Sequence Labelling

Dr. Uzair Ahmad

Program

- Sequence labeling:
 - Part-of-speech tagging
 - NER
- Learning approaches
 - Classification approach
 - POS as structure prediction
 - Hidden Markov Models
 - The Viterbi algorithm
 - Discriminative approaches
 - RNNs and POS tagging

POS Tags

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coord. conj.	and, but, or	NNP	proper noun, sing.	IBM	TO	"to"	to
CD	cardinal number	one, two	NNPS	proper noun, plu.	Carolinas	UH	interjection	ah, oops
DT	determiner	a, the	NNS	noun, plural	llamas	VB	verb base	eat
EX	existential 'there'	there	PDT	predeterminer	all, both	VBD	verb past tense	ate
FW	foreign word	mea culpa	POS	possessive ending	's	VBG	verb gerund	eating
IN	preposition/	of, in, by	PRP	personal pronoun	I, you, he	VBN	verb past partici-	eaten
	subordin-conj						ple	
JJ	adjective	yellow	PRP\$	possess. pronoun	your, one's	VBP	verb non-3sg-pr	eat
JJR	comparative adj	bigger	RB	adverb	quickly	VBZ	verb 3sg pres	eats
JJS	superlative adj	wildest	RBR	comparative adv	faster	WDT	wh-determ.	which, that
LS	list item marker	1, 2, One	RBS	superlatv. adv	fastest	WP	wh-pronoun	what, who
MD	modal	can, should	RP	particle	ир, off	WP\$	wh-possess.	whose
NN	sing or mass noun	llama	SYM	symbol	+,%, &	WRB	wh-adverb	how, where

Penn Treebank part-of-speech tags.

POS Tagging Task

SLP: P157

Sequence labeling

- Why difficult ?
 - They can fish. \rightarrow (N N V) (N V N)
 - Can of fish \rightarrow (N P N)

Sequence labeling

	They	can	fish
Possible	V	V	V
assignments	V	V	N
	V	N	N
	V	N	V
	N	N	N
	N	V	N
	N	N	V
	N	V	V

- $\mathbf{w} = (w_1, w_2, w_3, ..., w_M)$
- Feature function
 - f((w,m), y)

$$f((\mathbf{w} = \text{they can fish}, m = 1), N) = (\text{they}, N)$$

 $f((\mathbf{w} = \text{they can fish}, m = 2), V) = (\text{can}, V)$
 $f((\mathbf{w} = \text{they can fish}, m = 3), V) = (\text{fish}, V).$

- Grammatical ambiguity
 - They can fish. \rightarrow (N N V) (N V N)
 - The can of fish \rightarrow (D N P N)
- The tagger must rely on context

Context and Grammatical ambiguity

$$f((\boldsymbol{w} = \textit{they can fish}, 1), N) = \{(w_m = \textit{they}, y_m = N), \\ (w_{m-1} = \square, y_m = N), \\ (w_{m+1} = \textit{can}, y_m = N)\}$$

$$f((\boldsymbol{w} = \textit{they can fish}, 2), V) = \{(w_m = \textit{can}, y_m = V), \\ (w_{m-1} = \textit{they}, y_m = V), \\ (w_{m+1} = \textit{fish}, y_m = V)\}$$

$$f((\boldsymbol{w} = \textit{they can fish}, 3), V) = \{(w_m = \textit{fish}, y_m = V), \\ (w_{m-1} = \textit{can}, y_m = V), \\ (w_{m-1} = \textit{can}, y_m = V), \\ (w_{m+1} = \blacksquare, y_m = V)\}.$$

	1	2	3	4	5
W	The	old	man	the	boat.
POS	Det	Adj	N	Det	N
POS	Det	N	V	Det	N

- Model the joint probability distribution P(w, y)
 - often using probabilistic graphical models.
 - Set of tokens $w = (w_1, w_2, w_3, ..., w_M)$
 - Set of possible tags $\Upsilon(\mathbf{w}) = \Upsilon^M = (y_1, y_2, y_3, ..., y_M)$
 - $\Upsilon = \{N, V, D, ...\}$

$$\hat{y} = \underset{y \in \Upsilon(w)}{\operatorname{argmax}} \Psi(w, y)$$

Restricting the scoring function

$$\Psi(w,y) = \sum_{m=1}^{M+1} \psi(w,y_m,y_{m-1},m)$$

$$\psi(w_{1:M}, y_m, y_{m-1}, m) = \theta \cdot f(w, y_m, y_{m-1}, m)$$

$$f(w = they \ can \ fish, \ y = N \ V \ V) = \sum_{m=1}^{M+1} f(w, y_m, y_{m-1}, m)$$

$$f(w, N, \lozenge, 1) \quad (w_m = they, y_m = N) + (y_m = N, y_{m-1} = \lozenge)$$

$$+ f(w, V, N, 2) \quad (w_m = can, y_m = V) + (y_m = V, y_{m-1} = N)$$

$$+ f(w, V, V, 3) \quad (w_m = fish, y_m = V) + (y_m = V, y_{m-1} = V)$$

$$+ f(w, \blacklozenge, V, 4) \quad (y_m = \blacklozenge, y_{m-1} = V)$$

Inference by restricted scoring function

$$\Psi(w, y) = \sum_{m=1}^{M+1} \psi(w, y_m, y_{m-1}, m)$$

$$= \underset{y_{1:M}}{\operatorname{argmax}} \sum_{m=1}^{M+1} \psi(w, y_m, y_{m-1}, m)$$

$$= \underset{y_{1:M}}{\operatorname{argmax}} \sum_{m=1}^{M+1} s_m(y_m, y_{m-1}),$$

- Probabilistic estimation of scores $s_m(\mathbf{y}, \mathbf{y}')$
- Naïve bayes classifier
 - $p(y|x) \propto p(x,y)$
- Probabilistic sequence labeling
 - $p(y|w) \propto p(y,w)$

$$\Psi(w,y) = \sum_{m=1}^{M+1} \psi(w,y_m,y_{m-1},m)$$

- Probabilistic sequence labeling
 - $p(y|w) \propto p(y,w)$

each token depends **only** on its tag

$$p(y|w) = \prod_{m=1}^{M} p(w_m | y_m)$$

each tag depends **only** on its predecessor

$$p(y) = \prod_{m=1}^{M} p(y_m | y_{m-1})$$

$$p(y) = \prod_{m=1}^{M} p(y_m | y_{m-1})$$

$$y_1 \longrightarrow y_2 \longrightarrow \cdots \longrightarrow y_M$$

$$w_1 \longrightarrow w_2 \longrightarrow \cdots$$

$$w_M$$

$$p(y|w) = \prod_{m=1}^{M} p(w_m | y_m)$$

$$p(y) = \prod_{m=1}^{M} p(y_m | y_{m-1}) \rightarrow \text{Transition probabilities}$$

$$p(y|w) = \prod_{m=1}^{M} p(w_m | y_m) \rightarrow \text{Emission probabilities}$$

$$p_t(y) = \prod_{m=1}^{M} p(y_m | y_{m-1}; \lambda) \rightarrow \text{Transition probabilities}$$

$$p_e(y|w) = \prod_{m=1}^{M} p(w_m | y_m; \phi) \rightarrow \text{Emission probabilities}$$

$$p_t(y) = \prod_{m=1}^{M} p(y_m \mid y_{m-1}; \lambda) \rightarrow \text{Transition probabilities} \qquad \lambda_{k,k'} \triangleq \Pr(Y_m = k' \mid Y_{m-1} = k) = \frac{\text{count}(Y_m = k', Y_{m-1} = k)}{\text{count}(Y_{m-1} = k)}$$

$$p_e(y|w) = \prod_{m=1}^{M} p(w_m | y_m; \phi) \rightarrow \text{Emission probabilities} \qquad \phi_{k,i} \triangleq \Pr(W_m = i | Y_m = k) = \frac{\text{count}(W_m = i, Y_m = k)}{\text{count}(Y_m = k)}$$

Inference

$$\hat{y} = \underset{y}{\operatorname{argmax}} p(y|w) \approx \underset{y}{\operatorname{max}} p(y,w)$$

$$p(y,w) = p(y \mid w) \times p(w) \propto p(y \mid w)$$
$$p(y,w) = p(w \mid y) \times p(y) \propto p(w \mid y)$$

Inference

$$\hat{y} = \underset{y}{\operatorname{argmax}} \log (p(y|w)) \approx \underset{y}{\operatorname{max}} \log (p(y,w))$$

$$\log (p(y, w)) = \log (p(y)) \times \log p(w|y)$$

$$\log (p(y, w)) = \sum_{m=1}^{M} \log p_{Y}(y_{m} | y_{m-1}) + \log p_{W|Y}(w_{m} | y_{m})$$

$$\log (p(y, w)) = \sum_{m=0}^{\infty} \log \lambda_{y_m, y_{m-1}} + \log \phi_{y_m, w_m} \quad s_m(y_m, y_{m-1})$$

$$v_{m}(y_{m}) \triangleq \max_{\mathbf{y}_{1:m-1}} \sum_{n=1}^{m} s_{n}(y_{n}, y_{n-1})$$

$$= \max_{y_{m-1}} s_{m}(y_{m}, y_{m-1}) + \max_{\mathbf{y}_{1:m-2}} \sum_{n=1}^{m-1} s_{n}(y_{n}, y_{n-1})$$

$$= \max_{y_{m-1}} s_{m}(y_{m}, y_{m-1}) + v_{m-1}(y_{m-1}).$$

```
for k \in \{0, ..., K\} do
                                                         Initialize
    v_1(k) = s_1(k, \lozenge)
for m \in \{2, ..., M\} do
                                                         Recursion
    for k \in \{0, ..., K\} do
         v_m(k) = \max_{k'} s_m(k, k') + v_{m-1}(k')
         b_m(k) = \operatorname{argmax}_{k'} s_m(k, k') + v_{m-1}(k')
                                                      Termination
y_M = \operatorname{argmax}_k s_{M+1}(\blacklozenge, k) + v_M(k)
for m \in \{M - 1, ... 1\} do
                                                     Backtracking
    y_m = b_m(y_{m+1})
return y_{1:M}
```

	They	can	fish
Possible	V	V	V
assignments	V	V	N
	V	N	N
	V	N	V
	N	N	N
	N	V	N
	N	N	V
	N	V	V

M				
	they	can	fish	
N	-2	-3	-3	
V	-10	-1	-3	
	Emissi	ons		

_	K - to			
		N	V	♦
	Y	-1		$-\infty$
K'- from	N	-3	-1	-1
_	V	-1	-3	-1

Transitions

for $k \in \{0, \dots K\}$ do $v_1(k) = s_1(k, \lozenge)$

	they	can	fish
N	$\overline{-2}$	-3	-3
V	-10	-1	-3

	N	V	•
\Diamond	$\overline{-1}$	-2	$-\infty$
N	-3	-1	-1
V	-1	-3	-1

$$v_1(\mathbf{V}) = s_1(\mathbf{V}, \diamondsuit) = -10 - 2 = -12$$

 $b_1(\mathbf{V}) = y_{m-1} = \diamondsuit$

	they	can	fish
N	-2	-3	-3
V	$\bigcirc 10$	-1	-3

	N	V	•
\Diamond	-1	(-2)	$-\infty$
N	-3	-1	-1
V	-1	-3	-1

for
$$m \in \{2, ..., M\}$$
 do
for $k \in \{0, ..., K\}$ do
 $v_m(k) = \max_{k'} s_m(k, k') + v_{m-1}(k')$
 $b_m(k) = \operatorname{argmax}_{k'} s_m(k, k') + v_{m-1}(k')$

$$v_2(\mathbf{N}) = \max(v_1(\mathbf{N}) + s_2(\mathbf{N}, \mathbf{N}), v_1(\mathbf{V}) + s_2(\mathbf{N}, \mathbf{V}))$$
 $v_2(\mathbf{N}) = \max(-3 + s_2(\mathbf{N}, \mathbf{N}), -12 + s_2(\mathbf{N}, \mathbf{V}))$
 $s_2(\mathbf{N}, \mathbf{N}) = -3 - 3$
 $s_2(\mathbf{N}, \mathbf{V}) = -3 - 1$
 $v_2(\mathbf{N}) = \max(-3 - 3 - 3, -12 - 3 - 1) = -9$
 $b_2(\mathbf{N}) = y_{m-1} = \mathbf{N}$

for
$$m \in \{2, ..., M\}$$
 do
for $k \in \{0, ..., K\}$ do
 $v_m(k) = \max_{k'} s_m(k, k') + v_{m-1}(k')$
 $b_m(k) = \operatorname{argmax}_{k'} s_m(k, k') + v_{m-1}(k')$

$$v_2(\mathbf{V}) = \max(v_1(\mathbf{N}) + s_2(\mathbf{V}, \mathbf{N}), v_1(\mathbf{V}) + s_2(\mathbf{V}, \mathbf{V}))$$

$$v_2(\mathbf{V}) = \max(-3 + s_2(\mathbf{V}, \mathbf{N}), -12 + s_2(\mathbf{V}, \mathbf{V}))$$

-1-1 -1-3

$$v_2(\mathbf{V}) = \max(-3-1-1, -12-1-3) = -5$$

$$b_2(\mathbf{V}) = y_{m-1} = \mathbf{N}$$

for
$$m \in \{2, ..., M\}$$
 do
for $k \in \{0, ..., K\}$ do
 $v_m(k) = \max_{k'} s_m(k, k') + v_{m-1}(k')$
 $b_m(k) = \operatorname{argmax}_{k'} s_m(k, k') + v_{m-1}(k')$

$$v_3(\mathbf{N}) = \max(v_2(\mathbf{N}) + s_3(\mathbf{N}, \mathbf{N}), v_2(\mathbf{V}) + s_3(\mathbf{N}, \mathbf{V}))$$

$$v_3(\mathbf{N}) = \max(-9 + s_3(\mathbf{N}, \mathbf{N}), -5 + s_3(\mathbf{N}, \mathbf{V}))$$

-3-3 -3-1

$$v_3(\mathbf{N}) = \max(-9-3-3, -5-3-1) = -9$$

$$b_3(\mathbf{N}) = y_{m-1} = \mathbf{V}$$

for
$$m \in \{2, ..., M\}$$
 do
for $k \in \{0, ..., K\}$ do
 $v_m(k) = \max_{k'} s_m(k, k') + v_{m-1}(k')$
 $b_m(k) = \operatorname{argmax}_{k'} s_m(k, k') + v_{m-1}(k')$

$$v_3(\mathbf{V}) = \max(v_2(\mathbf{N}) + s_3(\mathbf{V}, \mathbf{N}), v_2(\mathbf{V}) + s_3(\mathbf{V}, \mathbf{V}))$$

$$v_3(\mathbf{V}) = \max(-9 + s_3(\mathbf{V}, \mathbf{N}), -5 + s_3(\mathbf{V}, \mathbf{V}))$$

-3-1 -3-3

$$v_3(\mathbf{V}) = \max(-9 - 3 - 1, -5 - 3 - 3) = -11$$

$$b_3(\mathbf{V}) = y_{m-1} = \mathbf{V}$$

Termination

$$y_M = \operatorname{argmax}_k s_{M+1}(\blacklozenge, k) + v_M(k)$$

$$v_4(\blacklozenge) = \max(v_3(\mathbf{N}) + s_4(\blacklozenge, \mathbf{N}), v_3(\mathbf{V}) + s_4(\blacklozenge, \mathbf{V}))$$

$$v_4(\blacklozenge) = \max(-9 + s_4(\blacklozenge, \mathbf{N}), -11 + s_4(\blacklozenge, \mathbf{V}))$$

$$0-1$$

$$0-1$$

$$v_4(•) = \max(-9 + 0 - 1, -11 + 0 - 1) = -10$$

$$b_4(\bullet) = y_{m-1} = N$$

	they	can	fish
N	-2	-3	-3
V	-10	-1	-3

Backtracking

for
$$m \in \{M - 1, ... 1\}$$
 do $y_m = b_m(y_{m+1})$

- Restricting scoring function to local parts
 - Only pairs of adjacent tags
 - Akin to a bigram language model (over tags)
- Higher-order features ?

$$\Psi(w,y) = \sum_{m=1}^{M+2} \psi(w, y_m, y_{m-1}, y_{m-2}, m)$$

Discriminative approaches

- Structured Perceptron
 - Increase weights of correct classifications
 - Decrease weights of incorrect classification
- Structured SVM
 - Push class boundary away from training instances
- Conditional Random Fields
 - conditional probabilistic model for sequence labeling;
 - built on the logistic regression classifier

References

• Natural Language Processing | J. Eisenstein