الحساب المثلثي

وحدات قياس الزوايا

- غ قياس زاوية مستقيمية هو 180° أما قياسها بالرديان فهو π (طول نصف دائرة شعاعها 1)
- توجد وحدة قياس أخرى لقياس الزوايا و هي الغراد و قياس زاوية مستقيمية بالغراد هو 200 غراد
- α إذا كانت α و β و γ هي قياسات زاوية خندسية على التوالي بالدرجة و الرديان و الغراد فإن :

$$\frac{\alpha}{180} = \frac{\beta}{\pi} = \frac{\gamma}{200}$$

الدائرة المثلثية

 $\left(O,ec{i}^{},ec{j}^{}
ight)$ المستوى منسوب إلى معلم متعامد ممنظم

الدائرة المثلثية هي دائرة مركزها O أصل المعلم و شعاعها 1

مزودة بنقطة أصل I و موجهة توجيها موجبا . التوجيه الموجب هو منحى الدوران حول الدائرة انطلاقا من I في المنحى المضاد لحركة عقارب الساعة

الأفاصيل المنحنية لنقطة من دائرة مثلثية

لتكن (\mathcal{C}) دانرة مثلثية و O مركزها و I أصلها و عددا حقيقيا

- في حالة lpha>0 ، نعتبر النقطة M من (\mathscr{O}) بحيث القياس بالرديان لطول القوس M هو lpha>0 عند التنقل على lpha>0 في المنحى الموجب (\mathscr{O})
- في حالة $\alpha<0$ ، نعتبر النقطة M من M من القياس بالرديان لطول القوس في حالة $\alpha<0$ عند التنقل على خو في المنحى السالب

 $M\left(lpha
ight)$ و نكتب lpha في كلتا الحالتين lpha يسمى أفصولا منحنيا للنقطة في كلتا الحالتين lpha

و هو وحيد M و الأفصول المنحني الرئيسي للنقطة M و هو وحيد إذا كان $lpha \in]-\pi,\pi]$

منطبقتان حيث M هو أيضا أفصول منحني للنقطة M على (\mathscr{O}) أي M و M هو أيضا أفصول منحني للنقطة M منطبقتان حيث $k\in\mathbb{Z}$

 $k\in\mathbb{Z}$ بحيث x=y+2k بخول أن $x\equiv y$ و نكتب y=y+2k و نكتب الحديد $x\equiv y$ و نكتب الحديث $x\equiv y$

الزاوية الموجهة لنصفي مستقيممين لهما نفس الأصل

O ليكن ig([ox],[oy]ig) نصفي مستقيمين لهما نفس الأصل

- (ox,oy) يحدد زاوية موجهة لنصفي مستقيم نرمز لها بالرمز ([ox,oy)) يحدد زاوية موجهة النصفي مستقيم نرمز لها بالرمز
 - (oy),(ox) الزوج الزوج ([oy),[ox)) یحدد زاویة موجهة لنفی مستقیم نرمز لها بالرمز

[oy) یسمی زاویهٔ موجههٔ لنصفی مستقیمین $\widehat{(ox,oy)}$ یسمی زاویهٔ موجههٔ النوع

\overrightarrow{v} و \overrightarrow{u} الزوج $(\widehat{\overrightarrow{u},\overrightarrow{v}})$ يسمى الزاوية الموجهة للمتجهتين

$$(\overrightarrow{u},\overrightarrow{u}) = 2k \pi$$

$$(\overrightarrow{u},\overrightarrow{v}) = -(\overrightarrow{v},\overrightarrow{u}) + 2k \pi$$

$$k \in \mathbb{Z}$$
 مع $\left(\overrightarrow{u}, \overrightarrow{v}\right) = \left(\overrightarrow{u}, \overrightarrow{w}\right) + \left(\overrightarrow{w}, \overrightarrow{v}\right) + 2k\pi$ علاقة شال

النسب المثلثية لعدد حقيقي

 $(\overbrace{\overrightarrow{OI},\overrightarrow{OJ}})$ دائرة مثلثية أصلها I و I النقطة من (\mathscr{O}) بحيث $\frac{\pi}{2}$ هو القياس الرئيسي للزاوية الموجهة I النقطة I على الدائرة I على الدائ

 $\cos(x)$ بنمر و نرمز له ب x و المعلم المتعامد الممنظم $(O,\overrightarrow{OI},\overrightarrow{OJ})$ و نرمز له ب M فصول النقطة M

 $\sin(x)$ و نرمز له ب x و المعلم المتعامد الممنظم $(O,\overrightarrow{OI},\overrightarrow{OJ})$ يسمى جيب x و نرمز له ب

3/8 -3/2017

$$k\in\mathbb{Z}$$
 ليكن x عددا حقيقيا يخالف x \pm حيث x حيث x ليكن x عددا حقيقي x يسمى ظل x و نكتب x و نكتب x العدد الحقيقي x يسمى ظل x و نكتب x

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$\frac{-1}{2}$	$\frac{-\sqrt{2}}{2}$	$\frac{-\sqrt{3}}{2}$	-1
tan x	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	X	$-\sqrt{3}$	-1	$\frac{-\sqrt{3}}{3}$	0

$$\begin{cases} \sin(-x) = -\sin(x) \\ \cos(-x) = \cos(x) \end{cases}$$
$$\tan(-x) = -\tan x$$

	$\pi - x$	$\pi + x$	$\frac{\pi}{2}-x$	$\frac{\pi}{2} + x$
sin()	sin x	$-\sin x$	$\cos x$	$\cos x$
cos()	$-\cos x$	$-\cos x$	$\sin x$	$-\sin x$

ta	an ()	$-\tan x$	tan x	_1_	1_	
					tan x	tan x	
		$(k \in \mathbb{Z}) \begin{cases} \sin(x + 2k\pi) = \sin(x) \\ \cos(x + 2k\pi) = \cos(x) \end{cases}$					
		$(k \in \mathbb{Z}) \tan(x + k\pi) = \tan x$					
	$\cos^2 x + \sin^2 x = 1 \qquad \cos^2 x = \frac{1}{1 + \tan^2 x}$					$\frac{1}{-\tan^2 x}$	
	-1	l≤s	$\sin x \le 1$ –	$-1 \le \cos x \le 1$	$\sin^2 x = \frac{\tan^2 x}{1 + \tan^2 x}$		

sin و cos إشارة

خاصیات

$$\frac{\cos(x+\pi) = -\cos(x)}{\cos(x+\pi)}$$

et

$$\sin(x+\pi) = -\sin(x)$$

$$\frac{\cos(x + \frac{\pi}{2}) = -\sin(x)}{2}$$

 $\sin(x + \frac{\pi}{2}) = \cos(x)$

$$\sin\left(\frac{\pi}{2}-x\right)$$
 و $\cos\left(\frac{\pi}{2}-x\right)$ و $\sin(\pi-x)$ و $\cos(\pi-x)$ و $\cos(\pi-x)$ و الدائرة لاستنتاج ينفس الطريقة يمكن الإشتغال على الدائرة لاستنتاج :

معادلات مثلثية

$\tan x = a$

إذا كان $a\in\mathbb{R}$ فإنه يوجد عدد حقيقي وحيد α ينتمي إلى $-\pi$, π $\frac{1}{2}$ بحيث : $\tan x = a$ $\tan x = \tan \alpha$ تكافئ $x = \alpha + k$ x = a

6/8

$\sin x = a$

 $a \notin [-1,1]$ اذا كان $a \notin [-1,1]$ فإن المعادلة لا تقلا حلا في a = 1 اذا كان $\sin x = 1$

$$(k \in \mathbb{Z})$$
 $x = \frac{\pi}{2} + 2k\pi$

$$a = -1$$
 إذا كان $\sin x = -1$

$\cos x = a$

a
otin[-1,1] إذا كان \bullet

 $\mathbb R$ فإن المعادلة لا تقلا حلا في

a=1 إذا كان $\cos x=1$

 $(k \in \mathbb{Z}) \quad x = 2k \, \pi$

a=-1 إذا كان

 $\cos x = -1$ تكافئ

 $(k \in \mathbb{Z}) \quad x = \pi + 2k \, \pi$

 $a \in]-1,1[$ إذا كان •

$$(k \in \mathbb{Z}) \quad x = -\frac{\pi}{2} + 2k\pi$$

$$a \in]-1,1[$$

$$ue =]-1,1[$$

$$ue = 2$$

$$ue$$

منحنى دالة sin

منحنى دالة cos

7/8 -3/2017

منحنى دالة tan

8/8 -3/2017