Lecture Note Training Deep Network Jiaul Paik

1 Architectural Parameters

• Number of layers: L (say).

• Number of node in layer $l: n_l$ (say).

Clearly, n_1 is the number of features in your data and n_L is number of classes your training data contains.

2 Model Parameters

• The connection weights: $w_{ij}^{(l)} \to \text{the weight from the } i\text{-th node in layer } l \text{ to the } j\text{-th node in layer } l+1.$

• The bias of each non-input node: $b_i^{(l)} \to \text{the bias of } i\text{-th node in layer } l$.

3 Activation Function

Some of the widely used functions:

• Sigmoid: $f(x) = \frac{e^x}{1+e^x}$

• ReLU: f(x) = max(0, x)

4 Input and Output of a Node

 $I_i^{(l)}$ denotes the input to the i-th node of layer l and is defined as

$$I_i^{(l)} = b_i^{(l)} + \sum_{j=1}^{n_{l-1}} w_{ji}^{(l-1)} \cdot O_j^{(l-1)}$$

 $O_i^{(l)}$ denotes the output from the i-th node of layer l and is defined as

$$O_i^{(l)} = f(I_i^{(l)})$$

where f is the activation function.

Note that $O_i^{(1)} = x_i$, where x_i is the *i*-th feature value of the sample.

5 Gradient Descent using Backpropagation Algorithm

 $\delta_i^{(l)}$ denotes the influence of *i*-th node of layer l on the error.

- 1. Randomly initialize the model parameters.
- 2. Randomly shuffle the data
- 3. Repeat steps 4–9 until convergence
- 4. For each sample (x, c) in your training data (x) is the feature vector and c is label), repeat steps 5–9
- 5. Take a forward pass to compute input and output of each nodes of the network (except for the nodes in the input layer)
- 6. For each output node i in layer L (the output layer), compute

$$\delta_i^{(l)} = (O_i^{(L)} - y_i) \cdot f'(I_i^{(L)})$$

(here $y_i = 1$, if c = i, otherwise $y_i = 0$).

7. For l = L - 1, L - 2,, 2For each node i in layer l, compute

$$\delta_i^{(l)} = \left(\sum_{j=1}^{n_{l+1}} w_{ij}^{(l)} \cdot \delta_j^{(l+1)}\right) f'(I_i^{(l)})$$

8. Compute the partial derivative of the error function as follows:

$$\frac{\partial E}{\partial w_{ij}^{(l)}} = O_i^{(l)} \cdot \delta_j^{(l+1)}$$

$$\frac{\partial E}{\partial b_i^{(l)}} = \delta_i^{(l)}$$

9. Update the parameters using gradient descent rule.

Practical Guidelines for Training

- 1. It is important to initialize the parameters randomly. A good method for random initilization could be $Normal(0, \epsilon^2)$, where ϵ can be a small value, say 0.01.
- 2. Choice of learning rate is very important. Often a good start is between 0.01 to 0.1.
- 3. Picking good architectural parameters is very important as it will determine the non-linearity of the decision boundaries you are going to approximate. This can be tuned via cross-validation as follows. First, randomly split your training set into subsets S_1 and S_2 . Then train your model on S_1 and test your model on S_2 and see the error. If the error on S_2 is very low, you can consider the current architecture is good. If the performance on S_2 is poor, but performance was good on S_1 , this means the network overfits. Reduce the number of hidden layers and train again.