High Performance
Computing for Weather
and Climate (HPC4WC)

Content: Graphics Processing Units

Lecturer: Tobias Wicky

Block course 701-1270-00L

Summer 2022

Supercomputer Architecture (Numbers are for Piz Daint and vary from system to system) Distributed A **System** Shared Memory **Cabinet** 40/system BUS Blade 48/cabinet Node 4/blade **Socket**

GPU

1/node

2/node

Core

12/socket

Learning goals

- Understand why specialized hardware such as GPUs is become the new "normal"
- Learn how to program a GPU using a high-level programming language
- Understand potential and difficulties of GPUcomputing

Moore's Law

"The number of transistors in a dense integrated circuit will double every two years"

Dennard Scaling

• "If the transistor density doubles, power consumption (with twice the number of transistors) stays the same."

The End of General Purpose Computing

Transistor

Distance between Si-atoms is 0.5 nm!

Chip Design Costs

How does performance of our machines behave

So why are we still ok?

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)	
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Stingshot-11, HPE	8,730,112	1,102.00	1,685.65	21,100	
	DOE/SC/Oak Ridge National Laboratory United States	AMD GPU				
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.26Hz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899	
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE	1,110,144	151.90	214.35	2,942	
	EuroHPC/CSC Finland		AMC	GP l	J	
4	Summit - IBM Power System AC922, IBM PDWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rait Mellanox EDR Infiniband, IBM	2,414,592	148.60	200.79	10,096	
	DOE/SC/Oak Ridge National Laboratory United States	Ν	IVIDI	A GP	U	
5	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR	1,572,480	94.64	125.71	7,438	
	Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	NVIDIA GPU				

6	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.456Hz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93.01	125.44	15,371
7	Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C 2.459Hz, NVIDIA A100 SXM4 40 GB, Stingshot-10, HPE DDE/SC/LBNL/NERSC United States	^{761,856}	VIDIA	93.75 A G F	2,589 O
8	Selene - NYIDIA DGX A100, AMD EPYC 7742 64C 2.286Hz, NYIDIA A100, Mellanox HDR Infiniband, Nyidia NYIDIA Corporation United States	555,520 N	VIDI	79.22 A GF	2,646 DU
9	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.26Hz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,760	Xeor	100.68 1 Ph	18,482
10	Adastra - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Stingshot-11, HPE Grand Equipement National de Calcul Intensit - Centre Informatique National de l'Enseignement Suprieur (GENCI-CINES)	319,072	46.10 AMD	GPI	921 U

Specialized Chips are on the Rise!

Google's TPU
(e.g. machine learning)

FPGA (e.g. bitcoin mining)

GPU (e.g. gaming)

Who has experience with programming GPUs?

GPU Computing

Primitive computation

Rasterization

Fragment processing

Pixel operations

As video games became more complex, the hardware and software environment evolved to be more flexible.

With *OpenGL*, *OpenCL*, *CUDA*, ... programming languages started to appear that made general purpose computing on GPUs possible.

GPUs are great for some workloads / algorithms, but not so great for others!

Parallel operations!

Performance / Watt

Intel Xeon E5-2690 v3 + DRAM

~ 200 W 0.5 TFLOP/s 70 GB/s

NVIDIA Tesla P100

~ 300 W 5.3 TFLOP/s 720 GB/s

Node Architecture

Crucial to minimize memory transfers between CPU and GPU!

Architecture

Latency

scalar

Optimization

Compute primitive

Bandwidth

Hybrid Supercomputer

Power, power!

Scalability tests with IFS on Piz Daint for simulations with 1.45km grid spacing (Düben et al., 2020)								
Dycore option	#tasks and threads	Energy consumption per year	Throughput					
Hydrostatic	4880 tasks; 12 threads per task	85.21 MWh/SY	0.190 SYPD					
Non-hydrostatic	9776 tasks; 6 threads per task	191.74 MWh/SY	0.088 SYPD					
Non-hydrostatic	4880 tasks; 12 threads per task	195.30 MWh/SY	0.085 SYPD					

191.74 MWh / SY * 0.088 SY / day = 16874 kWh / day Average electricity consumption for one household \sim 39 kWh / day

Performance / Watt

Intel Xeon E5-2690 v3 + DRAM

NVIDIA Tesla P100

Weather and Climate on GPUs

Questions?

Lab Exercises

01-GPU-programming-cupy.ipynb

Introduction to GPU programming using a high-level programming language

Note. You will be asked to write a GPU version of stencil2d.py. To be able to use Matplotlib to plot the results, please issue this command from a terminal:

export PYTHONPATH=/users/classXXX/HPC4WC_venv/lib/python3.8/site-packages:\$PYTHONPATH

Remarks

When running a GPU notebook, you may experience this error:

cupy_backends.cuda.api.runtime.CUDARuntimeError: cudaErrorDevicesUnavailable: all CUDA-capable devices are busy or unavailable

Don't worry, it's not your fault! Just restart the kernel and the error should disappear. If it persists, reach out to us.

To let multiple tasks access the same GPU: export CRAY_CUDA_MPS=1

Let's go!