Лекция 1

Тема: Линейное подпространтсво

Пусть V, \mathbb{P} - некоторое линейное пространство над полем \mathbb{P} Тогда в нем выполняются законы композиции: $\forall a,b \in V, \quad \forall \alpha \in \mathbb{P}$

- 1. $a + b \in V \quad V \times V \to V$
- 2. $\alpha * a \in V \quad \mathbb{P} \times V \to V$

Линейные пространства \mathbb{C},\mathbb{C} и \mathbb{C},\mathbb{R} отличаются размерностью

Пусть $b, a_1, \ldots, a_n \in V, \alpha_1, \ldots, \alpha_n \in \mathbb{P}$, где и $b = \alpha_1 a_1 + \alpha_2 a_2 + \ldots + \alpha_2 a_2$ Тогда вектор b называется линейной комбинацией векторов a_1, \ldots, a_n

Линейная комбинация называется нетривиальной, если хотя бы один коэффициент не равен нулю Линейная оболочка векторов $a_1, \ldots, a_n \in V$ - множество всевозможных линейных комбинаций этих веторов. Обозначается как $L(a_1, \ldots, a_n)$

Линейное пространство $W \neq \varnothing$ называется линейным подпространством пространства V, если

- $W \subset V$
- оно само является линейным пространством относительно операций композиции из V

Вектора $a_1, \ldots, a_n \in V$ называют линейно зависимыми, если существует их нетривиальная линейная комбинация, равная нулевому вектору

Линейное пространство называется бесконечномерным, если $\forall n \in \mathbb{N}$ найдется набор из п линейнонезависимых векторов. Примеры:

- Множество функций, непрерывных на некотором промежутке
- Множество всех многочленов

Рассмотрим линейное пространство многочленов $\underline{\mathbb{M}_{\kappa}, \mathbb{R}}$ *Народ, а что Панф с ним сделал в итоге, используя факт непредставимости трансцендентных чисел в виде корня полинома? Я забыл*

Пусть есть такое натуральное число m, что любые m + 1 векторов из V линейно зависимы. Очевидно, что любые m+1 векторов также линейно зависимы. Мы можем взять минимальное число из всех m (т.к ограниченное снизу подмножество натуральных чисел имеет минимум). Назовем его n. Это число- dim V. Взяв n линейно независимых векторов, мы получаем базис V $e_1, \ldots, e_n \in V$ Базисные вектора

- Линейно независимы
- Упорядоченные *Я забыл, для чего оно требуется, Панф про это отдельно говорил*
- $\forall a \in V$ e_1, \ldots, e_n, a линейно зависимы

 $V = L(e_1, e_2, \dots, e_n)$ по свойствам базисных векторов (любой вектор выражается из базисных)

Теорема 1 Пусть есть V, \mathbb{P} (конечномерное), W- подпространство. Тогда $dimW \leq dimV$

Доказательство: Очевидно, ибо базисные вектора в W так же будут базисными векторами в V

Теорема 2 Пусть есть V, \mathbb{P} (конечномерное), W- подпространство. $dimW = dimV \iff W = V$

Доказательство: Базисные вектора V будут так же базисными векторами в V, и наоборот. Значит, они совпадают. Если определить V и W как линейные оболочки этих векторов, их равенство очевидно

Теорема 3 Пусть есть V, \mathbb{P} (конечномерное). Тогда набор векторов e_1, \ldots, e_k либо базис, либо существует набор векторов e_{k+1}, \ldots, e_n такой, что $e_1, \ldots, e_k, e_{k+1}, \ldots, e_n$ - базис

Доказательство: Есть два случая

- ullet $L(e_1,\ldots,e_k)=V.$ Тогда (e_1,\ldots,e_k) базис
- $\exists e_{k+1} \in V \setminus L(e_1, \dots, e_k)$. В таком случае мы последовательно 'добираем' вектора до базиса

Пусть $\begin{array}{cc} e_1, \dots, e_n \\ f_1, \dots, f_n \end{array}$ - базисы в V

Тогда некоторую координату х можно выразить как $x=ex_e$, или $x=fx_f$, где

$$x_e = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}, \quad x_f = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}$$

Таким образом, $\left\{ \begin{array}{ll} f_1=C_{11}e_1+C_{12}e_2+\cdots+C_{1n}e_n\\ & \dots\\ & f_n=C_{n1}e_1+C_{n2}e_2+\cdots+C_{nn}e_n \end{array} \right.$

T.e f = e C

 $C = (C_{i,j})$ называют матрицей перехода. По построению, ее определитель не равен нулю, ибо ее столбцы состоят из базисных векторов, которые линейно независимы. Знак определителя задает ориентацию

Пусть есть V, \mathbb{P}, W_1, W_2 - подпространства V. Введем следующие понятия

- $W_1 \cup W_2$ объединение подпространств
- $W_1 + W_2 = \{x_1 + x_2 \mid \forall x_1 \in W_1, \ \forall x_2 \in W_2\}$ сумма подпространств

Утверждение: $W_1 \cup W_2$ и $W_1 + W_2$ - подпространства V

В качестве примера подпространство можно привести множество решений однородной системы уравнений $\mathrm{Ax}=0\ (A\in\mathbb{P}^{m*n}).$ Как доказывалось ранее, оно образует подпространство линейного пространства \mathbb{P}^n

Теорема 4 (Грассмана) Пусть есть $\underline{V}, \mathbb{P}, W_1, W_2$ - подпространства V.

Тогда
$$\{\theta\} \subset W_1 \cup W_2 \subset W_1 \subset W_1 \subset W_1 \subset W_1 \subset W_1$$

Доказательство: Завтра добавлю