

# 神经网络超参数

赵鉴

# 简介





## 超参



- □ 神经网络结构
- □ 神经网络优化器
- □ 神经网络激活函数
- Batchsize
- □ 损失函数loss function

## 神经网络结构



- □ 主线
  - Alexnet->Vggnet,Googlenet->Resnet->Densenet->Senet
- □ 分支
  - 谷歌
    - ✓ Inception系列
    - ✓ Mobilenet系列
    - ✓ Nasnet系列
    - ✓ Deeplab系列
  - 旷视
    - ✓ Shufflenet系列
  - MSRA:
    - ✓ Deformable系列
    - ✓ IGC系列
  - Pjreddie
    - ✓ Yolo系列



- □ 2015年LSVRC 2012 分类竞赛冠军
- 2016 CVPR best paper
- □ 思考:
  - 假如你发现了Resnet比一般CNN效果好,你会怎么写这个 paper
    - ✓ 非常苦恼,因为不知道为什么Resnet效果比一般CNN要好
    - ✓ 容易被review质疑,是不是只适用于特定任务





Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.





Figure 4. Training on **ImageNet**. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.



- □ 问题:
  - Resnet为什么泛化效果好
- □ 问题转移:
  - Resnet结构随深度增加,效果变好不变差
- □ 原因:
  - 梯度消失,梯度爆炸
- □ 结果:
  - Best paper!!!

#### Adam



- □ 问题:
  - 为什么Adam训练神经网络效果好
- □ 问题转移:
  - Adam训练凸问题收敛
- □ 原因:
  - 一堆数学推导(错)
- □ 结果:
  - 2015 ICLR best paper!!!

## AMSGRAD (Adam变种)



- □ 问题:
  - 为什么AMSGRAD训练神经网络效果好
- □ 问题转移:
  - Adam对于某些凸问题不收敛
  - AMSGRAD对于凸问题是收敛的
- □ 原因:
  - 一堆数学推导
- □ 结果:
  - 2018 ICLR best paper!!!

#### Densenet



- Each layer has direct access to the gradients from the loss function and the original input signal, leading to an implicit deep supervision
- □ 结果:
  - 2017 CVPR best paper
- □ 影响:
  - 开启了sota的浪潮

#### Nasnet



Neural Architecture Search With Reinforcement Learning



Figure 1: An overview of Neural Architecture Search.

## Nasnet





# all Keras optimizers



- □ SGD
- □ RMSprop
- Adagrad
- Adadelta
- □ Adam
- □ Adamax
- □ Nadam

| W = W - LearningRate * dW |
|---------------------------|
|---------------------------|

|                | d <b>W</b> | Learning rate     |
|----------------|------------|-------------------|
| SGD            | /          | /                 |
| SGD + momentum | Momentum   | /                 |
| SGD + nesterov | Nesterov   | /                 |
| Adagrad        | /          | L2                |
| RMSprop        | /          | Average L2        |
| Adadelta       | /          | *                 |
| Adam           | Momentum   | Average L2        |
| Adamax         | Momentum   | Average $L\infty$ |
| Nadam          | Nesterov   | Average L2        |

## performance





## 优化器



- □ 假如神经网络是个凸函数
  - 不同优化器最后优化的值确定
  - 不同优化器只有收敛速度的问题
- □ 但是神经网络是非凸的
  - 不同优化器收敛到不同的局部最小值
  - 不同的局部最小值泛化能力不同
- □ 总之,不同优化器,训练一个相同的神经网络,达到相同的train loss, test accuracy差距很大
  - 无法描述
  - 产生了一系列调参黑科技
  - ½ epoch lr/=10; ¾ epoch lr/=10; (7/8 epoch lr/=10)

# 优化器







# 激活函数



# 全靠猜





- Paper 1: [\*] = Architecture ICLR2017
- □ Paper 2: [\*] = Optimizer ICML2017
- □ Paper 3: [\*] = Activation Function ICLR2018

#### **Neural** [\*] Search with Reinforcement Learning





Figure 1: An overview of Neural Architecture Search.





Figure 1. An overview of Neural Optimizer Search.



论文图表对比

# 总语



- □ 冲sota越来越难
- □ 调参这件事可能会被大量计算资源替代
  - AutoML
  - AutoKeras
  - AutoAzure
- □ 目标可能要回归数学理论

#### SGD



- $\square$  SGD(lr = 0.01, momentum = 0.0, decay = 0.0, nesterov = False)
  - **Ir**: Learning rate.
  - momentum: Parameter updates momentum.
  - decay: Learning rate decay over each update.
  - nesterov: Whether to apply Nesterov momentum.
  - $W = W \alpha dW$
  - Disadvantages:
    - ✓ Converge slowly(momentum, nesterov)
    - ✓ The learning rate unchanged and is the same for each dimension(Adagrad ...)
    - ✓ converge to a local optimum and saddle point

# SGD + momentum (average L1)





$$\square$$
  $W = W - V$ 

- exponential weighted average
  - The weight of each value decreases exponentially with time
  - Only need to keep V





## SGD + nesterov + momentum



$$\square V_t = \beta V_{t-1} + \alpha \nabla_{\theta} J(\theta - \beta V_{t-1})$$

- $\square$   $W = W V_t$
- stronger theoretical converge guarantees for convex functions
- in practice works slightly better than standard momentum





# Adagrad (L2)



$$\Box$$
  $G += (dW)^2$ 

$$\square W = W - \alpha * \frac{dW}{(\sqrt{G} + \epsilon)}$$

- □ Disadvantages:
  - stops learning too early(R
  - Different units(Adadelta)



Adaptive Subgradient Methods for Online Learning and Stochastic Optimization

# RMSprop (average L2)



$$\Box G = \beta * G + (1 - \beta) * (dW)^2$$

$$\square W = W - \alpha * \frac{dW}{(\sqrt{G} + \epsilon)}$$

#### Adadelta



$$\square \quad G = \beta * G + (1 - \beta) * (dW)^2 = RMS(dW) = \sqrt{G + \epsilon}$$

$$\square \quad \mathsf{RMSprop} : W = W - \alpha * \frac{dW}{RMS(dW)}$$

#### Adadelta:

$$W_t = W_t - \frac{RMS(\Delta W_{t-1})}{RMS(dW_t)} * dW_t$$



Fig. 4. Comparison of ADAGRAD, Momentum, and ADADELTA on the Speech Dataset with 200 replicas using rectified linear nonlinearities.

•Adadelta - an adaptive learning rate method

# Adam = SGD + momentum + RMSprop



#### □ RMSprop:

#### Momentum:

$$V = \beta V + \alpha dW$$

$$W = W - v_{dW}$$

#### ☐ Adam:

$$G' = \frac{G}{1 - \beta_1^t}$$

$$V = \beta_2 V + (1 - \beta_2) dW$$

$$V' = \frac{V}{1 - \beta_2^t}$$





Figure 1: Logistic regression training negative log likelihood on MNIST images and IMDB movie reviews with 10,000 bag-of-words (BoW) feature vectors.

•Adam - A Method for Stochastic Optimization

## **Adamax**

## (average $L_{\infty}$ )



#### Adam:

$$G = \beta_1 * G + (1 - \beta_1) * (dW)^2$$

$$V = \beta_2 V + (1 - \beta_2) dW$$

#### Adamax:

$$G = \beta_1^{\infty} * G + (1 - \beta_1^{\infty}) * (dW)^{\infty} \Rightarrow u = \max(\beta_1 * G, |dW|)$$

$$V = \beta_2 V + \beta_2 dW$$

# Nadam = SGD + nesterov + RMSprop

#### Adam:

$$G = \beta_1 * G + (1 - \beta_1) * (dW)^2$$

$$V = \beta_2 V + (1 - \beta_2) dW$$

Word2Vec

|           | Batch |       |       |
|-----------|-------|-------|-------|
|           | GD    | Mom   | NAG   |
| Test loss | .368  | .361  | .358  |
|           | RMS   | Adam  | Nadam |
| Test loss | .316  | .325  | .284  |
|           | Maxa  | A-max | N-max |
| Test loss | .346  | .356  | .355  |

#### Nadam:

#### **Image Recognition**

LSTM Language Model

|           | GD        | Mom                                               | NAG                                                                  |
|-----------|-----------|---------------------------------------------------|----------------------------------------------------------------------|
| Test perp | 100.8     | 99.3                                              | 99.8                                                                 |
|           | RMS       | Adam                                              | Nadam                                                                |
| Test perp | 106.7     | 111.0                                             | 105.5                                                                |
|           | Maxa      | A-max                                             | N-max                                                                |
| Test perp | 106.3     | 108.5                                             | 107.0                                                                |
|           | Test perp | Test perp 100.8<br>RMS<br>Test perp 106.7<br>Maxa | Test perp 100.8 99.3   RMS Adam   Test perp 106.7 111.0   Maxa A-max |

.0204

<sup>•</sup>Incorporating Nesterov Momentum into Adam