

FPGA_OS_1in_4out 使用文档

主题	FPGA_OS_1in_4out 使用文档
文档号	
创建时间	2019-08-09
最后修改	2019-08-09
版本号	1.0
文件名	FPGA_OS_1in_4out 使用文档.pdf
文件格式	Portable Document Format

目录

→,	FAST 结构介绍	4
<u> </u>	FPGA OS 与 UM 接口定义	4
三、	数据分组结构定义	7
四、	接口分组格式定义	3
五、	数据报文 Metadata 格式定义	3

修改记录

版本号	修改人	日期	备注
1.0	张彦龙	2019-08-09	初始版本

一、 FAST 结构介绍

FAST 结构如图 1 所示。其分为 FPGA_OS 和 UM 两部分。FPGA OS 包括 FPGA OS Ingress、FPGA OS egress 及 FPGA OS CDC 三部分; UM 由用户自己定义。

图 1 FAST 平台结构图

FPGA OS Ingress 部分: 主要用于完成 1)接口及 DMA 数据输入的汇聚及输入调度功能; 2)对接口输入的分组数据封装 FAST 的 Metadata 头。

FPGA OS Egress 部分: 主要用于完成 1) 接口数据输出控制 2) 对接口输出的分组数据解封装 FAST 的 Metadata 头。

FPGA OS CDC 部分: 主要用于完成 CPU 与硬件模块的数据交互及管理控制。管理控制通过 LocalBus 总线方式实现。

二、 FPGA OS 与 UM 接口定义

FPGA OS 内与 UM 的连接的信号图如 2 所示。

图 2 FPGA与 UM 接口定义

接口信号定义及列表

按口信与正义及列衣				
信号名	方向	位宽	描述	
CLK and RESET				
user_clk	Input	1	125Mhz 的输入时钟	
user_reset_n	Input	1	复位信号, 低有效	
FPGA OS Ingress to UM 信号第	定义	3/1 -		
pktin_data_wr	Input	1	报文数据写信号	
pktin_data	Input	134	报文数据	
pktin_data_valid	Input	1	报文数据标志位,1 为有效分组,0	
			为无效分组	
pktin_data_valid_wr	Input	1	报文数据标志位写信号	
pktin_ready	output	1	数据 ready 信号	
UM to FPGA OS Egress 模块	UM to FPGA OS Egress 模块			
pktout_N_data_wr	output	1	输出报文写信号,N为0-3	
pktout_N _data	output	134	输出报文数据,N为0-3	
pktout_N _data_valid	output	1	输出报文标志位,N为0-3	
pktout_N _data_valid_wr	output	1	输出报文标志位写信号,N为0-3	
pktout_N _ usedw[7:0]	input	8	输出数据 FIFO usedw 信号, N 为	
			0-3	
UM to FPGA OS CDC 模块				
localbus_ack_n	output	1	wdata 返回数据有效信号	
localbus_cmd	Input	1	0表示写操作,1表示读操作;	
localbus_cs_n	Input	1	cmd/addr/wdata 等信号有效,表示	
			一次控制操作开始	
localbus_addr	Input	32	访问地址	
localbus_rdata	output	32	从 UM 输出的数据	
localbus_wdata	Input	32	向 UM 写的数据	
UM to FPGA OS 信号定义				
cyc_init	output	1	用于根据调整后的计数器值	
			同步外围时钟计数的有效信	
		1d. 1.1 Mar →	二八八 5 林豆上上七八豆 4 4 000 户	

地址:湖南长沙岳麓区中电软件园 6 栋 303 室

			号
temp_cnt	output	48	用于根据调整后的计数器值
			同步外围时钟计数,[47:17]单
			位为 ms, [16:0]单位为 8ns

接口时序

FPGA OS Ingress to UM 信号时序定义:

操作步骤:

- 1) 在 pktin_ready 输出有效时,即为1时,检测接收分组;
- 2) 当检测到 pktin_data_wr 为 1 时,表示数据分组 pktin_data 输入数据有效:
- 3) 当数据输入到最后一拍时,则 pktin_data_valid_wr 为 1, 输入分组有效 时 pktin_data_valid 为 1, 否则为 0。

UM to FPGA OS Egress 信号时序定义:

操作步骤:

- 1) 在 pktout_usedw 输入值小于 8'd160 时,可以输出分组;
- 2)数据分组输出时即 pktout_data 输出数据时,置 pktout_data_wr 信号为 1:
- 3) 当数据输出到最后一拍时,则 pktout_data_valid 与 pktout_data_valid_wr为1。

FPGA OS CDC to UM localbus 读信号时序定义:

操作步骤:

- 1) CDC 输出读请求 localbus cmd、地址 localbus addr;
- 2) CDC 随之输出片选 localbus cs n, 低有效;
- 3) UM 检测到片选信号为 0,进行读操作、返回读数据 localbus_rdata,等数据稳定之后将 localbus ack n 信号置 0;
- 4) CDC 检测到 localbus_ack_n 信号为 0, 采样数据 localbus_rdata, 撤掉 片选;
- 5) UM 检测到片选信号为 1, 撤掉 localbus ack n 信号;
- 6) CDC 检测到 localbus_ack_n 变为 1, 可以发起下一次操作。

FPGA OS CDC to UM localbus 写信号时序定义:

操作步骤:

- 1) CDC 输出写请求 localbus cmd、localbus addr 地址;
- 2) CDC 随之输出写数据 localbus wdata;
- 3) CDC 输出片选 localbus cs n, 低有效;
- 4) UM 检测到片选信号为 0, 进行写操作, 写操作完成之后将 localbus_ack_n 置 0;
- 5) CDC 检测到 localbus ack n 信号为 0, 撤掉片选;
- 6) UM 检测到片选信号为 1 之后,撤掉 localbus_ack_n 信号;
- 7) CDC 检测到 localbus ack n 信号变为 l 之后,可以发起下一次操作。

三、 数据分组结构定义

输入及输出数据分组包括 Metadata 头部及有效数据分组两部分,格式如图 3 所示,Metadata 在 FAST 报文的前 32 字节携带,每个分组进出 UM 的第

1 拍 16 字节为 Metadata0, 第二拍数据为 Metadata1。

图 3 分组数据传输格式

四、 接口分组格式定义

接口分组(packet)是应用在 FPGA OS 与 UM 接口上的 134bit 的数据格式, 其中高 6 位为控制信息,低 128 位为报文数据。分组的前两拍为 FPGA OS 添加的 32 字节的 Metadata,两拍后的数据为有效分组数据。134 位的数据由 2 位的头尾标识,4 位无效字节数,128 位的有效数据组成。

其中,[133:132]位为报文数据的头尾标识,01 代表报文头部,11 代表报文中间数据,10 代表报文尾部;[131:128]位为 4 位的无效字节数,其中 0000 表示16 个字节全部有效,0001 表示最低一个字节无效,最高15 个字节有效,依次类推,1111 表示最低15 个字节无效,最高一个字节有效。格式如图 4 所示。

带外控制信息			报文数据	
1	33 132	131 128	3 127)
	头尾标识	无效字节数	报文数据	
	01	0000	Metadata0	
	11	0000	Metadata1	
	11	0000	报文前16个字节	
	11	0000	报文第17至32字节	
	•	•	•	
	10	vbyte	报文尾部数据	

图 4 报文分组传输格式

五、 数据报文 Metadata 格式定义

地址:湖南长沙岳麓区中电软件园 6 栋 303 室

Metadata0 格式定义如下:

pktsrc pktdst	分组的来源,0为网络接口输入,1为CPU输入
pktdst	1
Firest	分组目的,0为网络接口输出,1为送 CPU
inport	分组的输入端口号
outtype	00:直接输出,01: 查组播,10,11 保留
outport	直接输出: bitmap 方式输出,查组播表: 为查找索引。
priority	分组优先级
discard	丢弃位
len	包含 Metadata 字段的分组长度
smid	最近一次处理分组的模块 ID
dmid	下一个处理分组的模块 ID
pst	标准协议类型
seq	分组接收序列号
flowid	流 ID
reserve	保留
ts	时间戳
	inport outtype outport priority discard len smid dmid pst seq flowid reserve

Metadata1:为用户预留的 16B 的自定义空间,用户可以根据自己需求,自定义内容及使用。