

Análise Complexa e Equações Diferenciais 1º Semestre 2020/2021

Teste — Semana 7 — 4 de Novembro de 2020 (CURSOS: LMAC, MEFT)

[5,0 val] 1. Indique, justificando, para que valores de $n \in \mathbb{N}$ existem primitivas em $\mathbb{C} \setminus \{0\}$ de

$$\frac{\sin z}{z^n}$$
.

- 2. Seja $u(x,y)=\alpha(x)+3y^2-\beta(y)$, com $\alpha,\beta:\mathbb{R}\to\mathbb{R}$ funções reais de classe $C^2(\mathbb{R})$.
- [5,0 val] (a) Determine, justificadamente, a forma geral de α e β de modo a que u seja a parte real duma função inteira $f:\mathbb{C}\to\mathbb{C}$.
- [5,0 val] (b) Considerando $\alpha(x)=-3x^2$ e $\beta(y)=y$ determine o conjugado harmónico de u para o qual $f=u+\mathrm{i} v$ satisfaz $f(\mathrm{i})=2+\mathrm{i} .$
- [5,0 val] 3. Determine o valor de

$$\oint_{\gamma} \frac{e^{\mathrm{i}|z|} \cos z}{(2z-\mathrm{i})^4} dz,$$

em que γ percorre a circunferência de raio π centrada na origem, uma vez, no sentido directo.