

Exercise 1:

Let P_1 and P_2 be two permutation matrices. Is $P_1 \times P_2$ also a permutation matrix? Argue for or against your answer.

Exercise 2:

1. Draw the graphs G_A and G_B for which the following 2 adjacency matrices A and B are given.

$$A = \left(\begin{array}{cccc} 0 & 1 & 1 & 1\\ 1 & 0 & 1 & 0\\ 1 & 1 & 0 & 1\\ 1 & 0 & 1 & 0 \end{array}\right) B = \left(\begin{array}{cccc} 0 & 1 & 1 & 0\\ 1 & 0 & 1 & 1\\ 1 & 1 & 0 & 1\\ 0 & 1 & 1 & 0 \end{array}\right)$$

- 2. Are the two graphs isomorphic?
- 3. How many different representations (in terms of adjacency matrices) of G_A are there?
- 4. How many different representations (in terms of adjacency matrices) of G_B are there?
- 5. Is there a permutation matrix P such that $A = P(PB)^T$ holds?
- 6. If so, give all matrices P, such that $A = P(PB)^{T}$ holds.

Exercise 3:

Given the following graph:

- 1. Give an adjacency matrix A for the graph. (How many different are there?)
- 2. For your chosen adjacency matrix, how many permutation matrices P are there, such that $A = P(PA)^T$ holds? (Remark: this number corresponds to the size of the so-called "automorphism group" of the graph).

SDU 🏠

Exercise 4:

Given the following graph:

- 1. Give an adjacency matrix A for the graph.
- 2. For your chosen adjacency matrix, how many permutation matrices P are there, such that $A = P\left(PA\right)^T$ holds?

Exercise 5*:

Given the following two graphs G_A (left) and G_B (right):

- 1. Give adjacency matrices for G_A and G_B .
- 2. Is G_B a subgraph of G_A ?
- 3. How many different ways are there to find G_B as a subgraph in G_A ? (i.e., assuming as adjacency matrix A and B for graphs G_A and G_B , how many leaf-nodes would the search the of the Ullmann algorithm have?)

4. How many different ways are there to find G_B as an induced subgraph in G_A ?

Exercise 6:

The following is from the unit-testing of the graph theory assignment. Explain the expected result 10.

Exercise 7*:

Use sigma aldrich https://www.sigmaaldrich.com/DK/en/structure-search to look for chemical structures. How many structures can you find which have the following as a substructure?

Can you find the price for the compound(s) you found? Do you know the compound with the highest similarity?