Laurea Triennale in Informatica e Comunicazione Digitale Sede di Taranto 28/9/2005

1. Dati gli insiemi $A=\{1,2,3,4,5\}$ e $B=\{a,b,c\}$, determinare tutte le applicazioni surgettive $f:A\to B$ tali che

$$f(2) = f(3) = a$$

$$f(x) \neq a \quad \text{per } x \notin \{2, 3\}.$$

2. Risolvere il sistema di congruenze

$$\begin{cases} 5x \equiv 40 \mod 10 \\ x \equiv 50 \mod 7 \end{cases}$$

Determinare inoltre la più grande soluzione negativa $x_0 \in \mathbb{Z}$.

3. Si consideri la struttura algebrica $(\mathbb{Z}, *)$ dove

$$\forall m, n \in \mathbb{Z} \quad m * n := -2mn.$$

Stabilire se $(\mathbb{Z}, *)$ è un monoide.

4. Determinare il MCD monico tra i polinomi $p=x^4+5x^2+4x+5$ e $g=2x^3+5x^2+x+5$ di $\mathbb{Z}_7[x]$.

5. Stabilire, giustificando la risposta, che esattamente uno tra i seguenti sottoinsiemi di \mathbb{Z}_{10} è un sottogruppo:

$$H_1 = \{[0], [1], [2], [3]\}, H_2 = \{[0], [2], [4], [6], [8]\}, H_3 = \{[0], [3], [5], [7], [9]\}.$$

Di tale sottogruppo determinare tutti i generatori.

- **6.** a) Determinare un elemento primitivo del campo $(\mathbb{Z}_5, +, \cdot)$.
- b) Determinare, se esiste, un omomorfismo di gruppi $f:\mathbb{Z}_5^*\to\mathbb{Z}$ tale che

$$f(4) = -6.$$

Laurea Triennale in Informatica e Comunicazione Digitale 23/2/2005

1. Si ponga $X = \{1, 2, 3, 4, 5, 6\}.$

Elencare tutte le relazioni di equivalenza ${\mathcal R}$ su X verificanti le condizioni seguenti:

- a) $1\mathcal{R}2$
- b) $5\mathcal{R}2$
- c) 6 è in relazione solo con sé stesso.
- 2. Risolvere la congruenza lineare

$$315x \equiv 18 \mod 153$$
.

Determinare inoltre una soluzione x_0 tale che

$$20 < x_0 < 60.$$

- **3.** Si considerino le permutazioni $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 4 & 5 & 2 & 1 & 7 & 6 \end{pmatrix}$ e g = (53)(26) di S_7 .
 - 1) Calcolare il periodo di f e di $f \circ g$.
- 2) Posto H=< f>, determinare, se esistono, un sottogruppo di K di H di ordine 3 ed un sottogruppo S di H di ordine 4.
 - **4.** Stabilire se il polinomio $f \in \mathbb{Q}[x]$

$$f = x^3 - 14x^2 - 14x - 15$$

è riducibile.

- 5. Determinare tutti gli omomorfismi $\mathbb{Z}_2 \to \mathbb{Z}_4$ e tutti gli omomorfismi $\mathbb{Z}_2 \to \mathbb{Z}_3$.
- **6.** Determinare un elemento primitivo del campo $(\mathbb{Z}_5, +, \cdot)$ e trovare tutti gli elementi di periodo 2 del gruppo (\mathbb{Z}_5^*, \cdot) . Calcolare infine l'inverso di [3].

Laurea Triennale in Informatica e Comunicazione Digitale 9/2/2005

- **1.** Si ponga $X = \{x \in \mathbb{Q} \mid x \neq \frac{1}{2}\}.$
- 1) Stabilire se X è un sottomonoide di (\mathbb{Q},\cdot) .
- 2) Stabilire se l'applicazione $f: X \to \mathbb{Q}$ tale che

$$\forall x \in X \quad f(x) = \frac{x-5}{2x-1}$$

è ingettiva e se è surgettiva.

2. Risolvere il sistema di congruenze lineari

$$\begin{cases} x \equiv 7 \mod 5 \\ x \equiv -1 \mod 3 \end{cases}$$

Determinare inoltre una soluzione pari x_o e una soluzione dispari x_1 .

- **3.** Si considerino le permutazioni $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 2 & 1 & 6 \end{pmatrix}$ e g = (153)(26).
 - 1) Calcolare il periodo di f e di $f \circ g$.
 - 2) Posto $H = \langle f \rangle$, determinare tutti i generatori di H.
- 3) Determinare, se esiste, un omomorfismo $F:\mathbb{Z}\to H$ la cui immagine Im(F) sia un sottogruppo di H di ordine 3, e tale che

$$F(2) = (153).$$

- 4. Calcolare in $\mathbb{Z}_3[x]$ un MCD monico tra i polinomi $p=x^4+x^3+2x+2$ e $q=x^2+x$.
 - **5.** Si consideri il sottogruppo S = <5> di \mathbb{Z}_{30} .
 - 1) Verificare che (S, \cdot) ha l'elemento neutro;
 - 2) Dire se $(S,+,\cdot)$ è un campo.
- 6. Un albero ha 6 vertici, di cui uno di grado 5 e i rimenti tutti di grado $x \geq 1$. Calcolare x.

Laurea Triennale in Informatica e Comunicazione Digitale 25/1/2005

- **1.** Dati gli insiemi $A=\{x,y,z,t\}$ e $B=\{a,b,c\}$, stabilire quante sono le applicazioni surgettive $A\to B$ per le quali l'elemento $a\in B$ ha due preimmagini in A.
- ${\bf 2.}\,$ Determinare due soluzioni x_o e x_1 incongure modulo 40 della congruenza lineare

$$504x \equiv 56 \mod 40$$
.

3. Posto $X=\{x\in\mathbb{Q}\mid x\neq 0\}$, si consideri la struttura algebrica (X,*) la cui operazione interna è definita da:

$$a * b := -\frac{3}{2}ab.$$

Stabilire se (X, *) è un gruppo.

4. Determinare il sottogruppo di H di \mathbb{Z}_8 di ordine 4 ed il sottogruppo K di \mathbb{Z}_{12} con lo stesso ordine.

Detto poi $f: H \to K$ l'omorfismo tale che

$$f([2]_8) = [9]_{12}$$

stabilire se f è un isomorfismo.

- 5. Stabilire se il polinomio $f=6x^4+15x^3+10$ ha radici in $\mathbb Q.$ Tale polinomio è riducibile in $\mathbb Q[x]$?
 - **6.** Stabilire se l'anello $\mathbb{Z}_5[x]/(x^3+x+1)$ è un campo.

Prova scritta di Matematica Discreta

Informatica e Comunicazione Digitale-sede di Taranto 12/1/05

Es 1: Giustificare la validità della seguente congruenza:

$$37^{17} \equiv 2 \pmod{5}$$
.

Es 2: Risolvere la seguente congruenza lineare:

$$164x \equiv 57 \pmod{55}.$$

Determinare inoltre la più piccola soluzione positiva e dire se vi sono soluzioni congrue a $45 \mod 55$.

Es 3: Si consideri l'insieme $X = \{2, 3, 4, 5, 6, 7\}.$

i) Data la relazione \mathcal{R} su X definita da

$$a\mathcal{R}b \iff a+b$$
è pari

verificare che è una relazione di equivalenza e determinare l'insieme quoziente $X/\mathcal{R}.$

ii) Elencare tutte le relazioni di equivalenza su X verificanti le condizioni seguenti:

4 è in relazione con 5 e 6 7 è in relazione con 5

2 e 3 non sono in relazione tra loro.

- Es 4: Determinare tutti i generatori del gruppo cicilico \mathbb{Z}_{10} e determinare il sottogruppo di \mathbb{Z}_{10} di ordine 5.
 - Es 5: Calcolare il MCD monico tra i polinomi di $\mathbb{Z}_3[x]$:

$$p = x^3 + 2x^2 + x + 2, q = x^4 + 2x^3 + 2x + 1.$$

Es 6: Verificare che l'anello $\mathbb{Z}_5[x]/(x^2+1)$ non è un campo. Stabilire poi se l'elemento $[x^3]$ di tale anello è invertibile e, in caso affermativo, determinarne l'inverso.

Laurea Triennale in Informatica e Comunicazione Digitale 7/9/2005

- 1. Si ponga $X=\{1,2,\ldots,8\}$. Determinare quante sono le relazioni di equivalenza su X per le quali $\{1,2,3\}$ è una classe di equivalenza, mentre $\{5,6\}$ non lo è.
 - 2. Giustificare la congruenza:

$$(215437)^{29} \equiv 2 \mod 5.$$

- 3. Si consideri il campo $K = \mathbb{Z}_2[x]/(x^2 + x + 1)$.
- a) Calcolare $[x^4 + 1] \cdot [x]^{-1}$.
- b) Determinare tutti gli isomorfismi del gruppo (K^*, \cdot) in sè.
- 4. Dimostrare che il polinomio di $\mathbb{Q}[x]$

$$f = -x^4 + 2x^2 + x + 1$$

è irriducibile.

- ${\bf 5.}\,$ a) Determinare il sottogruppo H di
 \mathbb{Z}_{12} di ordine 4e tutti i generatori di
 H.
- b) Data la permutazione $f=\begin{pmatrix}1&2&3&4&5&6&7\\3&2&4&5&1&7&6\end{pmatrix}$, dire se H e < f > sono gruppi isomorfi.
- ${\bf 6.}\,$ Determinare due soluzioni incongrue modulo 27 della congruenza lineare:

$$36x \equiv 24 \mod 27$$
.

Laurea Triennale in Informatica e Comunicazione Digitale 21/2/2006

1. Risolvere la congruenza

$$31x \equiv 7 \mod 19$$
.

e determinarne la più piccola soluzione positiva.

2. Si consideri la struttura algebrica ($\mathbb{Q},*$) la cui operazione interna * è definita nel modo seguente:

$$a * b = a + b + \frac{1}{2}ab.$$

- a) Stabilire che $(\mathbb{Q}, *)$ è un monoide;
- b) Mostrare che $(\mathbb{Q}, *)$ non è un gruppo.
- 3. Si ponga $X:=\{a,b,c\},\ Y=\{1,2,\dots,6\}.$ Dire, giustificando la risposta, quante sono le applicazioni ingettive $f:X\to Y$ tali che

$$f(c) = 1, \quad f(a) < 4.$$

- 4. a) Determinare il sottogruppo H di
 \mathbb{Z}_{18} di ordine 6 e tutti i generatori di
 H;
- b) Stabilire quanti sono, se esistono, gli omomorfismi surgettivi $\mathbb{Z}_{18} \to \mathbb{Z}_9$ e gli omomorfismi surgettivi $\mathbb{Z}_{18} \to \mathbb{Z}_8$.
 - **5.** Si consideri il campo $\mathbb{K} = (\mathbb{Z}_{11}, +, \cdot)$ e si ponga $a := [9]_{11}$.
 - a) Calcolare l'inverso di a;
 - b) Calcolare il periodo di a nel gruppo (\mathbb{K}^* , ·).
 - **6.** Risolvere in $\mathbb{Z}_3[x]$ la congruenza

$$(x^2+1)f = 2x \mod (2x+1).$$

Laurea Triennale in Informatica e Comunicazione Digitale 7/2/2006

1. Risolvere la congruenza

$$5x \equiv (54321)^{33} \mod 11.$$

2. Si consideri la relazione \mathcal{R} su \mathbb{Z} definita da

$$x\mathcal{R}y \iff 7|(8x+13y).$$

- a) Verificare che \mathcal{R} è una relazione di equivalenza;
- b) Determinare tutti gli elementi della classe $[-1]_{\mathcal{R}}$.
- **3.** Si considerino le permutazioni di S_8 :

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 2 & 4 & 7 & 6 & 5 & 8 \end{pmatrix} \ g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 3 & 6 & 5 & 4 & 7 & 1 \end{pmatrix}$$
$$h = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 3 & 2 & 6 & 7 & 4 & 5 & 1 \end{pmatrix}.$$

- a) Verificare che $H = \{Id, f, g, h\}$ è un sottogruppo di S_8 .
- b) Stabilire se H è un gruppo ciclico.
- **4.** a) Determinare tutti i sottogruppi di \mathbb{Z}_{15} ;
- b) Determinare l'omomorfismo $f: \mathbb{Z} \to \mathbb{Z}_{15}$ tale che

$$f(7) = [6]_{15}$$

e stabilire se è surgettivo.

5. Calcolare l'inverso di [17] nel campo di \mathbb{Z}_{19} .

Sapendo inoltre che [2] è un elemento primitivo, dire, giustificando la risposta, quali dei seguenti sono elementi primitivi di \mathbb{Z}_{19} :

$$a = [8], b = [2^5], c = [2^9].$$

- **6.** Si consideri il campo $\mathbb{K} = \mathbb{Z}_2[x]/(x^2+x+1)$.
- a) Dire quanti elementi ha K ed elencarli;
- b) Scrivere la tabella dell'addizione e della moltiplicazione di K.

Laurea Triennale in Informatica e Comunicazione Digitale 23/1/2006

1. Si consideri la struttura algebrica ($\mathbb{Q} \times \mathbb{Q}, *$) la cui operazione * è definita nel modo seguente

$$(a,b)*(x,y) := (ax, ay + b).$$

Verificare che $(\mathbb{Q} \times \mathbb{Q}, *)$ è un monoide.

2. Risolvere il sistema di congruenze lineari

$$\left\{ \begin{array}{ll} x \equiv 15 \mod 81 \\ x \equiv 0 \mod 7 \end{array} \right.$$

Determinare inoltre una soluzione pari x_o e una soluzione dispari x_1 .

3. Si consideri la permutazione

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 2 & 4 & 7 & 6 & 5 & 8 \end{pmatrix}.$$

- a) Calcolare f^{27} .
- b) Determinare, se esistono, i sottogruppi di $\langle f \rangle$ di ordine 2, 3 e 4.
- **4.** Si considerino gli insiemi $X = \{1, 2, \dots, 7\}$ e $Y = \{a, b, c\}$. Stabilire quante sono le applicazioni surgettive $f: X \to Y$ verificante la condizione seguente: gli elementi di X la cui immagine mediante f è a oppure b sono esattamente quattro.
 - **5.** a) Stabilire se il polinomio f di $\mathbb{Q}[x]$:

$$f = x^3 + 5x^2 - 4x + 12$$

è irriducibile;

- b) Determinare il MCD monico tra $f \in g = 2x^3 + 12x^2 + 2x + 12$.
- **6.** Si consideri l'anello $End(\mathbb{Z}_4)=\{0,f,g,h\}$ degli endomorfismi del gruppo \mathbb{Z}_4 , dove f,g,h sono determinati da:

$$f([1]) = [1], g([1]) = [2], h([1]) = [3].$$

- a) Scrivere la tabella dell'addizione e della moltiplicazione di tale anello;
- b) Stabilire se $End(\mathbb{Z}_4)$ è un campo.

Laurea Triennale in Informatica e Comunicazione Digitale 12/1/2006

1. Si considerino le applicazioni

$$f: \mathbb{Z} \to \mathbb{Q} \quad g: \mathbb{Z} \to \mathbb{Z}_6$$

definite nel modo seguente:

$$\forall x \in \mathbb{Z} \quad f(x) = \frac{x^2 - 1}{x^2 + 1}, \quad g(x) = [x + 1]_6.$$

- a) Stabilire se f è ingettiva o surgettiva;
- b) Determinare una preimmagine $x \in \mathbb{Z}$ mediante g dell'elemento $[-13]_6$ di \mathbb{Z}_6 , con x > 0.
 - 2. Determinare la più piccola soluzione positiva della congruenza lineare

$$792x \equiv -81 \mod 135.$$

3. Si consideri la permutazione

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 5 & 2 & 4 & 6 & 7 & 3 & 1 \end{pmatrix}.$$

Posto H=< f>, stabilire quali delle seguenti permutazioni appartengono ad H:

$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 3 & 4 & 5 & 7 & 6 & 1 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 5 & 2 & 4 & 6 & 7 & 3 & 8 \end{pmatrix}.$$

- 4. Si consideri l'insieme $X = \{1, 2, ..., 11\}$. Stabilire quante sono le relazioni di equivalenza su X verificanti le condizioni seguenti:
 - a) I numeri pari di X sono tutti in relazione tra loro;
 - b) L'elemento 1 è in relazione con esattamente sei elementi di X.
 - **5.** a) Determinare tutti i generatori e tutti i sottogruppi di \mathbb{Z}_{16} ;
- b) Detto K il sottogruppo di \mathbb{Z}_{16} di ordine 4 ed H il sottogruppo di \mathbb{Z}_{8} avente lo stesso ordine, determinare tutti gli isomorfismi $H \to K$.
- **6.** Stabilire se l'elemento $z = [2x^3 + x^2 + x]$ è primitivo nel campo $\mathbb{K} = \mathbb{Z}_3[x]/(x^4 + 2x + 2)$.

Laurea Triennale in Informatica e Comunicazione Digitale 5/6/2006

- **1.** Si ponga $X = \{x \in \mathbb{Q} \mid x \neq 3\}.$
- 1) Stabilire se X è un sottogruppo di $(\mathbb{Q}, +)$.
- 2) Stabilire se l'applicazione $f: X \to \mathbb{Q}$ tale che

$$\forall x \in X \quad f(x) = \frac{x}{x-3}$$

è ingettiva e se è surgettiva.

2. Risolvere il sistema di congruenze lineari

$$\left\{ \begin{array}{ll} x \equiv 3 & \mod 7 \\ x \equiv -1 & \mod 3 \end{array} \right.$$

- **3.** Si considerino le permutazioni $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 5 & 2 & 1 & 6 \end{pmatrix}$ e g = (243)(56).
 - 1) Calcolare il periodo di f e di $f \circ g$.
 - 2) PostoH=< g>,stabilire quanti sono gli omomorfismi
 $F:\mathbb{Z}_3\to H.$
- 4. Calcolare in $\mathbb{Z}_5[x]$ il MCD monico tra i polinomi $p=x^4+x^3+2x+2$ e $q=x^2+x$.
- **5.** Determinare tutti i sottogruppi di \mathbb{Z}_{27} . Detto H il sottogruppo di ordine 9, determinare tutti i generatori di H.
 - **6.** Determinare l'inverso di a = [9] nel campo $(\mathbb{Z}_{11}, +, \cdot)$.

Laurea Triennale in Informatica e Comunicazione Digitale 6/11/2006

- **1.** Si ponga $X = \{a, b, c, d, e\}$.
- a) Calcolare il numero delle relazioni di equivalenza su X.
- b) Stabilire quante sono le relazioni di equivalenza su X per le quali $\{a,b\}$ è una classe di equivalenza.
 - 2. Risolvere la congruenza lineare:

$$6x \equiv 9 \mod 315$$

e determinare tre soluzioni positive x_1, x_2, x_3 a due a due incongrue module 315.

3. Si considerino le seguenti operazioni su \mathbb{Q} :

$$x * y = -7(x+y)$$

$$x \otimes y = -7xy$$
.

Dire, giustificando la risposta, quale delle strutture algebriche $(\mathbb{Q}, *)$ e (\mathbb{Q}, \otimes) è un monoide.

- **4.** a) Determinare tutti i sottogruppi e tutti i generatori di \mathbb{Z}_{25} .
- b) Stabilire quanti sono gli omomorfismi $\mathbb{Z}_5 \to \mathbb{Z}_{25}$.
- **5.** Dimostrare che il polinomio $p = x^4 3x + 1$ di $\mathbb{Q}[x]$ è irriducibile.
- **6.** Si verifichi che 3 è un elemento primitivo del campo \mathbb{Z}_{17} .

Laurea Triennale in Informatica e Comunicazione Digitale 25/9/2006

- **1.** Si ponga $X = \{0, 1, 2, 3, 4, 5\}$ e $Y = \{1, 2, 3\}$.
- a) Calcolare il numero delle applicazioni surgettive $f: X \to Y$.
- b) Stabilire quante sono le applicazioni surgettive $f: X \to Y$ tali che i numeri dispari di X abbiano tutti la stessa immagine mediante f.
 - 2. Risolvere il sistema di congruenze lineari:

$$\begin{cases} 7x \equiv 1 \mod 9 \\ 7x \equiv 1 \mod 5 \end{cases}$$

- **3.** Si consideri l'anello $\mathbb{K} = \mathbb{Z}_2[x]/(x^3 + x + 1)$.
- a) Mostrare che K è un campo.
- b) Dire quanti elementi ha K.
- c) Calcolare $a = [x^2 + 1] \cdot [x + 1]$ e il suo inverso a^{-1} .
- 4. Determinare in $\mathbb{Z}_{11}[x]$ il MCD monico tra i polinomi

$$p = x^3 + 3x^2 + 2x$$
, $q = x^2 + 10x + 9$.

- 5. a) Determinare tutti i sottogruppi di \mathbb{Z}_8 .
- b) Determinare tutti i generatori del sottogruppo $H = \{[0], [2], [4], [6]\}.$
- **6.** È data la permutazione $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 2 & 5 & 7 & 6 & 4 \end{pmatrix}$.
- a) Calcolare f^{27} .
- b) Posto $G = \langle f \rangle$, verificare che

$$K = \{(475), (457), Id\}$$

è un sottogruppo di G.

Laurea Triennale in Informatica e Comunicazione Digitale 12/9/2006

- 1. Si ponga $X = \{x \in \mathbb{Q} \mid x \neq 3\}.$
- 1) Stabilire se X è un sottogruppo di $(\mathbb{Q}, +)$.
- 2) Stabilire se l'applicazione $f: X \to \mathbb{Q}$ tale che

$$\forall x \in X \quad f(x) = \frac{x}{x-3}$$

è ingettiva e se è surgettiva.

2. Risolvere il sistema di congruenze lineari

$$\left\{ \begin{array}{ll} x \equiv 3 & \mod 7 \\ x \equiv -1 & \mod 3 \end{array} \right.$$

- **3.** Si considerino le permutazioni $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 5 & 2 & 1 & 6 \end{pmatrix}$ e g = (243)(56).
 - 1) Calcolare il periodo di f e di $f \circ g$.
- 2) Posto H=< g>, determinare tutti gli omomorfismi $F:\mathbb{Z}_3\to H.$ Per ciascuno di essi, stabilirne la eventuale ingettività e/o surgettività.
- 4. Calcolare in $\mathbb{Z}_5[x]$ il MCD monico tra i polinomi $p=x^4+x^3+2x+2$ e $q=x^2+x$.
- **5.** Determinare tutti i sottogruppi di \mathbb{Z}_{27} . Detto H il sottogruppo di ordine 9, determinare tutti i generatori di H.
- **6.** Determinare l'inverso di a=[9] nel campo $(\mathbb{Z}_{11},+,\cdot)$. Stabilire inoltre se l'elemento b=[3] è primitivo.