Learning about Kalman filter

Resources:

- 1. Kalman Filter from Ground Up; author Alex Becker; https://www.kalmanfilter.net
- 2. A very readable account of what problems can be solved with a Kalman Filter is chapter 1 of Stochastic Models: Estimation and Control V.1 by Peter S. Maybeck; publisher Academic Press. Apart from the introductory chapter the book is not easy to read without a decent background. So I might come back reading more chapters of the book once I have a better grasp of the subject.

Practically everything in this notebook is based chapter 4 of Kalman Filter from Ground Up

One Dimensional Kalman Filter / no process noise

Example#1

we measure the weight of a gold bar. Measurements are denoted z_n . The true (but unknown) weight is x. We can model the measurement by a sum of the true weight and some measurement error:

$$z_n = x + e_n$$

We do not know e_n but if we are lucky we know its distribution function. To simplify things furter we assume that e_n follows a gaussian distribution with known mean μ_x and standard deviation σ_x . With a gaussian distribution these to parameters/moments fully describe the distribution function.

$$E(e_n) = \mu_e$$
$$E((e_n - \mu_e)^2) = \sigma_e^2$$

We take N measurements to compute an estimatef weight w_N of the gold bar.

$$w_N = \frac{1}{N} \cdot \sum_{n=1}^{N} z_n$$
$$= x + \frac{1}{N} \cdot \sum_{n=1}^{N} e_n$$

$$E(w_N) = x + \frac{1}{N} \cdot \sum_{n=1}^{N} E(e_n) = x + \mu_e$$

Assuming $\mu_e=0$ (measurement error has zero mean) and therefore $E(e_n^2)=\sigma_e^2$ we get:

$$E(w_N) = x$$

Now the variance $Var(w_N)$:

$$Var(w_{N}) = E((w_{N} - x)^{2}) = E(w_{N}^{2}) - x^{2}$$

$$= E\left(\left(x + \frac{1}{N} \cdot \sum_{n=1}^{N} e_{n}\right)^{2}\right) - x^{2}$$

$$= 2 \cdot x \cdot \frac{1}{N} \cdot \sum_{n=1}^{N} E(e_{n}) + \frac{1}{N^{2}} \cdot E\left(\left(\sum_{n=1}^{N} e_{n}\right)^{2}\right)$$

$$= \frac{1}{N^{2}} \cdot E\left(\left(\sum_{n=1}^{N} e_{n}\right)^{2}\right)$$

$$= \frac{1}{N^{2}} \cdot \sum_{n=1}^{N} \sum_{m=1}^{N} E(e_{n} \cdot e_{m})$$

$$= \frac{1}{N^{2}} \cdot \sum_{n=1}^{N} E(e_{n}^{2}) + \frac{1}{N^{2}} \cdot \sum_{n=1}^{N} \sum_{m=1}^{N} E(e_{n} \cdot e_{m})$$

$$= \frac{1}{N^{2}} \cdot \sum_{n=1}^{N} E(e_{n}^{2}) + \frac{1}{N^{2}} \cdot \sum_{n=1}^{N} \sum_{m=1}^{N} E(e_{n} \cdot e_{m})$$

$$= \frac{1}{N^{2}} \cdot \sum_{n=1}^{N} E(e_{n}^{2}) = \frac{1}{N} \cdot \sigma_{e}^{2}$$

$$Var(w_{N}) = \left(\frac{\sigma_{e}}{\sqrt{N}}\right)^{2}$$

Thus averaging N measurements to obtain an estimated weight w_N has reduced the standard deviation σ_e of the measurement error e_n by a factor of $1/\sqrt{N}$.

Visualisation

The further illustrate the *weighing gold* example we shall provide a numerical example (closely related to what is presented in https://www.kalmanfilter.net).

We take N=10 measurement of a gold bar with nominal weight x=1000g. Since the measurement is imprecise we assume a measurement error which follows a Gaussian distribution with a standard deviation of $\sigma=10g$.

Each measurement w_n can be interpreted as a random variable drawn from normal distribution with mean $\mu = 1000g$ and standard deviation $\sigma = 10g$.

The probability density function of this distribution is then:

$$p(w) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot exp\left(-\frac{(w-\mu)^2}{2 \cdot \sigma^2}\right)$$

```
In [1]: import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt
```

```
In [2]: N = 10
        mean_w = 1000
        sigma = 10
        # get the measurements by drawing samples from the distribution
        w_measurements = stats.norm.rvs(loc=mean_w, scale=sigma, size=N)
        w_limit_low = mean_w - 3 * sigma
        w_limit_high = mean_w + 3 * sigma
        # evaluate the probability density in the interval [w_limit_low, w_limit_high]
        M = 1000
        wp = np.linspace(w_limit_low, w_limit_high, M)
        pdf = stats.norm.pdf(wp , loc=mean_w, scale=sigma)
        range = (wp > (mean_w - sigma)) & (wp < (mean_w + sigma))</pre>
        # display
        fig1, ax1 = plt.subplots(nrows=1, ncols=1, figsize=(12,3))
        ax1.plot(wp, pdf, color='k', label='PDF (normal distribution)')
        ax1.plot(w_measurements, np.zeros_like(w_measurements), linestyle='', marker='s', m
        ax1.fill_between(wp[range], pdf[range], 0, color='g', alpha=0.3, label='$\mu \mp \s
        ax1.set_xlabel('weight')
        ax1.set_ylabel('PDF')
        ax1.set_title('')
        ax1.legend()
        ax1.grid(True)
```


Review / Tracking constant velocity aircraft

The prediction equations were:

$$\hat{x}_{n+1,n} = \hat{x}_{n,n} + \Delta t \cdot \dot{x}_{n,n}$$
$$\dot{x}_{n+1,n} = \dot{x}_{n,n}$$

Position $\hat{x}_{n,n}$ and velocity $\dot{x}_{n,n}$ are now consider to be random variables. Moreover it shall be assumed that they are normally distributed.

Following the notation used in chapter 4 of https://www.kalmanfilter.net we will use:

$$p_{n,n}^x = Var(\hat{x}_{n,n})$$

$$p_{n,n}^{v} = Var(\dot{x}_{n,n})$$

The superscripts x and v shall denote that these variances refer to either position or velocity.

The variances for the predicted position $\hat{x}_{n+1,n}$ and velocity $\dot{x}_{n+1,n}$ follow directly from the prediction update equations:

$$p_{n+1,n}^{x} = p_{n,n}^{x} + \Delta t^{2} \cdot p_{n,n}^{v}$$
$$p_{n+1,n}^{v} = p_{n,n}^{v}$$

Of course (just by time shifting) the equation can also be expressed as:

$$p_{n,n-1}^{x} = p_{n-1,n-1}^{x} + \Delta t^{2} \cdot p_{n-1,n-1}^{y}$$
$$p_{n,n-1}^{y} = p_{n-1,n-1}^{y}$$

These equation are termed the covariance extrapolation equation .

measurement

For measurement z_n it shall be assumed that it is subject to measurement noise too. The noise variance is denoted r_n .

State update

The position prediction $p_{n,n-1}^x$ and the position measurement z_n are combined into a new position estimate.

$$x_{n,n} = w_1 \cdot z_n + w_2 \cdot x_{n,n-1}$$

with the constraint

$$w_1 + w_2 = 1$$

The weighting factors are adjusted to minimise the variance $p_{n,n}^x$.

$$p_{n,n}^{x} = w_{1}^{2} \cdot r_{n} + w_{2}^{2} \cdot p_{n,n-1}^{x}$$
$$= w_{1}^{2} \cdot r_{n} + (1 - w_{1})^{2} \cdot p_{n,n-1}^{x}$$

Differentiation by w_1 is used to determine w_1 such as to minimise the variance $p_{n,n}^x$:

$$\frac{dp_{n,n}^{x}}{w_{1}} = 2 \cdot w_{1} \cdot r_{n} - 2 \cdot \left(1 - w_{1}\right) \cdot p_{n,n-1}^{x} = 2 \cdot w_{1} \cdot \left(r_{n} + p_{n,n-1}^{x}\right) - 2 \cdot p_{n,n-1}^{x}$$

$$w_{1} = \frac{p_{n,n-1}^{x}}{r_{n} + p_{n,n-1}^{x}}$$

$$w_{2} = 1 - w_{1} = \frac{r_{n}}{r_{n} + p_{n,n-1}^{x}}$$

Inserting the w_1 and w_2 into the state update equation yields:

$$\begin{aligned} x_{n,n} &= w_1 \cdot z_n + (1 - w_1) \cdot x_{n,n-1} \\ &= x_{n,n-1} + w_1 \cdot \left(z_n - x_{n,n-1} \right) \\ &= x_{n,n-1} + \frac{p_{n,n-1}^x}{r_n + p_{n,n-1}^x} \cdot \left(z_n - x_{n,n-1} \right) \\ & K_n \end{aligned}$$

With

$$K_n = \frac{p_{n,n-1}^x}{r_n + p_{n,n-1}^x}$$

the update equation becomes:

$$x_{n,n} = x_{n,n-1} + K_n \cdot (z_n - x_{n,n-1})$$

Factor K_n is called the Kalman-Gain .

The result looks similar to the $\alpha-\beta$ -filter. However this time the Kalman-Gain K_n will not be a constant but it adapts to any changes in the values of the variances.

variance
$$p_{n,n}^x$$
 of $x_{n,n}$

$$\begin{split} p_{n,n}^{x} &= w_{1}^{2} \cdot r_{n} + w_{2}^{2} \cdot p_{n,n-1}^{x} \\ &= \left(\frac{p_{n,n-1}^{x}}{r_{n} + p_{n,n-1}^{x}}\right)^{2} \cdot r_{n} + \left(\frac{r_{n}}{r_{n} + p_{n,n-1}^{x}}\right)^{2} \cdot p_{n,n-1}^{x} \\ &= \frac{p_{n,n-1}^{x}}{\left(r_{n} + p_{n,n-1}^{x}\right)^{2}} \cdot p_{n,n-1}^{x} \cdot r_{n} + \frac{r_{n}}{\left(r_{n} + p_{n,n-1}^{x}\right)^{2}} \cdot p_{n,n-1}^{x} \cdot r_{n} \\ &= \frac{r_{n}}{r_{n} + p_{n,n-1}^{x}} \cdot p_{n,n-1}^{x} \\ &= \frac{1 - K_{n}}{1 - K_{n}} \end{split}$$

The equation is called the covariance update equation .

The next section of this notebook summarizes everything we know thus far about the Kalman-Filter in a single dimension.

Summary / Kalman Filter in One Direction

The equation are valid for constant velocity dynamics (it won't be tracking postiton of motion with time varying acceleration).

State Update / Filtering Equation

С	Equation	Equation Name
State Update	$x_{n,n} = x_{n,n-1} + K_n \cdot (z_n - x_{n,n-1})$	State Update /Filtering Equation
	$p_{n,n}^{x} = \left(1 - K_n\right) \cdot p_{n,n-1}^{x}$	Covariance update
	$K_n = \frac{p_{n,n-1}^x}{r_n + p_{n,n-1}^x}$	Kalman Gain
State Prediction	$\hat{x}_{n+1,n} = \hat{x}_{n,n} + \Delta t \cdot \dot{x}_{n,n}$	Position Prediction
	$\dot{x}_{n+1,n} = \dot{x}_{n,n}$	constant velocity prediction

$$p_{n,n-1}^x = p_{n-1,n-1}^x + \Delta t^2 \cdot p_{n-1,n-1}^v$$
 covariance extrapolation

$$p_{n,n-1}^{v} = p_{n-1,n-1}^{v}$$

Estimating the height of a building

example taken from chapter 4.2 of the book Kalman Filter from Ground; author Alex Becker.

The true height of a building is 50 m. A set of 10 successive measurements is available. The measurements are:

But these measurement are subject to some measurement error. The standard deviation of the measurement error shall be 5m. Its distribution shall be gaussion and its mean value 0.

initialisation

The initial assumption about the heigth $\hat{x}_{0.0}$ has been chosen to

$$\hat{x}_{0,0} = 60m$$

(My personal choice would have been to take the first measurement as an initial value)

Since the initial estimate $\hat{x}_{0,0}$ is not very accurate we assume its variance $p_{0,0}$ to be:

$$p_{0,0} = 225 m^2$$

(corresponding to a standard deviation of 15 m).

Since the height of the bulding does not change throughout all 10 measurements out first prediction will be:

$$\hat{x}_{1,0} = \hat{x}_{0,0} = 60m$$

Accordingly the variance of the prediction does not change:

$$p_{1,0} = p_{0,0} = 225 m^2$$

iteration#1

With the first measurement $z_1 = 49.03m$ and the measurement variance $r_1 = 25m^2$ we compute the Kalman Gain K_1 :

$$K_1 = \frac{p_{1,0}}{p_{1,0} + r_1} = \frac{225}{225 + 25} = \frac{225}{250} = 0.9$$

The estimate $\hat{x}_{1,1}$ of the current height becomes:

$$\hat{x}_{1,1} = \hat{x}_{1,0} + K_1 \cdot \left(z_1 - \hat{x}_{1,0} \right)$$
$$= 60m - 0.9 \cdot 10.97$$
$$= 50.13m$$

$$p_{1,1} = (1 - K_1) \cdot p_{1,0} = 0.1 \cdot 225 \, m^2 = 22.5 \, m^2$$

iteration#2

$$p_{2,1} = p_{1,1} = 22.5 \ m^2$$

With the 2'nd measurement $z_2=48.44m$ and the measurement variance $r_2=25m^2$ we compute the Kalman Gain K_2 :

$$K_1 = \frac{p_{2,1}}{p_{2,1} + r_2} = \frac{22.5}{22.5 + 25} = \frac{22.5}{47.5} = 0.47$$

The estimate $\hat{x}_{2,2}$ of the current height becomes:

$$\hat{x}_{2,2} = \hat{x}_{2,1} + K_2 \cdot \left(z_2 - \hat{x}_{2,1}\right)$$

$$= 50.13m - 0.47 \cdot 1.69m$$

$$= 49.33m$$

$$p_{2,2} = (1 - K_1) \cdot p_{2,1} = 0.53 \cdot 22.5 \ m^2 = 11.925 \ m^2$$

(in the book this value is incorrectly computed; but the basic procedure is still valid)