

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/41

Paper 4 Theory (Extended)

May/June 2024

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

Nar	me the process that is used to:	
(a)	convert sulfur dioxide into sulfur trioxide in the manufacture of sulfuric acid	
		[1]
(b)	obtain water from aqueous sodium chloride	
()	·	[1]
(C)	extract aluminium from purified bauxite	[41
		נין
(d)	separate petroleum into useful substances	
		[1]
(e)	produce ethanol from aqueous glucose	
		[1]
(f)	manufacture alkenes and hydrogen from large alkane molecules	
(1)		[1]
(g)	separate a mixture of soluble coloured substances.	
		[1]
	[Total	l: 7]

2 Complete Table 2.1.

Table 2.1

atom or ion	number of protons	number of electrons	number of neutrons
³⁷ C <i>l</i>		17	
⁶³ ₂₉ Cu ⁺			34
	16	18	17

[5]

Write a symbo	l equation for this			
) Some properti	es of sodium, fluc	orine and sodiur	n fluoride are shown	in Table 3.1.
		Table 3.1		
	melting point /°C	boiling point /°C	conduction of electricity when solid	conduction of electricity in aqueous solution
sodium	98	883	good	
luorine	-220	-188	poor	
sodium fluoride	993	1695	poor	good
(ii) Complete	the dot-and-cros			
	the dot-and-cros	s diagram in Fig	j. 3.1 of a molecule o	
		s diagram in Fig		
		s diagram in Fig	g. 3.1 of a molecule of	
Show oute	er shell electrons	s diagram in Figonly. F Fig. 3.1	g. 3.1 of a molecule of	

[2]

	(iv)	Explain in terms of structure and bonding why sodium fluoride has a much hig point than fluorine.	jher melting
			[3]
(c)	Dilu	ite aqueous sodium fluoride undergoes electrolysis.	
	Hyd	drogen is produced at the cathode.	
	(i)	State what is meant by the term electrolysis.	
			[2]
	(ii)	Write an ionic half-equation for the production of hydrogen at the cathode.	
			[2]
			[Total: 14]

4 Hydrogen iodide thermally decomposes into iodine and hydrogen. The reaction is rev	reversible	eaction is	The reaction	/drogen.	and hy	iodine	poses into	/ decom	thermally	n iodide	Hydroger	4
--	------------	------------	--------------	----------	--------	--------	------------	---------	-----------	----------	----------	---

Fig. 4.1 shows a gas syringe containing a mixture of hydrogen iodide, iodine and hydrogen gases. The gas syringe is sealed and the mixture is heated to 300 °C. The mixture of gases reaches equilibrium and is purple.

(a)	State what is meant by the term equilibrium.
	re

(b) The pressure of the mixture is increased. All other conditions stay the same. The position of equilibrium does **not** change.

The colour of the gaseous mixture turns darker purple.

The temperature remains constant.

$$2HI(g) \quad \Longleftrightarrow \quad I_2(g) \quad + \quad H_2(g)$$
 colourless gas
$$\qquad \text{purple gas} \qquad \text{colourless gas}$$

(1)	Explain why the position of equilibrium does not change.
	[1]

(ii) Suggest why the colour of the mixture of gases turns darker purple.

[1]

(c)	The	e temperature of the mixture of gases is decreased. All other conditions stay the same.	
	The	e mixture of gases turns lighter purple.	
	Sta	te what can be deduced about the forward reaction from this information.	
			[1]
(d)	Dec	duce the oxidation number of iodine, I, in:	
	HI.		
	I ₂		 [2]
(e)	Met	thanol is manufactured by reacting carbon monoxide with hydrogen.	
		$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$	
	The	e rate of formation of methanol increases when a catalyst is used.	
	(i)	Choose from the list the element that is most likely to be used as the catalyst.	
		Draw a circle around your chosen answer.	
		calcium carbon copper sodium sulfur	[1]
	(ii)	State the effect on the position of equilibrium when a catalyst is used.	
			[1]
(iii)	State the effect that a catalyst has on the activation energy, $E_{\rm a}$, of a reaction.	
			[1]
		[Total:	10]

(a)	Lea	$\operatorname{Id}(\Pi)$ bromide, PDBr_2 , is an insoluble salt and is made by precipitation.
	(i)	Name ${\bf two}$ aqueous solutions that produce a precipitate of lead(II) bromide when they are mixed.
		1
		2[2]
	(ii)	Describe how to produce a pure sample of lead(II) bromide from the mixture of aqueous solutions in (a)(i).
		[2]
((iii)	Write an ionic equation for the precipitation reaction which produces lead(II) bromide. Include state symbols.
		[3]
(b)	Wh	en iron(II) sulfate crystals are heated strongly, sulfur dioxide gas is given off.
	Des	scribe a test for sulfur dioxide gas.
	test	t
	obs	servations
		[2]
(c)	Cor	mplete the equation for the thermal decomposition of hydrated cobalt(II) nitrate.
		$2\text{Co}(\text{NO}_3)_2 \cdot 4\text{H}_2\text{O} \rightarrow\text{CoO} +\text{NO}_2 + \text{O}_2 +\text{H}_2\text{O}$ [2]

$$CoSO_4 \cdot \mathbf{x}H_2O(s) \rightarrow CoSO_4(s) + \mathbf{x}H_2O(g)$$

A student does an experiment to determine the value of \mathbf{x} in $CoSO_4 \cdot \mathbf{x}H_2O$.

- **step 1** The student weighs a sample of hydrated cobalt(II) sulfate.
- **step 2** The student heats the sample of hydrated cobalt(II) sulfate.
- **step 3** The student weighs the remaining solid after heating.

(i)	Describe what else the student should do to ensure that all the water has been given off No other substances are required.							
		•••						
	[2]						

(ii) In an experiment, 1.405 g of CoSO₄•xH₂O is heated until all the water is given off.

The mass of CoSO₄ that remains is 0.775 g.

 $[M_r: CoSO_4, 155; H_2O, 18]$

Determine the value of \mathbf{x} using the following steps.

Calculate the number of moles of CoSO₄ that remains.

mol

Calculate the mass of H₂O given off.

...... g

• Calculate the number of moles of H₂O given off.

..... mol

• Determine the value of x.

x =[4]

[Total: 17]

- 6 This question is about metals.
 - (a) Fig. 6.1 shows a blast furnace used to extract iron from its ore.

Fig. 6.1

(i)	Coke and iron ore are added at the top of the blast furnace.
	Name one other substance that is added at the top of the blast furnace.
	[1]
(ii)	Name the substance that leaves the blast furnace at A .
	[1]
(iii)	Slag is produced from an impurity in iron ore.
	Name the impurity in iron ore that is converted into slag.
	[1]
(iv)	Name two substances that react together to produce the high temperature in the blast furnace.
	and [1]
(v)	Name two waste gases that leave the blast furnace.
	1
	2[2]
	[-]

(b)	Zind	is produced from zinc oxide in a furnace.	
	The	zinc is produced as a gas. It then forms molten zinc.	
	(i)	Suggest why the zinc produced inside the furnace is a gas.	_,_
	(ii)	State the name of the physical change that occurs when gaseous zinc is converted molten zinc.	l into
(c)	Zind	c is used to coat iron to prevent rusting.	
	(i)	Name the process used to coat iron with zinc as a method of rust prevention.	[4]
	(ii)	When the zinc coating is scratched, the iron underneath does not rust.	. [1]
		Explain why the iron underneath the zinc does not rust.	
			. [2]
(d)	Zind	c oxide neutralises both acids and bases.	
	(i)	State the general name given to oxides that neutralise both acids and bases.	[1]
	(ii)	When zinc oxide neutralises aqueous sodium hydroxide, sodium zincate is formed.	
		The formula of the zincate ion is ZnO ₂ ²⁻ .	
		Deduce the formula of sodium zincate.	[1]
((iii)	Name the zinc compound that forms when zinc oxide neutralises dilute sulfuric acid.	
		[Tota	

7	Many	organic com	pounds con	tain carbon	and hydrog	en only.

(a)	(i)	Organic c	compound	A has	the	following	composition	hy mass
(a)	(1)	Organic	Johnpound	A Has	เมเษ	IOIIOWIIIQ	COMPOSITION	Dy Illass

C, 82.76%; H, 17.24%

Calculate the empirical formula of compound A.

empirical formula =[3]

(ii) Compound **B** has the empirical formula CH₂ and a relative molecular mass of 70.

Determine the molecular formula of compound **B**.

(b) Fig. 7.1 shows a section of polymer Q.

Fig. 7.1

• Draw the displayed formula of the monomer that forms polymer Q.

Name the monomer used to form polymer Q.

[3]

		13	
(c)	Pro hyd	pene, $\rm C_3H_6$, can be produced by heating $\rm C_{11}H_{24}$. The products of the reaction are proper lrogen and one other product in a 1:1:1 mole ratio.	ie.
	Cor	mplete the symbol equation for this reaction.	
		$C_{11}H_{24} \rightarrow C_3H_6 + H_2 + \dots$	[1]
(d)	Car	boxylic acids and esters contain carbon, hydrogen and oxygen only.	
	An	ester X and a carboxylic acid Y both contain 3 carbon atoms.	
	X a	nd Y have the same molecular formula.	
	(i)	State the name given to compounds with the same molecular formula but different structure formulae.	ra
			[1]
	(ii)	Esters are made by the reaction between carboxylic acids and alcohols.	
		Ester X is methyl ethanoate.	
		Name the carboxylic acid and the alcohol used to make methyl ethanoate.	
		carboxylic acid	
		alcohol	
			[2]
	(iii)	Draw the displayed formula of carboxylic acid Y . Name the carboxylic acid.	

[Total: 13]

[2]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

			_									_									 Б
		Z H	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	kryptor 84	54	Xe	xenon 131	98	R	radon	118	Og	oganessor
	=			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	н	iodine 127	85	Αţ	astatine -	117	<u>S</u>	tennessine -
	5			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъ	polonium –	116	^	livermorium -
	>			7	Z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	<u>B</u>	bismuth 209	115	Mc	moscovium -
	≥			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium -
	≡			5	Ф	boron 11	13	Αί	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	l1	thallium 204	113	R	nihonium –
										30	Zu	zinc 65	48	В	cadmium 112	80	Нg	mercury 201	112	ပ်	copernicium
										29	D C	copper 64	47	Ag	silver 108	79	Αn	gold 197	111	Rg	roentgenium -
Group										28	Z	nickel 59	46	Pd	palladium 106	78	చ	platinum 195	110	Ds	darmstadtium -
ğ				-						27	ပိ	cobalt 59	45	몬	rhodium 103	77	Ä	iridium 192	109	Ĭ	meitnerium -
		- I	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	H	hassium -
										25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
					pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	٦	tantalum 181	105	Вb	dubnium –
					ato	rek				22	j	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿆	rutherfordium -
										21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium -
	_			က	:=	lithium 7	11	Na	sodium 23	19	×	potassium 39	37	Вb	rubidium 85	55	Cs	caesium 133	87	ቷ	francium -

_			_	_			
7.1	Γn	lutetium	175	103	۲	lawrencium	I
70	Υp	ytterbium	173	102	8	nobelium	I
69	Tm	thulium	169	101	Md	mendelevium	1
89	Щ	erbinm	167	100	Fm	fermium	ı
29	웃	holmium	165	66	Es	einsteinium	I
99	Dy	dysprosium	163	86	ర్	californium	I
65	Tp	terbium	159	26	BK	berkelium	ı
64	gg	gadolinium	157	96	Cm	curium	1
63	En	europium	152	92	Am	americium	ı
62	Sm	samarium	150	94	Pn	plutonium	ı
61	Pm	promethium	ı	93	Δ	neptunium	ı
09	pN	neodymium	144	92	\supset	uranium	238
69	Ā	praseodymium	141	91	Ра	protactinium	231
58	Ce	cerium	140	06	Т	thorium	232
22	Гa	lanthanum	139	89	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).