

Formale Systeme

Prof. Dr. Bernhard Beckert, WS 2018/2019 Aussagenlogik: Syntax und Semantik

William Craig

1918 - 2016, Berkley University

Craig's Lemma: 1950er Jahre, für Prädikatenlogik formuliert Praktische Relevanz um Jahrtausendwende

Seien A,B aussagenlogische Formeln mit

$$\models A \rightarrow B$$

dann (und genau dann) gibt es eine Formel C mit

$$\models A \rightarrow C$$
 und $\models C \rightarrow B$,

so dass in C nur solche aussagenlogischen Atome $P \in \Sigma$ vorkommen, die sowohl in A als auch in B vorkommen.

Einfaches Beispiel

▶ $P_1 \land P_2 \rightarrow P_1 \lor P_3$ ist eine Tautologie.

Einfaches Beispiel

- ▶ $P_1 \land P_2 \rightarrow P_1 \lor P_3$ ist eine Tautologie.
- ▶ Ebenso $P_1 \land P_2 \rightarrow P_1$.

Einfaches Beispiel

- ▶ $P_1 \land P_2 \rightarrow P_1 \lor P_3$ ist eine Tautologie.
- ▶ Ebenso $P_1 \land P_2 \rightarrow P_1$.
- ▶ Ebenso $P_1 \rightarrow P_1 \lor P_3$.

Einfaches Beispiel

- ▶ $P_1 \land P_2 \rightarrow P_1 \lor P_3$ ist eine Tautologie.
- ▶ Ebenso $P_1 \land P_2 \rightarrow P_1$.
- ▶ Ebenso $P_1 \rightarrow P_1 \lor P_3$.
- Also: P₁ ist eine Interpolante für P₁ ∧ P₂ → P₁ ∨ P₃.

Seien $P_1, \dots P_n$ alle in A vorkommenden aussagenlogischen Atome, die nicht in B vorkommen.

Seien $P_1, \dots P_n$ alle in A vorkommenden aussagenlogischen Atome, die nicht in B vorkommen.

Für Konstanten $c_i \in \{1, 0\}$ bezeichnen wir mit $A[c_1, \dots, c_n]$ die Formeln, die aus A hervorgeht, indem P_i durch c_i ersetzt wird für alle 1 < i < n.

Seien $P_1, \dots P_n$ alle in A vorkommenden aussagenlogischen Atome, die nicht in B vorkommen.

Für Konstanten $c_i \in \{1, 0\}$ bezeichnen wir mit $A[c_1, \dots, c_n]$ die Formeln, die aus A hervorgeht, indem P_i durch c_i ersetzt wird für alle $1 \le i \le n$.

Wir setzen

$$C \equiv \bigvee_{(c_1,\ldots,c_n)\in\{\mathbf{1},\mathbf{0}\}^n} A[c_1,\ldots,c_n]$$

Seien $P_1, \dots P_n$ alle in A vorkommenden aussagenlogischen Atome, die nicht in B vorkommen.

Für Konstanten $c_i \in \{\mathbf{1}, \mathbf{0}\}$ bezeichnen wir mit $A[c_1, \dots, c_n]$ die Formeln, die aus A hervorgeht, indem P_i durch c_i ersetzt wird für alle $1 \le i \le n$.

Wir setzen

$$C \equiv \bigvee_{(c_1,\ldots,c_n)\in\{\mathbf{1},\mathbf{0}\}^n} A[c_1,\ldots,c_n]$$

Beweis der Korrektheit der Konstruktion: Siehe Skriptum

▶ Betrachte die Tautologie $A \rightarrow B$ mit $A = P_1 \land P_2$, $B = P_1 \lor P_3$.

- ▶ Betrachte die Tautologie $A \rightarrow B$ mit $A = P_1 \land P_2$, $B = P_1 \lor P_3$.
- P₂ ist das einzige Atom, das in A, aber nicht in B vorkommt.

- ▶ Betrachte die Tautologie $A \rightarrow B$ mit $A = P_1 \land P_2$, $B = P_1 \lor P_3$.
- P₂ ist das einzige Atom, das in A, aber nicht in B vorkommt.
- $\blacktriangleright A[1] = P_1 \land 1 \equiv P_1$

- ▶ Betrachte die Tautologie $A \rightarrow B$ mit $A = P_1 \land P_2$, $B = P_1 \lor P_3$.
- P₂ ist das einzige Atom, das in A, aber nicht in B vorkommt.
- $\blacktriangleright A[1] = P_1 \land 1 \equiv P_1$

- ▶ Betrachte die Tautologie A → B mit A = P₁ ∧ P₂, B = P₁ ∨ P₃.
- P₂ ist das einzige Atom, das in A, aber nicht in B vorkommt.
- $\blacktriangleright A[1] = P_1 \land 1 \equiv P_1$

► $A \rightarrow B$ mit $A = (P_1 \lor \neg P_2) \land (\neg P_1 \lor \neg P_3) \land P_2$ $B = \neg((\neg P_2 \lor P_3) \land (P_2 \lor P_4) \land \neg P_4)$

- ► $A \rightarrow B$ mit $A = (P_1 \lor \neg P_2) \land (\neg P_1 \lor \neg P_3) \land P_2$ $B = \neg((\neg P_2 \lor P_3) \land (P_2 \lor P_4) \land \neg P_4)$
- ► $A \equiv P_1 \land P_2 \land \neg P_3$ und $B \equiv \neg P_2 \lor \neg P_3 \lor P_4$

- ► $A \rightarrow B$ mit $A = (P_1 \lor \neg P_2) \land (\neg P_1 \lor \neg P_3) \land P_2$ $B = \neg((\neg P_2 \lor P_3) \land (P_2 \lor P_4) \land \neg P_4)$
- ► $A \equiv P_1 \land P_2 \land \neg P_3$ und $B \equiv \neg P_2 \lor \neg P_3 \lor P_4$
- ► $A \rightarrow B$ ist eine Tautologie.

A → B mit

$$A = (P_1 \vee \neg P_2) \wedge (\neg P_1 \vee \neg P_3) \wedge P_2$$

$$B = \neg((\neg P_2 \vee P_3) \wedge (P_2 \vee P_4) \wedge \neg P_4)$$

- ► $A \equiv P_1 \land P_2 \land \neg P_3$ und $B \equiv \neg P_2 \lor \neg P_3 \lor P_4$
- A → B ist eine Tautologie.
- ▶ P₁ ist einziges Atom in A und nicht in B.

ightharpoonup A
ightarrow B mit

$$A = (P_1 \vee \neg P_2) \wedge (\neg P_1 \vee \neg P_3) \wedge P_2$$

$$B = \neg((\neg P_2 \vee P_3) \wedge (P_2 \vee P_4) \wedge \neg P_4)$$

- ► $A \equiv P_1 \land P_2 \land \neg P_3$ und $B \equiv \neg P_2 \lor \neg P_3 \lor P_4$
- A → B ist eine Tautologie.
- ▶ P₁ ist einziges Atom in A und nicht in B.

$$\begin{array}{lll} \bullet & A[\mathbf{1}] & = & (\mathbf{1} \vee \neg P_2) \wedge (\neg \mathbf{1} \vee \neg P_3) \wedge P_2 \\ & \equiv & \mathbf{1} \wedge \neg P_3 \wedge P_2 \\ & \equiv & \neg P_3 \wedge P_2 \end{array}$$

A → B mit

$$A = (P_1 \vee \neg P_2) \wedge (\neg P_1 \vee \neg P_3) \wedge P_2$$

$$B = \neg((\neg P_2 \vee P_3) \wedge (P_2 \vee P_4) \wedge \neg P_4)$$

- ► $A \equiv P_1 \land P_2 \land \neg P_3$ und $B \equiv \neg P_2 \lor \neg P_3 \lor P_4$
- A → B ist eine Tautologie.
- ▶ P₁ ist einziges Atom in A und nicht in B.

$$A[1] = (1 \lor \neg P_2) \land (\neg 1 \lor \neg P_3) \land P_2$$

$$\equiv 1 \land \neg P_3 \land P_2$$

$$\equiv \neg P_3 \land P_2$$

$$\begin{array}{rcl} \bullet & A[\mathbf{0}] & = & (\mathbf{0} \vee \neg P_2) \wedge (\neg \mathbf{0} \vee \neg P_3) \wedge P_2 \\ & \equiv & \neg P_2 \wedge \mathbf{1} \wedge P_2 \\ & \equiv & \mathbf{0} \end{array}$$

- ► $A \rightarrow B$ mit $A = (P_1 \lor \neg P_2) \land (\neg P_1 \lor \neg P_3) \land P_2$
- ► $A \equiv P_1 \land P_2 \land \neg P_3$ und $B \equiv \neg P_2 \lor \neg P_3 \lor P_4$
- ► *A* → *B* ist eine Tautologie.
- ▶ P₁ ist einziges Atom in A und nicht in B.

 $B = \neg((\neg P_2 \vee P_3) \wedge (P_2 \vee P_4) \wedge \neg P_4)$

- $A[1] = (1 \lor \neg P_2) \land (\neg 1 \lor \neg P_3) \land P_2$ $\equiv 1 \land \neg P_3 \land P_2$ $\equiv \neg P_3 \land P_2$
- $A[\mathbf{0}] = (\mathbf{0} \vee \neg P_2) \wedge (\neg \mathbf{0} \vee \neg P_3) \wedge P_2$ $\equiv \neg P_2 \wedge \mathbf{1} \wedge P_2$ $\equiv \mathbf{0}$
- ▶ Also $C = (\neg P_3 \land P_2) \lor \mathbf{0} \equiv \neg P_3 \land P_2$ ist eine Interpolante für $A \to B$.