Interconnection Networks

Connecting Multiple Devices

- Connecting multiple devices
- Performance metrics
- Shared vs. switched media
- Network characteristics
- Network topologies
- Torus topologies
- Performance and cost comparisons
- Network routing
- Flow control and switching

Connecting Devices

- Devices:
 - Components within a computer (CPUs, memory, cache, I/O, ...)
 - Computers (single board, workstations, supercomputers, ...)
 - Systems of computers (grid, clusters, WSC, ...)
- Types of elements:
 - End nodes, links, interconnection network, internetworking

New Computer Architecture

- Networking affects the scalability of the system.
 - How many and how powerful end nodes?
 - How fast and scalable network?
 - Performance vs. cost, bandwidth vs. latency
 - Energy efficiency
 - Computation vs. communication
- New computer architecture
 - Traditional architecture + interconnection

Network Domains

OCN, SAN, LAN, WAN

- On-chip networks (or NoCs)
 - Microarchitectural elements (CPUs, cache, registers, ...)
 - 100s of devices in the order of centimeters, metal layer
 - IBM Cell, Sun's Niagara, Intel Teraflops
- System/storage area networks:
 - Multiprocessor and multicomputer systems
 - 100s–1000s of devices on the order of 10s of meters, copper wire
 - InfiniBand (120 Gbps), Myrinet
- Local area networks:
 - Interconnect autonomous computer systems,
 - 100s of devices within a few kilometers
 - Ethernet, copper
- Wide area networks:
 - Across the globe, many millions of devices interconnected
 - · ATM, optical

Networking of Two Devices

- Two end-node devices on a dedicated link
 - Basic protocol: request, reply
 - Integrated with operating system (OS)

Networking Basics

- Performance metrics
 - Transmission time, transport latency, overhead
- Topology
 - How switches are wired
 - Affects routing, reliability, throughput, latency
- Routing
 - How a message travels
- Buffering and flow control
 - What to store within the network
 - How to throttle during oversubscription

ENGINEERING@SYRACUSE

Performance Metrics

Performance Metrics

Transmission time

- The time to pass through the network, not including the time of flight
- Equal to the packet size divided by the data bandwidth of the link

Transport latency

- Sum of the time of flight and the transmission time
- Measures the time that a packet spends in the network

Sending overhead (latency)

- Time to prepare a packet for injection, including hardware/software
- A constant term (packet size) plus a variable term (buffer copies)

Receiving overhead (latency)

- Time to process an incoming packet at the end node
- A constant term plus a variable term
- Includes cost of interrupt, packet reorder, and message reassembly

Effective Bandwidth

Latency = sending overhead + time of flight + packet size/bandwidth + receiving overhead

Effective bandwidth = min ($BW_{NetworkInjection}$, $BW_{Network}$, $BW_{NetworkReception}$)

Effective Bandwidth (cont.)

Transmission time is the limiter for OCNs.

Overhead limits SANs for packets sizes < 800 bytes.

ENGINEERING@SYRACUSE

Shared vs. Switched Media

Shared Media Networks

- Network media is shared by all the devices.
 - Broadcasting network: bus, crossbar, ...
 - Half-duplex or full-duplex
- Arbitration:
 - Small scale: dedicated control lines
 - Large scale: carrier sensing + collision detection + retransmission
- Straightforward switching and routing.

Switched Media Networks

- Disjointed parts of the media are shared via switching.
- Switch fabric components.
 - Passive point-to-point links
 - Active switches
- Dynamically establish communication between sets of sourcedestination pairs.
- Aggregate bandwidth can be many times higher than that of sharedmedia networks.

Switched Media Networks (cont.)

Routing

- Every time a packet enters the network, it is routed.
- Arbitration
 - Centralized or distributed
 - Resolves conflicts among concurrent requests
- Switching
 - Once conflicts are resolved, the network "switches in" the required connections.
- Established order: routing, arbitration, and then switching

Shared vs. Switched

- Shared-media networks
 - Low cost.
 - Aggregate network bandwidth does not scale with number of devices.
 - Global arbitration scheme required (a possible bottleneck).
 - Time of flight increases with the number of end nodes.
- Switched-media networks
 - Aggregate network bandwidth scales with number of devices.
 - Concurrent communication.
 - Potentially much higher network effective bandwidth.

ENGINEERING@SYRACUSE

Network Characteristics

Network Characteristics

- Performance
 - Latency per message (unloaded network)
 - Throughput
 - Link bandwidth
 - Total network bandwidth
 - Bisection bandwidth
 - Congestion delays (depending on traffic)
- Cost
- Power
- Routability in silicon

Network Topology

- One switch suffices to connect a small number of devices.
 - Number of switch ports limited by VLSI technology, power consumption, packaging, and other such cost constraints.
- A fabric of interconnected switches is needed when the number of devices is much larger.
 - The topology must make a path(s) available for every pair of devices—property of connectedness or full access.
- Topology defines the connection structure across all components.
 - Bisection bandwidth: the minimum bandwidth of all links crossing a network split into two roughly equal halves
- Topology is constrained primarily by local chip/board pinouts; secondarily, (if at all) by global bisection bandwidth.

Network Topology (cont.)

- 1970s and 1980s
 - Topologies to reduce hop count
- 1990s
 - Pipelined transmission and switching.
 - Packet latency became decoupled from hop count.
- 2000s
 - Topology still important (especially OCNs, SANs) when N is high.
 - Topology impacts performance and has a major impact on cost.

Topologies

Arrangements of processors, switches, and links

Multistage Networks

a. Crossbar

b. Omega network

c. Omega network switch box

ENGINEERING@SYRACUSE

Network Topologies

Buses

- Simple, cost effective, easy coherence
 - Snooping and serialization
- Not scalable to large number of nodes
 - Limited bandwidth, high contention
- → For a small number of nodes

Crossbar (Indirect) Networks

- Concurrent messages to nonconflicting destinations.
- Low latency and high throughput.
- Expensive and not scalable. Cost: O(N²).
- Used in core-to-cache-bank networks.
- Indirect: Nodes and switches are separate.
- → Good for small number of devices.

Sun Niagara

Ultra Sparc T2

Multistage Interconnection

- Crossbar split into several stages of smaller crossbars.
- Cost: O(N×log N), latency: O(logN).
- Variations: omega, butterfly,...
- Interstage connections represented by a set of permutation functions.

- N input/output ports
- k x k switches
- log_kN switch stages, each with N/k switches
- N/k(log_kN) total number of switches

Omega topology perfect-shuffle exchange

16-Port, Four-Stage Omega Network

16-Port, Four-Stage Butterfly Network

Backplante of M3-E128 switch

Myrinet-2000 clos network for 128 hosts

Distributed (Direct) Networks

- Tight integration of end-node devices with network resources.
 - Network switches distributed among end nodes
- A "node" now consists of a network switch with one or more end node devices directly connected to it.
 - Nodes are directly connected to other nodes.
- Fully connected network:

 All nodes are directly connected to all other nodes using bidirectional dedicated links.

Lowest contention/lowest latency Highest cost: O(N²) links

Bidirectional Ring Networks

- Low cost, O(N)
- High latency, O(N)
- Limited scalability, constant bisection bandwidth
- Simultaneous packet transport over disjoint paths
- Popular, also used in Intel Haswell, IBM Cell,...

ENGINEERING@SYRACUSE

Torus Topologies

Ideal Topology

- Cost approaching a ring, performance approaching a fully connected topology
- More practical topologies:
 - k-ary n-cubes (meshes, tori, hypercubes)
 - k nodes connected in each dimension, with n total dimensions
 - Symmetry and regularity
 - Simple implementation and routing

Torus

- k-ary n-cube: kⁿ network nodes
- n-dimensional grid with k nodes in each dimension

3-ary 2-mesh **2-D Mesh**

3-ary 2-cube **2-D Torus**

2,3,4-ary 3-Mesh

Torus Topologies

- Ring: k-ary 1-cube.
- Hypercubes: 2-ary n-cube.
- Edge symmetric.
 - Good for load balancing
 - Removing wrap-around links for mesh loses edge symmetry
 - More traffic concentrated on center channels
- Good path diversity.
- Exploit locality for near-neighbor traffic.

2-D Mesh

- Low cost, O(N)
- Average latency, O(sqrt(N))
- Easy to implement: regular length links
- Path diversity: many ways to get from one node to another
- Used in Tilera 100-core
- And many on-chip network prototypes

Hypercube

- Low latency: O(logN)
- Number of links: O(NlogN)

Fat Tree

- Planar, hierarchical topology
- Low latency, O(logN)
- Low cost, O(N)
- Good for local traffic

ENGINEERING@SYRACUSE

Performance and Cost Comparisons

Performance and Cost of 64-Node Networks

	Evaluation category	Bus	Ring	2-D mesh	2-D torus	Hypercube	Fat tree	Fully connected
Perf.	BW _{Bisection} in # links	1	2	8	16	32	32	1024
	Max (ave.) hop #	1 (1)	32 (16)	14 (7)	8 (4)	6 (3)	11 (9)	1 (1)
Cost	I/O ports per switch	NA	3	5	5	7	4	64
	Number of switches	NA	64	64	64	64	192	64
	Number of net. links	1	64	112	128	192	320	2016
	Total # of links	1	128	176	192	256	384	2080

ENGINEERING@SYRACUSE

Network Routing

Routing

- Routing algorithm determines path(s) from source to destination.
 - **Deterministic:** always chooses the same path for a communicating source-destination pair
 - Oblivious: chooses different paths, without considering network state
 - Adaptive: can choose different paths, adapting to the state of the network

Deadlock: A set of packets being blocked waiting for network resources held by other packets in the set.

Livelock: Unbounded number of allowed nonminimal hops → Solution: Restrict the number of nonminimal (mis)hops allowed.

Deterministic Algorithm

- All messages from source to destination will traverse the same path.
 - Common example: dimension order routing (DOR).
 - Message traverses network dimension by dimension.
 - Aka XY routing, first x- then y-dimension.
- Simple, inexpensive, deadlock free
- Poor load balancing

Oblivious Routing

- An example, Valiant's algorithm.
- To route from S to D, randomly choose intermediate node M.
- Route from S to M and from M to D.
- Randomizes any traffic pattern.
 - All patterns appear to be uniform random.
 - Balances network load.
- Nonminimal.
 - Latency can increase.
- Do this on high load.

Minimal Adaptive Routing

- Router uses network state (e.g., downstream buffer occupancy) to pick which "productive" output port to send a packet to.
- Productive output port: port that gets the packet closer to its destination.
- Aware of only local congestion.
 - Suboptimal choices
- Fully adaptive.
 - Better utilization, load balance
 - Livelock potential
 - Traversing without ever reaching

On-Chip Networks

- Connects processing elements (PE).
 - Cores, caches, memory controllers, ...
- Serves cache misses and memory requests.
- Buses and crossbars are not scalable.
- Packet switched.
- 2-D mesh.
 - Most commonly used topology
- Dimension order routing.
 - Simplicity and deadlock freedom

ENGINEERING@SYRACUSE

Flow Control and Switching

Flow Control

- Topology
 - Determines connectivity of network
- Routing
 - Determines paths through network
- Flow control
 - Determines allocation of resources to messages as they traverse network
 - Buffers and links
 - Impact on throughput and latency of network

Packets

- Messages
 - Composed of one or more packets
- Packets
 - Composed of one or more flits
- Flit
 - Flow control digit
- Phit
 - Physical digit
 - Subdivides flit into chunks = to link width
- In on-chip networks, flit size == phit size.
- Due to very wide on-chip channels

Switching

- Circuit switching sets up full path.
 - Establish route, then send data.
 - No one else can use those links.
 - Faster arbitration, but setting up and bringing down links takes time.
- Packet switching routes per packet.
 - Route each packet individually (possibly via different paths).
 - · If link is free; any packet can use it.
 - Potentially slower but no setup or bring down time and more flexible.
- Choice is independent of topology.
 - But maybe more preferable for one type over the other

Flow Control Types

- Store and forward (for LAN, WAN)
 - Links and buffers are allocated to entire packet.
 - Not suitable for on-chip.
 - Requires large buffers to hold entire packet
 - High latencies (pays serialization at each hop)
- Wormhole (for NoC, SAN)
 - Flit can proceed to next router when there is buffer space available for that flit.
 - Good for on-chip.
 - More efficient buffer utilization
 - Low latency

ENGINEERING@SYRACUSE

Conclusions

In Conclusion

- Devices: components, computers, systems
- Domains: OCN, SAN, LAN, WAN
- Metrics: latency, effective BW
- Media: shared vs. switched, low cost vs. scalable
- Topologies: bus, k-ary n-cube, multistage
- Comparisons: bisection BW, links, switches
- Routing: deterministic, adaptive
- Flow: store and forward, wormhole

ENGINEERING@SYRACUSE