特許協力条約

PCT

REC'D 17 FEB 2006

WIPO PCT

特許性に関する国際予備報告(特許協力条約第二章)

(法第 12 条、法施行規則第 56 条) [PCT36 条及びPCT規則 70]

出願人又は代理人 の書類記号 P975-PCT	今後の手続きについては、様式PCT/IPEA/416を参照すること。								
国際出願番号 PCT/JP2005/003805	国際出願日(日.月.年)28.02.2005	優先日 (日.月.年) 11.03.2004							
国際特許分類(IPC)Int.Cl. C22C38/00(2006.01), C22C38/06(2006.01), C22C38/58(2006.01), C21D9/46(2006.01), C23C2/02(2006.01), C23C2/06(2006.01)									
出願人(氏名又は名称)									
新日本製鐵株式会社									

	
1. この報告書は、F 法施行規則第 57 g	・CT35条に基づきこの国際予備審査機関で作成された国際予備審査報告である。 条(PCT36条)の規定に従い送付する。
2. この国際予備審査	・報告は、この表紙を含めて全部で <u>4</u> ページからなる。
 この報告には次の a. ▼ 附属書類に)附属物件も添付されている。 は全部で <u>13</u> ページである。
▽ 補正さま	nて、この報告の基礎とされた及び/又はこの国際予備審査機関が認めた訂正を含む明細書、請求の錠 ′又は図面の用紙(PCT規則 70.16 及び実施細則第 607 号参照)
厂 第 I 欄 4 国際予備	4. 及び補充欄に示したように、出願時における国際出願の開示の範囲を超えた補正を含むものとこの 情審査機関が認定した差替え用紙
b. 電子媒体は配列表に関 配列表に関 (実施細則	全部で する補充欄に示すように、電子形式による配列表又は配列表に関連するテーブルを含む。 第 802 号参照)
4. この国際予備審査	報告は、次の内容を含む。
□ 第Ⅱ# □ 第Ⅲ# □ 第Ⅳ#	間 国際予備審査報告の基礎 優先権 一般 一性の 大如 一性の 大如 「一性の 大如 「一性の 大如 「一性の 大力」 「一性の 大力」 「一个
▼ 第VII相	ある種の引用文献

国際予備審査の請求書を受理した日 10.01.2006	国際予備審査報告を作成した日 06.02.2006					
名称及びあて先 日本国特許庁(I PEA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 佐藤 陽一 電話番号 03-3581-1101 内線 3435					

きI 欄	報告の基礎			
. 音記	語に関し、この予備審査報告は以下のものを	を基礎と	した。	
	出願時の言語による国際出願	- curie -	0/0	
	出願時の言語から次の目的のための言語	である	語に	翻訳された。この国際出願の容別立
	国際調査(PCT規則12.3(a)及び23	- 3.1(b))	ma (-	間がていいて、この国际山脈の側が又
	国際公開 (PCT規則12.4(a))			
	国際予備審査 (PCT規則55.2(a)又	(は55.3	(a))	
この た身	D報告は下記の出願書類を基礎とした。 (整替え用紙は、この報告において「出願時」	法第6条	(PCT14条)の規定に	- 基づく命令に応答するために提出さ
П	出願時の国際出願書類	۷ ک	この報告に称何している	¿/\objection)
V				
B 7				
	-7		出願時に提出されたもの	
	第	ヾー・シ*、 ぺー・ンシ*	10.01.2006	付けで国際予備審査機関が受理したも
V	請求の範囲			付けで国際予備審査機関が受理したも 付けで国際予備審査機関が受理したも
X.T I			Manage I and a second	
	第	_ 項、	出願時に提出されたもの	
	第3, 4, 8	_ 堧*、 項*、	10.01、2006	とつき補正されたもの 付けで国際子供家本地理が変現した。
	第	_ 項*、		付けで国際予備審査機関が受理したも
	図面			一
	第 ページ	/図	出廊時に担出されたまで	
	第	/図*、	日ができては日のようにある) 付けで国際予備審査機関が受理したもの 付けで国際予備審査機関が受理したもの
	第 ページ	/図*、		付けで国際予備察本機関が英理したもの
	配列表に関する補充欄を参照すること 補正により、下記の書類が削除された。 明細書 第 第 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			ページ 頁 ページ/図
•	100万年 100 00 00 (英語の)	記載する	5 (2)	
Γ.	この部件は、全分間についたりとい			
II. ~2	この報告は、補充欄に示したように、この えてされたものと認められるので、その補	報告に終	系付されかつ以下に示し りなかったものよして佐	た補正が出願時における開示の範囲を表

I.	明細書 第 請求の範囲 第		^	ージ
ŕ	図面 第		〜 項	28 (177)
Г				
Г	配列表に関連するテーブル(具体的に記	記載する	こと)	
. に診	亥当する場合、その用紙に "superseded" と	上記入さ	れることがある。	
			2 30	

見解			
新規性(N)	請求の範囲	1-10	
	請求の範囲		
進歩性(IS)	請求の範囲	1-10	
	請求の範囲		
産業上の利用可能性(1-10	有
	請求の範囲		無
文献及び説明(PC	T規則 70. 7)		
文献 1 : J	P 6-108152	A(株式会社神戸製鋼所)	
1	994.04.19,	実施例、図2(ファミリーなし)	
文献 2 : J	P 5-331537	A (日新製鋼株式会社)	
I I	993. 12. 14,	表1 (ファミリーなし)	
		0 A (川崎製鉄株式会社)	
	001.01.09,		
Š.	WO 00/6511	9 A1&AU 3987400 A	
Q.	EP 1096029	A1&KR 1043874 A	-
œ	US 6423426	B1&TW 489134 A	
請求の範囲1-	1 0		
		際調査報告で引用された何れの文庫	
カアおらず 新	日本な方子ス 1 かま	「京明 直 刊 一 で が けん 一 で で しょう で しょう で こう	歌にも 開え
れておらり、利力 ものである。	呪任を作りる。 レかも	その点は当業者といえども容易に	想到し得な
ものである。			

第VII棡 国際出願の不備

この国際出願の形式又は内容について、次の不備を発見した。

鋼種AK及びALは、Alをそれぞれ0.212mass%、0.106mass%含有する。この記載は、本願発明の、0.25 \sim 1.8mass%含有するとの記載と一致していない。しかしながら、実施例では、これらが本発明例として記載されている。

げ性に優れる溶融亜鉛めっきに最適なDP組織を得ることができることを見いだした。

更に、本発明においては、遅れ破壊や二次加工脆性の問題が生じないように、不可避的に含まれる5%以下の残留オーステナイトを許容しても構わない。本発明は上述した技術思想に基づくもので、その要旨は次の通りである。

- (1)質量%で、C:0.01~0.3%、Si:0.005~0.6%、Mn:0.1~3.3%、P:0.001~0.06%、S:0.001~0.01%、A1:0.25~1.8%、N:0.005~0.01%を含有し、残部Feおよび不可避的不純物からなり、金属組織がフェライトと面積率で5%以上60%以下の焼戻しマルテンサイトからなることを特徴とする成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板。
- (2) 前記溶融亜鉛めっき複合高強度鋼板が、質量%で、更に、M o:0.0.05~0.5%、V:0.01~0.1%、Ti:0.0 1~0.2%、Nb:0.005~0.05%、Cu:1.0%以下、Ni:1.0%以下、Cr:1.0%以下、Ca:0.0003~0.005%、REM:0.0003~0.005%、B:0.0003~0.005%、REM:0.0005%、B:0.0003~0.005%、B:0.0003~0.005%、B:0.0005%。Cu:1.0%以下、Ca:0.0005%、B:0.0005%、REM:0.0005%、B:0.0005%、B:0.0005%。Cu:1.0%以下、Ca:0.0005%、B:0.0005%、REM:0.0005%、B:0.0005%。Cu:1.0%以下、Ca:0.0005%、B:0.0005%、B:0.0005%。Cu:1.0%以下、Ca:0.0005%、B:0.0005%、B:0.0005%。Cu:1.0%以下、Ca:0.0005%、B:0.0005%。Cu:1.0%以下、Ca:0.0005%、B:0.0005%。Cu:1.0%以下、Ca:0.0005%、B:0.0005%。Cu:1.0%以下、Ca:0.0005%、B:0.0005%。Cu:1.0%以下、Ca:0.0005%、B:0.0005%。Cu:1.0%以下、Ca:0.0005%、B:0.0005%。Cu:1.0%以下、Ca:0.0005%、B:0.0005%。Cu:1.0%以下、Ca:0.0005%、B:0.0005%。Cu:1.0%以下、Ca:0.0005%、B:0.0005%。Cu:1.0%以下、Ca:0.0005%、B:0.0005%。Cu:1.0%以下、Ca:0.0005%、B:0.0005%。Cu:1.0%以下、Ca:0.0005%、B:0.0005%。Cu:1.0%以下、Ca:0.0005%、B:0.0005%。Cu:1.0%以下、Ca:0.0005%、B:0.0005%。Cu:1.0%以下、Ca:0.0005%、B:0.0005%。Cu:1.0005%、Cu:1.0%以下、Ca:0.0005%、B:0.0005%。Cu:1.0005%、Cu:1.0
- (3) 更に、前記溶融亜鉛めっき複合高強度鋼板が、Si, A1の質量%と、狙いの引張強度(TS)が下記1式を満足することを特徴とする(1)または(2)記載の成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板。
 - (0.0012×[TS 狙い値] -0.29-[Si])/1.45<A1<1.5 -3 ×[

Sil··· 1式

[TS 狙い値] : 鋼板の引張強度設計値(M P a)、[Si] : S i 質量%、A 1 : A 1 質量%

- (4)質量%で、 $C:0.01\sim0.3\%$ 、 $Si:0.005\sim0$.6%、 $Mn:0.1\sim3.3\%$ 、 $P:0.001\sim0.06\%$ 、 $S:0.001\sim0.01\%$ 、 $A1:0.25\sim1.8\%$ 、 $N:0.005\sim0.01\%$ 、 $A1:0.25\sim1.8\%$ 、 $N:0.005\sim0.01\%$ 、 $A1:0.25\sim1.8\%$ 、 $N:0.005\sim0.01\%$ 残部Fe および不可避的不純物からなるスラブを熱延後冷延し、溶融亜鉛めっき加熱工程にてAcl \sim Acs +100 \sim Cの温度に加熱し、30秒 \sim 30分保持後、1 \sim Acs +100 \sim Cの温度に加熱し、30秒 \sim 30分保持後、1 \sim C/S以上の冷却速度で450 \sim 600 \sim Cの温度に冷却し、次いでこの温度で溶融亜鉛めっき処理を施し、その後1 \sim C/S以上の冷却速度でマルテンサイト変態点以下の温度まで冷却した後、200 \sim 以上500 \sim 以下の温度に1秒 \sim 5分保持した後、5 \sim C/S以上の冷却速度で100 \sim 以下の温度に1秒 \sim 5分保持した後、5 \sim C/S以上の冷却速度で100 \sim 以下の焼戻しマルテンサイトからな金属組織を有することを特徴とする成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板の製造方法。
- (5)前記溶融亜鉛めっき処理後に、合金化処理を施すことを特徴とする(4)記載の成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板の製造方法。
- (6)前記亜鉛めっき層または合金化亜鉛めっき層上に、更に、クロメート処理、無機皮膜処理、化成処理、樹脂皮膜処理の何れか1種または2種以上の後処理を施すことを特徴とする(4)または(5)記載の成形性および穴拡げ性に優れた 溶融亜鉛めっき複合高強度鋼板の製造方法。
- (7) 前記溶融亜鉛めっき複合高強度鋼板が、質量%で、更に、M o:0.05~0.5%、V:0.01~0.1%、Ti:0.0

- (8) 更に、前記溶融亜鉛めっき複合高強度鋼板が、Si, Alの質量%と、狙いの引張強度(TS)が下記1式を満足することを特徴とする(4)~(7)の何れかの項に記載の成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板の製造方法。
- $(0.0012 \times [TS 狙い値] 0.29 [Si]) / 1.45 < A 1 < 1.5 3 <math>\times [Si]$ ・・・ 1 式

[TS 狙い値] : 鋼板の引張強度設計値(M P a)、[Si]: S i 質量%、A 1: A 1 質量%

- (9) 前記冷延から溶融亜鉛めっき加熱工程の間に、Ni, Fe, Co, Sn, Cuのうちの1 種または2 種以上のプレめっきを鋼板片面当たり $0.01\sim2.0$ g/m 2 施すことを特徴とする(4) \sim (8) の何れかの項に記載の成形性および穴拡げ性に優れた溶融 亜鉛めっき複合高強度鋼板の製造方法。
- (10)前記プレめっきの前に鋼板を酸洗処理を施すことを特徴とする(9)記載の成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板の製造方法。

発明を実施するための最良の形態

先ず、本発明に規定する溶融亜鉛めっき複合高強度鋼板の成分および金属組織の限定理由について説明する。

延性向上に有効であり、かつ多量の添加でも溶融亜鉛めっき性を阻害することはなく、しかも脱酸元素としても作用する。従って、延性向上の観点からA1は0.25%以上含有させる必要があるが、A1を過度に添加しても上記効果は飽和し、却って鋼を脆化させると同時に溶融亜鉛めっき性を低下させるため、その上限1.8%とした。

Nは、不可避的に含まれてくる元素であるが、多量に含有する場合には時効性を劣化させるのみならず、A1N析出量が多くなってA1添加の効果を減少させるので0.01%以下の含有が望ましい。また、不必要にNを低減することは製鋼工程でのコストが増大するので、0.0005%以上に制御することが好ましい。

本発明において、更に高い強度を必要とする場合、めっき密着性改善のためにSiの代替として多量にAlを添加する場合には、特に $0.25\% \le Al \le 1.8\%$ の場合に、Al、SiとTSバランスを次の1式の範囲にすることで十分なフェライトを確保することができ、一層の溶融亜鉛めっき性と延性の両方が確保できる。

(0.0012×[TS 狙い値] -0.29-[Si])/1.45<A 1 < 1.5 -3 ×[Si]・・・ 1 式

ただし、上記1式で、[TS 狙い値] は鋼板の引張強度設計値(MPa)、[Si]はSi質量%、AlはAl質量%を意味するものである。

更に、本発明では上記成分に加え、更に、Mo:0.05~0.5%、V:0.01~0.1%、Ti:0.01~0.2%、Nb:0.05%、Cu:1%以下、Ni:1%以下、Cr:1%以下、Ca:0.003~0.005%、REM:0.0003~0.005%、B:0.0003~0.002%のうち

表 1 / 成分

鋼	種 TS狙 t	(3) C	J c:	7 77						
C			Si 8 0.176	Mn	P	S	N	Al	Mo	V
D										
E					0. 04					
F					0. 01					
G					0.010					
H				2. 78	0. 029					
I				2. 34	0. 039					
J	580	0. 058		2. 06	0.056					
K		0. 071		0. 17	0.033					
L	640	0. 082		1. 42	0. 037					
M		0. 082		2. 93	0.016					
N	700	0. 093		1. 84	0. 040					
0	760	0. 100		0. 70	0.007					
P	780	0. 110		2. 64	0.002					
Q	800	0. 120	0. 084	0. 17	0.057					
R	840	0. 120	0. 148	0. 17	0.010					
S	900	0. 134	0. 047	0. 19	0.016	0.008				
T	920	0. 140	0. 041	1. 71	0. 042	0.010	0. 0070			
U	950	0. 144	0. 076	0. 89	0. 021	0.006	0. 0050			
V	950	0. 142	0. 116		0. 033	0.011	0.0060		0. 190	
W	980	0. 147	0. 122	0. 27	0.046	0.007	0.0060		0. 250	
X	980	0. 150	0. 107	1. 76	0. 035	0.009	0. 0070		0. 270	
Y	1280	0. 210	0. 153	1. 20	0.059	0.006	0.0090			
Z	1320	0. 235	0. 176		0. 025	0. 005	0.0020			
AA	950	0. 122	0. 176	2. 73	0. 051	0.008	0.0040			
AB	1180	0. 152	0. 118	0. 27	0. 046	0.007	0.0060			
AC	1180	0. 150	0. 117	1. 95	0. 055	0.008	0.0090	0. 720	0.280	
AD	1200	0. 210	0. 299	2. 99	0. 059	0.006	0.0090	0.880		
AE	1350	0. 250	0. 233	1. 20 1. 36	0. 025	0. 005	0.0020	0.600		0.050
AF	1480	0. 289	0. 186	2. 06	0. 039	0.009	0.0080	0. 750	0. 270	
AG	780	0. 095	0. 247		0.052	0.004	0.0080	0.910		
AH	780	0. 101	0. 226	2. 09	0.008	0.007	0. 0029	0.892		
ΑI	1130	0. 261	0. 276	0. 43	0.006	0.008	0.0080	1. 712		
AJ	1470	0. 300	0. 289	0. 43	0. 043	0.009	0.0090	0.815		0.050
AK	1570	0. 295	0. 395		0. 038	0.005	0. 0005			
AL	1570	0. 298	0. 526	0. 52	0.040	0.004	0. 0032	0. 212	0. 150	
AM	310	<u>0. 009</u>	0. 202	0. 88	0. 049	0.006	0.0069	0. 106		
AN	1570	0. 320	0. 202	0. 43	0.007	0.010	0.0063	1. 778		
A0	980	0. 166	0. 113	2. 92	0. 003	0.006	0. 0007	0.462		
AP	880	0. 113		2. 64	0.056	0.009	0.0049	0. 422		0.050
AQ	1180	0. 164	0. 083	0. 09	0. 049	0. 001	0. 0006	0. 527		
AR	780	0. 104	0. 285	3. 44	0.020	0.004	0.0041	1. 247	0.072	
AS	540	0. 123	0. 267	2. 06	<u>0. 070</u>	0.003	0. 0009	0. 337		
AT	540	0. 038	0. 131	2. 50	0. 002	<u>0. 020</u>	0.0059	0. 377		
AU	720	0. 020	0. 145	0. 15	0.011	0. 010	<u>0. 0200</u>	0. 273		
AV	880	0. 130	0. 188	0. 45	0.046	0.002	0.0030	<u>0.009</u>		
	000	0. 100	0. 100	2. 39	0.051	0.006	0.0030	<u>2. 010</u>		

表1 (つづき)

鋼		Nb		Ni	Cr	Ca	В	REM	区分
		0.04	10						本発明成分
E		10							本発明成分
F									本発明成分
G									本発明成分
H									本発明成分
I	+								本発明成分
J									本発明成分
K									本発明成分
L									本発明成分
M								0.0020	本発明成分
N					_		0.001	0	本発明成分
0									本発明成分
P			- 			0.003	0		本発明成分
Q	1								本発明成分
R					0.060)			本発明成分
S			0.010	0.010					本発明成分
$\frac{\tilde{T}}{T}$			0.010	0.010					本発明成分
Ū	 								本発明成分
V									本発明成分
W					_				本発明成分
X	 			 					本発明成分
Y				 					本発明成分
Z	 	0. 020	 	 					本発明成分
AA		0.020		 					本発明成分
AB				 					本発明成分
AC	0.060			 	 	 			本発明成分
AD				 					本発明成分
AE		 		 	 				本発明成分
AF					 		 		本発明成分
AG		†	 		 	 	 		本発明成分
AH				 	 	 			本発明成分
ΑI		 			 	 			本発明成分
AJ		<u> </u>	 	 	 		 		本発明成分
AK	0.045			ļ — — — — — — — — — — — — — — — — — — —	 	 			本発明成分
AL			0.030	0.040	 				本発明成分
AM			0.000	0.040	-	 		-	本発明成分
AN	· · · · · · · · · · · · · · · · · · ·		0. 020	0. 025	 	-			比較成分例
10			0.020	0.040		0.0000		0.0030	比較成分例
AΡ	0. 022	0.027	 		 	0.0030	0.0011		比較成分例
\Q						 	0.0010	<u> </u>	比較成分例
IR						ļ			比較成分例
S		0. 023	 		0.005	ļ			比較成分例
T		0.000	 		0. 025		·		比較成分例
Ū									比較成分例
V									比較成分例
									比較成分例

表 2 / 製法①

実験番号	鋼種	TS	EL	TO. DI	mann.	(A)	式		
		(MPa)	(%)	TSxEI	(MPa)	(A) 式左	辺 Al	(A) 式右辺] (A) 式判定
$\frac{3}{4}$	C	476	37. 9			0.076	0.81	0 0.972	
5	D	508	36. 9			0. 137	0. 99		Ŏ
6	F F	551	33. 0			0. 196			0
$\frac{-0}{7}$	G	549 568	33. 1			0. 133			0
8	H	582	32. 5			0. 135			0
9	I	591	30. 9		570	0. 203			0
10	J	584	31. 2	18262 18221	580	0. 162	0. 970		0
11	K	605	29. 9	18090	580	0. 170	0. 900		0
12	L	632	30. 1	19023	590	0. 153	0. 550		0
13	M	688	28. 7	19746	640 680	0. 268	1. 140		0
14	N	695	27. 2	18904	700	0. 307	1. 050		0
15	0	743	24. 8	18426	760	0. 341	0. 500		0
16	Р	812	23. 2	18838	780	0. 420 0. 361	0.810	1. 461	0
17	Q	825	22. 8	18810	800	0. 404	0. 730	1. 134	0
18	R	852	21. 5	18318	840	0. 393	0.870	1. 248	0
19	S	905	20. 1	18191	900	0. 512	1. 000	1. 056	0
20	T	899	20. 5	18430	920	0. 512	0. 780	1. 359 1. 374	0
21	U	952	19. 0	18088	950	0. 534	0. 580	1. 272	0
22	V	934	19. 5	18213	950	0.506	0.850	1. 152	0
23	W	987	19. 1	18852	980	0. 527	0.680	1. 134	-
24	X	1024	18. 2	18637	980	0. 537	0.880	1. 179	
25	Y	1320	14. 9	19668	1280	0. 754	0. 780	1. 041	$\frac{\circ}{\circ}$
26	Z	1400	13. 5	18900	1320	0. 771	0.850	0. 972	$\frac{\circ}{\circ}$
27	AA	965	19. 9	19204	950	0. 397	0.650	0. 675	0
28	AB	1206	15. 2	18331	1180	0. 695	0.720	1. 146	0
29	AC	1230	15. 8	19434	1180	0.703	0.880	1. 179	-
30	AD	1220	15. 3	18666	1200	0. 587	0.600	0.603	0
31	AE	1364	13. 4	18278	1350	0. 757	0.750	0.801	×
32	AF	1520	12. 2	18544	1480	0.897	0.910	0. 942	0
34	AG	795	22. 5	17888	780	0. 275	0.892	0. 759	×
35	AH	825	20. 9	17243	780	0. 290	1. 712	0. 822	×
36	AI	1158	15. 1	17486	1130	0. 545	0.815	0. 672	×
37	AJ AK	1476	12. 2	18007	1470	0.817	1. 391	0. 633	×
38	AL	1584 1603	11.4	18058	1570	0.827	0. 212	0. 315	×
39	AM		11. 3	18114	1570	0. 737	0. 106	-0.078	×
40	AN	335 1623	33. 2 7. 8	11122	310	-0.083	1. 778	0.894	×
41	AO	985	17. 5	12659	1570	1. 021	0.462	1. 161	×
42	AP	885	18. 5	17238	980	0. 192	0. 422	-0.321	×
43	AQ	1235	10. 2	16373 12597	880	0. 471	0. 527	1. 251	0
44	AR	795	20. 1	15980	1180	0. 580	1. 247	0. 645	×
45	AS	587	26. 5	15556	780	0. 261	0. 337	0. 699	0
46	AT	557	31. 2	17378	540	0. 157	0. 377	1. 107	0
47	AU	750	22. 2	16650	540	0. 147	0. 273	1. 065	0
48	AV	899	18. 6	16721	720	0. 266	0.009	0. 936	X
		000	10.0	10121	880	0.400	2. 010	0. 942	×

表2 (つづき)

実験番号	焼戻マルテン サイト面積	穴拡げ率 (%)	めっき密着性	めっき	区分
	(%)		在有性	外観	
3	<5%	73	0	0	比較例
5	<5%	70	0	0	比較例
6	<5%	60	0	0	比較例
7	<5%	65	0	0	比較例
8	<5%	63	0	0	比較例
9	<5%	61	0	0	比較例
10	<5% <5%	60	0	0	比較例
11	<5%	62	0	0	比較例
12	<5%	54	0	0	比較例
13	<5%	60 58	0	0	比較例
14	<5%	56	0	0	比較例
15	<5%	55	0	0	比較例
16	<5%	54	0	0	比較例
17	<5%	53		0	比較例
18	<5%	61	0	0	比較例
19	<5%	50	0	0	比較例
20	<5%	49 .	0	0	比較例
21	<5%	49.	0	0	比較例
22	<5%	47	0	0	比較例
23	<5%	46	0	0	比較例
24	<5%	45	0	0	比較例
25	<5%	39	0	0	比較例
26	<5%	37		0	比較例
27	<5%	48	0	0	比較例
28	<5%	39	0	0	比較例
29	<5%	41	0	0	比較例
30	<5%	46		<u> </u>	比較例
31	<5%	37	0	0	比較例
32	<5%	35	0	0	比較例
33	<5%	54	Ö		比較例
34	<5%	52	0	0	比較例
35	<5%	41	Ö	0	比較例 比較例
36	<5%	35	Ö	0	比較例
37	<5%	34	Ö	$\overline{}$	比較例
38	<5%	33	Ö	0	比較例
39	<5%	64	0	Ö	比較例
40	<5%	27	Ö	0	比較例
41	<5%	47	\triangle	<u> </u>	比較例
42	<5%	45	<u> </u>	<u> </u>	比較例
43	<5%	30	\triangle	<u> </u>	比較例
44	<5%	50	0	$\frac{\Delta}{\Diamond}$	比較例
45	<5%	50	Ö	0	比較例
46	<5%	60	Ö	0	比較例
47	<5%	50	0	Ö	比較例
48	<5%	49	×	×	TA V1

表3/製法②

実験番号	全国 北手	TS	EL	mc ==		(A)	t		
	鋼種	(MPa)	(%)	TSxEL	TS狙い値 (*)(MPa)	(A) 式左辺	2 A1	(A) 式右辺	(A) 式判:
3	C	443	42. 4	18791	440	0.043	0.810	0.972	0
4	D_	467	40. 2	18798	460	0. 103	0. 990	1. 164	Ö
5	E_	501	36. 3	18201	500	0. 163	0. 430	1. 278	0
6	F	511	37. 1	18928	510	0. 100	0.950	0. 969	0
7	G	523	35. 4	18512	520	0. 102	0. 930	0. 942	Ö
8	H	530	35. 1	18584	530	0. 170	0.300	1. 200	Ö
9	I	550	34. 6	19022	540	0. 129	0.970	0. 987	0
10 11	J	537	34. 0	18272	530	0. 128	0. 900	1. 020	0
12	<u>K</u>	551	32. 9	18108	550	0. 120	0. 550	0.912	0
13	<u>L</u>	594	33. 7	20028	590	0. 227	1. 140	1. 233	0
14	M	633	31. 3	19801	630	0. 266	1.050	1. 257	0
15	N	653	29. 9	19547	650	0.300	0.500	1. 335	0
16	O P	706	27. 8	19606	700	0. 370	0.810	1. 461	0
17		747	25. 3	18891	740	0. 328	0. 730	1. 134	0
18	Q R	767	25. 1	19243	760	0. 371	0.870	1. 248	0
19	S	809	24. 1	19490	800	0.360	1. 000	1.056	0
20	$\frac{S}{T}$	860	22. 3	19182	860	0. 479	1. 110	1. 359	
21	U	863 895	23. 2	19992	860	0. 483	0. 780	1. 374	0
22	$\frac{\sigma}{V}$	897	21. 1	18873	890	0. 484	0.580	1. 272	0
23	W	928	22. 4	20107	890	0. 457	0.850	1. 152	0
24	X	922	21. 2	19670	920	0. 477	0.680	1. 134	0
25	Y	1228	16. 8	18618	920	0. 488	0.880	1. 179	0
26	\overline{Z}	1274	15. 5	20669 19779	1220	0. 704	0. 780	1. 041	0
27	AA	907	22. 1	20037	1260	0. 721	0. 850	0. 972	0
28	AB	1134	16. 9	19127	890	0. 347	0.650	0. 675	0
29	AC	1132	17. 9	20204	1120 1120	0. 646	0. 720	1. 146	0
30	AD	1147	17. 6	20178		0.653	0. 880	1. 179	0
31	AE	1296	14. 9	19274	1140 1290	0. 537	0.600	0.603	0
32	AF	1429	13. 5	19349	1420	0.707	0. 750	0.801	0
33	AG	731	25. 4	18596	730	0. 847 0. 234	0. 910	0. 942	0
34	AH	751	24. 0	18044	740	0. 254	0. 892	0. 759	×
35	ΑĪ	1077	17. 4	18701	1070	0. 495	1. 712	0. 822	×
36	AJ	1402	13. 8	19331	1400	0. 495	0. 815	0. 672	×
37	AK	1457	12. 7	18440	1450	0. 739	1. 391	0. 633	×
38	AL	1459	12. 5	18297	1450	0. 728	0. 212	0. 315	×
39	AM	312	37. 2	11585	300		0. 106	-0. 078	×
40	AN	1493	8. 5	12695	1490	-0. 091 0. 955	1. 778	0. 894	×
41	A0	896	19. 3	17255	890		0. 462 0. 422	1. 161	×
	AP	823	20. 7	17054	820		0. 422	-0. 321	×
	AQ	1136	11. 1	12632	1120	0. 530	1. 247	1. 251	0
	AR	723	22. 1	15995	720		0. 337	0.645	×
	AS	546	29. 7	16203	540		$\frac{0.337}{0.377}$	0.699	0
45								1. 107	0
	AT	512	34. () T	17427 1	510 1	U 199 I	n 979 l	1 000	
46	AT AU	512 683	34. 0	17427 16667	510 680		0. 273 0. 009	1. 065 0. 936	<u> </u>

表3(つづき)

X 0 ())	-				
実験番号	焼戻マルテン サイト面積 (%)	穴拡げ率 (%)	めっき密着性	めっき 外観	区分
3	6. 4	86	0	0	本発明例
4	6. 7	82	0	0	本発明例
5	7. 8	77	0	0	本発明例
6	9. 0	76	Ö	0	本発明例
7	9. 7	74			
8	11. 4	72		0	本発明例
9	14. 6	71			本発明例
10	13. 5	72			本発明例
11	17. 2	68	 		本発明例
12	20. 3	71			本発明例
13	21. 1	67	0	0	本発明例
14	21. 5	56		0	本発明例
15	22. 3	65	0	0	本発明例
16	24. 6		0	0	本発明例
17	21. 1	63	0	0	本発明例
18	21. 6	61	0	0	本発明例
19		60	0	0	本発明例
20	22. 8	59	0	0	本発明例
	24. 3	68	0	0	本発明例
21	25. 2	52	0	0	本発明例
22	25. 0	56	0	0	本発明例
23	26. 2	55	0	0	本発明例
24	25. 9	54	0	0	本発明例
25	42. 7	46	0	0	本発明例
26	45. 5	45	0	0	本発明例
27	22. 3	57	0	0	本発明例
28	26. 9	46	0	0	本発明例
29	26. 7	46	0	0	本発明例
30	43. 0	47	0	0	本発明例
31	47. 6	45	0	Ö	本発明例
32	50. 4	41	0	Ö	本発明例
33	20. 9	64	0	Ö	本発明例
34	22. 5	62	0	Ö	本発明例
35	47. 6	40	0	Ŏ	本発明例
36	55. 3	42	0	Ö	本発明例
37	58. 7	40	Ö	ŏ	本発明例
38	59. 5	40	Ö	0	本発明例
39	<5%	75	0	0	
40	65. 3	36		0	比較例
41	31. 2	57			比較例
42	25. 1	54	\bigcirc	<u> </u>	比較例
43	38. 0	37			比較例
44	21. 4	59	<u> </u>	<u> </u>	比較例
45	12. 1	66	0	0	比較例
46	8. 5	71		0	上較例
47	22. 2	59	00	0	上較例
48	22. 4	59 57	(0	0	比較例
40	44.4	<u> </u>	×	×	比較例

請 求 の 範 囲

- 1. 質量%で、C: 0. 01~0. 3%、Si: 0. 005~0. 6%、Mn: 0. 1~3. 3%、P: 0. 001~0. 06%、S: 0. 001~0. 01%、A1: 0. 25~1. 8%、N: 0. 0005~0. 01%を含有し、残部Feおよび不可避的不純物からなり、金属組織がフェライトと面積率で5%以上60%以下の焼戻しマルテンサイトからなることを特徴とする成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板。
- 2. 前記溶融亜鉛めっき複合高強度鋼板が、質量%で、更に、Mo:0.05~0.5%、V:0.01~0.1%、Ti:0.01~0.2%、Nb:0.005~0.05%、Cu:1.0%以下、Ni:1.0%以下、Cr:1.0%以下、Ca:0.0003~0.005%、REM:0.0003~0.005%、B:0.0003~0.005%、REM:0.0003~0.005%、B:0.0003~0.005%、B:0.0003~0.005%、B:0.0003~0.005%、B:0.0003~0.005%、B:0.0003~0.005%、B:0.0003~0.005%、B:0.0003~0.005%、B:0.0003~0.005%、B:0.0003~0.005%、B:0.0003~0.005%、B:0.0003~0.005%、B:0.0003~0.005%、B:0.0003~0.005%、B:0.0003~0.005%、B:0.0003~0.005%、B:0.0005%
- 3. (補正後) 更に、前記溶融亜鉛めっき複合高強度鋼板が、Si, Alの質量%と、狙いの引張強度(TS)が下記1式を満足することを特徴とする請求項1または2記載の成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板。
- (0.0012×[TS 狙い値] -0.29-[Si])/1.45<A I <1.5 -3 ×[Si]・・・ 1式

[TS 狙い値] : 鋼板の引張強度設計値(M P a)、[Si]: S i 質量%、A l : A l 質量%

4. (補正後)質量%で、C:0.01~0.3%、Si:0.005~0

- ・6%、Mn:0.1~3.3%、P:0.001~0.06%、S:0.001~0.01%、A1:0.25~1.8%、N:0.0005~0.01%、A1:0.25~1.8%、N:0.0005~0.01%を含有し、残部Feおよび不可避的不純物からなるスラブを熱延後冷延し、溶融亜鉛めっき加熱工程にてAc~Ac³+100℃の温度に加熱し、30秒~30分保持後、1℃/s以上の冷却速度で450~600℃の温度に冷却し、次の冷立速度でマルテンサイト変態点以下の温度まで冷却した後、200℃以上500℃以下の温度に1秒~5分保持した後、5℃/s以上の冷却速度で100℃以下まで冷却することによりフェライトと面積率で5%以上60%以下の焼戻しマルテンサイトからなる金属組織を有することを特徴とする成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板の製造方法。
- 5. 前記溶融亜鉛めっき処理後に、合金化処理を施すことを特徴とする請求項4記載の成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板の製造方法。
- 6. 前記亜鉛めっき層または合金化亜鉛めっき層上に、更に、クロメート処理、無機皮膜処理、化成処理、樹脂皮膜処理の何れか1種または2種以上の後処理を施すことを特徴とする請求項4または5記載の成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板の製造方法。
- 7. 前記溶融亜鉛めっき複合高強度鋼板が、質量%で、更に、M O: 0. 0'5~0. 5%、V: 0. 01~0. 1%、Ti: 0. 0 1~0. 2%、Nb: 0. 005~0. 05%、Cu: 1. 0%以 下、Ni: 1. 0%以下、Cr: 1. 0%以下、Ca: 0. 000 3~0. 005%、REM: 0. 0003~0. 005%、B: 0 . 0003~0. 002%のうちの1種または2種以上を含有する

ことを特徴とする請求項4~6の何れかの項に記載の成形性および 穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板の製造方法。

- 8. (補正後) 更に、前記溶融亜鉛めっき複合高強度鋼板が、Si, Alの質量%と、狙いの引張強度(TS)が下記1式を満足することを特徴とする請求項4~7の何れかの項に記載の成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板の製造方法。
- (0.0012×[TS 狙い値] -0.29-[Si]) / 1.45<A 1 < 1.5 -3 × [Si]・・・ 1 式

[TS 狙い値] : 鋼板の引張強度設計値(M P a)、[Si]: S i 質量%、A 1: A 1 質量%

- 9. 前記冷延から溶融亜鉛めっき加熱工程の間に、Ni, Fe, Co, Sn, Cuのうちの1種または2種以上のプレめっきを鋼板片面当たり0. 01~2. 0 g/ m^2 施すことを特徴とする請求項4~8の何れかの項に記載の成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板の製造方法。
- 10.前記プレめっきの前に鋼板を酸洗処理を施すことを特徴とする請求項9記載の成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板の製造方法。