Robot delta 3 gdl

-Federico Lagos Guízar A01372758

Alcance:

- Desarrollar el modelo prototipo simulado en simulink/simscape de un robot delta de 3 grados de libertad
- Basado en primer avance de proyecto final de robótica industrial

Herramientas a utilizar

- SolidWorks:
 - Diseño de modelado de piezas CAD
- Matlab:
 - Simulación Forward/inverse kinematics y control de robot
 - Simulink
 - Simscape
- GitHub
 - Creación de repositorio con documentos utilizados

Piezas importadas en Matlab desde SolidWorks

Diagrama de bloques Simulink

Ganancias de controladores PID

$$K_P = 2; K_i = 0; K_d = 0.5$$

Simulación final

Hallazgos y mejoras

- Deficiencias:
 - Largo procesamiento para una simulación de 5s
 - Se intentó utilizar GPU y RAM, sin embargo Matlab no es configurable a ese nivel
 - Proceso altamente demandante en memoria
 - Se llegó a utilizar el mas del 70% de RAM (16 GB disponbibles)
 - No apto para comprobaciones rápidas

Hallazgos y mejoras

Mejoras

- Es posible eficientar el programa con los visuales que ofrece Matlab
- Se puede proponer otro software que permita hacer threading (I.e. Python)
- En caso de que no se quiera invertir tiempo en optimización de software, se puede optar por un equipo que contenga al menos 24 GB de memoria RAM o bien, dedicar memoria de disco a procesamiento (No recomendable)
- Reducir el tiempo de simulación