به نام خدا

تمرین سوم

درس اینترنت اشیا

استاد مهدی راستی

حميدرضا همتى 9631079

1. تأثیر فاکتور گسترش SF و پهنای پاند BW را بر زمان ارسال یک بسته، نرخ ارسال، مصرف انرژی و برد ارتباطی در شبکه LoRaWAN ،به طور کامل شرح دهید.

ابتدا به تعریف اولیه یک سری قواعد میپردازیم.

- فاکتور گشترش یا spreading factor، تعداد بیت هایی که توسط یک سیگنال یا symbol منتقل میشود را مشخص میکنید. مثلا اگر SF = 2 باشد یعنی هر سیگنال حاوی 2 بیت data درون خود هست.
- پهنای باند یا Band width، پهنای باند فرکانسی که فرستنده سیگنال به اندازه آن حول یک مرجع فرکانسی، مانند 868MHz سیگنال خود را ارسال میکند.

Symbol time = $\frac{2^{sf}}{BW}$

Symbol rate = $\frac{BW}{2^{sf}}$

Symbol time زمان ارسال یک سیمبول است که درون خود SF بیت دارد.

حال به برسی تاثیر SF و BW میپردازیم

زمان ارسال یک بسته:

هر بسته یک symbol است که حاوی SF بیت symbol است. زمان ارسال یک بسته هم همانطور که در بالا گفته شد برابر $\frac{2^{Sf}}{RW}$ است.

از این رابطه میتوان نتیجه گرفت که:

هرچقدر SF بیشتر شود زمان ارسال بسته بیشتر میشود

هرچقدر BW بیشتر شود ارسال بسته زمان کمتری طول میکشد.

نرخ ارسال یا Bit Rate:

میدانیم که بیت ها در قالب symbol ها جا به جا میشوند. در واقع ما برای انتقال data تعدادی symbol داریم که در هر کدام SF بیت data وجود دارد. پس کافیست برای محاسبه bit rate، زمان ارسال هر symbol و مقدار فاکتور گشترش را بدانیم.

Bit rate = symbol time \times SF = $\frac{BW}{2^{sf}} \times SF$

هرچقدر SF بیشتر شود bit rate کمتر میشود

هرچقدر BW بیشتر شود bit rate بیشتر میشود

مصرف انرژی:

انرژی مصرفی یک سیگنال از طریق فرمول زیر قابل اندازه گیری است.

$$\int_{t1}^{t2} |X(t)|^2 dt$$

واضح است که برای تحلیل مصرف انرژی باید مدت زمان ارسال را به عنوان یک فاکتور مهم در نظر بگیریم.

پس هرچقدر یک سیستم مدت زمان بیشتری برای ارسال یک بسته روشن بماند مصرف انرژی بیشتری دارد.

بالاتر هم گفته شد هرچقدر SF بیشتر باشد مدت زمان ارسال بیشتر طول میکشد و اگر BW بیشتر شود مدت زمان ارسال کمتر میشود.

پس هرچقدر SF را بیشتر کنیم مصرف انرژی بیشتر میشود و هرچقدر BW را بیشتر کنیم مصرف انرژی کمتر میشود

فرض کنید که ما 2 سیستم کاملا یکسان داریم که با پهنای باند و SF متفاوتی بسته ارسال میکنند و قرار است تعداد مشخص و یکسانی data ارسال کنند.

فرضا سیستم شماره یک با SF = 12 و BW = 125KHz و سیستم دوم با SF = 7 و SF = 7 و SF = 7

درست است که سیستم اول در هر بار ارسال داده بیت های بیشتری ارسال میکند اما برای هر بار ارسال زمان بیشتری روشن است. مثلا برای ارسال هر بسته 2 ثانیه زمان نیاز دارد. این در حالی است که سیستم دوم در هر بار ارسال تقریبا نصف سیستم شماره یک دیتا میفرستد ولی زمان ارسالش 0.5 ثانیه است.

در نتیجه سیستم یک زود تر ارسال خود را تمام کرده و مدت زمان کمتری روشن بوده است.

پس سیستم دوم مصرف انرژی کمتری دارد.

برد ارسال:

برای برسی range یک ارتباط بیسیم میایم و احتمال موفقیت در دریافت بسته را در نظر میگیریم. رایطه زیر را در نظر بگیرید.

 $PSS = symbol-time \times E_S$

طبق این رابطه احتمال ارسال موفقیت آمیز یک بسته نسبت مستقیم با مدت زمان ارسال یک بسته و انرژی آن سیگنال ارسالی دارد.

انرژی سیگنال که به فرکانس ارسالی مرتبط است اما مدت زمان ارسال یا symbol time و band width مربوط است.

پس هرچقدر SF بیشتر باشد احتمال دریافت بسته و در نتیجه range بیشتر میشود.

و هرچقدر BW بیشتر باشد احتمال دریافت بسته و در نتیجه range کمتر میشود.

2. جدول صفحه را بر اساس موارد خواسته شده تكمیل كنید. دقت داشته باشید كه تكمیل این جدول باید با اجرای یک كد همراه باشد. در این كد باید ورودیهای الزم داده شود و جدول كامل شده در خروجی نمایش داده شود.

SF	BW	BitRate	RS	Time_on_air	SNR
7	 125KHz 	5.5Kb/s	-124dbm	56ms	-6.158482758135956dbm
7	 250KHz 	 10.9Kb/s	-121dbm	28ms	-6.158482758135956dbm
7	 500KHZ 	21.9Kb/s	-118dbm	14ms	-6.158482758135956dbm
8	 125KHZ 	3.1Kb/s	-127dbm	102ms	-9.168782714775768dbm
8	 250KHz 	6.2Kb/s	-124dbm	51ms	-9.168782714775768dbm
8	 500KHZ 	 12.5Kb/s	-121dbm	25ms	-9.168782714775768dbm
9	 125KHz 	 1.8Kb/s	-130dbm	185ms	-12.17908267141558dbm
9	 250KHZ 	 3.5Kb/s	-127dbm	92ms	-12.17908267141558dbm
9	 500KHZ	7.0Kb/s	-124dbm	46ms	-12.17908267141558dbm
10	 125KHz	1.0Kb/s	-133dbm	329ms	-15.189382628055391dbm
10	 250KHz	2.0Kb/s	-130dbm	164ms	-15.189382628055391dbm
10	 500KHz	3.9Kb/s	-127dbm	82ms	-15.189382628055391dbm
11	 125KHz	0.5Kb/s	-136dbm	659ms	-18.199682584695204dbm
11	 250KHz	1.1Kb/s	-133dbm	329ms	-18.199682584695204dbm
11	 500KHz	2.1Kb/s	-130dbm	164ms	-18.199682584695204dbm
12	 125KHz 	0.3Kb/s	-139dbm	1155ms	-21.209982541335016dbm
12	 250KHz	0.6Kb/s	-136dbm	577ms	-21.209982541335016dbm
12	 500KHZ 	1.2Kb/s	-133dbm	288ms	-21.209982541335016dbm

3. نموداری برحسب payload های 16، 32 و 51 بایتی و زمان ارسال بسته (TOS) با توجه به فاکتور گسترشهای مختلف رسم کنید.

4. تحقیق کنید که در چه حالتی در شبکه LoRaWAN بین دو بسته برخورد (collision) رخ میدهد. آیا در این شبکه امکان این وجود دارد که با وجود برخورد بتوان دماژوالسیون انجام داد؟

اگر پارامتر های LoRa نظیر فاکتور گسترش، پهنای باند و فرکانس در نود های مختلف یکسان باشد، امکان برخورد خواهیم داشت.

همچنین اگر زمان ارسال بسته این نود ها یکسان باشد شانس برخورد بیشتر میشود. زیاد بودن حجم payload، مقدار spreading factor و افزایش پریود های ارسالی باعث بیشتر شدن time on air بسته ها میشود و در نتیجه ترافیک داده ایی افزایش میابد و امکان برخورد بیشتر میشود.

البته شبکه LoRaWan توانایی دیکد و دماژو لاسیون بسته هایی که بیشتر از 6db توان بعد از برخورد دارند را داراست.

5. برای شبیهسازی شبکه LoRaWAN نیاز است نرمافزار شبیه ساز OMNET+ و چارچوب FLoRa و INET را نصب کنید. برای نصب FLoRa++ به سایت آن مراجعه کرده و بر اساس سیستم عامل خود نسخه مناسب را نصب نمایید.

فیلم مربوط به بخش نصب در فایل موجود است

- 6. آمار هر یک از موارد زیر را در جدولی توضیح دهید:
 - ♦ آخرین توان ارسال شده توسط هر گره (finalTP)

♦ آخرین فاکتور گسترش ارسال شده توسط هر گره (finalSP)

iere you can se	e all data that come iro	m the files specified in the Inputs page.		
<u>A</u> II (700 / 700)	<u>V</u> ectors (125 / 125)	calars (10 / 526) <u>H</u> istograms (49 / 49)		
runID filter		∨ module filter	∨ finalSF	
Experiment	Measurement	Module	Name	Value
General	\$0="avg"	LoRaNetwork Test. IoRaNodes [0]. Simple LoRaApp	finalSF	10.0
General	\$0="avg"	LoRaNetwork Test. IoRaNodes [1]. Simple LoRaApp	finalSF	10.0
General	\$0="avg"	$LoRaNetwork Test. IoRaNodes \cite{Managements}. Simple LoRaApp$	finalSF	7.0
General	\$0="avg"	LoRaNetworkTest.loRaNodes[3].SimpleLoRaApp	finalSF	8.0
General	\$0="avg"	LoRaNetworkTest.loRaNodes[4].SimpleLoRaApp	finalSF	8.0
General	\$0="avg"	LoRaNetworkTest.loRaNodes[5].SimpleLoRaApp	finalSF	12.0
General	\$0="avg"	LoRaNetwork Test. IoRaNodes [6]. Simple LoRaApp	finalSF	9.0
General	\$0="avg"	LoRaNetworkTest.loRaNodes[7].SimpleLoRaApp	finalSF	12.0
General	\$0="avg"	LoRaNetworkTest.loRaNodes[8].SimpleLoRaApp	finalSF	8.0
General	\$0="avg"	LoRaNetwork Test. IoRaNodes [9]. Simple LoRaApp	finalSF	9.0

♦ تعداد بستههای ارسالی هر گره(sentPackets)

<u>A</u> II (700 / 700)	<u>V</u> ectors (125 / 125)	Scalars (10 / 526)	<u>H</u> istograms (49 / 49)			
runID filter		ı	✓ module filter	~	sentPackets	
Experiment	Measurement	Module	,	Name		Value
General	\$0="avg"	LoRaNetworl	kTest.loRaNodes[0].SimpleLoRaApp	sentPacke	ets	3476.0
General	\$0="avg"	LoRaNetworl	kTest.loRaNodes[1].SimpleLoRaApp	sentPacke	ets	3501.0
General	\$0="avg"	LoRaNetworl	kTest.loRaNodes[2].SimpleLoRaApp	sentPacke	ets	4824.0
General	\$0="avg"	LoRaNetworl	kTest.loRaNodes[3].SimpleLoRaApp	sentPacke	ets	4561.0
General	\$0="avg"	LoRaNetworl	kTest.loRaNodes[4].SimpleLoRaApp	sentPacke	ets	4543.0
General	\$0="avg"	LoRaNetworl	kTest.IoRaNodes[5].SimpleLoRaApp	sentPacke	ets	1883.0
General	\$0="avg"	LoRaNetworl	kTest.loRaNodes[6].SimpleLoRaApp	sentPacke	ets	4098.0
General	\$ 0="avg"	LoRaNetwork	kTest.loRaNodes[7].SimpleLoRaApp	sentPacke	ets	1898.0
General	\$0="avg"	LoRaNetwork	kTest.loRaNodes[8].SimpleLoRaApp	sentPacke	ets	4500.0
General	\$0="avg"	LoRaNetworl	kTest.loRaNodes[9].SimpleLoRaApp	sentPacke	ets	4084.0

💠 انرژی مصرفی هر گره(totalEnergyConsumed)

		•		in the Inputs page.			
<u>A</u> II (700 / 700)	<u>V</u> ectors (125 / 125)	<u>S</u> calars (10 / 526)	<u>H</u> is	tograms (49 / 49)			
runID filter			×	module filter	~	totalEn	ergyConsumed
Experiment	Measurement	Module			Name		Value
General	\$0="avg"	LoRaNetwor	kTes	t.loRaNodes[0].LoRaNic.radio	total Energy Consumed		419.98085682313
General	\$0="avg"	LoRaNetwor	kTes	t.loRaNodes[1].LoRaNic.radio	totalEnergyConsumed		429.27426499711
General	\$0="avg"	LoRaNetwor	kTes	t.loRaNodes[2].LoRaNic.radio	totalEnergyConsumed		398.73077929918
General	\$0="avg"	LoRaNetwor	kTes	t.loRaNodes[3].LoRaNic.radio	totalEnergyConsumed		403.49883377474
General	\$0="avg"	LoRaNetwor	kTes	t.loRaNodes[4].LoRaNic.radio	totalEnergyConsumed		402.31100776853
General	\$0="avg"	LoRaNetwor	kTes	t.loRaNodes[5].LoRaNic.radio	totalEnergyConsumed		539.81195223368
General	\$0="avg"	LoRaNetwor	kTes	t.loRaNodes[6].LoRaNic.radio	totalEnergyConsumed		401.12141194681
General	\$0="avg"	LoRaNetwor	kTes	t.loRaNodes[7].LoRaNic.radio	totalEnergyConsumed		542.59559350139
General	\$0="avg"	LoRaNetwor	kTes	t.loRaNodes[8].LoRaNic.radio	totalEnergyConsumed		399.07335687851
General	\$0="avg"	LoRaNetwor	kTes	t.loRaNodes[9].LoRaNic.radio	totalEnergyConsumed		404.56860028383

مجموع تعداد بسته های دریافت شده در دروازه (count:GWPacketReceived_LoRa)

♦ مجموع تعداد بستههای دریافت شده در سرور شبکه(totalReceivedPackets)

Browse Data Here you can see all data that come from the files specified in the Inputs page. <u>A</u>II (700 / 700) <u>Vectors (125 / 125) <u>S</u>calars (1 / 526) <u>H</u>istograms (49 / 49)</u> ✓ module filter runID filter totalReceivedPackets Experiment Measurement Module Name Value General \$0="avg" LoRaNetworkTest.networkServer.udpApp[0] totalReceivedPackets 7208.0

7. در این بخش باید با تغییر پارامترهای شبیه سازی سناریوهای مختلفی را اجرا کرده و نتایج آنها را ذخیره و بر اساس این نتایج نمودارهای خواسته شده در قسمت (ب) را رسم کنید.

1. شبیه سازی حالت (SF=7, BW=125kHz, TP=3dBm)

2. شبیه سازی حالت (SF=7, BW=250kHz, TP=3dBm)

(SF=7 , BW=125kHz , TP=14dBm) مبيه سازی حالت .3

4. شبیه سازی حالت (SF=7, BW=250kHz, TP=14dBm)

5. شبیه سازی حالت (SF=12, BW=125kHz, TP=3dBm)

6. شبیه سازی حالت (SF=12, BW=250kHz, TP=3dBm)

7. شبیه سازی حالت (SF=12, BW=125kHz, TP=14dBm)

8. شبیه سازی حالت (SF=12, BW=250kHz, TP=14dBm)

