MATHEMATICS

Graham's pebbling conjecture on product of complete bipartite graphs

FENG Rongquan (冯荣权)1 & KIM Ju Young (金珠英)2

- 1. School of Mathematical Sciences, Peking University, Beijing 100871, China;
- Department of Mathematics, Catholic University of Taegu-Kyongsan 713-702, Korea
 Correspondence should be addressed to Feng Rongquan (email; fengrq@sxx0.math.pku.edu.cn)

Received April 19, 2000

Abstract The pebbling number of a graph G, f(G), is the least n such that, no matter how n pebbles are placed on the vertices of G, we can move a pebble to any vertex by a sequence of moves, each move taking two pebbles off one vertex and placing one on an adjacent vertex. Graham conjectured that for any connected graphs G and G and G and G and G and G are two-pebbling property. As a corollary, Graham's conjecture holds when G and G are complete bipartite graphs.

Keywords: pebbling, Graham's conjecture, Cartesian product, complete bipartite graph.

A pebbling of a connected graph is a placement of pebbles on the vertices of the graph. A pebbling move consists of removing two pebbles from a vertex, throwing one pebble away, and moving the other pebble to an adjacent vertex. The pebbling number of a vertex v in a graph G is the smallest number f(G,v) with the property that from every placement of f(G,v) pebbles on G, it is possible to move a pebble to v by a sequence of pebbling moves. The pebbling number of a graph G, denoted by f(G), is the maximum f(G,v) over all the vertices of G.

There are some known results regarding f(G) (see refs. [1-4]). If one pebble is placed on each vertex other than the vertex v, then no pebble can be moved to v. Also, if w is at distance d from v, and $2^d - 1$ pebbles are placed on w, then no pebble can be moved to v. So it is clear that $f(G) \ge \max\{|V(G)|, 2^D\}$, where |V(G)| is the number of vertices of G and D is the diameter of the graph G. Furthermore, we know from ref. [1] that $f(K_n) = n$, where K_n is the complete graph on n vertices, and $f(P_n) = 2^{n-1}$, where P_n is the path on n vertices.

We say a graph is demonic if f(G) = |V(G)|. Given a pebbling of G, let q be the number of vertices with at least one pebble, and let r be the number of vertices with an odd number of pebbles. We say that G satisfies the two-pebbling property (respectively, weak two-pebbling property) if it is possible to move two pebbles to any specified target vertex when the total starting number of pebbles is 2f(G) - q + 1 (respectively, 2f(G) - r + 1). Note that any graph which satisfies the two-pebbling property also satisfies the weak two-pebbling property. Given a pebbling of G, a transmitting subgraph of G is a path x_0, x_1, \dots, x_k such that there are at least two pebbles on x_0 and at least one pebble on each of the other vertices in the path, except possibly x_k . In this case, we can transmit a pebble from x_0 to x_k .

This paper explores the pebbling number of the Cartesian product of complete bipartite

graphs. The idea for Cartesian products comes from a conjecture of Graham^[1]. The conjecture states that for any graphs G and H, $f(G \times H) \leq f(G)f(H)$. There are a few results that verify Graham's conjecture. Among them, the conjecture holds to a tree by a tree^[2], a cycle by a cycle¹⁾, and a complete graph by a graph with the two-pebbling property^[1]. In the present paper we show that Graham's conjecture holds to a complete bipartite graph by a graph with the two-pebbling property. Furthermore, we prove that the product of two complete bipartite graphs is demonic, i.e. $f(K_{m,n} \times K_{s,t}) = (m+n)(s+t)$.

Throughout this paper G will denote a simple connected graph with vertex set V(G) and edge set E(G). For any vertex v of G, p(v) will refer to the number of pebbles on v.

1 Pebbling $K_{m,n}$

Relating the ideas above to $K_{m,n}$, we have the following lemmas.

Lemma 1. Let $K_{m,n}$ be the complete bipartite graph. Then $f(K_{m,n}) = m + n$ if m > 1 and n > 1.

Proof. Label the vertices of $K_{m,n}$ by $v_1, \dots, v_m; w_1, \dots, w_n$ such that every v_i is adjacent to every w_j for $i=1,\dots,m$ and $j=1,\dots,n$. Without loss of generality, we assume the target vertex is v_1 and $p(v_1)=0$. We break down the possible configuration of (m+n) pebbles on $K_{m,n}$ as the following three cases.

- (1) If $p(w_j) \ge 2$ for some j, then one pebble can be moved to v_1 from w_j .
- (2) If $p(w_{j_0}) = 1$ for some j_0 and $p(w_j) \le 1$ for all j, then $p(v_i) \ge 2$ for some i and $\{v_i, w_j, v_1\}$ form a transmitting subgraph.
- (3) If $p(w_j) = 0$ for all j, then m + n pebbles are placed on the vertices v_2, \dots, v_m . There must be some v_i with $p(v_i) \ge 2$. Using two pebbles on v_i , we can put one pebble on w_1 . Since $m + n 2 \ge m$ pebbles remain on vertices v_2, \dots, v_m , there exists some vertex v_{i_0} with $p(v_{i_0}) \ge 2$. Therefore $\{v_{i_0}, w_1, v_1\}$ forms a transmitting subgraph.

Lemma 2. The complete bipartite graph satisfies the two-pebbling property.

- **Proof.** Let p be the number of pebbles on the complete bipartite graph $K_{m,n}$, q be the number of vertices with at least one pebble and p+q=2(m+n)+1. Assume the target vertex is v_1 . If $p(v_1)=1$, then the number of pebbles on all the vertices except v_1 is $2(m+n)+1-q-1\geqslant m+n$. Since $f(K_{m,n})=m+n$, we can put one more pebble on v_1 using 2(m+n)+1-q-1 pebbles. If $p(v_1)=0$, then we consider the following three cases.
- (1) Suppose that $p(w_j) \ge 2$ for some w_j . We can move one pebble on v_1 from w_j . Using the remaining 2(m+n)+1-q-2 pebbles, we can put one more pebble on v_1 .
 - (2) Suppose that $p(w_{j_0}) = 1$ for some vertex w_{j_0} and $p(w_j) \le 1$ for all j.
- (2.1) If $q \le m + n 2$, then there is some v_i with $p(v_i) \ge 2$. $\{v_i, w_{j_0}, v_1\}$ forms a transmitting subgraph. Hence we can move one pebble to v_1 using three pebbles on v_i and w_{j_0} . Using the remaining $2(m+n)+1-q-3 \ge m+n$ pebbles, we can have one more pebble on v_1 .
- (2.2) If q = m + n 1, then m + 2 pebbles are placed on v_2, \dots, v_m . We have two transmitting subgraphs $\{v_i, w_1, v_1\}$ and $\{v_{i'}, w_2, v_1\}$ for some i and i'. Thus we are done.
 - (3) Suppose that $p(w_j) = 0$ for all j. Since there are $2(m+n) + 1 q \ge m + 2n + 2$

¹⁾ Herscovici, D. S., Graham's Pebbling Conjecture on Product of Cycles, preprint.

pebbles on v_2, \dots, v_m , we can spend 4 pebbles to move one to v_1 . Using the remaining $2(m+n)+1-q-4 \ge m+n$ pebbles, we can put one more pebble on v_1 .

2 Cartesian product

Let G and H be two graphs. The (Cartesian) product of G and H, denoted by $G\times H$, is the graph whose vertex set is the Cartesian product

 $V(G \times H) = V(G) \times V(H) = \{(x,y) \mid x \in V(G), y \in V(H)\}$, and two vertices (x,y) and (x',y') are adjacent if and only if x = x' and $\{y,y'\} \in E(H)$, or $\{x,x'\} \in E(G)$ and y = y'. We can depict $G \times H$ pictorially by drawing a copy of H at every vertex of G and connecting each vertex in one copy of H to the corresponding vertex in an adjacent copy of H. We write $\{x\} \times H$ (respectively, $G \times \{y\}$) for the subgraph of vertices whose projection onto V(G) is the vertex x (respectively, whose projection onto V(H) is y). If the vertices of G are labelled by x_i , then for any distribution of pebbles on $G \times H$, we write P_i for the number of pebbles on $\{x_i\} \times H$, P_i for the number of occupied vertices of $\{x_i\} \times H$ and P_i for the number of vertices of $\{x_i\} \times H$ with an odd number of pebbles.

The following conjecture, by Ronald Graham, suggests a constraint on the pebbling number of the product of two graphs.

Conjecture (Graham). The pebbling number of $G \times H$ satisfies $f(G \times H) \leq f(G) \cdot f(H)$.

Lemma 3^[3]. Let $\{x_i, x_j\}$ be an edge in G. Suppose that in $G \times H$, we have p_i pebbles occupying q_i vertices of $\{x_i\} \times H$. If $q_i - 1 \le k \le p_i$, and if k and p_i have the same parity, then k pebbles can be retained on $\{x_i\} \times H$, while moving $(p_i - k)/2$ pebbles onto $\{x_j\} \times H$. If k and p_i have opposite parity, we must leave k + 1 pebbles on $\{x_i\} \times H$, so we can only move $(p_i - k - 1)/2$ pebbles onto $\{x_j\} \times H$, in particular, we can always move at least $(p_i - q_i)/2$ pebbles onto $\{x_j\} \times H$.

Lemma 4^[1]. Let K_2 be the complete graph on two vertices. Suppose that G satisfies the two-pebbling property. Then $f(K_2 \times G) \leq 2f(G)$.

Lemma 5. Suppose that G satisfies the two-pebbling property. Consider the graph $K_{1,n} \times G$, where n > 1. Let v_0 be the vertex of $K_{1,n}$ with degree n. To pebble a target vertex on $\{v_0\} \times G$, it suffices to start with (n+1)f(G) pebbles on $K_{1,n} \times G$.

Proof. Label the vertices of $K_{1,n}$ by v_0, v_1, \cdots, v_n , where v_0 is the vertex with degree n. The target vertex in $K_{1,n} \times G$ is then (v_0, y) . Suppose that in $K_{1,n} \times G$, we have p_i pebbles occupying q_i vertices of $\{v_i\} \times G$ for each $i=0,1,\cdots,n$. If

$$p_0 + \sum_{i=1}^{n} \frac{p_i - q_i}{2} \ge f(G)$$
,

then we can use Lemma 3 to put f(G) pebbles on $\{v_0\} \times G$. Since this subgraph is isomorphic to G, we can then put a pebble on (v_0, y) . Also, since G has the two-pebbling property, if $(p_i + q_i)/2 > f(G)$ for some $i \in \{1, \cdots, n\}$, then we can put two pebbles on (v_i, y) , and then use a pebbling move to pebble (v_0, y) . Hence the distributions from which we cannot pebble the target vertex satisfy the inequalities

$$\begin{split} p_0 + \sum_{i=1}^n \frac{p_i - q_i}{2} &< f(G), \\ \frac{p_i + q_i}{2} &\leq f(G), \quad i = 1, \cdots, n. \end{split}$$

Adding these inequalities together gives

$$p_0 + p_1 + \cdots + p_n < (n+1)f(G).$$

Thus any distribution of pebbles from which we cannot reach some vertex on $\{v_0\} \times G$ must begin with fewer than (n+1)f(G) pebbles.

As a corollary, we can get the following result.

Corollary $1^{[3]}$. Suppose that G satisfies the two-pebbling property and consider the graph $P_3 \times G$. To pebble a target vertex on the middle copy of G, it suffices to start with 3f(G) pebbles on $P_3 \times G$.

Lemma 6. Suppose that G satisfies the weak two-pebbling property and p pebbles are placed on $K_{1,n} \times G$ in such a way that there are r vertices with an odd number of pebbles. Let v_0 be the vertex of $K_{1,n}$ with degree n. If p + r > 2(n+1)f(G), then two pebbles can be moved to (v_0, y) by a sequence of pebbling moves.

Proof. Label the vertices of $K_{1,n}$ by v_0, v_1, \dots, v_n . For $K_{1,n} \times G$, let p_i be the number of pebbles on the graph $\{v_i\} \times G$, and let r_i be the number of vertices with an odd number of pebbles for $i = 0, 1, \dots, n$. Note that $p_i + r_i$ must be even. Suppose that there are $p_0 > 2f(G) - r_0$ pebbles assigned to $\{v_0\} \times G$. Then the result holds. So we may assume that $p_0 + r_0 \le 2f(G)$ and consider the following three cases.

(1) If at least two of $p_1 + r_1, \dots, p_n + r_n$ are larger than 2f(G), say, $p_1 + r_1 > 2f(G)$ and $p_2 + r_2 > 2f(G)$, then two pebbles can be moved to each of (v_1, y) and (v_2, y) . Since (v_0, y) is adjacent to both (v_1, y) and (v_2, y) , two pebbles can be moved to (v_0, y) from those 4 pebbles on (v_1, y) and on (v_2, y) .

(2) If only one of $p_1 + r_1, \dots, p_n + r_n$, say, $p_1 + r_1$, is larger than 2f(G), then we can move

$$\frac{(p_1 + r_1) - (2f(G) + 2)}{2}$$

pebbles to $\{v_0\} \times G$ while keeping $(2f(G) - r_1 + 2)$ pebbles on $\{v_1\} \times G$. From $p_1 + r_1 \ge 2f(G) + 2$, $p_2 + r_2 \le 2f(G)$, ..., $p_n + r_n \le 2f(G)$ and $(p_0 + r_0) + (p_1 + r_1) \ge 4f(G) + 2$, we have

$$p_0 + \frac{p_1 + r_1 - (2f(G) + 2)}{2} \ge p_0 + \frac{2f(G) - p_0 - r_0}{2} = f(G) + \frac{p_0 - r_0}{2} \ge f(G).$$

So we can move one pebble to (v_0, y) in $\{v_0 \mid \times G$. From the remaining $(2f(G) - r_1 + 2)$ pebbles on $\{v_1 \mid \times G$, we can put two pebbles on (v_1, y) . So we can move one more pebble to (v_0, y) from (v_1, y) .

(3) If none of
$$p_1 + r_1, \dots, p_n + r_n$$
 is larger than $2f(G)$, then
$$p_0 + r_0 > 2(n+1)f(G) - (p_1 + r_1) - \dots - (p_n + r_n)$$

$$\geq 2(n+1)f(G) - 2nf(G)$$

$$= 2f(G).$$

Hence we are done.

Lemma 7. Let K_2 be the complete graph on two vertices x_1 and x_2 . Suppose that G satisfies the weak two-pebbling property. Let p pebbles be assigned to vertices of $K_2 \times G$ and r be the number of vertices with an odd number of pebbles. If p + r > 4f(G), then two pebbles can be moved to any specified vertex of $K_2 \times G$ by a sequence of pebbling moves.

Proof. Without loss of generality, assume that the target is (x_1, y) for some y. If $p_1 + r_1$

> 2f(G), then two pebbles can be moved to (x_1, y) . We may assume $p_1 + r_1 \le 2f(G)$. Then we can move

$$\frac{(p_2 + r_2) - (2f(G) + 2)}{2}$$

pebbles to $\{x_1\} \times G$ while keeping $(2f(G) - r_2 + 2)$ pebbles on $\{x_2\} \times G$. Since

$$p_{1} + \frac{(p_{2} + r_{2}) - (2f(G) + 2)}{2} > p_{1} + \frac{4f(G) - p_{1} - r_{1} - 2f(G) - 2}{2}$$

$$= p_{1} + \frac{2f(G) - p_{1} - r_{1} - 2}{2}$$

$$= f(G) + \frac{p_{1} - r_{1}}{2} - 1,$$

the left side is larger than or equal to f(G). Then we can move one pebble to (x_1, y) from $2f(G) - r_2 + 2$ pebbles on $\{x_2\} \times G$ and we can move one more pebble from f(G) pebbles on $\{x_1\} \times G$.

3 Pebbling $K_{m,n} \times K_{s,t}$

In this section, we show that Graham's conjecture holds for the product of a complete bipartite graph and a graph with the two-pebbling property.

Theorem 1. Suppose that G satisfies the two-pebbling property. Then $f(K_{m,n} \times G) \leq f(K_{m,n}) f(G)$.

Proof. Label the vertices of $K_{m,n}$ by v_1, \dots, v_m ; w_1, \dots, w_n such that every v_i is adjacent to every w_j for $i=1,\dots,m$; $j=1,\dots,n$. Without loss of generality, assume that the target vertex is (v_1,y) for some y. Let (m+n)f(G) pebbles be placed on $K_{m,n} \times G$. $K_{m,n} \times G$ can be partitioned into two parts, say, M_1 and M_2 , as follows. M_1 is $A \times G$ and M_2 is $B \times G$ where A is the induced subgraph on the vertex subset $\{v_1, w_1, \dots, w_{n-1}\}$ of $K_{m,n}$ and B is the induced subgraph on the vertex subset $\{w_n, v_2, \dots, v_m\}$ of $K_{m,n}$. In fact, A is $K_{1,n-1}$ or K_2 and B is $K_{1,m-1}$ or K_2 . Suppose that M_i contains p_i pebbles with r_i vertices having an odd number of pebbles for i=1,2. If $p_1 \geqslant nf(G)$, then one pebble can be moved to (v_1,y) by Lemmas 4 and 5. Now we assume that $p_1 < nf(G)$. Set $p_1 = nf(G) - t$ and $p_2 = mf(G) + t$ for some positive integer t.

(1) If $t \leq mf(G) - r_2$, then we apply pebbling steps to all vertices in M_2 and we can move at least $(p_2 - r_2)/2$ pebbles to vertices of M_1 . Therefore, in M_1 , we have altogether

$$p_1 + \frac{p_2 - r_2}{2} \ge nf(G) - t + \frac{mf(G) + t - mf(G) + t}{2} = nf(G)$$

pebbles. By Lemmas 4 and 5, we can move one pebble to (v_1, y) .

(2) If $t > mf(G) - r_2$, then

$$p_2 + r_2 = mf(G) + t + r_2 > 2mf(G).$$

Therefore two pebbles can be moved to (w_n, y) by Lemmas 6 and 7. Because (v_1, y) and (w_n, y) are adjacent, one pebble can be moved to (v_1, y) from (w_n, y) .

A complete bipartite graph satisfies the two-pebbling property. The following theorem is immediate.

Theorem 2. $f(K_{m,n} \times K_{s,t}) = (m+n)(s+t)$.

If G' is a spanning subgraph of G, then $f(G') \ge f(G)$ (see ref. [1]). Since $K_{m,n}$ is a

spanning subgraph of K_{m+n} , we can obtain the following corollary which is Theorem 5 in ref. [1].

Corollary 2. $f(K_n \times G) \leq nf(G)$ if G satisfies the two-pebbling property.

Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 49873002, 10001005).

References

- 1. Chung, F. R. K., Pebbling in hypercubes, SIAM J. Discrete Math., 1989, 2: 461-472.
- 2. Moews, D., Pebbling graphs, J. Combin. Theory, Ser. B, 1992, 55: 244-252.
- 3. Herscovici, D. S., Higgins, A. W., The pebbling number of $C_5 \times C_5$, Discrete Math., 1998, 189; 123—135.
- 4. Pachter, L., Snevily, H. S., Voxman, B., On pebbling graphs, Congr. Numer., 1995, 107: 65-80.