LA COMPACITÉ DE PRODUITES

Théorème

Soit X, Y deux espaces topologiques. Alors le produit X × Y est compact ssi X et Y sont tous les deux compacts.

Démonstration.

Supposons que $X \times Y$ est compact. Puisque p_1 est continue, $X = p_1(X \times Y)$ est compact en tant que l'image d'un espace compact.

Supposons que X et Y sont compacts. Soit W un recouvrement ouvert de $X \times Y$. Soit $x \in X$ fixé. Puisque W est un recouvrement de $X \times Y$, $\forall y \in Y$ $\exists W(y) \in W$ tq $(x,y) \in W(y)$. Par définition de la topologie produit, $\exists U(y) \subset X$ et $\exists V(y) \subset Y$ tq

$$(x, y) \in U(y) \times V(y) \subset W(y)$$
.

La collection $\{V(y): y \in Y\}$ est un recouvrement ouvert de Y. La compacité de Y implique qu'il existe un sous-recouvrement fini, disons $V(y_1), \ldots, V(y_r)$. Posons

$$U(x) = U(y_1) \cap \cdots \cap U(y_r).$$

1/17

Démonstration (suite).

Alors pour tout i = 1, ..., r,

$$U(x) \times V(y_i) \subset U(y_i) \times V(y_i) \subset W(y_i)$$

Donc

$$U(x) \times Y \subset U(x) \times \bigcup_{i=1}^{r} V(y_i) \subset \bigcup_{i=1}^{r} W(y_i)$$

Maintenant la collection $\{U(x): x \in X\}$ est un recouvrement ouvert de X. Il existe donc un sous-recouvrement fini $\{U(x_1), ..., U(x_s)\}$. Chaque sous-espace $U(x_i) \times Y$ est recouvert par un nombre fini d'ouvert du recouvrement \mathcal{W} . Donc $X \times Y$, étant la réunion (finie) des $U(x_i) \times Y$ pour $1 \le i \le s$, est aussi recouvert par un nombre fini d'éléments du recouvrement \mathcal{W} .

CRITÈRE AUTOMATIQUE D'HOMÉOMORPHISME

Nous avons déjà vu qu'en général

 $f: X \to Y$ est continue et bijective f^{-1} est continue.

Cependant, on a le résultat suivant :

Proposition

Soit $f: X \to Y$ une bijection continue. Si X est compact et Y est Hausdorff, alors f est un homéomorphisme.

Démonstration.

Soit G un fermé de X. Puisque G est fermé dans X qui est compact, alors G est compact. Comme f est continue, f(G) est aussi compact. Puisque Y est Hausdorff, f(G) est un fermé de Y. Ainsi, f est une application fermée et, donc, un homéomorphisme.

3/17

En tant qu'application, on a le résultat suivant.

Proposition

L'espace quotient \mathbb{R}/\mathbb{Z} est homéomorphe à l'ensemble $S^1 = \{z \in \mathbb{C}, |z| = 1\}$ muni de la topologie induite par celle de \mathbb{R}^2 .

Démonstration.

On définit l'application

$$\varphi: \mathbb{R}/\mathbb{Z} \to S^1, \qquad [x] \mapsto e^{2i\pi x}.$$

On a déjà vu que φ est continue et bijective. Comme \mathbb{R}/\mathbb{Z} est compact et S^1 est Hausdorff, φ est alors un homéomorphisme.

Exercice

1. Considérons l'opération du groupe \mathbb{Z}^2 sur \mathbb{R}^2 :

$$(n,m)\cdot(x,y)=(x+n,\ y+m).$$

Prouver que $\mathbb{R}^2/\mathbb{Z}^2$ est homéomorphe au tore \mathbb{T} . De plus, prouver que le tore est homéomorphe à $S^1 \times S^1$ muni de la topologie produit.

2. Prouver que $S^2/\{\pm 1\}$ est homéomorphe au plan projectif.

5/17

La compacité dans \mathbb{R}^n

Définition

Un sous-ensemble $A \subset M$ d'un espace métrique est dit borné s'il existe R > 0 et $m_0 \in M$ tq $A \subset B(m_0, R)$.

Exercice

Montrer que A est borné ssi une des propriétés suivantes est vérifiée :

- $\forall m_0 \in M$ $\exists R = R_{m_0} \text{ tq } A \subset B_R(m_0).$
- $\exists C > 0 \text{ tq pour tout } x, y \in A, d(x, y) \leq C.$

Proposition

Soit M un espace métrique. Si K ⊂ M est compact, alors K est borné et fermé.

Démonstration.

Puisque pour tout $m_0 \in M$ la fonction $K \to \mathbb{R}$, $K \ni m \mapsto d(m, m_0)$ est continue, alors elle est bornée, càd que K est bornée. K est fermé en tant qu'un sous-ensemble compact d'un espace Hausdorff.

Théorème

Un sous-ensemble $K \subset \mathbb{R}^n$ est compact ssi K est borné et fermé.

Démonstration.

Soit K borné par rapport à la métrique d_{∞} ($\Leftrightarrow K$ est borné par rapport à la métrique euclidienne puisque les deux métriques sont équivalentes). Alors, il existe R > 0 tq $d_{\infty}(m,0) \le R$, càd

$$K \subset [-R,R]^n$$
.

 $[-R,R]^n$ est compact en tant que le produit de sous-ensembles compacts. Puisque K est un sous-ensemble fermé, alors K est compact. \Box

Remarque

En général, un sous-ensemble borné et fermé d'un espace métrique quelconque n'est pas compact. Par exemple, un sous-ensemble *A* quelconque d'un espace discret est toujours borné et fermé. Cependent, *A* n'est pas compact si *A* est infini.

7/17

Les normes sur \mathbb{R}^n

Définition

Soit (E, +) un espace vectoriel. Une *norme sur E* est une application $N: E \to [0, +\infty)$ vérifiant les trois propriétés suivantes :

- Pour $x \in E$, $N(x) = 0 \iff x = 0$
- (Inégalité triangulaire) $N(x + y) \le N(x) + N(y)$ pour tous $x, y \in E$.
- (Homogénéité) $N(\lambda x) = |\lambda| N(x)$ pour tout $\lambda \in \mathbb{R}$ et $x \in E$.

Exemple

Les normes suivantes sont des exemples classiques sur \mathbb{R}^n , $n \ge 1$:

$$\|x\|_1 = \sum_{i=1}^n |x_i| \quad \text{pour tout } x \in \mathbb{R}^n;$$

$$\|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2} \quad \text{pour tout } x \in \mathbb{R}^n$$

$$\|x\|_{\infty} = \max_{1 \le i \le n} |x_i| \quad \text{pour tout } x \in \mathbb{R}^n$$

Exercice

Supposons que N est une norme sur E. Montrer que $d_N(x,y) = N(x-y)$ définit une métrique sur E. Donc, tout espace vectoriel normé est un espace métrique.

Théorème

Soient N_1 et N_2 des normes sur \mathbb{R}^n . Alors N_1 et N_2 sont équivalentes, càd qu'il existe des constante A, B > 0 tq

$$AN_2(x) \le N_1(x) \le BN_2(x)$$
 pour tout $x \in \mathbb{R}^n$.

En particulier, si N est une norme sur \mathbb{R}^n , la topologie métrique associée à la distance $d_N(x, y) = N(x - y)$ coïncide avec la topologie usuelle sur \mathbb{R}^n .

Démonstration.

Soit N une norme sur \mathbb{R}^n quelconque. Il suffit de montrer que N est équivalente à $\|\cdot\|_{\infty}$ parce que

$$N_1(x) \le B \|x\|_{\infty}$$
 et $\|x\|_{\infty} \le \frac{1}{A} N_2(x)$ \Longrightarrow $N_1(x) \le \frac{B}{A} N_2(x)$.

9/17

Démonstration (suite).

Soit (e_1, \ldots, e_n) la base standard de \mathbb{R}^n . Désignons $C := \sum_{i=1}^n N(e_i) > 0$.

$$N(x) = N\Big(\sum x_i e_i\Big) = \sum |x_i| N(e_i) \le \sum \|x\|_{\infty} N(e_i) \le C \|x\|_{\infty}.$$

En remplaçant x par x-y, on obtient $N(x-y) \le C ||x-y||_{\infty}$. Donc, $N: \mathbb{R}^n \to \mathbb{R}$ est continue par rapport à d_{∞} . Puisque

$$S_{\infty} := \left\{ x \in \mathbb{R}^n \mid ||x||_{\infty} = 1 \right\}$$

est borné et fermé (pourquoi?), alors S_{∞} est compact. Donc, la restriction de N sur S_{∞} atteint son minimum $A := \inf \{N(x) \mid x \in S_{\infty}\} = N(x_0) > 0$. Ainsi, si $x \neq 0$, on a que

$$A \le N\left(\frac{x}{\|x\|_{\infty}}\right) \qquad \Longleftrightarrow \qquad A\|x\|_{\infty} \le N(x).$$

Attention

Le théorème implique que les métriques d_{N_1} et d_{N_2} sont équivalantes si N_1 et N_2 sont des normes sur \mathbb{R}^n quelconques. Cependant, le théorème n'implique pas que toutes les distances sur \mathbb{R}^n sont équivalentes!

10/17

COMPACITÉ PAR SUITES

Définition

Un sous-espace $K \subset M$ d'un espace métrique est dit séquentiellement compact si toute suite $(x_n) \subset K$ possède une sous-suite qui converge vers un point de K.

Théorème

Un sous-espace K ⊂ M d'un espace métrique est compact ssi K est séquentiellement compact.

La preuve de ce théorème consiste en plusieurs étapes.

Lemme

Soit $(x_n) \subset X$ une suite dans un espace métrique. Écrivons $S = \{x_n : n \in \mathbb{N}\}$. Supposons que x est un point limite de S. Alors il existe une sous-suite de (x_n) qui converge vers x.

La preuve découle du fait suivant : tout point limite de A est la limite d'une suite (a_k) tq $a_k \in A$. Détails : Fine, Bertelson, Premoselli. Intro à la topologie.

11/17

Proposition

Soit K ⊂ M un sous-espace compact d'un espace métrique. Alors K est séquentiellement compact.

Démonstration.

Si S est fini, il doit exister au moins un point $x \in K$ qui est répété un nombre infini de fois dans (x_n) . Ainsi, dans ce cas-là, il existe une sous-suite constante, alors convergente.

Supposons que S est infini. Il suffit de démontrer que S a un point limite dans K. Supposons qu'il n'existe pas de point limite de S dans K. Donc, $\forall x \in K \ \exists \varepsilon(x) > 0 \text{ tq } S \cap \left(B_{\varepsilon(x)}(x) \setminus \{x\}\right) = \emptyset$. Considérons

$$\mathcal{U} = \{B_{\varepsilon(x)}(x) \mid x \in K\}.$$

La compacité de K implique qu'il existe un sous-recouvrement fini :

$$K \subset B_{\varepsilon(x_1)}(x_1) \cup \cdots \cup B_{\varepsilon(x_r)}(x_r).$$

Mais les boules contiennent chacune au plus un point de *S* donc, ensemble, elles ne contiennent pas plus que *r* points de *S*. Ceci contredit le fait que *S* est infini.

Corollaire (Bolzano-Weierstrass)

Soit $(x_n) \subset \mathbb{R}^n$ une suite bornée. Alors elle possède une sous-suite convergente.

Démonstration.

Par l'hypothèse,
$$\exists R > 0 \text{ tq } S = \{x_n : n \in \mathbb{N}\} \subset \bar{B}_R(0)$$
. Alors, $\bar{S} \subset \overline{\bar{B}_R(0)} = \bar{B}_R(0)$,

parce que $\bar{B}_R(0)$ est fermé. Puisque \bar{S} est borné et fermé, alors \bar{S} est compact par Heine-Borel. Ainsi, (x_n) possède une sous-suite convergente.

13 / 17

Lemme (A)

Soit M un espace métrique séquentiellement compact et soit $\mathcal{U} = \{U_i \mid i \in I\}$ un recouvrement ouvert de M. Alors il existe un r > 0 avec la propriété suivante : $\forall m \in M \ \exists U = U_{i(m)} \in \mathcal{U} \ tq \ B_r(m) \subset U$.

Démonstration.

Supposons qu'un tel r>0 n'existe pas. Alors, $\forall n\in\mathbb{N}\ \exists m_n\in M$ tq $B_{1/n}(m_n)\notin U_i$ pour tout $i\in I$. Puisque M est séquentiellement compact, la suite (m_n) possède une sous-suite (m_{n_k}) qui converge vers un $m\in M$. Puisque $\mathcal U$ est un recouvrement, il existe $U_i\in\mathcal U$ tq $m\in U_i$. Alors, $\exists r>0$ tq $B_r(m)\subset U_i$ parce que U_i est ouvert.

Maintenant, prenons k si grand que $d(m_{n_k}, m) < r/2$ et $1/n_k < r/2$. On a $B_{1/n_k}(m_{n_k}) \subset B_r(m)$

parce que

 $m' \in B_{1/n_k}(m_{n_k}) \implies d(m,m') \le d(m,m_{n_k}) + d(m_{n_k},m') < r/2 + 1/n_k < r.$ Ainsi, on obtient une contradiction, parce que $B_{1/n_k}(m_{n_k}) \subset B_r(m) \subset U_i.$

14/17

Lemme (B)

Soit (m_n) une suite dans un espace métrique. Si (m_n) converge, alors (m_n) est une suite de Cauchy, càd $\forall \varepsilon > 0 \ \exists N > 0 \ tq \ d(m_p, m_q) < \varepsilon$ lorsque $p, q \ge N$.

La démonstration est laissée au lecteur.

Lemme (C)

Soit M un espace métrique séquentiellement compact et r > 0 quelconque. Alors, il existe un sous-ensemble fini $\{m_1, \ldots, m_p\} \subset M$ tq

$$\bigcup_{i=1}^{p} B_r(m_i) = M.$$

15/17

Démonstration.

Supposons qu'aucune collection finie de boules $\{B_r(m_i) \mid 1 \le i \le p \}$ n'est pas un recouvrement de M. Donc, $\forall m_1 \in M \ \exists m_2 \in M \setminus B_r(m_1)$. Puisque $M \neq B_r(m_1) \cup B_r(m_2)$, $\exists m_3 \in M \setminus (B_r(m_1) \cup B_r(m_2))$. Ainsi, on obtient une suite m_n avec la propriété suivante :

$$m_n \notin B_r(m_1) \cup \cdots \cup B_r(m_{n-1}).$$

Puisque M est séquentiellement compact, il existe une sous-suite (m_{n_k}) convergent. Mais (m_{n_k}) n'est pas une suite de Cauchy parce que $d(m_{n_k}, m_{n_{k-1}}) \ge r$. Ceci est une contradiction.

Corollaire

Si M est un espace métrique séquentiellement compact, alors M est compact.

Démonstration.

Soit $\mathcal{U} = \{U_i \mid i \in I\}$ un recouvrement ouvert quelconque. Soit r > 0 donné par le lemme A. Pour ce r, on peut choisir un recouvrement fini :

$$\{B_r(m_1),\ldots,B_r(m_n)\}.$$

Puisque $B_r(m_j) \subset U_{i(j)}$ pour tout $j \in \{1, ..., n\}$, la collection

$$\left\{U_{i(1)},\ldots,U_{i(n)}\right\}$$

est un sous-recouvrement de \mathcal{U} .