Trend Modeling

Jared Fisher

Lecture 1b

▶ Homework 1 is due by 11:59pm Wednesday evening, 2/3, via Gradescope.

- ▶ Homework 1 is due by 11:59pm Wednesday evening, 2/3, via Gradescope.
- Homework assignments will cover material up to and including the week before the homework is due.

- ▶ Homework 1 is due by 11:59pm Wednesday evening, 2/3, via Gradescope.
- ► Homework assignments will cover material up to and including the week before the homework is due.
- ► Thus, HW1 covers material from last week and this week: noise, stationarity, and trends.

- ▶ Homework 1 is due by 11:59pm Wednesday evening, 2/3, via Gradescope.
- ► Homework assignments will cover material up to and including the week before the homework is due.
- ► Thus, HW1 covers material from last week and this week: noise, stationarity, and trends.
- ▶ Memo: Friday lab sections consist of three parts: a worksheet (usually), a pre-recorded video from the GSIs, and live Q&A on Friday.

- ▶ Homework 1 is due by 11:59pm Wednesday evening, 2/3, via Gradescope.
- ► Homework assignments will cover material up to and including the week before the homework is due.
- ► Thus, HW1 covers material from last week and this week: noise, stationarity, and trends.
- ▶ Memo: Friday lab sections consist of three parts: a worksheet (usually), a pre-recorded video from the GSIs, and live Q&A on Friday.
- Reminder: please respond to the time zone and project topic polls on Piazza. Project datasets will be chosen and published next week in conjunction with your project

Waitlist and Concurrent Students

▶ The waitlist is moving slower than in past semesters.

Accomodations and Schedule Conflicts

▶ Please let me know of any conflicts or accomodations (religious, DSP, or otherwise) as soon as possible.

Recap

ightharpoonup For time series Y_t

- ightharpoonup For time series Y_t
- $ightharpoonup Y_t = signal(t) + noise_t$

- \triangleright For time series Y_t
- $ightharpoonup Y_t = signal(t) + noise_t$
- ► More generally:

$$Y_t = signal(t) + X_t$$

- \triangleright For time series Y_t
- $ightharpoonup Y_t = signal(t) + noise_t$
- ► More generally:

$$Y_t = signal(t) + X_t$$

ightharpoonup Where X_t is a **stationary process**

Stationary (But Not White Noise)

Not Stationary - Heteroskedastic

```
hhh = rnorm(200, 0, 1:200)
plot(hhh,type='1')
    400
    200
                           50
                                                              150
                                                                               200
                                            100
                                            Index
```

Side by Side

Side by Side

$$ightharpoonup Y_t = signal(t) + X_t$$

- $ightharpoonup Y_t = signal(t) + X_t$
- $ightharpoonup
 ightarrow Y_t signal(t) = X_t$

- $ightharpoonup Y_t = signal(t) + X_t$
- $ightharpoonup \Rightarrow Y_t signal(t) = X_t$
- $ightharpoonup \Rightarrow \hat{X}_t = y_t \widehat{signal}(t)$

- $ightharpoonup Y_t = signal(t) + X_t$
- $ightharpoonup \Rightarrow Y_t signal(t) = X_t$
- $ightharpoonup \Rightarrow \hat{X}_t = y_t \widehat{signal}(t)$
- ▶ We'll build our signal function "signal(t)" such that the assumption that X_t is stationary is reasonably appropriate.

- $ightharpoonup Y_t = signal(t) + X_t$
- $ightharpoonup
 ightharpoonup Y_t signal(t) = X_t$
- $ightharpoonup \Rightarrow \hat{X}_t = y_t \widehat{signal}(t)$
- ▶ We'll build our signal function "signal(t)" such that the assumption that X_t is stationary is reasonably appropriate.
- In other words, we will model the signal such that \hat{X}_t look like come from a stationary process.

Decomposing a time series into signal(t) and noise

Figure 1: From anomaly.io

Decomposing a time series into signal(t) and noise

Figure 1: From anomaly.io

We usually decompose the signal into a trend component " m_t " and a seasonal component " s_t ":

$$signal(t) = m_t + s_t$$

 $\Rightarrow Y_t = m_t + s_t + X_t$

This Unit: "Pursuing Stationarity"

► Today we will focus on the trend component.

This Unit: "Pursuing Stationarity"

- ▶ Today we will focus on the trend component.
- ▶ This unit will continue for three more weeks, followed by midterm 1.

This Unit: "Pursuing Stationarity"

- ► Today we will focus on the trend component.
- ▶ This unit will continue for three more weeks, followed by midterm 1.
- ► Let's briefly look at the course calendar on bCourses: https: //bcourses.berkeley.edu/calendar#view_name=month&view_start=2021-02-01

▶ As we'll look at seasonal effects later, our model today is

$$Y_t = m_t + X_t$$

► As we'll look at seasonal effects later, our model today is

$$Y_t = m_t + X_t$$

 $ightharpoonup m_t$ is the trend

► As we'll look at seasonal effects later, our model today is

$$Y_t = m_t + X_t$$

- $ightharpoonup m_t$ is the trend
- $ightharpoonup X_t$ is as stationary process, perhaps white noise

► As we'll look at seasonal effects later, our model today is

$$Y_t = m_t + X_t$$

- $ightharpoonup m_t$ is the trend
- \triangleright X_t is as stationary process, perhaps white noise
- ▶ Idea: Model then remove the trend, so that data exhibits steady behavior over time, i.e. looks stationary. Then exploit dependence structure for estimation and prediction.

Example

Population of the United States

First Idea: Estimate trend \hat{m}_t .

If $\hat{m}_t \approx m_t$, then the residuals

$$y_t - \hat{m}_t \approx y_t - m_t = X_t$$

will have no trend over time.

Methods for estimating the trend:

Parametric form for m_t , e.g., fit a polynomial with least squares

First Idea: Estimate trend \hat{m}_t .

If $\hat{m}_t \approx m_t$, then the residuals

$$y_t - \hat{m}_t \approx y_t - m_t = X_t$$

will have no trend over time.

Methods for estimating the trend:

- **Parametric form** for m_t , e.g., fit a polynomial with least squares
- ► Smoothing/Filtering remove noise by averaging (lectures 3b and 4a)

First Idea: Estimate trend \hat{m}_t .

If $\hat{m}_t \approx m_t$, then the residuals

$$y_t - \hat{m}_t \approx y_t - m_t = X_t$$

will have no trend over time.

Methods for estimating the trend:

- **Parametric form** for m_t , e.g., fit a polynomial with least squares
- ► Smoothing/Filtering remove noise by averaging (lectures 3b and 4a)
- ▶ Other nonparametric methods e.g. isotonic models, etc.

ightharpoonup Assume parametric form for m_t , and estimate parameters.

- \triangleright Assume parametric form for m_t , and estimate parameters.
- ▶ We will use additive linear models for this, where the variables can be any pre-defined functions of time:

$$m_t = \beta_0 + \beta_1 f_1(t) + \beta_2 f_2(t) + ... + \beta_p f_p(t)$$

- \triangleright Assume parametric form for m_t , and estimate parameters.
- ▶ We will use additive linear models for this, where the variables can be any pre-defined functions of time:

$$m_t = \beta_0 + \beta_1 f_1(t) + \beta_2 f_2(t) + ... + \beta_p f_p(t)$$

• $f_j(t)$ can be any function: t, t^2 , log(t), t * log(t), etc.

Least Squares

Estimate the β parameters with least squares:

$$\hat{\beta} = \arg\min_{\beta} \sum_{t} (Y_t - \beta_0 - \beta_1 f_1(t) - \dots - \beta_p f_p(t))^2$$

Least Squares

Estimate the β parameters with least squares:

$$\hat{\beta} = \arg\min_{\beta} \sum_{t} (Y_t - \beta_0 - \beta_1 f_1(t) - \dots - \beta_p f_p(t))^2$$

Lab this week will cover least squares, especially for those not familiar with it!

Example: Quadratic Curve/Parabola

• Quadratic trend line: $m_t = \alpha + \beta t + \gamma t^2$

Example: Quadratic Curve/Parabola

- Quadratic trend line: $m_t = \alpha + \beta t + \gamma t^2$
- ► Fit parameters with least squares

$$(\hat{\alpha}, \hat{\beta}, \hat{\gamma}) = \operatorname{argmin} \sum_{t} (Y_t - [\alpha + \beta t + \gamma t^2])^2$$

then

$$\hat{m}_t = \hat{\alpha} + \hat{\beta}t + \hat{\gamma}t^2$$

Example - US Population

Population of the United States

Example - with Trend

Population of the United States

Example - Residuals

Population of the United States

Example - ACF Correlogram of Residuals: \hat{X}_t is plausibly white noise

Series resid

Example - Googling "Google"

Example - with Trend

Example - Residuals

Example - ACF Correlogram of Residuals

Correlogram of the Residuals

Effectively deterministic in our model: better make sure it's plausible!

Advantages

▶ Gives very accurate estimates when model assumptions are correct.

Disadvantages:

Effectively deterministic in our model: better make sure it's plausible!

Advantages

- ▶ Gives very accurate estimates when model assumptions are correct.
- Straight forward to predict future observations.

Disadvantages:

Effectively deterministic in our model: better make sure it's plausible!

Advantages

- ▶ Gives very accurate estimates when model assumptions are correct.
- Straight forward to predict future observations.

Disadvantages:

Selecting the correct model might be difficult.

Effectively deterministic in our model: better make sure it's plausible!

Advantages

- ▶ Gives very accurate estimates when model assumptions are correct.
- Straight forward to predict future observations.

Disadvantages:

- ▶ Selecting the correct model might be difficult.
- Parametric form might be unrealistic in practice.

Google + Isotonic

Google + Two-sided Smoothing

Model and subtract the trend, so that the new series (the residuals) are steady over time ("reasonably stationary")

Further Reading

https://anomaly.io/seasonal-trend-decomposition-in-r/index.html