Basic Concept of Probability

- Today's Class
 - Sample Space
 - Events
 - Venn Diagram
 - Set Theory

Sample Space

- Outcome: Each possible result of such an experiment that we perform
- Sample space (S): the set of all possible outcomes of an experiment
 - Discrete
 - Continuous

• • •

Sample Space for the Toss of a Single Coin

o S={head, tail}

ì

Events

- Event: any subset of outcomes contained in the sample space, S
- What is the event that an even score when rolling a die?
 - Even= {2, 4, 6}

Events Example

• What is the events that the sum of the scores of two dice is equal to 6?

• • •

Combination of Events

- Union: event consisting of all outcomes of both events, e.g. A ∪ B
- Intersection: event of outcomes that are part of both events, e.g. A ∩ B
- Complement: event of all outcomes not part of the event, e.g. A', A^c or \overline{A}
- Contained: one event is a subset of another event, e.g. A ⊂ B

Venn Diagrams: Union

- \bullet The union of two events, A \cup B
 - includes all sample points from A and B
 - Union means "OR"

• • •

Venn Diagram Example: Union

- o Suppose we throw one die
 - A = die is even
 - B = die is less than 4
 - A∪B?

Venn Diagrams: Intersection

- The intersection of two events, $A \cap B$
 - includes all sample points that are in both A and B
 - Intersection means "AND"

• • •

Venn Diagram Example: Intersection

- o Suppose we throw one die
 - A = die is even
 - B = die is less than 4
 - A ∩ B?

• • • • Venn Diagrams: Contained • • • • A is a subset of B, A⊂B S S

Venn Diagrams: Mutually Exclusive Events

• A and B are mutually exclusive if there is no overlap: $A \cap B = \emptyset$

Venn Diagram Example: Mutually Exclusive

- o Suppose we throw one die
 - A = die is even
 - B = die is odd
 - Are A and B mutually exclusive?

Venn Diagrams: Collectively exhaustive • A and B are collectively exhaustive if all sample points are contained within their union A A B B

Venn Diagrams: Mutually Exclusive & Collectively Exhaustive • A and B, are mutually exclusive and collectively exhaustive A B

Set Theory Associative Rule (A ∪ B) ∪ C = A ∪ (B ∪ C) (A ∩ B) ∩ C = A ∩ (B ∩ C) Distributive Rule (A ∪ C) ∩ (B ∪ C) = (A ∩ B) ∪ C (A ∩ C) ∪ (B ∩ C) = (A ∪ B) ∩ C De Morgan's Rule

• $\overline{A \cup B} = \overline{A} \cap \overline{B}$