Agenda: Day 1

The Device Under Test (DUT)
 SystemVerilog Verification Environment
 SystemVerilog Language Basics - 1
 SystemVerilog Language Basics - 2

Unit Objectives

After completing this unit, you should be able to:

- Describe the function of the Device Under Test (DUT)
- Identify the control and data signals of the DUT
- Draw timing diagram for sending and receiving a packet of data through the DUT

What Is the Device Under Test?

A router:

A Functional Perspective

The Router Description

- Single positive-edge clock
- Input and output data are serial (1 bit / clock)
- Packets are sent through in variable length:
 - Each packet is composed of two parts
 - Header
 - ◆ Payload
- Packets can be routed from any input port to any output port on a packet-by-packet basis
- No internal buffering or broadcasting (1-to-N)

Input Packet Structure

- frame_n:
 - Falling edge indicates first bit of packet
 - Rising edge indicates last bit of packet
- din:
 - Header (destination address & padding bits) and payload
- valid_n:
 - valid_n is low if payload bit is valid, high otherwise

Output Packet Structure

Output activity is indicated by: frameo_n, valido_n, and dout

- Data is valid only when:
 - frameo_n output is low (except for last bit)
 - valido_n output is low
- Header field is stripped

Reset Signal

- While asserting reset_n, frame_n and valid_n
 must be de-asserted
- reset_n is asserted for at least one clock cycle
- After de-asserting <u>reset_n</u>, wait for 15 clocks before sending a packet through the router

The DUT: router.v

- The Design Under Test, router.v, is a Verilog file:
 - Located under the rt1 directory
 - From the lab workspace: ../../rt1/router.v

Unit Objectives Review

Having completed this unit, you should be able to:

- Describe the function of the Device Under Test (DUT)
- Identify the control and data signals of the DUT
- Draw timing diagram for sending and receiving a packet of data through the DUT