# JPG

#### EN | ZH

## 文件结构

- JPEG 是有损压缩格式,将像素信息用 JPEG 保存成文件再读取出来,其中某些像素值会有少许变化。在保存时有个质量参数可在 0 至 100 之间选择,参数越大图片就越保真,但图片的体积也就越大。一般情况下选择 70 或 80 就足够了
- JPEG 没有透明度信息

JPG 基本数据结构为两大类型: 「段」和经过压缩编码的图像数据。

| 名称  | 字节数 | 数据 |                         |
|-----|-----|----|-------------------------|
| 段标识 | 1   | FF | 每个新段的开始标识               |
| 段类型 | 1   |    | 类型编码(称作标记码)             |
| 段长度 | 2   |    | 包括段内容和段长度本身, 不包括段标识和段类型 |
| 段内容 | 2   |    | ≤65533 字节               |

- 有些段没有长度描述也没有内容,只有段标识和段类型。文件头和文件尾均属于这种段。
- 段与段之间无论有多少 FF 都是合法的,这些 FF 称为「填充字节」,必须被忽略掉。

#### 一些常见的段类型

| Short<br>name | Bytes                                    | Payload          | Name                                | Comments                                                                                                                                                                                                                                                                           |
|---------------|------------------------------------------|------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SOI           | 0xFF,<br>0xD8                            | none             | Start Of Image                      |                                                                                                                                                                                                                                                                                    |
| SOF0          | 0xFF, 0xC0                               | variable<br>size | Start Of Frame<br>(baseline DCT)    | Indicates that this is a baseline DCT-based JPEG, and specifies the width, height, number of components, and component subsampling (e.g., 4:2:0).                                                                                                                                  |
| SOF2          | 0xFF, 0xC2                               | variable<br>size | Start Of Frame<br>(progressive DCT) | Indicates that this is a progressive DCT-based JPEG, and specifies the width, height, number of components, and component subsampling (e.g., 4:2:0).                                                                                                                               |
| DHT           | 0xFF, 0xC4                               | variable<br>size | Define Huffman<br>Table(s)          | Specifies one or more Huffman tables.                                                                                                                                                                                                                                              |
| DQT           | 0xFF,<br>0xDB                            | variable<br>size | Define<br>Quantization<br>Table(s)  | Specifies one or more quantization tables.                                                                                                                                                                                                                                         |
| DRI           | 0xFF,<br>0xDD                            | 4 bytes          | Define Restart<br>Interval          | Specifies the interval between RST <i>n</i> markers, in Minimum Coded Units (MCUs). This marker is followed by two bytes indicating the fixed size so it can be treated like any other variable size segment.                                                                      |
| sos           | 0xFF,<br>0xDA                            | variable<br>size | Start Of Scan                       | Begins a top-to-bottom scan of the image. In baseline DCT JPEG images, there is generally a single scan. Progressive DCT JPEG images usually contain multiple scans. This marker specifies which slice of data it will contain, and is immediately followed by entropy-coded data. |
| RST <i>n</i>  | 0xFF,<br>0xD <i>n</i><br>( <i>n</i> =07) | none             | Restart                             | Inserted every r macroblocks, where r is the restart interval set by a DRI marker. Not used if there was no DRI marker. The low three bits of the marker code cycle in value from 0 to 7.                                                                                          |
| APP <i>n</i>  | 0xFF, 0xEn                               | variable<br>size | Application-<br>specific            | For example, an Exif JPEG file uses an APP1 marker to store metadata, laid out in a structure based closely on TIFF.                                                                                                                                                               |
| сом           | 0xFF, 0xFE                               | variable<br>size | Comment                             | Contains a text comment.                                                                                                                                                                                                                                                           |
| EOI           | 0xFF,<br>0xD9                            | none             | End Of Image                        |                                                                                                                                                                                                                                                                                    |

0xffd8 和 0xffd9 为 JPG 文件的开始结束的标志。

### 隐写软件

### Stegdetect

通过统计分析技术评估 JPEG 文件的 DCT 频率系数的隐写工具, 可以检测到通过 JSteg、JPHide、OutGuess、Invisible Secrets、F5、appendX 和 Camouflage 等这些隐写工具隐藏的信息,并且还具有基于字典暴力破解密码方法提取通过 Jphide、outguess 和 jsteg-shell 方式嵌入的隐藏信息。

- -q 仅显示可能包含隐藏内容的图像。
- -n 启用检查JPEG文件头功能,以降低误报率。如果启用,所有带有批注区域的文件将被视为没有被嵌入信息。如果JPEG文件的JFIF标识符中的版本号不是1.1,则禁用OutGuess检测。
- -s 修改检测算法的敏感度,该值的默认值为1。检测结果的匹配度与检测算法的敏感度成正比,算法敏感度的值越大,检测出的可疑文件包含敏感信息的可能性越大。
- -d 打印带行号的调试信息。
- -t 设置要检测哪些隐写工具(默认检测jopi),可设置的选项如下:
- j 检测图像中的信息是否是用jsteg嵌入的。
- o 检测图像中的信息是否是用outguess嵌入的。
- p 检测图像中的信息是否是用jphide嵌入的。
- i 检测图像中的信息是否是用invisible secrets嵌入的。

#### **JPHS**

JPEG 图像的信息隐藏软件 JPHS,它是由 Allan Latham 开发设计实现在 Windows 和 Linux 系统平台针对有损压缩 JPEG 文件进行信息加密隐藏和探测提取的工具。软件里面主要包含了两个程序 JPHIDE 和 JPSEEK。JPHIDE 程序主要是实现将信息文件加密隐藏到 JPEG 图像功能,而 JPSEEK 程序主要实现从用 JPHIDE 程序加密隐藏得到的 JPEG 图像探测提取信息文件, Windows 版本的 JPHS 里的 JPHSWIN 程序具有图形化操作界面且具备 JPHIDE 和 JPSEEK 的功能。

### SilentEye

SilentEye is a cross-platform application design for an easy use of steganography, in this case hiding messages into pictures or sounds. It provides a pretty nice interface and an easy integration of new steganography algorithm and cryptography process by using a plug-ins system.

