Database Management System – 33 Database design – Armstrong's Inference rules

Ajay James Asst. Prof in CSE Government Engineering College Thrissur

Outline

- Introduction
- Functional Dependencies (recap)
- Armstrong's inference rules
- Closure
- Reference: Principles of Database Systems by Elmasri and Navathe, 7th edition, Chapter 15

Introduction

- Relational design by analysis (top-down)
- Relational design by synthesis (bottom-up)

Functional Dependencies

- A set of attributes X functionally determines a set of attributes Y if the value of X determines a unique value for Y.
- X → Y holds if whenever two tuples have the same value for X, they must have the same value for Y
 - For any two tuples t1 and t2 in any relation instance r(R): If t1[X]=t2[X], then t1[Y]=t2[Y]
 - X →Y in R specifies a constraint on all relation instances r(R)

What is Inference for FDs?

- An FD X → Y is inferred from or implied by a set of dependencies F specified on R
 - if X \rightarrow Y holds in every legal relation state r of R;
 - that is, whenever r satisfies all the dependencies in F, X → Y also holds in r.
- Given a set of FDs F, we can **infer** additional FDs that hold whenever the FDs in F hold

Example

- Dept_no → Mgr_ssn
- Mgr_ssn → Mgr_phone
- · Inferred from or implied by
 - Dept_no → Mgr_phone

Example

- F = { SSN -> {Ename, Bdate, Address, Dnumber},Dnumber -> {Dname, Dmgr_ssn}}
- We can infer

SSN -> Dname,

SSN -> Dmgr_ssn

Dnumber -> Dname etc...

Closure of FD

- Closure of a set F of FDs is the set F⁺ of all FDs that can be inferred from F
- Inference rules
 - To determine a systematic way to infer dependencies

Notations

- $F \mid = X \rightarrow Y$
 - to denote that the functional dependency X → Y is inferred from the set of functional dependencies F.
- FD $\{X,Y\} \rightarrow Z$ is abbreviated to $XY \rightarrow Z$
- FD $\{X, Y, Z\} \rightarrow \{U, V\}$ is abbreviated to $XYZ \rightarrow UV$

Armstrong's axioms

- · Axioms actually inference rules
- IR1 (reflexive rule):
 - If $X \supseteq Y$, then $X \rightarrow Y$
 - If Y subset-of X, then X \rightarrow Y
 - set of attributes always determines itself or any of its subsets
 - a functional dependency $X \rightarrow Y$ is **trivial if** $X \supseteq Y$; otherwise, it is **nontrivial**

Example for IR1

- Student (Admission no, Name, Dob, Address)
 - (Admission no, Name) → Name
 - Name is a subset of {Admission_no, Name}
- The reflexive rule can also be stated as $X \rightarrow X$;
- Any set of attributes functionally determines itself
 - Name \rightarrow Name
 - Admission_no → Admission_no

IR2 (augmentation rule)

- IR2 (augmentation rule):
 - $-\{X \rightarrow Y\} \mid = XZ \rightarrow YZ$
- adding the same set of attributes to both the LHS and RHS of a dependency results in another valid dependency
- can also be stated as X → Y |= XZ → Y
- Augmenting the left-hand-side attributes of an FD produces another valid FD.

Example for IR2

- Student (Admission no, Name, Dob, Address)
 - Admission_no → Name
- As per IR2
 - {Admission_no, **Dob**} → {Name, **Dob**}

Or

• {Admission_no, **Dob**} → Name

IR3 (transitive rule)

• IR3 (transitive rule):

$$-\left\{X \rightarrow Y,\, Y \rightarrow Z\right\}\mid = X \rightarrow Z$$

Example for IR3

- F = { SSN -> {Ename, Bdate, Address, Dnumber},Dnumber -> {Dname, Dmgr_ssn}}
- We can infer

SSN -> Dname,

SSN -> Dmgr_ssn

IR1 to IR3 is Sound

- Given a set of functional dependencies F specified on R
- Any dependency that is inferred from F by using IR1 through IR3 will hold in every relation state

IR1 to IR3 is Complete

- Applying IR1 through IR3 repeatedly on F
- Results in the complete set of all possible dependencies that can be inferred from F
- **F**⁺ **closure of F**, can be determined from F by using only inference rules IR1 through IR3

IR4 (decomposition, or projective rule)

- IR4 (decomposition, or projective, rule):
 - $-\{X \rightarrow YZ\} \mid = X \rightarrow Y$
- $X \rightarrow \{A_1, A_2, \dots, A_n\}$
 - $-\{X \rightarrow A_1, X \rightarrow A_2, ..., X \rightarrow A_n\}$
- Admission_no → {Name, Dob, Address}
 - Admission_no → Name
 - Admission_no → Dob
 - Admission_no → Address

IR5 (union, or additive, rule)

- IR5 (union, or additive, rule):
 - $-\{X \rightarrow Y, X \rightarrow Z\} \mid =X \rightarrow YZ$
- $\{X \rightarrow A_1, X \rightarrow A_2, ..., X \rightarrow A_n\}$
 - $X \rightarrow \{A_1, A_2, \dots, A_n\}$
- {Admission_no → Name, Admission_no → Dob, Admission_no → Address}
 - Admission_no → {Name, Dob, Address}

IR6 (pseudotransitive rule)

- IR6 (pseudotransitive rule):
 - $-\{X \rightarrow Y, WY \rightarrow Z\} \mid =WX \rightarrow Z$
- allows us to replace a set of attributes Y on the LHS of a dependency with another set X that functionally determines Y
- Student (<u>Admission no</u>, Name, Dob, Address)
 - Admission_no → Dob, {Name,Dob} → Address
 - {Name, **Admission_no**} → Address

Note

- $X \rightarrow A$ and $X \rightarrow B$ implies
 - $-X \rightarrow AB$ by the union rule stated above,
- $X \rightarrow A$ and $Y \rightarrow B$ implies
 - $-XY \rightarrow AB$
- XY → A does not necessarily imply
 - either $X \rightarrow A$ or $Y \rightarrow A$.

Summary

- IR1 Reflexive
- IR2 Augmentation
- IR3 Transitive
- IR4 Decomposation
- IR5 Union
- IR6 Pseudotransitive

Reference

 Elmasri R. and S. Navathe, Database Systems: Models, Languages, Design and Application Programming, Pearson Education 6th edition and 7th edition

Thank you