Discrete Mathematics: Lecture 4. Proof

proofs

- a proof is a valid argument that establishes the truth of a mathematical statement
- an axiom is a statement we assume to be true without proof
 ex) when x and y are real number, x + y is a real number
- a theorem is a statement that has been proven to be true (using axiom)
 ex) Pythagorean theorem
- a lemma is a small theorem, which can be used to prove theorem
- a corollary is a theorem that can be established directly from a theorem
- a conjecture is a statement whose truth value has not been proven

proofs

- direct proofs
- proof by contraposition
- vacuous proofs
- trivial proofs
- proof by contradiction
- proof by cases
- existence proofs

direct proof

for direct proof of a conditional statement $p \longrightarrow q$,

- assume that p is true in the first step.
- use rules of inference in the subsequent steps.
- show q must be true

theorem: "If n is an odd integer, then n² is odd"

proof: by the definition of an odd integer, n = 2k + 1, where k is some integer

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

we can conclude that n² is an odd integer by the definition of odd integer.

proof by contraposition

show
$$\neg q \longrightarrow \neg p$$
 to prove $p \longrightarrow q$

theorem: if n is an integer and 3n+2 is odd, then n is odd

proof: if n is even, 3n+2 is even when n = 2k, 3n+2 = 3(2k)+2 = 2(3k+1)

Р	q	$p \longrightarrow q$	٦р	ΡŢ	¬q →
Т	Η	Т	F	Щ	Т
Т	F	F	F	Т	F
F	Т	Т	Т	F	Т
F	F	Т	Т	Т	Т

vacuous proofs

show p is false to prove $p \longrightarrow q$

Show that the proposition P(0) is true, where P(n) is "If n>1, then $n^2>n$ " and the domain consists of all integers.

P(0): if 0 > 1, then $0^2 > 0$

since premise 0>1 is false, P(0) is true

trivial proofs

show q is true to prove $p \longrightarrow q$

Let P(n) be "If a and b are positive integers with $a \ge b$, then $a^n \ge b^n$," where the domain consists of all nonnegative integers. Show that P(0) is true

P(0): if $a \ge b$ (a > 0, b > 0), then $a^0 \ge b^0$

Because $a^0 = b^0 = 1$, the conclusion is true

Thus, P(0) is true

proof by contradiction

to prove a statement p is true, show that $\neg p \longrightarrow (q \land \neg q)$ is true

prove that $\sqrt{2}$ is irrational by giving a proof by contradiction

p: $\sqrt{2}$ is irrational

 \neg p: $\sqrt{2}$ is rational

Let's show that assuming ¬ p is true leads to a contradiction

- if $\sqrt{2}$ is rational, $\sqrt{2} = a/b$, where a and b are integers, $b \neq 0$, and a and b have no common factors.
- if both sides of the equation are squared, $2 = a^2/b^2$, which can be $2b^2 = a^2$
- because a is an even number, a=2c for some integer c
- since $2b^2 = 4c^2$, $b^2 = 2c^2$
- since both a and b are even numbers, they have a common factor, which lead to the contradiction
- thus, $\sqrt{2}$ is irrational

proof by cases

$$\begin{bmatrix} (p_1 \lor p_2 \lor ... \lor p_n) \longrightarrow q \end{bmatrix} \longleftrightarrow \begin{bmatrix} (p_1 \longrightarrow q) \land (p_2 \longrightarrow q) \land ... \land (p_n \\ \longrightarrow q) \end{bmatrix}$$

prove that if n is an integer, then, $n^2 \ge n$

- case I: when $n = 0, 0 \ge 0$, which is true
- case2: when $n \ge 1$, $n \cdot n \ge n \cdot 1$ by multiplying n > 0, which is true
- case3: when $n \le -1$, $n^2 \ge n$ is true since is $n^2 \ge 0$

existence proofs

constructive existence proofs to prove $\exists x \ P(x)$, find a such that P(a) is true

show that there is a positive integer that can be written as the sum of cubes of positive integers in two different ways

$$1729 = 10^3 + 9^3 = 12^3 + 1^3$$

existence proofs

nonconstructive existence proofs

show that the negation of the existential quantification implies a contradiction

show that it is not possible that all the cases are false

show that there exist irrational numbers x and y such that x^y is rational

 $x = \sqrt{2}$, $y = \sqrt{2}$, which are irrational

if $x^y = \sqrt{2}^{\sqrt{2}}$ is rational, we have irrational number x, y such that x^y is rational

if $\sqrt{2}$ is irrational, $x = \sqrt{2}$ $\sqrt{2}$, $y = \sqrt{2}$, $x^y = (\sqrt{2}$ $\sqrt{2})$ $\sqrt{2} = \sqrt{2}$ $\sqrt{2} = 2$, which is rational

The Halting problem

- The halting problem was the first mathematical function proven to have no algorithm that computes it! We say, it is uncomputable.
- The function is Halts(P, I) := "Program P, given input I, eventually terminates."
- Theorem: Halts is uncomputable!
 - I.e., There does not exist any algorithm A that computes Halts correctly for all possible inputs.

Its proof is thus a non-existence proof.

Corollary: General impossibility of predictive analysis of arbitrary computer programs.

The Halting problem

Proof

- Given any arbitrary program H(P, I),
- Consider algorithm Breaker is defined as:

```
procedure Breaker (P: a program)
halts := H(P, P)
if halts then while T begin end
```

- Note that Breaker (Breaker) halts iff H(Breaker , Breaker) = F
- So H does not compute the function Breaker!