Facial Expression Recognition

Grant Hicks

Facial Expression Recognition Summary

- The goal of this project is to determine if a person's facial expressions can be learned and predicted in real time.
- The data used for training the model includes over 26,000 labeled images depicting different facial expressions.
- The model produced is able to predict facial expressions with close to 75% accuracy.

Problem Statement

Can a person's mood be predicted from facial expressions in pictures? Can this prediction be used in real time to improve user interactions with utilities like digital assistants?

Data Used

- The data used for this project is from the Facial Expression Recognition 2013 dataset found on Kaggle
- Initial exploration was done one the full data, but later modeling involved limiting the data to just 4 expressions. The full dataset contains over 30,000 black and white images of different facial expressions which are all labeled.
 - 'Disgust', 'fear', 'surprise' were removed
- 4 expressions with 26,000+ total images

Example Images

Нарру

Neutral

Sad

Data Breakdown

Expression	Train	Test	Total	Percentage
Angry	3995	958	4953	18.89%
Нарру	7215	1774	8989	34.29%
Neutral	4965	1233	6198	23.64%
Sad	4830	1247	6077	23.18%

Train Data Info

Happy has 2,000
more examples in the
training data than the
next closest class

Test Data Info

 Still more examples of happy than other classes, but distribution is very similar to the training data

Building the model

- Used a convolutional neural network to predict if a facial expression was happy, angry, sad, or neutral.
- Convolutional neural networks generate a feature map of an image to detect edges and recognize aspects of objects.

Model Performance

 The lower the value of the loss, the better the accuracy of the model

Model Performance

 Accuracy of model predictions on training and testing data

Model Performance

- The model is very good at predicting happy expressions, but does tend to predict happy more than other expressions.
 - This is expected as there are quite a few more examples of happy expressions in the data
- The hardest expression for the model to detect is angry
 - This is expected as angry has the lowest number of examples in the data
- Neutral and sad see similar results, but the model is not quite as good at predicting these as it is with predicting happy

Application of the Model

Computer vision overview

- Computer vision combines cameras with machine learning models and artificial intelligence to detect aspects in images or video
 - Object recognition
 - Detect and recognize people
 - Track movement
- Computer vision is useful in a wide range of industries from medical imaging to manufacturing, retail, etc...

Predicting Expressions in Real Time

- Using computer vision this model can predict a person's facial expression based on video feed from a webcam.
- OpenCV library in Python
- Face is detected and passed through the model to generate predictions frame by frame in real time

Predicting Expressions in Real Time

Limitations

- Only trained on 4 expressions
 - Could be refined further to be 'positive', 'negative', and 'neutral'
- Limited subjects for live testing
 - Important to make sure that the model is not biased (generates similar predictions for male and female etc)
- Can predict 'happy' too often

Further Development

Ways to further refine the model:

- Gather more images with a wider variety of expressions and subjects
- Implement pretrained classification layers to improve accuracy

Conclusions

- Convolutional neural networks can be used to recognize facial expressions and use that to predict a person's emotional state.
- This could be useful for tailoring interactions to users interacting with computer assistants like Cortana on Windows.
- Other uses could include security footage, predicting emotional states of people entering a store or bank, for example.

Questions?