Week 6 Report - Jesus Ruvalcaba

• Week of 2/23 to 3/1

Introduction

- We are still working on developing a fully functional proximal gradient descent method that takes in an already derived proximal operator for a given function as a parameter.
- The main focus this week was to create a function that prints out the relevant data values produced by the method
 - Allows us to observe the behavior of the method when it is acting on different parameters such as matrix dimensions and step size values.

Summary of Work Completed

- Implemented a function called print_relevant_data that takes in the following parameters:
 - q
 - $\,\blacksquare\,$ This is the function g(x), which has a computable sub-gradient
 - sub_grad_g
 - lacktriangle The sub-gradient of g(x)
 - o h
 - The function h(x) that is not necessarily differentiable
 - prox_l1_norm
 - Function computing the proximal operator of an L1 norm
 - lamb

- Lambda value
- alphas
 - A list of all the step sizes that we want to test
 - Used: 1e-3, 1e-4, 1e-5, 1e-6
- dimen
 - A list of objects, where each object has the number of rows and columns (dimensions of the matrix A)
 - Used: 20×25, 40×50 and 80×100
- · How does it work?
 - 1. For every dimension in the list of objects (dimen)
 - a. Randomly generate the matrix A and the vectors b and x
 - b. Print out the dimension that is currently being tested
 - c. For every step size in alphas
 - i. Print out the step size being used
 - ii. Call the proximal gradient descent method
 - iii. Print out the total time it took to converge/not converge
 - iv. Construct a table and print out all the function values computed and the norm of the difference between x_k and x_{old}

Analysis

- 20x25
 - Converged for every step size except 1e-3
 - For step size 1e-3, when observing the difference in x-values, towards the end, the values were getting closer to 0 but then in the last two iterations, the difference increased. Thus, it started drifting away from the optimal function value.
- 40x50

- Converged for step size's 1e-5 and 1e-6
- For step size 1e-3, the difference in x-values was decreasing but it seems like it needed more iterations, however, the difference was still quite large (far from our tolerance).
- For step size 1e-4, the difference in x-values was decreasing and increasing in every iteration, thus, it was oscillating.

• 80x100

- Converged for step size's 1e-5 and 1e-6
- For step size 1e-3, the difference in x-values was exactly the same for what it seems like all 20,000 iterations. It doesn't seem to be a mistake with the algorithm as it didn't do this with other dimensions with the same step size.
- For step size 1e-4, similarly, the difference in x-values gets to around 0.01 at the third iteration and it remains that way for the rest of the iterations (20,000 max. iterations)
- It seems like as the dimension gets noticeably larger for A, the smaller step sizes (1e-3 and 1e-4) provide very little progress towards the minimizer. The "step taken" might just be too small for any real progress to be made in a reasonable amount of time.