选择排序(selection sort)的工作原理非常简单:开启一个循环,每轮从未排序区间选择最小的元素,将其放到已排序区间的末尾。

设数组的长度为n,选择排序的算法流程如图 11-2 所示。

- 1. 初始状态下,所有元素未排序,即未排序(索引)区间为 [0, n-1]。
- 2. 选取区间 [0, n-1] 中的最小元素,将其与索引 0 处的元素交换。完成后,数组前 1 个元素已排序。
- 3. 选取区间 [1, n-1] 中的最小元素,将其与索引 1 处的元素交换。完成后,数组前 2 个元素已排序。
- 4. 以此类推。经过n-1轮选择与交换后,数组前n-1个元素已排序。
- 5. 仅剩的一个元素必定是最大元素,无须排序,因此数组排序完成。
- 时间复杂度为 $O(n^2)$ 、非自适应排序: 外循环共 n-1 轮,第一轮的未排序区间长度为 n ,最后一轮的未排序区间长度为 2 ,即各轮外循环分别包含 n、n-1、...、3、2 轮内循环,求和为 $\frac{(n-1)(n+2)}{2}$ 。
- 空间复杂度为 O(1)、原地排序: 指针 i 和 j 使用常数大小的额外空间。
- 非稳定排序:如图 11-3 所示,元素 nums[i]有可能被交换至与其相等的元素的右边,导致两者的相对顺序发生改变。

<u>冒泡排序(bubble sort)</u>通过连续地比较与交换相邻元素实现排序。这个过程就像气泡从底部升到顶部 一样,因此得名冒泡排序。

如图 11-4 所示,冒泡过程可以利用元素交换操作来模拟:从数组最左端开始向右遍历,依次比较相邻元素大小,如果"左元素 > 右元素"就交换二者。遍历完成后,最大的元素会被移动到数组的最右端。

设数组的长度为 n ,冒泡排序的步骤如图 11-5 所示。

- 1. 首先,对 n 个元素执行"冒泡",**将数组的最大元素交换至正确位置**。
- 2. 接下来,对剩余 n-1 个元素执行"冒泡",**将第二大元素交换至正确位置**。
- 3. 以此类推,经过 n-1 轮 "冒泡"后,前 n-1 大的元素都被交换至正确位置。
- 4. 仅剩的一个元素必定是最小元素,无须排序,因此数组排序完成。
- **时间复杂度为** $O(n^2)$ **、自适应排序**: 各轮"冒泡"遍历的数组长度依次为 n-1、n-2、...、2、1,总和为 (n-1)n/2。在引入 flag 优化后,最佳时间复杂度可达到 O(n)。
- 空间复杂度为 O(1)、原地排序: 指针 i 和 j 使用常数大小的额外空间。
- 稳定排序:由于在"冒泡"中遇到相等元素不交换。

插入排序(insertion sort)是一种简单的排序算法,它的工作原理与手动整理一副牌的过程非常相似。

具体来说,我们在未排序区间选择一个基准元素,将该元素与其左侧已排序区间的元素逐一比较大小, 并将该元素插入到正确的位置。

图 11-6 展示了数组插入元素的操作流程。设基准元素为 base ,我们需要将从目标索引到 base 之间的 所有元素向右移动一位,然后将 base 赋值给目标索引。 插入排序的整体流程如图 11-7 所示。

- 1. 初始状态下,数组的第1个元素已完成排序。
- 2. 选取数组的第2个元素作为 base ,将其插入到正确位置后,数组的前2个元素已排序。
- 3. 选取第3个元素作为 base ,将其插入到正确位置后,数组的前3个元素已排序。
- 4. 以此类推,在最后一轮中,选取最后一个元素作为 base ,将其插入到正确位置后,**所有元素均已排 序**。
- 时间复杂度为 $O(n^2)$ 、自适应排序:在最差情况下,每次插入操作分别需要循环 n-1、n-2、...、2、1 次,求和得到 (n-1)n/2,因此时间复杂度为 $O(n^2)$ 。在遇到有序数据时,插入操作会提前终止。当输入数组完全有序时,插入排序达到最佳时间复杂度 O(n)。
- 空间复杂度为 O(1)、原地排序: 指针 i 和 j 使用常数大小的额外空间。
- 稳定排序: 在插入操作过程中, 我们会将元素插入到相等元素的右侧, 不会改变它们的顺序。

插入排序的时间复杂度为 $O(n^2)$,而我们即将学习的快速排序的时间复杂度为 $O(n \log n)$ 。尽管插入排序的时间复杂度更高,**但在数据量较小的情况下,插入排序通常更快**。

这个结论与线性查找和二分查找的适用情况的结论类似。快速排序这类 $O(n \log n)$ 的算法属于基于分治策略的排序算法,往往包含更多单元计算操作。而在数据量较小时, n^2 和 $n \log n$ 的数值比较接近,复杂度不占主导地位,每轮中的单元操作数量起到决定性作用。

实际上,许多编程语言(例如 Java)的内置排序函数采用了插入排序,大致思路为:对于长数组,采用基于分治策略的排序算法,例如快速排序;对于短数组,直接使用插入排序。

虽然冒泡排序、选择排序和插入排序的时间复杂度都为 $O(n^2)$,但在实际情况中,**插入排序的使用频率** 显**著高于冒泡排序和选择排序**,主要有以下原因。

- 冒泡排序基于元素交换实现,需要借助一个临时变量,共涉及3个单元操作;插入排序基于元素赋值实现,仅需1个单元操作。因此,冒泡排序的计算开销通常比插入排序更高。
- 选择排序在任何情况下的时间复杂度都为 $O(n^2)$ 。如果给定一组部分有序的数据,插入排序通常比选择排序效率更高。
- 选择排序不稳定,无法应用于多级排序。

快速排序(quick sort)是一种基于分治策略的排序算法,运行高效,应用广泛。

快速排序的核心操作是"哨兵划分",其目标是:选择数组中的某个元素作为"基准数",将所有小于基准数的元素移到其左侧,而大于基准数的元素移到其右侧。具体来说,哨兵划分的流程如图 11-8 所示。

- 1. 选取数组最左端元素作为基准数,初始化两个指针 i 和 j 分别指向数组的两端。
- 2. 设置一个循环,在每轮中使用 i (j)分别寻找第一个比基准数大(小)的元素,然后交换这两个元素。
- 3. 循环执行步骤 2. , 直到 i 和 j 相遇时停止,最后将基准数交换至两个子数组的分界线。

快速排序的整体流程如图 11-9 所示。

- 1. 首先,对原数组执行一次"哨兵划分",得到未排序的左子数组和右子数组。
- 2. 然后,对左子数组和右子数组分别递归执行"哨兵划分"。
- 3. 持续递归,直至子数组长度为1时终止,从而完成整个数组的排序。

从名称上就能看出,快速排序在效率方面应该具有一定的优势。尽管快速排序的平均时间复杂度与"归并排序"和"堆排序"相同,但通常快速排序的效率更高,主要有以下原因。

- 出现最差情况的概率很低: 虽然快速排序的最差时间复杂度为 $O(n^2)$,没有归并排序稳定,但在绝大多数情况下,快速排序能在 $O(n \log n)$ 的时间复杂度下运行。
- 缓存使用效率高:在执行哨兵划分操作时,系统可将整个子数组加载到缓存,因此访问元素的效率较高。而像"堆排序"这类算法需要跳跃式访问元素,从而缺乏这一特性。
- **复杂度的常数系数小**:在上述三种算法中,快速排序的比较、赋值、交换等操作的总数量最少。这 与"插入排序"比"冒泡排序"更快的原因类似。
- **时间复杂度为** $O(n\log n)$ 、**自适应排序**:在平均情况下,哨兵划分的递归层数为 $\log n$,每层中的总循环数为 n,总体使用 $O(n\log n)$ 时间。在最差情况下,每轮哨兵划分操作都将长度为 n 的数组划分为长度为 0 和 n-1 的两个子数组,此时递归层数达到 n,每层中的循环数为 n,总体使用 $O(n^2)$ 时间。
- **空间复杂度为** O(n)、**原地排序**:在输入数组完全倒序的情况下,达到最差递归深度 n ,使用 O(n) 栈帧空间。排序操作是在原数组上进行的,未借助额外数组。
- **非稳定排序**: 在哨兵划分的最后一步, 基准数可能会被交换至相等元素的右侧。

快速排序在某些输入下的时间效率可能降低。举一个极端例子,假设输入数组是完全倒序的,由于我们选择最左端元素作为基准数,那么在哨兵划分完成后,基准数被交换至数组最右端,导致左子数组长度为n-1、右子数组长度为0。如此递归下去,每轮哨兵划分后都有一个子数组的长度为0,分治策略失效,快速排序退化为"冒泡排序"的近似形式。

为了尽量避免这种情况发生,**我们可以优化哨兵划分中的基准数的选取策略**。例如,我们可以随机选取 一个元素作为基准数。然而,如果运气不佳,每次都选到不理想的基准数,效率仍然不尽如人意。

需要注意的是,编程语言通常生成的是"伪随机数"。如果我们针对伪随机数序列构建一个特定的测试 样例,那么快速排序的效率仍然可能劣化。

为了进一步改进,我们可以在数组中选取三个候选元素(通常为数组的首、尾、中点元素),**并将这三个候选元素的中位数作为基准数**。这样一来,基准数"既不太小也不太大"的概率将大幅提升。当然,我们还可以选取更多候选元素,以进一步提高算法的稳健性。采用这种方法后,时间复杂度劣化至 $O(n^2)$ 的概率大大降低。

在某些输入下,快速排序可能占用空间较多。以完全有序的输入数组为例,设递归中的子数组长度为 m,每轮哨兵划分操作都将产生长度为 0 的左子数组和长度为 m-1 的右子数组,这意味着每一层递归调用减少的问题规模非常小(只减少一个元素),递归树的高度会达到 n-1,此时需要占用 O(n) 大小的栈帧空间。

为了防止栈帧空间的累积,我们可以在每轮哨兵排序完成后,比较两个子数组的长度,**仅对较短的子数组进行递归**。由于较短子数组的长度不会超过 n/2 ,因此这种方法能确保递归深度不超过 $\log n$,从而将最差空间复杂度优化至 $O(\log n)$ 。代码如下所示:

<u>归并排序(merge sort)</u>是一种基于分治策略的排序算法,包含图 11-10 所示的"划分"和"合并"阶段。

- 1. 划分阶段:通过递归不断地将数组从中点处分开,将长数组的排序问题转换为短数组的排序问题。
- 2. **合并阶段**: 当子数组长度为1时终止划分,开始合并,持续地将左右两个较短的有序数组合并为一个较长的有序数组,直至结束。

如图 11-11 所示,"划分阶段"从顶至底递归地将数组从中点切分为两个子数组。

- 1. 计算数组中点 mid ,递归划分左子数组(区间 [left, mid])和右子数组(区间 [mid + 1, right])。
- 2. 递归执行步骤 1. , 直至子数组区间长度为1时终止。

"合并阶段"从底至顶地将左子数组和右子数组合并为一个有序数组。需要注意的是,从长度为 1 的子数组开始合并,合并阶段中的每个子数组都是有序的。

观察发现,归并排序与二叉树后序遍历的递归顺序是一致的。

- **后序遍历**: 先递归左子树, 再递归右子树, 最后处理根节点。
- 归并排序: 先递归左子数组,再递归右子数组,最后处理合并。

归并排序的实现如以下代码所示。请注意, nums 的待合并区间为 [left, right], 而 tmp 的对应区间为 [0, right - left]。

- **时间复杂度为** $O(n \log n)$ 、**非自适应排序**: 划分产生高度为 $\log n$ 的递归树,每层合并的总操作数量为 n ,因此总体时间复杂度为 $O(n \log n)$ 。
- **空间复杂度为** O(n)、**非原地排序**: 递归深度为 $\log n$,使用 $O(\log n)$ 大小的栈帧空间。合并操作需要借助辅助数组实现,使用 O(n) 大小的额外空间。
- 稳定排序: 在合并过程中,相等元素的次序保持不变。

11.6.3 链表排序

对于链表,归并排序相较于其他排序算法具有显著优势,**可以将链表排序任务的空间复杂度优化至** O(1)

- 划分阶段: 可以使用"迭代"替代"递归"来实现链表划分工作,从而省去递归使用的栈帧空间。
- 合并阶段:在链表中,节点增删操作仅需改变引用(指针)即可实现,因此合并阶段(将两个短有序链表合并为一个长有序链表)无须创建额外链表。

具体实现细节比较复杂,有兴趣的读者可以查阅相关资料进行学习。

<u>堆排序(heap sort)</u>是一种基于堆数据结构实现的高效排序算法。我们可以利用已经学过的"建堆操作"和"元素出堆操作"实现堆排序。

- 1. 输入数组并建立小顶堆,此时最小元素位于堆顶。
- 2. 不断执行出堆操作,依次记录出堆元素,即可得到从小到大排序的序列。

以上方法虽然可行,但需要借助一个额外数组来保存弹出的元素,比较浪费空间。在实际中,我们通常 使用一种更加优雅的实现方式。

11.7.1 算法流程

设数组的长度为n, 堆排序的流程如图 11-12 所示。

- 1. 输入数组并建立大顶堆。完成后,最大元素位于堆顶。
- 2. 将堆顶元素(第一个元素)与堆底元素(最后一个元素)交换。完成交换后,堆的长度减1,已排序元素数量加1。
- 从堆顶元素开始,从顶到底执行堆化操作(sift down)。完成堆化后,堆的性质得到修复。
- 4. 循环执行第 2. 步和第 3. 步。循环 n-1 轮后,即可完成数组排序。

- **时间复杂度为** $O(n \log n)$ 、**非自适应排序**: 建堆操作使用 O(n) 时间。从堆中提取最大元素的时间 复杂度为 $O(\log n)$,共循环 n-1 轮。
- 空间复杂度为 O(1)、原地排序:几个指针变量使用 O(1) 空间。元素交换和堆化操作都是在原数组上进行的。
- **非稳定排序**:在交换堆顶元素和堆底元素时,相等元素的相对位置可能发生变化。
- **时间复杂度为** $O(n \log n)$ 、**非自适应排序**: 建堆操作使用 O(n) 时间。从堆中提取最大元素的时间 复杂度为 $O(\log n)$,共循环 n-1 轮。
- 空间复杂度为 O(1)、原地排序:几个指针变量使用 O(1) 空间。元素交换和堆化操作都是在原数组上进行的。
- 非稳定排序:在交换堆顶元素和堆底元素时,相等元素的相对位置可能发生变化。

前述几种排序算法都属于"基于比较的排序算法",它们通过比较元素间的大小来实现排序。此类排序 算法的时间复杂度无法超越 $O(n\log n)$ 。接下来,我们将探讨几种"非比较排序算法",它们的时间复 杂度可以达到线性阶。

<u>桶排序(bucket sort)</u>是分治策略的一个典型应用。它通过设置一些具有大小顺序的桶,每个桶对应一个数据范围,将数据平均分配到各个桶中;然后,在每个桶内部分别执行排序;最终按照桶的顺序将所有数据合并。

11.8.1 算法流程

考虑一个长度为 n 的数组,其元素是范围 [0,1) 内的浮点数。桶排序的流程如图 11-13 所示。

- 1. 初始化 k 个桶,将 n 个元素分配到 k 个桶中。
- 2. 对每个桶分别执行排序(这里采用编程语言的内置排序函数)。
- 3. 按照桶从小到大的顺序合并结果。

桶排序适用于处理体量很大的数据。例如,输入数据包含 100 万个元素,由于空间限制,系统内存无法一次性加载所有数据。此时,可以将数据分成 1000 个桶,然后分别对每个桶进行排序,最后将结果合并。

- 时间复杂度为 O(n+k): 假设元素在各个桶内平均分布,那么每个桶内的元素数量为 $\frac{n}{k}$ 。假设排序单个桶使用 $O(\frac{n}{k}\log\frac{n}{k})$ 时间,则排序所有桶使用 $O(n\log\frac{n}{k})$ 时间。**当桶数量** k 比较大时,时间复杂度则趋向于 O(n) 。合并结果时需要遍历所有桶和元素,花费 O(n+k) 时间。
- 自适应排序:在最差情况下,所有数据被分配到一个桶中,且排序该桶使用 O(n²) 时间。
- 空间复杂度为 O(n+k)、非原地排序:需要借助 k 个桶和总共 n 个元素的额外空间。
- 桶排序是否稳定取决于排序桶内元素的算法是否稳定。

11.8.3 如何实现平均分配

桶排序的时间复杂度理论上可以达到 O(n),关键在于将元素均匀分配到各个桶中,因为实际数据往往不是均匀分布的。例如,我们想要将淘宝上的所有商品按价格范围平均分配到 10 个桶中,但商品价格分布不均,低于 100 元的非常多,高于 1000 元的非常少。若将价格区间平均划分为 10 个,各个桶中的商品数量差距会非常大。

为实现平均分配,我们可以先设定一条大致的分界线,将数据粗略地分到 3 个桶中。**分配完毕后,再将** 商品较多的桶继续划分为 3 个桶,直至所有桶中的元素数量大致相等。

如图 11-14 所示,这种方法本质上是创建一棵递归树,目标是让叶节点的值尽可能平均。当然,不一定要每轮将数据划分为 3 个桶,具体划分方式可根据数据特点灵活选择。

11.9.1 简单实现

先来看一个简单的例子。给定一个长度为n的数组nums,其中的元素都是"非负整数",计数排序的整体流程如图 11-16 所示。

- 1. 遍历数组,找出其中的最大数字,记为 m ,然后创建一个长度为 m+1 的辅助数组 counter 。
- 2. 借助 counter 统计 nums 中各数字的出现次数,其中 counter[num] 对应数字 num 的出现次数。 统计方法很简单,只需遍历 nums (设当前数字为 num),每轮将 counter[num] 增加 1 即可。
- 3. 由于 counter 的各个索引天然有序,因此相当于所有数字已经排序好了。接下来,我们遍历 counter ,根据各数字出现次数从小到大的顺序填入 nums 即可。

细心的读者可能发现了,**如果输入数据是对象,上述步骤 3. 就失效了**。假设输入数据是商品对象,我们想按照商品价格(类的成员变量)对商品进行排序,而上述算法只能给出价格的排序结果。

那么如何才能得到原数据的排序结果呢? 我们首先计算 counter 的"前缀和"。顾名思义,索引 i 处 的前缀和 prefix[i] 等于数组前 i 个元素之和:

$$\operatorname{prefix}[i] = \sum_{j=0}^{i} \operatorname{counter}[\mathbf{j}]$$

前缀和具有明确的意义, prefix[num] - 1 代表元素 num 在结果数组 res 中最后一次出现的索引。这个信息非常关键,因为它告诉我们各个元素应该出现在结果数组的哪个位置。接下来,我们倒序遍历原数组 nums 的每个元素 num ,在每轮迭代中执行以下两步。

- 1. 将 num 填入数组 res 的索引 prefix[num] 1 处。
- 2. 令前缀和 prefix[num] 减小1,从而得到下次放置 num 的索引。

遍历完成后,数组 res 中就是排序好的结果,最后使用 res 覆盖原数组 nums 即可。图 11-17 展示了 完整的计数排序流程。

- **时间复杂度为** O(n+m)、**非自适应排序**: 涉及遍历 nums 和遍历 counter ,都使用线性时间。 一般情况下 $n\gg m$,时间复杂度趋于 O(n) 。
- 空间复杂度为 O(n+m)、非原地排序: 借助了长度分别为 n 和 m 的数组 res 和 counter 。
- 稳定排序:由于向 res 中填充元素的顺序是"从右向左"的,因此倒序遍历 nums 可以避免改变相等元素之间的相对位置,从而实现稳定排序。实际上,正序遍历 nums 也可以得到正确的排序结果,但结果是非稳定的。

11.9.4 局限性

看到这里,你也许会觉得计数排序非常巧妙,仅通过统计数量就可以实现高效的排序。然而,使用计数 排序的前置条件相对较为严格。

计数排序只适用于非负整数。若想将其用于其他类型的数据,需要确保这些数据可以转换为非负整数, 并且在转换过程中不能改变各个元素之间的相对大小关系。例如,对于包含负数的整数数组,可以先给 所有数字加上一个常数,将全部数字转化为正数,排序完成后再转换回去。

计数排序适用于数据量大但数据范围较小的情况。比如,在上述示例中 m 不能太大,否则会占用过多空间。而当 $n \ll m$ 时,计数排序使用 O(m) 时间,可能比 $O(n \log n)$ 的排序算法还要慢。

上一节介绍了计数排序,它适用于数据量 n 较大但数据范围 m 较小的情况。假设我们需要对 $n=10^6$ 个学号进行排序,而学号是一个 8 位数字,这意味着数据范围 $m=10^8$ 非常大,使用计数排序需要分 配大量内存空间, 而基数排序可以避免这种情况。

基数排序(radix sort)的核心思想与计数排序一致,也通过统计个数来实现排序。在此基础上,基数排 序利用数字各位之间的递进关系,依次对每一位进行排序,从而得到最终的排序结果。

11.10.1 算法流程

以学号数据为例,假设数字的最低位是第1位,最高位是第8位,基数排序的流程如图11-18所示。

- 1. 初始化位数 k=1。
- 2. 对学号的第k位执行"计数排序"。完成后,数据会根据第k位从小到大排序。
- 3. 将 k 增加 1 ,然后返回步骤 2 . 继续迭代,直到所有位都排序完成后结束。

相较于计数排序,基数排序适用于数值范围较大的情况,但前提是数据必须可以表示为固定位数的格 式,且位数不能过大。例如,浮点数不适合使用基数排序,因为其位数k过大,可能导致时间复杂度 $O(nk) \gg O(n^2)$.

- 时间复杂度为 O(nk)、非自适应排序: 设数据量为 n、数据为 d 进制、最大位数为 k,则对某一位 执行计数排序使用 O(n+d) 时间,排序所有 k 位使用 O((n+d)k) 时间。通常情况下,d 和 k都相对较小,时间复杂度趋向 O(n)。
- 稳定排序: 当计数排序稳定时,基数排序也稳定;当计数排序不稳定时,基数排序无法保证得到正 确的排序结果。

			时间复杂度		空间复杂度	各户 州	-144-44-4-4	力法序件	# T U. **
		最佳	平均	最差	最差	稳定性	就地性	自适应性	基于比较
遍历排序 O(n²)	选择排序	O(n ²)	O(n ²)	O(n ²)	O(1)	非稳定	原地	非自适应	比较
	冒泡排序	O(n)	O(n ²)	O(n ²)	O(1)	稳定	原地	自适应	比较
	插入排序	O(n)	O(n ²)	O(n ²)	O(1)	稳定	原地	自适应	比较
分治排序 O(n log n)	快速排序	O(n log n)	O(n log n)	O(n ²)	O(log n)	非稳定	原地	自适应	比较
	归并排序	O(n log n)	O(n log n)	O(n log n)	O(n)	稳定	非原地	非自适应	比较
	堆排序	O(n log n)	O(n log n)	O(n log n)	O(1)	非稳定	原地	非自适应	比较
线性排序 O(n)	桶排序	O(n + k)	O(n + k)	O(n ²)	O(n + k)	稳定	非原地	自适应	非比较
	计数排序	O(n + m)	O(n + m)	O(n + m)	O(n + m)	稳定	非原地	非自适应	非比较
	基数排序	O(n k)	O(n k)	O(n k)	O(n + b)	稳定	非原地	非自适应	非比较

差 中 优

n 为数据量大小 桶排序中,k 为桶数量 计数排序中,m 为数据范围 基数排序中,k 为最大位数,数据为 b 进制

www.hello-algo.com

	迭代	递归
实现方式	循环结构	函数调用自身
时间效率	效率通常较高,无函数调用开销	每次函数调用都会产生开销
内存使用	通常使用固定大小的内存空间	累积函数调用可能使用大量的栈帧空间
适用问题	适用于简单循环任务,代码直观、可 读性好	适用于子问题分解,如树、图、分治、回溯等,代码结 构简洁、清晰

	数组	链表
存储方式	连续内存空间	分散内存空间
容量扩展	长度不可变	可灵活扩展
内存效率	元素占用内存少、但可能浪费空间	元素占用内存多
访问元素	O(1)	O(n)
添加元素	O(n)	O(1)
删除元素	O(n)	O(1)