Exercice 1 Primitiver les fonctions f telles que $f(x) = \dots$ (préciser l'intervalle où évolue x)

1.
$$\ln x$$

4.
$$\frac{xe^x}{\sqrt{1+e^x}}$$
 7.
$$\frac{\arctan x}{\sqrt{x}}$$

7.
$$\frac{\arctan x}{\sqrt{x}}$$

$$10. \ \frac{\cos x}{4 + \sin^3 x}$$

2.
$$\frac{1}{x^2+a^2}$$
 avec $a \neq 0$

$$5. \ \frac{x}{\sin^2 x}$$

8.
$$\frac{\arctan x}{x^2+1}$$

11.
$$\sin(\ln x)$$

3.
$$\left(\frac{x}{e}\right)^x \ln x$$

6.
$$\frac{1}{(1+x+x^2)^2}$$
 9. $\frac{1}{\sin x + \cos x}$

9.
$$\frac{1}{\sin x + \cos x}$$

12.
$$\ln(1+x^2)$$

Exercice 2 (merci L.Garcin...) CV et calcul éventuel de :

1.
$$\int_0^{+\infty} \frac{1}{4+t^2} dt$$

3.
$$\int_0^{\frac{1}{3}} \frac{1}{\sqrt{1-9t^2}} dt$$

1.
$$\int_0^{+\infty} \frac{1}{4+t^2} dt$$
 3. $\int_0^{\frac{1}{3}} \frac{1}{\sqrt{1-9t^2}} dt$ 5. $\int_3^{+\infty} \frac{dt}{t^2-3t+2}$ 7. $\int_2^{+\infty} \frac{dt}{t \ln t}$

7.
$$\int_{2}^{+\infty} \frac{\mathrm{d}t}{t \ln t}$$

2.
$$\int_0^2 \frac{1}{4-t^2} dt$$

2.
$$\int_{0}^{2} \frac{1}{4-t^{2}} dt$$
 4. $\int_{0}^{+\infty} \sin(t) dt$ 6. $\int_{0}^{1} \ln(t) dt$

6.
$$\int_0^1 \ln(t) dt$$

8.
$$\int_{0}^{+\infty} e^{-at} dt$$

Exercice 3 Redémontrer rapidement $\cosh^2 - \sinh^2 = 1$ et $\tanh' = \frac{1}{\cosh^2}$. Etablir l'existence et calculer

$$I = \int_2^{+\infty} \frac{\mathrm{d}x}{x^2 \sqrt{x^2 - 4}}$$

Exercice 4 Calculer $\int_0^1 \frac{\mathrm{d}x}{\sqrt{1-x^2}}$ après avoir établi son existence. En déduire pour $a < b : \int_a^b \frac{\mathrm{d}x}{\sqrt{(x-a)(b-x)}}$.

Exercice 5 Existence et calcul de $\int_0^1 \sqrt{\frac{t}{1-t}} dt$, $\int_0^1 \frac{dx}{(1+x)\sqrt{1-x^2}}$ (poser $x = \cos(2\theta)$).

Exercice 6 Notons pour $n \in \mathbb{N}$: $I_n = \int_0^{+\infty} t^n e^{-t} dt$. Justifier l'existence de I_n et trouver une relation de récurrence entre I_n et I_{n-1} . En déduire I_n .

Exercice 7

- 1. Montrer que $\int_0^{\frac{\pi}{2}} \ln(\sin t) dt$ et $\int_0^{\frac{\pi}{2}} \ln(\cos t) dt$ convergent et ont même valeur.
- 2. Calculer leur somme, en déduire leur valeur. En déduire la valeur de $\int_{a}^{\pi} t \ln(\sin t) dt$

Exercice 8 Soit $I = \int_0^{+\infty} \frac{t}{1+t^3} dt$ et $J = \int_0^{+\infty} \frac{dt}{1+t^3}$. Montrer que I, J existent et sont égales, en déduire leur valeur.

Exercice 9 Montrer à l'aide d'une IPP que $\int_{x}^{+\infty} e^{-t^2} dt \sim \frac{e^{-x^2}}{2x}$.

Exercice 10 Existence et calcul de $\int_{0}^{+\infty} \left(\int_{x}^{+\infty} e^{-t^2} dt \right) dx$.

Exercice 11 Nature de $\int_0^\infty \cos(t) dt$ et de $\int_0^1 \cos(\ln t) dt$.

Exercice 12 Calculer (après avoir prouvé leur existence)

$$I = \int_0^{\frac{\pi}{2}} \frac{\cos x^{\sin x}}{\cos x^{\sin x} + \sin x^{\cos x}} \, \mathrm{d}x, J = \int_0^{+\infty} \frac{\ln t}{1 + t^2} \, \mathrm{d}t, K = \int_0^{+\infty} \ln \left(1 + \frac{1}{t^2} \right) \, \mathrm{d}t$$

 $\frac{CSI2B\text{-}PSI\ TD10}{\text{Exercice 13 Calculer }\int_0^1 \frac{\ln x}{\sqrt{x}\left(1-x\right)^{3/2}} dx \text{ en posant } x=\sin^2\phi.$

Exercice 14 Etudier l'existence des intégrales suivantes (discuter suivant α et β):

$$\int_0^1 |1 - x^{\alpha}|^{\beta} dx, \int_0^1 \frac{(\ln(1 - x))^{\alpha}}{x^2} dx$$

Exercice 15 Convergence absolue, convergence de $\int_{\mathbb{R}_+} \frac{e^{\mathbf{i}t}}{1+\mathbf{i}t} dt$. Convergence et calcul de $\int_0^{+\infty} xe^{-x} \sin x dx$.

Exercice 16 Soit $f: \mathbb{R}_+ \to \mathbb{R}$ continue et positive. On suppose que $\frac{f(x+1)}{f(x)} \xrightarrow[x \to +\infty]{} \ell < 1$. Montrer que $\int_{0}^{+\infty} f$ converge.

Exercice 17 Soit $f \in C(\mathbb{R}, \mathbb{R})$ admettant des limites finies en $\pm \infty$. Montrer que $\int_{-\infty}^{+\infty} (f(x+1) - f(x)) dx$ converge et donner sa valeur.

Exercice 18 Pour quels polynômes P la fonction $\sqrt{P\left(t\right)}-t^{2}-t-1$ admet-elle une intégrale généralisée

Exercice 19 Soit f la fonction nulle en 0 vérifiant pour n > 0: $\begin{cases} f\left(n - \frac{1}{2n^3}\right) = 0 \\ f\left(n + \frac{1}{2n^3}\right) = 0 \end{cases}$ et affine entre les points $n - \frac{1}{2n^3}$, n, $n + \frac{1}{2n^3}$ etc. Tracer f et calculer $\int_{\mathbb{D}} f$.

Exercice 20 (Intégrale de Dirichlet) On souhaite établir la convergence et calculer $\int_{1}^{+\infty} \frac{\sin t}{t} dt$.

- 1. Montrer que $\int_0^\infty \frac{\sin^2 t}{t^2} dt$ converge, en déduire via une IPP que $\int_0^\infty \frac{\sin t}{t} dt$ converge et que les inté-
- 2. Lemme (de Riemann-Lebesgue light) : montrer que si f est de classe C^1 sur [a,b] alors :

$$\int_{a}^{b} f(t) \sin(nt) dt \underset{n \to +\infty}{\longrightarrow} 0$$

- 3. Montrer que ϕ définie sur $[0, \pi/2]$ par $\phi(0) = 0$ et $\phi(t) = \frac{1}{\sin t} \frac{1}{t}$ si $t \in]0, \pi/2]$ est C^1 sur $[0, \pi/2]$.
- 4. On note pour $n \in \mathbb{N}$: $I_n = \int_0^{\pi/2} \frac{\sin(2n+1)t}{\sin t} dt$. Montrer que la suite $(I_n)_n$ est bien définie et est constante.
- 5. On note pour $n \in \mathbb{N}$: $J_n = \int_0^{\pi/2} \frac{\sin(2n+1)t}{t} dt$. Montrer à l'aide du lemme de Riemann-Lebesgue que la suite $(J_n)_n$ est bien définie et a même limite que $(I_n)_n$.
- 6. En déduire la valeur de $\int_0^{+\infty} \frac{\sin t}{t} dt$ puis celle de $\int_0^{+\infty} \frac{\sin^2 t}{t^2} dt$.