Абсолютно неперервні випадкові величини: щільність та математичне сподівання.

1 Теоретичні відомості

Що ж це таке, абсолютно неперервна випадкова величина?

Нехай (Ω, \mathcal{F}, P) – імовірнісний простір. Введемо на просторі випадкову величину ξ та через $F_{\xi}(t)$ позначимо її функцію розподілу.

Якщо існує така вимірна функція $f_{\xi}(t)$, що F_{ξ} допускає представлення

$$F_{\xi}(t) = \int_{-\infty}^{t} f_{\xi}(u) du, \ t \in \mathbb{R},$$

тоді ξ називають абсолютно неперервною випадковою величиною.

Більш загально, f_{ξ} є похідною Радона-Никодима міри Лебега-Стілтьєса, породженою $F_X(\cdot)$, відносно міри Лебега на прямій λ_1 :

$$F_X(A) = \int_A f_{\xi}(u)\lambda_1(du), \ A \in \mathcal{B}(\mathbb{R}).$$

Взагалі кажучи, можна розширити поняття щільності для довільної сигма-скінченної міри λ , а не зосереджуватися конкретно на λ_1 (тоді і для дискретних розподілів знайдеться відповідна міра та 'щільність').

Щільність розподілу $f_{\xi}(t)$ має дві основні властивості:

- 1. Невід'ємність: $f_{\xi}(t) \geq 0$ для всіх $t \in \mathbb{R}$,
- 2. Нормованість: $\int_{-\infty}^{+\infty} f_{\xi}(u)du = 1$.

Неважко переконатися в тому, що для абсолютно неперервної в.в. ξ : $F_{\xi}(t)$ неперервна по t.

Математичне сподівання для абсолютно неперервної випадкової величини можна обчислити наступним чином:

$$E[\xi] = \int_{-\infty}^{+\infty} t f_{\xi}(t) dt,$$

а LOTUS перезапишеться аналогічно (див. попереднє заняття):

$$E[g(\xi)] = \int_{-\infty}^{+\infty} g(t) f_{\xi}(t) dt.$$

Приклади абсолютно неперервних розподілів

Назва розподілу	Параметри	Позначення	Щільність, $f_{\xi}(t)$
Рівномірний	$a, b \in \mathbb{R}$ $a < b$	$\xi \sim U[a,b]$	$1_{[a,b]}(t)\frac{1}{b-a}$
Розподіл трикутника	$\begin{vmatrix} a, b, c \in \mathbb{R} \\ a \le c \le b, \ a < b \end{vmatrix}$	$\xi \sim \text{Triag}(a, b, c)$	$\left(1_{(a,c]}(t)\cdot\frac{t-a}{c-a}+1_{(c,b)}(t)\cdot\frac{b-t}{b-c}\right)\cdot\frac{2}{b-a}$
Експоненційний	$\lambda > 0$	$\xi \sim \operatorname{Exp}(\lambda)$	$1_{(0,\infty)}(t)\lambda e^{-\lambda t}$
Гамма-розподіл	$\alpha > 0, \lambda > 0$	$\xi \sim \Gamma(\alpha, \lambda)$	$1_{(0,+\infty)}(t)\frac{1}{\Gamma(\alpha)}t^{\alpha-1}\lambda^{\alpha-1}\lambda e^{-\lambda t}$
Бета-розподіл	$\alpha > 0, \beta > 0$	$\xi \sim B(\alpha, \beta)$	$1_{(0,1)}(t)\frac{1}{\mathrm{B}(\alpha,\beta)}t^{\alpha-1}(1-t)^{\beta-1}$
Нормальний розподіл	$\mu \in \mathbb{R}, \sigma > 0$	$\xi \sim N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{(t-\mu)^2}{2\sigma^2}\right)$
Логнормальний розподіл	$\mu \in \mathbb{R}, \sigma > 0$	$\xi \sim LN(\mu, \sigma^2)$	$1_{(0,+\infty)}(t)\frac{1}{\sqrt{2\pi\sigma^2}t}\exp\left(-\frac{(\ln(t)-\mu)^2}{2\sigma^2}\right)$
Розподіл хі-квадрат	$k \in \mathbb{N}$	$\xi \sim \chi_k^2$	$1_{(0,+\infty)}(t)\frac{1}{\Gamma(k/2)}t^{k/2-1}(1/2)^{k/2-1}(1/2)e^{-(1/2)t}$
Розподіл Коші	-	$\xi \sim Cauchy$	$\frac{1}{\pi} \frac{1}{1+t^2}$

Декілька коментарів:

- 1. Взагалі рівномірний розподіл можна узагальнити, про це неявно йшла мова в занятті з геометричної імовірності.
- 2. Деякі розподіли, можуть подавати в іншій параметризації, виходячи з певних інтерпретацій. Наприклад, у цій постановці подано гамма-розподіл з параметром інтенсивності $\lambda > 0$. В іншій літературі замість параметра інтенсивності може бути введено параметр масштабу: $\theta := 1/\lambda$.
- 3. Так, деякі розподіли, справді кажучи, є частковими випадками більш загальних розподілів (хі-квадрат, експоненційний якраз і є гамма-розподілами, або ж стандартний рівномірний розподіл є бета розподілом).
- 4. Розподіл випадкової величини легше задати щільністю (якщо така існує), коли функція розподілу має складну форму (не можна явно виразити).
 - Також буде зручно подавати розподіли в термінах перетворень від випадкових величин. Цими перетвореннями будемо займатися найближчим часом.

З допитливості можете спробувати самостійно познаходити для наведених вище розподілів $E[\xi],\ Var[\xi].$ Можна також спробувати відшукати медіану розподілу: таку точку t_* , щоб $P(\xi < t_*) = 1/2$. Також можна графіки нарисувати.

2 Задачі

2.1 Задача 1

Нехай $\xi \sim \text{Exp}(\lambda), \lambda > 0.$

- 1. Знайти функцію розподілу ξ .
- 2. Обчислити 'хвіст' розподілу $P(\xi \ge t)$, обчислити $P(\xi \ge t + s \mid \xi \ge s)$ для t, s > 0.
- 3. Обчислити $E[\xi^k], k > 0$. Звідси отримати $E[\xi]$ та $Var[\xi]$.
- 4. Знайти розподіл випадкових величин $\eta = \exp(a\xi), |a| > 0$, та $\nu = [\xi]$, де [x] ціла частина числа x.

Розв'язання

Оскільки ξ має експоненційний розподіл, то за означенням її щільність $f_{\xi}(t) = 1_{(0,\infty)}(t)\lambda e^{-\lambda t}$. Отже,

$$F_{\xi}(t) = \int_{-\infty}^{t} f_{\xi}(u) du = \int_{-\infty}^{t} 1_{(0,\infty)}(u) \lambda e^{-\lambda u} du = \begin{cases} 0, & t \le 0, \\ -e^{-\lambda u} \Big|_{0}^{t} = 1 - e^{-\lambda t}, & t > 0. \end{cases}$$

Знайдемо хвіст розподілу ξ , перейшовши до доповнення події $\{\xi \geq t\}$:

$$P(\xi \ge t) = 1 - P(\xi < t) = 1 - F_{\xi}(t) = e^{-\lambda t}, \ t > 0.$$

Тепер можна легко обчислити умовну імовірнсть:

$$P(\xi \ge t + s \mid \xi \ge s) = \frac{P(\xi \ge t + s, \xi \ge s)}{P(\xi \ge s)} = \frac{P(\xi \ge t + s)}{P(\xi \ge s)} = \frac{e^{-\lambda(t + s)}}{e^{-\lambda s}} = e^{-\lambda t}, \ t, s > 0.$$

Тобто експоненційний розподіл має властивість відсутності пам'яті.

Для k>0 знайдемо $E[\xi^k]$, скориставшись LOTUS:

$$E[\xi^{k}] = \int_{-\infty}^{+\infty} t^{k} f_{\xi}(t) dt = \int_{0}^{+\infty} t^{k} \lambda e^{-\lambda t} dt = \lambda^{-k} \int_{0}^{+\infty} (\lambda t)^{k} e^{-\lambda t} d(\lambda t) = \lambda^{-k} \int_{0}^{+\infty} u^{(k+1)-1} e^{-u} du = \lambda^{-k} \Gamma(k+1).$$

Зокрема $E[\xi]=\lambda^{-1}$ та $E[\xi^2]=2\lambda^{-2}$, звідки $Var[\xi]=E[\xi^2]-(E[\xi])^2=\lambda^{-2}$ (можете звісно перевірити, взявши інтеграли в $E[\xi]$ та $E[\xi^2]$ частинами).

Тепер знайдемо розподіл $\eta = e^{a\xi}, \, |a| > 0.$ Для a > 0

$$P(\eta < t) = P(e^{a\xi} < t) = P(a\xi < \ln(t)) = P(\xi < \ln(t)/a) = \begin{cases} 0, & t \le 1, \\ 1 - e^{-(\lambda/a)\ln(t)} = 1 - t^{-(\lambda/a)}, & t > 1. \end{cases}$$

3

Навпаки, для a < 0

$$P(\eta < t) = P(a\xi < \ln(t)) = P(\xi > \ln(t)/a) = \begin{cases} 0, & t \le 0, \\ e^{-(\lambda/a)\ln(t)} = t^{-(\lambda/a)}, & 0 < t \le 1, \\ 1, & t > 1. \end{cases}$$

Зокрема з цього можна побачити, що при $a=-\lambda$ маємо, що $\eta \sim U[0,1]$ (по суті частковий випадок квантильного перетворення).

Тепер перевіримо, що ж то за розподіл для $\nu = [\xi]$. Очевидно, що ν є дискретною випадковою величиною з носією на \mathbb{Z}_+ , тому досить знайти імовірності набувать значень в цих точках

$$P(\nu = k) = P([\xi] = k) = P(k \le \xi < k+1) = P(\xi < k+1) - P(\xi < k) =$$

$$= F_{\xi}(k+1) - F_{\xi}(k) = e^{-\lambda(k+1)} - e^{-\lambda k} = q^{k}(1-q), \ k \in \mathbb{Z}_{+},$$

де $q = e^{-\lambda}$. Тобто $\nu \sim \text{Geom}(1-q)$.

2.2 Задача 2

Нехай $\xi \sim U[0,1], -\infty < a < b < +\infty.$

- 1. Обчислити $E[1/(\xi+1)], E[\sin(2\pi\xi)].$
- 2. Знайти розподіл випадкової величини $\eta = (b-a)\xi + a, \, a \neq 0, \, a < b.$
- 3. Знайти розподіл випадкової величини $\nu = 3|\xi 2|.$
- 4. Обчислити $E[\nu], Var[\nu].$

Розв'язання

Оскільки ξ має рівномірний розподіл, то за означенням її щільність $f_{\xi}(t) = 1_{(0,1)}(t)$.

Підрахунок математичних сподівань очевидний з LOTUS:

$$E[1/(\xi+1)] = \int_{0}^{1} \frac{1}{x+1} dx = \ln(x+1) \Big|_{0}^{1} = \ln(2).$$

$$E[\sin(2\pi\xi)] = \int_{0}^{1} \sin(2\pi x) dx = -\cos(2\pi x)/(2\pi) \Big|_{0}^{1} = 0.$$

Знайдемо розподіл лінійного перетворення $\eta = (b-a)\xi + a$:

$$P(\eta < t) = P((b-a)\xi < t-a) = F_{\varepsilon}((t-a)/(b-a)), \ t \in \mathbb{R}$$

Звідси
$$f_{\eta}(t) = (P(\eta < t))_t^{'} = f_{\xi}((t-a)/(b-a))/(b-a) = 1_{(a,b)}(t)/(b-a)$$
, тобто $\eta \sim U[a,b]$.

Знайдемо тепер розподіл $\nu=3|\xi-2|$. Для t>0

$$P(\nu < t) = P(2 - t/3 < \xi < 2 + t/3) = P(\xi < 2 + t/3) - P(\xi < 2 - t/3) = 1 - P(\xi < 2 - t/3).$$

Знайдемо щільність ν :

$$f_{\nu}(t) = \frac{1}{3} f_{\xi}(2 - t/3) = \frac{1}{3} 1_{(0,1)}(2 - t/3) = \frac{1}{3} 1_{(3,6)}(t).$$

Випадок $t \leq 0$ очевидний. Отже $\nu \sim U[3,6]$ та (див. попередне заняття)

$$E[\nu] = (3+6)/2 = 9/2, \ Var[\nu] = (6-3)^2/12 = 9/12 = 3/4.$$

5

2.3 Задача 3

Абсолютно неперервна випадкова величина ξ має симетричний розподіл, якщо розподіли ξ та $-\xi$ співпадають.

Сформулювати умови симетричності розподілу:

- 1. В термінах функції розподілу ξ ,
- 2. В термінах щільності розподілу ξ .

Розв'язання

Позначимо через $F_{\xi}(t) = P(\xi < t)$ – функцію розподілу ξ . Якщо $\xi = ^d - \xi$, то це значить, що

$$P(\xi < t) = P(-\xi < t), \ t \in \mathbb{R}.$$

3іншого боку, $P(-\xi < t) = P(\xi > -t) = 1 - P(\xi \le -t) = 1 - P(\xi < -t)$, тобто

$$F_{\varepsilon}(t) = 1 - F_{\varepsilon}(-t),$$

отримавши умову на функцію розподілу. Далі, беремо похідну по t:

$$f_{\xi}(t) = 0 + f_{\xi}(-t) = f_{\xi}(-t),$$

тобто f_{ξ} має бути парною. Отримали умову на щільність розподілу.

2.4 Задача 4

Нехай випадкова величина $\xi \sim Cauchy$.

- 1. Чи $\varepsilon \xi$ інтегровною?
- 2. Знайти розподіл $\eta = 1/\xi$.

Розв'язання

Розглянемо $\xi = \min(0, \xi) + \max(0, \xi) =: \xi_- + \xi_+$.

Якщо доведемо інтегровність ξ_{\pm} , тоді інтегровною буде ξ (чому?).

Спочатку дослідимо ξ_+ : згідно LOTUS

$$E[\xi_{+}] = E[0 \cdot 1_{0 \ge \xi} + \xi \cdot 1_{\xi > 0}] = E[\xi 1_{\xi > 0}] = \frac{1}{\pi} \int_{0}^{+\infty} \frac{t}{1 + t^{2}} dt$$

Інтеграл у правій частині рівності розбіжний за ознакою еквівалентності:

$$\frac{t}{1+t^2} \sim \frac{1}{t}, \ t \to +\infty,$$

де $\int_0^{+\infty} (1/t) dt = +\infty$, отже $E[\xi_+] = +\infty$. Аналогічно можна показати, що $E[\xi_-] = -\infty$.

Виходить, що $E[\xi]$ не існує, отже випадкова величина ξ не є інтегровною.

Знайдемо розподіл $1/\xi$. Неважко переконатися, що при t < 0

$$\begin{split} P(1/\xi < t) &= P(1/\xi < t, \xi < 0) + P(1/\xi < t, \xi > 0) = P(1/\xi < t, \xi < 0) = \\ &= P(\xi > 1/t, \xi < 0) = P(1/t < \xi < 0) = \\ &= F_{\xi}(0) - F_{\xi}(1/t) \\ &\Rightarrow f_{1/\xi}(t) = (F_{\xi}(0) - F_{\xi}(1/t))'_{t} = 0 - \frac{1}{\pi} \frac{1}{1 + 1/t^{2}} (1/t^{2}) = \frac{1}{\pi} \frac{1}{1 + t^{2}}. \end{split}$$

Далі, при t > 0:

$$P(1/\xi < t) = 1 - P(1/\xi \ge t) = 1 - (P(1/\xi \ge t, \xi < 0) + P(1/\xi \ge t, \xi > 0)) =$$

$$= 1 - P(1/\xi \ge t, \xi > 0) = 1 - P(\xi \le 1/t, \xi > 0) = 1 - F_{\xi}(1/t) + F_{\xi}(0)$$

$$\Rightarrow f_{1/\xi}(t) = (1 - F_{\xi}(1/t) + F_{\xi}(0))'_{t} = 0 - \frac{1}{\pi} \frac{1}{1 + 1/t^{2}} (1/t^{2}) + 0 = \frac{1}{\pi} \frac{1}{1 + t^{2}}.$$

Отже $f_{1/\xi}(t)=f_{\xi}(t)$ м.с. $\lambda_1,$ тобто $1/\xi$ теж має розподіл Коші.

В принципі можна отримати потрібний результат в термінах $F_{1/\xi}(t)$, скориставшись властивістю $\arctan(t) + \arctan(1/t) = \operatorname{sign}(t) \cdot \pi/2$.

2.5 Задача 5

Випадкова величина ξ має щільність $f_{\xi}(x)$, а функція $g:\mathbb{R}\to\mathbb{R}$ кусково строго монотонна і кусково неперервно диференційовна. Доведіть, що щільність розподілу випадкової величини $\eta=g(\xi)$ має вигляд

$$f_{\eta}(y) = \sum_{x:g(x)=y} \frac{f_{\xi}(x)}{|g'(x)|}$$

Розв'язання

Через $I_k, k \in I$ (I – зліченна множина) позначимо інтервали монотонності $g, \cup_k I_k = \mathbb{R}$. Тоді

$$P(\eta < t) = P(g(\xi) < t) = \sum_{k \in I} P(g(\xi) < t, \xi \in I_k)$$

Через g_k позначимо звуження функції g на $I_k:=(a_k,b_k]$ (відповідно при $b_k=+\infty$ правий кінець без включення).

Нехай на проміжку I_k функція g строго зростає по t і $\{x \in I_k \mid g(x) < t\} = (a_k, g_k^{-1}(t)) \subset I_k$.

$$P(g(\xi) < t, \xi \in I_k) = P(\xi < g_k^{-1}(t), \xi \in I_k) = \int_{a_k}^{g_k^{-1}(t)} f_{\xi}(u) du = \left| z := g(u), u = g_k^{-1}(z), du = \frac{dz}{g_k'(g_k^{-1}(z))} \right| = \int_{g(a_k)}^{t} \frac{f_{\xi}(g_k^{-1}(z))}{g_k'(g_k^{-1}(z))} dz \Rightarrow \frac{d}{dt} P(g(\xi) < t, \xi \in I_k) = \frac{f_{\xi}(g_k^{-1}(t))}{g_k'(g_k^{-1}(t))} = \frac{f_{\xi}(g_k^{-1}(t))}{|g_k'(g_k^{-1}(t))|}.$$

Навпаки, припустимо що на I_k функція g строго спадає по t та $\{x \in I_k \mid g(x) < t\} = (g_k^{-1}(t), b_k] \subset I_k$. Тоді

$$P(g(\xi) < t, \xi \in I_k) = P(\xi > g_k^{-1}(t), \xi \in I_k) = P(g_k^{-1}(t) < \xi \le b_k) = \int_t^{g_k(b_k)} \frac{f_{\xi}(g_k^{-1}(z))}{g_k'(g_k^{-1}(z))} dz$$

$$\Rightarrow \frac{d}{dt} P(g(\xi) < t, \xi \in I_k) = -\frac{f_{\xi}(g_k^{-1}(t))}{g_k'(g_k^{-1}(t))} = \frac{f_{\xi}(g_k^{-1}(t))}{|g_k'(g_k^{-1}(t))|}.$$

А тепер припустимо, що для всіх $x \in I_k$ виконується нерівність g(x) < t. Тоді

$$P(g(\xi) < t, \xi \in I_k) = P(\xi \in I_k) \Rightarrow \frac{d}{dt} P(g(\xi) < t, \xi \in I_k) = 0.$$

Залишається врахувати випадок, коли на I_k нерівність g(x) < t не справджується для всіх $x \in I_k$. Тоді події в імовірності несумісні, звідси

$$P(g(\xi) < t, \xi \in I_k) = 0 \Rightarrow \frac{d}{dt} P(g(\xi) < t, \xi \in I_k) = 0.$$

В результаті

$$f_{\eta}(t) = \sum_{k \in I} 1_{g_k((a_k, b_k])}(t) \frac{f_{\xi}(g_k^{-1}(t))}{|g_k'(g_k^{-1}(t))|} = \sum_{y:g(y)=t} \frac{f_{\xi}(y)}{|g'(y)|},$$

де
$$g_k(\pm \infty) := \lim_{x \to \pm \infty} g_k(x)$$
.