RWorksheet_CAHUYA#6

CAHUYA, CARLO J'NAED LYTON BSIT-2A

2022-11-23

```
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
                filter, lag
## The following objects are masked from 'package:base':
##
##
                 intersect, setdiff, setequal, union
library(ggplot2)
1. How many columns are in mpg data set? How about the number of rows? Show the codes and its result.
data(mpg)
mpg_data <- glimpse(mpg)</pre>
## Rows: 234
## Columns: 11
## $ manufacturer <chr> "audi", "audi"
## $ model
                             <chr> "a4", "a4", "a4", "a4", "a4", "a4", "a4", "a4 quattro", "~
                                           <dbl> 1.8, 1.8, 2.0, 2.0, 2.8, 2.8, 3.1, 1.8, 1.8, 2.0, 2.0, 2.~
## $ displ
                                           <int> 1999, 1999, 2008, 2008, 1999, 1999, 2008, 1999, 1999, 200~
## $ year
## $ cyl
                                           <int> 4, 4, 4, 4, 6, 6, 6, 4, 4, 4, 6, 6, 6, 6, 6, 6, 8, 8, ~
## $ trans
                                           <chr> "auto(15)", "manual(m5)", "manual(m6)", "auto(av)", "auto~
                                           ## $ drv
                                           <int> 18, 21, 20, 21, 16, 18, 18, 18, 16, 20, 19, 15, 17, 17, 1~
## $ cty
                                           <int> 29, 29, 31, 30, 26, 26, 27, 26, 25, 28, 27, 25, 25, 25, 2~
## $ hwy
## $ fl
                                           <chr> "compact", "compact", "compact", "compact", "c~
## $ class
mpg_data
## # A tibble: 234 x 11
                                                                        displ year cyl trans drv cty hwy fl
              manufacturer model
                                                                                                                                                                                           class
```

```
<dbl> <int> <int> <chr> <int> <int> <chr> <int> <int> <chr>
##
      <chr>
                   <chr>
##
   1 audi
                   a4
                                1.8 1999
                                              4 auto~ f
                                                                      29 p
                                                                18
                                                                               comp~
   2 audi
                                1.8 1999
                                                                21
##
                   a4
                                              4 manu~ f
                                                                      29 p
                                                                               comp~
## 3 audi
                                2
                                     2008
                                              4 manu~ f
                                                                20
                   a4
                                                                      31 p
                                                                               comp~
##
   4 audi
                   a4
                                2
                                     2008
                                              4 auto~ f
                                                                21
                                                                      30 p
                                                                               comp~
##
  5 audi
                   a4
                                2.8 1999
                                              6 auto~ f
                                                               16
                                                                      26 p
                                                                               comp~
                                                                      26 p
##
   6 audi
                   a4
                                2.8 1999
                                              6 manu~ f
                                                               18
                                                                               comp~
## 7 audi
                                3.1 2008
                                              6 auto~ f
                   a4
                                                               18
                                                                      27 p
                                                                               comp~
                   a4 quattro
## 8 audi
                                1.8 1999
                                              4 manu~ 4
                                                                18
                                                                      26 p
                                                                               comp~
## 9 audi
                                1.8 1999
                                              4 auto~ 4
                                                               16
                   a4 quattro
                                                                      25 p
                                                                               comp~
## 10 audi
                   a4 quattro
                                2
                                     2008
                                              4 manu~ 4
                                                                20
                                                                      28 p
                                                                               comp~
## # ... with 224 more rows
```

nrow(mpg)

[1] 234

ncol(mpg)

[1] 11

The mpg data set have 11 columns and 234 rows.

2. Which manufacturer has the most models in this data set?

```
most_mods <- mpg_data %>% group_by(manufacturer) %>% count()
most_mods
```

```
## # A tibble: 15 x 2
## # Groups: manufacturer [15]
##
      manufacturer
                       n
##
      <chr>>
                   <int>
## 1 audi
                      18
## 2 chevrolet
                      19
## 3 dodge
                      37
## 4 ford
                      25
## 5 honda
                       9
## 6 hyundai
## 7 jeep
                       8
## 8 land rover
                       4
## 9 lincoln
                       3
## 10 mercury
                       4
## 11 nissan
                      13
                      5
## 12 pontiac
## 13 subaru
                      14
## 14 toyota
                      34
## 15 volkswagen
                      27
```

```
colnames(most_mods) <- c("Manufacturer", "Counts")</pre>
most_mods
## # A tibble: 15 x 2
## # Groups: Manufacturer [15]
     Manufacturer Counts
##
##
      <chr>
                    <int>
## 1 audi
                       18
## 2 chevrolet
                      19
## 3 dodge
                       37
## 4 ford
                       25
## 5 honda
                        9
## 6 hyundai
## 7 jeep
                        8
## 8 land rover
## 9 lincoln
                        3
## 10 mercury
## 11 nissan
                       13
## 12 pontiac
                        5
## 13 subaru
                       14
## 14 toyota
                       34
## 15 volkswagen
                       27
# Dodge has the most number of models. It has 37 models.
Which model has the most variations?
most_var<- mpg_data %>% group_by(model) %>% count()
most_var
## # A tibble: 38 x 2
## # Groups: model [38]
##
      model
                             n
##
      <chr>
                         <int>
## 1 4runner 4wd
## 2 a4
                             7
## 3 a4 quattro
                             8
## 4 a6 quattro
                             3
## 5 altima
## 6 c1500 suburban 2wd
                             5
## 7 camry
                             7
## 8 camry solara
                             7
## 9 caravan 2wd
                            11
## 10 civic
                             9
## # ... with 28 more rows
colnames(most_var) <- c("Model","Counts")</pre>
most_var
## # A tibble: 38 x 2
## # Groups: Model [38]
```

```
##
     Model
                         Counts
##
      <chr>
                          <int>
  1 4runner 4wd
##
                              6
## 2 a4
                              7
##
   3 a4 quattro
                              8
## 4 a6 quattro
                              3
  5 altima
## 6 c1500 suburban 2wd
                              5
##
   7 camry
                              7
## 8 camry solara
                              7
## 9 caravan 2wd
                             11
                              9
## 10 civic
## # ... with 28 more rows
```

Caravan 2wd model has the most variations. It has 11 variations.

a. Group the manufacturers and find the unique models. Copy the codes and result.

```
unique_mods<- mpg_data %>% group_by(manufacturer, model) %>% distinct() %>% count()
unique_mods
```

```
## # A tibble: 38 x 3
              manufacturer, model [38]
## # Groups:
     manufacturer model
##
                  <chr>
##
      <chr>
                                      <int>
   1 audi
##
                  a4
## 2 audi
                                          8
                 a4 quattro
## 3 audi
                  a6 quattro
                                          3
## 4 chevrolet
                                          4
                  c1500 suburban 2wd
## 5 chevrolet
                  corvette
                                          5
## 6 chevrolet
                  k1500 tahoe 4wd
                                          4
## 7 chevrolet
                  malibu
## 8 dodge
                                          9
                  caravan 2wd
## 9 dodge
                  dakota pickup 4wd
                                          8
## 10 dodge
                                          6
                  durango 4wd
## # ... with 28 more rows
```

```
colnames(unique_mods) <- c("Manufacturer", "Model", "Counts")
unique_mods</pre>
```

```
## # A tibble: 38 x 3
              Manufacturer, Model [38]
## # Groups:
##
     Manufacturer Model
                                     Counts
##
      <chr>
                   <chr>
                                       <int>
##
   1 audi
                  a4
##
                                          8
  2 audi
                  a4 quattro
## 3 audi
                  a6 quattro
                                          3
## 4 chevrolet
                  c1500 suburban 2wd
                                          4
## 5 chevrolet
                  corvette
                                           5
## 6 chevrolet
                  k1500 tahoe 4wd
                                          4
## 7 chevrolet
                  malibu
                                          9
                  caravan 2wd
## 8 dodge
```

```
## 9 dodge dakota pickup 4wd 8
## 10 dodge durango 4wd 6
## # ... with 28 more rows
```

b. Graph the result by using plot() and ggplot(). Write the codes and its result.

plot(unique_mods)

ggplot(unique_mods, aes(x = Model, y = Counts)) + geom_point(color='black')

3. Same dataset will be used. You are going to show the relationship of the model and the manufacturer.

```
ggplot(unique_mods, aes(x = Model, y = Manufacturer )) + geom_point(color='black')
```


a. What does ggplot(mpg, aes(model, manufacturer)) + geom_point() show?

ggplot(mpg, aes(model, manufacturer)) + geom_point()

The output of the code displays a plot with black points in it.

b. For you, is it useful? If not, how could you modify the data to make it more informative?

Yes, it is helpful since you can trace down the data for each model from the manufacturers.

4. Using the pipe (%>%), group the model and get the number of cars per model. Show codes and its result.

```
car_mods <- mpg_data %>% group_by(model) %>% count()
car_mods
```

```
## # A tibble: 38 x 2
               model [38]
   # Groups:
      model
##
                               n
      <chr>
##
                           <int>
##
    1 4runner 4wd
                               6
##
    2 a4
                               7
                               8
    3 a4 quattro
    4 a6 quattro
                               3
##
##
    5 altima
                               6
    6 c1500 suburban 2wd
                               5
##
    7 camry
                               7
                               7
    8 camry solara
```

```
## 9 caravan 2wd 11
## 10 civic 9
## # ... with 28 more rows

colnames(car_mods) <- c("Model","Counts")
car_mods

## # A tibble: 38 x 2
## # Groups: Model [38]
## Model Counts
## <chr> <int>
```

```
## 1 4runner 4wd
                             6
## 2 a4
                             7
                             8
## 3 a4 quattro
## 4 a6 quattro
                             3
## 5 altima
                             6
## 6 c1500 suburban 2wd
                             5
                             7
## 7 camry
                             7
## 8 camry solara
## 9 caravan 2wd
                            11
## 10 civic
                             9
## # ... with 28 more rows
```

a. Plot using the geom_bar() + coord_flip() just like what is shown below. Show codes and its result.

```
bar_graph <- ggplot(car_mods, aes( x = Model, y = Counts, fill = Model)) +
  labs(title = "Numbers of cars per Model", y = "Number of Cars", x = "Model") +
  geom_bar(stat = "identity") + theme(legend.position = "none")
bar_graph +
  coord_flip()</pre>
```

Numbers of cars per Model

b. Use only the top 20 observations. Show code and results.

 $head(car_mods, n = 20)$

```
## # A tibble: 20 x 2
  # Groups:
               Model [20]
      Model
##
                          Counts
##
      <chr>
                           <int>
##
    1 4runner 4wd
                               6
##
    2 a4
                               7
##
    3 a4 quattro
                               8
##
   4 a6 quattro
                               3
                               6
##
   5 altima
    6 c1500 suburban 2wd
                               5
##
##
    7 camry
                               7
                               7
##
    8 camry solara
    9 caravan 2wd
                              11
                               9
## 10 civic
## 11 corolla
                               5
                               5
## 12 corvette
## 13 dakota pickup 4wd
                               9
                               7
## 14 durango 4wd
## 15 expedition 2wd
                               3
                               6
## 16 explorer 4wd
## 17 f150 pickup 4wd
                               7
## 18 forester awd
                               6
```

```
## 19 grand cherokee 4wd 8
## 20 grand prix 5
```

5. Plot the relationship between cyl - number of cylinders and displ - engine displacement using geom_point with aesthetic colour = engine displacement. Title should be "Relationship between No. of Cylinders and Engine Displacement". a. Show the codes and its result.

```
qplot(model,data = mpg,main = "Number of Cars per Model", xlab = "Model",
    ylab = "Number of Cars", geom = "bar", fill = manufacturer) + coord_flip()
```


b. How would you describe its relationship?

Based on the output of the code, I can say that their connection is very consistent or stable.

6. Get the total number of observations for drv - type of drive train (f = front-wheel drive, r = rear wheel drive, 4 = 4wd) and class - type of class (Example: suv, 2seater, etc.).

```
ggplot(data = mpg_data, mapping = aes(x = drv, y = class)) +
  geom_tile(aes(fill=class))
```


Plot using the geom_tile() where the number of observations for class be used as a fill for aesthetics. a. Show the codes and its result for the narrative in #6.

```
ggplot(mpg, aes(drv, class)) +
  geom_tile (aes(fill = class))
```


b. Interpret the result.

```
# The mapping geometric point graph is used to "map" the black areas.
# The output shows that if there is a relationship between a class and dru, a tile is created.
```

7. Discuss the difference between these codes. Its outputs for each are shown below.

```
#Code#1
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy, colour = "blue"))
```



```
#Code#2
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy), colour = "blue")
```


The "colour = blue" code in the first code was inside the function aes(), so it failed to add
black dots or points. The second code, on the other hand, was performed and was in its right
location or outside the aes() method, and the plot was shown accordingly.

8. Try to run the command? mpg. What is the result of this command?

?mpg

starting httpd help server ... done

It shows "Fuel economy data from 1999 to 2008 for 38 popular models of cars" in the help panel.

- a. Which variables from mpg data set are categorical?
- Categorical variables in mpg include: manufacturer, model, trans (type of transmission), drv (front-wheel drive, rear-wheel, 4wd), fi (fuel type), and class (type of car)
- b. Which are continuous variables?
- Continuous variables in mpg include: displ (engine displacement in litres), cyl (number of cylinders), cty (city miles/gallon), and hwy (highway gallons/mile)

c. Plot the relationship between displ (engine displacement) and hwy(highway miles per gallon). Mapped it with a continuous variable you have identified in 5-b. What is its result? Why it produced such output?

```
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ , y = hwy, col = displ))
```


It produced such output because we plot the relationship between the displ and hwy and its geom_point

9. Plot the relationship between displ (engine displacement) and hwy(highway miles per gallon) using geom_point(). Add a trend line over the existing plot using geom_smooth() with se = FALSE. Default method is "loess".

```
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
  geom_point(mapping=aes(color=displ)) +
  geom_smooth(se = FALSE)
```

'geom_smooth()' using method = 'loess' and formula 'y ~ x'

10. Using the relationship of displ and hwy, add a trend line over existing plot. Set the se = FALSE to remove the confidence interval and method = lm to check for linear modeling.

```
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
  geom_point(mapping=aes(color=displ)) +
  geom_smooth(se = FALSE, method = lm)
```

```
## 'geom_smooth()' using formula 'y ~ x'
```

