CORONAVIRUS – ANÁLISE DE SENTIMENTOS EM REDES SOCIAIS

Prof^a Manoela Kohler

Coronavirus – Análise de sentimentos em redes sociais

- Análise de sentimentos: entendendo o problema
- Biblioteca AFFIN para análise de sentimentos
- Biblioteca NLTK para análise de sentimentos
- Abordagem de Inteligência Artificial para análise de sentimentos
- Cases
- Hands on!!!

Análise de Sentimentos: entendendo o problema

Análise de Sentimentos: entendendo o problema

- A análise de sentimentos é a interpretação e classificação de emoções (positivas, negativas e neutras) nos dados de texto usando técnicas de análise de texto.
- A análise de sentimentos permite que as empresas identifiquem os sentimentos dos clientes em relação a produtos, marcas ou serviços em conversas e comentários on-line.
- Ao analisar automaticamente o feedback do cliente, desde as respostas da pesquisa às conversas nas mídias sociais, as marcas podem ouvir atentamente seus clientes e personalizar produtos e serviços para atender às suas necessidades.

Tipos de análise de sentimentos

Os modelos de análise de sentimentos se concentram na polaridade (positiva, negativa, neutra), mas também nos sentimentos e emoções (raiva, alegria, tristeza, etc.) e até mesmo nas intenções (por exemplo, interessado x não interessado).

■ Tipos:

- Análise de sentimentos refinado (refinar além de positivo, negativo e neutro);
- Detecção de emoção (raiva, tristeza, alegria, etc);
- Análise de sentimentos baseada em aspectos (de um produto, por exemplo);

Modelo:

- Léxico (repositório de palavras e suas emoções);
- Modelos complexos de machine learning.

Por que fazer análise de sentimentos

- Estima-se que 80% dos dados do mundo não sejam estruturados:
 - Um grande volume de dados de texto (e-mails, tíquetes de suporte, bate-papos, conversas em mídias sociais, pesquisas, artigos, documentos, etc.) é criado todos os dias, mas é difícil de analisar, entender e classificar.
- A análise de sentimentos, no entanto, ajuda as empresas a entender todo esse texto não estruturado, marcando-o automaticamente.

Por que fazer análise de sentimentos

Benefícios

- Classificação de grandes conjuntos de dados de maneira eficiente e econômica.
- Identificação de problemas críticos em tempo real para tomada de decisão imediata.

Critérios consistentes para classificação dos sentimentos (já que classificação feita por pessoas diferentes pode ser altamente subjetiva), ajudando a melhorar a precisão e obter melhores insights.

Préprocessamento de texto

- Tokenização
- Remoção de urls
- Remoção de caracteres especiais e acentos
- Remoção de stopwords
 - Remoção de palavras com baixo valor de discriminação para o processo de recuperação da informação.
- Stemming e Lematização
 - O objetivo da lematização e do stemming é reduzir (deflexionar) uma palavra a sua base. A diferença entre os dois é que o stemming corta a palavra tentando acertar a sua base na maioria da vezes, enquanto a lematização reduz a base utilizando um vocabulário e a análise morfológica das palavras.

Préprocessamento de texto

Stemming e Lematização

Exemplos:

- 1. A palavra "walk" é a base para "walking", e é corretamente reduzida pelo stemming e pela lematização.
- 2. A palavra "better" tem "good" como base (ou lema). Esse link é perdido pelo stemming.
- 3. A palavra "meeting" pode ser reduzida para um substantivo ou um verbo dependendo do contexto.

E.g., "in our last meeting" ou "We are meeting again tomorrow".

A lematização consegue fazer a redução de forma correta.

Modelos para análise de sentimentos

Sistemas baseados em regras

- Machine Learning
- Sistemas híbridos

Modelos para análise de sentimentos

Sistemas baseados em regras

- Machine Learning
- Sistemas híbridos

Sistemas baseados em regras

Exemplo:

- 1. Define duas listas de palavras polarizadas (palavras positivas e palavras negativas)
- 2. Conta-se o número de palavras positivas e negativas que aparecem em um determinado texto
- 3. Se o número de aparições de palavras positivas for maior que o número de aparências de palavras negativas, o sistema retornará um sentimento positivo e vice-versa. Se for igual, o sistema retornará um sentimento neutro.

Modelo ingênuo; Pode se tornar muito complexo e de difícil manutenção.

Modelos para análise de sentimentos

Sistemas baseados em regras

Machine Learning

Sistemas híbridos

Machine Learning

Machine Learning

Machine Learning

Extração de características

Transformação de palavras, sentenças ou documentos em vetores numéricos:

			Dimensi	ons		
	dog	-0.4	0.37	0.02	-0.34	animal
	cat	-0.15	-0.02	-0.23	-0.23	domesticated
	lion	0.19	-0.4	0.35	-0.48	pet
tors	tiger	-0.08	0.31	0.56	0.07	fluffy
Word vectors	elephant	-0.04	-0.09	0.11	-0.06	
	cheetah	0.27	-0.28	-0.2	-0.43	
×	monkey	-0.02	-0.67	-0.21	-0.48	
	rabbit	-0.04	-0.3	-0.18	-0.47	
	mouse	0.09	-0.46	-0.35	-0.24	
	rat	0.21	-0.48	-0.56	-0.37	

- Extração de características ou vetorização de palavras:
 - Bag of Words (BoW)

Documento	Eu	amo	cachorro	gato
Eu amo cachorro	1	1	1	0
Eu amo gato	1	1	0	1

- Perde-se ordenação das palavras
- Vetor pode se tornar muito grande
- Representação esparsa
- Na inferência, palavras que não estavam no corpus são ignoradas
- Simples e independente da língua
- N-gram

- Extração de características ou vetorização de palavras:
 - Contagem de palavras e Frequência de palavras

Documento	Eu	amo	cachorro	е	gato
Eu amo cachorro e amo gato	1	2	1	1	1
Eu amo gato	1	1	0	0	1

- TFIDF (Term Frequency Inverse Document Frequency)
 - Resolve problemas dos métodos de contagem e frequência, onde palavras que aparecem muitas vezes, acabam dominando os documentos, mas possivelmente contém informação que não é tão importante;
 - Re-escala a frequência de forma a penalizar palavras que são muito frequentes em todos os documentos, como artigos, por exemplo.

Word2Vec

- Mikolov, 2013 Google (https://code.google.com/archive/p/word2vec/)
- Modelo pré-treinado em um dataset de do Google News (100 bilhões de palavras)
- Modelo aprende a representar palavras através de vetores, capturando regularidades linguísticas:

France: Word Cosine distance

spain	0.678515
belgium	0.665923
netherlands	0.652428
italy	0.633130
switzerland	0.622323
luxembourg	0.610033
portugal	0.577154
russia	0.571507
germany	0.563291
catalonia	0.534176

word2Vec

King – Man + Woman ≈ Queen Paris – France + Italy ≈ Rome

Word2vec: polissemia
 'GO' pode ser um verbo, mas também um jogo de tabuleiro!

- Sentence to Vector:
 - BERT (Google, 2018; https://arxiv.org/abs/1810.04805)
 - RoBERTa (Facebook, 2019; https://arxiv.org/abs/1907.11692)

Biblioteca AFFIN para análise de sentimentos

- AFFIN (Finn Arup Nielsen, 2014)
 - Ferramenta de análise de sentimentos baseada em léxico e regras.
 - Especificamente construída para trabalhar com microblogs.

Score_doc =
$$\frac{1}{n}\sum_{p=1}^{n} score_p$$

Onde *n* é o número de palavras do documento.

Biblioteca NLTK para análise de sentimentos

Biblioteca NLTK para análise de sentimentos

- Vader (Valence Aware Dictionary and sEntiment Reasoner, 2014)
 - Ferramenta de análise de sentimentos, recentemente incorporado a biblioteca NLTK, baseada em léxico e regras.
 - Especificamente construída para trabalhar com textos de redes sociais.

Abordagem de Inteligência Artificial para análise de sentimentos

Redes Recorrentes: arquitetura Many to One

Entrada: Sequência de palavras

Saída: Classificar se o sentimento é positivo ou negativo ou neutro

Cases

Cases

- Eleições presidenciais dos EUA, 2016 (https://aisel.aisnet.org/pacis2017/48)
 - Volume de tweets sobre Trump foram muito maiores que sobre Clinton;
 - A propagação do negativismo foi muito mais forte em direção a Clinton (causando sentimentos de desconfiança), apesar de ambos terem muito mais tweets negativo que positivos;
 - Trump soube usar o Twitter para alcançar seu público alvo longe da mídia tradicional.

Cases

- Expedia Canada (2015)
 - Após o lançamento de um novo comercial, a empresa percebeu que a grande maioria dos tweets sobre o comercial eram negativos;
 - A Expedia pode atuar a tempo, mudando a música do comercial e fazendo uma brincadeira em relação ao som do violino que causou tanta irritação às pessoas, chamando mais atenção (positiva) nas redes sociais.

Hands on!!!

Hands on!!!

- Nossa prática será dividida em duas partes.
 - Parte 1: Baixar do Twitter um conjunto de tweets sobre o tema de interesse:
 coronavirus.
 - Parte 2: Fazer a análise de sentimentos nos tweets baixados e fazer algumas análises gráficas, como wordcloud, boxplots, histogramas, etc.

*Os dois scripts foram criados de forma a poderem ser facilmente reutilizados para outras análises no Twitter.

