Chapter 1

Random Variables and Their Distributions

Problem 1.

Solution.
$$300 \times 10^6 \times 0.5 \times \frac{2}{365^3}$$

Problem 2.

Solution. Suppose n identical balls are thrown into m boxes. Let Ω be the set of m-tuples where each entry is a non-negative integer and the sum of the entries is n. Then, by a stars and bars argument, we know that (n+m-1)

$$|\Omega| = \binom{n+m-1}{m-1}$$
. Therefore,

$$\mathbb{P}[\text{first box is empty}] = \frac{\binom{n+m-2}{m-2}}{\binom{n+m-1}{m-1}} = \frac{m-1}{n+m-1}.$$

Problem 3.

Solution. Let Ω be the set of tuples where the first entry ist he number of defective items and the second is the number of good items. Then, $\mathbb{P}\left[(0,10)\right] = \frac{\binom{90}{100}}{\binom{100}{100}} = \frac{90 \cdot 89 \cdot \ldots \cdot 81}{100 \cdot 99 \cdot \ldots \cdot 91}$.

Problem 4.

Solution. By way of contradiction, suppose that $\mathbb{P}[|\xi| > C] > 0$ for C > 0. Then, it follows that there exists some $A' \ge 1$ such that $\mathbb{P}[|\xi| \ge A'C] > 0$. So,

$$\mathbb{E}[|\xi|^m] = \sum_{\omega \in \Omega} |\xi(\omega)|^m,$$

$$\geq \sum_{\omega \in \{|\xi| \geq A'C\}} |\xi(\omega)|^m,$$

$$\geq A'^m C^m \mathbb{P}[|\xi| \geq A'C].$$

Since $\mathbb{P}[|\xi| \ge A'C]$ is constant, clearly there does not exist A > 0 such that $A \ge A'^m$ for all m, thus a contradiction.

Problem 5.

Solution. This is the famous hat-check problem. We find the probability that no one gets the right letter. Let $\Omega = S_n$, the permutation group of n elements, also let C_i be the set of all permutations where the i^{th} element is in the i^{th} position. Formally, $\sigma \in C_i$ if and only if $\sigma(i) = i$. Then, by the inclusion-exclusion principle, we have that

$$\mathbb{P}\left[\left\{\sigma: \exists i, \sigma(i) = i\right\}\right] = \mathbb{P}\left[\bigcup_{i=1}^{n} C_{i}\right],$$

$$= \sum_{i=1}^{n} \mathbb{P}\left[C_{i}\right] - \sum_{i < j} \mathbb{P}\left[C_{i} \cap C_{j}\right] + \sum_{i < j < k} \mathbb{P}\left[C_{i} \cap C_{j} \cap C_{k}\right] - \dots$$

Now, we derive the expression for each term in the previous sum. For any $\sigma \in C_{i_1} \cap C_{i_2} \cap \ldots \cap C_{i_k}$, $\sigma(i_1) = i_1$, $\sigma(i_2) = i_2, \ldots, \sigma(i_k) = i_k$. Thus, $\mathbb{P}\left[C_{i_1} \cap C_{i_2} \cap \ldots \cap C_{i_k}\right] = \frac{(n-k)!}{n!}$. Therefore, $\sum_{i_1 < i_2 < \ldots < i_k} \mathbb{P}\left[C_{i_1} \cap C_{i_2} \cap \ldots \cap C_{i_k}\right] = \binom{n}{k} \frac{(n-k)!}{n!} = \frac{1}{k!}$. So,

$$\mathbb{P}\left[\left\{\sigma: \exists i, \sigma(i) = i\right\}\right] = 1 - \frac{1}{2!} + \frac{1}{3!} - \ldots + \frac{(-1)^{n+1}}{n!},$$
$$\lim_{n \to \infty} \mathbb{P}\left[\left\{\sigma: \exists i, \sigma(i) = i\right\}\right] = 1 - \frac{1}{e}.$$

Problem 6. Not too sure how to take the limit here.

Solution. The first part of the question is a direct application of a stars and bars argument. Then, there are $\binom{n+r-1}{r-1}$ solutions to the equation $x_1+\ldots+x_r=n$. By the same argument, we find that

$$\mathbb{P}\left[x_1 = a\right] = \binom{n-a+r-2}{r-2} / \binom{n+r-1}{r-1} = \frac{(r-1)n!(n-a+r-2)!}{(n+r-1)!(n-a)!}.$$

Now, we take the limit as $r, n \to \infty$ and $n/r \to \rho > 0$.

Problem 7.

Solution. Recall, that the Poisson distribution is the measure on \mathbb{Z}^+ such that for any elementary outcome k, $\mathbb{P}[k] = \frac{\lambda^k}{e^{\lambda k!}}$. Let $\xi = \mathrm{Id}_{\mathbb{Z}^+}$. Then,

$$\mathbb{E}\left[\xi\right] = \sum_{n=0}^{\infty} \xi(n) \mathbb{P}[n],$$
$$= \sum_{n=1}^{\infty} \frac{\lambda^n}{e^{\lambda}(n-1)!},$$

expanding the sum to see the Taylor expansion more clearly, we see that

$$=\frac{\lambda}{e^{\lambda}}\left(1+\lambda+\frac{\lambda^2}{2!}+\ldots\right),$$

$$=\frac{\lambda}{e^{\lambda}}e^{\lambda},$$
 (by Taylor expansion)
$$=\lambda.$$

Now, we find the variance using the formula $Var[\xi] = \mathbb{E}[\xi^2] - (\mathbb{E}[\xi])^2$. So,

$$\mathbb{E}\left[\xi^{2}\right] = \sum_{n=0}^{\infty} \xi(n)^{2} \mathbb{P}[n],$$

$$= e^{-\lambda} \sum_{n=1}^{\infty} \frac{\lambda^{n} n}{(n-1)!},$$

$$= \lambda e^{-\lambda} \sum_{n=0}^{\infty} \frac{\lambda^{n} (n+1)}{n!},$$

$$= \lambda e^{-\lambda} \sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!} + \sum_{n=1}^{\infty} \frac{\lambda^{n}}{(n-1)!},$$

$$= \lambda e^{-\lambda} \left(e^{\lambda} + \lambda \sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!}\right),$$

$$= \lambda e^{-\lambda} \left(e^{\lambda} + \lambda e^{\lambda}\right),$$

$$= \lambda^{2} + \lambda.$$

Therefore, $\operatorname{Var}[\xi] = \mathbb{E}\left[\xi^2\right] - (\mathbb{E}\left[\xi\right])^2 = (\lambda^2 + \lambda) - \lambda^2 = \lambda$ and the variance of the Poisson distribution is the same as its expected value.

Problem 9.

Solution. Recall that if F is a distribution function of a random variable ξ then, $F_{\xi}(x) = \mathbb{P}\left[\{\xi(\omega) < x : \omega \in \Omega\}\right]$. We then evaluate the expression on the right-hand side first

$$\mathbb{P}\left[\left\{\omega \in \Omega : \xi(\omega) \leq x\right\}\right] - \lim_{\delta \downarrow 0} \mathbb{P}\left[\left\{\omega \in \Omega : \xi(\omega) \leq x - \delta\right\}\right] = \mathbb{P}\left[\left\{\omega \in \Omega : \xi(\omega) \leq x\right\}\right] - \mathbb{P}\left[\bigcup_{i=1}^{\infty} \left\{\omega \in \Omega : \xi(\omega) \leq x - \delta_{i}\right\}\right],$$

where $\delta_1, \delta_2, \ldots$ is any sequence where $\delta_i \geq 0$ and converges to 0. We first show that

$$\bigcup_{i=1}^{\infty} \{ \omega \in \Omega : \xi(\omega) \le x - \delta_i \} = \{ \omega \in \Omega : \xi(\omega) < x \},$$

That the left-hand side is a subset of the right-hand side is trivial. Now, suppose an element ω in the set on the right-hand side. There must exist some $\varepsilon > 0$, such that $\xi(\omega) = x - \varepsilon$. By convergence of $\delta_1, \delta_2, \ldots$, there must exist some δ_i where $\xi(\omega) = x - \varepsilon \le x - \delta_i$. Thus, the two sets are equivalent. Therefore,

$$\mathbb{P}\left[\left\{\omega \in \Omega : \xi(\omega) \leq x\right\}\right] - \mathbb{P}\left[\bigcup_{i=1}^{\infty} \left\{\omega \in \Omega : \xi(\omega) \leq x - \delta_{i}\right\}\right] = \mathbb{P}\left[\left\{\omega \in \Omega : \xi(\omega) \leq x\right\}\right] - \mathbb{P}\left[\left\{\omega \in \Omega : \xi(\omega) \leq x\right\}\right],$$

$$= \mathbb{P}\left[\left\{\omega \in \Omega : \xi(\omega) = x\right\}\right],$$

$$= \mathbb{P}\left[\left\{z \in \Omega : \xi(\omega) = z\right\}\right].$$

The second equality follows σ -additivity of \mathbb{P} .

Problem 10.

Solution. Let *F* be the distribution of ξ and let $\eta = a\xi + b$ where $a \neq 0$. We first find the distribution of η :

$$\begin{split} \mathbb{P}\left[\left\{\omega\in\Omega:\eta(\omega)\leq x\right\}\right] &= \mathbb{P}\left[\left\{\omega\in\Omega:a\xi(\omega)+b\leq x\right\}\right],\\ &= \mathbb{P}\left[\left\{\omega\in\Omega:\xi(\omega)\leq \frac{x-b}{a}\right\}\right],\\ &= F\left(\frac{x-b}{a}\right). \end{split}$$

Thus, taking the derivative to yield the density function, we have that $p_{\eta}(x) = \frac{1}{a} p_{\xi} \left(\frac{x-b}{a} \right)$ where p_{ξ} is the density of ξ .

Problem 11.

Solution. To show this we need a few simple measure-theoretic facts:

- 1. By definition, the density function of a random variable uniformly distributed on some set $A \subset \mathbb{R}$ where $\lambda(A) < \infty$ is $\frac{1}{\lambda(A)}$. Moreover, for any measurable-subset $B \subset A$, $\mathbb{P}_A[B] = \frac{\lambda(B)}{\lambda(A)}$. For brevity, We call \mathbb{P}_A the Lebesgue probability measure on A.
- 2. Let $C \subset D \subset G \subset \mathbb{R}$ (be measurable-subsets of \mathbb{R}) and $\mathbb{P}_D, \mathbb{P}_G$ be the Lebesgue probability measures on D, G, respectively. Then, by definition, $\mathbb{P}_D[C] = \frac{\lambda(C)}{\lambda(D)}$ and $\mathbb{P}_G[D] = \frac{\lambda(D)}{\lambda(G)}$. It follows that $\mathbb{P}_G[C] = \frac{\lambda(C)}{\lambda(G)} = \mathbb{P}_D[C]\mathbb{P}_G[D]$.

Let $(\Omega_1, \mathcal{G}_1, \mathbb{P}_{\Omega_1})$ and $(\Omega_2, \mathcal{G}_2, \mathbb{P}_{\Omega_2})$ be the probability subspaces of $[0, 2\pi]$ with the Lebesgue probability measure, where $\Omega_1 = [0, \pi/2] \cup [3\pi/2, 2\pi]$ and $\Omega_2 = [\pi/2, 3\pi/2]$. Also, let $\mathbb{P}_{\Omega_1}, \mathbb{P}_{\Omega_2}$ be the Lebesgue probability measures on Ω_1, Ω_2 , respectively. Suppose $\xi = \mathrm{Id}_{[0,2\pi]}, \xi_1 = \mathrm{Id}_{[0,\pi/2] \cup [3\pi/2,2\pi]}, \xi_2 = \mathrm{Id}_{[\pi/2,3\pi/2]}$, and $\eta = \sin(\xi)$. Then, we start by finding the distribution of η :

$$\begin{split} \mathbb{P}\left[\{\omega \in [0, 2\pi] : \eta(\omega) \leq x\}\right] &= \mathbb{P}\left[\{\omega \in [0, \pi/2] \cup [3\pi/2, 2\pi] : \eta(\xi(\omega)) \leq x\}\right] \\ &+ \mathbb{P}\left[\{\omega \in [\pi/2, 3\pi/2] : \eta(\xi(\omega)) \leq x\}\right], \\ &= \frac{1}{2}\mathbb{P}_{\Omega_1}\left[\{\omega \in \Omega_1 : \eta(\xi_1(\omega)) \leq x\}\right] + \frac{1}{2}\mathbb{P}_{\Omega_2}\left[\{\omega \in \Omega_2 : \eta(\xi_2(\omega)) \leq x\}\right], \\ &= \frac{1}{2}F_1(\arcsin(x)) + \frac{1}{2}F_2(\arcsin(x)), \end{split}$$

where F_1 , F_2 are the distribution functions for ξ_1 , ξ_2 , respectively. Differentiating with respect to x, we yield the density function:

$$\frac{1}{2} (F_1(\arcsin(x)) + F_2(\arcsin(x)))' = \frac{1}{2\sqrt{1-x^2}} (F_1'(\arcsin x) + F_2'(\arcsin x)),
= \frac{1}{2\sqrt{1-x^2}} \left(\frac{1}{\pi} + \frac{1}{\pi}\right),
= \frac{1}{\pi\sqrt{1-x^2}}.$$

Problem 12.

Solution.

Problem 13.

Solution.

Problem 14.

Solution. This is a weaker version of the Borel-Cantelli lemma. Consider the Lebesgue probability measure on [0,1]. And then consider the events $\left[0,\frac{1}{n}\right]$ for $n=1,2,\ldots$ It follows that $\sum_{k=1}^{\infty}\mathbb{P}\left[\left[0,\frac{1}{n}\right]\right]\not<\infty$, but we

know that the limit superior of the probability of this sequence of events is 0. Such a sequence of events cannot be described by the stronger version of the Borel-Cantelli lemma, however, the preconditions in this problem allow for this "counter example."

First, we show the following lemma:

Lemma 1.1. For any indexed collection of sets C_1, C_2, \ldots, C_n ,

$$\bigcup_{k=1}^{n} C_k = C_1 \cup \bigcup_{k=1}^{n-1} C_{k+1} \setminus C_k.$$

Proof. We proceed by way of induction. Suppose that n=2, then $C_1 \cup (C_2 \setminus C_1) = C_1 \cup (C_1^c \cap C_2) = (C_1 \cup C_1^c) \cap (C_2 \cup C_1) = C_1 \cup C_2$. Assuming the claim true for all n < N, we now prove it for n = N:

$$C_1 \cup \bigcup_{k=1}^{n-1} (C_{k+1} \setminus C_k) = \left(C_1 \cup \bigcup_{k=1}^{n-2} (C_{k+1} \setminus C_k) \right) \cup (C_n \setminus C_{n-1}),$$

$$= \left(\bigcup_{k=1}^{n-1} C_k \right) \cup \left(C_{n-1}^c \cap C_n \right), \qquad \text{(by ind. hyp.)}$$

$$= \left(\bigcup_{k=1}^{n-2} C_k \right) \cup \left(C_{n-1} \cup (C_{n-1}^c \cap C_n) \right),$$

$$= \left(\bigcup_{k=1}^{n-2} C_k \right) \cup \left(C_n \cup C_{n-1} \right),$$

$$= \bigcup_{k=1}^{n} C_k.$$

With this, we show the desired result:

$$\mathbb{P}\left[\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}C_{k}\right] = \lim_{n \to \infty}\mathbb{P}\left[\bigcup_{k=n}^{\infty}C_{k}\right],$$

$$= \lim_{n \to \infty}\mathbb{P}\left[C_{n} \cup \bigcup_{k=n}^{\infty}C_{k+1} \setminus C_{k}\right],$$

$$\leq \lim_{n \to \infty}\mathbb{P}[C_{n}] + \lim_{n \to \infty}\sum_{k=n}^{\infty}\mathbb{P}[C_{k+1} \setminus C_{k}],$$

$$= 0.$$

The second equality follows from Lemma 1.1 and the last equality follows from the given.

Problem 15.

Solution. If F is a continuous distribution of a random variable ξ on the probability space $(\Omega, \mathcal{G}, \mathcal{P})$, then it must be that F is injective on $\operatorname{img} \xi$. Consider, now a random variable $\eta = F(\xi)$. We proceed to find the distribution of this η :

$$\mathbb{P}[\{\omega \in \Omega : \eta(\xi(\omega)) \le x\}] = \mathbb{P}[\{\omega \in \Omega : \xi(\omega) \le F^{-1}(x)\}],$$

= $F(F^{-1}(x)).$

Note that unless F is bijective, $F \circ F^{-1} \neq \operatorname{Id}$. Recall, that there exists a right-inverse if and only if F is surjective.

Chapter 2

Sequences of Independent Trials

Some brief notes before the problems:

• Koralov and Sinai use \times instead of \otimes for the product σ -algebra. Moving forward, the reader needs to be cautious about what the operands are. For if they are σ -algebras, we understand the result of the expression to be the aforementioned product.

Problem 1.

Solution. Directly apply the definition of the binomial distribution. Let $X=\{0,1\}$. Define the random variable $\chi_i(\omega)$ for $1 \le i \le 5$ to be 1 if $\omega=1$ and zero otherwise. Then, let $\nu_5=\sum_{i=1}^5 \chi_i$. ν_5 is a binomial random variable. Thus,

$$\mathbb{P}[\nu_5 = 3] = \binom{5}{3} \frac{1}{2^5} = \frac{5}{16}.$$

Problem 2.

Solution.

Problem 3.

Solution. We directly apply the de Moivre-Laplace Theorem. Let $X_i(\omega_i)$ be a random variable that is 1 if $\omega_i = \text{heads}$ and 0 otherwise. Then, let $\nu_n = \sum_{i=1}^n X_i$. Then, for n = 1000, $\mathbb{E}\left[\nu_n\right] = 500$ and $\text{Var}\,\nu_n = 250$. k = 600 as the actual number of heads that we saw during all of the coin flips. Therefore, $z = (600 - 500)/\sqrt{250} = 20/\sqrt{(10)}$. Therefore, by the de Moivre-Laplace theorem:

$$\mathbb{P}\left[\frac{\nu_n - \mathbb{E}\left[\nu_n\right]}{\sqrt{\operatorname{Var}(\nu_n)}} \ge z\right] \ge \int_{20/\sqrt{10}}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2\right) dz,$$

$$\le 10^{-5}.$$

So, it is highly unlikely that the coin is fair.

Problem 4.

Solution.

Problem 5.

Solution.

Problem 6.

Solution.

Problem 7.

Solution.

Problem 8.

Solution.