Parameterisation of multi-map from Internet traffic traces

Girum Aklilu, Jonathan Pitts Queen Mary, University of London

Presentation Overview

- Observation of Internet traffic analysis
 - Observed scalings
- Multi-map as a traffic model
 - Structures and equations
 - Parameters of the map
- Trace based parameterisation of the multi-map
 - step by step analysis
- Comparison of real versus synthetic traffic analysis
 - * R/S scaling comparison, load and variance analysis
- Future directions
 - More trace analysis
 - Model use in network analysis

Traffic trace analysis

- ❖ TCP traffic traces from WAN at Berkeley Labs
 - ❖ An hourly trace (lbl-4)
 - ❖ 1.3 million packets in the trace

Scaling of traffic traces

- ❖ R/S analysis showed two scaling ranges
 - ❖ Two Hurst parameters with cross over point at around 1s

Structure of multi-map model

Equations of multi-map

Hidden dynamical layer

$$X_{n+1} = F(X_n) = \begin{cases} F_1(x_n) &= e_1 + x_n + \frac{1 - e_1 - d_2}{d_2^{m_1}} x_n^{m_1} & 0 < x_n < d_1 \\ F_2(x_n) &= e_2 + x_n + \frac{1 - e_2 - d_2}{d_2^{m_2}} x_n^{m_2} & d_1 \le x_n < d_2 \\ F_3(x_n) &= x_n - d_2 \frac{1 - x_n}{1 - d_2} & d_2 \le x_n < 1 \end{cases}$$

• where parameters
$$x_n \in (0,1)$$
 $m_i \in (1,2)$ $d_i \in (0,1)$

Visible dynamical layer

$$y(x_n) = \begin{cases} 1 & 0 < x_n < d_2, \\ 0 & d_2 \le x_n < 1, \end{cases}$$

$$ON (packet)$$

$$OFF (no packet)$$

Parameterisation of the multi-map

- Packet size distribution analysis
 - * Packet sizes s, m, l, & corresponding P_s , P_m , P_1

- Time scale and load analysis
 - $* d_2, ? t_2$

- Multi scaling analysis
 - $* m_1, m_2, e, d_1$

Distribution analysis

- ❖ Packet size analysis based on Imix Internet packet mixture [Journal of Internet test]
 - ❖ Result of 342 million packet analysis at NLANR
 - ❖ Accurate correlation when compared to realistic Internet traffic
 - Tri-modal distribution analysis from traces
 - Output three mean packet sizes and their distribution
 - Small, medium and large sizes and respective probabilities

Distribution analysis (contd.)

Time scale and load analysis

- ❖ Variance and load calculated for each trace with regards to? t₁
 - * smallest time scale unit the trace analysed at
- Respective analysis of iteration time
 - ? $t_2 = P_1/C$
 - ❖ where P₁ is max packet size and C is link rate
 - \bullet Hence one iteration corresponds to ? t_2
- Scaling comparison achieved with equal time units

1 ime scale and load analysis – parameter d_2

- * Proportion of time increments that have a packet and hence the load, relates to parameter d_2
- ❖ Equivalence to single intermittency map in its structure
 - ❖ Based on look up table of parameters d, m and load

• Output – parameter d_2 for specific load and m_2

Time scale and load analysis – constraints on parameter d_2

- * Constraints on d_2 [Samuel] leads to changes in parameters
 - If d_2 lies outside regions 0.1 to 0.9
 - ❖ H value is lower than expected
 - \bullet Hence keep d_2 within the region
 - ❖ Results in changes in proportion of time increments that have a packet
 - \star Leads to change in ? t_2 iteration time unit

Multi scaling analysis – H test

- Hurst parameter using R/S analysis
 - Advantage of showing distinctive scaling regions

- Output two H values with cross over point
 - $\bullet H_1, H_2, t = n_{t^*}?t_1$

Multi scaling analysis – Parameters m_1 and m_2

- * The *m* parameters are directly linked to the Hurst parameters [Mondragon]
- ❖ Equation of *m* from *H* parameters

$$H = \left(\frac{3m - 4}{2m - 2}\right)$$

$$\Rightarrow m = \left(\frac{4 - 2H}{3 - 2H}\right)$$

• Output m_1 and m_2

Multi scaling analysis – Parameter e

- e parameter allows effective control of LRD
 - cut-off point in case of single intermittency map
 - Queue analysis result

❖ Output e versus cross-over point

Multi scaling analysis – Parameter d_1

 \diamond Parameter d_1

$$d_{\scriptscriptstyle 1} = d_{\scriptscriptstyle 2} \left(\frac{\mathbf{e}}{1 - d_{\scriptscriptstyle 2}} \right)^{\frac{1}{m_{\scriptscriptstyle 2}}}$$

- Controls the cross over point
- Equivalence achieved with single intermittency map

Parameter value results -lbl4

- Packet size distribution analysis
 - ❖ Packet sizes -s = 45 bytes, m = 520 bytes, l = 1451 bytes,
 - $P_s = 0.6515, P_m = 0.333, P_1 = 0.0155$
- Time scale and load analysis
 - d2 = 0.1, ? $t_2 = 500 \mu s$
- Multi scaling analysis
 - \bullet $m_1 = 1.8$, $m_2 = 1.6$, $e = 1*10^{-6}$, $d_1 = 1.9*10^{-5}$

Companson of real versus synthetic traffic

Mean load

- Trace Multi-map
 - ❖ 330 bit/s293 bits/s
 - **❖** 0.2397 pps 0.232 pps

Variance

- Trace Multi-map
 - ❖ 167.8 bit/s

 137 bit/s
 - **♦** 0.527 pps 0.5 pps

H parameter

- Trace Multi-map
 - **❖** 0.66, 0.85 0.65, 0.82

Comparison of real versus synthetic traffic from multi map

Future Directions

- More trace analysis
 - York trace
- Use of traces in network analysis
 - Advantages of multi-map
 - ❖ Parsimonious, effective parameterisation, fast
 - Multi service complex traffic scenarios
 - ❖ Traffic generation for different classes of traffic
 - ❖ Performance analysis