

高速 CAN 收发器

特性

- 支持 1 Mb/s 的运行速率
- 满足 ISO-11898 标准物理层要求
- 适合 12V 和 24V 系统
- · 斜率外部控制,减少RFI
- 自动检测 TXD 输入端的接地错误 (恒显性)
- 上电复位和电压事件欠压保护
- 未上电节点或欠压不会影响 CAN 总线
- 低电流待机操作
- 短路保护 (正负电池电压)
- 高压瞬态保护
- 自动热关断保护
- 可连接节点高达 112 个
- 采用差分总线,具有很强的抗噪特性
- 温度范围:
 - 工业级 (I): -40°C 至 +85°C
 - 扩展级 (E): -40°C 至 +125°C

封装类型

框图

1.0 器件概述

MCP2551是一个可容错的高速CAN器件,可作为CAN协议控制器和物理总线接口。 MCP2551 可为 CAN协议控制器提供差分收发能力,它完全符合ISO-11898标准,包括能满足 24V 电压要求。它的工作速率高达1 Mb/s。

典型情况下,CAN 系统上的每个节点都必须有一个器件,把 CAN 控制器生成的数字信号转化成为适合总线传输(差分输出)的信号。它也为 CAN 控制器和 CAN 总线上的高压尖峰信号之间加入了缓冲器,这些高压尖峰信号可能是由外部器件产生(EMI、ESD 和电气瞬态等)。

1.1 发送器功能

CAN 总线有两个状态:显性状态和隐性状态。显性状态发生在 CANH 和 CANL 之间的差分电压高于定义值(如 1.2V)的时候。隐性状态发生在该差分电压低于某个定义值(典型值为 0V)的时候。显性状态和隐性状态分别对应于 TXD 输入引脚的低电平和高电平。但是,一个由别的 CAN 节点触发的显性状态将会改写 CAN 总线上的隐性状态。

1.1.1 最大节点数

MCP2551的 CAN输出可以驱动最小为45 Ω 的负载,最多允许连接112个节点(假设最小差分输入阻抗为20 k Ω 和标称终端电阻为 120 Ω)。

1.2 接收器功能

RXD 输出引脚反映的是 CANH 和 CANL 之间的差分总线电压值。RXD输出引脚的低状态和高状态分别对应于 CAN 总线的显性和隐性状态。

1.3 内部保护

CANH 和 CANL 可以免受 CAN 总线上电池短路和电气 瞬态的影响。这一特性可以防止发送器的输出级在这样的错误条件下受到破坏。

热关断电路在结点温度超过通常的标定值165℃的时候使输出驱动器停止工作,这样就进一步保护器件免受过多负载电流的影响。芯片其他部分仍然保持工作,但是由于发送器输出的功耗降低,芯片的温度也随之降低。这一保护措施对于由短路引起的总线损坏是必需的。

1.4 操作模式

Rs 引脚可选择三种操作模式:

- 高速
- 斜率控制
- 待机

三种模式的总结参见表 1-1。

在高速和斜率控制两种模式下,CANH和 CANL信号驱动器通过内部控制来提供可控的对称性,以尽可能地减小 EMI。

此外, CANH 和 CANL 上的信号传输斜率可以通过在引脚 8 (Rs) 与地之间连接的一个电阻来控制。斜率的大小与 Rs 上的输出电流成正比,这样可以进一步减小EMI。

1.4.1 高速模式

高速模式可以通过把 Rs 引脚与 Vss 相连来实现。在这个模式下,发送器的输出驱动具有快速的输出上升和下降时间,可以满足高速 CAN 总线的速率要求。

1.4.2 斜率控制模式

斜率控制模式可以通过限制 CANH和 CANL 的上升下降时间来进一步减少 EMI。斜率,也称为转换率(slew rate,SR),受 Rs 和 VoL(通常接地)之间的外接电阻(REXT)控制。斜率与 Rs 引脚的输出电流成正比。由于电流主要取决于斜率控制电阻 REXT 阻值,所以可以选用不同的阻值来实现不同的转换率。图 1-1 显示了在不同斜率控制电阻的作用下,转换率的典型值。

1.4.3 待机模式

如果把 Rs 与高电平相连,器件就被置为待机模式,即体眠模式。在休眠模式下,发送器关断,接收器工作在更低电流状态下。控制器侧的接收引脚(RXD)仍然可以工作,但是工作在低速率状态下。与之相连的单片机可以通过监测 RXD 来了解 CAN 总线情况,并且通过 Rs 引脚把收发器设为正常工作状态(在更高的总线速率下,CAN 的第一条消息可能会丢失)。

表 1-1: 操作模式

模式	R _s 引脚电流	Rs 引脚上的电压
待机	-IRS < 10 μA	VRS > 0.75 VDD
斜率控制	10 μA < -IRS < 200 μA	0.4 VDD < VRS < 0.6 VDD
高速	-IRS < 610 μA	0 < VRS < 0.3VDD

表 1-2: 收发器真值表

VDD	VRS	TXD	CANH	CANL	总线状态 ⁽¹⁾	Rxd ⁽¹⁾
$4.5V \le VDD \le 5.5V$	VRS < 0.75 VDD	0	高	低	显性	0
		1 或悬空	未驱动	未驱动	隐性	1
	VRS > 0.75 VDD	X	未驱动	未驱动	隐性	1
VPOR < VDD < 4.5V	VRS < 0.75 VDD	0	讵	低	显性	0
(参见注 3)		1 或悬空	未驱动	未驱动	隐性	1
	VRS > 0.75 VDD	X	未驱动	未驱动	隐性	1
0 < VDD < VPOR	X	Х	未驱动 /	未驱动/	高阻态	Х
			无负载	无负载		

- 注 1: 如果另一个总线节点在 CAN 总线上传送显性位,那么 RXD 是逻辑 '0'。
 - **2:** X = "不确定"。
 - 3: 虽然输出不一定能满足 ISO-11898 规范,但是器件驱动器仍然能够工作。

1.5 TXD 稳定显性检测

如果MCP2551 检测到在TXD输入端的持续低电平,它将禁止CANH和CANL的输出驱动器功能,以避免CAN总线上数据混乱。如果TXD保持低电平超过1.25 ms(最小值),就禁止驱动功能。这就意味着每比特的时间最大是62.5 μs(总线速率为16 kb/s),允许在多个比特错误和一系列帧错误的情况下传输高达20个的连续显性比特位。只要TXD保持为低电平状态,驱动器就保持禁止。TXD的上升沿将复位定时器逻辑并使能CANH和CANL输出驱动器。

1.6 上电复位

当器件上电时,CANH 和 CANL 保持高阻态直到 VDD 到达电压 VPORH。并且,如果当 VDD 到达 VPORH 时TXD 是低电平,CANH 和 CANL 仍将保持高阻态。只有在 TXD 被置为高电平时,CANH 和 CANL 才被激活。一旦上电,如果 VDD 电压低于 VPORL,CANH 和 CANL 将进入高阻态,提供正常操作中的欠压保护。

1.7 引脚描述

表 1-3 为 8 个引脚信息。

表 1-3: MCP2551 引脚

引脚编号	引脚名称	引脚功能
1	TXD	发送器数据输入
2	Vss	接地
3	VDD	提供电压
4	RXD	接收器数据输出
5	VREF	参考输出电压
6	CANL	CAN 低电压 I/O
7	CANH	CAN 高电压 I/O
8	Rs	斜率控制输入

1.7.1 发送器数据输入 (TXD)

TXD 是一个 TTL 兼容输入引脚。该引脚上的数据通过 CANH 和 CANL 差分输出引脚输出。它通常与 CAN 控制器的发送器数据输出相连。当 TXD 为低电平时, CANH 和 CANL 为显性状态。当 TXD 为高电平时, CANH 和 CANL 为隐性状态,此时假设另外的 CAN 节点没有以显性状态驱动 CAN 总线。 TXD 拥有一个内部的上拉电阻(通常为 25 kΩ,连接到 VDD)。

1.7.2 接地端 (Vss)

接地引脚。

1.7.3 电源端 (VDD)

正电源引脚。

1.7.4 接收器数据输出 (RXD)

RXD 是一个 CMOS 兼容输出引脚,它根据 CANH 和 CANL 引脚上的差分信号决定驱动高电平还是低电平。它通常与 CAN 控制器的接收器数据输入相连。当 CAN 总线为隐性时 RXD 处于高电平,当 CAN 总线为显性的时候它为低电平。

1.7.5 参考电压 (VREF)

参考电压输出 (定义为 VDD/2)。

1.7.6 CAN 低电压端 (CANL)

CANL输出驱动 CAN 差分总线的低端。该引脚同时与接收器输入比较器内部相连。

1.7.7 CAN 高电压端 (CANH)

CANH 输出驱动 CAN 差分总线的高端。该引脚同时与接收器输入比较器内部相连。

1.7.8 斜率电阻输入(Rs)

Rs 引脚通过外部偏置电阻选择高速、斜率控制或待机模式。

2.0 电气特性

2.1 术语和定义

ISO-11898 中定义了许多术语来描述一个 CAN 收发器器件的电气特性。这些术语和定义现总结如下。

2.1.1 总线电压

VCANL 和 VCANH 表示总线上 CANL 和 CANH 相对于各 CAN 节点地的电压。

2.1.2 共模总线电压范围

在 VCANL 和 VCANH 相对于地的边界电压范围之内,即使连接的 CAN 节点数目达到最多,也可以正常运作。

- 2.1.3 (CAN 节点上的)内部差分电容 CDIFF 当 CAN 节点未与总线相连的时候(见图 2-1),在隐性 状态下 CANL 和 CANH 之间的电容。
- 2.1.4 (CAN 节点上的)内部差分电阻 RDIFF 当 CAN 的节点未与总线相连的时候(见图 2-1),在隐 性状态下 CANL 和 CANH 之间的电阻。

2.1.5 (CAN 总线的) 差分电压 VDIFF 双线 CAN 总线的差分电压, 其值为 VDIFF = VCANH -

双线 CAN 总线的差分电压,其值为 VDIFF = VCANH - VCANL。

2.1.6 (CAN 节点) 内部电容 CIN

当 CAN 节点未与总线相连的时候(见图 2-1),在隐性状态下 CANL(或 CANH)与地之间的电容。

2.1.7 (CAN 节点) 内部电阻 RIN

当 CAN 节点未与总线相连的时候(见图 2-1),在隐性状态下 CANL(或 CANH)与地之间的电阻。

绝对最大额定值 †

VDD	7.0V
TXD、RXD、VREF 和 Vs 上的直流电压	0.3V 至 VDD + 0.3V
CANH 和 CANL 上的直流电压 (注 1)	42V 至 +42V
引脚6和7上的瞬态电压 (注 2)	250V 至 +250V
储存温度	55°C 至 +150°C
工作环境温度	40°C 至 +125°C
虚拟结温, TvJ (注 3)	40°C 至 +150°C
引脚焊接温度 (10 秒)	+300°C
CANH 和 CANL 引脚上的 ESD 保护 (注 4)	6 kV
其他引脚上的 ESD 保护 (注 4)	4 kV
注 1: 当 TXD 是高电平或低电平的时候,短路适用。	
2: 符合 ISO-7637。	
3: 符合 EC 60747-1。	
4: A 类: 人体模型。	

†注: 如果器件运行条件超过上述各项绝对最大额定值,可能对器件造成永久性损坏。上述参数仅是运行条件的极大值,我们不建议器件运行在超过或在技术规范以外的条件下。器件长时间工作在绝对最大极限条件下,其稳定性可能受到影响。

2.2 DC 特性

DC 说明						85°C VDD = 4.5V 至 5.5V ·125°C VDD = 4.5V 至 5.5V
参数号	符号	特性	最小值	最大值	单位	条件
供电电源						
D1	IDD	电源电流	_	75	mA	显性; VTXD = 0.8V; VDD
D2			_	10	mA	隐性; VTXD = +2V; Rs = 47 kΩ
D3			_	365	μА	-40°C ≤ T _{AMB} ≤ +85°C, 待机; (注 2)
			_	465	μA	-40°C≤T _{AMB} ≤+125°C, 待机: (注 2)
D4	VPORH	上电复位比较器高电平	3.8	4.3	V	当 VDD > VPORH 时, CANH 和 CANL 输出激活
D5	VPORL	上电复位比较器低电平	3.4	4.0	V	当 VDD < VPORH 时, CANH 和 CANL 输出未激活
D6	VPORD	上电复位比较器滞后	0.3	0.8	V	注 1
总线 (CA	NH; CANL)发过	全器				
D7	$VCANH_{(r);}VCANL_{(r)}$	CANH 和 CANL 隐性总线电压	2.0	3.0	V	VTXD = VDD; 无负载
D8	IO(CANH)(reces) IO(CANL)(reces)	隐性输出电流	-2	+2	mA	-2V < V(CAHL,CANH) < +7V, 0V <vdd 5.5v<="" <="" td=""></vdd>
D9			-10	+10	mA	-5V < V(CANL,CANH) < +40V, 0V <vdd 5.5v<="" <="" td=""></vdd>
D10	Vo(canh)	CANH 显性输出电压	2.75	4.5	V	VTXD = 0.8V
D11	Vo(canl)	CANL 显性输出电压	0.5	2.25	V	VTXD = 0.8V
D12	VDIFF(r)(o)	隐形差分输出电压	-500	+50	mV	VTXD = 2V; 无负载
D13	VDIFF(d)(o)	显性差分输出电压	1.5	3.0	V	$VTXD = 0.8V$; $VDD = 5V$ $40\Omega < RL < 60\Omega$ (注 2)
D14	Io(SC)(CANH)	CANH 短路输出电流	_	-200	mA	VCANH = -5V
D15			_	-100 (典型值)	mA	VCANH = -40V,+40V。 (注 1)
D16	IO(SC)(CANL)I	CANL 短路输出电流		200	mA	VCANL = -40V, +40V。 (注 1)
总线 (CA	NH; CANL)接收	文器: [TXD = 2V; 引脚 6 和 7 外部	驱动]			
D17	VDIFF(r)(i)	隐性差分输入电压	-1.0	+0.5	V	-2V < V(CANL, CANH) < +7V (注 3)
			-1.0	+0.4	V	-12V < V(CANL, CANH) < +12V (注 3)
D18	VDIFF(d)(i)	显性差分输入电压	0.9	5.0	V	-2V < V(CANL, CANH) < +7V (注 3)
			1.0	5.0	V	-12V < V(CANL, CANH) < +12V (注 3)
D19	VDIFF(h)(i)	差分输入滞后	100	200	mV	参看图 2-4。(注 1)
D20	Rin	CANH 和 CANL 共模输入电阻	5	50	kΩ	
D21	Rın(d)	CANH和CANL共模输入电阻偏差	-3	+3	%	VCANH = VCANL

注 1: 该参数未经 100% 测试, 而是通过周期性采样。

^{2:} ITXD = IRXD = IVREF = 0 mA; 0V < VCANL < VDD; 0V < VCANH < VDD; VRS = VDD.

^{3:} 对所有模式下的接收器有效: 高速, 斜率控制和待机。

2.2 DC 特性 (续)

DC 说明			电气特性: 工业级(Ⅰ): TAMB = -40°C 至 +85°C VDD = 4.5V 至 5.5V 扩展级(E): TAMB = -40°C 至 +125°C VDD = 4.5V 至 5.5V				
参数号	符号	特性	最小值	最大值	单位	条件	
总线 (CA	NH; CANL)接收	文器: [TXD = 2V; 引脚 6 和 7 外部	『驱动]				
D22	Rdiff	差分输入电阻	20	100	kΩ		
D24	lLi	CANH 和 CANL 输入泄漏电流	_	150	μA	VDD < VPOR ; VCANH = VCANL = +5V	
发送器数据	·····································						
D25	VIH	高电平输入电压	2.0	VDD	V	隐性输出	
D26	VIL	低电平输入电压	Vss	+0.8	V	显性输出	
D27	IIН	高电平输入电流	-1	+1	μΑ	VTXD = VDD	
D28	lıL	低电平输入电流	-100	-400	μA	VTXD = 0V	
接收器数据	精出(RXD)						
D31	Voн	高电平输出电压	0.7 VDD	_	V	ЮН = 8 mA	
D32	Vol	低电平输出电压	_	0.8	V	IOL = 8 mA	
电压参考输	出(VREF)						
D33	VREF	参考输出电压	0.45 VDD	0.55 VDD	V	-50 μA < IVREF < 50 μA	
待机/斜率	控制(Rs 引脚)						
D34	Vstb	待机模式输入电压	0.75 VDD	_	V		
D35	ISLOPE	斜率控制模式电流	-10	-200	μΑ		
D36	VSLOPE	斜率控制模式电压	0.4 VDD	0.6 VDD	V		
热关断							
D37	TJ _(sd)	关断结温	155	180	°С	注 1	
D38	TJ _(h)	关断结温滞后	20	30	°C	-12V < V(CANL, CANH) < +12V (注 3)	

- 注 1: 该参数未经 100% 测试,而是通过周期性采样。
 - 2: ITXD = IRXD = IVREF = 0 mA; 0V < VCANL < VDD; 0V < VCANH < VDD; VRS = VDD.
 - 3: 对所有模式下的接收器有效: 高速, 斜率控制和待机。

图 2-2: 电器特性的测试电路

图 2-3: 汽车瞬态测试电路

图 2-4: 接收器滞后

2.3 AC 特性

AC 说明				(I): TAMB =		至 +85°C VDD = 4.5V 至 5.5V 至 +125°C VDD = 4.5V 至 5.5V
参数号	符号	特性	最小值	最大值	单位	条件
1	tвіт	比特时间	1	62.5	μs	VRS = 0V
2	fBIT	比特频率	16	1000	kHz	VRS = 0V
3	TtxL2bus(d)	从 TXD 到总线有效延迟	_	70	ns	$-40^{\circ}\text{C} \le \text{TAMB} \le +125^{\circ}\text{C},$ VRS = 0V
4	TtxH2bus(r)	从 TXD 到总线无效延迟	_	125	ns	$-40^{\circ}\text{C} \le \text{TAMB} \le +85^{\circ}\text{C}$, $\text{VRS} = 0\text{V}$
			_	170	ns	$-40^{\circ}\text{C} \le \text{TAMB} \le +125^{\circ}\text{C}$, $\text{VRS} = 0\text{V}$
5	TtxL2rx(d)	从 TXD 到接收有效延时	_	130	ns	$ \begin{array}{l} -40^{\circ}\text{C} \leq \text{TAMB} \leq +125^{\circ}\text{C}, \\ \text{VRS} = 0\text{V} \end{array} $
			_	250	ns	$ \begin{array}{l} -40^{\circ}\text{C} \leq \text{TAMB} \leq +125^{\circ}\text{C}, \\ \text{Rs} = 47 \text{ k}\Omega \end{array} $
6	TtxH2rx(r)	从 TXD 到接收无效延时	_	175	ns	-40°C ≤ TAMB ≤ +85°C, VRS = 0V
			_	225	ns	$-40^{\circ}\text{C} \le \text{TAMB} \le +85^{\circ}\text{C},$ Rs = 47 k Ω
			_	235	ns	$-40^{\circ}\text{C} \le \text{TAMB} \le +125^{\circ}\text{C},$ VRS = 0V
			_	400	ns	$-40^{\circ}\text{C} \le \text{TAMB} \le +125^{\circ}\text{C}$, Rs = 47 k Ω
7	SR	CANH, CANL 转换率	5.5	8.5	V/µs	见图 1-1; Rs = 47 kΩ, (注 1)
10	twake	从待机状态唤醒时间(Rs 引脚)	_	5	μs	见图 2-6
11	TbusD2rx(s)	总线显性到 RXD 低电平 (待机状态)	_	550	ns	VRS = +4V; (见图 2-7)
12	CIN(CANH) CIN(CANL)	CANH 和 CANL 输入电容		20 (典型值)	pF	1 Mbit/s 数据速率; VTXD = VDD, (注 1)
13	CDIFF	差分输入电容		10 (典型值)	pF	1 Mbit/s 数据速率 (注 1)
14	TtxL2busZ	TX 恒显性定时器禁用时间	1.25	4	ms	
15	TtxR2pdt(res)	TX 恒显性定时器复位时间		1	μs	当器件处于恒显性状态, TXD 上的上升沿

注 1:参数未经 100% 测试,而是通过周期采样。

2.4 时序图和说明

图 2-5: AC 特性的时序图

图 2-6: 从待机状态唤醒的时序图

3.0 封装信息

3.1 封装标识信息

8 引脚 SOIC 封装 (150 mil)

图例: XX...X 用户指定信息*

YY 年份代码(日历年的最后两位数字)

WW 星期代码 (一月一日的星期代码为 "01")

NNN 以字母数字排列的追踪代码

注: Microchip 元器件编号若无法在同一行内标完,将换行标出,因此会限制客户信息的可用字符数。

* 标准标识包括Microchip部件编号、年份代码、星期代码和追踪代码(生产商代码、掩摸版本和装配代码)。 除此以外的标识需要另收费用。请与您当地的 Microchip 销售办事处联系。

8 引脚塑料双列直插封装 (P) - 300 mil (PDIP)

	单位	英寸*			毫米			
尺寸	范围	最小	正常	最大	最小	正常	最大	
引脚数	n		8			8		
引脚间距	р		.100			2.54		
顶端到固定面高度	Α	.140	.155	.170	3.56	3.94	4.32	
塑模封装厚度	A2	.115	.130	.145	2.92	3.30	3.68	
塑模底端到固定面高度	A1	.015			0.38			
肩到肩宽度	E	.300	.313	.325	7.62	7.94	8.26	
塑模封装宽度	E1	.240	.250	.260	6.10	6.35	6.60	
总长度	D	.360	.373	.385	9.14	9.46	9.78	
引脚尖到固定面高度	L	.125	.130	.135	3.18	3.30	3.43	
引脚厚度	С	.008	.012	.015	0.20	0.29	0.38	
引脚上部宽度	B1	.045	.058	.070	1.14	1.46	1.78	
引脚下部宽度	В	.014	.018	.022	0.36	0.46	0.56	
总排列距离 §	eB	.310	.370	.430	7.87	9.40	10.92	
塑模顶部锥度	α	5	10	15	5	10	15	
塑模底部锥度	β	5	10	15	5	10	15	

* 控制参数 § 重要特性参数

注 尺寸 D 和 E1 不包括塑模的毛边或突起。每侧塑模毛边或突起不得超过 0.010 英寸 (0.254mm)。 等同于 JEDEC 号: MS-001 图号 C04-018

8 引脚塑料小型封装 (SN) - 窄条型, 150 mil (SOIC)

	单位		英寸*		卓	玉米	
尺寸范围		最小	正常	最大	最小	正常	最大
引脚数	n		8			8	
引脚间距	р		.050			1.27	
总高度	Α	.053	.061	.069	1.35	1.55	1.75
塑模封装厚度	A2	.052	.056	.061	1.32	1.42	1.55
悬空间隙 §	A1	.004	.007	.010	0.10	0.18	0.25
总宽度	E	.228	.237	.244	5.79	6.02	6.20
塑模封装宽度	E1	.146	.154	.157	3.71	3.91	3.99
总长度	D	.189	.193	.197	4.80	4.90	5.00
斜面投影距离	h	.010	.015	.020	0.25	0.38	0.51
底脚长度	L	.019	.025	.030	0.48	0.62	0.76
底脚倾斜角	ф	0	4	8	0	4	8
引脚厚度	С	.008	.009	.010	0.20	0.23	0.25
引脚宽度	В	.013	.017	.020	0.33	0.42	0.51
塑模顶端锥度	α	0	12	15	0	12	15
塑模低端锥度	β	0	12	15	0	12	15

* 控制参数 § 总要特性参数

尺寸 D 和 E1 不包括塑模的毛边或突起。每侧塑模毛边或突起不得超过 0.010 英寸 (0.254mm)。 等同于 JEDEC 号: MS-012 图号 C04-057

产品标识体系

欲订货,或获取价格、交货等信息,请与我公司生产厂或各销售办事处联系。

器件编号	<u>X</u> / <u>XX</u>	示	例:	
 器件		a)	MCP2551-I/P:	工业级温度, PDIP 封装。
		b)	MCP2551-E/P:	扩展级温度, PDIP 封装。
器件:	MCP2551= 高速 CAN 收发器	c)	MCP2551-I/SN:	工业级温度, SOIC 封装。
温度范围:	I = -40°C 至 +85°C E = -40°C 至 +125°C	d)	MCP2551T-I/SN:	卷带式, 工业级温度, SOIC 封装。
封装:	P = 塑料 DIP (主体 300 mil) 8 引脚 SN = 塑料 SOIC (主体 150 mil) 8 引脚	e)	MCP2551T-E/SN:	卷带式, 扩展级温度, SOIC 封装。

销售与技术支持

数据手册

初始数据手册中所述的产品可能会有一份勘误表,其中描述了较小的运行差异和推荐的工作环境。要了解是否存在某一器件的勘误 表,可通过以下方式联系我们:

- Microchip 在当地的销售办事处
- Microchip 美国总部的文献中心,传真: 1–480–792–7277 Microchip 网站(www.microchip.com)

请指明您使用的器件名称、芯片型号和数据手册的版本 (包括文献编号)。

最新信息客户通知系统

在 Microchip 网站 (www.microchip.com)上注册,就能获得产品的最新信息。

请注意以下有关 Microchip 器件代码保护功能的要点:

- Microchip 的产品均达到 Microchip 数据手册中所述的技术指标。
- Microchip 确信:在正常使用的情况下, Microchip 系列产品是当今市场上同类产品中最安全的产品之一。
- 目前,仍存在着恶意、甚至是非法破坏代码保护功能的行为。就我们所知,所有这些行为都不是以 Microchip 数据手册中规定的操作规范来使用 Microchip 产品的。这样做的人极可能侵犯了知识产权。
- Microchip 愿与那些注重代码完整性的客户合作。
- Microchip 或任何其他半导体厂商均无法保证其代码的安全性。代码保护并不意味着我们保证产品是"牢不可破"的。

代码保护功能处于持续发展中。 Microchip 承诺将不断改进产品的代码保护功能。任何试图破坏 Microchip 代码保护功能的行为均可视为违反了《数字器件千年版权法案(Digital Millennium Copyright Act)》。如果这种行为导致他人在未经授权的情况下,能访问您的软件或其他受版权保护的成果,您有权依据该法案提起诉讼,从而制止这种行为。

提供本文档的中文版本仅为了便于理解。Microchip Technology Inc. 及其分公司和相关公司、各级主管与员工及 事务代理机构对译文中可能存在的任何差错不承担任何责任。 建议参考 Microchip Technology Inc. 的英文原版文档。

本出版物中所述的器件应用信息及其他类似内容仅为您提供便利,它们可能由更新之信息所替代。确保应用符合技术规范,是您自身应负的责任。Microchip 对这些信息不作任何明示或暗示、书面或口头、法定或其他形式的声明或担保,包括但不限于针对其使用情况、质量、性能、适销性或特定用途的适用性的声明或担保。Microchip 对因这些信息及使用这些信息而引起的后果不承担任何责任。未经 Microchip 书面批准,不得将 Microchip 的产品用作生命维持系统中的关键组件。在 Microchip 知识产权保护下,不得暗中或以其他方式转让任何许可证。

商标

Microchip 的名称和徽标组合、Microchip 徽标、Accuron、dsPIC、KEELOQ、microID、MPLAB、PIC、PICmicro、PICSTART、PRO MATE、PowerSmart、rfPIC 和SmartShunt 均为 Microchip Technology Inc. 在美国和其他国家或地区的注册商标。

AmpLab、FilterLab、Migratable Memory、MXDEV、MXLAB、PICMASTER、SEEVAL、SmartSensor 和 The Embedded Control Solutions Company 均为 Microchip Technology Inc. 在美国的注册商标。

Analog-for-the-Digital Age、Application Maestro、dsPICDEM、dsPICDEM.net、dsPICworks、ECAN、ECONOMONITOR、FanSense、FlexROM、fuzzyLAB、In-Circuit Serial Programming、ICSP、ICEPIC、Linear Active Thermistor、MPASM、MPLIB、MPLINK、MPSIM、PICkit、PICDEM、PICDEM.net、PICLAB、PICtail、PowerCal、PowerInfo、PowerMate、PowerTool、rfLAB、rfPICDEM、Select Mode、Smart Serial、SmartTel、Total Endurance 和 WiperLock 均为 Microchip Technology Inc. 在美国和其他国家或地区的商标。

SQTP 是 Microchip Technology Inc. 在美国的服务标记。

在此提及的所有其他商标均为各持有公司所有。

© 2005, Microchip Technology Inc. 版权所有。

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV

== ISO/TS 16949:2002 ==

Microchip 位于美国亚利桑那州 Chandler 和 Tempe 及位于加利福尼亚州 Mountain View 的全球总部、设计中心和晶侧生产厂均于2003 年10月通过了ISO/TS-16949:2002 质量体系认证。公司在PICmicro® 8 位单片机、KEELOQ® 跳码器件、串行EEPROM、单片机外设、非易失性存储器和模拟产品方面的质量体系流程均符合ISO/TS-16949:2002。此外,Microchip 在开发系统的设计和生产方面的质量体系也已通过了ISO 9001:2000 认证。

全球销售及服务网点

美洲

公司总部 Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 1-480-792-7200 Fax: 1-480-792-7277

技术支持:

http://support.microchip.com 网址: www.microchip.com

亚特兰大 Atlanta Alpharetta, GA Tel: 1-770-640-0034 Fax: 1-770-640-0307

波士顿 Boston Westborough, MA Tel: 1-774-760-0087 Fax: 1-774-760-0088

芝加哥 Chicago

Tel: 1-630-285-0071 Fax: 1-630-285-0075

达拉斯 **Dallas** Addison, TX Tel: 1-972-818-7423 Fax: 1-972-818-2924

底特律 Detroit Farmington Hills, MI Tel: 1-248-538-2250 Fax: 1.248-538-2260

Tel: 1-248-538-2250 Fax: 1-248-538-2260 科科莫 **Kokomo** Kokomo, IN

Tel: 1-765-864-8360 Fax: 1-765-864-8387

洛杉矶 Los Angeles Mission Viejo, CA Tel: 1-949-462-9523 Fax: 1-949-462-9608

圣何塞 San Jose Mountain View, CA Tel: 1-650-215-1444 Fax: 1-650-961-0286

加拿大多伦多 **Toronto** Mississauga, Ontario, Canada

Tel: 1-905-673-0699 Fax: 1-905-673-6509

亚太地区

中国 - 北京 Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

中国 - 成都

Tel: 86-28-8676-6200 Fax: 86-28-8676-6599

中国 - 福州 Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

中国 - 香港特别行政区 Tel: 852-2401-1200 Fax: 852-2401-3431

中国 - 上海 Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

中国 - 沈阳 Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

中国 - 深圳 Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

中国 - 顺德 Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

中国 - 青岛 Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

台湾地区 - 高雄 Tel: 886-7-536-4818 Fax: 886-7-536-4803 台湾地区 - 台北

台湾地区 - 台北 Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

台湾地区 - 新竹 Tel: 886-3-572-9526 Fax: 886-3-572-6459

亚太地区

澳大利亚 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

印度 India - Bangalore Tel: 91-80-2229-0061 Fax: 91-80-2229-0062

印度 India - New Delhi Tel: 91-11-5160-8631 Fax: 91-11-5160-8632

日本 **Japan - Kanagawa** Tel: 81-45-471- 6166 Fax: 81-45-471-6122

韩国 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 或 82-2-558-5934

马来西亚 Malaysia - Penang Tel:011-604-646-8870 Fax:011-604-646-5086

菲律宾 Philippines - Manila Tel: 011-632-634-9065 Fax: 011-632-634-9069

新加坡 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

欧洲

奥地利 Austria - Weis Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

丹麦 **Denmark - Ballerup** Tel: 45-4450-2828 Fax: 45-4485-2829

法国 France - Massy Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

德国 Germany - Ismaning Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

意大利 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

荷兰 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

英国 England - Berkshire Tel: 44-118-921-5869 Fax: 44-118-921-5820

04/20/05