Chapter 26 Current and Resistance

Chap. 26-1 Electric Current

Chap. 26-2 Current Density

Chap. 26-3 Resistance and Resistivity

Chap. 26-4 Ohm's Law

Chap. 26-5 Power, Semiconductors, Superconductors

Chap. 26-1 Electric Current

전하이동의 예 :

벼락, 신경전류, 전기회로, 태양풍(solar wind), 우주(방사)선(cosmic rays) 전하이동과 전류 사이의 관계

- 전하의 이동이 곧 전류는 아님: 전류는 알속전하의 이동을 뜻함.
- 전하는 이동하지만 전류가 없는 경우의 보기:
 - 1) 구리도선 속의 자유전자: 무질서 열운동 ⇒ 방향 상쇄
 - 2) 물의 흐름: 음,양 전하가 똑같이 흘러감 ⇒ 부호 상쇄

전류의 정의

: 단위 시간 (1초) 동안 도체의 단면을 지나간 알짜 전하량

Chap. 26-1 Electric Current

$$i \equiv \frac{dq}{dt}$$
 [1 Ampere = 1 A = 1 C/s]

전류의 방향: 실제 전하 운반자는 음전하(전자)이지만, 관례상 양전하 이동방향을 전류의 방향으로 정의 함.

Chap. 26-1 Electric Current

- Electric current is a net flow of electric charge.
 - Quantitatively, current is the rate at which charge crosses a given area.
 - For steady current,

$$I = \frac{\mathsf{D}Q}{\mathsf{D}t}$$

When current varies with time, its instantaneous value is given by

$$I = \frac{dQ}{dt}$$

- The direction of the current corres ponds to the direction of flow of the *positive* charges.
- The SI unit of current is the ampere (A), equal to 1 C/s.

$$1 A = 1 C/sec$$

Chap. 26-2 Current Density

전류밀도 J: 단위 면적을 단위시간(1초) 동안에 지나가는 전하량

$$i = \int \vec{J} \cdot d\vec{A}$$

전자의 유동속력 (V_d)과 전류밀도 (J)

$$q = (nAL)e \leftarrow n$$
: 전하밀도 (단위부피당 전하 수)

$$t = \frac{L}{v_d} \rightarrow i = \frac{q}{t} = \frac{nALe}{L/v_d} = nAev_d$$

$$J = \frac{i}{A} \rightarrow v_d = \frac{i}{nAe} = \frac{J}{ne}$$

$$\vec{J} = (ne)\vec{v}_d$$

Chap. 26-3 Resistance and Resistivity

- 저항 (Resistence)
 - 물질에 따라 전기 전도도의 차이가 있다.
 - 전도체에 걸린 퍼텐셜차와 흐르는 전류의 크기 사이의 관계

$$i=i(\Delta V)\equiv \cfrac{1}{R(\Delta V)}\Delta V\,,\qquad \pmb{R}\equiv \cfrac{\Delta V}{i}$$
 저항 - 전류의 흐름을 방해하는 물체의 특성

• 저항의 단위 : 옴(Ohm), $\Omega \equiv \frac{V}{A}$

■ 음(Ohm)의 법칙 :
$$R = \frac{\Delta V}{i} =$$
 상수 ← $\frac{\Delta V}{i}$ 에 의존하지 않는 상수 (온도에는 의존)

- 물체의 특성 : 물질 + 기하구조
- 대부분의 전도체는 옴의 법칙을 따른다.
- 옴의 법칙을 따르지 않는 물질도 있다.

Chap. 26-3 Resistance and Resistivity

- 비저항 (Resistivity)
 - 비저항 물질이 전류의 흐름을 방해하는 정도

$$\rho = \frac{E}{J}$$

- 비저항의 단위 : $[\rho] = \frac{[E]}{[J]} = \frac{\mathrm{V/m}}{\mathrm{A/m^2}} = \frac{\mathrm{V\,m}}{\mathrm{A}} = \Omega\,\mathrm{m}$
- 전도율 (conductivity)

$$\sigma = rac{1}{
ho}\,, \qquad \quad ec{J} = \sigma ec{E}$$

• 비저항과 저항의 관계 길이가 L, 단면적 A 인 균일한 전도체를 고려해보자.

$$E = \frac{\Delta V}{L}, \quad J = \frac{i}{A} \quad \Rightarrow \quad \rho = \frac{E}{J} = \frac{\Delta V/L}{i/A} = \frac{\Delta V}{i} \frac{A}{L} = R \frac{A}{L}$$

$$R =
ho \, rac{L}{A}$$

Chap. 26-3 Resistance and Resistivity

온도에 따른 비저항 변화

$$\rho = \rho_0 \left[1 + \alpha (T - T_0) \right]$$

$$\alpha = \frac{1}{\rho_0} \frac{\Delta \rho}{\Delta T}$$
 : 비저항 온도계수

A CONTRACT OF THE PARTY OF THE	The Resistivity and the Temperature Coefficient of the Resistiv for Some Representative Conductors		
Material	Resistivity, $ ho$ at 20 °C (10 ⁻⁸ Ω m)	Temperature Coefficient, α (10 ⁻³ K ⁻¹)	
Silver	1.62	3.8	
Copper	1.72	3.9	
Gold	2.44	3.4	
Aluminum	2.82	3.9	
Brass	3.9	2	
Tungsten	5.51	4.5	
Nickel	7	5.9	
Iron	9.7	5	
Steel	11	5	
Tantalum	13	3.1	
Lead	22	4.3	
Constantan	49	0.01	
Stainless steel	70	1	
Mercury	95.8	0.89	
Nichrome	108	0.4	

The values for steel and stainless steel depend strongly on the type of steel.

Chap. 26-4 Ohm's Law

Ohm 법칙: 전류밀도가 가해준 전기장에 정비례

$$\vec{E} = \rho \vec{J}$$

→ 어떤 전도물질의 비저항이 전기장의 크기나 방향에 무관하면, Ohm 법칙에 따르는 물질이다.

법칙에 따른다고 할 수 있음.

→ 어떤 장치의 저항이 퍼텐셜차의 크기나 방향에 무관하면, Ohm 법칙에 따르는 장치이다.

Chap. 26-4 Ohm's Law

Ohm의 법칙에 대한 미시적 관점

자유전자 모형:

금속의 전도전자(conduction electron)는 그릇 속의 공기 분자처럼 금속 안에서 열 운동을 하며 자유로이 돌아다님.

전기장을 걸어준 금속에서의 전도전자는 제멋대로 운동(구 리 경우 : v ~ 1.6 x 10⁶ m/s)하면서 전기장의 반대방향으 로 천천히 이동함. (v_d: 유동속력 ~ 4 x 10⁻⁷ m/s)

전기장에 의한 전자의 가속도 :
$$a = \frac{F}{m} = \frac{eE}{m}$$

충돌간 평균자유시간
$$\tau$$
 동안 전자의 유동속력 : $v_d = a\tau = \frac{eE\tau}{m}$

$$\vec{J} = (ne)\vec{v}_d \longrightarrow v_d = \frac{J}{ne} = \frac{eE\tau}{m} \longrightarrow E = \left(\frac{m}{e^2n\tau}\right)J$$

$$\rho = \frac{1}{\sigma} = \frac{m}{e^2 n \tau}$$
 : τ 도 E에 무관한 물질의 상수

Chap. 26-4 Ohm's Law

 Table 24.2
 Microscopic and Macroscopic Quantities and Ohm's Law

Microscopic	Macroscopic	Relation
Electric field, \vec{E}	Voltage, V	\overrightarrow{E} is defined at each point in a material; V is the integral of \overrightarrow{E} over a path. In a uniform field, $V = EL$.
Current density, \vec{J}	Current, I	\overrightarrow{J} is defined at each point in a material; I is the flux—the surface integral—of \overrightarrow{J} over an area. With uniform current density, $I = JA$.
Resistivity, ρ	Resistance, R	ρ is a property of a given material; R is a property of a particular piece of material. In a piece with uniform cross section, $R = \rho L/A$.
Ohm's law $\vec{J} = \frac{\vec{E}}{\rho}$	Ohm's law $I = \frac{V}{R}$	Microscopic version relates current density to electric field at a point in a material. Macroscopic version relates current through to voltage across a given piece of material.

Chap. 26-5 Power, Semiconductors, Superconductors

Electric Power

$$p \equiv \frac{dU}{dt} = \frac{Vdq}{dt} = iV$$

$$\begin{bmatrix} V \cdot A \end{bmatrix} \rightarrow V \cdot A = \left(\frac{J}{C}\right) \left(\frac{C}{s}\right) = \frac{J}{s} = W$$
$$1kWh = \left(10^3\right) W \cdot 3600 \, sec = 3.6 \times 10^6 \, J$$

$$p = iV$$

$$= i^{2}R$$

$$= \frac{V^{2}}{R}$$

저항에서 열에너지로 에너지 소모하는 비율

Chap. 26-5 Power, Semiconductors, Superconductors

- Conduction occurs differently in different types of materials:
 - In metallic conductors, current is carried by free electrons.
 - In ionic solutions, current is carried by positive and negative ions.
 - Plasmas are ionized gases, with current carried by electrons and ions.
 - Semiconductors involve current carried by both electrons and "holes"—absences of electrons in a crystal structure.
 - Semiconductors are at the heart of modern electronics.
 - Their electrical properties can be altered by the controlled addition of small amounts of impurities.
 - **Superconductors** offer zero resistance to the flow of current, and the us can transmit electric power without loss of energy.
 - Known superconducting materials all require temperatures far bel ow typical ambient temperatures.

Electron and hole move

Chap. 26-5 Power, Semiconductors, Superconductors

초전도체 (Superconductor)

여러가지 초전도체의 임계온도 (Critical Temperature)

Materials	Tc (K)
YBa ₂ Cu ₃ O ₇	92
Bi-Sr-Ca-Cu-O	105
Tl-Ba-Ca-Cu-O	125
$HgBa_2Ca_2Cu_3O_8$	134
Nb₃Ge	23.2
Nb_3Sn	21.05
Nb	9.46
Pb	7.18
Hg	4.15
Sn	3.72
Al	1.19
Zn	0.88

액체질소의 온도 : **77K (-196** ℃) 액체헬륨의 온도 : **4K (-269** ℃)

기전력 (electromotive force : emf)

- 1. 기전력(electro-motive force: emf)
 - · 두 단자 사이에 전위차를 유지시켜 주는 능력(힘)

- · ᢄ: emf, 단위는 전압 (V)으로 표시
- 기전력 장치들
 전지, 발전기, 태양전지, 연료전지등
 이들을 보통 "전원(battery)"이라고 부름

저항기의 직렬연결

실마리 : 전류는 일정

$$V_{emf} = iR_1 + iR_2 = iR_{\text{ET}}$$

$$\therefore R_{\frac{1}{5}} = R_1 + R_2$$

직렬연결된 저항기의 등가 저항: 각 저항의 합

$$R_{\frac{r}{5}7} = \sum_{i=1}^{n} R_{i}$$

저항기의 병렬연결

실마리: 전압은 일정

$$i_{1} = \frac{V_{emf}}{R_{1}}, \quad i_{2} = \frac{V_{emf}}{R_{2}}$$

$$i = i_{1} + i_{2} = \frac{V_{emf}}{R_{1}} + \frac{V_{emf}}{R_{2}}$$

$$\therefore \quad \frac{1}{R_{\frac{r}{6},7}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$$

병렬연결된 저항기의 등가 저항: 각 저항의 역수 합의 역수

$$\frac{1}{R_{\frac{r}{6}7}} = \sum_{i=1}^{n} \frac{1}{R_i}$$

기전력이란:

단위 전하를 낮은 퍼텐셜에서 높은 퍼텐셜로 이동시키기 위해 필요한 일

$$\varepsilon \equiv \frac{dW}{dq} \quad [J/C] = [V]$$

회로규칙(loop rule) : 고리회로를 따라 퍼텐셜 차를 더해나가면 그 결과는 0 이다.

$$\sum_{closed} \Delta V = 0$$

a 에서 시작하여 전류방향으로 한바퀴 돌면,

$$V_a + \varepsilon - iR = V_a$$

 $\varepsilon - iR = 0$

a 에서 시작하여 전류방향 반대로 한바퀴 돌면,

$$iR - \varepsilon = 0$$

Kirchhoff의 법칙

$$\sum_{closed} \!\! \Delta V = 0$$

a → b 로

가는 동안

R 과 **은** 에서의

퍼텐셜 변화

$$\Delta V = V_b - V_a = IR$$

$$\Delta V = V_b - V_a = IR$$

$$\Delta V = V_b - V_a = \varepsilon$$

$$\Delta V = V_b - V_a = \varepsilon$$

$$\Delta V = V_b - V_a = -\varepsilon$$

$$\Delta V = V_b - V_a = -\varepsilon$$

1.
$$\sum_{closed} \Delta V = 0$$

Energy conservation

2. $\sum_{a} i_{a} = 0$ (접점-junction) \Longrightarrow Charge conservation

$$\sum_{i} i = -i_1 + i_2 + i_3 = 0$$

$$i_1 = i_2 + i_3$$

Summary

$$i = \int \vec{J} \cdot d\vec{A}$$
 $\vec{J} = (ne)\vec{v}_d$

$$\vec{J} = (ne)\vec{v}_d$$

$$R \equiv \frac{V}{i}$$

$$\rho \equiv \frac{E}{J}$$

$$\sigma \equiv \frac{1}{\rho}$$

$$\vec{E} = \rho \vec{J}$$
 $V = iR$

$$V = iR$$

$$p = iV = i^2 R = \frac{V^2}{R}$$

Electrical Safety

- Electric current flowing through the human body is dangerous.
 - The table below lists the effects of various currents.
 - Much lower currents can be dangerous if applied internally.
 - It takes voltage to drive current through the body.
 - Thus, it's a combination of high voltage and the capability to supply at least tens of milliamperes (mA) that's most dangerous.

Table 24.3 Effects of Externally Applied Current on Humans

Current Range	Effect	
0.5–2 mA	Threshold of sensation	
10–15 mA	Involuntary muscle contractions; can't let go	
15-100 mA	Severe shock; muscle control lost; breathing difficult	
100-200 mA	Fibrillation of heart; death within minutes	
>200 mA	Cardiac arrest; breathing stops; severe burns	

Grounding for Electrical Safety

- In conventional power systems, one side of the power line is connected to the ground.
 - This prevents the power system from reaching arbit rary high potentials with respect to ground.
 - But it presents danger in the event of a failure that brings a person into contact with the "hot" wire.
 - Grounded appliances and tools reduce this danger.
 - So do ground-fault circuit interrupters (GFCIs).

(a)