

Credit EDA Case Study Analysis

VARUN PATEL HARSHA BELURKAR

Exploratory Data Analysis: Overview

Loan approval based on the applicant's profile.

1. Likely to repay the loan, then not approving the loan results in a loss of business to the company

2. If the applicant is not likely to repay the loan, may lead to financial loss of company

Steps Involved:

- Import the Data
- Data Imputation
- Outlier Analysis
- Inspecting datatypes

Steps Involved:

- Data Imbalance
- Univariate Analysis
- Bivariate Analysis
- Correlation

Obtaining Insights based on Results from Data Understanding and Data Analysis and Providing recommendations for the company to approve or reject the loans

Data Understanding

Dataset used : Application.csv

We have imported necessary libraries required Inspected dataset using Shape, Info, Describe and head functions

Shape of the data frame : (307511, 122)
Total no of columns with missing values > 50% : 41

Dropped the Columns which are populated less than 50 %, as these might not be helpful in giving the right understanding of the data.

Retained only the important columns that are found to be relevant for the analysis.

Import all the necessary libraries

```
#Importing Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
# Supress Warnings
import warnings
warnings.filterwarnings('ignore')

# Create a class color for setting print formatting
class color:
    BLUE = '\033[94m'
    BOLD = '\033[1m'
    END = '\033[0m'
```

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 307511 entries, 0 to 307510
Columns: 122 entries, SK_ID_CURR to AMT_REQ_CREDIT_BUREAU_YEAR
dtypes: float64(65), int64(41), object(16)
memory usage: 286.2+ MB
```


Data imputation is used for replacing missing values via statistical computation, binning them with appropriate values

- Categorical Variables: Used MODE for the imputation
 E.g.: OCCUPATION_TYPE, ORGANIZATION_TYPE and
 CODE GENDER
- Quantitative Variables: Used Median / Mode for the imputation based on outliers.
 - E.g.: AMT_ANNUITY, AMS_GOOD_PRICE and CNT_FAM_MEMBERS
- Binned the Continuous Variables
- Outliers Identification and Treatment Chose the columns using Box plot
 E.g.: CNT_CHILDREN, AMT_INCOME_TOTAL and CNT_FAM_MEMBERS.

Outliers Treatment – (CNT_FAM_MEMBERS)

Data Analysis: Data Imbalance

Data Imbalance checks w.r.t TARGET:

Divided the data frame into Target 0 having payment difficult difficulty and Target 1 as all other types

- Clients with difficulty Target 1: 22919
- Clients with No difficulty Target 0 : 251686
- Percentage data imbalance with difficulty(%):
 8.35
- Percentage data imbalance with no difficulty(%):
 91.65
- Ratio of imbalance: 10.982: 1

Data Imbalance in the application data is found and its hugely leaned towards the customers with out having any difficulty to repay the loan i.e., 91.65% of the applicants doesn't find any difficulty in the repayment of the loan

60

Data Analysis: Univariate Analysis

Observations for Target 0 and Target 1 Univariate Analysis:

- Loan defaults proportion is less for Married people compare to non-defaulters
- But It seems for Single/Civil Married customers, the loan defaulter proportion is little higher.
- Its seems customer living with Parents have little more proportion of defaulting compared to nondefaulters
- Similarly Municipal and Rented apartment accommodation shows slightly higher proportion towards defaulting
- Its seems customers who are currently working have higher proportion of defaulters
- Pensioners seems to be pay back loan, so their proportion is less on defaulters
- Its seems customers with profession as Laborer have higher proportion of defaulters

o o

- Another observation is as IT/HR staff have lower proportion of defaulting
- Customers with Secondary education have higher proportion of defaulting if compared to non-defaulters
- The income of the customers seems to have similar distribution for both defaulters and non-defaulters
- The Average income seems to be around 140K for both segments
- The defaulters seems to have more outliers compared to non-defaulters
- The average annuity is similar for both defaulters and non defaulters around 30K
- The median age for defaulters are around 14000 days older which would be around 40 Years
- It looks like as the age increases proportion of defaulters decreases
- The younger customers seems to have higher proportion of defaulters

Data Analysis: Bivariate Analysis

For below variables we have computed correlation between 2 variables:

AMT_GOODS_PRICE and AMT_CREDIT -

The correlation between property price and loan

amount for non defaulters is 0.9819

but for defaulters it is: 0.9779

AMT_ANNUITY and AMT_CREDIT –

The correlation between AMT_ANNUITY (EMI) and loan

amount for non defaulters is 0.7606

but for defaulters it is: 0.7397

AMT_ANNUITY and AMT_GOOD_PRICE –

The correlation between AMT_ANNUITY (EMI) and

goods price for non defaulters is 0.7604

but for defaulters it is: 0.7375

AMT ANNUITY and AMT INCOME TOTAL-

The correlation between AMT_INCOME_TOTAL (EMI)

and AMT ANNUITY for non defaulters is 0.4078

but for defaulters it is: 0.3854

Data Analysis: Correlation Analysis

Top 10 Positively Correlated variables for Target 0:

	VAR1	VAR2	CORR
62	AMT_GOODS_PRICE	AMT_CREDIT	0.981909
165	CNT_FAM_MEMBERS	CNT_CHILDREN	0.853202
47	AMT_ANNUITY	AMT_CREDIT	0.760565
63	AMT_GOODS_PRICE	AMT_ANNUITY	0.760415
46	AMT_ANNUITY	AMT_INCOME_TOTAL	0.407785
111	DAYS_EMPLOYED	DAYS_BIRTH	0.355384
126	DAYS_REGISTRATION	DAYS_BIRTH	0.335582
61	AMT_GOODS_PRICE	AMT_INCOME_TOTAL	0.330714
31	AMT_CREDIT	AMT_INCOME_TOTAL	0.328006
141	DAYS_ID_PUBLISH	DAYS_BIRTH	0.291728

- Higher the Good Price for the loans the applicants are applying, higher is the amount credit
- Higher their Amount Annuity, higher will be the amount credit

Data Set: Applicant who find no difficult to repay loan, TARGET: 0

Data Analysis: Correlation Analysis

Top 10 Positively Correlated variables for Target 1:

	VAR1	VAR2	CORR
62	AMT_GOODS_PRICE	AMT_CREDIT	0.977949
165	CNT_FAM_MEMBERS	CNT_CHILDREN	0.858025
47	AMT_ANNUITY	AMT_CREDIT	0.739727
63	AMT_GOODS_PRICE	AMT_ANNUITY	0.737484
46	AMT_ANNUITY	AMT_INCOME_TOTAL	0.385447
111	DAYS_EMPLOYED	DAYS_BIRTH	0.309745
61	AMT_GOODS_PRICE	AMT_INCOME_TOTAL	0.306330
31	AMT_CREDIT	AMT_INCOME_TOTAL	0.306087
126	DAYS_REGISTRATION	DAYS_BIRTH	0.289750
141	DAYS_ID_PUBLISH	DAYS_BIRTH	0.262175

- Higher the Annuity they have higher Credit
- There is not much correlation between Amount Annuity and income of the individual
- Higher the Goods price they are also having the high Credit and Annuity

Data Set: Applicant who find it difficult to repay loan, TARGET: 1

Historical Data Analysis

Dataset used : Previous_application.csv

Inspected dataset using Shape, Info, Describe and head functions

Shape of the data frame: (1670214, 37)
Total no of columns with missing values > 50%: 4

Dropped the Columns which are populated less than 50 %, as these might not be helpful in giving the right understanding of the data.

Retained only the important columns that are found to be relevant for the analysis.

We have changed the datatypes to suitable type for analysis and also changed negative values to positive.

```
prev df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 69635 entries, 4 to 1670206
Data columns (total 33 columns):
    Column
                                 Non-Null Count Dtype
    SK ID PREV
                                 69635 non-null int64
    SK ID CURR
                                 69635 non-null float64
    NAME CONTRACT TYPE
                                 69635 non-null object
    AMT ANNUITY
                                 69372 non-null float64
    AMT APPLICATION
                                 69635 non-null float64
    AMT_CREDIT
                                 69635 non-null float64
    AMT GOODS PRICE
                                 69635 non-null float64
    WEEKDAY APPR PROCESS START 69635 non-null object
  HOUR APPR PROCESS START
                                 69635 non-null
                                                int64
    FLAG_LAST_APPL_PER_CONTRACT 69635 non-null
                                                object
10 NFLAG LAST APPL IN DAY
                                 69635 non-null int64
11 NAME CASH LOAN PURPOSE
                                 69635 non-null object
12 NAME CONTRACT STATUS
                                 69635 non-null object
    DAYS DECISION
                                 69635 non-null
                                                int64
14 NAME PAYMENT TYPE
                                 69635 non-null object
    CODE REJECT REASON
                                 69635 non-null
                                                object
    NAME TYPE SUITE
                                 42457 non-null
                                                object
    NAME CLIENT TYPE
                                 69635 non-null object
    NAME_GOODS_CATEGORY
                                 69635 non-null object
    NAME PORTFOLIO
                                 69635 non-null object
    NAME PRODUCT TYPE
                                 69635 non-null
                                                object
 21 CHANNEL TYPE
                                 69635 non-null
                                                object
    SELLERPLACE AREA
    NAME SELLER INDUSTRY
                                 69635 non-null object
 24 CNT PAYMENT
                                 69372 non-null float64
    NAME YIELD GROUP
                                 69635 non-null object
    PRODUCT COMBINATION
                                 69635 non-null object
    DAYS FIRST DRAWING
                                 0 non-null
                                                 float64
 28 DAYS FIRST DUE
                                 24632 non-null float64
 29 DAYS LAST DUE 1ST VERSION
                                 24640 non-null float64
    DAYS LAST DUE
                                 19596 non-null float64
 31 DAYS TERMINATION
                                 19498 non-null float64
    NFLAG INSURED ON APPROVAL
                                 24640 non-null float64
dtypes: float64(12), int64(5), object(16)
memory usage: 18.1+ MB
```


Dataset used: inner join (df_cleaned + prev_df)
We have performed inner join on SK_ID_CURR

Inspected dataset using Shape, Info, Describe and Head functions

Shape of the data frame: (53193, 68)

Retained only the important columns that are found to be relevant for the analysis.

mdf	info()						
	ss 'pandas.core.frame.DataFra	mo!\					
	ss mpandas.come.frame.bacarra 4Index: 53193 entries, 0 to 5						
	columns (total 63 columns):	3132		31	AMT_REQ_CREDIT_BUREAU_WEEK	53193 non-null	float64
	Column	Non-Null Count	Dtyne		Age_BIN	53193 non-null	
-		NOIT-NUIT COUNT			Emp BIN	53193 non-null	_
0	TARGET	53193 non-null			Income BIN	53193 non-null	-
1	NAME_CONTRACT_TYPE	53193 non-null			SK ID PREV	53193 non-null	_
2	CODE_GENDER	53193 non-null	-		NAME_CONTRACT_TYPE_PREV		
3	FLAG OWN CAR	53193 non-null	-		AMT ANNUITY PREV	52980 non-null	_
4	FLAG_OWN_REALTY	53193 non-null	-		AMT APPLICATION	53193 non-null	
5	CNT_CHILDREN	53193 non-null	-		AMT CREDIT PREV	53193 non-null	
6	AMT INCOME TOTAL	53193 non-null			AMT_GOODS_PRICEx	53193 non-null	
7	AMT_CREDIT	53193 non-null			NAME_CASH_LOAN_PURPOSE	53193 non-null	object
8	AMT ANNUITY	53193 non-null			NAME_CONTRACT_STATUS	53193 non-null	-
9	AMT_GOODS_PRICE_	53193 non-null			DAYS DECISION	53193 non-null	-
	NAME TYPE SUITE	53193 non-null			NAME PAYMENT TYPE	53193 non-null	object
	NAME INCOME TYPE	53193 non-null	-		CODE REJECT REASON	53193 non-null	object
	NAME_EDUCATION_TYPE	53193 non-null	-	46	NAME TYPE SUITEX	31804 non-null	object
	NAME FAMILY STATUS	53193 non-null	-	47	NAME CLIENT TYPE	53193 non-null	object
	NAME HOUSING TYPE	53193 non-null	-	48	NAME_GOODS_CATEGORY	53193 non-null	object
	REGION POPULATION RELATIVE	53193 non-null	-		NAME PORTFOLIO	53193 non-null	object
	DAYS_BIRTH	53193 non-null		50	NAME_PRODUCT_TYPE	53193 non-null	object
17	_	45776 non-null			CHANNEL_TYPE	53193 non-null	object
18	-	53193 non-null		52	SELLERPLACE_AREA	53193 non-null	int64
19	DAYS ID PUBLISH	53193 non-null		53	NAME_SELLER_INDUSTRY	53193 non-null	object
20	FLAG MOBIL	53193 non-null		54	CNT_PAYMENT	52980 non-null	float64
21	-	53193 non-null		55	NAME_YIELD_GROUP	53193 non-null	object
	FLAG WORK PHONE	53193 non-null		56	PRODUCT_COMBINATION	53193 non-null	object
	FLAG CONT MOBILE	53193 non-null		57	DAYS_FIRST_DRAWING	0 non-null	float64
	FLAG_PHONE	53193 non-null		58	DAYS_FIRST_DUE	18914 non-null	float64
	FLAG EMAIL	53193 non-null			DAYS_LAST_DUE_1ST_VERSION	18920 non-null	float64
	OCCUPATION_TYPE	53193 non-null		60	DAYS_LAST_DUE	14767 non-null	float64
	CNT_FAM_MEMBERS	53193 non-null	-	61	DAYS_TERMINATION	14685 non-null	float64
	REGION_RATING_CLIENT_W_CITY			62	NFLAG_INSURED_ON_APPROVAL	18920 non-null	float64
29		53193 non-null		dtyp	es: float64(19), int32(2),	int64(14), object(28)
30	EXT_SOURCE_2	53193 non-null	-		ory usage: 28.1+ MB		-

Univariate Analysis on merged data

- The Amount Annuity is highly distributed below 80,000
- We observe that number of refused applicant is higher in Name contract status of previous application dataset
- The Amount credit previous data is highly distributed below 10 lakhs
- Most rejection of loans came from purpose 'repairs'.
- For education purposes we have equal number of approves and rejection
- Paying other loans and buying a new car is having significant higher rejection than approves
- Here the proportion of Name contract distribution between M and F values is the same
- Here in working income source we have it has major category and have higher refused applicants. when compared to other income sources

Bivariate Analysis on merged data

- The Applicants in Name Product type Xsell have only cash loans and no revolving loans
- The Amount annuity in range 80,000 1,00,000 have no difficulty in repaying the loan
- Applicants who are having the Annuity below the 80k in the history are most likely to have problem in repaying the loan, It could be possibly they might be taking the new loan for the annuity itself
- Applicants who has taken loan amount in range 30lakhs to 40lakhs previously are having no trouble paying the loan now or the data is insufficient to make an inference
- If they have a credit history less than 5 Lakhs, the count of people repaying the amount is more than who can't.
- For the applicants who have taken loan less than 500K work of goods price might face problem in repaying the loan now
- Applicants who has amount income total between
 1lakh to 3.5lakh don't face difficulty in repaying the loan

Recommendations

The dataset is highly imbalanced with 8.35% data for Loan Defaulters and remaining 91.65% data for non-defaulters.

In the application dataset: The top 10 positive correlation between numerical variables, is consistent across both Defaulters and non-defaulters

- Bank should focus more on people with annual income between 1lakh 3.5lakh as they don't face any difficulty in repaying the loan
- Applicants with higher Income could have reactively higher credit and annuity but chances of them
 defaulting / late payment is less and should be focused more by banks when approving loan
- Banks should focus less on income type 'Working' as they are having most number of unsuccessful payments.
- Most rejection of loans came from purpose 'repairs', so bank should focus less on this section
- The bank should focus less on younger customers as they have more number of defaulters

