Homework 11: ME5701, 2 November 2020, Due 9 November 2020

<u>Problem 1.</u> The moment-of-inertia matrix of a rigid body in 3D in its body fixed frame attached to its center of mass is defined as the following volume integral

$$\mathcal{I} \doteq \int_{Vol} \left\{ (\mathbf{x} \cdot \mathbf{x}) \mathbb{I} - \mathbf{x} \mathbf{x}^T \right\} \rho(\mathbf{x}) \, dVol$$

where \mathbb{I} is the 3×3 identity matrix, $\mathbf{x} = [x, y, z]^T$ is a position vector relative to the body fixed frame, $\rho(\mathbf{x})$ is the mass density defined over the 3D volume of the body, and $dVol = dx \, dy \, dz$.

An alternative kind of moment-of-inertia can be defined as

$$\mathcal{K} \doteq \int_{Vol} \mathbf{x} \mathbf{x}^T \rho(\mathbf{x}) \, dVol \,.$$

This is like a covariance matrix, and if the total mass of the body $\int_{Vol} \rho(\mathbf{x}) dVol = 1$, then \mathcal{K} is exactly covariance (with mass density becoming probability density).

Show that

$$\mathcal{I} = \mathrm{tr}[\mathcal{K}]\mathbb{I} - \mathcal{K}$$

and solve for \mathcal{K} in terms of \mathcal{I} .

Problem 2. Consider a solid ellipsoid parameterized as

$$\mathbf{x}(r,\phi,\theta) = \begin{pmatrix} ar\sin\theta\cos\phi \\ br\sin\theta\sin\phi \\ cr\cos\theta \end{pmatrix}$$

where $r \in [0,1]$, $\theta \in [0,\pi]$, $\phi \in [0,2\pi]$ and a,b,c are constants called the semi-axis lengths of the ellipsoid. The surface defined by r=1 satisfies $(x/a)^2 + (y/b)^2 + (z/c)^2 = 1$.

a) If the solid ellipsoid has uniform mass density, $\rho(\mathbf{x}) = \rho_0$, compute the volume integral

$$Vol = \int_{Vol} dVol = \int_{r=0}^{1} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} \left| \det \left[\frac{\partial \mathbf{x}}{\partial r}, \frac{\partial \mathbf{x}}{\partial \phi}, \frac{\partial \mathbf{x}}{\partial \theta} \right] \right| d\phi d\theta dr$$

to obtain the mass, $m = \rho_0 Vol$.

b) For this solid ellipsoid compute the matrix \mathcal{K} defined in problem 1, and from it compute \mathcal{I} .

<u>Problem 3.</u> We learned in class that if \mathcal{I} is computed in a body-fixed reference frame at the center of mass that the kinetic energy of a rigid body is

$$T = \frac{1}{2} \omega_b^T \mathcal{I} \omega_b$$

where $\omega_b = \text{vect}(R^T \dot{R})$ is the body-fixed description of angular velocity. Show that this same kinetic energy can be written in terms of \mathcal{K} as

$$T = \frac{1}{2} \operatorname{tr} \left[\dot{R} \mathcal{K} \dot{R}^T \right] .$$

<u>Problem 4.</u> The kinetic energy due to rotation of a rigid body using the reference frame attached to its center of mass and aligned with principal moments of inertia (i.e., the eigenvectors of the moment of inertia) is

$$T_{rot} = \frac{1}{2} \left\{ I_1 \omega_1^2 + I_2 \omega_2^2 + I_3 \omega_3^2 \right\} .$$

If the orientation of this body is described in ZXZ Euler angles as $R(\alpha, \beta, \gamma) = R_3(\alpha)R_1(\beta)R_3(\gamma)$ then we know that the body-fixed description of angular velocity is

$$\omega_1 = \dot{\alpha} \sin \beta \sin \gamma + \dot{\beta} \cos \gamma$$

$$\omega_2 = \dot{\alpha} \sin \beta \cos \gamma - \dot{\beta} \sin \gamma$$

$$\omega_3 = \dot{\alpha} \cos \beta + \dot{\gamma}.$$

a) Consider a spinning top with mass m and principal moments of inertia $I_1=I_2$ and I_3 about its center of mass. That is

$$\mathcal{I} = \left(\begin{array}{ccc} I_1 & 0 & 0 \\ 0 & I_1 & 0 \\ 0 & 0 & I_3 \end{array} \right) .$$

When $I_1 = I_2$, as in this case, show that the expression for T_{rot} simplifies, and write it.

b) If the center of mass is a distance of L from the pivot along the body-fixed z axis, then the position of the center of mass as seen in the space-fixed reference frame will be

$$\mathbf{x}_{cm} = R(\alpha, \beta, \gamma)(L\mathbf{e}_3)$$
.

Using this fact, compute the kinetic energy due to translation of the center of mass

$$T_{trans} = \frac{1}{2} m \dot{\mathbf{x}}_{cm} \cdot \dot{\mathbf{x}}_{cm}$$

and the potential energy due to gravity, V=mgh, where h is the height to the center of mass relative to the x-y plane.

- c) Using Lagrange's equations, write the equations of motion for this system where V from part b is used, and the total kinetic energy is $T = T_{rot} + T_{trans}$.
- d) Evaluate the above equations for the case of stable precession, defined by the conditions that β is constant and all second derivatives of all Euler angles are equal to zero. In that case, what must the relationship between $\dot{\alpha}$ and $\dot{\gamma}$ be ?