Optimización Numérica Laboratorio de Computo # 5 Programación Cuadrática Sucesiva

1 Introducción

Consideremos el problema

minimizar
$$f(x)$$

sujeto a $h(x) = 0$, (1)

donde $f: \mathbb{R}^n \to \mathbb{R}, h: \mathbb{R}^n \to \mathbb{R}^m \text{ y } f, h \in \mathcal{C}^2$.

Sea

$$l(x,\lambda) = f(x) + \lambda^T h(x), \tag{2}$$

la función lagrangeana de (1).

Las condiciones necesarias de primer orden para (1) son

$$F(x, \lambda) = \begin{pmatrix} \nabla f(x) + \nabla h(x)\lambda \\ h(x) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \tag{3}$$

donde $F: \mathbb{R}^{n+m} \to \mathbb{R}^{n+m}$.

Sean $x^* \in \mathbb{R}^n$ mínimo local y punto regular de (1) y $\lambda^* \in \mathbb{R}^m$ su correspondiente multiplicador de Lagrange. Entonces $F(x^*, \lambda^*) = 0$.

Supongamos que

- 1. $\nabla^2 f(x)$ y $\nabla^2 h_i(x)$, $\nabla h_i(x)$ i=1,...,m, son funciones Lipschitz continuas en una vecindad de x^* .
- 2. $B_* = \nabla_x^2 l(x^*, \lambda^*)$ es positiva definida en $Null(\nabla h(x^*)^T)$.

Entonces las ecuaciones no-lineales en (3) pueden resolverse por el método de Newton(en este caso, Programación Cuadrática Sucesiva (PCS)) en una vecindad de (x^*, λ^*) .

2 PCS

Algoritmo PCS local

Paso1 Escoga (x_0, λ_0) . Hacer $k \leftarrow 0$.

Paso 2 Mientras $||F(x_k, \lambda_k)||_2 \neq 0$ hacer

2.1 Resuelva

minimizar
$$(1/2)p^T B_k p + \nabla f_k^T p$$

sujeto a $\nabla h_k^T p + h_k = 0$

para obtener p_k y $\hat{\lambda_k}$.

- **2.2 Hacer** $x_{k+1} \leftarrow x_k + p_k$; $\lambda_{k+1} \leftarrow \hat{\lambda_k}$.
- **2.3** Actualizar $k \leftarrow k + 1$.

Fin

En el algoritmo f_k se refiere a $f(x_k)$ y similarmente en otras funciones. La matriz B_k es $\nabla_x^2 l_k$.

Programe **PCS** en MATLAB y pruebe su función con

minimizar
$$e^{x_1x_2x_3x_4x_5} - (1/2)(x_1^3 + x_2^3 + 1)^2$$

sujeto a $x_1^2 + x_2^2 + x_3^2 + 2x_4^2 + x_5^2 - 10 = 0$
 $x_2x_3 - 5x_4x_5 = 0$
 $x_1^3 + x_2^3 + 1 = 0$.

Use el punto inicial $x_0 = (-1.71, 1.59, 1.82, -0.763, -0.763)^T$. La solución es $x^* = (-1.58, 1.7, 1.851, -0.765, -0.765)^T$.

3 Multiplicador de Lagrange

Supongamos que $x^* \in \mathbb{R}^n$ es un mínimo local del problema (1) y λ^* su correspondiente multiplicador de Lagrange tales que las hipótesis (1)-(3) se satisfacen. En particular la matriz jacobiana de h(x) en x^* es de rango m entonces la ecuación lineal para $\lambda \in \mathbb{R}^m$

$$\nabla f(x^*) + \nabla h(x^*)\lambda = 0 \tag{4}$$

tiene como solución única a λ^* .

Notemos que el sistema lineal (4) es equivalente al problema de mínimos cuadrados lineales

Minimizar
$$\frac{1}{2} \|\nabla f(x^*) + \nabla h(x^*)\lambda\|_2^2$$
. (5)

Es claro que si $rango(\nabla h(x^*) = m$ entonces existe r > 0 tal que $rango(\nabla h(x)) = m$ para todo $x \in \mathbb{R}^n$ tal que $||x - x^*||_2 < r$. Esta propiedad se explota en el método de programación cuadrática sucesiva.

En el paso 2.2 del método se incorpora la actualización de λ que proviene del problema de mínimos cuadrados lineales:

Minimizar
$$\frac{1}{2} \|\nabla f(x_k) + \nabla h(x_k)\lambda\|_2^2$$

cuya solución se determina resolviendo el sistema lineal

$$(\nabla h(x_k)^T \nabla h(x_k)) \lambda = -\nabla h(x_k)^T \nabla f(x_k).$$

Notación

$$\nabla h(x)^T = \begin{pmatrix} \nabla h_1(x)^T \\ \nabla h_2(x)^T \\ \vdots \\ \nabla h_m(x)^T \end{pmatrix}.$$

4 Búsqueda de línea

El método de Newton sólo funciona con convergencia cuadrática en una vecindad de (x^*, λ^*) . En el caso en que los iterandos iniciales (x_k, λ_k) estén alejados de la solución (x^*, λ^*) el paso p_k se recortará con búsqueda de línea.

Definición. Decimos que la función $\phi : \mathbb{R}^n \to \mathbb{R}$ es una función de mérito para el problema (1) en (x^*, λ^*) si y sólo si (x^*, λ^*) es mínimo local de $\phi(x)$.

Ejemplos

1.

$$\phi(x, \lambda^*) = (1/2)F(x, \lambda^*)^T F(x, \lambda^*)$$

2. Lagrangeano aumentado

$$\phi(x, \lambda^*, C) = l(x, \lambda^*) + \frac{C}{2}h(x)^T h(x).$$

donde C>0 es un parámetro.

3. Función de mérito L_1

$$\phi(x, \lambda^*, C) = l(x, \lambda^*) + C ||h(x)||_1.$$

donde C>0 es un parámetro.

Sean p_k la única solución en el paso 2.1 y $\phi(x)$ una función de mérito para el problema (1) en (x^*, λ^*) tal que

$$\phi(x_k)^T p_k < 0,$$

entonces es posible usar búsqueda de línea a lo largo de p_k .

Sin embargo, λ^* es un vector desconocido, entonces el paso p_k se recorta en el espacio (x, λ_k) .

5 Método

Se usarán como funciones de mérito el lagrangeano aumentado o la función L_1 . En estos casos $\phi(...)$ depende también de λ y el parámetro C, pero en cada iteración se consideran como valores constantes.

Programación Cuadrática Sucesiva con búsqueda de línea

Paso1 Escoga (x_0, λ_0) . Hacer $k \leftarrow 0$.

Paso 2 Mientras $||F(x_k, \lambda_k)||_2 \neq 0$ hacer

2.1 Resuelva

minimizar
$$(1/2)p^T B_k p + \nabla f_k^T p$$

sujeto a $\nabla h_k^T p + h_k = 0$

para obtener p_k y $\hat{\lambda_k}$.

2.2 Si $||h(x_k)||_2 > 0$

Calcular $C_k > 0$ tal que $\nabla \phi(x_k, \lambda_k, C_k)^T p_k < 0$.

Determinar $\alpha_k \in (0, 1]$ tal que la primer condición de Wolfe se satisface.

De otro modo $\alpha_k = 1$.

- **2.3 Hacer** $x_{k+1} \leftarrow x_k + \alpha_k p_k$; $\lambda_{k+1} \leftarrow \hat{\lambda_k}$.
- **2.4** Actualizar $k \leftarrow k + 1$.

Fin