Introduction to

High-Performance Computing
(HPC)

HPC cluster

"High Performance Computing most generally refers to the practice of aggregating computing power in a way that delivers much higher performance than one could get out of a typical desktop computer or workstation in order to solve large problems in science, engineering, or business."

http://insidehpc.com/hpc-basic-training/what-is-hpc/

Need for HPC cluster?

- Resources: Your computer does not have the resources to run the desired NGS analysis
- Speed: You want to produce results faster than your computer can
- Software: You need software that is unavailable or unusable on your computer

HPC cluster

Need for HPC cluster?

- Resources: Your computer does not have the resources to run the desired NGS analysis
- Speed: You want to produce results faster than your computer can
- Software: You need software that is unavailable or unusable on your computer

HPC cluster components

Nodes: Individual computers in the cluster

Cores: individual processing units available within each CPU of each Node

e.g. a "Node" with eight "quad"-core CPUs = 32 cores for that node.

Shared disk: storage that can be shared (and accessed) by all nodes

Multi-threading

Faster and more efficient

HPC cluster

- multi-user, shared resource
- lots of nodes = lots of processing capacity + lots of memory
- a system like this requires constant maintenance and upkeep.

Please see our Orchestra status page for known issues.

The **Orchestra** platform provides UNIX-based high performance computing, web hosting, and database hosting services at Harvard Medical School.

Orchestra and its associated services are managed by the **Research Computing Group**, part of the HMS <u>Information</u> <u>Technology Department</u>.

Please <u>submit a request</u> via the RC web site for help with Orchestra or feedback. You can also subscribe to the <u>mailing</u> list for Orchestra users.

Wiki page: https://wiki.med.harvard.edu/Orchestra

Introduction to High Performance Computing and Orchestra

HMS Research Computing Spring 2016

What is Orchestra?

- Tech specs:
 - Over 550 compute nodes
 - Over 7,500 cores
 - Over 42TB RAM
- CentOS 6 Linux
- LSF scheduler
- Total 28+PB storage

Using Orchestra!

1. Logging in to remote machines (securely)

- When logging in we used the "ssh" command, ssh stands for Secure SHell
- **ssh** is a protocol for data transfer that is secure, i.e the data is encrypted as it travels between your computer and the cluster (remote computer)
- Commonly used commands that use the ssh protocol for data transfer are, scp and sftp

2. Using & installing software

Using Software Environment Modules

- Most "software" on Orchestra is installed as an environment module.
- An environment module makes the necessary modifications in \$PATH to make sure the program runs without any issues.
- Allows for clean, easy loading, including most dependencies, and switching versions.

Using Software Environment Modules

```
$ module avail
$ module avail seq/
$ module avail stats/
$ module avail seq/bowtie/
```

What software environment modules are available on Orchestra?

- Loading modules
 - \$ module load seq/bowtie/2.0.6
- See all modules that have been loaded
 - \$ module list
- Unloading modules
 - \$ module unload seq/bowtie/2.0.6

3. The Job Scheduler, LSF

LSF: Fair Sharing

- Load Sharing Facility: distributes jobs across Orchestra fairly
- Ensures that no single user or core monopolizes Orchestra
- Users are assigned dynamic priorities
- Queues also have priorities
- Submitting lots of jobs reduces your fairshare priority
- Even if many jobs are pending, your jobs will start quickly provided you have not submitted many jobs

Choosing the proper resources for your job with the appropriate bsub options

The "bsub"

- \$ bsub -q queue -W hr:min job/command
- Necessary to specify:
 - -q (queue)
 - -W (runtime in hr:min)

bsub options

```
-W 3:00 #time requested
-q multicore #name of the queue
             #number of cores requested
-n 4
-R "rusage[mem=8000]" #memory requested in MB
-J jobname
-a openmpi
             #type of mpi run
             #interactive shell
-Is
-e %J.err #send errors to file
-o %J.out #send screen output to file
             #notify when job completes
-N
```

Runtime Limit (bsub -W)

- In hours:minutes
- Runtimes are subject to the maximum time permitted per queue (see table)
- If your job exceeds your runtime, your job will be killed @
- Running many jobs that finish quickly (less than a few minutes) is suboptimal and may result in job suspension, contact RC to learn how to batch jobs

Multithreading (bsub -n)

- A single CPU can execute multiple processes (threads) concurrently
- "-n" indicates how many cores are requested
- Jobs that are overefficient (use more cores than reserved) jeopardize the health of a node
- Reserve the same amount of cores in your job and your bsub!

CPU Limit

- Amount of seconds the cluster works on your job (calculated by LSF)
- Ncores * Runlimit (-n * -W)
- Common error:

bsub –q short –W 8:00 tophat –p 8

tophat asks for 8 cores (-p 8) but only 1 core requested (no – n), job killed in 1 hour (8/8)

Reserving Memory (bsub -R)

- Most nodes have 90GB memory available over all cores, some have more
- Make a resource request with
 - -R "rusage[mem=8000]" (memory requested in MB)
- Memory multiplies by cores requested, so
 - -n 4 –R "rusage[mem=16000]" reserves 64GB memory
- Asking for more memory may cause jobs to pend longer
- TERM_MEMLIMIT errors indicate that not enough memory was reserved

Shared Queues (bsub -q)

- mpi queue if you have an MPI parallel job
- priority queue if you have just one or two jobs to run
- mcore queue if you have multi-core jobs to run.
- short queue if your jobs will take less than 12 hours to run.
- Else: *long* queue.

https://wiki.med.harvard.edu/Orchestra/ChoosingAQueue

Job submission scripts

Shell Scripts: The Basics

```
#! /bin/sh  #always at the top

#commands with options
tophat -p 4 -o ./mytophatdir1 hg19 file1_1.fastq file1_2.fastq
tophat -p 4 -o ./mytophatdir2 hg19 file2_1.fastq file2_2.fastq
```

Save as myshellscript.sh

Run this script in an interactive session as sh myshellscript.sh

<u>OR</u>

Submit it as a job to the LSF scheduler

\$ bsub -q mcore -W 12:00 -n 4 -N -e %J.err -o %J.out sh myshellscript.sh

Creating a Job Submission Script

```
#! /bin/sh
#BSUB -q mcore
#BSUB -W 12:00
#BSUB -o %J.out
#BSUB -e %J.err
#BSUB -N
#BSUB -N
#BSUB -N
#BSUB -R "rusage[mem=12000]"

module load seq/tophat2.1.1

tophat -p 4 -o ./mytophatdir1 hg19 file1_1.fastq file1_2.fastq
```

Save as myshellscript.lsf

Run as \$ bsub < myshellscript.lsf

Orchestra will notify you when the job is done, or if there is an error

Managing jobs and getting information about submitted/running jobs

Monitoring Jobs

List info about jobs/their status:

```
mfk8$loge:~$ bjobs
-r (running jobs)
-p (pending jobs)
-l (command entered, long form)
```

Terminating Jobs

Terminate a job (jobid given at submission)

```
mfk8$loge:~$ bkill jobid
```

Terminate all jobs (be careful!)

```
mfk8$loge:~$ bkill 0
```

4. Filesystems and storage

Filesystems and storage

Filesystems and storage

- Storage on HPC systems is organized differently than on your personal machine
- Physical disks are bundled together into a virtual volume; this
 volume may represent a single filesystem, or may be divided up, or
 partitioned, into multiple filesystems
- Filesystems are accessed over the internal network

Filesystems and storage

Storage on Orchestra

/home

- · /home/user_id
- · quota: 100GB per user
- Backup: 14-day snapshots + 60 day weekly snapshots

/groups, /n/data1, /n/data2

- /groups/your_lab/your_dir
- quota: expandable
- Backup: 14-day snapshots + 60-day weekly snapshots

/n/scratch2

- /n/scratch2/user_id
- quota: 5TB per user
- · Backups: none
- Run workflows here

Checking storage usage

To check your storage available:

```
$ quota
```

- Home directory (/home/username): you get 100GB.
- Group directories: space varies, can increase.

```
/groups/groupname
/n/data1
/n/data2
```

For more direction:

- https://wiki.med.harvard.edu/Orchestra/NewUserGuide
- http://rc.hms.harvard.edu
- rchelp@hms.harvard.edu
- Office Hours: Wednesdays 1-3p Gordon Hall 500