decision rule

2020-03-19

For the model:

$$Y_{ji} = S_{ji}(\beta_j + b_{ji} + \Gamma_j(\alpha' x_{ji})) + \epsilon_{ji}, \ j \in \{1, 2\}$$

Parameter settings

I have tried different parameter settings.

Setting 1:

The fixed effect β :

	intercept	slope	concavity
Drug	18.6	-2.3	0.17
Placebo	18.6	-1.9	0.14

The fixed effect Γ :

	intercept	slope	concavity
Drug	0	1	0
Placebo	0	$\cos(\theta)$	$\sin(\theta)$

The random effect's covariance matrix:

		Drug			Placebo			
	intercept	slope	concavity		intercept	slope	concavity	
intercept	8.869	2.766	-0.359	intercept	9.507	1.012	-0.093	
slope	2.766	1.016	-0.104	slope	1.012	3.856	-0.395	
concavity	-0.359	-0.104	1.5	concavity	-0.093	-0.395	1.5	

Setting 2:

EMBARC's parameter

The random effect's covariance matrix:

		Drug			Placebo		
	intercept	slope	concavity		intercept	slope	concavity
intercept slope	8.869 2.766	2.766 1.016	-0.359 -0.104	intercept slope	9.507 1.012	1.012 3.856	-0.093 -0.395
concavity	-0.359	-0.104	0.015	concavity	-0.093	-0.395	0.045

Setting 3:

Make the intercept smaller $\,$

The fixed effect β :

	intercept	slope	concavity
Drug	1	-2.3	1.5
Placebo	1.1	-1.9	1

The fixed effect Γ :

	intercept	slope	concavity
Drug	0	1	0
Placebo	0	$\cos(\theta)$	$\sin(\theta)$

The random effect's covariance matrix:

		Drug			Placebo			
	intercept	slope	concavity		intercept	slope	concavity	
intercept	4	0	0	intercept	4	1.732	1	
slope	0	9	0	slope	1.732	1.75	0.433	
concavity	0	0	1	concavity	1	0.433	1.25	

Concordance proportion calculation

For the training dataset, we simulate n = 100 in each treatment group (200 subjects in total). The covariates are generated from $X \sim MVN(0, \Sigma)$, where

$$\Sigma_x = \begin{pmatrix} 1 & \rho & \dots & \rho \\ \rho & 1 & \dots & \rho \\ \dots & \dots & \dots & \dots \\ \rho & \dots & \rho & 1 \end{pmatrix}_{p \times p}$$

The outcome Y is then generated from the model

$$Y_{ji} = S_{ji}(\beta_j + b_{ji} + \Gamma_j(\alpha' x_{ji})) + \epsilon_{ji}, \ j \in \{1, 2\}$$

For the testing dataset, N = 1000 subjects are generated. For each subjects, the outcome if he or she get treatment and the outcome if he or she get placebo are both generated.

For the testing dataset, since we have both outcomes, we know the treatment group assignment for each subject.

group assignment =
$$\begin{cases} \text{Drug group} & \Delta Y_{pbo} > \Delta Y_{drg} \\ \text{Placebo group} & \Delta Y_{pbo} \leq \Delta Y_{drg} \end{cases}$$

To estimated the treatment assignment for the testing data, we tried two methods, longitudinal average slope methods and change score methods.

For the longitudinal average slope method, we used the ullback-Leibler divergence method to estimated $\hat{\alpha}$ and $\hat{\beta}_{drg}$, $\hat{\Gamma}_{drg}$, $\hat{\beta}_{pbo}$, $\hat{\Gamma}_{pbo}$. The the estimated fixed effects Z can be calculated as:

$$\hat{z}_{i,drq} = S[\hat{\beta}_{drq} + \hat{\Gamma}_{drq}\hat{\alpha}'x_i]$$

$$\hat{z}_{i,pbo} = S[\hat{\beta}_{pbo} + \hat{\Gamma}_{pbo}\hat{\alpha}'x_i]$$

Given that, the estimated group assignment can be calculated as

estimated group assignment =
$$\begin{cases} \text{Drug group} & \Delta \hat{z}_{i,pbo} > \Delta \hat{z}_{i,drg} \\ \text{Placebo group} & \Delta \hat{z}_{i,pbo} \leq \Delta \hat{z}_{i,drg} \end{cases}$$

The concordance proportion is then calculated as

$$\frac{\sum_{i=1}^{N} I(\text{estimated group assignment} = \text{true group assignment})}{N}$$

p.s. previous I used $\hat{z}_{i,drg} = S[\beta_{drg} + \Gamma_{drg}\alpha'x_i]$ and $\Delta Y = \hat{z}_{7,drg} - \hat{z}_{1,drg}$ as the true group assignment rule for the longitudinal method, instead of the true ΔY in the testing dataset.

For the change score method, the change in outcome Y can be fitted with a linear regression with covariates X, i.e.

$$\Delta \hat{Y} = \hat{\gamma}_1 x_1 + \ldots + \hat{\gamma}_p x_p$$

where $\hat{\gamma}_i$ is estimated with the same model in training dataset. Then

estimated group assignment =
$$\begin{cases} \text{Drug group} & \Delta \hat{Y}^{cs}_{pbo} > \Delta \hat{Y}^{cs}_{drg} \\ \text{Placebo group} & \Delta \hat{Y}^{cs}_{pbo} \leq \Delta \hat{Y}^{cs}_{drg} \end{cases}$$

The concordance proportion is then calculated as

$$\frac{\sum_{i=1}^{N}I(\text{estimated group assignment} = \text{true group assignment})}{N}$$

We would like to compare which method can achieve a higher concordance proportion.

Results

Setting 1

			Pu	rity	Cosine s	similarity	Agreement	
Dimension	Sigma	Angle	Mean	SD	Mean	SD	Mean	SD
2	1	0	0.4941	0.2182	0.8520	0.2066	0.5011	0.0168
		60	1.5468	0.4369	0.9706	0.0465	0.6554	0.0150
		120	4.5609	1.0666	0.9857	0.0206	0.6253	0.0162
		180	7.4982	1.6440	0.9921	0.0120	0.5653	0.0259
	2	0	0.9088	1.0308	0.8660	0.1958	0.5012	0.0162
		60	2.5074	5.0316	0.9520	0.0889	0.6540	0.0170
		120	6.7709	12.5737	0.9744	0.0377	0.6246	0.0176
		180	10.6863	17.6086	0.9840	0.0228	0.5646	0.0257
	10	0	1020.8285	3945.5138	0.9550	0.1401	0.5010	0.0157
		60	1954.7484	9010.6063	0.9779	0.0839	0.6497	0.0192
		120	1817.5259	7761.0103	0.9652	0.1273	0.6170	0.0219
		180	3080.9066	11341.4179	0.9529	0.1168	0.5597	0.0272
4	1	0	0.5908	0.2283	0.8101	0.1722	0.5000	0.0184
		60	2.3377	0.5761	0.9303	0.0636	0.6957	0.0170
		120	7.5200	1.6407	0.9609	0.0323	0.6609	0.0182
		180	12.5537	2.5724	0.9766	0.0200	0.5883	0.0204
	2	0	1.5461	2.8809	0.8137	0.1863	0.5004	0.0188
		60	3.4636	3.0137	0.9041	0.1148	0.6938	0.0178
		120	12.0052	15.5890	0.9219	0.0907	0.6579	0.0187
		180	19.7302	28.1132	0.9546	0.0411	0.5873	0.0210
	10	0	545.7065	2666.8060	0.9899	0.0556	0.4994	0.0194
		60	1142.0264	7640.9531	0.9798	0.0733	0.6905	0.0172

		120 180	2872.3701 2046.5676	11314.6790 7963.4221	0.9840 0.9824	0.0663 0.0681	0.6567 0.5853	0.0171 0.0207
8	1	0 60 120 180	0.7183 3.6919 12.8547 22.4677	0.3380 0.8491 3.1406 6.1550	0.7003 0.8559 0.9146 0.9479	0.1497 0.1040 0.0550 0.0287	0.5002 0.7398 0.7070 0.6187	0.0178 0.0162 0.0144 0.0175
	2	0 60 120 180	7.0189 10.3262 31.2540 421.0805	51.6329 51.8376 130.1463 3841.9870	0.7575 0.8294 0.8571 0.9085	0.1402 0.1548 0.1116 0.0585	0.5012 0.7352 0.7025 0.6183	0.0169 0.0213 0.0168 0.0168
	10	0 60 120 180	1163.4518 1369.4918 4112.5607 1732.4927	5294.3756 4853.7169 13736.4404 7971.6727	0.9989 0.9930 0.9937 0.9959	0.0055 0.0401 0.0405 0.0349	0.5003 0.7381 0.6997 0.6130	0.0179 0.0138 0.0145 0.0166
16	1	0 60 120 180	0.8735 6.9310 24.9727 44.4030	0.3864 1.4942 5.2131 10.1076	0.6842 0.8280 0.8904 0.9174	0.1698 0.1028 0.0644 0.0457	0.5034 0.7905 0.7550 0.6625	0.0162 0.0139 0.0135 0.0145
	2	0 60 120 180	2.4095 8.8935 38.6863 77.4618	3.9985 5.6064 33.9093 96.0817	0.7778 0.8682 0.8640 0.8716	0.1795 0.1402 0.1474 0.0911	0.5029 0.7908 0.7530 0.6609	0.0163 0.0156 0.0148 0.0154
	10	0 60 120 180	422.5353 773.8957 2098.7287 1491.9371	1924.9107 3814.6546 9566.4763 8049.9292	0.9998 0.9998 0.9998 0.9998	0.0002 0.0002 0.0002 0.0002	0.4994 0.7878 0.7499 0.6553	0.0176 0.0132 0.0141 0.0152

Setting 2

			Purity		Cosine similarity		Agreement	
Dimension	Sigma	Angle	Mean	SD	Mean	SD	Mean	SD
2	1	0	1.5772	0.5836	0.9702	0.0426	0.5681	0.0325
		60	247.2797	50.7826	0.9995	0.0007	0.9401	0.0069
		120	191.9133	40.8291	0.9995	0.0007	0.9244	0.0076
		180	20.6900	3.2617	0.9976	0.0033	0.8650	0.0109
	2	0	879.4013	6369.8261	0.9638	0.0870	0.5560	0.0342
		60	518.4135	1293.5854	0.9994	0.0007	0.9325	0.0076
		120	616.8250	2544.6347	0.9993	0.0009	0.9154	0.0082
		180	60.8464	256.5212	0.9955	0.0084	0.8491	0.0108

	10	0 60 120 180	4511.1242 6811.5626 4805.7298 2397.9207	15498.8996 17095.2600 14253.2210 10464.8379	0.9672 0.9917 0.9911 0.9843	0.1184 0.0379 0.0382 0.0534	0.5096 0.8251 0.7899 0.6900	0.0238 0.0135 0.0139 0.0153
4	1	0 60 120 180	1.5910 405.4914 314.8149 33.5671	0.5624 63.5055 50.2224 5.4529	0.9243 0.9991 0.9990 0.9925	0.1048 0.0006 0.0007 0.0067	0.5692 0.9528 0.9403 0.8943	0.0277 0.0073 0.0081 0.0101
	2	0 60 120 180	6.8261 1549.1616 752.2896 92.9996	29.4817 5865.1312 2915.5866 321.0636	0.9153 0.9988 0.9987 0.9822	0.1147 0.0010 0.0011 0.0245	0.5594 0.9459 0.9325 0.8797	0.0282 0.0075 0.0087 0.0106
	10	0 60 120 180	7948.4350 5621.4665 7027.2184 3836.7836	20354.1703 14339.6538 15134.5024 11960.5604	0.9713 0.9799 0.9894 0.9657	0.0896 0.0762 0.0250 0.0966	0.5114 0.8543 0.8243 0.7336	0.0242 0.0178 0.0134 0.0199
8	1	0 60 120 180	1.7436 780.5187 605.8159 62.6594	0.6659 155.9886 125.4156 9.8145	0.9046 0.9988 0.9987 0.9841	0.1165 0.0007 0.0008 0.0097	0.5720 0.9646 0.9554 0.9181	0.0232 0.0053 0.0055 0.0095
	2	0 60 120 180	775.8581 2206.8778 1961.3569 1076.1246	7645.3834 7694.7257 5919.0847 6614.0581	0.9168 0.9984 0.9981 0.9670	0.1123 0.0012 0.0013 0.0307	0.5601 0.9603 0.9501 0.9056	0.0258 0.0055 0.0057 0.0099
	10	0 60 120 180	7602.9954 8424.6204 3872.2562 4967.3592	20571.3544 15303.8350 6287.5508 14827.8672	0.9947 0.9913 0.9956 0.9877	0.0344 0.0370 0.0134 0.0454	0.5122 0.8924 0.8670 0.7812	0.0214 0.0109 0.0105 0.0138
16	1	0 60 120 180	1.7547 1529.9761 1183.0168 122.8007	0.6779 297.9284 224.7857 20.5727	0.9443 0.9989 0.9986 0.9764	0.0830 0.0007 0.0009 0.0122	0.5620 0.9758 0.9694 0.9397	0.0317 0.0048 0.0058 0.0085
	2	0 60 120 180	63.2273 4606.2175 2379.9637 670.2696	528.4508 12618.5773 2809.5499 4592.1688	0.9453 0.9983 0.9977 0.9525	0.0877 0.0013 0.0018 0.0438	0.5528 0.9723 0.9652 0.9295	0.0297 0.0050 0.0059 0.0103
	10	0 60 120 180	7361.9942 14852.4397 11455.9901 3835.6653	19862.9779 21270.1813 19942.0523 9336.8916	0.9994 0.9976 0.9971 0.9950	0.0040 0.0063 0.0081 0.0464	0.5092 0.9208 0.9011 0.8288	0.0211 0.0081 0.0094 0.0139

Setting 3

			Purity		Cosine	Cosine similarity		Agreement	
Dimension	Sigma	Angle	Mean	SD	Mean	SD	Mean	SD	
2	1	0	2.6131	0.9759	0.9629	0.0576	0.5981	0.0224	
		60	4.1062	1.2375	0.9489	0.0856	0.6762	0.0173	
		120	5.6561	1.6805	0.9849	0.0227	0.6506	0.0169	
		180	5.0562	1.6149	0.9810	0.0316	0.6120	0.0198	
	2	0	2.9668	2.1767	0.9409	0.0843	0.5982	0.0223	
		60	4.4626	2.5513	0.9483	0.0859	0.6762	0.0175	
		120	6.1751	3.3962	0.9781	0.0301	0.6506	0.0171	
		180	5.5610	3.4237	0.9723	0.0412	0.6115	0.0210	

	10	0 60 120 180	490.2517 1511.9293 1977.4778 493.9024	3997.5421 8407.6198 10567.2261 3738.8173	0.9726 0.9832 0.9909 0.9575	0.0861 0.0648 0.0244 0.1220	0.5936 0.6713 0.6457 0.6058	0.0226 0.0165 0.0168 0.0203
4	1	0 60 120 180	3.0034 5.3294 8.0522 7.1907	0.8487 1.1559 1.8684 1.8715	0.9163 0.8700 0.9569 0.9530	0.0706 0.1275 0.0331 0.0334	0.5961 0.7044 0.6796 0.6173	0.0237 0.0200 0.0163 0.0176
	2	0 60 120 180	3.5245 5.9353 9.2095 8.4028	1.5636 2.1000 3.4897 3.7626	0.8857 0.8506 0.9388 0.9300	0.1013 0.1958 0.0549 0.0580	0.5956 0.6979 0.6790 0.6173	0.0240 0.0384 0.0160 0.0175
	10	0 60 120 180	1633.8166 1740.0500 2118.1459 2960.4163	9357.0301 9491.5755 6382.7453 12064.4251	0.9782 0.9909 0.9747 0.9759	0.1078 0.0349 0.0880 0.0861	0.5892 0.7015 0.6714 0.6120	0.0245 0.0140 0.0151 0.0178
8	1	0 60 120 180	3.1261 7.1522 12.1406 10.5602	0.9902 1.2583 2.5865 2.7459	0.8018 0.7480 0.8922 0.8773	0.0955 0.1743 0.0573 0.0596	0.5954 0.7370 0.7159 0.6406	0.0306 0.0311 0.0148 0.0156
	2	0 60 120 180	3.9619 7.9587 14.1737 12.3115	2.1374 2.8342 5.3256 5.8318	0.7835 0.7974 0.8792 0.8518	0.1413 0.1879 0.0797 0.0939	0.5942 0.7400 0.7148 0.6396	0.0334 0.0283 0.0144 0.0161
	10	0 60 120 180	2260.8110 4070.6805 2489.8110 2047.6900	11880.1559 15848.5434 11910.5039 10611.7847	0.9993 0.9937 0.9956 0.9992	0.0012 0.0327 0.0270 0.0033	0.5898 0.7464 0.7117 0.6346	0.0296 0.0134 0.0130 0.0155
16	1	0 60 120 180	3.4416 11.6418 21.6146 18.4528	1.0994 2.5668 5.3181 4.8078	0.7401 0.7071 0.8545 0.8267	0.0690 0.1176 0.0519 0.0584	0.6006 0.7896 0.7639 0.6814	0.0178 0.0159 0.0127 0.0163
	2	0 60 120 180	4.2541 12.7104 25.6251 22.2075	2.6433 4.4664 11.4249 11.7058	0.8035 0.8410 0.8903 0.8465	0.1604 0.1850 0.0957 0.1207	0.6002 0.7938 0.7644 0.6816	0.0173 0.0189 0.0136 0.0174
	10	0 60 120 180	2096.5607 781.5405 842.9563 1179.7116	9001.6770 3072.9190 2920.3134 4456.8136	0.9998 0.9998 0.9998 0.9998	0.0001 0.0002 0.0002 0.0001	0.5954 0.7954 0.7599 0.6768	0.0191 0.0129 0.0144 0.0153

The comparison of agreement of intervention group assignement

$$\mathbf{p} = \mathbf{2}, \ \sigma \in (1, 2, 10, 100)$$

