Lecture 01 – Number Systems

(Binary, Octal, Decimal, Hexadecimal)

ECE09 – Digital Electronics 1: Logic Circuits and Switching Theory

Engr. Zoren P. Mabunga

Numerical Representation of Quantities

- Analog Representation
 - A quantity represented by a voltage, current or meter movement that is proportional to the value of that quantity.
 - Continuous
- Digital Representation
 - Quantities that are represented not by proportional quantities but by symbol called digits.

Digital and Analog Systems

Digital System

 Combination of devices designed to manipulate physical quantities or information that are represented in digital forms.

Examples: digital watch, logic gates

Analog System

 Contains devices that manipulates physical quantities that are represented in analog form.

Examples: amplifiers, analog watch

Advantages of Digital Systems

- 1. Ease of Design
- 2. Higher resolution and output quality
- 3. More error/fault tolerance
- 4. Greater flexibility in design and application
- 5. Digital signals can be transmitted over long distances.
- 6. Less noise, distortion and interference

Number Systems

Decimal Number System

- 0 − 9
- Base of 10
- Example: 7392.15₁₀

Binary Number System

- Only two symbols or possible digit values (0 & 1)
- Example: 11010.11₂

Octal Number System

- Base of 8
- 0-7
- Example: 127.4₈

Hexadecimal Number System

- Base of 16
- 0-9, A-F
- Example: B65F₁₆

Conversion Among Bases

Binary to Decimal

- Technique
 - Multiply each bit by 2^n , where n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results

Examples:

- 1. 11011
- 2. 10110101.11
- 3. 10110101

Decimal to Binary

- Technique
 - Divide by two, keep track of the remainder
 - First remainder is bit 0 (LSB, least-significant bit)
 - Second remainder is bit 1
 - Etc.

Examples:

- 1. 27
- 2. 181
- 3. 20.75

Octal to Decimal

- Technique
 - Multiply each bit by 8ⁿ, where n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results

Examples:

- 1. 372
- 2. 24.6

Decimal to Octal

- Technique
 - Divide by 8
 - Keep track of the remainder
- Examples:
- 1. 250
- 2. 20.75

Hexadecimal to Decimal

- Technique
 - Multiply each bit by 16ⁿ, where n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results
- Examples
- 1. 356
- 2. 431.2D

Decimal to Hexadecimal

- Technique
 - Divide by 16
 - Keep track of the remainder
- Examples:
- 1. 854
- 2. 1073.175781

Octal to Binary

- Technique
 - Convert each octal digit to a 3-bit equivalent binary representation
- Examples:
- 1. 472
- 2. 5431
- 3. 115.654

Binary to Octal

- Technique
 - Group bits in threes, starting on right
 - Convert to octal digits
- Examples:
- 1. 100111010
- 2. 101100011001
- 3. 1001101.110101100

Binary to Hexadecimal

- Technique
 - Group bits in fours, starting on right
 - Convert to hexadecimal digits
- Examples:
- 1. 100111110010.110001
- 2. 101110100110

Hexadecimal to Binary

- Technique
 - Convert each hexadecimal digit to a 4-bit equivalent binary representation
- Examples:
- 1. ABCDEF
- 2. 9F2
- 3. BA6

Octal to Hexadecimal

- Technique
 - Use binary as an intermediary
- Examples:
- 1. 1076
- 2. 1076.545

Hexadecimal to Octal

- Technique
 - Use binary as an intermediary
- Examples:
- 1. 9F2
- 2. BA6