системы (4.4), получим дифференциальное уравнение изгиба пластины в рамках теории Рейсснера-Миндлина для трехмерного состояния.

$$-D_{1}\frac{\partial^{4}w}{\partial x^{4}} - 2\left(D_{3} + 2D_{12}\right)\frac{\partial^{4}w}{\partial x^{2}\partial y^{2}} - D_{2}\frac{\partial^{4}w}{\partial y^{4}} +$$

$$+\frac{6}{5h}\left[\frac{D_{1}}{G_{13}} - \frac{D_{3}}{G_{23}}\right]Q_{1,111} + \frac{6}{5h}\left[\frac{D_{2}}{G_{23}} - \frac{D_{3}}{G_{13}}\right]Q_{2,222} + \frac{12D_{12}}{5h}\left[\frac{1}{G_{13}}Q_{1,212} + \frac{1}{G_{23}}Q_{2,112}\right] +$$

$$+\frac{6}{5h}\left[\frac{h^{3}\left(\nu_{13} + \nu_{12}\nu_{23}\right)}{12\left(1 - \nu_{12}\nu_{21}\right)} - \frac{D_{3}}{G_{23}}\right]q_{,11} + \frac{6}{5h}\left[\frac{h^{3}\left(\nu_{23} + \nu_{13}\nu_{21}\right)}{12\left(1 - \nu_{12}\nu_{21}\right)} - \frac{D_{3}}{G_{13}}\right]q_{,22} = -q$$

Замечание: В частном случае изотропии:

$$D_1 = D_2 = D = \frac{Eh^3}{12(1-\nu^2)}, \qquad D_3 + 2D_{12} = \frac{h^3}{12} \left(\frac{\nu E}{1-\nu^2} + \frac{E}{1+\nu} \right) = \frac{Eh^3}{12(1-\nu^2)}$$

В таком случае уравнение принимает вид:

$$\begin{split} -D\Delta\Delta w + \frac{6}{5h}\,\frac{h^3}{6}\,Q_{1,111} + \frac{6}{5h}\,\frac{h^3}{6}\,Q_{2,222} + \frac{12}{5h}\,\frac{h^3}{12}\,[Q_{1,212} + Q_{2,112}] - \\ -\frac{6}{5h}\,\frac{h^3\nu}{12(1-\nu)}\,q_{,11} - \frac{6}{5h}\,\frac{h^3\nu}{12(1-\nu)}\,q_{,22} = -q \end{split}$$

Поскольку выполняется:

$$Q_{1.111} + Q_{2.222} + Q_{1.212} + Q_{2.112} = \Delta Q_{1.1} + \Delta Q_{2.2} = \Delta (Q_{1.1} + Q_{2.2}) = -\Delta Q_{1.1} + \Delta Q_{2.2} = \Delta (Q_{1.1} + Q_{2.2}) = -\Delta Q_{1.1} + \Delta Q_{2.2} = \Delta (Q_{1.1} + Q_{2.2}) = -\Delta Q_{1.1} + \Delta Q_{2.2} = \Delta (Q_{1.1} + Q_{2.2}) = -\Delta Q_{1.1} + \Delta Q_{2.2} = \Delta (Q_{1.1} + Q_{2.2}) = -\Delta Q_{1.1} + \Delta Q_{2.2} = \Delta (Q_{1.1} + Q_{2.2}) = -\Delta Q_{1.1} + \Delta Q_{2.2} = \Delta (Q_{1.1} + Q_{2.2}) = -\Delta Q_{1.1} + \Delta Q_{2.2} = \Delta (Q_{1.1} + Q_{2.2}) = -\Delta Q_{1.1} + \Delta Q_{2.2} = \Delta (Q_{1.1} + Q_{2.2}) = -\Delta Q_{1.1} + \Delta Q_{2.2} = \Delta (Q_{1.1} + Q_{2.2}) = -\Delta Q_{1.1} + \Delta Q_{2.2} = \Delta (Q_{1.1} + Q_{2.2}) = -\Delta Q_{1.1} + \Delta Q_{2.2} = \Delta (Q_{1.1} + Q_{2.2}) = -\Delta Q_{1.1} + \Delta Q_{2.2} = \Delta (Q_{1.1} + Q_{2.2}) = -\Delta Q_{1.1} + \Delta Q_{2.2} = \Delta (Q_{1.1} + Q_{2.2}) = -\Delta Q_{1.1} + \Delta Q_{2.2} = \Delta (Q_{1.1} + Q_{2.2}) = -\Delta Q_{1.1} + \Delta Q_{2.2} = \Delta Q_{1.1} + \Delta Q_{2.2} + \Delta Q_{1.1} + \Delta$$

Тогда окончательно:

$$-D\Delta\Delta w+rac{h^2}{5}\,\Delta q-rac{h^2}{10}\,rac{
u}{1-
u}\,\Delta q=-q$$
 или $D\Delta\Delta w=q-rac{h^2}{10}\,rac{2-
u}{1-
u}\,\Delta q$

5 Теория Редди

Расмотренная ранее теория Рейсснера-Миндлина учитывает сдвиговые деформации и позволяет с высокой точностью находить прогиб пластины даже при сильно-выраженной ортотропии. Однако в соответствии со второй гипотезой теории Рейсснера-Миндлина распределение напряжений σ_{IJ} по толщине пластины полагается линейным. В действительности же с ростом ортотропии данные компоненты проявляют всё более нелинейный характер.

Теория Редди или теория третьего порядка, в чатности, решает эту проблему и позволяет при определенных условиях (см. пункт 5.3) с достаточной точностью находить данные компоненты напряжений.

5.1 Поле перемещений

В соответствии [13], в рамках данной теории поле перемещений представляется в виде:

$$\begin{cases} u_1 = -z\varphi_1 - \frac{4z^3}{3h^2} \left(-\varphi_1 + \frac{\partial w}{\partial x} \right) \\ u_2 = -z\varphi_2 - \frac{4z^3}{3h^2} \left(-\varphi_2 + \frac{\partial w}{\partial y} \right) \\ u_3 = w(x, y) \end{cases}$$

5.2 Дифференциальное уравнение изгиба пластины

Как и в теории Рейсснера-Миндлина, при получении дифференциального уравнения изгиба пластины в рамках теории Редди можно использовать закон Гука как для плоско-напряженного состояния, так и для трехмерного. Компоненты ε_{IJ} записываются следующим образом:

$$\begin{split} \varepsilon_{11} &= -z\varphi_{1,1} - \frac{4z^3}{3h^2} \left(-\varphi_{1,1} + w_{,11} \right) \\ \varepsilon_{22} &= -z\varphi_{2,2} - \frac{4z^3}{3h^2} \left(-\varphi_{2,2} + w_{,22} \right) \\ \gamma_{12} &= -z \left(\varphi_{1,2} + \varphi_{2,1} \right) - \frac{4z^3}{3h^2} \left(-\varphi_{1,2} - \varphi_{2,1} + 2w_{,12} \right) \end{split}$$

5.2.1 Плоско-напряженное состояние

Используем Закон Гука для плоско-напряженного состояния:

$$\sigma_{11} = \frac{1}{1 - \nu_{12}\nu_{21}} \left[E_1 \varepsilon_{11} + E_2 \nu_{12} \varepsilon_{22} \right]$$

$$\sigma_{22} = \frac{1}{1 - \nu_{12}\nu_{21}} \left[E_2 \varepsilon_{22} + E_1 \nu_{21} \varepsilon_{11} \right]$$

$$\sigma_{12} = G_{12} \gamma_{12}$$

Домножим каждое уравнение на z и проинтегрируем по толщине пластины. Последовательно имеем:

$$\begin{split} M_{11} &= \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{11} \, z \, \, dz \,^{\frac{3}{3} - \frac{\Gamma y \kappa a}{2}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \left[\frac{1}{1 - \nu_{12} \nu_{21}} \left(E_{1} \varepsilon_{11} + E_{2} \nu_{12} \varepsilon_{22} \right) \right] z \, dz = \\ &= \frac{E_{1}}{1 - \nu_{12} \nu_{21}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \left[-z \varphi_{1,1} - \frac{4z^{3}}{3h^{2}} \left(-\varphi_{1,1} + w_{,11} \right) \right] z \, dz + \frac{E_{2} \nu_{12}}{1 - \nu_{12} \nu_{21}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \left[-z \varphi_{2,2} - \frac{4z^{3}}{3h^{2}} \left(-\varphi_{2,2} + w_{,22} \right) \right] z \, dz = \\ &= -D_{1} \, \varphi_{1,1} - \frac{D_{1}}{5} \left(-\varphi_{1,1} + w_{,11} \right) - D_{3} \, \varphi_{2,2} - \frac{D_{3}}{5} \left(-\varphi_{2,2} + w_{,22} \right) \\ M_{12} &= \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{12} \, z \, \, dz \,^{\frac{3}{3} - \frac{\Gamma y \kappa a}{2}} \, G_{12} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \gamma_{12} z \, dz = -D_{12} \left(\varphi_{1,2} + \varphi_{2,1} \right) - \frac{D_{12}}{5} \left(-\varphi_{1,2} - \varphi_{2,1} + 2w_{,12} \right) \end{split}$$

Для M_{22} проводятся аналогичные вычисления. Приводя подобные, получим систему:

$$\begin{cases} M_{11} = -\frac{4}{5} \left(D_1 \varphi_{1,1} + D_3 \varphi_{2,2} \right) - \frac{1}{5} \left(D_1 w_{,11} + D_3 w_{,22} \right) \\ M_{22} = -\frac{4}{5} \left(D_2 \varphi_{2,2} + D_3 \varphi_{1,1} \right) - \frac{1}{5} \left(D_2 w_{,22} + D_3 w_{,11} \right) \\ M_{12} = -\frac{2D_{12}}{5} \left(2 \left(\varphi_{1,2} + \varphi_{2,1} \right) + w_{,12} \right) \end{cases}$$

Далее необходимо получить уравнения, связывающие функции φ_I и w_I .

$$\gamma_{I3} = u_{I,3} + u_{3,I} = -\varphi_I - \frac{4z^2}{h^2} \left(-\varphi_I + w_{,I} \right) + w_{,I} = \left(-\varphi_I + w_{,I} \right) \left(1 - \frac{4z^2}{h^2} \right)$$

$$Q_I = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{I3} \, dz = G_{I3} \int_{-\frac{h}{2}}^{\frac{h}{2}} \gamma_{I3} \, dz = G_{I3} \left(-\varphi_I + w_{,I} \right) \int_{-\frac{h}{2}}^{\frac{h}{2}} \left[1 - \frac{4z^2}{h^2} \right] \, dz = \frac{2G_{I3}h}{3} \left(-\varphi_I + w_{,I} \right)$$

Откуда:

$$-\varphi_1 + w_{,1} = \frac{3Q_1}{2G_{13}h} \qquad -\varphi_2 + w_{,2} = \frac{3Q_2}{2G_{23}h}$$
 (5.1)

Выражая из (5.1) функции φ_I через $w_{,I}$ и подставляя в систему, получим:

$$\begin{cases} M_{11} = -D_1 \frac{\partial^2 w}{\partial x^2} - D_3 \frac{\partial^2 w}{\partial y^2} + \frac{6D_1}{5G_{13}h} Q_{1,1} + \frac{6D_3}{5G_{23}h} Q_{2,2} \\ M_{22} = -D_2 \frac{\partial^2 w}{\partial y^2} - D_3 \frac{\partial^2 w}{\partial x^2} + \frac{6D_2}{5G_{23}h} Q_{2,2} + \frac{6D_3}{5G_{13}h} Q_{1,1} \\ M_{12} = -2D_{12} \frac{\partial^2 w}{\partial x \partial y} + \frac{6D_{12}}{5h} \cdot \left(\frac{1}{G_{13}} Q_{1,2} + \frac{1}{G_{23}} Q_{2,1}\right) \end{cases}$$

В соответствии с уравнениями (2.7):

$$Q_{1,1} + Q_{2,2} + q = 0$$

Тогда система примет вид:

$$\begin{cases}
M_{11} = -D_1 \frac{\partial^2 w}{\partial x^2} - D_3 \frac{\partial^2 w}{\partial y^2} + \frac{6}{5h} \left[\frac{D_1}{G_{13}} - \frac{D_3}{G_{23}} \right] Q_{1,1} - \frac{6D_3}{5G_{23}h} q \\
M_{22} = -D_2 \frac{\partial^2 w}{\partial y^2} - D_3 \frac{\partial^2 w}{\partial x^2} + \frac{6}{5h} \left[\frac{D_2}{G_{23}} - \frac{D_3}{G_{13}} \right] Q_{2,2} - \frac{6D_3}{5G_{13}h} q \\
M_{12} = -2D_{12} \frac{\partial^2 w}{\partial x \partial y} + \frac{6D_{12}}{5h} \left(\frac{1}{G_{13}} Q_{1,2} + \frac{1}{G_{23}} Q_{2,1} \right)
\end{cases} (5.2)$$

В соответствии с уравнениями (2.7):

$$M_{IJ,JI} = -q$$

Подставив в данное уравнение выражения для моментов системы (5.2), получим дифференциальное уравнение изгиба пластины в рамках теории Редди для плоско-напряженного состояния.

$$-D_{1}\frac{\partial^{4}w}{\partial x^{4}} - 2\left(D_{3} + 2D_{12}\right)\frac{\partial^{4}w}{\partial x^{2}\partial y^{2}} - D_{2}\frac{\partial^{4}w}{\partial y^{4}} +$$

$$+\frac{6}{5h}\left[\frac{D_{1}}{G_{13}} - \frac{D_{3}}{G_{23}}\right]Q_{1,111} + \frac{6}{5h}\left[\frac{D_{2}}{G_{23}} - \frac{D_{3}}{G_{13}}\right]Q_{2,222} + \frac{12D_{12}}{5h}\left[\frac{1}{G_{13}}Q_{1,212} + \frac{1}{G_{23}}Q_{2,112}\right] -$$

$$-\frac{6D_{3}}{5h}\left[\frac{q_{,11}}{G_{23}} + \frac{q_{,22}}{G_{13}}\right] = -q$$

Замечание: уравнение получается таким же, как и для теории Рейсснера-Миндлина для плосконапряженного состояния

5.2.2 Трехмерное состояние

Используем закон Гука для трехмерного состояния:

$$\varepsilon_{11} = \frac{1}{E_1} (\sigma_{11} - \nu_{12}\sigma_{22} - \nu_{13}\sigma_{33})$$

$$\varepsilon_{22} = \frac{1}{E_2} (\sigma_{22} - \nu_{23}\sigma_{33} - \nu_{21}\sigma_{11})$$

$$\gamma_{12} = \frac{\sigma_{12}}{G_{12}}$$

Как показывают расчеты (см. пункт 9 «Приложения»), компонента σ_{33} , найденная в рамках теории Рейсснера-Миндлина, хорошо совпадает с решениями в рамках МКЭ для пластин с сильной ортотропией на мелкой сетке. Поэтому при выводе дифференциального уравнения изгиба пластины в рамках теории Редди для комопненты σ_{33} будет использоваться та же формула:

$$\sigma_{33} = \frac{3q}{4} \left[\frac{2}{3} + \frac{2z}{h} - \frac{1}{3} \left(\frac{2z}{h} \right)^3 \right]$$

Поскольку теперь распеределение компонент напряжений σ_{33} по толщине пластины известно, то выразим из закона Гука компоненты σ_{11} , σ_{12} , σ_{22} через ε_{11} , ε_{22} , γ_{12} и σ_{33} :

$$\sigma_{11} = \frac{1}{1 - \nu_{12}\nu_{21}} \left[E_1 \varepsilon_{11} + E_2 \nu_{12} \varepsilon_{22} + (\nu_{13} + \nu_{12}\nu_{23}) \, \sigma_{33} \right]$$

$$\sigma_{22} = \frac{1}{1 - \nu_{12}\nu_{21}} \left[E_2 \varepsilon_{22} + E_1 \nu_{21} \varepsilon_{11} + (\nu_{23} + \nu_{13}\nu_{21}) \, \sigma_{33} \right]$$

$$\sigma_{12} = G_{12} \gamma_{12}$$

Домножим каждое уравнение на z и проинтегрируем по толщине пластины. Частично данные выражения уже были получены в пункте 5.2.1. Поскольку выполняется:

$$\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{33} \cdot z \, dz = \frac{3q}{4} \int_{-\frac{h}{2}}^{\frac{h}{2}} \left[\frac{2}{3} + \frac{2z}{h} - \frac{1}{3} \left(\frac{2z}{h} \right)^3 \right] \cdot z \, dz = \frac{3q}{4} \cdot \frac{2h^2}{15} = \frac{qh^2}{10}$$

То получим:

$$M_{11} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{11} \cdot z \, dz = -\frac{4}{5} \left(D_1 \varphi_{1,1} + D_3 \varphi_{2,2} \right) - \frac{1}{5} \left(D_1 w_{,11} + D_3 w_{,22} \right) + \frac{\nu_{13} + \nu_{12} \nu_{23}}{1 - \nu_{12} \nu_{21}} \cdot \frac{qh^2}{10}$$

$$M_{22} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{22} \cdot z \, dz = -\frac{4}{5} \left(D_2 \varphi_{2,2} + D_3 \varphi_{1,1} \right) - \frac{1}{5} \left(D_2 w_{,22} + D_3 w_{,11} \right) + \frac{\nu_{23} + \nu_{13} \nu_{21}}{1 - \nu_{12} \nu_{21}} \cdot \frac{qh^2}{10}$$

$$M_{12} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{12} \cdot z \, dz = -\frac{2D_{12}}{5} \left(2 \left(\varphi_{1,2} + \varphi_{2,1} \right) + w_{,12} \right)$$

Для получения дифференциального уравнения относительно прогиба пластины используем уравнения (5.1), связывающие функции φ_I и $w_{,I}$. Выражая из них φ_I через $w_{,I}$ и воспользовавшись уравнениями (2.7), получим систему:

$$\begin{cases}
M_{11} = -D_1 \frac{\partial^2 w}{\partial x^2} - D_3 \frac{\partial^2 w}{\partial y^2} + \frac{6}{5h} \left[\frac{D_1}{G_{13}} - \frac{D_3}{G_{23}} \right] Q_{1,1} + \left[\frac{h^2 (\nu_{13} + \nu_{12} \nu_{23})}{10 (1 - \nu_{12} \nu_{21})} - \frac{6D_3}{5G_{23}h} \right] q \\
M_{22} = -D_2 \frac{\partial^2 w}{\partial y^2} - D_3 \frac{\partial^2 w}{\partial x^2} + \frac{6}{5h} \left[\frac{D_2}{G_{23}} - \frac{D_3}{G_{13}} \right] Q_{2,2} + \left[\frac{h^2 (\nu_{23} + \nu_{13} \nu_{21})}{10 (1 - \nu_{12} \nu_{21})} - \frac{6D_3}{5G_{13}h} \right] q \\
M_{12} = -2D_{12} \frac{\partial^2 w}{\partial x \partial y} + \frac{6D_{12}}{5h} \left(\frac{1}{G_{13}} Q_{1,2} + \frac{1}{G_{23}} Q_{2,1} \right)
\end{cases} (5.3)$$

В соответствии с уравнениями (2.7):

$$M_{IJJI} = -q$$

Подставив в данное уравнение выражения для моментов системы (5.3), получим дифференциальное уравнение изгиба пластины в рамках теории Редди для трехмерного состояния.

$$\begin{split} &-D_{1}\frac{\partial^{4}w}{\partial x^{4}}-2\left(D_{3}+2D_{12}\right)\frac{\partial^{4}w}{\partial x^{2}\partial y^{2}}-D_{2}\frac{\partial^{4}w}{\partial y^{4}}+\\ &+\frac{6}{5h}\left[\frac{D_{1}}{G_{13}}-\frac{D_{3}}{G_{23}}\right]Q_{1,111}+\frac{6}{5h}\left[\frac{D_{2}}{G_{23}}-\frac{D_{3}}{G_{13}}\right]Q_{2,222}+\frac{12D_{12}}{5h}\left[\frac{1}{G_{13}}Q_{1,212}+\frac{1}{G_{23}}Q_{2,112}\right]+\\ &+\frac{6}{5h}\left[\frac{h^{3}\left(\nu_{13}+\nu_{12}\nu_{23}\right)}{12\left(1-\nu_{12}\nu_{21}\right)}-\frac{D_{3}}{G_{23}}\right]q_{,11}+\frac{6}{5h}\left[\frac{h^{3}\left(\nu_{23}+\nu_{13}\nu_{21}\right)}{12\left(1-\nu_{12}\nu_{21}\right)}-\frac{D_{3}}{G_{13}}\right]q_{,22}=-q \end{split}$$

Замечание: уравнение получается таким же, как и для теории Рейсснера-Миндлина для трехмерного состояния

5.3 Граница применимости теории

Как показывают расчеты, при сильно выраженной ортотропии, когда отношение модулей E_1 и G_{13} велико, проявляется нефизичное явление: компонента напряжений σ_{11} перестает быть монотонной функцией и принимает значение 0 в трех точках. Этот эффект приводится на рисунке 1, на котором представлен график распределения компоненты σ_{11} по толщине пластины в сечении x=0.5 для однослойного резинокорда под действием равномерно-распределенной нагрузки с плотностью $q=-ph^3$. Также на рисунке приведен результат расчета в ANSYS на мелкой сетке, который можно расценивать как истинное распределение напряжений. Выведем условия, при которых наступает подобный эффект. Для этого необходи-

Рис. 1: Распределение компоненты σ_{11} по толщине пластины для однослойного резинокорда

мо выписать явное выражение для компоненты σ_{11} в рамках теории Редди.

Рассматривается цилиндричесий изгиб, поэтому w=w(x), а также плоско-напряженное состояние. Следовательно:

$$\sigma_{11} = \frac{1}{1 - \nu_{12}\nu_{21}} \left[E_1 \varepsilon_{11} + E_2 \nu_{12} \varepsilon_{22} \right] = \frac{E_1}{1 - \nu_{12}\nu_{21}} \varepsilon_{11} = \frac{E_1}{1 - \nu_{12}\nu_{21}} \left(-z \varphi_{1,1} - \frac{4z^3}{3h^2} \left(-\varphi_{1,1} + w_{,11} \right) \right)$$

В соответствии с формулами (5.1):

$$-\varphi_1 + w_{,1} = \frac{3Q_1}{2G_{13}h} \qquad \Rightarrow \qquad -\varphi_{1,1} + w_{,11} = \frac{3Q_{1,1}}{2G_{13}h} = -\frac{3q}{2G_{13}h}$$

Также из системы (5.2) следует:

$$M_{11} = -D_1 \frac{d^2 w}{dx^2} - \frac{6D_1}{5G_{13}h}q$$

В таком случае:

$$-\varphi_{1,1} = -w_{,11} - \frac{3q}{2G_{13}h} = \frac{M_{11}}{D_1} + \frac{6q}{5G_{13}h} - \frac{3q}{2G_{13}h} = \frac{M_{11}}{D_1} - \frac{3q}{10G_{13}h}$$
$$\sigma_{11} = \frac{E_1}{1 - \nu_{12}\nu_{21}} \left(z \cdot \left(\frac{M_{11}}{D_1} - \frac{3q}{10G_{13}h} \right) - \frac{4z^3}{3h^2} \cdot \left(-\frac{3q}{2G_{13}h} \right) \right)$$

Поскольку $E_1/(1-\nu_{12}\nu_{21})=12D_1/h^3$, то:

$$\frac{h^3}{12D_1}\sigma_{11} = \left(\frac{M_{11}}{D_1} - \frac{3\,q}{10\,G_{13}h}\right)z + \frac{2\,q}{G_{13}\,h^3}\,z^3$$

Таким образом компонента σ_{11} как функция от z имеет вид: $f(z)=a\,z+b\,z^3$, где:

$$f = \frac{h^3}{12D_1}\sigma_{11}$$
 $a = \frac{M_{11}}{D_1} - \frac{3q}{10G_{13}h}$ $b = \frac{2q}{G_{13}h^3}$

Для того, чтобы функция $f(z)=az+bz^3$ была монотонной и не имела перегибов, необходимо выполнение условия: $\frac{a}{b}>0$. Действительно, поскольку $f'(z)=a+3bz^2$ и f''(z)=6bz, то если существует точка, отличная от нуля, в которой производная функции f(z) принимает значение 0, то это точка локального минимума/максимума. А такие точки существуют, когда подкоренное выражение при решении уравнения f'(z)=0 положительно, т.е. -a/3b>0. Таким образом получаем:

$$\left(\frac{M_{11}}{D_1} - \frac{3 q}{10 G_{13} h}\right) \frac{G_{13} h^3}{2q} > 0 \qquad \Rightarrow \qquad \frac{G_{13} \left(1 - \nu_{12} \nu_{21}\right)}{E_1} > \frac{q h^2}{40 M_{11}}$$

Поскольку $\nu_{21} = E_2 \nu_{12} / E_1$, тогда окончательно:

$$\boxed{\frac{G_{13}\left(E_1 - \nu_{12}^2 E_2\right)}{E_1^2} > \frac{qh^2}{40M_{11}}}$$

В большинстве рассматриваемых случаев $E_1 \gg E_2$, поэтому последнее неравенство принимает вид:

$$\frac{G_{13}}{E_1} > \frac{qh^2}{40M_{11}} \tag{5.4}$$

Пример. Рассмотрим ортотропную пластину постоянной толщины h=0.05 под действием равномерно-распределенной нагрузки с плотностью $q=-ph^3$. Для изгибающего момента M_{11} справедливо:

$$M_{11}(x) = \frac{ph^3}{2}x(x-1) = -\frac{q}{2}x(x-1)$$

Тогда из неравенства (5.4) следует:

$$\frac{G_{13}}{E_1} > \frac{1}{20^3} \frac{1}{x(1-x)}$$

К примеру, для сечения x = 0.5 получим:

$$\frac{G_{13}}{E_1} > \frac{1}{2000}$$

Таким образом для данного примера при значениях упругих модулей E_1 и G_{13} , удовлетворяющих последнему неравенству, теория Редди применима и хорошо совпадает с результатами в рамках МКЭ.

6 Цилиндрический изгиб пластины

Рассматривается цилиндрический изгиб ортотропной пластины постоянной толщины $h=\varepsilon,$ закрепленной шарнирно, под действием нагрузки. Пластина обладает симметрией относительно плоскости $x_3=0$

Рис. 2: Пластина

а) Равномерно-распределенная нагрузка

б) Сосредоточенная нагрузка

Рис. 3: Виды рассматриваемых нагрузок

6.1 Равномерно-распределенная нагрузка

Поскольку задачи являются статически определимыми, то явные выражения для моментов и перерезывающих сил могут быть найдены из уравнений статики. Рассмотрим равномернораспределенную нагрузку с плотностью $q=-ph^3$. Из условия равновесия получаем опорные реакции:

$$R_A = R_B = \frac{ph^3}{2}$$

Тогда для перерезывающей силы:

$$Q_1 = Q = -R_A + qx = ph^3\left(x - \frac{1}{2}\right)$$

Для изгибающего момента:

$$M_{11} = M = -R_A x + \frac{qx^2}{2} = \frac{ph^3}{2}x(x-1)$$

6.1.1 Асимптотическая теория

Первое приближение. В соответствии с уравнением (2.8), в первом приближении:

$$\begin{cases} \frac{d^2w^0}{dx^2} = \frac{p}{2D_{11}^{11}} \cdot x(x-1) \\ w^0(0) = 0 \end{cases} \Rightarrow w^0(x) = \frac{p}{24D_{11}^{11}} (x^4 - 2x^3 + x)$$
$$w^0(1) = 0$$

Второе приближение. Поскольку вне зависимости от вида нагрузки $P_{11}^{111} = 0 \Rightarrow D_{11}^{111} = 0$. В соответствии с уравнением (2.9), во втором приближении:

$$\begin{cases} \frac{d^2 w^1}{dx^2} = 0\\ w(0) = 0\\ w(1) = 0 \end{cases} \Rightarrow w^1(x) \equiv 0$$

Третье приближение. В соответствии с уравнением (2.10), в третьем приближении:

$$\begin{cases} \frac{d^2w^2}{dx^2} = -\frac{pD_{11}^{1111}}{(D_{11}^{11})^2} \\ w^2(0) = 0 \\ w^2(1) = 0 \end{cases} \Rightarrow w^2(x) = \frac{pD_{11}^{1111}}{2(D_{11}^{11})^2}(x - x^2)$$

Таким образом прогиб пластины под действием равномерно-распределенной нагрузки в рамках асимптотической теории в третьем приближении имеет вид:

$$w(x) = \frac{p}{24D_{11}^{11}} (x^4 - 2x^3 + x) + \frac{ph^2 D_{11}^{1111}}{2(D_{11}^{11})^2} (x^2 - x)$$

6.1.2 Теория Кирхгофа-Лява

Из системы (3.2)

$$\begin{cases} \frac{d^2w}{dx^2} = -\frac{6p(1 - \nu_{12}\nu_{21})}{E_1} \cdot x(x - 1) \\ w(0) = 0 \\ w(1) = 0 \end{cases}$$

Таким образом прогиб пластины под действием равномерно-распределенной нагрузки в рамках теории Кирхгова-Лява имеет вид:

$$w(x) = -\frac{p(1 - \nu_{12}\nu_{21})}{2E_1} (x^4 - 2x^3 + x)$$

6.1.3 Теория Рейсснера-Миндлина

Плоско-напряженное состояние. Из системы (4.3):

$$\begin{cases} \frac{d^2w}{dx^2} = -\frac{6p(1-\nu_{12}\nu_{21})}{E_1} x(x-1) + \frac{6ph^2}{5G_{13}} \\ w(0) = 0 \\ w(1) = 0 \end{cases}$$

Таким образом прогиб пластины под действием равномерно-распределенной нагрузки в рамках теории Рейсснера-Миндлина в плоско-напряженном состоянии имеет вид:

$$w(x) = -\frac{p(1 - \nu_{12}\nu_{21})}{2E_1} (x^4 - 2x^3 + x) + \frac{3ph^2}{5G_{13}} (x^2 - x)$$

Трехмерное состояние. Из системы (4.4):

$$\begin{cases} \frac{d^2w}{dx^2} = -\frac{6p(1-\nu_{12}\nu_{21})}{E_1} \cdot x(x-1) + \frac{6ph^2}{5G_{13}} - \frac{6ph^2(\nu_{13}+\nu_{12}\nu_{23})}{5E_1} \\ w(0) = 0 \\ w(1) = 0 \end{cases}$$

Таким образом прогиб пластины под действием равномерно-распределенной нагрузки в рамках теории Рейсснера-Миндлина в трехмерном состоянии имеет вид:

$$w(x) = -\frac{p(1 - \nu_{12}\nu_{21})}{2E_1} (x^4 - 2x^3 + x) + \left[\frac{3ph^2}{5G_{13}} - \frac{3ph^2(\nu_{13} + \nu_{12}\nu_{23})}{5E_1} \right] (x^2 - x)$$

6.1.4 Теория Редди

Поскольку дифференциальное уравнение в рамках теории Рейсснера-Миндлина идентично теории Редди, то решение в плоско-напряженном и трехмерном состоянии записывается аналогичным образом.

6.2 Сосредоточенная нагрузка

Рассмотрим сосредоточенную нагрузку $P = ph^3$. Из условия равновесия получаем опорные реакции:

$$R_A = R_B = \frac{P}{2} = \frac{ph^3}{2}$$

Тогда для перерезывающей силы и изгибающего момента соответственно:

$$Q_{1} = Q = \begin{cases} -\frac{ph^{3}}{2}, & x \in [0; 0.5) \\ \frac{ph^{3}}{2}, & x \in [0.5; 1] \end{cases} \qquad M_{11} = M = \begin{cases} -\frac{ph^{3}}{2} \cdot x, & x \in [0; 0.5) \\ \frac{ph^{3}}{2} \cdot (x - 1), & x \in [0.5; 1] \end{cases}$$

Обозначим: w^- — прогиб пластины w(x) на отрезке $x \in [0; 0.5]$ w^+ — прогиб пластины w(x) на отрезке $x \in [0.5; 1]$

6.2.1 Асимптотическая теория

Первое приближение. В соответствии с уравнением (2.8), для левой и правой половины в первом приближении:

$$\begin{cases} \frac{d^2 w_{-}^0}{dx^2} = -\frac{p}{2D_{11}^{11}} \cdot x \\ w_{-}^0(0) = 0 \end{cases} \cdot x \qquad \begin{cases} \frac{d^2 w_{+}^0}{dx^2} = \frac{p}{2D_{11}^{11}} \cdot (x-1) \\ w_{+}^0(1) = 0 \end{cases}$$

Необходимо рассмотреть дополнительные условия для определения всех констант интегрирования на каждом отрезке. В силу непрерывности функции w(x) в качестве дополнительных условий предлагается использовать следующие:

$$w_{-}^{0}\left(\frac{1}{2}\right) = w_{+}^{0}\left(\frac{1}{2}\right) \qquad \frac{dw_{-}^{0}}{dx}\left(\frac{1}{2}\right) = \frac{dw_{+}^{0}}{dx}\left(\frac{1}{2}\right) \tag{6.1}$$

Решая соответствующую дифференциальную задачу, получим прогиб пластины в первом приближении:

$$w_{-}^{0}(x) = \frac{p}{48D_{11}^{11}} \left(-4x^{3} + 3x \right) \qquad w_{+}^{0}(x) = \frac{p}{48D_{11}^{11}} \left(4x^{3} - 12x^{2} + 9x - 1 \right)$$

Второе приближение. Поскольку вне зависимости от вида нагрузки $P_{11}^{111} = 0$, то $D_{11}^{111} = 0$. Рассматривая с учетом этого уравнение (2.9) на левой и правой половине пластины и используя те же дополнительные условия (6.1), что и в первом приближении, получим:

$$w_-^1(x) \equiv 0 \qquad \qquad w_+^1(x) \equiv 0$$

Третье приближение. В соответствии с уравнением (2.10), в третьем приближении:

$$D_{11}^{11}w_{,11}^{2} + D_{11}^{1111}w_{,1111}^{0} = 0 \qquad \Rightarrow \qquad w_{,11}^{2} = -\frac{D_{11}^{1111}}{D_{11}^{11}}w_{,1111}^{0}$$
$$w^{2}(x) = -\frac{D_{11}^{1111}}{D_{11}^{11}}w_{,11}^{0} + C_{1}x + C_{2}$$

Рассматривая данную задачу на левой и правой половине пластины, получим:

$$w_{-}^{2}(x) = \frac{pD_{11}^{1111}}{2(D_{11}^{11})^{2}} \cdot x \qquad \qquad w_{+}^{2}(x) = \frac{pD_{11}^{1111}}{2(D_{11}^{11})^{2}} \cdot (1-x)$$

Таким образом прогиб пластины под действием сосредоточенной нагрузки в рамках асимптотической теории в третьем приближении имеет вид:

$$w^{-}(x) = \frac{p}{48D_{11}^{11}} \left(-4x^3 + 3x \right) + \frac{ph^2 D_{11}^{1111}}{2 \left(D_{11}^{11} \right)^2} x$$

$$w^{+}(x) = \frac{p}{48D_{11}^{11}} \left(4x^3 - 12x^2 + 9x - 1 \right) + \frac{ph^2 D_{11}^{1111}}{2 \left(D_{11}^{11} \right)^2} \left(1 - x \right)$$

6.2.2 Теория Кирхгофа-Лява

В соответствии с пунктом 3, получаем дифференциальных задачи на левой и правой половине пластины:

$$\begin{cases} \frac{d^2w^-}{dx^2} = \frac{6p(1-\nu_{12}\nu_{21})}{E_1} \cdot x \\ w^-(0) = 0 \end{cases} \cdot x \qquad \qquad \mathbf{H} \qquad \begin{cases} \frac{d^2w^+}{dx^2} = \frac{6p(1-\nu_{12}\nu_{21})}{E_1} \cdot (1-x) \\ w^+(1) = 0 \end{cases}$$

Используя дополнительные условия (6.1) и решая соответствующую задачу, в результате получим:

$$w^{-}(x) = -\frac{p(1 - \nu_{12}\nu_{21})}{4E_1} (-4x^3 + 3x)$$

$$w^{+}(x) = -\frac{p(1 - \nu_{12}\nu_{21})}{4E_1} (4x^3 - 12x^2 + 9x - 1)$$

6.2.3 Теория Рейсснера-Миндлина

Плоско-напряженное состояние. При рассмотрении сосредоточенной нагрузки предлагается последовательно найти сначала функцию φ_1 , а затем и прогиб w(x). Рассмотрим записанное ранее уравнение:

$$M_{11} = -\frac{E_1 h^3}{12(1 - \nu_{12}\nu_{21})} \cdot \varphi_{1,1} - \frac{E_2 \nu_{12} h^3}{12(1 - \nu_{12}\nu_{21})} \cdot \varphi_{2,2}$$

Поскольку $\varphi_2 = 0$, то:

$$\varphi_1 = -\frac{12(1 - \nu_{12}\nu_{21})}{E_1 h^3} \int_0^x M_{11}(\zeta) d\zeta + C_0$$

Рассмотрим левую половину пластины, на которой выполняется:

$$M_{11}(x) = -\frac{ph^3}{2}x$$
 $Q_1 = -\frac{ph^3}{2}$

Тогда:

$$\varphi_1 = \frac{3p(1 - \nu_{12}\nu_{21})}{E_1} x^2 + C_0$$

Из соображений симметрии компонента перемещений $u_1 = -z \cdot \varphi_1$ в точке x = 1/2 должна равняться нулю. Следовательно:

$$\varphi_1\left(\frac{1}{2}\right) = 0 \qquad \Rightarrow \qquad C_0 = -\frac{3p(1 - \nu_{12}\nu_{21})}{4E_1}$$

$$\varphi_1(x) = \frac{3p(1 - \nu_{12}\nu_{21})}{4E_1} \cdot (4x^2 - 1)$$

Из уравнений (4.2):

$$-\varphi_1 + w_{,1} = \frac{6Q_1}{5G_{13}h}$$
 \Rightarrow $w_{,1} = \varphi_1 + \frac{6Q_1}{5G_{13}h}$

Интегрируя последнее уравнение, получим:

$$w(x) = \frac{p(1 - \nu_{12}\nu_{21})}{4E_1} \cdot (4x^3 - 3x) - \frac{6ph^2}{5G_{13}} \cdot x + C_1$$

Константа интегрирования находится из условия закрепления на левом конце:

$$w(0) = 0 \qquad \Rightarrow \qquad C_1 = 0$$

Таким образом:

$$w(x) = \frac{p(1 - \nu_{12}\nu_{21})}{4E_1} \cdot (4x^3 - 3x) - \frac{6ph^2}{5G_{13}} \cdot x$$

Прогиб пластины на правой половине находится аналогично. В результате:

$$w^{-}(x) = -\frac{p(1 - \nu_{12}\nu_{21})}{4E_1} (-4x^3 + 3x) - \frac{3ph^2}{5G_{13}} x$$

$$w^{+}(x) = -\frac{p(1 - \nu_{12}\nu_{21})}{4E_1} (4x^3 - 12x^2 + 9x - 1) - \frac{3ph^2}{5G_{13}} (1 - x)$$

Трехмерное состояние. Аналогично, рассмотрим записанное ранее уравнение:

$$M_{11} = -\frac{E_1 h^3}{12(1 - \nu_{12}\nu_{21})} \cdot \varphi_{1,1} - \frac{E_2 \nu_{12} h^3}{12(1 - \nu_{12}\nu_{21})} \cdot \varphi_{2,2} - \frac{\nu_{13} + \nu_{12}\nu_{23}}{1 - \nu_{12}\nu_{21}} \cdot \frac{h^2}{10} Q_{I,I}$$

Поскольку $\varphi_2 = 0$, то:

$$\varphi_1 = \frac{12(1 - \nu_{12}\nu_{21})}{E_1 h^3} \cdot \left[-\int_0^x M_{11}(\zeta)d\zeta - \frac{\nu_{13} + \nu_{12}\nu_{23}}{1 - \nu_{12}\nu_{21}} \cdot \frac{h^2}{10} Q_1 \right] + C_0$$

Рассматривая левую половину пластины, на получим:

$$\varphi_1 = \frac{3p(1 - \nu_{12}\nu_{21})}{E_1} \cdot x^2 + \frac{3ph^2(\nu_{13} + \nu_{12}\nu_{23})}{5E_1} + C_0$$

Из соображений симметрии компонента перемещений $u_1 = -z \cdot \varphi_1$ в точке x = 1/2 должна равняться нулю. Следовательно:

$$\varphi_1\left(\frac{1}{2}\right) = 0 \qquad \Rightarrow \qquad C_0 = -\frac{3p(1 - \nu_{12}\nu_{21})}{4E_1} - \frac{3ph^2(\nu_{13} + \nu_{12}\nu_{23})}{5E_1}$$
$$\varphi_1(x) = \frac{3p(1 - \nu_{12}\nu_{21})}{4E_1} \cdot \left(4x^2 - 1\right)$$

Следовательно, функции $\varphi_1(x)$ для плоско-напряженного и трехмерного состояния совпадают. Дальнейшие рассуждения аналогичны пункту 6.2.3. Таким образом прогибы пластины в рамках теории Рейсснера-Миндлина для трехмерного и плоско-напряженного состояния совпадают.

6.2.4 Теория Редди

Поскольку дифференциальное уравнение в рамках теории Рейсснера-Миндлина идентично теории Редди, то решение в плоско-напряженном и трехмерном состоянии записывается аналогичным образом.

7 Моделирование

Рассмотрим некоторые реальные примеры композитных материалов и сравним результаты расчетов в рамках теорий, изложенных ранее.

Однослойный волокнистый композит

Рассмотрим волокнистый двухкомпонентный композит [15], в котором волокна, называемые кордными нитями или просто кордами, располагают так, чтобы их оси лежали в одной плоскости параллельно друг другу. Пусть кордный угол φ (рис. 4) равен нулю. Таким образом направление волокон совпадает с направлением оси Ox. Далее индексом r обозначим параметры резины, а c — корда. Пусть h — толщина слоя (совпадает с толщиной пластины), d — диаметр корда, p — шаг (расстояние между соседними волокнами). Тогда объёмные концентрации определяются по формулам:

$$\gamma_r = 1 - \gamma_c$$

$$\gamma_c = \frac{\pi d^2}{4h(p+d)}$$

Рис. 4: Направление корда в слое

Эффективный модуль Юнга E_L будем искать по правилу смеси, а для вычисления модуля E_T воспользуемся формулой Акасака:

$$E_L = E_c \gamma_c + E_r \gamma_r \qquad \frac{1}{E_T} = \frac{\gamma_c}{E_c} + \frac{\gamma_r}{E_r} - \gamma_c \gamma_r \frac{\left(\frac{\nu_r}{E_r} - \frac{\nu_c}{E_c}\right)^2}{\frac{\gamma_c}{E_r} + \frac{\gamma_r}{E_c}}$$

Эффективный коэффицент Пуассона ν_{LT} и модуль сдвига G_{LT} считаем по формулам:

$$\nu_{LT} = \nu_c \gamma_c + \nu_r \gamma_r \qquad \qquad \frac{1}{G_{LT}} = \frac{\gamma_r}{G_r} + \frac{\gamma_c}{G_c} = \frac{2\gamma_c (1 + \nu_c)}{E_c} + \frac{2\gamma_r (1 + \nu_r)}{E_r}$$

Таблица 3: Эффективные свойства волокнистого композита для различных материалов корда

	Свойства корда				Эффективные модули композита			
Материал	γ_c	E_c (GPa)	ν_c	G_c (GPa)	E_L	E_T	$ u_{LT}$	G_{LT}
Олово	0.12	35	0.44	12.2	4.2132	0.0227	0.4927	0.00568
Алюминий	0.12	70	0.34	26	8.4132	0.0227	0.4807	0.00568
Медь	0.12	110	0.35	41	13.2132	0.0227	0.4819	0.00568
Титан	0.12	112	0.32	42.4	13.4532	0.0227	0.4783	0.00568
Сталь	0.12	200	0.25	80	24.0132	0.0227	0.4699	0.00568
Вольфрам	0.12	350	0.29	135.7	42.0132	0.0227	0.4747	0.00568

Существенное влияние на прогиб пластины также оказывает модуль G_{13} . В соответствии с [14], для однонаправленных волокнистых композитов можно принять $G_{13} = G_{12} = G_{LT}$.

Далее приводятся результаты расчетов для равномерно-распределенной нагрузки плотностью $q=-ph^3$ и сосредоточенной нагрузки $P=ph^3$.

Рис. 5: Равномерно-распределенная нагрузка, материал корда: олово

Рис. 6: Равномерно-распределенная нагрузка, материал корда: алюминий

Рис. 7: Равномерно-распределенная нагрузка, материал корда: медь

Рис. 8: Равномерно-распределенная нагрузка, материал корда: титан

Рис. 9: Равномерно-распределенная нагрузка, материал корда: сталь

Рис. 10: Равномерно-распределенная нагрузка, материал корда: вольфрам

Рис. 11: Сосредоточенная нагрузка, материал корда: олово

Рис. 12: Сосредоточенная нагрузка, материал корда: алюминий

Рис. 13: Сосредоточенная нагрузка, материал корда: медь

Рис. 14: Сосредоточенная нагрузка, материал корда: титан

Рис. 15: Сосредоточенная нагрузка, материал корда: сталь

Рис. 16: Сосредоточенная нагрузка, материал корда: вольфрам

Полидисперсная модель среды с цилиндрическими включениями

Рассмотрим полидиперсную модель среды с цилиндрическими включениями, описанную Хашином и Розеном [18], в рамках которой волокна представляют собой бесконечно длинные круговые цилиндры, заключенные в непрерывную матрицу. Модель схематически представлена на рис. 17.

Рис. 17: Полидисперсная модель с цилиндрическими включениями

Согласно данной модели, с каждым отдельным волокном радиуса a связана оболочка из материала радиуса b. Каждая отдельная комбинация волокна и матрцы называется составным цилиндром. Абсолютные значения a и b могут быть различны, так что получается конфигурация, целиком заполненная этими цилиндрами. Отношение радиусов цилиндра a/b тем не менее должно оставаться постоянным. Абсолютный размер отдельных цилиндров при этом меняется вплоть до бесконечно малого.

Пусть γ_F и γ_M — объёмные концентрации включений и матрицы соответственно, $k=E/(3(1-2\nu))$ — объемный модуль, $G=E/(2(1+\nu))$ — модуль сдвига. В соответствии с [16], эффективные свойства для полидисперсной модели с цилиндрическими включениями расчитываются следующим образом:

$$\begin{split} E_{11} &= \gamma_F E_F + \gamma_M E_M + \frac{4\gamma_F \gamma_M \left(\nu_F - \nu_M\right)^2 G_M}{\gamma_M G_M / (k_F + G_F / 3) + \gamma_F G_M / (k_M + G_M / 3) + 1} \\ \nu_{12} &= \gamma_M \nu_M + \gamma_F \nu_F + \frac{\gamma_F \gamma_M (\nu_F - \nu_M) [G_M / (k_M + G_M / 3) - G_M / (k_F + G_F / 3)]}{\gamma_M G_M / (k_F + G_F / 3) + \gamma_F G_M / (k_M + G_M / 3) + 1} \\ K_{23} &= k_M + \frac{G_M}{3} + \frac{\gamma_F}{1 / [k_F - k_M + 4 / 3 (G_F - G_M)] + \gamma_M / (k_M + 4 / 3 G_M)} \\ G_{23} &= G_M + \frac{\gamma_F}{1 / (G_F - G_M) + \gamma_M (k_M + G_M / 3 + 2 G_M) / 2 G_M (k_M + G_M / 3 + G_M)} \\ G_{12} &= G_M \frac{G_F (1 + \gamma_F) + \gamma_M G_M}{\gamma_M G_F + G_M (1 + \gamma_F)} \\ E_{22} &= \frac{4G_{23} K_{23}}{K_{23} + G_{23} + 4\nu_{12}^2 G_{23} K_{23} / E_{11}} \\ \nu_{23} &= \frac{K_{23} - G_{23} - 4\nu_{12}^2 G_{23} K_{23} / E_{11}}{K_{23} + G_{23} + 4\nu_{12}^2 G_{23} K_{23} / E_{11}} \end{split}$$

Соотношения напряжение-деформация принимают вид:

$$\{\varepsilon_i\} = [S_{ij}] \{\sigma_i\}$$

Здесь $\{\sigma_i\}$ и $\{\varepsilon_i\}$ – шестикомпонентные вектор-столбцы, $[S_{ij}]$ – квадратная матрица 6×6 :

$$[S_{ij}] = \begin{bmatrix} \frac{1}{E_{11}} & -\frac{\nu_{12}}{E_{11}} & -\frac{\nu_{12}}{E_{11}} & 0 & 0 & 0\\ -\frac{\nu_{21}}{E_{22}} & \frac{1}{E_{22}} & -\frac{\nu_{32}}{E_{22}} & 0 & 0 & 0\\ -\frac{\nu_{21}}{E_{22}} & -\frac{\nu_{23}}{E_{22}} & \frac{1}{E_{22}} & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{1}{G_{12}} & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{1}{G_{23}} & 0\\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G_{12}} \end{bmatrix}$$

В качестве примера рассмотрим полидисперсный композит с матрицей в виде эпоксидной смолы и углеродными волокнами. В соответствии с [14], в таблице 4 приводятся упругие модули, используемые при расчете ээфективных свойств полидисперсной среды.

Таблица 4: Механические свойства матрицы и включений

			Упругие модули				
Материал	γ	E (GPa)	ν	k (GPa)	G (GPa)		
Эпоксидная смола	0.5	2.4	0.35	2.7	0.9		
Углерод	0.5	850	0.27	616	334.65		

Эффективные модули композита в соответствии с ранее определенными формулами:

Таблица 5: Эффективные свойства полидисперсной среды с цилиндрическими включениями

	1 1	/ 1	1 / 1	1 11	7 11		
E_{11} (GPa)	E_{22} (GPa)	$ u_{12}$	$ u_{23}$	G_{12} (GPa)	G_{23} (GPa)		
426.2	6.9	0.3048	0.4881	2.6479	2.3209		

Далее приводятся результаты расчетов для равномерно-распределенной нагрузки плотностью $q=-ph^3$ и сосредоточенной нагрузки $P=ph^3$.

Рис. 18: Полидисперсная модель композита: равномерно-распределенная нагрузка

Рис. 19: Полидисперсная модель композита: сосредоточенная нагрузка

8 Заключение

Описана общая процедура нахождения локальных функций жесткости и гладкой составляющей прогиба для случая изгиба ортотропной пластины в рамках асимптотической теории, основанной на разложении поля перемещений в асимптотический ряд, а также были получены уравнения первых трех приближений. Также приведено обоснование применения метода в задаче с двумя малыми параметрами в случае сильно-ортотропной пластины: исходную задачу с сильной ортотропией можно сводить к задаче для «новой» более толстой пластины уже без сильной ортотропии, в результате чего получается задача лишь с одним малым параметром, для которой метод асимптотического разложения применим и строго обоснован. Достоинством описанной теории является отсутствие каких-либо гипотез, свойственных классическим теориям изгиба пластин.

Также в работе описана процедура получения уравнений изгиба пластины для классической теории Кирхгофа-Лява, а также уточненных теорий Рейсснера-Миндлина и Редди. Показано, что для теории Рейсснера-Миндлина при сдвиговом коэффиценте $\kappa=5/6$ и теории Редди дифференциальные уравнения прогиба пластины принимают аналогичный вид. Следует отметить, что для однородной изотропной пластины, как видно из дифферециальных уравнений изгиба пластины, асимптотическая теория в первом приближении приводит к уравнениям, аналогичным теории Кирхгофа-Лява, а в третьем — теории Рейсснера-Миндлина и Редди. Однако несмотря на данное совпадение теория Рейсснера-Миндлина приводит к другому распределению напряжений по толщине пластины, чем третье приближение асимптотической теории и теория Редди. Таким образом распределения компонент σ_{IJ} по толщине пластины для теорий Кирхгофа-Лява и Рейсснера-Миндлина в рамках рассматриваемых видов нагрузок совпадают и являются линейными, а для асимптотической теории и теории Редди получаются крайне близкими и изменяются по кубическому закону.

Для сравнения полученных результатов были рассмотрены модели однослойного волокнистого композита и полидисперсной среды с цилиндрическими включениями под действием равномерно-распределенной или сосредоточенной нагрузки. Для верификации расчетов также были приведены результаты численного решения задачи трехмерной теории упругости на основе конечно-элементного метода, реализованного в программном комплексе ANSYS на мелкой сетке.

Таким образом в ряде случаев, когда тело обладает сильно-ортотропными свойствами, ни классическая теория Кирхгофа-Лява, ни уточненная теория Рейсснера-Миндлина не могут гарантировать получения требуемой точности расчетов напряженно-деформированного состояния, в то время как асимптотическая теория и теория Редди позволяют проводить вычисления с высокой точностью. Поэтому для получения адекватных результатов расчетов необходимо использовать более точные теории высоких порядков. Однако следует отметить, что существует граница применения данных теорий: в случае, когда отношение модулей E_1 и G_{13} превышает определенное для рассматриваемой задачи значение, теория Редди и асимптотическая теория приводят к нефизичному результату, который может сильно расходиться с истинным напряженно-деформированным состоянием. В изотропном же случае и в ряде ортотропных случаев для получения требуемой точности расчетов вполне допустимо использование и классических теории типа Кирхгофа-Лява и Рейсснера-Миндлина, которые сочетают в себе достаточную в определенных случаях точность для практических целей с простотой аналитического исследования.

9 Приложения

Закон Гука для плоско-напряженного состояния

$$\begin{cases} \sigma_{11} = \frac{1}{1 - \nu_{12}\nu_{21}} \left[E_1 \varepsilon_{11} + E_2 \nu_{12} \varepsilon_{22} \right] \\ \sigma_{22} = \frac{1}{1 - \nu_{12}\nu_{21}} \left[E_2 \varepsilon_{22} + E_1 \nu_{21} \varepsilon_{11} \right] \\ \sigma_{12} = G_{12} \gamma_{12} \\ \sigma_{13} = \sigma_{23} = \sigma_{33} = 0 \end{cases}$$

Закон Гука для трехмерного состояния

$$\varepsilon_{11} = \frac{1}{E_1} (\sigma_{11} - \nu_{12}\sigma_{22} - \nu_{13}\sigma_{33}) \qquad \varepsilon_{12} = \frac{\sigma_{12}}{G_{12}} \qquad \frac{\nu_{12}}{E_1} = \frac{\nu_{21}}{E_2}$$

$$\varepsilon_{22} = \frac{1}{E_2} (\sigma_{22} - \nu_{23}\sigma_{33} - \nu_{21}\sigma_{11}) \qquad \varepsilon_{23} = \frac{\sigma_{23}}{G_{23}} \qquad \frac{\nu_{13}}{E_1} = \frac{\nu_{31}}{E_3}$$

$$\varepsilon_{33} = \frac{1}{E_3} (\sigma_{33} - \nu_{31}\sigma_{11} - \nu_{32}\sigma_{22}) \qquad \varepsilon_{31} = \frac{\sigma_{31}}{G_{31}} \qquad \frac{\nu_{23}}{E_2} = \frac{\nu_{32}}{E_3}$$

Закон Гука, разрешенный относительно напряжений:

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{bmatrix} = \begin{bmatrix} g_{11} & g_{12} & g_{13} & 0 & 0 & 0 \\ g_{12} & g_{22} & g_{23} & 0 & 0 & 0 \\ g_{13} & g_{23} & g_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & g_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & g_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & g_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{23} \\ \varepsilon_{13} \\ \varepsilon_{12} \end{bmatrix}$$

Где:

$$g_{11} = E_1(1 - \nu_{23}\nu_{32})/\Delta \qquad g_{12} = E_2(\nu_{12} + \nu_{13}\nu_{32})/\Delta \qquad g_{44} = G_{23}$$

$$g_{22} = E_2(1 - \nu_{13}\nu_{31})/\Delta \qquad g_{13} = E_3(\nu_{13} + \nu_{12}\nu_{23})/\Delta \qquad g_{55} = G_{13}$$

$$g_{33} = E_3(1 - \nu_{12}\nu_{21})/\Delta \qquad g_{23} = E_3(\nu_{23} + \nu_{21}\nu_{13})/\Delta \qquad g_{66} = G_{12}$$

$$\Delta = 1 - \nu_{12}\nu_{21} - \nu_{23}\nu_{32} - \nu_{31}\nu_{13} - 2\nu_{12}\nu_{23}\nu_{31}$$

Независимость решения от модуля C_{3333}

Решение системы (2.2) слабо зависит от модуля C_{3333} : при значительном изменении данного модуля решение задачи будет изменяться незначительно. Ниже приводятся численные расчеты в рамках МКЭ для сильно ортотропной пластины с модулями $C_{1111}=100,\ C_{1133}=0.5,\ C_{1313}=10$ и толщиной h=0.05 под действием равномерно-распределенной нагрузки плотностью $q=h^3$.

Рис. 20: Независимость решения от модуля C_{3333} : график прогиба w(x) и распределение напряжений σ_{11} по толщине пластины в сечении $x_1=0.5$

Сравнение компоненты σ_{33} в рамках теории Рейсснера-Миндлина и МКЭ

Для всех рассматриваемых примеров в рамках ANSYS: $E_2=E_3=1,\ \nu_{12}=\nu_{13}=\nu_{23}=1/4,\ G_{12}=G_{23}=1.$ Компонента σ_{33} в рамках теории Ресснера-Миндлина имеет вид:

$$\sigma_{33} = \frac{3q}{4} \left[\frac{2}{3} + \frac{2z}{h} - \frac{1}{3} \left(\frac{2z}{h} \right)^3 \right] \tag{*}$$

Расчеты в рамках МКЭ в программном комплексе ANSYS производились на мелкой сетке. Поэтому результаты можно воспринимать как истинное распределение напряжений в пластинке.

Как показывает рисунок 8, компонента σ_{33} , найденная в рамках теорий Рейсснера-

Рис. 21: Распределение компоненты σ_{33} по толщине пластины в сечении $x_1=0.5$

Миндлина, хорошо совпадает с результатами в рамках МКЭ. Следовательно, использование явного выражения (*) для компоненты σ_{33} для теории Редди в трехмерном случае (пункт 5.2.2) является обоснованным.

Список литературы

- [1] Бахвалов Н.С., Панасенко Г.П. Осреднение процессов в периодических средах. Математические задачи механики композиционных материалов. Москва, Наука, 1984.
- [2] Levinski T., Telega J.J. Plates, Laminates and Shells. Asymptotic Analysis and Homogenization. New York, World Scientific Publishing Co., 2010.
- [3] Победря Б.Е. Механика композиционных материалов. Москва, Изд-во Моск. ун-та, 1984.
- [4] Kohn R.V., Vogelius M. A new model of thin plates with rapidly varying thickness. Int. J. Solids and Struct, 1984, pp. 333–350.
- [5] Шешенин С.В. Асимптотический анализ периодических в плане пластин. Изв. РАН. Механика твердого тела, 2006, No 6, c. 71–79.
- [6] Шешенин С.В. Применение метода осреднения к пластинам, периодическим в плане. Вестн. Моск. ун-та. Матем. Механ. 2006. N 1. 47–51.
- [7] Шешенин С.В. Модуль механики композитов для пакета FYDESIS. Чебышевский сборник. 2017;18(3):500-517
- [8] Шешенин С.В., Скопцов К.А. Теория пластин, основанная на методе асимптотических разложений. Математическое моделирование и числен- ные методы, 2014, No 2, c. 49–61.
- [9] Гольденвейзер А.Л. Теория тонких упругих оболочек. М.: Наука, 1976. 512 с.
- [10] Тимошенко С.П., Войновский-Кригер С. Пластины и оболочки. М.: Наука, 1966. 636 с.
- [11] Mindlin R.D. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. ASME J. Appl. Mech. 1951. 18. 31–38.
- [12] Reissner E. The effect of transverse shear deformation on the bending of elastic plates. ASME J. Appl. Mech. 1945. 12. A68-77.
- [13] Reddy J. N. Mechanics of Laminated Composite Plates: Theory and Analysis, Second Edition. CRC Press, Boca Raton, 2004.
- [14] Vasiliev V. V., Morozov E. V. Mechanics and Analysis of Composite Materials. Elsevier Science Ltd., Oxford, 2001.
- [15] Шешенин С.В., Демидович П.В., Чистяков П.В., Муравлев А.В. Упругие свойства резинокорда. Пособие по механическому практикуму. Москва, Изд-во мех-мат МГУ, 2009.
- [16] Кристенсен Р. М. Введение в механику композитов. М.: Мир, 1982. 336 с.
- [17] Kaneko T. On Timoshenko's correction for shear in vibrating beams. J Phys D: Appl. Phys. 1975, 8. 1927–36.
- [18] Hashin Z., Rosen B. W. The elastic moduli of fiber-reinforced materials. J. Appl. Mech., 1964, v.31, p.223