Problem 1.3 Prove that the PLA eventually converges to a linear separator for separable data. The following steps will guide you through the proof. Let \mathbf{w}^* be an optimal set of weights (one which separates the data). The essential idea in this proof is to show that the PLA weights $\mathbf{w}(t)$ get "more aligned" with \mathbf{w}^* with every iteration. For simplicity, assume that $\mathbf{w}(0) = \mathbf{0}$.

- (a) Let $\rho = \min_{1 \leq n \leq N} y_n(\mathbf{w}^{*T}\mathbf{x}_n)$. Show that $\rho > 0$.
- (b) Show that $\mathbf{w}^{\scriptscriptstyle \mathrm{T}}(t)\mathbf{w}^* \geq \mathbf{w}^{\scriptscriptstyle \mathrm{T}}(t-1)\mathbf{w}^* + \rho$, and conclude that $\mathbf{w}^{\scriptscriptstyle \mathrm{T}}(t)\mathbf{w}^* \geq t\rho$. [Hint: Use induction.]
- (c) Show that $\|\mathbf{w}(t)\|^2 \le \|\mathbf{w}(t-1)\|^2 + \|\mathbf{x}(t-1)\|^2$. [Hint: $y(t-1) \cdot (\mathbf{w}^{\mathsf{T}}(t-1)\mathbf{x}(t-1)) \le 0$ because $\mathbf{x}(t-1)$ was misclassified by $\mathbf{w}(t-1)$.]
- (d) Show by induction that $\|\mathbf{w}(t)\|^2 \leq tR^2$, where $R = \max_{1 \leq n \leq N} \|\mathbf{x}_n\|$.
- (e) Using (b) and (d), show that

$$\frac{\mathbf{w}^{\mathrm{T}}(t)}{\|\mathbf{w}(t)\|}\mathbf{w}^{*} \geq \sqrt{t} \cdot \frac{\rho}{R},$$

and hence prove that

$$t \le \frac{R^2 \|\mathbf{w}^*\|^2}{\rho^2}.$$

$$\left[\textit{Hint: } \frac{\mathbf{w}^{\mathsf{T}}(t)\mathbf{w}^*}{\|\mathbf{w}(t)\| \|\mathbf{w}^*\|} \leq 1. \textit{ Why?} \right]$$

In practice, PLA converges more quickly than the bound $\frac{R^2\|\mathbf{w}^*\|^2}{\rho^2}$ suggests. Nevertheless, because we do not know ρ in advance, we can't determine the number of iterations to convergence, which does pose a problem if the data is non-separable.