

IEL – protokol k projektu

Samuel Dobroň xdobro23

20. prosince 2020

Obsah

1	Příklad 1	2
2	Příklad 2	7
3	Příklad 3	10
4	Shrnutí výsledků	12

Příklad 1

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
\mathbf{F}	125	65	510	500	550	250	300	800	330	250

Upravime paralerne zapojené R_3 a R_4 na R_{34} :

$$R_{34} = \frac{R_3*R_4}{R_3+R_4} = \frac{550*250}{550+250} = \frac{137500}{800} = \frac{1375}{8} = 171.875\,\Omega$$

Taktiež zjednodušíme sériovo zapojené zdroje:

$$U_{12} = U_1 + U_2 = 125 + 65 = 190V$$

Zjednodušíme sériovo zapojené R_2 a R_{34} na R_{234} :

$$R_{234} = R_2 + R_{34} = 500 + 171,875 = 671.875 \,\Omega$$

Transformujeme trojuholník $R_1,\,R_{234}$ a R_5 na hviezdu $R_A,\,R_B,\,R_C$:

$$R_A = \frac{R_1 * R_{234}}{R_1 + R_{234} + R_5} = \frac{510 * 671,875}{510 + 671,875 + 300} = \frac{\frac{1370625}{4}}{\frac{11855}{8}} = \frac{548250}{2371} = 231.23155 \Omega$$

$$R_B = \frac{R_1 * R_5}{R_1 + R_{234} + R_5} = \frac{510 * 300}{510 + 671,875 + 300} = \frac{15300}{\frac{11855}{8}} = \frac{244800}{2371} = 103.2476 \Omega$$

$$R_C = \frac{R_{234} * R_5}{R_1 + R_{234} + R_5} = \frac{671,875 * 300}{510 + 671,875 + 300} = \frac{201562,5}{\frac{11855}{8}} = \frac{322500}{2371} = 136.0186 \Omega$$

Zjednodušíme sériovo zapojené $R_B,\,R_7$ a $R_C,\,R_6$ na R_{B7} R_{C6}

$$R_{B7} = R_B + R_7 = \frac{244800}{2371} + 330 = \frac{1027230}{2371} = 433.24757 \,\Omega$$

$$R_{C6} = R_C + R_6 = \frac{322500}{2371} + 800 = \frac{2219300}{2371} = 936.01856 \,\Omega$$

Pokračujeme zjednodušením paralerneho zapojenia R_{B7} a R_{C6} , zjednodušíme ich na R_{B7C6}

$$R_{B7C6} = \frac{R_{B7} * R_{C6}}{R_{B7} + R_{C6}} = \frac{\frac{1027230}{2371} * \frac{2219300}{2371}}{\frac{1027230}{2371} + \frac{2219300}{2371}} = \frac{227973153900}{769752263} = 296.16432\,\Omega$$

Zostali nám už len sériovo zapojené odpory R_A , R_{B7C6} a R_8 , zjednodušíme ich na R_{ekv} aby sme zistili celkový odpor:

$$R_{ekv} = R_A + R_{B7C6} + R_8 = \frac{548250}{2371} + \frac{227973153900}{769752263} + 250 = \frac{252383900}{324653} = 777.3959 \,\Omega$$

Vypočítame celkový prúd I prechádzajúci obvodom:

$$I = \frac{U_{ekv}}{R_{ekv}} = \frac{190}{\frac{252383900}{324653}} = \frac{6168407}{25238390} = 0.2444A$$

S vypočítanym prúdom už môžeme Ohmovým zákonom dopočítať úbytky napätia na odporoch R_A , R_{B7C6} a R_8 :

$$U_{RA} = R_A * I = \frac{548250}{2371} * \frac{6168407}{25238390} = \frac{338182913775}{5984022269} = 56,5143V$$

$$U_{RB7C6} = R_{B7C6} * I = \frac{227973153900}{769752263} * \frac{6168407}{25238390} = \frac{433148992410}{5984022269} = 72,3843V$$

$$U_{R8} = R_8 * I = 250 * \frac{6168407}{25238390} = \frac{154210175}{2523839} = 61,1014V$$

Keďže rezistory R_{B7} a R_{C6} sú zapojené paralerne je na nich rovnaké napätie, teda:

$$U_{RB7} = U_{C6} = U_{RB7C6}$$

Vypočítame prúd prechádzajúci odporom R_{C6} :

$$I_{C6} = \frac{U_{RB7C6}}{R_{C6}} = \frac{\frac{433148992410}{5984022269}}{\frac{2219300}{59271}} = \frac{433144899241}{5601155892700} = 0,07733A$$

Kedže R_{C} a R_{6} sú zapojene sériovo, bude cez ne prechádzať rovnaký prúd:

$$I_{R6} = I_C = I_{C6} = \frac{433144899241}{560115589270} = 0,7733A$$

Z prechádzajúceho prúdu vieme pomocou Ohmového zákona vypočítať napätie na odpore:

$$U_{R6} = R_6 * I_{R6} = 800 * \frac{433144899241}{5601155892700} = \frac{3465159193928}{56011558927} = 61,8651V$$

Příklad 2

Stanovte napětí U_{R3} a proud I_{R3} . Použijte metodu Théveninovy věty.

sk.	U[V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	
D	150	200	200	660	200	550	400	

Odpory R_4 a R_5 sú v sérii, zjednodušíme ich na R_{45} :

$$R_{45} = R_4 + R_5 = 200 + 550 = 750\,\Omega$$

Obvod si zjednodušíme, aby sme následne vedeli vypočítať napätie náhradného zdroja U_e (rozdiel potenciálov medzi bodmi A a B):

Odpory R_1 , R_{45} a R_2 , R_6 sú po dvojiciach zapojené paralerne a táto dvojica je zapojená sériovo, vypočítame celkový odpor:

$$R_{145} = \frac{R1 * R_{45}}{R1 + R_{45}} = \frac{200 * 750}{200 + 750} = \frac{3000}{19} = 157.8947 \Omega$$

$$R_{26} = \frac{R2 * R_6}{R2 + R_6} = \frac{200 * 400}{200 + 400} = \frac{400}{3} = 133.333 \Omega$$

Odpory máme zapojené sériovo a celkový odpor je teda ich súčet:

Pomocou Kirchhoffoveho zákona vypočítame napätie náhradného zdroja:

Budeme potrebovať aj napätia U_{R1} a U_{R2} :

$$U_{R1} = U * \frac{R1}{R_1 + R_{45}} = 150 * \frac{200}{200 + 750} = \frac{600}{19} = 31,5789V$$

$$U_{R2} = U * \frac{R_2}{R_6 + R_2} = 150 * \frac{200}{400 + 200} = 50V$$
 Samotná smyčka:

$$U_{R1} + U_e - U_{R2} = 0U_e = -U_{R1} + U_{R2}U_e = -\frac{600}{19} + 50 = \frac{350}{19} = 18,4211V$$

Keď už poznáme U_e a aj odpor náhradného zdroja R_i , môžeme vypočítať prúd prechádzajúci odporom R_3 a napätie na ňom:

$$I_{R3} = \frac{U_e}{R_i + R_3} = \frac{\frac{350}{19}}{\frac{16600}{57} + 660} = \frac{105}{5422} = 0,01937A$$

$$U_{R3} = I_{R3} * R3 = \frac{105}{5422} * 660 = \frac{34650}{2711} = 12,7813V$$

Příklad 3

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
В	150	0.7	0.8	49	45	61	34	34

Určíme si prúdy v jednotlivých bodoch pomocou Kirchhoffoveho zákona:

$$A: I_{R1} - I_{R2} - I_{R3} = 0$$

$$B: I_{R3} + I_1 - I_{R5} = 0$$

$$C: I_{R5} - I_1 + I_2 - I_{R4} = 0$$

Prúdy do uzla vtekajúce sú kladné, prúdy z uzla vytekajúce sú zaporne. Určíme si samotné prúdy:

$$I_{R1} = \frac{U - U_A}{R_1}$$

$$I_{R2} = \frac{U_A}{R_2}$$

$$I_{R3} = \frac{U_A - U_B}{R_3}$$

$$I_{R4} = \frac{U_C}{R_4}$$

$$I_{R5} = \frac{U_B - U_C}{R_5}$$

Keďže chceme len prúd z eho smyčky, odpočítame prúd z inej, preto niekde máme - prúd z inej smyčky.

Do rovníc si dosadíme rovnice prúdov:

$$A: \frac{U - U_A}{R_1} - \frac{U_A}{R_2} - \frac{U_A - U_B}{R_3} = 0$$

$$B: \frac{U_A - U_B}{R_3} + 0.7 - \frac{U_B - U_C}{R_5} = 0$$

$$C: \frac{U_B - U_C}{R_5} - 0.7 + 0.8 - \frac{U_C}{R_4} = 0$$

Z 3 rovníc o 3 neznámych vypočítame U_A , U_B a U_C napríklad pomocou Cramerovho pravidla alebo dosadzovacou metódou (ako som to spravil ja na pomocnom papieri (/riesenia/3/napatia.jpg) a už som to nestihol prepísať sem :().

$$U_A = 68,6067V$$

$$U_B = 60,2811V$$

$$U_C = \frac{4612778}{257115} = 31,8406V$$

Keď už máme vypočíta
ne U_A môžeme pomocou neho a Ohmovho zákona vypočítať prú
d $I_{R2}\!:$

$$I_{R2} = \frac{U_A}{R2} = \frac{68,6067}{45} = 1,15246A$$

$$U_{R2} = U_A = 68,6067V$$

Shrnutí výsledků

Příklad	Skupina	Výsle	dky
1	F	$U_{R6} = 61,8651V$	$I_{R6} = 0,07733A$
2	D	$U_{R3} = 12,781V$	$I_{R3} = 0,019366A$
3	В	$U_{R2} = 68,6067V$	$I_{R2} = 1,15246A$