Алгоритм поиска максимального потока в транспортной сети

Существуют различные алгоритмы для поиска максимального потока в транспортной сети (TC). Все они используют в качестве основы теорему Форда-Фалкерсона. Данный алгоритм не является исключением. Идея алгоритма базируется на следующей формулировке следствия из этой теоремы.

Следствие из теоремы Форда-Фалкерсона. Допустимый поток в транспортной сети G(X,U) является максимальным, если в ней отсутствуют простые полупути, увеличивающие данный поток.

В этом алгоритме по исходной ТС G(X,U) строится **остаточная сеть** G'(X,U), в которой каждой дуге ставится в соответствие пара чисел $\Delta c(u)/\varphi(u)$, где $\Delta c(u)$ — ее остаточная пропускная способность, $\varphi(u)$ — ее допустимый поток. Считаем, что в начале $\Delta c(u) = c(u)$), $\varphi(u) = 0$, а величина потока $\Phi = 0$. Введем понятие множества претендентов для включения в увеличивающий путь — V^+ , определим его в начале как $V^+ = \Gamma(x_0)$.

Выбор очередного простого пути, увеличивающего данный поток, производится по остаточной сети G'(X,U) путем выполнения следующих двух этапов при условии $V^+ \neq \emptyset$.

1. Выбор вершины $v \in V^+$, которая обеспечивает прохождение максимального потока:

$$C(v) = \min(\Delta c(x_0 v), \sum_{\forall w \in \Gamma(v)} \Delta c(v, w)) \to \max.$$
 (1)

Если вершина выбрана, то, переходим к следующему этапу, в противном случае максимальный поток $\varphi(G) = (\varphi(u_1),...,\varphi(u_m))$ с величиной Φ найден.

2. Среди всех возможных простых путей $\mu = (x_0, v, ..., x_t)$ выбираем тот путь, который обеспечивает максимальное приращение потока:

$$\Delta \Phi = \min_{\forall u \in \mathcal{U}} \Delta c(u) \to \max. \tag{2}$$

Если путь $\mu = (x_0, v, ..., x_t)$ не найден, то исключаем выбранную вершину из множества претендентов $V^+ = V^+ / v$, в противном случае определяем в остаточной сети G'(X,U) для его дуг новые значения $\Delta c(u)$ и $\varphi(u)$, увеличиваем значение потока $\Phi = \Phi + \Delta \Phi$ и возвращаемся к 1-ому этапу алгоритма.

<u>Примечание</u>: В данном алгоритме могут возникать коллизии. Если на 1-ом этапе можно выбрать по критерию (1) не одну вершину, то выбирается любая такая вершина. Если на 2-ом этапе можно выбрать по критерию (1) не один простой путь, то выбирается любой такой путь.

Введем переменную s в качестве признака (s=1 – продолжить поиск, s=0 – завершить поиск). Алгоритм состоит из следующих шагов.

- 1. Положить $s=1, V^+ = \Gamma(x_0)$.
- 2. ЦИКЛ до тех пор, пока s=1:
 - 2.1. Выбрать вершину $v \in V^+$ по критерию (1).
 - 2.2. **ЕСЛИ** C(v) = 0 или $V^+ = \emptyset$, **ТО** s=0,

ИНАЧЕ выполнить:

- 2.2.1. Выбрать простой путь $\mu = (x_0, v, ..., x_t)$ по критерию (2).
- 2.2.2. **ЕСЛИ** путь не найден, **ТО** $V^+ = V^+ / v$,

ИНАЧЕ выполнить:

- 2.2.2.1. $\Phi = \Phi + \Delta \Phi$.
- 2.2.2.2. $\forall u \in \mu : \Delta c(u) = \Delta c(u) \Delta \Phi$
- 2.2.2.3. $\forall u \in \mu : \varphi(u) = \varphi(u) + \Delta \Phi$
- 3. Найден максимальный поток ТС $\varphi(G) = (\varphi(u_1), ..., \varphi(u_m))$ величиной Φ .

ПРИМЕР

Найти максимальный поток в данной ТС с началом в вершине 0 и концом в вершине 5.

РЕШЕНИЕ

- 1. Определим множество претендентов: $V^+ = \Gamma(0) = \{1, 2, 4, 5\}$.
- 2. Рассчитаем по остаточной сети (она сейчас совпадает с исходной TC): $C(1)=\min(3,6+10+11+11)=3, C(2)=\min(6,12+6)=6, C(4)=\min(13,2)=2, C(5)=6.$
- 3. Выберем по критерию (1) любую из вершин 2 или 5. Пусть это будет вершина 5.
- 4. Определим приращение потока для всех возможных путей $\mu = (0,5,...,5)$: (0,5)-6.
- 5. Выберем по критерию (2) путь (0, 5) с $\Delta \Phi = 6$.

- 6. Рассчитаем по остаточной сети (она изображена ниже на рисунке): $C(1)=\min(3, 6+10+11+11)=3, C(2)=\min(6,12+6)=6, C(4)=\min(13,2)=2, C(5)=0.$
- 7. Выберем по критерию (1) вершину 2.
- 8. Определим приращение потока для всех возможных путей $\mu = (0,2,...,5)$: (0,2,3,5) 6, (0,2,3,4,5) 2, (0,2,4,5) 2.
- 9. Выберем по критерию (2) путь (0,2,3,5) с $\Delta \Phi = 6$.

- 10. Рассчитаем по остаточной сети (она изображена ниже на рисунке): $C(1)=\min(3,6+10+11+11)=3, C(2)=\min(0,6+6)=0, C(4)=\min(13,2)=2, C(5)=0.$
- 11. Выберем по критерию (1) вершину 1.
- 12. Определим приращение потока для всех возможных путей $\mu = (0,1,...,5)$: (0,1,2,3,4,5) 2, (0,1,2,3,5) 2, (0,1,2,4,5) 2, (0,1,4,5) 2, (0,1,5) 3.
- 13. Выберем по критерию (2) путь (0,1,5) с $\Delta \Phi = 3$.

- 14. Рассчитаем по остаточной сети (она изображена ниже на рисунке): $C(1)=\min(0, 6+10+11+8)=0, C(2)=\min(0,6+6)=0, C(4)=\min(13,2)=2, C(5)=0.$
- 15. Выберем по критерию (1) вершину 4.
- 16. Определим приращение потока для всех возможных путей $\mu = (0,4,...,5)$: (0,4,5)-2.
- 17. Выберем по критерию (2) путь (0,4,5) с $\Delta \Phi = 2$.

- 18. Рассчитаем по остаточной сети (она изображена ниже на рисунке): $C(1)=\min(0, 6+10+11+8)=0, C(2)=\min(0,6+6)=0, C(4)=\min(11,0)=0, C(5)=0.$
- 19. Т.к. для любого образа вершины 0 получили C(v) = 0, то завершаем построение максимального потока в TC, его величина $\Phi = 6 + 6 + 3 + 2 = 17$.

Νº	Пройденный путь	Минимальный поток итерации
1	{0,5}	6
2	{0,2,3,5}	6
3	{0,1,5}	3
4	{0,4,5}	2
	(-7.7-3	
5 1ині	0	цей итерации:
		цей итерации:
1ині	()	цей итерации: