- **36.** a. What are hybrid orbitals?
 - b. What determines the number of hybrid orbitals produced by the hybridization of an atom?
- **37.** a. What are intermolecular forces?
 - b. In general, how do these forces compare in strength with those in ionic and metallic bonding?
 - c. What types of molecules have the strongest intermolecular forces?
- **38.** What is the relationship between electronegativity and the polarity of a chemical bond?
- **39.** a. What are dipole-dipole forces?
 - b. What determines the polarity of a molecule?
- **40.** a. What is meant by an induced dipole?
 - b. What is the everyday importance of this type of intermolecular force?
- **41.** a. What is hydrogen bonding?
 - b. What accounts for its extraordinary strength?
- **42.** What are London dispersion forces?

PRACTICE PROBLEMS

- **43.** According to the VSEPR theory, what molecular geometries are associated with the following types of molecules?
 - a. AB₃E
 - b. AB_2E_2
 - c. AB₂E
- **44.** Use hybridization to explain the bonding in methane, CH₄.
- **45.** For each of the following polar molecules, indicate the direction of the resulting dipole:
 - a. H-F
 - b. H-Cl
 - c. H-Br
 - d. H-I
- **46.** Determine whether each of the following bonds would be polar or nonpolar:
 - a. H-H
 - b. H-O
 - c. H-F
 - d. Br-Br
 - e. H-Cl
 - f. H-N

- **47.** On the basis of individual bond polarity and orientation, determine whether each of the following molecules would be polar or nonpolar:
 - a. H₂O
 - b. I₂
 - c. CF₄
 - d. NH₃
 - e. CO₂
- **48.** Draw a Lewis structure for each of the following molecules, and then use the VSEPR theory to predict the molecular geometry of each:
 - a. SCl₂
 - b. PI₃
 - c. Cl₂O
 - d. NH₂Cl
 - e. SiCl₃Br
 - f. ONCl
- **49.** Draw a Lewis structure for each of the following polyatomic ions, and then use VSEPR theory to determine the geometry of each:
 - a. NO_3^-
 - b. NH₄⁺
 - c. SO_4^{2-}
 - d. ClO₂

MIXED REVIEW

- **50.** Arrange the following pairs from strongest to weakest attraction:
 - a. polar molecule and polar molecule
 - b. nonpolar molecule and nonpolar molecule
 - c. polar molecule and ion
 - d. ion and ion
- **51.** Determine the geometry of the following molecules:
 - a. CCl₄
 - b. BeCl₂
 - c. PH₃
- **52.** What types of atoms tend to form the following types of bonding?
 - a. ionic
 - b. covalent
 - c. metallic