

Main page
Contents
Featured content
Current events
Random article
Donate to Wkipedia
Wkipedia store

Interaction

Help About Wikipedia Community portal Recent changes Contact page

Tools

What links here Related changes Upload file Special pages Permanent link Page information Wkidata item Cite this page

Print/export

Create a book
Download as PDF
Printable version

Languages

Add links

Article Talk Read Edit More ▼ Search Q

Tarski-Kuratowski algorithm

From Wikipedia, the free encyclopedia

In computability theory and mathematical logic the **Tarski–Kuratowski algorithm** is a non-deterministic algorithm which provides an upper bound for the complexity of formulas in the arithmetical hierarchy and analytical hierarchy.

The algorithm is named after Alfred Tarski and Kazimierz Kuratowski.

Algorithm [edit]

The Tarski-Kuratowski algorithm for the arithmetical hierarchy:

- 1. Convert the formula to prenex normal form.
- 2. If the formula is quantifier-free, it is in Σ_0^0 and Π_0^0 .
- 3. Otherwise, count the number of alternations of quantifiers; call this k.
- 4. If the first quantifier is \exists , the formula is in $\sum_{k=1}^{0}$.
- 5. If the first quantifier is \forall , the formula is in $\prod_{k=1}^{0}$

References [edit]

• Rogers, H. *The Theory of Recursive Functions and Effective Computability*, MIT Press. ISBN 0-262-68052-1; ISBN 0-07-053522-1

This mathematical logic-related article is a stub. You can help Wikipedia by expanding it.

Categories: Mathematical logic hierarchies | Computability theory | Theory of computation

This page was last modified on 20 April 2013, at 12:56.

Mathematical logic stubs

Text is available under the Oreative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

Privacy policy About Wikipedia Disclaimers Contact Wikipedia Developers Mobile view

