Valós idejű tesztek generálása időzített viselkedésmodellekből

Szkupien Péter

Budapesti Műszaki és Gazdaságtudományi Egyetem Kritikus Rendszerek Kutatócsoport

Bevezetés

- Biztonságkritikus rendszerek

 követelmények ellenőrzése
- Modellellenőrzés \rightarrow teljes állapottér feltárása \rightarrow modellalapú tesztgenerálás
- Időzített rendszerek → absztrakt tesztesetek konkretizálása

Bevezetés

- Biztonságkritikus rendszerek → követelmények ellenőrzése
- Modellellenőrzés → teljes állapottér feltárása → modellalapú tesztgenerálás
- Időzített rendszerek → absztrakt tesztesetek konkretizálása

UPPAAL

Theta

1. Bemenet: időzített automaták hálózata (UPPAAL)

- 1. Bemenet: időzített automaták hálózata (UPPAAL)
- 2. Az automatahálózat absztrakt reprezentációja (Theta)

- 1. Bemenet: időzített automaták hálózata (UPPAAL)
- 2. Az automatahálózat absztrakt reprezentációja (Theta)
- 3. Tesztgenerálás

- 1. Bemenet: időzített automaták hálózata (UPPAAL)
- 2. Az automatahálózat absztrakt reprezentációja (Theta)
- 3. Tesztgenerálás
- 4. Kimenet: elvárásoknak megfelelő tesztkészlet

Időzített automaták hálózata

- Időzített automata: véges automata + óraváltozók
 - Állapot: aktív vezérlési hely + óraváltozók állása

Időzített automaták hálózata

- Időzített automata: véges automata + óraváltozók
 - Állapot: aktív vezérlési hely + óraváltozók állása
- Automaták hálózata
 - Automaták szinkronizációja

Időzített automaták hálózata

- Időzített automata: véges automata + óraváltozók
 - Állapot: aktív vezérlési hely + óraváltozók állása
- Automaták hálózata
 - Automaták szinkronizációja

- Óraváltozók használata
 - o Tranzíció őrfeltétel
 - Lenullázás tranzícióval
 - Vezérlési hely invariáns

Absztrakt reprezentáció

- Zóna: óraváltozókra vonatkozó kényszerek halmaza
- Absztrakt állapot: aktív vezérlési hely(ek) + zóna

Absztrakt reprezentáció

- Zóna: óraváltozókra vonatkozó kényszerek halmaza
- Absztrakt állapot: aktív vezérlési hely(ek) + zóna
- Adaptive Simulation Graph: absztrakt állapottér
 - Irányított fa gráf
 - Csúcsok: absztrakt állapotok
 - Élek: absztraktállapot-átmenetek
 - o Fedési reláció

Absztrakt reprezentáció

- Zóna: óraváltozókra vonatkozó kényszerek halmaza
- Absztrakt állapot: aktív vezérlési hely(ek) + zóna
- Adaptive Simulation Graph: absztrakt állapottér
 - Irányított fa gráf
 - Csúcsok: absztrakt állapotok
 - Élek: absztraktállapot-átmenetek
 - Fedési reláció
- ASG-ből kiolvasható az állapotok (vezérlési helyek) elérhetősége

1. A tesztesetek legyenek valódiak

- 1. A tesztesetek legyenek valódiak
- 2. A tesztkészlet fedje le az összes elérhető vezérlési helyet

- 1. A tesztesetek legyenek valódiak
- 2. A tesztkészlet fedje le az összes elérhető vezérlési helyet
- 3. A tesztesetek minél kevesebb lépésből álljanak

- 1. A tesztesetek legyenek valódiak
- 2. A tesztkészlet fedje le az összes elérhető vezérlési helyet
- 3. A tesztesetek minél kevesebb lépésből álljanak
- 4. A tesztkészlet álljon minél kevesebb tesztesetből

- 1. A tesztesetek legyenek valódiak
- 2. A tesztkészlet fedje le az összes elérhető vezérlési helyet
- 3. A tesztesetek minél kevesebb lépésből álljanak
- 4. A tesztkészlet álljon minél kevesebb tesztesetből
- 5. A tesztesetek minél rövidebb ideig fussanak

A tesztek útvonala

- Absztrakt teszteset: gyökérből induló út az ASG-ben
 - ASG-csúcsok és ASG-élek alternáló sorozata
 - Vezérlési helyek (vezérlésihely-vektorok) és tranzíciók (tranzícióvektorok) alternáló sorozata

A tesztek útvonala

- Absztrakt teszteset: gyökérből induló út az ASG-ben
 - ASG-csúcsok és ASG-élek alternáló sorozata
 - Vezérlési helyek (vezérlésihely-vektorok) és tranzíciók (tranzícióvektorok) alternáló sorozata
- ASG bejárása
 - Szélességi bejárás
 - Amíg minden elérhető vezérlési helyet le nem fedünk tesztesettel

A tesztek időzítése

- Valós idejű teszteset: absztrakt teszteset + időzítés
- Időzítés: az állapotokban (tesztlépésekben) eltöltött idők sorozata

A tesztek időzítése

- Valós idejű teszteset: absztrakt teszteset + időzítés
- Időzítés: az állapotokban (tesztlépésekben) eltöltött idők sorozata
- Egyenlőtlenségrendszer megoldása (SMT probléma)
 - \circ Változók: óraváltozók (pl. x) a teszt minden lépésében (pl. x_1, \dots, x_n)
 - Egyenlőtlenségek
 - Absztrakt állapotok zónái
 - Invariánsok
 - Őrfeltételek
 - Kapcsolat az óraváltozók egymást követő értékei között (pl. x_i és x_{i+1})
 - Tranzíció lenullázza
 - Tranzíció nem nullázza le

A Theta meglévő, felhasznált komponensei

- A Theta meglévő, felhasznált komponensei
 - XTA formalizmusból előállítja az automatahálózat belső reprezentációját
 - XtaSystem, XtaProcess, Loc, Edge

- A Theta meglévő, felhasznált komponensei
 - XTA formalizmusból előállítja az automatahálózat belső reprezentációját
 - XtaSystem, XtaProcess, Loc, Edge
 - Előállítja az automatahálózat absztrakt reprezentációját
 - ARG, ArgNode, ArgEdge, ArgTrace (XtaState, XtaAction)

- A Theta meglévő, felhasznált komponensei
 - XTA formalizmusból előállítja az automatahálózat belső reprezentációját
 - XtaSystem, XtaProcess, Loc, Edge
 - Előállítja az automatahálózat absztrakt reprezentációját
 - ARG, ArgNode, ArgEdge, ArgTrace (XtaState, XtaAction)
 - Általános osztályok
 - Típusok, változók, kifejezések

- A Theta meglévő, felhasznált komponensei
 - XTA formalizmusból előállítja az automatahálózat belső reprezentációját
 - XtaSystem, XtaProcess, Loc, Edge
 - Előállítja az automatahálózat absztrakt reprezentációját
 - ARG, ArgNode, ArgEdge, ArgTrace (XtaState, XtaAction)
 - Általános osztályok
 - Típusok, változók, kifejezések
 - SMT solver interfész (Microsoft Z3)

- A Theta meglévő, felhasznált komponensei
 - XTA formalizmusból előállítja az automatahálózat belső reprezentációját
 - XtaSystem, XtaProcess, Loc, Edge
 - Előállítja az automatahálózat absztrakt reprezentációját
 - ARG, ArgNode, ArgEdge, ArgTrace (XtaState, XtaAction)
 - Általános osztályok
 - Típusok, változók, kifejezések
 - SMT solver interfész (Microsoft Z3)
 - Segédosztályok
 - Vizualizáció, logger

Saját, új osztályok

- Saját, új osztályok
 - o XtaTest: időzített teszteset

- Saját, új osztályok
 - o XtaTest: időzített teszteset
 - o XtaTestGenerator: tesztgenerálási algoritmus implementációja

- Saját, új osztályok
 - o XtaTest: időzített teszteset
 - o XtaTestGenerator: tesztgenerálási algoritmus implementációja
 - o XtaTestPrinter: teszteset(ek) szöveges megjelenítése

```
----- TRACE 7 P 1 cs -----
                                         ====== TRACE 10 P 2 cs ======
(XtaState (P_1_A P_2_A)
                                         (XtaState (P_1_A P_2_A)
  (Prod2State
                                           (Prod2State
    (ExplState (idid 0))
                                             (ExplState (idid 0))
    (ZoneState P_2x - P_1x \le 0
                                             (ZoneState P_2x - P_1x \le 0
               P_1_x >= 0
                                                        P 1 x >= 0
               P 2 x >= 0
                                                        P 2 x >= 0
               P_1_x - P_2_x \le 0
                                                        P_1x - P_2x \le 0
                                             L:
   P_2_x <- 1
                                             P_2_x <- 1
    P_1_x <- 1))
                                             P_1_x <- 1))
Delay: 1,484375
                                         Delay: 1,500000
                                         (BasicXtaAction
(BasicXtaAction
 (= idid 0)
                                           (= idid 0)
 P 1 x > 1
                                           P 2 x > 1
  (reset P 1 x 0))
                                           (reset P 2 x 0))
(XtaState (P 1 req P 2 A)
                                         (XtaState (P_1_A P_2_req)
  (Prod2State
                                           (Prod2State
    (ExplState (idid 0))
                                             (ExplState (idid 0))
    (ZoneState P_1x - P_2x < -1
                                             (ZoneState P_2x >= 0
               P_2x > 1
                                                        P_2x - P_1x < -1
               P_1_x >= 0
                                                        P_1_x > 1
                                             L:
   P_2_x <- 1
                                            P_1_x <- 1
                                             P 2 x <- 32))
    P 1 x <- 32))
Delay: 0,000000
                                         Delay: 0,000000
(BasicXtaAction
                                         (BasicXtaAction
 (reset P_1_x 0)
                                           (reset P_2_x 0)
  (assign idid 1))
                                           (assign idid 2))
(XtaState (P_1_wait P_2_A)
                                         (XtaState (P_1_A P_2_wait)
  (Prod2State
                                           (Prod2State
    (ExplState (idid 1))
                                             (ExplState (idid 2))
    (ZoneState P_1x - P_2x < -1
                                             (ZoneState P_2x >= 0
              P_2x > 1
                                                        P_2x - P_1x < -1
              P \ 1 \ x >= 0)
                                                        P 1 x > 1)
                                             L:
   P_2_x <- 1
                                             P_2_x <- 64
    P_1x \leftarrow 64)
                                             P_1_x <- 1))
Delay: 64,000000
                                         Delay: 64,000000
(BasicXtaAction
                                         (BasicXtaAction
 (= idid 1)
                                           P 2 x >= 64
 P_1_x >= 64
                                           (= idid 2))
(XtaState (P_1_cs P_2_A)
                                         (XtaState (P_1_A P_2_cs)
 (Prod2State
                                           (Prod2State
    (ExplState (idid 1))
                                             (ExplState (idid 2))
    (ZoneState P_1_x - P_2_x < -1
                                             (ZoneState P 2 x >= 64
              P_2x > 65
                                                        P_2x - P_1x < -1
              P 1 x >= 64)
                                                        P 1 x > 65)
                                             L:
    P_2_x <- 1
                                            P_2_x <- 1
   P_1_x <- 1))
                                            P_1_x <- 1))
Delay: 0,000000
                                         Delay: 0,000000
Total time: 65,484375
                                         Total time: 65,500000
```


- Saját, új osztályok
 - o XtaTest: időzített teszteset
 - o XtaTestGenerator: tesztgenerálási algoritmus implementációja
 - o XtaTestPrinter: teszteset(ek) szöveges megjelenítése
 - o XtaTestVisualizer: teszteset(ek) grafikus megjelenítése (Graphviz)

Kiértékelés

Esettanulmány: Fischer-protokoll

Kiértékelés

- Esettanulmány: Fischer-protokoll
- Mérések

Modell	ARG		Futásidő	Generált	ا څا	- Siâi
	mélység	méret	(ms)	tesztek	$ \hat{\mathfrak{T}} $	$\sum \hat{\mathfrak{T}}_i $
critical-01-25-50.xta	7	27	274	12	2	13
critical-02-25-50.xta	14	641	1723	85	4	28
critical-03-25-50.xta	22	21699	7623	410	6	45
csma-01.xta	2	3	509	2	1	2
csma-02.xta	5	21	353	9	2	7
csma-03.xta	8	99	1306	18	4	13
csma-04.xta	9	381	875	24	6	19
csma-05.xta	10	1272	1723	40	7	21
csma-06.xta	11	3865	2040	53	9	25
csma-07.xta	12	11008	4488	93	12	33
csma-08.xta	13	29925	4264	100	13	37
csma-09.xta	14	78552	4278	119	16	44
fddi-001.xta	9	15	813	11	2	15
fddi-002.xta	16	46	2144	26	3	34
fddi-003.xta	24	104	8495	48	4	60
fddi-004.xta	28	101	18073	62	4	74
fddi-005.xta	34	141	52396	85	4	89
fddi-006.xta	időtúllépés					
fischer-01-32-64.xta	4	5	152	4	1	4
fischer-02-32-64.xta	8	27	380	10	2	8
fischer-03-32-64.xta	10	121	508	20	3	12
fischer-04-32-64.xta	12	493	1083	35	4	16
fischer-05-32-64.xta	14	1911	1866	56	5	20
fischer-06-32-64.xta	16	7183	2648	79	6	24
fischer-07-32-64.xta	18	26405	3294	104	7	28
fischer-08-32-64.xta	20	95353	5829	165	8	32
lynch-01-16.xta	9	10	296	9	1	9
lynch-02-16.xta	13	61	867	30	2	18
lynch-03-16.xta	15	271	1716	76	3	27
lynch-04-16.xta	17	1049	4395	208	4	36
lynch-05-16.xta	19	3811	13247	582	5	45
lynch-06-16.xta	21	13453	39038	1490	6	54
lynch-07-16.xta	időtúllépés					
lynch-08-16.xta	időtúllépés					

Kiértékelés

- Esettanulmány: Fischer-protokoll
- Mérések
- Továbbfejlesztési lehetőségek
 - Tesztkészlet
 - Tesztkészlettel szemben támasztott elvárások priorizálása
 - Új elvárások a tesztkészlettel szemben (pl. zóna közepe/széle)
 - Kimeneti formátum
 - UPPAAL szimulátor
 - Tesztesetek tényleges, futtatható előállítása

Összefoglalás

- A feladat kontextusba helyezése
- Háttérismeretek bemutatása (időzített automata, zóna, ASG)
- A tesztkészlet elvárt tulajdonságai
- A tesztek útvonala
- A tesztek időzítése
- A tesztgenerálás megvalósítása
- Kiértékelés

BÍRÁLÓI KÉRDÉSEK

Tud említeni olyan formális módszert, melynek sikeres alkalmazásakor a vizsgált rendszer tesztelése biztonságosan kihagyható?

- Önmagában a modellek helyességének bizonyítása nem elegendő, hiszen az implementációba is csúszhatnak hibák
- A tesztelés kihagyása csak akkor jöhet szóba, ha az implementáció (kódgenerálás) is teljes mértékben automatikusan (és bizonyítottan helyesen) történik

A kielégíthetőségi probléma, melyre a teszteset-konkretizálás a dolgozat 3.5 fejezetében visszavezetésre kerül, melyik elméletben értelmezett?

- Az óraváltozókat valós értékkészlettel definiáltam
- Az implementációmban racionális számokként kezelem őket
- Az algoritmus helyessége ettől független, hiszen egy valós/racionális különbség nem okozhat változást, ha minden óraváltozóra vonatkozó kényszerben egész szám szerepel.

A calculateDelays függvényen belül az SMT-probléma összeállításakor szükséges az XtaState példányokat leíró kényszereket hozzávenni a formulahalmazhoz?

Nem, ez felesleges lépés. Az XtaState példányokat leíró kényszerekben csak az szerepel, hogy a zónájuk ne legyen üres. Az XTA modellből származó érdemi kényszerek mind az XtaActionöket leíró kényszerekben találhatók.

Mennyiben kellene módosítani, illetve bővíteni az elkészült eszközt ahhoz, hogy a 6.2 fejezetben vázolt további fedési kritériumokat is támogassa ("Törekedhetünk például olyan tesztesetekre is, amelyek az állapotátmeneteket azok lehetséges időintervallumának a közepén vagy éppen a legszélén tüzelik")?

- Az időzítést konkretizáló függvényt kell módosítani. A bővítés szükséges mértéke az SMT megoldó képességeitől függ: olyan megoldóra lenne szükség, amely képes szélsőérték-keresésre is.
- A zónák "szélei" (pl. $x_{i_{min}}$ és $x_{i_{max}}$) így meghatározhatók
- Az ezektől vett távolságot kell minimalizálni/maximalizálni

