Data Structures and Algorithms ¹

BITS-Pilani K. K. Birla Goa Campus

¹Material for the presentation taken from Cormen, Leiserson, Rivest and Stein, *Introduction to Algorithms, Fourth Edition*;

Ch. 22: Single-Source Shortest Paths

Ch. 22: Single-Source Shortest Paths

Effect of a negative weight cycle

 v_0 v_1 ... v_i v_c ... v_i v_{i+1} ... v_j

$$v_0$$
 v_1 ... v_i v_c ... v_i v_{i+1} ... v_j

No vertex will occur more than once in any shortest path if there is no negative weight cycle.

$$v_0$$
 v_1 ... v_i v_c ... v_i v_{i+1} ... v_j

- No vertex will occur more than once in any shortest path if there is no negative weight cycle.
- Maximum number of edges in the shortest path will be

$$v_0$$
 v_1 ... v_i v_c ... v_i v_{i+1} ... v_j

- ▶ No vertex will occur more than once in any shortest path if there is no negative weight cycle.
- Maximum number of edges in the shortest path will be (V-1).

$$v_0$$
 v_1 \ldots v_{i-1} v_i v_{i+1} \ldots v_j

$$v_0$$
 v_1 \dots v_{i-1} v_i v_{i+1} \dots v_j

▶ The shortest path from v_0 to v_j contains shortest path from v_0 to v_i for any i.

Initializing the attributes

INITIALIZE-SINGLE-SOURCE (G, s)

- 1 **for** each vertex $v \in G.V$
- $v.d = \infty$
- $\nu.\pi = NIL$
- $4 \quad s.d = 0$


```
RELAX(u, v, w)

1 if v.d > u.d + w(u, v)

2 v.d = u.d + w(u, v)

3 v.\pi = u
```

Repeated Edge Relaxation

Repeated Edge Relaxation

- s v_1 v_2 \ldots v_{i-1} v_i v_{i+1} \ldots v_j

After exactly V-1 iterations, we would have found all the shortest paths containing at most V-1 edges.

```
s v_1 v_2 ... v_{i-1} v_i v_{i+1} ... v_j 0 \infty \infty \infty \infty \infty \infty \infty \infty \infty
```

- After exactly V-1 iterations, we would have found all the shortest paths containing at most V-1 edges.
- What is the assumption here?

- After exactly V-1 iterations, we would have found all the shortest paths containing at most V-1 edges.
- ▶ What is the assumption here?
- If there is a negative weight cycle, we will be able to find shorter paths even after V-1 iterations.

Bellman-Ford Algorithm

```
BELLMAN-FORD(G, w, s)
   INITIALIZE-SINGLE-SOURCE (G, s)
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           RELAX(u, v, w)
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
           return FALSE
   return TRUE
```

Bellman-Ford Algorithm

Bellman-Ford Algorithm

Improving Bellman-Ford Algorithm

Can we improve the average running time of Bellman-Ford algorithm?

Improving Bellman-Ford Algorithm

Can we improve the average running time of Bellman-Ford algorithm?

```
BELLMAN-FORD(G, w, s)
   INITIALIZE-SINGLE-SOURCE (G, s)
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           RELAX(u, v, w)
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
           return FALSE
   return TRUE
```

► Single source shortest path problem

- ► Single source shortest path problem
- Assumes all the edges have non-negative weights.

```
DIJKSTRA(G, w, s)
    INITIALIZE-SINGLE-SOURCE (G, s)
 S = \emptyset
O = \emptyset
 4 for each vertex u \in G.V
        INSERT(Q, u)
    while Q \neq \emptyset
        u = \text{EXTRACT-MIN}(O)
         S = S \cup \{u\}
8
         for each vertex v in G.Adj[u]
             RELAX(u, v, w)
10
             if the call of RELAX decreased v.d
11
                  DECREASE-KEY (Q, v, v.d)
12
```


0

 ∞

 ∞

 ∞

▶ Weight of a path will never decrease when we add an edge to the path.

- ► $S = \{V, W, X, Y\}$
- \blacktriangleright (A,5), (B,3), (C,7), (G,10), (D, ∞), (E, ∞), (F, ∞),

Running time of Dijkstra's algorithm

```
DIJKSTRA(G, w, s)
    INITIALIZE-SINGLE-SOURCE (G, s)
 S = \emptyset
O = \emptyset
 4 for each vertex u \in G.V
        INSERT(Q, u)
    while Q \neq \emptyset
        u = \text{EXTRACT-MIN}(O)
         S = S \cup \{u\}
8
         for each vertex v in G.Adj[u]
             Relax(u, v, w)
10
11
             if the call of RELAX decreased v.d
                  DECREASE-KEY (Q, v, v.d)
12
```

Prim's algorithm

```
MST-PRIM(G, w, r)
    for each vertex u \in G.V
  u.key = \infty
3 u.\pi = NIL
4 r.key = 0
5 \quad O = \emptyset
6 for each vertex u \in G.V
      INSERT(Q, u)
    while Q \neq \emptyset
       u = \text{EXTRACT-MIN}(Q) // add u to the tree
for each vertex v in G.Adj[u] // update keys of u's non-tree neighbors
          if v \in Q and w(u, v) < v. key
11
12
              v.\pi = u
              v.kev = w(u,v)
13
              DECREASE-KEY (Q, v, w(u, v))
14
```

Dijkstra's algorithm : The problem with negative weight edge

