Kisi Kisi Soal Ujian Arsitektur dan Organisasi Komputer

- 1. Dengan menggunakan teorema d'morgan, tunjukan kesetaraan dari sirkuit berikut:
 - $\overline{(A+B)} + A \cdot B + \overline{B}$
 - $\overline{A + B \cdot C + \overline{(A + B)}}$
 - $\bar{A} \oplus \bar{B} + \overline{(B \cdot A + \bar{A} \cdot C)}$
- 2. Diketahui 3 buah sirkuit: A, B dan C memenuhi logika berikut:
 - $\bullet \quad A = (P + Q) \cdot Q$
 - $B = P + \bar{Q}.P$
 - $C = \overline{P \oplus Q}$

Dari ketiga sirkuit tersebut, rancanglah sebuah sirkuit besar yang memenuhi kriteria:

- $A \cdot B + C$
- $\bar{A} + C$
- $A + \bar{B} \cdot C$

lengkapi sirkuit di atas dengan sebuah tombol *enabler* (tombol daya) dengan cara mengalikan keluaran dari proses dengan tombol daya.

- 3. Dengan menggunakan rankaian flip flop D, buatlah sebuah skema lampu hias yang memenuhi kondisi berikut:
 - Menggunakan paling sedikit 10 lampu LED.
 - Memiliki pola berulang.
 - Tidak harus merambat, tapi semua lampu tidak boleh berkelap kelip sekaligus.
 - Memiliki tombol power.
- 4. Diketahui sebuah encoder 8-3 memiliki tabel kebenaran sebagai berikut:

I_1	I_2	I_3	I_4	I_5	I_6	I_7	<i>I</i> ₈	o_1	02	o_3
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	1	1
0	0	0	0	0	1	0	0	1	1	0
0	0	0	0	1	0	0	0	0	0	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	0	1	0	1
1	0	0	0	0	0	0	0	0	1	0

Susunlah sebuah encoder yang memenuhi tabel kebenaran diatas! Gunakan bantuan subsirkuit dan sirkuit untuk membentuk encoder tersebut.

5. Diketahui sebuah decoder 3-8 memiliki tabel kebenaran sebagai berikut:

01	02	03	I_1	I_2	I_3	I_4	I_5	<i>I</i> ₆	I_7	<i>I</i> ₈
0	0	0	0	0	0	0	1	0	0	0
0	0	1	0	0	0	1	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	1	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

6. Diketahui encoder A sebagai berikut:

I_1	I ₂	I_3	I_4	0 ₁	02
0	0	0	1	1	1
0	0	1	0	0	1
0	1	0	0	0	0
1	0	0	0	1	0

Buatlah sirkuit untuk encoder A, kemudian buatlah sebuah decoder untuk A dengan cara menjadikan semua input sebagai output dan semua output sebagai input. Lebih lanjut gabungkan kedua sirkuit tersebut, dan tunjukan bahwa gabungan dari encoder A dan decoder A akan mengakibatkan sinyal keluaran memiliki nilai yang sama dengan sinyal masukan(hal ini terjadi karena decoder A langsung menerjemahkan keluaran encoder A kedalam bentuk masukan awal).