平成 28 年度 を 定期末試験問題・解答

試験実施日 平成 28 年 7月 25 日 4 時限

出題者記入欄

試 験 科 目 名 微分方程式		出題者名佐藤弘康		
試 験 時 間 <u>60</u> 分	平常授業	美日<u>月</u>曜日<u>4</u>時限		
持ち込みについて 🗓	小川	可、不可のいずれかに○印をつけ 持ち込み可のものを○で囲んでください		
教科書 ・ 参考書 ・ ノート その他 ((手書きのみ	、・コピーも可)・電卓 ・辞書)		
本紙以外に必要とする用紙 解答用紙 <u>0</u> 枚 計算用紙 <u>0</u> 枚				
通信欄				

受験者記入欄

学	科	学 年	クラス	学籍番号	氏	名

採点者記入欄

	317777 [[[]]]
採点欄	評価

微分方程式

$$xyy' - (x^2 + y^2) = 0 (*)$$

について次の間に答えなさい.

(1) 微分方程式 (*) は y' = f(z), $z = \frac{y}{x}$ と表すことができる.この関数 f(t) を求めなさい.

(2) 適当な変数変換により、(*) は変数分離形

$$xzz' = 1 \tag{**}$$

に変換されることを示しなさい.

(3) 変数分離形微分方程式 (**) の一般解を求めなさい.

(4) (*) の一般解を答えなさい.

2微分方程式

$$(x^2 + 3xy) dx + (3x^2 - xy) dy = 0 (\dagger)$$

について、次に問に答えなさい。

(1) (†) が完全でないことを示しなさい.

(2) $g = \frac{1}{x}$ が (†) の積分因子であることを示しなさい.

(3) (†) の一般解を求めなさい.

3 次の定数係数線形同次微分方程式の一般解を求めなさい. | 5 定数係数線形微分方程式

$$(1) \ y'' - 2y' - 8y = 0$$

$$(2) \ y'' - 8y' + 16y = 0$$

$$(3) y'' + 2y' + 5y = 0$$

$$\boxed{f 4}$$
 $\frac{1}{D^2-2D-3}e^{3x}$ を求めなさい.

$$y'' - 6y' + 9y = 2x - 3$$

の一般解を求めなさい.

6 ある定数係数線形微分方程式の一般解が

$$y = c_1 e^{3x} \cos x + c_2 e^{3x} \sin x + 2x \cos x + e^{2x} + x^2$$

であるとする(ただし、 c_1,c_2 は任意定数)。この微分方程式を求めなさい。