Measuring Soil Properties	,
Using the Richards equation require $k_{rw}(\theta_w)$ or $k_{rw}(\theta)$	es knowledge of
Using the Richards equation required $k_{rm}(\theta)$ or $k_{rm}(\theta)$ Additionally $\theta(\theta)$ is required (sail characerishe curve)
Water Content	105°C /24hrs
m, = mass soil+water	equivalent mass sail
	Microwave
$\frac{\theta_{m_0}}{m_1 - m_2}$	
neutron of gamma absorbtion:	
alneady discussed in	geophysics locture. Need
time domain reflectometry (TDR)	
time domain reflectometry (TDR) Similar to sending accusing EM pulse is related to wa	pulses time of travel of
ENI pulse is related to wa	ur concent
Circuit is: East TC	$LI+RI+\frac{1}{e}$ SIdt = E(t)
- lmm-	

Elt) is typically a set of pulses

provides information about soil proporties

For a given soil we would have

$$\beta_1 = -\frac{R}{2L} + \frac{1}{2L} \sqrt{R^2 - \frac{4L}{c}}$$

$$\lambda_2 = -\frac{R}{2L} - \frac{1}{2L} \sqrt{R^2 - \frac{4L}{C}}$$

 $I(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$ (for each impulse)

Nater entent

Capillary Pressure

Tensioneter - tonsioneter is very similar to a prezoneter except "sincen" and is a powers material

At high suchins (90 kPa) water cavitates in device and psychrometric methods (Harmodynamic techniques) are required.

Said-Water Moracteristic Conve

Hydraulic Conductivity Lolative Permeability Usually determine Kws by permeaneter methods. Decemine krow from pure-size distribution correlations and application of the capillarity formula to an idealized Huid mechanics geomory (Poiseville formula) parabetic velocity profile $\frac{db}{dx} = N \frac{d^2u}{dr^2} + \frac{1}{r} \frac{du}{dr}$ Integration of above pot using parabolic velocity profile (laminor flow)

produces $\frac{\pi r^4}{l} = \frac{p_1 - p_2}{l} = \frac{\pi r^4}{l} \frac{dp}{dr}$ How resistance" (like K)

Observe that

Tr2 (2)

T ("Viscous resistance"

pore area :. The resistance is proportional to T2 Combined with a tertousity equation, the Buildine equation relates pure size and kru as $k_{rw} = 41^2 \left(\frac{\int_0^{\Theta} \frac{d\Theta}{\Psi^2}}{\int_0^1 \frac{d\Theta}{\Psi^2}} \right)$ a similar relationship for air permeability results

Infiltration models

Infiltration is an important hydrologic process for both surface water behavior and subsurface behavior

I(t) comulative inhitrorus depth

$$I(t) = \int_{0}^{\infty} \left[\frac{\partial(z,t)}{\partial t} - \frac{\partial(z,t)}{\partial t} \right] dt$$

$$I(t) \text{ has diversions of } L$$

$$i(t) = \frac{dI}{dt} = \frac{d}{dt} \int_{0}^{\infty} \theta(z,t) - \theta_{A}(z,t) dz \qquad i(t) \text{ is infiltration}$$

$$takz$$

$$i(t) \text{ has dim. } \frac{L}{L}$$

Green-Ampt Model Kns-saturated hydraulic curductions this - water content bahing wetting front An - water content ahead of welling front (Ons-Da) dI = Kns H+ V+ I Separato & inlegrate $\frac{\overline{F}}{4+\psi+\overline{F}}dF = \frac{K_{ns}}{(b_{ns}-b_{a})}dt$ H+\$ H+4+# $\int \left[1 - \frac{H+\psi}{H+\psi+E}\right] dE = \int \frac{K_{ns}}{(4-t)} dt$ Z + (H+4)/n(H+4) Knst
(+ne-ta) Cumulative intiltration is I(t) = (to ta) Z(t) :. I(t) = Kns + - (Ans-Da)(H+4) ln / H+4 I
H-Da-Da = $K_{ns}t + (\theta_{ns}-\theta_a)(H+\Psi)(n/(H+\Psi)(\theta_{ns}-\theta_a)+I$ $(\theta_{ns}-\theta_a)(H+\Psi)(\theta_{ns}-\theta_a)H+\Psi$ = Kns+ + (Ans-Da)(4+4)/n(1+ Ins-Da)(H+1)

teo ...

$$\frac{dT}{dt} = i = \frac{d}{dt} \left(z_t \left(\dot{z}_n - \dot{z}_n \right) \right)$$

Green-Ampt model assumes to se to are constants with respect to time so that

$$i = (t_n - t_a) \frac{dz_t}{dt}$$

At the said-water interface the intilhann rate is governed by Dany's Law

$$i = K_{ns}\left(\frac{(H+Y)-(-z_t)}{z_t}\right) = K_{ns}\left(\frac{H+Y+z_t}{z_t}\right)$$

-- Volume of mousing while orea to the shaded orea to the shaded orea to the shaded orea to the shaded or the shad

Equite these two expressions for i

$$(\theta_{N} - \theta_{a}) \frac{dz}{dt} = K_{ns} \left(\frac{H + \ell + 2\tau}{z_{t}} \right)$$

$$\frac{z_t}{H + \psi + z_t} dz = \frac{K_{ns}}{I_{ns} - d_n} dt$$

evaluate & from mittal conditions at t=0, = 0

$$= -(H+\Psi)/n(H+\Psi+\Xi) = \frac{K_{ns}t}{l\partial_{ns}-\partial_{a}} - (H+\Psi)/n(H+\Psi)$$

$$\frac{1}{2} + (H+\psi) \left[\ln (H+\psi) - \ln (H+\psi+2) \right] = \frac{K_{ns} t}{(t_{ns} - t_{a})}$$

$$= + (H+\Psi) \ln \left[\frac{H+\Psi}{H+\Psi+2} \right] = \frac{K_{15}t}{(\theta_{15}-\theta_{14})}$$

$$I(t) = \underbrace{\epsilon_{t} (\theta_{ns} - \theta_{a})}_{t} = \underbrace{\left(\frac{1}{2} + \frac{1}{2} + \frac$$

$$I(t) = K_{ns}t + (H+\Psi)/n \left(1 + \frac{I(t)}{(H+\Psi)(\theta_{ns} - \theta_{n})}\right)$$
 (breen Ampt Model)

Time to ponding (runoff)

Substitute into rate equation

$$i = K_{ns} \left(\frac{H + \Psi + Z}{Z} \right)$$

recall
$$Z = I(t)$$

$$\frac{\partial}{\partial x} - \frac{\partial}{\partial a}$$

So
$$i = K_{ns} \left(\frac{H + \psi + \frac{I}{\theta_{no} - \theta_{a}} \frac{\delta}{I}}{\frac{I}{\theta_{ns} - \theta_{a}} \frac{I}{I}} \right)$$

Thus

$$it_p = Pt_p = K_{ns} t_p \left(\frac{(H + V)(\theta_{ns} - \theta_a)}{Pt_p} + 1 \right)$$

Solve for to (time to ponding)

$$\frac{Pt_{p}}{Kt_{p}} = \left(\frac{(H+\Psi)(\theta_{ns}, \theta_{a})}{Pt_{p}} + \frac{Pt_{p}}{Pt_{p}}\right)$$

Ptp Ptp = (H+4)(Ons-Da)Kfp + Ptp Kfp

$$t_p = \frac{(H+\Psi)(\theta_{ns}-\theta_a)K}{P(P-K)}$$

Since ponding depth is H=0 $t_p = \frac{\Psi(t_{ns}-t_a)K}{P(P-K)}$ (Compare to 4.5.24 in text)

Communation into / Kakin after positing

to has occurred

Il+at) = KE+st) + (Prs-Da)(H+4)/n(1+ (H+4)/Prs-Da) I(t) = Kt + (0ns-0a)(H+V)/n (1 + Rt) (H+V)(0n-0n)

 $I = (\theta_{ns} - \theta_{a}) \mathcal{Z}_{t_{p}}$

Kt + Kat - Kt + (bns-ta)(H+4)/n [1+ I(++0t) / (H+4)(bns-ta) / + I(t) (H+4)(chs-ta)

I(++ot)-I(t) = Kat + (Ans-ba)(++P)/n[H+4)(Ans-ba) + I(t+ot)]

I(t+st) = I(t) + Kat + (this ta)(H+4)/n [(H+4)(this ta) + I(t+st)]

As babone, the panding depth is assumed to be zero, and all Recip. not infiltrated is remost

Iltot)=Ilt) + Kst + lons-ba) 4/n [(thm-ba) + Iltot)]

Pumulative runoff is determined from mass balance

R= Pt-I+

** Is easier to write in terms of
$$\Delta t$$

$$I(t+\Delta t) - I(t) - (\theta_{ns} \cdot \theta_{a}) \psi \ln \left[\frac{\psi(\theta_{ns} \cdot \theta_{a}) + I(t+\Delta t)}{\psi(\theta_{ns} \cdot \theta_{a}) + I(t)} \right] = \Delta t$$

$$K$$

To use green-Ampt one needs to know

(Pas - ta): (Change in water curtant across front)

, capillary suchin at the

Using Brooks & Corey poner law model is typical whom

k =, SHHE W>1/6*

Crowing for 4 = } kydy (from Darcy's law at)

 $\Psi_{p} = \frac{2+3\lambda}{1+3\lambda} \Psi_{b}^{*}$

Typically $\psi_b^* = \frac{\psi_b}{2}$ (to account the differences between wetting of draining cures)

 $\frac{K}{l} = \frac{K_{ws}}{2}$

"K in comulative intillrace mores

 $\varepsilon = 3 + \frac{2}{d}$ (from Burdine eyn.)

 $\theta_{ns} = \theta_{wr} + (n - \theta_{wr}) \left(\frac{1}{2}\right)$ Letermined experimentally

Lastly to = the (field capacity)

Using He model

P= 11cm/2hrs. = 5.5cm/hr.

A = 0.60

Dwr = 0.06 n = 0.44 V6 = 30cm Kws = 0.8 m/d Da = Ofe

 $0 \quad \theta_{a} = \theta_{fc} = \theta_{wr} + (n - t_{wr}) \Theta t^{\lambda} \qquad (Brooks & Corey model, 4.4.2)$ $= 0.06 + (0.44 - 0.06) \left(\frac{30 \text{cm}}{344 \text{cm}}\right)^{0.60} \qquad 1 \text{ bar } \% / 0.60$

= 0.148

1 bar % / Ometus head

= 101.325 kPa

9.8 m/s2

= 10.33m

① $\theta_{ns} = \theta_{nr} + (n - \theta_{nr}) \left(\frac{1}{2}\right)^{\frac{1}{2}}$ = $0.06 + (0.44 - 0.06) \left(\frac{1}{2}\right)^{\frac{1}{(3 + \frac{3}{2}0.6)}} = 0.401$

: to -ta = 0.401-0.148 = 0.253

 $V_{f} = \frac{2+32}{1+32} \frac{V_{b}}{2} = \frac{2+3(0.4)}{1+3(0.6)} \left(\frac{30}{2}\right) = 20.4 cm = 0.204 m$

Kno = Kno/2 = 0.4 m/d

i = 5.5cm/hr = 1.32m/d

tp = (0.204m)(0.253)(0.4mld) _ 0.017d = 0.408hr (1.32m/d)(1.32m/d - 0.4mld)

I(tp) = (1.32m/d)(0.017d) = 0.0224m

Next construct a spreadsheet

At t P I

6																					1														T	T
-	<u> </u>				1			1	\			1	<u> </u>			Ţ '	7			-Runoff (cm)															-	
-	1					1	\		K				1				o			Runo								-				-	-	-		
2	Σ							۶	A Hobs	1			,			,	<u>.</u>			(cm)												-			-	 -
-	ار							.,	C.le. Paris		No.			runeff	\		_	Time (hours)		"Infiltration (cm)									ŀ							
¥										9	/			ž	1			Time (
-												1				4 0				■Precipitation (cm)			-													
-													1	1						Precipi	-			-												
_			5			2		•	.	,	4	<u> </u>	,	1	7		>								-											
-		L	T	T	1	T	T	(w) (c	pde	Pa		Ţ		_	1	T	T		1	L	0	22	92	82	73	92	66	23	5	65	23	23	<u>-</u>	<u>-</u>	-
9										sphere)	d Corev)	//									z (cm)		0.885093	1.770186	2.65528	3.540373	4.425466	5.310559	6.195652	7.080745	7.965839	8.850932	9.048652	9.246371	9.444091	9.641811
L					parameter	<u></u>			ic conductivity	pacity (1/3 atmosphere)	Brooks an		front	Į,	at front		conductivity				Runoff (c	0	0	0	0	0	0	0	0	0	0	0	0.229613	0.230768	0.232681	0.235343
Ш				rate		ater content		ssure	draulic con	d capacity	reduced water content (Brooks and Corev		water content ahead of front	water content behind front	change in water content at front	E				0.05	Infiltration	0	0.223825	0.44765	0.671475	0.8953	1.119125	1.34295	1.566775	1.790601	2.014426	_	_			2.438251
				precipitation rate	Brooks and Corey	irreducible water	porosity	bubbling pressure	saturated hydraul	suction at field ca	duced water		iter conten	iter conten	ange in wa	suction at front	effective hydraulic	time to pond			Precipitati In	0	0.223825 (0.671475 (0.8953										2.673593
ပ					ă	ij	8	五		ns	ē		We	W	ठ	S					Time (hrs) Pro	0	0.040695	0.081391	0.122086 0	0.162782										0.486108 2.
L	<u>de</u>			132.00 cm/d	8	8	용	30.000 cm	80 cm/d	43 cm	31		&	2	53	20.357 cm	40.000 cm/d	4 0	_			0	L	1								- 1		1		_
В	Itration Mc			132.	0.600	0.060	0.440	30.0		345.332143 cm	0.231		0.148	0.401	0.253	20.3	40.0	0.01695644			time (days)		0.00169564	0.00339129	0.00508693	0.00678258	0.00847822	0.01017387	0.01186951	0.01356516	0.0152608	0.01695644	0.01907472	0.01946226	0.01985555	0.02025449
٧	Green-Ampt Infiltration Model		Data	a	٧	θ _{wr}	_	$\Psi_{\mathbf{b}}$	Kws	$\Psi_{\!c}$	Θ		θ,	θ _{ns}	9∇	V front	~	t_p		ql	t t		0.001695644			_	_	_	- 1			- 1	- 1			0.000398948
		T	က	ヿ	2	ဖ	7	80	<u>.</u>	9		12	13	14	15 4	16	17		19			22	23	24	22	92	7	8	8	႙	ည	32	33	8	ရှ	98

BROOKS COREY XLS

Result:
$$I(t) = K_{ns}t + (t_{ns}-t_{n})(H+\Psi)/n \left[1 + \frac{I}{(t_{ns}-t_{n})(H+\Psi)}\right]$$

$$i(t) = K_{ns} \left[1 + \frac{H + V}{I} \right] = K_{ns} \left[1 + \frac{(\theta_{ns} - \theta_{a})(H + V)}{I} \right]$$

at
$$t \to \infty$$
 $T \to \infty$
i(t) $\to K_{ns}$ which agrees with intrition

$$i_0 = k_{ns}$$
; $\int_0^t i_0 + i_0 e^{-\alpha r} dr = i_0 r - i_0 e^{-\alpha r} dr$

at t=0, i(t) + 00 so does not substy initial "physics" used in Green-Ampt model, but Harton's equation 15 a useful model of inhibration

Philip's model

Kastiakov's model

$$\frac{(t) = \alpha_1 + \frac{\alpha_2}{2}}{1 - \alpha_2}$$

Only Green-Ampt model his most "physics" of process
Horton's model also his observations

All models agree well with sand and day data (see 1920-211)

Use of models

Infiltration models are crucial in rainfall-renoff modeling

and in contaminant transport models.

