

303192102 - Engineering Physics-II

Course	Bachelor of Technology (BTech)	Semester - 1			
Type of Course	-				
Prerequisite	Knowledge of Physics and some basic concepts in Mathematics like differentiation, integration, limit, differential equation, vector calculus up to 12thscience level.				
Course Objective	Knowledge of physics is essential for all Engineering branch because physics is the founda all the branches of engineering and it develops scientific temperament and analytical capa engineering students. Comprehension of basic physics concepts enables the students to sengineering problem logically and develop scientific approach.	ability of			

To	eaching Scheme (Contact Hours)			Exa	mination Sch	eme	
				Theory	Marks	Practica	al Marks	Total
Lecture	Tutorial	Lab	Credit	External Marks	Internal Marks	External Marks	Internal Marks	Marks
3	0	2	4.00	60	20	30	20	150

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cour	rse Content	T - Teaching Hours W -	Wei	ghtag
Sr.	Topics		Т	w
1	UNIT-I: Moder	n Physics	9	20
		oout quantum Mechanics, Schrodinger's equations, Time dependent and Time Independent Wave Ecance of the wave Function, Application of Schrodinger equation in particle in One Dimensional Pote effects.	•	
2	UNIT-II: Band t	heory & Semiconductors	9	20
	E-k diagram, Kr	n solids, Classification of Materials into Conductors, Semiconductors & Insulators, Density of state, conig-Penny model (to introduce origin of band gap), Effective mass. Direct and indirect band gap. C in semiconductors, Fermi Level in Intrinsic and Extrinsic Semiconductors, P-N junction diode, ottky Junction.	arriei	-
3	UNIT-III: Mate	rials	9	20
		f materials: Magnetic materials, Nanomaterials based on semiconductors and metal oxides, Basic properties of nanomaterials, Novel Materials. Physical, Thermal, Electrical, Optical and Magnetic pro	perti	es of
4	UNIT-IV: Laser	and Fiber Optics	9	20
	Types of Lasers	cion of radiation with Matter, Absorption, Spontaneous and Stimulated emission, Characteristics of :: Ruby Laser, Helium-Neon Laser, Semiconductor Diode Laser, Applications of Lasers. Fiber Optics: For Optical Fiber, Numerical Aperture of fiber, Types of Optical Fibers, Attenuation in Optical Fibers, Optical Fibers.		
5	UNIT-V: Device	es	9	20
	1 .	Devices: Photoconductive cell, photovoltaic cell, Photodiode, Phototransistor, LED, IR emitters, Optidiffractometer, Quantum devices and their applications.	to	
	•	Total	45	100

Fundamentals of Physics (TextBook)

D. Halliday, R Resnick and J. Walker; Asian Books Pvt. Ltd

Reference Books		_					
	Do	·fω	or	2	R	\sim	ŀς

1.	Semiconductor Optoelectronics (TextBook) J. Singh; McGraw-Hill Inc, 1995
2.	Fundamentals of Photonics (TextBook) B. E. A. Saleh and M. C. Teich; John Wiley & Sons, 2007
3.	Semiconductor Devices: Physics and Technology (TextBook) S. M. Sze; Wiley, 2008
4.	Semiconductor Optoelectronic Devices (TextBook) P. Bhattacharya; Prentice Hall of India, 1997

List of Practical

List o	f Practical	
1.	I-V characterist	tics of light emitting diode in forward bias.
2.	I-V characterist	tics of Zener diode in reverse bias.
3.	Determination	of Velocity of ultrasonic waves in water.
4.	Determination	of Dielectric constants of Dielectric samples
5.	Measurement	of Band gap of semiconductor material.
6.	Measurement	of Hall coefficient RH and carrier concentration in a semiconductor
7.	Measurement	of Planck's constant using LED
8.	Measurement	of wavelength of laser light using diffraction grating.
9.	Measurement	of Numerical aperture of an optical Fiber.
10.	Moment of Ine	ertia of a flywheel.
11.	Measurement	of power loss in an optical fibre
12.	B-H Curve traci	ing.
13.	Determination	of Young's modulus.
14.	Determination	of thermal conductivity. (Searle's method or Lee's method)
15.	To Determine a	acceleration due to gravity using compound pendulum.

Printed on: 30-01-2024 06:56 PM Page 15 of 17