При расчетах принять:

Модуль ускорения свободного падения $g = 10 \text{ м/c}^2$	Скорость света в вакууме $c = 3 \cdot 10^8 \text{ м/c}$				
Постоянная Авогадро $N_A = 6,02 \cdot 10^{23} \text{ моль}^{-1}$	Постоянная Больцмана $k = 1,38 \cdot 10^{-23} \text{Дж/K}$				
Электрическая постоянная $\varepsilon_0 = 8,85 \cdot 10^{-12} \frac{\Phi}{M}$; $\frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \frac{H \cdot M^2}{K\pi^2}$	Элементарный заряд $e = 1,6 \cdot 10^{-19} \text{ Кл}$				
Универсальная газовая постоянная $R = 8,31 \frac{\mathcal{J} \mathcal{H}}{\text{моль} \cdot K}$	Масса электрона $m_e = 9,1 \cdot 10^{-31} \text{ кг}$				
$1 \text{ эВ} = 1,6 \cdot 10^{-19} \text{ Дж}$ $\pi = 3,14;$ $\sqrt{2} = 1,41;$ $\sqrt{3} = 1,73;$ $\sqrt{5} = 2,24$	Постоянная Планка $h = 6,63 \cdot 10^{-34}$ Дж·с				

Множители и приставки для образования десятичных кратных и дольных единиц.

Множитель	10^{12}	10^{9}	10^{6}	10^{3}	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}
Приставка	тера	гига	мега	кило	санти	милли	микро	нано	пико
Обозначение приставки	T	Γ	M	К	c	M	ΜK	Н	П

Часть А

A6	Минимальная работа, необходимая для того, чтобы п положение лежащий на земле тонкий однородный стер массой $m=15$ кг равна:	-	1) 150 Дж; 2) 200 Дж; 3) 300 Дж; 4) 450 Дж; 5) 600 Дж.
A7	Из цилиндрического сосуда 1 всю воду перелили цилиндрический сосуд 2 (см. рис.). Площадь основан второго сосуда больше, чем площадь основания перво ($S_2 > S_1$). Давления (p_1 и p_2) и модули сил давлен (F_1 и F_2) воды на дно первого и второго сосудов связан соотношениями: 1) $p_1 = p_2$, $F_1 > F_2$; 2) $p_1 = p_2$, $F_1 < F_2$; 3) $p_1 < p_2$ 4) $p_1 > p_2$, $F_1 < F_2$; 5) $p_1 > p_2$, $F_1 = F_2$.	ия го ия ны 1 2	1) 1; 2) 2; 3) 3; 4) 4; 5) 5.
A8	Установите соответствие между физическими вели применяемыми для измерения указанных величин. А) Сила Б) Атмосферное давление В) Расстояние 3) Барометр		1) A2 Б1 B3; 2) A3 Б1 B2; 3) A3 Б2 B1; 4) A2 Б3 B1; 5) A1 Б2 B3.
A9	$\langle \upsilon_{\scriptscriptstyle \kappa s} \rangle = 500$ м/с. Температура кислорода t составляет:	да (М = 32 г/моль)	1) 27 °C; 2) 48 °C; 3) 64 °C; 4) 160 °C; 5) 320 °C.
A10	Если при изотермическом расширении идеального газа которого постоянно, давление газа уменьшилось на $ \Delta p $ увеличился в $k=5,0$ раза, то давление p_2 газа в конечном	= 80 кПа, а объём газа и состоянии равно:	1) 20 κΠα; 2) 30 κΠα; 3) 40 κΠα; 4) 50 κΠα; 5) 60 κΠα.
A11	В баллоне находится $N = 2,0\cdot10^{21}$ молекул идеального од температура газа $t = 66$ °C, то его внутренняя энергия U	1) 20 Дж; 2) 18 Дж; 3) 16 Дж; 4) 14 Дж; 5) 12 Дж.	
A12	Незаряженный металлический шарик ($q_1 = 0$ Кл) привел таким же шариком, имеющим заряд $q_2 = 3,2$ нКл. Масса 1) увеличилась на $18,2\cdot 10^{-21}$ кг; 2) уменьшилась на $18,2\cdot 10^{-21}$ кг; 3) увеличилась на $9,1\cdot 10^{-21}$ кг; 4) уменьшилась на $9,1\cdot 10^{-21}$ кг; 5) увеличилась на $1,6\cdot 10^{-21}$ кг.		1) 1; 2) 2; 3) 3; 4) 4; 5) 5.
A13	График зависимости энергии W конденсатора от w, м его заряда q представлен на рисунке. Емкость конденсатора C равна:	1Дж 20 10 0,4 0,8 1,2 9, мКл	1) 12,5 мκΦ; 2) 20,0 мκΦ; 3) 25,0 мκΦ; 4) 50,0 мκΦ; 5) 100 мκΦ.
A14	На рисунке изображён участок электрической це напряжение на котором U. Сопротивление резистора F четыре раза больше сопротивления резистора R_2 ($R_1 = 4$ Если напряжение на резисторе R_1 равно U_1 , то напряже U равно: 1) $\frac{5}{4}U_1$; 2) $\frac{7}{4}U_1$; 3) $2U_1$; 4) $4U_1$; 5) $5U_1$.	R ₁ B R ₂).	1) 1; 2) 2; 3) 3; 4) 4; 5) 5.

A15	К источнику тока с ЭДС $\varepsilon = 6.0 \; \text{В}$ и внутренним сопротивлением $r = 1.5 \; \text{Ом}$	1) 5,0 A;
	подключен резистор. Если коэффициент полезного действия источника тока	2) 4,0 A;
	η = 75 %, то сила тока в цепи равна:	3) 3,0 A;
		4) 2,0 A;
		5) 1,0 A.
A16	На рисунке представлена зависимость от времени І, А	1) 0,5 B;
	силы тока, проходящего по катушке с 6	2) 1,0 B;
	индуктивностью L = 200 мГн. ЭДС самоиндукции в	3) 1,5 B;
	катушке в момент времени $t = 0.8$ с равна:	4) 2,0 B;
		5) 4,0 B.
	2	
	0 0,4 0,8 1,2 t,c	1) 10
A17	Если груз, подвешенный на пружине, совершает гармонические колебания по	1) 10 cm;
	закону $x(t) = A\sin{(Bt + C)}$, где $A = 5$ см, $B = 5\pi$ рад/с, $C = \frac{\pi}{4}$ рад, то путь s,	2) 20 cm;
	7	3) 40 cm;
	который проходит тело за время равное периоду колебаний:	4) 50 cm;
110	7 450	5) 80 cm.
A18	Если при интерференции двух когерентных лучей с длиной волны $\lambda = 450$ нм	1) 120 нм; 2) 150 нм;
	наблюдается максимум третьего порядка, то оптическая разность хода δ лучей	2) 150 нм; 3) 450 нм;
	в точке наблюдения:	3) 430 нм, 4) 900 нм;
		5) 1350 HM.
A19	Атом водорода, находящийся в невозбуждённом состоянии ($E_0 = -13.6$ эВ),	1) 2;
	поглотил фотон с энергией W = 12,09 эВ. В результате этого электрон перешёл	2) 3;
	на энергетический уровень с номером п равным:	3) 4;
	The shop of the feeting of the shop of the passion.	4) 5;
		5) 6.
A20	За время, равное двум периодам полураспада, распадётся от исходного числа	1) 12,5 %;
	радиоактивных ядер:	2) 25,0 %;
		3) 50,0 %;
		4) 75,0 %;
		5) 87,5 %

Часть В

B1.	Тело движется по закону $x = A + Bt + Ct^2$, где $A = -25$ м, $B = 10$ м/с, $C = -1$ м/с ² . За время $t = 7$ с
	тело пройдёт путь s равный м.
B2.	На наклонной плоскости длиной $l=5$ м и высотой $h=3$ м находится груз массой $m=50$ кг. Коэффициент трения между телом и плоскостью $\mu=0,2$. Чтобы втаскивать груз вверх вдоль
	наклонной плоскости с ускорением $a = 1 \text{ м/c}^2$, к телу следует приложить силу F, направленную параллельно наклонной плоскости, модуль которой равен H.
В3.	При вертикальном подъёме первоначально покоящегося груза массой $m=2$ кг на высоту $h=2,5$ м постоянной силой была совершена работа $A=80$ Дж. При этом груз поднимали с ускорением a равным $\mathbf{m/c}^2$.
B4.	Маленький шарик массой $m = 0.2$ кг находится на конце нерастяжимой нити, другой конец которой закреплён. Нить приводят в горизонтальное положение и отпускают без начальной скорости. В тот момент, когда нить составляет угол $\alpha = 60^{\circ}$ с вертикалью, сила её натяжения $F_{\rm H}$ равна H .
B5.	В вертикальном цилиндре с площадью основания $S=20~\text{cm}^2$ под гладким поршнем массой $m=16~\text{к}$ г находится при температуре $T_1=270~\text{K}$ идеальный газ, объём которого $V_1=25~\text{л}$. Атмосферное давление $p_0=100~\text{к}$ Па. Газ изобарно нагревают на $\Delta T=30~\text{K}$. Работа A , совершённая газом равна Дж.
В6.	В адиабатическом процессе над идеальным одноатомным газом совершают работу $A_1'=200$ Дж. После этого газ в изобарном процессе совершает работу $A_2=400$ Дж. В результате этих двух процессов изменение ΔU внутренней энергии газа равно Дж.

B7.	Температура плавления железа $T_{nn} = 1800 \text{ K}$, его удельная теплоёмкость $c = 460 \text{ Дж/(кг·K)}$, а
	удельная теплота плавления $\lambda = 300 \text{ кДж/кг.}$ Железный метеорит влетает в атмосферу Земли со
	скоростью $v_0 = 1.5$ км/с, имея температуру T = 300 К. Если при движении метеорита в
	атмосфере 80 % его первоначальной кинетической энергии переходит во внутреннюю, то к
	моменту удара расплавилось его часть, составляющая %.
B8.	Пучок параллельных световых лучей падает нормально на
Во.	
	тонкую собирающую линзу диаметром $d_1 = 6.0$ см с оптической
	силой D = 5 дптр (см. рис). Если экран расположен за линзой на
	расстоянии $l = 5$ см, то диаметр d_2 светлого пятна, созданного
	линзой на экране равен мм.
B9.	В трёх вершинах квадрата закреплены одинаковые положительные точечные заряды величиной
	q = 2 нКл каждый. Если напряжённость E электростатического поля, созданного этими
	зарядами, в центре квадрата $E = 50$ B/м, то потенциал φ поля в центре квадрата равен В.
B10.	Сила тока короткого замыкания источника тока $I_{\kappa,3} = 24$ A, а при подключении к нему
DIV.	
	резистора сопротивлением $R = 5$ Ом через источник течёт ток силой $I = 4$ А. Максимальная
	полезная мощность P_{\max} источника равна \mathbf{Br} .
B11.	
	При протекании этого тока через резистор сопротивлением $R = 100$ Ом за время $t = 1$ мин в
	резисторе выделится теплота Q , равная Дж.
B12.	Конденсатор ёмкостью $C = 8$ мк Φ , заряженный до напряжения $U = 100$ B, подсоединили к
	источнику тока с ЭДС є = 200 В, но перепутали обкладки: положительную подключили к
	отрицательному зажиму, а отрицательную – к положительному. Количество теплоты Q ,
	выделившееся при перезарядке равно мДж.

Физика подготовка к ЦТ Вариант 7

Ответы

Подготовка	кЦТ	B-7

№ задачи	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
№ ответа	3	5	2	3	4	3	5	4	2	1
№ задачи	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20
№ ответа	4	4	3	1	5	1	2	5	2	4

ответ	29	430	6	3	500	800	70	45	90	144	30	360
№ задачи	B1	B2	В3	B4	B5	B6	B7	B8	B9	B10	B11	B12