ĐẠI HỌC QUỐC GIA TP. HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN - KHOA CÔNG NGHỆ THÔNG TIN BÔ MÔN KHOA HOC MÁY TÍNH

PHÂN TÍCH THÀNH PHẦN CHÍNH & PHÂN TÍCH PHÂN TÁCH TUYẾN TÍNH

KHAI THÁC DỮ LIÊU VÀ ỨNG DUNG

Lê Nhưt Nam

Ngày 23 tháng 10 năm 2024

MUC LUC

1 Phân tích thành phần chính - PCA

Góc nhìn 1 Góc nhìn 2

Hội tụ của hai góc nhìn

Dạng nghiệm đóng

Các vấn đề thực hành & Trick

2 Phân tích phân tách tuyến tính - LDA

Giới thiêu

Phương pháp LDA

Nghiệm tối ưu

Phân tích đa phân tách tuyến tính - MDA

3 Mối liên hệ giữa PCA và LDA

Phân tích thành phần chính - PCA

- 1 Phân tích thành phần chính PCA
- Phân tích phân tách tuyến tính LDA
- 3 Mối liên hệ giữa PCA và LDA

Thành phần chính và không gian con

- (i) Các không gian con bảo toàn một phần thông tin (năng lượng, tính không chắc chắn,...)
- (ii) Thành phần chính
 - ▷ là các cơ sở trực giao
 - ⊳ bảo toàn lượng lớn thông tin của dữ liệu
 - ⊳ nắm bắt hầu hết tính không chắc chắn (hay phương sai) của dữ liệu

Các góc nhìn về phân tích thành phần chính

Hai góc nhìn:

- ▶ Góc nhìn tất định: cực tiểu tính biến dang của phép chiếu dữ liêu.
- ▶ Góc nhìn thống kê: cực đại tính không chắc chắn trong dữ liêu.

Câu hỏi 1 Liệu chúng có tương đương nhau?

Câu hỏi 2 Nếu khác nhau, thì trong điều kiện nào thì chúng tương đương nhau?

Cho $\mathbf{x} \in \mathbb{R}^n$ và giả sử rằng $\mathbb{E}[\mathbf{x}] = \mathbf{0}$. Gọi m là số chiều của không gian con, m < n. Đặt cơ sở trực chuẩn $\mathbf{W} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m]$ trong đó

$$\mathbf{W}^{\mathsf{T}}\mathbf{W} = \mathbf{I}$$

Ta có phép chiếu trực giao của x:

$$\mathbf{P}\mathbf{x} = \sum_{i=1}^{m} (\mathbf{w}_i^{\top} \mathbf{x}) \mathbf{w}_i = (\mathbf{W} \mathbf{W}^{\top}) \mathbf{x}$$
 (1)

Góc nhìn 1: Cưc tiểu MSE

Phép chiếu trực giao này cho ta độ lỗi bình phương tối tiểu:

$$e_{MSE}^{\min} = \mathbb{E}\{\|\mathbf{x} - \mathbf{P}\mathbf{x}\|^2\} = \mathbb{E}\{\|\mathbf{P}^{\perp}\mathbf{x}\|\}$$
 (2)

Góc nhìn 1: Cưc tiểu MSE

Bài toán PCA: tìm một không gian con mà cực tiểu MSE

$$\min_{\mathbf{w}} J_{MSE}(\mathbf{W}) = \mathbb{E}\{\|\mathbf{x} - \mathbf{P}\mathbf{x}\|^2\}$$
 (3)

s.t.
$$\mathbf{W}^{\mathsf{T}}\mathbf{W} = \mathbf{I}$$
 (4)

Góc nhìn 1: Cực tiểu MSE

Dễ dàng, ta có:

$$J_{MSE}(\mathbf{W}) = \mathbb{E}\{\mathbf{x}^{\top}\mathbf{x}\} - \mathbb{E}\{\mathbf{x}^{\top}\mathbf{P}\mathbf{x}\}$$
 (5)

Thế nên

minimizing
$$J_{MSE}(\mathbf{W}) \longrightarrow \text{maximizing} \quad \mathbb{E}\{\mathbf{x}^{\top} \mathbf{P} \mathbf{x}\}$$
 (6)

Bài toán tối ưu được viết lai như sau:

$$\max_{\mathbf{w}} \quad \mathbb{E}\{\mathbf{x}^{\top} \mathbf{P} \mathbf{x}\} \tag{7}$$

s.t.
$$\mathbf{W}^{\mathsf{T}}\mathbf{W} = \mathbf{I}$$
 (8)

KỸ THUẬT GIẢM CHIỀU DỮ LIỆU

Lê Nhựt Nam

Góc nhìn 1: Cực tiểu MSE

Bài toán tối ưu được viết lai như sau:

$$\max_{\mathbf{w}} \quad \mathbb{E}\{\mathbf{x}^{\top}\mathbf{W}\mathbf{W}^{\top}\mathbf{x}\}$$
s.t.
$$\mathbf{W}^{\top}\mathbf{W} = \mathbf{I}$$
(10)

$$. \quad \mathbf{W}^{\top}\mathbf{W} = \mathbf{I} \tag{10}$$

Góc nhìn 1: Cưc tiểu MSE

Xây dựng hàm Lagrange

$$\mathcal{L}(\mathbf{W}, \lambda) = \mathbb{E}\{\mathbf{x}^{\top}\mathbf{W}\mathbf{W}^{\top}\mathbf{x}\} + \lambda^{\top}(\mathbf{I} - \mathbf{W}^{\top}\mathbf{W})$$
(11)

Tập các điểm KKT

$$\frac{\partial \mathcal{L}(\mathbf{W}, \lambda)}{\partial \mathbf{w}_i} = 2\mathbb{E}\{\mathbf{x}\mathbf{x}^{\top}\}\mathbf{w}_i - 2\lambda_i \mathbf{w}_i$$
 (12)

KỸ THUẬT GIẢM CHIỀU DỮ LIỆU

Góc nhìn 1: Cực tiểu MSE

Đặt
$$\mathbf{S} = \mathbb{E}\{\mathbf{x}\mathbf{x}^{\top}\}$$
. Để ý rằng $\mathbb{E}[\mathbf{x}] = \mathbf{0}$. Ta có:

$$\mathbf{S}\mathbf{w}_i = \lambda_i \mathbf{w}_i, \quad \forall i \tag{13}$$

Dạng ma trận

$$SW = \lambda_i W \tag{14}$$

Lê Nhựt Nam

Góc nhìn 1: Cưc tiểu MSE

Từ đó, ta có giá trị nhỏ nhất của MSE bằng:

$$e_{MSE}^{\min} = \mathbf{x}^{\top} \mathbf{S} \mathbf{x} = \mathbf{x}^{\top} \lambda_i \mathbf{x} = \sum_{i=m+1}^{n} \lambda_i$$
 (15)

12 / 39

tức là, bằng tổng các trị riêng của không gian con trực giao với không gian con PCA.

Lê Nhựt Nam KỸ THUẬT GIẢM CHIỀU DỮ LIỆU

Góc nhìn 2: Cực đại phương sai

Nhìn vấn đề từ góc đô khác:

- \triangleright Ta có một phép chiếu **x** vào không gian con $y = \mathbf{w}^{\top} \mathbf{x}$
- \triangleright Để ý rằng, $\mathbb{E}[y] = 0$ vì $\mathbb{E}[x] = 0$ Thành phần chính đầu tiên của x mà có phương sai của phép chiếu y phải cực đại Tất nhiên, w phải bị ràng buộc là một vector đơn vị.

Ta có bài toán tối ưu hóa như sau:

$$\max_{\mathbf{w}} J(\mathbf{w}) = \mathbb{E}[y^2] = \mathbb{E}[(\mathbf{w}^{\top} \mathbf{x})^2]$$
st $\mathbf{w}^{\top} \mathbf{w} = 1$
(16)

KỸ THUẬT GIẢM CHIỀU DỮ LIÊU

Ta có bài toán tối ưu hóa như sau:

$$\begin{aligned} \max_{\mathbf{w}} J(\mathbf{w}) &= \mathbb{E}[y^2] = \mathbb{E}[(\mathbf{w}^\top \mathbf{x})^2] \\ &\text{s.t. } \mathbf{w}^\top \mathbf{w} = 1 \\ \\ & \underset{w}{\max} J(\mathbf{w}) = \mathbb{E}[y^2] = \mathbb{E}[(\mathbf{w}^\top \mathbf{x})^\top (\mathbf{w}^\top \mathbf{x}))] \\ & \Leftrightarrow \sup_{\mathbf{w}} \mathbf{x} J(\mathbf{w}) = \mathbb{E}[y^2] = \mathbb{E}[\mathbf{x}^\top \mathbf{w} \mathbf{w}^\top \mathbf{x}] \end{aligned} \qquad \begin{aligned} & \text{Guơng mặt thân quen!}) \\ & \Leftrightarrow \sup_{\mathbf{w}} \mathbf{x} J(\mathbf{w}) = \mathbb{E}[y^2] = \mathbb{E}[\mathbf{x}^\top \mathbf{w} \mathbf{w}^\top \mathbf{x}] \end{aligned}$$

Lê Nhựt Nam

Góc nhìn 2: Cực đại phương sai

- \triangleright Các trị riêng được sắp xếp của **S** là $\lambda_1 \ge \lambda_2 \ge \dots \lambda_n$ và các vector riêng tương ứng $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$.
- ho Rõ ràng, thành phần chính đầu tiên là $y_1 = \mathbf{e}_1^{\top} \mathbf{x}$
- \triangleright Suy rộng thành k thành phần chính (với $k \ll n$) với ràng buộc

$$\mathbb{E}[y_k y_\ell] = 0, \quad \ell < k \tag{17}$$

tức là các thành phần chính không liên hệ với các thành phần chính đã biết trước đó.

⊳ Nghiêm của bài toán:

$$\mathbf{w}_{\ell} = \mathbf{e}_{\ell} \tag{18}$$

KỸ THUẬT GIẢM CHIỀU DỮ LIỆU

Hai góc nhìn - Một kết qủa

Hai góc nhìn cho ta cùng một kết quả. Cần chứng minh rằng

các thành phần không tương quan ←⇒ các cơ sở phép chiếu trực chuẩn

Các bước tính PCA

Cho tập dữ liệu $\mathcal{D} = \{x_1, \dots, x_N\}$

1. Tính toán vector trung bình

$$\mathbf{m} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}$$

2. Tính

 $\mathbf{A} = [\mathbf{x}_1 - \mathbf{m}, \dots, \mathbf{x}_N - \mathbf{m}]$

3. Tính ma trân hiệp phương sai

$$\mathbf{S} = \sum_{i=1}^{N} (\mathbf{x}_i - \mathbf{m})(\mathbf{x}_i - \mathbf{m})^{\top} = \mathbf{A}\mathbf{A}^{\top}$$

(21)

(19)

(20)

$$S = U^{T} \Sigma U$$

Lê Nhưt Nam

Các bước tính PCA

- 5. Sắp xếp các vector riêng ứng với các trị riêng giảm dần
- 6. Tìm các cơ sở

$$\mathbf{W} = [\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_m] \tag{23}$$

Phép chiếu tuyến tính

$$\mathbf{y} = \mathbf{W}^{\top}(\mathbf{x} - \mathbf{m}), \quad \text{v\'oi} \quad \mathbf{x} \in \mathbb{R}^{n}, \mathbf{y} \in \mathbb{R}^{m}$$
 (24)

KỸ THUẬT GIẢM CHIỀU DỮ LIÊU

Vấn đề thực hành

Dữ liệu thực tế có số chiều cao. Gọi n là số chiều của dữ liệu đầu vào, N là kích thước của tập dữ liệu huấn luyện.

- $\triangleright n \gg N$.
 - \triangleright Ví dụ: Trong tác vụ nhận dạng mặt người dựa trên hình ảnh, nếu độ phân giải của một ảnh mặt người là 100×100 , khi xếp chồng tất cả các pixel, ta thu được n=10000.
- \triangleright Ma trận hiệp phương sai là ma trận vuông, kích thước $n \times n$
 - \triangleright Ma trân **S** là ma trân điều kiện yếu (ill-conditioned), bởi vì $rank(S) \ll n$
 - ▶ Phân rã trị riêng của S nghiêm ngặt.

Giải pháp 1

Cho trước

 $\triangleright A$ là ma trân $n \times N$, thì $\mathbf{S} = \mathbf{A} \mathbf{A}^{\top}$ có kích thước $n \times n$, nhưng $\mathbf{A}^{\top} \mathbf{A}$ có kích thước $N \times N$

Giải pháp (trick)

- \triangleright Phân rã tri riêng với $\mathbf{A}^{\top}\mathbf{A}$
- $\triangleright \mathbf{A}^{\top} \mathbf{A} \mathbf{e} = \lambda \mathbf{e} \longrightarrow \mathbf{A} \mathbf{A}^{\top} \mathbf{A} \mathbf{e} = \lambda \mathbf{A} \mathbf{e}$, tức là nếu \mathbf{e} là một vector riêng của $\mathbf{A}^{\top} \mathbf{A}$ thì $\mathbf{A} \mathbf{e}$ là vector riêng của $\mathbf{A}\mathbf{A}^{\top}$, và các trị riêng của chúng giống nhau.

Nhận xét 1 Trick này không giải quyết được vấn đề hoàn toàn bởi vì ta cần phải tính toán phân rã trị riêng trên ma trận có kích thước là $N \times N$.

KỸ THUẬT GIẢM CHIỀU DỮ LIÊU Lê Nhưt Nam 20 / 39

Giải pháp 2: Sử dung SVD

Ta sử dụng SVD cho ma trân **A**. Cho trước $\mathbf{A} \in \mathbb{R}^{n \times N}$

- \triangleright Tính toán SVD: $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$
 - $\triangleright \mathbf{U} \in \mathbb{R}^{n \times N}$ là ma trân các vector singular bên trái. $\mathbf{U}^{\top} \mathbf{U} = \mathbf{I}_n$.
 - $\mathbf{V} \in \mathbb{R}^{V \times N}$ là ma trận các vector singular bên phải, $\mathbf{V}^{\top} \mathbf{V} = \mathbf{V} \mathbf{V}^{\top} = \mathbf{I}_{N}$.
 - $\triangleright \Sigma \in \mathbb{R}^{N \times N}$ là ma trân đường chéo với các giá trị sigular nằm trên đường chéo chính.

Giải pháp 3: Sử dụng phép lặp

Thiết kế một thủ tục lặp cho việc tìm kiếm W

$$\mathbf{W} \leftarrow \mathbf{W} + \Delta \mathbf{W} \tag{25}$$

(27)

Xem xét việc cực tiểu MSE, hàm chi phí của chúng ta là:

$$\left\|x - \sum_{i=1}^{m} (\mathbf{w}_{i}^{\top} \mathbf{x}) \mathbf{w}_{i}\right\|^{2} = \left\|x - \sum_{i=1}^{m} y_{i} \mathbf{w}_{i}\right\|^{2} = \left\|x - (\mathbf{W} \mathbf{W}^{\top}) \mathbf{x}\right\|^{2}$$
(26)

Ta cập nhật đến khi nào điều kiện KKT thỏa

$$\Delta \mathbf{w}_i = \gamma y_i \left[x - \sum_{i=1}^m y_i \mathbf{w}_i \right]$$

Ta có công thức cập nhật dạng ma trận

$$\Delta \mathbf{W} = \gamma \left(\mathbf{x} \mathbf{x}^{\mathsf{T}} \mathbf{W} - \mathbf{W} \mathbf{W}^{\mathsf{T}} \mathbf{x} \mathbf{x}^{\mathsf{T}} \mathbf{W} \right)$$
 (28)

Lê Nhựt Nam KỸ THUẬT GIẢM CHIỀU DỮ LIỆU 22 / 39

Giải pháp 3: Sử dụng phép lặp

Các nhược điểm

- ⊳ Hội tụ chậm!

Giải pháp 4: Thuật toán PAST

Để tăng tốc phép lặp, ta có thể dùng kỹ thuật đệ quy bình phương (RLS). Xem xét hàm chi phí như sau:

$$J(t) = \sum_{i=1}^{t} \beta_{t-i} \|\mathbf{x}(i) - \mathbf{W}(t)\mathbf{y}(i)\|$$
 (29)

trong đó β là hệ số quên.

Giải pháp 4: Thuật toán PAST

Thủ tục PAST để tìm W

1.
$$\mathbf{y}(t) = \mathbf{W}^{\top}(t-1)\mathbf{x}(t)$$

2.
$$h(t) = P(t-1)y(t)$$

3.
$$\mathbf{m}(t) = \mathbf{h}(t)/(\beta + \mathbf{y}^{\top}(t)\mathbf{h}(t))$$

4.
$$P(t) = \frac{1}{\beta} Tri[P(t-1) - m(t)h(t)]$$

5.
$$\mathbf{e}(t) = \mathbf{x}(t) - \mathbf{W}(t-1)\mathbf{y}(t)$$

Phân tích phân tách tuyến tính - LDA

- Phân tích thành phần chính PCA
- 2 Phân tích phân tách tuyến tính LDA
- 3 Mối liên hệ giữa PCA và LDA

Từ MÔ TẢ đến PHÂN TÁCH

- ⊳ PCA rút trích các đặc trưng (hay các thành phần chính) mà cho phép mô tả tốt các mẫu trong dữ liêu
- ▶ Câu hỏi: các đặc trưng được rút trích đó có đủ tốt để phân tách các lớp và phân biệt các mẫu không?

Phân tích phân tách tuyến tính

Lê Nhựt Nam

Ma trận phân tán giữa lớp và phân tán nội lớp

$$\mathcal{D}_1 = \{\mathbf{x}_1, \dots, \mathbf{x}_{n_1}\}$$
 và $\mathcal{D}_2 = \{\mathbf{x}_1, \dots, \mathbf{x}_{n_n}\}$

$$\mathbf{m}_i = \frac{1}{n_i} \sum_{\mathbf{x} \in \mathcal{D}_i} \mathbf{x}_i \tag{30}$$

⊳ Phân tán dữ liệu (ma trận hiệp phương sai)

$$\mathbf{S} = \sum_{\mathbf{x} \in \mathcal{D}} (\mathbf{x} - \mathbf{m}) (\mathbf{x} - \mathbf{m})^{\top}$$
 (31)

Ma trân phân tán giữa lớp và phân tán nôi lớp

Ma trân phân tán nôi lớp (Within-class scatter)

$$\mathbf{S}_{w} = \mathbf{S}_{1} + \mathbf{S}_{2} \tag{32}$$

Ma trận phân tán giữa lớp (Between-class scatter)

$$\mathbf{S}_b = (\mathbf{m}_1 - \mathbf{m}_2)(\mathbf{m}_1 - \mathbf{m}_2)^{\top} \tag{33}$$

Fisher Liner Discriminant

- ho Input: Hai tập dữ liệu có nhãn $\mathcal{D}_1 = \{\mathbf{x}_1, \dots, \mathbf{x}_{n_1}\}$ và $\mathcal{D}_2 = \{\mathbf{x}_1, \dots, \mathbf{x}_{n_n}\}$
- ▷ Output: Một phép chiếu w mà cực đại tính phân tách giữa hai lớp.

Fisher Liner Discriminant

- $hd \$ Chiếu dữ liệu: $\mathcal{Y}_1 = \mathbf{w}^{ op} \mathcal{D}_1$, $\mathcal{Y}_2 = \mathbf{w}^{ op} \mathcal{D}_2$
- riangle Vector trung bình từng lớp sau khi chiếu $\widetilde{\mathbf{m}}_i = \mathbf{w}^{ op} \mathbf{m}_i$
- ⊳ Ma trận chiếu phân tán nội lớp

$$\widetilde{\mathbf{S}}_{w} = \mathbf{w}^{\top} \mathbf{S}_{w} \mathbf{w} \tag{34}$$

⊳ Ma trận chiếu phân tán giữa lớp

$$\widetilde{\mathbf{S}}_b = \mathbf{w}^{\top} \mathbf{S}_b \mathbf{w} \tag{35}$$

$$J(\mathbf{w}) = \frac{|\widetilde{\mathbf{m}}_1 - \widetilde{\mathbf{m}}_2|^2}{\widetilde{\mathbf{S}}_1 + \widetilde{\mathbf{S}}_2} = \frac{|\widetilde{\mathbf{S}}_b|}{|\widetilde{\mathbf{S}}_w|} = \frac{\mathbf{w}^\top \mathbf{S}_b \mathbf{w}}{\mathbf{w}^\top \mathbf{S}_w \mathbf{w}}$$
(36)

KỸ THUẬT GIẢM CHIỀU DỮ LIỆU

Thương Rayleigh

Định lý 1

$$f(\lambda) = \|\mathbf{A}\mathbf{x} - \lambda \mathbf{B}\mathbf{x}\|_{B} \tag{37}$$

trong đó $\|\mathbf{z}|_B = \mathbf{z}^{ op} \mathbf{B}^{-1} \mathbf{z}$ cực tiểu bởi thương Rayleigh

$$\lambda = \frac{\mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{B} \mathbf{x}} \tag{38}$$

Thương Rayleigh

Chứng minh.

$$\frac{\partial f(\lambda)}{\partial \lambda} = (\mathbf{B}\mathbf{x})^{\top} (\mathbf{B}\mathbf{z}) = \mathbf{x}^{\top} \mathbf{B}^{\top} \mathbf{B}^{-1} \mathbf{z}$$
$$= \mathbf{x}^{\top} (\mathbf{A}\mathbf{x} - \lambda \mathbf{B}\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A}\mathbf{z} - \lambda \mathbf{x}^{\top} \mathbf{B}\mathbf{x}$$

Định lý 2

$$J(\mathbf{w}) = \frac{\mathbf{w}^{\top} \mathbf{S}_b \mathbf{w}}{\mathbf{w}^{\top} \mathbf{S}_w \mathbf{w}}$$

(39)

đạt cực đại khi

$$S_b w = \lambda S_w w$$

(40)

Lê Nhựt Nam

Tối ưu Fish Discriminant

Chứng minh.

Giả sử $\mathbf{w}^{\top}\mathbf{S}_{w}\mathbf{w} = c \neq 0$. Ta có hàm Lagrange như sau:

$$L(\mathbf{w}, \lambda) = \mathbf{w}^{\top} \mathbf{S}_b \mathbf{w} - \lambda (\mathbf{w}^{\top} \mathbf{S}_w \mathbf{w} - c)$$
(41)

Điều kiên KKT

$$\frac{\partial L(\mathbf{w}, \lambda)}{\partial \mathbf{w}} = \mathbf{S}_b \mathbf{w} - \lambda \mathbf{S}_w \mathbf{w}$$
 (42)

Dễ dàng, ta có:

$$\mathbf{S}_b \mathbf{w}^* = \lambda \mathbf{S}_w \mathbf{w}^* \tag{43}$$

Nghiệm hiệu quả

▷ Nghiệm ngây thơ

$$\mathbf{S}_{w}^{-1}\mathbf{S}_{b}\mathbf{w} = \lambda\mathbf{w} \tag{44}$$

 \triangleright Do $S_b w$ cùng hướng với $m_1 - m_2$ (Tại sao?)

$$\mathbf{w} = \mathbf{S}_{w}^{-1}(\mathbf{m}_{1} - \mathbf{m}_{2}) \tag{45}$$

 \triangleright Để ý rằng $\mathbf{S}_b = 1$.

Phân tích đa phân tách tuyến tính

Ma trân phân tán nôi lớp

$$\mathbf{S}_{w} = \sum_{i=1}^{c} \mathbf{S}_{i} \tag{46}$$

Ma trận phân tán giữa các lớp

$$\mathbf{S}_b = \sum_{i=1}^{c} n_i (\mathbf{m}_i - \mathbf{m}) (\mathbf{m}_i - \mathbf{m})^{\top}$$

$$\mathbf{S}_t = \sum_{\mathbf{x}} (\mathbf{x} - \mathbf{m}) (\mathbf{x} - \mathbf{m})^{\top} = \mathbf{S}_w + \mathbf{S}_b$$

MDA tìm một không gian với cơ sở W sao cho cực đại

$$J(\mathbf{W}) = \frac{|\widetilde{\mathbf{S}}_b|}{|\widetilde{\mathbf{S}}_w|} = \frac{\mathbf{w}^{\top} \mathbf{S}_b \mathbf{w}}{\mathbf{w}^{\top} \mathbf{S}_w \mathbf{w}}$$

(49)

(47)

(48)

Nghiệm của MDA

▷ Nghiệm ngây thơ

$$\mathbf{S}_b \mathbf{w}_i = \lambda_i \mathbf{S}_w \mathbf{w}_i \tag{50}$$

trong đó mỗi \mathbf{w}_i là một vector riêng suy rộng.

- ▷ Trong thực hành, ta có thể xử lý bằng thủ tục
 - Tìm các trị riêng của đa thức đặc trưng

$$|\mathbf{S}_b - \lambda_i \mathbf{S}_w| = 0$$

 \triangleright Với mỗi λ_i , giải \mathbf{w}_i

$$(\mathbf{S}_b - \lambda_i \mathbf{S}_w) \mathbf{w}_i = 0 \tag{52}$$

Lưu ý

- ▶ W không có tính duy nhất.
- $ightharpoonup rank(\mathbf{S}_b) \leq (c-1)$ (Tai sao?)

KỸ THUẬT GIẢM CHIỀU DỮ LIÊU

(51)

Mối liên hệ giữa PCA và LDA

- Phân tích thành phần chính PCA
- Phân tích phân tách tuyến tính LDA
- 3 Mối liên hệ giữa PCA và LDA

Mối liên hệ giữa PCA và LDA

39 / 39

Lê Nhựt Nam KỸ THUẬT GIẢM CHIỀU DỮ LIỆU