Varianta 21

Subjectul I.

- a) De exemplu numerele 1, -1, i au modulul egal cu 1.
- **b)** Distanța căutată este $3\sqrt{2}$.
- c) $(x-1)^2 + (y-1)^2 25 = 0$.
- **d**)) Punctele L, M, N sunt coliniare, deoarece $\overrightarrow{LN} = 2 \cdot \overrightarrow{LM}$.
- $e) V_{ABCD} = \frac{9}{2}.$
- **f**) $z_1 = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$.

Subjectul II.

- 1
- a) $\det(A) = 0$.
- **b**) rang(A) = 2.
- c) Probabilitatea căutată este $p = \frac{1}{5}$
- **d**) g(5)=1.
- **e**) x = 1.
- 2.
- a) Funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = \frac{x^2}{2}$ are f'(x) = x, $\forall x \in \mathbf{R}$.
- **b**) Pentru funcția $f: \mathbf{R} \to \mathbf{R}$, avem: f(x) = 2x, $\int_{0}^{1} f(x) dx = 1$.
- c) f''(x) > 0, $\forall x \in \mathbf{R}$, deci funcția f este convexă pe \mathbf{R} .
- **d**) Funcția $f: \mathbf{R} \to \mathbf{R}$ f(x) = 2x este strict crescătoare pe \mathbf{R} .
- e) $\int_{0}^{1} xe^{x} dx = 1$.

Subjectul III.

- a) Se arată prin calcul direct.
- b) Se arată prin calcul direct.
- c) Se arată prin calcul direct.
- **d**) De exemplu, $(1,2) \circ (2,3) = (2,5)$, iar $(2,3) \circ (1,2) = (2,7)$, deci $(1,2) \circ (2,3) \neq (2,3) \circ (1,2)$
- e) se arată uşor că " \circ " este lege de compoziție pe mulțimea G şi se folosesc punctele a), d), b) şi c).

- f) Se demonstrează prin inducție.
- g) Folosind punctul f), demonstrăm de fapt că $\forall a > 0$, $\forall x \in \mathbb{R}$, $\forall n \in \mathbb{N}^*$, există

$$u > 0$$
, $v \in \mathbf{R}$, astfel încât
$$\begin{cases} u^n = a \\ v(1 + u + \dots + u^{n-1}) = x \end{cases}$$

$$u > 0$$
, $v \in \mathbf{R}$, astfel încât
$$\begin{cases} u^n = a \\ v(1 + u + \dots + u^{n-1}) = x \end{cases}$$
Soluția sistemului anterior este
$$\begin{cases} u = \sqrt[n]{a} > 0 \\ v = \frac{x}{1 + \sqrt[n]{a} + \dots + \sqrt[n]{a^{n-1}}} \in \mathbf{R} \end{cases}$$

Subjectul IV.

a)
$$I_1 = \frac{2}{3}$$
.

- b) Se arată prin calcul direct.
- c) Se folosește principul întâi al inducției matematice și relația de recurență de la punctul b).
- d) Se ridică la pătrat și se fac calculele.

e) Dând pe rând lui
$$x$$
 valorile $4, 6, ..., 2n$ în inegalitatea din \mathbf{d}), înmulțind inegalitățile obținute deducem:
$$\frac{\sqrt{2}}{\sqrt{2n}} \le \frac{4}{5} \cdot ... \cdot \frac{2n}{2n+1} < \sqrt{\frac{5}{2n+3}}$$

Înmulțind inegalitatea precedentă cu inegalitatea evidentă: $\frac{2}{3} = \frac{2}{3} < \sqrt{\frac{3}{5}}$ obtinem concluzia.

- **f**) Din **e**) avem, $\frac{2}{3} \cdot \frac{1}{\sqrt{n}} < I_n < \sqrt{\frac{3}{2n+3}}$, $\forall n \in \mathbb{N}^*$ şi trecând la limită în inegalitatea precedentă și folosind criteriul cleștelui, rezultă $\lim_{n\to\infty}I_n=0$.
- **g**) Avem: $\lim_{n \to \infty} \sqrt{I_n} = \lim_{n \to \infty} e^{\frac{\ln I_n}{n}}$.

Logaritmând în dubla inegalitate din e), obținem:

$$\ln \frac{2}{3\sqrt{n}} < \ln I_n < \ln \sqrt{\frac{3}{2n+3}} \implies \frac{\ln \frac{2}{3} - \frac{1}{2} \ln n}{n} < \frac{\ln I_n}{n} < \frac{\ln \sqrt{3} - \frac{1}{2} \ln(2n+3)}{n}$$

Trecând la limită în inegalitatea precedentă și folosind criteriul cleștelui, rezultă $\lim_{n\to\infty} \frac{\ln I_n}{n} = 0 \quad \text{si obtinem în final } \lim_{n\to\infty} \sqrt[n]{I_n} = e^0 = 1.$