Mechanics M3 Mark scheme

Question	Scheme	Marks
1	$(30^{\circ} \text{ or } \theta \text{ for the first 3 lines})$	
	$R\sin 30^\circ = mg$	M1 A1
	$R\cos 30^\circ = m(r\cos 30^\circ)\omega^2$	M1 A1 A1
	$\omega^2 = \frac{R}{mr} = \frac{g}{r\sin 30}$	DM1
	$\omega = \sqrt{\frac{2g}{r}}$	A1
	Time = $\frac{2\pi}{\omega} = 2\pi \sqrt{\frac{r}{2g}} = \pi \sqrt{\frac{2r}{g}}$ *	A1 cso
		(8)
	Alternative:	
	Resolve perpendicular to the reaction:	
	$mg\cos 30 = m \times rad \times \omega^2 \cos 60$	M2 A1 (LHS) A1 (RHS)
	$= mr \cos 30\omega^2 \cos 60$	A1
	Obtain ω	M1 A1
	Correct time	A1
		(8)
		(8 marks)

(8 marks)

Notes:

M1: Resolving vertically 30° or θ

A1: Correct equation 30° or θ

M1: Attempting an equation of motion along the radius, acceleration in either form 30° or θ Allow with r for radius.

A1: LHS correct 30° or θ

A1: RHS correct, 30° or θ but not r for radius.

DM1: Obtaining an expression for ω^2 or for v^2 and the length of the path 30° or θ Dependent on both previous M marks.

A1: Correct expression for ω Must have the numerical value for the trig function now.

A1cso: Deducing the GIVEN answer.

Question	Scheme	Marks
2(a)	$F = \frac{K}{x^2}$	
	$x = R \Rightarrow F = mg$ $\therefore mg = \frac{K}{R^2}$	M1
	$K = mgR^2$ *	A1
		(2)
(b)	$\frac{mgR^2}{x^2} = -mv\frac{dv}{dx}$	M1
	$g\int \frac{R^2}{x^2} \mathrm{d}x = -\int v \mathrm{d}v$	
	$-g\frac{R^2}{x} = -\frac{1}{2}v^2 (+c)$	dM1 A1ft
	$x = 3R, v = V \Rightarrow -g\frac{R^2}{3R} = -\frac{1}{2}V^2 + c$	M1
	$c = -\frac{Rg}{3} + \frac{1}{2}V^2$	A1
	$x = R \Rightarrow \frac{1}{2}v^2 = -\frac{Rg}{3} + \frac{1}{2}V^2 + g\frac{R^2}{R}$	M1
	$v^2 = V^2 + \frac{4Rg}{3}$	
	$v = \sqrt{V^2 + \frac{4Rg}{3}}$	A1 cso
		(7)

(9 marks)

Notes:

(a)

M1: Setting F = mg and x = R

A1: Deducing the GIVEN answer

(b)

M1: Attempting an equation of motion with acceleration in the form $v \frac{dv}{dx}$. The minus sign may be missing.

dM1: Attempting the integration.

A1ft: Correct integration, follow through on a missing minus sign from line 1, constant of integration may be missing.

M1: Substituting x = 3R, v = V to obtain an equation for c

A1: Correct expression for c.

M1: Substituting x = R and their expression for c.

A1: Correct expression for v, any equivalent form.

Question	Scheme	Marks
3(a)	$\frac{\mathrm{d}v}{\mathrm{d}t} = -2\left(t+4\right)^{-\frac{1}{2}}$	M1
	$v = -\int 2(t+4)^{-\frac{1}{2}} dt$	
	$v = -4(t+4)^{\frac{1}{2}} (+c)$	dM1 A1
	$t = 0, v = 8 \Longrightarrow c = 16$	M1
	$v = 16 - 4(t+4)^{\frac{1}{2}}$ (m s ⁻¹) *	A1 cso
		(5)
(b)	$v = 0 16 = 4(t+4)^{\frac{1}{2}}$	M1
	16 = t + 4 $t = 12$	A1
	$x = 4\int \left(4 - \left(t + 4\right)^{\frac{1}{2}}\right) dt$	
	$x = 4\left(4t - \frac{2}{3}(t+4)^{\frac{3}{2}}\right) (+d)$	M1 A1
	$t = 0, \ x = 0 \ d = 4 \times \frac{2}{3} \times 4^{\frac{3}{2}} = \frac{64}{3}$ oe	A1
	$t = 12$ $x = 4\left(4 \times 12 - \frac{2}{3} \times 16^{\frac{3}{2}}\right) + \frac{64}{3} = 42\frac{2}{3}$ (m) oe eg 43 or better	dM1 A1
		(7)
		(12 marks)

Notes:

(a)

M1: Attempting an expression for the acceleration in the form $\frac{dv}{dt}$; minus may be omitted.

DM1: Attempting the integration

A1: Correct integration, constant of integration may be omitted (no ft)

M1: Using the initial conditions to obtain a value for the constant of integration

A1: cso. Substitute the value of c and obtain the final GIVEN answer

(b)

M1: Setting the given expression for v equal to 0

A1: Solving to get t = 12

M1: Setting $v = \frac{dx}{dt}$ and attempting the integration wrt t. At least one term must clearly be integrated.

A1: Correct integration, constant may be omitted.

Question 3 notes continued

- M1: Substituting t = 0, x = 0 and obtaining the correct value of d. Any equivalent number, inc decimals.
- **dM1:** Substituting their value for *t* and obtaining a value for the required distance. Dependent on the second M mark.
- **A1:** Correct final answer, any equivalent form.

Question	Scheme	Marks
4(a)	Energy to top: $\frac{1}{2} \times 3m \times u^2 - \frac{1}{2} \times 3mv^2 = 3mga$	M1 A1
	NL2 at top: $T + 3mg = 3m\frac{v^2}{a}$	M1 A1
	$T = 3m\frac{u^2}{a} - 6mg - 3mg$	dM1
	$T \geqslant 0 \Rightarrow \frac{u^2}{a} \geqslant 3g$	M1
	$u^2 \geqslant 3ag$	A1 cso
		(7)
(b)	Tension at bottom:	
	$\frac{1}{2} \times 3m \times V^2 - \frac{1}{2} \times 3mu^2 = 3mga$	M1
	$T_{\text{max}} - 3mg = 3m\frac{V^2}{a}$	M1
	$T_{\text{max}} = 3mg + 6mg + 3m\frac{u^2}{a}$	A1
	$T_{\min} = 3m\frac{u^2}{a} - 9mg$	
	$9mg + 3m\frac{u^2}{a} = 3\left(3m\frac{u^2}{a} - 9mg\right)$	dM1
	$u^2 = 6ag^*$	A1 cso
		(5)
	(12	morks)

(12 marks)

Notes:

(a)

M1: Attempting an energy equation, can be to a general point for this mark. Mass can be missing but use of $v^2 = u^2 + 2as$ scores M0

A1: Correct equation from A to the top.

M1: Attempting an equation of motion along the radius at the top, acceleration in either form.

A1: Correct equation, acceleration in form $\frac{v^2}{r}$

dM1: Eliminate v^2 to obtain an expression for T dependent on both previous M marks.

M1: Use $T \ge 0$ at top to obtain an inequality connecting a, g and u

A1: Re-arrange to obtain the GIVEN answer.

Question 4 notes continued

(b)

M1: Attempting an energy equation to the bottom, maybe from A or from the top.

M1: Attempting an equation of motion along the radius at the bottom.

A1: Correct expression for the max tension.

dM1: Forming an equation connecting *their* tension at the top with *their* tension at the bottom. If the 3 is multiplying the wrong tension this mark can still be gained. Dependent on both previous M marks.

A1: cso. Obtaining the GIVEN answer.

Question	Scheme	Marks
5(a)	$T = \frac{20e}{2} = \frac{15(1.8 - e)}{1.2}$	M1A1
	2 1.2	
	$10e \times 1.2 = 15(1.8 - e)$	A 1
	e=1	A1 A1cso
	$AO = 3 \mathrm{m}$	
(b)	20(1 x) 15(0 9 + x)	(4) M1
	$0.5\ddot{x} = \frac{20(1-x)}{2} - \frac{15(0.8+x)}{1.2}$	A1
	$\ddot{x} = -45x$ \therefore SHM	A1 A1
	x = -45x Shivi	cso
		(4)
(c)	String becomes slack when $x = (-)0.8$ (allow wo sign due to symmetry)	B1
	$v^2 = \omega^2 \left(a^2 - x^2 \right)$	
	$v^2 = 45(1 - 0.8^2)$ (= 16.2)	M1 A1 ft
	$v = 4.024 \text{ m s}^{-1} \text{ (4.0 or better)}$	A1ft
		(4)
(d)	$\frac{1}{2} \times \frac{20y^2}{2} - \frac{1}{2} \times \frac{20 \times 1.8^2}{2} = \frac{1}{2} \times 0.5 \times 16.2$ ft on v	M1 A1
		A1 ft
	$20y^2 - 64.8 = 16.2$	
	$y^2 = 4.05$ $y = 2.012$	A1
	Distance $DB = 5 - 4.012 = 0.988$ m (accept 0.99 or better)	A1ft
	Alternative	
	0.5a = -10(1.8 + x)	
	$v \frac{\mathrm{d}v}{\mathrm{d}x} = -36 - 10x$	
	$\int v \mathrm{d}v = -\int (36 + 10x) \mathrm{d}x$	
	$\frac{v^2}{2} = -36x + 5x^2 + c$	M1 A1
	$x = 0, \ v = \frac{9\sqrt{5}}{5} \therefore \ c = 8.1$	A1
	Then $v = 0$ etc	M1 A1
		(5)
	(1	7 marks)

Question 5 continued

Notes:

(a)

M1: Attempting to obtain and equate the tensions in the two parts of the string.

A1: Correct equation, extension in AP or BP can be used or use OA as the unknown.

A1: Obtaining the correct extension in either string (ext in BP = 0.8 m) or another useful distance.

A1: cso. Obtaining the correct GIVEN answer.

(b)

M1: Forming an equation of motion at a general point. There must be a difference of tensions both with the variable. May have m instead of 0.5 Accel can be a.

A1 A1: Deduct 1 for each error, m or 0.5 allowed, acceleration to be \ddot{x} now.

A1: cso Correct equation in the required form, with a concluding statement; *m* or 0.5 allowed.

Question 5 notes continued

(c)

B1: For $x = \pm 0.8$ Need not be shown explicitly.

M1: Using $v^2 = \omega^2 (a^2 - x^2)$ with *their* (numerical) ω and their x

A1ft: Equation with correct numbers ft their ω

A1ft: Correct value for v 2sf or better or exact.

(d)

M1: Attempting an energy equation with 2 EPE terms and a KE term.

A1: 2 correct terms may have (1.8+x) instead of y.

A1ft: Completely correct equation, follow through their v from (c)

A1: Correct value for distance travelled after PB became slack. x = 0.21

A1ft: Complete to the distance *DB*. Follow through their distance travelled after *PB* became slack.

Question	Scheme	Marks
6(a)	$Vol = \pi \int_0^2 \left(x^2 + 3\right)^2 dx$	M1
	$= \pi \int_0^2 \left(x^4 + 6x^2 + 9 \right) dx$	
	$=\pi \left[\frac{1}{5}x^5 + 2x^3 + 9x\right]_0^2$	dM1 A1
	$= \frac{202}{5} \pi \text{ cm}^3 \text{ *}$	A1
		(4)
(b)	$\pi \int_0^2 x (x^2 + 3)^2 dx = \pi \int_0^2 (x^5 + 6x^3 + 9x) dx$	M1
	$=\pi \left[\frac{1}{6}x^6 + \frac{3}{2}x^4 + \frac{9}{2}x^2\right]_0^2$	A1
	$= \frac{158}{3}\pi$ (Or by chain rule or substitution)	A1
	1.50	M1
	$C \text{ of m} = \frac{158}{3} \times \frac{5}{202}, = 1.3036 = 1.30$ cm	A1
		(5)
(c)	Mass ratio $2 \times \frac{202}{5} \pi$ $\frac{1}{3} \pi \times 7^2 \times 6$ $\left(\frac{404}{5} + 98\right) \pi$	B1
	Dist from V 6.7 4.5 \overline{x}	B1
	$\frac{404}{5} \times 6.7 + 98 \times 4.5 = \left(\frac{404}{5} + 98\right) \overline{x}$	M1 A1 ft
	$\overline{x} = \frac{\frac{404}{5} \times 6.7 + 98 \times 4.5}{\left(\frac{404}{5} + 98\right)} = 5.494 = 5.5 \text{ cm}$ Accept 5.49 or better	A1
		(5)
(d)	$\tan \theta = \frac{6 - \overline{x}}{7} = \frac{0.5058}{7}$	M1
	$\alpha = \tan^{-1}\left(\frac{6}{7}\right) - \tan^{-1}\left(\frac{0.5058}{7}\right) = 36.468^{\circ} = 36^{\circ}$ or better	M1 A1
		(3)
		(17 marks)

Notes:

(a)

M1: Using $\pi \int y^2 dx$ with the equation of the curve, no limits needed

Question 6 notes continued

dM1: Integrating their expression for the volume.

A1: Correct integration inc limits now.

A1: Substituting the limits to obtain the GIVEN answer.

(b)

M1: Using $(\pi)\int xy^2 dx$ with the equation of the curve, no limits needed, π can be omitted.

A1: Correct integration, including limits; no substitution needed for this mark.

A1: Correct substitution of limits.

M1: Use of $\frac{\pi \int xy^2 dx}{\pi \int y^2 dx}$ with their $\pi \int xy^2 dx$. π must be seen in both numerator and

denominator or in neither.

A1: cso. Correct answer. Must be 1.30

(c)

B1: Correct mass ratio.

B1: Correct distances, from *V* or any other point, provided consistent.

M1: Attempting a moments equation.

A1ft: Correct equation, follow through their distances and mass ratio.

A1: Correct distance from V

(d)

M1: Attempting the tan of an appropriate angle, numbers either way up.

M1: Attempting to obtain the required angle.

A1: Correct final answer 2sf or more.