DMath U12 bf

12.5

We extend predicate logic with a new quantifier \bigcirc (read: for many) as follows:

Syntax: If F is a formula, then for any variable symbol x_i , $\bigcirc x_i F$ is a formula.

 $\textbf{Semantics: } \mathcal{A}(\bigcirc x_i F) = 1 \iff \{u \in U^{\mathcal{A}} \mid \mathcal{A}_{[x_i \rightarrow u]}(F) = 1\} \sim U^{\mathcal{A}}.$

Using the semantics of predicate logic extended in this way, prove or disprove the following statements, where F is an arbitrary formula.

- a) The formula $(\bigcirc xF) \land (\bigcirc x\neg F)$ is unsatisfiable.
- b) $\bigcirc xF \models \exists xF$
- c) $\forall x \bigcirc yF \models \bigcirc y \forall xF$

Expectation: If the statement is true, your proof should use the definitions of the semantics. In each step, at most one definition (e.g., the semantics of \bigcirc) should be applied. If the statement is not true, you should provide a counterexample: make sure to define everything needed for a suitable interpretation.

a) The formula $(\bigcirc xF) \wedge (\bigcirc x \neg F)$ is unsatisfiable.

Disproven by counterexample. We want to show that there exists an interpretation $\mathcal A$ such that $(\bigcirc xF \wedge (\bigcirc x \neg F) = 1$, making the formula satisfiable.

Let F be the formula P(x)

Let $\mathcal{A} = (U, \phi, \psi, \xi)$ be a suitable interpretation for the formula.

- Let $U^{\mathcal{A}} = \mathbb{N}^*$
- Let $\phi = \varnothing$ (there are no functions in our formula)
- Let $\psi = \{P^{\mathcal{A}}(x) = 1 \iff x \equiv_2 0, \text{ i.e. } P^{\mathcal{A}}(x) = 1 \text{ if and only if x is even} \}$
- Let $\xi = \emptyset$ (there are no free variables in our formula)

```
\begin{array}{l} \mathcal{A}((\bigcirc xF \wedge (\bigcirc x\neg F) \\ \Longrightarrow \mathcal{A}((\bigcirc xP(x)) \wedge (\bigcirc x\neg F(x))) \\ \Longrightarrow \mathcal{A}((\bigcirc xP(x)) \wedge (\bigcirc x\neg P(x))) \\ \Longrightarrow \mathcal{A}((\bigcirc xP(x))) \ \ and \ \mathcal{A}((\bigcirc x\neg P(x))) \\ \Longrightarrow \{u \in U^A \mid \mathcal{A}_{[x \rightarrow u]}(P(x)) = 1\} \sim \mathbb{N} \ \ and \ \{u \in U^A \mid \mathcal{A}_{[x \rightarrow u]}(\neg P(x)) = 1\} \sim \mathbb{N} \\ \Longrightarrow \{u \in U^A \mid \mathcal{A}(P(u) = 1)\} \sim \mathbb{N} \ \ and \ \{u \in U^A \mid \mathcal{A}(\neg P(u) = 1)\} \sim \mathbb{N} \\ \Longrightarrow \{u \in U^A \mid \mathcal{A}(P(u) = 1)\} \sim \mathbb{N} \ \ and \ \{u \in U^A \mid \mathcal{A}(P(u) = 0)\} \sim \mathbb{N} \\ \Longrightarrow \{u \in U^A \mid u \text{ is even}\} \sim \mathbb{N} \ \ and \ \{u \in U^A \mid u \text{ is not even}\} \sim \mathbb{N} \end{array} \qquad \begin{array}{c} \text{(Definition 6.24; Semantics of } \neg \\ \text{(Interpretation of } P^A(x)) \\ \Longrightarrow \{u \in \mathbb{N} \mid u \text{ is even}\} \sim \mathbb{N} \ \ and \ \{u \in \mathbb{N} \mid u \text{ is not even}\} \sim \mathbb{N} \end{array} \qquad \begin{array}{c} \text{(Interpretation of } U^A) \\ \text{(Interpretation of } U^A) \end{array}
```

All that remains is to show is that $\{u \in \mathbb{N} \mid u \text{ is even}\}\} \sim \mathbb{N}$ and $\{u \in \mathbb{N} \mid u \text{ is not even}\} \sim \mathbb{N}$.

```
We define two sets S=\{u\in\mathbb{N}\mid u\text{ is even}\} and T=\{u\in\mathbb{N}\mid u\text{ is not even}\} and construct a bijection between them and \mathbb{N}^* Let f:\mathbb{N}\to S be defined as f(x)=2\cdot x. It's easy to see that, for every x\in\mathbb{N}, f(x)\in S. Let g:\mathbb{N}\to T be defined as g(x)=2\cdot x+1. Since, for every x\in\mathbb{N}, f(x)\in T as f(x)\equiv_2 1 for all x\in\mathbb{N}.
```

Thus both parts are satisfiable under some interpretation \mathcal{A} , disproving the statement.

Ш

b) $\bigcirc xF \models \exists xF$

We proof this by showing that any interpretation that's suitable for both sides of the formula and is a model for $\bigcirc xF$ is also a model for $\exists xF$.

Since any $U^{\mathcal{A}}$ (where \mathcal{A} is a model for the LHS) is equinumerous to the set $\{u \in U^{\mathcal{A}} \mid \mathcal{A}_{[x_i \to u]}(F) = 1\}$ and no $U^{\mathcal{A}}$ can be empty (as per Definition 6.34.), that same \mathcal{A} is also a model for $\exists x F$, by definition 6.36. $\mathcal{A}(\exists x F)$

$$\begin{array}{l} \mathcal{A}(\bigcirc x_i F) = 1 \\ \Longrightarrow \{u \in U^A \mid \mathcal{A}_{[x_i \to u]}(F) = 1\} \sim U^A \text{ and } U^A \neq \varnothing \\ \Longrightarrow \mathcal{A}_{[x \to u]}(F) = 1 \text{ for some } u \in U \end{array} \qquad \begin{array}{l} \text{(Semantics of } \bigcirc x_i, \text{ Definition 6.34. } U \neq \varnothing) \\ \Longrightarrow \mathcal{A}(\exists x F) = 1 \end{array}$$

As was to be shown.

г

c)
$$\forall x \bigcirc yF \models \bigcirc y \forall xF$$

We will disprove this statement with a counterexample.

Let F be the formula P(x,y)

Let $\mathcal{A}=(U,\phi,\psi,\xi)$ be a suitable interpretation for the formula.

- Let $U^{\mathcal{A}} = \mathbb{N}^*$
- Let $\phi = \varnothing$ (there are no functions in our formula)
- Let $\psi = \{P^{\mathcal{A}}(x) = 1 \iff y > x, \text{ i.e. } P^{\mathcal{A}}(x) = 1 \text{ if and only if y is greater than x} \}$
- Let $\xi = \emptyset$ (there are no free variables in our formula)

$$\begin{array}{c} \mathcal{A}(\forall x\bigcirc yF) \models \mathcal{A}(\bigcirc y\forall xF) \\ \stackrel{.}{\Rightarrow} \mathcal{A}(\forall x\bigcirc yP(x,y)) \models \mathcal{A}(\bigcirc y\forall xP(x,y)) \\ \stackrel{.}{\Rightarrow} \mathcal{A}(\forall x\bigcirc yP(x,y)) \models \mathcal{A}(\bigcirc y\forall xP(x,y)) \\ \stackrel{.}{\Rightarrow} \mathcal{A}_{[x\rightarrow u]}(\bigcirc yP(x,y)) = 1 \text{ for all } u \in U^A \models \mathcal{A}(\bigcirc y\forall xP(x,y)) \\ \stackrel{.}{\Rightarrow} \mathcal{A}_{[x\rightarrow u]}(\bigcirc yP(x,y)) = 1 \text{ for all } u \in U^A \models \{u \in U^A \mid \{\mathcal{A}_{[x\rightarrow u]}(\forall xP(x,y)) = 1\} \sim U^A \\ \stackrel{.}{\Rightarrow} \mathcal{A}_{[x\rightarrow u]}(\{u \in U^A \mid \mathcal{A}_{[y\rightarrow v]}(P(x,y) = 1\} \sim U^A) = 1 \text{ for all } v \in U^A \models \{u \in U^A \mid \{\mathcal{A}_{[y\rightarrow v]}(\mathcal{A}_{[x\rightarrow u]}(P(x,y)) = 1\} \sim U^A \\ \stackrel{.}{\Rightarrow} \mathcal{A}_{[x\rightarrow u]}(\{u \in U^A \mid \mathcal{A}_{[y\rightarrow v]}(P(y,u) = 1\} \sim U^A) = 1 \text{ for all } v \in U^A \models \{u \in U^A \mid \{\mathcal{A}_{[y\rightarrow v]}(\mathcal{A}(P(u,y)) = 1 \text{ for all } v \in U^A) = 1\} \sim U^A \\ \stackrel{.}{\Rightarrow} \mathcal{A}(\{u \in U^A \mid \mathcal{A}_{[y\rightarrow v]}(P(y,u) = 1\} \sim U^A) = 1 \text{ for all } v \in U^A \models \{u \in U^A \mid \{\mathcal{A}_{[y\rightarrow v]}(\mathcal{A}(P(u,v)) = 1 \text{ for all } v \in U^A) = 1\} \sim U^A \\ \stackrel{.}{\Rightarrow} \mathcal{A}(\{u \in U^A \mid \mathcal{A}(P(v,u) = 1\} \sim U^A) = 1 \text{ for all } v \in U^A \models \{u \in U^A \mid \{\mathcal{A}(\mathcal{A}(P(u,v)) = 1 \text{ for all } v \in U^A) = 1\} \sim U^A \\ \stackrel{.}{\Rightarrow} \mathcal{A}(\{u \in U^A \mid \mathcal{A}(P(v,u) = 1\} \sim U^A) = 1 \text{ for all } v \in U^A \models \{u \in U^A \mid \{\mathcal{A}(\mathcal{A}(P(u,v)) = 1 \text{ for all } v \in U^A) = 1\} \sim U^A \\ \stackrel{.}{\Rightarrow} \mathcal{A}(\{u \in U^A \mid \mathcal{A}(P(v,u) = 1\} \sim U^A) = 1 \text{ for all } v \in U^A \models \{u \in U^A \mid \{\mathcal{A}(\mathcal{A}(P(u,v)) = 1 \text{ for all } v \in U^A) = 1\} \sim U^A \\ \stackrel{.}{\Rightarrow} \mathcal{A}(\{u \in U^A \mid \mathcal{A}(P(v,u) = 1\} \sim U^A) = 1 \text{ for all } v \in U^A \models \{u \in U^A \mid \{\mathcal{A}(P(u,v)) = 1 \text{ for all } v \in U^A\} = 1\} \sim U^A \\ \stackrel{.}{\Rightarrow} \mathcal{A}(\{u \in U^A \mid \mathcal{A}(P(v,u) = 1\} \sim U^A) = 1 \text{ for all } v \in U^A \models \{u \in U^A \mid \{\mathcal{A}(P(u,v)) = 1 \text{ for all } v \in U^A\} = 1\} \sim U^A \\ \stackrel{.}{\Rightarrow} \mathcal{A}(\{u \in U^A \mid \mathcal{A}(P(v,u) = 1\} \sim U^A) = 1 \text{ for all } v \in U^A \models \{u \in U^A \mid \{\mathcal{A}(P(u,v)) = 1 \text{ for all } v \in U^A\} = 1\} \sim U^A \\ \stackrel{.}{\Rightarrow} \mathcal{A}(\{u \in U^A \mid \mathcal{A}(P(v,u) = 1\} \sim U^A) = 1 \text{ for all } v \in U^A \models \{u \in U^A \mid \{\mathcal{A}(P(u,v)) = 1 \text{ for all } v \in U^A\} = 1\} \sim U^A \\ \stackrel{.}{\Rightarrow} \mathcal{A}(\{u \in U^A \mid \mathcal{A}(P(v,u) = 1\} \sim U^A) = 1 \text{ for all } v \in U^A \models \{u \in U^A \mid \{\mathcal{A}(P(u,v)) = 1 \text{ for all } v \in U^A\} = 1\} \sim U^A \\ \stackrel{.}{\Rightarrow} \mathcal{A}(\{u \in U^A \mid \mathcal{A}(P(v,u) = 1\} \sim U^A) = 1 \text{ for all } v \in U^A \models \{u \in U^A \mid \{\mathcal{A}(P(u,v)) =$$

What this is saying in words is, that our chosen interpretation $\mathcal A$ is a model for the LHS (since, for all natural numbers $x \in \mathbb N^*$, there is a set of numbers $y_i \in \mathbb N^*$ equinumerous to the set of natural nubers $(\{y_i \in \mathbb N^*\} \sim \mathbb N^*)$ that is larger than than x) but not a model for the RHS (since, not for every number $x_i \in \mathbb N$ all numbers $y_i \in \mathbb N$ are larger than that number).

We have shown there exists some interpretation $\mathcal A$ that is suitable for both sides of the formula and is a model for $\forall x \bigcirc yF$ but not for $\bigcirc y\forall xF$.