MA3219 Homework 3

Tan Yee Jian (A0190190L)

July 28, 2021

Question 1

Question 2

Show that a set $A \subseteq \mathbb{N}$ is accepted by some Turing machine \iff it is a domain of some partial recursive function f.

Solution

Proof. (\Longrightarrow) : Suppose the Turing machine that accepts A has a code e. Then the universal function gives us that $\Phi(e,x)$ is the partial recursive function that is identical to the Turing machine. By s-m-n theorem, we have φ_e as the function whose domain is A.

 (\longleftarrow) : Let the partial recursive function f that has domain A be given. We want to construct a Turing machine M_f such that it mimics f. We already know how to encode as a Turing machine:

- 1. Succ, Zero and Projection
- 2. Composition and Recursion
- 3. Minimization (via setting up registers)

So we need only decompose down f to these building blocks of functions and we can have a Turing machine M_f that exactly mimics f. In particular, M_f accepts A.

Question 3

Let A and B be r.e. subsets of \mathbb{N} . Then prove that

1. both $A \cup B$ and $A \cap B$ are r.e..

Proof. (Machine version) Suppose M_A , M_B are Turing machines that accept A, B respectively. For $A \cap B$, $M_A M_B$ (run one after another, changing halting states of M_A to the initial states of M_B) works.

For $A \cup B$, we run M_A , M_B in parallel:

```
loop
    Carry out one step of M_A.
    If M_A halts, halt and return the result of M_A.
    Carry out one step of M_B.
    If M_B halts, halt and return the result of M_B.
end loop
```

П

Proof. (Function version) Let φ_x, φ_y have domains A, B respectively.

For a domain of $A \cap B$, $\varphi_x \circ \varphi_y$ works. For a domain of $A \cup B$, consider

$$f(2k) = \varphi_x(k)$$
$$f(2k+1) = \varphi_y(k)$$

for any $k \in \mathbb{N}$.

2. If $\alpha : \mathbb{N} \to \mathbb{N}$ is parial recursive, then both $\alpha^{-1}[A]$ and $\alpha[A]$ are r.e.. Moreover if A and α are recursive then $\alpha^{-1}[A]$ is recursive.

(I don't know how to do the machine version, because I don't know how to define the "inverse" of a Turing machine. Could you give some hint please?)

Proof. Suppose A is r.e., α is partial recursive. We want to show

(a) $\underline{\alpha[A]}$ is r.e.: Find φ_e such that $\varphi_e[\mathbb{N}] = A$. Then

$$\alpha[A] = \alpha \circ \varphi_e[\mathbb{N}]$$

gives us $\alpha[A]$ as a range of a partial recursive function $\alpha \circ \varphi_e$, therefore $\alpha[A]$ is r.e..

(b) $\underline{\alpha^{-1}[A] \text{ is r.e.:}}$ Consider the partial characteristic function of $\alpha^{-1}[A]$ as f. The set is r.e. \iff partial characteristic function is partial recursive. Then observe f:

$$f(x) = \begin{cases} 1 & \text{if } x \in \alpha^{-1}[A] \iff \alpha(x) \in A \\ \uparrow & \text{otherwise} \end{cases}$$

$$\iff f = \chi_{A_B} \circ \alpha$$

which is a composition of two partial recursive functions. Hence the partial characteristic function of $\alpha^{-1}[A]$ is partial recursive and hence the set is r.e..

The case where A, α are recursive is analogous to the proof in (b).

Question 4

Solution

I am not sure how to solve using recursive functions. Below is a proof using Turing machines:

Proof. The idea is to run both machines in parallel:

loop

Carry out one step of M_A. If M_A halts, halt and return the result of M_A. Carry out one step of M_B. If M_B halts, halt and return the result of M_B. end loop

Question 5

Show that the class of recursive predicates is closed under bounded quantification.

Solution

Proof. Define *recursive predicates* as predicates whose characteristic function is recursive. Then we note that bounded \forall is equivalent to multiplication of the results of individual characteristic functions; whereas bounded \exists is equivalent to bounded addition. Since the quantifications are bounded, the formula are finite. Then recursive predicates can thus be combined in a primitive recursive manner, via addition and multiplication.

Question 6

Show that $A \subseteq \mathbb{N}$ is recursive and infinite $\iff \exists f : \mathbb{N} \to \mathbb{N}$ recursive and strictly increasing, and $A = f[\mathbb{N}]$.

Solution

Proof. (\Leftarrow) : Let f be given. Then f is clearly infinite, suppose otherwise the maximum is f(i) = k, then f(i+1) is defined (total) and f(i+1) > k = f(i) (strictly increasing). To show that A is recursive, we define the characteristic function using f:

$$\chi_A(x) = \begin{cases} 1 & \text{if } \exists n \le x (f(n) = x) \\ 0 & \text{otherwise.} \end{cases}$$

The search is bounded and f is recursive, thus χ_A is recursive as well.

 (\Longrightarrow) : Let A and its characteristic function χ_A be given. We need only enumerate the set A by searching its recursive characteristic function:

$$f(0) = \min_{k} \{ \chi_A(k) = 1 \}$$

$$f(n+1) = \min_{k} \{ \chi_A(k) = 1 \land k > f(n) \}.$$

Then f is by definition strictly increasing, since A is infinite.