What are wireless sensor networks (WSNs)?

- A wireless sensor network (WSN) is a wireless network using sensors to cooperatively monitor physical or environmental conditions
- Networks of typically small, battery-powered, wireless devices (often MANY, sometimes heterogeneous)
 - On-board processing,
 - Communication, and
 - Sensing capabilities.

Or...

- Wireless sensing + Data Networking!
 - Group of sensors linked by wireless media to perform distributed sensing tasks

WSN device schematics

IoT Wireless Connectivity

As with wireless in general, multiple standards with different properties

IoT Wireless Connectivity Technology

Multiple standards, different attributes

Enabling an Intelligent Planet

ADVANTECH

MIoT and HIoT are different

- IoT has multiple scenarios, from human-oriented to machine-oriented, and from industrial to forest environments
- WSN need to adapt to these environments.

	Manufacturing IoT	Consumer IoT Consumer Centric Consumer devices and Smart appliances	
Goal	Manufacturing-industry Centric		
Devices	Machines, Sensors, Controllers, Actuators, Smart meters		
Working En- vironment	Harsh (vibration, noisy, extremely high/low temperature)	Moderate	
Data rate	High (usually)	Low or average	
Delay	Delay sensitive	Delay tolerant	
Mission	Mission-critical	Non-mission-critical	

CM 23/24

Types of wireless Networks

MANET – Mobile Ad-hoc network

WSN can explore the architecture and protocol concepts both of MANETs (mobile ad-hoc networks) and of celular networks.

Wireless Sensor Network

• Focus on:

- Ubiquitous Computing
- Ubiquitous Network Society
- (often) Human-centric

Ubiquitous

- Anytime
- Anyone
- Anywhere
- Any Device
- Affordable
- All Security
- Any Information/Service

MAC: challenges for wireless networking

- MAC is a critical layer for networking
- Traditional problems
 - Fairness
 - Latency
 - Throughput
- For Sensor Networks, more problems are added
 - Power efficiency
 - Scalability

MAC challenges for WSN

- Sensor networks are deployed in an ad hoc fashion, with individual nodes remaining largely **inactive for long periods of time**, but then becoming **suddenly active** when something is detected.
- These characteristics of sensor networks and applications motivate a MAC that is different from traditional wireless MACs:
 - Energy conservation and self-configuration are primary goals.
 - Per-node fairness and latency are less important.

Challenges in WSN's

- ➤ Energy and Power Consumption
- > Self-organization
- ➤ Communication Heterogeneity
- **≻**Adaptability
- **≻**Security
- **>** Scalability

Design Challenges

Why are WSNs challenging/unique?

- Typically, severely energy constrained.
 - Limited energy sources (e.g., batteries).
 - Trade-off between performance and lifetime.
- Self-organizing and self-healing.
 - Remote deployments.
- Scalable.
 - Arbitrarily large number of nodes.

Design Challenges

- Heterogeneity.
 - Devices with varied capabilities.
 - Different sensors.
 - Hierarchical deployments.
- Adaptability.
 - Adjust to operating conditions and changes in application requirements.
- Security and privacy.
 - Potentially sensitive information.
 - Hostile environments.

Sensor Network MAC Protocols

- The major sources of energy wastage are:
 - Collisions *interfering packets*
 - Overhearing hearing more than required from a packet
 - Control packet overhead control versus data
 - Idle listening hearing for nothing

Typical solutions in wireless MACs

- Carrier Sensing
 - Only during low traffic load.
- Contention
 - RTS-CTS only during high traffic load.
- Backoff
 - Backoff in application layer is desired other than in MAC layer.

Achieving good scalability and collision avoidance capability is necessary.

Challenges

1. Energy Efficiency:

- Sensor nodes are not connected to any energy source.
- Energy efficiency is a dominant consideration no matter what the problem is.
- Many solutions, both hardware and software related, have been proposed to optimize energy usage.

2. Ad hoc deployment (adaptability):

- Most sensor nodes are deployed in regions which have no infrastructure.
- We must cope with the changes of connectivity and distribution.

Challenges

3. Unattended operation:

- Generally, once sensors are deployed, there is no human intervention for a long time.
- Sensor network must reconfigure by itself when certain errors occur.

4. Dynamic changes (self-healing and scalability)

 As changes of connectivity due to addition of more nodes or failure of nodes, Sensor network must be able to adapt itself to changing connectivity, to arbitrary large numbers of nodes

5. Security

• Both Sensors and Actuators carry sensitive information in an hostile environment

Sensor-MAC (S-MAC)

- S-MAC is a medium-access control (MAC) protocol designed for wireless sensor networks.
 - Explores typical solutions also found in many other sensor MACs.
 - Nodes periodically sleep, and sleep during other nodes' transmissions
 - Nearby nodes form virtual clusters to synchronize their wake-up and sleep periods
 - Trades energy efficiency for lower throughput and higher latency
 - Message passing is used to reduce the contention latency and control overhead

802.15.4 and Zigbee

What is ZigBee?

- Technological Standard Created for Control and Sensor Networks
 - Based on the IEEE 802.15.4 Standard
 - Centered in small radios
- Created by the ZigBee Alliance
 - 200+ members
- History
 - May 2003: IEEE 802.15.4 completed
 - December 2004: ZigBee specification ratified
 - June 2005: public availability

What Does ZigBee Do?

- Designed for wireless controls and sensors
 - Operates in Personal Area Networks (PAN's) and device-to-device networks
 - Connectivity between small packet devices
 - Examples: control of lights, switches, thermostats, appliances, etc.

Zigbee?

- Named for erratic, zig-zagging patterns of bees between flowers
- Symbolizes communication between nodes in a mesh network
- Network components "seen as analogous" to queen bee, drones, worker bees

ZigBee network applications

ZigBee and Other Wireless Technologies

Market Name	ZigBee™		₩i-Ei™	Bluetooth™
Standard	802.15.4	GSM/GPRS CDMA/1xRTT	802.11b	802.15.1
Application Focus	Monitoring & Control	Wide Area Voice & Data	Web, Email, Video	Cable Replacement
System Resources	4KB - 32KB	16MB+	1MB+	250KB+
Battery Life (days)	100 - 1,000+	1-7	.5 - 5	1- 7
Network Size	Unlimited (2 ⁶ *)	1	32	7
Bandwidth (KB/s)	20 - 250	64 - 128+	11,000+	720
Transmission Range (meters)	1 - 100+	1,000+	1 - 100	1 - 10+
Success Metrics	Reliability, Power, Cost	Reach, Quality	Speed, Flexibility	Cost, Convenience

Why do we need another "WPAN" standard?

- Power consumption
 - ZigBee: 10mA <==> BT: 100mA
- Production costs
 - ZigBee: 1.1 \$ <==> BT: 3 \$
- Development costs
 - Codesize ZB/codesize BT = ½
- Bit-error-rate (BER)
- Sensitivity
- flexibility
 - No. of supported nodes
 - ZigBee: 65536 (in a mesh) <==> BT: 7
- Security
- Latency requirements
- Range
 - ZigBee: up to 75 m in LOS condition <==> BT: 10 m

802.11b, 802.15.x BER Comparison

ZigBee/IEEE 802.15.4 features

- Low power consumption
- Low cost
- Small packet
- Low offered message throughput
- Supports large network orders (<= 65k nodes)
- Low to no QoS guarantees
- Flexible protocol design suitable for many applications

IEEE 802.15.4 - Overview

- Low Rate WPAN (LR-WPAN)
 - E.g. Sensor networks
- Simple and low cost
 - Fully handshake protocol
- Low power consumption
 - Years on lifetime using standard batteric
- Different topologies
 - Star, peer-to-peer, combined
- Data rates: 20-250 kbps
 - Low latency support
- Operates at different frequencies
 - 868 Mhz, 915 Mhz, 2.4 GHz

ZigBee/802.15.4 architecture

- ZigBee Alliance
 - Companies: semiconductor manufacturers, IP providers, OEMs, etc.
 - Defining upper layers of protocol stack: from network to application, including application profiles
 - First profiles published mid 2003
- IEEE 802.15.4 Working Group
 - Defining lower layers of protocol stack: MAC and PHY

IEEE 802.15.4 & ZigBee In Context

- **ZigBee Alliance**
 - "the software"
 - Network, Security & Application layers
 - Brand management
 - IEEE 802.15.4
 - "the hardware"
 - Physical & Media AccessControl layers

Source: http://www.zigbee.org/resources/documents/IWAS_presentation_Mar04_Designing_with_802154_and_zigbee.ppt

Protocol Stack

How ZigBee Works

- Topology
 - Star
 - Cluster Tree
 - Mesh
- Network coordinator, routers, end devices
- 2 or more devices form a PAN/WSN

How ZigBee Works

- States of operation
 - Active
 - Sleep
- Devices
 - Full Function Devices (FFD's)
 - Reduced Function Devices (RFD's)
- Modes of operation
 - Beacon
 - Non-beacon
- Traffic types
 - Intermittent
 - Repetitive
 - Periodic

Traffic-Types

- Data is periodic
 - application dictates rate (e.g. sensors)
- Data is intermittent
 - > application or stimulus dictates rate (optimum power savings), e.g. light switch
- Data is repetitive (fixed rate a priori)
 - device gets guaranteed time slot (e.g. heart monitor)

Traffic-Modes

Beacon mode:

- beacon sent periodically
- Coordinator and end device can go to power save
- Lowest energy consumption
- Precise timing needed
- Beacon period (ms-m)

Beacon Mode

Traffic-Modes

Non-Beacon mode:

- coordinator/routers have to stay awake (robust power supply needed)
- heterogeneous network
- asymmetric power

ZigBee Node-Types

ZigBee Coordinator (ZBC) (IEEE 802.15.4 FFD)

- only one in a network
- initiates network
- stores information about the network
- all devices communicate with the ZBC
- routing functionality
- bridge to other networks

ZigBee Router (ZBR) (IEEE 802.15.4 FFD)

- optional component
- routes between nodes, network backbone
- extends network coverage
- manages local address allocation/de-allocation

ZigBee End Device (ZBE) (IEEE 802.15.4 RFD)

- optimized for low power consumption
- cheapest device type
 - sensor would be deployed here

Remember: FFD – Full Function Device RFD – Reduced Function Device

802.15.4 / ZigBee Architecture

IEEE 802.15.4 basics

- 802.15.4 is a simple packet data protocol for lightweight wireless networks
 - Channel Access is via Carrier Sense Multiple Access with collision avoidance and optional time slotting
 - Message acknowledgement and an optional beacon structure
 - Multi-level security
 - Works well for
 - Long battery life, selectable latency for controllers, sensors, remote monitoring and portable electronics
 - Configured for maximum battery life, has the potential to last as long as the shelf life of most batteries

802.15.4 General characteristics

- Data rates of 250 kbps, 20 kbps and 40kpbs.
- Star or Peer-to-Peer operation.
- Support for low latency devices.
- CSMA-CA channel access, with CCA detection
 - Clear Channel Assessment
- Dynamic device addressing.
- Fully handshaked protocol for transfer reliability.
- Low power consumption.
- 16 channels in the 2.4GHz ISM band
- 10 channels in the 915MHz ISM band
- one channel in the European 868MHz band.
- Extremely low duty-cycle (<0.1%)

802.15.4 frequency bands

Operates in Unlicensed Bands

- ISM 2.4 GHz Global Band at 250kbps
- 868 MHz European Band at 20kbps
- 915 MHz North American Band at 40kbps

PHY frame structure

- PHY packet fields
 - Preamble (32 bits) synchronization
 - Start of packet delimiter (8 bits) shall be formatted as "11100101"
 - PHY header (8 bits) -PSDU length
 - PSDU (0 to 127 bytes) data field

Sync Header		PHY Header		PHY Payload
Preamble	Start of Packet Delimiter	Frame Length (7 bit)	Reserve (1 bit)	PHY Service Data Unit (PSDU)
4 Octets	1 Octets	1 Octets		0-127 Bytes

802.15.4 Architecture (MAC)

IEEE 802.15.4 MAC Design Drivers

- Extremely low cost
- Ease of implementation
- Reliable data transfer
- Short range operation
- Very low power consumption

Simple but flexible protocol

Device Classes

- Full function device (FFD)
 - Any topology
 - Network coordinator capable
 - Talks to any other device
 - The FFD can operate in three modes serving
 - Device
 - Coordinator
 - PAN coordinator
- Reduced function device (RFD)
 - Limited to star topology
 - Talks only to a network coordinator
 - Cannot become a network coordinator
 - Very simple implementation

Star Topology

- Full function device Communications flow
- Reduced function device

Mesh (Peer-Peer) and cluster tree topologies

Combined Topology

Clustered stars - for example, cluster nodes exist between rooms of a hotel and each room has a star network for control.

May have a mesh structure in some cases as well

- Full function device
- Reduced function device

— Communications flow

General Frame Structure

4 Types of MAC Frames:

- Data Frame
- Beacon Frame
- Acknowledgment Frame
- MAC Command Frame

MAC layer

Managing PANs

- Channel scanning (Energy Detection, active, passive, orphan verifies if it still has a parent)
- PAN ID conflict detection and resolution
- Starting a PAN
- Sending beacons
- Device discovery, association/disassociation
- Synchronization (beacon/nonbeacon)
- Orphaned device realignment

Transfer handling

- Transaction based (indirect transmission)
 - Beacon indication
 - Polling
- Transmission, Reception, Rejection, Retransmission
 - Acknowledged / Not acknowledged
- GTS management
 - Allocation/deallocation/Reallocation
 - Usage

Superframe

- A coordinator in a PAN can optionally bound channel time using a SuperFrame structure
 - bound by beacon frames
- A superframe is divided into two parts
 - Inactive: all devices sleep (including the coordinator
 - Active:
 - Active period will be divided into 16 slots
 - 16 slots can further be divided into two parts
 - Contention access period
 - Contention free period

CAP – Contention Access Period

CFP – Contention Free Period

SD – Superframe Duration

BI – Beacon Interval

Superframe

- Beacons are used for
 - starting superframes
 - synchronizing with associated devices
 - announcing the existence of a PAN
 - informing pending data in coordinators
- In a beacon enabled network,
 - Devices use the slotted CSMA/CA mechanism to contend for the usage of channels
 - FFDs which require fixed rates of transmissions can ask for *guarantee time slots (GTS)* from the coordinator

CM 23/24