Discrete Mathematics: Homework 3

Name ID: Number

2020.3.23

- 1. Let P(x) = x is a person, L(x, y) = x loves y and E(x, y) = x = y. Translate the following statements into formulas:
 - (a) "Every person loves some person."
 - (b) "Every person loves some other person."
 - (c) "There is a person who is loved by every person."
 - (d) "There is a person who is loved by every other person."

Solution:

(a)

$$\forall x P(x) \land \exists y P(y) \land L(x,y)$$

(b)

$$\forall x P(x) \land \exists y P(y) \land \neg E(x,y) \land L(x,y)$$

(c)

$$\exists x P(x) \land \forall y P(y) \land L(y, x)$$

(d)

$$\exists x P(x) \land \forall y P(y) \land \neg E(x,y) \land L(y,x)$$

- 2. Determine if the following formulas are logically valid, satisfiable or unsatisfiable.
 - (a) $(\exists x P(x) \leftrightarrow \exists x Q(x)) \rightarrow \exists x (P(x) \leftrightarrow Q(x))$
 - (b) $\exists x (\mathbf{T} \lor P(x) \to \mathbf{F})$
 - (c) $\forall x ((P(x) \lor \neg \exists y (Q(y) \land \neg Q(y))))$
 - (d) $\exists x P(x) \to P(0)$

Solution:

(a) if $\exists x P(x) \leftrightarrow \exists x Q(x)$ is True, which indicates P(x) = T, Q(x) = T or P(x) = F, Q(x) = F. Hence, $\exists x (P(x) \leftrightarrow Q(x))$ is T. So it's T in every interpretation.

It's logically valid.

(b) $T \vee P(x) \equiv T$, so $\exists x (\mathbf{T} \vee P(x) \to \mathbf{F})$ is F in every interpretation.

 ${\it It's \ unsatisfiable}.$

 $(c) \ \neg \exists y (Q(y) \land \neg Q(y)) is \ always \ T. \ \forall x ((P(x) \lor \neg \exists y (Q(y) \land \neg Q(y)))) \ is \ always \ T.$

It's logically valid.

(d) when $P(0) = T, \exists x P(x) \rightarrow P(0) \equiv T$, when $P(0) = F, \exists x = 0$, such that, P(x) = F. So it's T in every interpretation.

It's logically valid.

3. Show that $\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$

Solution:

(1) Show that $\exists x(P(x) \lor Q(x)) \to \exists xP(x) \lor \exists xQ(x)$ is logically valid.

Suppose that $\exists x P(x) \lor \exists x Q(x)$ is F in an interpretation I

$$P(x)$$
 is F and $Q(x)$ is F in an x in I

$$x(P(x) \vee Q(x))$$
 is F in the x in I

$$\exists x (P(x) \lor Q(x)) \text{ is } F \text{ in } I$$

(2) Show that $\exists x P(x) \vee \exists x Q(x) \rightarrow \exists x (P(x) \vee Q(x))$ is logically valid.

Suppose that $\exists x P(x) \lor \exists x Q(x)$ is F in an interpretation in I

$$P(x) \vee Q(x)$$
 is F in an x in I

$$P(x)$$
 is F and $Q(x)$ is F in the x in I

P(x) is F in an x in I and Q(x) is F in an x in I

$$\exists x P(x) \vee \exists x Q(x) \text{ is } F \text{ in } I$$

4. Show that $\forall x P(x) \lor \forall x Q(x) \Rightarrow \forall x ((P(x) \lor Q(x)))$

Solution:

Suppose that the left hand side is true in an interpretation I

$$\forall x P(x) \lor \forall x Q(x) \text{ is } T$$

$$P(x)$$
 is T , $Q(x)$ is T or $P(x)$ is T , $Q(x)$ is F or $P(x)$ is F , $Q(x)$ is T in every x in F

$$P(x) \vee Q(x)$$
 is T in every x in I

$$\forall x (P(x) \lor Q(x)) \text{ is } T$$

5. Show that $\exists x P(x) \land \exists x Q(x) \Rightarrow \exists x (P(x) \land Q(x))$

Solution:

Suppose that the left hand side is true in an interpretation I

$$\exists x P(x) \land \exists x Q(x) \text{ is } T$$

$$P(x)$$
 is T and $Q(x)$ is T for the x in I

$$P(x) \wedge Q(x)$$
 is T for the x in I

$$\exists x (P(x) \land Q(x)) \text{ is } T \text{ in } I$$

6. Show that $\forall x (P(x) \leftrightarrow Q(x)) \Rightarrow \exists P(x) \leftrightarrow \exists x Q(x)$

Solution:

Suppose that the left hand side is true in an interpretation I

$$\forall x (P(x) \leftrightarrow Q(x)) \text{ is } T$$

$$P(x) \ is \ T \ , \ Q(x) \ is \ T \ or \ P(x) \ is \ F, \ Q(x) \ is \ F \ in \ every \ x \ in \ I$$

$$P(x) \leftrightarrow Q(x)$$
 is T in an x in I

$$\exists P(x) \leftrightarrow \exists x Q(x) \text{ is } T \text{ in } I$$