ДЗ по дискретной математике на 18.02.2022

Кожевников Илья 2112-1

17 февраля 2022 г.

$N_{\overline{2}}1$

Докажем, что последние две цифры следующей степени зависят от последних двух цифр текущей степени.

Число 99^n можно расписать следующим образом:

 $99^n = \dots + 10b + a$, где а и b - некоторые целые числа. Тогда 99^{n+1} будет равно $\dots + 990b + 99a$. Тогда выходит, что последние две цифры числа 99^n будут зависеть только от последних двух цифр числа 99^{n-1} .

Распишм первые несколько степеней числа 99.

99, 9801, 970299.

Заметим, что последние две цифры проходят следующий цикл: $99 \to 01 \to 99$

Это означает, что в четных степенях последними двумя цифрами будут 01, а в нечетных - 99.

Значит, 99^{1000} будет оканчиваться на 01.

Ответ: 01.

№2

Распишем a^2-b^2 в следующем виде: (a-b)n+r-(a-b)k-l=(a-b)(n-k)+r-l=(a-b)(a+b). Отсюда следует, остатки от деления a^2 и b^2 на (a-b) совпадают. Ч.Т.Д.

№3

Заметим, что 4(x+10y) = 4x + 39y + y. Но 39у заведомо делится на 13, а, значит, x+10y будет делиться на 13 тогда и только тогда, когда на 13 будет делиться 4x+y. Ч.Т.Д.

№4

 $53x \equiv 1 \pmod{42}$

HOД (53, 42) = 1, т.к. 53 - простое число. Значит, у нас будет 1 решение.

Теперь с помощью расширенного алгоритма Евклида мы можем найти необходимое решение.

	$\frac{a_i}{53}$	x_i	y_i	q_i
0	53	1	0	
1	42	0	1	1
2	11	1	-1	3
3	9	-3	4	1
4	2	4	-5	4
5	1	-19	24	

42 - 19 = 23

Отсюда, $x \equiv 23 \pmod{42}$

Otbet: $x \equiv 23 \pmod{42}$

№5

 $n^2+1-(n^2-n+1)=n\Rightarrow \mathrm{HOД}(n^2+1,\,\mathrm{n})=1,$ значит, $\mathrm{HOД}(n^2+1,n^2-n+1)=1.$ Значит, дробь несократима. Ч.Т.Д.

№6

Заметим, что сумма цифр этого числа делится на 3. Но тогда, чтобы быть точным квадратом, это число также должно делиться и на 9. Но сумма его цифр на 9 не делится, а, значит, это число - не точный квадрат.

Ответ: нет.

№7

Заметим, что такое возможно лишь тогда, когда последняя цифра в числе - 9, ведь в противном случае новое число на 7 делиться не будет точно.

Значит, на конце нашего числа должно быть какое-то количество девяток, которые при прибавлении единицы превратятся в 0 и увеличат на 1 стоящий перед ними разряд.

Пусть а - количество девяток в нашем числе, а k - сумма цифр в изначальном числе.

Тогда сумма цифр в нашем числе уменьшится на 9а-1

Тогда решим сравнение $9a \equiv 1 \pmod{7}$.

HOД(7, 9) = 1. Значит, решение одно.

 $1 = 4 \cdot 7 - 3 \cdot 9$

Значит, искомое количество девяток - 4.

Тогда минимальным подходящим числом будет 69999.

Ответ: 69999.