Devoir surveillé nº 5

- ▶ La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ▶ Les calculatrices sont interdites.

EXERCICE 1.

Soit $(a,b,\lambda) \in \mathbb{R}^3$. On se propose d'étudier quelques propriétés de la suite réelle (\mathfrak{u}_n) définie par :

$$\begin{cases} u_0 = \lambda \\ \forall n \in \mathbb{N}, u_{n+1} = \frac{1}{4} \left(3u_n^2 - 2(a+b)u_n + ab + 2(a+b) \right) \end{cases}$$

- 1. Dans cette question, on suppose a = b = 0.
 - a. Que peut-on dire de la suite (u_n) si $\lambda = 0$?
 - **b.** On suppose maintenant $\lambda \neq 0$. Montrer que $u_n > 0$ pour tout $n \in \mathbb{N}^*$.
 - c. On pose alors $w_n = \ln(u_n)$ pour tout $n \in \mathbb{N}^*$. Déterminer w_n en fonction de n et λ pour tout $n \in \mathbb{N}^*$.
 - **d.** En déduire une expression de u_n en fonction de n et de λ pour tout $n \in \mathbb{N}$.
 - e. Discuter suivant les valeurs de λ la convergence de la suite (u_n) et préciser sa limite le cas échéant.
- **2.** Dans cette question, on suppose a = b = 2.
 - a. Montrer que la suite (u_n) est croissante.
 - **b.** Montrer que si (u_n) converge, sa limite est nécessairement égale à 2.
 - c. On suppose $\lambda > 2$. Montrer que la suite (u_n) diverge vers $+\infty$.
 - **d.** Montrer qu'il existe deux réels λ_1 et λ_2 avec $\lambda_1 < \lambda_2$ tels que $\mathfrak{u}_1 = 2$ si et seulement si $\lambda \in \{\lambda_1, \lambda_2\}$.
 - e. On suppose $\lambda_1 \leq \lambda \leq \lambda_2$. Montrer que la suite (u_n) converge et préciser sa limite.
 - **f.** On suppose $\lambda < \lambda_1$. Montrer que la suite (u_n) diverge vers $+\infty$.
- **3.** Dans cette question, on suppose a < b < 2.
 - a. On considère l'application polynomiale P définie par

$$\forall x \in \mathbb{R}, P(x) = 3x^2 - 2(2 + a + b)x + ab + 2(a + b)$$

Factoriser P(a), P(b) et P(2) puis déterminer leurs signes.

b. On suppose que (u_n) converge vers une limite L. Montrer que L vérifie a < L < b ou b < L < 2.

EXERCICE 2.

On considère la fonction $f: x \in \mathbb{R}_+ \mapsto 1 - \sqrt{x}$ ainsi la suite $(u_n)_{n \in \mathbb{N}}$ telle que $u_0 = \frac{1}{4}$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$.

- 1. Montrer que pour tout $x \in [0, 1]$, $f(x) \in [0, 1]$.
- **2.** Montrer que $u_n \in [0, 1]$ pour tout $n \in \mathbb{N}$.
- **3.** Déterminer le sens de variation de f et de $f \circ f$ sur [0, 1].

- 4. Montrer que f possède un unique point fixe α sur [0,1] et déterminer celui-ci.
- 5. Montrer que $u_0 \leqslant \alpha$.
- **6.** Montrer que pour tout $n \in \mathbb{N}$, $u_{2n} \leq \alpha$.
- 7. Montrer que $u_0 \leqslant u_2$. En déduire que la suite $(u_{2n})_{n \in \mathbb{N}}$ est croissante puis qu'elle converge.
- 8. Montrer que les points fixes de $f \circ f$ sur [0,1] sont [0,1] s
- **9.** En déduire la limite de la suite $(u_{2n})_{n\in\mathbb{N}}$, puis la convergence et la limite de la suite $(u_{2n+1})_{n\in\mathbb{N}}$ et enfin la convergence et la limite de la suite $(u_n)_{n\in\mathbb{N}}$.

EXERCICE 3.

- 1. Soit $n \in \mathbb{N}$. Montrer que l'équation $x + \tan x = n$ admet une unique solution sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. On notera u_n cette solution.
- 2. Justifier que $u_n = \arctan(n u_n)$ pour tout $n \in \mathbb{N}$. En déduire la limite de (u_n) .
- 3. Montrer que $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$ pour tout $x \in \mathbb{R}_+^*$.
- 4. En déduire que

$$u_n \underset{n \to +\infty}{=} \frac{\pi}{2} - \frac{1}{n} + o\left(\frac{1}{n}\right)$$

5. Montrer que

$$\frac{1}{n - u_n} \mathop{=}_{n \to +\infty} \frac{1}{n} + \frac{\pi}{2n^2} + \frac{\pi^2 - 4}{4n^3} + o\left(\frac{1}{n^3}\right)$$

- 6. Déterminer le développement limité à l'ordre 3 en 0 de \arctan .
- 7. En déduire un développement asymptotique à quatre termes de \mathfrak{u}_n .

EXERCICE 4.

Soit x>0. On définit une suite de réels $(u_n)_{n\in\mathbb{N}^*}$ par $u_1=x$ et $u_{n+1}=\frac{1+u_n}{n+u_n^2}$ pour tout $n\geqslant 1$.

- 1. Montrer que pour tout entier $n \ge 1$, $u_n > 0$.
- $\textbf{2. Soit un entier } n\geqslant 1. \ \mathrm{Montrer \ si} \ u_n\geqslant 1, \ \mathrm{alors} \ u_{n+1}\leqslant 1 \ \mathrm{et \ que \ si} \ u_n\leqslant 1, \ \mathrm{alors} \ u_{n+1}\leqslant \frac{2}{n}.$
- 3. En déduire que pour entier $n \geqslant 3$, $u_n \leqslant \frac{2}{n-1}$.
- 4. En déduire que (\mathfrak{u}_n) converge et donner sa limite.
- 5. Donner un équivalent simple de \mathfrak{u}_n .
- 6. On pose $v_n = nu_n 1$ pour entier $n \ge 1$. Exprimer v_{n+1} en fonction de n et v_n .
- 7. En déduire un équivalent simple de ν_n .
- 8. En déduire un développement asymptotique à deux termes de $u_{\mathfrak{n}}.$