Lecture 3: Evaluation and Operational Semantics v1.1 23rd January 2025

Programming Languages (H)

Simon Fowler & Michele Sevegnani

Semester 2, 2024/2025

BCSWomen Lovelace Colloquium at

- Great speakers from diverse sectors
- Poster competition meet your peers, win prizes
- Experience talking about technical topics
- Network with the Women in Computing community
- Careers fair with major companies recruiting
- Freebies and goody bags
- Students from all levels (undergrad and postgrad) welcome

Event: Wed 16 April

Poster abstract deadline: Mon 3 Feb

more info here, or email Matthew.Barr@glasgow.ac.uk

Reflection reflection

- Overall people seemed to enjoy, and understand most of, the first couple of lectures
- Several people found BNF grammars a bit tricky. They're a bit weird the first time you see them, but we'll be using them (for abstract syntax) throughout the course and will soon become familiar I hope – but if not, let me know
- One person stated "[...] it's interesting to know just how much the CPU and BIOS helps out, providing all the basic text output services, storing details of PCI devices in memory" I assume this was for OS? I'll tell Paul!

Dad Jokes (1)

- "What do you call it when Batman doesn't go to church? Christian Bale."
- "Why did the scarecrow win the award? Because he was outstanding in his field"
- "I used to hate the hokey pokey, but I really turned myself around."
- "Why do programmers prefer dark mode? Because light attracts bugs."
- "What do you call a cow with no legs? Ground beef."

Dad Jokes (2)

- "I've been reading this book about anti-gravity and it's so good I can't put it down."
- "I was going to try an all almond diet, but that's just nuts."
- "What do you call a fake spaghetti? An imPasta!"
- "What do you call a man standing between two buildings? Ali!"
- My contribution: "My family wanted me to go to flamingo lessons, but I put my foot down!"

Overview

Last time

- Introduction to the course and programming paradigms
- Concrete and abstract syntax, grammars, ambiguity
- This lecture: Evaluation and Operational Semantics
 - Interpreters vs. Compilers
 - L_{If}: Extending L_{Arith} with Booleans and Conditionals
 - Introduction to big-step operational semantics

Labs start today!

• 15:00 – 17:00 in BO720 (what a way to start the weekend)

Part 1: Interpreters and Compilers

Compilers

- We cannot run a program written in a high-level language directly on hardware!
 - (Mostly. There are some efforts to design specialised hardware for certain programming styles – see the HAFLANG project at Heriot-Watt https://haflang.github.io/)
- But for general-purpose hardware, a **compiler** translates code into (often a series of) lower-level languages, such that eventually they can be executed on hardware
- Often, even compiled code needs to be supported by a runtime system (that provides things like garbage collection)

sli.do 1238123

Example: OCaml Compiler Pipeline

Parse text into an AST

Simplify more complex constructs (e.g. optional arguments)

Ensure program is well typed, report type errors

Convert to first intermediate representation (IR) – small functional language based on the lambda calculus

Convert to second IR: make function environments explicit (closure conversion)

Convert to third IR: hoist all functions, small expression language

Convert to final IR: perform register allocation, explicit memory loads / stores

Interpreters

- An **interpreter** is a program that accepts a program written in a given programming language, and executes it directly (without generating a separate executable).
- For example, Perl is fully interpreted: the interpreter is a separate program written in C
- Interpreters work by:
 - Fetching, analysing, and executing instructions (for imperative languages)
 - Evaluating subexpressions (for expression-based / functional languages)
- Generally, interpreters are easier to write but slower than compiled code
- The first lab will involve writing an interpreter for L_{If}

Virtual Machines

- A physical machine runs machine code (e.g. x86 assembly) directly
- In contrast, a **virtual machine** evaluates instructions (usually encoded in some sort of bytecode) by an interpreter

- Advantages of VMs:
 - Platform independence: Can run compiled code on multiple platforms
 - Common backend: multiple (quite different) languages can target the same backend for example the .NET suite of languages target the .NET CLR, and all of { Java, Scala, Kotlin, Clojure } target JVM bytecode

Just-in-time (JIT) Compilers

- A JIT compiler is a middleground between compilers and interpreters, where code is compiled to native code at run-time
- JIT compilers operate selectively: they profile code and compile "hot" (i.e., frequently called) code
- An example is Java's HotSpot JIT compiler for Java

Part 2: Operational Semantics

Recap: L_{Arith}

- In Lecture 2 we introduced L_{Arith}, a minimal programming language for representing arithmetic expressions
- L_{Arith} consists of integer literals *n*, and the four basic arithmetic operations
- We discussed the concrete syntax, but more importantly the abstract syntax that directly represents the expression structure and does not include syntactic noise like brackets

How do we say what an expression means?

- All we have so far is syntax: how an expression looks
- Intuitively we can work out how to 'run' an arithmetic expression
 - we perform the numeric computations and return the result
- Taking our running example of (1 + (2 * 3)) + (3 * 4).
 - We start by multiplying 2 and 3
 - Once we've multiplied 2 and 3, we'll get 6, and then we can add 1 to get 7
 - Then we can multiply 3 and 4 to get 12
 - Finally we can add 7 and 12 to get 19
- For arithmetic, this is all straightforward but not all languages will be this simple!

sli.do 1238123

Aside: Determinism and the Church-Rosse Theorem

- We can reduce summands in either order and arrive at the same result: we say that evaluation is deterministic or satisfies the Church-Rosser property
- This is not the case for all PLs –
 especially those that have side effects (e.g. sending packets,
 printing to the console)
- The Theory of Computation course (running again next year, hopefully!) treats this in much more depth

Approaches to Programming Language Semantics

Operational

Details **reduction** of an expression either to another expression (small-step) or a value (big-step)

Denotational

Maps expressions to **semantic** (mathematical) objects.

Axiomatic

$${P} M {Q}$$

Describes evaluation in terms of pre- and post-conditions on the program state

sli.do 1238123

Approaches to Programming Language Semantics

- We will only consider operational semantics in this course.
- Operational semantics are useful for seeing how the **state of a system evolves**, especially for systems with side-effects or concurrency.
 - However, they can sometimes be **verbose**, and reasoning about more intricate properties can be difficult
- Denotational semantics are extremely **powerful**, being particularly useful for **proving complex properties** such as program equivalence
 - However, modelling realistic language features (e.g. recursion or polymorphism) often requires advanced mathematics (e.g. domain theory / category theory)
- Axiomatic semantics are mostly used for verification of imperative programs, or describing the semantics of shared-memory concurrency in real-world processors (e.g. the specification of Arm processors)

Textual descriptions

- Let's first write out textual descriptions for how to evaluate L_{Arith} expressions.
- We have two types of expression: integer literals *n*, and arithmetic operations *L* \odot *n*.

n

An integer *n* is a **value**: it is already in its simplest form

L

M

To evaluate an arithmetic operation, evaluate L to a value, evaluate M to a value, and then perform the operation on the results

Pitfalls of Textual Descriptions

- Textual descriptions can be imprecise: the language designer might mean something different to what is understood by the language implementer
- We can't prove properties about textual descriptions: they are not mathematically defined
- Textual descriptions don't scale: more complex language features require lots of (confusing) text to describe
- Textual descriptions leave room for edge cases due to ambiguity

Example convoluted textual description

"Pops the top two values off the stack and "rolls" the remaining stack entries to a depth equal to the second value popped, by a number of rolls equal to the first value popped.

A single roll to depth *n* is defined as burying the top value on the stack *n* deep and bringing all values above it up by 1 place.

A negative number of rolls rolls in the opposite direction.

A negative depth is an error and the command is ignored.

If a roll is greater than an implementation-dependent maximum stack depth, it is handled as an implementationdependent error, though simply ignoring the command is recommended."

Expressions and Values

- A **value** is data, and is the final result of a computation. It cannot evaluate further.
- **Expressions** in L_{Arith} include binary operations, which may need to evaluate further. In our language, every expression should eventually evaluate to a value.

(Big-step) Operational Semantics

Big-step operational semantics involves showing how an **expression M evaluates to a value V**. You can think of the judgement on the left being like a function signature Expression -> Value.

We then need **inference rules** to show how expressions evaluate: remember that an inference rule says that if the **premises** (P_1 , P_2 , ..., P_n on the top of the rule) hold, then the **conclusion** (Q, on the bottom of the rule) holds.

$$\frac{P_1 \quad P_2 \quad \dots \quad P_n}{Q}$$

Often, it is useful to read PL inference rules **bottom-up**

L_{Arith} Semantics

All integers are values and cannot reduce further, so we are done

Showing how an expression evaluates

- Given the inference rules, we can now use the semantics to show how any expression evaluates down to a value by constructing a derivation tree
- We start with our expression at the bottom of the tree, and match the outermost subexpression to an inference rule
- We can then work upwards, until we reach an axiom (a rule without any premises), and finally fill in the values on the way down

$$\frac{L \Downarrow V \qquad M \Downarrow W}{L \odot M \qquad \Downarrow V \widehat{\odot} W}$$

$$(1+(2*3))+(3*4)$$
 \Downarrow ?

$$\frac{L \Downarrow V \qquad M \Downarrow W}{L \odot M \qquad \Downarrow V \widehat{\odot} W}$$

$$\frac{1 + (2 * 3) \Downarrow ?}{(1 + (2 * 3)) + (3 * 4) \Downarrow ?}$$

$$\frac{L \Downarrow V \qquad M \Downarrow W}{L \odot M \qquad \Downarrow V \widehat{\odot} W}$$

$$\frac{L \Downarrow V \qquad M \Downarrow W}{L \odot M \qquad \Downarrow V \widehat{\odot} W}$$

$$\frac{L \Downarrow V \qquad M \Downarrow W}{L \odot M \qquad \Downarrow V \widehat{\odot} W}$$

$$\frac{L \Downarrow V \qquad M \Downarrow W}{L \odot M \qquad \Downarrow \qquad V \widehat{\odot} W}$$

$$\frac{L \Downarrow V \qquad M \Downarrow W}{L \odot M \qquad \Downarrow \qquad V \widehat{\odot} W}$$

$$\frac{L \Downarrow V \qquad M \Downarrow W}{L \odot M \qquad \Downarrow V \widehat{\odot} W}$$

Example 2 (on the visualiser)

Part 3: Extending LArith with Booleans and Conditionals

Additional features, informally

- L_{Arith} is still quite far from a programming language!
- We'll now extend L_{Arith} with Booleans and conditional expressions, to show our first instance of branching control flow
- We'll need some extra constructs:
 - true and false, which are our Boolean values
 - Additional operators that work on integers (<, >) and Booleans (&&, | |)
 and both (==)
 - A conditional expression if L then M else N that evaluates M if L evaluates to true, and N if L evaluates to false

L_{If} Abstract Syntax

```
L<sub>If</sub> Abstract Syntax
Integers n
           ::= true
Booleans b
                          false
Operators ⊙ ::= +
                     > &&
Values V, W ::= n | b
Constants c ::= n | b
Terms L, M, N ::= C
                    \odot
                  if L then M else N
```

- The syntax of L_{lf} is on the left (new constructs highlighted).
- Note that there are some design decisions
 - We could include values V directly in terms L, M, N (rather than having the syntactic class for constants) but it's often good to have a syntactic separation of static and runtime terms
 - We could just include true and false directly in values / terms, rather than having a separate syntactic category

L_{If} reduction rules

The rules from L_{Arith} are very similar. We generalise the value rule to arbitrary constants rather than just numbers. We don't need to change the binary operator rule.

$$\overline{c \Downarrow c}$$

$$\frac{L \Downarrow V \qquad M \Downarrow W}{L \bigodot M \qquad \Downarrow \qquad V \bigcirc W}$$

We need **two** rules for conditional statements: one for if the predicate returns true (which evaluates the first branch), and another for if the predicate returns false (which evaluates the second branch).

$$\frac{L \Downarrow \mathsf{true} \quad M \Downarrow V}{\mathsf{if} \, L \, \mathsf{then} \, M \, \mathsf{else} \, N \, \Downarrow V}$$

$$\frac{L \Downarrow \mathsf{false} \quad N \Downarrow V}{\mathsf{if} L \mathsf{then} \, M \, \mathsf{else} \, N \Downarrow V}$$

Finally we need **two** rules for equality: one if both expressions evaluate to two identical values, and one if not.

$$\frac{M \Downarrow V \qquad N \Downarrow V}{M == N \Downarrow \mathsf{true}}$$

$$\frac{M \Downarrow V \quad N \Downarrow W \quad V \neq W}{M == N \Downarrow \mathsf{false}}$$

$$\frac{L \Downarrow V \quad M \Downarrow W}{L \odot M}$$

$$\frac{L \Downarrow \text{true} \quad M \Downarrow V}{L \text{true} \quad M \Downarrow V} \qquad \frac{L \Downarrow \text{false} \quad N \Downarrow V}{\text{if } L \text{ then } M \text{ else } N \Downarrow V}$$

$$\frac{M \Downarrow V \quad N \Downarrow V}{M == N \Downarrow \text{true}} \qquad \frac{M \Downarrow V \quad N \Downarrow W \quad V \neq W}{M == N \Downarrow \text{false}}$$

$$\frac{L \Downarrow V \quad M \Downarrow W}{L \odot M \Downarrow V \odot W}$$

$$\frac{L \Downarrow \text{true} \quad M \Downarrow V}{\text{if } L \text{ then } M \text{ else } N \Downarrow V}$$

$$\frac{L \Downarrow \text{false} \quad N \Downarrow V}{\text{if } L \text{ then } M \text{ else } N \Downarrow V}$$

$$\frac{M \Downarrow V \quad N \Downarrow V}{M == N \Downarrow \text{true}} \quad \frac{M \Downarrow V \quad N \Downarrow W \quad V \neq W}{M == N \Downarrow \text{false}}$$

 $5 > 6 \Downarrow ?$

$$\frac{L \Downarrow V \quad M \Downarrow W}{L \odot M} \qquad \frac{L \Downarrow V \quad \bigcap W}{L \odot M} \qquad \frac{L \Downarrow \text{false} \quad N \Downarrow V}{\text{if } L \text{ then } M \text{ else } N \Downarrow V} \qquad \frac{L \Downarrow \text{false} \quad N \Downarrow V}{\text{if } L \text{ then } M \text{ else } N \Downarrow V} \qquad \frac{M \Downarrow V \quad N \Downarrow W \quad V \neq W}{M == N \Downarrow \text{true}} \qquad \frac{M \Downarrow V \quad N \Downarrow W \quad V \neq W}{M == N \Downarrow \text{false}}$$

$$\frac{5 \sqrt[3]{5}}{5 > 6 \sqrt[3]{6}}$$
if $5 > 6$ then 3 else $(4 * 5) + 6 \sqrt[3]{2}$?

$$\frac{L \Downarrow V \quad M \Downarrow W}{L \odot M \Downarrow V \odot W}$$

$$\frac{L \Downarrow \text{true} \quad M \Downarrow V}{\text{if } L \text{ then } M \text{ else } N \Downarrow V} \quad \frac{L \Downarrow \text{false} \quad N \Downarrow V}{\text{if } L \text{ then } M \text{ else } N \Downarrow V}$$

$$\frac{M \Downarrow V \quad N \Downarrow V}{M == N \Downarrow \text{true}} \quad \frac{M \Downarrow V \quad N \Downarrow W \quad V \neq W}{M == N \Downarrow \text{false}}$$

$$\frac{5 \sqrt{5}}{5 > 6 \sqrt{6}}$$
5 > 6 \(\psi \) false

$$(4*5)+6$$
 $\$$?

$$\frac{L \Downarrow V \quad M \Downarrow W}{L \odot M \Downarrow V \odot W}$$

$$\frac{L \Downarrow \text{true} \quad M \Downarrow V}{\text{if } L \text{ then } M \text{ else } N \Downarrow V}$$

$$\frac{L \Downarrow \text{false} \quad N \Downarrow V}{\text{if } L \text{ then } M \text{ else } N \Downarrow V}$$

$$\frac{M \Downarrow V \quad N \Downarrow V}{M == N \Downarrow \text{true}} \quad \frac{M \Downarrow V \quad N \Downarrow W \quad V \neq W}{M == N \Downarrow \text{false}}$$

$$\frac{L \Downarrow V \quad M \Downarrow W}{L \odot M \Downarrow V \odot W}$$

$$\frac{L \Downarrow \mathsf{true} \quad M \Downarrow V}{\mathsf{if} \, L \, \mathsf{then} \, M \, \mathsf{else} \, N \Downarrow V} \quad \frac{L \Downarrow \mathsf{false} \quad N \Downarrow V}{\mathsf{if} \, L \, \mathsf{then} \, M \, \mathsf{else} \, N \Downarrow V}$$

$$\frac{M \Downarrow V \quad N \Downarrow V}{M == N \Downarrow \mathsf{true}} \quad \frac{M \Downarrow V \quad N \Downarrow W \quad V \neq W}{M == N \Downarrow \mathsf{false}}$$

$$\frac{5 \downarrow 5}{5 \downarrow 6} \stackrel{4 \downarrow 4}{6 \downarrow 6} \stackrel{5 \downarrow 5}{4 * 5 \downarrow 20} \stackrel{6 \downarrow 6}{6 \downarrow 6}$$

$$\frac{5 \downarrow 5}{6 \downarrow 6} \stackrel{4 * 5 \downarrow 20}{6 \downarrow 6} \stackrel{6 \downarrow 6}{4 * 5} \stackrel{1}{+} 6 \downarrow ?$$
if $5 > 6$ then 3 else $(4 * 5) + 6 \downarrow ?$

$$\frac{L \Downarrow V \quad M \Downarrow W}{L \odot M} \qquad \frac{L \Downarrow V \quad M \Downarrow W}{L \odot M} \qquad \frac{L \Downarrow \text{false} \quad N \Downarrow V}{\text{if } L \text{ then } M \text{ else } N \Downarrow V} \qquad \frac{L \Downarrow \text{false} \quad N \Downarrow V}{\text{if } L \text{ then } M \text{ else } N \Downarrow V} \qquad \frac{M \Downarrow V \quad N \Downarrow W \quad V \neq W}{M == N \Downarrow \text{true}} \qquad \frac{M \Downarrow V \quad N \Downarrow W \quad V \neq W}{M == N \Downarrow \text{false}}$$

$$\frac{5 \Downarrow 5}{5 \geqslant 6 \Downarrow 6} \qquad \frac{4 \Downarrow 4}{4 * 5 \Downarrow 5} \qquad \frac{6 \Downarrow 6}{6 \Downarrow 6}$$

$$5 \geqslant 6 \Downarrow \text{ false} \qquad (4 * 5) + 6 \Downarrow 26$$
if $5 \geqslant 6$ then 3 else $(4 * 5) + 6 \Downarrow ?$

$$\frac{L \Downarrow V \quad M \Downarrow W}{L \odot M \Downarrow V \odot W}$$

$$\frac{L \Downarrow \text{true} \quad M \Downarrow V}{\text{if } L \text{ then } M \text{ else } N \Downarrow V} \quad \frac{L \Downarrow \text{false} \quad N \Downarrow V}{\text{if } L \text{ then } M \text{ else } N \Downarrow V}$$

$$\frac{M \Downarrow V \quad N \Downarrow V}{M == N \Downarrow \text{true}} \quad \frac{M \Downarrow V \quad N \Downarrow W \quad V \neq W}{M == N \Downarrow \text{false}}$$

$$\frac{5 \downarrow 5}{5 \downarrow 6} \frac{6 \downarrow 6}{4 * 5 \downarrow 20} = \frac{4 \downarrow 4}{6 \downarrow 6} \frac{5 \downarrow 5}{6 \downarrow 6}$$

$$\frac{5 > 6 \downarrow 6}{5 > 6 \downarrow 6} = \frac{4 * 5 \downarrow 20}{(4 * 5) + 6 \downarrow 26}$$
if $5 > 6$ then 3 else $(4 * 5) + 6 \downarrow 26$

Example L_{If} derivation 2 (On visualiser)

Conclusion

- In this lecture, we've begun to see:
 - (at a high level) how programs are run
 - how we can specify the meaning of a program using big-step semantics
- The next lecture will be more practical than theoretical (to prepare you for the labs): we will talk about the ANTLR toolkit and the SVM virtual machine
- The labs will show you how to use operational semantics to guide an implementation
- See you in 10 minutes!