$12a_{1125} \ (K12a_{1125})$

Ideals for irreducible components 2 of X_{par}

$$I_1^u = \langle u^{50} + u^{49} + \dots - u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 50 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{50} + u^{49} + \dots - u - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} - 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{4} - 3u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{8} - 5u^{6} + 7u^{4} - 2u^{2} + 1 \\ -u^{8} + 4u^{6} - 4u^{4} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{17} - 10u^{15} + 39u^{13} - 74u^{11} + 71u^{9} - 38u^{7} + 18u^{5} - 4u^{3} + u \\ -u^{17} + 9u^{15} - 31u^{13} + 50u^{11} - 37u^{9} + 12u^{7} - 4u^{5} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{30} - 17u^{28} + \dots - 2u^{2} + 1 \\ -u^{30} + 16u^{28} + \dots - 6u^{4} + 3u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{25} - 14u^{23} + \dots - 10u^{3} + u \\ u^{27} - 15u^{25} + \dots + 3u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{47} - 26u^{45} + \dots + 4u^{3} - 2u \\ u^{49} - 27u^{47} + \dots + 2u^{5} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{47} + 104u^{45} + \cdots 4u 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{50} - 13u^{49} + \dots - 53u + 3$
$c_2, c_3, c_7 \ c_8$	$u^{50} - u^{49} + \dots + u - 1$
C ₄	$u^{50} - u^{49} + \dots + 35u - 29$
c_5, c_6, c_{10} c_{11}	$u^{50} + u^{49} + \dots - u - 1$
c_9, c_{12}	$u^{50} - 9u^{49} + \dots + 279u - 41$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{50} - 3y^{49} + \dots - 187y + 9$
c_2, c_3, c_7 c_8	$y^{50} + 57y^{49} + \dots + y + 1$
<i>c</i> ₄	$y^{50} - 11y^{49} + \dots - 11375y + 841$
c_5, c_6, c_{10} c_{11}	$y^{50} - 55y^{49} + \dots + y + 1$
c_9, c_{12}	$y^{50} + 29y^{49} + \dots + 16869y + 1681$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.598747 + 0.574890I	-6.17596 - 9.61051I	-8.07514 + 7.89257I
u = 0.598747 - 0.574890I	-6.17596 + 9.61051I	-8.07514 - 7.89257I
u = -0.579767 + 0.568232I	1.46262 + 7.21330I	-5.14859 - 9.60886I
u = -0.579767 - 0.568232I	1.46262 - 7.21330I	-5.14859 + 9.60886I
u = -0.799600 + 0.134077I	-10.62720 + 4.36353I	-13.8919 - 4.2573I
u = -0.799600 - 0.134077I	-10.62720 - 4.36353I	-13.8919 + 4.2573I
u = 0.552380 + 0.559106I	2.72755 - 3.55040I	-1.47416 + 3.94014I
u = 0.552380 - 0.559106I	2.72755 + 3.55040I	-1.47416 - 3.94014I
u = -0.486892 + 0.584883I	-1.98087 + 1.99888I	-4.50156 - 3.58150I
u = -0.486892 - 0.584883I	-1.98087 - 1.99888I	-4.50156 + 3.58150I
u = 0.619098 + 0.438297I	-8.73729 - 0.86802I	-11.01246 + 3.92491I
u = 0.619098 - 0.438297I	-8.73729 + 0.86802I	-11.01246 - 3.92491I
u = 0.726133 + 0.110853I	-2.87515 - 2.61799I	-12.7473 + 6.4736I
u = 0.726133 - 0.110853I	-2.87515 + 2.61799I	-12.7473 - 6.4736I
u = 0.418082 + 0.569716I	3.12275 - 0.32958I	0.04870 + 3.38032I
u = 0.418082 - 0.569716I	3.12275 + 0.32958I	0.04870 - 3.38032I
u = 0.359261 + 0.608239I	-5.47474 + 5.57708I	-6.11056 - 1.82524I
u = 0.359261 - 0.608239I	-5.47474 - 5.57708I	-6.11056 + 1.82524I
u = -0.528151 + 0.466800I	-0.81474 + 1.58943I	-9.19847 - 3.59943I
u = -0.528151 - 0.466800I	-0.81474 - 1.58943I	-9.19847 + 3.59943I
u = -0.381969 + 0.589199I	2.04130 - 3.25118I	-3.15587 + 3.30820I
u = -0.381969 - 0.589199I	2.04130 + 3.25118I	-3.15587 - 3.30820I
u = -0.607541	-1.09411	-8.24150
u = -1.43710 + 0.11460I	-11.13960 - 3.09747I	0
u = -1.43710 - 0.11460I	-11.13960 + 3.09747I	0
u = 1.46424 + 0.12360I	-3.87403 + 0.83702I	0
u = 1.46424 - 0.12360I	-3.87403 - 0.83702I	0
u = 0.167534 + 0.493668I	-7.46565 - 2.28896I	-6.43563 + 2.79578I
u = 0.167534 - 0.493668I	-7.46565 + 2.28896I	-6.43563 - 2.79578I
u = -1.48768 + 0.13710I	-3.08950 + 2.74865I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.48768 - 0.13710I	-3.08950 - 2.74865I	0
u = 1.50999 + 0.16213I	-8.54473 - 4.64532I	0
u = 1.50999 - 0.16213I	-8.54473 + 4.64532I	0
u = 1.54653 + 0.13709I	-7.79253 - 3.77307I	0
u = 1.54653 - 0.13709I	-7.79253 + 3.77307I	0
u = -1.54628 + 0.16369I	-4.26325 + 6.15786I	0
u = -1.54628 - 0.16369I	-4.26325 - 6.15786I	0
u = 1.55577 + 0.16994I	-5.65936 - 9.90051I	0
u = 1.55577 - 0.16994I	-5.65936 + 9.90051I	0
u = 1.56928	-8.54940	0
u = -1.56295 + 0.17361I	-13.3924 + 12.3497I	0
u = -1.56295 - 0.17361I	-13.3924 - 12.3497I	0
u = -1.56817 + 0.12859I	-16.0981 + 2.9477I	0
u = -1.56817 - 0.12859I	-16.0981 - 2.9477I	0
u = -1.58508 + 0.02052I	-10.70660 + 3.03825I	0
u = -1.58508 - 0.02052I	-10.70660 - 3.03825I	0
u = 1.60009 + 0.02595I	-18.7534 - 4.8844I	0
u = 1.60009 - 0.02595I	-18.7534 + 4.8844I	0
u = -0.135075 + 0.358512I	-0.176711 + 1.051470I	-3.23682 - 6.19668I
u = -0.135075 - 0.358512I	-0.176711 - 1.051470I	-3.23682 + 6.19668I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{50} - 13u^{49} + \dots - 53u + 3$
c_2, c_3, c_7 c_8	$u^{50} - u^{49} + \dots + u - 1$
c_4	$u^{50} - u^{49} + \dots + 35u - 29$
c_5, c_6, c_{10} c_{11}	$u^{50} + u^{49} + \dots - u - 1$
c_9, c_{12}	$u^{50} - 9u^{49} + \dots + 279u - 41$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{50} - 3y^{49} + \dots - 187y + 9$
c_2, c_3, c_7 c_8	$y^{50} + 57y^{49} + \dots + y + 1$
<i>c</i> ₄	$y^{50} - 11y^{49} + \dots - 11375y + 841$
c_5, c_6, c_{10} c_{11}	$y^{50} - 55y^{49} + \dots + y + 1$
c_9, c_{12}	$y^{50} + 29y^{49} + \dots + 16869y + 1681$