

Computational Intelligence 3. MLP, Backpropagation

Prof. Dr. Sven Behnke

Letzte Vorlesung

- Realisierung eines Neurons
 - Integrationsfunktion
 - Transfer-/Aktivierungsfunktion
- Überwachtes Training
 - Menge von Trainingsbeispielen $\{(x_1,t_1), ..., (x_p,t_p)\}$
 - Perzeptron-Lernalgorithmus

Korrektheit des Perzeptron-Lernalgorithmus

- Der Perzeptron-Lernalgorithmus kann nun wie folgt interpretiert werden:
 - Auf Z soll das Perzeptron mit 1 antworten, also zw>0 für ein geeignetes w gelten. Wir beginnen mit einem beliebigen w_0 .
 - Ist $z \in Z$ ein Element, das noch nicht korrekt interpretiert wird ($zw \le 0$), dann erzeugt die Lern-Regel ein neues $w_{\text{neu}} := w_{\text{alt}} + z$ und beim nächsten Versuch mit demselben z ist $zw_{\text{neu}} = zw_{\text{alt}} + zz > zw_{\text{alt}}$.
 - Das Verfahren beginnt also mit einem beliebigen erweiterten Gewichtsvektor $\boldsymbol{w_0}$ und addiert (subtrahiert) sukzessive erweiterte Eingaben \boldsymbol{z} , bei denen die Ausgabe noch nicht korrekt ist.

Perzeptron-Konvergenz-Satz

- Konvergenz garantiert, wenn Problem lösbar (Rosenblatt 1962)
- Beispiel für nicht linear trennbare Mengen: ●

Satz:

Wenn das Perzeptron eine Klasseneinteilung überhaupt lernen kann, dann lernt es diese mit der Perzeptron-Lernregel in endlich vielen Schritten.

Problem:

Wenn der Lernerfolg bei einem Perzeptron ausbleibt, kann nicht direkt erkannt werden, ob

- 1. das Perzeptron die Klassifikation prinzipiell nicht lernen kann oder
- 2. der Lernalgorithmus mit seinen endlich vielen Schritten noch nicht fertig geworden ist,

denn der Satz als reiner Existenzsatz gibt keinen Anhaltspunkt über eine obere Schranke für die Anzahl von Lernschritten.

Beweis

- Nach Voraussetzung gibt es ein \boldsymbol{w}^* mit $\boldsymbol{w}^*\boldsymbol{z}>0$ für alle $\boldsymbol{z}\in Z$ und wir beginnen den Algorithmus mit $\boldsymbol{w}_0=0$.
- Sei a das Minimum aller $\boldsymbol{w}^*\boldsymbol{z}>0$ und M das Maximum aller \boldsymbol{z}^2 .
- $\mathbf{w}_{i} = \mathbf{z}_{1} + ... + \mathbf{z}_{i}$, also ist $\mathbf{w}^{*}\mathbf{w}_{i} = \mathbf{w}^{*}\mathbf{z}_{1} + ... + \mathbf{w}^{*}\mathbf{z}_{i} >= i \cdot \mathbf{a}$.
- Wegen $(\boldsymbol{w}^*\boldsymbol{w}_i)^2 <= \boldsymbol{w}^{*2}\boldsymbol{w}_i^2$ folgt $\boldsymbol{w}_i^2 >= i^2 \cdot \mathbf{a}^2 / \boldsymbol{w}^{*2}$
- Andererseits ist für alle k<=i stets $\boldsymbol{w}_{k-1}\boldsymbol{z}_k < 0$
- Also $\boldsymbol{w}_{k}^{2} = (\boldsymbol{w}_{k-1} + \boldsymbol{z}_{k})^{2} = \boldsymbol{w}_{k-1}^{2} + 2 * \boldsymbol{w}_{k-1} \boldsymbol{z}_{k} + \boldsymbol{z}_{k}^{2} < \boldsymbol{w}_{k-1}^{2} + \boldsymbol{z}_{k}^{2}$
- Also ist $w_i^2 < z_1^2 + ... + z_i^2 < i \cdot M$
- Es folgt i·M > $i^2 \cdot a^2 / w^{*2}$ und damit i < $M \cdot w^{*2} / a^2$

D.h. der Algorithmus terminiert in endlich vielen Schritten.

Aber: Ohne Kenntnis von \boldsymbol{w}^* kennen wir weder \boldsymbol{w}^{*2} noch a, also können wir die obere Schranke von i nicht aus dem Beweis bestimmen!

Frage: Wann kann der Algorithmus lange laufen?

XOR-Problem

- Die boolesche Funktion XOR stellt ein nichtlinear separierbares Problem dar, weil sich die beiden Klassen auf Diagonalen gegenüberliegen.
- Mit einer Zwischenschicht lassen sich aber zwei trennende Hyperebenen definieren, zwischen denen die eine der Klassen lokalisiert werden kann.
- Komplexere Klassifikationen lassen sich durch Einfügen von Zwischenschichten realisieren.

Zweistufiges Perzeptron

Wenn man an ein Perzeptron mit M Ausgabe-Neuronen ein neues Ausgabe-Neuron mit AND-Verbindungen (Gewicht 1, Schwellwert M-0,5) anhängt, erhält man ein konvexes Mflach (den Durchschnitt von M Halbräumen) als akzeptierten (Ausgabe 1) Bereich.

Dreistufiges Perzeptron

Mit einer weiteren Stufe durch AND NOT (Gewicht 1,-1, Schwellwert 0,5) angehängt, kann man sogar nicht zusammenhängende Bereiche als akzeptierten Bereich modellieren. (In dem Beispiel der sichtbare dunkle Bereich)

Problem: Wie trainiert man mehrere Schichten?

- Übersicht
 - Definieren einer Fehlerfunktion E(w)
 - Leite Fehler nach Gewichten w ab
 - Ändere w so, dass der Fehler E(w) kleiner wird
- Zuvor müssen wir dafür sorgen dass wir ableiten können:

$$\mathbf{y} = \operatorname{sign}\left(\vec{w}^T\vec{x} - \theta\right) = \operatorname{sign}\left(\sum_{i=1}^n w_i x_i - \theta\right)$$

Sign ist nicht stetig! → Approximation mit Sigmoider Funktion

Sigmoide Transferfunktion

$$y = \Phi(a) = \frac{1}{1 + e^{-a}}$$

- Ausgaben begrenzt auf [0,1]
- Quasi-linear um Nettoinput a=0
- Mögliche Interpretation: Wahrscheinlichkeit

Überwachtes Lernen

Ziel: finde für eine durch Beispiele gegebene Funktion y=f(x) die Gewichte w_{ij} so, dass f möglichst gut durch die Netzwerkfunktion approximiert wird

Sei $\{(x_1,t_1), ..., (x_p,t_p)\}$ eine Menge von Trainingsbeispielen

Sei w der Gewichtsvektor

Das Netzwerk berechnet zur Eingabe x_i die Ausgabe y_i

Optimiere z.B. quadratische Fehlerfunktion

$$E(w) = 1/2 \sum_{i=1}^{p} (y_i - t_i)^2$$

Gradientenabstieg

■ **1D-Beispiel**: minimiere f(x)

Iteriere bis f'(x_i) verschwindet!

Gradientenabstieg

- 2D-Beispiel
- Folge den Pfeilen

Mehrebenen-Perceptron (MLP)

Zwei (oder mehrere) Schichten

Ausgabe-Neuronen (linear oder sigmoid)

Verdeckte Neuronen (typisch sigmoid)

Eingaben

Backpropagation als Gradientenverfahren

Definiere (quadratischen) Fehler (für Muster l):

$$E_l = \sum_{k=1}^{m} \left(y_k - t_k \right)^2$$

Minimiere Fehler, d.h. ändere Gewichte in Richtung des negativen Gradienten

$$\Delta w_{ij} \propto - \frac{\partial E_l}{\partial w_{ij}}$$
 (partielle Ableitung der Fehlerfunktion nach dem Gewicht)

Kettenregel ergibt Backpropagation

Gradientenabstieg im Gewichtsraum

Gradient der Fehlerfunktion

$$\nabla E = \left(\frac{\partial E}{\partial w_1}, \dots, \frac{\partial E}{\partial w_m}\right)$$

Korrektur der Gewichte macht Fehler kleiner

$$w_i^{new} = w_i + \Delta w_i$$
$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

Berechnung der Fehlerfunktion

Erweitere das Netz:

Berechnung der Ableitung

Erweiterung der Knoten

Trennung von Integrations- und Aktivierungsfunktion

Dynamische Programmierung

Berechnung erfolgt in zwei Schritten:

- Schritt 1 (Feed-forward):
 - Information fließt von links nach rechts
 - In jedem Knoten wird die Funktion und die Ableitung berechnet und gespeichert
 - Nur der Funktionswert wird weiter gereicht

- Schritt 2 (Backpropagation):
 - Das Netzwerk läuft rückwärts und berechnet aus den gespeicherten Teilableitungen die Ableitung der Fehlerfunktion
- Bei beiden Schritten werden Zwischenergebnisse (Aktivitäten, Fehlergradienten) mehrfach wiederverwendet => effiziente Berechnung.

Backpropagation: Komposition

Kettenregel: Ableitung verketterter Funktion ist Produkt von innerer und äußerer Ableitung

Backpropagation: Addition

Summenregel: Ableitung der Summe von Funktion ist Summe der Einzelableitungen

Backpropagation: Gewichtete Kanten

Multiplikation mit einer Konstanten: Ableitung des konstanten Vielfachen einer Funktion ist Vielfaches der Ableitung der Funktion

Ableitung bezüglich Gewicht

- Da o_i konstant ist, gilt: $\frac{\partial E}{\partial w_{ii}} = o_i \frac{\partial E}{\partial o_i w_{ii}}$
- Bei Backpropagation wird der zurückpropagierte Fehler zur Wiederverwendung gespeichert

$$\mathcal{S}_{j} := \frac{\partial E}{\partial o_{i} w_{ij}}$$

Beispiel

- Transferfunktion $f_+(a) = max(0, a)$.
- Eingabe: $x_1 = 1$, $x_2 = -3$
- Berechnung der Aktivität

- Gewünschte Ausgabe: t=1
- Propagation des Gradienten zu Gewicht w₁₂

Gewichtskorrektur

 Die Korrektur eines Gewichts ergibt sich demnach das Produkt aus Eingabe in das Gewicht und zurückpropagiertem Fehler

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i} = -\eta o_i \delta_j$$

- Für mehrere Trainingsbeispiele:
 - Jede Korrektur einzeln durchführen (Online-Verfahren) oder
 - Alle Korrekturen gesammelt durchführen (Batch-Verfahren)

Beispiel cont.

- Transferfunktion $f_+(a) = max(0, a)$.
- **Eingabe:** $x_1 = 1$, $x_2 = -3$
- Berechnung der Aktivität

- Gewünschte Ausgabe: t=1
- Propagation des Gradienten zu Gewicht w₁₂

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i} = -\eta o_i \delta_j \qquad w_{12} \leftarrow -1 - 0.01 \cdot -3 \cdot -4$$
$$w_{12} = -1.12$$

Beispiel Kontrollrechung

- Transferfunktion $f_+(a) = max(0, a)$.
- **Eingabe:** $x_1 = 1$, $x_2 = -3$
- Erneute Berechnung der Aktivität

- Gewünschte Ausgabe: t=1
- Ausgabe hat sich in Richtung der gewünschten Ausgabe bewegt

Backpropagation

- Vorwärtspropagation von Aktivität
- Rückwärtspropagation von Fehler
- Gewichtsanpassung durch Gradientenabstieg

- Zufällige Gewichtsinitialisierung
- Präsentation der Eingabemuster zufällig oder als Block

MULTI-LAYER PERZEPTRON (MLP)

- MLPs können Probleme lösen, die nicht linear separierbar sind
- Verdeckte Knoten bilden Eingaberaum in einen Raum ab, der von den Ausgabeneuronen linear getrennt werden kann

BACKPROPAGATION – VARIANTEN

- 1. Hohe Lernrate: Große Schritte in Richtung des Gradienten
- 2. Momentum: Addiere Bruchteil des letzten Updates $\Delta w_{ij}^t = -\eta o_i \delta_j + \alpha \Delta w_{ij}^{t-1}$
- 3. Additive Konstante auf Ableitung der Transferfunktion $\delta_k^{\text{out}} = (\Phi'(a_k^{\text{out}}) + \mu)(o_k^{\text{out}} t_k)$ => Gradient auch bei Saturierung der Transferfunktion

RESILIENT PROPAGATION (RPROP)

- Individuelle Lernrate für jedes Gewicht
- Betrachte Vorzeichen aufeinander folgender Gradienten
- Erhöhe Lernrate langsam bei gleichem Vorzeichen
- Erniedrige Lernrate schnell bei Vorzeichenwechsel

$$\Delta_{ij}^{(t)} = \begin{cases} \eta^{+} * \Delta_{ij}^{(t-1)} &, & \text{if } \frac{\partial E}{\partial w_{ij}}^{(t-1)} * \frac{\partial E}{\partial w_{ij}}^{(t)} > 0 \\ \eta^{-} * \Delta_{ij}^{(t-1)} &, & \text{if } \frac{\partial E}{\partial w_{ij}}^{(t-1)} * \frac{\partial E}{\partial w_{ij}}^{(t)} < 0 \\ \Delta_{ij}^{(t-1)} &, & \text{else} \end{cases}$$

Gewichtsänderung ignoriert Betrag des Gradienten

$$\Delta w_{ij}^{(t)} = \begin{cases} -\Delta_{ij}^{(t)} &, & \text{if } \frac{\partial E}{\partial w_{ij}}^{(t)} > 0 \\ +\Delta_{ij}^{(t)} &, & \text{if } \frac{\partial E}{\partial w_{ij}}^{(t)} < 0 \\ 0 &, & \text{else} \end{cases}$$

 $\eta^+ = 1.2 \; , \; \eta^- = 0.5$

DIE STOCHASTISCHE SICHT DES ÜBERWACHTEN LERNENS

- Realdaten sind stochastisch (mit Rauschen/Streuungen versehen)
- 2 Typen von Problemen:

LINEARE REGRESSION

- Training linearer neuronaler Netze mit quadratischem Fehler ist lineare Regression
- 1D-Fall:

$$t^p = ax^p + b + \varepsilon$$

Allgemein:

Rauschen

Variablen

$$t^{p} = \mathbf{W}\mathbf{x}^{p} + w_{0} + \varepsilon$$
Abhängige unbhängige Variablen ("target") Variablen

Wenn $w_0, b=0$: Korrelation

MLP ALS UNIVERSALER FUNKTIONSAPPROXIMATOR

- Bsp: 1 Input, 1 Output,5 Hidden Units
- MLP kann beliebige
 Funktionen annähern
 (Hornik et al. 1991)
- Überlagerung von verschobenen, skalierten Sigmoiden
- Komplexität durch
 Zusammenspiel vieler
 einfacher Elemente

MAXIMUM-LIKELIHOOD-TRAINING

- Parametrische Ausgabeverteilung $p(\boldsymbol{y} \mid \boldsymbol{x}; \boldsymbol{\theta})$
- lacksquare Kostenfunktion $J(oldsymbol{ heta}) = -\log P(y \mid oldsymbol{x})$

$$J(\boldsymbol{\theta}) = -\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \hat{p}_{\text{data}}} \log p_{\text{model}}(\boldsymbol{y} \mid \boldsymbol{x})$$

Normalverteilte Ausgaben

$$p_{\text{model}}(\boldsymbol{y} \mid \boldsymbol{x}) = \mathcal{N}(\boldsymbol{y}; f(\boldsymbol{x}; \boldsymbol{\theta}), \boldsymbol{I})$$

=> Quadratische Kostenfunktion

$$J(\theta) = \frac{1}{2} \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \hat{p}_{\text{data}}} ||\mathbf{y} - f(\mathbf{x}; \boldsymbol{\theta})||^2 + \text{const}$$

- Angemessen für Funktionsapproximation (kontinuierliche Ausgaben)
- Ungeeignet für sigmoide Ausgabe-Transferfunktion, da Saturierung => Gradient≈0

BINÄRE KLASSIFIKATION: SIGMOIDE AKTIVIERUNG

 $=\sigma\left((2y-1)z\right)$

Gewünschte Ausgabe 0 oder 1: $P(y=1 \mid x)$

Benötigt sigmoide Transferfunktion

$$\hat{y} = \sigma \left(\boldsymbol{w}^{\top} \boldsymbol{h} + b \right)$$
 $z = \boldsymbol{w}^{\top} \boldsymbol{h} + b$

Bernoulli-Verteilung: $P(y) = \frac{\exp(yz)}{\sum_{y'=0}^{1} \exp(y'z)}$

■ Kostenfunktion:
$$J(\boldsymbol{\theta}) = -\log P(y \mid \boldsymbol{x})$$

= $-\log \sigma \left((2y-1)z\right)$

$$= \zeta \left((1-2y)z \right)$$

 • Mindert den Gradient für falsche Ausgaben kaum

Sigmoide Transferfunktion $\int_{0.8}^{1.0} \sigma(z) = \frac{1}{1 + \exp(-z)}$ 0.2

[Goodfellow et al. 2016]

N-ÄRE KLASSIFIKATION: SOFTMAX-AKTIVIERUNG

- N Klassenwahrscheinlichkeiten: $\hat{y}_i = P(y = i \mid \boldsymbol{x})$
 - Ausgabe 1 an der richtigen Stelle
 - Alle anderen Ausgaben sollen 0 sein

- Normalisierung der Klassenwahrscheinlichkeiten durch Softmax
 - ullet Unnormalisierte Log-Klassenwahrscheinlichkeiten: $oldsymbol{z} = oldsymbol{W}^ op oldsymbol{h} + oldsymbol{b}$
 - Normalisierung auf Summe 1: $\hat{y} = \operatorname{softmax}(\boldsymbol{z})_i = \frac{\exp(z_i)}{\sum_{j} \exp(z_j)}$
 - Wichtig sind nicht absolute Werte der Nettoaktivitäten, sondern deren Unterschiede (Laterale Hemmung, Winner Takes All)
- Logarithmus liefert direkten Beitrag der Nettoaktivität z_i zur Kostenfunktion:

$$\log P(\mathbf{y}=i;\boldsymbol{z}) = \log \operatorname{softmax}(\boldsymbol{z})_i = \boxed{z_i} - \log \sum_j \exp(z_j)$$
 [Goodfellow et al. 2016]

NEURONALE CODIERUNG

Lokal

- Ein Neuron codiert ein Objekt
- Großmutter-Zellen
- Skaliert nicht
- Nicht robust

Verteilt

- Neuronen codieren Merkmale
- Ein Neuron für mehrere Objekte aktiv
- Ein Objekt aktiviert mehrere Neuronen
- Robust gegen Beschädigungen