Plotting all the results

Amy Pitts

2/19/2022

Jimmy needs to give me the right esitamte of effect right now here is what I am using

```
smaller_true_ATE <- 0.15
bigger_true_ATE <- 0.3

pos_beta <- 1
neg_beta <- -1</pre>
```

Loading Data

Compiling Binary Data

Get all the odd numbers $\beta_1 = 0.767$

```
binary_final_odd <-
  binary_scen_1 %>%
    mutate(n sample = 1000, beta1 = 0.767, desired prop = 0.1) %>%
  bind_rows(binary_scen_3 %>%
              mutate(n_sample = 1000, beta1 = 0.767, desired_prop = 0.2)) %>%
  bind_rows(binary_scen_5 %>%
              mutate(n_sample = 1000, beta1 = 0.767, desired_prop = 0.3)) %>%
  bind_rows(binary_scen_13 %>%
              mutate(n_sample = 100, beta1 = 0.767, desired_prop = 0.1)) %>%
  bind_rows(binary_scen_15 %>%
              mutate(n_sample = 100, beta1 = 0.767, desired_prop = 0.2)) \%
  bind_rows(binary_scen_17 %>%
              mutate(n_sample = 100, beta1 = 0.767, desired_prop = 0.3))
binary_final_odd <- binary_final_odd %>%
  mutate(
    ATE_bias = ATE - smaller_true_ATE,
    empirical_bias = empirical_mean - smaller_true_ATE,
    boot_type = ifelse(boot_type == 0, "Simple", "Complex")
  )
rm(binary_scen_1, binary_scen_3, binary_scen_5,
   binary_scen_13, binary_scen_15, binary_scen_17)
```

Get all the even numbers $\beta_1 = 1.386$

```
binary_final_even <-
  binary_scen_2 %>%
   mutate(n_sample = 1000, beta1 = 1.386, desired_prop = 0.1) %>%
  bind rows(binary scen 4 %>%
              mutate(n sample = 1000, beta1 = 1.386, desired prop = 0.2)) %>%
  bind_rows(binary_scen_6 %>%
              mutate(n_sample = 1000, beta1 = 1.386, desired_prop = 0.3)) %>%
  bind_rows(binary_scen_14 %>%
              mutate(n sample = 100, beta1 = 1.386, desired prop = 0.1)) %>%
  bind_rows(binary_scen_16 %>%
              mutate(n_sample = 100, beta1 = 1.386, desired_prop = 0.2)) %>%
  bind_rows(binary_scen_18 %>%
              mutate(n_sample = 100, beta1 = 1.386, desired_prop = 0.3))
binary_final_even <- binary_final_even %>%
  mutate(
   ATE_bias = ATE - bigger_true_ATE,
   empirical_bias = empirical_mean - bigger_true_ATE,
   boot_type = ifelse(boot_type == 0, "Simple", "Complex")
  )
rm(binary_scen_2, binary_scen_4, binary_scen_6,
  binary_scen_14, binary_scen_16, binary_scen_18)
```

```
binary_final <- binary_final_even %>% bind_rows(binary_final_odd)
```

Compiling Continuous Data

```
continuous_final_odd <-</pre>
  cont_df_scen_1 %>%
    mutate(n_sample = 1000, beta1 = pos_beta, desired_prop = 0.1) %>%
  bind_rows(cont_df_scen_3 %>%
              mutate(n_sample = 1000, beta1 = pos_beta, desired_prop = 0.2)) %>%
  bind_rows(cont_df_scen_5 %>%
              mutate(n_sample = 1000, beta1 = pos_beta, desired_prop = 0.3)) %>%
  bind_rows(cont_df_scen_13 %>%
              mutate(n_sample = 100, beta1 = pos_beta, desired_prop = 0.1)) %>%
  bind_rows(cont_df_scen_15 %>%
              mutate(n_sample = 100, beta1 = pos_beta, desired_prop = 0.2)) %>%
  bind_rows(cont_df_scen_17 %>%
              mutate(n_sample = 100, beta1 = pos_beta, desired_prop = 0.3)) %>%
  mutate(
   ATE_bias = ATE - pos_beta,
   empirical_bias = empirical_mean - pos_beta,
   boot_type = ifelse(boot_type == 0, "Simple", "Complex")
rm(cont_df_scen_1, cont_df_scen_3, cont_df_scen_5,
  cont_df_scen_13, cont_df_scen_15, cont_df_scen_17)
```

```
continuous_final_even <-</pre>
  cont_df_scen_2 %>%
   mutate(n sample = 1000, beta1 = neg beta, desired prop = 0.1) %>%
  bind_rows(cont_df_scen_4 %>%
              mutate(n_sample = 1000, beta1 = neg_beta, desired_prop = 0.2)) %>%
  bind_rows(cont_df_scen_6 %>%
              mutate(n_sample = 1000, beta1 = neg_beta, desired_prop = 0.3)) %>%
  bind_rows(cont_df_scen_14 %>%
              mutate(n_sample = 100, beta1 = neg_beta, desired_prop = 0.1)) %>%
  bind_rows(cont_df_scen_16 %>%
              mutate(n_sample = 100, beta1 = neg_beta, desired_prop = 0.2)) %>%
  bind_rows(cont_df_scen_18 %>%
              mutate(n_sample = 100, beta1 = neg_beta, desired_prop = 0.3)) %>%
  mutate(
   ATE_bias = ATE - neg_beta,
   empirical_bias = empirical_mean - neg_beta,
   boot_type = ifelse(boot_type == 0, "Simple", "Complex")
  )
rm(cont_df_scen_2, cont_df_scen_4, cont_df_scen_6,
   cont_df_scen_14, cont_df_scen_16, cont_df_scen_18)
```

```
continuous_final <-
  continuous_final_odd %>%
  bind_rows(continuous_final_even)

rm(continuous_final_even, continuous_final_odd)
```

Binary Coverage Rates

```
## 'summarise()' has grouped output by 'new_name', 'treat_effect'. You can override
## using the '.groups' argument.
```

name the scenarios by sample size and treat prop and facet by the treatment effect

Binary Coverage Rates by Parameters of Interest

Continuous Coverage Rates

'summarise()' has grouped output by 'new_name', 'treat_effect'. You can override
using the '.groups' argument.

Continuous Coverage Rates by Parameters of Interest

Binary Simulation Bias and Standard Error CI

Bias

Continuous Simulation Bias and Standard Error CI

Standard Error

Binary Simulation Standard Error

Continuous Simulation Standard Error

Binary Outcome	Empirical			Simple		Complex		
Scenario	E_SE	E_Bias	S_SE	S_Bias	S_CR	C_SE	C_Bias	C_CR
Large Sample, ATE = 0.15, p = 0.1	0.115	-0.029	0.054	-0.007	0.91	0.036	-0.008	1.00
Large Sample, ATE = 0.15, p = 0.2	0.071	0.004	0.043	-0.017	0.83	0.030	-0.015	0.99
Large Sample, ATE = 0.15, p = 0.3	0.052	-0.010	0.033	-0.014	0.88	0.028	-0.013	0.98
Large Sample, ATE = 0.30 , p = 0.1	0.115	-0.029	0.061	-0.012	0.86	0.052	-0.005	0.99
Large Sample, ATE = 0.30, p = 0.2	0.071	0.004	0.047	-0.007	0.86	0.042	-0.010	0.95
Large Sample, ATE = 0.30, p = 0.3	0.052	-0.010	0.036	-0.009	0.89	0.032	-0.008	1.00
Small Sample, ATE = 0.15 , p = 0.1	0.367	0.003	0.194	-0.034	0.80	NA	NA	NA
Small Sample, ATE = 0.15 , p = 0.2	0.302	-0.038	0.140	0.008	0.86	0.109	-0.007	0.99
Small Sample, ATE = 0.15 , p = 0.3	0.215	-0.010	0.115	-0.022	0.81	0.103	-0.013	0.98
Small Sample, ATE = 0.30 , p = 0.1	0.367	0.003	0.202	-0.013	0.82	NA	NA	NA
Small Sample, ATE = 0.30 , p = 0.2	0.302	-0.038	0.142	0.010	0.85	0.112	0.018	0.98
Small Sample, ATE = 0.30 , p = 0.3	0.215	-0.010	0.113	-0.010	0.86	0.099	-0.008	0.99

Continuous Outcome	Em	Empirical			Complex			
Scenario	E_SE	E_Bias	S_SE	S_Bias	S_CR	C_SE	C_Bias	C_CR
Large Sample, ATE = +1, p = 0.1	0.115	-0.029	0.114	-0.028	0.94	0.054	-0.014	1.00
Large Sample, ATE = +1, p = 0.2	0.071	0.004	0.071	0.003	0.95	0.041	-0.010	1.00
Large Sample, ATE = +1, p = 0.3	0.052	-0.010	0.052	-0.010	0.97	0.034	-0.013	0.99
Large Sample, ATE = -1, p = 0.1	0.115	-0.029	0.114	-0.028	0.94	0.054	-0.014	1.00
Large Sample, ATE = -1, p = 0.2	0.071	0.004	0.071	0.003	0.95	0.041	-0.010	1.00
Large Sample, ATE = -1, p = 0.3	0.052	-0.010	0.052	-0.010	0.97	0.034	-0.013	0.99
Small Sample, ATE = $+1$, p = 0.1	0.367	0.003	0.367	0.002	0.94	NA	NA	NA
Small Sample, ATE = $+1$, p = 0.2	0.302	-0.038	0.302	-0.037	0.91	0.138	-0.030	1.00
Small Sample, ATE = $+1$, p = 0.3	0.215	-0.010	0.218	-0.006	0.97	0.115	-0.012	1.00
Small Sample, $ATE = -1$, $p = 0.1$	0.367	0.003	0.367	0.002	0.94	NA	NA	NA
Small Sample, ATE = -1, p = 0.2	0.302	-0.038	0.302	-0.037	0.91	0.138	-0.030	1.00
Small Sample, ATE = -1 , p = 0.3	0.215	-0.010	0.218	-0.006	0.97	0.115	-0.012	1.00