1. Минимальная длина этой цепочки = 2 (возьмём только $x_1x_2^3x_3^2$ и $x_1x_2^2x_3^3$). Заметим, что данную цепочку можно взять любой одночлен вида $x_1x_2^2x_3^n$, где n>3, так как он лексикографически больше одночлена $x_1x_2^2x_3^3$ и меньше чем $x_1x_2^3x_3^2$. Построим цепочку $x_1x_2^2x_3^3$, $x_1x_2^2x_3^{k_1}$, $x_1x_2^2x_3^{k_2}$, ..., $x_1x_2^2x_3^{k_m}$, $x_1x_2^2x_3^3$. $\forall k\in\{k_1,k_2,\ldots,k_m\}k\in\mathbb{N}, k_i\neq k_j:i\neq j$. Длина данной цепочки может быть бесконечной. Ответ: от двух до бесконечности.

 $x_{1}x_{1}^{2} \leftarrow coppuni \quad ulh$ $x_{1}^{2}x_{1}^{2} = x_{1} \cdot (x_{1}x_{2})$ $y_{2}^{2} = x_{1}^{2}x_{3}^{2} + 2x_{1}x_{1}^{2}x_{3}^{2} + x_{1}^{2}x_{2}^{2} - x_{1}x_{2}^{2}x_{3}^{2} + x_{1}^{2}x_{1}x_{2}^{2}x_{3}^{2} + x_{1}^{2}x_{1}x_{2}^{2}x_{3}^{2}$ $y_{3}^{2} = x_{1}^{2}x_{3}^{2} + 2x_{1}x_{1}^{2}x_{3}^{2} + x_{1}^{2}x_{2}^{2}x_{3}^{2} + x_{1}^{2}x_{2}^{2}x_{3}^{2}$ $y_{4}^{2}x_{3}^{2} + x_{1}^{2}x_{3}^{2} + x_{1}^{2}x_{2}^{2}x_{3}^{2} + x_{1}^{2}x_{2}^{2}x_{3}^{2}$ $y_{4}^{2}x_{3}^{2} + x_{1}^{2}x_{1}^{2}x_{3}^{2} + x_{1}^{2}x_{2}^{2}x_{3}^{2} + x_{1}^{2}x_{2}^{2}x_{3}^{2} + x_{1}^{2}x_{2}^{2}x_{3}^{2}$ $y_{4}^{2}x_{3}^{2} + x_{1}^{2}x_{1}^{2}x_{3}^{2} + x_{1}^{2}x_{2}^{2}x_{3}^{2} + x_{1}^{2}x_{3}^{2} + x_{1}^{2}x_{3}^{2$

2.
$$\rightarrow X^{4}X_{3}^{1} + X_{1}X_{2}^{1}X_{3} + X_{1}^{1}X_{2}X_{3}^{2} - X_{2}^{1}X_{3}^{2} + X_{1}X_{2}^{3}X_{3}^{3} - X_{2}X_{2}^{4}X_{3}$$

$$= X^{4}X_{3}^{6} - X_{2}X_{3}^{1} + X_{1}^{2}X_{2}X_{3}^{2} + X_{1}X_{2}^{2}X_{3}^{3} \longrightarrow$$
crupun
$$\vdots X_{1}X_{2}^{2}$$

$$= \chi^{4}\chi_{3}^{5} - \chi_{2}^{6}\chi_{3}^{2} + \chi_{1}^{2}\chi_{2}\chi_{3}^{5} + \chi_{1}\chi_{2}^{2}\chi_{3}^{3} - \chi_{2}^{5}\chi_{3}^{4} + \chi_{1}\chi_{2}^{2}\chi_{3}^{5} - \chi_{1}\chi_{2}^{2}\chi_{3}^{5}$$

$$= \chi^{4}\chi_{3}^{6} - \chi_{2}^{6}\chi_{3}^{2} + \chi_{1}\chi_{2}^{2}\chi_{3}^{3} - \chi_{1}^{5}\chi_{3}^{4} + \chi_{1}\chi_{2}^{2}\chi_{3}^{5} + \chi_{1}^{4}\chi_{2}\chi_{3}^{6} \rightarrow$$

$$= \chi^{4}\chi_{3}^{6} - \chi_{2}^{6}\chi_{3}^{2} + \chi_{1}\chi_{2}^{2}\chi_{3}^{3} - \chi_{1}^{5}\chi_{3}^{4} + \chi_{1}^{4}\chi_{2}\chi_{3}^{6} \rightarrow$$

$$= \chi^{4}\chi_{3}^{6} - \chi_{2}^{6}\chi_{3}^{2} + \chi_{1}\chi_{2}^{2}\chi_{3}^{3} - \chi_{1}^{5}\chi_{3}^{4} + \chi_{1}^{4}\chi_{2}\chi_{3}^{6} \rightarrow$$

$$= \chi^{4}\chi_{3}^{6} - \chi_{2}^{6}\chi_{3}^{2} + \chi_{1}\chi_{2}^{4}\chi_{3}^{3} - \chi_{1}^{5}\chi_{3}^{4} + \chi_{1}^{4}\chi_{2}\chi_{3}^{6} \rightarrow$$

$$= \chi^{4}\chi_{3}^{6} - \chi_{2}^{6}\chi_{3}^{4} + \chi_{1}^{4}\chi_{2}\chi_{3}^{6} - \chi_{2}^{6}\chi_{3}^{4} + \chi_{1}^{4}\chi_{2}\chi_{3}^{6} \rightarrow$$

$$= \chi^{4}\chi_{3}^{6} - \chi_{2}^{6}\chi_{3}^{4} + \chi_{1}^{4}\chi_{2}\chi_{3}^{6} - \chi_{2}^{6}\chi_{3}^{6} + \chi_{1}^{4}\chi_{2}\chi_{3}^{6} \rightarrow$$

$$= \chi^{4}\chi_{3}^{6} - \chi_{2}^{6}\chi_{3}^{6} + \chi_{1}^{4}\chi_{2}\chi_{3}^{6} - \chi_{2}^{6}\chi_{3}^{6} + \chi_{1}^{6}\chi_{2}^{6}\chi_{3}^{6} \rightarrow$$

$$= \chi^{4}\chi_{3}^{6} - \chi_{2}^{6}\chi_{3}^{6} + \chi_{1}^{6}\chi_{3}^{6} + \chi_{1}^{6}\chi_{2}^{6}\chi_{3}^{6} \rightarrow$$

$$= \chi^{4}\chi_{3}^{6} - \chi_{2}^{6}\chi_{3}^{6} + \chi_{1}^{6}\chi_{3}^{6} + \chi_{1}^{6}\chi_{2}^{6}\chi_{3}^{6} \rightarrow$$

$$= \chi^{4}\chi_{3}^{6} - \chi_{2}^{6}\chi_{3}^{6} + \chi_{1}^{6}\chi_{3}^{6} + \chi_{1}^{6}\chi_{3}^{6} \rightarrow$$

$$= \chi^{4}\chi_{3}^{6} - \chi_{2}^{6}\chi_{3}^{6} \rightarrow$$

$$= \chi^{4}\chi_$$

3 Custum abuses custom spenson, where $\forall f_1, f_2 \in F$ $S(f_1, f_2) \stackrel{F}{\leftarrow} 0$ $f_1, x_1 \times f_2 = x_1 \times f_3 + x_2 \times f_3$ cooping then $x_1 \times f_2 \times f_3 = x_2 \times f_3 + x_2 \times f_3 = x_3 \times f_3 + x_4 \times f_3 = x_1 \times f_3 + x_2 \times f_3 = x_2 \times f_3 + x_3 \times f_3 = x_1 \times f_3 + x_2 \times f_3 = x_1 \times f_$

Bee peggypolitur K U => oth curter Curter Transpa.