This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4: C07D 405/12, 307/94, 311/78 C07D 493/10, A01N 47/36 C07D 307/77, 311/04, 317/46 A01N 47/30 // (C07D 493/10 C07D 317:00, 311:00)

(11) International Publication Number:

WO 87/00840

(43) International Publication Date: 12 February 1987 (12.02.87)

(21) International Application Number:

PCT/JP86/00398

A1

(22) International Filing Date:

4 August 1986 (04.08.86)

(31) Priority Application Numbers:

60/171025 61/64757

(32) Priority Dates:

5 August 1985 (05.08.85) 25 March 1986 (25.03.86)

(33) Priority Country:

(71) Applicant (for all designated States except US): MITSUI PETROCHEMICAL INDUSTRIES, LTD. [JP/JP]; 2-5, Kasumigaseki 3-chome, Chiyoda-ku, Tokyo 100

(72) Inventors; and

(72) Inventors; and
(75) Inventors/Applicants (for US only): TAKEMATSU, Tetsuo [JP/JP]; 612, Minemachi 3-chome, Utsunomiyashi, Tochigi 321 (JP). FUKUOKA, Daisuke [JP/JP]; 2-1, Muronoki-cho 1-chome, Iwakuni-shi, Yamaguchi 740 (JP). TAKAHASHI, Katsuya [JP/JP]; 3-8, Misono 1-chome, Ohtake-shi,

Hiroshima 739-06 (JP). HASHIMOTO, Isao [JP/JP]; 37-25, Hirata 6-chome, Iwakuni-shi, Yamaguchi 741 (JP).

(74) Agents: ODAJIMA, Heikichi et al.; Odajima Patent Office, Nippon Jitensha Bldg., 9-15, Akasaka 1chome, Minato-ku, Tokyo 107 (JP).

(81) Designated States: AT (European patent), BR, CH (European patent), DE (European patent), FR (European patent), GB (European patent), HU, IT (European patent), KR, NL (European patent), SU, US.

Published

With international search report.

(54) Title: NOVEL UREA DERIVATIVES, PROCESSES FOR PRODUCTION THEREOF AND HERBICIDE

(57) Abstract

Novel compounds of formula (I), a process for their production, and their A use as a herbicide, wherein A represents the bond -N = or formula (II), in which X is a hydrogen atom, a chlorine atom, a nitro group or a trifluoromethyl group; B represents a hydrogen atom, a methyl group or a methoxy group; and Ar represents one member selected from the group consisting of formulas (III), in which R to R 38, independently from each other, represent a hydrogen atom, a lower alkyl group or a lower alkoxy group; R16 may further represent a hydroxyl

(III) (II)

group; a pair of R² and R³, a pair of R⁶ and R⁷ and a pair of R⁹ and R¹⁰ each, taken together, may represent an alkylene linkage and may form a 5- or 6-membered ring together with the two adjacent carbon atoms to which they are bonded; R11 and R12, taken together, may form an ethlenedioxy linkage -O-(CH2)2-O-, or R11 and R15, taken together, may form an alkylene linkage and form a 5- or 6-membered ring together with the carbon atoms to which they are bonded, or R15 and R16, taken together, may represent a methylene linkage and form a 5- or 6-membered ring together with one carbon atom to which they are bonded, or R14 and R15, taken together, may form a dichloromethylene linkage.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

- 1 - DESCRIPTION

NOVEL UREA DERIVATIVES, PROCESSES FOR PRODUCTION THEREOF AND HERBICIDE

Technological field

This invention relates to novel urea derivatives having herbicidal activity and being useful as a herbicide, processes for production thereof and a herbicide comprising such a urea derivative.

Background technology

wheat, corn, rice and soybean are important crops, and many herbicides have been used to increase the harvest of these crops. Conventional herbicides, however, have not proved to be entirely satisfactory in regard to herbicidal activity or safety on crops, and it has been desired to develop herbicides which kill hazardous weeds in low dosages and do not cause phytotoxicity to crops.

It is an object of this invention to provide herbicidally active urea derivatives which are not described in the prior literature and can meet the aforesaid desire, processes for production thereof, a herbicide comprising such a urea derivative as an active ingredient, and a method of controlling weeds.

Disclosure of the invention

in order to develop a herbicidally active compound which is not likely to cause unnegligible phytotoxicity to useful crops and can control hazardous weeds in low dosages. These investigations have led to the successful synthesis of urea derivatives represented by the following formula [I] not described in the prior literature, and also to the discovery that the compounds of formula [I] are useful for controlling hazardous weeds at reduced dosages, have low phytotoxicity on useful crops, and are very superior compounds in herbicide applications.

$$Ar-O = NHCN B$$
 (II)

wherein

A represents the bond -N= or -C= in which x is a hydrogen atom, a chlorine atom, a nitro group or a trifluoromethyl group;

B represents a hydrogen atom, a methyl group or a methoxy group; and

Ar represents one member selected from the group consisting of

and

- 3 -

in which R1 to R38, independently from each other, represent a hydrogen atom, a lower alkyl group or a lower alkoxy group; R16 may further represent a hydroxyl group; a prior of R² and R³, a pair of R⁶ and R⁷ and a pair of R⁹ and R¹⁰ each, taken together, may represent an alkylene linkage and may form a 5- or 6-membered ring together with the two adjacent carbon atoms to which they are bonded; R11 and R12, taken together, may form an ethylenedioxy linkage $-0-(CH_2)_2-0-$, or R^{11} and R^{15} , taken together, may form an alkylene linkage and form a 5- or 6-membered ring together with the carbon atoms to which they are bonded, or R¹⁵ and R¹⁶, taken together, may represent a methylene linkage and form a 5- or 6-membered ring together with one carbon atom to which they are bonded, or R¹⁴ and R¹⁵, taken together, may form a dichloromethylene linkage.

When in general formula [I], R¹ to R³⁸ represent a lower alkyl group or a lower alkoxy group, they usually contain 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms. Specific examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tertbutyl, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy and sec-butoxy groups.

When R^2 and R^3 are bonded to each other to form an alkylene group, the total number of carbon atoms of the alkylene group is usually 3 or 4. Examples of the alkylene group are $\{CH_2\}_3$ and $\{CH_2\}_4$. When R^6 and R^7 are bonded to each other to

When R' and R' are bonded to each other to
form an alkylene group, the total number of carbon atoms
of the alkylene group are usually 3 to 5. Examples
include

$$CH_2$$
, CH_2 , CH_2 , CH_3 and CH_3 , CH_3 , CH_3 , CH_3 , and CH_3 , CH_3

5

When R^9 and R^{10} are bonded to each other to form an alkylene group, the total number of carbon atoms of the alkylene group is usually 4 or 5. Examples include $\{CH_2\}_4$ and $\{CH_2\}_5$.

When R^{11} and R^{15} are bonded to each other

When R^{11} and R^{15} are bonded to each other to form an alkylene group, the total number of carbon atoms of the alkylene group is usually 2 or 3. Examples include $\{CH_2\}_2$ and $\{CH_2\}_3$.

When R^{15} and R^{16} are bonded to each other

When R^{15} and R^{10} are bonded to each other to form an alkylene group, the total number of carbon atoms is usually 4 or 5. Examples include $\{CH_2\}_4$ and $\{CH_2\}_5$.

Examples of the Ar group are listed below.

CH₃O CH3 CH₃ CH₃ C2H5

- 6 -

Among these urea derivatives of this invention, preferred specific examples are shown in Tables 1 to 11.

- 12 -Table 1

				·		
Compound No.	R ¹	R ²	R ³	R ⁴	-√A=	В
1	CH3	H	H	H	√N=>	CH3
2	CH3	н	H	H	√N=>	осн3
3	CH ₃	H	· H	H	₹	H
4	CH ₃	H	H	H .	⟨ >	CH ₃
5	CH3	Ħ	H	H		OCH ³
6	СH ³	H	CH3	Сн3	√ <u>N=</u>	CH ³
7	CH ³	Н	сн3	сн3	√ _{N=}	осн3
8	CH ₃	Н	CH ³	СH ³		H
9	CH ₃	Н	CH3	CH ₃		CH3

- 13 -Table 1 (continued)

Compound No.	R ¹	R ²	R ³	R ⁴	-√ <u>A</u> - <u>></u>	В
10	CH ₃	Н	CH3	CH ³		осн3
. 11	Ħ	Н	н	Ĥ		CH ₃
12	H	H	H	H		осн3
13	С ₂ н ₅	н	Ħ	H	_	CH ³
14	С ₂ н ₅	H	Ħ	H		осн ₃
15	n C3H7	Н	H	H		CH3
16	^п с ₃ н ₇	н	H	H	_	осн ³
17	СН ₃	н	CH3	H		CH ₃
18	CH ₃	H	Сн3	H		осн3
19	н	Н	CH ₃	н		H
20	Н	H	CH3	Н		CH3
	10 11 12 13 14 15 16 17 18	10 CH ₃ 11 H 12 H 13 C ₂ H ₅ 14 C ₂ H ₅ . 15 C ₃ H ₇ 16 C ₃ H ₇ 17 CH ₃ 18 CH ₃	10 CH ₃ H 11 H H 12 H H 13 C ₂ H ₅ H 14 C ₂ H ₅ H 16 C ₃ H ₇ H 17 CH ₃ H 18 CH ₃ H	10	10	10

to be continued -

- 14 Table 1 (continued)

	100					
Compound No.	R ¹	R ²	R ³	R ⁴ .	-\(\bar{A}=\)	В
21	н	H	СН ³	Н		OCH ³
22	H	H	С ₂ Н ₅	H	·	н
23	Ħ	H	с ₂ н ₅	H	◆	сн3
24	H	H	с ₂ н ₅	Н	⟨ >	осн ³
25	· H	H	i C ₃ H ₇	H		H
26	н	H	і С ₃ н ₇	н		сн3
27	H	Н	iC3H7	Н		осн3
28	н	H	SC4H9	Н		H
29	н	н	s C ₄ H ₉	н		CH ₃
30	н	н	s C ₄ H ₉	Н		осн3
31	н	н	CH3	CH3		Н

⁻ to be continued -

- 15 -Table 1 (continued)

Compound No.	R ¹	R ²	R ³	R ⁴		В
32	Н	Н	CH ₃	сн3		Сн3
33	Ħ	Н	CH ³	Сн3		осн3
34	H	Н	сн ³	с ₂ н ₅	~ <u></u>	H
35	H	н	CH ³	С ₂ н ₅	_	CH ³
36 .	H	H	СН3	С ₂ н ₅		осн3
37	H -	H	С ₂ н ₅	С ₂ н ₅	_	H
38	н	н	С ₂ н ₅	С ₂ н ₅	← >	CH3
39	× H	H.	С ₂ н ₅	C ₂ H ₅	-	осн3
40	CH ₃	H	CH3	C _{2.} H ₅	-{ _{N=} }	H
41	СНЗ	Н	Сн3	C2H5		CH ³
42	СНЗ	Н	CH3	С ₂ н ₅	-{\lambda_=}	осн ₃

⁻ to be continued -

- 16 - Table 1 (continued)

						
Compound No.	R ¹	R ²	R ³	R ⁴	-√A=	В
43	CH ₃	н	СH ³	С ₂ Н ₅		сн3
44	Сн ₃	Н	CH ³	C2H5		осн ₃
45	Сн3	H	CH ³	С ₂ н ₅	c1	H
46	CH3	Ħ	Сн ³	C2H5	ci	CH3
. 47	CH ₃	H	CH ₃	C2H5	cı	OCH ³
48	CH ³	H	Сн3	C2H5	NO ₂	н
49	CH ₃	H	CH ³	C2H5		СНЗ
50	CH ₃	н	CH ³	C2 ^H 5		OCH ₃
51	CH ₃	н	CH ³	C ₂ H ₅		Н
				-		

⁻ to be continued -

- 17 - Table 1 (continued)

Compound No.	R ¹	R ²	R ³	R ⁴	-{A=	В
52	СНЗ	н	CH3	С ₂ Н ₅	CF ₃	CH3
53	CH3	H	сн ³	С ₂ н ₅	CF ₃	осн3
-54	С ₂ Н ₅	н	CH ³	сн3		н
55	С ₂ н ₅	н	CH ³	CH3	⟨ >	СH ₃
56	С ₂ н ₅	Н	CH ₃	сн3	_	осн3
57	В	-(0	H ₂) ₄ -	CH3	_	CH ³
58	H	-(0	H ₂) ₄ -	Сн3		OCH3

- 18 -Table 2

•						
Compound No.	R ⁵	R ⁶	R ⁷	R ⁸	-{ <u>A</u> }	В
59	СH ³	H	Ħ	H	√N=>	CH ³
60	CH ³	H	H	H	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	осн3
61	CH ³	H	H	H	_	CH3
62	CH ₃	· H - ·		H		осн3
63	H	Н	CH ₃	н	_	CH ³
64	H	H	CH ³	. н	_	осн 3
65	H	H	C ₂ H ₅	H		CH ₃
66	H	H	с ₂ н ₅	H	_	осн ₃
67	н	H	C3H7	н		сн3
68	Н	н	п С ₃ н ₇	н	~ <u></u>	OCH ³
69	н	н	i C ₃ H ₇	н	→	Н

- 19 Table 2 (continued)

Compound No.	R ⁵	R ⁶	R ⁷	R ⁸	-√A=	В
70	Н	н	і С ₃ н ₇	H	-	CH3
71	H	Ħ	C3H7	H		осн3
72	C4H9	н	H	H	_	Н
73	i C ₄ H ₉	н.	Ħ	Ħ	_	сн ³
74	i C ₄ H ₉	H,	Ħ	Н	⟨ >	осн ³
75	осн3	H	С ₂ Н ₅	Н	₹	Н
76	осн ₃	н	C ₂ H ₅	H		СН3
77	осн3	H	С ₂ Н ₅	н		осн ₃
78	Сн3	Н	CH ₃	Н	N=	CH ³
79	CH3	H	CH ₃	H	N_	осн 3
80	CH ³	H	CH3	H		H
81	CH ³	Н	CH ₃	н		СН3
82	CH ₃	Ħ	СH ³	Н	⟨ _>	осн ₃
83	CH ₃	CH ₃	н	H	<u></u>	CH3
					N-	

⁻ to be continued -

- 20 -Table 2 (continued)

	_					
Compound No.	R ⁵	R ⁶	R ⁷	R ⁸	-{A=>	В
84	СН3.	сн3	H	Ħ	~ <u>N</u> _	OCH ³
85	СH3	сн3	Н	н		CH3
86	сн3	СН3	H	H		осн3
87	Ħ	H	CH3	CH3		H
88	Н	н	CH ₃	CH ³		CH ³
89	Ħ	H	CH3	CH3	_	осн3
90	ос ₂ н ₅	Ħ	CH ³	H		CH ³
91	ос ₂ н ₅	В	сн3	н		осн3
92	осн3	H	CH3	CH ³	_\n=\right\	CH ₃
37793	осн ₃	H	СН3	CH ³	_N=\	осн,
94	осн3	н	CH ₃	CH ₃		Ħ
95	осн3	н	CH3	СН3		CH ³
96	OCH ³	H	CH ₃	CH ₃	←	осн ₃
97	осн3	Н	CH ³	CH3		CH ³
			~		cí	

⁻ to be continued -

- 21 -Table 2 (continued)

	Compound No.	R ⁵	R ⁶	R ⁷	R ⁸	-{ <u>A</u> =}	В	7
	98	осн3	Ħ	СНЗ	CH ³		осн3	
	99	осн3	н	СH ³	C2H5	_	H.	
	100	осн ₃	H	сн ³	С ₂ Н ₅		CH3	
	101	осн3	H	CH ³	с ₂ н ₅		осн ³	
	102	осн3	Н	C ₂ H ₅	С ₂ н ₅		H	
	103	осн3	н.	с ₂ н ₅	С ₂ н ₅	_	Сн ³	ľ
	104	осн3	H	C2H5	С ₂ Н ₅	_	осн3	
	105	осн3	H	і С ₃ н ₇ .	н		CH ³	
	106	осн3	н	i C ₃ H ₇	я	_	OCH3	
	107	ос ₂ н ₅	H	с ₂ н ₅	H		CH ₃	
	108	ос ₂ н ₅	H	С ₂ Н ₅	н		осн3	
	109	ос ₂ н ₅	Н	і С ₃ н ₇	Н		Н	
	110	ос ₂ н ₅	Ħ	c ₃ H ₇	Н		CH3	
	111	ос ₂ н ₅	н	і С ₃ н ₇	Н		осн3	
Ļ						·		ī

⁻ to be continued -

- 22 -Table 2 (continued)

Compound No.	R ⁵	R ⁶	R ⁷	R ⁸	-{ <u>}</u> -	В
112	oc ₂ H ₅	Н	СĦ ³	СН3		сн3
113	ос ₂ н ₅	H	CH3	CH ₃		осн ³
114	oc ₃ H ₇	H	CH ₃	сн3		CH ₃
115	oc ₃ H ₇	H	сн3	СН3	_	осн ³
116	Ħ	- (CH ₂) ₄ -	Н	_	Ħ
117	H	- (CH ₂) ₄ -	H	_	сн3
118	H		CH ₂) ₄ -	H		осн ³
119	Н	-(CH-(CH ₂) ₃ -	н	_	H
120	Ħ		CH ₃ CH-(CH ₂) ₃ -	H		CH ₃
121	н		CH-(CH ₂) ₃ -	Н	⟨ >	OCH ³
122	н	-(CH	CH ₃	H		H
123	, H	-(CH	CH ₃ 2) 2-CH-CH ₂	н		CH ³
124	Н	-(CH	CH ₃ 2)2-CH-CH ₂	Н		OCH ₃

- 23 - Table 3

Compound No.	, 9 R	R ¹⁰	-{ <u>A</u> -≥	В
125	H	Ħ		H
126	Ħ	H	_	сн ₃
127	Н	H		осн ₃
128	C ₂ H ₅	CH ₃		H .
129	с ₂ н ₅	СH ₃	_	СНЗ
130	C2H5	CH ₃		осн ³
131	сн ³	сн ³	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CH ³
132	Сн3	CH ₃	√ N=	осн3
133	CH ³	СH ³	_	CH ³
134	CH ₃	CH ³		осн3
135	осн3	CH3		н
136	осн ₃	CH ₃		CH ₃
``	ļ	<u> </u>	L	1

- 24 Table 3 (continued)

				·
Compound No.	R ⁹	R ¹⁰	₹	В
137	осн3	сн ³		осн3
138	oc ₂ H ₅	Сн3		CH ³
139	OC ₂ H ₅	CH ₃	_	осн3
140	ос ₂ н ₅	C2H5	_	сн3
141	oc ₂ H ₅	с ₂ н ₅		ося3
142	осн3.	H		CH ³
143	осн ³	. Н		осн3
144	oc ₂ H ₅	н		CH3
145	oc ₂ H ₅	н		осн3
146	CH ₃	C3H7		11-11-11 H
147	CH3	і С ₃ н ₇		Сн ³
148	CH ³	c ₃ H ₇		осн3
149	С _{2^Н5}	C2H5		H
150	C ₂ H ₅	C ₂ H ₅		СН3.

- 25 -Table 3 (continued)

Compound No.	R ⁹	R ¹⁰	√ _{A=}	В
151	С ₂ н ₅	С ₂ н ₅		осн ³
152	-(CH	2)4-		.н
153	-(CH	2)4-		Сн _З
154	- (CH	2)4-		осн3
1	,		-	

- 26 -Table 4

Compound No.	R ¹¹	R ¹²	R ¹³	R ¹⁴	R ¹⁵	_R 16	₹	В
155	н	Н	н	н	Ħ	H		CH ³
156	н	н	н	Н	Ħ	H.		OCH ₃
157	CH ₃	H	H	H -	H	H		CH ³
158	CH ₃	н	H	H.	H	н	~ <u>\</u>	осн ₃
159	CH ³	Н	H	H	H	н		CH ³
160	CH ₃	Н	н	н	H.	H	_>	осн3
161	H	н	Н	H	CH ₃	н	-\(\)	CH3
162	н	H	н	н	СН3	H	N=	осн3
163	н	Н	н	Н	CH ₃	Н	\ <u>\</u>	H
164		- н	Н	н	CH ₃	H.		CH ₃
165	н	Н	н	н	CH ₃	н		OCH ₃
103								1

- 27 - Table 4 (Continued)

Compound No.	R ¹¹	R ¹²	R ¹³	R ¹⁴	R ¹⁵	R ¹⁶	₹	В
166	Сн3	CH3	H	Н	H	Ħ	⟨ >	сн3
167	CH ³	CH ₃	н	H	Ħ	Н	-	осн ₃
168	H	H	H	H	CH ₃	СH ³	√ N=>	Н
169	H	н	H	H .	CH ³	СH ³	√ N=	сн3
170	Ħ	Н	Н	H	CH ₃	СН3	~~~	осн3
171	H	H	H	Н	CH ³	CH3		H
172	. Ң	н	H	Ħ	CH ³	CH ₃	_	СH3
173	H	H	H	Ħ	CH ³	СН3		осн3
174	H	H	H	Н	,сн ³	сн ₃		сн3
175	H	Н	Н	Н	CH3	CH3	cí Ci	осн3
176	Н	H	Н	Н	CH ³	CH3	NO ₂	CH ³
177.	. Н	н	н	H	CH ₃	CH ³		осн3
178	Н	Н	Н	Н	CH3	CH ₃	NO ₂	CH ₃
					<u> </u>		CF ₃	nued =

- 28 -Table 4 (Continued)

R ¹¹	R ¹²	R ¹³	R ¹⁴	R ¹⁵	_R 16	√ A=	В
Н	H	Н	H	CH ₃	CH ³	CF ₃	осн3
CH ₃	CH ₃	H	H	Сн ³	Ħ	~	сн3
CH ₃	CH ₃	Ë	H	CH3	H		осн3
CH ₃	CH ³	H	H	CH ₃	H		CH3
CH3	CH3	Н	H	CH ³	H		осн3
CH3	. H	. н .	H	. Сн	СН3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	осн3
CH ³	н	H	H	CH3	сн3		CH ₃
СН3	Н	H	H	СH ³	CH ³		OCH ₃
OCH ₃	H.	Н	. н	CH ₃	сн3		CH ₃
OCH3	Н	H	н	сн3	CH3		OCH ³
CH ³	CH ₃	н	н	CH ₃	осн3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	H
CH ₃	CH3	H	Н	CH ₃	осн3	- N=	CH3
CH3	CH ³	H	н	CH3	осн3	√N=	OCH ₃
	H CH ₃	H H CH ₃ H CH ₃ H CH ₃ H CCH ₃ H CCH ₃ H CCH ₃ CH ₃	H H H CH ₃ CH ₃ H CH ₃ CH ₃ H CH ₃ CH ₃ H CH ₃ H H CH ₃ H H CH ₃ H H CCH ₃ H H CCH ₃ H H CCH ₃ H H CCH ₃ H H	H H H H CH ₃ CH ₃ H H CH ₃ H H H	H H H CH3 CH3 CH3 H H CH3 CH3 H H CH3 CH3 H H CH3 CH3 H H CH3 CH3 H H CH3 CH3 H H H CH3 CH3 CH3 H H CH3	H H H H CH ₃ CH ₃ CH ₃ CH ₃ H H CH ₃ H CH ₃ CH ₃ H H CH ₃ H CH ₃ CH ₃ H H CH ₃ H CH ₃ CH ₃ H H CH ₃ H CH ₃ CH ₃ H H CH ₃ H CH ₃ CH ₃ H H CH ₃ CH ₃ CH ₃ H H H CH ₃ CH ₃ CH ₃ H H H CH ₃ CH ₃ CH ₃ CH ₃ H H CH ₃ CH ₃ CCH ₃ CH ₃ H H CH ₃ CH ₃ CCH ₃ CH ₃ H H CH ₃ CCH ₃ CCH ₃ CH ₃ H H CH ₃ CCH ₃ CCH ₃ CH ₃ H H CCH ₃ CCH ₃ CCH ₃ CCH ₃ H H CCH ₃ CCH ₃	H H H CH ₃ CH ₃ CH ₃ CH ₃ H H CH ₃ H CH ₃ CH ₃ H H CH ₃ H CH ₃ CH ₃ H H CH ₃ H CH ₃ CH ₃ H H CH ₃ H CH ₃ CH ₃ H H CH ₃ H CH ₃ CH ₃ H H CH ₃ CH ₃ CH ₃ H H H CH ₃ CH ₃ CH ₃ H H H CH ₃ CH ₃ CH ₃ H H H CH ₃ CH ₃ CH ₃ CH ₃ H H CH ₃ CH ₃ CH ₃ CH ₃ H H CH ₃ CH ₃ CH ₃ CH ₃ H H CH ₃ CH ₃ CH ₃ CH ₃ H H CH ₃ CH ₃ CH ₃ CH ₃ H H CH ₃ CH ₃ CH ₃ CH ₃ H H CH ₃ CCH ₃

⁻ to be continued -

- 29 -Table 4 (Continued)

								•
Compound No.	R ¹¹	R ¹²	R ¹³	R ¹⁴	_R 15	R ¹⁶	-{	В
192	сн ³	CH ³	Н	H	CH3	OCH ³		Н
193	CH3	СH ³	Ħ	H	CH3	осн ₃		СH ³
194	CH ₃	CH3	H	H	CH3	осн3		осн3
195	CH3	CH ³	H	н	CH3	осн ₃		H
196	CH3	Сн3	H	Ħ	CH ³	осн3	C1	CH3
197	CH ₃	CH3	Ħ	Ħ	CH3	осн3	Cl	осн3
198	CH ³	сн3	H	Ħ	СНЗ	осн ³	NO ₂	н
199	CH ₃	CH ₃	Н	H	CH3	осн3	NO ₂	CH ₃
200	CH ³	CH ₃	H	H	CH ₃	осн3	NO ₂	OCH ³
201	CH ³	CH ₃	Н	Н	CH ₃	осн3	CF ₃	Н

⁻ to be continued -

- 30 - Table 4 (Continued)

•			_			`		
Compound No.	R ¹¹	R ¹²	R ¹³	R ¹⁴	R ¹⁵	R ¹⁶	√ A=>	В
202	CH3	СH ³	H	н	CH3	осн3	CF ₂	Сн ³
203	CH ₃	CH3	H	Н	CH ³	осн3	CF ₃	осн3
204	СН3	CH3	Н	Ħ	CH ³	ос ₂ н ₅		. сн ³
205	сн ³	Сн ³	н	H	CH ³	ос ₂ н ₅		осн3
206	CH ³	CH ³	н	н	CH ³	ос ₃ н ₇ -п	_>	сн3
207	CH ₃	CH ³	Н	H	сн3	OC ₃ H ₇ -n		осн ₃
208	CH ³	СН3	H	Н	сн3	oc ₃ H ₇ -i	_	H
209	CH ₃	CH ³	H	н	СН3 -	ос ₃ н ₇ -і		CH ³
210	CH ³	СH ₃	н	H	CH ₃	ос ₃ н ₇ -і		OCH ³
211	осн3	- H	H	H	н	H	⟨ >	CH3
· 212	осн ₃	H	Н	Н	н	н		OCH3
213	Н	H	Н	Н	С ₂ н ₅	н	⟨ }	·CH ₃
214	н	H	H	H	С ₂ Н ₅	Н	-	осн3
* .		,	<u> </u>	<u></u>		1	<u> </u>	

⁻ to be continued -

- 31 -Table 4 (Continued)

Compoun No.	d _R 11	R ¹²	R ¹³	R ¹⁴	R ¹⁵	R ¹⁶	√ _{A=}	В
215	В	H	H	. Н	i C ₃ H ₇	H	-{_}-	н
216	H	н	H	H -	C3H7	H	-{_}-	сн ³
217	В	H	Н	H	C ₃ H ₇	Ħ	-	осн3
218	Н	н	H	Ħ	OCH ³	н	-	H
219	н	н	H	H	осн3	н	-	СH ³
220	. Н	H	Ħ	H .	осн3	н	-	осн ₃
. 221	Н	H	H H	Н	ос ₂ н ₅	H	-	CH ³
222	Н	H	H	H	OC ₂ H ₅	H	-	осн3
223	C ₂ H ₅	н	H.	H	Н	H	-(H
224	C2H5	.н.	H	₩ H /	H :	H		сн3
225	C2H5	H	H .	Н	H	Н		OCH ₃
-226	Сн3	H	CH3	H	H	Н		H
- 227	CH3	Н	CH ₃	Н	H	H	_>	CH3
228	СНЗ	Н	CH3	н	H	H		оснз

⁻ to be continued -

- 32 -Table 4 (Continued)

								<u> </u>
Compound No.	R ¹¹	R ¹²	R ¹³	R ¹⁴	R ¹⁵	R ¹⁶	₹	В
229	CH3	н	Н	Н	сн3	Н		H
230	CH ³	Н	H	Н	сн3	Н		CH3
231	CH ³	Н	Н	Ħ	СH ³	H .	_>	осн3
232	CH3	H	H	H	осн ³	H		CH ₃
233	CH ³	H	H	H	OCH ³	H		осн3
234	CH3	н	H	Н	ос ₂ н ₅	H		CH3
235	CH ³	В	H	H	ос ₂ н ₅	H		осн3
236	OCH ³	н	H	H	CH3	H		CH ³
237	осн ₃	Н	H	H	CH ₃	н		OCH ₃
238	осн ₃	Ħ	H	H	C2H5	Н		осн ₃
239	н	н	CH3	н	CH ³	· · · H		CH ³
240	н	H	CH ³	Н	CH3	н		осн3
241	H	Н	CH3	H	C ₂ H ₅	H H		CH ₃
242	Н	н	CH ₃	н	C ₂ H ₅	Н		осн3

⁻ to be continued -

- 33 -Table 4 (Continued)

Compound No.	R ¹¹	R ¹²	R ¹³	R ¹⁴	R ¹⁵	_R 16	-{\bar{\chi_{\text{A=}}}}-	В
								·
243	H	H	H	H	CH3	с ₂ н ₅	_	CH ₃
244	H	H	H	Ħ	CH3	с ₂ н ₅		осн3
245	H	Ħ	H	H	СH ₃	n C ₃ H ₇	_ .	CH ³
246	H	H	н	H -	СН3	n C3 ^H 7	√	осн ₃
247	H	H	H	н	СН ³	i C ₃ H ₇	₹	CH3
248	Ħ	H	Ħ	н	CH ₃	i C ₃ H ₇		осн ₃
	<u> </u>							
249	H	H	H	H	С ₂ Н ₅	Ċ ₂ н ₅		СН3
250	н	H	н	Ħ	С ₂ Н ₅	C2H5		осн3
251	Ħ	н	Ħ	Н	С ₂ Н ₅	C ₃ H ₇		сн3
252	H	H :	Н	H	- C ₂ H ₅	п С ₃ Н ₇		осн3
253	H	H	Н	H	~(C	H ₂) ₅ -		н
254	H	н	H	Н	-(C	H ₂) ₅ -	~>	CH ³
255	,H	H	Н	Н		H ₂) ₅ -		осн ₃
256	Ħ	Н	H	н	СН3	осн ₃	$\langle \rangle$	Н
								1-1

⁻ to be continued -

- 34 Table 4 (Continued)

Compound No.	R ¹¹	R ¹²	R ¹³	R ^{1,4}	R ¹⁵	_R 16	√ A=>	В
257	Ħ	H	H	Н	Сн3	OCH ³	_	сн3
258	Ħ	H	H	Ħ	CH ³	осн3		осн3
259	н	H	H	Н	CH ³	ос ₂ н ₃		CH ³
260	H	H	H	H	CH3	ос ₂ н ₅		осн3
261	H	H	H	H	CH3	oc ₃ H ₇ -i		сн3
262	H	H	H	H	CH ³	ос ₃ н ₇ -і		осн ³
263	H	H	Н	H	С ₂ В ₅	осн3		: E
264	н	Ħ	н	H	с ₂ н ₅	осн3		сн ³
265	н	H	H	н	С ₂ ^Н 5	осн3		осн3
266	CH ³	H	Н.	·H	СН3	осн ₃		н
267	CH ³	H	н	н	CH ₃	OCH ³		CH3
268	CH3	H	H	Н	CH ³	осн3		осн3
269	CH ³	H	H	H	C2H5	осн3		Н
270	CH ₃	Н	H .	н	C ₂ H ₅	осн3		CH3

- 35 - Table 4 (Continued)

Compound	_R 11	R ¹²	R ¹³	R ¹⁴	R ¹⁵	_R 16	/ >	В
No.				ie .	·		\ ^{A=} \	
271	СН3	H	H	H	С ₂ Н ₅	осн3	_	осн3
272	осн ³	H	CH ³	H.	сн3	H		СН3
273	осн3	H	CH ₃	H	CH ³	H	_	OCH3
274	H	Ħ	CH3	H	СH ³	CH ₃	_	H
275	H	H	Сн ³	Ħ	CH3	СH ³	_	Сн3
276	н	H	CH3	H	СН ³	CH3	₹	осн3
277	н	H	CH ³	B	Сн ³	осн3	_	H
278	H	H	CH ₃	H	CH ³	осн3	_	CH ³
279	H	H	CH3	Ħ	СH ³	осн3	⟨ >	осн3
280	осн3	 H :	H	Ħ	CH3	С ₂ н ₅	_	CH ₃
281	осн3	н	Н	H	CH3	с ₂ н ₅	_	осн3
282	осн3	H	Н	н	СН3	i C ₃ H ₇	_>	CH ³
283	осн3	H	H	H	CH3	і С ₃ н ₇	←	осн3
284	осн3	н	Н	H	C2 ^H 5	С ₂ Н ₅	-	CH.3

- 36 -Table 4 (Continued)

Compound No.	R ¹¹	R ¹²	R ¹³	R ¹⁴	R ¹⁵	R ¹⁶	-{	В
285	осн3	Н	H	В	С ₂ Н ₅	С ₂ н ₅		осн3
286	осн3	H	H	H	C ₂ H ₅	C3H7	· _	н
287	осн3	H	H	H	C2H5	п С _З н ₇		CH3
288	OCH3	H	Ħ	н	C2H5	C ₃ H ₇	⟨ >	осн3
289	-0(CH	1 2 ⁾ 2 ⁰⁻	H	H .	CH ₃	H		CH3
290	-O(CH.	2 20-	H	H	С ₂ н ₅	H	_>	CH3
291	-O (CH.	2)20-	H	Ħ	С ₂ н ₅	H	_>	осн3
292	-O(CH	2)20-	H	н	i C3H7	H		H
293	-0(CH	2 ⁾ 2 ⁰⁻	н	Н	ic3H7	Н		CH3
294	-0(CH	2)20-	н	н.	i C ₃ H ₇	H		OCH3
295	-0 (CH	2,20-	CH3	н	CH ₃	н		CH ₃
296	-0(CB	2)20-	CH3	н	CH3	н		OCH3
297		1 ₂) ₂ 0-		н	CH ₃	CH ₃		CH ₃
298		1 ₂) ₂ 0-		Н	CH3	CH3		осн3
							<u> </u>	

⁻ to be continued

- 37 - Table 4 (Continued)

Compound No.	R ¹¹	R ¹²	R ¹³	R ¹⁴	R ¹⁵	R ¹⁶	√ A=>	В
299	-0(CH ₂) 20-	Ħ	H	CH ³	С ₂ н ₅		н
300	-о(сн ₂) 20-	H	H	CH ³	С ₂ Н ₅		Сн3
301	-0(CH ₂) 20-	H	H	CH ³	с ₂ н ₅		осн3
302	-о(сн ₂	20-	H	н	Сн ³	^і с ₃ н ₇		CH ³
303	-о(сн ₂) 20-	H	H	Сн ^{3.}	і с ₃ н ₇		осн3
304	-0(CH ₂)20-	н.	н	С ₂ Е ₅	с ₂ н ₅		Сн3
305	-0(CH ₂) 20-	. H	H	С ₂ Н ₅	С ₂ н ₅		осн3
306	-0(CH ₂) ₂ 0-	Н	H	С ₂ Н ₅	C3H7		Н
307	-о(СН ₂) 20-	Н	Н	C2 ^H 5	^п с ₃ н ₇		Сн ³
308	-0(CH ₂) ₂ 0-	`Н	TH f	с ₂ н ₅	п Сзн ₇		осн3
309	СН3	СНЗ	н	C	cl ₂ -	CH3		CH ₃
310	CH ₃	CH ₃	Н	-C	C1 ₂ -	СH3		осн3
311				\sim				Н
			ОСН	3				

⁻ to be continued -

- 38 -Table 4 (Continued)

Compound No.	R ¹¹	R ¹²	R ¹³	R ¹⁴	R ¹⁵	R ¹⁶	₹	В
312			ζ,					CH ³
313			о́сн.	3 (•		осн ³
314			осн	3 (- н
315	<u>.</u>		OCH	3 ()				- CH ³
316			OCH	3 / _>			_	OCH ³
		€ =:	OCH	3			. '	
317	сн3	CH3	н	н	Сн3	OH		Н
318	CH3	CH ³	н	Н	CH ₃	ОН		CH ³
319	СН3	CH ₃	H	н	сн3	ОН		осн3

3

- 39 -Table 5

R ¹⁷	R ¹⁸	R ¹⁹	R ²⁰	√ A=>	В
сн3	H	H	H	√ N=	СH ³
CH ₃	H	H	H	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	осн3
CH3	Н	H	H	_>	н
CH ³	Н	H	H		CH ₃
CH3	Ħ	H	H	_	осн3
CH3	CH3	Н	н	~~~~	сн ₃
СН3	CH ₃	H	. Н	√N=	осн3
CH ₃	CH3	Н	н		Сн ³
СН3	CH3	н	Н	_	осн3
Н	н	CH ₃	CH ₃	_>	CH3
н	H	CH ³	СH3		OCH ³
	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	CH ₃ H CH ₃ H CH ₃ H CH ₃	CH ₃ H H CH ₃ H H CH ₃ H H CH ₃ H H CH ₃ CH ₃ H	CH ₃ H H H CH ₃ CH ₃ CH ₃ CH ₃	CH ₃ H H H H CH ₃ H H H H CH ₃ H H H H CH ₃ CH ₃ H H H CH ₃ CH ₃ CH ₃ CH ₃

- 40 -Table 5 (continued)

R ¹⁷	R ¹⁸	R ¹⁹	R ²⁰	₹	В
Сн3	OCH ₃	H ~	Ħ		Н·
сн3	осн3	H	Ħ		CH3
CH3	осн3	H	H		осн3
	СH ₃	CH3 OCH3	СH ₃ ОСH ₃ H	СH ₃ ОСH ₃ Н Н	CH ₃ OCH ₃ H H —————————————————————————————————

- 41 -Table 6

				· · · · · · · · · · · · · · · · · · ·
Compound No.	R ²¹	R ²²	-{_}-	В
334	і С _З ^Н 7	Н		H
335	і С ₃ н ₇	H		СНЗ
336	c ₃ H ₇	H	_	осн3
337	i C ₄ H ₉			с̀н ³
338	C4H9	H	_	осн3
339	Н	С ₂ н ₅	————————————————————————————————————	снз
340	H	С ₂ ^Н 5		осн3
341	Н	п С ₃ н ₇	_	H
342	H	C ₃ H ₇	_	CH ³
343	Н	C ₃ H ₇		осн3
344	н	C ₃ H ₇		CH3
345	н	і С ₃ н ₇	-	OCH ₃

- 42 -Table 7

Compound No.	R ²³	R ²⁴	R ²⁵	R ²⁶	-{ <u>A</u> =}	В
346	H.	Н	СH3	Ħ	√ N=	сн3
347	H	Н	СH ³	H	√ N=	осн ³
348	H	н	СH ³	Н	_>	CH ³
349	н	Н	CH ₃	н		осн3
350	H	н	CH3	CH3		н
351	н	Н	CH3	CH ₃		CH3
352	H	H	CH ₃	CH ₃		OCH ³
			<u> </u>	<u> </u>	<u> </u>	1

Compound No.	R ²⁷	R ²⁸	R ²⁹	√ A=>	B
353	Ħ	CH ³	сн ³		CH3
354	н	сн3	CH3	_	осн3

Table 9

Compound No.	R ³⁰	R ³¹	-{ _A =}	В
355	CH3	CH ₃		Н
356	CH3	CH ₃		CH ₃
357	СНЗ	CH ₃		осн ₃

- 44 -Table 10

Compound No.	R ³²	R ³³	R ³⁴	-{_}-	В
358	CH ₃	сн3	CH ₃		H
359	СН3	сñ ³	CH ³	-	СH ³
360	CH3	CH3	CH ³	_>	осн ₃
361-	CH ₃	CH ³	С ₂ ^Н 5		н
362	CH ₃	CH ₃	с ₂ н ₅		CH ₃
363	CH ³	CH3	C2H5		осн3
			<u> </u>		

- 45 -Table ll

Compound No.	R ³⁵	R ³⁶	R ³⁷	R ³⁸	√ _A=>	В
364	H	H	CH ³	CH3		CH3
365	н	H	СH ³	СH ³		осн3
366	H	.н	OCH ₃	CH ₃		H
367	H	Ħ	осн3	сн3		CH ₃
368	н	н	осн3	CH3		осн3
369	H	CH ₃	осн3	СH ³		H
370	н	Сн ³	осн3	СH ₃		CH ³
371	Н	CH ₃	осн3	CH ³		осн3
1	1 •	I	1			L

The compound of formula (I) provided by this invention can be produced, for example, by reacting an aminopyridine or an aniline derivative represented by the following formula (II)

wherein Ar and A are as defined with regard to formula [I],

with methyl isocyanate, N,N-dimethylcarbamoyl chloride or N-methoxy-N-methylcarbamoyl chloride.

The compound of formula [II] used in the above reaction can be produced by a synthesis route consisting of the following reactions (1) and (2).

$$Ar-OH + C1 \xrightarrow{A} -NO_2 \longrightarrow Ar-O \xrightarrow{A} -NO_2 \dots (1)$$

$$Ar-O \xrightarrow{A} -NO_2 + H_2 \longrightarrow Ar-O \xrightarrow{A} -NH_2 \dots (2)$$

$$[V]$$

In performing the reaction (1), known reaction means of forming an aromatic ether compound by reaction of a phenolic hydroxyl group with an aryl chloride may be applied. Specifically, it can be carried out by stirring the reaction mixture at a temperature of 20 to 150°C, for 0.5 to 10 hours in an aromatic hydrocarbon (e.g., benzene, toluene, xylene), in an aprotic polar solvent (e.g., N,N-dimethylformamide, 1-methyl-2-pyrrolidone) or in their mixture in the presence of a base such as sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate. After the reaction, the compound [V] can be isolated by a known means such as column chromatography.

On the other hand, known means of producing an aromatic amine by reducing an aromatic nitro compound with hydrogen may be applied to the practice of the

15

reaction (2). Specifically, the reduction with hydrogen can be carried out at a temperature of 20 to 100°C under normal pressure to 20 kg/cm² of hydrogen in an inert solvent such as benzene, toluene, xylene, methanol, ethanol or ethyl acetate in the presence of an ordinary reducing catalyst such as Raney nickel or palladium-carbon. After the reaction, the compound [II] can be isolated by operations including removal of the catalyst, removal of the solvent, and as required, recrystallization.

Referential Examples 39 and 41 given hereinbelow illustrate the synthesis of compound [V] by the reaction (1). Synthesis of compound [II] by the reaction (2) is illustrated in Referential Examples 40, 42, 45, 47 and 48 given hereinbelow.

Among the compounds of general formula [V], compounds of the following general formula [V-1]

in which R¹⁶ is a lower alkoxy group or a hydroxyl group,

can also be produced by a synthesis route consisting of the following reactions (3) and (4).

5

After the reaction (3), the compound [VI] can be isolated by the same operations as in the case of obtaining the compound [V] by the above reaction (1).

The reaction (4) proceeds by heating the reaction mixture at 40 to 120°C in the absence of solvent or in an inert solvent such as acetone, dioxane, benzene or toluene in the presence of an acid catalyst such as hydrochloric acid, sulfuric acid and Amberlyst-15°C.

After the reaction, the compound [V-1] can be isolated by recrystallization, column chromatography, etc. after optionally removing the catalyst and the solvent.

Synthesis of the compound [VI] by the reaction (3) is shown in Referential Example 43, and synthesis of the compound [V-1] by the reaction (4), in Referential Examples 44 and 46.

Among the compounds of general formula [V], compounds of general formula [V-2]

$$\begin{array}{c|c}
R^{12} & R^{11} \\
\hline
C1 & & \\
C1 & & \\
R^{15}
\end{array}$$

$$\begin{array}{c|c}
-NO_2 & & \\
\hline
IV-21 & \\
\hline
\end{array}$$

ance with the following reaction (5).

Known procedures of reacting a cyclohexene ring with dichlorocarbene to introduce a dichloromethylene group into the double bond portion of the cyclohexene ring may be applied to the practice of the reaction (5). Specifically, the reaction (5) proceeds by stirring the compound [VI], chloroform and sodium or potassium hydroxide in the absence of solvent or in water as a solvent in the presence of a quaternary ammonium salt such as benzyltrimethylammonium chloride.

Referential Example 48 illustrates the production of a compound of general formula (V-2) by the reaction (5).

Use of a base in the reaction of the compound of formula [II] with the carbamoyl chloride can increase the yield of the product. Examples of the base are pyridines such as pyridine, picoline, lutidine and collidine, tertiary amines such as triethylamine, 1,8-diazabicyclo[5,4,0]undecene-7 and N,N-dimethylaniline, and inorganic bases such as sodium bicarbonate, potassium bicarbonate, sodium carbonate, potassium carbonate, sodium hydroxide and potassium hydroxide. The amount of the base used is from 0.5 to 20, preferably from 1 to 10, as the molar ratio to the carbamoyl chloride.

The reaction of the compound [II] with methyl isocyanate proceeds in the absence of a catalyst, but as required, may be carried out in the presence of 0.1 to 5 mole%, based on the compound [II], of a tertiary amine such as triethylamine.

The use of a reaction solvent is not necessary, but there may be used a solvent inert to the reaction, for example an aromatic hydrocarbon such as benzene, toluene and xylene, a halogenated hydrocarbon such as chloroform, dichloromethane, carbon tetrachloride, dichloroethane, trichloroethane, tetrachloroethane, chlorobenzene or dichlorobenzene, tetrahydrofuran, ethyl acetate or dimethylformamide, either alone or in combination.

The reaction is carried out by mixing 1 mole of the aminopyridine derivative or aniline derivative [II] and 0.8 to 3 moles, preferably 1 to 2 moles, of methyl isocyanate or the carbamoyl chloride with or without the base in the absence of solvent or in the aforesaid solvent, and stirring the mixture at a temperature of -20 to 100°C, preferably 0 to 80°C, for 0.3 to 30 hours.

After the reaction, the final desired product can be obtained by various separation methods shown in Examples given hereinbelow.

According to another embodiment of producing the compound of formula [I], the compound of formula [I] can be produced by reacting an isocyanate derivative represented by the following formula [III]

$$Ar - O \longrightarrow N = C = O \qquad \qquad \dots \qquad [III]$$

wherein Ar and A are as defined with regard to formula [I],

with an amine compound represented by the following formula [IV]

wherein B is as defined with regard to formula [I].

The isocyanate derivative (III) may be obtained by subjecting the compound [II] to a known means of reacting an aniline with phosgene to synthesize a phenyl isocyanate. Referential Example 49 given hereinbelow illustrate synthesis of one example of the compound of formula [III].

with an amine to form a urea may be applied to the practice of the reaction of the isocyanate derivative [III]

with the amine [IV]. The reaction may be carried out without a reaction solvent. If desired, however, there may be used a solvent inert to the reaction, for example an aromatic hydrocarbon such as benzene, toluene or xylene, a halogenated hydrocarbon such as chloroform, dichloromethane, carbon tetrachloride, dichloroethane, trichloroethane, tetrachloroethane, chlorobenzene or dichlorobenzene, tetrahydrofuran, dioxane, ethyl acetate and dimethylformamide.

The reaction is carried out by mixing 1 mole of the isocyanate derivative and 0.8 to 5 moles, preferably 1 to 2 moles, of the amine in the absence of a solvent or in the aforesaid solvent, and stirring the mixture at a temperature of -20 to 100°C, preferably 0 to 50°C, for 0.5 to 30 hours.

Guidelines for the synthesis of the compounds of the general formula Ar-OH used in the synthesis of the compounds [V] by the reaction (1) are shown in the reaction schemes given in the column of Synthesis Method in Table 12. Precursor Nos. 1 to 38 in Table 12 correspond respectively to Referential Examples 1 to 38 given hereinbelow. For example, the precursor for which a synthesis method is described in Referential Example 1 is one example of compounds which belong to the precursor No. 1.

Table 12 also describes literature references which are closely related to the reaction schemes of the synthesis methods.

It is believed that one skilled in the art can
5 easily understand the method of synthesis of Ar-OH when he
refers to Table 12 and Referential Examples 1 to 38.

Japanese Patent Application No. 279,193/1985 cited as reference for the precursor No. 2 was filed on the basis of an invention made by two of the inventors of the present application and has not yet been published. Precursor No. 2 may be synthesized in accordance with this method by reacting 1 mole of 1,3-dihydroxybenzene and about 0.5 to 5 moles of a ketone in the presence or absence of a solvent using an acid catalyst such as hydrochloric acid, sulfuric acid or a cation exchange resin at room temperature to 120°C for 2 to 30 hours.

In the reaction scheme for precursor No. 5, the aforesaid reaction technique can be applied to the first reaction, and the subsequent hydrogenation reaction is well known per se.

There has been no prior example in which the prescursor No. 24 shown in Table 12 was synthesized by the synthesis route shown in the reaction scheme in Table 12. In the reaction scheme, the reaction of a ketone with ethylene glycol to form a 5-membered ring comprising an ethylenedioxy group is well known per se, and the reaction of forming the phenolic hydroxyl group by the reaction of hydrogen on phenylbenzyl ether is also well known. Hence, the precursor 24 can be easily sysnthesized by following this reaction scheme and Referrential Example 24.

The reaction for producing precursor No. 26 is neither known heretofore, and was discovered for the first time by the inventors of the present application.

This reaction proceeds by reacting the two reactants under ice cooling in the presence of an alcohol of the

- 53 -

formula $R^{\frac{15}{12}}H$ using an acid catalyst such as sulfuric acid, toluenesulfonic acid or a cation exchange resin.

In Table 12, Bz in Table 12 stands for the benzyl group.

The method of synthesizing the starting material of the following formula

used in the reaction (3) above is described, for example, in U. S. Patent 4,323,505.

Referential Examples 1 to 38 given hereinbelow illustrate synthesis of typical compounds of general formula Ar-OH.

Referential Examples 39 and 41 show synthesis of intermediates coming within the compounds [V] in accordance with the reaction (1). Referential Examples 40, 42, 45 and 47 show synthesis of intermediates coming within the compounds [II] in accordance with the reaction (2). Referential Example 43 shows synthesis of an intermediate coming within the compounds [VI] in accordance with the reaction (3). Referential Example 48 shows synthesis of an intermediate falling with the compound [V-2] in accordance with the reaction 5 and subsequent systhesis of an intermediate coming within the compound [II] by the reaction 2. Referential Example 49 shows synthesis of an intermediate falling within the compound [III].

In these Referential Examples, column chromatography was carried out using a silica gel column and hexane-ethyl acetate mixture as an eluent.

2	۱
Table	

					1
	Rererence	J. C. S., 2254 (1948)	Japanese Pat. Appln. No. 279193/1985	J. Am. Chem. Soc., 70, 3619 (1948)	form in the second
Tana 17	Synthesis method	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{cases} \bigcirc A^{1} & \stackrel{\text{ClGH}_{2}CN}{\longrightarrow} & \bigcirc A^{1} & \stackrel{\text{Ac}_{2}O}{\longrightarrow} & \stackrel{\text{Ad}O}{\longrightarrow} \\ A O & & & & & & & & & & & & & & & & & & &$	
0	Ar-OH	R.J.	R3R2 R R4 (R: H, CH2)	•	
	Precursor No.	1	2		

_	55	_
---	----	---

	·	- 55 -	
Reference	Aust. J. Chem., 22, 601 (1969)	Japanese Pat. Appln. No. 279193/1985	J. Org. Chem., 35, 2904 (1970)
Synthesis method	$ \begin{pmatrix} R_1 \\ O \\ O \\ O \\ R_2 \end{pmatrix} $ $ \begin{pmatrix} R_1 \\ O \\ R_1 \end{pmatrix} $ $ \begin{pmatrix} R_1 \\ O \\ R_1 \end{pmatrix} $ $ \begin{pmatrix} R_2 \\ O \\ R_1 \end{pmatrix} $ $ \begin{pmatrix} R_1 \\ O \\ R_1 \end{pmatrix} $ $ \begin{pmatrix} R_2 \\ O \\ R_1 \end{pmatrix} $ $ \begin{pmatrix} R_3 \\ O \\ O$	$ \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} + \text{CH}_{3} \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} + \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} + \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} + \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} + \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} + \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} + \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} + \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} + \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} + \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} + \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} + \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} + \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} + \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} + \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} + \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} \right\rangle}_{\text{OM}} + \underbrace{\left\langle \begin{array}{c} 0 \\ -1 \end{array} $	$\begin{array}{c} R^{3} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Ar-OH	R3-C9H	E P P P P P P P P P P P P P P P P P P P	R ³
Precursor No.		. 50	ون

_
=
$\boldsymbol{\sigma}$
ď١
=
⊑
- : :
بد
8
- 7
·
U
_
N
_
٠:
_:
യ
_
$\overline{}$
-11

Reference	J. Org. Chem., 28, 2468 (1963) Indian J. Chem., 7, 1004 (1969)	Japanese Laid-Open Pat. Publn. No. 149263/1976
Synthesis method	$\begin{array}{c} R_{6} \\ R_{6} \\ HO \end{array} \rightarrow \begin{array}{c} AOO \\ A$	$\begin{array}{c} \text{reduction} \\ \text{-OH} \\ \text{HO} \\ \\ \\ \\ \\ \\ \end{array}$
Synthesi	Br HO C OH + Acc C OAC — OAC — OAC — OAC — OAC — OAC Mydrolysis	-H ₂ O OHC A R
Ar-OH	R ⁵ OH	RA RB
Precursor		æ

inued)	
Cont	
21	
Table	

	Reference	Japanese Laid-Open Pat. Publn. No. 149263/1976	J. Org. Chem., 29, 2579 (1964)	J. Org. Chem., 29, 2579 (1964)	- to he continued -
	Synthesis method	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0 \longrightarrow 0 \longrightarrow$	$0 \stackrel{R^7}{\longrightarrow} 0 \stackrel{R^7}{\longrightarrow} 0 \stackrel{H^+}{\longrightarrow} 0 \stackrel{H^-}{\longrightarrow} 0 $	
,	Ar-OH	R ⁵ A ^B A ^B	$\begin{pmatrix} 0 & & & \\ & & & \\ R^5 & & & \\ R^5 : \text{ alkoxy} \end{pmatrix}$	0 - OH R7	
	Precursor No.	6	10	n	

\Rightarrow
절
2
끄
Ö
ပ
. 71
경
둲

Reference	J. Org. Chem., 29, 2579 (1964)	J. Org. Chem., 29, 2579 (1964)
Synthesis method	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Ar-OH	7	Re Ry are bonded through an alkylene chain
Precursor	No. 12	EI

continued)	
12	İ
Table	

			59 -	
	Reference	Aust. J. Chem., 33, 675 (1980)	Ger. Offen. 2,550,965	J. Am. Chem. Soc., 94, 9166 (1972)
	Synthesis method	HO H	HO \longrightarrow -OH + R ¹⁰ -CR 3 \longrightarrow R 9 OH HO	$\left\langle \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \right\rangle \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{$
	Ar-OH	R ⁹ , R ¹⁰ : alkyl, or R ⁹ and R ¹⁰ are bonded through an alkylene chain	$R_{10}^9 \xrightarrow[R^3: alkoxy]{0}$ $R_{10}^9: H, alkyl$	•
Description	Precursor No.	14	15	16

- 60 -

	Reference	J. Org. Chem., 26, 240 (1961); J. Am. Chem. Soc., 94, 9166 (1972)	Bull. Soc. Chim. France, 776(1957), J. Am. Chem. Soc., 94, 9166 (1972) - to be continued
Table 12 (continued)	Synthesis method	$\begin{pmatrix} 0 & 0 \\ R^{11} & R^{13} & OEt \\ & & & & \\ $	$(H_{0})^{CH_{3}} \xrightarrow{(G_{1})^{2}} (H_{3})^{CH_{3}} \xrightarrow{(G_{1})^{2}} (H_{3})^{CH_{3}} \xrightarrow{(G_{1})^{2}} (H_{1})^{CH_{3}} (H_{1})^{CH_{3}} (H_{1})^{CH_{3}} (H_{1})^{CH_{3}} (H_{1})^{CH_{3}} (H_{1})$
	Ar-OH	R13 CH	G G G G G G G G G G G G G G G G G G G
	Precursor		18

le 12 (continued)

	Reference	Journal of Jap. Chem. Soc., 1987 (1972)	Japanese Laid-Open Pat. Publn. No. 5475/1981	Japanese Laid-Open Pat. Publn. No. 109779/82	- to be continued -
Table 12 (continued)	Synthesis method	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \end{array}$	
	Ar-OH	$\begin{array}{c} & & & \\ & & \\ R^{15} \\ R^{15} \\ R^{16} \\ R^{15} \\ R^{16} \\ R^{16} \\ R^{16} \\ R^{16} \end{array}$	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	CH ₃ CH ₃	
	Precursor No.		20	21	

ਫ਼	
Ē	
h	-
ဥ	
12	I
Je	Į
Tab	I

Reference	Angew. Chem. Int. Ed. Engl. <u>21</u> , 225(1982)	Angew. Chem. Int. Ed. Engl. <u>21</u> , 225(1982)	- to be continued -
Synthesis method	$CH_{3} \xrightarrow{O} - CH_{3} \xrightarrow{R_{1}S_{R_1S_1S_{R_1S_1S_{R_1S_1S_{R_1S_1S_1S_1S_1S_1S_1S_1S_1S_1S_1S_1S_1S_$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Ar-OH	R15 R16 R15: alkyl R16: H, alkyl or R15 and R16 are bonded through an	R15 R16 R15: alkoxy R15: alky1 R16: H, alky1	
Precursor		23	

Table 12 (continued)

			- 63 -	
Reference		U. S. 4,003,919		
Synthesis method	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{cases} R & 0 \\ & & \\ $	R15 R16	
Ar-GI	R13 CH	R ¹¹³ R	R: H, CH ₃ R ¹¹ , R ¹³ , R ¹⁵ ; H, alkyl	R ¹⁶ : alkoxy or R ¹¹ and R ¹⁵ are bonded through an alkylene chain
Precursor No.	24	25		

•
ă
3
5
۲
continued
8
2
ŭ

		·
Reference		Bull, Chem. Soc. Japan, 31, 397(1958)
Synthesis method	$\begin{cases} \begin{array}{c} P_{15} & P_{15} \\ P_{10} & P_{11} \\ P_{10} & P_{11} \\ P_{15} & P_{15} \\ P_{$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ar-OH	R_{15}^{11} $R_{15}^{11}: 11, \text{ alkyl}$ $R_{15}^{15}: \text{ alkoxy}$	# # # # # # # # # # # # # # # # # # #
Precursor	. 26	27

ed)	
Continu	
12	۱
aple	

Reference	Bull, Chem. Soc. Japan, <u>31</u> , 397(1958)
Synthesis method	$CH_{3} \xrightarrow{CH_{3}} CH_{3}$ $CH_{3} \xrightarrow{MgBr} CH_{3}$ $CH_{3} \xrightarrow{MgBr} CH_{3}$ $CH_{3} \xrightarrow{CH_{3}} CH_{3}$ $CH_{3} \xrightarrow{CH_{3}} CH_{3}$ $CH_{3} \xrightarrow{CH_{3}} CH_{3}$ $CH_{3} \xrightarrow{CH_{3}} CH_{3}$
Ar-OH	G. 3. C. S.
Precursor No.	28

continued)	
12 (
able	
Ĕ	

	- 66 -	_
Reference	Aust. J. Chem., 22, 601 (1969)	
Synthesis method	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Ar-OH	CH ₃ R ₁₅ R ₁₆ R ₁₆	
Precursor		

Table 12 (continued)

			- 67 -
-	Reference	J. Chem. Soc., 1190 (1958)	Ger. Offen. 1,945,212
	Synthesis method	$\left\langle \begin{array}{cccccccccccccccccccccccccccccccccccc$	$HO- \bigoplus_{A} - CH \xrightarrow{R^{17}} \qquad \qquad \qquad \bigvee_{R^{18}} \qquad \bigvee_{R^{18}} \qquad \qquad \bigvee_{R^{18}} \qquad$
	Ar-OH	$\begin{cases} R \\ \downarrow \\ O \end{cases}$ $R^{11}; \text{ alkoxy}$	R17 R17, R18; H, alkyl
Drocingor	No.	30	31

inued)	
(cont	
ble 12	
™	l

		- 68 -
Reference	u. s. 4,003,919	Bull. Soc. Chim. France, 776 (1957); J. Am. Chem. Soc., 94, 9166 (1972)
Synthesis'method	$HO-\left(\frac{1}{2}\right)-OH + R^{17}$ R^{19}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Ar-OH	R18 R19 R20 R18: alkoxy	0—————————————————————————————————————
Precursor		33

1	ĝ
-	Ĕ
•	ב
	5
,	9
9	7
	٠.
	ផ្គ

		- 69
Reference	J. Org. Chem., 29, 2579 (1964)	J. Org. Chem., 29, 2579 (1964)
Synthesis method	$0 = \left(\frac{R^{21}}{2}\right) = 0 \xrightarrow{R^{21}} \left(\frac{R^{21}}{2}\right) = 0 \xrightarrow{H^{2}} \left(\frac{H^{+}}{2}\right) = 0 \xrightarrow{H^{2}} \left(\frac{H^{+}}{2}\right) = 0 \xrightarrow{R^{21}} $	$0 = \begin{array}{c} R^{22} \\ \bigcirc \\ $
Ar-OH	04 OH	R ²²
Precursor No.	34	35

	Reference	J. Org. Chem., 28, 2468 (1963); Indian J. Chem., 7, 1004 (1969)	Ger. Offen. 1,945,212	Ger. Offen. 2,221,706
Table 12 (continued)	Synthesis method	$(A) \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R ²⁹ OH OH CH	$(A) \begin{array}{c} R^{30} \text{ OCH}_3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
	Ar-OH	CH ₃ R ²⁶	City R 29	O O O O O O O O O O O O O O O O O O O
	Precursor	36	37	38

30

- 71 -

The compounds of formula [I] provided by this invention have low phytotoxicity to useful crops and are useful for controlling or eradicating undesired vegetation at low dosasges. Thus, according to this invention, there can be provided a herbicidal composition comprising a herbicidally effective amount of at least one compound of formula [I] and an agriculturally acceptable diluent or carrier.

formulations such as emulsifiable concentrates, wettable powders, dusts, or granules. Suitable agriculturally acceptable diluents or carriers include, for example, solid diluents or carriers such as clay, talc, bentonite, kaolin, diatomaceous earth, white carbon, vermiculite, slaked lime, and silica sand, and liquid diluents or carriers including solvents and surfactants, such as alkylbenzenesulfate esters, alkylbenzenesulfonate salts, polyoxyethylene glycol ether, polyoxyethylene alkyl aryl ethers, polyoxyethylene sorbitan monoalkylates, sodium alkylsulfates, sodium alkylnaphthalenesulfonates, and sodium ligninsulfonate.

The herbicidal composition of the invention may contain the compound of formula [I] in a herbicidally effective amount which, for example, is about 0.5 to about 70% by weight, based on the weight of the composition, and is usually from 0.5 to 20% by weight for granules or dusts, and from 5 to 70% by weight for emulsifiable concentrates or wettable powders, based on the weight of the composition.

According to this invention there may also be provided a method of controlling the growth of undesired vegetation which comprises applying a herbicidally effective amount of at least one compound represented by formula [I] to the weeds or the locus of such weeds.

35 The compound of formula [I], either as such or as the aforesaid composition or as a dilution or suspen-

where undesired vegetation is growing or is likely to grow. In the method of controlling the growth of undesired vegetation, the rate of application of the compound of formula [I] may be varied depending upon the formulation, the crop to be applied, the weed to be applied, climatic conditions, etc. For example, it is about 50 g to about 3 kg/hectare.

The herbicide of this invention exhibits a high herbicidal efficacy by soil treatment or foliar treatment against various weeds, particularly various weeds in upland farms, for example important weeds such as barnyard grass (Echinochloa crus-galli), fingergrass (Digitaria sanguinalis), dent foxtail (Alopecurus aequalis), 15 cocklebur (Xanthium strumarium), blackjack (Bidens pilosa), and velvet leaf (Abutilan theophrasti) and also weeds of Compositae, Rubiaceae, Scrophulariaceae, Solanaceae, Umbelliferae, Violaceae, Oxalidaceae, Euphorbiaceae, Brassicaceae, Caryophyllaceae, Amaranthaceae, Chenopudiaceae, and Polygonaceae. Particularly, in foliar treat-20 ment, it can be used safely on important crops, for example gramineous crops such as wheat, corn and rice and leguminous crops such as soybean and peanut, and can kill a wide range of weeds at low dosages.

The herbicide of this invention may also be applied to lawns, orchards, pastures and non-agricultural lands.

As desired, the herbicide of this invention may be used as a mixture with, or jointly with, other agricultural chemicals such as another herbicide, a fungicide or an insecticide, or a fertilizer. Examples of the other agricultural chemicals include methyl 2-[4-(2,4-dichlorophenoxy)phenoxy]propionate, isobutyl 2-[4-(4-chlorophenoxy)phenoxy]propionate, 2-[4-(3,5-dichloro-2-pyridyloxy)phenoxy]propionic acid, butyl 2-[4-(5-trifluoromethyl-2-pyridyloxy)phenoxy]propionate, dimethyl

tetrachloroterephthalate, isopropyl-N-phenylcarbamate, 4-chloro-2-butynyl-N-(3-chlorophenyl)carbamate, methyl N-(3,4-dichlorophenyl) carbamate, S-ethyl N,N-diisobuthylthiocarbamate, S-(2,3,3-trichloro-2-propenyl) N,N-diiso-5 propylthiocarbamate, 2-chloro-N-isopropylacetanilide, 2-chloro-2',6'-diethyl-N-methoxymethylacetanilide, 2-chloro-N-ethoxymethyl-2'-ethyl-6'-methylacetanilide, 2-chloro-2'-ethyl-N-(2-methoxy-1-methylethyl)-6'-methylacetanilide, 3',4'-dichloropropionanilide, ethyl 2-[N-10 benzoyl-N-(3,4-dichlorophenyl)aminolpropionate, 3-(4chlorophenyl)-1-methoxy-1-methylurea, 3-(3,4-dichloropheny1)-1-methoxy-1-methylurea, 2-(3,5-dichloropheny1)-2-(2,2,2-trichloroethyl)oxirane, 3-amino-2,5-dichlorobenzoic acid, 3,6-dichloro-2-methoxybenzoic acid, 2,6-dinitro-N,N-15 dipropyl-4-trifluoromethylaniline, 1,2-dimethyl-3,5-diphenyl-1H-pyrazolium methyl sulfate, S-2,3-dichloroallyl-N, N-diisopropyl thiolcarbamate, and ethyl N-benzoyl-N-(3chloro-4-fluorophenyl)-2-aminopropionate.

Best mode for practicing the invention

20 The best mode of practicing the invention will be shown below by examples of producing the synthesis intermediates of the compounds of this invention, examples of producing the compounds of this invention, examples of the herbicidal composition of this invention and examples of herbicidal tests.

REFERENTIAL EXAMPLE 1

2,3-Dihydro-3-ethyl-6-hydroxybenzofuran (a precursor of compound No. 13):-

A mixture of 5.0 g of 2',4'-dihydroxypropio30 phenone, 5.4 g of benzyl bromide, 6.2 g of potassium carbonate and 50 ml of acetone was refluxed for 7 hours. After cooling, the solid was separated by filtration. The filtrate was concentrated, and the residue was separated by column chromatography to give 4.7 g of 4'-benzyloxy-2'-hydroxypropiophenone as a white solid (yield 61%, melting point 111.5 - 112.5°C). Then, a

mixture of 4.5 g of this solid, 3.5 g of ethyl bromoacetate, 6.1 g of potassium carbonate and 45 ml of acetone was refluxed for 7.5 hours. After cooling, the solid was separated by filtration. The filtrate was concentrated, 5 and the residue was purified by column chromatography to give 5.8 g of ethyl 3-benzyloxy-6-propionylphenoxyacetate as white crystals (yield 97%, melting point 81.5 to 82.0°C). This ester (5.5 g) was dissolved in a solution composed of 1.3 g of potassium hydroxide and 55 ml 10 of methanol, and the solution was stirred at room temperature for 2 hours to hydrolyze the ester. The hydrolysis product was worked up in a customary manner to give 3.9 g (yield 77%) of 3-benzyloxy-6-propionylphenoxyacetic acid as a pale yellowish orange solid. Then, 9.3 g of sodium 15 acetate and 39 ml of acetic anhydride were added to this solid, and the mixture was heated at 155°C for 30 minutes. The solvent was evaporated, and the residue was purified by column chromatography to give 2.8 g (yield 95%, melting point 69.5 - 70.5°C) of 6-benzyloxy-3-20 ethylbenzofuran as a white solid. Palladium (5%)-carbon · (0.27 g) and 27 ml of acetic acid were added to 2.7 g of the resulting benzofuran, and the mixture was stirred at room temperature for 3 hours in an atmosphere of nitrogen. The catalyst was separated by filtration, and the filtrate 25 was concentrated and then purified by column chromatography to give 1.7 g (yield 90%) of the desired product as a pale orange liquid.

REFERENTIAL EXAMPLE 2

2,3-Dihydro-6-hydroxy-2,2,3-trimethylbenzofuran
30 (a precursor of compound No. 6):-

A 100 ml three-necked flask equipped with a condenser and a thermometer was charged with 11 g (0.1 mole) of resorcinol, 8.6 g (0.1 mole) of isopropyl methyl ketone and 1.3 g (12% by weight based on resorcinol) of a cation exchange resin (Amberlyst-15) as a catalyst. The mixture was stirred at 100°C in a nitrogen atmosphere for 10 hours. After cooling, the catalyst was separated

^{*} 5

- 75 -

by filtration, and the residue was purified by column chromatography to give 11.8 g (yield 66%) of the desired productg as colorless needle-like crystals.

Melting point: 67.5°C.

REFERENTIAL EXAMPLE 3

2,3-Dihydro-6-hydroxybenzofuran (a precursor of compound No. 11):-

A mixture of 18 g of resorcinol, 12 g of chloroacetonitrile, 12 g of zinc chloride and 100 ml of diethyl ether was bubbled with HCl gas at room temperature with stirring. The white crystals that precipitated were collected by filtration, and suspended in 200 ml of water. The suspension was refluxed for 0.5 hour. After cooling, the white crystals were collected by filtration and refluxed together with 16 g of potassium acetate and 100 ml of ethanol for 0.5 hour. After cooling, 300 ml of water was added and 2N-HCl was added until the solution became acidic. As a result, 20 g of 2,3-dihydro-7hydroxy-3-oxobenzofuran was obtained as brown crystals. The compound was acetylated in a customary manner. 20 resulting acetylated product (3.0 g) was stirred together with 0.3 g of 10% palladium-carbon and 50 ml of ethanol at 60°C for 4 hours in an atmosphere of hydrogen to give 2.0 g of white crystals. The crystals were hydrolyzed in a customary manner to give 1.0 g (total yield 41%) of the desired product as a brown liquid.

REFERENTIAL EXAMPLE 4

2,3-Dihydro-2-sec-butyl-6-hydroxybenzofuran (a precursor of compound No. 29):-

A mixture of 9.0 g of potassium hydroxide, 150 ml of ethanol and 10 g of 2,3-dihydro-6-hydroxy-3-oxo-benzofuran was stirred at room temperature for 0.5 hour, and then 9.7 g of ethyl methyl ketone was added. The mixture was stirred at room temperature for 16 hours.

35 2N-HCl was added until the aqueous layer became acidic. The mixture was then extracted with ethyl acetate. The

- 76 -

extract was dried over magnesium sulfate, and ethyl acetate was evaporated. The resulting crude crystals were recrystallized from hexane-ethyl acetate to give 7.4 g of brown crystals. Sodium borohydride (4.0 g) was gradually 5 added to a mixture of 2.3 g of these crystals, 1.5 g of sodium hydroxide and 100 ml of water, and then the mixture was stirred at 100°C for 2 hours. The mixture was acidified with 2N-HCl and extracted with ethyl acetate. After evaporating ethyl acetate, 0.1 g of 10% 10 palladium-carbon and 30 ml of ethanol were added to the residue, and the mixture was stirred at room temperature for 3 hours in an atmosphere of hydrogen. The palladiumcarbon was separated by filtration, and the filtrate was concentrated. The residue was purified by column chroma-15 tography to give 2.0 g (yield 36%) of the desired product as a colorless liquid.

REFERENTIAL EXAMPLE 5

2,3-Dihydro-2,3-dimethyl-6-hydroxybenzofuran .
(a precursor of compound No. 17):-

A mixture of 1.9 g of resorcinol, 1.8 g of 3-methoxy-2-butanone, 0.2 g of Amberlyst-15 and 2 ml of toluene was stirred at 90°C for 10 hours. After cooling, the catalyst was separated, and the filtrate was concentrated. The residue was purified by column chromatography to give 1.7 g of 2,3-dimethyl-6-hydroxybenzofuran as pale yellow crystals. The crystals were dissolved in 20 ml of acetic acid, and 0.2 g of 5% palladium-carbon was added. The mixture was stirred at room temperature for 12 hours in an atmosphere of hydrogen. The crude product was purified by column chromatography to give 1.5 g (yield 54%) of the desired product as a brown liquid.

REFERENTAIL EXAMPLE 6

2,3-Dihydro-2,2-dimethyl-6-hydroxybenzofuran (a precursor of compound No. 32):-

3-Benzyloxyphenol (5.0 g), 2.0 g of isobutyraldehyde, 0.1 g of methanesulfonic acid and 50 ml of

- 77 -

toluene were put into a flask equipped with the Dean-Stark condenser, and stirred under reflux for 4 hours.

Low-boiling compounds were evaporated under reduced pressure. The residue was purified by column chromatography to give 3.8 g of 6-benzyloxy-2,3-dihydro-2,2-dimethylbenzofuran as a brown liquid. This product was dissolved in ethanol, and 0.4 g of 5% palladium-carbon was added. The mixture was stirred at room temperature for 8 hours in an atmosphere of hydrogen. The catalyst was separated by filtration, and the filtrate was concentrated. The residue was purified by column chromatography to give 2.0 g (yield 50%) of the desired product as a pale yellow liquid.

REFERENTIAL EXAMPLE 7

2,3-Dihydro-5-hydroxy-2-methylbenzofuran (a precursor of compound No. 60):-

A mixture of 4.6 g of hydroquinone, 7.5 g of hydroquinone diacetate, 13.8 g of potassium carbonate, 12.1 g of allyl bromide and 60 ml of acetone was refluxed for 4 hours. After cooling, the solid was separated by filtration, and the filtrate was concentrated. The residue was purified by column chromatography to give 13.6 g (yield 85%) of 4-acetoxyphenyl allyl ether as a

- pale orange liquid. Then, 4.0 g of this liquid was dissolved in N,N-dimethylaniline, and the solution was heated at 210°C for 6 hours. The crude product was purified by column chromatography to give 3.5 g (yield 88%) of 4-acetoxy-2-allylphenol. This phenol was dis-
- solved in a methanol solution of potassium hydroxide and hydrolyzed. The hydrolyzed product was worked up in a customary manner, and purified by column chromatography to give 2.2 g (yield 82%) of 2-allylhydroquinone as a pale orange solid. To 1.7 g of this solid were added 8.5 ml of acetic acid and 3.4 ml of 47% hydrobromic acid,
- 35 and the mixture was heated at 75°C for 16 hours. The reaction mixture was neutralized with aqueous sodium

- 78 -

carbonate and extracted with ethyl acetate. The extract was dried over magnesium sulfate, and concentrated. The residue was purified by column chromatography to give 1.4g (yield 82%) of the desired product as a reddish brown 1 liquid.

REFERENTIAL EXAMPLE 8

2,3-Dihydro-3,3-dimethyl-5-hydroxybenzofuran (a precursor of compound No. 88):-

aldehyde and 1 ml of triethylamine was refluxed, and a mixture of 5.0 g of p-quinone and 46 ml of isobutyraldehyde was added. The mixture was refluxed for 15 minutes. Low-boiling compounds were evaporated under reduced pressure. The residue was purified by column chromatography to give 2-(1-formyl-1-methylethyl)hydroquinone as a deep orange liquid. This liquid was reduced with 0.87 g of sodium borohydride in 83 ml of ethanol, and then refluxed for 1.5 hours in 85 ml of toluene together with a catalytic amount of p-toluenesulfonic acid. The crude product was purified by column chromatography to give 4.8 g of the desired product having a reddish orange color.

REFERENTIAL EXAMPLE 9

2.3-Dihydro-3.3-dimethyl-5-hydroxy-2-methoxy25 benzofuran (a precursor of compound No. 95):-

A mixture of 46 ml of isobutyraldehyde and 1.0 ml of triethylamine was refluxed, and a mixture of 5.0 g of p-quinone and 46 ml of isobutyraldehyde was gradually added dropwise to the mixture. The reaction mixture was distilled under reduced pressure, and the residue was refluxed for 1.5 hours together with 50 ml of methanol and 0.5 g of p-toluenesulfonic acid. The reaction mixture was extracted with ethyl cetate. The extract was concentrated, and the residue was purified by column chromatography to give 7.0 g (yield 79%) of the desired product as a brown liquid.

- 79 -

REFERENTIAL EXAMPLE 10

2,3-Dihydro-2-ethoxy-3-ethyl-5-hydroxybenzofuran (a precursor of compound No. 107):-

To a solution of 20 g of p-quinone in 200 ml of toluene was added 39 g of l-morpholino-l-butene at room temperature, and the mixture was stirred for 6 hours.

Toluene was evaporated, and the residue was dissolved in ethanol. The solution was added dropwise to 150 ml of 4N-HCl, and the mixture was stirred at room temperature, and extracted with ethyl acetate. The extract was concentrated, and the residue was purified by column chromatography to give 18.6 g (yield 48%) of the desired product as a brown liquid.

REFERENTIAL EXAMPLE 11

2,3-Dihydro-3-ethyl-5-hydroxybenzofuran
(a precursor of compound No. 65):-

The adduct of p-quinone and enamine shown in Referential Example 10 (5.0 g) was stirred together with 150 ml of 4N-HCl at room temperature for 16 hours. The crude product was purified by column chromatography to give 1.6 g (yield 49%) of 3-ethyl-5-hydroxybenzofuran. This product was hydrogenated in isopropanol at room temperature for 7 hours in the presence of a catalytic amount of Raney nickel to give 1.5 g (yield 99%) of the desired product as a brown liquid.

REFERENTIAL EXAMPLE 12

2,3-Dihydro-5-hydroxy-2-sec-butylbenzofuran (a precursor of compound No. 73):-

Referential Example 11 was repeated except that 30 4-methyl-2-morpholino-1-pentene was used as the enamine. The desired compound was obtained as a brown liquid in a yield of 41%.

REFERENTIAL EXAMPLE 13

1,2,3,4,4a,9b-hexahydro-8-hydroxydibenzofuran

35 (a precursor of compound No. 117):
Referential Example 11 was repeated except that

1-morpholino-1-cyclohexene was used as the enamine. The desired compound was obtained as a brown liquid in a yield of 63%.

REFERENTIAL EXAMPLE 14

2-Ethyl-5-hydroxy-2-methyl-1,3-dioxolane (a precursor of compound No. 129):-

Catechol (20 g), 55 ml of methyl ethyl ketone,

10 mg of p-toluenesulfonic acid and 100 ml of toluene
were put into a flask equipped with the Dean-Stark condenser, and refluxed for 36 hours to give 23.6 g of 2-ethyl2-methyl-1,3-dioxolane as a colorless liquid. The liquid
was stirred in acetic acid together with 127 g of Pb(OAc)₄
at 140 °C for 9.5 hours. The crude product was purified
by column chromatography to give 7.2 g of the acetoxylated
product as a brown liquid. This liquid was hydrolyzed
using potassium hydroxide, methanol and water to give 5.8g
(yield 18%) of the desired product as a brown liquid.

REFERENTIAL EXAMPLE 15

2-Ethoxy-5-hydroxy-2-methyl-1,3-dioxolane

20 (a precursor of compound No. 138):-

A solution composed of 5.0 g of 1,2,4-trihydroxybenzene, 9.7 g of triethyl orthoacetate and 50 ml
of toluene-carbon tetrachloride (1:1) was refluxed for
1.5 hours. The solvent was evaporated, and the residue
25 was purified by column chromatography to give 6.7 g
(yield 86%) of the desired product as pale brown crystals
having a melting point of 86 to 87°C.

REFERENTIAL EXAMPLE 16

2,3-Dihydro-7-hydroxy-4H-l-benzopyran (a pre-30 cursor of compound No. 155):-

5.0 g of 7-hydroxycoumarin was hydrogenated using 0.5 g of 5% palladium-carbon as a catalyst at 80°C for 9 hours in 13 ml of acetic acid and 25 ml of ethyl acetate. The reaction residue was recrystallized from hexane-ethyl acetate to give 4.9 g of white crystals (m.p. 135 - 137°C). The crystals were dissolved in 15

- 81 -

ml of tetrahydrofuran, and the solution was added dropwise at room temperature to a mixture of 0.9 g of lithium aluminum hydride and 10 ml of tetrahydrofuran, and the mixture was then refluxed for 3 hours. The reaction 5 mixture was worked up in a customary manner, and the product was dissolved in 30 ml of toluene without purification. A catalytic amount of p-toluenesulfonic acid was added, and the mixture was heated at 120°C for 6 hours. The reaction mixture was worked up in a customary manner. The residue after concentration was purified by column chromatography to give 1.6 g (yield 36%) of the desired product as pink crystals.

REFERENTIAL EXAMPLE 17

2,3-Dihydro-3,4-dimethyl-7-hydroxy-4H-1-

Resorcinol (5.5 g) and 7.2 g of ethyl 2-methyl-acetoacetate were stirred at 10 °C for 3 hours in the presence of a catalytic amount concentrated sulfuric acid to give 7.8 g (yield 83%) of 3,4-dimethyl-7-hydroxy-coumarin. The product was hydrogenated and dehydrated as in Referential Example 16 to give 5.7 g (78%) of the

REFERENTIAL EXAMPLE 18

desired product as a pale brown liquid.

2,3-Dihydro-4,4-dimethyl-7-hydroxy-4H-l-

A mixture of 103 g of resorcinol and 4.6 g of conc. sulfuric acid was heated at 130°C with stirring, and 58 g of methyl 3,3-dimethylacrylate was added. The mixture was heated at 130°C for 3 hours with stirring.

The reaction mixture was worked up in a customary manner, and the residue after concentration was purified by column chromatography to give 24 g (yield 27%) of 4,4-

The product was worked up in the same way as in Referential Example 16 to give 16.8 g (yield 75%) of the desired product as colorless crystals (melting point

dimethyl-7-hydroxycoumarin (melting point 84 - 85°C).

88-88.5°C).

REFERENTIAL EXAMPLE 19

2,3-Dihydro-7-hydroxy-2-methyl-4H-1-benzopyran (a precursor of compound No. 164):-

A 100 ml autoclave was charged with 20 g of resorcinol, 12 g of butadiene, 4 ml of H_3PO_4 and 60 ml of toluene, and purged with nitrogen. The mixture was then heated at 100°C for 3.5 hours. The crude product was purified by column chromatography to give 24.1 g 10 (yield 82%) of the desired product as a brown liquid.

REFERENTIAL EXAMPLE 20

2,3-Dihydro-7-hydroxy-2,4,4-trimethyl-4H-1benzopyran (a precursor of compound No. 180):-

A 100 ml autoclave was charged with 6.0 g of 7-hydroxy-2,4,4-trimethyl-4H-1-benzopyran synthesized by the method of Japanese Laid-Open Patent Publication No. 5475/1981, 1.0 g of 5% palladium-carbon and 20 ml of ethanol, and hydrogenation was carried out at 85°C. The resulting product was recrystallized from n-hexane-20 toluene to give 5.2 g (86%) of the desired product as colorless crystals (melting point 97 - 98°C).

REFERENTIAL EXAMPLE 21

3,4-Dihydro-7-hydroxy-2,2,4-trimethyl-2H-1benzopyran (a precursor of compound No. 184):-

25 7-Hydroxy-2,2,4-trimethyl-2H-1-benzopyran synthesized by the method of Japanese Laid-Open Patent Publication No. 109779/1982 was hydrogenated as in Referential Example 20. The product was purified by column chromatography to give the desired product as 30 colorless liquid in a yield of 83%.

REFERENTIAL EXAMPLE 22

2,3-Dihydro-7-hydroxy-2-isopropy1-4H-1benzopyran (a precursor of compound No. 216):-

Pyrrolidine (14.2 g) was added dropwise at room 35 temperature to a mixture of 15 g of 4-acetylresorcinol, 14.4 g of isobutyraldehyde and 100 ml of toluene, and the

- 83 -

mixture was stirred at room temperature for 6 hour, and thereafter refluxed for 8 hours. The crude product was purified by column chromatography to give 11.4 g of pale yellow crystals. The hydroxyl group of the resulting compound was benzylated with benzyl bromide, and then the product was reduced with sodium borohydride in methanol and further dehydrated with p-toluenesulfonic acid in toluene. Then, the product was hydrogenated at room temperature for 13 hours in ethanol, in the presence of 5% palladium-carbon. The solvent was evaporated, and the residue was purified by column chromatography to give 6.5 g (yield 34%) of the desired product as a pale yellow liquid.

REFERENTIAL EXAMPLE 23

2,3-Dihydro-2,2-dimethyl-7-hydroxy-4-methoxy-4Hl-benzopyran (a precursor of compound No. 187):-

7-Benzyloxy-2,3-dihydro-2,2-dimethyl-4-oxobenzopyran synthesized as in Referential Example 22 was dissolved in 60 ml of methanol, and reduced with 1.0 g of sodium borohydride at room temperature. The product was dissolved in 10 ml of tetrahydrofuran, and the solution was added dropwise to a mixture of 1.0 g of 60% sodium hydride and 5 ml of tetrahydrofuran. After generation of hydrogen ceased, 4.3 g of methyl iodide was added drop-25 wise, and the mixture was further stirred for 2.5 hours at room temperature. The reaction mixture was extracted with ethyl acetate. The extract was concentrated, and the residue was dissolved in 30 ml of ethanol and hydrogenated at room temperature for 8 hours in the presence 30 of 5% palladium-carbon catalyst. The crude product was purified by column chromatography to give 2.2 g (yield 58%) of the desired product as a pale brown liquid.

REFERENTIAL EXAMPLE 24

2,3-Dihydro-4,4-ethylenedioxy-7-hydroxy-2-

35 methyl-4H-l-benzopyran (a precursor of compound No. 289):-

A mixture of 2.2 g of 7-benzyloxy-2,3-dihydro-2-methyl-4-oxobenzopyran, 4.5 g of ethylene glycol, 1.8 g of triethyl orthoformate, 80 mg of p-toluenesulfonic acid and 20 ml of toluene was refluxed for 5.5 hours. 5 reaction product was purified by column chromatography to give 2.6 g of the acetal. The acetal was hydrogenated at room temperature for 9.5 hours in ethanol with 5% palladium-carbon. The hydrogenated product was purified by column chromatography to give 1.4 g (yield 76%) of the desired product as pale pink crystals.

REFERENTIAL EXAMPLE 25

2,3-Dihydro-7-hydroxy-2-methoxy-2-methyl-4H-1benzopyran (a precursor of compound No. 258):-

Methyl vinyl ketone (7.7 g) was added dropwise under ice cooling to a solution composed of 11 g of resorcinol, 11.7 g of trimethyl orthoformate and 0.1 ml of conc. sulfuric acid. After the addition, the mixture was stirred at room temperature for 2 hours. The reaction mixture was neutralized with a saturated aqueous 20 solution of sodium bicarbonate, and then extracted with ethyl acetate. The residue left after evaporation of the solvent as purified by column chromatography to give 12.5 g (yield 70%) of the desired product as colorless crystals (melting point 107-108°C).

25 REFERENTIAL EXAMPLE 26

2,3-Dihydro-2-ethoxy-7-hydroxy-4H-1-benzopyran (a precursor of compound No. 221):-

A solution of 1.6 g of acrolein diethylacetal in 4 ml of ethanol was added dropwise under cooling to a solution composed of 1.1 g of resorcinol, 0.05 g of conc. sulfuric acid and 6 ml of ethanol. While maintaining the temperature at less than 10°C, the mixture was stirred for 2 hours. The reaction mixture was neutralized with an aqueous solution of sodium carbonate and extracted with ethyl aceate. The solvent was evaporated, and the residue was purified by column chromatography to give

- 85 -

1.2 g (yield 63%) of the desired product as a colorless liquid.

REFERENTIAL EXAMPLE 27

2,3-Dihydro-2,3-dimethyl-7-hydroxy-4H-l-benzo-

5 pyran (a precursor of compound No. 239):-

Resorcinol (11 g) and 20 g of tiglic acid were heated together with 15 g of zinc chloride at 180°C for 30 minutes with stirring. After cooling, the reaction mixture was extracted with ethyl acetate. The extract 10 was concentrated to give 13 g of crystals. The crystals were benzylated with benzyl bromide in acetone in the presence of potassium carbonate, dissolved in a mixture of ethanol and tetrahydrofuran, and reduced with sodium borohydride. The reaction product was dehydrated in toluene with a catalytic amount of p-toluenesulfonic acid. The dehydrated product was purified by column chromatography to give the benzyl ether (colorless liquid). The liquid was hydrogenated in ethanol at room temperature for 15 hours using a 5% palladium-carbon catalyst. The crude product was purified by column chromatography to give 10.5 g (yield 59%) of the desired product as a pale yellow liquid.

REFERENTIAL EXAMPLE 28

2,3-Dihydro-2,4-dimethyl-7-hydroxy-4H-l-benzo-

25 pyran (a precursor of compound No. 230):-

Resorcinol (11 g) and 17.2 g of crotonic acid were heated at 180°C for 30 minutes together with 15 g of zinc chloride with stirring. The reaction mixture was extracted with ethyl acetate, and purified by column chromatography to give 7.3 g of 2,3-dihydro-7-hydroxy-2-methyl-4-oxobenzopyran. The OH group of the compound was benzylated in a customary manner, and then the product was reacted with CH₃MgBr in tetrahydrofuran. The product was then hydrogenated in ethanol at room temperature for 13 hours in the presence of 5% palladium-carbon. The hydrogenated product was purified by column chromatography

- 86 -

to give 4.2 g (yield 24%) of the desired product as a brown liquid.

REFERENTIAL EXAMPLE 29

2,3-Dihydro-7-hydroxy-2,2,3-trimethyl-4H-1-

5 benzopyran (a precursor of compound No. 275):-

A mixture of 5.0 g of 2,3-dihydro-2,2-dimethyl-7-hydroxy-4-oxobenzopyran, 3.8 g of 37% aqueous formalde-hyde, 10.5 g of potassium hydroxide and 50 ml of ethanol was heated at 50°C for 3 hours with stirring. The reaction mixture was acidified with 2N-HCl and extracted with ethyl acetate. The extract was purified by column chromatography to give 1.8 g of the enone. In a customary manner, the enone was hydrogenated, and then reacted with benzyl bromide to give 7-benzyloxy-2,3-dihydro-4-oxo-2,2,3-trimethylbenzopyran. The product was reduced with 2.0 g of sodium borohydride in methanol-tetrahydrofuran, and then dehydrated in toluene using 0.1 g of p-toluene-sulfonic acid. This compound was hydrogenated in a customary manner to give 1.4 g (yield 27%) of the desired

REFERENTIAL EXAMPLE 30

20 product as a pale brown liquid.

2,3-Dihydro-7-hydroxy-4-methoxy-4H-1-benzopyran (a precursor of compound No. 211):-

Under ice cooling, AlCl₃ (3 molar equivalent)

was added little by little to a solution composed of 11 g
of resorcinol, 12.7 g of 2-chloropropionyl chloride and
120 ml of nitrobenzene. After the addition, the mixture
was heated at 40 to 50°C for 4 hours with stirring.
The reaction mixture was worked up and purified in a
customary manner to give 4.1 g of 2,3-dihydro-7-hydroxy-4oxobenzopyran. The resulting compound was benzylated,
reduced with sodium borohydride in methanol, and then
methylated with methyl iodide in tetrahydrofuran in the
presence of sodium hydride. In a customary manner, the
methylated product was hydrogenated to give 1.7 g (yield
9.4%) of the desired product as a colorless liquid.

- 87 - REFERENTIAL EXAMPLE 31

2,3-Dihydro-6-hydroxy-2-methyl-4H-1-benzopyran (a precursor of compound No. 320):-

Referential Example 19 was repeated except that bydroquinone was used instead of resorcinol. There was obtained the desired product as a colorless liquid (yield 65%; b. p. 160-162°C/12 mm).

REFERENTIAL EXAMPLE 32

2,3-Dihydro-6-hydroxy-2-methoxy-2-methyl-4H-1-

10 benzopyran (a precursor of compound No. 332):-

Referential Example 25 was repeated except that hydroquinone was used instead of resorcinol. Pale brown crystals were obtained in a yield of 36%.

REFERENTIAL EXAMPLE 33

2,3-Dihydro-4,4-dimethyl-6-hydroxy-4H-l-benzopyran (a precursor of compound No. 329):-

A mixture of 8.8 g of hydroquinone, 5 g of methyl 3,3-dimethylacrylate and 0.4 g of conc. sulfuric acid was heated at 130°C for 4 hours. The reaction

- mixture was cooled, and then 15 ml of toluene was added.

 The crystals that precipitated were separated by filtration. The filtrate was concentrated and then distilled under reduced pressure to give 4.6 g (yield 70%) of 3,4dihydro-4,4-dimethyl-6-hydroxycoumarin as pale pink
- crystals (melting point 95 96°C). The crystals (3.0 g) were dissolved in 10 ml of tetrahydrofuran, and the solution was added dropwise at room temperature to a mixture of 0.9 g of lithium aluminum hydride and 20 ml of tetrahydrofuran. The mixture was then refluxed for 4 hours.
- 30 The reaction mixture was worked up in a customary manner, and the crude product, without purification, was dissolved in 30 ml of toluene. A catalytic amount of p-toluenesulfonic acid was added to the solution, and the mixture was heated at 120 °C for 1.5 hours. In a custom-
- 35 ary manner, the reaction mixture was worked up, and the residue after concentration was isolated and purified by

25

column chromatography to give 2.4 g (yield 85%) of the desired product as a yellow orange liquid.

REFERENTIAL EXAMPLE 34

5-Hydroxy-2-isopropylbenzofuran (a precursor of 5 compound No. 334):-

In accordance with Referential Example 10, 5.0 g of an adduct was synthesized from p-quinone and 3-methyl-2-morpholino-l-butene, and stirred together with 150 ml of 4N-HCl at room temperature for 16 hours. The 10 reaction mixture was worked up in a customary manner, and purified by column chromatography to give 1.6 g (yield 49%) of the desired product as a yellowish orange liquid.

REFERENTIAL EXAMPLE 35

3-Ethyl-5-hydroxybenzofuran (a precursor of 15 compound No. 339):-

The captioned compound was synthesized by the method of Referential Example 11.

REFERENTIAL EXAMPLE 36

2,3-Dihydro-7-hydroxy-2-methylbenzofuran (a precursor of compound No. 346):-

A mixture of 10.7 g of catechol, 17.3 g of catechol diacetate, 34.5 g of potassium carbonate, 30.3 g of allyl bromide and 200 ml of acetone was refluxed for 5 hours. The reaction mixture was filtered, and the filtrate was concentrated and purified by column chromatography to give 26.5 g (yield 71%) of 2-acetoxyphenyl allyl ether as a pale yellow liquid. Ten grams of this liquid was heated at 220 to 230°C for 1.5 hours. After cooling, the reaction mixture was purified by column chromatography to give 6.5 g (yield 65%) of 2-acetoxy-6allylphenol as a pale yellow liquid. Then, 3.0 g of this liquid and 12 ml of an acetic acid solution of 25% hydrobromic acid were reacted at 70°C for 6 hours. The reaction mixture was poured into ice water, neutralized 35 with an aqueous solution of sodium bicarbonate, and

exracted with ethyl acetate. The concentrate was hydrolyzed with potassium hydroxide and aqueous ethanol, and worked up in a customary manner. The product was then purified by column chroamtography to give 0.7 g (yield 31%) of the desired product as a pale yellow liquid.

REFERENTIAL EXAMPLE 37

2,3-Dihydro-2,2-dimethyl-8-hydroxy-4H-l-benzopyran (a precursor of compound No. 353):-

While a mixture of 10 g of catechol, 50 ml of p-xylene, 25 ml of hexane, 1 ml of phosphoric acid and 0.3 ml of water was heated at 100°C, 7.3 g of isoprene was added dropwise over 10 minutes, and the reaction was further carried out for 7 hours. After cooling, the resulting precipitate was separated by filtration. The filtrate was concentrated, and purified by column chromatography to give 1.7 g (yield 11%) of the product as a pale pink liquid.

REFERENTIAL EXAMPLE 38

2,2-Dimethyl-4-hydroxybenzodioxolane (a precursor of compound No. 355):-

A mixture of 9.0 g of pyrogallol, 7.5 g of 2,2-dimethoxypropane and 100 ml of toluene was refluxed for 4.5 hours. After cooling, the reaction mixture was worked up in a customary manner and purified by column chromatography to give 2.0 g (yield 17%) of the desired product as a pale yellow solid.

REFERENTIAL EXAMPLE 39

2,3-Dihydro-2,2-dimethyl-7-(4-nitrophenoxy)
30 4H-l-benzopyran (an intermediate of compound No. 172):
2,3-Dihydro-2,2-dimethyl-7-hydroxy-4H-l-benzopyran (2.0 g) synthesized as in Referential Example 19,

1.8 g of p-chloronitrobenzene, 0.9 g of potassium hydroxide, 20 ml of N,N-dimethylformamide and 10 ml of

toluene were put into a flask equipped with the DeanStark condenser, and were heated to 110°C. While

removing evaporated water as an azeotrope with toluene, the reaction was carried out for 1 hour. After cooling, the reaction mixture was poured into water, and extracted with ethyl acetate. The extract was dried over magnesium sulfate, and the solvents were evaporated. The residue was purified by column chromatography to give 2.8 g (yield 84%) of the desired product as a brown liquid.

REFERENTIAL EXAMPLE 40

4-(2,3-Dihydro-2,2-dimethyl-4H-l-benzopyran-7yl)oxyaniline (an intermediate of compound No. 172):To 2.7 g of the nitrobenzene derivative obtained
in Referential Example 39 were added 0.3 g of 5%
palladium-carbon and 20 ml of ethanol, and the mixture
was stirred at 40 to 50°C for 5 hours in an atmosphere
of hydrogen. The catalyst was separated by filtration,
and the filtrate was concentrated to give 1.8 g (yield
72%) of the desired product as a gray powder.

REFERENTIAL EXAMPLE 41

2-(2,3-Dihydro-2,2-dimethyl-4H-l-benzopyran-7-20 yl)oxy-5-nitropyridine (an intermediate of compound No. 169):-

Five milliliters of an N,N-dimethylformamide solution of 1.5 g of 2,3-dihydro-2,2-dimethyl-7-hydroxy-4H-1-benzopyran synthesized by the method of Referential Example 19 was added dropwise to a mixture of 0.35 g of sodium hydride and 4 ml of N,N-dimethylformamide.

The mixture was stirred at room temperature for 0.5 hour, and 6 ml of an N,N-dimethylformamide solution of 2-chloro-5-nitropyridine (1.3g) was added to the resulting reddish orange solution, and the mixture was stirred at room temperature for 5 hours. The reaction mixture was poured into 100 ml of water, and extracted with 100 ml of ethyl acetate. The extract was dried over magnesium sulfate, and concentrated. The residue was purified by column chromatography to give 2.1 g (yield 84%) of the desired product as a yellow liquid.

-5

- 91 -REFERENTIAL EXAMPLE 42

5-Amino-2-(2,3-dihydro-2,2-dimethyl-4H-l-benzopyran-7-yl)oxypyridine (an intermediate of compound No. 169):-

The nitro compound obtained in Referential Example 41 (2.1 g) was dissolved in 11 ml of ethyl acetate, and 0.11 g of 5% palladium-carbon was added. Hydrogenation was carried out in accordance with the method of Referential Example 40. The filtrate was 10 concentrated to give 1.9 g (yield 100%) of the desired product as a pale pink solid (melting point 93-94°C).

REFERENTIAL EXAMPLE 43

7-(4-Nitrophenoxy)-2,4,4-trimethyl-4H-1-benzopyran (an intermediate of compound No. 194):-

- One hundred grams of 7-hydroxy-2,4,4-trimethyl-15 4H-l-benzopyran (synthesized by the method of Japanese Laid-Open Patent Publication No. 5475/1981), 79 g of p-chloronitrobenzene, 42 g of potassium hydroxide, 500 ml of N,N-dimethylformamide and 500 ml of toluene were
- 20 introduced into a flask equipped with the Dean-Stark condenser, and heated at 110 to 116°C. While removing the distilled water as an azeotrope with toluene, the mixture was stirred for 2 hours. The reaction mixture was cooled to room temperature, and 1 liter of water, 500
- 25 ml of ethyl acetate and 120 ml of 2N-HCl were added. The insoluble materials were separated by filtration. filtrate was subjected to oil-water separation. The oil layer was washed with 500 ml of brine, and dried over magnesium sulfate. The solvent was evaporated. Methanol
- 30 (650 ml) was added to the residue, and crystals that precipitated were collected, washed with 650 ml of hexane, and dried to give 106 g (yield 67%) of the desired product as a brown powder (melting point 80°C).

REFERENTIAL EXAMPLE 44

2,3-Dihydro-2-methoxy-7-(4-nitrophenoxy)-2,4,4-35 trimethyl-4H-1-benzopyran (an intermediate of compound No. 194)

- 92 -

A mixture of the 7-(4-nitrophenoxy)-2,4,4-trimethyl-4H-l-benzopyran obtained in Referential Example
43,66 ml of methanol, 0.7 g of Amberlyst-15 and 6 ml of
toluene was stirred for 4.5 hours, and Amberlyst-15 was
5 separated by filtration. The filtrate was concentrated,
and 30 ml of methanol was added. Crystals that precipitated were collected by filtration, washed with 50 ml of
methanol, and dried to give 6.7 g (90%) of the desired
product as a white powder (melting point 125°C).

10 REFERENTIAL EXAMPLE 45

7-(4-Aminophenoxy)-2,3-dihydro-2-methoxy-2,4,4-trimethyl-4H-l-benzopyran (an intermediate of compound No. 194):-

A mixture of 6.7 g of the 2,3-dihydro-2-methoxy15 7-(4-nitrophenoxy)-2,4,4-trimethyl-4H-1-benzopyran obtained in Referential Example 44, 0.7 g of 5% palladiumcarbon, and 67 ml of ethyl acetate was stirred at room
temperature for 5.5 hours in an atmosphere of hydrogen.
Palladium-carbon was separated by filtration, and the
20 filtrate was concentrated to give 6.0 g (yield 98 %)of
the desired product as a yellow liquid.

REFERENTIAL EXAMPLE 46

2,3-Dihydro-2-hydroxy-7-(4-nitrophenoxy)-2,4,4trimethyl-4H-1-benzopyran (an intermediate of compound 25 No. 319):-

A mixture of 6.5 g of the 7-(4-nitrophenoxy).

2,4,4-trimethyl-4H-l-benzopyran, 26 ml of water, 13 ml of conc. hydrochloric acid and 65 ml of acetone was refluxed for 2 hours. An 10% aqueous solution of sodium hydroxide

30 was added to the reaction mixture to neutralize it, and then 100 ml of water and 200 ml of ethyl acetate were added, and the mixture was subjected to oil-water separation. The oil layer was washed with 50 ml of brine, dried over magnesium sulfate and concentrated. Toluene

35 (5 ml) and 45 ml of hexane was added to the residue, and the precipitated crystals were collected by filtration, washed with 50 ml of hexane and dried to give 5.1 g

- 93 -

(yield 70%) of a pale brown powder (mp. 159-160°C, recrystallized from ethanol).

REFERENTIAL EXAMPLE 47

7-(4-Aminophenoxy)-2,3-dihydro-2-hydroxy-2,4,4-5 trimethyl-4H-l-benzopyran (an intermediate of compound No. 319):-

A mixture of 5.0 g of 7-(4-nitrophenoxy)-2,4,4trimethyl-4H-1-benzopyran, 0.5 g of 5% palladium-carbon
and 50 ml of ethyl acetate was stirred at room temperature
for 5.5 hours in an atmosphere of hydrogen. The palladium-carbon was separated by filtration, and the filtrate
was concentrated. The residue was recrystallized from
ethyl acetate-hexane to give 4.3 g (yield 93%) of the
desired product as a white powder.

REFERENTIAL EXAMPLE 48

7-(4-Aminophenoxy)-2,3-dichloromethano-2,3-dihydro-2,4,4-trimethyl-4H-1-benzopyran (an intermediate of compound No. 309):-

A solution of 0.02 g of benzyltrimethylammonium 20 chloride in 5 ml of chloroform was added dropwise to a mixture of 1.6 g of 7-(4-nitrophenoxy)-2,4,4-trimethyl-4H-1-benzopyran, 20 ml of chloroform and 0.7 g of sodium hydroxide with stirring at 5°C. The mixture was stirred at room temperature for 2 hours, poured into ice water 25 containing dilute hydrochloric acid, and extracted with dichloromethane. The extract was washed with brine, dried over sodium sulfate, and concentrated. acetate (30 ml) and 5% palladium-carbon were added to the residue, and the mixture was stirred at 60° C for 5 30 hours in an atmosphere of hydrogen. The palladium-carbon was removed by filtration, and the filtrate was concentrated. The residue was purified by column chromatography and recrystallization (dichloromethane-hexane) to give 0.74 g (yield 40%) of the desired product as colorless

REFERENTIAL EXAMPLE 49

35 crystals (melting point 46 to 147°C).

4-(2,3-Dihydro-2,2-dimethyl-4H-l-benzopyran-7-

yl)oxyphenyl isocyanate (an intermediate of compound No. 172):-

A solution of 8.1 g (0.03 mole) of the aniline derivative obtained by the method of Referential Example 40 was added dropwise at 0°C to 60 ml of ethyl acetate into which 0.12 mole of phosgene had been blown, and the mixture was stirred for 0.5 hour. Thereafter, the mixture was refluxed for 1 hour, and the excess of phosgene was replaced by nitrogen gas. The ethyl acetate was evaporated under reduce pressure to give 8.7 g (yield 98%) of the desired product as a yellow orange liquid (IR: 2260 cm⁻¹).

The following Example illustrates the synthesis of typical examples of the compounds of formula [I] and their properties.

Compound No. 1: 1,1-dimethyl-3-[2-(3-methyl-2,3-dihydro-6-benzofuryloxy)pyridin-5-yllurea

2-(3-Methyl-2,3-dihydro-6-benzofuryloxy)-5aminopyridine (0.5 g) was dissolved in 2.5 ml of pyri20 dine, and a solution of composed 0.27 g of dimethylcarbamoyl chloride and 2.5 ml of toluene was added. A solution composed of 0.27 g of diethylcarbamoyl chloride and
2.5 ml of toluene was added, and the mixture was stirred
at room temperature for 9 hours. Water and ethyl acetate
25 were added to the reaction mixture, and the organic layer
was separated. The organic layer was washed with a
saturated aqueous solution of sodium chloride, and dried
over anhydrous magnesium sulfate. Ethyl acetate was
evaporated under reduced pressure, and the precipitated
30 crystals were washed with n-hexane to give 0.63 g (yield
96%) of the desired product as pale brown crystals.

Melting point: 153-154°C

Mass spectrum: m/Z 313 (molecular ion peak)

IR spectrum (KBr disk; cm⁻¹)

3260, 3050, 2958, 1637, 1602, 1357,

35 3260, 3050, 2958, 1637, 1602, 1357, 1274, 1237, 1133, 979, 850, 842, 760.

1_{H-NMR} spectrum (CDCl₃ solution; ppm)

- (a) 1.31 (3H,d,J=7.2Hz)
- (b) 3.00 (6H,s)
- (c) 3.28 (1H,m)
- (d) 4.09 (1H,t,J=7.2Hz)
- (e) 4.71 (1H,t,J=7.2Hz)
- (f) 6.51 (1H,d,J=2.7Hz)
- (q) 6.57 (1H,dd,J=2.7, 7.2Hz)
- (h) 6.70 (lH,brs)
- (i) 6.92 (1H,d,J=9.0Hz)
- (j) 7.08 (1H,d,J=7.2Hz)
- (k) 7.91 (1H,dd,J=2.7, 9.0Hz)
- (\mathcal{L}) 8.02 (1H,d,J=2.7Hz)

Compound No. 331: 1-methyl-3-[4-(2-methoxy-2-methyl-2,3-dihydro-6-benzopyranyloxy)phenyl]urea

Methyl isocyanate (0.16 g) was added at room temperature to a solution composed of 0.4 g of 4-(2-methoxy-2-methyl-2,3-dihydro-6-benzopyranyloxy)aniline and 3.0 ml of toluene, and the mixture was stirred for 6 hours. Addition of n-hexane to the mixture yielded crystals which were collected by filtration to give the desired product as white crystals (yield not less than 97%).

Melting point: 140-140.5°C

Mass spectrum: m/Z 342 (molecular ion peak)

IR spectrum (KBr disk; cm⁻¹)

3330, 2950, 1642, 1605, 1586, 1505,

1486, 1212, 1092, 1058, 918, 872.

1H-NMR spectrum (CDCl₃ solution; ppm)

- (a) 1.54 (3H, s)
- (b) 1.68-2.24 (2H, m)
- (c) 2.32-3.28 (2H, m)
- (d) 2.75 (3H, d, J=5.4)
- (e) 3.28 (3H, s)
- (f) 5.43 (1H, d, J=5.4)
- (g) 6.60-7.40 (8H, m)

Compound No. 172: 1,1-Dimethyl-3-[4-(2,2-di-

nethyl-2,3-dihydro-7-benzopyranyloxy)phenyl]urea

A solution of 0.5 g of 4-(2,2-dimethyl-2,3-di-hydro-6-benzopyranyloxy)phenyl isocyanate in 2.5 ml of

hydro-6-benzopyranyloxy)phenyl isocyanate in 2.5 ml of toluene was added dropwise at 0°C to a solution of 0.2 g of dimethylamine in 3 ml of toluene, and the mixture was

then stirred at room temperature for 2 hours. Toluene was evaporated under reduced pressure, and the precipitated crystals were washed with n-hexane to give 0.62 g (yield 97%) of the desired product as white crystals.

Melting point: 137 - 138°C

Mass spectrum: m/Z 340 (molecular ion peak).

IR spectrum (KBr disk; cm⁻¹)

3310, 3040, 2940, 1640, 1602,

1370, 1210, 1147, 996, 838, 813.

1H-NMR spectrum (CDCl₃ solution; ppm)

(d) 3.02 (6H, s)

(e) 6.33 (1H, brs)

(f) -6.39 (1H, d, J=2.7 Hz)

(g) 6.47 (1H, dd, J=2.7, 7.2 Hz)

(h) 6.96 (2H, d, J=9.0 Hz)

(i) 6.97 (1H, d, J=7.2 Hz)

(j) 7.34 (2H, d, J=9.0 Hz)

Other compounds of formula [I] shown in Tables 1 to 11 were synthesized in accordance with the method used to produce compound No. 1 or No. 331, and the results are shown in Table 13. The NMR spectra were measured in CDCl₃. The IR spectra of solid compounds were measured using KBr disks, and those of liquid compounds were measured at neat.

m	
~	
اه	
ᆀ	
制	

					- 98	_		
14U1E 13	Spectral data	IR: 3280 (v_{NH}) , 1672 $(v_{c=0})$.		IR: 3310 (v _{NH}), 1642 (v _{G=O}).	NMR: 1.31 (3H,d,J=7.2), 3.18 (3H,s), 3.29 (1H,m), 3.76 (3H,s), 4.70 (1H,t,J=9.0), 5.09 (1H,dd,J=7.2, 9.0), 6.36-7.12 (3H,m), 6.96 (2H,d,J=9.0), 7.43 (2H,d,J=9.0).	NMR: 1.22 (3H,d,J=8.1), 1.28 (3H,s), 1.47 (3H,s), 2.98 (6H,s), 3.05 (1H,q,J=8.1), 6.24 (1H,d,J=2.7), 6.54 (1H,d,J=9.0), 7.03 (1H,d,J=7.2), 7.2), 6.81 (1H,d,J=9.0), 7.03 (1H,d,J=2.7), 7.90 (1H,dd,J=2.7, 9.0), 8.03 (1H,d,J=2.7).	NMR: 1.22 (3H,d,J=7.2), 1.30 (3H,s), 1.49 (3H,s), 3.16 (1H,q,J=7.2), 3.22 (3H,s), 3.78 (3H,s), 6.50 (1H,d,J=2.7), 6.58 (1H,dd,J=2.7, 8.1), 6.88 (1H,d, J=9.0), 7.06 (1H,d,J=8.1), 7.80 (1H,brs), 8.04 (1H,dd,J=2.7, 9.0), 8.16 (1H,d,J=2.7).	bella interest of ct -
,	Melting point (°C)	153-154	114-115	155-156	110,5-112	145-147	94-95	
	Yield (%)	94	not less than 97	85	not less than 97	81	94	
	Compound No.	2	3	4	S	9 .	7	

Table 13 (continued)

				- 99	-	
Spectral data	IR: 3310 (v _{NH}), 1643 (v _{C=O}). IR: 3350 (v _{NH}), 1667 (v _{C=O}).		IR: 3350 (v _{NH}), 1667 (v _{C=O}).	NMR: 3.04 (6H,s), 3.18 (2H,t,J=7.2), 4.60 (2H,t,J=7.2), 6.32 (1H,s), 6.50 (2H,m), 6.94 (2H,d,J=9.0), 7.10 (1H,dd,J=2.7, 7.2), 7.36 (2H,d,J=9.0).	NMR: 3.14 (2H,t,J=7.2), 3.20 (3H,B), 3.78 (3H,S), 4.60 (2H,t,J=7.2), 6.44 (2H,m), 6.98 (2H,d,J=9.0), 7.18 (1H,dd,J=2.7, 7.2), 7.42 (2H,d,J=9.0), 7.86 (1H,S).	IR : 3310 (V _{NH}), 1642 (V _{C=O}). NMR: 0.96 (3H,t,J=7.2), 1.69 (2H,q,J=7.2), 3.02 (6H,S), 3.31 (1H,m), 4.24 (1H,t,J=9.0), 4.65 (1H,t,J=9.0), 6.32-7.48 (8H,m).
Melting point (°C)	146-148	121–123	117-120	142-144	124-126	143.5-145
Yield (%)	not less than 97	95	68	94	. 91	not less than 97
Compound No.	8	6	10	11	12	13

_	
eq	
n	
占	
00	
೭	
~	١
_	ı

					100 -		
Spectral data	IR: 3330 (v_{NH}), 1676 ($v_{G=O}$).	IR: 3290 (v_{NH}) , 1635 $(v_{C=0})$.	IR: 3310 (V _{NH}), 1660 (V _{C=0}).			NMR: 1.48 (3H,d,J=7.2), 2.76 (1H,dd,J=8.0, 15.0), 2.85 (3H,d,J=5.4), 3.28 (1H,d,J=8.0, 15.0), 4.94 (1H,m), 6.44 (2H,m), 6.94 (2H,d,J=9.0), 7.08 (1H,d,J=8.0), 7.24 (2H,d,J=9.0).	NMR: 1.47 (3H,d,J=7.2), 2.74 (1H,dd,J=8.0, 15.0), 3.06 (6H,s), 3.30 (1H,dd,J=8.0, 15.0), 4.94 (1H,m), 6.40 (2H,m), 6.94 (2H,d,J=9.0), 7.06 (1H,d,J=8.0), 7.36 (2H,d,J=9.0).
Melting point (°C)	liguid	129-129.9	58-59.0	198-199.5	101-103	152-153	124-128
Yield (%)	not less than 97	not less than 97	85	53	not less than 97	not less than 97	not less than 97
Compound No.	14	. 15	16	17	18	19	20

_	
Q	
a	
3	
_	
u	
0	
ŭ	
_	
3	١
-	١
	Ì
e	ı
-	Į

		•		- 101 -	·	
Table 13 (conclined)	Spectral data	NMR: 1.48 (3H,d,J=7.2), 2.75 (1H,dd,J=8.0, 15.0), 3.24 (3H,s), 3.30 (1H,dd,J=8.0, 15.0), 3.80 (3H,s), 4.94 (1H,m), 6.40 (2H,m), 6.98 (2H,d,J= 9.0), 7.06 (1H,d,J=8.0), 7.42 (2H,d,J=9.0).	NMR: 1.04 (3H,t,J=7.2), 1.76 (2H,m), 2.82 (1H,dd,J=8.0, 15.0), 2.88 (3H,d,J=5.4), 3.26 (1H,dd,J=8.0, 15.0), 4.74 (1H,m), 6.46 (2H,m), 6.98 (2H,d,J=9.0), 7.08 (1H,d,J=8.0), 7.26 (2H,d,J=9.0).	NMR: 1.04 (3H,t,J=7.2), 1.80 (2H,m), 2.82 (1H,dd,J=8.0, 15.0), 3.08 (6H,s), 3.24 (1H,dd,J=8.0, 15.0), 4.72 (1H,m), 6.40 (2H,m), 6.94 (2H,d,J=9.0), 7.06 (1H,d,J=8.0), 7.34 (2H,d,J=9.0).	NMR: 1.04 (3H, t, J=7.2), 1.80 (2H, m), 2.80 (1H, dd, J=8.0, 15.0), 3.18 (3H,s), 3.26 (1H, dd, J=8.0, 15.0), 4.70 (1H,m), 6.40 (2H,m), 6.94 (2H,d,J=9.0), 7.06 (1H,d,J=8.0), 7.42 (2H,d,J=9.0);	NMR: 0.98 (3H,d,J=7.2), 1.06 (3H,d,J=7.2), 1.92 (1H,m), 2.84 (3H,s), 2.86 (1H,dd,J=8.0, 15.0), 3.16 (1H,dd,J=8.0, 15.0), 4.54 (1H,m), 6.44 (2H,m), 6.94 (2H,d,J=9.0), 7.06 (1H,d,J=8.0), 7.24 (2H,d,J=9.0)
J.	Melting point (°C)	75-76	138-140	132-136	98-100	155-156
	Yield (%)	64	not less than 97	not less than 97	7.5	not less than 97
	Compound No.	21	22	23	24	25

Table 13 (continued)

			102 -	<u> </u>
Spectral data	NMR: 0.98 (3H,d,J=7.2), 1.06 (3H,d,J=7.2), 1.92 (1H,m), 2.86 (1H,dd,J=8.0, 15.0), 3.14 (1H,dd,J=8.0, 15.0), 3.08 (6H,B), 4.54 (1H,m), 6.42 (2H,m), 6.94 (2H,d,J=9.0), 7.06 (1H,d,J=7.2), 7.34 (2H,d,J=9.0).	NMR: 0.98 (3H,d,J=7.2), 1.06 (3H,d,J=7.2), 1.94 (1H,m), 2.88 (1H,dd,J=8.0, 15.0), 3.18 (1H,dd,J=8.0, 15.0), 3.18 (1H,dd,J=8.0, 15.0), 3.22 (3H,s), 3.80 (3H,s), 4.54 (1H,m), 6.94 (2H,d,J=9.0), 7.06 (1H,d,J=7.2), 7.42 (2H,d,J=9.0).	NMR: 0.94 (3H,t,J=7.2), 1.00 (3H,d,J=7.2), 1.70 (3H,m), 2.84 (3H,brs), 2.80-3.20 (2H,m), 4.70 (1H,m), 6.40 (2H,m), 6.94 (2H,d,J=9.0), 7.04 (1H,d,J=8.0), 7.22 (2H,d,J=9.0).	NMR: 0.94 (3H, t, J=7.2), 1.00 (3H, d, J=7.2), 1.60 (3H, m), 2.70-3.30 (2H, m), 3.04 (6H, B), 4.64 (1H, m), 6.94 (2H, d, J=9.0), 7.06 (1H, d, J=8.0), 7.14 (2H, d, J=9.0).
Melting point (°C)	148-150	115.5-116.5	144-145	142-144
Yield (%)	not less than 97	87	94	85
Compound No.	26	27	28	29

Table 13 (continued)

					- 103		
	Spectral data	NMR: 0.94 (3H,t,J=7.2), 1.00 (3H,d,J=7.2), 1.70 (3H,m), 2.80-3.20 (2H,m), 3.20 (3H,s), 3.78 (3H,s), 4.64 (1H,m), 6.40 (2H,m), 6.94 (2H,d,J=9.0), 7.04 (1H,d,J=8.0), 7.42 (2H,d,J=9.0).	IR: 3310 (v _{NH}), 1634 (v _{c=o}).	IR: 3290 (v _{NH}), 1636 (v _{C=0}).	IR: 3340 (v _{NH}), 1665 (v _{G=0}).	NMR: 0.95 (3H,t,J=7.0), 1.41 (3H,s), 1.70 (2H,q,J=7.0), 2.76 (3H,d,J=5.0), 2.94 (2H,d,J=6.0), 5.62 (1H,d,J=6.0), 6.34-6.50 (2H,m), 6.80-7.10 (3H,m), 7.16-7.36 (2H,m), 7.52 (1H,brs).	NMR: 0.94 (3H,t,J=7.0), 1.40 (3H,s), 1.72 (2H,q,J=7.0), 2.94 (2H,s), 3.00 (6H,s), 6.34-6.48 (2H,m), 6.86-7.60 (4H,m), 7.22-7.40 (2H,m).
Ī	Melting point (°C)	06-68	139-140	162.5-163	118-119	liquid	liquid
	Yield (8)	79	06	98	06	63	נג
	Compound No.	30	31	32	33	34	35

$\overline{}$
T
Ð
3
\subseteq
-~
u
\Box
0

	- 104 -							
Spectral data	NMR: 0.94 (3H,t,J=7.0), 1.41 (3H,s), 1.72 (2H,q,J=7.0), 2.92 (2H,d,J=6.0), 3.16 (3H,s), 3.74 (3H,s), 6.36-6.50 (2H,m), 6.90-7.10 (3H,m), 7.26-7.50 (2H,m), 7.70 (1H,brs).	NMR: 0.90 (6H,t,J=7.0), 1.68 (4H,q,J=7.0), 2.76 (3H,d, J=5.0), 2.91 (2H,s), 5.36 (1H,brs), 6.24-6.44 (2H, m), 6.80-7.05 (3H,m), 7.10-7.30 (2H,m).	NMR: 0.90 (6H,t,J=7.0), 1.68 (4H,q,J=7.0), 2.95 (2H,s), 2.98 (6H,s), 6.30-6.50 (3H,m), 6.88-7.04 (3H,m), 7.20-7.36 (2H,m).	NMR: 0.90 (6H,t,J=7.0), 1.70 (4H,q,J=7.0), 2.90 (2H,s), 3.16 (3H,s), 3.72 (3H,s), 6.30-6.44 (2H,m), 6.88-7.04 (3H,m), 7.34-7.46 (2H,m), 7.65 (1H,brs).		NMR: 0.90 (3H,t,J=7.2), 1.13 (3H,d,J=6.3), 1.16 (3H,s), 1.68 (2H,q,J=7.2), 2.89 (6H,s), 3.08 (1H,q,J=6.3), 6.28-7.08 (4H,m), 7.50-8.04 (3H,m).		
Melting point (°C)	liquid	78-81	liguíd	liquid ′	118.5-119.5	liquid		
Yield (%)	85	85	65	65	not less than 97	not less than 97		
Compound No.	36	37	38	39	40	41		

Table 13 (continued)

			- 1	05 -		
Spectral data	NMR: 1.00 (3H,t,J=7.2), 1.23 (3H,d,J=6.3), 1.26 (3H,s), 1.79 (2H,q,J=7.2), 3.20 (3H,s), 3.23 (1H,q,J=6.3), 3.78 (3H,s), 6.40-7.12 (4H,m), 7.50-8.20 (3H,m).	NMR: 0.98 (3H,t,J=7.2), 1.20 (3H,d,J=6.3), 1.24 (3H,s), 1.75 (2H,q,J=7.2), 3.02 (6H,s), 3.10 (1H,q,J=6.3), 6.37 (1H,d,J=2.7), 6.42 (1H,d,J=2.7, 9.0), 6.94 (2H,d,J=9.0), 6.98 (1H,d,J=9.0), 7.30 (2H,d,J=9.0).			NMR: 0.99 (3H,t,J=7.2), 1.22 (3H,d,J=6.3), 1.25 (3H,s), 1.78 (2H,q,J=7.2), 3.03 (6H,s), 3.18 (1H,q,J=6.3), 6.33 (1H,d,J=2.7), 6.38 (1H,dd,J=2.7, 9.0), 6.62 (1H, brs), 6.94 (1H,d,J=9.0), 6.97 (1H,d,J=9.0), 7.24 (1H,dd,J=2.7, 9.0), 7.58 (1H,d,J=2.7).	NMR: 1.00 (3H,t,J=7.2), 1.23 (3H,d,J=6.3), 1.26 (3H,s), 1.78 (2H,q,J=7.2), 3.18 (1H,q,J=6.3), 3.20 (3H,s), 3.78 (3H,s), 6.33 (1H,d,J=2.7), 6.39 (1H,dd,J=2.7, 9.0), 6.99 (2H,d,J=9.0), 7.32 (1H,dd,J=2.7, 9.0), 7.69 (1H,d,J=2.7), 7.77 (1H,brs).
Melting point (°C)	liquid	81-86	75-76.5	59.5-60.5	129-130	liguid
Yield (%)	not less than 97	98	91	88	6.4	93
Compound No.	42	43	44	45	46	47

- 106 -

					- 10	0 -			1
Table 13 (continued)	Spectral data	IR: 3320 (v_{NH}) , 1642 $(v_{C=O})$, 1520 (v_{NO_2}) , 1343 (v_{NO_2}) .	IR: 3410 (v_{NH}) , 3305 (v_{NH}) , 1648 $(v_{C=O})$, 1525 (v_{NO_2}) , 1345 (v_{NO_2}) .	IR: 3380 (v _{NH}), 1670 (v _{C=O}), 1525 (v _{NO2}), 1345 (v _{NO2}).		*	NMR: 0.99 (3H,t,J=7.2), 1.22 (3H,d,J=6.3), 1.26 (3H,s), 1.78 (2H,q,J=7.2), 3.19 (1H,q,J=6.3), 3.21 (3H,s), 3.78 (3H,s), 6.41 (1H,d,J=2.7), 6.45 (1H,dd,J=2.7,7), 6.45 (1H,dd,J=2.7,7), 6.45 (1H,dd,J=2.7,7), 7.01 (1H,d,J=8.1), 7.64 (1H,dd,J=2.7,8.1), 7.76 (1H,d,J=2.7), 7.80 (1H,brs).		- to be continued
	Melting point (°C)	118.5-119.5	114-115.5	liguid	61-11	50-51	liguid	112-113	
	Yield (%)	. 65	09	70	92	80	not less than 97	not less than 97	
	Compound No.	48	49	50	51	52	53	54	

Table 13 (continued)

				- 1	07 -		
Spectral data	IR: 3310 (v _{NH}), 1643 (v _{C=O}).	IR: 3340 (v _{NH}), 1660 (v _{C=0}).	IR: 3310 (v _{NH}), 1650 (v _{G=o}).	IR: 3320 (VNH), 1674 (VC=O).	NMR: 1.48 (3H,d,J=6.3), 2.80-3.40 (2H,m), 3.03 (6H,s), 4.90 (1H,m), 6.40-6.98 (4H,m), 7.80-8.04 (2H,m).	NMR: 1.48 (3H,d,J=6.3), 2.82 (1H,dd,J=8.1, 9.0), 3.10 (3H,s), 3.78 (3H,s), 4.96 (1H,m), 6.72-7.00 (4H,m), 7.70 (1H,brs), 7.93 (1H,dd,J=3.6, 8.1), 8.12 (1H,d,J=3.6).	IR: 3305 (v _{NH}), 1640 (v _{C=0}).
Melting point (°C),	125.5-126	107-108.5	111.5-112	liquid	141-142.5	108-110	159-161
Yield (%)	not less than 97	80	84	not less than 97,	94	9	84
Compound No.	55	56	57	58	59	09	61

Table 13 (continued)

			- 10	08 -	
Spectral data	IR: 3305 (V _{NH}), 1660 (V _{C=0}).	NMR: 1.28 (3H,d,J=6.9), 3.02 (6H,s), 3.52 (1H,m), 4.10 (1H,t,J=9.0), 4.70 (1H,t,J=9.0), 6.44 (1H, brs), 6.70-7.46 (7H,m).	NMR: 1.29 (3H,d,J=6.9), 3.19 (3H,s), 3.32-3.72 (1H,m), 3.76 (3H,s), 4.09 (1H,t,J=9.0), 4.70 (1H,t,J=9.0), 6.68-7.52 (7H,m), 7.73 (1H,brs).	IR: 3325 (V _{NH}), 1645 (V _{C=O}). NMR: 0.92 (3H,t,J=7.2), 1.66 (2H,q,J=7.2), 3.00 (6H,s), 3.32 (1H,m), 4.21 (1H,dd,J=7.2, 9.0), 4.63 (1H,t, J=9.0), 6.36 (1H,brs), 6.60-7.40 (7H,m).	IR: 3325 (V _{NH}), 1675 (V _{C=O}). NMR: 0.96 (3H,t,J=7.2), 1.68 (2H,q,J=7.2), 3.20 (3H,s), 3.26 (1H,m), 3.78 (3H,s), 4.21 (1H,dd,J=7.2, 9.0), 4.65 (1H,t,J=9.0), 6.68-7.32 (7H,m), 7.63 (1H,brs)
Melting point (°C)	128-129	120-122	80-82	liguid	liguid
Yield (%)	not less than 97	82	94.	95	85
Compound No.	62	63	64	65	99

ĝ	
nne	
nti	
00	
<u>س</u>	I
e 1	
abl	-
Ë	

			- 1	09 -		
Table 13 (continued)	Spectral data	IR: 3320 (v _{NH}), 1645 (v _{G=O}). NMR: 0.94 (3H,t,J=7.2), 1.24-1.76 (4H,m), 3.00 (6H,s), 3.06 (1H,m), 4.20 (1H,dd,J=7.2, 9.0), 4.64 (1H,t, J=9.0), 6.40 (1H,brs), 6.64-7.40 (7H,m).	IR: 3325 (v _{NH}), 1675 (v _{C=O}). NMR: 0.94 (3H,t,J=7.2), 1.28-1.80 (4H,m), 3.18 (3H,s), 3.20 (1H,m), 3.76 (3H,s), 4.20 (1H,dd,J=7.2, 9.0), 4.65 (1H,d,J=9.0), 6.64-7.50 (7H,m), 7.63 (1H,brs).	NMR: 0.82 (3H,d,J=6.4), 0.90 (3H,d;J=6.4), 1.70-2.10 (1H,m), 2.70 (3H,d,J=3.9), 3.12-3.40 (1H,m), 4.20-4.66 (2H,m), 6.00 (1H,brs), 6.60-7.30 (7H,m), 7.92 (1H,brs).	NMR: 0.86 (3H,d,J=6.4), 0.94 (3H,d,J=6.4), 1.74-2.08 (1H,m), 3.00 (6H,s), 3.16-3.42 (1H,m), 4.30-4.68 (2H,m), 6.48 (1H,brs), 6.66-7.40 (7H,m).	NMR: 0.84 (3H,d,J=6.4), 0.92 (3H,d,J=6.4), 1.74-2.10 (1H,m), 3.16 (3H,s), 3.12-3.42 (1H,m), 4.30-4.66 (2H,m), 6.68-7.50 (7H,m), 7.72 (1H,brs).
	Melting point (°C)	liguid	liquid	liquid	124-125	liguid
	Yield (%)	not less than 97	92	not less than 97	92	not less than 97
	Compound No.	67	89	69	70	1,1

_
ס
ā
2
. =
يد
5
$\ddot{\circ}$

				-	110 -			1
Table 13 (concruded)	Spectral data	IR: 3325 (v _{NH}), 1639 (v _{C=0}).	NMR: 0.98 (3H,d,J=6.4), 1.00 (3H,d,J=6.4), 1.40-2.06 (3H,m), 2.65-3.32 (2H,m), 3.04 (6H,s), 4.72-4.96 (1H,m), 6.24 (1H,brs), 6.60-7.36 (7H,m).	NMR: 0.98 (3H,d,J=6.4), 1.02 (3H,d,J=6.4), 1.48-2.00 (3H,m), 2.66-3.32 (2H,m), 3.20 (3H,s), 3.80 (3H,s), 4.72-5.00 (1H,m), 6.70-7.50 (7H,m), 7.62 (1H,brs).	NMR: 0.95 (3H, L, J=7.2), 1.20-1.86 (2H, m), 2.70 (3H, d, J=4.5), 2.90-3.20 (1H, m), 3.52 (3H, s), 5.26 (1H, d, J=2.7), 5.96 (1H, brs), 6.60-7.32 (7H, m), 7.91 (1H, brs).	NMR: 0.96 (3H,t,J=7.2), 1.30-1.90 (2H,m), 2.90-3.20 (1H,m), 2.98 (6H,s), 3.53 (3H,s), 5.26 (1H,d,J=2.7), 6.63 (1H,brs), 6.70-7.40 (7H,m).	NMR: 0.96 (3H,t,J=7.2), 1.30-1.90 (2H,m), 2.90-3.20 (1H,m), 3.17 (3H,s), 3.52 (3H,s), 3.73 (3H,s), 5.26 (1H,d,J=2.7), 6.68-7.52 (7H,m), 7.73 (1H,brs)	- to be continued
	Melting point (°C)	196-198	146-148	112-114	liquid	liguid	liguid	
*	Yield (%)	69	88	65	87	06	92	
	Compound No.	. 72	73	74	75	92	7 7 7	

- to be continued -

Spectral data IR: 3290, 3275 (v_{NH}), 1643 ($v_{C=D}$). IR: 3315 (v_{NH}), 1642 (v_{C=O}). IR: 3280 (v_{NH}), 1636 ($v_{C=O}$). IR: 3340 (VNH), 1664 (VC=0). IR: $3270~(^{\nu}_{NH})$, $1652~(^{\nu}_{C=0})$. IR: 3340 (v_{NH}) , 1640 $(v_{C=O})$ IR: 3320 (v_{NH}), 1675 ($v_{C=O}$) IR: 3305 (vNH), 1632 (vc=o) Melting point (°C) liquid 149-151 104-106 154-155 152-153 131-133 145-146 82-85 not less than 97 not less than 97 not less than 97 Yield (%) 92 90 80 80 80 Compound No. 85 84 82 83 80 81 78

- 111 -

Table 13 (continued)

Table 13 (continued)

				- 1	12 -		
Spectral data	IR: 3370 (v _{NH}), 1675 (v _{C=0}).	IR: 3350 (V _{NH}), 3290 (V _{NH}), 1636 (V _{C=O}).	IR: 3260 (v _{NH}), 1635 (v _{C=0}).	IR; 3360 (vNH), 1664 (v _{C=0}).	IR: 3290 (v _{NH}), 1640 (v _{C=0}).	NMR: 1.24 (3H, t, J=6.4), 1.26 (3H, d, J=6.4), 3.18 (3H, s), 3.50-4.25 (3H, m), 3.74 (3H, s), 5.32 (1H, d, J=2.6), 6.70-6.90 (3H, m), 6.90 (2H, d, J=9.0), 7.39 (2H, d, J=9.0), 7.70 (1H, brs).	NMR: 1.27 (3H,s), 1.29 (3H,s), 3.05 (6H,s), 3.56 (3H,s), 5.14 (1H,s), 6.34 (1H,brs), 6.70-6.93 (3H,m), 7.85-8.08 (3H,m).
Melting point (°C)	95-96.5	191.5-193	115-116	99.5-101	66-26	liguid	175-178
Yield (%)	not less than 97	not less than 97	75	83	. 95	not less than 97	81
Compound No.	86	87	88	68	06	91	92

			- 113	} - 	
Spectral data	NMR: 1.27 (3H,8), 1.29 (3H,8), 3.20 (3H,8), 3.65 (3H, 8), 3.79 (3H,8), 5.14 (1H,8), 6.70-7.00 (4H,m), 7.62 (1H,br8), 8.02 (1H,dd,J=2.7, 9.0), 8.13 (1H, dd,J=2.7).		NMR: 1.25 (3H,s), 1.28 (3H,s), 3.04 (6H,s), 3.55 (3H, s), 5.12 (1H,s), 6.34 (1H,brs), 6.70-7.04 (3H,m), 6.91 (2H,d,J=9.0), 7.32 (2H,d,J=9.0).	NMR: 1.25 (3H,s), 1.28 (3H,s), 3.19 (3H,s), 3.55 (3H,s), 3.77 (3H,s), 6.70-7.04 (3H,m), 6.94 (2H,d,J=9.0), 7.68 (1H,brs).	NMR: 1.24 (3H,s), 1.28 (3H,s), 3.02 (6H,s), 3.54 (3H,s), 5.10 (1H,s), 6.32 (1H,brs), 6.74 (3H,brs), 6.82 (1H,d,J=9.0), 7.18 (1H,dd,J=2.7, 9.0), 7.15 (1H,dd,J=2.7, 9.0),
Melting point (°C)	liquid	156-157	52-54	liguid	165-168
Yield (%)	82	not less than 97	81	not less than 97	63
Compound No.	93	94	95	96	97

Table 13 (continued)

		·	- 114	-			ı
' Spectral data	NMR: 1.25 (3H,s), 1.28 (3H,s), 3.19 (3H,s), 3.54 (3H,s), 3.76 (3H,s), 5.11 (1H,s), 6.75 (3H,brs), 6.85 (1H,d,J=9.0), 7.34 (1H,dd,J=2.7, 9.0), 7.63 (1H,d,J=2.7).	NMR: 0.60-1.06 (6H,m), 1.40-1.90 (2H,m), 2.78 (3H,s), 3.56 (3H,s), 5.15 (1H,s), 6.64-7.36 (8H,m).	NMR: 0.64-1.04 (6H,m), 1.44-1.86 (2H,m), 3.05 (6H,s), 3.55 (3H,s), 5.14 (1H,s), 6.24 (1H,brs), 6.68-7.40 (7H,m).	NMR: 0.60-1.10 (6H,m), 1.44-1.92 (2H,m), 3.17 (3H,s), 3.54 (3H,s), 3.73 (3H,s), 5.13 (1H,s), 6.76 (3H,m), 6.90 (2H,d,J=9.0), 7.40 (2H,d,J=9.0), 7.76 (1H,brs).	NMR: 0.77 (3H,t,J=7.5), 0.90 (3H,t,J=7.5), 1.44-1.92 (4H,m), 2.76 (3H,s), 3.56 (3H,s), 5.14 (1H,s), 6.68-7.36 (9H,m).		
Melting point (°C)	66-96	149-150	122-124	97~98	145.5-147	117-118	e de
Yield (%)	69	92	70	not less than 97	93	. 93	
Compound No.	86	66	100	101	102	103	

_
~
ĕ
=
3
F
u
ō
ဥ
<u> </u>
_
1
~
~1
o l
Je
ole
able
rable
Table

•			•	- 115 -	
	Spectral data	NMR: 0.78 (3H,t,J=7.1), 0.92 (3H,t,J=7.1), 1.42-1.96 (4H,m), 3.18 (3H,s), 3.56 (3H,s), 3.76 (3H,s), 5.14 (1H,s), 6.78 (3H,m), 6.90 (2H,d,J=9.0), 7.68 (1H,brs).	NMR: 0.88 (3H,d,J=6.4), 0.92 (3H,d,J=6.4), 1.72-2.08 (1H,m), 2.99 (6H,8), 3.52 (3H,s), 5.32 (1H,d,J=2.1), 6.55 (1H,brs), 6.70-7.40 (7H,m).	NMR: 0.90 (3H,d,J=6.4), 0.93 (3H,d,J=6.4), 1.80-2.08 (1H,m), 2.96-3.16 (1H,m), 3.19 (3H,s), 3.54 (3H,s), 3.76 (3H,s), 5.32 (1H,d,J=2.1), 6.70-7.50 (7H,m), 7.64 (1H,brs).	IR: 3325 (v _{NH}), 1640 (v _{C=O}). NMR: 0.96 (3H,t,J=7.7), 1.23 (3H,t,J=7.1), 1.40-1.84 (2H,m), 3.00 (6H,s), 3.01-3.16 (1H,m), 3.52-4.00 (2H,m), 5.38 (1H,d,J=2.1), 6.47 (1H,brs), 6.70-7.44 (7H,m).
, , , , , , , , , , , , , , , , , , ,	Melting point (°C)	liguid	liquid	93-94	liquid
	Yield (%)	68	not less than 97	not less than 97	not less than 97
	Compound No.	104	105	106	107

_	•
4	3
ā	ī
4	2
- =	3
c	:
1	4
4	J
1000	:
	5
Ç	ر
-	-
_	_
C	2
-	4
,	,,
(۰
_	4
	ב ב
-	

			116 -			ı
Spectral data	IR: 3325 (v _{NH}), 1675 (v _{C=O}). NMR: 0.97 (3H,t,J=7.2), 1.25 (3H,t,J=7.2), 1.63 (2H,q, J=7.2), 3.13 (1H,m), 3.18 (3H,s), 3.76 (3H,s), 3.50-4.16 (2H,m), 5.38 (1H,d,J=2.7), 6.68-6.90 (3H,m), 6.90 (2H,d,J=9.0), 7.39 (2H,d,J=9.0), 7.69 (1H,brs).	NMR: 0.92 (3H,d,J=6.4), 0.96 (3H,d,J=6.4), 1.26 (3H,t,J=6.4), 1.72-2.16 (1H,m), 2.78 (3H,d,J=5.1), 3.04 (1H,dd,J=1.5, 5.1), 3.54-4.12 (2H,m), 5.28 (1H,d,J=5.1), 5.44 (1H,d,J=1.5), 6.70-7.50 (8H,m).	NMR: 0.88 (3H,d,J=6.4), 0.92 (3H,d,J=6.4), 1.24 (3H,t, J=7.1), 1.80-2.12 (1H,m), 3.00 (6H,s), 3.02-3.12 (1H,m), 3.52-4.06 (2H,m), 5.44 (1H,d,J=1.5), 6.40 (1H,brs), 6.72-7.40 (7H,m).	NMR: 0.90 (3H,d,J=6.4), 0.92 (3H,d,J=6.4), 1.26 (3H,t, J=7.1), 1.68-2.10 (1H,m), 3.04 (1H,m), 3.20 (3H, s), 3.50-4.08 (2H,m), 3.77 (3H,s), 5.44 (1H,d,J= 1.5), 6.72-7.04 (5H,m), 7.40 (2H,d,J=9.0), 7.65 (1H,brs).	IR: 3285 (v _{NH}), 1643 (v _{C=0}).	- to be continued
Melting point (°C)	liguid	liguid	liguid	liguid	149-151.5	
Yield (%)	not less than 97	86	72	80	73	
Compound No.	108	109	110	111	112	

Table 13 (continued)

				_	117 -			
Spectral data	IR: 3310 (v _{NH}), 1660 (v _{c=o}).	IR: 3280 (v _{NH}), 1638 (v _{C=O}).	IR: 3310 (v _{NH}), 1659 (v _{G=O}).	IR: 3355 (v _{NH}), 3305 (v _{NH}), 1650 (v _{C=0}).	NMR: 1.30-2.16 (8H,m), 3.12 (6H,s), 3.13-3.36 (1H,m), 4.64-4.88 (1H,m), 6.32 (1H,brs), 6.76-7.48 (7H,m).	NMR: 1.20-2.10 (8H,m), 3.00-3.30 (1H,m), 3.20 (3H,s), 3.78 (3H,s), 4.52-4.80 (1H,m), 6.68-7.52 (7H,m), 7.63 (1H,brs).	IR: 3325 (V _{NH}), 1645 (V _{C=O}).	NMR: 1.00-2.10 (10H,m), 3.05 (6H,B), 3.40-3.62 (1H,m), 4.30-4.60 (1H,m), 6.25 (1H,brs), 6.64-7.44 (7H,m).
Melting point (°C)	62–65	133-134	61-77	145-147	157-158	118-120	137.5-139	164-165
Yield (%)	96	72	not less than 97	80	7.1	73	73	62
Compound No.	113	114	115	116	117	118	119	120

Table 13 (continued)

		`	-	118 -		1
Spectral data	NMR: 0.96-2.10 (10H,m), 3.19 (3H,s), 3.30-3.60 (1H,m), 3.76 (3H,s), 4.00-4.56 (1H,m), 6.70-7.52 (7H,m), 7.68 (1H,brs).	NMR: 0.80-2.10 (10H,m), 2.76 (3H,d,J=3.9), 3.36-3.70 (1H,m), 4.48-4.96 (1H,m), 5.66 (1H,d,J=2.9), 6.50-7.34 (7H,m), 7.52 (1H,s).	IR: 3325 (v _{NH}), 1650 (v _{C=0}).	NMR: 0.80-2.10 (10H,m), 3.20 (3H,s), 3.40-3.70 (1H,m), 3.78 (3H,s), 4.48-4.96 (1H,m), 6.68-7.52 (7H,m), 7.70 (1H,brs).		NMR: 3.02 (6H,s), 5.95 (2H,s), 6.43 (1H,dd,J=2.7, 9.0), 6.45 (1H,brs), 6.57 (1H,d,J=2.7), 6.74 (1H,d,J=9.0), 7.32 (1H,d,J=9.0).
Melting point (°C)	127-128	57-59	56-58	liquid	176-178	138.5-140
Yield (%)	not less than 97	92	79	09	06	84
Compound No.	121	122	123	124	125	126

Table 13 (continued)

			- 119	_		
Spectral data	NMR: 3.09 (3H,s), 3.77 (3H,s), 5.96 (2H,s), 6.36 (1H,dd,J=2.7, 9.0), 6.57 (1H,d,J=2.7), 6.76 (1H,d,J=9.0), 7.42 (2H,d,J=9.0), 7.64 (1H,brs).		NMR: 1.01 (3H,t,J=7.2), 1.61 (3H,s), 1.95 (2H,q,J=7.2), 3.02 (6H,s), 6.38 (1H,dd,J=2.7, 8.1), 6.47 (1H,d,J=8.1), 6.90 (2H,d,J=9.0), 7.30 (2H,d,J=9.0).	NMR: 1.02 (3H,t,J=7.2), 1.62 (3H,s), 1.95 (2H,q,J=7.2), 3.18 (3H,s), 3.76 (3H,s), 6.38 (1H,dd,J=2.7, 8.1), 6.47 (1H,d,J=2.7), 6.63 (1H,d,J=8.1), 6.93 (2H,d,J=1), 7.39 (2H,d,J=9.0), 7.65 (1H,brs).	IR: 3285 (v _{NH}), 1642 (v _{G=0}).	IR: 3330 (v _{NH}), 1665 (v _{G=0}).
Melting point	90-91	150-151	125-126	99.5-101	169-170	112-113
Yield	not less than 97	68	81	88	26	98
Compound	127	128	129	130	131	132

Table 13 (continued)

				- 120 -		
Spectral data	NMR: 1.67 (6H,s), 3.02 (6H,s), 6.20-6.80 (3H,m), 6.89 (2H,d,J=9.0), 7.29 (2H,d,J=9.0). IR: 3295 (v _{NH}), 1637 (v _{G=0}).	IR: 3350 (v _{NH}), 1662 (v _{G=o}).		NMR: 1.80 (3H,s), 3.03 (6H,s), 3.33 (3H,s), 6.45 (1H, dd, J=2.7), 6.72 (1H,d, J=2.7), 6.72 (1H,d, J=7.2), 6.73 (2H,d,J=9.0), 7.31 (2H,d,J=9.0).	NMR: 1.81 (3H,s), 3.20 (3H,s), 3.74 (3H,s), 3.78 (3H,s), s), 6.46 (1H,dd,J=2.7, 7.2), 6.56 (1H,d,J=2.7), 6.75 (1H,d,J=7.2), 6.93 (2H,d,J=9.0), 7.42 (2H,d,J=9.0), 7.67 (1H,brs).	IR: 3300 (V _{NH}); 1640 (V _{C=O}).
Melting point (°C)	145-147	93–94	103.5-104.5	141-143	117-118	119-120
Yield (%)	76	06	72	not less than 97	94	not less than 97
Compound . No.	133	134	135	136	137	138

Table 13 (continued)

			- 121				
Spectral data	IR: 3320 (v _{NH}), 1675 (v _{G=0}).	NMR: 1.02 (3H,t,J=7.2), 1.21 (3H,t,J=7.2), 2.06 (2H,q, J=7.2), 3.03 (6H,s), 3.61 (2H,q,J=7.2), 6.20-6.80 (3H,m), 6.91 (2H,d,J=9.0), 7.30 (3H,d,J=9.0).	NMR: 1.21 (3H,t,J=7.2), 1.27 (3H,t,J=7.2), 2.07 (2H,q, J=7.2), 3.19 (3H,s), 3.62 (2H,q,J=7.2), 3.77 (3H, s), 6.32-6.88 (3H,m), 6.93 (2H,d,J=9.0), 7.40 (2H, d,J=9.0), 7.66 (1H,brs).	IR: 3300 (v _{NH}), 1635 (v _{C=0}).	IR: 3390 (VNH), 3300 (VNH), 1668 (VC=O).	IR: 3275 (v _{NH}), 1633 (v _{C=0}).	IR: 3390 (VNH), 3300 (VNH), 1668 (VC=0).
Melting point (°C)	liguid	liguid	liguid	103-104	liguid	113-114	liguid
Yield (%)	not less than 97	92	not less than 97	83	not less than 97	80	not less than 97
Compound No.	139	140	141	142	143	144	145

Table 13 (continued)

					- 122	! -				
Spectral data	IR: 3300 (v _{NH}), 1627 (v _{G=0}).	IR: 3290 (v_{NH}) , 1635 $(v_{c=0})$.	IR: 3350 (v _{NH}), 1668 (v _{C=0}).	IR: 3300 (v _{NH}), 1627 (v _{G=o}).	IR: 3290 (v_{NH}), 1634 ($v_{C=O}$).	IR: 3350 (v _{NH}), 1665 (v _{c=o}).	IR: 3400 (v _{NH}), 3290 (v _{NH}), 1650 (v _{C=O}).	IR: 3290 (v_{NH}) , 1637 $(v_{G=0})$.	IR: 3325 (v_{NH}) , 1662 $(v_{c=0})$.	
Melting point (°C)	165-166.5	129.5-131	105-106	151-152	112.5-114	liquid	164.5-168	192-193.5	131.5-134	
Yield (%)	83	85	87.	81	7.0	86	88	85	81	
Compound No.	146	147	148	149	150	151	152	153	154	

- to be continued -

Table 13 (continued)

					123 -		
Spectral data	IR: 3340 (v _{NH}), 1635 (v _{C=0}).	IR: 3290 (v _{NII}), 1657 (v _{C=0}).	IR: 3250 (v_{NH}), 1635 ($v_{C=0}$).	IR: 3280 (v_{NH}), 1660 ($v_{C=0}$).	IR: 3330 (v _{NH}), 1644 (v _{C=0}).	IR: 3330 (v _{NH}), 1665 (v _{C=0}).	NMR: 1.38 (3H,d,J=7.2), 1.60-2.00 (2H,m), 2.64-2.94 (2H,m), 3.02 (6H,s), 4.00-4.28 (1H,m), 6.40-7.20 (3H,m), 6.85 (1H,d,J=9.0), 7.95 (1H,dd,J=2.7,9.0), 8.05 (1H,d,J=2.7).
Melting point (°C)	176-177.5	109-110	162.5-164	102-104	162-168.5	117-118	119-122
Yield (%)	71	not less than 95	78	85	92	92	84
Compound No.	155	156	157	158	159	160	161

Table 13 (continued)

•				- 124 -			
Spectral data	NMR: 1.38 (3H,d,J=7.2), 1.60-2.00 (2H,m), 2.64-3.00 (2H,m), 3.20 (3H,s), 3.79 (3H,s), 4.00-4.16 (1H,m), 6.48-7.20 (3H,m), 6.89 (1H,d,J=9.0), 7.71 (1H,brs), 8.05 (1H,dd,J=2.7, 9.0), 8.16 (1H,d,J=2.7).		IR: 3315 (v _{NH}), 1640 (v _{C=0}).	IR: 3325 (v _{NH}), 1680 (v _{C=0}).	IR: 3355 (V _{NH}), 1646 (V _{C=0}).	IR: 3350 (v _{NH}), 1662 (v _{c=o}).	
Melting point (°C)	liquid	125.5-126.5	114-116	liquid	148.5-149.5	118-119	146-148
Yield (%)	not less than 97	11	98	not less than 97	06	96	not less than 97
Compound No.	162	163	164	165	166	.167	168

Table 13 (continued)

		-	125 -	<u>.</u>	
Spectral data	NMR: 1.32 (6H,s), 1.78 (2H,t,J=7.2), 2.72 (2H,t,J=7.2), 3.02 (6H,s), 6.33 (1H,brs), 6.39 (1H,d,J=2.7), 6.47 (1H,d,J=9.0), 6.97 (1H,d,J=7.2), 6.96 (2H,d,J=9.0), 7.34 (2H,d,J=9.0).	NMR: 1.32 (6H,s), 1.80 (2H,t,J=7.2), 2.75 (2H,t,J=7.2), 3.19 (3H,s), 3.76 (3H,s), 6.52 (1H,d,J=2.7), 6.58 (1H,d,J=2.7), 7.2), 6.86 (1H,d,J=9.0), 7.04 (1H,d,J=7.2), 7.68 (1H,brs), 8.01 (1H,dd,J=2.7, 9.0), 8.14 (1H,d,J=2.7).		NMR: 1.32 (6H,s), 1.76 (2H,t,J=7.2), 2.73 (2H,t,J=9.0), 3.19 (3H,s), 3.77 (3H,s), 6.39 (1H,d,J=2.7), 6.46 (1H,dd,J=2.7, 9.0), 6.98 (3H,d,J=9.0), 7.42 (2H,d,J=9.0), 7.68 (1H,brs).	IR: 3275 (v_{NH}) , 1635 $(v_{C=0})$.
Melting point (°C)	129-131	66-86	131-132	104-106	159-161
Yield (%)	82	91	92	7.7	73
Compound No.	169	170	171	173	174

able 13 (continued)

 	·		- <u>1</u>	26 -			
Spectral data	NMR: 1.32 (6H,s), 1.78 (2H,t,J=7.2), 2.71 (2H,t,J=7.2), 3.20 (3H,s), 3.78 (3H,s), 6.32 (1H,d,J=2.7), 6.45 (1H,dd,J=2.7, 9.0), 7.01 (2H,d,J=9.0), 7.32 (1H,dd,J=2.7, 9.0), 7.67 (1H,d,J=2.7), 7.72 (1H,brs).	IR: 3300 (v_{NH}), 1656 ($v_{C=O}$), 1530 (v_{NO_2}), 1370 (v_{NO_2}).	IR: 3360 (v_{NH}), 1660 ($v_{c=0}$), 1540 (v_{NO_2}), 1365 (v_{NO_2}).	IR: 3300 (v _{NH}), 1640 (v _{C=0}).	IR: 3320 (V _{NH}), 1675 (V _{C=O}).	NMR: 1.29 (3H,s), 1.33 (3H,s), 1.36 (3H,d,J=6.3), 1.62 (1H,s), 3.00 (6H,s), 3.06 (1H,brs), 4.20 (1H,q,J=6.3), 6.44-6.72 (2H,m), 6.82 (1H,d,J=9.0), 7.21 (1H,d,J=9.0), 7.90 (1H,dd,J=2.7, 9.0), 8.02 (1H,d,J=2.7).	
Melting point (°C)	95-97	133-134	liquid	119-121	liguid	02-69	
Yield (%)	7.0	78	not less than 97	96	not less than 97	9.2	
Compound No.	175	176	. 177	178	179	180	

to be continued -

Table 13 (continued)

			_	127		
Spectral data	NMR: 1.28 (3H,8), 1.30 (3H,8), 1.35 (3H,d,J=6.3), 1.62 (1H,s), 1.69 (1H,s), 3.18 (3H,s), 3.75 (3H,s), 6.51 (1H,d,J=2.7), 6.59 (1H,dd,J=2.7, 8.1), 6.85 (1H,d,J=9.0), 7.22 (1H,d,J=8.1), 7.64 (1H,b,d,J=8.1), 7.64 (1H,b,d,J=8.1), 8.61 (1H,dd,J=2.7, 9.0), 8.13 (1H,d,J=2.7).	IR: 3365 (V _{NH}), 1645 (V _{C=O}).	IR: 3330 (v _{NH}), 1666 (v _{C=O}).	IR: 3350 (v _{NH}), 1682 (v _{c=0}).	IR: 3335 (v _{NH}), 1638 (v _{c=o}).	IR: 3320 (v_{NH}) , 1660 $(v_{C=0})$.
Melting point (°C)	43-45	164-165	126-127	125-126.5	133-134	122-123
Yield (%)	95	68	91	88	not less than 97	not less than 97
Compound No.	181	182	183	184	185	186

Table 13 (continued)

		- 17	28 -		 1
Spectral data	NMR: 1.32 (3H,s), 1.41 (3H,s), 1.99 (1H,d,J=7.2), 2.03 (1H,d,J=7.2), 3.04 (6H,s), 3.46 (3H,s), 4.39 (1H,t,J=7.2), 6.29 (1H,brs), 6.37 (1H,d,J=2.7), 6.51 (1H,dd,J=2.7, 9.0), 6.97 (2H,d,J=9.0), 7.30 (1H,d,J=9.0), 7.34 (2H,d,J=9.0).	NMR: 1.33 (3H,s), 1.42 (3H,s), 1.99 (1H,d,J=7.2), 2.04 (1H,d,J=7.2), 3.19 (3H,s), 3.46 (3H,s), 3.77 (3H,s), 6.37 (1H,d,J=2.7), 6.55 (1H,dd,J=2.7, 9.0), 6.99 (2H,d,J=9.0), 7.31 (1H,d,J=9.0), 7.42 (2H,d,J=9.0), 7.67 (1H,brs).	IR: 3320 (VNH), 1638 (VC=0).		
Melting point (°C)	129-130	96.5-97.5	179-182	97-98	16-07
Yield (%)	69	92	not less than 97	not less than 97	not less than 97
Compound No.	187	188.	189	190	191

=	
פַ	
a	
ı	
=	
-~	
u	
0	
Ū	
ت	
m	l
	ŀ
٠.	۱
a	ı
	ı
G	İ
_	

				- 129 -			
Table 13 (continued)	Spectral data		NMR: 1.26 (3H,s), 1.41 (3H,s), 1.49 (3H,s), 1.81 (1H,d,J=14.0), 2.03 (1H,d,J=14.0), 3.02 (6H,s), 3.21 (3H,s), 6.29 (1H,brs), 6.43 (1H,d,J=2.7), 6.59 (1H,dd,J=2.7, 9.0), 6.98 (2H,d,J=9.0), 7.21 (1H,d,J=9.0), 7.35 (2H,d,J=9.0).	NMR: 1.26 (3H,s), 1.42 (3H,s), 1.58 (3H,s), 1.84 (1H,d,J=13.5), 2.05 (1H,d,J=13.5), 3.20 (3H,s), 3.22 (3H,s), 6.45 (1H,d,J=2.7), 6.59 (1H,dd,J=2.7, 9.0), 7.00 (2H,d,J=9.0), 7.20 (1H,d,J=9.0), 7.43 (2H,d,J=9.0), 7.70 (1H,brs).			
	Melting point (°C)	189-200	143-145	92-93	211-212	164-165	92-93.5
	Yield (%)	not less than 97	67	not less than 97	not less than 97	7.0	80
	Compound No.	192	193	194	195	196	197

Table 13 (continued)

			- 130	-		
Spectral data	IR: 3350 (v_{NH}) , 3280 (v_{NH}) , 1644 $(v_{C=O})$, 1520 (v_{NO_2}) , 1346 (v_{NO_2}) .	IR: 3410 (v_{NH}) , 3320 (v_{NH}) , 1646 $(v_{C=O})$, 1524 (v_{NO_2}) , 1350 (v_{NO_2}) .	IR: 3260 (v_{NH}) , 1650 $(v_{C=O})$, 1525 (v_{NO_2}) , 1340 (v_{NO_2}) .			
Melting point (°C)	210-212	163-164	142-144	201-202	174-175	145-147
Yield (%)	72		98	not less than 97	not less than 97	not less than 97
Compound No.	198	199	200	201	202	203

_	
=	
ā	
Ü	
3	
=	
_	
u	
nt	
ဝ	
O	
)	
~	ı
3	1
13	1
	ł
a	Ì
ble	1
$\overline{}$	١
	ł
~	ı

				- 13	1 -		
Table 13 (continued)	Spectral data	NMR: 1.00 (3H,t,J=7.2), 1.45 (3H,s), 1.50 (3H,s), 1.80 (1H,d,J=14.0), 2.04 (1H,d,J=14.0), 3.03 (6H,s), 3.55 (2H,q,J=7.2), 6.30 (1H,brs), 6.43 (1H,d,J=2.7), 6.58 (1H,dd,J=2.7, 9.0), 6.98 (2H,d,J=9.0), 7.21 (1H,d,J=9.0), 7.34 (2H,d,J=9.0).	IR: 3325 (v _{NH}), 1675 (v _{C=O}).		NMR: 0.72 (3H,t,J=7.2), 1.20-1.60 (2H,m), 1.28 (3H,s), 1.46 (3H,s), 1.52 (3H,s), 1.82 (1H,d,J=13.5), 206 (1H,d,J=13.5), 3.20 (3H,s), 3.47 (3H,t,J=7.2), 3.69 (3H,s), 6.44 (1H,d,J=2.7), 6.60 (1H,dd,J=2.7), 2.7, 9.0), 6.99 (2H,d,J=9.0), 7.23 (1H,d,J=9.0), 7.43 (2H,d,J=9.0), 7.67 (1H,brs).		IR: 3320 (v _{NH}), 1653 (v _{C=O}).
	Melting point (°C)	186-188	liquid	153.5-154.5	liguid	173-174	62–63
	Yield (%)	69	not less than 97	82	not less than 97	not less than 97	81
	Compound No.	204	205	206	207	208	209

Table 13 (continued)

			- 1.	32 -			
Spectral data	IR: 3320 (v _{NH}), 1673 (v _{C=0}).	NMR: 1.82-2.20 (2H,m), 3.00 (6H,s), 3.43 (3H,s), 4.10-4.36 (3H,m), 6.34-6.60 (3H,m), 6.82-7.40 (5H,m).	NMR: 1.88-2.20 (2H,m), 3.18 (3H,s), 3.42 (3H,s), 3.74 (3H,s), 4.06-4.34 (3H,m), 6.40-6.60 (2H,m), 6.86-7.50 (5H,m), 7.76 (1H,brs).		NMR: 1.00 (3H,t,J=7.2), 1.40-2.16 (4H,m), 2.50-3.00 (2H,m), 3.18 (3H,s), 3.70-4.04 (1H,m), 3.76 (3H,s), 6.32-7.56 (7H,m), 7.67 (1H,brs).		
Melting point (°C)	liquid	liquid	liguid	143-145	liquid	146-148	151-153
Yield (%)	not less than 97	61	. 69	58	not less than 97	80	06
Compound No.	210	211	212	213	214	215	216

Table 13 (continued)

			-	133 -			
Spectral data		NMR: 1.90 (2H,m), 2.60 (2H,m), 2.62 (3H,d,J=5.4), 3.36 (3H,s), 4.98 (1H,t,J=1.8), 5.90 (1H,brs), 6.38 (2H,m), 6.80 (3H,d,J=9.0), 7.12 (2H,d,J=9.0), 7.84 (1H,brs).		NMR: 1.90 (2H'm), 2.56 (2H,m), 3.04 (3H,s), 3.40 (3H,s), 3.64 (3H,s), 5.01 (1H,t,J=1.8), 6.30-6.96 (3H,m), 6.88 (2H,d,J=9.0), 7.36 (2H,d,J=9), 7.66 (1H,brs).			
Melting point (°C)	112-114	liguid	123-125	liquid	139-140	06-88	136-138
Yield (%)	not less than 97	85	92	7.0	84	not less than 97	68
Compound No.	217	218	219	220	221	222	223

Table 13 (continued)

	·			134 -		
Spectral data		NMR: 1.00 (3H, t, J=7.2), 1.80 (4H, m), 2.60 (1H, m), 3.21 (3H, s), 3.82 (3H, s), 4.16 (2H, t, J=5.4), 6.42 (1H, d, J=2.7), 6.49 (1H, dd, J=2.7, 8.1), 6.98 (2H, d, J=9.0), 7.06 (1H, d, J=8.1), 7.42 (2H, d, J=9.0), 7.64 (1H, brs).			NMR: 0.96 (3H,d,J=7:2), 1.16 (3H,d,J=7.2), 2.00-2.40 (1H,m), 2.70-3.10 (1H,m), 3.17 (3H,s), 3.75 (3H,s), 3.80-4.10 (2H,m), 6.44 (1H,d,J=2.7), 6.50 (1H,dd,J=2.7, 8.1), 6.98 (2H,d,J=8.1), 7.04 (1H,d,J=8.1), 7.35 (2H,d,J=8.1), 7.70 (1H,brs).	
Melting point (°C)	127-129	liquid	158-160	139-142	liguid	58.5-59.5
Yield (%)	85	. 87	61	88	not less than 97	not less than 97
Compound No.	224	225	226	. 227	228	229

Table 13 (continued)

				- 135 -		
Spectral data			NMR: 1.30, 1.35 (total 3H,d,J=7.2), 1.60-2.28 (2H,m), 2.94 (1H,m), 2.98 (6H,s), 3.47, 3.51 (total 3H,s), 5.07 (1H,m), 6.36-7.44 (8H,m).	NMR: 1.30, 1.36 (total 3H,d,J=7.2), 1.60-2.30 (2H,m), 3.00 (1H,m), 3.19 (3H,s), 3.47, 3.52 (total 3H,s), 3.77 (3H,m), 5.08 (1H,m), 6.40-7.56 (7H,m), 7.68 (1H,brs).	NMR: 1.00-1.50 (6H,m), 1.60-2.28 (2H,m), 3.02 (6H,s), 3.08 (1H,m), 3.24-4.08 (2H,m), 5.18 (1H,dd,J=3.6, 7.2), 6.38 (1H,brs), 6.40-7.48 (7H,m).	NMR: 1.02-1.58 (6H,m), 1.60-2.30 (2H,m), 3.10 (1H,m), 3.20 (3H,s), 3.50-4.20 (2H,m), 3.79 (3H,s), 5.18 (1H,dd,J=3.6, 7.2), 6.40-7.56 (7H,m), 7.68 (1H,brs).
Melting point (°C)	158-160	157-158	liguid	liquid	liquid	liguid
Yield (%)	06	06	06	92	06	not less than 97
Compound No.	230	231	232	233	234	235

Table 13 (continued)

				136 -		
Spectral data		NMR: 1.40 (3H,d,J=7.2), 1.60-2.44 (2H,m), 3.18 (3H,s), 3.44 (3H,s), 3.76 (3H,s), 4.20 (1H,m), 4.56 (1H,dd,J=6.3, 10.8), 6.36 (1H,d,J=2.7), 6.55 (1H,dd,J=2.7, 9.0), 6.97 (2H,d,J=9.0), 7.42 (2H,d,J=9.0), 7.64 (1H,m).			NMR; 0.96 (3H,d,J=7.2), 1.26 (3H,d,J=7.2), 2.00-3.08 (3H,m), 3.19 (3H,s), 3.77 (3H,s), 4.08-4.20 (1H,m), 6.42 (1H,d,J=2.7), 6.47 (1H,dd,J=2.7, 9.0), 6.96 (1H,d,J=9.0), 6.98 (2H,d,J=9.0), 7.42 (2H,d,J=9.0), 7.68 (1H,brs).	NMR: 0.8-1.12 (6H,m), 1.20-1.81 (3H,m), 2.20-2.80 (2H,m), 3.04 (6H,s), 3.98 (1H,m), 6.30 (1H,brs), 6.40-7.40 (7H,m).
Melting point (°C)	179-180	129-131	135-137	151-152	109-110	liguid
Yield (%)	. 80	not less than 97	82	not less than 97	not less than 97	11
Compound No.	236	237	238	239	240	241

L
ł
ì
ı
ı
ı
ı
ŧ

	•	•		_	137 -		
Spectral data		IR: 3335 (v _{NH}), 1644 (v _{G=0}).	IR: 3360 (v _{NH}), 1660 (v _{C=o}).	IR: 3290 (VNH), 1638 (VG=O).	IR: 3320 (v _{NH}), 1675 (v _{C=O}). NMR: 0.92 (3H,t,J=7.2), 1.24 (3H,s), 1.40-1.92 (6H,m), 2.70 (2H,t,J=7.2), 3.18 (3H,s), 3.76 (3H,s), 6.40 (1H,d,J=2.7), 6.46 (1H,dd,J=2.7, 9.0), 7.40 (2H,d,J=9.0), 7.65 (1H,brs).	IR: 3350 (v _{NH}), 1641 (v _{G=0}).	IR: 3310 (v _{NH}), 1660 (v _{C=0}).
Melting point (°C)	115-117	142-143	88–90	109-111	liquid	119.5-120	79-80.5
Yield (%)	not less than 97	86	88	-81	not less than 97	82	not less than 97
Compound No.	242	243	244	245	246	247	248

Table 13 (continued)

	•			- 13	38 -		
	Spectral data	IR: 3360 (v _{NH}), 1647 (v _{C=0}).	IR: 3360 (v _{NH}), 1662 (v _{C=o}).	NMR: 0.89 (6H, t, J=7.0), 1.25-1.67 (6H, m), 1.77 (2H, t, J=7.2), 3.02 (6H, s), 6.26 (1H, brs), 6.39 (1H, d, J=2.7), 6.45 (1H, dd, J=2.7), 6.95 (2H, d, J=9.0), 6.95 (2H, d, J=9.0), 7.39 (2H, d, J=9.0).	NMR: 0.89 (6H,t,J=7.5), 1.20-1.66 (6H,m), 1.77 (2H,t, J=7.2), 2.67 (2H,t,J=7.2), 3.17 (3H,s), 3.75 (3H,s), 6.39 (1H,d,J=2.7), 6.44 (1H,dd, J=2.7, 9.0), 6.95 (1H,d,J=9.0), 6.97 (2H,d,J=9.0), 7.40 (2H,d,J=9.0), 7.69 (1H,brs).	IR: 3330 (v _{NH}), 1637 (v _{C=0}).	IR: 3355 (V _{NH}), 1638 (V _{C=O}).
3	Melting point (°C)	132.5-134	94-95	105-106	liguid	113-116	58-59.5
	Yield (%)	87	not less than 97	77	not less. than 97	not less than 97	85
	Compound No.	249	250	251	252	253	254

Ş.

ર્જુ

_
b
ā
2
5
ũ
\subseteq
0
O

				- 13	9 -	
Table 13 (continued)	Spectral data	IR: 3330 (v _{NH}), 1658 (v _{C=0}).		IR: 3310 (v_{NH}) , 1648 $(v_{C=O})$. NMR: 1.49 (3H,s), 1.62-2.08 (2H,m), 2.36-2.92 (2H,m), 3.03 (6H,s), 3.27 (3H,s), 6.40 (1H,brs), 6.44-7.46 (7H,m).	IR: 3330 (v _{NH}), 1672 (v _{C=O}). NMR: 1.52 (3H,s), 1.72-2.24 (2H,m), 2.40-3.04 (2H,m), 3.20 (3H,s), 3.29 (3H,s), 3.77 (3H,s), 6.47 (1H,d, J=2.7), 6.52 (1H,dd,J=2.7, 9.0), 7.00 (3H,d, J=9.0), 7.43 (2H,d,J=9.0), 7.66 (1H,brs).	IR: 3270 (v _{NH}), 1632 (v _{C=O}). NMR: 1.05 (3H,t,J=7.2), 1.53 (3H,s), 1.70-2.24 (2H,m), 2.56-3.20 (2H,m), 3.03 (6H,s), 3.59 (2H,q,J=7.2), 6.34 (1H,brs), 6.40-7.44 (7H,m).
	Melting point (°C)	99-100.5	136-137.5	144-144.5	liguid	159.5-160.5
·	Yield (%)	not less than 97	not less than 97	not less than 97	not less than 97	7.7
	Compound No.	255	256	257	258	259

				- 140 -	-	
Table 13 (continued)	Spectral data	IR: 3310 (v _{NH}), 1670 (v _{G=o}).	NMR: 0.85 (3H,d,J=7.2), 1.12 (3H,d,J=7.2), 1.52 (3H,s), 1.64-2.24 (2H,m), 2.36-2.80 (2H,m), 3.00 (6H,s), 4.22 (1H,m), 6.38-6.58 (3H,m), 6.84-7.06 (3H,m), 7.22-7.40 (2H,m).	NMR: 0.84 (3H,d,J=7.2), 1.13 (3H,d,J=7.2), 1.54 (3H,s), 1.64-2.18 (2H,m), 2.30-3.00 (2H,m), 3.15 (3H,s), 3.73 (3H,s), 4.20 (1H,m), 6.36-6.58 (2H,m), 6.84-7.04 (3H,m).		IR: 3290 (VNH), 1636 (Vc=o).
	Melting point (°C)	liquid	liguid	liguid	147-148	141-143
	Yield (%)	not less than 97	85	91	not less than 97	06
	Compound No.	. 760	261	262	263	264

Table 13 (continued)

?

- 141 -, 3.19 (3H,s), 3.26 (3H,s), , 6.44 (1H,d,J=2.7), 6.56 (1H,dd,J=2.7, (2H,d,J=9.0), 7.16 (1H,d,J=9.0), 1.90-2.20 (2H,m), 0.96 (3H,t,J=7.2), 1.64-2.24 (4H,m), 2.40-3.00 (2H,m), 3.19 (3H,s), 3.23 (3H,s), 3.76 (3H,s), 6.47 (1H,d,J=2.7), 7.32 (1H,dd,J=2.7, 9.0), (1H,d,J=2.7), 7.32 (1H,dd,J=2.7, (3H,d,J=9.0), 7.42 (2H,d,J=9.0), IR: 3420 (v_{NH}) , 3330 (v_{NH}) , 1675 $(v_{C=0})$ 7.68 (1H,brs). Spectral data (2H, d, J=9.0), (1H, brs). 3.08 (1H,m), 3.76 (3H,s), 9.0), 6.98 (7.42 (2H,d, 6.98 NMR: NMR: Melting point (°C) 163.5-164.5 146-147.5 114-116 liquid not less than 97 not less than 97 not less than 97 not less than 97 not less than 97 Yield (%) Compound No. 268 269 266 267 265

Table 13 (continued)

			- 14	2 -	
Spectral data		NMR: 0.95 (3H,t,J=7.2), 1.30 (3H,d,J=6.3), 1.60-2.24 (4H,m), 3.00 (1H,m), 3.18 (3H,s), 3.22 (3H,s), 3.76 (3H,s), 6.47 (1H,d,J=2.7), 6.55 (1H,dd,J=2.7), 6.55 (1H,dd,J=7.7), 6.55 (1H,dd,J=7.7), 7.17 (1H,d,J=9.0), 7.42 (2H,d,J=9.0), 7.70 (1H,brs).	NMR: 1.07 (3H,d,J=7.2), 1.38 (3H,d,J=7.2), 1.60-2.00 (1H,m), 3.02 (6H,s), 3.31 (3H,s), 3.80-4.36 (2H,m), 6.20-7.44 (8H,m).	NMR: 1.06 (3H,d,J=7.2), 1.37 (3H,d,J=7.2), 1.64-2.10 (1H,m), 3.18 (3H,s), 3.30 (3H,s), 3.76 (3H,s), 3.90-4.40 (2H,m), 6.38 (1H,d,J=2.7), 6.52 (1H,d,J=2.7), 6.52 (1H,d,J=9.0), 7.25 (1H,d,J=9.0), 7.43 (2H,d,J=9.0), 7.68 (1H,brs).	
Melting point (°C)	167-168	liguid	liguid	liquid	163-164
Yield (%)	7.7	84	06	87	not less than 97
Compound No.	270	271	272	273	274

Table 13 (continued)

		_	143 -	•	
Spectral data	NMR: 0.99 (3H,d,J=7.2), 1.13 (3H,s), 1.35 (3H,s), 1.60-2.08 (1H,m), 2.30-2.88 (2H,m), 2.98 (6H,m), 6.30-7.44 (8H,m).	NMR: 1.01 (3H,d,J=7.2), 1.15 (3H,S), 1.36 (3H,S), 1.68-2.12 (1H,m), 2.19 (1H,dd,J=9.0, 16.2), 2.64 (1H,d,J=6.3, 16.2), 3.19 (3H,S), 3.76 (3H,S), 6.39 (1H,d,J=2.7), 6.46 (1H,dd,J=2.7, 9.0), 6.98 (2H,d,J=9.0), 7.42 (2H,d,J=9.0), 7.68 (1H,brs).		NMR: 1.08 (3H,d,J=7.2), 1.49 (3H,s), 1.98 (1H,m), 2.44-2.76 (2H,m), 3.00 (6H,s), 3.23 (3H,s), 6.38 (1H,brs), 6.45 (1H,d,J=2.7), 6.50 (1H,dd, J=2.7, 9.0), 6.94 (3H,d,J=9.0), 7.32 (2H,d,J=9.0).	NMR: 1.08 (3H,d,J=7.2), 1.78-2.20 (1H,m), 2.36-2.80 (2H,m), 3.20 (3H,s), 3.24 (3H,s), 3.77 (3H,s), 6.40-7.56 (7H,m), 7.66 (1H,brs).
Melting point (°C)	58-59	82.5-83.5	146-147.5	liguid	liguid
Yield (%)	92	not less than 97	94	63	not less than 97
Compound No.	275	276	27.7	278	279

Table 13 (continued)

		- 144	<u> </u>		
Spectral data	NMR: 0.94 (3H,t,J=7.2), 1.25 and 1.36 (total 3H,s), 1.50-1.80 (2H,m), 1.81-2.10 (2H,m), 3.02 (6H,s), 3.44 and 3.46 (total 3H,s), 4.40 (1H,brs), 6.38 (1H,d,J=2.7), 6.54 (1H,dd,J=2.7), 6.54 (1H,dd,J=2.7), 6.54 (1H,dd,J=2.7), 6.54 (1H,dd,J=2.7), 6.54 (1H,dd,J=3.7), 6.54 (1H,dd,J=3.7), 6.54 (1H,dd,J=3.7), 6.54 (1H,dd,dd,J=3.7), 6.54 (1H,dd,dd,J=3.7), 6.54 (1H,dd,dd,J=3.7), 6.54 (1H,dd,dd,J=3.7), 6.54 (1H,dd,dd,J=3.7), 6.54 (1H,dd,dd,dd,J=3.7), 6.54 (1H,dd,dd,dd,dd,dd,dd,dd,dd,dd,dd,dd,dd,dd	NMR: 0.94 (3H,t,J=7.2), 1.24 and 1.34 (total 3H,s), 1.50-1.80 (2H,m), 3.18 (3H,s), 3.44 and 3.46 (total 3H,s), 3.76 (3H,s), 4.4 (1H,brs), 6.38 (1H,d,J=2.7), 6.54 (1H,dd,J=2.7, 8.1), 6.98 (2H,d,J=8.1), 7.28 (1H,d,J=8.1), 7.42 (2H,d,J=8.1), 7.66 (1H,brs).	IR: 3300 (v _{NH}), 1640 (v _{C=O}).	IR: 3400 (v _{NH}), 3310 (v _{NH}), 1640 (v _{C=O}).	NMR: 0.89 (6H,t,J=7.2), 1.50-2.10 (6H,m), 3.03 (6H,s), 3.46 (3H,s), 4.38 (1H,t,J=6.3), 6.26 (1H,brs), 6.39 (1H,d,J=2.7), 6.54 (1H,dd,J=2.7, 8.1), 6.98 (2H,d,J=8.1), 7.28 (1H,d,J=8.1), 7.34 (2H,d,J=8.1).
Melting point (°C)	liguid	liquid	liguid	liquid	liguid
Yield (%)	93	88	06	94	80
Compound No.	280	281	282	283	284

e 13 (continued)

			- 145 -		
Spectral data	NMR: 0.89 (6H,t,J=7.2), 1.50-2.10 (6H,m), 3.18 (3H,s), 3.46 (3H,s), 3.76 (3H,s), 4.39 (1H,t,J=6.3), 6.39 (1H,d,J=2.7), 6.54 (1H,dd,J=2.7, 8.1), 6.99 (2H,d,J=8.1), 7.30 (1H,d,J=8.1), 7.44 (2H,d,J=8.1), 7.68 (1H,brs).		NMR: 0.90 (6H, t, J=7.2), 1.00-2.20 (8H, m), 3.03 (6H, s), 3.45 (3H, s), 4.38 (1H, t, J=7.2), 6.26 (1H, brs), 6.39 (1H, d, J=2.7), 6.52 (1H, dd, J=2.7, 8.1), 6.97 (2H, d, J=8.1), 7.29 (1H, d, J=8.1), 7.44 (2H, d, J=8.1).	NMR: 0.90 (6H,t,J=7.2), 1.00-2.20 (8H,m), 3.19 (3H,s), 3.46 (3H,s), 3.77 (3H,s), 4.38 (1H,t,J=7.2), 6.39 (1H,d,J=2.7), 6.52 (1H,dd,J=2.7, 8.1), 6.52 (1H,dd,J=8.1), 7.30 (1H,d,J=8.1), 7.42 (2H,d,J=8.1), 7.66 (1H,brs).	
Melting point (°C)	liquid	63–65	liguid	liquid	69-89
Yield (%)	80,	7.7	43	63	57
Compound No.	285	286	287	288	289

_	
Q	
a	
=	
inued	
cont	
⊆	
0	
×	
U	ľ
•	
_	
~	
13	
Ψ	
_	
0	
Table	
O	
=	
-	

		•	- 14	6 -		
Spectral data	NMR: 1.01 (3H,t,J=7.2), 1.52-2.12 (4H,m), 2.98 (6H,s), 3.92-4.40 (5H,m), 6.44 (1H,dd,J=2.7, 9.0), 6.59 (1H,d,J=2.7), 6.65 (1H,brs), 6.92 (2H,d,J=9.0), 7.32 (3H,d,J=9.0).	NMR: 1.03 (3H,t,J=7.2), 1.56-2.20 (4H,m), 3.20 (3H,s), 3.78 (3H,s), 4.00-4.50 (5H,m), 6.39 (1H,d,J=2.7), 6.57 (1H,dd,J=2.7, 9.0), 7.00 (2H,d,J=9.0), 7.44 (3H,d,J=9.0), 7.68 (1H,brs).			NMR: 1.00 (6H,d,J=6.3), 1.85-1.94 (3H,m), 3.20 (3H,s), 3.80 (3H,s), 4.02 (1H,m), 4.15 (4H,m); 6.30-6.60 (3H,m), 6.92 (2H,d,J=9.0), 7.30 (2H,d,J=9.0).	NMR: 0.97 (3H,d,J=7.0), 1.37 (3H,d,J=7.0), 2.11 (1H,m), 3.02 (6H,s), 4.09-4.35 (5H,m), 6.30 (1H,brs), 6.35 (1H,d,J=2.7), 6.56 (1H,dd,J=2.7, 9.0), 6.95 (2H,d,J=9.0), 7.20 (1H,d,J=9.0), 7.33 (2H,d,J=9.0).
Melting point (°C)	67-68	liquid	173-175	78-79.5	liquid	160-161
Yield (%)	98	91	86	83	73	85
Compound No.	290	291	292	293	294	295

_
ed
ā
ă
=
Ξ
'n
5
ō
J
٠,
m
_
le 13
abl
-

				- 147	-		ı
Table 13 (Continued)	Spectral data	NMR: 0.96 (3H,d,J=7.0), 1.36 (3H,d,J=7.0), 2.11 (1H,m), 3.16 (3H,s), 3.74 (3H,s), 4.08-4.40 (5H,m), 6.35 (1H,d,J=2.7), 6.51 (1H,dd,J=27, 9.0), 6.51 (1H,dd,J=9.0), 7.20 (1H,d,J=9.0), 7.21 (1H,brs).		NMR: 1.42 (6H,s), 2.13 (2H,s), 3.20 (3H,s), 3.78 (3H,s), 4.00-4.30 (4H,m), 6.38 (1H,d,J=2.7), 6.59 (1H,dd, J=2.7, 9.0), 7.02 (2H,d,J=9.0), 7.36 (1H,d,J=9.0), 7.50 (2H,d,J=9.0), 7.70 (1H,brs).	NMR: 0.92 (3H,t,J=7.2), 1.33 (3H,s), 1.73 (2H,q,J=7.2), 2.06 (1H,d,J=14.4), 2.26 (1H,d,J=14.4), 2.78 (3H,d,J=5.4), 4.00-4.30 (4H,m), 5.20 (1H,brs), 6.35 (1H,d,J=2.7), 6.54 (1H,dd,J=2.7, 8.1), 6.98 (2H,d,J=8.1), 7.20-7.60 (3H,m).	NMR: 0.92 (3H,t,J=7.2), 1.33 (3H,s), 1.73 (2H,q,J=7.2), 2.05 (1H,d,J=14.4), 2.26 (1H,d,J=14.4), 3.00 (6H,s), 4.00-4.30 (4H,m), 6.35 (1H,d,J=2.7), 6.42 (1H,brs), 6.54 (1H,dd,J=2.7, 8.1), 6.98 (2H,q,J=8.1), 7.20-7.30 (3H,m).	- to be continued
-	Melting point (°C)	109-110	97-77	liquid	liguid	liquid	
	Yield (%)	not less than 97	92	92	80	84	
	Compound No.	296	297	298	299	300	

Table 13 (continued)

			- 1	48 -	
Spectral data	NMR: 0.92 (3H,t,J=7.2), 1.33 (3H,s), 1.73 (2H,q,J=7.2), 2.03 (1H,d,J=14.4), 2.21 (1H,d,J=14.4), 3.18 (3H, s), 3.74 (3H,s), 4.0-4.3 (4H,m), 6.35 (1H,d,J= 2.7), 6.54 (1H,dd,J=2.7, 8.1), 6.98 (2H,d,J=8.1), 7.45 (3H,d,J=8.1).	IR: 3320 (V _{NH}), 1640 (V _{C=O}).	IR: 3400 (v _{NH}), 3325 (v _{NH}), 1678 (v _{C=O}).	NMR: 0.87 (6H, t, J=7.2), 1.68 (4H, q, J=7.2), 2.09 (2H, s), 3.03 (6H, s), 4.00-4.30 (4H, m), 6.24 (1H, brs), 6.35 (1H, d, J=2.7), 6.54 (1H, dd, J=2.7, 8.1), 6.96 (2H, d, J=8.1), 7.30 (1H, d, J=8.1), 7.42 (2H, d, J=8.1).	NMR: 0.87 (6H, L, J=7.2), 1.68 (4H, q, J=7.2), 2.09 (2H, s), 3.18 (3H, s), 3.76 (3H, s), 4.00-4.30 (4H, m), 6.35 (1H, d, J=2.7), 6.54 (1H, dd, J=2.7, 8.1), 6.96 (2H, d, J=8.1), 7.30 (1H, d, J=8.1), 7.42 (2H, d, J=8.1), 7.68 (1H, brs).
Melting point (°C)	liguid	73-76.5	liquid	liquid	liquid
Yield (%)	06	80	not less than 97	80	87
Compound No.	301	302	303	304	305

le 13 (continued)

			- 149 -		
Spectral data	NMR: 0.87 (6H,t,J=7.2), 1.68 (4H,q,J=7.2), 2.08 (2H,s), -2.10-2.50 (2H,m), 2.74 (3H,d,J=4.4), 4.00-4.30 (4H,m), 5.58 (1H,brs), 6.35 (1H,d,J=2.7), 6.52 (1H,d,J=2.7, 8.1), 6.98 (2H,d,J=8.1), 7.24 (1H,d,J=8.1), 7.44 (2H,d,J=8.1), 7.56 (1H,brs).		NMR: 0.88 (6H,t,J=7.2), 1.10-1.50 (2H,m), 1.69 (4H,q, J=7.2), 2.09 (2H,s), 3.17 (3H,s), 3.72 (3H,s), 3.90-4.30 (4H,m), 6.35 (1H,d,J=2.7Hz), 6.55 (1H, dd,J=2.7, 8.1), 6.98 (2H,d,J=8.1), 7.24 (1H,d, J=8.1), 7.44 (2H,d,J=8.1), 7.78 (1H,brs).	NMR: 1.36 (3H,s), 1.62 (3H,s), 1.68 (1H,s), 1.80 (3H, s), 3.02 (6H,s), 6.35 (1H,brs), 6.38 (1H,d,J=2.7), 6.53 (1H,dd,J=2.7, 9.0), 6.94 (2H,d,J=9.0), 7.09 (1H,d,J=9.0), 7.33 (2H,d,J=9.0).	NMR: 1.35 (3H,s), 1.61 (3H,s), 1.68 (1H,s), 1.79 (3H, s), 3.17 (3H,s), 3.75 (3H,s), 6.38 (1H,d,J=2.7), 6.52 (1H,dd,J=2.7, 9.0), 6.96 (2H,d,J=9.0), 7.09 (1H,d,J=9.0), 7.41 (2H,d,J=9.0), 7.67 (1H,brs),
Melting point (°C)	liguid	182-187	126-127	liquid	liguid
Yield (%)	83	70.	75	not less than 97	not less than 97
Compound No.	306	307	308	309	310

				- 15	0 -		
	Spectral data		NNR: 1.80-2.24 (6H,m), 3.01 (6H,s), 3.06 (1H,m), 3.53 (3H,s), 6.39 (1H,dd,J=2.7, 9.0), 6.43 (1H,d,J=2.7), 6.52 (1H,brs), 6.88 (1H,d,J=9.0), 6.94 (2H,d,J=9.0), 7.34 (2H,d,J=9.0).	NMR: 1.76-2.30 (6H,m), 3.01 (1H,m), 3.12 (3H,8), 3.47 (3H,s), 3.71 (3H,s), 6.26-7.48 (7H,m), 7.66 (1H,brs).			NMR: 1.40-1.92 (6H,m), 2.00-2.30 (2H,m), 3.18 (1H,m), 3.19 (3H,s), 3.38 (3H,s), 3.76 (3H,s), 6.46 (1H, dd,J=2.7, 9.0), 6.49 (1H,d,J=2.7), 6.96 (1H,d, J=9.0), 7.00 (2H,d,J=9.0), 7.45 (2H,d,J=9.0), 7.73 (1H,brs).
*	Melting point (°C)	161-162	40-43	liguid	166-168	} } } } } } } } } } } } } } } } } } }	liquid
	Yield (%)	not less than 97	88	not less than 97	93	not less than 97	89
	Compound No.	311.	312	313	314	315	316

Table 13 (continued)

	·	- 151 -	
Spectral data	IR: 3330 (v _{NH}), 3050 (v _{OH}), 1624 (v _{C=O}). NMR: 1.29 (3H,s), 1.47 (3H,s), 1.57 (3H,s), 1.77 (1H,d, J=14.4), 2.00 (1H,d,J=14.4), 3.09 (3H,s), 5.75 (1H,brs), 6.28 (1H,d,J=2.7), 6.52 (1H,dd,J=2.7, 9.0), 6.91 (2H,d,J=9.0), 7.21 (1H,d,J=9.0), 7.39 (2H,d,J=9.0), 8.13 (1H,brs).	IR: 3350 (v_{NH}) , 3040 (v_{OH}) , 1627 $(v_{C=O})$. NMR: 1.28 (3H,s), 1.46 (3H,s), 1.56 (3H,s), 1.78 (1H,d, J=14.4), 2.00 (1H,d,J=14.4), 3.03 (6H,s), 6.32 (1H,d,J=2.7), 6.54 (1H,dd,J=2.7, 9.0), 6.92 (2H,d,J=9.0), 7.19 (1H,d,J=9.0), 7.38 (2H,d,J=9.0).	IR: 3410 (v _{NH}), 3050 (v _{OH}), 1675 (v _{C=O}). NMR: 1.28 (3H,s), 1.41 (3H,s), 1.56 (3H,s), 1.80 (1H,d,J=15:3), 3.16 (3H,s), 3.38 (1H,brs), 3.73 (3H,s), 6.38 (1H,d,J=2.7), 6.53 (1H,dd,J=2.7, 9.0), 6.95 (2H,d,J=9.0), 7.20 (1H,d,J=9.0), 7.40 (2H,d,J=9.0), 7.73 (1H,d,J=9.0), 7.73 (1H,d,J=9.0),
Melting point (°C)	211-213	190-191.5	137-139
Yield (%)	97	93	97
Compound No.	317	318	319

Table 13 (continued)

			- 152 -	-		
Spectral data	NMR: 1.38 (3H,d,J=7.2), 1.64-2.00 (2H,m), 2.60-2.92 (2H,m), 3.00 (6H,s), 4.00-4.36 (1H,m), 6.63 (1H,brs), 6.70-7.00 (4H,m), 7.90 (1H,dd,J=2.7, 9.0), 8.01 (1H,d,J=2.7).	NMR: 1.39 (3H,d,J=7.2), 1.64-2.00 (2H,m), 2.68-3.00 (2H,m), 3.20 (3H,s), 3.78 (3H,s), 3.92-4.40 (1H,m), 6.72-7.00 (4H,m), 7.69 (1H,brs), 8.01 (1H,dd,J=2.7, 9.0), 8.14 (1H,d,J=2.7).		IR: 3335 (v _{NH}), 1642 (v _{G=0}).	IR: 3310 (v _{NH}), 1665 (v _{G=0}).	NMR: 1.32 (6H,s), 1.77 (2H,t,J=7.2), 2.73 (2H,t,J=7.2), 3.00 (6H,s), 6.51 (1H,brs), 6.44-6.90 (4H,m), 7.89 (1H,dd,J=2.7, 9.0), 7.99 (1H,d,J=2.7).
Melting point (°C)	128.5-130	93-94	180-182	154-155	108-109	100-102
Yield (%)	72	91	not less than 97	95	not less than 97	not less than 97
Compound No.	320	321	322	323	324	325

- to be continued -

Table 13 (continued)

				- 153			
Spectral data	NMR: 1.36 (6H,s), 1.78 (2H,t,J=7.2), 2.75 (2H,t,J=7.2), 3.10 (3H,s), 3.77 (3H,s), 6.67-6.92 (4H,m), 7.70 (1H,brs), 7.96 (1H,dd,J=2.7, 9.0), 8.10 (1H,d,J=2.7).	IR: 3285 (v _{NH}), 1643 (v _{GeO}).	IR: 3290 (v _{NH}), 1667 (v _{C=0}).	IR: 3265 (v _{NH}), 1640 (v _{G=0}).	IR: 3390 (v _{NH}), 1686 (v _{C=O}).	IR: 3280 (v _{NH}), 1635 (v _{c=o}).	IR: 3310 (v _{NH}), 1672 (v _{C=O}).
Melting poin: (°C)	liguid	168-169	106-108	174-176	91-92.5	171.5-172	liguid
Yield (%)	78	75	86	84	not less than 97	74	not less than 97
Compound No.	326	327	328	329	330	332	333

$\overline{}$
Q
a
3
\subseteq
-~
u
_
ō
\simeq
Ü
$\overline{}$
1
~
~1
1
انه

				_	154 -			1
Table 13 (continued)	. Spectral data	NMR: 1.34 (6H,d,J=6.9), 2.68-3.28 (1H,m), 2.80 (3H,d,J=4.4), 5.02 (1H,brs), 6.30 (1H,s), 6.64-7.60 (8H,m).	NMR: 1.35 (6H,d,J=6.9), 2.98-3.10 (1H,m), 3.04 (6H,s), 6.26 (1H,brs), 6.36 (1H,s), 6.84-7.46 (7H,m).	NMR: 1.34 (6H,d,J=6.9), 2.86-3.30 (1H,m), 3.16 (3H,s), 3.72 (3H,s), 6.28 (1H,s), 6.88 (1H,dd,J=2.7, 9.0), 6.93 (2H,d,J=9.0), 7.10 (1H,d,J=2.7), 7.35 (1H,d,J=2.7), 7.35 (1H,d,J=9.0), 7.72 (1H,brs).	NMR: 0.98 (3H,d,J=6.9), 1.02 (3H,d,J=6.9), 1.90-2.28 (1H,m), 2.64 (2H,dd,J=2.7, 6.7), 3.00 (6H,s), 6.32 (1H,s), 6.48 (1H,brs), 6.80-7.04 (3H,m), 7.08 (1H,d,J=2.7), 7.30 (2H,d,J=9.0), 7.34 (1H,d,J=9.0).	NMR: 0.89 (6H,d,J=6.9), 1.76-2.20 (1H,m), 2.52 (2H,d, J=6.9), 3.08 (3H,s), 3.64 (3H,s), 6.22 (1H,s), 6.68-7.50 (7H,m), 7.64 (1H,brs).	NMR: 1.28 (3H,t,J=7.7), 2.62 (2H,q,J=7.7), 3.00 (6H,s), 6.44 (1H,brs), 6.80-7.50 (8H,m).	bennitury ad of -
	Melting point (°C)	191–193	153-155	liquid	137-138	69-L9	123-124	
	Yield (%)	82	73	not less than 97	7.7	98	. 08	
	Compound No.	334	335	336	337	338	339	

Table 13 (continued)

	•			- 155			
Spectral data	IR: 3325 (v _{NH}), 1675 (v _{C=O}).	IR: 3325 (v _{NH}), 1655 (v _{C=0}).	NMR: 0.80-1.84 (5H,m), 2.56 (2H,t,J=7.7), 2.95 (6H,s), 6.68-7.50 (9H,m).	NMR: 0.80-1.84 (5H,m), 2.56 (2H,t,J=7.7), 3.16 (3H,s), 3.71 (3H,s), 6.72-7.74 (8H,m), 7.78 (1H,brs).	NMR: 1.30 (6H,d,J=6.7), 2.90-3.14 (1H,m), 3.02 (6H,s), 6.48 (1H,brs), 6.70-7.56 (8H,m).	NMR: 1.32 (6H,d,J=6.7), 2.86-3.24 (1H,m), 3.21 (3H,s), 3.78 (3H,s), 6.70-7.56 (8H,m), 7.71 (1H,brs).	NMR: 1.42 (3H,d,J=6.3), 2.84 (1H,dd,J=7.2, 14.4), 3.00 (6H,s), 2.96 (1H,dd,J=7.2, 14.4), 2.92 (1H,m), 6.66 (1H,brs), 6.68-7.10 (4H,m), 7.80-8.08 (2H,m).
Melting point (°C)	liquid	liquid	liquid	liguid	joinbil .	liquid	liguid
Yield (%)	78.	not less than 97	89	83	. 85	92	not less than 97
Compound No.	340	341	342	343	344	345	346

Table 13 (continued)

			- 156 -		· ·	
Spectral data	NMR: 1.42 (3H,d,J=6.3), 2.85 (1H,dd,J=7.2, 14.4), 3.20 (3H,s), 3.38 (1H,dd,J=7.2, 14.4), 3.78 (3H,s), 4.94 (1H,m), 6.72-7.16 (4H,m), 7.64 (1H,brs), 7.92-8.20 (2H,m).	NMR: 1.47 (3H,d,J=6.4), 2.86 (1H,dd,J=7.7, 15.4), 3.00 (6H,B), 3.38 (1H,dd,J=7.7, 15.4), 5.00 (1H,m), 6.44 (1H,brs), 6.68-6.90 (3H,m), 6.94 (2H,d,J=9.0), 7.32 (2H,d,J=9.0).	NMR: 1.46 (3H,d,J=6.4), 2.88 (1H,dd,J=7.7, 15.4), 3.17 (3H,s), 3.40 (1H,dd,J=7.7, 15.4), 3.75 (3H,s), 5.00 (1H,m), 6.66-6.96 (3H,m), 6.97 (2H,d,J=9.0), 7.40 (2H,d,J=9.0), 7.64 (1H,brs).	IR: 3320 (v _{NH}), 3280 (v _{NH}), 1635 (v _{C=o}).	IR: 3220 (v _{NH}), 1635 (v _{C=O}).	IR: 3280 (v _{NH}), 1660 (v _{C=O}).
Melting point (°C)	liguid	100.5-101.5	8 - 9 8	161-162	157-158	93-93-5
Yield (%)	74	84	87	95	81	18
Compound	347	348	349	350	351	352

Table 13 (continued)

- 157 -

(6H,s), 1.80 (2H,t,J=7.1), 2.82 (2H,t,J=7.1), (3H,s), 3.76 (3H,s), 6.68-6.96 (3H,m), (2H,d,J=9.0), 7.36 (2H,d,J=9.0), (1H,brs). (6H,s), 1.79 (2H,t,J=7.1), 2.81 (2H,t,J=7.1), (6H,s), 6.33 (1H,brs), 6.74-6.92 (3H,m), (2H,d,J=9.0), 7.26 (2H,d,J=9.0). Spectral data 1.24 3.00 6.84 1.27 3.18 6.88 7.64 NMR: NMR: Melting point (°C) 175.5-176.5 118-119.5 153-155 174-175 104-105 166.5-168 190-191 not less than 97 not less than 97 Yield (%) 82 11 89 87 16 Compound No. 358 359 357 355 356 354 353

to be continued -

Table 13 (continued)

			- 158	_	
Spectral data	NMR: 1.19 (3H,d,J=7.2), 1.37 (3H,s), 1.39 (3H,s), 2.22 (3H,s), 3.09 (1H,q,J=7.2), 3.20 (3H,s), 3.77 (3H,s), 6.19 (1H,brs), 6.35 (1H,brs), 6.96 (2H,d,J=9.0), 7.43 (2H,d,J=9.0), 7.69 (1H,brs).			NNR: 0.92 (3H,t,J=7.2), 1.18 (3H,d,J=6.3), 1.30 (3H,S), 1.66 (2H,q,J=7.2), 2.20 (3H,S), 3.12 (1H,q,J=6.3), 3.18 (3H,S), 3.76 (3H,S), 6.15 (1H,brS), 6.32 (1H,brS), 6.92 (2H,d,J=9.0), 7.39 (2H,d,J=9.0), 7.64 (1H,brS).	NMR: 1.29 (3H,s), 1.80 (2H,t,J=6.7), 2.16 (3H,s), 2.58 (2H,t,J=6.7), 3.04 (6H,s), 6.26 (1H,d,J=2.7), 6.96 (2H,d,J=9.0), 7.32 (2H,d,J=9.0).
Melting point (°C)	liguid	116-117	135-136	liguid	liquid
Yield (%)	not less than 97	not less than 97	not less than 97	not less than 97	. 9
Compound No.	360	361	362	363	364

Table 13 (continued)

					159 -	·		
	Spectral data	NMR: 1.28 (6H,s), 1.78 (2H,t,J=7.1), 2.16 (3H,s), 2.56 (2H,t,J=7.1), 3.16 (3H,s), 3.72 (3H,s), 6.58 (1H,d,J=2.7), 6.40 (1H,d,J=2.7), 6.97 (2H,d,J=9.0), 7.42 (2H,d,J=9.0), 7.76 (1H,brs).						NMR: 1.14 (3H,d,J=7.2), 1.52 (3H,s), 1.80-2.12 (1H,m), 2.44 (2H,d,J=9.0), 3.21 (3H,s), 3.24 (3H,s), 3.79 (3H,s), 6.33 (1H,d,J=2.1), 6.45 (1H,d,J=2.1), 7.00 (2H,d,J=9.0), 7.43 (2H,d,J=9.0), 7.67 (1H,brs).
•	Melting point (°C)	liguid	164-165	181-182	109-111	176-177	179-186.5	liquid
	Yield (%)	80	not less than 97	98	not less than 97	not less than 97	92	88
	Compound No.	365	366	367	368	369	370	371

5

10

20

- 160 -

The following Formulation Examples are given for the herbicide of this invention. All percentages in these examples are by weight.

FORMULATION EXAMPLE 1

Wettable powder:-

The compound [I] of this invention (10%), 3% of a sodium salt of a higher alcohol sulfate ester and 87% of kaolin were uniformly mixed and pulverized to form a wettable powder.

FORMULATION EXAMPLE 2

Emulsifiable concentrate:-

The compound [I] of this invention (20%), 10% of polyoxyethylene alkylaryl ether, 30% of cyclohexanone and 40% of dimethylformamide were uniformly dissolved to 15 form an emulsifiable concentrate.

FORMULATION EXAMPLE 3

Granules:-

The compound [I] of this invention (5%), 40% of benzonite, 50% of clay and 5% of sodium ligninsulfonate were uniformly mixed and pulverized. The mixture was kneaded with water, granulated and dried to form granules.

FORMULATION EXAMPLE 4

Dust:-

The compound [I] of this invention (3%) and 97% 25 of clay were uniformly mixed and pulverized to form and the contract of the dust.

The following Test Examples specifically illustrate the herbicide of this invention.

TEST EXAMPLE 1

Herbicidal test in upland foliage treatment:-30 Porcelain pots (12 cm in inside diameter) were filled with sieved upland farm soil, and seeds of cocklebur, blackjack, velvet leaf, jimsonweed, soybean, wheat, corn and rice were sown and covered with the soil (1 cm). They were grown in a greenhouse until the first leaf of soybean developed. A predetermined amount of each of

10

- 161 -

the test compounds, formulated into a wettable powder in accordance with Formulation Example 1, was dispersed in 15 liters (per are) of water containing 500 ppm of Neoesterin as a sticker). The dispersion was sprayed to the leaves and stalks of the plants from the top of the plants by a small atomizer. After the treatment, the plants were grown further in the greenhouse for 20 days, Herbicidal effects and phytotoxicity on these plants were examined, and evaluated in accordance with the standards shown in Table 14. The results are shown in Table 15.

Table 14

		IADIE 14
	Index	Herbicidal effect and phytotoxicity
	5.	more than 99 % to 100 % (withered)
	4.5	90 % to 99 %
15	4	80 % to 89 %
	3.5	70 % to 79 %
	3 .	60 % to 69 %
, ~	2.5	50 % to 59 %
:	2	40 % to 49 %
20	1.5	30 % to 39 %
	1	20 % to 29 %
	0.5	1 % to 19 %
	0	less than 1 % (no herbicidal effect, or
		no phytotoxicity)

- 162 -Table 15

			_							
Test	Rate	Herbicidal effect				Ph	hytotoxicity			
compound	kg/ha	A	В	С	D .	E	F	G	н	
	2	5	5	3	5.	0	0	0	0	
1	1	3	5	2	5	0	. 0	0	0	
_	2	. 5	5	. 5	5	0	2	1	2	
2	1	5	5	5	5	0	1	0	1	
	. 2	5	5	5	5	0	0	0	0	
4	1	5	5	5	5	0	0	0	0	
_	2	5	5	5	5	0	0	0	0	
5	i	5	5	5	5 .	0	- 0	0	0.5	
·	2	. 5	5	5		0	Ō	0	0	
6	ı	5	5	5		0	0	0	0	
	2	5	E .	5	5	0	0.5	n	2	
7	1.	5 :	∿ 5- i	: 5 .	5.	0	0 1	0	1	
	2	5	5	5	5	0.5	0.5		2	
9	1	5	5	5	5	0	0 .		0.5	
10	2	5	5	5	5	0	2	0	1.5	
10	1	5	5	5	5	0	0	0	1	
	2	5	5	5	5	0	0	0	0	
11	1	5	5	4	5	0	. 0	0	0	

⁻ to be continued -

- 163 - Table 15 (continued)

Test compound Rate kg/ha A B C D E F G 2 5 4.5 5 5 0 2 0	H
compound kg/ha A B C D E F G	H
	0.5
16 1 5 3 4.5 4.5 0 0 0	0
2 5 5 5 0 0	0
20 1 5 5 5 0 0	0
2 5 5 5 5 0 0	0
1 5 5 1.5 5 0 0	0
2 5 5 5 5 0 0	0
24 1 5 4 2.5 5 0 0	0
2 5 5 5 5 0 0	1
31 1 5 5 5 5 0 0	0.5
2 5 5 5 0 0	3
32	1
2 5 5 5 0 0	
33 1 5 5 5 0 0	-
2 5 5 5 0 0	1
35 1 5 5 5 0 0 0 m	. 0
2 5 5 5 0	1
36 1 5 4.5 5 5 0	1

⁻ to be continued -

- 164 - Table 15 (continued)

Ma ah	Rate	Herbicidal effect				Phy	hytotoxicity			
Test compound	kg/ha	. A	В	C.	D	E	F	G	Н	
	2	5	5	5	5	0	0		0	
39	1	5	5	5	5	0	0		0	
·	· 2	5	5	5	5	0	0	0	1	
43	1	5	5	5	5	0	0	0	0	
	2	5	5 .	5	5	0	0	0	1	
44	1	5	5	5	- 5	0	. 0	0	0	
	2	5	5	5	5		0	0	0	
55	1	5	5	5	5		0	0	0	
	2	5	5	, 5	5		0	0	0	
56	1	5	.5	5	5		0	0	0	
	2	5	5	5	5	0	0	0	0	
57	1	5	5	5	-415	··· O.	. 0	Ó	0	
	2	5	. 5	5	5	0	0	0	3	
58	1	5	5	5	5	0	0	0	2	
	2	5	5	5	5	0	0		3.5	
63	1	5	5	5	5	0	0		1	
	2	5	5	. 5	5		0		1.5	
64	1	5	5	5	5		0		1	
64	1	5	5	5	5	<u> </u>	0		1	

- 165 - Table 15 (continued)

Test	Rate	Herb	icida	l eff	ect	Phy	ytoto	kicity	7
compound	kg/ha	A	В	С	ם	E	F	G	Н
	2	5.	5	5	5	0	0		
65	1	5	5	5	- 5	0	0		9
	2	5	2	5	5	O	0		
66	1	5	2	5	5	0	0		
	2	5	5	5	5	0	0		
67 -	1	5	5	5	5	0	O		`!
	2	5	5	5	5	0	0		
68	1	5	5	5	5	0	0		
	2	5	5	5	5	0	1	0	0.5
78	1	5	5	3	5	0	0	0	0
	2	5	5	5	5	0	1.5	0.5	2
19 .s. 1	- 1 · /	5	:5	- 15	5	~ O . j	,0	0	1 2
	2	5	- 5	5	5	0	0	0	0.5
81	1	5	5 -	5	5	0	0	0	0.5
0.0	2	5	5	5	5	0	0	0	2
82	1	5	5	5	5	Ó	0	0	1
	2	4	5	5	5	0	0	0.5	2
83	1	2	5	5	5	0	0	0	1
	65 66 67 68	compound kg/ha 65	Test compound kg/ha A 65 2 5 1 5 6 1 5 6 6 1 5 6 6 6 1 5 6 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	Test compound Rate kg/ha A B 65 2 5 5 1 5 5 66 2 5 2 1 5 2 67 2 5 5 1 5 5 68 2 5 5 1 5 5 78 2 5 5 1 5 5 79 2 5 5 1 5 5 81 2 5 5 1 5 5 81 2 5 5 1 5 5 82 2 5 5 1 5 5 83 2 5 5 5 5 81 5 5	Test compound kg/ha	compound kg/ha A B C D 65 2 5 5 5 5 66 1 5 2 5 5 67 2 5 5 5 5 68 1 5 5 5 5 78 2 5 5 5 5 81 2 5 5 5 5 81 2 5 5 5 5 82 5 5 5 5 5 81 2 5 5 5 5 81 5 5 5 5 5 82 5 5 5 5 5 82 5 5 5 5 5 82 1 5 5 5 5 82 1 5 5 5 5 82 1 5 5 5 5 83 2 4 5	Test compound Rate kg/ha A B C D E 65 1 5 5 5 5 0 66 1 5 5 5 5 0 67 1 5 5 5 5 0 68 2 5 5 5 5 0 68 1 5 5 5 5 0 78 2 5 5 5 5 0 78 2 5 5 5 5 0 78 2 5 5 5 5 0 79 2 5 5 5 5 0 81 2 5 5 5 5 0 82 5 5 5 5 0 81 5 5 5 5 0 82 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Test compound Rate kg/ha A B C D E F 65 1 5 5 5 5 0 0 0 66 1 5 5 5 5 0 0 67 1 5 5 5 5 0 0 68 1 5 5 5 5 0 0 68 1 5 5 5 5 0 0 78 2 5 5 5 5 0 0 78 2 5 5 5 5 0 0 78 2 5 5 5 5 0 0 78 2 5 5 5 5 0 0 81 5 5 5 5 5 0 0 81 5 5 5 5 5 0 0 81 5 5 5 5 5 0 0 81 5 5 5 5 5 0 0 82 5 5 5 5 5 0 0 83 2 5 5 5 5 0 0 84 5 5 5 5 0 0 85 6 6 7 0 86 7 0 0 87 79 79 70 70 70 70 70 70 70 70 70 70 70 70 70	Test compound Rate kg/ha A B C D E F G A B C D C D C C C C C C C C C C C C C C C

⁻ to be continued -

- 166 -Table 15 (continued)

				<u> </u>					
m	Rate	Herb	cida:	l eff	ect	Ph	ytoto:	cicity	7
Test compound	kg/ha	A:	В	С	D	E	F	G	H
	2	5	5	5	5	0	0.5	0	1
84	1	5	5	5	5	0 -	0	0	0.5
	2	3	5	5	5	0	0	0	0
85	1	2	5	5	5	0	0	0	0
	2	5	5	5	5	0	0	0	1
86	1	5	5	5	5	0	0	.0	1
	2	5	5	5	5	0	0		·
90	1	5	5	5	5	0	. 0		
	2	5	5	5	5 ,	0	0		
91	1	5	5	5	5	0	0		
	^2	5	5	5	5	0	0	0	2
93	117	- 3:	5.	⊸ 5 ∱	5	0	0	0	1
	2	5	5	5	5	0	0	,	1
95	1	5	5	5	5	0	0	·	0
	2	5.	5	5	5	0	0.5	1	2
96	1	5	5	5	5	.0	0	0	1
	2	5	4	5	5		0	0	0
98	1	5	3	5	5		0	0	0

⁻ to be continued -

- 167 - Table 15 (continued)

Test	Rate	Herb	icida	l eff	ect	Ph	ytoto:	xicit	Y
compound	kg/ha	A	В	С	D	Е	F	G	H
·	2	5	5	5	5	0	0	. 0	1
100	1	5	5	5	5	0	. 0	0	0
	2	. 5	5	5	5	0	0	0	0.5
101	1	5	5	5	2	0	0	0	0
_	2	5	5	5	- 5	0	0	0	0.5
103	1	5	. 5	5	5	0	0	. 0	0
	2	5	5	- 5	5	0	0	·	
105	1	5	5	5	. 5	0	0		
	2	5	5	.5	5	0	0		
106	1	5	.5	. 5	5	0	0		
	2	5	5	5	5	0	0		
107	1	5	5	-5	5÷	0	0	E specie	Color Teles
	2	5	5	5	5.	0	0		
108	1	5	5	5	5	0	0		
	2	5	5	5	5		0		
110	1	5	4	5	5		0		
	2	5	5	5	5		0		
111	1	5	5	5	5		0		

⁻ to be continued -

- 168 -Table 15 (continued)

Test	Rate	Herb	icida.	l eff	ect	Phy	ytoto:	xicit	Y
compound	kg/ha	A	В	С	מ	E	F	G	H
	2	5 .	5	5	5	0.5	0	O	2
113	1	5	. 5	5	5	0	0	0	1
	2	5	5	5	5	0	0	0	2
115	1	5	4.5	5	5	0	0	0	0.5
	2	5	5 ,	5	5		0.5	-1	0
126	1	5	5 .	2.5	5		0	0	0
	2	5	5	5	5		1	1.5	0
127	1	2	5	5	5		0.	Ö	0
	2	5	5	5	5		0	o	0
129	1	5	5	5	5		0	0	0
	2	5	5	5	5		0	0.	0
130	. 1	.5	.5	5/4	.5	r, <u>A</u>	0	÷-0 ;	0
	2	5	5	5	5	0	٥	0	2
131	1	5	4.5	5	. 5	0	0	0	1
	2	5	5	5	5	0	2	1	1
132	1	5	5	5	5	0	1	0	0.5
	2	5	5	5	5	0	0	0	0
133	1	5	5	5	5	0	0	0	0

⁻ to be continued -

- 169 -Table 15 (continued)

Test	Rate	Herb	icida	l eff	ect	Ph	ytoto	xicit	У
compound	kġ/ha	A	В	С	ם	E	F :	G	н
	2	5	5	5	5	0	0 .	1	1
134	1	5	5	5	5	0	0	0	0
	2	5	5	5	5	0	0	0	0
136	1	5	5	5	5	0	0	0	0
	2	5	5	5	5		0	0	0
137	1	5	4	5	5		0	0	. 0
	2	5	5	<i>.</i> 5	5		0.5	0	0
140	1	5	5	5	5		0	0 .	0
	2	5	4.5	5	5	·	0	0	0
141	- 1	5	2	.5	5		0	0	0
140	2	5	5	5	5	0			5
142	1	5	5	. 5	5.5	0	1		. 1
7.40	2	5	5	5	5	0			4.5
143	1	5	5	5	5	0			0.5
	2	5	5	1	5		0		0.5
144	1	5	5	0.5	5		0		0.5
1.5	2	5	5	5	5		0		4.5
145	1	5	4	5	5		0	,	3

⁻ to be continued -

- 170 - Table 15 (continued)

Test	Rate	Herb	icida	effe	ect	Phy	/toto	cicity	·
compound	kg/ha	A	В	С	D	Е	F	G	н
	2	5	5	5	5	0	0	0	1
151	1	5	5	5	5	0	0	0	0
	2 .	5	5 ·	5	5	0	0	0	0
159	1	5	5	3	5	0	0	0	0
	2	5	5	5	5	0	0.		0
160 、	1	3	5	5	5	0	0		0
	2	5	5	5	5	1	1	1	2
161	1	3.5	5	5	5	0	0	0	1
	2	5	5	5	5	0		1	í
162	1	3	5	5	5	0		0	0
	2	5	5	5	5	.0	0	0.5	2
164	1	5	5.	57	- ;·5·	. 0	9	. 0	1
	2	5	5	5	5	0			1
165	1	5	5	5	5	0			0.5
	2	5	5	5		1	0.5	2	2
169	1	5	5	5		0	0	1	1
	2	5	5	5	5	0	2	2	2
170	ì	5 .	5	5	5	0	1	1	1

⁻ to be continued -

- 171 - Table 15 (continued)

Test	Rate	Herb	icida	l eff	ect	Ph	ytoto	xicit	У	
compound	kg/ha	A	В	С	D	E	F	G	Н	
	2	5	5	5	5	0.	1	0	2	
172	1.	5	5	5	5	0	0	0	1	
	2	5	5	5	5	0	1	0	1	
173	1	5	5	5	5	0	0	0	0	
	2	5	5	5	5	0	0	0 -	0	
174	,1	3	5	4.5	5	0	0 .	0	0	
	2	5	5	5	5 ့	0	0	0	0	
179	1	5	5	5	5	0	0	0	· 0	
180	2	5	5	5		0	0		5	
180	1	5	-5	5		0	0		3	
181	2	5	5	5		0	0.5		2	
181	Ï	5	5	5	J.s.	-0 =	*· 0·<:·		1	
100	2	5	5	5	5	0	Ó,	0	0	
182	ľ	3	4	5	5	0	0	0	0	
194	. 2 -	4	5	5		0	0	0	1	
184	1	3	5	5		0 ·	0	0	0	
100	2	5	5	5	5		0	1.5	0	
186	1	5 ·	5	5	5		0	Ô	0	

⁻ to be continued -

- 172 - Table 15 (continued)

Test	Rate	Herb:	icida	l eff	ect	Phy	ytoto:	xicit	Y
compound	kg/ha	A	В	С	D	E	F	G	H
	2 ·	5	5	5	5		0	0	0
192	1	4.5	5	5	5 .		0	0	0
	2	5	5	5	5	0	. 0	0	1
193	1	5	5	.5	3	0	0	0	0
	2	5	5	5	5	0	0	0	1
194	1	5	5	5	, 5	0	0	0	0.5
	. 2	5	5	5	5	0	0	0	0
205	1	5	4.5	5	5	0	0	0	. 0
	2	5	5	5	5		0	0	0
206	1	5	5	5	5		0	0	0
	2	5	5	5	5		0	0	0
207	1	5	4	5	5	·	0	0	0
	2	5	5	5	5	0	0	0	0
209	1	4.5	4	5	5	0	0	0	0
	2	5 .	5	5	5	1	0	0	1.5
210	1	5	5	5	5	0	0	0	0
	2	5	5	5	5	0	0		4.5
211	1	5	5	5	5:	0	0		3.5

⁻ to be continued -

- 173 - Table 15 (continued)

		1							
Test	Rate	Herb	icida	ıl eff	ect	Pì	nytoto	xicit	y
compound	kg/ha	A	.В	С	D	E	F	G	Н
21.2	2	5	5	5	5	0.	0		0
212	1	5	3.5	2	5	0	0	·	ó
220	2	5	5	5	5	0	0		2.5
220	1	5	4.5	2	5	0	0		2
225	2	5	5	5	5	0	0		1.5
225	1	5	3	5	5	0	0		0
230	2	5	5	5 .	5		0		0.5
230	1	2	4.5	5	5		0		0
232	2	5	5	5	5	O	0		2
232	1	5	5	5	5	0	0		0.5
233	2	5	5	. 5	5	0	0		1
	1	5	5	5	5	0	70		0 -
234	2	5	5	5	5	0	0		2
	1	5	4.5	5	5	0	0	`	1.5
235	2	5	3	. 5	5	0	0		2
233	1	5	3	5	5	.0	. 0		2
220	2	5	5	5 .	5	0	0	0	1.5
239	1	5	5	5	5	, 0	0	0	0

⁻ to be continued -

- 174 -Table 15 (continued)

Test	Rate	Herb	icida	l eff	ect	Ph	ytoto	xicit	У
compound	kg/ha	A	В	С	D	E	F	G	Н
	2	5	5	5	5	0	0	0.5	3
240	1	5	5	5	5	0 `	0	0	2
	2	5	5	5	5	0	. 0	0	0
244	1	5	5	5	5	0	0	0	0
	2	4.5	5	5	5	0	. 0	0	0.5
245	1	3	4	5	5	0	: O	0	0
•	2	5	. 5	5	5	0	0	0	1
246	1	5	5	5	5	0	0	0	1
	2	5	_ 5	5	5	0	0	0	0,
247	1	5	5	5	5	0	0	0	0
	2	5	5	5	5 .	0	0	0	0
248	1	-5	5 ,	5	5	. 0.	0	0	0
	2	5	5	5	5	0	0		4
251	1	-5	5	5	5	0	0		2
	2	. 5	5	5	5	0	0		
252	1	5	5	5	5	0	0		`
	2	5	5	5	5		0	0	0
257	1	1.5	. 5	5	5		0	0	0

⁻ to be continued -

- 175 -Table 15 (continued)

		Herb	icida	l eff	ect	Ph	ytoto	xicit	у .
Test compound	Rate kg/ha	A	В	C.	D	E	F	G	Н
·	2	5	5	5	5	0	2	0	0
258	1	5	5	5	5	0	1	0	0
	2	5	4.5	5	5	0	0	0	4.5
260	1	5	1.5	5	5	0	0	0	1
	2	5	5	5	5	0	0		3
261	1	5	5	5	5	0	0		1
	2	5	5 .	5	5	0	0		5
262	1	5	5	5	5	0	0		3
	2	5	5	5	5	0	1	0	2
265	1	5	2.5	- 5	5	0	0	0	1.
260	2	5	5	5	5	0	0	0	2
268	1	5	4	^ 5 ·	- 5	·•0 -	0.	-0	. 2.
272	2	5	5	5	5	0	0.5	0	4.5
. 272	1	5	. 5	5	5	0 .	0	0	2.5
272	2	5	5	5	5	0.	0.5	0	4.5
273	1	5	5	5	5	. 0	0	0	4.5
	2	5 .	5	5	5	0	0		2
276	1 .	5	4	5	5	0	0		1.5

- 176 -Table 15 (continued)

Test	Rate	Herb:	icidal	Leffe	ect	Phy	ytotox	cicity	,
compound	kg/ha	A	В	С	D	E	F	G	н
	2	5	5	5	5	0	0	1	2
279	1	5	5	5	5	0	0	0	1
	2	5	5	5	5	0	0.5	0	4
280	1	5	5	5	5	0	0	0	2.5
	2	5	5	5	5	0	0	0	2
281	1	5	4.5	5.	5	0	0	0	1
	2	5	5	5	5	0	0	0	2
283	1	5	- 5	5	5	0	0	0	1
	2	5	5	5	5	0	0		1.5
285	1	5	5	5	5	0	0		1
	2	5	5	5	5	0	0		0.5
288	1.15	-5	5.	5	5	_0_	0		0
	2	5	2	5	5	0	0	0	0
296	1	5	2	5	4.5	. 0	0	0	0
	2	5	5	5	5	0	0	0	1.5
297	1	5	5	2	5	0	0	0	1
	2	5	4.5	. 5	5	0	0	0	2
309	1	4.5	4	5	5	0	0	0	2

- 177 -Table 15 (continued)

Test	Rate	Herb	icida	l eff	ect	Phytotoxicity				
compound	kg/ha	A	В	С	ם	Ė	F	G	H	
·	2	5	5	5	5	0	0	0	1.5	
310	1	5	4.5	5	4.5	0	0	0	1	
	2	5	5	5	5	0	0		4.5	
312	1	5	5	5	5	0	0		1	
	. 2	5	5	5	5	0	0		3	
313	1	5	- 5	5	5	0	0		0.5	
225	2	5	5	5	5	0	0	.0	4	
. 315	1 .	5	5	5	5	0	0	0	2.5	
	2	5	5	5	5	0	0	0	3	
316	1	5	5	5	5	0	0	0	1	
319 c	. 2	5	5	5	5	0	0	0	2	
319 .	1	5	5	5	5	0	.i Q	0	1	
320	2	. 4	5	5	5	0	2		145	
320	1	2	5	5	5	0	0	0	1	
303	2	5	5	5	5	0	0	0		
321	1	3	5	5	5	0	0	0	1	
363	2	5	5	5	5	0	0	0	0.5	
323	1	5	5	5	5	0	0	. 0	0	

⁻ to be continued -

- 178 - Table 15 (continued)

Test	Rate	Herb	icidal	effe	ct	Phytotoxicity			
compound		A	В	С	D	E	F	G	н
	2	5	5	5	5	0	0	0	0
324	1	5	5	5	5	0	0	. 0	0
	2	5	5.	5		0		. о	1.5
326	1	3	4.5	5		0		0	0.5
	2	5	5	5	5	0	.0	0	0
327	1	5	5	5	. 5	0	0	. 0	0
	2	5	5	5	5	0	5	1.5	5
328	1	5	5	· 5	5	0	1	0	0
	2	5	5	5	5	0	0	0	2.5
330	1	5 `	4	5	5	0	0	0	1
	2	- 5	5	5	5	0	0	0	3
339	110	5	.::3	ੱਤ <u>ੇ</u>	5	0	-0	0 .	-2 -
	2	5	4.5	5	5	0	0	0	1
340	1	5	3.	5	. 5	0	0	0	0.5
343	2	5	2.5	5	5	0	0	0	3
	1	5	1	5	5	0	0	0	0.5
	2	5	5	5	5	0	0		4
344	1	5	5	4.5	5	0	0		3

- to be continued -

- 179 - Table 15 (continued)

Test	Herbicidal effect				Phytotoxicity				
compound	Rate kg/ha	A	В	С	ם	E	F	G	H
	2	5	3.5	5	5	0	Ò		4.5
345	. 1	4.5	` 3	5	5	0	. 0		3.5
	2	- 5	5	5	5	0	0	0	3
348	1	5	5	5	5	0	0	0	2
	2	5	5	5	5	0	0	0	1
349	1	5	3	5	5	0	0	0	0
	2	5	5	. 5	5	0	0	Ð	1.5
360	1	5.	4.5	5	5	0	0	0	0.5
	2	5	5	5	5	0	0	1	2
362	1	4.5	4.5	4.5	2	0	0	0.5	0
2.62	2	5	4.5	5	5	0	0	0	1
363		t ki i	: : 3:	.5	4.5	"O,	0	0	0.5
3.55	2	- 5	5	5	5	0	0	1	2
365	. 1	5	5	5	5	0	.0	0	2
	2	5	5	5	5	0	0	0	2.5
371	1	5	4.5	5	5	0	0	0	1.5

⁻ to be continued -

- 180 - Table 15 (continued)

Test compound	Rate	Herbicidal effect				Phytotoxicity			
	kg/ha	A	В	C ,	ם	E	F	G ′	H
Comparative Compound (1)	2	2	3	4	4	2	3	1	2
	1	1	1	3	2 .	1	2	1	2
	2	0	1	1	2	0	0	0	1
Comparative Compound (2)	1	0	0	0	1	. 0	· 0	0	0
Comparative Compound (3)	2	4	5	5	4	3	4	3	2
	1	2	5	2	3	2	3	2	2

Comparative Compound (1)

(the compound described in Jap. Laid-Open Pat. Publn. No. 111542/77)

Comparative Compound (2)

(the compound described in Jap. Laid-Open Pat. Publn. No. 36456/81)

(chloroxuron)

5

10

- 181 -

In Table 15 above and Table 16 given below, the names of the plants are indicated by letters A to J as follows:-

A: cocklebur (Xanthium canadense)

B: blackjack (Bidens pilosa)

C: velvet leaf (Abutilon theophrasti)

D: jimsonweed (Datura stramonium)

E: wheat (Triticum aestivum)

F: corn (Zea mays)

G: rice (Oryza sativa)

H: soybean (Glycine max)

I: barnyard grass (Echinochloa crus-galli)

J: Pigweed (Amaranthus retroflexus)

TEST EXAMPLE 2

Herbicidal test by soil treatment:—

Porcelain pots (9 cm in diameter) were filled

with sieved upland farm soil, and seeds of the plants
indicated in Table 16 were sown and covered with the

soil (1 cm). Immediately then, a predetermined amount of

a wettable powder of each of the test compounds, prepared
as in Formulation Example 1, was diluted with 1.5 ml of
water, and the dispersion was uniformly sprayed onto the
surface of the soil by a small atomizer. The plants were
grown in a green house for 20 days after the soil treat—

ment, and the herbicidal effect of each of the test
compounds was examined and evaluated in accordance with
the standards shown in Table 14. The results are shown
in Table 16.

- 182 -Table 16

		He	rbicida	l effect	
Test compound	Rate kg/ha				С
		I	J	В	
	5	5	5	5	5
7	2.5	4.5	3.5	.5	5
_	5	5	5	5	-5
84	2.5	. 3	5	4.5	5
	5	2	5	5	5
85	2.5	1	5	4.5	5
	5	45	5	4.5	5
9.5	2.5	.1.	5	3	-5
	5	5	5	5	5
96	2.5	4.5	5	5	5
	5	1	5	5 '	5
103-	2.5	0	5	4	5
	5	0	5	5	5
105	2.5	o	5	2	5
	5	4	5	5	5
113	2.5	1.5	4.5	3	4.5
	5	5	5	5	5
132	2.5	5	5	4.5	5

⁻ to be continued -

- 183 -Table 16 (continued)

Rate	Herbicidal effect					
kg/ha	I	J	В	C		
5	1	5	5	5		
2.5	0	5	5	4.5		
5	.5	5 .	5 .	5		
2.5	5	3	5	4		
5	4	5	5	, 5 ·		
2.5	2	5	5	5		
5	4.5	5	5	5		
2.5	. 3	5	5	5		
5	2	5	5	5 .		
2.5	0	5	5	5		
5	0	5	5	5		
2.5	0	5	4.5	4.5		
5	3.5	- 5	5	5		
2.5	0	5	5	4.5		
5	1	5	5	5		
2.5	0	2	5	5		
	kg/ha 5 2.5 5 2.5 5 2.5 5 2.5 5 2.5 5 2.5	Rate kg/ha 5 1 2.5 0 5 5 2.5 5 4 2.5 2 5 4.5 2.5 3 5 2 2.5 0 5 3.5 2 2.5 0 5 1	Rate kg/ha I 5 1 5 2.5 0 5 5 5 5 2.5 5 4 5 2.5 5 4.5 5 2.5 5 4.5 5 2.5 5 6 5 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Rate kg/ha I J B 5 1 5 5 2.5 0 5 5 5 5 5 2.5 5 3 5 5 2.5 5 5 5 2 5 5 5 2.5 5 5 3 5		

_

_ 184 -

Industrial utilizability

The compounds of formula [I] of this invention are useful for controlling undesired vegetation in low dosages without substantial phytotoxicity on useful crops.

is

7

- 185 - CLAIMS

1. A urea derivative represented by the following formula [I]

$$Ar - O - \sqrt{A} - NHCN \frac{O}{B}$$
 (1)

wherein

A represents the bond -N= or -C= in which X is a hydrogen atom, a chlorine atom, a $\overset{1}{X}$ nitro group or a trifluoromethyl group;

B represents a hydrogen atom, a methyl group or a methoxy group; and

Ar represents one member selected from the group consisting of

7

in which R1 to R38, independently from each other, represent a hydrogen atom, a lower alkyl group or a lower alkoxy group; R16 may further represent a hydroxyl group; a pair of R^2 and R^3 , a pair of R^6 and R^7 and a pair of R^9 and R¹⁰ each, taken together, may represent an alkylene linkage and may form a 5- or 6-membered ring together with the two adjacent carbon atoms to which they are bonded; R¹¹ and R¹², taken together, may form an ethylenedioxy linkage $-0-(CH_2)_2-0-$, or R^{11} and R^{15} , taken together, may form an alkylene linkage and form a 5- or 6-membered ring together with the carbon atoms to which they are bonded, or R^{15} and R^{16} , taken together, may represent a methylene linkage and form a 5- or 6-membered ring together with one carbon atom to which they are bonded, or R^{14} and R^{15} , taken together, may form a dichloromethylene linkage.

2. A process for producing a urea derivative represented by formula [I] in claim 1, which comprises reacting an aminopyridine or aniline derivative of the following formula [II]

$$Ar - O - NH_2 \qquad \dots \qquad [II]$$

wherein Ar and A are as defined with regard to formula [I] in claim 1,

with methyl isocyanate, N,N-dimethylcarbamoyl chloride or N-methoxy-N-methylcarbamoyl chloride.

3. A process for producing a urea derivative represented by formula [I] in claim I which comprises reacting an isocyanate ester derivative represented by the following formula [III]

$$Ar - O - N = C = O \qquad \qquad \dots \qquad [III]$$

wherein Ar and A are as defined with regard to formula [II],

with an amine compound represented by the following formula [IV]

D

3

NH B

.... [IV]

wherein B is as defined with regard to formula [I].

- 4. A herbicidal composition comprising a herbicidally effective amount of at least one compound of formula [I] according to claim 1 and an agriculturally acceptable diluent or carrier.
- 5. The herbicidal composition of claim 4 wherein the amount of the compound of formula [I] is about 0.5 to about 70% by weight based on the weight of the composition.
- 6. The herbicidal composition of claim 4 which is in the form of granules or a dust and in which the amount of the compound of formula [I] is 0.5 to 20% by weight based on the weight of the composition.
- 7. The herbicidal composition of claim 4 which is in the form of an emulsifiable concentrate or wettable powder and in which the amount of the compound of formula [I] is 5 to 70% by weight based on the weight of the composition.
- 8. Use of the compound of formula [I] according to claim 1 as a herbicide.
- 9. A method for controlling the growth of weeds, which comprises applying a herbicidally effective amount of at least one compound of formula [I] according to claim 1 to the weeds or the locus of such weeds.

INTERNATIONAL SEARCH REPORT

International Application No PCT/JP 86/00398

1. CLASSIFICATION OF SUBJECT MATTER (it several classification symbols apply, indicate all) 6						
According	to International Patent Classification (IPC) or to both Natlo	nat Classification and IPC	0.07.0.007/77			
IPC ⁴ :	C 07 D 405/12; 307/94; 311/78;	493/10; A UL N 4//36;	0 0 0 30 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			
	311/04; 317/46; A 01 N 47/30; /	/ (C 07 D 493/10; 31/:	00; 311:00)			
II. FIELDS	SEARCHED	<u>, , , , , , , , , , , , , , , , , , , </u>				
	Minimum Document	ation Searched 7				
Classification	n System C	lassification Symbols				
IPC ⁴	C 07 D 405/00; C 07 D 30 C 07 D 493/00;	7/00; c 07 D 311/00; c	07 D 317/00;			
	Documentation Searched other th	an Minimum Documentation				
	to the Extent that such Documents (are Included in the Fields Searched				
						
III. DOCU	MENTS CONSIDERED TO BE RELEVANT		Delevent to Claim No. 13			
Category *	Citation of Document, 11 with Indication, where appr	opriate, of the relevant passages 18	Relevant to Claim No. 13			
Y	EP, A 0105735 (UNION CARBIDE) 1 see the whole document	8 April 1984	1-9			
· Y	EP, A, 0036390 (CIBA-GEIGY) 23 see the whole document	September 1981	1-9			
Y	US, A, 3773491 (P.A. CRUICKSHAN see the whole document	(K) 20 November 1973	1-9			
Y	GB, A, 2016010 (SUMITOMO CHEMIC 19 September 1975 see the whole document	CAL COMPANY)	1-9			
		• •	·			
·. ·		र प्राप्त के निर्माण के लिख्यम् । विकास विकास विकास विकास विकास विकास विकास विकास विकास विकास विकास विकास विका स्थापन	-			
"A" do. co. "E" sain filin "L" do wh co. "O" do. "P" do. lat IV. CER	al categories of cited documents: 18 sument defining the general state of the art which is not insidered to be of perficular relevance. lier document but published on or after the international rigidate cument which may throw doubts on priority claim(s) or cited to establish the publication date of another stion or other special reason (as specified) cument referring to an oral disclosure, use, exhibition or ter means cument published prior to the international filing date but or than the priority date claimed TIFICATION Re Actual Completion of the International Search	"T" later document published after to priority date and not in conficited to understand the principle invention." "X" document of particular relevant cannot be considered novel of involve an inventive step. "Y" document of particular relevant cannot be considered to involve document; is combined with one ments, such combination being in the art. "4" document member of the same. Date of Mailing of this International S.	ict with the application but or theory underlying the ce; the claimed invention cannot be considered to cs; the claimed invention an inventive step when the or more other such docupations to a person skilled patent family			
	October 1986	Signature of Authorized Officery	NOV 1986			
1	FUDODERN DATENT OFFICE	M. VAN MOL				

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON

INTERNATIONAL APPLICATION NO:

PCT/JP 86/00398 (SA 1412

This Annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 04/11/86

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

•) ;

Publication date	Patent family member(s)	Publication date
18/04/84	AU-A- 1974083 JP-A- 59082357	05/04/84 12/05/84
23/09/81	JP-A- 56147759 US-A- 4376646 CA-A- 1175436	16/11/81 15/03/83 02/10/84
20/11/73	None	
19/09/79	NL-A- 7901979 FR-A- 2419933 DE-A- 2909828 JP-A- 54122252 AU-A- 4495579 US-A- 4260411 AU-B- 522569 CA-A- 1135710	17/09/79 12/10/79 20/09/79 21/09/79 07/02/80 07/04/81 17/06/82 16/11/82
	date 18/04/84 23/09/81 20/11/73	date member(s) 18/04/84 AU-A- 1974083 JP-A- 59082357 23/09/81 JP-A- 56147759 US-A- 4376646 CA-A- 1175436 20/11/73 None 19/09/79 NL-A- 7901979 FR-A- 2419933 DE-A- 2909828 JP-A- 54122252 AU-A- 4495579 US-A- 4260411 AU-B- 522569

THIS PAGE BLANK (USPTO)