1. test iz Uvoda v geometrijsko topologijo

8. 4. 2016

Veliko uspeha!

1. naloga (5 točk)

2. naloga (5 točk)

Prostora $C([-1,1],\mathbb{R})$ in $C([0,1],\mathbb{R})$ opremimo s kompaktno odprto topologijo.

- 1. Ali je podprostor vseh sodih funkcij $S \subset C([-1,1],\mathbb{R})$ odprt, zaprt, ali gost?
- 2. Za preslikavo $f: [0,1] \to \mathbb{R}$ definiramo $f_s: [-1,1] \to \mathbb{R}$ s predpisom $f_s(x) = f(|x|)$. Pokaži, da je $F: C([0,1],\mathbb{R}) \to C([-1,1],\mathbb{R})$, podana s predpisom $F(f) = f_s$, vložitev.

3. naloga (5 točk)

- 1. Poišči podprostor evklidskega prostora, ki je homemorfen kvocientu \mathbb{R}^2/G , kjer grupa $G = \mathbb{S}^0$ deluje na \mathbb{R}^2 s predpisom $t \cdot (x, y) = (tx, y)$.
- 2. Poišči podprostor evklidskega prostora, ki je homemorfen kvocientu \mathbb{R}^2/G , kjer grupa $G = \mathbb{S}^0$ deluje na \mathbb{R}^2 s predpisom $t \cdot (x, y) = (tx, ty)$.
- 3. Naj grupa $G=\mathbb{Z}$ deluje na \mathbb{R} s predpisom $t\cdot x=2^tx$. Pokaži, da kvocienta \mathbb{R}/G ni moč vložiti v noben evklidski prostor.