Задача и алгоритмы кластеризации

Николай Анохин

Обучение без учителя

В задачах без учителя значение целевой функции для объектов из обучающей выборки неизвестно. Решение таких задач подразумевает исследование "скрытой структуры" данных.

Задача кластеризации – задача без учителя, подразумевающая разбиение множества объектов на непересекающиеся подмножества (кластеры).

Мотивация

► Кластеризация позволяет больше узнать о данных (knowledge discovery!)

Типичные траектории покупателей супермаркета¹

¹An exploratory look at supermarket shopping paths // J.S. Larson et. al.

Мотивация

▶ Работать с кластерами удобнее, чем с отдельными объектами

Диаграмма Герцшпрунга — Рассела¹

¹https://lcogt.net/spacebook/h-r-diagram/

Мотивация

▶ Кластеризация позволяет конструировать новые признаки

d1: Банк финансирует строительство футбольного стадиона

d2: Автомобили подорожали из-за финансового кризиса

		банк	финансы	строительство	футбол	стадион	автомобиль	подорожание	кризис		clustering		экономика	спорт	производство	
_	d1	1	1	1	1	1	0	0	0		•	d1	2	2	1	
	d2	0	1	0	0	0	1	1	1			d2	3	0	1	

Задача кластеризации

Дано. Признаковые описания N объектов $\mathbf{x}=(x_1,\ldots,x_m)\in\mathcal{X}$, образующие тренировочный набор данных X

Найти. Модель из семейства параметрических функций

$$H = \{h(\mathbf{x}, \theta) : \mathcal{X} \times \Theta \rightarrow \mathcal{Y} \mid \mathcal{Y} = \{1, \dots, K\}\},\$$

ставящую в соответствие произвольному $\mathbf{x} \in \mathcal{X}$ один из K кластеров так, чтобы объекты внутри одного кластера были похожи, а объекты из разных кластеров различались

Иерархическая кластеризация

Идея агломеративного алгоритма

- 1. при инициализации считаем, что каждый объект отдельный кластер
- 2. на каждом шаге совмещаем два наиболее близких кластера
- 3. останавливаемся, когда получаем требуемое количество кластеров или остается единставенный кластер, содержащий все объекты