

Curso de

Análisis de datos para la Gestión de Proyectos

PMP. Msc. Ing. Magaly Reyes Hill

Introducción

Objetivo del curso

Aprender a realizar el diagnóstico constante de tu proyecto, una vez que comienza su ejecución, bajo los estándares del Project Management Institute (PMI), a fin de tomar, ante posibles problemas, decisiones a tiempo para mejorar su desempeño.

Contenido

- Fundamentos generales en Gerencia de Proyectos.
- Cómo hacer el seguimiento y control de un proyecto.
- Método del Valor Ganado.
- Otras herramientas de análisis de datos.

¿Por qué los proyectos fallan?

- Objetivos pocos claros.
- Planificación casi nula.
- No se hace seguimiento.
- Control débil.
- Inadecuado administración de los riesgos.
- Otros.

Objetivo

'Mejorar el desempeño'

¿Cómo?

Comparar lo planificado con lo real.

Análisis de datos

Analizar las interrelaciones entre diferentes variables del proyecto que contribuyeron a los resultados obtenidos.

- Recursos comiencen a completar tareas.
- Registrar datos del progreso.
- De la calidad de los datos dependerá la validez y la efectividad del análisis.

Buscar datos y convertirlos en información a través de análisis.

Project Management Institute PMI

La forma de llevar a cabo los proyectos tiene un lineamiento estandarizado a nivel mundial.

Herramientas de Análisis de Datos

Método Valor Ganado

Análisis Histograma

Herramientas de Análisis de Datos

Diagrama de Control

Análisis Causa Raíz

Herramientas de Análisis de Datos

	Diagr	ama
de	Disp	ersión

riesgo		probabilidad					
		MB	8	M	A	MA	
Impacto	MA	A	MA	MA	MA	MA	
	A	M	A		MA	MA	
	М	8	M	M		A	
	В	MB	B	B	М	M	
	MB	MB	MB	MB	B	8	

Matriz Probabilidad Impacto

Análisis de Datos

- Control del cronograma.
- Control de la calidad.
- Control de costos.
- Control recursos.
- Control riesgos...

Y así: ¡Recomendar acciones preventivas y/o correctivas!

¡Lograrás cambios!

¿Cómo evalúas tus proyectos actualmente? ¡Comentanos tu experiencia!

Fundamentos de Gerencia de Proyectos

Fundamentos Generales de la Gerencia de Proyectos

¿Qué es la Gerencia de Proyectos?

Objetivo de la clase

Considerar las bases teóricas de la Gerencia de Proyectos bajo el PMI.

El mundo de la gerencia

- Muy cambiante/dinámico.
- Muy competitivo.
- Está metido en todos los rincones de la empresa.
- Transnacionales necesitan más gerentes calificados.

Un gerente debe saber de muchas áreas

¿Qué es un proyecto?

¿Qué es un proyecto?

"... Es un esfuerzo temporal que se lleva a cabo para crear un producto, servicio o resultado único"

PMBOK

¿Qué es la Gerencia de Proyectos?

"... Es la aplicación de conocimientos, habilidades, herramientas y técnicas a las actividades de un proyecto para satisfacer los requisitos del mismo"

PMBOK

Todos los proyectos tendrán conceptos muy similares y desarrollarán habilidades y técnicas parecidas.

Gerencia de Proyectos

Variedad:

- Metodologías para gestión de proyectos.
- Métodos.
- Herramientas de análisis.

Habilidades de un director de proyectos

- Personas: habilidades dirigir equipo.
- Entorno del negocio: conexión proyectos y estrategia.
- Procesos: aspectos técnicos para dirigir.

Áreas del conocimiento

Alcance Costos Riesgos

Cronograma Calidad Recursos

Adquisiciones Comunicaciones Interesados

Cuéntanos brevemente de un proyecto en el que hayas participado y cómo te fue.

Ciclo de vida de un proyecto

Objetivo de la clase

Describir y diferenciar los ciclos de vida de un Proyecto.

Ciclos de vida proyecto

Serie de **fases** que atraviesa un proyecto: inicio-conclusión

Puede ser:

- 1. Predictivo
- 2. Adaptativo (iterativo, incremental o ágil)

Ciclo de vida predictivo

- Cierra la mayor parte de los requisitos al principio.
- Avanza por fases secuenciales.
- Entrega el producto al final.

Ciclo de vida predictivo

Ciclo de vida adaptativo: iterativo

Alcance se determina inicialmente.

Tiempo y costo se modifican periódicamente.

Actividades se repiten.

Ciclo de vida adaptativo: incremental

Entregables: Serie de iteraciones que añaden funcionalidad dentro de tiempo determinado.

Incrementos: Van añadiendo funcionalidad al producto.

Ciclo de vida adaptativo: ágil

El alcance: definido y aprobado antes del comienzo de iteración.

Las actividades: repetidas hasta que esté correcto.

Se denominan ciclos de vida ágiles u orientados al cambio.

Ciclo de vida híbrido

Combinación de un ciclo de vida predictivo y adaptativo.

Ejemplos

Proyectos de Inversión							
Fase 1	Fase 2	Fase 3	Fase 4	Fase 5			
Idea	Perfil	Pre-factibilidad	Factibilidad	Inversión			
Proyectos de Construcción							
Fase 1 Factibilidad	Fase 2	Fase 3	Fase 4	Fase 5			
	Planificación	Diseño	Producción	Entrega final			
Proyectos de Sistemas Informáticos							
Fase 1	Fase 2	Fase 3	Fase 4	Fase 5			
Análisis	Diseño	Codificación	Pruebas	Instalación			
Proyectos con Metodologías Ágiles							
Iteración 1	Iteración 2	Iteración 3	Iteración 4	Iteración 5			
Análisis	Análisis	Análisis	Análisis	Análisis			
Desarrollo	Desarrollo	Desarrollo	Desarrollo	Desarrollo			

Los ciclos de vida adaptativos responden a niveles de cambio altos y a la participación continua del interesado.

Los ágiles se diferencian de los iterativos e incrementales en que las iteraciones son muy rápidas.

(PMBOK 6ta edición. 1.2.4.1 Ciclos de vida de proyecto)

El equipo de dirección del proyecto debe determinar el mejor ciclo de vida para cada proyecto

Beneficios de los ciclos de vida

Ciclo de vida de un proyecto

	Enfoque	Requisitos	Actividades	Entrega	Meta
	Predictivo	Fijos	Realizadas desde el inicio para todo el proyecto	Entrega única	Garantizar que el proyecto se desarrolle según lo planificado
Adaptativo	Iterativo	Dinámicos	Repetidos hasta que esté correcto	Entrega única	Corrección de la solución
	Incremental	Dinámicos	Realizados para un incremento dado	Entregas frecuentes más pequeñas	Velocidad
	Ágil	Dinámicos	Repetidos hasta que esté correcto	Entregas frecuentes más pequeñas	Valor para el cliente mediante entregas cada vez mejores

Punto de revisión de fase

Al final de cada fase: Se recopilan y analizan datos y se transforman en información.

Punto de revisión de fase

Punto de revisión de fase

 Evaluar el desempeño y emprender las acciones correctivas o preventivas antes de continuar con las fases subsiguientes.

Punto de revisión de la fase: ¡Recolectar y analizar datos!

- % Avance de trabajo físico terminado.
- Medidas de desempeño técnico y de calidad.
- Fechas de inicio/fin de actividades programadas.
- Número de solicitudes de cambio.
- Número de defectos.
- Costos reales al día.
- Duraciones reales, etc.

Comenta el ciclo de vida de algún proyecto en el que hayas participado.

Cómo hacer el monitoreo y control de un proyecto

Cómo hacer el monitoreo y control de un proyecto

Presentación del Proyecto

Objetivo de la clase

Dar a conocer el ejercicio práctico que estaremos utilizando en la ejecución, monitoreo y control.

Nombre del proyecto

Diseño, desarrollo e implementación de un sitio web personal-profesional.

Veamos el acta constitutiva

Extrae de la información del acta constitutiva los entregables del proyecto.

¿Qué es el monitoreo y control de un proyecto?

Objetivo de la clase

- Qué es el monitoreo y control en un proyecto.
- Cuándo se realizan.
- Importancia.
- Qué se controla y monitorea en cada área.

Conjunto de actividades de gestión para verificar si el proyecto va marchando según lo planificado.

Monitoreo y Control Consideraciones previas

- Acta constitutiva aprobada.
- Plan Dirección de Proyecto elaborado.
- Líneas bases del proyecto.
- Inicio ejecución.

Acta constitutiva

- Documento de inicio que autoriza la existencia de un proyecto y da autoridad al director de proyectos.
- Describe de forma general el proyecto: alcance preliminar, requisitos, entregables, riesgos, supuestos y criterios de terminación, entre otros.

Plan de dirección del proyecto

- Integra los planes de gestión de las áreas del conocimiento.
- Documento centralizado, guía en la ejecución.
- Incluye las líneas bases de alcance, cronograma y costo.

Describe entregables y paquetes de trabajo para desglosar las actividades a ejecutar.

EDT del proyecto: Diseño y desarrollo sitio web

Dirigir la realización de las actividades sobre la base del plan de Dirección de Proyectos.

"No perder de vista la calidad"

 Al ejecutar, se monitorea y controla que todo esté como lo previsto.

Conjunto de actividades de gestión para verificar si el proyecto va marchando según lo planificado.

- 1. Observar lo que está ocurriendo.
- 2. Recoger datos en la ejecución.
- 3. Analizar e implementar acciones correctivas.

Restricciones

Acorde con el Plan de Dirección: ¡excelente labor!

¡Pendiente de los entregables!

Ventajas del monitoreo y control

- Decide si se debe retroceder o seguir avanzando.
- Va ajustando los procesos y sus resultados en forma sistemática.

¿Qué se monitorea y qué se controla?

- Control Integrado de Cambios
- 2. Controlar el Alcance
- 3. Controlar el Cronograma
- 4. Controlar los Costos
- 5. Controlar la Calidad
- 6. Controlar los Recursos
- 7. Controlar las Adquisiciones

- Monitorear las Comunicaciones
- 2. Monitorear los Riesgos
- 3. Monitorear el Involucramiento de los Interesados

Reporte de estado

 ¿Cómo se ha ido desarrollando el proyecto en un estado X (según lo planeado)? ¿Por qué?

 Informar los desvíos del plan y cómo serán corregidos.

Reto: Conoce la línea base cronograma (BAC)

Identifica en el cronograma adjunto: duración y costo total del proyecto; costos de cada semana, duración total por semana.

Herramientas para el análisis de datos en monitoreo y control

Objetivo de la clase

Conocer de modo general las herramientas de monitoreo y control frecuentemente utilizadas por cada área del conocimiento.

Método del Valor Ganado

Herramientas de análisis de datos.

Mide desempeño a nivel del cronograma, alcance y costos.

Procesos donde se aplican: controlar cronograma y costos.

Análisis Causa Raíz

Evitar recurrencia de problema - defecto al identificar las causas.

Procesos donde se aplican son 10 de 11 de monitoreo y control.

Representación gráfica. Representa frecuencia de los valores.

Procesos donde se aplican: controlar RRHH y la calidad.

- Determinar si un proceso es estable en el tiempo.
- Caso contrario se toma decisiones para lograr que se estabilice.

Proceso donde se aplica: controlar la calidad.

Diagrama de Dispersión

Análisis gráfico que se utiliza para ver la relación posible entre dos variables numéricas.

Proceso donde se aplica: controlar la calidad.

Matriz probabilidad/Impacto de riesgos

Es un análisis cualitativo que se utiliza para establecer si un riesgo es: bajo, intermedio o elevado; a través de la relación entre la **probabilidad** de que suceda y su **impacto** (de suceder), a los objetivos del proyecto.

El proceso donde se aplica: control de riesgos.

Técnica análisis de datos	Procesos en Monitoreo y Control
Método Valor Ganado	Cronograma/costo/alcance
Análisis Causa Raíz	Trabajo del Proyecto Integración de cambios Involucramiento de los interesados Costos Cronograma Riesgos Recursos Alcance Calidad Adquisiciones

Resumiendo

Técnica análisis de datos	Procesos en monitoreo y control
Histograma	Controlar RRHH Controlar la calidad
Diagrama de control	Controlar la calidad
Diagrama de dispersión	Control de la calidad
Matriz probabilidad e impacto de riesgos	Control de riesgos

¿Cuál técnica has usado para el seguimiento y control? ¿En qué área?

Cuenta tu experiencia.

Método del Valor Ganado

Método del Valor Ganado

¿Qué es el método del Valor Ganado?

Objetivo de la clase

Comprender la importancia del uso del Valor Ganado en el área de seguimiento y control para medir el desempeño de tu proyecto.

Herramienta de análisis de datos para medir el desempeño de un proyecto a nivel del cronograma, alcance y costos.

Valor ganado

Compara las líneas base del cronograma y del costo, con respecto a los valores reales dados en la ejecución en un tiempo.

Valor ganado: 3 valores importantes

- 1. Valor planificado (PV).
- 2. Costo real o actual (AC).
- 3. Valor ganado (EV).

Valor Planificado (PV)

Valor estimado del trabajo que se tiene planificado hacer en una actividad, en el tiempo X (valor que se estableció en la línea base).

Costo Actual (AC)

Es el **costo real** del trabajo realizado en el tiempo X.

Es el valor del trabajo que realmente se ha realizado en el tiempo X.

Porcentaje de avance en un tiempo X de una actividad convertido en un valor monetario al multiplicarlo por el costo total presupuestado de ésta.

- 1. Recopilar información sobre % de avance de cada actividad.
- Convertir % de avance en un valor monetario al multiplicarlo por el costo total presupuestado de cada actividad.

¡Vámonos a Excel!

¿Conoces el método del valor ganado? De conocerlo, **comparte tu experiencia** de uso en algún proyecto.

Método del Valor Ganado

Indicadores de Valor Ganado: Variaciones / Índices

Objetivo de la clase

Conocer los indicadores principales de Valor Ganado: análisis de variación e índices de desempeño. Cómo calcularlos e interpretarlos.

Análisis de la variación

• Revisar las diferencias entre el desempeño planificado y real.

Valor Ganado

Realizar ajustes de ser necesario.

Variación del cronograma (SV)

Determina en qué medida el desempeño está adelantado o retrasado.

Negativo: trabajó menos de lo planificado (retraso en el proyecto).

Variación del costo (CV)

Déficit o superávit del costo en un momento dado (mide los desvíos del costo o su desempeño).

Negativo: Se ha gastado más dinero de lo trabajado (costo más alto).

Índice del costo (CPI)

Déficit o superávit del costo en un momento dado (desempeño del costo).

< 1 indica por cada unidad monetaria invertida se recibe menos (deficiencia)</p>

CPI = EV / AC

Índice del Cronograma (SPI)

Eficiencia/deficiencia del equipo de desarrollo en cómo está utilizando el tiempo.

< 1 está ejecutando más lento de lo planificado

SPI=EV/PV

Indicadores

Variaciones Costo y cronograma CV = EV -AC CPI = EV SV = -PV SPI = Si <0 Negativo Si <1 Si <1

/AC

/PV

Tips: Las fórmulas de la gestión del Valor Ganado comienzan con EV. Las variaciones son una resta y los índices, división.

Tomando en cuenta los siguientes valores ¿El proyecto ha gastado más de lo previsto?

- Valor planificado (PV) sem dos: \$500
- Costo real o actual (AC) sem dos: \$300
- % Avance sem dos:90%
- Presupuesto sem dos: \$500

Método del Valor Ganado

Estimaciones a la conclusión del proyecto: Análisis de tendencias

Objetivo de la clase

Conocer las estimaciones a la conclusión del proyecto, sus cálculos e interpretaciones.

Beneficios del Valor Ganado

- Informa cómo va el progreso del Proyecto en un tiempo X.
- Pronostica resultados del desempeño futuro, y costos de la conclusión del proyecto (análisis de tendencias).

Análisis de tendencias

Pronosticar el desempeño futuro del proyecto, teniendo como referencia los resultados pasados.

Valores a considerar:

- Presupuesto hasta la conclusión (BAC).
- Estimación del costo a la conclusión (EAC).
- Estimación de costo hasta la conclusión (ETC).

Análisis de tendencias

Presupuesto hasta la conclusión (BAC)

Valor planificado total del proyecto (línea base del presupuesto total).

"Lo que se estableció en la línea base del cronograma que costaría el proyecto"

Diseño y desarrollo de sitio web

				Cronog	rama (P	lanifica	ción)			
	Semanas							<u> </u>		
	Duración	Predec	1	2	3	4	5	6	7	Costo
Desarrollo sitio web	32		(i):				: C	3		\$ 665,00
1. Inicio	1		20							20,00
2. Planificación	2	1	40							40,00
3. Ejecución	28		50	220	100	100	60	20		550,00
3.1 Diseño	12		50	170				78	2	220,00
3.1.1 Levantamiento requisitos	2	2	50			×	(5)	×		50
3.1.2 Elaboración interfaz	9	3.1.1		150						150
3.1.3 Validación Prototipo	1	3.1.2		20						20
3.2 Copywriting	5	2		50	(,		-11		50,00
3.3 Programación	15				100	100	60			260,00
3.3.1 Codigo	10	3.1.3	8)	8	100	100	19	3		200,00
3.3.2 Carga Inicial	2	3.3.1					20			20
3.3.3 Integración	2	3.3.2	5				20			20
3.3.4 Pruebas	1	3.3.3					20	0		20
3.4 Puesta en operación	1	3.3.4						20		20
3.5 Entregable: Página web	0 días	6								
4. Monitoreo y control	32		5	5	5	5	5	5	5	35
5. Cierre	1	7	8				*		20	20
Total			\$ 115	\$ 225	\$ 105	\$ 105	\$ 65	\$ 25	\$ 25	\$ 665,00
Valor Planificación			\$ 115	\$ 340	\$ 445	\$ 550	\$ 615	\$ 640	\$ 665	
% acumulado			17%	51%	67%	83%	92%	96%	100%	

Estimación del costo a la conclusión (EAC)

Costo final:

basado en **c**ómo se ha gastado hasta el tiempo X.

Presunción:

Qué pasará si el plan inicial no es válido.

La estimación a la conclusión (EAC) puede diferir del presupuesto hasta la conclusión (BAC), pues depende del desempeño que haya tenido el proyecto.

Estimación del costo a la conclusión (EAC) Variaciones

1. Si se mantiene CPI actual

Los desembolsos futuros mantendrán mismo nivel de eficiencia/ineficiencia que lo ocurrido hasta el momento X.

Estimación del costo a la conclusión (EAC) Variaciones

2. Según presupuesto original

Independiente de la eficiencia/ ineficiencia de lo gastado, el costo del trabajo a la conclusión se mantendrá según presupuestado en la línea base.

Estimación del costo a la conclusión (EAC) Variaciones

3. Según CPI y SPI

Los costos futuros dependen de la ineficiencia/eficiencia actual del CPI y el SPI. Los retrasos en el cronograma afectarán los costos.

Método del Valor Ganado

Estimaciones a la conclusión del proyecto: Análisis de tendencias

Estimación de costo hasta la conclusión (ETC)

Diferencia entre el costo proyectado a la conclusión (EAC) y el costo actual (AC).

Estima el costo que tendrá el trabajo restante.

ETC= EAC - AC

Índice de desempeño del trabajo por completar (TCPI)

Relación lo que falta trabajar (BAC – EV) y los fondos restantes (BAC – AC).

La eficiencia debe ser mantenida para finalizar lo planeado.

> 1,0 Más difícil de completar

TCPI=(BAC-EV))/((BAC-AC))

Índice de desempeño del trabajo por completar (TCPI):

Requiere eficiencia se mantenga considerando estimación del costo a la conclusión actual(EAC).

> 1,0 Más difícil de completar

TCPI= ((**BAC-EV**))/((**EAC-AC**))

Reto: ¿Cómo piensas que va el Proyecto?

semana	1	2	3	4	5
Valor Planificado (VP)	115	340	445	550	615
Costo Real (AC)	160	435	6		
Valor Ganado(EV)	72,5	333			
Indicadores Varianza					
CV=EV-AC	-87,5	-102			
SV=EV-VP	-42,5	-7			
Indices de desempeño					
CPI = EV/AC	0,45	0,77			
SPI = EV/VP	0,63	0,98			

Tendencias	
EAC	767,00 Presupuesto Original
ETC =	332,00 Presupuesto Original
ТСРІ	1,44 Considerando terminar según planificación

Otras herramientas de análisis de datos

Diagrama Causa Raíz o Ishikagua

Herramienta de análisis causal de problemas. Representa relación entre efecto (problema) y posibles causa.

Identificar posibles causas de los problemas que se encuentran en el monitoreo y control.

Kaoru Ishikagua- Químico industrial Japonés (1943).

Procesos donde se aplica

- El trabajo del proyecto
- Control integrado de cambios
- En involucramiento de los interesados
- Costos

- Cronograma
- Riesgos
- Recursos
- Alcance
- Calidad
- Adquisiciones

Agrupar las causas en 4 categorías:

- 1. Método (proceso)
- 2. Maquinarias/herramientas
- 3. Mano de obra(personas)
- 4. Medio ambiente (entorno)

El análisis se hace en equipo ¡Todos aportan ideas!

En nuestro proyecto Diseño y desarrollo sitio web

Problema:

Demora en el levantamiento de requisitos. Tiempo planificado era un día y fueron dos.

Herramienta:

No utiliza buen instrumento de recolección de requisitos.

¿Por qué?

Es una plantilla no incluye todas las especificaciones del requerimiento del cliente.

¿Por qué?

La (PRR) está desactualizada.

Técnica de los por qué

Mano de obra:

Personal trabaja muy lento.

¿Por qué?

Poca habilidad.

¿Por qué?

Poca experiencia. Nuevo en la empresa.

Técnica de los por qué

Medio ambiente/Cliente:

Cambia mucho de opinión.

¿Por qué?

No está claro lo que quiere.

¿Por qué?

No se definió bien el alcance del proyecto.

Técnica de los por qué

Método/procesos

Hizo falta más reuniones.

¿Por qué?

Se subestimó el tiempo para esta actividad.

¿Por qué?

Incorrecta planificación.

¡Evalúa más cada causa!

Algunos criterios:

- 1. ¿Realmente ocasiona el problema?
- 2. Si se elimina la causa, ¿desaparece o disminuye el problema?
- 3. ¿Hay una solución factible para la causa?
- 4. ¿La solución es de bajo costo?

Indicar una calificación de 1 a 3 a cada causa.

66

Ventajas: Estimula el pensamiento, ordena las ideas y genera discusión

Realiza una tabla de dos columnas:

Columna 1

Causas identificadas para el problema: Demora en levantamiento de requisitos.

Columna 2

Asigna peso total a cada causa según cada criterio de evaluación (1 al 3).

Según tu criterio: ¿Cuál es la causa más importante?

Otras herramientas de análisis de datos

Histograma

Histograma

Representación gráfica en barras, sin un orden preestablecido, que se utiliza para describir la frecuencia.

Histograma

No toma en cuenta la influencia del tiempo en la variación existente en la distribución.

Los procesos donde se aplica: Controlar recursos y calidad

Área recursos

Planificación: mostrar cantidad necesaria de recursos por fase.

Ventaja: tomar decisiones a tiempo e incluirlas en la planificación.

Área recursos

Ejecución: mostrar frecuencia de ocurrencia de un tipo de datos.

Ejemplo: % de trabajo ejecutado del recurso humano para un tiempo X.

Área control de calidad

- Ver cuáles son los problemas de mayor importancia o los que impiden que se logren los requisitos de calidad.
- Ejemplo: frecuencia que aparezca una falla X.

Cómo construir un Histograma

- Tabla de dos columnas.
 Indicar variable y frecuencia de la misma.
- 2. Hacer un gráfico donde:

Eje horizontal (X): variabl

.

Eje vertical (Y): frecuencias absolutas o porcentuales.

"La altura de cada barra es igual a la frecuencia".

Vayamos a nuestro proyecto

- Uno de los problemas en la demora en levantamiento de requisitos era que la plantilla de recolección de datos no era muy funcional.
- Se pide al recolector de requisitos agrupar los requisitos por tipo de funcionalidad solicitada y determinar la frecuencia.

Clasificaciones para el levantamiento de requisitos del cliente

Funcionalidades de página principal

- Incluir últimas noticias.
- Últimos movimientos de los usuarios dentro de sitio web.
- Los clientes se registren a la página.
- Incluir logo.

Funcionalidades de productos

- Creación y edición de servicios ofrecidos.
- Posibilidad de asignar imágenes a un servicio.
- Posibilidad de asignar distintos precios.
- Servicios destacados.
- Creación agrupaciones de servicios. Como "ofertas", "últimos días "...

Funcionalidades de productos

- Carga y descarga de lista de servicios que se ofrecen.
- Búsqueda de servicios.
- Comentarios y valoración de servicio dado.
- Gestión de comentarios de los usuarios (aprobación, eliminación, spam).
- Descarga de los pedidos con cualquier hoja de cálculo.

Funcionalidades de la imagen de la web

- Cambiar de imagen entre varias plantillas con solo hacer un click.
- Edición de los menús y submenús.
- Edición de los enlaces.
- Edición de la imagen central de la web.
- Edición avanzada, editar hasta el último aspecto de la plantilla.

Posibles funcionalidades de las plantillas

- Menú principal con posibilidad de desplegable.
- Formularios de alta, contacto y logado de usuarios.
- Búsqueda de servicios con filtro por características
- Páginas web editables por el administrador.
- Mapa web optimizado.
- Archivos de los blogs.

- Configuración de múltiples formas de pago.
- Configuración de módulos de estadísticas.
- Asignación del dominio propio de la web.
- Asignación de la página principal de la web.

Histograma

Funcionalidades	Cantidad
Página principal	4
Productos	10
Imagen	5
Plantilla	6
Pago	4

Con base al histograma realizado, dime ¿Cuál es la funcionalidad que tiene más solicitudes y para qué te sirve ese dato? Otras herramientas de análisis de datos

Diagrama de control

 Determina si los resultados de un proceso se encuentran dentro de los límites aceptables.

Se implementa en el proceso:

Control de calidad.

Elementos del diagrama de control

- Media (promedio): mitad del rango aceptable de variación.
- Límite de especificaciones: expectativa del cliente.
- Límite de control (superior e inferior): rango aceptable de variación de los resultados de un proceso.

Límite de especificación cliente

Elementos del diagrama de control

- **Límites de control** deben ser más estrictos que los del cliente.
- Punto fuera de control: están fuera y por encima de los límites de control. Situación a investigar.

Límite de especificación cliente

Límite de especificación cliente

¿Cuándo se está fuera de control?

 Un grupo de 7 datos consecutivos por encima o por debajo de la media se considera una situación inusual.

Límite de especificación cliente

Límite de especificación cliente

Cuando un punto de datos está fuera de control se debe investigar para determinar la causa de la variación.

Pasos para realizar un diagrama de control

- 1. Seleccionar la característica que se va a evaluar.
- 2. Recoger datos de esa característica por un período de tiempo.
- 3. Establecer en hoja de cálculo la media/promedio, las desviación estándar y los límites de control.
- 4. Representar los datos gráficamente.

¡Veamos nuestro proyecto!

Determinar cuáles de los programadores necesitan reforzar su conocimiento.

6 programadores:

Juan(1), Pedro(2), Luis(3), Martha (4), Ana(5) Maria(6).

Se le asignó a cada uno 10 funcionalidades de igual grado de dificultad.

Tiempo para la entrega: 5 días.

Resultados de cantidad de entregas por programador

Nombres		Cantidad de funcionalidades entregadas
Juan	1	5
Pedro	2	10
Luis	3	8
Martha	4	9
Ana	5	8
María	6	7

Diseño y desarrollo Sitio Web Entregas por programador

Reto

Nombres		Entrega
Juan	1	8
Pedro	2	10
Luis	3	9
Martha	4	7
Ana	5	8
María	6	8

La gerencia determinó que Juan requería capacitación y se la dió.

Realiza el nuevo diagrama de control basado en la tabla.

Otras herramientas de análisis de datos

Diagrama de Dispersión

Previo analicemos reto

Nombres		Entrega
Juan	1	8
Pedro	2	10
Luis	3	9
Martha	4	7
Ana	5	8
María	6	8

La gerencia determinó que Juan requería capacitación.

Realiza el nuevo diagrama de control basado en la tabla.

Diagrama de dispersión

Analizar la relación entre dos variables: cómo es afectada una respecto a la otra.

Analizar si un cambio en la variable dependiente **Y** se afecta con un cambio observado en la variable independiente **X**.

¿Cómo hacer un diagrama de dispersión?

- Seleccionar las dos variables.
- Definir el objetivo de relacionarlas.
- 3. Recopilar datos de las dos variables.
- Realizar tabla en hoja de cálculo con los datos de las dos variables.
- 5. Realizar gráfico y trazar línea de tendencia.
- 6. Ver coeficiente de correlación y fórmula.
- 7. Interpretar los resultados.

Línea de tendencia

- 1. Negativa: si crece la variable X, y disminuye la variable Y o viceversa.
- 2. Positiva: si crece la variable X y crece la variable Y.
- 3. Sin correlación: hay una dispersión de datos.

Coeficiente de correlación Interpretación

R² = +1 Variables están perfectamente alineados, cuando X crece, Y crecerá en la misma proporción.

R² = -1 Estaría perfectamente alineado, si X crece, Y decrece en la misma proporción.

 $R^2 = 0$ no hay correlación.

Ejemplo:

R² = entre 0 y 1 Variables tienden a agruparse, existe correlación entre éstas.

Diagrama de dispersión

¡El diagrama de dispersión genera una fórmula matemática que se usará en futuras estimaciones!

El resultado obtenido por el Método del Valor Ganado:

El análisis arrojó que la tendencia es que no se lograrán los objetivos si los costos no bajan.

Si a mayor número de programadores, disminuye la cantidad de fallas en las funcionalidades del sitio web.

Tener más fallas implica **retrabajo**: tiempo, **costo** y molestias del cliente.

Situación a analizar

Supuesto: Al tener más programadores se entregan más líneas de código por día. El ejemplo se tomó con un tiempo de análisis de seis días.

Si el coeficiente de correlación diera $R^2 = 1,2$ Interpreta el resultado.

Otras herramientas de análisis de datos

Análisis de Riesgos: Matriz de "Probabilidad e Impacto"

Análisis de riesgos

- 1. Establece en qué riesgos debo concentrarme más y cuáles influyen.
- 2. Determina reservas de tiempo y costos.

Matriz de probabilidad e impacto

- Vincula la probabilidad de ocurrencia de cada riesgo con su impacto sobre los objetivos, en caso de que ocurra el riesgo.
- Arroja las combinaciones de probabilidad y riesgo que permiten que los riesgos sean categorizados en grupos de prioridad.

- Riesgo: algo desconocido que impacta de modo negativo o positivo un proyecto.
- Probabilidad: que ocurra un riesgo, tomando en cuenta los controles actuales y su efectividad.
- Impacto: consecuencias que originan un riesgo si llegara a presentarse.

Pasos para crear la matriz de probabilidad e impacto

- 1. Identificar los riesgos del proyecto.
- 2. Establecer una escala para estimar probabilidad de ocurrencia de cada riesgo.
- 3. Establecer una escala para estimar impacto de cada riesgo.
- 4. Realizar la matriz. Cada intersección es el resultado de multiplicar la probabilidad por impacto.

Escalas para Probabilidad e Impacto

Probabilidad de ocurrencia

Me sorprende que no ocurra	90%
Más probable que ocurra a que no ocurra	70%
Tan probable que ocurra como que no ocurra	50%
Más probable que no ocurra	30%
Me sorprende que ocurra	10%

Escalas para Probabilidad e Impacto

Nivel de impacto del riesgo

Nivel impacto	Definición	Calificación
Muy bajo	No tendrá mayor repercusión si sucede	5%
Bajo	De impactar el proyecto atrasaría el costo-tiempo	10%
Moderado	Tendrá repercusión en el proyecto mas no en la empresa	20%
Alto	Tendrá repercusión en el proyecto y en la empresa	60%
Muy alto	Podría ocasionar cierre del proyecto y de la empresa	90%

Matriz de Probabilidad e Impacto

Riesgo = Probabilidad * Impacto

Me sorprende que no ocurra 90%	5%	9%	18%	54%	81%
Más probable que ocurra a que no ocurra 70%	4%	7%	14%	42%	63%
Tan probable que ocurra como que no ocurra 50%	3%	5%	10%	30%	45%
Más probable que no ocurra 30%	2%	3%	6%	18%	27%
Me sorprende que ocurra 10%	1%	1%	2%	6%	9%
Impacto	5% Muy bajo	10% bajo	20% moderado	60% alto	90% muy alto

66

¡Vayamos a nuestro proyecto!

RIESGOS DE ALTO NIVEL Falla de algun equipo No tener claro el alcance Agregar baño de oro al alcance Falle un programador Errores de programación

1. Identificar los riesgos

Riesgos seleccionados:

- 1. Falla de algún equipo.
- 2. No tener claro el alcance.
- 3. Falla un programador.
- 4. Errores de programación.

Para indicar la probabilidad e impacto a cada riesgo hay que reunirse con el equipo e incluso incorporar a los interesados y expertos.

Basada en la Matriz "Probabilidad Impacto" ¿Cuál sería el valor del riesgo de agregar baño de oro al alcance?

¡Cierre!

