11 Convessità

11.1 Funzione convessa

Definizione 11.1.1 (Convessa). Dato un $I \subset \mathbb{R}$ intervallo¹¹ ed una $f: I \to \mathbb{R}$. f si dice **convessa** in I se, presi due punti qualsiasi sul grafico di f il segmento che li unisce è sopra il grafico di f.

In formule si esprime dicendo che: f si dice convessa in I se $\forall x_1, x_2 \in I$ con $x_1 < x_2$ e $\forall t \in (0,1)$ risulta che:

$$f(x_1 + t(x_2 - x_1)) \le f(x_1) + t(f(x_2) - f(x_1))$$

Se la stessa disuguaglianza vale con il < (minore stretto) allora f si dice strettamente convessa.

Figure 41: Funzione convessa

11.2 Funzione concava

Definizione 11.2.1 (Concava). f si dice concava se -f è convessa. Strettamente concava se -f è strettamente convessa.

Figure 42: Funzione concava

Se andiamo a scrivere in formule una funzione concava è uguale a:

$$f(x_1 + t(x_2 - x_1)) \ge f(x_1) + t(f(x_2) - f(x_1))$$

 $Note\ 11.2.1.$ Nota che, come per la concavità, se andiamo scrivere > (maggiore stretto) allora f si dice strettamente concava.

11.3 Calcolo della convessità

Proposizione 11.3.1. Dato $I \subset \mathbb{R}$ intervallo, $f: I \to \mathbb{R}$ derivabile 2 volte. Sono equivalenti:

- 1. f è convessa (strettamente convessa).
- 2. f' è debolmente crescente (strettamente crescente).
- 3. $f'' \ge 0$ (f'' > 0).

Note 11.3.1. La proposizione è uguale per la concavità ma con il segno scambiato.

Esempio 11.3.1. $f(x) = x^2 \operatorname{da} f : \mathbb{R} \to \mathbb{R}$.

f'8x) = 2x, $f''(x) = 2 > 0 \ \forall x \in \mathbb{R} \Longrightarrow f$ è convessa (anche strettamente) in tutto \mathbb{R} .

Esempio 11.3.2. $f(x) = e^x$ e $f'(x) = e^x$, $f''(x) = e^x > 0$ sempre $\implies f : \mathbb{R} \to \mathbb{R}$ è strettamente convessa.

Esempio 11.3.3. $f(x) = \log(x)$ con $f: (0, +\infty) \to \mathbb{R}$.

 $f'(x) = \frac{1}{x}, f''(x) = \frac{1}{x^2} < 0 \,\forall x > 0 \Longrightarrow f$ è strettamente concava.

11.4 Interpretazione geometrica

¹¹Si parla sempre di intervalli quando si parla di convessità perché la convessità non ha senso sennò

Dire che f' è crescente vuol dire che diciamo che il coefficiente angolare sulla tangente cresce, e questo vuol dire che se noi pensiamo alla retta tangente come un punto che tocca il grafico e mano a mano si sposta sul grafico e così facendo va a cambiare inclinazione ruotando, quindi possiamo dire che "la tangente ruota in senso antiorario".

Esempio 11.4.1. Esempio di funzione concava e convessa solo in sotto intervalli del dominio.

$$f(x) = \sin x, \ f : [0, 2\pi]. \quad f'(x) = \cos x \text{ e}$$

$$f''(x) = -\sin x.$$

$$-\sin x \ge 0. \iff \sin x \le 0 \iff x \in [\pi, 2\pi].$$

$$f''(x) \ge 0 \iff x \in [\pi, 2\pi] \qquad f''(x) \le 0 \iff$$

$$x \in [0, \pi]$$

Proposizione 11.4.1. Prendiamo un $I \subset \mathbb{R}$ intervallo, una $f: I \to \mathbb{R}$ derivabile. Allora f è convessa in I se e solo se $\forall x_0 \in I$ il grafico di f è sopra la retta tangente nel punto $(x_0, f(x_0))$ cioè, $\forall x_0, x \in I$:

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0)$$

Concava se vale il \leq . Stret. convessa se vale $> con \ x \neq x_0$ e stret. concava se vale $< con \ x \neq x_0$.

Note 11.4.1. Il grafico di $f(x_0) + f'(x_0)(x - x_0)$ è la retta tangente.

Esempio 11.4.2. $f(x) = e^{-|x|}$, questa è una funzione pari e $f(x) = e^{-x}$ se $x \ge 0$.

Questa funzione non è ne concava ne convessa in tutto \mathbb{R} , perché ci sono dei tratti dove f sta sotto altri dove sta sopra.

$$f(x) = e^{-|x|} = \begin{cases} e^{-x} & \text{se } x \ge 0\\ e^x & \text{se } x < 0 \end{cases}$$

Quindi se x > 0 $f'(x) = -e^{-x}$ e $f''(x) = e^{-x} > 0 \Longrightarrow f$ è convessa sull'insieme $\{x > 0\}$. Mentre se x < 0 $f'(x) = e^{-x}$ e $f''(x) = e^{x} > 0 \Longrightarrow f$ è convessa sull'insieme $\{x \le 0\}$.

Da questo esempio vediamo che se prendiamo f in due intervalli separati, in entrambi questi intervalli è convessa ma nell'unione dei due intervalli f smette di essere convessa. Il motivo è che abbiamo un punto in x=0 di non derivabilità.

Esempio 11.4.3. Se invece prendiamo
$$f(x) = e^{|x|}$$
 quindi $f(x) = \begin{cases} e^x & \text{se } x \ge 0 \\ e^{-x} & \text{se } x < 0 \end{cases}$

In questo caso f è convessa in $(-\infty, 0]$ ed è convessa anche in $[0, +\infty)$ e in questo caso f è convessa anche in tutto \mathbb{R} .

Possiamo notare che nel secondo esempio se calcoliamo $f'_{-}(0) = -1$ e $f'_{+}(0) = 1$ mentre se vediamo l'esempio prima $f'_{-}(0) = 1$ e $f'_{+}(0) = -1$.

Proposizione 11.4.2. Prendiamo un $I \subset \mathbb{R}$ intervallo, x_0 punto interno di I, $f : \mathbb{R} \to \mathbb{R}$ derivabile in $I \setminus \{x_0\}$. Siano $I_1 = \{x \in I \mid x < x_0\}$ e $I_2 = \{x \in I \mid x > x_0\}$ abbiamo che se f è convessa in I_1 e I_2 e I_3 0 è un punto angoloso per I_4 1 alora I_4 2 e solo se I_4 2 e solo se I_4 3.

Questa cosa perché, se noi prendiamo una funzione che presenta un angolo e tracciamo la tangente, data dalla derivata, a sinistra notiamo che mano a mano che ci spostiamo verso destra questa tangente "ruoterà" sul grafico, nel punto x_0 avremo due tangenti una dalla derivata destra ed una dalla sinistra, possiamo notare che se la funzione rimane concava o convessa questa tangente continuerà a "ruotare" nello stesso verso senza fare "uno scatto" nel suo andamento, in caso contrario allora non manterrà la concavità o la convessità.

11.5 Flessi

Definizione 11.5.1 (Flesso). Dato un $I \subset \mathbb{R}$ intervallo, $f: I \to \mathbb{R}$, x_0 punto interno ad I si dice punto di flesso se f è derivabile in x_0 ed esiste un interno $U \subset I$ di x_0 t.c. la quantità

$$\frac{f(x)-(f(x_0)+f'(x_0)(x-x_0))}{x-x_0} \ non \ cambia \ segno \ in \ U\setminus \{x_0\}$$

Dire che $\frac{f(x)-(f(x_0)+f'(x_0)(x-x_0))}{x-x_0}$ non cambia segno vuol dire che il grafico della funzione passa da sopra a sotto la tangente (o viceversa).

11.5 Flessi 57

Definizione 11.5.2 (Flesso a tangente verticale). Se invece $f'(x) = \pm \infty$ (f non è derivabile), f è continua in x_0 , e se f è convessa in un intorno destro di x_0 e concava in un intorno sinistro di x_0 (o viceversa) allora x_0 si dice punto di flesso a tangente verticale.

Un flesso verticale è un cambiamento di convessità con un flesso verticale.

Osservazione 11.5.1. Se avete una funzione $f: I \to \mathbb{R}$, I intervallo ed f derivabile due volte in I. Allora se $f''(x_0) = 0$ e f cambia segno in x_0 allora x_0 è punto di flesso.

Cambia segno vuol dire che $f''(x) \le 0$ se $x \le x_0$ e $f''(x) \ge 0$ se $x \ge x_0$ (o viceversa), con $x \in U$ interno di x_0 .

Esempio 11.5.1. Calcoliamo il flesso di $f(x) = x^3$, $f'(x) = 3x^2$, f''(x) = 6x. Vediamo dall'immagine che esiste un flesso in x = 0, infatti: f''(x) = 0, $f''(x) \le 0$ se $x \le 0$ e $f''(x) \ge 0$ se $x \ge 0$.

Osservazione 11.5.2. $f''(x_0) = 0$ non è sufficiente per aver un flesso

Esempio 11.5.2. Prendiamo per verificare l'osservazione $f(x) = x^4$, $f'(x) = 4x^3$, $f''(x) = 12x^2$. Anche se f(0) = 0 abbiamo che $f''(x) \ge 0 \forall x \in \mathbb{R} \implies f$ è convessa in \mathbb{R} .

Osservazione 11.5.3. Ci possono essere punti di flesso dove non esiste la derivata seconda.

Esempio 11.5.3.
$$f(x) = x \cdot |x|$$
 $f(x) = \begin{cases} x^2 & \text{se } x \ge 0 \\ -x^2 & \text{se } x < 0 \end{cases}$ $f'(x) = \begin{cases} 2x & \text{se } x > 0 \\ -2x & \text{se } x < 0 \end{cases}$

Possiamo vedere che $x_0=0$ è punto di flesso, infatti f è derivabile in $x_0=0$ infatti $f'(0)=\lim_{x\to 0}\frac{f(x)-f(0)}{x-0}=\lim_{x\to 0}|x|=0$. La retta tangente in x=0 è y=0. f passa da sopra la tangente in $x_0=0$, quindi x_0 è un punto di flesso. Però non esiste la derivata seconda in $x_0=0$ perché in questo punto c'è un punto angoloso.

Osservazione 11.5.4. Se abbiamo una funzione $f: I \to \mathbb{R}$, con $I \subset \mathbb{R}$, f convessa nei punti interni di I, ed f continua in tutto $I \Longrightarrow f$ è convessa in I.

Quindi se abbiamo $f:[a,b]\to\mathbb{R}$ convessa in (a,b) ed f continua in $[a,b]\Longrightarrow f$ è convessa in [a,b].

11.5 Flessi 58