

Inference

Overview

Conditional Probability Queries

Conditional Probability Queries

- Evidence: E = e
- Query: a subset of variables Y
- Task: compute P(Y | E=e)
- Applications
 - Medical/fault diagnosis
 - Pedigree analysis \leftarrow

NP-Hardness

The following are all NP-hard

- general case
- Given a $PGM(P_{\Phi})$, a variable X and a value $x \in Val(X)$, compute $P_{\Phi}(X=x)$
 - Or even decide if $P_{\Phi}(\hat{X}=x) > 0$
- Let ϵ < 0.5. Given a PGM P_{Φ} , a variable X and a value $x \in Val(X)$, and observation $e \in Val(E)$, find a number p that has $|P_{\Phi}(X=x|E=e) p| < \epsilon$

Sum-Product

Sum-Product

$$\sum_{A,B,C} \underline{\phi_1(A,B)\phi_2(B,C)\phi_3(C,D)\phi_4(A,D)}$$

$$\rho(0) = \frac{1}{2} \rho(0)$$

$$\rho(0) = \frac{1}{2} \rho(0)$$

Daphne Koller

Evidence: Reduced Factors

$$P(Y \mid E = e) = \frac{P(Y, E = e)}{P(E = e)}$$
 $p(Y, E = e) = \sum_{\mathbf{W}} P(Y, \mathbf{W}, E = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k, \mathbf{E} = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k', \mathbf{E} = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k', \mathbf{E} = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k', \mathbf{E} = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k', \mathbf{E} = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k', \mathbf{E} = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k', \mathbf{E} = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k', \mathbf{E} = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k', \mathbf{E} = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k', \mathbf{E} = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k', \mathbf{E} = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k', \mathbf{E} = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k', \mathbf{E} = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k', \mathbf{E} = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k', \mathbf{E} = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k', \mathbf{E} = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k', \mathbf{E} = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k', \mathbf{E} = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k', \mathbf{E} = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k', \mathbf{E} = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k', \mathbf{E} = e)$
 $p(Y, E = e) = \sum_{\mathbf{W}} \frac{1}{Z} \prod_{k} \phi_k(\mathbf{D}_k', \mathbf{E} = e)$

Daphne Koller

Evidence: Reduced Factors

Sum-Product

$$P(Y \mid E = e) = \frac{P(Y, E = e)}{P(E = e)}$$

$$P(Y, E = e) = \sum_{w} \frac{1}{Z} \prod_{k} \phi'_{k}(D'_{k}) \quad \text{numerator}$$

$$P(E = e) = \sum_{y} \sum_{w} \frac{1}{Z} \prod_{k} \phi'_{k}(D'_{k}) \quad \text{denominator}$$

$$Compute \sum_{w} \prod_{k} \phi'_{k}(D'_{k}) \quad \text{and renormalitizes}$$

Algorithms: Conditional Probability

- Push summations into factor product
 - Variable elimination Idynamic programming
- Message passing over a graph
 - Belief propagation
 - Variational approximations
- Random sampling instantiations
 - Markov chain Monte Carlo (MCMC)
 - Importance sampling

exect approx

approx

Summary

- Conditional probability queries of subset of variables given evidence on others
- Summing over factor product
- Evidence simply reduces the factors
- Many exact and approximate algorithms