Introduction to Data Science

Er. Prem Chandra Roy Er. Dhiraj Pyakurel

What is Data Science?

- Data science is the study of data to extract meaningful insights for decision-making.
 - Combines statistics, computer science, and domain knowledge.
 - Involves data collection, analysis, and interpretation.
 - The goal of data science is to turn raw data into meaningful information that can be used to make decisions, solve problems, and forecast trends.

Jargons of Data Science

- Big Data
- Machine Learning (ML)
- Artificial Intelligence (AI)
- Data Mining
- Predictive Analytics
- Data Wrangling (Data Munging)
- Feature Engineering
- Deep Learning
- Supervised Learning
- Unsupervised Learning
- Neural Network
- Natural Language Processing (NLP)
- Clustering
- Classification
- Regression
- Dimensionality Reduction
- ETL (Extract, Transform, Load)
- A/B Testing
- Hyperparameter Tuning
- Confusion Matrix and performance analysis

- Overfitting
- Underfitting
- Cross-Validation
- Bias-Variance Tradeoff
- Data Lake
- Data Warehouse
- •SQL (Structured Query Language)
- Data Pipeline
- Data Governance
- •NoSQL
- Anomaly Detection
- Time Series Analysis
- Reinforcement Learning
- Bagging and Boosting
- Gradient Descent
- Random Forest
- Principal Component Analysis (PCA)
- Data Imputation
- Data Augmentation
- Data Normalization
- Data Standardization
- Text Mining

Etc.....

Modern Data Eco-System

Data Science Lifecycle

Data Science Process

• Stages:

- 1. Data Collection: Gathering raw data.
- 2. Data Cleaning: Preparing data by handling missing values and errors.
- 3. Data Exploration: Initial insights through descriptive statistics and visualizations.
- 4. Modeling: Applying algorithms to make predictions or classifications.
- 5. Interpretation: Evaluating results to make actionable insights.

Data Science: Trends and markets

- Artificial Intelligence (AI) Integration
- Automated Machine Learning (AutoML)
- Explainable AI (XAI)
- Big Data Technologies
- Real-time Data Processing
- Data Privacy and Ethics
- Augmented Analytics
- Natural Language Processing (NLP) Advancements
- DataOps and MLOps
- Edge Computing
- Collaborative and Citizen Data Science
- Data Storytelling
- Cloud-based Data Platforms
- Integration of IoT and Data Science

Applications of Data Science

- Healthcare
- Finance
- Retail
- Transportation and Logistics
- Manufacturing
- Telecommunications
- Marketing and Advertising
- Sports Analytics
- Energy Sector
- •Government and Public Sector
- Education
- Insurance
- Real Estate
- Social Media
- Human Resources etc...

Key Skills in Data Science

- Technical Skills:
 - -- Programming (Python, R).
 - Machine learning and statistical analysis.
 - Data wrangling and visualization.
- Soft Skills:
 - - Problem-solving.
 - Communication and storytelling with data.

Tools and technologies in data science

Programming Languages

- •Python
- •R
- •SQL
- •Java
- •Julia

Data Visualization

Tools

- •Tableau
- •Power BI
- •Matplotlib
- •Seaborn
- •ggplot2

Machine Learning

Frameworks

- •Scikit-learn
- TensorFlow
- •Keras
- •PyTorch
- XGBoost

Data Manipulation and Analysis

- Pandas
- •NumPy
- •Dplyr
- Tidyverse

Big Data Technologies

- Apache Hadoop
- Apache Spark
- Apache Kafka
- •NoSQL Databases (e.g., MongoDB,

Cassandra)

Er. Prem Chandra Roy Er. Dhiraj Pyakurel

Data Integration and ETL Tools

- •Apache NiFi
- •Talend
- •Informatica
- Apache Airflow

Tools and technologies in data science

Cloud Platforms

- Amazon Web Services (AWS)
- •Google Cloud Platform (GCP)
- IBM Cloud
- Microsoft Azure

Data Storage Solutions

- •Data Lakes (e.g., AWS S3)
- •Data Warehouses (e.g., Google BigQuery,

Snowflake)

•Relational Databases (e.g., MySQL,

PostgreSQL)

Collaboration

Tools

•Jupyter Notebooks •Docker

•R Markdown

•Google Colab •GitHub

Deployment and Monitoring

Tools

- Kubernetes
- •MLflow
- TensorBoard

APIs and Data Services

- •REST APIs
- •GraphQL
- •Data as a Service (DaaS)
- providers

Tools and technologies in data science

Business Intelligence Tools

- Looker
- Sisense
- QlikView

Robust Data Governance

Tools

- •Collibra
- Alation
- •Talend Data Fabric

Natural Language Processing (NLP)

Libraries

- •NLTK
- •spaCy
- •Transformers (Hugging Face)

Data Security Technologies

- •Encryption Tools
- Data Masking Solutions

Data Scientist

- A data scientist is a professional who utilizes their expertise in statistics, mathematics, programming, and domain knowledge to analyze and interpret complex data sets.
- Their primary goal is to extract meaningful insights from data to inform business decisions, improve processes, and solve problems.

Data Scientist: Characteristics

Skill Set

- Statistical analysis
- Programming (Python, R, SQL)
- Machine learning
- Data visualization

Domain Knowledge

• Understanding of the specific industry they work in

Problem-Solving Skills

•Strong analytical and critical thinking abilities

Communication Skills

Ability to present findings to non-technical stakeholders

Collaboration

Works with cross-functional teams (data engineers, business analysts, etc.)

Curiosity and Continuous Learning

• Natural curiosity to explore data and seek innovative solutions

Ethical Considerations

Awareness of data privacy and responsible use of algorithms

Data Scientist: Roles

Data Collection

•Gather data from various sources, including databases, APIs, and external datasets.

Data Cleaning and Preparation

•Clean and preprocess data to ensure its quality and usability for analysis.

Exploratory Data Analysis (EDA)

• Analyze and visualize data to identify patterns and trends.

Feature Engineering

• Create and select relevant features to improve model performance.

Model Development

• Build and train machine learning models to solve specific business problems.

Model Evaluation

• Assess model performance using appropriate metrics and validation techniques.

Model Deployment

• Implement models in production environments for real-world application.

Monitoring and Maintenance

• Continuously monitor model performance and update as needed.

Data Visualization

• Create visual representations of data and insights for stakeholder communication.

Collaboration

• Work with cross-functional teams to understand requirements and develop solutions.

Stakeholder Communication

• Present findings and recommendations to non-technical stakeholders.

Research and Development

•Stay updated on data science trends and explore new methodologies.

Business Acumen

• Understand business objectives to align data science initiatives with goals.

Ethics and Data Governance

• Ensure ethical use of data and adherence to privacy regulations.

Continuous Learning

• Engage in lifelong learning to enhance skills and knowledge.

Challenges in Data Science

- Common Challenges:
 - - Data privacy and ethical issues.
 - Handling unstructured or missing data.
 - Building interpretable and reliable models.

Future of Data Science

• Trends:

- Increased automation and AI integration.
 - Enhanced focus on data privacy and ethics.
 - Advancements in machine learning and deep learning.

Conclusion

- Recap: Data science transforms raw data into actionable insights across industries.
 - Closing Thought: The potential of data science is vast, with continuous advancements shaping the future.