

## Solution

Check convergence of  $\sum_{n=1}^{\infty} \frac{7}{n} - \frac{7}{n^2}$ : diverges

## Steps

$$\sum_{n=1}^{\infty} \frac{7}{n} - \frac{7}{n^2}$$

Apply Series Integral Test: diverges

Hide Steps

$$\sum_{n=1}^{\infty} \frac{7}{n} - \frac{7}{n^2}$$

Series Integral Test:

If there exists an  $N \ge k$  so that for all  $n \ge N$ ,  $f(n) = a_n$  is positive, continuous and decreasing

Then  $\sum_{n=k}^{\infty} a_n$  and  $\int_k^{\infty} f(x) dx$  either both converge or diverge

Check if f(n) is positive, continuous and decreasing

 $\frac{7}{n} - \frac{7}{n^2}$  is positive, continuous and decreasing from n=2

$$\int_2^\infty \frac{7}{n} - \frac{7}{n^2} dn = \text{diverges}$$

Show Steps

By the integral test criteria

= diverges

= diverges