Artificial Intelligence

Knowledge Representation

The Need for a Good Representation

- A computer needs a representation of a problem in order to solve it.
- A representation must be:
 - Efficient not wasteful in time or resources.
 - Useful allows the computer to solve the problem.
 - Meaningful really relates to the problem.

Semantic Nets

- The semantic net is a commonly used representation in Artificial Intelligence.
- A semantic net is a graph consisting of nodes that are connected by edges.
- The <u>nodes</u> represent <u>objects</u>, and the links (edges) between nodes represent relationships between those objects.
- The <u>links</u> are usually labeled to indicate the nature of the relationship.

A simple example of a semantic

net

**Semantic networks are an alternative to predicate logic as a form of knowledge representation. The idea is that we can store our knowledge in the form of a graph

Task #1

- Tom is a cat.
- Tom caught a bird.
- Tom is owned by John.
- Tom is ginger in color.
- Cats like cream.
- The cat sat on the mat.
- A cat is a mammal.
- A bird is an animal.
- All mammals are animals.
- Mammals have fur.

Solution

Frames

- A frame system consists of a number of frames, connected by edges, like a semantic net.
- Class frames describe classes.
- Instance frames describe instances.
- Each frame has a <u>number of slots</u>.
- Each slot can be assigned a <u>slot value</u>.

the semantic net might be represented by the following frames:

		Dog Bob S	
Frame Name	Slot	Slot Value is a is a	
Bob	is a	Builder Fido Owns Builde	r
	owns	Fido Cat chases eats	
	eats	Cheese	
Fido	is a	Dog Fang Mice Cheese)
	chases	Fang	
Fang	is a	Cat	
	chases	Mice	
Mice	eat	Cheese	

Cheese

Builder

Dog

Cat

Frames: A Simple Example

Frame Name	Slot	Slot Value
Bob	is a	Builder
	owns	Fido
	eats	Cheese
Fido	is a	Dog
	chases	Fang
Fang	is a	Cat
	chases	Mice
Mice	eat	Cheese
Cheese		
Builder		
Dog		
Cat		

FOR EXPERT SYSTEMS

 Advantage of frame based system over rule based system is that all the info is stored in one place.

Representational Adequacy

- We can represent the kinds of relationships that we can describe with frames in firstorder predicate logic (FOPL). For example
- $\forall x Dog(x) \rightarrow Mammal(x)$
- For all x's, if x is a dog, then x is a mammal."
- Note that:
- Almost anything that can be expressed using frames can be expressed using <u>first-order predicate logic</u> (FOPL).

Procedures and Demons

- A procedure is a set of instructions associated with a frame (or a slot).
- The procedure can be <u>run upon request</u>.
- A demon is a procedure that is <u>run</u> <u>automatically</u>, usually triggered by an event such as when a value is:
 - Read
 - Written
 - Created
 - Changed

Search Spaces

- Search Trees
- Semantic trees a type of semantic net.
- Used to represent search spaces.
- Root node has no predecessor. (starting point)
- Leaf nodes have no successors.
- Goal nodes (of which there may be more than one) represent solutions to a problem.
- Note that :

A path that leads from the root node to a goal node is called a complete path. A path that leads from the root node to a leaf node that is not a goal node is called a partial path.

Search Trees: An Example

- A is the root node.
- L is the goal node.

IH, I, J, K, M, N and O are leaf nodes.

There is only one complete path:

IA, C, F, L

Semantic nets vs. Semantic trees

 One of the most obvious differences is that <u>semantic nets</u> can contain cycles, but semantic trees cannot

Task#2

Solution

Example 2: The Traveling Salesman

- The Traveling Salesman problem is defined as follows: A salesman must visit each of a set of cities and then return home. The aim of the problem is to find the shortest path that lets the salesman visit each city.
- The Traveling Salesman problem is another classic problem in Artificial Intelligence and is NP-Complete. for large instances of the problem, it can be very difficult for a computer program to solve in a reasonable period of time

A Atlanta

B Boston

C Chicago

D Dallas

E El Paso

Combinatorial Explosion

- Problems that involve assigning values to a set of variables can grow exponentially with the number of variables. This is the problem of combinatorial explosion.
- Some such problems can be extremely hard to solve (NP-Complete, NP-Hard).
- Selecting the correct representation can help to reduce this, as can using heuristics

Problem Reduction

- Breaking a problem down into smaller subproblems (or sub-goals).
- Can be represented using goal trees (or and-or trees).
- Nodes in the tree represent sub-problems.
- The root node represents the overall problem.
- Some nodes are and nodes, meaning all their children must be solved.

Problem Reduction: Example

- E.g. to solve the Towers of Hanoi problem with 4 disks, you can first solve the same problem with 3 disks.
- The solution is thus to get from the first diagram on the left, to the second, and then to apply the solution recursively.