REMARKS

Claims 1 and 44-52 are pending. New claim 53 has been added. Claims 1, 44-47, and 50-52 are withdrawn as being drawn to a non-elected invention. Claims 48 and 49 stand rejected under 35 U.S.C. § 112, first paragraph. This rejection is addressed in detail below.

As requested by the Office, Applicants have amended the specification to update the status of all applications found in the priority information.

Rejection under 35 U.S.C. § 112, first paragraph

Claims 48 and 49 stand rejected under 35 U.S.C. § 112, first paragraph as failing to comply with the written description requirement. In particular, the Office asserts that "the specification and claims do not indicate what distinguishing attributes are shared by the members of the [claimed] genus." The Office further asserts that Applicants "have not identified a function which identifies members of the genus, since the structure of the protein cannot be fully determined without a start and stop codon for the full length protein." In essence, the Office contends that Applicants were not in possession of the claimed genus. As applied to the amended claims, Applicants respectfully traverse these grounds of rejection.

First, Applicants' amended claims are directed to a substantially pure polypeptide comprising an amino acid sequence that has a least 90% identity to the amino acid

sequence of a polypeptide encoded by SEQ ID NO: 252. Support for this amendment is found, for example, on page 10 (line 18) of the specification. Accordingly, the scope of the claims is now limited to highly homologous sequences that share structural similarity and common attributes with the disclosed sequence.

With respect to the Office's concern that Applicants have claimed a protein without identifying a full length open reading frame, Applicants note that SEQ ID NO: 252 encodes a single polypeptide of 640 amino acids. On this point, Applicants direct the Office's attention to Exhibit A, which shows the predicted start and stop codons of the polypeptide encoded by SEQ. ID NO: 252. While multiple start codons and stop codons are in fact present in SEQ ID NO: 252, one skilled in the art would immediately recognize that SEQ ID NO: 252 encodes one open reading frame that encodes a full length polypeptide. Given that SEQ ID NO: 252 encodes one and only one polypeptide, the claimed polypeptide itself is adequately described in Applicants' specification.

As clear distinguishing characteristics shared by the claimed polypeptides are disclosed in Applicants' specification, there can be no question that the written description requirement is satisfied and Applicants respectfully request that the § 112, first paragraph rejection this rejection be withdrawn.

Applicants note, for the record, that the current claim amendments were made solely for the purpose of expediting prosecution. Applicants reserve the right to pursue all canceled subject matter in this or future related applications.

Finally, Applicants note that new claim 53, which depends from claim 48, has

been added. Support for this new claim is found in the specification, for example, on page 10 (line 18).

CONCLUSION

Applicants submit that the claims are now in condition for allowance and such action is respectfully requested.

Enclosed is a Petition to extend the period for replying to the Office action for one month, to and including April 12, 2004, and a check in payment of the required extension fee.

If there are any additional charges or any credits, please apply them to Deposit Account No. 03-2095.

Respectfully submitted,

Date: 9 April 2004

James D. DeCamp, Ph.D.

Reg. No. 43,580

Clark & Elbing LLP 101 Federal Street Boston, MA 02110

Telephone: 617-428-0200 Facsimile: 617-428-7045

00786.361003 Reply to Office action Mailed 12.12.03

Start codon

atcgtcatgg	agcctccc at	gtttcaactc	ctttcctgga	tatccaggaa	gccgtccccc	60
accccaacaa	ccaaagctgc	cccaggggga	ttcatccttc	ctctgagcag	catggaactg	120
ctcggcacgc	ctcgccgccg	gcagctactg	gagaacatct	ggcagcgcgc	ctcgctatcc	180
aagcagcaat	tcgaggagat	ctaccggcgg	ccactggcca	actatgccga	gctggtccag	240
cagctccctg	cttcggaaaa	tcatcaccat	gcccatccag	gcgggatgat	cgatcacggc	300
ctggagatcg	tggcctacgc	actcaaggta	cggcagacct	acctgctccc	gatcggcgca	360
gcgccggagt	cacagtcagc	ccaggctgaa	gcctggtcgg	ccgccgcggc	gtatggcgcc	420
ctggctcatg	acataggcaa	gatcgtcgtc	gacctgcagg	ttgagctaca	ggacggcagc	480
acctggcacc	cttggaacgg	accgatcaac	cagccatacc	gcttcaagta	cgtgaagtcc	540
cgcgaatacc	agctccacgg	cgctgcctca	gcacttctca	tccaccaact	gctaccgcgc	600
actgcactcg	attggctcag	tcgctttcca	gagctgtggg	ctcaattgat	ctacctgttc	660
gctgggcagt	acgagcacgc	cgggatcctc	ggcgagatca	tcgtgaaggc	agaccaggcc	720
tcagttgcac	aggagctagg	aggcaatccg	gatcgagctc	tggctgcacc	gaagcagtcg	780
ctgcagcggc	agttggcaga	cggccttcgc	ttcttggtga	aggacaagtt	caagttgaat	840
caacctagcg	gcccgtctga	tggatggctg	acccaggacg	cactctggct	ggtgagcaag	900
cctgctgccg	atcaactgag	agcctacctg	ctggcccagg	gtatcgatgg	ggtgccctcc	960
tctaacgcgc	cgttcttcag	catgctccag	gaccaagccg	tcatccagac	aaatgccgag	1020
gacaaggcca	tttggacggc	cacggtagac	aacggtgctg	gatggagaaa	caagttcacg	1080
ctactcaaga	ttgctccagc	cttgatctgg	acagatgctg	ccgagcgccc	ctcaccctac	1140
agcggatcac	tggtcgttga	agatggaacc	gcctcaacgg	aaaagccgga	aacgacctgt	1200
gaaattccca	acgggccggc	tgaacagcag	caagcaccag	aaacgaagat	gatgctccat	1260
caacctgcgc	cgagcgttgc	gaaaccggca	aacgagacgc	aggcgattgc	gaaaccctca	1320
actgatgatc	aagaagaaac	agacgatttg	tatgcacttc	ttggtaatat	caattcgcca	1380
ctagaagagc	tagacactag	ccacgactcg	ccggctgcct	ctcctacgaa	cacacgcggg	1440
gaggagaacc	tacagcagcc	actagggacc	aaggagccaa	cagattgcgc	tcctgaagca	1500
attgaagatg	tatttatgcc	tagcagaagt	actgatctgg	gacagggatt	cgttggttgg	1560
atgaaatctg	gcatcgcggc	ccgtcgcctg	ttcatcaacg	acaccaaggc	tttggtgcat	1620
accgtagacg	ggaccgccat	gctggtcacg	ccaggaattt	tcaagcgcta	tgtccaagag	1680
catccggtgc	ttgaaaaact	ggcccaagcc	aaggagacga	ccggctggaa	gctggtgcag	1740
cgcgcgttcg	aaaaacaggg	gcttcatcgg	aagaccagta	aaaacctgaa	catctggacc	1800
atcaaggttt	ctggtcctcg	caagacgaaa	gagctcaagg	cctacctgct	ccaggatccc	1860
aaattgctgt	tccctgagca	gcctctggac	aacccaagcc	tcacggtcat	caccgatgcc	1920
gaaggaggtg	tggaa tga					1938

Stop Codon

Exhibit A