Complexidade Assintótica INF 332 - Projeto e Análise de Algoritmos

José Elias C. Arroyo

Departamento de Informática Universidade Federal de Viçosa

INF 332 - 2022/2

Outline

- Análise Assintótica de Ordens de Grandeza
- Notação O
- Notação Ω
- Motação ⊖
- 5 Notações *o* e ω
- **6** Notações o e ω
- Propriedades
- Classes de eficiência

A análise de eficiência de algoritmos se concentra na ordem de grandeza (ordem de crescimento) da função de tempo (que conta o número de execuções da *operação básica*, para entradas suficientemente grande).

- ullet O(g(n)): conjunto de funções que não crescem mais rapidamente que g(n)
- ullet $\Theta(g(n))$: conjunto de funções que crescem na mesma ordem que g(n)
- $\Omega(g(n))$: conjunto de funções que crescem pelo menos tão rapidamente quanto g(n)

A análise de eficiência de algoritmos se concentra na ordem de grandeza (ordem de crescimento) da função de tempo (que conta o número de execuções da *operação básica*, para entradas suficientemente grande).

- O(g(n)): conjunto de funções que não crescem mais rapidamente que g(n)
- ullet $\Theta(g(n))$: conjunto de funções que crescem na mesma ordem que g(n)
- $\Omega(g(n))$: conjunto de funções que crescem pelo menos tão rapidamente quanto g(n)

A análise de eficiência de algoritmos se concentra na ordem de grandeza (ordem de crescimento) da função de tempo (que conta o número de execuções da *operação básica*, para entradas suficientemente grande).

- O(g(n)): conjunto de funções que não crescem mais rapidamente que g(n)
- ullet $\Theta(g(n))$: conjunto de funções que crescem na mesma ordem que g(n)
- $\Omega(g(n))$: conjunto de funções que crescem pelo menos tão rapidamente quanto g(n)

A análise de eficiência de algoritmos se concentra na ordem de grandeza (ordem de crescimento) da função de tempo (que conta o número de execuções da *operação básica*, para entradas suficientemente grande).

- O(g(n)): conjunto de funções que não crescem mais rapidamente que g(n)
- ullet $\Theta(g(n))$: conjunto de funções que crescem na mesma ordem que g(n)
- $\Omega(g(n))$: conjunto de funções que crescem pelo menos tão rapidamente quanto g(n)

Informalmente, O(g(n)) é a classe ou **conjunto** de todas as funções com uma ordem de crescimento menor ou igual que g(n).

 $^{^{1}}O(1)$ representa **tempo constante**. Um algoritmo possui tempo constante se ele executa apenas um número constante de "operações básicas". Ou seja, não possui loops dependentes de n (tamanho da entrada).

Informalmente, O(g(n)) é a classe ou **conjunto** de todas as funções com uma ordem de crescimento menor ou igual que g(n).

As seguintes afirmativas são verdadeiras:

- $n \in O(n^2)$ //n possui ordem de crescimento menor que n^2
- $100n + 5 \in O(n^2)$
- $\frac{1}{2}n(n-1) \in O(n^2)$

 $^{^{1}}O(1)$ representa **tempo constante**. Um algoritmo possui tempo constante se ele executa apenas um número constante de "operações básicas". Ou seja, não possui loops dependentes de n (tamanho da entrada).

Informalmente, O(g(n)) é a classe ou **conjunto** de todas as funções com uma ordem de crescimento menor ou igual que g(n).

As seguintes afirmativas são verdadeiras:

- $n \in O(n^2)$ //n possui ordem de crescimento menor que n^2
- $100n + 5 \in O(n^2)$
- $\frac{1}{2}n(n-1) \in O(n^2)$

Por outro lado:

- $n^3 \notin O(n^2) //n^3$ não possui ordem de crescimento menor que n^2
- $0.00001 n^3 \notin O(n^2)$
- $n^4 + n + 1 \notin O(n^2)$
- $n + 5 \notin O(1)^{1}$

 $^{^1}O(1)$ representa **tempo constante**. Um algoritmo possui tempo constante se ele executa apenas um número constante de "operações básicas". Ou seja, não possui loops dependentes de n (tamanho da entrada).

Definição Formal: Notação O

Uma função t(n) está em O(g(n)), denotado $t(n) \in O(g(n))$, se t(n) é limitado superiormente por $c \cdot g(n)$ para todo $n \ge n_0$, onde c é uma constante real positiva $(c \in \mathbb{R}^+)$ e n_0 um inteiro positivo $(n_0 \in \mathbb{Z}^+)$.

Definição Formal: Notação O

Uma função t(n) está em O(g(n)), denotado $t(n) \in O(g(n))$, se t(n) é limitado superiormente por $c \cdot g(n)$ para todo $n \ge n_0$, onde c é uma constante real positiva $(c \in \mathbb{R}^+)$ e n_0 um inteiro positivo $(n_0 \in \mathbb{Z}^+)$.

 $t(n) \in O(g(n))$ sss existem constantes c > 0 e $n_0 \geqslant 1$ tq. $0 \le t(n) \le c \cdot g(n)$, $\forall n \geqslant n_0$

Exemplo 1: prove que $100n + 5 \in O(n^2)$

Exemplo 1: prove que $100n + 5 \in O(n^2)$

Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq. $100n + 5 \le c \cdot n^2$, $\forall n \ge n_0$.

Exemplo 1: prove que $100n + 5 \in O(n^2)$

Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq. $100n + 5 \le c \cdot n^2$, $\forall n \ge n_0$.

Para $n \ge 5$: $100n + 5 \le 100n + n$

Exemplo 1: prove que $100n + 5 \in O(n^2)$

Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq. $100n + 5 \le c \cdot n^2$, $\forall n \ge n_0$.

Para $n \ge 5$: $100n + 5 \le 100n + n = 101n$

6/43

Exemplo 1: prove que $100n + 5 \in O(n^2)$

Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq. $100n + 5 \le c \cdot n^2$, $\forall n \ge n_0$.

Para $n \ge 5$: $100n + 5 \le 100n + n = 101n \le 101n^2$

Exemplo 1: prove que $100n + 5 \in O(n^2)$

Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq. $100n + 5 \le c \cdot n^2$, $\forall n \ge n_0$.

Para $n \ge 5$: $100n + 5 \le 100n + n = 101n \le 101n^2$

Ou seja, existem c = 101 e $n_0 = 5$ tq. $100n + 5 \le c.n^2$, $\forall n \ge 5$

Exemplo 1: prove que $100n + 5 \in O(n^2)$

Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq. $100n + 5 \le c \cdot n^2$, $\forall n \ge n_0$.

Para $n \ge 5$: $100n + 5 \le 100n + n = 101n \le 101n^2$

Ou seja, existem c = 101 e $n_0 = 5$ tq. $100n + 5 \le c.n^2$, $\forall n \ge 5$

Portanto, $100n + 5 \in O(n^2)$

A definição da notação O nos dá liberdade para escolher os valores específicos para c e n_0 . Ou seja, nas provas podem ser utilizados diferentes valores para c e n_0 .

Exemplo 1: prove que $100n + 5 \in O(n^2)$

Outra maneira de provar $100n + 5 \in O(n^2)$:

A definição da notação O nos dá liberdade para escolher os valores específicos para c e n_0 . Ou seja, nas provas podem ser utilizados diferentes valores para c e n_0 .

Exemplo 1: prove que $100n + 5 \in O(n^2)$

Outra maneira de provar $100n + 5 \in O(n^2)$: $100n + 5 \le 100n + 5n$ (para todo $n \ge 1$)

A definição da notação O nos dá liberdade para escolher os valores específicos para c e n_0 . Ou seja, nas provas podem ser utilizados diferentes valores para c e n_0 .

Exemplo 1: prove que $100n + 5 \in O(n^2)$

Outra maneira de provar $100n + 5 \in O(n^2)$: 100n + 5 < 100n + 5n (para todo n > 1)

100n + 5 < 105n

A definição da notação O nos dá liberdade para escolher os valores específicos para c e n_0 . Ou seja, nas provas podem ser utilizados diferentes valores para c e n_0 .

Exemplo 1: prove que $100n + 5 \in O(n^2)$

Outra maneira de provar $100n + 5 \in O(n^2)$: $100n + 5 \le 100n + 5n$ (para todo $n \ge 1$)

 $100n + 5 \le 105n \le 105n^2$

A definição da notação O nos dá liberdade para escolher os valores específicos para c e n_0 . Ou seja, nas provas podem ser utilizados diferentes valores para c e n_0 .

Exemplo 1: prove que $100n + 5 \in O(n^2)$

Outra maneira de provar $100n + 5 \in O(n^2)$:

 $100n + 5 \le 100n + 5n$ (para todo $n \ge 1$)

 $100n + 5 \le 105n \le 105n^2$

Portanto, $100n + 5 \in O(n^2)$ para c = 105 e $n_0 = 1$.

Exemplo 2: prove que $100n^2 + 4n + 2 \in O(n^2)$

Exemplo 2: prove que $100n^2 + 4n + 2 \in O(n^2)$

Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq. $100n^2 + 4n + 2 \le c.n^2$, $\forall n \ge n_0$.

8/43

Exemplo 2: prove que $100n^2 + 4n + 2 \in O(n^2)$

Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq. $100n^2 + 4n + 2 < c \cdot n^2$. $\forall n \ge n_0$.

Para
$$n = 1$$
: $100n^2 + 4n + 2 = 100(1) + 4(1) + 2 = 106$

Exemplo 2: prove que $100n^2 + 4n + 2 \in O(n^2)$

Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq.

$$100n^2 + 4n + 2 \le c.n^2, \forall n \geqslant n_0.$$

Para
$$n = 1$$
: $100n^2 + 4n + 2 = 100(1) + 4(1) + 2 = 106$

Então
$$100n^2 + 4n + 2 \le 106n^2$$
, $\forall n \ge 1$

Exemplo 2: prove que $100n^2 + 4n + 2 \in O(n^2)$

Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq.

$$100n^2 + 4n + 2 \le c.n^2, \forall n \geqslant n_0.$$

Para
$$n = 1$$
: $100n^2 + 4n + 2 = 100(1) + 4(1) + 2 = 106$

Então
$$100n^2 + 4n + 2 \le 106n^2$$
, $\forall n \ge 1$

Portanto,
$$100n^2 + 4n + 2 \in O(n^2)$$

Exemplo 2: prove que $100n^2 + 4n + 2 \in O(n^2)$

Outra maneira de provar:

Exemplo 2: prove que $100n^2 + 4n + 2 \in O(n^2)$

Outra maneira de provar:

Para $n \ge 1$: $100n^2 = 100n^2$

Para $n \ge 5$: $4n + 2 \le n^2$

Exemplo 2: prove que $100n^2 + 4n + 2 \in O(n^2)$

Outra maneira de provar:

Para
$$n \ge 1$$
: $100n^2 = 100n^2$

Para
$$n \ge 5$$
: $4n + 2 \le n^2$

Então,
$$100n^2 + 4n + 2 \le 101n^2$$
, $\forall n \ge 5$.

Exemplo 2: prove que $100n^2 + 4n + 2 \in O(n^2)$

Outra maneira de provar:

Para
$$n \ge 1$$
: $100n^2 = 100n^2$

Para
$$n \ge 5$$
: $4n + 2 \le n^2$

Então,
$$100n^2 + 4n + 2 \le 101n^2$$
, $\forall n \ge 5$.

Portanto,
$$100n^2 + 4n + 2 \in O(n^2)$$

Exemplo 3: Prove que: $100n^2 + 4n + 2 \in O(n^4)$

Exemplo 3: Prove que: $100n^2 + 4n + 2 \in O(n^4)$

Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq. $100n^2 + 4n + 2 \le c.n^4$, $\forall n \ge n_0$.

Exemplo 3: Prove que: $100n^2 + 4n + 2 \in O(n^4)$

Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq.

 $100n^2 + 4n + 2 \le c.n^4, \forall n \geqslant n_0.$

Para $n \ge 1$: $100n^2 \le 100n^4$

Exemplo 3: Prove que: $100n^2 + 4n + 2 \in O(n^4)$

Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq.

 $100n^2 + 4n + 2 \le$ **c** $.n^4, \forall n \geqslant$ **n** $_0.$

Para $n \ge 1$: $100n^2 \le 100n^4$

Para $n \ge 2$: $4n + 2 \le n^4$

Exemplo 3: Prove que: $100n^2 + 4n + 2 \in O(n^4)$

Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq.

 $100n^2 + 4n + 2 \le$ **c** $.n^4, \forall n \geqslant$ **n** $_0.$

Para $n \ge 1$: $100n^2 \le 100n^4$

Para $n \ge 2$: $4n + 2 \le n^4$

Então, $100n^2 + 4n + 2 \le 101n^4$, $\forall n \ge 2$.

Exemplo 3: Prove que: $100n^2 + 4n + 2 \in O(n^4)$

Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq.

$$100n^2 + 4n + 2 \le$$
c $.n^4, \forall n \geqslant$ **n** $_0.$

Para $n \ge 1$: $100n^2 \le 100n^4$

Para $n \ge 2$: $4n + 2 \le n^4$

Então, $100n^2 + 4n + 2 \le 101n^4$, $\forall n \ge 2$.

Portanto, $100n^2 + 4n + 2 \in O(n^4)$

Exercício: Prove que: $1000n^2 + 100n - 6 \in O(n^2)$

Exemplo 5: prove que: $3 \times 2^n + n^2 \in O(2^n)$

Exemplo 5: prove que: $3 \times 2^n + n^2 \in O(2^n)$

Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq. $3 \times 2^n + n^2 < c.2^n$, $\forall n \ge n_0$.

Exemplo 5: prove que: $3 \times 2^n + n^2 \in O(2^n)$

Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq. $3 \times 2^n + n^2 < c.2^n$, $\forall n \ge n_0$.

Para $n \ge 1$: $3.2^n = 3.2^n$

Exemplo 5: prove que: $3 \times 2^n + n^2 \in O(2^n)$

Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq.

 $3 \times 2^n + n^2 \leq c.2^n, \forall n \geqslant n_0.$

Para $n \ge 1$: $3.2^n = 3.2^n$

Para $n \ge 4$: $n^2 \le 2^n$

Exemplo 5: prove que: $3 \times 2^n + n^2 \in O(2^n)$

Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq.

 $3 \times 2^n + n^2 \leq \underline{c}.2^n, \forall n \geqslant \underline{n_0}.$

Para $n \ge 1$: $3.2^n = 3.2^n$

Para $n \ge 4$: $n^2 \le 2^n$

Então, $3.2^n + n^2 \le 4.2^n$, $\forall n \ge 4$.

Exemplo 5: prove que: $3 \times 2^n + n^2 \in O(2^n)$

Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq.

$$3 \times 2^n + n^2 \leq \underline{c}.2^n, \forall n \geqslant \underline{n_0}.$$

Para $n \ge 1$: $3.2^n = 3.2^n$

Para $n \ge 4$: $n^2 \le 2^n$

Então, $3.2^n + n^2 \le 4.2^n$, $\forall n \ge 4$.

Portanto, $3.2^{n} + n^{2} \in O(2^{n})$

Note que, as seguintes afirmações são corretas:

•
$$\frac{(n+1)(n-1)}{2} \in O(n^3)$$

•
$$\frac{(n+1)(n-1)}{2} \in O(n^4)$$

•
$$\frac{(n+1)(n-1)}{2} \in O(2^n)$$

Em análise de algoritmos, estamos interessados no **menor limite** superior possível de $\frac{(n+1)(n-1)}{2}$.

Ou seja,
$$\frac{(n+1)(n-1)}{2} \in O(n^2)$$

Não é usual escrever

$$\frac{(n+1)(n-1)}{2} \in O(n^3)$$

Note que, as seguintes afirmações são corretas:

•
$$\frac{(n+1)(n-1)}{2} \in O(n^3)$$

•
$$\frac{(n+1)(n-1)}{2} \in O(n^4)$$

•
$$\frac{(n+1)(n-1)}{2} \in O(2^n)$$

Em análise de algoritmos, estamos interessados no **menor limite** superior possível de $\frac{(n+1)(n-1)}{2}$.

Ou seja,
$$\frac{(n+1)(n-1)}{2} \in O(n^2)$$

Não é usual escrever

$$\frac{(n+1)(n-1)}{2} \in O(n^3)$$

13/43

Note que, as seguintes afirmações são corretas:

•
$$\frac{(n+1)(n-1)}{2} \in O(n^3)$$

•
$$\frac{(n+1)(n-1)}{2} \in O(n^4)$$

•
$$\frac{(n+1)(n-1)}{2} \in O(2^n)$$

Em análise de algoritmos, estamos interessados no menor limite **superior** possível de $\frac{(n+1)(n-1)}{2}$.

Ou seja,
$$\frac{(n+1)(n-1)}{2} \in O(n^2)$$

Não é usual escrever
$$\frac{(n+1)(n-1)}{2} \in O(n^3)$$

Informalmente, $\Omega(g(n))$ é o **conjunto** de todas as funções com ordem de grandeza maior ou igual que g(n).

Por exemplo:

- $\bullet \ \frac{1}{2}n(n-1) \in \Omega(n^2)$
- $100n + 5 \notin \Omega(n^2)$
- $n^3 \in \Omega(n^3)$
- $n^3 \in \Omega(n^2)$
- $n^3 \in \Omega(n)$

 n, n^2, n^3 são **limites inferiores** de n^3 .

No entanto, estamos interessados no **maior limite inferior** de n^3 .

Ou seja, $n^3 \in \Omega(n^3)$

Informalmente, $\Omega(g(n))$ é o **conjunto** de todas as funções com ordem de grandeza maior ou igual que g(n).

Por exemplo:

- $\bullet \ \frac{1}{2}n(n-1) \in \Omega(n^2)$
- $100n + 5 \notin \Omega(n^2)$
- $n^3 \in \Omega(n^3)$
- $n^3 \in \Omega(n^2)$
- $n^3 \in \Omega(n)$

 n, n^2, n^3 são **limites inferiores** de n^3 .

No entanto, estamos interessados no **maior limite inferior** de n^3 .

Ou seja, $n^3 \in \Omega(n^3)$

Informalmente, $\Omega(g(n))$ é o **conjunto** de todas as funções com ordem de grandeza maior ou igual que g(n).

Por exemplo:

- $\bullet \ \frac{1}{2}n(n-1) \in \Omega(n^2)$
- $100n + 5 \notin \Omega(n^2)$
- $n^3 \in \Omega(n^3)$
- $n^3 \in \Omega(n^2)$
- $n^3 \in \Omega(n)$

 n, n^2, n^3 são limites inferiores de n^3 .

No entanto, estamos interessados no **maior limite inferior** de n^3 .

Ou seja, $n^3 \in \Omega(n^3)$

14/43

Definição Formal: Notação Ω

 $t(n) \in \Omega(g(n))$, se t(n) é limitado inferiormente por $c \cdot g(n)$ para todo $n \ge n_0$, onde $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$.

 $t(n) \in \Omega(g(n))$ **sss** existem constantes c > 0 e $n_0 \ge 1$, tq. $t(n) \ge c \cdot g(n) \ge 0$, $\forall n \ge n_0$

Exemplo 1: prove que $n^3 - 50 \in \Omega(n^2)$

• Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq. $n^3 - 50 > c \cdot n^2$, $\forall n \ge n_0$

- Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq. $n^3 50 > c \cdot n^2$, $\forall n \ge n_0$
- Note que para n = 5: $n^3 50 = 75$ e $n^2 = 25$

- Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq. $n^3 50 > c \cdot n^2$, $\forall n \ge n_0$
- Note que para n = 5: $n^3 50 = 75$ e $n^2 = 25$
- Ou seja, $n^3 50 \ge 1.n^2$, $\forall n \ge 5$

- Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq. $n^3 50 > c \cdot n^2$, $\forall n \ge n_0$
- Note que para n = 5: $n^3 50 = 75$ e $n^2 = 25$
- Ou seja, $n^3 50 \ge 1.n^2$, $\forall n \ge 5$
- Logo, para c = 1 e $n_0 = 5$: $n^3 50 \in \Omega(n^2)$

Exemplo 2: prove que $n^2 - 2n \in \Omega(n^2)$

• Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq. $n^2 - 2n \ge c \cdot n^2$, $\forall n \ge n_0$

- Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq. $n^2 2n > c \cdot n^2$, $\forall n \ge n_0$
- Note que para n = 3: $n^2 2n = 3$ e $n^2 = 9$

- Temos que provar que existem $c \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$ tq. $n^2 2n > c \cdot n^2$, $\forall n \ge n_0$
- Note que para n = 3: $n^2 2n = 3$ e $n^2 = 9$
- Escolher: c = 3/9 = 1/3
- Então: $n^2 2n \ge \frac{1}{3} \cdot n^2$, $\forall n \ge 3$

Exercícios: Prove que:

- $2^n n^2 \in \Omega(n^2)$
- $n^4 8n \in \Omega(n^4)$.
- 3n + 4 ∈ Ω(1)

Informalmente, $\Theta(g(n))$ é o **conjunto** de todas as funções com a mesma ordem de crescimento de g(n).

Por exemplo:

- $n^2 + n \in \Theta(n^2)$
- $\bullet \ \ \tfrac{1}{2}\textit{n}(\textit{n}-1) \in \Theta(\textit{n}^2)$
- $7n^2 + 5 \notin \Theta(n)$

Informalmente, $\Theta(g(n))$ é o **conjunto** de todas as funções com a mesma ordem de crescimento de g(n).

Por exemplo:

- $n^2 + n \in \Theta(n^2)$
- $\bullet \ \ \tfrac{1}{2}\textit{n}(\textit{n}-1) \in \Theta(\textit{n}^2)$
- $7n^2 + 5 \notin \Theta(n)$

 $t(n) \in \Theta(g(n))$ sss $t(n) \in O(g(n))$ e $t(n) \in \Omega(g(n))$.

Definição Formal: Notação ⊖

 $t(n) \in \Theta(g(n))$, se t(n) é limitado superiormente por $c_1 \cdot g(n)$ e inferiormente por $c_2 \cdot g(n)$ para todo $n \ge n_0$, onde c_1 e $c_2 \in \mathbb{R}^+$ e $n_0 \in \mathbb{Z}^+$.

 $t(n) \in \Theta(g(n))$ **sss** existem constantes reais $c_1, c_2 > 0$ e $n_0 \geqslant 1$ tq. $0 \le c_2 \cdot g(n) \le t(n) \le c_1 \cdot g(n)$, $\forall n \geqslant n_0$

Exemplo 1: prove que $\frac{1}{2}n^2 - \frac{1}{2}n \in \Theta(n^2)$

Exemplo 1: prove que $\frac{1}{2}n^2 - \frac{1}{2}n \in \Theta(n^2)$

Primeiro provar que existem c_1 e n_0 tq. $\frac{1}{2}n^2 - \frac{1}{2}n \le c_1 n^2$, $\forall n \ge n_0$ (limite superior):

Exemplo 1: prove que $\frac{1}{2}n^2 - \frac{1}{2}n \in \Theta(n^2)$

Primeiro provar que existem c_1 e n_0 tq. $\frac{1}{2}n^2 - \frac{1}{2}n \le c_1 n^2$, $\forall n \ge n_0$ (limite superior):

• $\frac{1}{2}n^2 - \frac{1}{2}n \le \frac{1}{2}n^2$ (para todo $n \ge 1$)

Notação ⊝

Exemplo 1: prove que $\frac{1}{2}n^2 - \frac{1}{2}n \in \Theta(n^2)$

Primeiro provar que existem c_1 e n_0 tq. $\frac{1}{2}n^2 - \frac{1}{2}n \le c_1 n^2$, $\forall n \ge n_0$ (limite superior):

• $\frac{1}{2}n^2 - \frac{1}{2}n \le \frac{1}{2}n^2$ (para todo $n \ge 1$)

Em seguida provar que existe c_2 tq. $\frac{1}{2}n^2 - \frac{1}{2}n \ge c_2n^2$, $\forall n \ge n_0$ (limite inferior):

Exemplo 1: prove que $\frac{1}{2}n^2 - \frac{1}{2}n \in \Theta(n^2)$

Primeiro provar que existem c_1 e n_0 tq. $\frac{1}{2}n^2 - \frac{1}{2}n \le c_1 n^2$, $\forall n \ge n_0$ (limite superior):

• $\frac{1}{2}n^2 - \frac{1}{2}n \le \frac{1}{2}n^2$ (para todo $n \ge 1$)

Em seguida provar que existe c_2 tq. $\frac{1}{2}n^2 - \frac{1}{2}n \ge c_2n^2$, $\forall n \ge n_0$ (limite inferior):

• Note que: $-\frac{1}{2}n \ge -\frac{1}{2}n\frac{1}{2}n = -\frac{1}{4}n^2$, para todo $n \ge 2$,

Exemplo 1: prove que $\frac{1}{2}n^2 - \frac{1}{2}n \in \Theta(n^2)$

Primeiro provar que existem c_1 e n_0 tq. $\frac{1}{2}n^2 - \frac{1}{2}n \le c_1 n^2$, $\forall n \ge n_0$ (limite superior):

• $\frac{1}{2}n^2 - \frac{1}{2}n \le \frac{1}{2}n^2$ (para todo $n \ge 1$)

Em seguida provar que existe c_2 tq. $\frac{1}{2}n^2 - \frac{1}{2}n \ge c_2n^2$, $\forall n \ge n_0$ (limite inferior):

- Note que: $-\frac{1}{2}n \ge -\frac{1}{2}n\frac{1}{2}n = -\frac{1}{4}n^2$, para todo $n \ge 2$,
- Então: $\frac{1}{2}n^2 \frac{1}{2}n \ge \frac{1}{2}n^2 \frac{1}{4}n^2 = \frac{1}{4}n^2$, para todo $n \ge 2$

Exemplo 1: prove que $\frac{1}{2}n^2 - \frac{1}{2}n \in \Theta(n^2)$

Primeiro provar que existem c_1 e n_0 tq. $\frac{1}{2}n^2 - \frac{1}{2}n \le c_1 n^2$, $\forall n \ge n_0$ (limite superior):

• $\frac{1}{2}n^2 - \frac{1}{2}n \le \frac{1}{2}n^2$ (para todo $n \ge 1$)

Em seguida provar que existe c_2 tq. $\frac{1}{2}n^2 - \frac{1}{2}n \ge c_2n^2$, $\forall n \ge n_0$ (limite inferior):

- Note que: $-\frac{1}{2}n \ge -\frac{1}{2}n\frac{1}{2}n = -\frac{1}{4}n^2$, para todo $n \ge 2$,
- Então: $\frac{1}{2}n^2 \frac{1}{2}n \ge \frac{1}{2}n^2 \frac{1}{4}n^2 = \frac{1}{4}n^2$, para todo $n \ge 2$

Portanto, existem $c_1 = \frac{1}{2}$, $c_2 = \frac{1}{4}$ e $n_0 = 2$, tq.

$$c_2 n^2 \le \frac{1}{2} n^2 - \frac{1}{2} n \le c_1 n^2, \, \forall n \ge n_0.$$

O uso de **limites** pode ser mais conveniente para **comparar a ordem de grandeza** de duas funções específicas:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\left\{\begin{array}{ll}0,&f(n)\text{ possui ordem de grandeza menor que }g(n)\\c>0,&f(n)\text{ possui ordem de grandeza igual a }g(n)\\\infty,&f(n)\text{ possui ordem de grandeza maior que }g(n)\end{array}\right.$$

• Se
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$
, então $f(n) \in O(g(n))$

• Se
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0$$
, então $f(n) \in \Theta(g(n))$

• Se
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$
, então $f(n) \in \Omega(g(n))$

Exemplo #1: Compare as grandezas de 100n + 5 e n^2

Exemplo #1: Compare as grandezas de 100n + 5 e n^2

Mostrar que $\frac{100n+5}{n}$ possui ordem de grandeza **menor** que $\frac{n^2}{n}$, ou seja, $\lim_{n\to\infty}\frac{100n+5}{n^2}=0$

Exemplo #1: Compare as grandezas de 100n + 5 e n^2

Mostrar que 100n + 5 possui ordem de grandeza **menor** que n^2 , ou seja, $\lim_{n \to \infty} \frac{100n + 5}{n^2} = 0$

$$\lim_{n \to \infty} \frac{100n + 5}{n^2} = \lim_{n \to \infty} (\frac{100n}{n^2} + \frac{5}{n^2}) = \lim_{n \to \infty} (\frac{100}{n} + \frac{5}{n^2}) =$$

Exemplo #1: Compare as grandezas de 100n + 5 e n^2

Mostrar que $\frac{100n+5}{n\to\infty}$ possui ordem de grandeza **menor** que $\frac{n^2}{n}$, ou seja, $\lim_{n\to\infty}\frac{100n+5}{n^2}=0$

$$\lim_{n \to \infty} \frac{100n + 5}{n^2} = \lim_{n \to \infty} \left(\frac{100n}{n^2} + \frac{5}{n^2} \right) = \lim_{n \to \infty} \left(\frac{100}{n} + \frac{5}{n^2} \right) =$$

$$= 100 \lim_{n \to \infty} \frac{1}{n} + 5 \lim_{n \to \infty} \frac{1}{n^2} = 0$$

Exemplo #1: Compare as grandezas de 100n + 5 e n^2

Mostrar que $\frac{100n+5}{n}$ possui ordem de grandeza **menor** que $\frac{n^2}{n}$, ou seja, $\lim_{n\to\infty}\frac{100n+5}{n^2}=0$

$$\lim_{n \to \infty} \frac{100n + 5}{n^2} = \lim_{n \to \infty} \left(\frac{100n}{n^2} + \frac{5}{n^2} \right) = \lim_{n \to \infty} \left(\frac{100}{n} + \frac{5}{n^2} \right) =$$

$$= 100 \lim_{n \to \infty} \frac{1}{n} + 5 \lim_{n \to \infty} \frac{1}{n^2} = 0$$

• Então: $100n + 5 \in O(n^2)$

Exemplo #2: Compare as grandezas de $\frac{1}{2}n(n-1)$ e n^2

Exemplo #2: Compare as grandezas de $\frac{1}{2}n(n-1)$ e n^2

Mostrar que $\frac{1}{2}n(n-1)$ e n^2 possuem a mesma ordem de grandeza, ou

seja,
$$\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = c > 0$$

Exemplo #2: Compare as grandezas de $\frac{1}{2}n(n-1)$ e n^2

Mostrar que $\frac{1}{2}n(n-1)$ e n^2 possuem a mesma ordem de grandeza, ou

seja,
$$\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = c > 0$$

$$\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = \frac{1}{2} \lim_{n \to \infty} \frac{n^2 - n}{n^2} = \frac{1}{2} \lim_{n \to \infty} (1 - \frac{1}{n}) = \frac{1}{2}$$

Exemplo #2: Compare as grandezas de $\frac{1}{2}n(n-1)$ e n^2

Mostrar que $\frac{1}{2}n(n-1)$ e n^2 possuem a mesma ordem de grandeza, ou

seja,
$$\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = c > 0$$

$$\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = \frac{1}{2} \lim_{n \to \infty} \frac{n^2 - n}{n^2} = \frac{1}{2} \lim_{n \to \infty} (1 - \frac{1}{n}) = \frac{1}{2}$$

- As duas funções possuem a mesma ordem de grandeza
- Então: $\frac{1}{2}n(n-1) \in \Theta(n^2)$

- $2^n \in O(3^n)$
- $n \in \Omega(\log_2 n)$
- $\sqrt{n} \in \Omega(\log_2 n)$
- $n! \in \Omega(2^n)$
- $n! \in O(n^n)$

- $2^n \in O(3^n)$
- $n \in \Omega(\log_2 n)$
- $\sqrt{n} \in \Omega(\log_2 n)$
- $n! \in \Omega(2^n)$
- $n! \in O(n^n)$

$$n \in \Omega(\log_2 n)$$
: Mostrar que $\lim_{n \to \infty} \frac{n}{\log_2 n} = \infty$

(RL'H):
$$\lim_{n \to \infty} \frac{n}{\log_2 n} = \lim_{n \to \infty} \frac{1}{1/(n \ln 2)} = \lim_{n \to \infty} n \ln 2 = \ln 2 \lim_{n \to \infty} n = \infty$$

- $2^n \in O(3^n)$
- $n \in \Omega(\log_2 n)$
- $\sqrt{n} \in \Omega(\log_2 n)$
- $n! \in \Omega(2^n)$
- $n! \in O(n^n)$

$$n \in \Omega(\log_2 n)$$
: Mostrar que $\lim_{n \to \infty} \frac{n}{\log_2 n} = \infty$

(RL'H):
$$\lim_{n \to \infty} \frac{n}{\log_2 n} = \lim_{n \to \infty} \frac{1}{1/(n \ln 2)} = \lim_{n \to \infty} n \ln 2 = \ln 2 \lim_{n \to \infty} n = \infty$$

- $2^n \in O(3^n)$
- $n \in \Omega(\log_2 n)$
- $\sqrt{n} \in \Omega(\log_2 n)$
- $n! \in \Omega(2^n)$
- $n! \in O(n^n)$

$$\sqrt{n} \in \Omega(\log_2 n): \quad \text{Mostrar que} \lim_{n \to \infty} \frac{\sqrt{n}}{\log_2 n} = \infty$$

$$(\text{RL'H}): \lim_{n \to \infty} \frac{\sqrt{n}}{\log_2 n} = \lim_{n \to \infty} \frac{1/(2\sqrt{n})}{1/(n \ln 2)} = \lim_{n \to \infty} \frac{\ln 2 \cdot n}{2\sqrt{n}} = \frac{\ln 2}{2} \lim_{n \to \infty} \frac{n}{\sqrt{n}}$$

(RL'H):
$$\lim_{n \to \infty} \frac{n}{\sqrt{n}} = \lim_{n \to \infty} \frac{1}{1/(2\sqrt{n})} = \lim_{n \to \infty} 2\sqrt{n} = \infty$$

- $2^n \in O(3^n)$
- $n \in \Omega(\log_2 n)$
- $\sqrt{n} \in \Omega(\log_2 n)$
- $n! \in \Omega(2^n)$
- $n! \in O(n^n)$

$$\sqrt{n} \in \Omega(\log_2 n)$$
: Mostrar que $\lim_{n \to \infty} \frac{\sqrt{n}}{\log_2 n} = \infty$
(BL'H): $\lim_{n \to \infty} \frac{\sqrt{n}}{\log_2 n} = \lim_{n \to \infty} \frac{\ln 2 \cdot n}{\ln n} = \lim_{n \to \infty} \frac{\ln 2 \cdot n}{\ln n} = \lim_{n \to \infty} \frac{\ln n}{\ln n}$

(RL'H):
$$\lim_{n\to\infty} \frac{\sqrt{n}}{\log_2 n} = \lim_{n\to\infty} \frac{1/(2\sqrt{n})}{1/(n\ln 2)} = \lim_{n\to\infty} \frac{\ln 2 \cdot n}{2\sqrt{n}} = \frac{\ln 2}{2} \lim_{n\to\infty} \frac{n}{\sqrt{n}}$$

(RL'H):
$$\lim_{n \to \infty} \frac{n}{\sqrt{n}} = \lim_{n \to \infty} \frac{1}{1/(2\sqrt{n})} = \lim_{n \to \infty} 2\sqrt{n} = \infty$$

- $2^n \in O(3^n)$
- $n \in \Omega(\log_2 n)$
- $\sqrt{n} \in \Omega(\log_2 n)$
- $\sqrt{4n^2 + 5n + 2} \in \Omega(n^2)$
- $n! \in \Omega(2^n)$
- $n! \in O(n^n)$

$$\sqrt{n} \in \Omega(\log_2 n)$$
: Mostrar que $\lim_{n \to \infty} \frac{\sqrt{n}}{\log_2 n} = \infty$
(BL'H): $\lim_{n \to \infty} \frac{\sqrt{n}}{\log_2 n} = \lim_{n \to \infty} \frac{\ln 2.n}{\ln n}$

(RL'H):
$$\lim_{n \to \infty} \frac{\sqrt{n}}{\log_2 n} = \lim_{n \to \infty} \frac{1/(2\sqrt{n})}{1/(n \ln 2)} = \lim_{n \to \infty} \frac{\ln 2 \cdot n}{2\sqrt{n}} = \frac{\ln 2}{2} \lim_{n \to \infty} \frac{n}{\sqrt{n}}$$

(RL'H): $\lim_{n \to \infty} \frac{n}{\sqrt{n}} = \lim_{n \to \infty} \frac{1}{1/(2\sqrt{n})} = \lim_{n \to \infty} 2\sqrt{n} = \infty$

(RL'H):
$$\lim_{n\to\infty} \frac{n}{\sqrt{n}} = \lim_{n\to\infty} \frac{1}{1/(2\sqrt{n})} = \lim_{n\to\infty} 2\sqrt{n} = \infty$$

- $2^n \in O(3^n)$
- $n \in \Omega(\log_2 n)$
- $\sqrt{n} \in \Omega(\log_2 n)$
- $n! \in \Omega(2^n)$
- $n! \in O(n^n)$

$$n! \in \Omega(2^n)$$
: Mostrar que $\lim_{n \to \infty} \frac{n!}{2^n} = \infty$
 $n! = \sqrt{2\pi n} \cdot (\frac{n}{2})^n$ Fórmula de Stirling.

$$\lim_{n\to\infty}\frac{n!}{2^n}=\lim_{n\to\infty}\frac{\sqrt{2\pi}.\sqrt{n}.(\frac{n}{e})^n}{2^n}=\sqrt{2\pi}\lim_{n\to\infty}\sqrt{n}.(\frac{n}{2e})^n=\sqrt{2\pi}.\infty.\infty=\infty$$

- $2^n \in O(3^n)$
- $n \in \Omega(\log_2 n)$
- $\sqrt{n} \in \Omega(\log_2 n)$
- $n! \in \Omega(2^n)$
- $n! \in O(n^n)$

$$n! \in \Omega(2^n)$$
: Mostrar que $\lim_{n \to \infty} \frac{n!}{2^n} = \infty$
 $n! = \sqrt{2\pi n}.(\frac{n}{2})^n$ Fórmula de Stirling.

$$\lim_{n\to\infty}\frac{n!}{2^n}=\lim_{n\to\infty}\frac{\sqrt{2\pi}.\sqrt{n}.(\frac{n}{e})^n}{2^n}=\sqrt{2\pi}\lim_{n\to\infty}\sqrt{n}.(\frac{n}{2e})^n=\sqrt{2\pi}.\infty.\infty=\infty$$

Exercícios: Usando limites mostrar:

- $2^n \in O(3^n)$
- $n \in \Omega(\log_2 n)$
- $\sqrt{n} \in \Omega(\log_2 n)$
- $n! \in \Omega(2^n)$
- $n! \in O(n^n)$

$$n! \in \Omega(2^n)$$
: Mostrar que $\lim_{n \to \infty} \frac{n!}{2^n} = \infty$

 $n! = \sqrt{2\pi n} \cdot (\frac{n}{e})^n$ Fórmula de Stirling.

$$\lim_{n\to\infty}\frac{n!}{2^n}=\lim_{n\to\infty}\frac{\sqrt{2\pi}.\sqrt{n}.(\frac{n}{e})^n}{2^n}=\sqrt{2\pi}\lim_{n\to\infty}\sqrt{n}.(\frac{n}{2e})^n=\sqrt{2\pi}.\infty.\infty=\infty$$

Notações $o \in \omega$

• o(g(n)) é classe de funções t(n) com **ordem de crescimento** estritamente menor que g(n).

Formalmente, $t(n) \in o(g(n))$ sss **para todo** c > 0, existe n_0 tq. t(n) < c.g(n), $\forall n \ge n_0$.

- Usando limites:
- $t(n) \in o(g(n))$ sss $\lim_{n \to \infty} \frac{t(n)}{g(n)} = 0$

Notações $o \in \omega$

• o(g(n)) é classe de funções t(n) com **ordem de crescimento** estritamente menor que g(n).

Formalmente, $t(n) \in o(g(n))$ sss **para todo** c > 0, existe n_0 tq. t(n) < c.g(n), $\forall n \ge n_0$.

- Usando limites:
- $t(n) \in o(g(n))$ sss $\lim_{n \to \infty} \frac{t(n)}{g(n)} = 0$

Notações o e ω

• o(g(n)) é classe de funções t(n) com **ordem de crescimento** estritamente menor que g(n).

Formalmente, $t(n) \in o(g(n))$ sss **para todo** c > 0, existe n_0 tq. t(n) < c.g(n), $\forall n \ge n_0$.

- Usando limites:
- $t(n) \in o(g(n))$ sss $\lim_{n \to \infty} \frac{t(n)}{g(n)} = 0$

Notações $o e \omega$

• $\omega(g(n))$ é classe de funções t(n) com **ordem de crescimento** estritamente maior que g(n).

Formalmente, $t(n) \in \omega(g(n))$ sss para todo c > 0, existe n_0 tq. t(n) > c.g(n), $\forall n \ge n_0$.

- Usando limites:
- $t(n) \in \omega(g(n))$ sss $\lim_{n \to \infty} \frac{t(n)}{g(n)} = \infty$

Notações o e ω

• $\omega(g(n))$ é classe de funções t(n) com ordem de crescimento estritamente maior que g(n).

Formalmente, $t(n) \in \omega(g(n))$ sss para todo c > 0, existe n_0 tq. t(n) > c.g(n), $\forall n \ge n_0$.

- Usando limites:
- $t(n) \in \omega(g(n))$ sss $\lim_{n \to \infty} \frac{t(n)}{g(n)} = \infty$

Reflexividade

- $t(n) \in O(t(n))$
- $t(n) \in \Omega(t(n))$
- $t(n) \in \Theta(t(n))$

Transitividade

- Se $t(n) \in O(g(n))$ e $g(n) \in O(h(n))$, então $t(n) \in O(h(n))$
- Se $t(n) \in \Omega(g(n))$ e $g(n) \in \Omega(h(n))$, então $t(n) \in \Omega(h(n))$
- Se $t(n) \in \Theta(g(n))$ e $g(n) \in \Theta(h(n))$, então $t(n) \in \Theta(h(n))$

Reflexividade

- $t(n) \in O(t(n))$
- $t(n) \in \Omega(t(n))$
- $t(n) \in \Theta(t(n))$

Transitividade

- Se $t(n) \in O(g(n))$ e $g(n) \in O(h(n))$, então $t(n) \in O(h(n))$
- Se $t(n) \in \Omega(g(n))$ e $g(n) \in \Omega(h(n))$, então $t(n) \in \Omega(h(n))$
- Se $t(n) \in \Theta(g(n))$ e $g(n) \in \Theta(h(n))$, então $t(n) \in \Theta(h(n))$

Simetria

• $t(n) \in \Theta(g(n))$ se e somente se $g(n) \in \Theta(t(n))$

Simetria transposta

• $t(n) \in O(g(n))$ se e somente se $g(n) \in \Omega(t(n))$

Propriedades úteis

- $c \cdot t(n) \in O(t(n))$, para uma constante c
- Se $t_1(n) \in O(g_1(n))$ e $t_2(n) \in O(g_2(n))$, então $t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\})$

Teorema (Regra da Soma)

Se
$$t_1(n) \in O(g_1(n))$$
 e $t_2(n) \in O(g_2(n))$, então:

$$t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\})$$

Prova

Já que
$$t_1(n) \in O(g_1(n))$$
 e $t_2(n) \in O(g_2(n))$, temos:

$$t_1(n) \le c_1 \cdot g_1(n), \text{ para } n \ge n_1 \tag{1}$$

$$c_2(n) \le c_2 \cdot g_2(n)$$
, para $n \ge n_2$ (2)

Se $c_3 = \max\{c_1, c_2\}$ e $n \ge \max\{n_1, n_2\}$, ao somar 1 e 2:

$$t_1(n) + t_2(n) \le c_3[g_1(n) + g_2(n)]$$

$$t_1(n) + t_2(n) \le 2 \cdot c_3 \max\{g_1(n), g_2(n)\}$$

$$t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\})$$

Teorema (Regra da Soma)

Se
$$t_1(n) \in O(g_1(n))$$
 e $t_2(n) \in O(g_2(n))$, então:

$$t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\})$$

Prova

Já que $t_1(n) \in O(g_1(n))$ e $t_2(n) \in O(g_2(n))$, temos:

$$t_1(n) \le c_1 \cdot g_1(n), \text{ para } n \ge n_1 \tag{1}$$

$$t_2(n) \le c_2 \cdot g_2(n), \text{ para } n \ge n_2 \tag{2}$$

Se $c_3 = \max\{c_1, c_2\}$ e $n \ge \max\{n_1, n_2\}$, ao somar 1 e 2:

$$t_1(n) + t_2(n) \le c_3[g_1(n) + g_2(n)]$$

$$t_1(n) + t_2(n) \le 2 \cdot c_3 \max\{g_1(n), g_2(n)\}$$

$$t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\})$$

Suponha que temos um algoritmo composta de k partes (procedimentos).

 A Regra da Soma implica que o tempo do algoritmo é determinada pela parte com maior ordem de grandeza, i.e., a parte mais demourada do algoritmo.

$$\begin{array}{c} t_{1}(n) \in O(g_{1}(n)) \\ t_{2}(n) \in O(g_{2}(n)) \\ \vdots \\ t_{k}(n) \in O(g_{k}(n)) \end{array} \} \Rightarrow T(n) = t_{1}(n) + t_{2}(n) + \dots + t_{k}(n)$$

$$T(n) \in O(\max\{g_{1}(n), g_{2}(n), \dots, g_{k}(n)\})$$

Teorema (Regra do Produto)

Se
$$t_1(n) \in O(g_1(n))$$
 e $t_2(n) \in O(g_2(n))$, então:

$$t_1(n).t_2(n) \in O(g_1(n).g_2(n))$$

 Todas as funções logarítmicas log_an pertencem a mesma classe ⊖(logn), independente da base a > 1 do logaritmo.

- Todas as **funções logarítmicas** $\log_a n$ pertencem a mesma classe $\Theta(\log n)$, independente da base a > 1 do logaritmo.
- Todos os **polinômios de grau** k pertencem à mesma classe: $a_k n^k + a_{k-1} n^{k-1} + \cdots + a_0 \in \Theta(n^k)$.

- Todas as **funções logarítmicas** $\log_a n$ pertencem a mesma classe $\Theta(\log n)$, independente da base a > 1 do logaritmo.
- Todos os **polinômios de grau** k pertencem à mesma classe: $a_k n^k + a_{k-1} n^{k-1} + \cdots + a_0 \in \Theta(n^k)$.
- Funções exponenciais aⁿ possuem diferentes ordens de grandeza para diferentes bases a.
 Ex.: 2ⁿ ∈ O(2ⁿ), 3ⁿ ∈ O(3ⁿ)

- Todas as **funções logarítmicas** $\log_a n$ pertencem a mesma classe $\Theta(\log n)$, independente da base a > 1 do logaritmo.
- Todos os **polinômios de grau** k pertencem à mesma classe: $a_k n^k + a_{k-1} n^{k-1} + \cdots + a_0 \in \Theta(n^k)$.
- Funções exponenciais aⁿ possuem diferentes ordens de grandeza para diferentes bases a.
- Ex.: $2^n \in O(2^n), 3^n \in O(3^n)$ • $\log n < n^k < a^n < n! < n^n$.
- $\log n < n^* < a^* < n! < n^*$. (considerando k > 0, a > 1)

Ordens de grandeza de funções importantes

- Todas as **funções logarítmicas** $\log_a n$ pertencem a mesma classe $\Theta(\log n)$, independente da base a > 1 do logaritmo.
- Todos os **polinômios de grau** k pertencem à mesma classe: $a_k n^k + a_{k-1} n^{k-1} + \cdots + a_0 \in \Theta(n^k)$.
- Funções exponenciais aⁿ possuem diferentes ordens de grandeza para diferentes bases a.
 - Ex.: $2^n \in O(2^n), 3^n \in O(3^n)$
- $\log n < n^k < a^n < n! < n^n$. (considerando k > 0, a > 1) Se f(n) = c, uma constante não negativa, então $f(n) \in \Theta(1)$

Classes básicas de crescimento assintótico

Classe	Nome
1	constante
log <i>n</i>	logarítmica
n	linear
<i>n</i> log <i>n</i>	linearítmica
n²	quadrática
n ³	cúbica
2 ⁿ	exponencial
<i>n</i> !	fatorial

O que significa dizer que o tempo de execução de um algoritmo é O(g(n))?

- Significa que, o tempo de execução do algoritmo no pior caso é O(g(n)).
- Ou seja, o tempo de execução do algoritmo é no máximo uma constante vezes g(n) (i.e. c.g(n)) para qualquer entrada de tamanho n suficientemente grande.
- A notação O é usado para descrever o limite superior do tempo de execução de um algoritmo.

O que significa dizer que o tempo de execução de um algoritmo é O(g(n))?

- Significa que, o tempo de execução do algoritmo no pior caso é
 O(g(n)).
- Ou seja, o tempo de execução do algoritmo é no máximo uma constante vezes g(n) (i.e. c.g(n)) para qualquer entrada de tamanho n suficientemente grande.
- A notação O é usado para descrever o limite superior do tempo de execução de um algoritmo.

Exemplo: o tempo de execução no **pior caso** do algoritmo insertion-sort é: $T(n) = \frac{1}{2}n(n-1)$.

- Ou seja, para qualquer entrada, o tempo de execução do algoritmo é O(n²)
- Ou seja, o algoritmo nunca gasta mais do que $c.n^2$ (para algum c > 0), para todo n suficiente mente grande.
- c.n² é um limite superior para o tempo de execução do algoritmo insertion-sort.

O que significa dizer que o tempo de execução de um algoritmo é $\Omega(g(n))$?

- Significa que, o tempo de execução do algoritmo no melhor caso é $\Omega(g(n))$.
- Ou seja, o tempo de execução do algoritmo é pelo menos uma constante vezes g(n) (i.e. c.g(n)), para qualquer entrada de tamanho n suficientemente grande.
- A notação Ω é usada para descrever o limite inferior do tempo de execução para todas as entradas do algoritmo.

O que significa dizer que o tempo de execução de um algoritmo é $\Omega(g(n))$?

- Significa que, o tempo de execução do algoritmo no melhor caso é $\Omega(g(n))$.
- Ou seja, o tempo de execução do algoritmo é pelo menos uma constante vezes g(n) (i.e. c.g(n)), para qualquer entrada de tamanho n suficientemente grande.
- A notação Ω é usada para descrever o limite inferior do tempo de execução para todas as entradas do algoritmo.

Exemplo: o tempo de execução no **melhor caso** do algoritmo **insertion-sort** é: T(n) = n - 1.

- Ou seja, para qualquer entrada, o tempo de execução do algoritmo insertion-sort é $\Omega(n)$
- Ou seja, o tempo do algoritmo é pelo menos c.n (para algum c > 0), para todo n suficiente mente grande.
- c.n é um limite inferior para o tempo de execução do algoritmo insertion-sort.

 \Rightarrow O tempo de execução do algoritmo Insertion-Sort está entre $\Omega(n)$ e $O(n^2)$.

Exemplo: o tempo de execução no **melhor caso** do algoritmo **insertion-sort** é: T(n) = n - 1.

- Ou seja, para qualquer entrada, o tempo de execução do algoritmo insertion-sort é $\Omega(n)$
- Ou seja, o tempo do algoritmo é pelo menos c.n (para algum c > 0), para todo n suficiente mente grande.
- c.n é um limite inferior para o tempo de execução do algoritmo insertion-sort.

 \Rightarrow O tempo de execução do algoritmo Insertion-Sort está entre $\Omega(n)$ e $O(n^2)$.

Algoritmo Ótimo

- Se um algoritmo possui o mesmo tempo de execução no melhor caso e pior caso, então o algoritmo possui tempo ótimo ou justo.
- O tempo de um algoritmo ótimo é descrito usando a notação ⊖.

Exemplo

Um algoritmo para calcular o fatorial de um número n tem tempo de execução $\Theta(n)$.

Para o algoritmo Insertion-Sort, podemos afirmar que o tempo de execução **no pior caso** é $\Theta(n^2)$.

No entanto, se quisermos cobrir todos os casos, a afirmação mais estrita seria que o Insertion-Sort executa em tempo $O(n^2)$.

Algoritmo Ótimo

- Se um algoritmo possui o mesmo tempo de execução no melhor caso e pior caso, então o algoritmo possui tempo ótimo ou justo.
- O tempo de um **algoritmo ótimo** é descrito usando a notação ⊖.

Exemplo:

Um algoritmo para calcular o fatorial de um número n tem tempo de execução $\Theta(n)$.

Para o algoritmo Insertion-Sort, podemos afirmar que o tempo de execução **no pior caso** é $\Theta(n^2)$.

No entanto, se quisermos cobrir **todos os casos**, a afirmação mais estrita seria que o Insertion-Sort executa em tempo $O(n^2)$.

Algoritmo Ótimo

- Se um algoritmo possui o mesmo tempo de execução no melhor caso e pior caso, então o algoritmo possui tempo ótimo ou justo.
- O tempo de um **algoritmo ótimo** é descrito usando a notação ⊖.

Exemplo:

Um algoritmo para calcular o fatorial de um número n tem tempo de execução $\Theta(n)$.

Para o algoritmo Insertion-Sort, podemos afirmar que o tempo de execução **no pior caso** é $\Theta(n^2)$.

No entanto, se quisermos cobrir todos os casos, a afirmação mais estrita seria que o Insertion-Sort executa em tempo $O(n^2)$.

