WHAT IS CLAIMED IS:

1	1. A method of mapping the location of a post-translational modification
2	of a post-translationally modified peptide, said method comprising:
3	(a) contacting said peptide with a chemical modification reagent that converts
4	a post-translationally modified amino acid residue of said peptide into a substrate for a
5	peptidase, thereby producing a chemically modified peptide comprising a chemically
6	modified amino acid residue;
7	(b) contacting said chemically modified peptide with said peptidase under
8	conditions appropriate to degrade said chemically modified peptide, thereby producing a
9	degraded chemically modified peptide; and
10	(c) querying said degraded chemically modified peptide to ascertain said
11	location of said post-translational modification.
1	2. The method of claim 1, further comprising:
2	(d) prior to step (a), contacting a substrate amino acid of said peptide that is a
3	natural substrate for said peptidase with a blocking agent thereby converting said substrate
4	amino acid into a side-chain protected amino acid that is not a substrate for said peptidase.
1	3. The method of claim 2, wherein said substrate amino acid is a lysine,
2	wherein said blocking agent converts said lysine into a side-chain protected lysine selected
3	from the group consisting of a carbamate, an amide, an N-sulfonyl, an N-sulfenyl, an N-nitro,
4	an N-nitroso, an N-oxide, an imine, an N-alkyl amine, an N-aryl amine, an N-phosphinyl, an
5	N-phosphoryl, and an enamine.
1	4. The method of claim 2, wherein said side chain protected lysine is
2	selected from the group consisting of Lys(Aloc), Lys(Ac), Lys(Boc), Lys(biotinyl), Lys(2-
3	bromo-Z), Lys(2-chloro-Z), Lys(Dnp), Lys(Fmoc), Lys(For), Lys(Me) ₂ , Lys(nicatinoyl),
4	Lys(Tfa), Lys(Tos), Lys(Z), Lys(Z)(isopropyl), Lys(Boc)(isopropyl), Lys(dansyl), Lys(Dde),
5	Lys(Me) ₃ , Lys(Mtt), Lys(palitoyl_, Lys(TNM), Lys(acetimidoyl), Lys(2,4,-dichloro-Z),
6	Lys(Me), Lys(p-nitro-Z), Lys(5/6 FAM), Lys(pyrenebutyryl), and Lys(guanidinyl).
1	5. The method of claim 1, wherein said substrate amino acid is aspartic
2	acid, wherein said blocking agent converts said aspartic acid into a side-chain protected
3	aspartic acid selected from an ester, an amide, an oxalose, an oxazolines, a stannyl ester, and
4	an hydrazide.

2

3

1 6. The method of claim 1, wherein side chain protected aspartic acid is 2 selected from the group consisting of Asp(OBzl), Asp(OcHex), Asp(OtBu), Asp(OMpe), 3 Asp(Ofm), Asp(Osu), Asp(2-phenyisopropyl ester), and Asp(ONp). 1 7. The method of claim 1, wherein said peptidase is selected from the 2 group consisting of a serine endopeptidase, a metalloendopeptidase, a cysteine 3 endopeptidase, and an aspartic endopeptidase. 1 8. The method of claim 1, wherein said peptidase is a lysine-specific 2 peptidase. 1 9. The method of claim 8, wherein said lysine-specific peptidase is 2 selected from the group consisting of endoproteinase Lys-C, lysyl endopeptidase, trypsin, plasma kallikrein, oligopeptidase B, tryptase, plasmin, acrosin, granzyme A, yapsin 1, 3 4 peptidyl-Lys metalloendopeptidase, and magnolsyin. 1 10. The method of claim 8, wherein said lysine-specific peptidase is 2 selected from the group consisting of endoproteinase Lys-C, lysyl endopeptidase and trypsin. 1 11. The method of claim 1, wherein said peptidase is an aspartate-specific 2 peptidase. 1 12. The method of claim 11, wherein said aspartate-specific peptidase is selected from peptidyl-aspartate metalloendopeptidase and nepenthesin. 2 1 13. The method of claim 1, wherein said querying comprises mass 2 spectrographic detection of said chemically modified amino acid residue of said degraded 3 chemically modified peptide. 1 14. The method according to claim 1, further comprising: 2 (e) prior to step (a), contacting said peptide with an elimination reagent that causes the elimination of a post-translationally added substituent of said post-translationally 3 4 modified amino acid residue. 1 15. The method of claim 14, wherein said post-translationally modified

amino acid residue is selected from the group consisting of a post-translationally modified

serine and a post-translationally modified threonine.

1	16. The method of claim 14, wherein said post-translationally modified
2	amino acid residue is a phosphorylated amino acid residue.
1	17. The method according to claim 14, wherein said elimination is a β -
2	elimination giving rise to an alkene moiety.
	·
1	18. The method according to claim 1, wherein said modification reagent
2	reacts with said post-translationally modified amino acid residue via a Michael addition.
1	19. The method of claim 18, wherein said modification reagent is selected
2	from the group consisting of sodium sulfate and cysteamine.
1	20. A reactive solid phase material comprising:
2	(a) a solid support; and
3	(b) a solid support reactive moiety immobilized on said solid support, wherein
4	said solid support reactive moiety is reactive towards a synthetically modified amino acid
5	residue of a post-translationally modified peptide, said synthetically modified amino acid
6	residue produced by elimination a post-translationally added substituent of said post-
7	translationally modified peptide.
1	21. The material according to claim 20, wherein said synthetically
2	modified amino acid residue comprises an alkene moiety.
_	mounted animo acid rosidad comprisos an aixone molety.
1	22. A method of immobilizing a post-translationally modified peptide
2	comprising a post-translationally modified amino acid, said method comprising:
3	(i) contacting said peptide with an elimination reagent that causes the
4	elimination of a post-translationally added substituent of said post-translationally modified
5	amino acid residue thereby producing a synthetically modified amino acid;
6	(ii) reacting said synthetically modified amino acid with a reactive solid phase
7	material thereby immobilizing said post-translationally modified peptide, said reactive solid
8	phase material comprising:
9	(a) a solid support; and
10	(b) a solid support reactive moiety immobilized on said solid support,
11	wherein said solid support reactive moiety is reactive towards said
12	synthetically modified amino acid residue.