Session 12. Advanced Decision Models

* Game Theory

• Game theory attempts to mathematically capture behavior in *strategic situations*, in which an individual's success in making choices depends on the choices of others.

Ex] Soccer penalty kicks

DICaomin	na a ann11	Goalie		
P[Scoring a goal]		b_1 : Dive left	b ₂ : Dive right	
Right-footed	<i>a</i> ₁ : Kick left	0.637	0.944	
Kicker	a ₂ : Kick right	0.893	0.437	

- The *optimal* strategy for the kicker?
- The *optimal* strategy for the goalie?
- The *value* of the game?

* Multi-Objective Decision Making

- Many real-world decision problems have multiple objectives. For example, when choosing a medical treatment plan, we want to maximize the efficacy of the treatment, but also minimize the side effects.
- These objectives typically conflict, e.g., we can often increase the efficacy of the treatment, but at the cost of more severe side effects.
- Multi-objective methods
 - Analytical hierarchical process (AHP)
 - Multi-objective linear programming (MOLP)
 - Multi-attribute utility theory

A. Game Theory*

* Game Theory

- Two or more decision-makers have *conflicting* interests.
- Game theory attempts to mathematically capture behavior in *strategic situations*, in which an individual's success in making choices depends on the choices of others.
- Game theory has been widely recognized as an important tool in many fields. Eight game theorists have won *Nobel* prizes in economics.

* Basic Assumptions

- 1. Both players are rational.
- 2. *Both* players choose their strategies solely to *promote their own welfare* (no compassion for the opponent).

* Payoff Table

• It shows the gains (or payoffs) for Player A that would result from each combination of strategies for the two players.

Payoff		Player B			
Payoff Table		b_1	b_2	• • •	b_n
	a_1	r_{11}	<i>r</i> ₁₂	• • •	r_{1n}
Player	a_2	r_{21}	$r_{12} \\ r_{22}$	• • •	r_{2n}
A	• • •	• • •	• • •	• • •	• • •
	a_m	r_{m1}	r_{m2}	• • •	r_{mn}

* Classifications

- Two person game
 - Zero-sum game
 - Constant-sum game
 - Non-constant-sum game
- *n*-person game

* Solving Two-Person Zero-Sum Games

• Step 1. Games with dominated strategies:

Eliminate any of Player A's dominated strategies. Looking at the *reduced* payoff table, eliminate any of Player B's dominated strategies. Now eliminate any of Player A's dominated strategies. Continue in this fashion until no more dominated strategies can be found.

• Step 2. Games with pure strategies:

Find the maximin strategy for Player A that maximizes the minimum payoff. Find the minimax strategy for Player B that minimizes the maximum loss. If the maximin value equals to the minimax value, then we find the *stable* solution (*saddle point*) for both players. Players A and B should exclusively use their maximin and minimax strategies, respectively.

• Step 3. Games with mixed strategies:

Introduce variables that represent the probabilities of selecting each strategy for the players. Find the maximin mixed strategy for Player A that maximizes the *expected* minimum payoff. For Player B, find the minimax mixed strategy that minimizes the *expected* maximum loss.

* Solution Methods for Mixed Strategies

- Graphical solution (or calculus):

 If one of the players has only *two* strategies, we can find the optimal mixed strategies from a 2-dimensional plane.
- Linear programming (LP) formulation
 Use Microsoft Excel to solve the LP model.

Ex 1] Games with Dominated Strategies

The head football coach of LSU is attempting to come up with a strategy to deal with Alabama. LSU is on offense, and Alabama is on defense. The LSU coach has 5 preferred plays, but is not sure which to select. He knows, however, that Alabama usually employs one of 3 defensive strategies. Over the years, he has diligently recorded the average yardage gained by his team for each combination of strategies used:

Yardage gained		Alabama			
		b_1	b_2	b_3	
	a_1	0	-1	5	
	a_2	7	5	10	
LSU	a_3	15	-4	-5	
	a_4	5	0	10	
	a_5	-5	-10	10	

Which of the five plays should the LSU coach select?

- Step 1:
- Step 2:
- Step 3:
- Step 4:
- The optimal strategies are

Ex 2] Games with Pure Strategies: Players A and B simultaneously call out one of the numbers, one or two.

		Play	MAX	
		b_1 : One	b_2 Two	min
Player	a_1 : One	+\$3	+\$2	
A	a_2 : Two	+\$1	-\$6	
MIN	max			

■ The *optimal* strategies =

Ex 3] Games with Mixed Strategies

Suppose that **Player A** chooses a_1 with probability x and chooses a_2 with probability 1-x, and **Player B** chooses b_1 with probability y and chooses b_2 with probability 1-y.

Player A's		Player B		$P[a_i]$
Payoff <i>v_{ij}</i>		b_1	b_2	$P[a_i]$
Player	a_1	2	4	X
A	a_2	3	1	1- <i>x</i>
$P[b_j]$		у	1-y	1.0

Joint		Pla	D[a.1	
Probabilities		b_1	b_2	$P[a_i]$
Player	a_1	xy	x(1-y)	X
A	a_2	(1-x)y	(1-x)(1-y)	1- <i>x</i>
$P[b_j]$		у	1-y	1.0

• The expected value ν of the game to Player A is

$$v = \sum_{i=1}^{m} \sum_{j=1}^{n} x_i \ r_{ij} \ y_j =$$

• Player A's maximin strategy, $(x^*, 1-x^*)$

Find the first-order derivative with respect to y and set it equal to 0. Solve the equation for x.

$$\frac{d}{dy}v = \frac{d}{dy}(-4xy + 3x + 2y + 1) =$$

Thus, the optimal strategy is $x^* =$ and $1-x^* =$

• Player B's minimax strategy, $(y^*, 1-y^*)$

Find the first-order derivative with respect to x and set it equal to 0. Solve the equation for y.

$$\frac{d}{dx}v = \frac{d}{dx}(-4xy + 3x + 2y + 1) =$$

Thus, the optimal strategy is $y^* =$ and $1-y^* =$

• Value of the game, v^*

$$v^* = -4 x^* y^* + 3 x^* + 2 y^* + 1 =$$

Ex 4] Pure strategies: Consider the following payoff table, which represents player A's gain. Is this a fair game?

Payo	off		Play	yer B		Maxi
Table 1	for A	b_1	b_2	b_3	b_4	min
	a_1	3	2	4	2	
Player	a_2	6	-4	-8	-3	
Å	a_3	4	2	3	2	
	a_4	-5	-3	7	-4	
Minir	пах					

- Dominated strategies?
- Optimal strategies?
- Value of the game?

Ex 5] Mixed Strategies: Suppose that **Player A** chooses a_1 with probability x and chooses a_2 with probability 1-x, and **Player B** chooses b_1 with probability y and chooses b_2 with probability 1-y.

Player A's		Player B		Dr 1
Payoff r_{ij}		b_1	b_2	$P[a_i]$
Player	a_1	9	13	х
A	a_2	11	7	1- <i>x</i>
$P[b_j]$		у	1-y	1.0

Joint		Player B		D[a 1
Probabilities		b_1	b_2	$P[a_i]$
Player	a_1	xy	<i>x</i> (1- <i>y</i>)	х
\mathbf{A}	a_2	(1-x)y	(1-x)(1-y)	1- <i>x</i>
$P[b_j]$		у	1-y	1.0

• Player A's *maximin* strategy, $(x^*, 1-x^*)$

The optimal strategy is $x^* =$ and $1-x^* =$

• Player B's *minimax* strategy, $(y^*, 1-y^*)$

The optimal strategy is $y^* =$ and $1-y^* =$

• Value of the game, v^*

$$v^* = 6 x^* + 4 y^* - 8 x^* y^* + 7 =$$

Invariance under the change of *location* and *scale*: $r_{ij}' = 2r_{ij} + 5$

B. LP Formulation for Mixed Strategies*

Any game with mixed strategies can be solved by transforming the problem to a linear programming problem.

Payoff Table		Player B				D[a]	243
		b_1	b_2		b_n	$P[a_i]$	W_i
	a_1	<i>r</i> ₁₁	<i>r</i> ₁₂		r_{1n}	x_1	w_1
Player	a_2	<i>r</i> 21	<i>r</i> 22		r_{2n}	x_2	W2
A			• • •		• • •		
	a_m	r_{m1}	r_{m2}		r_{mn}	χ_m	W_m
$P[b_j]$		<i>y</i> ₁	<i>y</i> 2		y_n	1.0	$max\{w_j\}$
v_j		v_1	v_2		V_n	$min\{v_i\}$	v^*

(a) **Player A**: Let *v* be the Player A's *minimum* expected gain. Since Player A is trying to maximize the minimum expected gain *v*, the LP model is

$$Max z = v$$

$$\sum_{i=1}^{m} x_i r_{ij} \ge v$$
 for $j = 1, 2, ..., n$ and

$$\sum_{i=1}^{m} x_i = 1$$
 where $x_i \ge 0$ and v is *unrestricted* in sign.

(b) **Player B**: Let *w* be the Player B's *maximum* expected loss. Since Player B is trying to minimize the maximum expected profit *w*, the LP model is

$$Min z = w$$

$$\sum_{j=1}^{n} r_{ij} y_j \le w$$
 for $i = 1, 2, ..., m$ and

$$\sum_{j=1}^{n} y_j = 1$$
 where $y_j \ge 0$ and w is unrestricted in sign.

(c) Combined LP formulation

$$\min_{1 \le j \le n} \sum_{i=1}^m x_i r_{ij} = v \le w = \max_{1 \le i \le m} \sum_{j=1}^n r_{ij} y_j$$

Player A's *maximin* value ≤ Player B's *minimax* value

- It can be shown from the dual theorem that the *optimal* objective function values *v* and *w* are equal.
- Thus, player A's *floor* (maximin value) equals player B's *ceiling* (minimax value).
- This result is often known as the *minimax theorem*.
- Objective function:

$$Min z = w-v$$

- Constraints

$$\sum_{i=1}^{m} x_i r_{ij} \ge v$$
 for $j = 1, 2, ..., n$

$$\sum_{i=1}^{n} r_{ii} y_i \le w$$
 for $i = 1, 2, ..., m$

$$\sum_{i=1}^{m} x_i = 1$$

$$\sum_{i=1}^{n} y_i = 1$$

where $0 \le x_i < 1$ and $0 \le y_i \le 1$ and

v and w are unrestricted in sign.

Ex 1] Penalty Kicks in Soccer

Suppose that the kicker can only shoot either right or left. Similarly, the goalie must jump either right or left. (For simplicity, assume that kicking the ball in the center or staying in the center is not a viable option for either the kicker or the goalie.) A kicker has a higher probability of scoring on his natural side (i.e. on the left side for a right-footed kicker) and the goalie has a higher probability of saving the goal if he guesses the correct side.

Right-footed		Goalie		Kicker's	Goalie's
kicker	's payoff	<i>b</i> ₁ : Left	b ₂ Right	strategy	loss
Kicker	<i>a</i> ₁ : Left	63.7%	94.4%	x_1	$$w_1$
Kickei	a ₂ : Right	89.3%	43.7%	\mathcal{X}_2	$$w_2$
Goalie'	s strategy	<i>y</i> ₁	<i>y</i> ₂	Sum = 1	$w=\max\{w_1, w_2\}$
Kicke	er's gain	\$v ₁	\$v2	$v=\min\{v_1, v_2\}$	Min z=w-v

• LP model

- Objective function

Minimize
$$z = w - v$$

- Constraints

$$0.637 x_1 + 0.893 x_2 = v_1$$
 $0.637 y_1 + 0.944 y_2 = w_1$
 $0.944 x_1 + 0.437 x_2 = v_2$ $0.893 y_1 + 0.437 y_2 = w_2$
 $v_1 \ge v$ $w_1 \le w$
 $v_2 \ge v$ $w_2 \le w$
 $x_1 + x_2 = 1$ $y_1 + y_2 = 1$
 $0 \le x_1$ and $x_2 \le 1$ $0 \le y_1$ and $y_2 \le 1$

v and *w* are *unrestricted* in sign.

- Decision variables

$$(x_1, x_2, y_1, y_2)$$
 and (v, w) .

Various strategies

Ri	ght-footed	Goalie		
kicker's payoff		Randomly	Strategically	
Violen	Randomly	Case 1	Case 2	
Kicker	Strategically	Case 3	Case 4	

- Case #1

- Mixed strategy: $\mathbf{x} = (0.5, 0.5)$ and $\mathbf{y} = (0.5, 0.5)$.
- The kicker's average success rate is **72.8**%.

- Case #2

- Mixed strategy: $\mathbf{x} = (0.5, 0.5)$ and $\mathbf{y} = (0.664, 0.336)$.
- The kicker's average success rate is **69.1**%.

- Case #3

- Mixed strategy: $\mathbf{x} = (0.598, 0.402)$ and $\mathbf{y} = (0.5, 0.5)$.
- The kicker's average success rate is **79.1**%.

- Case #4

- Mixed strategy: $\mathbf{x} = (0.598, 0.402)$ and $\mathbf{y} = (0.664, 0.336)$.
- The kicker's average success rate is **74.0**%.

• Kicker's success rate for each case

Right-footed		Goalie		
kick	ker's payoff	Randomly	Strategically	
Violen	Randomly	72.8%	69.1%	
Kicker	Strategically	79.1%	74.0%	

Their mixed strategies help them maximize their expected equilibriums, thereby providing them with the best response for each other's actions.

Ex 2] Search Game

Dr. Chun writes down one of the numbers (1, 2, 3) and you must repeatedly guess this number until you get it, losing \$1 for each wrong guess. After each guess, Dr. Chun will say whether your guess is too high, too low, or correct.

- Game theory
 - Dr. Chun's strategy *a_i*: How to pick his number *i*.
 - Your strategy b_j : How to sequence your guesses
- Case #1. Dr. Chun *randomly* picks the number.
 - *Pure* strategy: you always choose the strategy, (2, 1 or 3).
 - The value of the game is \$0.67.

Your strategy					D[a 1		
		1,2,3	1,3,2	2,1or3	3,1,2	3,2,1	$P[a_i]$
Ша	1	0	0	1	1	2	1/3
His	2	1	2	0	2	1	1/3
strategy	3	2	1	1	0	0	1/3
E[Payo	ff	\$1	\$1	\$0.67	\$1	\$1	\$0.67

- Case #2. Dr. Chun *strategically* picks the number.
 - Mixed strategies
 - The value of the game is \$0.80.

		Your strategy					D[a.1
		1,2,3	1,3,2	2,1or3	3,1,2	3,2,1	$P[a_i]$
His	1	0	0	1	1	2	0.4
	2	1	2	0	2	1	0.2
strategy	3	2	1	1	0	0	0.4
P[b]	<i>i</i>]	0	0.2	0.6	0.2	0	\$0.80

C. Analytic Hierarchy Process*

* Analytic Hierarchy Process

- The Analytic Hierarchy Process (AHP) is a structured technique for organizing and analyzing complex decisions.
- Based on mathematics and psychology, it was developed by Thomas L. Saaty in the 1970s and has been extensively studied and refined since then.
- Users of the AHP first decompose their decision problem into a hierarchy of more easily comprehended subproblems, each of which can be analyzed independently.

* Developing the Hierarchy

- 1. Overall goal
- 2. Criteria
- 3. Decision alternatives

* Applications

Choice, ranking, prioritization, resource allocation, benchmarking, quality management, conflict resolution, etc.

* Procedures

• **Step 1**. **Criteria**: The decision maker specifies judgments about the relative importance of each criterion in terms of its contribution to the achievement of the overall goal.

- Step 2. Alternatives: The decision maker indicates a preference or priority for each decision alternatives in terms of how it contributes to each criterion.
- Step 3. Overall preference: The output of AHP is a prioritized ranking indicating the overall preference for each decision alternative.

* Measurement Scale

Criteria →	Score	← Alternatives
Absolutely more important	9	Extremely preferred
Very strongly more important	7	Very strongly preferred
Strongly more important	5	Strongly preferred
Weakly more important	3	Moderately preferred
Of equal importance	1	Equally preferred

* Criticisms

- While the general consensus is that it is both technically valid and practically useful, the AHP does have its critics. Most of the criticisms involve a phenomenon called *rank* reversal.
- Decision-making involves ranking alternatives in terms of criteria or attributes of those alternatives. It is an axiom of some decision theories that when new alternatives are added to a decision problem, the ranking of the old alternatives must not change — that "rank reversal" must not occur.

Ex] Soulmate: Kevin is ready to select his mate for life and has determined that beauty, intelligence, and personality are the key factors in selecting a mate.

• Step 1. Criteria: Obtain the weight for each criterion.

Criteria	Beauty	Intelligence	Personality
Beauty	1		
Intelligence	4	1	
Personality	8	4	1
Total			

Criteria	Beauty	Intelligence	Personality	Total	Weight
Beauty	0.077	0.048	0.091	0.216	
Intelligence				0.680	
Personality	0.615	0.762	0.727	2.104	
Total	1.000	1.000	1.000	3.000	1.000

• Step 2. Alternatives: Three girlfriends (Mary, Melanie, and Molly) are begging to be the Kevin's mate.

(a) Beauty

	Mary	Melanie	Molly
Mary		5	3
Melanie			
Molly		2	
Total			

	Mary	Melanie	Molly	Total	Score
Mary	0.652	0.625	0.667	1.944	
Melanie				0.366	
Molly	0.217	0.250	0.222	0.689	
Total	1.000	1.000	1.000	3.000	1.000

(b) Intelligence

	Mary	Melanie	Molly
Mary			
Melanie	6		2
Molly	4		
Total			

	Mary	Melanie	Molly	Total	Score
Mary	0.091	0.100	0.077	0.268	
Melanie					
Molly	0.364	0.300	0.308	0.972	
Total	1.000	1.000	1.000	3.000	1.000

(c) Personality

	Mary	Melanie	Molly
Mary	1	4	
Melanie		1	
Molly	4	9	1
Total			

	Mary	Melanie	Molly	Total	Score
Mary	0.190	0.286	0.184	0.660	
Melanie					
Molly	0.762	0.643	0.725	2.130	
Total	1.000	1.000	1.000	3.000	1.000

Step 3. Overall preference:

	Beauty	Intelligence	Personality	Weighted Score
Mary	0.648	0.089	0.220	
Melanie				
Molly	0.230	0.324	0.713	
Weight	0.072	0.227	0.701	1.000

• Thus, Kevin should choose Molly with **0.590**.

8 X1 10

D. Multi-Objective Linear Programming**

* Original MOLP problem in decision space (x_1, x_2)

Objective functions

$$Max$$
 $f_1(\mathbf{x}) = -x_1 + 2x_2$
 Max $f_2(\mathbf{x}) = 2x_1 - x_2$

Constraints

- (1) $x_1 \leq 4$
- (2) $x_2 \le 4$
- (3) $2x_1 + x_2 \le 10$
- (4) $x_1 \ge 0$
- (5) $x_2 \ge 0$

• Efficient set= $\{A, B, C, D\}$

- Point
$$A = (0, 4)$$

- Point
$$B = (3, 4)$$

- Point
$$C = (4, 2)$$

- Point
$$D = (4, 0)$$

$$f_1(A) = 8$$

$$f_2(A) = -4$$

Feasible

Region

10 X2

-2

-6

$$f_1(B) = 5$$

$$f_2(B) = 2$$

 $f_2(C) = 6$

$$f_1(C) = 0$$

 $f_1(D) = -4$

$$f_2(D) = 8$$

* Reformulated MOLP problem in criterion space (f_1, f_2)

Objective functions

$$\begin{array}{ccc}
Max & f_1 \\
Max & f_2
\end{array}$$

Constraints

(1)
$$f_1 + 2f_2 \le 12$$

(2)
$$2f_1 + f_2 \le 12$$

$$(3) \ 4f_1 + 5f_2 \le 30$$

(4)
$$f_1 + 2f_2 \ge 0$$

(5)
$$2f_1 + f_2 \ge 0$$

• Efficient set=
$$\{A, B, C, D\}$$

* Solving MOLP

- **Method 1**: Weighted sum with the weight w.
 - Two objective functions in the original LP are $f_1(\mathbf{x}) = -x_1 + 2x_2$ and $f_2(\mathbf{x}) = 2x_1 x_2$.

Thus, the weighted sum is $f_c(\mathbf{x}) = w f_1(\mathbf{x}) + (1 - w) f_2(\mathbf{x})$

$Max f_{c}(\mathbf{x})$	$f_1(A) = 8$ $f_2(A) = -4$	$f_1(B) = 5$ $f_2(B) = 2$	$f_1(C) = 0$ $f_2(C) = 6$	$f_1(D) = -4$ $f_2(D) = 8$
w = 0.3	-0.4	2.9	4.2	4.4
w = 0.4	0.8	3.2	3.6	3.2
w = 0.5	2.0	3.5	3.0	2.0
w=0.8	5.6	4.4	1.2	-1.6

Method 2: Goal programming

- Each objective is viewed as a "goal".
- Deviation variables, a_i and b_i , are the amounts a targeted goal i is underachieved or overachieved, respectively.
- The goals themselves are added to the constraint set with a_i and b_i , acting as the *slack* and *surplus* variables.
- Goal constraints:

- Goal 1:
$$f_1(\mathbf{x}) = -x_1 + 2x_2 > s_1 \longrightarrow -x_1 + 2x_2 + a_1 - b_1 = s_1$$

- Goal 2:
$$f_2(\mathbf{x}) = 2x_1 - x_2 > s_2 \rightarrow 2x_1 - x_2 + a_2 - b_2 = s_2$$

• Assume that s_1 =6 and s_2 =5, and the new objective function is $Min z = \$2 a_1 + \$1 a_2$.

$Min \ z = 2a_1 + 1a_2$	$f_1(A) = 8$ $f_2(A) = -4$	$f_1(B) = 5$ $f_2(B) = 2$	$f_1(C) = 0$ $f_2(C) = 6$	$f_1(D) = -4$ $f_2(D) = 8$
(a_1, b_1) for Goal 1	(0, 2)		(6, 0)	(10, 0)
(a_2, b_2) for Goal 2	(9, 0)		(0, 1)	(0, 3)
Objective function <i>z</i>	\$9		\$12	\$20