

Sistemas de Informação **GSI016 Banco de Dados 1**

Dependência Funcional e Normalização

Profa. Maria Camila Nardini Barioni

camila.barioni@ufu.br

Bloco B - sala 1B137

Aviso

◆13/04/2021 -> Atividade Assíncrona -Etapa 2 projeto

Roteiro

- Discussão etapa 1 projeto
- Continuação da apresentação dos conceitos sobre normalização

DISCUSSÃO ETAPA 1 PROJETO

Normalização

Relembrando e continuando...

Relembrando: Primeira Forma Normal (1FN)

- Uma relação R está na 1FN se:
 - todo valor em R for <u>atômico</u> e <u>monovalorado</u>
 - ou seja, R não contém grupos de repetição

Relembrando: Segunda Forma Normal (2FN)

- Uma relação R está na 2FN se:
 - está na 1FN
 - não existe <u>atributo não chave</u> que é dependente de somente uma parte da chave
 - ou seja, não pode existir dependência funcional parcial
 - houver dependência funcional total

- Uma relação R está na 3FN se:
 - está na 2FN
 - não existem <u>atributos não chave</u> que sejam dependentes de outros <u>atributos não chave</u> (determinante não chave)
 - dependência transitiva
- ◆Dependência transitiva X → Y em R
 - se X → Z e Z → Y e Z não for nem a chave candidata nem um subconjunto de qualquer chave de R

Uma relação está na 3º FN se já estiver na 2º e ...

TODOS os atributos que **NÃO** fazem parte da chave primária **NÃO** possuírem nenhuma dependência entre si.

OU SEJA,

Na 2ª FN verifica-se a dependência em relação aos atributos que fazem parte da CHAVE PRIMÁRIA, enquanto que

Na 3ª FN verifica-se a dependência em relação aos atributos que NÃO fazem parte da CHAVE PRIMÁRIA

- ◆ Dependência transitiva X → Y em R
 - se X → Z e Z → Y e Z não for nem a chave candidata nem um subconjunto de qualquer chave de R

Exemplo de dependência transitiva

- DNOME e DGERSSN dependem funcionalmente de DNUMERO (Z₄ → {Z₅, Z₆}
 Z → Y)
- DNUMERO depende funcionalmente de SSN (X → {Z₁, ..., Z₄})
 - DNUMERO n\u00e3o \u00e9 chave, nem parte de chave
- DNOME e DGERSSN dependem transitivamente de SSN
 - X → Y

- Método para corrigir o problema:
 - para cada determinante que não é uma chave candidata, remover da relação os atributos que dependem desse determinante
 - criar uma nova relação contendo todos os atributos da relação original que dependem desse determinante
 - tornar o determinante a chave primária da nova relação

Exemplo 1:


```
Exemplo 2:
  cliente (nro-cliente, nome-cliente,
            end-cliente, nro-vendedor,
            nome-vendedor)
  nro-cliente → nome-cliente, end-cliente,
                nro vendedor
  nro-vendedor → nome vendedor
```

Problema: cliente (<u>nro-cliente</u>, nome-cliente, end-cliente, nro-vendedor, nome-vendedor)

Corrigindo o problema ...

Solução:
cliente (nro-cliente, nome-cliente, end-cliente, nro-vendedor)
vendedor (nro-vendedor, nome-vendedor)

Definições Genéricas

- Segunda forma normal
 - um esquema de relação R está na 2FN se cada atributo não primário de R não for parcialmente dependente de nenhuma chave de R ... além da chave primária, candidatas
- Terceira forma normal
 - um esquema de relação R está na 3FN se para cada dependência funcional X → A, X é uma superchave de R ou A é um atributo primário de R

Definições Genéricas Segunda forma normal

Definições Genéricas Terceira forma normal

Não está na 3FN: PRECO depende de AREA (ambos não chave)

Forma Normal de Boyce-Codd

♦BCNF

 um esquema de relação R está na BCNF se para cada dependência funcional X → A, X é uma superchave de R

BCNF e 3FN

- relação está na BCNF → relação está na 3FN
- relação está na 3FN -> relação está na BCNF

Prática

 maioria dos esquemas de relação que está na 3FN também está na BCNF

Forma Normal de Boyce-Codd

- BCNF
 - se X → A então
 - X é superchave
- ◆ 3FN
 - se X → A então
 - X é superchave ou A é atributo primário

Exemplo

- Considere o esquema LOTES, que descreve lotes à venda em vários municípios
- Considere as chaves NUM_ID_PROP e {MUNICIPIO_NOME, NUM_LOTE}
 - NUM_LOTE diferentes apenas dentro do município
 - NUM_ID_PROP diferentes entre municípios

Exemplo

- Consideremos que há milhares de lotes, mas apenas nos municípios de Uberlândia e Araguari
 - em Uberlândia só existem lotes com 100, 200 e 300 m²
 - em Araguari só existem lotes com 150, 250 e 350 m²
- Nesse caso
 - DF5: AREA → MUNICIPIO_NOME

Uma Relação R esquemática com DF's. Está na 3FN mas não na BCNF

- Dependências Funcionais
 - {aluno, curso} → instrutor
 - instrutor → curso
 - essa dependência, que representa que cada instrutor ministra um curso, é uma restrição particular da aplicação
 - R (aluno, curso, instrutor)

- Solução 1
 - aluno_instrutor (<u>aluno</u>, <u>instrutor</u>)
 - aluno_curso (<u>aluno</u>, <u>curso</u>)
- Solução 2
 - instrutor_curso (instrutor, curso)
 - aluno_curso (aluno, curso)
- Solução 3
 - instrutor_curso (<u>instrutor</u>, curso)
 - aluno_instrutor (aluno, instrutor)

R (<u>aluno</u>, <u>curso</u>, instrutor)

ALUNO	INSTRUTOR	-	
		ALUNO	CURSO
Narayan	Mark	Narayan	Banco de dados
Smith	Navathe	Smith	Banco de dados
Smith	Ammar	Smith	Sistemas operacio
Smith	Schulman	Smith	Teoria
Wallace	Mark	Wallace	Banco de dados
Wallace	Ahamad	Wallace	Sistemas operacio
Wong	Omiecinski	Wong	Banco de dados
Zelava	Navathe	Zelaya	Banco de dados

instrutor	curso	
Mark	Banco de Dados	
Navathe	Banco de Dados	
Ammar	Sistemas Operacionai	
Schulman	Teoria	
Ahamad	Sistemas Operacionai	
Omiecisnki	Banco de Dados	

Solução 3: não gera tuplas espúrias

Forma Normal de Boyce-Codd

Outro Exemplo

- aluno_instrutor (aluno, instrutor)
- aluno_curso (<u>aluno</u>, <u>curso</u>)

ALUNO	INSTRUTOR
Narayan	Mark
Smith	Navathe
Smith	Ammar
Smith	Schulman
Wallace	Mark
Wallace	Ahamad
Wong	Omiecinski
Zelaya	Navathe

ALUNO	CURSO	
Narayan	Banco de dados	
Smith	Banco de dados	
Smith	Sistemas operacionais	
Smith	Teoria	
Wallace	Banco de dados	
Wallace	Sistemas operacionais	
Wong	Banco de dados	
Zelaya	Banco de dados	

• SOLUÇÃO 1: há geração de "Tuplas Espúrias" pois há uma combinação de ALUNOXCURSO com cada INSTRUTOR distinto (em que aluno coincide): o problema é que há alunos que cursaram cursos com diferentes instrutores.

		ALUNO	CURSO	INSTRUTOR
		Narayan	Banco de dados	Mark
		Smith	Banco de dados	Navathe
		Smith	Sistemas operacionais	Ammar
8 tuplas •	٦	Smith	Teoria	Schulman
o tapias	1	Wallace	Banco de dados	Mark
		Wallace	Sistemas operacionais	Ahamad
	1	Wong	Banco de dados	Omiecinsk
		Zelaya	Banco de dados	Navathe

aluno	curso	instrutor
Narayan	Banco de Dados	Mark
Smith	Banco de Dados	Navathe
Smith	Banco de Dados	Ammar
Smith	Banco de Dados	Schulman
Smith	Sistemas Operacionai	Navathe
Smith	Sistemas Operacionai	Ammar
Smith	Sistemas Operacionai	Schulman
Smith	Teoria	Navathe
Smith	Teoria	Ammar
Smith	Teoria	Schulman
Wallace	Banco de Dados Mark	
Wallace	Banco de Dados Ahamad	
Wallace	Sistemas Operacionai	Mark
Wallace	Sistemas Operacionai Ahamad	
Wong	Banco de Dados	Omiecisnki
Zelaya	Banco de Dados	Navathe

16

Forma Normal de Boyce-Codd Outro Exemplo instrutor curso CUE

- ◆Solução 2
 - instrutor_curso (<u>instrutor</u>, curso)
 - aluno_curso (<u>aluno</u>, <u>curso</u>)

instrutor	curso
Mark	Banco de Dados
Navathe	Banco de Dados
Ammar	Sistemas Operacionai
Schulman	Teoria
Ahamad	Sistemas Operacionai
Omiecisnki	Banco de Dados

ALUNO	CURSO	
Narayan	Banco de dados	
Smith	Banco de dados	
Smith	Sistemas operacionais	
Smith	Teoria	
Wallace	Banco de dados	
Wallace	Sistemas operacionais	
Wong	Banco de dados	
Zelava	Banco de dados	

• SOLUÇÃO 2: há geração de "Tuplas Espúrias" pois há uma combinação de ALUNOXCURSO com cada INSTRUTOR distinto (em que curso coincide): o problema é que há cursos ministrado por instrutores distintos

	ALUNO	CURSO	INSTRUTOR
	Narayan	Banco de dados	Mark
	Smith	Banco de dados	Navathe
	Smith	Sistemas operacionais	Ammar
8 tuplas -	Smith	Teoria	Schulman
o tupius	Wallace	Banco de dados	Mark
	Wallace	Sistemas operacionais	Ahamad
	Wong	Banco de dados	Omiecinsk
	Zelaya	Banco de dados	Navathe

aluno	curso	instrutor
Narayan	Banco de Dados	Mark
Narayan	Banco de Dados	Navathe
Narayan	Banco de Dados	Omiecisnki
Smith	Banco de Dados	Mark
Smith	Banco de Dados	Navathe
Smith	Banco de Dados	Omiecisnki
Smith	Sistemas Operacionai	Ammar
Smith	Sistemas Operacionai	Ahamad
Smith	Teoria	Schulman
Wallace	Banco de Dados	Mark
Wallace	Banco de Dados	Navathe
Wallace	Banco de Dados	Omiecisnki
Wallace	Sistemas Operacionai	Ammar
Wallace	Sistemas Operacionai	Ahamad
Wong	Banco de Dados	Mark
Wong	Banco de Dados	Navathe
Wong	Banco de Dados	Omiecisnki
Zelaya	Banco de Dados	Mark
Zelaya	Banco de Dados	Navathe
Zelaya	Banco de Dados	Omiecisnki

20

◆Solução 3

- instrutor_curso (<u>instrutor</u>, curso)
- aluno_instrutor (aluno, instrutor)
- Na <u>SOLUÇÃO 3</u> há uma combinação de "INSTRUTOR" com todos os CURSOS (1:1) e INSTRUTOR com todos os alunos (1:8)

	ALUNO	CURSO	INSTRUTOR
	Narayan	Banco de dados	Mark
	Smith	Banco de dados	Navathe
	Smith	Sistemas operacionais	Ammar
8 tuplas	Smith	Teoria	Schulman
o tupius	Wallace	Banco de dados	Mark
	Wallace	Sistemas operacionais	Ahamad
	Wong	Banco de dados	Omiecinski
	Zelaya	Banco de dados	Navathe

curso
Banco de Dados
Banco de Dados
Sistemas Operacionai
Teoria
Sistemas Operacionai
Banco de Dados

ALUNO	INSTRUTOR	
Narayan	Mark	
Smith	Navathe	
Smith	Ammar	
Smith	Schulman	
Wallace	Mark	
Wallace	Ahamad	
Wong	Omiecinski	
Zelaya Navathe		

aluno	curso	instrutor_
Narayan	Banco de Dados	Mark
Smith	Sistemas Operacionai	Ammar
Smith	Banco de Dados	Navathe
Smith	Teoria	Schulman
Wallace	Sistemas Operacionai	Ahamad
Wallace	Banco de Dados	Mark
Wong	Banco de Dados	Omiecisnki
Zelaya	Banco de Dados	Navathe

Solução 3: Solução desejada pois <u>não</u> gera tuplas espúrias

- A normalização de relações por meio de dependências funcionais é uma das maneiras de evitar inconsistências em relações
- ◆E quando não é possível especificar uma restrição semântica como uma DF?
 - dependência multivalorada

- Dependência Funcional
 - o valor de um conjunto de atributos pode ser determinado a partir do valor de outro conjunto de atributos
- Dependência Multivalorada:
 - um conjunto de atributos não determina o valor de outro(s) atributo(s), mas sim <u>restringe os valores</u> <u>possíveis</u> para este(s) atributo(s)

Tal como ocorre com a dependência funcional, a multi-dependência não pode ser inferida pelo SGBD, e portanto também deve ser identificada e considerada pelo projetista do sistema de banco de dados

- São consequências da Primeira Forma Normal (1FN)
 - quando se opta por eliminar a multivaloração com "repetições" de tuplas e não quebrando em uma nova relação
- Ocorrem quando dois ou mais atributos independentes multivalorados existem na mesma relação do BD
- Problema apresentado:
 - necessidade de se repetir cada um dos valores de um atributo com cada valor do outro atributo, para manter as instâncias da relação de maneira consistente

Exemplo

- Informações sobre:
 - vendedores
 - clientes atendidos pelos vendedores
 - filhos dos vendedores
- Observações:
 - um vendedor pode atender vários clientes
 - um cliente pode ser atendido por vários vendedores
 - um vendedor pode possuir vários filhos

Exemplo

nro_vend	nro_cli	nome_filho_vend
123	12805	Marcos
		Pedro
		Paulo
456	37573	Maria
	24139	
	36273	
444	57384	Ricardo
vendedor (<u>nro</u>	vend, {nro_cli}, {n	ome_filho_vend})

⁻ vendedor nem mesmo pode ser qualificado como uma relação ...

- Um atributo B de um esquema de relação R é multidependente de um outro atributo A de R se um valor para A é associado a uma coleção específica de valores para B, independentemente de qualquer valor que um terceiro atributo C de R possa assumir
- Se B é <u>multidependente</u> de A, então A <u>multidetermina</u> B
- Notação: A B

Dependência Multivalorada

atributo A —» atributo B

1 valor de A

(não existe outro)

atributo A —» atributo B

vários valores para
o atributo B

independentemente dos valores do atributo C

Quarta Forma Normal (4FN)

- Uma relação R está na 4FN se:
 - não existe dependência multivalorada
- Forma prática de se tratar a 4FN:
 - prevenir dependências multivaloradas no processo inicial de transformação da relação não normalizada (contendo o(s) grupo(s) de repetição para a 1FN)

Outro Exemplo

(a) EMP

ENOME	PNOME	DNOME	
Smith	х	John	
Smith	Y	Anna	
Smith	X	Anna	
Smith	Y	John	

(b) EMP_PROJETOS

ENOME	PNOME		
Smith	×		
Smith	Y		

EMP_DEPENDENTES

ENOME	DNOME	
Smith	John	
Smith	Anna	

DFMV:

ENOME—»PNOME
ENOME—»DNOME

Quarta Forma Normal (4FN)

- Método para corrigir o problema
 - para cada grupo de repetição separado, gera-se uma nova relação correspondente contendo este grupo de repetição e a chave primária da relação original
 - determinar a chave primária da nova relação, a qual será a concatenação da chave primária da relação original com a chave para o grupo de repetição

Exemplo

```
vendedor ( nro_vend, { cliente (nro_cli) },
                           { filho (nome_filho_vend) })
nro vend → nro cli
nro vend --> nome filho vend
vend cli (<u>nro vend</u>, <u>nro cli</u>)
vend filho (<u>nro vend</u>, <u>nome filho vend</u>)
```

Exemplo

	_
nro_vend	nro_cli
123	12805
123	24139
456	37573
456	24139
456	36273
444	57384

nro_vend	nome_filho_vend
123	Marcos
123	Pedro
123	Paulo
456	Maria
444	Ricardo

vend_filho (<u>nro_vend</u>, <u>nome_filho_vend</u>)

vend_cli (<u>nro_vend</u>, <u>nro_cli</u>)

Ilustrando a importância da 4FN

(a)	ЕМР		(b)	EMP_PROJETOS			
	ENOME	PNOME	DNOME		ENOME	PNOME	
ſ	Smith	Х	John		Smith	X	
	Smith	Υ	Anna		Smith	Υ	
	Smith	X	Anna	6 -	Brown	W	
	Smith	Y	John	U]	Brown	X	
	Brown	W	Jim		Brown	Υ	
	Brown	X	Jim		Brown	Z	
	Brown	Y	Jim				
6 4	Brown	Z	Jim	+	EMP_DEPENDENTES		
٠	Brown	W	Joan			DEITTEG	
	Brown	X	Joan		ENOME	DNOME	
	Brown	Y	Joan				
	Brown	Z	Joan	_	Smith	Anna	
	Brown	W	Bob		Smith	John	
	Brown	X	Bob	5 -	Brown	Jim	
	Brown	Υ	Bob		Brown	Joan	
L	Brown	Z	Bob		Brown	Bob	

Além de evitar a ocorrência de anomalias de atualização

Exemplo Mais Geral

```
vendedor ( nro_vend, nome_vend, {cliente
  (nro_cli, nome_cli)}, {filho (nome_filho_vend,
  idade_filho_vend) } )
```


Considerações Finais

- A normalização para as FN apoiadas em DF sempre se atinge com a separação dos atributos em duas ou mais relações
 - Isso aumenta o número de relações
 - Requer operações de junção na recuperação de informações
- Normalizar evita inconsistências nas relações, porém obriga a execução de custosas operações de junção para a consulta de informações

Considerações Finais

- Normalizar ou não uma relação?
 - O que é mais importante
 - garantir a eliminação de inconsistências no banco de dados ou a eficiência de acesso?
 - Se a consistência não for um fator fundamental pode-se abrir mão da normalização

ESTUDO DE CASO: A LOJA NA INTERNET

Estudo de caso: A loja na internet Análise de requisitos

- A livraria B&N decidiu se tornar on-line. Para isso precisa contratar uma consultoria especializada para projetar e implementar seu banco de dados. O proprietário da B&N forneceu o seguinte sumário sobre o que desejava:
- **Gostaria que meus clientes fossem capazes de navegar no meu catálogo de livros e solicitar pedidos pela Internet. Atualmente, aceito pedidos pelo telefone. A maioria de meus clientes corporativos me liga e me fornece o número ISBN de um livro e a quantidade; eles normalmente pagam com cartão de crédito.

Estudo de caso: A loja na internet Análise de requisitos

- Preparo, então, uma remessa que contém os livros solicitados. Se não tenho cópias suficientes em estoque, solicito cópias adicionais e atraso a remessa até que as novas cópias cheguem; quero enviar o pedido inteiro de um cliente junto. Meu catálogo inclui todos os livros que vendo.
- Para cada livro, o catálogo contém seu número ISBN, título, autor, preço de aquisição, preço de venda, e o ano em que o livro foi publicado.

Estudo de caso: A loja na internet Análise de requisitos

- A maioria dos meus clientes é cadastrada, e tenho registros com seus nomes e endereços.
- Novos clientes devem me ligar primeiro e estabelecer uma conta antes que possam usar meu site.
- Em meu novo site, os clientes devem se identificar primeiro por meio de seu número único de identificação de cliente. Depois, eles devem ser capazes de navegar no meu catálogo e solicitar pedidos on-line."

Estudo de caso: A loja na internet Modelo Entidade Relacionamento

Estudo de caso: A loja na internet Modelo Relacional

- Livro (<u>isbn</u>, título, autor, qtde-estoque, preço-a, preço-v, ano-pub)
- Cliente(<u>id-cliente</u>, nome, endereço)
- Pedido(<u>isbn (Livro.isbn)</u>, <u>id-cliente(Cliente.id-cliente)</u>, nro-cartão, qtde, data-pedido, data-remessa)

Estudo de caso: A loja na internet Modelo Relacional

- Livro (<u>isbn</u>, título, autor, qtde-estoque, preço-a, preço-v, ano-pub)
- Cliente(<u>id-cliente</u>, nome, endereço)
- Pedido(<u>isbn (Livro.isbn), id-cliente(Cliente.id-cliente)</u>, nro-cartão, qtde, data-pedido, data-remessa)
- Obs: nesse modelo um cliente não pode pedir o mesmo livro em dias diferentes, uma restrição que não era pretendida. O que fazer?

Estudo de caso: A loja na internet Requisitos adicionais

- Os clientes podem adquirir vários livros diferentes em um único pedido.
- Sobre a política de remessa, assim que existirem exemplares suficientes de um livro pedido, ele é enviado, mesmo que um pedido contenha vários livros. Além disso, os clientes podem fazer mais de um pedido por dia, e eles querem identificar os pedidos que fazem."

Requisitos:

- Deve ser possível solicitar vários livros diferentes em um único pedido
- Um cliente deve ser capaz de distinguir entre vários pedidos feitos no mesmo dia

- Livro (<u>isbn</u>, título, autor, qtde-estoque, preço-a, preço-v, anopub)
- Cliente(<u>id-cliente</u>, nome, endereço)
- Pedido(<u>nro-pedido</u>, <u>isbn (Livro.isbn</u>), id-cliente(Cliente.id-cliente), nro-cartão, qtde, data-pedido, data-remessa)
- Observações
 - nro-pedido identifica univocamente cada pedido e, portanto, o cliente que está fazendo o pedido
 - Como vários livros podem ser comprados em um único pedido, nro-pedido e isbn são ambos necessários para se determinar qtde e data da remessa

- Livro (<u>isbn</u>, título, autor, qtde-estoque, preço-a, preço-v, ano-pub)
 - tem apenas um atributo chave e nenhuma outra DF. Livro está na FNBC
- Cliente(<u>id-cliente</u>, nome, endereço)
 - tem apenas um atributo chave e nenhuma outra DF. Cliente está na FNBC

- Pedido(<u>nro-pedido</u>, <u>isbn (Livro.isbn)</u>, id-cliente(Cliente.id-cliente), nro-cartão, qtde, data-pedido, data-remessa)
 - nro-pedido e isbn formam a PK de Pedido
 - ¶ {nro-pedido, isbn} → {qtde, data-remessa}
 - além disso, como cada pedido é feito por um cliente em uma data específica, com um número de cartão de crédito específico, as três DF são válidas
 - nro-pedido → id-cliente
 - nro-pedido → data-pedido
 - nro-pedido → nro-cartão
 - Pedido está em qual forma normal?

- Pedido(nro-pedido, isbn (Livro.isbn), id-cliente(Cliente.id-cliente), nro-cartão, qtde, data-pedido, data-remessa)
 - nro-pedido e isbn formam a PK de Pedido
 - ¶ {nro-pedido, isbn} → {qtde, data-remessa}
 - além disso, como cada pedido é feito por um cliente em uma data específica, com um número de cartão de crédito específico, as três DF são válidas
 - nro-pedido → id-cliente
 - nro-pedido → data-pedido
 - nro-pedido → nro-cartão
 - Pedido está em qual forma normal?
 - Não está nem na 2FN

- Pedido(nro-pedido, isbn (Livro.isbn), idcliente(Cliente.id-cliente), nro-cartão, qtde, datapedido, data-remessa)
- Normalizando Pedido...
- Pedido(<u>nro-pedido</u>, id-cliente(Cliente.id-cliente), nrocartão, data-pedido)
- Lista-Pedido(nro-pedido, isbn (Livro.isbn), qtde, data-remessa)

Estudo de caso: A loja na internet

Modelo Entidade Relacionamento Atualizado

Exercícios complementares Normalização

- Diga em que forma normal (Nenhuma, 1 FN, 2 FN, 3 FN ou FNBC) está cada relação abaixo, justificando sua resposta. Depois, se necessário, indique os passos que devem ser realizados para normalizar para a forma normal mais restrita possível.
- LIVROS = {<u>Título</u>, <u>Autor</u>, Tipo, Preço, {FiliaçãoDoAutor}, Editora}
 - DF: Título → {Editora, Tipo}, Tipo → Preço, Autor → FiliaçãoDoAutor
- FORNECEDOR = {CNPJ, RazãoSocial, NomeFantasia, Contato}
 - DF: CNPJ → {RazãoSocial, NomeFantasia, Contato}
- CLIENTE = {CPF, Nome, None, No
 - DF: CPF → {Nome, NroAgência, NroConta, TipoConta}, {NroAgência, NroConta} → {CPF, Nome, TipoConta}, TipoConta → NroAgência

Exercícios complementares Normalização

- 1. Diga em que forma normal (Nenhuma, 1 FN, 2 FN, 3 FN ou FNBC) está cada relação abaixo, justificando sua resposta. Depois, se necessário, indique os passos que devem ser realizados para normalizar para a forma normal mais restrita possível.
- CARROSVENDIDOS = {Carro, DataVenda, <u>Vendedor</u>, Comissão, Desconto}
 - DF: Carro → DataVenda, DataVenda → Desconto, Vendedor → Comissão
- FILIAL = {CodF, País, Cidade, Continente, Língua, NomeGerente, FusoHorário, Nível}
 - DF: CodF → {País, Cidade, NomeGerente, Nível, FusoHorário}, País
 → {Continente, Língua}

Exercícios complementares Normalização

- 2. Os seguintes exercícios dos Cap. 15 do Navathe:
- 15.2 Discuta as anomalias de inserção, exclusão e modificação. Por que elas são consideradas ruins? Ilustre com exemplos.
- 15.3 Por que os NULLs em uma relação devem ser evitados ao máximo possível? Discuta o problema das tuplas falsas e como podemos impedilo.
- 15.4 Indique as diretrizes informais para o projeto de esquema de relação que discutimos. Ilustre como a violação dessas diretrizes pode ser prejudicial.
- 15.5 O que é uma dependência funcional?
- 15.13 O que é dependência multivalorada? Quando ela surge?

Bibliografia

- Elmasri, Ramez; Navathe, Shamkant B. **Sistemas de** banco de dados. 4 ed. São Paulo: Addison Wesley, 2005, 724 p. Bibliografia: p. [690]-714.
- Garcia-Molina, H.; Ullman J. D.; Widow, J. Database Systems The Complete Book. Prentice-Hall, 2002.
- Ramakrishnan, R. Sistemas de bancos de dados. 3 ed. São Paulo: McGraw-Hill, 2008.
- Material Didático produzido pelos professores Cristina Dutra de Aguiar Ciferri e Caetano Traina Júnior

Leitura complementar para casa

Capítulo 15 do livro: Elmasri, Ramez; Navathe, Shamkant B. Sistemas de banco de dados. 6ª Edição.

Conteúdo Primeira Prova

- Introdução ao SGBD
- Modelos ER e ERX
- Modelo Relacional
- Mapeamento MER e MERX para o Mrel
- Normalização

Data da Prova: 19/04

Avisos: As câmeras e microfones deverão estar abertos durante toda a realização da prova.