Graph: Part 5 - Isomorphism

Adila A. Krisnadhi

Faculty of Computer Science, Universitas Indonesia

References and acknowledgements

- Materials of these slides are taken from:
 - Kenneth H. Rosen. Discrete Mathematics and Its Applications, 8ed. McGraw-Hill, 2019. Section 10.3.
 - Jean Gallier. Discrete Mathematics Second Edition in Progress, 2017 [Draft].
 Section 4.2, 4.4.
- Figures taken from the above books belong to their respective authors. I do not claim any rights whatsoever.

Motivation

- Sometimes we want to tell if two given graphs have the same structure (regardless of the identities of their nodes).
- Practical example: two chemical compounds may have the same chemical formula, but differ in structure (hence they are actually different compounds).
- Graph equality is too strong.
 - Graph equality means both graphs have exactly the same set of nodes and edges.

These two graphs are not equal, but actually have the same structure. (Try redraw G_2)

Mapping between graphs

In the following, a **graph mapping** is a function f that maps a graph $G_1 = (V_1, E_1)$ to a graph $G_2 = (V_2, E_2)$, denoted $f: G_1 \to G_2$, where both graphs are directed or both are undirected, and $f = f_v \cup f_e$ such that

- f_v maps each node $x \in V_1$ to a node $f_v(x) \in V_2$, i.e., if $x \in V_1$, then $f(x) = f_v(x) \in V_2$;
- f_e maps each edge $e \in E_1$ to an edge $f_e(e) \in E_2$, i.e., if $e \in E_1$, then $f(e) = f_e(e) \in E_2$.

Also, we can apply f_v to a set of two nodes as follows: $f_v(\{x,y\}) = \{f_v(x), f_v(y)\}.$

What kind of graph mapping that preserves the structure of G_1 in G_2 ?

The graph mapping f preserve the structure of G_1 in G_2)

 $f = f_v \cup f_e$ where

- $f_v(a) = w$, $f_v(b) = y$, $f_v(d) = x$, $f_v(c) = z$
- $f_e(\{a,b\}) = \{w,y\},\$ $f_e(\{a,d\}) = \{w,x\},\$ $f_e(\{b,c\}) = \{y,z\},\$ $f_e(\{c,d\}) = \{x,z\}$

The graph mapping g does **not** preserve the structure of G_1 in G_2)

 $g = g_v \cup g_e$ where

- $g_v(a) = z$, $g_v(b) = y$, $g_v(c) = x$, $g_v(d) = w$
- $g_e(\{a,b\}) = \{z,x\},\$ $g_e(\{a,d\}) = \{z,y\},\$ $g_e(\{b,c\}) = \{w,x\},\$ $g_e(\{c,d\}) = \{w,y\}$

Homomorphism and isomorphism for undirected graphs

Definition

Let $f = f_v \cup f_e$ be a graph mapping from $G_1 = (V_1, E_1, st_1)$ to $G_2 = (V_2, E_2, st_2)$. f is a **homomorphism** from G_1 to G_2 iff $st_2(f_e(e)) = f_v(st_1(e))$ for every edge $e \in E_1$ If $f = f_v \cup f_e$ is a homomorphism from G_1 to G_2 such that both f_v and f_e are bijective, then f is called an **isomorphism** from G_1 to G_2 .

The following must hold for every edge in E_1 to have a homomorphism.

$$st_2(f_e(e)) = st_2(e') = \{u', v'\}$$

= $\{f_v(u), f_v(v)\} = f_v(\{u, v\}) = f_v(st_1(e))$

Remarks

- Homomorphism condition: for every edge $e \in E_1$, the endpoints of the edge $f_e(e) \in E_2$ are exactly the nodes in V_2 obtained from the mapping of the endpoints of e.
- For simple graphs, homomorphism condition from G_1 to G_2 can be stated as follows: for every two nodes x,y in G_1 , x and y are connected by an edge e in G_1 iff $f_v(x)$ and $f_v(y)$ are connected by the edge $f_e(e)$ in G_2 .
- For a homomorphism $f = f_v \cup f_e$, f_v and f_e may not necessarily be injective or surjective.
- Isomorphism condition = homomorphism condition + f_v and f_e are bijections.
- If $f = f_v \cup f_e$ is an isomorphism, then $f^{-1} = f_v^{-1} \cup f_e^{-1}$ is also an isomorphism.
- Two graphs G_1 and G_2 are **isomorphic** iff there exists an isomorphism from G_1 to G_2 .

Is there an isomorphism from G_1 (left) to G_2 (right)? If not, does a homomorphism between them exist?

Is there an isomorphism from G_1 (left) to G_2 (right)? If not, does a homomorphism between them exist?

Graph invariant

- A graph invariant is a property of graphs that necessarily holds in all isomorphic graphs.
- "Necessary" means that if P is a graph invariant and G_1 and G_2 are isomorphic graphs, then G_1 and G_2 must both have the same P.
 - If a graph invariant does **not** hold on both graphs, then these graphs are not isomorphic.
- Be careful: having a graph invariant on two graphs does **not** imply that the two graphs are isomorphic.

Examples of graph invariant

- Number of nodes.
- Number of edges.
- Number of nodes of degree k for all k.
- Number of paths of length k for all k.
- Bipartiteness.
- Connectedness.
- Number of connected components.

- Vertex connectivity.
- Edge connectivity.
- Planarity.
- k-colorability for all k
- Eulerian-ness.
- Hamiltonian-ness.
- and many others ...

Example of use: Two isomorphic graphs must have the same number of nodes. But, if two graphs have the same number of nodes, they are not necessarily isomorphic.

Exercise

Are G_1 (left) and G_2 (right) isomorphic? If not, is there a homomorphism between them?

Are G_3 (left) and G_4 (right) isomorphic? If not, is there a homomorphism between them?

Exercise

Exercise

Homomorphism and isomorphism for digraphs

Definition

Let $f = f_v \cup f_e$ be a graph mapping from a digraph $G_1 = (V_1, E_1, s_1, t_1)$ to a digraph $G_2 = (V_2, E_2, s_2, t_2)$.

- f is a homomorphism from G_1 to G_2 iff for every edge $e \in E_1$, $s_2(f_e(e)) = f_v(s_1(e))$ and $t_2(f_e(e)) = f_v(t_1(e))$
- if $f = f_v \cup f_e$ is a homomorphism from G_1 to G_2 such that both f_v and f_e are bijective, then f is called an **isomorphism** from G_1 to G_2 .

The following must hold for every edge in E_1 to have a homomorphism.

$$s_2(f_e(e)) = s_2(e') = u' = f_v(u) = f_v(s_1(e))$$

 $t_2(f_e(e)) = t_2(e') = v' = f_v(v) = f_v(t_1(e))$

Remarks

- Homomorphism and isomorphism for digraphs are analogous to that of undirected graphs, except that edge direction needs to be taken into account.
- Most graph invariants for undirected graphs can be adapted to digraphs by considering their directed version.

Are these graphs isomorphic? If not, is there a homomorphism between them?

Are these graphs isomorphic? If not, is there a homomorphism between them?

