

Mat 객체의 속성 출력 #include "opencv2/opencv.hpp" #include <iostream> using namespace cv; using namespace std; int main() { Mat img = imread("d:/lenna.jpg"); if (img.empty()) { cout << "영상을 읽을 수 없음" << endl; return -1; } imshow("img", img); cout << "행의 수 = " << img.rows << endl; cout << "열의 수 = " << img.cols << endl; cout << "행렬의 크기 = " << img.size() << endl; cout << "전체 화소 개수 = " << img.total() << endl; cout << "한 화소 크기 = " << img.elemSize() << endl; cout << "타입 = " << img.type() << endl; cout << "채널 = " << img.channels() << endl; waitKey(0); return 0;

5


```
#include "opencv2/opencv.hpp"
#include <iostream>
using namespace cv;
using namespace std;
int main()
{

Mat img = imread("d:/opencv.png");
if (img.empty()) { cout << "영상을 읽을 수 없음" << endl;
imshow("img", img);
cout << img << endl;
waitKey(0);
return 0;
}

OpenCV로 배우는 디지털 영상 처리 @ 인피니티북스 2019
```


Mat (int rows, int cols, int type, const Scalar &s);

생성자	설명	
rows	영상의 행 개수	
cols	영상의 열 개수	
type	화소의 값을 저장하는 데 사용되는 자료형	
S	화소의 초기값	

OpenCV로 배우는 디지털 영상 처리

© 인피니티북스 2019

11

자료형	비트수	설명
CV_8U	8	8-bit unsigned integer: uchar (0255)
CV_8S	8	8-bit signed integer: schar (-128127)
CV_16U	16	16-bit unsigned integer: ushort (065535)
CV_16S	16	16-bit signed integer: short (-3276832767)
CV_32S	32	3-bit signed integer: int (-21474836482147483647)
CV_32F	32	32-bit floating-point number: float (-FLT_MAXFLT_MAX, INF, NAN)
CV_64F	64	64-bit floating-point number: double (-DBL_MAXDBL_MAX, INF, NAN)

OpenCV로 배우는 디지털 영상 처리

© 인피니티북스 2019

13

학소 초기학

cv::Scalar(0, 0, 255)

OpenCV로 배우는 디지털 영상 처리 © 인피니티북스 2019

```
#include "opencv2/opencv.hpp"
#include <iostream>
using namespace cv;
using namespace std;
int main()
{

Mat M(3, 4, CV_8UC3, Scalar(0, 0, 255));
cout << "M = " << endl << " " " << M << endl << endl;
return 0;
}

OpenCV로 배우는 디지털 영상 처리 © 인피니티북스 2019
```


#include "opencv2/opencv.hpp" #include <lostream> using namespace cv; using namespace std; int main() { Mat M(600, 800, CV_8UC3, Scalar(0, 255, 0)); if (M.empty()) { cout << "영상을 읽을 수 없음" << endl; imshow("img", M); waitKey(0); return 0; } OpenCV로 배우는 디지털 영상 처리 @ 인피니티북스 2019

17


```
Zeros(), ones(), eye()를 사용하여 해렴 새성하기

...
int main()
{

Mat E = Mat::eye(4, 4, CV_64F);
    cout << "E = " << end! << " " << E << end! << end!;
    Mat O = Mat::ones(2, 2, CV_32F);
    cout << "O = " << end! << " " << O << end! << end!;
    Mat Z = Mat::zeros(3, 3, CV_8UC1);
    cout << "Z = " << end! << " " << Z << end! << end!;
    return 0;
}

OpenCV로 배우는 디지털 영상 처리 @ 인피니티북스 2019
```


