Introduction to Cellular Systems

Lecturer: Dr. Rui Wang

1st MOBILE RADIO TELEPHONE 1924

Courtesy of Rich Howard

History of Cellular Networks

About 3GPP

- "The 3rd Generation Partnership Project (3GPP) unites [Seven] telecommunications standard development organizations (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC), known as "Organizational Partners" and provides their members with a stable environment to produce the Reports and Specifications that define 3GPP technologies."
- "The project covers cellular telecommunications technologies, including radio access, core network and service capabilities, which provide a complete system description for mobile telecommunications."
- "The 3GPP specifications also provide hooks for non-radio access to the core network, and for interworking with non-3GPP networks."
 - --- https://www.3gpp.org/about-3gpp/about-3gpp

Organization of 3GPP

Three Technical Specification Groups (TSG) in 3GPP

Project Coordination Group (PCG

TSG RAN Radio Access Network

RAN WG1

Radio Layer 1 spec

RAN WG2

Radio Layer 2 spec Radio Layer 3 RR spec

RAN WG3

lub spec, lur spec, lu spec UTRAN O&M requirements (Radio CN Interfaces)

RAN WG4

Radio Performance Protocol aspects

RAN WG5

Mobile Terminal Conformance Testing

RAN WG6

GSM EDGE Radio Access Network

TSG CT Core Network & Terminals

CT WG1

MM/CC/SM (lu) (end-to-end aspects)

CT WG3

Interworking with external networks

CT WG4

MAP/GTP/BCH/SS (protocols within the CN)

CT WG6

Smart Card Application Aspects

TSG SA

Service & Systems Aspects

SA WG1

Services

SA WG2

Architecture

SA WG3

Security

SA WG4

Speech, audio, video, and multimedia Codecs

SA WG5

Telecom Management

SA WG6

Mission-Critical Applications

"The TSG Service and System Aspects (TSG-SA) is responsible for the overall architecture and service capabilities of systems based on 3GPP specifications and, as such, has a responsibility for cross TSG coordination."

"The TSG Core Network and Terminals (TSG CT) is responsible for specifying terminal interfaces (logical and physical), terminal capabilities (such as execution environments) and the Core network part of 3GPP systems."

What are the major differences between cellular and Wi-Fi?

4G: EPS Architecture

E-UTRAN: Evolved UMTS Terrestrial Radio Access Network (LTE)

EPC: Evolved Packet Core
PDN: Public Data Network
EPS: Evolved Packet System

E-UTRAN

- The eNB sends and receives radio transmissions to all the mobiles.
- The eNB controls the low-level operation of all its mobiles, such as handover commands.

EPC

The Home Subscriber Server (HSS) contains information about all the network operator's subscribers.

The Packet Data Network (PDN) Gateway (P-GW) communicates with the outside world, i.e. packet data networks PDN, using SGi interface.

The serving gateway (S-GW) acts as a router, and forwards data between the base station and the PDN gateway.

The mobility management entity (MME) controls the highlevel operation of the mobile by means of signalling messages and Home Subscriber Server (HSS).

Roaming

A network run by one operator in one country is known as a Public Land Mobile Network (PLMN)

When a subscribed user uses his operator's PLMN then it is said Home-PLMN

Roaming allows users to move outside their home network and using the resources from other operator's network. This other network is called Visited-PLMN.

Functional Split

3GPP Releases on 4G

Release Number	Description	Date of Frozen
8	LTE Introduced	2008
9	Enhancement to LTE	2009
10	LTE Advanced	2011
11	Enhancement to LTE Advanced	2012
12	Further enhancement to LTE Advanced	2014
13	Meeting the growing throughput demand	2015
14	Start of 5G	2016

3GPP Ongoing Releases

Architecture of 5G Systems

The 5G System (5GS) will have three main components:

- 5G Access Network (5G-AN)
- 5G Core Network (5GC)
- Use Equipment (UE)

Authentication Server Function (AUSF)

Core Access and Mobility Management Function (AMF)

Data network (DN)

Network Exposure Function (NEF)

NF Repository Function (NRF)

Policy Control function (PCF)

Session Management Function (SMF)

Unified Data Management (UDM)

User plane Function (UPF)

Application Function (AF)

User Equipment (UE)

(Radio) Access Network ((R)AN)

Traditional BS is divided into RRH+DU+CU structure

- RRH: Radio transmission and receiving
- DU: baseband close to RRH
- CU: baseband in cloud center

Specification Numbering

- "All 3GPP specifications have a specification number consisting of 4 or 5 digits. (e.g. 09.02 or 29.002)."
- "The first two digits define the series, followed by 2 further digits for the 01 to 13 series or 3 further digits for the 21 to 55 series."
- ---https://www.3gpp.org/specifications/specification-numbering
- Each specification defines a component of 3GPP systems. With the development of new releases, the specification version will be updated

Spec no.	Title	Rel-12	Rel-13
36.211	Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation	12.9.0	13.5.0
36.321	Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification	12.9.0	13.5.0
<u>36.423</u>	Evolved Universal Terrestrial Radio Access Network (E-UTRAN); X2 Application Protocol (X2AP)	12.9.0	13.6.0

How to find the specification

matrix:

- Specification Release version
 http://www.3gpp.org/DynaReport/SpecReleaseMatrix.htm
- TR: technical report (e.g. TR25.996)
- TS: technical specification
- Locate the specification by number and version

Spec no.	Title	WG	Ph1	Ph1- DCS	UMTS	Ph2	R96	R97	R98	R99	R00	Rel-	Rel- 5	Rel-	Rel-	Rel-	Rel- 10	Rel-11	Rel- 12	Rel- 14	Rel- 15	Rel- 16	Rel- 17
	Work programme for the standardization of Universal Mobile Telecommunications System (UMTS) spec withdrawn	SMG5			none																		
00.02	Voice group call service study (UIC project) spec withdrawn		none																				
	Coordination guideline for SMG on UMTS with respect to ITU and European research programmes spec withdrawn	SMG5			none																		
	Working Procedures for SMG and PT SMG spec withdrawn					none	none	none	none	none													

General Versions Responsibility Related

Specification #: 23.501

elease 16(Spec is	UCC for this	Release)	Latest Remark:			Ę
Meetings	Version	Upload date	Comment			
SA#87-E	<u>16.4.0</u>	2020-03-27	Version updated with TSG SA#8	ઇઇ	ETSI TDoc CR	
SA#86	<u>16.3.0</u>	2019-12-22	Version updated with TSG SA#8	ઇઇ	ETSI TDoc CR	
SA#85	<u>16.2.0</u>	2019-09-24	Version updated with TSG SA#8	୪୪	ETSI TDoc CR	
SA#84	<u>16.1.0</u>	2019-06-11	Version updated with TSG SA#8	ଟ୍	ETSI TDoc CR	
SA#83	16.0.2	2019-04-01	MCC correction swapping claus	ଟ୍		
<u>SA#83</u>	<u>16.0.1</u>	2019-04-01	MCC correction of clause 5.29	୪୪		
SA#83	<u>16.0.0</u>	2019-03-28	Rel-16 Version created with T	ઇઇ	ETSI TDoc CR	

Release 15(Spec is UCC for this Release)	Latest Remark:

Meetings	Version	Upload date	Comment	
<u>SA#87-E</u>	<u>15.9.0</u>	2020-03-27	Version updated with TSG SA#8 🍇	ETSI TDoc CR
SA#86	<u>15.8.0</u>	2019-12-22	Version updated with TSG SA#8 🍇	ETSI TDoc CR
SA#85	<u>15.7.0</u>	2019-09-24	Version updated with TSG SA#8 🍇	ETSI TDoc CR
SA#84	<u>15.6.0</u>	2019-10-09	Version updated with TSG SA#8 🍇	ETSI TDoc CR
SA#83	<u>15.5.0</u>	2019-03-25	Version updated with TSG SA#8 🍇	ETSI TDoc CR
SA#82	<u>15.4.0</u>	2018-12-18	Version updated with TSG SA#8 🍇	ETSI TDoc CR
SA#81	<u>15.3.0</u>	2018-09-17	Version updated with TSG SA#8 🍇	ETSI TDoc CR
SA#80	<u>15.2.0</u>	2018-06-19	Version updated with TSG SA	ETSI TDoc CR

3GPP TS 23.501 V16.4.0 (2020-03)

Technical Specification

3rd Generation Partnership <u>Project;</u>
Technical Specification Group Services and System <u>Aspects;</u>
System architecture for the 5G System (5GS);
Stage 2
(Release 16)

LTE Protocol Architecture

LTE Signals – OFDM

Peak-to-Average Power Ratio (PAPR)

High PAPR implies high cost on the PAs

Peak-to-Average Power Ratio

- Inverse DFT: $x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{j\frac{2\pi kn}{N}}$
- For the simplicity of analysis, suppose the signal is 1, then $x_n = [1,0,0,0,...]$
- Maximum signal power is 1
- Average signal power is 1/N
- PAPR = N increases w.r.t. the number of subcarriers
- SC-FDMA can reduce the PAPR

UL/DL Parameters

Channel bandwidth [MHz]	1.4	3	5	10	15	20
Number of resource blocks (N_{RB})	6	15	25	50	75	100
Number of occupied subcarriers	72	180	300	600	900	1200
IDFT(Tx)/DFT(Rx) size	128	256	512	1024	1536	2048
Sample rate [MHz]	1.92	3.84	7.68	15.36	23.04	30.72
Samples per slot	960	1920	3840	7680	11520	15360

Some Calculations

- Bandwidth = Sample Rate * # of occupied subcarriers / # of subcarriers
- E.g., 1.92M*72/128 = 1.08MHz < 1.4MHz
- Subcarrier Spacing = Sample Rate / # of subcarriers
- E.g., 1.92M/128 = 3.84M/256 = ... = 15KHz
- OFDM Symbol Duration = # of subcarriers / Sample Rate = 1 / Subcarrier Spacing
- E.g., 1/15KHz
- Define Ts= OFDM Symbol Duration / 2048, which is basic time unit in LTE

Sectors and Frequency Reuse

Sectors and Frequency Reuse

Soft/Fractional Frequency Reuse

Duplexing Modes: TDD and FDD

Time-Division Duplex: same spectrum different time

Frequency-Division Duplex: same time different spectrum

Duplexing Modes: TDD and FDD

Time-Division Duplex: same spectrum different time

Frequency-Division Duplex: same time different spectrum

TDD or FDD?

• TDD can dynamically adjust the UL and DL resource, however

TDD or FDD?

• TDD can dynamically adjust the UL and DL resource, however

Frame Structure Type 1 (36.211, 4.1)

"Frame structure type 1 is applicable to both full duplex and half duplex FDD only. Each radio frame is $T_{\rm f}=307200\cdot T_{\rm s}=10\,{\rm ms}$ long and consists of 10 subframes of length $30720\cdot T_{\rm s}=1\,{\rm ms}$, numbered from 0 to 9."

Each subframe is further divided into two slots, each with length 15360 Ts=0.5 ms

Frame Structure Type 2 (36.211, 4.1)

"Frame structure type 2 is applicable to **TDD** only. Each radio frame of length $T_f = 307200 \cdot T_s = 10ms$ consists of **two half-frames** of length $153600 \cdot T_s = 5$ ms each. Each half-frame consists of **five subframes** of length $30720 \cdot T_s = 1$ ms."

Each subframe is further divided into two slots, each with length 15360 $T_s = 0.5$ ms

Cyclic Prefix

- Normal CP: 160Ts first symbol and 144 Ts the remaining symbols
- 7*2048+6*144+160 = 15360Ts = 0.5ms
- Light speed * CP = 1.4km
- Extended CP: 521Ts
- 512*6+2048*6 = 15360Ts = 0.5ms
- Light speed * CP = 5km
- With normal CP, there are 7 OFDM symbols per slot; with extended CP, there are
 6 OFDM symbols per slot.

Resource Element

Physical Resource Block

Parameters (Except for MBMS)

CP Type	# Symbols / Slot
Normal CP	7
Extended CP	6

Parameters (Except for MBMS)

I	System BW [MHz]	1.4	3	5	10	15	20
	# PRBs N _{RB}	6	15	25	50	75	100
	(# Used Subcarriers N_u)	(72)	(180)	(300)	(600)	(900)	(1200)

5G PHY Specifications

5G Spectrum

600 MHz	LTE/5G	North America
700 MHz	LTE/5G	APAC, EMEA, LatAm
3.3-3.4	LTE/5G	APAC, Africa, LatAm
3.4-3.6	LTE/5G	Global
3.55-4.2	LTE/5G	US
3.6-3.8	5G	Europe
4.5	5G	Japan China
28	5G	US, Korea Japan
39	5G	US
24.25-27.5	5G	WRC-19 band
31.8-33.4	5G	WRC-19 band (Fra, UK)

Dense urban high data rates at 3.5 – 4.5 GHz

Hotspot 10 Gbps at 28/39 GHz

Future mmwave

Macro

5G Spectrum

5G service

New Radio (NR)

4G Band

TDD Mode

5G Heterogeneous Coverage

Scalable Numerology (38.211, 4.2)

Scalable Numerology

- One slot is comprised of 14 symbols
 - Slot length depends on SCS 1ms for 15 kHz SCS to 0.125ms for 120 kHz SCS
- Mini-slot (2,4, or 7 symbols) can be allocated for shorter transmissions
- Slots can also be aggregated for longer transmissions

Reading (April 6th)

3GPP TS 36.211

• Section 4, 5.1, 5.2, 6.1, 6.2

3GPP TS 38.211

• Section 4