78255 PPI Chip

PPI: Programmable Parallel Interface (I/O module)

Data Ports

- Port A ($PA_0 \sim PA_7$): can be programmed all as input/output;
- Port B: can be programmed all as input/output;
- Port C: can be split into two separate parts *PCU* and *PCL*; any bit can be programmed individually.

Control Registers (CR): A 8-bit internal register, used to setup the chip, selected when $A_0=1, A_1=1.$

Groups of 8255 PPI Chip

- Group A: Port A and the upper bits of Port C.
- Group B: Port B and the lower bits of Port C.

Data Bus Buffer

- An interface between CPU and 8255;
- Bidirectional, tri-state, 8-bit.

Read/Write Control Logic

~CS	S A	A _o	~RD	~WR	Function
0	0	0	0	1	PA->Data bus
0	0	1	0	1	PB->Data bus
0	1	0	0	1	PC->Data bus
0	0	0	1	0	Data bus->PA
0	0	1	1	0	Data bus->PB
0	1	0	1	0	Data bus->PC
0	1	1	1	0	Data bus->CR
1	×	×	1	1	D ₀ ~D ₇ in float

- Internal and external control signals.
- *RESET*: high-active, clear the control register, all ports are set as input port.

- \overline{CS} , \overline{RD} , \overline{WR} ;
- A_1, A_0 : port selection signals.

Operation Modes

- Input/Output (IO) modes: only can send data in the unit of byte.
 - Mode 0: simple I/O mode:
 - **PA, PB, PC**: PCU{PC4 ~ PC7}, PCL{PC0 ~ PC3}.
 - No handshaking, which is negotiation between two entitles before communication.
 - Each port can be programmed as input/output port.
 - o Mode 1:
 - PA, PB can be used as input/output ports with handshaking.
 - **PC**: PCU{PC3 ~ PC7}, PCL{PC0 ~ PC2} are used as handshake lines for PA and PB, respectively.
 - o Mode 2:
 - Only **PA** can be used for bidirectional handshake data transfer;
 - PCU{PC3 ~ PC7} are used as handshake lines for PA.
- Bit Set/Reset (BSR) mode
 - Only **PC** can be used as output port.
 - Each line of PC can be set/reset individually.

Control Register & Operation Modes: Mode selection word. Use the highest bit to distinguish two main modes.

- IO modes: $D_7D_6D_5D_4D_3D_2D_1D_0$ is 1*******;
 - $D_6D_5D_4D_3$ are for Group A.
 - D_6D_5 is mode selection bits: 00 is mode 0, 01 is mode 1 and 1* is mode 2.
 - D_4 is the selection bit for Port A (1 input and 0 output);
 - D_3 is the selection bit for PCU (1 input and 0 output);
 - $D_2D_1D_0$ are for Group B.
 - D_2 is mode selection bit: 0 is mode 0 and 1 is mode 1.
 - D_1 is the selection bit for Port B (1 input and 0 output);
 - D_0 is the selection bit for PCL (1 input and 0 output).
- BSR mode: $D_7D_6D_5D_4D_3D_2D_1D_0$ is 0*******.
 - \circ $D_6D_5D_4$ are not used;
 - $D_3D_2D_1$ indicate which line in PC: 000 PC0, 001 PC1, ..., 111 PC7;
 - D_0 is used to set/reset (1/0).

IO Mode

- Mode 0: (Simple I/O) for simple input/output scenario.
 - CPU directly read from or write to a port using IN and OUT instructions.
 - Input data are not latched, but output data are latched.

[Example] Mode 0 Operations.

The 8255 shown in Figure 11-13 is configured as follows: port A as input, B as output, and all the bits of port C as output.

- (a) Find the port addresses assigned to A, B, C, and the control register.
- (b) Find the control byte (word) for this configuration.
- (c) Program the ports to input data from port A and send it to both ports B and C.

Solution:

(a) The port addresses are as follows:

•							
\overline{CS}	A1	<u>A0</u>	Address	Port	A2 —d	IOW————————————————————————————————————	
11 0001 00	0	0	310H	Port A		A0 — A0	CL CL
11 0001 00	0	1	311H	Port B	A7 ===8	A1 A1	CU
11 0001 00	1	0	312H	Port C	A9 AEN — Q		
11 0001 00	1	1	313H	Control register	•	100	

(b) The control word is 90H, or 1001 0000.

(c) One version of the program is as follows: MOV AL,90H ;com

AL,90H DX,313H ;control byte PA=in, PB=out, PC=out MOV load control reg address send it to control register OUT DX,AL ;load PA address MOV DX.310H get the data from PA load PB address send it to PB ;load PC address MOV DX,312H and to PC OUT DX.AL

The control word is generated as follows.

 $D_7 = 1$: I/O Mode;

 $D_6D_5=00$: mode 0 for port A and PCU;

 $D_4=1$: Port A Input;

 $D_3 = 0$: PCU Output;

 $D_2 = 0$: mode 0 for port B and PCL;

 $D_1=0$: Port B Output;

 $D_0 = 0$: PCL Output.

 Mode 1: (Strobe I/O) for handshake input/output scenario. Both input data and output data are latched.

Mode 1 As Input Ports

- o PC_4, PC_5, PC_3 and $PC_2 \sim PC_0$ are used as handshake lines for PA and PB respectively.
 - \overline{STB} : the strobe input signal from input device loads data into the port latch (high not load, low load);
 - lacktriangledown IBF: the Input Buffer Full output signal to the device indicates that the input latch contains information (can also be used for programmed I/O) (high full, low not full).
 - *INTR*: the interrupt request is an output to CPU that requests an interrupts (for interrupted I/O).
- PC_6 and PC_7 can be used as separate I/O lines for any purpose (controlled by D_3).

o INTE is the interrupt enable signal. It is neither an input nor an output; it is an internal bit programmed via the PC_4 (port A) or PC_2 (port B) with BSR mode before configuration; (1 - allowed, 0 - forbidden).

Timing

- Input device first put data on $PA_0 \sim PA_7$, then activate STB_A (set to 0),after that data is latched in Port A and $\overline{STB_A}$ is high;
- 8255 activates IBF_A which indicates that device that the input latch contains information but CPU has not taken it yet. So device cannot send new data until IBF_A is cleared;
- When IBF_A , $\overline{STB_A}$, $INTE_A$ are all high, 8255 activates $INTR_A$ to inform CPU to take data in PA by interruption;
- CPU responds to the interruption and read in data from PA; the \overline{RD} signal will clear $INTR_A$ signal;
- After CPU finishes reading data from PA (i.e., \overline{RD} signal goes high), the IBF_A signal is cleared.

Mode 1 As Output Ports

- $\circ PC_6, PC_7, PC_3$ and $PC_2 \sim PC_0$ are used as handshake lines for PA and PB respectively.
 - lacksquare ACK: the acknowledge input signal indicates that the external device has taken the data (high not taken, low taken);
 - OBF: the Output Buffer Full is an output signal that indicates the data has been latched in the port (high - not full, low - full);
 - *INTR*: Interrupt request is an output to CPU that requests an interrupts with BSR mode before configuration; (1 allowed, 0 forbidden).
- PC_4 and PC_5 can be used as separate I/O lines for any purpose (controlled by D_3)
- o INTE is the interrupt enable signal. It is neither an input nor an output; it is an internal bit programmed via the PC_6 (port A) or PC_2 (port B) with BSR mode before configuration; (1 allowed, 0 forbidden).

Timing

- If $INTR_A$ active, CPU responds to the interruption and writes data to the PA and clears the $INTR_A$ signal ($INTR_A$ high means ready to receive data).
- When data has been latched in PA, 8255 activates $\overline{OBF_A}$ which informs the output device to pick up data;
- After the output device has taken the data, it sends $\overline{ACK_A}$ signal to 8255 which indicates that the device has received the data, and also makes $\overline{OBF_A}$ go high, indicating CPU can write new data to 8255;
- When $\overline{OBF_A}$, $\overline{ACK_A}$ and $INTE_A$ are all high, 8255 sends an $INTR_A$ to inform CPU to write new data to PA by interruption.
- **Mode 2**: (Bidirectional Bus) for bidirectional handshake input/output scenario. Both input data and output data are latched.
 - Only PA can be used as both input and output port;
 - $PCU = PC_3 \sim PC_7$, used as handshake lines for PA;
 - $ightharpoonup PC_3:INTR_A;$
 - $ightharpoonup PC_4: \overline{STB}_A;$
 - $ightharpoonup PC_5: IBF_A;$
 - $ightharpoonup PC_6: \overline{ACK}_A;$
 - $ightharpoonup PC_7: \overline{OBF}_A.$
 - Both input and output data are latched.

Control Code: $D_7D_6D_5D_4D_3D_2D_1D_0$ is 011xxxxxx. The last three bits is used for Port B control.

• The fundamental difference among mode 0, 1, 2 is polling v.s. interruption.