CR-103/97 DMS-DR-1053

-SPACÉ SHUTTLE-

INVESTIGATION OF THE AERODYNAMIC CHARACTERISTICS OF THE GAC 518 EARTH ORBITING SHUTTLE, CONFIGURATION IIF, AT MACH NUMBER = .170

GRUMMAN AIRCRAFT ENGINEERING CORPORATION

WIND TUNNEL TEST RESULTS DATA REPORT

71-35104 (THRU) (ACCESSION NUMBER) (CODE)

SADSAC SPACE SHUTTLE **AEROTHERMODYNAMIC** DATA MANAGEMENT SYSTEM

NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va. 22151

SPACE DIVISION Y

JANUARY 1971 CONTRACT NAS8-4016 SCHEDULE II DRL 184-58

> **AMENDMENT 130** MARSHALL

	TECHNIC	ۇ AL REPORT STANDARD TITLE PAGE:
NASA CR-103198	2 GOVERNMENT ACCESSION NO	3 RECIPIENT'S CATALOG NO.
4 TITLE AND SUBTITLE (Space Shuttle Investigation of the Aerodyna	mic Characteristics of the	5 REPORT DATE January 1971
GAC 518 Earth Orbiting Shuttl Mach Number = .170	e, Configuration IIF, at	6 PERFORMING ORGANIZATION CODE CCSD
7 AUTHOR(S) S. Kalemaris, A. McE J. Wheeler, GAC	ride and	8 PERFORMING ORGANIZATION REPORT # DMS-DR-1053
9 PERFORMING ORGANIZATION NAME AND ADD Chrysler Corporation Space Di	• • • • •	10 WORK UNIT NO.
Michoud Operations P.O. Box 29200	•	11 CONTRACT OR GRANT NO. NAS8-4016
New Orleans, Louisiana 70129 12 SPONSORING AGENCY NAME AND ADDRESS		13 TYPE OF REPORT & PERIOD COVERED Contractor
National Aeronautics and Spac George C. Marshall Space Flig	e Administration	00222
Marshall Space Flight Center,		14 SPONSORING AGENCY CODE S&E-AERO-A
15 SUPPLEMENTARY NOTES Contractor Monitor: C. Dale	Andrews	•
	crodynamics Laboratory	
16 ABSTRACT These tests were designed to		
was moved 200" aft in order modifications were made to to	longitudinal or lateral-dir to provide greater longitudiry and increase the stall and le hinge flap and a split fl s of the model. Also, a can a longitudinal trim surface easurements were taken and s	rectional stability. The wing mal stability. Several wing agle of the wing and delay the lap were tested to investigate hard was tested to provide having a small drag penalty.
Contract No. NAS8-4016 wit mation generated by various	h Chrysler Corporation is for Space Shuttle Phase B Contrac	data presentation of infor- ctors and NASA Centers.
17 KEY WORDS	U. S. Govern	STATEMENT nment Agencies and contractor
19 SECURITY CLASSIF (of this report) Unclassified	20 SECURITY CLASSIF (of this page) Unclassified	21. NO. OF PAGES 22. PRICE 37 Front 27 Data Plots
	<u></u>	64 Total

SADSAC/SPACE SHUTTLE

WIND TUNNEL TEST DATA REPORT

CONFIGURATION	Grumman Aircraft Corp. IIF Earth Orbiting Shuttle
TEST PURPOSE	To determine basic subsonic aerodynamic information on
	the GAC IIF Configuration Farth Orbiting Shuttle
TEST FACILITY.	Grumman 7x10 Ft. Low Speed Wind Tunnel
TESTING AGENCY	Grumman Aircraft Corporation
TEST NO & DATE	- GWTT-279 February 1970
TEST CONDUCTOR	(S) S. Kalemaris, A. McBride, J. Wheeler
	DATA MANAGEMENT SERVICES
LIAISON X	Vacant DATA OPERATIONS:
m J	2.00
0	EASE APPROVAL. The Komp
الملائب	N. D. Kemp, Supervisor
	Aero Thermo Data Group

This report has been prepared by Chrysler Corporation Space Division under a Data Management Contract to the NASA Chrysler assumes no responsibility for the data presented herein other than its display characteristics.

TABLE OF CONTENTS

	PAGE NUMBER
LIST OF FIGURES	111
LIST OF PHOTOGRAPHS	ıv
INTRODUCTION	1
SUMMARY	2
DESCRIPTION OF TUNNEL	3
TEST CONDITIONS	<u> </u>
DATA REDUCTION	5
CONFIGURATIONS INVESTIGATED	6
DATA SET COLIATION	13
MODEL DRAWINGS	15
TEST NOMENCIATURE	24
REFERENCES	32
PLOT DATA INDEX	33
TABULATED DATA LISTING	37
PTOTIED DAMA	38

LIST OF FIGURES

FIGURE		PAGE
1	GENERAL ARRANGEMENT	15
	518 MOD 300	
2	WING ASSEMBLY (W ₁)	16
	518 MOD 301	
3	TAIL ASSEMBLY	17
	518 MOD 302	
1	Trouvilde Alberta Terro	. 0
4	FUSETAGE CAMBER LINES	18
	518 MOD 305	
	$^{ m B}_{ m lO}$ $^{ m W}_{ m l_{ m l}}$	
	-10 4	
	Wiz	
	"1Z	
5	CANARD (C)	19
6	STRAKE (K)	20
7	AXIS SYSTEMS, SHOWING DIRECTION AND SENSE OF FORCE AND MOMENT COEFFICIENTS, ANGLE OF ATTACK	
	AND SIDESLIP ANGLE	21

111

LIST OF PHOTOGRAPHS

FIGURE		PACE
å	MODEL INSTALLATION PHOTOGRAPHS	22

GA 348A REV 2 8 70 1254

INTRODUCTION

This report presents the data from the first series of tests conducted on a 1/40 scale model of the GAC II F configuration Earth Orbiting Shuttle in the Grumman 7 x 10 ft. Low Speed Wind Tunnel. These tests were conducted from February 13 to February 28, 1970 on a one shift with overtime basis.

The job charge number for this test was 10096-301. Cognizant engineering personnel were:

- S. Kalemaris Aerodynamics
- A. McBride Aero Test
- J. Wheeler Aero Test

-3264 MIY1 4 44 5 M

SUMMARY

These tests were designed to provide basic subsonic aerodynamic information on the GAC IIF configuration Earth Orbiting Shuttle. Various lower fuselage camber lines and chine radii were tested in an attempt to increase the body lift without introducing a significant loss in longitudinal or lateral-directional stability. The wing was moved 200" aft in order to provide greater longitudinal stability. Several wing modifications were made to try and increase the stall angle of the wing and delay the subsequent pitch up. A simple hinge flap and a split flap were tested to investigate the high lift characteristic, of the model. Also, a canard was tested to provide greater lift and to provide a longitudinal trim surface having a small drag penalty.

In addition, base pressure measurements were taken and several aft fuselage modifications were made to reduce base drag.

REPORT CWIT 279
DATE Feb. 1970

2

DESCRIPTION OF TUNNEL

The Grumman wind tunnel is an open return, closed throat, Venturi type tunnel having a 7×10 ft. retangular test section.

The rectangular entrance section is equipped with radially faired entrance fairings to give a bell-mouth effect. A honeycomb is located in the entrance section to provide flow straightening, and fine mesh copper screening has been added forward and aft of the honeycomb to smooth out flow pulsations.

A smoothly faired contraction cone connects the entrance section to the test section. Corner fairings begin at the start of the contraction cone and gradually increase in size until they enter the test section. The corner fairings in the test section are given a slight downstream divergence to reduce bouyancy effects.

The diffuser section changes from rectangular at the end of the test section to square at the beginning of the transition section, while the transition section smoothly fairs into a circular section at the propeller ring.

The test section will accommodate models up to an eight foot wing span. The tunnel may be operated at any speed up to 160 mph. At this speed, the motor is delivering approximately 1200 H.P., giving the tunnel an energy ratio of 1.0.

The balance system measures all forces applied to the model up to the following capacities: Lift, + 4000 lbs. - 2000 lbs., drag and side force +500 lbs., pitching, rolling and yawing moments + 1200 ft.-lbs.

TEST CONDITIONS TEST GWT 279

	, , , , , , , , , , , , , , , , , , , 		
MACH NUMBER	REYNOLDS NUMBER per unit length	DYNAMIC PRESSURE (pounds/sq. inch)	STAGNATION TEMPERATURE (degrees Fahrenheit)
•17	1.6 x 10 ⁶	. 278	70 ⁰
			

BALANCE UTIL	IZED: YO	KE-TYPE L.S.W.T.	BALANCE
CAPACIT	Y:	ACCURACY:	COEFFICIENT TOLERANCE:
NF SF	+4000 1b to -2000 1bs. ± 500 1bs	± .5 lbs. ± .2 lbs.	± .002
AF	<u>+</u> 500 lbs	+ .2 <u>l</u> bs	± 0005
PM	<u> ± 1200 ft-1</u> bs.	<u> </u>	± .005
YM	# 1200 ft-1bs	<u> </u>	± .005
RM	± 1200 ft-1bs	<u> </u>	± .005

COMMENTS:

DATA REDUCTION

The data from the six component mechanical balance was transferred to a nominal cg located at FS 1094 (nose is at FS 0), WL 972, and BL 0, which is 2.35" aft of and 0.7" below the trunnion pin for the model in the upright position. The model constants used for data reduction are listed below:

$$S_{\star}$$
 (Wing area) = 2.50 ft.²

mgc (mean geometric chord) = 1.2075 ft.

$$b_{u}$$
 (wing span) = 2.50 ft.

The data was corrected theoretically for tunnel blockage and wall effects in accordance with the methods set forth in Ref. 1, 2, 3.

The corrections for the tare and interference effects of the support system and the tunnel flow angularity were measured at the beginning of the test. These values are on file in the Aero Test Department.

The tuft flow visualization photographs and the base pressure data are not presented herein but are in file in the Aero Test Department.

CONFIGURATIONS INVESTIGATED

CONFIGURATION NOMENCLATURE

NOZZLES

$$B = BODY$$

W = WING

N=

T = "V" TAIL

F = FLAPS

C = CANARD

K = STRAKE

Refer to the pages immediately following for dimensional data on the above components.

COMBINATIONS_TESTED

$$\mathbf{L}^{\mathbf{2}_{\mathbf{Z}}}$$

$$\mathbf{B}_{\mathbf{2}}\mathbf{N}_{\mathbf{1}}\mathbf{W}_{\mathbf{1}}$$

$$\mathbb{B}^{\mathbb{I}}\mathbb{N}^{\mathbb{I}}$$

$$B_1N_1V_1T_1$$

$$\mathbb{P}_{\mathbb{I}^{\mathbb{N}}\mathbb{I}}$$

$$\mathbf{B}_{\mathbf{10}}\mathbf{N}_{\mathbf{1}}\mathbf{W}_{\mathbf{l}_{\mathbf{l}}}\mathbf{F}^{\mathbf{30}}$$

$$\mathbf{B}^{\mathrm{10}}\mathbf{N}^{\mathrm{1}}\mathbf{M}^{\mathrm{1}}\mathbf{E}^{\mathrm{30}}\mathbf{C}$$

$$\mathbf{B_{10}N_{1}W_{4}F^{30}C^{10}}$$

$$^{10}N_{1}W_{12}$$

$$B_{10}N_1W_{12}K$$

MODEL COMPONENT:	BODY -	(B ₁)				
GENERAL DESCRIPTION			518	II	F configuration	of the GAC
				, . 		
DRAWING NUMBER:		518 MOD	300			
DIMENSIONS:					FULL-SCALE	MODEL SCALE in. or in.2
Length					<u>163.8</u>	49.1
Max. Width						
Max. Depth						
Fineness Rat	io					
Area						
Max. Cr	oss-Section	al			887	<u>79.8</u>
Planfor	m				5350	481.5
Wetted						
Base					628	56.5

MODEL COMPONENT: WING (W ₁)		
GENERAL DESCRIPTION. Basic Design	518 II f configuration wing	of the GAC
1/40 scale Earth Orbiting Shu		
DRAWING NUMBER: 518 MOD	301	
DIMENSIONS:	FULL-SCALE ft. or ft.2	MODEL SCALE in or in.2
TOTAL DATA	16. Of It.	in or in.
Area		
Planform	4000	360
Wetted Span (equivalent)	100	30
Aspect Ratio	2.5	2.5
Rate of Taper		
Taper Ratio	.116	.116
Diehedral Angle, degrees	00	00
Incidence Angle, degrees	30	30
Aerodynamic Twist, degrees Toe-In Angle		
Cant Angle		
Sweep Back Angles, degrees		
Leading Edge		
Trailing Edge		
0.25 Element Line	<u> 43047</u>	43047.
Chords:	060	
Root (Wing Sta. 0.0)	860 inches	21.5
Tip, (equivalent) MAC mgc	100 inches 48.3	2.5 14.5
Fus. Sta. of .25 MAC	40.5	
W.P. of .25 MAC		
B.L. of .25 MAC		
Airfoil Section	MEAN: 64 A.2 ,SH	ADE OOTO
Root	MCAN:04 A.Z , DE	HEE: OOTO
Tip		
EXPOSED DATA	•	
Area		
Span, (equivalent)		
Aspect Ratio	· \	
Taper Ratio Chords		
Root		
Tip		
MAC	* · · · · · · · · · · · · · · · · · · ·	
Fus. Sta. of .25 MAC		
W.P. of .25 MAC		
B.L. of .25 MAC		

MODEL COMPONENT.	TAIL (I)		
GENERAL DESCRIPTION:	IIf Configuration	"V" tail of GAC Far	th Orbiting
Shuttle.			
DRAWING NUMBER:	518 MOD 302		
DIMENSIONS:		FULL-SCALE	MODEL SCALE
Area		515 ft. ² /pane1	46.35 in. ² /panel
Span (equivalent)		25.8 ft.	7.74 in.
Inb'd equivalent	chord	354 in.	8.85 in.
Outb'd equivalent	chord	<u>140 in.</u>	3.5 in.
Ratio movable sur total surface c			
At Inb'd equ	ıv. chord		
At Outb'd eq	uıv. chord		-
Sweep Back Angles	, degrees	•	
Leading Edge		<u>48</u> °	48°
Tailing Edge		22°	22°
Hingeline			
Area Moment (Norm	al to hinge line)		
Airfoil Sect	ion	naca 64a008	
Aspect Ratio		1.3	
Taper Ratio		•395	

MODEL COMPONENT:FLAPS (F)		
GENERAL DESCRIPTION: Full span trailing of	edge flaps	
1/40 scale IIf configuration GAC E.O.S.		
Superscript denotes deflection in degrees		
DRAWING NUMBER:		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area	219.5 ft. ² /pa	nel <u>19.8in.</u> 2/panel
Span (equivalent)	<u>full span</u>	
Inb'd equivalent chord		*
Outb'd equivalent chord		
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord	11%	
At Outb'd equiv. chord	64%	
Sweep Back Angles, degrees		
Leading Edge		
Tailing Edge		*
Hingeline		
Area Moment (Normal to hinge line)		

MODEL COMPONENT: CANARD (C)		
GENERAL DESCRIPTION: Triangular Canard		
1/40 scale II f configuration GAC E.O.S.		
Superscript denotes deflection		
DRAWING NUMBER: Figure 7		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area	50 ft. ²	4.5 in. ²
Span (equivalent)	10 ft.	3 in.
Inb'd equivalent chord		
Outb'd equivalent chord		
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord		
At Outb'd equiv. chord	***************************************	
Sweep Back Angles, degrees		
Leading Edge	45°	45°
Tailing Edge		00
Hingeline	·	
Area Moment (Normal to hinge line)		

MODEL	COMPONENT.	STRAKE (K)		
GENERA	L DESCRIPTION:	Perpendicularly mou	nted on Wing. T.E	of strake is
	at T.E. of wing	5.		
DRAWIN	G NUMBER:	Figure 8	-	
DIMENS	IONS:		FULL-SCALE feet	MODEL SCALE
	Area			
	Span (equivalen	t)	·	
	Inb'd equivalen	t chord	-	·
	Outb <u>'d</u> equivale	nt chord		
	Ratio movable s total surface			м
	At Inb'd e	quiv. chord		-
	At Outb'd	equiv. chord	•	
	Sweep Back Angl	es, degrees		
	Leading Ed	ge	47.5°	47.5°
	Tailing Ed	ge		
	Hingeline		4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 	
	Area Moment (No	rmal to hinge line)		
	Airfoil Se	ection	NACA 64A008	
	Root Chord	L	23.3	7.0
	Tip Chord		16.25	4.875
	Location :	nboard from tip	18.3	5•5
	Height		15	4.5

TEST GWTT 2:79 DATA SET COLLATION SHEET GAC II CONFIGURATION 1/40 SCALE EARTH ORBITING SHUTTLE

- LOW SPEED AERODYNAMIC FORCE TEST

☐ PRETEST
☑ POSTTEST

DATA SET		SCI	IJ	CONT	ROL I	EFLECTIO	ои ио				MACH	NUMBE	RS						
IDŁNTIFIER	CONFIGURATION	α	β	δę	δc		of RUNS	-17											
RCLOII	B2N,	A	0	0	OFF		1	22											
RCLOZI		A	0				1	23											
RCL032	B, N, W,	5	B				1	28											
	B, N, W, T	5	B				1	46											
RCL052	B, N,	5	B				1	52								<u> </u>			
RCL063	BIONI WA BIONI WAF ³⁰	C	0	<u> y</u>			1	123		_			<u> </u>	<u> </u>					
RCL073	B10 N, W4 F 30	C	0	30	<u> </u>			125				_							1
RCL083	B,0N, W4 F30 C B,0N, W4 F30 C10	C	0	30	٥		1	126						ļ					
RCL093	B10 N, W4 F30 C10	C	0	30	2		1	127				_				ļ			
RCL 103	BION, WIZ BION, WIZ K	<u>C</u>	0	0	OFF	<u> </u>	1	129			-		ļ						
RCL113	B10 N, W12 K	C	۵	\downarrow	<u> </u>		1	130					<u> </u>			ļ	<u> </u>		
		ļ						-		_ _		-	 				<u> </u>		
		<u> </u>	ļ										_				<u> </u>		1
		<u> </u>								_		_	<u> </u>	ļ					
	·	ļ	ļ						_			ļ	<u>-</u>	 -					-
		 											-	_	<u> </u>	ļ <u> </u>	ļ		4
		<u> </u>										<u> </u>	<u> </u>						
		!			<u> </u>		 	.				<u> </u>	 	ļ		<u> </u>	ļ		1
		 				 - -	-									ļ		<u> </u>	-
					Ĺ			,					<u> </u>				<u></u>]
1	7 13	19		2		31		37	43		49		55	61		67		75 76	5 T
C.L.	, ICD, ICY,	<u></u>	L,M	16	2 L N	<u></u> <u>CS</u>	<u>L</u>							<u> </u>					J
COEFFICE	IENTS. $\propto A = -10^\circ$	7	3	0" 2	42	υ								- > √II)PVAR	(1) ID	PVAR(2) NDV	J
α or β SCHEDUL	$\frac{\alpha A = -10^{\circ}}{\beta B = -4^{\circ}}$	≠,	10	ا در	y 2	0					-								
2CUEDOF	es x C = -4°	+0	30	>" E	92	<i>v</i>					_								

TEST SOFT 279 DATA SET DESCRIPTOR SHEET

DATA SET	DATA SET DLSCRIPTOR	a a	CURVE SL	OPE RANGE]
IDENTIFIER) N N	CURVE SL 51 LOWER LIMIT	61UPPER LIMIT	
RCLOII	6,W.T.T. 12,79-61AC, I.I.F. CONIF. EOS-BONI	1,1			
RCL021	$82N_{\parallel}I_{\parallel}U_{\parallel}I_{\parallel}$	1.1	<u> </u>	<u></u>	1
RCL032	\mathcal{B}_{I}	2.1		<u></u>]
RCL042	BINIWITI	2,1			
RCL 052	BINI	2,1			1
RCL063	$B_{IO_{1}NI}$ WA	1.1			
RCL 073	B.1,0141, W4, F13,0, , , 1	1,1	<u></u>		
RCL083		1.1			
PC 6093	Blow/wafBoclo	1,1			
RCL 103	β/οιμ/,ω/,ΖΙ	1.1	<u></u>	<u></u>	
RCL113	B1,010,1,41,21K	1,1	<u></u>		-
		<u> </u>			,
		<u> </u>	<u> </u>		
		<u> </u>			
]
		<u> </u>			
				<u> </u>	_
		1.			_
		1.	<u> </u>		
		1.]
1 SREF(1) 11 SkbF(2) 21 LREF(1) 31 LREF(2) 41 BREF(1) _51 BRI	EF(2) 61 XMRP(1) 71 XMRP(2)
2.50	SQ FT. 11.2075 FT. 12.50 FT.		11044.0	[/ N	
0.0	1N 1972.0 1N. 10 0.25		1		7
YMRP (1		ALE (2)	FILREF	

B10 W4

STRAKE

FIGURE 6

Notes:

- Positive directions of force coefficients moment coefficients, and angles are indicated by arrows.
- For clarity, origins of wind and stability axes have been displaced from the center of gravity.

Figure 7. Axis systems, showing direction and sense of force and moment coefficients, angle of attack, and sideslip angle

23

NOMENCLATURE

SYMBOL	SADSAC SYMBOL	DEFINITION
A _b		base area; m ² , ft ² , in ²
a		speed of sound; m/sec, ft/sec
AR	ASPECT	aspect ratio, b ² /S
b	REFB	wing span or reference span; m, ft, in
c		wing chord; m, ft, in
<u>c</u>		wing mean aerodynamic chord or reference chord; m, ft, in (see l_{ref} or refl)
c.g.		center of gravity
C. P.		center of pressure
C _A	CA	axial force coefficient, FA/qSref
c _{Ab}	CAB	base axial force coefficient, [$(p_{\infty} - p_b)/q$] (A_b/S_{ref})
C _A f	CAF	forebody axial force coefficient, $C_A - C_{A_b}$
c _D	CDTOTL	drag force coefficient in the wind axis system, $F_D/q S_{ref}$

SYMBOL	SADSAC SYMBOL	DEFINITION
$\mathbf{C_D}$	CD	drag force coefficient in the stability axis system, $F_D^*/q S_{ref}$
$^{\mathbf{C}}_{\mathbf{L}}$	CL	lift force coefficient (stability or wind axis) $^{\rm F}{ m L}^{/{ m q}~{ m S}}_{ m ref}$
$^{\mathrm{c}}_{\ell}$	CBL	rolling moment coefficient in body axis system, $M_x/q S_{ref}^- b$
c _{l,s}	CSL	rolling moment coefficient in the stability axis system, $M_{x, s}/q S_{ref} b$
$^{\mathrm{c}}_{\ell,\mathrm{w}}$	CWL	rolling moment coefficient in the wind axis system, M _{x,w} /q S _{ref} b
C _m	CLM	pitching moment coefficient in the body axis system, My/q S ref ℓ ref
C _{m,s}	CLM	pitching moment coefficient in the stability axis system, $C_{m,s} = C_{m}$
C _{m,w}	CPM	pitching moment coefficient in the wind axis system, $M_{y,w}/q s_{ref} \ell_{ref}$
$\mathbf{c}_{ ext{N}}$	CN	normal force coefficient in the body axis system, F_N/q S_{ref}

SYMBOL	SADSAC SYMBOL	DEFINITION
C _n	CYN	yawing moment coefficient in the body axis system, $M_z/q S_{ref}^{} b$
C _{n,s}	CLN	yawing moment coefficient in the stability axis system, $C_{n, s} = C_{n}$
C _{n,w}	CLN	yawing moment coefficient in the wind axis system, $M_{z,w}/q S_{ref}$ b
С _р	CP	pressure coefficient, $(p-p_{\infty})/q$
с _р	CY	side force coefficient (body or stability axis system), $F_y/q S_{ref}$
С _с	CC	side force coefficient (wind axis system), f_y/q Sref
$\mathbf{F}_{\mathbf{A}}$		axial force; N, lb
$\mathbf{F}_{\mathbf{D}}$		drag force in wind axis system; N, lb
$\mathbf{F}_{\mathbf{D}}$		drag force in the stability axis system; N, lb
$\mathbf{F}_{\mathbf{L}}$		lift force (stability or wind axis system); N, 1b
$\mathbf{F_{N}}$		normal force; N, lb

SYMBOL	SADSAC SYMBOL	DEFINITION
$\mathbf{F}_{\mathbf{Y}}$		side force; N, lb
	N/A	normal to axial force ratio
$\ell_{ ext{ref}}$	REFL	reference length; m, ft, m (see \overline{c})
L/D	L/D	lift-to-drag ratio, $^{\mathrm{C}}\mathrm{_{L}/^{\mathrm{C}}}\mathrm{_{D}}$ (stability axis system)
L/D	CL/CD	lift-to-drag ratio, C _L /C _D (wind axis system)
M	MACH	Mach number
MRP	MRP	abbreviation for moment reference point
	XMRP	abbreviation for moment reference point on x-axis
	YMRP	abbreviation for moment reference point on y-axis
	ZMRP	abbreviation for moment reference point on z-axis
$\mathbf{M}_{\mathbf{x}}$		rolling moment in the body axis system; N-m, ft-lb
M _{x, s}		rolling moment in the stability axis system; N-m, ft-lb

SYMBOL	SADSAC SYMBOL	DEFINITION
М ,х , w		rolling moment in the wind axis system; N-m, ft-lb
M y		pitching moment in the body (or stability) axis system; N-m, ft-lb
M y, w		pitching moment in the wind axis system; N-m, ft-lb
$\mathbf{M}_{\mathbf{z}}$		yawing moment in the body axis system; N-m, ft-lb
M _{z,w}		yawing moment in the wind axis system; N-m, ft-lb
p		static pressure; N/m ² ; psi
P		total pressure; N/m ² ; ps1
q	Q(PSI) Q(PSF)	dynamic pressure; N/m ² , psi, psf
RN/L	RN/L	Reynold's number per unit length; million/ft.
S;		wing area; m ² , ft ²
$^{ m S}_{ m ref}$	REFS	reference area; m ² , ft ²
T		temperature; °K, °C, °R, °F
v		speed of vehicle relative to surrounding atmosphere; m/sec, ft/sec

SYMBOL	SADSAC SYMBOL	DEFINITION
$^{1}\mathrm{T}$		tail incidence positive when trailing edge down, deg
$\overline{\dot{\mathbf{v}}}$		velocity of vehicle relative to surrounding atmosphere; m/sec, ft/sec
α	ALPHA	angle of attack, angle between the projection of the wind X_W -axis on the body X, Z-plane and the body X-axis; deg
β	BETA	sideslip angle, angle between the wind X_W -axis and the projection of this axis on the body X-Z-plane; deg
γ		ratio of specific heats
Г	DIHDRL	wing dihedral angle; deg
δ	AILRON ELVATR RUDDER FLAP TAB	control surface deflection angle; deg positive deflections are: alleron - left alleron trailing edge down elevator - trailing edge down rudder - trailing edge to the left flap - trailing edge down tab - trailing edge down with respect to control surface air density; K _g /m ³ , slugs/ft ³
B ₂	B, with square chine radius	
- 2	71,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
BIO	B ₁ modified to accommodate	wing in the 200" aft position (See Fig. 5).
$W_{\underline{J}_{\underline{I}}}$	W moved 200" aft and faire	ed into fuselage. (See Figure 5).
W ₁₂	W ₄ with thick buildup on w	ing fillets. (See Figure 6).

SYMBOL	SADSAC SYMBOL	DEFINITION
θ		pitch angle, angle of rotation about the body Y-axis, positive when the positive Z-axis is rotated toward the positive X-axis; deg
φ	PHI	roll angle, angle of rotation about the body X-axis, positive when the positive Y-axis is rotated toward the positive Z-axis; deg
Ψ	PSI	yaw angle, angle of rotation about the body Z-axis, positive when the positive X-axis is rotated toward the positive Y-axis; deg

SUBSCRIPTS	DEFINITION
a	alleron
b	base
c	canard
е	elevator or elevon
f	flap
r	rudder or ruddervator
s	stability axis system
t	tail, or total conditions
w	wind axis system
ref	reference conditions
&	freestream condition

REFERENCES

- 1. Grumman Low Speed Wind Tunnel Manual.
- 2. "Lift Interference on Three-Dimensional Wings", H.C. Garner, and "Blockage Effects in Closed or Open Tunnels"; E. W. Rogers, From Subsonic Wind Tunnel Wall Corrections; H. C. Garner et al; October, 1966.
- 3. A Theory of the Blockage Effects on Bluff Bodies and Statled Wings in a Closed Wind Tunne!; E. C. Maskill; ARC R&M 3400; 1963.
- 4. Pretest Outline of Series T Tests on a 1/40 Scale Design 518-TI F Earth Orbital Shuttle in the Grumman Low Speed Wind Tunnel; AER/T-PT-102; A. McBride, February, 1970.

REPORT CHIT 279 DATE Feb. 1970

PLOT DATA INDEX

LOW SPEED AERO. CHARACTERISTICS OF GAC CONF. ITF EARTH ORBITING SHUTTLE

DEPENDENT VARIABLE VS INDEPENDENT VARIABLE. MULTIPLE DATASETS DATASETS PLOTTED: SCLOIL SCLOZI DEPENDENT INDEPENDENT PLOT PAGE VARIABLE BEGINNING / ENDING VARIABLE ALPHA CL CD 2 ALPHA CLM ALPHA 3 3 ALPHA DATASETS PLOTTED! BCL011 BCL021 DEPENDENT INDEPENDENT PLOT PAGE BEGINNING / ENDING VARIABLE VARIABLE CN 5 5 ALPHA 6 6 <u>C A</u> ALPHA DATASETS PLOTTED: SCL063 SCL073 SCL093 SCL093 DEPENDENT INDEPENDENT PLOT PAGE BEGINNING / ENDING VARIABLE VARIABLE ALPHA ČŪ ALPHA 8 CLM ALPHA 9 9 L/D TO 10 DATASETS PLOTTED! BCLN63 BCLD73 BCLOA3 BCLn93 PLOT PAGE DEPENDENT INDEPENDENT BEGINNING / ENDING VARIABLE VARIABLE ČŇ ALPHA 11 11 12 12 CA ALPHA DATASETS PLOTTED: 5CL103 5CL113 DEPENDENT INDEPENDENT PLOT PAGE BEGINNING / ENDING VARIABLE VARIABLE

ALPHA

CL

13

13

LOW SPEED AERO. CHARACTERISTICS OF GAC CONF. ITE EARTH ORBITING SHUTTLE

DEPENDENT VARIABLE VS INDEPENDENT VARIABLE, MULTIPLE DATASETS DATASETS PLOTTED: SCL103 SCL113 DEPENDENT INDEPENDENT PLOT PAGE BEGINNING / ENDING VARIABLE VARIABLE - CTM --ALPHA 15 15 ALPHA L/D ALPHA DATASETS PLOTTEN: BCL103 BCL113 PLOT PAGE INDEPENDENT DEPENDENT BEGINNING / ENDING VARIABLE VARIABLE ALPHA ALPHA DATASETS PLOTTED: SCL052 SCL032 SCL042 PLOT PAGE DEPENDENT INDEPENDENT VARIABLE BEGINNING / ENDING VARIABLE 19 19 CY BETA 20 CLN RETA

RETA

21

CSL

LOW SPEED AERO. CHARACTERISTICS OF GAC CONF. IT EARTH ORBITING SHUTTLE

DATAS	ETS PLOTTED	•		
		L021		
-	DEPENDENT	DEPENDENT	PLOT PAGE	
	VARIABLE	VARIABLE	BEGINNING	/ ENDING
	CL	CLM	22	22
	ČL	CD	23	23
DATAS	ETS PLOTTED	!		
		L073 SCL083	SCL093	
	DEPENDENT	DEPENDENT	PLOT PAGE	
+	VARIABLE	VARIABLE	BEGINNING	/ ENDING
	CL -	CLM	24	24
	CL	CD	25	25
DATAS	ETS PLOTTEN	:		
		113		
	DEPENDENT	DEPENDENT	PLOT P	AGE
	VARIABLE	VARIABLE	BEGINNING	
	cL	CLM	26	26
		"de 100 " 1	27	27

TABULATED DATA LISTING

A tabulated data listing, consisting of all aero data sets, both original and those created in arriving at the plotted material to be presented subsequently, is available as an addendum to this report. The tabular listing is made up in three sections:

- (a) a brief summary list of all data sets containing the identifier, the descriptor, and the resident dependent variables.
- (b) an expanded list of all data sets, containing the identifier, the descriptor, the resident dependent variables, reference data, parameters and respective values, and independent variable ranges.
- (c) the full list of all data sets containing all resident or selected aerodynamic coefficients of the data sets as well as the above mentioned information.

The listing is currently sent on limited distribution to the following organizations:

AMES	Mr.	John Axelson
LaRC	Mr.	David Stone
MSC	Mr.	Ray Nelson
MSFC	Mr.	Jim Weaver
	MSC	Larc Mr. Msc Mr.

If copies of this listing are desired, please contact the above or the cognizant SADSAC personnel who, for this data, is:

James R. Ziler Department 2780 Chrysler Corporation Space Division New Orleans, Ia. 70129

(504) 255-2214 (504) 255-2330 PLOTTED DATA

PAGE

1

PAGE 4

PAGE 22

