

数字电路与系统

Digital Circuits and Systems

课程性质

"数字电路与系统"——工科电类专业的专业基础课

课程任务: 从应用角度出发

- 数字电路的常用集成器件原理、符号、功能;
- 由常用器件组成的组合电路、时序电路的分析和设计方法;
- · 进而分析和设计由中规模乃至大规模集成电路组成的数字系统。

技术

· 后续数字集成电路设计、单片机/嵌入式系统设计等课程的 基础

数字电路与系统

- •Chapter 1 Fundamentals of Digital Logic 数字逻辑基础
- •Chapter 2 Logic Algebra
- •Chapter 3 Logic Gates

逻辑代数基础

逻辑门电路

- •Chapter 4 Combinational Logic
- •Chapter 5 Flip Flop
- •Chapter 6 Sequential Logic
- •Chapter 7 Pulse Circuits

组合逻辑电路

触发器

时序逻辑电路

脉冲波形的产生与变换

- •Chapter 8 Digital Analog Conversions 模数与数模转换
- •Chapter 9 Memory and Programmable Logic Devices

半导体存储器及可编程逻辑器件

•Chapter10 Digital System Design

数字系统设计基础

教材及参考书

使用教材

・ 戚金清、王兢 主編. 数字电路与系统(第3版). 电子工业出版社,2016

主要参考书

- ・ 阎石 主編. 数字电子设计基础 (第6版) . 高等教育出版社,2016
- · 邓元庆、贾鹏等 编. 数字电路与系统设计(第3版). 西安电子科技大学出版 社,2016

第1章 数字逻辑基础 Fundamentals of Digital Logic

- §1.1 数字电路 Digital Logic Circuits
- §1.2 数制 Number Systems
- §1.3 数制间转换 Base Conversions
- §1.4 代码 Codes
- §1.5 带符号的二进制数 Signed Binary Numbers

§1.1 数字电路 Digital Logic Circuits

自然界的物理量,按其变化规律可分为两类:

模拟量 Analog: 数值和时间都可以连续取值

数字量 Digital: 时间上离散,值域内只能取某些特定值

Analog 模拟量 声音 压力 速度 气味 温度 电压值 流量

8

模拟信号

- 研究模拟信号时,我们注重电路输入、输出信号间的大小、相位关系。相应的电子电路就是模拟电路,包括交直流放大器、滤波器、信号发生器等。
- · 在模拟电路中,晶体管一般工作在放大状态。

- 研究数字电路时注重电路输出、输入间的逻辑关系, 因此不能采用模拟电路的分析方法。主要的分析工具 是逻辑代数,电路的功能用真值表、逻辑表达式或波 形图表示。
- · 在数字电路中,三极管工作在开关状态下,即工作在 饱和状态或截止状态。

数字电路的发展: 电子管、晶体管、集成电路等阶段

单门集成电路

SSI/MSI

LSI/VLSI

分类	逻辑门个数	典型集成电路
小规模 SSI	≤10	基本门、触发器
中规模 MSI	10~100	译码器、计数器、加法器
大规模 LSI	100~10000	小容量存储器、门阵列
超大规模 VLSI	≥10000	单片微处理器、高密度可编程逻辑器件
特大规模 ULSI	107~109个元件	16M FLASH、256M DRAM
巨大规模 GLSI	≥109个元件	1G DRAM

特征尺寸。半导体器件中的最小尺寸。CMOS工艺中,特征尺寸典型代表为"栅"的宽度,即MOS器件的沟道长度。特征尺寸越小,芯片的集成度越高,性能越好,功耗越低。

集成电路制造流程

集成电路制造车间

集成电路的基础材料——晶圆(Wafer)

3种常用的数字集成电路

标准集成电路: 功能、物理配置固定

可编程逻辑器件:根据用户需求实现相应的逻辑功能,并且可以多次编程,如CPLD和FPGA

专用集成电路(ASIC):针对整机或系统的需要,专门为之

设计制造的集成电路

(1) 稳定性高,可靠性好

- 给定相同的输入信号(值和时间序列),一个设 计完好的数字电路的输出总是相同的。
- 模拟电路的输出随外界温度、电源电压、器件的 老化等因素而发生变化。
- 数字信号对噪声不敏感,抗干扰能力强,保密性好, 信息的保存与传输更加简便可靠。

(2)易于设计

- 数字电路又称为数字逻辑电路,它主要是对用0和1表示的数字信号进行逻辑运算和处理,广泛使用的数学工具是逻辑代数。
- 不需要复杂的数学知识,不像对电容器、晶体管或 其他模拟器件那样,要求对模型进行计算才能理解 和认识它们的内部特性和工作过程。
- 数字电路能够可靠地区分0和1两种状态就可以正常工作,电路的精度要求不高。因此,数字电路的分析与设计相对较容易。

(3) 表征数学量精度高、范围大

Analog system

Digital system

模拟系统的范围和精度 受其线性区域的范围及 噪声抑制能力的限制 数字系统可以通过增加 信息表示的位数来改善 范围和精度

(4) 可编程性

现代数字系统的设计,大多采用可编程逻辑器件。采用硬件描述语言(VHDL/Verilog HDL)在计算机上完成电路设计的编译、仿真及综合,并写入芯片,方便灵活。

(5) 快速, 低功耗

- 集成电路中单管的开关速度可以做到小于10⁻¹¹ s。整体器件中,信号从检测输入到输出的传输时间小于2×10⁻⁹ s。意味着器件每秒产生 5 亿个结果。
- 百万门以上超大规模集成芯片的功耗,可以达到毫瓦级。

(6) 批量生产,低成本

数字电路:

结构简单

容易制造

通用性强

适合于电路集成

成本低廉

台式计算机常备有"扩展插槽",以便将来使用更快的处理器或更大容量的存储器。

§1.2 数制 Number Systems

在计算机和数字系统中经常会遇到数制与编码。在数字系统中经常使用二进制、八进制和十六进制。

基数 (radix or base) : 一个数制所包含的数的个数

数制系统

十进制 decimal (r =10)

二进制 binary (r =2)

八进制 octal (r =8)

十六进制 hexadecimal (r = 16)

1. 十进制 Decimal

十进制包含10个数字: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

基数为10,逢十进一

一个十进制的数可以写成 多项式 的形式:

$$(194.32)_{10} = 1 \times 10^{2} + 9 \times 10^{1} + 4 \times 10^{0} + 3 \times 10^{-1} + 2 \times 10^{-2}$$

注意: 位于不同位置的数大小不同

权:表示该位置的大小 weight

每个位置的权为基数10 的幂。

$$(194.32)_{10} = 1 \times 10^{2} + 9 \times 10^{1} + 4 \times 10^{0} + 3 \times 10^{-1} + 2 \times 10^{-2}$$

一般说,任何一个基数为 r 的数 N 都可以按权展开成多项式的形式:

$$N = \sum_{i=-m}^{n-1} a_i r^i$$
 m — 少数个数 a_i — 第 i 个数的系数 r^i — 第 i 个数的位权

2. 二进制 Binary

二进制系统有2个数: 0,1

基数为 2, 逢二进一

0~17 列在表 1:

表 1

Decimal	Binary		Decimal	Binary
0	0		10	1010
1	1		1100	1011
2	10		12	1100
3	11	A (7	13	1101
4	100	6	14	1110
5	101		15	1111
6	110	9	16	10000
7	111		17	10001
8	1000			
9	1001			

(11010.11)2 可以写成:

$$1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}$$

$$= 16 + 8$$

$$+ 2.0 + 0.5 + 0.2$$

= 26.75

转化成十进制数

从表 1 寻找规律:

表 1

Decimal	Binary		Decima	al Binary	
0	0		10	1010	
1	1		11	1011	
2	10	2^1	12	1100	
3	11	A (13	1101	
4	100	2^2	14	1110	
5	101	CS	15	1111	
6	110		16	10000	2^4
7	111	,	17	10001	
8	1000	2^3			
9	1001				

$$1 2^1 2^2 2^3 \dots 2^n$$

n zeros

$$(128)_{10} = (2^7)_{10} = (10000000)_2$$

8 位数中最小的数

$$(2^n)_{10} = (10\cdots 0)_2$$
 是 $(n+1)$ 位数中最小的数 $n \uparrow 0$

表 1

Decimal	Binary		Decimal	Binary	
0	0		10	1010	
1	1	2 ¹ -1	11	1011	
2	10	2^1	12	1100	
3	11	2 ² -1	13	1101	
4	100	2 ² C	14	1110	
5	101		15	1111	2 ⁴ -1
6	110	Y, 50	16	10000	2^4
7	111	2 ³ -1	17	10001	
8	1000	2^3			
9	1001				

$$(2^n - 1)_{10} = \underbrace{(11...1)_2}_{n \text{ ones}}$$

是n位数中最大的数

例:
$$(255)_{10} = (2^8 - 1)_{10} = (111111111)_{2}$$

$$(253)_{10} = (255-2)_{10} = (111111111-10)_{2} = (111111101)_{2}$$

为什么二进制广泛应用于数字系统中?

- 二进制优点:
- 1)容易表示

用电路的两个状态 - 开关来表示二进制数,数码的存储和传输简单、可靠。

2)分辨性好,抗干扰能力强

二进制的缺点: 数字较大时, 位数过多

65:

十进制表示为 2 位: 65

二进制表示为 7 位: 1000001

数字越大, 该缺点越明显

所以有些时候经常会用到八进制或十六进制

3. 八进制 Octal

八进制包括8个数: 0,1,2,3,4,5,6,7

基数为8

$$(326.47)_8 = 3 \times 8^2 + 2 \times 8^1 + 6 \times 8^0 + 4 \times 8^{-1} + 7 \times 8^{-2}$$

= $192 + 16 + 6 + 0.5 + 0.12$
= $(214.62)_{10}$

转化成十进制数

	_
==	
_	

		A	
Decimal	Binary	Octal	
0	0	0	
1	1	1	
2	10	2	
3	11	3	
4	100	4	
5	101	5	
6	110	6	
7	111	70)	
8	1000	10	
9	1001	· C11 0 >	
10	1010	12	
11	1011	13	
12	1100	14	
13	1101	15	
14	1110	16	
15	1111	17	
16	10000	20	
17	10001	21	

4.十六进制 Hexadecimal

十六进制有16个数,表示为:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

基数为 16

$$(3CE.4B)_{16} = 3 \times 16^{2} + 12 \times 16^{1} + 14 \times 16^{0} + 4 \times 16^{-1} + 11 \times 16^{-2}$$

$$= 768 + 192 + 14 + 0.25 + 0.043$$

$$= (974.293)_{10}$$

转化成十进制数

表1

Decimal	Binary	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2.
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111		7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10
17	10001	21	11

5. 任意进制 (7 进制)

School of Microele 1997

§1.3 数制间转换 Base Conversions

1.γ进制转换成十进制:

将》进制的数按权展开,实现》进制转换成十进制

$$(111001.01)_2 = (1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^0 + 1 \times 2^{-2})_{10} = (57.25)_{10}$$

- 2. 十进制转换成 》进制
 - 1) 整数部分、除以) 取余, 直到商为0为止, 逆序
- 2) 小数部分,乘以 γ 取整,顺序

十进制转成二进制: 将(39.2)10 转换成二进制数

整数部分,除以》取余,直到商为0为止,逆序

整数:

LSB (least significant bit)

最低有效位

逆序

MSB

(maximum significant bit)

最高有效位

小数: 小数部分, 乘以γ取整, 顺序 (39.2)

十进制转换成八进制:

将 (179.46)10 转换成八进制数

十进制转换成十六进制:

将 (178.46)10 转换成 十六进制数

$$(178.46)_{10} = (B2.7)_{16}$$

3. 二进制与八进制之间的转换

方法: 以小数点为界向两侧划分, 三位一组, 不够添0

$$(1\ 1\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 1.\ 1\ 0\ 1\ 1)_2 = (1563.54)_8$$

5 6 3 5

注意: 最后 1: 100---4

第一个 1:001---1

 $(253.16)_8 = (010101011011 \cdot 001110)_2$

两端的0可以略去

4. 二进制与十六进制之间的转换

方法: 以小数点为界向两侧划分, 四位一组, 不够添0

$$(3D5E.7A8)_{16} = (11\ 1101\ 0101\ 1110.\ 0111\ 1010\ 1)_2$$

§1.4 代码 Codes

代表信息的数码称为代码 (code)。常用在计算机和数字系统中处理、存储以及传输各种信息。

1.4.1 8421 BCD 码

BCD: binary coded decimal (二进制编码的十进制)

BCD 码是有权码

BCD码用4位二进制数表示1位十进制数。

8421BCD 是应用最广泛的一种BCD码,因为其位权与二进制数位权相同。

表 1.

Decimal	Binary	Octal	Hexadecimal	8421BCD
0	0	0	0	0000
1	1	1	1	0001
2	10	2	2	0010
3	11	3	3	0011
4	100	4	4	0100
5	101	5	5	0101
6	110	6, 0	6	0110
7	111	7		0111
8	1000	10	8	1000
9	1001	CM1	9	1001
10	1010	12	A 00	01 0000
11	1011	13	B 00	01 0001
12	1100	14	C 00	01 0010
13	1101	15	D 00	01 0011
14	1110	16	E 00	01 0100
15	1111	17	F 00	01 0101
16	10000	20	10 00	01 0110
17	10001	21	11 00	01 0111

在 8421BCD 中 1010~1111 为禁用码

练习:

$$(75.68)_{10} = (0111 \quad 0101 \quad 0110 \quad 1000)_{8421BCI}$$

注意: 两端的0不能省略!

 $(0111\ 0010\ 0110\ 1001.\ 1000\ 0011)_{8421BCD}$

$$=(7269.83)_{10}$$

- · 十进制与8421BCD 之间可以直接转换
- ·二进制与 BCD 码不能直接转换,要先转成十进制

BCD 码还包括 <u>2421BCD</u>, <u>4221BCD</u>, <u>5421BCD</u>等 这些BCD码都是有权码

脚标 <u>8421BCD</u> 必须写

(1001 0101 0010.0111 0110) 8421BCD

1.4.2 格雷码 (The Gray Code))

格雷码的最重要的特征:

任意两个相邻码之间只有一位不同

格雷码是一种无权码

Decimal	Binary	Gray code	Decimal	Binary	Gray code
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000

在典型的 n 位格雷码中,0 和最大数 $(2^n - 1)$ 之间也只有一位不同,所以它是一种循环码。格雷码的这个特点使它在传输过程中引起的误差较小。

例:有一叉车数控调速系统,分为10档速度,这10档速度分别用BCD码和格雷码表示如下:

速度	BCD码	格雷码	速度	BCD码	格雷码
0	0000	0000	5	0101	0111
1	0001	0001	.6	0110	1111
2	0010	0011	7	0111	1110
3	0011	0010	8	1000	1100
4	0100	0110	9	1001	1000

现将3档速度调到4档速度。如果速度用BCD码编码,即:0011→0100。

如果由0→1比由1→0快,在转换过程种将会短暂出现0111 (七档),从而出现振动。 0011 → 0111 → 0100

§1.5 带符号的二进制数

Signed Binary Numbers

与操作系统和C语言相似,数字电路中的二进制数可以分为有符号(Signed)数和无符号(Unsigned)数, 两种数的编码方式不同。

1. 无符号数的编码方式——原码,反码,补码

原码(Sign-magnitude):二进制数

$$(13)_{10} = (1101)_2$$
 1101: 原码

反码 (1's complement):

原码全部取反(1变成0,0变成1),为该二进制数的反码。

1011 的反码为: 0100

补码 (2's complement):

反码末位加1,即为该二进制数的补码

1101 原码 0010 反码 + 1 0011 补码

由原码直接求补码:

从右侧数第一个1不动,向左依次求反。

原码 1101 反码求反为原码 补码 0011 补码求补为原码