NATIONAL UNIVERSITY OF COMPUTER AND EMERGING SCIENCES LAHORE CAMPUS

<u>Differential Equations -MT 1006 Outline according to OBE</u> <u>Spring-2023</u>

DEPARTMENT OF SCIENCES & HUMANITIES

Department	Department of Computer Science	Dept. Code	CS, DS, SE	
Course Title	Differential Equations	Course Code	MT1006	
Pre-requisite(s)	Calculus & Analytical Geometry	Credit Hrs.	3	
Moderator				
Course Instructor(s)				
Note:	It is a tentative schedule of the course. It may vary (if required).			

Course Objective	The objective is to impart training to the students in this important branch of		
	Mathematics. Students are expected to learn, Convergence/Divergence of Series,		
	system of linear equations & Differential Equations arising from different Physical		
	systems. Attempt will be made to introduce the students how to solve Linear		
	systems, Ordinary & Partial Differential Equations using different techniques.		
	Concept of Fourier Series will also be explained for PDE's solution.		

No.	Assigned Program Learning Outcome (PLO)	Level	Tool
01	An ability to identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural science and engineering sciences.	R	

I = Introduction, R = Reinforcement, E = Evaluation.

A = Assignment, Q = Quiz, M = Midterm, F = Final, LA = Linear Algebra, DE = Differential Equation.

No.	Course Learning Outcome (CLO) Statements	Tools
01	Solution of infinite sequences & series using different methods.	Q1, A1, M1, F
02	• Introduce the basic concepts, notions, Formulation of the DEs with applications	A2, Q2

National University of Computer & Emerging Sciences

03	• Solution of some basic ODE's like Linear, Exact, Bernouli etc.		A2, Q2, M2
04	• Existence/Independence of solutions of Initial/Boundary value problems for second & higher order ODE's through different techniques.		M2, A3, Q3, F
05	•	Solution of PDE's by Fourier series using orthogonal set of functions.	M2, F

Text Book(s)	Title	 Thomas Calculus (14th Edition) A first course in Differential Equations with modeling applications (9th Edition) Differential Equations with boundary-value problems. 	
	Authors	G. B. Thomas / Dennis G. Zill (DE)	
Ref. Book(s)	Title	Elementary Differential Equations (DE) with applications.	
	Author	C. H. Edwards. David, E.	

Week	Course Contents	Chapter	CLO
	Infinite Sequences and Series		
01	10.1 Introduction to Sequences	10	01
	10.2 Infinite series	10	01
02	10.3 The integral test	10	01
02	10.4 Comparison tests	10	01
0.2	10.5 Absolute convergence; The ratio and root test	4.0	0.1
03	10.6 Alternating series and conditional convergence Ouiz#1	10	01
	10.7 Power series		
04	10.8 Taylor and Maclaurin series	10	01
	1st Order Differential Equations:		
	2.1 Basic concepts, formation and solution of differential	2	02
05	equations by direct integration and by separating the variables.		
	Direction Fields.		
	2.2 Separable variables.		
06	Sessional Exam-I		
	2.3 Linear Equations.		
	2.4 Exact Equations.	02	03
	Solution by Substitution		03
07-09	2.5 Equations (Homogeneous & Bernoulli's DE) reducible to linear	03	
	equations & Riccati.		
	3.1 01st order ODE's arising from Real life problems.		
	3.3 01st order ODE's arising from Real life problems.		
	2 nd & Higher Order Differential Equations		
10-12	4.1 Initial and Boundary value problem, Existence of a unique solution. Homogeneous DEs', Linear Dependence and		
10 12	Independence. Wronskian and non-homogeneous Linear		
	Differential Equation.	04	04

National University

of Computer & Emerging Sciences

	4.2 Reduction of order.		
	Quiz#2		
	4.3 Homogeneous Linear Equations with Constant Coefficients.		
	4.4 Undetermined coefficients-Superposition approach.		
	4.5 The operator D, Inverse operator 1/D, Solution of differential equations by operator D methods, Special cases.		
	4.5 Undetermined coefficients-Annihilator approach.		
	4.6 Variation of parameters.		
	4.7 Cauchy Euler equation.		
	Sessional Exam -II		
13	Orthogonal Functions and Fourier Series 11.1 Orthogonal Functions 11.2 Fourier Series 11.3 Fourier Cosine & Sine Series (Periodic functions and expansion of periodic functions in Fourier series and Fourier coefficients	12	05
	Quiz#3		
14-15	Partial Differential Equations 12.1 Basic concepts and formation of partial differential equations. Linear homogeneous partial differential equations and relations to ordinary differential equations.	11	
14-13	12.2 Classical Equations & Boundary Value Problems.12.3 Heat Equation12.4 Wave Equation12.5 Laplace Equation		05
	Series Solutions of Linear Equations: (If time permits)	6	optional
	6.2 Solution about ordinary point & Singular points.		
	FINAL EXAM		

Evaluation Scheme & Marks Distribution: Relative grading scheme will be used for final assignment of grades. Marks distribution is given below.

Assessment Tools	Total No.	Weightage	
Quizzes	3 (at least)	10%	
Assignments	3(at least)	10%	
Sessional Exam	2	30%	
Final Exam	1	50%	

Important links:

 $\underline{\text{https://www.youtube.com/watch?v=8yEE2YURbAo\&list=PLIXfTHzgMRUK56vbQgzCVM9vxjKxc8DCr\&index=31}}$