

Lecture 17

VE 311 Analog Circuits

Xuyang Lu 2023 Summer

- Source Follower
- Emitter Follower
- Common Gate

Topics to be Covered

- Common Gate
- Cascode
- Differential amplifier

CG Input Impedance Small-signal Analysis ($\lambda \neq 0$, $\gamma \neq \emptyset$

CG Input Impedance ($\lambda \neq 0$, $\gamma \neq 0$)

$$i_t = v_t(g_m + g_{mb}) + \frac{v_t - v_{out}}{r_O}$$
 (1)

$$V_{out} = R_D i_t \tag{2}$$

$$R_{in} = \frac{R_D + r_o}{1 + (g_m + g_{mb})r_o} \begin{cases} \text{If } R_D = 0 & R_{in} = r_o \parallel \frac{1}{g_m} \parallel \frac{1}{g_{mb}} \\ \text{If } R_D = \infty & R_{in} = \infty \end{cases}$$
 (3)

CG Output Impedance ($\lambda \neq 0$, $\gamma \neq 0$)

Same as CS with source degradation

$$R_{out} = [R_S + r_{o1} + (g_{m1} + g_{mb1})r_{o1}R_S] \parallel R_D$$
 (4)

Applications of CG

Recap of Last Lecture

Calculate the small-signal voltage gain at low frequencies of the circuits below. To minimize wave reflection at point X, the input impedance must be equal to 50Ω .

Applications of CG

$$A_v = -g_{m1}R_D \tag{6}$$

 $A_v = -g_{m1} R_D \qquad \mbox{(5)} \ R_D \ \mbox{can be much larger than } 50\Omega, \mbox{ so as to achieve a much higher gain.}$

$$R_{in} = \frac{R_D + r_{o2}}{1 + (g_{m2} + g_{mb2}) r_{o2}} = 50\Omega$$
 (7)

CG Example

Recap of Last Lecture

9/66

Calculate the small-signal voltage gain of the circuit below. $(\lambda \neq 0, \gamma \neq 0)$

CG Example

Recap of Last Lecture

(8)

$$\begin{cases} G_m = g_{m1} \\ R_{out} = r_{o1} \parallel \frac{1}{g_{m1}} \parallel \frac{1}{g_{mb1}} \end{cases}$$

Example

Calculate the small-signal voltage gain of the circuit below. $(\lambda \neq 0, \gamma \neq 0)$

Since no current flowing in R_S , $V_a = V_{in}$

Example

$$V_{out} - V_{in}(g_m + g_{mb})r_o = V_{in}$$

$$\tag{9}$$

$$A_v = \frac{V_{out}}{V_{in}} = 1 + (g_m + g_{mb})r_o$$
 (10)

Example

Calculate the small-signal trans-impedance gain of the circuit below. $(\lambda \neq 0, \gamma \neq 0)$

$$R_{in} = \frac{R_D + r_o}{1 + (q_m + q_{mb})r_o} \tag{11}$$

$$-i_{in}\frac{R_P}{R_{in} + R_P}R_D = V_{out} \tag{12}$$

$$\frac{V_{out}}{i_{in}} = -\frac{R_P}{R_{in} + R_P} R_D \tag{13}$$

$$=\frac{-R_{P}R_{D}[1+(g_{m}+g_{mb})r_{o}]}{R_{D}+r_{o}+R_{P}+(g_{m}+g_{mb})r_{o}R_{P}}$$
(14)

Cascode

Cascode is a common gate on top of a common source.

$$G_m = -g_{m1} \frac{r_{o1}}{r_{o1} + \left(r_{o2} \parallel \frac{1}{g_{m2} + g_{mb2}}\right)}$$
(15)

$$R_{out} = [r_{o1} + r_{o2} + (g_{m2} + g_{mb2})r_{o2}r_{o1}] \parallel R_D$$
 (16)

Cascode

000000000

16/66

$$G_m = \frac{(g_m + g_{mb})r_{o1} + 1}{r_{o1} + R_S + (g_m + g_{mb})r_{o1}R_S}$$

Cascode

0000000000

$$R_{out} = [R_S + r_{o1} + (g_{m1} + g_{mb1})r_{o1}R_S] \parallel R_D \qquad \text{(18)} \qquad \text{(18)} \qquad \text{(28)} \qquad \text$$

$$A_v = G_m R_{out} \tag{19}$$

$$V_a \ge V_{in} - V_{TH1} \tag{20}$$

$$V_b - V_{GS2} \ge V_{in} - V_{TH1} \tag{21}$$

$$V_b \ge V_{in} - V_{TH1} + V_{GS2} \tag{22}$$

$$V_{out} \geqq V_b - V_{TH2} \geqq (V_{in} - V_{TH1}) + (V_{GS2} - V_{TH2}) ~~ \mbox{(23)} \label{eq:vout}$$

CS + CG with Ideal Current Source ($\lambda \neq 0$, $\gamma \neq 0$)

$$V_{DD} \geqq V_{out} \geqq V_{ov1} + V_{ov2} \tag{24}$$

$$G_m = -g_{m1} \frac{r_{o1}}{r_{o1} + \left(r_{o2} \parallel \frac{1}{q_{m2} + q_{mb2}}\right)}$$
 (25)

$$R_{out} = r_{o1} + r_{o2} + (g_{m2} + g_{mb2})r_{o2}r_{o1}$$
 (26)

$$A_v = G_m R_{out} (27)$$

CS + CG with Ideal Current Source ($\lambda \neq 0$, $\gamma \neq 0$)

$$G_m = -g_{m1} \frac{r_{o1}}{r_{o1} + (r_{o2} \parallel \frac{1}{g_{m2}g_{mb2}})}$$
 (28)

$$R_{out} = [r_{o1} + r_{o2} + (g_{m2} + g_{mb2})r_{o2}r_{o1}]$$

$$\parallel [r_{o3} + r_{o4} + (g_{m3} + g_{mb3})r_{o3}r_{o4}]$$
(29)

$$A_v = G_m R_{out} \tag{30}$$

$$V_{DD} - V_{ov3} - V_{ov4} \ge V_{out} \ge V_{ov1} + V_{ov2}$$
 (31)

Can we cascode more to get higher gain? Problems:

Headroom

Recap of Last Lecture

2 nA of current makes it sensitive towards leakage, PVT, noise

Cascode

000000000

Because how output impedance scales, you will only see triple cascode in MOSFET but not in BJT.

Cascode

000000000

Folded Cascode ($\lambda \neq 0$, $\gamma \neq 0$)

We don't care about M_3 's non-ideality.

Cascode

0000000000

Folded Cascode ($\lambda \neq 0$, $\gamma \neq 0$)

$$G_{m} = -g_{m1} \frac{(r_{o1} \parallel r_{o3})}{(r_{o1} \parallel r_{o3}) + (r_{o2} \parallel \frac{1}{g_{m2} + g_{mb2}})}$$
(32)

$$R_{out} = \left[(r_{o1} \parallel r_{o3}) + r_{o2} + (g_{m2} + g_{mb2}) r_{o2} (r_{o1} \parallel r_{o3}) \right] \parallel R_D \tag{33} \label{eq:33}$$

$$A_v = G_m R_{out} (34)$$

Single-Ended vs Differential Signals

Single-ended

Differential

- B-C=A (matters)
- (B+C)/2 = common-mode level (doesn't matter)
- Single-ended signal: a voltage signal measured with respect to ground
- Differential signal: a voltage signal measured between two nodes, each having equal amplitude and opposite phase around a common-mode (CM) level

Common-Mode Noise Rejection

Common-Mode Noise Rejection

- A corrupted; B corrupted; C corrupted
- $(B+C)/2 = \mathsf{CM}$ corrupted
- (B-C) not corrupted

Increased Output Swing

Recap of Last Lecture

Differential

- $(V_{CS1} V_{TH1}) \le A \le V_{DD}$
- $(V_{GS1,2} V_{TH1,2}) V_{DD} \le (B C) \le V_{DD} (V_{GS1,2} V_{TH1,2})$

$V_{in,CM}$ and $V_{out,CM}$

$V_{in,CM}$ and $V_{out,CM}$

 $\begin{tabular}{ll} \bullet & V_{out,CM} & {\rm dependent} \\ & {\rm on} & V_{in,CM} \\ \end{tabular}$

- $\begin{tabular}{ll} & V_{out,CM} & {\rm independent} \\ & {\rm from} & V_{in,CM} \\ \end{tabular}$
- Better design

Common-Mode + Differential-Mode

Not necessarily fully differential

Common-Mode + Differential-Mode

$$A_{DM} = \frac{V_{out1} - V_{out2}}{V_d} \tag{35}$$

$$A_{CM} = \frac{V_{out,CM}}{V_{in,CM}} \tag{36}$$

$$A_{CM-DM} = \frac{V_{out1} - V_{out2}}{V_{in,CM}}$$
 (37)

$$CMRR = \left| \frac{A_{DM}}{A_{CM-DM}} \right| \tag{38}$$

Differential-Mode (Qualitative Analysis)

Differential-Mode (DC Analysis) ($\lambda = 0$, $\gamma = 0$)

Cascode

$$V_{in1} - V_{GS1} = V_{in2} - V_{GS2} (39)$$

$$V_{in1} - V_{in2} = V_{GS1} - V_{GS2} (40)$$

$$= (V_{GS1} - V_{TH}) - (V_{GS2} - V_{TH}) \quad \mbox{(41)}$$

$$= \sqrt{\frac{2I_{D1}}{\mu_n C_{ox} \frac{W}{L}}} - \sqrt{\frac{2I_{D2}}{\mu_n C_{ox} \frac{W}{L}}}$$
 (42)

Differential-Mode (DC Analysis)

$$(V_{in1} - V_{in2})^2$$

$$= \frac{2I_{D1}}{\mu_n C_{ox} \frac{W}{L}} + \frac{2I_{D2}}{\mu_n C_{ox} \frac{W}{L}} - 2 \frac{\sqrt{4I_{D1}I_{D2}}}{\mu_n C_{ox} \frac{W}{L}}$$

$$\frac{2}{\mu_n C_{ox} \frac{W}{L}} \left(I_{SS} - 2\sqrt{I_{D1}I_{D2}} \right)$$

$$\frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}(V_{in1}-V_{in2})^{2}=I_{SS}-2\sqrt{I_{D1}I_{D2}} \ \ \mbox{(46)}$$

Differential-Mode (DC Analysis)

$$\frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{in2})^2 - I_{SS} = -2\sqrt{I_{D1}I_{D2}}$$
(47)

$$\frac{1}{4}(\mu_n C_{ox} \frac{W}{L})^2 (V_{in1} - V_{in2})^4 + {I_{SS}}^2 - \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{in2})^2 I_{SS} = 4I_{D1} I_{D2}$$
 (48)

Cascode

$$\frac{1}{4}(\mu_{n}C_{ox}\frac{W}{L})^{2}(V_{in1}-V_{in2})^{4}+I_{SS}^{2}-\mu_{n}C_{ox}\frac{W}{L}(V_{in1}-V_{in2})^{2}I_{SS}=I_{SS}^{2}-(I_{D1}-I_{D2})^{2} \tag{49}$$

$$\Delta I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \Delta V_{in} \sqrt{\frac{4I_{SS}}{\mu_n C_{ox} \frac{W}{L}} - \Delta V_{in}^2}$$
 (50)

Differential-Mode (DC Analysis)

$$\Delta I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} \Delta V_{in} \sqrt{\frac{4I_{SS}}{\mu_{n} C_{ox} \frac{W}{L}} - \Delta V_{in}^{2}} - \sqrt{\frac{2I_{SS}}{\mu_{n} C_{ox} \frac{W}{L}}}}$$

$$(51)$$

$$\sqrt{\frac{2I_{SS}}{\mu_{n} C_{ox} \frac{W}{L}}} \Delta V_{in}$$

Differential-Mode (DC Analysis)

$$G_m = \frac{\partial \Delta I_D}{\partial \Delta V_{in}} \tag{52}$$

$$= \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \frac{\frac{4I_{ss}}{\mu_n C_{ox} \frac{W}{L}} - 2\Delta V_{in}^2}{\sqrt{\frac{4I_{ss}}{\mu_n C_{ox} \frac{W}{L}} - \Delta V_{in}^2}}$$
(53)

At $\Delta V_{in} = 0$.

- Larger I_{SS} leads to higher G_m and wider input range.
- Smaller W/L leads to lower G_m but wider input range.

Differential-Mode (Superposition)

38/66

Small-signal Analysis

$$\lambda \neq 0$$

$$\gamma \neq 0$$

Differential-Mode (Superposition)

$$G_m = g_{m1} \tag{56}$$

$$R_{out} = \frac{1}{g_{m1}} \tag{57}$$

$$V_{out2} = -\frac{R_D}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}} V_{in1}$$
 (58)

$$V_{out1} - V_{out2} = -\frac{2R_D}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}} V_{in1}$$
 (59)

$$=-g_m R_D V_{in1} (60)$$

$$V_{out1} - V_{out2} = -\frac{2R_D}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}} V_{in2}$$
 (61)

$$= -g_m R_D V_{in2} \tag{62}$$

Differential-Mode (Superposition)

$$A_{DM} = \frac{V_{out1} - V_{out2}}{V_{in1} - V_{in2}}$$
 (63)

$$= -g_m R_D \tag{64}$$

Differential pair

Example

Calculate the A_{DM} of the differential pair below if the biasing conditions of M_1 and M_2 are the same.

$$V_{out1} - V_{out2} = -\frac{2R_D}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}} V_{in1} = -\frac{4}{3} g_m R_D V_{in1}$$
 (65)

$$V_{out1} - V_{out2} = -\frac{2R_D}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}} V_{in1} = -\frac{4}{3} g_m R_D V_{in1}$$
 (65)
$$V_{out1} - V_{out2} = -\frac{2R_D}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}} V_{in2} = -\frac{4}{3} g_m R_D V_{in2}$$
 (66)
$$V_{out1} - V_{out2} = -\frac{2R_D}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}} V_{in2} = -\frac{4}{3} g_m R_D V_{in2}$$
 (66)

$$A_{DM} = \frac{V_{out1} - V_{out2}}{V_{in1} - V_{in2}} = -\frac{4}{3}g_m R_D \tag{67}$$

Small-Signal, Half-circuit ($\lambda \neq 0$, $\gamma \neq 0$)

- Assume the circuit is fully symmetric.
- For $i_{d1}+i_{d2}=0$ and $g_{m1}\frac{v_d}{2}+g_{m2}(-\frac{v_d}{2})=0$, V_P must be a constant voltage in DC analysis and a virtual ground in small-signal analysis.

Small-Signal, Half-circuit ($\lambda \neq 0$, $\gamma \neq 0$)

$$V_{out1} = -g_m(R_D \parallel r_o) \frac{v_d}{2}$$
 (68)

$$V_{out2} = -g_m(R_D \parallel r_o)(-\frac{v_d}{2}) \tag{69}$$

$$A_{DM} = \frac{V_{out1} - V_{out2}}{v_d} = -g_m(R_D \parallel r_o) \tag{70}$$

47/66

Common-Mode Response ($\lambda \neq 0$, $\gamma \neq 0$)

If the circuit is fully symmetric,

$$A_{CM-DM} = \frac{V_{out1} - V_{out2}}{v_{in,CM}} = 0$$
 (71)

$$CMRR = \left| \frac{A_{DM}}{A_{CM-DM}} \right| = \infty \tag{72}$$

Common-Mode Response ($\lambda \neq 0$, $\gamma \neq 0$)

Perturbing biasing condition \rightarrow Altering transconductance (g_m)

Common-Mode Response ($\lambda \neq 0$, $\gamma \neq 0$)

If the circuit is fully symmetric,

$$A_{CM} = \frac{V_{out,CM}}{V_{in,CM}} \tag{73}$$

$$= \frac{-2g_m \frac{r_o}{2}}{R_{SS} + \frac{r_o}{2} + (2g_m + 2g_{mb2})\frac{r_o}{2}R_{SS}} \cdot \frac{\left[R_{SS} + \frac{r_o}{2} + (2g_m + 2g_{mb})\frac{r_o}{2}R_{SS}\right]\frac{R_D}{2}}{\left[R_{SS} + \frac{r_o}{2} + (2g_m + 2g_{mb})\frac{r_o}{2}R_{SS}\right] + \frac{R_D}{2}}$$
(74)

$$=0 \quad \text{if } R_{SS} = \infty \tag{75}$$

Nonzero R_{SS} ($\lambda=0$, $\gamma=0$)

$$R_S = \frac{1}{g_{m2}} \parallel R_{SS} \tag{76}$$

Nonzero R_{SS} ($\lambda=0$, $\gamma=0$)

$$V_{out1} = -\frac{R_D}{\frac{1}{g_{m1}} + \left(\frac{1}{g_{m2}} \parallel R_{SS}\right)} V_{in1} \quad (77)$$

Nonzero R_{SS} ($\lambda=0$, $\gamma=0$)

$$G_m = g_{m1}$$

$$R_{out} = \frac{1}{g_{m1}}$$

$$V_{out2} = -\frac{\frac{R_{SS}}{R_{SS} + \frac{1}{g_{m2}}} R_D}{\frac{1}{g_{m1}} + \left(\frac{1}{g_{m2}} \parallel R_{SS}\right)} V_{in1}$$
 (80)

Nonzero R_{ss}

$$A_{DM} = \frac{V_{out1} - V_{out2}}{V_{in1} - V_{in2}} = -g_m R_D$$
 (85)

Higher A_{DM}

- \rightarrow Smaller $(W/L)_P$
- \rightarrow Larger $(V_{SGP} V_{THP})$
- ullet \to Smaller $V_{in.CM}$ headroom

A_{DM} with MOS Loads ($\lambda \neq 0$, $\gamma \neq 0$)

$$V_{out1} = -g_{mN}(r_{oN} \parallel r_{oP} \parallel \frac{1}{g_{mP}}) \frac{v_d}{2}$$
 (86)

$$V_{out2} = -g_{mN}(r_{oN} \parallel r_{oP} \parallel \frac{1}{g_{mP}})(-\frac{v_d}{2})$$
(87)

$$A_{DM} = \frac{V_{out1} - V_{out2}}{v_d} = -g_{mN} \left(r_{oN} \parallel r_{oP} \parallel \frac{1}{g_{mP}} \right)$$
 (88)

$$\approx -\frac{g_{mN}}{g_{mP}} \approx -\sqrt{\frac{\mu_n(W/L)_N}{\mu_p(W/L)_P}} \tag{89}$$

A_{DM} with MOS Loads ($\lambda \neq 0$, $\gamma \neq 0$)

A_{DM} with MOS Loads

$$V_{out1} = -g_{m1,2} \left(r_{o1,2} \parallel r_{o3,4} \parallel \frac{1}{g_{m3,4}} \parallel r_{o5,6} \right) \frac{v_d}{2}$$
 (90)

$$V_{out2} = -g_{m1,2} \left(r_{o1,2} \parallel r_{o3,4} \parallel \frac{1}{g_{m3,4}} \parallel r_{o5,6} \right) \left(-\frac{v_d}{2} \right)$$
 (91)

$$A_{DM} = \frac{V_{out1} - V_{out2}}{v_d} \approx -\frac{g_{m1,2}}{g_{m3,4}} \approx -\sqrt{\frac{5\mu_n(W/L)_{1,2}}{\mu_p(W/L)_{3,4}}}$$
(92)

A_{DM} with MOS Loads ($\lambda \neq 0$, $\gamma \neq 0$)

$$V_{out1} = -g_{m1,2}(r_{o1,2} \parallel r_{o3,4}) \frac{v_d}{2} \qquad \text{(93)}$$

$$V_{out2} = -g_{m1,2}(r_{o1,2} \parallel r_{o3,4})(-\frac{v_d}{2})$$
 (94)

$$A_{DM} = \frac{V_{out1} - V_{out2}}{v_d} \tag{95}$$

$$= -g_{m1,2}(r_{o1,2} \parallel r_{o3,4}) \tag{96}$$

60/66

A_{DM} with MOS Loads ($\lambda \neq 0$, $\gamma \neq 0$)

Higher R_{out}

Recap of Last Lecture

- \rightarrow High A_{DM}
- \rightarrow Small $V_{in,CM}$ headroom

Telescopic cascode

上海気道大学 SHANGHAI JIAO TONG UNIVERSITY

A_{DM} with MOS Loads ($\lambda \neq 0$, $\gamma \neq 0$)

$$V_{out1} \cong -g_{m1,2} \left\{ [r_{o1,2} + r_{o3,4} + (g_{m3,4} + g_{mb3,4})r_{o3,4}r_{o1,2}] \parallel \\ [r_{o7,8} + r_{o5,6} + (g_{m5,6} + g_{mb5,6})r_{o5,6}r_{o7,8}] \right\} \frac{v_d}{2}$$

$$(97)$$

$$V_{out2} \cong -g_{m1,2} \left\{ [r_{o1,2} + r_{o3,4} + (g_{m3,4} + g_{mb3,4})r_{o3,4}r_{o1,2}] \parallel \\ [r_{o7,8} + r_{o5,6} + (g_{m5,6} + g_{mb5,6})r_{o5,6}r_{o7,8}] \right\} \left(-\frac{v_d}{2} \right)$$
(98)

$$A_{DM} = \frac{V_{out1} - V_{out2}}{v_d} \cong -g_{m1,2}[(g_{m3,4} + gmb_{3,4})r_{o3,4}r_{o1,2} \parallel (g_{m5,6} + g_{mb5,6})r_{o5,6}r_{o7,8}]$$

$$(99)$$

Differential Pair with Active Load

Asymmetric Differential Pair

Why N is not on the right branch? Caveat: Because of the vastly different resistance magnitude at the drains of M_1 and M_2 , the voltage swings at these two nodes are different and therefore node P cannot be viewed as a virtual ground when $V_{in2} = -V_{in1}$.

64/66

OPA Layout

OPA Layout

