1 General definitions

1.1 Basic

• Sample variance

$$S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$
 (1.1)

• Sample correlation coefficient

$$r_{X,Y} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{(n-1)\sqrt{(S_X^2 S_Y^2)}}$$
(1.2)

- QQ-plot for cumulative distribution function F is the set of points $\left(q_F\left(\frac{i}{n+1}\right), x_{(i)}\right)$, where $q_F(\cdot)$ is the quantile function for the distribution.
- Mean Squared Error (MSE)

$$MSE(\theta; T(X), g(\theta)) = \mathbb{E}_{\theta} (T(X) - g(\theta))^{2}$$
(1.3)

• Bias-variance decomposition

$$MSE(\theta; T(X)) = var_{\theta}T + (\mathbb{E}_{\theta}T(X) - g(\theta))^{2}$$
(1.4)

• Empirical distribution function

$$\hat{F}_n(x) = \sum_{i=1}^n \mathbb{I}(X_i \le x) \tag{1.5}$$

1.2 k-th order statistic $X_{(k)}$

 $X_{(k)} - k - th$ order statistic distribution for n i.i.d. variables from continuous distribution F.

$$f_{(k)}(x) = \frac{n!}{(k-1)!(n-k)!} F(x)^{k-1} (1 - F(x))^{n-k} f(x)$$
 (1.6)

$$F_{(k)}(x) = \sum_{j=k}^{n} {n \choose j} F(x)^{j} (1 - F(x))^{n-j}$$
(1.7)

$$\mathbb{E}F(X_{(k)}) = \frac{k}{n+1} \tag{1.8}$$

2 Important distributions

- Student's t-distribution $t_{\nu}, \nu \in \mathbb{R}_{>0}$
 - pdf

$$\frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\pi\nu} \Gamma(\frac{\nu}{2})} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}} \tag{2.1}$$

- cdf

$$\frac{1}{2} + x\Gamma\left(\frac{\nu+1}{2}\right) \frac{{}_{2}F_{1}\left(\frac{1}{2}, \frac{\nu+1}{2}; \frac{3}{2}, -\frac{x^{2}}{\nu}\right)}{\sqrt{\pi\nu} \Gamma(\frac{\nu}{2})}$$
(2.2)

- t-distribution with $n \in \mathbb{N}$ degrees of freedom arises from the ratio of independent N(0,1)- and χ^2_n -distributions
- Poisson distribution Poisson(λ), $\lambda > 0$
 - $-\lambda$ is the average number of events per interval
 - pdf

$$p_{\lambda}(k) = e^{-\lambda} \frac{\lambda^k}{k!} \tag{2.3}$$

- Geometric distribution $G(\theta)$, $0 \le \theta \le 1$
 - pdf

$$f_{\theta}(k) = (1 - \theta)^{1 - k} \theta \tag{2.4}$$

- cdf

$$F_{\theta}(k) = 1 - (1 - \theta)^k \tag{2.5}$$

- Exponential distribution $F(x; \lambda)$
 - pdf

$$f_{\lambda}(x) = \lambda e^{-\lambda x} \tag{2.6}$$

- cdf

$$F_{\lambda}(x) = 1 - e^{-\lambda x} \tag{2.7}$$

$$- \mathbb{E}_{\lambda} X = 1/\lambda$$

• Beta distribution $B(\alpha, \beta), \ \alpha, \beta > 0$

- pdf

$$f_{\alpha,\beta}(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, \ B(\alpha,\beta) \equiv \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$
 (2.8)

- Weibull distribution
 - $-\alpha$ and λ are the "shape" and 'inverse scale" parameters.
 - pdf

$$f_{\lambda,\alpha}(x) = \lambda^{\alpha} \alpha x^{\alpha - 1} e^{-(\lambda x)^{\alpha}}$$
(2.9)

- cdf

$$F_{\lambda,\alpha}(x) = 1 - e^{-(\lambda x)^{\alpha}} \tag{2.10}$$

- Gamma distribution $\Gamma(\alpha, \lambda)$, $\alpha > 0, \lambda > 0$
 - $-\alpha$ and λ are known as "shape" and "inverse scale" parameters.
 - pdf

$$f_{\alpha,\lambda}(x) = \frac{x^{\alpha-1}\lambda^{\alpha}e^{-\lambda x}}{\Gamma(\alpha)}$$
 (2.11)

– cdf (where $\gamma(s,x)=\int_0^x t^{s-1}e^{-t}dt$ — is the "incomplete gamma function")

$$F_{\alpha,\lambda}(x) = \frac{\gamma(\alpha, x\beta)}{\Gamma(\alpha)}$$
 (2.12)

Definition 2.1. A family of probability densities p_{θ} that depends on a parameter θ is called a k-dimensional exponential family if there exist functions $c(\theta)$, h(x), $Q_i(\theta)$, and $V_i(x)$ such that

$$p_{\theta}(x) = c(\theta)h(x)e^{\sum_{j=1}^{k} Q_j(\theta)V_j(x)}$$

3 Fundamental results

Theorem 3.1. Let $X_1, \ldots X_n$ be an i.i.d. ramdom variables from the $N(\mu, \sigma^2)$ distribution, then

- 1. \bar{X} is $N(\mu, \sigma^2/n)$ distributed;
- 2. $(n-1)S_X^2/\sigma^2$ is χ_{n-1}^2 -distributed (see 1.1);

3. \bar{X} and S_X^2 are independent;

4.
$$\sqrt{n}(\bar{X}-\mu)/\sqrt{S_X^2}$$
 has the t_{n-1} - distribution.

Proof.
$$||X||^2 - n\bar{X}^2 = (n-1)S_X^2$$

Definition 3.2. Let X be a random variable defined on probability space $(\Omega, \mathbb{P}_{\theta}), \ \theta \in \Theta$. Suppose that the likelihood function $\theta \mapsto \ell_{\theta} \stackrel{\text{def}}{=} \log p_{\theta}$ is differentiable for all $x \in \Omega$. The gradient

$$\dot{\ell_{\theta}}(x) = \frac{\partial}{\partial \theta} \ell_{\theta}(x)$$

is called the score function. The Fisher information is defined as the matrix

$$i_{\theta} = \mathbb{V}_{\theta} \dot{\ell}_{\theta}(X)$$

Theorem 3.3. Suppose that Θ is compact and convex and that θ is identifiable, and let $\hat{\theta}_n$ be the maximum likelihood estimator based on a sample of size n from the distribution with (marginal) probability density p_{θ} . Suppose, furthermore, that the map $\theta \mapsto \log p_{\theta}(x)$ is continuously differentiable for all x, with derivative $\dot{\ell}_{\theta}(x)$, such that $||\dot{\ell}_{\theta}(x)|| \leq L(x)$ for every $\theta \in \Theta$, where L(x) is a function with $\mathbb{E}_{\theta}L^2(X) < \infty$. If θ is an interior point of Θ and the function $\theta \mapsto i_{\theta}$ is continuous and positive, then under θ , $\sqrt{n}(\hat{\theta}_n - \theta)$ converges in distribution to a normal distribution with expectation 0 and variance i_{θ}^{-1} . Therefore, under θ , as $n \to \infty$, we have

$$\sqrt{n}(\hat{\theta}_n - \theta) \to N(0, i_{\theta}^{-1})$$

Theorem 3.4. (Cramer-Rao) Suppose $\theta \mapsto p_{\theta}(x)$ is differentiable for every x. Then under certain regularity conditions any unbiased estimator T for $g(\theta)$ satisfies:

$$\mathbb{V}_{\theta}(T) \ge g'(\theta) I_{\theta}^{-1} g'(\theta)^T$$
,

where I_{θ} denotes the full information matrix.

3.1 Sufficient Statistics and UMVU estimators

Definition 3.5. For a statistical model $(\Omega, \mathbb{P}_{\theta})$, $\theta \in \Theta$, a statistic V(x) is called *sufficient* (for r.v. X) if conditional distribution f(x|V=v) is independent of V.

Theorem 3.6. A statistic V(x) is sufficient if there exist functions h(x) and $g(v,\theta)$ such that

$$p_{\theta}(x) = h(x)g(V(x), \theta)$$

Theorem 3.7. (Rao-Blackwell) Let V = V(X) be a sufficient statistic, and let T = T(X) be an arbitrary real-valued estimator for $g(\theta)$. Then there exists an estimator $T^* = T^*(V)$ for $g(\theta)$ that depends only on V, such that $\mathbb{E}_{\theta}T^* = \mathbb{E}_{\theta}T$ and $\mathbb{V}_{\theta}T^* \leq \mathbb{V}_{\theta}T$ for all θ . In particular, we have $MSE(\theta; T^*) \leq MSE(\theta; T)$. This inequality is strict unless $\mathbb{P}_{\theta}(T^* = T) = 1$.

Definition 3.8. For a statistical model $(\Omega, \mathbb{P}_{\theta})$, $\theta \in \Theta$, a statistic V(x) is called complete if $\mathbb{E}_{\theta}(f(V)) = 0$, $\forall \theta \in \Theta$ implies f(V) = 0 a.s.

Theorem 3.9. Let V(x) be sufficient and complete, and T(V) be an unbiased estimator for $g(\theta)$. Then T(V) is UMVU estimator (i.e. has smallest variance among all unbiased estimators $\forall \theta \in \Theta$).

Theorem 3.10. Suppose that for a k-dimensional exponential family (2.1) the set below contains an interior point:

$$(Q_1(\theta), \dots Q_k(\theta)), \ \theta \in \Theta$$

Then the random vector $(V_1(x), \ldots V_n(x))$ is sufficient and complete.

4 Estimators

4.1 Maximum of *n* uniformally distributed statistics

Set up: $X_1, X_2, ... X_n$ i.i.d. drown from $U[0, \theta]$, where θ is the parameter of interest.

- $\bullet \ \hat{\theta} = 2\bar{X}_n$
 - method of moments estimator
 - unbiased
 - $MSE(\theta, \hat{\theta}) = \frac{\theta^2}{3n}$, see (1.6)
- $X_{(n)}$ n-th order statistic, i.e. maximum.

$$-\mathbb{E}_{\theta}X_{(n)} = \frac{n}{n+1}\theta$$
, see (1.6)

-
$$MSE(\theta, X_{(n)}) = \frac{2\theta^2}{(n+2)(n+1)}$$

- $\bullet \ \ \frac{n+2}{n+1}X_{(n)}$
 - best estimator of the form $cX_{(n)}$
 - $MSE(\theta, \frac{n+2}{n+1}X_{(n)}) = \frac{\theta^2}{(n+1)^2}$

4.2 Univariate normal distribution

•
$$(\hat{\mu}, \hat{\sigma}^2) = \left(\bar{X}_n, \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)\right) = \left(\bar{X}_n, \frac{n-1}{n} S_X^2\right)$$

- maximum likelihood estimator
- method of moments estimator
- $-\hat{\mu}$ is unbiased
- $-\mathbb{E}_{(\mu,\sigma^2)}\hat{\sigma}^2 = \frac{n-1}{n}\sigma^2$

4.3 Empirical distribution function

Let $X_1, \ldots X_n$ be an i.i.d. sample drawn from the distribution F.

- The empirical distribution function (ecdf) $\hat{F}(x) = \sum_{i=1}^{n} \mathbb{I}(X_i \leq x)$ (see 1.1)
 - unbiased
 - $-\operatorname{cov}_F\left(\hat{F}(u),\hat{F}(v)\right) = n^{-1}(F(\min(u,v)) F(u)F(v)) \text{positively correlated}$

4.4 Linear Regression

Theorem 4.1. (Ordinary Least Squares)

(i) In one-factor setting, maximum likelihood estimators for slope, intercept and variance are given by (see (1.1, 1.2)):

$$\hat{\beta} = \frac{S_Y r_{X,Y}}{S_X}, \quad \hat{\alpha} = \bar{Y} - \hat{\beta}\bar{X}, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n = (Y_i - \hat{\beta}X_i - \hat{\alpha})^2$$

(ii) If the design matrix X in a multiple linear regression has full rank, then the maximum likelihood estimators are given by:

$$\hat{\beta} = (X^T X)^{-1} (X^T Y), \quad \hat{\sigma}^2 = \frac{\|Y - X \hat{\beta}\|^2}{n}$$

Theorem 4.2. (Weighted Least Squares/Heteroscedacity)

(i) Assume that error terms ε_i are have variance as $\sigma_i^2 \equiv z_i \sigma^2$ for known constants z_i . Let $w_i \stackrel{\text{def}}{=} (z_i \sigma^2)^{-1}$, then maximum likelihood estimators for slope, intercept and variance are given by (see (1.1, 1.2)):

$$\tilde{\beta} = \frac{\sum w_i(x - \tilde{x})(y - \tilde{y})}{\sum w_i(x - \tilde{x})^2} = \frac{\sum w_i \sum w_i x_i y_i - \sum w_i x_i \sum w_i y_i}{\sum w_i \sum w_i x_i^2 - (\sum w_i x_i)^2}$$
$$\tilde{\alpha} = \tilde{y} - \tilde{\beta}\tilde{x}$$
$$\hat{\sigma}^2 = n^{-1} \sum_{z_i} \frac{1}{2} (y_i - \tilde{\beta}x_i - \tilde{\alpha})^2$$

(ii) For the multi-factor model, maximum likelihood estimators can be written in the form:

$$\tilde{\beta} = (X^T W X)^{-1} (X^T W Y)$$

Theorem 4.3. Let $V \stackrel{\text{def}}{=} \operatorname{span}(X)$, and $V_0 \subset V$. Denote the projection onto V by P_V .

1. The likelihood ratio statistic for $H_0: X\beta_0 \in V_0$ equals

$$2\log \lambda_n(X,Y) = n\log \frac{\|(E - P_{V_0})Y\|^2}{\|(E - P_V)Y\|^2},$$

2. Under the null hypothesis, the following quantity has $F_{n-p,p-p_0}$ distribution:

$$\frac{\|(P_V - P_{V_0})Y\|^2/(p - p_0)}{\|(E - P_V)Y\|^2/(n - p)}$$

5 Statistical tests

5.1 t-tests

5.1.1 One-sample t-test

Let $X_1, X_2, ... X_n$ be an i.i.d. sample from the $N(\mu, \sigma^2)$ -distribution with μ and σ^2 unknown. Given $\mu_0 \in \mathbb{R}$ we test:

$$H_0: \mu \le \mu_0 \text{ against } H_1: \mu > \mu_0$$
 (5.1)

Test statistic:

$$T = \sqrt{n} \frac{\bar{X}_n - \mu_0}{S_X} \tag{5.2}$$

By Theorem 3.1, under $\mu = \mu_0$ the statistic has Student's t_{n-1} distribution, consequently we can use.

$$\sup_{\mu \le \mu_0} \mathbb{P}\left(T \ge t_{n-1,1-\alpha}\right) \le \alpha \tag{5.3}$$

5.1.2 t-Test for paired observations

Let $(X_1, Y_1), (X_2, Y_2), \ldots (X_n, Y_n)$ be the i.i.d. sample of paired observations. We assume that $Z_i \stackrel{\text{def}}{=} X_i - Y_i$ is $N(\Delta, \sigma^2)$ is normally distributed, and the ordinary One-sample t-test can be used to test the null hypotheses $H_0: \Delta \geq 0$. Note that if X_i and Y_i are strongly correlated then variance of Z_i decreases and this improves the power of the t-test.

5.1.3 Two-sample t-test

Let $X_1, X_2, ... X_n$ and $Y_1, Y_2, ... Y_m$ be two mutually independent i.i.d samples from $N(\mu, \sigma^2)$ and $N(\nu, \sigma^2)$. The test checks

$$H_0: \mu - \nu \le 0 \text{ against } H_1: \mu - \nu > 0$$
 (5.4)

Test statistic:

$$T = \frac{\bar{X} - \bar{Y}}{S_{X,Y}\sqrt{\frac{1}{n} + \frac{1}{m}}}$$
 (5.5)

$$S_{X,Y}^{2} = \frac{1}{m+n-2} \left(\sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2} + \sum_{j=1}^{m} (Y_{j} - \bar{Y}_{m})^{2} \right)$$
 (5.6)

Theorem 3.1 implies that $S_{X,Y}^2$ follows $\sigma^2 \cdot \chi_{m+n-2}^2$ distribution.

5.2 Kolmogorov-Smirnov test

Given and i.i.d. sample $X_1, \ldots X_n$ from some unknown distribution F, we want to test:

$$H_0: F = F_0 \text{ against } H_1: F \neq F_0$$
 (5.7)

The test statistic is given by

$$T = \sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F(x)|, \tag{5.8}$$

where $\hat{F}_n(x)$ stands for the empirical distribution function (see 1.1). The distribution of T is the same for every continuous cdf F_0 . The following limit establishes the test:

$$\lim_{n \to \infty} \mathbb{P}_{F_0} \left(T > \frac{z}{n} \right) = 2 \sum_{j=1}^{\infty} (-1)^{j+1} e^{-j^2 z^2}$$
 (5.9)