Chocolate Feast

Little Bobby loves chocolate. He frequently goes to his favorite $5\ \&\ 10$ store, Penny Auntie, to buy them. They are having a promotion at Penny Auntie. If Bobby saves enough wrappers, he can turn them in for a free chocolate.

Complete the *chocolateFeast* function in the code stub below to return the number of chocolates Bobby can eat with a given amount of money after taking full advantage of the promotion.

Note: Little Bobby will always turn in his wrappers if he has enough to get a free chocolate.

Input Format

The first line contains an integer, t, denoting the number of scenarios to analyze. Each of the next t lines contains three space-separated integers: n, c, and m. They represent money to spend, cost of a chocolate, and the number of wrappers he can turn in for a free chocolate.

Constraints

- $1 \le t \le 1000$
- $2 \le n \le 10^5$
- $1 \le c \le n$
- $2 \leq m \leq n$

Output Format

For each trip to Penny Auntie, print the total number of chocolates Bobby eats on a new line.

Sample Input

```
3
10 2 5
12 4 4
6 2 2
```

Sample Output

```
6
3
5
```

Explanation

Bobby makes the following **3** trips to the store:

- 1. He spends his 10 dollars on 5 chocolates at 2 dollars apiece. He then eats them and exchanges all 5 wrappers to get 1 more. He eats 6 chocolates.
- 2. He spends his 12 dollars on 3 chocolates at 4 dollars apiece. He has 3 wrappers, but needs 4 to trade for his next chocolate. He eats 3 chocolates.
- 3. He spends $\bf 6$ dollars on $\bf 3$ chocolates at $\bf 2$ dollars apiece. He then exchanges $\bf 2$ of the $\bf 3$ wrappers for $\bf 1$ additional piece. Next, he uses his third leftover chocolate wrapper from his initial purchase with the wrapper from his trade-in to do a second trade-in for $\bf 1$ more piece. At this point he has $\bf 1$ wrapper left, which is not enough to perform another trade-in. He eats $\bf 5$ chocolates.