Problemas

Taller MAT3 GIN 24-25

2025-02-24

Problemas de teoría de la medida y conjuntos medibles

Problema 1

- Si A y B son sucesos disjuntos, determinar: A B (diferencia de conjuntos)
 - 2. $A \cap B$ (intersección)
 - 3. $A^c \cap B^c$ (intersección de los complementos)

Problema 2

- Parte (a): Cálculo de la intersección de intervalos en términos de números racionales y su comportamiento al infinito.
- Parte (b): Cálculo del límite superior y límite inferior de una sucesión de conjuntos A_n .
- Parte (c): Variación del problema anterior para distintos tipos de sucesiones de conjuntos.

Problema 3

- Dados $\Omega = \{1, 2, 3, 4\}$, se pide describir explícitamente los conjuntos: $\mathcal{P}(\Omega)$ (conjunto potencia de Ω)
 - 2. $\Lambda = \{(i,j) \in \Omega^2 : i+j \leq 4\}$ (subconjunto del producto cartesiano de Ω)

Problema 4

- Estudio de una sucesión de subconjuntos (A_n) y la construcción de $A = \bigcup A_n$.
- Se define B_n como la unión parcial creciente de A_k , y se analiza si los conjuntos C_n son disjuntos.

Problema 5

• Se estudia el **indicador de un conjunto** cuando se tienen conjuntos disjuntos en una sucesión (A_n) con $A = \bigcup A_n$, mostrando que $I_A = \sum I_{A_n}$.

Problema 6

- Se pide clasificar diferentes familias de subconjuntos \mathcal{A} según sean: σ -álgebra
 - 2. Álgebra
 - 3. π -sistema
 - 4. d-sistema

Se dan distintos ejemplos de familias de subconjuntos en Ω y se debe analizar cuál de las estructuras anteriores cumple cada una.

Problema 7

• Se pregunta por la **más pequeña** σ -álgebra en Ω que contiene ciertos subconjuntos dados A_1, A_2, \ldots, A_n . Esto lleva a la noción de σ -álgebra generada por un conjunto de subconjuntos.

La imagen muestra el **Problema 8**, que trata sobre la σ -álgebra de Borel en \mathbb{R} y \mathbb{R}^n . Aquí tienes un resumen y explicación de cada apartado:

Problema 8

Parte (a): Generación de la σ -álgebra de Borel en \mathbb{R} La σ -álgebra de Borel en \mathbb{R} (denotada como $\mathcal{B}(\mathbb{R})$) es la más pequeña σ -álgebra que contiene todos los conjuntos abiertos de la recta ral \mathbb{R} . Se pide demostrar que también se puede engendrar por diferentes familias de intervalos: 1.Intervalos de la forma $]-\infty,x]$, con $x\in\mathbb{R}$. 2. Intervalos de la forma $]x,\infty[$, con $x\in\mathbb{R}$. 3. Intervalos de la forma $[x,\infty[$, con $x\in\mathbb{R}$. 4. Intervalos de la forma $]-\infty,r]$, con $x\in\mathbb{R}$ (intervalos con extremos racionales).

Parte (b): Generación de la σ -álgebra de Borel en \mathbb{R}^n Similar a la parte anterior, pero ahora en el espacio euclidiano \mathbb{R}^n . Si $\mathcal{B}(\mathbb{R}^n)$ es la σ -álgebra más pequeña que contiene todos los conjuntos abiertos de \mathbb{R}^n . - Se pide demostrar que también se puede engendrar por:

- 1. La familia de los conjuntos abiertos en \mathbb{R}^n .
- 2. La familia de los conjuntos compactos en \mathbb{R}^n .
- 3. La familia de los intervalos cerrados y acotados en \mathbb{R}^n (es decir, cajas de la forma $[a_1, b_1] \times \cdots \times [a_n, b_n]$).
- 4. Los semiespacios de la forma $\{x \in \mathbb{R}^n : x_i < a\}$ para $1 \le i \le n$, con $a \in \mathbb{Q}$.

Parte (c): Producto de σ -álgebras de Borel

• Se pide probar que la σ -álgebra de Borel en \mathbb{R}^n es igual al producto de n copias de la σ -álgebra de Borel en \mathbb{R} :

$$\mathcal{B}(\mathbb{R}^n) = \mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R}) \times \cdots \times \mathcal{B}(\mathbb{R})$$

donde el producto de σ -álgebras se define como la σ -álgebra generada por los conjuntos de la forma:

$$A_1 \times A_2 \times \cdots \times A_n, \quad A_i \in \mathcal{B}(\mathbb{R}).$$

Esto muestra que la estructura de la σ -álgebra de Borel en \mathbb{R}^n puede entenderse a partir de las σ -álgebras de Borel en \mathbb{R} .

Este problema es fundamental en **teoría de la medida y probabilidad**, ya que establece una base para la construcción de medidas en espacios euclidianos. Si necesitas ayuda con la demostración de alguna parte en particular, dime. ### **Problema 9** - Se considera un espacio medible (Ω, A) y un subconjunto no vacío $B \subset \Omega$. - Se define la σ -álgebra inducida en B como:

$$\mathcal{A}_B := \{ A \cap B : A \in \mathcal{A} \}$$

y se debe probar que es una σ -álgebra de partes de B y que $\mathcal{A}_B \subset \mathcal{A}$. - Se analiza cómo la σ -álgebra generada por C, es decir, $\mathcal{A} = \sigma(C)$, se traduce en términos de la σ -álgebra inducida en B. - Se introduce la notación $\sigma_B(C_B)$ como la mínima σ -álgebra en B que contiene a C_B , siguiendo el Ejemplo 8.

Problema 10

• Se trabaja con el conjunto finito $\Omega = \{1, 2, 3\}$ y la σ -álgebra:

$$\mathcal{A} = \{\emptyset, \Omega, \{1, 2\}, \{3, 4\}\}\$$

(aunque parece haber una inconsistencia en la definición, pues $4 \notin \Omega$).

• Se debe describir explícitamente el espacio medible producto $(\Omega^2, \mathcal{A}^2)$, donde $\Omega^2 = \Omega \times \Omega$.

Problema 11

• Parte (a): Se considera un conjunto infinito no numerable Ω y la colección:

$$C = \{ A \in \mathcal{P}(\Omega) : A \text{ o } A^c \text{ es numerable} \}$$

Se pide demostrar que C es una σ -álgebra.

• Parte (b): Se debe describir la σ -álgebra generada por los conjuntos unitarios en \mathbb{R} .

Problema 12

- Se pide demostrar que una familia \mathcal{A} de partes de Ω es una σ -álgebra si y solo si es un d-sistema y un π -sistema.
- Esto se relaciona con el **Teorema de Dynkin**, el cual permite demostrar que una colección de subconjuntos es una σ -álgebra a partir de ciertas propiedades.