Hoofdstuk 8: De transistor

1: Inleiding

Eén van de meest gebruikte elektronische componenten is de <u>bipolaire transistor</u>. In dit hoofdstuk bestuderen we dan ook grondig de praktische werking van deze bipolaire transistoren.

1.1: Opbouw van een transistor

Aangezien de fabricagemethodes van transistoren buiten de opzet van deze cursus vallen, verwijzen we de geïnteresseerde studenten naar de cursus 'Elektronica I' van ir. J. Vanneuville. Wat we wel bespreken, is de opbouw van een dergelijke transistor.

Een transistor bekomt men door de aaneenschakeling van drie halfgeleiderzones. Er ontstaan bijgevolg twee mogelijke combinaties: PNP-transistoren en NPN-transistoren.

Figuur 8.1: PNP-transistor en NPN-transistor

Elke transistor heeft <u>drie aansluitingen</u>: een <u>emitter</u> (E), een <u>basis</u> (B) en een <u>collector</u> (C). Later zal duidelijk worden waarom men deze benamingen gekozen heeft.

Vermits een PN-junctie een diode vormt, kunnen we in elke transistor twee diodes onderscheiden. De eerste diode bevindt zich tussen B en E en de tweede diode bevindt zich tussen B en C. Dit is geïllustreerd in Figuur 8.1.

Het is belangrijk op te merken dat de PNP-structuur of de NPN-structuur aan een aantal voorwaarden moet voldoen om het gewenste transistoreffect te bekomen:

- Het middengebied (B-gebied) moet zeer dun zijn (kleiner dan 1 μm) zodat de <u>BE-overgang en de BC-overgang zeer dicht bij elkaar liggen</u>.
- Het <u>emittergebied</u> moet veel <u>sterker gedopeerd zijn dan het basisgebied</u>. Het <u>collectorgebied</u> wordt juist <u>minder gedopeerd dan het basisgebied</u>. Dit laatste

gebeurt om het zogenaamde "Early-effect" te vermijden (of te beperken). Een bespreking van het "Early-effect" volgt verderop in deze cursus (Paragraaf 9.6).

De transistor is dus allesbehalve een symmetrische structuur. De E-aansluiting en de C-aansluiting mogen dus <u>niet</u> omgewisseld worden.

Omwille van het dunne middengebied (B-gebied) en omwille van het vereiste verschil in dopering van het collectorgebied en het emittergebied, kan een bipolaire transistor <u>niet</u> opgebouwd worden uit twee afzonderlijke diodes.

1.2: Transistorsymbolen

Transistoren worden symbolisch voorgesteld als:

Figuur 8.2: Schematische voorstelling NPN-transistor en PNP-transistor

2: Werking van de transistor

Voor een uitgebreide verklaring van het transistoreffect wordt verwezen naar de lessen fysica van Dr. J. Vanderhaeghen. Hieronder volgt een beknopte, veeleer toepassingsgerichte uitleg. Bovendien worden voorlopig enkel de <u>hoofdstromen</u> in de transistor besproken. De zogenaamde "lekstromen" (I_{CBO} en I_{CEO}) worden pas later in rekening gebracht.

2.1: Transistor met open collector

Eerst <u>beschouwen we een NPN-transistor</u>. NPN-transistoren worden trouwens meer gebruikt dan PNP-transistoren. In een <u>eerste opstelling</u> wordt voorlopig de collector niet aangesloten.

De transistor in de onderstaande Figuur 8.3 is een NPN-transistor vervaardigd uit Silicium. Er is een regelbare spanningsbron (spanning regelbaar tussen 0 V en 5 V) in serie met een weerstand R (bijvoorbeeld 500 Ω) aangesloten over de basis en de emitter van de transistor. Het is mogelijk de polariteit van de spanningsbron om te polen.

Teken I_{BE} in functie van U_{BE} . Teken ook het I_{BE} -stroompad binnenin de transistor. Denk hierbij aan het feit dat er zich <u>tussen de basis en de emitter een diode bevindt</u>. Indien de spanningsbron de polariteit heeft welke in Figuur 8.3 getekend is, dan is deze diode <u>in doorlaat</u> gepolariseerd.

Figuur 8.3: Transistor met open collector

Teken een spanningsas met spanningen van -10 V tot +10 V. Welke U_{BE} -waarden zijn praktisch mogelijk of toegelaten? Bij welke U_{BE} -waarden vloeit er een I_{BE} ? Duid al deze gevraagde zones aan op de spanningsas.

Welke veranderingen zouden er optreden als de transistor T een Germanium-transistor zou zijn?

Welke functie heeft de weerstand R? Is de weerstand R echt noodzakelijk? Bepaal de maximale I_{BE} . Dit laatste zowel met als zonder weerstand R. Wat besluit u hieruit?

Hoe zou u I_{BE} en U_{BE} kunnen meten bij een praktische transistor? Teken de benodigde meettoestellen.

We kunnen besluiten dat:

- $I_{BE} = 0$ indien $U_{BE} < 0.6$ V (negatieve U_{BE} -waarden inbegrepen).
- $I_{BE} > 0$ bij U_{BE} -waarden tussen 0,6 V en 0,8 V. Bij $U_{BE} \cong 0,6$ V is I_{BE} nog erg klein en bij $U_{BE} \cong 0,8$ V is I_{BE} de maximaal toegelaten waarde.
- Als $U_{BE} > 0.8$ V is, dan wordt I_{BE} onaanvaardbaar groot.

Hoe varieert U_{BE} (bij een bepaalde I_{BE}) in functie van de temperatuur T? Waarom?

2.2: Transistor met aangesloten collector

In een <u>tweede opstelling</u> breiden we de eerste opstelling uit. De collector wordt wel aangesloten en de <u>CB-junctie wordt in sperrichting</u> gepolariseerd. Bij een NPN-transistor moeten we de collector dus positief maken ten opzichte van de basis.

Bij het bestuderen van de opstelling van Figuur 8.4 onderscheiden we twee gevallen.

In een <u>eerste geval</u> is $U_{BE} < 0.6$ V zodat $I_{BE} = 0$. Nu zal I_{C} ook nul zijn want de CB-junctie is gepolariseerd in sperrichting. Dit betekent dus dat <u>de stroomsterkte overal nul is</u> (voorlopig verwaarlozen we eventuele lekstromen). Zoals we in Paragraaf 3 aangeven, zegt men dat de transistor is "<u>cut-off</u>" staat.

In een <u>tweede geval</u> is $I_{BE} > 0$. De BE-junctie is dus in geleiding wat betekent dat U_{BE} tussen 0,6 V en 0,8 V gelegen is. We behouden U_{CB} op bijvoorbeeld +10 V wat betekent dat de CB-junctie in sperrichting gepolariseerd blijft.

Er vloeien <u>ladingsdragers</u> (hoofdzakelijk <u>elektronen</u> bij de NPN-transistor) in de richting van de emitter naar de basis. Dit laatste is de elektronenstroomzin, de conventionele stroomzin is van basis naar emitter.

Figuur 8.4: Tweede opstelling

De <u>basis</u> is echter <u>zeer dun</u> (kleiner dan 1 µm) zodat in de in sperrichting gepolariseerde CB-junctie een grote elektrische veldsterkte heerst. Die elektrische veldsterkte oefent een grote aantrekkingskracht uit op die negatieve elektronen. Het gevolg is <u>dat de uit de emitter komende elektronen voor het grootste gedeelte dwars door de dunne basis naar de aantrekkende collector gezogen worden.</u>

Het gedeelte van de elektronen dat naar de collector gezogen wordt, noemt men α . Die α is gelegen tussen 0 en 1 (0 % en 100 %). Een realistische waarde voor α is 0,99 zodat 1 - α = 0,01 eveneens een realistische waarde is. Het is slechts een klein deel van de elektronen (1 - α) = 0,01 die in de basis zelf terecht komt.

Dit alles is weergegeven in de onderstaande Figuur 8.5. Bemerk wel dat in Figuur 8.5 de elektronenstroomzin en niet de conventionele stroomzin aangeduid is (Figuur 8.4 geeft wel de conventionele stroomzin weer).

Figuur 8.5: De transistor in normale mode

De transistor voorgesteld in Figuur 8.5 heeft een in doorlaat gepolariseerde BE-junctie met een U_{BE} tussen 0,6 V en 0,8 V. De CB-junctie is in sper gepolariseerd. Dit betekent dat de collector sterk positief is ten opzichte van de basis. In Paragraaf 3 zullen we zien dat een transistor die op een dergelijke wijze gepolariseerd is, werkt in normale mode.

Dit alles betekent dat een $U_{BE} \cong 0.6 \text{ V}$ tot 0.8 V gecombineerd met een gesperde CB-junctie aanleiding geeft tot een elektronenstroom van E naar C <u>die veel groter is</u> dan de elektronenstroom van E naar B. In conventionele stroomzin vertaald betekent dit dat er een I_{CE} vloeit die veel groter is dan I_{BE} . Dit is het zogenaamde <u>transistoreffect</u>.

Dus ondanks de gesperde CB-junctie is er een belangrijke stroomdoorgang vanuit de collector mogelijk op voorwaarde dat de BE-junctie geleidend gemaakt is.

Hier hebben we het werkingsprincipe grotendeels uitgelegd door te steunen op de elektronenstroomzin, doch in de praktijk werken we altijd of bijna altijd met de conventionele stroomzin (zoals weergegeven op Figuur 8.4).

2.3: Praktische kennis: de NPN-transistor

Figuur 8.6: Transistor in normale mode

Bekijken we de spanningen en de stromen meer naderbij indien een NPN-transistor in normale mode werkt. Bemerk vooreerst in Figuur 8.6 dat de spanningsbron U_{CB} vervangen wordt door een gepaste spanningsbron U_{CE} .

Teken in Figuur 8.6 de hoofdstromen I_{BE} en I_{CE} . Verklaar dat $I_{CE} \cong I_{E}$. Wanneer vloeit de stroom I_{CE} en wanneer vloeit deze niet?

We weten reeds dat $I_{CE} = \alpha I_E$ en dat $I_{BE} = (1 - \alpha) I_E$. Dit impliceert dat $I_{CE} = \beta I_{BE}$. Hierbij weliswaar met $\beta = \alpha/(1 - \alpha)$. Vaak wordt in plaats van β ook de notatie $h_{FE} = \beta$ gebruikt.

Dus:
$$I_{CE} = \beta I_{BE}$$
 of $I_{CE} = h_{FE} I_{BE}$.

We hebben reeds vermeld dat α dicht bij de eenheid ligt. Indien α bijvoorbeeld gelijk is aan 0,99, dan is $\beta = h_{FE} = \alpha/(1 - \alpha) = 99$. Dit betekent dat $I_{CE} = 99$ I_{BE} . Het doen vloeien van een basisstroom I_{BE} van bijvoorbeeld 0,1 mA zal een collectorstroom I_{CE} doen vloeien van 9,9 mA. Dit is het <u>stroomversterkingsprincipe</u> van een transistor en $\beta = h_{FE}$ is de <u>stroomversterkingsfactor</u>.

Merk op dat men niet altijd de notaties I_{CE} en I_{BE} gebruikt. Vaak noteert men deze stromen kortweg als I_{C} en I_{B} . Dit betekent dat we bekomen dat:

$$I_C = \beta I_B$$
 of $I_C = h_{FE} I_B$.

Steunende op de stroomwet van Kirchoff is $I_E = I_{CE} + I_{BE} = I_C + I_B$ zodat $I_E = (1 + \beta) I_B = (1 + h_{FE}) I_B$.

2.4: Praktische kennis: de PNP-transistor

Nu beschouwen we de <u>PNP-transistor</u>. Deze werkt helemaal gelijkaardig aan de NPN-transistor. Ook hier moet in <u>normale mode</u> gewerkt worden om het transistoreffect te verkrijgen. Dit betekent dat de <u>BE-junctie in doorlaat</u> gepolariseerd moet zijn terwijl de <u>CB-junctie in sperrichting</u> gepolariseerd is.

Bij de PNP-transistor in de normale mode, vertrekken er weer ladingsdragers (zoals de halfgeleidertheorie ons leert, zijn dit nu hoofdzakelijk "positieve gaten") van uit de emitter (E). De basis (B) is zeer dun, door het sterke elektrische veld in de CB-junctie worden deze ladingsdragers dwars door de dunne B naar de negatieve collector (C) getrokken. Het grootste gedeelte van de emitterstroom (het gedeelte αI_E) komt terug in de C terecht. Slechts de kleine rest $(1 - \alpha)I_E$ vormt de basisstroom.

Indien we de bouw van de PNP-transistor vergelijken met deze van de NPN-transistor, dan bestaat die uit "twee diodes" die nu wel in een andere richting geschakeld zijn. Dit impliceert dat bij de PNP-transistor alle spanningsbronnen omgepoold moeten worden

in vergelijking met de NPN-transistor. Dit betekent <u>dat ook alle conventionele stroomzinnen omgekeerd zijn</u>.

Dus in normale mode zullen U_{BE} , U_{CE} en ook U_{CB} negatief zijn. De (conventionele) stromen lopen aldus van E naar C (grote stroom) en van E naar B (kleine stroom). Dit betekent dat I_{EC} (of kortweg I_C) en I_{EB} (of kortweg I_B) positief zijn.

De spanningen en de stromen die horen bij de PNP transistor zijn weergegeven in Figuur 8.7. De stroompijlen zijn anders getekend dan bij de NPN transistor in Figuur 8.6.

Zoals al gesteld, geldt opnieuw dat $I_C = \alpha I_E$ en dat $I_B = (1 - \alpha)I_E$. Hierbij is α kleiner dan 1, doch α is wel erg dicht bij 1 (bijvoorbeeld 0,99). Opnieuw stellen we $\beta = h_{FE} = \alpha/(1 - \alpha)$ zodat

$$I_C = \beta I_B$$
 en $I_C = h_{FE} I_B$.

Steunende op de stroomwet van Kirchoff is $I_E = I_C + I_B$ zodat ook bij de PNP-transistor geldt dat $I_E = (1 + \beta) I_B = (1 + h_{FE}) I_B$.

Figuur 8.7: Transistor in normale mode

2.5: Opmerking

In onze transistorschema's tekenden we de stroompijlen altijd (op een enkele uitzondering niet te na gesproken) volgens de conventionele stroomzin. <u>Aldus hebben al de stromen altijd een positief teken, dit zowel bij de NPN transistor als bij de PNP transistor</u>. In andere boeken of cursussen worden soms andere conventies gebruikt. Dit geeft dan aanleiding tot andere tekens.

3: De verschillende transistormodes

In zowel de NPN-transistoren als de PNP-transistoren kunnen we twee juncties of 'diodes' onderscheiden. Dit zijn namelijk de 'BE-diode' en de'CB-diode'.

Nu kan de BE-diode <u>geleidend</u> zijn (G, er loopt een stroom van anode naar kathode) <u>of</u> <u>niet geleidend</u> zijn (NG). De 'CB-diode' kan <u>voorwaarts</u> gepolariseerd zijn (F, forward, de anode is positief ten opzichte van de kathode) of <u>in sper</u> gepolariseerd zijn (R, reverse, de anode is negatief ten opzichte van de kathode).

In elke transistor onderscheiden we twee juncties die elk in twee verschillende toestanden kunnen verkeren. Dit betekent dat er <u>vier</u> transistor-toestanden of <u>transistor-modes</u> zijn. Deze hebben trouwens elk hun eigen benaming.

BE-junctie	CB-junctie	Transistormode
G	R	Normale mode
NG	R	Sper mode of cut-off mode
G	F	Verzadigde mode
R	G	Inverse mode

De <u>normale mode</u> werd eerder besproken in Paragraaf 2.2, Paragraaf 2.3 en Paragraaf 2.4. In lineaire <u>transistorversterkers</u> worden de transistoren algemeen in de normale mode ingesteld. We zullen verderop in deze cursus dieper ingaan op het nut van die normale mode wanneer we versterkerschakelingen bestuderen.

De <u>cut-off mode</u> kwam reeds kort ter sprake in Paragraaf 2.2. Zowel de cut-off mode als de <u>saturatiemode</u> (of <u>verzadigde mode</u>) worden vaak moedwillig nagestreefd. Dit voornamelijk indien de <u>transistor als schakelaar</u> gebruikt wordt. Een transistor in de cut-off mode gedraagt zich als een <u>open schakelaar</u>. Een transistor in de verzadigde mode gedraagt zich als een <u>gesloten schakelaar</u>. Verderop in deze cursus komen die twee transistormodes nog uitgebreid aan bod.

De <u>inverse mode</u> wordt <u>praktisch nooit moedwillig toegepast</u>. Deze mode kan wel accidenteel ontstaan. Dit is bijvoorbeeld het geval indien per vergissing de collector en de emitter omgewisseld zijn (indien het de bedoeling was de transistor in normale mode te schakelen).

Indien de transistor in de inverse mode werkt, kan ze toch nog enig transistoreffect vertonen. Waarom? Het is echter wel zo dat zowel α als β kleiner zullen zijn dan normaal. Hoe verklaart u dit? Bovendien is de BE-junctie van de transistor doorgaans slechts tegen kleine sperspanningen gestand (maximaal 3 V tot 6V). Dit kan tot gevolg hebben dat de transistor <u>doorslaat</u>.

4: Lekstromen in een transistor

Tot nu toe beschouwden we in een transistor slechts twee stromen. Dit zijn de moedwillig veroorzaakte basisstroom I_{BE} en de bijhorende collectorstroom $I_{CE} = \beta I_{BE}$. Hierbij zijn I_{BE} en I_{CE} positief bij een NPN-transistor. Bij een PNP-transistor zijn ze negatief. Naast deze <u>twee hoofdstromen</u> kunnen we in een transistor ook (doorgaans zeer kleine) <u>lekstromen</u> onderscheiden. De te onderscheiden lekstromen zijn de <u>collector-basis-lekstroom</u> I_{CBO} en de <u>collector-emitter-lekstroom</u> I_{CEO} .

4.1: De collector-basis-lekstroom

In de normale mode is de <u>CB-junctie</u> van de transistor in <u>sperzin</u> gepolariseerd. Door een in sperzin gepolariseerde diode zal altijd een kleine <u>sperstroom</u> of lekstroom vloeien. Dit laatste is ook geldig indien de doorslagspanning verre van bereikt is.

De stroom die door de gesperde junctie van de collector naar de basis loopt, terwijl de emitter $\underline{\text{niet}}$ aangesloten is ("open emitter"), noemt men de lekstroom I_{CBO} van de transistor. De lekstroom I_{CBO} noemt men ook de $\underline{\text{collector cut off current}}$.

Figuur 8.8: Lekstromen bij een transistor

Bij een NPN-transistor loopt de lekstroom (conventionele stroomzin) van C naar B wat betekent dat I_{CBO} positief is. Bij een PNP-transistor loopt de lekstroom van B naar C wat betekent dat I_{BCO} positief is. Dit betekent meteen dat I_{CBO} = - I_{BCO} negatief is.

Bij moderne kleinsignaaltransistoren vervaardigd uit Silicium, bedraagt de collectorbasis-lekstroom I_{CBO} doorgaans slechts enkele nA (bij kamertemperatuur). Deze <u>lekstroom</u> is dus doorgaans <u>zeer klein</u> hoewel ze verdubbelt per 7 tot 10 °C temperatuursstijging.

4.2: De collector-emitter-lekstroom

Beschouw de onderstaande opstellingen:

Figuur 8.9: Lekstromen bij een transistor

Ook als de basis open is, dus als de stroom $I_B = 0$ is, vloeit er door de reële transistor een <u>collector-emitter-stroom</u>. Deze bij open basis gemeten lekstroom wordt I_{CEO} genoemd. Het is duidelijk dat I_{CEO} positief is bij een NPN-transistor. I_{CEO} is negatief bij een PNP-transistor wat betekent dat I_{ECO} er positief is.

Er is een duidelijk verband tussen de eerder aangehaalde I_{CBO} en de hier besproken I_{CEO} . Als de CB-junctie 'lekt', dan vloeit deze lekstroom op de normale wijze door de BE-junctie zodat ze met een factor β versterkt wordt.

Het is bijgevolg duidelijk dat voor de stroom I_{CEO} geldt:

$$I_{CEO} = (1 + \beta) I_{CBO}$$

4.3: De invloed van de lekstromen op de werking van de transistor

Verder is het duidelijk dat de collector-emitter-lekstroom I_{CEO} zich zowel bij een NPN-transistor als bij een PNP-transistor <u>bij de normaal ingestelde hoofdstroom</u> βI_{BE} <u>zal optellen</u>. Dit betekent dus steeds dat I_{CEO} de hoofdstroom βI_{BE} verhoogt en dat er voor elke transistor geldt dat:

$$I_{CE} = \beta I_{BE} + (1 + \beta)I_{CBO}.$$

Deze formule is (net zoals de formule $I_{CEO} = (1 + \beta) I_{CBO}$) zowel geldig voor NPN-transistoren als voor PNP-transistoren. Wel is het zo dat alle stromen positief zijn bij NPN-transistoren en dat ze negatief zijn bij PNP-transistoren.

Bij de formule $I_{CE} = \beta I_{BE} + (1 + \beta)I_{CBO}$, noteert men vaak I_{C} in plaats van I_{CE} . Op dezelfde wijze, noteert men vaak I_{B} in plaats van I_{BE} . Bijgevolg geldt dat $I_{C} = \beta I_{B} + (1 + \beta)I_{CBO} = \beta I_{B} + I_{CEO}$.

Bij <u>moderne kleinsignaaltransistoren</u> (vervaardigd uit Silicium) die werken bij kamertemperatuur, bedraagt I_{CBO} slechts enkele nA. Bij dergelijke zeer kleine stroomwaarden is de stroomversterking bovendien merkelijk kleiner dan bij de instelstroom waarbij de transistor normaal gebruikt wordt. Dat betekent bijgevolg dat de β in $I_{CEO} = (1 + \beta)I_{CBO}$ geen al te hoge waarde heeft. Daarom zijn zowel de lekstroom I_{CBO} als de lekstroom I_{CEO} zeer klein en meestal verwaarloosbaar.

Bij <u>vermogentransistoren</u> en <u>hoge bedrijfstemperaturen</u> (bijvoorbeeld > 100 °C) echter, kan I_{CEO} zelfs bij moderne Si-transistoren oplopen tot meerdere mA. Maar zelfs dan moet meestal geen rekening gehouden worden met deze stroom omdat hij doorgaans veel kleiner zal zijn dan de normaal ingestelde hoofdstroom βI_B . Het is bij vermogentransistoren heel normaal dat de collectorstromen βI_B tussen enkele honderden mA en meer dan 10 A groot zijn.

We kunnen bijgevolg besluiten dat bij moderne Si-transistoren de lekstromen bijna altijd te verwaarlozen zijn in vergelijking met de normaal ingestelde hoofdstromen. In de normale mode schrijft men dan ook zonder problemen $I_C = \beta I_B$.

In 'gesperde' of in 'cut-off' mode kunnen de lekstromen daarentegen wel hinderlijk zijn.

5: De karakteristieken van een transistor

5.1: Het opmeten van de karakteristieken

De hiervoor beschreven verbanden tussen de verschillende transistorspanningen en transistorstromen kunnen in de praktijk gemakkelijk <u>opgemeten en grafisch</u> weergegeven worden.

Figuur 8.10: Opmeten spanning-stroom-karakteristieken transistor

De meetschakeling van Figuur 8.10 laat toe de spanningen U_{BE} en U_{CE} te meten. Ze laat ook toe de stromen I_B en I_C te meten. Bemerk wel dat voor I_B in realiteit een μA -meter en voor I_C en mA-meter gebruikt wordt. Ga zelf na dat al deze spanningen en stromen conform de eerder geziene theorie zijn en ga ook de polariteit van de meettoestellen na.

Aangezien $I_E = I_C + I_B \cong I_C$ is er geen afzonderlijke A-meter nodig om I_E op te meten. Ook is er geen afzonderlijke V-meter nodig om U_{CB} te meten aangezien $U_{CB} = U_{CE} - U_{BE}$.

Nu is het steeds zo dat de evolutie van een bepaalde grootheid (bijvoorbeeld I_B) opgemeten wordt in functie van een andere grootheid (bijvoorbeeld U_{BE}) waarbij een derde grootheid (bijvoorbeeld U_{CE}) constant gehouden wordt.

Op die manier ontstaat de mogelijkheid om meerdere karakteristieken op te meten. Inderdaad, als men opmeet hoe I_C varieert in functie van U_{CE} terwijl men I_B constant houdt, dan krijgt men de zogenaamde <u>uitgangskarakteristiek</u>. Als men opmeet hoe I_C varieert in functie van I_B terwijl men U_{CE} constant houdt, dan krijgt men de zogenaamde <u>transfertkarakteristiek</u>. Als men opmeet hoe I_B varieert in functie van U_{BE} terwijl men U_{CE} constant houdt, dan krijgt men de zogenaamde <u>ingangskarakteristiek</u>. Als men opmeet hoe U_{BE} varieert in functie van U_{CE} terwijl men I_B constant houdt, dan krijgt men de zogenaamde reactiekarakteristiek.

In de hierop volgende paragrafen 5.2 tot en met 5.5 bespreken we achtereenvolgens deze uitgangskarakteristiek, transfertkarakteristiek, ingangskarakteristiek en reactiekarakteristiek.

5.2: De uitgangskarakteristiek

De uitgangskarakteristiek geeft het verloop aan van I_C als functie van U_{CE} waarbij I_B constant gehouden is. Voor verschillende waarden van I_B worden dan ook verschillende curven bekomen.

Figuur 8.11: De uitgangskarakteristiek

Om de uitgangskarakteristiek van Figuur 8.11 op te meten, schakelen we de transistor als weergegeven in Figuur 8.12.

Figuur 8.12: Opmeten uitgangskarakteristiek

Bij het opmeten van de uitgangskarakteristiek wordt de basisstroom ingesteld op een vaste I_B -waarde (bijvoorbeeld 40 μA). Steeds wordt I_C gemeten terwijl men U_{CE} geleidelijk laat stijgen. Aanvankelijk stijgt I_C snel waarna deze maar weinig meer stijgt in functie van U_{CE} .

Wanneer de proef opnieuw uitgevoerd wordt, doch nu met een I_B = 20 μA , dan krijgen we voor de overeenkomstige U_{CE} -spanningen kleinere collectorstromen en dus een lagere curve.

Hoe lager I_B , hoe lager I_C is en hoe lager de overeenstemmende uitgangskarakteristiek. Hoe hoger I_B , hoe hoger I_C is en hoe hoger de overeenstemmende uitgangskarakteristiek.

De spanning U_{CEK} wordt de <u>kniespanning</u> of <u>knikspanning</u> genoemd. Deze is ongeveer gelijk aan de saturatiespanning U_{CEsat} . Die U_{CEsat} is bij kleine transistoren ongeveer 0,2 V tot 0,3 V terwijl ze bij grote transistoren ongeveer 1 V bedraagt.

De transistor werkt meestal in het gebied waar $U_{CE} > U_{CEsat}$, dus in het gebied waar I_{C} bijna onafhankelijk is van U_{CE} . In dit gebied werkt de transistor in normale mode en is $I_{C} = \beta I_{B}$. Indien $U_{CE} < U_{Cesat}$, dan werkt de transistor in verzadigde mode en geldt <u>niet</u> dat $I_{C} = \beta I_{B}$ (in verzadigde mode geldt dat $I_{C} < \beta I_{B}$).

5.3: De transfertkarakteristiek

De transfertkarakteristiek geeft het verloop aan van I_C als functie van I_B waarbij U_{CE} constant gehouden is. Voor verschillende waarden van U_{CE} worden dan ook (licht) verschillende curven bekomen.

Bepaal zelf hoe (op basis van de analogie met Figuur 8.12) de transfertkarakteristiek van Figuur 8.13 opgemeten kan worden.

Bij het opmeten van de transfertkarakteristiek wordt de collector-emitter-spanning ingesteld op een vaste U_{CE} -waarde (bijvoorbeeld 20 V). Steeds wordt I_C gemeten terwijl men I_B geleidelijk laat stijgen. Hierbij blijkt dat I_C bijna recht evenredig is met I_B zodat $I_C \cong \beta I_B$.

Wanneer de proef opnieuw uitgevoerd wordt met bijvoorbeeld een $U_{CE} = 10 \text{ V}$, dan krijgen we voor de overeenkomstige I_{B} -stromen iets kleinere collectorstromen en dus een iets lagere curve.

Hoe lager U_{CE} , hoe lager I_C is en hoe lager de overeenstemmende transfertkarakteristiek. Hoe hoger U_{CE} , hoe hoger I_C is en hoe hoger de overeenstemmende transfertkarakteristiek. Bemerk wel dat de invloed van de spanning U_{CE} op de transfertkarakteristiek beperkt is. In Figuur 8.13 is de invloed van U_{CE} dan ook overgeaccentueerd.

Figuur 8.13: De transfertkarakteristiek

Het is mogelijk die transfertkarakteristiek afzonderlijk op te meten, doch het is ook mogelijk ze af te leiden van de eerder opgemeten uitgangskarakteristieken. Dit gebeurt door een loodlijn te trekken in de I_CU_{CE} -karakteristieken bij de gewenste U_{CE} .

5.4: De ingangskarakteristiek

De ingangskarakteristiek geeft het verloop aan van I_B als functie van U_{BE} waarbij U_{CE} constant gehouden is. Voor verschillende waarden van U_{CE} worden dan ook verschillende curven bekomen.

Bepaal zelf hoe (op basis van de analogie met Figuur 8.12) de ingangskarakteristiek van Figuur 8.14 opgemeten kan worden.

Bij het opmeten van de ingangskarakteristiek wordt de collector-emitter-spanning ingesteld op een vaste U_{CE} -waarde (bijvoorbeeld 20 V). Steeds wordt I_B gemeten terwijl men U_{BE} geleidelijk laat stijgen. Zolang U_{BE} kleiner is dan 0,6 V blijft I_B klein (bij een Si-transistor). Als U_{BE} groter wordt dan 0,6 V, dan stijgt I_B en wordt I_B groter naarmate U_{BE} verder stijgt. Hierbij blijkt dat de relatie tussen I_B en U_{BE} nauw verwant is met de diodekarakteristieken die we in het eerste hoofdstuk van de cursus zagen.

Wanneer de proef opnieuw uitgevoerd wordt met bijvoorbeeld een $U_{CE} = 10 \text{ V}$ of zelfs $U_{CE} = 0 \text{ V}$, dan krijgen we voor de overeenkomstige U_{BE} -spanningen iets grotere basisstromen en dus een andere curve. Bemerk dat ook hier in Figuur 8.14 (net zoals in Figuur 8.13) de invloed van U_{CE} overgeaccentueerd is.

Figuur 8.14: De ingangskarakteristiek

5.5: De reactiekarakteristiek

De reactiekarakteristiek geeft het verloop aan van U_{BE} als functie van U_{CE} waarbij I_B constant gehouden is (bijvoorbeeld $I_B = 100~\mu A$). De reactiekarakteristiek loopt nagenoeg evenwijdig met de U_{CE} -as. Voor verschillende waarden van I_B worden (licht) verschillende curven bekomen.

Bepaal zelf hoe (op basis van de analogie met Figuur 8.12) de reactiekarakteristiek van Figuur 8.15 opgemeten kan worden.

Wanneer de proef opnieuw uitgevoerd wordt, doch nu met een I_B = 200 μA , dan krijgen we voor de overeenkomstige U_{CE} -spanningen een iets grotere U_{BE} -spanning.

Aangezien deze reactiekarakteristiek U_{BE} meet als functie van U_{CE} , betekent dat deze karakteristiek de terugwerking weergeeft van de uitgangsspanning U_{CE} op de ingangsspanning U_{BE} . De terugwerking op de ingang is gering wat betekent dat de reactiekarakteristiek nagenoeg evenwijdig loopt met de U_{CE} -as.

De reactiekarakteristiek wordt zelden gepubliceerd omdat het belang ervan gering is.

5.6: Het samenvoegen van de karakteristieken

Figuur 8.16: De karakteristieken van een Si-transistor (NPN)

Steunende op Figuur 8.10 kunnen dus vier karakteristieken opgemeten worden die we besproken hebben in voorgaande paragrafen. Nu gebeurt het vaak dat deze vier

karakteristieken samengevoegd worden tot één enkele figuur. Dit is weergegeven in de bovenstaande Figuur 8.16.

Het is mogelijk op Figuur 8.16 het werkingspunt P aan te duiden waarop de transistor ingesteld is. Inderdaad, stel bijvoorbeeld dat I_C = 350 mA en U_{CE} = 20 V. Het is onmiddellijk mogelijk het werkingspunt P aan te duiden in de uitgangskarakteristiek. Doch omdat I_C gekend is (en via U_{CE} geweten is welke grafiek in de transfertkarakteristiek gebruikt moet worden) is ook het werkingspunt P terug te vinden in de transfertkarakteristiek.

Vertrekkende vanuit het werkingspunt P aangeduid in de transfertkarakteristiek kan ook P aangeduid worden in de ingangskaraktersitiek. Inderdaad, via de transfertkarakteristiek is I_B gekend (en via U_{CE} is geweten welke grafiek in de ingangskarakteristiek gebruikt moet worden). De ingangskarakteristiek geeft dan ook weer wat de U_{BE} -waarde is bij dit werkingspunt P.

Nu de U_{BE} -waarde gekend is en de U_{CE} -waarde al eerder gekend is, is vlot het werkingspunt P terug te vinden in de reactiekarakteristiek. Dit werkingspunt ligt op een karakteristiek die overeenstemt me de eerder bekomen I_B -waarde.

Dit alles is grafisch terug te vinden op de bovenstaande Figuur 8.16. Hou er wel rekening mee dat de karakteristieken niet op schaal getekend zijn. Zo is bijvoorbeeld de invloed van U_{CE} op de transfertkarakteristiek overgeaccentueerd. De kniespanning $U_{CEK} \cong 0,2$ V is veel kleiner dan 20 V en is bijgevolg niet op schaal getekend.

5.7: Geleide oefening

In voorgaande paragrafen hebben we het opmeten van de karakteristieken besproken bij een NPN-transistor. Dit alles kan natuurlijk ook uitgevoerd worden bij een PNP-transistor. Teken de <u>meetschakeling</u> welke geschikt is voor een dergelijke PNP-transistor. Bekijk ook de vorm van de grafieken en let hierbij vooral op de polariteit van de spanningen en de stromen.

6: De karakteristieke grootheden

De karakteristieke grootheden (<u>h-parameters</u>) zijn de parameters die ons een idee geven van het verloop van de karakteristieken uit Paragraaf 5. Het zijn in feite de tangensen van de hoeken in een bepaald werkingspunt P, gevormd tussen de betreffende karakteristiek en een horizontale.

We gaan uit van een transistor met een gekende <u>DC-instelling</u>. Dit betekent dat het werkpunt P vastgelegd is. We vertrekken van DC-instelwaarden die bijvoorbeeld door een $I_C = 2$ mA, $U_{CE} = 5$ V, $I_B = 6$ μ A en een $U_{BE} = 0,67$ V gekenmerkt zijn.

Vervolgens beschouwen we <u>kleine variaties</u> (sinusoïdale AC-stromen en AC-spanningen) (de Δ 's) op de hierboven afgelezen DC-instelspanningen en DC-instelstromen.

In elk kwadrant van Figuur 8.16 bekijken we hoe de transistor zich gedraagt ten opzichte van de (op de DC-instelwaarden gesuperponeerde) AC-signalen.

6.1: De uitgangsadmittantie

In het eerste kwadrant van Figuur 8.16 vinden we de <u>uitgangskarakteristiek</u>. Dit geeft het verloop van I_C weer als functie van U_{CE} . P is bepaald door de ingestelde I_C en U_{CE} . Vanuit de ingestelde U_{CE} beschouwen we nu een kleine variatie ΔU_{CE} en op de grafieken lezen we af hoeveel I_C hierbij verandert. Dit laatste is dus ΔI_C . Hierbij wordt er op gelet dat I_B constant gehouden wordt.

De <u>verhouding tussen de beide variaties</u> (bij constante I_B) noemt men h_{oe} :

$$h_{oe} = (\Delta I_C / \Delta U_{CE}).$$

Dit betekent dat h_{oe} gelijk is aan de verhouding tussen de amplitude van de collectorwisselstroom en de amplitude van de collector-emitter-wisselspanning. Hierbij moet de basisstroom constant zijn wat betekent dat de AC-component van de basisstroom nul is.

Figuur 8.17: De uitgangskarakteristiek

Zoals uit de uitgangskarakteristiek blijkt, komt $h_{oe} = \Delta I_C / \Delta U_{CE}$ overeen met tg ϵ . De parameter h_{oe} is de <u>uitgangsadmittantie</u> voor <u>kleine AC-signalen</u>. Bovendien blijkt duidelijk uit de figuur dat h_{oe} = tg ϵ een vrij kleine waarde is.

De uitgangsadmittantie h_{oe} is uitgedrukt in $\Omega^{-1} = S$. In plaats van de eenheid Siemens = S of Ω^{-1} kan men (een zeldzame keer) ook "mho" als eenheid ontmoeten.

6.2: De stroomversterking

In het tweede kwadrant van Figuur 8.16 vinden we de <u>transfertkarakteristiek</u>. Dit geeft het verloop van I_C weer als functie van I_B . P is bepaald door de ingestelde I_C en I_B . Vanuit de ingestelde I_B beschouwen we nu een kleine variatie ΔI_B en op de grafieken lezen we af hoeveel I_C hierbij verandert. Dit laatste is dus ΔI_C . Hierbij wordt er op gelet dat U_{CE} constant gehouden wordt.

De <u>verhouding tussen de beide variaties</u> (bij constante U_{CE}) noemt men h_{fe}:

$$h_{fe} = (\Delta I_C / \Delta I_B).$$

Zoals uit de transfertkarakteristiek blijkt, komt h_{fe} overeen met tg δ . h_{fe} is de stroomversterking van de transistor voor kleine AC-signalen. Waarden tussen 20 en zelfs 900 zijn hier realistisch.

Figuur 8.18: De transfertkarakteristiek

Naast de stroomversterkingsfactor voor AC-signalen is er ook de \underline{DC} stroomversterking $h_{FE} = I_C/I_B$. Meestal is h_{fe} iets groter dan h_{FE} , doch vaak neemt men eenvoudigheidshalve $h_{fe} = h_{FE}$.

Zowel h_{fe} als h_{FE} zijn dimensieloos.

6.3: De ingangsimpedantie

 $I_B(\mu A)$

Figuur 8.19: De ingangskarakteristiek

In het derde kwadrant van Figuur 8.16 vinden we de <u>ingangskarakteristiek</u>. Dit geeft het verloop van I_B weer als functie van U_{BE} . P is bepaald door de ingestelde I_B en U_{BE} . Vanuit de ingestelde U_{BE} beschouwen we nu een kleine variatie ΔU_{BE} en op de

grafieken lezen we af hoeveel I_B hierbij verandert. Dit laatste is dus ΔI_B . Hierbij wordt er op gelet dat U_{CE} constant gehouden wordt.

De verhouding tussen de beide variaties (bij constante U_{CE}) noemt men h_{ie}:

$$h_{ie} = (\Delta U_{BE} / \Delta I_{B}).$$

Zoals uit de ingangskarakteristiek blijkt, komt h_{ie} overeen met tg γ . De parameter h_{ie} is de <u>ingangsweerstand</u> van de transistor <u>voor kleine AC-signalen</u>. Hierbij is U_{CE} constant wat betekent dat de AC-component van U_{CE} nul is, anders gezegd, de uitgang van de transistor is kortgesloten op AC-gebied.

Bij benadering geldt dat

$$h_{ie} = (26 h_{FE} / I_C)$$

waarbij h_{ie} uitgedrukt wordt in Ω en I_C uitgedrukt wordt in mA. De formule is enkel geldig indien de junctietemperatuur ongeveer 300 K is.

Die formule vloeit voort uit het feit dat de BE-junctie een voorwaarts gepolariseerde diode is. Dit betekent dat $h_{ie} = \Delta U_{BE} / \Delta I_B = \Delta U_F / \Delta I_F$ de dynamische weerstand R_d is van de voorwaarts gepolariseerde diode. Uit Paragraaf 5.4 in het eerste hoofdstuk van de cursus weten we dat die $R_d = 26/I_F$ waarbij $I_F \cong I_B$ uitgedrukt is in mA. Als we dan in rekening brengen dat $I_B = I_C/h_{FE}$, dan geldt inderdaad dat $h_{ie} = 26 h_{FE} / I_C$.

Uit de bovenstaande formule en ook uit de karakteristieken blijkt dat h_{ie} (en ook tg γ) kleiner wordt indien I_B en I_C groter zijn.

6.4: De inverse spanningsversterking

In het vierde kwadrant van Figuur 8.16 vinden we de <u>reactiekarakteristiek</u>. Dit geeft het verloop van U_{BE} weer als functie van U_{CE} . Vanuit de ingestelde U_{CE} beschouwen we nu een kleine variatie ΔU_{CE} en op de grafieken lezen we af hoeveel U_{BE} hierbij verandert. Dit laatste is dus ΔU_{BE} . Hierbij wordt er op gelet dat I_B constant gehouden wordt.

De <u>verhouding tussen de beide variaties</u> (bij constante I_B) noemt men h_{re}:

$$h_{re} = (\Delta U_{BE} / \Delta U_{CE}).$$

Deze parameter is vrij klein en kan bijgevolg bij vereenvoudigde berekeningen verwaarloosd worden.

Bemerk dat de inverse spanningsversterking h_{re} dimensieloos is.

7: Opmerkingen betreffende de h-parameters

7.1: Afhankelijkheid van het instelpunt

De transistorparameters h_{ie} , h_{fe} , h_{oe} en h_{re} zijn duidelijk geen absoluut constante getallen. Ze zijn afhankelijk van het werkingspunt P of de zogenaamde DC-instelling van waaruit de variaties (de Δ 's) starten. Bij een ander werkingspunt P, zijn de hoeken γ , δ en ϵ anders. Dit resulteert in andere h-parameters.

De bij een bepaalde instelling opgegeven h-parameters mag men dus in principe niet gebruiken wanneer de transistor bij een ander werkingspunt ingesteld wordt. Indien de parameters in dit nieuwe werkingspunt niet beschikbaar zijn, dan kan men gebruik maken van de volgende <u>vuistregels</u>:

- Mits U_{CE} minstens enkele volt bedraagt, veranderen de belangrijkste h-parameters h_{fe} en h_{ie} niet veel bij U_{CE} -wijzigingen.
- Matige wijzigingen van I_C hebben bijna geen verandering van h_{fe} tot gevolg. Dat laatste geldt helaas niet voor h_{ie}. Gelukkig is het mogelijk de nieuwe h_{ie} bij benadering te bepalen uit de formule

$$h_{ie} = 26 h_{FE} / I_{C}$$
.

Bij de laatste uitdrukking wordt I_C uitgedrukt in mA. De parameter h_{FE} is dimensieloos en h_{ie} wordt uitgedrukt in Ω . De voorgaande formule is enkel geldig indien $I_C << I_{Cmax}$ en indien de junctietemperatuur ongeveer 300 K is.

7.2: Spreiding van de h-parameters

Tussen transistoren van hetzelfde type kan er een grote spreiding zijn op de h-parameters. Verifieer dit zelf aan de hand van de datasheets van de BC547 welke opgenomen zijn achteraan de cursus. Bovendien zijn de h-parameters enigszins afhankelijk van de temperatuur.

Die spreiding van de h-parameters is eveneens zichtbaar in de onderstaande tabel waar een aantal gegevens gegroepeerd zijn. De waarden van deze h-parameters zijn geldig bij een frequentie van 1 kHz met een $I_C = 2$ mA en een $U_{CE} = 5$ V.

		BC547A BC548A	BC547B BC548B BC549B	BC548C BC549C
Ingangsimpedantie h _{ie}	>	1,6 kΩ	3,2 kΩ	6,0 kΩ
	typ.	$2,7 \mathrm{k}\Omega$	4,5 kΩ	8,7 kΩ
	<	4,5 kΩ	8,5 kΩ	15 kΩ
Terugwerking h _{re}	Typ.	1,5 10 ⁻⁴	2 10 ⁻⁴	3 10 ⁻⁴

Stroomversterking h _{fe}	>	125	240	450
	typ.	220	330	600
	<	260	500	900
Uitgangsadmittantie h _{oe}	Typ.	18 μΩ ⁻¹	$30 μΩ^{-1}$	60 μΩ ⁻¹
	<	$30 \mu\Omega^{-1}$	$60 \mu\Omega^{-1}$	$110 \mu\Omega^{-1}$

Naast deze h-parameters die geldig zijn voor AC-signalen, is er ook de DC-stroomversterking h_{FE}.

		BC547A	BC547B	BC548C
		BC548A	BC548B	BC549C
			BC549B	
h_{FE} voor $I_C = 10 \mu A$ en	>		40	100
$V_{CE} = 5 \text{ V}$	typ.	90	150	270
h_{FE} voor $I_C = 2$ mA en	>	110	200	420
$V_{CE} = 5 \text{ V}$	typ.	180	290	520
	<	220	450	800

7.3: Frequentie-afhankelijkheid

In een transistor komen <u>parasitaire capaciteiten en zelfinducties</u> voor (net zoals dit het geval was in het equivalent schema van een diode). Zoals bekend vertonen die elementen een <u>frequentieafhankelijke impedantie</u>. Deze parasitaire elementen veroorzaken ook <u>faseverschuivingen</u> tussen de spannings- en stroomvariaties in de transistor. Dit heeft tot gevolg dat de h-parameters bij voldoende hoge frequenties <u>complexe getallen</u> zullen zijn. Met hoge frequenties bedoelen we onder meer radiofrequenties. Bovendien zijn deze h-parameters <u>veranderlijk in functie van de</u> frequentie.

Net zoals bij de diodes, kunnen de parasitaire capaciteiten en zelfinducties <u>bij lage</u> <u>frequenties verwaarloosd</u> worden. Met lage frequenties bedoelen we onder meer audio-frequenties tot aan 20 kHz. Bij lage frequenties zijn de h-parameters dus gewone reële getallen en frequentie-onafhankelijk.

Vermelden we echter wel dat bij hoge frequenties bijna geen h-parameters gebruikt worden. Men gebruikt dan de <u>s-parameters</u> of de <u>y-parameters</u>. Zo zijn bijvoorbeeld ook deze y-parameters complex en frequentie-afhankelijk. De y-parameters definiëren we nu niet, we zullen ze later bespreken bij de werking van de (MOS)FET.

8: Het equivalent AC-schema van de transistor

Teneinde het berekenen en simuleren van elektronische schema's te vereenvoudigen of mogelijk te maken, worden halfgeleiderelementen zoals transistoren vervangen door een equivalent schema.

In de huidige paragraaf zullen we nagaan hoe <u>het AC-gedrag van een transistor</u> <u>benaderd kan worden door een equivalent schema</u> die opgebouwd is uit weerstanden, spanningsbronnen en stroombronnen.

Een dergelijk equivalent schema is uiteraard altijd een vereenvoudiging van de realiteit. Zo gaan we hier enkel gebruik maken van reële en frequentie-onafhankelijk veronderstelde h-parameters. Zoals we al weten kan het zo bekomen equivalente schema enkel geldig zijn bij voldoende lage frequenties (bijvoorbeeld audiofrequenties).

8.1: Vereenvoudigd equivalent schema

We beschouwen een transistor met een zekere DC-instelling. We gaan er met andere woorden van uit dat de spanningsbronnen U_{BB} en U_{CC} van Figuur 8.10 of Figuur 8.12 aanwezig zijn.

Figuur 8.20: DC-instelling transistor

Nadat de DC-instelling in orde gebracht is, veroorzaakt het aanleggen van een kleine AC-ingangsspanning $u_i = u_{be}$ in serie met U_{BB} een klein AC-stroompje i_{be} . Dit AC-stroompje is uiteraard gesuperponeerd op de DC-stroom I_{BE} . Dit betekent dat er tussen de basis en de emitter een stroompad met een AC-weerstand $r_{be} = u_{be}/i_{be}$ is.

Indien de AC-spanning u_{ce} gelijk aan nul gesteld of verwaarloosd kan worden, is deze u_{be}/i_{be} gelijk aan h_{ie} In Figuur 8.20 is $U_{CE} = U_{CC}$ constant zodat u_{ce} nul is, ook na het bijschakelen van de AC-spanningsbron u_{be} . De h-parameter h_{ie} is dus een weerstand tussen de basis en de emitter.

Als gevolg van het AC-stroompje i_{be} ontstaat er een AC-stroom i_{ce} . De stroom i_{ce} is merkelijk groter dan i_{be} . In de veronderstelling dat $u_{ce} = 0$, geldt dat $h_{fe} = i_{ce}/i_{be}$. Dit betekent dat $i_{ce} = h_{fe}$ i_{be} zodat de stroom i_{be} met een factor h_{fe} versterkt wordt.

Voor kleine AC-signalen en mits $u_{ce} = 0$ (of voldoende klein) gedraagt de ingestelde transistor zich zoals weergegeven in Figuur 8.21.

Figuur 8.21: Vereenvoudigd AC-equivalent schema transistor

8.2: Vervolledigen van het equivalent schema

Figuur 8.22: DC-instelling transistor met extra u_{be} en R_C

Als we nu bij Figuur 8.20 een weerstand schakelen in serie met de spanningsbron U_{CC} , dan krijgen we de bovenstaande Figuur 8.22.

Eerder zagen we dat $h_{ie} = u_{be}/i_{be}$ wat betekent dat $u_{be} = h_{ie}$ i_{be} indien $u_{ce} = 0$. Algemeen beschouwd is voornoemde u_{be} -vergelijking onvolledig omdat in de meeste toepassingen u_{ce} niet gelijk is aan nul.

In de schakeling van Figuur 8.22 zorgt de AC-spanningsbron (welke gesuperponeerd is op U_{BB}) voor een basis-emitter-stroom die bestaat uit een DC-stroom met er op gesuperponeerd een AC-stroompie i_{be} . Als gevolg hiervan is ook de collectorstroom van de transistor een DC-stroom met een AC-stroom er op gesuperponeerd. Nu vloeit die AC-component van de stroom ook door R_{C} zodat de spanning over R_{C} een AC-component bevat. Dit heeft tot gevolg dat ook de collector-emitter-spanning bestaat uit een DC-spanning met een AC-spanningscomponent er op gesuperponeerd. Er is dus een u_{ce} die verschillend van nul is.

Indien u_{ce} niet nul is, dan zal een correcte vergelijking voor u_{be} naast de component met h_{ie} ook nog een tweede component bevatten. Deze tweede component moet nu precies <u>de invloed van u_{ce} op u_{be} weergeven.</u>

Deze tweede component volgt rechtstreeks uit de definitie van de parameter h_{re} die stelt dat $h_{re} = u_{be}/u_{ce}$ indien i_{be} gelijk is aan nul. Die tweede component is dus gelijk aan h_{re} u_{ce} .

In het algemeen is u_{be} de <u>som</u> van beide voornoemde componenten wat betekent dat:

$$u_{be} = h_{ie} i_{be} + h_{re} u_{ce}$$
.

Deze tweede component wordt correct voorgesteld door <u>een spanningsgestuurde AC-spanningsbron</u> h_{re} u_{ce} in serie te schakelen met h_{ie} in het AC-equivalent schema. Dit is te zien in het onderstaande schema van Figuur 8.23. Steunende op de spanningswet van Kirchoff vinden we inderdaad dat $u_{be} = h_{ie}$ $i_{be} + h_{re}$ u_{ce} .

We zagen reeds eerder dat $i_{ce} = h_{fe} i_{be}$ indien $u_{ce} = 0$. Algemeen beschouwd is voornoemde i_{ce} -vergelijking onvolledig omdat in de meeste toepassingen u_{ce} niet gelijk is aan nul.

Indien u_{ce} niet nul is, dan zal een correcte vergelijking voor i_{ce} naast de component met h_{fe} ook nog een tweede component bevatten. Deze tweede component moet nu precies de invloed van u_{ce} op i_{ce} weergeven.

Deze tweede component volgt rechtstreeks uit de definitie van de parameter h_{oe} die stelt dat $h_{oe} = i_{ce}/u_{ce}$ indien i_{be} gelijk is aan nul. Die tweede component is dus gelijk aan h_{oe} u_{ce} .

In het algemeen is i_{ce} de <u>som</u> van beide voornoemde componenten wat betekent dat:

$$i_{ce} = h_{fe} i_{be} + h_{oe} u_{ce}$$

Deze tweede component wordt correct voorgesteld door een weerstand $1/h_{oe}$ in parallel te schakelen met de stroombron h_{fe} i_{be} in het AC-equivalent schema. Dit is te zien in het onderstaande schema van Figuur 8.23. Steunende op de stroomwet van Kirchoff vinden we inderdaad dat $i_{ce} = h_{fe}$ $i_{be} + h_{oe}$ u_{ce} .

Volgens de wet van Ohm, stelt de verhouding tussen een spanning en een stroom een weerstand (of impedantie) voor. Dat betekent dat $u_{ce}/i_{ce} = 1/h_{oe}$ een weerstand tussen de collector en de emitter van de transistor voorstelt. Door deze weerstand vloeit er een stroom h_{oe} $u_{ce} = u_{ce}/(1/h_{oe})$. Dit is precies de tweede component die aanwezig is in i_{ce} .

Figuur 8.23: AC-equivalent schema

Figuur 8.23 geeft ons het volledig equivalent h-parameterschema voor kleine AC-signalen van de ingestelde transistor. De volledige h-parametervergelijkingen die erbij horen zijn $u_{be} = h_{ie} i_{be} + h_{re} u_{ce}$ en $i_{ce} = h_{fe} i_{be} + h_{oe} u_{ce}$.

We herinneren er nogmaals aan dat de h-parameters in principe afhankelijk zijn van de toegepaste DC-instelling en bij hoge werkfrequenties zijn ze ook afhankelijk van deze frequentie. Voor deze hoge frequenties zijn de h-parameters trouwens complexe getallen.

9: Belangrijke opmerkingen

9.1: De vierpoolparameters

Beschouwen we een <u>willekeurig elektrisch netwerk</u>. Dit netwerk is opgebouwd uit een willekeurig aantal (lineaire of quasi-lineaire) elementen. We denken meer specifiek aan weerstanden, zelfinducties, condensatoren, transistoren (met een correcte DC-instelling en voldoende kleine AC-stuursignalen erop gesuperponeerd) enz... Vervolgens bestempelen we twee willekeurig gekozen klemmen als <u>ingangsklemmen</u>.

Twee andere klemmen bestempelen we als <u>uitgangsklemmen</u>. We beschouwen enkel nog deze vier klemmen.

Volgens de algemene netwerktheorie kunnen we dit elektrisch netwerk, hoe complex ook, altijd volledig karakteriseren met slechts vier parameters. Dit zijn de zogenaamde <u>vierpoolparameters</u>.

Indien deze vierpoolparameters gekend zijn, kan <u>men alle belangrijke eigenschappen</u> van het elektrisch netwerk (<u>de spanningsversterking</u>, <u>de stroomversterking</u>, <u>de ingangsimpedantie</u>, <u>de uitgangsimpedantie</u> ...) berekenen. Hierbij kunnen standaardformules gebruikt worden. Deze standaardformules zijn onafhankelijk van de inhoud van het netwerk. De belastingsimpedantie \mathbf{Z}_L en de bronimpedantie \mathbf{Z}_G heeft geen invloed op deze formules. Dit betekent dat in de standaardformule enkel de vier vierpoolparameters, \mathbf{Z}_L en \mathbf{Z}_G moeten ingevuld worden om de stroomversterking, de spanningsversterking ... te berekenen.

Steunende op deze vierpoolparameters is het ook mogelijk deze eigenschappen gemakkelijk te bereken bij <u>parallelschakeling</u> of <u>serieschakeling</u> van twee of meer netwerken met gekende vierpoolparameters.

De h-parameters welke we in deze cursus besproken hebben zijn niets anders dan één van de zes soorten vierpoolparameters. Bovendien hebben h_{ie} , h_{re} , h_{fe} en h_{oe} volledig dezelfde betekenis als de in de vierpooltheorie vaak gebruikte notaties h_{11} , h_{12} , h_{21} en h_{22} .

Meer informatie in verband met netwerktheorie en vierpooltheorie kunt u vinden in het boek "Inleiding tot de transistortechniek (deel 1)" van H. T. Martens.

9.2: De GES-parameters

In onze transistor-karakteristieken en in onze definities van de h-parameters, gebruikten we uitsluitend de stromen I_{CE} en I_{BE} en de spanningen U_{CE} en U_{BE} . Dit betekent dat de emitter overal de gemeenschappelijke referentieaansluiting was. Alle stromen en spanningen werden ten opzichte van de emitter gerefereerd. Dit betekent dat we uitgingen van de zogenaamde gemeenschappelijke emitterschakeling GES. De aldus op de GES bepaalde h-parameters krijgen dan ook de index 'e' van emitter mee. Dit geeft de notaties h_{ie} , h_{fe} , h_{oe} en h_{re} .

Men zou ook een meetschakeling met bijhorende karakteristieken kunnen opstellen met de basis (B) of collector (C) als gemeenschappelijk referentiepunt voor alle spanningen en stromen. Men krijgt dan de zogenaamde gemeenschappelijke basisschakeling GBS of gemeenschappelijke collectorschakeling GCS. De parameters die hierbij overeenstemmen noemen we h_{ib} , h_{fb} , h_{ob} , h_{rb} en h_{ic} , h_{fc} , h_{oc} , h_{rc} .

Omdat men blijft meten op een zelfde transistor hoeft het niet te verbazen dat er transformatieformules bestaan die toelaten om bijvoorbeeld uitgaande van de vier GES-parameters de vier GBS-parameters en de vier GCS-parameters te berekenen. Uit de vier GBS-parameters kan men de vier GES-parameters en de vier GCS-parameters berekenen. Uit de vier GCS-parameters kan men de vier GES-parameters en de vier GBS-parameters berekenen.

Later in de cursus komen <u>de transistorversterkers in GES, GBS en GCS</u> uitgebreid aan bod. We zullen daar zien dat we alle elektrische eigenschappen van deze drie schakelingen perfect kunnen <u>berekenen met uitsluitend de GES-parameters</u>. De GBS-parameters en de GCS-parameters worden dan ook slechts zelden gebruikt. We beperken ons in deze cursus dan ook tot deze GES-parameters.

9.3: De transistor als spanningsgestuurde stroombron

Bij <u>werking in normale mode</u> en bij verwaarlozing van het Early-effect, geldt dat de collectorstroom $I_C \cong \beta I_B$.

De <u>stroomversterkingsfactor</u> β <u>is</u> echter <u>niet constant</u>. β verandert niet alleen van transistor tot transistor, maar β is ook afhankelijk van de temperatuur en van de ingestelde collectorstroom I_C . Dit betekent onder meer dat men bij zeer kleine of zeer grote I_C -waarden een andere β in rekening moet brengen dan bij een gemiddelde collectorstroom.

Ondanks al die opmerkingen, geeft <u>de formule volgens Horowitz en Winfield</u> een relatie tussen de spanning U_{BE} en de collectorstroom I_{C} .

$$I_{c} = I_{s} \left(e^{q U_{BE} / T} - 1 \right)$$

Deze formule geeft een exponentieel verband weer tussen I_C en U_{BE} . Aangezien $I_C = \beta$ I_B en aangezien $I_B = I_{BE}$ bepaald is door de <u>PN-junctie tussen de basis en de emitter</u>, is het aannemelijk dat de formule sterk te vergelijken is met de diodevergelijking die het verband geeft tussen I_{AK} en U_{AK} .

Indien gewerkt wordt bij kamertemperatuur, dan is de junctietemperatuur $T_j \cong 300~K$. Aangezien q en k dezelfde waarden zijn als bij de diodekarakteristiek geldt ook hier dat $kT/q \cong 26~mV$. I_S is dan ook de collectorstroom die vloeit bij een $U_{BE} \cong 18~mV$ en een $T_j = T \cong 300~K$.

Zoals elke lekstroom, zal I_S zeer snel stijgen bij toenemende temperatuur. Dit heeft tot gevolg dat I_C netto zal stijgen bij stijgende temperatuur.

De formule van Horowitz en Winfield, die enkel geldt in normale mode, <u>houdt geen</u> rekening met de (kleine) invloed van de collector-emitter-spanning U_{CE} .

De formule van Horowitz en Winfield houdt eveneens geen rekening met de lekstromen. Inderdaad, de formule geeft voor een $U_{BE} = 0$ een $I_{C} = 0$. Dit stemt niet overeen met de realiteit waar I_{C} niet identiek gelijk is aan nul ten gevolge van de lekstroom I_{CBO} .

Ondanks de bovenstaande beperkingen blijkt de formule toch aanvaardbare resultaten op te leveren voor I_C-waarden tussen 10 nA en enkele mA indien men gebruik maakt van moderne kleinsignaal Si-transistoren bij een niet al te hoge temperatuur (onder de 50 °C).

Uit de formule blijkt dat I_C gestuurd wordt door de spanning U_{BE} . Dit betekent dat de transistor beschouwd kan worden als een <u>spanningsgestuurde stroombron</u>. Ten gevolge van de bovenstaande beperkingen moet dan wel opgemerkt worden dat het aanleggen van een constante spanning U_{BE} allesbehalve een stabiele collectorstroom I_C zal opleveren.

Figuur 8.24: De transistor voorgesteld als spanningsgestuurde stroombron

De bovenstaande spanning-stroom-karakteristiek hoort bij een BF494-transistor (NPN) met een U_{CE} = 5 V en een T_i = 25 °C.

9.4: Het hoogfrequente gedrag van een transistor

Bij het bepalen van het equivalent schema van de transistor in Paragraaf 8, gebruikten we de h-parameters. Zoals reeds eerder gesteld zijn die bij lage frequenties reëel en onafhankelijk van de frequentie. Bij hogere frequenties zijn die h-parameters complexe getallen die wel afhankelijk zijn van de frequentie.

Wanneer men het hoogfrequente gedrag van een transistor wil beschrijven, gebruikt men een equivalent schema die opgebouwd is uit spanningsbronnen, stroombronnen, weerstanden en condensatoren. Hierbij kan ofwel gekozen worden voor een π -model of voor een T-model.

Aangezien we in de huidige cursus niet ingaan op de hoogfrequente equivalente schema's, verwijzen we naar de cursus "Elektronica I" van ir. J. Vanneuville en naar het boek "Inleiding tot de transistortechniek (deel 2)" van H. T. Martens.

9.5: Grenswaarden

Zoals elk halfgeleiderelement heeft ook een transistor zijn <u>beperkingen</u> wat betreft de toegelaten stromen en spanningen en ook wat betreft het vermogen welke gedissipeerd kan worden.

De door de fabrikant opgegeven grenswaarden zijn onder meer

- de maximale collectorstroom I_{Cmax}.
- de maximale collector-emitter-spanning met open basis U_{CEOmax} .
- de maximaal toegelaten collector-dissipatie P_{Cmax} . Hierbij is de collectordissipatie $P_{C} = U_{CE} \; I_{C}$.

De toegelaten <u>collectordissipatie</u> P_{Cmax} is begrensd omdat bij een te grote dissipatie de <u>junctietemperatuur</u> T_j <u>te veel stijgt</u> en boven zijn toegelaten maximum T_{jmax} kan komen.

Door bijvoorbeeld met behulp van <u>koelplaten</u> extra warmte af te voeren kan de toegelaten P_{Cmax} opgedreven worden zonder dat de junctietemperatuur T_j te hoog wordt.

De zonet vermelde beperkingen zijn afhankelijk van het gebruikte type transistor. Ze worden door de fabrikant opgegeven in de datasheets. Hieronder volgen een aantal getallenvoorbeelden.

		BC547	BC548	BC549
Max. collector-	U _{CES max}	50 V	30 V	30 V
emitterspanning bij $U_{BE} = 0$				
Max. collector-	U _{CEO max}	45 V	20 V	20 V
emitterspanning bij open basis				
Max. collectorstroom	I _{C max}	100 mA	100 mA	100 mA
Max. collectorpiekstroom	I _{CM max}	200 mA	200 mA	200 mA
Totale vermogendissipatie bij	P _{tot max}	300 mW	300 mW	300 mW
25 °C omgevingstemperatuur				
Max. junctietemperatuur	T _{j max}	175 °C	175 °C	175 °C

9.6: Het Early effect

Bij het bekijken van de <u>uitgangskarakteristieken</u> van de bipolaire transistor zien we het verloop van I_C in functie van U_{CE} . Voor een verschillende waarde van I_B is er een verschillende karakteristiek. Dit ziet u onder meer in Figuur 8.11.

Nu is het zo dat in het actieve gebied de collectorstroom I_C een weinig stijgt als U_{CE} stijgt. Dit <u>stijgende verloop</u> van I_C in functie van U_{CE} is nagenoeg <u>lineair</u>. Dit is het zogenaamde <u>Early effect</u>. Deze helling is gelijk aan $h_{oe} = (\Delta I_C / \Delta U_{CE})$.

Nu is h_{oe} hoger bij een hogere I_B . Dus een hogere uitgangskarakteristiek heeft een grotere helling. Nu is het zo, dat bij het extrapoleren van de uitgangskarakteristieken deze elkaar snijden in een gemeenschappelijk punt op de U_{CE} -as.

Figuur 8.25: De uitgangskarakteristiek

Zoals op Figuur 8.25 te zien is, snijden de geëxtrapoleerde karakteristieken elkaar in een punt van de negatieve U_{CE} -as. De spanning $-U_A$ waarbij dit gebeurt, is de <u>Early spanning</u> U_A .