CS 2200 Homework 5

Fall 2018

Instructions:

C-150

Bus

- Please print a copy of the assignment and hand write your answers. No electronic submissions are allowed. Please print as one double-sided page. Do NOT staple multiple sheets together. There will be a 50 point penalty if you do not.
- This is an individual assignment. You may discuss concepts but not the answers.

Latency (in Hours)

	● Due Date: 10/3/18 – 6:00 PM in recitation. Bring your BuzzCard. Show up on time.						
Na	me: GT Username: Section:						
1.	Branching instructions like BNE occur quite often in assembly code. Let's say that an engineer proposes to improve the BNE instruction such that it takes one-fourth time to execute, and BNE instruction makes up 33% of the total instructions. If a program takes 80 ns to execute before the improvement, find: a. Time taken to execute the program after the improvement.						
	b. Speedup achieved by the improvement.						
2.	Let's say that we have a destination 500 miles away, and we can take a C-150 or a bus. The C-150 has a speed of 100 miles/hour and can transport at most 2 people. The bus has a speed of 40 miles/hour and can transport 30 people. Fill out the latency and throughput for C-150 and bus.						

Throughput (in *People per Hour*)

 Consider the pipelined following BOB-2200 in SLT DR, SR1, S 		scribed in the textbook. S	uppose we want t	to implement the		
	Write the pipeline stage next to each operation in which it occurs (not all stages may be used, and some stages may be used more than once)					
Operation		Stage				
Write 0 or 1 to destinate	Write 0 or 1 to destination register					
Increment the PC						
Get values from SR1 and SR2						
Retrieve instruction from memory						
Compare SR1 and S						
parenthesis.	nal program execution? Write DBUF	EBUF	MBUF			
- Fetched Instruction (32 bits)						
c. Calculate the total number of bits that each buffer must hold:						
FBUF bits	DBUF bits	EBUF bits	MBUF	_ bits		
-	structural hazards that requiect 1, and identify what addit			ompared to the		