Операции передачи и преобразования

14

Обзор главы

14.1	Передача значения	14–2
14.2	Преобразование ВСО-числа в целое число (16 бит)	14–4
14.3	Преобразование целого числа (16 бит) в ВСО-число	14–5
14.4	Преобразование целого числа (16 бит) в целое число (32 бита)	14–6
14.5	Преобразование BCD-числа в целое число (32 бита)	14–7
14.6	Преобразование целого числа (32 бита) в ВСО-число	14–8
14.7	Преобразование целого числа (32 бита) в число с плавающей точкой	14–9
14.8	Образование дополнения до единицы целого числа (16 бит)	14–10
14.9	Образование дополнения до единицы целого числа (32 бита)	14–11
14.10	Образование дополнения до двух целого числа (16 бит)	14–12
14.11	Образование дополнения до двух целого числа (32 бита)	14–13
14.12	Изменение знака числа с плавающей точкой	14–14
14.13	Округление числа	14–15
14.14	Образование целого числа	14–16
14.15	Образование ближайшего большего целого числа из числа с плавающей точкой	14–17
14.16	Образование ближайшего меньшего целого числа из числа с плавающей точкой	14–18

14.1. Передача значения

Описание

С помощью операции *Передача значения* Вы можете предварительно загружать переменные специфическими значениями.

Значение, заданное на входе IN, копируется в операнд, заданный на выходе О. ENO имеет такое же состояние сигнала, как EN.

Операция *Передача значения* может с помощью блока MOVE копировать все типы данных, имеющие длину 8, 16 или 32 бита. Определяемые пользователем типы данных, такие как массивы или структуры, должны копироваться посредством встроенной системной функции *Копирование переменной* (см. Руководство по программированию /234/).

Операция *Передача значения* испытывает влияние Master Control Relay (MCR), Более подробную информацию о принципе действия MCR возьмите в главе 20.5.

При размещении блока *Передача значения* Вы должны соблюдать определенные ограничения (см. главу 6.1).

Блок КОР	Блок КОР Параметры Тип данных		Признак операнда	Описание
	EN	BOOL	E, A, M, D, L	Разрешающий вход
MOVE	ENO	BOOL	E, A, M, D, L	Разрешающий выход
EN ENO —	EN ENO IN Все типы данных длиной 8, 16 или 32 бита		E, A, M, D, L	Значение источника
	О	Все типы данных длиной 8, 16 или 32 бита	E, A, M, D, L	Адрес приемника

Рис. 14-1. Блок "Передача значения" и параметры

Рис. 14-2. Передача значения

Предварительная загрузка переменных Информацию по встроенным системным функциям, которые используются как операции передачи и с помощью которых Вы можете загружать переменные специфическими значениями или копировать переменные различного типа, Вы найдете в Руководстве по программированию /234/.

14.2. Преобразование ВСО-числа в целое число (16 бит)

Описание

Операция *Преобразование ВСD-числа в целое число (16 бит)* читает содержимое входного параметра IN в виде трехразрядного числа в двоично-десятичном коде (BCD, \pm 999) и преобразует это число в целочисленное значение (16 бит). Результат выводится выходным параметром O.

ENO всегда имеет такое же значение, как EN.

Если значение разряда BCD-числа находится в недействительной области между 10 и 15, то при попытке преобразования возникает BCDF-ошибка:

- CPU переходит в STOP. В память диагностики записывается "Ошибка BCD—преобразования" по номеру события 2521.
- Если запрограммирован OB121, то он вызывается. Более подробную информацию по программированию OB121 Вы найдете в Справочнике по программированию /234/.

При размещении блока *Преобразование ВСD-числа в целое число (16 бит)* Вы должны соблюдать определенные ограничения (смотрите главу 6.1).

Блок КОР	Параметры	Тип данных	Область памяти	Описание
BCD I	EN	BOOL	E, A, M, D, L	Разрешающий вход
EN ENO	ENO	BOOL	E, A, M, D, L	Разрешающий выход
IN O	IN	WORD	E, A, M, D, L	ВСД-число
	О	INT	E, A, M, D, L	Целочисленное значение (16 бит) de BCD-числа

Рис. 14-3. Блок "Преобразование ВСD-числа в целое число (16 бит)" и параметры

Рис. 14-4. Преобразование ВСД-числа в целое число (16 бит)

14.3. Преобразование целого числа (16 бит) в ВСО-число

Описание

Операция *Преобразование целого числа* (16 бит) в *BCD*—*число* читает содержимое входного параметра IN в виде целочисленного значения (16 бит) и преобразует его в трехразрядное число, представленное в двоично-десятичном коде (BCD, \pm 999). Результат выводится выходным параметром О. Если возникает переполнение, то ENO = 0.

При размещении блока *Преобразование целого числа (16 бит) в ВСD*–*число* Вы должны соблюдать определенные ограничения (смотрите главу 6.1).

Блок КОР	Параметры	Тип данных	Область памяти	Описание
I_BCD	EN ENO	BOOL BOOL	E, A, M, D, L E, A, M, D, L	Разрешающий вход Разрешающий выход
EN ENO	IN	INT	E, A, M, D, L	Целое число (16 бит)
IN O	О	WORD	E, A, M, D, L	ВСД-значение целого числа (16 бит)

Рис. 14-5. Блок "Преобразование целого числа (16 бит) в ВСО-число" и параметры

Рис. 14-6. Преобразование целого числа (16 бит) в ВСД-число

14.4. Преобразование целого числа (16 бит) в целое число (32 бита)

Описание

Операция *Преобразование целого числа (16 бит) в целое число (32 бита)* читает содержимое входного параметра IN в виде целого числа (16 бит) и преобразует его в целое число (32 бита). Результат выводится выходным параметром О. ENO имеет такое же состояние сигнала, как EN.

При размещении блока *Преобразование целого числа (16 бит) в целое число (32 бита)* Вы должны соблюдать определенные ограничения (смотрите главу 6.1).

Блок КОР	Параметры	Тип данных	Область памяти	Описание
I_DI	EN ENO	BOOL BOOL	E, A, M, D, L E, A, M, D, L	Разрешающий вход Разрешающий выход
EN ENO	IN	INT	E, A, M, D, L	Преобразуемое значение
	0	DINT	E, A, M, D, L	Результат

Рис. 14-7. Блок "Преобразование целого числа (16 бит) в целое число? 32 бита)" и параметры

Рис. 14-8. Преобразование целого числа (16 бит) в целое число (32 бита)

14.5. Преобразование ВСО-числа в целое число (32 бита)

Описание

Операция *Преобразование ВСD—числа в целое число (32 бита)* читает содержимое входного параметра IN в виде семиразрядного числа в двоично-десятичном коде (BCD, \pm 9 999 999) и преобразует это число в целочисленное значение (32 бита). Результат выводится выходным параметром О.

ENO всегда имеет такое же значение, как EN.

Если значение разряда BCD–числа находится в недействительной области между 10 и 15, то при попытке преобразования возникает BCDF–ошибка:

- CPU переходит в STOP. В память диагностики записывается "Ошибка BCD—преобразования" по номеру события 2521.
- Если запрограммирован OB121, то он вызывается. Более подробную информацию по программированию OB121 Вы найдете в Справочнике по программированию /234/.

При размещении блока *Преобразование BCD–числа в целое число (32 бита)* Вы должны соблюдать определенные ограничения (смотрите главу 6.1).

Блок КОР	Параметры	Тип данных	Область памяти	Описание
BCD_DI	EN ENO	BOOL BOOL	E, A, M, D, L E, A, M, D, L	Разрешающий вход Разрешающий выход
EN ENO	IN	DWORD	E, A, M, D, L	ВСД-число
IN O	0	DINT	E, A, M, D, L	Целочисл. знач.(32 бита) BCD-числа

Рис. 14-9. Блок "Преобразование ВСО-числа в целое число (32 бита)" и параметры

Рис. 14-10. Преобразование ВСД-числа в целое число (32 бита)

14.6. Преобразование целого числа (32 бита) в ВСО-число

Описание

Операция *Преобразование целого числа* (32 бита) в *BCD*—*число* читает содержимое входного параметра IN в виде целочисленного значения (32 бита) и преобразует его в семиразрядное число, представленное в двоично-десятичном коде (BCD, \pm 9 999 999). Результат выводится выходным параметром О. Если возникает переполнение, то ENO = 0.

При размещении блока *Преобразование целого числа (32 бита) в ВСD-число* Вы должны соблюдать определенные ограничения (смотрите главу 6.1).

Блок КОР	Параметры	Тип данных	Область памяти	Описание
DI BCD	EN ENO	BOOL BOOL	E, A, M, D, L E, A, M, D, L	Разрешающий вход Разрешающий выход
EN ENO	IN	DINT	E, A, M, D, L	Целое число (32 бита)
IN O	0	DWORD	E, A, M, D, L	ВСО-значение целого числа (32 бита)

Рис. 14-11. Блок "Преобразование целого числа (32 бита) в ВСД-число" и параметры

Рис. 14-12. Преобразование Гелого) исла (32 бита) в ВСД-число

14.7. Преобразование целого числа (32 бита) в число с плавающей точкой

Описание

Операция *Преобразование целого числа (32 бита) в число с плавающей точкой* читает содержимое входного параметра IN в виде целого числа (32 бита) и преобразует его в число с плавающей точкой. Результат выводится выходным параметром О. ENO имеет такое же состояние сигнала, как EN.

При размещении блока *Преобразование целого числа (32 бита) в число с плавающей точкой* Вы должны соблюдать определенные ограничения (смотрите главу 6.1).

Блок КОР	Параметры	Тип данных	Область памяти	Описание
DI R	EN ENO	BOOL BOOL	E, A, M, D, L E, A, M, D, L	Разрешающий вход Разрешающий выход
EN ENO	IN	DINT	E, A, M, D, L	Преобразуемое значение
	0	REAL	E, A, M, D, L	Результат

Рис. 14-13. Блок "Преобразование целого числа (32 бита) в число с плавающей точкой" и параметры

Рис. 14-14. Преобразование целого числа (32 бита) в число с плавающей точкой

14.8. Образование дополнения до единицы целого числа (16 бит)

Описание

Операция *Образование дополнения до единицы целого числа (16 бит)* читает содержимое входного параметра IN и выполняет поразрядную булеву операцию ИСКЛЮЧАЮЩЕЕ ИЛИ над словом длиной 16 бит (см. главу 15.6) и шестнадцатиричным шаблоном FFFF_H. Вследствие этого происходит обращение значения каждого бита. Результат выводится выходным параметром О. ENO всегда имеет такое же состояние сигнала, как EN.

При размещении блока *Образование дополнения до единицы целого числа (16 бит)* Вы должны соблюдать определенные ограничения (см. главу 6.1).

Блок КОР	Параметры	Тип данных	Область памяти	Описание
INV I	EN ENO	BOOL BOOL	E, A, M, D, L E, A, M, D, L	Разрешающий вход Разрешающий выход
EN ENO	IN	INT	E, A, M, D, L	Входное значение
IN O	О	INT	E, A, M, D, L	Дополн. до 1 целого числа (16 бит)

Рис. 14-15. Блок "Образование дополнения до единицы целого числа (16 бит)" и параметры

Рис. 14-16. Образование дополнения до единицы целого числа (16 бит)

14.9. Образование дополнения до единицы целого числа (32 бита)

Описание

Операция *Образование дополнения до единицы целого числа* (32 бита) читает содержимое входного параметра IN и выполняет поразрядную булеву операцию ИСКЛЮЧАЮЩЕЕ ИЛИ над словом длиной 32 бита (см. главу 15.6) и шестнадцатиричным шаблоном FFFF FFFF $_{
m H}$. Вследствие этого происходит

обращение значения каждого бита. Результат выводится выходным параметром О. ENO всегда имеет такое же состояние сигнала, как EN.

При размещении блока *Образование дополнения до единицы целого числа (32 бита)* Вы должны соблюдать определенные ограничения (см. главу 6.1).

Блок КОР	Параметры	Тип данных	Область памяти	Описание
INV DI	EN ENO	BOOL BOOL	E, A, M, D, L E, A, M, D, L	Разрешающий вход Разрешающий выход
EN ENO	IN	DINT	E, A, M, D, L	Входное значение
IN O	О	DINT	E, A, M, D, L	Дополн. до 1 целого числа ? 32 бита)

Рис. 14-17. Блок "Образование дополнения до единицы целого числа (32 бита)" и параметры

Рис. 14-18. Образование дополнения до единицы целого числа (32 бита)

14.10. Образование дополнения до двух целого числа (16 бит)

Описание

Операция *Образование дополнения до двух целого числа (16 бит)* читает содержимое входного параметра IN и обращает разряд знака (например, преобразует положительное значение в отрицательное значение). Результат выводится выходным параметром О. Состояния сигналов EN и ENO всегда одинаковы со следующим исключением: если состояние сигнала EN равно "1" и возникает переполнение, то состояние сигнала ENO равно "0".

При размещении блока *Образование дополнения до двух целого числа(16 бит)* Вы должны соблюдать определенные ограничения (см. главу 6.1).

Блок КОР	Параметры	Тип данных	Область памяти	Описание
NEG I	EN ENO	BOOL BOOL	E, A, M, D, L E, A, M, D, L	Разрешающий вход Разрешающий выход
EN ENO	IN	INT	E, A, M, D, L	Входное значение
zIN O	О	INT	E, A, M, D, L	Дополн. до 2 целого числа ? 16 бит)

Рис. 14-19. Блок "Образование дополнения до двух целого числа (16 бит)" и параметры

Рис. 14-20. Образование дополнения до двух целого числа (16 бит)

14.11. Образование дополнения до двух целого числа (32 бита)

Описание

Операция *Образование дополнения до двух целого числа (32 бита)* читает содержимое входного параметра IN и обращает разряд знака (например, преобразует положительное значение в отрицательное значение). Результат выводится выходным параметром О. Состояния сигналов EN и ENO всегда одинаковы со следующим исключением: если состояние сигнала EN равно "1" и возникает переполнение, то состояние сигнала ENO равно "0".

При размещении блока Образование дополнения до двух целого числа (32 бита) Вы должны соблюдать определенные ограничения (см. главу 6.1).

Блок КОР	Параметры	Тип данных	Область памяти	Описание
NEG DI	EN ENO	BOOL BOOL	E, A, M, D, L E, A, M, D, L	Разрешающий вход Разрешающий выход
EN ENO	IN	DINT	E, A, M, D, L	Входное значение
IN O	О	DINT	E, A, M, D, L	Дополн. до 2 нелого числа (32 бита)

Рис. 14-21. Блок "Образование дополнения до двух целого числа (32 бита)" и параметры

Рис. 14-22. Образование дополнения до двух целого числа (32 бита)

14.12. Изменение знака числа с плавающей точкой

Описание

Операция *Изменение знака числа с плавающей точкой* читает содержимое входного параметра IN и обращает разряд знака, то есть эта операция изменяет разряда знака числа (например, с 0 для положительного числа на 1 для отрицательного числа). Биты показателя и мантиссы остаются неизменными. Результат выводится выходным параметром О. ENO всегда имеет такое же состояние сигнала, как EN.

При размещении блока Изменение знака числа с плавающей точкой Вы должны соблюдать определенные ограничения (смотрите главу 6.1).

Блок КОР	Параметры	Тип данных	Область памяти	Описание
NEG R	EN ENO	BOOL BOOL	E, A, M, D, L E, A, M, D, L	Разрешающий вход Разрешающий выход
EN ENO	IN	REAL	E, A, M, D, L	Входное значение
IN O	О	REAL	E, A, M, D, L	Результат-отрицание вход. значения

Рис. 14-23. Блок "Изменение знака числа с плавающей точкой" и параметры

Рис. 14-24. Изменение знака числа с плавающей точкой

14.13. Округление числа

Описание

Операция *Округление числа* читает содержимое входного параметра IN в виде числа с плавающей точкой и преобразует его в целое число (32 бита). Результатом является ближайшее целое число, которое и выводится выходным параметром О. Если дробная часть равна ",5", то выводится четное число. Если возникает переполнение, то ENO = 0.

При размещении блока Округление *числа* Вы должны соблюдать определенные ограничения (смотрите главу 6.1).

Блок КОР	Параметры	Тип данных	Область памяти	Описание
ROUND	EN ENO	BOOL BOOL	E, A, M, D, L E, A, M, D, L	Разрешающий вход Разрешающий выход
EN ENO	IN	REAL	E, A, M, D, L	Округляемое значение
IN O	0	DINT	E, A, M, D, L	IN округл. до ближайш. целого числа

Рис. 14-25. Блок "Округление) исла" и 4араметры

Рис. 14-26. Округление числа

14.14. Образование целого числа

Описание

Операция *Образование целого числа* читает содержимое входного параметра IN в виде числа с плавающей точкой и преобразует его в целое число (32 бита). Результатом является целочисленная часть числа с плавающей точкой, которая и выводится выходным параметром О. Если возникает переполнение, то ENO = 0.

При размещении блока *Образование целого числа* Вы должны соблюдать определенные ограничения (смотрите главу 6.1).

Блок КОР	Параметры	Тип данных	Область памяти	Описание
TRUNC	EN ENO	BOOL BOOL	E, A, M, D, L E, A, M, D, L	Разрешающий вход Разрешающий выход
EN ENO	IN	REAL	E, A, M, D, L	Округляемое значение
IN O	0	DINT	E, A, M, D, L	Нелая часть IN

Рис. 14-27. Блок "Образование □елого) исла" и 4араметры

Рис. 14-28. Образование Гелого) исла

14.15. Образование ближайшего большего целого числа из числа с плавающей точкой

Описание

Операция *Образование ближайшего большего целого числа из числа с плавающей точкой* читает содержимое входного параметра IN в виде числа с плавающей точкой и преобразует его в целое число (32 бита).

Результатом является наименьшее целое число, которое больше или равно заданному числу с плавающей точкой. Результат выводится выходным параметром О. Если возникает переполнение, то ENO = 0.

При размещении блока *Образование ближайшего большего целого числа из числа с плавающей точкой* Вы должны соблюдать определенные ограничения (см. главу 6.1).

Блок КОР	Параметры	Тип данных	Область памяти	Описание
CEIL	EN ENO	BOOL BOOL	E, A, M, D, L E, A, M, D, L	Разрешающий вход Разрешающий выход
EN ENO	IN	REAL	E, A, M, D, L	Преобразуемое значение
IN O	О	DINT	E, A, M, D, L	Результат

Рис. 14-29. Блок "Образование ближайшего большего целого числа из числа с плавающей точкой" и параметры

Рис. 14-30. Образование ближайшего большего целого числа из числа с плавающей точкой

14.16. Образование ближайшего меньшего целого числа из числа с плавающей точкой

Описание

Операция *Образование ближайшего меньшего целого числа из числа с плавающей точкой* читает содержимое входного параметра IN в виде числа с плавающей точкой и преобразует его в целое число (32 бита). Результатом является наибольшее целое число, которое меньше или равно заданному числу с плавающей точкой. Результат выводится выходным параметром О. Если возникает переполнение, то ENO = 0.

При размещении блока *Образование ближайшего меньшего целого числа из числа с плавающей точкой* Вы должны соблюдать определенные ограничения (смотрите главу 6.1).

Блок КОР	Параметры	Тип данных	Область памяти	Описание
FLOOR	EN ENO	BOOL BOOL	E, A, M, D, L E, A, M, D, L	Разрешающий вход Разрешающий выход
EN ENO	IN	REAL	E, A, M, D, L	Преобразуемое значение
	О	DINT	E, A, M, D, L	Результат

Рис. 14-31. Блок "Образование ближайшего меньшего целого числа из числа с плавающей точкой" и параметры

Рис. 14-32. Образование ближайшего меньшего целого числа из числа с плавающей точкой