Programación Lineal: Método SIMPLEX con tablas

Rodrigo Maranzana

Concepto

El método SIMPLEX inventado por George Dantzig (1947, US Air Force); para reducir el número de soluciones a analizar de un problema.

- Uno de los algoritmos más importantes del siglo XX.
- Variantes se usan al día de hoy en solvers.

La resolución con tablas es un tipo de representación del algoritmo.

- Resolución iterativa de problemas lineales.
- Forma didáctica: permite entender cada operación.
- Definición clara de cada componente en las operaciones (ej: variables básicas y no básicas)

Modelo lineal (LP)

 $min C^T X$

s.t.

$$AX = B$$
$$X \ge 0$$

$X \in \mathbb{R}^n$	Vector de variables de decisión.
$b \in \mathbb{R}^{m}$	Término del lado derecho.
$A \in \mathbb{R}^{m \times n}$	Matriz de coeficientes tecnológicos.
$C \in \mathbb{R}^n$	Vector de costos.

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{bmatrix} \quad C = \begin{bmatrix} c_1 \\ c_2 \\ \dots \\ c_n \end{bmatrix} \quad X = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

Algoritmo SIMPLEX: variables básicas y no básicas

- ullet Seleccionar m variables, creando el subconjunto B de variables llamadas básicas: X_B .
- lacktriangle Las variables básicas están asociadas a la matriz A_B , columnas de A en la posición de X_B .
- Como seleccionamos m variables y esa matriz ya tiene m filas de restricciones. La matriz es cuadrada $A_B \in \mathbb{R}^{m \times m}$
- La selección de las m variables debe ser tal que A_B sea invertible.
- $A_N \in \mathbb{R}^{m \times (n-m)}$ corresponde a las variables no básicas X_N .

$$A_{B} \qquad A_{N}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1m} & \dots & a_{14} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2m} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3m} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mm} \end{bmatrix} \qquad X = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \dots \\ x_{m} \\ \dots \\ x_{m} \end{bmatrix} X_{N}$$

Algoritmo SIMPLEX: variables básicas y no básicas

Una solución factible contiene ambas, variables básicas y no básicas.

- Las variables básicas: X_B , forman parte de la base y se permite que tengan un valor distinto de 0.
- Las variables no básicas X_N tendrán valor 0.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1m} & \dots & a_{14} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2m} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3m} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mm} & \dots & a_{mn} \end{bmatrix} \qquad X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_m \\ \dots \\ x_m \end{bmatrix} X_B$$

Algoritmo SIMPLEX: variables básicas y no básicas

Podemos escribir las restricciones en términos de variables básicas y no básicas:

$$AX = B$$
$$A_B X_B + A_N X_N = B$$

Despejando X_B :

$$X_B = A_B^{-1}B - A_B^{-1}A_N X_N$$
 [1]

Hacemos lo mismo con la función objetivo:

$$Z = C^T X$$

$$Z = C_B^T X_B + C_N^T X_N$$

Reemplazamos X_B con [1]

$$Z = C_B^T (A_B^{-1} B - A_B^{-1} A_N X_N) + C_N^T X_N$$

Distribuimos y simplificamos:

$$Z = C_B^T A_B^{-1} B + (C_N^T - C_B^T A_B^{-1} A_N) X_N$$
 [2]

Algoritmo SIMPLEX: expresiones

Expresiones:

[1]
$$X_B = A_B^{-1}B - A_B^{-1}A_N X_N$$

[2] $Z = C_B^T A_B^{-1}B + (C_N^T - C_B^T A_B^{-1}A_N) X_N$

Conclusiones:

- Si las variables no básicas se anulan, $X_N = 0$, entonces
 - con [1] X_B resulta $s = A_B^{-1}B$
 - con [2] Z resulta $Z_0 = C_B^T s$
- Si llamamos $H = A_B^{-1} A_N$
 - con [1] $X_B = s HX_N$
 - con [2] $Z = C_B^T s + (C_N^T C_B^T H) X_N$

Algoritmo SIMPLEX: costo de oportunidad

$$Z = C_B^T s + (C_N^T - C_B^T H) X_N$$

Llamamos costo de oportunidad de X_N al término $r^T = (C_N^T - C_B^T H)$.

Es la contribución que podría hacer X_N a la función objetivo.

Por una cuestión de acuerdo de signos con la bibliografía vamos a tomar al término como $-r^T$:

$$C_B^T H - C_N^T$$

En las tablas va a llevar el nombre de: $Z_j - C_j$

Aporte al objetivo:

- Maximización: cuanto más negativo mayor aporte.
- Minimización: cuanto más positivo mayor aporte.

Algoritmo SIMPLEX: costo de oportunidad

$$C_B^T H - C_N^T$$

$$Z_j - C_j$$

Este término nos va a permitir saber:

- Qué variable no básica X_N tiene el mejor costo de oportunidad.
- Qué variable no básica debe entrar a la base.

Dado que A_B debe ser siempre cuadrada. ¿Quién sale de la base?

Algoritmo SIMPLEX: Ratio Test

Por acuerdos con las tablas y la bibliografía:

- Llamamos A_{ij} al término $H = A_B^{-1} A_N$
- Llamamos B_k al término $s = A_B^{-1}B$

Se conoce a la proporción B_k/A_{ij} como Ratio Test.

Siendo "j" la variable no básica X_N que entra a la base.

Siendo "i" la restricción que vamos a estresar.

 $B_{i=k}/A_{ij}$ cuánto debo incrementar la variable entrante "j" para satisfacer la restricción "i"

Algoritmo SIMPLEX: Ratio Test

 $B_{i=k}/A_{ij}$ cuánto debo incrementar la variable entrante "j" para satisfacer la restricción "i"

Buscamos seleccionar siempre $\min B_{i=k}/A_{ij} \geq 0$

Esto quiere decir que:

- Con un aumento mínimo de la variable entrante cumplo con la restricción "i".
- Evito salir del recinto factible, estresando alguna restricción de más.

Algoritmo SIMPLEX: regiones de la tabla

$$H = A_B^{-1} A_N$$
 (Llamado A_{ij})

Resultado variable básica: $B_k = s = A_B^{-1}B$

Costo de Oportunidad: $Z_j - C_j = C_B^T H - C_N^T$

Resultado función objetivo: $Z_0 = C_B^T s$

Ratio Test: B_k/A_{ij}

I: matriz identidad

0: vector nulo

C_B: vector de costos básicos

 C_N : vector de costos no básicos

Ejemplo

Una empresa fabrica el producto A, con una utilidad de 2 \$/u, y el producto B, con una ganancia de 3 \$/u.

El producto A requiere para su fabricación 2 kg de cobre y 1 kg de aluminio. El producto B, en cambio, requiere 1 kg de cobre y 2 kg de aluminio. El máximo disponible de cobre y aluminio es 160 kg y 180 kg, respectivamente.

- Plantear modelo matemático.
- Resolver mediante método de tablas SIMPLEX.

Componentes del modelo

Función objetivo: Maximizar la utilidad de un mix de productos A y B.

<u>Tipo:</u> Lineal

Variables de decisión: Cantidad de producto A (X_1) y B (X_2)

<u>Tipo:</u> Lineal

Restricciones: \blacksquare Máximo de materia prima de cobre (Y_1) y aluminio (Y_2)

- Restricciones y variables de decisión Reales
- Positividad

Métodos de resolución posibles:

- Método gráfico
- Algoritmo SIMPLEX
- Algoritmo de punto interior
- Otros algoritmos específicos de asignación de recursos.
- Algoritmos heurísticos.

Método elegido: SIMPLEX

Construcción del modelo

Una empresa fabrica el producto A, que le aumenta su utilidad 2 \$ por unidad, y el producto B, que le aumenta la utilidad 3 \$ por unidad.

El producto A requiere de 2 kg de cobre y 1 kg de aluminio. El producto B requiere de 1 kg de cobre y 2 kg de aluminio. El máximo disponible de cobre es 160 kg y el máximo disponible de aluminio es de 180 kg.

$$Max Z = 2X_1 + 3X_2$$

 $sujeto a$:

$$Y_1: 2X_1 + 1X_2 \le 160$$

 $Y_2: 1X_1 + 2X_2 \le 180$

$$X_1, X_2 \geq 0$$

Modelo extendido

$$Max Z = 2X_1 + 3X_2$$

 $sujeto a$:

$$Y_1: 2X_1 + X_2 \le 160$$

$$Y_2$$
: $X_1 + 2X_2 \le 180$

$$X_1, X_2 \geq 0$$

Modelo Extendido

$$Max Z = 2X_1 + 3X_2$$

 $sujeto a$:

$$2X_1 + X_2 + X_3 = 160$$
$$X_1 + 2X_2 + X_4 = 180$$

$$X_1, X_2 \geq 0$$

Forma matricial

$$Max Z = 2X_1 + 3X_2$$

 $sujeto a$:

$$2X_1 + X_2 + X_3 = 160$$
$$X_1 + 2X_2 + X_4 = 180$$

$$X_1, X_2 \ge 0$$

Modelo Extendido Matricial

$$Max Z = C^T X$$
 $sujeto a$:

AX = b

Valores de matrices:

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix} X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$$

$$C = \begin{bmatrix} 2\\3\\0\\0 \end{bmatrix} X = \begin{bmatrix} X_1\\X_2\\X_3\\X_4 \end{bmatrix}$$

Representación gráfica

Estructura de tabla SIMPLEX

C_j					B_k
C_j Base	X _j Base	$\boldsymbol{B_k}$			$/A_{ij}^{\kappa}$
Z	Z_j -	- <i>C_j</i>			

$$Max Z = 2X_1 + 3X_2$$
 $sujeto a$:
 $2X_1 + X_2 + X_3 = 160$
 $X_1 + 2X_2 + X_4 = 180$
 $X_1, X_2 \ge 0$

$$Max \ Z = C^T X$$
 $C = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix}$
 $X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$
 $AX = b$
 $AX = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}$
 $AX = \begin{bmatrix} 160 \\ 180 \end{bmatrix}$

	C_{j}				B_k
C _j Base	X _j Base	\boldsymbol{B}_{k}			$/A_{ij}$
Z	Z_j –	- <i>C_j</i>			

$$Max Z = 2X_1 + 3X_2 + 0X_3 + 0X_4$$
 $sujeto a$:
 $2X_1 + X_2 + X_3 = 160$
 $X_1 + 2X_2 + X_4 = 180$
 $X_1, X_2 \ge 0$

Max
$$Z = C^T X$$

sujeto a:
 $AX = b$

$$C = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix} \quad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 160 \\ 180 \end{bmatrix}$$

C_{j}			2	3	0	0	B_k
C _j Base	X _j Base	$\boldsymbol{B_k}$					$/A_{ij}$
Z	Z_j -	- <i>C_j</i>					

$$Max Z = 2X_1 + 3X_2 + 0X_3 + 0X_4$$
 $sujeto a$:
 $2X_1 + 1X_2 + 1X_3 = 160$
 $1X_1 + 2X_2 + 1X_4 = 180$
 $X_1, X_2 \ge 0$

Max
$$Z = C^T X$$

sujeto a:
$$C = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix} \quad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 160 \\ 180 \end{bmatrix}$$

C_j		2	3	0	0	B_k	
C_j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	$/A_{ij}$
Z	Z_j -	- <i>C_j</i>					

$$Max Z = 2X_1 + 3X_2$$
 $sujeto a$:
 $2X_1 + 1X_2 + 1X_3 = 160$
 $1X_1 + 2X_2 + 1X_4 = 180$
 $X_1, X_2 \ge 0$

$$Max \ Z = C^T X$$
 $C = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix} \quad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$
 $AX = b$
 $AX = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 160 \\ 180 \end{bmatrix}$

C_j		2	3	0	0	B_k	
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	$/A_{ij}$
			2	1	1	0	
			1	2	0	1	
Z	Z_j -	- <i>C_j</i>					

$$Max Z = 2X_1 + 3X_2$$
 $sujeto a$:
 $2X_1 + X_2 + X_3 = 160$
 $X_1 + 2X_2 + X_4 = 180$
 $X_1, X_2 \ge 0$

Max
$$Z = C^T X$$

sujeto a:
$$C = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix} \quad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 160 \\ 180 \end{bmatrix}$$

C_j			2	3	0	0	B_k
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	$/A_{ij}$
		160	2	1	1	0	
		180	1	2	0	1	
Z	Z_j -	- <i>C_j</i>					

$$Max \ Z = 2X_1 + 3X_2$$
 $sujeto \ a$:
 $2X_1 + X_2 + X_3 = 160$
 $X_1 + 2X_2 + X_4 = 180$
 $X_1, X_2 \ge 0$

Max
$$Z = C^T X$$

sujeto a:
$$C = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix} \quad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 160 \\ 180 \end{bmatrix}$$

C_j			2	3	0	0	B_k
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	$/A_{ij}$
	X_3	160	2	1	1	0	
	X_4	180	1	2	0	1	
Z	$Z_j - C_j$						

$$Max\ Z = 2X_1 + 3X_2 + 0X_3 + 0X_4$$
 $sujeto\ a$:
 $2X_1 + X_2 + X_3 = 160$
 $X_1 + 2X_2 + X_4 = 180$
 $X_1, X_2 \ge 0$

$$Max \ Z = C^T X$$
 $C = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix}$
 $X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$
 $AX = b$
 $AX = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}$
 $AX = \begin{bmatrix} 160 \\ 180 \end{bmatrix}$

C_{j}			2	3	0	0	B_k
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	$/A_{ij}$
0	<i>X</i> ₃	160	2	1	1	0	
0	X_4	180	1	2	0	1	
Z	$Z_j - C_j$						

C_{j}			2	3	0	0	B_k
C _j Base	X _i Rase	R_k	X_1	X_2	X_3	X_4	$/A_{ij}$
0	<u>V</u> ₃	169	2	1	1	0	
0	X_4	180	1	2	0	1	
Z	Z_j -	- <i>C_j</i>	-2	-3	0	0	

$$Z_1 = C_3 * A_{11} + C_4 * A_{21} = 0 * 2 + 0 * 1 = 0$$

$$C_1 = 2$$

$$Z_1 - C_1 = 0 - 2 = -2$$

C_{j}			2	3	0	0	B_k
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	$/A_{ij}$
0	<i>X</i> ₃	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	$Z_j - C_j$		-2	-3	0	0	

$$Z = 0 * 160 + 0 * 180 = 0$$

¡Hay valores negativos, puede mejorar!

Representación gráfica (#0)

Optimización (#0)

C_{j}			2	3	0	0	B_k
C _j Base	X_j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	$/A_{ij}$
0	<i>X</i> ₃	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	Z_j -	- <i>C_j</i>	-2	-3	0	0	

Columna pivote: $\min(Z_j - C_j)$

 X_2 el más negativo, entra a la base. ¿Quién sale?

Optimización (#0)

C_j			2	3	0	0	B_k
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	$/A_{ij}$
0	<i>X</i> ₃	160	2	1	1	0	160
0	X_4	180	1	2	0	1	90
0	$Z_j - C_j$		-2	-3	0	0	

 B_k / A_{ij} (de la columna pivote) = B_k / A_{i2}

Optimización (#0)

C_{j}			2	3	0	0	B_k
C_j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	$/A_{ij}$
0	X_3	160	2	1	1	0	160
0	X_4	180	1	2	0	1	90
0	$Z_j - C_j$		-2	-3	0	0	

Fila pivote:
$$\min\left(\frac{B_k}{A_{ij}}\right)$$
, si $\frac{B_k}{A_{ij}} > 0$

 X_4 Sale de la base, entra X_2

pivote

Representación gráfica (#0 a #1)

Optimización (#0 a #1)

Tabla iteración 0

C_{j}			2	3	0	0	B_k
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	$/A_{ij}$
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	$Z_j - C_j$		-2	-3	0	0	

Tabla iteración 1

C_{j}		2	3	0	0	B_k	
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	$/A_{ij}$
0	X_3						
3	X_2						
0	Z_j -	- <i>C_j</i>					

Actualización (#1)

C_{j}			2	3	0	0	B_k
C_j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	$/A_{ij}$
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	$Z_j - C_j$		-2	-3	0	0	

Actualizar valores de la fila pivote:
$$B'_{kp} = B_{kp}/A_{ipjp}$$

$$A'_{ipj} = A_{ipj}/A_{ipjp}$$
 Valores de la fila pivote Valor pivote

Actualización (#1)

C_{j}			2	3	0	0	B_k
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	$/A_{ij}$
0	<i>X</i> ₃	160	2	1	1	0	
0	X_4	180 ₉₀	1 <mark>0.5</mark>	2 <mark>1</mark>	0 0	1 0.5	5
0	$Z_j - C_j$		-2	-3	0	0	

Actualizar valores de la fila pivote: $B'_{k_p}=B_{k_p}/A_{i_pj_p}$ $A'_{i_pj}=A_{i_pj}/A_{i_pj_p}$ Valores de la fila pivote Valor pivote

Tabla iteración 0

	C_{j}			3	0	0	B_k
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	$/A_{ij}$
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	Z_j –	- <i>C_j</i>	-2	-3	0	0	
	C_{j}		2	3	0	0	B_k
C _j Base	C _j X _j Base	B_k	2	3 X ₂	O X ₃	0 X ₄	B_k $/A_{ij}$
<i>C_j Base</i>		B_k					
	X _j Base	<i>B</i> _{<i>k</i>}					

C_{j}			2	3	0	0	B_k
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	$/A_{ij}$
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	Z_j –	- <i>C_j</i>	-2	-3	0	0	

Actualizar valores del resto de las filas

	C_{j}		2	3	0	0	B_k
C_j Base	X_j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	$/A_{ij}$
0	<i>X</i> ₃	160 ₇₀	2	→ 1)-	1	0	
0	X_4	180	1	2	0	1	
0	Z_j –	- <i>C_j</i>	-2	-3	0	0	

Actualizar valores del resto de las filas:

Valor de la fila pivote

$$B'_k = B_k - \frac{B_{k_p} * A_{ij_p}}{A_{i_p j_p}} \longrightarrow$$
 Valor de la columna pivote Valor a actualizar

- .		٠.			/	4
Tab	la	ıte	ra	CI	on	

	C_{j}			3	0	0	B_k
C _j Base	X _j Base B _k		X_1	X_2	X_3	X_4	$/A_{ij}$
0	<i>X</i> ₃	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	Z_j –	- <i>C_j</i>	-2	-3	0	0	
	C_{j}		2	3	0	0	B_k
C _j Base	C _j X _j Base	B_k	2 X ₁	3 X ₂	0 X ₃	0 X ₄	B_k $/A_{ij}$
<i>C_j Base</i> 0	,	<i>B</i> _k 70					
	X _j Base						

C_{j}			2	3	0	0	B_k
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	$/A_{ij}$
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	Z_j –	- <i>C_j</i>	-2	-3	0	0	

Actualizar valores del resto de las filas:

Valor de la fila pivote $A'_{ij} = A_{ij} - \frac{A_{ipj} * A_{ijp}}{A_{ipjp}} \longrightarrow \text{Valor de la columna pivote}$ Valor pivote Valor a actualizar

C_{j}			2	3	0	0	B_k
C _j Base	X_j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	$/A_{ij}$
0	X_3	160	2 1.5	1	1	0	
0	X_4	180	1	2	7 0	1	
0	Z_j –	$-C_j$	-2	-3	0	0	

Actualizar valores del resto de las filas:

Valor de la fila pivote $A'_{ij} = A_{ij} - \frac{A_{ipj} * A_{ijp}}{A_{ipjp}} \longrightarrow \text{Valor de la columna pivote}$ Valor pivote Valor a actualizar

	C_{j}		2	3	0	0	B_k
C _j Base	X_j Base	B_k	X_1	X_2	<i>X</i> ₃	X_4	$/A_{ij}$
0	<i>X</i> ₃	160	2 1.5	5 100	1	0-0.	<mark>5</mark>
0	X_4	180	1	2	0	1	
0	Z_j –	- <i>C_j</i>	-2	-3	0	0	

Actualizar valores del resto de las filas:

Valor de la fila pivote $A'_{ij} = A_{ij} - \frac{A_{ipj} * A_{ijp}}{A_{ipjp}} \longrightarrow \text{Valor de la columna pivote}$ Valor pivote Valor a actualizar

Tabla iteración 0

	C_{j}		2	3	0	0	B_k
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	$/A_{ij}$
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	Z_j –	- <i>C_j</i>	-2	-3	0	0	
	C_{j}		2	3	0	0	B_k
C _j Base	C _j X _j Base	B_k	2	3 X ₂	O X ₃	0 X ₄	B_k $/A_{ij}$
<i>C_j Base</i>	,	B _k 70					
	X _j Base		<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4	

	C_{j}		2	3	0	0	B_k
C_j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	$/A_{ij}$
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	Z_j –	- <i>C_j</i>	-2	-3	0	0	

Actualizar valores del resto de las filas:

C_{j}			2	3	0	0	B_k
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	$/A_{ij}$
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	~ 0	1	
0	Z_j –	- <i>C_j</i>	-2 ₀	-3) ₀	0	

Actualizar valores del resto de las filas:

Valor de la fila pivote $(Z_j-C_j)'=(Z_j-C_j)-\frac{A_{i_pj}*(Z_{j_p}-C_{j_p})}{A_{i_pj_p}}$ Valor a actualizar Valor pivote

	C_{j}		2	3	0	0	B_k
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	$/A_{ij}$
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	Z_j –	- <i>C_j</i>	-2	(-3)	0	0	
			-0.5	$\frac{1}{0}$	0	1.5	

Actualizar valores del resto de las filas:

					4
Tabl	la i	ıter	acı	on	

	C_{j}		2	3	0	0	B_k
C _j Base	X _j Base	\boldsymbol{B}_k	X_1	X_2	X_3	X_4	$/A_{ij}$
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	Z_j –	- <i>C_j</i>	-2	-3	0	0	
	C_{j}		2	3	0	0	B_k
C _j Base	C _j X _j Base	B_k	2 X ₁	3 X ₂	O X ₃	0 X ₄	B_k $/A_{ij}$
<i>C_j Base</i>	,	<i>B</i> _k 70					
	X _j Base		X_1	X_2	<i>X</i> ₃	X_4	

C_{j}			2	3	0	0	B_k
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	$/A_{ij}$
0	<i>X</i> ₃	70	1.5	0	1	-0.5	
3	X_2	90	0.5	1	0	0.5	
270	Z_j -	- <i>C_j</i>	-0.5	0	0	1.5	

$$Z = 0 * 70 + 3 * 90 = 270$$

¡Hay valores negativos, puede mejorar!

Representación gráfica (#1)

C_{j}		2	3	0	0	B_k	
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	$/A_{ij}$
0	<i>X</i> ₃	70	1.5	0	1	-0.5	
3	X_2	90	0.5	1	0	0.5	
270	Z_j –	- <i>C_j</i>	-0.5	0	0	1.5	

 X_1 Columna pivote, entra a la base

C_{j}			2	3	0	0	B_k
C _j Base	X_j Base	B_k	X_1	X_2	X_3	X_4	$/A_{ij}$
0	X_3	70	1.5	0	1	-0.5	46.67
3	X_2	90	0.5	1	0	0.5	180.00
270	Z_j -	- <i>C_j</i>	-0.5	0	0	1.5	

Calculamos B_k / A_{ij}

C_{j}		2	3	0	0	B_k	
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	$/A_{ij}$
0	X_3	70	1.5	0	1	-0.5	46.67
3	X_2	90	0.5	1	0	0.5	180.00
270	Z_j -	- <i>C_j</i>	-0.5	0	0	1.5	

El menor positivo B_k / A_{ij} es el saliente, X_3 . Entra X_1

Representación gráfica (#1 a #2)

Optimización (#1 a #2)

Tabla iteración 1

	C_{j}		2	3	0	0	B_k
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	$/A_{ij}$
0	X_3	70	1.5	0	1	-0.5	46.67
3	X_2	90	0.5	1	0	0.5	180.00
270	Z_j –	- <i>C_j</i>	-0.5	0	0	1.5	
	\mathcal{C}_{j}		2	3	0	0	B_k
C _j Base	C _j X _j Base	B_k	2	3 X ₂	O X ₃	0 X ₄	B_k $/A_{ij}$
C _j Base	,	B_k					
	X _j Base	B_k					

	C_{j}		2	3	0	0	B_k
C _j Base	X _j Base	$\boldsymbol{B_k}$	X_1	X_2	X_3	X_4	$/A_{ij}$
0	<i>X</i> ₃	70 _{46.0}	67 (1.5) ₁	0	0.6	7 -0.5	46.67
3	X_2	90	0.5	1	0	0.5	180.00
270	Z_j –	- <i>C_j</i>	-0.5	0	0	1.5	

Actualizamos la fila pivote
$$B'_{kp} = B_{kp}/A_{ipjp}$$

$$A'_{ipj} = A_{ipj}/A_{ipjp}$$
 Valores de la fila pivote Valor pivote

Tabla iteración 1

	C_{j}		2	3	0	0	B_k
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	$/A_{ij}$
0	X_3	70	1.5	0	1	-0.5	46.67
3	X_2	90	0.5	1	0	0.5	180.00
270	Z_j -	- <i>C_j</i>	-0.5	0	0	1.5	
	\mathcal{C}_{j}		2	3	0	0	B_k
C _j Base	C _j X _j Base	B_k	2 X ₁	3 X ₂	O X ₃	0 X ₄	B_k $/A_{ij}$
C _j Base	,	B _k 46.67					
	X _j Base		X_1	<i>X</i> ₂	X_3	X_4	

	C_{j}		2	3	0	0	B_k
C _j Base	X _j Base	\boldsymbol{B}_k	X_1	X_2	X_3	X_4	$/A_{ij}$
0	X_3	70	1.5	0	1	-0.5	46.67
3	X_2	90	0.5	1 1	0_0	0.5	180.00
270	Z_j –	- <i>C_j</i>	-0.5	0	0	1.5	,

Actualizamos el resto de las filas:

Valor de la fila Valor de la columna pivote
$$B'_{k} = B_{k} - \frac{B_{kp} * A_{ijp}}{A_{ipjp}} \quad A'_{ij} = A_{ij} - \frac{A_{ipj} * A_{ijp}}{A_{ipjp}}$$
 Valor a actualizar Valor pivote

Tabla iteración 1

	C_{j}		2	3	0	0	B_k
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	$/A_{ij}$
0	X_3	70	1.5	0	1	-0.5	46.67
3	X_2	90	0.5	1	0	0.5	180.00
270	Z_j –	- <i>C_j</i>	-0.5	0	0	1.5	
	C_{j}		2	3	0	0	B_k
C _j Base	C _j X _j Base	B_k	2 X ₁	3 X ₂	O X ₃	0 X ₄	B_k / A_{ij}
C _j Base	,	B _k 46.67					
	X _j Base		<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	

	C_{j}		2	3	0	0	B_k
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	$/A_{ij}$
0	X_3	70	1.5	0	1	-0.5	46.67
3	X_2	90	0.5	1	0	0.5	180.00
270	Z_j –	- <i>C_j</i>	0.5		000.	1.5 1.	. <mark>33</mark>

Actualizamos el resto de las filas:

Valor de la fila pivote Valor de la columna pivote $(Z_j - C_j)' = (Z_j - C_j) - \frac{A_{i_p j} * (Z_{j_p} - C_{j_p})}{A_{i_p j_p}}$ Valor a actualizar Valor pivote

Tabla iteración 1

	C_{j}		2	3	0	0	B_k
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	$/A_{ij}$
0	X_3	70	1.5	0	1	-0.5	46.67
3	X_2	90	0.5	1	0	0.5	180.00
270	$Z_j - C_j$		-0.5	0	0	1.5	
C_{j}			2	3	0	0	B_k
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	$/A_{ij}$
2	<i>X</i> ₁	46.67	1	0	0.67	-0.33	
3	X_2	66.67	0	1	-0.33	0.67	

C_{j}			2	3	0	0	B_k
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	$/A_{ij}$
2	X_1	46.67	1	0	0.67	-0.33	
3	X_2	66.67	0	1	-0.33	0.67	
293.33	$Z_j - C_j$		0	0	0.33	1.33	

$$Z = 2 * 46.67 + 3 * 66.67 = 293.33$$

No hay valores negativos, las variables slack salieron de la base, jes el óptimo!

Representación gráfica (#2)

Conclusión

Dado el modelo formulado, bajo las suposiciones tomadas al principio:

Se logró maximizar la solución para cantidades de producto A y B de $X_1^*=46.67$ y $X_2^*=66.67$ respectivamente; con un ingreso máximo de $Z^*=\$293.33$

Check con Python PuLP

```
import pulp
lp01 = pulp.LpProblem("Intro SIMPLEX", pulp.LpMaximize)
x = pulp.LpVariable('x', lowBound=0, cat='Continuous')
y = pulp.LpVariable('y', lowBound=0, cat='Continuous')
lp01 += 2*x + 3*y, "Z"
lp01 += 2*x + 1*y \leq 160
lp01 += 1*x + 2*y \leq 180
```

```
lp01.solve()
pulp.LpStatus[lp01.status]
print(pulp.LpStatus[lp01.status])
for variable in lp01.variables():
    print("%s = %.2f" % (variable.name,
variable.varValue))
                                                           - \square \times
print(pulp.value(lp01.objective))
                                           >> Optimal
                                           >> x = 46.67
                                           >> y = 66.67
                                           >> 293.333335
```

