

TEMA 6: CÓNICAS Y CUÁDRICAS

Problema 1. Demuestra que dos cuádricas Q_1 y Q_2 son afínmente equivalentes si y sólo si existe una afinidad f (transformando \mathcal{R}_c en \mathcal{R}'_c en la Definición de equivalencia afín de cuádricas) tal que $f(Q_1) = Q_2$.

Problema 2. En la clasificación de las cuádricas afines sin centros, usa que el rango y la signatura se conservan por congruencia de matrices y la matriz reducida

$$M_{\mathcal{R}_c'}(\mathcal{Q}) = egin{pmatrix} 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 1 \ 0 & \lambda_1 & & 0 & \cdots & 0 & 0 \ dots & \ddots & dots & dots & dots \ 0 & & \lambda_r & 0 & \cdots & 0 & 0 \ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \ dots & dots \ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \ 1 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

para probar que sg $M_{\mathcal{R}_c}(\mathcal{Q}) = \operatorname{sg} D + 1$.

Problema 3. Para cada una de las cónicas afines:

(i)
$$3x_1^2 + 3x_2^2 + 2x_1x_2 - 2x_1 - 4x_2 + 1 = 0$$

(ii)
$$4x_1^2 + x_2^2 - 4x_1x_2 + 2x_1 + 4x_2 - 10 = 0$$

(iii)
$$2x_1^2 - x_2^2 + 2x_1x_2 + 3x_1 - 2 = 0$$

(iv)
$$x_1^2 + 2x_2^2 - 2x_1x_2 + 2x_2 + 1 = 0$$

- (a) Calcula todos sus centros, si los hay.
- (b) Clasifica la cónica afín en los casos real y complejo.
- (c) Obtén un cambio afín de coordenadas que transforme la ecuación en la ecuación reducida de la cónica.
- (d) Determina sus elementos: centros, ejes y asíntotas, si los hubiera.

Problema 4. Clasifica, según los valores del parámetro $\lambda \in \mathbb{R}$, la cónica afín

$$x_1^2 + 2\lambda x_2^2 - 2\lambda x_1 x_2 - 2x_1 + 4\lambda x_2 = 0$$

en los casos real y complejo.

Problema 5. Para cada una de las superficies cuádricas afines:

(i)
$$x_1^2 + x_2^2 + 4x_3^2 + 2x_1x_2 + 12x_1x_3 - 4x_2x_3 + 2x_1 - 6x_2 - 4x_3 + 1 = 0$$

(ii)
$$x_1^2 + x_2^2 + x_3^2 + 2x_1x_3 + 2x_1 + 1 = 0$$

(iii)
$$x_2^2 + x_3^2 - x_2x_3 + 6x_1 - 4 = 0$$

(iv)
$$3x_1^2 + 2x_2^2 + 6x_1x_2 + 8x_1 + 4x_2 + 2x_3 + 2 = 0$$

- (a) Calcula todos sus centros, si los hay.
- (b) Clasifica la superficie cuádrica afín en los casos real y complejo.

Problema 6. Clasifica, según los valores del parámetro $\lambda \in \mathbb{R}$, la superficie cuádrica afín

$$2x_1^2 + x_2^2 + 2x_3^2 + 2\lambda x_1 x_3 + 4x_1 + 2 = 0$$

en los casos real y complejo.

Problema 7. Calcula los valores de los parámetros λ y μ para los cuales la superficie cuádrica afín real

$$x_1^2 - x_3^2 + 4x_1x_2 + 2\lambda x_2x_3 + 2x_1 + \mu x_2 + 1 = 0$$

es un paraboloide.

Problema 8. Para cada caso

(i)
$$x_0^2 + 3x_1^2 + x_0x_1 - 4x_0x_2 - x_1x_2 = 0$$

(ii)
$$x_0^2 + 2x_1^2 - 2x_2^2 - 2x_0x_1 - 2x_0x_2 + 6x_1x_2 = 0$$

(iii)
$$x_1^2 - 3x_1x_2 + 2x_2^2 + x_0x_1 - x_0x_2 = 0$$

clasifica la cónica proyectiva en los casos real y complejo.

Problema 9. Para cada caso

(i)
$$x_0^2 + 3x_1^2 + x_0x_1 - 4x_0x_2 - x_1x_2 = 0$$

(ii)
$$x_0^2 + 2x_1^2 - 2x_2^2 - 2x_0x_1 - 2x_0x_2 + 6x_1x_2 = 0$$

(iii)
$$x_1^2 - 3x_1x_2 + 2x_2^2 + x_0x_1 - x_0x_2 = 0$$

- (a) Clasifica la cónica afín inducida en el plano afín $\{x_0 \neq 0\}$ en los casos real y complejo. Calcula las cónicas de infinito.
- (b) Clasifica la cónica afín inducida en el plano afín $\{x_1 \neq 0\}$ en los casos real y complejo. Calcula las cónicas de infinito.
- (c) Comprueba que cada caso respeta la tabla de correspondencias de completaciones proyectivas de cónicas afines.

Problema 10. Para cada caso

(i)
$$x_0^2 + 3x_1^2 + 3x_2^2 - 2x_0x_1 - 2x_0x_2 - 2x_1x_2 = 0$$

(ii)
$$x_0^2 + x_1^2 - x_2^2 - x_3^2 + 2x_0x_1 + 2x_0x_2 - 2x_1x_3 - 2x_2x_3 = 0$$

(iii)
$$2x_0x_1 + 2x_0x_2 + 2x_0x_3 + 4x_1x_2 - 2x_2x_3 = 0$$

clasifica la superficie cuádrica proyectiva en los casos real y complejo.

Problema 11. Para cada caso

- (i) $x_0^2 + 3x_1^2 + 3x_2^2 2x_0x_1 2x_0x_2 2x_1x_2 = 0$
- (ii) $x_0^2 + x_1^2 x_2^2 x_3^2 + 2x_0x_1 + 2x_0x_2 2x_1x_3 2x_2x_3 = 0$
- (iii) $2x_0x_1 + 2x_0x_2 + 2x_0x_3 + 4x_1x_2 2x_2x_3 = 0$
- (a) Clasifica la superficie cuádrica afín inducida en el espacio afín $\{x_0 \neq 0\}$ en los casos real y complejo. Calcula las cónicas de infinito.
- (b) Clasifica la superficie cuádrica afín inducida en el espacio afín $\{x_1 \neq 0\}$ en los casos real y complejo. Calcula las cónicas de infinito.
- (c) Comprueba que cada caso respeta la tabla de correspondencias de completaciones proyectivas de superficies cuádricas afines.

Problema 12. Repite el argumento del ejemplo de completaciones proyectivas de una cónica afín para:

- (a) Partiendo de la cónica degenerada real con ecuación $x_0^2 x_1^2 = 0$ (dos rectas) y escogiendo diferentes rectas del infinito, obtener dos rectas afines que se cortan, dos rectas afines paralelas, o el conjunto vacío. Calcula sus puntos de infinito.
- (b) Partiendo de la cónica degenerada real con ecuación $x_0^2 = 0$ (que es la recta doble proyectiva) y escogiendo diferentes rectas del infinito, obtener la recta doble afín o el conjunto vacío. Calcula sus puntos de infinito.
- (c) Partiendo de la cónica degenerada real con ecuación $x_0^2 + x_1^2 = 0$ (punto doble), y escogiendo diferentes rectas del infinito, obtener el punto doble afín o el conjunto vacío. Calcula sus puntos de infinito.

Problema 13. Repite el argumento del ejemplo de completaciones proyectivas de una superficie cuádrica afín para:

- (a) Partiendo de la cuádrica proyectiva real no reglada de ecuación $x_0^2 + x_1^2 + x_2^2 x_3^2 = 0$, y escogiendo diferentes planos del infinito, obtener un elipsoide, un paraboloide elíptico o un hiperboloide de dos hojas. Calcula sus cónicas de infinito.
- (b) Partiendo de la cuádrica proyectiva real reglada de ecuación $x_0^2 + x_1^2 x_2^2 x_3^2 = 0$, y escogiendo diferentes planos del infinito, obtener un paraboloide hiperbólico o un hiperboloide de una hoja. Calcula sus cónicas de infinito.
- (c) Partiendo de la cuádrica proyectiva real con ecuación $x_0^2 x_1^2 = 0$ (dos planos que se cortan) y escogiendo diferentes planos del infinito, obtener dos planos afines que se cortan, dos planos afines paralelos, o el conjunto vacío. Calcula sus cónicas de infinito.

3