

UNIVERSIDADE EDUARDO MONDLANE

FACULDADE DE CIÊNCIAS

Departamento de Matemática e Informática

Teste: Segundo Curso: Engenharia Eléctrica

Disciplina: Análise Matemática III

Data: 16 de Maio de 2014

Duração: 120 minutos

1. (1.5v.+2.5v+1.5v.) Considere a equação diferencial

$$(x+3)y'' + (x+2)y' - y = 0.$$
 (eq1)

- a) Determine qual ou quais das funções $h_1(x) = x^2, h_2(x) = x^3$ e $h_3(x) = e^{-x}$ são soluções da equação (eq1).
- b) Seja $y_1(x)$ uma das soluções obtidas na alínea anterior. Determine uma segunda solução $y_2(x)$ e verifique se $y_1(x)$ e $y_2(x)$ formam um sistema fundamental de soluções.
- c) Determine a solução da equação (eq1) para y(1) 1 = y'(1) 3 = 0.
- 2. (1.75v.+1.75v.) Considere a equação diferencial

$$(y^3 - \log x)y' + x^{-1}y = 0.$$
 (eq2)

- a) Verifique que (eq2) tem um factor integrante $\mu = \mu(y)$ e determine-o.
- b) Prove que o μ encontrado na alínea anterior é realmente um factor integrante da equação (eq2) e resolva-a.
- 3. (1.5v.) Suponha que r_1 e r_2 são duas raízes reais e distintas da equação $ar^2 + (b-a)r + c = 0$. Verifique se a função $y = d_1x^{r_1} + d_2x^{r_2}$, onde d_1 e d_2 são constantes arbitrárias, é uma solução da equação diferencial $ax^2y'' + bxy' + cy = 0$.
- 4. (2.0v.+4.0v.+3.5v.) Resolva as seguintes equações e/ou sistemas de equações diferenciais (representando as soluções na forma explícita):

$$a) \frac{dx}{dy} = \frac{x^2 + 4y^2}{4xy}$$

(Sugestão :Reduza a uma equação de Bernoulli!)

b)
$$\frac{d^3x}{dt^3} + \frac{3}{t}\frac{d^2x}{dt^2} + t^{-2}\frac{dx}{dt} + \ln\left(\frac{1}{t}\right) = 0$$

$$c) \begin{cases} \frac{dx}{dt} = y - t \\ \frac{d^2y}{dt^2} = 8x + \cos 2t \end{cases}$$

Bom trabalho!

Regente: Alexandre Kalashnikov Assistente: Alfredo Muxlhanga