University of Nevada – Reno Computer Science & Engineering Department

CS454/654 Reliability and Security of Computing Systems - Fall 2024

Lecture 22

Dr. Batyr Charyyev bcharyyev.com

CHAPTER 2

NETWORK ENDPOINT SECURITY

21.1 Firewalls

Firewall Characteristics Types of Firewalls DMZ Networks

21.2 Intrusion Detection Systems

Basic Principles
Approaches to Intrusion Detection
Host-Based Intrusion Detection Techniques
Network-Based Intrusion Detection Systems

21.3 Malicious Software

Types of Malware Malware Defense

21.4 Distributed Denial of Service Attacks

DDoS Attack Description Constructing the Attack Network DDoS Countermeasures

21.5 Key Terms, Review Questions, and Problems

Firewalls

- Deployed on outer perimeter of the network infrastructure
- Also deployed in inner network to segregate portions of the network.
- Enforces access policy.

- Four techniques that firewalls use to control access
 - Service control: What type of services can be accessed
 - Direction control: What should be the direction of the traffic for service
 - User control: Tailoring the access depending on user.
 - Behavioral control: How particular service can be used.

Firewalls

Firewall enables

- Traffic monitoring.
- Network address translation (NAT) and logging internet usage.
- Facilitate Virtual Private Networks (VPN)

However, firewall can not protect internal threats.

Types of Firewalls

- Packet Filtering
- Stateful Inspection Firewalls
- Application Level Gateway
- Circuit-level gateway

Packet Filtering

- Apply filtering to traffic based on source/destination IP, protocol, and port number.
- Examine each individual packet and apply predefined rules.
- Cisco ASA 5500-X Series Firewalls Supports simple packet filtering
 https://www.cisco.com/c/en/us/support/security/asa-5500-series-next-generation-firewalls/series.html

Rule Set A

action	Ourhost	port	theirhost	port	comment
block	*	*	SPIGOT	*	we don't trust these people
allow	OUR-GW	25	*	*	connection to our SMTP port

Rule Set B

action	Ourhost	port	theirhost	port	comment
block	*	*	*	*	default

Rule Set C

action	Ourhost	port	theirhost	port	comment
allow	*	*	*	25	connection to their SMTP port

Stateful Inspection Firewalls

- Monitors the state of active connections and ensures that only legitimate packets that are part of an ongoing session are allowed through.
- The firewall compares incoming packets with a state table that contains information about current connections.

 Table 21.1
 Example Stateful Firewall Connection State Table

Source Address	Source Port	Destination Address	Destination Port	Connection State	
192.168.1.100	1030	210.9.88.29	80	Established	
192.168.1.102	1031	216.32.42.123	80	Established	
192.168.1.101	1033	173.66.32.122	25	Established	
192.168.1.106	1035	177.231.32.12	79	Established	
223.43.21.231	1990	192.168.1.6	80	Established	
219.22.123.32	2112	192.168.1.6	80	Established	
210.99.212.18	3321	192.168.1.6	80	Established	
24.102.32.23	1025	192.168.1.6	80	Established	
223.21.22.12	1046	192.168.1.6	80	Established	

Application-Level Gateway (Proxy Firewall)

- An application-level gateway, also known as an application proxy, operates as a relay for application-level traffic, here how it works
 - **Client Interaction**: The user initiates a connection using a TCP/IP application (like Telnet or FTP) and contacts the firewall gateway.
 - **Authentication:** Upon connection, the gateway asks the user for information, such as the remote host's name, user ID, and authentication credentials.
 - **Relaying Traffic:** The gateway then contacts the application on the remote host, forwarding the application data between the client and the server.
- Application-Specific Proxy:
 The gateway only relays traffic for applications it has been specifically configured to handle.
- Feature Control:
 Administrators can configure the gateway to allow only certain features of an application.

Circuit-level gateway

- The circuit-level gateway establishes two separate TCP connections: from client (external) to firewall, and from firewall to server (internal). Then it acts as a relay.
- It simply forwards TCP segments (i.e., packets) from one connection to the other without inspecting the contents of the traffic.
- A typical use case for a circuit-level gateway is when a network administrator trusts the
 external users but wants to control the connections that are established from the
 internal network to the external network (and vice versa).

Demilitarized Zone (DMZ)

- Positioned between external and internal firewalls.
- The DMZ hosts publicly accessible systems like web servers, email servers, and DNS servers. These systems require external connectivity (e.g., to the internet) but also need protection from the internet.
- External Firewall: Provides basic protection and access control for the DMZ and the enterprise network from the external network.
- Internal Firewalls: Offer more detailed filtering and protect both the core network and the DMZ, ensuring that internal systems are protected from external attacks

Benefits

- Layered defense
- Controlled exposure
- Internal Segmentation

Figure 21.3 Example Firewall Configuration

Intrusion Detection Systems (IDS)

Figure 21.6 Example of NIDS Sensor Deployment

Host-Based Intrusion Detection Techniques Network-Based Intrusion Detection Systems

Figure 21.7 Five Elements of Malware Defense

Denial of Service Attacks (DDoS)

Figure 21.9 Types of Flooding-Based DDoS Attacks

Mirai - Denial of Service Attacks (DDoS)

•Honeyd: https://github.com/DataSoft/Honeyd

Kippo: https://github.com/desaster/kippo

•Cowrie: https://github.com/cowrie/cowrie

•Dionaea: https://www.honeynet.org/projects/active/dionaea/

•IRASSH: https://github.com/adpauna/irassh/

CHAPTER 2

NETWORK ENDPOINT SECURITY

21.1 Firewalls

Firewall Characteristics Types of Firewalls DMZ Networks

21.2 Intrusion Detection Systems

Basic Principles
Approaches to Intrusion Detection
Host-Based Intrusion Detection Techniques
Network-Based Intrusion Detection Systems

21.3 Malicious Software

Types of Malware Malware Defense

21.4 Distributed Denial of Service Attacks

DDoS Attack Description Constructing the Attack Network DDoS Countermeasures

21.5 Key Terms, Review Questions, and Problems

CHAPTER 23

Internet of Things (IoT) Security

23.1 The Internet of Things

Things on the Internet of Things Evolution Components of IoT-Enabled Things IoT and Cloud Context

23.2 IoT Security Concepts and Objectives

Unique Characteristics of the IoT Ecosystem IoT Security Objectives Tamper Resistance and Detection Gateway Security The IoT Security Environment

23.3 An Open-Source IoT Security Module

Cryptographic Algorithms Operating Modes Offset Codebook Mode

23.4 Key Terms and Review Questions

Figure 23.1 IoT Components

Figure 23.2 The IoT/Cloud Context

Table 23.1 Comparison of Cloud and Fog Features

	Cloud	Fog			
Location of processing/storage resources	Center	Edge			
Latency	High	Low			
Access	Fixed or wireless	Mainly wireless			
Support for mobility	Not applicable	Yes			
Control	Centralized/hierarchical (full control)	Distributed/hierarchical (partial control)			
Service access	Through core	At the edge/on handheld device			
Availability	99.99%	Highly volatile/highly redundant			
Number of users/devices	Tens/hundreds of millions	Tens of billions			
Main content generator	Human	Devices/sensors			
Content generation	Central location	Anywhere			
Content consumption	End device	Anywhere			
Software virtual infrastructure	Central enterprise servers	User devices			

Unique Characteristics of the IoT Ecosystem

- Very large attack surfaces
- Limited device resources
- Complex ecosystem
- Fragmentation of standards and regulations
- Widespread deployment
- Low cost
- Lack of expertise: IoT is still a relatively new and rapidly evolving technology. There are a limited number of people with suitable cybersecurity training and experience.
- Security updates
- Insecure programming
- Unclear liabilities

IoT Device Identification for Network Management

Fig. 1: Testbed for traffic collection from the 22 IoT devices

	Ring_Doorbell	Chime_Doorbell	Wans_Cam	D-Link_Cam936L	Smart_Lamp	Smart_LightStrip	Minger_LightStrip	Lumiman_SmartPlug	Renpho_SmartPlug
Ring_Doorbell	87	68	49	28	39	36	61	35	36
Chime_Doorbell	68	102	48	24	41	34	71	39	28
Wans_Cam	49	48	119	25	34	34	51	32	28
D-Link_Cam936L	28	24	25	111	17	17	23	19	23
Smart_Lamp	39	41	34	17	118	80	35	85	79
Smart_LightStrip	36	34	34	17	80	120	28	80	80
Minger_LightStrip	61	71	51	23	35	28	106	46	32
Lumiman_SmartPlug	35	39	32	19	85	80	46	119	89
Renpho_SmartPlug	36	28	28	23	79	80	32	89	118
-130 -110 -90 -70	-50	-30	-10	10	30 5	0 70	90	110	130

Fig. 2. Nilsimsa hash similarity score for sample devices.

Fig. 3. Signature generation and online device identification.

FIGURE 5. Locality sensitive anomaly detection and identification system.

FIGURE 1. Ranking of network traffic features of sample IoT devices based on discriminative power.

Figure 2: Traffic rates of voice commands on smart speakers, each voice command repeated two times.

Figure 4: Unintentional activation of the smart speaker.