本试卷适应范围 机制 111-116

(A)热力学能

南京农业大学试题纸

/≥/浮年一学期 课程类型:必修、选修 (√) 试卷类型: √)、B

课程_工程热力学_班级	学号	姓名	成绩 55/64
一、 填空题(每题2分,			
		I D 工 <i>版</i>	℃ 始. 本. 本. 妆. 适. 记. 如. 本. 本. 本. 本. 位. 记.
1、卡诺机 A 工作在 627℃和 T			C的例介然源问。
当此两个热机的热效率相			
2、一台逆循环装置可供暖和			
(a) 如果装置的目的是冷			(b) 如果装置的
目的是向建筑物供热,则	供热系数是ε'=	_0	7 AT 16.
3、在 P-v 和 T-S 上从 n=0 开始	沿着顺时钟方向多变指	数的变化规率是上	<u>张净打造大。</u>
4、已知空气的在 0~200℃间间			
间的平均定压质量比热为	$c_p \Big _{0}^{500} = 0.973 kJ / kg$	K,则200~500℃	间的平均定压质
量比热为 $c_p _{200}^{500} = \sqrt{c_p}$	$v kJ/kg \cdot K$.		
5、点燃式内燃机的压缩比 ε · · · · · · · · · · · · · · · · · ·	=5-10,而压燃式内燃机 设入的是175年1272	.的压缩比ε=14-20	· 原因
二、 选择题(每题2分,	共计 14 分)		
1、一定量的理想气体向真空位	作绝热自由膨胀,体积自	$\mathbb{I}V_1$ 增至 V_2 ,在此	过程中气体的内
能和熵的变化情况是	2 c		
(A) 内能增大, 熵不变;	(B) 内能减小, 熵增	大;	
(C) 内能不变, 熵增大;	(D) 不确定。		
2、在 T-S 图上,任意一个逆	向循环其。		
(A) 吸热大于放热;	(B) 吸热等于放热;		
(C) 吸热小于放热;	(D) 吸热和放热关系不5	定。	
3、一热机按某种循环工作,	白温度 T₁=2000K 的热流	原吸热 1000KJ, 向	1温度为 T₂=300K
的冷源放热 100KJ,则该排			
		二) 不可能。	
4、理想气体可逆吸热过程,		12	
リー・エルロ・リーコスと、スポスと小土)	175711200	0	

(C)压力

(D) 温度

(B) 熵

	5、有人设计一台卡诺热机(可逆的),每循环一次可以从 400 K 的高温热源吸热 1800 J,
	向 300 K 的低温热源放热 800 J。同时对外作功 1000 J,这样的设计是。
	(A) 可以的,符合热力第一定律; (B) 可以的,符合热力第二定律;
	(C) 不行的, 卡诺循环所作的功不能大于向低温热源放出的热量;
	(D) 不行的, 这个热机的效率超过理论值。
	6、 制冷循环的制冷系数 ε 是。
	(A) 只能大于1; (B) 等于1; (C) 只能小于1; (D) 不一定。
	7、 工质的熵增加,意味着工质和外界交换的热量 Q。
	(A) Q≤0; (B) Q≥0; (C) Q=0; (D) Q不确定。
	三、判断题: (对的打"√",错的打"×",每小题 2 分,共 16 分)
	1、卡诺循环是理想循环,一切循环的热效率都比卡诺循环热效率低()
	2、气体膨胀则压力一定降低,吸热则温度一定升高 (-)
	3、理想气体的定容比热和定压比热都只是温度的单值函数()
	4、工质经历一可逆循环, 其熵变量 ΔS=0, 而工质经历一不可逆循环, 其熵变量
nufs /	$\Delta S < 0.$ $\Delta S < 0.$
	5、气体膨胀时一定对外做功,而被压缩时则一定消耗功。
	6、闭口系统进行了一个过程,如果熵增加了,则一定是从外界吸收了热量。…(🗶)
	7、工质经历一个循环回复到原始状态后,整个循环中从外界得到的净热量大于对外作的
	净功。(
	8、若空气的温度 t_2 > t_1 >0℃,则其平均比热一定是 C t_1 > C t_2 > C t_3 > C t_4 ······(V)
	四、简答题(共计26分)
	1、 利用孤立系统熵增原理证明下述循环发动机是不可能制成的: 它从 167 ℃的热源吸
	热 1 000 kJ 向 7 ℃的冷源放热 568 kJ, 输出循环净功 432 kJ。(8分)
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\frac{1000}{102 = 568 \text{ kJ}} = \frac{-1000}{440} + \frac{568}{280} + \frac{5}{280} + \frac{5}{2$
	(1=7+273=280k) =-2.2)2)+2.0286<0 法指于从公子供商指管理不可谓。
	2 HAN - (1) (1) + YO [C 21) 7 3 500 +
	违行子似之子长的师子性个的的.

2、试将满足工质压缩、放热且升温的多变过程表示在 P-V 图和 T-S 图,并判断此多变过

12h20

- 3、定质量理想气体经历由四个可逆过程组成的循环, 试求:
 - (1)填充表内所缺数据。

过 程	O (KI)	W (KT)	∆U(KI)
12	1390	0	1390
23	0	395	-395
34	-1000	0	-1000
41	0	-5	+5

(2)将该循环表示在 p-v 图及 T-s 图上。

(3)判断是热机还是制冷机,并求出 η 或 ε 1。(10分)

$$\frac{1}{12} \frac{1}{12} \frac{1}{12} = 1 - \frac{1000}{13} = 0.28$$

五、计算题(共计32分)

- 1、1Kg 氮气,初始压力为 P_1 =0.1MPa,温度 T_1 =27 0 C,分别经下列三过程:
 - (1) 可逆定温压缩至原来体积的 1/5;
 - (2) 定熵压缩至原来体积的 1/5;
 - (3) 经 n=1.25 的多变压缩至原来体积的 1/5。

试将此三个过程定性地表示在同一个 P-V 图和 T-S 图上。并计算多变压缩过程终了

时的压力、温度、压缩过程所耗压缩功及与外界交换的热量。取比热容为定值 $C_v=0.742\ KJ/Kg\cdot K$,气体常数 $R_g=0.297\ KJ/Kg\cdot K$,比热比 $\gamma=1.4$ 。(12 分) $Q_n=\alpha U_n+W_n$ $=C_v(T_2-T_1)+\frac{\rho_g}{n-1}$ $=-66.2\ kJ$

 $\frac{\int_{2}^{2} - \left(\frac{V_{1}}{V_{2}}\right)^{n} = }{\int_{1}^{2} - \left(\frac{V_{1}}{V_{2}}\right)^{n} = } \int_{2}^{2} - \int_{2}^{2} \times \left(\frac{1}{2} - \frac{1}{2}\right)^{n} = \frac{1}{2} - \left(\frac{V_{1}}{V_{2}}\right)^{n} = \frac$

- 2、两质量相等皆为 m, 比热相同且为定值 c 的物体。设 A 物体的温度为 T_n =1200K, B 物体的温度为 T_n =600K。利用 A, B 物体做为有限热源和有限冷源,使可逆热机在其间工作,直至 A, B 两物体温度相等时为止。试求:
 - (1) 平衡时的温度 T ... 及两物体总熵的变化;
 - (2) 求热机作出的最大功量;
 - (3) 若两物体直接进行热交换直到温度相等,求平衡时的温度并写出其总熵变化的表

3. The Elass $(T_A-T)=C_{II}(T-T_B)=)T=\frac{T_A+T_B}{2}+2$ $(T_A-T)=C_{II}(T-T_B)=)T=\frac{T_A+T_B}{2}+2$ $(T_A-T)=C_{II}(T-T_B)=)T=\frac{T_A+T_B}{2}+2$ $(T_A+T_B)=(T$

教研室主任_

VINE

出卷人 力学与材料教研室