Universidad Nacional de Córdoba

Facultad de Ciencias Exactas Físicas y Naturales

Laboratorio de Arquitectura de Computadoras

<u>Práctica profesional supervisada</u> <u>Sistemas de adquisición de datos y supervisión</u> <u>INFORME 100Hs</u>

Autores:

- Laluf Gonzalez, Andrea Elizabeth
- Saavedra Coullery, Leandro David

Supervisor:

• Eschoyez, Maximiliano

Tutor:

• Micolini, Orlando

"Hablar de energías renovables en la actualidad, ha dejado de ser un ideal para convertirse en una solución y con muy buenos rendimientos."

<u>Indice</u>

Introducción	4
Planificación	5
Motivación	6
Objetivos	6
Desarrollo	7
Análisis general de equipos	7
Definición de requerimientos	10
Requerimientos del sistema	10
Gestión de riesgos	12
Identificación de riesgos	13
Análisis de riesgos	15
Planificación de riesgos	16
Estudio de equipo Connergy SCC 40 Vision con Software CXCOM	20
Modos del controlador de carga	24
Modo de carga EQUAL	24
Modo de carga BOOST	25
Modo de carga NORMAL	25

Introducción

Esta Práctica Profesional Supervisada (PPS) surgió como pedido de la Secretaria de Energías Alternativas de la Provincia de Córdoba (SEAPC) la cual se enfrenta a la siguiente problemática: cuentan con 200 escuelas que poseen energía eléctrica por medio de paneles solares y generadores eólicos dado que por las zonas en donde se encuentran ubicadas no existe tendido eléctrico. El principal problema que enfrentaron está relacionado con el control de estado de las baterías colocadas ya que no disponen de un sistema informatizado que permita detectar la necesidad de sustituir la batería o algún componente del sistema. Dado que les resulta de suma incomodidad realizar los viajes al destino para controlar el estado del sistema surge la necesidad de contar con un sistema de adquisición y supervisión remoto, así como también el envío de alarmas.

Lo que se desarrollara en esta PPS es el estudio de los equipos instalados en las escuelas, el planteo de los requerimientos, el análisis de riesgos y el análisis-decodificación de la trama enviada por el controlador de carga.

<u>Planificación</u>

Gráfico de Gantt

Descripción de tareas

Tarea	Descripción	Duración estimada
Α	Analisis del problema	7 Dias
В	Requerimientos	7 Dias
С	Gestion de riesgos	4 Dias
D	Objetivos y motivacion	4 Dias
Е	Estudio del equipo	6 Dias
F	Lectura de puerto serie	6 Dias
G	Interpretacion de datos	15 Dias
Н	Informe	8 Dias

Motivación

El presente proyecto surge como necesidad de la SEAPC de aplicar un sistema que permita la adquisición de datos y supervisión de paneles solares, controlador de carga y batería, instalados en diversas escuelas rurales de la provincia de Córdoba.

Actualmente la secretaria instala los equipos y no tiene ningún tipo de control. Para el mantenimiento debe planificar visitas periódicas. Un equipo de control y supervisión permitirá planificar mejor las visitas y realizar un mejor plan de mantenimiento. Es por ello que con este sistema se logrará detectar cualquier evento ocurrido, ya sea fallas, picos de consumo, estado de la batería, voltaje, corriente, etc.

<u>Objetivos</u>

- Desarrollar e implementar un sistema que permita la adquisición de datos del controlador de carga del panel solar.
- Registrar los eventos producidos.
- Profundizar el conocimiento en la utilización de energías renovables (solar y/o eólica)
- Aplicar soluciones tecnológicas que permitan mejorar la calidad de vida.
- Conocer la arquitectura, ventajas y desventajas, de las distintas placas de desarrollo que hay en mercado.

<u>Desarrollo</u>

Dado que se realizaron diversas tareas dentro del tiempo planificado para la realización del trabajo, se dividió el mismo en etapas.

Análisis general de equipos

Como una primera etapa dentro del trabajo, debemos mencionar el estudio de las especificaciones técnicas de los controladores de carga que posee la SEAPC. Entre ellos podemos mencionar:

- Connergy SCC Vision 40
- Xantrex C40 o C60
- Steca SR30
- Morningstar Prostar PS30
- Morningstar Tristar TS45 o TS60

A continuación se muestran las principales características de dichos equipos:

Especificaciones	SCC 40	C40 o C60	PS30	STECA SR30	TS40 o TS60
controlador de carga autoajustable	х			x	
botón de desactivación/activación	х		х		х
salida para excedentes	х	х			х
funciona en interiores	х				
registro de temperatura ambiente	х				
funciona con 12/24v	Х	х	х	х	Х
función alumbrado nocturno	х			x	
interface serial	х				х
conector con pc	х				
control de carga					х
PWM	х	х	х	х	х
etapas de carga	х	х			х
reinicio manual		х			х
48v			х		х
Compensación de temperatura			х	x	
eliminación de ruido de telecomunicaciones			х		
Autodiagnóstico			х		
regulación basada en estado de carga				Х	
carga reforzada				X	

carga de compensación				Х	
tensión final de carga				Х	
reinicio automático del consumidor				Х	
toma positiva a tierra				Х	
toma negativa a tierra				Х	
Datos mostrados					
led de información del sistema				Х	
led de estado de la batería			х	Х	
led de alarmas				Х	
dc amperaje		Х			
ampere/hora desde el ultimo apagado		х			
acumulado amperaje/hora		х			
estado de carga	Х	х			х
alarma acústica para el descenso de carga	х				
Errores	Х				
estado del sistema					х
Protección					
Sobrecarga		х	х	Х	
Cortocircuito		х	х	Х	х
inversión de polaridad		х	х	Х	х
desconexión ante bajo voltaje	Х	х			
desconexión ante muy alto voltaje		х	х	Х	х
corriente inversa de noche			х	Х	
alta temperatura			х	Х	х
Protección contra rayos			х	Х	
picos de voltaje			х		
descarga profunda				Х	
voltaje de desconexión contra descarga				Х	
circuito abierto				X	
compatibilidad electromagnética				X	
exceso de corriente					х

De las especificaciones técnicas que obtuvimos pudimos definir los requerimientos del sistema.

Definición de requerimientos

Requerimientos del sistema

Los requerimientos se obtuvieron de los equipos estudiados y de las especificaciones que nos pidió la Secretaria de Energías Alternativas de la Provincia.

Los requerimientos son las cosas que el sistema debe tener para poder satisfacer todas las necesidades planteadas.

Se los dividió de la siguiente manera:

REQUERIMIENTO ADQUIRIR DATOS DE CELDAS FOTOVOLTAICAS

ID	DESCRIPCION	IMPORTANCIA
RCFV1	Medir la tensión de los módulos fotovoltaicos	
RCFV2	Medir la corriente de carga	

REQUERIMIENTO MEDICION CONTROLADOR DE CARGA

ID	DESCRIPCION	IMPORTANCIA
RCC1	Medir la temperatura del disipador	
RCC2	Poseerá sensores para captura de datos	

REQUERIMIENTO CARGA Y DESCARG DE BATERIA

ID	DESCRIPCION	IMPORTANCIA
RBB1	Medir la tensión del banco de baterías	
RBB2	Medir la corriente de entrada a las baterías	
RBB3	Medir la corriente de salida a consumos	
RBB4	Medir la tensión de salida batería	
RBB5	Estado en el ciclo de carga de la batería	

REQUERIMIENTO DE CONSUMO DE CORRIENTE ALTERNA

ID	DESCRIPCION	IMPORTANCIA
RCCA1	Medir la tensión de salida del inversor	
RCCA2	Medir la corriente de salida del inversor	

REQUERIMIENTO DE HARDWARE DEL SISTEMA

ID	DESCRIPCION	IMPORTANCIA
RHS1	Conectividad USB, SD y puerto RS 232 para carga/descarga de datos y un módulo de comunicación (TCP/IP, 3G, Radiofrecuencia)	
RHS2	Indicador de estado de error	
RHS3	Indicador de código de errores	
RHS4	Botón de encendido y apagado	
RHS5	Medir la presencia de tensión proveniente de la celda fotovoltaica	
RHS6	Medir la relación de onda estacionaria en conector de salida de antena de transceptores (ROE)	
RHS7	Control de encendido y apagado de los transceptores UHF, VHF	

REQUERIMIENTO DE CONTROL Y ACCESO

ID	DESCRIPCION	IMPORTANCIA
RCYA1	Dispondrá de cuatro entradas para sensores de alarmas (movimiento y magnético)	
RCYA2	teclado digital para activación y desactivación de alarma	
RCYA3	Dispondrá de una sirena de 1,5A máximo	
RCYA4	Display para visualización de estado	

REQUERIMIENTO DE REGISTRO

ID	DESCRIPCION	IMPORTANCIA
RRG1	Registrará en un archivo el estado de cierre y apertura de la entrada principal del establecimiento	
RRG2	Registrará en un archivo el disparo y cancelación de la alarma	
RRG3	Registrará información sensada	
RRG4	Registro de todas las variables adquiridas del sistema	

Gestión de riesgos

En esta etapa se procedió a plantear los riesgos del proyecto. Para la gestión de riesgos de nuestro proyecto, introdujimos un pequeño resumen basado en la bibliografía [2].

Los riesgos se pueden definir como una probabilidad de que una circunstancia adversa ocurra.

La gestión de riesgos permite identificar los riesgos de un proyecto y crear planes para minimizar el efecto de los mismos sobre el proyecto.

Se pueden definir diferentes categorías de riesgos:

Riesgos del proyecto: que afectan la planificación o los recursos del proyecto.

Riesgos del producto: que afectan a la calidad o al rendimiento del producto.

Riesgos del negocio: que afectan a la organización que desarrolla el producto.

En este tipo de proyectos, la gestión de riesgos es importante dado a las incertidumbres inherentes con las que se encuentran. Por ejemplo: requerimientos ambiguamente definidos, dificultades en las estimaciones de los tiempos y recursos, etc.

El proceso de gestión de riesgos comprende varias etapas:

- 1. Identificación de riesgos: Consiste en identificar los posibles riesgos para el proyecto, el producto y los negocios.
- 2. Análisis de riesgos: Consiste en evaluar las probabilidades y las consecuencias de los riesgos.
- 3. Planificación de los riesgos: Se crean planes para abordar los riesgos.
- 4. Supervisión de riesgos: Proceso continuo en el que se evalúa cada riesgo y se analiza si han cambiado sus probabilidades o efectos.

Identificación de riesgos

En esta etapa debemos descubrir los posibles riesgos del proyecto. Clasificaremos los riesgos con los siguientes tipos:

Riesgos de tecnología: Derivan de las tecnologías de software o hardware utilizadas en el sistema que se está desarrollando.

Riesgos de personal: Riesgos asociados con las personas del equipo de desarrollo.

<u>Riesgos organizacionales</u>: Derivan del entorno organizacional donde el software se está desarrollando.

ID	DESCRIPCION	TIPO	AFECTA
R01	Daño en el equipo de prueba (celda fotovoltaica, batería y controlador de carga), y placa de prueba	Tecnología	Proyecto
R02	Funcionamiento incorrecto de los sensores	Tecnología	Producto
R03	Incompatibilidad de hardware	Tecnología	Producto
R04	Falta de disponibilidad de insumos de hardware	Tecnología	Producto
R05	Dificultad inherente al lenguaje de programación utilizado	Tecnología	Proyecto
R06	Falta de documentación o documentación incompleta	Organizacional	Proyecto
R07	Conflictos por tiempos dedicados a otros trabajos	Organizacional	Proyecto
R08	Falta de infraestructura para llevar a cabo el proyecto	Organizacional	Proyecto
R09	Estimación de tiempo de los requerimientos subestimados	Organizacional	Proyecto
R10	Posibles cambios de requerimientos sobre lo ya realizado	Organizacional	Proyecto
R11	Retraso en otras áreas del proyecto	Organizacional	Producto
R12	Omisión de uso de una metodología de documentación	Organizacional	Proyecto
R13	Planificación optimista de tiempos	Organizacional	Proyecto
R14	Relación conflictiva entre los integrantes del proyecto	Organizacional	Proyecto
R15	Imposibilidad temporal de continuar de uno de los integrantes del proyecto	Personal	Proyecto

Análisis de riesgos

En esta etapa, consideramos cada riesgo por separado, para analizar las probabilidades de que se concreten, además de la severidad del efecto que producen. Luego de este análisis, se evalúa la importancia de cada riesgo, con el objetivo de decidir cuáles son los riesgos que deben tenerse en cuenta durante el desarrollo del proyecto. Esta importancia, depende de las probabilidades y del efecto asignado a cada riesgo. No existe una metodología definida para realizar este proceso, por lo que depende en gran medida de la opinión y de la experiencia previa de quien realice el análisis.

En nuestro caso, definimos tres niveles de probabilidad (alta, media, baja) y tres niveles de seriedad del efecto (grave, tolerable, insignificante) que producen los riesgos. Cada combinación de probabilidad y efecto, se traduce en un nivel de importancia del requerimiento.

IMPACTO PROBABILIDAD	INSIGNIFICANTE	TOLERABLE	GRAVE
BAJA	Baja	Moderada	Alta
MEDIA	Baja	Moderada	Alta
ALTA	Moderada	Alta	Alta

ID	PROBABILIDAD	IMPACTO	IMPORTANCIA
R01	Media	tolerable	Moderada
R02	Baja	Grave	Alta
R03	Media	Grave	Alta
R04	Alta	Grave	Alta
R05	Media	Grave	Alta
R06	Media	Tolerable	Moderada
R07	Baja	Tolerable	Moderada
R08	Baja	Tolerable	Moderado
R09	Alta	Tolerable	Alta
R10	Media	Tolerable	Moderada
R11	Media	Tolerable	Moderada

R12	Baja	Tolerable	Moderada
R13	Alta	Grave	Alta
R14	Baja	Grave	Alta
R15	Baja	Tolerable	Moderada

Planificación de riesgos

Una vez que analizamos los riesgos, podemos interpretar cuales son los más importantes, para tenerlos en cuenta durante el resto del desarrollo del proyecto. Debemos plantear las estrategias que nos permitirán gestionar esos riesgos. Tampoco existe una metodología definida para llevar a cabo este paso.

Las estrategias para la planificación de riesgos pueden dividirse en tres categorías:

Estrategias de prevención: Con la aplicación de estas estrategias, se logra una reducción dela probabilidad de que el riesgo aparezca.

Estrategias de minimización: su aplicación provoca una reducción del impacto del riesgo

Planes de contingencia: Este tipo de estrategias, permiten estar preparados para enfrentar el peor de los casos.

A continuación describiremos estrategias para cada uno de los riesgos:

ID	CONSECUENCIAS	SOLUCION	MITIGACION
R01	Imposibilidad de probar el equipo para aprender a usarlo	conseguir la reposición de los equipos	continuar con otras actividades
R02	no poder realizar mediciones exactas	cambio de los sensores	realizar las pruebas pertinentes para verificar el correcto funcionamiento de los mismos
R03	afecta las pruebas del equipo	conseguir hardware estandarizable	pre estableciendo un protocolo de datos
R04	no poder terminar el proyecto	cambiar por otro hardware alternativo	consultar la disponibilidad una vez definidos los requerimientos
R05	Retraso o detiene el	Prever el tiempo de	Prever un tiempo de

			
	avance del proyecto	aprendizaje	aprendizaje
R06	no lograr conocer correctamente las características y el funcionamiento de los equipos	contactar con los proveedores de los equipos	buscar documentación de equipos parecidos
R07	se alargan los plazos preestablecidos para terminar el proyecto	realizar la dedicación de horas semanales exclusivas al proyecto	realizar un plan de trabajo que prevea posibles demoras
R08	no tener espacio físico de trabajo dificulta la realización	contar con equipamiento trasladable	disponer de un espacio secundario de trabajo
R09	se alargarían los plazos del proyecto	cambiar requerimientos para disminuir el tiempo requerido para completar el proyecto	buscar herramientas que permitan eliminar tiempo de desarrollo
R10	se alargarían los plazos del proyecto	realizar correcciones en la planificación y en las metas para cumplir con los requerimientos sin un aumento en los tiempos de desarrollo	se puede elegir un modelo de desarrollo de proyecto que permita cambio en los requerimientos
R11	retraso en la finalización del proyecto	aplicar una metodología de desarrollo (ej.: scrum)	realizando reuniones periódicas y breves sobre el avance de cada área dentro proyecto
R12	Retraso en el avance de la tesis	Definir una metodología la comienzo del proyecto	Tratar de seguir una metodología de trabajo
R13	No cumplimiento de fechas estimadas	Usar métodos y técnicas de estimaciones formales y aplicables al proceso de desarrollo usado	Acotar tareas menos importantes que no impactan directamente con la calidad del proyecto
R14	Retraso en avance del proyecto, ambiente de	Tratar de iniciar el proyecto con alguien	Mantener buena relación de trabajo

	trabajo no optimo	con quien se tiene buena relación de trabajo	
R15	se alargarían los tiempos del trabajo	eliminar objetivos o requerimientos secundarios para acortar tiempos	realizar un análisis de requerimientos para conocer cuáles pueden ser eliminados sin modificar el significado del proyecto

Estudio de equipos

Se estudiaran a continuación dos equipos:

- Connergy SCC 40 Vision con Software CXCOM: dicho equipo trabaja bajo demanda o pedido, esto significa que solo envía los datos cuando se le solicitan y no actualiza los mismos hasta un nuevo pedido.
- Morningstar Tristar TS60: trabaja en tiempo real, esto quiere decir que refresca los datos sin necesidad de un nuevo pedido.

La conexión entre los equipos se muestra en el siguiente grafico

Estudio de equipo Connergy SCC 40 Vision con Software CXCOM

Se utilizó el controlador de carga Conergy SCC Vision 40 como objeto de estudio durante esta etapa. Cabe aclarar que dicho equipo cuenta con una interfaz serial de comunicación. Además del controlador de carga se utilizó un panel solar Shell SM55 de 55W-10A junto con una batería de 12V de plomo acido de 24Ah.

El controlador cuenta con un software "CXCOM" el cual permite realizar lecturas del estado de la batería, rendimiento del sistema, consumos, temperatura, entre otras.

A continuación se visualizan algunas impresiones de pantalla de dicho software:

Gráfica 1: Estado del sistema

Gráfica 2: Temperatura- Estado de la batería - Corriente

Gráfica 3: Registrador de datos

Gráfica 4: Muestra de datos en la última semana

Gráfica 5: Muestra de datos último mes

Gráfica 6: Muestra de datos en el último año

Gráfica 8: Configuraciones del sistema

Gráfica 9: Activación/Desactivación Luz de noche y Configuración de umbral día/noche

Modos del controlador de carga

El controlador de carga trabaja en 3 modos diferentes para la carga de la batería:

- Modo EQUAL, con voltaje final de carga de 14,8V
- Modo BOOST, con voltaje final de carga de 14,5V
- Modo NORMAL, con voltaje final de carga de 13,7V

Modo de carga EQUAL

Cuando comenzamos a cargar una batería, el voltaje incrementa inmediatamente hasta aproximadamente 14,8V (hablo en forma genérica sobre baterías de 12V) y, después, poco a poco hasta alcanzar el primer límite de voltaje. Este límite finaliza la etapa EQUAL de carga durante la cual la batería acepta el máximo de corriente de carga disponible. Más sencillo, se trata de inyectarle a la batería una corriente constante, tan alta como nos permita el cargador durante un periodo de tiempo.

Modo de carga BOOST

Cuando alcanzamos el valor preseleccionado de voltaje de absorción, la carga de la batería se limita a la cantidad de corriente que la misma es capaz de absorber a un voltaje determinado. Esto implica que es muy importante que se puedan definir los voltajes de carga con exactitud y de acuerdo a lo que el fabricante de la batería indica. Durante la fase BOOST, la corriente de carga disminuye paulatinamente hasta que la batería alcanza el 100% de su carga. Cargar y descargar una batería implica una difusión interna. Este proceso de difusión, de hecho, nos proporciona mucha información sobre un ciclo de carga-descarga.

Modo de carga NORMAL

Ahora ya hemos cargado la batería al 100%. Tenemos que mantenerla cargada al 100%. Esto se hace con un voltaje constante y bajo que compense la autodescarga propia de cada batería. Si necesitamos mantener la batería en largos periodos de tiempo (meses), el voltaje de flotación no debe desviarse en más de un 1% del recomendado por el fabricante de la batería. Exceder este margen provoca corrosión de la placa positiva. Y por cada 50mV de incremento por celda (0,3V para 12V) doblamos la corrosión de la placa positiva y, en consecuencia, acortamos la vida útil de la batería. Claro que un voltaje insuficiente

no mantiene la batería totalmente cargada y podemos provocar sulfatación de las placas. Vuelve a ser fundamental definir exactamente el voltaje de NORMAL.

Estos modos están relacionados directamente al porcentaje de carga de la batería, de modo que el controlador de carga debe sensar el valor de tensión de la batería así como su carga. De modo genérico podemos ver la curva que relaciona ambos conceptos:

Además, el mismo cuenta con un modo de funcionamiento nocturno, en donde se puede establecer la franja horaria en la que el mismo se activa, de tal forma que regula el consumo en la noche. También permite definir la política de desconexión de la batería.

En lo que respecta a la batería podemos definir una curva de carga y descarga utilizada en régimen de recarga cíclica así como en modo flotación:

