BREVET D'INVENTION

MINISTÈRE DE L'INDUSTRIE

SERVICE

de la PROPRIÉTÉ INDUSTRIELLE

P.V. nº 126.216

Classification internationale:

Nº 1.542.040

C 08 f

Procédés de préparation de polymères élastomères de cyclopentène et nouveaux produits ainsi obtenus.

Société dite: PHILLIPS PETROLEUM COMPANY résidant aux États-Unis d'Amérique.

Demandé le 27 octobre 1967, à 16^h 1^m, à Paris.

Délivré par arrêté du 2 septembre 1968.

(Bulletin officiel de la Propriété industrielle, n° 41 du 11 octobre 1968.)

(Demande de brevet déposée aux États-Unis d'Amérique le 27 octobre 1966, sous le n° 589.855, aux noms de MM. Carl A. Vraneck et William J. Trepka.)

La présente invention se rapporte à la polymérisation du cyclopentène et aux polymères qui en résultent,

La polymérisation du cyclopentène en utilisant un chlorure de molybdène ou de tungstène en relation avec un produit organoaluminique pour donner un polymère linéaire connu sous le nom de polypenténamère est décrit dans la technique [Natta et collaborateurs, Angew. Chem. Internat. Edit., 3, 723, 725 (1964)]. Le système catalytique décrit par Natta produit un polypenténamère ayant une proportion élevée de gel.

C'est un objet de la présente invention de former un polypenténamère essentiellement exempt de gel à partir du cyclopentène. Selon des caractéristiques de la présente invention, le cyclopentène est polymérisé en présence d'un catalyseur qui se forme en mélangeant (1) un pentahalogénure de niobium ou de tantale et (2) un composé organoaluminique, pour donner un polypenténamère essentiellement exempt de gel.

Ce résultat était totalement inespéré puisqu'il est bien connu que les pantahalogénures de vanadium faisant partie des éléments du groupe V en présence d'un composé organoaluminique ne polymériseront pas le cyclopentène [Natta et collaborateurs (référence citée)], et puisque les halogénures des éléments du groupe VI en présence d'un composé organoaluminique donnent un produit contenant du gel.

Les halogénures préférés sont les pentachlorures et les pentabromures de niobium et de tantale et leurs mélanges, de préférence les pentachlorures.

Le composant organoaluminique préféré de ce système catalytique est représenté par la formule R_mAlH_n où R est choisi dans le groupe comprenant des radicaux alkyles, cycloalkyles, aryles et

n'importe laquelle de leur combinaison, contenant de 1 à 20 atomes de carbone; m est un nombre entier de 1 à 3;n est un nombre entier de 0 à 2 et m + n est égal à 3 (ainsi le composant peut être un composé triorganoaluminique ou un hydrure organoaluminique). Des composés convenables comprennent le triméthylaluminium, le triéthylaluminium, le triisobutylaluminium, le tri - n hexylaluminium, le tri(3,5,7 - triéthylnonyl)aluminium, le tri - n - éicosylaluminium, le tricyclopentylaluminium le tricyclohexylaluminium, le triphénylaluminium, le méthyldiphénylaluminium, l'éthyl - bis(3,5 - di - n - heptylphényl) aluminium, le tribenzylaluminium, le tri - 1 - naphtylaluminium, le cyclohexyldiisopropylaluminium, le tri -4 - tolylaluminium, le n - butyldihydroaluminium. le diméthylhydroaluminium, l'éthylméthylhydroaluminium, le diphénylhydroaluminium, le benzyl - n dodécylhydroaluminium, le dicyclohexylhydroaluminium, le méthyl(cyclopentyl)hydroaluminium, le 2,6 - di - n- butyl - 4 - hexylphényldihydroaluminium et le n - amyl(benzyl) hydroaluminium.

Le rapport molaire entre le composé organoaluminique et le pentahalogénure de niobium ou de tantale est de préférence compris entre 0,5:1 et 3:1, de préférence de 1:1 à 2:1. Le rapport molaire des composants catalytiques choisi pour une polymérisation donnée est influencé par des facteurs tels que le pentahalogénure employé, la présence ou l'absence d'un diluant, la température de polymérisation et analogues. Le niveau de catalyseur est basé sur le composé organoaluminique et sera généralement compris entre 15 à 150 millimoles du composé organoaluminique pour 100 g du monomère.

Le procédé selon des caractéristiques de la présente invention peut être réalisé en l'absence ou

8 210693 7

en présence d'un diluant. N'importe quel diluant qui est inerte dans les conditions de la réaction peut être employé. On peut utiliser des hydrocarbures aliphatiques, cycloaliphatiques et aromatiques, contenant de 4 à 10 atomes de carbone. Des exemples de ces hydrocarbures sont le n - pentane, le n-butane, le n-hexane, l'isooctane, le n-décane, le cyclohexane, le cyclopentane, le méthylcyclohexane, le benzène, le toluène et le xylène. De manière surprenante, les systèmes catalytiques selon des caractéristiques de la présente invention sont spécifiques pour la polymérisation du cyclopentène. Il ne se forme pas de polymère lorsqu'on substitue au cyclopentène d'autres composés cycliques non saturés; en conséquence, des hydrocarbures cycliques non saturés tels que le cyclohexène et le cyclooctène conviennent comme diluants. Des produits convenant également comme diluants sont des composés halogénés tels que le chlorobenzène, le tétrachloroéthylène et de cis - 1,2 dichloroéthylène. On peut également utiliser des mélanges de n'importe lesquels de ces diluants. Le temps de polymérisation et la température et la pression peuvent varier beaucoup selon de nombreuses variables. On préfère utiliser une température de polymérisation relativement faible. La température sera généralement comprise entre -70 °C et +30 °C, de préférence -50 °C à + 10 °C. La température peut être modifiée au cours de la polymérisation, si on le désire. Alors que le temps de polymérisation dépendra partiellement de la température, il sera généralement compris entre environ une minute et environ cent heures, de préférence d'une heure à cinquante heures. La pression de polymérisation sera généralement celle qui est suffisante pour maintenir les produits réagissants dans un état sensiblement liquide.

Les polymères préparés selon des caractéristiques de la présente invention peuvent être séparés de la masse de réaction de polymérisation par n'importe quel procédé classique tel que le fractionnement, l'entraînement à la vapeur ou la coagulation. Les polymères séparés peuvent être alors lavés et séchés. Des additifs convenables tels que des agents de renforcement, des antioxydants, des agents de vulcanisation, des accélérateurs de vulcanisation et analogues peuvent être incorporés dans le polymère comme on le désire. Ces polymères peuvent être employés dans beaucoup d'applications pour lesquelles d'autres caoutchoucs synthétiques sont convenables, telles que des bandes de roulement de pneus, des tuyaux, des manchons, des compositions de revêtement, des fibres pouvant être étirées et analogues.

Exemple 1. — Le cyclopentène a été polymérisé en présence de deux systèmes catalytiques différents:

1º Le pentachlorure de niobium avec le triisobutylaluminium, et

2º Le pentachlorure de tantale avec le triisobutylaluminium.

On a réalisé certains essais en l'absence d'un diluant et, dans d'autres, on a employé le cyclohexène comme diluant. On a utilisé dans les essais des quantités variables de composants catalytiques. Le NbCl₅ ou le TaCl₅ a été chargé d'abord sous un courant d'azote sec. La température a été réglée à -- 30 °C et le cyclopentène a été ajouté, suivi du triisobutylaluminium et puis du diluant, lorsqu'on en a utilisé. Les produits réagissants ont été agités à -30 °C pendant quatre heures et puis à 5 °C pendant vingt heures. Chaque mélange de polymérisation a été arrêté avec une solution à 4 % en poids de phényl - β - naphtylamine, la quantité utilisée étant approximativement 2 parties en poids pour 100 parties en poids de monomère chargé dans la polymérisation. Le mélange a été alors dilué avec du toluène et le polymère a été coagulé dans l'alcool isopropylique. Les produits étaient des élastomères et étaient essentiellement exempts de gel. Des résultats sont présentés dans le tableau I.

(Voir tableau page 3)

Le cyclopentène a été polymérisé en utilisant du pentachlorure de molybdène et du triisobutylaluminium dans des conditions semblables à celles employées dans les essais précédents, sauf que le temps à — 30 °C était deux heures, sauf dans le contrôle 5 où il était quatre heures. Le temps à +5 °C était comme indiqué. Les résultats sont présentés dans le tableau II.

(Voir tableau page 3)

Une comparaison des résultats des essais 1-8 du tableau I avec les contrôles 1-5 du tableau II indique qu'un produit contenant une quantité substantielle de gel est produit en utilisant un halogénure de molybdène plus un catalyseur organoaluminique, tandis qu'avec des halogénures de niobium ou de tantale on obtient un polymère essentiellement exempt de gel. En outre, le polymère produit selon des caractéristiques de la présente invention est caractérisé par le fait qu'il a les structures cis et trans suivant le rapport d'environ 1:2. L'insaturation dans les essais où cette propriété a été déterminée était environ 93 % à environ 95 %, bien qu'elle puisse s'abaisser jusqu'à 90 %. Ainsi, l'insaturation cis est généralement d'au moins 30 % et l'insaturation trans d'au moins 60 %. Il est en outre caractérisé par le fait qu'il n'a pas de groupe vinylique ou méthylique détectable.

Exemple 2. — Du cyclopentène a été polymérisé en l'absence d'un diluant dans une série de

TABLEAU I

Essai	1*	2	3	4	5	6	7	8
Cyclopentène, parties en poids Cyclohexène, parties en poids Pentachlorure de niobium, (mhm) Pentachlorure de tantale, (mhm) Triisobutylaluminium (TBA), (mhm) Rapport molaire TBA/ MCl ₅ (M Nb ou Ta) Viscosité inhérente (¹) Gel, % (°) Insaturation, % (°)	100 0 43,9 — 65,9	100 0 43,8 87,6 2:1 3,40 0 94,9	100 162 73,1 — 73,1 1:1 3,86 0	100 324 74,2 — 74,2 1:1 1,61 0	100 0 48 72 1,5:1 1,70 0	100 0 48 96 2:1 1,57 0 94,4	100 0 34,8 104 3:1 0,65 0,95,4	100 243 — 56 56 1:1 2,17 0

(mhm) = Millimoles pour 100 grammes de monomère.

(*) Le spectre infra-rouge sous forme de film a montré l'insaturation cis et trans suivant un rapport d'environ 1 : 2. Aucun groupe vinvilque ou méthvilque n'a été détecté.

(*) 1/10 de gramme de polymère a été placé dans une cage en fil constituée par un tamis dont l'ouverture des malles est 0,177 mm et la cage a été placée dans 100 ml de toluène contenu dans une bouteille de 0,12 litre, à large ouverture. Après être restée à la température ambiante (approximativement 25 °C) pendant 24 heures, la cage a été retirée et la solution a été filitrée à travers un tube d'absorption de soufre de porosité qualité C pour retirer toutes particules solides présentes. On a fait passer la solution résultante à travers un viscosimètre de type dit Medalia supporté dans un bain à 25 °C. Le viscosimètre a été préalablement calibré avec du toluène. La viscosité relative est le rapport entre la viscosité de la solution de polymère et celle du toluène. La viscosité inhérente est calculée en divisant le logatithme népérien de la viscosité relative par le poids de la partie soluble de l'échantillon expérimental.

(*) La détermination du gel a été réalisée en même temps que la détermination de viscosité inhérente. La cage en fil a été a calibrée pour la rétention du toluène afin de corriger le poids de gel gonflé et de déterminer avec précision le poids de gel sec. La cage vide a été immergée dans du toluène et puis on l'a laissée drainer pendant trois minutes dans une bouteille é 0,12 litre fermée, à large ouverture. Un morceau d'étoffe en fil tissé, dur, plié, de 6 mm, au fond la bouteille a supporté la cage eve un minimu de contact. La bouteille contenant la cage a été pesée à 0,02 gramme près durant une période de drainage minima de 3 minutes, après quoi la cage a été retirée et la bouteille a été à nouveau pesée à 0,02 gramme près que la cage contenant l'échantillon été minute du la deux de la cage contenant l'échantillon étérminer le poids de gel gonflé que cette valeur, on trou

TABLEAU II

			•		
Contrôle	1	2	3	4	5
Cyclopentène, parties en poids	100 0 45 1/1 en gel	100 0 45 2/1	100 0 45 3/1 1,33 56	100 195 — 45 3/1 1,98 59	100
Gel, % (*)	1	3	5	19	. 20
		l	l	l .	

⁽¹) Millimoles pour 100 grammes de cyclopentène.
(²) Note 1, tableau I.
(²) Note 2, tableau I.

onze essais dans lesquels le catalyseur était du pentachlorure de niobium et du triisobutylaluminium. Le mode opératoire était le même que celui décrit dans l'exemple 1. La formulation était la suivante:

Cyclopentène, parties en poids	100 38,1-61,1 57,2-93,0 1,5:1
--------------------------------	--

Les produits provenant de ces essais étaient des élastomères. Ils ont été mélangés et les propriétés physiques déterminées (telles qu'indiqué dans les notes 1, 2 et 3 respectivement du tableau I) du mélange étaient comme suit :

Viscosité inhérente	2,61
Gel, %	0
Insaturation, %	92,6

L'analyse dans l'infrarouge indiquait que le produit contenait approximativement deux fois plus de polymère trans que de polymère cis. Il n'y avait pas d'indication de la présence de groupe méthylique ou vinylique.

Le mélange de polymères a été compoundé dans une formulation de matière pour bandes de roulement et on a déterminé les propriétés physiques du vulcanisat. Les résultats sont présentés dans le tableau III.

(Voir tableau colonne ci-contre)

Les données de l'exemple 3 indiquent que les polymères produits selon des caractéristiques de la présente invention conviennent pour être utilisés comme matières pour les pneus.

Les autres monomères cycliques non saturés, le cyclooctène et le cyclooctadiène, ont été soumis aux conditions de polymérisation semblables à celles de l'exemple 1, sauf ce qui est indiqué cidessous. Le catalyseur était un catalyseur utilisant du pentachlorure de niobium et du triisobutylaluminium suivant un rapport molaire 1/1. Les produits réagissants ont été agités à -30 °C pendant quatre heures, à +5 °C pendant 20 heures, à +50 °C pendant 24 heures et à +70 °C pendant 6 heures. On n'a pas formé de polymère dans l'un quelconque de ces essais.

Une comparaison des données indiquées ci-dessus avec celles de l'exemple 1 montre que le système catalytique selon des caractéristiques de la présente invention polymérise sélectivement le cyclopentène à l'exclusion d'autres monomères non saturés cycliques semblables.

La présente invention n'est pas limitée aux

TABLEAU III

Formulation de compoundage	Parties en poids
Mélange de polymères Noir au four à indice d'abrasion élevé Oxyde de zinc Acide stéarique Flexamine (1) Hulle aromatique (Phildrich 5) Soufre Santocure NS (2)	100 50 5 2 1 10 1,75 1,1
Cuit 30 minutes à 152 °C (307 °F) Déformation par compression, % (3)	18,9 70,3 (1 000) 150 59 (106) 66,5 72

(*) Mélange physique contenant 65 % d'un produit de réaction complexe diarylamino-cétone et 35 % de N, N'-di-phényl-p-phénylènediamine.

(*) N-t-butyl-2-benzothiazolesulfénamide.
(*) ASTM D-395-61, procédé B (modifié).
Les dispositifs de compression sont utilisés avec des éléments d'espacement de 8,255 mm pour donner une compression statique pour la boulette de 1,3 cm de 35 %. Le test est réalisé pendant deux heures à 100 °C. plus une période de relàchement pendant une heure à 100 °C.

(*) ASTM D-412-62 T.
(*) ASTM D-945-59 (modifié). Oscillographe Verzley. Le spécimen expérimental est un cylindre circulaire droit de 1,8 cm de diamètre et de 2,5 cm de hauteur.
(*) ASTM D-1706-61. Dispositif dit Shore Durometer, type A.

typė A.

exemples de réalisation qui viennent d'être décrits, elle est au contraire susceptible de variantes et de modifications qui apparaîtront à l'homme de l'art.

RÉSUMÉ

La présente invention concerne:

I. Un polymère élastomère de cyclopentène, vulcanisable au soufre, qui est sensiblement exempt de gel et dans lequel sensiblement toutes les doubles liaisons oléfiniques sont en configuration cis ou trans, au moins 30 % des liaisons étant dans la configuration cis et au moins 60 % des liaisons étant dans la configuration trans.

II. Un vulcanisat au soufre d'un élastomère tel qu'indiqué en I.

III. Un procédé de production d'un polymère tel qu'indiqué en I, dans lequel on produit un polymère selon I en polymérisant du cyclopentène en présence d'un catalyseur qui se forme en mélangeant un pentahalogénure de niobium ou de tantale et un composé ayant la formule R_mAlH_n , dans laquelle R représente un radical alkyle, cycloalkyle ou aryle contenant de 1 à 20 atomes de carbone, ou une combinaison de ces radicaux, m est un nombre entier de 1 à 3, n est un nombre entier de 0 à 2 et m+n est égal à 3.

Un tel procédé peut comporter en outre, pour sa mise en œuvre, les dispositions suivantes prises ensemble ou séparément:

- 1º La polymérisation est effectuée à une température comprise entre 70 et 30 ℃;
- 2º La polymérisation est effectuée à une température comprise entre 50 et + 10 °C;
- 3º La polymérisation est effectuée en présence d'un diluant inerte;
- 4º Le diluant inerte est le cyclohexène, le cyclooctène ou le cyclooctadiène;

- 5° Le rapport molaire entre le composé R_mAlH_n et le pentahalogénure est compris entre 0.5:1 et 3:1;
- 6° Le composé R_mAlH_n est utilisé en quantité comprise entre 15 et 150 millimoles pour 100 g de cyclopentène;
- 7º Le composé R_mAlH_n est le triisobutylaluminium;
- 8° Le pentahalogénure est un pentachlorure de niobium ou de tantale.
- IV. A titre de produits industriels nouveaux, polymères de cyclopentène produits tel qu'indiqué en III ci-dessus.

Société dite : PHILLIPS PETROLEUM COMPANY
Par procuration :

Louis CHEREAU & Pierre Louis CHEREAU