## REPASO ESTADISTICA - INFERENCIAL

/ 15TRIBULIONES PROBABILIDAD - TAN LA PROBABILIDAD DE OCURRENCA DE ÉVENTOS EXDERIMENTO

NORMAL-CONTINUA

La Distribución Normal Estandarizada



POISSON - DISCRETA - MISMEND DE OBSERVACIONES EN UN PERIODO DE TLEMPO

BERNOVIUS - LANGAR UNA MONERA - EJEMPIO TIPILO

$$X \in \{0, 1\}$$

$$\chi \in \{0, 1\}$$

$$\int (\chi) = \mathbb{P}(\chi = \omega) = \rho^{\omega} (1 - \rho)^{1 - \omega}$$

BINOMIAL - EN UN EXPERIMENTO BERNOULLI QUE REPETIMOS n VECES CUINTAS VECES DETENGO

EXPONENCIAL - TIEMPO QUE PASA ANTES DE DUE OCURRA UN EVENTO EN UN PROCESO POISSON.

| 1/05               | INTENESA                               | 590E0             | / 0                                   | EDAD              | PARMEN!                                 | a De     | A( 1) 11 1105           | OK-           | AA           |
|--------------------|----------------------------------------|-------------------|---------------------------------------|-------------------|-----------------------------------------|----------|-------------------------|---------------|--------------|
|                    | S EN M                                 |                   |                                       | ( )               | , 19, 191                               |          | 7. 20707003             | <i>,</i> ,,,  | 101463111143 |
| 70-71-10- 31-71-01 | , , , , , ,                            |                   |                                       |                   |                                         |          | Sola                    | C1017         |              |
| Paul               | 1,000 - Je                             | -<br>2001 (       | Ca)                                   | Accomp            | 20.5                                    |          | 100                     |               |              |
| 1/100              | 100N - Te<br>10TMA - 50                |                   | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | ACOMP             | 200                                     | . 0      |                         | $Q_{ij}$      |              |
| 7000               | 57701                                  | G ( ON ) JAT O    | DE                                    | <i>E</i> 3        | 4 POB                                   | W1610N   |                         | 7             | MUESTNA      |
| (a) x,             | $\gamma_1, \gamma_2, \ldots, \gamma_n$ | Xn Van            | 21ABLE)                               | ALEAT             | MIAS                                    | N :      | # 04700 /               | 4vesm         | <i>/</i> _   |
|                    | NDEDENDENCA                            |                   |                                       |                   |                                         |          |                         |               |              |
|                    |                                        |                   |                                       |                   | B)= F                                   |          | =                       |               |              |
| (c) P              | )<br>20VIEN EN                         |                   |                                       |                   |                                         |          |                         |               |              |
|                    | λ                                      | (; ~ N(           | MIS                                   | , 2)              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          |                         |               |              |
|                    |                                        |                   |                                       |                   | $\mathcal{M}$ :                         | MEDIA    | POBLACIONAL<br>ZA POBLA |               |              |
|                    |                                        | V<br>DIST121BOYEN |                                       |                   | ے ک                                     | VA02192- | ZA PORIA                | CIONA         |              |
|                    |                                        | COMO              |                                       |                   |                                         | , ,      | C 14                    | 210,0112      |              |
| 3 MAN              | IENAS DE I                             | NPENIALOS         |                                       |                   |                                         |          |                         |               |              |
| /VII-              |                                        | 10 7 6 10 10 00   | ,                                     |                   |                                         |          |                         |               |              |
| - Esi              | -IMACION PUN                           | TUAL: (           | -<br>-ON U                            | NA F              | INCIGN D                                | DE 44 ,  | MUESTRA QU              | 1 <i>6</i> 78 | ESTIMAR      |
|                    | ANAMETODS                              |                   | -                                     | ·                 |                                         | ,        |                         |               | G = 7        |
| ,                  |                                        |                   |                                       |                   |                                         |          | n                       |               |              |
| (a) 1              | PEDIO M                                | NE STAN           |                                       | $\overline{\chi}$ | $=\frac{\chi_{1}+\chi_{2}}{2}$          | 2++Xn    | = = 1 %                 |               |              |
|                    | / (0.12                                | 00 3.100          |                                       | ·                 |                                         | Л        | n                       |               |              |
| _                  | ESPENANZA                              |                   | ET 5                                  | ~7=               | M                                       | Pro      | PIEDAD DE               |               |              |
|                    |                                        |                   |                                       |                   |                                         |          | SESGAMIENTO             |               |              |
|                    | Vancanas                               | Van               | 5=7                                   | = 6               | z /                                     | //       |                         |               |              |
|                    | N WALLE BY                             | <i>V</i> c        |                                       | /                 |                                         |          |                         |               |              |
|                    |                                        |                   |                                       |                   | //                                      |          |                         |               |              |
| PIST               | RIBUCIÓN                               | 2                 | -<br>( N                              | N()               | $u, \frac{\delta'}{h}$                  | ()       |                         |               |              |
| , , , , ,          | ,                                      |                   | ` /                                   | , , ( )           | 1 / N                                   | /        |                         |               |              |

$$\overline{\chi} = \underbrace{\sum_{i:1}^{n} \chi_{i}}_{N} \implies \underbrace{N\overline{\chi} - \sum_{i:1}^{n} \chi_{i}}_{N-COMPONENTES} = 0$$

$$\Rightarrow n \bar{x} - [x_1 + x_2 + \dots + x_n] = 0$$

$$\Rightarrow (\bar{\chi} - \chi_1) + (\bar{\chi} - \chi_2) + \dots + (\bar{\chi} - \chi_n) = 0$$

$$5$$
, yo conorco  $\overline{X}$  y  $(n-1)$  DATOS

$$5^{2} = \frac{(x_{1} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2}}{n - 1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n - 1} = \frac{5xx}{n - 1}$$

PEDENDE DE LA MUESTRA. PARA CONSTRUIRLO ST UTILIZAN TRANTIDADES PIVOTALES

SU DISTAIBUCIÓN DE PROBABILIDAD NO COS INCLUYE

| ESTANDANIZACIÓN          | $\times \sim N(M, 3^2)$ |
|--------------------------|-------------------------|
| 7 -0 - 1-10 () -1-1 (10- | ( () ()                 |

X-M

PASO 2: DIVIDIALO ENTRE DESV

 $\sim N(0,1)$ 

NTENUALOS DE CONFIAN ZA

ENCONTRAN N CONDCIENDO

 $\overline{\chi} \sim \mathcal{N}(\mu, \frac{\delta^2}{n})$ 

L STANDANIZAN

 $\frac{\overline{X} - \mathcal{M}}{\sqrt{6^2}} = \sqrt{n} \left( \frac{\overline{X} - \mathcal{M}}{6^2} \right) \nu \mathcal{N}(0, 1)$ 

The ca = In (x m) = a) = I1-a Esonow: 95%.

NIVEL DE CONFIDENCIA

Esampo: 5%

## La Distribución Normal Estandarizada



ES DE 0/2

NOTACION

a = 2 (2/2)

INTERVADO DE WNFIANZA

$$M \in \left[\bar{\chi} - \frac{6}{\sqrt{n}} z^{(\alpha/2)}, \bar{\chi} + \frac{6}{\sqrt{n}} z^{(\alpha/2)}\right]$$

VAMOS A ENCONTRAN A M 95 DE ESAS 100 VECES EN EL INTERVALOS

1 5, 1- X AUMENTA - EL INTENMO AUMENTA/

CASO 2: CON 62 DESCONOCIDA

 $\int \int \left(\frac{\overline{X}-M}{5}\right) \sim t_{(N-1)}$  T-STUDENT CON N-1 GRADOU DE LIBERTAD



INTERVALO:

$$\left[ \overline{\chi} - \frac{s}{\sqrt{n}} t_{(n-1)}^{(\alpha/2)}, \overline{\chi} + \frac{s}{\sqrt{n}} t_{(n-1)}^{(\alpha/2)} \right]$$

| NUEBAS DE HIPÓTESIS                                                                      |
|------------------------------------------------------------------------------------------|
| ONJETURA MESPELTO A LOS PARÂMETROS POBLACIONALES                                         |
| CONSETURA INICIAL CONSETURA ALTERNATIVA                                                  |
| MIPOTESIS NULLA (HO) VA ES MIPOTESIS ALTERNATIVA (H1) ESPECIFICO  No: M = Mo  Ma: M = Mo |
| COLA TENEUMA HO: M > MO Ma: M = MO  COLA PENEUMA HO: M < MO MO: M = MO                   |
| PEBEMOS CITEAR UNA DEGLA DE DECISIÓN PARA SABER SI RECLAZAMO                             |
| NUESTRA HO HO VERDADERD HO FALSA  RECHAZAR HO ERROR TIPO I SIN ERROR V                   |
| To RECHARM HO SIN Enrol (B)                                                              |
| SE CONTROLA EL ENNON TIPO I (X)  X = IP (RECHAZAN HO / HO CIENTA)                        |
| i Si RECHAZAMOS O NO? CONSTRUIR REGIÓN DE RECHAZO                                        |
| UTILIZAMOS UN ESTAPISTICO DE PRUEBA                                                      |

$$T = \sqrt{N} \left( \frac{\overline{X} - M_0}{5} \right) \sim t_{(n-1)}$$

$$\int_{S \cup PONIENDO} H_0 \quad VEJZDADETZL$$

5, T ES GRANDE (POSITIVO O NEGATIVO) NOS DA EVIDENCIA PARA RECHAZAN Ho

$$\frac{5\%}{2\%} \iff \mathcal{L} = \mathcal{P}\left(|T| > K \mid \mathcal{H}_0 \mid_{\text{ERDADENS}}\right)$$

$$\frac{1\%}{1\%} \qquad \qquad \mathcal{K} = t \frac{2/2}{(n-1)}$$

REGIÓN DE RECMAZO: HO: M= MO

5, ITI> to MAY EVIDENCIA PARA RECHAZAR HO A UN NIVEL

KEGNESION LINEAR SIMPLE

ANÁLISIS INDIVIDUAL

Vanianza Nuestral 
$$S_x^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$$
  $S_y^2 = \frac{\sum_{i=1}^{n} (y_i - \overline{y})^2}{n-1}$ 

$$\int_{\text{Es Viación}} E_{\text{STANDAN}} \qquad S_x = \int_{X_x} S_x^2 \qquad S_y = \int_{X_y} S_y^2 = \int$$

Desviación Estándan 
$$G_X = \int S_X^z$$
  $S_y = \int S_y^z$ 

COVANIANZA MOESTRAL

$$C_{ov}(x,y) = \underbrace{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}_{n-1} = \underbrace{S_{xy}}_{n-1} = \underbrace{C_{ov}(y,x)}_{n-1}$$

6. 
$$C_{ov}(x,y) > 0 \implies P_{ositiva} P_{roporcional} < 6.  $C_{ov}(x,y) < 0 \implies M_{eqativa} P_{roporcional}$$$

COEFICIENTE DE CORNELACIÓN

$$V_{xy} = \frac{Cov(x,y)}{5x Sy}$$

 $-1 \leq r_{xy} \leq 1$ 



PODEMOS PROPONER UNA RELACIÓN PARAMETRICA

 $\hat{\beta}_{o}$ ,  $\hat{\beta}_{\Lambda} \in \mathbb{R}$ 

COEFICIENTE

CONSIDERA 5 SUPUESTOS: CONOC 100 (1) LA NELACIÓN VERMANENA ES Yi + BO+B1 Xi+E (2) X NO ES ESTOCASTICA // NO TIENE UN COMPONTAMIENTO ALEATONIO/ (3) Ei SON VANIABLES ALEATORIAS : Æ[E:]=0 Nar [E:] = 62 (4) Ei son independientes e idénticamente distribuidos (iid) (5) Ei SON NORMALES Ei ~ N(O,62) ESTATUMA ESTIMACIÓN POR MINIMOS CUADRADOS: PROPONEMOS Bo, Bo Y CALCULAR A  $\sum_{i=1}^{n} \left( y_i - \left( \beta_0 + \beta_1 \chi_i \right) \right)^2$ Min

RESIDUALES Ci

$$\hat{\beta}_{o} = \tilde{y} - \hat{\beta}_{1} \tilde{x}$$

$$\beta_1 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

$$\beta_1 = \frac{r_{\times g} \cdot \delta_y}{\delta_X}$$

ESTIMACIÓN POR MÁXIMA VEROSIMILITUO

A CONOCEMOS LA DISTRIBUCIÓN Y VAMOS A BUSCAR PARAMETHUS QUE LLEVEN A CA DISTRIBUCIÓN MÁS PANECIDA A NUESTROS DATOS

VERDSIMILITUD:

$$l(\beta_0, \beta_1, \beta^2) = f(y_1, y_2, ..., y_n) = f(y_1) f(y_2) ... f(y_n)$$

FUNCION DE

DENSIDAD

$$= \iint_{\overline{z}=1} f(yi) = \iint_{\overline{z}=1} \frac{1}{\sqrt{z\pi g^2}} e^{-\left(\frac{yi-4i}{zg^2}\right)^2}$$

NO SON IDENTIAMENE DISTAIBUIDAS

LOG VENDSIMILITUD

$$L = \ln \left( \int_{0}^{\infty} \left( \beta_{0}, \beta_{1}, \beta^{2} \right) \right)$$

C Qué panametros APROJA?

Bo = y - Bo X

$$\beta_0 = \overline{y} - \beta_1 \overline{x}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$\frac{\int_{MV}^{2} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{i} x_{i} \right] \right)^{2}}{N} }{\text{Residuales}}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{i} x_{i} \right] \right)^{2} }{N}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{i} x_{i} \right] \right)^{2} }{N}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{i} x_{i} \right] \right)^{2} }{N}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{i} x_{i} \right] \right)^{2} }{N}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{i} x_{i} \right] \right)^{2} }{N}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{i} x_{i} \right] \right)^{2} }{N}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{i} x_{i} \right] \right)^{2} }{N}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{i} x_{i} \right] \right)^{2} }{N}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{i} x_{i} \right] \right)^{2} }{N}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{i} x_{i} \right] \right)^{2} }{N}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{i} x_{i} \right] \right)^{2} }{N}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{i} x_{i} \right] \right)^{2} }{N}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{i} x_{i} \right] \right)^{2} }{N}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{i} x_{i} \right] \right)^{2}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{i} x_{i} \right] \right)^{2}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{i} x_{i} \right] \right)^{2}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{i} x_{i} \right] \right)^{2}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{i} x_{i} \right] \right)^{2}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{i} x_{i} \right] \right)^{2}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{i} x_{i} \right] \right)^{2}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{o} x_{i} \right)^{2} \right)^{2}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{o} x_{i} \right] \right)^{2}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{o} x_{i} \right] \right)^{2}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow{\beta}_{o} x_{i} \right] \right)^{2}$$

$$\frac{1}{N} = \sum_{i=1}^{n} \left( y_{i} - \left[ \overrightarrow{\beta}_{o} + \overrightarrow$$

$$\sum_{i=1}^{n} C_{i} = 0 \qquad 7 \qquad 2 \qquad \text{RESTANULIONES}$$

$$\sum_{i=1}^{n} X_{i}C_{i} = 0 \qquad 7 \qquad \text{RESIDUALES}$$

$$\sum_{i=1}^{n} X_{i}C_{i} = 0 \qquad 7 \qquad \text{PUEDO CONDUCTA LOS} \qquad 2 \text{ PLE FALTAN}$$

$$\sum_{i=1}^{n} X_{i}C_{i} = 0 \qquad 7 \qquad \text{PUEDO CONDUCTA LOS} \qquad 2 \text{ PLE FALTAN}$$

$$\frac{1}{\sqrt{2}} = \frac{1}{2} \cdot \frac{1}{2} \cdot$$

$$\beta_{j} \in [\beta_{j} - \delta_{e}(\beta_{j}) \cdot t_{(n-2)}, \beta_{j} + \delta_{e}(\beta_{j}) t_{(n-2)}]$$

Privesa DE Hipótesis 
$$\gamma_i = \beta_0 + \beta_1 \chi_i + \epsilon$$

$$W_0: \beta_1 = 0$$
  $H_1: \beta_1 \neq 0$ 

ESTADISTICO DE PRUEBA

 $T = \frac{\beta_i}{5e(\beta_i)} \sim t_{(n-2)}$ 

Eignon Estandan Se( $\beta_1$ ) =  $\sqrt{\lambda_n}(\beta_1)$ Se( $\beta_0$ ) =  $\sqrt{\lambda_n}(\beta_0)$ Se( $\beta_0$ ) =  $\sqrt{\lambda_n}(\beta_0)$ 

 $\frac{1}{\sqrt{2}} = \frac{1}{2} \cdot \frac{1}{\sqrt{2}} = \frac{1}{2}$ 

<= P(T) > t(n/2) / HO ES VERDADENA)

1)- VALUE

PROBABILIDAD DE OBSÉRVAR A T AL MENOS TAN GRANDE DADO HO CIGNTA

SI p-VALUE & X RECLAZO HO

SI P-VALUE > X -> No RECHARD HO

COEFICIENTE DE DETERMINACIÓN

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE

RESTOR LINEAL SIMPLE

| REGNESIÓN LINEAL MOLTIPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| $V_{i} = \beta_{0} + \beta_{1} \times i + + \beta_{n} \times n + \varepsilon i$ $V_{i} = \beta_{0} + \beta_{1} \times i + + \beta_{n} \times n + \varepsilon i$ $V_{i} = \beta_{0} + \beta_{1} \times i + + \beta_{n} \times n + \varepsilon i$ $V_{i} = \beta_{0} + \beta_{1} \times i + + \beta_{n} \times n + \varepsilon i$ $V_{i} = \beta_{0} + \beta_{1} \times i + + \beta_{n} \times n + \varepsilon i$ $V_{i} = \beta_{0} + \beta_{1} \times i + + \beta_{n} \times n + \varepsilon i$ $V_{i} = \beta_{0} + \beta_{1} \times i + + \beta_{n} \times n + \varepsilon i$ $V_{i} = \beta_{0} + \beta_{1} \times i + + \beta_{n} \times n + \varepsilon i$ $V_{i} = \beta_{0} + \beta_{1} \times i + + \beta_{n} \times n + \varepsilon i$ $V_{i} = \beta_{0} + \beta_{1} \times i + + \beta_{n} \times n + \varepsilon i$ $V_{i} = \beta_{0} + \beta_{1} \times i + + \beta_{n} \times n + \varepsilon i$ $V_{i} = \beta_{0} + \beta_{1} \times i + + \beta_{n} \times n + \varepsilon i$ $V_{i} = \beta_{0} + \beta_{1} \times i + + \beta_{n} \times n + \varepsilon i$ $V_{i} = \beta_{0} + \beta_{1} \times i + + \beta_{n} \times n + \varepsilon i$ $V_{i} = \beta_{0} + \beta_{1} \times i + + \beta_{n} \times n + \varepsilon i$ | -> MINIMIZAR                                                                   |
| SUBATUSTE JANIABLES SOBREASU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MAS<br>VARIARLES                                                               |
| FLEXBLE - 10 ANADIR  MO LOGNE EXPLICAN Y SUFICIENTEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PTTEDICTONES INSIGNIFIUM<br>TE SENCILLO                                        |
| Mis vaniables $\rightarrow \mathbb{Z}^2$ AUMENTA O SE Q<br>$\mathbb{Z}^2$ ATUSTADA MATOR $\mathbb{Z}^2$ $\alpha = 1 - \frac{(n-1)}{n-k-1} (1-\mathbb{Z}^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PUEDA IGUAL  R <sup>2</sup> : COET. DETERMINACISM  N: # DATOS  K: # PREDITORES |
| CRITERIOS TREPORMACIÓN $A 1C \left( A_{KAIKE} \right) = 2(K+1) - 2l_n(L)$ $B 1C \left( B_{AYESIANO} \right) = l_n(L)(K+1) - 2l_n(L)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ENTRE MÁS PEQUENO METOR                                                        |
| MÁS RESTRICTIVO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                |

ME NOS RESTRICTIVO POCOS DATOS

