# EXTRACTING KEYPHRASES AND RELATIONS FROM SCIENTIFIC PUBLICATIONS

Narendar Singh 2023201018 Rohit Joahi 2023202016 Aadya Ranjan 2023814001

Introduction to NLP

# Outline

- Introduction
- 2 Corpus Details
- 3 Data Pre-processing
- 4 Methodology
- **5** Evaluation

- Keyphrases are crucial for summarizing the theme and content of a document.
- Despite the importance of research papers, the proliferation of digital libraries poses challenges for effective online searches.
- Curating a list of keyphrases enhances search precision, aiding readers in quickly assessing document relevance.

• Extracting key phrases and relationships from scientific papers is vital in natural language processing, involving sub-tasks such as :

- Extracting key phrases and relationships from scientific papers is vital in natural language processing, involving sub-tasks such as:
  - Key Phrase Extraction

- Extracting key phrases and relationships from scientific papers is vital in natural language processing, involving sub-tasks such as:
  - Key Phrase Extraction
  - Keyword Classification

- Extracting key phrases and relationships from scientific papers is vital in natural language processing, involving sub-tasks such as:
  - Key Phrase Extraction
  - Keyword Classification
  - Relationship Identification

# Corpus Details

- Utilized SemEval 2017 Task 10 dataset, consisting of scientific articles from Chemistry, Computer Science, and Physics.
- Dataset divided into training, development, and test sets, each containing .txt files with text excerpts and .ann files with keyword annotations.

# Data Pre-processing

• Merged subtasks 1 and 2 to determine token as Keyword and classify it into Task, Material, or Process types. Utilized BIO scheme for dataset preprocessing, assigning each word a label from seven possible labels, see below.

| Description | Label                                       |
|-------------|---------------------------------------------|
| О           | Not a Keyphrase/Keyword                     |
| B-Process   | Beginning of the Keyphrase of type Process  |
| I-Process   | Inside of the Keyphrase of type Process     |
| B-Task      | Beginning of the Keyphrase of type Task     |
| I-Task      | Inside of the Keyphrase of type Task        |
| B-Material  | Beginning of the Keyphrase of type Material |
| I-Material  | Inside of the Keyphrase of type Material    |

Table 1: Labels(12)

# Data Preprocessing

• Extracted relations between keyphrases from annotation file in subtask 3 with labels, see below.

| Labels | Description |
|--------|-------------|
| 0      | No Relation |
| 1      | Hyponym-of  |
| 2      | Synonym-of  |

Table 2: Labels(For task 3)

# Methodology

- Subtask 1 (Keyword extraction) merged with Subtask 2 (Keyword Classification).
- Subtask 3 (Identifying relations) executed and evaluated separately from previous subtasks.
- Utilized SciBERT, a BERT variant pretrained on scientific data.
- SciBERT architecture mirrors BERT-base, trained specifically for scientific domain with scivocab vocabulary.

# Evaluation - Task 1 and 2 Confusion Matrix



# Evaluation

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
|              |           |        |          |         |
| 0            | 0.98      | 0.99   | 0.98     | 32628   |
| B-Task       | 0.27      | 0.26   | 0.27     | 72      |
| I-Task       | 0.49      | 0.33   | 0.40     | 336     |
| B-Process    | 0.39      | 0.24   | 0.30     | 211     |
| I-Process    | 0.38      | 0.29   | 0.33     | 288     |
| B-Material   | 0.36      | 0.22   | 0.28     | 193     |
| I-Material   | 0.32      | 0.20   | 0.25     | 172     |
|              |           |        |          |         |
| accuracy     |           |        | 0.96     | 33900   |
| macro avg    | 0.46      | 0.36   | 0.40     | 33900   |
| weighted avg | 0.96      | 0.96   | 0.96     | 33900   |

#### Evaluation

#### **Process Task Material**

[CLS] the study outlines a trial of transient response analysis on full – scale motor ##way bridge structures to obtain information concerning the steel – concrete interface and is part of a larger study to assess the long – term sustained benefits offered by imp ##ressed current cath ##odic protection (icc ##p) after the interruption of the protective current [1]. these structures had previously been protected for 5 – 16 ##years by an icc ##p system prior to the start of the study. the protective current was interrupted, in order to assess the long – term benefits provided by icc ##p after it has been turned off. this paper develops and examines a simplified approach for the on – site use of transient response analysis and discusses the potential advantages of the technique as a tool for the assessment of the corrosion condition of steel in reinforced concrete structures. [SEP]

# Evaluation - Task 3



- Jo-whoodh Hybouhus Hybouhus

Synonym-of

# Evaluation

|              | precision | recall | f1-score | support |  |
|--------------|-----------|--------|----------|---------|--|
|              |           |        |          |         |  |
| No Relation  | 0.50      | 0.41   | 0.45     | 95      |  |
| Hyponym-of   | 0.50      | 0.41   | 0.45     | 95      |  |
| Synonym-of   | 0.64      | 0.74   | 0.69     | 224     |  |
|              |           |        |          |         |  |
| accuracy     |           |        | 0.59     | 414     |  |
| macro avg    | 0.55      | 0.52   | 0.53     | 414     |  |
| weighted avg | 0.58      | 0.59   | 0.58     | 414     |  |

F1 Scores: 0.5301769281813894

Recall Score: 0.5207080200501254

Precision Score: 0.5478036175710594