# 【機器學習】創建自己的電影推薦系統

#### 機器學習初學者 今天

以下文章來源於磐創AI,作者Flin



### 磐創AI

AI行業最新動態,機器學習乾貨文章,深度學習原創博客,深度學習實戰項目,Tensorflow中文原創教程,國外最新論文翻譯。歡迎喜歡A...

作者| SO HAM

編譯| Flin

來源| analytics vidhya

介紹

"每次我去看電影,不管電影是關於什麼的,都很神奇。"——史蒂芬·斯皮爾伯格

每個人都喜歡電影,不分年齡、性別、種族、膚色或地理位置。通過這種神奇的媒介,我們在某種程度上彼此聯繫在一起。然而,最有趣的是,我們的選 擇和組合在電影偏好方面是多麼獨特。

有些人喜歡特定類型的電影,比如驚悚片、愛情片或科幻片,而另一些人則喜歡主演和導演。當我們考慮到所有這些因素時,要概括一部電影並說每個人 都會喜歡它是非常困難的。但儘管如此,我們仍然可以看到相似的電影受到社會特定人群的喜愛。 這就是我們作為數據科學家的作用,從觀眾的所有行為模式中提取核心信息,也從電影本身中提取信息。所以,廢話不多說,讓我們直接進入推薦系統的基礎。

#### 什麼是推薦系統?

簡單地說,推薦系統是一個過濾程序,其主要目標是預測用戶對特定領域的項目或項目的"評級"或"偏好"。在我們的例子中,這個特定於領域的項目是一部 電影,因此,我們推薦系統的主要重點是在給定用戶的一些數據的情況下,過濾和預測哪些是用戶更喜歡的電影。

#### 有哪些不同的過濾策略?

![](http://qiniu.aihubs.net/88506recommendation system.png)

#### • 基於内容的過濾

此过滤策略基于提供的关于项目的数据。该算法会推荐与用户过去喜欢的产品相似的产品。这种相似度(通常是余弦相似度)是根据我们拥有的关于商品的数据以及用户过去的偏好计算出来的。

例如,如果用户喜欢《The Prestige》这样的电影,那么我们就可以向他推荐克里斯蒂安·贝尔(Christian Bale)的电影、惊悚片(Thriller)或者克里斯托弗·诺兰 (Christopher Nolan)导演的电影。

这里发生了什么?用户的推荐系统检查过去的喜好,找到这部电影《The Prestige》,然后试图找到类似的电影,使用数据库中的信息,如主演、导演、相关体裁的电影,制作公司等,基于这些信息找到类似于《The Prestige》的电影。

#### 缺点

- 1. 用户很少能接触到不同类型的产品
- 2. 由于用户不尝试不同类型的产品,业务无法扩展。

#### • 协同过滤

该过滤策略基于用户行为的组合,并将其与数据库中其他用户的行为进行比较和对比。所有用户的历史在该算法中扮演着重要的角色。基于内容的过滤和协同过滤的主要区别在于,协同过滤是所有用户与项目的交互影响推荐算法,而基于内容的过滤只考虑相关用户的数据。

协同过滤有多种实现方式,但需要把握的主要概念是,在协同过滤中,多个用户的数据会影响推荐的结果。而且建模并不仅仅依赖于一个用户的数据。

协同过滤算法有两种:

#### • 基于用户的协同过滤

这里的基本理念是找到与用户"A"有相似偏好模式的用户,然后推荐那些"A"还没有遇到过的相似用户喜欢的商品。这是通过建立一个矩阵来实现的,矩阵中列出了每个用户根据其手头的任务对其进行评级/查看/喜欢/点击的项目,然后计算用户之间的相似度得分,最后推荐相关用户不知道但与他/她相似的用户喜欢的项目。

例如,如果用户A喜欢"Batman Begins"、"Justice League"和"the Avengers",而用户B喜欢"Batman Begins"、"Justice League"和"Thor",那么他们的兴趣是相似的,因为我们知道这些电影都属于超级英雄类型。因此,用户a很有可能会喜欢《雷神》,用户B很有可能会喜欢《复仇者联盟》。

#### 缺点

- 1. 人是浮躁的,他们的喜好是不断变化的,因为这个算法是基于用户相似度的,它可能会挑选出两个用户之间最初的相似模式,一段时间后,可能会有 完全不同的偏好。
- 2. 用户比项目多很多,因此维护这么大的矩阵变得非常困难,因此需要定期重新计算。

3. 该算法非常容易受到先令攻击,其中包含带有偏见的偏好模式的虚假用户档案被用来操纵关键决策。

#### • 基于项目协同过滤

这种情况下的概念是找到相似的电影,而不是相似的用户,然后推荐与"A"过去喜欢的电影相似的电影。这是通过找到被同一用户评价/观看/点赞/点击的每一对物品,然后在所有同时评价/观看/点赞/点击的用户中测量那些被评价/观看/点赞/点击的物品的相似性,最后根据相似性分数推荐它们。

例如,我们选取两部电影"A"和"B",并根据这两部电影的相似度,由所有给这两部电影都评级过的用户检查它们的评级,根据给这两部电影都评级过的用户的评级相似度,我们会发现相似的电影。所以,如果大多数普通用户对"A"和"B"的评价都是相似的,那么"A"和"B"很有可能是相似的,因此如果有人观看并喜欢"A",那么他们就应该被推荐"B",反之亦然。

#### 优于基于用户的协同过滤

- 1. 不像人们的喜好千变万化, 电影不会改变。
- 2. 矩阵的项通常比人少很多,因此更容易维护和计算矩阵。
- 3. 先令攻击更加困难,因为电影不能伪造。

#### 让我们开始编写我们自己的电影推荐系统

在这个实现中,当用户搜索一部电影时,我们将使用我们的电影推荐系统推荐排名前10的类似电影。我们将使用基于项目的协同过滤算法。本演示中使用的数据集是movielens-small数据集。

• movielens-small数据集: https://www.kaggle.com/shubhammehta21/movie-lens-small-latest-dataset

#### 启动并运行数据

首先,我们需要导入我们将在电影推荐系统中使用的库。另外,我们将通过添加CSV文件的路径来导入数据集。

```
import pandas as pd
import numpy as np
from scipy.sparse import csr_matrix
from sklearn.neighbors import NearestNeighbors
import matplotlib.pyplot as plt
import seaborn as sns
movies = pd.read_csv("../input/movie-lens-small-latest-dataset/movies.csv")
ratings = pd.read_csv("../input/movie-lens-small-latest-dataset/ratings.csv")
```

现在我们已经添加了数据,让我们看看这些文件,使用dataframe.head()命令打印数据集的前5行。

#### 让我们来看看电影数据集:

#### movies.head()

| genres                                              | title                              | movield |   |
|-----------------------------------------------------|------------------------------------|---------|---|
| Adventure   Animation   Children   Comedy   Fantasy | Toy Story (1995)                   | 1       | 0 |
| Adventure Children Fantasy                          | Jumanji (1995)                     | 2       | 1 |
| Comedy Romance                                      | Grumpier Old Men (1995)            | 3       | 2 |
| Comedy Drama Romance                                | Waiting to Exhale (1995)           | 4       | 3 |
| Comedy                                              | Father of the Bride Part II (1995) | 5       | 4 |

#### 电影数据集有:

- movield——推荐完成后,我们会得到一个包含所有相似movield的列表,并从这个数据集获得每个电影的标题。
- genres,体裁——这个过滤方法不需要。

### ratings.head()

|   | userld | movield | rating | timestamp |
|---|--------|---------|--------|-----------|
| 0 | 1      | 1       | 4.0    | 964982703 |
| 1 | 1      | 3       | 4.0    | 964981247 |
| 2 | 1      | 6       | 4.0    | 964982224 |
| 3 | 1      | 47      | 5.0    | 964983815 |
| 4 | 1      | 50      | 5.0    | 964982931 |

#### 评级数据集具有:

- userld——对每个用户都是唯一的。
- movield——使用这个特性,我们从电影数据集获取电影的标题。
- rating——每个用户给所有电影的评级,使用这个我们将预测前10个类似的电影。

在这里,我们可以看到userld 1观看了movield 1和3,并将它们都评为4.0,但根本没有给movield 2打分。这个解释很难从这个数据帧中提取出来。

因此,为了使事情更容易理解和使用,我们将创建一个新的数据帧,其中每个列将表示每个惟一的用户id,每个行表示每个惟一的movield。

final\_dataset = ratings.pivot(index='movieId',columns='userId',values='rating')
final\_dataset.head()

| userId  | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | <br>601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 | 610 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| movield |     |     |     |     |     |     |     |     |     |     |         |     |     |     |     |     |     |     |     |     |
| 1       | 4.0 | NaN | NaN | NaN | 4.0 | NaN | 4.5 | NaN | NaN | NaN | <br>4.0 | NaN | 4.0 | 3.0 | 4.0 | 2.5 | 4.0 | 2.5 | 3.0 | 5.0 |
| 2       | NaN | NaN | NaN | NaN | NaN | 4.0 | NaN | 4.0 | NaN | NaN | <br>NaN | 4.0 | NaN | 5.0 | 3.5 | NaN | NaN | 2.0 | NaN | NaN |
| 3       | 4.0 | NaN | NaN | NaN | NaN | 5.0 | NaN | NaN | NaN | NaN | <br>NaN | NaN | NaN | NaN | NaN | NaN | NaN | 2.0 | NaN | NaN |
| 4       | NaN | NaN | NaN | NaN | NaN | 3.0 | NaN | NaN | NaN | NaN | <br>NaN | NaN |
| 5       | NaN |     | NaN | NaN | NaN | 5.0 | NaN | NaN | NaN | NaN | <br>NaN | NaN | NaN | 3.0 | NaN | NaN | NaN | NaN | NaN | NaN |

5 rows × 610 columns

现在,更容易理解的是,userld 1对movield 1和3进行了评级,但根本没有对movield 3、4、5进行评级(因此它们被表示为NaN),因此它们的评级数据是缺失的。

让我们解决这个问题,并将NaN归为0,以使算法更容易理解,同时也使数据看起来更令人舒服。

| <pre>final_dataset.fillna( final_dataset.head()</pre> | 0,inpla           | ace= | True | <b>=</b> ) |     |     |     |     |     |     |     |         |     |     |     |     |     |     |     |     |     |
|-------------------------------------------------------|-------------------|------|------|------------|-----|-----|-----|-----|-----|-----|-----|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                                                       | userld<br>movield | 1    | 2    | 3          | 4   | 5   | 6   | 7   | 8   | 9   | 10  | <br>601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 | 610 |
|                                                       | 1                 | 4.0  | 0.0  | 0.0        | 0.0 | 4.0 | 0.0 | 4.5 | 0.0 | 0.0 | 0.0 | <br>4.0 | 0.0 | 4.0 | 3.0 | 4.0 | 2.5 | 4.0 | 2.5 | 3.0 | 5.0 |
|                                                       | 2                 | 0.0  | 0.0  | 0.0        | 0.0 | 0.0 | 4.0 | 0.0 | 4.0 | 0.0 | 0.0 | <br>0.0 | 4.0 | 0.0 | 5.0 | 3.5 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
|                                                       | 3                 | 4.0  | 0.0  | 0.0        | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | <br>0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
|                                                       | 4                 | 0.0  | 0.0  | 0.0        | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | <br>0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|                                                       | 5                 | 0.0  | 0.0  | 0.0        | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | <br>0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |

5 rows × 610 columns

#### 去除数据中的噪音

在现实世界中,评分非常少,数据点大多来自非常受欢迎的电影和高参与度的用户。我们不希望电影被一小部分用户评分,因为它不够可信。同样,只给少数几部电影打分的用户也不应该被考虑在内。

因此,考虑到所有这些因素和一些反复试验,我们将通过为最终数据集添加一些过滤器来减少噪声。

- 至少有10个用户对一部电影进行了投票。
- 为了使一个用户有资格,至少50部电影应该由用户投票。

#### 让我们直观地看到这些过滤器的外观

汇总投票的用户数量和被投票的电影数量。

```
no_user_voted = ratings.groupby('movieId')['rating'].agg('count')
no_movies_voted = ratings.groupby('userId')['rating'].agg('count')
```

让我们直观地看到以阈值10投票的用户数量。

```
f,ax = plt.subplots(1,1,figsize=(16,4))
# ratings['rating'].plot(kind='hist')
plt.scatter(no_user_voted.index,no_user_voted,color='mediumseagreen')
plt.axhline(y=10,color='r')
plt.xlabel('MovieId')
plt.ylabel('No. of users voted')
plt.show()
```



根据阈值设置进行必要的修改。

```
final_dataset = final_dataset.loc[no_user_voted[no_user_voted > 10].index,:]
```

让我们以50的阈值来可视化每个用户的投票数量。

```
f,ax = plt.subplots(1,1,figsize=(16,4))
plt.scatter(no_movies_voted.index,no_movies_voted,color='mediumseagreen')
plt.axhline(y=50,color='r')
plt.xlabel('UserId')
plt.ylabel('No. of votes by user')
plt.show()
```



## 根据阈值设置进行必要的修改。

final\_dataset=final\_dataset.loc[:,no\_movies\_voted[no\_movies\_voted > 50].index]
final\_dataset

| userld  | 1   | 4   | 6   | 7   | 10  | 11  | 15  | 16  | 17  | 18  | <br>600 | 601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 610 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| movield |     |     |     |     |     |     |     |     |     |     |         |     |     |     |     |     |     |     |     |     |
| 1       | 4.0 | 0.0 | 0.0 | 4.5 | 0.0 | 0.0 | 2.5 | 0.0 | 4.5 | 3.5 | <br>2.5 | 4.0 | 0.0 | 4.0 | 3.0 | 4.0 | 2.5 | 4.0 | 2.5 | 5.0 |
| 2       | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | <br>4.0 | 0.0 | 4.0 | 0.0 | 5.0 | 3.5 | 0.0 | 0.0 | 2.0 | 0.0 |
| 3       | 4.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | <br>0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 |
| 5       | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | <br>2.5 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 6       | 4.0 | 0.0 | 4.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 4.0 | <br>0.0 | 0.0 | 3.0 | 4.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 |
|         |     |     |     |     |     |     |     |     |     |     | <br>    |     |     |     |     |     |     |     |     |     |
| 174055  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | <br>0.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 176371  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | <br>0.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 177765  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | <br>0.0 | 4.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 179819  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | <br>0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 187593  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | <br>0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 187593  |     |     |     |     | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | <br>0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |

#### 2121 rows × 378 columns

## 消除稀疏

我们的final\_dataset的维数是2121 \* 378,其中大多数值是稀疏的。我们只使用了一个小的数据集,但是对于电影镜头的原始大数据集,有超过100000个特征,我们的系统可能会在将这些特征输入到模型时耗尽计算资源。为了减少稀疏性,我们使用scipy库中的csr matrix函数。

我将举个例子来说明它是如何工作的:

```
sample = np.array([[0,0,3,0,0],[4,0,0,0,2],[0,0,0,0,1]])
sparsity = 1.0 - ( np.count_nonzero(sample) / float(sample.size) )
print(sparsity)
```

0.7333333333333333

```
sample = np.array([[0,0,3,0,0],[4,0,0,0,2],[0,0,0,0,1]])
sparsity = 1.0 - ( np.count_nonzero(sample) / float(sample.size) )
print(sparsity)
```

```
(0, 2) 3
(1, 0) 4
(1, 4) 2
(2, 4) 1
```

正如你所看到的, csr sample中没有稀疏值, 值被分配为行和列索引。对于第0行和第2列, 值是3。

应用csr matrix函数到数据集:

```
csr_data = csr_matrix(final_dataset.values)
final_dataset.reset_index(inplace=True)
```

#### 制作电影推荐系统模型

我们将使用KNN算法计算与余弦距离度量的相似度,这是非常快的,比皮尔逊系数更好。

```
knn = NearestNeighbors(metric='cosine', algorithm='brute', n_neighbors=20, n_jobs=-1)
```

```
knn.fit(csr_data)
```

#### 推荐函数的制作

工作原理很简单。我们首先检查输入的电影名是否在数据库中,如果在数据库中,我们使用推荐系统查找相似的电影,并根据它们的相似距离对它们进行排序,然后只输出与输入电影之间的距离最高的10部电影

```
def get movie recommendation(movie name):
  n movies to reccomend = 10
 movie list = movies[movies['title'].str.contains(movie name)]
  if len(movie list):
    movie idx= movie list.iloc[0]['movieId']
    movie idx = final dataset[final dataset['movieId'] == movie idx].index[0]
    distances, indices = knn.kneighbors(csr data[movie idx], n neighbors=n movies to reccomend+1)
    rec movie indices = sorted(list(zip(indices.squeeze().tolist(),distances.squeeze().tolist())),key=lambda x: x[1])[:0:-1]
    recommend frame = []
    for val in rec movie indices:
       movie idx = final dataset.iloc[val[0]]['movieId']
       idx = movies[movies['movieId'] == movie idx].index
       recommend frame.append({'Title':movies.iloc[idx]['title'].values[0],'Distance':val[1]})
    df = pd.DataFrame(recommend frame,index=range(1,n movies to reccomend+1))
    return df
    return "No movies found. Please check your input"
```

最后,我们来推荐一些电影吧!

```
get movie recommendation('Iron Man')
```

我个人认为结果相当不错。所有在顶端的电影都是超级英雄或动画电影,就像输入电影"钢铁侠"一样,是孩子们的理想选择。

|    | Title                          | Distance |
|----|--------------------------------|----------|
| 1  | Up (2009)                      | 0.368857 |
| 2  | Guardians of the Galaxy (2014) | 0.368758 |
| 3  | Watchmen (2009)                | 0.368558 |
| 4  | Star Trek (2009)               | 0.366029 |
| 5  | Batman Begins (2005)           | 0.362759 |
| 6  | Avatar (2009)                  | 0.310893 |
| 7  | Iron Man 2 (2010)              | 0.307492 |
| 8  | WALL-E (2008)                  | 0.298138 |
| 9  | Dark Knight, The (2008)        | 0.285835 |
| 10 | Avengers, The (2012)           | 0.285319 |

## 让我们再试一个:

## get\_movie\_recommendation('Memento')

|    | Title                                          | Distance |
|----|------------------------------------------------|----------|
| 1  | American Beauty (1999)                         | 0.389346 |
| 2  | American History X (1998)                      | 0.388615 |
| 3  | Pulp Fiction (1994)                            | 0.386235 |
| 4  | Lord of the Rings: The Return of the King, The | 0.371622 |
| 5  | Kill Bill: Vol. 1 (2003)                       | 0.350167 |
| 6  | Lord of the Rings: The Two Towers, The (2002)  | 0.348358 |
| 7  | Eternal Sunshine of the Spotless Mind (2004)   | 0.346196 |
| 8  | Matrix, The (1999)                             | 0.326215 |
| 9  | Lord of the Rings: The Fellowship of the Ring, | 0.316777 |
| 10 | Fight Club (1999)                              | 0.272380 |

排名前十的电影都是严肃的、用心的电影,就像《记忆碎片》本身一样,所以我认为这个结果也是好的。

我们的模型运行得很好——一个基于用户行为的电影推荐系统。因此,我们在此总结我们的协同过滤。你可以在这里得到完整的实现代码。

• https://github.com/So-ham/Movie-Recommendation-System

原文链接: https://www.analyticsvidhya.com/blog/2020/create-your-own-movie-movie-recommendation-system/



往期精彩回顾



。 适合初学者入门人工智能的路线及资料下载

- 。 机器学习及深度学习笔记等资料打印
- 。 机器学习在线手册
- 深度学习笔记专辑
- 。《统计学习方法》的代码复现专辑
- AI基础下载
- 机器学习的数学基础专辑
- 温州大学《机器学习课程》视频

本站qq群851320808,加入微信群请扫码:





### 2021年計算機視覺上桯帥學省路線

深度學習與計算機視覺

