CS 205 - Problem Set 1 - Propositions

Sections 1-3, 7-9

Due Date, Sunday September 18, 2022 by midnight

Instructions

- Read Rosen 1.1, 1.2 prior to completing this problem set OR
- Watch videos on foundations of logic on cubits
- Write/type solution to each problem on a new page
- Combine all solutions to create a single PDF
- Submit your solutions to gradescope
- You are authorized to seek help from course staff ONLY
- If you have any questions about a specific problem, post the question to canvas discussions

your work may not be graded without you signing below

I certify that this paper represents my own work and I have read RU academic integrity policies https://www.cs.rutgers.edu/academic-integrity/introduction

sign your name: AKShaj Kammari

PRINT your name:

NetID: ak 1990

<u>Recitation-1-3, 7-9</u>: **7**

Official Use Only

Grade:

Grader:

1. Check to see if the statement $n^2 + n + 41$ is prime for n = 0, 1, ..., 5. Complete the table below.

n	value	ue isPrime		
0	41	YES		
1	43	YES		
$ _{2}$	47	YES		
3	53	YES		
$\begin{vmatrix} 3 \\ 4 \end{vmatrix}$	61	YES		
5	71	YES		

2. If that all values in the above table are all prime, can you make a general statement that $n^2 + n + 41$ is prime for all natural numbers n? Why or why not? If answer is no, give an example of n such that expression is not prime or if the answer is yes, provide a brief justification.

Your answer

n²+n+41 is not prime for all natural numbers

n. when n is 41 the expression is not

prime.

Let p, q be the propositions,

- \bullet p: course grades have been finalized
- q: final exam has been graded

Express the following propositions in English. Please be as clear and as concise as possible.

1.
$$p \Rightarrow q$$

If course grades have been finalized, then final exam has been graded

2.
$$p \vee \neg q$$

Course grades have been finalized, or final exam has not been graded

3.
$$\neg q \Rightarrow \neg p$$

If final exam has not been graded, then course grades have not been finalized

$$4. \ \neg q \lor (\neg p \land q)$$

Final exam has not been graded, or course grades have not been finalized and final exam has been graded

Let p, q, r be the propositions,

- p: You win the primary
- q: You visit every home in your district.
- r: You win the election

Express the following expressions using notation. Please provide the answer using p, q and r.

1. You win the election, but you do not visit every home in your district.

- 2. You win the primary, and you visit every home in your district, and therefore you win the election.(P ✓ Q) ⇒ r
- 3. To win the election, it is necessary for you to visit every home in the district.

- 4. You win the primary, but you don't visit every home in your district, nevertheless you win the election $(\rho \land \neg e) \land r$
- 6. You don't win election unless you visit every home in your district

p⇒q is ¬prq

Problem 4

Are these statements consistent?

- Whenever the road is being repaired, people cannot access the grocery store. $\rho \Rightarrow \neg q$
- If people can access the grocery store, then they can buy some food. $q \Rightarrow r$
- If people cannot buy some food, then the road is being repaired $\neg r \Rightarrow P$

Show all your work. Be as brief and as concise as possible.

P	9	~	70179	79 V r	rvp
7	T	Т	F	T	T
T	T	F	F	F	T
T	F	1	\mathcal{T}	Τ	T
T	F	F	T	T	T
F	T	+	T	T	T
F	T	F	T	F	F
F	F	τ	T		+
F	F	F	T	1	F

An explorer is captured by a group of cannibals. There are two types of cannibals—those who always tell the truth and those who always lie. The cannibals will barbecue the explorer unless explorer can determine whether a particular cannibal always lies or always tells the truth. Explorer is allowed to ask the cannibal exactly one question.

- 1. Explain why the question "Are you a liar?" does not work.
- 2. Find a question that the explorer can use to determine whether the cannibal always lies or always tells the truth.

Show all your work. Be as brief and as concise as possible.

