PRÁCTICA CALIFICDA DE ECONOMETRÍA I

ACHALMA MENDOZA, Elmer Edison.

1. Elegir un modelo con dos mejores variables explicativas.

Variable endógena: Cumgpa

Variables exógenas:

- Crsgpa
- Sat
- Hsperc
- Hsrank
- Hssixe
- Tothrs

Realizamos la regresion

Dependent Variable: CUMGPA Method: Least Squares Date: 11/19/20 Time: 09:48

Sample: 1 732

Included observations: 732

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C CRSGPA SAT HSPERC HSRANK HSSIZE TOTHRS	-1.125635 0.728499 0.000952 -0.003960 -0.000922 0.000272 0.010179	0.489911 0.157549 0.000206 0.002686 0.000696 0.000301 0.000999	-2.297631 4.623965 4.626650 -1.474108 -1.324414 0.902113 10.19127	0.0219 0.0000 0.0000 0.1409 0.1858 0.3673 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.259197 0.253066 0.855280 530.3397 -920.7148 42.27798 0.000000	Mean depend S.D. dependd Akaike info c Schwarz crite Hannan-Quir Durbin-Watsd	ent var riterion erion nn criter.	2.080861 0.989617 2.534740 2.578689 2.551694 2.020110

Se observa que las variables HSPERC, HSRANK y HSSIZE son variables no significativas ya que sus P-Value son mayores a 0.05, por tanto, son variables redundantes que no tienen efectos en la variable endógena.

La modelo es de la siguiente forma:

Dependent Variable: CUMGPA Method: Least Squares Date: 11/19/20 Time: 10:26

Sample: 1 732

Included observations: 732

Variable	Coefficient	Std. Error	t-Statistic	Prob.

C	0.389803	0.188165	2.071604	0.0387
SAT	0.001225	0.000194	6.303223	0.0000
TOTHRS	0.012548	0.000931	13.48491	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.218029 0.215884 0.876309 559.8118 -940.5092 101.6299 0.000000	Mean depend S.D. depende Akaike info co Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion erion en criter.	2.080861 0.989617 2.577894 2.596729 2.585160 1.960490

las variables que mejor explica a CUMGPA son las siguientes SAT y TOTHRS, ya que son significativos con P-Value menor a O.05. El SAT como CRSGPA tiene una relación directa con la variable endógena.

2. Evaluar la Multicolinealidad, Heteroscedasticidad y Autocorrelación.

MULTICOLINEALIDAD

MATRIZ DE CORRELACIÓN

	CUMGPA	SAT	TOTHRS
CUMGPA	1	0.151569109091533	0.4188217731356013
SAT	0.151569109091533	1	-0.1270203601681987
TOTHRS	0.4188217731356013	-0.1270203601681987	1

R CUMGPA SAT=0.151 No existe una relación lineal entre las variables EXOGENAS por lo tanto podemos concluir que no existe multicolinealidad en el modelo. Según el criterio de la varianza inflacionaria de los factores no resulta que ninguno excede al valor mínimo de 10 que es criterio de esta metodología por lo tanto concluimos que no existe multicolinealidad en la regresión

Variance Inflati	on Factors		
Date: 11/19/20	Time: 09:54		
Sample: 1 732			
Included observ	vations: 732		
	Coefficient	Uncentered	Centered
Variable	Variance	VIF	VIF
С	0.035406	33.74997	NA
SAT	3.77E-08	30.08881	1.016399
TOTHRS	8.66E-07	2.842803	1.016399

HETEROCEDASTICIDAD

El test: white

Heteroskedasticity Test: White

F-statistic Obs*R-squared		Prob. F(5,726) Prob. Chi-Square(5)	0.0000 0.0000
Scaled explained SS	444.5465	Prob. Chi-Square(5)	0.0000

H0= hay homocedasticidad H1= hay heterocedasticidad

Podemos concluir que tenemos los criterios suficientes para rechazamos la hipótesis nula y aceptar la alternativa donde existe homocedasticidad en nuestro modelo

Heteroskedasticity Test: Breusch-Pagan-Godfrey

F-statistic Obs*R-squared		Prob. F(2,729) Prob. Chi-Square(2)	0.0000 0.0000
Scaled explained SS	260.5657	Prob. Chi-Square(2)	0.0000

Con la prueba de breusch – pagan- godfrey concluimos que existe heterocedasticidad ya que tenemos los criterios suficientes para rechazar la hipótesis nula y aceptar la alternativa.