Authorization

□ Chapter 3

Authentication vs Authorization

- Authentication Who goes there?
 - o Restrictions on who (or what) can access system
- Authorization Are you allowed to do that?
 - o Restrictions on actions of authenticated users
- Authorization is a form of access control
- Authorization enforced by
 - o Access Control Lists
 - Capabilities

Lampson's Access Control Matrix

- Subjects (users) index the rows
- Objects (resources) index the columns

	05	Accounting program	Accounting data	Insurance data	Payroll data
Bob	rx	rx	r		
Alice	rx	rx	r	rw	rw
Sam	rwx	rwx	r	rw	rw
Accounting program	rx	rx	rw	rw	rw

Are You Allowed to Do That?

- □ Access control matrix has all relevant info
- But how to manage a large access control (AC) matrix?
- Need to check this matrix before access to any resource is allowed

Access Control Lists (ACLs)

- □ ACL: store access control matrix by column
- □ Example: ACL for insurance data is in blue

	05	Accounting program	Accounting data	Insurance data	Payroll data
Bob	rx	rx	r		
Alice	rx	rx	r	rw	rw
Sam	rwx	rwx	r	rw	rw
accounting program	rx	rx	rw	rw	rw

Capabilities (or C-Lists)

- Store access control matrix by row
- □ Example: Capability for Alice is in red

	OS	Accounting program	Accounting data	Insurance data	Payroll data
Bob	rx	rx	r		
Alice	rx	rx	r	rw	rw
Sam	rwx	rwx	r	rw	rw
Accounting program	rx	rx	rw	rw	rw

ACLs vs Capabilities

- Note that arrows point in opposite directions!
- With ACLs, still need to associate users to files

Confused Deputy

- □ Two resources
 - Compiler and BILL file (billing info)
- Compiler can write file BILL
- Alice can invoke compiler with a debug filename
- Alice not allowed to write to BILL

Access control matrix

	Compiler	BILL
Alice	×	
Compiler	rx	rw

ACL's and Confused Deputy

- Compiler is deputy acting on behalf of Alice
- □ Compiler is confused
 - Alice is not allowed to write BILL
- Compiler has confused its rights with Alice's

Confused Deputy

- Compiler acting for Alice is confused
- There has been a separation of authority from the purpose for which it is used
- With ACLs, difficult to avoid this problem
- With Capabilities, easier to prevent problem
 - Must maintain association between authority and intended purpose
 - o Capabilities make it easy to delegate authority

ACLs vs Capabilities

- ACLs
 - Protection is data-oriented
 - Easy to change rights to a resource
- Capabilities
 - Easy to delegate
 - Easy to add/delete users
 - o Easier to avoid the confused deputy

Multilevel Security (MLS) Models

Classifications and Clearances

- Classifications apply to objects
- Clearances apply to subjects
- US Department of Defense uses 4 levels of classifications/clearances

TOP SECRET

SECRET

CONFIDENTIAL

UNCLASSIFIED

Clearances and Classification

- To obtain a SECRET clearance requires a routine background check
- □ A TOP SECRET clearance requires extensive background check

Multilevel Security (MLS)

- MLS needed when subjects/objects at different levels use same system
- MLS is a form of Access Control
- Military/government interest in MLS for many decades
 - Lots of funded research into MLS
 - Strengths and weaknesses of MLS relatively well understood (theoretical and practical)
 - Many possible uses of MLS outside military

MLS Applications

- Classified government/military information
- □ Business example: info restricted to
 - Senior management only
 - o All management
 - Everyone in company
 - o General public
- Network firewall
 - Keep intruders at low level to limit damage
- Confidential medical info, databases, etc.

MLS Security Models

- MLS models explain what needs to be done
- Models do not tell you how to implement
- Models are descriptive, not prescriptive
 - High level description, not an algorithm

Firewalls

Firewalls

- □ Firewall must determine what to let in to internal network and/or what to let out
- □ Access control for the network

Firewall as Secretary

- □ A firewall is like a secretary
- To meet with an executive
 - o First contact the secretary
 - Secretary decides if meeting is reasonable
 - Secretary filters out many requests
- You want to meet chair of CS department?
 - Secretary does some filtering
- You want to meet President of US?
 - Secretary does lots of filtering!

Firewall Terminology

- No standard terminology
- Types of firewalls
 - o Packet filter works at network layer
 - o Stateful packet filter transport layer
 - o Application proxy application layer
 - Personal firewall for single user, home network, etc.

Packet Filter

- Operates at network layer
- Can filters based on
 - Source IP address
 - Destination IP address
 - Source Port
 - o Destination Port

Packet Filter

- Advantage
 - o Speed
- Disadvantages
 - o No state
 - o Cannot see TCP connections

Stateful Packet Filter

- Adds state to packet filter
- Operates at transport layer
- Remembers TCP connections
- Can even remember UDP packets (e.g., DNS requests)

Stateful Packet Filter

- Advantages
 - Can do everything a packet filter can do plus...
 - Keep track of ongoing connections
- Disadvantages
 - Cannot see application data
 - Slower than packet filtering

Application Proxy

- A proxy is something that acts on your behalf
- Application proxy looks at incoming application data
- Verifies that data is safe before letting it in

Application Proxy

- Advantages
 - Complete view of connections and applications data
 - Filter bad data at application layer (viruses, Word macros)
- Disadvantage
 - Speed

Personal Firewall

- □ To protect one user or home network
- Can use any of the methods
 - o Packet filter
 - Stateful packet filter
 - Application proxy

Firewalls and Defense in Depth

□ Example security architecture

Intrusion Detection Systems

Intrusion Prevention

- □ Want to keep bad guys out
- Intrusion prevention is a traditional focus of computer security
 - Authentication is to prevent intrusions
 - o Firewalls a form of intrusion prevention
 - o Virus defenses also intrusion prevention
- Comparable to locking the door on your car

Intrusion Detection

- In spite of intrusion prevention, bad guys will sometime get into system
- □ Intrusion detection systems (IDS)
 - Detect attacks
 - Look for "unusual" activity
- □ IDS developed out of log file analysis
- □ IDS is currently a very hot research topic
- □ How to respond when intrusion detected?
 - We don't deal with this topic here

Intrusion Detection Systems

- Who is likely intruder?
 - May be outsider who got thru firewall
 - May be evil insider
- What do intruders do?
 - Launch well-known attacks
 - Launch variations on well-known attacks
 - Launch new or little-known attacks
 - Use a system to attack other systems
 - o Etc.

How to Measure Normal?

- How to measure normal?
 - Must measure during "representative" behavior
 - Must not measure during an attack...
 - o ...or else attack will seem normal!
 - Normal is statistical mean
 - Must also compute variance to have any reasonable chance of success

Access Control Summary

- Authentication and authorization
 - o Authentication who goes there?
 - Passwords something you know
 - Biometrics something you are (or "you are your key")

Access Control Summary

- Authorization are you allowed to do that?
 - Access control matrix/ACLs/Capabilities
 - o MLS
 - o Firewalls
 - o IDS