Data Analysis

Réduction de dimensions

ACP

$$X = \left[\begin{array}{ccc} x_{i,j} \end{array}\right] \qquad y_{i} = \left[\begin{array}{ccc} \overline{x}_{i,j} & \cdots & \overline{x}_{i,j} \end{array}\right] \qquad \overline{x}_{i,j} = \frac{1}{n} \sum_{i=1}^{n} x_{i,j}.$$

centrer les données Xc = [2; 2;] CIRMAP

matrice de variance - covariance : $\leq = \frac{1}{2} \times_{c} \times_{c}$

mesure de corrélation: $\operatorname{Car}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var}(X)\operatorname{Var}(Y)}$

ων (cj, ce) = Ε ((cj-Ε(cj)) (ce-Ε(ce))

 $van(G) = \frac{1}{m} \sum_{i=1}^{n} (x_{ij} - \overline{x_{ij}}) (x_{ie} - \overline{x_{e}})$ $\sum_{i=1}^{n} (x_{ij} - \overline{x_{ij}})^{2}$ $\sum_{i=1}^{n} (x_{ij} - \overline{x_{ij}})^{2}$ $\sum_{i=1}^{n} (x_{ij} - \overline{x_{ij}})^{2}$ $= \begin{bmatrix} v_{0} \times v_{0} & v_{0} \\ v_{0} & v_{0} \end{bmatrix}$ $= \begin{bmatrix} v_{0} \times v_{0} & v_{0} \\ v_{0} & v_{0} \end{bmatrix}$ $= \begin{bmatrix} v_{0} \times v_{0} & v_{0} \\ v_{0} & v_{0} \end{bmatrix}$ $= \begin{bmatrix} v_{0} \times v_{0} & v_{0} \\ v_{0} & v_{0} \end{bmatrix}$ $= \begin{bmatrix} v_{0} \times v_{0} & v_{0} \\ v_{0} & v_{0} \end{bmatrix}$ $= \begin{bmatrix} v_{0} \times v_{0} & v_{0} \\ v_{0} & v_{0} \end{bmatrix}$ $= \begin{bmatrix} v_{0} \times v_{0} & v_{0} \\ v_{0} & v_{0} \end{bmatrix}$ $= \begin{bmatrix} v_{0} \times v_{0} & v_{0} \\ v_{0} & v_{0} \end{bmatrix}$ $= \begin{bmatrix} v_{0} \times v_{0} & v_{0} \\ v_{0} & v_{0} \end{bmatrix}$ $= \begin{bmatrix} v_{0} \times v_{0} & v_{0} \\ v_{0} & v_{0} \end{bmatrix}$ $= \begin{bmatrix} v_{0} \times v_{0} & v_{0} \\ v_{0} & v_{0} \end{bmatrix}$ $= \begin{bmatrix} v_{0} \times v_{0} & v_{0} \\ v_{0} & v_{0} \end{bmatrix}$ $= \begin{bmatrix} v_{0} \times v_{0} & v_{0} \\ v_{0} & v_{0} \end{bmatrix}$ $= \begin{bmatrix} v_{0} \times v_{0} & v_{0} \\ v_{0} & v_{0} \end{bmatrix}$ $= \begin{bmatrix} v_{0} \times v_{0} & v_{0} \\ v_{0} & v_{0} \end{bmatrix}$

· but ACP: trouver q composantes principales C1,..., Cq avec q << p comme des nouvelles variables combi. lin. des von d'aigine x,..., up top les Cl soient 2 à 2 non corrébées, de variance maximale, d'importance décroisante

6 maximirar la dispersion

exo:

Personne	Capteur 1	Pour garder les
Ind1	D	7 30000
Ind 2	-2	2-10,12
Ind3		-1
Ind4	1	0

1) Existe - t-il une dépendance entre ces 2 capteurs?

$$(2-0)^{2} = \frac{1}{4} \left[(0-0)(2-0) \dots (1-0)(-1-0) \right], = \frac{1/4}{\sqrt{(0-0)^{2} + (-2-0)^{2} + (1-0)^{2} + (1-0)^{2}}} = \frac{1/4}{\sqrt{\frac{6}{4} \cdot \frac{6}{4}}} = \frac{1}{6}$$

$$\exists \text{ dep mon lin.}$$

2) Calculer le 1er ave princip de as pts.

$$X = \begin{bmatrix} 0 & 2 \\ -2 & -1 \\ 1 & 0 \\ 1 & -1 \end{bmatrix} = X_{C}$$

$$\Sigma = \frac{1}{4} \times_{C}^{T} \times_{C} = \frac{1}{4} \begin{bmatrix} 6 & 1 \\ 1 & 6 \end{bmatrix}$$

$$\chi_{45}(\lambda) = \det(4 \cdot 2 - \lambda I_{2}) = \begin{bmatrix} 6 - \lambda & 1 \\ 1 & 6 - \lambda \end{bmatrix} = (6 - \lambda)^{2} = 1 = (7 - \lambda)(5 - \lambda)$$

$$\chi_{1} = 7, \quad \chi_{2} = 5$$

$$\chi_{2} = 5$$

$$\chi_{3} = 7 + 3 = 5$$

$$\chi_{4} = 7 + 3 = 5$$

$$\chi_{4} = 7 + 3 = 5$$

$$\chi_{5} = 7 + 3 = 5$$

$$\chi_{5} = 7 + 3 = 5$$

$$\chi_{7} = 7 + 3 = 5$$

$$\chi_$$

Soit
$$X_1 = \begin{bmatrix} x \\ y \end{bmatrix}$$
 \sqrt{p} de Σ ansois à $d_1 = 7$.
 $4\Sigma X_1 = d_1 X_1 = 0$ $\begin{bmatrix} 6 & 1 \\ 1 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 7 \begin{bmatrix} x \\ y \end{bmatrix}$
(=) $\begin{cases} 6x + y = 7x \\ x + 6y = 7y \end{cases}$ $\begin{cases} -1 \\ x = 14 \end{cases}$

Composante Principale:

(coeff de project des données sur l'axe principal) $q = [0 \ 0]$ $q = [0 \ 0]$ $q = [0 \ 0]$

Amalyse de données temporelles

DTW : déformation temporelle dynamique, permet de mesurer la similarité entre 2 suites qui peuvent varier au cours du temps

· basé sur le principe du + court chemin de Dijkstra + effet temporel pris en compte

· Évaluer la dissemblance entre 2 séq -> détormina un chemin (pptés: coincidence extremités + monotonie l'acoisance temperalle + continuité)

Input: . 2 rices temprelles A et B de rupport temprels rosp. I = [I,N] et J = [I,M]

Algo: 1. Initialiate: $\omega_0 \leftarrow 1$, $\omega_1 \leftarrow 2$, $\omega_2 \leftarrow 1$, $q(0,0) \in 0$ 2. Pour j ∈ {1...J}

(a)
$$g(0,j) \leftarrow +\infty$$

(b) Pour $i \in \{1,..N\}$
 $g(i,0) \leftarrow +\infty$
Pour $j \in \{1,...M\}$

Recherche du chemin minimal

$$g(i,j) \leftarrow min \left(g(i-1,j) + \omega_0 * d(i,j) \right)$$

3. calcul du score d'alignement $g(i-1,j-1) + \omega_1 * d(i,j)$
 $g(i,j-1) + \omega_2 * d(i,j)$

Output: Some S et chemin optimal C.

0	1				
7	3	0	1	2	-1
line to	V	30 6	+	20	
0		0 -	1 -	~3_	4
2	8	2	2	N	4
4	+	6	55	3 -	8
	0 2	2 8	2 8 2	0 0 1 - 2 8 2 2	2 8 2 2 1

Score = 8 = 8

exo Séquences ADN. d(Li, Lj) = {0 si Li=Lj

contraintes locales: (wo, w, w2) = (1,1,1)

glabols: les cases à + de 4 cases de la diago me sont pas calcular.

Matrice de coût:

8 1 1 2 3 X X X X X X X X X X X X X X X X X X
0 0 2 3 × × × × × × × × × × × × × × × × × ×
8 0 0 2 3 4 × × × × × × × × × × × × × × × × × ×
1 1 0 0 2 3 × × ×
2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
J L C T S X X
× 2 2 3 2 3 3 × ×
+ × × × × × × × × × × × × × × × × × × ×
X X X X 3 4 2 2 3 4
111 1 13 4 3 3 3

$$S = \frac{3}{10+8} = \frac{3}{18}$$

Classification non supervisée

* Aproches par partitionnement:

(-A while from = (which b K-ppv: clarification non supervise R-plus proche voisins

exo: $A_1 = (2,10)$ $A_2 = (2,5)$ $A_3 = (8,4)$ $A_4 = (5,8)$ $A_5 = (7,5)$ $A_6 = (6,4)$ $A_7 = (1,2)$ $A_8 = (4,9)$

· Matrice des distances euclidiennes au cas

			<u> </u>	audi	are	nnes	au	carré	
A	AA	Az	A3	Au	As	A	A _	1	
Az	0	23	TZ	13	50	52	65	(5)	_
A 3		0	37	18	25	17	0	20	
Ay	wad -	- 1	0	25	(2)	4	53	41	-43-
As	rg o	3 30	بوليان	0	13	17	52	(2)	ı.b
AG					0 (2	45	25	
AZ		4		•		0	29	29	
Aa		0			d	James	0	58	
0	North I						(ann)	0	

· K ppr avec le seuil t=16 et K=1:

Rour A1: d(A1, A8) = min d(A1, Aj) = 5 < t done &1 = {A1; A8}

Pour Az: d(A2,A7) = min d(A2, Aj) = 10 < t done & = {A2; A3}

61= {A1; A4; A8} (2= {A2; A7) (3= {A3; A5; A6}

Kmeans

Partitionner un ensemble de données en le clarses représentation par la le centres, motes le = { l'... l'elz } On associe ales à de pt/donnée le centre le + proble ou sens d'une certaine distance.

Bien choisir les entres à l'initialisat pour évitar la CV locales 4 houritiques sur la distribut des pts

No de clarses à détermina -> vair no clarses et éterdier l'énergie Méthode de réparat lin.

exo K-means avec centroide initiaux A1, A4 et A7.

d(A3, A4) = min d(A3, A;) -> (2= {A3, A4}

d(As, A4) = min d(As, Aj) -> & = {A3, A4, A5}

d(A61A4) = min d(A6,A)) - (2= {A3,A4,A5,A6}

 $d(A_8, A_4) = \min_{\substack{i \in \{1, 4, 7\}}} d(A_8, A_8) \rightarrow e^2 = \{A_3, A_4, A_5, A_6, A_8\}$

• Hise à jour des centres: $m_A = (2,10)$ $m_2 = \left(\frac{1}{5}(8+5+7+6+4), \frac{1}{5}(4+8+5+4+9)\right)$ = (6,6)

 $m_3 = \left(\frac{2+1}{2}, \frac{5+2}{2}\right) = (1,5; 3,5)$

Clarification hierarchique

4 par de cluster prédéfini + par de config initiale + bonne interprétabilité 4 fournir la mesure de divinibarité pour comparer les groupes d'obs.

lien rimple lien complet moyenne (max)

ascendante / agglonieratives. (mean)

(mean)

(mean)

(mean)

dendrogramme à l'arbre de décision

exo :		A		C	
	A	0	1	4	5
	В		0	2	6
	C		2	0	3
	D	(1)		A	0

1) Lien simple

$$d = 0$$
 {A} {B} {C} {D}
 $d = 1$ $d(A,B) = 1$ {A,B

$$d=2$$
 $d(e,c)=2$ $\{A, B, c\}$ $\{D\}$

$$d=3$$
 $d(c, D) = 3$ $\{A, B, C, D\}$

ALA (2A, A) b = (2A, A) b

2) dien complet

$$d=1$$
 $d(A,B)=1$

$$d=2$$
 $d(B,C)=2 < d(C,A)=4$

Ti il faudra regarder si Cfusionne avec (A,B) à d=4

$$d=3$$
 $d(c,D)=3$ $\{A,B\}$ $\{c,D\}$

on va funionner que pour la + grande distance in poin d(B,D) = 6

exo avec les Aireis 8

1) Lien simple

$$d = 2$$
 $d(A_3, A_5) = d(A_5, A_6) = d(A_4, A_8) = 2$

$$\{A_{3}, \{A_{2}\}\} \{A_{3}, A_{5}, A_{6}\} \{A_{4}, A_{8}\} \{A_{7}\}$$

$$d(A_{3}, A_{6}) = 4$$

$$d=10$$
 $d(A_2, A_{7})=10$ $\{A_1, A_4, A_8\}$ $\{A_2, A_{7}\}$ $\{A_3, A_5, A_6\}$

$$d=13$$
 $d(A_1, A_4) = d(A_4, A_5) = 13 \{A_1, A_3, A_4, A_5, A_6\} \{A_2, A_7\}$

$$\frac{d=0}{d=2} \qquad \{A_1\} \quad \{A_2\} \quad (A_8)$$

$$\frac{d=0}{d=2} \quad d(A_3, A_5) = d(A_5, A_6) = d(A_4, A_8) = 2$$

$$\{A_1\} \quad \{A_2\} \quad \{A_3, A_5, A_6\} \quad \{A_4, A_8\} \quad \{A_7\}$$

$$d = 53$$
 $d(A_3, A_7) = max d(A_i, A_j)$

$$i = \{3, 5, 6\}$$

$$j = \{2, 7\}$$

1 - (8,A)b

(A) ... (A) (A) 0=6

D BSCAN AND AND

4 1 clarse associée à 1 denvité

a classes non déterminées à l'avance

glatton

$$\{A_1\}$$
 $\{A_2\}$ $\{A_3, A_5, A_6\}$ $\{A_4, A_8\}$ $\{A_4\}$ $\{A_4, A_8\}$ $\{A_4\}$ $\{A_4, A_6\}$ $\{A_4,$

(A, 2A, A) (A, A) (A, A, A)

(=A, A) (=A, =A, =A, A, A) & = (=A, A) b (A, A) b

Approche par noyaux

4 au lieu de réparer avec des hyperplans comme k-means, non augmenter la dimension pour re rapprocher d'une réparat lin

Lanciet de despres

Graphe et modulaité

Crétères d'évaluation en classification non suppervisée

4 basé sur 2 motions, cohesian 4 SSE ou SSW: variance intra-clane donnée à quel point proches GBSS: variance inter-clane (SSE) la dist. est grande (82)

mix de cohésion et réponation: silhouette : >0: séparat élevée entre cluste <0: supperport de class 0: distrib uniforme Lo vilcil=1

Apprentissage supervise

Modèles: - arbres de décision

- apprentissage d'ensemble: frêts aléatoires

- réseaux de neurones - SVM

Methodes d'évaluation:

validation croisée

matrice de confusion

- précision, rappel, F-mesure

- course ROC

Arbres de décision

(4) mesurer d'impureté

. Indice de Gini d'un nœud i comportant n éléments:

> % d'obs de la clarre le parmi tres les obs d'entraînement i noued. Pilto

4. Si G; ou H; = 0 - nound pur => qu'ene seule clarse Si c'est redondant, très fort

· Gimi est plus rapide à calculer

· Gini a tendance à isolor les clarses les + fréquentes / Entropie produit des arbres + équilibres

rée des frontières de décision + donne des probabilités d'appartenance

Algorishme CART

1) Séparation entraînement en 2

2) Choix du couple (k, tk) qui produit les sous-ensembles les + purs.

3) Fonction de coût J à minimiser $J(k, k_k) = \frac{mc}{m}$ G gauche

5) Gritere d'avrêt: profondeur max atteinte (Ryperparam)

Avantage: utiliser var quantitative et qualitative nœuds purs - éviter overfitting

clarification + regression (prédicto clave) (prédicto valeur)

exo

Match à domicile	Ciel	(medicto valeur)	N-i-M
oui	Soleil	Match prec. gagné?	Hatch gagné?
oui	plaie	nen	مىن
men	2 deil	mon weeken	non
mon	pluie	ou Ma	olii
mon	Solail	men men	6 OUL
			non

1) Gini de base : indice de Gini pour "Gagner le match" et "Perdre le Hatch"

Gimi (Hatch gayné?) =
$$1 - \left(\frac{\# \text{ oui}}{\# \text{ total}}\right)^2 - \left(\frac{\# \text{ mon}}{\# \text{ total}}\right)^2 = 1 - \left(\frac{4}{6}\right)^2 - \left(\frac{2}{6}\right)^2$$

$$= 1 - \frac{4}{9} - \frac{4}{9} = \frac{4}{9}$$

2) Déterminer la variation de l'indice de Gini longuion découpe les donnée à l'aide des vars. En déduire celle de 1ª niv. de l'artre.

Girioui =
$$1 - \left(\frac{2}{3}\right)^2 - \left(\frac{1}{3}\right)^2 = \frac{1}{9}$$
 Girioui = $1 - \left(\frac{1}{3}\right)^2 - \left(\frac{1}{3}\right)^2 = \frac{1}{9}$

* Variable "Ciel"

$$\begin{bmatrix} 2,4 \end{bmatrix} \begin{bmatrix} 4,4 \end{bmatrix} \begin{bmatrix} 4,0 \end{bmatrix}$$
Similar 5 4 $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$ $\begin{bmatrix}$

Ginio: =
$$4 - \left(\frac{2}{3}\right)^2 - \left(\frac{4}{3}\right)^2 = \frac{4}{9}$$

Ginio: = $4 - \left(\frac{1}{2}\right)^2 - \left(\frac{4}{2}\right)^2 = \frac{4}{2}$
Ginio: = $4 - \left(\frac{1}{2}\right)^2 - \left(\frac{4}{2}\right)^2 = \frac{4}{2}$

Gini
$$G: = 4 - \left(\frac{2}{3}\right)^2 - \left(\frac{1}{3}\right)^2 = \frac{4}{9}$$

Gini $G: = 4 - \left(\frac{1}{2}\right)^2 - \left(\frac{1}{3}\right)^2 = \frac{4}{9}$

Gini $G: = 4 - \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = \frac{1}{2}$

Gini $G: = 4 - \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = \frac{1}{2}$

Gini $G: = 4 - \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = \frac{1}{2}$
 $G: = \frac{3}{6} \cdot \frac{4}{9} + \frac{2}{6} \cdot \frac{1}{2} + \frac{1}{6} \cdot 0 = \frac{7}{18}$

* Variable, "Mark 0

* Variable "Match gagné précédent"

Gini ("Match pric. gagne") =
$$\frac{3}{6}$$
 Gini Gui + $\frac{3}{6}$ Gini Mon = $\frac{3}{6} \left(1 - \left(\frac{3}{3} \right)^2 - 0 \right) + \frac{3}{6} \left(1 - \left(\frac{4}{3} \right)^2 - \left(\frac{2}{3} \right)^2 \right) = \frac{3}{6} \cdot \frac{4}{9} = \frac{2}{9}$

Régression par arbre de décision: prédiction d'une valeur comparer les valeurs may - on obtient une MSE

sous-ensemble aléatone du jeu de train

a calcul des prédictions pour chacun des arbres

des résultats (régression)

=> forêt aléatoire

3 catégories d'apprentisoge par ensembles

-bagging (Random Forest) → apprend, en 11, indép, des modèles de base qui le constituent et les combine en reivant un mocerous de moyenne

-boesting (X6Boost) → apprend réquentiellent de monière adaptative (re concentre sur les evens) et combine selon strat.

base en un mêta modèle

(bagging: @ de variance / boosting et stucking: @ biais)