Métodos I - 1S11 - Lista 2

Resolva as equações diferenciais abaixo utilizando séries (use $x_0 = 0$ exceto quando indicado).

(a)
$$x^2y'' + xy' + (x^2 - 1/4)y = 0$$
,
(b) $x(1-x)y'' - 3y' + 2y = 0$,
(c) $xy'' + y' = 0$,
(d) $x^4y'' + 2x^3y' - \omega^2y = 0$, $x_0 = +\infty$,
(e) $y'' + xy' + y = 0$,
(f) $y'' + 5x^3y = 0$,
(g) $4xy'' + 2(1-x)y' - y = 0$,
(h) $x^2y'' + xy' + (x^3 - 2)y = 0$,
(i) $3(x^2 + x)y'' + (x + 2)y' - y = 0$,
(j) $2xy'' + y' - y = 0$,
(k) $8x^2y'' + 2xy' + (1-x)y = 0$,
(l) $(x-1)y'' - xy' + y = 0$, $x_0 = 1$,
(m) $x^2(1+x)y'' + x(1+x)y' - y = 0$,
(n) $xy'' + (x-1)y' - y = 0$.

Respostas: (a) $y_1 = x^{-1/2} \cos x$, $y_2 = x^{-1/2} \sin x$; (b) $y_1 = x^2 + 2x + 3$, $y_2 = x^4/(1-x)^2$; (c) $y_1 = 1$, $y_2 = \ln x$; (d) $y_1 = \sum_{k=0}^{\infty} (\omega x)^{-2k}/(2k)!$, $y_2 = \sum_{k=0}^{\infty} (\omega x)^{-2k-1}/(2k+1)!$; (e) a_0 e a_1 arbitrários, $a_k = -\frac{1}{k}a_{k-2}$, $k \ge 2$; (f) a_0 e a_1 arbitrários, $a_2 = a_3 = a_4 = 0$ e $a_k = -\frac{5}{k(k-1)}a_{k-5}$, $k \ge 5$; (g) $a_k = \frac{1}{2k}a_{k-1}$, $a_k = \frac{1}{2k+1}a_{k-1}$, $k \ge 1$; (h) $a_k = -\frac{1}{k(k+2\sqrt{2})}a_{k-3}$, $a_k = -\frac{1}{k(k-2\sqrt{2})}a_{k-3}$, $k \ge 3$, $a_1 = a_2 = 0$; (i) $a_{k+1} = -\frac{(3k-2)(3k+2)}{(3k+3)(3k+4)}a_k$, $k \ge 1$, $y_2 = 1 + x/2$; (j) $a_k = \frac{1}{k(2k-1)}a_{k-1}$, $a_k = \frac{k(2k+1)}{a}_{k-1}$, $k \ge 1$; (k) $a_k = a_{k-1}/[8(k+r)(k+r-1)+2(k+r)+1]$, $k \ge 1$, $r_1 = -1/2$, $r_2 = -1/4$; (l) $a_k = \frac{1}{k+2}a_{k-1}$, $k \ge 1$, $y_2 = x$; (m) $a_k = -\frac{k}{k+2}a_{k-1}$, $k \ge 1$, $y_2 = 1 + x^{-1}$; (n) $a_k = -\frac{1}{k+2}$, $k \ge 1$, $y_2 = 1 - x$.