Programmation Linéaire - Cours 3

F. Clautiaux

francois.clautiaux@math.u-bordeaux1.fr

Université Bordeaux 1 Bât A33 - Bur 265

Sommaire

Simplex : forme matricielle Forme matricielle

Dualité

Dualité faible / forte

Notations matricielles

En forme standard :

$$\begin{array}{lll} \text{max} & \textbf{cx} \\ \text{s.c.} & A\textbf{x} & = \textbf{b} \\ & \textbf{x} & \geq \textbf{0}^{n+m} \end{array}$$

avec

$$\mathbf{c} = (c_1 \quad c_2 \quad \dots \quad c_n \quad 0 \quad 0 \quad \dots \quad 0)$$

$$A = \begin{vmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} & 1 \\ |a_{2,1} & a_{2,2} & \dots & a_{2,n} & 1 \\ |\vdots & \vdots & \vdots & \ddots & \vdots \\ |a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{vmatrix} \qquad \mathbf{b} = \begin{vmatrix} |b_1| \\ |b_2| \\ \vdots & \vdots \\ |b_m| \end{vmatrix}$$

 \dots X_n X_{n+1} \dots

*X*2

Partitionnement des indices

On peut partitionner les indices des variables en deux parties :

- Ceux des variables en base : ${\cal B}$
- ullet Ceux des variables hors-base : ${\cal N}$

Cette partition peut-être effectuée dans chacune des contraintes :

$$\sum_{j=1}^{n+m} a_{i,j} x_j = \sum_{j \in \mathcal{B}} a_{i,j} x_j + \sum_{j \in \mathcal{N}} a_{i,j} x_j = b_i \text{ pour } i = 1, \dots, n.$$

D'un point de vue matriciel : partition des colonnes de A et des composantes des vecteurs \mathbf{c} et \mathbf{x} :

$$\mathbf{c} = (\mathbf{c}_{\mathcal{B}} \ \mathbf{c}_{\mathcal{N}})$$

 $A = (B \ N)$
 $\mathbf{x} = (\mathbf{x}_{\mathcal{B}} \ \mathbf{x}_{\mathcal{N}})$

(on notera que B est une matrice carrée)

Dictionnaire au format matriciel

Exprimons les variables en base en fonction des variables hors-base :

$$A\mathbf{x} = \mathbf{b} \quad \Leftrightarrow \quad B\mathbf{x}_{\mathcal{B}} + N\mathbf{x}_{\mathcal{N}} = \mathbf{b}$$
$$\Leftrightarrow \quad \mathbf{x}_{\mathcal{B}} = B^{-1}\mathbf{b} - B^{-1}N\mathbf{x}_{\mathcal{N}}$$

Possible uniquement si *B* est une matrice inversible.

En remplaçant $\mathbf{x}_{\mathcal{B}}$ dans l'objectif, on obtient :

$$\begin{split} \mathbf{z} &= \mathbf{c} \mathbf{x} &= \mathbf{c}_{\mathcal{B}} \mathbf{x}_{\mathcal{B}} + \mathbf{c}_{\mathcal{N}} \mathbf{x}_{\mathcal{N}} \\ &= \mathbf{c}_{\mathcal{B}} (B^{-1} \mathbf{b} - B^{-1} \mathbf{N} \mathbf{x}_{\mathcal{N}} + \mathbf{c}_{\mathcal{N}} \mathbf{x}_{\mathcal{N}} \\ &= \mathbf{c}_{\mathcal{B}} B^{-1} \mathbf{b} + (\mathbf{c}_{\mathcal{N}} - \mathbf{c}_{\mathcal{B}} B^{-1} \mathbf{N}) \mathbf{x}_{\mathcal{N}} \end{split}$$

On a:
$$\mathbf{max} \quad z = \mathbf{c}_{\mathcal{B}} B^{-1} \mathbf{b} + (\mathbf{c}_{\mathcal{N}} - \mathbf{c}_{\mathcal{B}} B^{-1} N) \mathbf{x}_{\mathcal{N}}$$

s.c. $\mathbf{x}_{\mathcal{B}} = B^{-1} \mathbf{b} - B^{-1} N \mathbf{x}_{\mathcal{N}}$
 $\mathbf{x}_{\mathcal{B}}, \mathbf{x}_{\mathcal{N}} > 0$

Solutions de base

Toute sous-matrice carrée $m \times m$ de A inversible (B est une base de \mathbb{R}^m) est appelée **matrice de base**.

À chaque matrice de base B est associée une solution de base définie par un dictionnaire.

max
$$z = \mathbf{c}_{\mathcal{B}}B^{-1}\mathbf{b} + (\mathbf{c}_{\mathcal{N}} - \mathbf{c}_{\mathcal{B}}B^{-1}N)\mathbf{x}_{\mathcal{N}}$$

s.c. $\mathbf{x}_{\mathcal{B}} = B^{-1}\mathbf{b} - B^{-1}N\mathbf{x}_{\mathcal{N}}$
 $\mathbf{x}_{\mathcal{B}}, \mathbf{x}_{\mathcal{N}} \geq 0$

Solution de base : $\mathbf{x}_{\mathcal{B}} = B^{-1}\mathbf{b}$

 $z = \mathbf{c}_{\mathcal{B}} B^{-1} \mathbf{b}$

Condition de réalisabilité : $B^{-1}\mathbf{b} \ge 0$

Condition d'optimalité : $\mathbf{c}_{\mathcal{N}} - \mathbf{c}_{\mathcal{B}} B^{-1} N \leq 0$

Algorithme du simplex matriciel

On commence avec une solution de base réalisable donnée par un dictionnaire :

max
$$z = \mathbf{c}_{\mathcal{B}}B^{-1}\mathbf{b} + (\mathbf{c}_{\mathcal{N}} - \mathbf{c}_{\mathcal{B}}B^{-1}N)\mathbf{x}_{\mathcal{N}}$$

s.c. $\mathbf{x}_{\mathcal{B}} = B^{-1}\mathbf{b} - B^{-1}N\mathbf{x}_{\mathcal{N}}$
 $\mathbf{x}_{\mathcal{B}}, \mathbf{x}_{\mathcal{N}} \geq 0$

- 1. Si $\mathbf{\bar{c}}_{\mathcal{N}} = \mathbf{c}_{\mathcal{N}} \mathbf{c}_{\mathcal{B}} B^{-1} N \leq 0$, alors cette solution est optimale, STOP.
- 2. choisir une variable entrante $k \in \mathcal{N}$ telle que $(\bar{\mathbf{c}}_{\mathcal{N}})_k > 0$.
- 3. Si $(\bar{a}_{i,k})_{i=1,\dots,m} = (B^{-1}N)_k \le 0$, le problème est non borné, STOP.
- 4. Choisir une variable sortante $s \in \mathcal{B}$ telle que

$$s = \operatorname{argmin}_{j \in \mathcal{B}} \left\{ \frac{\bar{b}_j}{\bar{a}_{j,k}} = \frac{B_{j,\cdot}^{-1} \mathbf{b}}{B_{j,\cdot}^{-1} N_{\cdot,k}} : \bar{a}_{j,k} > 0 \right\}$$

5. Pivoter : $\mathcal{B} = (\mathcal{B} \setminus \{s\}) \cup \{k\}$ et $\mathcal{N} = (\mathcal{N} \setminus \{k\}) \cup \{s\}$ et retourner en 1.

Sommaire

Simplex: forme matricielle

Dualité Motivation Primal / dual

Dualité faible / forte

Motivation

Obtenir une borne supérieure sur le profit maximum

- Toute solution réalisable donne une borne inférieure (LB) sur le profit maximum.
- Une borne supérieure (UB) est utile pour juger de la qualité d'une solution réalisable (voire prouver son optimalité si LB = UB).

Remarque:

Toute combinaison linéaire de contraintes du programme linéaire donne une contrainte valide (satisfaite par toutes les solutions réalisables)

Exemple du yaourt

Exemple du yaourt

$$\max \quad 4x_1 + 5x_2 \\ 2x_1 + x_2 \leq 800 \quad (1) \\ x_1 + 2x_2 \leq 700 \quad (2) \\ x_2 \leq 300 \quad (3) \\ x_1, \quad x_2 \geq 0$$

$$5*(1) \Rightarrow 4x_1 + 5x_2 \leq 10x_1 + 5x_2 \leq 4000 \\ 4*(2) \Rightarrow 4x_1 + 5x_2 \leq 4x_1 + 8x_2 \leq 2800 \\ 2*(1) + 3*(3) \Rightarrow 4x_1 + 5x_2 \leq 2500$$

max

Deuxième exemple

(le PL n'est pas sous forme normale)

Par exemple 2 * (1) - 2 * (3)

Problème : Trouver les meilleurs coefficients multiplicatifs pour chaque contrainte afin d'obtenir la meilleure borne supérieure.

- A chaque contrainte i = 1, ..., 3, on associe une variable y_i .
- La combinaison linéaire doit être telle que le coefficient obtenu pour chaque variable doit être plus grand que le coefficient de la variable dans l'objectif.
- On cherche à minimiser le membre de droite de la contrainte issue de la combinaison linéaire.

Max
$$4x_1 + 5x_2$$

 $2x_1 + x_2 \le 800 \quad (y_1)$
 $x_1 + 2x_2 \le 700 \quad (y_2)$
 $x_2 \le 300 \quad (y_3)$
 $x_1, x_2 \ge 0$

 $y_1, y_2, y_3 \ge 0$

Solution optimale : $y_1^* = 1$, $y_2^* = 2$, $y_3^* = 0$ et opt = 2200.

Primal / Dual

Les PL vont toujours par paires :

Primal:

$$\begin{array}{ll} \max & \sum_{j} c_{j} x_{j} \\ \text{s.c.} & \sum_{j} a_{i,j} x_{j} \leq b_{i} \\ & x_{j} \geq 0 \end{array} \qquad \text{pour } i = 1, \ldots, m$$

Dual:

min
$$\sum_{i} b_{i}y_{i}$$

s.c. $\sum_{i} a_{i,j}y_{i} \geq c_{j}$ pour $j = 1, ..., n$
 $y_{i} > 0$ pour $i = 1, ..., m$

A venir : si solutions optimales alors égales

Primal / Dual : forme matricielle

Les PL vont toujours par paires :

Primal:

$$\begin{array}{ccc} \text{max} & \textbf{cx} \\ \text{s.c.} & A\textbf{x} & \leq \textbf{b} \\ & \textbf{x} & \geq \textbf{0}^{\textbf{n}} \end{array}$$

Dual:

$$\begin{array}{ccc} \min & \textbf{by} \\ \text{s.c.} & A^{\top} \textbf{y} & \geq \textbf{c} \\ & \textbf{y} & \geq \textbf{0}^{\textbf{m}} \end{array}$$

Interprétation économique du dual

 Sans ressource, le profit serait nul. L'idée est d'essayer d'évaluer la contribution de chaque ressource au profit observé. Dans ce contexte, les variables

$$y_i \ge 0$$
 pour $i = 1, \ldots, m$

représentent les valeurs unitaires des ressources $i: y_i$ est la mesure de la contribution d'une unité de i dans le profit. C'est donc aussi le prix auquel on évalue la ressource i (prix auquel on serait prêt à vendre la ressource au lieu de l'utiliser).

Interprétation économique du dual

 Un système de prix y (auquel on serait prêt à vendre nos ressources) pour être acceptable doit compenser le profit qu'on aurait pu faire en utilisant ces ressources. Il faut

$$\sum_{i} a_{i,j} y_i \geq c_j$$
 pour $j = 1, \ldots, n$

ce qu'on interprète aussi comme le fait que la valeur des ingrédients doit justifier entièrement le profit attribué à chaque produit.

Interprétation économique du dual

 Un système de prix y (auquel on serait prêt à vendre nos ressources) pour être acceptable doit compenser le profit qu'on aurait pu faire en utilisant ces ressources. Il faut

$$\sum_i a_{i,j} y_i \geq c_j$$
 pour $j = 1, \ldots, n$

ce qu'on interprète aussi comme le fait que la valeur des ingrédients doit justifier entièrement le profit attribué à chaque produit.

 L'acheteur de nos ressources veillera à minimiser le coût total d'achat

Minimiser
$$\sum_i b_i y_i$$

Int. éco. de la solution optimale du dual A l'optimum :

$$z^* = \sum_{j} c_j x_j^* = \sum_{i} b_i y_i^*$$

$$\sum_{j} a_{i,j} x_j^* \le b_i \quad \text{et} \quad \sum_{i} a_{i,j} y_i^* \ge c_j$$

Int. éco. de la solution optimale du dual A l'optimum :

$$z^* = \sum_{j} c_j x_j^* = \sum_{i} b_i y_i^*$$

$$\sum_{i} a_{i,j} x_i^* \le b_i \quad \text{et} \quad \sum_{i} a_{i,j} y_i^* \ge c_j$$

- Les multiplicateurs optimaux (solution optimale du dual) expliquent la responsabilité de chacune des contraintes de capacité en ressource dans la limitation du profit.
- Ces valeurs duales indiquent "localement" de combien augmenterait le profit par unité d'augmentation des ressources associées.
- y_i* est une mesure de l'augmentation marginale du profit par unité d'augmentation de b_i.

$$y_i^* = \lim_{\epsilon \to 0} \frac{z^*(b_i + \epsilon) - z^*(b_i)}{\epsilon}$$

Théorème

Si le problème

$$P \left\{ \begin{array}{ll} \textit{max} & \sum_{j} c_{j} x_{j} \\ \textit{s.c.} & \sum_{j} a_{i,j} x_{j} \leq b_{i} \quad i = 1, \, \dots, \, m \\ x_{j} \geq 0 \quad j = 1, \, \dots, \, n \end{array} \right.$$

admet une solution de base optimale non dégénérée de valeur z^* , alors $\exists \epsilon > 0$ tel que si $|t_i| \le \epsilon$ pour i = 1, ..., m, le problème

$$P' \left\{ \begin{array}{lll} \textit{max} & \sum_{j} c_{j} x_{j} \\ \textit{s.c.} & \sum_{j} a_{i,j} x_{j} & \leq & b_{i} + t_{i} & i = 1, \, \dots, \, m \\ & x_{j} & \geq & 0 & j = 1, \, \dots, \, n \end{array} \right.$$

admet une solution optimale dont la valeur est

$$z^* + \sum_{i=1}^m t_i y_i^*$$

où y* est la solution (unique) au problème dual.

Retour dans le vaourt

Solution optimale : $y_1^* = 1$, $y_2^* = 2$, $y_3^* = 0$ et UB = 2200. Prix de vente minimum d'une unité de ressource 1 : 1 euro. Prix de vente minimum d'une unité de ressource 2 : 2 euros. Prix de vente minimum d'une unité de ressource 3 : 0 euro.

4□ > 4同 > 4 = > 4 = > ■ 900

Si le primal n'est pas borné

$$max5x + 3y$$
$$3x + y \ge 3$$
$$x \le 5$$
$$x, y \ge 0$$

Relations Primal / Dual

• Le dual du dual est le primal.

		DUAL		
		optimal	irréalisable	non-borné
	optimal	possible	impossible	impossible
PRIMAL	irréalisable	impossible	possible	possible
	non-borné	impossible	possible	impossible

 On peut appliquer le simplex au dual au lieu du primal si le dual a moins de contraintes que le primal (cf complexité empirique du simplex).

Passage du primal au dual

Il n'est pas nécessaire de passer en forme normale pour écrire le dual d'un programme linéaire.

Tableau de passage :

Primal (Max)	Dual (Min)	
Contraintes	Variables	
<u> </u>	≥ 0	
\geq	≤ 0	
=	non restreinte	
Variables	Contraintes	
<u>≥ 0</u>	<u> </u>	
≤ 0	<u> </u>	
non restreinte	=	

Passage du primal au dual : exemple

$$\max 5x - 3y + 5z$$

$$x + y = 2$$

$$2y + 3z \le 10$$

$$x + 5z \ge 5$$

$$x \le 0$$

$$y, z \ge 0$$

Cf. forme matricielle

Sommaire

Simplex: forme matricielle

Dualité

Dualité faible / forte

Dualité faible

Théorème

Dualité faible : Pour toute solution réalisable x du problème primal et toute solution réalisable y du problème dual, on a

$$\sum_{j=1}^n c_j x_j \leq \sum_{i=1}^m b_i y_i.$$

Preuve:

On sait que $\sum_{i=1}^{m} a_{ij} y_i \ge c_j, \forall j$. On sait que $\sum_{i=1}^{n} a_{ij} x_i \le b_i, \forall i$.

Dualité faible

Corollaire

Si \bar{x} est une solution réalisable du problème primal et \bar{y} une solution réalisable du problème dual tel que

$$\sum_{j=1}^n c_j \bar{x}_j = \sum_{i=1}^m b_j \bar{y}_j,$$

alors \bar{x} est optimale pour le primal et \bar{y} est optimale pour le dual.

Dualité faible

Preuve:

Supposons au contraire que \bar{x} n'est pas une solution optimale du primal. Il existe donc une solution x^* telle que

$$\sum_{j=1}^{n} c_j \bar{x}_j < \sum_{j=1}^{n} c_j x_j^*$$
.

On a alors

$$\sum_{i=1}^m b_j \bar{y}_j < \sum_{j=1}^n c_j x_j^*$$

ce qui est contraire au théorème de dualité faible. La solution \bar{x} est donc optimale.

La preuve est similaire pour \bar{y} .

Dualité forte

Théorème

Dualité forte : Si le primal a une solution optimale $x^* = (x_1^*, \ldots, x_n^*)$, alors le dual a une solution optimale $y^* = (y_1^*, \ldots, y_m^*)$ telle que

$$\sum_{j=1}^{n} c_j x_j^* = \sum_{i=1}^{m} b_i y_i^*.$$

Idée pour la preuve :

$$z^* = c_{\mathcal{B}}B^{-1}b = cx^*$$

Dualité forte

Théorème

Dualité forte : Si le primal a une solution optimale $x^* = (x_1^*, \ldots, x_n^*)$, alors le dual a une solution optimale $y^* = (y_1^*, \ldots, y_m^*)$ telle que

$$\sum_{j=1}^{n} c_j x_j^* = \sum_{i=1}^{m} b_i y_i^*.$$

Idée pour la preuve :

$$z^* = c_B B^{-1} b = c x^* = y^* b$$

On devine qu'on doit avoir

$$(y_1^*,\ldots,y_m^*)=c_BB^{-1}.$$

On va montrer que cette solution est réalisable et optimale pour le dual.

Preuve dualité forte

Remarque sur les coûts réduits :

$$\bar{c}x = (c_{\mathcal{B}} - c_{\mathcal{B}}B^{-1}B)x_{\mathcal{B}} + (c_{\mathcal{N}} - c_{\mathcal{B}}B^{-1}N)x_{\mathcal{N}}$$

Comme tous les coûts réduits sont négatifs ou nuls on a $c_{\mathcal{N}}-c_{\mathcal{B}}B^{-1}\mathcal{N}\leq 0$ et donc $c_{\mathcal{B}}B^{-1}\mathcal{N}\geq c_{\mathcal{N}}$. On a aussi $c_{\mathcal{B}}B^{-1}B\geq c_{\mathcal{B}}$

Preuve dualité forte

Si on regroupe les indices entre var. de décision (A^D) et var.

d'écart
$$(I)$$
, on a :

$$c_{\mathcal{B}}B^{-1}A^{D}\geq c$$

$$c_{\mathcal{B}}B^{-1}I \geq 0$$

On obtient directement $y^*A \ge c$ et $y^* \ge 0$, qui sont les conditions de réalisabilité du dual.

De plus :
$$y^*b = c_B B^{-1}b = cx^*$$
.

Par le corollaire précédent, y* est une solution optimale du dual.

Utilité de la dualité forte

Si on a une paire (x^*, y^*) de solutions du primal et du dual, on peut facilement vérifier

- la réalisabilité de x* pour le problème primal,
- la réalisabilité de y* pour le problème dual,
- l'égalité des deux objectifs.

On a alors un certificat d'optimalité pour la paire (x^*, y^*) .