Organizacja i architektura komputerów ¹ Wykład 9

Piotr Patronik

24 kwietnia 2015

¹(Prawie) dokładna kopia slajdów dr hab inż. J. Biernata

Jeden procesor, jedno zadanie

Proces (zadanie) – każdy program w trakcie wykonania Poprawność programu sekwencyjnego

- własność częściowej poprawności
 - jeśli program się zatrzyma to zwróci poprawny wynik
- własność stopu (własność poprawności całkowitej)
 - program na pewno się zatrzyma (i zwróci poprawny wynik)

Wymagania – warunki konieczne poprawności programu sekwencyjnego

- program tworzą instrukcje, które procesor może wykonać
- wszystkie zmienne są jednoznacznie identyfikowane
 - każda zmienna jest odwzorowana w pamięci (głównej)
 - używane są dozwolone tryby adresowania
- istnieje i jest obecna w programie instrukcja zatrzymania procesora

Jeden procesor, wiele zadań (procesów)

Procesy współbieżne – jeden rozpoczyna się przed zakończeniem drugiego

Poprawność procesu (programu współbieżnego)

- własność żywotności
 - każde oczekiwane zdarzenie (działanie) nastąpi
 - każdy proces ma realną szansę wykonania (sprawiedliwość, uczciwość)
 - własność bezpieczeństwa
 - program jest zawsze w stanie pożądanym

Wymagania – warunki konieczne poprawności programu sekwencyjnego

- żywotność każdy proces zostanie wykonany → przydział procesora
 - na czas wykonania procesu możliwe zagłodzenie innych procesów
 - okresowo na ustalony czas podział czasu (time-sharing)
- bezpieczeństwo ochrona procesu
 - prywatność
 osobne przestrzenie adresowe → przestrzeń wirtualna
 - ograniczenie dostępu: tryb dostępu: (r-w-x)

Ochrona procesu

Spójność systemu (system integrity)

- bezpieczeństwo systemu (security)
- prywatność procesów (privacy)

Ochrona zasobów:

- zapobieganie (prevention) naruszeniu spójności systemu
- reagowanie na ingerencję w mechanizm ochrony
 - wykrywanie (detection) błędów i ataków
 - rozpoznawanie i neutralizacja skutków ingerencji
 - unieważnianie (nullify) działań ingerujących w mechanizm ochrony

Ochrona zasobów na poziomie architektury maszyny rzeczywistej:

- w przestrzeni kodów uniemożliwienie wykonania instrukcji uprzywilejowanych (privileged) w procesie użytkownika
- w przestrzeni operandów wykluczenie wykonania w trybie użytkownika operacji używających zastrzeżonych operandów
- w przestrzeni danych przypisanie każdej danej znacznika (tag), sprzeczne z klasyczną koncepcją pamięci

Ochrona pamięci procesu

Separacja obszarów pamięci – prawo dostępu (access right) jednolite reguły dostępu: zakaz/zezwolenie + tryb (r-w-x)

 pamięć jednozakresowa (single domain) – proces otrzymuje wyłącznie przydział własnej pamięci, niedostępnej dla innych procesów, co wyklucza użycie wspólnych danych i komunikację przez pamięć

alternatywne prawa dostępu do zasobów pamięci

pamięć dwuzakresowa (two domain) – jeden z obszarów jest współdzielony i dostępny dla wszystkich procesów, drugi jest obszarem własnym procesu, niedostępnym dla innych procesów, wszystkie obszary są separowane

selektywne prawa dostępu do zasobów pamięci

- pamięć wielozakresowa (multi-domain) cała pamięć jest podzielona na N rozłącznych obszarów (domain), każdy proces uzyskuje prawo dostępu do pewnego podzbioru tych obszarów
- furtki (gate) deskryptory w tablicach dostępu (część kontekstu procesu)

Pamięć wirtualna

Odwzorowania pamięci wirtualnej

odwzorowanie spójnego bloku pamięci

- jedna reguła dostępu
- adres początku bloku
- rozmiar bloku niezmienny podczas odwzorowania
- ► adres względny niezmienny podczas odwzorowania
- odwzorowanie bloku logicznego segmentacja
 - adres początku bloku
 - rozmiar bloku weryfikacja poprawności adresu
- odwzorowanie bloku fizycznego (?) stronicowanie
 - ▶ dobór rozmiaru bloku rozmiar 2^k upraszcza odwzorowanie
 - adres początku bloku (numer bloku)

Model realizacji procesu

Mechanizmy ochrony muszą być jednolite dla wszystkich procesów

- uaktywnienie przydział czasu procesora (uwłaszczenie zadania)
- start odtworzenie kontekstu
- wykonanie przerwania, wyjątki, punkty komunikacji
- wstrzymanie przechowanie kontekstu
 - zwolnienie procesora (wywłaszczenie zadania/procesu)
 - szeregowanie zadań umieszczenie w kolejce
- kolejka krótkoterminowa procesy aktywne, często wykonywane
- kolejka średnioterminowa procesy aktywne, rzadko wykonywane
- kolejka długoterminowa procesy uśpione

Model procesowy systemu

syscall	start	run
 nadanie identyfikatora 	wpis do kolejki	odtworzenie kontekstu
nadanie priorytetu	•	przekazanie sterowania
 definicja środowiska 	•	 usunięcie z kolejki

time-out	sync	stop
wstrzymanie	wstrzymanie	likwidacja środowiska
przechowanie kontekstu	 przechowanie kontekstu 	•
wpis do kolejki	uśpienie	•

Kontekst procesu

Kontekst procesu – opis środowiska wykonania procesu !!! (zagnieżdżenie) procesu → utworzenie procesu potomnego !!! Tablica procesów (*process table*, PT) – struktura danych

- obiekt w tablicy PT blok sterujący procesu (process control block, PCB)
- ▶ identyfikator procesu wskaźnik bloku PCB w tablicy procesów

Blok sterujący procesu

- kontekst minimalny procesu:
- (identyfikator procesu)
- minimalny kontekst procesora (rejestr stanu i licznik programu)
- minimalne zapotrzebowanie na pamięć (rozmiar zb. roboczego)
- wskaźnik pełnego kontekstu procesora
- wskaźnik pełnego kontekstu pamięci
- priorytet i parametry harmonogramowania.

Minimalny kontekst procesora – zmienne stanu, które są lub mogą być automatycznie zmienione podczas wykonania kolejnej instrukcji

Kontekst procesora

Kontekst procesora (CPU context) – opis bieżącego stanu procesu:

- zawartość rejestrów roboczych, rejestrów stanu i rejestrów wyjątków
- [wskaźnik kontekstu pamięci]
- wskaźniki dostępnych systemowych struktur danych (stosy)
- wskaźnik powiązania z procesem wywołującym (... RET)
- dane specyficzne

Kontekst pamięci

- Kontekst pamięci lokalny (LM) i globalny (GM)
- Aktualizacja kontekstu pamięci tylko w trybie nadzoru
- Kontekst pamięci (memory context) w tablicy opisów (deskryptorów) pamięci
 - adresy i rozmiary bloków pamięci procesu
 - obecność bloków pamięci procesu w pamięci głównej
 - reguły dostępu do bloków pamięci procesu

Przełączanie kontekstów

wykonywany proces K

• wznowienie procesu N

• wywłaszczenie procesu K

• wykonywany proces *N*

Synchronizacja procesów

Procesy współbieżne wymagają synchronizacji Syndromy współbieżności procesów

- ▶ współpraca → komunikacja (wymiana danych)
 - synchronizacja wewnętrzna, określona w programie
- ▶ współzawodnictwo → konkurowanie o unikatowy zasób
 - synchronizacja zewnętrzna, realizowana w trybie nadzoru

Wzajemne wykluczanie – niezbędny warunek

- schemat dostępu do zasobu współdzielonego (shared resource)
 - ...własne sprawy...
 protokół wstępny naleganie (czekanie na dostęp)
 - sekcja krytyczna realizacja dostępu do zasobu unikatowego
 - protokół końcowy zwolnienie zasobu
- ...własne sprawy...
- warunek bezpieczeństwa w każdej chwili w sekcji krytycznej może przebywać tylko jeden proces
- postulat żywotności proces nalegający uzyska dostęp

Problemy synchronizacji

Wzajemne wykluczanie (*mutual exclusion*) – uniemożliwia jednoczesny dostęp procesów do dzielonego zasobu, ale nie chroni przed:

- blokadą (deadlock) (brak bezpieczeństwa)
 - każdy proces z podzbioru procesów jest wstrzymywany w oczekiwaniu na zdarzenie, które może spowodować tylko inny proces z tego podzbioru
- zagłodzenie (starvation), wykluczenie (brak żywotności)
 - proces nie zostaje wznowiony, mimo że zdarzenie na które czeka występuje nieskończenie wiele razy

Metody synchronizacji procesów

Metody synchronizacji dostępu do zasobu współdzielonego

- blokowanie przerwań
 - dominacja procesu aktywnego, wykluczenie innych procesów do chwili odblokowania przerwań (sekcja krytyczna = czas procesora)
- aktywne oczekiwanie na dostęp (busy waiting, spin lock)
 - naleganie wymagające aktywności procesora
- ▶ kolejka zgłoszenie żądania i oczekiwanie na potwierdzenie
 - ▶ kolejka prosta wyklucza zagłodzenie, uniemożliwia priorytety
 - ▶ kolejka z priorytetami nie wyklucza ryzyka zagłodzenia
 - kilka kolejek wymaga ustalenia zasad sprawiedliwości
- semafory, monitory (mechanizmy systemowe)
 - synchronizacja na poziomie procesu

Podstawowy mechanizm synchronizacji na poziomie architektury

- instrukcje niepodzielne:
 - testuj i ustaw (test and set)
 porównaj i przestaw (compare and swap)
 - łatwa realizacja aktywnego oczekiwania
 - uproszczenie realizacji kolejek i semaforów

Aktywne oczekiwanie (1)

```
Synchronizacja metodą aktywnego oczekiwania (busy waiting)
(Motorola 68020+)
test-and-set
 wait: tas lock
                    ; test dostępności dzielonej pamięci
        bmi wait
                    ; testuj ponownie, gdy zablokowane
                    ; sekcja krytyczna
        clr.b lock ; zwolnij dostęp dla innych procesów
compare-and-swap
        moveq #$80, d2
                             ; ustaw zmienną testującą (1000 0000_B)
 loop: clr.w d1
                             ; przygotuj blokadę
        cas.w d1, d2, lock
                            ; zablokuj, gdy jest dostęp
        bne loop
                             ; powtórz testowanie gdy zablokowane
                             ; sekcja krytyczna
        clr.w lock
                            ; zwolnij dostęp dla innych procesów
```

Aktywne oczekiwanie (2)

Synchronizacja metodą aktywnego oczekiwania (Intel 80x86)

test-and-set

; przygotuj blokadę mov eax, zakaz ; test dostępności dzielonej pamięci wait: **lock xchg** eax, dostep

cmp eax, zakaz ; testuj ponownie, gdy zablokowane ie wait

; sekcja krytyczna (blokada dostępu)

; zwolnij dostęp dla innych procesów mov eax, wolne mov dostep, eax

compare-and-swap mov ebx, zakaz ; przygotuj blokadę

mov eax, klucz ; przygotuj klucz dostępu wait: lock cmpxchg dostep, ebx ; zablokuj, gdy jest dostęp (eax=dc

ine wait ; powtórz testowanie gdy zablokowa

; sekcja krytyczna ; przygotuj klucz dostępu mov eax, klucz mov dostep, eax ; zwolnij dostęp dla innych procesów

Obsługa przerwań

Priorytet – zależy przede wszystkim od jego pilności (urgency):

- ► (H) naruszenie bezpieczeństwa lub błąd sprzętowy
- (M) krytyczne ze względu na czas obsługi (np. transmisja danych)
- L) spowodowane obniżeniem przepustowości systemu lub związane z obsługą zdarzeń o ważności określonej przez użytkownika

Przerwania nieprecyzyjne (zwykle niemaskowalne)

Przerwania precyzyjne – wewnętrzne (błędy wykonania)

- instrukcja została zakończona (completed), lecz wytworzony wynik jest błędny (na przykład wykryto nadmiar)
- ▶ instrukcja została pominięta (*suppressed*), bo naruszono reguły ochrony
- instrukcja została zignorowana (nullified) wykonanie było niemożliwe, lecz po usunięciu przyczyny możliwe jest powtórzenie działania
- instrukcja została wstrzymana (terminated). zewnętrzne (zdarzenia w otoczeniu) → zwłoka obsługi (interrupt latency)

Identyfikacja przerwania (1)

Identyfikacja źródła przerwania

- odpytywanie (polling)
- samoidentyfikacja
 - ustanowienie łańcucha priorytetów zgłoszeń (daisy-chain)
 - wektoryzacja przerwań

Identyfikacja przerwania (2)

Sterownik przerwań wektoryzowanych

Dystrybucja obsługi (system wieloprocesorowy)

- adresowanie geograficzne
 - jawnie wskazany procesor obsługujący
- adresowanie logiczne i rozgłaszanie (broadcasting)
 - obsługę podejmuje jeden z mniej obciążonych procesorów

Nadzór

Zapewnienie bezpieczeństwa i żywotności procesu wymaga nadzorowania

- Funkcje zarządzania procesem
 - funkcje ochrony procesu
 - tworzenie i aktualizacja struktur danych procesu
 - przełączanie procesu
 - funkcje nadzorowania procesu
 - synchronizacja procesu
 - harmonogramowanie

System operacyjny

Funkcje systemu operacyjnego

- wspomaganie użytkownika (user functions)
 - sterowanie i utrzymanie kontroli nad programem (program control)
 - obsługa wejścia/wyjścia (I/O handling)
 - obsługa plików (file system manipulation)
- funkcje systemu (system functions)
 - zarządzanie pamięcią (memory management)
 - ochrona zasobów (resource protection)
 - przydział zasobów (resource allocation)
 - obsługa wyjątków (exception handling)
 - harmonogramowanie (scheduling)
 - raportowanie (accounting)
- System z podziałem czasu (time sharing)
 - każde działanie jest procesem lub jego częścią

Istotność procesu i schemat przełączania

- Poziomy uprzywilejowania (istotności) procesów
 - obsługa wyjątków (exception handling) utrzymanie integralności systemu
 - obsługa we/wy (I/O handling) funkcje krytyczne względem czasu
 - zadania nadzoru (supervisor functions) zarządzanie procesami i pamięcią,
 - zadania użytkowników (user jobs)

- zdarzenia asynchroniczne przerwanie zewnętrzne (INT)
- zdarzenia synchroniczne wywołanie systemowe (SVC), pułapka (TRAP)