SQL intersection Session SQL201

Analyzing I/O Subsystem Performance

Glenn Berry glenn@sqlskills.com

Glenn Berry

- Consultant/Trainer/Speaker/Author
- Principal Consultant, <u>SQLskills.com</u>
 - Email: Glenn@SQLskills.com
 - Blog: http://www.SQLskills.com/blogs/Glenn
 - Twitter: @GlennAlanBerry

- Author of SQL Server Hardware
- Chapter author of Pro SQL Server Practices
- Chapter author of Professional SQL Server 2012 Internals and Troubleshooting
- Chapter author of MVP Deep Dives Volumes 1 and 2
- Instructor-led training: Immersion Events
- Online training: Pluralsight
 http://pluralsight.com/
- Consulting: health checks, hardware, performance, upgrades
- Become a SQLskills Insider: http://www.sqlskills.com/Insider

Introduction

- Three main metrics for storage performance
- SQL Server I/O workload metrics
- Tools for testing storage subsystems
- Primary storage types for SQL Server
- Choosing storage for different workloads and file types
- RAID levels and SQL Server workload
- Some comparative storage metrics

Three Main Metrics for Storage Performance

- Latency (ms)
- Input/output operations per second (IOPS)
- Sequential throughput (MB/sec or GB/sec)
 - These three measurements are all related, so you can't just look at one of them in isolation with out knowing the other ones
 - Storage vendors tend to show their best-case numbers in isolation

Latency

Latency

- The time it takes for an I/O to complete
- Sometimes called response time or service time
- Measurement starts when the OS sends a request to the drive (or controller) and ends when the drive finishes processing the request
 - Reads are complete when the operating system receives the data
 - Writes are complete when the drive informs the OS it has received the data
 - □ The data may still be in a DRAM cache on the drive or controller
 - Write-back caching vs. write-through caching
 - Write-back caching is much faster, but requires a battery backup for the cache
 - Make sure you are using write-back caching!

Input/Output Operations per Second

Input/output operations per second (IOPS)

- This metric is directly related to latency
- Constant latency of 1ms means a drive can process 1,000 IOs per second with a queue depth of 1
- As more IOs are added to the queue, latency will increase
- Flash storage can read/write to multiple NAND channels in parallel
- IOPS = Queue Depth/Latency
- IOPS by itself does not consider transfer size
 - You need to know the transfer size when looking at an IOPS measurement
 - You can translate IOPS to MB/s and MB/s to latency as long as you know the queue depth and transfer size

Sequential Throughput

- Sequential throughput (MB/sec or GB/sec)
- MB/sec = IOPS * Transfer Size
 - 292 MB/sec = 71,271 IOPS * 4096 bytes transfer size
- Sequential throughput often gets short-changed in enterprise storage
 - Bandwidth limitations from the storage interface directly affect this
 - 1Gbps iSCSI limited to about 100 MB/sec
 - 4Gbps FC limited to about 400 MB/sec
- Sequential throughput is extremely important for SQL Server
 - Database backups and restores
 - Index creation and maintenance
 - Large sequential reads with reporting workloads

The Importance of Sequential Throughput

Sequential throughput is critical for many database server activities

- Full database backups and restores
 - Make sure to enable "Perform volume maintenance tasks"
 - Make sure to use backup compression
 - Make sure to keel your VLF counts under control
- Index creation and rebuilds
 - Use MAXDOP option to indirectly throttle index create or rebuild I/O workload
 - Use data compression where appropriate to reduce I/O workload
- DW-type large sequential scans
 - When your database does not fit into the buffer pool
 - Buffer Pool Extensions (BPE) does not help much for sequential reads

SQL Server I/O Workload Metrics

- What is the read vs. write ratio of the workload?
 - You can use my DMV Diagnostic Queries to determine this
 - Ratios will be different for different SQL Server file types and workloads
- What are the typical IO rates (IOPS and throughput)?
 - Reads/sec, writes/sec (PerfMon) is IOPS
 - Disk read bytes/sec, disk write bytes/sec (PerfMon) is throughput
- What is the average logical disk-level latency?
 - Average disk sec/read, average disk sec/write (PerfMon) is latency
- What is the average file-level I/O latency?
 - You can use my DMV Diagnostic Queries to determine this for every SQL Server database file on your instance

Methods for Measuring I/O Performance

- Task Manager in Windows Server 2012 and newer
 - Depending on what kind of storage you are using
- Disk section in Windows Resource Monitor
- Logical Disk counters in Performance Monitor
- Disk Benchmark Tools
 - CrystalDiskMark
 - http://bit.ly/1vm5dPe
 - SQLIO
 - http://bit.ly/1obVdIV
 - DiskSpd
 - http://bit.ly/1whNzQL
- SQL Server DMV Diagnostic Queries
 - http://bit.ly/Q5GAJU

Disk Performance in Windows Task Manager

Disk Performance in Resource Monitor

LogicalDisk Counters in Performance Monitor

Demo

I/O Related DMV Queries

Common DMV I/O Query Result Patterns

Very common to see high write latency to tempdb data files

- Make sure you have multiple data files (start with 4-8) that are all the same size (follow Bob Ward's guidance). Make sure you are using TF 1118
- Consider using local flash-based storage for tempdb

Common to see high read latency from user database data files

- Look for signs of memory pressure, consider adding more RAM and doing standard workload and index tuning
- Consider using SQL Server 2014 BPE (especially for Standard Edition)

Gather as much evidence as possible to show your SAN Admin

- Overall SAN metrics may look great, so you need to be prepared with data
- sys.dm_io_virtual_file_stats are cumulative since instance was started
- They include all file activity against your database files

Using CrystalDiskMark To Test Your Storage

- CrystalDiskMark is quick and easy to use
 - It does have a few configuration options
- Make sure to test with a 4000MB test file size
 - This will minimize the influence of any hardware cache
- Make sure to select at least five test runs
 - This reduces the chances of outliers skewing the results
- Make sure to test with both random and non-random test file types
 - Random data is not compressible, non-random data is compressible
 - Some SSD controllers use write compression
- Multiply 4K random I/O results (MB/s) by 244 to get IOPS result
 - Hover tooltip over 4K and 4K QD32 random results to see IOPS result
 - You can also Cntrl-C from GUI into Notepad to get full, detailed results

CrystalDiskMark Results (Graphical)

CrystalDiskMark Results (Text)

```
_ 🗆
                                  Crystal Results.txt - Notepad
File Edit Format View Help
CrystalDiskMark 3.0.3 x64 (C) 2007-2013 hiyohiyo
                          Crystal Dew World : http://crystalmark.info/
* MB/s = 1,000,000 byte/s [SATA/300 = 300,000,000 byte/s]
          Sequential Read: 1695.810 MB/s
         Sequential Write: 2021.351 MB/s
        Random Read 512KB : 1214.931 MB/s
        Random Write 512KB : 1973.399 MB/s
   Random Read 4KB (QD=1): 40.345 MB/s [ 9849.8 IOPS]
   Random Write 4KB (QD=1): 201.355 MB/s [ 49159.0 IOPS]
   Random Read 4KB (QD=32) : 556.069 MB/s [135759.0 IOPS]
  Random Write 4KB (QD=32): 398.386 MB/s [ 97262.2 IOPS]
 Test: 4000 MB [E: 22.3% (416.1/1863.0 GB)] (x5)
 Date: 2014/10/1 18:05:23
   OS: Windows Server 2012 R2 Server Standard (full installation) [6.3 Build 9600] (x64)
    2TB Intel DC P3700 with Intel Drivers
```


Using SQLIO To Test Your Storage

- SQLIO does not require or use SQL Server for its testing
 - It simply allows you to stress your I/O subsystem in a fairly controlled manner
- SQLIO has many configuration options
 - Can be time consuming to run full suite of tests
 - Can be dangerous on shared SANs
- You can use old style command prompt or PowerShell to run tests
- Reference:
 - SQLIO, PowerShell and storage performance: measuring IOPs, throughput and latency for both local disks and SMB file shares
 - http://bit.ly/1n7jm0M

Using DiskSpd To Test Your Storage

DiskSpd is a new tool from Microsoft

- It is far more flexible and powerful than SQLIO
- You can use old style command prompt or PowerShell to run tests

Example commands:

- PS C:\DiskSpd> C:\DiskSpd\diskspd.exe -c1000G -d10 -r -w0 -t8 -o8 -b8K -h -L
 X:\testfile.dat
- Command Line: C:\DiskSpd\diskspd.exe -c1000G -d10 -r -w0 -t8 -o8 -b8K -h -L
 X:\testfile.dat

Reference:

- DiskSpd, PowerShell and storage performance: measuring IOPs, throughput and latency for both local disks and SMB file shares
- http://bit.ly/1CeQauw

Primary Storage Types for SQL Server

Several different storage types are commonly used

- Internal drives (3.5", 2.5", or 1.8")
- Direct-attached storage (DAS)
- Storage area networks (SAN)
- PCIe flash-based storage cards
- Server Message Block (SMB) 3.0/3.02 file shares
 - □ SQL Server 2012/2014 have full support for using SMB 3.0/3.02 file shares for both user and system databases

Internal Drives

Internal drives can be adequate for many workloads

- Possible to have (28) 2.5" drives in some two-socket servers
- Many small drives are better than fewer large drives (for performance)

Rack-mount server vertical size affects number of drive bays

- 1U server might have (8-16) 1.8" or (1)) 2.5" drive bays
- 2U server might have (28) 2.5" drive bays
- Drive size (2.5" or 3.5") affects drive density

Use the best hardware RAID controller(s) available for your server

- Premium RAID controllers have faster processors and larger cache sizes
- You want the best RAID controller available for parity-based RAID levels
- □ They are also less likely to be a bottleneck with SSDs

Directed-Attached Storage (DAS)

External storage enclosure with multiple drive bays

- Typically (14-24) 2.5" drives in a single external storage enclosure
- □ Try to dedicate at least one RAID controller to each storage enclosure
- Storage enclosures should have dual power supplies

DAS is easy to configure and manage

- Does not require special training or expertise
- Does require planning and common sense

Can provide excellent sequential read/write performance

Limited by PCIe slot bandwidth and RAID controller performance

DAS Considerations

Use one dedicated RAID controller per storage enclosure

- You may even want two RAID controllers per enclosure
 - This will give better throughput with larger capacity enclosures
- Use the best RAID controller available
- Make sure the hardware cache is enabled
 - Use write-back caching if the RAID controller has a backup battery
- Use two SAS cables (for load balancing and redundancy)

Pay attention to the PCIe slot throughput limits

- You want to make sure you are not throttled by PCIe bandwidth
- Try to dedicate the hardware RAID controller cache to writes
 - Disable read-ahead caching
 - □ The SQL Server buffer pool is a better read cache than the hardware RAID cache

Storage Area Networks (SAN)

Shared external storage enclosure with multiple components

- Large number of drive bays, can usually be expanded
- Storage processors, large dedicated cache, operating system
- Usually much higher initial capital cost than DAS
- Requires some training and expertise to setup and manage
- Cranky SAN administrator is often included free of charge!

Two main types of SANs

- Fiber-channel, using host bus adapter (HBA)
- iSCSI, using dedicated Ethernet cards
- Also possible to have iSCSI HBA, with similar features as FC HBAs

SANs are usually optimized for IOPs

- Sequential throughput can be limited by the interface
- Example: 1Gbps iSCSI limited to about 100MB/second

SAN Considerations

Make an effort to really communicate with your SAN Admin

- Let the SAN administrator know the type of workload you have
- Don't just give the SAN administrator a space requirement!

Your SAN Admin may have different priorities than you

- Has to worry about multiple servers with different workloads
- Has to worry about running low on space in the SAN
- Has to worry about DBAs complaining about performance

Consider the complete data path to the SAN

- HBA/NIC, switches, SAN ports, etc.
- Be prepared for inconsistent performance with a shared SAN
- SANs are not magic. The hardware details still matter!
- SANs are typically throughput limited

PCIe Flash Storage

Flash-based storage on a PCIe expansion card

- Uses very high bandwidth PCIe slot instead of SAS/SATA port
- New products using Non Volatile Memory Express (NVMe) have excellent performance!
- Type and speed of PCIe slot can be limiting factor
 - PCle 3.0 vs. 2.0 or 1.0 and x16 speed vs. x8 or x4
- Storage cards can deliver extremely high I/O performance
 - Very high sequential throughput (up to 6.7GB/sec)
 - Extremely high random I/O performance (up to 1.3 million IOPS)
- Capital costs range from low to extremely high
 - Anywhere from \$1K to \$125K for one PCle storage card
 - It is common to use two, with software RAID 1 for redundancy
- Flash storage cards use less electrical power than multiple magnetic drives
 - Can save significantly on electrical and cooling costs, save rack space

PCIe Slot Bandwidth Limits

PCle 1.0 Bus (one-way)

□ x4 slot: 750MB/sec

□ x8 slot: 1.5GB/sec

x16 slot: 3.0GB/sec

PCle 2.0 Bus (one-way)

□ x4 slot: 1.5-1.8GB/sec

x8 slot: 3.0-3.6GB/sec

PCle 3.0 Bus (one-way)

x4 slot: 3.0-3.6GB/sec

x8 slot: 6.0-7.2GB/sec

Only Intel Xeon E5, E5 v2, E5 v3 and E7 v2 families have PCIe 3.0 support

SMB 3.0/3.02 File Shares

Server Message Block (SMB) 3.0/3.02

- SQL Server 2012/2014 can store user/system databases on SMB 3.0 file shares
- □ SQL Server 2012/2014 can use SMB 3.0 for traditional FCI instances that require shared storage (without using a SAN)
- Windows Server 2012 has SMB Direct, which supports the use of network adapters that have Remote Direct Memory Access (RDMA) capability
 - RDMA requires SMB Multichannel in order to be enabled
 - RDMA capable network adapters can function at full speed with very low latency while using very little CPU time on the host
 - This enables a remote file server to resemble local storage (when you have something like a 56Gbps Infiniband connection)
- Microsoft's Jose Barreto is a great resource about SMB file shares
 - http://blogs.technet.com/b/josebda/

Negotiated Versions of SMB

OS	Windows 8.1 WS 2012 R2	Windows 8 WS 2012	Windows 7 WS 2008 R2	Windows Vista WS 2008	Previous Versions
Windows 8.1 WS 2012 R2	SMB 3.02	SMB 3.0	SMB 2.1	SMB 2.0	SMB 1.0
Windows 8 WS 2012	SMB 3.0	SMB 3.0	SMB 2.1	SMB 2.0	SMB 1.0
Windows 7 WS 2008 R2	SMB 2.1	SMB 2.1	SMB 2.1	SMB 2.0	SMB 1.0
Windows Vista WS 2008	SMB 2.0	SMB 2.0	SMB 2.0	SMB 2.0	SMB 1.0
Previous Versions	SMB 1.0	SMB 1.0	SMB 1.0	SMB 1.0	SMB 1.0

Considering Your Workload for Storage

SQL Server can have several different common workload types

- Online Transaction Processing (OLTP)
- Relational Data Warehouse (DW)
- Online Analytical Processing (OLAP)

These workload types have different I/O access patterns

- OLTP workload has frequent writes to data files and log file
 - Also has frequent reads from data files if the database does not fit in memory
 - Random I/O performance is very important
- DW workload has large sequential reads from data files
 - Sequential I/O performance is very important
- OLAP workload has lots of random reads from cube files
 - Random I/O performance is very important

RAID Levels and SQL Server Workloads

- You need to consider your SQL Server workload type
 - It directly affects your desired RAID level
 - RAID 10 is better for write-intensive workloads
- You also need to consider your availability requirements
 - Some RAID levels are more robust than others
 - RAID 10 > RAID 50 > RAID 5
- Different types of workloads have different I/O patterns
 - Percentage of reads/writes, sequential vs. random I/O
- Different SQL Server file types have different I/O patterns
 - Data files, log files, tempdb files, backup files, etc.
 - Percentage of reads/writes, sequential vs. random I/O

Selecting a RAID Level For Your SLA

- RAID is not a substitute for a good backup/restore plan!
 - No matter what anyone in your organization tells you...
- RAID is not a substitute for an effective HA/DR strategy
 - No matter what any vendor tells you...
- An appropriate RAID level reduces the chance of unplanned downtime
 - It also reduces the chance of data loss due to disk failure(s)
- RAID 10 and 50 are the most robust common RAID levels
 - RAID 5 can only lose one disk in an array before the array is lost
 - Having a higher number of disks in a RAID 5 array increases the statistical chances that any one disk will fail
 - Consider using hot spares in your disk arrays and having a cold spare available

Choosing Storage Types Based on Workload Type

Flash-based storage gives great random I/O performance

- It also gives better sequential performance than magnetic storage
- Flash-based storage is the most expensive storage (per GB)
- Flash-based storage prices continue to decline over time

Magnetic storage gives fair sequential performance

- Magnetic storage gives quite poor random I/O performance
- Large controller caches can help mask poor random I/O writes
- Flash-based caching can improve magnetic storage performance
- Flash-based storage tiering is not as effective for SQL Server workloads

Flash-based storage is the best choice if you have the budget

- Use flash-based storage where you have heavy random I/O
- Use flash-based storage where you have any type of I/O bottlenecks

Configuring Storage for SQL Server File Types

SQL Server data files

- Common to use magnetic storage (flash becoming popular as cost declines)
- Most common to use RAID 5, 50, or 10

SQL Server log files

- Common to use magnetic storage or flash-based storage
- Most common to use RAID 10.

SQL Server tempdb data and log files

- Common to use magnetic storage or flash-based storage
- Most common to use RAID 10

SQL Server backup files

- Most common to use magnetic storage
- Most common to use RAID 5 or 50

HA/DR Effects on Storage Choices

Traditional FCI requires some form of shared storage

- Usually a SAN, but SMB 3.0/3.02 can be used with SQL Server 2012 or newer
- SQL Server 2012/2014 can use local storage for tempdb files with FCI
 - Often a very good use for flash-based storage
 - Better performance and reduces load on the SAN

AlwaysOn AGs must use the Windows clustering feature

- Can use shared storage, such as a SAN or SMB 3.0/3.02
- Can also use any type of non-shared storage
- This gives you a lot more flexibility in choosing your storage type

Other HA/DR technologies can use any type of storage

- Consider using non-shared storage to eliminate the single point of failure
- Consider shared storage combined with non-shared storage

Sizing Your Storage Subsystem

Use a RAID calculator to ensure you have enough disk space

- Keep in mind the performance advantages of "short-stroking"
- Flash-based storage also benefits from ample free space
- □ RAID disk space calculator: http://bit.ly/1519gJ1

After you have enough space, concentrate on performance

- Don't negotiate with yourself! Ask for flash-based storage, ask for RAID 10
- Consider your workload as you make budget-driven compromises

Aim for 5,000-10,000 or more IOPS on all LUNs

More is always better

Aim for 1GB/sec or more of sequential throughput on all LUNs

- This gives you good performance for administrative tasks
- Backups/restores, index creation and maintenance, etc.

Solid State Drives (SSDs)

- SSD access time does not depend on moving parts
 - Access time is very fast and consistent across cells
- PCIe storage cards allow for much higher throughput
 - Bypasses traditional SAS/SATA interface limitations
- SSDs are excellent for random I/O
 - Also good anywhere there is an I/O bottleneck
- SSDs are enterprise ready for SQL Server usage
 - We have many enterprise clients running on them
 - Don't just put tempdb or transaction logs on SSDs!
 - Don't ignore index fragmentation when using SSDs!

Magnetic Storage vs. Flash-Based Storage

- Magnetic storage has fair sequential performance
 - □ 100-200MB/sec per disk
- Magnetic storage has poor random I/O performance
 - □ 100-200 IOPS per disk
- Flash-based storage has very good sequential performance
 - 12Gbps SAS/SATA can do about 1100MB/sec per drive
 - 6Gbps SAS/SATA can do about 550MB/sec per drive
 - 3Gbps SAS/SATA can do about 275MB/sec per drive
 - PCIe storage cards can do up to about 6.5GB/sec per card
 - □ Affordable models are usually in the 1.0-2.0GB/sec range
- Flash-based storage has excellent random I/O performance
 - 6Gbps SAS/SATA drives can do about 100,000 IOPS
 - PCIe storage cards can do up to about 1.3 million IOPS

Typical HDD Metrics vs. SSD Metrics

Metric	15K RPM HDD	SSD
Capacity	600GB	400GB
Average Read Latency (uS)	2000	50
Read Bandwidth (MB/sec)	202MB/sec	550MB/sec
Read IOPS (4K random)	150-200	90,000
Power (Active/Idle)	4.25W	5.2W/0.6W

Traditional Magnetic Drive Performance

Consumer SSD Drive Performance

Enterprise PCI-E Flash Drive Performance

Enterprise PCI-E Flash Drive Performance

Comparative Sequential Performance

Drive Type	Sequential Reads	Sequential Writes
(2) 15K magnetic SAS in RAID 1	154.6MB/s	126.9MB/s
(6) 15K magnetic SAS in RAID 10	531.7MB/s	414.6MB/s
256GB Samsung 840 Pro	531.8MB/s	507.0MB/s
256GB OCZ Vector	513.1MB/s	508.5MB/s
640GB Fusion-io MLC (random)	747.9MB/s	515.0MB/s
640GB Fusion-io MLC (0Fill)	746.6MB/s	516.2MB/s
1.6TB LSI Nytro WarpDrive (random)	1308.0MB/s	828.0MB/s
1.6TB LSI Nytro WarpDrive (0Fill)	1483.0MB/s	1520.0MB/s

Comparative Random 4K QD32 Performance

Drive Type	Random Reads	Random Writes
(2) 15K magnetic SAS in RAID 1	790 IOPS	1028 IOPS
(6) 15K magnetic SAS in RAID 10	2867 IOPS	3048 IOPS
256GB Samsung 840 Pro	70,727 IOPS	73,371 IOPS
256GB OCZ Vector	74,606 IOPS	71,198 IOPS
640GB Fusion-io MLC (random)	38,454 IOPS	43,115 IOPS
640GB Fusion-io MLC (0Fill)	49,678 IOPS	52,655 IOPS
1.6TB LSI Nytro WarpDrive (random)	94,696 IOPS	40,943 IOPS
1.6TB LSI Nytro WarpDrive (0Fill)	98,259 IOPS	78,641 IOPS

Review

- SQL Server has five primary storage types
 - Internal, PCI-E flash, DAS, SANs, and SMB 3.0 file shares
- Different types of SQL Server workloads affect I/O patterns
 - OLTP, DW, OLAP, mixed, database maintenance, etc.
- Different SQL Server file types have different I/O patterns
 - Data files, log files, tempdb files, backup files, etc.
- Choose an appropriate RAID level for your workload
 - You also need to consider your SLA requirements
- Make sure to consider your sequential throughput
 - Very important for day-to-day operations and DR requirements
 - Good sequential throughput makes your life much easier as a DBA!

References

- Windows Server 2012 R2: Which version of the SMB protocol (SMB 1.0, SMB 2.0, SMB 2.1, SMB 3.0 or SMB 3.02) are you using?
 - http://bit.ly/18uOEI4
- Updated Links on Windows Server 2012 R2 File Server and SMB 3.02
 - http://bit.ly/1iJKMWb
- Storage Review SQL Server OLTP Benchmark
 - http://bit.ly/1jEDu9m
- My Pluralsight courses
 - http://pluralsight.com/training/Authors/Details/glenn-berry

More References

- Install SQL Server with SMB fileshare as a storage option
 - http://bit.ly/1qWaLy6
- Windows Server 2012 R2: Which version of the SMB protocol (SMB 1.0, SMB 2.0, SMB 2.1, SMB 3.0 or SMB 3.02) are you using?
 - http://bit.ly/18uOEI4
- Testing Windows Server and the Scal-Out File Server What should your lab look like?
 - http://bit.ly/1vC9WMF

Questions?

Please use EventBoard to fill out a session evaluation for this session.

We want to improve, and your feedback helps us do that.

Thank you!

