House Price Prediction

Importing the required Libraries

In [3]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

Read the Dataset

In [6]: data=pd.read_csv("data.csv")

Exploratory data analysis on the Dataset

In [41]: data.head()

In [9]: data.info()

Out[41]:	:	date	price	bedrooms	bathroon	ns sqft_	living	sqft_lot	floors	waterf	ront	view	condition	on sqft_	above	sqft_ba	asement	yr_bui	t yr_re	nova
	0	2014- 05-02 00:00:00	313000.0	3.0	1.5	50	1340	7912	1.5		0	0		3	1340		0	195	5	2
	1	2014- 05-02 00:00:00	2384000.0	5.0	2.	50	3650	9050	2.0		0	4		5	3370		280	192	1	
	2	2014- 05-02 00:00:00	342000.0	3.0	2.	00	1930	11947	1.0		0	0		4	1930		0	196	6	
	3	2014- 05-02 00:00:00	420000.0	3.0	2.:	25	2000	8030	1.0		0	0		4	1000		1000	196	3	
	4	2014- 05-02 00:00:00	550000.0	4.0	2.	50	1940	10500	1.0		0	0		4	1140		800	197	6	1
4																				F
În [8]: data.tail()																				
		ια()																		
Out[8]:		date		price bed	rooms ba	throoms	sqft_	living s	qft_lot	floors	water	front	view o	condition	sqft_a	above	sqft_base	ment	yr_built	yr_
	4595	date 2014-	308166.6		rooms ba	throoms	. –	living s	qft_lot 6360	floors	water	front 0	view o	condition 4	. –	above :	sqft_base	ment 0	yr_built 1954	yr_
		2014- 5 07-09 00:00:00	308166.6d	66667					. –		water						sqft_base		-	yr_
	4595	date 2014- 5 07-09 00:00:00 6 07-09 00:00:00 2014- 2014- 2014- 2014- 2014-	308166.60 534333.33 416904.10	66667 33333	3.0	1.75		1510	6360	1.0	water	0	0	4		1510	sqft_base	0	1954	yr_
	4595 4596	date 2014- 5 07-09 00:00:00 2014- 6 07-09 00:00:00 2014- 07-09 00:00:00 2014-	308166.66 534333.33 416904.10 203400.00	66667 33333 66667	3.0	1.75 2.50		1510 1460	6360	1.0	water	0	0	3		1510 1460		0	1954 1983	yr_

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4600 entries, 0 to 4599
Data columns (total 18 columns):
               Non-Null Count Dtype
# Column
0 date
             4600 non-null object
             4600 non-null float64
   price
1
                4600 non-null float64
   bedrooms
3 bathrooms
                4600 non-null float64
   sqft_living 4600 non-null int64
4
5
   sqft_lot
              4600 non-null int64
             4600 non-null float64
6
   floors
   waterfront 4600 non-null int64
7
              4600 non-null int64
8 view
9 condition 4600 non-null int64
10 sqft_above 4600 non-null int64
11 sqft_basement 4600 non-null int64
12 yr_built
              4600 non-null int64
13 yr_renovated 4600 non-null int64
14 street
              4600 non-null object
             4600 non-null object
15 city
16 statezip
               4600 non-null object
               4600 non-null object
17 country
dtypes: float64(4), int64(9), object(5)
memory usage: 647.0+ KB
In [10]: data.describe()
Οι
```

Out[10]:		price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_above	sqft_t
	count	4.600000e+03	4600.000000	4600.000000	4600.000000	4.600000e+03	4600.000000	4600.000000	4600.000000	4600.000000	4600.000000	460
	mean	5.519630e+05	3.400870	2.160815	2139.346957	1.485252e+04	1.512065	0.007174	0.240652	3.451739	1827.265435	31
	std	5.638347e+05	0.908848	0.783781	963.206916	3.588444e+04	0.538288	0.084404	0.778405	0.677230	862.168977	46
	min	0.000000e+00	0.000000	0.000000	370.000000	6.380000e+02	1.000000	0.000000	0.000000	1.000000	370.000000	
	25%	3.228750e+05	3.000000	1.750000	1460.000000	5.000750e+03	1.000000	0.000000	0.000000	3.000000	1190.000000	
	50%	4.609435e+05	3.000000	2.250000	1980.000000	7.683000e+03	1.500000	0.000000	0.000000	3.000000	1590.000000	
	75%	6.549625e+05	4.000000	2.500000	2620.000000	1.100125e+04	2.000000	0.000000	0.000000	4.000000	2300.000000	61
	max	2.659000e+07	9.000000	8.000000	13540.000000	1.074218e+06	3.500000	1.000000	4.000000	5.000000	9410.000000	482
41									100000			

```
In [12]: data.isnull().sum()
Out[12]:date
        price
                        0
        bedrooms
        bathrooms
        sqft_living
                      0
        sqft_lot
                     0
        floors
                     0
                       0
        waterfront
        view
                     0
        condition
        sqft_above
        sqft_basement 0
        yr_built
        yr_renovated
        street
                    0
        city
        statezip
                      0
        country
        dtype: int64
In [13]: data.columns
Out[13]:Index(['date', 'price', 'bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot',
             'floors', 'waterfront', 'view', 'condition', 'sqft_above',
            'sqft_basement', 'yr_built', 'yr_renovated', 'street', 'city',
            'statezip', 'country'],
            dtype='object')
In [15]: data.shape
Out[15]:(4600, 18)
Linear Regression Algorithm
In [4]: from sklearn.model_selection import train_test_split
      from sklearn.linear_model import LinearRegression
      from sklearn.metrics import mean_squared_error, r2_score
```

Prepare the Data

```
Split the Data
In [9]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
Create and Train the Linear Regression Model
In [10]: model = LinearRegression()
       model.fit(X_train, y_train)
Out[10]: ▼LinearRegression
        LinearRegression()
Make Predictions
In [26]: y_pred = model.predict(X_test)
Evaluate the Model
In [27]: mse = mean_squared_error(y_test, y_pred)
       rmse = np.sqrt(mse)
       r2 = r2_score(y_test, y_pred)
       print(f'Mean Squared Error: {mse}')
       print(f'Root Mean Squared Error: {rmse}')
       print(f'R-squared: {r2}')
```

Data Visualization

R-squared: -0.0016734734183148081

Mean Squared Error: 1021553025827.8557 Root Mean Squared Error: 1010719.0637500887

Histogram of House Prices

```
In [36]: plt.hist(data['price'], bins=30)
    plt.xlabel('Price')
    plt.ylabel('floors')
    plt.title('Distribution of House Prices')
    plt.show()
```


Correlation Heatmap

```
In [29]: correlation_matrix = data.corr()
    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
    plt.title('Correlation Heatmap')
    plt.show()
```

C:\Users\A.Surya Tejaswini\AppData\Local\Temp\ipykernel_6768\3963569686.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning. correlation_matrix = data.corr()

Scatter Plots

```
In [32]: plt.scatter(data['floors'], data['price'])
plt.xlabel('floors')
plt.ylabel('Price')
plt.title('Scatter Plot of floors vs. Price')
plt.show()
```


Box Plots

```
In [34]: sns.boxplot(x='bedrooms', y='price', data=data)
    plt.xlabel('Bedrooms')
    plt.ylabel('Price')
    plt.title('Box Plot of Number of Bedrooms vs. Price')
    plt.show()
```


Categorical Plots

In [35]: sns.barplot(x='condition', y='price', data=data) plt.xlabel('condition') plt.ylabel('Price') plt.title('Average House Price by Condition') plt.xticks(rotation=45) plt.show()

Pair Plots

In [38]: sns.pairplot(data[['sqft_lot', 'bedrooms', 'bathrooms', 'price']]) plt.title('Pair Plot of Numerical Features') plt.show()

