• Q1. Compare Parquet, Avro, and ORC in terms of structure, performance, and use

Feature / Format	Parquet	Avro	ORC
Data Layout	Columnar	Row-based	Columnar
Compression	Good	Moderate	Best-in-class
Predicate Pushdown	✓ Yes	X No	✓ Yes
Splittable	✓ Yes	✓ Yes	✓ Yes
Schema Evolution	Supported, but limited flexibility	✓ Best-in-class	✓ Supported, less flexible than Avro
Read Efficiency	Great for column-based queries	X Slower for column queries	Excellent for Hive workloads
Write Efficiency	Moderate	✓ Fast	Moderate
Support in Spark	✓ Native support	✓ Native support	Supported (but better in Hive setups)
Best Use Cases	Analytics, Data Lakes, Spark SQL	Kafka pipelines, CDC, serialization	Hive warehouses, Hadoop- native systems

Why Avro (Row-based) Doesn't Support Predicate Pushdown:

- Avro is a row-based format, meaning it stores entire rows together (all columns of one record).
- To filter on a specific column (e.g., WHERE age > 30), Spark must **read the full row** first it cannot skip reading other columns efficiently.

Predicate Pushdown Needs Columnar Layout

Formats like **Parquet** and **ORC** are **columnar**, which means:

- Each column is stored separately.
- So Spark can read only the needed column (e.g., age) and skip the rest.
- This enables predicate pushdown: filters are pushed down to the storage layer → less I/O → faster queries.

IMP: SPARK STORES DATA AS AN CATALYST DATAFRAME, NOT AS AVRO/PARQUET

Stage	Format Used	1	Notes
Kafka → Spark	Avro → Catalyst DF	A	Avro decoded into Catalyst memory
Computation in Spark	Catalyst (RAM)	١	No Parquet here
Writing to Delta Lake / S3 / HDFS	Parquet	C	Controlled by sink format
What		Format	
Input from Kafka		Avro (or J	SON, CSV etc.)
Spark computation		Catalyst D	PF (in-memory)
Spill to disk		Internal b	inary (not Parquet/Avro)
Sink (e.g., Delta)		Parquet +	_delta_log
Stage	Stored as		Push-down possible?
Kafka Avro → Spark (ingestion)	Avro bytes → Catalys	t rows	No
Parquet → Spark (read)	Parquet → Catalyst ro	ows	Yes, before rows hit memory

Predicate push-down is a *read-time* optimisation.

It works only if the source format advertises and supports it (Parquet/ORC/JDBC).

Once data is inside the Catalyst engine, Spark just filters in RAM—format no longer matters. (i.e if it is Parquet - Catalyst DF knows it supports predictive pushdown, for further join/, etc operations, PP is supported, else Not)

Spark knows during read time if pushdown is possible.(i.e from avro/Parquet/CSV/JSON just before getting converted to catalyst DF)

If source = Avro \rightarrow pushdown is not possible \rightarrow everything comes into memory.

Q2. What is predicate pushdown? Which formats support it?

- Lets Spark skip unnecessary blocks of data at the file reader level
- Parquet/ORC support it due to columnar structure
- Avro, JSON, CSV no real predicate pushdown

```
Example:
```

python
CopyEdit
df.filter("region = 'US'")

Only the 'region' column is read from disk in **Parquet.**

Q3. What is the small file problem in Spark? How do you fix it?

Issue Impact

Too many small files (e.g., 100k files File lookup overhead, task explosion, poor <1MB) File lookup overhead, task explosion, poor parallelism

Fixes:

- Write fewer, larger files using .repartition(n)(When shuffling) or .coalesce(n) (no shuffling)
- Use spark.sql.files.maxPartitionBytes config
- Use Delta's OPTIMIZE or compaction jobs

Real Scenario:

Your streaming job writes 1 file per trigger \rightarrow leads to 10,000+ small files on S3. Fix by batching and compacting downstream.

• Q4. Explain inferSchema, mergeSchema, and their performance impact.

Option	Role	Impact
inferSc hema	Guess column types from data	Costly for large datasets
mergeSc hema	Combine schemas across files (Parquet)	Useful for evolution, but very expensive on large datasets

✓ Best Practice:

- Always define schemas explicitly in production
- Avoid mergeSchema = true in mainline ingestion jobs
- Explanation per file format: \mathcal{O} inferSchema Used? File Format Schema Inference Needed? Notes CSV Yes (no schema stored) Yes (optional) Must infer or define manually Yes JSON Yes (optional) Can infer, but expensive Avro X No (schema stored in X Not needed Schema is embedded in file header) **Parquet** X No (schema stored in 💢 Ignored Schema is read directly footer) ORC X No X Not needed Like Parquet, optimized for analytics

Avro/ Paquet/ ORC - file formats that stores schema internally in the file footer.

- Q5. How do you handle corrupted/bad records in ingestion?
- What Are Bad Records?

Rows that:

- Have incomplete data (e.g., missing values for required columns)
- Have **type mismatches** (e.g., string in an integer column)
- Are malformed (e.g., bad JSON format)

★ Example: Reading Malformed JSON

File: data.json

Row 3 is missing a closing brace.

Code:

```
python

df = spark.read \
    .option("mode", "PERMISSIVE") \
    .option("columnNameOfCorruptRecord", "_corrupt_record") \
    .json("data.json")

df.show(truncate=False)
```

Output:

```
| Description |
```

🔑 Takeaway:

- Never silently drop malformed data in production.
- Always log, isolate, or quarantine bad records.
- Use "PERMISSIVE" with _corrupt_record and route them to **Delta Lake** quarantine tables.

• Q6. What are common ingestion pipeline optimizations?

	Area	Optimization
Partitioning		Use partitionBy("dt") when writing
File size		Aim for 100–500 MB per file
Schema		Provide .schema() instead of inferring
Input splits		Avoid deep nested folders unless needed
Compression		Use snappy (default for Parquet) for fast compression/decompression

Q7. What's the difference between .save(), .saveAsTable(), and .insertInto()?

Method	Use When	Behavior
.save()	Write to path	Just writes files
.saveAsTab	Register DataFrame as Hive table	Creates table + writes data

Q8. What happens internally when Spark reads a file?

♦ Step-by-Step Internal Workflow

Step	What Happens	Example
1	Spark contacts the file system (like S3, HDFS, DBFS)	When you do <code>spark.read.parquet("s3://bucket/path")</code> , Spark queries S3 to get metadata (file list, sizes, locations).
2	File is split into logical partitions	A 1 GB Parquet file might be split into 8 partitions (\sim 128 MB each by default) based on spark.sql.files.maxPartitionBytes .
3	Schema is read (or inferred)	 For Parquet: Schema is read from the file footer (fast). For CSV/JSON: Schema might be inferred by reading sample rows (slow).
4	Executors read file blocks	Each partition is sent to a task, which runs on an executor. That task reads the corresponding file split (block).
5	Deserialize → Catalyst DataFrame	Data is deserialized into Spark's internal Catalyst format (binary, optimized).
6	Lazy evaluation	No actual reading/transformation happens yet — Spark just builds the logical plan. Actual work happens only when you call an action like <code>.show()</code> , <code>.collect()</code> , <code>.write()</code> .

• Q9. What's a good ingestion-to-storage pattern?

✓ Stage-wise Explanation

Layer	Format Used	What It Stores	Why It's Needed
Bronze	Avro	Raw Kafka data (possibly nested, unclean)	Keeps original source; Avro supports schema evolution well
Silver	Parquet	Flattened, cleaned, enriched data	Columnar format → fast analytical reads, partitioning works well
Gold	Delta	Aggregated, optimized data for consumption	Supports time travel, MERGE, exactly- once, BI dashboards