Principal Component Analysis

Learn How to Manage Data Dimensionality Without Losing Information

Contents

- 1. Data Reduction-Recap
- 2. Case Study
- 3. **PCA in Python**
 - Variance Explained
 - Loadings
 - Scree plot
 - Score using PCA

Data Reduction

- Summarization of data with p variables by a smaller set of (k) derived variables.
- These k derived variables are linear combinations of original p variables.

• In short, **n** * **p** matrix is **reduced to n** * **k** matrix.

Case Study – Athletics Records

Background

• Data on national athletics records for various countries is available.

Objective

• To achieve data reduction and obtain score for each country which can be used to rank countries based on athletics records.

Available Information

- Data Source: Applied Multivariate Statistical Analysis by Richard A. Johnson, Dean W. Wichern
- Sample size is 55 countries athletics.
- Records for 8 different athletics events 100 meters to Marathon

Data Snapshot

Athleticsdata

Variables

	1								1
	Country 1	100m_s	200m_s	400m_s	300m_min	1500m_m	in 5000m_mir	10000m_min	Marathon_min
	Argentina	10.39	20.81	46.84	1.81	3	14.0	4 29.36	137.72
	Australia	10.31	20.06	44.84	1.74	3.	57 13.2	8 27.66	128.3
ns _	Column		Descr	iption	Ту	/pe	Measureme	ent Poss	ible Values
tio	Country		Countr	y Name	Categ	gorical	-		-
Observations	100m_s	Tir		100 mete ning	er Conti	nuous	Seconds	Posi	tive Values
obs	200m_s	Tiı		200 mete ning	er Conti	nuous	Seconds	Posi	tive Values
L	400m_s	Tir		100 mete ning	er Conti	nuous	Seconds	Posi	tive Values
	800m_min	Tir		300 mete ning	er Conti	nuous	Minutes	Posi	tive Values
	1500m_mir	Tin	Time for 1 run		er Conti	nuous	Minutes	Posi	tive Values
	5000m_mir	า Tin	Time for 5000 meter running		er Conti	nuous	Minutes	Posi	tive Values
	10000m_min Time for 10000 meter running		Conti	nuous	Minutes	Posi	tive Values		
	Marathon_m	nin Ti		Maratho ning	n Conti	nuous	Minutes	Posi	tive Values

#Importing data import pandas as pd read csv() is used to import import numpy as np csv file. Our data is stored as athletics=pd.read_csv("Athleticsdata.csv") an object named athletics. # standardize all variables athletics2=athletics.drop(['Country'], axis=1) □ drop() is used to remove the column named "Country" from the data. from sklearn.decomposition import PCA from sklearn.preprocessing import scale standardisedX = scale(athletics2) X = pd.DataFrame(standardisedX, index=athletics2.index, columns = athletics2.columns) The data is standardised using the function scale() and stored as a

dataframe object X

#Running PCA and creating summary table

```
pca = PCA().fit(X)

    Create a vector of names as

names = ["PC"+str(i) for i in range(1,9)]
                                              PC1,PC2 .... PC8.
SD = list(np.std(pca.transform(X), axis=0))
VarProp = list(pca.explained variance ratio )
CumProp = [np.sum(VarProp[:i]) for i in range(1,9)]
                                        Extract Standard Deviation and
                                        Proportion of variance explained.
                                        Define Cumulative proportion for
                                        the summary table
                                        pca.transform(X) computes scores
summary = pd.DataFrame(list(zip(SD, VarProp, CumProp)), index=names,
columns=['Standard Deviation','Proportion of Variance','Cumulative
Proportion'])
                  Create a dataframe of summary output
summary
```

Output:

	Standard Deviation	Proportion of Variance	Cumulative Proportion
PC1	2.574068	0.828228	0.828228
PC2	0.935501	0.109395	0.937624
PC3	0.398207	0.019821	0.957445
PC4	0.352195	0.015505	0.972950
PC5	0.282863	0.010001	0.982951
PC6	0.260302	0.008470	0.991421
PC7	0.214848	0.005770	0.997191
PC8	0.149910	0.002809	1.000000

Interpretation:

- summary gives **std. deviation (sd), proportion of variance and cumulative proportion**. Variance is nothing but the Eigenvalue of correlation matrix.
- First Principal Component explains 83% of the variation. Note that 8 PC's are derived using 8 variables but first PC explains most of the variation

PCA in Python - Loadings and Scores

#Component Loadings

```
rows = X.columns
col = ["Comp"+str(i) for i in range(1, len(X.columns)+1)]
L = pd.DataFrame(list(zip(pca.components_[0],pca.components_[1],
pca.components_[2],pca.components_[3],pca.components_[4],
pca.components_[5],pca.components_[6],pca.components_[7])),index=rows,
columns = col)
L
```

Output:

```
Comp1
                          Comp2
                                   Comp3
                                                  Comp6
                                                            Comp7
                                                                     Comp8
100m s
             0.318293 -0.564684 0.326323
                                               0.590449 -0.154303
                                                                  0.113210
200m s
             0.336855 -0.462270 0.369020
                                              -0.647587 0.128066 -0.101621
400m s
             0.355561 -0.249318 -0.561085
                                          ... -0.158447 0.009292 -0.002585
800m min
             0.368626 -0.013405 -0.530948
                                               0.011856 0.237073 -0.040305
1500m min
             0.372682 0.140200 -0.154640
                                               0.143104 -0.608456 0.143305
5000m min
             0.364283 0.312458 0.189618
                                               0.155079 0.592691 0.543015
10000m min
             0.366702 0.307018 0.181817
                                               0.231701 0.165205 -0.796334
Marathon min
             0.341825 0.439947 0.260172
                                              -0.329455 -0.393327 0.160236
```

Interpretation:

First Principal Component can be interpreted as 'general athletics skill' since all variables have similar loadings.

PCA in Python - Loadings and Scores

#Scores Based on PCA

```
Score= PCA().fit_transform(X)
Score_df = pd.DataFrame(Score, index = athletics.index, columns = col)
athletics = athletics.assign(performance=Score_df.Comp1)
athletics.head()
```

Output:

	Country	100m_s	200m_s	 10000m_min	Marathon_min	performance
0	Argentina	10.39	20.81	 29.36	137.72	0.265654
1	Australia	10.31	20.06	 27.66	128.30	-2.466968
2	Austria	10.44	20.81	 27.72	135.90	-0.813415
3	Belgium	10.34	20.68	 27.45	129.95	-2.058239
4	Bermuda	10.28	20.58	 30.55	146.62	0.747146

Interpretation:

- New column 'performance' enumerates scores returned by the PCA summary.
- Lower score implies lesser time and hence better athletics performance.

PCA in Python – Scree Plot

#Scree Plot : plot the principal components vs. variances.

```
y = np.std(pca.transform(X), axis=0)**2
x = np.arange(len(y)) + 1
plt.plot(x, y, "o-")
plt.xticks(x, ["Comp."+str(i) for i in x], rotation=60)
plt.ylabel("Variance")
plt.show()
```

Output:

Interpretation:

First Principal
 Component is sufficient in explaining the maximum variation.

Exploratory Data Analysis Based on PCA

#Using Scores to Check Data Features

```
athletics.sort_values(by = 'performance').head(3)
athletics.sort_values(by = 'performance').tail(3)
```

- sort_values() sorts the data frame based on performance. Python takes ascending = True as default.
- head() and tail() extracts top n and bottom n countries in terms of performance measured by performance variable. Here n=3.

Output:

		Country	100m_s		Marathon_min	performance
52		USA	9.93		128.22	-3.460450
20	Great Britain and Northern	Ireland	10.11		129.13	-3.050287
28		Italy	10.01	• • •	131.08	-2.750446

	Country	100m_s	200m_s	 10000m_min	Marathon_min	performance
35	Mauritius	11.19	22.45	 31.77	152.23	4.299192
54	Western Samoa	10.82	21.86	 34.71	161.83	7.297965
11	Cook Isands	12.18	23.20	 35.38	164.70	10.653867

Interpretation:

- ☐ USA, Britain and Italy are the top three performing countries.
- Cook Islands, Western Samoa and Mauritius are the bottom three countries.

PCA in Python – Verification of PCA

#Verification that PC's are Uncorrelated

	Comp1	Comp2	Comp3	Comp4	Comp5	Comp6	Comp7	Comp8
Comp1	1.0	0.0	-0.0	-0.0	0.0	0.0	-0.0	-0.0
Comp2	0.0	1.0	0.0	-0.0	-0.0	0.0	0.0	-0.0
Comp3	-0.0	0.0	1.0	-0.0	-0.0	0.0	0.0	0.0
Comp4	-0.0	-0.0	-0.0	1.0	-0.0	0.0	-0.0	0.0
Comp5	0.0	-0.0	-0.0	-0.0	1.0	-0.0	-0.0	0.0
Comp6	0.0	0.0	0.0	0.0	-0.0	1.0	-0.0	0.0
Comp7	-0.0	0.0	0.0	-0.0	-0.0	-0.0	1.0	-0.0
Comp8	-0.0	-0.0	0.0	0.0	0.0	0.0	-0.0	1.0

Interpretation:

The principal components are uncorrelated

Quick Recap

In this session we learnt about, Principal Component Regression:

Data Reduction and PCA

- Principal Component Analysis is a key data reduction method
- Data Reduction is necessary while analyzing high dimensional data

PCA in Python

- PCA() function in Scikit Learn performs PCA
- Scree Plot is used to decide number of components to be retained

Principal Component Regression (PCR)

Contents

- 1. Multiple Linear Regression-Quick Recap
- 2. The Problem of Multicollinearity
- 3. Principal Component Analysis General Approach
- 4. Principal Component Regression (PCR)
 - i. Introduction
 - ii. Statistical Model
- 5. PCR in Python

Multiple Linear Regression: Statistical Model

$$Y = b_0 + b_1 X_1 + b_2 X_2 + ... + b_p X_p + e$$

```
Where,
Y : Dependent Variable

X<sub>1</sub>, X<sub>2</sub>,..., X<sub>p</sub> : Independent Variables
b<sub>0</sub>, b<sub>1</sub>,..., b<sub>p</sub> : Parameters of Model
e : Random Error Component
```

Independent variables can either be Continuous or Categorical

Problem of Multicolinearity

where R_i^2 (R Squared) is obtained using regression of Xi on other independent variables

Any VIF > 5, indicates presence of multicollinearity

Multicollinearity – Remedial Measures

The problem of Multicollinearity can be solved by different approaches:

Principal Component Regression

In Principal Component Regression,

First k principal components are used as independent variables instead of original X variables

- Each PC is a linear combination of all X variables
- Final model is expressed in terms of original independent variables for ease of interpretation

Principal Component Regression

Transformation into PCs

The original **p** variables are transformed into a new set of orthogonal or uncorrelated variables called "Principal Components"

Regression Analysis

In the second step, after elimination of the least important principal components, a multiple regression analysis of the response variable against the reduced set of principal components is performed using the OLS estimation

Back Transformation In the third step, model equation is back transformed in terms of original variables.

PCR-Statistical Model

Model in terms of original X variables:

$$Y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_p x_p + e$$

Model in terms of Principal Components:

$$Y = a_0 + a_1 PC_1 + a_2 PC_2 + \dots + a_k PC_k + e'$$

Case Study

Background

 A company periodically records data for sales and expenses. The company wishes to model the relationship between its sales and sales related expenses and obtain predictions

Objective

• To predict incremental sales based on planned sales related expenses

Available Information

- Data available for 143 micro business zones
- Sales is the Dependent Variable
- Expenditure towards advertisements and promotions in the current and previous months are Predictors

Data Snapshot

	Depende variable			depender variables	nt	}
SRNO	SALES	AD	PRO	SALEXP	ADPRE	PROPRE
1	20.11	1.98	0.9	0.31	2.02	0

	Columns	Description	Type	Measuremen t	Possible values
(SRNO	Serial Number	-	-	Intergers
-17-	SALES	Incremental Sales	Numerical	INR Million	positive value
	AD	Current Advertising Expenses	Numerical	INR Million	positive value
(PRO	Current Promotional Expenses	Numerical	INR Million	positive value
	SALEXP	Misc. Sales Expenses	Numerical	INR Million	positive value
	ADPRE	Previous Period's Advertising Expenses	Numerical	INR Million	positive values
	PROPRE	Previous Period's Promotional Expenses	Numerical	INR Million	Positive value

Dep. Variab	le:	SAI	ES	R-squa	red:		0.909
Model:			DLS		-squared:		0.906
Method:		Least Squar					273.2
		i, 10 Jan 20			F-statistic):	2.09e-69
Time:		11:13			kelihood:		-226.08
No. Observations:			143	AIC:			464.2
Df Residuals:			137	BIC:			481.9
Df Model:			5				
Covariance	Type:	nonrobu	ust				
=======	coef	std err		t	P> t	[0.025	0.975]
Intercept	-10.8147	6.531	-1	.656	0.100	-23.730	2.101
AD	4.6762	1.410	3	.316	0.001	1.888	7.464
PRO	7.7886	1.263	6	.168	0.000	5.292	10.286
SALEXP	22.4089	0.770	29	.089	0.000	20.886	23.932
ADPRE	3.1856	1.244	2	.560	0.012	0.725	5.646
PROPRE	3.4970	1.370	2	2.553	0.012	0.789	6.205
omnibus:		8.7	==== 788	Durbin	-Watson:		2.153
Prob(Omnibu	s):	0.6	312	Jarque	-Bera (JB):		4.669
Skew:		0.3	233				0.0969
Kurtosis:		2.3	247	Cond.			206.

Interpretation: Multiple R-Squared is 0.909, showing model to be a good fit.

Checking for Multicollinearity

```
from patsy import dmatrices
from statsmodels.stats.outliers_influence import
variance_inflation_factor
y, X = dmatrices('SALES~AD+PRO+SALEXP+ADPRE+PROPRE', data=salesdata,
return_type="dataframe")
vif = pd.Series([variance_inflation_factor(X.values, i)for i in
range(X.shape[1])],index=X.columns)
vif
```

Output of VIF

Intercept	4226.760949
AD	36.159771
PRO	31.846727
SALEXP	1.076284
ADPRE	24.781948
PROPRE	42.346468
dtype: float@	54

- patsy is a library that helps convert data frames into design matrices.
- dmatrices Construct two design matrices given a formula_like and data. By convention, the first matrix is the "y" data, and the second is the "x" data.
- variance_inflation_factor requires a design matrix as input to calculate vif.
- variance_iinflation_factor() calculates VIFs.

Interpretation:

VIF values are very high (>5, except for SALEXP) indicating severe multicollinearity problem.

```
# PCA in Python
# Subsetting data for PCA and using PCA function
from sklearn.decomposition import PCA
from sklearn.preprocessing import scale
salesdata2=salesdata.drop(['SRNO', 'SALES'], axis=1)
standardisedX = scale(salesdata2)
                     drop() is used to remove the columns from
                        the data.
                       The data should be standardised using the
                        function scale()
X = pd.DataFrame(standardisedX, index=salesdata2.index,
columns=salesdata2.columns)
pca = PCA().fit(X)
```

Summary of PCA

```
import numpy as np
                                            Define names of columns
names = ["PC"+str(i) for i in range(1,6)]
                                            as PC1,PC2 and so on.
SD = list(np.std(pca.transform(X), axis=0))
VarProp = list(pca.explained variance ratio )
CumProp = [np.sum(pca.explained variance ratio [:i]) for i in range(1,6)]

    Extract Standard Deviation and Proportion of variance

        explained. Define Cumulative proportion for the summary table
      pca.transform(X) computes scores
summary = pd.DataFrame(list(zip(SD, VarProp, CumProp)), index=names,
columns=['Standard Deviation','Proportion of Variance','Cumulative
Proportion'])
summary
```

Creates a dataframe of summary output

Output

	Standard Deviation	Proportion of Variance	Cumulative Proportion
PC1	1.301556	0.338810	0.338810
PC2	1.131848	0.256216	0.595026
PC3	1.070535	0.229209	0.824235
PC4	0.933433	0.174259	0.998494
PC5	0.086770	0.001506	1.000000

Interpretation:

The first three principal components explain 82% of the variation in the data. Therefore, we will use 3 components in PCR

Import library hoggorm for PCR in Python

```
import hoggorm
pcmodel = hoggorm.pcr.nipalsPCR(standardisedX, y)
                pcr.nipalsPCR() in library hoggorm performs Principal
                Component
                standardisedX is the X in the PCR model and y is object of
                dependent variable
                ncomp=3 is the number of components to be included in the
                model,
salesdata['pcrpred'] = pcmodel.Y_predCal()[3]
                                    .Y_predCal() is used to get
salesdata.head()
                                    predictions using PCR.
```

Output

	SRNO	SALES	AD	PRO	SALEXP	ADPRE	PROPRE	pcrpred
0	1	20.11	1.98	0.9	0.31	2.02	0.0	21.290490
1	2	15.10	1.94	0.0	0.30	1.99	1.0	18.169736
2	3	18.68	2.20	0.8	0.35	1.93	0.0	21.271483
3	4	16.05	2.00	0.0	0.35	2.20	0.8	17.621114
4	5	21.30	1.69	1.3	0.30	2.00	0.0	22.979224

pcrpred column gives the predicted values of SALES using PCR.

Comparing Linear Regression Model and PCR model on Test data

```
# Importing Test Data
salesdata test = pd.read csv('pcrdata test.csv')
# Getting RMSE of PCR model
salesdata test2=salesdata test.drop(['SRNO', 'SALES'], axis=1)
standardisedX2 = scale(salesdata test2)
salesdata test['pcrpredict'] = pcmodel.Y predict(standardisedX2,
numComp=3)
salesdata test['pcrres'] = salesdata test['SALES'] -
salesdata test['pcrpredict']
                                □ RMSE pcr stores RMSE value
                                   using PCR Model.
import math
import statistics
RMSE pcr = math.sqrt(statistics.mean(salesdata test['pcrres'])**2)
# Getting RMSE of linear regression model
salesdata test['lmpred'] = predsales.predict(salesdata test)
salesdata test['lmres'] = salesdata test['SALES']
salesdata test['lmpred']
                                RMSE Im stores RMSE using normal regression
RMSE lm= math.sqrt(statistics.mean(salesdata test['lmres'])**2)
```

Comparing Linear Regression Model and PCR model on Test data

Viewing data after adding predicted & residual variables

```
salesdata test.head()
```

```
# Output
```

							and the second s	
	SRNO	SALES	AD	PRO	 pcrpredict	pcrres	lmpred	lmres
0	1	28.93	2.75	1.00	 22.564787	6.365213	32.313678	-3.383678
1	2	25.96	1.73	1.06	 21.752245	4.207755	34.369246	-8.409246
2	3	31.25	2.19	1.26	 26.662864	4.587136	32.298212	-1.048212
3	4	25.05	1.82	1.45	 24.720436	0.329564	35.217508	-10.167508
4	5	27.32	2.38	1.01	 25.930237	1.389763	28.226159	-0.906159
25%								

```
RMSE_lm
[1] 7.949631207886278
RMSE_pcr
[1] 0.773461538461537
```

Interpretation:

RMSE using PCR is less than RMSE using linear regression, we may conclude that PCR model predicts SALES better than linear regression model when multicollinearity exists.

Quick Recap

Multiple Linear Regression and Multicollinearity

- Fundamental assumption for building a good multiple linear regression model is to have non-correlated predictor variables.
- However, highly correlated predictor variables is a very frequent phenomenon in real world analytics.

Principal Component Regression

- Such severe multicolinearity can be effectively handled by combining the regression with Principal Component Analysis.
- PCR is a three way process where the variables are first transformed to principal components, regression is run by considering these components as regressors and finally, they are transformed back to their original forms.

PCR in Python

• pcr.nipalsPCR() function in library hoggorm performs PCR.

Non-Hierarchical Clustering K-Means Method

Contents

- 1. Cluster Analysis-Quick Recap
- 2. K-Means Clustering in Python
- 3. Elbow Method to Select K

Cluster Analysis

Cluster analysis is a class of statistical techniques that can be used to classify objects or cases into groups called **Clusters**.

- A cluster is a group of relatively homogeneous cases or observations.
- The observations are dissimilar to objects outside the cluster, particularly objects in other clusters.

Cluster Analysis is one of the unsupervised learning method.

K-Means Clustering

- K-Means Clustering is one of the most popular non-hierarchical clustering methods
- K -Means method is suitable for large data sets and widely used for customer segmentation in BFSI or retail domains
- The number of clusters (k) must be known a priori (Though in reality this may not be the case)
- Alternatively, cluster solutions can be observed for different k and evaluated to get the best possible cluster solution

K-Means Clustering – Steps

Case Study

Background

 A FMCG company has recorded information of customers based on their buying behaviour for a period of 1 year and would like to implement strategies by segmenting these customers into tiers.

Objective

• To create segment of customers.

Available Information

- Sample size is 1158.
- Variables : Custid, nsv, n_brands , n_bills, growth, region

Data Snapshot

RETAILERS DATA

NET/TEERS D/T/					
Variables					
Custid nsv n_br		brands n_bills	growth	region	
	1001 2119456	7		Mumbai	-
	1002 1460163	12		Mumbai	_
	1003 147976	4	6 2.81	Mumbai	_
Columns	Description	Type	Measur	ement P	Possible values
Custid	Unique customer IE	numeric	-		-
nsv	Net Sales Value	numeric	Rs	. I	positive values
n_brands	Number of unique brands purchased	numeric	-	I	positive values
n_bills	Number of bills generated	numeric	-	ľ	positive values
growth	Growth in net sales value	numeric	-	n	Positive & negative values
region	City of Customer	characte	Delhi, Ko r Mum Nagp	bai,	4
	1018 2213576 1019 2433971	11	14 5.69	Delhi Delhi	-

K-Means Method in Python

```
# Importing Data
import pandas as pd
custsales = pd.read_csv("RETAILERS DATA.csv")
custsales cl = custsales
custsales cl = custsales cl.drop(["Custid", "region"], axis = 1)
             read csv() is used to import csv file. Our data is saved as an object
              named custsales. The subset of numeric variables is created.
# Scale (standardize) all variables.(subtract mean and divide by
# standard deviation)
import sklearn.preprocessing
custsales cl2 = sklearn.preprocessing.scale(custsales cl)
custsales cl2
# Output
array([[ 1.3415212 , -0.57045618, -0.27177323, -1.40755324],
      [0.57976648, 0.03183071, 1.2604777, -1.39462362],
      [-0.93634948, -0.93182832, -0.70955921, -0.41628239],
      [ 1.04097324, 0.03183071, 0.43962899, -1.08862262],
```

[-0.76570907, -0.57045618, -0.76428245, -0.19647886], [1.55237455, 2.8023504, 2.13604966, 1.37016007]])

K-Means Method in Python

K means clustering

```
from sklearn.cluster import KMeans
CL = KMeans(n_clusters=4)
CL.fit(custsales_c12)

# Compute centroids
centroids = CL.cluster_centers_
centroids
```

KMeans() performs kmeans clustering on data matrix. The function requires data object and number of clusters to be formed.

Output

```
array([[-0.83216038, -0.84148529, -0.72147912, -0.53311303],

[ 1.18689039, -0.02445287, 0.30461312, -0.62608288],

[ 1.0594337 , 1.50599957, 1.62269348, 1.6235293 ],

[-0.5018609 , 0.09301541, -0.37791895, 0.05653806]])
```

K-Means Method in Python

Create Segments

```
segment = pd.DataFrame(CL.labels_)
custsales = custsales.assign(segment = segment)
custsales.head()
```

Output

	Custid	nsv	n_brands	n_bills	growth	region	segment
0	1001	2119456	7	14	-1.79	Mumbai	1
1	1002	1460163	12	42	-1.73	Mumbai	1
2	1003	147976	4	6	2.81	Mumbai	0
3	1004	1350474	13	30	-0.99	Delhi	1
4	1005	1414461	15	29	13.56	Delhi	2

K-Means Method in Python: Summarize Clusters Using Original Variables

Aggregating data based on segments

```
nsv = custsales.groupby('segment')['nsv'].mean()
n_brands = custsales.groupby('segment')['n_brands'].mean()
n_bills = custsales.groupby('segment')['n_bills'].mean()
growth = custsales.groupby('segment')['growth'].mean()
pd.concat([nsv,n_brands,n_bills,growth],axis=1)
```

Output

	nsv	n_brands	n_bills	growth
segment				
0	2.381509e+05	4.750000	5.782178	2.267847
1	1.985624e+06	11.532751	24.532751	1.836419
2	1.875311e+06	24.238095	48.619048	12.275762
3	5.240226e+05	12.507937	12.060317	5.004127

Interpretation:

- Cluster 3 is group of 'Platinum' clusters.
- Cluster 1 is a group of 'non-performers'

K-Means Method in Python Elbow Method

Optimum value of K by Elbow method

```
Error =[]
import matplotlib.pyplot as plt
for i in range(1, 10):
   CL = KMeans(n clusters = i).fit(custsales cl2)
   Error.append(CL.inertia )
plt.plot(range(1, 10), Error)
plt.title('Elbow method')
                               We use Elbow method to find
plt.xlabel('No of clusters')
                                optimum value of K in which the
plt.ylabel('Error')
                                sum of square distances from each
plt.show()
                                point to its assigned center is
                                calculated. (Within Sum of Squares)
                                CL.inertia gives Within Sum of
```

Squares

K-Means Method in Python Elbow Method

Output

Interpretation:

- The location of a bend in the plot is generally considered as an indicator of the appropriate number of clusters.
- Here K= 3 or 4 is a good solution.
- The method is termed as Elbow Method.

Quick Recap

K-Means Clustering in R

- **kMeans()** function in Python performs K-Means Clustering
- The KMeans function requires data object and value of K

Elbow Method

• Elbow method is used to determine optimum value of K