Tom Mulvey — Homework 4 3/8/18

4.8) Let $x \in \mathbb{Z}$. Prove that if $2|(x^2 - 5)$ then $4|(x^2 - 5)$. Assume $2|(x^2 - 5)$ is true. Since 2 divides $(x^2 - 5)$, $(x^2 - 5)$ is an even integer that can represented as 2k for some $k \in \mathbb{Z}$.

Thus
$$(x^2 - 5) = 2k$$

 $x^2 = 2k + 5$
 $x^2 = 2(k+2) + 1$, and since x^2 is odd, x is too by theorem 3.12

Since x is odd, x = 2p + 1 for some $p \in \mathbb{Z}$ The expression can be rewritten as ...

$$(2p+1)^2 - 5 = 4p^2 + 4p + 1 - 4 = 4(p^2 + p - 1).$$

Since $p^2 + p - 1 \in \mathbb{Z}$, it shows that $x^2 - 5$ is divisible by 4.

4.18) Let $m, n \in \mathbb{N}$ and m|n. Prove if $a, b \in \mathbb{Z}$ s.t. if $a \equiv b \mod n$ then $a \equiv b \mod m$.

Assume $a \equiv b \mod n$. By the definition of congruence, it can be rewritten as n|a-b. By the same means, $a \equiv b \mod m$ can be written as m|a-b

Now let another integer, t, equal a-b. n|a-b can now be represented as n|t, and m|a-b now equals m|t

Recall that m|n. We also just stated n|t. Using the theorem in 4.1, (if a|b and b|c, then a|c), the same logic can be applied here. So Since m|n and n|t, it follows that m|t.

Unsubbing t, we get m|t = m|a - b. Now using the definition of congruence, we get $a \equiv b \mod m$, which is the result wanted.

4.40) Let A and B be sets, Prove that $A \cup B = (A - B) \cup (B - A) \cup (A \cap B)$

For the backward direction,

let $x \in (A - B) \cup (B - A) \cup (A \cap B)$ This is logically equivalent to $x \in (A - B) \lor x \in (B - A) \lor x \in (A \cap B)$

These terms can be expressed as..

$$(x \in A \land x \notin B) \lor (x \notin A \land x \in B) \lor (x \in A \land x \in B)$$

The first and third can be simplified. No reason to have two $x \in A$. $(x \in A \land (x \in B \lor x \notin B)) \lor (x \notin A \land x \in B)$.

Now it's always true x is either in B or it is not, so that can be omitted. Thus we get $x \in A \lor (x \notin A \land x \in B)$.

Now we have either x is in A, or x is in B and not A. The $x \notin A$ is logically redundant, because if x is not in A, it is in B. The result is $x \in A \lor x \in B$, which can be rewritten as $x \in A \cup B$. This implies that $(A - B) \cup (B - A) \cup (A \cap B) \subseteq A \cup B$.

For the forward direction, we will prove directly. Suppose $x \in A \cup B$. There are three possibilities.

- 1) $x \in A$ but $x \notin B$ or
- 2) $x \notin A$ but $x \in B$ or
- 3) $x \in A$ and $x \in B$.

Writting in logic, the product is $(x \in A \land x \notin B) \lor (x \notin A \land x \in B) \lor (x \in A \land x \in B)$.

This is equivalent to $x \in (A-B) \lor x \in (B-A) \lor x \in (A\cap B)$

Which is the exact same as $x \in (A - B) \cup (B - A) \cup (A \cap B)$.

$$A \cup B \subseteq (A - B) \cup (B - A) \cup (A \cap B)$$

4.46) Let A and B be sets. Prove $A \cup B = A \cap B \iff A = B$

For the reverse direction, assume A = B.

Thus $A \cup B = A \cap B$ is logically equivalent to $A \cup A = A \cap A$. Replacing B with A, from our assumption, gives $A \cup A = A$ and that $A \cap A = A$. The result is A = A, and obivously $A \subseteq A$ and vice versa.

For the forward direction, assume $A \cup B = A \cap B$.

It is the case such that $A \subseteq A \cup B \subseteq A \cap B \subseteq B$.

And similarly with B, $B \subseteq A \cup B \subseteq A \cap B \subseteq A$.

$$A \subseteq B$$
 and $B \subseteq A$.