

Abstract Data Types

Operations [Abrial 10][Gries, Schneider 93]

Syntax	Label	Syntax	Label
set(T)	Unordered, unique collection	$S \cup T$	Union
$S \leftrightarrow T$	Relation, $set(S \times T)$	$S \cap T$	Intersection
$S \to \mathbb{N}$	Bag/Multiset	$S \setminus T$	Difference
Ø	Empty Set	$S \times T$	Cartesian Product
$\{x, y, \dots\}$	Set Enumeration	dom(R)	Domain
$\{x \cdot P \mid E\}$	Set Comprehension	ran(R)	Range
$x \mapsto y$	Pair	R[S]	Image
$S \not\rightarrow T$	Partial Function	R @ Q	Overriding
$S \mapsto T$	Total Injective Function	$R \circ Q$	Composition
$S \subseteq T$	Subset	$S \triangleleft R$	Domain Restriction
S-T	Bag Difference	R^{-1}	Inverse

Visitor Information System

Motivating Examples

- Academics attend workshops throughout CAV 2025
- Every workshop must be held in one room
- Visitors may attend at most one workshop at a time

$$\label{eq:Visitor} \begin{split} \textit{Visitor} &= \{\textit{Shufang}, \textit{Mark}, \textit{Grigory}\} \\ \textit{Room} &= \{\textit{D346}, \textit{D273}, \textit{D305}, \textit{D160}, \textit{D152}\} \\ \textit{Workshop} &= \{\textit{SYNT}, \textit{MOSCA}, \textit{HCVS}\} \end{split}$$

 $location: Workshop \rightarrow Room$ $attends: Visitor \rightarrow Workshop$ Partial Function

Then, the number of meals to prepare for a specific *room* would be:

 $card((location^{-1} \circ attends^{-1})[\{room\}])$ Relational Image

Warehouse Inventory System

Motivating Examples

- Furniture material catalogue
- Warehouse inventory
- Product recipes

```
Material = \{2 \times 4 Plank, Hex Bolt, 3 Inch Screw, ...\}
```

 $Price = \mathbb{N}_0$

 $Product = \{Cabinet, Desk, Bookshelf, ...\}$

 $catalogue: Material \rightarrow Price$

inventory: bag[Material]

 $recipes: Product \rightarrow bag[Material]$

Restocking price, with a target inventory $inventory_t$:

$$\sum p \mapsto n_m \cdot p \mapsto n_m \in catalogue^{-1} \circ (inventory_t - inventory) \mid p \times n_m$$

Bag Difference

Conway's Game of Life

Motivating Examples [Leuschel 20]

- Next state depends on previous position
- Cells with 2 or 3 neighbours remain living
- Dead cells with 3 living neighbours are revived

```
Boundary \in \mathbb{N}
Living \in \mathbb{P}(Boundary \times Boundary)
```

```
neigh = \{x, y, x_n, y_n : x \in Boundary \land y \in Boundary \\ \land x_n \in (x-1)...(x+1) \land y_n \in (y-1)...(y+1) \\ \land x \neq x_n \land y \neq y_n \\ | (x \mapsto y) \mapsto (x_n, \mapsto y_n) \}
```

```
nextStep = \{c \cdot c \in Living \land card(neigh[\{c\}] \cap Living) = 2 \mid c\} \\ \cup \{c \cdot c \in neigh [Living] \\ \land card(neigh [\{c\}] \cap Living) = 3 \mid c\}
```

Credit (Image): Conway's Game of Life. Wikipedia, 2025. https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

Abstract Data Types

In Programming and Modelling Languages

		Sets				Relations											Efficiently		
		U	\cap	\	×		$\{x \cdot P \mid E\}$	dom ran	U	\cap	\		R[S]	?	0	\triangleleft	R^{-1}	Multiplicity	Executable
Programming	Python	√	✓	\checkmark	\checkmark	√	\checkmark	\checkmark	X	*	*	*	*	\checkmark	X	X	X	X	*
Languages Modelling Languages	Haskell	√	√	√	√	√	*	√	X	√	√	√	*	√	*	*	√	*	√
	Rust	√	✓	✓	*	√	*	\checkmark	X	X	X	X	\checkmark	*	X	X	X	X	\checkmark
	С	*	*	*	*	*	X	*	*	*	*	*	*	*	*	*	*	X	√
	APL	√	√	√	√	*	X	\checkmark	*	*	*	*	*	*	\checkmark	*	\checkmark	X	\checkmark
	SetL	√	√	√	*	√	√	√	√	√	√	√	√	*	*	√	*	*	*
	UML	√	√	\checkmark	\checkmark	√	X	\checkmark	X	X	X	√	\checkmark	\checkmark	X	X	X	\checkmark	*
	Event-B	√	√	√	√	√	√	√	√	√	√	√	√	√	√	√	√	\checkmark	*
	Alloy	√	√	√	√	\checkmark	\checkmark	\checkmark	√	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√	\checkmark	\checkmark	X

Goals

Of our set-based language

- Syntax close to discrete mathematics
- Simple, small, and usable
- Highly performant execution
- High-level set-theory optimization

Abstract Data Types in Python

Implementation of Set Operations in Modern Languages

```
(S \cap V) \cup ((T \setminus S) \cap V)
            (S \cup T) \cap V
# Python translation:
                                               # New Python translation:
ret = set()
                                               ret = set()
for x in S:
                                               for x in S:
    ret.add(x)
                                                    if x in V:
# Step 1: len(ret) == len(S)
                                                        ret.add(x)
for x in T:
                                               # Step 1: len(ret) <= min(len(S), len(V))</pre>
    ret.add(x)
                                               for x in T:
# Step 2: len(ret) <= len(S) + len(T)
                                                    if x not in S and x in V:
for x in ret:
                                                        ret.add(x)
    if x not in V:
                                               # Step 2: len(ret) <= min(len(S) + len(T), len(V))</pre>
        ret.remove(x)
# Step 3: len(ret) <= len(V)
```

Related Work

- ProB animation engine for Event-B [Leuschel 22]
- GHC rewrite rules [Jones, Tolmach, Hoare 01]
- Rewrite systems for set-theory focused optimization
 [Cristia, Rossi 22][Vissier, Benaissa, Tolmach 98][Smith, Westfold 20]
- SETL data type *lowering* from abstract types to suitable concrete structures [Schonberg, Schwartz, Sharir 79][Freudenberger, Schwartz, Sharir 83]

Our Term Rewriting System

Overview: 7 Phases

- Set Comprehension Construction
- Predicate Disjunctive Normal Form
- Nesting
- Generator Selection
- Code Generation 1
- Equality Elimination
- Code Generation 2

Phase 1: Set Comprehension Construction

Set-typed variables and literals are decomposed into set comprehensions

Rewrite Rules							
D	$S \cup T \rightsquigarrow \{x \cdot x \in S \lor x \in T \mid x\}$						
Predicate Operations	$S \cap T \rightsquigarrow \{x \cdot x \in S \land x \in T \mid x\}$						
oporations	$S \setminus T \rightsquigarrow \{x \cdot x \in S \land x \notin T \mid x\}$						
Membership Collapse	$x \in \{E \mid P\} \rightsquigarrow \exists y \cdot P \land x = E$						
Image	$R[S] \leadsto \{y \cdot \exists x \cdot x \mapsto y \in R \land x \in S \mid y\}$						
Composition	$x \mapsto z \in R \circ Q \rightsquigarrow \exists y, y' \cdot x \mapsto y \in R$ $\land y' \mapsto z \in Q \land y = y'$						
Inverse	$x\mapsto y\in R^{-1} \rightsquigarrow y\mapsto x\in R$						
Cardinality	$card(S) \rightsquigarrow \sum x \cdot x \in S \mid 1$						

Post-condition:

All set-like terms must be comprehensions

 $location: Workshop \rightarrow Room$ $attends: Visitor \rightarrow Workshop$

$$numMeals = \\ card((location^{-1} \circ attends^{-1})[\{room\}])$$

 $\land p \mapsto r \in location \land p = p' \land r = room \mid 1$

Phase 2: Predicate Disjunctive Normal Form (DNF)

Predicate structure: top-level ∨-operations with nested ∧-operations

Rewrite Rules						
Flatten Nested ∧	$x_1 \wedge \cdots \wedge (x_i \wedge x_{i+1}) \wedge \cdots$ $x_1 \wedge \cdots \wedge x_i \wedge x_{i+1} \wedge \cdots$					
Flatten Nested v	$x_1 \lor \cdots \lor (x_i \lor x_{i+1}) \lor \cdots$ $x_1 \lor \cdots \lor x_i \lor x_{i+1} \lor \dots$					
Distribute ∧ over ∨	$x \wedge (y \vee z) \rightsquigarrow (x \wedge y) \vee (x \wedge z)$					
Double Negation	$\neg \neg x \rightsquigarrow x$					
Do Morgan	$\neg(x \land y) \rightsquigarrow \neg x \lor \neg y$					
De Morgan	$\neg(x \lor y) \rightsquigarrow \neg x \land \neg y$					

Post-condition:

- All set-like terms must be comprehensions
- Quantifier predicates are in DNF

$$\begin{array}{l} numMeals = \\ \sum v, r \cdot \exists p, p' \cdot v \mapsto p' \in attends \\ \land p \mapsto r \in location \land p = p' \land r = room \mid 1 \end{array}$$

Phase 3: Nesting

Restructuring quantifications to better suit code generation

Rewrite Rules						
Nesting	$\{x, y \cdot P \land Q \mid E\} \rightsquigarrow \{x \cdot P \mid \{y \cdot Q \mid E\}\}$ Where y does not occur in P					

 Nesting selection is currently arbitrary; in the future we plan to use better selection heuristics

Post-condition:

- All set-like terms must be comprehensions
- Quantifier predicates are in DNF
- One bound variable per quantifier

numMeals =

Phase 4: Generator Selection

Selecting element generators for use as iterables in generated for-loops

Generator Selection $P_i \rightsquigarrow P_g \land \bigwedge_{P_i \neq P_g} P_i$ $P_i \rightsquigarrow P_g \land \bigwedge_{P_i \neq P_g} P_i$ $P_g \text{ is of the form } x \in S$ • x is the quantifier's bound variable • S is set-like term

Post-condition:

- All set-like terms must be comprehensions
- Quantifier predicates are in DNF
 - Guaranteed top-level-v operation
- One bound variable per quantifier
- All predicate v-clauses have an assigned generator

- In the case of multiple candidate generators, selection is arbitrary
- Generator Selection is only valid inside a quantifier's predicate

$$numMeals = \\ \sum r \cdot \exists p \cdot p \mapsto r \in location \land r = room \\ \mid (\sum v \cdot \exists p' \cdot v \mapsto p' \in attends \land p = p' \mid 1) \\ \downarrow \\ numMeals = \\ \sum r \cdot \exists p \cdot p \mapsto r \in location \land r = room \\ \mid (\sum v \cdot \exists p' \cdot v \mapsto p' \in attends \land p = p' \mid 1) \\ \end{cases}$$

Phase 5: Code Generation 1

Start lowering expressions into imperative-like loops

Rewrite Rules							
Quantifier Generation	$\bigoplus E \mid P$ ***	$a \coloneqq identity(\bigoplus)$ $\mathbf{loop} P \mathbf{do}$ $a \coloneqq a \bigoplus E$					
Disjunct Conditional	$\begin{array}{c} \textbf{loop} \bigvee P_i \ \textbf{do} \\ body \end{array}$	$\begin{array}{c} \textbf{loop} \ P_0 \ \textbf{do} \\ body \\ \textbf{loop} \ P_1 \land \neg P_0 \ \textbf{do} \\ body \\ \cdots \end{array}$					
Nested Quantifier	$a \coloneqq a \oplus (\oplus E \mid P) \rightsquigarrow$	$\mathbf{loop} P \mathbf{do}$ $a \coloneqq a \oplus E$					

Post-condition:

- No quantifiers exist within the AST
- No V-operators exist within a loop's predicate
- All predicate V-clauses have an assigned generator

• \bigoplus is any of $\{...\}$, Σ , Π , \cup , \cap

$$numMeals = \sum r \cdot \exists p \cdot p \mapsto r \in location \land r = room \\ \mid (\sum v \cdot \exists p' \cdot v \mapsto p' \in attends \land p = p' \mid 1)$$

numMeals := 0

 $\begin{array}{c} \textbf{loop } \boldsymbol{p} \mapsto \boldsymbol{r} \in \boldsymbol{location} \land r = room \ \boldsymbol{do} \\ \textbf{loop } \boldsymbol{v} \mapsto \boldsymbol{p}' \in \boldsymbol{attends} \land p = p' \boldsymbol{do} \\ numMeals \coloneqq numMeals + 1 \end{array}$

Phase 6: Equality Elimination

Eliminate all undefined variables (with implicit 3 quantifiers)

Post-condition:

- No quantifiers exist within the AST
- No V-operators exist within a loop's predicate
- All predicate V-clauses have an assigned generator
- All loop predicate variables are defined.

 $numMeals \coloneqq 0$ $\mathbf{loop} \ p \mapsto r \in \mathbf{location} \land r = room \ \mathbf{do}$ $\mathbf{loop} \ v \mapsto p' \in \mathbf{attends} \land p = p' \mathbf{do}$ $numMeals \coloneqq numMeals + 1$

Phase 7: Code Generation 2

Eliminate all intermediate *loop* structures

Conjunct Conditional P_g $A \wedge A \wedge P_i$ $A \wedge A \wedge A \wedge P_i$ $A \wedge A \wedge A \wedge P_i$ $A \wedge A \wedge A \wedge A$ $A \wedge A \wedge A \wedge A$ $A \wedge A \wedge A \wedge A$ $A \wedge A$

 $numMeals \coloneqq 0$ $\mathbf{loop} \ p \mapsto r \in \mathbf{location} \land r = room \ \mathbf{do}$ $\mathbf{loop} \ v \mapsto p' \in \mathbf{attends} \land p = p' \mathbf{do}$ $numMeals \coloneqq numMeals + 1$

 $numMeals \coloneqq 0$

for $p, r \in location$ **do**

if r = room then

for $v, p' \in attends$ do

if p = p' then

numMeals := numMeals + 1

Post-condition:

Code is imperatively executable

Visitor Information System - Translation

Motivating Examples

```
location: Workshop \rightarrow Room
attends: Visitor → Workshop
numMeals
     = card((location^{-1} \circ attends^{-1})[\{room\}])
numMeals
     = \sum v, r \cdot \exists p, p' \cdot v \mapsto p' \in attends
           \land p \mapsto r \in location \land p = p' \land r = room \mid 1
numMeals
     = \sum v \cdot \exists p' \cdot v \mapsto p' \in attends \land location(p') = room \mid 1
```

```
numMeals \coloneqq 0
\mathbf{for} \ v, p' \in attends \ \mathbf{do}
\mathbf{if} \ location(p') = room \ \mathbf{then}
numMeals \coloneqq numMeals + 1
```

Warehouse Inventory System – Translation

Motivating Examples

```
catalogue: Material \rightarrow Price
```

inventory: bag[Material]

 $recipes: Product \rightarrow bag[Material]$

Restocking price, with a target inventory $inventory_t$:

```
price = \sum p \mapsto n_m \cdot \\ p \mapsto n_m \in catalogue^{-1} \circ (inventory_t - inventory) \mid p \times n_m 
price = \sum m \mapsto n_m \cdot \exists n, m, p \cdot m \mapsto n_m \in inventory_t \\ \land n = n_m - inventory(m) \land n \geq 0 \land p = catalogue(m) \mid p \times n_m
```

```
\begin{array}{l} price \coloneqq 0 \\ \textbf{for} \ m, n_m \in inventory_t \ \textbf{do} \\ n \coloneqq n_m - inventory(m) \\ \textbf{if} \ n \geq 0 \ \textbf{then} \\ price \coloneqq price + catalogue(m) \times n \end{array}
```

Conway's Game of Life – Translation

Motivating Examples

```
neigh = \{x, y, x_n, y_n \cdot
                x \in Boundary \land y \in Boundary
              \wedge x_n \in (x-1)..(x+1)
              \land y_n \in (y-1)..(y+1)
              \wedge x \neq x_n \wedge y \neq y_n
              \{(x,y)\mapsto (x_n,y_n)\}
nextStep =
\{c \cdot c \in Living \land card(neigh[\{c\}] \cap Living) = 2 \mid c\}
 \cup \{c \cdot c \in neigh [Living]\}
        \land card(neigh [{c}] \cap Living) = 3 | c}
nextStep =
    \{c \cdot c \in Boundary \times Boundary\}
 \land \exists n \cdot n = card(neigh[\{c\}] \cap Living)
 \land ((c \in Living \land n = 2) \lor n = 3) \mid c\}
```

```
nextStep := \emptyset

for i \in Boundary do

for j \in Boundary do

n := 0

for n' \in neigh[\{i \mapsto j\}] do

if n' \in Living then

n := n + 1

if n = 3 \lor (n = 2 \land i \mapsto j \in Living) then

nextStep := nextStep \cup \{i \mapsto j\}
```

- Intermediate sets never grow larger than max(starting sets, resulting set)
- Unions, Relation Overriding, and Cartesian Products are limited in growth
- Other operators only decrease the size of a resulting set
- What about running time?...

Operation Running Time

Operation	Expected Running Time
$S \cup T$	O(S + T)
$S \cap T$	O(min(S , T))
$S \times T$	O(S T)
R[S]	O(min(S , R))
$S \triangleleft R$	O(R)
RPQ	O(max(Q , R))
$R \circ Q$	O(R Q)

Examples Running Time

	Core Expression	Naïve Running Time	Optimized Running Time
Visitor Information System	$(location^{-1} \circ attends^{-1})[\{room\}]$	O(location attends)	O(attends)
Warehouse Inventory System	$ \begin{array}{l} \sum p \mapsto n_m \cdot p \mapsto n_m \\ \in (inventory_t - inventory) \circ catalogue^{-1} \\ \mid p \times n_m \end{array} $	$O(inventory_t catalogue)$	$O(inventory_t)$
Conway's Game of Life	$\{c \cdot c \in Living - \\ \land card(neigh[\{c\}] \cap Living) = 2 \mid c\} \\ \cup \{c \cdot c \in neigh [Living] \\ \land card(neigh [\{c\}] \cap Living) = 3 \mid c\}$	$O(2 Boundary ^2)$	$O(Boundary ^2)$

 $Living \in \mathbb{P}(Boundary \times Boundary)$

Complex Operation Running Time

Operation	Expected Running Time
$(S \cup T) \cap U$	O(min(S + T , U))
$S \cap R[T]$	O(min(S , R , T))
$(R \circ Q)[S]$	O(min(S , R) + min(R[S] , Q))

- Simplify large groups of ∧-predicates
- Eagerly apply conditions on sequential v-predicates

Current Compiler State and Roadmap

Development of a High-Level, Efficient, Set-Based Language

References

- Michael Leuschel. *ProB2 Jupyter Notebooks GitLab*. 2020. https://gitlab.cs.uni-duesseldorf.de/general/stups/prob2-jupyter-notebooks/-/blob/9d830112d9713d0cbc12d9d285f44ee61c827ccf/puzzles/Game_of_Life.ipynb
- Jean-Raymond Abrial. *Modeling in Event-B: system and software engineering*. Cambridge University Press, 2010.
- David Gries and Fred Schneider. A Logical Approach to Discrete Math. Springer New York, 1993.
- Robert Dewar. The SetL Programming Language. Bell Laboratories, 1979.
- Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. *Playing by the rules: rewriting as a practical optimisation technique in GHC*. In: 2001 Haskell Workshop. ACM SIGPLAN. Sept. 2001.
- Michael Leuschel. Programming in B: Sets and Logic all the Way Down. In: LPOP 2022.
- Maximiliano Cristia and Gianfranco Rossi. {log}: Programming and Automated Proof in Set Theory. In: LPOP 2022.
- Douglas R. Smith and Stephen J. Westfold. *Transformations for Generating Type Refinements*. In: Formal Methods. FM 2019 International Workshops. Springer International Publishing, 2020, pp. 371-387
- Edmond Schonberg, Jacob T. Schwartz, and Micha Sharir. 1979. Automatic data structure selection in SETL. In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of programming languages (POPL '79). Association for Computing Machinery, New York, NY, USA, 197–210.
 https://doi.org/10.1145/567752.567771
- Stefan M. Freudenberger, Jacob T. Schwartz, and Micha Sharir. 1983. Experience with the SETL Optimizer. ACM Trans. Program. Lang. Syst. 5, 1 (Jan. 1983), 26–45. https://doi.org/10.1145/357195.357197

