Course Project 2

Maurice

3/4/2022

Overview

Load the ToothGrowth data and perform some basic exploratory data analyses - Provide a basic summary of the data. - Use confidence intervals and/or hypothesis tests to compare tooth growth by supp and dose. - State your conclusions and the assumptions needed for your conclusions.

Load Data

```
# load neccesary libraries
library(ggplot2)
library(datasets)
library(gridExtra)
library(GGally)
# The Effect of Vitamin C on Tooth Growth in Guinea Pigs
data(ToothGrowth)
toothGrowth <- ToothGrowth
toothGrowth$dose <- as.factor(toothGrowth$dose) # convert to factor</pre>
```

Basic Summary of the data

```
str(toothGrowth)
## 'data.frame':
                   60 obs. of 3 variables:
   $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
   \ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 ...
   $ dose: Factor w/ 3 levels "0.5","1","2": 1 1 1 1 1 1 1 1 1 1 ...
summary(toothGrowth)
        len
                   supp
                            dose
          : 4.20
                   OJ:30
                           0.5:20
##
   Min.
   1st Qu.:13.07
                   VC:30
                           1 :20
  Median :19.25
                           2 :20
  Mean
          :18.81
##
   3rd Qu.:25.27
## Max.
          :33.90
```

head(toothGrowth)

```
##
      len supp dose
## 1
      4.2
            VC
                0.5
## 2 11.5
            VC
                0.5
## 3
      7.3
                0.5
      5.8
                0.5
## 4
            VC
## 5
            VC
                0.5
      6.4
## 6 10.0
            VC 0.5
```

table(toothGrowth\$supp, toothGrowth\$dose)

Do some analysis based on Analysis of Variance (ANOVA) $\,$

```
anova.out <- aov(len ~ supp * dose, data=toothGrowth)
summary(anova.out)</pre>
```

```
##
               Df Sum Sq Mean Sq F value
                                            Pr(>F)
## supp
                   205.4
                           205.4
                                  15.572 0.000231 ***
## dose
                2 2426.4
                          1213.2
                                  92.000
                                          < 2e-16 ***
                   108.3
                            54.2
                                   4.107 0.021860 *
## supp:dose
                   712.1
                            13.2
## Residuals
               54
## Signif. codes:
                   0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
```

The results show there is a notable interaction between the length (len) and dosage (dose) (F(1,54)=15.572;p<0.01)Also a very clear effect on length(len) by supplement type (supp) (F(2,54)=92;p<0.01). Last but not least there is a minor interaction between the combination of supplement type (supp) and dosage (dose) compared to the length (len) (F(2,54)=4.107;p<0.05).

TukeyHSD(anova.out)

```
##
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = len ~ supp * dose, data = toothGrowth)
##
## $supp
##
         diff
                    lwr
                              upr
                                       p adj
## VC-OJ -3.7 -5.579828 -1.820172 0.0002312
##
## $dose
##
           diff
                      lwr
                                 upr
                                       p adi
## 1-0.5 9.130
                 6.362488 11.897512 0.0e+00
## 2-0.5 15.495 12.727488 18.262512 0.0e+00
          6.365
                 3.597488 9.132512 2.7e-06
##
## $'supp:dose'
##
                  diff
                              lwr
                                          upr
                                                  p adj
## VC:0.5-0J:0.5 -5.25 -10.048124 -0.4518762 0.0242521
## 0J:1-0J:0.5
                  9.47
                         4.671876 14.2681238 0.0000046
                        -1.258124 8.3381238 0.2640208
## VC:1-0J:0.5
                  3.54
## 0J:2-0J:0.5
                 12.83
                         8.031876 17.6281238 0.0000000
## VC:2-0J:0.5
                 12.91
                         8.111876 17.7081238 0.0000000
## OJ:1-VC:0.5
                 14.72
                         9.921876 19.5181238 0.0000000
## VC:1-VC:0.5
                  8.79
                         3.991876 13.5881238 0.0000210
## OJ:2-VC:0.5
                 18.08
                        13.281876 22.8781238 0.0000000
## VC:2-VC:0.5
                 18.16
                        13.361876 22.9581238 0.0000000
## VC:1-0J:1
                 -5.93 -10.728124 -1.1318762 0.0073930
## 0J:2-0J:1
                  3.36
                        -1.438124 8.1581238 0.3187361
## VC:2-0J:1
                  3.44
                        -1.358124 8.2381238 0.2936430
## OJ:2-VC:1
                         4.491876 14.0881238 0.0000069
                  9.29
## VC:2-VC:1
                         4.571876 14.1681238 0.0000058
                  9.37
## VC:2-0J:2
                  0.08
                        -4.718124 4.8781238 1.0000000
```

The Tukey HSD analysis shows that there are significant differences between each of the groups in supp and dose Only the interactions between VC:0.5-OJ:0.5; VC:1-OJ:0.5; OJ:2-OJ:1; VC:2-OJ:1 and VC:2-OJ:2 are not significant

confint(anova.out)

```
## Tables of means
## Grand mean
##
## 18.81333
##
##
    supp
## supp
            VC
##
      OJ
## 20.66 16.96
##
##
    dose
## dose
##
     0.5
             1
                    2
## 10.60 19.73 26.10
##
##
    supp:dose
##
       dose
## supp 0.5
              1
##
     OJ 13.23 22.70 26.06
##
     VC 7.98 16.77 26.14
```

Conclusions

There are clear indications that both the supplement and the dosage have clear independent effects on the length of teeth. More dose means, on average, longer teeth. Supplement type has a clear influence too, but OJ has a greater average teeth growth in combination with dosages 0.5 and 1 than for the VC supplement, while teeth length for the VC supplement vs the OJ in combination with dosage 2 has no significant effect (almost same mean & same confidence interval)

These assumpionts are based on the following facts:

- that the guinea pigs are repesentative for the population of guinea pigs,
- that dosage and supplement were randomly assigned, and
- that the distribution of the means is normal.