1

1.1

minimize
$$\sum_{u \in V} x_u + \rho \sum_{e \in E} y_e$$
subject to $x_u + x_v + y_e \ge 1 | \forall e := (u, v) \in E$
$$x_u \in \{0, 1\} | \forall u \in V$$
$$y_e \in \{0, 1\} | \forall e \in E$$
 (IP)

1.2

Let's denote the constraint matrix for IP as A', number of nodes n and number of edges m. A' is a $m \times (n+m)$ matrix where rows are edges and columns are nodes and the edges itself. We could rewrite A' as $[A \ I_m]$ where A is a bipartite incidence matrix. During the lecture, we have proved that A is bicoloring equitable therefore totally unimodular. We also proved that $[A \ I_m]$ is totally unimodular if A is totally unimodular. Thus $A' = [A \ I_m]$ is totally modular.

1.3

minimize
$$\sum_{u \in V} x_u + \rho \sum_{e \in E} y_e$$
 subject to $k_e^+ \ge x_u + x_v + y_e \ge k_e^- | \forall e := (u, v) \in E$
$$x_u \in \{0, 1\} | \forall u \in V$$

$$y_e \in \{0, 1\} | \forall e \in E$$

$$k_e^+, k_e^- \in \{0, 1, 2\} | \forall e \in E$$

$$k_e^+ \ge k_e^- | \forall e \in E$$

1.4

We can construct the new constraint matrix as $[A' I_m I_m]$. Now we apply the rule that $[A' I_m]$ is totally unimodular if A' is totally unimodular twice. So A'' is totally unimodular.

2

2.1

maximize
$$\sum_{i \in [n]} x_i q_i$$
 subject to $\sum_{i \in [n]} x_i \leq k$
$$\sum_{j \in B_i} x_j \leq b_B(i) | \forall i \in [m1]$$
 $(ACME)$
$$\sum_{j \in C_i} x_j \leq b_C(i) | \forall i \in [m2]$$
 $x_i \in \{0,1\} | \forall i \in [n]$

2.2

A counter example:

people:
$$\{1,2,3\}, k=2, B_1=\{1,2\}, C_1=\{2\}, B_2=\{3\}, C_2=\{1,3\}$$

 $b_B(1)=2, b_B(2)=1, b_C(1)=1, b_C(2)=1$
Both $\{3\}$ and $\{1,2\}$ are feasible. However neither $\{1,3\}$ nor $\{2,3\}$ is feasible.

2.3

We can think of this problem as a variant of bipartite matching. Each business is a node in a partition p_B and each country as a node in the other partition p_C . Each person is an edge connecting one node in p_B and a node in p_C . Therefore we have a constraint matrix of n rows for each person, m_1 red colored columns and m_2 blue colored columns. The coloring is equitable thus the matrix is totally unimodular.

2.4

Suppose there are two feasible sets of conference members X and Y where |X| < |Y|. $D := Y \setminus X$

We prove it's matroid by making contradictions.

Assume that the problem is not a matroid. $\Rightarrow \nexists d \in D : X + d$ is feasible $\Rightarrow \forall d \in D : X + d$ is infeasible.

However, $|X| < |Y| \Rightarrow D \neq \emptyset \Leftrightarrow \exists d \in D : d \in Y \Rightarrow d \in B_{i^*}$ and $d \in C_{j^*}$ where $B_{i^*} \subset C_{i^*}$ for some i^* and j^* .

According to the assumption, X + d is infeasible. In other words, either (1) $\exists i \in [m_1] : \sum_{k \in B_i} > b_B(i)$ or (2) $\exists j \in [m_2] : \sum_{k \in C_j} > b_C(j)$ and k doesn't matter as |X| < |Y|.

- $\forall k \in X : k \notin B_{i^*} \Rightarrow \sum_{k \in B_{i^*}} b_B(i^*) \Rightarrow |Y|$ is not feasible, contradicts to the premise.
- $\exists k \in X : k \in B_{i^*} \subset C_{j^*} \Rightarrow \sum_{k \in C_{j^*}} b_C(j^*) \Rightarrow |Y|$ is not feasible, contradicts to the premise.

Therefore, X + d is always feasible. Thus the problem is a matroid.

3

3.1

A counter example:

 $p_1 \cap p_2 \neq \emptyset$, $p_1 \cap p_3 \neq \emptyset$, $p_2 \cap p_3 = \emptyset$. $x_1 = 1$, $x_{i \neq 1} = 0$ is feasible. So is $x_2 = x_3 = 1$, $x_{i \neq 2, i \neq 3} = 0$. But $x_1 = x_2 = 1$ and $x_1 = x_3 = 1$ are infeasible.

3.2

A counter example:

 $v_1 = v_2 = 1$, $v_{\text{otherwise}} = 0$, $p_1 \cap p_2 \neq \emptyset$. $x_1 = 0.2$, $x_2 = 0.8$ is a basic feasible solution which is not integral.

3.3

maximize
$$\sum_{i \in [n]} v_i x_i$$

subject to $\sum_{k \in [n]: p_k \cap p_i \neq \emptyset} x_k \leq 1 | \forall p_i, i \in [n]$ (TIP)
 $x_i \in \{0,1\} | \forall i \in [n]$

3.4

TIP is valid.

 $\cap_{k\in K} p_k \neq \emptyset \Rightarrow \forall i,j \in K : p_i \cap p_j \neq \emptyset$

TIP is strictly stronger.

It is clear that $x_i + x_j \le \sum_{k \text{ includes } i \text{ and } j} x_k$ because x_i s are non-negative. If a solution is feasible for TIP, $x_i + x_j \le \sum_{k \text{ includes } i \text{ and } j} x_k \le 1$ still holds. Thus it is a feasible solution for the original IP. However, let's say \mathbf{v} is uniform with 1s. $p_1 \cap p_2 \cap p_3 \ne \emptyset$. $x_1 = x_2 = x_3 = 0.5$ is always feasible and optimal for IP but not feasible for TIP.

4

4.1

Say, we have a basis B in the current iteration. (The initial B_0 is simply |E| spanning trees of each edge in the graph). Calculate $\mathbf{1}A_B^{-1}A_T$ for each T where $A_T|_e = 1$ if $e \in T$. The T has largest $\mathbf{1}A_B^{-1}A_T$ has the minimized reduced cost.

4.2

maximize
$$\sum_{e \in E} y_e$$
 subject to $\sum_{e \in T} y_e \le 1 | \forall T \in \mathcal{T}$ $y_e \text{ free} | \forall e \in E$ (Dual)

4.3

The objective is to find a spanning tree T^* so that $\sum_{e \in T^*} y_e > 1$. oracle algorithm:

Given a tree, simply iterate all edges in this tree through DFS/BFS and sum all weights. The running time is of O(|V| + |E|) thus polynomial.