Assignment3

Anton Linnér

2023-10-04

\section(Random number generation from bivariate EVD) \subsection(Parametric bivariate EV models) In the package evd the nine models and their respective dependence and asymmetry parameters are:

- Logistic. Dependence parameter r between (0,1]. Smaller r implies higher dependence.
- Asymmetrix logistic. Dependence parameter r, as in (symmetric) Logistic. Asymmetry parameters are t₁ and t₂. Indepence if any of t₁, t₂ are 0 or r = 1. For complete dependence t₁ = t₂=1 and r → 0.
- Husler-Reiss. Dependence parameter $\mathbf{r} \in (0, \inf)$. Full dependence as $\mathbf{r} \to \inf$, and independence as $\mathbf{r} \to 0$
- Negative logistic. Dependence parameter r > 0. Higher r implies higher dependence.
- Asymmetric negative logistic. Dependence parameter r > 0 and asymmetry parameters t₁, t₂ ∈ (0, 1].
 Indepence if any of t₁, t₂, r approaches 0. Complete dependence if t₁, t₂ = 1, 1 and r → inf.
- Bilogistic. Parameters α, β . When $\alpha = \beta$ the model is equivalent to logistic with dependence parameter $\mathbf{r} = \alpha$. As in logistic, when $\alpha = \beta = \mathbf{r} \to 0$ the model tends to complete dependence. Independence as either both tends to 1, or one is fix and other tends to 1.
- Negative bilogistic Parameters α, β . When $\alpha = \beta$ the model is equivalent to negative bilogistic with dependence parameter $\mathbf{r} = 1\alpha$. When $\alpha = \beta \to 0$ the model tends to complete dependence. Independence as either both tends to inf, or one is fix and other tends to inf.
- Coles-Tawn. Parameters $\alpha, \beta > (0,0)$. As $\alpha = \beta \to \inf$ the model shows complete dependence. Independence as either both tends to 0, or one is fix and other tends to 0.
- Asymmetric mixed distribution. Parameters α, β fulfill the following conditions: α and $\alpha + 3\beta > 0$, and $\alpha + 2\beta$, $\alpha + \beta \le 1$ As β is fix, the strength of dependence increases with α . Complete dependence is not achievable. Independence as $\alpha = \beta = 0$.

```
sim1 = rbvevd(200,dep=1, model = "hr") #HR
plot(sim1)
```

