Session 2: Linear Transformations & Matrices

Optimization and Computational Linear Algebra for Data Science

Marylou Gabrié (based on material by Léo Miolane)

Contents

- 1. Linear Transformations
 - 1.1 Definition
 - 1.2 Properties
- Matrices
 - 2.1 Linear maps & matrices definition
 - 2.2 Matrix-vector product
 - 2.3 Addition & scalar multiplication
 - 2.4 Matrix product
 - 2.5 Invertible matrices
- 3. Kernels and Images
- 4. Why do we care about all these things?

 Solving linear systems
 - 4.1 Matrix notation of linear systems
 - 4.2 Gaussian elimination

Refs: Strang

1. Linear Transformations

1. Linear Transformations 3/42

Examples

You already know some linear transformations from high-school!

Symmetry Rotation

1. Linear Transformations 4/42

1.1 Definition

Symmetries (about a line passing through the origin) and rotations (about the origin) are mappings

$$L: \mathbb{R}^2 \to \mathbb{R}^2$$

$$v \mapsto L(v),$$

that are "linear":

Definition

A function $L: \mathbb{R}^m \to \mathbb{R}^n$ is linear if

- 1. for all $v, w \in \mathbb{R}^m$ we have L(v+w) = L(v) + L(w) and
- 2. for all $v \in \mathbb{R}^m$ and all $\alpha \in \mathbb{R}$ we have $L(\alpha v) = \alpha L(v)$.

An example

An example of a non-linear map

The function

 $F: \mathbb{R} \to \mathbb{R}$

is **not** linear.

1.2 Properties: Basic properties

Proposition

If $L: \mathbb{R}^m \to \mathbb{R}^n$ is linear, then

- L(0) = 0.
- $L\Big(\sum_{i=1}^k \alpha_i v_i\Big) = \sum_{i=1}^k \alpha_i L(v_i), \text{ for all } \alpha_i \in \mathbb{R}, v_i \in \mathbb{R}^m.$

Proof.

1.2 Properties: Composition

Proposition

If $L:\mathbb{R}^m\to\mathbb{R}^n$ and $M:\mathbb{R}^n\to\mathbb{R}^k$ are both linear, then the composite function

$$M \circ L : \mathbb{R}^m \to \mathbb{R}^k$$

 $v \mapsto M(L(v))$

is also linear.

Proof.

Questions?

1. Linear Transformations 1.2 Properties of linear transformations

10/42

Questions?

1. Linear Transformations 1.2 Properties of linear transformations

10/42

2. Matrices

2. Matrices 11/42

2.1 Linear Maps & Matrices Definition

The key observation:

- Let $L: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation.
- Let (e_1,\ldots,e_m) be the canonical basis of \mathbb{R}^m .

Then, for all $x = (x_1, \dots, x_m) \in \mathbb{R}^m$:

$$L(x) = L\left(\sum_{i=1}^{m} x_i e_i\right) = \sum_{i=1}^{m} x_i L(e_i).$$

2.1 Linear Maps & Matrices Definition

The key observation:

- Let $L: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation.
- Let (e_1,\ldots,e_m) be the canonical basis of \mathbb{R}^m .

Then, for all $x = (x_1, \ldots, x_m) \in \mathbb{R}^m$:

$$L(x) = L(\sum_{i=1}^{m} x_i e_i) = \sum_{i=1}^{m} x_i L(e_i).$$

Conclusion: if you give me the vectors $L(e_1), \ldots, L(e_m) \in \mathbb{R}^n$ then, I am able to compute L(x) for any $x \in \mathbb{R}^m$.

« One needs $n \times m$ numbers to store the linear map L on a computer »

Matrices

Definition

A $n \times m$ matrix is an array (of real numbers) with n rows and m columns. We denote by $\mathbb{R}^{n \times m}$ the set of all $n \times m$ matrices.

Canonical matrix of a linear map

We can encode a linear map $L: \mathbb{R}^m \to \mathbb{R}^n$ by a $n \times m$ matrix.

Definition

The canonical matrix of L is the $n \times m$ matrix (that we will write also L) whose columns are $L(e_1), \ldots, L(e_m)$:

$$L = \begin{pmatrix} | & | & | \\ L(e_1) & L(e_2) & \cdots & L(e_m) \\ | & | & | \end{pmatrix} = \begin{pmatrix} L_{1,1} & L_{1,2} & \cdots & L_{1,m} \\ L_{2,1} & L_{2,2} & \cdots & L_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ L_{n,1} & L_{n,2} & \cdots & L_{n,m} \end{pmatrix}$$

where we write
$$L(e_j) = egin{pmatrix} L_{1,j} \\ L_{2,j} \\ \vdots \\ L_{n,j} \end{pmatrix}$$
 .

1.3 Matrix-vector product

Consider a linear map $L:\mathbb{R}^m\to\mathbb{R}^n$ and its associated matrix $\widetilde{L}\in\mathbb{R}^{n\times m}.$

Question: Can we use the matrix \widetilde{L} to compute the image L(x) of a vector $x \in \mathbb{R}^m$?

Proposition

For all $x \in \mathbb{R}^m$ we have

$$L(x) = \widetilde{L}x$$

where the "matrix-vector" product $\widetilde{L}x \in \mathbb{R}^n$ is defined by

$$(\widetilde{L}x)_i = \sum_{j=1}^m \widetilde{L}_{i,j} x_j$$
 for all $i \in \{1, \dots, n\}$.

Visualizing the formula

$$(\widetilde{L}x)_i = \sum_{j=1}^m \widetilde{L}_{i,j} x_j = \widetilde{L}_{i,1} x_1 + \widetilde{L}_{i,2} x_2 + \dots + \widetilde{L}_{i,m} x_m$$

Why do we have $L(x) = \widetilde{L}x$?

Example #1: identity matrix

The Identity map $\begin{array}{ccc} \operatorname{Id}: & \mathbb{R}^n & \to & \mathbb{R}^n \\ & x & \mapsto & x \end{array} \quad \text{is linear.}$

Exercise: what is the canonical matrix of Id?

Example #2: Homothety

Let $\lambda \in \mathbb{R}$. The homothety map of ratio λ :

$$H_{\lambda}: \mathbb{R}^n \to \mathbb{R}^n$$
$$x \mapsto \lambda x$$

is linear.

Exercise: what is the canonical matrix of H_{λ} ?

Example #3: rotations in \mathbb{R}^2

Let $\theta \in \mathbb{R}$. The rotation $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ of angle θ about the origin is linear.

Exercise: what is the canonical matrix of R_{θ} ?

2.3 Addition & scalar multiplication

Sum of two matrices of the **same** dimensions:

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,m} \end{pmatrix} + \begin{pmatrix} b_{1,1} & \cdots & b_{1,m} \\ \vdots & \ddots & \vdots \\ b_{n,1} & \cdots & b_{n,m} \end{pmatrix} = \begin{pmatrix} a_{1,1} + b_{1,1} & \cdots & a_{1,m} + b_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} + b_{n,1} & \cdots & a_{n,m} + b_{n,m} \end{pmatrix}$$

• Multiplication by a scalar λ :

$$\lambda \begin{pmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,m} \end{pmatrix} = \begin{pmatrix} \lambda a_{1,1} & \cdots & \lambda a_{1,m} \\ \vdots & \ddots & \vdots \\ \lambda a_{n,1} & \cdots & \lambda a_{n,m} \end{pmatrix}$$

A new vector space!

Proposition

- $\mathbb{R}^{n \times m}$ is a vector space.
- $\dim(\mathbb{R}^{n\times m}) =$

Proof.

Product of two matrices

Warning:

2. Matrices 2.4 Matrix product

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,m} \end{pmatrix} \times \begin{pmatrix} b_{1,1} & \cdots & b_{1,m} \\ \vdots & \ddots & \vdots \\ b_{n,1} & \cdots & b_{n,m} \end{pmatrix} \neq \begin{pmatrix} a_{1,1} \times b_{1,1} & \cdots & a_{1,m} \times b_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} \times b_{n,1} & \cdots & a_{n,m} \times b_{n,m} \end{pmatrix}$$

$$\vdots$$
 $l_{n,m}$)

$$\left\langle \left(egin{matrix} dots \ b_n, \end{matrix}
ight.$$

$$b_n$$

$$\binom{a_1}{a_1}$$

$$\times b$$

23/42

2.4 Matrix product

Let $M \in \mathbb{R}^{m \times k}$ and $L \in \mathbb{R}^{n \times m}$.

Definition - Proposition

- The matrix product LM is the $n \times k$ matrix of the linear map $L \circ M$.
- Its coefficients are given by the formula:

$$(LM)_{i,j} = \sum_{\ell=1}^m L_{i,\ell} M_{\ell,j}$$
 for all $1 \le i \le n, \quad 1 \le j \le k.$

Visualizing the formula

$$(LM)_{i,j} = \sum_{i=1}^{m} L_{i,\ell} M_{\ell,j} = L_{i,1} M_{1,j} + \dots + L_{i,m} M_{m,j}$$

Proof

2. Matrices 2.4 Matrix product

26/42

Example: Rotations in \mathbb{R}^2

The R_a and R_b denote respectively the matrices of the rotations of angles a and b about the origin, in \mathbb{R}^2 .

Exercise: Compute the product R_aR_b .

Matrix product properties

Let
$$A, B \in \mathbb{R}^{n \times m}$$
 and $C, D \in \mathbb{R}^{m \times k}$,

$$(A+B)C =$$

$$A(C+D) =$$

- Multiplication by the identity: $A \operatorname{Id}_m =$
- Comutativity?

Can we divide two matrices?

For instance, if we have AB = AC, do we have B = C?

29/42

2.5 Invertible matrices

Definition (Matrix inverse)

A **square** matrix $M\in\mathbb{R}^{n\times n}$ is called *invertible* if there exists a matrix $M^{-1}\in\mathbb{R}^{n\times n}$ such that

$$MM^{-1} = M^{-1}M = \mathrm{Id}_n.$$

Such matrix M^{-1} is unique and is called the *inverse* of M.

Exercise: Let $A, B \in \mathbb{R}^{n \times n}$. Show that if $AB = \mathrm{Id}_n$ then $BA = \mathrm{Id}_n$.

3. Kernel and image

3. Kernel and image 31/42

Definitions

Let $L: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation.

Definition (Kernel)

The kernel $\mathrm{Ker}(L)$ (or nullspace) of L is defined as the set of all vectors $v \in \mathbb{R}^m$ such that L(v) = 0, i.e.

$$\operatorname{Ker}(L) \stackrel{\text{def}}{=} \{ v \in \mathbb{R}^m \, | \, L(v) = 0 \}.$$

Definition (Image)

The image $\operatorname{Im}(L)$ (or column space) of L is defined as the set of all vectors $u \in \mathbb{R}^n$ such that there exists $v \in \mathbb{R}^m$ such that L(v) = u.

3. Kernel and image 32/42

Picture

3. Kernel and image

33/42

Remarks

Let $L: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation.

Proposition

- $ightharpoonup \operatorname{Ker}(L)$ is a subspace of \mathbb{R}^m .
- $ightharpoonup \operatorname{Im}(L)$ is a subspace of \mathbb{R}^n .

Remark: $\operatorname{Im}(L)$ is also the Span of the columns of the matrix representation of L (cf HW2).

3. Kernel and image 34/42

Example: orthogonal projection

4. Why do we care about this?

Linear systems

Assume that we given a dataset:

$$a_i = (a_{i,1}, \dots, a_{i,m}) \in \mathbb{R}^m, \quad y_i \in \mathbb{R} \quad \text{for} \quad i = 1, \dots, n.$$

We would like to find $x \in \mathbb{R}^m$ such that

$$x_1 a_{i,1} + \dots + x_m a_{i,m} = y_i$$
 for all $i \in \{1, \dots, n\}$.

4.1 Matrix Notation of Linear Systems

$$/a_{1,1}$$
 ··· a_1

$$\cdots a_{1,m}$$

$$\in \mathbb{R}$$

$$n$$
.

$$A =$$

$$A = \begin{pmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,m} \end{pmatrix} \in \mathbb{R}^{n \times m} \quad \text{ and } \quad y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n.$$

$$\mathbb{R}^{n \times m}$$

Let's find all solutions!

39/42

4. Why do we care about this? 4.1 Matrix Notation of Linear Systems

Conclusion: 3 possible cases

- 1. $y \notin \text{Im}(A)$: there is no solution to Ax = y.
- 2. $y \in \text{Im}(A)$, then there exists $x_0 \in \mathbb{R}^m$ such that $Ax_0 = y$. The set of solutions in then

$$S = \{x_0 + v \mid v \in \operatorname{Ker}(A)\}.$$

- If $Ker(A) = \{0\}$, then $S = \{x_0\}$: x_0 is the unique solution.
- If $Ker(A) \neq \{0\}$, then Ker(A) contains infinitely many vectors: there are infinitely many solutions.

4.2 Gaussian elimination

$$A=egin{pmatrix}1&-1&0&1\2&0&1&-1\-1&5&2&0\end{pmatrix}\in\mathbb{R}^{n imes m} \quad ext{ and }\quad y=egin{pmatrix}1\1\4\end{pmatrix}\in\mathbb{R}^n.$$

$$A = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 2 & 0 & 1 & -1 \\ -1 & 5 & 2 & 0 \end{pmatrix}$$

$$=\begin{pmatrix}1\\1\\\end{pmatrix}$$

$$\in \mathbb{R}^n$$

Gaussian elimination

42/42

4. Why do we care about this? 4.2 Gaussian elimination

Gaussian elimination

42/42

4. Why do we care about this? 4.2 Gaussian elimination

Gaussian elimination

42/42

4. Why do we care about this? 4.2 Gaussian elimination

Questions?

43/42

Questions?

43/42

Questions?

