Definition (Opposite category). Given a category **C**, its *opposite category* **C**^{op} is specified by:

- 1. $Objects: Ob_{\mathbf{C}^{op}} = Ob_{\mathbf{C}}$. Given $X \in Ob_{\mathbf{C}}$, we will sometimes (though not always) write X^{op} to signify when we are thinking of X as an object of $Ob_{\mathbf{C}}^{op}$.
- 2. *Morphisms*: Given objects X^{op} , $Y^{op} \in Ob_{\mathbb{C}^{op}} = Ob_{\mathbb{C}}$,

$$\operatorname{Hom}_{\mathbf{C}^{\operatorname{op}}}(X^{\operatorname{op}};Y^{\operatorname{op}}) := \operatorname{Hom}_{\mathbf{C}}(Y;X).$$

Given $f \in \text{Hom}_{\mathbb{C}}(Y;X)$, when we are thinking of it as an element of $\text{Hom}_{\mathbb{C}^{op}}(X^{op};Y^{op})$, we will sometimes write f^{op} .

3. *Identity morphisms*: Given $X^{op} \in Ob_{\mathbb{C}^{op}}$, its identity morphism is

$$\operatorname{Id}_{X^{\operatorname{op}}} := \operatorname{Id}_{X}^{\operatorname{op}}.$$

4. Composition: Let $f^{op} \in \text{Hom}_{\mathbb{C}^{op}}(X^{op}; Y^{op})$ and $g^{op} \in \text{Hom}_{\mathbb{C}^{op}}(Y^{op}; Z^{op})$, then

$$f^{\mathrm{op}} \circ_{\mathbf{C}^{\mathrm{op}}} g^{\mathrm{op}} := (g \circ_{\mathbf{C}} f)^{\mathrm{op}}.$$