Exercises in Foundations in Representation Theory

Exercise Sheet 9

Jendrik Stelzner

Exercise 1.

We write C'_{\bullet} instead of D_{\bullet} .

We first note that for any two parallel morphisms $f, g: X \to Y$ in \mathcal{A} , it holds that f = g if and only if fx = gx for every point $x \in_{\mathcal{A}} X$. Indeed, we may choose $x = \mathrm{id}_X \colon X \to X$ as a test point.

To show that $H_n(f) = 0$ we hence need to show that $H_n(f)h_n = 0$ for every point $h_n \in_{\mathcal{A}} H_n(C_{\bullet})$. For this we consider the following commutative diagram:

We also consider a null homotopy $s=(s_n)_{n\in\mathbb{Z}}$ for f, i.e. morphisms $s_n\colon C_n\to C'_{n+1}$ with

$$f_n = d_{n+1}s_n + s_{n-1}d_n$$

for every $n \in \mathbb{Z}$.

There exists a point $z_n \in_{\mathcal{A}} \mathbf{Z}_n(C_{\bullet})$ with $h_n \equiv qz_n$ because q is an epimorphism. Let

$$\begin{aligned} c_n &\coloneqq jz_n \in_{\mathcal{A}} C_n \,, \\ z'_n &\coloneqq \mathbf{Z}_n(f)c_n \in_{\mathcal{A}} \mathbf{Z}_n(C'_{\bullet}) \,, \\ c'_n &\coloneqq f_n c_n = f_n jz_n = j' \, \mathbf{Z}_n(f)c_n = j' z'_n \in_{\mathcal{A}} C'_n \,. \end{aligned}$$

We have that

$$d_n c_n = d_n j z_n = 0$$

because $d_n j = 0$. It therefore follows from the relation $f_n = d_{n+1} s_n + s_{n-1} d_n$ that

$$c'_n = f_n c_n = (d_{n+1} s_n + s_{n-1} d_n) c_n = d_{n+1} s_n c_n + s_{n-1} d_n c_n = d_{n+1} s_n c_n.$$

For the points

$$c'_{n+1} := s_n c_n \in_{\mathcal{A}} C'_{n+1} ,$$

$$b'_n := p' c'_{n+1} \in_{\mathcal{A}} B_n(C'_{\bullet})$$

we hence have

$$c'_n = d_{n+1}s_nc_n = d_{n+1}c'_{n+1} = i'p'c'_{n+1} = i'b'_n$$
.

It holds that

$$\lambda' b'_n = z'_n$$

because

$$j'\lambda'b'_n = i'b'_n = c'_n = j'z'_n$$

and j' is a monomorphism. We find overall that

$$H_n(f)h_n \equiv H_n(f)qz_n = q' Z_n(f)z_n = q'z'_n = q'\lambda'b'_n = 0$$

because $q'\lambda' = 0$, and hence $H_n(f)h_n = 0$.

Exercise 2.

We add another two conditions:

(iv) There exists an isomorphism $X' \oplus X'' \to X$ that makes the diagram

commute.

(v) There exists an isomorphism $X \to X' \oplus X''$ that makes the diagram

commute.

(i)
$$\Longrightarrow$$
 (iv)

Let $s\colon X''\to X$ be a morphism with $gs=\mathrm{id}_{X''}.$ Then the diagram

$$0 \longrightarrow X' \xrightarrow{\begin{bmatrix} \mathrm{id} \\ 0 \end{bmatrix}} X' \oplus X'' \xrightarrow{\begin{bmatrix} 0 \mathrm{id} \end{bmatrix}} X'' \longrightarrow 0$$

$$\downarrow \begin{bmatrix} f s \end{bmatrix} \qquad \qquad \downarrow$$

$$0 \longrightarrow X' \xrightarrow{f} X \xrightarrow{g} X'' \longrightarrow 0$$

commutes because

$$\begin{bmatrix} f & s \end{bmatrix} \begin{bmatrix} id \\ 0 \end{bmatrix} = f$$

and

$$g[f \quad s] = [gf \quad gs] = [0 \quad id]$$
.

It follows from the five lemma that the morphism $[f \ s]$ is an isomorphism.

(iv)
$$\Longrightarrow$$
 (iii)

We denote the given isomorphism $X' \oplus X'' \to X$ by α . Through α we can also make X into a biproduct (X, (i, j), (p, q)) of X' and X'', with

$$i \coloneqq \alpha \begin{bmatrix} \mathrm{id} \\ 0 \end{bmatrix}, \quad j \coloneqq \alpha \begin{bmatrix} 0 \\ \mathrm{id} \end{bmatrix}, \quad p \coloneqq \begin{bmatrix} \mathrm{id} & 0 \end{bmatrix} \alpha^{-1}, \quad q \coloneqq \begin{bmatrix} 0 & \mathrm{id} \end{bmatrix} \alpha^{-1}.$$

It follows from the commutativity of the given diagram that i = f and q = g, so we may choose r = p and s = j.

(iii)
$$\Longrightarrow$$
 (i)

It holds that gs = id by definition of a biproduct.

Rest

We have shown that the conditions (i), (iv) and (iii) are equivalent, and we find dually that the conditions (ii), (v) and (iii) are equivalent.

Exercise 3.

We first examine how for any morphism of chain complexes $f: C_{\bullet} \to D_{\bullet}$ the morphisms of chain complexes $\operatorname{cone}(f) \to E_{\bullet}$ look like for any other chain complex E_{\bullet} in A: Such a morphism of chain complexes

$$q = (q_n)_{n \in \mathbb{Z}} : \operatorname{cone}(f) \to E_{\bullet}$$

is given by morphisms

$$g_n = \begin{bmatrix} s_{n-1} & h_n \end{bmatrix} : C_{n-1} \oplus D_n \to E_n$$

for some morphisms $s_{n-1}: C_{n-1} \to E_n$ and $h_n: D_n \to E_n$, that are subject to the relation

$$\begin{bmatrix} s_{n-2} & h_{n-1} \end{bmatrix} \begin{bmatrix} -d_{n-1} & 0 \\ -f_{n-1} & d_n \end{bmatrix} = d_n \begin{bmatrix} s_{n-1} & h_n \end{bmatrix}$$

for every $n \in \mathbb{Z}$ (where d_n denotes the differentials of C_{\bullet} , D_{\bullet} and E_{\bullet}). This means that

$$[-s_{n-2}d_{n-1} - h_{n-1}f_{n-1} \quad h_{n-1}d_n] = [d_n s_{n-1} \quad d_n h_n]$$

for every $n \in \mathbb{Z}$, i.e. that

$$\begin{cases} d_n(-s_{n-1}) + (-s_{n-2})d_{n-1} &= h_{n-1}f_{n-1}, \\ h_{n-1}d_n &= d_nh_n. \end{cases}$$

The second condition states that the family $h := (h_n)_{n \in \mathbb{Z}}$ is a morphism of chain complexes $h : D_{\bullet} \to E_{\bullet}$, whereas the first condition states that $s := (-s_n)_{n \in \mathbb{Z}}$ defines a null homotopy for the morphism $hf : C_{\bullet} \to E_{\bullet}$.

A morphism of chain complexes $\operatorname{cone}(f) \to E_{\bullet}$ is therefore the same as a morphism of chain complexes $h \colon D_{\bullet} \to E_{\bullet}$ such that hf is null homotopic, together with the choice of a null homotopy for hf. This entails that a morphism of chain complexes $h \colon D_{\bullet} \to E_{\bullet}$ can be extended to a morphism of chain complexes $\operatorname{cone}(f) \to E_{\bullet}$ if and only if the composition hf is nilpotent.

It follows that a morphism of chain complexes $f : C_{\bullet} \to D_{\bullet}$ can be extended to a morphism of chain complexes cone(id_{C_{\bullet}}) $\to D_{\bullet}$ if and only if the composition $f \operatorname{id}_{C_{\bullet}} = f$ is null homotopic.

Exercise 4.

(i)

The components of the morphism $fh: \operatorname{cone}(f)[1] \to D_{\bullet}$ are given by

$$(fh)_n = f_n h_n = f_n \begin{bmatrix} -\operatorname{id} & 0 \end{bmatrix} = \begin{bmatrix} -f_n & 0 \end{bmatrix}$$

for every $n \in \mathbb{Z}$. The collection $s = (s_n)_{n \in \mathbb{Z}}$ of morphisms

$$s_n := \begin{bmatrix} 0 & -\operatorname{id} \end{bmatrix} : C_n \oplus D_{n+1} \to D_{n+1}$$

are a null homotopy for fh because

$$\begin{aligned} d_{n+1}s_n + s_{n-1}d_n &= d_{n+1} \begin{bmatrix} 0 & -\operatorname{id} \end{bmatrix} + \begin{bmatrix} 0 & -\operatorname{id} \end{bmatrix} \begin{bmatrix} d_n & 0 \\ f_n & -d_{n+1} \end{bmatrix} \\ &= \begin{bmatrix} 0 & -d_{n+1} \end{bmatrix} \begin{bmatrix} -f_n & d_{n+1} \end{bmatrix} = \begin{bmatrix} -f_n & 0 \end{bmatrix} = (fh)_n \end{aligned}$$

for every $n \in \mathbb{Z}$.

(ii)

We know from the previous part of the exercise that hf is null homotpic in $\mathbf{Ch}_{\bullet}(\mathcal{A})$, hence that hf = 0 in $\mathbf{K}_{\bullet}(\mathcal{A})$. It follows that h = 0 in $\mathbf{K}_{\bullet}(\mathcal{A})$ because f is a monomorphism in $\mathbf{K}_{\bullet}(\mathcal{A})$, hence that h in null homotopic in $\mathbf{Ch}_{\bullet}(\mathcal{A})$.

(iii)

Let s be a null homotopy for the morphism h, i.e. let $s=(s_n)_{n\in\mathbb{Z}}$ be a family of morphisms $s_n\colon C_n\oplus D_{n+1}\to C_{n+1}$ with

$$h_n = d_{n+1}s_n + s_{n-1}d_n$$

for every $n \in \mathbb{Z}$. We may write every morphism s_n as

$$s_n = \begin{bmatrix} t_n & -u_{n+1} \end{bmatrix}$$

for some morphisms $t_n: C_n \to C_{n+1}$ and $u_n: D_{n+1} \to C_{n+1}$. Then

$$[-id \quad 0] = h_n$$

$$= d_{n+1}s_n + s_{n-1}d_n$$

$$= d_{n+1} [t_n \quad -u_{n+1}] + [t_{n-1} \quad -u_n] \begin{bmatrix} d_n \\ f_n \quad -d_{n+1} \end{bmatrix}$$

$$= [d_{n+1}t_n \quad -d_{n+1}u_{n+1}] [t_{n-1}d_n - u_nf_n \quad u_nd_{n+1}]$$

$$= [d_{n+1}t_n + t_{n-1}d_n - u_nf_n \quad u_nd_{n+1} - d_{n+1}u_{n+1}]$$

We hence have for every $n \in \mathbb{Z}$ that

$$\begin{cases} u_n f_n - id &= d_{n+1} t_n + t_{n-1} d_n, \\ u_n d_{n+1} - d_{n+1} u_{n+1} &= 0. \end{cases}$$

The second conditions tells us that $u := (u_n)_{n \in \mathbb{Z}}$ is a morphism of chain complexes $u: D_{\bullet} \to C_{\bullet}$, and the first condition states that uf – id is null homotopic in $\mathbf{Ch}_{\bullet}(\mathcal{A})$, i.e. that uf = id in the category $\mathbf{K}_{\bullet}(\mathcal{A})$.

(iv)

Parts (ii) and (iii) show that every monomorphism in $\mathbf{K}_{\bullet}(\mathcal{A})$ splits, hence that every kernel in $\mathbf{K}_{\bullet}(\mathcal{A})$ splits. Suppose that a kernel $k \colon K \to \mathbb{Z}/4$ of g in $\mathbf{K}_{\bullet}(\mathcal{A})$ exists.

The induced group homomorphism $H_0(k)$: $H_0(K) \to \mathbb{Z}/4$ is a section because k is a section. It follows from $\mathbb{Z}/4$ being indecomposable that either $H_0(k) = 0$ or that $H_0(k)$ is an isomorphism. We now show that neither can happen:

We find that $H_n(k) \neq 0$: The inclusion $i: \mathbb{Z}/2 \to \mathbb{Z}/4$ satisfies gi = 0, hence factors through k in $\mathbf{K}_{\bullet}(A)$.

We get in the zeroeth homology the following induced commutative diagram:

$$H_0(K) \xrightarrow{H_0(k)} \mathbb{Z}/4 \xrightarrow{g} \mathbb{Z}/2$$

$$\uparrow i$$

$$\mathbb{Z}/2$$

Hence $H_0(K) \neq 0$ because $i \neq 0$.

But we also find that $H_0(k)$ is not an isomorphism: The zeroeth homology of the commutative diagram

$$K \xrightarrow{k} \mathbb{Z}/4 \xrightarrow{g} \mathbb{Z}/2$$

is the following commutive diagram:

$$\operatorname{H}_0(K) \xrightarrow{\operatorname{H}_0(k)} \mathbb{Z}/4 \xrightarrow{g} \mathbb{Z}/2$$

It follows from $g \neq 0$ that $H_0(k)$ is not an isomorphism.