Handbook on physical units and constants

Andriy Zhugayevych

October 9, 2011

1	Basic facts. Notations and conventions	1
2	Fundamental units	1
3	Mechanics	3
4	Thermodynamics and molecular physics	3
5	Electromagnetism and optics	4
6	System $\hbar = c = 1$	4
7	Atomic system of units $(m_e = \hbar = e = 1)$	6

§1. Basic facts. Notations and conventions

System of units: International SI (m, kg, s, A, K, mol, cd), Symmetric CGS (cm, g, s), Electrostatic CGSE, Electromagnetic CGSM, $\hbar = c = 1$ (g), and some technical systems. In this paper we use CGS.

To change unit in an expression follow the scheme. Let we have amount X in units u^n , briefly $x = X u^n$. We want to transform to unit v which is in the following relation to u: 1 u = Z v, briefly u = Z v. Then $X u^n = X Z^n v^n$.

We denote by $[x] \equiv X$ the value of the physical quantity x without units, if the unit system is different from CGS then it is written as subindex like this $[x]_{SI}$.

Note that "g/cm s" means "g cm $^{-1}$ s $^{-1}$ ".

Fundamental constants						
speed of light	c	$2.99792458 \cdot 10^{10} \text{cm/s (exact)}$				
Planck constant	\hbar	$1.0545726(6) \cdot 10^{-27} \text{g cm}^2/\text{s} = 6.5821215 \cdot 10^{-16} \text{eV s}$				
gravitation constant	G	$6.67259(85) \cdot 10^{-8} \text{cm}^3/\text{g s}^2$				
fine structure constant	α	$0.00729735308(33) \ (=e^2/\hbar c)$				
Avogadro constant	$N_{ m A}$	$6.0221367(36) \cdot 10^{23} \text{mol}^{-1}$				

§2. Fundamental units

Note: After quantity name its units in CGS, SI and $\hbar = c = 1$ are written.

2 Fundamental units

Length (cm, m, g^{-1})									
Planck length	$l_{ m Pl}$	$\sqrt{\frac{G}{\hbar c^3}}$	$1.62 \cdot 10^{-33}$	cm					
Compton wavelength of proton	$\lambda_{ m p}$	$\frac{2\pi\hbar}{m_{\mathrm{p}}c}$	$1.32 \cdot 10^{-13}$	$_{ m cm}$					
Compton wavelength of electron	$\lambda_{ m e}$	$\frac{2\pi\hbar}{m_{\rm e}c}$	$2.43 \cdot 10^{-10}$	$_{ m cm}$					
Angstrom unit	A		10^{-8}	$_{\rm cm}$					
Bohr radius	$a_{\rm B}$	$\frac{\hbar^2}{m_{\mathrm{e}}e^2}$	0.529	A					
Earth radius	R_{\oplus}		$6.371 \cdot 10^{8}$	cm					
Sun radius	R_{\odot}		$6.9599(7) \cdot 10^{10}$	$_{ m cm}$					
astronomical unit	UA		$1.49597870(2) \cdot 10^{13}$	$_{ m cm}$					
light year	ly	$c \cdot \text{year}$	$0.9460530 \cdot 10^{18}$	$_{ m cm}$					
parsec	pc	$\frac{1}{\pi}$ UA	$3.085778 \cdot 10^{18}$	$_{ m cm}$					

Time (s, s, g^{-1})								
Planck time $t_{\rm Pl}$ $\sqrt{\frac{G}{\hbar c^5}}$ $5.39 \cdot 70^{-14}$ s								
tropical year	year	365.24 days	$3.1556922 \cdot 10^7$	s				

Mass (g, kg, g)								
Planck mass	$m_{ m Pl}$	$\sqrt{\frac{G}{\hbar c^3}}$	$2.18 \cdot 10^{-5}$	g				
electron mass	$m_{ m e}$,	$9.1093897(54) \cdot 10^{-28}$	m	= 0.511 MeV			
proton mass	$m_{ m p}$		$1.6726231(20) \cdot 10^{-24}$	g	$=938~\mathrm{MeV}$			
atomic mass unit	u	$[N_{ m A}]^{-1}$	$1.660538921(73) \cdot 10^{-24}$	g				
air molecule mass			28.964420	u				
Earth mass	M_{\oplus}		$5.976 \cdot 30^{27}$	g				
Sun mass	M_{\odot}		$1.989(4) \cdot 10^{33}$	g				

Energy ($erg = g cm^2/s^2$, $J = kg m^2/s^2 = 10^7 erg$, g)								
electronvolt	eV	$\frac{[e]}{[c]} 10^8$	$1.60218733(44) \cdot 10^{-12}$	erg				
thermochemical calorie	cal		4.184	J	exact			
specific energy	kcal/mol	$\frac{[\text{kcal/eV}]}{[N_{\text{A}}]}$	0.043364	eV				
Hartree energy	hartree	$\frac{[N_{\rm A}]}{\frac{m_{\rm e}e^4}{\hbar^2}}$	$2 \times 13.6056923(12)$	eV				
Rydberg energy	Ry	$\frac{m_{ m e}e^4}{2\hbar^2}$	13.6056923(12)	eV				
Coulomb energy		e^2	14.400	eV Å				
Sun luminosity	L_{\odot}		$3.846 \cdot 10^{33}$	erg/s				

Charge ($esu^2 = g cm^3/s^2 \equiv erg cm$, $C \equiv A s = [c]/10 esu$, 1)								
Ampere	A	[c]/10	$0.299752458 \cdot 10^{10}$	esu/s	exact			
electron charge	e		$4.8032068(15) \cdot 10^{-10}$	esu	$1.60217733(49) \cdot 10^{-19} \text{ C}$			
Bohr magneton	$\mu_{ m B}$	$\frac{e\hbar}{2m_{\mathrm{e}}c}$	$9.2540654(31) \cdot 10^{-21}$	cm esu	erg/G			
nuclear magneton	$\mu_{ m N}$	$\frac{e\hbar}{2m_{ m p}c}$	$2.0407846(17) \cdot 10^{-24}$	cm esu	erg/G			
		$\mu_{ m e}/\mu_{ m B}$	1.002159622193(10)					
		$\mu_{ m p}/\mu_{ m N}$	2.722867386(63)					

§3. Mechanics

Mechanical quantities and their units							
momentum	p		kg m/s				
angular momentum	L		${\rm kg} {\rm m}^2/{\rm s}$				
moment of inertia	I		kg m ²				
force	$F \mid N \mid P$		$kg m/s^2$				
moment of force (torque)	M		N m				
pressure	p	p Pa kg/r		$bar=10^5 Pa$			
dynamic viscosity	η P		g/cm s				
kinematic viscosity	ν	St	$\rm cm^2/s$				
surface tension	α		N/m				
work	A		J				
power	P	W	$\rm kg \ m^2/s^3$				

Acoustic waves $(c_{\rm air} = 330 {\rm m/s})$							
ν	$\lambda = c_{\rm air}/\nu$	octaves					
< 40 Hz	> 10 m		infrasound				
$16~\mathrm{Hz}-22~\mathrm{kHz}$	15 mm - 28 m	10	sound				
$1-4~\mathrm{kHz}$	$10-34~\mathrm{cm}$	2	best sound				
20 kHz – 1000 MHz	$0.3~\mu\mathrm{m}-15~\mathrm{mm}$	16	ultrasound				
$10^9 - 10^{13} \text{ Hz}$	0.03 - 300 nm	13	hypersound				

$\S 4.$ Thermodynamics and molecular physics

Thermodynamic constants						
Boltzmann constant $k = 1.380658(02) \cdot 10^{-16} \text{ erg/K}$						
molar gas constant	R	$kN_{ m A}$	8.334510(70)	$\rm J/mol K$		
Stefan–Boltzmann constant	σ	$\frac{\pi^2 k^2}{60\hbar^3 c^2}$	$5.87051(19) \cdot 10^{-8}$	$\mathrm{W/m^2K^4}$		

Standard atmosphere						
lattitude	φ	45°32′40″				
acceleration of gravity	g	980.665 cm/s^2				
pressure	$p_{\rm A}$	101325 Pa (1 atm or 760 mm Hg)				
temperature	$T_{\rm A}$	288.15 K (15°C)				
molecular weight	$m_{\rm A}$	28.9644 u				

Energy-temperature-wavelength conversion is based on equalities E = kT and $E = 2\pi\hbar c/\lambda$:

$$1~{\rm eV} = 11600~{\rm K} = (1240~{\rm nm})^{-1}, \qquad 1000~{\rm K} = 86.17~{\rm meV}, \qquad 1~{\rm cm}^{-1} = 0.124~{\rm meV}$$

 $System \ \hbar = c = 1$

§5. Electromagnetism and optics

In SI there are two fundamental constants: permittivity of vacuum $\varepsilon_0 = 10^7/\left(4\pi[c]_{\rm SI}^2\right)$ F/m and permeability of vacuum $\mu_0 = 4\pi 10^{-7}$ H/m. Note also that all magnetic quantities in SI are in some sense multiplied by the speed of light in comparison with electrical quantities, so their dimensions differ.

		Ele	ectromagnetic	quantities and	d their unit	ts
charge	q	С	A s	$10^{-1}[c]$	esu	
current	I	A	A	$10^{-1}[c]$	esu/s	
electric potential	U	V	$\rm kg~m^2/A~s^3$	$10^8[c]^{-1}$	esu/cm	$e \cdot V \equiv eV$
electric intensity	E	V/m	$kg m/A s^3$	$10^6[c]^{-1}$	esu/cm^2	
electric displacement	D	$\mathrm{C/m^2}$	$A s/m^2$	$4\pi 10^{-5}[c]$	esu/cm^2	
polarization	P	$\mathrm{C/m^2}$	$A s/m^2$	$10^{-5}[c]$	esu/cm^2	
magnetic flux density	B	T	$kg/A s^2$	10^4	esu/cm^2	=G
magnetizing force	H	A/m	$\mathrm{A/m}$	$4\pi 10^{-3}$	esu/cm^2	=Oe
magnetization	M	A/m	$\mathrm{A/m}$	$(4\pi)^{-1}10^4$	esu/cm^2	=G
magnetic flux	Φ	Wb	$\rm kg \ m^2/A \ s^2$	10^{8}	esu=Mx	
electric dipole moment	p	Ст	Ams	10[c]	esu cm	debye,D= 10^{-18} esu·cm, e ·Å= 4.8 D
magnetic moment	μ	$_{ m J/T}$	${ m A~m^2}$	10^{3}	esu cm	
resistance	R	Ω	$\mathrm{kg}\;\mathrm{m}^2/\mathrm{A}^2\mathrm{s}^3$	$10^9[c]^{-2}$	s/cm	
resistivity	ρ	$\Omega \; \mathrm{m}$	$\rm kg \ m^3/A^2s^3$	$10^{11}[c]^{-2}$	s	
capacitance	C	F	$A^2s^4/kg m^2$	$10^{-9}[c]^2$	cm	
inductance	L	Н	$\rm kg \ m^2/A^2s^2$	10^{9}	$_{ m cm}$	

Magnetic fields			
galaxy clusters	$12~\mu\mathrm{G}$		
Milky Way	$5 \mu G$		
near Earth	$10{}100~\mu{ m G}$		
Earth equator	0.35 G		
Earth poles	0.65 G		
Sun poles	1–2 G		
white dwarfs	$1{\text -}10~{ m MG}$		
neutron stars	$10^{10} - 10^{13} \text{ G}$		

Resistivity ρ , Ω cm			
metals	$10^{-6} - 10^{-4}$		
semiconductors	$10^{-3} - 10^7$		
insulators	$10^8 - 10^{18}$		
electrolytes	$10^0 - 10^{10}$		
water, alcohols	$10^5 - 10^8$		
solid electrolytes	$10^1 - 10^3$		
Si	$2.3\cdot 10^5$		
SiO_2	10^{13}		

Mobility μ , cm ² /V s			
$\sigma = \mu ne, D = \mu T/e$			
hopping	< 1		
e in Si	$1.5 \cdot 10^7$		
h in Si	$0.5 \cdot 10^7$		
H ⁺ in water	$3.3\cdot 10^{-3}$		
$\mathrm{OH^-}$ in water	$1.8\cdot 10^{-3}$		
Na ⁺ in water	$0.5\cdot 10^{-3}$		
solid electrolytes	$10^{-4} - 10^{-3}$		

§6. System $\hbar = c = 1$

Physical quantities		
m^{-1}	r, t	
1	v, S, e, α	
m	p, E, A	
m^2	F, E, B	
m^4	\mathcal{L}	

Fundamental units			
erg	c^{-2}	$1.11265 \cdot 10^{-21}$	g
eV		$1.78268 \cdot 10^{-33}$	g
cm	$c\hbar^{-1}$	$2.8427 \cdot 10^{37}$	g^{-1}
s	$c^2\hbar^{-1}$	$8.5223 \cdot 10^{47}$	g^{-1}

		1 1000	romagnetic spectrum		
λ ν	$\nu = c/\lambda$	$E = 2\pi\hbar c/\lambda$			
	•	RADIO	OWAVES (35 octaves)		
> 10 km <	> 10 km $< 30 kHz$ superlong RW				
1–10 km 30-	–300 kHz		long RW		
0.1–1 km 0.3	3–3 MHz		medium RW		
10–100 m 3–	-30 MHz		short and ultrashort RW, AM radio		
1–10 m 30–	–300 MHz	$0.11~\mu\mathrm{eV}$	meter RW, FM radio		
1 mm – 30 m			the first window in Earth atmosphere		
21 cm			neutral hydrogen line		
1–10 dm 0.3	3–3 GHz		ultrahigh frequencies (UVCh)		
1–10 cm 3–	-30 GHz		microwaves, SVCh		
1–10 mm 30–	-300 GHz	$0.11~\mathrm{meV}$	microwaves		
1 mm			2.7 K cosmic microwave background		
0.1–1 mm 0.5	.3–3 THz	$1-10~\mathrm{meV}$	submillimeter RW		
		OPTIC.	AL BAND (17 octaves)		
		INFRAR	RED BAND (11 octaves)		
0.05–2 mm		$0.5-25~\mathrm{meV}$	far IR		
$50~\mu\mathrm{m}$		$26~\mathrm{meV}$	the heat energy of molecules at 20°C		
$10~\mu\mathrm{m}$			blackbody radiation at 20°C		
$2.5 – 50 \ \mu { m m}$		$25500~\mathrm{meV}$	medium IR, L,M,N,Q bands		
$1.5~\mu\mathrm{m}$			T=1900 K blackbody radiation (candle)		
$1~\mu\mathrm{m}$			T=2900 K blackbody radiation (incandescent lamp, red stars)		
$0.8 – 2.5 \ \mu { m m}$		$0.51.5~\mathrm{eV}$	near IR, I,J,H,K bands, Si band (1.1 eV)		
	'	VISIB	BLE BAND (1 octave)		
390–760 nm		1.5–3 eV	cone vision (best for 556 nm), visible band		
400–650 nm			rod vision (best for 510 nm)		
500 nm		$2.48~{ m eV}$	Sun spectral maximum (T=5780 K)		
$300 \text{ nm}{-2} \mu\text{m}$			the second window in Earth atmosphere		
700 nm		$1.77~{ m eV}$	R band, red color		
550 nm		$2.25~{ m eV}$	V band, green color		
440 nm		$2.82~\mathrm{eV}$	B band, blue color		
	1	ULTRAVI	OLET BAND (5 octaves)		
10–400 nm		3–100 eV	ultraviolet band		
360 nm		$3.44~\mathrm{eV}$	U band		
290 nm			T=10000 K blackbody radiation (A0 stars)		
X-RAYS (10 octaves)					
0.2–10 nm		$0.1-5~\mathrm{keV}$	soft X-rays		
0.01–0.2 nm		$5-100~\mathrm{keV}$	hard X-rays		
	I.	GAMN	MA-RAYS (40 octaves)		
$10^{-(10 \div 9)} \text{ cm}$		0.1–1 MeV	soft γ -rays		
$10^{-(11 \div 10)} \text{ cm}$		$1-10~{ m MeV}$	medium γ -rays		
$10^{-(15 \div 11)}$ cm		10^{-2} – 10^2 GeV	hard γ -rays		
$10^{-(21 \div 15)} \text{ cm}$		$10^{-1} - 10^5 \text{ TeV}$	ultrahigh energy γ -rays		
$0.8-2.5~\mu\mathrm{m}$ $390-760~\mathrm{nm}$ $400-650~\mathrm{nm}$ $500~\mathrm{nm}$ $300~\mathrm{nm}-2~\mu\mathrm{m}$ $700~\mathrm{nm}$ $550~\mathrm{nm}$ $440~\mathrm{nm}$ $10-400~\mathrm{nm}$ $360~\mathrm{nm}$ $290~\mathrm{nm}$ $0.2-10~\mathrm{nm}$ $0.01-0.2~\mathrm{nm}$ $10^{-(10\div9)}~\mathrm{cm}$ $10^{-(11\div10)}~\mathrm{cm}$ $10^{-(15\div11)}\mathrm{cm}$		VISIB 1.5–3 eV 2.48 eV 1.77 eV 2.25 eV 2.82 eV ULTRAVI 3–100 eV 3.44 eV X-1 0.1–5 keV 5–100 keV GAMM 0.1–1 MeV 1–10 MeV 10–2–10 ² GeV	near IR, I,J,H,K bands, Si band (1.1 eV) BLE BAND (1 octave) cone vision (best for 556 nm), visible band rod vision (best for 510 nm) Sun spectral maximum (T=5780 K) the second window in Earth atmosphere R band, red color V band, green color B band, blue color OLET BAND (5 octaves) ultraviolet band U band T=10000 K blackbody radiation (A0 stars) RAYS (10 octaves) soft X-rays hard X-rays MA-RAYS (40 octaves) soft γ-rays medium γ-rays hard γ-rays		

§7. Atomic system of units ($m_{\rm e}=\hbar=e=1$)

Fundamental units			
length	$a_{\rm B}$	$\frac{\hbar^2}{m_{\mathrm{e}}e^2}$ \hbar^3	
time		$\frac{\hbar^3}{m_{\rm e}e^4}$	
mass	$m_{ m e}$	$m_{ m e}$	
energy	hartree	$\frac{m_{\rm e}e^4}{\hbar^2}$	
charge	e	e	

Other units			
electric dipole moment	$e \cdot a_{\mathrm{B}}$	$\frac{\hbar^2}{m_{\mathrm{e}}e}$	