Outline

☐ Rules of Combinational Logic (Laws of Boolean Algebra)

□ SOP (Sum of Products) and POS (Product of Sums) forms of logical expressions

☐ Karnaugh Maps for simplifying logical expressions

LOGIC GATES

INPUT	OUTPUT		
Α			
0	1		
1	0		

OR	
1	
-	

XO	R
7	_
\dashv \bot	

INF	PUT	ОПТРИТ
Α	В	OUIFUI
0	0	0
1	0	0
0	1	0
1	1	1

INF	PUT	CUITOUT	
Α	В	OUTPUT	
0	0	0	
1	0	1	
0	1	1	
1	1	1	

INI	PUT		
Α	В	OUTPUT	
0	0	0	
1	0	1	
0	1	1	
1	1	0	

	_			
INI	PUT	OUTPUT		
Α	В	OUIPUI		
0	0	1		
1	0	0		
0	1	0		
1	1	0		

INI	PUT	OUTPUT
Α	В	OUIFUI
0	0	1
1	0	0
0	1	0
1	1	1

LOGIC NETWORKS

Logic gates can be interconnected to give a wide variety of functions.

logic function

✓ the assignment of "0" or "1" to each possible combination of its input variables

BOOLEAN IDENTITIES

$$A+1=1 \quad 1 \quad F=1$$

$$A \cdot 0 = 0$$

$$0$$

$$F = 0$$

$$A+1=1 \ 1 \ A + A=1 \ A - A=1 \ A - A=1 \ A=1$$

$$A \cdot 1 = A \cdot 1$$

$$A \cdot 1 = A \cdot 1$$

$$A \cdot 1 = A \cdot A$$

$$A \cdot A = A \cdot A$$

$$A \cdot \overline{A} = 0$$
 $A \cdot \overline{A} = 0$
 $A \cdot \overline{A} = 0$

$$A+0=A \ 0 \ \longrightarrow^{F=A} \ A\cdot A=A \ A \ \longrightarrow^{F=A} \ \boxed{A=A} \ \overline{A} \ \longrightarrow^{F=A} \ \boxed{A=A} \ \overrightarrow{A} \ \longrightarrow^{F=A} \ \bigcirc^{F=A} \ \bigcirc^{F=$$

$$A \cdot A = A$$
 $A = A$
 $A = A$
 $A = A$
 $A = A$

$$\overline{\overline{A}}=A$$
 \overline{A}

RULES OF COMBINATIONAL LOGIC

Laws of Boolean Algebra ('+' denotes 'OR', 'AB' denotes 'A AND B')

a) Commutative rules:
$$A+B=B+A$$
; $AB=BA$

b) Associative rules:
$$A+(B+C) = (A+B)+C$$
 ; $A(BC) = (AB)C$

c) Distributive rules:
$$A+BC = (A+B)(A+C)$$
 ; $A(B+C) = AB+AC$

$$A+AB = A$$
 ; $A(A+B) = A$

d) de Morgan's laws:
$$\overline{A \cdot B \cdot C} = \overline{A} + \overline{B} + \overline{C}$$
; $\overline{A} \cdot \overline{B} \cdot \overline{C} = \overline{A} + \overline{B} + \overline{C}$

RULES OF COMBINATIONAL LOGIC

Verification of distributive rule A+BC = (A+B)(A+C) via truth table

A	В	С	ВС	A+BC	A+B	A+C	(A+B)(A+C)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

Laws of Boolean Algebra used for simplifying logical expressions

 $(A^l = \bar{A} \text{ denotes the complement/inverse/NOT of } A)$

$$A + 0 = A$$

$$A+1=A$$

$$A \cdot 0 = 0$$

$$A \cdot 1 = A$$

$$A + A = A$$

$$A + A^l = 1$$

$$A \cdot A = A$$

$$A \cdot A^l = 0$$

$$(A^l)^l = A$$

$$A + AB = A$$

$$A + A^l B = A + B$$

$$A+B=B+A$$

$$A \cdot B = B \cdot A$$

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$(A+B)(A+C) = A+BC$$

SUM OF PRODUCTS (SOP) FORM

- Two or more "product" (AND-gated) terms are "summed" (OR-gated) to form a Boolean expression.
- \triangleright Examples: AB + ABC, ABC + CDE + BCD , AB + BCD + E, etc.
- ➤ In an SOP expression, a single overbar (denoting inversion) cannot extend over more than one variable e.g. there can be terms like AB C, but terms like ABC are not allowed.
- ➤ In a "standard" SOP expression, each product term contains all the input variables e.g. for 3 inputs, AB + AB Cis not in standard form, whereas ABC + AB Cis in standard form.

PRODUCT OF SUMS (POS) FORM

- Two or more "sum" (OR-gated) terms are taken "product" (AND-gated) to form a Boolean expression.
- \triangleright Examples: (A + B)(A + B + C), (A + B + C)(B + C + D)(C + D)E, etc.
- ➤ In an POS expression, a single overbar (denoting inversion) cannot extend over more than one variable e.g. there can be terms like A+B+C, but terms like A+ B+ Care not allowed.
- ➤ In a "standard" POS expression, each product term contains all the input variables e.g. for 3 inputs, (A+B)(A+B+C) is not in standard form, whereas (A+B+C)(A+B+C) is in standard form.

Q. Convert the following Boolean expression into standard SOP form: $A\overline{B}C + \overline{A}\overline{B} + AB\overline{C}D$

The domain of this SOP expression A, B, C, D. Take one term at a time.

The first term, $A\overline{B}C$, is missing variable D or \overline{D} , so multiply the first term by $(D+\overline{D})$ as follows:

$$A\overline{B}C = A\overline{B}C(D + \overline{D}) = A\overline{B}CD + A\overline{B}C\overline{D}$$

The second term, \overline{AB} , is missing variables C or \overline{C} and D or \overline{D} , so first multiply the second term by (C+C) as follows:

$$\overline{A}\overline{B} = \overline{A}\overline{B}(C + \overline{C}) = \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C}$$

The two resulting terms are missing variable D or \overline{D} , so multiply both terms by $(D+\overline{D})$ as follows:

$$\overline{ABC}(D+\overline{D}) + \overline{ABC}(D+\overline{D}) = \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

The third term, ABCD, is already in standard form.

The complete standard SOP form of the original expression is as follows:

$$ABC + AB + ABCD = ABC(D + D) = ABCD + ABCD$$

Q. Convert the following Boolean expression into standard POS form: $(\overline{A} + B + C)(\overline{B} + C + \overline{D})(A + \overline{B} + \overline{C} + D)$

The domain of this POS expression A, B, C, D. Take one term at a time.

The first term, $\overline{A} + B + C$, is missing variable D or \overline{D} , so add \overline{DD} as follows:

$$\overline{A} + B + C = \overline{A} + B + C + D\overline{D} = (\overline{A} + B + C + D)(\overline{A} + B + C + \overline{D})$$
 Note, $A + BC = (A + B)(A + C)$

The second term, $\overline{B} + C + \overline{D}$, is missing variables A or \overline{A} and D or \overline{D} , so $A\overline{A}$ as follows:

$$\overline{B} + C + \overline{D} = \overline{B} + C + \overline{D} + A\overline{A} = (\overline{B} + C + \overline{D} + A)(\overline{B} + C + \overline{D} + \overline{A}) = (A + \overline{B} + C + \overline{D})(\overline{A} + \overline{B} + C + \overline{D})$$

The third term, $A + \overline{B} + \overline{C} + D$, is already in standard form.

The complete standard POS form of the original expression is as follows:

$$\left(\overline{A} + B + C\right)\left(\overline{B} + C + \overline{D}\right)\left(A + \overline{B} + \overline{C} + D\right) = \left(\overline{A} + B + C + D\right)\left(\overline{A} + B + C + \overline{D}\right)\left(\overline{A} + B + C + \overline{D}\right)\left(\overline{A} + \overline{B} + C + \overline{D}\right)\left(\overline{A} + \overline{B} + C + \overline{D}\right)\left(A + \overline{B} + \overline{C} + D\right)$$

EXERCISES

Q. Convert the following SOP expression into standard SOP form:

a.
$$AB + \overline{A}BD + \overline{A}C\overline{D}$$

b.
$$\overline{A}BC + AB\overline{C}$$

Q. Convert the following POS expression into standard POS form:

$$CL(A + \overline{B} + C)(A + B + \overline{C})$$

b.
$$A(A+\overline{C})(A+B)$$

Canonical Forms of Boolean Expressions

- The various possible standard product (AND) terms are called "minterms", while the standard sum (OR) terms are called "maxterms".
- ➤ N input variables (bits) can be combined to form 2^N minterms or 2^N maxterms, designated by their decimal equivalents (bits are assigned values such that each minterm yields value 1 while each maxterm yields value 0)

X	Y	Z	minterm	designation	maxterm	designation
0	0	0	XYZ	m_o	X+Y+Z	M_o
0	0	1	XYZ	m_1	X+Y+Z	M_1
0	1	0	XYZ	m_2	X+Y+Z	M_2
0	1	1	XYZ	m_3	X+Y+Z	M_3
1	0	0	ΧYZ	m_4	X+Y+Z	M_4
1	0	1	ΧYZ	m_5	X+Y+Z	M_5
1	1	0	XYZ	m_6	X+Y+Z	M_6
1	1	1	XYZ	m_7	X+Y+Z	M_7

Note that each maxterm is the complement (inverse) of the corresponding minterm i.e. $m_i = M_i$ (from de Morgan's laws)

Canonical Forms of Boolean Expressions

Example: We can write the expression for function F using the truth table below

F	Z	Y	X
0	0	0	0
1	1	0	0
0	0	1	0
0	1	1	0
1	0	0	1
0	1	0	1
0	0	1	1
1	1	1	1
·			

$$F = \overline{XYZ} + X\overline{Y}\overline{Z} + XYZ$$

$$F = m_1 + m_4 + m_7$$

(SOP form using minterms: collect all the terms which give F = 1)

$$F = (X + Y + Z)(X + \overline{Y} + Z)(X + \overline{Y} + \overline{Z})(\overline{X} + Y + \overline{Z})(\overline{X} + \overline{Y} + Z)$$

$$F = M_0 M_2 M_3 M_5 M_6$$
(DOS forms using most arrows collect all the terms which give $F = 0$)

(**POS** form using maxterms: collect all the terms which give F = 0)

Any Boolean function can be expressed as a sum of minterms (SOP form) or product of maxterms (POS form).

Q. Express the Boolean function F = A + BC as a sum of minterms (SOP).

First term missing B and C variables,

$$A = A(B + \overline{B})(C + \overline{C}) = (AB + A\overline{B})(C + \overline{C}) = ABC + AB\overline{C} + AB\overline{C} + AB\overline{C}$$

Second term missing variable A,

$$BC=BC(A+A)=ABC+ABC$$

$$F = ABC + ABC$$

$$F = m_7 + m_6 + m_5 + m_4 + m_1$$

In short notation

$$F(A,B,C) = \sum (1,4,5,6,7)$$

$$\overline{F}(A,B,C) = \sum (0,2,3)$$

Q. Express $F = XY + \overline{X}Z$ as a product of maxterms (POS form).

 $|\overline{F}(X,Y,Z)| = \Pi(1,3,6,7)$

$$F = XY + \overline{X}Z$$

$$F = (XY + \overline{X})(XY + Z) = (X + \overline{X})(Y + \overline{X})(X + Z)(Y + Z)$$

$$F = (Y + \overline{X})(X + Z)(Y + Z) \quad (: X + \overline{X} = 1)$$

$$F = (\overline{X} + Y + Z\overline{Z})(X + Y\overline{Y} + Z)(X\overline{X} + Y + Z) \quad (: X\overline{X} = 0)$$

$$F = (\overline{X} + Y + Z)(\overline{X} + Y + \overline{Z})(X + Y + Z)(X + \overline{Y} + Z)(X + Y + Z)(\overline{X} + Y + Z) \quad (: X + Y\overline{Y} = (X + Y)(X + \overline{Y}))$$

$$F = (X + Y + Z)(X + Y + Z)(X + Y + Z)(X + Y + Z) \quad (: XX = X)$$

$$F = M_4 M_5 M_0 M_2$$

$$F(X, Y, Z) = \Pi(0, 2, 4, 5)$$

EXERCISES

Q. Express the Boolean function F = X + YZ as a sum of minterms.

Q. Express the Boolean function F = X + YZ as a product of maxterms.