Substitution Reactions

Course Name: General Chemistry

Course Code: CHEM F111

Lecture Instructor Name: Prof. Subhasish Roy

Department: Chemistry

Email: subhasishr@goa.bits-pilani.ac.in

Chamber No: C 223

Chamber Consultation Hours: Thursday 4:00 PM to 4:50 PM

Substitution Reactions

Contents:

- **6.2** Nucleophilic Substitution Reactions
- **6.3** Nucleophiles
- **6.4** Leaving Groups
- **6.5** Kinetics of a Nucleophilic Substitution Reaction: An S_N2 Reaction
- **6.6** A Mechanism for the S_N 2 Reaction
- **6.7** Transition State Theory: Free-Energy Diagrams
- **6.8** The Stereochemistry of S_N 2 Reactions
- **6.9** The Reaction of Tert-Butyl Chloride with Water: An S_N1 Reaction
- **6.10** A Mechanism for the S_N 1 Reaction
- **6.11** Carbocations
- **6.12** The Stereochemistry of S_N 1 Reactions
- **6.13** Factors Affecting the Rates of S_N1 and S_N2 Reactions
- **6.14** Organic Synthesis: Functional Group Transformations Using S_N^2 Reactions

Text Book

Most of the Lecture Slides are made from the course text book. I am gratefully acknowledging Solomon's Organic Chemistry Book and many other Organic Chemistry Books.

6.2 Nucleophilic Substitution Reactions

$$Nu: - + R-LG \longrightarrow R-Nu + -LG$$

The nucleophile The bond is a Lewis base between the that donates an carbon and the electron pair to leaving group the substrate. breaks, giving both electrons from the bond to the leaving group.

The nucleophile uses its electron pair to form a new covalent bond with the substrate carbon.

The leaving group gains the pair of electrons that originally bonded it in the substrate.

$$H\ddot{\bigcirc}$$
: + CH_3 — $\ddot{\parallel}$: \longrightarrow CH_3 — $\ddot{\bigcirc}$ H + $:\ddot{\parallel}$:

$$\mathsf{CH_3}\ddot{\mathsf{O}}^{:-} + \mathsf{CH_3}\mathsf{CH_2} - \ddot{\mathsf{B}}^{r:} \longrightarrow \mathsf{CH_3}\mathsf{CH_2} - \ddot{\mathsf{O}}\mathsf{CH_3} + : \ddot{\mathsf{B}}^{r:}$$

- 1 The nucleophile is always a Lewis base, and it may be negatively charged or neutral.
- 2 The leaving group is always a species that takes a pair of electrons with it when it departs.

Acid-base reaction

Substitution reaction

$$CH_3-\ddot{\ddot{Q}}: Na^+ + CH_3-\ddot{\ddot{\Box}}: \xrightarrow{CH_3OH} H_3C-\ddot{\ddot{Q}}-CH_3 + Na^+ + :\ddot{\ddot{\Box}}:$$

When a nucleophile reacts with an alkyl halide, the carbon atom bearing the halogen atom is the positive center that attracts the nucleophile. This carbon carries a partial positive charge because the electronegative halogen pulls the electrons of the carbon–halogen bond in its direction.

- In nucleophilic substitution reactions the bond between the substrate carbon and the leaving group undergoes *heterolytic bond cleavage*.
- She unshared electron pair of the nucleophile forms the new bond to the carbon atom.
- A key question we shall want to address later in this chapter is this: when does the bond between the leaving group and the carbon break?
- **Solution** Does it break at the same time that the new bond between the nucleophile and carbon forms, as shown in the previous slide?

6.3 Nucleophiles

☐ Any negative ion or uncharged molecule with an unshared electron pair is a potential nucleophile.

ô

6.4 Leaving Group

☐ A good leaving group is a substituent that can leave as a relatively stable, weakly basic molecule or ion.

6.5 Kinetics of a Nucleophilic Substitution Reaction: An S_N 2 Reaction

☐ A good leaving group is a substituent that can leave as a relatively stable, weakly basic molecule or ion.

$$CH_3$$
— CI + ^-OH $\xrightarrow{60^{\circ}C}$ CH_3 — OH + CI^-

RATE STUDY OF REACTION OF CH₃CI WITH HO⁻ AT 60 °C

Experiment Number	Initial [CH₃Cl]	Initial [HO ⁻]	Initial Rate (mol L ⁻¹ s ⁻¹)
1	0.0010	1.0	4.9×10^{-7}
2	0.0020	1.0	9.8×10^{-7}
3	0.0010	2.0	9.8×10^{-7}
4	0.0020	2.0	19.6×10^{-7}

Rate \propto [CH₃Cl][HO⁻]

Rate =
$$k[CH_3CI][HO^-]$$

Notice that the experiments show that the rate depends on the *concentration of both* chloromethane and on the concentration of hydroxide ion.

- When we doubled the concentration of chloromethane in experiment 2, the rate doubled.
- When we doubled the concentration of hydroxide ion in experiment 3, the rate doubled.
- When we doubled both concentrations in experiment 4, the rate increased by a factor of four.

6.5 Kinetics of a Nucleophilic Substitution Reaction: An $S_N 2$ Reaction

rate =
$$k_2$$
[MeSNa][MeI]

- The rate of an S_N2 reaction depends on:
 - the nucleophile
 - the carbon skeleton
 - the leaving group

along with the usual factors of temperature and solvent.

6.6 A Mechanism for the S_N 2 Reaction

Mechanism

Transition state

The negative hydroxide ion brings a pair of electrons to the partially positive carbon from the back side with respect to the leaving group. The chlorine begins to move away with the pair of electrons that bonded it to the carbon.

In the transition state, a bond between oxygen and carbon is partially formed and the bond between carbon and chlorine is partially broken. The configuration of the carbon atom begins to invert.

Now the bond between the oxygen and carbon has formed and the chloride ion has departed. The configuration of the carbon has inverted.

6.7 A free-energy diagram for S_N^2 reaction

• A reaction that proceeds with a negative free-energy change (releases energy to its surroundings) is said to be **exergonic**; one that proceeds with a positive free-energy change (absorbs energy from its surroundings) is said to be **endergonic**.

6.7A Temperature and Reaction Rate

A 10 °C increase in temperature will cause the reaction rate to double for many reactions taking place near room temperature.

Solomon's organic chemistry

6.8 The Stereochemistry of S_N 2 Reactions: Inversion of Configuration

Walden inversions: The first observation of such an inversion was made by the Latvian chemist *Paul Walden* in 1896, and such inversions are called Walden inversions in his honor.

Inversion of (S)-(+)-secbutanol to (R)-(-)-secbutanol: An example that portrayed that OH is not a good leaving group however, it is possible to make good leaving group by converting to OTs.

6.8 The Stereochemistry of S_N^2 Reactions

The reaction of (R)-(-)-2-bromooctane with hydroxide is an S_N2 reaction and takes place with *inversion of configuration*:

$$\begin{array}{c} \text{CH}_{3} \\ \text{H} \ddot{\text{C}} \\ \text{C}_{6} \text{H}_{13} \end{array} \\ \begin{array}{c} \text{Er} : \\ \text{H} \ddot{\text{C}} \\ \text{C}_{6} \text{H}_{13} \end{array} \\ \end{array} \\ \begin{array}{c} \text{CH}_{3} \\ \text{H} \ddot{\text{C}} \\ \text{C}_{6} \text{H}_{13} \end{array} \\ \end{array} \\ \begin{array}{c} \text{CH}_{3} \\ \text{H} \ddot{\text{C}} \\ \text{C}_{6} \text{H}_{13} \end{array} \\ \end{array} \\ \begin{array}{c} \text{CH}_{3} \\ \text{H} \ddot{\text{C}} \\ \text{C}_{6} \text{H}_{13} \end{array} \\ \begin{array}{c} \text{CH}_{3} \\ \text{H} \ddot{\text{C}} \\ \text{C}_{6} \text{H}_{13} \end{array} \\ \end{array}$$

An inversion of configuration

(R)-(-)-2-Bromooctane

$$[\alpha]_D^{25} = -34.25^{\circ}$$

Enantiomeric purity = 100%

(S)-(1)-2-Octanol
$$[\alpha]_D^{25} = +9.90^\circ$$
 Enantiomeric purity = 100%

An S_N2 reaction has one transition state.

6.9 THE REACTION OF tert-BUTYL CHLORIDE WITH WATER: An S_N1 REACTION

6.10 A Mechanism for the S_N 1 Reaction

$$CH_{3} - C \stackrel{CH_{3}}{\overset{C}{\longrightarrow}} CI: \qquad \stackrel{slow}{\overset{slow}{\longleftarrow}}$$

$$CH_{3}$$

Aided by the polar solvent, a chlorine departs with the electron pair that bonded it to the carbon.

This slow step produces the 3° carbocation intermediate and a chloride ion. Although not shown here, the ions are solvated (and stabilized) by water molecules.

Step 3

A water molecule acting as a Lewis base donates an electron pair to the carbocation (a Lewis acid). This gives the cationic carbon eight electrons.

The product is a tert-butyloxonium ion (or protonated tert-butyl alcohol).

A water molecule acting as a Brønsted base accepts a proton from the tert-butyloxonium ion.

The products are tert-butyl alcohol and a hydronium ion.

the S_N1 mechanism: reaction of t-BuBr with hydroxide ion

stage 1: formation of the carbocation

stage 2: reaction of the carbocation

Solomon's organic Chemistry

6.10 S_N1 Reaction Energy Diagram

6.11 Carbocations

6.11 Stability of Carbocations

Rank the following carbocations in order of increasing stability:

PRACTICE PROBLEM 6.7 Rank the following carbocations in order of increasing stability:

(a)

(c) +

6.12 The Stereochemistry of S_N1 Reaction

SOCIF = Thionyl chloride fluoride

18

6.12A Reactions That Involve Racemization

Reaction

Mechanism

Departure of the leaving group (assisted by hydrogen bonding with water) leads to the carbocation.

Step 2

Attack at either face:

The carbocation is an achiral intermediate. Because both faces of the carbocation are the same, the nucleophile can bond with either face to form a mixture of stereoisomers.

A racemic mixture of protonated alcohols results.

Mechanism

H₃CH₂C4

Additional solvent molecules (water) deprotonate the alkyloxonium ion.

The product is a racemic mixture.

50%

Racemic Mixtures:

CH₂CH₂CH₃

 \pm , 50: 50 enantiomeric mixtures

6.13 Factors Affecting the Rates of S_N1 and S_N2 Reactions

- \square A number of factors affect the relative rates of $S_N 1$ and $S_N 2$ reactions.
- **☐** The most important factors are:
- 1. the structure of the substrate,
- 2. the concentration and reactivity of the nucleophile (for $S_N 2$ reactions only),
- 3. the effect of the solvent, and
- 4. the nature of the leaving group.

6.13A 1. The Effect of the Structure of the Substrate: S_N 2 Reactions

TABLE 6.3 RELATIVE RATES OF REACTIONS OF ALKYL HALIDES IN S _N 2 REACTIONS			
Compound	Approximate Relative Rate		
CH ₃ X	30		
CH ₃ CH ₂ X	1		
(CH ₃) ₂ CHX	0.03		
(CH ₃) ₃ CCH ₂ X	0.00001		
(CH ₃) ₃ CX	~0		
	Compound CH_3X CH_3CH_2X $(CH_3)_2CHX$ $(CH_3)_3CCH_2X$		

Steric effects and relative rates in the S_N 2 reaction

Relative rate

- A steric effect is an effect on the relative rates caused by the space-filling properties of those parts of a molecule attached at or near the reacting site.
- Steric hindrance is when the spatial arrangement of atoms or groups at or near a reacting site of a molecule hinders or retards a reaction.

6.13A 1. The Effect of the Structure of the Substrate

Rates of solvolysis of alkyl chlorides in 50% aqueous ethanol at 44.6 °C

Compound	Relative rate	Comments	a
CI	0.07	primary chloride: probably all S _N 2	a
1			С
	0.12	secondary chloride: can do S _N 1 but not very well	С
CI			c
			r
CI	2100	tertiary chloride: very good at S _N 1	0
0 1			С
CI	1.0	primary but allylic: S _N 1 all right	n
			S
CI	91	allylic cation is secondary at one end	p
1			7
	130000	allylic cation is tertiary at one end: compare with 210	0 for o
CI		simple tertiary	0
	7700	primary but allylic and benzylic	S
Ph' CI	7700	printary but dilytic dila benzyiic	S

The table below shows the rates of solvolysis (i.e. a reaction in which the solvent acts as the nucleophile) in 50% aqueous ethanol for substituted allylic chlorides compared with benzylic chlorides and simple alkyl chlorides. The values give you an idea of the relative reactivity towards substitution of the different classes of compound. These rates are mostly $S_N 1$, but there will be some $S_N 2$ reactivity with the primary compounds.

The primary factor that determines the reactivity of organic substrates in an $S_N 1$ reaction is the relative stability of the carbocation that is formed.

Stable carbocations as intermediates in $S_N 1$ reactions

		T 4	
Type of cations		Example 1	Example 2
simple alkyl	•	tertiary (good)	secondary (not so good)
	H ₃ C CH ₃	t-butyl cation Me	i-propyl cation Me
	stable enough to observe	$Me_3C^{\oplus} = Me - \bigoplus$	$Me_2CH^{\oplus} = H - \bigoplus_{\bullet}$
		Me	Me
conjugated		allylic	benzylic
		⊕ ↔ ⊕	H ⊕ H
heteroatom-stabili	ized	oxygen-stabilized (oxonium ions)	nitrogen-stabilized (iminium ions)
		$ \begin{array}{c} \oplus \\ \text{MeO} & \xrightarrow{\text{H}} \\ \text{H} & \xrightarrow{\text{H}} \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

emistr

6.13B The Effect of the Concentration and Strength of the Nucleophile

- ☐ The rate of an S_N 1 reaction is unaffected by either the concentration or the identity of the nucleophile, because the nucleophile does not participate in the rate-determining step of an S_N 1 reaction.
- \Box The rate of an S_N 2 reaction depends on both the concentration and the identity of the attacking nucleophile.
- The relative strengths of nucleophiles can be correlated with three structural features:
 - 1. A negatively charged nucleophile is always a more reactive nucleophile than its conjugate acid. Thus HO⁻ is a better nucleophile than H₂O and RO⁻ is better than ROH.
 - 2. In a group of nucleophiles in which the nucleophilic atom is the same, nucleophilicities parallel basicities. Oxygen compounds, for example, show the following order of reactivity:

$$RO^- > HO^- \gg RCO_2^- > ROH > H_2O$$

This is also their order of basicity. An alkoxide ion (RO⁻) is a slightly stronger base than a hydroxide ion (HO⁻), a hydroxide ion is a much stronger base than a carboxylate ion (RCO₂⁻), and so on.

3. When the nucleophilic atoms are different, nucleophilicities may not parallel basicities. For example, in protic solvents HS⁻, N≡C⁻, and I⁻ are all weaker bases than HO⁻, yet they are **stronger nucleophiles** than HO⁻.

- Nucleophilicity versus Basicity While nucleophilicity and basicity are related, they are not measured in the same way.
- Basicity, as expressed by pKa, is measured by the position of an equilibrium in an acid-base reaction.
- Nucleophilicity is measured by the relative rates of substitution reactions.

Effect of the Nucleophile on S_N^2 reactions

Relative rates (water = 1) of reaction with MeBr in EtOH

Nucleophile X ⁻	pK_a of HX	Relative rate
HO-	15.7	1.2 × 10 ⁴
PhO-	10.0	2.0×10^{3}
AcO-	4.8	9×10^{2}
H ₂ O	-1.7	1.0
CIO ₄	-10	0

Relative rates (water = 1) of reaction with MeBr in EtOH

Nucleophile X-	pK _a of HX	Relative rate
PhS-	6.4	5.0×10^{7}
PhO-	10.0	2.0×10^{3}

Typically, nucleophilic power towards saturated carbon goes like this:

$$I^- > Br^- > CI^- > F^-$$

 $RSe^- > RS^- > RO^-$
 $R_3P: > R_3N:$

Summary of the characteristics of the two types of nucleophile.

Soft nucleophiles Y
large
neutral
not basic (HY strong acid)
high-energy HOMO
like to attack saturated carbon
such as RS ⁻ , I ⁻ , R ₃ P

Nucleophiles in substitution reactions

Relative rates (water = 1) of reaction of nucleophiles with MeBr in EtOH

nucleophile	F-	H ₂ O	Cl-	Et ₃ N	Br-	PhO-	EtO-	-	PhS-
relative rate	0.0	1.0	1100	1400	5000	2.0×10^{3}	6×10^4	1.2×10^{5}	5.0×10^{7}

6.13C Solvent Effects in $S_N 2$ and $S_N 1$ Reactions

- S_N 2 reactions are favored by **polar aprotic solvents** (e.g., acetone, DMF, DMSO).
- S_N1 reactions are favored by **polar protic solvents** (e.g., EtOH, MeOH, H₂O).
- ☐ Important reasons for these solvent effects have to do with
- (a) minimizing the solvent's interaction with the nucleophile in S_N^2 reactions, and
- (b) facilitating ionization of the leaving group and stabilizing ionic intermediates by solvents in $S_N 1$ reactions.
- □ Polar Aprotic Solvents Favor S_N2 Reactions
- ☐ An aprotic solvent does not have hydrogen atoms that are capable of hydrogen bonding.
- \square Polar, aprotic solvents such as acetone, DMF, DMSO, and HMPA are often used alone or as co-solvents for S_N^2 reactions.

formamide)

phosphoramide)

The rates of $S_{\rm N}2$ reactions generally are vastly increased when they are carried out in polar aprotic solvents. The increase in rate can be as large

as a million fold. size \mathbf{F}^{-} Halide nucleophilicity in aprotic solvents Cl^{-} Br⁻ Sodium iodide showing the sodium cation solvated by dimethylsulfoxide molecules.

Acetone also assists this reaction because it dissolves sodium iodide but not the sodium bromide product, which precipitates from solution and prevents bromide acting as a competing nucleophile.

Beauty of Solvents in a reaction

increasing

Polar Protic Solvents Favor $S_N 1$ Reactions

Hydrogen bonding with the substrate

Departure of the leaving group is assisted by hydrogen bonding in the transition state

Carbocation intermediate

Solvated leaving group

TABLE 6.4 DIELECTRIC CONSTANTS OF COMMON SOLVENTS

However, Protic Solvents Hinder the Nucleophile in $S_N 2$ Reactions

	Solvent	Formula	Dielectric Constant
Increasing solvent polarity	Water Formic acid Dimethyl sulfoxide (DMSO) N,N-Dimethylformamide (DMF) Acetonitrile Methanol Hexamethylphosphoramide (HMPA) Ethanol Acetone Acetic acid	H_2O HCO_2H CH_3SOCH_3 $HCON(CH_3)_2$ $CH_3C \equiv N$ CH_3OH $[(CH_3)_2N]_3P = O$ CH_3CH_2OH CH_3COCH_3 CH_3CO_2H	80 59 49 37 36 33 30 24 21 6

Halide nucleophilicity in protic solvents

- The extent of hydrogen bonding with the nucleophile varies with the identity of the nucleophile. Hydrogen bonding with a small nucleophilic atom is stronger than to a larger nucleophilic atom among elements in the same group (column) of the periodic table.
- For example, fluoride anion is more strongly solvated than the other halides because it is the smallest halide anion and its charge is the most concentrated. Hence, in a protic solvent fluoride is not as effective a nucleophile as the other halide anions. Iodide is the largest halide anion and it is the most weakly solvated in a protic solvent; hence, it is the strongest nucleophile among the halide anions.
 - In a protic solvent, the general trend in *nucleophilicity* among the halide anions is as follows:

$$| - > Br - > Cl - > F -$$

Halide nucleophilicity in protic solvents

The same effect holds true when we compare sulfur nucleophiles with oxygen nucleophiles. Sulfur atoms are larger than oxygen atoms and hence they are not solvated as strongly in a protic solvent. Thus, thiols (R-SH) are stronger nucleophiles than alcohols, and RS⁻ anions are better nucleophiles than RO⁻ anions.

Polarizability vs Nucleophilicity

- The greater reactivity of nucleophiles with large nucleophilic atoms is not entirely related to solvation.
- Larger atoms have greater polarizability (their electron clouds are more easily distorted); therefore, a larger nucleophilic atom can donate a greater degree of electron density to the substrate than a smaller nucleophile whose electrons are more tightly held.

The relative nucleophilicities of some common nucleophiles in protic solvents are as follows:

$$HS^- > N \equiv C^- > I^- > HO^- > N_3^- > Br^- > CH_3CO_2^- > CI^- > F^- > H_2O$$

Relative nucleophilicity in protic solvents

Why Is the Nucleophilicity Affected by the Solvent?

It is easier, therefore, to break the ion—dipole interactions between an *iodide ion* (a weak base) and the solvent than between a fluoride ion (a stronger base) and the solvent. In a protic solvent, therefore, an iodide ion, even though it is a weaker base, is a better nucleophile than a fluoride ion.

Relative Nucleophilicity toward CH_3I in Methanol $CH_3S^- > I^- > {}^-C \equiv N > CH_3O^- > Br^- > NH_3 > CI^- > F^- > CH_3OH$ increasing nucleophilicity

Fluoride ion would be an even better nucleophile in a nonpolar solvent (such as hexane) because there would not be any ion—dipole interactions between the ion and the nonpolar solvent. Ionic compounds, however, are insoluble in nonpolar solvents, but they dissolve in aprotic polar solvents. Fluoride ion is also a good nucleophile in the gas phase, where there are no solvent molecules.

Nucleophilicity Is Affected by Steric Effect

Nucleophilicity is *affected* by steric effects because a bulky nucleophile cannot approach the back side of a carbon as easily as a less sterically hindered nucleophile can. Basicity, on the other hand, is relatively *unaffected* by steric effects because a base removes an unhindered proton.

Therefore, *tert*-butoxide ion, with its three methyl groups, is a poorer nucleophile than ethoxide ion, even though *tert*-butoxide ion is a stronger base (pK_a of *tert*-butanol = 18) than ethoxide ion (pK_a of ethanol = 16).

Rank the following species from best nucleophile to poorest nucleophile in an aqueous solution:

$$O$$
 $CH_3S^- > HO^- > O^- > CH_3CO^- > CH_3CO^- > CH_3S^- > O^- > CH_3CO^- >$

6.13D The Nature of the Leaving Group

S_N1 Reaction (Rate-Limiting Step)

Transition state

S_N2 Reaction

Among the halogens, an iodide ion is the best leaving group and a fluoride ion is the poorest:

$$I^- > Br^- > CI^- \gg F^-$$

The order is the opposite of the basicity in an aprotic solvent:

$$F^- \gg CI^- > Br^- > I^-$$

Other weak bases that are good leaving groups, are

alkanesulfonate ions, alkyl sulfate ions, and the p-

An alkanesulfonate ion

An alkyl sulfate ion

p-Toluenesulfonate ion

toluenesulfonate ion:

These anions are all the conjugate bases of very strong acids.

The trifluoromethanesulfonate ion $(CF_3SO_3^-, commonly called the triflate ion) is one of the best leaving groups known to chemists. It is the conjugate base of <math>CF_3SO_3H$, an exceedingly strong acid (pKa \sim -5 to -6):

O |-O-S-CF₃

Triflate ion (a "super" leaving group)

Nu: $\longrightarrow R \stackrel{\sim}{\longrightarrow} C - H$ $\longrightarrow R - Nu + \stackrel{\sim}{:} \stackrel{\sim}{\bigcirc} - H$ This reaction does not take place because the

This reaction does not take place because the leaving group is a strongly basic hydroxide ion.

Strongly basic ions rarely act as leaving groups.

Quantifying the rates of S_N1 and S_N2 reactions

Rates of S_N1 and S_N2 rates for simple alkyl bromides

Rates of S_N1 and S_N2 reactions of simple alkyl bromides

alkyl bromide type	CH₃Br methyl	CH₃CH₂Br primary	(CH₃)₂CHBr secondary	(CH₃)₃CBr tertiary
k ₁ (s ⁻¹)	0.6	1.0	26	108
$10^5 k_2 (M^{-1} dm^{-3} s^{-1})$	13,000	170	6	0.0003
relative k_1	2×10^{-2}	4×10^{-2}	1	4×10^{6}
relative k_2	6×10^{3}	30	1	5 × 10 ⁻⁵

6.14 Organic Synthesis: Functional Group Transformations Using S_N2 Reaction

Keeping in mind that carbocations have a trigonal planar structure, (a) write a structure for the carbocation intermediate and (b) write structures for the alcohol (or alcohols) that you would expect from reaction of iodocyclohexane shown on the right side in water:

Can you all try this?