PROGAMACION USART

MODULO USART TRANSMISOR

MODULO USART RECEPTOR

Transmisión Asíncrona

Enviando datos:

- Los baudios a los cuales transmitirá son colocados usando los bits BRGH (Registro TXSTA) y BRG16 (Registro BAUDCTL) y Registros SPBRGH y SPBRG.
- 2. El bit SINC (TXSTA) se debe poner a 0 y el SPEN debe setearse.
- 3. Si se transmiten 9 bits, debe colocarse a 1 TX9.
- 4. La transmisión de datos se habilita colocando a 1 el TXEN. El TXIF del PIR1 se pone en 1 automáticamente.
- 5. Si se trabaja con interrupciones el bit TXEN la habilita si GIE y PEIE del INTCON son 1.
- 6. Si se transmite con 9 bits de datos, el valor del novena bit debe escribirse en TX9D.
- 7. La transmisión comienza escribiendo datos de 8 bits en el TXREG.

Recibiendo datos:

- 1. Los baudios a los cuales transmitirá son colocados usando los bits BRGH (Registro TXSTA) y BRG16 (Registro BAUDCTL) y Registros SPBRGH y SPBRG.
- 2. El bit SINC (TXSTA) se debe poner a 0 y el SPEN debe setearse (RCSTA register) para habilitar el Puerto.
- 3. Si trabaja con interrupciones el bit RCIE del PIE1 la habilita si GIE y PEIE del INTCON son 1
- 4. Si recibe 9 bit de datos el RX9 bit del RCSTA register debe ser 1.
- 5. Los datos recibidos deben ser habilitados poniendo 1 en bit CREN del RCSTA register.
- El Registro RCSTA puede ser leído para obtener información sobre errores ocurridos durante la transmisión.
- 7. Los 8 bit de datos almacenados en Registro RCREG debieran ser leídos.

Registro TXSTA:

	R/W (0)	R (1)	R/W (0)	Features					
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	Bit name
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	

Legend

R/W Readable/Writable bit
R Readable bit
(0) After reset, bit is cleared
(1) After reset, bit is set

CSRC – Selecciona Fuente Clock – determina fuente clock. Sólo en modo sincrónico. (1 – Master mode: clock interno, 0 – Slave mode: clock de fuente externa).

TX9 – Habilitación transmisión 9no. bit (1 - 9 bits, 0 - 8 bits)

TXEN – Habilitación Transmisión (1 – Transmisión habilitada, 0 – Transmisión deshabilitada)

SYNC – Selecciona Modo EUSART (1 – EUSART opera en modo sincrónico, 0 – EUSART opera en modo asincrónico)

SENDB – Caracter Break enviado (1 – Enviando character Break, 0 – Se completó envío Caracter Break), Sólo en modo asíncrono y cuando lo requiera un bus estándar.

BRGH – Secciona Baud Rate Alto (1 – EUSAT opera a alta velocidad, 0 – EUSART opera a baja velocidad). Sólo en modo asincrónico.

TRMT – Status del Shift Register del Transmisor (1 – Si TSR está vacío, 0 – si TSR está lleno)

TX9D - Noveno bit de datos (puede ser usado como dirección o bit de paridad)

Registro RCSTA

				4.7		R (0)		Features
RCSTA SPE	N RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	Bit name
Bit	7 Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	

Legend

R/W Readable/Writable bit
R Readable bit
(0) After reset, bit is cleared
(x) After reset, bit is unknown

SPEN - Serial Port Enable bit

- 1 Puerto serie habilitado. Pines RX/DT y TX/CK pins se configuran automáticamente como entrada y salida respectivamente
- 0 Puerto serie deshabilitado.

RX9 - 9-bit Receive Enable bit

- 1 Recibe 9 bit de datos via EUSART
- 0 Recibe 8 bit de datos via EUSART

SREN – Single Receive Enable bit se usa solo en modo sincrónico cuando el micro opera como Master

- 1 Sólo habilitado para recepción
- 0 Deshabilitado para recepción

CREN - Continuous Receive Enable bit actúa diferente dependiendo del modo

Modo Asíncrono:

- 1 Recepción habilitada
- 0 Recepción deshabilitada.

Modo Sincrónico:

- 1 Habilita recepción continua hasta que el bit se pone en 0
- 0 Deshabilita recepción continua.

ADDEN - Address Detect Enable bit se usa solo en modo detecta direcciones

- 1 Habilita detección de dirección cuando recibe 9 bits
- 0 Deshabilita detección de dirección. Bit 9 es paridad.

FERR – Framing Error bit

- 1 En recepción detecta error de framing
- 0 No hay error de framing

OERR – Overrun Error bit.

- 1 En recepción se detecta desbordamiento
- 0 No hay error por desbordamiento

RX9D - Ninth bit of Received Data puede ser usado como dirección o bit de paridad

Registro BAUDCTL

	(-/				R/W (0)			R/W (0)	
BAUDCTL	ABDOVF	RCIDL	-	SCKP	BRG16	-	WUE	ABDEN	Bit name
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	

Legend

- Bit is unimplemented R/W Readable/Writable bit

R Readable bit

(0) After reset, bit is cleared

(1) After reset, bit is set

ABDOVF – Auto-Baud Detect Overflow bit: se usa sólo en modo asincrónico durante la detección del baud rate

- 1 Auto-baud timer rebalsó
- 0 Auto-baud timer no rebalsó.

RCIDL - Receive Idle Flag bit se solo en modo asincrónico.

- 1 Receptor está ocioso
- 0 el bit START hs sido recibido y la recepción está en progreso

SCKP – Synchronous Clock Polarity Select bit: actúa diferente según sea modo asíncrono o síncrono

Modo Asíncrono:

- 1 Transmite datos invertidos en el pin RC6/TX/CK
- 0 Transmite datos no invertidos en ese pin

Modo Síncrono:

- 1 Se sincroniza sobre el flanco ascendente del clock
- 0 Se sincroniza sobre el flanco descendente del clock

WUE Wake-up Enable bit

- 1 El receptor espera por un flanco descendente en pin RC7/RX/DT pin para sacar al micro del modo sleep.
- 0 El receptor opera normalmente.

ABDEN - Auto-Baud Detect Enable bit se usa solo en modo asincrónico

- 1 Modo de detección Auto-baudio habilitada. El bit se pone automáticamente en cero cuando se detecta el baud rate
- 0 Modo de detección Auto-baudio deshabilitada.

Generador de Baudios - Baud Rate

Tabla que determina el Baud Rate:

BITS			BRG / EUSART MODE	BAUD RATE FORMULA
SYNC	BRG16	BRGH		
0	0	0	8-bit / asynchronous	Fosc / [64 (n + 1)]
0	0	1	8-bit / asynchronous	Fosc / [16 (n + 1)]
0	1	0	16-bit / asynchronous	Fosc / [16 (n + 1)]
0	1	1	16-bit / asynchronous	Fosc / [4 (n + 1)]
1	0	Χ	8-bit / synchronous	Fosc / [4 (n + 1)]
1	1	X	16-bit / synchronous	Fosc / [4 (n + 1)]

Programa Ejemplo:

Este programa muestra cómo se usa el módulo EUSART del PIC16F887. La conexión a la PC se realiza mediante una conexión RS232 estándar. El programa trabaja de la siguiente manera: Cada byte recibido vía comunicación serie se muestra usando diodos LEDs conectado al Puerto B y es automáticamente retornado al transmisor después. Si ocurre un error en la recepción esto se indicará encendiendo el LED correspondiente.

,		ader ******** BLES IN PROGR	**************************************
w_temp	EQU	0x7D	; Variable for saving W register
status_temp	EQU	0x7E	; Variable for saving STATUS register
pclath_temp	EQU	0x7F	; Variable for saving PCLATH w register
cblock		0x20	; Block of variables starts at address 20 h
Port_A			; Variable at address 20 h
Port_B			; Variable at address 21 h
RS232temp			; Variable at address 22 h
RXchr			; Variable at address 23 h
endc			; End of block of variables
.********	******	******	*********
,	ORG	0x0000	; Reset vector
	nop		
	goto	main	; Go to beginning of program (label "main")
·*************************************	********	*******	********
	ORG	0x0004	; Interrupt vector address
	movwf	w_temp	; Save value of W register
	movf	STATUS,w	; Save value of STATUS register
	movwf	status_temp	
	movf	PCLATH,w	; Save value of PCLATH register
	movwf	pclath_temp	-

; This part of the program is executed in interrupt routine

banksel PIE1

btfss PIE1, RCIE

goto ISR_Not_RX232int

banksel PIE1

btfsc PIR1, RCIF call RX232_int_proc

ISR_Not_RX232int

movf pclath_temp,w

movwf PCLATH ; PCLATH is given its original value

movf status_temp,w

movwf STATUS ; STATUS is given its original value

swapf w_temp,f

swapf w_temp,w ; W is given its original value

retfie ; Return from interrupt routine

RX232_int_proc		; C	Check if error has occurred				
banksel		RCSTA					
	movf	RCSTA, w					
	movwf	RS232temp					
	btfsc	RS232temp, FER	R				
	goto	RX232_int_proc_FERR RS232temp, OERR					
	btfsc						
	goto	RX232_int_proc_	_OERR				
	goto	RX232_int_proc_	RX232_int_proc_Cont				
RX232_int_proc_I	FERR						
	bcf	RCSTA, CREN	; To clear FERR bit, receiver is first				
			; switched off and on afterwards				
	nop		; Delay				
	nop						
	bsf	RCSTA, CREN					
	movf	RCREG, w	; Reads receive register and clears ;FERR bit				
	bsf	Port_A, 0	; Switches LED on (UART error ;indicator)				
	movf	Port_A, w	, ,				
	movwf	PORTA					
	goto	RS232_exit					
RX232_int_proc_0	DERR						
1 _	bcf	RCSTA, CREN	; Clears OERR bit				
	nop		; Delay				
	nop		•				
	bsf	RCSTA, CREN					
	movf	RCREG, w	; Reads receive register and clears ;FERR bit				
	bsf	Port_A, 1	; Switches LED on (UART error indicator)				
	movf	Port_A, w	•				
	movwf	PORTA					
	goto	RS232_exit					

 $RX232_int_proc_Cont$

movf RCREG, W ; Reads received data

movwf RXchr movwf PORTB

movwf TXREG ; Sends data back to PC

RS232_exit

return ; Return from interrupt routine

```
; Main program
main
                             ANSEL
                 banksel
                                               ; Selects bank containing ANSEL
                 clrf
                             ANSEL
                                               ; All inputs are digital
                 clrf
                             ANSELH
   ; Port configuration
                             TRISA
                 banksel
                 movlw
                             b'11111100'
                 movwf
                             TRISA
                             b'00000000'
                 movlw
                             TRISB
                 movwf
   ; Setting initial values
                             PORTA
                 banksel
                 movlw
                             b'11111100'
                 movwf
                             PORTA
                 movwf
                             Port_A
                             b'00000000'
                 movlw
                 movwf
                             PORTB
                             Port B
                 movwf
   ; USART - setting for 38400 bps
                             TRISC
                 banksel
                 bcf
                             TRISC, 6
                                               ; RC6/TX/CK = output
                 bsf
                             TRISC, 7
                                               ; RC7/RX/DT = input
                 banksel
                             BAUDCTL
                 bsf
                             BAUDCTL, BRG16
                 banksel
                             SPBRG
                                               ; baud rate = 38400
                 movlw
                             .51
                                               ; (Fosc/(4*(SPBRG+1))) Error +0.16%
                             SPBRG
                 movwf
                 clrf
                             SPBRGH
                             TXSTA
                 banksel
                             TXSTA, TX9
                 bcf
                                               ; Data is 8-bit wide
                             TXSTA, TXEN
                                               ; Data transmission enabled
                 bsf
                 bcf
                             TXSTA, SYNC
                                               ; Asynchronous mode
                             TXSTA, BRGH
                 bsf
                                               ; High-speed Baud rate
```

banksel RCSTA bsf RCSTA, SPEN ; RX/DT and TX/CK outputs configuration

	bcf bsf bcf movf	RCSTA, RX9 RCSTA, CREN RCSTA, ADDEN RCREG, W	; Select mode for 8-bit data receive ; Receive data enabled ; No address detection, ninth bit may be ; used as parity bit ;cleared RCIF bit			
	blanksel bsf	BAUDCTL BAUDCTL, SCKP				
; Interrupts enab	 led 					
,	banksel bsf	PIE1 PIE1, RCIE	; USART Rx interrupt enabled			
	bsf bsf	INTCON, PEIE INTCON, GIE	; All peripheral interrupts enabled ; Global interrupt enabled			
;; Remain here						
;	goto	\$				
	end		; End of program			

Cálculo del Baud Rate del ejemplo:

Baud Rate Deseado: 38.400 baudios

$$38.400 = [Fosc / [4 (n + 1)] donde n = SPBRG$$

$$38.400 = [Fosc / [4 (SPBRG + 1)]]$$

SPBRG =
$$(Fosc / 38.400) - 4$$

$$SPBRG = \frac{8x10E6 / 38.400 - 4}{4}$$

$$SPBRG = 51,08333$$