기계학습 (2022년도 2학기)

SVMs and Boosting

전북대학교 컴퓨터공학부

Overview

- Support Vector Machines
- Connection between Exponential Loss and AdaBoost

Binary Classification with a Linear Model

- Classification: Predict a discrete-valued target
- Binary classification: Targets $t \in \{-1, +1\}$
- Linear model:

$$z = \mathbf{w}^{\top} \mathbf{x} + b$$

 $y = sign(z)$

■ Question: How should we choose **w** and *b*?

Zero-One Loss

■ We can use the 0 – 1 loss function, and find the weights that minimize it over data points

$$\mathcal{L}_{0-1}(y,t) = \left\{ egin{array}{ll} 0 & ext{if } y=t \ 1 & ext{if } y
eq t \end{array}
ight.$$
 $= \mathbb{I}\{y
eq t\}.$

- But minimizing this loss is computationally difficult, and it can't distinguish different hypotheses that achieve the same accuracy.
- We investigated some other loss functions that are easier to minimize, e.g., logistic regression with the cross-entropy loss L_{CE} .
- Let's consider a different approach, starting from the geometry of binary classifiers.

 Suppose we are given these data points from two different classes and want to find a linear classifier that separates them.

- The decision boundary looks like a line because $x \in \mathbb{R}^2$, but think about it as a D-1 dimensional hyperplane.
- Recall that a hyperplane is described by points $x \in \mathbb{R}^D$ such that $f(x) = w^T x + b = 0$

■ There are multiple separating hyperplanes, described by different parameters (w, b)

Optimal Separating Hyperplane

 Optimal Separating Hyperplane: A hyperplane that separates two classes and maximizes the distance to the closest point from either class, i.e., maximize the margin of the classifier.

Intuitively, ensuring that a classifier is not too close to any data points leads to better generalization on the test data.

Geometry of Points and Planes

- \blacksquare Recall that the decision hyperplane is orthogonal (perpendicular) to w.
- The vector $\mathbf{w}^* = \frac{\mathbf{w}}{||\mathbf{w}||_2}$ is a unit vector pointing in the same direction as \mathbf{w} .
- The same hyperplane could equivalently be defined in terms of w^*

Geometry of Points and Planes

The (signed) distance of
 a point x' to the hyperplane is

$$\frac{\mathbf{w}^{\top}\mathbf{x}'+b}{\|\mathbf{w}\|_{2}}$$

$$x_{proj}
div w^T x + b = 0$$
 위의 한 점이므로 $w^T x_{proj} + b = 0$ (1) $x' = x_{proj} + \alpha \frac{w}{||w||_2}$ 라 하면, $(\alpha \in \mathbb{R})$ $x_{proj} = x' - \alpha \frac{w}{||w||_2}$ (2) (2)를 (1)에 대입하면 $w^T (x' - \alpha \frac{w}{||w||_2}) + b = 0$ $\Rightarrow w^T x' - \alpha \frac{w^T w}{||w||_2} + b = 0$ $\Rightarrow w^T x' - \alpha \frac{||w||_2^2}{||w||_2} + b = 0$ $\Rightarrow w^T x' - \alpha ||w||_2 + b = 0$ $\Rightarrow w^T x' - \alpha ||w||_2 + b = 0$ $\Rightarrow w^T x' - \alpha ||w||_2 + b = 0$ $\Rightarrow w^T x' - \alpha ||w||_2 + b = 0$

■ Recall: the classification for the i-th data point is correct when

$$sign(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b) = t^{(i)}$$

This can be rewritten as

$$t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)}+b)>0$$

■ Enforcing a margin of *C*:

$$t^{(i)} \cdot \frac{(\mathbf{w}^{\top} \mathbf{x}^{(i)} + b)}{\|\mathbf{w}\|_2} \ge C$$

Max-margin objective:

$$\max_{\mathbf{w},b} C \quad \text{s.t. } \frac{t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b)}{\|\mathbf{w}\|_2} \ge C \qquad i = 1,\ldots,N$$

■ Plug in $C = 1/||w||_2$ and simplify:

$$\underbrace{\frac{t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b)}{\|\mathbf{w}\|_{2}} \geq \frac{1}{\|\mathbf{w}\|_{2}}}_{\text{algebraic margin constraint}} \iff \underbrace{t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b) \geq 1}_{\text{algebraic margin constraint}}$$

Equivalent optimization objective:

$$\min \|\mathbf{w}\|_{2}^{2}$$
 s.t. $t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)}+b) \geq 1$ $i=1,\ldots,N$

Algebraic max-margin objective:

$$\min_{\mathbf{w},b} \|\mathbf{w}\|_2^2$$

s.t. $t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)}+b) \geq 1$..., N

- Observe: if the margin constraint is not tight for $x^{(i)}$, we could remove it from the training set and the optimal w would be the same.
- The important training examples are the ones with algebraic margin 1, and are called support vectors.
- Hence, this algorithm is called the (hard) Support Vector Machine (SVM) (or Support Vector Classifier).
- SVM-like algorithms are often called max-margin or large-margin.

Non-Separable Data Points

■ How can we apply the max-margin principle if the data are not linearly separable?

Maximizing Margin for Non-Separable Data Points

Main Idea:

- Allow some points to be within the margin or even be misclassified; we represent this with slack variables ξ_i
- But constrain or penalize the total amount of slack.

Maximizing Margin for Non-Separable Data Points

Soft margin constraint:

$$\frac{t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)}+b)}{\|\mathbf{w}\|_2} \geq C(1-\xi_i), \quad \text{for } \xi_i \geq 0.$$

■ Penalize $\sum_i \xi_i$

Maximizing Margin for Non-Separable Data Points

Soft-margin SVM objective:

$$\min_{\mathbf{w},b,\xi} \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + \gamma \sum_{i=1}^{N} \xi_{i}$$
s.t. $t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b) \ge 1 - \xi_{i}$ $i = 1, ..., N$

$$\xi_{i} \ge 0$$
 $i = 1, ..., N$

- \bullet γ is a hyperparameter that trades off the margin with the amount of slack.
 - For $\gamma = 0$, we'll get $\mathbf{w} = 0$. (Why? \mathbf{w} , b, $\xi = 1$ 모두 0으로 만들면 constraint 만족)
 - As $\gamma \to \infty$, we get the hard-margin objective.
- Note: it is also possible to constrain $\sum_i \xi_i$ instead of penalizing it.

From Margin Violation to Hinge Loss

• Let's simplify the soft margin constraint by eliminating ξ_i . Recall:

$$t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)}+b) \geq 1-\xi_i$$
 $i=1,\ldots,N$
 $\xi_i \geq 0$ $i=1,\ldots,N$

- Rewrite as $\xi_i \ge 1 t^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b)$
- Case 1: $1 t^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \le 0$
 - The smallest non-negative ξ_i that satisfies the constraint is $\xi_i=0$.
- Case 2: $1 t^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) > 0$
 - The smallest ξ_i that satisfies the constraint is $\xi_i = 1 t^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b)$
- Hence, $\xi_i = \max\{0, 1 t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b)\}$
- Therefore, the slack penalty can be written as

$$\sum_{i=1}^{N} \xi_i = \sum_{i=1}^{N} \max\{0, 1 - t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b)\}$$

From Margin Violation to Hinge Loss

If we write $y^{(i)}(\mathbf{w}, b) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$, then the optimization problem can be written as

$$\min_{\mathbf{w},b,\xi} \sum_{i=1}^{N} \max\{0, 1 - t^{(i)}y^{(i)}(\mathbf{w},b)\} + \frac{1}{2\gamma} \|\mathbf{w}\|_{2}^{2}$$

- The loss function $L_H(\mathbf{y}, \mathbf{t}) = \max\{0, 1 \mathbf{t}\mathbf{y}\}$ is called the hinge loss.
- The second term is the L_2 -norm of the weights.
- Hence, the soft-margin SVM can be seen as a linear classifier with hinge loss and an L_2 regularizer.

Revisiting Loss Functions for Classification

Hinge loss compared with other loss functions

SVMs: What we Left Out

What we left out:

- How to fit *w*:
 - One option: gradient descent
 - Can reformulate with the Lagrange dual
- The "kernel trick" converts it into a powerful nonlinear classifier. We'll cover this later in the course.
- Classic results from learning theory show that a large margin implies good generalization.

AdaBoost Revisited

■ Part 2: reinterpreting AdaBoost in terms of what we've learned about loss functions.

AdaBoost Revisited

Additive Models

- Consider a hypothesis class \mathcal{H} with each h_i : $\mathbf{x} \mapsto \{-1, +1\}$ within \mathcal{H} , i.e., $h_i \in \mathcal{H}$. These are the "weak learners", and in this context they're also called bases.
- An additive model with m terms is given by

$$H_m(x) = \sum_{i=1}^m \alpha_i h_i(\mathbf{x}), \text{ where } (\alpha_1, \dots, \alpha_m) \in \mathbb{R}^m$$

- Observe that we're taking a linear combination of base classifiers, just like in boosting.
- We'll now interpret AdaBoost as a way of fitting an additive model.

Stagewise Training of Additive Models

A greedy approach to fitting additive models, known as stagewise training:

- 1. Initialize $H_0(x) = 0$
- 2. For m=1 to T:
 - Compute the m-th hypothesis and its coefficient

$$(h_m, \alpha_m) \leftarrow \underset{h \in \mathcal{H}, \alpha}{\operatorname{argmin}} \sum_{i=1}^{N} \mathcal{L}\left(H_{m-1}(\mathbf{x}^{(i)}) + \alpha h(\mathbf{x}^{(i)}), t^{(i)})\right)$$

Add it to the additive model

$$H_m = H_{m-1} + \alpha_m h_m$$

Consider the exponential loss

$$\mathcal{L}_{\mathrm{E}}(y,t) = \exp(-ty)$$

We want to see how the stagewise training of additive models can be done.

$$(h_{m}, \alpha_{m}) \leftarrow \underset{h \in \mathcal{H}, \alpha}{\operatorname{argmin}} \sum_{i=1}^{N} \exp\left(-\left[H_{m-1}(\mathbf{x}^{(i)}) + \alpha h(\mathbf{x}^{(i)})\right] t^{(i)}\right)$$

$$= \sum_{i=1}^{N} \exp\left(-H_{m-1}(\mathbf{x}^{(i)}) t^{(i)} - \alpha h(\mathbf{x}^{(i)}) t^{(i)}\right)$$

$$= \sum_{i=1}^{N} \exp\left(-H_{m-1}(\mathbf{x}^{(i)}) t^{(i)}\right) \exp\left(-\alpha h(\mathbf{x}^{(i)}) t^{(i)}\right)$$

$$= \sum_{i=1}^{N} w_{i}^{(m)} \exp\left(-\alpha h(\mathbf{x}^{(i)}) t^{(i)}\right).$$

■ Here we defined $w_i^{(m)} \triangleq \exp(-H_{m-1}(\mathbf{x}^{(i)})t^{(i)})$

We want to solve the following minimization problem:

$$(h_m, \alpha_m) \leftarrow \underset{h \in \mathcal{H}, \alpha}{\operatorname{argmin}} \sum_{i=1}^N w_i^{(m)} \exp\left(-\alpha h(\mathbf{x}^{(i)}) t^{(i)}\right)$$

- If $h(\mathbf{x}^{(i)}) = t^{(i)}$, we have $\exp(-\alpha h(\mathbf{x}^{(i)})t^{(i)}) = \exp(-\alpha)$
- If $h(\mathbf{x}^{(i)}) \neq t^{(i)}$, we have $\exp(-\alpha h(\mathbf{x}^{(i)})t^{(i)}) = \exp(+\alpha)$

(recall that we are in the binary classification case with {-1,+1} output values).

We can divide the summation to two parts:

$$\sum_{i=1}^{N} w_{i}^{(m)} \exp\left(-\alpha h(\mathbf{x}^{(i)}) t^{(i)}\right) = e^{-\alpha} \sum_{i=1}^{N} w_{i}^{(m)} \mathbb{I}\{h(\mathbf{x}^{(i)}) = t_{i}\} + e^{\alpha} \sum_{i=1}^{N} w_{i}^{(m)} \mathbb{I}\{h(\mathbf{x}^{(i)}) \neq t_{i}\}$$

$$= (e^{\alpha} - e^{-\alpha}) \sum_{i=1}^{N} w_{i}^{(m)} \mathbb{I}\{h(\mathbf{x}^{(i)}) \neq t_{i}\} +$$

$$e^{-\alpha} \sum_{i=1}^{N} w_{i}^{(m)} \left[\mathbb{I}\{h(\mathbf{x}^{(i)}) \neq t_{i}\} + \mathbb{I}\{h(\mathbf{x}^{(i)}) = t_{i}\} \right]$$

$$\sum_{i=1}^{N} w_i^{(m)} \exp\left(-\alpha h(\mathbf{x}^{(i)}) t^{(i)}\right) = (e^{\alpha} - e^{-\alpha}) \sum_{i=1}^{N} w_i^{(m)} \mathbb{I}\{h(\mathbf{x}^{(i)} \neq t_i) + \mathbb{I}\{h(\mathbf{x}^{(i)}) = t_i\}\}$$

$$= (e^{\alpha} - e^{-\alpha}) \sum_{i=1}^{N} w_i^{(m)} \mathbb{I}\{h(\mathbf{x}^{(i)}) \neq t_i\} + e^{-\alpha} \sum_{i=1}^{N} w_i^{(m)}.$$

Let us first optimize *h*:

The second term on the RHS does not depend on h. So we get

$$h_m \leftarrow \underset{h \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{N} w_i^{(m)} \exp\left(-\alpha h(\mathbf{x}^{(i)}) t^{(i)}\right) \equiv \underset{h \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{N} w_i^{(m)} \mathbb{I}\{h(\mathbf{x}^{(i)}) \neq t_i\}$$

This means that h_m is the minimizer of the weighted 0/1-loss.

• Now that we obtained h_m , we want to find α : Define the weighted classification error:

$$err_m = \frac{\sum_{i=1}^{N} w_i^{(m)} \mathbb{I}\{h_m(\mathbf{x}^{(i)}) \neq t^{(i)}\}}{\sum_{i=1}^{N} w_i^{(m)}}$$

With this definition and

$$\min_{h \in \mathcal{H}} \sum_{i=1}^{N} w_i^{(m)} \exp\left(-\alpha h(\mathbf{x}^{(i)}) t^{(i)}\right) = \sum_{i=1}^{N} w_i^{(m)} \mathbb{I}\{h_m(\mathbf{x}^{(i)}) \neq t_i\}, \text{ we have}$$

$$\min_{\alpha} \min_{h \in \mathcal{H}} \sum_{i=1}^{N} w_i^{(m)} \exp\left(-\alpha h(\mathbf{x}^{(i)})t^{(i)}\right) =$$

$$\min_{\alpha} \left\{ (e^{\alpha} - e^{-\alpha}) \sum_{i=1}^{N} w_i^{(m)} \mathbb{I} \{ h_m(\mathbf{x}^{(i)}) \neq t_i \} + e^{-\alpha} \sum_{i=1}^{N} w_i^{(m)} \right\}$$

$$= \min_{\alpha} \left\{ \left(e^{\alpha} - e^{-\alpha} \right) \operatorname{err}_{m} \left(\sum_{i=1}^{N} w_{i}^{(m)} \right) + e^{-\alpha} \left(\sum_{i=1}^{N} w_{i}^{(m)} \right) \right\}$$

 \blacksquare Take derivative w.r.t. α and set it to zero. We get that

$$e^{2\alpha} = \frac{1 - \operatorname{err}_m}{\operatorname{err}_m} \Rightarrow \alpha = \frac{1}{2} \log \left(\frac{1 - \operatorname{err}_m}{\operatorname{err}_m} \right)$$

The updated weights for the next iteration is

$$w_i^{(m+1)} = \exp\left(-H_m(\mathbf{x}^{(i)})t^{(i)}\right)$$

$$= \exp\left(-\left[H_m|_{-1}(\mathbf{x}^{(i)}) + \alpha_m h_m(\mathbf{x}^{(i)})\right]t^{(i)}\right)$$

$$= \exp\left(-H_{m-1}(\mathbf{x}^{(i)})t^{(i)}\right) \exp\left(-\alpha_m h_m(\mathbf{x}^{(i)})t^{(i)}\right)$$

$$= w_i^{(m)} \exp\left(-\alpha_m h_m(\mathbf{x}^{(i)})t^{(i)}\right)$$

$$= w_i^{(m)} \exp\left(-\alpha_m \left(2\mathbb{I}\{h_m(\mathbf{x}^{(i)}) = t^{(i)}\} - 1\right)\right)$$

$$= \exp(\alpha_m)w_i^{(m)} \exp\left(-2\alpha_m\mathbb{I}\{h_m(\mathbf{x}^{(i)}) = t^{(i)}\}\right).$$

■ The term $\exp(\alpha_m)$ multiplies the weight corresponding to all samples, so it does not affect the minimization of h_{m+1} or α_{m+1} .

■ To summarize, we obtain the additive model $H_m(x) = \sum_{i=1}^m \alpha_i h_i(\mathbf{x})$ with

$$\begin{split} h_m \leftarrow & \underset{h \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^N w_i^{(m)} \mathbb{I}\{h(\mathbf{x}^{(i)}) \neq t_i\}, \\ \alpha &= \frac{1}{2} \log \left(\frac{1 - \operatorname{err}_m}{\operatorname{err}_m}\right), \qquad \text{where } \operatorname{err}_m = \frac{\sum_{i=1}^N w_i^{(m)} \mathbb{I}\{h_m(\mathbf{x}^{(i)}) \neq t^{(i)}\}}{\sum_{i=1}^N w_i^{(m)}}, \\ w_i^{(m+1)} &= w_i^{(m)} \exp \left(-\alpha_m h_m(\mathbf{x}^{(i)}) t^{(i)}\right). \end{split}$$

We derived the AdaBoost algorithm!

Revisiting Loss Functions for Classification

- If AdaBoost is minimizing exponential loss, what does that say about its behavior (compared to, say, logistic regression)?
- This interpretation allows boosting to be generalized to lots of other loss functions.