MIPS32 Processor on DEO-Nano with Peripheral Shields

SPONSOR:

IEEE 5001 STANDARDS

SPONSOR ADVISOR:

ERIC LINDBERG

FACULTY ADVISOR:

NICOLE HAMILTON

TEAM MEMBERS:

DANIEL LUNCASU-ROLEA TREYVEN CHIN JOSHUA YANG RENQING LI

The Team

Daniel Luncasu-Rolea

- ■Hardware Design
- •Programming
- ■SMD Soldering
- ■PCB Revision
- Presentation/Poster

Joshua Yang

- ■Bottom PCB Design
- Code testing
- •Inventory

Treyven Chin

- Top PCB Design
- Inventory

Renqing Li

- Programming
- Presentation
- Poster

Our Product

A softcore microcontroller on a DEO-Nano FPGA.

•Useful for students and hobbyists

Key Features

- •32-bit, 50 MHz RISC processor
- •32 MB SDRAM chip
- •GCC cross-compiler for C
- •Top board with I/O Devices
 - 7-Segment displays
 - Buttons
 - Switches
 - MicroSD Socket
- Bottom board with Arduino headers
 - 3.3V to 5V step-up
 - 3.3V to 5V logic level shifter

DEO-Nano FPGA (Field-Programmable Gate Array)

Features of MIPS 32 on DEO-Nano vs. Arduino Uno

Criteria	MIPS 32 on DE0-	Arduino Uno
	Nano	
Clock Speed	50 MHz	16 MHz
Architecture Type	32-bit, pipelined	8-bit, single-instruction
Instruct. Memory	16-32 MB, volatile	32 kB, non-volatile
		flash ¹
Dynamic Memory	16-32 MB SDRAM	2 kB DRAM
EEPROM	2kB	1kB
# of digital pins	81 bidirectional + 7	14 digital pins, ICSP
	input	header
# of analog pins	8 analog inputs	6 analog inputs
I/O voltage	3.3V	5V
Price	\$79 (\$61 academic)	\$25
Power draw	~180 mA	~17 ² mA, can enter
	(measured)	sleep mode

Images: Nicole Hamilton

Programming the Processor

Toolchain for programming the processor in C

- Based on GCC, the GNU Compiler Collection
- Built a cross-compiler on Windows to make MIPS code
- Built compiler using Cygwin, a BASH terminal for Windows
- Use GCC cross-compiler to build the programs themselves

SDRAM Controller

Original source code did not support the SDRAM on the DEO-Nano

Used Block RAM instead:

- 64 kB
- Memory is very fast (1-3 cycles)
- Implemented with registers on the FPGA

The SDRAM chip on the DE0 holds 32 MB of memory

- Previous team designed a controller for it
- Instructions stored in one 16 Mb space
- Data stored in the other 16 Mb space
- Reading/Writing takes a lot of clock cycles

Memory Mapping

- SDRAM provides only 32 MB, a small fraction of the 32bit address space
- We fill in the address space with other I/O devices

Diagram not to scale

Motivation for Top Board

The Terasic DEO is a larger board

- Has 8 switches, 4 keys, and 6x 7-segment displays
- Ours has 8 switches, 4 keys, and 8x 7-segment displays
- Similar, but miniature

Source: Terasic Technologies

Top Board (User Interface)

I/O Devices include:

- 7-Segment displays
- Buttons
- Switches
- MicroSD Socket

CAD program used: EAGLE

Bottom Board (Arduino Adapter)

Features:

- 3.3V -> 5V Step-up
- 3.3V/5V level converters for 13 pins
- 5V -> 3.3V analog voltage dividers (Values 33 k Ω & 68 k Ω)

CAD program used: EAGLE

7-Segment displays

The 7-segment displays are controlled by lighting up one number at a time (multiplexing)

7-Segment displays

The 7-segment displays are controlled by lighting up one number at a time (multiplexing)

Example Waveform:

Example Code

```
// Check if the first key is pressed (KEY1 or IN2)
if (!digitalRead(KEY1)) {
    if (hold == 0) {
        // Print to the 7segs
        char str[] = "FABU";
        char str2[] = "LOUS";
            setHex(0, str);
            setHex(1, str2);
        }
    hold = 1;
}
```


I/O Input

GPIO module controls all GPIO pins, including 7-segment drivers

- GPIO pins are Tri-State, with Hi-Z, output LOW, and output HIGH
- 7-segment multiplexing module outputs a 500Hz waveform
- Hardware de-bounced inputs on buttons and switches

Demonstration: TeleType Console

Serial module interfaces with a virtual UART module

- Can send bytes to PuTTY where they will show as characters
- Can receive bytes from PuTTY (and send them back)

Example program: Console

- Press a key to write 'PING' to PuTTY
- Enter characters into PuTTY to display them on the 7-segment

```
JTAG VComm on 127.0.0.1:2323
PING
PING
PING
PING
PING
PING
```


Difficulties Encountered

Shorter Quarter

Required a strong work ethic

No SMD soldering experience

Learned through videos and trial/error

A lot of unknown information

- How to send bytes through the USB
- How to program in C, use pointers to access memory and I/O
- How to use Cygwin, PuTTY, and other tools
- Verilog features such as loops and variable indices

Lack of prior documentation

Nobody has done this before and posted it online

Next Stages

- Phase I: Create SDRAM memory controller (done by last group)
- Phase II: Integrate SDRAM controller and design I/O drivers + PCB (done by us)

Potential Next Steps:

- Create an analog pin driver for the bottom board
- Create Hardware driver for MicroSD socket (using Verilog)
- Integrate with the Arduino IDE
- Implement Block-RAM memory cache for faster processing
- Add debugging functionality (IEEE Nexus standards)

Acknowledgements

Previous Group Members:

- Kevin Chao
- Derek Blankenburg
- Toan Nguyen
- Ramiro Garcia

Nicole Hamilton – Invaluable help and advising

Eric Lindberg – Sponsorship

Questions?

Thank you!

References

- [1] Global Market Insights. (2016, February). Field Programmable Gate Array Market Size By Application, Industry Analysis Report, Regional Outlook, Application Potential, Competitive Market Share & Forecast, 2015 2022 [Online]. Available: https://www.gminsights.com/industry-analysis/field-programmable-gate-array-fpga-market-size
- [2] Grand View Research. (2015, May). FPGA Market Analysis By Application And Segment Forecasts To 2020 [Online]. Available: http://www.grandviewresearch.com/industry-analysis/fpga-market
- [3] MarketsandMarkets. (2016, February). FPGA Market by Architecture, Configuration, Application, and Geography Trends & Forecasts to 2022 [Online]. Available: http://www.marketsandmarkets.com/Market-Reports/fpga-market-194123367.html
- [4] ReportLinker. (2015, March). FPGA Market Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2014 2020 [Online]. Available: http://www.reportlinker.com/p02878127-summary/FPGA-Market-Global-Industry-Analysis-Size-Share-Growth-Trends-and-Forecast.html