MA 327 A - Álgebra Linear - 1^o semestre de 2010 Primeira Prova - 13/04/2010

RA	Nome
Assinatura	•••••

Questão 1 (valor 2.5) Seja P_2 o espaço dos polinômios de grau menor ou igual a dois e $M_{3\times3}$ o espaço das matrizes reais 3×3 . Para cada subconjunto abaixo, prove que é um subespaço vetorial ou justifique que não é através de um contra-exemplo e, caso seja um subespaço, encontre uma base.

- a) $U = \{p(t) \in P_2 \text{ tal que } t = 1 \text{ \'e raiz de } p(t)\}$ \'e subespaço de P_2 .
- **b)** $W = \{A \in M_{3\times 3} \text{ tal que A \'e singular}\} = \{A \in M_{3\times 3} \text{ tal que } det(A) = 0\}$ \'e subespaço de $M_{3\times 3}$

Questão 2 (valor 3.0) Encontre bases para os subespaços de \mathbb{R}^3 definidos abaixo:

- a) $U = \{(x, y, z) \in \mathbb{R}^3 \text{ tal que } x + y + z = 0; \ 2x + y = 0\}.$
- **b)** $W = \{(x, y, z) \in \mathbb{R}^3 \text{ tal que } -x + y + 3z = 0\}.$
- **c)** U + W.
- d) Responda: $U + W = U \oplus W$? Justifique.

Questão 3 (valor 2.5) Considere o espaço P_2 dos polinômios de grau menor ou igual a dois. Sejam duas bases para P_2 :

$$\alpha = \{t^2 + 1; t; -1\} = \{p_1(t), p_2(t), p_3(t)\};$$

$$\beta = \{2t^2; 2t; -t^2 + t + 1\} = \{p_4(t), p_5(t), p_6(t)\}.$$

Suponha que as coordenadas do polinômio $p_0(t)$ em relação à base α são $[p_0(t)]_{\alpha} = (1,1,1)^T$.

- a) Qual é a expressão de $p_0(t)$?
- **b)** Qual é a matriz de mudança da base α para a base β , $[I]_{\beta}^{\alpha}$?
- c) Através da matriz mudança de base do item anterior, encontre as coordenadas de $p_0(t)$ em relação à base β , $[p_0(t)]_{\beta}$.

Questão 4 (valor 2.0) Prove ou dê um contra-exemplo: se três vetores v_1, v_2, v_3 são LI dois a dois, então o conjunto $\{v_1, v_2, v_3\}$ é LI.