

要點

- 在 Power-on 之後根據 "默認操作模式"數值寫入狀態 緩存器
- 保留程序後門以供使用者修改 緩存器數值
- 本文件僅供控制器開發使用,請勿流出

控制指令

	讯	号组合	叙述
指令名稱	LE	LE包含多少个 DCLK上升缘	指令动作
停止错误侦测	High	1	停止LED开路强制侦测
数据栓锁	High	1	将序列数据传入缓冲存储器
VSYNC	High	2	垂直同步信号。垂直同步则会命令芯片 置换新的帧数据
写入状态缓存器1*	High		将序列数据传入状态缓存器1
读取状态缓存器1	High	5	将状态缓存器1的数据传入位移缓存器
执行错误侦测	High	7	执行LED开路强制侦测
写入状态缓存器2*	High	8	将序列数据传入状态缓存器2
读取状态缓存器2	High	9	将状态缓存器2的数据传入位移缓存器
软件重置	High	10	热启动,软复位
前置设定(Pre-Active)	High	14	前置设定指令必须在"写入状态缓存器"指 令之前传送

狀態緩存器1的定義

位	属性	定义	值	功能说明
F	读/写	下鬼隐消除	0 (默认)	0: 关闭 1: 开启
E~C	保留	保留	保留	保留
C~8	读/写	扫描行数	00000 00001 00010 00011 (默認) ~	00000: 1 lines; 01000: 9 lines; 10000: 17 lines 00001: 2 lines; 01001: 10 lines; 10001: 18 lines 00010: 3 lines; 01010: 11 lines; 10010: 19 lines 00011: 4 lines; 01011: 12 lines 00100: 5 lines; 01100: 13 lines 00101: 6 lines; 01101: 14 lines; 11101: 30 lines 00110: 7 lines; 01110: 15 lines; 11110: 31 lines
7	读/写	灰阶模式选择	0(默认)	The 16384 GCLKs(14-bit) PWM cycle is divided into 32 sections, each section has 512 GCLKs., User still send 16bit data with 2 bit LSB bits. Ex., {14'h1234, h0}. The 8192 GCLKs(13-bit) PWM cycle is divided into 16 sections, each section has 512 GCLKs., User still send 16bit data with 3 bit LSB bits. Ex., {13'h1234, 3'h0}.
6	读/写	GCLK倍频	0(默认)	0: 关闭 1: 开启
5~0	读/写	电流增益调整	000000~ 111111	6'b101011 (默认) 64阶微调的电流增益功能 (增益范围: 12.5%~200%),可适当调整输出电流。

狀態緩存器2的定義

位	属性	定义	值	功能说明
F~A	保留	保留	保留	保留
9~8	读/写	LED开路侦测位准	00 (默认)	00: 0.3V 01: 0.4V 10: 0.5V 11: 0.6V
7~5	读/写	LED亮度補償時間	000 (默认)	000: 0 ns, 100: 24ns 001: 6 ns, 101: 30ns 010: 12 ns, 110: 36ns 011: 18 ns, 111: 42ns
4	保留	保留	保留	保留
3~1	读/写	解决第一行扫偏暗	000(默认)	000: 0 ns, 100: 18ns 001: 6 ns, 101: 21ns 010: 9 ns, 110: 27ns 011: 15 ns, 111: 33ns
0	读/写	倒數模式高電平不延伸	0(默认)	0: 關閉 1: 开启

MBI5153狀態緩存器1

默認操作模式

紅色LED:

F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
1	0	0	1	1	1	1	1	0	0	1	0	1	0	1	1

綠色LED:

F	Е	D	C	В	A	9	8	7	6	5	4	3	2	1	0
1	1	0	1	1	1	1	1	0	0	1	0	1	0	1	1

藍色LED

F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
1	1	0	1	1	1	1	1	0	0	1	0	1	0	1	1

MBI5153狀態緩存器2

默認操作模式

紅色LED:

F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

綠色LED:

F	Ε	D	С	В	А	9	8	7	6	5	4	3	2	1	0
0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0

藍色LED

F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0

RED LED

--cfg1[14] = 0, cfg2[0] =0, $\delta f = 0^{50}$ ns, each step: 10ns

Green LED

--cfg1[14] = 1, cfg2[0] = 1, $\delta = 0^{100}$ ns, each step: 10ns

blue LED

--cfg1[14] = 1, cfg2[0] =0, dh (dead time high level)= 20~200ns, each step: 10 or 20ns

New.

- RED LED (控制器功能不變)
 - --cfg1[14] = 0, cfg2[0] = 0, $\delta f = 0^128ns$, each step: 8ns
- Green LED (控制器功能不變)
 - --cfg1[14] = 1, cfg2[0] = 0, $\delta = 0^{\sim}128$ ns, each step: 8ns
- Blue LED (控制器功能更動)
 - --cfg1[14] = 1, cfg2[0] =0, cfg2[7:5] = 0~7(調整δb:0~42ns) dh (dead time high level)= 150ns ,

UI介面修改

- 1. 將"刷新倍率"文字修改成"刷新模式"
- 2. 刷新模式對應到之暫存器設定 刷新模式 1 -> cfg1[6]=0,cfg2[10]=0 => 每512 GCLK換掃 刷新模式 2 -> cfg1[6]=0,cfg2[10]=1 => 每256 GCLK換掃 刷新模式 3 -> cfg1[6]=1,cfg2[10]=0 => 每256 GCLK換掃 刷新模式 4 -> cfg1[6]=1,cfg2[10]=1 => 每128 GCLK換掃

修改灰度級數 for 14/13BIT mode : cfg1[7]

- 0: 14 bit mode => gray data format:{14bit data, 2'b00}
- 1: 13 bit mode => gray data format: {13bit data, 3'b000}