

1. Modern Electrical Drives: An Overview

Fig. 1.1 Typical drive set-up

1.1 Drive Technology Trends

N_m = 120 fe P

felec = finec

- Electrical Machines: PM Synchronous & Induction Machines

- Power Density (Output power to weight ratio KW/kg) is an important performance parameter of the machine.
- With the constraint of acceptable operating temperatures, the power density values were expected to level off around the 0.16 kW/kg value.
- Machines with high speed (e.g. 100,000 rpm) can increase the power density values up to 3.5 kW/kg.

- Power Converters

- For industrial air-cooled ac to dc converters, the volumetric power density value has increased up to 500 kVA/m³.

Key factors:

- -Availability of power semiconductors able to switch more efficiently with lower power dissipation.
- Use of topologies and control techniques to minimize power device losses.
- Improvements to heat-sink technology --> smaller modules.

Fig. 1.5 Example of commercial converter unit and integrated semiconductor module which can be used to build an inverter [58]

Fig. 1.6 Example of modern inverter technology with standard communication interfaces [72]

- Primary design constraint on the volumetric power density of the converter is thermal.
- The volumetric power density is to a large extend governed by the specific losses of the devices in use, method of cooling and drive operating conditions.

In electric and hybrid vehicles high power-density values for machine and converter are essential. An example of such as drive utilizes a liquid cooled DC to AC converter with a volumetric power density of 6000 KVA/m³ and a 55 kW switched reluctance machine with a power density of approximately 1.2 kW/kg.

Fig. 1.7 Example of an electrical vehicle propulsion unit which utilizes a liquid cooled AC-DC converter and 55 kW switched reluctance machine [15, 10]

- Embedded Control

Key innovations:

- Field Oriented Control (FOC) / Vector Control algorithms for AC machines.
- Synchronized space vector, pulse width modulation (PWM) techniques.
- The availability of high performance (fast) fixed point as well as floating point digital signal processor (DSP) and micro-controllers (uC) have simplified the implementation of real time complex control algorithms.
- Availability of a range of programming tools for these DSP and uC units, which utilize high-level programming languages, such as C++, and graphical programming tools, such as MATLAB/SIMULINK or CASPOC, serve to shorten overall drive development times and enhance drive application flexibility.

1.2 Drive Design Methodology

- A closed loop iterative design process is used which encompasses the complete drive.

Fig. 1.9 Typical design methodology used for electrical drives [61, 11, 65]

Fig.1 Development & Design Motor control system

Objective

To develop software of a vector controller for Permanent-Magnet Synchronous Motors using Embedded Coder of Matlab/Simulink.

9

MODEL-BASED DESIGN (MBD)

O2 SOFTWARE IN THE LOOP (SIL)

04 HARDWARE IN THE LOOP (HIL)

PROCESS

Fig.8 Simulation system of vector controller

Fig.9 Block diagram for C Code generation

Result: Simulation of speed control system with vector controller (1) —

Discrete 5e-07 s.

Fig.10 Simulink block diagram of speed control system with vector controller

