Scilab Textbook Companion for Introduction To Thermodynamics And Heat Transfer by D. A. Mooney¹

Created by
Devika Raj Rachavelpula
Electronics and Communication Enginnering
Electronics Engineering
RVR n JC College of Engineering
College Teacher
Na
Cross-Checked by
Ganesh R

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Introduction To Thermodynamics And Heat Transfer

Author: D. A. Mooney

Publisher: Longmans Green And Co., London

Edition: 1

Year: 1957

ISBN: 8886332655

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
2	Work	5
3	Temperature and Heat	7
5	First Law of Thermodynamics	10
6	Flow Procesess First law analysis	13
8	Basic applications of the second law	16
10	Tabulated properties Steam Tables	20
11	Properties of Gases	25
12	Properties of Gaseous Mixtures	29
13	Vapor cycles	33
14	Combustion Processes First law analysis	37
15	Gas cycles	41
16	Fluid Flow Nozzles and Turbines	44
17	Gas compression	47
18	Refrigeration	50

List of Scilab Codes

Exa 2.1	chapter 2 example $1 \dots \dots \dots \dots \dots$	5
Exa 2.2	chapter 2 example $2 \dots \dots \dots \dots \dots$	5
Exa 2.3	chapter 2 example 3	6
Exa 3.1	chapter 3 example $1 \dots \dots \dots \dots \dots$	7
Exa 3.2	chapter 3 example $2 \dots \dots \dots \dots \dots$	7
Exa 3.3	chapter 3 example 3	8
Exa 3.4	chapter 3 example 4	9
Exa 5.1	Chapter 5 example 1	10
Exa 5.2	chapter 5 example $2 \dots \dots \dots \dots \dots$	10
Exa 5.3	chapter 5 example 3	11
Exa 5.4	chapter 5 example 4	11
Exa 6.1	Chapter 6 example 1	13
Exa 6.2	chapter 6 example $2 \ldots \ldots \ldots \ldots$	14
Exa 6.3	chapter 6 example 3	14
Exa 8.1	Chapter 8 example 1	16
Exa 8.2	chapter 8 example 2	16
Exa 8.3	chapter 8 example 3	17
Exa 8.4	chapter 8 example 4	17
Exa 8.5	chapter 8 example 5	18
Exa 8.6	chapter 8 example 6	18
Exa 10.1	Chapter 10 example 1	20
Exa 10.2	chapter 10 example $2 \dots \dots \dots \dots \dots$	20
Exa 10.3	chapter 10 example 3	21
Exa 10.4	chapter 10 example 4	21
Exa 10.5	chapter 10 example 5	22
Exa 10.6	chapter 10 example 6	22
Exa 10.10	chapter 10 example 10	23
Exa 10.11	chapter 10 example 11	24

Exa 11.1	Chapter 11 example 1					 				25
Exa 11.2	chapter 11 example 2									25
Exa 11.4	chapter 11 example 4									26
Exa 11.5	chapter 11 example 5									27
Exa 12.1	Chapter 12 example 1									29
Exa 12.2	chapter 12 example 2					 				30
Exa 12.3	chapter 12 example 3					 				30
Exa 12.4	chapter 12 example 4					 				31
Exa 12.5	chapter 12 example 5					 				32
Exa 13.1	Chapter 13 example 1					 				33
Exa 13.2	chapter 13 example 2					 				34
Exa 13.3	chapter 13 example 3					 				34
Exa 13.4	chapter 13 example 4					 				35
Exa 14.1	Chapter 14 example 1					 				37
Exa 14.4	chapter 14 example 4					 				37
Exa 14.5	chapter 14 example 5					 				38
Exa 14.6	chapter 14 example 6					 				39
Exa 14.7	chapter 14 example 7					 				39
Exa 14.8	chapter 14 example 8					 				40
Exa 15.1	Chapter 15 example 1					 				41
Exa 15.2	chapter 15 example 2					 				42
Exa 15.3	chapter 15 example 3					 				42
Exa 16.1	chapter 16 example 1					 				44
Exa 16.2	chapter 16 example 2					 				45
Exa 16.3	chapter 16 example 3					 				45
Exa 17.1	chapter 17 example 1									47
Exa 17.2	chapter 17 example 2					 				48
Exa 17.3	chapter 17 example 3									48
Exa 17.4	chapter 17 example 4					 				49
Exa 18.1	chapter 18 example 1									50
Exa 19.2	chapter 19 example 2									51
Exa 19.3	chapter 19 example 3					 				52
Exa 19.4	chapter 19 example 4					 				52
Exa 19.5	chapter 19 example 5									53
Exa 19.6	chapter 19 example 6					 				54
Exa 19.7	chapter 19 example 7									54
Eva 10.8	chapter 19 example 8									55

Work

Scilab code Exa 2.1 chapter 2 example 1

```
1 clc
2 //initialisation of variables
3 P= 100 //psia
4 V= 3 //cu ft
5 P1= 20 //psia
6 n= 1.4
7 //CALCULATIONS
8 V1= V*(P/P1)^(1/n)
9 W= (P1*V1*144-P*V*144)/(1-n)
10 //RESULTS
11 printf ('P dV work for this process= %.f ft lb', W)
```

Scilab code Exa 2.2 chapter 2 example 2

```
1 clc
2 //initialisation of variables
3 W= 1 //hp
4 P= 69.4 //psia
```

```
5  V2= 3  //cu
6  V1= 1  //cu
7  //CALCULATIONS
8  Wb= -W*33000
9  Wa= P*(V2-V1)*144
10  Q= Wa+Wb
11  //RESULTS
12  printf ('Total system work during the 1 minute period= %. f ft lb', Q)
```

Scilab code Exa 2.3 chapter 2 example 3

```
1 clc
2 //initialisation of variables
3 r= 11 //in
4 l= 15 //in
5 A= 1.6 //in
6 l1= 2.4 //in
7 //CALCULATIONS
8 a= %pi*r^2/4
9 L= 1/12
10 Pm= (A/11)*80
11 W= a*L*Pm
12 //RESULTS
13 printf ('Net work done by the fluid in the cylinder= %. f ft lb', W)
```

Temperature and Heat

Scilab code Exa 3.1 chapter 3 example 1

```
1 clc
2 //initialisation of variables
3 T2w= 100 //F
4 T1w= 75 //F
5 cw= 1 //Btu/lb F
6 T2i= 100 //F
7 T1i= 500 //F
8 ci= 0.12 //Btu/lb F
9 mi= 1
10 //CALCULATIONS
11 Mw= -mi*ci*(T2i-T1i)/(cw*(T2w-T1w))
12 //RESULTS
13 printf ('Pounds of water needed per pound of iron= % .2 f lb water/lb iron', Mw)
```

Scilab code Exa 3.2 chapter 3 example 2

```
1 clc
```

Scilab code Exa 3.3 chapter 3 example 3

```
1 clc
2 //initialisation of variables
3 m = 10 // lb
4 cp= 0.180 //Btu/lb F
5 cp1= 0.235 //Btu/lb F
6 L = 15.8 //btu/lb
7 L1= 120 //btu/lb
8 \text{ T1} = 70 \text{ //F}
9 T2= 235 //F
10 T3 = 832 //F
11 //CALCULATIONS
12 Qa = m*cp*(T2-T1)
13 Qb= m*L
14 \ Qc = m*cp1*(T3-T2)
15 Qd= m*L1
16 Q= Qa+Qb+Qc+Qd
17 //RESULTS
18 printf ('Heat required= %.f Btu',Q)
```

Scilab code Exa 3.4 chapter 3 example 4

```
1 clc
2 //initialisation of variables
3 \text{ m} = 40 // \text{lb}
4 \text{ m1} = 10 // \text{lb}
5 \text{ cp= } 1.00 \text{ }//Btu/lb \text{ }F
6 cp1= 0.501 //Btu/lb F
7 cp2= 0.092 //Btu/lb F
8 L = 143.3 //btu/lb
9 L1= 120 //btu/lb
10 T1= 22 //F
11 T2= 32 //F
12 T3= 40 //F
13 T4= 70 //F
14 //CALCULATIONS
15 Qa = cp1*(T2-T1)
16 Qb= L
17 Qc= cp*(T3-T2)
18 Qd= m*cp*(T3-T4)
19 mi = -Qd/(Qa+Qb+Qc)
20 \text{ Qe= m1*cp2*(T3-T4)}
21 \text{ mil} = -Qe/(Qa+Qb+Qc)
22 //RESULTS
23 printf ('Ice weight= %.2f lb of ice', mi)
24 printf ('\n Additional ice required= \%.3 f lb of ice
       ',mi1)
```

First Law of Thermodynamics

Scilab code Exa 5.1 Chapter 5 example 1

```
1 clc
2 //initialisation of variables
3 p= 15 //psia
4 V2= 5 //cu
5 V1= 10 //cu
6 E= 34.7 //Btu
7 //CALCULATIONS
8 dE= -E-((p*(V2-V1)*144)/(778))
9 //RESULTS
10 printf ('Change in internal energy of the gas= %.2f Btu', dE)
```

Scilab code Exa 5.2 chapter 5 example 2

```
1 clc
2 //initialisation of variables
3 m= 2 //lb
4 T2= 35 //F
```

```
5 cv= 1.2 //Btu/lb F
6 Q= 34 //Btu
7 //CALCULATIONS
8 U= m*cv*T2
9 W= Q-U
10 //RESULTS
11 printf ('Change in internal enenrgy = %. f Btu', W)
```

Scilab code Exa 5.3 chapter 5 example 3

```
1 clc
2 //initialisation of variables
3 p= 500 //psia
4 V2= 0.9278 //cu ft/lb
5 V1= 0.0197 //cu ft/lb
6 h= 1204.4 //Btu/lb
7 h1= 449.4 //Btu/lb
8 //CALCULATIONS
9 W= p*144*(V2-V1)
10 U= h-h1-(W/778)
11 //RESULTS
12 printf ('Change in internal energy = %.1 f Btu', U)
```

Scilab code Exa 5.4 chapter 5 example 4

```
1 clc
2 //initialisation of variables
3 m= 3 //lb
4 V1= 6 //cu ft
5 p1= 75. //psia
6 p2= 15 //psia
7 n= 1.2
8 Q1= 30 //Btu
```

```
9  //CALCULATIONS
10  V2= V1*(p1/p2)^(1/n)
11  disp(V2)
12  U= (m/3)*(0.480*p2*V2+35-0.480*p1*V1-35)
13  W= (p2*V2-p1*V1)/(1-n)
14  Q= U+W
15  W1= Q1-U
16  //RESULTS
17  printf ('Change in internal enenrgy = %.1 f Btu',U)
18  printf (' \n Work done = %. f Btu',W)
19  printf (' \n Heat generated = %. f Btu',Q)
20  printf (' \n Work done = %. f Btu',W1)
21  //The answers given in the textbook are wrong.please calculate them personally.
```

Flow Procesess First law analysis

Scilab code Exa 6.1 Chapter 6 example 1

```
1 clc
2 //initialisation of variables
3 \text{ u1} = 1111.9 //Btu/lb}
4 p= 170 // psia
5 \text{ v1} = 2.675 //\text{cu ft/lb}
6 \text{ V1= } 6000 \text{ // ft/min}
7 \text{ g0} = 32.2 // \text{ft/sec}^2
8 \text{ g} = 32.2 // \text{ft/sec}^2
9 z = 10 //ft
10 Q = 1000 //Btu/hr
11 u2= 914.6 //Btu/lb
12 p1= 3 // p sia
13 v2= 100.9 //cu ft/lb
14 V2= 300 // \text{ft/sec}
15 g0= 32.2 // ft / sec^2
16 g= 32.2 // ft / sec^2
17 z1 = 0 //ft
18 //CALCULATIONS
19 Wx = (u1+(p*v1*144/778)+((V1/60)^2/(2*g*778))+(z/778)
```

```
-(Q/2500)-u2-(p1*v2*144/778)-((V2^2)/(2*g*778)))
*2500
20 //RESULTS
21 printf ('Poweroutput = %.f hp', Wx*0.000393014779)
22 //It is the conversion factor from btu/hr to hp
```

Scilab code Exa 6.2 chapter 6 example 2

```
1 clc
2 //initialisation of variables
3 w1= 500 //lb/min
4 h1= 132.9 //Btu/lb
5 h2= 1150 //Btu/lb
6 h3= 180 //Btu/lb
7 //CALCULATIONS
8 w2= w1*(h3-h1)*60/(h2-h3)
9 //RESULTS
10 printf ('Steam supplied to the hater = %.f lb/hr',w2)
)
```

Scilab code Exa 6.3 chapter 6 example 3

```
1 clc
2 //initialisation of variables
3 h1= 1227.6 //Btu/lb
4 h2= 1223.9 //Btu/lb
5 g= 32.2 //ft/sec^2
6 v1= 4.937 //cu ft/lb
7 d= 2/12 //in
8 A1=%pi*d^2 /4.
9 //CALCULATIONS
10 V1= sqrt((2*g*(h1-h2)*778)/((1.1)^2-1))
11 V2= 1.1*V1
```

```
12 w=A1*V1/v1
13 //RESULTS
14 printf ('Average velovity at section1 = %.f fps',V1)
15 printf ('\n Average velovity at section2 = %.f fps',V2)
16 printf ('\n rate of flow =%.2f lb/sec', w)
```

Basic applications of the second law

Scilab code Exa 8.1 Chapter 8 example 1

```
1 clc
2 //initialisation of variables
3 T1= 85 //F
4 T2= 50 //F
5 //CALCULATIONS
6 n= (T1-T2)/(T1+460)
7 n1= n*100
8 //RESULTS
9 printf ('Maximum thermal efficiency = %.1f percent', n1)
```

Scilab code Exa 8.2 chapter 8 example 2

```
1 clc
2 //initialisation of variables
3 T1= 1050 //F
```

```
4 T2= 90 //F
5 //CALCULATIONS
6 n= (T1-T2)/(T1+460)
7 n1= n*100
8 //RESULTS
9 printf ('Maximum thermal efficiency = %.f percent', n1)
```

Scilab code Exa 8.3 chapter 8 example 3

```
1 clc
2 //initialisation of variables
3 m= 1 //lb
4 cp= 0.240 //btu/lb F
5 T2= 150 //F
6 T1= 50 //F
7 //CALCULATIONS
8 S= m*cp*(log(460+T2)-log(460+T1))
9 //RESULTS
10 printf ('Entropy change = %.4 f Btu/Fabs',S)
```

Scilab code Exa 8.4 chapter 8 example 4

```
1 clc
2 //initialisation of variables
3 m= 1 //lb
4 cp= 0.240 //btu/lb F
5 T2= 150 //F
6 T1= 50 //F
7 //CALCULATIONS
8 S= m*cp*(log(460+T2)-log(460+T1))
9 //RESULTS
10 printf ('Entropy change = %.4 f Btu/Fabs',S)
```

```
11 //This result is same as the above since change in entropy does not depend on the process involved 12 // but only on the initial and final states
```

Scilab code Exa 8.5 chapter 8 example 5

```
1 clc
2 //initialisation of variables
3 Q= 826 //Btu/lb
4 T= 400 //F
5 T1= 1000 //F
6 T2= 2000 //F
7 //CALCULATIONS
8 Sw= Q/(T+460)
9 Sg= (Q/T1)*(log(T1+460)-log(T2+460))
10 S= Sw+Sg
1 //RESULTS
12 printf ('Total Entropy change = %.3 f Btu/R',S)
```

Scilab code Exa 8.6 chapter 8 example 6

```
1 clc
2 //initialisation of variables
3 Q= 826 //Btu/lb
4 T= 400 //F
5 T1= 1000 //F
6 T2= 2000 //F
7 T3= 80 //F
8 //CALCULATIONS
9 Sw= Q/(T+460)
10 Sg= (Q/T1)*(log(T1+460)-log(T2+460))
11 S= Sw+Sg
12 Q1= (T3+460)*S
```

```
13 Q2= Q+(T3+460)*Sg

14 n= Q1/Q2

15 n1= n*100

16 //RESULTS

17 printf ('Loss percent = %d', n1+1)
```

Tabulated properties Steam Tables

Scilab code Exa 10.1 Chapter 10 example 1

```
1 clc
2 //initialisation of variables
3 p= 100//psia
4 vg= 4.432 //cu ft/lb
5 vf= 0.01744 //cu ft/lb
6 T= 327.8 //F
7 sfg= 1.1286 //Bu/lb R
8 //CALCULATIONS
9 Q=(T+460)*sfg
10 //RESULTS
11 printf ('Heat of vaourisation= %.f Btu/lb',Q)
```

Scilab code Exa 10.2 chapter 10 example 2

```
1 clc
2 //initialisation of variables
```

```
3 S= 1.6315 //Btu/lb R
4 //CALCULATIONS
5 P= 70 //psia
6 t= 302.92 //F
7 h= 1180.6 //Btu/lb
8 //RESULTS
9 printf ('Pressure= %.2 f Psia',P)
10 printf (' \n Temperature = %.2 f F',t)
11 printf (' \n Enthalpy= %.1 f Btu/lb',h)
```

Scilab code Exa 10.3 chapter 10 example 3

```
1 clc
2 //initialisation of variables
3 T= 250 //F
4 hg= 1164.0 //Btu/lb
5 P= 29.825 //Psia
6 Vg= 13.821 //cu ft/lb
7 //CALCULATIONS
8 ug= hg-(P*Vg*144/778)
9 //RESULTS
10 printf ('Internal energy= %.1 f Btu/lb', ug)
```

Scilab code Exa 10.4 chapter 10 example 4

```
1 clc
2 //initialisation of variables
3 P= 100 //psia
4 n= 40
5 vf= 0.01774 //cu ft/lb
6 vg= 4.432 //cu ft/lb
7 hf= 298.4 //Btu/lb
8 hfg= 888.8 //Btu/lb
```

```
9 sg= 1.6026 //Btu/lb R
10 sfg= 1.1286 //Btu/lb R
11 //CALCULATIONS
12 vx= (n/100)*vf+(1-(n/100))*vg
13 hx= hf+(1-(n/100))*hfg
14 sx= sg-(n/100)*sfg
15 //RESULTS
16 printf ('Volume= %.2 f cu ft/lb',vx)
17 printf ('\n Entropy = %.2 f Btu/lb R',sx)
18 printf ('\n Enthalpy= %.1 f Btu/lb',hx)
```

Scilab code Exa 10.5 chapter 10 example 5

```
1 clc
2 //initialisation of variables
3 P= 100 //psia
4 n= 0.97
5 hf= 298.4 //Btu/lb
6 hfg= 888.8 //Btu/lb
7 hg= 1187.2 //Btu/lb
8 //CALCULATIONS
9 hx= hf+n*hfg
10 hx1= hg-(1-n)*hfg
11 //RESULTS
12 printf ('Enthalpy= %.f Btu/lb',hx)
13 printf ('\n Precise Enthalpy= %.1f Btu/lb',hx1)
```

Scilab code Exa 10.6 chapter 10 example 6

```
1 clc
2 //initialisation of variables
3 P= 15 //psia
4 S= 1.7050 //Btu/lb R
```

```
5  sg= 1.7549 //btu/lb R
6  sfg= 1.4415 //Bru/lb R
7  hg= 1150.8 //btu/lb
8  hfg= 969.7 //Btu/lb
9  vg= 26.29 //cu ft/lb
10  vfg= 26.27 //cu ft/lb
11 //CALCULATIONS
12  n= (sg-sx)/sfg
13  sx= sg-n*sfg
14  hx= hg-n*hfg
15  vx= vg-n*vfg
16 //RESULTS
17  printf ('Volume= %.2 f cu ft/lb',vx)
18  printf (' \ n Entropy = %.2 f Btu/lb R',sx)
19  printf (' \ n Enthalpy= %.1 f Btu/lb',hx)
```

Scilab code Exa 10.10 chapter 10 example 10

```
1    clc
2    //initialisation of variables
3    T= 100    //F
4    P= 1000    // psia
5    dv= -5.1*10^-5    //cu ft/lb
6    dh= 2.70    //Btu/lb
7    vf= 0.01613    //cu ft/lb
8    hf= 67.97    //Btu/lb
9    //CALCULATIONS
10    h= dh+hf
11    v= dv+vf
12    //RESULTS
13    printf ('Volume= %.5 f cu ft/lb',v)
14    printf (' \n Enthalpy= %.2 f Btu/lb',h)
```

Scilab code Exa 10.11 chapter 10 example 11

```
1 clc
2 //initialisation of variables
3 h1= 1183.2 //Btu/lb
4 hg= 1198.4 //Btu/lb
5 hfg= 843.0 //Btu/lb
6 //CALCULATIONS
7 n= 1-((hg-h1)/hfg)
8 //RESULTS
9 printf ('quality= %.3 f ',n)
```

Properties of Gases

Scilab code Exa 11.1 Chapter 11 example 1

```
1 clc
2 //initialisation of variables
3 P= 15 //psia
4 T= 80 //F
5 m= 3 //lb
6 P1= 25 //psia
7 T1= 75 //F
8 //CALCULATIONS
9 r= (P*(460+T1))/(P1*(T+460))
10 m2= m/(1-r)
11 V2= (m2*55.16*(460+T1))/(P1*144)
12 //RESULTS
13 printf ('Volume of the apparatus= %.1 f cu ft', V2)
```

Scilab code Exa 11.2 chapter 11 example 2

```
1 clc
2 //initialisation of variables
```

```
3 R = 48.3 // ft lb/lb R
4 T = 100 //F
5 \text{ T1} = 500 //\text{F}
 6 T2 = 1500 //F
 7 k = 1.4
8 k1 = 1.36
9 k2 = 1.31
10 //CALCULATIONS
11 dc = R/778
12 cp= (k/(k-1))*dc
13 \text{ cv= cp/k}
14 \text{ cp1} = (k1/(k1-1))*dc
15 \text{ cv1} = \text{cp/k1}
16 \text{ cp2} = (k2/(k2-1))*dc
17 \text{ cv2} = \text{cp2/k2}
18 //RESULTS
19 printf ('cp= \%.3 \, f Btu/lb R',cp)
20 printf (' n cv = \%.3 f Btu/lb R', cv)
21 printf (' \n cp1= \%.3 f Btu/lb R',cp1)
22 printf (' \n cv1= \%.3 f Btu/lb R',cv1)
23 printf (' n cp2 = \%.3 f Btu/lb R',cp2)
24 printf (' n \text{ cv2} = \%.3 \text{ f Btu/lb R',cv2})
```

Scilab code Exa 11.4 chapter 11 example 4

```
1 clc
2 //initialisation of variables
3 P= 10 //psia
4 P1= 100 //psia
5 T= 140 //F
6 k= 1.4
7 R= 55.16 //ft lb/lb R
8 //CALCULATIONS
9 dh= (k*R*(T+460)/(k-1))*((P/P1)^((k-1)/k)-1)
        *(72/56000)
```

```
10 //RESULTS
11 printf ('Enthalpy change= %.1 f Btu/lb',dh)
```

Scilab code Exa 11.5 chapter 11 example 5

```
1 clc
2 //initialisation of variables
3 P = 100 // psia
4 P1= 15 // psia
5 T = 2000 //F
6 k = 1.4
7 R = 53.34 //ft lb/lb R
8 cp= 0.240 //Btu/lb R
9 //CALCULATIONS
10 v1= (R*(T+460)/(P*144))*(P/P1)^(1/k)
11 disp(v1)
12 T1= (T+460)*(P1*v1/(P*(R*(T+460)/(P*144))))
13 dh = cp*(T1-T)
14 dv = v1 - (R*(T+460)/(P*144))
15 disp('case 1')
16 printf ('change in volume = \%.2 \,\mathrm{f}', dv)
17 disp('case 2')
18 T2=1500 //F
19 v2=R*(T+460)/(P*144)/0.241
20 \quad disp(v2)
21 T2=(T2+460)*(P1*v2/(P*(R*(T2+460)/(P*144))))
22 deltah=0.276*(T2-460-T)
23 dv2=v2-(R*(T+460)/(P*144))
24 printf ('change in volume = \%.2 \,\mathrm{f} cu ft/lb', dv2)
25 disp('At T1=2460 R, from table 1, case 3')
26 h1=634.34
27 \text{ pr1} = 407.3
28 pr2=pr1*P1/P
29 T2=1075 //F
30 h2 = 378.44
```

```
31 deltah=h2-h1

32 v2=53.34*(T2+460)/(P1*144)

33 disp(v2)

34 dv3=v2-(R*(T+460)/(P*144))

35 printf ('change in volume = %.2 f cu ft/lb',dv3)
```

Properties of Gaseous Mixtures

Scilab code Exa 12.1 Chapter 12 example 1

```
1 clc
2 //initialisation of variables
3 \text{ P= } 15.0 \text{ } // \text{psia}
4 T= 55 //F
5 P1= 0.2141 // psia
6 \text{ ma} = 29 //1b
7 \text{ mb} = 18 // lb
8 \text{ P2} = 0.2141 // \text{psia}
9 P3 = 0.3631 // psia
10 //CALCULATIONS
11 dp = P - P1
12 r = (dp*ma)/(P1*mb)
13 r1 = r/(r+1)
14 r2 = 1/(r+1)
15 \text{ r4} = \text{r2/r1}
16 P = P2/P3
17 //RESULTS
18 printf ('relative humidity= \%.2\,\mathrm{f}',P)
19 printf ('\n specific humidity= \%.4f lb vapour/lb
       air', r4)
```

Scilab code Exa 12.2 chapter 12 example 2

```
1 clc
2 //initialisation of variables
3 h = 29.5 //in
4 n = 75
5 T = 80 / F
6 \text{ h1} = 10 // \text{in}
7 \text{ mw} = 0.380 * 18
8 \text{ ma} = 14.47 * 29
9 d = 13.6 / kg/m^3
10 P= 0.5069 //psi
11 //CALCULATIONS
12 Pw = (n/100) *P
13 P = (h+(h1/d))*(0.491)
14 pa=P-Pw
15 \text{ r= mw/ma}
16 //RESULTS
17 printf ('Pounds of water vapour enter the furnance
      per pound of dry air= \%.4 f lb vapour/lb air',r)
```

Scilab code Exa 12.3 chapter 12 example 3

```
1 clc
2 //initialisation of variables
3 n= 0.5
4 T= 75 //F
5 P= 14.7 //psia
6 pg= 0.4298 //psia
7 pw= 0.2149 //psia
8 //CALCULATIONS
9 pw1= n*pg
```

Scilab code Exa 12.4 chapter 12 example 4

```
1 clc
2 //initialisation of variables
3 r2= 0.0078 //lb water /lb dry air
4 r1= 0.0032 //lb water /lb dry air
5 h2 = 25.33 //Btu/lb
6 h1= 12.9 //Btu/lb
7 \text{ pg} = 0.1217 // \text{psia}
8 p = 14.7 // psia
9 h3= 13 //Btu/lb
10 n = 60
11 t2=70
12 t1 = 40
13 \text{ cpa=0.240}
14 R2= 0.00788 //lb/lb of dry sir
15 w1= 0.00477 //lb/lb of dry sir
16 //CALCULATIONS
17 disp('Method 1')
18 \text{ w= } r2-r1
19 q = h2 - h1 - w * h3
20 printf ('In method 1, Enthalpy = \%.2 \, \text{f Btu/lb} of dry
       air',q)
21 disp('Method 2')
22 R1 = 0.622*(n/100)*(pg/(p-pg))
23 R2=0.00788
24 \text{ w} 2 = \text{R} 2 - \text{R} 1
25 // All constants are obtained from steam tables
26 \quad Q = cpa*(t2-t1) + R2*(1092.6) - R1*(1079.6) - w2*h3
```

```
27 printf ('In method 2, Enthalpy = \%.2 \, f btu/lb of dry air',Q)
```

Scilab code Exa 12.5 chapter 12 example 5

```
1 clc
2 //initialisation of variables
3 P = 1//atm
4 n = 70
5 T = 75 //F
6 \text{ T1} = 70 \text{ //F}
7 r1= 0.0131 //lb water/lb dry air
8 r2= 0.0093 //lb water/lb dry air
9 h1= 32.36 //Btu/lb dry air
10 h2= 27.03 //Btu/lb dry air
11 hd2= 23.40 //Btu/lb dry air
12 hf = 23.4 //Btu/lb dry liquid
13 hg= 1094.5 //Btu/lb dry liquid
14 //CALCULATIONS
15 R1 = r1 - r2
16 \quad Qc = hd2-h1+R1*hf
17 Qh= h2-hd2
18 x = R1*(hg-hf)
19 y = x/(-Qc)
20 //RESULTS
21 printf ('Fraction of heat removed in the coil= \%.2 \,\mathrm{f}
      ',y)
```

Vapor cycles

Scilab code Exa 13.1 Chapter 13 example 1

```
1 clc
2 //initialisation of variables
3 P = 1 // psia
4 P1= 200 //psia
5 T = 750 //F
6 v3= 0.01614 //cu ft/lb
7 h1= 1399.2 //Bu/lb
8 h2 = 976 //Btu/lb
9 h3 = 69.7 //Btu/lb
10 //CALCULATIONS
11 dh = v3*(144/778)*(P1-P)
12 \text{ h4= h3+dh}
13 Q1= h1-h4
14 \text{ Wt} = h1 - h2
15 \text{ Wp} = h4 - h3
16 n = (Wt - Wp)/Q1
17 \text{ w} = 2545/\text{Wt}
18 //RESULTS
19 printf ('cycle efficency = \%.3 \,\mathrm{f}',n)
20 printf ('\n steam rate= \%.2 f lb steam per hphr', w)
```

Scilab code Exa 13.2 chapter 13 example 2

```
1 clc
2 //initialisation of variables
3 wt= 8 //lb/hphr
4 h1= 1399.2 //Btu/lb
5 h2s= 976 //Btu/lb
6 h2= 976 //Btu/lb
7 //CACLAULATIONS
8 Wt= 2545/wt
9 nt= Wt/(h1-h2s)
10 h21= h1-Wt
11 //RESULTS
12 printf ('Engine efficency = %.3 f ',nt)
13 printf ('\n state of the exhaust steam= %.3 f Btu/lb',h21)
```

Scilab code Exa 13.3 chapter 13 example 3

```
1 clc
2 //initialisation of variables
3 h1=1474.5 //btu/lb
4 s1=1.5603 //btu/lb R
5 h2s=1277.5 //btu/lb
6 //Calculations and printfing
7 h2=h1-0.85*(h1-h2s)
8 printf ('h2= %.2 f Btu/lb',h2)
9 h3=1522.4 //btu/lb
10 s3=1.7623 //btu/lb R
11 h4s=948 //btu/lb
12 h4=h3- 0.85*(h3-h4s)
13 printf ('\n h4= %.2 f Btu/lb',h4)
```

```
14 h5 = 47.6 //btu/lb
15 h6=53.5 //btu/lb
16 disp('For the first rankine cycle')
17 h7s = 840 / btu/lb
18 h7 = h1 - 0.85 * (h1 - h7s)
19 printf ('h7= \%.2 \, f \, Btu/lb',h7)
20 disp('For the second rankine cycle')
21 h8=1493.2 //btu/lb
22 s8=1.6903 //btu/lb R
23 \text{ h9s} = 866 // \text{btu/lb}
24 h9=h8-0.85*(h8-h9s)
25 printf ('h9= \%.2 \text{ f Btu/lb}',h9)
26 h11=51.5 //btu/lb
27 \quad n1 = 0.401
28 \quad n2 = 0.375
29 \quad n3 = 0.366
30 \text{ e1} = (n1-n2)/n2
31 printf ('\n Percentage Efficiency of reheat cycle
      compared to Rankine cycle for the first case = \%
      .2 f', e1*100)
32 e2 = (n1 - n3) / n3
33 printf ('\n Percentage Efficiency of reheat cycle
      compared to Rankine cycle for the second case = \%
      .2 f', e2*100)
```

Scilab code Exa 13.4 chapter 13 example 4

```
1 clc
2 //initialisation of variables
3 h1= 1371 //Btu/lb
4 h2s= 1149 //Btu/lb
5 h3= 118 //Btu/lb
6 Q1= 1253 //Btu/lb
7 W= 156 //Btu/lb
8 Qw= 680 //Btu/lb
```

```
9  //CALCULATIONS
10  Qh= h1-W-h3
11  y= W+0.9*Qh
12  r= y/Q1
13  x= Qh+Qw
14  z= y/x
15  //RESULTS
16  printf ('Fraction of energy supplied = %.2 f ',r)
17  printf (' \n Fraction of energy supplied= %.2 f ',z)
```

Combustion Processes First law analysis

Scilab code Exa 14.1 Chapter 14 example 1

```
1 clc
2 //initialisation of variables
3 M= 114 //lb
4 Mo= 32 //lb
5 Mn= 28 //lb
6 Mc= 44 //lb
7 Mw= 18 //lb
8 //CALCULATIONS
9 Ma= (12.5*Mo+(12.5)*(79/21)*Mn)/114
10 //RESULTS
11 printf ('Theoritical air for combustion= %.1f lb air per lb C8H18 ', Ma)
```

Scilab code Exa 14.4 chapter 14 example 4

1 clc

```
2 //initialisation of variables
3 \text{ mO2} = 1.33 // lb
4 \text{ mCO2} = 3.67 // lb
5 \text{ CvO2=0.155 } //\text{Btu/lb F}
6 CvCO2=0.165 //Btu/lb F
7 Cc = 0.170 / Btu/lb F
8 t2=1000 //F
9 tB=68 //F
10 t = 300 / F
11 \quad mC = 1
12 m0 = 4
13 // Calculations
14 \text{ deltaE1=m02*Cv02*(t2-tB)} + \text{mC02*CvC02*(t2-tB)}
15 \text{ deltaE2=mC*CC*(tB-t)} + \text{m0*CvO2*(tB-t)}
16 E = -14087 //Btu
17 Q=deltaE1+E+deltaE2
18 // Results
19 printf ('Heat Transfer from the system = \%.2\,\mathrm{f}',Q)
```

Scilab code Exa 14.5 chapter 14 example 5

```
1 clc
2 //initialisation of variables
3 HV=4344 //Btu/lb
4 m=56 //lb
5 R=1.986 //Btu/lb mol R
6 Tb=530 //R
7 //Calculations
8 HR=m*HV
9 Eb=-HR-R*Tb*(2-3)
10 printf ('Constant pressure heating value = %.1f Btu/lb formula wt',Eb)
```

Scilab code Exa 14.6 chapter 14 example 6

```
1 clc
2 //initialisation of variables
3 \text{ mC=1} // \text{lb}
4 \text{ mO2} = 2.67 // lb
5 \text{ mN2=8.78} // \text{lb}
6 \text{ mCO2} = 3.67 // lb
7 \text{ mN2=8.78} //1b
8 \text{ tB} = 77 / \text{F}
9 deltaH=14087 //Btu/lb
10 CpC02=0.196 / Btu/lb F
11 CpCO2f = 0.3 / Btu/lb F
12 CpN2=0.248 / Btu/lb F
13 CpN2f = 0.285 / Btu/lb F
14 // Calculations
15 t2 = tB + deltaH/(mCO2*CpCO2 + mN2*CpN2)
16 t2f=tB+ deltaH/(mCO2*CpCO2f + mN2*CpN2f)
17 // Results
18 printf ('In case 1, t2 = \%.1 \, f \, F', t2)
19 printf ('\n In case 2, t2f = \%.1f F', t2f)
```

Scilab code Exa 14.7 chapter 14 example 7

```
1 clc
2 //initialisation of variables
3 HR=14087 //Btu
4 HRC=3952 //Btu
5 x1=0.9
6 x2=0.05
7 //Calculations
8 HR1=x1*HR
9 HR2=x2*HRC
10 e=(HR2+HR1)/HR
11 //Results
```

```
12 printf ('Efficiency = \%.3 \,\mathrm{f}',e)
```

Scilab code Exa 14.8 chapter 14 example 8

```
1 clc
2 //initialisation of variables
3 h= 19500 //Btu
4 w= 700 //lb/hr
5 Q= 10240000
6 //CALCULATIONS
7 Q1= w*h
8 e= Q/Q1
9 //RESULTS
10 printf ('Efficiency= %.2f',e)
```

Gas cycles

Scilab code Exa 15.1 Chapter 15 example 1

```
1 clc
2 //initialisation of variables
3 p = 15 // psia
4 p1= 75 // psia
5 T = 550 //R
6 \text{ T1} = 1700 / \text{R}
7 k = 1.4
8 //CALCULATIONS
9 Ta= T*(p1/p)^((k-1)/k)
10 Tc= T1/((p1/p)^((k-1)/k))
11 \text{ cp} = 0.24
12 Q1= cp*(T1-Ta)
13 Q2= cp*(Tc-T)
14 \text{ Wnet} = Q1 - Q2
15 n = Wnet/Q1
16 hb= 422.59 / Btu/lb
17 hc= 269.27 //Btu/lb
18 ha= 208.41 //Btu/lb
19 hd= 131.46 //btu/lb
20 Q1i= hb-ha
21 Q2i= hc-hd
```

```
22 Wnet1= Q1i-Q2i
23 n1= Wnet1/Q1i
24 //RESULTS
25 printf ('Efficiency = %.2 f ',n)
26 printf ('Efficiency = %.3 f ',n1)
```

Scilab code Exa 15.2 chapter 15 example 2

```
1 clc
2 //initialisation of variables
3 p = 15 //psia
4 p1= 75 // psia
5 T = 550 //R
6 \text{ T1} = 1700 //R
7 k = 1.4
8 n = 75
9 \text{ cp} = 0.24
10 //CALCULATIONS
11 Ta= T*(p1/p)^((k-1)/k)
12 Tc= T1/((p1/p)^((k-1)/k))
13 Ta1= (n/100)*(Tc-Ta)+Ta
14 \text{ Tc1} = \text{Ta} + \text{Tc} - \text{Ta} 1
15 Q1= cp*(T1-Ta1)
16 \ Q2 = cp*(Tc1-T)
17 \text{ Wnet} = Q1-Q2
18 \text{ n1} = Wnet/Q1
19 //CALCULATIONS
20 printf ('Efficiency = \%.2 \,\mathrm{f}',n1)
```

Scilab code Exa 15.3 chapter 15 example 3

```
1 clc
2 //initialisation of variables
```

```
3 \text{ h1} = 124.27 //Btu/lb}
4 Pr1= 1.2147 //psia
5 r = 6
6 p4= 15 // psia
7 p1 = 15 // psia
8 h2s= 197.5 //Btu/lb
9 Wnet= 48.9 //Btu/lb air
10 hs= 18500 //Btu/lb
11 wfbywa= 0.0146 //lb fuel/lb sir
12 W= 2545 //Btu/lb air
13 dh=-91.5 //Btu/lb
14 Wc= 91.5 //Btu/lb air
15 //CALCULATIONS
16 n= Wnet/(wfbywa*hs)
17 \text{ n1} = \text{W/Wnet}
18 n2 = Wc/Wnet
19 //RESULTS
20 printf ('Efficiency = \%.3 \,\mathrm{f}',n)
21 printf (' n = m = \%.1 f = m / hphr', n1)
22 printf (' \n back work ratio= \%.2 \,\mathrm{f}',n2)
```

Fluid Flow Nozzles and Turbines

Scilab code Exa 16.1 chapter 16 example 1

```
1 clc
2 //initialisation of variables
3 h1=1279.1 //Btu/lb
4 s1=1.7085 //Btu/lb R
5 p1 = 100 //psia
6 p2=10 //psia
7 h2=1091.7 //Btu/lb
8 s2=s1
9 V1 = 100 / fps
10 v2=36.41 //cu ft/lb
11 w=1 //lb/sec
12 // Calculations
13 a2=w*v2/(sqrt(V1*V1 + 2*24956.243*(h1-h2)))
14 printf ('Exit area = \%.5 \,\mathrm{f} sq. ft',a2)
15 \text{ pt} = 0.55 * p1
16 ht=1221.5 //Btu/lb
17 vt=8.841 //cu ft/lb
18 at=w*vt/(sqrt(V1*V1 + 2*24956.243*(h1-ht)))
19 printf ('\n Exit area in case 2 = \%.5 \,\mathrm{f} sq. ft',at)
```

Scilab code Exa 16.2 chapter 16 example 2

```
1 clc
 2 //initialisation of variables
 3 \text{ w} = 10000 // \text{lb/hr}
4 p0 = 250 // psia
 5 T1 = 500 / F
 6 Pf=1 //psia
 7 \text{ vc} = 0.949
8 dc=1
9 h0=1263.4 //btu/lb
10 s0=1.5949 //btu/lb R
11 v2=276 //cu ft/lb
12 // Calculations
13 pt=0.55*p0
14 disp('from tables')
15 hts=1208.2 //btu/lb
16 vts=3.415 //cu ft/lb
17 h2s = 891. //btu/lb
18 Vts = sqrt(2*32.174*778*(h0-hts))
19 w = w/3600 // lb / sec
20 cw = 1
21 at=w*vts/(cw*Vts)
22 printf ('Throat area = \%.5 \, \text{f} \, \text{ft}^2',at)
23 V2=sqrt(2*32.174*778*(h0-h2s))
24 \text{ eta} = 0.9
25 h2=h0-eta*(h0-h2s)
26 \quad a2s = w * v2/(cw * V2)
27 printf ('\n Exit area = \%.5 \,\mathrm{f} ft<sup>2</sup>',a2s)
```

Scilab code Exa 16.3 chapter 16 example 3

```
1 clc
2 //initialisation of variables
3 k = 1.4
4 ptbyp0=0.53
5 \text{ T0} = 800 / \text{R}
6 \text{ cp} = 778
7 R=0.0425864
8 \text{ PO} = 150 // \text{psia}
9 Pt=15 //psia
10 w=1 //lb/sec
11 cw = 1.0043782
12 // Calculations
13 Pt2=ptbyp0*Pt
14 Tts=T0*(ptbyp0)^{(k-1)/k}
15 Vts = sqrt(2*32.174*cp*0.24*(T0-Tts))
16 printf ('Exit velocity case 1= %.2 f fps', Vts)
17 vts=3.12 //cu ft/lb
18 at=w*vts/(cw*Vts)
19 printf ('\n Throat Area = \%.5 \, f \, ft^2', at)
20 T2s=T0*(Pt/P0)^{(k-1)/k}
21 \text{ eta} = 0.88
22 T2 = T0 - eta*(T0 - T2s)
23 V2=sqrt(2*32.174*cp*0.24*(T0-T2))
24 printf ('\n Exit velocity = \%.2 \,\mathrm{f} fps', V2)
25 \text{ v2=}11.4 \text{ //cu ft/lb}
26 \ a2 = w * v2 / V2
27 printf('\n Exit area = \%.5 f ft<sup>2</sup>',a2)
```

Gas compression

Scilab code Exa 17.1 chapter 17 example 1

```
1 clc
2 //initialisation of variables
3 R = 53.31
4 \text{ T} = 80 \text{ } //\text{F}
5 \text{ P2} = 90 // \text{psia}
6 P1= 15 // psia
7 n = 1.4
8 n1 = 1.3
9 \text{ cv} = 0.171
10 //CALCULATIONS
11 Wk= (n/(n-1))*R*(T+460)*((P2/P1)^((n-1)/n)-1)
12 Wn= (n1/(n1-1))*R*(T+460)*((P2/P1)^((n1-1)/n1)-1)
13 Wt= R*(T+460)*log(P2/P1)
14 Q= cv*0.778*((n-n1)/(1-n1))*(T+460)*((P2/P1)^((n-1)/
      n)-1)
15 //RESULTS
16 printf ('Heat transferred from the airin each case= \%
      .1 f Btu/lb',Q)
```

Scilab code Exa 17.2 chapter 17 example 2

```
1 clc
2 //initialisation of variables
3 R = 53.31
4 T = 80 //F
5 \text{ P2} = 90 // \text{psia}
6 P1= 15 // psia
7 n = 1.4
8 n1 = 1.3
9 \text{ cv} = 0.171
10 //CALCULATIONS
11 Wk= (n/(n-1))*R*(T+460)*((P2/P1)^((n-1)/n)-1)
12 Wn= (n1/(n1-1))*R*(T+460)*((P2/P1)^((n1-1)/n1)-1)
13 Wt= R*(T+460)*log(P2/P1)
14 \text{ nc} = Wt/Wn
15 \text{ nc1=Wk/Wn}
16 ///RESULTS
17 printf ('Thermal effeciency= \%.2 \,\mathrm{f}',nc)
18 printf (' \n Isothermal effeciency= \%.2 \,\mathrm{f} ',nc1)
```

Scilab code Exa 17.3 chapter 17 example 3

```
1 clc
2 //initialisation of variables
3 R= 53.31
4 T= 80 //F
5 P2= 90//psia
6 P1= 15 //psia
7 n= 1.4
8 cp= 0.240
9 nc= 0.95
10 n1= 1.3
11 //CALCULATIONS
12 Wk= (n/(n-1))*(R)*(T+460)*((P2/P1)^((n-1)/n)-1)
```

```
13 Wx= -Wk/nc
14 dh= cp*(T+460)*((P2/P1)^((n1-1)/n1)-1)
15 Q= dh+(Wx/778)
16 //RESULTS
17 printf ('Heat transferred= %.1 f Btu/lb ',Q)
```

Scilab code Exa 17.4 chapter 17 example 4

```
1 clc
2 //initialisation of variables
3 P1= 83.5//psia
4 P2= 5 //psia
5 n= 3 //percent
6 n1= 1.25
7 //CALCULATIONS
8 nv= 1-(n/100)*((P1/P2)^(1/n1)-1)
9 nv1= 1-(n/100)*(sqrt((P1/P2)^(1/n1))-1)
10 //RESULTS
11 printf ('single-stage compression = %.3 f ',nv)
12 printf (' \n two-stage compression = %.3 f ',nv1)
```

Refrigeration

Scilab code Exa 18.1 chapter 18 example 1

```
1 clc
2 //initialisation of variables
3 T2 = 0 //F
4 T1= 76 //F
5 h1= 611.8 //Btu/lb
6 \text{ h4} = 127.4 //Btu/lb}
7 \text{ h2= } 704.4 \text{ } // \text{Btu/lb}
8 x = 10000 //Btu/hr
9 v1= 9.116 //cu ft/lb
10 n = 70
11 //CALCULATIONS
12 CP = (T2 + 460) / (T1 - T2)
13 CP1= (h1-h4)/(h2-h1)
14 \text{ w} = (x/60)/(h1-h4)
15 PD = (w * v1) / (n/100)
16 //RESULTS
17 printf ('CP1 = \%.2 \,\mathrm{f}',CP)
19 printf (' \n PD = \%.2 \, \text{f cu ft/min',PD})
```

Heat Transmission

Scilab code Exa 19.2 chapter 19 example 2

```
1 clc
2 //initialisation of variables
3 t = 8 //in
4 t1= 1 //in
5 k= 0.50 //Btu/hr ft F
6 \text{ k1} = 0.02 //Btu/hr ft F}
7 A = 1 // ft^2
8 T = 60 //F
9 \text{ T1} = -20 \text{ //F}
10 //CALCULATIONS
11 Rc= (t/12)/(k*A)
12 Rf = (t1/12)/(k1*A)
13 R = Rc + Rf
14 q = (T-T1)/R
15 T2= (T+(Rc/Rf)*T1)/(1+(Rc/Rf))
16 //RESULTS
17 printf ('Rate of heat flow= %.1f Btu/hr',q)
18 printf ('\n Temperature at the interface= \%.1 f F',
      T2)
```

Scilab code Exa 19.3 chapter 19 example 3

```
1 clc
2 //initialisation of variables
3 h1= 2500 //Btu/sq ft hr F
4 r = 10 //in
5 t = 0.375 //in
6 \text{ Ts} = 500 //F
7 Ta= 80 //F
8 \text{ r2} = 5.375 //in
9 \text{ r1} = 5 // in
10 r3= 7.375 //in
11 kp= 26 //Btu ft/hr
12 ki = 0.045 //Btu ft/hr
13 h1= 2500 //Btu/sq ft hr F
14 h3= 1.6 //Btu/sq ft hr F
15 \text{ r4} = 14.750
16 //CALCULATIONS
17 R1= 1/(h1*\%pi*(r/12))
18 Rp= log(r2/r1)/(2*\%pi*kp)
19 Ri= \log(r3/r2)/(2*\%pi*ki)
20 R3= 1/(h3*\%pi*(r4/12))
21 \quad RO = R1 + Rp + Ri + R3
22 T3=Ta+ (Ts-Ta)*R3/R0
23 //RESULTS
24 printf ('Temperature at the interface= \%.6 \, \mathrm{f} F',T3)
```

Scilab code Exa 19.4 chapter 19 example 4

```
1 clc
2 //initialisation of variables
3 wh= 40000 //lb.hr
```

```
4 cph= 0.5 //Btu/lb F
5 \text{ th1} = 170 //F
6 th2= 120 //F
7 cpc= 1 //Btu/lb F
8 \text{ tc2} = 140 //F
9 \text{ tc1} = 100 //F
10 t= 140 //F
11 U= 120 //Btu/sq ft hr F
12 //CALCULATIONS
13 dh= t-th2
14 dc = tc2 - tc1
15 wc = (wh * cph * (th1 - th2))/(cpc * dc)
16 dtm= (-(tc1-th2)-(th1-tc2))/log((tc1-th2)/(-th1+tc2)
      )
17 q = wh * cph * (th1 - th2)
18 A = q/(U*dtm)
19 th2= ((wh/wc)*(cph/cpc)*th1+tc1)/((wh/wc)*(cph/cpc)
20 \text{ wc1} = (\text{wh*cph*(th1-th2)})/(\text{cpc*(th2-tc1)})
21 //RESULTS
22 printf ('Water flow rate= \%. f lb/hr', wc)
23 printf ('\n Area of heat transfer surface= %.f sq
      ft', A)
24 printf (' \n temperature of the oil= \%.f F',th2)
25 printf (' \n flow rate= \%. f lb/hr', wc1*2)
```

Scilab code Exa 19.5 chapter 19 example 5

```
1 clc
2 //initialisation of variables
3 Tw= 200 //F
4 Ta= 600 //F
5 V= 100 //fps
6 Di= 0.902 //in
7 d= 0.0375 //lb/cu ft
```

```
8  u= 0.000020 //lbm/sec
9  cp= 0.25 //Btu/lb F
10  k= 0.027 //Btu/sq ft hr
11 //CALCULATIONS
12  NRe= (Di*V*d)/(u*12)
13  Npr= 0.66
14  h= k*0.023*NRe^0.8*Npr^0.4*12/Di
15 //RESULTS
16  printf ('Film coefficient = %.1 f Btu/sq ft hr F',h)
```

Scilab code Exa 19.6 chapter 19 example 6

```
1 clc
2 //initialisation of variables
3 \text{ Tw} = 200 \text{ //F}
4 Ta= 600 //F
5 cpb= 0.25 // Btu/lb F
6 \text{ tf} = 0.68
7 uf = 0.000017 / lbm / sec ft
8 D = 0.902 //in
9 V = 100 // fps
10 d= 0.0375 //lb/cu ft
11 //CALCULATIONS
12 Nre= (D/12)*V*d/uf
13 Npr= 0.68
14 h = cpb*V*3600*d*0.023/(Nre^0.2*Npr^(2/3))
15 //RESULTS
16 printf ('Film coefficient = \%.1 \,\mathrm{f} Btu/sq ft hr F',h)
```

Scilab code Exa 19.7 chapter 19 example 7

```
1 clc
2 //initialisation of variables
```

```
3 A1= 0.916 //ft^2
4 e1= 0.8
5 s= 0.173 //BTU s^-1 in^-2 R^-4
6 T= 200 //F
7 T1= 70 //F
8 D= 0.292
9 //CALCULATIONS
10 q= (A1/10^6)*e1*s*(((T+460)^4/100)-((T1+460)^4/100))
11 hr= q/(A1*(T-T1))
12 hc= 0.27*((T-T1)/D)^0.25
13 //RESULTS
14 printf ('Heat loss= %.2 f Btu/hr',q)
15 printf ('\n hr= %.2 f Btu/sq ft hr F',hr)
16 printf ('\n hc= %.2 f Btu/sq ft hr F',hc)
```

Scilab code Exa 19.8 chapter 19 example 8