PROJECT REPORT

Pulsar Star Classification using Support Vector Machines (PSSVM)

METHODS USED FOR BUILDING SVM:

The Python package CVXOPT has been used to solve the dual optimization problem involved in the SVM.

The QP solver of CVXOPT solves the following problem:

$$minimize \frac{1}{2}x^T P x + q^T x$$

subject to Ax = b and $Gx \le h$

where x, q, h are vectors and A, P, G, b are matrices

The SVM dual optimization problem is (applying a negative on first condition and on alpha more than 0)

$$min_{\alpha} - \sum_{i=1}^{n} \alpha_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

subject to $\sum_{i=1}^{n} \alpha_i y_i = 0$ and $\alpha_i \leq C$ and $-\alpha_i \leq 0$ for all i

Define H as a matrix such that $H_{ij} = y_i y_j x_i^T x_j$. Let $\alpha = [\alpha_1 \alpha_2 \dots \alpha_n]^T$, $y = [\alpha_1 \alpha_2 \dots \alpha_n]^T$

 $[y_1 \ y_2.....y_n]^T$, $1_n = [1 \ 1.....1]_n^T$ and $k = [0 \ 0 ... 0 \ C \ C ... C]^T$, where 0 and C are

repeated n times. Also, let J be a $2n \times n$ matrix such that the first n rows form the negative $n \times n$ identity matrix and the next n rows form the positive $n \times n$ identity matrix. That is,

[0 0 ... 1]

Then $\alpha^T H \alpha = \sum_{i=1}^n \sum_{j=1}^n \alpha_i H_{ij} \alpha_j = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j x_i^T x_j$, $1_n^T \alpha = \sum_{i=1}^n \alpha_i$, $y^T \alpha = \sum_{i=1}^n \alpha_i y_i$, $M \alpha = \begin{bmatrix} -\alpha_1 - \alpha_2 \dots -\alpha_n & \alpha_1 & \alpha_2 \dots & \alpha_n \end{bmatrix}^T$. Substituting these in the SVM problem, we get

$$min_{\alpha} \frac{1}{2} \alpha^T H \alpha - 1_n^T \alpha$$

subject to
$$y^T \alpha = 0$$
 and $M\alpha \le k$

We note that this is identical to what CVXOPT expects, if

$$P = H, q = -1_n, x = \alpha, b = 0, G = M, h = k$$
.

This has been used in calling the solver in the code.

RESULTS:

Accuracy using our SVM and linear kernel:

75 support vectors out of 800 points

Accuracy: 0.97

Accuracy using our SVM and quadratic kernel:

66 support vectors out of 800 points

Accuracy: 0.965

Accuracy using our SVM and gaussian rbf kernel:

96 support vectors out of 800 points

Accuracy: 0.955

Accuracy using scikit-learn SVM and linear kernel:

Accuracy: 0.94

Accuracy using scikit-learn SVM and quadratic kernel:

Accuracy: 0.935

Accuracy using scikit-learn SVM and gaussian rbf kernel:

Accuracy: 0.95

Grid search table using our SVM and linear & quadratic kernels:

Kernel	Hyperparameters (C)	Accuracy
Linear Linear Linear Linear Linear Quadratic Quadratic	C=0.1 C=1 C=10 C=100 C=1000 C=0.1 C=1	accuracy=0.955 accuracy=0.97 accuracy=0.975 accuracy=0.97 accuracy=0.985 accuracy=0.965 accuracy=0.965
Quadratic Quadratic Quadratic	C=10 C=100 C=1000	accuracy=0.965 accuracy=0.97 accuracy=0.975

Grid search table using our SVM and gaussian rbf kernels:

Hyperparameters (C)	Hyperparameters (gamma)	Accuracy
C=0.1	gamma=0.1	accuracy=0.945
C=0.1	gamma=1	accuracy=0.945
C=0.1	gamma=10	accuracy=0.885
C=0.1	gamma=100	accuracy=0.875
C=0.1	gamma=1000	accuracy=0.875
C=1	gamma=0.1	accuracy=0.955
C=1	gamma=1	accuracy=0.965
C=1	gamma=10	accuracy=0.955
C=1	gamma=100	accuracy=0.885
C=1	gamma=1000	accuracy=0.875
C=10	gamma=0.1	accuracy=0.965
C=10	gamma=1	accuracy=0.965
C=10	gamma=10	accuracy=0.945
C=10	gamma=100	accuracy=0.885
C=10	gamma=1000	accuracy=0.875
C=100	gamma=0.1	accuracy=0.975
C=100	gamma=1	accuracy=0.965
C=100	gamma=10	accuracy=0.925
C=100	gamma=100	accuracy=0.885
C=100	gamma=1000	accuracy=0.875
C=1000	gamma=0.1	accuracy=0.965
C=1000	gamma=1	accuracy=0.965
C=1000	gamma=10	accuracy=0.905
C=1000	gamma=100	accuracy=0.885
C=1000	gamma=1000	accuracy=0.875

Grid search table using scikit-learn SVM & GridSearch and gaussian rbf kernels: Best params: 0.970000 using {'C': 10, 'gamma': 0.1}

	param_C	param_gamma	mean_test_score
0	0.1	0.1	0.94875
1	0.1	1	0.96000
2	0.1	10	0.90750
3	0.1	100	0.90750
4	0.1	1000	0.90750
5	1	0.1	0.96500
6	1	1	0.96875
7	1	10	0.96125
8	1	100	0.91125
9	1	1000	0.90750
10	10	0.1	0.97000
11	10	1	0.96750
12	10	10	0.96125
13	10	100	0.91625
14	10	1000	0.90750
15	100	0.1	0.97000
16	100	1	0.96625
17	100	10	0.94750
18	100	100	0.91625
19	100	1000	0.90750
20	1000	0.1	0.96750
21	1000	1	0.96625
22	1000	10	0.93875
23	1000	100	0.91625
24	1000	1000	0.90750

Calculate accuracy using our SVM and gaussian rbf with best hyper-parameters(c=10 an d gamma=1), after applying PCA:

193 support vectors out of 800 points Accuracy: 0.96

Visualization based on above best hyper-parameters for Train set:

SVM classifier for Train set

Visualization based on above best hyper-parameters for Test set:

