

Image Gradients and Gradient Filtering

Computer Vision

Carnegie Mellon University (Kris Kitani)

What is an image edge?

Recall that an image is a 2D function

How would you detect an edge?
What kinds of filter would you use?

Do you remember this from high school?

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Do you remember this from high school?

The derivative of a function f at a point x is defined by the limit

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Approximation of the derivative when h is small

This definition is based on the 'forward difference' but ...

... it turns out that using the 'central difference' is more accurate

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

How do we compute the derivative of a discrete signal?

... it turns out that using the 'central difference' is more accurate

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

How do we compute the derivative of a discrete signal?

1 0 -1 2 0 -2 1 0 -1

a derivative filter (with some smoothing)

Filter returns large response on vertical or horizontal edges?

1 2 1 0 0 0 -1 -2 -1

a derivative filter (with some smoothing)

Filter returns large response on vertical or horizontal edges?

Is the output always positive?

a derivative filter (with some smoothing)

Responds to horizontal lines

Output can be positive or negative

Approximation of the derivative of a Gaussian

Derivative of Gaussian $\dfrac{\partial}{\partial x}h_{\sigma}(u,v)$

Output of which Sobel filter?

Output of which Sobel filter?

How do you visualize negative derivatives/gradients?

Derivative in X direction

Derivative in Y direction

Visualize with scaled absolute value

Where does this filter come?

weighted average and scaling

What this?

weighted average and scaling

weighted average

and scaling

What this?

x-derivative

How do you compute the image gradient?

Choose a derivative filter

$$S_y=egin{array}{c|cccc} & 1 & 2 & 1 \ \hline 0 & 0 & 0 \ \hline -1 & -2 & -1 \ \hline \end{array}$$

What is this filter called?

Run filter over image

$$rac{\partial oldsymbol{f}}{\partial x} = oldsymbol{S}_x \otimes oldsymbol{f}$$

$$rac{\partial m{f}}{\partial y} = m{S}_y \otimes m{f}$$

What are the dimensions?

Image gradient

$$abla oldsymbol{f} = \left[\frac{\partial oldsymbol{f}}{\partial x}, \frac{\partial oldsymbol{f}}{\partial y} \right]$$

What are the dimensions?

MATCH THAT GRADIENT!

MATCH THAT GRADIENT !

(1)
$$\nabla f = \left[0, \frac{\partial f}{\partial y}\right]$$

(2)
$$\nabla f = \left[\frac{\partial f}{\partial x}, 0 \right]$$

(3)
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

Image Gradient

Gradient in x only

 $\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$

Gradient in y only

Gradient in both x and y

Gradient direction

?

Gradient magnitude

Image Gradient

Gradient in x only

 $\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$

Gradient in y only

Gradient in both x and y

Gradient direction

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

Gradient magnitude

$$||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

How does the gradient direction relate to the edge?

What does a large magnitude look like in the image?

Common 'derivative' filters

Sobel

Ι	0	- I
2	0	-2
-	0	-1

Ι	2	I
0	0	0
-1	-2	- I

Scharr

3	0	-3
10	0	-10
3	0	-3

Prewitt

ı	0	-1
I	0	-
I	0	-1

I	I	I
0	0	0
-1	-1	-1

Roberts

0	Ι
-1	0

MACHINE PERCEPTION OF THREE-DIMENSIONAL SOLIDS

by

LAWRENCE GILMAN ROBERTS

- S.B., Massachusetts Institute of Technology (1961)
- M.S., Massachusetts Institute of Technology (1961)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY June, 1963

Signature of Author	
Certified by	
	Thesis Supervisor
Accepted by	
Chairman, Departmental Committee	on Graduate Students

Intensity plot

Intensity plot

Use a derivative filter!

Intensity plot

Use a derivative filter!

Derivative plot

What happened?

Use a derivative filter!

Derivative plot

Derivative filters are sensitive to noise

Don't forget to smooth before running derivative filters!

Laplace filter

A.K.A. Laplacian, Laplacian of Gaussian (LoG), Marr filter, Mexican Hat Function

Laplace filter A.K.A. Laplacian, Laplacian of Gaussian (LoG), Marr filter, Mexican Hat Function

Laplace filter A.K.A. Laplacian, Laplacian of Gaussian (LoG), Marr filter, Mexican Hat Function

finite difference

first-order
$$f'(x) = \lim_{h \to 0} \frac{f(x + 0.5h) - f(x - 0.5h)}{h}$$
 ite difference

derivative filter

second-order finite difference

$$f''(x) \approx \frac{\delta_h^2[f](x)}{h^2} = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}.$$

Laplace filter

finite difference

first-order
$$f'(x) = \lim_{h \to 0} \frac{f(x + 0.5h) - f(x - 0.5h)}{h}$$
 ite difference

derivative filter

second-order finite difference

$$f''(x) \approx \frac{\delta_h^2[f](x)}{h^2} = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}.$$

Laplace filter

Zero crossings are more accurate at localizing edges Second derivative is noisy

2D Laplace filter

I -2 I

ID Laplace filter

2D Laplace filter

2D Laplace filter

I -2 I

ID Laplace filter

?	?	?
?	?	?
?	?	?

2D Laplace filter

hint

2D Laplace filter

I -2 I

ID Laplace filter

0	I	0
ı	-4	I
0	I	0

2D Laplace filter

If the Sobel filter approximates the first derivative, the Laplace filter approximates?

What's different between the two results?

Zero crossings are more accurate at localizing edges (but not very convenient)

2D Gaussian Filters

Laplacian of Gaussian