

Lernen nach Bayes

Prof. Dr.-Ing. J. Marius Zöllner

Prof. Dr.-Ing. Rüdiger Dillmann

Dipl. Inform. Michael Weber

Übersicht

- Motivation
- Theorem von Bayes
- MAP- / ML-Hypothesen
- Optimaler Bayes-Klassifikator
- Naiver Bayes-Klassifikator
- Beispiel: Klassifikation von Texten
- Bayes'sche Netze
- Der EM-Algorithmus
- Zusammenfassung

Was ist Lernen nach Bayes?

Statistische Lernverfahren:

- Kombinieren vorhandenes Wissen (a priori Wahrscheinlichkeiten) mit beobachteten Daten
- Hypothesen können mit einer Wahrscheinlichkeit angegeben werden.
- Jedes Beispiel kann die Glaubwürdigkeit einer bestehenden Hypothese erhöhen oder verringern:
 - → kein Ausschluss bestehender Hypothesen
- Mehrere mögliche Hypothesen können gemeinsam ausgewertet werden, um genauere Ergebnisse zu erzielen.

Warum Lernen nach Bayes?

Erfolgreiche Lernverfahren:

- Naiver Bayes-Klassifikator
- Bayes'sche Netze

Analyse anderer Lernverfahren:

"Gold-Standard" für die Beurteilung von (nicht statistischen) Lernverfahren

Lernen nach Bayes: Schwierigkeiten

Praktische Probleme:

- Initiales Wissen über viele Wahrscheinlichkeiten notwendig
 - Aber: Oft Schätzung basierend auf Hintergrundwissen, vorhandenen Daten, etc. möglich
- Erheblicher Rechenaufwand für optimale Bayes'sche Hypothese im allgemeinen Fall
 - Linear mit Anzahl der möglichen Hypothesen
 - Aber: In speziellen Fällen deutliche Reduzierung des Rechenaufwands möglich

Wahrscheinlichkeitstheorie

Produktregel: Konjunktion zweier Ereignisse A und B

$$P(A \wedge B) = P(A|B)P(B) = P(B|A)P(A)$$

Summenregel: Disjunktion zweier Ereignisse A und B

$$P(A \vee B) = P(A) + P(B) - P(A \wedge B)$$

Theorem der totalen Wahrscheinlichkeit: Für sich gegenseitig ausschließende Ereignisse A_1, \ldots, A_n mit $\sum_{i=1}^n P(A_i) = 1$ gilt

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

Theorem von Bayes

- P(h) Wahrscheinlichkeit, dass h aus H gültig ist (a priori, d.h. vor Beobachtung von D).
- P(D) Wahrscheinlichkeit, dass D als Ereignisdatensatz auftritt (ohne Wissen über gültige Hypothese).
- P(D|h) Wahrscheinlichkeit des Auftretens von D in einer Welt, in der h gilt.
- P(h|D) Wahrscheinlichkeit, dass h wahr ist gegeben die beobachteten Daten D (a posteriori).

Bayes-Theorem Herleitung

$$P(A \land B) = P(A \land B)$$
$$P(B|A)P(A) = P(A|B)P(B)$$

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Beispiel: Medizinische Diagnose

Gegeben:

- 0.8% der Bevölkerung leiden an Krebs.
- Hat man Krebs, fällt der Test in 98% der Fälle positiv aus.
- Hat man keinen Krebs, erzeugt der Test dennoch fälschlicherweise in 3% der Fälle ein positives Ergebnis.

Gesucht:

Wahrscheinlichkeit mit der eine Person deren Test positiv ausgefallen ist tatsächlich Krebs hat?

$$P(A \land B) = P(A|B)P(B) = P(B|A)P(A)$$

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i) \qquad P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

Beispiel: Medizinische Diagnose

Vorwissen über spezielle Krebserkrankung / Labortest:

$$P(\mathsf{Krebs}) = 0.008$$
 $P(\neg \mathsf{Krebs}) = 0.992$ $P(\oplus | \mathsf{Krebs}) = 0.98$ $P(\ominus | \mathsf{Krebs}) = 0.02$ $P(\oplus | \neg \mathsf{Krebs}) = 0.03$ $P(\ominus | \neg \mathsf{Krebs}) = 0.97$

Gesucht: $P(Krebs|\oplus)$

$$\begin{split} P(Krebs|\oplus) &= \frac{P(\oplus|Krebs)P(Krebs)}{P(\oplus)} \\ &= \frac{P(\oplus|Krebs)P(Krebs)}{P(\oplus|Krebs)P(Krebs) + P(\oplus|\neg Krebs)P(\neg Krebs)} \\ &= 0.98 \cdot 0.008/(0.98 \cdot 0.008 + 0.03 \cdot 0.992) \\ &= 0.21 \end{split}$$

Auswahl von Hypothesen

Ziel: Finden der Hypothese h aus H mit der größten Wahrscheinlichkeit gegeben die beobachteten Daten D. Dies ist die Maximum a posteriori (MAP) Hypothese

$$\begin{array}{ll} h_{MAP} &= \arg\max_{h\in H} P(h|D) \\ &= \arg\max_{h\in H} \frac{P(D|h)P(h)}{P(D)} & \text{Bayes} \\ &= \arg\max_{h\in H} P(D|h)P(h) & P(D) = \text{const.} \end{array}$$

Unter der Annahme $P(h_i) = P(h_j)$ lässt sich diese zur Maximum Likelihood (ML) Hypothese vereinfachen:

$$h_{ML} = \arg \max_{h_i \in H} P(D|h_i)$$

Beispiel: Medizinische Diagnose

$$h_{MAP} = \arg \max_{h \in H} P(D|h)P(h)$$

Vorwissen über spezielle Krebserkrankung / Labortest:

$$P(Krebs) = 0.008$$
 $P(\neg Krebs) = 0.992$

$$P(\oplus | \mathsf{Krebs}) = 0.98$$
 $P(\ominus | \mathsf{Krebs}) = 0.02$

$$P(\oplus | \neg \mathsf{Krebs}) = 0.03$$
 $P(\ominus | \neg \mathsf{Krebs}) = 0.97$

Beobachtung: neuer Patient, Labortest⊕

$$P(\oplus | Krebs) P(Krebs) = 0.98 \cdot 0.008 = 0.0078$$

$$P(\oplus | \neg Krebs) P(\neg Krebs) = 0.03 \cdot 0.992 = 0.0298$$

Brute Force Lernen von MAP-Hypothesen

1. Berechne für jede Hypothese $h \in H$ die a posteriori Wahrscheinlichkeit:

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

2. Gib die Hypothese h_{MAP} mit der größten a posteriori Wahrscheinlichkeit aus:

$$h_{MAP} = \arg \max_{h \in H} P(D|h)P(h)$$

Konzeptlernen I

Problemstellung:

- Endlicher Hypothesenraum H über dem Raum der Instanzen X.
- Aufgabe: Lernen eines Zielkonzepts: $c: X \rightarrow \{0, 1\}$
- Feste Sequenz von Instanzen: $\langle x_1, \ldots, x_m \rangle$
- Sequenz der Zielwerte: $D = \langle d_1, \dots, d_m \rangle$

Annahmen:

- Trainingsdaten D sind nicht verrauscht (d.h. $d_i = c(x_i)$)
- Zielkonzept c ist in H enthalten
- Kein Grund a priori anzunehmen, dass irgendeine Hypothese wahrscheinlicher ist als eine andere

Konzeptlernen II

Vorwissen:
$$P(D|h)=\begin{cases} 1 & \text{falls } h(x_i)=d_i, \ \forall d_i \in D \\ 0 & \text{sonst} \end{cases}$$

$$P(h)=\frac{1}{|H|}$$

Berechnung der a posteriori Wahrscheinlichkeit:

Fall (konsistente Hypothesen)

$$P(h \mid D) = \frac{1 \cdot \frac{1}{|H|}}{P(D)} = \frac{1 \cdot \frac{1}{|H|}}{\sum_{h-konsistent} P(D \mid h)P(h)} = \frac{1 \cdot \frac{1}{|H|}}{\frac{|VS_{H,D}|}{|H|}} = \frac{1}{|VS_{H,D}|}$$
Foll (const):

2. Fall (sonst):

$$P(h|D) = \frac{0 \cdot P(h)}{P(D)} = 0$$

Konzeptlernen III

Ergebnis:

$$P(h|D) = \begin{cases} \frac{1}{|VS_{H,D}|} & \text{falls h konsistent mit D} \\ 0 & \text{sonst} \end{cases}$$

 $VS_{H,D}$ Menge der h aus H, die konsistent mit D sind (Versionenraum von H)

- Definition: Ein Lernverfahren ist ein konsistenter Lerner, wenn es eine Hypothese liefert, die keine Fehler auf den Trainingsdaten macht.
- Unter obigen Voraussetzungen gibt jeder konsistente Lerner eine MAP-Hypothese aus
- Methode um induktiven Bias auszudrücken.

Konzeptlernen IV

Entwicklung der a posteriori Wahrscheinlichkeiten mit wachsender Anzahl von Trainingsdaten:

Inkonsistente Hypothesen $P \rightarrow 0$

Lernen einer reell-wertigen Funktion I

Gesucht: reell-wertige Zielfunktion fGegeben: Beispiele $\langle x_i, d_i \rangle$ mit

verrauschten Trainingswerten für d_i :

■ e_i ist eine Zufallsvariable (Rauschen), die unabhängig für alle x_i entsprechend einer Normalverteilung mit Mittelwert $\mu=0$ gezogen wird

Die Maximum Likelihood Hypothese h_{ML} ist diejenige, welche die Summe der Fehlerquadrate minimiert:

$$h_{ML} = \arg\min_{h \in H} \sum_{i=1}^{m} (d_i - h(x_i))^2$$

Lernen einer reell-wertigen Funktion II

$$\begin{array}{ll} h_{ML} &=& \arg\max_{h\in H} P\left(D|h\right) \\ &=& \arg\max_{h\in H} \prod_{i=1}^m P\left(d_i|h\right) \\ &=& \arg\max_{h\in H} \prod_{i=1}^m \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{1}{2}\left(\frac{d_i-h\left(x_i\right)}{\sigma}\right)^2} \\ &=& \arg\max_{h\in H} \sum_{i=1}^m \ln{\frac{1}{\sqrt{2\pi\sigma^2}}} - \frac{1}{2}\left(\frac{d_i-h\left(x_i\right)}{\sigma}\right)^2 \\ &=& \arg\min_{h\in H} \sum_{i=1}^m \left(d_i-h\left(x_i\right)\right)^2 \end{array}$$

Klassifikation neuer Instanzen

Bisher: Suche nach der Hypothese mit der größten Wahrscheinlichkeit gegeben die Daten D.

Jetzt: Welches ist die wahrscheinlichste Klassifikation v_j einer neuen Instanz x?

Beispiel:

$$P(h_1|D) = 0.4, \ P(h_2|D) = 0.3, \ P(h_3|D) = 0.3$$

 $h_1(x) = \oplus, \ h_2(x) = \ominus, \ h_3(x) = \ominus$

 $\rightarrow h_{MAP}(x)$ ist <u>nicht</u> die wahrscheinlichste Klassifikation!

Optimaler Bayes-Klassifikator I

Optimale Klassifikation nach Bayes:

$$v_{OB} = \arg\max_{v_j \in V} \sum_{h_i \in H} P(v_j|h_i)P(h_i|D)$$

Beispiel:

$$P(h_1|D) = 0.4, \ P(\ominus|h_1) = 0, \ P(\oplus|h_1) = 1$$

$$P(h_2|D) = 0.3, \ P(\ominus|h_2) = 1, \ P(\oplus|h_2) = 0$$

$$P(h_3|D) = 0.3, \ P(\ominus|h_3) = 1, \ P(\oplus|h_3) = 0$$

$$\sum_{h_i \in H} P(\oplus|h_i)P(h_i|D) = 0.4$$

$$\sum_{h_i \in H} P(\ominus|h_i)P(h_i|D) = 0.6$$

Optimaler Bayes-Klassifikator II

Vorteil: Kein anderes Klassifikationsverfahren (bei gleichem Hypothesenraum und Vorwissen) schneidet im Durchschnitt besser ab!

Nachteil: Sehr kostenintensiv bei großer Hypothesenanzahl!

Gibbs Algorithmus:

- Wähle h aus H zufällig gemäß P(h|D).
- Nutze h(x) als Klassifikation von x.
- Bestimme Erwartungswert wie vorher

Eigenschaft: Unter bestimmten Annahmen gilt

$$E[error_{Gibbs}] \le 2E[error_{BayesOptimal}]$$

Naiver Bayes-Klassifikator I

Gegeben:

- Instanz x: Konjunktion von Attributen $\langle a_1, a_2 \dots a_n \rangle$
- Endliche Menge von Klassen $V = \{v_1, \dots, v_m\}$
- Menge klassifizierter Beispiele

Gesucht:

Wahrscheinlichste Klasse für eine neue Instanz

$$\begin{split} v_{MAP} &= \arg\max_{v_j \in V} P(v_j | a_1, a_2 \dots a_n) \\ &= \arg\max_{v_j \in V} \frac{P(a_1, a_2 \dots a_n | v_j) P(v_j)}{P(a_1, a_2 \dots a_n)} \\ &= \arg\max_{v_j \in V} P(a_1, a_2 \dots a_n | v_j) P(v_j) \end{split}$$

Naiver Bayes-Klassifikator II

 $P(v_i)$ lässt sich leicht aus dem Auftreten der Klasse v_i in der Trainingsmenge berechnen - einfaches Zählen.

 $P(a_1, a_2 \dots a_n | v_j)$ ist schwerer zu berechnen: Auszählen aller Kombinationen über Attributwerte \rightarrow dazu ist eine riesige Trainingsmenge notwendig.

Vereinfachende Annahme (a_i bedingt unabhängig):

$$P(a_1, a_2 \dots a_n | v_j) = \prod_i P(a_i | v_j)$$

Naiver Bayes-Klassifikator:

$$v_{NB} = \arg\max_{v_j \in V} P(v_j) \prod_i P(a_i|v_j)$$

Bedingte Unabhängigkeit

Definition:

X ist bedingt unabhängig von Y gegeben Z, wenn die Wahrscheinlichkeitsverteilung von X bei gegebenem Wert von Z unabhängig vom Wert von Y ist:

$$(\forall x_i, y_j, z_k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$$

Oder kompakter: P(X|Y,Z) = P(X|Z)

Beispiel:

Donner ist bedingt unabhängig von Regen gegeben Blitz P(Donner|Regen, Blitz) = P(Donner|Blitz)

Naiver Bayes-Klassifikator III

Zusammenfassung:

- $P(v_j)$ und $P(a_i|v_j)$ werden basierend auf den Häufigkeiten in den Trainingsdaten geschätzt.
- Wahrscheinlichkeiten für Klassifikation entspricht gelernter Hypothese.
- Neue Instanzen werden klassifiziert unter Anwendung obiger MAP Regel.
- Wenn Annahme (bedingte Unabhängigkeit der Attribute) erfüllt ist, ist v_{NB} äquivalent zu einer MAP-Klassifikation.

→ Keine explizite Suche im Hypothesenraum!

Beispiel I

Gesucht: $P(v_j)$ und $P(a_i|v_j)$

Vorhersage	Temperatur	Luftfeuchtigkeit	Wind	Tennis?
sonnig	heiß	hoch	schwach	nein
sonnig	heiß	hoch	stark	nein
bedeckt	heiß	hoch	schwach	ja
regnerisch	warm	hoch	schwach	ja
regnerisch	kalt	normal	schwach	ja
regnerisch	kalt	normal	stark	nein
bedeckt	kalt	normal	stark	ja
sonnig	warm	hoch	schwach	nein
sonnig	kalt	normal	schwach	ja
regnerisch	warm	normal	schwach	ja
sonnig	warm	normal	stark	ja
bedeckt	warm	hoch	stark	ja
bedeckt	heiß	normal	schwach	ja
regnerisch	warm	hoch	stark	nein

Beispiel II

Neue Instanz: < sonnig, kalt, hoch, stark >

$$v_{NB} = \arg\max_{v_j \in V} P(v_j) \prod_i P(a_i|v_j)$$

$$P(\text{Tennis=ja}) = \frac{9}{14} = 0.64$$

$$P(\text{Wind=stark}|\text{Tennis=ja}) = \frac{3}{9} = 0.33$$

$$P(\text{Tennis=nein}) = \frac{5}{14} = 0.36$$

$$P(\text{Wind=stark}|\text{Tennis=nein}) = \frac{3}{5} = 0.60$$
:

P(ja)P(sonnig|ja)P(kalt|ja)P(hoch|ja)P(stark|ja) = 0.0053P(nein)P(sonnig|nein)P(kalt|nein)P(hoch|nein)P(stark|nein) = 0.0206

→ Klassifikation: Tennis = nein

Normierte Wahrscheinlichkeit: $\frac{0.0206}{0.0206 + 0.0053} = 0.795$

Schätzen von Wahrscheinlichkeiten

Problem: Was, wenn für eine Klasse v_j ein Attribut a_i einen bestimmten Wert in den Daten gar nicht annimmt?

$$\widehat{P}(a_i|v_j) = 0 \quad \Rightarrow \quad \widehat{P}(v_j) \prod_i \widehat{P}(a_i|v_j) = 0$$

Lösung:
$$\widehat{P}(a_i|v_j) \leftarrow \frac{n_c + mp}{n+m}$$
 (m- Laplace Schätzer)

- n Anzahl der Beispiele mit $v = v_j$
- n_c Anzahl der Beispiele mit $v=v_j$ und $a=a_j$
- p A priori Wahrscheinlichkeit für $\widehat{P}(a_i|v_j)$ z.B. $p = \frac{1}{|\textit{Werte}(a_i)|}$
- m Anzahl der "virtuellen Beispiele" gewichtet mit a \dot{p} riori Wahrscheinlichkeit p

Klassifikation von Texten I

Anwendungen:

- Lernen, welche Nachrichten interessant sind
- Lernen der Themenzugehörigkeit von Webseiten

Motivation:

Statistische Verfahren sind sehr erfolgreich bei der Klassifikation von Texten.

Frage:

Welche Attribute sind geeignet, um Textdokumente zu repräsentieren?

Klassifikation von Texten II

Gesucht Zielfunktion: Interessant? : Dokument $\rightarrow \{\oplus,\ominus\}$

- 1. Repräsentation jedes Textes als Vektor aus Wörtern: Ein Attribut pro Wortposition im Dokument.
- 2. Lernphase: Verwende die Trainingsbeispiele zum Schätzen von $P(\oplus)$, $P(\ominus)$, $P(doc|\oplus)$, $P(doc|\ominus)$

Es gilt
$$P(doc|v_j) = \prod_{i=1}^{\mathsf{length(doc)}} P(a_i = w_k|v_j)$$

wobei $P(a_i = w_k | v_j)$ die Wahrscheinlichkeit ist, das Wort w_k an der Position a_i zu finden, gegeben v_j .

Zusätzliche "weichere" Annahme (bag of words):

$$P(a_i = w_k | v_j) = P(a_m = w_k | v_j), \ \forall i, m$$

Klassifikation von Texten: Lernphase

- Sammle Vokabular:
 Vokabular ← Alle Wörter und Token aus den Beispielen
- 2. Berechne $P(v_j)$ und $P(w_k|v_j)$ für alle v_j : $\operatorname{docs}_j \leftarrow \operatorname{Untermenge\ der\ Beispiele\ mit\ } v_j$ $P(v_j) \leftarrow \frac{|\operatorname{docs}_j|}{|\operatorname{Beispiele}|}$

 $\begin{array}{c} \operatorname{Text}_j \leftarrow \operatorname{Konkatenation aller Elemente \ von \ docs}_j \\ n \leftarrow \operatorname{Gesamtanzahl \ Wortpositionen \ in \ Text}_j \\ n_k \leftarrow \operatorname{Anzahl \ Vorkommen \ von} w_k \ \operatorname{in \ Text}_j \\ P(w_k|v_j) \leftarrow \frac{n_k+1}{n+|\operatorname{Vokabular}|} \end{aligned}$ (Laplace Schätzer)

Klassifikation von Texten: Klassifikationsphase

- Positionen ← Alle Positionen, die ein Token enthalten, das in Vokabular vorkommt.
- 2. Berechne v_{NB}

$$v_{NB} = \arg\max_{v_j \in V} P(v_j) \prod_{i \in \text{Positionen}} P(a_i | v_j)$$

(Token-Positionen die nicht im Beispiel vorhanden sind werden ignoriert)

Klassifikation von Texten: Anwendung (s. Mitchel)

Anwendung:

- Gegeben: 20 Newsgroups mit ca. je 1000 Beiträgen
- Gesucht: Zuordnung neuer Beiträge zu den Newsgroups

Klassifikator:

- Naiver Bayes-Klassifikator wie oben, aber
 - 100 häufigsten Wörter wurden aus Vokabular entfernt
 - lacktriangle Wörter mit $w_k < 3$ wurden aus Vokabular entfernt

Ergebnis:

Klassifikationsgüte von 89% (vgl. zufälliges Raten: 5%)

Bayes'sche Netze I

Motivation:

- Naive Bayes-Annahme der bedingten Unabhängigkeit oft zu restriktiv.
- Ohne solche, vereinfachenden Annahmen ist Lernen nach Bayes jedoch oft nicht möglich.
- Bayes'sche Netze beschreiben bedingte Abhängigkeiten/Unabhängigkeiten bzgl. Untermengen von Variablen.
 - → Erlauben somit die Kombination von a priori Wissen über bedingte (Un-)Abhängigkeiten von Variablen mit den beobachteten Trainingsdaten.

Bayes'sche Netze I

- Bayes'sche Netze beschreiben bedingte Abhängigkeiten/Unabhängigkeiten bzgl. Untermengen von Variablen.
 - → Erlauben somit die Kombination von a priori Wissen über bedingte (Un-)Abhängigkeiten von Variablen mit den beobachteten Trainingsdaten.

Bayes'sche Netze II

Repräsentieren eine gemeinsame Wahrscheinlichkeitsverteilung von Zufallsvariablen:

- Gerichteter, azyklischer Graph
- Jede Zufallsvariable wird durch einen Knoten im Graph repräsentiert
- Definition: X ist Nachfolger von Y, wenn ein gerichteter Pfad von Y nach X existiert.
- Die Kanten repräsentieren die Zusicherung, dass eine Variable von ihren Nicht-Nachfolgern bedingt unabhängig ist, gegeben ihre direkten Vorgänger.
- Lokale Tabellen mit bedingten Wahrscheinlichkeiten für jede Variable gegeben ihre direkten Vorgänger.

Bayes'sche Netze III

P(L|S,R)

	S, R	$S, \neg R$	$\neg S, R$	$\neg S, \neg R$
L	0.4	0.1	0.8	0.2
$\neg L$	0.6	0.9	0.2	0.8

Lagerfeuer

Es gilt:
$$P(y_1, \dots, y_n) = \prod_{i=1}^n P(y_i | Vorgänger(Y_i))$$

wobei Vorgänger (Y_i) die Menge der direkten Vorgänger von Y_i ist.

Bayes'sche Netze: Inferenz

Wie lassen sich die Werte einer oder mehrerer Netzvariablen bestimmen, gegeben die beobachteten Werte von anderen?

- Netz enthält alle benötigten Informationen
- Ableitung einer einzigen Variable ist einfach
- Aber: Der allgemeine Fall ist NP-vollständig

In der Praxis:

- Einige Netztopologien erlauben exakte Inferenz
- Verwendung von Monte Carlo Methoden zur Zufallssimulation von Netzen: Berechnung von approximierten Lösungen

Bayes'sche Netze: Lernen

Aufgabenstellungen:

- Struktur des Netzes bekannt oder unbekannt
- Alle Variablen direkt beobachtbar oder nur teilweise

Struktur bekannt, alle Variablen beobachtbar:

Lernen wie für Naiven Bayes-Klassifikator

Struktur bekannt, nur einige Variablen beobachtbar:

Gradientenanstieg, EM

Struktur unbekannt:

Heuristische Verfahren

Der EM-Algorithmus

EM = Expectation Maximization

Problemstellungen:

- Daten sind nur partiell beobachtbar
- Unüberwachtes Clustering (Zielwert ist nicht beobachtbar)
- Überwachtes Lernen (einige Attribute der Instanzen sind nicht beobachtbar)

Anwendungen:

- Trainieren von Bayes'schen Netzen
- Lernen von Hidden Markov Modellen

EM - Mixtur aus k Gaußverteilungen

Generierung jeder Instanz x wie folgt:

- Wähle eine der k Gaußverteilungen mit gleichmäßiger Wahrscheinlichkeit
- Generiere eine Instanz zufällig entsprechend der gewählten Gaußverteilung

EM für die Bestimmung der k Mittelwerte I

Gegeben:

- Instanzen aus X generiert entsprechend einer Mixtur aus k Gaußverteilungen
- Unbekannte Mittelwerte $<\mu_1,\ldots,\mu_k>$
- lacktriangle Es ist unbekannt welche Instanz x_i entsprechend welcher Gaußverteilung generiert wurde

Gesucht: Maximum Likelihood Schätzung für $h = < \mu_1, \dots, \mu_k >$

- Erweiterte Sicht: Beschreibung der Instanzen durch: $y_i = < x_i, z_{i1}, z_{i2} > z_{ij}$ ist 1, falls x_i entsprechend der j ten Gaußverteilung gezogen wurde, sonst 0
 - $\rightarrow x_i$ beobachtbar, z_{ij} nicht beobachtbar

EM – Modell – "anschaulich"

Wenn x und h bekannt $\rightarrow z$ Wenn z und x bekannt $\rightarrow h$

EM für die Bestimmung der k (=2) Mittelwerte II

Initialisierung: Wähle $h=<\mu_1,\mu_2>$ zufällig.

- E-Schritt: Berechne den Erwartungswert $E\left[z_{ij}\right]$ für jede versteckte Variable z_{ij} , unter der Annahme, dass die aktuelle Hypothese $h=<\mu_1,\mu_2>$ gültig ist.
- M-Schritt: Berechne eine neue Maximum Likelihood Hypothese $h'=<\mu_1',\mu_2'>$, unter der Annahme, dass die Werte der versteckten Variablen die im E-Schritt berechneten Erwartungswerte annehmen. Ersetze $h=<\mu_1,\mu_2>$ durch die neue Hypothese $h'=<\mu_1',\mu_2'>$ und iteriere.

EM für die Bestimmung der k (=2) Mittelwerte III

Beispiel: EM für obige Mixtur aus 2 Gaußverteilungen.

E-Schritt:
$$E\left[z_{ij}\right] = \frac{p\left(x = x_i | \mu = \mu_j\right)}{\sum_{n=1}^{2} p\left(x = x_i | \mu = \mu_n\right)}$$

= $\frac{\exp{-\frac{1}{2\sigma^2}\left(x_i - \mu_j\right)^2}}{\sum_{n=1}^{2} \exp{-\frac{1}{2\sigma^2}\left(x_i - \mu_n\right)^2}}$

M-Schritt:
$$\mu_j \leftarrow \frac{1}{m} \sum_{i=1}^m E\left[z_{ij}\right] x_i$$

Eigenschaften des EM-Algorithmus

- Nonvergiert gegen eine lokale Maximum Likelihood Hypothese und liefert Schätzungen für die versteckten Variablen $z_{i\,j}$.
- Sucht die Maximum Likelihood Hypothese h', welche $E [\ln P(Y|h')]$ maximiert, wobei
 - $lackbox{1}{\bullet} Y$ die vollständigen Daten sind (beobachtbare plus versteckte Variablen)
 - Der Erwartungswert über die möglichen Werte der versteckten Variablen berechnet wird

Allgemeines EM-Problem

Gegeben:

- Beobachtbare Daten $X = \{x_1, \dots, x_m\}$
- Nicht beobachtbare Daten $Z = \{z_1, \dots, z_m\}$
- Parametrisierte Wahrscheinlichkeitsverteilung $P\left(Y|h\right)$, wobei
 - $Y = \{y_1, \dots, y_m\}$ die vollständigen Daten $Y = X \cup Z$ sind
 - h die Parameter sind

Gesucht:

Hypothese h , welche E [In $P\left(Y|h
ight)$] (lokal) maximiert

Allgemeines EM-Verfahren

Definiere Likelihood Funktion Q, welche $Y = X \cup Z$ unter Verwendung der beobachtbaren Daten X und der aktuellen Parameter h berechnet, um Z zu schätzen.

$$Q \leftarrow E\left[\ln P\left(Y|h^*\right)|h,X\right]$$

E-Schritt: Berechne P(Z/X, h) unter Verwendung der aktuellen Hypothese h und der beobachtbaren Daten X.

M-Schritt: Ersetze Hypothese h mit Hypothese h', welche die Q Funktion maximiert.

$$h' \leftarrow \arg\max_{h'} Q$$

Zusammenfassung I

- Bayes-Methoden ermitteln a posteriori Wahrscheinlichkeiten für Hypothesen basierend auf angenommenen a priori Wahrscheinlichkeiten und beobachteten Daten.
- Mit Bayes-Methoden kann wahrscheinlichste Hypothese (MAP-Hypothese) bestimmt werden ("optimale" Hypothese).
- Der Optimale Bayes-Klassifikator bestimmt die wahrscheinlichste Klassifikation einer neuen Instanz aus den gewichteten Vorhersagen aller Hypothesen.
- Der Naive Bayes-Klassifikator ist ein erfolgreiches Lernverfahren. Annahme: bedingte Unabhängigkeit der Attributwerte.

Zusammenfassung II

- Bayes-Methoden erlauben die Analyse anderer Lernalgorithmen, die nicht direkt das Bayes-Theorem anwenden.
- Bayes'sche Netze beschreiben gemeinsame Wahrscheinlichkeitsverteilungen mit Hilfe eines gerichteten Graphen und lokalen Wahrscheinlichkeitstabellen.
- Bayes'sche Netze modellieren bedingte Unabhängigkeiten in Untermengen von Variablen. Weniger restriktiv als der Naive Bayes-Klassifikator.
- Der EM-Algorithmus erlaubt den Umgang mit nicht beobachtbaren Zufallsvariablen.

Einordnung

Typ der Inferenz
Ebenen des Lernens
Lernvorgang
Beispielgebung
Umfang der Beispiele

Hintergrundwissen

Literatur

- [1] Tom Mitchell: Machine Learning. McGraw-Hill, New York, 1997. Kap 6.
- [2] Tom Mitchell: Homepage.
 - http://www-2.cs.cmu.edu/~tom/
 - Programm und Daten zum Naiven Bayes-Klassifikator
- [3] Andrew W. Moore: Data Mining Tutorials. http://www-2.cs.cmu.edu/~awm/tutorials/
- [4] S. Russel, P. Norvig: Artificial Intelligence: A Modern Approach. Prentice Hall, 2nd Edition, 2003.
- [5] Christopher M. Bishop: Pattern Recognition and Machine Learning. Springer, 2006.

