

LLM4DyG: Can Large Language Models Solve Spatial-Temporal Problems on Dynamic Graphs

Zeyang Zhang¹, Xin Wang^{1,2}, Ziwei Zhang¹, Haoyang Li¹, Yijian Qin¹, Wenwu Zhu^{1,2}

Department of Computer Science and Technology, Tsinghua University¹ BNRist²

(1) Existing works of LLMs for static graphs: ignore the rich temporal information in ubiquitous dynamic graphs

(2) Existing works for dynamic GNNs: unable to tackle tasks with a unified model

(3) The first study to evaluate LLMs' spatial-temporal understanding abilities on dynamic graphs

4 However, we face several challenges

- How to assess temporal and structural information separately and simultaneously?
- How to investigate the complex and mixed interactions of spatial and temporal dimensions?
- How to design prompts to consider spatial-temporal information in natural language?

(5) Our main contribution

- We propose LLM4DyG: nine specially designed tasks for LLMs with controllable environments and data generation.
- We analyze the impacts of various factors: including different data generators, data statistics, prompting techniques, and LLMs on the model performance.
- We propose Disentangled Spatial-Temporal Thoughts (DST2) prompt method for to enhance LLMs' spatial-temporal understanding abilities.

Contact Information

Zeyang Zhang, Final-year Ph.D. in Tsinghua University zy-zhang20@mails.tsinghua.edu.cn https://zzythu.com

Code (Easy to Use!): https://github.com/wondergo2017/LLM4DyG

Framework: LLM4DyG

1 LLM4DyG Benchmark & Pipeline with controlled environments and data

2 Designed Tasks: When, What, Whether spatial-temporal patterns take place

dynamic graph with the edges [(1, 2, 0), (0, 1, 1), (3, 4, 4)]. When are node 0 and node 1 linked? Answer: [0, 2]

Question: Given an undirected dynamic graph with the edges [(1, 2, 0), (0, 1, 1), (2, 3, 2), (3, 4, 4)]. When are node 0 and node 3 first connected? Answer: 2

Question: Given an undirected dynamic graph with the edges [(1, 2, 0), (0,1, 1), (2, 0, 2), (3, 4, 4)]. When are node 0, 1 and 2 first close the triad?

Question: Given an undirected dynamic

What neighbors in periods

graph with the edges [(1, 2, 0), (2, 0, 1), (2, 3, 2)]. What nodes are linked with node 2 at or after time 1? Answer: [0, 3]

Question: Given an undirected dynamic graph with the edges [(1, 2, 0), (0,1, 1), (2, 0, 2), (3, 4, 4)]. Did node 0, 1 and 2 form a closed triad? Answer: Yes

graph with the edges [(1, 2, 1), (0,1, 1), (3, 4, 4)]. Did nodes 0, 1, 2 form a chronological path? Answer: Yes

Question: Given an undirected dynamic graph with the edges [(1, 2, 0), (2, 0, 1), (2, 3, 2)]. Find a chronological path starting from node 1. Answer: [1, 2, 3]

Question: Given an undirected dynamic graph with the edges [(2, 0, 2), (3,4, 4), (1, 2, 0), (0, 1, 1)]. Sort the edges by time from earliest to latest. Answer: [(1, 2, 0), (0, 1, 1), (2, 0, 2), (3, 4, 4)].

(3) Disentangled Spatial-Temporal Thoughts (DST2)

Task	Temporal			Spatial			Spatial-Temporal		
Prompting methods	when link	when connect	when tclosure	neighbor at time	neighbor in periods	check tclosure	check tpath	find tpath	sort edge
one-shot prompt	33.7±2.1	$77.0_{\pm 2.9}$	73.0±1.6	$34.0{\scriptstyle\pm1.4}$	$15.7_{\pm 4.2}$	66.7±4.5	63.7±2.6	78.3±6.0	29.3±4.0
v1: Think (about) nodes and then time	$40.0{\scriptstyle\pm1.6}$	$77.0{\scriptstyle\pm4.1}$	$74.0 {\scriptstyle \pm 1.4}$	$34.0 {\scriptstyle \pm 0.8}$	15.0 ± 4.2	$69.3 \!\pm\! 1.7$	61.0 ± 3.3	79.0 \pm 7.5	30.0 ± 3.6
v2: Think (about) time and then nodes	37.3 ± 2.6	76.7 ± 3.4	$\underline{73.3{\scriptstyle\pm0.5}}$	31.7 ± 1.9	15.7 ± 3.4	67.0 ± 2.9	61.3 ± 1.9	79.0 \pm 7.5	30.7 ± 3.9
v3: Pick nodes and then time	$59.3_{\pm 2.1}$	$\textbf{77.0}{\scriptstyle\pm2.4}$	$68.0_{\pm 0.8}$	35.0 ± 2.9	16.7 ± 4.7	65.0 ± 3.7	62.3 ± 2.9	$78.0{\scriptstyle\pm5.4}$	$30.0_{\pm 2.9}$
v4: Pick time and then nodes	$\textbf{76.7} {\scriptstyle\pm1.7}$	76.3 ± 3.9	68.7 ± 0.9	$\textbf{35.7} {\scriptstyle \pm 2.5}$	15.3 ± 3.3	65.3 ± 2.9	$\underline{63.3 \pm 2.6}$	$78.3{\scriptstyle\pm5.8}$	29.3 ± 2.9

Results and Analyses

Task	Temporal				Spatial			Spatial-Temporal		
Data	model	when link	when connect	when tclosure	neighbor at time	neighbor in periods	check tclosure	check tpath	find tpath	sort edge
N = 5	GPT-3.5 Random Δ	68.0±2.8 3.2 +64.8	97.7 _{±0.9} 20.0 +77.7	52.7 _{±2.4} 20.0 +32.7	86.0±2.2 3.2 +82.8	42.3±1.7 3.2 +39.1	69.0±2.2 50.0 +19.0	58.7±2.1 50.0 +8.7	79.0±4.1 9.3 +69.7	78.0±1.4 13.1 +64.9
N = 10	GPT-3.5 Random Δ	33.7±2.1 3.2 +30.4	77.0±2.9 20.0 +57.0	73.0±1.6 20.0 +53.0	34.0±1.4 0.1 +33.9	15.7±4.2 0.1 +15.6	66.7±4.5 50.0 +16.7	63.7±2.6 50.0 +13.7	78.3±6.0 6.7 +71.6	29.3±4.0 0.0 +29.3
N = 20	GPT-3.5 Random Δ	40.3±1.7 3.2 +37.1	17.7±4.2 20.0 -2.3	63.3±0.9 20.0 +43.3	17.7±1.7 0.0 +17.7	2.0±0.8 0.0 +2.0	64.3±7.3 50.0 +14.3	57.0±2.2 50.0 +7.0	85.0±0.8 7.3 +77.7	0.0±0.0 0.0 0.0
Avg.	GPT-3.5 Random Δ	47.3±1.2 3.2 +44.1	64.1±0.3 20.0 +44.1	63.0 _{±1.0} 20.0 +43.0	45.9±3.1 1.1 +44.8	20.0±0.8 1.1 +18.9	66.7±2.9 50.0 +16.7	59.8±0.8 50.0 +9.8	80.8±0.3 7.8 +73.0	35.8±2.0 4.4 +31.4

Obs.1. LLMs show preliminary spatial-temporal abilities

Obs.2. Tasks are increasing difficulty for LLMs as the graph size grows.

Obs.3. The difficulties are not sensitive to the time span but sensitive to the graph density

Obs. 4. Temporal information adds additional difficulties compared to static graphs.

5		ial-Tempo	Snat		Spatial			Temporal		Task
•		lai-Tellipo	- Spai		<u> </u>			Temporar		
_	sort edge	find tpath	check tpath	check tclosure	neighbor in periods	neighbor at time	when tclosure	when connect	when link	Prompt Method
Obs.	33.7 ± 7.4	56.3 ± 9.0	$66.0{\scriptstyle \pm 5.4}$	$\textbf{70.7} \!\pm\! \textbf{1.7}$	4.3±2.1	$\textbf{36.0} {\scriptstyle \pm 4.3}$	$68.0{\scriptstyle \pm 0.8}$	$73.3_{\pm 2.1}$	$2.3_{\pm 0.5}$	zero-shot
OD5.	$29.3_{\pm 4.0}$	$78.3{\scriptstyle\pm6.0}$	$63.7{\scriptstyle\pm2.6}$	66.7 ± 4.5	$\textbf{15.7} \!\pm\! 4.2$	$34.0 {\scriptstyle \pm 1.4}$	$73.0{\scriptstyle\pm1.6}$	$77.0 {\scriptstyle \pm 2.9}$	$\textbf{33.7} \scriptstyle{\pm 2.1}$	one-shot
consi	$44.7 \!\pm\! 0.5$	$58.0_{\pm 9.1}$	62.3 ± 2.9	$55.0{\scriptstyle\pm1.4}$	4.3 ± 2.6	$32.0{\scriptstyle \pm 0.8}$	$70.0{\scriptstyle\pm1.6}$	$58.3 {\scriptstyle\pm1.2}$	1.0 ± 0.8	zero-shot COT
001131	$24.7 {\scriptstyle \pm 2.4}$	$\textbf{81.3} {\scriptstyle \pm 2.6}$	$57.7{\scriptstyle\pm3.4}$	57.7 ± 2.1	13.0 ± 3.6	$27.7_{\pm 1.9}$	$80.0 \!\pm\! 1.6$	$76.0{\scriptstyle\pm2.4}$	$10.3{\scriptstyle\pm0.5}$	one-shot COT

Obs. 6. Training on codes usually helps

Generation Model	ER Model	SB Model	FF Model
zero-shot	$2.3_{\pm 0.5}$	7.7 ±1.7	5.3 ±2.5
one-shot	$33.7 {\scriptstyle \pm 2.1}$	46.0 ± 2.9	$48.0 {\scriptstyle\pm7.1}$
zero-shot COT	1.0 ± 0.8	5.7 ± 3.1	$2.0_{\pm 1.6}$
one-shot COT	$10.3{\scriptstyle\pm0.5}$	$15.3{\scriptstyle\pm0.9}$	13.0 ± 2.9

5. General prompting techniques do not sistently help