LECTURE 1 – CMOS PHASE LOCKED LOOPS OVERVIEW

Objective

Understand the principles and applications of phase locked loops using integrated circuit technology with emphasis on CMOS technology.

Topics

- Background
- Fundamentals

Organization

140418-02

Suggested References

Phase Locked Loops:

- 1. F.M Gardner, *Phaselock Techniques*, 2nd ed., John-Wiley & Sons, Inc., NY, 1979.
- 2. B. Razavi (ed.), *Monolithic Phase-Locked Loops and Clock Recovery Circuits*, IEEE Press, 1997.
- 3. R.E. Best, *Phase-Locked Loops: Design, Simulation, and Applications*, 4th edition, McGraw-Hill, 1999
- 4. A. Hajimiri and T.H. Lee, *The Design of Low Noise Oscillators*, Kluwer Academic Publishers, 1999.
- 5. B. Razavi, Design of ICs for Optical Communications, McGraw-Hill, 2003.
- 6. T.H. Lee, *The Design of CMOS Radio-Frequency Integrated Circuits*, 2nd edition, Cambridge University Press, NY, 2004.
- 7. C. Quemada, et al, *Design Methodology for RF CMOS Phase Locked Loops*, Artech House, Norwood, MA, 2009.

OPERATING PRINCIPLES OF PLLs

What is a PLL?

A PLL contains three basic components as shown below:

- Phase/frequency detector determines the difference between the phase and/or frequency of two signals
- The loop filter removes the high-frequencies from the voltage-controlled oscillator (VCO) controlling voltage
- The VCO produces and output frequency controlled by a voltage

More Detailed PLL Block Diagram

 $v_{in}(t)$ – The input or reference signal

 ω_{in} – The radian frequency of the input signal

 $v_{osc}(t)$ – The output of the VCO

 ω_{osc} – The radian frequency of the VCO

 $v_d(t)$ – The detector output voltage = $K_d\theta_e$

 θ_e – Phase error between $v_{in}(t)$ and $v_{out}(t) = \theta_{in}$ - θ_{osc}

 $v_c(t)$ – The output voltage of the loop filter and the control voltage for the VCO

© P.E. Allen - 2018

CMOS Phase Locked Loops

The Phase Detector and VCO in more Detail

Phase Detector:

$$v_d(t) = K_d \theta_e = K_d(\theta_{in} - \theta_{osc})$$

where

 K_d is the gain of the phase detector

 θ_{in} = phase shift of the input voltage

 θ_{osc} = phase shift of the VCO output voltage

The units of K_d are volts/radians or simply volts assuming all phase shifts are in radians and not degrees.

Voltage Controlled Oscillator:

$$\omega_{osc} = \omega_o + K_o v_c(t)$$

where K_o is the VCO gain and ω_o is the free-running radian frequency.

The units of K_o are rads/sec·V or simply (sec·V)⁻¹ assuming all phase shifts are in radians and not degrees.

PLL Operation

Locked Operation:

• The loop is *locked* when the frequency of the VCO is exactly equal to the average frequency of the input signal.

- The PLL has the inherent ability to suppress noise superimposed on its input signal.
- To maintain the control voltage needed for locked conditions, it is generally necessary for the output of the phase/frequency detector to be nonzero.

Unlocked Operation:

- The VCO runs at a frequency called the *free running frequency*, ω_o , which corresponds to zero control voltage.
- The capture process is the means by which the loop goes from unlocked, free-running state to that of the locked state.

Transient Response of the PLL

Assume the input frequency is increased by an amount $\Delta \omega$.

- 1.) ω_{in} increases by $\Delta \omega$ at t_o .
- 2.) The input signal leads the VCO and v_d begins to increase.
- 3.) After a delay due to the loop filter, the VCO increases ω_{osc} .
- 4.) As ω_{osc} increases, the phase error reduces.
- 5.) Depending on the loop filter, the final phase error will be reduced to zero or to a finite value.

CLASSIFICATION OF PLL TYPES

Types of PLLs

PLL Type	Phase Detector	Loop Filter	Controlled Oscillator
Linear PLL (LPLL)	Analog multiplier	RC passive or active	Voltage
Digital PLL (DPLL)	Digital detector	RC passive or active	Voltage
All digital PLL (ADPLL)	Digital detector	Digital filter	Digitally controlled
Software PLL (SPLL)	Software multiplier	Software filter	Software oscillator

The digital PLL (DPLL) has been the mainstay of most PLLs and is called the "classical" digital PLL.

The Linear PLL (LPLL)

- Uses a analog multiplier for the PDF
- Loop filter is active or passive analog
- VCO is analog

The Digital PLL (DPLL)

- Phase detector is digital
- Loop filter is passive of active analog
- VCO is analog
- Called the "Classical Digital PLL"

The All-Digital PLL (ADPLL)

- Phase detector is digital
- Loop filter is digital
- VCO is digital
- Compatible with modern CMOS technology

The Software PLL (SPLL)

- Phase detector is implemented in software
- Loop filter is implemented in software
- Oscillator is implemented in software driven by an external clock
- Requires analog to digital conversion at the input and digital to analog conversion at the output
- Software permits reconfiguring of the PLL

SYSTEMS PERSPECTIVE OF LINEAR PHASE LOCK LOOPS (LPLLs)

Introduction

Objective:

Understand the operating principles and classification of LPLLs.

Organization:

140418-08

Outline

- LPLL Blocks
- Locked State
- Order of the LPLL System
- The Acquisition Process Unlocked State
- Noise in the LPLL
- LPLL System Design
- Simulation of LPLLs

LPLL BLOCKS

Building Blocks of the LPLL

 $v_1(t)$ = Input signal, generally sinusoidal

 $v_2(t) = VCO$ output signal, may be sinusoidal or square wave

 $v_d(t)$ = Phase detector output signal

 $v_f(t)$ = Loop filter output signal and controlling signal to the VCO

 ω_1 = Frequency of the input signal

 ω_2 = Frequency of the VCO

Loop Filters

In the PLL, there are many high frequencies including noise that must be removed by the use of a low pass filter in order to achieve optimum performance.

Types of Loop Filters:

1.) Passive lag filter (*lag-lead*)

$$F(s) = \frac{1 + s \tau_2}{1 + s(\tau_1 + \tau_2)}$$
 where

$$\tau_1 = R_1 C \text{ and } \tau_2 = R_2 C$$

Pole is at $1/(\tau_1 + \tau_2)$ and the zero at $1/\tau_2$.

- Since the pole is smaller than the zero, the filter is lag-lead
- Passive filters should have no amplitude nonlinearity

Lecture 01 - (8/9/18)Page 1-17

Loop Filters - Continued

2.) Active Lag filter

$$F(s) = K_a \frac{1 + s \tau_2}{1 + s \tau_1} \quad \text{where}$$

$$F(s) = K_a \frac{1 + s \tau_2}{1 + s \tau_1}$$
 where $\tau_1 = R_1 C_1$, $\tau_2 = R_2 C_2$ and $K_a = -\frac{C_1}{C_2}$

- Easier to make lead-lag
- Can have gain (not necessarily desirable)
- Limited by the linearity and noise of the op amp

Loop Filters - Continued

3.) Active Proportional-Integral (PI) Filter

$$F(s) = \frac{1 + s \tau_2}{s \tau_1} \text{ where } \tau_1 = R_1 C \text{ and } \tau_2 = R_2 C$$

- Has large open loop gain at low frequencies ⇒ Large hold range
- Limited by the linearity and noise of the op amp
- Gain limits at the op amp open loop gain

Stability:

To keep the loop stable, it is important to pick the loop filter so that it does not introduce more than a 90° phase shift in the loop.

Phase Signals

It is important to remember that frequency and phase are related as

$$\frac{d\theta}{dt} = \omega \qquad \rightarrow \qquad \theta = \int \omega \cdot dt$$

Transfer functions:

$$H(s) = \frac{V_2(s)}{V_1(s)}$$

where $V_2(s)$ and $V_1(s)$ are the Laplace transforms of $v_2(t)$ and $v_1(t)$.

To examine phase signals, let us assume that,

$$v_1(t) = V_{10} \sin[\omega_1 t + \theta_1(t)]$$
 and $v_2(t) = V_{20} \sin[\omega_2 t + \theta_2(t)]$

For phase signals, the information is carried only in $\theta(t)$.

Next, we consider some simple phase signals that are used to excite a PLL.

Phase Signals – Continued

1.) A step phase shift which is an example of phase modulation.

$$\theta_1(t) = \Delta \Phi \ u(t)$$

2.) A step frequency change assuming that $\omega_1(t) = \omega_0$ for t < 0. We may express $v_1(t)$ as,

$$v_1(t) = V_{10} \sin[\omega_0 t + \Delta \omega \cdot t]$$
$$= V_{10} \sin[\omega_0 t + \theta_1(t)]$$

$$\therefore \quad \theta_1(t) = \Delta\omega \cdot t$$

(the phase becomes a ramp signal)

Phase Signals – Continued

3.) Frequency ramp

$$\omega_1(t) = \omega_0 + \Delta \dot{\omega} \cdot t$$

where $\Delta \dot{\omega}$ is the rate of change of the angular frequency.

$$\therefore v_{1}(t) = V_{10} \sin \left[\int_{0}^{t} (\omega_{o} + \Delta \dot{\omega} \tau) d\tau \right]$$

$$= V_{10} \sin \left[\omega_{o} t + \Delta \dot{\omega} \frac{t^{2}}{2} \right]$$

$$\theta_{1}(t) = \Delta \dot{\omega} \frac{t^{2}}{2}$$

SUMMARY

- LPLL blocks are:
 - 1.) Multiplying phase detector
 - 2.) Low pass filter
 - 3.) Voltage controlled oscillator
- Locked state: Input frequency = VCO frequency

The phase response is low pass

The phase error response is high pass