System Verification with Model Checking

Περιεχόμενα

- Εισαγωγή Πρόβλημα
- Μοντελοποίηση
- Χρονικές Λογικές
- Αλγόριθμος Model Checking

Εισαγωγή – Πρόβλημα

Formal methods

Abstract Interpretation:

Σε αυτή την μέθοδο, στόχος είναι ο υπολογισμός invariants, συνθηκών που θα ι σχύουν κάθε φορά που θα λειτουργεί το σύστημα, ανεξάρτητα της εισόδου του. Για παράδειγμα, θα μπορούσε σε ένα πρόγραμμα, η ανάλυση με αυτή την μέθοδ ο να καταλήγει στο συμπέρασμα ότι η τιμή μιας μεταβλητής είναι πάντα 5.

Model

Checking: Σε αυτή τη μέθοδο, ο χρήστης παρέχει ένα μοντέλο (ή ένα σύστημα) και τον προσδιορισμό λειτουργίας του, καθώς και τα δεδομένων εισόδου και η μ έθοδος αποφαίνεται αν μπορεί να υπάρξει κάποιο πιθανό λάθος ή γίνεται επιτυ χημένος έλεγχος λειτουργίας.

Equivalence checking:

Σε αυτή την μέθοδο, δύο μοντέλα συγκρίνονται μεταξύ τους για να βρεθεί πόσο όμοια συμπεριφέρονται κάτω από διάφορες συνθήκες.

Verification by Deduction:

Σε αυτή την μέθοδο, η ιδιότητα του συστήματος είτε αποδεικνύεται με κάποιας μορφής απόδειξη ή αποδεικνύεται ότι η ιδιότητα δεν ισχύει. Σε αυτή την μέθοδο ο χρήστης πρέπει να παρέχει invariants σε κάποια σημεία της λειτουργίας του συστήματος. Καθώς η απόδειξη μιας ιδιότητας μπορεί να πάρει πολύ καιρό, συν ήθως χρησιμοποιείται μόνο στις πιο critical ιδιότητες των συστημάτων και μπο ρεί να χρησιμοποιηθεί και για συστήματα που έχουν άπειρες καταστάσεις.

Kripke structure

A Kripke structure K is a quadruple K = (V, E, L, I) with

- V a set of vertices (interpreted as system states),
- $E \subseteq V \times V$ a set of edges (interpreted as possible transitions),
- $L \in V \to \mathcal{P}(AP)$ labels the vertices with atomic propositions that apply in the individual vertices,
- $I \subseteq V$ is a set of initial states.

Παράδειγμα

$$\begin{split} & \nu_0' = \neg \nu_0 \\ & \nu_1' = \nu_0 \oplus \nu_1 \\ & \nu_2' = (\nu_0 \wedge \nu_1) \oplus \nu_2 \end{split}$$

$$\begin{split} \mathcal{R}_0(V,V') &\equiv (\nu_0' \Leftrightarrow \neg \nu_0) \\ \mathcal{R}_1(V,V') &\equiv (\nu_1' \Leftrightarrow \nu_0 \oplus \nu_1) \\ \mathcal{R}_2(V,V') &\equiv (\nu_2' \Leftrightarrow (\nu_0 \wedge \nu_1) \oplus \nu_2) \end{split}$$

$$\mathcal{R}(V,\,V') \equiv \mathcal{R}_0(V,\,V') \wedge \mathcal{R}_1(V,\,V') \wedge \mathcal{R}_2(V,\,V')$$

Μονοπάτια

A path π in a Kripke structure K = (V, E, L, I) is an edge-consistent infinite sequence of vertices:

- $\pi \in V^{\omega}$,
- $(\pi_i, \pi_{i+1}) \in E$ for each $i \in N$.

Note that a path need not start in an initial state!

The labelling L assigns to each path π a propositional trace

$$\operatorname{tr}_{\pi} = \operatorname{L}(\pi) \stackrel{\text{def}}{=} \langle \operatorname{L}(\pi_0), \operatorname{L}(\pi_1), \operatorname{L}(\pi_2), \ldots \rangle$$

that path formulae $(X\varphi, F\varphi, G\varphi, \varphi U\psi)$ can be interpreted on.

- We start from a countable set AP of atomic propositions.
 The CTL formulae are then defined inductively:
- Any proposition $p \in AP$ is a CTL formula.
- The symbols \bot and \top are CTL formulae.
- If ϕ and ψ are CTL formulae, so are $\neg \phi$, $\phi \land \psi$, $\phi \lor \psi$, $\phi \rightarrow \psi$ EX ϕ , AX ϕ EF ϕ , AF ϕ EG ϕ , AG ϕ ϕ EU ψ , ϕ AU ψ

Σημασιολογία

E and A are path quantifiers:

A: for all paths in the computation tree . . .

E: for some path in the computation tree . . .

X, F, G und U are temporal operators which refer to the path under investigation, as known from LTL:

X ϕ (Next): evaluate ϕ in the next state on the path

 \mathbf{F} φ (Finally): φ holds for some state on the path

G ϕ (Globally): ϕ holds for all states on the path

 ϕ **U** ψ (**Until**): ϕ holds on the path at least until ψ holds

Σημασιολογία

Let K = (V, E, L, I) be a Kripke structure and $v \in V$ a vertex of K.

- $\nu, K \models \top$
- ν , $K \not\models \bot$
- $v, K \models p \text{ for } p \in AP \text{ iff } p \in L(v)$
- $v, K \models \neg \varphi \text{ iff } v, K \not\models \varphi$,
- $v, K \models \phi \land \psi \text{ iff } v, K \models \phi \text{ and } v, K \models \psi$,
- $v, K \models \phi \lor \psi \text{ iff } v, K \models \phi \text{ or } v, K \models \psi$,
- $v, K \models \varphi \Rightarrow \psi \text{ iff } v, K \not\models \varphi \text{ or } v, K \models \psi.$

Σημασιολογία

- $v, K \models EX \varphi$ iff there is a path π in K s.t. $v = \pi_1$ and $\pi_2, K \models \varphi$,
- $v, K \models AX \varphi$ iff all paths π in K with $v = \pi_1$ satisfy $\pi_2, K \models \varphi$,
- $v, K \models EF \varphi$ iff there is a path π in K s.t. $v = \pi_1$ and $\pi_i, K \models \varphi$ for some i,
- ν , $K \models AF \varphi$ iff all paths π in K with $\nu = \pi_1$ satisfy π_i , $K \models \varphi$ for some i (that may depend on the path),
- $v, K \models EG \varphi$ iff there is a path π in K s.t. $v = \pi_1$ and $\pi_i, K \models \varphi$ for all i,
- $\nu, K \models AG \varphi$ iff all paths π in K with $\nu = \pi_1$ satisfy $\pi_i, K \models \varphi$ for all i,
- $\nu, K \models \varphi \, \text{EU} \, \psi$, iff there is a path π in K s.t. $\nu = \pi_1$ and some $k \in N$ s.t. $\pi_i, K \models \varphi$ for each i < k and $\pi_k, K \models \psi$,
- $\nu, K \models \varphi \text{ AU} \psi$, iff all paths π in K with $\nu = \pi_1$ have some $k \in N$ s.t. $\pi_i, K \models \varphi$ for each i < k and $\pi_k, K \models \psi$.

A Kripke structure K = (V, E, L, I) satisfies ϕ iff all its initial states satisfy ϕ , i.e. iff is, $K \models \phi$ for all is $\in I$.

Ταυτολογίες

The tautologies

$$\begin{array}{cccc} \varphi \vee \psi & \Leftrightarrow & \neg(\neg \varphi \wedge \neg \psi) \\ \text{AX } \varphi & \Leftrightarrow & \neg \text{EX } \neg \varphi \\ \text{AG } \varphi & \Leftrightarrow & \neg \text{EF } \neg \varphi \\ \text{EF } \varphi & \Leftrightarrow & \top \text{EU } \varphi \\ \text{EG } \varphi & \Leftrightarrow & \neg \text{AF } \neg \varphi \\ \varphi \text{AU } \psi & \Leftrightarrow & \neg((\neg \psi) \text{EU } \neg(\varphi \vee \psi)) \wedge \text{AF } \psi \end{array}$$

indicate that we can rewrite each formula to one only containing atomic propositions, \neg , \wedge , EX, EU, AF.

We will extend the idea of verification/falsification by exhaustive state-space exploration to full CTL.

- Main technique will again be breadth-first search, i.e. graph coloring.
- Need to extend this to other modalities than AG..
- · Need to deal with nested modalities.

Γενική ιδέα

Given: a Kripke structure K = (V, E, L, I) and a CTL formula ϕ

Core algorithm: find the set $V_{\varphi} \subseteq V$ of vertices in K satisfying φ by

- 1. for each atomic subformula p of $\varphi,$ mark the set $V_p\subseteq V$ of vertices in K satisfying φ
- 2. for increasingly larger subformulae ψ of $\varphi,$ synthesize the marking $V_\psi\subseteq V$ of nodes satisfying ψ from the markings for ψ 's immediate subformulae

until all subformulae of φ have been processed (including φ itself)

Result: report " $K \models \varphi$ " iff $V_{\varphi} \supseteq I$

Given: A finite Kripke structure with vertices V and edges E and a labelling function L assigning atomic propositions to vertices.

Furthermore an atomic proposition p to be checked.

Algorithm: Mark all vertices that have p as a label.

Complexity: O(|V|)

Given: A set V_{φ} of vertices satisfying formula φ .

Algorithm: Mark all vertices not belonging to V_{φ} .

Complexity: O(|V|)

Given: Sets V_{φ} and V_{ψ} of vertices satisfying formulae φ or ψ , resp.

Algorithm: Mark all vertices belonging to $V_{\varphi} \cap V_{\psi}$.

Complexity: O(|V|)

Given: Set V_{φ} of vertices satisfying formulae φ .

Algorithm: Mark all vertices that have a successor state in V_{φ} .

Complexity: O(|V| + |E|)

Given: Sets V_{φ} and V_{ψ} of vertices satisfying formulae φ or ψ , resp.

Algorithm: Incremental marking by

1. Mark all vertices belonging to V_{ψ} .

2. Repeat

if there is a state in V_{φ} that has some successor state marked then mark it also until no new state is found.

Termination: Guaranteed due to finiteness of $V_{\varphi} \subset V.$

Complexity: O(|V| + |E|) if breadth-first search is used.

Given: Set V_{φ} of vertices satisfying formula φ .

Algorithm: Incremental marking by

1. Mark all vertices belonging to V_{ϕ} .

2. Repeat

if there is a state in V that has *all* successor states marked then mark it also until no new state is found.

Termination: Guaranteed due to finiteness of V.

Complexity: $O(|V| \cdot (|V| + |E|))$.

Given: Set V_{ϕ} of vertices satisfying formula ϕ .

Algorithm: Incremental marking by

1. Strip Kripke structure to V_{Φ} -states:

$$(V, E) \leadsto (V_{\Phi}, E \cap (V_{\Phi} \times V_{\Phi})).$$

- \rightarrow Complexity: O(|V| + |E|)
- 2. Mark all states belonging to loops in the reduced graph.
- \sim Complexity: $O(|V_{\varphi}| + |E_{\varphi}|)$ by identifying *strongly connected* components.
- 3. Repeat

if there is a state in V_{Φ} that has *some* successor states marked then mark it also until no new state is found.

 \leadsto Complexity: $O(|V_{\varphi}| + |E_{\varphi}|)$

Complexity: O(|V| + |E|).

Τελικό αποτέλεσμα

Theorem: It is decidable whether a finite Kripke structure (V, E, L, I) satisfies a CTL formula ϕ .

The complexity of the decision procedure is $O(|\phi| \cdot (|V| + |E|))$, i.e.

- linear in the size of the formula, given a fixed Kripke structure,
- linear in the size of the Kripke structure, given a fixed formula.