Ficher LRC à partir des TD

Charles Vin

M1-S1 2022

1 Formule

- F insatisfiable $\Leftrightarrow \neg F$ valide
- F satisfiable $\Leftrightarrow \neg F$ non valide
- $\neg F$ satisfiable $\Leftrightarrow F$ non valide
- F valide $\Leftrightarrow \neg F$ insatisfiable
- $-A \rightarrow B \equiv \neg A \lor B$
- On développe \lor comme un + et \land comme un \times

2 Méthode des tableaux

- S'entrainer! TME1, exo 2
- Règle α = règles conjonctive, β règles disjonctive = On sépare en deux branches
- On s'arrete lorsque full atome dans la boite
- Feuille fermé ⇔ contradiction entre atome,
- Feuille ouverte = une solution, ce qui n'est pas précisé dans la feuille est supposé vrais
- Si toute les feuilles de l'arbre sont fermées alors F unsat \Leftrightarrow Une feuille ouverte $\to F$ satisfiable

3 Système de Hilbert

3.1 Preuve dans Hilbert

- S'entrainer! TME1, exo3-4
- On a: 3 axiomes + Modus Ponens
- Théorème de la déduction : $A_1, \ldots, A_n \models B \Leftrightarrow A_1, \ldots, A_{n-1} \models A_n \rightarrow B$

3.2 Traduction d'énoncé en Hilbert

— Les \exists n'aime pas les \rightarrow à cause de $A \rightarrow B \equiv \neg A \lor B$

4 Logique du première ordre

— Définition d'un modèle : fonction(|M| o |M|) + prédicat (|M| o vrais/faux)

4.1 Preuve par résolution

— On ne peut simplifier qu'un truc à la fois :

$$\frac{\neg a \lor b \lor c \qquad a \lor \neg b \lor c}{b \lor \neg b \lor c}.$$

— Mieux de le faire en version Hilbert, permet de réutiliser les lignes plutôt que de les réécrire.

$$R_1: R(c,d) \qquad [Res(C_2,C_4); \{Y\backslash d\}]$$

A refaire au moins une fois

4.2 Unification

- Classiquement, on cherche $F_2 = \sigma(F_1)$ avec σ un ensemble de substitution.
- Utiliser des XI pour pas se tromper
- A refaire au moins une fois

4.3 Transformation de formule en clause

Définition d'une clause :

- Pas de ∃
- Pas de ∧
- Pas de ∀ implicite
- 1. Mettre les quantificateurs au début :

$$F_3: \forall x, \forall y (R(x,y) \rightarrow \exists z (R(x,z) \land R(z,y))).$$

Deviens

$$F_3: \forall x, \forall y, \exists z (\neg R(x, y)R(x, z) \land R(z, y)).$$

2. Skolenisation : supprimer les \exists en inventant des constante.

$$F_1 = \forall X, \exists Y, R(X, Y)$$

$$F_2 = \exists X, \forall Y, R(X, Y)$$

$$F_3 = \forall x, \forall y, \exists z (\neg R(x, y) R(x, z) \land R(z, y))$$

Devient

$$F_1 = \forall X, R(X, f(X))F_2 \qquad \qquad = \forall Y, R(x_0, Y)F_3 = \begin{cases} \neg R(X, Y) \lor R(X, g(X, Y)) \\ \neg R(X, Y) \lor R(g(X, Y), Y) \end{cases}$$

5 Graph conceptuel

5.1 Représentation des connaissances

- "Rocher: #" = "Le" rocher
- Bien choisir les relation dans les cercles

5.2 Joiture et généralisation

- Jointure maximale: Est-ce que les deux phrases représente la même chose → Fusion; /!\au contradiction
- Généralisation : Généralisation de ce qu'on dit, vrais pour les deux. On vas au plus générale qui rend vrais les deux
- Subsumption : Un graph en subsume un autre si il est plus général

6 Logique de description

6.1 \mathcal{FL}^-

- S'entrainer pas compris TD3
- TBox : Concept atomique $C \equiv D$, $C \subseteq D \Leftrightarrow \forall x, C(x) \to D(x)$
- ABox: a : C, < a, b >: Role
- Grammaire : pas de variable lol

6.2 ALC

- S'entrainer RIEN RIEN compris TD3
- Same de \mathcal{FL}^- plus :
- $\exists R.C$ toujours role + concept atomique
- ¬, ⊥, \top autorisé → Pratique

6.3 Interprétation

- On a un graph avec des flèches au sens important.
- On regarde toujours les mondes de départ des flèches
- $-\exists s. \neg A$ se lit "Tous les mondes qui ont une flèche s qui pointe vers un monde qui vérifie $\neg A$ "

6.4 Méthode des tableaux

TD4 mais pas beaucoup de correction

- On veux prouver ϕ un truc vrais ou faux
- On part d'une TBox acvclique
- Puis notre première case du tableau contient $Tbox \sqcap ABox \sqcap \phi$
- Then on cherche à appliquer les bonnes règles pour arriver rapidement à notre objectif.

7 Logique épistémique

- On développe les formule □◊ comme un arbre en explorant les possibilités.
- Penser que parfois les flèches de récursion ne sont pas dessiner
- /!\au implication, parfois une traduction en vaut la penne + $a \to b$ toujours vrais pour les mondes où a est faux \to vérifier surtout les mondes où a est vrais
- s'entraîner vite fait fin exo 1 TD5
- Penser au démo par l'absurde pour les trucs cons (TD5, fin exo3)
- Savoir si $p: K_p^{Si} \equiv Kp \vee K \neg p$
- Savoir lequel parmi $a, b, c \equiv K_a \vee K_b \vee K_c$
- Loi de Morgan
 - $\diamond \phi \equiv \neg \Box \neg \phi$
 - $-\Box\phi\equiv\neg\diamond\neg\phi$

Liste des axiomes logique épistémique S5 :

- T : Réflexivité des mondes $\forall w:(w,w)\in R$: $\Box\phi\to\phi$
- D : Sérialité des mondes = aucun monde seul $\forall w, \exists w' : (w, w') \in R : \Box \phi \rightarrow \diamond \phi$
- 4 : Transitivité : classiquement en math : $\forall x,y,z\in E \quad (x\mathcal{R}y\wedge y\mathcal{R}z) \Rightarrow x\mathcal{R}z$. bah pareil avec les mondes : si je sais phi je sais que je sais phi : $\Box \phi \rightarrow \Box \Box \phi$
- 5 : Euclidienne : $\diamond \phi \to \Box \diamond \phi$ Ca implique qu'il existe un lien entre chaque monde presque : $\forall w,w',w'',(w,w')\in R,(w',w'')\in R \to (w',w'')\in R$. D'après le prof c'est l'introspection negative : je sais ce que je ne sais pas.
- B : Symétrie des flèches : $\phi \to \Box \diamond \phi$ Implique qu'il existe toujours le chemin retour : $\forall w,w',(w,w') \in R \to (w',w) \in R$

Reste le TD6 à ficher