2025 年合肥市高三第一次教学质量检测

数学试题参考答案及评分标准

一、选择题:本题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.C 2.A 3.C 4.A 5.D 6.B 7.C 8.B

二、选择题:本题共 3 小题,每小题 6 分,共 18 分。在每小题给出的选项中,有多项符合题目要求。全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分。

9.AB 10.ABD 11.AC

三、填空题: 本题共 3 小题, 每小题 5 分, 共 15 分。

12.
$$-80$$
 13. $\frac{5}{18}$ 14. $2\sqrt{2}$

四、解答题:本题共 5 小题,共 77 分。解答应写出文字说明、证明过程或演算步骤。15.(13分)

【解析】

(1) 因为 $a+b=2c\cos B$,

所以 $\sin A + \sin B = 2\sin C\cos B$,即

$$\sin(B+C) + \sin B = 2\sin C\cos B$$
, $\mathbb{P}\sin B = \sin(C-B)$

所以C-B=B,或 $C-B+B=\pi$ (舍去)

所以C = 2B.

(2) 由 (1) 知 C = 2B, $A = \pi - 3B$,

所以
$$0 < 2B < \frac{\pi}{2}$$
, $0 < \pi - 3B < \frac{\pi}{2}$, 故 $B \in \left(\frac{\pi}{6}, \frac{\pi}{4}\right)$,

注: 其他解法酌情给分.

16. (15分)

【解析】(1)如图所示,过点 B_1 作 $B_1E // CC_1$,交BC于点E,在正三棱台 $ABC - A_1B_1C_1$ 中,四边形 B_1ECC_1 为平行四边形。

又 $BB_1 = \sqrt{2}$, 所以 $B_1E^2 + BB_1^2 = BE^2$, 即 $B_1E \perp BB_1$.

故CC, ⊥BB, , 同理可得CC, ⊥AA, .

(2)以 AB 的中点 O 为原点,OB,OC 所在直线分别为 x 轴,y 轴,过点 O 且垂直于平面 ABC 的直线为 z 轴,建立如图所示的空间直角坐标系、取线段 AB, 中点 F ,因为 A(-3,0,0) ,

$$B(3,0,0)$$
, $C(0,3\sqrt{3},0)$. $\text{fill } \overline{AB} = (6,0,0)$, $\overline{BC} = (-3,3\sqrt{3},0)$.

由条件可知
$$F\left(0,\frac{\sqrt{3}}{3},\frac{2\sqrt{6}}{3}\right)$$
,则 $\overline{BB_1} = \overline{BF} + \overline{FB_1} = \left(-1,\frac{\sqrt{3}}{3},\frac{2\sqrt{6}}{3}\right)$.

设平面 $AA_{l}B_{l}B$ 的法向量为 $n_{l}=(x,y,z)$,

则
$$\left\{ \overline{AB} \cdot \overrightarrow{n_1} = 0 \atop \overline{BB_1} \cdot \overrightarrow{n_1} = 0 \right\}$$
, 即 $\left\{ -x + \frac{\sqrt{3}}{3}y + \frac{2\sqrt{6}}{3}z = 0 \right\}$, 取 $z = 1$, 则 $y = -2\sqrt{2}$,

数学答案 第1页(共4页)

故
$$\vec{n_1} = (0, -2\sqrt{2}, 1)$$
.

设平面 BB_1C_1C 的法向量为 $n_1 = (m, n, t)$,

则
$$\left\{ \frac{\overline{BC} \cdot \overline{n_2} = 0}{BB_1 \cdot \overline{n_2} = 0} \right\}$$
 即 $\left\{ -3m + 3\sqrt{3}n = 0 - m + \frac{\sqrt{3}}{3}n + \frac{2\sqrt{6}}{3}t = 0 \right\}$, 取 $m = \sqrt{3}$, 则 $n = 1$, $t = \frac{\sqrt{2}}{2}$, 故 $\overline{n_2} = \left(\sqrt{3}, 1, \frac{\sqrt{2}}{2}\right)$.

所以
$$\cos < \overrightarrow{n_1}, \overrightarrow{n_2}> = \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} = \frac{-2\sqrt{2} + \frac{\sqrt{2}}{2}}{\sqrt{8+1} \cdot \sqrt{3+1+\frac{1}{2}}} = -\frac{1}{3}$$
.

注: 其他解法酌情给分.

17. (15分)

【解析】

(1) 函数
$$f(x)$$
 定义域为 $(0,+\infty)$, 且 $a > 0$, $f'(x) = \frac{1}{x} - a - \frac{a}{x^2} = \frac{-ax^2 + x - a}{x^2}$, 令 $g(x) = -ax^2 + x - a$,

当 $1-4a^2 \le 0$,即 $a \ge \frac{1}{2}$ 时, $g(x) \le 0$ 恒成立,则 $f'(x) \le 0$,所以f(x)在 $(0,+\infty)$ 上是单调递减;

当 $1-4a^2>0$,即 $0<a<\frac{1}{2}$ 时,函数g(x)有两个零点: $x_1=\frac{1-\sqrt{1-4a^2}}{2a}$, $x_2=\frac{1+\sqrt{1-4a^2}}{2a}$,当x变化时,f(x),f'(x)的变化情况如下表所示:

2 () 2 () 402014113424						
	х	$(0,x_1)$	x_{i}	(x_1,x_2)	x_2	$(x_2,+\infty)$
	f'(x)	-	0	+	0	-
	f(x)	单调递减	$f(x_1)$	单调递增	$f(x_2)$	单调递减

所以, 当
$$0 < a < \frac{1}{2}$$
时, $f(x)$ 在 $\left(\frac{1-\sqrt{1-4a^2}}{2a}, \frac{1+\sqrt{1-4a^2}}{2a}\right)$ 内单调递增, 在 $\left(0, \frac{1-\sqrt{1-4a^2}}{2a}\right)$

和
$$\left(\frac{1+\sqrt{1-4a^2}}{2a},+\infty\right)$$
上单调递减;

(2) 由 (1) 知, 当
$$0 < a < \frac{1}{2}$$
时, $f(x)$ 有两个极值点 x_1 , $x_2(x_1 < x_2)$,

则 x_1 , x_2 是方程g(x)=0的两个根,由韦达定理,得 $x_1x_2=1$, $x_1+x_2=\frac{1}{a}$. 所以 $0<x_1<1<x_2$,

$$f(x_1) + f(x_2) + f(x_1 + x_2) = f(x_1) + f(\frac{1}{x_1}) + f(\frac{1}{a}) = f(\frac{1}{a})$$

数学答案 第2页(共4页)

(ii)由条件 $x_1 < 0 < x_2$, $x_1 x_2 = \frac{3m^2 + 3}{3k^2 - 1} < 0$, 即 $3k^2 - 1 < 0$,

数学答案 第3页(共4页)

所以 $p_k(n) = \sum_{i=1}^{k} p_i(n-k)$.

注: 其他解法酌情给分.

数学答案 第4页(共4页)