

ch9: Word Embedding

Word Embedding

overview(P6)

• Represent words as low-dimensional **dense vectors** that can reflect their semantic similarities. To sporse **dense**

<u>Note</u>: word vectors are sometimes called <u>word embeddings</u> or word representations. They are <u>distributed</u> representations.

Why Word Embeddings?

Can capture the rich relational structure of the lexicon.(抓住词之间的语义关系)

Two words are similar if they have similar word contexts

Models

Counting based: the vector space model(P10-14)

• The cornerstone technology in information retrieval.

• Term-Document Matrix

稳检索中的重要算法

Each cell is the count of word t in document d

					7-2
	d_1	d ₂	d ₃	d ₄	d ₅
ekonomi	0	1	40	38	1
pusing	4	5	1	3	30
keuangan	1	2	30	25	2
sakit	4	6	0	4	25
Inflasi	8	1	15	14	1

vector of
$$d_3$$

= [40, 1, 30, 0, 15]

• Two documents are similar if they have similar vector!

$$d_3 = [40, 1, 30, 0.15]$$

 $d_4 = [38, 3, 25, 4, 14]$

• **Weighting**: in practice, we usually use weights such as TF-IDF, instead of just using raw counts (only TF).

	d_1	d ₂	d_3	d ₄	d ₅
ekonomi	0	1	40	38	1
pusing	4	5	1	3	30
keuangan	1	2	30	25	2
sakit	4	6	0	4	25
Inflasi	8	1	15	14	1

• Limitations of Vector Space Model

- TF-IDF vectors are
 - long (length | V | = 20,000 to 50,000)
 - sparse (most elements are zero)
 - difficult to use as features in machine learning (more weights to tune)
 - storing explicit counts can be difficult for generalization

在机器学习中很难作为特征使用(更多的权重来调整) 存储显式计数很难泛化

Prediction based: word2vec(P16-26)

- overview(P17)
- **Word2vec** (Mikolov et al. 2013) is a framework for learning word vectors.

Example: window and process for computing $P(w_t | w_{t+j})$

outside context words center word outside context words in window of size 2 at position t in window of size 2

- Mikolov's CBOW(P20)
- **CBOW**: the distributed representations of context (or surrounding words) are combined to **predict the word in the middle.**

- Architecture(P21-24)
- Input Layer: representing any word into a vector. $z_i = Wx_i = W$

• Projection Layer: combining context vectors into one vector.

• Output Layer: predicts the probability of the target word.

- Training(P25)
- Given D = {w₁, w₂, ..., w_N}, minimize the negative log likelihood (NLL) loss function:

$$L(W, U \mid D) = -\frac{1}{N} \sum_{t=1}^{N} \log p(w_t | w_{t-k}, ..., w_{t-1}, w_{t+1}, ..., w_{t+k})$$

using gradient descend.

The Skip-Gram Model (P27)

• We seek a model for $P(w_{t+j}|w_t)$.

The Word Analogy Task(P29-30)

• Word Analogy: 卓词关准

a:b :: c:?

man:woman :: king:?

Examples

- Man is to Woman as King is to___?
- Good is to Best as Smart is to __?
- China is to Beijing as America is to ___?

How to find d?

$$d = \arg\max_{i} \frac{(x_b - x_a + x_c)^T x_i}{||x_b - x_a + x_c||}$$

• It turns out that word2vec is good for such an analogy task.

$$V_{king} - V_{man} + V_{woman} = V_{queen}$$

Language Models(P33-35)

• A probabilistic model of how likely a given string appear in a given "language". 评估一个string 在语言中出现的书况字

• For a given sequence $x = (w_1, w_2, ..., w_N)$. A **language model** can be defined as:

as:
$$p(x) = p(w_1, w_2, ..., w_N)$$
 概率越高, 对语言 邮掌握程度越高

Example:

 $P_1=P("我爱机器学习")$ $P_2=P("我爱学习机器")$ $P_3=P("机器我爱学习")$ $P_4=P("爱我机学习器")$

Chinese: $P_1 > P_2 > P_3 > P_4$

• Applications:

message suggestion; document generation; spelling correction; machine translation; speech recognition;...

• What is the probability of $P(w_1, ..., w_N)$?

Chain Rule:

$$p(w_1,...,w_N) = p(w_1)p(w_2|w_1)...,p(w_N|w_1,...,w_{N-1})$$

p(我爱机器学习) = p(我)p(爱|我)p(机|我爱)p(器|我爱机)p(学|我爱机器)p(习|我爱机器学)

• Markov Assumption: Tonly Johnsider the last n-1 words)

$$p(w_i | w_1,...,w_{i-1}) = p(w_i | w_{i-n+1},...,w_{i-1})$$

p(习|我爱机器学)≈p(习|机器学)≈p(习|学)

So that's what we get for n=2: 大看前面一个

$$p(w) = p(w_1)p(w_2 | w_1)...,p(w_N | w_{N-1})$$

$$1/18 \times 1/8 \times 1/120 \times 1/4 \times 1/420 \times 1/2$$

p(我爱机器学习) = p(我)p(爱|我)p(机|爱)p(器|机)p(学|器)p(习|学)