Forord

Denne vejledning omhandler bestemmelse af vandindhold i jordarter.

Vejledningen er en del af en serie, der beskriver udførelsen af geotekniske klassifikationsforsøg som de foretages i laboratoriet for fundering ved Aalborg Universitet.

Vejledningen er opbygget på følgende måde:

- Tilhørende standarder
- Definitioner
- Apparatur
- Kalibrering af udstyr
- Klargøring af prøvemateriale
- Forsøgsprocedure
- Beregninger
- Rapportering
- Bemærkninger
- Skema til brug for forsøgsudførelse
- Evt. bilag

Det må anbefales brugeren af denne vejledning at læse hele vejledningen igennem inden forsøget påbegyndes.

Nummerering på figurer er i teksten angivet med { }.

Enheder er angivet med [], f.eks. [%].

Tilhørende standard

Forsøget er baseret på og yderligt beskrevet i standarden DS/CEN ISO/TS 17892-1

Definition

Vandindholdet, w, er defineret som jordens vægttab i [%] af tørvægten ved tørring i et varmeskab i en temperatur på 105° C til konstant vægt.

Ligning 1: Vandindhold.

$$w = \frac{W_w}{W_s} \cdot 100\%$$

sk er vægten af skålen [g]

W er vægten af prøven før tørring [g] W_s er vægten af det tørrede materiale [g]

 W_w er vægten af vandet i prøven [g]

Vandindholdet for naturligt forekommende jordarter kan ligge mellem nul og flere hundrede procent. De største vandindhold findes i organiskholdige jordprøver som tørv og gytje.

Vandindholdet bestemmes normalt med standardmetoden (tørre-veje metoden). Ved bestemmelse af vandindhold i sand kan man også benytte karbidmetoden.

Apparaturliste

- Vægt, vejenøjagtighed 0,01 g
- Skål i varme- og korrosionsbestandigt materiale, figur 1.
- Tørreskab, temperatur til 105° C {1}
- Vacuumekssikkator {2}

Figur 1: Forskellige skåle der kan benyttes til vandindholdsforsøg.

Figur 2: Tørreovn og vacuumekssikkator.

Kalibrering af udstyr

Udstyret skal ikke kalibreres forud for forsøget. Temperaturen i tørreskabet samt vejenøjagtigheden af vægten skal årligt kontrolleres.

Klargøring af prøvemateriale

Størrelsen af delprøven afhænger af jordarten og af den mængde jord, der er til rådighed. Mindste mængde der skal benyttes kan ses i

tabel 1. Benyttes mindre mængder skal det nævnes i afrapporteringen.

Tabel 1: Mindste prøvemængde til bestemmelse af vandindhold.

Partikel diameter, D ₉₀	Minimum mængde af våd prøve		
mm	g		
1,0	25		
2,0	100		
4,0	300		
16,0	500		
31,5	1500		
63,0	5000		

I almindelighed er det passende at kræve en vejenøjagtighed på 0,1 % af jordprøvens vægt. En jordprøve på 10 g skal således vejes med en nøjagtighed på 0,01 g.

Forsøgsprocedure

Følgende fremgangsmåde benyttes:

- En ren og tør skål vejes, og vægten noteres, sk.
- En passende mængde jord, jf. tabel 1, anbringes i skålen, figur 3, og det hele vejes omgående, *W*+*sk*.
- Skålen anbringes i tørreskabet ved 105° C, og tørres til konstant vægt er opnået. Dette er normalt opnået ved tørring i 24 timer.
- Efter tørring til konstant vægt henstilles skålen til afkøling i vacuumekssikkator til rumtemperatur er opnået.
- Den afkølede skål med den tørre jordprøve vejes, W_s+sk .

Figur 3: Lerprøver hhv. før og efter tørring i 24 timer ved 105°C.

Beregninger

Vandindholdet w [%] beregnes jvf.

ligning 1:

$$w = \frac{W_w}{W_s} \cdot 100\% = \frac{(W + sk) - (W_s + sk)}{(W_s + sk) - sk} \cdot 100\%$$

Rapportering

Vandindholdet angives med 1 decimal.

Benyttes mindre materiale end angivet i tabel 1, angives den benyttede prøvemængde.

Bemærkninger

Generelt kan der siges, at jo større delprøven er, jo nøjagtigere bliver bestemmelsen.

Ved store prøvemængder og meget fedt ler skal det kontrolleres at prøven også er helt tør i midten af prøven.

Ved konstant vægt forstås, at prøvens vægt højst ændres 0,1 % af prøvens oprindelige vægt ved yderligere 4 timers tørring.

Tørretiden afhænger blandt andet af den mængde materiale, der anbringes til tørring i tørreskabet. Meget store og våde prøver samt prøver af fede lerarter kan kræve mere end 1 døgns tørretid.

Sættes der våde prøver ind i et tørreskab til prøver der er næsten tørre, skal disse stå længere tid, da de kan optage noget af fugten fra de våde prøver. Undgå derfor helst at sætte våde prøver i tørreskabet, hvis der er tørre prøver deri i forvejen.

Vandindhold

Sag			Sag nr.
Undersøgt d.	til	Lab. nr.	Boring nr.
Kontr. d.	Godk. d.	Kote	Bilag nr.

VANDINDHOLD

VALIDITADITADI			
Prøve	nr		
Skål	nr		
Skål ind tørreskab	d. kl		
Skål ud tørreskab	d. kl		
Sk + W	g		
Sk + W _s	g		
Sk	g		
W_w	g		
W_{s}	g		
$w\% = \frac{W_{w}}{W_{s}} \cdot 100$	%		