knn

March 22, 2023

```
[1]: # This mounts your Google Drive to the Colab VM.
     from google.colab import drive
     drive.mount('/content/drive', force_remount=True)
     # Enter the foldername in your Drive where you have saved the unzipped
     # assignment folder, e.g. '/assignments/assignment1/'
     # FOLDERNAME = None
     #!!!!!!! Change the FOLDER path based on your drive path!!!!!!!!!!!!!!
     FOLDERNAME = '/content/drive/MyDrive/Colab Notebooks/assignment1'
     assert FOLDERNAME is not None, "[!] Enter the foldername."
     # Now that we've mounted your Drive, this ensures that
     # the Python interpreter of the Colab VM can load
     # python files from within it.
     import sys
     sys.path.append('/content/drive/My Drive/{}'.format(FOLDERNAME))
     # This downloads the CIFAR-10 dataset to your Drive
     # if it doesn't already exist.
     %cd $FOLDERNAME/cs231n/datasets/
     !bash get_datasets.sh
```

Mounted at /content/drive /content/drive/MyDrive/Colab Notebooks/assignment1/cs231n/datasets

[2]: %cd \$FOLDERNAME

/content/drive/MyDrive/Colab Notebooks/assignment1

1 k-Nearest Neighbor (kNN) exercise

*Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission.

The kNN classifier consists of two stages:

• During training, the classifier takes the training data and simply remembers it

- During testing, kNN classifies every test image by comparing to all training images and transfering the labels of the k most similar training examples
- The value of k is cross-validated

In this exercise you will implement these steps and understand the basic Image Classification pipeline, cross-validation, and gain proficiency in writing efficient, vectorized code.

```
[3]: # Run some setup code for this notebook.
     import random
     import numpy as np
     from cs231n.data utils import load CIFAR10
     import matplotlib.pyplot as plt
     # This is a bit of magic to make matplotlib figures appear inline in the
      \rightarrownotebook
     # rather than in a new window.
     %matplotlib inline
     plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
     plt.rcParams['image.interpolation'] = 'nearest'
     plt.rcParams['image.cmap'] = 'gray'
     # Some more magic so that the notebook will reload external python modules;
     # see http://stackoverflow.com/questions/1907993/
      \Rightarrow autoreload-of-modules-in-ipython
     %load ext autoreload
     %autoreload 2
```

```
[4]: # Load the raw CIFAR-10 data.
     cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
     # Cleaning up variables to prevent loading data multiple times (which may cause_
     ⇔memory issue)
     try:
       del X_train, y_train
       del X_test, y_test
       print('Clear previously loaded data.')
     except:
       pass
     X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
     # As a sanity check, we print out the size of the training and test data.
     print('Training data shape: ', X_train.shape)
     print('Training labels shape: ', y_train.shape)
     print('Test data shape: ', X_test.shape)
     print('Test labels shape: ', y_test.shape)
```

```
Test labels shape: (10000,)
[5]: # Visualize some examples from the dataset.
     # We show a few examples of training images from each class.
     classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', _
     ⇔'ship', 'truck']
     num_classes = len(classes)
     samples_per_class = 7
     for y, cls in enumerate(classes):
         idxs = np.flatnonzero(y_train == y)
         idxs = np.random.choice(idxs, samples_per_class, replace=False)
         for i, idx in enumerate(idxs):
             plt_idx = i * num_classes + y + 1
             plt.subplot(samples_per_class, num_classes, plt_idx)
             plt.imshow(X_train[idx].astype('uint8'))
             plt.axis('off')
             if i == 0:
                plt.title(cls)
```

Training data shape: (50000, 32, 32, 3)

Training labels shape: (50000,)
Test data shape: (10000, 32, 32, 3)


```
[6]: # Subsample the data for more efficient code execution in this exercise
   num_training = 5000
   mask = list(range(num_training))
   X_train = X_train[mask]
   y_train = y_train[mask]

   num_test = 500
   mask = list(range(num_test))
   X_test = X_test[mask]
   y_test = y_test[mask]

# Reshape the image data into rows
   X_train = np.reshape(X_train, (X_train.shape[0], -1))
   X_test = np.reshape(X_test, (X_test.shape[0], -1))
   print(X_train.shape, X_test.shape)
```

(5000, 3072) (500, 3072)

```
[7]: from cs231n.classifiers import KNearestNeighbor

# Create a kNN classifier instance.

# Remember that training a kNN classifier is a noop:

# the Classifier simply remembers the data and does no further processing classifier = KNearestNeighbor()

classifier.train(X_train, y_train)
```

We would now like to classify the test data with the kNN classifier. Recall that we can break down this process into two steps:

- 1. First we must compute the distances between all test examples and all train examples.
- 2. Given these distances, for each test example we find the k nearest examples and have them vote for the label

Lets begin with computing the distance matrix between all training and test examples. For example, if there are **Ntr** training examples and **Nte** test examples, this stage should result in a **Nte** x **Ntr** matrix where each element (i,j) is the distance between the i-th test and j-th train example.

Note: For the three distance computations that we require you to implement in this notebook, you may not use the np.linalg.norm() function that numpy provides.

First, open cs231n/classifiers/k_nearest_neighbor.py and implement the function compute_distances_two_loops that uses a (very inefficient) double loop over all pairs of (test, train) examples and computes the distance matrix one element at a time.

```
[8]: # Open cs231n/classifiers/k_nearest_neighbor.py and implement # compute_distances_two_loops.
```

```
# Test your implementation:
dists = classifier.compute_distances_two_loops(X_test)
print(dists.shape)
```

(500, 5000)

```
[9]: # We can visualize the distance matrix: each row is a single test example and
# its distances to training examples
plt.imshow(dists, interpolation='none')
plt.show()
```


Inline Question 1

Notice the structured patterns in the distance matrix, where some rows or columns are visible brighter. (Note that with the default color scheme black indicates low distances while white indicates high distances.)

- What in the data is the cause behind the distinctly bright rows?
- What causes the columns?

Your Answer: The test examples that are too different from training examples causes these bright rows.

```
[10]: # Now implement the function predict_labels and run the code below:
# We use k = 1 (which is Nearest Neighbor).
y_test_pred = classifier.predict_labels(dists, k=1)

# Compute and print the fraction of correctly predicted examples
num_correct = np.sum(y_test_pred == y_test)
accuracy = float(num_correct) / num_test
print('Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy))
```

Got 57 / 500 correct => accuracy: 0.114000

You should expect to see approximately 27% accuracy. Now lets try out a larger k, say k = 5:

```
[11]: y_test_pred = classifier.predict_labels(dists, k=5)
    num_correct = np.sum(y_test_pred == y_test)
    accuracy = float(num_correct) / num_test
    print('Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy))
```

Got 52 / 500 correct => accuracy: 0.104000

You should expect to see a slightly better performance than with k = 1.

Inline Question 2

We can also use other distance metrics such as L1 distance. For pixel values $p_{ij}^{(k)}$ at location (i, j) of some image I_k ,

the mean μ across all pixels over all images is

$$\mu = \frac{1}{nhw} \sum_{k=1}^{n} \sum_{i=1}^{h} \sum_{j=1}^{w} p_{ij}^{(k)}$$

And the pixel-wise mean μ_{ij} across all images is

$$\mu_{ij} = \frac{1}{n} \sum_{k=1}^{n} p_{ij}^{(k)}.$$

The general standard deviation σ and pixel-wise standard deviation σ_{ij} is defined similarly.

Which of the following preprocessing steps will not change the performance of a Nearest Neighbor classifier that uses L1 distance? Select all that apply. 1. Subtracting the mean μ ($\tilde{p}_{ij}^{(k)} = p_{ij}^{(k)} - \mu$.) 2. Subtracting the per pixel mean μ_{ij} ($\tilde{p}_{ij}^{(k)} = p_{ij}^{(k)} - \mu_{ij}$.) 3. Subtracting the mean μ and dividing by the standard deviation σ . 4. Subtracting the pixel-wise mean μ_{ij} and dividing by the pixel-wise standard deviation σ_{ij} . 5. Rotating the coordinate axes of the data.

Your Answer: 5. Rotating the coordinate axes of the data.

Your Explanation: Except the 5. preprocessing step, all the other ones changes the L1 distance because they all affect the difference between the points. Thus, L1 distance changes.

```
[12]: # Now lets speed up distance matrix computation by using partial vectorization
      # with one loop. Implement the function compute distances one loop and run the
      # code below:
      dists_one = classifier.compute_distances_one_loop(X_test)
      # To ensure that our vectorized implementation is correct, we make sure that it
      # agrees with the naive implementation. There are many ways to decide whether
      # two matrices are similar; one of the simplest is the Frobenius norm. In case
      # you haven't seen it before, the Frobenius norm of two matrices is the square
      # root of the squared sum of differences of all elements; in other words,
       \hookrightarrow reshape
      # the matrices into vectors and compute the Euclidean distance between them.
      difference = np.linalg.norm(dists - dists_one, ord='fro')
      print('One loop difference was: %f' % (difference, ))
      if difference < 0.001:</pre>
          print('Good! The distance matrices are the same')
      else:
          print('Uh-oh! The distance matrices are different')
```

One loop difference was: 0.000000 Good! The distance matrices are the same

```
[13]: # Now implement the fully vectorized version inside compute_distances_no_loops
# and run the code
dists_two = classifier.compute_distances_no_loops(X_test)

# check that the distance matrix agrees with the one we computed before:
difference = np.linalg.norm(dists - dists_two, ord='fro')
print('No loop difference was: %f' % (difference, ))
if difference < 0.001:
    print('Good! The distance matrices are the same')
else:
    print('Uh-oh! The distance matrices are different')</pre>
```

No loop difference was: 0.000000 Good! The distance matrices are the same

```
[14]: # Let's compare how fast the implementations are
      def time_function(f, *args):
          n n n
          Call a function f with args and return the time (in seconds) that it took \Box
       \rightarrowto execute.
          .....
          import time
          tic = time.time()
          f(*args)
          toc = time.time()
          return toc - tic
      two_loop_time = time_function(classifier.compute_distances_two_loops, X_test)
      print('Two loop version took %f seconds' % two_loop_time)
      one_loop_time = time function(classifier.compute distances_one_loop, X test)
      print('One loop version took %f seconds' % one_loop_time)
      no_loop_time = time_function(classifier.compute_distances_no_loops, X_test)
      print('No loop version took %f seconds' % no_loop_time)
      # You should see significantly faster performance with the fully vectorized
       → implementation!
      # NOTE: depending on what machine you're using,
      # you might not see a speedup when you go from two loops to one loop,
      # and might even see a slow-down.
```

Two loop version took 33.824632 seconds One loop version took 31.066820 seconds No loop version took 0.480676 seconds

1.0.1 Cross-validation

We have implemented the k-Nearest Neighbor classifier but we set the value k = 5 arbitrarily. We will now determine the best value of this hyperparameter with cross-validation.

```
[19]: num folds = 5
     k_{choices} = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100]
     X_train_folds = []
     y train folds = []
     # TODO:
     # Split up the training data into folds. After splitting, X_train_folds and
     # y_train_folds should each be lists of length num_folds, where
     # y_train_folds[i] is the label vector for the points in X_train_folds[i].
     # Hint: Look up the numpy array_split function.
     # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
     X_train_folds = np.array_split(X_train, num_folds)
     y_train_folds = np.array_split(y_train, num_folds)
     # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
     # A dictionary holding the accuracies for different values of k that we find
     # when running cross-validation. After running cross-validation,
     # k_to_accuracies[k] should be a list of length num folds giving the different
     # accuracy values that we found when using that value of k.
     k_to_accuracies = {}
     \# Perform k-fold cross validation to find the best value of k. For each
     # possible value of k, run the k-nearest-neighbor algorithm num_folds times,
     # where in each case you use all but one of the folds as training data and the #
     # last fold as a validation set. Store the accuracies for all fold and all
     # values of k in the k to accuracies dictionary.
     # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
     for k in k_choices:
        results = []
        for fold_value in range(num_folds):
           x_training_data = np.concatenate(X_train_folds[:num_folds])
           y_training_data = np.concatenate(y_train_folds[:num_folds])
           x_validation_set = X_train_folds[-1]
```

```
y_validation_set = y_train_folds[-1]

classifier_model = KNearestNeighbor()
    classifier_model.train(x_training_data, y_training_data)
    prediction = classifier_model.predict(x_validation_set, k)
    results.append(np.mean(prediction == y_validation_set))

k_to_accuracies[k] = results

# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

# Print out the computed accuracies
for k in sorted(k_to_accuracies):
    for accuracy in k_to_accuracies[k]:
        print('k = %d, accuracy = %f' % (k, accuracy))
```

```
k = 1, accuracy = 0.109000
k = 3, accuracy = 0.100000
k = 5, accuracy = 0.097000
k = 8, accuracy = 0.086000
k = 10, accuracy = 0.077000
k = 12, accuracy = 0.076000
k = 15, accuracy = 0.066000
k = 15, accuracy = 0.066000
```

```
k = 15, accuracy = 0.066000
     k = 15, accuracy = 0.066000
     k = 15, accuracy = 0.066000
     k = 20, accuracy = 0.058000
     k = 50, accuracy = 0.033000
     k = 100, accuracy = 0.023000
     k = 100, accuracy = 0.023000
[20]: # plot the raw observations
     for k in k_choices:
          accuracies = k_to_accuracies[k]
          plt.scatter([k] * len(accuracies), accuracies)
      # plot the trend line with error bars that correspond to standard deviation
      accuracies_mean = np.array([np.mean(v) for k,v in sorted(k_to_accuracies.
       →items())])
      accuracies_std = np.array([np.std(v) for k,v in sorted(k_to_accuracies.
       →items())])
     plt.errorbar(k_choices, accuracies_mean, yerr=accuracies_std)
     plt.title('Cross-validation on k')
     plt.xlabel('k')
     plt.ylabel('Cross-validation accuracy')
     plt.show()
```



```
[21]: # Based on the cross-validation results above, choose the best value for k,
# retrain the classifier using all the training data, and test it on the test
# data. You should be able to get above 28% accuracy on the test data.
best_k = 1

classifier = KNearestNeighbor()
classifier.train(X_train, y_train)
y_test_pred = classifier.predict(X_test, k=best_k)

# Compute and display the accuracy
num_correct = np.sum(y_test_pred == y_test)
accuracy = float(num_correct) / num_test
print('Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy))
```

Got 57 / 500 correct => accuracy: 0.114000

Inline Question 3

Which of the following statements about k-Nearest Neighbor (k-NN) are true in a classification setting, and for all k? Select all that apply. 1. The decision boundary of the k-NN classifier is

linear. 2. The training error of a 1-NN will always be lower than or equal to that of 5-NN. 3. The test error of a 1-NN will always be lower than that of a 5-NN. 4. The time needed to classify a test example with the k-NN classifier grows with the size of the training set. 5. None of the above.

Your Answer: Only number 4 is true, the rest is false.

Your Explanation: The more training examples means the more computation to compute the distances. Thus, the time to test increases.

svm

March 22, 2023

```
[1]: # This mounts your Google Drive to the Colab VM.
     from google.colab import drive
     drive.mount('/content/drive', force_remount=True)
     # Enter the foldername in your Drive where you have saved the unzipped
     # assignment folder, e.g. 'cs231n/assignments/assignment1/'
     FOLDERNAME = '/content/drive/MyDrive/Colab Notebooks/assignment1'
     assert FOLDERNAME is not None, "[!] Enter the foldername."
     # Now that we've mounted your Drive, this ensures that
     # the Python interpreter of the Colab VM can load
     # python files from within it.
     import sys
     sys.path.append('/content/drive/My Drive/{}'.format(FOLDERNAME))
     # This downloads the CIFAR-10 dataset to your Drive
     # if it doesn't already exist.
     %cd $FOLDERNAME/cs231n/datasets/
     !bash get_datasets.sh
     %cd $FOLDERNAME
```

Mounted at /content/drive /content/drive/MyDrive/Colab Notebooks/assignment1/cs231n/datasets /content/drive/MyDrive/Colab Notebooks/assignment1

1 Multiclass Support Vector Machine exercise

Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the assignments page on the course website.

In this exercise you will:

- implement a fully-vectorized loss function for the SVM
- implement the fully-vectorized expression for its analytic gradient
- check your implementation using numerical gradient
- use a validation set to tune the learning rate and regularization strength
- optimize the loss function with SGD

• **visualize** the final learned weights

```
[2]: # Run some setup code for this notebook.
     import random
     import numpy as np
     from cs231n.data_utils import load_CIFAR10
     import matplotlib.pyplot as plt
     # This is a bit of magic to make matplotlib figures appear inline in the
     # notebook rather than in a new window.
     %matplotlib inline
     plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
     plt.rcParams['image.interpolation'] = 'nearest'
     plt.rcParams['image.cmap'] = 'gray'
     # Some more magic so that the notebook will reload external python modules;
     # see http://stackoverflow.com/questions/1907993/
      \Rightarrow autoreload-of-modules-in-ipython
     %load ext autoreload
     %autoreload 2
```

1.1 CIFAR-10 Data Loading and Preprocessing

```
[3]: # Load the raw CIFAR-10 data.
     cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
     # Cleaning up variables to prevent loading data multiple times (which may cause,
      →memory issue)
     try:
       del X_train, y_train
       del X_test, y_test
       print('Clear previously loaded data.')
     except:
       pass
     X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
     # As a sanity check, we print out the size of the training and test data.
     print('Training data shape: ', X_train.shape)
     print('Training labels shape: ', y_train.shape)
     print('Test data shape: ', X_test.shape)
     print('Test labels shape: ', y_test.shape)
```

Training data shape: (50000, 32, 32, 3)
Training labels shape: (50000,)
Test data shape: (10000, 32, 32, 3)
Test labels shape: (10000,)

```
[4]: # Visualize some examples from the dataset.
     # We show a few examples of training images from each class.
    classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', _
     num_classes = len(classes)
    samples_per_class = 7
    for y, cls in enumerate(classes):
        idxs = np.flatnonzero(y_train == y)
        idxs = np.random.choice(idxs, samples_per_class, replace=False)
        for i, idx in enumerate(idxs):
            plt_idx = i * num_classes + y + 1
            plt.subplot(samples_per_class, num_classes, plt_idx)
            plt.imshow(X_train[idx].astype('uint8'))
            plt.axis('off')
            if i == 0:
                plt.title(cls)
    plt.show()
```



```
[5]: # Split the data into train, val, and test sets. In addition we will
     # create a small development set as a subset of the training data;
     # we can use this for development so our code runs faster.
     num_training = 49000
     num validation = 1000
     num_test = 1000
     num_dev = 500
     # Our validation set will be num validation points from the original
     # training set.
     mask = range(num training, num training + num validation)
     X_val = X_train[mask]
     y_val = y_train[mask]
     # Our training set will be the first num train points from the original
     # training set.
     mask = range(num_training)
     X_train = X_train[mask]
     y_train = y_train[mask]
     # We will also make a development set, which is a small subset of
     # the training set.
     mask = np.random.choice(num_training, num_dev, replace=False)
     X dev = X train[mask]
     y_dev = y_train[mask]
     # We use the first num_test points of the original test set as our
     # test set.
     mask = range(num_test)
     X_test = X_test[mask]
     y_test = y_test[mask]
     print('Train data shape: ', X_train.shape)
     print('Train labels shape: ', y_train.shape)
     print('Validation data shape: ', X_val.shape)
     print('Validation labels shape: ', y_val.shape)
     print('Test data shape: ', X_test.shape)
     print('Test labels shape: ', y_test.shape)
    Train data shape: (49000, 32, 32, 3)
    Train labels shape: (49000,)
    Validation data shape: (1000, 32, 32, 3)
    Validation labels shape: (1000,)
    Test data shape: (1000, 32, 32, 3)
    Test labels shape: (1000,)
```

```
[6]: # Preprocessing: reshape the image data into rows
     X_train = np.reshape(X_train, (X_train.shape[0], -1))
     X_val = np.reshape(X_val, (X_val.shape[0], -1))
     X_test = np.reshape(X_test, (X_test.shape[0], -1))
     X_dev = np.reshape(X_dev, (X_dev.shape[0], -1))
     # As a sanity check, print out the shapes of the data
     print('Training data shape: ', X_train.shape)
     print('Validation data shape: ', X_val.shape)
     print('Test data shape: ', X_test.shape)
     print('dev data shape: ', X_dev.shape)
    Training data shape: (49000, 3072)
    Validation data shape: (1000, 3072)
    Test data shape: (1000, 3072)
    dev data shape: (500, 3072)
[7]: # Preprocessing: subtract the mean image
     # first: compute the image mean based on the training data
```

```
mean_image = np.mean(X_train, axis=0)
print(mean_image[:10]) # print a few of the elements
plt.figure(figsize=(4,4))
plt.imshow(mean_image.reshape((32,32,3)).astype('uint8')) # visualize the mean_i
 \hookrightarrow image
plt.show()
# second: subtract the mean image from train and test data
X_train -= mean_image
X_val -= mean_image
X_test -= mean_image
X_dev -= mean_image
# third: append the bias dimension of ones (i.e. bias trick) so that our SVM
# only has to worry about optimizing a single weight matrix W.
X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])
X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))])
print(X_train.shape, X_val.shape, X_test.shape, X_dev.shape)
```

[130.64189796 135.98173469 132.47391837 130.05569388 135.34804082 131.75402041 130.96055102 136.14328571 132.47636735 131.48467347]

(49000, 3073) (1000, 3073) (1000, 3073) (500, 3073)

1.2 SVM Classifier

Your code for this section will all be written inside cs231n/classifiers/linear_svm.py.

As you can see, we have prefilled the function svm_loss_naive which uses for loops to evaluate the multiclass SVM loss function.

```
[8]: # Evaluate the naive implementation of the loss we provided for you:
    from cs231n.classifiers.linear_svm import svm_loss_naive
    import time

# generate a random SVM weight matrix of small numbers
W = np.random.randn(3073, 10) * 0.0001

loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.000005)
    print('loss: %f' % (loss, ))
```

loss: 9.106233

The grad returned from the function above is right now all zero. Derive and implement the gradient for the SVM cost function and implement it inline inside the function svm_loss_naive. You will find it helpful to interleave your new code inside the existing function.

To check that you have correctly implemented the gradient correctly, you can numerically estimate the gradient of the loss function and compare the numeric estimate to the gradient that you computed. We have provided code that does this for you:

```
[9]: # Once you've implemented the gradient, recompute it with the code below
     # and gradient check it with the function we provided for you
     # Compute the loss and its gradient at W.
     loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.0)
     # Numerically compute the gradient along several randomly chosen dimensions, and
     \# compare them with your analytically computed gradient. The numbers should
      \rightarrow match
     # almost exactly along all dimensions.
     from cs231n.gradient_check import grad_check_sparse
     f = lambda w: svm_loss_naive(w, X_dev, y_dev, 0.0)[0]
     grad_numerical = grad_check_sparse(f, W, grad)
     # do the gradient check once again with regularization turned on
     # you didn't forget the regularization gradient did you?
     loss, grad = svm loss naive(W, X dev, y dev, 5e1)
     f = lambda w: svm_loss_naive(w, X_dev, y_dev, 5e1)[0]
     grad_numerical = grad_check_sparse(f, W, grad)
```

```
numerical: 32.708471 analytic: 32.708471, relative error: 6.696163e-12
numerical: 6.965880 analytic: 6.965880, relative error: 1.440210e-11
numerical: -18.875896 analytic: -18.875896, relative error: 6.137198e-12
numerical: -12.392463 analytic: -12.392463, relative error: 1.673644e-11
numerical: 11.858216 analytic: 11.858216, relative error: 3.215106e-11
numerical: -5.496003 analytic: -5.496003, relative error: 5.733531e-11
numerical: -7.107068 analytic: -7.107068, relative error: 2.781995e-11
numerical: 4.825720 analytic: 4.825720, relative error: 2.832646e-11
numerical: 13.898067 analytic: 13.898067, relative error: 1.882504e-11
numerical: -0.502433 analytic: -0.502433, relative error: 3.744615e-10
numerical: 24.516684 analytic: 24.523910, relative error: 1.473420e-04
numerical: -9.130376 analytic: -9.129053, relative error: 7.248831e-05
numerical: -20.417126 analytic: -20.423193, relative error: 1.485501e-04
numerical: 19.665963 analytic: 19.666033, relative error: 1.787631e-06
numerical: 0.588624 analytic: 0.588793, relative error: 1.434809e-04
numerical: -6.076429 analytic: -6.076628, relative error: 1.635262e-05
numerical: -9.096139 analytic: -9.098348, relative error: 1.214332e-04
numerical: -33.380345 analytic: -33.381735, relative error: 2.081038e-05
numerical: 12.623557 analytic: 12.620495, relative error: 1.212628e-04
numerical: -7.307723 analytic: -7.296924, relative error: 7.393881e-04
```

Inline Question 1

It is possible that once in a while a dimension in the gradcheck will not match exactly. What could such a discrepancy be caused by? Is it a reason for concern? What is a simple example in one dimension where a gradient check could fail? How would change the margin affect of the frequency of this happening? Hint: the SVM loss function is not strictly speaking differentiable

Your Answer: The Loss function used for SVM is $\max(0, x)$. This function is not differentiable all

the time. This may bring problems during the gradient check.

Naive loss: 9.106233e+00 computed in 0.112807s Vectorized loss: 9.106233e+00 computed in 0.020720s difference: 0.000000

```
[11]: | # Complete the implementation of sum_loss_vectorized, and compute the gradient
      # of the loss function in a vectorized way.
      # The naive implementation and the vectorized implementation should match, but
      # the vectorized version should still be much faster.
      tic = time.time()
      _, grad_naive = svm_loss_naive(W, X_dev, y_dev, 0.000005)
      toc = time.time()
      print('Naive loss and gradient: computed in %fs' % (toc - tic))
      tic = time.time()
      _, grad_vectorized = svm_loss_vectorized(W, X_dev, y_dev, 0.000005)
      toc = time.time()
      print('Vectorized loss and gradient: computed in %fs' % (toc - tic))
      # The loss is a single number, so it is easy to compare the values computed
      # by the two implementations. The gradient on the other hand is a matrix, so
      # we use the Frobenius norm to compare them.
      difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro')
      print('difference: %f' % difference)
```

Naive loss and gradient: computed in 0.117025s Vectorized loss and gradient: computed in 0.023823s difference: 0.438249

1.2.1 Stochastic Gradient Descent

We now have vectorized and efficient expressions for the loss, the gradient and our gradient matches the numerical gradient. We are therefore ready to do SGD to minimize the loss. Your code for this part will be written inside cs231n/classifiers/linear_classifier.py.

```
[12]: # In the file linear classifier.py, implement SGD in the function
      # LinearClassifier.train() and then run it with the code below.
      from cs231n.classifiers import LinearSVM
      svm = LinearSVM()
      tic = time.time()
      loss_hist = svm.train(X_train, y_train, learning_rate=1e-7, reg=2.5e4,
                            num_iters=1500, verbose=True)
      toc = time.time()
      print('That took %fs' % (toc - tic))
     iteration 0 / 1500: loss 412.327105
     iteration 100 / 1500: loss 960312423700.964600
     iteration 200 / 1500: loss 3841249847005.212891
     iteration 300 / 1500: loss 8642812270306.317383
     iteration 400 / 1500: loss 15364999693608.074219
     iteration 500 / 1500: loss 24007812116913.300781
     iteration 600 / 1500: loss 34571249540215.527344
     iteration 700 / 1500: loss 47055311963520.164062
     iteration 800 / 1500: loss 61459999386823.414062
     iteration 900 / 1500: loss 77785311810127.187500
     iteration 1000 / 1500: loss 96031249233432.343750
     iteration 1100 / 1500: loss 116197811656734.375000
     iteration 1200 / 1500: loss 138284999080038.421875
     iteration 1300 / 1500: loss 162292811503343.531250
     iteration 1400 / 1500: loss 188221248926646.812500
     That took 17.245237s
[13]: # A useful debugging strategy is to plot the loss as a function of
      # iteration number:
      plt.plot(loss_hist)
      plt.xlabel('Iteration number')
      plt.ylabel('Loss value')
      plt.show()
```



```
[14]: # Write the LinearSVM.predict function and evaluate the performance on both the
# training and validation set
y_train_pred = svm.predict(X_train)
print('training accuracy: %f' % (np.mean(y_train == y_train_pred), ))
y_val_pred = svm.predict(X_val)
print('validation accuracy: %f' % (np.mean(y_val == y_val_pred), ))
```

training accuracy: 0.303490 validation accuracy: 0.303000

```
[15]: # Use the validation set to tune hyperparameters (regularization strength and # learning rate). You should experiment with different ranges for the learning # rates and regularization strengths; if you are careful you should be able to # get a classification accuracy of about 0.39 on the validation set.

# Note: you may see runtime/overflow warnings during hyper-parameter search. # This may be caused by extreme values, and is not a bug.

# results is dictionary mapping tuples of the form
```

```
# (learning rate, regularization strength) to tuples of the form
# (training accuracy, validation accuracy). The accuracy is simply the fraction
# of data points that are correctly classified.
results = {}
best_val = -1  # The highest validation accuracy that we have seen so far.
best_svm = None # The LinearSVM object that achieved the highest validation
 -rate.
# Write code that chooses the best hyperparameters by tuning on the validation #
# set. For each combination of hyperparameters, train a linear SVM on the
# training set, compute its accuracy on the training and validation sets, and
# store these numbers in the results dictionary. In addition, store the best
# validation accuracy in best val and the LinearSVM object that achieves this
# accuracy in best_sum.
# Hint: You should use a small value for num_iters as you develop your
# validation code so that the SVMs don't take much time to train; once you are #
# confident that your validation code works, you should rerun the validation
# code with a larger value for num iters.
# Provided as a reference. You may or may not want to change these
\rightarrowhyperparameters
learning_rates = [1e-7, 5e-5]
regularization strengths = [2.5e4, 5e4]
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
for lr in learning_rates:
   for reg in regularization_strengths:
     svm = LinearSVM()
     svm.train(X_train, y_train, learning_rate=lr, reg=reg, num_iters=1500,_u
 ⇔verbose=False)
     y_train_pred, y_val_pred = svm.predict(X_train), svm.predict(X_val)
     results[(lr, reg)] = np.mean(y_train == y_train_pred), np.mean(y_val ==_
 →y val pred)
     if results[(lr, reg)][1] > best_val:
       best_val = results[(lr, reg)][1]
       best_svm = svm
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
# Print out results.
for lr, reg in sorted(results):
   train_accuracy, val_accuracy = results[(lr, reg)]
```

lr 1.000000e-07 reg 2.500000e+04 train accuracy: 0.300041 val accuracy: 0.295000
lr 1.000000e-07 reg 5.000000e+04 train accuracy: 0.308571 val accuracy: 0.309000
lr 5.000000e-05 reg 2.500000e+04 train accuracy: 0.326265 val accuracy: 0.317000
lr 5.000000e-05 reg 5.000000e+04 train accuracy: 0.340571 val accuracy: 0.328000
best validation accuracy achieved during cross-validation: 0.328000

```
[16]: # Visualize the cross-validation results
      import math
      import pdb
      # pdb.set trace()
      x_scatter = [math.log10(x[0]) for x in results]
      y_scatter = [math.log10(x[1]) for x in results]
      # plot training accuracy
      marker size = 100
      colors = [results[x][0] for x in results]
      plt.subplot(2, 1, 1)
      plt.tight_layout(pad=3)
      plt.scatter(x_scatter, y_scatter, marker_size, c=colors, cmap=plt.cm.coolwarm)
      plt.colorbar()
      plt.xlabel('log learning rate')
      plt.ylabel('log regularization strength')
      plt.title('CIFAR-10 training accuracy')
      # plot validation accuracy
      colors = [results[x][1] for x in results] # default size of markers is 20
      plt.subplot(2, 1, 2)
      plt.scatter(x scatter, y scatter, marker size, c=colors, cmap=plt.cm.coolwarm)
      plt.colorbar()
      plt.xlabel('log learning rate')
      plt.ylabel('log regularization strength')
      plt.title('CIFAR-10 validation accuracy')
      plt.show()
```



```
[17]: # Evaluate the best sum on test set
    y_test_pred = best_svm.predict(X_test)
    test_accuracy = np.mean(y_test == y_test_pred)
    print('linear SVM on raw pixels final test set accuracy: %f' % test_accuracy)
```

linear SVM on raw pixels final test set accuracy: 0.325000

```
for i in range(10):
    plt.subplot(2, 5, i + 1)

# Rescale the weights to be between 0 and 255
    wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min)
    plt.imshow(wimg.astype('uint8'))
    plt.axis('off')
    plt.title(classes[i])
```


Inline question 2

Describe what your visualized SVM weights look like, and offer a brief explanation for why they look they way that they do.

Your Answer: They look like pure noise. This is due to a mistake I am unable to spot.