

CHAPITRE 5 : Dioptre sphérique

1. Définition

Un dioptre sphérique est une portion de surface sphérique réfringente séparant deux milieux homogènes et transparents d'indices différents. Il est caractérisé par son axe Δ , son centre C, son rayon de courbure ρ , son sommet S et les indices n_1 et n_2 des deux milieux qu'il sépare.

2. Invariant fondamental du dioptre sphérique

Soit un rayon lumineux incident A_1I issu d'un point objet A_1 situé sur l'axe. Selon que n_1 est supérieur ou inférieur à n_2 , il lui correspond un rayon réfracté IT qui se rapproche ou s'éloigne de la normale IC mais dont le support coupe toujours l'axe en un point A_2 .

Dans tous les cas de figures, les triangles CIA_1 et CIA_2 permettent d'écrire :

$$\begin{split} \frac{CA_1}{\sin i_1} &= \frac{IA_1}{\sin(\pi - \omega)} = \frac{IA_1}{\sin \omega} \Rightarrow CA_1 = IA_1 \frac{\sin i_1}{\sin \omega} \\ \frac{CA_2}{\sin i_2} &= \frac{IA_2}{\sin(\pi - \omega)} = \frac{IA_2}{\sin \omega} \Rightarrow CA_2 = IA_2 \frac{\sin i_2}{\sin \omega} \\ &\Rightarrow \frac{CA_1}{CA_2} = \frac{IA_1}{IA_2} \frac{\sin i_1}{\sin i_2} \\ \frac{CA_1}{CA_2} &= \frac{\overline{CA_1}}{\overline{CA_2}} = \frac{\overline{CA_1}}{\overline{CA_2}} \\ n_1 \sin i_1 &= n_2 \sin i_2 \end{split} \right\} \Rightarrow \frac{\overline{CA_1}}{\overline{CA_2}} = \frac{IA_1}{IA_2} \cdot \frac{n_2}{n_1} \Rightarrow \boxed{n_1 \frac{\overline{CA_1}}{IA_1} = n_2 \frac{\overline{CA_2}}{IA_2}}$$

Ce qui montre que la quantité $n\frac{\overline{CA}}{IA}$ est invariante dans la traversée du dioptre sphérique : c'est un invariant fondamental qui est d'une grande importance dans l'étude des dioptres sphériques.

3. Stigmatisme du dioptre sphérique

3.1. Stigmatisme rigoureux

Comme pour toutes les surfaces réfringentes ou réfléchissantes, il y a stigmatisme rigoureux pour les points de la surface mais ce cas est sans intérêt car l'image est confondue avec l'objet. Pour les surfaces sphériques, on a également stigmatisme rigoureux lorsque A_1 est confondu avec le centre C: les rayons issus de C traversent le dioptre sans déviation et le point C est sa propre image. Mis à part ces cas, le stigmatisme rigoureux n'est réalisé que si la distance CA_2 est indépendante de l'angle ω .

Comme on a $CA_2 = \frac{IA_2}{IA_1} \cdot \frac{n_2}{n_1} CA_1$, pour que CA_2 soit constant pour une position donnée de A_1

de l'objet, il faut que le rapport $\frac{IA_2}{IA_1}$ le soit également. Dans le cas où le point d'incidence I se

déplace sur une sphère de diamètre SS', les deux points A_1 et A_2 , tels que le rapport $\frac{IA_2}{IA_1} = k = cte$, existent : ils appartiennent à la droite SS' et verifient la relation :

$$\frac{\overline{SA_1}}{\overline{SA_2}} = -\frac{\overline{S'A_1}}{\overline{S'A_2}} = k = \frac{IA_1}{IA_2}$$

Les points A_1 et A_2 qui sont conjugués par rapport à la sphère et qui réalisent le stigmatisme rigoureux sont uniques; ils sont appelés "**points de Weierstrass**". Pour trouver leur position, supposons que le point I est successivement en S ou en S'.

L'invariant fondamental du dioptre sphérique permet d'écrire :

$$\frac{\overline{SA_2}}{n_2\overline{CA_2}} = \frac{\overline{SA_1}}{n_1\overline{CA_1}}$$
$$\frac{\overline{S'A_2}}{n_2\overline{CA_2}} = -\frac{\overline{S'A_1}}{n_1\overline{CA_1}}$$

En ajoutant membre à membre les deux relations précédentes, on obtient :

$$\frac{\overline{SA_2}}{n_2\overline{CA_2}} + \frac{\overline{S'A_2}}{n_2\overline{CA_2}} = \frac{\overline{SA_1}}{n_1\overline{CA_1}} - \frac{\overline{S'A_1}}{n_1\overline{CA_1}} \Rightarrow \frac{\overline{SA_2} + \overline{S'A_2}}{n_2\overline{CA_2}} = \frac{\overline{SA_1} - \overline{S'A_1}}{n_1\overline{CA_1}}$$

$$\overline{SA_2} + \overline{S'A_2} = \overline{SC} + \overline{CA_2} + \overline{S'C} + \overline{CA_2} = 2\overline{CA_2}$$

$$\overline{SA_1} - \overline{S'A_1} = \overline{SA_1} + \overline{A_1S'} = \overline{SS'} = 2\overline{SC}$$

$$\Rightarrow \frac{2\overline{CA_2}}{n_2\overline{CA_2}} = \frac{2\overline{SC}}{n_1\overline{CA_1}} \Rightarrow \boxed{\overline{CA_1}} = \frac{n_2}{n_1} \overline{SC} = -\frac{n_2}{n_1} \overline{CS}$$

En retranchant membre à membre les deux relations comme précédemment, on obtient :

$$\frac{\overline{SA_2}}{n_2\overline{CA_2}} - \frac{\overline{S'A_2}}{n_2\overline{CA_2}} = \frac{\overline{SA_1}}{n_1\overline{CA_1}} + \frac{\overline{S'A_1}}{n_1\overline{CA_1}} \Rightarrow \frac{\overline{SA_2} - \overline{S'A_2}}{n_2\overline{CA_2}} = \frac{\overline{SA_1} + \overline{S'A_1}}{n_1\overline{CA_1}}$$

$$\overline{SA_2} - \overline{S'A_2} = \overline{SC} + \overline{CA_2} - \overline{S'C} - \overline{CA_2} = \overline{SS'} = 2\overline{SC}$$

$$\overline{SA_1} + \overline{S'A_1} = \overline{SC} + \overline{CA_1} + \overline{S'C} + \overline{CA_1} = 2\overline{CA_1}$$

$$\Rightarrow \frac{2\overline{SC}}{n_2\overline{CA_2}} = \frac{2\overline{CA_1}}{n_1\overline{CA_1}} \Rightarrow \boxed{\overline{CA_2} = \frac{n_1}{n_2}\overline{SC} = -\frac{n_1}{n_2}\overline{CS}}$$

On remarque le produit des deux relations trouvées conduit à :

$$\boxed{\overline{CA_1}.\overline{CA_2} = \overline{SC}^2 = \overline{S'C}^2}$$

3.2. Stigmatisme approché

Le stigmatisme approché est réalisé au voisinage des positions de stigmatisme rigoureux. En effet lorsque le point objet A_1 est tres proche du centre C (respectivement du point de Weierstrass W_1), le point image A_2 a une position fixe independante de I et proche de C (respectivement du point de Weierstrass W_2). Lorsque le point objet a une position quelconque, le stigmatisme approché est realisé dans le cas des rayons paraxiaux, c'est-à-dire lorsque I est proche de S.

4. Relation de conjugaison

4.1. Origine au centre C

I et S étant pratiquement confondus, l'invariant fondamental du dioptre sphérique devient :

$$n_1 \frac{\overline{CA_1}}{\overline{SA_1}} = n_2 \frac{\overline{CA_2}}{\overline{SA_2}}$$

Injectons le centre C dans la relation précédente, on obtient :

$$n_{1} \frac{CA_{1}}{\overline{SC} + \overline{CA_{1}}} = n_{2} \frac{CA_{2}}{\overline{SC} + \overline{CA_{2}}} \Longrightarrow n_{1} \overline{CA_{1}} \left(\overline{SC} + \overline{CA_{2}} \right) = n_{2} \overline{CA_{2}} \left(\overline{SC} + \overline{CA_{1}} \right)$$

$$\Longrightarrow n_{1} \overline{CA_{1}} . \overline{SC} + n_{1} \overline{CA_{1}} . \overline{CA_{2}} = n_{2} \overline{CA_{2}} . \overline{SC} + n_{2} \overline{CA_{2}} . \overline{CA_{1}}$$

$$\Longrightarrow n_{2} \overline{CA_{2}} . \overline{SC} - n_{1} \overline{CA_{1}} . \overline{SC} = (n_{1} - n_{2}) \overline{CA_{1}} . \overline{CA_{2}}$$

En divisant par $\overline{CA_1}$. \overline{SC} . $\overline{CA_2}$, il vient :

$$\Rightarrow n_2 \frac{\overline{CA_2}.\overline{SC}}{\overline{CA_1}.\overline{SC}.\overline{CA_2}} - n_1 \frac{\overline{CA_1}.\overline{SC}}{\overline{CA_1}.\overline{SC}.\overline{CA_2}} = (n_1 - n_2) \frac{\overline{CA_1}.\overline{CA_2}}{\overline{CA_1}.\overline{SC}.\overline{CA_2}} \Rightarrow \frac{n_2}{\overline{CA_1}} - \frac{n_1}{\overline{CA_2}} = \frac{n_1 - n_2}{\overline{SC}}$$

$$\Rightarrow \boxed{\frac{n_1}{\overline{CA_2}} - \frac{n_2}{\overline{CA_1}}} = \frac{n_1 - n_2}{\overline{CS}}$$

4.2. Origine au sommet S

On part toujours sur l'hypothèse que I et S confondus. L'invariant fondamental du dioptre sphérique est alors :

$$n_1 \frac{\overline{CA_1}}{\overline{SA_1}} = n_2 \frac{\overline{CA_2}}{\overline{SA_2}}$$

Injectons-y le sommet S, on obtient :

$$n_{1} \frac{\overline{CS} + \overline{SA_{1}}}{\overline{SA_{1}}} = n_{2} \frac{\overline{CS} + \overline{SA_{2}}}{\overline{SA_{2}}} \Longrightarrow n_{1} \overline{SA_{2}} \left(\overline{CS} + \overline{SA_{1}} \right) = n_{2} \overline{SA_{1}} \left(\overline{CS} + \overline{SA_{2}} \right)$$

$$\Longrightarrow n_{1} \overline{SA_{2}} \cdot \overline{CS} + n_{1} \overline{SA_{2}} \cdot \overline{SA_{1}} = n_{2} \overline{SA_{1}} \cdot \overline{CS} + n_{2} \overline{SA_{1}} \cdot \overline{SA_{2}}$$

$$\Longrightarrow n_{1} \overline{SA_{2}} \cdot \overline{CS} - n_{2} \overline{SA_{1}} \cdot \overline{CS} = (n_{2} - n_{1}) \overline{SA_{1}} \cdot \overline{SA_{2}}$$

En divisant par $\overline{SA_1}$. \overline{CS} . $\overline{SA_2}$, il vient :

$$\Rightarrow n_1 \frac{\overline{SA_2}.\overline{CS}}{\overline{SA_1}.\overline{CS}.\overline{SA_2}} - n_2 \frac{\overline{SA_1}.\overline{CS}}{\overline{SA_1}.\overline{CS}.\overline{SA_2}} = (n_2 - n_1) \frac{\overline{SA_1}.\overline{SA_2}}{\overline{SA_1}.\overline{CS}.\overline{SA_2}} \Rightarrow \frac{n_1}{\overline{SA_1}} - \frac{n_2}{\overline{SA_2}} = \frac{n_2 - n_1}{\overline{CS}}$$

$$\Rightarrow \boxed{\frac{n_1}{\overline{SA_1}} - \frac{n_2}{\overline{SA_2}}} = \frac{n_1 - n_2}{\overline{SC}}$$

Remarques:

• Si $\overline{SC} \rightarrow \infty$, on retrouve la formule du dioptre plan

$$\frac{n_1}{\overline{SA_1}} - \frac{n_2}{\overline{SA_2}} = 0 \Longrightarrow \frac{n_1}{\overline{SA_1}} = \frac{n_2}{\overline{SA_2}}$$

• Si $n_1 = -n_2$, on retrouve la formule du miroir sphérique

$$\frac{1}{\overline{SA_1}} + \frac{1}{\overline{SA_2}} = \frac{2}{\overline{SC}}$$

Regroupons différemment les termes de la relation trouvée :

$$\frac{n_1}{\overline{SA_1}} - \frac{n_2}{\overline{SA_2}} = \frac{n_1 - n_2}{\overline{SC}} = \frac{n_1}{\overline{SC}} - \frac{n_2}{\overline{SC}} \Longrightarrow \boxed{n_1 \left(\frac{1}{\overline{SC}} - \frac{1}{\overline{SA_1}}\right) = n_2 \left(\frac{1}{\overline{SC}} - \frac{1}{\overline{SA_2}}\right)}$$

Cette expression est aussi une forme invariante du dioptre sphérique

4.3. Foyers. Distance focale. Vergence

Pour déterminer la position des foyers, il suffit de faire tendre dans l'expression obtenue pour l'origine au sommet $S \overline{SA_1}$ ou $\overline{SA_2}$ vers l'infini.

4.3.1. Foyer objet F_1

Il correspond à la position F_1 du point A_1 lorsque l'image A_2 est à l'infini. On aura alors :

$$\frac{n_1}{\overline{SF_1}} = \frac{n_1 - n_2}{\overline{SC}} \Longrightarrow \boxed{\overline{SF_1} = \frac{n_1}{n_1 - n_2} \overline{SC}}$$

4.3.2. Foyer image F_2

Il correspond à la position F_2 de l'image A_2 lorsque l'objet A_1 est à l'infini. On a donc :

$$\frac{n_2}{\overline{SF_2}} = \frac{n_1 - n_2}{\overline{SC}} \Longrightarrow \boxed{\overline{SF_2} = \frac{n_2}{n_2 - n_1} \overline{SC}}$$

On remarque que les deux expressions se déduisent l'une de l'autre par permutation des indices, ce qui est prévisible. Comme

$$\overline{SF_1} = \frac{n_1}{n_1 - n_2} \overline{SC}$$

$$\overline{SF_2} = \frac{n_2}{n_2 - n_1} \overline{SC}$$

$$\Rightarrow \overline{\left[\frac{\overline{SF_1}}{\overline{SF_2}} = -\frac{n_1}{n_2}\right]} (a) \text{ et } \overline{\left[\frac{\overline{SF_1} + \overline{SF_2} = \overline{SC}}{\overline{SC}}\right]} (b)$$

- La première équation (a) montre que les foyers sont toujours situés de part et d'autre du sommet du dioptre. Ainsi, si F₁ est dans le milieu 1, F₁ est réel, F₂ est dans le milieu 2, donc F₂ est aussi réel ; par contre, si F₁ est dans le milieu 2, F₁ est virtuel, F₂ se trouve du côté du milieu 1, F₂ est aussi virtuel.
- La deuxième équation (b) montre, quant à elle, que le milieu du segment F_1F_2 coïncide avec le milieu du segment SC: les foyers sont donc symétriques par rapport au milieu de SC:

$$\overline{\overline{SF_1}} = \overline{F_2C}$$
 et $\overline{\overline{SF_2}} = \overline{F_1C}$

Cela traduit simplement que contrairement au miroir sphérique, il n'y a jamais de foyer entre S et C pour un dioptre sphérique.

4.3.3.Distance focale et vergence

La distance focale est donnée par :

$$\boxed{f' = \overline{SF_2} = \frac{n_2}{n_2 - n_1} \ \overline{SC} = \frac{n_2}{n_2 - n_1} \ R}$$

et la vergence est définie par :

$$C = \frac{n_2}{f'} = \frac{n_2}{\overline{SF_2}} = \frac{n_2 - n_1}{\overline{SC}} = \frac{n_2 - n_1}{R}$$

4.3.4.Dioptres convergents et dioptres divergents

La vergence est une grandeur algébrique :

- si $n_2 n_1$ et \overline{SC} sont de même signe, alors la vergence C est positive et le dioptre est dit convergent.
- si $n_2 n_1$ et \overline{SC} sont de signes contraires, alors la vergence C est négative et le dioptre est dit divergent.

On remarquera que les dioptres à foyers réels sont convergents et les dioptres à foyers virtuels sont divergents.

Nous présentons, sur la figure suivante, les quatre dispositions possibles des points S, C, F_1 et F_2 .

Remarque:

$$\frac{n_1}{\overline{SA_1}} - \frac{n_2}{\overline{SA_2}} = \frac{n_1 - n_2}{\overline{SC}} \Longrightarrow \frac{\overline{SC}}{n_1 - n_2} \cdot \left(\frac{n_1}{\overline{SA_1}} - \frac{n_2}{\overline{SA_2}}\right) = \frac{n_1 - n_2}{\overline{SC}} \cdot \frac{\overline{SC}}{n_1 - n_2} = 1$$

En utilisant les relations définissant la position des foyers

$$\overline{SF_1} = \frac{n_1}{n_1 - n_2} \overline{SC} \quad et \quad \overline{SF_2} = \frac{n_2}{n_2 - n_1} \overline{SC}$$

$$\Rightarrow \frac{1}{\overline{SA_1}} \cdot \frac{n_1}{n_1 - n_2} \overline{SC} - \frac{1}{\overline{SA_2}} \cdot \frac{n_2}{n_2 - n_1} \overline{SC} = 1 \Rightarrow \boxed{\overline{\frac{SF_1}{SA_1}} + \frac{\overline{SF_2}}{\overline{SA_2}} = 1}$$

4.3.5.Relations de conjugaison avec origine aux foyers. Formule de Newton

Injectons F_1 et F_2 dans la relation précédente, on obtient :

$$\frac{\overline{SF_1}}{\overline{SF_1} + \overline{F_1 A_1}} + \frac{\overline{SF_2}}{\overline{SF_2} + \overline{F_2 A_2}} = 1$$

$$\Rightarrow \overline{SF_1} \left(\overline{SF_2} + \overline{F_2 A_2} \right) + \overline{SF_2} \left(\overline{SF_1} + \overline{F_1 A_1} \right) = \left(\overline{SF_2} + \overline{F_2 A_2} \right) \cdot \left(\overline{SF_1} + \overline{F_1 A_1} \right)$$

Il vient après calcul, la formule de Newton :

$$\Longrightarrow \boxed{\overline{SF_1}.\overline{SF_2} = \overline{F_1A_1}.\overline{F_2A_2}}$$

5. Construction de l'image d'un point objet perpendiculaire à l'axe

Comme dans le cas du miroir sphérique, nous allons, pour effectuer cette construction, exploiter les propriétés du centre C, des foyers F_1 et F_2 , du sommet S et utiliser des rayons particuliers.

5.1. Rayons particuliers

- Tout rayon incident passant par le centre C ne subit aucune déviation,
- Tout rayon incident parallèle à l'axe, se réfracte en passant par le foyer image F_2 ,
- Tout rayon incident passant par le foyer objet F_1 se réfracte parallèlement à l'axe.
- Tout rayon passant par le sommet S se trouve dévié en respectant la loi de Snell-Descartes.

L'image d'un objet A_1B_1 perpendiculaire à l'axe s'obtient donc en cherchant le conjugué B_2 de B_1 à partir de l'intersection de deux des rayons particuliers précédents issus de B_1 et en menant la perpendiculaire à l'axe pour trouver la position de l'image A_2 de A_1 .

5.2. Quelques constructions : objet réel placé avant F_1

Dioptre convergent

L'image est réelle et renversée

Dioptre divergent

L'image est virtuelle et de même sens que l'objet

6. Grandissement linéaire transversal

6.1. Avec origine au sommet S

On a : $A_1B_1 = \tan i_1$ et $A_2B_2 = \tan i_2$

Dans les conditions de l'approximation de Gauss on a $\tan i_1 \approx \sin i_1$ et $\tan i_2 \approx \sin i_2$. On en déduit que :

$$n_1 \frac{A_1 B_1}{S A_1} = n_2 \frac{A_2 B_2}{S A_2} \Longrightarrow \boxed{ \gamma = \frac{\overline{A_2 B_2}}{\overline{A_1 B_1}} = \frac{n_1}{n_2} \frac{\overline{S A_2}}{\overline{S A_1}} }$$

6.2. Avec origine au centre *C*

Dans la figure précédente et dans les triangles A_1B_1C et A_2B_2C , on a

$$\boxed{ \boldsymbol{\gamma} = \frac{\overline{A_2 B_2}}{\overline{A_1 B_1}} = \frac{\overline{C A_2}}{\overline{C A_1}} }$$

6.3. Avec origine aux foyers

Dans les triangles $F_1A_1B_1$ et F_1SH , on a :

$$\frac{\overline{SH}}{\overline{A_1B_1}} = \frac{\overline{F_1S}}{\overline{F_1A_1}}$$

Dans les triangles $F_2A_2B_2$ et F_1SI , on a :

$$\frac{\overline{A_2 B_2}}{\overline{SI}} = \frac{\overline{F_2 A_2}}{\overline{F_2 S}}$$

Comme $\overline{SH} = \overline{A_2B_2}$ et $\overline{SI} = \overline{A_1B_1}$, on obtient :

$$\boxed{\gamma = \frac{\overline{A_2 B_2}}{\overline{A_1 B_1}} = \frac{\overline{F_1 S}}{\overline{F_1 A_1}} = \frac{\overline{F_2 A_2}}{\overline{F_2 S}}}$$