PAUTA SOLEMNE II - MICROECONOMÍA II

PROFESOR: JUAN PABLO TORRES MARTÍNEZ SEMESTRE PRIMAVERA - 2024

PREGUNTA 1. Considere un modelo de emparejamiento bilateral uno-a-uno entre agentes de $M = \{m_1, m_2, m_3\}$ y $W = \{w_1, w_2, w_3\}$. Las preferencias son estrictas y vienen dadas por:

\succ_{m_1}	\succ_{m_2}			\succ_{w_2}	\succ_{w_3}
w_1	w_2	w_2 w_3	m_3	m_1 m_3 m_2	m_1
w_3	w_3	w_3	m_1	m_3	m_2
w_2		w_1	m_2	m_2	m_3
m_1	m_2	m_3	w_1	w_2	w_3

Justificando detalladamente sus argumentos, encuentre todos los emparejamientos estables.

Comenzaremos escogiendo un lado del mercado y aplicando el algoritmo de aceptación diferida, el cual sabemos que siempre implementa emparejamientos estables. Cuando el grupo M hace las propuestas, en la primera etapa del algoritmo m_1 le propone a w_1 , mientras que m_2 y m_3 le hacen propuestas a w_2 . La propuesta de m_2 es rechazada y se forman las parejas (m_1, w_1) y (m_3, w_2) . En la segunda etapa, m_2 le hace una propuesta a w_3 , la cual es aceptada. Se genera el emparejamiento $\mu = \{(m_1, w_1), (m_2, w_3), (m_3, w_2)\}$. Cuando el grupo W hace las propuestas, en la primera etapa del algoritmo w_1 le propone a m_3 , mientras que w_2 y w_3 le proponen a m_1 . Se forman las parejas (m_1, w_3) y (m_3, w_1) . La oferta de w_2 es rechazada. En la segunda etapa, w_2 le hace una propuesta a m_3 , la cual es aceptada. Se mantiene la pareja (m_1, w_3) y se forma (m_3, w_2) . Eso hace que la oferta hecha por w_1 en la primera etapa sea finalmente rechazada. En la tercera etapa, w_1 le hace una propuesta a m_1 , la cual es aceptada y lleva al rechazo de la oferta hecha por w_3 en la primera etapa. Con esto, se mantiene la pareja (m_3, w_2) y se forma (m_1, w_1) . Finalmente, en la cuarta etapa, w_3 le hace una oferta a m_2 , la cual es aceptada. Se genera el emparejamiento $\mu = \{(m_1, w_1), (m_2, w_3), (m_3, w_2)\}$. Por lo tanto, obtenemos el mismo emparejamiento estable independiente del lado del mercado que hace las propuestas. Eso nos asegura que μ es el único emparejamiento estable, pues μ es al mismo tiempo el peor y el mejor emparejamiento estable para cada agente en $M \cup W$.

PREGUNTA 2. En el contexto de modelos de emparejamiento bilateral uno-a-uno entre agentes de $M = \{m_1, m_2, m_3\}$ y $W = \{w_1, w_2, w_3\}$, considere mecanismos que están definidos en el dominio \mathcal{P} de los perfiles de preferencias completas, transitivas y estrictas $(\succ_h)_{h\in M\cup W}$ tales que:

- Para cada $m \in M, \succ_m$ está definida en W.
- Para cada $w \in W$, \succ_w está definida en M.

En este contexto, un emparejamiento entre miembros de M y W viene dado por una función biyectiva $\mu:W\to M$. Denote por $\mathcal E$ al conjunto de todos los posibles emparejamientos.

Sea $AD_W : \mathcal{P} \to \mathcal{E}$ el mecanismo que asocia a cada perfil de preferencias en \mathcal{P} el resultado de aplicar el algoritmo de aceptación diferida cuando los miembros de W hacen las propuestas.

Justificando detalladamente su argumentos, responda las siguientes preguntas:

(a) Demuestre que el mecanismo AD_W no siempre genera un emparejamiento que es Pareto eficiente para los agentes de W.

Si consideramos las preferencias descritas en la Pregunta 1, el emparejamiento que se obtiene al aplicar el mecanismo AD_W es $\mu = \{(m_1, w_1), (m_2, w_3), (m_3, w_2)\}$, el cual es Pareto ineficiente para el grupo W pues es dominado por el emparejamiento $\eta = \{(m_1, w_2), (m_2, w_3), (m_3, w_1)\}$, ya que w_1 y w_2 mejoran su situación y w_3 no empeora.

- (b) Demuestre que AD_W no es group strategy-proof para el grupo W. Esto es, demuestre que existe un perfil de preferencias $(\succ_h)_{h\in M\cup W}\in \mathcal{P}$ y una coalición $W'\subseteq W$ tal que, para algún perfil $(\succ'_w)_{w\in W'}$ de preferencias completas, transitivas y estrictas definidas sobre M se cumplen las siguientes propiedades:
 - Cada agente en W' considera a su pareja en $\mathrm{AD}_W[(\succ_w')_{w\in W'},(\succ_h)_{h\in M\cup (W\backslash W')}]$ al menos tan preferida cuanto su pareja en $\mathrm{AD}_W[(\succ_h)_{h\in M\cup W}]$.
 - Al menos un agente en W' considera a su pareja en $\mathrm{AD}_W[(\succ_w')_{w\in W'},(\succ_h)_{h\in M\cup (W\setminus W')}]$ más preferida que su pareja en $\mathrm{AD}_W[(\succ_h)_{h\in M\cup W}]$.

Podemos considerar el perfil de preferencias $(\succ_h)_{h\in M\cup W}\in \mathcal{P}$ descrito en la Pregunta 1 y la coalición $W=\{w_2,w_3\}$. Si asumimos que $(\succ'_w)_{w\in W'}$ es tal que $\succ'_{w_2}=\succ_{w_2}$ y $m_2\succ'_{w_3}$ $m_1\succ'_{w_3}$ $m_3\succ'_{w_3}$ w_3 , entonces $\mathrm{AD}_W[(\succ'_w)_{w\in W'},(\succ_h)_{h\in M\cup (W\setminus W')}]=\{(m_1,w_2),(m_2,w_3),(m_3,w_1)\}$. Note que, en relación al emparejamiento $\mathrm{AD}_W[(\succ_h)_{h\in M\cup W}]=\{(m_1,w_1),(m_2,w_3),(m_3,w_2)\}$, el agente w_2 mejora su situación en $\mathrm{AD}_W[(\succ'_w)_{w\in W'},(\succ_h)_{h\in M\cup (W\setminus W')}]$ y w_3 no cambia de pareja. Esto muestra que AD_W no es group strategy-proof para el grupo W.

PREGUNTA 3. Considere un mercado habitacional con tres individuos y tres casas, las cuales denotaremos por h_1, h_2, h_3 . Cada individuo $i \in \{1, 2, 3\}$ tiene una relación de preferencias \succ_i por las casas, la cual es completa, transitiva y estricta: $h_2 \succ_1 h_1 \succ_1 h_3$; $h_1 \succ_2 h_3 \succ_2 h_2$; $h_2 \succ_3 h_3 \succ_3 h_1$.

Justificando detalladamente su argumentos, responda las siguientes preguntas:

(a) Encuentre las distribuciones de casas que son Pareto eficientes.

Para encontrar todas las distribuciones de casas que son Pareto eficientes es suficiente aplicar el mecanismo serial dictatorship para todos los posibles órdenes de prioridad de los agentes. La siguiente tabla describe el resultado de ese proceso:

Orden	1	2	3	Distribución de casas
1,2,3	h_2	h_1	h_3	$[(1,h_2),(2,h_1),(3,h_3)]$
1,3,2	h_2	h_1	h_3	$[(1, h_2), (2, h_1), (3, h_3)]$
2,1,3	h_2	h_1	h_3	$[(1,h_2),(2,h_1),(3,h_3)]$
2,3,1	h_3	h_1	h_2	$[(1,h_3),(2,h_1),(3,h_2)]$
3,1,2	h_1	h_3	h_2	$[(1,h_1),(2,h_3),(3,h_2)]$
3,2,1	h_3	h_1	h_2	$[(1,h_3),(2,h_1),(3,h_2)]$

Luego, $[(1, h_2), (2, h_1), (3, h_3)], [(1, h_3), (2, h_1), (3, h_2)]$ y $[(1, h_1), (2, h_3), (3, h_2)]$ son las únicas distribuciones de casas Pareto eficientes.

(b) Si el individuo $i \in \{1, 2, 3\}$ es el propietario de la casa h_i , encuentre las distribuciones de casas que son Pareto eficientes e individualmente racionales.

Tenemos que determinar cuales de las tres distribuciones de casas que son Pareto eficientes dejan a cada individuo con una propiedad tan buena cuanto su asignación inicial. Luego, $[(1, h_2), (2, h_1), (3, h_3)]$ y $[(1, h_1), (2, h_3), (3, h_2)]$ son las únicas distribuciones de casas que son Pareto eficientes e individualmente racionales.

(c) Si el individuo $i \in \{1, 2, 3\}$ es el propietario de la casa h_i , encuentre las distribuciones de casas que están en núcleo

Si una distribución de casas está en el núcleo, entonces no puede ser bloqueada por ninguna coalición. Esto asegura que debe ser Pareto eficiente e individualmente racional. Luego, $[(1,h_2),(2,h_1),(3,h_3)]$ y $[(1,h_1),(2,h_3),(3,h_2)]$ son las únicas distribuciones que podrían estar en el núcleo. De hecho, en un mercado habitacional como este—en el cual las preferencias son estrictas—el núcleo tiene un único elemento y lo podemos encontrar aplicando el algoritmo $Top\ Trading\ Cycles\ (TTC)$.

En la primera etapa del algoritmo TTC, cada agente anuncia al propietario de su casa preferida: el agente 1 anuncia a 2, el agente 2 anuncia a 1 y el agente 3 anuncia a 2. Se forma el ciclo (1,2), por lo cual el agente 1 recibe la casa h_2 y el agente 2 recibe la casa h_1 . Ambos individuos salen del mercado con sus nuevas propiedades. Como el agente 3 queda solo, concluimos que $[(1,h_2),(2,h_1),(3,h_3)]$ es la única distribución de casas que está en el núcleo. Note que, $[(1,h_1),(2,h_3),(3,h_2)]$ puede ser bloqueada por la coalición $\{1,2\}$ pues estos agentes pueden mejorar su bienestar simplemente intercambiándose sus propiedades.

PREGUNTA 4. Considere una economía con un conjunto $H = \{1, ..., 30\}$ de individuos y un conjunto $A = \{a_1, ..., a_{17}\}$ de alternativas sociales. Sea \mathcal{P} el conjunto de perfiles de preferencia $\succ = (\succ_h)_{h \in H}$ tales que cada \succ_h es una relación de preferencia completa, transitiva y estricta definida sobre A. Considere la regla de elección social $f : \mathcal{P} \twoheadrightarrow A$ caracterizada por

```
f[(\succ_h)_{h\in H}] = \{a \in A : \text{existe } h \in \{2, \dots, 30\} \text{ tal que } a \succ_h b, \ \forall b \in A \setminus \{a\}\}.
```

Sea $S_1 = \{2, ..., 30\}$ y $S_k = A$ para todo $k \in \{2, ..., 30\}$.

Considere el mecanismo Γ en el cual cada agente $h \in H$ escoge una estrategía s_h en el conjunto S_h y se implementa la alternativa social $g(s_1, \ldots, s_{30}) = s_{s_1}$. Esto es, g escoge la alternativa social que es reportada por el agente que el individuo h = 1 anuncia. Demuestre que Γ implementa totalmente en estrategias Nash la regla de elección social f.

Nos piden probar que una alternativa social es compatible con f bajo las preferencias \succ si y solamente si se puede implementar como un equilibrio de Nash del mecanismo Γ . Denote por $\mathrm{EN}_{\Gamma}[\succ]$ al conjunto de equilibrios de Nash del mecanismo Γ cuando las preferencias de los agentes vienen dadas por $\succ \in \mathcal{P}$. Tenemos que demostrar que $f[\succ] = g(\mathrm{EN}_{\Gamma}[\succ])$ para todo $\succ \in \mathcal{P}$. Fije un perfil de preferencias $\succ = (\succ_h)_{h\in H} \in \mathcal{P}$. Dada una alternativa social $a\in f[\succ]$, sabemos que existe $h^*\in\{2,\ldots,30\}$ tal que a es su alternativa preferida. Afirmamos que el perfil de estrategias $(s_1^*,s_2^*,\ldots,s_{30}^*)=(h^*,a,\ldots,a)\in S_1\times S_2\times\cdots\times S_{30}$ es un equilibrio de Nash del mecanismo Γ cuando las preferencias de los agentes vienes dadas por \succ . De hecho, se cumplen las siguientes propiedades:

- Si h=1 modifica unilateralmente su estrategia, se seguirá implementando la alternativa social a (pues todos los agentes $h \in \{2, ..., 30\}$ anuncian a).
- Si $h \notin \{1, h^*\}$ modifica unilateralmente su estrategia, se seguirá implementando $s^*_{s^*_1} = s^*_{h^*} = a$.
- ullet El agente h^* no tiene incentivos a modificar unilateralmente su estrategia, pues a es su mejor alternativa.

 $\text{Como } g(s_1^*, s_2^*, \dots, s_{30}^*) = s_{s_1^*}^* = s_{h^*}^* = a \text{, concluimos que } a \in g(\text{EN}_{\Gamma}[\succ]). \text{ Luego, } f[\succ] \subseteq g(\text{EN}_{\Gamma}[\succ]).$

Dada una alternativa social $a \in g(\mathrm{EN}_{\Gamma}[\succ])$, existe un equilibrio de Nash $(\bar{s}_1, \bar{s}_2, \ldots, \bar{s}_{30})$ del mecanismo Γ bajo las preferencias \succ tal que $g(\bar{s}_1, \bar{s}_2, \ldots, \bar{s}_{30}) = a$. Esto nos asegura que a es la alternativa anunciada por el agente $\bar{s}_1 \in \{2, \ldots, 30\}$ (i.e., $a = \bar{s}_{\bar{s}_1}$). Por lo tanto, para que el agente \bar{s}_1 no tenga incentivos a modificar unilateralmente su estrategia, necesitamos que a sea su mejor opción. Eso nos asegura que $a \in f[\succ]$. Luego, $g(\mathrm{EN}_{\Gamma}[\succ]) \subseteq f[\succ]$.

Concluimos que Γ implementa totalmente en estrategias Nash la regla de elección social f.