1 Pessimistic game

Given VPG $G = (V, V_0, V_1, E, \Omega, \mathfrak{C}, \theta)$, we can create a PG for G that is pessimistic for player $\alpha \in \{0, 1\}$, denoted $G_{\triangleright \alpha}$. We have

$$G_{\triangleright \alpha} = \{V, V_0, V_1, E', \Omega\}$$

such that

$$E' = \{(v, w) \in E \mid v \in V_{\overline{\alpha}} \lor \theta(v, w) \supseteq \mathfrak{C}\}\$$

Pessimistic games can have deadlocks.

Let G be a VPG with configurations \mathfrak{C} . Let W_0^c and W_1^c be the winning sets for G for some configuration $c \in \mathfrak{C}$.

Claim: Given winning set W_{α} for game $G_{\triangleright \alpha}$ we have $W_{\alpha} \subseteq W_{\alpha}^{c}$.

Given $v \in W_{\alpha}$, to prove: $v \in W_{\alpha}^{c}$. Every strategy played by player α in game $G_{\triangleright \alpha}$ can also be played in game G. Every strategy played by player $\overline{\alpha}$ in game G can also be played in game $G_{\triangleright \alpha}$.

2 Fixpoint iteration

Given VPG $G = (V, V_0, V_1, E, \Omega, \mathfrak{C}, \theta)$ we define subgame $G \cap \mathfrak{C}' = (V, V_0, V_1, E, \Omega, \mathfrak{C} \cap \mathfrak{C}', \theta)$.

Assume priorities are compressed such that the distinct priorities are exactly $0, \ldots, d-1$. We can solve VPG G by calling FIXPOINTITERMBR (G, V, \emptyset) .

Algorithm 1 FIXPOINTITERMBR($VPG G, I_{\nu}, I_{\mu}$)

```
1: if |\mathfrak{C}| = 1 then

2: W_0 \leftarrow \text{FixpointIter}(G, d-1, I_{\nu}, I_{\mu})

3: return (\mathfrak{C} \times W_0, \mathfrak{C} \times (V \setminus W_0))

4: end if

5: P_0 \leftarrow \text{FixpointIter}(G_{\triangleright 0}, d-1, I_{\nu}, I_{\mu})

6: P_1 \leftarrow \text{FixpointIter}(G_{\triangleright 1}, d-1, I_{\nu}, I_{\mu})

7: (\mathfrak{C}^a, \mathfrak{C}^b) \leftarrow \text{partition } \mathfrak{C} \text{ in non-empty parts}

8: (W_0^a, W_1^a) \leftarrow \text{FixpointIterMBR}(G \cap \mathfrak{C}^a, P_1, P_0)

9: (W_0^b, W_1^b) \leftarrow \text{FixpointIterMBR}(G \cap \mathfrak{C}^b, P_1, P_0)

10: W_0 \leftarrow W_0^a \cup W_0^b

11: W_1 \leftarrow W_1^a \cup W_1^b

12: return (W_0, W_1)
```

Algorithm 2 FIXPOINTITER($PG G, i, I_{\nu}, I_{\mu}$)

```
1: if i = -1 then
          \mathbf{return}\ \{v \in V_0 \mid \exists w \in V : (v, w) \in E \land w \in X_{\Omega(w)}\} \cup \{v \in V_1 \mid \forall w \in V : (v, w) \implies w \in X_{\Omega(w)}\}
 2:
 3: else
          X_i \leftarrow I_{\nu} if i is even I_{\mu} otherwise
 4:
          repeat
 5:
               X_i' \leftarrow X_i
 6:
               X_i \leftarrow \text{FIXPOINTITER}(G, i-1, I_{\nu}, I_{\mu})
 7:
          until X_i = X_i'
 8:
          return X_i
9:
10: end if
```

$$F_0 = \{ v \in V_0 \mid \exists w \in V : (v, w) \in E \land w \in X_{\Omega(w)} \} \cup \{ v \in V_1 \mid \forall w \in V : (v, w) \implies w \in X_{\Omega(w)} \}$$

$$W_0 = \sigma X_{d-1} \dots \mu X_1 \dots \mu X_1 \dots \mu X_0 \dots F_0$$

Every X_i has fixpoint operator ν if i is even and μ if i is odd. Note that fixpoint iteration works for games with deadlocks.

Set P_{α} calculated by the algorithm is winning for player α for all configuration in \mathfrak{C} . Claim: the following formula correctly calculates the winning sets for $G_{|c|}$ with $c \in \mathfrak{C}$.

$$W_0 = \sigma X_{d-1} \dots P_1 \cap \mu X_1 . P_0 \cup \nu X_0 . P_1 \cap F_0$$

From which we can conclude that it is correct to let least fixed point variables start at P_0 and greatest fixed point variables at P_1 .