MI-PAA: Seznámení se se zvolenou pokročilou iterativní metodou na problému batohu

Specifikace úlohy

Viz edux.

Zadání

Viz edux.

[™] Algoritmus

Algoritmus jsem zvolil simulované ochlazování (Simulated annealing).

Základní kostru algoritmu jsem vytvořil podle slidů 15 a 13 přednášky 8. Naprogramovat řešení bylo relativně jednoduché, opravdový oříšek je správné nastavení parametrů algoritmu.

Měření

K měření jsem použil testovací data, která obsahují i řešení. Použil jsem soubory knap_40.inst.dat a knap_40.sol.dat, tedy zadání s 40 položkami. Program rovnou načte soubor s řešením a vyhodnotí relativní chybu. Jako další argumenty bere parametry simulovaného ochlazování v pořadí:

- míra ochlazování
- délka ekvilibria
- počáteční teplota
- koncová teplota

Výchozí nastavení jsem zvolil takto:

- míra ochlazování = 0.94
- délka ekvilibria = 5
- počáteční teplota = 3
- koncová teplota = 0.1

Toto nastavení jsem experimentálně vypozoroval. Vykazuje chybu kolem 3% a počet kroků kolem 10000. Při demonstraci vlivu ostatních parametrů jsem použil toto nastavení a měnil vždy

pouze jeden daný parametr, analogicky jako u minulého úkolu.

Příklad spuštění programu:

./main.php data/input/knap_40.inst.dat data/output/knap_40.sol.dat 0.94 5 3 0.1

Závislost na rychlosti ochlazování

Tabulka:

ochlazování	chyba [%]	počet kroků
0.1	9.98	398
0.3	8.09	597
0.5	6.86	995
0.75	5.05	2388
0.85	4.29	4179
0.9	4.11	6567
0.93	3.36	9353
0.95	2.86	13333
0.97	2.30	22288
0.99	1.64	67461

Graf:

S rychlostí ochlazování klesá relativní chyba. Také je však nutné poznamenat, že exponenciálně roste počet kroků. Rozumná hodnota se zdá být kolem 0,93, kde se chybovost drží kolem 3% a zároveň je počet kroků uspokojitelný.

Závislost na počtu iterací ekvilibria

Tabulka:

Equilibrium	Chyba [%]	Počet kroků
1	5.57	2145
2	4.00	4345

3	3.23	6545
5	2.76	10945
10	2.28	21945
15	2.28	32945
20	1.93	43945
30	1.43	65945
40	1.65	87945

Graf:

Ekvilibrium udává počet stavů, které vyzkoušíme před ochlazením. Z grafu vidíme, že relativní chyba klesá a počet kroků se významně zvyšuje. Ideální hodnota se pohybuje kolem ekv=10.

Závislost na počáteční teplotě

Počáteční teplota	Chyba [%]	Počet kroků
0.2	5.36	2388
0.5	3.92	5373
2	3.16	9751
5	2.93	12736
10	2.99	14925
20	2.66	17114
40	2.62	19303
70	2.77	21094
100	3.09	22288

Graf:

Při příliš nizké počáteční teplotě je chybovost vysoká. Vysoká počáteční teplota přináší velký počet kroků.

Závěr

Naprogramoval jsem pokročilou iterativní metodu, konkrétně Simulované ochlazování. Předvedl jsem, jak parametry ovlivňují výsledné řešení a jeho náročnost.

Autor: Tomáš Sušánka (susantom)