CMPE 314 Midterm Exam-1 Solutions 2021 Spring

Problem 1

$$KCL$$
 $I_I = I_{D1} + I_{D2}$

$$KVL$$
 $R_1I_{D1} + V_{D1} = R_2I_{D2} + V_{D2} + V_B$

Diode device laws

$$I_{D1} = I_{s1} \left(e^{V_{D1}/V_T} - 1 \right)$$

$$I_{D2} = I_{s2} \left(e^{V_{D2}/V_T} - 1 \right)$$

No requirement on I_I , since the accurate diode model is used.

Problem 2

In piece-wise linear model,

$$V_D = V_{\gamma} + r_f I_D$$

$$KVL \quad -4 + RI_D + V_D + V_B = 0$$

$$V_B = 4 - RI_D - (V_{\gamma} + r_f I_D)$$

$$V_B = 4 - 0.7 - (100 + 10) \times 50 mA = -2.2 V$$

$$V_D = V_V + r_f I_D = 1.2 V$$

$$P_D = V_D I_D = (1.2 V)(50 mA) = 60 mW$$

Problem 3

- (a) Near diode threshold, $i_D \approx 0$ $v_{D1} \approx -v_S$ $v_{D2} \approx v_S$
 - $v_S > 0$ $v_S > V_{\gamma 2}$ D_2 on, D_1 off. $v_O(t) = -v_S(t) + V_{\gamma 2}$
 - $v_S < 0$ $v_S < V_{\gamma 1}$ D_1 on, D_2 off. $v_O(t) = v_S(t) + V_{\gamma 1}$
- (b) $v_{0}(peak) = -10 + 0.7 = -9.3 V$ Diode PIV rating

 $PIV > v_{D,Rev}(peak) = 2v_S(peak) - V_{\gamma} = 20 - 0.7 = 19.3 V$

Problem 4

- (a) $v_D \approx V_B v_I$ near threshold $i_D \approx 0$
 - $V_B v_I > V_\gamma$ or $v_I < V_B V_\gamma$ diode on $v_O(t) = v_I(t) + V_\gamma$
 - $V_B v_I < V_{\gamma}$ or $v_I > V_B V_{\gamma}$ diode off $v_O(t) = V_B$

(b)
$$V_B = 5 V$$
, $V_{\gamma} = 0.7 V$

- $v_I < 5 0.7 = 4.3 V$ $v_O(t) = v_I(t) + 0.7 V$ $v_O(min) = -20 + 0.7 = -19.3 V$
- $v_I > 4.3 V$ $v_O(t) = v_O(max) = 5 V$

Problem 5

(a) Initial $v_C(0) = 0$, $v_D \approx V_B - v_I$

- Vc +

• when $V_B - v_I > V_{\gamma}$

or $v_I < V_B - V_\gamma$ diode on, capacitor charging $v_O(t) = V_B - V_\gamma - v_I(t)$ $v_C(peak) = V_B - V_\gamma - v_I(min)$

- When $v_I > v_I(min)$, diode off, capacitor discharging slowly $v_C(t) \cong v_C(peak)$
- In steady state $v_0(t) = v_I(t) + v_C(peak)$
- (b) $v_I(min) = -20 V$ $v_O(peak) = 5 - 0.7 - (-20) = 24.3 V$ $v_O(t) = v_I(t) + 24.3 V$ $v_O(max) = 44.3 V$ $v_O(min) = 4.3 V$

Problem 6

(a) $V_{PS} > V_{Z0}$, Zener diode is reverse breakdown.

$$V_{L} = V_{Z} = V_{Z0} + r_{Z}I_{Z}$$

$$\frac{V_{L} - V_{PS}}{R_{i}} + \frac{V_{L} - V_{Z0}}{r_{Z}} + I_{L} = 0$$

Under variation of I_L

$$\Delta V_L \left(\frac{1}{R_i} + \frac{1}{r_Z} \right) + \Delta I_L = 0$$

$$\Delta V_L = -\frac{R_i r_Z}{R_i + r_Z} \Delta I_L$$

(b)
$$R_L = 2 k\Omega$$

$$\frac{V_L - V_{PS}}{R_i} + \frac{V_L - V_{Z0}}{r_Z} + \frac{V_L}{R_L} = 0$$

$$\frac{V_L - 10}{500} + \frac{V_L - 5}{10} + \frac{V_L}{2000} = 0$$

$$P_Z = V_Z I_Z = (V_{Z0} + r_Z I_Z)I_Z = (5.073 V)(7.3 mA) = 37 mW$$