A 11:1 N 1	Universidad Nacional del Litoral
Apellido y Nombre:	Facultad de Ingeniería y Ciencias Hídricas
	Departamento de Informática
Carrera: DNI:	
[Llenar con letra mayúscula de imprenta GRANDE]	Algoritmos y Estructuras de Datos

Algoritmos y Estructuras de Datos. 1er Parcial. Tema: **2c.** [22 de Abril de 2003]

[Ej.	1]	$[{\bf Tiempos}$	de ejecución	(10 puntos)]	Dadas	las funciones
------	----	------------------	--------------	--------------	-------	---------------

- $T_1(n) = 2^n + n^2$
- $T_2(n) = 3^n + n^3$
- $T_3(n) = \sqrt{n} + \log n$
- $T_4(n) = \sqrt{n} + n!$

decir cuál de los siguientes ordenamientos es el correcto

- $T_4 < T_1 < T_3 < T_2$
- $T_1 < T_4 < T_2 < T_3$ $T_2 < T_3 < T_4 < T_1$

- [Ej. 2] [Primitivas (15 puntos)] Escribir las funciones primitivas del TAD Lista con celdas simplemente enlazadas por cursores. Es decir, implementar en Pascal los siguientes procedimientos/funciones: INSERTA(x,p,L), LOCALIZA(x,L), RECUPERA(p,L), SUPRIME(p,L), SIGUIENTE(p,L), ANULA(L), PRIMERO(L), y FIN(L). [Nota: Se recomienda utilizar celda de encabezamiento. Puede usarse puntero a la última celda o no.]
- [Ej. 3] [Programación (total = 45 puntos)] Dada una secuencia de números $\{a_1, a_2, ..., a_n\}$, vamos a decir que su "máxima desviación", es la máxima diferencia (en valor absoluto) entre todos sus números: $\max_{dev}(a_1, a_2, ..., a_n) = (\max_{j=1}^n a_j) - (\min_{j=1}^n a_j).$
 - (a) [35 puntos] Escribir un procedimiento "procedure SUAVIZA_M(var L:lista; m, maxdif:integer): integer;" que elimina la mínima cantidad de elementos de L de tal manera que la máxima desviación de una subsecuencia de m elementos consecutivos es maxdif. Por ejemplo, si L=(1,3,5,4,2,3,7,4) entonces SUAVIZA_M(L,3,3) debe retornar L=(1,3,4,2,3,4), habiéndose eliminado los elementos 5 y 7. Se sugiere el siguiente algoritmo, para cada posición p en la lista recorrer los m-1 elementos siguientes a p, removiendo aquellos elementos que tienen una diferencia con el elemento p mayor a maxdif. Utilizar las primitivas del TAD LISTA: INSERTA(x,p,L), RECUPERA(p,L), SUPRIME(p,L), SIGUIENTE(p,L), ANULA(L), PRIMERO(L), y FIN(L).
 - (b) [5 puntos] Cual es el tiempo de ejecución, en el peor caso, si m=2, como función de n,
 - (c) [5 puntos] Cual es el tiempo de ejecución en el peor caso, si m=n/2 (asumimos que n es par), como función de n.
- [Ej. 4] [Programación básica de pilas y colas (total = 20 puntos)] Escribir los siguientes procedimientos/funciones
 - (a) [10 puntos] Escribir un procedimiento "procedure DEJAPAR(var P:pila)" que elimina de la pila P todos los elementos impares usando una pila auxiliar. Los elementos deben quedar en el mismo orden en el que estaban. Por ejemplo, si P=(tope=6,1,2,4,3,5,6) entonces después de DEJAPAR(P), debe quedar P=(tope=6,2,4,6). Usar las primitivas del TAD PILA: ANULA(P), METE(x,P), SACA(P), TOPE(P) y VACIA(P).

	do y Nombre:	Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática
Carrer [Llenar	ra: DNI: con letra mayúscula de imprenta GRANDE]	Algoritmos y Estructuras de Datos
	máximo de los elementos de una cola quedar en el mismo estado que origin	unction MAXCOLA(C:pila): integer" que retorna el usando una cola auxiliar. Finalmente la cola debe nalmente. Utilizar las primitivas del TAD COLA: A_DE_COLA(C), VACIA(C), y FRENTE_DE_COLA(C).
[Ej. 5]		a cruz el casillero apropiado. Atención: Algunas ladas" y tienen puntajes negativos!!]
	 (n es el número de elementos en la limitation in siempre. en el mejor caso. en el peor caso. cuando el elemento no está en cuando el elemento no está en cuando por arreglos es (N_d de elementos del dominio que tienen O(N_d) O(N_d) O(n) O(1) O(n²) (c) El requerimiento de memoria para el 	calcula (M,d,r) para el TAD CORRESPONDENCIA es el número de elementos en el dominio, n es el número valores asignados). TAD CORRESPONDENCIA implementado por listas es dominio, n es el número de elementos del dominio que

Universidad Nacional del Litoral

Apellido y Nombre: __