FISE: Pràctica 4 Sofija Starcevic i Víctor Méndez 18-3-2024

Primera sessió

QÜESTIÓ L2.1: La aproximació és força vàlida.

V_{in}^+	V_{in}^-	V_{out}			
5.99 V	$5.99\mathrm{V}$	5.99 V			

Taula 1: Tensió continua als nodes de l'amplificador

QÜESTIÓ L2.2: L'amplitud és de $10\,\mathrm{mV}$ a la entrada i $175\,\mathrm{mV}$ a la sortida. Això dona un guany de 17.5. L'etapa produeix un desfasament de $15.2\,\mathrm{ps}$, o sigui 141° . Veure figura 1.

Figura 1: Captura de l'oscil·loscopi

QÜESTIÓ L2.3: Veure la taula 2 i la figura 2.

Taula 2: Guanys per freqüència

-									
Freqüència	$0.1\mathrm{kHz}$	$1\mathrm{kHz}$	$10\mathrm{kHz}$	$25\mathrm{kHz}$	$40\mathrm{kHz}$	$75\mathrm{kHz}$	$100\mathrm{kHz}$	$500\mathrm{kHz}$	$1\mathrm{MHz}$
V_i	$10\mathrm{mV}$	$10\mathrm{mV}$	$10\mathrm{mV}$	$10\mathrm{mV}$	$10\mathrm{mV}$	$10\mathrm{mV}$	$10\mathrm{mV}$	$10\mathrm{mV}$	$10\mathrm{mV}$
V_o	$54\mathrm{mV}$	$200\mathrm{mV}$	$200\mathrm{mV}$	$196\mathrm{mV}$	$180\mathrm{mV}$	$124\mathrm{mV}$	$102\mathrm{mV}$	$25\mathrm{mV}$	$13\mathrm{mV}$
Guany	5.4	20	20	19.6	18	12.4	10.2	2.5	1.3
Guany $_{dB}$	$33.72\mathrm{dB}$	$59.91\mathrm{dB}$	$59.91\mathrm{dB}$	$59.51\mathrm{dB}$	$57.8\mathrm{dB}$	$50.35\mathrm{dB}$	$46.44\mathrm{dB}$	$18.32\mathrm{dB}$	$5.24\mathrm{dB}$

Figura 2: Diagrama de Bode mesurat

Segona sessió

QÜESTIÓ L3.1: Els nodes V_{o1} i V_{o2} valen 6 V.

QÜESTIÓ L3.2: El guany a la primera etapa val 20, a la segona 16.9. El guany complet val 338. No és el valor desitjat, el muntatge en la protoboard és insuficient.

QÜESTIÓ L3.3: Veure la taula 3 i la figura 3. Un altre cop, el muntatge és sorollós.

					Taula 3: Guanys per freqüència				
Freqüència	$0.1\mathrm{kHz}$	$1\mathrm{kHz}$	$10\mathrm{kHz}$	$25\mathrm{kHz}$	$40\mathrm{kHz}$	$75\mathrm{kHz}$	$100\mathrm{kHz}$	$500\mathrm{kHz}$	$1\mathrm{MHz}$
V_i	$10.0\mathrm{mV}$	$10.0\mathrm{mV}$	$10.0\mathrm{mV}$	$10.0\mathrm{mV}$	$10.0\mathrm{mV}$	$10.0\mathrm{mV}$	$10.0\mathrm{mV}$	$10.0\mathrm{mV}$	$10.0\mathrm{mV}$
V_o	0.25 V	$3.72\mathrm{V}$	4.32 V	3.34 V	1.82 V	1.21 V	0.05 V	0.01 V	0.0 V
Guany	12.8	186.0	216.0	167.0	91.0	60.5	2.75	0.54	0.2
$\overline{\text{Guany}_{dB}}$	$32.42\mathrm{dB}$	59.18 dB	$60.68\mathrm{dB}$	58.11 dB	$52.04\mathrm{dB}$	$47.95\mathrm{dB}$	$17.04\mathrm{dB}$	$0.95\mathrm{dB}$	$-9.16\mathrm{dB}$

Figura 3: Diagrama de Bode mesurat

QÜESTIÓ L3.4: La amplitud màxima d'entrada sense distorsió a la sortida és $16.6\,\mathrm{mV}$. Veure la figura 4.

QÜESTIÓ L3.5: En una variació $\Delta t = 660\,\mathrm{ns}$ hi ha una variació $\Delta V = 11.1 \,\mathrm{V}$. El SR val $16.8 \,\mathrm{V} \,\mathrm{\mu s}^{-1}$. Veure la figura 5.

QÜESTIÓ L3.6: Veure la figura 6.

Figura 4: Sortida deformada

Figura 5: Mesura del SR

Figura 6: Muntatge complet de les dues etapes

Tercera sessió

QÜESTIÓ L4.1: El guany de la primera etapa son els 20 deistjats.

Figura 7: Sortida a primera etapa

QÜESTIÓ L4.2: El guany del muntatge complet val 412 i és molt menys sorollós que el muntatge fet en la protoboard.

Figura 8: Sortida del muntatge complet

PRÀCTICA 4. FISE

Estadi Previ

Amplificador de tensió amb guony de 400.

EP1: Valor del modul de la impedância a 40 KMZ corresponent a codas un dels condensadors?

impedòncia del condensador:
$$Z_c(w) = \frac{1}{C_j w} \rightarrow |Z_c(w)| = |\frac{1}{C_w}|$$
 $w = 2\pi f$

$$|Z_{c_{12}}(\omega)| = \frac{1}{10.10^{6.2\pi.40.10^{3}}} = 0,398.52$$

EP2: Circuit de l'étape amplificadora a 40 kHz quon Cu i C12 es

EP3: Expressió del guony a 40kHz d'aguesta etapa amplificadora?

EP4: Si volquessim fer l'amplificador amb una solo etapa, quina frequiencia unitat for hauria de tenir l'Ao? (quony 400).

EP5: Si ens fixem només en la tensió continua, dibrixas circuit (condensadors = circuit obert). Quina és l'expressió de la tensió de sostida Von considerant l'Ao ideal?

EPG: Calculer valor de R13 i R14 per maximitzar el marge dinàmic de sostido del circuit si la tensió d'alimentació es de 12 V. (corrent que circula per les resictencies no massa gran, com a molt 1 mA).

$$I = \frac{V_{CC}}{R_{A5} + R_{A4}} \iff R_{13} + R_{14} = \frac{V_{CC}}{I} = \frac{12 \text{ V}}{I \text{ mA}} = 12 \text{ kg}$$
Si $R_{13} = R_{14} \implies R_{13} = R_{14} > 12 \text{ kg} = 6 \text{ kg}$

EP7. Quin valor de slew-rate de l'Ao es necessita per poder tenir le màxime amplitud de sostida a 40 kHz? (Vcc=12V)

EP8: número d'Aus que contè el rip? 2 tipus d'alimentació que admet? entre 4,5 V i 16 V fregüència de guony unitat f,? f, = 10 MHz slew-rate SR de 1'Ao? SR+ = 16 V/µs SR- = 19 V/µs

EP9: A postir de de la for del TLC082, la frequiencia del senyal que s'he d'amplificar (40kHz) i el puony especificat per a l'amplifica des (400), justifices quantes etapes son necessàrier.

G. BW =
$$f_7$$
 -> $G_7 = \frac{f_7}{BW} = \frac{10MHz}{40 \text{ kHz}} = 250 < 400$

Necessitem dues etapes per orribar al many especificat

FPAO: Dissenyar l'amplificador utilitzant el TLC082 amb les etapes necessàtics per aconseguir G=400 a 40 kHz. Valors de RM i R12 per a cadas cuna de les etapes?

7cm = Rm = 7cm 100 = 397,89 100 = 39,79 ks

$$G = \frac{RAR}{RAA} \rightarrow 20 = \frac{RAR}{39,79 \text{ kg}} \iff RAR = 795,8 \text{ kg}$$

G = 400 = 20.20

EPM: esquema elèctric.

