# 3-осевые микромеханические акселерометры ADXL345 и ADXL346 с микропотреблением и детектором событий

ГЕННАДИЙ СЫЧЕВ, инженер по применению, «ЭЛТЕХ»

### **ВВЕДЕНИЕ**

Современный рынок промышленных и бытовых устройств предъявляет все большие требования к их функциональности и безопасности использования. Особенно это проявляется там, где у потребителя есть выбор, и при прочих равных выбор, естественно, упадет на устройства с большей функциональностью или с уникальными возможностями.

Компания ADI — лидер в производстве компонентов на основе микромеханических систем — объявила о серийном производстве нового компонента — 3-осевого микромеханического акселерометра ADXL345 с микропотреблением и детектором событий.

К выходу в серийное производство готовится также его функциональный аналог ADXL346, отличающийся меньшими габаритами и более низкой потребляемой мощностью.

Стандартными областями применения для акселерометров являются: навигация, робототехника, системы безопасности в автотранспорте. В последнее время, благодаря снижению стоимости и появлению дополнительных функций, этот список значительно расширился:

- Мониторинг состояния персонала, находящегося в зоне риска: охранников объекта, персонала на транспорте и т.д.
- Датчики контроля вибрации и аварийных состояний в промышленном и бытовом оборудовании.
- Защита персонала на производстве при потере контроля над оборудованием или случайном падении.
- Охранные датчики: открывание дверей, окон, техно-
- Закладные охранные датчики, например, объектов выставки, оборудования, банкоматов.
- Защита электронно-механических устройств и оборудования при свободном падении.
- Управление энергопотреблением и активностью экономичной портативной техники.
- Расширение функциональности диагностической локационной техники — построение пространственной картины измерений.
  - Системы ввода информации «человек компьютер».
  - Контроль сохранности грузов при транспортировке.
  - Измерение интенсивности нагрузки при занятиях спор-
    - Фототехника.
  - Развлекательное оборудование.

В этой статье рассматриваются некоторые возможности применения микромеханических датчиков в целом и ADXL345, ADXL346, в частности.

# ОПИСАНИЕ КОМПОНЕНТА ADXL345

Что собой представляет этот компонент?

ADXL345 — это 3-осевой датчик ускорения с возможностью программирования диапазона ускорений из ряда:  $\pm 2$ ;  $\pm 4$ ;  $\pm 8$ ;  $\pm 16$ g.

Кроме того, у ADXL345:

- диапазон рабочих напряжений питания: 2,0...3,6 В;
- ток потребления в рабочем режиме 40...150 мкА, в зависимости от частоты опроса;
- разрешающая способность 10—13 разрядов (при измерении ускорения ±16q);
  - рабочий диапазон температур: –40...85°C;
  - интерфейс SPI или I<sup>2</sup>C;
  - корпус LGA размером  $3 \times 5 \times 1$  мм.

Более подробные характеристики ADXL345 см. в техническом описании [1].

Структурная схема и расположение выводов приведены на рисунке 1, а их назначение — в таблице 1.

Также датчик имеет несколько следующих функциональных особенностей.

- Детектирование и индикация событий:
  - толчок;
  - двойной толчок;
  - свободное падение;
  - наличие активности (ускорения), с выбором осей;
  - отсутствие активности, с выбором осей.
- Два программируемых выхода событий.
- Буфер FIFO глубиной 32 уровня.
- Интерфейс может сигнализировать о событиях: наличие данных, заполнение буфера и переполнение буфера.



Рис. 1. Структурная схема ADXL345 и расположение выводов



Рис. 2. Распознавание легких ударов

В отличие от ADXL345, у акселерометра ADXL346 корпус LGA размером 3×3×0,95 мм; диапазон рабочих напряжений питания составляет 1,7...2,75 В; имеется функция определения ориентации с возможностью сигнализации о ее изменении.

# ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ\*

Распознавание легких ударов

Это событие происходит, в случае если измеренная величина ускорения превысит пороговое значение (хранящееся в регистре THRESH\_TAP) на время не более того значения, которое хранится в регистре DUR. При этом будет установлен бит SINGLE\_TAP.

Если за первым превышением порога, по истечении времени LATENCY TIME и в течение времени TIME WINDOW FOR SECOND TAP (см. рис. 2), которое определяется регистром WINDOW, последует второе событие, определяемое по описанным выше правилам, установится бит DOUBLE\_TAP.

Распознавание активности (ускорения)

Наличие активности определяется, когда величина измеренного ускорения превышает значение, хранящееся в регистре THRESH\_ACT.

Таблица. 1. **Назначение выводов ADXL345** 

| Номер<br>вывода | Обозначение        | Описание                                                                                                          |
|-----------------|--------------------|-------------------------------------------------------------------------------------------------------------------|
| 1               | VDD I/O            | Питание интерфейса ввода-вывода                                                                                   |
| 2               | GND                | Должен быть подключен к общему проводу                                                                            |
| 3               | Reserved           | Зарезервирован, должен быть подключен к VS<br>или оставаться свободным                                            |
| 4               | GND                | Должен быть подключен к общему проводу                                                                            |
| 5               | GND                | Должен быть подключен к общему проводу                                                                            |
| 6               | VS                 | Питание                                                                                                           |
| 7               | <u>cs</u>          | Вход выбора МС, активный низкий                                                                                   |
| 8               | INT1               | Выход прерывания 1                                                                                                |
| 9               | INT2               | Выход прерывания 2                                                                                                |
| 10              | NC                 | Не подсоединен                                                                                                    |
| 11              | Reserved           | Зарезервирован, должен быть подсоединен к общему проводу или оставаться свободным                                 |
| 12              | SDO/ALT<br>ADDRESS | Выход данных для SPI или выбор адреса для I <sup>2</sup> C                                                        |
| 13              | SDA/SDI/SDIO       | Данные для I <sup>2</sup> C или вход данных для 4-проводного SPI,<br>или вход и выход данных для 3-проводного SPI |
| 14              | SCL/SCLK           | Синхронизация для данных                                                                                          |

Отсутствие активности обнаруживается, когда величина ускорения в течение времени TIME\_INACT меньше значения, хранящегося в регистре THRESH\_INACT.

Описанный алгоритм работы соответствует режиму dc-coupled. Прибор также поддерживает режим работы ac-coupled, в котором, в соответствующих случаях, со значениями регистров THRESH\_ACT и THRESH\_INACT сравнивается модуль разницы между текущим значением ускорения в начале события.

Для каждой оси возможен выбор, будет ли ускорение вдоль нее влиять на обнаружение событий активности (см. описание регистра ACT\_INACT\_CTL в [1]).

Диагностика состояния свободного падения

Состояние свободного падения детектируется, если величина ускорения меньше значения THRESH\_FF в течение времени TIME\_FF. Причем, всегда учитываются значения по всем осям, и алгоритм обработки соответствует режиму dc-coupled.

Используя сигнал с датчика, можно определить высоту падения. В простейшем случае достаточно измерить время, в течение которого генерируется событие FREE\_FALL. Так например, если событие длится около 300 мс, то

$$S = \frac{1}{2}gt^2 = \frac{1}{2} \cdot 10 \cdot 0.3^2 = 0.45 \text{ m}.$$

Подробнее пример реализации алгоритма на Си см. в [4].

Режимы работы FIFO

Буфер FIFO позволяет снизить вычислительную нагрузку на управляющий МК и предназначен для временного хранения результатов измерения. В ADXL345 буфер имеет глубину в 32 измерения по каждой из осей и может функционировать в одном из следующих четырех режимов.

Bypass Mode — буфер отключен.

FIFO Mode — в случае переполнения буфера новые результаты измерения не сохраняются.

Stream Mode — в случае переполнения буфера самые старые значения заменяются новыми.

Trigger Mode — в этом режиме буфер функционирует аналогично Stream Mode до наступления события, определяемого полем trigger bit в регистре FIFO\_CTL. После этого в буфере сохраняется число последних значений, определяемое в регистре FIFO\_CTL, и дальнейшее функционирование продолжается аналогично режиму FIFO Mode.

Рекомендации по использованию FIFO см. в [5].

# ПРИМЕРЫ ПРИМЕНЕНИЯ

Мониторинг состояния персонала или пациентов Если акселерометр разместить на теле человека, можно реализовать датчик падения, происшедшего, например, в результате потери сознания человеком, нападения, если это охранник, или другого несчастного случая.

Пример кривых, отражающих величину ускорения при падении, показан на рисунке 3. В данном случае падение является не совсем свободным: тело «валится», поэтому характер изменения ускорения по осям отличается от случая свободного падения.

В процессе падения можно выделить несколько стадий. 1. *Начало падения*. При свободном падении эта стадия

1. Начало падения. При свободном падении эта стадия характеризуется состоянием невесомости. Величина векторной суммы ускорений по всем трем осям близка к нулю. При падении отличном от свободного величина векторной

<sup>\*</sup> Поскольку все доступные пользователю возможности датчика программируются путем записи в соответствующие регистры через последовательный интерфейс, то во избежание путаницы в тексте сохранены оригинальные названия битов и регистров.

суммы ускорений по трем осям не близка к нулю, но меньше 1g. Это первый признак падения (зона 1 на рис. 3).

- 2. Столкновение с поверхностью. По окончании падения происходит столкновение с поверхностью, что наблюдается на графике как резкое увеличение ускорения, вплоть до перегрузки датчика. Это второй признак падения (зона 2 на рис. 3).
- 3. *Неподвижность*. Человек не может подняться после падения немедленно какое-то время он неподвижен. Это третий признак падения (зона 3 на рис. 3).
- 4. Изменение положения тела после падения. В результате того, что тело человека изменяет положение после падения, вектор ускорения свободного падения меняет направление по отношению к датчику. Это четвертый признак падения (сравните величины проекций ускорений на оси в зонах 3 и 4 на рисунке 3).

# ИЗМЕРЕНИЕ ВЕЛИЧИНЫ ПЕРЕМЕЩЕНИЯ И ВИБРОДИАГНО-СТИКА

В случае линейных синусоидальных колебаний их амплитуду достаточно просто вычислить. Как известно из курса физики [8], в случае гармонических синусоидальных колебаний амплитуда ускорения, частота и амплитуда колебаний связаны формулой:

$$X_0 = \frac{a_0}{\omega^2}$$

где  $X_0-$  амплитуда колебаний,  $a_0-$  амплитуда ускорения,  $\omega-$  круговая частота колебаний.

Если необходимо определить текущее положение прибора с акселерометром, а движение не является равноускоренным, следует дважды провести интегрирование по времени с учетом начальных значений ускорения свободного падения, положения и скорости, как показано на рисунке 4 [9].

Простейший пример использования акселерометра при вибродиагностике износа механических деталей машин заключается в измерении интенсивности колебаний с некой характерной для данного изделия частотой. Полоса частот ADXL345 ограничена 1600 Гц, что может оказаться недостаточным. В этом случае целесообразнее использовать ADXL001 с полосой частот до 22 кГц и аналоговым выходом.

Встроенный в механический узел датчик в этом случае должен содержать полосовой фильтр и амплитудный детектор с механизмом сигнализации. Для цифровой спектральной фильтрации сигнала с акселерометра вовсе не обязательно заниматься программированием на языках высокого уровня, можно применить МК семейства SigmaDSP® производства ADI. Подробнее об этом семействе см. [17].

Для создания фильтров с использованием SigmaDSP® достаточно приобрести отладочный набор, в состав которого входит полнофункциональная среда визуального программирования с интерфейсом ввода структуры, аналогичным LabView. С ее помощью можно быстро реализовать цифровые фильтры, в т.ч. с управляемыми извне характеристиками. Сигнал с датчика можно непосредственно оцифровать АЦП, входящим в состав SigmaDSP®, а обработанный цифровой поток вывести по последовательному интерфейсу или вновь преобразовать в аналоговый сигнал.

# ПОСТРОЕНИЕ ПРОСТРАНСТВЕННОЙ КАРТИНЫ ИЗМЕРЕНИЙ

Идея этого применения заключается в совместной обработке сигнала системы навигации и системы измерения, датчики которых конструктивно объединены, что позволяет построить пространственную картину измеряемой величины.

Пример 1. Металлоискатель, или функционально аналогичный прибор, в котором имеется датчик интенсивности



Рис. З. Характер изменения ускорений при не совсем свободном падении



Рис. 4. Определение местоположения с использованием акселерометра

некой физической величины. При перемещении измерительной части, на индикаторе прибора отображается не только текущее значение измеряемой величины, но и положение датчика относительно зарегистрированных минимумов и максимумов сигнала, или его градиентов. Это избавляет оператора от необходимости сравнивать текущие показания интенсивности с максимальными их значениями, анализируя направление перемещения измерительной части в поиске точек минимума и максимума.

Пример 2. Аудиометрия помещений может быть проведена гораздо быстрее, если измерительный микрофон совместить с датчиком перемещения. При этом измерения можно проводить не в точках, а по траекториям, автоматически фиксируя результаты соответствующим программным обеспечением.

# интерфейсы пользователя

Удобство применения бытовой техники имеет решающее значение в условиях конкуренции. Какой бы совершенной ни была та или иная технология, она едва ли станет успешной, если разработчикам не удалось сделать ее использование максимально интуитивным и привлекательным. Помочь завоевать будущего пользователя может применение акселерометров. Уже сейчас на рынке появилось немало устройств с недорогими акселерометрами, как специально ориентированными на использование этой технологии, так и содержащими этот компонент как опцию, благо софт в большинстве устройств можно обновить. Частными случаями такого применения является: изменение ориентации изображения на экране мобильного устройства или ноутбука; учет ориентации изображения в фотоаппарате или фоторамке; управление прокруткой изображения при встряхивании или наклоне мобильного телефона [14, 15]. Некоторые практические рекомендации по обработке данных с акселерометра при реализации интерфейсов можно найти в [16].

# ДЕТЕКТИРОВАНИЕ СВОБОДНОГО ПАДЕНИЯ ПОРТАТИВ-НОЙ АППАРАТУРЫ

Использование акселерометров для защиты носителей данных получило распространение в жестких дисках портативных компьютеров. Алгоритм, реализующий обнаружение свободного падения, подробно рассмотрен в [10].

Отметим, что поскольку в этом случае требуется выдать информацию до завершения свободного падения, автор статьи рекомендует использовать для детектирования свободного падения суммы квадратов производных ускорения по осям.

## КОНТРОЛЬ СОХРАННОСТИ ГРУЗОВ

Не секрет, что большая часть электронной и высокоточной механической аппаратуры резко отрицательно относится к ударам и требует бережного отношения при перевозке и эксплуатации. Как при сервисном обслуживании или перед вводом техники в эксплуатацию определить, были ли нарушены условия транспортировки и хранения? Установив акселерометр в прибор или укомплектовав упаковку электронным самописцем на базе акселерометра, всегда можно будет однозначно дать ответ на этот вопрос, причем в процессе эксплуатации прибора датчик может



Puc. 5. Внешней вид отладочного набора на базе универсальной отладочной платы для инерционных систем





Рис. 6. Схема и внешний вид мини-набора разработчика

с успехом выполнять другие описанные выше функции. Акселерометры ADXL345 и ADXL346 прекрасно подойдут на эту роль, т.к. они обладают крайне низким потреблением и способны не только пробудить микроконтроллер при выходе величины ускорения за установленное пороговое значение, но и благодаря режиму работы FIFO *Trigger Mode* способны сохранить данные, отражающие картину происходящего до того, как хост-контроллер будет готов их принять для последующей обработки. Микропрограмме контроллера останется вычислить модуль вектора ускорения и сравнить его с заданным значением для принятия решения о нарушении допустимых условий транспортировки или эксплуатации.

Возможный алгоритм работы микропрограммы хостконтроллера следующий.

- 1. Зафиксировать текущие значения ускорения по осям.
- 2. В зависимости от предъявляемых условий, настроить пороги как сверху, так и снизу.
- 3. Перевести МК в спящий, а акселерометр в экономичный режим.
  - 4. Ожидание прерывания от акселерометра.
- 5. При поступлении сигнала прерывания начать непрерывное считывание данных с акселерометра.
- 6. Считать данные и вычислить модуль вектора ускорения.
- 7. Проверить на превышение допустимой величины; при необходимости сохранить результат проверки.
- 8. Проверить на установившееся значение. Если состояние не меняется, перейти к п. 1, иначе см. п. 6.

Для полноты информации необходимо указать, что для данного применения имеется специализированный компонент ADIS16240, способный отслеживать пиковые значения суммы квадратов измерений, полученных по всем трем осям. В сравнении с ADXL345, ADXL346, это готовый модуль с диапазоном измерений ±19g, однако его стоимость приблизительно на порядок выше.

# СРЕДСТВА РАЗРАБОТЧИКА

Для разработки устройств с использованием акселерометров и оценки их возможностей Analog Devices выпускает специальные наборы. Для ADXL345 доступны наборы двух видов — на базе универсальной оценочной платы для инерциальных систем, внешний вид которого представлен на рисунке 5, и мини-набора разработчика (см. рис. 6).

Отладочный набор на базе универсальной оценочной платы для инерциальных систем включает в себя:

- микропотребляющий акселерометр ADXL345;
- универсальную материнскую плату для инерциальных систем:
- специфическую для каждого акселерометра дочернюю плату;
- стандартный USB-кабель для питания набора и передачи данных;
  - графическую пользовательскую среду для ПВМ.

Плата большего размера обеспечивает интерфейс ввода полученных от акселерометра данных и функционирует также с другими акселерометрами производства ADI. При переходе на другой тип акселерометра достаточно приобрести дочернюю плату под интересующий тип этого датчика.

Поставляемое в комплекте программное обеспечение позволяет изменять содержимое внутренних регистров ADXL345 при помощи графического интерфейса, задавая, таким образом, режим работы акселерометра, и производить захват информации о движении с отображением ее в виде графиков на экране ПВМ. Вид графического интерфейса ПО показан на рисунке 7.

Мини-набор предназначен для подключения акселерометра к системе сбора данных разработчика и упрощения задачи монтажа в процессе оценки возможностей датчика. Оценочные средства и образцы МК можно заказать в OOO «ЭЛТЕХ».

# выводы

Применение акселерометров в современной технике позволит значительно расширить функциональные возможности существующей аппаратуры и создать приборы с уникальными характеристиками. В ряде случаев применение акселерометров позволит сэкономить рабочее время операторов, использующих оборудование с датчиками движения, и ресурс самого оборудования. Применение акселерометров в промышленности и на производстве позволит повысить безопасность персонала и сэкономить денежные средства на периодическом обслуживании.

Акселерометры производства ADI просты в применении, доступны для заказа, обеспечены необходимой для разработчика технической документацией и оценочными средствами, что, несомненно, сократит время проектирования изделия с использованием этих акселерометров.

## ЛИТЕРАТУРА

- 1. Texhuveckoe onucahue компонента. www.analog.com/static/imported-files/data\_sheets/ADXL345.pdf.
- 2. Пресс-релиз//www.analog.com/en/sensors/inertial-sensors/ adxl345/products/1\_19\_09\_ADIS\_MEMS\_Motion\_Sensor\_Delivers/ press.html.
- 3. Краткий перевод на сайте ООО «ЭЛТЕХ»//ww.eltech.spb.ru/ news.html?nid=650.
- 4. Определение состояния свободного падения//www.analog.com/library/analogdialogue/archives/43-07/fall\_detector.html, www.analog.com/static/imported-files/application\_notes/AN-1023.pdf.
- 5. Использование буфера FIFO//www.analog.com/static/imported-files/application\_notes/AN-1025.pdf.
  - 6. Сайт, посвященный вибродиагностике//www.vibration.ru.
- 7. Акселерометры: фантазии и реальность//www.analog.com.ru/Public/ADXL.pdf.
- 8. Kypc физики//window.edu.ru/window\_catalog/files/r61416/ physics.pdf.



Рис. 7. Окно, отображающее графики величин ускорений по осям чувствительности

- 9. Инерциальная навигация//www.krugosvet.ru/enc/nauka\_i\_ tehnika/aviaciya\_i\_kosmonavtika/INERTSIALNAYA\_NAVIGATSIYA.html.
  - 10. Альманах//www.eltech.spb.ru/pdf/almanah/alm\_2007\_1\_7.pdf.
- 11. Ю.Г. Мартыненко. Инерциальная навигация//Соросовский образовательный журнал. №8. 1998 г.//www.pereplet.ru/nauka/ Soros/pdf/9808\_102.pdf.
- 12. Интерпретация измерений ускорений в инерциальной навигации//www.ioffe.rssi.ru/journals/jtf/2004/05/p134-135.pdf.
- 13. Книги и пособия издательства ИТМО: http://books.ifmo.ru/?out=stat&id=1.
- 14. 3D news//www.3dnews.ru/tags/%D0%B0%D0%BA%D1%81%D 0%B5%D0%BB%D0%B5%D1%80%D0%BE%D0%BC%D0%B5%D1%82% D1%80.
- 15. Новостной портал MobileDevice.ru: http://www. mobiledevice.ru/bounce-boing-voyage-nokia-Mobile-prilozhenie-igraakselerometr-d.aspx.
- 16. Принципы разработки ПО для iPhone с использованием акселерометра//http://habrahabr.ru/blogs/macosxdev/65148.
- 17. Страница семейства цифровых сигнальных процессоpoв SigmaDSP®//www.analog.com/en/embedded-processing-dsp/ sigmadsp/processors/index.html.

# НОВОСТИ СВЕТОТЕХНИКИ

| **NEMA ОБСУЖДАЕТ ВОПРОСЫ УПРАВЛЕНИЯ ЯРКОСТЬЮ СВЕТОДИОДНЫХ СВЕТИЛЬНИКОВ** | Американская ассоциация NEMA («Национальная ассоциация производителей электрооборудования») приняла документ LSD 49-2010 — техническое описание под названием Solid State Lighting for Incandescent Replacement — Best Practices for Dimming.

В этом новом документе, разработанном секцией твердотельной осветительной техники NEMA, предложены рекомендации по регулировке яркостью и разработке твердотельных источников света для замены ламп накаливания с резьбовым цоколем.

Главная цель этого документа — обеспечить координацию между производителями средств управления, источников питания и светодиодных модулей для достижения требуемых рабочих характеристик и упорядочения выпуска продукции на рынке. Эта секция также приступила к работе над другим, связанным с LSD 49-2010, стандартом NEMA.

Представители Департамента энергетики США активно участвуют в деятельности рабочей группы NEMA, сознавая важность вопросов совершенствования параметров твердотельной осветительной техники, которая получает все больший спрос на рынке.

«Эти рекомендации направлены на улучшение эксплуатационных характеристик изделий и повышение степени удовлетворенности потребителей твердотельными источниками света, приходящими на смену такой массовой продукции как лампы с резьбовым цоколем, — заявил Роберт Хик (Robert Hick), председатель секции и представитель компании Leviton Manufacturing. — Рынок совершит еще один шаг в сторону применения твердотельных источников света, а спрос на новые разработки повысится. Реализация принципа взаимозаменяемости продукции и упорядочение ее выпуска способствуют росту доверия со стороны рынка и снижению стоимости изделий, что, в свою очередь, выгодно и производителям, и потребителям».

С документом LSD 49-2010 «Solid State Lighting for Incandescent Replacement — Best Practices for Dimming», можно ознакомиться на веб-сайте ассоциации. Другие документы серии NEMA LSD представляют технические описания балластных разъединителей, датчиков занятости и фотолюминесценцентных сигнализационных панелей.

www.russianelectronics.ru