Optimisation avancée 2018-2019. Examen d'entraînement

Exercice 1 Quizz

- 1. Répondre par *Vrai* ou *Faux* aux assertions suivantes. Donnez une preuve pour chaque *Vrai* et un contre-exemple pour chaque *Faux*.
 - a) Soit $\beta > 0$. Si f est convexe et β -régulière et g est convexe, alors f + g est β -régulière.
 - b) Si f est une fonction convexe définie sur un ensemble convexe $E \subseteq \mathbb{R}^d$, alors f est différentiable sur l'intérieur de E.
 - c) Soit $f: \mathbb{R}^d \to \mathbb{R}$ et $\alpha > 0$. Alors, f est α -fortement convexe si et seulement si pour tout $u \in \mathbb{R}^d$ et pour tout $x \in \mathbb{R}^d$, $\phi_{u,x}$ est $\alpha ||u||^2$ -fortement convexe, où $\phi_{u,x}(t) = f(x + tu), \forall t \in \mathbb{R}$.
- 2. Rappeler l'algorithme de la descente de gradient pour les fonctions convexes β régulières sur \mathbb{R}^d , en rappelant l'interprétation géométrique du choix du pas.

Exercice 2 Convexité

- 1. Soit E un sous-ensemble convexe et fermé de \mathbb{R}^d et soit π_E la projection sur E. Montrer que π_E est 1-Lipschitzienne.
- 2. Soit f une fonction convexe sur un ensemble convexe ouvert E et L>0. Montrer que f est L-Lipschitzienne sur E si et seulement si pour tout $x\in E$, l'ensemble des sous-gradients de f en x est inclus dans la boule Euclidienne centrée en l'origine et de rayon L.

Exercice 3 Descente de gradient conditionnel: l'algorithme de Frank-Wolfe

Soit $E \subseteq \mathbb{R}^d$ un ensemble convexe et compact et $f: E \to \mathbb{R}$ une fonction convexe et β -régulière, où $\beta > 0$ est connu. On considère l'algorithme ci-dessous, où $\gamma_s = \frac{2}{s}$, pour tout $s = 1, \ldots, T$. Soit D le diamètre de E.

- 1. Montrer que pour tout t = 1, ..., T, $f(x_t) f(x_{t-1}) \le \gamma_t \nabla f(x_{t-1})^\top (y_{t-1} x_{t-1}) + \frac{\beta}{2} \gamma_t^2 D^2$.
- 2. Pour t = 1, ..., T, on pose $\delta_t = f(x_t) f(x^*)$. En utilisant la définition de y_{t-1} , en déduire que $\delta_t \leq (1 \gamma_t)\delta_{t-1} + \frac{\beta}{2}\gamma_t^2 D^2$.
- 3. Conclure que $f(\hat{x}) f(x^*) \leq \frac{\beta D^2}{T}$

Algorithm 1 Algorithme de Frank-Wolfe

```
x_0 \in \mathbb{R}^d.

for t = 1 TO T do
y_{t-1} \in \underset{y \in E}{\operatorname{arg \, min}} \nabla f(x_{t-1})^\top y
x_t = (1 - \gamma_t) x_{t-1} + \gamma_t y_{t-1}
end for
\hat{x} = x_T
```