

Groupe cyclique-Ordre d'un groupe/d'un élément

I. Sous-groupe engendré par un élément (groupe cyclique)

Théorème et définition (sous-groupe engendré par un élément)

Soit (G,*) un groupe et $a \in G$.

L'ensemble noté $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$ est un sous-groupe de (G,*).

 $\langle a \rangle = \{ a^n \ / \ n \in {\bf Z} \}$ s'appelle le groupe engendré par l'élément a .

Preuve. $e_G = a^0 \in \langle a \rangle$, reste à vérifier que $\forall x, y \in \langle a \rangle$ on a : $x * y^{-1} \in \langle a \rangle$

en utilisant les propriétés : $\forall (n,m) \in \mathbb{Z}^2$, $(a^m)^{-1} = a^{-m}$ et $a^n * a^m = a^{n+m}$

Remarque

Si (G,+) est un groupe et $a \in G$ alors le groupe engendré par a est $\langle a \rangle = \{n \ a \ / \ n \in \mathbf{Z}\}$

Définition (groupe cyclique)

Un groupe (G,*) est cyclique \Leftrightarrow II existe $a \in G$ tel que $G = \langle a \rangle = \{a^n \mid n \in \mathbf{Z}\}$

Dans ce cas on dit que (G,*) est engendré par a ou on dit que a est un générateur du groupe (G,*).

Remarque

Un groupe (G,+) est cyclique \Leftrightarrow Il existe $a \in G$ tel que $G = \langle a \rangle = \{ n \ a \ / \ n \in \mathbf{Z} \}$

Exemples

- 1) Pour $n \in \mathbb{N}$, $(n\mathbb{Z},+)$ est un groupe cyclique engendré par n en particulier $(\mathbb{Z},+)$ est un groupe cyclique engendré par 1
- 2) Pour $n \in \mathbb{N}^*$, (Z/nZ,+) est un groupe cyclique engendré par 1. On montrera dans le prochain cours que si $a \in \mathbb{N}^*$ et $p \gcd(a,n) = 1$ alors $a \in \mathbb{N}^*$ est un générateur de (Z/nZ,+).
- 3) Pour $n \in \mathbf{N}^*$, $(\Omega_n, ...)$ est un groupe cyclique où Ω_n désigne l'ensemble des racines $n^{i\grave{e}me}$ de

$$\text{l'unit\'e}: \ \Omega_n = \left\{z \in \mathbf{C} \ / \ z^n = 1\right\} = \left\{e^{\frac{2ik\pi}{n}} \ / \ k \in \mathbf{Z}\right\} = \left\{\left(e^{\frac{2i\pi}{n}}\right)^k \ / \ k \in \mathbf{Z}\right\} = \left\langle e^{\frac{2i\pi}{n}}\right\rangle$$

et donc $(\Omega_n,.)$ est engendré par $e^{\frac{2i\pi}{n}}$

4) (**R**,+) n'est pas un groupe cyclique (à **prouver**)

II. Ordre d'un groupe et théorème de Lagrange

Définition (ordre d'un groupe)

Soit (G,*) un groupe

On appelle ordre de G et on note ord(G), le cardinal de l'ensemble G.

Ainsi, ord(G) = card(G) =le nombre d'éléments de G.

Exemples

- 1) Pour $n \in \mathbb{N}^*$, $ord(\Omega_n) = n$ où $\Omega_n = \{z \in \mathbb{C} / z^n = 1\}$
- 2) Pour $n \in \mathbf{N}^*$, ord(Z/nZ) = n
- 3) le groupe $(\mathbf{Z},+)$ est d'ordre infini car \mathbf{Z} est un ensemble infini

Théorème de Lagrange

Si (G,*) est un groupe fini et H est un sous-groupe de (G,*), alors ord(H) divise ord(G).

Preuve.

On définit une relation binaire R sur G par : pour $(x, y) \in G^2$, $xRy \Leftrightarrow (x * y^{-1}) \in H$

On vérifie que R est une relation d'équivalence sur G.

Pour $x \in G$, la classe d'équivalence de x est : $x = \{y \in G / yRx\} = \{y \in G / y*x^{-1} \in H\}$

Donc, pour tout $y \in G$, $y \in x \Leftrightarrow y * x^{-1} \in H \Leftrightarrow \exists h \in H, y = h * x$

Par conséquent, $\bar{x} = \{h * x/h \in H\}$ que l'on note H_x

Si $x \in G$, alors l'application $\begin{array}{ccc} f: H & \to & H_x \\ h & \mapsto & h*x \end{array}$ est bijective

Ainsi, pour tout $x \in G$ on a : $card(H_x) = card(H) = ord(H)$

Comme les classes d'équivalence modulo R forment une partition de G , il vient :

$$ord(G) = \sum_{\bar{x} \in (G/R)} card(H_x) = card(G/R).ord(H) \text{ où } G/R = \left\{ \bar{x}/x \in G \right\}$$

Donc, ord(H) divise ord(G)

III. Ordre d'un élément dans un groupe

Définition (ordre d'un élément d'un groupe)

Soient (G,*) un groupe et $a \in G$.

On appelle ordre de a et on note ord(a), l'ordre du sous-groupe engendré par a.

Ainsi,
$$ord(a) = ord(\langle a \rangle)$$

Remarque: Si l'ordre de a est fini, alors $ord(a) \in IN^*$ car $\langle a \rangle$ est non vide

Théorème 1. Soient (G,*) un groupe et $a \in G$

Si $ord(a) = d \in IN^*$ est fini, alors le sous-groupe engendré par a est :

$$\langle a \rangle = \left\{ a^k / k \in \mathbf{N}, \ 0 \le k \le d - 1 \right\}$$
 et
$$d = \min \left\{ \ k \in \mathbf{N}^* / a^k = e_G \ \right\}$$

Résultats pratiques

- Dans (G,\cdot) , $a \in G$ et ord(a) est fini, on a :
 - ord(a) = d où d est **le plus petit** $k \in \mathbb{N}^*$ vérifiant $a^k = 1_C$
 - Si $d \in IN^*$ et pour tout $k \in \mathbf{N}^*$, $1 \le k < d$ on a $a^k \ne 1_G$ et $a^d = 1_G$, alors ord(a) = d
 - Si $q \in \mathbb{N}^*$, alors on a : $a^q = 1_G \Leftrightarrow ord(a)|q$

- Dans (G,+), $a \in G$ et ord(a) est fini, on a :
 - ightharpoonup ord(a)=d où d est **le plus petit** $k\in \mathbb{N}^*$ tel que $k.a=0_G$
 - ightharpoonup Si $d \in IN^*$ et pour tout $k \in \mathbf{N}^*$, $1 \le k < d$ on a : $k \, a \ne 0_G$ et $d \, a = 0_G$ alors, ord(a) = d
 - ightarrow Si $q \in \mathbf{N}^*$, alors on a : $q.a = 0_G \Leftrightarrow ord(a) | q$

Exemples:

- 1) Si (G,*) est un groupe, alors $ord(e_G)=1$, de plus pour $a \in G$, $ord(a)=1 \Leftrightarrow a=e_G$
- 2) Dans le groupe (\mathbf{Z} ,+), ord(0) = 1 et pour $a \in \mathbf{Z}^*$ on a ord(a) est infini car $\langle a \rangle = a.Z$ est

infini 3) Dans le groupe
$$(\Omega_3, \times)$$
 où $\Omega_3 = \left\{1, j, j^2\right\}$ avec $j = e^{\frac{2i\pi}{3}}$ on a : $ord(1) = 1$ et $ord(j) = 3$ car $j^1 \neq 1$, $j^2 \neq 1$ et $j^3 = 1$ idem $ord(j^2) = 3$

4) Dans le groupe ($\mathbb{Z}/8\mathbb{Z},+$) on a :

$$ord(0) = 1$$
 et $ord(2) = 4$ car $1.\overline{2} \neq \overline{0}$, $2.\overline{2} \neq \overline{0}$, $3.\overline{2} \neq \overline{0}$ et $4.\overline{2} = \overline{0}$

Théorème 2. Soit (G,*) un groupe fini. On a :

Pour tout $a \in G$, ord(a) divise ord(G)

En particulier, pour tout $a \in G$, $a^{ord(G)} = e_G$

- Dans (G,.), si on note ord(G) = n alors $\forall x \in G$ on a : $x^n = 1_G$
- Dans (G,+), si on note ord(G) = n alors $\forall x \in G$ on a : $nx = 0_G$

Exemples : (autres méthodes pour le calcul de l'ordre d'un élément)

- 1) Dans le groupe (Ω_4,\times) où $\Omega_4=\left\{-i,-1,1,i\right\}$, calculons ord(i) on a : $ord(i)\left|4 \text{ car } ord(\Omega_4)=4 \right|$ d'où $ord(i)\in\left\{1,2,4\right\}$ de plus $i^1\neq 1,\ i^2\neq 1$ donc ord(i)=4
- 2) Dans le groupe (Z/8Z,+) calculons ord(2)
 - Méthode 1. On a : $ord(\bar{2}) | 8$ car ord(Z/8Z) = 8 d'où $ord(\bar{2}) \in \{1, 2, 4, 8\}$, de plus $1.\bar{2} \neq \bar{0}, 2.\bar{2} \neq \bar{0}$ et $4.\bar{2} = \bar{0}$ d'où $ord(\bar{2}) = 4$
 - Méthode 2. Cherchons le plus petit $k \in \mathbb{N}^*$ tel que $k\overline{2} = 0$ dans Z/8Z on a :

Dans
$$Z/8Z$$
, $k\overline{2} = \overline{0} \Leftrightarrow 2k \equiv 0[8] \Leftrightarrow k \equiv 0[4] \Leftrightarrow \exists m \in \mathbb{Z}, k = 4m$ d'où le plus petit $k \in \mathbb{N}^*$ tel que $k\overline{2} = \overline{0}$ dans $Z/8Z$ est $k = 4$ c-à-d $ord(\overline{2}) = 4$

Méthode pratique pour calculer l'ordre d'un élément dans le groupe (Z/nZ,+)

Pour déterminer l'ordre de \bar{a} dans le groupe (Z/nZ,+), on cherche **le plus petit** $k \in \mathbb{N}^*$ tel que $k\bar{a}=\bar{0}$, en résolvant l'équation $ak\equiv 0[n]$

Proposition

Soient (G,.) un **groupe fini** et $a \in G$. On a:

- $ord(a) = ord(a^{-1})$
- Pour $k \in \mathbb{N}^*$, $ord(a^k) = \frac{ord(a)}{ord(a) \wedge k}$

En particulier, si $k \wedge ord(a) = 1$ alors $ord(a^k) = ord(a)$ et $\langle a \rangle = \langle a^k \rangle$

Version additive: Soient (G,+) un groupe fini et $a \in G$. On a:

- ord(a) = ord(-a)
- Pour $k \in \mathbb{N}^*$, $ord(k a) = \frac{ord(a)}{ord(a) \wedge k}$

En particulier, si $k \wedge ord(a) = 1$ alors ord(ka) = ord(a) et $\langle a \rangle = \langle k.a \rangle$

Preuve

Posons ord(a)=d on a $a^d=1_G$ d'où $\left(a^d\right)^{-1}=(1_G)^{-1}$ c-à-d $\left(a^{-1}\right)^d=1_G$ donc $\left[ord(a^{-1})\middle|ord(a)\right]$ Idem en remplaçant a par a^{-1} on a $\left[ord(a)\middle|ord(a^{-1})\right]$ par suite $ord(a)=ord(a^{-1})$ car $ord(a)\in \mathbf{N}^*$ et $ord(a^{-1})\in \mathbf{N}^*$

Posons ord(a) = m et $d = k \land m$ d'où $m' \land k' = 1$ où $m' = \frac{m}{d}$ et $k' = \frac{k}{d}$

Si $r = ord(a^k)$ alors $a^k = a^{kr} = 1_G$ d'où m | (kr) c-à-d $d^k | (d^k r)$ donc m' | (k'r) or $m' \wedge k' = 1$ d'où m' | r (1) d'après le théorème de Gauss

 $\text{Montrons que } r \big| \ m' \text{. On a} : \left(a^k \right)^{m'} = a^{km'} = a^{d\,k'm'} = a^{m\,k'} = \left(a^m \right)^{k'} = (1_G)^{k'} = 1_G \text{ car } ord(a) = m$ $\text{d'où } ord(a^k) \big| \ m' \text{ c-\`a-d} \ \boxed{r \big| \ m' \text{ (2)}} \text{ donc } r = m' \text{ (cf. (1) et (2)) c'est-\`a-dire } ord(a^k) = \frac{ord(a)}{ord(a) \wedge k}$

Exemples

1) Dans le groupe (Ω_{24},\times) des racines 24èmes de l'unité, on a $a=e^{\frac{i\pi}{3}}\in\Omega_{24}$ car $a^{24}=e^{8i\pi}=1$ de plus ord(a)=6 car $a^6=1$, $a\neq 1$, $a^2\neq 1$, $a^3\neq 1$, $a^4\neq 1$ et ord(a) divise $ord(\Omega_{24})=24$. d'où $ord(a^2)=\frac{6}{2\wedge 6}=3$ c'est-à-dire $ord(e^{\frac{2i\pi}{3}})=3$ idem $ord(e^{\frac{5i\pi}{3}})=ord(a^5)=\frac{6}{5\wedge 6}=6$

Remarque: $ord(e^{\frac{2i\pi}{24}}) = 24$ car $e^{\frac{2i\pi}{24}}$ est un générateur du groupe cyclique (Ω_{24},\times) et $ord(\Omega_{24}) = 24$ d'où $ord(a) = ord(\left(e^{\frac{2i\pi}{24}}\right)^4) = \frac{24}{4 \wedge 24} = \frac{24}{4} = 6$

2) Dans le groupe (Z/16Z,+) on a $ord(\bar{1})=16$ car $\bar{1}$ est un générateur du groupe cyclique (Z/16Z,+) et ord(Z/16Z)=16 d'où $ord(\bar{8})=ord(8\times\bar{1})=\frac{ord(\bar{1})}{8\wedge ord(\bar{1})}=\frac{16}{8\wedge 16}=2$ ldem $ord(\bar{12})=\frac{ord(\bar{1})}{12\wedge ord(\bar{1})}=\frac{16}{12\wedge 16}=\frac{16}{4}=4$

En général, dans (Z/nZ,+), $ord(\bar{a}) = ord(a \times \bar{1}) = \frac{ord(1)}{a \wedge ord(\bar{1})} = \frac{n}{a \wedge n}$

IV. Sous-groupes d'un groupe cyclique

Théorème

Si (G,*) est un groupe cyclique et H est un sous-groupe de (G,*), alors (H,*) est un groupe cyclique

Preuve: (G,*) est un groupe cyclique. il existe $a \in G$ tel que $G = \{a^n \mid n \in \mathbb{Z}\}$

Pour tout $x \in H$, il existe $d \in \mathbb{Z}$ tel que $x = a^d$

Soit $A = \{n \in \mathbb{N}^* / a^n \in H\}.$

On distingue 2 cas.

 1^{er} cas: A est vide.

Dans ce cas, $H = \{e_G\} = \langle e_G \rangle$

 $2^{\mathrm{ème}}$ cas : A est une partie non vide de \mathbf{N}^*

d'après l'axiome de Péano, A admet un plus petit élément noté p.

Montrons que $H = \langle a^p \rangle = \{ (a^p)^n / n \in \mathbb{Z} \},$

D'après la définition de p , on a : $a^p \in H$ d'où $\left\langle a^p \right\rangle \subset H$ car (H,*) est un groupe

Reste à montrer que $H \subset \langle a^p \rangle$

soit $x \in H$. Il existe $d \in \mathbb{Z}$, $x = a^d$ et d'après la division euclidienne de d par p, il existe un unique $(q,r) \in \mathbb{Z} \times \mathbb{N}$, d = pq + r avec $0 \le r < p$

Et donc $a^d = a^{(pq)} * a^r$. D'où $a^r = a^{-(pq)} * a^d \in H$ car (H,*) est un groupe

Comme $r \in \mathbb{N}$ et r < p, r = 0 d'après la définition de p.

Par suite r=0 et $x=a^d=a^{pq}=(a^p)^q$. Soit $x\in\langle a^p\rangle$ d'où $H\subset\langle a^p\rangle$

Conclusion : $H = \left\langle a^p \right\rangle$ et (H,*) est groupe cyclique

Théorème

Si(G,*) est un groupe **cyclique d'ordre fini** n, alors pour tout $d \in \mathbb{N}^*$ tel que $d \mid n$, **il existe un unique** sous-groupe H de (G,*) tel que ord(H) = d

Preuve.

Existence: On a $G = \langle a \rangle$ avec ord(G) = ord(a) = n de plus $d \mid n \Leftrightarrow \exists q \in \mathbf{N}^*, \ n = d \ q$ d'où $H = \langle a^q \rangle$ est un sous-groupe de (G,*) et ord(H) = d car

$$ord(H) = ord(a^q) = \frac{ord(a)}{q \wedge ord(a)} = \frac{n}{q \wedge n} = \frac{n}{q} = d$$

Unicité: Soit H' un sous-groupe de (G,*) tel que ord(H')=d, alors il existe $q'\in \mathbf{N}^*$ tel que $H'=\left\langle a^{q'}\right\rangle$ d'après le théorème précédent

De plus $\left(a^{q'}\right)^d=a^{q'd}=e_G$ d'où ord(a)|q'd c-à-d n=dq|q'd . Ainsi $q\,|q'|$

 $\mathsf{Donc}: \, \exists d' \in \mathbf{N}^*, \, q' = d'q \, \text{ et } \, a^{q'} = \left(a^q\right)^{d'} \, \text{ et } \, H' = \left\langle a^{q'}\right\rangle \subset H = \left\langle a^q\right\rangle$

 $\mbox{Comme } ord(H) = d = ord(H') \ , \ H = H'$

V. Exercices d'application

Exercice 1. Donnez un élément \bar{a} du groupe (Z/140Z,+) tel que $ord(\bar{a})=70$.

Solution : il suffit de choisir a = 2.

En effet : dans (Z/140Z,+), $ord(\bar{2}) = \frac{140}{2 \wedge 140} = 70$

Exercice 2. Montrez que si (G,*) est un groupe fini tel que ord(G) = p où p est premier, alors (G,*) est un groupe cyclique engendré par un élément quelconque différent de e_G .

Solution: ord(G) = p et $p \ge 2$ car p est premier. Soit $a \in G$ et $a \ne e_G$ on a $ord(a) \mid p$ donc ord(a) = 1 ou ord(a) = p car p est premier or $a \ne e_G$ d'où $ord(a) \ne 1$ par suite ord(a) = p = ord(G) donc $G = \langle a \rangle$

Conclusion: (G,*) est un groupe cyclique engendré par tout élément $a \in G$, $a \ne e_G$.

Exercice 3. Montrez que si (G,*) est un groupe **cyclique fini** tel que ord(G) = p où p est un entier premier, alors les seuls sous-groupes de (G,*) sont $\{e_G\}$ et G.

Solution: Soit H un sous-groupe du groupe cyclique (G,*)

(H,*) est un groupe cyclique. Donc, il existe $a \in G$ tel que $H = \langle a \rangle$

de plus ord(H)=ord(a) et ord(a) $\mid p$, donc ord(a)=1 ou ord(a)=p car p est premier d'où $a=e_G$ et $H=\{e_G\}$ ou ord(a)=p=ord(G) et $H=\langle a\rangle=G$

Exercice 4. Montrez que (Z/12Z,+) admet exactement six sous-groupes.

Solution: Si H est un sous-groupe de (Z/12Z,+) alors ord(H) | 12 de plus (Z/12Z,+) est un groupe cyclique d'ordre 12 donc pour chaque diviseur $d \in \mathbf{N}^*$ de 12, il existe un unique sous-groupe de (Z/12Z,+) d'orde d

Par conséquent, le nombre de sous-groupes de (Z/12Z,+) est égal au nombre des diviseurs positifs de 12 or 12 admet 6 diviseurs positifs 1, 2, 3, 4, 6 et 12.

Conclusion: (Z/12Z,+) admet exactement six sous-groupes.

Exercice 5. Déterminez les sous-groupes de (Z/9Z,+)

Solution: Si H est un sous-groupe de $(\mathbb{Z}/9\mathbb{Z},+)$ alors ord(H)|9

De plus (Z/9Z,+) est un groupe cyclique d'ordre 9, donc pour chaque diviseur $d \in \mathbf{N}^*$ de 9, il existe un unique sous-groupe de (Z/9Z,+) d'orde d or les diviseurs positifs de 9 sont les éléments de l'ensemble $\{1,3,9\}$.

par conséquent ($\mathbb{Z}/9\mathbb{Z}$,+) admet un unique sous-groupe d'ordre $1,\ 3$ ou 9

(Z/9Z,+) est engendré par $\bar{1}$. Donc,

$$ord(H) = 1$$
 si $H = \langle \overline{0} \rangle = \langle \overline{0} \rangle$

$$ord(H) = 3$$
 si $H = \langle 3.\overline{1} \rangle = \langle \overline{3} \rangle = \langle \overline{0}, \overline{3}, \overline{6} \rangle$ car $3 = 9/3$

et ord(H) = 9 si H = Z/9Z

Conclusion: Les sous-groupes de (Z/9Z,+) sont $\{\bar{0}\}$, $\{\bar{3}\}=\{\bar{0},\bar{3},\bar{6}\}$ et Z/9Z

Remarque:

 $\mathrm{Si}(G,\!*)$ est un groupe **cyclique d'ordre fini** n et de générateur a , alors pour tout diviseur

$$d \in \mathbf{N}^*$$
 de n , l'**unique** sous-groupe de $(G,*)$ d'ordre d est $H = \left\langle a^{\frac{n}{d}} \right\rangle$.

Exercice 6. Déterminez les sous-groupes de (Z/40Z,+) qui contiennent $\overline{12}$

Solution: Soit H un sous-groupe de (Z/40Z,+) tel que $\overline{12} \in H$

alors
$$ord(H)|40$$
 et $ord(\overline{12})|ord(H)$. Or $ord(\overline{12}) = \frac{40}{12 \wedge 40} = 10$

d'où ord(H) $\Big|40$ et 10 $\Big|ord(H)$

Par suite ord(H) = 10 ou ord(H) = 20 ou ord(H) = 40.

De plus (Z/40Z,+) est un groupe cyclique d'ordre 40 donc pour chaque diviseur $d \in \mathbb{N}^*$ de 40, il existe un unique sous-groupe de (Z/40Z,+) d'orde d d'où il existe respectivement un unique sous-groupe d'ordre 10, 20 et 40.

 1^{er} cas: ord(H) = 10

Comme (Z/40Z,+) est engendré par $\bar{1}$ et 40/10=4,

$$H = \left\langle 4.\overline{1} \right\rangle = \left\langle \overline{4} \right\rangle = \left\{ \overline{0}, \overline{4}, \overline{8}, \overline{12}, \overline{16}, \overline{20}, \overline{24}, \overline{28}, \overline{32}, \overline{36} \right\}$$

On a aussi $H = \langle \overline{12} \rangle$ car $ord(\overline{12}) = 10$

 $2^{\text{ème}}$ cas: ord(H) = 20

Comme dans le cas précèdent, on a : $H = \langle \overline{2} \rangle = \{k \overline{2}/k \in \mathbb{N}, 0 \le k \le 19\} = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \dots, \overline{36}, \overline{38}\}$

 $3^{\text{ème}}$ cas: ord(H) = 40 donc H = Z/40Z

Conclusion: Les sous-groupes de (Z/40Z,+) qui ont pour élément $\overline{12}$ sont $\left\langle \overline{4} \right\rangle$, $\left\langle \overline{2} \right\rangle$ et Z/40Z

Exercice 7. Déterminez les sous-groupes de (Z/140Z,+) qui contiennent $\overline{42}$ et $\overline{96}$ (indication : Pour $(a,b,c) \in \mathbb{N}^* \times \mathbb{N}^* \times \mathbb{N}^*$, si $a \mid c$ et $b \mid c$ alors $ppcm(a,b) \mid c$)

Solution: Soit H un sous-groupe de (Z/140Z,+) tel que $\overline{42} \in H$ et $\overline{92} \in H$

alors $ord(H) \left| 140, \ ord(\overline{42}) \right| ord(H)$ et $ord(\overline{92}) \left| ord(H) \right|$. Or $ord(\overline{42}) = \frac{140}{42 \wedge 140} = 10$ et

 $ord(\overline{92}) = \frac{140}{92 \land 140} = 35 \text{ d'où } ppcm(10,35) | ord(H) \text{ c'est-à-dire } 70 | ord(H).$

Donc ord(H) = 70 ou ord(H) = 140 de plus $ord(2) = \frac{140}{2 \wedge 140} = 70$ et (Z/140Z,+) est un groupe cyclique d'ordre 140 d'où il existe un unique sous-groupe d'ordre respectivement 70 et

140. Conclusion: Les sous-groupes de (Z/140Z,+) qui ont pour élément $\overline{42}$ et $\overline{96}$ sont

Conclusion: Les sous-groupes de (Z/140Z,+) qui ont pour élément 42 $\langle \overline{2} \rangle = \{k\overline{2}/k \in \mathbb{N}, 0 \le k \le 69\} = \{0,\overline{2},\overline{4},\overline{6},...,\overline{136},\overline{138}\}$ et Z/140Z