WSTĘP DO FIZYKI CIAŁA STAŁEGO	PROJEKT #2	
Dominik Stańczak	Zestaw 3	16.01.2016 r.
domsta@student.fizyka.pw.edu.pl	261604	10-11, gr. M2
Oświadczam, że jestem wyłącznym autorem wszelkich treści (obliczeń, wykresów itp.) zawartych w niniejszym projekcie.		

1 Zadanie 1

Przy zestawie 3 oraz numerze indeksu 261604 proste obliczenia dają nam $\lambda = 504nm$. Światło monochromatyczne o tej długości fali ma kolor zielony.

Dla przejścia elektronu z pierwszego poziomu energetycznego w warstwie p do pierwszego poziomu energetycznego w warstwie n spełnione jest równanie:

$$E_{foton} = E_g + E_1 n + E_1 p$$

Gdzie E_q jest przerwą energetyczną.

Poziomy energetyczne w warstwach można modelować poprzez nieskończoną studnię potencjału, znaną z mechaniki kwantowej, która, jak powszechnie wiadomo, ma energie:

$$E_n = \frac{\hbar^2}{2m} (\frac{n\pi}{d})^2$$

Gdzie d jest szerokością warstwy półprzewodnikowej w naszym jednowymiarowym przybliżeniu. Energia fotonu wyraża się zaś wzorem

$$E_{foton} = \frac{hc}{\lambda}$$

Przybliżając masy efektywne elektronów oraz dziur przez masę spoczynkową elektronu, otrzymujemy

$$\frac{hc}{\lambda} = E_g + \frac{\hbar^2 \pi^2}{m_e d^2}$$

Przyjmując początkowo d=5nm, otrzymujemy przekształcając powyższy wzór $E_g=2.4299eV$.

Za aktywny materiał półprzewodnikowy o zbliżonej do otrzymanej przerwy energetycznej wartości $E_g=2.42eV$ przyjmujemy siarczek kadmu CdS. Jego stałą sieciową odczytujemy z wykresu jako zawierającą się w przedziale 5.8-5.9nm. Za materiał "okładkowy" przyjmujemy selenek magnezu MgSe o stałej sieciowej z tego samego zakresu i energii przerwy około 4eV. Schemat tej struktury wygladałby tak:

2 Zadanie 2

Dla danych z zestawu 3 współczynnik kształtu l/S wynosi $1.04mm/1.89mm^2=0.05502/mm$. Dane z pliku można przedstawić na wykresie Arrheniusa tak jak poniżej:

Obliczenie współczynników przeprowadza się przy pomocy następującego skryptu w Pythonie:

 $k \, = \, 1.38064852 \, e{-23}$

```
e = 1.60217662e-19
data = numpy.loadtxt("zad2_is_3_readable.txt")
Kelvin = 273.15
L=grubosc = 1.04e-3
S=powierzchnia = 18.9e-6
print (L/S)
T, R = temperatureC, resistanceOhm = data[:,0], data[:,1]
T+=Kelvin
G=1/R
conductivity = G*L/S
def linear_curve(x, a, b):
    return a*x+b
x = 1/T
y = np.log(conductivity*T/S)
coefficients, covs = scipy.optimize.curve_fit(linear_curve, x, y)
print(coefficients)
print (coefficients [0] * k/e)
```

Parametry dopasowania prostej y=ax+b do zbioru danych $(1/T,\log{(\sigma T/S)}$ wynoszą:

$$a = 7153.0919K, b = 26.6597$$

Co pozwala nam, mnożąc przez stałą Boltzmanna oraz dzieląc przez ładunek elektronu, otrzymać

$$E_a = 0.6164 eV$$

Podstawiając otrzymane wartości ($\sigma_0 = \exp b$), otrzymujemy

$$\sigma(25^{\circ}C) = 0.04834S/m$$

3 Zadanie 3

Dla jednowymiarowej sieci krystalicznej którą modelujemy jako oscylatory harmoniczne powiązane ze sobą sprężynami o stałej sieci k, w której to sieci komórka elementarna składa się z dwóch połączonych ze sobą łańcuchowo atomów ("model bilardowy", tzn. klasyczny) o masach m_1 oraz m_2 , można zapisać odwołując się do drugiej zasady dynamiki¹ układ równań ruchu dla

¹I. Newton, *Principia...*

obu atomów w n-tej komórce elementarnej, przyjmując S_{in} jako odchylenie i(1,2) atomu z n-tej komórki elementarnej z położenia równowagi:

$$m_1 \ddot{S}_{1n} = k(S_{2n} + S_{2(n-1)})$$

 $m_2 \ddot{S}_{2n} = k(S_{1n} + S_{1(n+1)})$

Przymując, że odchylenia wyrażają się przez funkcje Blocha:

$$S = u(x) \exp i(qna - \omega t)$$
$$\ddot{S} = -\omega^2 S$$

Łatwo pokazać, że:

$$S_{n+1} = S \exp(iqa)$$
$$S_{n-1}S \exp(-iqa)$$

Przechodząc do pierwszej komórki elementarnej z racji jej okresowości:

$$m_1 \omega^2 S_1 = k(S_2 + S_2 \exp(-iqa))$$

 $m_2 \omega^2 S_2 = k(S_1 + S_1 \exp(iqa))$

Wykonując proste przekształcenia, które pozostawiamy Czytelnikowi, otrzymujemy następujący układ równań:

$$m_1\omega^2 S_1 - kS_2(1 + \exp(-iqa)) = 0$$

 $-kS_1(1 + \exp(iqa)) + m_2\omega^2 S_2 = 0$

Aby otrzymać dwa niezależne liniowo rozwiązania S_1 oraz S_2 , wyznacznik tego wyrażenia musi się zerować:

$$\left(\frac{2k}{m_1} - \omega^2\right)\left(\frac{2k}{m_2} - \omega^2\right) - 2\frac{k^2}{m_1 m_2}(1 + \cos(qa)) = 0$$

Jest to oczywiście równanie dwukwadratowe, którego rozwiązaniami są dwie pary dodatnich i ujemnych ω . Rozwiązując to równanie² i biorąc dodatnie ω , otrzymane funkcje można wykreślić dla pierwszej strefy Brillouina na poniższym wykresie:

 $^{^2}$ www.wolframalpha.com

