Spotify Research

- Size/features in the dataset

~50 million songs on spotify

```
"duration_ms" : 255349,
 "key" : 5,
 "mode" : 0,
 "time_signature" : 4,
 "acousticness" : 0.514,
 "danceability": 0.735,
 "energy" : 0.578,
 "instrumentalness": 0.0902,
 "liveness": 0.159,
 "loudness" : -11.840,
 "speechiness": 0.0461,
 "valence" : 0.624,
"tempo" : 98.002,
 "id" : "06AKEBrKUckW0KREUWRnvT",
 "uri" : "spotify:track:06AKEBrKUckW0KREUWRnvT",
 "track_href": "https://api.spotify.com/v1/tracks/06AKEBrKUckW0KREUWRnvT",
 "analysis_url" : "https://api.spotify.com/v1/audio-
analysis/06AKEBrKUckW0KREUWRnvT",
  "type" : "audio_features"
```

	id	title	first_artist	all_artists	danceability	energy	key	loudness	mode	acousticness	instrumentalness	liveness	valence	tempo	duration_ms	time_signature
94	5IF6IBPqbclVR7SQKmCIyA	Just Like You	Louis Tomlinson	[Louis Tomlinson]	0.703	0.628	0	-5.914	1	0.36400	0.000000	0.384	0.471	138.032	205217	4
95	2UCI5rt3PkM9pXtARihaaQ	Bedroom Floor	Liam Payne	[Liam Payne]	0.625	0.684	1	-7.147	1	0.34200	0.000064	0.107	0.217	119.932	188234	4
96	2kqAtjOtQPAR0OiYUJR43k	Can We Dance	The Vamps	[The Vamps]	0.640	0.820	1	-4.729	0	0.00312	0.000000	0.189	0.583	130.108	192711	4
97	3wGCtxNjZe3GrZfkojZ1FB	I'm a Mess	Jasmine	[Jasmine]	0.636	0.487	11	-7.123	0	0.09460	0.000000	0.111	0.647	97.022	190500	4
98	3jnQF00xLiAEFFcMdBgJ9s	Oh Cecilia (Breaking My Heart)	The Vamps	[The Vamps]	0.746	0.844	11	-5.506	1	0.03150	0.000000	0.318	0.662	100.027	196684	4

- Spotify api audio features documentation:
 - https://developer.spotify.com/documentation/web-api/reference/tracks/get-audio-features/
- 18 features listed above for audio features
 - Only 17 usable?
- Can scrape up to 99 songs at once
 - Create something to scrape 99 songs every x amount of time?
- In existing blogs, they had "liked" playlist and "disliked" playlist

How to scrape/add more data and labels

- https://machinelearningknowledge.ai/tutorial-how-to-use-spotipy-api-to-scrape-spotify-data/
- We will use spotify api to get data, tutorial above ^
- Also have other features like popularity, explicit, audio analysis about beats, bars, pitch, etc.

- Spotify api documentation:
 https://developer.spotify.com/documentation/web-api/reference/tracks/
- https://towardsdatascience.com/how-to-create-large-music-datasets-using-spotip v-40e7242cc6a6

_

How to train model/target classification

- https://medium.com/deep-learning-turkey/build-your-own-spotify-playlist-of-best-p-laylist-recommendations-fc9ebe92826a
- https://techxplore.com/news/2019-09-spotify-songs.html
 - Found that random forest created the highest accuracy
- <u>https://towardsdatascience.com/breaking-spotifys-algorithm-of-music-genre-class</u> ification-31ecf8453af1
 - Create own algorithm to classify songs by genre
- Probably use random forest and augmented data sets to create best model?
- More complex try and get waveform info of song and train based on that to see if songs are similar or not?
 - https://benanne.github.io/2014/08/05/spotify-cnns.html
- Idea for overall recommendations concept (similar to
 <u>https://towardsdatascience.com/making-your-own-discover-weekly-f1ac7546fedb</u>
 - Train the model on a personal Spotify user's library with a score of some kind for each song (subjective rating, or frequency in playlists, or # of plays)
 - Then have the model predict that score for each song in a randomly selected large test set of Spotify songs (or a large test set of Spotify recommendations)
 - Then recommend songs from the test set with optimal score
- More accurate: genre classifier

_

- Further applications/usefulness of model that we can expand on in blog

- Predict next "top hits" based on current popular songs
- Create custom playlists for a group gathering based on everyone's playlists
- Create playlist by "mood" study beats, party beats, customized etc

- Existing solutions/blogs

- https://machinelearningknowledge.ai/mini-ml-project-predicting-song-likeness-from-spotify-playlist/
- https://medium.com/mlreview/spotify-analyzing-and-predicting-songs-58827a0fa4
 2b
- https://cs230.stanford.edu/files_winter_2018/projects/6970963.pdf