FBX4025 – Sistemas Digitais I

Objetivos

- Apresentar o conceito de síntese de circuitos lógicos
- Introduzir os conceitos de álgebra booleana e simplificação de circuitos lógicos

Síntese

A síntese de um circuito consiste em construir o diagrama do circuito lógico diretamente a partir da expressão.

O método para a resolução consiste em se identificar as portas lógicas na expressão e desenhá-las com as respectivas ligações, a partir das variáveis de entrada.

Deve-se atentar para a <u>precedência</u> das operações.

Exemplo 01

Desenhe o diagrama do circuito que implementa a expressão $x = (A + B)(\overline{B} + C)$

Exemplo 02

Desenhe o diagrama do circuito que implementa a expressão $y = AC + B\bar{C} + \bar{A}BC$. Qual seria a saída prevista para [A,B,C]=[1,0,1]

Exemplo 03

Desenhe o diagrama do circuito que implementa a expressão:

$$S = (A + B + C)\overline{C} \oplus BC + \overline{AC}$$

Teoremas booleanos

Observamos que a álgebra booleana pode ser usada para descrever um circuito lógico a partir de uma expressão matemática.

A partir do uso de algumas regras denominadas <u>teoremas booleanos</u>, pode-se simplificar expressões e circuitos lógicos levando a uma economia no uso de portas lógicas para execução de alguma tarefa.

1º Teorema de De Morgan

O complemento do produto é igual à soma dos complementos:

$$(\overline{A.B}) = \overline{A} + \overline{B}$$

Α	В	$\overline{\mathbf{A} \cdot \mathbf{B}}$	$\overline{A} + \overline{B}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

O teorema pode ser estendido para mais de duas variáveis:

$$(\overline{A.B.C....N}) = \overline{A} + \overline{B} + \overline{C} + \cdots + \overline{N}$$

2º Teorema de De Morgan

O complemento da soma é igual ao produto dos complementos:

$$\overline{A+B}=(\overline{A}.\overline{B})$$

O teorema pode ser estendido para mais de duas variáveis:

$$\overline{A+B+C+\cdots+N}=(\overline{A}.\overline{B}.\overline{C}....\overline{N})$$

Resumo – Teoremas & Propriedades

POSTULADOS				
Complementação	Adição	Multiplicação		
$A = 0 \rightarrow \overline{A} = 1$ $A = 1 \rightarrow \overline{A} = 0$	0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 1	$0 \cdot 0 = 0$ $0 \cdot 1 = 0$ $1 \cdot 0 = 0$ $1 \cdot 1 = 1$		
IDENTIDADES				
Complementação	Adição	Multiplicação		
$\overline{\overline{A}} = A$	$A + 0 = A$ $A + 1 = 1$ $A + A = A$ $A + \overline{A} = 1$	$A \cdot 0 = 0$ $A \cdot 1 = A$ $A \cdot \underline{A} = A$ $A \cdot \overline{A} = 0$		

Resumo – Teoremas & Propriedades

PROPRIEDADES				
Comutativa:	$A + B = B + A$ $A \cdot B = B \cdot A$			
Associativa:	A + (B + C) = (A + B) + C = A + B + C $A \cdot (B \cdot C) = (A \cdot B) \cdot C = A \cdot B \cdot C$			
Distributiva:	$A \cdot (B + C) = A \cdot B + A \cdot C$			
TEOREMAS de DE MORGAN				
$(\overline{A \cdot B}) = \overline{A} + \overline{B}$				
$(\overline{A} + \overline{B}) = \overline{A} \cdot \overline{B}$				
	IDENTIDADES AUXILIARES			
$A + A \cdot B = A$ $A + \overline{A} \cdot B = A + B$ $(A + B) \cdot (A + C) = A + B \cdot C$				

(ENADE 2008, Computação)

O circuito a seguir possui 5 entradas: A, B, C, D e E e uma saída f(A,B,C,D,E):

$$\bullet$$
 $\overline{A.B} + \overline{C.D} + D.E$

$$(A + B).(C + D) + D.E$$

$$\Theta \overline{A.B} + \overline{C.D} + D + E$$

$$A.B+C.D+D.E$$

Exemplo 04

Simplifique as expressões das funções booleanas para 3 literais:

a.
$$F = \overline{A}.\overline{C} + A.B.C + A.\overline{C}$$

(Esta função tem 3 variáveis, 3 termos e 7 literais)

b.
$$F = \overline{(\overline{C}.\overline{D} + A)} + A + C.D + A.B$$
 (Esta função tem 4 variáveis, 4 termos e 8 literais)

Universalidade das portas NAND

Todas as expressões booleanas são baseadas em uma combinação das portas AND, OR e INVERSORA e todas estas portas podem ser geradas a partir de portas NAND.

Universalidade das portas NOR

Todas as expressões booleanas são baseadas em uma combinação das portas AND, OR e INVERSORA e todas estas portas podem ser geradas a partir de portas NOR.

Exemplo 05

Em um processo de fabricação, uma esteira de transporte deve ser desligada sempre que determinadas condições ocorrerem. Essas condições são monitoradas e têm seus estados sinalizados por quatro sinais lógicos: o A será ALTO sempre que a velocidade da esteira de transporte for muito alta; o B será ALTO sempre que o recipiente localizado no final da esteira estiver cheio; o C será ALTO quando a tensão na esteira for muito alta; e o D será ALTO quando o comando manual estiver desabilitado.

Um circuito lógico é necessário para gerar um sinal x que será ALTO sempre que as condições A e B ou C e D existirem de maneira simultânea. É evidente que a expressão lógica para x será x=AB+CD. O circuito é implementado com um número mínimo de circuitos integrados (CIs). Os circuitos integrados TTL, mostrados na figura a seguir, estão disponíveis. Cada CI é quádruplo, o que significa que contém quatro portas lógicas idênticas em um chip.

Exemplo 05

Dimensione o referido circuito usando-se o mínimo de Cls possível.

Exemplo 05

Considerando-se o circuito lógico a partir da expressão x=AB+CD

Exemplo 05

Substitua as portas lógicas usando-se portas lógicas NAND.

Exemplo 05

Eliminando-se a dupla inversão indicada, pode-se simplificar ainda mais o circuito.

Interpretação de símbolos lógicos

Saída vai para o nível BAIXO somente quando todas as entradas forem ALTAS

Saída é ALTA somente quando *qualquer* entrada é BAIXA

Referências

TOCCI, Ronald J.; Widmer, Neal S.; Moss, Gregory L. **Sistemas digitais: princípios e aplicações**, 12ª ed. Editora Pearson, 2018. 1056 p. ISBN 9788543025018. Capítulo 3 – Descrição dos circuitos lógicos.

IDOETA, Ivan V.; CAPUANO, Francisco G. **ELEMENTOS DE ELETRÔNICA DIGITAL** 42ª edição. Editora Saraiva, 2019. E-book. 9788536530390. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788536530390/. Acesso em: 22 ago. 2022. Capítulo 3 – Álgebra de Boole e Simplificação de Circuitos Lógicos