Насыщенный пар

Насыщенный пар — это пар, который находится в состоянии динамического равновесия со своей жидкостью (то есть скорость испарения жидкости равна скорости конденсации пара). При решении задач нужно иметь в виду следующие факты.

- Давление и плотность насыщенного пара зависят от его температуры, но не от объёма (при увеличении объёма испаряется дополнительное количество жидкости, при уменьшении объёма конденсируется часть пара).
- Давление насыщенного водяного пара при $100\,^{\circ}$ С примерно равно $p_0=1$ атм $=10^5$ Па.
- При описании состояний ненасыщенного и даже насыщенного пара приближённо работает уравнение Менделеева-Клапейрона.

ЗАДАЧА 1. («Покори Воробъёвы горы!», 2018, 7–9) В теплоизолирующем цилиндрическом сосуде под скользящем без трения поршнем находились в равновесии $m_1 = 200$ г льда и $m_2 = 800$ г воды при нормальном атмосферном давлении. В него закачивают насыщенный водяной пар под таким же давлением. Какую массу пара нужно закачать, чтобы температура содержимого увеличилась до t = 50 °C? Удельная теплота плавления льда $\lambda \approx 340$ кДж/кг, удельная теплоемкость воды c = 4200 Дж/(кг · K), удельная теплота парообразования воды r = 2480 кДж/кг.

 $1.88 \approx m$

- Задача 2. (MOIII, 2014, 10–11) В сосуд объёмом 5 кубических метров внесли блюдце с 200 г воды. Никаких водяных паров изначально в сосуде не было. Сосуд герметично закрыли и дождались установления равновесия. Температура в сосуде $25\,^{\circ}$ С, давление насыщенного пара воды при этой температуре 2,3 кПа. Абсолютный нуль составляет $-273\,^{\circ}$ С. Универсальная газовая постоянная 8,3 Дж/(моль · K).
- А) Найдите массу воды, оставшуюся на блюдце. Ответ выразите в граммах и округлите до третьей значащей цифры.
- В) Сколько молекул водяного пара попадёт в куб длиной ребра 300 нанометров? Ответ округлите до второй значащей цифры.
- С) Каким будет парциальное давление водяного пара в сосуде при увеличении температуры до 100 градусов Цельсия? Атмосферное давление составляет 100 кПа. Ответ выразите в килопаскалях и округлите до второй значащей цифры.

A) 116; B) 15000; C) 6,9

Задача 3. (MOШ, 2014, 11) В сосуде объёмом 1 л при температуре $100\,^{\circ}$ С находятся в равновесии вода (молярная масса $18\,^{\circ}$ г/моль), водяной пар и азот (молярная масса $28\,^{\circ}$ г/моль). Объём жидкой воды много меньше объёма сосуда. Давление в сосуде составляет $300\,^{\circ}$ к Π а, атмосферное давление $100\,^{\circ}$ К Π а. Универсальная газовая постоянная $8,3\,^{\circ}$ Дж/(моль \cdot К). Абсолютный нуль температуры составляет $-273\,^{\circ}$ С.

- А) Найдите общее количество вещества в газообразном состоянии. Ответ представьте в молях и округлите до второй значащей цифры.
- В) Каково парциальное давление азота в системе? Ответ представьте в килопаскалях и округлите до первой значащей цифры.
- С) Какова масса водяного пара? Ответ представьте в граммах и округлите до второй значащей цифры.
- D) Какова масса азота? Ответ представьте в граммах и округлите до второй значащей цифры.
- E) Каким будет давление при охлаждении системы до $0\,^{\circ}$ C? Ответ представьте в килопаскалях и округлите до второй значащей цифры. Давление насыщенного пара воды при $0\,^{\circ}$ C составляет $0.6\,$ кПа.

A) 0,097; B) 200; C) 0,58; D) 1,8; E) 150

Задача 4. ($M\Phi TU$, 1991) Смесь воды и её насыщенного пара занимает некоторый объём при температуре 90 °C. Если смесь нагревать изохорически, то вся вода испаряется при увеличении температуры на 10 °C. Чему равно давление насыщенного водяного пара при 90 °C, если в начальном состоянии масса воды составляла 29% от массы всей смеси? Объёмом воды по сравнению с объёмом смеси пренебречь.

MTS
$$60,0 = \frac{T}{0^T} 0q17,0 = q$$

Задача 5. ($M\Phi T U$, 1985) При изотермическом сжатии m=9 г водяного пара при температуре T=373 K его объём уменьшился в 3 раза, а давление возросло вдвое. Найдите начальный объём пара.

и 18

$$\pi R \frac{m2}{0 q \eta} = V$$

Задача 6. ($M\Phi T U$, 1996) В сосуде находится ненасыщенный пар. В процессе его изотермического сжатия объём, занимаемый паром, уменьшается в $\beta=4$ раза, а давление возрастает в $\alpha=3$ раза. Найти долю пара, которая сконденсировалась в этом процессе.

$$\frac{1}{4} = \frac{2}{8} - 1$$

Задача 7. ($M\Phi T H$, 1996) В сосуде находятся водяной пар и вода при температуре 100 °C. В процессе изотермического расширения вода начинает испаряться. К моменту, когда она вся испарилась, объём пара увеличился в $\beta=10$ раз. Найти отношение объёмов пара и воды в начале опыта.

$$191 \approx \frac{TR_q}{(1-8)_0 q \mu}$$

ЗАДАЧА 8. («Физтех», 2020, 10) В цилиндрическом сосуде под поршнем находится насыщенный водяной пар при температуре 95°C и давлении $P = 8.5 \cdot 10^4$ Па. В медленном изотермическом процессе уменьшения объема пар начинает конденсироваться, превращаясь в воду.

- 1. Найти отношение плотности пара к плотности воды в условиях опыта.
- 2. Найти отношение объема пара к объему воды к моменту, когда объем пара уменьшится в $\gamma = 4.7$ раза.

Плотность и молярная масса воды $\rho = 1 \text{ г/см}^3$, $\mu = 18 \text{ г/моль}$.

Задача 9. («Физтех», 2020, 10) Поршень делит объем горизонтального герметичного цилиндра на две равные части, в каждой из которых находится вода и водяной пар при температуре $T=373~{\rm K}$. Масса воды в каждой части в 5 раз меньше массы пара. Поршень находится на расстоянии $L=0.6~{\rm M}$ от торцов, площадь поперечного сечения поршня $S=20~{\rm cm}^2$. Масса M поршня такова, что $\frac{Mg}{S}=0.01P_0$, здесь P_0 — нормальное атмосферное давление.

- 1. Найдите массу m воды в каждой части в начальном состоянии.
- 2. Цилиндр ставят на дно. Найдите вертикальное перемещение h поршня к моменту установления равновесного состояния.

Температура в цилиндре поддерживается постоянной. Трение считайте пренебрежимо малым. Молярная масса водяного пара $\mu=18$ г/моль, универсальная газовая постоянная R=8,31 Дж/(моль · K). Объем воды намного меньше объема пара.

ы ст =
$$1 = \frac{1}{5} \approx 1 - 1 = \frac{6}{6.0.5} = 1$$
 (ст. 14 г., 2) и ст. $\frac{1}{6.0.9} = 1$ см. (1)

Задача 10. («Физтех», 2013) В цилиндре под поршнем находится водяной пар при температуре T. При изобарическом охлаждении цилиндра объём уменьшается в 3 раза, а температура — на 20%. Найдите работу, совершённую над содержимым цилиндра в этом процессе, если к концу охлаждения в цилиндре образовалось ν молей жидкости. Объём жидкости намного меньше объёма пара. Пар считать идеальным газом.

$$TA\sqrt{\frac{8}{7}} = A$$

Задача 11. («Физтех», 2017, 10–11) Поршень делит объём герметичного вертикально расположенного цилиндра на две части. Стенки цилиндра хорошо проводят теплоту. Снаружи цилиндра поддерживается постоянная температура T=373 К. Поршень создаёт своим весом дополнительное давление $p=p_0/5$, где p_0 — нормальное атмосферное давление. Под поршнем в объёме $V_0=1$ л находится воздух, над поршнем в объёме V_0 — вода массой $m_1=1,2$ г и водяной пар. Система в равновесии. Цилиндр переворачивают вверх дном. После наступления равновесия под поршнем находится вода и водяной пар, над поршнем — воздух.

- 1) Найти объём пара в конечном состоянии.
- 2) Найти массу воды в конечном состоянии.

Объём воды значительно меньше объёма цилиндра, масса воды значительно меньше массы поршня. Трением поршня о цилиндр пренебречь. Молярная масса водяного пара $\mu=18$ г/моль, универсальная газовая постоянная R=8,31 Дж/(моль · K).

$$\boxed{ \text{1 G, L} \approx \frac{0 V_0 q u}{T \mathcal{A} \mathcal{L}} + \text{1} m = 2m \text{ (S ; tr G, 0} = 0 V_{\overline{\mathcal{L}}} = V \text{ (I)} }$$

Задача 12. («Физтех», 2019, 11) Подвижный поршень делит объем горизонтально расположенного сосуда на два отсека с общим объемом V=150 л. В первый отсек ввели $\nu_1=1$ моль воды, а во второй ввели $\nu_2=2$ моль азота. Можно считать, что объем введенной воды намного меньше V. В отсеках установилась температура $T_1=275$ К. Сосуд вместе с содержимым прогревают до температуры $T_2=373$ К. Давление насыщенного пара воды при температуре $T_1=275$ К равно $P_{\rm H}=705$ Па. Плотность воды $\rho=1$ г/см³.

- 1. Найти давление P_1 в сосуде до прогревания.
- 2. Найти объем V_1 первого отсека до прогревания.
- 3. Найти давление P_2 в сосуде после прогревания.

1)
$$P_1 = \frac{\nu_2 R T_1}{V} \approx 0, 3 \cdot 10^5 \text{ Hz}$$
; 2) $V_1 = 18 \text{ cm}^3$; 3) $P_2 = \frac{(\nu_1 + \nu_2) R T_2}{V} \approx 0, 62 \cdot 10^5 \text{ Hz}$.

ЗАДАЧА 13. («Росатом», 2019, 11) В закрытом сосуде содержится воздух и вода. Внутри сосуда поддерживается температура $t=100\,^{\circ}$ С. Объем сосуда $V=10\,^{\circ}$ л, давление $p_1=2\cdot 10^5\,^{\circ}$ Па. Известно, что жидкая вода в сосуде есть и что она занимает очень малый объем. В результате изотермического расширения объем сосуда вырос до величины 2V, а давление упало до величины $p_2=1,4\cdot 10^5\,^{\circ}$ Па. Сколько молей воды находятся в сосуде? Универсальная газовая постоянная $R=8,3\,^{\circ}$ Дж/(моль · K). Атмосферное давление — $p_0=10^5\,^{\circ}$ Па.

Arom
$$86,0 = \frac{V(0q + 1q - 2q2)}{TR} = V$$

Задача 14. (*«Росатом»*, 2020, 11) Один моль азота находится в сосуде объемом V=1 л под давлением $p=10^5$ Па. Газ откачивают, поддерживая температуру сосуда (со всем содержимым) неизменной. Какую массу газа придется откачать к тому моменту, когда давление в сосуде упадет вдвое? Никаких других газов, кроме азота, в сосуде нет. Дан ряд табличных параметров азота (не все они понадобятся для решения): молярная масса $\mu=28$ г/моль, температура кипения при атмосферном давлении $t_{\rm K}=-196\,^{\circ}{\rm C}$, удельная теплота испарения $\lambda=5,6$ кДж/моль, температура плавления $t_{\rm пл}=-210\,^{\circ}{\rm C}$. Универсальная газовая постоянная — R=8,31 Дж/(моль · K).

$$\boxed{\text{I 8,62} = 4\left(\frac{Vq}{\text{ATR2}} - 4\right) = m\Delta}$$

ЗАДАЧА 15. («Курчатов», 2018, 11) Горизонтальный цилиндр закрыт свободно скользящим поршнем. В цилиндре находится водяной пар при температуре $T_1=453~{\rm K}$ и давлении $2p_0$, $p_0=0,1~{\rm M}\Pi$ а. Пар изохорически охлаждают до температуры $T_2=373~{\rm K}$, а затем изотермически уменьшают его объём в 2 раза. При этом внешние силы, действующие на поршень, совершают работу $A=450~{\rm Дж}$. Найдите массу m сконденсировавшейся воды. Давление насыщенного пара при температурах T_1 и T_2 равно соответственно $10p_0$ и p_0 , молярная масса воды $\mu=18~{\rm г/моль}$ универсальная газовая постоянная $R=8,31~{\rm Дж/(моль\cdot K)}$. Объёмом воды по сравнению с объёмом пара пренебрегите, пар считайте идеальным газом. Ответ выразите в граммах и округлите до целого.

Задача 16. ($M\Phi T U$, 1991) В цилиндре под поршнем находятся ν молей жидкости и ν молей её насыщенного пара при температуре T_0 . К содержимому цилиндра подвели количество теплоты Q, медленно и изобарически нагревая его, и температура внутри цилиндра увеличилась на ΔT . Найти изменение внутренней энергии содержимого цилиндра. Начальным объёмом жидкости пренебречь.

$$\Delta U = Q - \nu R(T_0 + 2\Delta T)$$

Задача 17. ($M\Phi T H$, 1993) Для насыщенного водяного пара вблизи температуры 100 °C малые относительные изменения давления $\Delta p_{\rm H}/p_{\rm H}$ и температуры $\Delta T_{\rm H}/T_{\rm H}$ связаны формулой $\Delta p_{\rm H}/p_{\rm H}=13\Delta T_{\rm H}/T_{\rm H}$. При какой температуре закипит вода на высоте Останкинской телебашни H=550 м? Давление воздуха в изотермической атмосфере p(h) с высотой h изменяется по закону $p(h)=p(0)\cdot\exp(-\mu gh/RT)$, где p(0) — нормальное атмосферное давление у поверхности земли, $\mu=29$ г/моль — средняя молярная масса воздуха, g=9,8 м/с² — ускорение свободного падения, R=8,31 Дж/(моль · K), T=273 K.

Указание. При малых $x \ll 1$ имеет место формула $e^{-x} \approx 1 - x$.

$$\Delta T = \frac{\mu_9 H T_{\rm H}}{13 R T} = 2$$
 K, то есть вода закипит при 98 °C

Задача 18. ($M\Phi T U$, 1997) Насыщенный водяной пар находится в цилиндре под поршнем при температуре 120 °C. При медленном изотермическом уменьшении объёма цилиндра пар начинает конденсироваться. К моменту, когда сконденсировалось m=5 г пара, объём, им занимаемый, уменьшился на $\Delta V=4,5$ л.

- 1) Какая по величине работа была совершена внешней силой в этом процессе?
- 2) Сколько пара было в цилиндре вначале, если в конце опыта вода занимала 0,5% объёма цилиндра?

1)
$$A=\frac{m}{\mu}$$
 RT = 907 Дж; 2) $m_{\Pi}=m\left(1+\frac{V}{\Delta V}\right)=6$,1 г, где $V=1$ л. конечный объём пара

Задача 19. ($M\Phi T U$, 1997) В цилиндре поршнем с пружиной (см. рисунок) заперт водяной пар в объёме V=4 л. Температура в цилиндре поддерживается постоянной и равной $100\,^{\circ}\mathrm{C}$. В цилиндр впрыскивается 4 г воды, и поршень начинает перемещаться. После установления равновесия часть воды испарилась, а объём цилиндра увеличился в два раза.

- 1) Какая масса пара была в цилиндре вначале?
- 2) Сколько воды испарилось к концу опыта?

Внешнее давление отсутствует, длина недеформированной пружины соответствует положению поршня у дна цилиндра.

$$1 3.6 = \frac{V_0 q \mu \epsilon}{T R 2} = m \Delta$$
 (2 ;1 2,1 = $\frac{V_0 q \mu}{T R 2} = {}_{\rm II} m$ (1

Задача 20. ($M\Phi TU$, 2005) В цилиндре под поршнем находится ненасыщенный водяной пар под давлением p=1 атм. В процессе изобарического сжатия конечный объём, который занимает пар, уменьшается в k=4 раза по сравнению с объёмом, который он занимал вначале. При этом часть пара конденсируется, а объём образовавшейся воды составляет $\alpha=1/1720$ от конечного объёма пара. Во сколько раз уменьшилась температура пара в указанном процессе? Плотность воды $\rho=1$ г/см³, молярная масса пара $\mu=18$ г/моль.

$$\boxed{\varsigma = \frac{\frac{\lambda}{q \, \mu}}{\frac{\varsigma T R \, \nu \sigma q}{q \, \mu} + 1} = \frac{\iota T}{\varsigma T}}$$

Задача 21. ($M\Phi T H$, 2005) В цилиндре под поршнем находится насыщенный водяной пар и вода при температуре 100 °С. Объём воды составляет $\alpha=1/860$ часть объёма, который занимает пар. При изотермическом расширении давление уменьшилось в $\beta=2$ раза, при этом вся вода испарилась. Во сколько раз увеличился объём пара? Плотность воды $\rho=1$ г/см³, молярная масса пара $\mu=18$ г/моль.

$$0 = \left(\frac{T \mathcal{R}_{DQ}}{0 q \mu} + 1\right) \mathcal{Q} = \frac{\underline{c}^{V}}{1}$$

Задача 22. ($M\Phi TU$, 2001) В цилиндре под поршнем находятся 0,5 моля воды и 0,5 моля пара. Жидкость и пар медленно нагревают в изобарическом процессе, так что в конечном состоянии температура пара увеличивается на ΔT градусов. Сколько тепла было подведено к системе «жидкость—пар» в этом процессе? Молярная теплота испарения жидкости в заданном процессе равна Λ . Внутренняя энергия ν молей пара равна $U=3\nu RT$ (R— газовая постоянная).

Anome
$$\partial_{t} = v(\Lambda + 8R\Delta T)$$
, the $v = 0,5$

Задача 23. ($M\Phi TU$, 2001) В цилиндре под поршнем находится один моль ненасыщенного пара при температуре T. Пар сжимают в изотермическом процессе, так что в конечном состоянии половина его массы сконденсировалась, а объём пара уменьшился в k=4 раза. Найти молярную теплоту конденсации пара, если в указанном процессе от системы «жидкость—пар» пришлось отвести количество теплоты Q (Q > 0).

 $У \kappa a з a н u e$. Пар можно считать идеальным газом. Работа, совершаемая в изотермическом процессе ν молями пара при расширении от объёма V_1 до V_2 , равна $\nu R T \ln(V_2/V_1)$.

$$\left(\frac{\frac{1}{2} \operatorname{m} \operatorname{T} \operatorname{Au} - \mathcal{Q}}{1}\right) \frac{\frac{1}{2}}{\sqrt{2}} = \Lambda$$

Задача 24. ($M\Phi T U$, 2001) Лёгкий подвижный теплонепроводящий поршень делит объём вертикально расположенного замкнутого цилиндра на две части. В нижней части под поршнем находятся в равновесии жидкость и её пар, температура которых поддерживается постоянной и равна T_0 . В верхней части цилиндра над поршнем находится газообразный гелий. К гелию квазистатически подводится некоторое количество теплоты, и он совершает работу A. При этом часть пара сконденсировалась, и от пара с водой пришлось отвести количество теплоты Q.

- 1) Какое количество теплоты было подведено к гелию?
- 2) Найти удельную теплоту испарения жидкости.

Молярная масса пара μ . Трением и теплоёмкостью поршня пренебречь. Считать, что объём жидкости значительно меньше объёма образовавшегося из неё пара.

$$0TA \frac{Q}{\hbar \mu} = L (S; \hbar \frac{\partial}{\partial z} = \pi Q) (L)$$

Задача 25. $(M\Phi T U, 2001)$ Лёгкий подвижный теплонепроводящий поршень делит объём вертикально расположенного цилиндра на две части. Под поршнем в нижней части цилиндра находятся в равновесии вода и пар, температура которых поддерживается постоянной и равной T_0 . В верхней части цилиндра над поршнем находится газообразный гелий.

- 1) Какое количество теплоты надо подвести квазистатически к пару и воде, чтобы часть воды массой Δm испарилась?
 - 2) Сколько тепла необходимо при этом отвести от гелия?

Удельная теплота испарения воды λ , молярная масса пара μ . Трением и теплоёмкостью поршня пренебречь. Считать, что объём пара значительно больше объёма воды, из которой он образовался.

$$1) Q = \lambda \Delta m; 2) Q_{\rm r} = \frac{5}{2} \frac{\Delta m}{\mu} RT_0$$

Задача 26. ($M\Phi T U$, 2007) Тонкий подвижный теплопроводящий поршень делит герметичный цилиндр объёмом 3,7 л на две части. В одной части находится вода, в другой — воздух при давлении p=0,32 атм. Начальная температура в цилиндре $t_1=7\,^{\circ}\mathrm{C}$. При медленном нагревании поршень в некоторый момент начинает двигаться, при температуре $t_2=100\,^{\circ}\mathrm{C}$ останавливается и при дальнейшем нагревании остаётся неподвижным.

- 1) Какая масса воды находится в начальный момент в газообразном состоянии?
- 2) Найдите полную массу воды в цилиндре.

Объёмом жидкости можно пренебречь по сравнению с объёмом цилиндра. Давление насыщенных паров воды при температуре $20\,^{\circ}$ С равно $p_{20}=0{,}023$ атм. Силу тяжести и трение поршня о цилиндр не учитывать.

$$1 \text{ I. 2, I} \approx \left(\frac{q}{\text{I}^T} - \frac{\text{I}^q}{\text{I}^T}\right) \frac{V_{\text{A}}}{H} = m \text{ (S : 0 (I)}$$

Задача 27. (MOIII, 2014, 10) Знайка решил провести исследования Гей-Люссака для идеального газа, только более аккуратно. Для этих целей он взял цилиндрический сосуд большого объёма с поршнем, который мог двигаться практически без трения, вынул поршень и охладил сосуд с поршнем до температуры 200 К. Затем он вставил поршень обратно в сосуд так, что внутри оказался охлаждённый до той же температуры воздух, обеспечил постоянное давление и провёл измерения зависимости объёма V газа в сосуде от температуры T. По полученным результа-

там Знайка построил график (см. рисунок). Найденная зависимость мало напоминала результаты, полученные Гей-Люссаком. Знайка понял свою ошибку. Он вставил поршень в цилиндр при температуре 200 K и, очевидно, на дне сосуда при этом оказалось некоторое количество льда, который образовался из воды, сконденсировавшейся при охлаждении воздуха. Оцените массу льда, который оказался в цилиндре у Знайки, если давление в течение опыта было равно $2 \cdot 10^5$ Па. Молярная масса воды $18 \ \Gamma/$ моль.

т 81

Задача 28. (MOIII, 2014, 11) В гладком цилиндре под подвижным поршнем находятся в равновесии ν молей жидкости и ν молей её пара (состояние 1 на pV-диаграмме). Систему «жидкость-пар» сначала медленно нагрели в изобарическом процессе 1–2, при этом её абсолютная температура возросла в два раза. Затем систему медленно охладили в адиабатическом процессе 2–3 до температуры T_3 . Какое количество теплоты получила система «жидкость-пар» в процессе 1–2, если работы, совершённые этой системой в процессах 1–2 и 2–3, были одинаковыми? Молярная теплота парообразования в

процессе 1—2 равна r. В процессе 2—3 конденсация не происходит. Считать пар идеальным газом с молярной теплоёмкостью в изохорном процессе $C_V = 3R$. Объём жидкости в состоянии 1 считать пренебрежимо малым по сравнению с объёмом пара.

$$Q_{12} = \nu \left(r + \frac{16}{3}RT_3\right)$$

Задача 29. (MOШ, 2012, 11) Сосуд объёмом V=1 м³ разделён на две части лёгким тонким подвижным теплопроводящим поршнем, по одну сторону от которого находится вода, по другую — азот. График зависимости давления в системе от температуры приведён на рисунке. Сколько молей воды и сколько молей азота находятся в сосуде? Трения нет, универсальная газовая постоянная R=8,31 Дж/(моль · K).

arom 20.0 ± 78 , $1 pprox 1_{
m Adaga}$, arom 10.0 ± 79 , $0 pprox 1_{
m FTOE}$

Задача 30. (МОШ, 2017, 11) В теплоизолированном цилиндре под не проводящим теплоту поршнем находятся в термодинамически равновесном состоянии аргон и насыщенные пары воды при температуре $T_1=302~{\rm K}$ и давлении $p=2~{\rm arm}$. Сразу после быстрого увеличения объёма смеси под поршнем в n=1,06 раз температура в цилиндре уменьшается до некоторой величины T_2 , а водяные пары оказываются в термодинамически неравновесном состоянии пересыщения, при котором их давление p_2 становится выше давления насыщенного пара $p_{\rm hac}(T_2)$ при новой температуре. Со временем часть пара конденсируется, и система вновь приходит в состояние устойчивого термодинамического равновесия.

- 1) Найдите температуру T_2 .
- 2) Определите давление p_2 .
- 3) Верно ли, что в новом состоянии устойчивого равновесия температура под поршнем будет отличаться от T_2 менее чем на 1 K?

Удельная теплоёмкость воды $c=4200~\rm Дж/(кг\cdot K)$, теплоёмкость одного моля водяного пара при постоянном объёме $C_V=3R$, удельная теплота испарения воды $L=2,33\cdot 10^6~\rm Дж/кг$, молярная масса воды $\mu=18~\rm r/моль$. График зависимости давления насыщенных паров воды от температуры представлен на рисунке.

Тэн (8; зПя 3.6 = 3.6 кПа; 3) нет

ЗАДАЧА 31. («Покори Воробъёвы горы!», 2017, 10–11) В закрытом с обоих концов цилиндре объёмом V=2 л свободно ходит невесомый тонкий поршень. В пространстве с одной стороны поршня вводится $m_1=2$ г воды; с другой стороны поршня — $m_2=1$ г азота. Найти отношение объёмов частей цилиндра при $t=100\,^{\circ}\mathrm{C}$. Молярная масса воды $\mu_1=18$ г/моль, молярная масса азота $\mu_2=28$ г/моль. Универсальная газовая постоянная R=8,31 Дж/(моль · K).

 $28,0 \approx \frac{1}{2}$

Задача 32. («Покори Воробъёвы горы!», 2015, 10–11) Герметичный гладкий вертикальный цилиндр сечением S разделён на две части тяжёлым теплоизолирующим подвижным поршнем массы M. Под поршнем находится гелий, начальное давление которого равно p, а над поршнем — насыщенный водяной пар с температурой T. Гелий медленно нагревают, а температуру пара поддерживают постоянной. Во сколько раз отличается количество теплоты, отведённое от пара, от количества теплоты, сообщённого гелию? Молярную массу μ и удельную теплоту парообразования λ воды, а также универсальную газовую постоянную R и ускорение свободного падения g считать известными.

$$\left(\frac{g_M}{g_M} - 1\right) \frac{\eta^{AA}}{7RB} = \frac{g_Q}{1Q}$$

Задача 33. («Покори Воробъёвы горы!», 2015, 10–11) Прочный баллон ёмкостью V=20 л заполнили смесью метана (CH₄) и кислорода (O₂) при температуре $t_0=28\,^{\circ}\mathrm{C}$. В баллоне произвели маломощный разряд, вызвавший химическую реакцию

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
,

а затем остудили его содержимое до температуры $t_1=100\,^{\circ}\mathrm{C}$. После этого на стенках сосуда выступили мелкие капельки воды общей массой m=1 г, а давление в баллоне стало равно $p=1,775\cdot 10^5$ Па. Найти давление в баллоне до начала реакции. Какими могли быть массы газов, закаченных в баллон? Молярные массы считать равными: для метана $\mu_1=16$ г/моль, воды $\mu_2=18$ г/моль и кислорода $\mu_3=32$ г/моль, универсальная газовая постоянная R=8,31 Дж/(моль · K).

 $p_0=1,5\cdot 10^5$ Па; 5,6 г метана и 27,2 г кислорода или 8 г метана и 22,4 г кислорода

ЗАДАЧА 34. («Покори Воробъёвы горы!», 2014, 10–11) В очень прочном баллоне объемом V=50 л находится 96 г смеси метана $\mathrm{CH_4}$ с кислородом $\mathrm{O_2}$. При температуре $t_1=28\,^{\circ}\mathrm{C}$ давление в баллоне равнялось $p_1=200$ кПа. Слабая электрическая искра подожгла метан, вызвав реакцию

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
.

После завершения реакции содержимое баллона охладили до температуры $t_2 = 100\,^{\circ}\mathrm{C}$. Каким стало давление в баллоне? Нормальное атмосферное давление $p_0 \approx 101~\mathrm{kHa}$.

$$p_2=p_0+rac{2RT_2}{V}pprox 225$$
 кПа

Задача 35. («Покори Воробъёвы горы!», 2019, 10–11) В очень прочном баллоне объемом V=90 л находится 134 г смеси метана (СН₄), кислорода (О₂) и азота (N₂). При температуре $t_1=33\,^{\circ}\mathrm{C}$ давление в баллоне равнялось $p_1=1,4\cdot p_0$, где $p_0\approx 101$ кПа — нормальное атмосферное давление. Слабая электрическая искра подожгла метан, вызвав реакцию

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
,

причем в ходе этой реакции оба реагента израсходовались полностью. После завершения реакции содержимое баллона охладили до температуры $t_2=100\,^{\circ}\mathrm{C}$. Каким стало давление в баллоне? Растворением углекислого газа пренебречь.

 $p_2 pprox 170$ кПа

ЗАДАЧА 36. («Покори Воробъёвы горы!», 2016, 10–11) В гладком горизонтальном цилиндрическом сосуде между его вертикальной стенкой и подвижным вертикальным поршнем находится m=88 г смеси азота и воды при температуре $t_0=100\,^{\circ}\mathrm{C}$. Наружное давление равно нормальному атмосферному $p_0\approx 101$ кПа, и смесь занимает объем $V_0\approx 107.4$ л. Смесь медленно охладили до температуры $t_1=80\,^{\circ}\mathrm{C}$, а затем поршень закрепили и продолжили медленное охлаждение. Сколько грамм жидкой воды будет находиться в сосуде при температуре $t_2=60\,^{\circ}\mathrm{C}$? Давление насыщенного водяного пара при этой температуре $p_{\mathrm{H}}\approx 20$ кПа. Универсальная газовая постоянная R=8,31 Дж/(моль · K).

$$\boxed{ \text{$_{1}$ 8}^{\text{`$}} \text{$_{2}$} \approx \frac{{_{0}}\text{$_{1}$}\text{$_{2}$}\text{$_{1}$}\text{$_{1}$}}{{_{0}}\text{$_{1}$}\text{$_{1}$}\text{$_{1}$}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}$}-{_{1}}\text{$_{1}$}}{{_{0}}\text{$_{1}}\text{$_{1}$}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}$}}{{_{0}}\text{$_{1}}\text{$_{1}$}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}$}}{{_{0}}\text{$_{1}}\text{$_{1}$}}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}$}}{{_{0}}\text{$_{1}}\text{$_{1}$}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}$}}{{_{0}}\text{$_{1}}\text{$_{1}$}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{1}}\text{$_{1}$}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{1}}\text{$_{1}$}}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{1}}\text{$_{1}$}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{1}}\text{$_{1}$}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{1}}\text{$_{1}}}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{1}}\text{$_{1}}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{1}}\text{$_{1}}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{1}}\text{$_{1}}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{1}}\text{$_{1}}}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{1}}\text{$_{1}}}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{1}}\text{$_{1}}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{1}}\text{$_{1}}}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{1}}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{1}}\text{$_{1}}}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{1}}\text{$_{1}}}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{1}}\text{$_{1}}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{1}}\text{$_{1}}}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{1}}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{1}}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{1}}\text{$_{1}}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{1}}} - \frac{{_{0}}\text{$_{1}}\text{$_{1}}}{{_{0}}\text{$_{$$

Задача 37. (Bcepocc., 1998, O9, 10) Найдите для воды молярную теплоту парообразования L_2 при температуре T_2 , зная молярную теплоту парообразования L_1 при температуре T_1 . Считать, что молярная теплоёмкость воды C в интервале температур $T_1 < T < T_2$ постоянна, а водяной пар является идеальным газом с молярной теплоёмкостью при постоянном объеме $C_V = 3R$.

Mолярной mеплотой парообразования при некоторой температуре T называется количество теплоты, необходимое для превращения одного моля воды в пар в двухфазной системе «вода — насыщенный пар» при постоянной температуре T.

$$L_2 = L_1 + (4R - C)(T_2 - T_1)$$

Задача 38. (Всеросс., 1998, финал, 10) Водяной пар массой m=1 г находится в теплоизолированной камере объёмом V=39 л при температуре T=300 К. В той же камере имеется вода, масса которой меньше массы пара. В процессе адиабатного сжатия температура пара возрастает на $\Delta T=1$ К, а часть воды испаряется. На сколько увеличится при этом масса пара в камере? Удельная теплота испарения воды $L=2,37\cdot 10^6$ Дж/кг; пар считать идеальным газом с молярной теплоёмкостью $C_V=3R\approx 25$ Дж/(моль · K); теплоёмкостью воды пренебречь. Известно также, что при малых изменениях температуры ΔT насыщенного пара его давление изменяется на $\Delta p=k\Delta T$, где $k=2\cdot 10^2$ Па/К.

IN $\xi \approx T \Delta \frac{T R + L \mu}{T R} = m \Delta$

ЗАДАЧА 39. (Всеросс., 1995, финал, 10) Теплоизолированная труба разделена на два отсека неподвижной перегородкой Π с многочисленными тончайшими отверстиями (порами) и закрыта с обоих концов подвижными и теплоизолированными поршнями A и B. В начальный момент между поршнем A и перегородкой находится при температуре $t_1 = 95\,^{\circ}\mathrm{C}$ вода, масса которой m=1 кг. На поршень A действует давление $p_1=10^3$ атм, а поршень B прижат к перегородке Π

атмосферным давлением p_2 . Вода под давлением поршня A начинает очень медленно просачиваться сквозь перегородку (рис.). Определите долю воды, испарившейся к моменту окончания процесса продавливания. Удельную теплоёмкость воды считайте постоянной и равной $c_{\rm B}=4.2~{\rm kДж/(kr\cdot K)},$ а удельную теплоту парообразования $\lambda=2260~{\rm kДж/kr}.$ Считать, что удельный объём воды не зависит от давления и температуры, а оба поршня перемещаются без трения.

 $\boxed{380,0 = \frac{1 \ln \log 2 - V_{Id}}{m \Lambda} = 0}$

Задача 40. (Всеросс., 2004, финал, 10) Для хранения жидкого гелия применяется двойной сосуд Дьюара, состоящий из внешнего сосуда Дьюара, заполненного жидким азотом при температуре $T_a = 77$ K, и внутреннего сосуда Дьюара, заполненного жидким гелием. Передача теплоты от азота к гелию через вакуумный промежуток приводит к испарению гелия. Для поддержания постоянной температуры гелия производится непрерывная откачка его насыщенных паров из внутреннего сосуда. При некоторой скорости откачки в стационарном режиме температура гелия равна $T_0 = 4.0$ K. Скорость откачки увеличивают в полтора раза (по объёму). Определите установившуюся температуру T гелия. Зависимость давления насыщенных паров гелия от температуры приведена на рисунке.

Примечание. Сосудом Дьюара называют сосуд с двойными стенками, из пространства между которыми откачан воздух для уменьшения теплопередачи.

 $T = 3.25 \pm 0.05 \text{ K}$

Задача 41. (Bcepocc., 2003, O9, 11) Герметичный сосуд состоит из двух одинаковых шаров объёмом V=5 м³ каждый и тонкой вертикальной трубки (рис.). Поршень в трубке делит сосуд на две части: в нижней — воздух при постоянной температуре, а в верхней — вода и пар, причём площадь свободной поверхности воды в верхнем шаре S=3 см². При каких температурах T_0 воды и пара возможна такая ситуация, что при малых изменениях ΔT_0 этой температуры поршень смещается в одну и ту же сторону от положения равновесия независимо от знака ΔT_0 ?

Примечание. Если при некоторой температуре T давление насыщенного пара p, то их малые изменения связаны уравнением Клаузиуса $\Delta p = \frac{\lambda \mu p \Delta T}{RT^2}$, где молярная масса $\mu = 18$ г/моль, удельная теплота парообразования $\lambda = 2.3 \cdot 10^6$ Дж/кг, универсальная газовая постоянная R = 8.31 Дж/(моль · K).

$$X_0 = \frac{\Lambda_{\theta} H_{\phi} V_{\phi}}{(V_{\phi} + gV_{\phi}) H} = 330 \text{ K}$$

Задача 42. (Bcepocc., 2002, O9, 11) В откачанный цилиндрический сосуд с поршнем впрыснули некоторое количество воды. Содержимое сосуда довели до равновесного состояния с температурой $t_1 = 76\,^{\circ}\mathrm{C}$, при этом объём сосуда составил $V_1 = 50$ л. Далее с содержимым сосуда

совершают квазистатический круговой цикл, состоящий из:

- 1) изотермического расширения до объёма $V_2 = 3V_1$, в результате которого давление в сосуде уменьшается в два раза;
 - 2) изобарического сжатия до объёма $V_3 = \frac{3}{2}V_1$;
 - 3) изотермического сжатия до объёма $V_4 = V_1$;
 - 4) изохорического нагревания до начальной температуры.

Принимая во внимание зависимость давления насыщенных паров воды от температуры (рис.), найдите:

- а) максимальную и минимальную температуры в цикле;
- б) массу воды, впрыснутой в сосуд;
- в) работу, совершенную системой в цикле.

Примечание. При изотермическом расширении от объёма V_1 до объёма V_2 идеальный газ совершает работу $A=\frac{m}{\mu}RT\ln\frac{V_2}{V_1}$, где m/μ — количество молей газа, T — температура газа, R — универсальная газовая постоянная.

жДж I
$$\approx$$
 (I – 2 п[ξ) IV I $q\frac{1}{2}$ = K (в ;т 9I = $\frac{I_1 I_2 I_2 I_3}{I_1 R_1 G}$ = m (ә ; X 9 k = I_1 = $x_{\rm Em} T$ (в

Задача 43. (MOIII, 2019, 10) Сухой лёд — твёрдый диоксид углерода (CO_2), при нормальных условиях переходящий в газообразное состояние, минуя жидкую фазу (процесс сублимации). При давлении $p_0=10^5$ Па динамическое равновесие между твёрдой и газовой фазами достигается при температуре $t_S=-79\,^{\circ}\mathrm{C}$, при которой плотность твёрдого диоксида углерода равна $\rho=1560~\mathrm{kr/m^3}$, а удельная теплота сублимации равна $q=590~\mathrm{kДж/kr}$. При температуре $T_0=300~\mathrm{K}$ в термос объёмом $V_0=1,0$ л, в котором изначально ничего не было, кроме воздуха, поместили небольшой кусочек сухого льда объёмом $V_1=1~\mathrm{cm^3}$ и тут же герметично закрыли пробкой. Какая температура и какое давление установятся в термосе в состоянии термодинамического равновесия? Начальная температура сухого льда равна t_S . Молярная масса диоксида углерода равна $\mu_1=44~\mathrm{r/monb}$. Считайте, что термос обеспечивает идеальную теплоизоляцию содержимого, молярная теплоёмкость воздуха при постоянном объёме равна $c_V=\frac{5R}{2}$.

$$\text{sH }^{4}01 \cdot 7 \approx \frac{(2^{T}H(0^{u+u})}{0^{V}} = q$$