

Núcleo de Capacitação em Inteligência Artificial

Grupo B

Equipe:

Bruno Da Costa Prianti Daniel Modesto De Souza Dário Alef Barros Lima Karen Letícia Santana Da Silva Willian Do Nascimento Severiano

Sumário

n	slide	página	tempo
1	Linha de Pesquisa	1	2 min
2	Base de dados	3	2 min
3	Baseline	4	2 min
4	Objetivos	5	2 min
5	Análise Exploratória dos Dados	6 - 8	2 min

Linha de Pesquisa

Linha de Pesquisa: Inteligência Artificial Aplicada à Indústria

Áreas / Aplicações:

- **Produção:** Controle de processos, otimização do chão de fábrica
- Logística: Previsão de demanda, rastreamento de estoque e transporte
- **Energia:** Monitoramento de consumo, manutenção de equipamentos
- **Segurança:** Rastreamento de operadores, prevenção de acidentes
- Planejamento: Alocação de recursos, programação da produção
- Eficiência Produtiva: Redução de desperdícios, aproveitamento de recursos
- Manutenção: Estratégias preventivas e preditivas

Figura-1: Áreas de aplicação de IA na indústria

Base de Dados

Sobre:

- **Dataset**: Al4I 2020 Predictive Maintenance Dataset
- **Referência**: S. Matzka, Explainable Artificial Intelligence for Predictive Maintenance Applications, Al4I 2020.
- **Link**: https://archive.ics.uci.edu/dataset/601/ai4i+2020+predictive+maintenance+dataset
- Tamanho: 10.000 registros, 14 variáveis.
- **Origem**: Baseada em processos de usinagem, mais especificamente o fresamento.

Contexto de Negócio:

- **Usinagem**: fabricação de peças a partir de materiais sólidos através de processos de corte e modelagem.
- **Fresamento**: tipo de usinagem com ferramenta rotativa, usada para criar formas e superfícies precisas.
- **Sensibilidade**: temperatura, desgaste da ferramenta, torque e velocidade influenciam diretamente a qualidade da peça.
- **Risco**: falhas ou quebras durante o processo podem gerar **prejuízos significativos** com peças de baixa qualidade e paradas na produção.

Figura-2: Máquina CNC em operação, processo de fresagem, produto final.

Base de Dados

Colunas do Dataset:

Variável	Descrição		
UID Identificador único da amostra			
Product ID Código do equipamento			
Туре	Tipo de máquina/ferramenta - (L, M, H = baixa, média, alta qualidade)		
Air Temperature [K]	Condições ambientais extremas podem interferir no desempenho da máquina e dilatação das peças.		
Process Temperature [K]	Altas temperaturas afetam a dureza do material, reduzem a vida útil da ferramenta e provocam sobrecarga das ferramenta.		
	Velocidade com que a ferramenta recorta o material. Velocidades inadequadas aumentam o desgaste da ferramenta ou		
Rotational Speed [rpm]	gerar defeitos na peça.		
	Reflete a força aplicada pela máquina durante o corte. Flutuações inesperadas podem indicar sobrecarga ou falha		
Torque [Nm]	mecânica iminente.		
	Representa o tempo de uso da ferramenta. Um desgaste excessivo aumenta a chance de falhas por quebra ou baixa		
Tool Wear [min]	qualidade no acabamento.		
Machine Failure (0/1)	Indica se houve falha (1 - sim, 0 - não)		
TWF	Falha por desgaste da ferramenta		
HDF	Falha por dissipação de calor insuficiente		
PWF	Falha por perda de potência		
OSF	Falha por sobrecarga		
RNF	Falha por motivo não especificado		

Baseline

Sobre:

Link: https://www.kaggle.com/code/gerardocappa/predictive-maintenance-final-project

Autores:

- Gerardo Cappa https://www.kaggle.com/gerardocappa
- Angela Sarnataro https://www.kaggle.com/angelasarnataro
- Sara Ami https://www.kaggle.com/saraami

Resultados Obtidos:

Model	Accuracy	AUC-ROC	F1-Score	Fβ-Score
KNN	0.959	0.954	0.902	0.928
SVC	0.966	0.987	0.916	0.931
RFC	0.977	0.997	0.943	0.954
XGB	0.987	0.999	0.969	0.970

Mode	I Accurac	y AUC-RO	C F1-Score	e Fβ-Score
KNN	0.966	0.954	0.916	0.927
SVC	0.973	0.992	0.934	0.941
RFC	0.972	0.997	0.931	0.945
XGB	0.983	0.998	0.958	0.956

Tabela 2 - Score de Modelos Validação

Tabela 3 - Score de Modelos Teste

Objetivos

Objetivo Geral

Desenvolver e avaliar modelos de Machine Learning para previsão de falhas em máquinas, utilizando o *Al41* 2020 Predictive Maintenance Dataset, a fim de apoiar estratégias de manutenção preditiva e subsidiar a tomada de decisão operacional.

Objetivos Específicos

- Configurar o ambiente de desenvolvimento e versionamento.
- Carregar e preparar a base de dados.
- Explorar estatisticamente as variáveis e a variável alvo.
- Desenvolver diferentes modelos de Machine Learning para previsão de falha.
- Comparar o desempenho dos modelos por meio de métricas de classificação.
- Selecionar o modelo de melhor performance para aplicação final.
- Discutir o impacto do uso de Machine Learning em estratégias de manutenção preventiva

Análise Exploratória de Dados (EDA)

Figura-3: Código desenvolvido no vs code.

Análise Exploratória de Dados (EDA)

```
df mac 2.info()
[3] \( \square 0.0s
                                                                                                                                                             Python
   <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 10000 entries, 0 to 9999
    Data columns (total 14 columns):
        Column
                                 Non-Null Count Dtype
        UDI
                                 10000 non-null int64
        Product ID
                                 10000 non-null object
                                 10000 non-null object
        Type
        Air temperature [K]
                                 10000 non-null float64
        Process temperature [K] 10000 non-null float64
        Rotational speed [rpm]
                                10000 non-null int64
        Torque [Nm]
                                 10000 non-null float64
                                 10000 non-null int64
        Tool wear [min]
        Machine failure
                                 10000 non-null int64
        TWF
                                 10000 non-null int64
        HDF
                                 10000 non-null int64
                                 10000 non-null int64
     12 OSF
                                 10000 non-null int64
                                 10000 non-null int64
    dtypes: float64(3), int64(9), object(2)
    memory usage: 1.1+ MB
       df mac 2.shape
[4]
    (10000, 14)
```

Figura-4: Código desenvolvido no vs code.

Análise Exploratória de Dados (EDA)

Figura-5: Código desenvolvido no vs code.

Obrigado!

