Les nombres complexes Le point de vue géométrique

Angle orienté et mesure principale

EXERCICE 1

Tracer un cercle trigonométrique puis placer les points des angles suivants :

$$\bullet$$
 $\frac{\pi}{4}$

•
$$\frac{37}{2}$$

•
$$\frac{\pi}{6}$$

$$\bullet$$
 $-\frac{\pi}{3}$

•
$$\pi$$
 • $\frac{\pi}{4}$ • $\frac{3\pi}{2}$ • $\frac{\pi}{6}$ • $-\frac{\pi}{3}$ • $-\frac{3\pi}{4}$ • $\frac{5\pi}{6}$ • $-\frac{3\pi}{2}$

•
$$\frac{5\pi}{6}$$

$$-\frac{3\pi}{2}$$

EXERCICE 2

Déterminer la mesure principale correspondant aux angles α suivants :

1)
$$\alpha = \frac{7\pi}{2}$$

$$2) \ \alpha = -\frac{4\pi}{3}$$

$$3) \ \alpha = \frac{35\pi}{6}$$

1)
$$\alpha = \frac{7\pi}{2}$$
 2) $\alpha = -\frac{4\pi}{3}$ 3) $\alpha = \frac{35\pi}{6}$ 4) $\alpha = -\frac{21\pi}{4}$ 5) $\alpha = \frac{202\pi}{3}$

$$5) \ \alpha = \frac{202\pi}{3}$$

EXERCICE 3

Placer puis déterminer les valeurs du cosinus et sinus des angles suivants :

1)
$$\frac{\pi}{6}$$

2)
$$\frac{5\pi}{6}$$

3)
$$\frac{7\pi}{6}$$

2)
$$\frac{5\pi}{6}$$
 3) $\frac{7\pi}{6}$ 4) $\frac{11\pi}{6}$

5)
$$\frac{13\pi}{6}$$

EXERCICE 4

Placer puis déterminer les valeurs du cosinus et sinus des angles suivants :

1)
$$\frac{\pi}{4}$$

2)
$$\frac{9\pi}{4}$$

3)
$$\frac{5\pi}{4}$$

4)
$$\frac{81\pi}{4}$$

2)
$$\frac{9\pi}{4}$$
 3) $\frac{5\pi}{4}$ 4) $\frac{81\pi}{4}$ 5) $-\frac{108\pi}{4}$

EXERCICE 5

Placer puis déterminer les valeurs du cosinus et sinus des angles suivants :

1)
$$\frac{4\pi}{3}$$

$$2) \ \frac{\pi}{3}$$

3)
$$\frac{71\pi}{3}$$

4)
$$\frac{97\pi}{3}$$

2)
$$\frac{\pi}{3}$$
 3) $\frac{71\pi}{3}$ 4) $\frac{97\pi}{3}$ 5) $-\frac{54\pi}{3}$

Forme trigonométrique d'un nombre complexe

EXERCICE 6

Dans le repère orthonormal direct, on a représenté le carré ABCD ci-contre.

Donner l'affixe et un argument de chacun des sommets du carré ABCD

Donner la forme trigonométrique des nombres complexes suivants :

1)
$$z_1 = 2 + 2i\sqrt{3}$$

3)
$$z_3 = 4 - 4i$$

5)
$$z_5 = -2i$$

2)
$$z_2 = -\sqrt{2} + i\sqrt{2}$$

2)
$$z_2 = -\sqrt{2} + i\sqrt{2}$$
 4) $z_4 = -\frac{1}{4} + \frac{i\sqrt{3}}{4}$ 6) $z_6 = \frac{4}{1-i}$

6)
$$z_6 = \frac{4}{1-i}$$

EXERCICE 8

À l'aide d'une calculatrice, donner une valeur approchée en degré à 10^{-2} près d'un argument de chacun des nombres complexes suivants :

1)
$$z = 4 - 3i$$

2)
$$z = 1 + 2i$$

3)
$$z = -2 + i$$

EXERCICE 9

Trouver une forme trigonométrique, en utilisant les opérations sur les modules et arguments de chacun des nombres complexes suivants :

1)
$$z = (1 - i)^6$$

2)
$$z = \frac{1 - i\sqrt{3}}{1 + i}$$

3)
$$z = \frac{(\sqrt{3}+i)^9}{(1+i)^{12}}$$

EXERCICE 10

On donne les nombres complexes suivants : $z_1 = \frac{\sqrt{6 - i\sqrt{2}}}{2}$ et $z_2 = 1 - i$

- 1) Donner le module et un argument de z_1 , z_2 et $\frac{z_1}{z_2}$
- 2) Donner la forme algébrique de $\frac{z_1}{z_2}$
- 3) En déduire que : $\cos \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}$ et $\sin \frac{\pi}{12} = \frac{\sqrt{6} \sqrt{2}}{4}$

Forme exponentielle

EXERCICE 11

Donner une forme exponentielle de chacun des complexes suivants :

1)
$$z_1 = 2\sqrt{3} + 6i$$

2)
$$z_2 = (1 + i\sqrt{3})^4$$

$$3) \ z_3 = 2\left(\cos\frac{\pi}{5} - i\sin\frac{\pi}{5}\right)$$

EXERCICE 12

Dans chacun des cas suivants, écrire z sous la forme exponentielle et en déduire la forme algébrique de \bar{z} et $\frac{1}{z}$.

1)
$$z_1 = \frac{6}{1+i}$$

2)
$$z_2 = 3i e^{i\frac{\pi}{3}}$$

3)
$$z_3 = -12e^{i\frac{\pi}{4}}$$

EXERCICE 13

1) a) Exprimer $\cos 3x$ en fonction de $\cos x$ et $\sin 3x$ en fonction de $\sin x$ à l'aide de la formule de Moivre et du développement de $(a + b)^3$.

- b) En déduire que : $\cos^3 x = \frac{3\cos x + \cos 3x}{4}$ et $\sin^3 x = \frac{3\sin x \sin 3x}{4}$.
- 2) Retrouver ces deux formules à l'aide des formules d'Euler.

Ensemble de points

EXERCICE 14

Déterminer et construire les ensembles Γ_1 , Γ_2 et Γ_3 des points dont l'affixe z vérifie la condition proposée.

- 1) $z = 3e^{i\alpha}$ avec $\alpha \in [0; 2\pi[$ 2) $z = re^{i\frac{\pi}{4}}$ avec $r \in [0; +\infty[$
- 3) $z = k e^{-i\frac{\pi}{3}}$ avec $k \in \mathbb{R}$

EXERCICE 15

A et B ont pour affixes respectives 1 et 3 + 2i.

Déterminer puis construire les ensembles Γ_1 et Γ_2 , ensemble des points M dont l'affixe z satisfait les conditions suivantes :

1)
$$|z-1| = |z-(3+2i)|$$

2)
$$|z - (3 + 2i)| = 1$$

Triangle

EXERCICE 16

Soit les points A(a), B(b) et C(c) tels que : $a = 1 + \frac{3}{4}i$, $b = 2 - \frac{5}{4}i$, $c = 3 + \frac{7}{4}i$.

- 1) Placer les points A, B et C.
- 2) Quelle est la nature du triangle ABC?
- 3) Calculer l'affixe de A' tel que ABA'C soit un carré.

EXERCICE 17

Soit le plan complexe rapporté au repère orthonormé direct (O, \vec{u}, \vec{v}) . Soit les points A(a), B(b) et C(c) tels que : a = -2 + 2i, b = -3 - 6i et c = 1. Quelle est la nature du triangle ABC?

Applications dans \mathbb{C}

EXERCICE 18

Le plan est rapporté à un repère orthonormal direct (O, \vec{u}, \vec{v}) .

Soit f l'application définie dans $\mathbb{C} - \{-2i\}$ par : $f(z) = \frac{z-2+i}{z+2i}$.

1) On pose z = x + iy, avec $x, y \in \mathbb{R}$, exprimer la partie réelle et la partie imaginaire de f(z) en fonction de x et de y puis montrer que :

$$\operatorname{Re}[f(z)] = \frac{x^2 + y^2 - 2x + 3y + 2}{x^2 + (y+2)^2}$$
 et $\operatorname{Im}[f(z)] = \frac{-x + 2y + 4}{x^2 + (y+2)^2}$

3

Soyez patient et méthodique!

- 2) En déduire la nature de :
 - a) l'ensemble E des points M d'affixe z du plan, tels que f(z) soit un réel;
 - b) l'ensemble F des points M d'affixe z du plan, tels que f(z) soit un imaginaire pur ou éventuellement nul.
 - c) Représenter ces deux ensembles.

Le plan complexe est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) . Soit le point A d'affixe 1+i.

À tout point M(z) avec $z \neq 0$, on associe le point M'(z') tel que : $z' = \frac{z-1-i}{z}$ Le point M' est appelé le point image du point M.

- 1) a) Déterminer, l'affixe du point B', image du point B(i).
 - b) Montrer que, pour tout point M(z) avec $z \neq 0$, l'affixe z' du point M' est telle que $z' \neq 1$.
- 2) Déterminer l'ensemble des points M(z) avec $z \neq 0$ tel que l'affixe du point M' est telle que |z'| = 1.
- 3) Quel est l'ensemble des points M(z) avec $z \neq 0$ tel que l'affixe du point M' est un nombre réel?

EXERCICE 20

Soit le plan complexe rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) . L'unité graphique est 1 cm.

On réalisera une figure que l'on complétera au fur et à mesure des questions.

Soit A, B et C les points d'affixes respectives $z_A = 2 - 3i$, $z_B = i$ et $z_C = 6 - i$.

Partie A

- 1) Calculer $\frac{z_{\rm B} z_{\rm A}}{z_{\rm C} z_{\rm A}}$.
- 2) En déduire la nature du triangle ABC.

Partie B

On considère l'application f qui, au point M(z) avec $z \neq i$, associe le point M'(z') telle que :

 $z' = \frac{i(z-2+3i)}{z-i}$

- 1) Soit D(1-i). Déterminer l'affixe du point D' image du point D par f.
- 2) a) Montrer qu'il existe un unique point, noté E, dont l'image par *f* est le point d'affixe 2*i*.
 - b) Démontrer que E est un point de la droite (AB).
- 3) Démontrer que, pour tout point M distinct de B, $OM' = \frac{AM}{BM}$.
- 4) Démontrer que, pour tout point M distinct de A et du point B, on a l'égalité :

$$\left(\overrightarrow{u},\overrightarrow{\mathrm{OM'}}\right) = \left(\overrightarrow{\mathrm{BM}},\overrightarrow{\mathrm{AM}}\right) + \frac{\pi}{2} \quad [2\pi]$$

- 5) Démontrer que si le point M appartient à la médiatrice du segment [AB] alors le point M' appartient à un cercle dont on précisera le centre et le rayon.
- 6) Démontrer que si le point M' appartient à l'axe des imaginaires purs, privé du point B, alors le point M appartient à la droite (AB).

Soit le plan complexe est muni du repère orthonormé direct (O, \vec{u}, \vec{v}) .

L'unité graphique est 2 cm.

On fera une figure qui sera complétée tout au long de cet exercice.

Soit les points A(1) et B(-1).

Soit l'application f qui, à tout point M(z) distinct de B, associe le point M'(z') telle que :

 $z' = \frac{z - 1}{z + 1}$

- 1) Déterminer les points invariants M de f, tels que M = f(M).
- 2) a) Montrer que pour $z \neq -1$: (z'-1)(z+1) = -2.
 - b) En déduire pour $z \neq -1$ une relation entre : |z'-1| et |z+1|, puis entre $\arg(z'-1)$ et $\arg(z+1)$. Traduire ces deux relations en termes de distances et d'angles.
- 3) Montrer que si M appartient au cercle $\mathscr C$ de centre B et de rayon 2, alors M'
- 4) Soit le point P d'affixe $p = -2 + i\sqrt{3}$.
 - a) Déterminer la forme exponentielle de (p+1).

appartient au cercle \mathscr{C}' de centre A et de rayon 1.

- b) Montrer que le point P appartient au cercle \mathscr{C} .
- c) Soit Q le point d'affixe $q = -\overline{p}$ où \overline{p} est le conjugué de p. Montrer que les points A, P' et Q sont alignés dans cet ordre.
- d) En utilisant les questions précédentes, proposer une construction à la règle et au compas de l'image P' du point P par l'application f.

Vrai-Faux

EXERCICE 22

Le plan complexe est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) .

- 1) Soit A(2-5i) et B(7-3i). **Proposition 1 :** Le triangle OAB est rectangle isocèle.
- 2) Soit (Δ) l'ensemble des points M d'affixe z telle que : |z-i|=|z+2i|. **Proposition 2 :** (Δ) est une droite parallèle à l'axe des réels.
- 3) Soit $z = 3 + i\sqrt{3}$.

Proposition 3 : Pour tout entier naturel n non nul, z^{3n} est imaginaire pur.

- 4) Soit *z* un nombre complexe non nul.
 - **Proposition 4 :** Si $\frac{\pi}{2}$ est un argument de z alors |i+z|=1+|z|.

5) Soit *z* un nombre complexe non nul.

Proposition 5 : Si
$$z \in \mathbb{U}$$
 alors $z^2 + \frac{1}{z^2} \in \mathbb{R}$.

EXERCICE 23

Le plan est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) .

- 1) **Proposition 1**: Pour tout entier naturel $n: (1+i)^{4n} = (-4)^n$.
- 2) Soit (E) l'équation $(z-4)(z^2-4z+8)=0$ où $z\in\mathbb{C}$. **Proposition 2**: Les points dont les affixes sont les solutions, dans \mathbb{C} , de (E) sont les sommets d'un triangle d'aire 8.
- 3) **Proposition 3**: Pour tout nombre réel α , $1 + e^{2i\alpha} = 2e^{i\alpha}\cos(\alpha)$.
- 4) Soit A le point d'affixe $z_A = \frac{1}{2}(1+i)$ et M_n le point d'affixe $(z_A)^n$ où n désigne un entier naturel supérieur ou égal à 2.

Proposition 4 : si n-1 est divisible par 4, alors les points O, A et M_n sont alignés.

5) Soit $j \in \mathbb{U}$, d'argument $\frac{2\pi}{3}$.

Proposition 5 : On a légalité : $1 + j + j^2 = 0$.

Complexes et suite

EXERCICE 24

Le plan complexe est rapporté à un repère orthonormé direct.

On considère l'équation (E): $z^2 - 2z\sqrt{3} + 4 = 0$

- 1) Résoudre l'équation (E) dans l'ensemble $\mathbb C$ des nombres complexes.
- 2) Soit la suite (M_n) des points d'affixes $z_n = 2^n e^{i(-1)^n \frac{\pi}{6}}$, définie pour $n \ge 1$.
 - a) Vérifier que z_1 est une solution de (E).
 - b) Écrire z_2 et z_3 sous forme algébrique.
 - c) Placer les points M_1 , M_2 , M_3 et M_4 sur la figure donnée ci-dessous et tracer, les segments $[M_1, M_2]$, $[M_2, M_3]$ et $[M_3, M_4]$.
- 3) Montrer que, pour tout entier $n \ge 1$, $z_n = 2^n \left(\frac{\sqrt{3}}{2} + \frac{(-1)^n i}{2} \right)$.
- 4) Calculer les longueurs M_1M_2 et M_2M_3 .

On admet que, pour tout entier $n \ge 1$, $M_n M_{n+1} = 2^n \sqrt{3}$.

- 5) On note $\ell_n = M_1 M_2 + M_2 M_3 + \cdots + M_n M_{n+1}$.
 - a) Montrer que, pour tout entier $n \ge 1$, $\ell_n = 2\sqrt{3}(2^n 1)$.
 - b) Déterminer le plus petit entier n tel que $\ell_n \geqslant 1\,000$.

Le plan complexe est muni d'un repère orthonormé (O, \vec{u}, \vec{v}) . Pour $n \in \mathbb{N}$, on note A_n le point d'affixe z_n défini par : $z_0 = 1$ et $z_{n+1} = \left(\frac{3}{4} + \frac{\sqrt{3}}{4}i\right)z_n$. On définit la suite (r_n) par $r_n = |z_n|$ pour tout entier naturel n.

- 1) Donner la forme exponentielle du nombre complexe $\frac{3}{4} + \frac{\sqrt{3}}{4}i$.
- 2) a) Montrer que la suite (r_n) est géométrique de raison $\frac{\sqrt{3}}{2}$.
 - b) En déduire l'expression de r_n en fonction de n.
 - c) Que dire de la longueur OA_n lorsque n tend vers $+\infty$?
- 3) Soit la fonction f en Python $\stackrel{\text{def}}{=}$ suivante :
 - a) Quelle est la valeur retournée pour f(0.5)?
 - b) La valeur retournée pour f(0.01) est 33. Quel est le rôle de cette fonction f?

```
from math import*
def f(p):
    n=0
    r=1
    while r>p:
        n=n+1
        r=sqrt(3)/2*r
    return n
```

- 4) a) Démontrer que le triangle OA_nA_{n+1} est rectangle en A_{n+1} .
 - b) On admet que $z_n = r_n e^{i\frac{n\pi}{6}}$.

 Déterminer les valeurs de n pour lesquelles A_n est sur l'axe des ordonnées.
 - c) Compléter la figure suivante, en représentant les points de A_4 à A_9 . Les traits de construction seront apparents.

Soit la suite (z_n) définie dans $\mathbb C$ par : $z_0 = \sqrt{3} - i$ et $z_{n+1} = (1+i)z_n$.

Partie A

Pour tout entier naturel n, on pose $u_n = |z_n|$.

- 1) Calculer u_0 .
- 2) Démontrer que (u_n) est la suite géométrique dont on précisera le premier terme et la raison.
- 3) Pour tout entier naturel n, exprimer u_n en fonction de n.
- 4) Déterminer la limite de la suite (u_n) .

Partie B

- 1) Déterminer la forme algébrique de z_1 .
- 2) Déterminer la forme exponentielle de z_0 et de 1 + i. En déduire la forme exponentielle de z_1 .
- 3) Déduire des questions précédentes la valeur exacte de $\cos\left(\frac{\pi}{12}\right)$

EXERCICE 27

On définit la suite
$$(z_n)$$
 sur $\mathbb C$ par : $\begin{cases} z_0=16 \\ z_{n+1}=rac{1+i}{2}z_n, \ \, orall n\in \mathbb N \end{cases}$

On note r_n le module du terme z_n : $r_n = |z_n|$.

Dans le plan complexe d'origine O, on considère les points A_n d'affixes z_n .

- 1) a) Calculer z_1, z_2 et z_3 .
 - b) Placer les points A₁ et A₂ sur le graphique.
 - c) Écrire le nombre complexe $\frac{1+i}{2}$ sous forme trigonométrique.
 - d) Démontrer que le triangle OA_0A_1 est isocèle rectangle en A_1 .

- 2) a) Démontrer que la suite (r_n) est géométrique dont on précisera la raison et le premier terme.
 - b) La suite (r_n) est-elle convergente? Interpréter géométriquement ce résultat.
- 3) On note L_n la longueur de la ligne brisée qui relie le point A_0 au point A_n en passant successivement par les points A_1 , A_2 , A_3 , etc.

Ainsi
$$L_n = \sum_{i=0}^{n-1} A_i A_{i+1} = A_0 A_1 + A_1 A_2 + \dots + A_{n-1} A_n$$
.

- a) Démontrer que pour tout entier naturel n: $A_nA_{n+1} = r_{n+1}$.
- b) Donner une expression de L_n en fonction de n.
- c) Déterminer la limite éventuelle de la suite (L_n) .

