Počítačová fyzika II

Nelineárne iteračné schémy, chaos, fraktály

Peter Papp, Ján Ďurian

(Peter Markoš)

Katedra experimentálnej fyziky F2-81

Obsah

Nelineárne iteračné schémy majú nečakané riešenia. Môžeme nimi modelovať niektoré javy, pozorované v prírode a interpretovať ich prekvapujúce časové priebehy.

- Logistická mapa May
- Period doubling
- Podivný atraktor
- Fraktál. definícia, metóda výpočtu fraktálnej dimenzie
- Zadanie úlohy 2.
- Dodatok: Intermitencia, phase locking

Najjednoduchšia nelineárna diferenčná schéma:

$$x_{n+1} = f(x_n) = \frac{\lambda}{\lambda} x_n (1 - x_n)$$

Zaujíma nás, ako sa postupnosť $x_1,\ x_2,\dots$ vyvíja v závislosti od hodnoty parametra λ

Pre $\lambda>1$ existuje stabilný pevný bod $\hat{\mathbf{x}}=\mathbf{1}-\lambda^{-1}$ ktorý je riešením rovnice

0.6 0.8

$$\hat{x} = f(\hat{x})$$

Ale ...

Podmienka stability:

$$\left| \frac{\partial f}{\partial x} \right|_{x=\hat{x}} < 1$$

Pevný bod sa stane nestabilným, ak $\lambda > 3$ lebo

$$\left. \frac{\partial f}{\partial x} \right|_{x = \hat{x}} = 2 - \lambda$$

Vzniknú miesto neho dva nové stabilné body

$$x_{n+2} = f(f(x_n)) = f^{(2)}(x_n)$$

nastal period doubling (vidličková bifurkácia)

Interpretácia nestability pevného bodu:

Dva stabilné pevné body, medzi nimi jeden nestabilný. Kritérium stability:

$$\left|\frac{\partial F(x=\hat{x})}{\partial x}\right| < 1$$

May

Ďalší nárast parametra λ spôsobí nárast periódy:

Feigenbaum:

- séria kritických hodnôt λ_n v ktorých dochádza k zdvojnásobeniu periódy (period doubling)
- univerzálne škálovanie:

$$\alpha_n = \frac{\lambda_{n-1} - \lambda_{n-2}}{\lambda_n - \lambda_{n-1}}$$

n	perioda	λ_n	α_n
1	2	3	_
2	4	3.4494897	_
3	8	3.5440903	4.7514
4	16	3.5644073	4.6562
5	32	3.5687594	4.6683
6	64	3.5696916	4.6686
7	128	3.5698913	4.6692
8	256	3.5699340	4.6694

https://en.wikipedia.org/wiki/Feigenbaum_constants

Zostrojme pravdepodobnostné rozdelenie hodnôt x_n (n < N) Ak $1 < \lambda < 3$ tak

$$p((x_n) = N\delta_{x_n,\hat{x}})$$

Pre periodický dej s periódou P iteračná schéma prechádza bodmi $\hat{x_1}, \hat{x_2}, \dots \hat{x_P}$ a

$$p(x) = \sum_{i}^{P} \frac{N}{P} \delta_{x,\hat{x}_{i}}$$

Existujú hodnoty λ , pre ktoré nenájdeme periodický režim. Napr. pre

$$\lambda^* = 3.56995$$

Pozorujeme deterministický chaos

Pravdepodobnostné rozdelenie p(x) po $N=10^9$ iteráciách.

Postup (Algoritmus výpočtu pravdep. rozdelenia).

- rozdeľ interval (0,1) na M dielov (napr. M=5~000~000) deklaruj pole h(M)=0 a $\Delta=M^{-1}$
- ▶ iteruj N iterácií $x_i = f(x_{i-1})$, i = 1, 2, ..., N ($N \ge 10^9$) po každej iterácii počítaj index = INT $(x_i * M) + 1$ h(index) = h(index)+1
- po skončení iterácii vypíš výsledok: pre i=1,M ak h(i)>0 tak print i/M, h(i)
- ► Normovanie:

$$h(index) \rightarrow \frac{1}{N\Lambda}h(index)$$

Normovanie potrebujeme, aby platilo

$$\int p(x)dx = \sum_{i}^{N} \Delta p(x_i) = \sum_{i}^{N} h_i = 1$$

V našom prípade ho môžeme preskočiť.

May: self-similarity

May: self-similarity

Typická vlastnosť fraktálnej množiny.

Cantorova množina

Algoritmus: nekonečný počet iterácií:

Fraktál s fraktálnou dimenziou

$$d_f = \frac{\ln 2}{\ln 3}$$

Pretože: ak meriam jeho "hmotnost" \mathcal{M} meradlom dĺžky Δ , dostanem

$$\mathcal{M} = \Delta^{-d_f} \times \Delta$$

Obyčajná úsečka má samozrejme $d_f=1$, pretože získaná hmotnosť nezávisí od delenia.

Fraktálna dimenzia

Vráťme sa k nášmu rozdeleniu bodov x_n . Ak vyplníme len intervaly, v ktorých $h(i) \neq 0$, dostaneme fraktálnu množinu:

Nájdeme jej fraktálnu dimenziu:

Fraktálna dimenzia

- ightharpoonup zvolím $m=2,3,\ldots$ a rozdelím interval (0,1) na $M=2^m$ dielikov
- ightharpoonup nájdem N(m) počet dielikov, v ktorých leží časť nášho fraktálu
- urobím log-log plot N(m) vs M a nájdem d_f zo smernice

$$N(m) \propto M^{d_f}$$

Diskusia:

Interval (0,1) rozdelíme na $M=2^m$ dielikov. Iterujeme Mayovu schému v $\mathcal N$ krokoch a nájdeme pole h.

- pre veľmi malé hodnoty m dostaneme nedôveryhodné výsledky
- Pre veľké m dostaneme $d_f \to 1$ pretože sme fraktál zostrojili len z konečného počtu intervalov.
- ▶ fraktál vidíme len v oblasti, kde $\mathcal{N} > M$.

Úloha 2

Povinná a nepovinná, ale zaujímavá.

- 1. Napíšte program pre nelineárnu schému (May). Presvedčte sa, že zmenou parametra λ zmeníte periódu deja.
- 2. Pre $\lambda=3.56995$ iterujte nelinárnu schému (aspoň 10^9 iterácií). Zostrojte pravdepodobnostné rozdelenie p(x) ukážte jeho self-podobnosť.
- 3. Nájdite fraktálnu dimenziu.

Iná nelineárna schéma - phase locking

Nelineárny iteračný proces (má základ vo fyzikálnych dejoch)

$$x_{n+1} = x_n + \Omega - \frac{k}{2\pi} \sin(2\pi x_n) \pmod{1}$$

k ... koeficient nelinearity

Phase locking - proces je periodický aj keď $\Omega \neq p/q$.

Intermittencia

Pre niektoré hodnoty parametrov systém veľmi dlho zotrvá v blízkosti nejakých hodnôt, a potom sa prudko v krátkom období zmení. Ukážka, ako nelinearita ovplyvňuje stabilitu systému.

Intermittencia

Iný príkald intermittencie. Všimnime si, že perióda stability môže byť veľmi dlhá. Stabilita je prerušovaná krátkymi obdobiami, kedy sa sytém náhle vzdiali od rovnováhy.