

WHAT IS CLAIMED IS

5

*Sub
B*

1. An image forming apparatus comprising:
a photosensitive body having a photosensitive
layer; and
an optical scanning device having a deflector
deflecting a light flux emitted from a light source, and
scanning the surface of said photosensitive body by the
thus-deflected light flux,
wherein said apparatus is configured such that
a dot is formed at a center between adjacent light
fluxes as a result of the adjacent light fluxes being
overlapped with one another in a sub-scan direction, and
wherein a ratio of a static beam-spot diameter
W_s in the sub-scan direction on the surface of said
photosensitive body defined by 1/e² of the maximum value
in the exposure distribution of the beam spot to an
interval L between adjacent scan lines satisfies the
following formula:

$$1.2 < W_s / L < 4.5$$

2. The apparatus as claimed in claim 1,
wherein said apparatus is further configured such that a
ratio of a static beam-spot diameter W_m in a main scan
direction on the surface of said photosensitive body
5 defined by $1/e^2$ of the maximum value in the exposure
distribution of the beam spot to the static beam-spot
diameter W_s in the sub-scan direction on the surface of
said photosensitive body defined by $1/e^2$ of the maximum
value in the exposure distribution of the beam spot
10 satisfies the following formula:

$$W_m / W_s < 1$$

15

3. An optical scanning device comprising:
a deflector deflecting a light flux emitted
20 from a light source, and scanning a surface of a
photosensitive body by the thus-deflected light flux,
wherein a dot is formed at a center between
adjacent light fluxes as a result of the adjacent light
fluxes being overlapped with one another in a sub-scan
25 direction, and

092700-022222

wherein said device is configured such that a ratio of a static beam-spot diameter W_s in the sub-scan direction on the surface of said photosensitive body defined by $1/e^2$ of the maximum value in the exposure distribution of the beam spot to an interval L between adjacent scan lines satisfies the following formula:

$$1.2 < W_s / L < 4.5$$

10

4. The device as claimed in claim 3, wherein
15 said device is further configured such that a ratio of a static beam-spot diameter W_m in a main scan direction on the surface of said photosensitive body defined by $1/e^2$ of the maximum value in the exposure distribution of the beam spot to the static beam-spot diameter W_s in the
20 sub-scan direction on the surface of said photosensitive body defined by $1/e^2$ of the maximum value in the exposure distribution of the beam spot satisfies the following formula:

25 $W_m / W_s < 1$

09959260
TOP SECRET

5. A method of forming an image, comprising
the steps of:

- a) emitting a light flux from a light source;
- b) deflecting the light flux; and
- 5 c) scanning a surface of a photosensitive body

by the thus-deflected light flux,

wherein a dot is formed at a center between
adjacent light fluxes as a result of the adjacent light
fluxes being overlapped with one another in a sub-scan
10 direction,

wherein a ratio of a static beam-spot diameter
Ws in the sub-scan direction on the surface of said
photosensitive body defined by $1/e^2$ of the maximum value
in the exposure distribution of the beam spot to an
15 interval L between adjacent scan lines satisfies the
following formula:

$$1.2 < W_s / L < 4.5$$

20

6. The method as claimed in claim 5, wherein
25 a ratio of a static beam-spot diameter Wm in a main scan

00265630-012202

direction on the surface of said photosensitive body defined by $1/e^2$ of the maximum value in the exposure distribution of the beam spot to the static beam-spot diameter W_m in the sub-scan direction on the surface of 5 said photosensitive body defined by $1/e^2$ of the maximum value in the exposure distribution of the beam spot satisfies the following formula:

$$W_m / W_s < 1$$

10

15

*Sub
B2>*

20

25

7. An image forming apparatus comprising:
photosensitive means having a photosensitive

layer; and

an optical scanning means having deflecting
means for deflecting a light flux emitted by light
emitting means, and scanning the surface of said
photosensitive means by the thus-deflected light flux,
wherein a dot is formed at a center between
adjacent light fluxes as a result of the adjacent light
fluxes being overlapped with one another in a sub-scan
direction.

00000000000000000000000000000000

*Sub
B2
Cmt*

wherein said apparatus is configured such that a ratio of a static beam-spot diameter W_s in the sub-scan direction on the surface of said photosensitive means defined by $1/e^2$ of the maximum value in the exposure distribution of the beam spot to an interval L between adjacent scan lines satisfies the following formula:

$$1.2 < W_s / L < 4.5$$

10

15

20

8. The apparatus as claimed in claim 7,
wherein a ratio of a static beam-spot diameter W_m in a main scan direction on the surface of said photosensitive means defined by $1/e^2$ of the maximum value in the exposure distribution of the beam spot to the static beam-spot diameter W_s in the sub-scan direction on the surface of said photosensitive means defined by $1/e^2$ of the maximum value in the exposure distribution of the beam spot satisfies the following formula:

25

2022-09-26 09:26:00

092508-02220

-31-

$W_m / W_s < 1$