TD numéro 1

Intelligence artificielle, ENSIIE

Semestre 4, 2019–20

Exercice 1: Tour de cubes

- 1. Représenter explicitement le graphe de recherche.
- 2. On part de la configuration $\begin{bmatrix} C \\ B \\ A \end{bmatrix}$

Donner l'arbre de recherche pour les algorithmes suivants :

- a) recherche en largeur d'abord;
- b) recherche en profondeur d'abord;
- c) recherche en profondeur itérative.
- 3. Proposer une heuristique admissible pour l'algorithme A*.
- 4. Donner l'arbre de recherche pour cette heuristique.

Exercice 2 : Problème des cruches

Étant données une cruche de 5 litres initialement pleine et une cruche de 2 litres initialement vide, on cherche à avoir un litre exactement dans la cruche de 2 litres.

Les opérations autorisées sont les suivantes :

- Vider une cruche (dans l'évier).
- Transvaser le contenu d'une cruche dans l'autre, soit complétement si cela est possible sans faire déborder la cruche réceptrice, soit jusqu'à ce que la cruche réceptrice soit pleine.
- 1. Chercher les prédicats permettant de décrire les états et les opérateurs.
- 2. Décrire l'état initial et le critère objectif.
- 3. Décrire les opérateurs utilisés.
- 4. Dessiner le graphe d'états.

Exercice 3 : Villes de Roumanie

Soit la carte suivante représentant des villes de Roumanie et les distances entre villes à vol d'oiseau.

Distance à Bucarest à vol d'oiseau en km							
Arad	366	Bucharest	0	Craiova	160	Dobreta	242
Eforie	161	Fagaras	178	Giurgiu	77	Hirsova	151
Iasi	226	Lugoj	244	Mehadia	241	Neamt	234
Oradea	380	Pitesti	148	Rimnicu Vilcea	193	Sibiu	253
Timisoara	335	Urziceni	80	Vaslui	199	Serins	374

- 1. Définir le problème : un état, les opérateurs, les états initiaux et finaux.
- 2. Définir la fonction d'évaluation.
- 3. Montrer l'exploration effectuée par l'algorithme A* pour trouver le chemin optimal entre Arad et Bucharest en appliquant l'algorithme du poli de cours.

Exercice 4: Comparaison d'algorithmes

L'efficacité d'une algorithme est mesurée en terme de nœuds développés.

- 1. Décrire un graphe dans lequel la recherche en profondeur d'abord est plus efficace que la recherche en profondeur itérative.
- 2. Décrire un graphe dans lequel l'algorithme A^* est plus efficace que la recherche en profondeur d'abord **et** la recherche en largeur d'abord. L'heuristique h utilisée doit être admissible.
- 3. Décrire un graphe dans lequel la recherche en profondeur d'abord **et** la recherche en largeur d'abord sont plus efficaces que l'algorithme A^* . L'heuristique h utilisée doit être admissible.
- 4. Décrire un graphe dans lequel la recherche gloutonne est plus efficace que l'algorithme A^* . L'heuristique h utilisée doit être admissible.