강의계획표

주	해당 장	주제			
1	1장	머신러닝이란			
2	2장, 3장	머신러닝을 위한 기초지식, 구현을 위한 도구			
3	4장	선형 회귀로 이해하는 지도학습			
4	5장	분류와 군집화로 이해하는 지도 학습과 비지도 학습			
5		다양한 머신러닝 기법들			
6	6장	- 다항 회귀, Logistic Regression - 정보이론, 결정트리 - SVM, Ensemble			
7	7장	인공 신경망 기초 - 문제와 돌파구			
8		중간고사 (04-20)			
9	8장	고급 인공 신경망 구현			
10	9장	신경망 부흥의 시작, 합성곱 신경망			
11	10장	순환 신경망			
12	11장	차원축소와 매니폴드 학습			
13	12장	오토인코더와 잠재표현 학습			
14	13장	AI의현재와미래(GAN, 챗GPT)			
15		보강주			
16		기말고사			

7장 인공 신경망 기초 - 문제와 돌파구

7 주차

이장에서 배울 것들

- 연결주의가 무엇이고 어떤 목표를 갖고 있는지 살펴 보자.
- 각광받던 신경망 모델들이 관심 밖으로 밀려난 이유는 무엇일까.
- 신경망을 복잡하게 구성하는 일은 다시 어떤 벽을 만나게 되었을까.
- 오차를 이용하여 신경망의 가중치를 개선하기 위한 획기적인 방법은 무 엇일까.

Neural Network (1)

- ❖ 신경망(neural network, artificial neural network)
 - 인간 두뇌에 대한 계산적 모델을 통해 인공지능을 구현하려는 분야
 - 연결주의connectionism : 신경세포의 동작을 흉내 내는 장치나 소프트웨어를 만들어 되가 수행하는 인지나 사고 능력을 갖춘 인공지능 연구 방식
 - 신경세포 (neuron)

- **수상돌기(**樹狀突起, dendrite) : 다른 신경세포의 축색돌기와 연결되어 **전기화학적 신호**를 받아들이는 부위
- 축색돌기(軸索突起, axon): 수신한 전기화학적 신호의 합성결과 값이 특정 임계값이 이상이면 신호를 내보는 부위.
- 신경연접(神經連接, synapse) : 수상돌기와 축색돌기 연결 부위
 - 전달되는 신호의 증폭 또는 감쇄

Neural Network (2)

❖ 간략한 역사

■ 1943, McCulloch, Pitts 최초 신경망 제안(신경세포의 신호 전달 방식을 모방)

- 1949, Hebb의 학습 알고리즘
- 1958, Rosenblatt 퍼셉트론(perceptron)
- 1960, Widrow와 Hoff, Adaline과 Madaline, LMS(최소평균제곱)
- 1969, Minsky와 Papert, Perceptrons라는 저서에서 퍼셉트론 한계 지적
 퍼셉트론은 선형 분류기로 XOR도 해결 못함, 이후 신경망 연구 퇴조
- 1986, Rumelhart, Hinton, Williams, 다층 퍼셉트론과 오류 역전파 학습 알고리즘
- 2013, Geoffrey Hinton, Deep Learning

Perceptron (1)

- ❖ 퍼셉트론(perceptron)
 - 1957년에 로젠블라트(Frank Rosenblatt)
 - 연결강도^{weight} w_i를 학습

■ 활성화 함수

Perceptron (2)

❖ 학습

- 경험을 통해 기능이나, 성능이 바뀌는 것
- 연결강도 $weight w_i$ 학습: 활설화 함수의 출력과 정답을 비교하여 오차를 줄이도록 연결강도를 바꾸는 과정
- 파라미터parameter: 연결강도weight w_i
- 최적화^{optimization}: 오차를 줄이는 방향으로 연결강도를 조정하는 일 (경사 하강법, 미분 가능 함수)
- 하이퍼파라미터hyperparameter: 학습과정을 조절하는 인자(연결강도 조정 정도/학습률, 최적화 방법, 학습 반복 횟수 등)

Perceptron (3)

❖ LAB⁷⁻¹ AND / OR 연산을 수행하는 퍼셉트론

실습 목표

퍼셉트론 모델을 이용하여 참(1)과 거짓(-1)의 값을 갖는 두 입력에 대해 논리곱 AND 연산과, 논리합 OR 연산을 수행할 수 있는 퍼셉트론을 만들어 보자.

퍼셉트론 모델은 아래와 같이 두 개의 입력에 대해 $_{\mathbf{W}}$ 벡터가 곱해지고 편향 $_b$ 가 더한 결과를 활성화 함수를 통과하게 만들면 된다. 거짓과 참을 표현할 때 $_0$ 1을 사용하는 방법도 있고, $_1$ 1을 사용하는 방법도 있는데, 신호를 크게 분리하기 위해 우선은 $_1$ 1과 1을 사용하자. 활성화 함수 $_0$ 1는 입력이 $_1$ 2보다 크면 $_1$ 3 다 않으면 $_1$ 5을 반환한다.

학습의 원리- 연결강도 변경(1)

- ❖ Hebb의 학습 법칙
 - "함께 활성화되는 세포는 함께 연결된다"
 - 두뇌 신경망의 기능이 고정되어 있지 않고 바뀔 수 있는 가소성plasticity을 가지고 있음을 설명

- 활성화 정도
 - 두 신경세포가 내는 신호의 곱이고, 함께 연결된다는 것은 연결의 강도 w_{xy} 가 커짐 $w_{xy} = xy$
 - m번 관측한 경우 매번 관측치의 평균 $w_{xy} = \frac{1}{m} \sum_{k=1}^{m} x^{(k)} y^{(k)}$
- Hebb의 학습법칙
 - k+1 번째의 연결강도 변경
 - 신경세포에 가해지는 입력과 출력에 따라 새로운 가중치를 바꾸어 감

$$w_{xy}^{(k+1)} = w_{xy}^{(k)} + x^{(k+1)}y^{(k+1)}$$

학습의 원리- 연결강도 변경(2)

- ❖ 퍼셉트론의 학습
 - 목표치를 제시하고 가중치가 목표치를 발생시키도록 만들어 가는 것
 - 헵의 학습규칙에서 출력에 해당하는 부분을 목표값 t로 변경
 - 가중치의 갱신도 학습률 $^{\text{learning rate}}$ η 를 통해 조금씩 이루어지게 만듦

$$w_{xy}^{(k+1)} = w_{xy}^{(k)} + \eta x^{(k+1)} t^{(k+1)}$$

❖ 이항 불리언 연산binary boolearn operation

- *x*₁, *x*₂: true 혹은 false
- b(bias, 편향): 신호값을 양의 방향이나 음의 방향으로 이동시키는 역할

학습의 원리- 연결강도 변경(3)

❖ LAB⁷⁻² 논리합을 수행하는 퍼셉트론 만들기

실습 목표

퍼셉트론 모델을 이용하여 참(1)과 거짓(-1)의 값을 갖는 두 입력에 대해 논리합을 수행할 수 있도록 모델을 학습시켜 보라.

퍼셉트론 모델은 입력 노드 둘을 담은 벡터 X와 이 입력에 곱해질 가중치 벡터 W를 준비하고, 편향 b를 더해주면 된다. 출력은 W.dot(X) + b의 값을 활성화 함수에 넣어 구한다.

❖ LAB⁷⁻³ 다양한 논리 연산이 가능하게 퍼셉트론 훈련하기

실습 목표

LAB⁷⁻²를 이용하여 다양한 논리 연산이 가능하도록 퍼셉트론을 학습시켜 보자.

학습을 실시하는 train 함수를 이용하여 필요한 논리 연산의 입력과 출력을 제공하고 훈련을 실시하면 다양한 논리 연산을 구현할 수 있다.

https://colab.research.google.com/drive/1USIwBX_eo9h-3aMyqFe8pDxFbSbkMQZN

학습의 원리- 연결강도 변경(4)

도전문제 7.1 XOR의 진리표를 이용하여 퍼셉트론을 학습시켜 보자

XOR는 아래와 같은 기호로 표시된다. 진리표가 그 아래 나타나 있다. 이런 논리 연산을 수행하는 퍼 셉트론을 만들 수 있을까? 만들어지지 않는다면 그 이유를 생각해 보라.

$$x_0$$
 x_1 $y = (x_0 \land \neg x_1) \lor (\neg x_0 \land x_1)$

X 0	X1	У
-1	-1	-1
-1	1	1
1	-1	1
1	1	-1

XOR 문제를 풀 수 있는 퍼셉트론 (1)

- ❖ 특징 벡터의 다항화
 - 선형함수의 모델을 비선형 함수로 변형
 - (x_1, x_2) $(x_1^2, x_1, x_1 x_2, x_2, x_2^2)$

❖ LAB⁷⁻⁴ 입력 다항화로 XOR를 해결해 보기

실습 목표

참 또는 거짓의 값을 갖는 두 개의 입력에 대해 XOR 연산을 수행할 수 있도록, 입력에 대한 다항 변환을 실시하고, 이를 통해 얻은 다항 특징에 대해 퍼셉트론 학습을 통해 XOR 연산을 수행하는 모델을 구현하자.

XOR 문제를 풀 수 있는 퍼셉트론 (2)

❖ 다층 퍼셉트론(MLP)multi-layer perceptron

❖ XOR MLP

Multi Layer Perceptron

❖ 다층 퍼셉트론

- 대부분의 입력 패턴은 선형으로 분리 불가능한 문제
- 여러 개의 퍼셉트론(비선형 활성화 함수)을 여러 층으로 연결하여 복잡한 영역을 곡면으로 둘러싸는 결정 영역을 구하는 것

구조	결정 영역의 유형	XOR 문제	맞물린 영역 모양	전형적인 영역 모양
1층 구조	초평면에 의한 평면 경계	A B A	B	
2층 구조	열린 블록 혹은 닫힌 블록 경계	A B	B	
3층 구조	임의의 결정 경계 (노드의 수에 따라 모양이 결정)	B A	B	

[그림 13-13] 신경망 층에 따른 결정 영역

MLP 학습 (1)

- ❖ 경사 하강법gradient descent
 - 오차 곡면의 기울기를 연결강도에 대해 구한 후 기울기 반대방향진행

■ 오차를 연결강도 w에 대해 편미분

$$\frac{\partial E}{\partial w} = \frac{1}{2} \frac{\partial}{\partial w} (\phi(wx + \cdots) - t)^{2}$$

$$= (\phi(wx + \cdots) - t) \cdot \frac{\partial}{\partial w} \phi(wx + \cdots)$$

$$= (\phi(wx + \cdots) - t) \cdot \phi'(wx + \cdots) \cdot \frac{\partial}{\partial w} (wx + \cdots)$$

$$= (y - t) \cdot \phi'(wx + \cdots) \cdot x$$

MLP 학습 (2)

❖ 활성화 함수: 시그모이드sigmoid , 로지스틱logistic 함수

$$\phi(x) = \frac{1}{1 + e^{-x}}$$

$$\phi'(x) = \frac{1}{1 + e^{-x}} \left(1 - \frac{1}{1 + e^{-x}} \right) = \phi(x) (1 - \phi(x))$$

$$\frac{\partial E}{\partial w} = (y-t) \cdot \phi'(wx + \cdots) \cdot x$$

$$= (y-t) \cdot \phi(wx + \cdots) \cdot (1 - \phi(wx + \cdots)) \cdot x$$

$$= (y-t) \cdot y \cdot (1-y) \cdot x$$

- $\bullet \quad \delta = (y t)\phi'(wx + \cdots) = (y t) \cdot y \cdot (1 y)$
- 가중치 학습

$$w \leftarrow w - \eta \cdot \partial E / \partial w$$
 $w \leftarrow w - \eta \cdot \delta \cdot x$

$$w \leftarrow w - \eta \cdot \delta \cdot x$$

MLP 학습 (3)

❖ 가중치 학습

• 목표 t와 출력 y의 차이, 그리고 출력의 미분 y'가 연결망을 거꾸로 전 달되어 가중치를 조정

❖ 오차 역전파error backpropagation

$$\bullet$$
 $u1 \leftarrow u1 - \eta \cdot \delta \cdot w \cdot \phi'(u1s1) \cdot s1$

$$\bullet u2 \leftarrow u2 - \eta \cdot \delta \cdot w \cdot \phi'(u2s2) \cdot s2$$

MLP 학습 (4)

❖ 미분의 연쇄법칙chain rule

$$\frac{\partial E}{\partial u} = \frac{\partial E}{\partial x} \cdot \frac{\partial x}{\partial u}$$

$$\frac{\partial E}{\partial x} = (y - t)y'w = \delta w$$

$$\frac{\partial E}{\partial u} = \frac{\partial E}{\partial x} \frac{\partial x}{\partial u} = \delta \cdot w \cdot \frac{\partial \phi(us)}{\partial u} = \delta \cdot w \cdot \phi'(us) \cdot s$$

MLP 학습 (5)

❖ 역전파 알고리듬 정리

MLP 학습 (6)

❖ LAB⁷⁻⁵ XOR 연산이 가능한 다층 퍼셉트론 만들기

실습 목표

역전파 모델로 아래와 같은 다층 퍼셉트론을 훈련시켜 XOR 연산을 수행하게 하라. 이 퍼셉트론의 출력은 y_1 이 켜지면 참, y_2 가 켜지면 거짓을 나타낸다.

앞에서 살펴본 바와 같이 각 계층으로 유입되는 오차를 미분치에 곱해서 델타 벡터를 만들고, 이를 이용하여 연결강도를 수정한다. 그리고 이 델타 벡터는 가중치를 타고 내려가게 하면 된다.

MLP 학습 (7)

❖ LAB⁷⁻⁶ 다층 퍼셉트론으로 비선형 회귀 구현하기

실습 목표

퍼셉트론의 층을 증가시켜 아래와 같은 모델로 비선형 회귀를 구현해 보자. 적용할 데이터는 LAB⁶⁻¹에서 사용한 것과 같이 다음 URL에 있는 데이터이다.

https://github.com/dknife/ML/raw/main/data/nonlinear.csv

층을 늘이는 것은 순전파와 역전파 단계가 하나 늘어나는 것뿐이고, 계산은 동일한 방식으로 이루어진다.

TensorFlow & Keras (1)

- Deep Learning programming architecture
 - Tensorflow: low-level architecture
 - Keras, Pytorch, ...: high-level architecture

https://opendatascience.com/deep-learningwith-tensorflow-2-pytorch/

Keras

- https://keras.io
- https://www.youtube.com/watch?v=UYRBHFAvLSs
- https://www.youtube.com/watch?v=uhzGTijaw8A

TensorFlow & Keras (2)

Keras API reference https://keras.io/api

TensorFlow & Keras (3)

❖ Sequential API:

❖ Functional API: Building Complex Models

- Subclassing API: Building Dynamic Models
- Callbacks
- Visualization Using TensorBoard

Google PlayGround 실습 (1)

https://developers.google.com/machine-learning/crash-course?hl=ko

Google PlayGround 실습 (2)

https://playground.tensorflow.org

