

Estatística Descritiva com R

Curso livre de R

Profa Carolina e Prof Gilberto Parte 1

Sobre o curso

Preparando o ambiente

- · Você precisa de um computador para acompanhar as aulas.
- Usaremos nas aulas: colab.research.google.com/#language=r.
- · No seu dia-a-dia, recomendamos instalar o R com versão pelo menos 4.1: cran.r-project.org.
- · IDE recomendadas: RStudio e VSCode.
 - Caso você queira usar o *VSCode*, instale a extensão da linguagem R: ikuyadeu.r.
- · Neste curso, usaremos o *framework* tidyverse:
 - Instale o framework a partir do repositório CRAN: install.packages ("tidyverse")
- · Outras linguagens interessantes: python e julia.
 - python: linguagem interpretada de próposito geral, contemporânea do R, simples e fácil de aprender.
 - julia: linguagem interpretada para análise de dados, lançada em 2012, promete simplicidade e velocidade.

A linguagem R

uma introdução

O começo de tudo

O precursor do R: S.

- · R é uma linguagem derivada do s.
- · s foi desenvolvido em fortran por John Chambers em 1976 no Bell Labs.
- · s foi desenvolvido para ser um ambiente de análise estatística.
- · Filosofia do s: permitir que usuários possam analisar dados usando estatística com pouco conhecimento de programação.

História do R

- Em 1991, Ross Ihaka e Robert Gentleman criaram o R na Nova Zelândia.
- Em 1996, Ross e Robert liberam o R sob a licença "GNU General License", o que tornou o R um software livre.
- · Em 1997, The Core Group é criado para melhorar e controlar o código fonte do R.

Porque usar R

- · Constante melhoramento e atualização.
- · Portabilidade (roda em praticamente todos os sistemas operacionais).
- · Grande comunidade de desenvolvedores que adicionam novas capacidades ao R através de pacotes.
- · Gráficos de maneira relativamente simples.
- Interatividade.
- · Um grande comunidade de usuários (especialmente útil para resolução de problemas).

Onde estudar fora de aula?

Livros

- · Nível cheguei agora aqui: zen do R.
- · Nível Iniciante: R Tutorial na W3Schools.
- Nível Iniciante: Hands-On Programming with R.
- Nível Intermediário: R for Data Science.
- Nível Avançado: Advanced R.

Em pt-br

Curso-R: material.curso-r.com.

O que você pode fazer quando estiver em apuros?

· consultar a documentação do R:

help(mean)
?mean

- · Peça ajuda a um programador mais experiente.
- · Consulte o pt.stackoverflow.com.
- · Use ferramentas de busca como o google e duckduckgo.com.

log("G")

 Na ferramenta de busca, pesquise por Error in log("G"): non-numeric argument to mathematical function

Operações básicas

Soma

1 + 1

```
## [1] 2
```

Substração

```
2 - 1
```

[1] 1

Divisão

3 / 2

[1] 1.5

Potenciação

2^3

[1] 8

Os dados no R

- Tipo de dados: caracter (character), número real (double), número inteiro (integer), número complexo (complex) e lógico (logical).
- Estrutura de dados: atomic vector (a estrutura de dados mais básicA no R), matrix, array, list e data.frame (tibble no tidyverse).
- Estrutura de dados Homogênea: vector, matrix e array.
- Estrutura de dados Heterôgenea: list e data.frame (tibble no tidyverse).

Tipo de dados no R

Número inteiro

```
typeof(1L)
## [1] "integer"
```

Número real

```
typeof(1.2)
```

Número complexo

```
typeof(1 + 1i)
```

[1] "double"

```
## [1] "complex"
```

Tipo de dados no R

Número lógico

```
typeof(TRUE)
## [1] "logical"
```

Caracter

```
typeof("Gilberto")
```

```
## [1] "character"
```

Vetor

- · Agrupamento de valores de mesmo tipo em um único objeto.
- Criação de vetor: c(...) e vector('<tipo de dados>', <comprimento do vetor>), seq(from = a, to = b, by = c).

Vetor de caracteres

```
a <- c("Gilberto", "Sassi")
a

## [1] "Gilberto" "Sassi"

b <- vector("character", 3)
b</pre>
```

```
## [1] "" "" ""
```

Vetor de números reais

```
a < -c(0.2, 1.35)
а
## [1] 0.20 1.35
b <- vector("double", 3)</pre>
b
## [1] 0 0 0
d \leftarrow seq(from = 1, to = 3.5, by = 0.5)
d
## [1] 1.0 1.5 2.0 2.5 3.0 3.5
```

Vetor de números inteiros

[1] 1 2 3 4

```
a < -c(1L, 2L)
а
## [1] 1 2
b <- vector("integer", 3)</pre>
b
## [1] 0 0 0
d < -1:4
```

Vetor lógico

[1] FALSE FALSE FALSE

```
a <- c(TRUE, FALSE)
a

## [1] TRUE FALSE

b <- vector("logical", 3)
b</pre>
```

Matriz

- · Agrupamento de valores de mesmo tipo em um único objeto de dimensão 2.
- · Criação de matriz: matrix(..., nrow = <integer>, ncol = <integer>) Ou diag(<vector>).

Matriz de caracteres

```
a <- matrix(c("a", "b", "c", "d"), nrow = 2)
a

## [,1] [,2]
## [1,] "a" "c"
## [2,] "b" "d"</pre>
```

Matriz de números reais

[,1] [,2] ## [1,] 0.0 1.0 ## [2,] 0.5 1.5

```
a <- matrix(seq(from = 0, to = 1.5, by = 0.5), nrow = 2)
a</pre>
```

Matriz de inteiros

```
a <- matrix(1L:4L, nrow = 2)
a

## [,1] [,2]
## [1,] 1 3
## [2,] 2 4</pre>
```

Matriz de valores lógicos

```
a <- matrix(c(TRUE, F, F, T), nrow = 2)
a
```

```
## [,1] [,2]
## [1,] TRUE FALSE
## [2,] FALSE TRUE
```

Array

- · Agrupamento de valores de mesmo tipo em um único objeto em duas ou mais dimensões.
- · Criação de array: array(..., dim = <vector of integers>).

```
dados_matriz_1 <- 10:13
dados_matriz_2 <- 14:17
resultado <- array(c(dados_matriz_1, dados_matriz_2), dim = c(2, 2, 2))
resultado</pre>
```

Operações com vetores númericos (double, integer e complex).

- Operações básicas (operação, substração, multiplicação e divisão) realizada em cada elemento do vetor.
- · Slicing: extrair parte de um vetor (não precisa ser vetor numérico).

Slicing

```
a <- c("a", "b", "c", "d", "e", "f", "g", "h", "i")
a[1:5] # selecionado todos os elementos entre o primeiro e o quinta
## [1] "a" "b" "c" "d" "e"</pre>
```

Adição (vetores númericos)

```
a <- 1:5
b <- 6:10
a + b
```

```
## [1] 7 9 11 13 15
```

Substração (vetores numéricos)

```
a <- 1:5
b <- 6:10
b - a
```

[1] 5 5 5 5 5

Multiplicação (vetores numéricos)

```
a <- 1:5
b <- 6:10
b * a
```

[1] 6 14 24 36 50

Divisão (vetores numéricos)

```
a <- 1:5
b <- 6:10
b / a
```

[1] 6.000000 3.500000 2.666667 2.250000 2.000000

Operações com matrizes númericas (double, integer e complex).

- Operações básicas (operação, substração, multiplicação e divisão) realizada em cada elemento das matrizes.
- Multiplicação de matrizes (vide multiplicação de matrizes), inversão de matrizes (vide inversão de matrizes), matriz transposta (vide matriz transposta), determinante (vide determinante de uma matriz) e solução de sistema de equações lineares).

Lista

- · Agrupamento de valores de tipos diversos e estrutura de dados.
- · Criação de listas: list(...) e vector("list", <comprimento da lista>).

- · Agrupamento de dados em tabela, onde: cada coluna é uma variável; cada linha é uma observação.
- · Criação de tibble: tibble(...) e tribble(...).

tibble (data frame)

```
library(tidyverse) # carregando o framework tidyverse
a <- tibble(variavel_1 = c(1, 2), variavel_2 = c("a", "b"))
glimpse(a)

## Rows: 2
## Columns: 2
## $ variavel_1 <dbl> 1, 2
## $ variavel_2 <chr> "a", "b"
```

а

Operações em um tibble

Algumas funções úteis depois de aprender a carregar os dados no R.

Função	Descrição
head()	Mostra as primeiras linhas de um tibble
tail()	Mostra as últimas linhas de um tibble
glimpse()	Impressão de informações básicas dos dados
add_case() OU add_row()	Adiciona uma nova observação

Concatenação de listas

[1] "b"

[[3]] ## [1] 1

[[4]] ## [1] 2

```
a <- list("a", "b")
b <- list(1, 2)
d <- c(a, b)
d

## [[1]]
## [1] "a"
##
## [[2]]</pre>
```

Slicing a lista

```
d[1:2]

## [[1]]

## [1] "a"

##

## [[2]]

## [1] "b"
```

Acessando o valor de elmento em uma lista

```
d[[2]] # acessando o segundo elemento da lista d
```

Acessando elementos em uma lista usando \$

```
d <- list(elemento_1 = 1, elemento_2 = "docente")
d$elemento_2 # retorna o valor</pre>
```

```
## [1] "docente"
```

[1] "b"

Slicing uma lista com ["nome"]

```
d <- list(elemento_1 = 1, elemento_2 = "docente", elemento_3 = list("olá"))
d["elemento_3"] # funciona como slicing

## $elemento_3
## $elemento_3[[1]]
## [1] "olá"</pre>
```

Obtendo os nomes dos elementos em um lista

Valores especiais em R

Valores especiais	Descrição	Função para identificar
NA (Not Available)	Valor faltante.	is.na()
NaN (Not a Number)	Resultado do cálculo indefinido.	is.nan()
Inf (Infinito)	Valor que excede o valor máximo que sua máquina aguenta.	is.inf()
NULL (Nulo)	Valor indefinido de expressões e funções (diferente de NaN e NA)	is.null()

Parênteses 1: guia de estilo no R

- O nome de um objeto precisa ter um *significado*. O nome deve indicar e deixar claro o que este objeto é ou faz ~qualquer pessoa precisa entender o que este objeto é ou faz~.
- Use a convenção do R:
 - Use apenas letras minúsculas, números e *underscore* (comece sempre com letras minúsculas).
 - Nomes de objetos precisam ser substantivos e precisam descrever o que este objeto é ou faz (seja conciso, direto e significativo).
 - Evite ao máximo os nomes que já são usados (buit-in) do R.
 - Coloque espaço depois da vírgula.
 - Não coloque espaço antes nem depois de parênteses. Exceção: Coloque um espaço () antes e depois de if, for ou while, e coloque um espaço depois de ().
 - Coloque espaço entre operadores básicos: +, -, *, == e outros. Exceção: ^.
- · Para mais detalhes, consulte: guia de estilo do tidyverse.

Parênteses 2: estrutura de diretórios

- · Mantenha uma estrutura (organização) consistente de diretórios em seus projetos.
- Sugestão de estrutura:
 - data: diretório para armazenar seus conjuntos de dados.
 - raw: dados brutos.
 - processed: dados processados.
 - scripts: código fonte do seu projeto.
 - figures: figuras criadas no seu projeto.
 - output: outros arquivos que não são figuras.
 - previous: arquivos da versão anterior do projeto.
 - notes: notas de reuniões e afins.
 - relatorio (ou artigos): documento final de seu projeto.
 - documents: livros, artigos e qualquer coisa que são referências em seu projeto.
- · Para mais detalhes, consulte esse guia do curso-r: diretórios e .Rproj.

Leitura de arquivos no formato x1sx ou x1s

- Pacote: readxl do tidyverse (instale com o comando install.packages ('readxl'))
- · Parêmetros das funções read_xls (para ler arquivos .xls) e read_xlsx (para ler arquivos .xlsx):
 - path: caminho até o arquivo.
 - sheet: especifica a planilha do arquivo que será lida.
 - range: especifica uma área de uma planilha para leitura. Por exemplo: B3:E15.
 - col_names: Argumento lógico com valor padrão igual a TRUE. Indica se a primeira linha tem o nome das variáveis.
- · Para mais detalhes, consulte a documentação oficial do tidyverse: documentação de read_x1.

<dbl>

5.1

2 4.9 3

##

1

4

Leitura de arquivos no formato x1sx ou x1s

<dbl>

3 4.7 3.2 1.3 0.2 setosa

4.6 3.1 1.5

```
library(tidyverse)
library(readxl)
dados_iris <- read_xlsx("../data/raw/iris.xlsx")
head(dados_iris, n = 4)

## # A tibble: 4 × 5
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species</pre>
```

3.5 1.4 0.2 setosa

<dbl> <dbl> <chr>

1.4 0.2 setosa

0.2 setosa

Leitura de arquivos no formato csv

- Pacote: readr do tidyverse (instale com o comando install.packages ('readr')).
- Parêmetros das funções read_csv e read_csv2:
 - path: caminho até o arquivo.

Padrão imperial inglês versus o resto do planeta

- · Se você mora ou está em um país que usa padrão imperial inglês:
 - colunas separadas por ,.
 - casa decimal indicada por ..
- · Se você mora ou está em um país que usa o sistema métrico:
 - colunas separadas por ;.
 - casa decimal por , .

Preste atenção em como o seus dados estão armazenados!

Para mais detalhes, consulte a documentação oficial do tidyverse: documentação de read_r,

Leitura de arquivos no formato csv

```
library(tidyverse)
library(readr)
dados_mtcars <- read_csv2("../data/raw/mtcars.csv")
dados_mtcars</pre>
```

```
## # A tibble: 32 × 11
                                                              cyl disp
                                                                                                                          hp drat
                                    mpq
                                                                                                                                                                                 wt qsec
                                                                                                                                                                                                                                        VS
                                                                                                                                                                                                                                                                     am gear carb
                           <dbl> <
                1 21
                                                                         6 160
                                                                                                                      110
                                                                                                                                        3.9
                                                                                                                                                                        2.62 16.5
                               21
                                                            6 160
                                                                                                                     110 3.9
                                                                                                                                                                        2.88 17.0
                                                         4 108
                              22.8
                                                                                                                     93 3.85 2.32 18.6
                                                                                                                                                                                                                                                                                                                                1
                                                         6 258
                          21.4
                                                                                                                     110 3.08 3.22 19.4
                                                                                                                                                                                                                                                                                                                                1
                                                         8 360
                 5 18.7
                                                                                                                     175 3.15 3.44 17.0
                         18.1
                                                          6 225
                                                                                                                     105 2.76 3.46 20.2
                                                                                                                                                                                                                                                                                                                                1
                                                          8 360
             7 14.3
                                                                                                                      245 3.21 3.57 15.8
                              24.4
                                                           4 147.
                                                                                                                     62 3.69 3.19
                                                                                                                                                                                                  20
                              22.8
                                                                                                                      95 3.92 3.15 22.9
## 9
                                                                   4 141.
## 10 19.2
                                                                         6 168.
                                                                                                                      123 3.92 3.44 18.3
## # ... with 22 more rows
```

Leitura de arquivos no formato ods

- Pacote: readODS (instale com o comando install.packages ('readODS')).
- Parêmetros das funções read_ods:
- · path: caminho até o arquivo.
 - sheet: especifica a planilha do arquivo que será lida.
 - range: especifica uma área de uma planilha para leitura. Por exemplo:
 B3:E15.
 - col_names: Argumento lógico com valor padrão igual a TRUE. Indica se a primeira linha tem o nome das variáveis.
- · Para mais detalhes, consulte a documentação do *readODS*: documentação de readODS.

Lendo dados no R

Leitura de arquivos no formato ods

```
library(tidyverse)
library(readODS)
dados_toothgrowth <- read_ods("../data/raw/ToothGrowth.ods")

glimpse(dados_toothgrowth)

## Rows: 60
## Columns: 3
## $ len <dbl> 4.2, 11.5, 7.3, 5.8, 6.4, 10.0, 11.2, 11.2, 5.2, 7.0, 16.5, 16.5,...
```

\$ supp <chr> "VC", "V

Salvando dados no R

Salvar no formato .csv (sistema métrico)

```
library(readr)
write_csv2(dados_toothgrowth, file = "../data/processed/dados_csv2.csv")
```

Salvar no formato .xlsx

```
library(writexl)
write_xlsx(dados_toothgrowth, path = "../data/processed/dados_xlsx.xlsx")
```

Salvar no formato ods

```
library(readODS)
write_ods(dados_toothgrowth, path = "../data/processed/dados_ods.ods")
```

Estatística Descritiva no R

Gráficos e Tabelas

Alguns conceitos básicos

- · População: todos os elementos ou indivíduos alvo do estudo.
- · Amostra: parte da população.
- Parâmetro: característica numérica da população. Usamos letras gregas para denotar parâmetros populacionais.
- Estatística: característica numérica da amostra. Em geral, usamos uma estatística para estimar o parâmetro populacional.
- Variável: característica mensurável comum a todos os elementos da população.
 Usamos letras maiúsculas do alfabeto latino para representar uma variável e letras minúsculas do alfabeto latino para representar o valor observado da variável em um elemento da amostra.

Exemplo:

- · População: Todos os residentes da cidade de Salvador com 25 anos ou mais.
- Amostra: 5 residentes da cidade de Salvador com 25 anos ou mais selecionados segundo um plano de amostragem probabilística.
- · Variável: salário em R\$ (denotado pela letra X).
- Parâmetro: salário médio da população de residentes da cidade de Salvador com 25 anos ou mais (denotado pela letra grega μ).
- Estatística: salário médio da amostra de 20 residentes da cidade de Salvador com 25 anos ou mais.

Exemplo (continuação):

Suponha que foi selecionada uma amostra de n=5 residentes da cidade de Salvador com 25 anos ou mais para os quais foi observada a variável salário em R\$.

Salário em R\$ de uma amostra de 5 residentes da cidade de Salvador com 25 anos ou mais.

Elemento da amostra	Salário
1	843.95
2	876.98
3	1055.87
4	907.05
5	912.93

Exemplo (continuação):

Para este exemplo, temos que:

- · Variável: X: sálario em R\$.
- · Valores observados de X: x_i : valor observado da variável no i-ésimo elemento da amostra, i=1,2,3,4,5: 843.95; 876.98; 1055.87; 907.05; 912.93
- · Parâmetro: μ : salário médio dos residentes da cidade de Salvador com 25 anos ou mais.
- · Estatística: média amostral: $\overline{x} = rac{x_1 + x_2 + x_3 + x_4 + x_5}{n}$.

Exemplo (continuação):

Média amostral:

$$\overline{x} = rac{x_1 + x_2 + x_3 + x_4 + x_5}{n}$$

$$= rac{843.95 + 876.98 + 1055.87 + 907.05 + 912.93}{5}$$

$$= 919.356.$$

Classificação de variáveis

Classificação de variáveis.

Tabela de frequência – Variável qualitativa

A primeira coisa que fazemos é contar!

X	frequência	frequência relativa	porcentagem
B_1	n_1	f_1	$100 \cdot f_1\%$
B_2	n_2	f_2	$100 \cdot f_2\%$
÷	÷	÷	÷ ·
B_k	n_k	f_k	$100 \cdot f_k\%$
Total	n	1	100%

Em que n é o tamanho da amostra.

Tabela de frequência - Variável qualitativa

A primeira coisa que podemos fazer é construir a tabela de frequência.

- Pacote: tabyl do janitor (instale com o comando install.packages ('janitor')).
- Parêmetros da função tabyl:
 - dat: *data frame* ou vetor com os valores da variável que desejamos tabular.
 - var1: nome da primeira variável.
 - var2: nome da segunda variável (opcional).
- Para mais detalhes, consulte a documentação oficial do janitor: documentação de tabyl.

```
library(tidyverse)
library(readxl)
library(janitor)
library(dplyr)
df empresa <- read xlsx("../data/raw/empresa.xlsx")</pre>
tab <- tabyl(df empresa, escolaridade)</pre>
tab <- as tibble(tab)</pre>
tab <- tab |> rename(frequencia = n,
              freq relativa = percent)
tab <- tab |>
  add column(porcentagem = tab$freq relativa*100)
tab <- tab |>
  add case(escolaridade = "Total",
           frequencia = sum(tab$frequencia),
           freq relativa = sum(tab$freq relativa),
           porcentagem = sum(tab$porcentagem))
```

escolaridade	frequencia	freq_relativa	porcentagem
ensino fundamental	12	0,33	33,33
ensino médio	18	0,50	50,00
superior	6	0,17	16,67
Total	36	1,00	100,00

Gráficos no R

- Pacote: ggplot2
- Permite gráficos personalizados com uma sintaxe simples e rápida, e iterativa por camadas.
- Começamos com um camada com os dados ggplot (dados), e vamos adicionando as camadas de anotações, e sumários estatísticos.
- Usa a gramática de gráficos proposta por Leland Wilkinson: Grammar of Graphics.
- · Ideia desta gramática: delinear os atributos estéticos das figuras geométricas (incluindo transformações nos dados e mudança no sistema de coordenadas).
- Para mais detalhes, você pode consultar ggplot2: elegant graphics for data analysis e documentação do ggplot2

Gráficos no R

Estrutura básica de ggplot2

Você pode usar diversos temas e extensões que a comunidade cria e criou para melhorar a aparência e facilitar a construção de ggplot2.

· Lista com extensões do ggplot: extensões do ggplots.

Indicação de extensões:

- · Temas adicionais para o pacote ggplot2: ggthemes.
- · Gráfico de matriz de correlação: ggcorrplot.
- · Gráfico quantil-quantil: qqplotr.

Gráficos no R

Gráfico de barras no ggplot2

- função: geom_bar(). Para porcentagem: geom_bar(x = <variável no eixo x>, y = ..prop.. * 100).
- Argumentos adicionais:
 - **fill**: mudar a cor do preenchimento das figuras geométricas.
 - color: mudar a cor da figura geométrica.
- · Rótulos dos eixos
 - Mudar os rótulos: labs (x = <rótulo do eixo x>, y = <rótulo do eixo y>).
 - Trocar o eixo-x pelo eixo-y: coord_flip().

```
library(ggthemes)
ggplot(df_empresa) +
  geom_bar(mapping = aes(x = escolaridade, y = ..prop.. * 100, group = 1),
  fill = "blue", color = "red") +
  labs(x = "Escolaridade", y = "Porcentagem") +
  theme_gdocs() +
  coord_flip()
```


Gráfico no R com o simplevis

- Pacote: gg_bar do simplevis (instale com o comando install.packages ('simplevis')).
- Parêmetros da função gg_bar:
 - data: data frame da variável tabulada.
 - x_var: variável do eixo x.
 - y var: variável (numérica) do eixo y.
- · Para mais detalhes, consulte a documentação oficial do *simplevis*: documentação de gg bar.

```
tab <- tabyl(df_empresa, escolaridade)
tab <- as_tibble(tab)
tab <- tab |> rename(frequencia = n, freq_relativa = percent)
tab <- tab |> add_column(porcentagem = tab$freq_relativa*100)
```

library(simplevis)

gg_bar(tab, x_var = escolaridade, y_var = porcentagem)

Tabela de frequência – Variável quantitativa discreta

A primeira coisa que fazemos é contar!

X	frequência	frequência relativa	porcentagem
x_1	n_1	f_1	$100 \cdot f_1\%$
x_2	n_2	f_2	$100\cdot f_2\%$
x_3	n_3	f_3	$100\cdot f_3\%$
÷	÷	:	÷ ·
x_k	n_k	f_k	$100 \cdot f_k\%$
Total	n	1	100%

Em que n é o tamanho da amostra.

Tabela de frequência – Variável quantitativa discreta

A primeira coisa que podemos fazer é construir a tabela de frequência.

numero_filhos	frequencia	freq_relativa	porcentagem
0	20	0,56	55,56
1	5	0,14	13,89
2	7	0,19	19,44
3	3	0,08	8,33
5	1	0,03	2,78
Total	36	1,00	100,00

Gráfico de barras no R

```
ggplot(df_empresa) +
  geom_bar(aes(x = numero_filhos, y = ..prop.., group = 1)) +
  labs(x = "Número de filhos", y = "Frequência relativa") +
  theme_calc()
```



```
tab <- tabyl(df_empresa, numero_filhos)
tab <- as_tibble(tab)
tab <- tab |> rename(frequencia = n, freq_relativa = percent)
tab <- tab |> add_column(porcentagem = tab$freq_relativa*100)
tab <- tab |> mutate(numero_filhos = as.character(numero_filhos))
```

library(simplevis)

gg_bar(tab, x_var = numero_filhos, y_var = porcentagem)

Tabela de frequência – Variável quantitativa contínua

· x: variável quantitativa contínua

Tabela de frequências para a variável quantitativa contínua.

x	Frequência	Frequência relativa	Porcentagem
$[l_0,l_1)$	n_1	$f_1=rac{n_1}{n_1+\cdots+n_k}$	$p_1 = f_1 \cdot 100$
$[l_1,l_2)$	n_2	$f_2=rac{n_2}{n_1+\cdots+n_k}$	$p_2 = f_2 \cdot 100$
÷	÷	÷	÷ :
$[l_{k-1},l_k]$	n_k	$f_k=rac{n_k}{n_1+\cdots+n_k}$	$p_k = f_k \cdot 100$

Em que $\min = l_0 \le l_1 \le \cdots \le l_{k-1} \le l_k = \max$ (\min é o menor valor do suporte da variável x e \max é o maior valor do suporte da variável x), n_i é número de valores de x entre l_{i-1} e l_i , e l_0, l_1, \ldots, l_k quebram o suporte da variável x (breakpoints).

 l_0, l_1, \cdots, l_k são escolhidos de acordo com a teoria por trás da análise de dados (ou pelo regulador).

Recomendação: use l_0, l_1, \cdots, l_k igualmente espaçados, e use a <u>regra de Sturges</u> para determinar o valor de k: $k=1+\log 2(n)$ onde n é tamanho da amostra. Se $1+\log 2(n)$ não é um número inteiro, usamos $k=\lceil 1+\log 2(n) \rceil$.

Tabela de frequência – Variável quantitativa contínua

sep_len_int	frequencia	freq_relativa	porcentagem
[4.3,4.75)	11	0,07	7,33
[4.75,5.2)	30	0,20	20,00
[5.2,5.65)	24	0,16	16,00
[5.65,6.1)	24	0,16	16,00
[6.1,6.55)	31	0,21	20,67
[6.55,7)	17	0,11	11,33
[7,7.45)	7	0,05	4,67
[7.45,7.9]	6	0,04	4,00
Total	150	1,00	100,00

Histograma

Para variávieis quantitativas contínuas, geralmente não construímos gráficos de barras, e sim uma figura geométrica chamada de *histograma*.

- O histograma é um gráfico de barras contíguas em que a área de cada barra é igual à frequência relativa.
- · Cada faixa de valor $[l_{i-1},l_i), i=1,\ldots,n,$ será representada por um barra com área $f_i, i=1,\ldots,n$.
- · Como cada barra terá área igual a f_i e base l_i-l_{i-1} , e a altura de cada barra será $\frac{f_i}{l_i-l_{i-1}}$.
- $\frac{f_i}{l_i-l_{i-1}}$ é denominada de densidade de frequência.

Histograma

Medidas resumo (variável quantitativa)

A ideia é encontrar um ou alguns valores que sintetizem todos os valores.

Medidas de posição (tendência central)

A ideia é encontrar um valor que representa bem todos os valores.

· Média:
$$\overline{x} = \frac{x_1 + \dots + x_n}{n}$$
 .

· Mediana: valor que divide a sequência ordenada de valores em duas partes iguais.

Medidas de dispersão

A ideia é medir a homogeneidade dos valores.

Variância:
$$s^2=rac{(x_1-\overline{X})^2+\cdots+(x_n-\overline{X})^2}{n-1}$$
 .

- ' **Desvio padrão:** $s=\sqrt{s^2}$ (mesma unidade dos dados).
- . Coeficiente de variação $cv=rac{s}{\overline{x}}\cdot 100\%$ (adimensional, ou seja, "sem unidade").

Medidas resumo: exemplo

Podemos usar a função summarise do pacote dplyr (incluso no pacote tidyverse).

Medidas resumo: exemplo

Podemos usar a função group_by para calcular medidas resumo por categorias de uma variável qualitativa.

```
df empresa <- read xlsx("../data/raw/empresa.xlsx")</pre>
df empresa |>
  group by (escolaridade) |>
  summarise(media = mean(salario), md = median(salario), dp = sd(salario), cv = dp / media) |>
  gt() |>
  tab header (
    title = "Medidas resumo por escolaridade.",
    subtitle = "Média, mediana, desvio padrão e coeficiente de variação em salários mínimos."
  ) |>
  cols label (
    escolaridade = "Escolaridade",
   media = "Média salarial",
   md = "Salário mediano",
    dp = "Desvio padrão de salário",
    cv = "Coeficiente de variação"
  ) |>
  fmt number(
    columns = c(media, md, dp, cv),
    decimals = 2,
    dec mark = ",",
    sep mark = "."
```

Medidas resumo por escolaridade.

Média, mediana, desvio padrão e coeficiente de variação em salários mínimos.

Escolaridade	Média salarial	Salário mediano	Desvio padrão de salário	Coeficiente de variação
ensino fundamental	7,84	7,12	2,96	0,38
ensino médio	11,53	10,91	3,72	0,32
superior	16,48	16,74	4,50	0,27

```
df empresa <- read xlsx("../data/raw/empresa.xlsx")</pre>
df empresa |>
  group by (escolaridade) |>
  summarise(media = mean(salario), md = median(salario), dp = sd(salario), cv = dp / media) |>
  gt() |>
  tab header (
    title = "Medidas resumo da variável salário por categoria de escolaridade."
    #subtitle = "Média, desvio padrão, mediana e coeficiente de variação em salários mínimos."
  ) |>
  cols label(
    escolaridade = "Escolaridade",
   media = "Média",
   md = "Mediana",
    dp = "Desvio padrão",
    cv = "Coeficiente de variação"
  ) |>
  fmt number(
    columns = c(media, md, dp, cv),
    decimals = 2,
    dec mark = ",",
    sep mark = "."
```

Escolaridade	Média	Mediana	Desvio padrão	Coeficiente de variação
ensino fundamental	7,84	7,12	2,96	0,38
ensino médio	11,53	10,91	3,72	0,32
superior	16,48	16,74	4,50	0,27