Data Mining (EECS 6412)

Text Classification

Aijun An
Department of Electrical Enginering and Computer Science
York University

Text Mining

- ▶ It refers to data mining using text documents as data.
 - A text document could be an article, a web page, an xml file, an email message, a blog and so on.
- ▶ Tasks of text mining
 - ▶ Text classification
 - ▶ Text clustering
 - ▶ Text summarization
 - ▶ Topic detection
 - **...**

Text Classification

- ► Learn a classification model from a set of preclassified documents
- Classify new text documents using the learned model
- Applications
 - Classify articles into categories
 - ▶ Classify web pages into different categories
 - ▶ Classify emails into different categories
 - Spam email filtering
 - **...**

3

Example Applications

- ► News topic classification (e.g., Google News) C={politics, sports, business, health, tech, ...}
- "SafeSearch" filtering C={pornography, not pornography}
- ► Language classification C={English, Spanish, Chinese,...}
- Sentiment classificationC={positive review, negative review}
- ► Email sorting C={spam, meeting reminders, invitations, ...} user-defined!

Text Representation

- Most classification learning programs require the examples to be represented as a tuple, which is a vector of attribute values.
- ► How to represent a document using a vector of attribute values?
- Attributes
 - ▶ "Bag of words" method: Use a set of words as attributes
- Attribute values
 - ▶ Method 1: use 0 or 1 as attribute value to indicate whether the word appears in the document.
 - ▶ <u>Method 2</u>: use the absolute or relative frequency of each word in the document as the attribute value.
 - Method 3: assign a weight to a word in a document using TF-IDF and use the weight as the attribute value

Text Representation (Cont'd)

Training data sets:

▶ Method 1:

	word ₁	word ₂	•••	word _m	Class
document ₁	0	1	•••	1	C1
document ₂	1	0		1	C2
•••			•••		•••
document _n	1	0		0	C2

▶ Method 2 with absoluate term frequency:

TVICTIOG 2 V		word ₂	•••	word _m	Class
document ₁	0	3	•••	1	C1
document ₂	2	0		3	C2
•••	•••	•••	•••	•••	
document _n	5	0		0	C2

Method 3: TF-IDF Term Weighting

- ▶ TF: term frequency
 - ▶ Definition: $TF = t_{ii}$
 - frequency of term i in document j
 - ▶ Purpose: makes the frequent words *for the document* more important
- ▶ IDF: inverted document frequency
 - ▶ Definition: IDF = $log(N/n_i)$
 - \triangleright n_i : number of documents containing term i
 - \triangleright *N* : total number of documents
 - ▶ Purpose: makes rare words *across documents* more important
- ▶ TF-IDF value of a term i in document j
 - ▶ Definition: TF×IDF = $t_{ij} \times \log(N/n_i)$

Example: TF-IDF Weighted Vectors

Assume there are three documents in the training set:

Document D1: "yes we got no bananas"

Document D2: "what you got"

Document D3: "yes I like what you got"

	yes	we	got	no	bananas	what	you	I	like	
D1:	.18	0.48	0	0.48	0.48	0	0	0	0	
D2:	0	0	0	0	0	0.18	0.18	0	0	
D3:	0.18	0	0	0	0	0.18	0.18	0.48	.48	

Text Processing for Selecting the Bag of Words

- ▶ Word (token) extraction
 - ▶ Extract all the words in a document
 - ▶ Convert them into lower cases
- Stop words removal
- Stemming
- Selecting words

9

Stop Words

- ▶ Many of the most frequently used words in English are worthless in text mining these words are called *stop words*.
- Examples of stop words the, of, and, to, a, ...
- ▶ Typically about 400 to 500 such words
- ► For an application, there may be additional domain-specific stop words
- ► These stop words are usually removed from the set of words for representing a document.

Stemming

- ► A technique used to find the root/stem of a word.
- ▶ For example:
 - discussed
 - discusses
 - discussing
 - ▶ discuss

Stem: discuss

- Usefulness
 - ▶ Reduce the number of words
 - ▶ Improve effectiveness of text classification

11

Example Stemming Rules

- ▶ Remove ending
 - ▶ If a word ends with *s*, preceded by a consonant other than an *s*, then delete the *s*.
 - ▶ If a word ends with *ed*, preceded by a consonant, delete the *ed* unless this leaves only a single letter.
- ▶ Transform words
 - ▶ If a word ends with "ies" but not "eies" or "aies", then "ies" is replaced with "y".

Stemming Algorithms

- ▶ Porter stemming algorithm
 - ▶ The most widely used stemming algorithm
 - ▶ Developed by Martin Porter at the University of Cambridge in 1980
 - ► http://www.tartarus.org/~martin/PorterStemmer/ contains source codes in a few languages
- ▶ Other stemming algorithms
 - http://www.comp.lancs.ac.uk/computing/research/ stemming/general/

13

Text Processing for Selecting the Bag of Words

- ▶ Word (token) extraction
 - ▶ Extract all the words in a document
 - ► Convert them into lower cases
- ▶ Stop words removal
- Stemming
- ► Selecting words

Feature Selection

- Selecting the "bag of words" to represent documents
- ▶ Why do we need to select?
 - ► The number of unique words in a set of documents can be too many.
 - ► Leaning program may not be able to handle all possible features
 - ▶ Good features can result in higher accuracy

15

What are Good and Bad Features?

- ▶ Good features: (should be kept)
 - ▶ Co-occur with a particular category
 - ▶ Do not co-occur with other categories
- ▶ Bad features: (best to remove)
 - ▶ Uniform across all categories
 - ▶ Very infrequent (appear 1 or 2 times in the whole training set of documents)
 - ▶ unlikely to be met again
 - ▶ can be noise
 - co-occurrence with a class can be due to chance

Feature Selection Methods

- ► Class independent methods (Unsupervised)
 - ▶ Document Frequency (DF)
 - ► Term Strength (TS)
- ► Class-dependent methods (Supervised)
 - ▶ Information Gain (IG)
 - ▶ Mutual Information (MI)
 - χ² statistic (CHI)

17

Document Frequency (DF)

▶ Document frequency of a word w:

DF(w) = number of documents containing w

- ▶ Rank the words according to their document frequency
- ▶ Select the first *m* words with high DF values

Document Frequency (Cont'd)

- Advantages
 - ▶ Easy to compute
 - ▶ Can remove rare words (hence noise)
- Disadvantages
 - ▶ Class independent:
 - ▶ If the word appears frequently in many classes, it cannot distinguish the classes well
 - ▶ Some infrequent terms can be good discriminators, which cannot be selected by this method.

19

Information Gain

- ▶ A measure of importance of the feature for predicting the classes of documents
- Defined as:
 - ► The number of "bits of information" gained by knowing the word is present or absent

$$Gain(w) = -\sum_{i=1}^{k} P(C_i) \log P(C_i)$$

$$+ P(w) \sum_{i=1}^{k} P(C_i \mid w) \log P(C_i \mid w) + P(\overline{w}) \sum_{i=1}^{k} P(C_i \mid \overline{w}) \log P(C_i \mid \overline{w})$$

where w is a word and C_1 , C_2 , ..., C_k are classes.

- ▶ Rank the words according to their information gain value
- ▶ Select the first *m* words with high gain values

Information Gain (Cont'd)

- Advantage:
 - ▶ Consider the classes
- Disadvantage:
 - ▶ Computationally expensive (compared to using DF)
 - ▶ Noisy words occurring only once in the document collection have high IG
- Solution
 - Remove rare words (appears 1 or 2 times) first. This can
 - reduce the amount of computation, and
 - remove noisy words that have by-chance correlations with the classes.

21

What Do People Do In Practice?

- Rare term removal
 - ▶ rare across the whole collection (i.e. DF is very low)
 - ▶ met in a single document
- Most frequent term removal (i.e. removing stop words)
- ▶ Stemming. (*often*)
- ▶ Use a class-dependent method (e.g., the information gain method) to select features.

Beyond Words

- Bag of words representation
 - does not consider the position or order of words in a document
 - does not consider the context a word is in.
- ► It would be great to include multi-word features like "New York", rather than just "New" and "York"
- ▶ Bigram document representation (or n-gram in general)
 - a pair of consecutive words in the document
- ▶ But: including all pairs of words, or all consecutive pairs of words, as features creates WAY too many features to deal with, and many are very sparse.

23

Summary

- ▶ Text classification has many applications
- ► The most important issue is how to represent documents
 - Word extraction
 - Stop word removal
 - Stemming
 - ▶ Feature selection
 - Represent document with values of the selected features (e.g., the frequency of the word in the document).

References

- ▶ Feature Selection
 - ▶ Yang Y., J. Pedersen. A comparative study on feature selection in text categorization. In J. D. H. Fisher, editor, The Fourteenth International Conference on Machine Learning (ICML'97), pages 412-420. Morgan Kaufmann, 1997.
- ▶ Term Weighting
 - ▶ Salton G., C. Buckley, Term-weighting approaches in automatic text retrieval, Information Processing and Management: an International Journal, v.24 n.5, p.513-523, 1988.
 - Salton, G. 1989. Automatic text processing. Chapter 9.