식물 잎의 수분함량을 포함한 스트레스 측정 방법

김영춘*, 조문택**, 주해종***, 김갑수****, 김옥환*, 김현종*****
*공주대학교 기계자동차학부, **대원대학교 전기전자계열
****동국대학교 공과대학 컴퓨터공학과, ****(주)아세아 시멘트
********여주대학교

e-mail:mtcho@mail.daewon.ac.kr

Stress Measuring Method including The Water Content of The Plant Leaf

Young-Choon Kim*, Moon-Taek Cho**, Hae-Jong Joo***, Kab-Soo Kim****, ,Ok-Hwan Kim*, Hyun-Jong Kim*****

*Div. of Mechanical and Automotive Engineering College of Engineering, Kongju National University

Dept. of Electrical & Electric Engineering, Daewon University College *Dept. of Computer Science, Dongguk University,

****Asia Cement Co.

*****Yeoju Institude of Technology

요 약

식물의 성장에 있어서 여러 종류의 빛 파장을 이용하여 식물 잎의 각 기관에서의 이상징후에 의한 파장의 반사/흡수 및 형광발관 등에 관한 연구가 이루어지고 있다. 본 논문에서는 가시광선 영역과 NIR 영역에 있어서 식물잎의 반사 잎을 이용하여 식물 잎의 수분함량을 포함한 스트레스 측정방법을 제안했다.

1. 서론

최근 들어 식물 재배 영역에서 영상처리를 활용하여 생산에 적용하는 사례가 늘어나고 있다. 특히, 대량의 직접도가 높은 생산시설의 경우 사람에 의한관리가 용의하지 않으므로 비젼시스템에 의한 식물질병관리, 수확시기 및 생산정보시스템화 등이 이루어지고 있다.

[그림 1] 빛의 파장대별 식물 잎의 반사/흡수

식물의 잎은 자연광의 여러 파장에 대하여 잎의

기관별로 그림 1과 같이 흡수(에너지화), 반사 등을 한다.[1]

그림 2에서 가시광선 영역과 NIR영역을 포함하여 수분에 의한 흡수영역인 1.4[

화용하여 식물잎의 정상적인 대사활동과 질병에 의한 비정상적인 활동의 변화를 측정하여 인지하는 것을 목표로 하였다.

이에 본 논문에서는 선택적 파장대별 식물 잎의 반 사율 측정을 위한 시스템의 플로우를 제안하였다.

[그림 2] 빛의 파장대별 잎의 반사율

2. Luv 칼라분석

LUV 칼라 스페이스는 그림 3과 같이 400[nm]에서 680[nm]까지 표현을 할 수 있다. 부득이, 700[nm]이상의 IR영역은 Luminance만 표현하게 된다. 즉, 400[nm]에서 680[nm]까지의 광원에서는 칼라 CCD센서에 의하여 Luv값으로 반사율을 칼라 벡터로 분석이 가능하여, 700[nm]이상의 파장에 대해서는 IR CCD센서에 의한 밝기값만 존재하게 된다. 각각의 칼라영역 또는 IR영역에서 식물의 잎에 의한반사와 배경에 의한 반사는 칼라 분포의 영역을 구별하여 식물 영역을 구별할 수 있다. Luv 히스토그램과 IR 히스토그램의 영상 내의 화소 분포를 k-means 알고리즘 또는 SVM(support vector machine)등의 방법을 사용할 수 있다. 본 논문에서는 이 두 가지 방법을 모두 사용할 예정이며, 필요에 따라서 뉴럴네트웍의 방법도 고려하였다.

3. 식물화상분석

3.1. 적외선 분석

살아있는 식물은 태양광의 가시광선과 근적외선 파장 대에서 광합성유효복사(PAR) 스펙트럼 영역 (파장 $0.4\sim0.7[\mu\mathrm{m}]$)의 빛을 흡수해 광합성 과정에에너지로 사용하고 나머지를 반사한다. 일반적으로 PAR 영역 중 녹색 가시광선 대역 파장의 흡수율이낮기 때문에 식물의 잎은 녹색으로 보인다.

살아 식물에 생리장애가 발생할 경우에 눈에 띄는 변화는 장애에 민감한 엽록소의 변화로 인한 가시광 선 영역에서 발생하게 된다. 근적외선 이상 영역의 빛은 태양광 에너지의 절반 가량을 차지하지만 분자 합성에 사용되기에는 광량자의 에너지 수준이 낮고 식물의 온도를 높여 조직에 손상을 줄 수 있으므로 잎의 세포들은 근 적외선을 다양한 경로로 산란시켜 반사하거나 투과시킨다. (외피층, 공기층경계, 세포 소기관, 세포벽) 생리장애로 엽록소가 파괴될 경우 적외선 대역에 대한 투과도가 낮아지면서 반사율이 증가할 수 있다. 그밖에 식물의 질병, 노쇠, 스트레스등은 적외선 대역의 반사율에 다양한 변화로 나타난다. 그림 4는 담배잎의 반사율 스펙트럼 변화를나타냈다.

[그림 4] 담배 잎의 반사율 스펙트럼 변화

3.2. 엽록소 형광 분석

엽록소에 흡수된 광량자의 에너지는 광합성에 사용된 후 낮아진 에너지 준위를 갖는 더 긴 파장의 빚으로 방출된다. 이를 광화학적 형광 소멸 이라 한다. 광합성에 사용되지 않은 에너지는 열의 형태로 바뀌고 엽록소 형광과는 다른 파장의 적외선으로 방출된다. 이를 비광화학적 형광 소멸 이라 한다.

4. 결론

본 논문에서는 식물잎의 영상좌표에 다하여 파장 별 굴절률의 의한 분석과 식물잎의 선택적 파장에 대한 일반적인 굴절율과 일반적 분포를 벗어난 굴절 율을 가지는 특성을 이용하여 식물의 질병 및 스트 레스를 예측하였다.

참고문헌

- [1] Gregory S. Orf, Robert E. Blankenship, "Antenna Complexes for Photosynthesis", Photosynthesis Research Volume 116, Numbers 2-3 315-331 0166-8595, 2013.
- [2] 권순호, 진현정, 김욱, 노은운, 최영임, 권미,"염분과수분 스트레스에 대한 포플러 Glutathione S-Transferase family 의 발현 분석 및 이를 이용한가뭄 저항성 임목 개발 연구", 산림과학 공동학술발표 논문집, 2013.