

Graphics Editor using OPENGL

Sourav Parmar (86511933) Priyanshu Pandey(21081358) Computer and Information Science Engineering, University of Florida

Results

What is "Graphics Editor"?

Graphics Editor is a OPENGL based two dimensional drawing tool that can be used to draw various shapes.

Motivation for "Graphics Editor"?

- Simulation of MS Paint using OPENGL.
- Provide visual representation of various computer graphics Algorithms.

Feature List Toolbox Pencil Eraser Brush Floodfill Spray Convex Hull Shapebox Line Rectangle Circle Triangle Bezier Curve Ellipse

Fixed Function Pipeline OPENGL

Colorpalette

Sizebox

Implementation Details

Tool and Shapes

PENCIL /BRUSH/Eraser

- Initialize (X_{new}, Y_{new}) and (X_{old}, Y_{old}) to -1 when Pencil tool is selected
- For every Mouse_Motion_CB
 - \rightarrow (X_{new}, Y_{new}) are assigned the new (x,y) coordinates.
 - ➤ GL_LINES is drawn between (X_{new}, Y_{new}) and (X_{old}, Y_{old})
- \triangleright (X_{new}, Y_{new}) are copied to (X_{old}, Y_{old}) Eraser selected color is same as background color
- Pencil has fix Line Width of one pixel.

Spray

Fifty randomly generated pixels are colored in the vicinity of the current mouse position.

Rectangle/Triangle/Line

- Old and new coordinates are stored in (X_{new}, Y_{new}) and (X_{old}, Y_{old}) .
- For **Rectangle** GL_LINE_LOOP is completed by connecting the following points: (X_{old}, Y_{old}), (X_{old}, Y_{new}), (X_{new}, Y_{old}) , (X_{new}, Y_{new})
- For **Triangle**, compute height for equilateral triangle (h). GL_LINE_LOOP is completed by points (X_{old}, Y_{old}) $(X_{new}, Y_{old}), ((X_{old} + X_{new})/2, Y_{old} + h)$
- For **Line** GL_LINE_STRIP is drawn between (X_{new} (Y_{new}) and (X_{old}, Y_{old}) .

Circle/Ellipse

- Old and new coordinates are stored in (X_{new}, Y_{new}) and (X_{old}, Y_{old})
- Draw circle using center (X_{old}, Y_{old}) and radius abs(X_{new} - X_{old})
- Draw ellipse using center (X_{old}, Y_{old}), rh abs(X_{new} X_{old}) and rv abs(Y_{new -} Y_{old})

Bezier Curve

- Select four control points using mouse click
- Find points of cubic Bezier curve using Bernstein cubic polynomials
- Connect points using GL_LINES

Convex Hull

- Select ten points using mouse click
- Find points of convex hull using Graham Scan Algorithm
- Connect points using GL_LINES

Floodfill

- Start at a point inside a region
- Replace a specified interior color (old color) with fill
- Fill the 4-connected until all interior points being replaced
- 4 way method is implemented with std::stack

Handler

Paintpencil() /paintbrush()

- setselectedcolor()
- glLineWidth(selectedsize)
- glBegin(GL_LINES)
- glVertex2f(X_{old}, Y_{old})
- glVertex2f (X_{new}, Y_{new})
- glEnd()

Spray(float x , float y)

- glBegin(GL_POINTS)
- glVertex2f(XRand, YRand)
- glEnd()

Drawrect() / drawtriangle() / drawline()

- glLineWidth(selectedsize)
- setselectedcolor()
- glBegin(GL_LINE_STRIP)
- glVertex2f: (X_{old}, Y_{old})
- glVertex2f(X_{new}, Y_{new}) glEnd()

Draw_circle()/draw_ellipse()

- Draw circle using circle midpoint algorithm
- Draw ellipse using ellipse midpoint algorithm

findbiezerpoint():

Loop till t <1

- glBegin(GL_LINES)
- glVertex2f(xold, yold)
- glVertex2f(xbeiz, ybeiz)
- glEnd() xold = xbeiz yold = ybeiz

drawGrahamscan ()

- Using Graham Scan algorithm Find convex hull point
- Connect point in final stack with glBegin(GL_LINES)

Floodfill(x,y,newcolor)

- Push(x,y) on stack
- Until stack is not empty
- Get top x',y' pair of stack
 - If pixelcolor (x',y')!= newcolor && (x',y') not marked visited
- setPixelColor(x', y', newcolor)
- stack.pusx(x'+1,y')
- stack.push(x',y'+1)
- stack.push(x',y'-1)
- stack.push(x'-1,y')