Chapter 7 - Lineare Programme

Lineares Programm

Lineare Ungleichung:

$$y := \mathbf{u}^t \mathbf{x} + u \ge 0$$

Ungleichungssystem mit l linearen Ungleichungen

$$y_i := \mathbf{a}_i^t \mathbf{x} + a_i \ge 0$$

bilden konvexes Polyeder S, Simplex!

Def.

lineare Zielfunktion $z := \mathbf{z}^t \mathbf{x}$. Lineares Programm:

$$z := \mathbf{z}^t \mathbf{x} = \max!$$

$$\mathbf{y} := A\mathbf{x} + \mathbf{a} \ge 0$$

Schematische Normalform:

Eckentausch

AUSTAUSCH:

Eingabe:

$$A = [a_{ij}]_{i,j=1,1}^{m,n}$$

Ausgabe:

$$A' = [a'_{ij}]_{i,j=1,1}^{m,n}$$

For
$$i \neq r$$
, $j \neq s$

$$a'_{ij} \leftarrow a_{ij} - \frac{a_{is}a_{rj}}{a_{rs}}$$
For $i = r$, $j \neq s$ (Pivotzeile)
$$a'_{ij} \leftarrow -\frac{a_{ij}}{a_{rs}}$$
For $i \neq r$, $j = s$ (Pivotspalte)
$$a'_{ij} \leftarrow \frac{a_{ij}}{a_{rs}}$$
For $i = r$, $j = s$ (Pivot)
$$a'_{ij} \leftarrow \frac{i}{a_{rs}}$$

Simplex

Algorithmus:

Eingabe:

Normalform B eines lin. Programms

Ausgabe

Normalform geaendert, sodass z(0)=c=max

$$\begin{array}{ll} \text{solange ein } c_s > 0 \\ \text{falls alle } b_{is} \geq 0 \\ \text{keine Loesung - Ende} \\ \text{sonst} \\ & \text{bestimme r so, documentclass} \\ & \frac{b_r}{b_{rs}} = \max_{b_{is} < 0} \frac{b_i}{b_{is}} \\ \text{B} \leftarrow \text{AUSTAUSCH}(\text{B, r, s}) \end{array}$$

Aufwand im worst-case $\Omega\left(m^{\frac{n}{2}}\right)$. In Praxis meist in $O\left(m^2n\right)$.

Berechnung der Normalform

Gegeben ein lineares Programm

- $\bullet\,$ finde zulässigen Punkt
- mache Punkt zum Ursprung
- führe n Tauschs x_r mit y_r durch

Damit Ursprung beim Tausch von x_r mit y_r gültig bleibt muss für alle i>r gelten:

$$a_i - \frac{a_{ir}a_r}{a_{rr}} \ge 0$$

Duale lineare Programme

Das lineare Programm

$$\mathbf{y} \ge 0$$

$$B^t \mathbf{y} + \mathbf{c} \le 0$$

$$\mathbf{b}^t \mathbf{y} + c = min!$$

ist dual zu

$$\mathbf{x} \ge 0$$

$$B\mathbf{x} + \mathbf{b} \le 0$$

$$\mathbf{c}^t \mathbf{x} + c = max!$$

Ersteres kann transformiert werden zu

$$\mathbf{y} \ge 0$$
$$-B^t \mathbf{y} - \mathbf{c} \ge 0$$
$$-\mathbf{b}^t \mathbf{y} - c = max!$$

Ausgleichen mit Maximumsnorm

 $A\mathbf{x} = \mathbf{a}$ überbestimmtes LGS. $\forall \mathbf{x}$ ist das Residuum

$$\mathbf{r} := (r_1...r_n)^t := A\mathbf{x} - \mathbf{a} \neq 0$$

Wir definieren $x_0:=\frac{1}{r}$ und $\bar{\mathbf{x}}:=\mathbf{x}x_0.$ Führt zu linearem Programm:

$$-A\bar{\mathbf{x}} + \mathbf{a}x_0 + \mathbf{e} \ge 0$$
$$A\bar{\mathbf{x}} - \mathbf{a}x_0 + \mathbf{e} \ge 0$$
$$x_0 = max!$$