Mathematik III - Blatt 6

NAME

November 24, 2015

Aufgabe 1 - 3 Punkte

Bestimmen Sie Kern und Bild (jeweils durch Angabe einer Basis) der linearen Abbildung $\alpha : \mathbb{R}^3 \to \mathbb{R}^3$, die durch folgende Angaben definiert ist:

 $\alpha(e_1) = \begin{pmatrix} -1\\2\\2 \end{pmatrix}, \alpha(e_2) = \begin{pmatrix} 3\\0\\6 \end{pmatrix}, \alpha(e_3) = \begin{pmatrix} 5\\-4\\2 \end{pmatrix}$

Aufgabe 2 - 3 Punkte

Gegeben sei die Abbildung $\varphi: \{f: \mathbb{R} \to \mathbb{R}: f \text{ differenzierbar}\} \to \text{Abb}(\mathbb{R}, \mathbb{R}), f \mapsto f'(\text{Ableitung}).$

- (a) Zeigen Sie, dass es sich bei $\{f: \mathbb{R} \to \mathbb{R}: f \text{ differenzierbar}\}$ um einen Unterraum von Abb (\mathbb{R}, \mathbb{R}) handelt.
- (b) Zeigen Sie, dass Abbildung φ linear ist.
- (c) Bestimmen Sie den Kern von φ

Aufgabe 3 - 7 Punkte

Seien U_1, U_2 Untervektorräume des Vektorraums V. Dann ist V die direkte Summe von U_1 und U_2 genau dann, wenn $U_1 + U_2 = V$ und $U_1 \cap U_2 = \{0\}$ gilt. Schreibe $V = U_1 \bigoplus U_2$

- (a) Zeigen Sie, dass $\dim(U_1 \bigoplus U_2) = \dim(U_1) + \dim(U_2)$ gilt und dass sich jeder Vektor aus $U_1 \bigoplus U_2$ eindeutig als Summe eines Vektors aus U_1 und eines Vektors aus U_2 darstellen lässt.
- (b) Die Projektion: $\pi U_1 \bigoplus U_2 \to U_1$ ist definiert durch $u_1 + u_2 \to u_1$, für alle $u_1 \in U_1, u_2 \in U_2$. Zeigen Sie, dass π eine lineare Abbildung ist und bestimmen Sie ihren Rang und ihren Kern.
- (c) Stellen Sie die Wirkung der Projektion π bzgl. der Unterräume $U_1 = \langle e_1 \rangle$, $U_2 = \langle e_2 \rangle \subseteq \mathbb{R}^2$ graphisch dar. $(e_1, e_2 \text{ kanonische Basis von } \mathbb{R}^2)$
- (d) Seien $U_1 = \langle (0,2,3)^t, (1,2,4)^t \rangle_{\mathbb{R}}$ und $U_2 = \langle (1,1,1)^t \rangle_{\mathbb{R}}$. Zeigen Sie, dass $\mathbb{R}^3 = U_1 \bigoplus U_2$ gilt. Sei $\pi : U_1 \bigoplus U_2 \to U_1$ definiert wie in (b). Bestimmen Sie $\pi((1,0,0)^t)$.
- (e) Finden Sie zu U_1 in (c) einen Untervektorraum $U_2' \neq U_2$ mit $\mathbb{R}^3 = U_1 \bigoplus U_2'$ und bestimmen Sie $\pi'((1,0,0)^t)$ für die Projektion π' bzgl. dieser direkten Summe.

Aufgabe 4 - 4 Punkte

Sei $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ die Abbildung, die die Vektoren des \mathbb{R}^2 zuerst um 90° gegen den Uhrzeigersinn dreht, dann um den Faktor 2 streckt und dann and er x-Achse spiegelt.

- (a) Bestimmen Sie die Bilder der kanonischen Basisvektoren des \mathbb{R}^2
- (b) Finden Sie eine Matrix A mit $\varphi(v) = A \cdot v$ für alle $v \in \mathbb{R}^2$
- (c) Entscheiden Sie, ob φ bijektiv ist.

Aufgabe 5 - 3 Punkte

Sei
$$A = \begin{pmatrix} 3 & 0 & 1 & 2 \\ 0 & 9 & 3 & 2 \\ 3 & 9 & 2 & 0 \\ 6 & 3 & 3 & 8 \end{pmatrix}$$

Bestimmen Sie A für

- (a) $K = \mathbb{Z}_2$
- (b) $K = \mathbb{Z}_5$
- (c) $K = \mathbb{Q}$