Searching 21-cm Absorption Systems in Chinese Radio Telescopes

Hao-Ran Yu^{1,2}, Ue-Li Pen^{2,3,4,5}, Tong-Jie Zhang⁶, Di Li^{7,8} and Xuelei Chen⁹

- ¹ Kavli Institute for Astronomy & Astrophysics, Peking University, Beijing 100871, China;
- ² Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, M5S 3H8, ON, Canada;
- ³ Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, M5S 3H4, ON, Canada;
- ⁴ Canadian Institute for Advanced Research, Program in Cosmology and Gravitation;
- ⁵ Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5, Canada;
- ⁶ Department of Astronomy, Beijing Normal University, Beijing, 100875, China;
- ⁷ National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China;
- ⁸ Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Beijing, China;
- ⁹ Key Laboratory for Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, China.

Abstract Neutral hydrogen clouds are known to exist in the Universe, however their spatial distributions and physical properties are poorly understood. Such missing information can be studied by the Chinese new generation radio telescopes by a blind searching of 21cm absorption systems. We forecast the abilities of surveys of 21-cm absorption systems by two representative radio telescopes — Five-hundred-meter Aperture Spherical radio Telescope (FAST) and Tianlai. The result shows that, in a few of years term, these telescopes with either high sensitivity (FAST) or wide field of view (Tianlai) can discover orders of magnitudes more 21-cm absorption systems, than the cumulative discoveries in the past 50 years.

Key words:

1 INTRODUCTION

21-cm absorption systems can be used to directly measure the cosmic acceleration via Sandage-Loeb (SL) effect (Sandage 1962; Loeb 1998). The current best constraint of this acceleration if given by Darling (2012). A proposal on CHIME-like telescope is given by Yu et al. (2014), in which the minor redshift drift could be measured over decades. The uncertainties are from the poorly understood neutral hydrogen clouds. Path finder surveys, taking less than a year, are needed to improve our understandings of spatial distribution and physical properties of neutral hydrogen clouds. This can be done by the Chinese new generation radio telescopes – Five-hundred-meter Aperture Spherical radio Telescope (FAST) (Li & Pan 2016) and Tianlai (Chen 2012).

2 SENSITIVITY

NRAO VLA Sky Survey (NVSS)¹.

¹ http://www.cv.nrao.edu/nvss/

2 Yu et al.

Recent studies show that the number density of absorbers to be $dN/dz \sim 0.45$ (Wolfe et al. 2005; Zwaan et al. 2007).

Recent discoveries of 21-cm absorption systems have about 20% fractional depth (Allison et al. 2015; Zwaan et al. 2015).

3 FAST ESTIMATION

Parameters:

Result: 90 per month.

4 TIANLAI ESTIMATION

Parameters:

Result: 80 per year.

5 CONCLUSION

Acknowledgements HRY acknowledges General Financial Grant No.2015M570884 and Special Financial Grant No. 2016T90009 from the China Postdoctoral Science Foundation. HRY and ULP acknowledge the support of the National Science and Engineering Research Council of Canada.

References

Allison, J. R., Sadler, E. M., Moss, V. A., et al. 2015, MNRAS, 453, 1249

Chen, X. 2012, International Journal of Modern Physics Conference Series, 12, 256

Darling, J. 2012, ApJ, 761, L26

Li, D., & Pan, Z. 2016, Radio Science, 51, 1060

Loeb, A. 1998, ApJ, 499, L111

Sandage, A. 1962, ApJ, 136, 319

Wolfe, A. M., Gawiser, E., & Prochaska, J. X. 2005, ARA&A, 43, 861

Yu, H.-R., Zhang, T.-J., & Pen, U.-L. 2014, Physical Review Letters, 113, 041303

Zwaan, M. A., Liske, J., Péroux, C., et al. 2015, MNRAS, 453, 1268

Zwaan, M. A., van der Hulst, J. M., Briggs, F. H., Verheijen, M. A. W., & Ryan-Weber, E. V. 2007, Astrophysics and Space Science Proceedings, 3, 501