

PHYSICAL CHEMISTRY

ENTHUSIAST | LEADER | ACHIEVER

EXERCISE

Chemical Thermodynamics & Energetics

ENGLISH MEDIUM

EXERCISE-I (Conceptual Questions)

INTRODUCTION

- 1. Thermodynamics is concerned with :-
 - (1) Total energy of a system
 - (2) Energy changes in a system
 - (3) Rate of a chemical change
 - (4) Mass changes in nuclear reactions

TH0001

- **2.** A well stoppered thermos flask contains some ice cubes. This is an example of :-
 - (1) Closed system
 - (2) Open system
 - (3) Isolated system
 - (4) Non-thermodynamic system

TH0002

- 3. Identify the intensive quantities from the following -
 - (1) Enthalpy and temperature
 - (2) Volume and temperature
 - (3) Enthalpy and volume
 - (4) Temperature and refractive index

TH0003

- **4.** Which of the following is an extensive property
 - (1) Mass
- (2) Enthalpy
- (3) Energy
- (4) All of these

TH0004

- **5.** For an adiabatic process which of the following relations is correct
 - $(1) \Delta E = 0$
- (2) $P\Delta V = 0$
- (3) q = 0
- (4) q = + W

TH0005

- **6.** In which of the following process work is independent of path:
 - (1) Isothermal
- (2) Isochoric
- (3) Adiabatic
- (4) Isobaric

TH0006

- **7.** When a gas is compressed adiabatically and reversibly, the final temperature is-
 - (1) Higher than the initial temperature
 - (2) Lower than the initial temperature
 - (3) The same as initial temperature
 - (4) Dependent upon the rate of compression

TH0007

Build Up Your Understanding

- **8.** Which one is dependent on initial and final state?
 - (1) Heat supplied at constant pressure
 - (2) Heat supplied at constant volume
 - (3) Enthalpy
 - (4) All of the above

TH0008

- **9.** Out of boiling point (I), entropy (II), pH (III) and emf of a cell (IV), intensive properties are :
 - (1) I, III, IV
- (2) I, II
- (3) I, II, III
- (4) All of these

TH0009

- 10. The work done by a weightless piston in causing an expansion ΔV (at constant temperature), when the opposing pressure P is variable, is given by :
 - (1) $W = \int PdV$
- (2) W = 0
- (3) $W = -P\Delta V$
- (4) None

TH0010

- **11.** The work done by 100 calorie of heat in isothermal expansion of ideal gas is :-
 - (1) 418.4 J
- (2) 4.184 J
- (3) 41.84 J
- (4) None

TH0011

- **12.** Temperature and volume are not :-
 - (1) Extensive properties
 - (2) Intensive properties
 - (3) Intensive and extensive properties respectively
 - (4) Extensive and intensive properties respectively

TH0012

- **13.** q = -w is not true for :-
 - (1) Isothermal process
- (2) Adiabatic process
- (3) Cyclic process
- (4) 1 and 3 both

TH0013

- 14. The temperature of an ideal gas increase in an -
 - (1) Adiabatic compression
 - (2) Adiabatic expansion
 - (3) Isothermal expansion
 - (4) Isothermal compression

TH0014

- **15.** Which statement is true for reversible process:-
 - (1) It takes place in single step
 - (2) Driving force is much greater than opposing force
 - (3) Work obtained is minimum
 - (4) None

TH0016

FIRST LAW OF THERMODYNAMICS ($\Delta E = q + W$)

- **16.** Both q & w are____ function :-
 - (1) State
- (2) State, Path
- (3) Path, State
- (4) Path

TH0017

- 17. If work done by the system is 300 joule when 100 cal. heat is supplied to it. The change in internal energy during the process is:-
 - (1) 200 Joule
- (2) 400 Joule
- (3) 720 Joule
- (4) 120 Joule

TH0018

- **18** A system has internal energy equal to E_1 , 450 J of heat is taken out of it and 600 J of work is done on it. The final energy of the system will be -
 - $(1) (E_1 + 150)$
- $(2) (E_1 + 1050)$
- (3) $(E_1 150)$
- (4) None of these

TH0019

- **19.** The work done by a system is 8J when 40J heat is supplied to it. The change in internal energy of the system during the process:
 - (1) 32 J
- (2) 40 J
- (3) 48 J
- (4) -32 J

TH0020

ENTHALPY $[\Delta H = \Delta E + P\Delta V/\Delta H = \Delta E + \Delta n_a RT]$

- **20.** Internal energy change during a reversible isothermal expansion of an ideal gas is :-
 - (1) Always negative
 - (2) Always positive
 - (3) Zero
 - (4) May be positive or negative

TH0022

- **21.** Under which of the following conditions is the relation, $\Delta H = \Delta E + P\Delta V$ valid for a system :-
 - (1) Constant pressure
 - (2) Constant temperature
 - (3) Constant temperature and pressure
 - (4) Constant temperature, pressure and composition

TH0023

- **22.** The difference between heats of reaction at constant pressure and constant volume for the reaction
 - $2C_6H_6(I) + 15O_2(g) \longrightarrow 12CO_2(g) + 6H_2O(I)$ at $25^{\circ}C$ in KJ is
 - (1) + 7.43
- (2) + 3.72
- (3) 7.43
- (4) 3.72

TH0024

- **23.** For a gaseous reaction,
 - $A(g) + 3B(g) \longrightarrow 3C(g) + 3D(g)$

 Δ E is 17 kCal at 27°C assuming R = 2 Cal K⁻¹ mol⁻¹, the value of Δ H for the above reaction is:

- (1) 15.8 Kcal
- (2) 18.2 Kcal
- (3) 20.0 Kcal
- (4) 16.4 Kcal

TH0025

- **24.** Which of the following statements is correct for the reaction; $2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g)$ at constant temperature and pressure
 - $(1) \Delta H = \Delta E$
- (2) $\Delta H < \Delta E$
- (3) $\Delta H > \Delta E$
- (4) None of the above

TH0026

- **25.** For the reaction $Ag_2O(s) \longrightarrow 2Ag(s) + \frac{1}{2}O_2(g)$, which one of the following is true :
 - (1) $\Delta H = \Delta E$
- (2) $\Delta H = \frac{1}{2} \Delta E$
- (3) $\Delta H < \Delta E$
- (4) $\Delta H > \Delta E$

TH0027

- **26.** A mixture of 2 moles of carbon monoxide and one mole of oxygen in a closed vessel is ignited to get carbon dioxide. If ΔH is the enthalpy change and ΔE is the change in internal energy, then:
 - (1) $\Delta H > \Delta E$
- (2) $\Delta H < \Delta E$
- (3) $\Delta H = \Delta E$
- (4) Not definite

TH0028

- **27.** For the gaseous reaction involving the complete combustion of isobutane -
 - (1) $\Delta H = \Delta E$
- (2) $\Delta H > \Delta E$
- (3) $\Delta H = \Delta E = 0$
- (4) $\Delta H < \Delta E$

TH0029

- **28.** For the reversible isothermal expansion of one mole of an ideal gas at 300 K, from a volume of $10~\text{dm}^3$ to $20~\text{dm}^3$, ΔH is -
 - (1) 1.73 kJ
- (2) 1.73 kJ
- (3) 3.46 kJ
- (4) Zero

TH0030

- **29.** For $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$ at 977°C, $\Delta H = 174 \text{ KJ/mol}$; then ΔE is :-
 - (1) 160 kJ
- (2) 163.6 kJ
- (3) 186.4 kJ
- (4) 180 kJ

TH0031

- **30.** Heat of reaction for , CO(g) + $\frac{1}{2}$ O₂(g) \rightarrow CO₂(g) at constant V is -67.71 K cal at 17°C. The heat of reaction at constant P at 17°C is :-
 - (1) -68.0 kCal
- (2) + 68.0 kCal
- (3) 67.42 kCal
- (4) None

TH0032

- **31.** The enthalpy of vaporisation of water at 100° C is 40.63 kJ mol⁻¹. The value ΔE for this process would be:-
 - (1) 37.53 kJ mol⁻¹
- (2) 39.08 kJ mol⁻¹
- (3) 42.19 kJ mol⁻¹
- (4) 43.73 kJ mol⁻¹

TH0034

- **32.** For the system $S(s) + O_2(g) \rightarrow SO_2(g) :-$
 - (1) $\Delta H = \Delta E$
- (2) $\Delta H > \Delta E$
- (3) $\Delta E > \Delta H$
- $(4) \Delta H = 0$

TH0035

33. For the reaction $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$

Which one of these statement is correct at constant T and P?

- (1) $\Delta H = \Delta E$
- (2) $\Delta H < \Delta E$
- (3) $\Delta H > \Delta E$
- (4) ΔH is Independent of physical state of reactants

TH0036

- **34.** Which is true for the combustion of sucrose $(C_{12}H_{22}O_{11})$ at 25°C:-
 - (1) $\Delta H > \Delta E$
- (2) $\Delta H < \Delta E$
- (3) $\Delta H = \Delta E$
- (4) None

TH0037

- **35.** For which change $\Delta H \neq \Delta E$:
 - $(1) H_2(g) + I_2(g) \Longrightarrow 2HI(g)$
 - (2) HCl (ℓ) + NaOH (ℓ) \rightarrow NaCl (s) + H₂O (ℓ)
 - (3) $C(s) + O_2(g) \rightarrow CO_2(g)$
 - (4) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

TH0038

- **36.** The heat of combustion of ethanol determined in a bomb calorimeter is -670.48 kCal mole⁻¹ at 27° C. What is ΔH at 27° C for the reaction :-
 - (1) 335.24 kCal
- (2) 671.08 kCal
- (3) 670.48 kCal
- (4) + 670.48 kCal

TH0039

- **37.** The difference in ΔH and ΔE for the combustion of methane at 25°C would be :-
 - (1) Zero
- (2) $2 \times 298 \times -2$ Cal
- (3) $2 \times 298 \times -3$ Cal
- (4) $2 \times 25 \times -3$ Cal

TH0040

- **38.** For which of the following reactions ΔH is less than $\Delta E:-$
 - (1) $C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(\ell)$
 - (2) $2SO_{9}(g) + O_{9}(g) \rightarrow 2SO_{3}(g)$
 - (3) $N_2O_4(g) \to 2NO_2(g)$
 - (4) $N_2(g) + O_2(g) \rightarrow 2NO(g)$

TH0041

39. For a reaction $2X(s) + 2Y(s) \rightarrow 2C(\ell) + D(g)$

The q_n at 27° C is -28 kCal mol⁻¹.

The q_v is _____ kCal mol⁻¹ :-

(1) - 27.4 (2) + 27.4 (3) - 28.6

- 28.6 (4) 28.6

TH0042

WORK DONE IN DIFFERENT PROCESS

- **40.** The work (in ergs) for a reversible expansion of one mole of an ideal gas from a volume of 10 litres to 20 litres at 25°C is:
 - $(1) -2.303 \times 8.314 \times 10^7 \times 298 \log 2$
 - $(2) -2.303 \times 0.0821 \times 298 \log 2$
 - $(3) -2.303 \times 0.0821 \times 298 \log 0.5$
 - $(4) -2.303 \times 2 \times 298 \log 2$

TH0043

- **41.** Two moles of an ideal gas expand spontaneously into vacuum. The work is:-
 - (1) Zero
- (2) 2 J
- (3) 4 J
- (4) 8 J

TH0045

- **42.** One mole of a gas occupying 3dm³ expands against a constant external pressure of 1 atm to a volume of 13 L. Find work is :-
 - $(1) 10 atm dm^3$
- $(2) 20 atm dm^3$
- $(3) 39 \text{ atm dm}^3$
- $(4) 48 \text{ atm dm}^3$

TH0046

ENTROPY/SECOND LAW OF THERMODYNAMICS

- **43.** For which reaction from the following, ΔS will be maximum?
 - (1) Ca(s) + $\frac{1}{2}$ O₂(g) \longrightarrow CaO(s)
 - (2) $CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$
 - (3) $C(s) + O_2(g) \longrightarrow CO_2(g)$
 - $(4) N₂(g) + O₂(g) \longrightarrow 2NO(g)$

TD0047

- 44. An adiabatic reversible process is one in which :-
 - (1) Temperature of the system does not change
 - (2) The system is not closed to heat transfer
 - (3) There is no entropy change
 - (4) None of these

Chemistry: Chemical Thermodynamics and Energetics @Chalnaayaaar

- **45.** Entropy means
 - (1) Disorderness
- (2) Randomness
- (3) Orderness
- (4) both 1 & 2

TD0049

46. Δ S for the reaction;

 $MgCO_3(s) \longrightarrow MgO(s) + CO_2(g)$ will be :

- (1) 0
- (2) -ve
- (3) + ve
- TD0050

 $(4) \infty$

- **47.** Change in entropy is negative for
 - (1) $Br_2(\ell) \longrightarrow Br_2(g)$
 - (2) $C(s) + H_0O(g) \longrightarrow CO(g) + H_0(g)$
 - (3) $N_2(g, 10 \text{ atm}) \longrightarrow N_2(g, 1 \text{ atm})$
 - (4) Fe(at 400 K) \longrightarrow Fe(at 300 K)

TD0051

- **48.** In which reaction ΔS is positive :-
 - (1) $H_2O(\ell) \rightarrow H_2O(s)$
 - (2) $3O_{2}(g) \rightarrow 2O_{3}(g)$
 - (3) $H_2O(\ell) \rightarrow H_2O(g)$
 - (4) $N_{9}(g) + 3H_{9}(g) \rightarrow 2NH_{3}(g)$

TD0052

- 49. When the egg is hard boiled, there is-
 - (1) Increase in disorder
 - (2) Decrease in disorder
 - (3) No change in disorder
 - (4) ΔG is negative

TD0053

50. If S^0 for H_2 , Cl_2 and HCl are 0.13, 0.22 and 0.19 kJ K^{-1} mol $^{-1}$ respectively. The total change in standard entropy for the reaction

 $H_2 + Cl_2 \longrightarrow 2HCl$ is:

- (1) 30 JK⁻¹ mol⁻¹
- (2) 40 JK⁻¹ mol⁻¹
- (3) 60 JK⁻¹ mol⁻¹
- (4) 20 JK⁻¹ mol⁻¹

TD0054

- **51.** Which has the least entropy:
 - (1) Graphite
- (2) Diamond
- (3) $N_{2}(g)$
- (4) N₂O(g)

TD0055

- **52.** When two gases are mixed the entropy:-
 - (1) Remains constant
- (2) Decreases
- (3) Increases
- (4) Becomes zero
 - TD0056
- **53.** The enthalpy of vaporisation of per mole of ethanol (B.pt. = 79.5° C and $\Delta S = 109.8 \text{ JK}^{-1} \text{ mol}^{-1}$) is :-
 - (1) 27.35 kJ mol⁻¹
- (2) 32.19 kJ mol⁻¹
- (3) 38.70 kJ mol⁻¹
- (4) 42.37 kJ mol⁻¹

TD0058

- **54.** If 900J/g of heat is exchanged at boiling point of water, then what is increase in entropy?
 - (1) 43.4 JK⁻¹mole⁻¹
- (2) 87.2 JK⁻¹mole⁻¹
- (3) 900 JK⁻¹mole⁻¹
- (4) Zero

TD0059

- **55.** 5 mole of an ideal gas expand reversibly from a volume of 8 dm³ to 80dm³ at a temperature of 27°C. The change in entropy is :-
 - (1) 41.57 JK⁻¹
- $(2) 95.73 \text{ JK}^{-1}$
- $(3) 95.73 \text{ JK}^{-1}$
- $(4) 41.57 \text{ JK}^{-1}$

TD0060

- **56.** In a spontaneous irreversible process the total entropy of the system and surroundings
 - (1) Remains constant
- (2) Increases
- (3) Decreases
- (4) Zero

TD0061

- **57.** The total entropy change for a system & its surroundings increases if the process is :
 - (1) Reversible
- (2) Spontaneous
- (3) Exothermic
- (4) Endothermic

TD0062

- **58.** Calculate the entropy of $Br_2(g)$ in the reaction $H_2(g) + Br_2(g) \rightarrow 2HBr(g), \ \Delta S^\circ = 20.1 J K^{-1}$ given, entropy of H_2 and HBr is 130.6 and 198.5 J mol⁻¹ K^{-1} :-
 - (1) 246.3 JK⁻¹
- (2) 123.15 JK⁻¹
- (3) 24.63 JK⁻¹
- (4) 20 kJK⁻¹

TD0063

- **59.** In which of the following case entropy decreases—
 - (1) Solid changing to liquid
 - (2) Expansion of a gas
 - (3) Crystals dissolve
 - (4) Polymerisation

TD0065

- **60.** Which of the following quantity is not zero for element in standard state:-
 - (1) Enthalpy of formation
 - (2) Entropy
 - (3) Free energy of formation
 - (4) All of these

TD0066

- **61.** Entropy of an adiabatic reversible process is:-
 - (1) Positive
- (2) Zero
- (3) Negative
- (4) Constant

GIBBS FREE ENERGY

- **62.** A gas is allowed to expand under reversible adiabatic conditions then:-
 - (1) $\Delta U = 0$
- (2) $\Delta T = 0$
- (3) $\Delta S = 0$
- (4) None of these

TD0068

- **63.** For a reaction at 25° C enthalpy change (ΔH) and entropy change (ΔS) are -11.7×10^{3} Jmol⁻¹ and -105 J mol⁻¹ K⁻¹ respectively. The reaction is :
 - (1) Spontaneous
- (2) Non spontaneous
- (3) At equilibrium
- (4) Can't say anything

TD0069

- **64.** If $\Delta H > 0$ and $\Delta S > 0$, the reaction proceeds spontaneously when :-
 - (1) $\Delta H > 0$
- (2) $\Delta H < T \Delta S$
- (3) $\Delta H = T\Delta S$
- (4) None

TD0071

65. The temperature at which the reaction

$$Ag_2O(s) \longrightarrow 2Ag(s) + \frac{1}{2}O_2(g)$$

is at equilibrium is;

Given $\Delta H = 30.5 \text{ kJ mol}^{-1}$

and $\Delta S = 0.066 \text{ kJK}^{-1} \text{ mol}^{-1}$:

- (1) 462.12 K
- (2) 362.12 K
- (3) 262.12 K
- (4) 562.12 K
 - TD0072
- **66.** Which of the following is true for the reaction $H_2O(\ell) \rightleftharpoons H_2O(g)$ at $100^{\circ}C$ and 1 atmosphere
 - (1) $\Delta S = 0$
- (2) $\Delta H = 0$
- (3) $\Delta H = \Delta E$
- (4) $\Delta H = T\Delta S$

TD0074

- **67.** For the reaction $A(s) \longrightarrow B(s) + C(g)$ the value of $\Delta H = 30.56 \text{ kJ mol}^{-1}$ and $\Delta S = 66 \text{ JK}^{-1} \text{ mol}^{-1}$. The temperature at which the free energy change for the reaction will be zero is :-
 - (1) 373 K
- (2) 413 K
- (3) 463 K
- (4) 493 K

TD0075

- **68.** For hypothetical reversible reaction ${}^{1}\!\!/_{2}\,A_{2}(g) + {}^{3}\!\!/_{2}\,B_{2}\,(g) \longrightarrow AB_{3}(g); \quad \Delta H = -20 \text{ kJ if}$ standard entropies of A_{2} , B_{2} and AB_{3} are 60, 40 and 50 JK $^{-1}$ mole $^{-1}$ respectively. The above reaction will be in equilibrium at :-
 - (1) 400 K
- (2) 500 K
- (3) 250 K
- (4) 200 K

TD0076

- **69.** For the precipitation of AgCl by Ag^{\dagger} ions and HCl
 - (1) $\Delta H = 0$
- $(2) \Delta G = 0$
- (3) $\Delta G = -ve$
- (4) $\Delta H = \Delta G$

TD0077

- **70.** What is the sign of ΔG for the process of ice melting at 1 atm, 283 K is ?
 - (1) $\Delta G > 0$
- $(2) \Delta G = 0$
- (3) $\Delta G < 0$
- (4) None of these

TD0078

- **71.** A reaction $A + B \longrightarrow C + D + q$ is found to have a positive entropy change, the reaction will be -
 - (1) Possible at high temperature
 - (2) Possible only at low temperature
 - (3) Not possible at any temperature
 - (4) Possible at any temperature

TD0080

- **72.** Equilibrium constant of a reaction is related to :
 - (1) Standard free energy change ΔG^{0}
 - (2) Free energy change ΔG
 - (3) Entropy change
 - (4) None

TD0081

- **73.** The Vant Hoff equation is :
 - (1) $\Delta G^{\circ} = RT \log_e K_{P}$
- $(2) -\Delta G^{\circ} = RT \log_{e} K_{p}$
 - (3) $\Delta G^{\circ} = RT^{2} \ell nK_{P}$
- (4) None

TD0082

- **74.** If $\Delta G^0 > 0$ for a reaction then :
 - (1) $K_p > 1$
 - (2) $K_p < 1$
 - (3) The products predominate in the equilibrium mixture
 - (4) None

TD0083

- **75.** If the equilibrium constant for a reaction is 10, then the value of ΔG° will be
 - $(R = 8JK^{-1} mol^{-1}, T = 300 K)$
 - $(1) + 5.527 \text{ kJ mol}^{-1}$
- $(2) 5.527 \text{ kJ mol}^{-1}$
- $(3) +55.27 \text{ kJ mol}^{-1}$
- $(4) 55.27 \text{ kJ mol}^{-1}$

TD0084

- **76.** The process of evaporation of a liquid is accompanied by :
 - (1) Increase in enthalpy
 - (2) Decrease in free energy
 - (3) Increase in entropy
 - (4) All

- For the process, $CO_2(s) \longrightarrow CO_2(g)$:
 - (1) Both ΔH and ΔS are +ve
 - (2) ΔH is negative and ΔS is +ve
 - (3) ΔH is +ve and ΔS is -ve
 - (4) Both ΔH and ΔS are -ve

TD0086

- **78.** Which of the following provide exceptions to third law of thermodynamics
 - (1) CO
- (2) ice
- (3) CO_2
- (4) All the above

TD0087

- **79**. The Gibbs free energy change of a reaction at 27°C is −26 kCal and its entropy change is -60 Cal K⁻¹. Δ H for the reaction is :-
 - (1) 44 kCal
- (2) 18 kCal
- (3) 34 kCal
- (4) 24 kCal

TD0088

- **80.** Which of the following reaction is expected never to be spontaneous :-
 - (1) $2O_3(g) \rightarrow 3O_2(g)$
- $\Delta H=-Ve$, $\Delta S=+Ve$
- (2) $Mg(s) + H_{2}(g) \rightarrow MgH_{2}$
- $\Delta H=-Ve$, $\Delta S=-Ve$
- (3) $Br_{o}(I) \rightarrow Br_{o}(g)$
- $\Delta H=+ Ve, \Delta S=+ Ve$
- (4) $2Ag(s) + 3N_{o}(g) \rightarrow 2AgN_{o} \quad \Delta H = +Ve, \Delta S = -Ve$

TD0089

THERMOCHEMICAL REACTION

- 81. The formation of water from $H_2(g)$ and $O_2(g)$ is an exothermic process because:
 - (1) The chemical energy of H₂(g) and O₂(g) is more than that of water
 - (2) The chemical energy of $H_2(g)$ and $O_2(g)$ is less than that of water
 - (3) The temperature of $H_2(g)$ and $O_2(g)$ is higher than that of water
 - (4) The temperature of $H_2(g)$ and $O_2(g)$ is lower than that of water

TC0090

82. Which plot represents for an exothermic reaction:

TC0091

- Which one of the following is not applicable for a **83**. thermochemical equation:
 - (1) It tells about physical state of reactants and products
 - (2) It tells whether the reaction is spontaneous
 - (3) It tells whether the reaction is exothermic or endothermic
 - (4) It tells about the allotropic form (if any) of the reactants

TC0092

- 84. The correct thermochemical equation is:
 - (1) C + O₂ \longrightarrow CO₂; Δ H = -94 kCal
 - (2) C + O₂ \longrightarrow CO₂; Δ H = + 94.0 kCal
 - (3) $C(s) + O_2(g) \longrightarrow CO_2(g)$; $\Delta H = -94 \text{ kCal}$
 - (4) $C(s) + O_2(g) \longrightarrow CO_2(g)$; $\Delta H = +94 \text{ kCal}$

TC0093

- **85**. The enthalpy changes of formation of the gaseous oxide of nitrogen (N2O and NO) are positive because of:
 - (1) The high bond energy of the nitrogen molecule
 - (2) The high electron affinity of oxygen atoms
 - (3) The high electron affinity of nitrogen atoms
 - (4) The tendency of oxygen to form O²⁻

TC0094

- **86**. ΔH for transition of carbon from diamond form to graphite form is - 453.5 Cal. This suggests that:
 - (1) Graphite is chemically different from diamond
 - (2) Graphite is as stable as diamond
 - (3) Graphite is more stable than diamond
 - (4) Diamond is more stable than graphite

TC0095

- 87. Which of the following values of heat of formation indicates that the product is least stable
 - (1) 94 kCal
- (2) 231.6 kCal
- (3) + 21.4 kCal
- (4) + 64.8 kCal

TC0096

- **88**. Heat of formation, ΔH_t° of an explosive compound like NCl₃ is -
 - (1) Positive
- (2) Negative
- (3) Zero
- (4) Positive or negative

TC0097

- **89**. According to the following reaction
 - C(s) + $1/2 O_2(g) \rightarrow CO(g)$, $\Delta H = -26.4 \text{ kCal}$
 - (1) CO is an endothermic compound
 - (2) CO is an exothermic compound
 - (3) The reaction is endothermic
 - (4) None of the above

- **90.** Which of the following represents an exothermic reaction:-
 - (1) $N_2(g) + O_2(g) \rightarrow 2NO(g)$, $\Delta H = 180.5 \text{ kJ}$
 - (2) $H_2O(g) + C(s) \rightarrow CO(g) + H_2(g)$, $\Delta E = 131.2kJ$
 - (3) $2HgO(s) + 180.4 \text{ KJ} \rightarrow 2Hg(\ell) + O_{2}(g)$
 - (4) $2Zn(s) + O_{2}(g) \rightarrow 2ZnO(s)$, $\Delta E = -693.8 \text{ kJ}$

TC0099

- Consider the reaction $3O_2 \rightarrow 2O_3$; $\Delta H = + Ve$, 91. from the reaction, we can say that :-
 - (1) Ozone is more stable then oxygen
 - (2) Ozone is less stable then oxygen and ozone decomposes forming oxygen readily
 - (3) Oxygen is less stable than ozone and oxygen decomposes forming ozone readily
 - (4) None of the above

TC0101

- **92.** From the reaction P(White) P(Red) ; $\Delta H = -18.4 \text{ kJ}$, it follows that :-
 - (1) Red P is readily formed from white P
 - (2) White P is readily formed from red P
 - (3) White P can not be converted to red p
 - (4) White P can be converted into red P and red P is more stable

TC0102

FACTORS AFFECTING HEAT OF REACTION

- 93. In Kirchoff's equation which factor affects the heat of reaction:
 - (1) Pressure
- (2) Temperature
- (3) Volume
- (4) Atomicity

TC0103

- 94. The enthalpy of a reaction at 273 K is -3.57 kJ. what will be the enthalpy of reaction at 373 K if $\Delta C_p = zero :-$
 - (1) 3.57 kJ
- (2) Zero
- $(3) 3.57 \times \frac{373}{273} \text{ kJ}$ (4) 375 kJ

TC0105

- **95.** For the reactions,
 - (i) $H_2(g) + Cl_2(g) \longrightarrow 2HCl(g) + xkJ$
 - (ii) $H_2(g) + Cl_2(g) \longrightarrow 2HCl(\ell) + ykJ$

Which one of the following statement is correct:

- (1) x > y
- (2) x < y
- (3) x = y
- (4) More data required

TC0106

HEAT OF FORMATION

- 96. Since the enthalpy of formation of the elements in their standard states is taken to be zero. The heat of formation (ΔH_{ϵ}) of compounds :
 - (1) Is always negative
 - (2) Is always positive
 - (3) Is zero
 - (4) May be positive or negative

TC0107

- Reaction $H_2(g) + I_2(s) \longrightarrow 2HI$; $\Delta H = 12.40$ kCal. **97**. According to this, heat of formation of HI will be -
 - (1) 12.40 kCal
- (2) 12.40 kCal
- (3) 6.20 kCal
- (4) 6.20 kCal

TC0108

- Enthalpy of a compound is equal to its :-**98**. (When it is formed from reference state of constituent elements)
 - (1) Heat of combustion
 - (2) Heat of formation
 - (3) Heat of reaction
 - (4) Heat of solution

TC0110

- **99**. Which of the following equations respresents standard heat of formation of CH₄?
 - (1) $C_{\text{(diamond)}} + 2H_2(g) \longrightarrow CH_4(g)$
 - (2) $C_{\text{(graphite)}} + 2H_2(g) \longrightarrow CH_4(g)$
 - (3) $C_{\text{(diamond)}} + 4H(g) \longrightarrow CH_4(g)$
 - (4) $C_{\text{(graphite)}} + 4H(g) \longrightarrow CH_4(g)$

TC0111

- 100. The enthalpy of formation of ammonia is -46.0 kJ mol⁻¹. The enthalpy change for the reaction $2NH_3(g) \rightarrow N_2(g) + 3H_2(g)$ is :
 - (1) 46.0 kJ mol⁻¹
- (2) 92.0 kJ mol⁻¹
- $(3) 23.0 \text{ kJ mol}^{-1}$
- $(4) 92.0 \text{ kJ mol}^{-1}$

TC0112

101. Given enthalpy of formation of CO₂(g) and CaO(s) are - 94.0 kJ and - 152 kJ respectively and the enthalpy of the reaction:

> $CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$ is 42 kJ. The enthalpy of formation of CaCO₃(s) is

- (1) 42 KJ
- (2) 202 KJ
- (3) + 202 KJ
- (4) 288KJ

- **102.** Given that standard enthalpy of formation of CH₄, $C_{2}H_{4}$ and $C_{3}H_{8}$ are -17.9, 12.5, -24.8 kCal mol⁻¹. The ΔH for $CH_4 + C_2H_4 \rightarrow C_3H_8$ is :
 - (1) 55.2 kCal
- (2) 30.2 kCal
- (3) 55.2 kCal
- (4) 19.4 kCal

TC0114

- 103. The standard molar heat of formation of ethane, CO₂ and water are respectively -21.1, -94.1 and - 68.3 kCal. The standard molar heat of combustion of ethane will be
 - (1) -372 kCal
- (2) -162 kCal
- (3) 240 kCal
- (4) -183.5 kCal

TC0115

- **104.** The ΔH_f^o for $CO_2(g)$, CO(g) and $H_2O(g)$ are -393.5, -110.5 and -241.8 kJ mol⁻¹respectively the standard enthalpy change (in kJ) for the reaction $CO_2(g)+H_2(g) \rightarrow CO(g)+H_2O(g)$ is -
 - (1) 524.1 (2) 41.2
- (3) -262.5(4) -41.2

TC0117

- 105. The enthalpies of combustion of carbon and carbon monoxide are -393.5 kJ and -283 kJ, respectively the enthalpy of formation of carbon monoxide is:
 - (1) -676.5 kJ
- (2) -110.5 kJ
- (3) 110.5 kJ
- (4) 676.5 kJ

TC0118

- **106.** The standard heat of formation of $CS_2(\ell)$ will be; given that the standard heat of combustion of carbon (s), sulphur(s) and $CS_2(\ell)$ are -393.3, -293.72 and -1108.76 kJ mol⁻¹ respectively is
 - (1) -128.02 kJ mole⁻¹
- (2) +12.802 kJ mol⁻¹
- $(3) + 128.02 \text{ kJ mol}^{-1}$
- (4) -12.802 kJ mol⁻¹

TC0119

- **107.** The heat of combustion of $CH_4(g)$, C(s) and $H_2(g)$ at 25 °C are -212.4 K Cal, -94.0 K Cal and -68.4 K Cal respectively, the heat of formation of CH4 will be -
 - (1) +54.4 K Cal
- (2) -18.4 K Cal
- (3) -375.2 K Cal
- (4) +212.8 K Cal

TC0120

- **108.** Standard enthalpy of formation is zero for .
 - (1) C_{diamond}
- (2) Br(g)
- (3) C_{graphite}
- (4) $O_{3}(g)$
- TC0121

- 109. The standard heats of formation of NO₂(g) and N₂O₄(g) are 8.0 and 2.0 kCal mol⁻¹ respectively the heat of dimerization of NO2 in kCal is
 - $(1)\ 10.0$
- (2) -6.0
- (3) -12.0
- (4) -14.0

TC0122

110. M is a metal that forms an oxide $M_{\circ}O$

$$\frac{1}{2}\,M_{_2}O \rightarrow M + \frac{1}{4}\,O_{_2}\,\,\Delta H = 120\;kCal$$

When a sample of metal M reacts with one mole of oxygen what will be the ΔH in that case

- (1) 240 kCal
- (2) 240 kCal
- (3) 480 kCal
- (4) 480 kCal

TC0123

HEAT OF COMBUSTION

111. According to equation,

 $C_6H_6(\ell) + 15/2 O_2(g) \rightarrow 6CO_2(g) + 3H_2O(\ell); \Delta H$

= - 3264.4 kJ mol⁻¹ the energy evolved when 7.8 g benzene is burnt in air will be -

- (1) 163.22 kJ
- (2) 32.64 kJ
- (3) 3.264 kJ
- (4) 326.4 kJ

TC0124

- **112.** Heat of combustion of CH_4 , C_2H_6 , C_2H_4 and C_2H_2 gases are -212.8, -373.0, -337.0 and -310.5 kCal respectively at the same temperature. The best fuel among these gases is:
 - (1) CH₄
- (2) $C_{2}H_{6}$
- $(3) C_{2}H_{4}$
- $(4) C_2 H_2$

TC0125

- **113.** Given standard enthalpy of formation of CO (-110 kJ mol^{-1}) and CO₂(-394 kJ mol^{-1}). The heat of combustion when one mole of graphite burns is
 - (1) 110 kJ
- (2) 284 kJ
- (3) 394 kJ
- (4) 504 kJ

TC0126

- **114.** The enthalpy of formation for $C_2H_4(g)$, $CO_2(g)$ and $H_2O(\ell)$ at 25°C and 1 atm. pressure are 52,
 - 394 and 286 kJ mole⁻¹ respectively. The enthalpy of combustion of C₂H₄ will be:-
 - (1) + 1412 kJ mole⁻¹
 - (2) -1412 kJ mole⁻¹
 - (3) + 142.2 kJ mole⁻¹
 - (4) -141.2 kJ mole⁻¹

- **115.** The combustion of one mole of benzene takes place at 298 K and 1 atm. After combustion, $CO_2(g)$ and $H_2O(l)$ are produced and 3267.0 kJ of heat is liberated. Calculate the standard enthalpy of formation, Δ_1H^Θ of benzene. Standard enthalpies of formation of $CO_2(g)$ and $H_2O(l)$ are -393.5 kJ mol^{-1} and -285.83 kJ mol^{-1} respectively.
 - (1) $48.51 \text{ kJ mol}^{-1}$
- (2) -48.51 kJ mol⁻¹
- $(3) -97.02 \text{ kJ mol}^{-1}$
- (4) 97.02 kJ mol⁻¹

TC0128

116. The heat evolved during the combustion of 112 litre of water gas at STP (mixture of equal volume of H_2 and CO) is : Given

 $H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g)$; $\Delta H = -241.8 \text{ kJ}$ $CO(g) + \frac{1}{2} O_2(g) \rightarrow CO_2(g)$; $\Delta H = -283 \text{ kJ}$

(1) 241.8 kJ

(2) 283 kJ

(3) 1312 kJ

(4) 1586 kJ

TC0130

117. A person requires 2870 kCal of energy to lead normal daily life. If heat of combustion of cane sugar is -1349 kCalmol⁻¹, then his daily consumption of sugar is:

(1)728g

(2) 0.728g

(3) 342g

(4) 0.342g

TC0131

- **118.** The following are the heats of reactions -
 - (i) ΔH_f° of $H_2O_{(0)} = -68.3 \text{ kCal mol}^{-1}$

(ii) ΔH_{comb}° of $C_2 H_2 = -337.2 \text{ kCal mol}^{-1}$

(iii) $\Delta H_{comb.}^{\circ}$ of $C_2 H_4 = -363.7 \text{ kCal mol}^{-1}$

Then heat change for the reaction

 $C_9H_9 + H_9 \rightarrow C_9H_4$ is -

(1) -716.1 kCal

(2) + 337.2 kCal

(3) -41.8 kCal

(4) -579.5 kCal

TC0134

- 119. The heat of combustion of a substance is :-
 - (1) Always positive
 - (2) Always negative
 - (3) Numerically equal to the heat of formation
 - (4) 1 and 3 both

TC0135

- **120.** The value of ΔH for the combustion of C(s) is -94.4 kCal. The heat of formation of CO₂(g) is :-
 - (1) -49.5 kCal
- (2) -94.4 kCal
- (3) -188.0 kCal
- (4) More data required

TC0136

121. In the combustion of 0.4 g. of CH_4 , 0.25 kCal. of heat is liberated. The heat of combustion of CH_4 is

(1) - 20 kCal

(2) - 10 kCal

(3) - 2.5 kCal

(4) - 5 kCal

TC0137

122. If $C_6H_{12}O_6(s) + 9O_2(g) \rightarrow 6CO_2(g) + 6H_2O(g)$; $\Delta H = -680$ kCal The weight of $CO_2(g)$ produced when 170 kCal of heat is evolved in the combustion of glucose is:-

(1) 265 g

(2) 66 g

(3) 11 g

(4) 64 g

TC0138

123. Which of the following equations corresponds to the enthalpy of combustion at 298 K:-

(1) $C_9H_6(g) + 7/2 O_9(g) \rightarrow 2CO_9(g) + 3H_9O(g)$

(2) $2C_2H_6(g) + 7 O_2(g) \rightarrow 4CO_2(g) + 6H_2O(g)$

(3) $C_2H_6(g) + 7/2 O_2(g) \rightarrow 2CO_2(g) + 3H_2O(\ell)$

(4) $2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(\ell)$

TC0139

124. Heat of formation of CO₂ is – 94.0 kCal. What would be the quantity of heat liberated, when 3 g of graphite is burnt in excess of oxygen:-

(1) 23.5 kCal

(2) 2.35 kCal

(3) 94.0 kCal

(4) 31.3 kCal

TC0140

HEAT OF NEUTRALIZATION

- **125.** The amount of heat liberated when one mole of NH₄OH reacts with one mole of HCl is
 - (1) 13.7 kCal
 - (2) More than 13.7 kCal
 - (3) Less than 13.7 kCal
 - (4) Cannot be predicted

TC0141

126. If $H^+ + OH^- = H_2O + 13.7$ kCal, then heat of complete neutralisation of one gram mole of H_2SO_4 with strong base will be :

(1) -13.7 kcal

(2) -27.4 kcal

(3) -6.85 kcal

(4) -3.425 kCal

TC0142

127. Heat of neutralisation of a strong dibasic acid in dilute solution by NaOH is nearly:

(1) - 27.4 kCal eq⁻¹

(2) - 13.7 kCal eq⁻¹

(3) 13.7 kCal eq⁻¹

(4) - 13.7 kCal mol⁻¹

- 128. The temperature of a 5 ml of strong acid increases by 5°C when 5 ml of a strong base is added to it. If 10 ml of each are mixed temperature should increase by:
 - $(1) 5^{\circ} C$
- $(2)\ 10^{\circ}C$
- (3) 15°C
- (4) Cannot be known

TC0144

- **129.** The heat of neutralization of HCl by NaOH is 55.9 kJ mol⁻¹. If the heat of neutralization of HCN by NaOH is 12.1 kJ mol⁻¹. The energy of dissociation of HCN is
 - (1) 43.8 kJ
- (2) 43.8 kJ
- (3) 68 kJ
- (4) 68 kJ

TC0145

- **130.** If water is formed from H^+ ions and OH^- the heat exchange during the reaction :
 - (1) 13.7 kCal
- (2) 13.7 kCal
- (3) -63.4 kCal
- (4) More data required

TC0146

131. The change in the enthalpy of

 $NaOH + HCl \longrightarrow NaCl + H_2O$ is called:

- (1) Heat of neutralisation
- (2) Heat of reaction
- (3) Heat of hydration
- (4) Heat of solution

TC0147

HEAT OF HYDROGENATION

- **132.** The heat of combustion of C_2H_4 , C_2H_6 and H_2 are -1409.5 kJ, -1558.3 kJ and -285.6 kJ. The heat of hydrogenation of ethene is -
 - (1) -136.8 kJ
- (2) -13.68 kJ
- (3) 273.6 kJ
- (4) 1.368 kJ

TC0149

- 133. The enthalpy of combustion of cyclohexane,
 cyclohexene and H₂ are respectively -3920,
 -3800 and -241 kJ mol⁻¹. The heat of hydrogenation of cyclohexene is:-
 - (1) –121 kJ mol⁻¹
- (2) 121 kJ mol⁻¹
- $(3) -242 \text{ kJ mol}^{-1}$
- (4) 242 kJ mol⁻¹

TC0150

BOND ENERGY/RESONANCE ENERGY

- **134.** Bond energy of a molecule :
 - (1) Is always negative
 - (2) Is always positive
 - (3) Either positive or negative
 - (4) Depends upon the physical state of the system

TC0151

- **135.** Among the following for which reaction heat of reaction represents bond energy of HCl
 - (1) $HCl(g) \longrightarrow H^{+}(g) + Cl^{-}(g)$
 - (2) $HCl(g) \longrightarrow \frac{1}{2} H_2(g) + \frac{1}{2} Cl_2(g)$
 - (3) $2HCl(g) \longrightarrow H_2(g) + Cl_2(g)$
 - $(4) HCl(g) \longrightarrow H(g) + Cl(g)$

TC0152

- **136.** The bond energies of F_2 , Cl_2 , Br_2 and I_2 are 155.4, 243.6, 193.2 and 151.2 kJ mol⁻¹ respectively. The strongest bond is :
 - (1) F F
- (2) Cl Cl
- (3) Br Br
- (4) I I

TC0153

- **137.** Energy required to dissociate 4g of gaseous hydrogen into free gaseous atoms is 208 kCal at 25°C. The bond energy of H—H bond will be:
 - (1) 1.04 kCal
- (2) 10.4 kCal
- (3) 104 kCal
- (4) 1040 kCal

TC0154

- 138. Heat evolved in the reaction H₂ + Cl₂ → 2HCl is 182 kJ. Bond energies of H-H and Cl-Cl are 430 and 242 kJ mol⁻¹ respectively. The H-Cl bond energy is:
 - (1) 245 kJ mol⁻¹
- (2) 427 kJ mol⁻¹
- (3) 336 kJ mol⁻¹
- (4) 154 kJ mol⁻¹

TC0155

- **139.** The enthalpy change for the reaction
 - $H_2(\!g) + C_2 H_4(\!g) \to C_2 H_6(\!g)$ is..... . The bond energies are in kCal $mol^{\mbox{\tiny -1}}$
 - H H = 103, C H = 99, C C = 80 &
 - C = C = 145
 - (1) -10 kCal mol⁻¹
 - $(2) +10 \text{ kCal mol}^{-1}$
 - (3) 30 kCal mol⁻¹
 - (4) +30 kCal mol⁻¹

- **140.** Bond dissociation enthalphies of H₂(g) and N₂(g) are $436.0 \text{ kJ} \text{ mol}^{-1}$ and $941.8 \text{ kJ} \text{ mol}^{-1}$ respectively and enthalpy of formation of NH₃(g) is -46 kJ mol⁻¹. What is enthalpy of atomization of $NH_3(g)$?
 - (1) 390.3 kJ mol⁻¹
- (2) 1170.9 kJ mol⁻¹
- (3) 590 kJ mol⁻¹
- (4) 720 kJ mol⁻¹

TC0157

141. From the reactions:

$$\begin{split} &C(s) + 2H_2(g) \rightarrow CH_4(g) \ \Delta H = - \ X \ kcal \\ &C(g) + 4H(g) \rightarrow CH_4(g), \ \Delta H = - \ X_1 \ kcal \\ &CH_4(g) \rightarrow CH_3(g) + H(g) \ \Delta H = + \ Y \ kcal \\ &Bond \ energy \ of \ C-H \ bond \ is \ - \end{split}$$

- (1) $\frac{X}{4}$ kCal mol⁻¹
- (2) Y kCal mol⁻¹
- (3) $\frac{X_1}{4}$ kCal mol⁻¹ (4) X_1 kCal mol⁻¹

TC0158

142. The enthalpy changes at 298 K in successive breaking of O-H bonds of water are

$$H_2O \longrightarrow H(g) + OH(g)$$
; $\Delta H = 498 \text{ kJ mol}^{-1}$
 $OH(g) \longrightarrow H(g) + O(g)$; $\Delta H = 428 \text{ kJmol}^{-1}$
the bond enthalpy of O–H bond is

- (1) 498 kJ mol⁻¹
- (2) 428 kJ mol⁻¹
- (3) 70 kJ mol⁻¹
- (4) 463 kJ mol⁻¹

TC0159

- **143.** If ΔH_{f}° of ICl(g), Cl(g), and I(g) is 17.57, 121.34 and 106.96 J mol⁻¹ respectively. Then bond dissociation energy of ICl bond is -
 - (1) 35.15 J mol⁻¹
- (2) 106.69 J mol⁻¹
- (3) 210.73 J mol⁻¹
- (4) 420.9 J mol⁻¹

TC0160

- 144. Heat of dissociation of benzene to elements is 5535 kJ mol⁻¹. The bond enthalpies of C-C, C=C and C-H are 347.3, 615.0 and 416.2 kJ respectively. Magnitude of resonance energy of benzene is
 - (1) 1.51 kJ
- (2) 15.1 kJ
- (3) 151 kJ
- (4) 1511 kJ

TC0161

SOME OTHER HEAT OF REACTIONS

- **145.** The enthalpy change for the reaction
 - $2C(graphite) + 3H_2(g) \longrightarrow C_2H_6(g)$ is called
 - (1) Enthalpy of formation
 - (2) Enthalpy of combustion
 - (3) Enthalpy of hydrogenation
 - (4) Enthalpy of vaporisation

TC0162

- **146.** $Cl_2(g) \longrightarrow 2Cl(g)$, In this process value of ΔH will be -
 - (1) Positive
 - (2) Negative
 - (3) Zero
 - (4) Nothing can be predicted

TC0163

- 147. The magnitude of heat of solution on addition of solvent to solution
 - (1) Decreases
 - (2) Increases
 - (3) Remains constant
 - (4) Increases or decreases

TC0164

- **148.** If $H_2(g) \longrightarrow 2H(g)$; $\Delta H = 104$ kCal, than heat of atomisation of hydrogen is:
 - (1) 52 kCal
- (2) 104 kCal
- (3) 208 kCal
- (4) None of these

TC0165

149. $S_{(rhombic)} + O_2(g) \longrightarrow SO_2(g); \Delta H = -297.5 \text{ kJ}$

$$S_{\text{(monoclinic)}} + O_2 (g) \longrightarrow SO_2 ; \Delta H = -300 \text{ kJ}$$

The data can predict that -

- (1) Rhombic sulphur is yellow in colour
- (2) Monoclinic sulphur has metallic lusture.
- (3) Monoclinic sulphur is more stable
- (4) Δ H transition of $S_{\scriptscriptstyle R}$ to $S_{\scriptscriptstyle M}$ is endothermic

Chemistry: Chemical Thermodynamics and Energetics @Chalnaayaaar

- 150. The heat of combustion of yellow phosphorous and red phosphorous are – 9.91 kJ and –8.78 kJ respectively. The heat of transition of yellow phosphorous to red phosphorous is
 - (1) 18.69 kJ
- (2) + 1.13 kJ
- (3) + 18.69 kJ
- (4) -1.13 kJ

TC0167

- **151.** $2CO(g) + O_2(g) \longrightarrow 2CO_2(g) + X kJ$ In the above equation X kJ refers to :
 - (1) Heat of formation of CO₂
 - (2) Heat of vapourisation
 - (3) Heat of reaction
 - (4) Heat of sublimation

TC0169

- **152.** $\triangle H$ for the reaction, $I(g) + I(g) \rightarrow I_{\rho}(g)$ will be:-
 - (1) Zero
- (2) ve
- (3) + ve
- (4) ∞

TC0171

153. Given that :

$$A(s) \xrightarrow{T K} A(\ell) ; \Delta H = x,$$

$$A(\ell) \xrightarrow{T K} A(g) ; \Delta H = y$$

Calculate enthalpy of sublimation at 'T'k:-

- (1) x + y
- (2) x y
- (3) x or y
- (4) (x + y)

TC0172

HESS LAW

- **154.** The enthalpy change of a reaction does not depend on
 - (1) State of reactants and products
 - (2) Nature of reactants and products
 - (3) Different intermediate reactions
 - (4) Initial and final enthalpy change of reaction

TC0173

155. From the thermochemical reactions,

$$\begin{split} &C(\text{graphite}) + {}^{1}\!\!/_{2}\,O_{_{2}} \longrightarrow CO \; ; \; \Delta H = -\; 110.5 \; \text{kJ} \\ &CO + {}^{1}\!\!/_{2}\,O_{_{2}} \longrightarrow CO_{_{2}} \; ; \; \Delta \; H = -\; 283.2 \; \text{kJ} \\ &\text{the heat of reaction of C(graphite)} + O_{_{2}} \longrightarrow CO_{_{2}} \; . \end{split}$$

- 10.
- (1) 393.7 kJ
- (2) 393.7 kJ
- (3) 172.7 kJ
- (4) + 172.7 kJ

TC0174

156. If
$$H_2 + \frac{1}{2}O_2 \longrightarrow H_2O$$
; $\Delta H = -68.39$ kCal

K +
$$H_2O$$
 + water \longrightarrow KOH(aq) + $\frac{1}{2}$ H_2 ;
 $\Delta H = -48.0 \text{ kCal}$

KOH + water
$$\longrightarrow$$
 KOH (aq) $\Delta H = -14.0$ kCal the heat of formation of KOH is -

$$(1) - 68.39 + 48 - 14.0$$

$$(2) - 68.39 - 48.0 + 14.0$$

$$(3) +68.39 - 48.0 + 14.0$$

$$(4) + 68.39 + 48.0 - 14.0$$

TC0175

157. Given
$$C(s) + O_2(g) \longrightarrow CO_2(g) + 94.2 \text{ kCal}$$

$$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(\ell) + 68.3 \text{ kCal}$$

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(\ell) + 210.8 \text{ kCal}$$

The heat of formation of methane in Kcal will be

- (1) 45.9
- (2) -47.8
- (3) -20.0
- (4) 47.3

TC0176

158. If,
$$H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$$
; $\Delta H^0 = -44 \text{ kCal}$

$$2Na(s) + 2HCl(g) \longrightarrow 2NaCl(s) + H_2(g);$$

$$\Delta H^0 = -152 \text{ kCal}$$

Then, Na(s) + 0.5 Cl₂(g)
$$\longrightarrow$$
 NaCl(s); $\Delta H^0 = ?$

- (1) 108 kCal
- (2) 196 kCal
- (3) 98 kCal
- (4) 54 kCal

TC0178

159. (i)
$$S(s) + 3/2 O_2(g) \rightarrow SO_3(g) + 2x kCal$$

(ii)
$$SO_{2}(g) + \frac{1}{2}O_{2}(g) \rightarrow SO_{2}(g) + y kCal$$

Calculate the heat of formation of SO_9 :

- (1)(2x + y)
- (2) (2x y)
- (3) x + y
- (4) 2x / y

160. If
$$S + O_2 \longrightarrow SO_2$$
; $\Delta H = -298.2 \text{ kJ}$

$$SO_2 + \frac{1}{2}O_2 \longrightarrow SO_3$$
; $\Delta H = -98.7 \text{ kJ}$

$$SO_3 + H_2O \longrightarrow H_2SO_4$$
; $\Delta H = -130.2 \text{ kJ}$

$$H_2 + \frac{1}{2}O_2 \longrightarrow H_2O$$
 ; $\Delta H = -287.3 \text{ kJ}$

Then the enthalpy of formation of H₂SO₄ at 298 K

- (1) 814.4 kJ
- (2) -650.3 kJ
- (3) -320.5 kJ
- (4) -433.5 kJ

TC0180

161. Given that :

$$Hg + \frac{1}{2}O_2 \rightarrow HgO + 21700 \text{ Cal}$$
2

The heat of reaction (ΔH) for,

$$Zn + HgO \rightarrow ZnO + Hg is :-$$

- (1) 105700 Cal
- (2) 62300 Cal
- (3) -105700 Cal
- (4) 62300 Cal

TC0181

162. Given that -

$$2C(s) + 2O_2(g) \rightarrow 2CO_2(g)$$
 $\Delta H = -787 \text{ kJ}$

$$H_{9}(g) + \frac{1}{2}O_{9}(g) \rightarrow H_{9}O(\ell) \quad \Delta H = -286 \text{ kJ}$$

$$C_2H_2(g) + \frac{5}{2}O_2(g) \rightarrow 2CO_2(g) + H_2O(\ell)\Delta H = -1310 \text{ kJ}$$

Heat of formation of acetylene is :-

- (1) + 1802 kJ
- (2) 1802 kJ
- (3) 800 kJ
- (4) + 237 kJ

TC0182

163. The heat of reaction for

$$A + \frac{1}{2}O_2 \rightarrow AO$$
 is - 50 kCal and

AO +
$$\frac{1}{2}$$
O $_2$ \rightarrow AO $_2$ is 100 kCal. The heat of

reaction for $A + O_2 \rightarrow AO_2$ is:-

- (1) 50 kCal
- (2) + 50 kCal
- (3) 100 kCal
- (4) 150 kCal

TC0184

164.
$$C(s) + O_2(g) \rightarrow CO_2(g) + 94.0 \text{ kCal}$$

$$CO(g) + \frac{1}{2}O_2(g) \to CO_2(g), \Delta H = -67.7 \text{ kCal}$$

from the above reactions find how much heat (kCal mole⁻¹) would be produced in the following

reaction : C(s) +
$$\frac{1}{2}$$
O₂(g) \rightarrow CO(g)

- (1) 20.6
- (2) 26.3
- (3)44.2
- (4) 161.6

TC0185

165. The enthalpy of vapourisation of liquid water using the data:

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(\ell)$$
; $\Delta H = -285.77 \text{ kJ mol}^{-1}$

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g) ; \Delta H = -241.84 \text{ kJ mol}^{-1}$$

- $(1) + 43.93 \text{ kJ mol}^{-1}$
- (2) 43.93 kJ mol⁻¹
- $(3) + 527.61 \text{ kJ mol}^{-1}$ $(4) 527.61 \text{ kJ mol}^{-1}$

TC0187

166. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(\ell)$; $\Delta H_{298K} = -68.32 \text{kCal.}$

Heat of vapourisation of water at 1 atm and 25°C is 10.52 kCal. The standard heat of formation (in kCal) of 1 mole of water vapour at 25°C is

- (1) 10.52
- (2) 78.84
- (3) + 57.80
- (4) -57.80

TC0188

167. The heat of solution of anhydrous CuSO₄ and CuSO₄.5H₂O are - 15.89 and 2.80 kCal mol⁻¹ respectively. What will be the heat of hydration of anhydrous CuSO₄?

- (1) -18.69 kCal
- (2) 18.69 kCal
- (3) -28.96 kCal
- (4) 28.96 kCal

168. Which of the following expressions is true:-

(1)
$$H_f^0$$
 (CO,g)= $\frac{1}{2}\Delta H_f^0$ (CO₂,g)

(2)
$$\Delta H_{f}^{0}$$
 (CO,g)= ΔH_{f}^{0} (C,graphite) + $\frac{1}{2}\Delta H_{f}^{0}$ (O₂,g)

(3)
$$\Delta H_f^0$$
 (CO,g)= ΔH_f^0 (CO₂,g) $-\frac{1}{2}\Delta H_f^0$ (O₂,g)

(4)
$$\Delta\,H_{\rm f}^0$$
 (CO,g)= $\Delta\,H_{\rm comb}^0$ (C,graphite)– $\Delta\,H_{\rm comb}^0$ (CO,g)

FX	FRCI	SF-I	(Conc	centua	al Oue	estion	ANSWER KEY								
EXERCISE-I (Conceptual Questions)											, and were ree				
Que.	1	2	3	4	5	<u>6</u>	7	8	9	10	11	12	13	14	15
Ans.	2	3	4	4	3	3	1	4	1	1	1	4	2	1	4
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	4	4	1	1	3	1	3	2	2	4	2	2	4	2	1
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	1	1	2	3	4	2	2	2	3	1	1	1	2	3	4
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	3	4	3	1	1	2	3	3	1	3	2	2	1	4	2
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	4	3	2	2	1	4	3	2	3	3	4	1	2	2	2
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans.	4	1	4	1	4	1	1	2	3	1	3	4	1	2	4
0		0.0	00	04	95	96	97	98	99	100	101	102	103	104	105
Que.	91	92	93	94	90	90	21	70		100	101	102	103	104	
Que. Ans.	91 2	92 4	93 2	94 1	2	4	4	2	2	2	4	4	1	2	2
_		_									_	-			
Ans.	2	4	2	1	2	4	4	2	2	2	4	4	1	2	2
Ans. Que.	2 106	4 107	2	1 109	2 110	4 111	4 112	2 113	2	2 115	4 116	4 117	1	2 119	2 120
Ans. Que. Ans.	2 106 3	4 107 2	2 108 3	1 109 4	2 110 4	4 111 4	4 112 1	2 113 3	2 114 2	2 115 1	4 116 3	4 117 1	1 118 3	2 119 2	2 120 2
Ans. Que. Ans. Que.	2 106 3 121	4 107 2 122	2 108 3 123	1 109 4 124	2 110 4 125	4 111 4 126	4 112 1 127	2 113 3 128	2 114 2 129	2 115 1 130	4 116 3 131	4 117 1 132	1 118 3 133	2 119 2 134	2 120 2 135
Ans. Que. Ans. Que. Ans.	2 106 3 121 2	4 107 2 122 2	2 108 3 123 3	1 109 4 124 1	2 110 4 125 3	4 111 4 126 2	4 112 1 127 2	2 113 3 128 1	2 114 2 129 2	2 115 1 130 1	4 116 3 131 1	4 117 1 132 1	1 118 3 133 1	2 119 2 134 2	2 120 2 135 4
Ans. Que. Ans. Que. Ans. Que.	2 106 3 121 2 136	4 107 2 122 2 137	2 108 3 123 3 138	1 109 4 124 1 139	2 110 4 125 3 140	4 111 4 126 2 141	4 112 1 127 2 142	2 113 3 128 1 143	2 114 2 129 2 144	2 115 1 130 1 145	4 116 3 131 1 146	4 117 1 132 1 147	1 118 3 133 1 148	2 119 2 134 2 149	2 120 2 135 4 150
Ans. Que. Ans. Que. Ans. Ans.	2 106 3 121 2 136 2	4 107 2 122 2 137 3	2 108 3 123 3 138 2	1 109 4 124 1 139 3	2 110 4 125 3 140 2	4 111 4 126 2 141 3	4 112 1 127 2 142 4	2 113 3 128 1 143 3	2 114 2 129 2 144 3	2 115 1 130 1 145 1	4 116 3 131 1 146 1	4 117 1 132 1 147 3	1 118 3 133 1 148 2	2 119 2 134 2 149 4	2 120 2 135 4 150 4
Ans. Que. Ans. Que. Ans. Que. Ans. Que.	2 106 3 121 2 136 2 151	4 107 2 122 2 137 3 152	2 108 3 123 3 138 2 153	1 109 4 124 1 139 3 154	2 110 4 125 3 140 2 155	4 111 4 126 2 141 3 156	4 112 1 127 2 142 4 157	2 113 3 128 1 143 3 158	2 114 2 129 2 144 3 159	2 115 1 130 1 145 1 160	4 116 3 131 1 146 1	4 117 1 132 1 147 3 162	1 118 3 133 1 148 2 163	2 119 2 134 2 149 4 164	2 120 2 135 4 150 4 165

EXERCISE-II (Previous Year Questions)

AIPMT 2009

- **1.** From the following bond energies :-
 - H H bond energy: 431.37 kJ mol⁻¹
 - C = C bond energy : 606.10 kJ mol⁻¹
 - C C bond energy : 336.49 kJ mol⁻¹
 - C H bond energy : 410.50 kJ mol⁻¹
 - Enthalpy for the reaction,

will be :-

- (1) 553.0 kJ mol⁻¹
- (2) 1523.6 kJ mol⁻¹
- (3) -243.6 kJ mol⁻¹
- (4) -120.0 kJ mol⁻¹

TC0205

- **2.** The values of ΔH and ΔS for the reaction, $C_{\text{(graphile)}} + CO_2(g) \rightarrow 2CO(g)$ are 170 kJ and 170 JK⁻¹, respectively. This reaction will be spontaneous at :-
 - (1) 510 K
- (2) 710 K
- (3) 910 K
- (4) 1110 K

TD0206

AIPMT 2010

- 3. For vaporization of water at 1 atmospheric pressure, the values of ΔH and ΔS are 40.63 kJ mol $^{-1}$ and 108.8 JK $^{-1}$ mol $^{-1}$, respectively. The temperature when Gibbs energy change (ΔG) for this transformation will be zero, is :-
 - (1) 393.4 K
- (2) 373.4 K
- (3) 293.4 K
- (4) 273.4 K

TD0207

- **4.** Three moles of an ideal gas expanded spontaneously into vacuum. The work done will be:-
 - (1) 3 Joule
- (2) 9 Joule
- (3) Zero
- (4) Infinite

TH0208

5. The following two reactions are known:

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$
;

 $\Delta H = -26.8 \text{ kJ}$

 $FeO(s) + CO(g) \rightarrow Fe(s) + CO_{g}(g)$;

 $\Delta H = -16.5 \text{ kJ}$

Correct target equation is

 $Fe_2O_3(s) + CO(g) \rightarrow 2FeO(s) + CO_2(g), \Delta H = ?$

- (1) -43.3 kJ
- (2) -10.3 kJ
- (3) + 6.2 kJ
- (4) + 10.3 kJ

TC0209

AIPMT/NEET

6. Standard entropies of X_2 , Y_2 and XY_3 are 60, 40 and 50 JK⁻¹ mol⁻¹ respectively. For the reaction

$$\frac{1}{2}X_2 + \frac{3}{2}Y_2 \Longrightarrow XY_3$$
, $\Delta H = -30$ kJ to be at

equilibrium, the temperature should be :-

- (1) 500 K
- (2) 750 K
- (3) 1000 K
- (4) 1250 K

TD0210

AIPMT Pre. 2011

- 7. If the enthalpy change for the transition of liquid water to steam is 30 kJ mol⁻¹ at 27°C, the entropy changes for the process would be:
 - (1) 10 J mol⁻¹ K⁻¹
- (2) 1.0 J mol⁻¹ K⁻¹
- (3) 0.1 J mol⁻¹ K⁻¹
- (4) 100 J mol⁻¹ K⁻¹

TD0214

8. Enthalpy change for the reaction,

$$4H(g) \rightarrow 2H_{2}(g) \text{ is } -869.6 \text{ kJ}$$

The dissociation energy of H-H bond is:

- (1) -434.8 kJ
- (2) 869.6 kJ
- (3) + 434.8 kJ
- (4) + 217.4 kJ

TC0215

9. Which of the following correct option for free expansion of an ideal gas under adiabatic condition?

(1)
$$q = 0$$
, $\Delta T \neq 0$, $w = 0$

(2)
$$q \neq 0$$
, $\Delta T = 0$, $w = 0$

(3)
$$q = 0$$
, $\Delta T = 0$, $w = 0$

(4)
$$q = 0$$
, $\Delta T < 0$, $w \neq 0$

TH0216

AIPMT Msins 2011

10. Consider the following processes :-

 $\Delta H(kJ \text{ mol}^{-1})$

$$\frac{1}{2} A \rightarrow B$$

+150

$$3B \rightarrow 2C + D$$

-125

$$E + A \rightarrow 2D$$

+350

For B + D
$$\rightarrow$$
 E + 2C,

 ΔH will be :

(1) 325 kJ mol⁻¹

(2) 525 kJ mol⁻¹

(3) -175 kJ mol⁻¹

(4) -325 kJ mol⁻¹

AIPMT Pre. 2012

- **11.** In which of the following reactions, standard reaction entropy change (ΔS°) is positive and standard Gibb's energy change (ΔG°) decreases sharply with increasing temperature?
 - (1) Mg(s) + $\frac{1}{2}$ O₂(g) \rightarrow MgO(s)
 - (2) $\frac{1}{2}$ C (graphite) + $\frac{1}{2}$ O₂(g) $\rightarrow \frac{1}{2}$ CO₂(g)
 - (3) C (graphite) + $\frac{1}{2}$ O₂ (g) \rightarrow CO (g)
 - (4) $CO(g) + \frac{1}{2}O_2(g) \to CO_2(g)$

TD0222

- **12.** Standard enthalpy of vapourisation $\Delta_{\text{vap}}H^{\Theta}$ for water at 100°C is 40.66 kJmol^{-1} . The internal energy of vaporisation of water at 100°C (in kJmol $^{-1}$) is
 - (1) +43.76 (2) +40.66 (3) +37.56 (4) -43.76

TH0223

- **13.** The enthalpy of fusion of water is $1.435 \text{ kCal mol}^{-1}$. The molar entropy change for the melting of ice at 0°C is:
 - (1) 5.260 Cal mol-1 K-1
- (2) 0.526 Cal mol⁻¹ K⁻¹
- (3) 10.52 Cal mol⁻¹ K⁻¹
- (4) 21.04 Cal mol⁻¹ K⁻¹

TD0224

AIPMT 2014

14. For the reaction : $X_2O_4(\ell) \longrightarrow 2XO_2(g)$

 $\Delta U = 2.1~kCal,~\Delta S = 20~cal~K^{\text{--}}$ at 300~K Hence ΔG is :-

- (1) 2.7 kCal
- (2) 2.7 kCal
- (3) 9.3 kCal
- (2) 2.7 kCal (4) 9.3 kCal
 - TD0228

AIPMT 2015

- **15.** Which of the following statements is **correct** for a reversible process in a state of equilibrium?
 - (1) $\Delta G = 2.30 \text{ RT log K}$
 - (2) $\Delta G^{\circ} = -2.30 \text{ RT log K}$
 - (3) $\Delta G^{\circ} = 2.30 \text{ RT log K}$
 - (4) $\Delta G = -2.30 \text{ RT log K}$

TD0230

Re-AIPMT 2015

- **16.** The heat of combustion of carbon to CO₂ is -393.5 kJ mol⁻¹. The heat exchange in the formation of 35.2 g of CO₂ from carbon and oxygen gas is:
 - (1) -630 kJ
- (2) -3.15 kJ
- (3) -315 kJ
- (4) + 315 kJ

TC0231

NEET-I 2016

- **17.** The correct thermodynamic conditions for the spontaneous reaction at all temperatures is
 - (1) $\Delta H > 0$ and $\Delta S > 0$ (2) $\Delta H > 0$ and $\Delta S < 0$
 - (3) $\Delta H < 0$ and $\Delta S > 0$ (4) $\Delta H < 0$ and $\Delta S < 0$

TD0235

NEET-II 2016

- **18.** For a sample of perfect gas when its pressure is changed isothermally from p_i to p_i , the entropy change is given by
 - (1) $\Delta S = nRT \ln \left(\frac{p_f}{p_i} \right)$ (2) $\Delta S = RT \ln \left(\frac{p_i}{p_f} \right)$
 - (3) $\Delta S = nR \ln \left(\frac{p_f}{p_i}\right)$ (4) $\Delta S = nR \ln \left(\frac{p_i}{p_f}\right)$

TD0236

NEET(UG) 2017

- **19.** For a given reaction, $\Delta H = 35.5 \text{ kJ mol}^{-1}$ and $\Delta S = 83.6 \text{ JK}^{-1} \text{mol}^{-1}$. The reaction is spontaneous at : (Assume that ΔH and ΔS do not vary with temperature)
 - (1) T > 425 K
- (2) All temperatures
- (3) T > 298 K
- (4) T < 425 K

TD0242

- **20.** A gas is allowed to expand in a well insulated container against a constant external pressure of 2.5 atm from an initial volume of 2.50 L to a final volume of 4.50 L. The change in internal energy ΔU of the gas in joules will be:-
 - (1) -500 J
- (2) -505 J
- (3) + 505 J
- (4) 1136.25 J

TH0243

NEET (UG) 2018

- **21.** The bond dissociation energies of X_2 , Y_2 and XY are in the ratio of 1:0.5:1. ΔH for the formation of XY is $-200~kJ~mol^{-1}$. The bond dissociation energy of X_2 will be
 - (1) 200 kJ mol⁻¹
- (2) 100 kJ mol⁻¹
- (3) 800 kJ mol⁻¹
- (4) 400 kJ mol⁻¹

NEET(UG) 2019

- **22.** Under isothermal condition, a gas at 300 K expands from 0.1L to 0.25L against a constant external pressure of 2 bar. The work done by the gas is :- [Given that 1L bar = 100 J]
 - (1) -30 J
- (2) 5kJ
- (3) 25 J
- (4) 30 J

TC0310

NEET(UG) 2019 (Odisha)

- **23.** An ideal gas expands isothermally from 10^{-3} m³ to 10^{-2} m³ at 300 K against a constant pressure of 10^5 Nm⁻². The work, in the process is :-
 - (1) + 270 kJ
- (2) -900 J
- (3) + 900 kJ
- (4) -900 kJ

TC0311

24. Reversible expansion of an ideal gas under isothermal and adiabatic conditions are as shown in the figure.

 $AB \rightarrow Isothermal expansion$

AC → Adiabatic expansion

Which of the following options is **not** correct?

- (1) $\Delta S_{isothermal} > \Delta S_{adiabatic}$
- (2) $T_{A} = T_{B}$
- (3) $W_{isothermal} > W_{adiabatic}$
- (4) T > T

TC0312

NEET (UG) 2020

- **25.** The correct option for free expansion of an ideal gas under adiabatic condition is :
 - (1) q > 0, $\Delta T > 0$ and w > 0
 - (2) q = 0, $\Delta T = 0$ and w = 0
 - (3) $q = 0, \Delta T < 0 \text{ and } w > 0$
 - (4) q < 0, $\Delta T = 0$ and w = 0

TD0347

26. Hydrolysis of sucrose is given by the following reaction.

Sucrose + H₂O ← Glucose + Fructose

If the equilibrium constant (K_c) is 2×10^{13} at 300K, the value of $\Delta_r G^\Theta$ at the same temperature will be:

- (1) $-8.314 \text{ J mol}^{-1} \text{ K}^{-1} \times 300 \text{ K} \times \ln(4 \times 10^{13})$
- (2) $-8.314 \text{ J mol}^{-1} \text{ K}^{-1} \times 300 \text{ K} \times \ln(2 \times 10^{13})$
- (3) $8.314 \text{ J mol}^{-1} \text{ K}^{-1} \times 300 \text{ K} \times \ln(2 \times 10^{13})$
- (4) $8.314 \text{ J mol}^{-1} \text{ K}^{-1} \times 300 \text{ K} \times \ln(3 \times 10^{13})$

TD0348

- **27.** For the reaction $2Cl(g) \rightarrow Cl_2(g)$, the **correct** option is:
 - (1) $\Delta_r H < 0$ and $\Delta_r S < 0$
 - (2) $\Delta_r H > 0$ and $\Delta_r S > 0$
 - (3) $\Delta H > 0$ and $\Delta S < 0$
 - (4) $\Delta H < 0$ and $\Delta S > 0$

TD0349

NEET (UG) 2020 (COVID-19)

- **28.** If for a certain reaction $\Delta_{r}H$ is 30 kJ mol⁻¹ at 450 K, the value of $\Delta_{r}S$ (in JK^{-1} mol⁻¹) for which the same reaction will be spontaneous at the same temperature is
 - (1)70

(2) -33

- (3) 33
- (2) -33(4) -70

TD0350

29. At standard conditions, if the change in the enthalpy for the following reaction is -109 kJ mol^{-1}

$$H_2(g) + Br_2(g) \rightarrow 2HBr(g)$$

Given that bond energy of H_2 and Br_2 is 435 kJ mol⁻¹ and 192 kJ mol⁻¹, respectively, what is the bond energy (in kJ mol⁻¹) of HBr?

- (1)368
- (2)736
- (3)518
- (4) 259

TC0351

NEET (UG) 2021

- **30.** Which one among the following is the correct option for right relationship between C_P and C_V for one mole of ideal gas?
 - (1) $C_P + C_V = R$
- (2) $C_P C_V = R$
- (3) $C_P = RC_V$
- (4) $C_V = RC_P$

TH0352

- **31.** For irreversible expansion of an ideal gas under isothermal condition, the correct option is:
 - (1) $\Delta U = 0$, $\Delta S_{\text{total}} = 0$
 - (2) $\Delta U \neq 0$, $\Delta S_{total} \neq 0$
 - (3) $\Delta U = 0$, $\Delta S_{total} \neq 0$
 - (4) $\Delta U \neq 0$, $\Delta S_{total} = 0$

TC0353

NEET(UG) 2021 (Paper-2)

32.
$$F_2C=CF-CF=CF_2 \rightarrow \begin{array}{cccc} F_2C-CF_2 \\ & | & | \\ FC=CF \end{array}$$

for this reaction (ring closure), $\Delta H = -49 \text{ kJ mol}^{-1}$, $\Delta S = -40.2 \text{ J K}^{-1} \text{ mol}^{-1}$. Upto what temperature is the forward reaction spontaneous?

- (1) 1492°C
- (2) 1219°C
- (3) 946℃
- (4) 1080°C

33. P–V plots for two gases during adiabatic processes are given in the given figure.

Plot A and plot B should correspond to

- (1) He and O_2
- (2) He and Ar
- (3) O_2 and He
- (4) O_2 and F_2

TH0355

34. For the homogeneous reactions:

$$xA + yB \rightarrow \ell Y + mZ$$

 $\Delta H = -30 \text{ kJ mol}^{-1}$, $\Delta S = -100 \text{ J K}^{-1} \text{ mol}^{-1}$. At what temperature the reaction is at equilibrium? (1) 50°C (2) 250°C (3)100 K (4) 27°C

TH0356

NEET (UG) 2022

35. Which of the following p-V curve represents maximum work done?

TH0357

NEET (UG) 2022 (OVERSEAS)

36. The work done when 1 mole of a gas expands reversibly and isothermally from pressure of 5 atm to 1 atm at 300 K is

(Given log 5 = 0.6989 and $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$)

- (1) 150 J
- (2) + 4014.6 J
- (3) 4014.6 J
- (4) zero J

TH0358

Re-NEET (UG) 2022

- **37.** One mole of an ideal gas at 300 K is expanded isothermally from 1 L to 10 L volume. ΔU for this process is (Use R = 8.314 J K⁻¹ mol⁻¹)
 - (1) 1260 J
 - (2) 2520 J
 - (3) 5040 J
 - (4) 0 J

TH0359

EXERCISE-II (Previous Year Questions)									ANSWER KEY						
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	4	2	3	3	2	4	3	3	3	3	3	1	2	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	3	3	4	1	2	3	4	2	4	2	2	1	1	1	2
Que.	31	32	33	34	35	36	37								
Ans.	3	3	3	4	1	3	4								

EXERCISE-III (Analytical Questions)

- 1. Consider the reaction: $N_2 + 3H_2 \rightarrow 2NH_3$ carried out at constant temperature and pressure. If ΔH and ΔU are the enthalpy and internal energy changes for the reaction, which of the following expressions is true?
 - (1) $\Delta H < \Delta U$
- (2) $\Delta H > \Delta U$
- $(3) \Delta H = 0$
- $(4) \Delta H = \Delta U$

TH0258

- 2. For a reversible process at T = 300K, the volume is increased from $V_{\rm i}$ = 1L to $V_{\rm f}$ = 10L. Calculate ΔH if the process is isothermal -
 - (1) 11.47 kJ
- (2) 4.98 kJ

(3) 0

(4) -11.47 kJ

TH0259

- **3.** A piston filled with 0.04 mol of an ideal gas expands reversibly from 50.0 mL to 375 mL at a constant temperature of 37.0°C. As it does so, it absorbs 208 J of heat. The values of q and w for the process will be :-
 - $(R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}) (\ln 7.5 = 2.01)$
 - (1) q = +208 J, w = -208 J
 - (2) q = -208 J, w = -208 J
 - (3) q = -208 J, w = +208 J
 - (4) q = +208 J, w = +208 J

TH0261

- **4.** The entropy change involved in the isothermal reversible expansion of 2 moles of an ideal gas from a volume of 10 dm^3 to a volume of 100 dm^3 at 27°C is :-
 - (1) 32.3 J mol⁻¹ K⁻¹
- (2) 42.3 J mol⁻¹ K⁻¹
- (3) 38.3 J mol⁻¹ K⁻¹
- (4) 35.8 J mol⁻¹ K⁻¹

TD0262

- 5. The value of enthalpy change (ΔH) for the reaction
 - $C_2H_5OH(\ell) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(\ell)$
 - at 27°C is $-1366.5 \text{ kJ} \text{ mol}^{-1}$. The value of internal energy change for the above reaction at this temperature will be :-
 - (1) -1371.5 kJ
- (2) -1369.0 kJ
- (3) -1364.0 kJ
- (4) -1361.5 kJ

TH0263

Master Your Understanding

- **6.** For the process $H_2O(\ell)$ (1 bar , 373K) \to $H_2O(g)$ (1 bar , 373K), the correct set of thermodynamic parameters is :
 - (1) $\Delta G = 0$, $\Delta S = +ve$
 - (2) $\Delta G = 0$, $\Delta S = -ve$
 - (3) $\Delta G = +ve$, $\Delta S=0$
 - (4) $\Delta G = -ve$, $\Delta S = +ve$

TD0264

- **7.** Which of the following pairs of a chemical reaction is certain to result in a spontaneous reaction.?
 - (1) endothermic and decreasing disorder
 - (2) exothermic and increasing disorder
 - (3) endothermic and increasing disorder
 - (4) exothermic and decreasing disorder

TD0265

8. The conversion A to B is carried out by the following path:

$$C \longrightarrow D$$
A Given: $\Delta S_{(A \to C)} = 50 \text{ e.u.}$,

$$\Delta S_{(C_{\rightarrow}D)} = 30 \text{ e.u.}, \ \Delta S_{(B_{\rightarrow}D)} = 20 \text{ e.u.}$$

where e.u. is entropy unit then $\Delta S_{(A \to B)}$ is

- (1) + 100 e.u.
- (2) + 60 e.u.
- (3) 100 e.u.
- (4) 60 e.u.

TD0266

9. In a fuel cell methanol is used as fuel and oxygen gas is used as an oxidizer. The reaction is

$$CH_{3}OH(\ell) + \frac{3}{2}O_{2}(g) \longrightarrow CO_{2}(g) + 2H_{2}O(\ell)$$

At 298 K standard Gibb's energies of formation for CH₂OH(ℓ), H₂O(ℓ) and CO₂(g) are -166.2,

-237.2 and -394.4 kJ mol^{-1} respectively. If standard enthalpy of combustion of methanol is -726 kJ mol^{-1} , efficiency of the fuel cell will be

- (1) 90%
- (2) 97%
- (3) 80%
- (4) 87%

Chemistry: Chemical Thermodynamics and Energetics @Chalnaayaaar

- **10.** Identify the correct statement regarding a sponateous process:-
 - (1) For a spontaneous process in an isolate system, the change in total entropy is positive
 - (2) Endothermic processes are never spontaneous
 - (3) Exothermic processes are always spontaneous
 - (4) Lowering of energy in the reaction process is the only criterion for spontaneity

TD0269

- **11.** Standard entropy of X_2 , Y_2 and XY_3 are 60, 40 and 50 JK⁻¹ mol⁻¹, respectively. For the reaction, $\frac{1}{2}X_2 + \frac{3}{2}Y_2 \rightarrow XY_3$, $\Delta H = -50$ kJ, to be at
 - equilibrium, the temperature will be
 - (1) 1250 K
- (2) 500 K
- (3) 750 K
- (4) 1000 K

TD0270

- **12.** Consider the reaction :
 - $4NO_2(g) + O_2(g) \rightarrow 2N_2O_5(g), \Delta H = -111kJ.$

If $N_2O_5(s)$ is formed instead of $N_2O_5(g)$ in the above reaction, the ΔH value will be :-

(given, Δ Hof sublimation for N_2O_5 is 54 kJ mol⁻¹)

- (1) 165 kJ
- (2) + 54 kJ
- (3) + 219 kJ
- (4) 219 kJ

TC0273

13. For complete combustion of ethanol,

 $C_2H_5OH(\ell) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(\ell)$, the amount of heat produced as measured in bomb calorimeter, is $1364.47~kJ~mol^{-1}$ at $25^{\circ}C$. Assuming ideality the Enthalpy of combustion, ΔH , for the reaction will be :-

- $(R = 8.314 \text{ kJ mol}^{-1})$
- $(1) 1460.50 \text{ kJ mol}^{-1}$
- (2) 1350.50 kJ mol⁻¹
- $(3) 1366.95 \text{ kJ mol}^{-1}$
- $(4) 1361.95 \text{ kJ mol}^{-1}$

TH0274

- **14.** If the bond dissociation energies of XY, X_2 and Y_2 (all diatomic molecules) are in the ratio of 1:1:0.5 and $\Delta_I H$ for the formation of XY is $-400~{\rm kJ~mol^{-1}}$. The bond dissociation energy of X_2 will be :-
 - (1) 200 kJ mol⁻¹
- (2) 100 kJ mol⁻¹
- (3) 1600 kJ mol⁻¹
- (4) 300 kJ mol⁻¹

TC0275

- **15.** The standard enthlapy of formation $(\Delta_i H^\circ)$ at 298K for methane, $CH_4(g)$, is $-74.8 \text{ kJ mol}^{-1}$. The additional information required to determine the average energy for C-H bond formation would be:-
 - (1) Latent heat of vapourization of methane
 - (2) The first four ionization energies of carbon and electron gain enthalpy of hydrogen
 - (3) The dissociation energy of hydrogen molecule H₂
 - (4) The dissociation energy of H₂ and enthalpy of sublimation of carbon

TC0276

- **16.** The incorrect expression among the following is :-
 - (1) $K = e^{-\Delta G^{\circ}/RT}$

(2)
$$\frac{\Delta G_{\text{system}}}{\Delta S_{\text{total}}} = -T$$

- (3) In isothermal process, $W_{\text{reversible}} = -nRT \ln \frac{V_f}{V_i}$
- (4) $lnK = \frac{\Delta H^{\circ} T\Delta S^{\circ}}{RT}$

TD0278

17. On the basis of the following thermochemical data : $\left[\Delta H_f^0\left(H_{(aq)}^+=0\right)\right]$

$$H_{\circ}O(\ell) \rightarrow H^{+}(aq) + OH^{-}(aq)$$
; $\Delta H = 57.32 \text{ kJ}$

$$H_{2}(g) + \frac{1}{2}O_{2}(g) \rightarrow H_{2}O\left(\ell\right); \Delta H = -286.20 \text{ kJ}$$

The value of enthalpy of formation of OH^- ion at $25^{\circ}C$ is :-

- (1) +228.88 kJ
- (2) -343.52 kJ
- (3) -22.88 kJ
- (4) -228.88 kJ

TC0280

- **18.** Identify the correct statement for change of Gibbs energy for a system (ΔG_{system}) at constant temperature and pressure.
 - (1) If $\Delta G_{\text{system}} > 0$, the process is spontaneous.
 - (2) If $\Delta G_{\text{system}} = 0$, the system has attained equilibrium.
 - (3) If $\Delta G_{system} = 0$, the system is still moving in a particular direction.
 - (4) If $\Delta G_{\text{system}} < 0$, the process is not spontaneous.

- **19.** Assume each reaction is carried out in an open container. For which reaction will $\Delta H = \Delta E$?
 - (1) $H_2(g) + Br_2(g) \rightarrow 2 HBr(g)$
 - (2) $C(s) + 2H_2O(g) \rightarrow 2 H_2(g) + CO_2(g)$
 - (3) $PCl_5(g) \rightarrow PCl_3(g) + Cl_2(g)$
 - (4) $2CO(g) + O_{g}(g) \rightarrow 2CO_{g}(g)$

TH0193

- **20.** The enthalpy and entropy change for reaction $\mathrm{Br_2}(\ell) + \mathrm{Cl_2}(g) \to 2 \; \mathrm{BrCl} \; (g) \; \mathrm{are} \; 30 \; \mathrm{kJ} \; \mathrm{mol}^{-1} \; \mathrm{and} \; 105 \; \mathrm{JK}^{-1} \; \mathrm{mol}^{-1} \; \mathrm{respectively}.$ The temperature at which the reaction will be in equilibrium is
 - (1) 285.7 K
- (2) 273 K
- (3) 450 K
- (4) 300 K

TD0194

- **21.** The enthalpy of hydrogenation of cyclohexene is $-119.5 \text{ kJ mol}^{-1}$. If resonance energy of benzene is $-150.4 \text{ kJ mol}^{-1}$, its enthalpy of hydrogenation would be
 - $(1) 508.9 \text{ kJ mol}^{-1}$
- $(2) 208.1 \text{ kJ mol}^{-1}$
- $(3) 269.9 \text{ kJ mol}^{-1}$
- $(4) 358.5 \text{ kJ mol}^{-1}$

TC0195

- **22.** Consider the following reactions:
 - (a) $H^+(aq) + OH^-(aq) = H_2O(I)$, $\Delta H = -X_1kJ \text{ mol}^{-1}$
 - (b) $H_2(g) + \frac{1}{2}O_2(g) = H_2O(l)$, $\Delta H = -X_2kJ \text{ mol}^{-1}$
 - (c) $CO_2(g) + H_2(g) = CO(g) + H_2O_0 X_3kJ \text{ mol}^{-1}$
 - (d) $C_2H_2(g) + \frac{5}{2}O_2(g) = 2CO_2(g) + H_2O_0 + X_4kJ \text{ mol}^{-1}$

Enthalpy of formation of $H_2O_{(1)}$ is :

- $(1) + X_1 kJ mol^{-1}$
- (2) -X₂ kJ mol⁻¹
- (3) $+X_3$ kJ mol⁻¹
- (4) -X₄ kJ mol⁻¹

TC0200

- **23.** Given that bond energies of H–H and Cl–Cl are 430 kJ mol⁻¹ and 240 kJ mol⁻¹ respectively and Δ_i H for HCl is –90 kJ mol⁻¹. Bond enthalpy of HCl is :
 - (1) 245 kJ mol⁻¹
- (2) 290 kJ mol⁻¹
- (3) 380 kJ mol⁻¹
- (4) 425 kJ mol⁻¹

TC0201

- **24.** Bond dissociation enthalpy of H₂,Cl₂ and HCl are 434, 242 and 431 kJmol⁻¹ respectively. Enthalpy of formation of HCl is:-
 - (1) -93 kJmol⁻¹
- (2) 245 kJmol⁻¹
- (3) 93 kJmol⁻¹
- (4) -245 kJmol⁻¹

TC0202

25. For the gas phase reaction,

$$PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$$

Which of the following conditions are correct?

- (1) $\Delta H < 0$ and $\Delta S < 0$
- (2) $\Delta H > 0$ and $\Delta S < 0$
- (3) $\Delta H = 0$ and $\Delta S < 0$
- (4) $\Delta H > 0$ and $\Delta S > 0$

TD0203

- **26.** Which of the following does not depends on path?
 - (I) q + w
- (II) q
- (III) w

- (IV) H-TS
- (1) (I),(II) and (III)
- (O) /II) 1 /II
- (3) (I) and (IV)
- (2) (II) and (III)

(4) (II), (III) and (IV)

TH0204

EXERCISE-III (Analytical Questions) ANSWER KE													KEY		
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	1	3	1	3	3	1	2	2	2	1	1	4	3	3	4
Que.	16	17	18	19	20	21	22	23	24	25	26				
						$\overline{}$	$\overline{}$								