

A Self-Supervised voxel shuffling framework for Kernel-Based fMRI activation detection

Chendi Han

Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA

Cleveland Clinic

Statement

- > We declare that there is no conflict of interest.
- The data used in this paper comes from Human Connectome Project projects (HCP) [1] and our in-house scans [2].
- This work was funded by NIH-R01AG071566-02 and NIH-P20GM109025-08

- [1] Barch, D., et al. Neuroimage, 80, 169-189. (2013)
- [2] Jin, M., et al. Magnetic Resonance Imaging, 30(4), pp.459-470. (2012)

Background

Complexity

Voxel	General linear model with Gaussian smoothing [3], Local CCA [4, 5]	Local CCA + Constraints [6],	Deep CCA [7]	[3] Friman, O., et al., NeuroImage 19.3 837-845. (2003) [4] Friman, O., et al., Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 45(2), pp.323-330. (2001) [5] Cordes, D., et al., Human brain mapping, 33(11), pp.2611-2626. (2012)
Whole Brain	Linear KCCA [8, 9]	Nonlinear KCCA [10]		 [6] Zhuang, X., et al., NeuroImage, 149, pp.63-84. (2017) [7] Zhengshi, Y., et al., (Accepted) [8] Hardoon, D.R., et al., Neural computation, 16(12), pp.2639-2664. (2004) [9] Yang, Z., et al., NeuroImage, 169, pp.240-255. (2018) [10] Chendi, H., et al., ISMRM (2024)
Size v	Linear	Nonlinear	Deep learning	

Nonlinear KCCA

> Data processing pipeline

> Kernel selection

Kernel name	Expression		Kernel name	Expression
Linear	$K_{\mathbf{Y}} = \mathbf{Y}\mathbf{Y}^T$		Tanh	$K_{\mathbf{Y}} = \tanh(b\mathbf{Y}\mathbf{Y}^T + c)$
Parabolic	$K_{\mathbf{Y}} = (\mathbf{Y}\mathbf{Y}^T + b^2)^2$		Mixed Tools	$K_{\mathbf{Y}} = \tanh(b_1 \mathbf{Y} \mathbf{Y}^T)$
Gaussian	$K_{\mathbf{Y}} = \exp\left(-\ \mathbf{Y} - \mathbf{Y}^T\ ^2/\sigma^2\right)$		Mixed Tanh	$+ b_2 \ \mathbf{Y} - \mathbf{Y}^T\ ^2 + c)$

Self-supervised learning

Similarity comparison [11]

Voxel shuffling

[11]	Chen, T., et al.,	International	conference	on machine	learning ((pp.	1597-1607)	PmLR.	(2020)
------	-------------------	---------------	------------	------------	------------	------	------------	-------	--------

Shuffling 1	$Q_1 = Q_2 = 0.5Q_+$
Shuffling 2	$Q_1 = Q_{\text{Non}}, Q_2 = Q_+$

Self-supervised learning

Objective function

 $\max_{\text{Unkonwn parameters}} \text{Robustness} = \text{AUC}_{\text{FPR} < 0.1} (\text{Shuffling 1}) + \text{AUC}_{\text{FPR} < 0.1} (\text{Shuffling 2})$

➤ Testing (Simulated fMRI)

➤ Testing (Task fMRI)

FPR: Activated voxel not on ground truth

TPR: Activated voxel on ground truth

FPR: Activated voxel not on gray matter

TPR: Activated voxel on gray matter

> Assumption

High shuffling robustness

Accurate activation pattern

Results (simulated-fMRI)

Simulation (a):

Number of subjects: 20

Activated regions: Anterior cingulate, precentral gyrus, inferior frontal, insula,

mid frontal and mid temporal

Simulation (b):

Number of subjects: 20

Activated regions: voxels with the top 10%

highest correlations to the design signal

Results (task-fMRI)

Task fMRI (a):

Name: HCP

Number of subjects: 87

Contrasts: Targets minus non-targets

Task fMRI (b):

Name: In-house scans Number of subjects: 64

Contrasts: Encoding minus control/

Recognition minus control

Summary

Previously hyperparameter optimization algorithm

- ➤ Resting state (Linear KCCA)
- ➤ Activation overlays on gray matter (Deep CCA)

Our results

> Self-supervised learning framework to optimize hyperparameters in nonlinear KCCA

Thanks for your attention!