LaTeX 公式

版本号: V1.6.6

编者

中山大学 易鹏 华南理工大学 关舒文

目录

- LaTeX 公式
 - 。 1 公式环境
 - 1.1 行间公式
 - 1.2 行内公式
 - 。 2 公式的基本输入
 - 2.1 上下标
 - 2.2 括号和分隔符
 - 2.3 分数
 - 2.4 开方
 - 2.5 省略号与点
 - 2.6 矢量与方向
 - 2.7 积分
 - 2.8 极限
 - 2.9 累加、累乘运算
 - 2.10 希腊字母
 - 2.11 其它特殊字符
 - 1. 关系运算符
 - 2. 集合运算符
 - 3. 对数运算符
 - 4. 三角运算符
 - 5. 微积分运算符
 - 6. 逻辑运算符
 - 7. 戴帽符号
 - 8. 连线符号
 - 9. 箭头符号
 - 。 4 矩阵
 - 4.1 矩阵的基本用法
 - 。 5 方程组

。 6 公式优化

- 6.1 数学字体
- 6.2 自动编号与手动编号
- 6.3 公式断行
- 6.4 连分数
- 6.5 公式中输入中文
- 6.6 粗斜体

1公式环境

无论使用哪种公式,都请在文档的导言区加上 amsmath 宏包,即 \usepackage{amsmath}.

1.1 行间公式

行间公式是指单独开一行来专门放置公式. 有三种方式:

- 使用 \$\$ \$\$
- 使用 \[\]
- 使用 equation 环境

\$\$ x^2+2x+1=0 \$\$ \[x^2+2x+1=0 \]

其编译结果为

$$x^2 + 2x + 1 = 0$$

$$x^2 + 2x + 1 = 0$$

\begin{equation}
x^2+2x+1=0
\end{equation}

其编译结果为

$$x^2 + 2x + 1 = 0 (1)$$

从上面两个编译结果来看,明显的, equation 环境比直接使用 \$\$ \$\$ 多了自动编号功能,如果后面习惯了用 equation 环境而不想某个公式自动编号,则使用 equation* 环境,例如

\begin{equation*}
x^2+2x+1=0
\end{equation*}

其编译结果为

$$x^2 + 2x + 1 = 0$$

对于 equation 环境还可以对公式进行标签和引用,例如

\begin{equation} \label{eq1} %设置标签,方便引用 x^2+2x+1=0 \end{equation} 公式\eqref{eq1}是自动编号的.
公式\ref{eq1}是自动编号的.

$$x^2 + 2x + 1 = 0 (2)$$

公式(2)是自动编号的.

公式2是自动编号的.

公式的引用需要在 equation 环境中预先标签 \label{xxx},后面引用的时候用 \eqref{xxx} 或 \ref{xxx},它们的区别在于有没有(),后者常用于定理环境的引用,前者常用于公式环境,这两个 xxx 要一致(一个空格也不能差).

对于使用 \$\$ \$\$ 和使用 \[\],在LaTeX2e中我们较为推荐使用中括号的写法,这对间隔控制更 友好.后者在定义上基本与 equation* 环境等价/

1.2 行内公式

顾名思义,行内公式就是公式和文字混排在一起,这个时候只需使用 \$ \$,例如

物体的动能为\$E=\frac{1}{2}mv^2\$.

其编译结果为

物体的动能为 $E=rac{1}{2}mv^2$.

你会发现1/2变小了,这是LaTex在排版时为了让公式美观,更贴合文字的大小,所以调小了1/2的大小,如果你想**使得行内公式的显示和行间公式一样,则在公式的最前面添加** \displaystyle 即可,例如

物体的动能为\$\displaystyle E=\frac{1}{2}mv^2\$.

其编译结果为

物体的动能为 $E=rac{1}{2}mv^2$.

2 公式的基本输入

2.1 上下标

^ 表示上标, _ 表示下标.如果上下标的内容多于一个字符,需要用 {} 将这些内容括成一个整体. 上下标可以嵌套,也可以同时使用.例如

$$x^{y^z}=(1+{\rm e}^x)^{-2xy^w}$$
\$\$

其编译结果为

$$x^{y^z} = (1 + e^x)^{-2xy^w}$$

如果要在左右两边都有上下标,可以用 \sideset 命令.

例如

$$S=S_2-S_1=\left\{R_{1}^{2}\right\}$$

其编译结果为

$$\Delta S = S_2 - S_1 = \int_1^2 rac{\mathrm{dQ}}{T}$$

从这个例子我们可以看出来, \sideset 的用法为

\sideset{左边的上下标}{右边的上下标}{被标号的部分}`

2.2 括号和分隔符

()、[] 和 | 表示符号本身,使用 \{\}(转义字符)来表示 {}.当要显示大号的括号或分隔符时,要用 \left 和 \right 命令使得括号的大小与公式高度匹配.

一些特殊的括号:

输入	显示	输入	显示
\langle	<	\rangle	>
\lceil	ſ	\rceil	1
\lfloor	L	\rfloor	

输入	显示	输入	显示
\lbrace	{	\rbrace	}

例如:

```
$$ f(x,y,z) = 3y^2z \left( 3+\frac{7x+5}{1+y^2} \right)$$
```

其编译结果为

$$f(x,y,z)=3y^2z\left(3+rac{7x+5}{1+y^2}
ight)$$

注意: \left 和 \right 要同时使用,所以当使用单边括号的时候要用 \left. 或 \right. 作为不显示括号的一侧.

例如:

```
$$
\left. \frac{{\rm d}u}{{\rm d}x} \right| _{x=0}
$$
$$
\left[ 1,\frac 12 \right)
$$
```

其编译结果为

$$\frac{\mathrm{d}u}{\mathrm{d}x}\Big|_{x=0}$$

$$\left[1,\frac{1}{2}\right)$$

如果你需要将行内显示的分隔符也根据高度自动调整,可以使用 \middle 命令,例如

```
$$
\left\langle
   q
\middle\|
   \frac{\frac{x}{y}}{\frac{u}{v}}
\middle|
    p
\right\rangle
$$
```

$$\left\langle q \left\| \frac{\frac{x}{y}}{\frac{u}{v}} \right| p \right\rangle$$

$$\left(\frac{1}{2} \middle/ \frac{1}{3}\right)$$

2.3 分数

通常使用 \frac {分子} {分母} 命令产生一个分数,分数可嵌套.

便捷情况(当分子和分母都仅有一个字符的情况)可直接输入 \frac ab 来快速生成一个 $\frac{a}{b}$ (这种方法不仅适用于 \frac).

如果分式很复杂,亦可使用 {分子 \over 分母} 命令(不建议),此时分数仅有一层.

例如:

```
\ \frac{a-1}{b-1} \quad and \quad {a+1\over b+1} $$
```

其编译结果为

$$\frac{a-1}{b-1}$$
 and $\frac{a+1}{b+1}$

对于行间公式环境中的分数,我们不仅可以使用 \displaystyle 以产生跨行的分数,还可以时使用 \dfrac

例如:

小的
$$\frac{1}{2}$$
和大的 $\frac{1}{2}$

注意在行间公式环境中,第一层分数将会以 \displaystyle 显示,第二层将以 \textstyle ,字体 大小逐级递减, 故若需要创建大小一致的分数形式,请使用不会改变字体显示样式的 \cfact (详 见下文连分数)

$$x = a_0 + rac{1^2}{a_1 + rac{2^2}{a_2 + rac{3^2}{a_3 + rac{4^4}{a_4 + \cdots}}}}$$

2.4 开方

使用 \sqrt [根指数,省略时为2] {被开方数} 命令输入开方. 同时 \sqrt 命令亦可以使用简略的书写方法,但根指数依然要使用中括号.

例如:

```
$$
\sqrt{2} \quad and \quad \sqrt[n]{3}
$$
$$
\sqrt[n]m
$$
```

其编译结果为

$$\sqrt{2}$$
 and $\sqrt[n]{3}$

$$\sqrt[n]{m}$$

2.5 省略号与点

省略号常用于矩阵环境和列举环境.

输入	显示	说明
\cdot	•	点乘

输入	显示	说明
\cdots	• • •	水平省略号
\vdots	÷	竖直省略号
\ddots	٠	对角省略号
\ldots		跟文本底线对齐

例如:

其编译结果为

$$f(x_1,x_2,\underbrace{\dots},x_n)=x_1^2+x_2^2+\underbrace{\dots}_{ ext{cdots}}+x_n^2$$

2.6 矢量与方向

使用 \vec{矢量} 来自动产生一个矢量.也可以使用 \overrightarrow 生成自动根据内容调节长度的向量箭头

例如:

```
$$
\vec{a} \cdot \vec{b}=0
$$
$$
\overrightarrow{ABCD}, \vec{ABCD}
$$
```

其编译结果为

$$\vec{a} \cdot \vec{b} = 0$$

$$\overrightarrow{ABCD}, \overrightarrow{ABCD}$$

例如:

 $\$ \overleftarrow{xy} \quad and \quad \overleftrightarrow{xy} \quad and \quad \overrightarrow \$\$

其编译结果为

$$\stackrel{\longleftarrow}{xy}$$
 and $\stackrel{\longleftrightarrow}{xy}$ and $\stackrel{\longrightarrow}{xy}$

2.7 积分

使用 \int_{积分下限}^{积分上限} {被积表达式} 来输入一个积分.多重积分使用 \iint 或者其他.

例如:

```
$$
\int_0^1 {x^2} \,{\rm d}x
$$
```

其编译结果为

$$\int_0^{m^2} x^2 \, \mathrm{d}x$$

本例中 {\rm } 表示对括号部分的公式取消斜体, \, 表示一个小空格, 根据IEEE出版物规定,建议使用正体微分符号,被积变量与被积函数之间以空格相隔.

2.8 极限

使用 \lim_{变量 \to 表达式} 表达式 来输入一个极限.如有需求,可以更改 \to 符号至任意符号.

例如:

```
\ \lim_{n \to +\infty} \frac{1}{n(n+1)} \quad and \quad \lim_{x\leftarrow{示例}} \frac{1}{n(s$$
```

其编译结果为

$$\lim_{n o +\infty} rac{1}{n(n+1)} \quad and \quad \lim_{x \leftarrow ar{\pi}} rac{1}{n(n+1)}$$

有时候我们可能会用到多重极限或者具有层叠结构的数学表达式,这时候我们可以使用 \atop 命令来构造层叠结构

 $\ \$ \lim_{z\to 0 \atop z in D}f(x,y)\$\$

其编译结果为

$$\lim_{\substack{z o 0 \ z \in D}} f(x,y)$$

对于积分符号也同样适用

 $\ \$ \iint\limits_{-1<x<1>\atop -1<y<1}f(x,y)\,{\rm d} x \$\$

$$\iint\limits_{\substack{-1 < x < 1 \\ -1 < y < 1}} f(x, y) \, \mathrm{d}x$$

\limits 命令可以实现将下标放在符号正下方的功能.

2.9 累加、累乘运算

使用 \sum_{下标表达式}^{上标表达式} {累加表达式} 来输入一个累加. 与之类似,使用 \prod \bigcup \bigcap 来分别输入累乘、并集和交集. 此类符号在行内显示时上下标表达式将会移至右上角和右下角.

• 例子:

 $\$ \sum_{i=1}^n \frac{1}{i^2} \quad and \quad \prod_{i=1}^n \frac{1}{i^2} \quad and \quad \b: \$\$

• 显示:

$$\sum_{i=1}^{n} \frac{1}{i^2}$$
 and $\prod_{i=1}^{n} \frac{1}{i^2}$ and $\bigcup_{i=1}^{2} R$

2.10 希腊字母

输入 \小写希腊字母英文全称 和 \首字母大写希腊字母英文全称 来分别输入小写和大写希腊字母. 对于大写希腊字母与现有字母相同的,直接输入大写字母即可.

输入	显示	输入	显示	输入	显示	输入	显示
\alpha	α	А	A	\beta	β	В	B
\gamma	γ	\Gamma	Γ	\delta	δ	\Delta	Δ
\epsilon	ϵ	Е	E	\zeta	ζ	Z	Z
\eta	η	Н	H	\theta	θ	\Theta	Θ
\iota	ι	I	I	\kappa	κ	K	K
\lambda	λ	\Lambda	Λ	\mu	μ	M	M
\nu	ν	N	N	\xi	ξ	\Xi	Ξ
0	О	0	0	\pi	π	\Pi	П
\rho	ρ	Р	P	\sigma	σ	\Sigma	Σ
\tau	au	Т	T	\upsilon	v	\Upsilon	Υ
\phi	ϕ	\Phi	Φ	\chi	χ	X	X
\psi	ψ	\Psi	Ψ	\omega	ω	\Omega	Ω

部分字母有变量专用形式,以 \var- 开头.

小写形式	大写形式	变量形式	显示
\epsilon	E	\varepsilon	$\epsilon \mid E \mid arepsilon$
\theta	\Theta	\vartheta	$\theta\mid\Theta\mid\vartheta$
\rho	Р	\varrho	$ ho \mid P \mid arrho$
\sigma	\Sigma	\varsigma	$\sigma \mid \Sigma \mid \varsigma$
\phi	\Phi	\varphi	$\phi \mid \Phi \mid arphi$

2.11 其它特殊字符

若需要显示更大或更小的字符,在符号前插入 \large 或 \small 命令.

若找不到需要的符号,使用 Detexify 来画出想要的符号.

也可以在LaTex自带的宏包说明中找到相应的符号,见附件.

1. 关系运算符

输入	显示	输入	显示	输入	显示	输入	显示
\pm	±	\times	×	\div	•	\mid	
\nmid	1	\cdot	•	\circ	0	\ast	*
\bigodot	0	\bigotimes	\otimes	\bigoplus	\oplus	\leq	<u> </u>
\geq	<u> </u>	\neq	#	\approx	\approx	\equiv	
\sum	\sum	\prod	П	\coprod	П	\backslash	\

2. 集合运算符

输入	显示	输入	显示	输入	显示
\emptyset	Ø	\in	\in	\notin	∉
\subset		\supset	\supset	\subseteq	\subseteq
\supseteq	\supseteq	\bigcap	\cap	\bigcup	U
\bigvee	V	\bigwedge	\wedge	\biguplus	+

3. 对数运算符

输入	显示	输入	显示	输入	显示
\log	log	\lg	lg	\ln	ln

4. 三角运算符

输入	显示	输入	显示	输入	显示
30^\circ	30°	\bot	Т	\angle A	$\angle A$
\sin	\sin	\cos	cos	\tan	tan
\csc	csc	\sec	sec	\cot	cot

5. 微积分运算符

输入	显示	输入	显示	输入	显示
\int	ſ	\iint	ſſ	\iiint	\iiint
\iiiint	\iiint	\oint	∮	\prime	/
\lim	lim	\infty	∞	\nabla	∇

6. 逻辑运算符

输入	显示	输入	显示	输入	显示
\because	••	\therefore			
\forall	\forall	\exists	3	\not\subset	¢
\not<	*	\not>	*	\not=	#

7. 戴帽符号

输入	显示	输入	显示
\hat{xy}	\hat{xy}	\widehat{xyz}	\widehat{xyz}
\tilde{xy}	$ ilde{xy}$	\widetilde{xyz}	\widetilde{xyz}
\check{x}	\check{x}	\breve{y}	$reve{y}$
\grave{x}	\dot{x}	\acute{y}	\acute{y}

8. 连线符号

输入	显示
\fbox{a+b+c+d}	a+b+c+d
\overleftarrow{a+b+c+d}	a+b+c+d
\overrightarrow{a+b+c+d}	$\overrightarrow{a+b+c+d}$
\overleftrightarrow{a+b+c+d}	$\stackrel{\longleftarrow}{a+b+c+d}$
\underleftarrow{a+b+c+d}	a+b+c+d
\underrightarrow{a+b+c+d}	$\xrightarrow{a+b+c+d}$

输入	显示
\underleftrightarrow{a+b+c+d}	$\overset{a+b+c+d}{\longleftrightarrow}$
\overline{a+b+c+d}	$\overline{a+b+c+d}$
\underline{a+b+c+d}	$\underline{a+b+c+d}$
\overbrace{a+b+c+d}^{Sample}	$\overbrace{a+b+c+d}^{Sample}$
\underbrace{a+b+c+d}_{Sample}	$\underbrace{a+b+c+d}_{Sample}$
\overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0}	$\overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0}$
\underbrace{a\cdot a\cdots a}_{b\text{ times}}	$\underbrace{a \cdot a \cdot \cdot \cdot a}_{b \text{ times}}$
\underrightarrow{1°C/min}	$\overset{1^{\circ}\!\mathbb{C}/min}{\longrightarrow}$

9. 箭头符号

推荐使用符号:

输入	显示	输入	显示	输入	显示
\to	\rightarrow	\mapsto	\mapsto		
\implies	\Longrightarrow	\iff	\iff	\impliedby	=====================================

其它可用符号:

输入	显示	输入	显示
\uparrow	†	\Uparrow	\uparrow
\downarrow	+	\Downarrow	\
\leftarrow		\Leftarrow	(
\rightarrow	\rightarrow	\Rightarrow	\Rightarrow
\leftrightarrow	\leftrightarrow	\Leftrightarrow	\Leftrightarrow

输入	显示	输入	显示
\longleftarrow		\Longleftarrow	←
\longrightarrow	\longrightarrow	\Longrightarrow	\Longrightarrow
\longleftrightarrow	\longleftrightarrow	\Longleftrightarrow	\iff

4 矩阵

4.1 矩阵的基本用法

矩阵有很多的打法,这里只讲述最常用的一种,先举个例子.

```
$$
\left[ %左括号
\begin{array}[cccc] %[cccc]表示的是一行有4列,c代表的是居中
    a_{11} & a_{12} & a_{13} & a_{14} \\ %每行的&分割列,\\代表换行
    a_{21} & a_{22} & a_{23} & a_{24} \\
    a_{31} & a_{32} & a_{33} & a_{34} \\
    a_{41} & a_{42} & a_{43} & a_{44} \\
\end{array}
\right] %右括号
$$
```

其编译结果为

$$egin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \ a_{21} & a_{22} & a_{23} & a_{24} \ a_{31} & a_{32} & a_{33} & a_{34} \ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

我们来分析上面的代码, \left[\right] 就是我们所看到的两个打括号,而中间的 array 环境是表格环境, [cccc] 表示的是一行有4列,c代表的是居中,c可以替换为I(左对齐)、r(右对齐).结合省略号,可以构造一个一般矩阵,例如

```
$$
\left[
\begin{array}[cccc]
    a_{11} & a_{12} & \cdots & a_{1n} \\
    a_{21} & a_{22} & \cdots & a_{2n} \\
    \vdots & \vdots & \ddots & \vdots \\
    a_{n1} & a_{n2} & \cdots & a_{nn} \\
end{array}
\right]
$$
```

```
egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} \ \end{bmatrix}
```

amsmath 宏包还直接提供了多种排版矩阵的

环境,包括不带定界符的matrix,以及带各种定界符的矩阵pmatrix(()、bmatrix([)、Bmatrix({)、vmatrix(|)、Vmatrix(|)。使用这些环境时,无需给定列格式:

```
$$
\begin{matrix}
    1 & 2 \\ 3 & 4
\end{matrix} \qquad
\begin{bmatrix}
    x_{11} & x_{12} & \ldots & x_{1n}\\
    x_{21} & x_{22} & \ldots & x_{2n}\\
    \vdots & \vdots & \ddots & \vdots\\
    x_{n1} & x_{n2} & \ldots & x_{nn}\\
end{bmatrix}
$$
```

其编译结果为

在矩阵中的元素里排版分式时,一来要用到\dfrac 等命令,二来行与行之间有可能紧贴着, 这时也要调节间距:

```
$$
\mathbf{H}=
\begin{bmatrix}
    \dfrac{\partial^2 f}{\partial x^2} &
    \dfrac{\partial^2 f}
    {\partial x \partial y} \\[8pt]
    \dfrac{\partial^2 f}
    {\partial x \partial y} &
    \dfrac{\partial^2 f}{\partial x \partial y} &
    \dfrac{\partial^2 f}{\partial y^2}
\end{bmatrix}
$$
```

$$\mathbf{H} = \left[egin{array}{ccc} rac{\partial^2 f}{\partial x^2} & rac{\partial^2 f}{\partial x \partial y} \ rac{\partial^2 f}{\partial x \partial y} & rac{\partial^2 f}{\partial y^2} \end{array}
ight]$$

5 方程组

方程组可以直接用 cases 环境直接打出,例如

```
$$
\begin{cases} %开始cases环境
x+y=1 \\ %\\换行
x-y=1
\end{cases}
```

其编译结果如下

$$\begin{cases} x + y = 1 \\ x - y = 1 \end{cases}$$

6 公式优化

6.1 数学字体

若要对公式的某一部分字符进行字体转换,可以用 $\{ \ \ \ \ \ \ \} \}$ 命令,其中 $\}$ 命令,其中 $\}$ 分可以参照下表选择合适的字体.一般情况下,公式默认为意大利体 italic.

示例中 全部大写 的字体仅大写可用.

输入	说明	显示	输入	说明	显示
\mathrm	罗马体	Sample	\cal	花体	SAMPLE
\mathit	意大利体	Sample	\Bbb	黑板粗体	SAMPLE
\mathbf	粗体	Sample	\mit	数学斜体	SAMPLE
\mathsf	等线体	Sample	\scr	手写体	SAM PLE
\mathtt	打字机体	Sample			
\mathfrak	旧德式字体	Sample			

转换字体十分常用,例如在积分中:

例如:

```
\begin{array}{cc}
\mathrm{Bad} & \mathrm{Better} \\
\hline \\
\int_0^1 x^2 dx & \int_0^1 x^2 \,{\rm d}x
\end{array}
```

其编译结果为

$$\frac{\text{Bad} \quad \text{Better}}{\int_0^1 x^2 dx \quad \int_0^1 x^2 dx}$$

注意比较两个式子间 dx 与 dx 的不同. 使用 \operatorname 命令也可以达到相同的效果.

6.2 自动编号与手动编号

手动编号仅需在打完的公式后边加上 \tag{编号},例如

```
$$
f\left(
    \left[
    \frac{
        1+\left\{x,y\right\}
    }{
        \left(
        \frac{x}{y}+\frac{y}{x}
        \right)
        \left(u+1\right)
        }+a
    \right]^{3/2}
\right)
\tag{行标}
$$
```

$$f\left(\left[\frac{1+\{x,y\}}{\left(\frac{x}{y}+\frac{y}{x}\right)(u+1)}+a\right]^{3/2}\right) \tag{行标)}$$

对于自动编号,前面已经提过,在 equation 环境中会自动编号,有时我们会将其与章节相关联起来,我们可以在 tex 文件的导言区加上amsmath宏包后再添加命令 \numberwithin{equation}{section}, 这样我们的公式就可以变为如下的形式

$$f\left(\left[\frac{1+\left\{x,y\right\}}{\left(\frac{x}{y}+\frac{y}{x}\right)(u+1)}+a\right]^{3/2}\right) \tag{1.1}$$

6.3 公式断行

公式有的时候太长或是连等式需要手动断行,这个时候可以使用 split 环境(需要和 equation 环境同时使用).例如,

```
$$
\begin{split}
    1+2+3+4+5+6+7+\\
    +8+9+10+11+12+13=91.
\end{split}
$$
```

其编译结果为

```
1+2+3+4+5+6+7
+8+9+10+11+12+13=91.
```

当式子为连等式的时候需要对齐,这个时候我们会用上 & 来匹配每行的位置以达到对齐的效果.例如

```
$$
\begin{split}
    1+2+3+4+5+6+7
    &=3+3+4+5+6+7 \\
    &=6+4+5+6+7 \\
    &=10+5+6+7 \\
    &=15+6+7 \\
    &=21+7 \\
    &=28
\end{split}
$$
```

其编译结果为

$$1+2+3+4+5+6+7 = 3+3+4+5+6+7$$

= $6+4+5+6+7$
= $10+5+6+7$
= $15+6+7$
= $21+7$
= 28

当然也可以写成这样

```
$$
\begin{split}
    &\,\,\,\,\,\,\,1+2+3+4+5+6+7
    &=3+3+4+5+6+7 \\
    &=6+4+5+6+7 \\
    &=10+5+6+7 \\
    &=15+6+7 \\
    &=21+7 \\
    &=28
\end{split}
$$
```

其编译结果为

$$1+2+3+4+5+6+7$$

$$= 3+3+4+5+6+7$$

$$= 6+4+5+6+7$$

$$= 10+5+6+7$$

$$= 15+6+7$$

$$= 21+7$$

$$= 28$$

以上稍微引入了多行公式的概念,下面我们详细讲讲多行公式.目前我们最常用的是 align 多行公式环境,它不需要外套 equation 环境,并且可以实现自动编号.

```
\begin{align}
    a ={} & b + c \\
    ={} & d + e + f + g + h + i
    + j + k + l \notag \\
    & + m + n + o \\
    ={} & p + q + r + s
\end{align}
```

其编译结果为

$$a = b + c$$
 (4.5)
 $= d + e + f + g + h + i + j + k + l$
 $+ m + n + o$ (4.6)
 $= p + q + r + s$ (4.7)

若只需要居中对齐公式我们可以选择 gather 环境

```
\begin{gather}
    a = b + c \\
    d = e + f + g \\
    h + i = j + k \notag \\
    1 + m = n
\end{gather}
```

$$a = b + c$$

$$d = e + f + g$$

$$h + i = j + k$$

$$l + m = n$$

$$(4.10)$$

$$(4.11)$$

若需要对同一个align环境使用一个编号而不是多个编号,我们可以使用 aligned , gathered 环境(此时需要和 equation 环境同时使用).

```
\begin{equation}
  \begin{aligned}
    a &= b + c \\
    d &= e + f + g \\
    h + i &= j + k \\
    1 + m &= n
  \end{aligned}
\end{equation}
```

其编译结果为

$$a = b + c$$

$$d = e + f + g$$

$$h + i = j + k$$

$$l + m = n$$

$$(4.13)$$

6.4 连分数

就像输入分式时使用 \frac 一样,使用 \cfrac 来创建一个连分数.例如,

$$x = a_0 + \cfrac{1^2}{a_1 + \cfrac{2^2}{a_2 + \cfrac{3^2}{a_3 + \cfrac{4^4}{a_4 + \cdots}}}}$$

不要使用普通的 \frac 或 \over 来创建,否则会看起来 **很奇怪** .例如,

其编译结果为

$$x = a_0 + rac{1^2}{a_1 + rac{2^2}{a_2 + rac{3^2}{a_3 + rac{4^4}{a_4 + \cdots}}}}$$

当然,你可以使用 \frac 来表达连分数的 紧缩记法 .例如,

其编译结果为

$$x = a_0 + \frac{1^2}{a_1 + 2} \frac{2^2}{a_2 + 3^2} \frac{3^2}{a_3 + 4} \frac{4^4}{a_4 + \cdots}$$

连分数通常都太大以至于不易排版,所以建议在连分数前后声明 \$\$ 符号,或使用像 [a0;a1,a2,a3,...] 一样的紧缩记法.

6.5 公式中输入中文

使用 \mbox{中文} 命令输入中文.例如,

```
$$
\sqrt{4} \, \mbox{或} \, 2
$$
```

其编译结果为

 $\sqrt{4}$ 或 2

6.6 粗斜体

在给公式加粗体的时候,我们会发现字体变成正体了而不是斜体了.例如,

\$\$
\bf{xyz}

\$\$

其编译结果为

xyz

如果想导出粗斜体,则需要在导言区的部分导入宏包 amsmath 的时候再导入 amsmath 自带的加粗宏包 bm ,即 \usepackage{amsmath,bm} ,这个时候使用命令 \bm{} 即可,例如

\bm{xyz}

其编译结果为

xyz