重庆大学数学与统计学院 国家级精品课程数学实验课件

数学实验之—微分方程

SHUXUESHIYANZHIWEIFENFANGCHENG

课件制作:数学实验课程组

你可以自由地从网站**math.cqu.edu.cn**/上传或下载重庆大学数学实验与数学建模的最新信息,ppt幻灯片及相关资料,以便相互学习.

数学实验之

- -微分方程

实验目的

应用场景

例

引

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶□束

实验目的

- 掌握微分方程数值解法
- 了解微分方程的实际应用
- 学会使用MATLAB软件求解析解、数值 解和图形解
- 通过范例学习怎样建立微分方程模型和 分析问题的思想

数学实验之

--微分方程

实验目的

应用场景

例

例

引

数值解法

软件求解

范

课堂延伸

布置实验

伪画鉴定

江湖河流的污染

疾病的传播

生物种群的数量预测

房室模型

数学实验之

--微分方程

实验目的

应用场景

引

例

数值解法

软件求解

范

例

课堂延伸

布置实验

结▶

伪画鉴定

Woman Taken in Adultery

H.A. VAN Meegeren

数学实验之

--微分方程

实验目的

应用场景

리

数值解法

例

软件求解

古

课堂延伸

例

布置实验

结▶

束

伪画鉴定

Disciples at Emmaus

数学实验之

- - 微分方程

实验目的

应用场景

리

例

例

数值解法

软件求解

范

课堂延伸

布置实验

结

束

江湖河流的污染

数学实验之

- - 微分方程

实验目的

应用场景

引

数值解法

例

例

软件求解

古

课堂延伸

布置实验

结▶Ⅰ身

疾病的传播

数学实验之

- - 微分方程

实验目的

应用场景

引

数值解法

例

例

软件求解

范

课堂延伸

布置实验

结 ▶ 束

基本概念

定义:如果一个方程中未知的量是一个函数,且方程中含有未知函数的导数,则称该方程称为**微分方程**。

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{x}{y}$$

n阶常微分方程的一般形式:

$$F(x, y, y', \dots, y^{(n)}) = 0$$

隐式

n阶微分方程的标准形式:

$$\frac{d^n y}{dx^n} = f(x, y, \frac{dy}{dx}, \dots, \frac{d^{n-1} y}{dx^{n-1}})$$

显式

数学实验之

--微分方程

实验目的

应用场景

引例

数值解法

软件求解

范 例

课堂延伸

布置实验

基本概念

一阶微分方程组的标准形式

$$\begin{cases} \frac{dy_1}{dx} = f_1(x, y_1, y_2, \dots, y_m); \\ \dots \end{cases}$$

$$\frac{dy_m}{dx} = f_m(x, y_1, y_2, \dots, y_m);$$

一阶微分方程:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y)$$

初始条件:

$$y(x_0) = y_0$$

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶□束

1简单 的微分 方程。

解析解 y = f(x)

数值解 (x_i, y_i)

②复杂、

大型的 微分方 程

3 图形解 •欧拉方法

• 梯形法

•改进欧拉方法

•龙格-库塔法

数学实验之

微分方程

实验目的

应用场景

例

数值解法

软件求解

例

课堂延伸

布置实验

"常微分方程初值问题数值解"的提法

设y'=f(x,y), $y(x_0)=y_0$ 的解 y=y(x)存在且唯一

不求解析解 y = y(x) (无解析解或求解困难)

而在一系列离散点 $x_1 < x_2 < \cdots < x_n < \cdots$

求 $y(x_n)$ 的近似值 $y_n(n=1,2,...)$

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶□床

"常微分方程初值问题数值解"的提法

而在一系列离散点 $x_1 < x_2 < \cdots < x_n < \cdots$

求 $y(x_n)$ 的近似值 $y_n(n=1,2,...)$

通常取等步长h

$$x_n = x_0 + nh$$

数学实验之

--微分方程

实验目的

应用场景

例

例

3

数值解法

软件求解

范

课堂延伸

布置实验

- 1、欧拉法
- 2、龙格—库塔法

$$\frac{dy}{dx} = f(x, y), \qquad y(x_0) = y_0$$

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶Ⅰ束

1、欧拉方法

基本思路

$$\frac{J(x_1) - y(x_0)}{J(x_1) - y(x_0)} = y'(\theta)$$
 Probability

10e (xo. X,)

$$y' = f(x, y), y(x_0) = x_0$$

在小区间
$$[x_n,x_n]$$
上 $y' \approx [y(x_{n+1}) - y(x_n)]/h$

$$y(x_{n+1}) = y(x_n) + hf(x, y(x)), x \in [x_n, x_{n+1}]$$

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

欧拉方法

$$y(x_{n+1}) = y(x_n) + hf(x, y(x)), x \in [x_n, x_{n+1}]$$

x取左端点x。

$$y(x_{n+1}) \approx y(x_n) + hf(x_n, y(x_n))$$

$$y(x_n) \approx y_n$$
, $y(x_{n+1})$ 的近似值为

$$y_{n+1} = y_n + hf(x_n, y_n), n = 0, 1, \cdots$$

向前欧拉公式

显式公式

数学实验之

微分方程

实验目的

应用场景

例

例

数值解法

软件求解

课堂延伸

布置实验

1、欧拉方法

$$y(x_{n+1}) = y(x_n) + hf(x, y(x)), x \in [x_n, x_{n+1}]$$

x取右端点, $y_n \approx y(x_n), y_{n+1} \approx y(x_{n+1})$

$$y_{n+1} = y_n + hf(x_{n+1}, y_{n+1}), n = 0, 1, \dots$$

向后欧拉公式 隐式公式

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

1、欧拉方法

$$y_{n+1} = y_n + hf(x_{n+1}, y_{n+1}), n = 0, 1, \dots$$

右端y_{n+1}未知,

可迭代求解

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶□ 束

1、欧拉方法

例 1
$$y' = -y + x + 1, y(0) = 1, h = 0.1$$

其中
$$f(x,y) = -y + x + 1$$

观察向前欧拉、向后欧拉算法计算情况。与精确解进行比较。误差有多大?

解: 1) 解析解: $y = x + e^{-x}$

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

例

课堂延伸

布置实验

1、欧拉方法

$$y' = f(x,y) = -y + x + 1;$$

2) 向前欧拉法:

$$y_{n+1} = y_n + h(-y_n + x_n + 1)$$

= (1-h) $y_n + h x_n + h$

3) 向后欧拉法:

$$y_{n+1} = y_n + h(-y_{n+1} + x_{n+1} + 1)$$

转化 $y_{n+1} = (y_n + h x_{n+1} + h)/(1+h)$

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

1、欧拉方法

```
x1(1)=0;y1(1)=1;y2(1)=1;h=0.1; %(died.m)
for k=1:10
 x1(k+1)=x1(k)+h;
 y1(k+1)=(1-h)*y1(k)+h*x1(k)+h;
 y2(k+1)=(y2(k)+h*x1(k+1)+h)/(1+h);
end
x1,y1,y2, (y1—向前欧拉解, y2—向后欧拉解)
x=0:0.1:1;
y=x+exp(-x) (解析解)
plot(x,y,x1,y1,'k:',x1,y2,'r--')
```

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

计算结果

(1) 步长h=0.1的数值解比较表

X	精确解	向前欧拉	向后欧拉
0	1	1	1
0.1	1.0048	1	1.0091
0.2	1.0187	1.01	1.0264
0.3	1.0408	1.029	1.0513
0.4	1.0703	1.0561	1.0830
0.5	1.1065	1.0905	1.1209
0.6	1.1488	1.1314	1.1645
0.7	1.1966	1.1783	1.2132
0.8	1.2493	1.2305	1.2665
0.9	1.3066	1.2874	1.3241
1	1.3679	1.3487	1.3855

数学实验之

--微分方程

实验目的

应用场景

引

数值解法

例

软件求解

范

课堂延伸

例

布置实验

结 ▶ | 束

(2) 步长h=0.01的数值解比较表

X	精确解	向前欧拉	向后欧拉
0	1	1	1
0.1	1.0048	1.0044	1.0053
0.2	1.0187	1.0179	1.0195
0.3	1.0408	1.0397	1.0419
0.4	1.0703	1.0690	1.0717
0.5	1.1065	1.1050	1.1080
0.6	1.1488	1.1472	1.1504
0.7	1.1966	1.1948	1.1983
0.8	1.2493	1.2475	1.2511
0.9	1.3066	1.3047	1.3084
1	1.3679	1.3660	1.3697

结论: 显然迭代步长h 的选取对精度有影响。

数学实验之

--微分方程

实验目的

应用场景

3

数值解法

例

软件求解

范

例

课堂延伸

布置实验

结▶□

图形显示

有什么方法可以使精度提高?

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

梯形公式

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$

$$n = 0,1,2,...$$

$$y_n + hf(x_n, y_n)$$

改进欧拉公式

$$\begin{cases} y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2) \\ k_1 = f(x_n, y_n) \\ k_2 = f(x_{n+1}, y_n + hk_1) \end{cases}$$

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

结 ▶ | 束

使用改进欧拉公式的例

步长 h= 0.1 的数值解比较表

X	精确解	向前欧拉	向后欧拉	改进欧拉
0	1	1	1	1
0.1	1.0048	1	1.0091	1.005
0.2	1.0187	1.01	1.0264	1.019
0.3	1.0408	1.029	1.0513	1.0412
0.4	1.0703	1.0561	1.0830	1.0708
0.5	1.1065	1.0905	1.1209	1.1071
0.6	1.1488	1.1314	1.1645	1.1494
0.7	1.1966	1.1783	1.2132	1.1972
0.8	1.2493	1.2305	1.2665	1.2500
0.9	1.3066	1.2874	1.3241	1.3072
1	1.3679	1.3487	1.3855	1.3685

数学实验之

- - 微分方程

实验目的

应用场景

例

31

数值解法

软件求解

范

例

课堂延伸

布置实验

向前欧拉公式

向后欧拉公式

$$y_{n+1} = y_n + hf(x_n, y_n)$$
 $y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$

二者平均得到梯形公式

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})], n = 0, 1, \dots$$

仍为隐式公式,需迭代求解

将梯形公式的迭代过程简化为两步

$$\overline{y}_{n+1} = y_n + hf(x_n, y_n)$$

预测

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, \overline{y}_{n+1})], n = 0, 1, \dots$$

改进欧拉公式

数学实验之

--微分方程

实验目的

应用场景

引

数值解法

软件求解

范 例

课堂延伸

布置实验

2、龙格-库塔法

$$y(x_{n+1}) = y(x_n) + hf(x, y(x)), x \in [x_n, x_{n+1}]$$

- 向前,向后欧拉公式: $用[x_n, x_{n+1}]$ 内 1 个点的导 数代替 f(x, y(x))
- 梯形公式,改进欧拉公式: 用[x_n , x_{n+1}]内 2 个点导数的平均值代替 $f(x_n, y(x))$

龙格-库塔方法的基本思想

在[x_n, x_{n+1}]内多取几个点,将它们的导数加权平均代替 f(x, y(x)),设法构造出精度更高的计算公式。

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

龙格-库塔方法的一般形式

$$\begin{cases} y_{n+1} = y_n + h \sum_{i=1}^{L} \lambda_i k_i \\ k_1 = f(x_n, y_n) \end{cases}$$

 $k_2 = f(x_n + c_2 h, y_n + c_2 h k_1)$

L级?阶

. . .

$$k_i = f(x_n + c_i h, y_n + c_i h \sum_{j=1}^{i-1} a_{ij} k_j), \quad i = 3, 4, \dots, L$$

$$\lambda_i, c_i, a_{ij}$$
满足 $\sum_{i=1}^{L} \lambda_i = 1, 0 \le c_i \le 1, \sum_{j=1}^{i-1} a_{ij} = 1$

使精度尽量高.

数学实验之

--微分方程

实验目的

应用场景

例

릵

数值解法

软件求解

范 例

课堂延伸

布置实验

结 ▶ | 束

2、龙格-库塔法

常用的(经典)龙格—库塔公式

$$y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$k_1 = f(x_n, y_n)$$

$$k_2 = f(x_n + h/2, y_n + hk_1/2)$$

$$k_3 = f(x_n + h/2, y_n + hk_2/2)$$

$$k_4 = f(x_n + h, y_n + hk_3)$$

$$e = O(h^4)$$

不足:收敛速度较慢

数学实验之

- -微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

结 ▶ 束

数学实验之

--微分方程

实验目的

应用场景

밁

数值解法

例

软件求解

芭 例

课堂延伸

布置实验

结▶□束

数学实验之

--微分方程

实验目的

应用场景

引

例

例

数值解法

软件求解

范

课堂延伸

布置实验

数学实验之

--微分方程

实验目的

应用场景

引

例

数值解法

软件求解

范

例

课堂延伸

布置实验

数学实验之

--微分方程

实验目的

应用场景

릵

例

数值解法

软件求解

范

例

课堂延伸

布置实验

欲将微分方程解的全局信息形象化、直 观化。

对于一阶微分方程dy/dx=f(x,y),如果给出平面上任意一点(x,y),就能够确定出解y=f(x)在该点(x,y)处的斜率f(x,y)。从图象上看,给出平面上的一系列点,通过每一点 (x_0,y_0) ,可以画出一条通过点 (x_0,y_0) 、斜率为 $f(x_0,y_0)$ 的短直线。这样的短直线布满整个坐标平面,形成的图形就称为斜率场或方向场。

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

相平面轨迹表示微分方程的解

$$\frac{dx(t)}{dt} = y + x - x(x^{2} + y^{2})$$

$$\frac{dy(t)}{dt} = y - x - y(x^{2} + y^{2})$$

$$x(t_{0}) = x_{0}, y(t_{0}) = y_{0}$$

利用微分方程的数值解法,可以得到其数值解: (x(t), y(t))在t取离散值时的取值列向量X, Y; 然后分别独立地作出函数x(t)和y(t)的曲线,如图,其初值条件为(5,5)。

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

数学实验之

--微分方程

实验目的

应用场景

| 例

数值解法

软件求解

范 例

课堂延伸

布置实验

微分方程图解法

如果撇开自变量的取值t,直接利用x,y的分量作为坐标,就可以在xoy平面上画出解的轨迹,称为相平面轨迹图。

数学实验之

--微分方程

实验目的

应用场景

例

31

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶□束

微分方程图解法

数学实验之

--微分方程

实验目的

应用场景

引

例

数值解法

软件求解

古

例

课堂延伸

布置实验

结▶Ⅰ束

解析解

y=dsolve('eqn1','eqn2', ..., 'c1',..., 'x')

微分方程组

初值条件

指明变量

注意: ① y <=> Dy, y=> D2y

② 自变量名可以省略,默认变量名't'。

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

解析解

例①
$$\frac{dy}{dx} = 1 + y^2$$
, $y(0) = 1$

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

解析解

例② 常系数的二阶微分方程

$$y''-2y'-3y=0$$
, $y(0)=1$, $y'(0)=0$

输入:

y=dsolve('D2y-2*Dy-3*y=0','x')

y=dsolve('D2y-2*Dy-3*y=0','y(0)=1,Dy(0)=0','x')

结果:

y = C1*exp(-x)+C2*exp(3*x)

y = 3/4*exp(-x)+1/4*exp(3*x)

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

解析解

例③ 非常系数的二阶微分方程

$$\ddot{x}(t) - (1 - x^2(t))\dot{x}(t) + x(t) = 0, \qquad x(0) = 3, \dot{x}(0) = 0$$

 $x=dsolve('D2x-(1-x^2)*Dx+x=0', 'x(0)=3,Dx(0)=0')$

无解析表达式!

数学实验之

--微分方程

实验目的

应用场景

3

例

数值解法

软件求解

例

课堂延伸

布置实验

解析解

例④ 非线性微分方程

$$\dot{x}(t)^2 + x(t)^2 = 1, x(0) = 0$$

 $x=dsolve('(Dx)^2+x^2=1','x(0)=0')$

x = sin(t) -sin(t)

若欲求解的某个数值解,如何求解?

t=pi/2; eval(x)

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

解析解

$$\begin{cases}
\frac{dx}{dt} = 3x + 4y \\
\frac{dy}{dt} = -4x + 3y
\end{cases}
\begin{cases}
x(0) = 0 \\
y(0) = 1
\end{cases}$$

输入:

$$[x,y]=dsolve('Dx=3*x+4*y','Dy=-4*x+3*y')$$

$$[x,y]=dsolve('Dx=3*x+4*y','Dy=-4*x+3*y','x(0)=0,y(0)=1')$$

输出:
$$x = 1/2*exp(7*t)-1/2*exp(-t)$$

$$y = 1/2*exp(-t)+1/2*exp(7*t)$$

数学实验之

--微分方程

实验目的

应用场景

引例

数值解法

软件求解

范 例

') 课堂延伸

布置实验

结▶□床

[t, x]=solver ('f',ts, x_0)

自变量值

函数 值 ode23 ode45

由待解 方程写 成的m-函数文 件

ts=[t₀, t_f], t₀、t_f为自变 量的初值和 终值 函数的 初值 数学实验之

--微分方程

实验目的

应用场景

引

数值解法

例

软件求解

范 例

课堂延伸

布置实验

结▶□束

ode23: 2阶3级龙格-库塔算法

ode45: 4阶5级龙格-库塔算法

例1
$$y' = -y + x + 1, y(0) = 1$$

标准形式: y' = f(x, y)

- 1) 首先建立M-文件 (weif.m)
 function f = weif(x,y)
 f=-y+x+1;
- 2) 求解: [x, y]=ode23('weif', [0, 1], 1)
- 3) 作图形: plot(x, y, 'r');
- 4) 与精确解进行比较 hold on ezplot('x+exp(-x)',[0, 1])

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶□床

注意:

1、在解n个未知函数的方程组时, x_0 和x均为n维向量,m-函数文件中的待解方程组应以x的分量形式写成.

2、使用Matlab软件求数值解时,高阶微分方程必须等价地变换成一阶微分方程组.

数学实验之

- - 微分方程

实验目的

应用场景

引

例

数值解法

软件求解

范

例

课堂延伸

布置实验

注意1:

$$\frac{dx(t)}{dt} = f_1(t, x(t), y(t))$$
$$\frac{dy(t)}{dt} = f_2(t, x(t), y(t))$$

1、建立M文件函数

function xdot = fun(t,z)

 $xdot = [f_1(t, z(1), z(2)); f_2(t, z(1),$

z(2))];

2、数值计算(执行以下命令)

[t,z]=ode23('fun',[t,t,],[x,y,]) 注意: 执行命令不能写在M函数文件中。

数学实验之

微分方程

实验目的

应用场景

数值解法

软件求解

例

课堂延伸

布置实验

注意2:

例如:
$$\ddot{y} = f(t, y, \dot{y})$$

$$\hat{\Rightarrow} \qquad \dot{y} = x$$

$$\ddot{y} = \dot{x}$$

所以
$$\begin{cases} \dot{x} = f(t, x, y) \\ \dot{y} = x \end{cases}$$

注意: y(t)是原 方程的解。

x(t)只是中间变 量。

M-文件函数如何写呢?

function xdot = fun1(t,z) (fun1.m) xdot = [f(t,z(1), z(2)); z(1)];

其中 z(1)=x, z(2)=y

[t,x,y] = ode23('fun1',[t0,tf],[x0,y0])

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶□束

例2 Van der pol 方程:

$$\ddot{x}(t) - (1 - x(t)^{2})\dot{x}(t) + x(t) = 0$$
$$x(0) = 3, \dot{x}(0) = 0$$

该方程是否有解析解?

$$\Rightarrow$$
 $y_1 = x(t), y_2 = \dot{x}(t)$

$$\begin{cases} \dot{y}_1 = y_2; \\ \dot{y}_2 = (1 - y_1^2)y_2 - y_1; \\ y_1(0) = 3, \quad y_2(0) = 0; \end{cases}$$

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验


```
(1) 编写M文件(文件名为 vdpol.m):
function yp = vdpol(t,y);
yp=[y(2);(1-y(1)^2)*y(2)-y(1)];
```

```
(2) 编写程序如下: (vdj.m)
[t,y]=ode23('vdpol',[0,20],[3,0]);
y1=y(:,1); % 原方程的解
y2=y(:,2);
plot(t,y1,t,y2,'--') % y1(t),y2(t) 曲
```

线图

```
pause,
plot(y1,y2),grid,
% 相轨迹图,即y2(y1)曲线
```

数学实验之

--微分方程

实验目的

应用场景

引例

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶□束

计算结果

蓝色曲线 ——y (1); (原方程解) 红色曲线 ——y (2); (导函数曲线) 数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶|束

例3 考虑Lorenz模型:

$$\begin{cases} \dot{x}_1(t) = -bx_1(t) + x_2(t)x_3(t) \\ \dot{x}_2(t) = -cx_2(t) + cx_3(t) \\ \dot{x}_3(t) = -x_2(t)x_1(t) + rx_2(t) - x_3(t) \end{cases}$$

其中参数b =8/3, c =10, r =28

解: 1) 编写M函数文件(lorenz.m);

2) 数值求解并画三维空间的相平面轨线; 即(x₁,x₂,x₃)曲线. (Itest.m) 数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

1, lorenz.m

function xdot=lorenz(t,x)

$$xdot=[-b,0,x(2);0,-c,c;-x(2),r,-1]*x;$$

$$\begin{pmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{pmatrix} = \begin{bmatrix} -b & 0 & x_2(t) \\ 0 & -c & c \\ -x_2(t) & r & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix}$$

其中
$$b = \frac{8}{3}$$
, $c = 10$, $r = 28$

数学实验之

--微分方程

实验目的

应用场景

引例

数值解法

软件求解

范 例

课堂延伸

布置实验


```
2、Itest.m
x0=[0\ 0\ 0.1]';
[t,x]=ode45('lorenz',[0,10],x0);
plot(t,x(:,1), '-',t,x(:,2), '*',t,x(:,3), '+')
pause
plot3(x(:,1),x(:,2),x(:,3)),grid on
计算结果如下图
```

数学实验之

--微分方程

实验目的

应用场景

引

数值解法

例

例

软件求解

范

课堂延伸

布置实验

图中, x_1 的图形为实线(蓝), x_2 的图形为"*"线(绿), x_3 的图形为"+"线(红).取[t_0 , t_f]=[0, 10]。

若自变量区间取[0, 20]、[0, 40], 计算结果如下:

数学实验之

--微分方程

实验目的

应用场景

引化

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶□束

数学实验之

- -微分方程

实验目的

应用场景

例

引

数值解法

软件求解

范 例

课堂延伸

布置实验

观察结果:

- 1、该曲线包含两个"圆盘",每一个都是由螺线形轨道构成。某些轨道几乎是垂直地离开圆盘中一个而进入另一个。
- 2、随着t的增加,x(t)先绕一个圆盘几圈,然后"跳"到另一个圆盘中。绕第二个圆盘几圈,又跳回原来的圆盘。 并以这样的方式继续下去,在每个圆盘上绕的圈数是随机的。

思考:该空间曲线与初始点x₀的选择有关吗?

数学实验之

- - 微分方程

实验目的

应用场景

引 例

数值解法

软件求解

例

范

课堂延伸

布置实验

- 1) x0=[0 0.1 0.1]'; [t0,tf]=[0,30]; 解向量y
- 2) $x00=[0.01\ 0.11\ 0.11]$ '; [t0,tf]=[0,30]; 解向量x y-x=(y1-x1,y2-x2,y3-x3)

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶□束

双种群模型

- 1. 种群的相互竞争
- 2. 种群的相互依存
- 3. 种群的弱肉强食

数学实验之

--微分方程

实验目的

应用场景

别

数值解法

软件求解

范 例

课堂延伸

布置实验

1. 种群的相互竞争

- •一个自然环境中有两个种群生存,它们之 间的关系:相互竞争;相互依存;弱肉强食。
- 当两个种群为争夺同一食物来源和生存空 间相互竞争时,常见的结局是,竞争力弱的 灭绝,竞争力强的达到环境容许的最大容量。
- 建立数学模型描述两个种群相互竞争的讨 程,分析产生这种结局的条件。

数学实验之

微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

模型 假设

• 有甲乙两个种群,它们独自生存时数量变化均服从Logistic规律;

$$\dot{x}_1(t) = r_1 x_1 (1 - \frac{x_1}{N_1}) \quad \dot{x}_2(t) = r_2 x_2 (1 - \frac{x_2}{N_2})$$

两种群在一起生存时,乙对甲增长的阻滞作用与乙的数量成正比;甲对乙有同样的作用。

模型

$$\dot{x}_1(t) = r_1 x_1 \left(1 - \frac{x_1}{N_1} - \sigma_1 \frac{x_2}{N_2} \right) \quad \dot{x}_2(t) = r_2 x_2 \left(1 - \sigma_2 \frac{x_1}{N_1} - \frac{x_2}{N_2} \right)$$

对于消耗甲的资源而言,乙(相对于 N_2)是甲 (相对于 N_1) 的 σ_1 倍。

对甲增长的阻滞 作用,乙大于甲

乙的竞争力强

数学实验之

--微分方程

实验目的

应用场景

引

例

数值解法

软件求解

さ 1

课堂延伸

布置实验

2. 种群的相互依存

甲乙两种群的相互依存有三种形式

- 1) 甲可以独自生存,乙不能独自生存;甲乙一起生存时相互提供食物、促进增长。
- 2) 甲乙均可以独自生存; 甲乙一起生存 时相互提供食物、促进增长。
- 3) 甲乙均不能独自生存;甲乙一起生存时相互提供食物、促进增长。

数学实验之

--微分方程

实验目的

应用场景

引

数值解法

软件求解

例

范

课堂延伸

布置实验

结▶□束

模型 假设

- 甲可以独自生存,数量变化服从Logistic规 律; 甲乙一起生存时乙为甲提供食物、促进 增长。
- 乙不能独自生存;甲乙一起生存时甲为乙 提供食物、促进增长;乙的增长又受到本身 的阻滞作用 (服从Logistic规律)。

模型

$$\dot{x}_1(t_1) = r_1 x_1 \left(1 - \frac{x_1}{N_1} + \sigma_1 \frac{x_2}{N_2} \right)$$
物是甲消耗的 σ_1 倍

乙为甲提供食

$$\dot{x}_{2}(t) = r_{2}x_{2}\left(-1 + \sigma_{2}\frac{x_{1}}{N_{1}} - \frac{x_{2}}{N_{2}}\right)$$
 甲为乙提供食物是乙消耗的

甲为乙提供食

数学实验之

微分方程

实验目的

应用场景

例

例

数值解法

软件求解

课堂延伸

布置实验

3. 种群的弱肉强食(食饵-捕食者模型)

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

结 ▶│束

种群甲靠丰富的天然资源生存,种群乙靠 捕食甲为生,形成食饵-捕食者系统,如食用 鱼和鲨鱼,美洲兔和山猫,害虫和益虫。

• 模型的历史背景——一次世界大战期间地中海渔业的捕捞量下降(食用鱼和鲨鱼同时捕捞),但是其中鲨鱼的比例却增加,为什么?

食饵-捕食者模型(Volterra)

食饵 (甲) 数量 x(t), 捕食者 (乙) 数量 y(t)

甲独立生存的增长率r

$$\dot{x} = rx$$

乙使甲的增长率减小,减小量与 *y*成正比

$$\frac{\dot{x}(t) = (r - ay)x}{= rx - axy}$$
(1)

乙独立生存的死亡率 d

$$\dot{y} = -dy$$

甲使乙的死亡率减小,减 小量与 *x*成正比

$$\dot{y}(t) = -(d - bx)y$$

$$= -dy + bxy \quad (2)$$

a~捕食者掠取食饵能力

b~食饵供养捕食者能力

方程(1),(2) 无解析解

数学实验之

--微分方程

实验目的

应用场景

引 例

נילו

数值解法

软件求解

范 例

课堂延伸

布置实验

范例: 地中海鲨鱼问题

意大利生物学家Ancona曾致力于鱼类种群相互制约关系的研究,他从第一次世界大战期间,地中海各港口捕获的几种鱼类捕获量百分比的资料中,发现鲨鱼的比例有明显增加(见下表)。

年代	1914	1915	1916	1917	1918
百分比	11.9	21.4	22.1	21.2	36.4
年代	1919	1920	1921	1922	1923
百分比	27.3	16.0	15.9	14.8	19.7

数学实验之

- - 微分方程

实验目的

应用场景

例

数值解法

软件求解

芭 例

课堂延伸

布置实验

战争为什么使鲨鱼数量增加?是什么原因?

为何鲨鱼的比例大幅增加呢?生物学家 Ancona无法解释这个现象,于是求助于著名的意 大利数学家V.Volterra,希望建立一个食饵一捕食 系统的数学模型,定量地回答这个问题. 数学实验之

--微分方程

实验目的

应用场景

例

例

数值解法

软件求解

范

课堂延伸

布置实验

1、符号说明:

- ① $x_1(t), x_2(t)$ 分别是食饵、捕食者在t时刻的数量;
- ②r1, r2是食饵、捕食者的固有增长率;
- ③ λ_1 是捕食者掠取食饵的能力, λ_2 是食饵对捕食者的供养能力;

2、基本假设:

① 捕食者的存在使食饵的增长率降低,假设降低的程度与捕食者数量成正比,即

$$\frac{dx_1}{dt} = x_1(r_1 - \lambda_1 x_2)$$

数学实验之

--微分方程

实验目的

应用场景

引

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶□束

② 食饵对捕食者的数量x₂起到增长的作用, 其程度与食饵数量x1成正比,即:

$$\frac{dx_2}{dt} = x_2(-r_2 + \lambda_2 x_1)$$

综合以上①和②,得到如下模型:

模型(一): 不考虑人工捕获的情况

$$\begin{cases} \frac{dx_1}{dt} = x_1(r_1 - \lambda_1 x_2) \\ \frac{dx_2}{dt} = x_2(-r_2 + \lambda_2 x_1) \end{cases}$$

数学实验之

--微分方程

实验目的

应用场景

引例

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶□床

该模型反映了在没有人工捕获的自然环境中 食饵与捕食者之间的制约关系,没有考虑食饵和 捕食者自身的阻滞作用,是Volterra提出的最简单 的模型.

给定一组具体数据,用matlab软件求解。

食饵: r1= 1, λ1= 0.1, x10= 25;

捕食(鲨鱼): r2=0.5, λ2=0.02, x20= 2;

$$\begin{cases} \frac{dx_1}{dt} = x_1(1 - 0.1x_2) \\ \frac{dx_2}{dt} = x_2(-0.5 + 0.02x_1) \end{cases} x_1(0) = 25, x_2(0) = 2$$

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

结 ▶ 束

编制程序如下:

- 1、建立m-文件shier.m如下: function dx=shier(t,x) dx=zeros(2,1); dx(1)=x(1)*(1-0.1*x(2)); dx(2)=x(2)*(-0.5+0.02*x(1));
- 2、建立主程序shark.m如下: [t,x]=ode45('shier',[0 15],[25 2]); plot(t,x(:,1),'-',t,x(:,2),'*') plot(x(:,1),x(:,2))

数学实验之

--微分方程

实验目的

应用场景

3

例

数值解法

软件求解

范

例

课堂延伸

布置实验

结▶Ⅰ束

求解结果:

图2

图2 反映了 $x_1(t)$ 与 $x_2(t)$ 的关系。

数学实验之

--微分方程

实验目的

应用场景

밁

数值解法

例

软件求解

范 例

课堂延伸

布置实验

数学实验之

- - 微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶|束

重心坐标如何计算?

模型 (二) 考虑人工捕获的情况

假设人工捕获能力系数为e,相当于食饵的自然增长率由 r_1 降为 r_2 —e,捕食者的死亡率由 r_2 增为 r_2 +e,因此模型(一)修改为:

$$\begin{cases} \frac{dx_1}{dt} = x_1[(r_1 - e) - \lambda_1 x_2] \\ \frac{dx_2}{dt} = x_2[-(r_2 + e) + \lambda_2 x_1] \end{cases}$$

设战前捕获能力系数e=0.3, 战争中降为 e=0.1, 其它参数与模型(一)的参数相同。观察结果会如何变化? 数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

$$\begin{cases} \frac{dx_1}{dt} = x_1(0.7 - 0.1x_2) \\ \frac{dx_2}{dt} = x_2(-0.8 + 0.02x_1) \\ x_1(0) = 25, x_2(0) = 2 \end{cases} \begin{cases} \frac{dy_1}{dt} = y_1(0.9 - 0.1y_2) \\ \frac{dy_2}{dt} = y_2(-0.6 + 0.02y_1) \\ y_1(0) = 25, y_2(0) = 2 \end{cases}$$

分别求出两种情况下鲨鱼在鱼类中所占的比例。

$$p_1(t) = \frac{x_2(t)}{x_1(t) + x_2(t)};$$
 $p_2(t) = \frac{y_2(t)}{y_1(t) + y_2(t)}$

画曲线: plot(t, p₁(t), t, p₂(t), '*')

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶□束

```
function dx=shier1(t,x)
dx=zeros(2,1);
dx(1)=x(1)*(0.7-0.1*x(2));
dx(2) = x(2) * (-0.8+0.02*x(1));
function dy=shier2(t,y)
dy=zeros(2,1);
dy(1)=y(1)*(0.9-0.1*y(2));
dy(2) = y(2) * (-0.6+0.02*y(1));
[t1,x]=ode45('shier1',[0 15],[25 2]);
[t2,y]=ode45('shier2',[0 15],[25 2]);
x1=x(:,1); x2=x(:,2);
x3=x2./(x1+x2);
y1=y(:,1);y2=y(:,2);
y3=y2./(y1+y2); (shark1.m)
plot(t1,x3,'-',t2,y3,'*')
```

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶□束

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶Ⅰ克

问题背景

生活在同一环境中的两种动物,存在各种各样的生存模式,弱肉强食就是其中典型的一种行为。设想在一个海岛上,居住着野兔和狐狸,狐狸吃兔子,兔子吃青草。青草无限,兔子大量繁殖;兔多则狐狸容易捕食,狐狸数量增加,导致兔子减少,进而狐狸将减少。形成兔子狐狸数量交替增减,无休无止地循环,形成生态平衡。

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范

例

课堂延伸

布置实验

数学模型

用x(t)、y(t)分别表示t时刻兔子、狐狸的数量。模型为(意大利数学家Volterra)

$$\frac{dx(t)}{dt} = r \cdot x(t) - a \cdot x(t) \cdot y(t)$$

$$\frac{dy(t)}{dt} = -s \cdot y(t) + b \cdot x(t) \cdot y(t)$$

其中 rx(t)表示兔子的繁殖数量,ax(t) y(t) 表示兔子与狐狸相遇而被吃掉的数量。-sy(t)表示同类竞争造成死亡的数量,bx(t) y(t) 表示狐狸的增加与兔子狐狸相遇次数成比例。

数学实验之

- -微分方程

实验目的

应用场景

31

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶□束

相平面轨迹图

1. 利用数值解作图

数学实验之

--微分方程

实验目的

应用场景

引

例

数值解法

软件求解

范

例

课堂延伸

布置实验

结▶

相平面轨迹图

1. 利用数值解作图

系列初值下的解及其相平面轨迹图, 初值包括[x(0), y(0)] = [1,0.3], [1,0.5], ..., [1,1.5]等。

首先,建立M函数文件(fish.m)

function xdot=fish(t,x)

r=2; s=0.8; a=0.02; b=0.0002;

xdot=[r*x(1)-a*x(1)*x(2);-s*x(2)+b*x(1)*x(2)];

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范

课堂延伸

例

布置实验

结▶□床

相平面轨迹图

1. 利用数值解作图

%由数值解作相平面轨迹图

hold on

for k=1:8

ts=1:0.01:8;x0=[4000,10*k];

[t,x]=ode45('fish',ts,x0);

plot(x(:,1),x(:,2),'k')

end

xlabel('x'); ylabel('y'); title('数值解')

数学实验之

--微分方程

实验目的

应用场景

引

数值解法

例

例

软件求解

范

课堂延伸

布置实验

相平面轨迹图

2. 利用等值线作图

数学实验之

--微分方程

实验目的

应用场景

리

例

例

数值解法

软件求解

范

课堂延伸

布置实验

结▶□束

相平面轨迹图

2. 利用等值线作图

将以上微分方程通过分离变量方法得到其通解为,

$$r \ln y - ay + s \ln x - bx = K$$

其中K为任意常数。如果给定了初始条件(x0,y0),则K为定值。即

$$K = r \ln y_0 - ay_0 + s \ln x_0 - bx_0$$

反之,对任何一个给定值K,也就确定了一个特解。

数学实验之

--微分方程

实验目的

应用场景

引

数值解法

软件求解

也例

课堂延伸

布置实验

相平面轨迹图

2. 利用等值线作图

微分方程组的通解实质上是如下二元函数 的等值线.

$$f(x, y) = r \ln y - ay + s \ln x - bx$$

参数取值r=2,s=0.8,a=0.02,b=0.0002时,由等值线作出的相平面轨迹图。

数学实验之

- -微分方程

实验目的

应用场景

例

引

数值解法

软件求解

范 例

课堂延伸

布置实验

相平面轨迹图

2. 利用等值线作图

MATLAB程序如下

```
x0=100; x1=12000; y0=10; y1=200; [x,y]=meshgrid(x0:10:x1,y0:1:y1); r=2; s=0.8; a=0.02; b=0.0002; z=r*log(y)-a*y+s*log(x)-b*x; contour(x,y,z,20,'k'); axis([0 x1 0 y1]); xlabel('x'); ylabel('y'); title('等值线')
```

数学实验之

--微分方程

实验目的

应用场景

引

例

数值解法

软件求解

范

例

课堂延伸

布置实验

结▶□束

相平面轨迹图

初始值为x=4000; y=60对应的相平面轨迹图

如果初始时刻有 4000只兔子, 60只狐狸,则这两种动物的种群数量变化情况如上图所示.

数学实验之

--微分方程

实验目的

应用场景

引

例

数值解法

软件求解

范

例

课堂延伸

布置实验

结▶□ 束

相平面轨迹图

1)随着时间的推移,在相平面轨迹图 4.8中,轨迹的走向是按逆时针还是顺时针方 向?

2)如果某生态系统中有三种弱肉强食的动物,相应的种群模型为三元微分方程,如何用图形表示其解的轨迹?

数学实验之

--微分方程

实验目的

应用场景

引

例

数值解法

软件求解

范

例

课堂延伸

布置实验

问题背景

海防某部缉私艇上的雷达发现正东方向*c*海里处有一艘走私船正以速度*a*向正北方向行驶,缉私艇立即以最大速度b(>a)前往拦截。如果用雷达进行跟踪时,可保持缉私艇的速度方向始终指向走私船。

- 建立任意时刻缉私艇位置及 航线的数学模型,并求解;
- 求出缉私艇追上走私船的时间。

数学实验之

--微分方程

实验目的

应用场景

引

数值解法

例

例

软件求解

范

课堂延伸

布置实验

结▶□束

模型建立

建立坐标系如图: t=0 艇在(0, 0), 船在(c, 0); 船速a, 艇速b, 时刻 t 艇位于P(x, y), 船到达 Q(c, y)

$$\frac{dx}{dt} = b\cos\alpha, \frac{dy}{dt} = b\sin\alpha$$

$$\begin{cases} \frac{dx}{dt} = \frac{b(c-x)}{\sqrt{(c-x)^2 + (at-y)^2}} \\ \frac{dy}{dt} = \frac{b(at-y)}{\sqrt{(c-x)^2 + (at-y)^2}} \end{cases}$$

由方程无法得到x(t), y(t)的解析解,需要用数值解法 求解 数学实验之

--微分方程

实验目的

应用场景

引

数值解法

软件求解

例

范

课堂延伸

布置实验

模型的数值解

$$\begin{cases} \frac{dx}{dt} = \frac{b(c-x)}{\sqrt{(c-x)^2 + (at-y)^2}} \\ \frac{dy}{dt} = \frac{b(at-y)}{\sqrt{(c-x)^2 + (at-y)^2}} \\ x(0) = 0, \quad y(0) = 0 \end{cases}$$

设:船速a=20 (海里/小时)

艇速b=40 (海里/小时), 求: 缉私艇的位置

距离c=15 (海里)

 $\chi(t), y(t)$ 缉私艇的航线 y(x)

数学实验之

微分方程

实验目的

应用场景

数值解法

软件求解

例

课堂延伸

布置实验

模型的数值解

```
%Creat the function for jisi.m

%Let x(1)=x, x(2)=y

function dx=jisi(t,x,a,b,c)

s=sqrt((c-x(1))^2+(a*t-x(2))^2);

dx=[b*(c-x(1))/s;b*(a*t-x(2))/s];
```

```
x0=[0 0];
a=20;b=40;c=15;
[t,x]=ode45(@jisi,ts,x0,[],a,b,c);
%exact solution x1=c
y1=a*t;
```

数学实验之

--微分方程

实验目的

应用场景

31

数值解法

例

例

软件求解

范

课堂延伸

布置实验

≒ ▶| 5

模型的数值解

```
%output t,x(t),y(t)
[t,x,y1]
%draw x(t),y(t)
plot(t,x),grid,
gtext('x(t)','FontSize',16),
gtext('y(t)','FontSize',16),pause
% draw y(x): the position of tatch is
plot(x(:,1),x(:,2),'r*'),grid
xlabel('x','FontSize',16),
ylabel('y','FontSize',16)
```

数学实验之

- -微分方程

实验目的

应用场景

引

例

数值解法

软件求解

范

例

课堂延伸

布置实验

模型的数值解

a=20,	
<i>b</i> =40,	
c = 15	

走私船的位置

x_1	(t)
$= \epsilon$	C
=1	5

$$y_1(t)$$

$$=at$$

$$=20t$$

4	20(4)	11(4)	11 (A)
t	x(t)	y(t)	$y_1(t)$
0	0	0	0
0.05	1.9984	0.0698	1.0
0.10	3.9854	0.2924	2.0
0.15	5.9445	0.6906	3.0
0.20	7.8515	1.2899	4.0
0.25	9.6705	2.1178	5.0
0.30	11.3496	3.2005	6.0
0.35	12.8170	4.5552	7.0
0.40	13.9806	6.1773	8.0
0.45	14.7451	8.0273	9.0
0.50	15.0046	9.9979	10.0

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范

课堂延伸

例

布置实验

结 ▶│束

走私船的位置 $x_1(t) = c = 15$ $y_1(t) = at = 20t$

缉私艇的航线人》

t=0.5时缉私艇追上走私船

数学实验之

--微分方程

实验目的

应用场景

릵

例

数值解法

软件求解

范

例

课堂延伸

布置实验

结▶Ⅰ身

设*b*, *c*不变, *a*变大为30, 35, ...接近40, 观察解的变化:

a=35, *b*=40, *c*=15

t=? 缉私艇追上走私船

数学实验之

- -微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

累积 误差 较大

提高精度!

t	x(t)	y(t)	$y_1(t)$
0	0	0	0
0.1	3.9561	0.5058	3.5
0.2	7.5928	2.1308	7.0
0.3	10.5240	4.8283	10.5
0.4	12.5384	8.2755	14.0
0.5	13.7551	12.0830	17.5
•••		•••	•••
1.2	14.9986	40.0164	42.0
1.3	14.9996	44.0165	45.5
1.4	15.0117	48.0183	49.0
1.5	15.0023	52.0146	52.5
1.6	14.9866	55.9486	56.0

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

例

范

课堂延伸

布置实验

模型的数值解

opt=odeset('RelTol',1e-6, 'AbsTol',1e-9); [t,x]=ode45(@jisi,ts,x0,opt);

a=35, b=40, c=15

数学实验之

- -微分方程

实验目的

应用场景

例

例

引

数值解法

软件求解

范

课堂延伸

布置实验

结▶Ⅰ束

t=1.6时缉 私艇追上走 私船

判断"追上" 的有效方法?

			`
t	x(t)	y(t)	$y_1(t)$
0	0	0	0
0.1	3.956104	0.505813	3.5
0.2	7.592822	2.130678	7.0
0.3	10.521921	4.829308	10.5
0.4	12.539454	8.269840	14.0
0.5	13.753974	12.075344	17.5
	•••	•••	•••
1.2	14.999616	40.00005	42.0
1.3	14.999963	44.000005	45.5
1.4	14.999993	48.000005	49.0
1.5	14.999998	52.000005	52.5
1.6	15.000020	55.999931	56.0

数学实验之

--微分方程

实验目的

应用场景

引

数值解法

例

软件求解

范

课堂延伸

例

布置实验

结

模型的解析解

$$\frac{dx}{dt} = \frac{b(c-x)}{\sqrt{(c-x)^2 + (at-y)^2}}, \quad \frac{dy}{dt} = \frac{b(at-y)}{\sqrt{(c-x)^2 + (at-y)^2}}$$

$$\frac{dy}{dx} = \frac{at - y}{(c - x)} \Big|_{c} (c - x) \frac{dy}{dx} + y = at$$

$$(c-x)\frac{d^2y}{dx^2} = a\frac{dt}{dx}$$

数学实验之

--微分方程

实验目的

应用场景

引

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶□珠

模型的解析解

$$(c-x)\frac{d^2y}{dx^2} = a\frac{dt}{dx}$$

$$\frac{ds}{dt} = b \qquad ds = \sqrt{(dx)^2 + (dy)^2}$$

$$(c-x)\frac{d^2y}{dx^2} = \frac{a}{b}\sqrt{1 + (\frac{dy}{dx})^2}$$

$$\Rightarrow p = \frac{dy}{dx} \qquad (c - x)\frac{dp}{dx} = k\sqrt{1 + p^2}, k = \frac{a}{b}$$

$$p(0) = 0$$

数学实验之

--微分方程

实验目的

应用场景

引例

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶□束

模型的解析解

$$(c-x)\frac{dp}{dx} = k\sqrt{1+p^2}$$

$$p(0) = 0$$

$$k = a/b < 1$$

$$y(0) = 0$$

$$p = \frac{1}{2} \left[\left(\frac{c - x}{c} \right)^{-k} - \left(\frac{c - x}{c} \right)^{k} \right]$$

 $\sqrt{1+p^2} + p = (\frac{c-x}{c})^{-k}$

 $\sqrt{1+p^2} - p = \left(\frac{c-x}{2}\right)^k$

$$y = \frac{c}{2} \left[\frac{1}{1+k} \left(\frac{c-x}{c} \right)^{1+k} - \frac{1}{1-k} \left(\frac{c-x}{c} \right)^{1-k} \right] + \frac{kc}{1-k^2}$$

缉私艇的航线人的解析解

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

模型的解析解

x=c时,缉私艇追上走私船的y坐标

$$y = \frac{kc}{1 - k^2} = \frac{abc}{b^2 - a^2}$$

缉私艇追上走私船的时间:

$$t_1 = \frac{bc}{b^2 - a^2}$$

 $a=20, b=40, c=15 \rightarrow t_1=0.5$ $a=35, b=40, c=15 \rightarrow$

 $t_1 = 1.6$

数学实验之

--微分方程

实验目的

应用场景

引例

数值解法

软件求解

范 例

课堂延伸

布置实验

结 ▶ 束

思考

1、如果敌艇不断地改变着运动方向, 又怎样建立微分方程呢?

2、还有没有其他求解该问题的方法?

数学实验之

- -微分方程

实验目的

应用场景

引

例

数值解法

软件求解

范

例

课堂延伸

布置实验

结▶□ 束

课堂延伸: 计算机网络可靠性分析

问题及假设

我们将计算机通信网络系统称为无冗余的防火墙协议系统。计算机随时可能发生三个事件——无故障、间歇故障和永久故障。因此,计算机一般处于三种运行状态:无故障工作、带故障工作和不工作。这三种状态之间的转移过程如图所示。要求建立该系统的状态转移模型,并进行可靠性分析。

数学实验之

- - 微分方程

实验目的

应用场景

引

例

例

数值解法

软件求解

范

课堂延伸

布置实验

分析与模型

该问题属于状态转移问题,利用马尔科夫状态转移原理,用*P*1(*t*), *P*2(*t*)和*P*3(*t*) 分别表示系统处于无故障工作、带故障工作和不工作三种状态的概率,则有以下状态转移方程组

$$\frac{dP_{1}(t)}{dt} = -\left[(\lambda_{p} + \lambda_{t}/2) + \lambda_{t}/2\right]P_{1}(t) + yP_{2}(t) = -(\lambda_{p} + \lambda_{t})P_{1}(t) + yP_{2}(t)$$

$$\frac{dP_{2}(t)}{dt} = (\lambda_{t}/2)P_{1}(t) - \left[y + (\lambda_{p} + \lambda_{t})\right]P_{2}(t)$$

$$\frac{dP_{3}(t)}{dt} = (\lambda_{p} + \lambda_{t}/2)P_{1}(t) + (\lambda_{p} + \lambda_{t})P_{2}(t)$$
初始条件 $[P_{1}(0), P_{2}(0), P_{3}(0)] = [1,0,0]$, 参数取值

 $\lambda_{p}:10^{-5}\sim10^{-4}, \quad \lambda_{t}:10^{-4}\sim10^{-3}, \quad \gamma:0.01\sim0.1$

数学实验之

--微分方程

实验目的

应用场景

引

数值解法

例

软件求解

范 例

课堂延伸

布置实验

模型求解

假定 $\lambda_p = 10^{-5}$, $\lambda_t = 10^{-4}$, $\gamma = 0.01$ 。

首先编写m文件 (eqs3.m)

function xdot=eqs3(t,p,flag,lp,lt,gm)

a=[-(lp+lt) gm 0;lt/2 -(gm+lp+lt) 0; lp+lt/2 lp+lt 0];

p=[p(1);p(2);p(3)];

xdot=a*p;

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范

课堂延伸

例

布置实验

模型求解

在工作空间执行以下程序:

```
ts=[0\ 10000]; p0=[1;0;0]; lp=10^(-5); lt=10^(-4);
gm = 0.01;
[t,p] = ode23(eqs0',ts,p0,[],lp,lt,gm);
plot(t, 1-p(:,3));
xlabel('时间 t(小时)');ylabel('可靠度 R(t)');
title('参数取值 lp=0.00001; lt=0.0001; gm=0.01');
grid
```

数学实验之

--微分方程

实验目的

应用场景

引

例

数值解法

软件求解

范

例

课堂延伸

布置实验

结▶□

计算结果

当 t=1000,[$p_1(t)$ $p_2(t)$ $p_3(t)$]=[0.9369 0.0047 0.0584]。显示系统工作的概率为94.18%。从图中还可以看出系统可靠性变化更加细致的情况,何时可靠度达到99%,何时达到98%等等。

数学实验之

--微分方程

实验目的

应用场景

引

例

数值解法

软件求解

范

例

课堂延伸

布置实验

传染病模型和SARS的传播

2002年冬到2003年春,一种名为SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症,民间俗称非典)的传染病肆虐全球.

SARS首发于中国广东,迅速扩散到30多个国家和地区,多名患者死亡引起社会恐慌、媒体关注,以及各国政府和联合国、世界卫生组织的高度重视、积极应对,直至最终控制住疫情的蔓延.

SARS被控制住不久,2003年9月全国大学生数学建模竞赛以"SARS的传播"命名当年A题和C题.

数学实验之

--微分方程

实验目的

应用场景

引

例

数值解法

软件求解

范

例

课堂延伸

布置实验

赛题要求

- 建立你们自己的模型;特别要说明怎样才能 建立真正能预测以及能为预防和控制提供可靠 、足够信息的模型,这样做的困难在哪里?
- 对于卫生部门所采取的措施做出评论,如: 提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。

北京市从2003年4月20日至6月23日逐日的疫 情数据

日期	已确诊病例累计	现有疑似病例	死亡累计	治愈出院累计
4月20日	339	402	18	33
4月21日	482	610	25	43
•••••	••••	••••	••••	••••
6月23日	2521	2	191	2277

数学实验之

- -微分方程

实验目的

应用场景

引

例

数值解法

软件求解

范

例

课堂延伸

布置实验

传染病模型和SARS的传播

- 介绍数学医学领域中基本的传染病模型.
- · 结合赛题介绍几个描述、分析SARS传播过程的模型及求解结果.

基本的传染病模型

- 不从医学角度分析各种传染病的特殊机理.
- 按照传播过程的规律建立微分方程模型.

数学实验之

--微分方程

实验目的

应用场景

引

例

数值解法

软件求解

范

课堂延伸

例

布置实验

SI 模型 将人群分为两类:易感染者(Susceptible, 健康人)和已感染者(Infective, 病人).

假设

- 1. 总人数N不变,时刻t健康人和病人所占 比例分别为s(t)和i(t),有s(t)+i(t)=1.
- 2. 每个病人每天有效接触人数为入(日接触率), 且使接触的健康人致病.

 $N[i(t + \Delta t) - i(t)] = [\lambda s(t)]Ni(t)\Delta t$ 建模

$$\frac{\mathrm{d}i}{\mathrm{d}t} = \lambda si$$

$$s(t) + i(t) = 1$$

$$\begin{cases} \frac{\mathrm{d}i}{\mathrm{d}t} = \lambda i(1-i) \\ i(0) = i_0 \end{cases}$$

数学实验之

微分方程

实验目的

应用场景

例

数值解法

软件求解

例

课堂延伸

布置实验

SI 模型

$$\begin{cases} \frac{\mathrm{d}i}{\mathrm{d}t} = \lambda i(1-i) \\ i(0) = i_0 \end{cases}$$

t=t_m, di/dt 最大

 t_m ~传染病高潮到来时刻

 λ (日接触率)↓ → t_m ↑

 $t \to \infty \Rightarrow i \to 1$?

没有考虑病人可以治愈!

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

结 ▶ | 束

SIS 模型

传染病无免疫性如伤风、痢疾等——病人治 愈成为健康人,健康人可再次被感染.

增加假设

3. 病人每天治愈的比例为 (日治愈率)

建模 $N[i(t + \Delta t) - i(t)] = \lambda Ns(t)i(t)\Delta t - \mu Ni(t)\Delta t$

$$\begin{cases} \frac{\mathrm{d}i}{\mathrm{d}t} = \lambda i(1-i) - \mu i = -\lambda i[i - (1-\frac{1}{\sigma})] \\ i(0) = i_0 \end{cases}$$

$$\sigma = \lambda / \mu$$

λ~日接触率 1/μ~感染期

σ~一个感染期内每个病人的有效接触人数, 称为接触数.

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

SIS 模型

$$\frac{\mathrm{d}i}{\mathrm{d}t} = -\lambda i [i - (1 - \frac{1}{\sigma})] \qquad \sigma \sim \mathbf{i}$$
接触数

$$i(\infty) = \begin{cases} 1 - \frac{1}{\sigma}, & \sigma > 1 \\ 0, & \sigma \le 1 \end{cases}$$

 $\sigma > 1, i_0 < 1 - 1/\sigma$

i(t)按S形曲线增长

 $\sigma \leq 1$ i(t)单调下降

感染期内有效接触使健康者感 染的人数不超过原有的病人数

接触数 $\sigma = 1 \sim$ 阈值

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

SIR模型

传染病有免疫性如天花、麻疹等——病人 治愈后移出感染系统,称移出者(Removed).

假设

- 1. 总人数N不变,健康人、病人和移出者的比例分别为 s(t), i(t), r(t).
- 2. 病人的日接触率为 λ ,日治愈率为 μ ,接触数 $\sigma = \lambda / \mu$.

建模

$$s(t) + i(t) + r(t) = 1$$

需建立 i(t), s(t), r(t) 的两个方程.

数学实验之

--微分方程

实验目的

应用场景

引

数值解法

例

软件求解

范 例

课堂延伸

布置实验

SIR模型

$$N[i(t + \Delta t) - i(t)] = \lambda Ns(t)i(t)\Delta t - \mu Ni(t)\Delta t$$

$$N[s(t + \Delta t) - s(t)] = -\lambda Ns(t)i(t)\Delta t$$

$$\begin{cases} \frac{\mathrm{d}i}{\mathrm{d}t} = \lambda si - \mu i \\ \frac{\mathrm{d}s}{\mathrm{d}t} = -\lambda si \\ i(0) = i_0, s(0) = s_0 \end{cases}$$

 $i_0 + s_0 \approx 1$ (通常 $r(0) = r_0$ 很小)

关于i(t),s(t)的非 线性微分方程组, 没有解析解,只能 通过数值计算得到 s(t),i(t),r(t)的曲线. 数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

结 ▶ | 束

SIR模型的数值计算

设 s(0)=0.99, i(0)=0.01

健康人s(t),病人i(t),移除者r(t).接触率 λ ,治愈率 μ ..

s(t)单调减,r(t)单调增,都趋于稳定,i(t)先增后减趋于0.

ऽ∞~最终未被感染的比例

 $i_{max}(t_{max})$ ~传染病高潮时的比例

衡量传染病 传播的强度 数学实验之

--微分方程

实验目的

应用场景

例

릵

数值解法

软件求解

范 例

课堂延伸

布置实验

结果分析

接触率λ,治愈率μ.

 $1/\mu \sim \text{平均传染期}$ (病人治愈所需平均时间) $\sigma = \lambda / \mu \sim \text{接触数}$ (感染期内每个病人有效接触人数)

卫生水平高 ┆接触率λ小

医疗水平高 沿愈率 4大

接触数*o*小—— 有助于控制传播.

接触数 σ 变小 \emptyset 健康人S(t)增加,病人I(t)减少.

数学实验之

--微分方程

实验目的

应用场景

引

数值解法

例

例

软件求解

范

课堂延伸

布置实验

结果分析

健康人s(t),病人i(t). $\sigma = \lambda/\mu$ ~接触数.

 $\sigma s(0) > 1$, i(t) 先增后减

~传染病蔓延

 $\sigma s(0) \le 1$, i(t)单调减少

~传染病不蔓延

- 一般情况下*s*(0)≈1, 控制蔓延需要 *σ*<1.
- 预防接种使群体免疫,提高r(0)使s(0)减小,满足 $\sigma s(0) \leq 1$.

数学实验之

微分方程

实验目的

应用场景

例

例

数值解法

软件求解

范

课堂延伸

布置实验

SARS 的传播模型

- 2003年SARS爆发初期,处于几乎不受制约的自然传播形式,后期的传播则受到严格控制。
- 虽然影响因素众多,不只有健康人、病人、移 除者3个人群,但是仍然可以用愈后免疫的SIR 模型来描述。
- 越复杂的模型包含的参数越多,为确定这些参数所需要的疫情数据就越全面,而实际上能够得到的数据是有限的。

数学实验之

--微分方程

实验目的

应用场景

引

例

数值解法

软件求解

范

例

课堂延伸

布置实验

模型一参数时变的SIR模型

模型建立

s(t), i(t), $r(t) \sim$ 第t天健康人、病人、移除者(病愈与死亡之和)的数量,s(t)+i(t)+r(t)=N.

 $\lambda(t)$, $\mu(t)$ ~第t天感染率,移除率(治愈率与死亡率之和).

$$\frac{di}{dt} = \lambda(t)s(t)i(t) - \mu(t)i(t)$$

s远大于i, r, s(t)视为常数.

$$\frac{di}{dt} = \lambda(t)i(t) - \mu(t)i(t)$$

$$\frac{dr}{dt} = \mu(t) i(t)$$

-参数时变的SIR模型

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

例

软件求解

范

课堂延伸

布置实验

吉▶│東

参数估计与拟合

日期	已确诊病例累计	现有疑似病例	死亡累计	治愈出院累计
4月20日	339	402	18	33
4月21日	482	610	25	43
••••	••••	••••	••••	••••
6月23日	2521	2	191	2277

确诊-r(t) = i(t)

2000

1500

1000

500

死亡 +治愈 =r(t)

数学实验之

- - 微分方程

实验目的

应用场景

例

例

引

数值解法

软件求解

范

课堂延伸

布置实验

参数估计与拟合

$$\frac{dr}{dt} = \mu(t)i(t)$$

$$\frac{di}{dt} = \lambda(t)i(t) - \mu(t)i(t)$$

取差分近似导数

$$\mu(t) = \Delta r(t)/i(t)$$

$$\lambda(t) = (\Delta i(t) + \Delta r(t))/i(t)$$

疫情受到有力制约

高潮时的大量病人被治愈

用t=1~20的数据拟合得

用t=20~50的数据拟合得

$$\hat{\lambda}(t) = 0.2612e^{-0.1160t}$$

$$\hat{\mu}(t) = 0.0017e^{-0.0825t}$$

数学实验之

微分方程

实验目的

应用场景

例

例

数值解法

软件求解

课堂延伸

布置实验

模型求解与检验 $\hat{\lambda}(t) = 0.2612e^{-0.1160t}$ $\hat{\mu}(t) = 0.0017e^{-0.0825t}$

代入方程

$$\frac{di}{dt} = \lambda(t)i(t) - \mu(t)i(t) \qquad \frac{dr}{dt} = \mu(t)i(t)$$

$$\frac{dr}{dt} = \mu(t)i(t)$$

求i(t), r(t)的数值解

i(t)的计算值整体偏小,且t=50后下降过快.

在模型构造、参数拟合等方面仍需改进.

数学实验之

微分方程

实验目的

应用场景

引 例

数值解法

软件求解

课堂延伸

例

布置实验

模型二 引入不可控带菌者和疑似已感染者的模型

- s(t)~未感染者比例
- i(t) ~已感染者比例
- r(t)~移除者比例
- c(t) ~不可控带菌者比例
- e(t) ~疑似已感染比例

λ~每个不可控带菌者收治前每天有效感染的人数

ßе

lacs

ye

 $\alpha \sim \lambda$ 中可以控制的比例 $\mu \sim$ 移除率

*∞*不可控带菌者每天转化为已感染者的比例

β~疑似已感染者每天被排除的比例

一每天被确诊的比例

数学实验之

--微分方程

实验目的

应用场景

引

例

例

数值解法

软件求解

范

课堂延伸

布置实验

模型建立

$$\frac{de}{dt} = -(\beta + \gamma)e + \lambda \alpha cs$$

$$\frac{di}{dt} = \epsilon c - \mu i + \gamma e$$

$$\frac{dr}{dt} = \mu i$$

$$s(t) + c(t) + e(t) + i(t) + r(t) = 1$$

参数 λ , μ , ε , a, β , γ 确定后,由任意5个方程及任意4个初值计算5类人群的比例 s(t), c(t), e(t), i(t),r(t).

参数估计

- 直接利用实际数据.
- 由经验估计初值,代入模型计算,根据计算值与实际值的偏差调整估计值.

数学实验之

--微分方程

实验目的

应用场景

引例

数值解法

软件求解

范 例

课堂延伸

布置实验

模型三 引入尚未隔离和已经隔离已感染者的模型

 $E(t) \sim$ 处于潜伏期的已感染者,有弱传染性.

I(t) ~已发病、未隔离的已感染者,有强传染性.

 $Q(t) \sim 已发病、隔离、未治疗的已感染者,无传染性.$

- $J(t) \sim 已发病、隔离、正治疗的已感染者,无传染性.$
- $R(t) \sim$ 治愈者,无传染性,有免疫性.
- $\beta(t) \sim$ 感染率. $k \sim E$ 折合成I的分值(指传染性).
- $\varepsilon, \lambda \sim E$ 分别转入I和Q的比例. $\gamma \sim J$ 治愈的比例.
- $\theta, \sigma \sim I$ 和Q分别转入J的比例. $\delta \sim I$ 和J的死亡率.

数学实验之

--微分方程

实验目的

应用场景

引

例

例

数值解法

软件求解

范

课堂延伸

布置实验

$$\frac{dE}{dt} = \beta(t)(kE + I) - (\varepsilon + \lambda)E$$

$$\frac{dI}{dt} = \varepsilon E - (\theta + \delta)I$$

$$\frac{dQ}{dt} = \lambda E - \sigma Q$$

$$\frac{dJ}{dt} = \theta I + \sigma Q - (\gamma + \delta)J$$

$$\frac{dR}{dt} = \gamma J$$

参数估计

• 潜伏期6天,后3天强传染

• E转入I,Q的比例为2:3

• I,Q均约3天后转入J

· J平均3周治愈

$$\gamma = 1/21$$

- $\mathbb{I} \delta = 1/21 \times 15/100$
- IXk=0.1

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

参数估计 在严格控制措施下感染率β是t的减函数

经过多次数值计算确定

$$\beta(t) = \frac{31+t}{22+5t}$$

模型求解

以2003.4.21各个人群的 数量为初始值:

$$E(0) = 477, I(0) = 286,$$

$$Q(0) = 191, J(0) = 848,$$

$$R(0) = 1213.$$

将各参数代入模型计算

实际数据与计算值相当接近

数学实验之

--微分方程

实验目的

应用场景

引例

数值解法

软件求解

范 例

课堂延伸

布置实验

小结与评注

- 在SIR模型基础上建立的模型, 差别在于人群划 分和参数定义.
- 模型求解结果是否与实际吻合的关键在参数估计 ,而参数估计的结果依赖于是否有充分的数据.
- 人群的细分必然要引进更多的参数,如果参数很难估计,即便模型很精细也得不到好的结果.
- 传染病传播过程中的参数大多是变化的,应根据数据拟合出参数的时间函数,再用模型计算.

数学实验之

- -微分方程

实验目的

应用场景

引

例

数值解法

软件求解

范

例

课堂延伸

布置实验

布置实验

实验:下面三种任选其一

1. 个人项目

基础实验—— 1, 3, 4

应用实验——5或8或9

2. 合作项目 (2-3人合作)

综合实验——海水中提取淡水

3. 合作项目(2-3人合作)

创新实验——最优捕鱼策略

数学实验之

--微分方程

实验目的

应用场景

引 例

数值解法

软件求解

范 例

课堂延伸

布置实验

结▶□束

布置实验

自主研学

- 1. 酒精代谢的数学模型
- 2. 非典传播模型

数学实验之

- -微分方程

实验目的

应用场景

引

例

数值解法

软件求解

范

例

课堂延伸

布置实验

结▶