Sparser: Fast Analytics on Raw Data by Avoiding Parsing

Shoumik Palkar, Firas Abuzaid, Peter Bailis, Matei Zaharia

Motivation

Bigger unstructured datasets and faster hardware.

Parsing unstructured data before querying it is often very slow.

Today: Spark Data Sources API

Push part of query into the data source.

Spark Core Engine

Today: Spark Data Sources API

Push part of query into the data source.

- + E.g., column pruning directly in Parquet data loader
- Little support for unstructured formats (e.g., can't avoid JSON parsing)

Spark Core Engine

Data Source API

Parsing: A Computational Bottleneck

Example: Existing state-of-theart JSON parsers **100x slower** than scanning a string!

*Similar results on binary formats like Avro and Parquet

Parsing seems to be a necessary evil: how do we get around doing it?

State-of-the-art Parsers

Key Opportunity: High Selectivity

High selectivity especially true for **exploratory analytics**.

Data Source API provides access to query filters at data source!

40% of customer Spark queries at Databricks **select < 20%** of data **99%** of queries in Censys **select < 0.001%** of data

Sparser: Filter Before You Parse

Parse Raw Data

Today:
parse full input → slow!

Sparser: **Filter before parsing** first using fast filtering functions with **false positives, but no false negatives**

Demo

Count Tweets where text contains "Trump" and "Putin"

Sparser in Spark SQL

val df = spark.read.format("json")

Spark Core Engine

Data Source API

Sparser in Spark SQL

val df = spark.read.format("edu.stanford.sparser.json")

Sparser Data Source Reader (Also supports Avro, Parquet!)

Spark Core Engine

Data Source API

Sparser Filtering Engine

Sparser Overview

Sparser Overview

Raw Filter ("RF"): filtering function on a bytestream with false positives but no false negatives.

Use an optimizer to combine RFs into a cascade.

Example: Tweets WHERE text contains "Trump"

But is it in the "text" field? Is the full word "Trump"?

Key Challenges in Using RFs

- 1. How do we implement the RFs efficiently?
- 2. How do we efficiently choose the RFs to maximize parsing throughput for a given query and dataset?

Rest of this Talk

- Sparser's API
- Sparser's Raw Filter Designs (Challenge 1)
- Sparser's Optimizer: Choosing a Cascade (Challenge 2)
- Performance Results on various file formats (e.g., JSON, Avro)

Filter	Example
Exact String Match	WHERE user.name = "Trump" WHERE likes = 5000

Filter	Example
Exact String Match	WHERE user.name = "Trump" WHERE likes = 5000
Contains String	WHERE text contains "Trum"

Filter	Example
Exact String Match	WHERE user.name = "Trump" WHERE likes = 5000
Contains String	WHERE text contains "Trum"
Contains Key	WHERE user.url != NULL

Filter	Example
Exact String Match	WHERE user.name = "Trump" WHERE likes = 5000
Contains String	WHERE text contains "Trum"
Contains Key	WHERE user.url != NULL
Conjunctions	<pre>WHERE user.name = "Trump" AND user.verified = true</pre>
Disjunctions	<pre>WHERE user.name = "Trump" OR user.name = "Obama"</pre>

Filter	Example
Exact String Match	WHERE user.name = "Trump" WHERE likes = 5000
Contains String	WHERE text contains "Trum"
Contains Key	WHERE user.url != NULL
Conjunctions	<pre>WHERE user.name = "Trump" AND user.verified = true</pre>
Disjunctions	<pre>WHERE user.name = "Trump" OR user.name = "Obama"</pre>

Currently does not support numerical range-based predicates.

Challenge 1: Efficient RFs

Raw Filters in Sparser

SIMD-based filtering functions that pass or discard a record by inspecting raw bytestream

Example RF: Substring Search

Search for a small (e.g., 2, 4, or 8-byte) substring of a query predicate in parallel **using SIMD**

Example query: text contains "Trump"

```
Input : "text":"I just met Mr. Trumb!!!"
Shift1 : TrumTrumTrumTrumTrumTrumTrum-----
Shift2 : -TrumTrumTrumTrumTrumTrumTrumTrum----
Shift3 : --TrumTrumTrumTrumTrumTrumTrumTrum----
Shift4 : ---TrumTrumTrumTrumTrumTrumTrum----
Length 4 Substring
packed in SIMD register
```

False positives (found "Trumb" by accident), but **no false negatives** (No "Trum" ⇒ No "Trump")

On modern CPUs: compare 32 characters in parallel in ~4 cycles (2ns).

Other RFs also possible! Sparser selects them agnostic of implementation.

Key-Value Search RF

Searches for key, and if key is found, searches for value until some stopping point. Searches occur with SIMD.

Only applicable for exact matches

Useful for queries with common substrings (e.g., favorited=true)

Second Example would result in false negative if we allow substring matches

Other RFs also possible! Sparser selects them agnostic of implementation.

Challenge 2: Choosing RFs

Choosing RFs

To decrease false positive rate, combine RFs into a cascade

Sparser uses an optimizer to choose a cascade

Sparser's Optimizer

Step 1: Compile
Possible RFs from
predicates

RF1: "Trump"

RF2: "Trum"

RF3: "rump"

RF4: "Tr"

RF5: "Putin"

. . .

Step 2: Measure Params on Sample of Records

(name = "Trump" AND text contains "Putin")

	S1	S2	S3
RF 1	0	1	1
RF 2	1	0	1

for sampled records:

1 = passed0 = failed **Step 3:** Score and Choose Cascade

$$C$$
 (RF1) = 4
 C (RF1 \rightarrow RF2) = 1

$$C(RF2 \rightarrow RF3) = 6$$

$$C$$
 (RF1 \rightarrow RF3) = 9

...

Step 4: Apply Chosen Cascade RF 1 RF fails RF fails Filtered bytes sent to full parser

raw bytestream

0010101000110101

Sparser's Optimizer: Configuring RF Cascades

Three high level steps:

- 1. Convert a query predicate to a set of RFs
- 2. Measure the passthrough rate and runtime of each RF and the runtime of the parser on sample of records
- 3. Minimize optimization function to find min-cost cascade

1. Converting Predicates to RFs

Running Example

```
(name = "Trump" AND text contains "Putin")
OR name = "Obama"
```

Possible RFs*

```
Substring Search: Trum, Tr, ru, ..., Puti, utin, Pu, ut, ..., Obam, Ob, ...
```

* Translation from predicate to RF is format-dependent: examples are for JSON data

2. Measure RFs and Parser

Evaluate RFs and parser on a sample of records.

*Passthrough rates of RFs are **non-independent!** But too expensive to measure rate of each cascade (combinatorial search space)

2. Measure RFs and Parser

Passthrough rates of RFs are **non-independent!** But too expensive to rate of each cascade (combinatorial search space)

Solution: Store rates as **bitmaps**.

```
foreach sampled record i: Pr[a] \propto 1s in Bitmap of RF a: 0011010101 foreach RF j: Pr[b] \propto 1s in Bitmap of RF b: 0001101101 BitMap[i][j] = 1 if RF j passes on i Pr[a,b] \propto 1s in Bitwise-& of a, b: 0001000101
```

3. Choosing Best Cascade

Running Example

```
(name = "Trump" AND text contains "Putin")
```

OR name = "Obama"

1. Valid cascade

- 2. Valid cascade
- 3. Invalid cascade (utin must consider Obam when it fails)

Cascade cost computed by traversing tree from root to leaf.

Each RF has a runtime/passthrough rate we measured in previous step.

Discard D

Parse P

Fail (left branch) -----

Pass (right branch) ——

3. Choosing Best Cascade

$$C_R = \left(\sum_{i \in R} \Pr[execute_i] \times c_i\right) + \Pr[execute_{parse}] \times c_{parse}$$
Cost of Cascade Probability and cost of with RFs 0,1,...,R Probability and cost of executing RF i Probability and cost of executing full parser

 $Pr[execute_{Trum}] = 1$

 $Pr[execute_{utin}] = Pr[Trum]$

 $Pr[execute_{Obam}] = Pr[\neg Trum] + Pr[Trum, \neg utin]$

 $\Pr[execute_{parse}] = \Pr[\neg \mathsf{Trum}, \mathsf{Obam}] + \Pr[\mathsf{Trum}, \mathsf{utin}] + \Pr[\mathsf{Trum}, \neg \mathsf{utin}, \mathsf{Obam}]$

Choose cascade with minimum cost: Sparser considers up to min(32, # ORs) RFs and considers up to depth of 4 cascades.

Spark Integration

Sparser in Spark SQL

Spark Core Engine

Data Source API

Sparser Filtering Engine

Sparser in Spark SQL

Performance Results

Evaluation Setup

Datasets

Censys - Internet port scan data used in network security

Tweets - collected using Twitter Stream API

Distributed experiments

on 20-node cluster with 4 Broadwell vCPUs/26GB of memory, locally attached SSDs (Google Compute Engine)

Single node experiments

on Intel Xeon E5-2690 v4 with 512GB memory

Queries

Query Name	Query	Selectivity (%)
Twitter 1	COUNT(*)WHERE text LIKE '%Donald Trump%'AND date LIKE '%Sep 13%'	0.1324
Twitter 2	user.id, SUM(retweet_count)WHERE text LIKE '%Obama%'GROUP BY user.id	0.2855
Twitter 3	id WHERE user.lang == 'msa'	0.0020
Twitter 4	distinct user.id WHERE text LIKE '%@realDonaldTrump%'	0.3313
Censys 1	COUNT(*)WHERE p23.telnet.banner.banner != null AND autonomous_system.asn = 9318	0.0058
Censys 2	COUNT(*)WHERE p80.http.get.body LIKE '%content=wordpress 3.5.1%'	0.0032
Censys 3	COUNT(*)WHERE autonomous_system.asn=2516	0.0757
Censys 4	COUNT(*)WHERE location.country = 'Chile'AND p80.http.get.status_code != null	0.1884
Censys 5	COUNT(*)WHERE p80.http.get.servers.server LIKE '%DIR-300%'	0.1884
Censys 6	COUNT(*)WHERE p110.pop3.starttls.banner != null OR p995.pop3s.tls.banner != null	0.0001
Censys 7	COUNT(*)WHERE p21.ftp.banner.banner LIKE '%Seagate Central Shared%'	2.8862
Censys 8	COUNT(*)WHERE p20000.dnp3.status.support=true	0.0002
Censys 9	asn, COUNT(ipnt)WHERE autonomous_system.name LIKE '%Verizon%'GROUP BY asn	0.0002
Bro 1	COUNT(*)WHERE record LIKE '%HTTP%'AND record LIKE '%Application%'	15.324
Bro 2	COUNT(*)WHERE record LIKE '%HTTP%'AND (record LIKE '%Java*dosexec%'OR record LIKE '%dosexec* Java%')	1.1100
Bro 3	COUNT(*)WHERE record LIKE '%HTTP%'AND record LIKE '%http*dosexec%'AND record LIKE '%GET%'	0.5450
Bro 4	COUNT(*)WHERE record LIKE '%HTTP%'AND (record LIKE '%80%'OR record LIKE '%6666%'OR record LIKE '%8888%'OR record LIKE '%8080%')	12.294
PCAP 1	* WHERE http.request.header LIKE '%GET%'	81
PCAP 2	* WHERE http.response AND http.content_type LIKE '%image/gif%'	1.13
PCAP 3	Flows WHERE tcp.port=110 AND pop.request.parameter LIKE '%user%'	0.001
PCAP 4	Flows WHERE http.header LIKE '%POST%'AND http.body LIKE '%password%'	0.0095

Twitter queries from other academic work. Censys queries sampled randomly from top-3000 queries. PCAP and Bro queries from online tutorials/blogs.

Results: Accelerating End-to-End Spark Jobs

Censys queries on 652GB of JSON data: up to 4x speedup by using Sparser.

Twitter queries on 68GB of JSON data: up to **9x speedup** by using Sparser.

Results: Accelerating Existing JSON Parsers

Censys queries compared against two state-of-the-art parsers (Mison based on SIMD): Sparser accelerates them by up to 22x.

Results: Accelerating Binary Format Parsing

Sparser accelerates **Avro** (above) and **Parquet** (below) based queries by up to **5x** and **4.3x** respectively.

Results: Domain-Specific Tasks

Sparser accelerates packet parsing by up to 3.5x compared to standard tools.

Results: Sparser's Sensitivity to Selectivity

Sparser's
performance
degrades
gracefully as the
selectivity of the
query decreases.

Results: Nuts and Bolts

Sparser picks a cascade within 5% of the optimal one using its sampling-based measurement and optimizer.

Resampling to calibrate the cascade can improve end-to-end parsing time by up to **20x**.

Conclusion

Sparser:

- Uses raw filters to filter before parsing
- Selects a cascade of raw filters using an efficient optimizer
- Delivers up to 22x speedups over existing parsers
- Will be open source soon!

Questions or Comments? Contact Us!

shoumik@cs.stanford.edu fabuzaid@cs.stanford.edu

