вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Устен изпит по Изчислимост и сложност, 03/02/20

Зад. 1. а) Дайте определение за примитивно рекурсивен и рекурсивен предикат в множеството N на естествените числа.

б) Формулирайте възможно най-много твърдения за примитивно рекурсивни предикати. Докажете поне половината от тях (по Ваш избор).

Зад. 2. Нека $f: \mathbb{N} \to \mathbb{N}$.

- а) Дефинирайте итерацията f^* на функцията f.
- б) Докажете, че ако f е примитивно рекурсивна, то и f^* е такава. Дали е вярно обратното?
- в) Намерете явния вид на f^* , ако f(x) = x 1, $f(x) = x^2$ и $f(x) = x^2$ 2^x .

Зад. 3. а) Формулирайте и докажете Теоремата на Пост.

б) Приложете тази теорема, за да докажете, че ако A_1, \ldots, A_n са две по две непресичащи се и полуразрешими множества от естествени числа, такива че $A_1 \cup \cdots \cup A_n = \mathbb{N}$, то A_1, \ldots, A_n са разрешими.

Зад. 4. Нека M е произволна абстрактна мярка за сложност. Коя от изброените функции също е мярка? Обосновете отгово-

(1)
$$M_1(a, x) \cong \begin{cases} 0, & \text{ako } x = 0\\ M(a, x), & \text{ako } x > 0; \end{cases}$$

(2)
$$M_2(a, x) \cong \begin{cases} 0, & \text{ako } a = 0\\ M(a, x), & \text{ako } a > 0; \end{cases}$$

рите си.
$$(1) \ \mathrm{M}_1(a,x) \cong \begin{cases} 0, & \text{ако } x = 0 \\ M(a,x), & \text{ако } x > 0; \end{cases}$$

$$(2) \ \mathrm{M}_2(a,x) \cong \begin{cases} 0, & \text{ако } a = 0 \\ M(a,x), & \text{ако } a > 0; \end{cases}$$

$$(3) \ \mathrm{M}_3(a,x) \cong \begin{cases} 0.M(a,x), & \text{ако } x = 0 \\ M(a,x), & \text{ако } x > 0. \end{cases}$$

Успех! 🛎