Dvourozměrné objekty Počítačová grafika

Mgr. Markéta Trnečková, Ph.D.

Palacký University, Olomouc

Přímka

Obecná rovnice

$$ax + by + c = 0$$

Parametrická rovnice

$$x = a_1 + t \cdot u_1,$$

$$y = a_2 + t \cdot u_2$$

Směrnice přímky

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Spojité a rastrové zobrazení čáry

Algoritmus DDA

- 1 Z koncových bodů $[x_1, y_1]$ a $[x_2, y_2]$ urči směrnici m
- 2 Inicializuj bod [x,y] hodnotou $[x_1,y_1]$
- **3** Dokud je $x \leq x_2$, opakuj:
 - 1 Vykresli bod [x, zaokrouhlene(y)]
 - x = x + 1
 - $3 \quad y = y + m$

Z parametrické rovnice přímky – iterační zápis

$$x_{k+1} = x_k + 1,$$

 $y_{k+1} = y_k + m$

Princip

Obecná rovnice přímky ...
$$y = mx + b$$

 $y = m(x_i + 1) + b$

Vzdálenosti

$$d_1 = y - y_i = m(x_i + 1) + b - y_i$$

$$d_2 = y_i + 1 - y = y_i + 1 - m(x_i + 1) - b$$

$$\Delta d = d_1 - d_2 = 2m(x_i + 1) - 2y_i + 2b - 1$$

$$\begin{aligned} p_i &= \Delta d \Delta x = \\ 2\Delta y x_i - 2\Delta x y_i + 2\Delta y + \Delta x (2b-1) \\ 2\Delta y + \Delta x (2b-1) \text{ konstanta} \end{aligned}$$

Rozhodovací člen

$$p_{i+1} = 2\Delta y x_{i+1} - 2\Delta x y_{i+1} + konstanta$$

 $p_{i+1} = p_i + 2\Delta y - 2\Delta x (y_{i+1} - y_i)$

Celkem

$$p_i \le 0 \dots p_{i+1} = p_i + 2\Delta y$$

 $p_i > 0 \dots p_{i+1} = p_i + 2\Delta y - 2\Delta x$

I Z koncových bodů $[x_1, y_1]$ a $[x_2, y_2]$ urči konstanty

$$k_1 = 2\Delta y$$

$$k_2 = 2(\Delta y - \Delta x)$$

- 2 Inicializuj rozhodovací člen p na hodnotu $2(\Delta y \Delta x)$
- $oxed{3}$ Inicializuj bod [x,y] hodnotou $[x_1,y_1]$
- 4 Vykresli bod [x, y]
- 5 Dokud je $x \leq x_2$, opakuj:
 - $1 \quad x = x + 1$
 - 2 Je-li p kladné pak y=y+1 a $p=p+k_2$
 - $\textbf{3} \ \, \mathsf{Nen\'i-li} \,\, p \,\, \mathsf{kladn\'e} \,\, \mathsf{pak} \,\, p = p + k_1$
 - 4 Vykresli bod [x, y]

Přerušovaná čára

Přerušovaná čára

Silná čára

Silná čára

$$t_{pix} = t \frac{\sqrt{(\Delta x)^2 + (\Delta y)^2}}{|\Delta x|}$$

Napojení čar

Kružnice, elipsa

Rasterizace kružnice

Princip

Obecná rovnice ...
$$x^2+y^2+r^2=0$$

$$F(x,y): x^2+y^2+r^2=0$$
 midpoint

$$[x_i + 1, y_i - 1/2]$$

$$p_i = F(x_i + 1, y_i - 1/2) =$$

$$(x_i + 1)^2 + (y_i - 1/2)^2 + r^2$$

Rozhodovací člen

$$p_{i+1} = p_i + 2x_i + 3 + (y_i - 1/2)^2 + (y_{i+1} - 1/2)^2$$
 Celkem

$$p_i \le 0 \dots p_{i+1} = p_i + 2x_i + 3$$

 $p_i > 0 \dots p_{i+1} = p_i + 2x_i + 5 - 2y_i$

- I Inicializuj pomocné proměnné: devx = 3, devy = 2r 2
- 2 Inicializuj rozhodovací člen p=1-r
- $\mathbf{3}$ Inicializuj [x,y]=[0,r]
- 4 Dokud je $x \leq y$ opakuj:
 - 1 Vykresli 8 bodů symetrických s bodem [x, y]
 - ${f 2}$ Je-li p kladné pak

$$p = p - devy$$
$$devy = devy - 2$$

$$y = y - 1$$

- p = p + devx
- $4 \quad devx = devx + 2$
- x = x + 1

Rasterizace elipsy

Princip

$$F(x,y): b^2x^2 + a^2y^2 - a^2b^2 = 0$$

bod, kde se mění řídící osa

$$\left[\frac{a^2}{\sqrt{a^2+b^2}}, \frac{b^2}{\sqrt{a^2+b^2}}\right]$$

v části s řídící osou x

$$p_i \le 0 \dots p_{i+1} = p_i + b^2(2x_i + 1)$$

$$p_i > 0 \dots p_{i+1} = p_i + b^2(2x_i + 1) - 2a^2y_i$$

Detekce čar

polární rovnice

$$r = x \cdot \cos \varphi + y \cdot \sin \varphi$$

Algoritmus

- 1 Vstup: binární obraz, zajímají nás body $[x_i,y_i]$ takové, že $f(x_i,y_i)=1$ (celkem jich je K)
- 2 Vytvoříme akumulátor A o velikosti MxN; vynulujeme Zvolíme vhodné dělení

$$\varphi_i = \frac{i\pi}{M}$$

$$r_j = i\frac{j(r_{max} - r_{min})}{N}$$

- j = 1
- i = 1
- 5 $\forall [x_k,y_k],\ k=1,\ldots K\ |f(x_i,y_i)=1$ vypočítáme $r_j=x_k\cdot\cos\varphi_i+y_k\cdot\sin\varphi_i$
- f 6 inkrementujeme $A(arphi_i,r_j)$ o 1
- 7 opakujeme $\forall i = 2, \dots M$ od bodu 5
- 8 opakujeme $\forall j=2,\ldots N$ od bodu 4

Detekce kružnic

$$x = a + R\cos\varphi$$
$$x = b + R\sin\varphi$$

