1 Fördelningsfunktion

1.1 Definition

Låt X vara en stokastisk variabel. Funktionen

$$F_X(x) = P(X \le x), \forall x \in \mathcal{R}$$

kallas fördelningsfunktion. (Cumulative distribution function).

1.2 Egenskaper av $F_X(x)$

- $F_X(x)$ är icke-avtagande
- $F_X(x) \to 1, x \to \infty; F_X(x) \to 0, x \to -\infty$
- $F_X(x)$ är högerkontinuerlig

2 Speciell fördelning (1) - Binomial fördelning

2.1 Definition

Stokastisk variabel X är binomialfördelad med parametrarna n och p. Beteckning $X \sim Bin(n,p)$

2.2 Bernoulli - schema

Ett experiment består av n
 stycken försök, var och en av försöken har två möjliga utfall, framgång med sannolikhet p
 och motgång med sannolikhet 1-p. Försöket utförs oberoende av var
andra. Om X betecknar antalet framgångar så är $X \sim Bin(n, p)$. X har sannolikhets
funktionen:

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, k \in \mathcal{Z}$$

2.3 Exempel

Den amerikanska byggmarknaden Homedepot säljer skruvpaket med 10 stycken skruvar. Från tidigare erfarenhet vet man att en skruv är felaktig med sannolikhet 0.01 oberoende av varandra. Homedepot erbjuder pengarna-tillbakagaranti om 2 eller mer skruvar är felaktiga. Vilken andel av skruvpaket måste Homedepot ersätta?

2.3.1 Lösning

X: # felaktiga skruvar i ett paket. n=10, p=0.01, dvs $X \sim Bin(n,p)$ Frågan är, vad är $P \leq 2$?

$$P(X \le 2) = 1 - P(X = 0) - P(X = 1) = 1 - \binom{10}{0} *0.01^{0} *0.99^{10} - \binom{10}{1} *0.01^{1} *0.99^{9} = 0.04^{10} + 0.01^{1} *0.01^{1}$$

Svar: 0.04.

3 Speciell fördelning (1) - Poissionfördelning

Symbol $P_o(\lambda)$ $(P_{oi}(\lambda), P_{oiss}(\lambda))$

3.1 Definition

En stokastisk variabel X med sannolikhetsfunktion

$$p_X(k) = P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, k \in \mathcal{Z}$$

där $\lambda>0$ är en parameter, kallas "Poissionfördelad med parameter λ "

3.2 Tillämpningar

Om X beskriver antalet händelser som inträffar i ett tidsinterval, [t, t + h], så modelleras $X \sim P_{oi}(\lambda)$, där λ är det förväntade genomsnittliga antalet händelser i [t, t + h].

T.ex. antalet emissioner från ett radioaktivt material.

4 Approximation av Binomal med Poisson

4.1 Sats

Låt $X \sim Bin(n,p)$ och $Y \sim P_o(\lambda)$. För stort n och $np \to \lambda$ använder man $Y \sim P_o(\lambda)$ som en approximation för $X \sim Bin(n,p)$

4.2 Tumregel

Vi använder approximationen om (n, p) inte finns i vår tabellsamling, men för $P_o, \lambda = n * p$, finns i vår tabellsamling.

4.3 Skiss av beviset

Låt $X \sim Bin(n, p)$ och $\lambda = n * p$. Det gäller att

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k} = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k} =$$

$$= \frac{n * (n-1) * \dots * (n-k+1)}{k!} * p^k * (1-p)^{n-k} =$$

$$= \left(\frac{n}{n}\right) * \left(\frac{n-1}{n}\right) * \dots * \left(\frac{n-k+1}{n}\right) * \frac{\lambda^k}{k!} * \left(1-\frac{\lambda}{n}\right)^{n-k} =$$

$$= 1 * 1 * \dots * 1 * \frac{\lambda^k}{k!} * e^{-\lambda}, n \to \infty$$

4.4 Exempel

"Homedepot" skruvpaket med 100 st skruvar var och en skruv felaktig med sannolikhet 0.01 pengarna-tillbaka-garanti om 5 eller mer är felaktiga. Vilken andel måste Homedepot ersätta? M.a.o., bestäm $P(X \leq 5)$

4.4.1 Lösning

 $X \sim Bin(100, 0.01)$ approximeras med $Y \sim P_o(1)$

$$P(X \le 5) \approx 0.036$$

5 Väntevärde och varians

5.1 Definition

Låt X vara en diskret stokastisk variabel

- $E[X] = \sum_{\forall k} k * p_X(k) = \sum_{\forall k} k * P(X = k)$ kallas väntevärde av X.
- $Var(X) = \sum_{\forall k} (k E[X])^2 P(X = k)$ kallas varians av X.
- $D(X) = \sqrt{Var(X)}$ kallas standardavvikelse av X.

5.2 Anmärkning

- E[X] tolkas som "medelvärde med vikter" där vikterna är de enskilda sannolikheterna. Var(x) mäter variabiliteten av X om E[X].
- Ofta gynnsam att använda "förkortningsformeln"

$$Var(X) = E[X^{2}] - E[X]^{2}$$

= $\sum_{X \in \mathcal{X}} k^{2} P(X = k) - E[X]^{2}$

5.3 Sats (Räkneregel för väntevärde och varians)

- E[a] = a, Var(a) = 0 om $a\mathcal{R}$, icke-slump
- E[aX + b] = aE[X] + b, $Var(aX + b) = a^2Var(X)$
- ullet g reell funktion

$$E[g(X)] = \sum_{\forall k} g(k) P(X = k)$$

5.4 Sats

- Låt $X \sim Bin(n, p)$. Då gäller E[X] = np, Var(X) = np(1 p)
- Låt $Y \sim P_o(\lambda)$. Då gäller $E[X] = \lambda, Var(X) = \lambda$