1) i) 79. X = 1 mod 3220.

i
$$Y_{1}^{\circ}$$
 Q_{1}° Q_{1}° Q_{1}° Q_{1}° Q_{1}° Q_{1}° Q_{1}° Q_{1}° Q_{1}° Q_{2}° $Q_$

3220 79

-25 1019

Ans = 1019

79.1019 = 1 mod 3220]

2 mod 13 = 22 mod 13 = 112 mod 13 = 42 mod 13 = 92 mod 13 = 82 mod 13 = 52 mod 13 = 82 mod 13 = 102 mod 13 = 102 mod 13 = 62 mod 13 = 72 mod 13 = 7

Yes 2 is a primitive most of 13 as all values are distinct

Discrete lag lable

(ii (i

	1						•	1	1	•	, 1		
1 a	, 1	2	3	4	5	6	7	8	9	10	11	12	
log (a)	12	1	4	2	9	5	11	3	8	10	न	6	
1 (2,13			1		1		1	1					

2) i)
$$X \equiv 3 \pmod{7}$$

$$M = m_1 m_2 m_3 = 7 \times 5 \times 12 = 420$$

$$a_{1} = 3$$
 $m_{1} = 7$ $M_{1} = \frac{M}{m_{1}} = \frac{420}{7} = 60$ $M_{1} = 2$
 $a_{2} = 3$ $m_{2} = 5$ $M_{2} = \frac{M}{m_{2}} = \frac{420}{5} = 84$ $m_{2} = \frac{420}{5} = 84$ $m_{3} = 12$ $m_{3} = \frac{M}{m_{3}} = \frac{420}{m_{3}} = 35$ $m_{3} = 11$

$$M_2^{-1} = 4$$
 $M_3^{-1} = 11$

60 mod 7

35 mod 12

3

0

11

$$X = \left[a_{1}M_{1}M_{1}^{-1} + a_{2}M_{2}M_{2}^{-1} + a_{3}M_{3}M_{3}^{-1} \right] \mod M$$

$$= \left[\left(3 \times 60 \times 2 \right) + \left(3 \times 84 \times 4 \right) + \left(4 \times 35 \times 11 \right) \right] \mod 420.$$

$$= \left(360 + 1008 + 1540 \right) \mod 420$$

$$= 2908 \mod 420$$

$$= 388$$

a) (iii)
$$a_{1} = 3$$
, $a_{2} = 4$
 $m_{1} = 6$ $m_{2} = 8$

m, em 2 are not relativity prime modulo.

$$H = \begin{pmatrix} 17 & 8 \\ 19 & 3 \end{pmatrix}$$

ABCDEF 6
0 1 2 3 4 5 6
H T J K L M N 0
7 8 9 10 11 12 13 14

P P R ST U V W X Y Z
15 16 17 18 19 20 21 22 23 24 25

Encaption

$$= (19 \ 2) \begin{pmatrix} 17 \ 8 \end{pmatrix} \mod 26 = (361 \ 158) \mod 26$$
$$= (23 \ 2) = (X \ C)$$

$$C = PK \mod 26$$

$$= (4 12) (17 8) \mod 26 = (296 68) \mod 26$$

$$= (10 16) = (K 9)$$

Decomption

Adj
$$R = \begin{pmatrix} 3 & -8 \\ -19 & | \mp \end{pmatrix}$$
 mod $26 = \begin{pmatrix} 3 & 18 \\ \hline \hline 1 & | \mp \end{pmatrix}$
 $R^{-1} = \frac{1}{3} \begin{pmatrix} 3 & 18 \\ \hline \hline 1 & | \mp \end{pmatrix}$ mod $26 = 3^{-1}$ mod 26 .
 $26 = 17$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$

$$KK^{-1} \mod 26 = \begin{pmatrix} 17 & 8 \\ 19 & 3 \end{pmatrix} \begin{pmatrix} 1 & 6 \\ 11 & 23 \end{pmatrix} \mod 26$$

$$= \begin{pmatrix} 105 & 286 \\ 52 & 183 \end{pmatrix} \mod 26 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

=
$$(23\ 2)$$
 $(1\ 6)$ mod 26 = $(45\ 184)$ mod 26
= $(19\ 2)$ = $(7\ C)$.

$$= (10 \ 16) \left(\begin{array}{c} 1.6 \\ 11 \end{array} \right) \text{ mod } 26 = (186 \ 428) \text{ mod } 26$$

$$= (4 \ 12) = (E \ M)$$

67 20 46 75 20 4B 75 6E 73 20 6D 79

			-
67	2013	73	54
20	4 B	20	68
46 63	757	6D	61
754	6E 18	79	7 0t
KOO	US) 2	uha	uby

54 68 61 75 100 10

i)
$$Y_{B} = 10$$
, $K = 3$, $M = 9$
 $K = (Y_{B})^{k} \mod q = 10^{3} \mod 157 = 58$
 $C_{1} = d \mod q = 5^{3} \mod 157 = 125$
 $C_{2} = KM \mod q = (58 \times 9) \mod 157 = 51$
 $C = (C_{1}, C_{2}) = (125, 51)$

$$K = ((1)^{\times B} \mod q)$$
 $\times B = \alpha^{\times B} \mod q$.
$$10 = 5^{\times B} \mod 157$$

$$6 \ C_1 = a^k \mod q$$

$$25 = 5^k \mod 157$$

$$10^k \mod 157$$

$$= 10^k \mod 157$$

(25/115)