- This is the table schema from which we have to eliminate all redundant left hand side attributes and all redundant functional dependencies, and which we must normalize
 - Attributes: PNAME, PNUMBER, PLOCATION, DNUMBER, SSN, HOURS
 - Functional dependencies:
 - PNAME -> PNUMBER, PLOCATION, DNUMBER
 - PNUMBER -> PNAME, PLOCATION, DNUMBER
 - PNAME, SSN -> PNUMBER, HOURS
 - PNUMBER, SSN -> PNAME HOURS

- •The computation is much simpler if we give each attribute a single-character alias. So, we'll do the job using
 - •Attributes: A, B, C, D, E, F, where:
 - •A stands for PNAME
 - •B stands for PNUMBER
 - •C stands for PLOCATION
 - •D stands for DNUMBER
 - •E stands for SSN
 - •F stands for HOURS
 - •Functional dependencies:
 - •A -> BCD
 - •B -> ACD
 - •AE -> BF
 - $\bullet BE \rightarrow AF$

•Results of unbundling:

- $\bullet A \rightarrow B$
- $\bullet A \rightarrow C$
- $\bullet A \rightarrow D$
- $\bullet B \rightarrow A$
- $\bullet B -> C$
- •B -> D
- \bullet AE -> B
- \bullet AE -> F
- $\bullet BE \rightarrow A$
- $\bullet BE \rightarrow F$

Is A redundant in AE->B?

F1

- A -> B
- A -> C
- A -> D
- B -> A
- $B \rightarrow C$
- B -> D
- AE -> B
- AE -> F
- BE -> A
- BE -> F

- $A \rightarrow B$
- A -> C
- A -> D
- B -> A
- B -> C
- B -> D
- E -> B
- AE -> F
- BE -> A
- BE -> F

Is A redundant in AE->B? Closures to Compute

F1

- $A^{+F1} = ABCD$ $A^{+F2} = ABCD$
- $B^{+F1} = BACD$ $B^{+F2} = BACD$
- $(AE)^{+F1} = AEBCDF$ $(AE)^{+F2} = AEBCDF$
- $(BE)^{+F1} = BEACDF$ $(BE)^{+F2} = BEACDF$

F2

- $A^{+F2} =$ $A^{+F1} =$
- $B^{+F2} =$ $B^{+F1} =$
- $E^{+F2} = EBACDF$ $E^{+F1} = E$
- $(AE)^{+F2} =$ $(AE)^{+F1} =$
- $(BE)^{+F2} =$
- $(BE)^{+F1} =$

Is E redundant in AE->B?

F1

- A -> B
- A -> C
- A -> D
- $B \rightarrow A$
- B -> C
- B -> D
- AE -> B
- AE -> F
- BE -> A
- BE -> F

- A -> B
- A -> C
- A -> D
- \bullet B \rightarrow A
- B -> C
- B -> D
- A -> B
- AE -> F
- BE -> A
- BE -> F

Is E redundant in AE->B? Closures to Compute

F1

- $A^{+F1} = ABCD$ $A^{+F2} = ABCD$
- $B^{+F1} = BACD$ $B^{+F2} = BACD$
- $(AE)^{+F1} = AEBCDF$ $(AE)^{+F2} = AEBCDF$
- $(BE)^{+F1} = BEACDF$ $(BE)^{+F2} = BEACDF$

F2

- $A^{+F2} =$ $A^{+F1} =$
- $B^{+F2} =$ $B^{+F1} =$
- $(AE)^{+F2} =$ $(AE)^{+F1} =$
- $(BE)^{+F2} =$
- $(BE)^{+F1} =$

Answer is YES

New Set of FD's

- $A \rightarrow B$
- A -> C
- $A \rightarrow D$
- \bullet B \rightarrow A
- B -> C
- B -> D
- $A \rightarrow B$
- AE -> F
- BE \rightarrow A
- BE \rightarrow F

Is A redundant in AE->F?

F2

- A -> B
- A -> C
- A -> D
- $B \rightarrow A$
- B -> C
- B -> D
- A -> B
- AE -> F
- BE -> A
- BE -> F

- A -> B
- A -> C
- A -> D
- \bullet B \rightarrow A
- B -> C
- B -> D
- A -> B
- E -> F
- BE -> A
- BE -> F

Is A redundant in AE->F? Closures to Compute

F2

- $A^{+F2} = ABCD$ $A^{+F3} = ABCD$
- $B^{+F2} = BACD$ $B^{+F3} = BACD$
- $(AE)^{+F2} = AEBCDF$ $(AE)^{+F3} = AEBCDF$
- $(BE)^{+F2} = BEACDF$ $(BE)^{+F3} = BEACDF$

F3

- $A^{+F3} =$ $A^{+F2} =$
- $B^{+F3} =$ $B^{+F2} =$
- $E^{+F3} = EF$ $E^{+F2} = E$
- $(AE)^{+F3} =$ $(AE)^{+F2} =$
- $(BE)^{+F3} =$ $(BE)^{+F2} =$

Is E redundant in AE->F?

F2

- A -> B
- A -> C
- A -> D
- $B \rightarrow A$
- B -> C
- B -> D
- A -> B
- AE -> F
- BE -> A
- BE -> F

- A -> B
- A -> C
- A -> D
- \bullet B \rightarrow A
- B -> C
- B -> D
- A -> B
- $A \rightarrow F$
- BE -> A
- BE -> F

Is E redundant in AE->F? Closures to Compute

F2

- $A^{+F2} = ABCD$ $A^{+F4} = ABCD$
- $B^{+F2} = BACD$ $B^{+F4} = BACD$
- $(AE)^{+F2} = AEBCDF$ $(AE)^{+F4} = AEBCDF$
- $(BE)^{+F2} = BEACDF$ $(BE)^{+F4} = BEACDF$

F4

- $A^{+F4} = A^{+F2} =$
- $B^{+F4} =$ $B^{+F2} =$
- $E^{+F4} = EF$ $E^{+F2} = E$
- $(BE)^{+F4} =$ $(BE)^{+F2} =$

Is B redundant in BE->A?

F2

- A -> B
- A -> C
- A -> D
- $B \rightarrow A$
- B -> C
- B -> D
- A -> B
- AE -> F
- BE -> A
- BE -> F

- A -> B
- A -> C
- A -> D
- \bullet B \rightarrow A
- B -> C
- B -> D
- A -> B
- $AE \rightarrow F$
- $E \rightarrow A$
- BE -> F

Is B redundant in BE->A? Closures to Compute

F2

- $A^{+F2} = ABCD$ $A^{+F5} = ABCD$
- $B^{+F2} = BACD$ $B^{+F5} = BACD$
- $(AE)^{+F2} = AEBCDF$ $(AE)^{+F5} = AEBCDF$
- $(BE)^{+F2} = BEACDF$ $(BE)^{+F5} = BEACDF$

F5

- $A^{+F5} = A^{+F2} =$
- $B^{+F5} =$ $B^{+F2} =$
- $E^{+F5} = EABCDF$ $E^{+F2} = E$
- $(BE)^{+F5} =$ $(BE)^{+F2} =$

Is E redundant in BE->A?

F2

- A -> B
- A -> C
- A -> D
- $B \rightarrow A$
- B -> C
- B -> D
- A -> B
- AE -> F
- BE -> A
- BE -> F

- A -> B
- A -> C
- A -> D
- B -> A
- B -> C
- B -> D
- A -> B
- $AE \rightarrow F$
- \bullet B \rightarrow A
- BE -> F

Is E redundant in BE->A? Closures to Compute

F2

- $A^{+F2} = ABCD$ $A^{+F6} = ABCD$
- $B^{+F2} = BACD$ $B^{+F6} = BACD$
- $(AE)^{+F2} = AEBCDF$ $(AE)^{+F6} = AEBCDF$
- $(BE)^{+F2} = BEACDF$ $(BE)^{+F6} = BEACDF$

F6

- $A^{+F6} =$ $A^{+F2} =$
- $B^{+F6} =$ $B^{+F2} =$
- $E^{+F6} = E$ $E^{+F2} = E$
- $(BE)^{+F6} =$ $(BE)^{+F2} =$

Answer is YES

New Set of FD's

F6

- $A \rightarrow B$
- A -> C
- A -> D
- \bullet B \rightarrow A
- B -> C
- B -> D
- A -> B
- AE -> F
- B -> A
- BE -> F

It's pretty clear that one copy of A->B is redundant and one copy Of B->A is redundant, so

New Set of FD's

- $A \rightarrow B$
- $A \rightarrow C$
- $A \rightarrow D$
- $B \rightarrow A$
- B -> C
- B -> D
- AE -> F
- BE -> F

Is A->B Redundant in F7?

F7

- A -> B
- A -> C
- A -> D
- $B \rightarrow A$
- B -> C
- B -> D
- AE -> F
- BE \rightarrow F

- A -> C
- A -> D
- \bullet B \rightarrow A
- B -> C
- B -> D
- $AE \rightarrow F$
- BE -> F

Is A->B Redundant in F7? Closures to Compute

F7

- $A^{+F7} = ABCD$ $A^{+F8} = ACD$
- $B^{+F7} =$ $B^{+F8} =$
- $(AE)^{+F7} =$ $(AE)^{+F8} =$
- $(BE)^{+F7} =$ $(BE)^{+F8} =$

F8

- $A^{+F8} =$ $A^{+F7} =$
- $B^{+F8} =$ $B^{+F7} =$
- $(AE)^{+F8} =$ $(AE)^{+F7} =$
- $(BE)^{+F8} =$ $(BE)^{+F7} =$

Is A->C Redundant in F7?

F7

- A -> B
- A -> C
- A -> D
- $B \rightarrow A$
- B -> C
- B -> D
- AE -> F
- BE \rightarrow F

- A -> B
- A -> D
- \bullet B \rightarrow A
- B -> C
- B -> D
- AE -> F
- BE -> F

Is A->C Redundant in F7? Closures to Compute

F7

- $A^{+F7} = ABCD$ $A^{+F9} = ABDA$
- $B^{+F7} = BACD$ $B^{+F9} = BACD$
- $(AE)^{+F7} = AEBCDF$ $(AE)^{+F9} = AEBCDF$
- $(BE)^{+F7} = BEACDF$ $(BE)^{+F9} = BEACDF$

F9

- $A^{+F9} = A^{+F7} =$
- $B^{+F9} =$ $B^{+F7} =$
- $(AE)^{+F9} =$ $(AE)^{+F7} =$
- $(BE)^{+F9} =$ $(BE)^{+F7} =$

Answer is YES

New Set of FD's

- $A \rightarrow B$
- A -> D
- $B \rightarrow A$
- B -> C
- B -> D
- AE -> F
- BE \rightarrow F

Is A->D Redundant in F9?

F9

- A -> B
- $A \rightarrow D$
- \bullet B \rightarrow A
- B -> C
- B -> D
- AE -> F
- BE -> F

- $A \rightarrow B$
- \bullet B \rightarrow A
- B -> C
- B -> D
- AE -> F
- BE -> F

Is A->D Redundant in F9? Closures to Compute

F9

- $A^{+F9} = ABDC$ $A^{+F10} = ABCD$
- $B^{+F9} = BACD$ $B^{+F10} = BACD$
- $(AE)^{+F9} = AEBDCF$ $(AE)^{+F10} = AEBCDF$
- $(BE)^{+F9} = BEACDF$ $(BE)^{+F10} = BEACDF$

F10

- $A^{+F10} =$ $A^{+F9} =$
- $B^{+F10} =$ $B^{+F9} =$
- $(AE)^{+F10} =$ $(AE)^{+F9} =$
- $(BE)^{+F10} =$ $(BE)^{+F9} =$

Answer is YES

New Set of FD's

- $A \rightarrow B$
- $\bullet B \rightarrow A$
- B -> C
- B -> D
- $AE \rightarrow F$
- BE -> F

Is B->A Redundant in F10?

F10

- $A \rightarrow B$
- \bullet B \rightarrow A
- B -> C
- B -> D
- $AE \rightarrow F$
- BE \rightarrow F

- A -> B
- B -> C
- B -> D
- AE -> F
- BE -> F

Is B->A Redundant in F10? Closures to Compute

F10

- $A^{+F10} = ABCD$ $A^{+F11} = ABCD$
- $B^{+F10} = BACD$ $B^{+F11} = BCD$
- $(AE)^{+F10} =$ $(AE)^{+F11} =$
- $(BE)^{+F10} =$ $(BE)^{+F11} =$

F11

- $A^{+F11} =$ $A^{+F10} =$
- $B^{+F11} =$ $B^{+F10} =$
- $(AE)^{+F11} =$ $(AE)^{+F10} =$
- $(BE)^{+F11} =$ $(BE)^{+F10} =$

Is B->C Redundant in F10?

F10

- $A \rightarrow B$
- \bullet B \rightarrow A
- B -> C
- B -> D
- $AE \rightarrow F$
- BE \rightarrow F

- $A \rightarrow B$
- \bullet B \rightarrow A
- B -> D
- AE -> F
- BE -> F

Is B->C Redundant in F10? Closures to Compute

F10

- $A^{+F10} = ABCD$ $A^{+F12} = ABD$
- $B^{+F10} =$ $B^{+F12} =$
- $(AE)^{+F10} =$ $(AE)^{+F12} =$
- $(BE)^{+F10} =$ $(BE)^{+F12} =$

F12

- $A^{+F12} =$ $A^{+F10} =$
- $B^{+F12} =$ $B^{+F10} =$
- $(AE)^{+F12} =$ $(AE)^{+F10} =$
- $(BE)^{+F12} =$ $(BE)^{+F10} =$

Is B->D Redundant in F10?

F10

- $A \rightarrow B$
- \bullet B \rightarrow A
- B -> C
- B -> D
- $AE \rightarrow F$
- BE \rightarrow F

- $A \rightarrow B$
- \bullet B \rightarrow A
- B -> C
- $AE \rightarrow F$
- BE -> F

Is B->D Redundant in F10? Closures to Compute

F10

- $A^{+F10} = ABCD$ $A^{+F13} = ABC$
- $B^{+F10} =$ $B^{+F13} =$
- $(AE)^{+F10} =$ $(AE)^{+F13} =$
- $(BE)^{+F10} =$ $(BE)^{+F13} =$

F13

- $A^{+F13} =$ $A^{+F10} =$
- $B^{+F13} =$ $B^{+F10} =$
- $(AE)^{+F13} =$ $(AE)^{+F10} =$
- $(BE)^{+F13} =$ $(BE)^{+F10} =$

Is AE->F Redundant in F10?

F10

- $A \rightarrow B$
- \bullet B \rightarrow A
- B -> C
- B -> D
- $AE \rightarrow F$
- BE \rightarrow F

- A -> B
- \bullet B \rightarrow A
- B -> C
- B -> D
- BE -> F

Is AE->F Redundant in F10? Closures to Compute

F10

- $A^{+F10} = ABCD$ $A^{+F14} = ABCD$
- $B^{+F10} = BACD$ $B^{+F14} = BACD$
- $(AE)^{+F10} = AEBCDF$ $(AE)^{+F14} = AEBCDF$
- $(BE)^{+F10} = BEACDF$ $(BE)^{+F14} = BEACDF$

F14

- $A^{+F14} =$ $A^{+F10} =$
- $B^{+F14} =$ $B^{+F10} =$
- $(BE)^{+F14} =$ $(BE)^{+F10} =$

Answer is YES

New Set of FD's

- $A \rightarrow B$
- $\bullet B \rightarrow A$
- B -> C
- B -> D
- BE -> F

Is BE->F Redundant in F14?

F14

- $A \rightarrow B$
- \bullet B \rightarrow A
- B -> C
- B -> D
- BE -> F

- $A \rightarrow B$
- \bullet B \rightarrow A
- B -> C
- B -> D

Is BE->F Redundant in F14? Closures to Compute

F14

- $A^{+F14} = ABCD$ $A^{+F15} = ABCD$
- $B^{+F14} = BACD$ $B^{+F15} = BACD$
- $(BE)^{+F14} = BEACDF$ $(BE)^{+F15} = BEACD$

F15

- $A^{+F15} =$ $A^{+F14} =$
- $B^{+F15} =$ $B^{+F14} =$

Final Set of FD's

- $A \rightarrow B$
- \bullet B \rightarrow A
- B -> C
- B -> D
- BE -> F

Final Set of FD's

F14

- A -> B
- \bullet B \rightarrow A
- B -> C
- B -> D
- BE -> F

F14

- PNAME -> PNUMBER
- PNUMBER -> PNAME
- PNUMBER -> PLOCATION
- PNUMBER -> DNUMBER
- PNUMBER, SSN -> HOURS

AFTER BUNDLING:

- PNAME -> PNUMBER
- PNUMBER -> PNAME,
 PLOCATION, DNUMBER
- PNUMBER, SSN -> HOURS

Normalized Version

- (PNUMBER, PNAME, PLOCATION, DNUMBER), with fd's:
 - PNUMBER -> PNAME,PLOCATION, DNUMBER
 - − PNUMBER -> PNAME,
- (PNUMBER, SSN, HOURS), with fd:
 - PNUMBER, SSN -> HOURS