

Edvantis Higher Education Group Institut Supérieur d'Ingénierie des Affaires de Marrakech

Soutenance du rapport de stage de la 2^{ème} année du cycle ingénieur

CLASSIFICATION D'IMAGES POUR L'AIDE AU DIAGNOSTIC DU CANCER CUTANÉ

Présenté le 18/09/2024

par:

FINGOUE Estelle Danielle

Encadrant académique

Encadrants professionnels

M. AIT IBOUREK Lahcen

Dr. IGUERNAISSI Rabah Dr/Med. MONNIER Jilliana

Année académique: 2023/2024

PLAN

INTRODUCTION

CONTEXTE & PROBLEMATIQUE

OBJECTIFS

Matériels et Méthodes

RESULTATS

CONCLUSION ET PERSPECTIVES

INTRODUCTION

INTRODUCTION

Signal-Image (SIIM)

Image et Modèle (I&M)

- > Aide au diagnostic
- > Planification préopératoire
- > Analyse comportementale
- > Morphométrie
- > Systèmes d'information

Contexte et
problématique

Objectifs

Matériels et Méthodes

Résultats

Le mélanome

Le carcinome

^[1] https://www.e-cancer.fr/Comprendre-prevenir-depister/Se-faire-depister/Depistage-des-cancers-de-la-peau/Les-cancers-de-la-peau

^[2] https://www.academie-medecine.fr/wp-content/uploads/2023/10/MELANOME-PCRA-53.pdf

17922 nouveaux cas de mélanomes en 2023 :

Taux de survie : 98% - 15%

Le Mélanome: Problème majeur de santé publique

^[1] https://www.e-cancer.fr/Comprendre-prevenir-depister/Se-faire-depister/Depistage-des-cancers-de-la-peau/Les-cancers-de-la-peau

^[2] https://www.academie-medecine.fr/wp-content/uploads/2023/10/MELANOME-PCRA-53.pdf

Mise sur pieds d'un projet de recherche sur l'aide au diagnostic du mélanome

Contexte et problématique

Objectifs

Matériels et Méthodes

Résultats

L'équipe I&M

- IA bien conçue et validée
- Révolution de la médecine
- Création d'un "médecin augmenté"
- Répondre aux besoins d'accès aux soins. [3]

Revue de littérature

- Diagnostic assisté par ordinateur
- Amélioration de la cohérence des évaluations cliniques
- Offre un deuxième avis aux dermatologues et cliniciens moins expérimentés
- Aide à affiner les diagnostics.[4]

[3] J.Monnier, J-M L'Orphelin et al., Intelligence artificielle en dermatologie: implications pratiques. Annales de Dermatologie et de Vénéréologie-FMC,2024.4(3)p. 203-207 [4] Oliveira, R.B., et al., Computational methods for pigmented skin lesion classification in images: review and future trends. Neural Computing and Applications, 2018. 29(3): p.613-636

Problématique

Domaine encore à l'état expérimental

Le doute du dermatologue sur le risque de passer à côté d'un mélanome

L'évolution des techniques de l'IA

Comment exploiter les avancées de l'IA pour construire une aide pertinente au diagnostic du mélanome

Appliquer des modèles de machine et deep learning pour la classification des images

Acquérir la base de données

Faire un état de l'art sur les méthodes de détection automatique du mélanome

APPROCHE CLASSIQUE

APPRENTISSAGEPROFOND APPROCHE PAR

Base de données

Base	Nombre d'images de mélanome	Nombre d'images de naevus
Base d'entrainement	1088	5036
Base de Test	273	1260

Base de données

Répartition des classes dans les bases de test et d'entrainement

Base de données

Exemples d'images de la base de données ISIC: (a) Mélanome, (b) Naevus

K-NIEREST
NEIGHBORS(KNN)

- > K-NIEREST
 NEIGHBORS(KNN)
- Support Vector Machine(SVM)

KNN

Illustration du principe du KNN

Source: https://www.datascientest.com/knn

Support Vector Machine (SVM)

Illustration du principe des SVM

Prétraitement des images:

- Redimensionnement
- Normalisation

Extraction de caractéristiques (RGB et HSV):

- Entropie
- Ecart-type
- Kurtosis
- Skewness

Prétraitement des images

Redimensionnement

Normalisation

Extraction de caractéristiques (RGB et HSV):

Entrainement des modèles

- Entropie
- Ecart-type
- Kurtosis
- Skewness

Prétraitement des images

- Redimensionnement
- Normalisation

Extraction de caractéristiques (RGB et HSV):

- Entropie
- Ecart-type
- Kurtosis
- Skewness

Entrainement des modèles

Classification des images

Méthodologie de travail

Approche profonde

Réseaux de neurones convolutifs(CNN)

> CNN

Approche par apprentissage profond

Réseaux de neurones convolutifs(CNN)

- > CNN
- > EfficientNetB0

Schéma illustratif de la convolution

Source: https://france.devoteam.com/paroles-dexperts/mieux-comprendre-le-deep-learning-applique-a-la-reconnaissance-dimages/

Schéma illustratif du principe de fonctionnement d'un CNN

Approche par apprentissage profond

Prétraitement des images:

- Redimensionnement
- Augmentation des images(rotation, zoom, cisaillement)

Entrainement des modèles

Classification des images

Objectifs

Méthodes et outils

Résultats

Fusion des modèles

> Fusion par moyenne:

Moyenne des probabilités des différents modèles

Fusion des modèles

> Moyenne:

Moyenne des probabilités des différents modèles

> Moyenne pondérée:

Attribution des poids différents aux modèles en fonction de leurs performances donc les modèles plus performants

Fusion des modèles

> Moyenne:

Moyenne des probabilités des différents modèles

Moyenne pondérée:

Attribution des poids différents aux modèles en fonction de leurs performances donc les modèles plus performants

> Régression logistique:

Combinaison pondérée des probabilités prédites par chaque modèle selon leur pertinence et performance individuelle, pour une probabilité finale plus fiable

Critères d'évaluation

•
$$Sensibilité = \frac{VP}{VP + FN}$$

•
$$Sp\acute{e}cificit\acute{e} = \frac{VN}{VN + FP}$$

L'aire en dessous de la courbe caractéristique(AUC)

Outils logiciels

Résultats de l'approche classique

Modèle	Sensibilité	Spécificité	AUC
KNN	74%	72%	82%
SVM	80%	73%	83%

Résultats de l'approche par apprentissage profond

Modèle	Sensibilit é	Spécificit é	AUC
CNN de base	98%	41%	77%
Efficient NetB0	88%	73%	88%

Résultats de la fusion

Méthode de fusion	Sensibilité	Spécificité	AUC
Fusion par moyenne	44%	76%	73%
Fusion par moyenne pondérée	79%	81%	88%
Fusion par Régression Logistique	50%	94%	88%

CONCLUSION ET PERSPECTIVES

Développer un système d'aide au diagnostic du cancer de la peau notamment le mélanome

- Exploration de méthodes classiques (KNN, SVM) et d'apprentissage profond (CNN, EfficientNetB0)
- EfficientNetB0 a surpassé les méthodes classiques (AUC de 88 %)
- La fusion de modèles a amélioré les performances, équilibre entre sensibilité et spécificité

CONCLUSION ET PERSPECTIVES

- Evaluer les modèles sur d'autres bases de données
- Approfondir les recherches sur les méthodes de fusion
- Explorer les algorithmes d'optimisation

Merci de votre attention.