MTH215 ** 2019-20 ** ASSIGNMENT -3

- 1. Let $a \geq 2$ be an integer. Show that $n \mid \varphi(a^n 1)$ for all integers $n \geq 2$.
- 2. Let a has order 3 modulo prime p. Show that order of a + 1 modulo p is 6.
- 3. Let n be a positive integer. Show that
 - (a) Odd prime divisors of $n^2 + 1$ are of form 4k + 1.
 - (b) Odd prime divisors of $n^4 + 1$ are of form 8k + 1.
 - (c) A prime divisors of $n^2 + n + 1$ is either 3 or of the form 6k + 1.
- 4. Show that there are infinitely many primes each of the form 4k+1, 6k+1 and 8k+1.
- 5. Find all primitive roots of 43. Find all positive integers n < 43 such that order of n is 6 modulo 43.
- 6. Let a and b be primitive roots of odd prime p. Show that $a^{(p-1)/2} \equiv -1 \pmod{p}$ and that ab is not a primitive root modulo p.
- 7. Let a be a primitive root of prime p. Show that $(p-1)! \equiv a^{p(p-1)/2} \pmod{p}$. Hence establish that $(p-1)! \equiv -1 \pmod{p}$.
- 8. Let p be an odd prime and $n \in \mathbb{N}$. Show that $\sum_{i=1}^{p-1} i^n \equiv 0$ or 1 according as $(p-1) \mid n$ or $(p-1) \nmid n$.
- 9. Find all primitive roots of 25.
- 10. Let a be a primitive root of p^n where p is prime and $n \ge 2$. Show that a is also a primitive root of p^{n-1} .
- 11. Let a be a primitive root of p^2 . Find all b such that $b^{p-1} = 1 \pmod{p^2}$.
- 12. Prove that 3 is primitive root for 17^k and 2×17^k for all $k \in \mathbb{N}$.
- 13. Solve
 - (a) $x^2 + 7x + 10 \equiv 0 \pmod{11}$
 - (b) $3x^2 + 9x + 7 \equiv 0 \pmod{13}$
 - (c) $5x^2 + 6x + 1 \equiv 0 \pmod{23}$
- 14. Find all quadratic residues of prime 23.
- 15. Let a be a quadratic residue of p, where p is an odd prime. Show that
 - (a) a is not a primitive root of p,
 - (b) p a is a quadratic residue iff $p \equiv 1 \pmod{4}$,
 - (c) if $p \equiv 3 \pmod{4}$ then then $x = \pm a^{(p+1)/4}$ are the solutions of $x^2 \equiv a \pmod{4}$.
- 16. Let a be a primitive root of p. Find all quadratic residues of p in terms of a.
- 17. Let $a, b \in \mathbb{Z}$ such that gcd(ab, p) = 1 Show that one of the a, b, ab is a quadratic residue modulo p.
- 18. Let $a \in \mathbb{Z}$ such that gcd(a, p) = 1. Let $b \in \mathbb{Z}$ such that $ab \equiv 1 \pmod{p}$. Show that (a/p) = (b/p).

- 19. Show that $\sum_{i=1}^{p-2} \left(\frac{i(i+1)}{p} \right) = -1$. Further show that there exist $a, b \in \{1, 2, \dots, p-2\}$ such that (a/p) = 1 = ((a+1)/p) and (b/p) = -1 = ((b+1)/p).
- 20. If p and q = 2p + 1 are both primes then show that -4 is a primitive root of q.
- 21. If $p \equiv 1 \pmod{4}$ then show that -4 and (p-1)/4 are quadratic residues of p.
- 22. Let p be of type 8k + 7. Show that $p \mid 2^{(p-1)/2} 1$.
- 23. Let a be a primitive root for p. Show that the product of all quadratic residues is congruent to $a^{(p^2-1)/4}$ and that the product of quadratic nonresidues is congruent to $a^{(p-1)^2/4}$ modulo p.
- 24. Show that the product of all quadratic residues is congruent to -1 or 1 modulo p according as $p \equiv (1 \mod 4)$ or $p \equiv (3 \mod 4)$.
- 25. Let p > 3. Show that p divides sum of its quadratic residues.
- 26. Let p > 5. Show that p divides sum of squares of its quadratic nonresidues.
- 27. Let p = 4k+1. Show that sum of its quadratic residues in $\{1, 2, \dots, p-1\}$ is p(p-1)/4.
- 28. Let p = 8k + 1 and let a be primitive root of p. Show that the solutions of $x^2 \equiv 2 \pmod{p}$ are $\pm (a^{7(p-1)/8} + a^{(p-1)/8})$.
- 29. Show that $(-1/p) = (-1)^{(p-1)/2}$ and $(-2/p) = (-1)^{\frac{(p-1)}{2} + \frac{p^2 1}{8}}$.
- 30. Show that (-3/p) is 1 or -1 according as $p \equiv 1 \pmod{6}$ or $p \equiv 5 \pmod{6}$.
- 31. Let $n \in \mathbb{N}$. Find the forms of the prime which divide $n^2 + 1$, $n^2 + 2$ and $n^2 + 3$.
- 32. Find a prime which is expressible in the form of $x_1^2 + y_1^2$, $x_2^2 + 2y_2^2$ and $x_3^2 + 3y_3^2$, where $x_i, y_i \in \mathbb{Z}$.
- 33. Let p and q be odd primes such that q = p + 4n. Show that (n/p) = (q/p).
- 34. Let p be an odd prime.
 - (a) If $p \neq 5$, then (5/p) = 1 iff $p \equiv 1, 9, 11$ or 19 (mod 20).
 - (b) If $p \neq 3$, then (6/p) = 1 iff $p \equiv 1, 5, 19$ or 23 (mod 24).
 - (c) If $p \neq 7$, then (7/p) = 1 iff $p \equiv 1, 3, 9, 19, 25$ or 27 (mod 28).