TUTORIAL 3

1 Recursive division

Let a and b be two polynomials in K[x] such that $\deg a = 4n$ and $\deg b = 2n$ and take n to be a power of 2. We decompose a and b such that $a(x) = a_h(x)x^{2n} + a_l(x)$ and $b(x) = b_h(x)x^n + b_l(x)$, where $\deg a_h, \deg a_l \leq 2n$ and $\deg b_h, \deg b_l \leq n$.

Consider D(n) as the complexity, in number of arithmetic operations over K, required to perform the Euclidean division of a degree 2n polynomial by a degree n polynomial. Similarly, we denote by M(n) the complexity of multiplying two degree n polynomials over R.

We perform the Euclidean division of a_h by b_h (i.e. $a_h = b_h q_h + r_h$, $\deg r_h < \deg b_h$).

- 1. Show that $deg(a bq_hx^n) < 3n$ and that $a bq_hx^n$ is computable using D(n) + M(n) + O(n) operations.
- 2. Show that we can finish dividing a by b using another D(n) + M(n) + O(n) operations.
- 3. What is the value of D(n) if $M(n) = n^{\alpha}, \alpha > 1$?
- 4. Same question as before, for $M(n) = n(\log n)^{\alpha}$, $\alpha > 1$.

2 Applications of the Extended Euclidean Algorithm (EEA)

2.1 Computing the inverse

- 1. Let n be an integer, and $0 \le a < n$ be such that gcd(a, n) = 1. Give an algorithm that computes $a^{-1} \mod n$ in time $O(M(\log n) \log \log n)$.
- 2. Let $P \in K[X]$ be a polynomial of degree d with coefficients in a field K and $Q \in K[X]$ be a polynomial of degree less than d, such that gcd(P,Q) = 1. Prove that Q is invertible modulo P and give an algorithm to compute its inverse using $O(M(d) \log d)$ operations in K.

2.2 Diophantine equation

The aim of this exercise is to describe the set of all solutions (u, v) of the equation

$$au + bv = t (1)$$

- 1. Show that if $(u,v)=(s_1,s_2)$ is a solution of (1), the general solution is of the form $(u,v)=(s_1+s_1',s_2+s_2')$ for (s_1',s_2') satisfying $as_1'+bs_2'=0$.
- 2. Find all solutions of au + bv = 0 for a, b coprime.
- 3. Find a solution of (1) for a, b coprime.
- 4. Observe that t must be divisible by gcd(a, b).
- 5. Using the previous questions, give the general solution of (1).

3 Rational function reconstruction

Let K be a field, $m \in K[X]$ of degree n > 0, and $f \in K[X]$ such that $\deg f < n$. For a fixed $k \in \{1, \ldots, n\}$, we want to find a pair of polynomials $(r, t) \in K[X]^2$, satisfying

$$r = t \cdot f \mod m$$
, $\deg r < k$, $\deg t \leqslant n - k$ and $t \neq 0$ (2)

- 1. Consider $A(X) = \sum_{l=0}^{N-1} a_l X^l \in K[X]$ a polynomial. Show that if $A(X) = P(X)/Q(X) \mod X^N$, where $P, Q \in K[X]$, Q(0) = 1 and $\deg P < \deg Q$, then the coefficients of A, starting from $a_{\deg Q}$ can be computed as a linear recurrent sequence of previous $\deg Q$ coefficients of A. What can you say in the converse setting when the coefficients of A satisfy a linear recurrence relation?
- 2. Inside (2), consider the case when $m = x^n$. Describe a linear algebra-based method for finding some t and r. (Hint: do **not** use the previous question).
- 3. Show that, if (r_1, t_1) and (r_2, t_2) are two pairs of polynomials that satisfy (2), then we have $r_1t_2 = r_2t_1$. We will use the Extended Euclidean Algorithm to solve problem (2).
- 4. Let $r_j, u_j, v_j \in F[X]$ be the quantities computed during the j-th pass of the Extended Euclidean Algorithm for the pair (m, f), where j is minimal such that $\deg r_j < k$. Show that (r_j, v_j) satisfy (2). What can you say about the complexity of this method?
- 5. **Application**. Given 2n consecutive terms of a recursive sequence of order n, give the recurrence. (Hint: this is where you use question 1). Illustrate your method on the Fibonacci sequence.