CPU Architecture

Final Project Report File

עומר לוקסמבורג 205500390 .

עילי נוריאל 312538580

מטרת המטלה

,Mapped I/O שילוב של ,MIPS פשוט מסוג CPU פינתזה וניתוח של סינתזה וניתוח של ביצוע תכנון, סינתזה וניתוח של CPU מטרת מטלה זו היא ביצוע תכנון, סינתזה וניתוח של Cyclone II FPGA וכמו כן הבנת מבנה הזיכרון של רכיב ה-

הגדרת תכנון המערכת

ה-CPU אותו תכננו עובד בתצורת Single Cycle, ומבצע פקודות מה-ISA אותו תכננו עובד בתצורת Single Cycle, ומבצע פקודות מתוכנן בתצורת structural כמו כן ל-CPU יש register file סטנדרטי של MIPS, וה- אור עוספות (מעבר למטלה 3) שמימשנו הן: IR, IR והן תוכננו בהתאם לפורמט הפקודות המתואר ב-1 Table 1:

Type	-31-	format (bits) -0-				
R	opcode (6)	rs (5)	rt (5)	rd (5) shamt (5) funct (
I	opcode (6)	rs (5)	rt (5)	immediate (16)		
J	opcode (6)	address (26)				

Table 1: MIPS Instruction format

התכנון אותו ממשנו תואם לדיאגרמת הבלוקים המתוארת ב-Figure 1.

Figure 1: System architecture

כמו כן התכנון שלנו מותאם ל- Mapped I/O המקושר למרחב הכתובות המתואר ב- Figure 2.

Figure 2: Address Space of a Computer Using Memory Mapped I/O

פריפריות נדרשות

בנוסף לפריפריות שנדרשו מאיתנו במטלה 3 (נורות הלד, המתגים ומסכי הספרות) נדרשנו להוסיף:

- .1 כפתורים 1-1.
- שתוכנן (Counter ורגיסטר Control שתוכנן Basic Timer בסיסי בעל שני רגיסטרים (רגיסטר Basic Timer .2 : Figure 3

Figure 3: Basic Timer Structure

בקר פסיקות – המקבל בקשות לפסיקה מ-4 מקורות (כפתורים והטיימר) ובעל 3 רגיסטרים (רגיסטר
 דומטר בקר פסיקות – המקבל בקשות לפסיקה לפוג הפסיקה) שתוכנן בהתאם ל-Figure 4:

Figure 4: Interrupt Controller Structure

: Table 2 כמו כן תיעדוף בין הפסיקות השונות יתבצע לפי

TYPE Contents	Interrupt Source	Interrupt Flag	Interrupt Priority
00h	KEY1	KEY1IFG	Lowest
04h	KEY2	KEY2IFG	The Committee
08h	KEY3	KEY3IFG	l
0Ch	Basic Timer	BTIFG	Highest

Table 2: Interrupt Controller Priority Table

הערות:

• נדרש מאיתנו לתכנן בקר פסיקות ללא קינון (Nesting), על כן הוספנו גם חומרה המוודאת כי לא מתרחש קינון ומגינה על המערכת במקרה של בקשות פסיקה המתרחשות בו זמנית.

אופן מימוש החומרה הנוספת

- -JR, JAL מימוש הפקודות -1
- is JR בדומה למימוש פקודת JUMP, אנו משתמשים בקווי בקרה ייעודיים (is JR) היוצאים ממודול ה-control ל-IEXECUTE. כאשר מזוהה כי מתבצעת פקודת JR, ניקח את ממודול ה-control ל-IEXECUTE המחשב וEXECUTE המחשב שלנו זה ערך כתובת ב-Branch המחשב שלנו זה ערך כתובת ב-Branch אליה נקפוץ) הנלקח מרגיסטר הייעד שמצוין ב- Instruction, ונקפוץ אל הכתובת השמורה בו עייי השמה ל-PC.
- (PC+4) אליה אנו נרצה לחזור PC-על מנת לבצע פקודה אנו שומרים את כתובת ה- ${
 m JAL}$.ii ברגיסטר מספר 31 (\$ra), במקביל אנו מבצעים את פקודת JUMP, כלומר קופצים לערך .words-ב Instruction- הכתובת המיידית הנתונה
 - BasicTimer-מימוש ה-2

על מנת לממש את החלוקות הנדרשות מהמודול, הגדרנו מונה באורך 3 ביטים, כך שכל שעון מחולק 0- יהיה תלוי בערך הביט הרלוונטי לו במונה. למשל 1- מקבל את ערכו לפי הביט במיקום ה-1- במונה (כאשר הוא עולה ל-1 גם השעון עולה ל-1 וכוי).

overflow - יוצא מחמודול ומתחבר ל-IRQ3 בבקר הפסיקות, עולה ל-1 כאשר נוצר BTIFG הביט שנבחרה (לפי אם לפי לבוגמא הם נבחר ביט BTIFG ,Q3 יעלה ל-1 כאשר נקבל (לפי Q0-Q3). לדוגמא אם נבחר ביט Q0-Q30 עבור ביטים Q0-Q30, כלומר כאשר ספרנו Q0-Q31 פעמים.

- 3. מימוש ה-InterruptController השרשרת המלאה מתוארת בתרשים הזרימה הכחול מטה.
- ומאפשר את Address Bus, Data Bus-יהמאזין" ל-ENABLE ומאפשר את .i המדרנו למודול קו
 - ii. הגדרנו ביט זה שווה ל-0, המודול \$k0 (הביט ברגיסטר GIE). מקום ה-0). כאשר ביט זה שווה ל-0, המודול למעשה מושבת ולא יטופלו פסיקות.
 - ניתן לרשום ולקרוא מהרגיסטרים IFG ,IE לפי הכתובות שהוגדרו. .iii

בדיקת התכנון והמערכת

: ניתוח עבודת המערכת מתבצע עייי שני ה- test bench ניתוח עבודת המערכת מתבצע עייי

- תמיכה והרצה תקינה של הקוד בקובץ ה-test1.asm שניתן לנו בדיקת מערך הקריאה לפונקציה, ir-i jal פקודות פקודות א
- חיבור 2 מספרים השמורים בזכרון, Y,X, ושולחים את הסכום לפונקציה המחסרת ממנו 4 ומחזירה את הערך. במידה והערך חיובי התוכנית מחזירה אותו, במידה והוא שלילי היא מחזירה את הסכום המקורי ללא חיסור 4.
- והצגתו הערך של הערך שניתן לנו קריאת הערך של המתגים והצגתו בקובץ ה-test2.asm: באופנים שונים בהתאם למקור הפסיקה:
- ים (הירוקים LED) מציג את הערך של ה-SW + SW הערך של ה-LED מציג את הערך של ה-SW הירוקים האדומים).
 - .Hex 0,1 את ערך של ה- SW + SW + הערך של ה- Key 2 •
 - .Hex 0,1 מציג את ערך הערך של ה-SW + הערך של הערך את את את Key 3 \bullet
 - . הירוקים ביLED הוספת לערך המונה והצגת הערך ל לערך המונה -BTIFG ullet

הערות:

• הוספנו מנגנון המאפשר מעבר בין תוכנת ה-ModelSim לתוכנת ה-Quartus ללא צורך בשינוי ModelSim להקוד, כך שה-tester שב-ModelSim מזריק ערך המצביע על כך שאנו בModelSim. זאת ע"י מימוש גנרי למודולים הדורשים זאת (MIPS, IFETCH).

ניתוח עבודת המערכת

:82 Mhz תדר השעון המקסימלי שקיבלנו הוא

Figure 5: Fmax analysis

• ניתוח המסלול הקריטי:

Figure 6: Critical Path

המסלול הקריטי כולל שימוש ב-Counter שמצריך שמירה של ערכו על מנת לחשב את המצב הבא, וגם חיבור של 2 מספרים באורך של 32 ביטים.

• ניתוח המסלול המינימלי:

אOR ,bitwise או משערים כי המסלול הכי קצר המערכת הוא של אחת מפעולות ה-OR ,bitwise אנו משערים כי המסלול הכי קצר המערכת הוא של אחת מכיוון שהן מבוצעות ע"י מימוש פשוט של שער לוגי וללא פעולות ככל הנראה מעט ארוכה יותר), זאת מכיוון שהן מבוצעות ע"י מימוש פשוט של שער לוגי וללא פעולות אריתמטיות מסובכות, וכמו כן הן נכתבות לרגיסטר ולא לזיכרון.

באופן כללי – כלל הפעולות מבצעות את 4 השלבים של המערכת (כאשר יש פעולות שמבצעות אדופן כללי – כלל הפעולות מבצעות אדיכרון) כלומר, אין פעולה קצרה משמעותית מפני שכולן back עוברות בשלבי המערכת כפי שלמדנו על מעבד single cycle.

ניתוח השימוש הלוגי: של ה-MIPS כולו:

Analysis & Synthesis Status	Successful - Tue Sep 08 17:19:20 2020
Quartus II 64-Bit Version	12.1 Build 177 11/07/2012 SJ Web Editio
Revision Name	Final
Top-level Entity Name	MIPS
Family	Cyclone II
Total logic elements	8,114
Total combinational functions	3,860
Dedicated logic registers	5,462
Total registers	5462
Total pins	235
Total virtual pins	0
Total memory bits	215,808
Embedded Multiplier 9-bit elements	0
Total PLLs	0

Figure 7: MIPS Logic Usage

:Fetch

Analysis & Synthesis Summary	State of the state
Analysis & Synthesis Status	Successful - Tue Sep 08 17:28:05 2020
Quartus II 64-Bit Version	12.1 Build 177 11/07/2012 SJ Web Edition
Revision Name	Final
Top-level Entity Name	Ifetch
Family	Cyclone II
Total logic elements	4,956
Total combinational functions	1,532
Dedicated logic registers	4,311
Total registers	4311
Total pins	81
Total virtual pins	0
Total memory bits	101,120
Embedded Multiplier 9-bit elements	0
Total PLLs	0

Figure 8: Ifetch Logic Usage

:Decode

Analysis & Synthesis Status	Successful - Tue Sep 08 17:27:10 2020
Quartus II 64-Bit Version	12.1 Build 177 11/07/2012 SJ Web Edition
Revision Name	Final
Top-level Entity Name	Idecode
Family	Cyclone II
Total logic elements	7,301
Total combinational functions	2,955
Dedicated logic registers	5,294
Total registers	5294
Total pins	209
Total virtual pins	0
Total memory bits	84,736
Embedded Multiplier 9-bit elements	0
Total PLLs	0

Figure 9: Idecode Logic Usage

: Execute

Analysis & Synthesis Status	Successful - Tue Sep 08 17:24:32 2020
Quartus II 64-Bit Version	12.1 Build 177 11/07/2012 SJ Web Edition
Revision Name	Final
Top-level Entity Name	Execute
Family	Cyclone II
Total logic elements	5,406
Total combinational functions	1,983
Dedicated logic registers	4,301
Total registers	4301
Total pins	168
Total virtual pins	0
Total memory bits	84,736
Embedded Multiplier 9-bit elements	0
Total PLLs	0

Figure 10: Execute Logic Usage

: Memory

Analysis & Synthesis Status	Successful - Tue Sep 08 17:25:13 2020
Quartus II 64-Bit Version	12.1 Build 177 11/07/2012 SJ Web Edition
Revision Name	Final
Top-level Entity Name	dmemory
Family	Cyclone II
Total logic elements	4,887
Total combinational functions	1,464
Dedicated logic registers	4,301
Total registers	4301
Total pins	79
Total virtual pins	0
Total memory bits	150,272
Embedded Multiplier 9-bit elements	0
Total PLLs	0

Figure 11: dmemory Logic Usage

: Control

Analysis & Synthesis Status	Successful - Tue Sep 08 17:26:11 2020
Quartus II 64-Bit Version	12.1 Build 177 11/07/2012 SJ Web Edition
Revision Name	Final
Top-level Entity Name	control
Family	Cyclone II
Total logic elements	4,911
Total combinational functions	1,488
Dedicated logic registers	4,301
Total registers	4301
Total pins	26
Total virtual pins	0
Total memory bits	84,736
Embedded Multiplier 9-bit elements	0
Total PLLs	0

Figure 12: control Logic Usage

:BasicTimer

Analysis & Synthesis Status	Successful - Tue Sep 08 17:29:33 2020
Quartus II 64-Bit Version	12.1 Build 177 11/07/2012 SJ Web Edition
Revision Name	Final
Top-level Entity Name	BasicTimer
Family	Cyclone II
Total logic elements	4,938
Total combinational functions	1,510
Dedicated logic registers	4,342
Total registers	4342
Total pins	83
Total virtual pins	0
Total memory bits	84,736
Embedded Multiplier 9-bit elements	0
Total PLLs	0

Figure 13: BasicTimer Logic Usage

: Interrupt Controller

Analysis & Synthesis Status	Successful - Tue Sep 08 17:30:30 2020
Quartus II 64-Bit Version	12.1 Build 177 11/07/2012 SJ Web Edition
Revision Name	Final
Top-level Entity Name	InterruptController
Family	Cyclone II
Total logic elements	4,931
Total combinational functions	1,496
Dedicated logic registers	4,325
Total registers	4325
Total pins	53
Total virtual pins	0
Total memory bits	84,736
Embedded Multiplier 9-bit elements	0
Total PLLs	0

Figure 14: InterruptController Logic Usage

:test1.asm זוהי תצוגה של הקוד של :Wave form

PC-ניתן לראות כי ערך ה קופץ לערך הנדרש

בשורה 0x3040 מתבצעת פקודת JR לכתובת 0x3010, ניתן Waveform-בואכן לראות כי ערך ה-PC קופץ לערך הנדרש

Figures 16: test1 Assembly Code

:test2.asm ווהי תצוגה של הקוד של **Wave form** הערות:

- ערכנו את קוד האסמבלי של test2 לשם הבדיקה הגדרנו test2 ערכנו את קוד האסמבלי של מנת שהפסיקות מהטיימר יהיו מהירות יותר (חלוקה קטנה יותר של השעון).
- המקרה המתואר ב- Figure 18 בוחן רק את תפקוד פסיקת הטיימר מאחר וכל הפסיקות זהות ורצינו לבדוק
 את עבודת שתי הפריפריות החדשות יחדיו, תוך ניצול כלל חלקי המערכת.

Address	Code	Basic			
0x00003000	0x201d0400	addi \$29,\$0,0x00000400	23:	addi	\$sp,\$zero,0x400 # \$sp=0x400
0x00003004	0x20080029	addi \$8,\$0,0x00000029	24:	addi	\$t0,\$zero,0x29
0x00003008	0xac080820	sw \$8,0x00000820(\$0)	25:	SW	\$t0,0x820 # BTIP=1, BTSSEL=1, BTHOLD=1
0x0000300c	0xac000824	sw \$0,0x00000824(\$0)	26:	sw	\$0,0x824 # BTCNT=0
0x00003010	0xac000828	sw \$0,0x00000828(\$0)	27:	SW	\$0,0x828 # IE=0
0x00003014	0xac00082c	sw \$0,0x0000082c(\$0)	28:	sw	\$0,0x82C # IFG=0
0x00003018	0x20080009	addi \$8,\$0,0x00000009	29:	addi	\$t0,\$zero,0x09
0x0000301c	0xac080820	sw \$8,0x00000820(\$0)	30:	SW	\$t0,0x820 # BTIP=1, BTSSEL=1, BTHOLD=0
0x00003020	0x2008000f	addi \$8,\$0,0x0000000f	31:	addi	\$t0,\$zero,0x0F
0x00003024	0xac080828	sw \$8,0x00000828(\$0)	32:	SW	\$t0,0x828 # IE=0x0F
0x00003028	0x375a0001	ori \$26,\$26,0x00000001	33:	ori	\$k0,\$k0,0x01
0x0000302c	0x8c080818	lw \$8,0x00000818(\$0)	35:	lw	\$t0,0x818 # read the state of PORT_SW[7-0]
0x00003030	0x08000c0c	j 0x00003030	36: L:	j	L
0x00003034	0xac080800	sw \$8,0x00000800(\$0)	39:	sw	\$t0,0x800 # write to PORT_LEDG[7-0]
0x00003038	0xac080804	sw \$8,0x00000804(\$0)	40:	SW	\$t0,0x804 # write to PORT_LEDR[7-0]
0x0000303c	0x8c09082c	lw \$9,0x0000082c(\$0)	42:	lw	\$t1,0x82C # read IFG
0x00003040	0x3129fffe	andi \$9,\$9,0x0000fffe	43:	andi	\$t1,\$t1,0xFFFE
0x00003044	0xac09082c	sw \$9,0x0000082c(\$0)	44:	SW	\$t1,0x82C # clr KEY2IFG
0x00003048	0x03e00008	jr \$31	45:	jr	\$ra # reti
0x0000304c	0xac080808	sw \$8,0x00000808(\$0)	48:	SW	\$t0,0x808 # write to PORT_HEX0[7-0]
0x00003050	0xac08080c	sw \$8,0x0000080c(\$0)	49:	SW	\$t0,0x80C # write to PORT_HEX1[7-0]
0x00003054	0x8c09082c	lw \$9,0x0000082c(\$0)	51:	lw	\$t1,0x82C # read IFG
0x00003058	0x3129fffd	andi \$9,\$9,0x0000fffd	52:	andi	\$t1,\$t1,0xFFFD
0x0000305c	0xac09082c	sw \$9,0x0000082c(\$0)	53:	SW	\$t1,0x82C # clr KEY2IFG
0x00003060	0x03e00008	jr \$31	54:	jr	\$ra # reti
0x00003064	0xac080810	sw \$8,0x00000810(\$0)	57:	SW	\$t0,0x810 # write to PORT_HEX2[7-0]
0x00003068	0xac080814	sw \$8,0x00000814(\$0)	58:	sw	\$t0,0x814 # write to PORT_HEX3[7-0]
0x0000306c	0x8c09082c	lw \$9,0x0000082c(\$0)	60:	1w	\$t1,0x82C # read IFG
0x00003070	0x3129fffb	andi \$9,\$9,0x0000fffb	61:	andi	\$tl,\$tl,0xFFFB
0x00003074	0xac09082c	sw \$9,0x0000082c(\$0)	62:	SW	\$t1,0x82C # clr KEY3IFG
0x00003078	0x03e00008	jr \$31	63:	jr	\$ra # reti
0x0000307c	0x21080001	addi \$8,\$8,0x00000001	65: BT_ISR:	addi	\$t0,\$t0,1 # \$t1=\$t1+1
0x00003080	0xac080800	sw \$8,0x00000800(\$0)	66:	sw	\$t0,0x800 # write to PORT_LEDG[7-0]
0x00003084	0x8c09082c	lw \$9,0x0000082c(\$0)	68:	lw	\$t1,0x82C # read IFG
0x00003088	0x3129fff7	andi \$9,\$9,0x0000fff7	69:	andi	\$t1,\$t1,0xFFF7
0x0000308c	0xac09082c	sw \$9,0x0000082c(\$0)	70:	SW	\$t1,0x82C # clr BTIFG
0x00003090	0x03e00008	ir \$31	71:	jr	Sra # reti

Figures 17: test2 Assembly Code

ניתן לראות כי כל עוד אין פסיקה, התוכנית נשארת על פקודה מספר 0x3030. כאשר מתרחשת פסיקה של הטיימר, אנו מקבלים מה-InterruptController חיווי – ובעקבותיו מתחילה שרשרת הפעולה לטיפול בפסיקה. כחלק משרשרת זו הגדרנו את Opcode מספר 31, שאינו נמצא בשימוש אחר, כ-Opcode יעודי לפסיקות. ניתן לראות כי אכן הפקודה שמתבצעת היא בעלת Opcode.

בתכלת – השעון שבחרנו.

בסגול העליון – דגל הפסיקה של הטיימר.

 $(BTSSEL = 1 \Rightarrow Q3)$ מגיע ל-16 מגיע ל-16 עולה ל-1 כאשר ערך ה-BTIFG ניתן לראות כי

בכתום – INTA – יורד ל-0 מחזור אחד לאחר שקיבלנו פסיקה.

Figures 18-20: test2 Wave form analysis

בסגול– בקשת הפסיקה של הטיימר IRQ3.

ניתן לראות כי intr_BT עולה ל-1 (מתרחש כאשר נכנסים את הפסיקה הרלוונטית) והוא מונע מפסיקות נוספות להתבצע.

:RTL viewer •

ניתן להבחין ביחידות לוגיות המטפלות בניתוב הקריאה והכתיבה בין כתובות זיכרון רגילות לבין כתובות זיכרון הממופות ל- I\O:

Figure 21: IO/MEM Mapping

ניתן לראות כי הוספנו קווי בקרה בעזרתם אנו יודעים האם פונים ל- INO.

Figure 22: RTL view

להלן הבלוקים המתוארים בדיאגרמת ה-RTL בפירוט גדול יותר – כולל כניסות ויציאות, בהתאם לדיאגרמה המתארת את המערכת ללא הפריפריות:

Figure 23: Top Block Diagram

Figure 24: Ifetch block

Figure 25: Idecode block

Figure 26: Execute block

Figure 27: dmemory block

Figure 28: control block

BasicTimer:BT - שונות בר - רכיב פריפריאלי - הניתן להגדרה עם חלוקות הניתן להגדרה עם חלוקות הניתן להגדרה עם חלוקות של השעון – ובעל שונות של השעון – ובעל הפסיקה פנימי. בעל יכולת פסיקה פסיקה

Figure 29: BasicTimer block

Figure 30: InterruptController block

יונאליות ופונקציונאליות את הגודל, כיוון ופונקציונאליות יסבלאות במערכת: Port Table של הקווים היוצאים מכל בלוק במערכת

		М	IPS
Port	Direction	Size	Functionality
reset	in	1	
clk_24Mhz	in	1	
PC	out	11	
ALU_result_out	out	32	
read_data_1_out	out	32	
read_data_2_out	out	32	
write_data_out	out	32	
Instruction_out	out	32	
Branch_out	out	1	
Zero_out	out	1	
Memwrite_out	out	1	
Regwrite_out	out	1	
ENABLE	In	1	
KEY1	In	1	
KEY2	In	1	
KEY3	In	1	
Switches	in	8	
LEDG_out	buffer	8	
LEDR_out	buffer	8	
HEX0_out	buffer	7	
HEX1_out	buffer	7	
HEX2_out	buffer	7	
HEX3_out	buffer	7	
HEX4_out	buffer	7	
Zero4LEDR	out	2	To initiate LEDR 8 and 9 to 0 value.

Table 3: MIPS ports

IFETCH				
Port	Direction	Size	Functionality	
Instruction	out	32		
PC_plus_4_out	out	11	The next command address	
Add_result	in	9	Address value to branch / jump to	
Branch_eq	in	1	Control signal indicates BEQ command	
Branch_neq	in	1	Control signal indicates BNQ command	
Zero	in	1		
Jump	in	1	Control signal indicates Jump command	
isJR	In	1	Control signal indicates Jump Register	
			command	
PC_out	out	11		
INTR	In	1		
INTA	Out	1		
ISR_adrs	In	9		
clock	in	1		
reset	in	1		

Table 4: Ifetch ports

IDECODE					
Port	Direction	Size	Functionality		
read_data_1	out	32	Data #1 to use in execute		
read_data_2	out	32	Data #2 to use in execute		
Instruction	in	32			
read_data	in	32			
ALU_result	in	32			
RegWrite	in	1			
MemtoReg	in	1			
Reg_dst	in	1			
Sign_extend	out	32	Sign extended immediate		
IntrptCS	Out	1			
ReturnPC	In	11	ערך ה-PC שאליו נחזור לאחר ביצוע פסיקה		
clock	in	1			
reset	in	1			

Table 5: Idecode ports

IExecute					
Port	Direction	Size	Functionality		
Read_data_1	in	32	Data #1 to read from		
Read_data_2	in	32	Data #2 to read from		
Sign_extend	in	32	Sign extended immediate		
Function_opcode	in	6	For "0" opcode		
Opcode	in	6	Opcode number		
ALUOp	in	2	With Function_opcode, I_opcode – decides		
			which ALU operation will be executed		
Jump	in	1			
isJR	in	1			
ALUSrc	in	1			
Zero	out	1			
ALU_Result	out	32	The result of the ALU (shift included)		
Add_Result	out	9			
PC_plus_4	in	11			
Clock	in	1			
Reset	in	1			

Table 6: IExecute ports

DMEMORY					
Port	Direction	Size	Functionality		
read_data	out	32	Memory data read		
address	in	11	Address number in		
write_data	in	32	Data to write		
MemRead	in	1	ONLY for memory read (no I/O)		
Memwrite	in	1	ONLY for memory write (no I/O)		
clock	in	1			
reset	in	1			

Table 7: IDmemory ports

CONTROL				
Port	Direction	Size	Functionality	
Opcode	in	6		
Fun_op	In	6		
RegDst	out	1	What register to write to	
ALUSrc	out	1	Binput selector	
MemtoReg	out	1		
RegWrite	out	1		
MemRead	out	1	Read control	
MemWrite	out	1	Write control	
Branch_eq	out	1		
Branch_neq	out	1		
ALUop	out	2		
Jump	out	1		
isJR	Out	1		
clock	in	1		
reset	in	1		

Table 8: Control ports

BasicTimer				
Port	Direction	Size	Functionality	
MCLK	In	1		
reset	In	1		
BTCTL_W	in	1	Basic timer control write to	
BTCTL_R	Out	1	Read from	
BTCNT_W	in	1	Basic timer counter write to	
BTCNT_R	Out	1	Read from	
BTIFG	Out	1	Out flag	

Table 9: BasicTimer ports

InterruptController				
Port	Direction	Size	Functionality	
clock	In	1		
reset	In	1		
INTA	In	1	Interrupt Acknowledge	
irq0	In	1		
irq1	In	1		
irq2	In	1		
irq3	In	1		
IE_W	In	8	Interrupt enable write to	
IFG_W	In	8	Interrupts flags	
IE_R	Out	8	Read from	
IFG_R	Out	8	Read from	
IFG_writebit	In	1	Notify bit	
ISR_MemAdrs	Out	11	Address of ISR in dmemory	
INTR	Out	1	Interrupt request	

 ${\bf Table~10:} \ {\bf InterruptController~ports}$

I/O Memory (ports in MIPS.vhdl file)				
Port	Direction	Size	Functionality	
MemWrite_mem	signal	1	'1' when Memwrite='1' and ALU_result is	
			not the address of the I/O.	
ioWrite	signal	1	'1' when Memwrite='1' and ALU_result is	
			the address of the I/O.	
ioRead	signal	1	'1' when MemRead='1' and ALU_result is	
			the address of the I/O.	
read_data	signal	32	Out will be from switches, when	
			ioRead='1', else it will be " DMEMORY -	
			read_data" signal.	

Table 11: I/O memory ports

:Proof of work - Signal Tap Screenshots

של של Etest2.asm עם טריגר המוגדר עבור – test2.asm של

Figure 31: Signal Tap Basic Timer Interrupt

"מתקבלת" הפקודה המלאכותית לטיפול בפסיקה (OPCODE 31) בפסיקה

ניתן לראות כי בזמן זה עולה ה-BTIFG (היוצא מהטיימר) ולכן גם BT_irq עולה (בקר הפסיקות מקבל בקשה לפסיקה).

> ניתן לראות כי בזמן זה יוצאת בקשת פסיקה שכיוון ש- MIPS) מבקר הפסיקות אל ה-MIPS BTIFG בבקר הפסיקות עלה.

ניתן לראות כי בזמן זה התבצעה לחיצה על KEY1 ולכן גם irq0 עולה