Then to Evaluate? Got = J(0)

$$y = mx + c$$
 $y = o'(mx + c)$

Then to Evaluate? Got = J(0)

 $y = mx + c$
 $y = o'(mx + c)$

Then to Evaluate? Got = J(0)

 $y = mx + c$
 $y = o'(mx + c)$
 $y = mx + c$
 $y = o'(mx + c)$
 $y = -\frac{1}{n} \sum_{i=1}^{n} (y_i - y_i)_{pred}^2$
 $y = -\frac{1}{n} \sum_{i=1}^{n} (y_i - y_i)_{pred}^2$

$$= \frac{1}{h} \left[\sum_{i=1}^{n} (y_i - y_i) \right]$$

$$\left[\frac{\partial y_i}{\partial x} = \frac{\partial y_i^2}{\partial x} = \frac{$$

(4) Newral Networks:

x₁
$$y$$
 Gompute $J(\delta)$
 x_2 y Output y Compute y

Z=W1x1+W2x2+b, A-Activation function

Let
$$J(b) = \frac{1}{n} \sum_{j=1}^{n} (g - \hat{g})^2$$
 (Dort use MSE for classification).

Output = $O'(z) = O'(W_1 x_1 + W_2 x_2 + L)$

(g)

Sigmoid

Z

Activation

Parametrus are, W_1 , W_2 , b .

Function

* When you have multiple
Paths, 3 cm up the gradients
 $O(x_1, x_2, k_3) = O(x_1, k_3) = O(x_2, k_3) = O(x_3, k_4) = O(x_$

5) Activation Functions: * linear: [-00,00] e nange of he * Binary Step Function: {0,13 activation function f(x)=ax $f(x) = \begin{cases} 1, x > = 0 \\ 0, x \ge 0 \end{cases}$ f'(x) = af'(x) = 0* Sigmoid: [0,1] * tanh: [-1,1] $tanh(x) = e^{x} - e^{-x}$ $f(x) = \frac{1}{1+o^{-x}} = \sigma'(x)$ $f'(x) = \sigma(x) \cdot (1 - \sigma(x))$ tanh(x) = 20 (2x)-1: Causes: Varishing Gradient $f'(x) = 1 - f(x)^2$ * Softmar: May Cause these Problems Causes: vanishing Gonadient * ReLU: [0,00] - $S(z)_{j} = \frac{e^{z_{j}}}{\sum_{k} e^{z_{k}}}; j=1...k$ $f(x) = \begin{cases} 0, x \ge 0 \\ x, x \ge 0 \end{cases}$ $\sum_{j=1}^{\infty} \sigma'(z)_{j} = 1; k \Rightarrow No. of classes$ f(x)= (1, x 20 Causes: Dead Neuron * Parametric ReLU: [-00,00] * Loaky RELU: $f(x) = \begin{cases} ax, x < 0 \\ x, x < 0 \end{cases}$ $f(x) = \begin{cases} ax, x \ge 0 \\ x, x \ge 0 \end{cases}$ $f'(x) = \begin{cases} a, x \neq 0 \\ 1, x \neq 0 \end{cases}$ $f'(x) = \begin{cases} a, x < 0 \\ 1, x \ge 0 \end{cases}$ a is found using Optimization a is set manually. Algorithm (Eg. gradient)

