Question 4

The ridge regression solves the problem:

$$\min_{\beta} \{ \frac{1}{2} \| y - x\beta \|_2^2 + \frac{\lambda}{2} \beta^T \beta \}$$

and it has the optimal solution:

$$\widehat{\beta_R} = (X^T X + \lambda I_d)^{-1} X^T y$$
$$= (\phi^T \phi + \lambda I_d)^{-1} \phi^T y$$

(let $\phi(X) \in \mathbb{R}^M$ be the feature vector where $X \in \mathbb{R}^d$)

Let
$$B = \phi(X), P = (\lambda I_d)^{-1}, R = I_M$$

$$\widehat{\beta_R}$$

$$= (\phi^T \phi + \lambda I_d)^{-1} \phi^T y$$

$$= (\phi^T I_M X + \lambda I_d)^{-1} \phi^T I_M y$$

$$= (B^T R B + P^{-1})^{-1} B^T R y$$

$$= (B^T R B + P^{-1})^{-1} B^T R^{-1} y$$

$$= P B^T (B P B^T + R)^{-1} y$$

$$= (\lambda I_d)^{-1} \phi^T (\phi (\lambda I_d)^{-1} \phi^T + I_M)^{-1} y$$

$$= \frac{1}{\lambda} I_d \phi^T \left(X \frac{1}{\lambda} I_d \phi^T + I_M \right)^{-1} y$$

$$= \frac{1}{\lambda} \phi^T \left(X \frac{1}{\lambda} \phi^T + I_M \right)^{-1} y$$

$$= \frac{1}{\lambda} \phi^T \left(X \frac{1}{\lambda} \phi^T + I_M \right)^{-1} y$$

$$= \frac{1}{\lambda} \phi^T \left(X \frac{1}{\lambda} \phi^T + I_M \right)^{-1} y$$

$$= \frac{1}{\lambda} \phi^T \left(X \frac{1}{\lambda} \phi^T + I_M \right)^{-1} y$$

$$= \frac{1}{\lambda} \phi^T \left(X \frac{1}{\lambda} \phi^T + I_M \right)^{-1} y$$

$$= \frac{1}{\lambda} \phi^T \left(X \frac{1}{\lambda} \phi^T + I_M \right)^{-1} y$$

$$= \frac{1}{\lambda} \phi^T \left(X \frac{1}{\lambda} \phi^T + I_M \right)^{-1} y$$

$$= \frac{1}{\lambda} \phi^T \left(X \frac{1}{\lambda} \phi^T + I_M \right)^{-1} y$$

$$= \frac{1}{\lambda} \phi^T \left(X \frac{1}{\lambda} \phi^T + I_M \right)^{-1} y$$

So $\widehat{\beta_R}$ could be written as $\phi(X)^T(\phi(X)\phi(X)^T + \lambda I_M)^{-1}y$

Given x_{new} ,

 y_{new} $= \widehat{\beta_R} \phi(x_{new})$ $= \phi(X)^T (\phi(X)\phi(X)^T + \lambda I_M)^{-1} y \phi(x_{new})$ $= \phi(X)^T \phi(x_{new}) (\phi(X)\phi(X)^T + \lambda I_M)^{-1} y$

Define the Gram matrix K to be the n X n matrix with

$$K_{ij} := \phi(x_i)\phi(x_j)^T$$
$$:= k(x_i, x_i)$$

 y_{new} will then equal to $\phi(X)^T\phi(x_{new})(K+\lambda I_M)^{-1}y$

Since $\phi(X)^T \phi(x_{new})$ produces $(n \ X \ 1)$ vector with the i-th element equal to $k(x_i, x^{new})$, we just need the kernel function but not the feature vector to predict y_{new} .