

Course code	Course Name	L-T-P Credits	Year of Introduction
CS304	COMPILER DESIGN	3-0-0-3	2016

Prerequisite: Nil

Course Objectives

• To provide a thorough understanding of the internals of Compiler Design.

Syllabus

Phases of compilation, Lexical analysis, Token Recognition, Syntax analysis, Bottom Up and Top Down Parsers, Syntax directed translation schemes, Intermediate Code Generation, Triples and Quadruples, Code Optimization, Code Generation.

Expected Outcome

The students will be able to

- i. Explain the concepts and different phases of compilation with compile time error handling.
- ii. Represent language tokens using regular expressions, context free grammar and finite automata and design lexical analyzer for a language.
- iii. Compare top down with bottom up parsers, and develop appropriate parser to produce parse tree representation of the input.
- iv. Generate intermediate code for statements in high level language.
- v. Design syntax directed translation schemes for a given context free grammar.
- *vi*. Apply optimization techniques to intermediate code and generate machine code for high level language program.

Text Books

- Aho A. Ravi Sethi and D Ullman. Compilers Principles Techniques and Tools, Addison Wesley, 2006.
- 2. D. M.Dhamdhare, System Programming and Operating Systems, Tata McGraw Hill & Company, 1996.

References

- 1. Kenneth C. Louden, Compiler Construction Principles and Practice, Cengage Learning Indian Edition, 2006.
- 2. Tremblay and Sorenson, The Theory and Practice of Compiler Writing, Tata McGraw Hill & Company,1984.

Course Plan

Module	Contents	Hours	End Sem. Exam Marks
I	Introduction to compilers – Analysis of the source program, Phases of a compiler, Grouping of phases, compiler writing tools – bootstrapping Lexical Analysis: The role of Lexical Analyzer, Input Buffering, Specification of Tokens using Regular Expressions, Review of Finite Automata, Recognition of Tokens.	07	15%
II	Syntax Analysis: Review of Context-Free Grammars – Derivation trees and Parse Trees, Ambiguity. Top-Down Parsing: Recursive Descent parsing, Predictive parsing, LL(1) Grammars.	06	15%

	FIRST INTERNAL EXAM		
Ш	Bottom-Up Parsing: Shift Reduce parsing — Operator precedence parsing (Concepts only) LR parsing — Constructing SLR parsing tables, Constructing, Canonical LR parsing tables and Constructing LALR parsing tables.	07	15%
IV	Syntax directed translation: Syntax directed definitions, Bottom- up evaluation of S- attributed definitions, L- attributed definitions, Top-down translation, Bottom-up evaluation of inherited attributes. Type Checking: Type systems, Specification of a simple type checker.	08	15%
	SECOND INTERNAL EXAM		
v	Run-Time Environments: Source Language issues, Storage organization, Storage-allocation strategies. Intermediate Code Generation (ICG): Intermediate languages – Graphical representations, Three-Address code, Quadruples, Triples. Assignment statements, Boolean expressions.	07	20%
VI	Code Optimization:Principal sources of optimization, Optimization of Basic blocks Code generation: Issues in the design of a code generator. The target machine, A simple code generator.	07	20%

Ouestion Paper Pattern

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
- b.. *Four* questions each having 3 marks, uniformly covering modules I a. Total marks: 12 and II; Allfour questions have to be answered.
- 3. Part B
- b. <u>Three</u> questionseach having <u>9</u> marks, uniformly covering modules I a. Total marks: 18 and II; Two questions have to be answered. Each question can have a maximum of three subparts. 2014
- 4. Part C
- a. Total marks: 12 b. *Four* questions each having <u>3</u> marks, uniformly covering modules III and IV; All four questions have to be answered.
- 5. Part D
- a. Total marks: 18 b. <u>Three</u> questions each having 9 marks, uniformly covering modules III and IV; <u>Two</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
- b. Total Marks: 40 b. Six questions each carrying 10 marks, uniformly covering modules V and VI; four questions have to be answered.
- c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical questions.