Formation of Quadratic and Theory of Equations

Quadratic Equations

$$\alpha + \beta = \frac{-b}{a}$$

$$\alpha\beta = \frac{c}{a}$$

$$|\alpha - \beta| = \frac{\sqrt{D}}{|a|}$$

Sameer Chincholikar B.Tech, M.Tech - IIT-Roorkee

- **⊘ 10+** years Teaching experience
- Taught 1 Million+ Students
- **100+** Aspiring Teachers Mentored

Q Search

livedaily.me/jee

Unacademy Subscription

- **+** LIVE Polls & Leaderboard
- **+ LIVE Doubt** Solving
- **+ LIVE** Interaction

Performance Analysis

Weekly Test Series DPPs & Quizzes

♣ India's **BEST** Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the **BEST**

Top Results 🚡

99.95

Ashwin Prasanth 99.94

Tanmay Jain 99.86

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Aravindan K Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

Vaishnovi Arun 99.58

Devashish Tripathi 99.52

Maroof 99.50

Tarun Gupta 99.50

Siddharth Kaushik 99.48

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

Shrish 99.28

Yash Bhaskar 99.10

99.02

Avush Kale 98.85

Ayush Gupta 98.67

Megh Gupta 98.59

Naman Goyal 98.48

MIHIR PRAJAPATI 98.16

LET'S BEGIN!!

Formation of Quadratic Equation

Formation of Quadratic Equation

A quadratic equation whose roots are α and β , is

i.e. x^2 - (sum of roots) x + (product of roots) = 0

If (α, β) are the roots of the quadratic equation $ax^2 + bx + c = 0$ then find the quadratic equation whose roots are $(2\alpha, 2\beta)$

$$an^{2}+bn+c=0; (\alpha,\beta) \Rightarrow \int_{\alpha+\beta} x+\beta = \frac{-b}{a}$$

$$\alpha\beta = \frac{c}{a}$$
New S_{3}^{2} :
$$Sum S_{3} = 2\alpha + 2\beta = 2(\alpha+\beta) = \left(-\frac{2b}{a}\right)$$

$$Photo G_{3} = (2\alpha)(2\beta) = G_{3}(\alpha\beta) = G_{4}(\alpha\beta) = G_{4}(\alpha\beta)$$

Tiee

The new Eg 1 ks.

$$\pi^{2} \left(-\frac{25}{a} \right) \pi + \frac{4C}{a} = 0$$

$$ax^{2} + 26x + 460 = 0$$

M-2: (α,β) are shorts of $an^2 + bn + c = 0$

$$\chi = 2 \times$$

$$\propto = \frac{\pi}{2}$$

$$=) a \left(\frac{\chi}{2} \right)^2 + b \left(\frac{\chi}{2} \right) + c = 0$$

Let α and β , be the roots of the quadratic equation $ax^2 + bx + c = 0$, c ≠ 0. Find the quadratic equation whose roots are

$$\frac{1-\alpha}{\alpha}$$
 and $\frac{1-\beta}{\beta}$

$$=) |\alpha \alpha^2 + b \alpha + (= 5)$$

Now.
$$\chi = \frac{1-\alpha}{\alpha}$$

$$\chi = \frac{1}{\alpha} - 1$$

$$\frac{1}{\alpha} = \chi + 1$$

$$\chi = \chi + 1$$

$$\frac{use in 50^{7} (D)}{a(\frac{1}{n+1})^{2} + b(\frac{1}{n+1}) + c = 0}$$

$$\frac{a(\frac{1}{n+1})^{2} + b(\frac{1}{n+1}) + c(\frac{1}{n+1})^{2} = 0}{cn^{2} + (b+2c)n + (a+b+c) = 0}$$

If (α, β) are the roots of the quadratic equation $ax^2 + bx + c = 0$ then find the quadratic equation whose roots are $\begin{pmatrix} \alpha & \beta \\ \overline{\beta} & \alpha \end{pmatrix}$

$$Sum = \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

$$= \frac{(\alpha + \beta)^{2} - 2(\alpha \beta)}{\alpha \beta}$$

$$= \frac{(\alpha + \beta)^{2} - 2(\alpha \beta)}{\beta}$$

$$=$$

jee

$$\pi^2 - \left(\frac{b^2 - 2ac}{ac}\right)\pi + 1 = 0$$

$$\frac{M-2}{3} = \left(\frac{x^2}{x^3}, \frac{3}{x^3}\right) = \left(\frac{x^2}{x^3}, \frac{3}{x^3}\right)$$

$$= \left(\frac{x^2}{x^3}, \frac{3}{x^3}\right)$$

$$\mathcal{R} = \frac{\alpha^2}{(C_{1}\alpha)}$$

$$\alpha = \frac{C}{C}$$

$$\alpha = \frac{C}{C}$$

Now i

$$a x^{2} + b x + c = 0$$

$$a \left(\frac{x^{2} + 2x + 1}{x^{2}} \right)$$

$$a \left(\frac{x^{2} + 2x$$

jee

If $\alpha \neq \beta$, but $\alpha^2 = 5\alpha - 3$, $\beta^2 = 5\beta - 3$, then the equation whose roots are α / β and β / α is:

A.
$$x^2 - 5x - 3 = 0$$

$$3x^2 - 19x + 3 = 0$$

C.
$$3x^2 - 12x - 3 = 0$$

D. None of these

$$\int x^{2} - 5x + 3 = 0$$

$$\int x^{2} - 5x + 3 = 0$$

$$\Rightarrow \begin{cases} \alpha & \beta \text{ are soots } \beta \\ n^2 - 5n + 3 = 0 \end{cases}$$

Sum =
$$\left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right) = \frac{\alpha^2 + \beta^2}{\alpha \beta} = \frac{(\alpha + \beta)^2 - 2\alpha \beta}{(\alpha \beta)}$$

$$Phod = \left(\frac{\alpha}{\beta}\right)\left(\frac{\beta}{\alpha}\right) = 1$$

The quadratic equation $x^2 + mx + n = 0$ has roots which are twice those of $x^2 + px + m = 0$ and m, n and $p \neq 0$. Find the value of n/p.

$$\Rightarrow x^{2} + mx + n = 0, (2\alpha, 2\beta)$$

$$= x^{2} + px + m = 0, (\alpha, \beta)$$

$$= x^{2} + px + m = 0, (\alpha, \beta)$$

$$= x^{2} + (2\alpha, 2\beta)$$

$$= x^{2} + (2\alpha, 2\beta$$

But 97 with mots $(2\alpha, 2\beta)$ is $27 + m\pi + n = 0$

on compaling Ent & D.

$$W = 7b = 3b = 4M$$

$$W = 5b = 3b = 4M$$

$$W = 8$$

If α , β are the roots of equation, $x^2 - 2x + 3 = 0$, find the equation whose **roots** are α^3 - $3\alpha^2$ + 5α - 2 and β^3 - β^2 + β + 5

jee

$$\begin{cases} \alpha^{2} - 2\alpha + 3 = 0 \\ \beta^{2} - 2\beta + 3 = 0 \end{cases}$$

$$\frac{\chi^{2}-2\chi+3=0}{\chi^{2}-2\chi+3=0}, \quad (\chi_{1}\beta) = \frac{1000}{\chi^{3}-3\chi^{2}+5\chi-2}$$

$$(\chi_{1}\beta) = \chi_{2}\beta+3=0$$

$$(\chi_{2}\beta) = \chi_{1}\beta+3\chi=0$$

$$(\chi_{3}\beta) = \chi_{1}\beta+3\chi=0$$

$$(\chi_{1}\beta) = \chi_{2}\beta+3\chi=0$$

$$\frac{Now}{\beta^{3} - \beta^{2} + \beta + 5}$$

$$(2\beta^{2} - 3\beta) - \beta^{2} + \beta + 5$$

$$\beta^{2} - 2\beta + 5$$

$$-3 + 5 = (2)$$

Theory of Equations (Relation between roots and coefficients)

1. Quadratic Equation

$$\sum \alpha = \alpha + \beta = -\frac{5}{a} + 1$$

$$\sum \alpha \beta = \alpha \beta = \frac{1}{a} + \frac$$

2. Cubic Equation

$$\alpha + \beta + Z = -\frac{6}{a}$$

$$\alpha \beta + \beta \gamma + \gamma \alpha = \frac{\zeta}{\alpha} - \frac{\zeta}{2}$$

$$x \beta \gamma = -\frac{d}{a} - 3$$

$$\leq \alpha = -\frac{b}{a}$$

$$\leq \alpha \beta = \frac{C}{a}$$

If $2x^3 + mx^2 - 13x + n = 0$ has roots 2 and 3, then the value of m and n

$$(\alpha, 2, 3)$$

$$(\alpha)(1)(3) = -\frac{n}{2}$$

$$S \propto = -2S =) \propto = -S$$

$$\frac{5}{2} = -\frac{M}{2}$$

$$\int_{0}^{2} (2)^{3} + m(2)^{2} - 13(2) + n = 0$$

$$\int_{0}^{2} (2)^{3} + m(2)^{2} - 13(3) + n = 0$$

$$\frac{5}{5} \times 6 = -\frac{5}{5}$$

× 6 = - <u>~</u>	> 50he: (m = ?
$\chi = \chi$	0-0
	(1, 1, 2, 3)

3. Equation of degree 'n'

If α_1 , α_2 , α_3 , α_n are the roots of the equation;

$$f(x) = a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \dots + a_{n-1}x + a_n = 0$$

where a_0 , a_1 , a_n are all real & $a_0 \neq 0$ then,

$$a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + - - - + a_n = 0$$

has loots,
$$\alpha, \alpha_2, \alpha_3 - - - \alpha_n$$

$$a_0 x^{n} + a_1 x^{n-1} + a_2 x^{n-2} + - - - + a_n$$

$$=Q(n-\alpha_1)(n-\alpha_2)(n-\alpha_3)---(n-\alpha_n)$$

$$x' + \left(\frac{a_1}{a_0}\right) x^{n-1} + \left(\frac{a_2}{a_0}\right) x^{n-1} + \dots + \left(\frac{a_n}{a_0}\right)$$

$$= \chi^{n} - (\alpha_{1} + \alpha_{2} - \cdots + \alpha_{N}) \chi^{n-1} + (\leq \alpha_{1} \alpha_{2}) \chi^{n-2}$$

2. Equation of degree 'n'

If α_1 , α_2 , α_3 , α_n are the roots of the equation;

$$f(x) = a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \dots + a_{n-1}x + a_n = 0$$

where $a_0, a_1, \dots a_n$ are all real & $a_0 \neq 0$ then,

$$\sum \alpha_1 = -\frac{a_1}{a_0}$$

$$\sum \alpha_1 \alpha_2 = + \frac{a_2}{a_0}$$

$$\sum \alpha_1 \alpha_2 \alpha_3$$

$$\alpha_1 \alpha_2 \alpha_3 \dots \alpha_n = (-1)^n \frac{a_n}{a_0}$$

If α , β , γ are the roots of the cubic $x^3 + qx + r = 0$ then find the equation

whose roots are $\alpha + \beta$, $\beta + \gamma$, $\gamma + \alpha$.

$$(-n)^{3} + 2(-n) + 2 = 0$$

$$-n^{3} - 2n + 2 = 0$$

$$n^{3} + 2n - 2 = 0$$

If α , β , γ are the roots of the cubic $x^3 + qx + r = 0$ then find the equation whose roots are $\alpha\beta$, $\beta\gamma$, $\gamma\alpha$.

H.W

If $x^2 - 3x + 2$ is one of the factors of the expression $x^4 - px^2 + q$, then:

A.
$$p = 4, q = 5$$

C.
$$p = -5$$
, $q = -4$

B.
$$p = 5, q = 4$$

#JEELiveDaily Schedule

Namo Sir | Physics

6:00 - 7:30 PM

Ashwani Sir | Chemistry

7:30 - 9:00 PM

Sameer Sir | Maths

9:00 - 10:30 PM

12th

Jayant Sir | Physics

1:30 - 3:00 PM

Anupam Sir | Chemistry

3:00 - 4:30 PM

Nishant Sir | Maths

4:30 - 6:00 PM

livedaily.me/jee

Unacademy Subscription

- **+** LIVE Polls & Leaderboard
- **+ LIVE Doubt** Solving
- + LIVE Interaction

Performance Analysis

- Weekly Test Series
- DPPs & Quizzes

♣ India's **BEST** Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the **BEST**

Top Results 🚡

Adnan

99.95

Ashwin Prasanth 99.94

Tanmay Jain 99.86

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Aravindan K Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

Vaishnovi Arun 99.58

Devashish Tripathi 99.52

Maroof 99.50

Tarun Gupta 99.50

Siddharth Kaushik 99.48

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

Shrish 99.28

Yash Bhaskar 99.10

99.02

Avush Kale 98.85

Ayush Gupta 98.67

Megh Gupta 98.59

Naman Goyal 98.48

MIHIR PRAJAPATI 98.16

Step 1

IIT JEE BUMPER OFFER

12 MONTHS

2 SUBSCRIPTION FREE TILL IIT JEE 2022
MONTHS

24 MONTHS

3 SUBSCRIPTION FREE TILL IIT JEE 2023

ON POPULAR DEMAND WE ARE BACK

ALL STARS BATCH FOR JEE MAIN 2021

Batch Starting from 9th June

EMERGE 3.0 BATCH

JEE Main & Advanced 2023 Started on 12th May

All Stars Batch: JEE Main 2021

Upcoming Batches in June

Evolve Batch (Class 12th): JEE Main & Advanced 2022 Starts on 2nd June 2021

Emerge Batch (Class 11th): JEE Main & Advanced 2023 Starts on 8th June 2021

Evolve Batch (Class 12th): JEE Main & Advanced 2022 Starts on 9th June 2021

Starts on 9th June 2021

Emerge Batch (Class 11th): JEE Main & Advanced 2023 Starts on 16th June 2021

INDIA'S BIGGEST WEEKLY SCHOLARSHIP TEST

SCAN NOW TO ENROLL

For IIT-JEE Aspirants

Enroll for Free

Win Scholarship from a pool of

₹ 4 Crore
Terms and conditions apply

Take it live from android

IIT-JEE COMBAT

Every Sunday at 11 AM

SAMEERLIVE

Thank you

#JEE Live Daily

unacademy

Download Now!