

CLAIMS:

1. A compound of formula (I) or a pharmaceutically acceptable salt thereof:

(I)

5

wherein:

R¹ represents -C₃₋₇ cycloalkyl optionally substituted by C₁₋₃ alkyl;

R² represents -aryl, -heterocyclyl, -heteroaryl, -aryl-X-C₃₋₈ cycloalkyl, -aryl-X-aryl, -aryl-X-heteroaryl, -aryl-X-heterocyclyl, -heteroaryl-X-C₃₋₈ cycloalkyl, -heteroaryl-X-aryl, -heteroaryl-X-heteroaryl, -heteroaryl-X-heterocyclyl, -heterocyclyl-X-C₃₋₈ cycloalkyl, -heterocyclyl-X-aryl, -heterocyclyl-X-heteroaryl or -heterocyclyl-X-heterocyclyl;

X represents a bond, O, CO, -CH₂O-, -COCH₂-, -COCH₂O-, -CONR^{2b}-, -COCH₂NR^{2b}CO-, -CSNH-, SO₂, -SO₂C₁₋₃ alkyl-, -SO₂C₂₋₃ alkenyl-, -COC₂₋₃ alkenyl-, -CO-C(R^{2a})(R^{2b})- or -CO-C(R^{2a})(R^{2b})CH₂-;

15 R^{2a} represents hydrogen or C₁₋₆ alkyl;

R^{2b} represents hydrogen, C₁₋₆ alkyl, aryl, heteroaryl, heterocyclyl or C₁₋₆ alkylamido;

R³ represents halogen, C₁₋₆ alkyl, C₁₋₆ alkoxy, cyano, amino or trifluoromethyl;

n is 0, 1 or 2;

wherein said alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl groups of R² may be 20 optionally substituted by one or more substituents (eg. 1, 2 or 3) which may be the same or different, and which are selected from the group consisting of halogen, hydroxy, cyano, nitro, =O, haloC₁₋₆ alkyl, haloC₁₋₆ alkoxy, C₁₋₆ alkyl, hydroxyC₁₋₆ alkyl, C₁₋₆ alkoxy, aryIC₁₋₆ alkoxy, C₁₋₆ alkylthio, C₁₋₆ alkoxyC₁₋₆ alkyl, C₃₋₇ cycloalkylC₁₋₆ alkoxy, C₁₋₆ alkanoyl, C₁₋₆ alkoxycarbonyl, C₁₋₆ alkylsulfonyl, C₁₋₆ alkylsulfinyl, C₁₋₆ alkylsulfonyloxy, C₁₋₆ 25 alkylsulfonylC₁₋₆ alkyl, sulfonyl, arylsulfonyl, arylsulfonyloxy, arylsulfonylC₁₋₆ alkyl, aryloxy, C₁₋₆ alkylsulfonamido, C₁₋₆ alkylamino, C₁₋₆ alkylamido, -R⁵, -CO₂R⁵, -COR⁵, -C₁₋₆ alkyl-COR⁵, C₁₋₆ alkylsulfonamidoC₁₋₆ alkyl, C₁₋₆ alkylamidoC₁₋₆ alkyl, arylsulfonamido, 30 arylcarboxamido, arylsulfonamidoC₁₋₆ alkyl, arylcarboxamidoC₁₋₆ alkyl, aroyl, aryIC₁₋₆ alkyl, aroylC₁₋₆ alkyl, aryIC₁₋₆ alkanoyl, or a group -NR⁶R⁷, -C₁₋₆ alkyl-NR⁶R⁷, -C₃₋₈ cycloalkyl-NR⁶R⁷, -CONR⁶R⁷, -NR⁶COR⁷, -NR⁶SO₂R⁷, -OCONR⁶R⁷, -NR⁶CO₂R⁷, -NR⁵CONR⁶R⁷ or -SO₂NR⁶R⁷ (wherein R⁵, R⁶ and R⁷ independently represent hydrogen, C₁₋₆ alkyl, haloC₁₋₆ alkyl, -C₃₋₈ cycloalkyl, -C₁₋₆ alkyl-C₃₋₈ cycloalkyl, aryl, -C₁₋₆ alkyl-aryl, heterocyclyl or heteroaryl, or wherein -NR⁶R⁷ may represent a nitrogen containing heterocyclyl group, and wherein said R⁵, R⁶ and R⁷ groups may be optionally substituted by one or more 35 substituents (eg. 1, 2 or 3) which may be the same or different, and which are selected from the group consisting of halogen, hydroxy, C₁₋₆ alkyl, C₁₋₆ alkoxy, cyano, amino, =O or trifluoromethyl); or solvates thereof.

2. A compound according to claim 1 which is a compound of formula E1-E262 or a pharmaceutically acceptable salt thereof.
3. A pharmaceutical composition which comprises the compound of formula (I) as defined in claim 1 or claim 2 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or excipient.
4. A compound as defined in claim 1 or claim 2 for use in therapy.
- 10 5. A compound as defined in claim 1 or claim 2 for use in the treatment of neurological diseases.
6. Use of a compound as defined in claim 1 or claim 2 in the manufacture of a medicament for the treatment of neurological diseases.
- 15 7. A method of treatment of neurological diseases which comprises administering to a host in need thereof an effective amount of a compound of formula (I) as defined in claim 1 or claim 2 or a pharmaceutically acceptable salt thereof.
- 20 8. A pharmaceutical composition for use in the treatment of neurological diseases which comprises the compound of formula (I) as defined in claim 1 or claim 2 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
9. A process for the preparation of a compound of formula (I) or a pharmaceutically acceptable salt thereof, which process comprises:

(a) reacting a compound of formula (II)

30 wherein R¹, R³ and n are as defined above and L¹ represents a suitable leaving group such as a halogen atom (eg. bromine or iodine), or an optionally activated hydroxyl group (such as a triflate group) with a compound of formula R²-Y, wherein R² is as defined above for R² and Y represents hydrogen or a suitable coupling group such as a boronic acid or organometallic group such as zinc or alkyl stannane; or

35

(b) reacting a compound of formula (III)

(III)

wherein R², R³ and n are as defined above, with a compound of formula R¹-L², wherein R¹ is as defined above and L² represents a suitable leaving group such as a halogen atom (eg. bromine, iodine or tosylate); or

5

(c) reacting a compound of formula (III) as defined above, with a ketone of formula R¹=O, wherein R¹ is C₃₋₇ cycloalkyl optionally substituted by C₁₋₃ alkyl; or

10 (d) preparing a compound of formula (I) wherein R² represents -heterocyclyl, wherein said heterocyclyl is a 1,3-oxazolidin-2-one group substituted at the 5-position with a hydroxymethyl group, and wherein the oxazolidin-2-one group is attached to the benzazepine moiety through the nitrogen atom, which comprises reacting a compound of formula (IV)

(IV)

15 in a two step process, wherein R¹, R³ and n are as defined above, with a benzyl chloroformate group and then glycidol butyrate; or

(e) preparing a compound of formula (I) wherein R² represents -aryl, -heteroaryl, -aryl-X-C₃₋₈ cycloalkyl, -aryl-X-aryl, -aryl-X-heteroaryl, -aryl-X-heterocyclyl, -heteroaryl-X-C₃₋₈ cycloalkyl, -heteroaryl-X-aryl, -heteroaryl-X-heteroaryl, -heteroaryl-X-heterocyclyl, which comprises reacting a compound of formula (XI)

(XI)

25 wherein R¹, R³ and n are as defined above and Z¹ represents a suitable coupling group such as a boronic acid or ester, or organometallic group such as zinc or alkyl stannane with a compound of formula R²-L¹, wherein L¹ represents a suitable leaving group such as a halogen atom (eg. bromine or iodine), or an optionally activated hydroxyl group (such as a triflate group) and R² represents the groups -aryl, -heteroaryl, -aryl-X-C₃₋₈ cycloalkyl, -aryl-X-aryl, -aryl-X-heteroaryl, -aryl-X-heterocyclyl, -heteroaryl-X-C₃₋₈ cycloalkyl, -heteroaryl-X-aryl, -heteroaryl-X-heteroaryl, -heteroaryl-X-heterocyclyl, or

30
35 (f) deprotecting a compound of formula (I) which is protected; or
(g) interconversion from another compound of formula (I).