2022-2023 MP2I

Programme de colle, semaine 3

Complexes:

- Nous avons admis la construction de \mathbb{C} . Après avoir vu la forme algébrique (x+iy) avec $x,y\in\mathbb{R}$ d'un complexe, l'addition et la multiplication dans \mathbb{C} , nous avons défini la partie réelle, la partie imaginaire, le conjugué et le module d'un complexe.
- Nous avons ensuite démontré les règles de calculs sur les conjugués et sur les modules (conjugué d'une somme, d'un produit, module d'un produit, passage au puissance dans Z, etc).
- Nous avons alors défini le groupe \mathbb{U} des nombres complexes de module 1. Après avoir posé $e^{i\theta} = \cos(\theta) + i\sin(\theta)$, nous avons montré que $\mathbb{U} = \{e^{i\theta}, \ \theta \in \mathbb{R}\}$. Nous avons ensuite démontré les formules d'Euler ainsi que la propriété fondamentale de l'exponentielle $(e^{i(\theta+\theta')} = e^{i\theta}e^{i\theta'})$ et en avons déduit la formule de Moivre.
- Nous avons effectué des rappels sur la forme trigonométrique d'un complexe et étudié l'argument d'un complexe ainsi que ses propriétés. Nous avons ensuite défini l'exponentielle complexe (et vu comment résoudre $e^z = a$).
- Nous avons alors effectué un complément de trigonométrie. Des rappels sur la congruence modulo 2π , les valeurs usuelles de cos, sin et tan, les formules d'addition $(\cos(a \pm b), \sin(a \pm b))$ et $\tan(a \pm b)$. Nous avons vu comment retrouver certaines formules ou valeurs sur le cercle trigonométrique.
- Nous avons alors à l'aide de l'arc moitié, vu comment retrouver les formules de factorisation de $\cos(a) \pm \cos(b)$ et $\sin(a) \pm \sin(b)$. Nous avons fait un ou deux exemples de linéarisation (en utilisant les formules d'Euler) et l'application des complexes aux calculs de somme avec des \cos/\sin .
- Nous avons terminé le chapitre de trigonométrie par des applications (classée par ordre d'importance) : linéarisation, calcul de sommes à l'aide de complexes, multiplication des arcs (comment exprimer $\cos(nx)$ et $\sin(nx)$ en fonction de $\cos(x)$ et $\sin(x)$) et la transformation d'une expression de la forme $a\cos(t) + b\sin(t)$ sous la forme $A\cos(t-\varphi)$.
- Nous avons continué le cours sur les complexes en définissant les racines n-ièmes de l'unité et montré que (\mathbb{U}_n, \times) est un groupe. Nous avons montré qu'il y avait exactement n racines n-ièmes de l'unité.
- Nous avons alors démontré différentes propriétés (somme des racines de l'unité nulle, application à la résolution de $z^n = z_0^n$ et de $z^n = a$). Nous avons alors vu comment trouver les racines carrées d'un complexe sous forme algébrique (la notation \sqrt{z} pour un complexe est **absolument** interdite!).
- Nous avons vu comment résoudre des équations de degré 2 à coefficients dans C.
- Nous avons démontré l'inégalité triangulaire dans C.

Remarques sur le programme : nous n'avons pas encore fait les rappels de géométrie et n'avons pas encore eu le temps de faire d'exercices sur les racines n-ièmes de l'unité et sur les équations polynômiales de degré 2 (mais les étudiants en ont à chercher pour lundi et des exemples ont été traités en cours).

Compétences:

- Savoir passer de la forme algébrique d'un complexe à la forme trigonométrique et réciproquement.
- Identifier sous quelle forme mettre un complexe avant de calculer (garder la forme $z \in \mathbb{C}$ pour des calculs théoriques, utiliser la forme x + iy pour étudier les parties réelles/imaginaires et utiliser la forme $\rho e^{i\theta}$ quand il y a des produits ou des angles à trouver).
- Retrouver les formules de trigonométrie/résoudre des équations trigonométriques « simples » à l'aide du cercle trigonométrique $(\cos(x) = 1/2, |\sin(x)| \le \sqrt{3}/2, \sin(\pi x) = \sin(x), \cos(x + \pi/2) = -\sin(x), \text{ la résolution de } \cos(x) = \cos(y) \text{ et } \sin(x) = \sin(y), \text{ etc.})$
- Retrouver les formules de factorisation de $\cos(a) \pm \cos(b)$ et $\sin(a) \pm \sin(b)$ à l'aide de l'arc moitié ou d'une résolution de système linéaire.
- Linéariser une expression trigonométrique (à l'aide des formules d'Euler).
- Déterminer les racines n-ième d'un complexe a.
- Résoudre une équation de degré 2 à coefficients complexes.

Questions de cours:

- 1. Donner les formules pour le développement de $\cos(a+b)$, $\sin(a+b)$ et démontrer celle de $\tan(a+b)$. On précisera à quoi doivent appartenir a, b, a+b.
- 2. Retrouver la formule pour la factorisation de $\cos(a) + \cos(b)$ à l'aide d'un système linéaire ET à l'aide de l'arc moitié.
- 3. Expliquer le principe de la linéarisation et l'illustrer en linéarisant $f(x) = \cos^3(x)$ et en déduire une primitive de f.
- 4. Déterminer $\sum_{k=0}^{n} \cos(k\theta)$ en fonction de $\theta \in \mathbb{R}$ et $n \in \mathbb{N}$.
- 5. Démontrer que les racines n-ièmes de l'unité sont de la forme $e^{\frac{2ik\pi}{n}}$ avec $k \in [0, n-1]$ (pour avoir l'unicité de l'écriture).
- 6. Montrer que la somme des racines n-ièmes de l'unité vaut 0 pour $n \geq 2$ puis énoncer (sans preuve) la forme des solutions de l'équation $z^n = a$ d'inconnue z où $a \in \mathbb{C}$ est fixé.
- 7. Énoncer et démontrer le théorème donnant la forme des solutions d'une équation polynomiale de degré 2.
- 8. Énoncer et démontrer l'inégalité triangulaire (pas de preuve du cas d'égalité).

Exercices à chercher pour lundi (pour tout le monde): TD 4:13 et 17.1).

Exercice à rédiger au propre et à me rendre lundi pour ceux qui n'ont pas colle de maths (un seul exercice par personne!) :

• 1er du groupe : TD4 : 18.

• 2ieme du groupe : TD4 : 19.

• 3ieme du groupe : Complément Trigo : 9.2)

Prochain programme: complexes (en entier) et début des applications.

N'hésitez pas à me contacter si vous avez des questions!

Indications pour les exercices :

Exo 18:

- Poser $Z = z^n$ pour se ramener à une équation de degré 2 en Z.
- Utiliser $\cos^2 + \sin^2 = 1$ pour écrire Δ sous la forme $(\delta)^2$.

 Vous devriez trouver des solutions de la forme $e^{\pm in\theta}$. Il ne reste plus qu'à résoudre $z^n = e^{\pm in\theta}$ (cf question de cours 6).

Exo 19:

- ω est la première racine 7 ième de l'unité donc $\overline{\omega} = \frac{1}{\omega} = \omega^6$.
- Écrire la partie imaginaire de S comme une somme de sinus et placer les angles sur le cercle trigonométrique (à peu près). Essayez ensuite d'écrire le seul sinus négatif sous la forme de $-\sin(\varphi)$ où φ est un angle simple et de voir que les autres sinus compensent ce sinus négatif.
- Il faut utiliser le fait que la somme des racines 7 ieme de l'unité fait 0 pour simplifier ST et
- On peut ensuite étudier le polynôme P(X) = (X S)(X T) pour déterminer S et T.

Exo 9.2):

- Faire la somme des deux sommes pour n'avoir à calculer qu'une seule des deux sommes (et déduire la valeur de l'autre presque sans calcul).
- Linéariser le cos² afin de se ramener à une somme du même type que dans le cours (cf question de cours 4)
- Attention à bien traiter le cas où la raison de la somme géométrique vaut 1 à part!