MP*: Intégrales à paramètres.

Coralie RENAULT

30 novembre 2014

Exercice

Déterminer l'expression de la fonction

$$g(x) = \int_{-\infty}^{+\infty} e^{-t^2} e^{itx} dt$$

Exercice

Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose

$$f_n(x) = \frac{n}{\sqrt{\pi}} \left(1 - \frac{x^2}{2n^2} \right)^{2n^4}$$

Soit g une fonction continue sur \mathbb{R} et nulle en dehors d'un segment [a,b]. Montrer que

$$\lim_{n \to +\infty} \int_{\mathbb{R}} f_n(x)g(x) dx = g(0)$$

Exercice

Soit S l'ensemble des fonctions de \mathbb{R} dans \mathbb{C} de classe \mathbb{C}^{∞} , vérifiant, pour tout $(k,n) \in \mathbb{N}^2$, $\lim_{|x| \to +\infty} x^n f^{(k)}(x) = 0$. Pour $f \in S$ et $y \in \mathbb{R}$, on pose :

$$f^*(y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) \exp(-ixy) dx$$

On dit que f* est la transformée de fourier de f.

- Montrer que $f^* \in S$
- Soit $f \in S$ telle que f(0) = 0 et g la fonction définie sur \mathbb{R} par $g(x) = \int_0^1 f'(tx)dt$. Montrer que $g \in S$ et en déduire que $\int_{\mathbb{R}} f^*(y)dy = 0$

Exercice

Soit f une application définie sur [0, 1] à valeurs strictement positives et continue. Calculer

$$\lim_{\substack{\alpha \to 0 \\ \alpha > 0}} \left(\int_0^1 f^{\alpha}(t) dt \right)^{\frac{1}{\alpha}}$$

Exercice

Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ continue et intégrable.

Déterminer la limite quand $n \to +\infty$ de

$$n\int_0^1 \frac{f(nt)}{1+t} \,\mathrm{d}t$$

Exercice

Soit F une application continue décroissante de \mathbb{R} dans \mathbb{R} , tendant vers 1 en $-\infty$ et vers 0 en $+\infty$. Soient deux réels h et δ vérifiant $0 < h < \delta$.

a) Déterminer la limite éventuelle de

$$I_n = \int_0^1 F\left(\sqrt{n}(\delta t - h)\right) dt$$

b) On pose

$$S_n = \sum_{k=0}^{n-1} F\left(\sqrt{n}\left(\delta \frac{k+1}{n} - h\right)\right)$$

Déterminer un équivalent de S_n lorsque n tend vers $+\infty$.

Exercice

Pour tout $a \in]-1, +\infty[$ calculer :

$$F(a) = \int_0^{\frac{\pi}{2}} \frac{\ln(1 + a\cos(x))}{\cos(x)} dx$$

Exercice

Etudier

$$f: x \mapsto \int_0^1 \frac{t-1}{\ln t} t^x \, \mathrm{d}t$$

Exercice

Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^{∞} vérifiant f(0) = 0.

Montrer que la fonction

$$g: x \mapsto \frac{f(x)}{x}$$

se prolonge en une fonction de classe \mathcal{C}^{∞} sur \mathbb{R} et exprimer ses dérivées successives en 0 en fonction de celles de f.