The character χ_V of a reproduction V is the function $\chi_V: G \to \mathbb{C}$, $\chi_V(G) = \pm r(G)$ $\chi_{V}(g) = tr(g)$.

Xv is a class function on G, ie. XV(g) only depends on the conjugacy class of g.

Ex: given rymensations V and W:

•
$$\chi_{V \otimes W}(g) = \chi_{V}(g) \chi_{W}(g)$$
 (exemplies of $\psi \otimes \psi : V_{i} \otimes U_{j} \mapsto \lambda_{i} \lambda_{j}^{i} V_{i} \otimes W_{j}$)

•
$$\chi_{V^{k}}(g) = \overline{\chi_{V}(g)}$$
 since g ach by $f(g^{i})$, and eigenvalues are not of unity
• here $\chi_{V^{k}}(g) = \overline{\chi_{V}(g)} \chi_{U}(g)$ so $\lambda_{i}^{-1} = \overline{\lambda}_{i}^{-1} = \overline{\lambda}_{i}^{-1} = \overline{\lambda}_{i}^{-1}$

· hence
$$\chi_{Hom(V,U)}(g) = \overline{\chi}_{V}(g) \chi_{U}(g)$$
.

The character table of a group = lit, for each irred. rep2 of G, the values of the As character on each Conjugacy class of G.

Example:
$$G = S_3$$
:

 $e (12) (123) \longrightarrow conjugacy classes$
 $U = \frac{1}{1} = \frac{1}{1}$
 $V = \frac{1}{2} = \frac{1}{1} = \frac{1}{1}$
 $V = \frac{1}{2} = \frac{1}{1} = \frac{1$

$$\chi_{V}(e) = t_{r}(id) = dim(V)$$
or $U \oplus V = perm \theta$. rep^{2} , has
$$\chi = \# \text{fixed points} = (3,1,0)$$

then subtract $\chi_{U} = (1,1,1)$.

Last time we decomposed VOV into irreducible "by hand", now we can do faster:

 $X_{VOV}(g) = \chi_{V}(g)^{2}$ so X_{VOV} takes values (4,0,1) X_{U}, X_{U}, X_{V} are linearly independent, $X_{VOV} = X_{U} + X_{U} + X_{V}$ > VeV ~ U ⊕ U ' ⊕ V.

If
$$V$$
 is a sympethon of G , the invariant part is $V^G = \{v \in V | gv = v \ \forall g \in G\}$,

 $Prop! \left\{ \varphi = \frac{1}{|G|} \sum_{g \in G} g : V \rightarrow V \text{ is a projection onto } V^G \subset V : \left\{ Im(\varphi) = V^G \right\} \right\} \left\{ \varphi_{|V^G} = id \right\}$.

•
$$S_0$$
: $dim(V^G) = tr(\varphi) = \frac{1}{|G|} \sum_{g \in G} \chi_{\nu}(g)$.
• S_0 : $dim(V^G) = tr(\varphi) = \frac{1}{|G|} \sum_{g \in G} \chi_{\nu}(g)$.
• If V, W are reprod G , $Hom_G(V,W) = Hom_G(V,W)^G = (V^G_{\otimes}W)^G$, so:

 $\dim \operatorname{Hom}_{G}(V,W) = \frac{1}{|G|} \sum_{g \in G} \chi_{V \otimes G}(g) = \frac{1}{|G|} \sum_{g} \overline{\chi_{V}(g)} \chi_{G}(g) \dots$

but if V and W are irreducible, then by Schn's lemma, din Hong (V, W) = {1 if V= W or else.

Define a Hernitian inner product on the space of class functions $G \to \mathbb{C}$ by $\widehat{\mathbb{C}}$ $H(\alpha,\beta) = \frac{1}{|G|} \sum_{g \in G} \overline{\alpha}(g)\beta(g).$

For character of rept, by the above, din $kong(V, \omega) = H(\chi_V, \chi_W)$.

=> Thm: The characters of irreducible representations of G are othornounal for H.

This implies characters of irred-reps are linearly independent class functions!

Conslay: 1. The number of irreducible representations of G is at most the number of conjugacy classes of G. (We'll see later that they are in fact equal).

Corollary: 2. Every representation of G is completely determined by its character: denoting the irred rope by $V_1,...,V_k$, any rep. $W \cong \bigoplus V_i^{\oplus a_i}$, where $a_i = \dim \operatorname{Hom}_G(V_i, W) = \operatorname{H}(\chi_{V_i}, \chi_{W})$.

Corollary; 3. For any rep: $W = \bigoplus V_i^{\otimes a_i}$, $H(\chi_w, \chi_w) = \sum a_i^2$, and W is irreducible iff $H(\chi_w, \chi_w) = 1$.

This is useful because, given a rep? W, it gives into about it irreducible surmado making by V. Eg: $H(X_W, K_W) = 1 \iff W = \text{irreducible}$ $\frac{2}{4} \qquad \qquad \text{direct sum of 2 different irreducible}$ $\frac{3}{4} \qquad \qquad \text{either 4 different, on twice the same.}$

* We now apply this to the regular reproduction $R = \text{vector space with basis} \{e_g\}_{g \in G}$ and G acts by permitting basis vectors by left multiplication: $g \cdot e_h = e_{gh}$.

Now let V1, -, Vk be the irreducible reps of G,

and write $R = \bigoplus V_i^{\bullet a_i}$. What are the a_i ?

Since G acts by permutation matrices, $\chi_R(g) = tr(g) = \#\{h \in G \mid g, e_h = e_h\}$ but unless g = e there are no fixed points $\Rightarrow \chi_R(g) = \{|G| \text{ if } g = e\}$

So $H(\chi_R, \chi_{V_i}) = \frac{1}{|G|} \sum_{g} \overline{\chi_R(g)} \chi_{V_i}(g) = \chi_{V_i}(e) = \operatorname{tr}(id_{V_i}) = \dim V_i$

Hence each V: appears a: = dim Vi times in the regular representation R.

And now Gor. 3 \Rightarrow $H(\chi_R,\chi_R) = |G| = \sum a_i^2 = \sum (din V_i)^2$

d'not calc: $\frac{1}{|G|} \sum_{g} |\chi_{R}(g)|^{2} = \frac{1}{|G|} |\chi_{R}(e)|^{2} = |G|$

3

Conllay 4: The irreduible reproductions $V_{1,...,}V_{k}$ of 6 solisty $\sum (dn V_{i})^{2} = |G|$.

At this point we achally have a lot of into about the ind-rep of G & their characters.

Example: G= Sq. the conjugacy classes: {e} size 1, transpositions size 6, 3-cycles (8), 4-cycles (6), pairs of transpositions (3). We know 3 irred reps: U=thinal, U'= alterating, V= standard.

to find this one: $U\oplus V=pem Wahm$ reproduction \mathbb{C}^4 , $\chi_{U\oplus V}(6)=tr(6)=t$ fixed points = $\#\{i/\sigma(i)=i\}$ $\Rightarrow \chi_V(6)=\#fixed -1$.

Quick check: have are indeed othermand!

However: $\sum dm^2 = 1^2 + 1^2 + 3^2 = 11 < 24 \implies there are other ind. rep^{ns}!$

in fact: . conday 1 says we're missing at most two (#irred-reps. & #anjugary classes = 5)

. since we're missing 13 which is not a square, we're missing exactly two, of dm's. 2 and 3 (⇒ ∑din²=24)

How do we build the missing entries? Start by booking at tensor products of known reps. For a start, the tensor product of an irred-rep. with a 1-dimensional rep. is still irreducible (@ 1-dim. rep. has "same" invavant subspaces), so we can (work at $V'=V\otimes U'$ (huist standard rep. by $(-1)^6$), has $\chi_{V'}=\chi_{V}.\chi_{U'}=(3,-1,0,1,-1)$,

this is indeed irrelacible (H(Xv1, Xv1)=1) and different from V!

We have one last Edin't irrel up. W to find!

Since WeU' is also a 2d ind. rep., necessary WeU'=W. This implies

TW = KWKU1 ie. Kw = 0 on the odd conjugacy classes (112) and (1234)

The orthogonality relations allow us to find the not of the without having constructed it!

 $H(\chi_{V},\chi_{W}) = \frac{1}{24}(2+8a+3b)=0$, $H(\chi_{V},\chi_{W}) = \frac{1}{24}(6-3b)=0$ => b=2, a=-1. Note that $\chi_{W}((12)(34)) = 2$ means the eigenvalues are 1 and 1! (note of unity, summing to 2)

4

This give a big clue about W: the manch subgroup $H = \{id\} \cup \{(ij)(kl)\} = \frac{\pi}{2} \times \frac{\pi}{2}$ is in the kernel of $S_4 \xrightarrow{P} GL(W)$, i.e. C factors through the quotient $S_4/_{H} = S_3$. (recall: S_4 acts on the set of plittings of $\{1,2,3,4\}$ into 2 pairs - there are 3 of those). Under this quotient, transpositions \longrightarrow transpositions, 3-cycles \longrightarrow 3-cycles, 4-cycles

and the character XW becomes { id +> 2 } - his is the standard rep. of S3! transp +> 0 { 3. ycle +> -1 } "pulled back" to S4 by S4 +> S3.

 $Ex: A_4$ alterating subgroup of S_4 . This has 4 conjugacy classes: {e} 1 clenet (3-cycles are one conjugacy class in ${(123)}$ 4 S_4 bit split in A_4 , see lecture 23) ${(132)}$ 4 ${(12)}(34)$ 3

-> We can start by restricting to A4 the irrel-reg's of S4 - some become isomorphic (eg the alterating rep. U' has elever of A4 acting by (-1)⁶ = 1 so = trivial) other might become reducible. This is feasible but tricky (largely W's fault).

-> Or we can go at it directly! We know there's at most 4 ind-reps, of $\sum din^2 = 12$, including the trivial rep² of din 1 => the only option is $12 - 3^2 + 1^2 + 1^2 + 1^2$.

The three 1-dimb representations correspond to $Hom(A_4, \mathbb{C}^4) \ni id$ (third rep) and G Observe $H = \{id\} \cup \{(ij)(kl)\}$ normal subgroup, two other elevents... $A_4/H \cong \mathbb{Z}/3$, so this gives the answer. $Hom(A_4, \mathbb{C}^4) \cong \mathbb{Z}/3$ $= \{m \mapsto e^{2\pi i/3}\}$ convertely, let $\lambda = e^{2\pi i/3}$, then the rank 1 rep's ax: $= \{m \mapsto e^{-2\pi i/3}\}$ $= \{m \mapsto e^{-2$