[9.6] Show
$$g(P) = \frac{1}{V_{ZH}} \int_{P^{-\infty}}^{\infty} f(x) e^{-Px} dx$$

Givens: $Z = e^{\frac{N}{N}} i$
 $\forall n = \frac{1}{2\pi i} \oint_{C} \frac{F(Z)}{Z^{N+1}} dZ$ where C is unit complex circle

 $F(Z) = V_{ZH} f(X)$, where V_{ZH} is replaced by fixther introduced in middle of Pa 166 (\$9.4)

as period $l = 2\pi N \to \infty$, r is replaced by $\frac{1}{N} \to P$ and $dn \to g(P)$.

Proof: as Z moves CCW on unit circle from $Z = -1$: $Z \to \frac{1}{2\pi i} = \frac{1}{N} \int_{X = -NH}^{NH} \frac{f(X)V_{ZH}}{Q(N+1)} \frac{i}{N^2} = \frac{N^2}{2\pi i} dX$

$$d_N = \frac{1}{2\pi i} \int_{X = -NH}^{NH} \frac{f(X)V_{ZH}}{Q(N+1)} \frac{i}{N^2} dX$$

$$= \frac{1}{V_{ZH}} \int_{X = -NH}^{NH} \frac{f(X)}{Q(N+1)} dX$$

So g(p) = lim dn = I so e px f(x)dx

Overview of derivation of Fourier Transform f(x) = = 1 gip gip) e dp on p. 166 FIX N and set VATT FN(X) = F(Z) = \(\int d_1 \neq \) = \(\int \alpha_1 \neq \int \alpha_2 \neq \) F(X) = lim fN(X) = \frac{1}{\sum_{271}} \int_{p=-00}^{00} g(p) e^{PX} dp (uses \(\subseteq \text{[Givens'] From above} \)

1