Reg. No.	
----------	--

B.Tech. DEGREE EXAMINATION, MAY 2024

Fifth & Sixth Semester

18CSE388T - ARTIFICIAL NEURAL NETWORKS

(For the candidates admitted during the academic year 2018-2019 to 2021-2022)

TRAIT		
	OTO.	•

- (i) **Part A** should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- (ii) Part B & Part C should be answered in answer booklet.

Time	: 3 1	hours				Max. N	/Iark	s: 1	00
			$PART - A (20 \times 1 = 2)$			Marks	BL	со	PO
	1		Answer ALL Que			1	1	1	2
	1.	()	type of organs are responsible for						
			Photo receptor cells		Mechanoreceptor cells				
		(C)	Chemoreceptor cells	(D)	Thermoreceptor cells				
	2.		distinguishes living organism's ne	euron	s from technical neurons.	1	2	1	1
		(A)	Size		Chemical composition				
		(C)	Complexity	(D)	Ability to replicate				
						1		,	2
	3.		component of a neuron is respon	ısible	for receiving signals from other	. 1	2	1	2
		neur		(D)	GO3.64				
		` /	Axon	(B)	SOMA				
		(C)	Dendrites	(D)	Synapse				
	4	Ном	do artificial neural networks mimic 1	hiolo	gical neural networks?	1	2	1	1
	٦.		By using electrical signals		By implementing mathematical				
		(11)	By doing everyour programs	()	models of neurons				
		(C)	By incorporating neurotransmitters	(D)		i			
	5	Пол	are neurons typically represented in	neur	al network diagrams?	1	3	2	2
	٦.		Rectangles		Circles				
		(C)	Triangles	(D)	Squares				
		` ′	-	` ,			_		_
	6.		at is the order of activation, in synchr	ronov	s activation of neurons in a neural	1	2	2	2
			vorks?	(TD)					
			All neurons activate simultaneously						
		(C)	Neurons activate in sequential order	(D)		Ĵ			
					magnitude				
	7.	In as	synchronous activation, how do neuro	ons ac	ctivate?	1	2	2	1
		(A)	Sequentially, one after another	(B)	Simultaneously all at once				
			Randomly, based on input signals	(D)	According to predefined				
					activation another				
	8.		is the function of the input layer i	nan	eural network	1	2	2	1
	ο.		Processing data for output		Adjusting connection weights				
		(C)	Receiving external input signals		Calculating error				
Pa	ige 1	of 4		(-)		MF5&6-	18CSI	E3881	ſ

9.			viding	s both input and target output to the	1	2	3	2
		ork during training.	(D)	I Incompanyigad lagraina				
		Supervised learning		Unsupervised learning				
	(C)	Reinforcement learning	(D)	Self-organizing learning				
10.		is the primary purpose of backpr	opagat	tion in neural networks.	1	2	3	2
	(A)	Initializing network parameters	(B)	Calculating error				
	(C)	Adjusting connection weights	(D)	Activating neurons				
11.	_	factor affects the speed and accumpropagation).	aracy (of propagation in neural networks	1	2	3	2
	•	Learning rate	(B)	Network size				
		Activation function	(D)	Initialization method				
12.		of the following is a variant of badividual weights based on their gra			1	2	3	2
	(A)	Resilient backpropagation	(B)	Stochastic gradient descent				
		Genetic algorithm	(D)	Simulated annealing				
13.		occurs during the growing phase	of an	RRF network	1	2	4	2
13.	$\overline{(\Lambda)}$	New neurons are added to the	e (B)	Existing neurons are removed				
	(A)	hidden layer	(D)	from the hidden layer				
	(C)	Connection weights are adjusted	(D)					
14.	netw	orks.		like networks from feedforward	1	2	4	2
	(A)	connections		Feedforward networks have more hidden layers				
	(C)	Recurrent networks use linear activation functions	ur (D)	Feedforward networks have faster training times				
15.		type of network is a Jordan netw	vork.		1	2	4	2
		Feedforward network		Recurrent network				
		Radial basis function network	(D)	Multilayer perceptron				
16.		is the process of unfolding in tir	ne in r	ecurrent networks.	1	2	4	2
		Adding more hidden layers	(B)	Unrolling the network over				
	(0)	A discovered to the substrate	(D)	multiple time steps				
	(C)	Adjusting the learning rate	(D)	Increasing the number of neurons in the input layer				
17	Ĭn a	art network, what is resonance?			1	2	5	2
17		The process of adjusting connection	on (B)	The state where a neuron becomes				
		weights		active				
	(C)	The calculation error between	en (D)					
		predicted and actual outputs		rate				
18	. Hov	v does learning occur in an art netwo			1	2	5	2
	(A)	Through gradient descend optimization	nt (B)	Through competitive learning and weight adjustment				
	(C)	Through reinforcement learning ar	nd (D)) Through random initialization of				
		reward signals		connection weights	/TES 8-6	19/19	F200	Т

(The learning process in an art network characterized by (A) Increasing learning rate over time (B) Decreasing learning rate over time				
	(C) Dynamic adjustment of learning (D) Constant learning rate rate		. 4	; 2	
	is the primary function of an art networks structure in its task. (A) Clustering input patterns based on (B) Adjusting connection weights dynamically (C) Classifying input patterns into (D) Maximizing the number of predefined categories (C) Classifying input patterns into (D) Maximizing the number of neurons in the network			co i	
	PART – B ($5 \times 4 = 20$ Marks) Answer ANY FIVE Questions	arks B		.0 1	•
21.	Describe the transition from biological neurons to technical neurons in the context of information processing.	4	3	1	2
22.	Compare and contrast synchronous and asynchronous activation in neural networks.	4	3	2	2
23.	Design a single layer perceptron which perform 3-input "OR" logic function.	4	3	2	3
24.	Discuss the gradient optimization procedure in the context of training neural networks.	4	2	3	2
25.	. How do Radial Basis Function (RBF) differ from traditional neurons in terms of their activation function?	4	3	4	2
26	Explain "Unfolding in Time" in terms of recurrent neural networks training.	4	3	4	3
27	7. Illustrate the role of topology function in self organizing maps.	4 Marks	3 RI.	5	
	PART – C (5 × 12 = 60 Marks) Answer ALL Questions	Marks	DL		
28. a	a. Explore the mechanism of light sensing in the eye, focusing on the function of photo receptor cells. How do these cells contribute to visual perception?	12	4	1	2
1	b. Describe the organization and function of the peripheral nervous system and its role in regulating voluntary and involuntary movements. Also explain how it controls the overall functioning of vertebrate nervous system.	12	4	1	2
29.	a. Explain the significance of activation functions in artificial neural networks. How do they contribute to the networks ability to learn complex patterns?	12	4	2	2
	 (OR) b. With a neat sketch and suitable examples explain the feed forward architecture and their respective applications. 	12	3	2	. 2

30. a.	Discuss the concept of learning samples in the context of training artificial neural networks. How are they utilized in different learning paradigms?	12	3	3	2
b.	(OR) Describe the Hebbian learning rule and its significance in neural network training. How does it promote learning based on synaptic activity and input correlations?	12	3	3	2
31. a.	Compare and contrast recurrent perceptron-like networks, Jordan networks and Elman networks in terms of their architectures and information processing capabilities.	12	3	4	2
b.	(OR) Explain the role of evolutionary algorithms in training neural networks. How do these algorithms differ from traditional gradient-based optimization techniques?	12	3	4	3
32. a.	Explain the concept of unsupervised learning network paradigms. How do they differ from supervised learning paradigms and what are some typical applications of unsupervised learning networks?	12	3	5	2
b.	(OR) Describe the learning process of an Adaptive Resonance Theory (ART) network. How does the network achieve resonance, and what role does the learning mechanism play in stabilizing category representations?	12	3	5	2

* * * *