COMP2610 / COMP6261 Information Theory Lecture 7: Relative Entropy and Mutual Information

Thushara Abhayapala

Audio & Acoustic SIgnal processing Group School of Engineering College of Engineering & Computer Science The Australian National University Canberra, Australia

Announcements

Assignment 1

- Available via Wattle
- Worth 10% of Course total
- Due Monday 28 August 2023, 9:05 am
- Answers could be typed or handwritten

You can use latex LaTeX primer: http://tug.ctan.org/info/lshort/english/lshort.pdf

Last time

Information content and entropy: definition and computation

Entropy and average code length

Entropy and minimum expected number of binary questions

Joint and conditional entropies, chain rule

Information Content: Review

Let X be a random variable with outcomes in \mathcal{X}

Let p(x) denote the probability of the outcome $x \in \mathcal{X}$

The (Shannon) information content of outcome *x* is

$$h(x) = \log_2 \frac{1}{p(x)}$$

As $p(x) \to 0$, $h(x) \to +\infty$ (rare outcomes are more informative)

Entropy: Review

The entropy is the average information content of all outcomes:

$$H(X) = \sum_{x} p(x) \log_2 \frac{1}{p(x)}$$

Entropy is minimised if **p** is peaked, and maximized if **p** is uniform:

$$0 \le H(X) \le \log |\mathcal{X}|$$

Entropy is related to minimal number of bits needed to describe a random variable

Entropy in another view

- A measurement of the degree of randomness of energy in a system
- Lower entropy means more ordered and less random; vice versa

This time

• The decomposability property of entropy

Relative entropy and divergences

Mutual information

Outline

- Decomposability of Entropy
- Relative Entropy / KL Divergence
- Mutual Information
 - Definition
 - Joint and Conditional Mutual Information
- Wrapping up

Example 1 (Mackay, 2003)

Let $X \in \{1, 2, 3\}$ be a r.v. created by the following process:

• Flip a fair coin to determine whether X = 1

Example 1 (Mackay, 2003)

Let $X \in \{1,2,3\}$ be a r.v. created by the following process:

- Flip a fair coin to determine whether X = 1
- ② If $X \neq 1$ flip another fair coin to determine whether X = 2 or X = 3

Example 1 (Mackay, 2003)

Let $X \in \{1,2,3\}$ be a r.v. created by the following process:

- Flip a fair coin to determine whether X = 1
- ② If $X \neq 1$ flip another fair coin to determine whether X = 2 or X = 3

$$p(X = 1) =$$

$$p(X = 2) =$$

$$p(X = 3) =$$

Example 1 (Mackay, 2003)

Let $X \in \{1, 2, 3\}$ be a r.v. created by the following process:

- Flip a fair coin to determine whether X = 1
- ② If $X \neq 1$ flip another fair coin to determine whether X = 2 or X = 3

$$p(X = 1) = \frac{1}{2}$$
 $p(X = 2) = p(X = 3) = 0$

Example 1 (Mackay, 2003)

Let $X \in \{1, 2, 3\}$ be a r.v. created by the following process:

- Flip a fair coin to determine whether X = 1
- ② If $X \neq 1$ flip another fair coin to determine whether X = 2 or X = 3

$$p(X = 1) = \frac{1}{2}$$

$$p(X=2) = \frac{1}{4}$$

$$p(X = 3) =$$

Example 1 (Mackay, 2003)

Let $X \in \{1, 2, 3\}$ be a r.v. created by the following process:

- If the proof of t
- If $X \neq 1$ flip another fair coin to determine whether X = 2 or X = 3

$$p(X = 1) = \frac{1}{2}$$

 $p(X = 2) = \frac{1}{2}$

$$p(X=2)=\frac{1}{4}$$

$$p(X=3)=\frac{1}{4}$$

Example 1 (Mackay, 2003) — Cont'd

By definition, with $X \sim \mathbf{p}$, overloading H:

$$H(X) = H(\mathbf{p}) = \frac{1}{2} \log 2 + \frac{1}{4} \log 4 + \frac{1}{4} \log 4 = 1.5 \text{ bits.}$$

But imagine learning the value of *X gradually*:

Example 1 (Mackay, 2003) — Cont'd

By definition, with $X \sim \mathbf{p}$, overloading H:

$$H(X) = H(\mathbf{p}) = \frac{1}{2} \log 2 + \frac{1}{4} \log 4 + \frac{1}{4} \log 4 = 1.5 \text{ bits.}$$

But imagine learning the value of *X gradually*:

- First we learn whether X = 1:
 - Binary variable with $\mathbf{p}^{(1)} = (\frac{1}{2}, \frac{1}{2})$
 - Hence $H((1/2, 1/2)) = \log_2 2 = 1$ bit.

Example 1 (Mackay, 2003) — Cont'd

By definition, with $X \sim \mathbf{p}$, overloading H:

$$H(X) = H(\mathbf{p}) = \frac{1}{2} \log 2 + \frac{1}{4} \log 4 + \frac{1}{4} \log 4 = 1.5 \text{ bits.}$$

But imagine learning the value of *X gradually*:

- First we learn whether X = 1:
 - Binary variable with $\mathbf{p}^{(1)} = (\frac{1}{2}, \frac{1}{2})$
 - Hence $H((1/2, 1/2)) = \log_2 2 = 1$ bit.
- ② If $X \neq 1$ we learn the value of the second coin flip:
 - ▶ Also binary variable with $\mathbf{p}^{(2)} = (\frac{1}{2}, \frac{1}{2})$
 - Therefore H((1/2, 1/2)) = 1 bit.

Example 1 (Mackay, 2003) — Cont'd

By definition, with $X \sim \mathbf{p}$, overloading H:

$$H(X) = H(\mathbf{p}) = \frac{1}{2} \log 2 + \frac{1}{4} \log 4 + \frac{1}{4} \log 4 = 1.5 \text{ bits.}$$

But imagine learning the value of *X gradually*:

- First we learn whether X = 1:
 - ▶ Binary variable with $\mathbf{p}^{(1)} = (\frac{1}{2}, \frac{1}{2})$
 - Hence $H((1/2, 1/2)) = \log_2 2 = 1$ bit.
- ② If $X \neq 1$ we learn the value of the second coin flip:
 - ▶ Also binary variable with $\mathbf{p}^{(2)} = (\frac{1}{2}, \frac{1}{2})$
 - Therefore H((1/2, 1/2)) = 1 bit.

However, the second revelation only happens half of the time:

$$H(X) = H((1/2, 1/2)) + \frac{1}{2}H((1/2, 1/2)) = 1.5$$
 bits.

Generalization

For a r.v. with probability distribution $\mathbf{p} = (p_1, \dots, p_{|\mathcal{X}|})$:

$$H(\mathbf{p}) = H((p_1, 1 - p_1)) + (1 - p_1)H\left(\left(\frac{p_2}{1 - p_1}, \dots, \frac{p_{|\mathcal{X}|}}{1 - p_1}\right)\right)$$

Generalization

For a r.v. with probability distribution $\mathbf{p} = (p_1, \dots, p_{|\mathcal{X}|})$:

$$H(\mathbf{p}) = H((p_1, 1 - p_1)) + (1 - p_1)H\left(\left(\frac{p_2}{1 - p_1}, \dots, \frac{p_{|\mathcal{X}|}}{1 - p_1}\right)\right)$$

 $H((p_1, 1 - p_1))$: entropy for a random variable corresponding to "Is X = 1?"

Generalization

For a r.v. with probability distribution $\mathbf{p} = (p_1, \dots, p_{|\mathcal{X}|})$:

$$H(\mathbf{p}) = H((p_1, 1 - p_1)) + (1 - p_1)H\left(\left(\frac{p_2}{1 - p_1}, \dots, \frac{p_{|\mathcal{X}|}}{1 - p_1}\right)\right)$$

 $H((p_1, 1 - p_1))$: entropy for a random variable corresponding to "Is X = 1?"

 $1 - p_1$: probability of $X \neq 1$

Generalization

For a r.v. with probability distribution $\mathbf{p} = (p_1, \dots, p_{|\mathcal{X}|})$:

$$H(\mathbf{p}) = H((p_1, 1 - p_1)) + (1 - p_1)H\left(\left(\frac{p_2}{1 - p_1}, \dots, \frac{p_{|\mathcal{X}|}}{1 - p_1}\right)\right)$$

 $H((p_1, 1 - p_1))$: entropy for a random variable corresponding to "Is X = 1?"

 $1 - p_1$: probability of $X \neq 1$

$$\frac{\rho_2}{1-\rho_1},\ldots,\frac{\rho_{|\mathcal{X}|}}{1-\rho_1}$$
: conditional probability of $X=2,\ldots,|\mathcal{X}|$ given $X\neq 1$.

 $H\left(\left(\frac{p_2}{1-p_1},\ldots,\frac{p_{|\mathcal{X}|}}{1-p_1}\right)\right)$: entropy for a random variable corresponding to outcomes when $X \neq 1$.

Generalization

Henceforth write $H((p_1,\ldots,p_N))$ as $H(p_1,\ldots,p_N)$. Do not confuse with joint entropy $H(X_1,\ldots,X_n)$. In general, we have that for any m between 1 and $|\mathcal{X}|-1$:

$$H(\mathbf{p}) = H\left(\sum_{i=1}^{m} p_i, \sum_{i=m+1}^{|\mathcal{X}|} p_i\right)$$

$$+ \left(\sum_{i=1}^{m} p_i\right) H\left(\frac{p_1}{\sum_{i=1}^{m} p_i}, \dots, \frac{p_m}{\sum_{i=1}^{m} p_i}\right)$$

$$+ \left(\sum_{i=m+1}^{|\mathcal{X}|} p_i\right) H\left(\frac{p_{m+1}}{\sum_{i=m+1}^{|\mathcal{X}|} p_i}, \dots, \frac{p_{|\mathcal{X}|}}{\sum_{i=m+1}^{|\mathcal{X}|} p_i}\right)$$

Apply this formula with m = 1, $|\mathcal{X}| = 3$, $\mathbf{p} = (p_1, p_2, p_3) = (1/2, 1/4, 1/4)$

- Decomposability of Entropy
- Relative Entropy / KL Divergence
- Mutual Information
 - Definition
 - Joint and Conditional Mutual Information
- Wrapping up

Entropy in Information Theory

If a random variable has distribution p, there exists an encoding with an average length of

$$H(p)$$
 bits

and this is the "best" possible encoding

What happens if we use a "wrong" encoding?

• e.g. because we make an incorrect assumption on the probability distribution

If the true distribution is p, but we assume it is q, it turns out we will need to use

$$H(p) + D_{KL}(p||q)$$
 bits

where $D_{\mathsf{KL}}(p||q)$ is some measure of "distance" between p and q

Definition

The relative entropy or Kullback-Leibler (KL) divergence between two probability distributions p(X) and q(X) is defined as:

$$D_{\mathsf{KL}}(p||q) = \sum_{x \in \mathcal{X}} p(x) \left(\log \frac{1}{q(x)} - \log \frac{1}{p(x)} \right)$$
$$= \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = \mathbb{E}_{p} \left[\log \frac{p(X)}{q(X)} \right].$$

Definition

The relative entropy or Kullback-Leibler (KL) divergence between two probability distributions p(X) and q(X) is defined as:

$$D_{\mathsf{KL}}(p||q) = \sum_{x \in \mathcal{X}} p(x) \left(\log \frac{1}{q(x)} - \log \frac{1}{p(x)} \right)$$
$$= \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = \mathbb{E}_{p} \left[\log \frac{p(X)}{q(X)} \right].$$

- Note:
 - ▶ Both p(X) and q(X) are defined over the same alphabet X
- Conventions on log likelihood ratio:

$$0\log\frac{0}{0}\stackrel{\text{def}}{=}0$$
 $0\log\frac{0}{q}\stackrel{\text{def}}{=}0$ $\rho\log\frac{p}{0}\stackrel{\text{def}}{=}\infty$

Properties

• $D_{\mathsf{KL}}(p\|q) \geq 0$ (proof next lecture)

- $D_{\mathsf{KL}}(p||q) \ge 0$ (proof next lecture)
- $D_{\mathsf{KL}}(p\|q) = 0 \Leftrightarrow p = q$ (proof next lecture)

- $D_{\mathsf{KL}}(p\|q) \geq 0$ (proof next lecture)
- $D_{\mathsf{KL}}(p\|q) = 0 \Leftrightarrow p = q$ (proof next lecture)
- Not symmetric: $D_{\mathsf{KL}}(p\|q) \neq D_{\mathsf{KL}}(q\|p)$

- $D_{\mathsf{KL}}(p||q) \ge 0$ (proof next lecture)
- $D_{\mathsf{KL}}(p\|q) = 0 \Leftrightarrow p = q$ (proof next lecture)
- Not symmetric: $D_{\mathsf{KL}}(p\|q) \neq D_{\mathsf{KL}}(q\|p)$
- Not satisfy triangle inequality: $D_{\mathsf{KL}}(p\|q) \neq D_{\mathsf{KL}}(p\|r) + D_{\mathsf{KL}}(r\|q)$

- $D_{\mathsf{KL}}(p\|q) \geq 0$ (proof next lecture)
- $D_{\mathsf{KL}}(p\|q) = 0 \Leftrightarrow p = q$ (proof next lecture)
- Not symmetric: $D_{\mathsf{KL}}(p\|q) \neq D_{\mathsf{KL}}(q\|p)$
- Not satisfy triangle inequality: $D_{KL}(p||q) \neq D_{KL}(p||r) + D_{KL}(r||q)$
 - Not a true distance since is not symmetric and does not satisfy the triangle inequality

- $D_{\mathsf{KL}}(p||q) \ge 0$ (proof next lecture)
- $D_{\mathsf{KL}}(p\|q) = 0 \Leftrightarrow p = q$ (proof next lecture)
- Not symmetric: $D_{\mathsf{KL}}(p\|q) \neq D_{\mathsf{KL}}(q\|p)$
- Not satisfy triangle inequality: $D_{KL}(p||q) \neq D_{KL}(p||r) + D_{KL}(r||q)$
 - Not a true distance since is not symmetric and does not satisfy the triangle inequality
 - ► Hence, "KL divergence" rather than "KL distance"

- $D_{\mathsf{KL}}(p||q) \ge 0$ (proof next lecture)
- $D_{\mathsf{KL}}(p\|q) = 0 \Leftrightarrow p = q$ (proof next lecture)
- Not symmetric: $D_{\mathsf{KL}}(p\|q) \neq D_{\mathsf{KL}}(q\|p)$
- Not satisfy triangle inequality: $D_{KL}(p||q) \neq D_{KL}(p||r) + D_{KL}(r||q)$
 - Not a true distance since is not symmetric and does not satisfy the triangle inequality
 - ► Hence, "KL divergence" rather than "KL distance"
 - Funny notation $D_{KL}(p||q)$ is to remind us it is not symmetric.

Uniform q

Let q correspond to a uniform distribution: $q(x) = \frac{1}{|\mathcal{X}|}$

Relative entropy between *p* and *q*:

$$D_{\mathsf{KL}}(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$$

$$= \sum_{x \in \mathcal{X}} p(x) \cdot (\log p(x) + \log |\mathcal{X}|)$$

$$= -H(X) + \sum_{x \in \mathcal{X}} p(x) \cdot \log |\mathcal{X}|$$

$$= -H(X) + \log |\mathcal{X}|.$$

Matches intuition as penalty on number of bits for encoding

Example (from Cover & Thomas, 2006)

Let $X \in \{0,1\}$ and consider the distributions p(X) and q(X) such that:

$$p(X = 1) = \theta_p$$
 $p(X = 0) = 1 - \theta_p$
 $q(X = 1) = \theta_q$ $q(X = 0) = 1 - \theta_q$

What distributions are these?

Example (from Cover & Thomas, 2006)

Let $X \in \{0,1\}$ and consider the distributions p(X) and q(X) such that:

$$p(X = 1) = \theta_p$$
 $p(X = 0) = 1 - \theta_p$
 $q(X = 1) = \theta_q$ $q(X = 0) = 1 - \theta_q$

What distributions are these?

Compute $D_{\mathsf{KL}}(p\|q)$ and $D_{\mathsf{KL}}(q\|p)$ with $\theta_p = \frac{1}{2}$ and $\theta_q = \frac{1}{4}$

Example (from Cover & Thomas, 2006) - Cont'd

$$D_{\mathsf{KL}}(p\|q) = \theta_p \log \frac{\theta_p}{\theta_q} + (1 - \theta_p) \log \frac{1 - \theta_p}{1 - \theta_q}$$

Example (from Cover & Thomas, 2006) — Cont'd

$$\begin{aligned} D_{\mathsf{KL}}(p\|q) &= \theta_p \log \frac{\theta_p}{\theta_q} + (1 - \theta_p) \log \frac{1 - \theta_p}{1 - \theta_q} \\ &= \frac{1}{2} \log \frac{\frac{1}{2}}{\frac{1}{4}} + \frac{1}{2} \log \frac{\frac{1}{2}}{\frac{3}{4}} = 1 - \frac{1}{2} \log 3 \approx 0.2075 \text{ bits} \end{aligned}$$

Example (from Cover & Thomas, 2006) — Cont'd

$$\begin{aligned} D_{\mathsf{KL}}(p\|q) &= \theta_p \log \frac{\theta_p}{\theta_q} + (1 - \theta_p) \log \frac{1 - \theta_p}{1 - \theta_q} \\ &= \frac{1}{2} \log \frac{\frac{1}{2}}{\frac{1}{4}} + \frac{1}{2} \log \frac{\frac{1}{2}}{\frac{3}{4}} = 1 - \frac{1}{2} \log 3 \approx 0.2075 \text{ bits} \end{aligned}$$

$$D_{\mathsf{KL}}(q\|p) = \theta_q \log rac{\theta_q}{\theta_p} + (1 - \theta_q) \log rac{1 - \theta_q}{1 - \theta_p}$$

Example (from Cover & Thomas, 2006) — Cont'd

$$\begin{aligned} D_{\mathsf{KL}}(p\|q) &= \theta_p \log \frac{\theta_p}{\theta_q} + (1 - \theta_p) \log \frac{1 - \theta_p}{1 - \theta_q} \\ &= \frac{1}{2} \log \frac{\frac{1}{2}}{\frac{1}{4}} + \frac{1}{2} \log \frac{\frac{1}{2}}{\frac{3}{4}} = 1 - \frac{1}{2} \log 3 \approx 0.2075 \text{ bits} \end{aligned}$$

$$\begin{aligned} D_{\mathsf{KL}}(q||p) &= \theta_q \log \frac{\theta_q}{\theta_p} + (1 - \theta_q) \log \frac{1 - \theta_q}{1 - \theta_p} \\ &= \frac{1}{4} \log \frac{\frac{1}{4}}{\frac{1}{2}} + \frac{3}{4} \log \frac{\frac{3}{4}}{\frac{1}{2}} = -1 + \frac{3}{4} \log 3 \approx 0.1887 \text{ bits} \end{aligned}$$

- Decomposability of Entropy
- Relative Entropy / KL Divergence
- Mutual Information
 - Definition
 - Joint and Conditional Mutual Information
- Wrapping up

Definition

Let X, Y be two r.v. with joint distribution p(X, Y) and marginals p(X) and p(Y):

Definition

The mutual information I(X; Y) is the relative entropy between the joint distribution p(X, Y) and the product distribution p(X)p(Y):

$$I(X; Y) = D_{KL} (p(X, Y) || p(X) p(Y))$$
$$= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}$$

Definition

Let X, Y be two r.v. with joint distribution p(X, Y) and marginals p(X) and p(Y):

Definition

The mutual information I(X; Y) is the relative entropy between the joint distribution p(X, Y) and the product distribution p(X)p(Y):

$$I(X; Y) = D_{KL} \left(p(X, Y) || p(X) p(Y) \right)$$
$$= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}$$

Non-negativity: $I(X; Y) \ge 0$

Symmetry: I(Y; X) = I(X; Y)

Intuitively, how much information, on average, X conveys about Y.

$$I(X; Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}$$

$$I(X; Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}$$
$$= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x|y)}{p(x)}$$

$$I(X; Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}$$

$$= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x|y)}{p(x)}$$

$$= -\sum_{x \in \mathcal{X}} \log p(x) \sum_{y \in \mathcal{Y}} p(x, y) - \left(-\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x|y) \right)$$

$$I(X; Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}$$

$$= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x|y)}{p(x)}$$

$$= -\sum_{x \in \mathcal{X}} \log p(x) \sum_{y \in \mathcal{Y}} p(x, y) - \left(-\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x|y) \right)$$

$$= H(X) - H(X|Y)$$

We can re-write the definition of mutual information as:

$$I(X; Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}$$

$$= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x|y)}{p(x)}$$

$$= -\sum_{x \in \mathcal{X}} \log p(x) \sum_{y \in \mathcal{Y}} p(x, y) - \left(-\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x|y) \right)$$

$$= H(X) - H(X|Y)$$

The average reduction in uncertainty of X due to the knowledge of Y.

Self-information:
$$I(X; X) = H(X) - H(X|X) = H(X)$$

Properties

• Mutual Information is non-negative:

$$I(X; Y) \geq 0$$

Properties

• Mutual Information is non-negative:

$$I(X; Y) \geq 0$$

• Mutual Information is symmetric:

$$I(X; Y) = I(Y; X)$$

Properties

Mutual Information is non-negative:

$$I(X; Y) \geq 0$$

• Mutual Information is symmetric:

$$I(X; Y) = I(Y; X)$$

Self-information:

$$I(X;X) = H(X)$$

Properties

Mutual Information is non-negative:

$$I(X; Y) \geq 0$$

Mutual Information is symmetric:

$$I(X; Y) = I(Y; X)$$

Self-information:

$$I(X; X) = H(X)$$

• Since H(X, Y) = H(Y) + H(X|Y) we have that:

$$I(X; Y) = H(X) - H(X|Y) = H(X) + H(Y) - H(X, Y)$$

Breakdown of Joint Entropy

(From Mackay, p140; see his exercise 8.8)

Example 1 (from Mackay, 2003)

Let X, Y, Z be r.v. with $X, Y \in \{0, 1\}$, $X \perp \!\!\! \perp Y$ and:

$$p(X = 0) = p$$
 $p(X = 1) = 1 - p$
 $p(Y = 0) = q$ $p(Y = 1) = 1 - q$
 $Z = (X + Y) \mod 2$

Example 1 (from Mackay, 2003)

Let X, Y, Z be r.v. with $X, Y \in \{0, 1\}$, $X \perp \!\!\! \perp Y$ and:

$$p(X = 0) = p$$
 $p(X = 1) = 1 - p$
 $p(Y = 0) = q$ $p(Y = 1) = 1 - q$
 $Z = (X + Y) \mod 2$

(a) if
$$q = 1/2$$
 what is $P(Z = 0)$? $P(Z = 1)$? $I(Z; X)$?

Example 1 (from Mackay, 2003)

Let X, Y, Z be r.v. with $X, Y \in \{0, 1\}$, $X \perp Y$ and:

$$p(X = 0) = p$$
 $p(X = 1) = 1 - p$
 $p(Y = 0) = q$ $p(Y = 1) = 1 - q$
 $Z = (X + Y) \mod 2$

- (a) if q = 1/2 what is P(Z = 0)? P(Z = 1)? I(Z; X)?
- (b) For general p and q what is P(Z = 0)? P(Z = 1)? I(Z; X)?

Example 1 (from Mackay, 2003) — Solution (a)

As $X \perp Y$ and q = 1/2 the noise will flip the outcome of X with probability q = 0.5 regardless of the outcome of X. Therefore:

$$p(Z=1) = 1/2$$
 $p(Z=0) = 1/2$

Example 1 (from Mackay, 2003) — Solution (a)

As $X \perp Y$ and q = 1/2 the noise will flip the outcome of X with probability q = 0.5 regardless of the outcome of X. Therefore:

$$p(Z=1)=1/2 \qquad p(Z=0)=1/2$$
 We have
$$H(Z|X)=-\sum_{x}p(x)\sum_{z}p(z|x)\log p(z|X)$$

$$=-(1/2)\log(1/2)\sum_{x}p(x)$$

$$=1 \text{ bit}$$

Example 1 (from Mackay, 2003) — Solution (a)

As $X \perp Y$ and q = 1/2 the noise will flip the outcome of X with probability q = 0.5 regardless of the outcome of X. Therefore:

$$p(Z=1) = 1/2 \qquad p(Z=0) = 1/2$$
 We have
$$H(Z|X) = -\sum_{x} p(x) \sum_{z} p(z|x) \log p(z|X)$$

$$= -(1/2) \log(1/2) \sum_{x} p(x)$$

$$= 1 \text{ bit}$$

Hence:

$$I(X; Z) = H(Z) - H(Z|X) = 1 - 1 = 0$$

Example 1 (from Mackay, 2003) — Solution (a)

As $X \perp Y$ and q = 1/2 the noise will flip the outcome of X with probability q = 0.5 regardless of the outcome of X. Therefore:

$$p(Z=1) = 1/2 \qquad p(Z=0) = 1/2$$
 We have
$$H(Z|X) = -\sum_{x} p(x) \sum_{z} p(z|x) \log p(z|X)$$

$$= -(1/2) \log(1/2) \sum_{x} p(x)$$

$$= 1 \text{ bit}$$

Hence:

$$I(X; Z) = H(Z) - H(Z|X) = 1 - 1 = 0$$

Thus for q = 1/2, $Z \perp \!\!\! \perp X$.

Example 1 (from Mackay, 2003) — Solution (a)

As $X \perp Y$ and q = 1/2 the noise will flip the outcome of X with probability q = 0.5 regardless of the outcome of X. Therefore:

$$p(Z=1)=1/2 \qquad p(Z=0)=1/2$$
 We have
$$H(Z|X)=-\sum_{x}p(x)\sum_{z}p(z|x)\log p(z|X)$$

$$=-(1/2)\log(1/2)\sum_{x}p(x)$$

$$=1 \text{ bit}$$

Hence:

$$I(X; Z) = H(Z) - H(Z|X) = 1 - 1 = 0$$

Thus for q = 1/2, $Z \perp X$.

What significance might this have for spies?


```
Example 1 (from Mackay, 2003) — Solution (b) \ell \stackrel{\text{def}}{=} p(Z=0) = p(X=0) \times p(\text{no flip}) + p(X=1) \times p(\text{flip})= pq + (1-p)(1-q)= 1 + 2pq - q - p
```

Example 1 (from Mackay, 2003) — Solution (b)
$$\ell \stackrel{\text{def}}{=} p(Z=0) = p(X=0) \times p(\text{no flip}) + p(X=1) \times p(\text{flip})$$
$$= pq + (1-p)(1-q)$$
$$= 1 + 2pq - q - p$$

Similarly:

$$p(Z = 1) = p(X = 1) \times p(\text{no flip}) + p(X = 0) \times p(\text{flip})$$

= $(1 - p)q + p(1 - q)$
= $q + p - 2pq$

Example 1 (from Mackay, 2003) — Solution (b)
$$\ell \stackrel{\text{def}}{=} p(Z=0) = p(X=0) \times p(\text{no flip}) + p(X=1) \times p(\text{flip})$$
$$= pq + (1-p)(1-q)$$
$$= 1 + 2pq - q - p$$

Similarly:

$$p(Z = 1) = p(X = 1) \times p(\text{no flip}) + p(X = 0) \times p(\text{flip})$$

= $(1 - p)q + p(1 - q)$
= $q + p - 2pq$

Since
$$p(Z|X = 0) = (q, 1 - q)$$
 and $p(Z|X = 1) = (1 - q, q)$ we have $H(Z|X = 0) = H(Z|X = 1) = H(q, 1 - q)$.
Averaging over $p(X)$ we have $H(Z|X) = p(H(q, 1 - q)) + (1 - p)(H(q, 1 - q)) = H(q, 1 - q)$.

Example 1 (from Mackay, 2003) — Solution (b)
$$\ell \stackrel{\text{def}}{=} p(Z=0) = p(X=0) \times p(\text{no flip}) + p(X=1) \times p(\text{flip})$$
$$= pq + (1-p)(1-q)$$
$$= 1 + 2pq - q - p$$

Similarly:

$$p(Z = 1) = p(X = 1) \times p(\text{no flip}) + p(X = 0) \times p(\text{flip})$$

= $(1 - p)q + p(1 - q)$
= $q + p - 2pq$

Since
$$p(Z|X = 0) = (q, 1 - q)$$
 and $p(Z|X = 1) = (1 - q, q)$ we have $H(Z|X = 0) = H(Z|X = 1) = H(q, 1 - q)$.
Averaging over $p(X)$ we have $H(Z|X) = p(H(q, 1 - q)) + (1 - p)(H(q, 1 - q)) = H(q, 1 - q)$.

Thus:

$$I(Z; X) = H(Z) - H(Z|X)$$

= $H(\ell, 1 - \ell) - H(q, 1 - q)$

- Decomposability of Entropy
- Relative Entropy / KL Divergence
- Mutual Information
 - Definition
 - Joint and Conditional Mutual Information
- Wrapping up

Joint Mutual Information

Recall that for random variables X, Y,

$$I(X; Y) = H(X) - H(X|Y)$$

Reduction in uncertainty in X due to knowledge of Y

More generally, for random variables $X_1, \ldots, X_n, Y_1, \ldots, Y_m$,

$$I(X_1,...,X_n; Y_1,...,Y_m) = H(X_1,...,X_n) - H(X_1,...,X_n|Y_1,...,Y_m)$$

• Reduction in uncertainty in X_1, \ldots, X_n due to knowledge of Y_1, \ldots, Y_m

Symmetry also generalises:

$$I(X_1,...,X_n; Y_1,...,Y_m) = I(Y_1,...,Y_m; X_1,...,X_n)$$

The conditional mutual information between X and Y given $Z = z_k$:

$$I(X; Y|Z = z_k) = H(X|Z = z_k) - H(X|Y, Z = z_k).$$

The conditional mutual information between X and Y given $Z = z_k$:

$$I(X; Y|Z = z_k) = H(X|Z = z_k) - H(X|Y, Z = z_k).$$

Averaging over Z we obtain:

The conditional mutual information between X and Y given Z:

$$I(X; Y|Z) = H(X|Z) - H(X|Y,Z)$$

$$= \mathbb{E}_{p(X,Y,Z)} \log \frac{p(X,Y|Z)}{p(X|Z)p(Y|Z)}$$

The conditional mutual information between X and Y given $Z = z_k$:

$$I(X; Y|Z = z_k) = H(X|Z = z_k) - H(X|Y, Z = z_k).$$

Averaging over Z we obtain:

The conditional mutual information between X and Y given Z:

$$I(X; Y|Z) = H(X|Z) - H(X|Y,Z)$$

$$= \mathbb{E}_{p(X,Y,Z)} \log \frac{p(X,Y|Z)}{p(X|Z)p(Y|Z)}$$

The reduction in the uncertainty of X due to the knowledge of Y when Z is given.

The conditional mutual information between X and Y given $Z = z_k$:

$$I(X; Y|Z = z_k) = H(X|Z = z_k) - H(X|Y, Z = z_k).$$

Averaging over *Z* we obtain:

The conditional mutual information between X and Y given Z:

$$I(X; Y|Z) = H(X|Z) - H(X|Y,Z)$$

$$= \mathbb{E}_{p(X,Y,Z)} \log \frac{p(X,Y|Z)}{p(X|Z)p(Y|Z)}$$

The reduction in the uncertainty of *X* due to the knowledge of *Y* when *Z* is given.

Note that I(X; Y; Z), I(X|Y; Z) are illegal terms while e.g. I(A, B; C, D|E, F) is legal.

- Decomposability of Entropy
- Relative Entropy / KL Divergence
- Mutual Information
 - Definition
 - Joint and Conditional Mutual Information
- Wrapping up

Summary

- Decomposability of entropy
- Relative entropy
- Mutual information
- Reading: Mackay §2.5, Ch 8; Cover & Thomas §2.3 to §2.5
- Important: You should be doing lots of exercises from the text!
- Feedback: Please provide feedback see Wattle page

Next time

Mutual information chain rule

Jensen's inequality

"Information cannot hurt"

Data processing inequality

Acknowledgement

These slides were originally developed by Professor Robert C. Williamson.