In [1]: pip install seaborn

Requirement already satisfied: seaborn in d:\anaconda\lib\site-packages (0.1 3.2)

Requirement already satisfied: numpy!=1.24.0,>=1.20 in d:\anaconda\lib\site-packages (from seaborn) (1.26.4)

Requirement already satisfied: pandas>=1.2 in d:\anaconda\lib\site-packages (from seaborn) (2.2.2)

Requirement already satisfied: matplotlib!=3.6.1,>=3.4 in d:\anaconda\lib\si te-packages (from seaborn) (3.9.2)

Requirement already satisfied: contourpy>=1.0.1 in d:\anaconda\lib\site-pack ages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.2.0)

Requirement already satisfied: cycler>=0.10 in d:\anaconda\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (0.11.0)

Requirement already satisfied: fonttools>=4.22.0 in d:\anaconda\lib\site-pac kages (from matplotlib!=3.6.1,>=3.4->seaborn) (4.51.0)

Requirement already satisfied: kiwisolver>=1.3.1 in d:\anaconda\lib\site-pac kages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.4.4)

Requirement already satisfied: packaging>=20.0 in d:\anaconda\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (24.1)

Requirement already satisfied: pillow>=8 in d:\anaconda\lib\site-packages (f rom matplotlib!=3.6.1,>=3.4->seaborn) (10.4.0)

Requirement already satisfied: pyparsing>=2.3.1 in d:\anaconda\lib\site-pack ages (from matplotlib!=3.6.1,>=3.4->seaborn) (3.1.2)

Requirement already satisfied: python-dateutil>=2.7 in d:\anaconda\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (2.9.0.post0)

Requirement already satisfied: pytz>=2020.1 in d:\anaconda\lib\site-packages (from pandas>=1.2->seaborn) (2024.1)

Requirement already satisfied: tzdata>=2022.7 in d:\anaconda\lib\site-packag es (from pandas>=1.2->seaborn) (2023.3)

Requirement already satisfied: six>=1.5 in d:\anaconda\lib\site-packages (fr om python-dateutil>=2.7->matplotlib!=3.6.1,>=3.4->seaborn) (1.16.0)

Note: you may need to restart the kernel to use updated packages.

In [2]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

In [3]: titanic = sns.load_dataset('titanic')

In [4]: titanic.head()

Out[4]:		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	W
	0	0	3	male	22.0	1	0	7.2500	S	Third	n
	1	1	1	female	38.0	1	0	71.2833	С	First	won
	2	1	3	female	26.0	0	0	7.9250	S	Third	won
	3	1	1	female	35.0	1	0	53.1000	S	First	won
	4	0	3	male	35.0	0	0	8.0500	S	Third	n

```
In [5]: sns.displot(titanic['age'], bins = 10)
```

Out[5]: <seaborn.axisgrid.FacetGrid at 0x2295a29a000>

In [6]: sns.displot(titanic['age'], bins = 10, kde = False)

Out[6]: <seaborn.axisgrid.FacetGrid at 0x2295a3e28d0>


```
In [7]: sns.jointplot(x = titanic['age'], y = titanic['fare'], kind = 'scatter')
sns.jointplot(x = titanic['age'], y = titanic['fare'], kind = 'hex')
```

Out[7]: <seaborn.axisgrid.JointGrid at 0x2295aecab10>

In [8]: sns.rugplot(titanic['fare'])

Out[8]: <Axes: xlabel='fare'>

In [9]: sns.barplot(x = 'sex', y = 'age', data = titanic)

Out[9]: <Axes: xlabel='sex', ylabel='age'>


```
In [10]: sns.barplot(x = 'sex', y = 'age', data = titanic, estimator = np.std)
```

Out[10]: <Axes: xlabel='sex', ylabel='age'>


```
In [11]: sns.countplot(x = 'sex', data = titanic)
```

Out[11]: <Axes: xlabel='sex', ylabel='count'>

In [12]: sns.boxplot(x = 'sex', y = 'age', data = titanic)

Out[12]: <Axes: xlabel='sex', ylabel='age'>


```
In [13]: sns.violinplot(x = 'sex', y = 'age', data = titanic)
```

Out[13]: <Axes: xlabel='sex', ylabel='age'>


```
In [14]: sns.stripplot(x = 'sex', y = 'age', data = titanic, jitter=False)
```

Out[14]: <Axes: xlabel='sex', ylabel='age'>

In [15]: sns.stripplot(x = 'sex', y = 'age', data = titanic, jitter=True)

Out[15]: <Axes: xlabel='sex', ylabel='age'>


```
In [16]: sns.stripplot(x = 'sex', y = 'age', data = titanic, jitter=True, hue = 'surv
```

Out[16]: <Axes: xlabel='sex', ylabel='age'>


```
In [17]: sns.swarmplot(x = 'sex', y = 'age', data = titanic)
```

Out[17]: <Axes: xlabel='sex', ylabel='age'>

In [18]: sns.swarmplot(x = 'sex', y = 'age', data = titanic, hue = 'survived')

Out[18]: <Axes: xlabel='sex', ylabel='age'>

In [19]: titanic.corr(numeric_only= True)

Out[19]:		survived	pclass	age	sibsp	parch	fare	adı
	survived	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307	-(
	pclass	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500	
	age	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067	(
	sibsp	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651	-(
	parch	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225	-(
	fare	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000	-(
	adult_male	-0.557080	0.094035	0.280328	-0.253586	-0.349943	-0.182024	

 $0.135207 \quad 0.198270 \quad \text{-}0.584471 \quad \text{-}0.583398 \quad \text{-}0.271832$

In [20]: sns.heatmap(titanic.corr(numeric_only= True))

alone -0.203367

In [21]: sns.heatmap(titanic.corr(numeric_only= True), annot = True)

Out[21]: <Axes: >

In [22]: sns.heatmap(titanic.corr(numeric_only= True), cmap = 'YlGnBu')

Out[22]: <Axes: >

In []:

This notebook was converted with ${\it convert.ploomber.io}$