Stock Market Analysis

UCB - Project 4

By: Amy Larsen, Anthony Abushacra, Karan Dogra, Paolo Arciaga & Thotadamoole Shreenidhi

Stock Market: Basics

Understanding Market Participation

- 61% of the American adult population is actively investing in the stock market
- Over the past century, the S&P 500 has shown an upward trend, being up in roughly 70% of the years

Why Invest?

- Higher earning potential
- Beating inflation
- Passive income
- Ownership in a company
- Diversification
- Long-term wealth building

Objective

Forecast...

stock prices for specific companies using historical data and market indicators

Provide..

insights into potential future trends based on predictive modeling techniques

Important Disclosure

Inherent Market Risks

- Volatility
- Fluctuations in prices
- Potential loss for capital
- Other events (War, COVID, Election)

<u>Due Diligence</u>

 Prior to investing, its essential to review all associated documents including prospectuses, memorandums, and any relevant terms & conditions

Industries & Companies

Our analysis focused on..

<u>Automotive</u>

HONDA

Staging Area

Transform

load

Extraction

Analytics

Warehouse

Database

• Extract, Transform, & Load

- The data with the high, low, close, adj close, volume, Fear Index, Spy Index, and Fed Funds were extracted as CSV files from Yahoo Finance
- The moving averages, RSI, and BB data were extracted using the finta module
- Data was transformed to a dataframe in order to be trained & fit to the regression model
- Data was transformed again to csv file to upload into database and create visualizations on Tableau

Database

• Importing Our Data

 After successfully training/testing our model on our companies, we imported our new prepared CSVs into pgAdmin

Verification

 After table creation, our import was verified by querying the tables

Data Integrity Maintenance

 A mechanism to reset the database was implemented by dropping existing tables before creating new ones, ensuring data integrity and consistency during re-imports.

Data Model Optimization

Random Forest Regressor

 Worked well with test data but was the model was overfitting the training data. This led to a 99% accuracy of the model.

Gradient Boosting Regressor

 Similar to Random Forest, this model lead to a very high accuracy

Data Model Implementation

- Downloaded historical financial data
 - Via Yahoo Finance
 - April 2014 April 2024
- Uploaded each dataset into Jupyter
 - Prepared & transformed the data

- Split data into our test and train data
 - Trained the models

Data Model Implementation

Our 1st Model: Apple - 'AAPL'

```
[53]: # Filter models where both Train R-squared and Test R-squared are less than 0.96
      filtered indices = [i for i, (train r2, test r2) in enumerate(zip(selected train r2, selected test r2)) if train r2 < 0.96 and test r2 < 0.96
      # Calculate the absolute difference between train R-squared and test R-squared values for filtered models
      abs diff r2 filtered = np.abs(np.array(selected train r2)[filtered indices] - np.array(selected test r2)[filtered indices])
      # Find the index of the model with the smallest absolute difference among filtered models
      best_model_index = filtered_indices[np.argmin(abs_diff_r2_filtered)]
      # Retrieve the metrics for the best model
      best train r2 = selected train r2[best model index]
      best_test_r2 = selected_test_r2[best_model_index]
      best train mae = selected train mae[best model index]
      best train mse = selected train mse[best model index]
      best test mae = selected test mae[best model index]
      best test mse = selected test mse[best model index]
      # Print metrics for the best model
      print(f"Best Model - Train R-squared: {best train r2}, Test R-squared: {best test r2}, Train MAE: {best train mae}, Train MSE: {best train
     Best Model - Train R-squared: 0.9379782750204122, Test R-squared: 0.9393265203901559, Train MAE: 8.751428891894557, Train MSE: 123.415157
      39309779, Test MAE: 8.900921899205576, Test MSE: 124.6952598355268
```


The MSE of 124.69 means that on average, our model's predictions for Apple's performance are about 123.69 units off from the actual values, and the high R-squared value of 93.9% tells us that it explains performance well, capturing most of the patterns in the data

Data Model Optimization

K-Fold Cross-Validation

Evaluated the neural network model's performance

Compiling & Training the Model

- Defined a neural network model architecture with 2 hidden layers
- epochs with a smaller learning rate, assessing
 R-squared scores for both training and testing
 data across folds to gauge generalization
 ability

Data Model Optimization

Apple - 'AAPL'		Train	Test
Model 1 - Train R-squared: 0.9615735851349676, Test R-squared: 0.9584035991161156, Train MAE: 7.168141476354025, T rain MSE: 77.36861168528293, Test MAE: 7.034944394476862, Test MSE: 76.35683145606212 Model 2 - Train R-squared: 0.9290994571329977, Test R-squared: 0.9304370888796382, Train MAE: 8.593844473626822, T rain MSE: 140.43590446651078, Test MAE: 8.665637809605363, Test MSE: 148.6798051905982	Mean Squared Error (MSE)	93.90	97.89
Model 3 - Train R-squared: 0.9478119102053203, Test R-squared: 0.9441378359672211, Train MAE: 8.438092976548905, T rain MSE: 104.46920547531651, Test MAE: 8.537702166008373, Test MSE: 108.87611939553148 Model 4 - Train R-squared: 0.9669647385281387, Test R-squared: 0.9699153884685491, Train MAE: 6.495349016917169, T rain MSE: 66.05083324667056, Test MAE: 6.13505515018395, Test MSE: 60.9825660603803 Model 5 - Train R-squared: 0.9609908852964437, Test R-squared: 0.9567461948482872, Train MAE: 7.095985701694946, Tr ain MSE: 78.36589854008088, Test MAE: 7.409456570652123, Test MSE: 83.17442528135216	Mean Absolute	7.78	8.24
Model 6 - Train R-squared: 0.9527591113022505, Test R-squared: 0.9440345383666274, Train MAE: 7.875742783656346, Train MSE: 96.54393459714595, Test MAE: 7.408290410362923, Test MSE: 86.66745906184688 Model 7 - Train R-squared: 0.9526919028849193, Test R-squared: 0.95333345877220076, Train MAE: 7.789271046483702, Train MSE: 93.90235823436248, Test MAE: 8.240341993653557, Test MSE: 97.8975559699576 Model 8 - Train R-squared: 0.9612718345355637, Test R-squared: 0.964837469476484, Train MAE: 7.24067594802959, Train MSE: 76.6238012962962, Test MSE: 75.66238012962962, Test MSE: 75.78361041609146 Model 9 - Train R-squared: 0.9566785435583931, Test R-squared: 0.9584170521378743, Train MAE: 7.393871557687941, T	R-Squared	95.26%	95.33%
rain MSE: 86.11699166316636, Test MAE: 7.31254794467482, Test MSE: 86.23928420925877 Model 10 – Train R-squared: 0.9510959832772197, Test R-squared: 0.9504376608285463, Train MAE: 7.967502162618909,	(R2)		

Train MSE: 96.3200318823462, Test MAE: 8.617059868572177, Test MSE: 110.48203207471585

These metrics collectively provide insights into the accuracy, precision, and explanatory power of the model in predicting stock prices

Results-

Yearly IQR of Absolute Value Percentage Difference (AVPD) by Month

Results- Yearly Average AVPD by Company

Final Thoughts

• Challenges

- o Time-Splitting Data
- Data Overfitting- decided to drop the original features (open, high, low, close, adj. close)
- o Data Volatility- stock splits, company reports, geopolitical events

• What's Next?

- Adding extra features- more sentiment analysis
- Experimenting with new models- LSTM (possibly combined with NLP), different regressors
- Paper Trading to test- Alpaca
- Creating an interactive dashboard for users to experiment with

Links

• GitHub: Stock Price Prediction

 Take a deeper dive into our stock market analysis, the datasets we used, and more!

Connect with us on LinkedIn:

- Amy Larsen
- Anthony Abushacra
- o Karan Dogra
- o Paolo Arciaga
- o Thotadamoole Shreenidhi

