Seção 1.2

Prof. Thiago Braga Marcilon

Universidade Federal do Cariri

CC0028 - Autômatos, computabilidade e complexidade

Não-determinismo

• A definição anterior de autômato é chamada de AF Determinístico (AFD);

- A definição anterior de autômato é chamada de AF Determinístico (AFD);
 - Para cada cadeia, o AFD sempre visita a mesma sequência de estados;

- A definição anterior de autômato é chamada de AF Determinístico (AFD);
 - Para cada cadeia, o AFD sempre visita a mesma sequência de estados;
- Em um AF não-determinístico (AFN), para uma dada cadeia, a sequência de estados que ele visita não está obrigatoriamente determinada;

- A definição anterior de autômato é chamada de AF Determinístico (AFD);
 - Para cada cadeia, o AFD sempre visita a mesma sequência de estados;
- Em um AF não-determinístico (AFN), para uma dada cadeia, a sequência de estados que ele visita não está obrigatoriamente determinada;
 - há sempre um conjunto de estados (possivelmente vazio ou unitário) que representa as possibilidades de estados que o AFN pode estar;

- A definição anterior de autômato é chamada de AF Determinístico (AFD);
 - Para cada cadeia, o AFD sempre visita a mesma sequência de estados;
- Em um AF não-determinístico (AFN), para uma dada cadeia, a sequência de estados que ele visita não está obrigatoriamente determinada;
 - há sempre um conjunto de estados (possivelmente vazio ou unitário) que representa as possibilidades de estados que o AFN pode estar;
 - Assim, dada uma cadeia, o estado que o AFN está (de um modo geral) não pode ser determinada, o que há é um conjunto de possibilidades;

- A definição anterior de autômato é chamada de AF Determinístico (AFD);
 - Para cada cadeia, o AFD sempre visita a mesma sequência de estados;
- Em um AF não-determinístico (AFN), para uma dada cadeia, a sequência de estados que ele visita não está obrigatoriamente determinada;
 - há sempre um conjunto de estados (possivelmente vazio ou unitário) que representa as possibilidades de estados que o AFN pode estar;
 - Assim, dada uma cadeia, o estado que o AFN está (de um modo geral) não pode ser determinada, o que há é um conjunto de possibilidades;
- Uma outra forma de se racionalizar o conceito de AFN é de imaginá-la como uma máquina multiprocesso, onde cada processo está em um único estado e os processos não se comunicam;

- A definição anterior de autômato é chamada de AF Determinístico (AFD);
 - Para cada cadeia, o AFD sempre visita a mesma sequência de estados;
- Em um AF não-determinístico (AFN), para uma dada cadeia, a sequência de estados que ele visita não está obrigatoriamente determinada;
 - há sempre um conjunto de estados (possivelmente vazio ou unitário) que representa as possibilidades de estados que o AFN pode estar;
 - Assim, dada uma cadeia, o estado que o AFN está (de um modo geral) não pode ser determinada, o que há é um conjunto de possibilidades;
- Uma outra forma de se racionalizar o conceito de AFN é de imaginá-la como uma máquina multiprocesso, onde cada processo está em um único estado e os processos não se comunicam;
- O conceito de AFN é uma extensão do conceito de AFD. Portanto, todo AFD também é um AFN.

Diagrama de estados de um AFN

Não-determinismo

Um AFN pode conter:

Diagrama de estados de um AFN

Não-determinismo

Um AFN pode conter:

• transições ε ;

Diagrama de estados de um AFN

Não-determinismo

Um AFN pode conter:

- transições ε ;
- transições com o mesmo símbolo saindo do mesmo estado;

Diagrama de estados de um AFN

Não-determinismo

Um AFN pode conter:

- transições ε ;
- transições com o mesmo símbolo saindo do mesmo estado;
- estados que não possuem transições para um determinado símbolo;

Transições Não-determinísticas

Transições Não-determinísticas

Seja A um AFN. Sejam q e $Q = \{q_1, \dots, q_k\}$ estados de A:

• Se q possui k transições x para Q e A lê x, A se divide em k processos;

Transições Não-determinísticas

- Se q possui k transições x para Q e A lê x, A se divide em k processos;
 - Cada processo estará em um estado de Q diferente;

Transições Não-determinísticas

- Se q possui k transições x para Q e A lê x, A se divide em k processos;
 - Cada processo estará em um estado de Q diferente;
 - Nenhum processo estará em q;

Transições Não-determinísticas

- Se q possui k transições x para Q e A lê x, A se divide em k processos;
 - Cada processo estará em um estado de Q diferente;
 - Nenhum processo estará em q;
- Se q possui k transições ε para Q, antes de A fazer a leitura do próximo símbolo, A se divide em k+1 processos;

Transições Não-determinísticas

- Se q possui k transições x para Q e A lê x, A se divide em k processos;
 - Cada processo estará em um estado de Q diferente;
 - Nenhum processo estará em q;
- Se q possui k transições ε para Q, antes de A fazer a leitura do próximo símbolo, A se divide em k+1 processos;
 - Cada processo estará em um estado de $Q \cup \{q\}$ diferente;

Transições Não-determinísticas

- Se q possui k transições x para Q e A lê x, A se divide em k processos;
 - Cada processo estará em um estado de Q diferente;
 - Nenhum processo estará em q;
- Se q possui k transições ε para Q, antes de A fazer a leitura do próximo símbolo, A se divide em k+1 processos;
 - Cada processo estará em um estado de $Q \cup \{q\}$ diferente;
 - Tal operação é repetida enquanto houver transições ε ;

Transições Não-determinísticas

- Se q possui k transições x para Q e A lê x, A se divide em k processos;
 - Cada processo estará em um estado de Q diferente;
 - Nenhum processo estará em q;
- Se q possui k transições ε para Q, antes de A fazer a leitura do próximo símbolo, A se divide em k+1 processos;
 - Cada processo estará em um estado de $Q \cup \{q\}$ diferente;
 - Tal operação é repetida enquanto houver transições ε ;
- Se q não possui transição x e A lê x, o processo atual "morre";

Transições Não-determinísticas

- Se q possui k transições x para Q e A lê x, A se divide em k processos;
 - Cada processo estará em um estado de Q diferente;
 - Nenhum processo estará em q;
- Se q possui k transições ε para Q, antes de A fazer a leitura do próximo símbolo, A se divide em k+1 processos;
 - Cada processo estará em um estado de $Q \cup \{q\}$ diferente;
 - Tal operação é repetida enquanto houver transições ε ;
- Se q não possui transição x e A lê x, o processo atual "morre";
- Uma cadeia é aceita se e somente se existe um processo é um estado de aceitação após a leitura da entrada.

Computação da cadeia 010110 Entrada = 01<mark>0</mark>110

Computação da cadeia 010110 Entrada = 010 $\frac{1}{1}$ 10 $q_1 \qquad 1 \qquad e, 0 \qquad q_3 \qquad 1 \qquad q_4$

Computação da cadeia 010110 Entrada = 0101101,0 q_1 q_2 $\varepsilon,0$ q_3 1 q_4

Exemplo

AFN no alfabeto $\varSigma=\{0,1\}$ cuja linguagem consiste em todas as string com um 1 na antepenúltima posição.

Exemplo

AFN em $\varSigma = \{0,1\}$ contendo todas as string com um 1 na antepenúltima posição.

AFN anterior na entrada 0100 Entrada = 0100 q_1 q_2 q_3 q_4

AFN anterior na entrada 0100 Entrada = 010 $\overline{}$ 1, 0 q_1 1 q_2 1, 0 q_3 1, 0 q_4

AFN anterior na entrada 0100 Entrada = 0100

Saída = Aceita

AFN em $\Sigma = \{0,1\}$ na entrada 1000

Saída = Rejeita

Exemplo

AFN no alfabeto Σ = {0} (unário) cuja linguagem contem todas as string com um número múltiplo de 2 ou 3 de símbolos 0.

Exemplo

AFN em $\Sigma = \{0\}$ contendo todas as string com o tamanho sendo múltiplo de 2 ou 3.

AFN anterior na cadeia 000

AFN anterior na cadeia 000 Entrada = 000ε 0

AFN anterior na cadeia 000 Entrada = 0000

AFN anterior na cadeia 000

AFN anterior na cadeia 000

AFN anterior na cadeia 000

AFN anterior na cadeia 000

AFN anterior na cadeia 000

AFN anterior na cadeia 000

AFN anterior na cadeia 000

AFN anterior na cadeia 000

Definição formal

Definição formal

Um Autômato Finito Não-Determinístico é uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, onde:

• Q é o conjunto finito de estados do AF;

Definição formal

- Q é o conjunto finito de estados do AF;
- Σ é o alfabeto;

Definição formal

- Q é o conjunto finito de estados do AF;
- Σ é o alfabeto;
- $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ é a função de transição;

Definição formal

- Q é o conjunto finito de estados do AF;
- Σ é o alfabeto;
- $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ é a função de transição;
- $q_0 \in Q$ é o estado inicial; e

Definição formal

- Q é o conjunto finito de estados do AF;
- Σ é o alfabeto;
- $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ é a função de transição;
- $q_0 \in Q$ é o estado inicial; e
- $F \subseteq Q$ é o conjunto de estados de aceitação.

Exemplo

Exemplo

Definição formal: $(\{q_1,q_2,q_3,q_4\},\{0,1\},\delta,q_1,\{q_4\})$, onde δ é a função:

	0	1	ε
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	{ q ₃ }	Ø	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	Ø

Poder de expressão

 O conjunto de linguagens aceitas por um AFD é o conjunto das linguagens regulares;

Poder de expressão

- O conjunto de linguagens aceitas por um AFD é o conjunto das linguagens regulares;
- Considerando os recursos adicionais que um AFN possui...

Poder de expressão

- O conjunto de linguagens aceitas por um AFD é o conjunto das linguagens regulares;
- Considerando os recursos adicionais que um AFN possui...
- ... existe alguma linguagem não-regular aceita por um AFN?

Poder de expressão

- O conjunto de linguagens aceitas por um AFD é o conjunto das linguagens regulares;
- Considerando os recursos adicionais que um AFN possui...
- ... existe alguma linguagem não-regular aceita por um AFN?
- Em outras palavras, os AFNs tem mais poder de expressão do que os AFDs?

Teorema

Para todo AFN M, existe um AFD M' tal que L(M') = L(M), ou seja, M' e M são equivalentes.

Teorema

Para todo AFN M, existe um AFD M' tal que L(M') = L(M), ou seja, M' e M são equivalentes.

Definição

Seja M um AFN e R um subconjunto de seus estados. Definimos como E(R) como o conjunto de estados que podem ser alcançados a partir de algum estado em R usando apenas transições ε . Chamamos E(R) de fecho epsilon de R.

Teorema

Para todo AFN M, existe um AFD M' tal que L(M') = L(M), ou seja, M' e M são equivalentes.

Teorema

Para todo AFN M, existe um AFD M' tal que L(M') = L(M), ou seja, M' e M são equivalentes.

Teorema

Para todo AFN M, existe um AFD M' tal que L(M') = L(M), ou seja, M' e M são equivalentes.

Prova

• Seja $M = (Q, \Sigma, \delta, q_0, F)$. Defina $M' = (Q', \Sigma, \delta', q'_0, F')$, onde:

Teorema

Para todo AFN M, existe um AFD M' tal que L(M') = L(M), ou seja, M' e M são equivalentes.

- Seja $M = (Q, \Sigma, \delta, q_0, F)$. Defina $M' = (Q', \Sigma, \delta', q'_0, F')$, onde:
 - $Q' = \mathcal{P}(Q)$;

Teorema

Para todo AFN M, existe um AFD M' tal que L(M') = L(M), ou seja, M' e M são equivalentes.

- Seja $M=(Q,\Sigma,\delta,q_0,F)$. Defina $M'=(Q',\Sigma,\delta',q_0',F')$, onde:
 - $Q' = \mathcal{P}(Q)$;
 - $q_0' = E(\{q_0\});$

Teorema

Para todo AFN M, existe um AFD M' tal que L(M') = L(M), ou seja, M' e M são equivalentes.

- Seja $M = (Q, \Sigma, \delta, q_0, F)$. Defina $M' = (Q', \Sigma, \delta', q'_0, F')$, onde:
 - $Q' = \mathcal{P}(Q)$;
 - $q_0' = E(\{q_0\});$
 - $\delta'(R, a) = \bigcup_{r \in R} E(\delta(r, a))$ para todo $R \in Q'$ e $a \in \Sigma$;

Teorema

Para todo AFN M, existe um AFD M' tal que L(M') = L(M), ou seja, M' e M são equivalentes.

- Seja $M = (Q, \Sigma, \delta, q_0, F)$. Defina $M' = (Q', \Sigma, \delta', q'_0, F')$, onde:
 - $Q' = \mathcal{P}(Q)$;
 - $q_0' = E(\{q_0\});$
 - $\delta'(R, a) = \bigcup_{r \in R} E(\delta(r, a))$ para todo $R \in Q'$ e $a \in \Sigma$;
 - $F' = \{R \in Q' \mid R \cap F \neq \emptyset\};$

Exemplo de transformação AFN → AFD

Exemplo de transformação AFN \rightarrow AFD

CC0028 – Autômatos, computabilidade e complexidade Autômatos Finitos Não-Determinísticos: Equivalência entre AFNs e AFDs Universidade Federal do Cariri

Exemplo de transformação AFN → AFD

Corolário

Uma linguagem é regular se e somente se é aceita por um AFN.