

Kirteyman Singh Rajput

M.Tech.

Electronic Systems Engineering Indian Institute of Science, Bangalore

Research Interest

Biomedical Devices
Brain-Computer Interfaces
Optical Instrumentation
Electronic Systems Engineering
Neural Engineering

Technical Skills

Electronic Product Design
Embedded System Programming
FPGA Programming using Verilog
Image Processing
Machine Learning
Mechatronics
Microfabrication Process flow
Optical Instrumentation

ESS-Dx: A Handheld Probe for Rapid Breast Cancer Diagnosis

Aim: Design and development of elastic scattering spectroscopy (ESS)-based probe for breast cancer diagnosis and margin detection.

Objective: Design and development of data acquisition (DAQ) system, a mathematical model, and a user-friendly graphical user interface (GUI) for data (optical properties such as reflectance, absorption coefficient, and scattering coefficient of the tissue sample) acquisition, processing, and visualization in real-time

Approach

The hand-held probe be used during breast for surgery diagnosis and cancer detection, margin ensuring all the tumor is extracted at the time of surgery, eliminating the possibility of re-excision after histopathological examination.

Phantom to mimic tissue properties

Estimating Body Weight of a Lying Patient for Adjustment of Intravenous (IV) Contrast Dosage During CT Scans

Problem Statement:

An optimum dosage of IV contrast is necessary to improve the accuracy of the examination while preventing overdose.

Methodology:

- The developed system uses an RGB-Depth camera to generate a 3D Point cloud of the patient lying on the bed.
- The data is preprocessed to acquire the patient's point cloud after removal of background data.
- The anthropometric feature values are then extracted from the patient point cloud and given to an ANN model as input values, predicting the patient's body weight.

Results:

Achieved an accuracy of 73% in body weight prediction

Selected Projects

