Dynamic Color System Using K-means clustering

•••

Last Updated: Dec. 27, 2021

Extract dominant colors of an image using Python

K-mean Clustering is one of the most common data analysis techniques.

.....

Any image consists of pixels, each pixel represents a dot in an image. A pixel contains three values and each value ranges between **o to 255**, representing the amount of **red**, **green** and **blue** components. The combination of these forms an actual color of the pixel.

To find the dominant colors, the concept of the k-means clustering is used.

Various colors will belong to different RGB values, k-means clustering can be used to cluster them into groups which can be identified into **5 dominant colors**.

Color Analysis Part 1

dominant colors

Extract an image's dominant colors using the K-Means algorithm

Find optimal number of clusters of given image using the elbow plot approach.

Step 1: Extract dominant 5 colors

Color Analysis Part 2

accessibility

Using algorithm can maintain color darkness consistent across color hues

Take the dominant color and standardize the value based on HSL (or HSV)

Step 2: Consistent color contrast for each value

How does the dynamic color theming work?

Colors Variance in Space

Using algorithm can maintain color darkness consistent across color hues

Two fundamental elements in color value: one is the **hue** of the color, which pointed to a space on the color wheel, and the other is the **modifier** that pointed to the degree of lightness or darkness of that color.

RGB color model - HSL and HSV

HSL: fully saturated colors are placed around a circle at a lightness value of ½, with a lightness value of 0 or 1 corresponding to fully black or white, respectively.

(e.g. to create "light red", a red pigment can be mixed with white paint; this white paint corresponds to a high "lightness" value in the HSL representation)

HSV: the HSV representation models how colors appear under light

(e.g. shining a bright white light on a red object causes the object to still appear red, just brighter and more intense, while shining a dim light on a red object causes the object to appear darker and less bright)

.....

The difference between HSL and HSV is that a color with maximum lightness in HSL is pure white, but a color with maximum value/brightness in HSV is analogous to shining a white light on a colored object

Standardized color K values (1-5)

Standardized color K values (6-10)

Standardized color K values (11-15)

Standardized color K values (16-20)

Standardized color values

	HEX	HSV	HSL	RGB
1	465616	75°, 74%, 34%	75°, 58%, 22%	70, 86, 22
2	635D19	55°, 75%, 39%	55°, 60%, 24%	99, 93, 25
3	685519	46°, 76%, 41%	46°, 62%, 25%	104, 86, 25
4	634319	34°, 75%, 39%	34°, 60%, 24%	99, 67, 25
5	4c3f33	29°, 33%, 30%	28°, 20%, 25%	77, 63, 51
6	623118	20°, 76%, 38%	20°, 62%, 24%	98, 49, 24
7	721305	8°, 96%, 45%	8°, 92%, 24%	114, 20, 5
8	6d1932	342°, 77%, 42%	342°, 63%, 26%	107, 25, 50
9	631959	308°, 75%, 39%	307°, 60%, 24%	99, 25, 89
10	3F2A53	271°, 49%, 33%	271°, 32%, 25%	63, 42, 83
11	191964	240°, 75%, 39%	240°, 60%, 24%	25, 25, 100
12	1f3069	226°, 70%, 41%	226°, 54%, 27%	31, 48, 105
13	183c61	210°, 75%, 38%	210°, 60%, 24%	24, 61, 97
14	194464	206°, 75%, 39%	206°, 60%, 24%	25, 68, 100
15	184c62	198°, 75%, 39%	198°, 60%, 24%	24, 76, 98
16	1f5667	194°, 70%, 40%	194°, 53%, 26%	31, 86, 103
17	145344	166°, 76%, 33%	166°, 62%, 20%	20, 83, 68
18	1a6251	166°, 73%, 38%	166°, 58%, 24%	26, 98, 81
19	206319	114°, 75%, 39%	114°, 60%, 24%	32, 99, 25
0	393b42	227°. 14%. 26%	227°, 7%, 24%	57, 59, 66

PROCESSING

(Color Analysis Part 2)

Take the dominant color and standardize the value based on **HSL (or HSV)**

.....

- Compare the color value of distance/depth HSL (or HSV)
- Assign data point to the best match in range **1 19**
- If the value is not specified, assign to the default value **o** (grey)

https://docs.google.com/spreadsheets/d/1rcp4w1 0d1D24Htfck5SgU9141sziwSplbMm4WecFKN8/edi t?usp=sharing

Color Analysis Resources

Color palette

https://www.0to255.com/

Color models and color spaces*

https://programmingdesignsystems.com/color/color-models-and-color-spaces/index.html

Building color systems for accessible UIs that scale

https://design.lyft.com/re-approaching-color-9e604ba22c88

Extract Dominant Colors from an existing Image — K-Means Clustering Algorithm

https://medium.com/swlh/extract-dominant-colors-1mage-k-means-clustering-algorithm-e9acb36a9c45

https://github.com/nandinib1999/DominantColors

https://www.reddit.com/r/Python/comments/dm zs6s/i_created_a_python_script_to_generate_colo r/

