Sorting Networks

Bitonic Sort

Comparator Networks

Circuits with comparators as gates

Comparator Networks

Circuits with comparators as gates

Computing the maximum: n-max

$$y_i = \max\{x_j | j \le i\}$$

naive sorting net n-sort

Circuits with comparators as gates

Computing the maximum: n-max

2 - sort: comparator

naive sorting net n-sort

Circuits with comparators as gates

Computing the maximum: n-max

$$y_i = \max\{x_j | j \le i\}$$

2 - sort: comparator

cost = # comparators

$$c(2) = 1$$

 $c(n) = n - 1 + c(n - 1)$

$$c(n) = O(n^2)$$

Lemma 1. If a comparitor network N transforms input x = x[0:n-1] into output y = y[0:n-1] and

$$f: \mathbb{N}_0 \to \mathbb{N}_0$$

is monotonous, then N transforms input

$$f(x) = (f(x_0), \dots, f(x_{n-1}))$$

into output

$$f(y) = (f(y_0), \dots, f(y_{n-1}))$$

Lemma 1. If a comparitor network N transforms input $x = x[0:n-1]$ into output $y = y[0:n-1]$ and $y = y[0:n-1]$ into output $y[0:n-1]$
$f: \mathbb{N}_0 o \mathbb{N}_0$ is monotonous, then N transforms input $f(x) = (f(x_0), \dots, f(x_{n-1}))$ into output
$f(x) = (f(x_0), \dots, f(x_{n-1}))$ nto output
nto output
$f(y) = (f(y_0), \dots, f(y_{n-1}))$
By induction on depth of comparators c : if comparator c with network input x omputes the pair of outputs $c(x) = (u, v)$ nen it computes with network input $f(x)$ the pair of outputs
c(f(x)) = (f(u), f(v)).
Details: exercise.

Lemma 1. If a comparitor network N transforms input x = x[0:n-1] into output y = y[0:n-1] and

$$f: \mathbb{N}_0 \to \mathbb{N}_0$$

is monotonous, then N transforms input

$$f(x) = (f(x_0), \dots, f(x_{n-1}))$$

into output

$$f(y) = (f(y_0), \dots, f(y_{n-1}))$$

By induction on depth of comparators c: if comparator c with network input x computes the pair of outputs

$$c(x) = (u, v)$$

then it computes with network input f(x) the pair of outputs

$$c(f(x)) = (f(u), f(v)).$$

Details: exercise.

Lemma 2. If a sorting network N sorts all inputs

$$x \in \mathbb{B}^n$$

then it sorts all inputs

$$y \in \mathbb{N}_0^n$$

Lemma 1. If a comparitor network N transforms input x = x[0:n-1] into output y = y[0:n-1] and

$$f: \mathbb{N}_0 \to \mathbb{N}_0$$

is monotonous, then N transforms input

$$f(x) = (f(x_0), \dots, f(x_{n-1}))$$

into output

$$f(y) = (f(y_0), \dots, f(y_{n-1}))$$

By induction on depth of comparators c: if comparator c with network input x computes the pair of outputs

$$c(x) = (u, v)$$

then it computes with network input f(x) the pair of outputs

$$c(f(x)) = (f(u), f(v)).$$

Details: exercise.

Lemma 2. If a sorting network N sorts all inputs

$$x \in \mathbb{B}^n$$

then it sorts all inputs

$$y \in \mathbb{N}_0^n$$

• assume N does not sort $x \in \mathbb{N}_0^n$, i.e. N produces outputs

$$N(x) = (x_{\sigma(0)}, \dots x_{\sigma(n-1)})$$

and there is i such that

$$x_i < x_j \land \sigma(i) > \sigma(j)$$

· define monotonous function

$$f(a) = \begin{cases} 0 & a \le x_i \\ 1 & a > x_i \end{cases}$$

• lemma 1 \rightarrow network with input f(x) produces output $(f(x_{\sigma(0)}), \dots, f(x_{\sigma(n-1)}))$. Then

$$f(x_{\sigma(i)}) = f(x_i) = 0 < 1 = f(x_j) = f(x_{\sigma(j)})$$

 $\sigma(i) > \sigma(j) \rightarrow 0$ placed to the right of 1

bitonic sequences and merge stages

def:

• for even *n* lower and upper half of bit strings $x \in \mathbb{B}^n$

$$x_L = x[0:n/2-1], x_H = x[n/2:n-1]$$

• a sequence $x \in \mathbb{B}*$ is *bitonic* if there are constants $a, b, c \in \mathbb{N}_0$ such that

$$x = 0^a 1^b 0^c$$
 (upward bitonic)

or

$$x = 1^a 0^b 1^c$$
 (downward bitonic)

def:

• for even *n* lower and upper half of bit strings $x \in \mathbb{B}^n$

$$x_L = x[0:n/2-1], x_H = x[n/2:n-1]$$

• a sequence $x \in \mathbb{B}*$ is *bitonic* if there are constants $a, b, c \in \mathbb{N}_0$ such that

$$x = 0^a 1^b 0^c$$
 (upward bitonic)

or

$$x = 1^a 0^b 1^c$$
 (downward bitonic)

• for even n an n-bitonic merge stage has n/2 comparators. With input $x \in \mathbb{B}^n$ it produces output $B(x) \in \mathbb{B}^n$ with

$$B(x)[i] = \begin{cases} \min\{x_i, x_{i+n/2}\} & i < n/2 \\ \max\{x_i, x_{i-n/2}\} & i \ge n/2 \end{cases}$$

Figure 1: *n*-bitonic merge stage transforming input sequence x into output sequence y = B(x)

bitonic sequences and merge stages

def:

• for even *n* lower and upper half of bit strings $x \in \mathbb{B}^n$

$$x_L = x[0:n/2-1], x_H = x[n/2:n-1]$$

• a sequence $x \in \mathbb{B}*$ is *bitonic* if there are constants $a, b, c \in \mathbb{N}_0$ such that

$$x = 0^a 1^b 0^c$$
 (upward bitonic)

or

$$x = 1^a 0^b 1^c$$
 (downward bitonic)

• for even n an n-bitonic merge stage has n/2 comparators. With input $x \in \mathbb{B}^n$ it produces output $B(x) \in \mathbb{B}^n$ with

$$B(x)[i] = \begin{cases} \min\{x_i, x_{i+n/2}\} & i < n/2 \\ \max\{x_i, x_{i-n/2}\} & i \ge n/2 \end{cases}$$

Figure 1: *n*-bitonic merge stage transforming input sequence x into output sequence y = B(x)

bitonic sequences and merge stages

Lemma 3. If $x \in \mathbb{B}^n$ is bitonic, then

- either $B(x)_L$ is bitonic and $B(x)_H = 1^{n/2}$
- or $B(x)_L = 0^{n/2}$ and $B(x)_H$ is bitonic

def:

• for even *n* lower and upper half of bit strings $x \in \mathbb{B}^n$

$$x_L = x[0:n/2-1], x_H = x[n/2:n-1]$$

• a sequence $x \in \mathbb{B}*$ is *bitonic* if there are constants $a, b, c \in \mathbb{N}_0$ such that

$$x = 0^a 1^b 0^c$$
 (upward bitonic)

or

$$x = 1^a 0^b 1^c$$
 (downward bitonic)

• for even n an n-bitonic merge stage has n/2 comparators. With input $x \in \mathbb{B}^n$ it produces output $B(x) \in \mathbb{B}^n$ with

$$B(x)[i] = \begin{cases} \min\{x_i, x_{i+n/2}\} & i < n/2 \\ \max\{x_i, x_{i-n/2}\} & i \ge n/2 \end{cases}$$

Figure 1: *n*-bitonic merge stage transforming input sequence x into output sequence y = B(x)

bitonic sequences and merge stages

Lemma 3. If $x \in \mathbb{B}^n$ is bitonic, then

- either $B(x)_L$ is bitonic and $B(x)_H = 1^{n/2}$
- or $B(x)_L = 0^{n/2}$ and $B(x)_H$ is bitonic

Proof. Cases in obvious case split:

- upward or downward bitonic?
- more ones or more zeros or equal numbers?
- $a+b \le n/2$? If a+b > n/2 consider region $\{i \mid x[0] = x[i] = x[i+n/2]\}$

cases usually not worked out in the literature.

Figure 2: Striped regions are ones. Case: downward bitonic, more zeros than ones, a + b < n/2. $y_L = 0^{n/2}$ and y_H is (downward) bitonic.

modulo computation and cyclic shifts

reminder: for $a, b \in \mathbb{Z}$

• congurence relation modulo $k \in \mathbb{N}$

$$a \equiv b \mod k \iff \exists k \in \mathbb{Z}. \ a - b = z \cdot k$$

• the function $(x \mod k)$

$$x = (a \bmod k) \leftrightarrow x \equiv a \bmod k \land x \in [0:k-1]$$

modulo computation and cyclic shifts

reminder: for $a, b \in \mathbb{Z}$

• congurence relation modulo $k \in \mathbb{N}$

$$a \equiv b \mod k \iff \exists k \in \mathbb{Z}. \ a - b = z \cdot k$$

• the function $(x \mod k)$

$$x = (a \bmod k) \leftrightarrow x \equiv a \bmod k \land x \in [0:k-1]$$

Lemma 4. For even k

1.

$$a \equiv b \mod k \to a \equiv b \mod k/2$$

2.

$$x = (a \mod k) \land x \in [0: k/2 - 1] \rightarrow x = (a \mod (k/2))$$

Proof. exercise

modulo computation and cyclic shifts

reminder: for $a, b \in \mathbb{Z}$

• congurence relation modulo $k \in \mathbb{N}$

$$a \equiv b \mod k \iff \exists k \in \mathbb{Z}. \ a - b = z \cdot k$$

• the function $(x \mod k)$

$$x = (a \mod k) \leftrightarrow x \equiv a \mod k \land x \in [0:k-1]$$

Lemma 4. For even k

1.

$$a \equiv b \mod k \to a \equiv b \mod k/2$$

2

$$x = (a \mod k) \land x \in [0: k/2 - 1] \rightarrow x = (a \mod (k/2))$$

Proof. exercise

cyclic shifts

For shift operand $x = x[0:n-1] \in \mathbb{B}^n$ and shift distance $c \in [0:n-1]$

cyclic right shifts

$$src(x,c) = x[n-c:n-1] \circ x[0:n-c-1]$$

Bit *i* is shifted to position $i + c \mod n$:

$$x[i] = src(x, c)[i + c \bmod n]$$

cyclic left shifts

$$slc(x,c) = x[c:n-1] \circ x[0:c-1]$$

Bit *i* is shifted to position $i - c \mod n$:

$$x[i] = slc(x,c)[i-c \bmod n]$$

Lemma 5. You can compute B(x) by

• preshifting x

$$y = src(x, c)$$

• applying the bitonic sorting stage to the shifted operand

$$z = B(y)$$

• shift upper and lower half back (operands in $\mathbb{B}^{n/2}$)

$$B(x) = slc(B(y)_L, c \bmod n/2) \circ slc(B(y)_H, c \bmod n/2)$$

Lemma 5. You can compute B(x) by

• preshifting x

$$y = src(x, c)$$

• applying the bitonic sorting stage to the shifted operand

$$z = B(y)$$

• shift upper and lower half back (operands in $\mathbb{B}^{n/2}$)

$$B(x) = slc(B(y)_L, c \bmod n/2) \circ slc(B(y)_H, c \bmod n/2)$$

For i < n/2 we track pairs $x_i, x_{i+n/2}$ of inputs, which are compared in a sorting stage. They keep distance n/2. One ends up in the upper half, the other in the lower half of y

Lemma 6. Let

$$u = \min\{i + c \bmod n, i + n/2 + c \bmod n\}$$

$$v = \max\{i + c \bmod n, i + n/2 + c \bmod n\}$$

Then

$$u = i + c \bmod (n/2)$$

$$v = n/2 + u$$

For i < n/2 we track pairs $x_i, x_{i+n/2}$ of inputs, which are compared in a sorting stage. They keep distance n/2. One ends up in the upper half, the other in the lower half of y

Lemma 6. Let

$$u = \min\{i + c \bmod n, i + n/2 + c \bmod n\}$$

$$v = \max\{i + c \bmod n, i + n/2 + c \bmod n\}$$

Then

$$u = i + c \bmod (n/2)$$

$$v = n/2 + u$$

case split on position of i + c.

•
$$i+c \in [0:n/2-1]$$
. Then $i+n/2+c \in [n/2:n-1]$.

$$i+c \mod n = i+c \in [0:n/2-1]$$

 $i+c+n/2 \mod n = i+c+n/2 \in [n/2:n-1]$

$$u = i+c$$

$$= i+c \mod (n/2)$$

$$v = i+n/2+c$$

$$= n/2+u$$

For i < n/2 we track pairs $x_i, x_{i+n/2}$ of inputs, which are compared in a sorting stage. They keep distance n/2. One ends up in the upper half, the other in the lower half of y

Lemma 6. Let

$$u = \min\{i + c \bmod n, i + n/2 + c \bmod n\}$$

$$v = \max\{i + c \bmod n, i + n/2 + c \bmod n\}$$

Then

$$u = i + c \mod (n/2)$$

$$v = n/2 + u$$

•
$$i+c \in [n/2:n-1]$$
. Then $i+n/2+c \in [n-1:3n/2-1]$.
$$i+c \mod n = i+c \in [n/2:n-1]$$

$$i+c+n/2 \mod n = i+c+n/2-n \in [0:n/2-1]$$

$$u = i+c-n/2$$

$$= i+c \mod (n/2)$$

$$v = i+c$$

$$= n/2+u$$

For i < n/2 we track pairs $x_i, x_{i+n/2}$ of inputs, which are compared in a sorting stage. They keep distance n/2. One ends up in the upper half, the other in the lower half of y

Lemma 6. Let

$$u = \min\{i + c \bmod n, i + n/2 + c \bmod n\}$$

$$v = \max\{i + c \bmod n, i + n/2 + c \bmod n\}$$

Then

$$u = i + c \mod (n/2)$$

$$v = n/2 + u$$

•
$$i+c \in [n:3n/2-1]$$
. Then $i+n/2+c \in [2n-1:3n/2-1]$.
$$i+c \mod n = i+c-n \in [0:n/2-1]$$

$$i+c+n/2 \mod n = i+c+n/2-n \in [n/2:n-1]$$

$$u = i+c-n$$

$$= i+c \mod (n/2)$$

$$v = i-n/2+c$$

$$= n/2+u$$

For i < n/2 we track pairs $x_i, x_{i+n/2}$ of inputs, which are compared in a sorting stage. They keep distance n/2. One ends up in the upper half, the other in the lower half of y

Lemma 6. Let

$$u = \min\{i + c \bmod n, i + n/2 + c \bmod n\}$$

$$v = \max\{i + c \bmod n, i + n/2 + c \bmod n\}$$

Then

$$u = i + c \bmod (n/2)$$
$$v = n/2 + u$$

Because the same sequence elements as in input sequence x get compared in sequence y we get for i < n/2:

$$B(y)[u] = \min\{y[u], y[u+n/2]\}$$

$$= \min\{y[i+c \mod n], y[i+n/2+c \mod n]\}$$

$$= \min\{x[i], x[i+n/2]\}$$

$$= B(x)[i]$$

$$B(y)[v] = \max\{y[u], y[u+n/2]\}$$

$$= \max\{y[i+c \mod n], y[i+n/2+c \mod n]\}$$

$$= \max\{x[i], x[i+n/2]\}$$

$$= B(x)[i+n/2] \text{ similarly}$$

For i < n/2 we track pairs $x_i, x_{i+n/2}$ of inputs, which are compared in a sorting stage. They keep distance n/2. One ends up in the upper half, the other in the lower half of y

Lemma 6. Let

$$u = \min\{i + c \bmod n, i + n/2 + c \bmod n\}$$

$$v = \max\{i + c \bmod n, i + n/2 + c \bmod n\}$$

Then

$$u = i + c \bmod (n/2)$$

$$v = n/2 + u$$

Because the same sequence elements as in input sequence x get compared in sequence y we get for i < n/2:

$$B(y)[u] = \min\{y[u], y[u+n/2]\}$$

$$= \min\{y[i+c \mod n], y[i+n/2+c \mod n]\}$$

$$= \min\{x[i], x[i+n/2]\}$$

$$= B(x)[i]$$

$$B(y)[v] = \max\{y[u], y[u+n/2]\}$$

$$= \max\{y[i+c \mod n], y[i+n/2+c \mod n]\}$$

$$= \max\{x[i], x[i+n/2]\}$$

$$= B(x)[i+n/2] \text{ similarly}$$

Shiftling cyclically left by distance c gives for i < n/2:

$$slc(B(y)_L,c)[i] = B(y)_L[i+c \bmod (n/2)]$$

$$= B(y)_L[u]$$

$$= B(x)[i]$$

$$slc(B(y)_H,c)[i] = B(y)_H[i+c \bmod (n/2)]$$

$$= B(y)_H[u]$$

$$= B(y)[n/2+u]$$

$$= B(y)[v]$$

$$= B(x)[i+n/2]$$

Lemma 3. If $x \in \mathbb{B}^n$ is bitonic, then

- either $B(x)_L$ is bitonic and $B(x)_H = 1^{n/2}$
- or $B(x)_L = 0^{n/2}$ and $B(x)_H$ is bitonic

proof of lemma 3:

Shift input x such that all ones are ate the right border

• if x is upward bitonic shift cyclically right by c

$$y = src(x, c)$$

• if x is downward bitonic shift cyclically left by a which is the same as a cyclical right shift by n-a

$$y = src(x, n - a)$$

Lemma 3. If $x \in \mathbb{B}^n$ is bitonic, then

- either $B(x)_L$ is bitonic and $B(x)_H = 1^{n/2}$
- or $B(x)_L = 0^{n/2}$ and $B(x)_H$ is bitonic

proof of lemma 3:

Shift input x such that all ones are ate the right border

• if x is upward bitonic shift cyclically right by c

$$y = src(x, c)$$

• if x is downward bitonic shift cyclically left by a which is the same as a cyclical right shift by n-a

$$y = src(x, n - a)$$

Lemma 3. If $x \in \mathbb{B}^n$ is bitonic, then

- either $B(x)_L$ is bitonic and $B(x)_H = 1^{n/2}$
- or $B(x)_L = 0^{n/2}$ and $B(x)_H$ is bitonic

proof of lemma 3:

Shift input x such that all ones are ate the right border

• if x is upward bitonic shift cyclically right by c

$$y = src(x, c)$$

• if x is downward bitonic shift cyclically left by a which is the same as a cyclical right shift by n-a

$$y = src(x, n - a)$$

The shifted sequence y does not change when B() is applied

$$B(y) = y$$

Lemma 3. If $x \in \mathbb{B}^n$ is bitonic, then

- either $B(x)_L$ is bitonic and $B(x)_H = 1^{n/2}$
- or $B(x)_L = 0^{n/2}$ and $B(x)_H$ is bitonic

proof of lemma 3:

Shift input x such that all ones are ate the right border

• if x is upward bitonic shift cyclically right by c

$$y = src(x, c)$$

• if x is downward bitonic shift cyclically left by a which is the same as a cyclical right shift by n-a

$$y = src(x, n - a)$$

The shifted sequence y does not change when B() is applied

$$B(y) = y$$

• if the sequence has at least n/2 ones, then

$$B(y)_H = 1^{n/2}$$

and the lower half has for some d, e the form

$$B(y)_L = 0^d 1^e$$

Shifting $B(y)_H$ shanges nothing. Shifting $B(y)_L$ makes it bitonic

Lemma 3. If $x \in \mathbb{B}^n$ is bitonic, then

- either $B(x)_L$ is bitonic and $B(x)_H = 1^{n/2}$
- or $B(x)_L = 0^{n/2}$ and $B(x)_H$ is bitonic

proof of lemma 3:

Shift input x such that all ones are ate the right border

• if x is upward bitonic shift cyclically right by c

$$y = src(x, c)$$

• if x is downward bitonic shift cyclically left by a which is the same as a cyclical right shift by n-a

$$y = src(x, n - a)$$

The shifted sequence y does not change when B() is applied

$$B(y) = y$$

• if the sequence has at least n/2 ones, then

$$B(y)_H = 1^{n/2}$$

and the lower half has for some d, e the form

$$B(y)_L = 0^d 1^e$$

Shifting $B(y)_H$ shanges nothing. Shifting $B(y)_L$ makes it bitonic

Shifting $B(y)_L$ shanges nothing. Shifting $B(y)_H$ makes it bitonic

bitonic merge networks *n-BM*

2-BM: comparator

• n-BM:

bitonic merge networks *n-BM*

- 2-BM: comparator
- n-BM:

Lemma 8. If the input $x \in \mathbb{B}^n$ of a bitonic merge network n-BM is bitonic, then its the outut $z(x) \in \mathbb{B}^n$ is sorted.

Proof by induction on n. Trivial for n = 2. Induction step $n/2 \rightarrow n$: lemma $3 \rightarrow$

bitonic merge networks *n-BM*

- 2-BM: comparator
- n-BM:

Lemma 8. If the input $x \in \mathbb{B}^n$ of a bitonic merge network n-BM is bitonic, then its the outut $z(x) \in \mathbb{B}^n$ is sorted.

Proof by induction on n. Trivial for n = 2. Induction step $n/2 \rightarrow n$: lemma $3 \rightarrow$

Proof by induction on n. Trivial for n = 2. Induction step $n/2 \rightarrow n$: lemma $3 \rightarrow$

cases:

- $B(x)_L = 0^{n/2}$ and $B(x)_H$ bitonic. Then $z(x)_L = 0^{n/2} \text{ and } z(x)_H \text{ sorted by Ind. Hyp.}$
- $B(x)_H = 1^{n/2}$ and $B(x)_L$ bitonic. Then $z(x)_H = 1^{n/2} \text{ and } z(x)_L \text{ sorted by Ind. Hyp.}$

In both cases z(x) is sorted. lemma 3

bitonic sorter *n-BS*

- 2-BM: comparator
- n-BM:

Lemma 8. If the input $x \in \mathbb{B}^n$ of a bitonic merge network n-BM is bitonic, then its the outut $z(x) \in \mathbb{B}^n$ is sorted.

Proof by induction on n. Trivial for n = 2. Induction step $n/2 \rightarrow n$: lemma $3 \rightarrow$

- n-BS*: reverse order of outputs in comparators
- 2-BS: comparator
- n-BS:

bitonic sorter *n-BS*

• n-BS*: reverse order of outputs in comparators

- 2-BM: comparator
- n-BM:

Lemma 8. If the input $x \in \mathbb{B}^n$ of a bitonic merge network n-BM is bitonic, then its the outut $z(x) \in \mathbb{B}^n$ is sorted.

Proof by induction on n. Trivial for n = 2. Induction step $n/2 \rightarrow n$: lemma $3 \rightarrow$

- 2-BS: comparator
- n-BS:

Lemma 8. With input $x \in \mathbb{B}^n$ a bitonic sorter n-BS produces an output $w \in \mathbb{B}^n$, which is sorted.

bitonic sorter *n-BS*

• n-BS*: reverse order of outputs in comparators

- 2-BM: comparator
- n-BM:

Lemma 8. If the input $x \in \mathbb{B}^n$ of a bitonic merge network n-BM is bitonic, then its the outut $z(x) \in \mathbb{B}^n$ is sorted.

Proof by induction on n. Trivial for n = 2. Induction step $n/2 \rightarrow n$: lemma $3 \rightarrow$

Lemma 8. With input $x \in \mathbb{B}^n$ a bitonic sorter n-BS produces an output $w \in \mathbb{B}^n$, which is sorted.

Proof by induction on n. Trivial for n = 2. Induction step $n/2 \rightarrow n$:

- Induction hypothesis \rightarrow : z_l sorted in increasing order and z_H sorted in decreasing order.
- $z_L \circ z_H$ is bitonic.
- lemma $7 \rightarrow$:
 output w is sorted.

cost and delay

• n-BS*: reverse order of outputs in comparators

• 2-BM: comparator

• n-BM:

• bitonic merger

bitonic sorter

$$\left(\left(\frac{1}{\log^2(n)} \right) \right) \begin{cases} d_S(2) &= 1 \\ d_S(n) &= d_S(n/2) + d_M(n) \end{cases}$$

$$\left(\frac{1}{\log^2(n)} \right) \begin{cases} c_S(2) &= 1 \\ c_S(n) &= 2c_S(n/2) + c_M(n) \end{cases}$$

cost and delay

• n-BS*: reverse order of outputs in comparators

- 2-BM: comparator
- n-BM:

• bitonic merger

$$d_{M}(2) = 1$$

 $d_{M}(n) = 1 + d_{M}(n/2)$
 $c_{M}(2) = 1$
 $c_{M}(n) = 2c_{M}(n/2) + n/2$

bitonic sorter

$$d_S(2) = 1$$

 $d_S(n) = d_S(n/2) + d_M(n)$
 $c_S(2) = 1$
 $c_S(n) = 2c_S(n/2) + c_M(n)$

solution: exercise sheet 1