21. ECUACIONES DIFERENCIALES ORDINARIAS DE SEGUNDO ORDEN

SEGUNDA PARTE

EDO de Segundo Orden No Homogénea con Coeficientes Constantes

Son de la forma:

$$ay'' + by' + cy = f(x)$$

donde a, b y c son constantes.

Su solución general se puede expresar como: $y = y_H + y_{NH}$, donde y_{NH} es una solución particular de la EDL No Homogénea e y_H es la solución general de la EDL Homogénea auxiliar: ay'' + by' + cy = 0.

En la bibliografía pueden encontrar dos métodos para obtener la solución particular y_{NH} , el **método de los coeficientes indeterminados** y el **método de la variación de los parámetros**.

Para resolver de manera práctica se verá el primero de ellos. Este método se aplica cuando f(x) tiene la forma de un polinomio, o una exponencial, o seno, o coseno, o una combinación de ellos. Este es más simple de aplicar pero para un número restringido de f(x), el segundo es más difícil de aplicar pero es válido para cualquier f(x).

Método de los Coeficientes Indeterminados

<u>Polinomio de Enésimo grado:</u> Si $f(x) = P_n(x)$

La solución particular y_{NH} es un polinomio del mismo grado:

$$y_{NH} = U_n(x) = A_0 x^n + A_1 x^{n-1} + ... + A_{n-1} x + A_n$$

Función Exponencial: Si $f(x) = Ce^{\alpha x}$

La solución particular es de la forma:

$$y_{NH} = A e^{\alpha x}$$

Función Trigonométrica: Si $f(x) = C \cos(\alpha x)$

Si
$$f(x) = C \operatorname{sen}(\alpha x)$$

$$Si f(x) = Ccos(\alpha x) + Dsen(\alpha x)$$

Se propone la solución particular:

$$y_{NH} = A \cos ax + B \sin ax$$

<u>Producto de funciones:</u> Se propone una solución particular y_{NH} con la forma de un producto de funciones del mismo tipo.

<u>Suma de funciones:</u> Se propone una solución particular y_{NH} con la forma de la suma de funciones del mismo tipo.

<u>Si la solución particular propuesta es solución de la EDL Homogénea auxiliar:</u> En estos casos esta solución particular no puede ser solución de la EDL No Homogénea planteada, entonces se multiplica la solución particular por "x" o "x²".

Ejemplo 4 Hallar la solución particular de $y'' - \frac{1}{2}y' - \frac{1}{2}y = 2xe^{2x}$ para $y_0 = 2, y'_0 = 1, x_0 = 0$

Ecuación característica:
$$k^2 - \frac{1}{2}k - \frac{1}{2} = 0$$

$$\begin{cases} k_1 = 1 \\ k_2 = -\frac{1}{2} \end{cases}$$

Raíces reales y distintas, la solución general de la Homog. Auxiliar: $y_H = C_1 e^x + C_2 e^{-\frac{1}{2}x}$

f(x) tiene una estructura de producto de funciones, entonces se propone:

$$y_{NH} = (Ax + B)e^{2x}$$

Derivamos hasta el orden dos:

$$y'_{NH} = Ae^{2x} + 2(Ax + B)e^{2x}$$
$$y''_{NH} = 2Ae^{2x} + 2Ae^{2x} + 4(Ax + B)e^{2x} = 4Ae^{2x} + 4(Ax + B)e^{2x}$$

Reemplazamos en la ED:

$$4Ae^{2x} + 4(Ax + B)e^{2x} - \frac{1}{2}[Ae^{2x} + 2(Ax + B)e^{2x}] - \frac{1}{2}[(Ax + B)e^{2x}] = 2xe^{2x}$$
$$\frac{7}{2}Ae^{2x} + \frac{5}{2}Axe^{2x} + \frac{5}{2}Be^{2x} = 2xe^{2x}$$

Comparamos términos semejantes para encontrar los coeficientes y luego reemplazamos en la solución propuesta:

$$\frac{5}{2}A = 2 \to A = \frac{4}{5}$$

$$\frac{7}{2}A + \frac{5}{2}B = 0 \to B = -\frac{28}{25}$$
Ing. Rocha - Ing. Orte 25

$$y_{NH} = \left(\frac{4}{5}x - \frac{28}{25}\right)e^{2x}$$

La solución general es:

$$y_G = C_1 e^x + C_2 e^{-\frac{1}{2}x} + \left(\frac{4}{5}x - \frac{28}{25}\right)e^{2x}$$

Para hallar la solución particular reemplazamos en y_G y en y'_G con los datos:

$$y'_G = C_1 e^x - \frac{1}{2}C_2 e^{-\frac{1}{2}x} + \frac{4}{5}e^{2x} + 2\left(\frac{4}{5}x - \frac{28}{25}\right)e^{2x}$$

$$2 = C_1 e^0 + C_2 e^0 + \left(\frac{4}{5} \cdot 0 - \frac{28}{25}\right) e^0 \to C_1 + C_2 = \frac{78}{25} \tag{1}$$

$$1 = C_1 e^0 - \frac{1}{2} C_2 e^0 + \frac{4}{5} e^0 + 2 \left(\frac{4}{5} \cdot 0 - \frac{28}{25} \right) e^0 \to C_1 - \frac{1}{2} C_2 = \frac{61}{25}$$
 (2)

Resolvemos el sistema de ecuaciones:

$$C_{1} = \frac{\begin{vmatrix} \frac{78}{25} & 1\\ \frac{61}{25} & -\frac{1}{2} \\ \frac{1}{1} & 1\\ 1 & -\frac{1}{2} \end{vmatrix}}{\begin{vmatrix} 1 & 1\\ 1 & -\frac{1}{2} \end{vmatrix}} = \frac{-\frac{39}{25} - \frac{61}{25}}{-\frac{1}{2} - 1} = \frac{-4}{-\frac{3}{2}} = \frac{8}{3}$$

$$C_{2} = \frac{78}{25} - \frac{8}{3} = \frac{34}{75}$$

La solución particular es:

$$y_P = \frac{8}{3}e^x + \frac{34}{75}e^{-\frac{1}{2}x} + \left(\frac{4}{5}x - \frac{28}{25}\right)e^{2x}$$

Ejemplo 5

Hallar la solución particular de
$$y''-y=4x^2-2+6e^{-2x}$$
 $para$ $y_0=1, y'_0=-1, x_0=0$

Ecuación característica: $k^2 - 1 = 0$

$$k^2 = 1 \to \begin{cases} k_1 = 1 \\ k_2 = -1 \end{cases}$$

Raíces reales y distintas, la solución general de la Homog. Auxiliar: $y_H = C_1 e^x + C_2 e^{-x}$ f(x) tiene una estructura de suma de funciones, entonces se propone:

$$y_{NH} = Ax^2 + Bx + C + De^{-2x}$$

Derivamos hasta el orden dos:

$$y'_{NH} = 2Ax + B - 2De^{-2x}$$

 $y''_{NH} = 2A + 4De^{-2x}$

Reemplazamos en la ED:

$$2A + 4De^{-2x} - [Ax^2 + Bx + C + De^{-2x}] = 4x^2 - 2 + 6e^{-2x}$$
$$-Ax^2 - Bx + 2A - C + 3De^{-2x} = 4x^2 - 2 + 6e^{-2x}$$

Comparamos términos semejantes para encontrar los coeficientes y luego reemplazamos en la solución propuesta:

$$-A = 4 \rightarrow A = -4$$

$$-B = 0 \rightarrow B = 0$$

$$2A - C = -2 \rightarrow C = -6$$

$$3D = 6 \rightarrow D = 2$$

$$y_{NH} = -4x^2 - 6 + 2e^{-2x}$$

La solución general es:

$$y_G = C_1 e^x + C_2 e^{-x} - 4x^2 - 6 + 2e^{-2x}$$

Para hallar la solución particular reemplazamos en y_G y en y'_G con los datos iniciales:

$$y'_G = C_1 e^x - C_2 e^{-x} - 8x - 4e^{-2x}$$

$$1 = C_1 + C_2 - 6 + 2 \to C_1 + C_2 = 5 (1)$$

$$-1 = C_1 - C_2 - 4 \rightarrow C_1 - C_2 = 3$$
 (2)

Resolvemos el sistema de ecuaciones:

$$C_1 = \frac{\begin{vmatrix} 5 & 1 \\ 3 & -1 \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix}} = \frac{-5 - 3}{-1 - 1} = 4 : C_2 = 1$$

La <u>solución particular</u> es:

$$y_P = 4e^x + e^{-x} - 4x^2 - 6 + 2e^{-2x}$$

Ejemplo 6

Hallar la solución general de $y'' + 3y = 3\cos(4x) - 2\sin(4x)$

Ecuación característica: $k^2 + 3 = 0$

$$k^2 = -3 \begin{cases} k_1 = -\sqrt{3}i \\ k_2 = \sqrt{3}i \end{cases}$$

Raíces complejas conjugadas, la solución general de la Homog. Auxiliar:

$$y_H = C_1 \cos(\sqrt{3}x) + C_2 sen(\sqrt{3}x)$$

f(x) es una combinación de funciones trigonométricas, entonces se propone:

$$y_{NH} = A\cos(4x) + B\sin(4x)$$

Derivamos hasta el orden dos:

$$y'_{NH} = -4Asen(4x) + 4Bcos(4x)$$

 $y''_{NH} = -16Acos(4x) - 16Bsen(4x)$

Reemplazamos en la ED:

$$-16A\cos(4x) - 16Bsen(4x) + 3[A\cos(4x) + Bsen(4x)] = 3\cos(4x) - 2sen(4x)$$
$$-13A\cos(4x) - 13Bsen(4x) = 3\cos(4x) - 2sen(4x)$$

Comparamos términos semejantes para encontrar los coeficientes y luego reemplazamos en la solución propuesta:

$$-13A = 3 \to A = -\frac{3}{13}$$

$$-13B = -2 \to B = \frac{2}{13}$$

$$y_{NH} = -\frac{3}{13}\cos(4x) + \frac{2}{13}\sin(4x)$$

$$y_{NH} = -\frac{3}{13}\cos(4x) + \frac{2}{13}sen(4x)$$

La solución general:

$$y_G = C_1 \cos(\sqrt{3}x) + C_2 sen(\sqrt{3}x) - \frac{3}{13}\cos(4x) + \frac{2}{13}sen(4x)$$
 Este archivo fue descargado de https://filadd.com

Ejemplo 7 Hallar la solución general de $y'' - 10y' + 25y = e^{5x}$

Ecuación característica: $k^2 - 10k + 25 = 0 \rightarrow k_1 = k_2 = 5$

Raíces reales e iguales, la solución general de la Homog. Auxiliar:

$$y_H = C_1 e^{5x} + C_2 x e^{5x}$$

La solución propuesta no puede ser solución de la Homogénea auxiliar entonces se plantea:

$$y_{NH} = Ax^2 e^{5x}$$

Derivamos hasta el orden dos:

$$y'_{NH} = 2Axe^{5x} + 5Ax^2e^{5x}$$

 $y''_{NH} = 2Ae^{5x} + 10Axe^{5x} + 10Axe^{5x} + 25Ax^{2}e^{5x} = 2Ae^{5x} + 20Axe^{5x} + 25Ax^{2}e^{5x}$

Réemplazamos en la ED:

$$2Ae^{5x} + 20Axe^{5x} + 25Ax^{2}e^{5x} - 10[2Axe^{5x} + 5Ax^{2}e^{5x}] + 25Ax^{2}e^{5x} = e^{5x}$$
$$2Ae^{5x} = e^{5x}$$

$$2A = 1 \to A = \frac{1}{2}$$

Reemplazamos en la solución propuesta:

$$y_{NH} = \frac{1}{2}e^{5x}$$

La solución general:

Ing. Rocha - Ing. Ortenzi

$$y_G = C_1 e^{5x} + C_2 x e^{5x} + \frac{1}{2} x^2 e^{5x}$$

Ejemplo 8 Resolver:
$$y'' - 4y' + 3y = e^{3x}x - e^{3x}$$

$$y'' - 4y' + 3y = e^{3x}(x - 1)$$

Ecuación característica:
$$k^2 - 4k + 3 = 0$$

$$\begin{cases} k_1 = 1 \\ k_2 = 3 \end{cases}$$

Raíces reales y distintas, la solución general de la Homog. Auxiliar: $y_H = C_1 e^x + C_2 e^{3x}$

La solución propuesta no puede ser solución de la Homogénea auxiliar entonces se plantea:

$$y_{NH} = xe^{3x}(Ax + B) = Ax^2e^{3x} + Bxe^{3x}$$

Derivamos hasta el orden dos:

$$y'_{NH} = 2Axe^{3x} + 3Ax^{2}e^{3x} + Be^{3x} + 3Bxe^{3x}$$

$$y''_{NH} = 2Ae^{3x} + 6Axe^{3x} + 6Axe^{3x} + 9Ax^{2}e^{3x} + 3Be^{3x} + 3Be^{3x} + 9Bxe^{3x}$$

$$= 2Ae^{3x} + 12Axe^{3x} + 9Ax^{2}e^{3x} + 6Be^{3x} + 9Bxe^{3x}$$

Réemplazamos en la ED:

$$2Ae^{3x} + 12Axe^{3x} + 9Ax^{2}e^{3x} + 6Be^{3x} + 9Bxe^{3x} - 4[2Axe^{3x} + 3Ax^{2}e^{3x} + Be^{3x} + 3Bxe^{3x}] + 3[Ax^{2}e^{3x} + Bxe^{3x}] = e^{3x}x - e^{3x}$$

$$2Ae^{3x} + 4Axe^{3x} + 2Be^{3x} = e^{3x}x - e^{3x}$$

$$4A = 1 \Rightarrow A = \frac{1}{4}$$

$$2A + 2B = -1 \Rightarrow B = -\frac{3}{4}$$

Reemplazamos en la solución propuesta: $y_{NH} = xe^{3x} \left(\frac{1}{4}x - \frac{3}{4}\right)$

La solución general:

Ing. Rocha - Ing. Ortenzi
$$y_G = C_1 e^x + C_2 e^{3x} + x e^{3x} \left(\frac{1}{4}x - \frac{3}{4}\right)$$

Ejemplo 9 Hallar la solución general de la siguiente ecuación diferencial: $v'' - 4v' = 5x^2$

Ecuación característica:
$$k^2 - 4k = 0$$

$$\begin{cases} k_1 = 0 \\ k_2 = 4 \end{cases}$$

Raíces reales y distintas, la solución general de la Homog. Auxiliar: $y_H = \mathcal{C}_1 + \mathcal{C}_2 e^{4x}$

La solución propuesta no puede ser solución de la Homogénea auxiliar entonces se plantea:

$$y_{NH} = x(Ax^2 + Bx + C) = Ax^3 + Bx^2 + Cx$$

Derivamos hasta el orden dos:

$$y'_{NH} = 3Ax^2 + 2Bx + C$$

 $y''_{NH} = 3Ax^2 + 2Bx + C$

Reemplazamos en la ED:

$$6Ax + 2B - 4[3Ax^{2} + 2Bx + C] = 5x^{2}$$
$$-12Ax^{2} + 6Ax - 8Bx + 2B - 4C = 5x^{2}$$

$$-12A = 5 \Rightarrow A = -\frac{5}{12}$$

$$6A - 8B = 0 \Rightarrow B = -\frac{5}{16}$$

$$2B - 4C = 0 \Rightarrow C = -\frac{5}{32}$$

Reemplazamos en la solución propuesta: $y_{NH}=x\left(-\frac{5}{12}x^2-\frac{5}{16}x-\frac{5}{32}\right)$

La solución general:

$$y_G = C_1 + C_2 e^{4x} + x \left(-\frac{5}{12} x^2 - \frac{5}{16} x - \frac{5}{32} \right)$$

Ejemplo 10 Resolver la siguiente ecuación diferencial: y'' + 4y' + 4y = 5sen(x)

Ecuación característica: $k^2+4k+4=0 \Rightarrow k=-2$

Raíces reales e iguales, la solución general de la Homog. Auxiliar: $y_H = C_1 e^{-2x} + C_2 x e^{-2x}$ La solución propuesta:

$$y_{NH} = Asen(x) + Bcos(x)$$

Derivamos hasta el orden dos:

$$y'_{NH} = Acos(x) - Bsen(x)$$

 $y''_{NH} = -Asen(x) - Bcos(x)$

Reemplazamos en la ED:

$$-Asen(x) - Bcos(x) + 4[Acos(x) - Bsen(x)] + 4[Asen(x) + Bcos(x)] = 5sen(x)$$
$$3Asen(x) + 3Bcos(x) + 4Acos(x) - 4Bsen(x) = 5sen(x)$$

$$\begin{cases}
3A - 4B = 5 \\
3B + 4A = 0
\end{cases}$$

$$A = \frac{\begin{vmatrix} 5 & -4 \\ 0 & 3 \end{vmatrix}}{\begin{vmatrix} 3 & -4 \\ 4 & 3 \end{vmatrix}} = \frac{15}{9+16} = \frac{3}{5}$$

$$B = -\frac{4}{5}$$

Reemplazamos en la solución propuesta: $y_{NH} = \frac{3}{5}sen(x) - \frac{4}{5}cos(x)$

La solución general:

$$y_G = C_1 e^{-2x} + C_2 x e^{-2x} + \frac{3}{5} sen(x) - \frac{4}{5} cos(x)$$

Ejemplo 11 Resolver la ED que tiene como raíces de la ecuación característica 1 y -2, y $f(x)=2x^2-3x$

De acuerdo a los valores de las raíces:

$$(k-1)(k+2) = 0$$

 $k^2 + k - 2 = 0$

Entonces la ED es: $y'' + y' - 2y = 2x^2 - 3x$

Raíces reales e iguales, la solución general de la Homog. Auxiliar: $y_H = C_1 e^x + C_2 e^{-2x}$ La solución propuesta:

$$y_{NH} = Ax^2 + Bx + C$$

Derivamos hasta el orden dos:

$$y'_{NH} = 2Ax + B$$
$$y''_{NH} = 2A$$

Reemplazamos en la ED:

$$2 A + 2A x + B - 2 Ax^{2} - 2 Bx - 2 C = 2x^{2} - 3x$$

 $-2 A x^{2} + x (2 A - 2 B) + 2A - 2 C = 2x^{2} - 3x$

$$-2 A = 2$$
 $2 A - 2 B = -3$ $2 A - 2 C = 0$
 $A = -1$ $2 (-1) - 2 B = -3$ $2 (-1) - 2 C = 0$
 $-2 B = -1$ $-2 C = 2$
 $B = \frac{1}{2}$ $C = -1$

Reemplazamos en la solución propuesta: $y_{NH} = -x^2 + \frac{x}{2} - 1$

La solución general:

$$y_G = C_1 e^x + C_2 e^{-2x} - x^2 + \frac{x}{2} - 1$$