1

AI 1103 - Assignment 5

T. Rohan CS20BTECH11064

Download all python codes from

https://github.com/rohanthota/Assignment_5/codes /Assignment_5.py

and latex codes from

https://github.com/rohanthota/Assignment_5/ Assignment 5.tex

Question

A continuous random variable X has a probability density function $f(x) = e^{-x}$ where, $0 < x < \infty$. Then Pr(X > 1) = is?

Solution

x is uniform, with $0 < x < \infty$. $f(x) = e^{-x}$ is uniform, with 0 < f(x) < 1. Let, $F_X(x)$ be the cumulative distribution function of X.

$$F_X(x) = \Pr(X \le x) = \int_0^x f(x) dx = \int_0^x e^{-x} dx$$

$$= \left[-e^{-x} \right]_0^x = \left(-e^{-x} \right) - \left(-e^0 \right) = 1 - e^{-x}$$

$$(0.0.2)$$

$$Pr(X > 1) = F_X(\infty) - F_X(1)$$

$$= 1 - e^{-\infty} - (1 - e^{-1}) = 0.368$$
(0.0.4)

Fig. 0: Plotting probability distribution and cumulative distribution functions.