Worksheet W1Wed: Continuity and Differentiation

Problem 1. Suppose $G \subseteq \mathbb{C}$ is a region and $z_0 \in G$ and $f : G \to \mathbb{C}$ is a function. The point of this problem is to show that

$$\lim_{z\to z_0}\mathsf{f}(z)$$

is unique if it exists. More precisely, suppose $a, b \in \mathbb{C}$ are numbers such that f approaches a as b approaches b and then use this to conclude that a

Problem 2. Let $f: \mathbb{C} \to \mathbb{R}$ be the function $f(x + iy) = \frac{x^2y}{x^4 + u^2}$.

- (a) Show that the limits of f at 0 along *all* straight lines through the origin exist and equal.
- (b) Show that $\lim_{z\to 0} f(z)$ does not exist. *Hint*. Consider the limit along the parabola $y=x^2$.

Problem 3. The picture below depicts a holomorphic function with nonzero derivative mapping a path to another path, and the interior of the original path to the exterior of the image path. If *z* travels around the original path counterclockwise, which way does its image *w* travel around the image path?

Problem 4. (a) Show that $z \mapsto \text{Re}(z)$ is continuous on \mathbb{C} .

- (b) On what subset of \mathbb{C} is $z \mapsto \text{Re}(z)$ holomorphic? Justify.
- (c) Suppose $G \subseteq \mathbb{C}$ is a region and $\mathfrak{u}, \mathfrak{v} : G \to \mathbb{R}$ are functions. Show that

$$\lim_{z\to z_0} (u(z) + iv(z)) = u_0 + iv_0$$

if and only if

$$\lim_{z\to z_0} u(z) = u_0 \text{ and } \lim_{z\to z_0} v(z) = v_0.$$

Problem 5. (a) Show that $f(z) = \bar{z}$ is continuous on \mathbb{C} .

- (b) Show that $g(z) = \bar{z}/z$ is continuous on $\mathbb{C} \setminus \{0\}$.
- (c) Is it possible to define g(0) so that g becomes continuous on \mathbb{C} ? Justify.

Problem 6. Let $f(z) = z^2$. Decsribe what f does to the following subsets of \mathbb{C} .

- (a) A circle centered at the origin.
- (b) A ray starting at the origin.
- (c) The figure formed by the horizontal segment from 0 to 2, the circual arc from 2 to 2i, and then the vertical segment from 2i to 0. *Follow-up*. What happens to the right angle at the origin? Does this contradict proposition 2.11 of BMPS?
- (d) The square between 0, 2, 2 + 2i, and 2i. *Note*. Be careful with the vertical segments that are not connected to the origin. Their images are neither straight lines nor circles.