Parrellel Tempering

Master Thesis Defense

Mateusz Łącki

Uniwersytet Warszawski

14 January 2014

Today's Agenda

Motivation

- The PT Algorithm
- New Strategies

The Metropolis-Hastings Algorithm

Goal Generate a representatative sample

Mean Searching state-space for probability clusters in 2 steps

- ① Choose x_0 in any way
- ② Given previous step $X^{[n-1]} = x^{[n-1]}$, draw proposal

$$Y \sim \mathcal{Q}(x^{[n-1]}, \circ)$$

Oraw

$$U \sim \mathcal{U}(0,1)$$

4 Accept the proposal $(X_n := Y)$ if

$$U \leq \alpha(x^{[n-1]}, Y)$$

where
$$\alpha(x^{[n-1]}, y) = 1 \wedge \frac{\pi(y)}{\pi(x^{[n-1]})}$$

Problems with Metropolis-Hastings

• Choice of α : self-adjointess of corresponding kernel:

$$\mathcal{M}(x,A) = \underbrace{\int_{A} \alpha(x,y) \mathcal{Q}(x,\mathrm{d}\,y)}_{\mathcal{P}\left(X^{[n+1]} \neq x \text{ and } X^{[n+1]} \in A\right)} + \mathbb{I}_{A}(x) \underbrace{\int \left(1 - \alpha(x,y)\right) \mathcal{Q}(x,\mathrm{d}\,y)}_{\mathcal{P}\left(X^{[n+1]} = x\right)}$$

- Kernel preserves the distribution $\pi(x) dx$
- Problem: $\frac{\pi(y)}{\pi(x^{[n-1]})}$
 - promotes acceptances of points with not so much smaller probability

If $Q(x, \circ)$ centered to much around x,

then Difficult to leave x's surroundings.

Liang-Wang Example

Metropolis-Hastings algorithm's flaw: Localness

$$f(x) = \sum_{i=1}^{20} \frac{\omega_i}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{(x - \mu_i)'(x - \mu_i)}{2\sigma_i^2}\right)$$

where $\sigma_1 = \cdots = \sigma_{20} = 0.1$, $\omega_1 = \cdots = \omega_{20} = 0.05$ and the means μ_i are given by

1	2	3	4	5	6	7	8	9	10
2.18	8.67	4.24	8.41	3.93	3.25	1.70	4.59	6.91	6.87
5.76	9.59	8.48	1.68	8.82	3.47	0.50	5.60	5.81	5.40
11	12	13	14	15	16	17	18	19	20
5.41	2.70	4.98	1.14	8.33	4.93	1.83	2.26	5.54	1.69
2 65	7 88	2 70	2.30	0.50	1.50	0.00	0.31	6.86	8 1 1

Multimodial Disaster

Solution: Parallel Tempering

Enlarge the state-space!

Chain
$$X^{[n]} = \left(X_1^{[n]}, \dots, X_L^{[n]}\right)$$

Aim $\pi_{\beta} \propto \pi^{\beta_1} \times \dots \times \pi^{\beta_L}$
where $\underbrace{\beta = (\beta_1, \dots, \beta_L)}_{\text{inverse temperatures}}$
and $\beta_1 \equiv 1$

- Move independently with each chain
- $\alpha_{\beta_l} = \left(\frac{\pi(y)}{\pi(x)}\right)^{\beta_l} > \frac{\pi(y)}{\pi(x)} = \alpha_{\beta_1}$

then Exchange accepted proposals ...

Łącki (UW)

Swaping proposals

- Last States: $x \equiv x^{[n-1]} = \left(x_1^{[n-1]}, \dots, x_L^{[n-1]}\right)$
- Proposal Kernel: $\mathcal{T}(x, A) \equiv \sum_{i < j} p_{ij}(x) \mathbb{I}_A(S_{ij}x)$

where
$$S_{ij}x = (x_1, \dots, x_{i-1}, x_j, x_{i+1}, \dots, x_{j-1}, x_i, x_{j+1}, \dots, x_L)$$

• To assure related kernel self-adjointness

$$\alpha_{\text{swap}}(x, \underbrace{S_{ij}x}_{\text{proposal}}) = \left[\left(\frac{\pi(x_j)}{\pi(x_i)} \right)^{\beta_i - \beta_j} \frac{p_{ij}(S_{ij}x)}{p_{ij}(x)} \right] \wedge 1$$

So different distributions on swaps = **STRATEGIES**

Also possibly state-dependent: $p_{ij} = p_{ij}(x)$

Our choices for Strategies

Strategy	Proportional to	Strategy	Proportional to
I	$\frac{\pi(x_j)}{\pi(x_i)} \wedge \frac{\pi(x_i)}{\pi(x_j)}$	IV	$\left(\frac{\pi(x_j)}{\pi(x_i)} \wedge \frac{\pi(x_i)}{\pi(x_j)}\right)^{\frac{ \beta_i - \beta_j }{1 + \rho(x_i, x_j)}}$
II	$\frac{\pi(x_j)}{\pi(x_i)} \wedge 1$	V	$\frac{2}{L(L-1)}$
III	$\left(\frac{\pi(x_j)}{\pi(x_i)} \wedge \frac{\pi(x_i)}{\pi(x_j)}\right)^{ \beta_i - \beta_j }$	VI	$\frac{1}{L-1}\{ i-j =1\}$

