UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/671,324	09/25/2003	Vinod Prakash	1864.001US1	5680
7590 09/10/2008 Global IP Services PLLC 198F 27th Cross 3rd Block Jayanagar Page 1987 560011			EXAMINER	
			GODBOLD, DOUGLAS	
Bangalore, 560011 INDIA			ART UNIT	PAPER NUMBER
			2626	
			MAIL DATE	DELIVERY MODE
			09/10/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

	Application No.	Applicant(s)
	10/671,324	PRAKASH ET AL.
Office Action Summary	Examiner	Art Unit
	DOUGLAS C. GODBOLD	2626
The MAILING DATE of this commu Period for Reply	nication appears on the cover sheet wi	th the correspondence address
A SHORTENED STATUTORY PERIOD WHICHEVER IS LONGER, FROM THE - Extensions of time may be available under the provisio after SIX (6) MONTHS from the mailing date of this cor - If NO period for reply is specified above, the maximum - Failure to reply within the set or extended period for reply any reply received by the Office later than three month earned patent term adjustment. See 37 CFR 1.704(b).	MAILING DATE OF THIS COMMUNIC ns of 37 CFR 1.136(a). In no event, however, may a re nmunication. statutory period will apply and will expire SIX (6) MON by will, by statute, cause the application to become AB	CATION. Poply be timely filed THS from the mailing date of this communication. ANDONED (35 U.S.C. § 133).
Status		
	led on <u>23 July 2008</u> . 2b) This action is non-final. n for allowance except for formal matte tice under <i>Ex parte Quayle</i> , 1935 C.D	• •
Disposition of Claims		
4) ☐ Claim(s) <u>1,4-6,8-12,15-17,19-23,2</u> 4a) Of the above claim(s) is, 5) ☐ Claim(s) <u>11 and 20</u> is/are allowed. 6) ☐ Claim(s) <u>,4-6,8-10, 12,15-17,19, 2</u> 7) ☐ Claim(s) is/are objected to. 8) ☐ Claim(s) are subject to rest	are withdrawn from consideration. 1-23,25,26 and 28-32 is/are rejected.	oplication.
Application Papers		
-	e: a) accepted or b) objected to be ection to the drawing(s) be held in abeyaning the correction is required if the drawing(ce. See 37 CFR 1.85(a). s) is objected to. See 37 CFR 1.121(d).
Priority under 35 U.S.C. § 119		
12) Acknowledgment is made of a clair a) All b) Some * c) None of: 1. Certified copies of the priorit 2. Certified copies of the priorit 3. Copies of the certified copie application from the Internat	n for foreign priority under 35 U.S.C. § y documents have been received. y documents have been received in A s of the priority documents have been ional Bureau (PCT Rule 17.2(a)). ion for a list of the certified copies not	pplication No received in this National Stage
Attachment(s) 1) Notice of References Cited (PTO-892) 2) Notice of Draftsperson's Patent Drawing Review 3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date	(PTO-948) Paper No(s	ummary (PTO-413))/Mail Date Iformal Patent Application ·

Art Unit: 2626

DETAILED ACTION

1. This Office Action is in response to correspondence filed July 23, 2008 in reference to application 10/671,324. Claims 1, 4-6, 8-12, 15-17, 19-23, 25, 26, 28-32 are pending and have been examined.

Response to Amendment

2. The amendment filed July 23, 2008 has been accepted and considered in this office action. Claims 1, 4, 5, 8-10, 12, 17, 19, 21, 25, and 31 have been amended and claims 2, 3, 7, 13, 14, 18, 24, 27, and 33 have been cancelled.

Response to Arguments

- 3. Applicant's arguments filed July 23, 3008 have been fully considered but they are not persuasive.
- 4. With regards to applicants arguments, see Remarks page 9, that Davidson does not teach or suggest "shaping quantization noise in spectral lines in each scale band factor by assigning quantization precision based on band energy ratios and SMRs," the examiner notes that Hu was relied upon to teach these limitations.
- 5. In response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., page 9 of remarks, shaping quantization noise in spectral lines in leach critical

Art Unit: 2626

band *using the estimated local gain*) are not recited in the rejected claim(s). Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993).

6. With regards to applicants arguments, see Remarks page 9, that Hu does not teach or suggest "shaping quantization noise in spectral lines in each scale band factor by assigning quantization precision based on band energy ratios and SMRs," the examiner respectfully disagrees. The applicant argues that because Hu uses the differences between SMRs between sub-bands that Hu cannot teach these limitations. However all that is required by the claim language is 1) band energy ratios and 2) SMRs. It is obvious that SMRs are used by Hu. However there is no specific type of band energy ratios that are specified, so SMR ratios can fairly be interpreted as such. Therefore Hu teaches the required limitations.

Claim Rejections - 35 USC § 103

- 7. The text of those sections of Title 35, U.S. Code not included in this action can be found in a prior Office action.
- 8. Claims 1, 4-6, 8-10, 12, 15-17, 19, 21-23, 25-26, and 28-32 are rejected under 35 U.S.C. 103(a) as being unpatentable over Davidson et al (US Patent 6,246,345) in view of Hu et al (US Patent 6,745,162).

Art Unit: 2626

9. Consider claim 1, Davidson teaches a method for real-time encoding of an audio signal (using system if figure 1) comprising:

grouping spectral lines to form scale band factors (gains 15 and 25, figure 1) by determining masking thresholds based on human perception system (In figure 1, analysis filter bank 12 receives an input signal from path 11, splits the input signal into subband signals representing frequency sub-bands of the input signal... it is common for a split-band encoder and decoder in a perceptual coding system to process many more sub-bands having bandwidths that are commensurate with the critical bandwidths of the human auditory system; column 4, line 30-39. The use of the Fourier transform implies grouping the Fourier transform spectral lines to obtain critical bands);

shaping quantization noise in spectral lines in each scale band factor (Figure 3, step 51 applies a perceptual model to information representing characteristics of the input signal to establish a desired quantization-noise spectrum, column 5, line 20. Subband-signal components are passed to gain element 15 and 25 which apply these scale band factors obtained by analyzer 14; column 6, line 13); and

running a loop for each scale band factor to satisfy a predetermined bit allocation rate based on a bit allocation scheme (implied by figure 3 showing a loop for allocating bits to satisfy a noise spectrum).

However Davidson does not specifically teach shaping quantization noise in the spectral lines by assigning quantization precision based on band energy ratios and Signal-to-Mask ratios.

In the same field of bit allocation, Hu teaches shaping quantization noise in the spectral lines by assigning quantization precision based on band energy ratios and Signal-to-Mask ratios (In step 412, psycho-acoustic modeler 126 determines signal to mask ratios for the filtered source audio data, and then provides the signal to mask ratios to bit allocator 122; column 5, line 25. In step 416, bit allocator 122 advances to a new current frame. At step 417 the .DELTA.SMR is calculated for each sub-band. This value compares is the difference in SMR for a sub-band as compared to the SMR value for that sub-band in a prior iteration of the loop containing step 417. The sub-band index is advanced at step 418 so that processing of the next (or first) sub-band takes place; column 5 line 42. This step of comparing the change in SMR's is in fact comparing energy levels, as the SMR is determined in part by the energy levels.).

Therefore it would have been obvious to one of ordinary skill in the art at the time of the invention to combine the bit allocation technique taught by Hu, with the audio encoder of Davidson in order to provide a quantization allocation that more accurately takes advantage of the human perceptual model in order to hide quantization noise more effectively.

Davidson and Hu teaches does not specifically teach wherein shaping the quantization noise in the spectral lines by assigning precision based on band energy ratios and SMRs comprises:

shaping the quantization noise in each scale band factor such that a difference between SMR and SNR in each scale band factor is substantially constant.

However the allocation of Davidson figure 3, shows modifying resolution until the noise spectrum is just below the mask threshold for the subband. If this loop is run for each subband, every subband will have a noise spectrum just below the mask threshold, so that the SMR and the SNR are substantially constant for each band.

Therefore it would have been obvious to one of ordinary skill in the art at the time of invention to make the SMR and the SNR substantially constant in order to provide an efficient encoding scheme, not wasting unnecessary bits to create noise to mask ratios that are unnecessarily large.

10. Consider claim 4, Davidson teaches the method of claim 1, but does not specifically teach wherein shaping the quantization noise in each scale band factor such that the difference between SMR and SNR is substantially constant comprises:

assigning a higher quantization precision to scale band factors having a high SMR; and

assigning a quantization precision to each scale band factor that is inversely in proportion to their energy content with respect to frame energy to desensitize the scale factor bands.

However, assigning a higher quantization precision to scale band factors having a high SMR and assigning a quantization precision to each scale band factor that is inversely in proportion to their energy content with respect to frame energy to desensitize the scale factor bands would have been obvious to one or ordinary skill in

Page 7

the art as there is an obvious tradeoff between emphasizing the audibility of weak bands and the emphasizing the accuracy of strong band signals.

Therefore it would have been obvious to one of ordinary skill in the art at the time of invention to assign quantization precision based one the signal to mask ratio in order to emphasize bands that might have otherwise been lost is quantization.

11. Consider claim 5, Davidson teaches a single-loop (figure 3 shows a loop for allocating bits to satisfy a noise spectrum) quantization method for band-by-band system (In FIG. 1, analysis filter bank 12 receives an input signal from path 11, splits the input signal into subband signals representing frequency sub-bands of the input signal; column 4 line 30) comprising:

calculating local gain for each band (Subband-signal components are passed to gain element 15 which applies gain factor obtained by analyzer 14; column 6, line 13); and

coding of an audio signal comprising shaping quantization noise in each band (Figure 3, step 51 applies a perceptual model to information representing characteristics of the input signal to establish a desired quantization-noise spectrum; column 5, line 20. Subband-signal components are passed to gain element 15 which applies gain factor obtained by analyzer 14; column 6, line 13).

However Davidson does not specifically teach shaping quantization noise in the spectral lines by assigning quantization precision based on band energy ratios and Signal-to-mask ratios.

In the same field of bit allocation, Hu teaches shaping quantization noise in the spectral lines by assigning quantization precision based on band energy ratios and Signal-to-mask ratios (In step 412, psycho-acoustic modeler 126 determines signal to mask ratios for the filtered source audio data, and then provides the signal to mask ratios to bit allocator 122; column 5, line 25. In step 416, bit allocator 122 advances to a new current frame. At step 417 the .DELTA.SMR is calculated for each sub-band. This value compares is the difference in SMR for a sub-band as compared to the SMR value for that sub-band in a prior iteration of the loop containing step 417. The sub-band index is advanced at step 418 so that processing of the next (or first) sub-band takes place; column 5 line 42. This step of comparing the change in SMR's is in fact comparing energy levels, as the SMR is determined in part by the energy levels.).

Page 8

Therefore it would have been obvious to one of ordinary skill in the art at the time of the invention to combine the bit allocation technique taught by Hu, with the audio encoder of Davidson in order to provide a quantization allocation that more accurately takes advantage of the human perceptual model in order to hide quantization noise more effectively.

Davidson and Hu does not specifically teach wherein shaping quantization noise in each band by assigning quantization precision based on band energy ratios and SMRs comprises:

shaping quantization noise in the spectral lines in each band such that a difference between Signal-to-Mask Ratio (SMR) and Signal-to-Noise Ratio (SNR) in each band is substantially constant.

However the allocation of Davidson figure 3, shows modifying resolution until the noise spectrum is just below the mask threshold for the subband. If this loop is run for each subband, every subband will have a noise spectrum just below the mask threshold, so that the SMR and the SNR are substantially constant for each band.

Page 9

Therefore it would have been obvious to one of ordinary skill in the art at the time of invention to make the SMR and the SNR substantially constant in order to provide an efficient encoding scheme, not wasting unnecessary bits to create noise to mask ratios that are unnecessarily large.

12. Consider claim 6, Davidson teaches the method of claim 5, wherein shaping the quantization noise in each band using its local gain comprises:

shaping the quantization noise in each band by setting a scale factor in each band based on its psychoacoustic parameters and energy ratio (According to this method, step 51 applies a perceptual model to information representing characteristics of the input signal to establish a desired quantization-noise spectrum. The noise levels in this spectrum correspond to the estimated psychoacoustic mask threshold of the input signal; column 5 line 18-24.).

13. Consider claim 8, Davidson teaches the method of claim 5, wherein the spectral lines are derived by performing a time to frequency transformation of the audio signal (Analysis filter bank 12 may be implemented in a wide variety of ways including polyphase filters, lattice filters, the quadrature mirror filter (QMF), various time-domain-

Art Unit: 2626

to-frequency-domain block transforms including Fourier-series type transforms, cosine-modulated filter bank transforms and wavelet transforms; column 4 line 40.).

14. Consider claim 9, Davidson teaches the method of claim 5, further comprising:

partitioning the audio signal into a sequence of successive frames (In preferred
embodiments, the bank of filters is implemented by weighting or modulating overlapped
blocks of digital audio samples with an analysis window function; column 4, line 45);

forming bands including groups of neighboring spectral lines for each frame based on critical bands of hearing (In FIG. 1, analysis filter bank 12 receives an input signal from path 11, splits the input signal into subband signals representing frequency sub-bands of the input signal... it is common for a split-band encoder and decoder in a perceptual coding system to process many more sub-bands having bandwidths that are commensurate with the critical bandwidths of the human auditory system; column 4, line 30-39); and

computing local gain for each band (Subband-signal components are passed to gain element 15 which applies gain factor obtained by analyzer 14; column 6, line 13).

15. Consider claim 10, Davidson teaches the method of claim 5, but does not specifically teach wherein shaping quantization noise in each band such that the difference between SMR and SNR is substantially constant comprises:

assigning a higher quantization precision to bands having a higher SMR; and

further assigning quantization precision to each band such that the assigned quantization precision is inversely in proportion to their energy content with respect to band energy to desensitize the bands.

However assigning a higher quantization precision to bands having a higher SMR; and

further assigning quantization precision to each band such that the assigned quantization precision is inversely in proportion to their energy content with respect to band energy to desensitize the bands would have been obvious to one or ordinary skill in the art as there is an obvious tradeoff between emphasizing the audibility of weak bands and the emphasizing the accuracy of strong band signals.

Therefore it would have been obvious to one of ordinary skill in the art at the time of invention to assign quantization precision based one the signal to mask ratio in order to emphasize bands that might have otherwise been lost is quantization

16. Consider claim 12, Davidson teaches a method for encoding an audio signal, based on a perceptual model, comprising quantization noise shaping of spectral lines on a band-by-band basis using their local gains (Figure 3, step 51 applies a perceptual model to information representing characteristics of the input signal to establish a desired quantization-noise spectrum; column 5, line 20. Subband-signal components are passed to gain element 15 which applies gain factor obtained by analyzer 14; column 6, line 13. The noise levels in this spectrum correspond to the estimated psychoacoustic masking threshold of the input signal; column 5 line 22.), but does not

Art Unit: 2626

specifically teach that difference between SMR and SNR is held substantially constant for each band, nor shaping quantization noise in the spectral lines by assigning quantization precision based on band energy ratios and Signal-to-mask ratios.

In the same field of bit allocation, Hu teaches shaping quantization noise in the spectral lines by assigning quantization precision based on band energy ratios and Signal-to-mask ratios (In step 412, psycho-acoustic modeler 126 determines signal to mask ratios for the filtered source audio data, and then provides the signal to mask ratios to bit allocator 122; column 5, line 25. In step 416, bit allocator 122 advances to a new current frame. At step 417 the .DELTA.SMR is calculated for each sub-band. This value compares is the difference in SMR for a sub-band as compared to the SMR value for that sub-band in a prior iteration of the loop containing step 417. The sub-band index is advanced at step 418 so that processing of the next (or first) sub-band takes place.; column 5 line 42. This step of comparing the change in SMR's is in fact comparing energy levels, as the SMR is determined in part by the energy levels.).

Therefore it would have been obvious to one of ordinary skill in the art at the time of the invention to combine the bit allocation technique taught by Hu, with the audio encoder of Davidson in order to provide a quantization allocation that more accurately takes advantage of the human perceptual model in order to hide quantization noise more effectively.

This combination does not specifically teach that difference between SMR and SNR is held substantially constant for each band.

However the allocation of figure 3 of Davidson, shows modifying resolution until the noise spectrum is just below the masking threshold for the subband. If this loop is run for each subband, every subband will have a noise spectrum just below the masking threshold, so that the SMR and the SNR are substantially constant for each band.

Therefore it would have been obvious to one of ordinary skill in the art at the time of invention to make the SMR and the SNR substantially constant in order to provide an efficient encoding scheme, not wasting unnecessary bits to create noise to mask ratios that are unnecessarily large.

Davidson and Hu does not specifically teach the energy ratios are computed by dividing energy in each band over sum of energies in all bands.

However, this energy ratio is merely the percentage of the energy that the band contains for the entire frame, essentially a normalization of the frame.

dealing with the percentage of energy instead of its unnormalized level would be obvious to one of ordinary skill in the art in order to provide a method of quantizing in which each frame has bits distributed in accordance with only the signal level in the frame in question in order to emphasize weaker bands.

Therefore it would have been obvious to one of ordinary skill in the art at the time of invention to use a normalized energy level in calculations in order that bits are assigned based solely on the frame being coded in order to emphasize weaker bands.

17. Consider claim 15, Davidson teaches the method of claim 12, but does not specifically teach wherein shaping quantization noise in each band such that the difference between SMR and SNR is substantially constant comprises:

assigning a higher quantization precision to bands having a higher SMR; and further assigning quantization precision to each band such that the assigned quantization precision is inversely in proportion to their energy content with respect to band energy to desensitize the bands.

However, assigning a higher quantization precision to bands having a higher SMR and further assigning quantization precision to each band such that the assigned quantization precision is inversely in proportion to their energy content with respect to band energy to desensitize the bands would have been obvious to one or ordinary skill in the art as there is an obvious tradeoff between emphasizing the audibility of weak bands and the emphasizing the accuracy of strong band signals.

Therefore it would have been obvious to one of ordinary skill in the art at the time of invention to assign quantization precision based one the signal to mask ratio in order to emphasize bands that might have otherwise been lost is quantization.

18. Consider claim 16, Davidson teaches the method of claim 15, wherein fitting the noise shaped spectral lines comprises:

estimating a bit demand for each band (figure 3, step 52 give an initial proposed resolution for quantization); and

allocating the estimated bit demand based on a predetermined bit rate (figure 3 shows a loop for allocating bits to a subband. Step 54 determines whether the total of the required allocations differs significantly from the total number of bits that are available for quantization, column 5, line 38).

19. Consider claim 17, Davidson teaches an apparatus comprising an encoder (figure 1) to quantize an audio signal based on a perceptual model comprising quantization noise shaping of spectral lines on a band-by-band basis and fitting spectral lines within each band based on a given bit rate (Figure 3, step 51 applies a perceptual model to information representing characteristics of the input signal to establish a desired quantization-noise spectrum; column 5, line 20. Subband-signal components are passed to gain element 15 which applies gain factor obtained by analyzer 14; column 6, line 13 The noise levels in this spectrum correspond to the estimated psychoacoustic masking threshold of the input signal; column 5 line 22. Step 54 determines whether the total of the required allocations differs significantly from the total number of bits that are available for quantization, column 5, line 38).

However Davidson does not specifically teach shaping quantization noise in the spectral lines by assigning quantization precision based on band energy ratios and Signal-to-mask ratios.

In the same field of bit allocation, Hu teaches shaping quantization noise in the spectral lines by assigning quantization precision based on band energy ratios and Signal-to-mask ratios (In step 412, psycho-acoustic modeler 126 determines signal to

mask ratios for the filtered source audio data, and then provides the signal to mask ratios to bit allocator 122; column 5, line 25. In step 416, bit allocator 122 advances to a new current frame. At step 417 the .DELTA.SMR is calculated for each sub-band. This value compares is the difference in SMR for a sub-band as compared to the SMR value for that sub-band in a prior iteration of the loop containing step 417. The sub-band index is advanced at step 418 so that processing of the next (or first) sub-band takes place; column 5 line 42. This step of comparing the change in SMR's is in fact comparing energy levels, as the SMR is determined in part by the energy levels.).

Therefore it would have been obvious to one of ordinary skill in the art at the time of the invention to combine the bit allocation technique taught by Hu, with the audio encoder of Davidson in order to provide a quantization allocation that more accurately takes advantage of the human perceptual model in order to hide quantization noise more effectively.

Davidson and Hu does not specifically teach that quantization noise shaping the spectral lines on the band-by-band basis comprises:

quantization noise shaping the spectral lines on the band-by-band basis such that the difference between SMR and SNR is substantially constant in each band.

However the allocation of Davidson figure 3, shows modifying resolution until the noise spectrum is just below the masking threshold for the subband. If this loop is run for each subband, every subband will have a noise spectrum just below the masking threshold, so that the SMR and the SNR are substantially constant for each band.

Art Unit: 2626

Therefore it would have been obvious to one of ordinary skill in the art at the time of invention to make the SMR and the SNR substantially constant in order to provide an efficient encoding scheme, not wasting unnecessary bits to create noise to mask ratios that are unnecessarily large.

- 20. Consider claim 19, Davidson teaches the apparatus of claim 17, wherein the local gains are derived from energy ratios and SMRs in each band (preferably the value of the gain factor is related to the level of the [masking] threshold in some manner; column 6 line 6. A making threshold is in part dependent on the signal energy of the frame. In order to estimate a bit allocation, it is obvious band energy ratios and signal-mask ratios must be considered in order to provide the best allocation to enable a perceived higher quality).
- 21. Consider claim 21, Davidson teaches an apparatus for coding a signal based on a perceptual model (figure 1), comprising:

means for shaping quantization noise in spectral lines on a band-by-band basis (In FIG. 1, analysis filter bank 12 receives an input signal from path 11, splits the input signal into subband signals representing frequency sub-bands of the input signal; column 4, line 30. Figure 3, step 51 applies a perceptual model to information representing characteristics of the input signal to establish a desired quantization-noise spectrum; column 5, line 20.); and

means for quantizing the shaped spectral lines in each band based on a predetermined bit rate (quantizer 17).

However Davidson does not specifically teach shaping quantization noise in the spectral lines by assigning quantization precision based on band energy ratios and Signal-to-mask ratios.

In the same field of bit allocation, Hu teaches shaping quantization noise in the spectral lines by assigning quantization precision based on band energy ratios and Signal-to-mask ratios (In step 412, psycho-acoustic modeler 126 determines signal to mask ratios for the filtered source audio data, and then provides the signal to mask ratios to bit allocator 122; column 5, line 25. In step 416, bit allocator 122 advances to a new current frame. At step 417 the .DELTA.SMR is calculated for each sub-band. This value compares is the difference in SMR for a sub-band as compared to the SMR value for that sub-band in a prior iteration of the loop containing step 417. The sub-band index is advanced at step 418 so that processing of the next (or first) sub-band takes place; column 5 line 42. This step of comparing the change in SMR's is in fact comparing energy levels, as the SMR is determined in part by the energy levels.).

Therefore it would have been obvious to one of ordinary skill in the art at the time of the invention to combine the bit allocation technique taught by Hu, with the audio encoder of Davidson in order to provide a quantization allocation that more accurately takes advantage of the human perceptual model in order to hide quantization noise more effectively.

Davidson and Hu does not specifically teach the means for shaping the quantization noise in the spectral lines on a band-by-band basis by using their local gains comprises:

means for shaping quantization noise in the spectral lines such that the difference between SMR and SNR is substantially constant for each band.

However the allocation of Davidson figure 3, shows modifying resolution until the noise spectrum is just below the masking threshold for the subband. If this loop is run for each subband, every subband will have a noise spectrum just below the masking threshold, so that the SMR and the SNR are substantially constant for each band.

Therefore it would have been obvious to one of ordinary skill in the art at the time of invention to make the SMR and the SNR substantially constant in order to provide an efficient encoding scheme, not wasting unnecessary bits to create noise to mask ratios that are unnecessarily large.

22. Consider claim 22, Davidson teaches the apparatus of claim 21, further comprising:

means for partitioning the signal into a sequence of successive frames (In preferred embodiments, the bank of filters is implemented by weighting or modulating overlapped blocks of digital audio samples with an analysis window function; column 4, line 45);

means for performing time-to-frequency transformation to obtain the spectral lines in each frame (Analysis filter bank 12 may be implemented in a wide variety of

Art Unit: 2626

ways including polyphase filters, lattice filters, the quadrature mirror filter (QMF), various time-domain-to-frequency-domain block transforms including Fourier-series type transforms, cosine-modulated filter bank transforms and wavelet transforms; column 4 line 40.); and

means for forming bands by grouping neighboring spectral lines within each frame (In FIG. 1, analysis filter bank 12 receives an input signal from path 11, splits the input signal into subband signals representing frequency sub-bands of the input signal... it is common for a split-band encoder and decoder in a perceptual coding system to process many more sub-bands having bandwidths that are commensurate with the critical bandwidths of the human auditory system; column 4, line 30-39).

23. Consider claim 23, Davidson teaches the apparatus of claim 21, wherein the means for quantizing of the spectral lines further comprises:

means for estimating bit demand in each band (figure 3, step 52 give an initial proposed resolution for quantization); and

means for allocating bits based on a predetermined bit rate (figure 3 shows a loop for allocating bits to a subband. Step 54 determines whether the total of the required allocations differs significantly from the total number of bits that are available for quantization, column 5, line 38).

24. Consider claim 25, Davidson teaches an audio encoder comprising a quantizer (figure 1, 17) to shape quantization noise in spectral lines in each band (Figure 3, step

51 applies a perceptual model to information representing characteristics of the input signal to establish a desired quantization-noise spectrum; column 5, line 20. Subband-signal components are passed to gain element 15 which applies gain factor obtained by analyzer 14; column 6, line 13.) and to further run a loop to fit the shaped spectral lines in each band within a predetermined bit rate (figure 3 shows a loop for allocating bits to a subband. Step 54 determines whether the total of the required allocations differs significantly from the total number of bits that are available for quantization, column 5, line 38),

a noise shaping module to shape the quantization noise in each band (Figure 3, step 51 applies a perceptual model to information representing characteristics of the input signal to establish a desired quantization-noise spectrum. The noise levels in this spectrum correspond to the estimated psychoacoustic masking threshold of the input signal; column 5 line 18-24.); and

an inner loop module to fit shaped band within the predetermined bit rate (Figure 3 shows a loop for allocating bits to a subband. Step 54 determines whether the total of the required allocations differs significantly from the total number of bits that are available for quantization, column 5, line 38),

However Davidson does not specifically teach shaping quantization noise in the spectral lines by assigning quantization precision based on band energy ratios and Signal-to-mask ratios.

In the same field of bit allocation, Hu teaches shaping quantization noise in the spectral lines by assigning quantization precision based on band energy ratios and

Signal-to-mask ratios (In step 412, psycho-acoustic modeler 126 determines signal to mask ratios for the filtered source audio data, and then provides the signal to mask ratios to bit allocator 122; column 5, line 25. In step 416, bit allocator 122 advances to a new current frame. At step 417 the .DELTA.SMR is calculated for each sub-band. This value compares is the difference in SMR for a sub-band as compared to the SMR value for that sub-band in a prior iteration of the loop containing step 417. The sub-band index is advanced at step 418 so that processing of the next (or first) sub-band takes place; column 5 line 42. This step of comparing the change in SMR's is in fact comparing energy levels, as the SMR is determined in part by the energy levels.).

Therefore it would have been obvious to one of ordinary skill in the art at the time of the invention to combine the bit allocation technique taught by Hu, with the audio encoder of Davidson in order to provide a quantization allocation that more accurately takes advantage of the human perceptual model in order to hide quantization noise more effectively.

Davidson and Hu does not specifically teach that a difference between SMR and SNR is held substantially constant in each band.

However the allocation of Davidson figure 3, shows modifying resolution until the noise spectrum is just below the masking threshold for the subband. If this loop is run for each subband, every subband will have a noise spectrum just below the masking threshold, so that the SMR and the SNR are substantially constant for each band.

Therefore it would have been obvious to one of ordinary skill in the art at the time of invention to make the SMR and the SNR substantially constant in order to provide an

Art Unit: 2626

efficient encoding scheme, not wasting unnecessary bits to create noise to mask ratios that are unnecessarily large.

25. Consider claim 26, Davidson teaches the audio encoder of claim 25, further comprising:

an input module to partition an audio signal into a sequence of successive frames (In preferred embodiments, the bank of filters is implemented by weighting or modulating overlapped blocks of digital audio samples with an analysis window function; column 4, line 45); and

a time-to-frequency transformation module to obtain the spectral lines in each frame, wherein the time-to-frequency transformation module to form bands by grouping neighboring spectral lines with each frame (Analysis filter bank 12 may be implemented in a wide variety of ways including polyphase filters, lattice filters, the quadrature mirror filter (QMF), various time-domain-to-frequency-domain block transforms including Fourier-series type transforms, cosine-modulated filter bank transforms and wavelet transforms; column 4 line 40.).

26. Consider claim 28, Davidson teaches an article comprising:

a storage medium having instructions that, when executed by a computing platform, (Figure 13, ROM 94 represents some form of persistent storage such as read only memory (ROM) for storing programs needed to operate device 90 and to carry out various aspects of the present invention.) result in execution of a method comprising:

encoding an audio signal, based on a perceptual model, by noise shaping spectral lines on a band-by-band basis using their local gains (Figure 3, step 51 applies a perceptual model to information representing characteristics of the input signal to establish a desired quantization-noise spectrum; column 5, line 20. Subband-signal components are passed to gain element 15 which applies gain factor obtained by analyzer 14; column 6, line 13. The noise levels in this spectrum correspond to the estimated psychoacoustic masking threshold of the input signal; column 5 line 22.)

Davidson does not specifically teach that the difference between SMR and SNR is held substantially constant for each band.

However the allocation of Davidson figure 3, shows modifying resolution until the noise spectrum is just below the masking threshold for the subband. If this loop is run for each subband, every subband will have a noise spectrum just below the masking threshold, so that the SMR and the SNR are substantially constant for each band.

Therefore it would have been obvious to one of ordinary skill in the art at the time of invention to make the SMR and the SNR substantially constant in order to provide an efficient encoding scheme, not wasting unnecessary bits to create noise to masking ratios that are unnecessarily large.

27. Consider claim 29, Davidson teaches the article of claim 28, however Davidson does not specifically teach shaping quantization noise in the spectral lines by assigning quantization precision based on band energy ratios and Signal-to-mask ratios.

In the same field of bit allocation, Hu teaches shaping quantization noise in the spectral lines by assigning quantization precision based on band energy ratios and Signal-to-mask ratios (In step 412, psycho-acoustic modeler 126 determines signal to mask ratios for the filtered source audio data, and then provides the signal to mask ratios to bit allocator 122; column 5, line 25. In step 416, bit allocator 122 advances to a new current frame. At step 417 the .DELTA.SMR is calculated for each sub-band. This value compares is the difference in SMR for a sub-band as compared to the SMR value for that sub-band in a prior iteration of the loop containing step 417. The sub-band index is advanced at step 418 so that processing of the next (or first) sub-band takes place; column 5 line 42. This step of comparing the change in SMR's is in fact comparing energy levels, as the SMR is determined in part by the energy levels.).

Therefore it would have been obvious to one of ordinary skill in the art at the time of the invention to combine the bit allocation technique taught by Hu, with the audio encoder of Davidson in order to provide a quantization allocation that more accurately takes advantage of the human perceptual model in order to hide quantization noise more effectively.

28. Consider claim 30, Davidson teaches the article of claim 29, but does not specifically teach the energy ratios are computed by dividing energy in each band over sum of energies in all bands.

However, this energy ratio is merely the percentage of the energy that the band contains for the entire frame, essentially a normalization of the frame.

Art Unit: 2626

Dealing with the percentage of energy instead of its unnormalized level would be obvious to one of ordinary skill in the art in order to provide a method of quantizing in which each frame has bits distributed in accordance with only the signal level in the frame in question.

- 29. Consider claim 31, Davidson teaches a system (figure 13) comprising:
 - a bus (bus 91);
 - a processor coupled to the bus (DSP 92);
 - a memory coupled to the processor (RAM 93);

a network interface coupled to the processor and the memory (I/O control 95 represents interface circuitry to receive and transmit audio signals by way of communication channel 96; column 20, line 25); and

an audio encoder (part of DSP 92) comprising a quantizer coupled to the network interface and the processor to shape quantization noise in spectral lines in each band and to further run a loop to fit the shaped spectral lines in each band within a predetermined bit rate (figure 3 shows a loop for allocating bits to a subband. Step 54 determines whether the total of the required allocations differs significantly from the total number of bits that are available for quantization, column 5, line 38),

a noise shaping module to shape the quantization noise in each band Figure 3, step 51 applies a perceptual model to information representing characteristics of the input signal to establish a desired quantization-noise spectrum. The noise levels in this

spectrum correspond to the estimated psychoacoustic masking threshold of the input signal; column 5 line 18-24.); and

an inner loop module to fit shaped band within the predetermined bit rate (Figure 3 shows a loop for allocating bits to a subband. Step 54 determines whether the total of the required allocations differs significantly from the total number of bits that are available for quantization, column 5, line 38).

However Davidson does not specifically teach shaping quantization noise in the spectral lines by assigning quantization precision based on band energy ratios and Signal-to-mask ratios.

In the same field of bit allocation, Hu teaches shaping quantization noise in the spectral lines by assigning quantization precision based on band energy ratios and Signal-to-mask ratios (In step 412, psycho-acoustic modeler 126 determines signal to mask ratios for the filtered source audio data, and then provides the signal to mask ratios to bit allocator 122; column 5, line 25. In step 416, bit allocator 122 advances to a new current frame. At step 417 the .DELTA.SMR is calculated for each sub-band. This value compares is the difference in SMR for a sub-band as compared to the SMR value for that sub-band in a prior iteration of the loop containing step 417. The sub-band index is advanced at step 418 so that processing of the next (or first) sub-band takes place; column 5 line 42. This step of comparing the change in SMR's is in fact comparing energy levels, as the SMR is determined in part by the energy levels.).

Therefore it would have been obvious to one of ordinary skill in the art at the time of the invention to combine the bit allocation technique taught by Hu, with the audio

encoder of Davidson in order to provide a quantization allocation that more accurately takes advantage of the human perceptual model in order to hide quantization noise more effectively.

Davidson and Hu does not specifically teach that a difference between SMR and SNR is held substantially constant in each band.

However the allocation of Davidson figure 3, shows modifying resolution until the noise spectrum is just below the masking threshold for the subband. If this loop is run for each subband, every subband will have a noise spectrum just below the masking threshold, so that the SMR and the SNR are substantially constant for each band.

Therefore it would have been obvious to one of ordinary skill in the art at the time of invention to make the SMR and the SNR substantially constant in order to provide an efficient encoding scheme, not wasting unnecessary bits to create noise to mask ratios that are unnecessarily large.

30. Consider claim 32, Davidson teaches the system of claim 31, further comprising: an input module to partition an audio signal into a sequence of successive frames (In preferred embodiments, the bank of filters is implemented by weighting or modulating overlapped blocks of digital audio samples with an analysis window function; column 4, line 45); and

a time-to-frequency transformation module to obtain the spectral lines in each frame, wherein the time-to-frequency transformation module to form bands by grouping

neighboring spectral lines with each frame (In FIG. 1, analysis filter bank 12 receives an input signal from path 11, splits the input signal into subband signals representing frequency sub-bands of the input signal... it is common for a split-band encoder and decoder in a perceptual coding system to process many more sub-bands having bandwidths that are commensurate with the critical bandwidths of the human auditory system; column 4, line 30-39).

Allowable Subject Matter

- 31. Claims 11 and 20 are allowed.
- 32. The following is an examiner's statement of reasons for allowance: The Prior art of record does not teach or fairly suggest alone or in combination the following equations used for deriving local gains:

$$K_b = -(int)(\alpha * log2(en(b)/sum en) + \beta * log2(SMR(b)))$$

wherein K6 is the local gain for each band, log2 is logarithm to base 2, en(b) is the band energy in band b, sum en is total energy in a frame, SMR(b) is the psychoacoustic threshold for band b, wherein a measures weightage due to energy ratio, and fl is a weightage due to SMRs.

Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to avoid processing delays, should preferably accompany the issue fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance."

Art Unit: 2626

Conclusion

33. Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to DOUGLAS C. GODBOLD whose telephone number is (571)270-1451. The examiner can normally be reached on Monday-Thursday 7:00am-4:30pm Friday 7:00am-3:30pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Patrick Edouard can be reached on (571) 272-7603. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 2626

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

9/8/2008

/Talivaldis Ivars Smits/ Primary Examiner, Art Unit 2626

DCG