

Theoretische Informatik D. Flumini, L. Keller, O. Stern

Lösungen zum Übungsblatt 3

Endliche Automaten

Lösung 1.

Folgende endliche Automaten M_1 und M_2 akzeptieren die Sprachen L_1 und L_2 .

(a) Der Automat $M_1 = (Q_1, \Sigma_1, \delta_1, q_0, F_1)$ ist gegeben durch $Q_1 = \{q_0, q_1, q_2, q_3\}, \Sigma_1 = \{0, 1\}, F_1 = \{q_3\}$ und $\delta_1 \colon Q_1 \times \Sigma_1 \to Q_1$, definiert durch nachfolgende Tabelle.

q	$\delta_1(q,0)$	$\delta_1(q,1)$
q_0	q_0	q_1
q_1	q_2	q_1
q_2	q_0	q_3
$*q_3$	q_3	q_3

(b) Der Automat $M_2=(Q_2,\Sigma_2,\delta_2,q_0,F_2)$ ist gegeben durch $Q_2=\{q_0,q_1,q_2,q_3,q_4\}, \Sigma_2=\{a,b,c\}, F_2=\{q_4\}$ und $\delta_2\colon Q_2\times\Sigma_2\to Q_2$, definiert durch nachfolgende Tabelle.

q	$\delta_2(q,a)$	$\delta_2(q,b)$	$\delta_2(q,c)$
q_0	q_1	q_3	q_1
q_1	q_2	Ø	q_2
q_2	q_1	q_3	q_1
q_3	q_3	q_4	q_3
$*q_4$	q_3	q_4	q_3

Lösung 2.

- (a) $(q_0, 00110) \vdash_M (q_1, 0110) \vdash_M (q_0, 110) \vdash_M (q_3, 10) \vdash_M (q_0, 0) \vdash_M (q_1, \varepsilon)$ Die Endkonfiguration wird nicht akzeptiert, da sie nicht auf einen Endzustand fällt.
- (b) Klasse $[q_0] = \{ w \in \{0,1\}^* \mid |w|_0 = 2i \text{ und } |w|_1 = 2j \text{ für } i, j \in \mathbb{N} \}$ Klasse $[q_1] = \{ w \in \{0,1\}^* \mid |w|_0 = 2i + 1 \text{ und } |w|_1 = 2j \text{ für } i, j \in \mathbb{N} \}$ Klasse $[q_2] = \{ w \in \{0,1\}^* \mid |w|_0 = 2i + 1 \text{ und } |w|_1 = 2j + 1 \text{ für } i, j \in \mathbb{N} \}$ Klasse $[q_3] = \{ w \in \{0,1\}^* \mid |w|_0 = 2i \text{ und } |w|_1 = 2j + 1 \text{ für } i, j \in \mathbb{N} \}$
- (c) Die Sprache L(M) enthält alle Binärwörter mit einer geraden Anzahl von Nullen und Einsen.

Lösung Zusatzaufgabe 1.

Der gegebene Automat erkennt die gleiche Sprache wie der nachfolgende reguläre Ausdruck.

$$e^*f(g \mid he^*f)^*$$

Lösung Zusatzaufgabe 2.

Bevor wir an die Aufgabe herangehen, analysieren wir den regulären Ausdruck. Dieser besteht im Grunde aus 2 Teilen.

Wege zum akzeptierenden Zustand Optionale wege ab akzeptierendem Zustand

Nach dem wir den regulären Ausdruck auseinandergenommen haben sehen wir, dass dieser im Grunde aus 2 Teilen besteht: A_1 und A_2 . Ebenfalls wissen wir, dass der erste Teil des Ausdrucks für sich alleine stehen kann, ohne den optionalen zweiten Teil. Aus diesem Grund, konzentrieren wir uns in erster Linie auf den Ausdruck, welcher mindestens einmal Vorkommen muss.

Dieser Abschnitt besteht aus A_1 und A_2 . Das heisst, wir haben von unserem Startzustand q_0 zwei Wege. Einer geht über q_1 und deckt A_1 ab, der andere deckt A_1 über q_2 ab. Ebenfalls lässt sich erkenne, dass A_1 und A_5 über einen identischen Weg nach q_3 kommen.

Daraus ergeben sich dann folgende Zustandsübergänge:

$$A_1: \{ \delta(q_0, a) = q_1, \quad \delta(q_1, a) = q_1, \quad \delta(q_1, b) = q_3 \}$$

$$A_2: \{ A_3, A_4, A_5 \}$$

$$A_3: \{ \delta(q_0, b) = q_2 \}$$

$$A_4: \{ \delta(q_2, a) = q_3 \}$$

$$A_5: \{ \delta(q_2, b) = q_1, \quad \delta(q_1, a) = q_1, \quad \delta(q_1, b) = q_3 \}$$

