

## SysML Overview

Conrad Bock NIST conrad.bock@nist.gov

SysML Submission Team



### Topics

- Background
  - Motivation/Why UML?
  - INCOSE/OMG
  - SysML Collaborators
- Overview
  - UML for SE Requirements
  - UML Reuse
  - Diagram Examples
  - AP233 Alignment

## Background

## Motivation

- Systems Engineers need a standard language for analyzing, specifying, designing, verifying and validating systems
- Many different modeling techniques
  - Behavior diagrams, IDEF0, N2 charts, ...
- Lack broad-based standard that supports general purpose systems modeling needs
  - satisfies broad set of modeling requirements (behavior, structure, performance, ...)
  - integrates with other disciplines (SW, HW, ..)
  - scalable
  - adaptable to different SE domains
  - supported by multiple tools

# Why UML for SE?

- De facto standard for software engineering
  - Tools and training are widely available, mature
- Extensible and adaptable to support SE requirements
  - Not just for software modeling.
  - Wide lifecycle, including logical specifications and deployment.
  - Behavior models with virtual machines.
  - More than pictures:
    - Includes a repository model/API and
    - ... and XML interchange.
- OMG standardization process supports UML customization for specific domains (e.g., systems engineering)

# INCOSE/OMG Joint Initiative

- OMG Systems Engineering Domain Special Interest Group chartered by INCOSE-OMG initiative in 2001
- Extend UML for specifying, designing, and verifying complex systems
- Provide capability for rigorous transfer of specifications among tools used by systems, software and hardware engineers
- Bridge the semantic gap, the professional engineering discipline gap, and the training gap that exists between systems engineering and software engineering
- Create a semantic bridge between ISO 10303-233 standard and ISO/IEC 19501 UML standard

# SE DSIG Tasks

- Drafted UML for SE RFI, issued by OMG in 2002 to validate SE usage and limitations
- Supported development of SE concept model
- Collaborated with UML 2 submission teams
- Performed detailed requirements analysis
- Drafted UML for SE Request for Proposal, issued by the OMG in March 2003 (ad/03-03-41)
- Extensive coordination with OMG, INCOSE, and ISO AP233 WG

#### SysML Collaborators

- Partnership of modeling tool users, vendors, and government agencies.
  - Organized in May 2003 to respond to UML for Systems Engineering RFP
  - Industry
    - Lockheed Martin, Raytheon, Northrop Grumman, Boeing, BAE SYSTEMS, Motorola, Deere & Company, Eurostep, American Systems, Astrium Space, Israel Aircraft Industries, oose.de, THALES
  - Government
    - DoD/OSD, NASA/JPL, NIST
  - Tool Vendors
    - IBM/Rational, Telelogic, Vitech, Artisan, I-Logix, Popkin, Project Technology, Gentleware, Ceira, PivotPoint Technology, 3SL, EmbeddedPlus
  - Liaisons
    - AP233, CCSDS, EAST, INCOSE, Rosetta

## Stakeholder Review & Feedback

### Press Development

- Writing initial submission 5-12/04
- INCOSE review 1/04
- Initial submission to OMG 2/04
- INCOSE review 5/04
- Extensive coordination with UML 2 FTF
- Revised submission 10/04
- Publications
  - INCOSE Symposium 2003, 2004 papers
  - INCOSE Insight article
  - INCOSE Journal article
  - Product Development Journal article
- Initial vendor prototypes were favorably received during MDSD WG demo at INCOSE Symposium, 7/05
  - Artisan, EmbeddedPlus, I-Logix, Telelogic

## SysML Overview

# **OMG RFP Summary**

- Structure
  - e.g., system hierarchy, interconnection
- Behavior
  - e.g., function-based behavior, state-based behavior
- Properties
  - e.g., parametric models, time property
- Requirements
  - e.g., requirements hierarchy, traceability
- Verification
  - e.g., test cases, verification results
- Other
  - e.g., trade studies, spatial relationships

#### UML 2 Reuse

- Identify UML 2 subset needed to support the UML for SE RFP requirements and evaluation criteria
  - reduce tool implementation requirements for SE vendors
  - reduce training requirements for SE's
- SysML complements UML 2
  - Two languages can be used together by teams that include both software and system engineers

# UML 2 Reuse



# SysML Diagram Taxonomy



15

### Assemblies





Bock, C., "UML 2 Activity Model Support for Systems Engineering Functional Flow Diagrams" INCOSE Journal, 6:4 (2003) & "SysML and UML 2 Support for Activity Modeling" to appear.



## Parametrics



## Allocation



## Requirements



# SysML and AP233 Alignment



## Conclusion

- SE DSIG established as joint INCOSE/OMG initiative to
  - extend UML to support SE
  - align with AP233
- Broad collaboration established to respond to RFP
  - includes wide range of contributors from industry, tool vendors and government agencies
  - multiple stakeholder reviews
- SysML approach architecturally extends UML 2 Superstructure
  - reuses a subset of UML 2 "out of the box"
- Changes to UML 2 include:
  - enhancements to composite structure and activity diagrams
  - two new diagram types (requirements and parametrics)
  - other changes include allocation relationships and auxiliary constructs
  - Alignment with ISO AP233
- Working towards adoption of SysML v1.0 in Q1 2006
- Latest draft specification:
  - http://www.omg.org/cgi-bin/doc?ad/05-01-03