Summary Part 1: Probabilistic Methods for Non-Asymptotic Analysis

Tianpei Xie

$\mathrm{Jan.\ 26th.,\ 2023}$

${\bf Contents}$

1	Basic Inequalities		
	, e	3	
	1.2 Function Space, Convexity and Duality		
	1.3 Probability Theory		
	1.4 Information Theory	6	
2	Summary: General Proof Stratgy for Concentration Problem	g	
3	Summary: Distribution-Free Concentration Inequality	13	
4	Comparison: Gaussian Tail Bound vs. Poisson Tail Bound	15	
5	The Cramér-Chernoff Method	16	
	5.1 From Markov Inequality to Cramér-Chernoff Method	16	
	5.2 Sub-Gaussian Random Variables	18	
	5.3 Sub-Exponential and Sub-Gamma Random Variables	20	
	5.4 Hoeffding's Inequality	24	
	5.5 Bernstein's Inequality	24	
	5.6 Bennett's Inequality	26	
	5.7 The Johnson-Lindenstrauss Lemma	27	
6	Martingale Method	27	
	6.1 Martingale and Martingale Difference Sequence	27	
	6.2 Bernstein Inequality for Martingale Difference Sequence	29	
	6.3 Azuma-Hoeffding Inequality	30	
	6.4 Bounded Difference Inequality	30	
7	Bounding Variance	30	
	7.1 Mean-Median Deviation	30	
	7.2 The Efron-Stein Inequality and Jackknife Estimation	31	
	7.3 Functions with Bounded Differences		
	7.4 Convex Poincaré Inequality	33	
	7.5 Gaussian Poincaré Inequality	34	

8	Ent	ropy Method	34
	8.1	Entropy Functional and Φ-Entropy	34
	8.2	Dual Formulation	35
	8.3	Tensorization Property	36
	8.4	Herbst's Argument	36
	8.5	Connection to Variance Bounds	37
9	Trai	nsportation Method	38
	9.1	Optimal Transport, Wasserstein Distance and its Dual	38
	9.2	Concentration via Transportation Cost	42
	9.3	Tensorization for Transportation Cost	43
	9.4	Induction Lemma	43
	9.5	Marton's Transportation Inequality	43
	9.6	Talagrand's Gaussian Transportation Inequality	45
10	Pro	ofs of Bounded Difference Inequality	45
	10.1	Martingale Method	45
	10.2	Entropy Method	46
	10.3	Isoperimetric Inequality on Binary Hypercube	47
		Transportation Method	

1 Basic Inequalities

1.1 Arithmetic, Calculus and Algebra

•

1.2 Function Space, Convexity and Duality

• Proposition 1.1 (Jensen's inequality) [Vershynin, 2018] Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a probability space. Let $f: \Omega \to \mathbb{R}$ be a \mathbb{P} -measurable function and $\varphi: \mathbb{R} \to \mathbb{R}$ be convex function. Then

$$\varphi\left(\mathbb{E}\left[X\right]\right) := \varphi\left(\int X d\mathbb{P}\right) \le \int \varphi \circ X d\mathbb{P} := \mathbb{E}\left[\varphi\left(X\right)\right]. \tag{1}$$

• Remark As a simple consequence of Jensen's inequality, $||X||_{L^p}$ is an *increasing function* in p, that is

$$||X||_{L^p} \le ||X||_{L^q} \quad \text{ for any } 1 \le p \le q \le \infty$$
 (2)

This inequality follows since $\varphi(x) = x^{q/p}$ is a convex function if $q/p \ge 1$.

• Proposition 1.2 (Minkowski's inequality) [Vershynin, 2018] For any $p \in [1, \infty]$, $X, Y \in L^p(\Omega, \mathbb{P})$,

$$||X + Y||_{L^p} \le ||X||_{L^p} + ||Y||_{L^p},$$
(3)

which implies that $\|\cdot\|_{L^p}$ is a norm.

• Proposition 1.3 (Cauchy-Schwarz inequality) [Vershynin, 2018] For any random variables $X, Y \in L^2(\Omega, \mathbb{P})$, the following inequality is satisfied:

$$|\langle X, Y \rangle_{L^2}| := |\mathbb{E}[XY]| \le ||X||_{L^2} ||Y||_{L^2}.$$
 (4)

This inequalities can be extended to conjugate spaces L^p and L^q

Proposition 1.4 (Hölder's inequality) [Vershynin, 2018]

For $p, q \in (1, \infty)$, 1/p + 1/q = 1, then the random variables $X \in L^p(\Omega, \mathbb{P})$, $Y \in L^q(\Omega, \mathbb{P})$ satisfy

$$|\langle X, Y \rangle_{L^2}| := |\mathbb{E}[XY]| \le ||X||_{L^p} ||Y||_{L^q}.$$
 (5)

1.3 Probability Theory

- Assume a probability space $(\Omega, \mathscr{F}, \mathbb{P})$ and a random variable $X : \Omega \to \mathbb{R}$ is a real-valued measurable function on Ω .
- For a random variable X, the **expectation** and **variance** are denoted as

$$\mathbb{E}[X] = \int X d\mathbb{P}$$

$$Var(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right]$$

 \bullet The moment generating function of X and its logarithm are denoted as

$$M_X(\lambda) := \mathbb{E}\left[e^{\lambda X}\right]$$
$$\psi_X(\lambda) := \log \mathbb{E}\left[e^{\lambda X}\right]$$

- For p > 0, the p-th moment of X is defined as $\mathbb{E}[X^p]$, and the p-th absolute moment is $\mathbb{E}[|X|^p]$.
- The L^p norm of X is

$$||X||_{L^p} := \mathbb{E}[|X|^p]^{1/p}$$

where $1 \leq p < \infty$. Note that the L^p space is a Banach space, which is defined as

$$L^{p}(\Omega, \mathbb{P}) := \{X : ||X||_{L^{p}} < \infty\}.$$

• The essential supremum of |X| is the L^{∞} norm of X

$$||X||_{L^{\infty}} := \operatorname{ess sup} |X|$$

Similarly, L^{∞} is a Banach space as well

$$L^{\infty}(\Omega, \mathbb{P}) := \{X : ||X||_{L^{\infty}} < \infty\}.$$

• For $p=2,\,L^2$ space is a *Hilbert space* with inner product between random variables $X,Y\in L^2(\Omega,\mathbb{P})$

$$\langle X , Y \rangle_{L^2} := \mathbb{E} \left[XY \right] = \int XY d\mathbb{P}$$

The **standard** deviation is

$$\sigma(X) = (Var(X))^{1/2} = ||X - \mathbb{E}[X]||_{L^2}.$$

The *covariance* is defined as

$$\begin{split} cov(X,Y) &:= \langle X - \mathbb{E}\left[X\right]\,,\, Y - \mathbb{E}\left[Y\right] \rangle \\ &= \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)\left(Y - \mathbb{E}\left[Y\right]\right)\right] \end{split}$$

When we consider random variables as vectors in the Hilbert space L^2 , the identity above gives a **geometric interpretation** of the notion of covariance. The more the vectors $X - \mathbb{E}[X]$ and $Y - \mathbb{E}[Y]$ are aligned with each other, the bigger their inner product and covariance are.

• The *cumulative distribution function (CDF)* is defined as

$$F_X(t) := \mathbb{P}[X < t], \quad t \in \mathbb{R}.$$

The following result is important

Lemma 1.5 (Integral Identity). [Vershynin, 2018] Let X be a non-negative random variable. Then

$$\mathbb{E}[X] = \int_0^\infty \mathbb{P}[X > t] dt. \tag{6}$$

The two sides of this identity are either finite or infinite simultaneously.

• Theorem 1.6 (Central Limit Theorem, Linderberg-Levy) Let X_1, \ldots, X_n be independent identically distributed random variables with mean $\mathbb{E}[X_i] = 0$ and variance $Var(X_i) = 1$. Then

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i \stackrel{d}{\to} N(0,1)$$
i.e.
$$\lim_{n \to \infty} \sup_{t \in \mathbb{R}} \left| \mathbb{P} \left\{ \frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i \le t \right\} - \Phi(t) \right| = 0$$
(7)

where $\Phi(t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du = \mathbb{P}\left\{g \leq t\right\}$ for some Gaussian variable g.

• Theorem 1.7 (Central Limit Theorem, Nonasymptotic, Berry-Esseen) [Vershynin, 2018]

Let $X_1, ..., X_n$ be independent identically distributed random variables with mean $\mathbb{E}[X_i] = 0$, variance $Var(X_i) = \sigma^2$ and $\rho := \mathbb{E}[|X_i|^3] < \infty$. Then with some constant C > 0,

$$\sup_{t \in \mathbb{R}} \left| \mathbb{P} \left\{ \frac{1}{\sigma \sqrt{n}} \sum_{i=1}^{n} X_i \le t \right\} - \Phi(t) \right| \le \frac{C}{\sigma^3 \sqrt{n}} \rho \tag{8}$$

where $\Phi(t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du = \mathbb{P} \{g \leq t\}$ for some Gaussian variable g.

• Remark The Berry-Esseen version of central limit theorem is **non-asymptotic** and it has a bound

$$\mathbb{P}\left\{\frac{1}{\sqrt{n}}\sum_{i=1}^{n}X_{i} \leq t\right\} \leq \mathbb{P}\left\{g \leq t\right\} + \frac{C}{\sqrt{n}}\rho = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}}e^{-u^{2}/2}du + \frac{C}{\sqrt{n}}\rho$$

This bound is **sharp**, i.e. the equality is attained when $X_i \sim \text{Bernoulli}(1/2)$.

• Theorem 1.8 (Poisson Limit Theorem). [Vershynin, 2018] Let $X_{N,i}$, $1 \le i \le N$, be independent random variables $X_{N,i} \sim Ber(p_{N,i})$, and let $S_N = \sum_{i=1}^{N} X_{N,i}$. Assume that, as $N \to \infty$

$$\max_{i \le N} p_{N,i} \to 0 \quad and \quad \mathbb{E}\left[S_N\right] = \sum_{i=1}^N p_{N,i} \to \lambda < \infty,$$

Then, as $N \to \infty$,

$$S_N = \sum_{i=1}^N X_{N,i} \stackrel{d}{\to} Pois(\lambda)$$

1.4 Information Theory

• **Definition** (Shannon Entropy) [Cover and Thomas, 2006] Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a probability space and $X : \mathbb{R} \to \mathcal{X}$ be a random variable. Define p(x) as the probability density function of X with respect to a base measure μ on \mathcal{X} . The Shannon Entropy is defined as

$$H(X) := \mathbb{E}_p \left[-\log p(X) \right]$$
$$= \int_{\Omega} -\log p(X(\omega)) d\mathbb{P}(\omega)$$
$$= -\int_{\mathcal{X}} p(x) \log p(x) d\mu(x)$$

• **Definition** (*Conditional Entropy*) [Cover and Thomas, 2006] If a pair of random variables (X,Y) follows the joint probability density function p(x,y) with respect to a base product measure μ on $\mathcal{X} \times \mathcal{Y}$. Then **the joint entropy** of (X,Y), denoted as H(X,Y), is defined as

$$H(X,Y) := \mathbb{E}_{X,Y} \left[-\log p(X,Y) \right] = -\int_{\mathcal{X} \times \mathcal{Y}} p(x,y) \log p(x,y) d\mu(x,y)$$

Then the conditional entropy H(Y|X) is defined as

$$H(Y|X) := \mathbb{E}_{X,Y} \left[-\log p(Y|X) \right] = -\int_{\mathcal{X} \times \mathcal{Y}} p(x,y) \log p(y|x) d\mu(x,y)$$
$$= \mathbb{E}_X \left[\mathbb{E}_Y \left[-\log p(Y|X) \right] \right] = \int_{\mathcal{X}} p(x) \left(-\int_{\mathcal{Y}} p(y|x) \log p(y|x) d\mu(y) \right) d\mu(x)$$

- Proposition 1.9 (Properties of Shannon Entropy) [Cover and Thomas, 2006] Let X, Y, Z be random variables.
 - 1. (Non-negativity) H(X) > 0:
 - 2. (Concavity) $H(p) := \mathbb{E}_p \left[-\log p(X) \right]$ is a concave function in terms of p.d.f. p, i.e.

$$H(\lambda p_1 + (1 - \lambda)p_2) \ge \lambda H(p_1) + (1 - \lambda)H(p_2)$$

for any two p.d.fs p_1, p_2 on \mathcal{X} and any $\lambda \in [0, 1]$.

• **Definition** (*Relative Entropy / Kullback-Leibler Divergence*) [Cover and Thomas, 2006]

Suppose that P and Q are probability measures on a measurable space \mathcal{X} , and P is absolutely continuous with respect to Q, then the relative entropy or the Kullback-Leibler divergence is defined as

$$\mathbb{KL}(P \parallel Q) := \mathbb{E}_P \left[\log \left(\frac{dP}{dQ} \right) \right] = \int_{\mathcal{X}} \log \left(\frac{dP(x)}{dQ(x)} \right) dP(x)$$

where $\frac{dP}{dQ}$ is the Radon-Nikodym derivative of P with respect to Q. Equivalently, the KL-divergence can be written as

$$\mathbb{KL}(P \parallel Q) = \int_{\mathcal{X}} \left(\frac{dP(x)}{dQ(x)} \right) \log \left(\frac{dP(x)}{dQ(x)} \right) dQ(x)$$

which is the entropy of P relative to Q. Furthermore, if μ is a base measure on \mathcal{X} for which densities p and q with $dP = p(x)d\mu$ and $dQ = q(x)d\mu$ exist, then

$$\mathbb{KL}\left(P \parallel Q\right) = \int_{\mathcal{X}} p(x) \log \left(\frac{p(x)}{q(x)}\right) d\mu(x)$$

• **Definition** (*Mutual Information*) [Cover and Thomas, 2006] Consider two random variables X, Y on $\mathcal{X} \times \mathcal{Y}$ with joint probability distribution $P_{(X,Y)}$ and marginal distribution P_X and P_Y . The mutual information I(X;Y) is the relative entropy between the joint distribution $P_{(X,Y)}$ and the product distribution $P_X \otimes P_Y$:

$$I(X;Y) = \mathbb{KL}\left(P_{(X,Y)} \parallel P_X \otimes P_Y\right) = \mathbb{E}_{P_{(X,Y)}}\left[\log \frac{dP_{(X,Y)}}{dP_X \otimes dP_Y}\right]$$

If $P_{(X,Y)}$ has a probability density function p(x,y) with respect to a base measure μ on $\mathcal{X} \times \mathcal{Y}$, then

$$I(X;Y) = \int_{\mathcal{X} \times \mathcal{Y}} p(x,y) \log \left(\frac{p(x,y)}{p_X(x)p_Y(y)} \right) d\mu(x,y)$$

- Proposition 1.10 (Properties of Relative Entropy and Mutual Information) [Cover and Thomas, 2006]
 Let X,Y be random variables.
 - 1. (Non-negativity) Let p(x), q(x) be probability density function of P, Q.

$$\mathbb{KL}(P \parallel Q) \geq 0$$

with equality if and only if p(x) = q(x) almost surely. Therefore, the mutual information is non-negative as well:

with equality if and only if X and Y are independent.

- 2. (Symmetry) I(X;Y) = I(Y;X)
- 3. (Information Gain via Conditioning) The mutual information I(X;Y) is the reduction in the uncertainty of X due to the knowledge of Y (and vice versa)

$$I(X;Y) = H(X) - H(X|Y)$$

$$= H(Y) - H(Y|X)$$

$$= H(X) + H(Y) - H(X,Y)$$
(9)

- 4. (Shannon Entropy as Self-Information) I(X;X) = H(X)
- 5. (Joint Convexity of Relative Entropy) The relative entropy $\mathbb{KL}(p \parallel q)$ is convex in the pair (p,q); that is, if (p_1,q_1) and (p_2,q_2) are two pairs of probability density functions, then for $\lambda \in [0,1]$,

$$\mathbb{KL}\left(\lambda p_1 + (1 - \lambda)p_2 \parallel \lambda q_1 + (1 - \lambda)q_2\right) \le \lambda \mathbb{KL}\left(p_1 \parallel q_1\right) + (1 - \lambda)\mathbb{KL}\left(p_2 \parallel q_2\right) \tag{10}$$

• Proposition 1.11 (Conditioning Reduces Entropy) [Cover and Thomas, 2006] From non-negativity of mutual information, we see that the entropy of X is non-increasing when conditioning on Y

$$H(X|Y) \le H(X) \tag{11}$$

where equality holds if and only if X and Y are independent.

• Proposition 1.12 (Chain Rule for Entropy) [Cover and Thomas, 2006] Let $X_1, X_2, ..., X_n$ be drawn according to $p(x_1, x_2, ..., x_n)$. Then

$$H(X_1, X_2, \dots, X_n) = \sum_{i=1}^n H(X_i | X_{i-1}, \dots, X_1)$$
(12)

• Proposition 1.13 (Sub-Additivity of Entropy) [Cover and Thomas, 2006] Let $X_1, X_2, ..., X_n$ be drawn according to $p(x_1, x_2, ..., x_n)$. Then

$$H(X_1, X_2, \dots, X_n) \le \sum_{i=1}^n H(X_i)$$
 (13)

with equality if and only if the X_i are independent.

• Proposition 1.14 (Chain Rule for Relative Entropy) [Cover and Thomas, 2006] Let $P_{(X,Y)}$ and $Q_{(X,Y)}$ be two probability measures on product space $\mathcal{X} \times \mathcal{Y}$ and $P \ll Q$. Denote the marginal distributions P_X, Q_X and P_Y, Q_Y on \mathcal{X} and \mathcal{Y} , respectively. $P_{Y|X}$ and $Q_{Y|X}$ are conditional distributions (Note that $P_{Y|X} \ll Q_{Y|X}$). Define the conditional relative entropy as

$$\mathbb{E}_{X}\left[\mathbb{KL}\left(P_{Y|X} \parallel Q_{Y|X}\right)\right] := \mathbb{E}_{X}\left[\mathbb{E}_{P_{Y|X}}\left[\log\left(\frac{dP_{Y|X}}{dQ_{Y|X}}\right)\right]\right].$$

Then the relative entropy of joint distribution $P_{(X,Y)}$ with respect to $Q_{(X,Y)}$ is

$$\mathbb{KL}\left(P_{(X,Y)} \parallel Q_{(X,Y)}\right) = \mathbb{KL}\left(P_X \parallel Q_X\right) + \mathbb{E}_X\left[\mathbb{KL}\left(P_{Y|X} \parallel Q_{Y|X}\right)\right] \tag{14}$$

In addition, let P and Q denote two joint distributions for X_1, X_2, \ldots, X_n , let $P_{1:i}$ and $Q_{1:i}$ denote the marginal distributions of X_1, X_2, \ldots, X_i under P and Q, respectively. Let $P_{X_i|1...i-1}$ and $Q_{X_i|1...i-1}$ denote the conditional distribution of X_i with respect to $X_1, X_2, \ldots, X_{i-1}$ under P and under Q.

$$\mathbb{KL}(P \parallel Q) = \sum_{i=1}^{n} \mathbb{E}_{P_{1:i-1}} \left[\mathbb{KL} \left(P_{X_i \mid 1...i-1} \parallel Q_{X_i \mid 1...i-1} \right) \right]$$
 (15)

• Proposition 1.15 (Han's Inequality) [Cover and Thomas, 2006, Boucheron et al., 2013] Let $X_1, X_2, ..., X_n$ be random variables. Then

$$H(X_1, X_2, \dots, X_n) \le \frac{1}{n-1} \sum_{i=1}^n H(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n)$$

$$\Leftrightarrow H(X) \le \frac{1}{n-1} \sum_{i=1}^n H(X_{(-i)})$$
(16)

2 Summary: General Proof Stratgy for Concentration Problem

There are many proof techniques introduced. We can summarize them as follows:

1. The Cramér-Chernoff Method:

This class of methods essentially apply the Markov inequality on exponential transform $e^{\lambda X}$ with parameter λ . The key is to **bound** the **log-moment generating function** from above and then use **the Legendre transform** to find the concentration bound.

Specifically, for a real-valued random variable X, any $\lambda \geq 0$, the following inequality holds

$$\mathbb{P}\left\{X \ge t\right\} = \mathbb{P}\left\{e^{\lambda X} \ge e^{\lambda t}\right\} \le e^{-\lambda t} \mathbb{E}\left[e^{\lambda X}\right] = \exp\left(-\lambda t + \psi_X(\lambda)\right)$$

where $\psi_X(\lambda) := \log \mathbb{E}\left[e^{\lambda X}\right]$. One can choose optimal λ^* that **minimizes** the upper bound above. Since $\psi_X(\lambda)$ is a **convex function**, we can define its **Legendre transform**

$$\psi_X^*(t) := \sup_{\lambda \in \mathbb{R}} \left\{ \lambda t - \psi_X(\lambda) \right\}.$$

The expression of the right-hand side is known as the *convex conjugate* of ψ_X . The Legendre transform of log-moment generating function is also its *convex conjugate*. Thus we have

$$\mathbb{P}\left\{X \ge t\right\} \le \exp\left\{-\psi_X^*(t)\right\}$$

The lower bound can be found by applying above formula to -X.

In other word, in order to prove concentration around mean

$$\mathbb{P}\left\{f(X) \geq \mathbb{E}\left[f(X)\right] + t\right\} \text{ or } \mathbb{P}\left\{f(X) \leq \mathbb{E}\left[f(X)\right] - t\right\}$$

using <u>the Cramér-Chernoff Method</u>, we just need to find <u>the upper bound</u> $\phi(\lambda)$ of the <u>logarithmic moment generating function</u> $\psi(\lambda)$

$$\psi(\lambda) := \log \mathbb{E} \left[e^{\lambda(f(X) - \mathbb{E}[f(X)])} \right] \le \phi(\lambda).$$

Remark (Advantages and Disadvantages of Cramér-Chernoff Method) There are several advantages for this method:

- (a) The derivation is **distribution-free**, since **Markov** inequality is based on fundamental properties of measure and integration theory. Moreover, the bounds on logarithmic moment generating function $\psi(\lambda)$ can be used to **characterize** different distributions in terms of their concentration behavior.
- (b) This method is *widely applicable*. Most of techniques we learned here is to compute the upper bound for $\psi(\lambda)$ and then apply the Cramér-Chernoff method.
- (c) The formula is **easy to compute** if the **simple bounds** on logarithmic moment generating function is computed. Then it will compute the rate via **Legendre transform** of upper bound of $\psi(\lambda)$.
- (d) The function $\psi(\lambda)$ easily handles product measures $\mathbb{P} = \bigotimes_{k=1}^{n} \mathbb{P}_k$ (i.e. independent variables).

$$\psi_Z(\lambda) = \log \mathbb{E}\left[e^{\lambda \sum_{i=1}^n X_i}\right] = \log \prod_{i=1}^n \mathbb{E}\left[e^{\lambda X_i}\right] = n \,\psi_X(\lambda)$$

and consequently,

$$\psi_Z^*(t) = n \, \psi_X^* \left(\frac{t}{n}\right).$$

For martingale difference sequence, we see that by conditioning on previous input

$$\mathbb{E}\left[\exp\left\{\lambda\left(\sum_{k=1}^{n}D_{k}\right)\right\}\right] = \mathbb{E}\left[\mathbb{E}\left[\exp\left\{\lambda\left(\sum_{k=1}^{n}D_{k}\right)\right\} \mid \mathcal{B}_{n-1}\right]\right]$$
$$= \mathbb{E}\left[\exp\left\{\lambda\left(\sum_{k=1}^{n-1}D_{k}\right)\right\}\mathbb{E}\left[\exp\left\{\lambda D_{n}\right\} \mid \mathcal{B}_{n-1}\right]\right]$$

If we can control each martingale difference by

$$\log \mathbb{E}\left[\exp\left\{\lambda D_n\right\} \mid \mathscr{B}_{n-1}\right] \le \phi(\lambda)$$

then we have

$$\psi_Z(\lambda) \le \log \mathbb{E} \left[\exp \left\{ \lambda \left(\sum_{k=1}^{n-1} D_k \right) \right\} \right] + \phi(\lambda)$$

$$\le \dots$$

$$\le n\phi(\lambda).$$

The main disadvantage is that the Chernoff bound is not necessarily sharp, since the Markov inequality is not necessarily sharp.

2. Entropy Method:

The entropy method focus on the **tensorization property** of the **entropy functional** Ent(X)

$$\operatorname{Ent}(X) := \mathbb{E}\left[X \log X\right] - \mathbb{E}\left[X\right] \log \left(\mathbb{E}\left[X\right]\right).$$

Specifically, let Z_1, Z_2, \ldots, Z_n be independent random variables taking values in \mathcal{X} , and let $f: \mathcal{X}^n \to [0, \infty)$ be a measurable function. Letting $X = f(Z_1, Z_2, \ldots, Z_n)$ such that $\mathbb{E}[X \log X] < \infty$, we have

$$\operatorname{Ent}(X) \le \mathbb{E}\left[\sum_{i=1}^n \operatorname{Ent}_{(-i)}(X)\right].$$

where $\mathbb{E}_{(-i)}[\cdot]$ is the conditional expectation operator conditioning on $Z_{(-i)}$, which is equal to Z after dropping i-component. In other word, the key strategy for proving concentration using entropy method is to find the upper bound for each single variable entropy functional

$$\operatorname{Ent}_{(-i)}(X) := \mathbb{E}_{(-i)}\left[X \log X\right] - \mathbb{E}_{(-i)}\left[X\right] \log \left(\mathbb{E}_{(-i)}\left[X\right]\right) \equiv H_{\Phi}(\mathbb{P}_i).$$

Note that for independent random variables Z, this term **depends only on distribution** of Z_i , since the rest $Z_{(-i)}$ are **controlled** by the conditioning.

To obtain the concentration bound, we use <u>the Herbst's argument</u>; that is, the find the bound

$$\operatorname{Ent}(e^{\lambda X}) \le \mathbb{E}\left[e^{\lambda X}\right]\phi(\lambda)$$

and using the differential equation for the log-moment generating function ψ

$$\frac{\operatorname{Ent}(e^{\lambda Z})}{\mathbb{E}\left[e^{\lambda Z}\right]} = \lambda \ \psi'(\lambda) - \psi(\lambda) = \lambda^2 \left(\frac{\psi(\lambda)}{\lambda}\right)',$$

we can obtain the upper bound for $\psi(\lambda)$:

$$\begin{split} \left(\frac{\psi(\lambda)}{\lambda}\right)' &\leq \lambda^{-2}\phi(\lambda) \\ \left(\frac{\psi(\lambda)}{\lambda}\right) &\leq \lim_{\lambda \to 0} \left(\frac{\psi(\lambda)}{\lambda}\right) + \int_0^{\lambda} s^{-2}\phi(s)ds \\ \psi(\lambda) &\leq \lambda \left(\mathbb{E}\left[X\right] + \int_0^{\lambda} s^{-2}\phi(s)ds\right). \end{split}$$

Finally, we apply the Chernoff bound.

In general, the key advantage of the entropy method is that the tensorization property allows us to <u>generalize</u> the concentration result from 1-dimensional distribution to n-dimensional product distribution.

The main effort is to find a concentration inequality for *entropy of single variable distribution*. One way to find such concentration is to use *the logarithmic Sobelev inequalities*.

3. Transportation Method:

The transportation method is closed related to various statistical divergence esp. the Kullback-Leibler divergence and the information inequality. The centrial part of the proof is to show that for given distribution \mathbb{P} of concern, the transportation cost inequality holds:

$$\mathcal{W}_{1}^{d}(\mathbb{Q}, \mathbb{P}) := \min_{\gamma \in \Pi(\mathbb{Q}, \mathbb{P})} \mathbb{E}_{\gamma} \left[d(Y, X) \right] \leq \phi^{*-1} \left(\mathbb{KL} \left(\mathbb{Q} \parallel \mathbb{P} \right) \right) \quad \forall \text{ distribution } \mathbb{Q}$$

where $\Pi(\mathbb{Q}, \mathbb{P}) = \{ \gamma \in \mathcal{P}(\mathcal{X} \times \mathcal{X}) : Y_{\#}\gamma = \mathbb{Q}, X_{\#}\gamma = \mathbb{P} \}$ i.e. γ is a **coupling** of marginal distribution \mathbb{Q} and \mathbb{P} . And, for every $s \geq 0$,

$$\phi^{*-1}(s) = \inf\{t \in \text{dom}(\phi^*) : \phi^*(t) > s\}$$

is defined as the **the generalized inverse** of the Legendre transform $\phi^* = \sup_{\lambda \in (0,b)} (\lambda x - \phi(\lambda))$.

There are two ways to proceed:

(a) Based on the duality of 1-Wasserstein distance, this transportation cost inequality implies that for any 1-Lipschitz function $f: \mathcal{X} \to \mathbb{R}$ with respect to metric d

$$\mathbb{E}_{\mathbb{Q}}\left[f(Y)\right] - \mathbb{E}_{\mathbb{P}}\left[f(X)\right] = \mathbb{E}_{\gamma}\left[f(Y) - f(X)\right] \leq \mathcal{W}_{1}^{d}(\mathbb{Q}, \mathbb{P}) \leq \phi^{*-1}\left(\mathbb{KL}\left(\mathbb{Q} \parallel \mathbb{P}\right)\right).$$

(b) Or, we use the Cauchy-Schwartz inequality

$$\mathbb{E}_{\mathbb{Q}}\left[f(Y)\right] - \mathbb{E}_{\mathbb{P}}\left[f(X)\right] = \mathbb{E}_{\gamma}\left[f(Y) - f(X)\right] \le \sum_{i=1}^{n} \alpha_{i} \mathbb{E}_{\gamma}\left[d(Y_{i}, X_{i})\right]$$

$$\le \left(\sum_{i=1}^{n} \alpha_{i}^{2}\right)^{1/2} \left(\sum_{i=1}^{n} (\mathbb{E}_{\gamma}\left[d(Y_{i}, X_{i})\right])^{2}\right)^{1/2}$$

If we can show that the quadratic of transportation cost

$$\min_{\gamma \in \Pi(\mathbb{Q}, \mathbb{P})} \sum_{i=1}^{n} (\mathbb{E}_{\gamma} \left[d(Y_i, X_i) \right])^2 \le \varphi \left(\mathbb{KL} \left(\mathbb{Q} \parallel \mathbb{P} \right) \right)$$

Then

$$\mathbb{E}_{\mathbb{Q}}\left[f(Y)\right] - \mathbb{E}_{\mathbb{P}}\left[f(X)\right] \leq \left(\left(\sum_{i=1}^{n} \alpha_{i}^{2}\right) \varphi\left(\mathbb{KL}\left(\mathbb{Q} \parallel \mathbb{P}\right)\right)\right)^{1/2}$$

Finally by the *transportation lemma*, we can show that

$$\psi_{f(X)}(\lambda) := \mathbb{E}_{\mathbb{P}}\left[e^{\lambda(f(X) - \mathbb{E}[f(X)])}\right] \le \phi(\lambda).$$

The concentration follows from *Chernoff bound* with rate function $\phi^*(t)$.

Note that the transportation cost inequality has *the tensorization property* as well. This allows us to generalize the the inequality from 1-dimension distribution to product distributions.

${\bf Remark} \ ({\bf \textit{Advantages and Disadvantages of Transportation Method}})$

There are several advantages for this method:

(a) The optimal transport problem and the Wasserstein distance is closely related to the information geometry of probability space $\mathcal{P}(\mathcal{X})$. In particular, the transportation cost inequality relates the optimal transport cost to the relative entropy:

$$\mathcal{W}_{p}^{d}(\mathbb{Q}, \mathbb{P}) \leq \varphi\left(\mathbb{KL}\left(\mathbb{Q} \parallel \mathbb{P}\right)\right).$$

This provides an alternative *information theoretical interpretation* of the concentration behavior of independent random variables.

- (b) The low optimal transportation cost is closely associated with the concentration of **measure** in $\mathbb{P} \in \mathcal{P}(\mathcal{X})$. In fact, we can bound the concentration function $\alpha_{\mathbb{P},(\mathcal{X},d)}(t)$ from above by the upper bound of optimal transport cost.
- (c) **The dual formulation** naturally leads to the concentration of Lipschitz function or other strong uniform continuous functions.
- (d) The concept of **coupling** $\gamma \in \Pi(\mathbb{Q}, \mathbb{P})$ allows us to extend the concentration results to **dependent variables**, such as *Markov chains*, *Markov random field* etc. In those cases, we can separate the conditional distribution $\mathbb{P}(X_i|X_{1:i-1})$ and the marginal distributions $\mathbb{P}(X_{1:i-1})$.

3 Summary: Distribution-Free Concentration Inequality

• Remark (Distribution-Free Concentration Inequality)

Some concentration results are based on assumption on specific underling distributions such as Gaussian, Bernoulli, Poisson, sub-Gaussian, sub-Gamma etc. On the other hand, some concentration results are based on assumption on specific function class such as bounded (actually is sub-Gaussian), Lipschitz function, bounded difference, convex function etc. The latter results do not rely on specific distribution assumption, so it is called the distribution-free concentration inequality.

We list out several important inequalities:

1. Theorem 3.1 (Markov's Inequality). [Vershynin, 2018] For any non-negative random variable X and t > 0, we have

$$\mathbb{P}\left\{X \ge t\right\} \le \frac{\mathbb{E}\left[X\right]}{t}$$

2. Theorem 3.2 (Chebyshev's Inequality). [Vershynin, 2018] Let X be a random variable with mean μ and variance σ^2 . Then, for any t > 0, we have

$$\mathbb{P}\left\{|X - \mu| \ge t\right\} \le \frac{\sigma^2}{t^2}.$$

3. Theorem 3.3 (Chernoff's inequality) [Boucheron et al., 2013] Let X be a real-valued random variable. For $\lambda \geq 0$, $\psi_X(\lambda)$ is the **the logarithm of mo**ment generating function of X and $\psi_X^*(t)$ is its Legendre (Cramér) transform. Then

$$\mathbb{P}\left\{X \geq t\right\} \leq \exp\left(-\psi_X^*(t)\right).$$

4. Theorem 3.4 (Hoeffding's inequality) [Boucheron et al., 2013] Let X_1, \ldots, X_n be independent random variables such that X_i takes its values in $[a_i, b_i]$ almost surely for all $i \leq n$. Then for every t > 0,

$$\mathbb{P}\left\{\sum_{i=1}^{n} \left(X_{i} - \mathbb{E}\left[X_{i}\right]\right) \ge t\right\} \le \exp\left(-\frac{2t^{2}}{\sum_{i=1}^{n} (b_{i} - a_{i})^{2}}\right).$$

5. Corollary 3.5 (Azuma-Hoeffding Inequality)[Wainwright, 2019] Let $\{(D_k, \mathcal{B}_k), k \geq 1\}$ be a martingale difference sequence for which there are constants $\{(a_k, b_k)\}_{k=1}^n$ such that $D_k \in [a_k, b_k]$ almost surely for all k = 1, ..., n. Then, for all $t \geq 0$,

$$\mathbb{P}\left\{ \left| \sum_{k=1}^{n} D_k \right| \ge t \right\} \le 2 \exp\left(-\frac{2t^2}{\sum_{k=1}^{n} (b_k - a_k)^2}\right)$$

6. Theorem 3.6 (McDiarmid's Inequality / Bounded Differences Inequality)[Boucheron et al., 2013, Wainwright, 2019]

Suppose that f satisfies **the bounded difference property** (48) with parameters (L_1, \ldots, L_n) i.e. for each index $k = 1, 2, \ldots, n$,

$$|f(x_1,\ldots,x_n)-f(x_1,\ldots,x_{i-1},x_i',x_{i+1},\ldots,x_n)| \le L_k, \quad \text{for all } x,x' \in \mathcal{X}^n.$$

Assume that the random vector $X = (X_1, X_2, ..., X_n)$ has **independent** components. Then

$$\mathbb{P}\left\{|f(X) - \mathbb{E}\left[f(X)\right]| \ge t\right\} \le 2\exp\left(-\frac{2t^2}{\sum_{k=1}^n L_k^2}\right).$$

Note that functions with bounded difference property are **Lipschitz function** with respect to **Hamming distance**.

7. Theorem 3.7 (Concentration of Separately Convex Lipschitz Functions) [Boucheron et al., 2013]

Let $Z := (Z_1, \ldots, Z_n)$ be independent random variables, each taking values in the interval $[a_i, b_i]$ and let $f : \mathbb{R}^n \to \mathbb{R}$ be a **separately convex function** (i.e. f is **convex in** each coordinate while the **others** are **fixed**) such that

$$|f(x) - f(y)| \le L ||x - y||$$
 for all $x, y \in [0, 1]^n$.

Then $X = f(Z_1, ..., Z_n)$ satisfies, for all t > 0,

$$\mathbb{P}\left\{f(Z) - \mathbb{E}\left[f(Z)\right] \ge t\right\} \le \exp\left(-\frac{t^2}{2L^2 \sum_{k=1}^n (b_k - a_k)^2}\right).$$

Convex Lipschitz assumption is stronger than bounded difference assumption.

8. Theorem 3.8 (Concentration of Quasi-Convex Lipschitz Functions) [Boucheron et al., 2013]

Let $Z := (Z_1, ..., Z_n)$ be independent random variables taking values in the interval [0,1] and let $f: [0,1]^n \to \mathbb{R}$ be a quasi-convex function; that is

$$\{z: f(z) \leq s\}$$
 is convex set for all $s \in \mathbb{R}$.

Moreover, f is Lipschitz function satisfying

$$|f(x) - f(y)| \le ||x - y||$$
 for all $x, y \in [0, 1]^n$.

Then $X = f(Z_1, \ldots, Z_n)$ satisfies, for all t > 0,

$$\mathbb{P}\left\{f(Z) \ge Med(f(Z)) + t\right\} \le 2\exp\left(-\frac{t^2}{4}\right),\,$$

$$\mathbb{P}\left\{f(Z) \le Med(f(Z)) - t\right\} \le 2\exp\left(-\frac{t^2}{4}\right).$$

- 4 Comparison: Gaussian Tail Bound vs. Poisson Tail Bound
 - Remark (Gaussian Tail Bound vs. Poisson Tail Bound)

5 The Cramér-Chernoff Method

5.1 From Markov Inequality to Cramér-Chernoff Method

• Proposition 5.1 (Markov's Inequality). [Vershynin, 2018] For any non-negative random variable X and t > 0, we have

$$\mathbb{P}\left\{X \ge t\right\} \le \frac{\mathbb{E}\left[X\right]}{t} \tag{17}$$

• Proposition 5.2 (Chebyshev's Inequality). [Vershynin, 2018] Let X be a random variable with mean μ and variance σ^2 . Then, for any t > 0, we have

$$\mathbb{P}\left\{|X - \mu| \ge t\right\} \le \frac{\sigma^2}{t^2}.\tag{18}$$

• Remark (Cramér-Chernoff Method)

In this section we describe and formalize the Cramér-Chernoff bounding method. This method determines the best possible bound for a **tail probability** that one can possibly obtain using Markov's inequality with an exponential function $\phi(t) = e^{\lambda t}$.

Recall that for a real-valued random variable X, any $\lambda \geq 0$, the following inequality holds

$$\mathbb{P}\left\{X \ge t\right\} \le e^{-\lambda t} \mathbb{E}\left[e^{\lambda X}\right] = \exp\left(-\lambda t + \psi_X(\lambda)\right)$$

where $\psi_X(\lambda) := \log \mathbb{E}\left[e^{\lambda X}\right]$. One can choose optimal λ^* that **minimizes** the upper bound above. Since $\psi_X(\lambda)$ is a **convex function**, we can define its **Legendre transform**

$$\psi_X^*(t) := \sup_{\lambda \in \mathbb{R}} \left\{ \lambda t - \psi_X(\lambda) \right\}.$$

The expression of the right-hand side is known as the <u>Fenchel-Legendre dual function</u> (or the **convex conjugate**) of ψ_X . The Legendre transform of log-moment generating function is also its convex conjugate.

In other word, in order to prove concentration around mean

$$\mathbb{P}\left\{f(X) \geq \mathbb{E}\left[f(X)\right] + t\right\} \text{ or } \mathbb{P}\left\{f(X) \leq \mathbb{E}\left[f(X)\right] - t\right\}$$

using <u>the Cramér-Chernoff Method</u>, we just need to find <u>the upper bound</u> of the logarithmic moment generating function

$$\psi(\lambda) := \log \mathbb{E} \left[e^{\lambda (f(X) - \mathbb{E}[f(X)])} \right] \le \phi(\lambda)$$

• Proposition 5.3 (Chernoff's inequality) [Boucheron et al., 2013] Let X be a real-valued random variable. For $\lambda \geq 0$, $\psi_X(\lambda)$ is the **the logarithm of moment** generating function of X and $\psi_X^*(t)$ is its Legendre (Cramér) transform. Then

$$\mathbb{P}\left\{X \ge t\right\} \le \exp\left(-\psi_X^*(t)\right). \tag{19}$$

• Remark The *Legendre transform* is also called *the Cramér transform* [Boucheron et al., 2013].

Since $\psi_X(0) = 0$, its Legendre transform $\psi_X^*(t)$ is nonnegative.

• Definition (The Rate Function)

<u>The rate function</u> is defined as **the Legendre transformation** of the logarithm of the moment generating function of a random variable. That is,

$$\psi_X^*(t) := \sup_{\lambda \in \mathbb{R}} \left\{ \lambda \, t - \psi_X(\lambda) \right\},\tag{20}$$

where $\psi_X(\lambda) := \log \mathbb{E}\left[e^{\lambda X}\right]$. Thus, by Chernoff's inequality, we can bound the tail probabilities of random variables via its rate function.

• Remark (Sums of independent random variables)

The reason why Chernoff's inequality became popular is that it is very simple to use when applied to a sum of independent random variables. As an illustration, assume that $Z := X_1 + \ldots + X_n$ where X_1, \ldots, X_n are *independent* and *identically distributed* real-valued random variables. Denote the logarithm of the moment-generating function of the X_i by $\psi_X(\lambda) = \log \mathbb{E}\left[e^{\lambda X_i}\right]$, and the corresponding Legendre transform by $\psi_X^*(t)$. Then, by independence, for all λ for which $\psi_X(\lambda) < \infty$,

$$\psi_Z(\lambda) = \log \mathbb{E}\left[e^{\lambda \sum_{i=1}^n X_i}\right] = \log \prod_{i=1}^n \mathbb{E}\left[e^{\lambda X_i}\right] = n \,\psi_X(\lambda)$$

and consequently,

$$\psi_Z^*(t) = n \, \psi_X^* \left(\frac{t}{n}\right).$$

Thus the Chernoff's inequality states that

$$\mathbb{P}\left\{Z \ge t\right\} \le \exp\left(-\psi_Z^*(t)\right) = \exp\left(-n\,\psi_X^*\left(\frac{t}{n}\right)\right).$$

• Example (Normal Distribution)

Let X be a *centered normal random variable* with variance σ^2 . Then

$$\psi_X(\lambda) = \frac{\lambda^2 \sigma^2}{2}, \quad \lambda_t = \frac{t}{\sigma^2}$$

and, therefore for every t > 0,

$$\psi_X^*(t) = \frac{t^2}{2\sigma^2}.$$

Hence, Chernoff's inequality implies, for all t > 0,

$$\mathbb{P}\left\{X \ge t\right\} \le \exp\left(-\frac{t^2}{2\sigma^2}\right).$$

Chernoff's inequality appears to be quite sharp in this case. In fact, one can show that it cannot be improved uniformly by more than a factor of 1/2.

• Example $(Poisson\ Distribution)$

Let X be a **Poisson random variable** with parameter ν , that is, $\mathbb{P}\{X=k\} = \frac{1}{k!}e^{\nu}\nu^k$ for all k=0,1,2,... Let $Z=X-\nu$ be the corresponding centered variable. Then by direct calculation,

$$\psi_Z(\lambda) = \nu \left(e^{\lambda} - \lambda - 1 \right), \quad \lambda_t = \log \left(1 + \frac{t}{\nu} \right)$$

Therefore the Legendre transform equals, for every t > 0,

$$\psi_Z^*(t) = \nu h\left(\frac{t}{\nu}\right).$$

where the function h is defined, for all $x \ge -1$, by $h(x) = (1+x)\log(1+x) - x$. Similarly, for every $t \le \nu$,

$$\psi_{-Z}^*(t) = \nu h \left(-\frac{t}{\nu}\right).$$

• Example (Bernoulli Distribution)

Let X be a **Bernoulli random variable** with probability of success p, that is, $\mathbb{P}\{X = 1\} = 1 - \mathbb{P}\{X = 0\} = p$. Let Z = X - p be the corresponding centered variable. If 0 < t < 1 - p, we have

$$\psi_Z(\lambda) = \log\left(pe^{\lambda} + 1 - p\right) - p\lambda, \quad \lambda_t = \log\frac{(1-p)(p+t)}{p(1-p-t)}$$

and therefore, for every $t \in (0, 1 - p)$,

$$\psi_Z^*(t) = (1 - p - t) \log \frac{1 - p - t}{1 - p} + (p + t) \log \frac{p + t}{p}.$$

Equivalently, setting a = t + p for every $a \in (p, 1)$,

$$\psi_Z^*(t) = h_p(a) = (1-a)\log\frac{1-a}{1-p} + a\log\frac{a}{p}.$$

We note here that $h_p(a)$ is just the **Kullback-Leibler divergence** $\mathbb{KL}(\mathbb{P}_a \parallel \mathbb{P}_p)$ between a Bernoulli distribution \mathbb{P}_a of parameter a and a Bernoulli distribution \mathbb{P}_p of parameter p.

$$\mathbb{P}\left\{X \geq t\right\} \leq \exp\left(-\mathbb{KL}\left(\mathbb{P}_{p+t} \parallel \mathbb{P}_{p}\right)\right)$$

5.2 Sub-Gaussian Random Variables

• Definition (Sub-Gaussian Random Variable)

A centered random variable X is said to be sub-Gaussian with variance factor ν if

$$\psi_X(\lambda) \le \frac{\lambda^2 \nu}{2}$$
, for every $\lambda \in \mathbb{R}$. (21)

We denote the collection of such random variables by $\mathcal{G}(\nu)$.

• Proposition 5.4 (Moment Characterization of Sub-Gaussian Random Variables)
[Boucheron et al., 2013]

Let X be a random variable with $\mathbb{E}[X] = 0$. If for some $\nu > 0$

$$\mathbb{P}\left\{X > t\right\} \vee \mathbb{P}\left\{-X > t\right\} \le \exp\left(-\frac{t^2}{2\nu}\right), \quad \text{for all } t > 0$$
 (22)

then for every integer $q \geq 1$,

$$\mathbb{E}\left[X^{2q}\right] \le 2q!(2\nu)^q \le q!(4\nu)^q. \tag{23}$$

Conversely, if for some positive constant C

$$\mathbb{E}\left[X^{2q}\right] \le q!C^q,$$

then $X \in \mathcal{G}(4C)$ (and therefore (23) holds with $\nu = 4C$).

• Proposition 5.5 (Equivalent Definitions for Sub-Gaussian Random Variables). [Vershynin, 2018]

Let X be a random variable. Then the following properties are **equivalent**; the parameters $K_i > 0$ appearing in these properties differ from each other by at most an absolute constant factor.

1. The tails of X satisfy

$$\mathbb{P}\{|X| \ge t\} \le 2\exp\left(-t^2/K_1^2\right) \quad \text{for all } t \ge 0.$$

2. The moments of X satisfy

$$||X||_{L^p} = (\mathbb{E}[|X|^p])^{1/p} \le K_2 \sqrt{p}$$
 for all $p \ge 1$.

3. The moment-generating function (MGF) of X^2 satisfies

$$\mathbb{E}\left[\exp(\lambda^2 X^2)\right] \le \exp(K_3^2 \lambda^2) \quad \text{for all } \lambda \text{ such that } |\lambda| \le \frac{1}{K_3}$$

4. The MGF of X^2 is bounded at some point, namely

$$\mathbb{E}\left[\exp(X^2/K_4^2)\right] \le 2.$$

Moreover, if $\mathbb{E}[X] = 0$ then properties (1)-(4) are also **equivalent** to the following one.

5. The **MGF** of X satisfies

$$\mathbb{E}\left[\exp(\lambda X)\right] \le \exp(K_5^2 \lambda^2) \quad \text{for all } \lambda \in \mathbb{R}.$$

• Definition (Sub-Gaussian Norm)

The <u>sub-gaussian norm</u> of X, denoted $||X||_{\psi_2}$, is defined to be the **smallest** K_4 that satisfies

$$\mathbb{E}\left[\exp(X^2/K_4^2)\right] \le 2.$$

In other words, we define

$$||X||_{\psi_2} = \inf\{t > 0 : \mathbb{E}\left[\exp(X^2/t^2)\right] \le 2\}.$$
 (24)

• Remark (Sub-Gaussian Characterizations via Sub-Gaussian Norm)
We can restate the properties of sub-gaussian random variables in terms of sub-gaussian norm:

$$\begin{split} \mathbb{P}\left\{|X| \geq t\right\} \leq 2 \exp\left(-ct^2/\left\|X\right\|_{\psi_2}^2\right) &\quad \text{for all } t \geq 0;\\ \|X\|_{L^p} \leq C \left\|X\right\|_{\psi_2} \sqrt{p} &\quad \text{for all } p \geq 1;\\ \mathbb{E}\left[\exp(X^2/\left\|X\right\|_{\psi_2}^2)\right] \leq 2;\\ \text{if } \mathbb{E}\left[X\right] = 0, &\quad \text{then } \mathbb{E}\left[\exp(\lambda X)\right] \leq \exp(C\lambda^2 \left\|X\right\|_{\psi_2}^2) &\quad \text{for all } \lambda \in \mathbb{R}. \end{split}$$

- Example Here are some classical examples of sub-gaussian distributions.
 - 1. (*Gaussian*): As we already noted, $X \sim N(0,1)$ is a sub-gaussian random variable with $\|X\|_{\psi_2} \leq C$, where C is an absolute constant. More generally, if $X \sim N(0,\sigma^2)$ then X is sub-gaussian with

$$||X||_{\psi_2} \le C\sigma \tag{25}$$

2. (**Bernoulli**): Let X be a random variable with **symmetric Bernoulli distribution**. Since |X| = 1, it follows that X is a sub-gaussian random variable with

$$||X||_{\psi_2} \le \frac{1}{\sqrt{\log 2}} \tag{26}$$

3. (Bounded): More generally, any bounded random variable X is sub-gaussian with

$$||X||_{\psi_2} \le C \, ||X||_{\infty} \tag{27}$$

where $C = 1/\sqrt{\log 2}$.

5.3 Sub-Exponential and Sub-Gamma Random Variables

• Remark For exponential distribution $X \sim \exp(a)$ with rate a (inverse of scale parameter), the p.d.f. and moment generating function

$$f_X(x) = ae^{-ax}, \quad x > 0$$

$$M_X(\lambda) = \frac{1}{1 - \lambda/a}, \quad 0 < \lambda < a$$

For Gamma distribution $X \sim \Gamma(a, 1/b)$ with shape parameter a and scale parameter b, the p.d.f. and the moment generating function

$$f_X(x) = \frac{1}{\Gamma(a)b^a} x^{a-1} e^{-x/b}, \quad x > 0$$
$$M_X(\lambda) = \left(\frac{1}{1 - b\lambda}\right)^a, \quad 0 < \lambda < 1/b$$

Also $\mathbb{E}[X] = ab$ and $Var(X) = ab^2$.

• Definition (Sub-Exponential Random Variables)

A nonnegative random variable X has a sub-exponential distribution if there exists a constant a > 0 such that

$$\mathbb{E}\left[e^{\lambda X}\right] \leq \frac{1}{1 - \lambda/a} \quad \text{for every } \lambda \text{ such that } 0 < \lambda < a$$
or $\psi_X(\lambda) \leq \log\left(\frac{1}{1 - \lambda/a}\right)$

• Definition (Sub-Gamma Random Variables)

A real-valued centered random variable X is said to be <u>sub-gamma on the right tail</u> with variance factor ν and scale parameter c if

$$\psi_X(\lambda) \le \frac{\lambda^2 \nu}{2(1-c\lambda)}$$
 for every λ such that $0 < \lambda < 1/c$

We denote the collection of such random variables by $\Gamma_{+}(\nu, c)$.

Similarly, a real-valued centered random variable X is said to be <u>sub-gamma</u> on the <u>left tail</u> with variance factor ν and scale parameter c if -X is <u>sub-gamma</u> on the <u>right tail</u> with variance factor ν and tail parameter c. We denote the collection of such random variables by $\Gamma_{-}(\nu, c)$.

Finally, X is simply said to be <u>sub-gamma</u> with variance factor ν and scale parameter c if X is sub-gamma both on the right and left tails with the same variance factor ν and scale parameter c. The collection of such random variables is denoted by $\Gamma(\nu, c)$.

Observe that $\Gamma(\nu,0) = \mathcal{G}(\nu)$.

• Remark To derive the definition fo sub-gamma distribution, we see that the variance factor $\nu := ab^2$ and c := b. Also $\mathbb{E}[X] = ab$. The logarithmic moment generating function of Gamma distribution $\Gamma(a, 1/b) = \Gamma(\nu/c^2, 1/c)$ is

$$\psi_{X - \mathbb{E}[X]}(\lambda) = a \log \left(\frac{1}{1 - b\lambda}\right) - \lambda ab \le \frac{\lambda^2 b^2 a}{2(1 - b\lambda)} \equiv \frac{\lambda^2 \nu}{2(1 - c\lambda)}$$

The last inequality is due to

$$\log\left(\frac{1}{1-u}\right) - u \le \frac{u^2}{2(1-u)}$$

- Remark Note that the sum of n i.i.d. random variables with exponential distribution $\exp(1/b)$ have the Gamma distribution $\Gamma(n, 1/b)$. So **the sub-gamma distributed** random variable follows **the sub-exponential distribution** as well (with shape parameter = 1).
- Proposition 5.6 (Equivalent Definitions for Sub-Exponential Random Variables). [Vershynin, 2018]

Let X be a random variable. Then the following properties are equivalent; the parameters $K_i > 0$ appearing in these properties differ from each other by at most an absolute constant factor.

1. The tails of X satisfy

$$\mathbb{P}\left\{|X| \ge t\right\} \le 2\exp\left(-t/K_1\right) \quad \text{ for all } t \ge 0.$$

2. The moments of X satisfy

$$\|X\|_{L^p} = \left(\mathbb{E}\left[|X|^p\right]\right)^{1/p} \le K_2 \, p \quad \text{ for all } p \ge 1.$$

3. The moment-generating function (MGF) of |X| satisfies

$$\mathbb{E}\left[\exp(\lambda |X|)\right] \le \exp(K_3 \lambda) \quad \text{for all } \lambda \text{ such that } 0 \le \lambda \le \frac{1}{K_3}$$

4. The MGF of |X| is **bounded** at some point, namely

$$\mathbb{E}\left[\exp(|X|/K_4)\right] \le 2.$$

Moreover, if $\mathbb{E}[X] = 0$ then properties (1)-(4) are also **equivalent** to the following one.

5. The MGF of X satisfies

$$\mathbb{E}\left[\exp(\lambda X)\right] \le \exp(K_5^2 \lambda^2) \quad \text{for all } \lambda \text{ such that } |\lambda| \le \frac{1}{K_5}.$$

• Definition (Sub-Exponential Norm)
The <u>sub-exponential norm</u> of X, denoted $||X||_{\psi_1}$, is defined to be the smallest K_4 that satisfies

$$\mathbb{E}\left[\exp(|X|/K_4)\right] \le 2.$$

In other words, we define

$$||X||_{\psi_1} = \inf\{t > 0 : \mathbb{E}\left[\exp(|X|/t)\right] \le 2\}.$$
 (28)

- Remark Sub-gaussian and sub-exponential distributions are closely related.
 - 1. First, any sub-gaussian distribution is clearly sub-exponential.
 - 2. Second, the square of a sub-gaussian random variable is sub-exponential:

Lemma 5.7 (Sub-exponential is Sub-gaussian Squared). [Vershynin, 2018] A random variable X is sub-gaussian if and only if X^2 is sub-exponential. Moreover,

$$||X^2||_{\psi_1} = ||X||_{\psi_2}^2$$

More generally, the product of two sub-gaussian random variables is sub-exponential:

Lemma 5.8 (Product of Sub-Gaussians is Sub-Exponential). [Vershynin, 2018] Let X and Y be sub-gaussian random variables. Then XY is sub-exponential. Moreover,

$$||XY||_{\psi_1} \le ||X||_{\psi_2} ||Y||_{\psi_2}.$$

• Proposition 5.9 (Moment Characterization of Sub-Exponential Random Variables)
[Boucheron et al., 2013]

Let X be a nonnegative random variable. If X is sub-exponential distributed with parameter a > 0 then for every integer $q \ge 1$,

$$\mathbb{E}\left[X^q\right] \le 2^{q+1} \frac{q!}{a^q}.\tag{29}$$

Conversely, if there exists a constant a > 0 in order that for every positive integer q,

$$\mathbb{E}\left[X^q\right] \le \frac{q!}{a^q},$$

then X is sub-exponential. More precisely, for any $0 < \lambda < a$,

$$\mathbb{E}\left[e^{\lambda X}\right] \le \frac{1}{1 - \lambda/a}.$$

• Remark (Concentration Inequalities for Sub-Gamma Distribution)

Similarly to the *sub-Gaussian property*, the *sub-gamma property* can be characterized in terms of *tail or moment conditions*. We start by computing *the Fenchel-Legendre dual function* of

$$\psi(\lambda) = \frac{\lambda^2 \nu}{2(1 - c\lambda)}.$$

Setting

$$h_1(u) = 1 + u - \sqrt{1 + 2u}$$
 for $u > 0$,

it follows by elementary calculation that for every t > 0,

$$\psi^*(t) = \sup_{\lambda \in (0, 1/c)} \left\{ t\lambda - \frac{\lambda^2 \nu}{2(1 - c\lambda)} \right\} = \frac{\nu}{c^2} h_1 \left(\frac{c t}{\nu} \right).$$

Since h_1 is an increasing function from $(0, \infty)$ onto $(0, \infty)$ with *inverse function*

$$h^{-1}(u) = u + \sqrt{2u} \text{ for } u > 0,$$

we finally get

$$\psi^{*-1}(u) = \sqrt{2\nu u} + cu.$$

Hence, Chernoff's inequality implies that whenever X is a sub-gamma random variable on the right tail with variance factor ν and scale parameter c, for every t > 0, we have

$$\mathbb{P}\left\{X > t\right\} \le \exp\left(\frac{\nu}{c^2} h_1\left(\frac{ct}{\nu}\right)\right),\tag{30}$$

or equivalently, for every t > 0,

$$\mathbb{P}\left\{X > \sqrt{2\nu t} + ct\right\} \le e^{-t}.\tag{31}$$

Therefore, if X belongs to $\Gamma(\nu, c)$, then for every t > 0,

$$\mathbb{P}\left\{X > \sqrt{2\nu t} + ct\right\} \vee \mathbb{P}\left\{-X > \sqrt{2\nu t} + ct\right\} \le e^{-t}.$$

5.4 Hoeffding's Inequality

ullet Remark (Bounded Variables)

Bounded variables are an important class of sub-Gaussian random variables. The sub-Gaussian property of bounded random variables is established by the following lemma:

• Lemma 5.10 (Hoeffding's Lemma) [Boucheron et al., 2013] Let X be a random variable with $\mathbb{E}[X] = 0$, taking values in a bounded interval [a, b] and let $\psi_X(\lambda) := \log \mathbb{E}[e^{\lambda X}]$. Then

$$\psi_X''(\lambda) \le \frac{(b-a)^2}{4}$$

and $X \in \mathcal{G}((b-a)^2/4)$.

• Proposition 5.11 (Hoeffding's inequality) [Boucheron et al., 2013] Let X_1, \ldots, X_n be independent random variables such that X_i takes its values in $[a_i, b_i]$ almost surely for all $i \leq n$. Let

$$S = \sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]).$$

Then for every t > 0,

$$\mathbb{P}\left\{S \ge t\right\} \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right). \tag{32}$$

• Proposition 5.12 (General Hoeffding's inequality) [Vershynin, 2018] Let X_1, \ldots, X_n be independent sub-gaussian random variables. Let

$$S = \sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]).$$

Then for every t > 0,

$$\mathbb{P}\left\{S \ge t\right\} \le \exp\left(-\frac{ct^2}{\sum_{i=1}^n \|X_i\|_{\psi_2}}\right). \tag{33}$$

5.5 Bernstein's Inequality

• Definition (Bernstein's Condition)

Given a random variable X with mean $\mu = \mathbb{E}[X]$ we say that <u>Bernstein's condition</u> with parameter ν , c holds if the variance $\operatorname{Var}(X) = \mathbb{E}[X^2] - \mu^2 \leq \nu$, and

$$\sum_{i=1}^{n} \mathbb{E}\left[(X - \mu)_{+}^{q} \right] \le \frac{q!}{2} \nu c^{q-2}, \quad \text{ for all integers } q \ge 2,$$

where $(x)_{+} = \max\{x, 0\}.$

- Remark If X is bounded, then it satisfies the Bernstein's condition.
 If X satisfies the Bernstein's condition, X follows a sub-gamma distribution.
- Proposition 5.13 (Bernstein's Condition \Rightarrow Sub-Gamma Distribution). [Boucheron et al., 2013] Let X_1, \ldots, X_n be independent real-valued random variables and each X_i satisfies the Bernstein's condition with parameter ν and c. If $S = \sum_{i=1}^n (X_i - \mathbb{E}[X_i])$, then for all $\lambda \in (0, 1/c)$ and t > 0

$$\psi_S(\lambda) \le \frac{\lambda^2 \nu}{2(1 - c\lambda)}$$

and

$$\psi_S^*(t) \ge \frac{\nu}{c^2} h_1\left(\frac{ct}{\nu}\right),$$

where $h_1(u) = 1 + u - \sqrt{1 + 2u}$ for u > 0. In particular, for all t > 0,

$$\mathbb{P}\left\{S \ge \sqrt{2\nu t} + ct\right\} \le e^{-t}.\tag{34}$$

• Proposition 5.14 (Bernstein's Inequality). [Boucheron et al., 2013] Let X_1, \ldots, X_n be independent real-valued random variables satisfying the Bernstein's conditions above and let $S = \sum_{i=1}^{n} (X_i - \mathbb{E}[X_i])$. Then for all t > 0,

$$\mathbb{P}\left\{S \ge t\right\} \le \exp\left(-\frac{t^2}{2(\nu + ct)}\right). \tag{35}$$

• Corollary 5.15 (Bernstein's Inequality for Bounded Distributions). [Vershynin, 2018] Let X_1, \ldots, X_n be independent, mean zero random variables, such that $|X_i| \leq b$ all i. Then, for every $t \geq 0$, we have

$$\mathbb{P}\left\{ \left| \frac{1}{n} \sum_{i=1}^{n} X_i \right| \ge t \right\} \le 2 \exp\left(-\frac{t^2}{2(\nu + bt/3)}\right). \tag{36}$$

Here $\nu = \sum_{i=1}^{n} \mathbb{E} \left[X_i^2 \right]$ is the variance of the sum.

• Corollary 5.16 (Bernstein's Inequality). [Vershynin, 2018] Let X_1, \ldots, X_n be independent, mean zero, sub-exponential random variables. Then, for every $t \ge 0$, we have

$$\mathbb{P}\left\{ \left| \sum_{i=1}^{n} X_{i} \right| \ge t \right\} \le 2 \exp\left[-c \min\left\{ \frac{t^{2}}{\sum_{i=1}^{n} \left\| X_{i} \right\|_{\psi_{2}}^{2}}, \frac{t}{\max_{i} \left\| X_{i} \right\|_{\psi_{1}}} \right\} \right]$$
(37)

where c > 0 is an absolute constant.

• Proposition 5.17 (Bernstein's Inequality, Linear Combination Form). [Vershynin, 2018]

Let $X_1, ..., X_n$ be independent, mean zero, sub-exponential random variables, and $a = (a_1, ..., a_n) \in \mathbb{R}^n$. Then, for every $t \ge 0$, we have

$$\mathbb{P}\left\{ \left| \sum_{i=1}^{n} a_i X_i \right| \ge t \right\} \le 2 \exp\left[-c \min\left\{ \frac{t^2}{K^2 \|a\|_2^2}, \frac{t}{K \|a\|_{\infty}} \right\} \right]$$

$$(38)$$

where c > 0 is an absolute constant and $K = \max_i ||X_i||_{\psi_i}$.

• Corollary 5.18 (Bernstein's Inequality, Average Form). [Vershynin, 2018] Let X_1, \ldots, X_n be independent, mean zero, sub-exponential random variables. Then, for every $t \geq 0$, we have

$$\mathbb{P}\left\{ \left| \frac{1}{n} \sum_{i=1}^{n} X_i \right| \ge t \right\} \le 2 \exp\left[-c \min\left\{ \frac{t^2}{K^2}, \frac{t}{K} \right\} n \right]$$
 (39)

where $K = \max_i ||X_i||_{\psi_1}$.

5.6 Bennett's Inequality

• Remark Our starting point is the fact that the logarithmic moment-generating function of an independent sum equals the sum of the logarithmic moment-generating functions of the centered summands, that is,

$$\psi_S(\lambda) = \sum_{i=1}^n \left(\log \mathbb{E} \left[e^{\lambda X_i} \right] - \lambda \mathbb{E} \left[X_i \right] \right).$$

Using $\log u \le u - 1$ for u > 0,

$$\psi_S(\lambda) \le \sum_{i=1}^n \mathbb{E}\left[e^{\lambda X_i} - \lambda X_i - 1\right]. \tag{40}$$

Both Bennett's and Bernstein's inequalities may be derived from this bound, under different integrability conditions for the X_i .

• Proposition 5.19 (Bennett's Inequality) [Boucheron et al., 2013] Let X_1, \ldots, X_n be independent random variables with finite variance such that $X_i \leq b$ for some b > 0 almost surely for all $i \leq n$. Let

$$S = \sum_{i=1}^{n} (X_i - \mathbb{E}[X_i])$$

and $\nu = \sum_{i=1}^n \mathbb{E}\left[X_i^2\right]$. If we write $\phi(u) = e^u - u - 1$ for $u \in \mathbb{R}$, then, for all $\lambda > 0$,

$$\log \mathbb{E}\left[e^{\lambda S}\right] \le n \log \left(1 + \frac{\nu}{nb^2} \phi(b\lambda)\right) \le \frac{\nu}{b^2} \phi(b\lambda),$$

and for any t > 0,

$$\mathbb{P}\left\{S \ge t\right\} \le \exp\left(-\frac{\nu}{b^2} h\left(\frac{b\,t}{\nu}\right)\right) \tag{41}$$

where $h(u) = (1+u)\log(1+u) - u$ for u > 0.

- Remark This bound can be analyzed in two different regimes:
 - 1. In the **small deviation regime**, where $u := bt/\nu \ll 1$, we have asymptotically $h(u) \approx u^2$ and Bennett's inequality gives approximately the Gaussian tail bound $\approx \exp(-t^2/\nu)$.
 - 2. In the large deviations regime, say where $u := bt/\nu \ge 2$, we have $h(u) \ge \frac{1}{2}u \log u$, and Bennett's inequality gives a **Poisson-like tail** $(\nu/bt)^{t/2b}$.

5.7 The Johnson-Lindenstrauss Lemma

6 Martingale Method

6.1 Martingale and Martingale Difference Sequence

• **Definition** (*Martingale*) [Resnick, 2013] Let $\{X_n, n \geq 0\}$ be a stochastic process on (Ω, \mathscr{F}) and $\{\mathscr{F}_n, n \geq 0\}$ be a *filtration*; that is, $\{\mathscr{F}_n, n \geq 0\}$ is an *increasing sub* σ -fields of \mathscr{F}

$$\mathscr{F}_0 \subseteq \mathscr{F}_1 \subseteq \mathscr{F}_2 \subseteq \ldots \subseteq \mathscr{F}$$
.

Then $\{(X_n, \mathscr{F}_n), n \geq 0\}$ is a martingale (mg) if

- 1. X_n is **adapted** in the sense that for each $n, X_n \in \mathscr{F}_n$; that is, X_n is \mathscr{F}_n -measurable.
- 2. $X_n \in L_1$; that is $\mathbb{E}[|X_n|] < \infty$ for $n \ge 0$.
- 3. For $0 \le m < n$

$$\mathbb{E}\left[X_n \mid \mathscr{F}_m\right] = X_m, \quad \text{a.s.} \tag{42}$$

If the equality of (42) is replaced by \geq ; that is, things are getting better on the average:

$$\mathbb{E}\left[X_n \mid \mathscr{F}_m\right] \ge X_m, \quad \text{a.s.} \tag{43}$$

then $\{X_n\}$ is called a <u>sub-martingale (submg)</u> while if things are getting worse on the average

$$\mathbb{E}\left[X_n \mid \mathscr{F}_m\right] \le X_m, \quad \text{a.s.} \tag{44}$$

 $\{X_n\}$ is called a *super-martingale* (supermg).

- Remark $\{X_n\}$ is martingale if it is both a sub and supermartingale. $\{X_n\}$ is a supermartingale if and only if $\{-X_n\}$ is a submartingale.
- Remark If $\{X_n\}$ is a *martingale*, then $\mathbb{E}[X_n]$ is *constant*. In the case of a *submartingale*, the mean increases and for a *supermartingale*, the mean decreases.
- Proposition 6.1 [Resnick, 2013] If $\{(X_n, \mathscr{F}_n), n \geq 0\}$ is a **(sub, super) martingale**, then

$$\{(X_n, \sigma(X_0, X_1, \dots, X_n)), n > 0\}$$

is also a (sub, super) martingale.

- Definition (Martingale Differences). [Resnick, 2013] $\{(d_j, \mathcal{B}_j), j \geq 0\}$ is a <u>(sub, super) martingale difference sequence</u> or a (sub, super) fair sequence if
 - 1. For $j \geq 0$, $\mathcal{B}_j \subset \mathcal{B}_{j+1}$.
 - 2. For $j \geq 0$, $d_j \in L_1$, $d_j \in \mathcal{B}_j$; that is, d_j is absolutely integrable and \mathcal{B}_j -measurable.
 - 3. For $j \geq 0$,

$$\mathbb{E}\left[d_{j+1}|\mathscr{B}_{j}\right] = 0, \qquad (martingale \ difference \ / \ fair \ sequence);$$

$$\geq 0, \qquad (submartingale \ difference \ / \ subfair \ sequence);$$

$$\leq 0, \qquad (supmartingale \ difference \ / \ supfair \ sequence)$$

• Proposition 6.2 (Construction of Martingale From Martingale Difference)[Resnick, 2013]

If $\{(d_j, \mathcal{B}_j), j \geq 0\}$ is (sub, super) martingale difference sequence, and

$$X_n = \sum_{j=0}^n d_j,$$

then $\{(X_n, \mathcal{B}_n), n \geq 0\}$ is a (sub, super) martingale.

• Proposition 6.3 (Construction of Martingale Difference From Martingale) [Resnick, 2013]

Suppose $\{(X_n, \mathcal{B}_n), n \geq 0\}$ is a **(sub, super) martingale**. Define

$$d_0 := X_0 - \mathbb{E}[X_0]$$

 $d_j := X_j - X_{j-1}, \quad j \ge 1.$

Then $\{(d_j, \mathcal{B}_j), j \geq 0\}$ is a (sub, super) martingale difference sequence.

• Proposition 6.4 (Orthogonality of Martingale Differences). [Resnick, 2013] If $\{(X_n, \mathcal{B}_n), n \geq 0\}$ is a martingale where X_n can be decomposed as

$$X_n = \sum_{j=0}^n d_j,$$

 d_j is \mathscr{B}_j -measurable and $\mathbb{E}[d_j^2] < \infty$ for $j \geq 0$, then $\{d_j\}$ are **orthogonal**:

$$\mathbb{E}\left[d_i \, d_j\right] = 0 \quad i \neq j.$$

• Example (Smoothing as Martingale)

Suppose $X \in L_1$ and $\{\mathscr{B}_n, n \geq 0\}$ is an increasing family of sub σ -algebra of \mathscr{B} . Define for $n \geq 0$

$$X_n := \mathbb{E}\left[X|\mathscr{B}_n\right].$$

Then (X_n, \mathcal{B}_n) is a *martingale*. From this result, we see that $\{(d_n, \mathcal{B}_n), n \geq 0\}$ is a *martingale difference sequence* when

$$d_n := \mathbb{E}\left[X|\mathscr{B}_n\right] - \mathbb{E}\left[X|\mathscr{B}_{n-1}\right], \quad n \ge 1. \tag{45}$$

• Example (Sums of Independent Random Variables) Suppose that $\{Z_n, n \geq 0\}$ is an independent sequence of integrable random variables satisfying for $n \geq 0$, $\mathbb{E}[Z_n] = 0$. Set

$$X_0 := 0,$$

$$X_n := \sum_{i=1}^n Z_i, \quad n \ge 1$$

$$\mathscr{B}_n := \sigma(Z_0, \dots, Z_n).$$

Then $\{(X_n, \mathcal{B}_n), n \geq 0\}$ is a *martingale* since $\{(Z_n, \mathcal{B}_n), n \geq 0\}$ is a *martingale difference* sequence.

• Example (*Likelihood Ratios*).

Suppose $\{Y_n, n \geq 0\}$ are *independent identically distributed* random variables and suppose the true density of Y_n is f_0 (The word "density" can be understood with respect to some fixed reference measure μ .) Let f_1 be some other probability density. For simplicity suppose $f_0(y) > 0$, for all y. For $n \geq 0$, define the likelihood ratio

$$X_n := \frac{\prod_{i=0}^n f_1(Y_i)}{\prod_{i=0}^n f_0(Y_i)}$$
$$\mathscr{B}_n := \sigma(Y_0, \dots, Y_n)$$

Then (X_n, \mathcal{B}_n) is a *martingale*.

6.2 Bernstein Inequality for Martingale Difference Sequence

Proposition 6.5 (Bernstein Inequality, Martingale Difference Sequence Version)
 [Wainwright, 2019]
 Let {(D_k, B_k), k ≥ 1} be a martingale difference sequence, and suppose that

$$\mathbb{E}\left[\exp\left(\lambda D_{k}\right) \middle| \mathscr{B}_{k-1}\right] \leq \exp\left(\frac{\lambda^{2} \nu_{k}^{2}}{2}\right)$$

almost surely for any $|\lambda| < 1/\alpha_k$. Then the following hold:

1. The sum $\sum_{k=1}^{n} D_k$ is **sub-exponential** with **parameters** $\left(\sqrt{\sum_{k=1}^{n} \nu_k^2}, \alpha_*\right)$ where $\alpha_* := \max_{k=1,...,n} \alpha_k$. That is, for any $|\lambda| < 1/\alpha_*$,

$$\mathbb{E}\left[\exp\left\{\lambda\left(\sum_{k=1}^{n}D_{k}\right)\right\}\right] \leq \exp\left(\frac{\lambda^{2}\sum_{k=1}^{n}\nu_{k}^{2}}{2}\right)$$

2. The sum satisfies the concentration inequality

$$\mathbb{P}\left\{\left|\sum_{k=1}^{n} D_{k}\right| \geq t\right\} \leq \begin{cases}
2\exp\left(-\frac{t^{2}}{2\sum_{k=1}^{n} \nu_{k}^{2}}\right) & \text{if } 0 \leq t \leq \frac{\sum_{k=1}^{n} \nu_{k}^{2}}{\alpha_{*}} \\
2\exp\left(-\frac{t}{\alpha_{*}}\right) & \text{if } t > \frac{\sum_{k=1}^{n} \nu_{k}^{2}}{\alpha_{*}}.
\end{cases}$$
(46)

6.3 Azuma-Hoeffding Inequality

• Corollary 6.6 (Azuma-Hoeffding Inequality)[Wainwright, 2019] Let $\{(D_k, \mathcal{B}_k), k \geq 1\}$ be a martingale difference sequence for which there are constants $\{(a_k, b_k)\}_{k=1}^n$ such that $D_k \in [a_k, b_k]$ almost surely for all k = 1, ..., n. Then, for all $t \geq 0$,

$$\mathbb{P}\left\{ \left| \sum_{k=1}^{n} D_k \right| \ge t \right\} \le 2 \exp\left(-\frac{2t^2}{\sum_{k=1}^{n} (b_k - a_k)^2}\right) \tag{47}$$

6.4 Bounded Difference Inequality

• An important application of Azuma-Hoeffding Inequality concerns functions that satisfy a bounded difference property.

Definition (Functions with Bounded Difference Property)

Given vectors $x, x' \in \mathcal{X}^n$ and an index $k \in \{1, 2, ..., n\}$, we define a new vector $x^{(-k)} \in \mathcal{X}^n$ via

$$x_j^{(-k)} = \begin{cases} x_j & j \neq k \\ x_k' & j = k \end{cases}$$

With this notation, we say that $f: \mathcal{X}^n \to \mathbb{R}$ satisfies <u>the bounded difference inequality</u> with parameters (L_1, \ldots, L_n) if, for each index $k = 1, 2, \ldots, n$,

$$\left| f(x) - f(x^{(-k)}) \right| \le L_k, \quad \text{for all } x, x' \in \mathcal{X}^n.$$
 (48)

• Corollary 6.7 (McDiarmid's Inequality / Bounded Differences Inequality)[Wainwright, 2019]

Suppose that f satisfies **the bounded difference property** (48) with parameters (L_1, \ldots, L_n) and that the random vector $X = (X_1, X_2, \ldots, X_n)$ has **independent** components. Then

$$\mathbb{P}\{|f(X) - \mathbb{E}[f(X)]| \ge t\} \le 2\exp\left(-\frac{2t^2}{\sum_{k=1}^n L_k^2}\right). \tag{49}$$

7 Bounding Variance

7.1 Mean-Median Deviation

• Definition (Median of Random Variable)

The median of a random variable $X \in \mathcal{X}$ with distribution \mathbb{P} is a constant m such that

$$\mathbb{P}\left\{X\geq m\right\}\geq \frac{1}{2} \quad \wedge \quad \mathbb{P}\left\{X\leq m\right\}\geq \frac{1}{2}$$

• Proposition 7.1 (Mean-Median Deviation, Variance Bound) [Boucheron et al., 2013] Let $X \in \mathcal{X}$ be a random variable with distribution \mathbb{P} , m be the median of X and $\mu = \mathbb{E}[X]$ be the mean of X. If $Var(X) = \sigma^2 < \infty$, then

$$|m - \mu| \le \sqrt{Var(X)} = \sigma \tag{50}$$

(proof by Jenson's inequality $|m - \mu| = |\mathbb{E}[X - m]| \le \mathbb{E}[|X - m|] \le \mathbb{E}[|X - \mu|] \le \sqrt{\mathbb{E}[|X - \mu|^2]}$)

• Exercise 7.2 (Mean-Median Deviation via Concentration Inequality) [Boucheron et al., 2013]

Let X be a random variable with **median** m such that positive constants a and b exist so that for all t > 0,

$$\mathbb{P}\left\{|X - m| \ge t\right\} \le a \exp\left(-\frac{t^2}{b}\right)$$

Show that

$$|m - \mu| \le \min\left\{\sqrt{ab}, \frac{a}{2}\sqrt{b\pi}\right\}.$$

• Exercise 7.3 (Concentration Inequality Around Medians and Means) [Wainwright, 2019]

Given a scalar random variable X, suppose that there are positive constants c_1 , c_2 such that for all $t \geq 0$,

$$\mathbb{P}\left\{|X - \mathbb{E}\left[X\right]| \ge t\right\} \le c_1 \exp\left(-c_2 t^2\right) \tag{51}$$

- 1. Prove that $Var(X) \leq \frac{c_1}{c_2}$
- 2. Let m_X be the a median of X. Show that whenever the mean concentration bound (51) holds, then for any median m_X , we have, for all $t \geq 0$, the median concentration

$$\mathbb{P}\left\{|X - m_X| \ge t\right\} \le c_3 \exp\left(-c_4 t^2\right) \tag{52}$$

where $c_3 := 4c_1$ and $c_4 := \frac{c_2}{8}$.

3. Conversely, show that whenever the median concentration bound (52) holds, then mean concentration (51) holds with $c_1 = 2c_3$ and $c_2 = \frac{c_4}{4}$.

7.2 The Efron-Stein Inequality and Jackknife Estimation

• Remark (Variance of Smoothing Martingale Difference Sequence) Suppose $X \in L_1$ and $\{\mathscr{B}_n, n \geq 0\}$ is an increasing family of sub σ -algebra of \mathscr{B} formed by

$$\mathscr{B}_n := \sigma(Z_1, \ldots, Z_n)$$
.

For $n \geq 1$, define

$$\begin{split} d_0 &:= \mathbb{E}\left[X\right] \\ d_n &:= \mathbb{E}\left[X|\mathscr{B}_n\right] - \mathbb{E}\left[X|\mathscr{B}_{n-1}\right] \\ &= \mathbb{E}\left[X|Z_1,\ldots,Z_n\right] - \mathbb{E}\left[X|Z_1,\ldots,Z_{n-1}\right]. \end{split}$$

From (45) we see that (d_n, \mathcal{B}_n) is a martingale difference sequence. By orthogonality of martingale difference, we see that

$$\mathbb{E}\left[d_i\,d_j\right] = 0 \quad i \neq j.$$

Therefore, based on the decomposition

$$X - EX = \sum_{i=1}^{n} d_i$$

we have

$$\operatorname{Var}(X) = \mathbb{E}\left[\left(\sum_{i=1}^{n} d_{i}\right)^{2}\right] = \sum_{i=1}^{n} \mathbb{E}\left[d_{i}^{2}\right] + 2\sum_{i>j} \mathbb{E}\left[d_{i} d_{j}\right]$$
$$= \sum_{i=1}^{n} \mathbb{E}\left[d_{i}^{2}\right]. \tag{53}$$

• Remark (Variance of General Functions of Independent Random Variables)
Then above formula (53) holds when $X = f(Z_1, ..., Z_n)$ for general function $f: \mathbb{R}^n \to \mathbb{R}$ with n independent random variables $(Z_1, ..., Z_n)$. By Fubini's theorem,

$$\mathbb{E}[X|Z_1, \dots, Z_i] = \int_{\mathbb{Z}^{n-i}} f(Z_1, \dots, Z_i, z_{i+1}, \dots, z_n) \ d\mu_{i+1}(z_{i+1}) \dots d\mu_n(z_n)$$

where μ_j is the probability distribution of Z_j for $j \geq 1$.

Let $Z_{(-i)} := (Z_1, \ldots, Z_{i-1}, Z_{i+1}, \ldots, Z_n)$ be all random variables (Z_1, \ldots, Z_n) except for Z_i . Denote $\mathbb{E}_{(-i)}[\cdot]$ as the conditional expectation of X given $Z_{(-i)}$

$$\mathbb{E}_{(-i)}[X] := \mathbb{E}[X|Z_1, \dots, Z_{i-1}, Z_{i+1}, \dots, Z_n]$$
$$= \int_{\mathcal{Z}} f(Z_1, \dots, Z_{i-1}, z_i, Z_{i+1}, \dots, Z_n) \ d\mu_i(z_i).$$

Then, again by Fubini's theorem (smoothing properties of conditional expectation),

$$\mathbb{E}\left[\mathbb{E}_{(-i)}\left[X\right]|Z_1,\ldots,Z_i\right] = \mathbb{E}\left[X|Z_1,\ldots,Z_{i-1}\right]$$
(54)

• Proposition 7.4 (Efron-Stein Inequality) [Boucheron et al., 2013] Let Z_1, \ldots, Z_n be independent random variables and let X = f(Z) be a square-integrable function of $Z = (Z_1, \ldots, Z_n)$. Then

$$Var(X) \le \sum_{i=1}^{n} \mathbb{E}\left[\left(X - \mathbb{E}_{(-i)}\left[X\right]\right)^{2}\right] := \nu.$$
 (55)

Moreover, if Z'_1, \ldots, Z'_n are **independent** copies of Z_1, \ldots, Z_n and if we define, for every $i = 1, \ldots, n$,

$$X'_{i} := f(Z_{1}, \ldots, Z_{i-1}, Z'_{i}, Z_{i+1}, \ldots, Z_{n}),$$

then

$$\nu = \frac{1}{2} \sum_{i=1}^{n} \mathbb{E} \left[\left(X - X_{i}' \right)^{2} \right] = \sum_{i=1}^{n} \mathbb{E} \left[\left(X - X_{i}' \right)_{+}^{2} \right] = \sum_{i=1}^{n} \mathbb{E} \left[\left(X - X_{i}' \right)_{-}^{2} \right]$$

where $x_{+} = \max\{x, 0\}$ and $x_{-} = \max\{-x, 0\}$ denote the **positive** and **negative** parts of a real number x. Also,

$$\nu = \inf_{X_i} \sum_{i=1}^n \mathbb{E}\left[(X - X_i)^2 \right],$$

where the infimum is taken over the class of all $Z_{(-i)}$ -measurable and square-integrable variables X_i , i = 1, ..., n.

• Example (*The Jackknife Estimate*)

We should note here that the Efron-Stein inequality was first motivated by the study of the so-called *jackknife estimate* of *statistics*.

To describe this estimate, assume that Z_1, \ldots, Z_n are i.i.d. random variables and one wishes to estimate a functional θ of the distribution of the Z_i by a function $X = f(Z_1, \ldots, Z_n)$ of the data. The quality of the estimate is often measured by its bias $\mathbb{E}[X] - \theta$ and its variance $\operatorname{Var}(X)$. Since the distribution of the Z_i 's is unknown, one needs to estimate the bias and variance from the same sample. The jackknife estimate of the bias is defined by

$$(n-1)\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-X\right) \tag{56}$$

where X_i is an appropriately defined function of $Z_{(-i)} := (Z_1, \ldots, Z_{i-1}, Z_{i+1}, \ldots, Z_n)$. $Z_{(-i)}$ is often called **the** *i*-**th jackknife sample** while X_i is the so-called **jackknife replication** of X. In an analogous way, **the jackknife estimate** of the **variance** is defined by

$$\sum_{i=1}^{n} (X - X_i)^2 \tag{57}$$

Using this language, the Efron-Stein inequality simply states that the jackknife estimate of the variance is <u>always positively biased</u>. In fact, this is how Efron and Stein originally formulated their inequality.

7.3 Functions with Bounded Differences

• Corollary 7.5 [Boucheron et al., 2013] If f has the **bounded differences property** with parameters (L_1, \ldots, L_n) , then

$$Var(f(Z)) \le \frac{1}{4} \sum_{i=1}^{n} L_i^2.$$

7.4 Convex Poincaré Inequality

• Theorem 7.6 (Convex Poincaré Inequality) [Boucheron et al., 2013] Let Z_1, \ldots, Z_n be independent random variables taking values in the interval [0,1] and let $f:[0,1]^n \to \mathbb{R}$ be a separately convex function whose partial derivatives exist; that is, for every $i=1,\ldots,n$ and fixed $z_1,\ldots,z_{i-1},z_{i+1},\ldots,z_n$, f is a convex function of its i-th variable. Then $f(Z)=f(Z_1,\ldots,Z_n)$ satisfies

$$Var(f(Z)) \le \mathbb{E}\left[\|\nabla f(Z)\|_2^2\right].$$
 (58)

7.5 Gaussian Poincaré Inequality

• Theorem 7.7 (Gaussian Poincaré Inequality) [Boucheron et al., 2013] Let $Z = (Z_1, ..., Z_n)$ be a vector of i.i.d. standard Gaussian random variables (i.e. Z is a Gaussian vector with zero mean vector and identity covariance matrix). Let $f : \mathbb{R}^n \to \mathbb{R}$ be any continuously differentiable function. Then

$$Var(f(Z)) \le \mathbb{E}\left[\|\nabla f(Z)\|_2^2\right].$$
 (59)

8 Entropy Method

8.1 Entropy Functional and Φ -Entropy

• **Definition** $(\Phi$ -**Entropy**)[Boucheron et al., 2013] Let $\Phi: [0, \infty) \to \mathbb{R}$ be a **convex** function, and assign, to every **non-negative** integrable random variable X, the Φ -entropy of X is defined as

$$H_{\Phi}(X) = \mathbb{E}\left[\Phi(X)\right] - \Phi(\mathbb{E}\left[X\right]). \tag{60}$$

- Remark The Φ -entropy is a functional of distribution P_X instead of a function of X.
- Remark By Jenson's inequality, the Φ -entropy is non-negative

$$\begin{split} & \Phi(\mathbb{E}\left[X\right]) \leq \mathbb{E}\left[\Phi(X)\right] \\ \Rightarrow & H_{\Phi}(X) = \mathbb{E}\left[\Phi(X)\right] - \Phi(\mathbb{E}\left[X\right]) \geq 0. \end{split}$$

- Example (Special Examples for Φ -Entropy)
 - 1. For $\Phi(x) = x^2$, the Φ -entropy of X is the **variance** of X:

$$H_{\Phi}(X) = \mathbb{E}\left[X^2\right] - (\mathbb{E}\left[X\right])^2 = \operatorname{Var}(X).$$

2. For $\Phi(x) = -\log(x)$, the Φ -entropy of $Y = e^{\lambda X}$ is the **logarithm of moment generating function** of $X - \mathbb{E}[X]$:

$$H_{\Phi}(e^{\lambda X}) = -\lambda \mathbb{E}\left[X\right] + \log\left(\mathbb{E}\left[e^{\lambda X}\right]\right) = \log\mathbb{E}\left[e^{\lambda(X - \mathbb{E}[X])}\right] := \psi_{X - \mathbb{E}[X]}(\lambda). \tag{61}$$

3. For $\Phi(x) = x \log x$, the Φ -entropy of X is defined as the **entropy functional** of X

$$H_{\Phi}(X) = \operatorname{Ent}(X) := \mathbb{E}\left[X \log X\right] - \mathbb{E}\left[X\right] \log \left(\mathbb{E}\left[X\right]\right). \tag{62}$$

Let (Ω, \mathcal{B}) be measurable space, and P and Q are probability measures on Ω with $P \ll Q$. Define a random variable X by the $Radon-Nikodym\ derivative$ of P with respect to Q; that is,

$$X(\omega) := \left\{ \begin{array}{cc} \frac{dP}{dQ}(\omega) & Q(\omega) > 0 \\ 0 & \text{o.w.} \end{array} \right.$$

We see that X is Q-measurable and dP = X dQ with $\mathbb{E}_Q[X] = 1$. Then the entropy of X is the relative entropy of P with respect to Q.

$$\operatorname{Ent}(X) = \mathbb{KL}(P \parallel Q) \tag{63}$$

8.2 Dual Formulation

• Lemma 8.1 The Legendre transform (or convex conjugate) of $\Phi(x) = x \log(x)$ is e^{u-1} . That is,

$$\sup_{x>0} \{ u \, x - x \log(x) \} = e^{u-1}$$

Proposition 8.2 (Duality Formula of Entropy) [Boucheron et al., 2013]
 Let X be a non-negative random variable defined on a probability space (Ω, A, P) such that
 E [Φ(X)] < ∞. Then we have the duality formula

$$Ent(X) = \sup_{U \in \mathcal{U}} \mathbb{E}\left[U|X\right] \tag{64}$$

where the supremum is taken over the set \mathcal{U} of all random variables $U: \Omega \to \mathbb{R} \cup \{\infty\}$ with $\mathbb{E}\left[e^{U}\right] = 1$. Moreover, if U is such that $\mathbb{E}\left[UX\right] \leq Ent(X)$ for all non-negative random variable X such that $\Phi(X)$ is integrable and $\mathbb{E}\left[X\right] = 1$, then $\mathbb{E}\left[e^{U}\right] \leq 1$.

• Corollary 8.3 (Alternative Duality Formula of Entropy) [Boucheron et al., 2013]

$$Ent(X) = \sup_{T} \mathbb{E}\left[X\left(\log(T) - \log\left(\mathbb{E}\left[T\right]\right)\right)\right] \tag{65}$$

where the supremum is taken over all non-negative and integrable random variables.

• Corollary 8.4 (Duality Formula of Log-MGF) [Cover and Thomas, 2006, Boucheron et al., 2013]

Let X be a real-valued integrable random variable. Then for every $\lambda \in \mathbb{R}$,

$$\log \mathbb{E}_{\mathbb{P}}\left[e^{\lambda(X-\mathbb{E}[X])}\right] = \sup_{\mathbb{Q} \ll \mathbb{P}} \left\{\lambda\left(\mathbb{E}_{\mathbb{Q}}\left[X\right] - \mathbb{E}_{\mathbb{P}}\left[X\right]\right) - \mathbb{KL}\left(\mathbb{Q} \parallel \mathbb{P}\right)\right\},\tag{66}$$

where the supremum is taken over all probability measures \mathbb{Q} absolutely continuous with respect to \mathbb{P} .

• Corollary 8.5 (Duality Formula of Kullback-Leibler Divergence) [Cover and Thomas, 2006, Boucheron et al., 2013]

Let \mathbb{P} and \mathbb{Q} be two probability distributions on the same space. Then

$$\mathbb{KL}\left(\mathbb{Q} \parallel \mathbb{P}\right) = \sup_{X} \left\{ \mathbb{E}_{\mathbb{Q}}\left[X\right] - \log \mathbb{E}_{\mathbb{P}}\left[e^{X}\right] \right\},\tag{67}$$

where the supremum is taken over all random variables such that $\mathbb{E}_{\mathbb{P}}[\exp{(X)}] < \infty$.

• Definition (Bregman Divergence)

Let $F: \mathcal{X} \to \mathbb{R}$ be a *continuously-differentiable*, **strictly convex** function defined on a convex set \mathcal{X} . The <u>Bregman divergence</u> associated with F for points $p, q \in \mathcal{X}$ is the difference between the value of F at point p and the value of the *first-order Taylor expansion* of F around point p evaluated at point p:

$$\mathbb{D}^{F}(p \parallel q) = F(p) - F(q) - \langle \nabla F(q), p - q \rangle \tag{68}$$

• Theorem 8.6 (The Expected Value Minimizes Expected Bregman Divergence) [Boucheron et al., 2013]

Let $I \subseteq \mathbb{R}$ be an open interval and let $f: I \to \mathbb{R}$ be **convex** and **differentiable**. For any $x, y \in I$, **the Bregman divergence** of f from x to y is f(y) - f(x) - f'(x)(y - x). Let X be an I-valued random variable. Then

$$\mathbb{E}\left[f(X) - f(\mathbb{E}\left[X\right])\right] = \inf_{a \in I} \mathbb{E}\left[f(X) - f(a) - f'(a)(X - a)\right]$$
(69)

• Corollary 8.7 (Duality Formula of Entropy via Bregman Divergence) [Boucheron et al., 2013]

Let X be a non-negative random variable such that $\mathbb{E} [\Phi(X)] < \infty$. Then

$$Ent(X) = \inf_{u>0} \mathbb{E}\left[X\left(\log(X) - \log(u)\right) - (X - u)\right]$$
(70)

8.3 Tensorization Property

• Proposition 8.8 (Sub-Additivity of The Entropy / Tensorization Property) [Boucheron et al., 2013]

Let $\Phi(x) = x \log x$, for x > 0 and $\Phi(0) = 0$. Let Z_1, Z_2, \ldots, Z_n be independent random variables taking values in \mathcal{X} , and let $f : \mathcal{X}^n \to [0, \infty)$ be a measurable function. Letting $X = f(Z_1, Z_2, \ldots, Z_n)$ such that $\mathbb{E}[X \log X] < \infty$, we have

$$Ent(X) := \mathbb{E}\left[\Phi(X)\right] - \Phi(\mathbb{E}\left[X\right]) \le \sum_{i=1}^{n} \mathbb{E}\left[\mathbb{E}_{(-i)}\left[\Phi(X)\right] - \Phi(\mathbb{E}_{(-i)}\left[X\right])\right],\tag{71}$$

where $\mathbb{E}_{(-i)}[\cdot]$ is the conditional expectation operator conditioning on $Z_{(-i)}$. Introducing the notation $Ent_{(-i)}(X) = \mathbb{E}_{(-i)}[\Phi(X)] - \Phi(\mathbb{E}_{(-i)}[X])$, this can be re-written as

$$Ent(X) \le \mathbb{E}\left[\sum_{i=1}^{n} Ent_{(-i)}(X)\right].$$
 (72)

8.4 Herbst's Argument

• Remark (Entropy Functional for Moment Generating Function) Let $X = e^{\lambda Z}$ where Z is a random variable. The entropy function of X becomes

$$\operatorname{Ent}(e^{\lambda Z}) = \mathbb{E}\left[\lambda Z e^{\lambda Z}\right] - \mathbb{E}\left[e^{\lambda Z}\right] \log\left(\mathbb{E}\left[e^{\lambda Z}\right]\right)$$

Denote $\psi_{Z-\mathbb{E}[Z]}(\lambda) := \log \mathbb{E}\left[e^{\lambda(Z-\mathbb{E}[Z])}\right]$. Then we have

$$\frac{\operatorname{Ent}(e^{\lambda Z})}{\mathbb{E}\left[e^{\lambda Z}\right]} = \lambda \ \psi'_{Z-\mathbb{E}[Z]}(\lambda) - \psi_{Z-\mathbb{E}[Z]}(\lambda). \tag{73}$$

Our strategy is based on using (73) the sub-additivity of entropy and then univariate calculus to derive upper bounds for the derivative of $\psi(\lambda)$. By solving the obtained differential inequality, we obtain tail bounds via Chernoff's bounding.

For example, if

$$\frac{\operatorname{Ent}(e^{\lambda Z})}{\operatorname{\mathbb{E}}\left[e^{\lambda Z}\right]} \le \frac{\nu \lambda^2}{2}$$

$$\Leftrightarrow \lambda \ \psi'_{Z-\mathbb{E}[Z]}(\lambda) - \psi_{Z-\mathbb{E}[Z]}(\lambda) \le \frac{\nu \lambda^2}{2},$$

$$\Leftrightarrow \frac{1}{\lambda} \psi'_{Z-\mathbb{E}[Z]}(\lambda) - \frac{1}{\lambda^2} \psi_{Z-\mathbb{E}[Z]}(\lambda) \le \frac{\nu}{2}.$$

Setting $G(\lambda) = \lambda^{-1} \psi_{Z-\mathbb{E}[Z]}(\lambda)$, we see that the differential inequality becomes

$$G'(\lambda) \le \frac{\nu}{2}.$$

Since $G(\lambda) \to 0$ as $\lambda \to 0$, which implies that

$$G(\lambda) \le \frac{\nu\lambda}{2},$$

and the result follows.

• Proposition 8.9 (Herbst's Argument) [Boucheron et al., 2013, Wainwright, 2019] Let Z be an integrable random variable such that for some $\nu > 0$, we have, for every $\lambda > 0$,

$$\frac{Ent(e^{\lambda Z})}{\mathbb{E}\left[e^{\lambda Z}\right]} \le \frac{\nu\lambda^2}{2} \tag{74}$$

Then, for every $\lambda > 0$, the logarithmic moment generating function of centered random variable $(Z - \mathbb{E}[Z])$ satisfies

$$\psi_{Z-\mathbb{E}[Z]}(\lambda) := \log \mathbb{E}\left[e^{\lambda(Z-\mathbb{E}[Z])}\right] \leq \frac{\nu \lambda^2}{2}.$$

8.5 Connection to Variance Bounds

• Proposition 8.10 (A Modified Logarithmic Sobolev Inequalities for Moment Generating Function) [Boucheron et al., 2013]

Consider independent random variables Z_1, \ldots, Z_n taking values in \mathcal{X} , a real-valued function $f: \mathcal{X}^n \to \mathbb{R}$ and the random variable $X = f(Z_1, \ldots, Z_n)$. Also denote $Z_{(-i)} = (Z_1, \ldots, Z_{i-1}, Z_{i+1}, \ldots, Z_n)$ and $X_{(-i)} = f_i(Z_{(-i)})$ where $f_i: \mathcal{X}^{n-1} \to \mathbb{R}$ is an arbitrary function. Let $\phi(x) = e^x - x - 1$. Then for all $\lambda \in \mathbb{R}$,

$$Ent(e^{\lambda X}) := \mathbb{E}\left[\lambda X e^{\lambda X}\right] - \mathbb{E}\left[e^{\lambda X}\right] \log \mathbb{E}\left[e^{\lambda X}\right] \le \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda X}\phi(-\lambda(X - X_{(-i)}))\right]$$
(75)

• Proposition 8.11 (Symmetrized Modified Logarithmic Sobolev Inequalities) [Boucheron et al., 2013]

Consider independent random variables Z_1, \ldots, Z_n taking values in \mathcal{X} , a real-valued function $f: \mathcal{X}^n \to \mathbb{R}$ and the random variable $X = f(Z_1, \ldots, Z_n)$. Also denote $\widetilde{X}^{(i)} = f(Z_1, \ldots, Z_{i-1}, Z'_i, Z_{i+1}, \ldots, Z_n)$. Let $\phi(x) = e^x - x - 1$. Then for all $\lambda \in \mathbb{R}$,

$$\lambda \mathbb{E}\left[Xe^{\lambda X}\right] - \mathbb{E}\left[e^{\lambda X}\right] \log \mathbb{E}\left[e^{\lambda X}\right] \le \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda X}\phi(-\lambda(X-\widetilde{X}^{(i)}))\right]$$
(76)

Moreover, denoting $\tau(x) = x(e^x - 1)$, for all $\lambda \in \mathbb{R}$,

$$\lambda \mathbb{E}\left[Xe^{\lambda X}\right] - \mathbb{E}\left[e^{\lambda X}\right] \log \mathbb{E}\left[e^{\lambda X}\right] \le \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda X}\tau(-\lambda(X-\widetilde{X}^{(i)})_{+})\right],$$
$$\lambda \mathbb{E}\left[Xe^{\lambda X}\right] - \mathbb{E}\left[e^{\lambda X}\right] \log \mathbb{E}\left[e^{\lambda X}\right] \le \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda X}\tau(\lambda(\widetilde{X}^{(i)}-X)_{-})\right].$$

• Remark In the proof, we have

$$\operatorname{Ent}_{\mu_{i}}(e^{\lambda X}) \leq \mathbb{E}_{\mu_{i}} \left[e^{\lambda X} (\log e^{\lambda X} - \log e^{\lambda X'_{i}}) - (e^{\lambda X} - e^{\lambda X'_{i}}) \right]$$

$$= \mathbb{E}_{\mu_{i}} \left[e^{\lambda X} (\lambda (X - X'_{i}) - (e^{\lambda X} - e^{\lambda X'_{i}})) \right]$$

$$\leq \mathbb{E}_{\mu_{i}} \left[(e^{\lambda X} - e^{\lambda X'_{i}}) (\lambda (X - X'_{i})_{+}) \right]$$

$$\leq \lambda^{2} \mathbb{E}_{\mu_{i}} \left[(X - X'_{i})_{+}^{2} \right]$$

Using the convexity of e^x , we have $e^s - e^t \le e^t(s-t)$ if s > t. Thus

$$\operatorname{Ent}(e^{\lambda X}) \le \lambda^2 \sum_{i=1}^n \mathbb{E}\left[\left(X - X_i'\right)_+^2\right].$$

From Efron-Stein inequality, if we can bound

$$\sum_{i=1}^{n} \mathbb{E}\left[\left(X - X_{i}^{\prime}\right)_{+}^{2}\right] \leq \nu,$$

then we can bound both the variance Var(X) and entropy $Ent(e^{\lambda X})$.

9 Transportation Method

9.1 Optimal Transport, Wasserstein Distance and its Dual

• **Definition** (*Pushforward Measure*) [Peyr and Cuturi, 2019] Let $(\mathcal{X}, \mathcal{B}_X)$ and $(\mathcal{Y}, \mathcal{B}_Y)$ be two topological measurable spaces. Denote the spaces of *general* (*Radon*) measures on \mathcal{X}, \mathcal{Y} as $\mathcal{M}(\mathcal{X})$ and $\mathcal{M}(\mathcal{Y})$. Also let $\mathcal{C}(\mathcal{X})$ be space of continuous functions on \mathcal{X} . For a *continuous* map $T: \mathcal{X} \to \mathcal{Y}$, the <u>push-forward operator</u> is defined as $T_{\#}: \mathcal{M}(\mathcal{X}) \to \mathcal{M}(\mathcal{Y})$ that satisfies

$$\forall h \in \mathcal{C}(\mathcal{X}), \quad \int_{\mathcal{Y}} h(y) \ d(T_{\#}\alpha)(y) = \int_{\mathcal{X}} h(T(x)) \ d\alpha(x). \tag{77}$$

or equivalently,
$$(T_{\#}\alpha)(B) := \alpha(\{x : T(x) \in B \subset \mathcal{Y}\}) = \alpha(T^{-1}(B))$$
 (78)

where the **push-forward measure** $\beta := T_{\#}\alpha \in \mathcal{M}(\mathcal{Y})$ of some $\alpha \in \mathcal{M}(\mathcal{X})$, $T^{-1}(\cdot)$ is the pre-image of T.

• Remark (Density Function of Pushforward Measure)

Assume that (α, β) have densities $(\rho_{\alpha}, \rho_{\beta})$ with respect to a fixed measure, and $\beta = T_{\#}\alpha$. We see that $T_{\#}$ acts on a density ρ_{α} linearly to a density ρ_{β} as a change of variable, i.e.

$$\rho_{\alpha}(\boldsymbol{x}) = \left| \det(T'(\boldsymbol{x})) \right| \rho_{\beta}(T(\boldsymbol{x}))$$

$$\left| \det(T'(\boldsymbol{x})) \right| = \frac{\rho_{\alpha}(\boldsymbol{x})}{\rho_{\beta}(T(\boldsymbol{x}))}$$
(79)

• Definition (*Optimal Transport Problem, Monge Problem*) [Villani, 2009, Santambrogio, 2015, Peyr and Cuturi, 2019]

Let $(\mathcal{X}, \mathcal{B}_X)$ and $(\mathcal{Y}, \mathcal{B}_Y)$ be two measurable spaces, where \mathcal{X} and \mathcal{Y} are complete separable metric spaces. Denote $\mathcal{P}(\mathcal{X})$ and $\mathcal{P}(\mathcal{Y})$ as the space of probability measures on \mathcal{X} and \mathcal{Y} . Define a cost function $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$ as non-negative real-valued measurable functions on $\mathcal{X} \times \mathcal{Y}$. The optimal transport problem by Monge (i.e. Monge Problem) is defined as follows: given two probability measures $\mathbb{P} \in \mathcal{P}(\mathcal{X})$ and $\mathbb{Q} \in \mathcal{P}(\mathcal{Y})$, find a continuous measurable map $T: \mathcal{X} \to \mathcal{Y}$ so that

$$\inf_{T} \int_{\mathcal{X}} c(x, T(x)) d\mathbb{P}(x)$$

s.t. $\mathbb{Q} = T_{\#}\mathbb{P}$

The optimal solution T is also called an *optimal transportation plan*.

• Definition (*Optimal Transport Problem, Kantorovich Relaxation*) [Villani, 2009, Santambrogio, 2015, Peyr and Cuturi, 2019]

<u>The optimal transport problem</u> by Kantorovich (i.e. <u>Kantorovich Relxation</u>) is defined as follows: given two probability measures $\mathbb{P} \in \mathcal{P}(\mathcal{X})$ and $\mathbb{Q} \in \mathcal{P}(\mathcal{Y})$, find a *joint probability measure* $\gamma \in \Pi(\mathbb{P}, \mathbb{Q})$ so that

$$\inf_{\gamma} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\gamma(x, y)$$
s.t. $\gamma \in \Pi(\mathbb{P}, \mathbb{Q}) := \{ \gamma \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}) : \pi_{\mathcal{X}, \#} \gamma = \mathbb{P}, \ \pi_{\mathcal{Y}, \#} \gamma = \mathbb{Q} \}$

where $\mathcal{P}(\mathcal{X} \times \mathcal{Y})$ is the space of joint probability measure on $\mathcal{X} \times \mathcal{Y}$, $\pi_{\mathcal{X}}$ and $\pi_{\mathcal{Y}}$ are the coordinate projection onto \mathcal{X} and \mathcal{Y} . $\pi_{\mathcal{X},\#\gamma} = \mathbb{P}$ means that \mathbb{P} is the marginal distribution of γ on \mathcal{X} . Similarly \mathbb{Q} is the marginal distribution of γ on \mathcal{Y} .

Equivalently, let X and Y are random variables taking values in \mathcal{X} and \mathcal{Y} . The joint distribution of (X,Y) is γ with marginal distribution of X and Y being \mathbb{P} and \mathbb{Q} . Then the problem is

$$\min_{\gamma \in \Pi(\mathbb{P}, \mathbb{Q})} \mathbb{E}_{\gamma} \left[c(X, Y) \right]$$

The joint distribution $\gamma \in \Pi(\mathbb{P}, \mathbb{Q})$ such that $X_{\#}\gamma = \mathbb{P}$ and $Y_{\#}\gamma = \mathbb{Q}$ is called **a coupling**.

• **Definition** (*Dual Problem of Kantorovich Problem*) [Villani, 2009, Santambrogio, 2015, Peyr and Cuturi, 2019]

The **dual problem** of Kantorovich problem is described as below:

$$\mathcal{L}_{c}(\mathbb{P}, \mathbb{Q}) = \max_{(\varphi, \psi) \in \mathcal{C}(\mathcal{X}) \times \mathcal{C}(\mathcal{Y})} \int_{\mathcal{X}} \varphi(x) d\mathbb{P}(x) + \int_{\mathcal{Y}} \psi(y) d\mathbb{Q}(y)$$
s.t. $\varphi(x) + \psi(y) \leq c(x, y), \quad \forall x \in \mathcal{X}, y \in \mathcal{Y},$

Here, (φ, ψ) is a pair of *continuous functions* on \mathcal{X} and \mathcal{Y} respectively and they are also the **Kantorovich potentials**. The feasible region is

$$\mathcal{R}(c) := \{ (\varphi, \psi) \in \mathcal{C}(\mathcal{X}) \times \mathcal{C}(\mathcal{Y}) : \varphi \oplus \psi \leq c \}$$

where $(\varphi \oplus \psi)(x,y) = \varphi(x) + \psi(y)$.

In other words, the dual optimization problem is

$$\max_{(\varphi,\psi)\in\mathcal{R}(c)} \mathbb{E}_{\mathbb{P}}\left[\varphi(X)\right] + \mathbb{E}_{\mathbb{Q}}\left[\psi(Y)\right]$$

• Proposition 9.1 (Strong Duality) [Santambrogio, 2015] Let \mathcal{X}, \mathcal{Y} be complete separable spaces, and $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$ be lower semi-continuous and bounded from below. Then the optimal value of primal and dual problems are the same

$$\min_{X \sim \mathbb{P}, Y \sim \mathbb{Q}} \mathbb{E}\left[c(X, Y)\right] = \mathcal{L}_c(\mathbb{P}, \mathbb{Q}) = \max_{(\varphi, \psi) \in \mathcal{R}(c)} \mathbb{E}_{\mathbb{P}}\left[\varphi(X)\right] + \mathbb{E}_{\mathbb{Q}}\left[\psi(Y)\right].$$

• Definition (Wasserstein Distance)

Let $((\mathcal{X}, d), \mathcal{B})$ be a metric measurable space with Borel σ -algebra induced by metric d. Let X, Y be two random variables taking values in \mathcal{X} with distribution \mathbb{P} and \mathbb{Q} . **The Wasserstein distance** between probability distributions \mathbb{P} and \mathbb{Q} induced by d is defined as

$$W_1(\mathbb{P}, \mathbb{Q}) \equiv W_d(\mathbb{P}, \mathbb{Q}) := \min_{X \sim \mathbb{P}, Y \sim \mathbb{Q}} \mathbb{E}\left[d(X, Y)\right]$$
(80)

In general, for $p \in [1, \infty)$, we can define **Wasserstein** p-distance as

$$\mathcal{W}_p(\mathbb{P}, \mathbb{Q}) \equiv \mathcal{W}_{p,d}(\mathbb{P}, \mathbb{Q}) := \left(\min_{X \sim \mathbb{P}, Y \sim \mathbb{Q}} \mathbb{E} \left[(d(X, Y))^p \right] \right)^{1/p}. \tag{81}$$

• Remark Not to confuse the 2-Wasserstein distance with the Wasserstein distance induced by L₂ norm:

$$\mathcal{W}_{\|\cdot\|_{2}}(\mathbb{P}, \mathbb{Q}) \equiv \mathcal{W}_{1,\|\cdot\|_{2}}(\mathbb{P}, \mathbb{Q}) := \min_{X \sim \mathbb{P}, Y \sim \mathbb{Q}} \mathbb{E}\left[\|X - Y\|_{2}\right]$$
$$\mathcal{W}_{2}(\mathbb{P}, \mathbb{Q}) \equiv \mathcal{W}_{2,d}(\mathbb{P}, \mathbb{Q}) := \sqrt{\min_{X \sim \mathbb{P}, Y \sim \mathbb{Q}} \mathbb{E}\left[d(X, Y)^{2}\right]}$$

- Remark (Wasserstein p-Distance is a Metric in $\mathcal{P}(\mathcal{X})$)

 The Wasserstein p-distance $\mathcal{W}_{p,d}(\mathbb{P},\mathbb{Q}) := (\min_{X \sim \mathbb{P},Y \sim \mathbb{Q}} \mathbb{E} [(d(X,Y))^p])^{1/p}$ is a well-defined metric in $\mathcal{P}(\mathcal{X})$: for all $\mathbb{P},\mathbb{Q},\mathbb{M} \in \mathcal{P}(\mathcal{X})$,
 - 1. (Non-Negativity): $W_{p,d}(\mathbb{P}, \mathbb{Q}) \geq 0$.
 - 2. (Definiteness): $W_{p,d}(\mathbb{P},\mathbb{Q}) = 0$ iff $\mathbb{P} = \mathbb{Q}$
 - 3. (Symmetric): $W_{p,d}(\mathbb{P},\mathbb{Q}) = W_{p,d}(\mathbb{Q},\mathbb{P})$
 - 4. (Triangular inequality): $W_{p,d}(\mathbb{P},\mathbb{Q}) \leq W_{p,d}(\mathbb{P},\mathbb{M}) + W_{p,d}(\mathbb{M},\mathbb{Q})$

• Definition (Total Variation / Variational Distance) Let P,Q be two probability measures on measurable space (Ω, \mathscr{F}) . The <u>total variation</u> or variational distance between P and Q is defined by

$$V(P,Q) := \sup_{A \in \mathscr{F}} |P(A) - Q(A)| \tag{82}$$

• Remark (Equivalent Formulation of Total Variation)

It is a well-known and simple fact that the total variation is half the L_1 -distance, that is, if μ is a common dominating measure of P and Q and $p(x) = dP/d\mu$ and $q(x) = dQ/d\mu$ denote their respective densities, then

$$V(P,Q) := P(A^*) - Q(A^*) = \frac{1}{2} \int_{\Omega} |p(x) - q(x)| \, d\mu(x), \tag{83}$$

where $A^* = \{x : p(x) \ge q(x)\}.$

• Remark (Total Variation via Optimal Coupling of Two Measures)

We note that another important interpretation of the variational distance is related to the best coupling of the two measures

$$V(P,Q) = \min P\left\{X \neq Y\right\} \tag{84}$$

where the minimum is taken over all pairs of joint distributions for the random variables (X, Y) whose marginal distributions are $X \sim P$ and $Y \sim Q$.

• Proposition 9.2 (Pinsker's Inequality) [Cover and Thomas, 2006, Boucheron et al., 2013]

Let P,Q be two probability distributions on measurable space (Ω,\mathscr{F}) such that $P\ll Q$. Then

$$V(P,Q)^{2} \le \frac{1}{2} \mathbb{KL}(P \parallel Q). \tag{85}$$

• Remark (Total Variation as 1-Wasserstein Distance)

The total variation between P and Q is **the Wasserstein distance** induced by **the Hamming distance** $d(x,y) = \#\{i : x_i \neq y_i\}.$

$$V(P,Q) = \mathcal{W}_1(P,Q).$$

Thus the Pinsker's inequality (85) is the special case of transportation cost inequality (87).

• Theorem 9.3 (Kantorovich-Rubenstein Duality) [Villani, 2009]

Let \mathcal{X} be a **Polish space**, i.e. \mathcal{X} a **complete separable metric** space equipped with a Borel σ -algebra induced by metric d, and \mathbb{P} and \mathbb{Q} be probability measures on \mathcal{X} . For fixed $p \in [1, \infty)$, let Lip_1 be the space of all 1-Lipschitz function with respect to metric d such that

$$||f||_L := \sup_{x,y \in \mathcal{X}} \left\{ \frac{|f(x) - f(y)|}{d(x,y)} \right\} \le 1.$$

Then

$$\mathcal{W}_d(\mathbb{P}, \mathbb{Q}) \equiv \mathcal{W}_{1,d}(\mathbb{P}, \mathbb{Q}) = \sup_{f \in Lip_1} \left\{ \mathbb{E}_{\mathbb{P}} \left[f(X) \right] - \mathbb{E}_{\mathbb{Q}} \left[f(Y) \right] \right\}. \tag{86}$$

9.2 Concentration via Transportation Cost

- Lemma 9.4 (Transportation Lemma) [Boucheron et al., 2013] Let X be a real-valued integrable random variable. Let ϕ be a convex and continuously differentiable function on a (possibly unbounded) interval [0,b) and assume that $\phi(0) = \phi'(0) = 0$. Define, for every $x \ge 0$, the Legendre transform $\phi^*(x) = \sup_{\lambda \in (0,b)} (\lambda x - \phi(\lambda))$, and let, for every $t \ge 0$, $\phi^{*-1}(t) = \inf\{x \ge 0 : \phi^*(x) > t\}$, i.e. the the generalized inverse of ϕ^* . Then the following two statements are equivalent:
 - 1. for every $\lambda \in (0, b)$,

$$\psi_{X-\mathbb{E}[X]}(\lambda) \le \phi(\lambda)$$

where $\psi_X(\lambda) := \log \mathbb{E}_Q\left[e^{\lambda X}\right]$ is the logarithm of moment generating function;

2. for any probability measure P absolutely continuous with respect to Q such that $\mathbb{KL}(P \parallel Q) < \infty$,

$$\mathbb{E}_{P}[X] - \mathbb{E}_{Q}[X] \le \phi^{*-1}(\mathbb{KL}(P \parallel Q)). \tag{87}$$

In particular, given $\nu > 0$, X follows a sub-Gaussian distribution, i.e.

$$\psi_{X-\mathbb{E}[X]}(\lambda) \le \frac{\nu\lambda^2}{2}$$

for every $\lambda > 0$ if and only if for any probability measure P absolutely continuous with respect to Q and such that $\mathbb{KL}(P \parallel Q) < \infty$,

$$\mathbb{E}_{P}[X] - \mathbb{E}_{Q}[X] \le \sqrt{2\nu \mathbb{KL}(P \parallel Q)}. \tag{88}$$

• Remark (Transportation Method)

Let $\mathbb{P} = \bigotimes_{i=1}^n \mathbb{P}_i$ be the product measure for $Z := (Z_1, \ldots, Z_n)$ on \mathcal{X}^n and $f : \mathcal{X}^n \to \mathbb{R}$ be 1-Lipschitz function. Consider a probability measure \mathbb{Q} on \mathcal{X}^n , absolutely continuous with respect to \mathbb{P} and let Y be a random variable (defined on the same probability space as \mathcal{X}) such that Y has distribution \mathbb{Q} .

The lemma above suggests that one may prove sub-Gaussian concentration inequalities for $X = f(Z_1, \ldots, Z_n)$ by proving a "transportation" inequality as above. The key to achieving this relies on coupling. In particular, the Kantorovich-Rubenstein duality for $W_{1,d}$ suggests that

$$\mathbb{E}_{\mathbb{Q}}\left[f(Y)\right] - \mathbb{E}_{\mathbb{P}}\left[f(Z)\right] \leq \min_{\gamma \in \Pi(\mathbb{Q}, \mathbb{P})} \mathbb{E}_{\gamma}\left[d(Y, Z)\right] := \mathcal{W}_{1, d}(\mathbb{Q}, \mathbb{P})$$

Thus, it suffices to upper bound the 1-Wasserstein distance between \mathbb{Q} and \mathbb{P} .

Definition (d-Transportation Cost Inequality) [Wainwright, 2019]
Let (X, d) be a metric space with metric d, and (X, B) be a measurable space, where B is the Borel σ-algebra induced by metric d, the probability measure P is said to satisfy a d-transportation cost inequality with parameter ν > 0 if

$$W_{1,d}(\mathbb{Q}, \mathbb{P}) \le \sqrt{2\nu \mathbb{KL}(\mathbb{Q} \parallel \mathbb{P})}$$
(89)

for all probability measure $\mathbb{Q} \ll \mathbb{P}$ on \mathscr{B} .

• Theorem 9.5 (Isoperimetric Inequality via Transportation Cost)[Wainwright, 2019] Consider a metric measure space $(\mathcal{X}, \mathcal{B}, \mathbb{P})$ with metric d, and suppose that \mathbb{P} satisfies the d-transportation cost inequality in (89) Then its concentration function satisfies the bound

$$\alpha_{\mathbb{P},(\mathcal{X},d)}(t) \le \exp\left(-\frac{(t-t_0)_+^2}{2\nu}\right), \text{ for } t \ge t_0$$
 (90)

where $t_0 := \sqrt{2\nu \log 2}$. Moreover, for any $Z \sim \mathbb{P}$ and any L-Lipschitz function $f : \mathcal{X} \to \mathbb{R}$, we have the **concentration inequality**

$$\mathbb{P}\left\{|f(Z) - \mathbb{E}\left[f(Z)\right]| \ge t\right\} \le 2\exp\left(-\frac{t^2}{2\nu L^2}\right). \tag{91}$$

9.3 Tensorization for Transportation Cost

• Proposition 9.6 (Tensorization for Transportation Cost) [Boucheron et al., 2013] Suppose that, for each k = 1, 2, ..., n, the univariate distribution \mathbb{P}_k satisfies a d_k -transportation cost inequality with parameter ν_k . Then the product distribution $\mathbb{P} = \bigotimes_{k=1}^n \mathbb{P}_k$ satisfies the transportation cost inequality

$$W_{1,d}(\mathbb{Q}, \mathbb{P}) = \sqrt{2 \left(\sum_{k=1}^{n} \nu_k \right) \mathbb{KL}(\mathbb{Q} \parallel \mathbb{P})}, \quad \text{for all distributions } \mathbb{Q} \ll \mathbb{P}$$
 (92)

where the Wasserstein metric is defined using the distance $d(x,y) := \sum_{k=1}^{n} d_k(x_k,y_k)$.

9.4 Induction Lemma

9.5 Marton's Transportation Inequality

• Theorem 9.7 (Marton's Transportation Inequality) [Boucheron et al., 2013] Let $\mathbb{P} = \bigotimes_{k=1}^n \mathbb{P}_k$ be a product probability measure on \mathcal{X}^n , and let \mathbb{Q} be a probability measure absolutely continuous with respect to \mathbb{P} . Define two random vectors $X = (X_1, \ldots, X_n), Y =$ (Y_1, \ldots, Y_n) in \mathcal{X}^n with distribution \mathbb{P} and \mathbb{Q} respectively. Then

$$\mathcal{W}_{2,d_{H}}(\mathbb{Q},\mathbb{P}) := \sqrt{\min_{\gamma \in \Pi(\mathbb{Q},\mathbb{P})} \sum_{i=1}^{n} \gamma^{2} \left\{ X_{i} \neq Y_{i} \right\}} \leq \sqrt{\frac{1}{2} \mathbb{KL} \left(\mathbb{Q} \parallel \mathbb{P} \right)}
\Leftrightarrow \min_{\gamma \in \Pi(\mathbb{Q},\mathbb{P})} \sum_{i=1}^{n} \gamma^{2} \left\{ X_{i} \neq Y_{i} \right\} \leq \frac{1}{2} \mathbb{KL} \left(\mathbb{Q} \parallel \mathbb{P} \right)$$
(93)

• Theorem 9.8 (Marton's Conditional Transportation Inequality) [Boucheron et al., 2013]

Let $\mathbb{P} = \bigotimes_{k=1}^n \mathbb{P}_k$ be a product probability measure on \mathcal{X}^n , and let \mathbb{Q} be a probability measure absolutely continuous with respect to \mathbb{P} . Define two random vectors $X = (X_1, \ldots, X_n), Y = (Y_1, \ldots, Y_n)$ in \mathcal{X}^n with distribution \mathbb{P} and \mathbb{Q} respectively. Then

$$\min_{\gamma \in \Pi(\mathbb{Q}, \mathbb{P})} \mathbb{E}_{\gamma} \left[\sum_{i=1}^{n} (\gamma^2 \{ X_i \neq Y_i | X_i \} + \gamma^2 \{ X_i \neq Y_i | Y_i \}) \right] \leq 2 \mathbb{KL} \left(\mathbb{Q} \parallel \mathbb{P} \right) \tag{94}$$

• Proposition 9.9 (Concentration of Lipschitz Function with Function Weighted Hamming Distance) [Boucheron et al., 2013]

Let $f: \mathcal{X}^n \to \mathbb{R}$ be a measurable function and let Z_1, \ldots, Z_n be independent random variables taking their values in \mathcal{X} . Define $X = f(Z_1, \ldots, Z_n)$. Assume that there exist **measurable functions** $c_i: \mathcal{X}_n \to [0, \infty)$ such that for all $x, y \in \mathcal{X}^n$,

$$f(y) - f(z) \le \sum_{i=1}^{n} c_i(z) \mathbb{1} \{ y_i \ne z_i \}.$$

Setting

$$u = \mathbb{E}\left[\sum_{i=1}^{n} c_i^2(Z)\right] \qquad and \qquad \nu_{\infty} = \sup_{z \in \mathcal{X}^n} \sum_{i=1}^{n} c_i^2(z)$$

for all $\lambda > 0$, we have

$$\psi_{X-\mathbb{E}[X]}(\lambda) \leq \frac{\nu\lambda^2}{2} \qquad and \qquad \psi_{-X+\mathbb{E}[X]}(\lambda) \leq \frac{\nu_\infty\lambda^2}{2}$$

In particular, for all t > 0,

$$\mathbb{P}\left\{X \ge \mathbb{E}\left[X\right] + t\right\} \le \exp\left(-\frac{t^2}{2\nu}\right)$$

$$\mathbb{P}\left\{X \le \mathbb{E}\left[X\right] - t\right\} \le \exp\left(-\frac{t^2}{2\nu_{\infty}}\right). \tag{95}$$

- Remark The condition in above proposition covers
 - 1. Lipschitz functions such as functions with bounded difference,
 - 2. self-bounding functions including configuration functions: Let f be such a configuration function. For any $z \in \mathcal{X}^n$, fix a maximal sub-sequence $(z_{i,1}, \ldots, z_{i,m})$ satisfying property Π (so that f(z) = m). Let $c_i(z)$ denote the indicator that z_i belongs to the sub-sequence $(z_{i,1}, \ldots, z_{i,m})$. Thus,

$$\sum_{i=1}^{n} c_i^2(z) = \sum_{i=1}^{n} c_i(z) = f(z).$$

It follows from the definition of a configuration function that for all $z, y \in \mathcal{X}^n$,

$$f(y) \ge f(z) - \sum_{i=1}^{n} c_i(z) \mathbb{1} \{ z_i \ne y_i \}$$

So g = -f satisfies the condition in above proposition.

- 3. weakly self-bounding functions
- 4. convex distance function

$$d_T(z, A) := \sup_{\alpha \in \mathbb{R}_+^n : \|\alpha\|_2 = 1} \inf_{y \in A} \sum_{i=1}^n \alpha_i \mathbb{1} \{ z_i \neq y_i \}$$

Denote by $c(z) = (c_1(z), \dots, c_n(z)) = \alpha^*$ the vector of nonnegative components in the unit ball for which the supremum is achieved. Thus

$$d_{T}(z, A) - d_{T}(y, A) \leq \inf_{z' \in A} \sum_{i=1}^{n} c_{i}(z) \mathbb{1} \left\{ z_{i} \neq z_{i}' \right\} - \inf_{y' \in A} \sum_{i=1}^{n} c_{i}(z) \mathbb{1} \left\{ y_{i} \neq y_{i}' \right\}$$

$$\leq \sum_{i=1}^{n} c_{i}(z) \mathbb{1} \left\{ z_{i} \neq y_{i} \right\}$$

9.6 Talagrand's Gaussian Transportation Inequality

• Theorem 9.10 (Talagrand's Gaussian Transportation Inequality) [Boucheron et al., 2013]

Let \mathbb{P} be be the standard Gaussian probability measure on \mathbb{R}^n , and let \mathbb{Q} be a probability measure absolutely continuous with respect to \mathbb{P} . Define two random vectors $X = (X_1, \ldots, X_n), Y = (Y_1, \ldots, Y_n)$ in \mathcal{X}^n with distribution \mathbb{P} and \mathbb{Q} respectively. Then

$$\mathcal{W}_{2,d}(\mathbb{Q}, \mathbb{P}) := \sqrt{\min_{\gamma \in \Pi(\mathbb{Q}, \mathbb{P})} \sum_{i=1}^{n} \mathbb{E}_{\gamma} \left[(X_{i} - Y_{i})^{2} \right]} \leq \sqrt{2\mathbb{KL} \left(\mathbb{Q} \parallel \mathbb{P} \right)}$$

$$\Leftrightarrow \min_{\gamma \in \Pi(\mathbb{Q}, \mathbb{P})} \sum_{i=1}^{n} \mathbb{E}_{\gamma} \left[(X_{i} - Y_{i})^{2} \right] \leq 2\mathbb{KL} \left(\mathbb{Q} \parallel \mathbb{P} \right)$$

$$(96)$$

10 Proofs of Bounded Difference Inequality

• Theorem 10.1 (McDiarmid's Inequality / Bounded Differences Inequality)[Boucheron et al., 2013, Wainwright, 2019] Suppose that f satisfies the bounded difference property (48) with parameters (L_1, \ldots, L_n) i.e. for each index $k = 1, 2, \ldots, n$,

$$|f(x_1, \ldots, x_n) - f(x_1, \ldots, x_{i-1}, x_i', x_{i+1}, \ldots, x_n)| \le L_k, \quad \text{for all } x, x' \in \mathcal{X}^n.$$

Assume that the random vector $X = (X_1, X_2, ..., X_n)$ has independent components. Then

$$\mathbb{P}\left\{|f(X) - \mathbb{E}\left[f(X)\right]| \ge t\right\} \le 2\exp\left(-\frac{2t^2}{\sum_{k=1}^n L_k^2}\right).$$

10.1 Martingale Method

• **Proof:** Consider the associated martingale difference sequence

$$D_k := \mathbb{E}[f(X)|X_1, \dots, X_k] - \mathbb{E}[f(X)|X_1, \dots, X_{k-1}].$$

We claim that D_k lies in an interval of length at most L_k almost surely. In order to prove this claim, define the random variables

$$A_k := \inf_{x} \left\{ \mathbb{E} \left[f(X) | X_1, \dots, X_{k-1}, x \right] \right\} - \mathbb{E} \left[f(X) | X_1, \dots, X_{k-1} \right]$$

$$B_k := \sup_{x} \left\{ \mathbb{E} \left[f(X) | X_1, \dots, X_{k-1}, x \right] \right\} - \mathbb{E} \left[f(X) | X_1, \dots, X_{k-1} \right].$$

On one hand, we have

$$D_k - A_k = \mathbb{E}[f(X)|X_1, \dots, X_k] - \inf_x \{\mathbb{E}[f(X)|X_1, \dots, X_{k-1}, x]\},$$

so that $D_k \geq A_k$ almost surely. A similar argument shows that $D_k \leq B_k$ almost surely. We now need to show that $B_k - A_k \leq L_k$ almost surely. Observe that by the independence of $\{X_k\}_{k=1}^n$, we have

$$\mathbb{E}[f(X) | x_1, \dots, x_k] = \mathbb{E}_{(k+1)}[f(x_1, \dots, x_k, X_{k+1}, \dots, X_n)], \text{ for any } (x_1, \dots, x_k),$$

where $\mathbb{E}_{(k+1)}[\cdot]$ denote the expectation over (X_{k+1},\ldots,X_n) . Consequently, we have

$$B_{k} - A_{k} = \sup_{x} \mathbb{E}_{(k+1)} \left[f(X_{1}, \dots, X_{k-1}, x, X_{k+1}, \dots, X_{n}) \right]$$

$$- \inf_{x} \mathbb{E}_{(k+1)} \left[f(X_{1}, \dots, X_{k-1}, x, X_{k+1}, \dots, X_{n}) \right]$$

$$\leq \sup_{x,y} \left\{ \mathbb{E}_{(k+1)} \left[f(X_{1:k-1}, x, X_{k+1:n}) \right] - \mathbb{E}_{(k+1)} \left[f(X_{1:k-1}, y, X_{k+1:n}) \right] \right\}$$

$$\leq L_{k},$$

using the bounded differences assumption. Thus, the variable D_k lies within an interval of length L_k at most surely, so that the claim follows as a corollary of the Azuma-Hoeffding inequality.

10.2 Entropy Method

• **Proof:** Recall that for a random variable Y taking its values in [a, b], then we know from Hoeffding's Lemma that the logarithmic moment generating functions $\psi(\lambda)$ satisfies

$$\psi(\lambda)'' = \operatorname{Var}(Y) \le \frac{(b-a)^2}{4}$$

for every $\lambda \in \mathbb{R}$. Hence, Hoeffding's inequality is obtained since

$$\frac{\operatorname{Ent}(e^{\lambda Y})}{\mathbb{E}\left[e^{\lambda Y}\right]} = \lambda \psi'(\lambda) - \psi(\lambda) = \int_0^\lambda s \psi''(s) ds \le \frac{(b-a)^2}{4} \int_0^\lambda s ds = \frac{(b-a)^2 \lambda^2}{8},$$

Note that by the bounded differences assumption, given $X_{(-i)}$, f(X) is a random variable whose range is in an interval of length at most L_i , so

$$\frac{\operatorname{Ent}_{(-i)}(e^{\lambda f(X)})}{\mathbb{E}_{(-i)}\left[e^{\lambda f(X)}\right]} \le \frac{L_i^2 \lambda^2}{8}$$

From the tensorization property of entropy, we can bound the entropy of total function

$$\operatorname{Ent}(e^{\lambda f(X)}) \leq \mathbb{E}\left[\sum_{i=1}^{n} \operatorname{Ent}_{(-i)}(e^{\lambda f(X)})\right] \leq \sum_{i=1}^{n} \frac{L_{i}^{2} \lambda^{2}}{8} \mathbb{E}\left[\mathbb{E}_{(-i)}\left[e^{\lambda f(X)}\right]\right]$$
$$\frac{\operatorname{Ent}(e^{\lambda f(X)})}{\mathbb{E}\left[e^{\lambda f(X)}\right]} \leq \frac{\sum_{i=1}^{n} L_{i}^{2} \lambda^{2}}{8} \equiv \frac{\nu \lambda^{2}}{2}.$$

where

$$\nu := \frac{1}{4} \sum_{i=1}^{n} L_i^2$$

Using Herbst's argument, it leads to the bound of logarithmic moment generating function:

$$\psi_{f(X)}(\lambda) \le \frac{\nu \lambda^2}{2}.$$

Finally, we apply the Chernoff's inequality

$$\mathbb{P}\left\{f(X) - \mathbb{E}\left[f(X)\right] \ge t\right\} \le \inf_{\lambda > 0} \exp\left(\psi_{f(X)}(\lambda) - \lambda t\right) \le \exp\left(-\frac{t^2}{2\nu}\right).$$

10.3 Isoperimetric Inequality on Binary Hypercube

- Definition (Vertex Boundary of Graph) [Boucheron et al., 2013]
 Consider a graph G = (V, E) and let A ⊂ V be a set of its vertices. The vertex boundary of A is defined as the set of those vertices, not in A, which are connected to some vertex in V by an edge. We denote the vertex boundary of A by ∂V(A).
- Remark (Binary Hypercube as Nearest Neighbor Graph with Hamming Distance) Consider the graph as binary hypercube $\{-1, +1\}^n$ in which two vertices are connected by an edge if and only if their **Hamming distance** equals 1. Define the norm as the Hamming distance to $-1^n = (-1, ..., -1)$

$$||x||_H := \sum_{i=1}^n \mathbb{1} \{x_i = 1\} = d_H(x, -1^n)$$

• Definition (Simplicial Order)

We define the so-called <u>simplicial order</u> of the elements of the binary hypercube. We say that $x = (x_1, \ldots, x_n) \in \{-1, 1\}^n$ precedes $y = (y_1, \ldots, y_n) \in \{-1, 1\}^n$ in the simplicial order if either $||x||_H < ||y||_H$ (where $||x||_H := \sum_{i=1}^n \mathbb{1}\{x_i = 1\} = d_H(x, -1^n)$) or $||x||_H = ||y||_H$ and $x_i = 1$ and $y_i = -1$ for the smallest i for which $x_i \neq y_i$. That is

$$x \prec y$$

$$\Leftrightarrow \{(x,y): \|x\|_{H} < \|y\|_{H} \ \lor (\|x\|_{H} = \|y\|_{H} \ \land (x_{i} = 1 \land y_{i} = -1, \text{ where } i = \min\{k: x_{k} \neq x_{k}\}))\}$$

In other words, the vector with *less* 1's *precedes* the vector with more 1's. If the number of 1's are the same, then the first 1's on the leftmost position is preferred.

Theorem 10.2 (Harp's Vertex Isoperimetric Theorem) [Boucheron et al., 2013] For $N = 1, ..., 2^n$, let S_N denote the set of first N elements of $\{-1, +1\}^n$ in the simplicial order. For any subset $A \subset \{-1, +1\}^n$, where |A| = N,

$$|\partial V(A)| \ge |\partial V(S_N)|$$

• **Remark** Note that if $N = \sum_{i=0}^{k} {n \choose i}$, for $k = 0, \dots, n$, then

$$S_N = \{x \in \{-1, +1\}^n : d_H(x, -1^n) \le k\} = B_H(-1^n, k)$$

In other words, S_N is a **Hamming ball** centered at the vector $-1^n = (-1, \ldots, -1)$.

• Definition (t-Blowup of Set A in Binary Hypercube) For any $A \subset \{-1, +1\}^n$ and $x \in \{-1, +1\}^n$, let $d_H(x, A) = \min_{y \in A} d_H(x, y)$ be the Hamming distance of x to the set A. Also, denote by

$$A_t := \{x \in \{-1, +1\}^n : d_H(x, A) < t\}$$

the t-blowup of the set A, that is, the set of points whose Hamming distance from A is at most t.

• Corollary 10.3 (Isoperimetric Inequality in Binary Hypercube) [Boucheron et al., 2013]

Let $A \subset \{-1,+1\}^n$ such that $|A| \geq \sum_{i=0}^k {n \choose i}$. Then for any t = 1, 2, ..., n-k+1,

$$|A_t| \ge \sum_{i=0}^{k+1-t} \binom{n}{i}. \tag{97}$$

In particular, if $|A|/2^n \ge 1/2$ then we may take $k = \lfloor n/2 \rfloor$ in the corollary above and

$$\frac{|A_t|}{2^n} \ge \mathbb{P}\left\{X < \mathbb{E}\left[X\right] + t\right\} \ge 1 - \exp\left(-\frac{2t^2}{n}\right) \tag{98}$$

where $X \sim Ber(1/2)$ is a symmetric Bernoulli random variable taking values in $\{-1, +1\}$ with $\mathbb{P}\{X=1\} = \mathbb{P}\{X=-1\} = 1/2$.

• Proof: (Proof of Bounded Difference Inequality on Binary Hypercube)

Note that any function with bounded difference property is Lipschitz function with respect to Hamming distance.

$$\sup_{x \in \mathcal{X}^{n}, y_{i} \in \mathcal{X}} |f(x_{1}, \dots, x_{n}) - f(x_{1}, \dots, x_{i-1}, y_{i}, x_{i+1}, \dots, x_{n})|$$

$$\leq c_{i} = c_{i} d_{H}((x_{1}, \dots, x_{n}), (x_{1}, \dots, x_{i-1}, y_{i}, x_{i+1}, \dots, x_{n})), \quad 1 \leq i \leq n$$

$$\Rightarrow |f(x) - f(y)| = \left| \sum_{i=1}^{n} (f(x_{(i-1)}) - f(x_{(i)})) \right|$$

$$\leq \sum_{i=1}^{n} |f(x_{(i-1)}) - f(x_{(i)})|$$

$$\leq \sum_{i=1}^{n} L_{i} \mathbb{1} \left\{ x_{(i-1)}[i] \neq x_{(i)}[i] \right\}$$

$$= d_{H,L}(x, y)$$

where $x_{(i)}$ is replicate of $x_{(i-1)}$ except for *i*-th component, which is replaced by y_i . Note that $x_{(0)} = x$ and $x_{(n)} = y$.

The Harp's isoperimetric theorem suggests that the concentration function

$$\alpha_{\mathbb{P},(\{-1,+1\}^n,d_{H,L})}(t) := \sup_{A:\mathbb{P}\{A\} \ge 1/2} \mathbb{P}\{A_t\} \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n L_i^2}\right)$$

where \mathbb{P} is uniform distribution on $\{-1, +1\}^n$. Thus by Levy's inequality, we prove that for $Z \in \{-1, 1\}^n$ and Lipschitz function $f : \{-1, 1\}^n \to \mathbb{R}$ with respect to weighted Hamming distance $d_{H,L}$,

$$\mathbb{P}\left\{|f(Z) - \operatorname{Med}(f(Z))| \ge t\right\} \le 2\exp\left(-\frac{2t^2}{\sum_{i=1}^{n} L_i^2}\right). \quad \blacksquare$$

10.4 Transportation Method

• Proof: Any function with bounded difference property is Lipschitz function with respect to Hamming distance. This implies that for all $x, y \in \mathcal{X}^n$,

$$f(y) - f(x) \le \sum_{i=1}^{n} L_i \mathbb{1} \{x_i \ne y_i\} \equiv d_{H,L}(x,y).$$

Note that for coupling $\gamma \in \Pi(\mathbb{Q}, \mathbb{P})$ where $Y \sim \mathbb{Q}$ and $X \sim \mathbb{P}$,

$$\mathbb{E}_{\mathbb{Q}}\left[f(Y)\right] - \mathbb{E}_{\mathbb{P}}\left[f(X)\right] = \mathbb{E}_{\gamma}\left[f(Y) - f(X)\right]$$

$$\leq \sum_{i=1}^{n} L_{i}\mathbb{E}_{\gamma}\left[\mathbb{1}\left\{X_{i} \neq Y_{i}\right\}\right]$$

$$\leq \left(\sum_{i=1}^{n} L_{i}^{2}\right)^{1/2} \left(\sum_{i=1}^{n} (\mathbb{E}_{\gamma}\left[\mathbb{1}\left\{X_{i} \neq Y_{i}\right\}\right])^{2}\right)^{1/2}$$

We want to prove the concentration using transportation cost inequality. That is, to bound the term

$$\min_{\gamma \in \Pi(\mathbb{Q}, \mathbb{P})} \sum_{i=1}^{n} (\mathbb{E}_{\gamma} \left[\mathbb{1} \left\{ X_i \neq Y_i \right\} \right])^2 = \min_{\gamma \in \Pi(\mathbb{Q}, \mathbb{P})} \sum_{i=1}^{n} \gamma^2 \left\{ X_i \neq Y_i \right\}.$$

We have shown that

$$\min_{\gamma \in \Pi(\mathbb{Q}, \mathbb{P})} \gamma \left\{ X \neq Y \right\} = \mathcal{W}_{1, d_H}(\mathbb{Q}, \mathbb{P}) = \sup_{A \in \mathcal{X}} |\mathbb{Q}(A) - \mathbb{P}(A)| \equiv \|\mathbb{Q} - \mathbb{P}\|_{TV}.$$

For each independent variable X_i, Y_i , and their marginal distribution $\mathbb{P}_i, \mathbb{Q}_i$ where $\mathbb{Q}_i \ll \mathbb{P}_i$, by Pinsker's inequality,

$$\min_{\gamma \in \Pi(\mathbb{Q}_{i}, \mathbb{P}_{i})} \gamma \left\{ X_{i} \neq Y_{i} \right\} \leq \sqrt{\frac{1}{2}} \mathbb{KL} \left(\mathbb{Q}_{i} \parallel \mathbb{P}_{i} \right)$$

$$\min_{\gamma \in \Pi(\mathbb{Q}_{i}, \mathbb{P}_{i})} \gamma^{2} \left\{ X_{i} \neq Y_{i} \right\} \leq \frac{1}{2} \mathbb{KL} \left(\mathbb{Q}_{i} \parallel \mathbb{P}_{i} \right)$$

Thus by induction lemma,

$$\min_{\gamma \in \Pi(\mathbb{Q}, \mathbb{P})} \sum_{i=1}^{n} \gamma^{2} \left\{ X_{i} \neq Y_{i} \right\} \leq \frac{1}{2} \mathbb{KL} \left(\mathbb{Q} \parallel \mathbb{P} \right)$$

which is the Marton's transportation inequality. Finally, we have

$$\mathbb{E}_{\mathbb{Q}}\left[f(Y)\right] - \mathbb{E}_{\mathbb{P}}\left[f(X)\right] \le \left(\sum_{i=1}^{n} L_{i}^{2}\right)^{1/2} \left(\sum_{i=1}^{n} (\mathbb{E}_{\gamma}\left[\mathbb{1}\left\{X_{i} \neq Y_{i}\right\}\right])^{2}\right)^{1/2}$$
$$\le \sqrt{\frac{\left(\sum_{i=1}^{n} L_{i}^{2}\right)}{2}} \mathbb{KL}\left(\mathbb{Q} \parallel \mathbb{P}\right).$$

Then we can apply the transportation lemma with $\nu := \frac{1}{4} \sum_{i=1}^{n} L_i^2$, which proves the bounded difference inequality.

References

- Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic theory of independence. Oxford university press, 2013.
- Thomas M. Cover and Joy A. Thomas. *Elements of information theory (2. ed.)*. Wiley, 2006. ISBN 978-0-471-24195-9.
- Gabriel Peyr and Marco Cuturi. Computational optimal transport: With applications to data science. Foundations and Trends in Machine Learning, 11(5-6):355-607, 2019. ISSN 1935-8237.
- Sidney I Resnick. A probability path. Springer Science & Business Media, 2013.
- Filippo Santambrogio. Optimal transport for applied mathematicians, volume 55. Springer, 2015.
- Roman Vershynin. High-dimensional probability: An introduction with applications in data science, volume 47. Cambridge university press, 2018.
- Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.
- Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cambridge University Press, 2019.