Energy-aware scheduling in distributed computing systems

Santiago Iturriaga

Directores: Sergio Nesmachnow y Bernabé Dorronsoro

Tesis de Doctorado en Informática
PEDECIBA Informática
Universidad de la República
Uruguay

Index

- 1. Introduction
- 2. Scheduling a single energy-efficient data center
- 3. Scheduling a federation of energy-efficient data centers
- 4. Robustness of energy-aware schedulers
- 5. Conclusions and future work

Introduction

UNIVERSIDAD DE LA REPÚBLICA

Motivation

- Distributed computing systems
 - Key for supporting modern computing demands
 - Provide services for science, industry, and commerce
- Energy consumption has become a major concern
 - 4.5% annual increase worldwide (Andrae and Edler, 2015)
- Optimizing energy efficiency is challenging
 - Conflicts with optimizing performance and QoS

Introduction

Towards energy efficiency in data centers

- Most effective energy efficiency approaches:
 - Optimizing computing components
 - Optimizing cooling components
 - Considering renewable energy sources
- Scheduling the operative of data centers is key but challenging
 - General scheduling problem is NP-hard
 - Multiple conflicting objectives
 - Uncertainty in scenarios
- Uncertainty in scenarios: state of the art approaches
 - Fail to simultaneously consider user estimates, multicore, and energy
 - e.g., Tang et al. (2013), Yu et al. (2015), Chen et al. (2016c)

Introduction

Towards energy efficiency in data centers

- Many works do not consider a multiobjective (MO) approach
 - e.g. Goudarzi and Pedram (2016), Shi et al. (2017), Lee et al. (2017)
- Single data center: state of the art MO scheduling
 - Fail to simultaneously consider QoS, cooling, and renewable energy
 - e.g., Lei et al. (2015), Tang et al. (2016), Xie et al. (2016)
- Federation of data centers: state of the art MO scheduling
 - Fail to simultaneously consider QoS, multicore architectures, and multiple precedence-constrained jobs
 - e.g., Jena (2015), Habibi Khalaj et al.(2015), Kaushik and Vidyarthi (2016)

Goal: address scheduling of energy efficient data centers

- Accurate model for single and federation of data centers
- Multiobjective approach
- Study the impact of uncertainty

Index

- 1. Introduction
- 2. Scheduling a single energy-efficient data center
- 3. Scheduling a federation of energy-efficient data centers
- 4. Robustness of energy-aware schedulers
- 5. Conclusions and future work

UNIVERSIDAD DE LA REPÚBLICA

Overview

- Schedule the operation of a single data center
- Controlling computing and cooling components
 - Low-powered servers and free cooling
- Independent tasks with due dates
- Hybrid energy sources: traditional and solar
- Ancillary services for energy power
 - Deviation from reference power profile
- Subject to maximum room temperature

Iturriaga, S. and Nesmachnow, S. (2016). Scheduling energy efficient data centers using renewable energy. Electronics, 5(4):1-16

UNIVERSIDAD DE LA REPÚBLICA LIRLIGUAY

Data center model

Optimization objectives

$$min \ z_p = \sum_{t=1}^K \begin{cases} (P_t - R_t) / \max(R_t), & \text{if } P_t > R_t, \\ 0, & \text{if } P_t \leq R_t, \end{cases}$$
 reference profile
$$min \ z_b = \sum_{t=1}^K B_t \times M_t^b,$$
 energy budget
$$min \ z_q = \sum_{i=1}^N \begin{cases} FT(i) - D(i), & \text{if } FT(i) > D(i), \\ 0, & \text{if } FT(i) \leq D(i). \end{cases}$$
 QoS

subject to:

$$T_t \leq \widehat{T}, \qquad t = 1 \dots K$$
 temperature contraint

• R_t : ref. power profile, \widehat{T} : max. temperature, M_t^b : brown energy cost, D(i): due date and FT(i): finishing time of task i

UNIVERSIDAD DE LA REPÚBLICA

Proposed algorithms

- Multiobjective evolutionary algorithm: NSGA-II and ev-MOGA
 - Schedule servers power states and cooling components
 - Energy consumption configuration

- Strong hybridization
 - Task scheduling: Best Fit Hole (BFH) greedy heuristic
 - Keeps track when servers are idle (holes)
 - Assigns a task to the hole where it best fits
- Weak hybridization: post hoc optimization
 - Task scheduling: Simulated Annealing (SA)
 - Applies a simple task moving operation
 - Dominance is used as acceptance criterion

UNIVERSIDAD DE LA REPÚBLICA

Problem instances

- Scheduling horizon: 150 minutes
- Workloads: 200, 300, 400 tasks
- Computing Infrastructure
 - 64 low-power Intel Atom servers: 30 W max, 22 W idle, 3 W sleep
- HVAC energy consumption
 - CRAC consume 2.3 kW and fans between 0 to 410 W
- Traditional brown energy pricing scheme
 - low, medium (2x), high (4x) profiles
- Photovoltaic generator of 1.5 kW
 - morning (g1), midday (g2), night (g3) profiles

Experimental results

- ev-MOGA significantly outperforms NSGA-II
- ev-MOGA (due dates met ≥ 95%): improv. over BAU
 - Business As Usual (BAU): servers never sleeps and no green energy

UNIVERSIDAD DE LA REPÚBLICA URUGUAY

Summary of main contributions

- Model of a modern data center powered by hybrid energy
- Schedule server states, cooling devices and workload of tasks
- Multiobjective planning: energy budget, reference power profile and due dates met
- Accurate evolutionary algorithms for solving the problem
- Comparing with business as usual
 - reduce budget between 33%-83% with
 - less than 3% deviation from ref. profile and
 - more than 95% due dates met

Index

- 1. Introduction
- 2. Scheduling a single energy-efficient data center
- 3. Scheduling a federation of energy-efficient data centers
 - Homogeneous data centers
 - Heterogeneous data centers
- 4. Robustness of energy-aware schedulers
- 5. Conclusions and future work

Scheduling a federation of energy-efficient data centers

Overview

- Federation: a set of data centers cooperating with each other
- Schedule the operation of a federation of data centers
 - Geographically distributed data centers
 - Multicore computing components
 - Workflows of parallel tasks with deadlines
- Optimization objectives
 - Minimize: makespan, energy consumption, violations to SLA

Iturriaga, S., Dorronsoro, B., and Nesmachnow, S. (2017). Multiobjective evolutionary algorithms for energy and service level scheduling in a federation of distributed datacenters. International Transactions in Operational Research, 24(1-2):199-228

UNIVERSIDAD DE LA REPÚBLICA

Problem model

- A set of *homogeneous* datacenters, $CN = \{CN_1, ..., CN_k\}$
 - np_j : number of processors, c_j : number of cores of each processor, ops_j : performance (FLOPS), (e_j^{idle}, e_j^{max}) : energy consumption at idle/max
- A set of heterogeneous jobs $J = \{j_1, ..., j_n\}$ with deadline d_q
 - Comprised of a (large) set of tasks $WT_q = \{wt_1, \dots, wt_m\}$ with dependencies
 - Each task wt_q is defined by o_q : number of operations, and nc_q : number of cores required
- Each user owns a set of jobs
 - SLA determines the percentage of jobs that must meet their deadlines
- Communication costs negligible between servers within the same CN

UNIVERSIDAD DE LA REPÚBLICA

Problem model

- Two-level scheduling model
 - Higher-level scheduler: schedules jobs to data centers
 - Lower-level scheduler: schedules tasks within each datacenter

Optimization formulation

Minimize:

$$f_M(\vec{x}) = \max_{0 \le r \le k} CT_r$$
 makespan

$$f_E(\vec{x}) = \sum_{r \in DC} \sum_{\substack{q \in Q: \\ f_1(q) = r}} \sum_{\substack{wt_\alpha \in WT_q: \\ f_2(wt_\alpha) = s_j}} \frac{o(wt_\alpha)}{ops(s_j)} \times e_{s_j}^{max} + \sum_{s_j \in S_r} e_{s_j}^{idle}$$
 energy consumption

$$f_S(\vec{x}) = \sum_{u_i \in U} \max \left(0, \left[\sum_{q \in wu(u_i)} Violated(q) - (1 - SLA_{u_i}) \times WF(u_i) \right] \right)$$
 QoS

- \vec{x} is a schedule and CT_r is the completion time of CN_r
- f_1 : higher-level scheduling function; f_2 : lower-level scheduling function
- Violated(q) = 1 if deadline of J_q is not met, $WF(u_i)$: num. of jobs of u_i

Higher-level and lower-level schedulers

- Higher-level schedulers
 - Multiobjective evolutionary approaches: NSGA-II, MOCellSRF

- Greedy heuristic approaches: Round robin, load balancing, MaxMin, MaxMIN, MinMIN
- Lower-level scheduler: Earliest Finishing Time Hole (EFTH)
 - Based on Heterogeneous Earliest Finish Time
 - Backfilling for multi-cores, considering holes for partial processor usage
 - Assigns tasks according to upward rank prioritizing the usage of holes

UNIVERSIDAD DE LA REPÚBLICA URUGUAY

Problem instances

- Medium: 9 batches with 10 to 250 jobs (600 tasks each batch)
- Large: 125 batches with 1000 jobs (3 to 132 tasks each job)
- Federation of 5 CNs (up to 100 processors each)
- Workflow types
 - 1. Series-Parallel: concurrent threads running in parallel
 - Heterogeneous-Parallel: non-identical tasks with arbitrary precedence
 - 3. Homogeneous-Parallel: identical tasks with arbitrary precedence
 - 4. Single-Task: only one task per job
 - 5. Mixed: 30% of types 1 to 3, 10% of type 4
- Three SLA levels: 98%, 94%, and 90%

UNIVERSIDAD DE LA REPÚBLICA URLIGUAY

Experimental results

- Medium instances
 - Constraint programming for computing lower bounds (LB)
 - GAP: relative difference between LB and computed value
 - Makespan: Series-Parallel and Heterogeneous-Parallel are the hardest to optimize with average GAP_M of 37%
 - Energy consumption: accurate schedules with GAP_E as low as 8%
 - QoS: all algorithms compute the lower bound value
- Large instances
 - MaxMIN: most accurate higher-level greedy heuristic
 - NSGA-II: most accurate hypervolume results
 - MOCell: most accurate spread results

UNIVERSIDAD DE LA REPÚBLICA URUGUAY

Heterogeneous problem model

- A set of *heterogeneous* datacenters, $CN = \{CN_1, ..., CN_k\}$
 - Comprised of a set of racks, each with homogeneous processors
 - Network: intra-rack TORS speed rs_j , inter-rack AS speed as_j
 - Communication costs are negligible for tasks in the same processor
- A set of heterogeneous jobs $J = \{j_1, ..., j_n\}$ represented by a DAG
 - Each task wt_q considers dt_q , the normalized time required for transferring its output

Higher-level schedulers

- Multiobjective evolutionary algorithms: NSGA-II, IBEA, SMS-EMOA
- Greedy heuristics
 - CA-MaxMin: sorted descending by the product of execution time and the sum of cores required by all tasks and assigned minimizing completion time
 - Longest First: sorted descending the product of execution time, the sum of the execution time of all tasks, and the sum of cores required by all tasks
 - Job re-sorting algorithm is applied after heuristics
- Earliest Finishing Time Hole (EFTH) for lower-level scheduling

UNIVERSIDAD DE LA REPÚBLICA URUGUAY

Problem instances

- 100 batches with 1000 jobs (3 to 132 tasks each job)
- Federation of 5 CNs
 - Small: average of 100 processors each
 - Medium: average of 325 processors each
- Communication time is 5-50% of the task computation time
- Racks: 18-42 processors networked by 1GbE or 10GbE
- Workflow types: Series-Parallel, Heterogeneous-Parallel, Homogeneous-Parallel, Single-Task and Mixed
- Three SLA levels: 98%, 94%, 90%

UNIVERSIDAD DE LA REPÚBLICA

Experimental results: greedy heuristics

UNIVERSIDAD DE LA REPÚBLICA URUGUAY

Experimental results: MOEAs

Scheduling a federation of energy-efficient data centers

Summary of main contributions

- Multiobjective formulation for scheduling of a federation of data centers
 - Minimize: makespan, energy consumption, and SLA violation
 - Homogeneous and heterogeneous data centers
- Accurate hierarchical energy-aware approach
 - Online and offline algorithms
- A set of problem instances is proposed
- MaxMIN, CA-MaxMin and LF: most accurate higher-level heuristics
- SMS-EMOA: most accurate higher-level MOEA

Index

- 1. Introduction
- 2. Scheduling a single energy-efficient data center
- 3. Scheduling a federation of energy-efficient data centers
 - Homogeneous data centers
 - Heterogeneous data centers
- 4. Robustness of energy-aware schedulers
- 5. Conclusions and future work

Overview

- Execution time and energy consumption of tasks are uncertain
- Arguably a major factor of uncertainty is introduced by users
 - Users must specify the Estimated Execution Time (EET) of a task
- EET is highly inaccurate, with accuracy as low as 10%
 - Tasks fail because of initialization errors
 - Users overestimate EET to prevent task from being killed
- Empirical evaluation of energy-aware schedulers for data centers with uncertain execution time and energy consumption

Iturriaga, S., García, S., and Nesmachnow, S. (2014). An empirical study of the robustness of energy-aware schedulers for high performance computing systems under uncertainty. In High Performance Computing, volume 485 of CCIS, pages 143-157. Springer

known

unknown

Problem formulation

- Makespan-Energy Heterogeneous Scheduling Problem
 - A set of multicore machines $P = \{m_1, ..., m_M\}$ each having $NC(m_i)$ cores with a processing speed $S(m_i)$
 - A set of tasks $T = \{t_1, ..., t_N\}$ each arriving at time $ARR(t_i)$
 - An execution time function $ET: T \times P \rightarrow \mathbb{R}^+$
 - An energy consumption function $EC: T \times P \rightarrow \mathbb{R}^+$
 - − An *idle energy consumption* function EC_{IDLE} : $P \rightarrow \mathbb{R}^+$
 - An execution time error function $\Delta_{ET}: T \times P \to \mathbb{R}^+$
 - An energy consumption error function Δ_{EC} : $T \times P \rightarrow \mathbb{R}$
- Objective
 - Minimize makespan and energy consumption

UNIVERSIDAD DE LA REPÚBLICA URUGUAY

Execution time and energy uncertainty model

- Empirical execution time model
 - Model built with data from three real-world data centers
- Empirical energy consumption model
 - PDU and poll and log on HP Proliant DL385 G7 24 cores, 24 GB
 - Three well-known benchmarks: single loop, LINPACK, and FFT
- Problem instances
 - Workloads of 1024 tasks
 - Scenarios with 8—16 machines (131—262 cores)
 - Low, medium, and high uncertainty levels
 - A total number of 800 problem instances
- Well-known scheduling approaches: online, batch, offline
- Online greedy algorithms: Min, MIN
- Batch/offline algorithms: MaxMin, MaxMIN, SuffMIN

UNIVERSIDAD DE LA REPÚBLICA

Results and discussion

- Offline approach: best results with no uncertainty
- Online batch approach: best results with low—high uncertainty

UNIVERSIDAD DE LA REPÚBLICA URUGUAY

Summary of main contributions

- Energy-aware scheduling problem considering uncertain execution times and energy consumption
- Model for workloads of tasks
 - Based on real-world data centers
- Set of realistic problem instances
- Study the robustness of greedy strategies
 - Online, batch, offline

Final conclusions

- Address energy efficient scheduling in modern data centers
- Comprehensive survey of related works
- Accurate models for energy-efficient data centers
- Diverse set of realistic problem instances
- Single data center
 - Simultaneously considering QoS, cooling, and renewable energy
 - Design and evaluate accurate multiobjective schedulers
- Federation of data centers
 - Simultaneously considering QoS, multicore, and many jobs
 - Design and evaluate accurate single- and multi-objective schedulers
- Robustness of scheduling strategies
 - Study the robustness of greedy strategies in real-world scenarios

Future work

- Integrate the proposed problem formulations
 - Cooling components and renewable energy sources
 - Federation of heterogeneous data centers
- Incorporate uncertainty to the proposed formulations
 - Extend by considering renewable energy and networking uncertainty
- Consider other renewable energy sources and applications
 - Such as wind and waste heat recycling

Thanks!

Questions?

