Funktionen mehrerer Variablen

FS 2024 Prof. Dr. Bernhard Zgraggen Autoren:

Laurin Heitzer, Flurin Brechbühler

Version:

0.1.20240704

 $\underline{https://github.com/P4ntomime/funktionen-mehrerer-variablen}$

Inhaltsverzeichnis

Dimensionen, Schnitte und Kontouren			5	Koordinatensysteme
	1.1 Dimensionen	2		5.1 2D Koordinatensysteme
	1.2 Schnitte	2		5.2 3D Koordinatensysteme
	1.3 Kontouren, Levelsets, Niveaulinien, Höhenlinen,	2	6	Integration
			"	6.1 Allgemeines
	Ableitungen, DGL und Gradienten (bi-variat)	3		6.2 Normalbereiche
	2.1 Partielle Ableitung	3		6.3 Satz von Fubini (Satz von Tonelli)
	2.2 Gradient (Nabla-Operator)	3		6.4 Erster Metrischer Tensor
	2.3 Totale Ableitung	3		6.5 Längenintegrale
	2.4 Linearapproximation (Tangential approximation)	3		6.6 (Ober-)Flächenintegrale
	2.5 DGL	3		6.7 Volumenintegrale
	2.6 Richtungselement (Tangentiallinie an Kontouren)	3		6.8 Anwendungsformeln 2D (Doppelintegrale)
	2.7 Gradientenfeld \(\perp \) Kontouren \(\cdot\).	3		6.9 Anwendungsformeln 3D (Dreifachintegrale)
	2.8 ?Wie heisst dieser Abschnitt?	3	7	Vektoranalysis
	2.9 Richtungs-Ableitung	3		7.1 Vektorfelder
				7.2 Gradient
,	Extrema von Funktionen finden	4		7.3 Vektorgradient
	3.1 Extrema von Funktionen zweier Variablen finden	4		7.4 Divergenz
	3.2 Extrema von Funktionen mehrerer Variablen finden	4		7.5 Laplace Operator Delta
	3.3 Lokales oder Globales Extremum	4		7.6 Rotation eines Vektorfelds (rot, curl)
	3.4 Extrema von Funktionen zweier Variablen mit NB finden	4		7.7 Rechenregeln mit Nabla
	3.5 Extrema von Funktionen mehrerer Variablen mit NB finden	4		7.9 Integralsatz von Gauss
				7.10 Poisson-Gleichung (Laplace-Gleichung)
ļ	Support Vector Machine (SVM)	5		7.11 Integralsatz von Stokes
	4.1. Lineare Trennbarkeit von Daten	5		7.12 Anwendungen: Maxwell-Gleichungen

1 Dimensionen, Schnitte und Kontouren

1.1 Dimensionen

$$f: \mathbb{D}_f(\subseteq \mathbb{R}^m) \longrightarrow \mathbb{W}_f(\subseteq \mathbb{R}^n)$$

m Anzahl Dimensionen von \mathbb{D}_f , wobei $\mathbf{m} \in \mathbb{N}$

n Anzahl Dimensionen von \mathbb{W}_f , wobei $n \in \mathbb{N}$

 \vec{f} wenn Output vektoriell

⚠ Variablen sind abhängig von einander!

Multi-Variat:

f ist "Multi-Variat", wenn:

f ist nicht "Multi-Variat", wenn:

• Input mehrdimensional ist

• Input und Output Skalare sind

• Output mehrdimensional ist

 Input und Output mehrdimensional sind

1.1.1 Raumzeit

Raum 3D
$$(x; y; z) \mathbb{R}^3$$

Zeit 1D $(t) \mathbb{R}^1$ $\mathbb{R}^1 \times \mathbb{R}^3 = \text{Raumzeit 4D } (t; x; y; z)$

1.1.2 Stationärer Fall

$$t \to \infty \to \text{Stationär}$$

$$T(x; y; z) \frac{\Delta T}{\Delta t} \to 0$$

1.1.3 Einheitsvektoren (Koordinatenvektoren)

$$\hat{x} = \vec{i} = \hat{i} = \vec{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\hat{y} = \vec{j} = \hat{j} = \vec{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\hat{z} = \vec{k} = \hat{k} = \vec{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

1.2 Schnitte

 ${\sf Schnitt} = {\sf Restriktion} \to {\sf Teilmenge} \ {\sf vom} \ {\sf Definitionsbereich} \ \mathbb{D}_f$

1.2.1 Partielle Funktion

- Nur eine Variable ist frei! (wählbar)
- Alle anderen Variablen sind fix!

 \(\bigwidth \) W_f Analyse!

Beispiel: Schnitte

x-Linien

- Fläche wird geschnitten mit Ebene, die parallel zur x,z-Ebene liegt
- Bestehen aus den (x; y; z) Punkten $(x; y_0; f(x; y_0))$
- x-Wert ist variabel
- y-Wert ist fixiert \Leftrightarrow $y_0 = 2$

y-Linien

- Fläche wird geschnitten mit Ebene, die parallel zur y,z-Ebene liegt.
- Bestehen aus den (x; y; z) Punkten $(x_0; y; f(x_0; y))$
- x-Wert ist fixiert $\Leftrightarrow x_0 = 3$
- y-Wert ist variabel

1.2.2 Bedingungen

Initial $bedingungen \rightarrow Beziehen sich auf die Zeit$

Randbedingungen → Beziehen sich auf räumliche Ebenen

1.3 Kontouren, Levelsets, Niveaulinien, Höhenlinen, ...

Bei Kontouren, Levelsets, Niveaulinien oder Höhenlinien ist der Output der Funktion f konstant.

$$\vec{y} = \vec{f}(\vec{x}) = \text{const. wobei } \vec{x} \subset \mathbb{D}_f$$

Beispiel: Höhenlinien

Kontouren (Höhenlinien)

- Fläche wird geschnitten mit einer Ebene, die parallel zur x,y-Ebene liegt
- Bestehen aus den (x; y; z) Punkten $(x; y; f(x; y) = z_0)$
- x-Wert ist variabel
- y-Wert ist variabel
- z-Wert ist fixiert $\Leftrightarrow z_0 = 3$

2 Ableitungen, DGL und Gradienten (bi-variat)

$$f: \mathbb{D}_f \subseteq \mathbb{R}^2 \to \mathbb{W}_f \subseteq \mathbb{R}$$
 skalar

2.1 Partielle Ableitung

Ableitung einer Partiellen Funktion.

Beispiel: Bi-Variate Funktion

f(x, y): y fixieren = const. = y_0 ; x einzige freie Variable

Notationen

1. Ordnung:
$$f(x; y_0) \Rightarrow \frac{\partial f}{\partial x} = f_x(x; y_0)$$

2. Ordnung: $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = f_{xx}$
 $\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = f_{xy}$

2.1.1 Schwarz-Symmetrie

Wenn f_{xx} , f_{yy} , f_{xy} & f_{yx} stetig (sprungfrei) sind, dann gilt:

$$f_{xy} \stackrel{!}{=} f_{yx}$$

2.2 Gradient (Nabla-Operator)

Spaltenvektor mit partiellen Ableitungen

$$\text{"Gradient" / Nabla} \longrightarrow \left(\begin{array}{c} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \vdots \end{array} \right) \triangleq \text{Vektorfeld}$$

2.3 Totale Ableitung

Für Fehlerrechnung benützt, da man hierbei die Abstände von (x; y; z) zu einem festen Punkt $(x_0; y_0; z_0)$ erhält. (relative Koordinaten)

erhält. (relative Koordinaten)
$$D(f;\underbrace{(x_0,y_0,\ldots)}_{\text{Arbeitspunkt}}): \mathbb{R}^2 \xrightarrow{\mathbf{R}^1}; \text{"gute Approximation"}$$

$$f(x = x_0 + \Delta x; y = y_0 + \Delta y; ...) = (D_{11}; D_{12}) \cdot \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} + f(x_0; y_0) + R_1$$

Wobei R_1 dem "Rest" entspricht. (Ähnlich wie bei Taylorreihe)

$$\frac{R_1}{d = \sqrt{\Delta x^2 + \Delta y^2}} \rightarrow 0 \text{ ("gut", "schneller gegen 0 als } d\text{"})$$

$$D(f;(x_0;y_0)) = \left(D_{11} = \frac{\partial f}{\partial x}(x_0;y_0); D_{12} = \frac{\partial f}{\partial y}(x_0;y_0)\right)$$
$$= (\nabla f)^{\text{tr}} \text{ wenn } \frac{\partial f}{\partial x}; \frac{\partial f}{\partial y} \text{ stetig bei } A$$

2.4 Linearapproximation (Tangentialapproximation)

$$f(x; y) \approx f(x_0; y_0) + D(f; (x_0; y_0)) \cdot \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$
 linear in Δx und Δy

2.4.1 Tangentialebene

$$g(x;y) = f(x_0; y_0) + D(f; (x_0; y_0)) \cdot \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}$$
$$g(x;y) = f(x_0; y_0) + f_x(x_0; y_0) \cdot (x - x_0) + f_y(x_0; y_0) \cdot (y - y_0)$$

2.4.2 Tangentialer Anstieg (Totale Differential)

$$df \stackrel{!}{=} \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \quad \text{bezüglich } A = (x_0; y_0)$$

2.4.3 Differential-Trick (df Trick)

Auf Kontouren sei df = 0 (Kontourlinien). Daher lässt sich folgende Gleichung aufstellen:

$$f = c = \text{const.} \mid d(\dots)$$

 $df = dc \stackrel{!}{=} 0$

Bzw. für Kontourlinien:
$$f_x dx + f_y dy = 0$$

2.4.4 Implizite (Steigungs-)Funktion

$$y'(x) = \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{f_x}{f_y \neq 0} \lor x'(y) = \frac{\mathrm{d}x}{\mathrm{d}y} = -\frac{f_y}{f_x \neq 0}$$

$$y_0 = -\frac{P_0}{y'} \to \frac{y}{\mathrm{d}x}$$

2.5 DGL

$$y' = \left(-\frac{f_x}{f_y}\right); \ y(x_0) = y_0$$
right-hand-side (r.h.s.) Funktion

2.6 Richtungselement (Tangentiallinie an Kontouren)

$$\vec{r} = \left(dx = h; dy = y' dx = -\frac{f_x}{f_y} dx \right)^{\text{tr}}$$

2.7 Gradientenfeld \(\perp \) Kontouren

Skalarprodukt
$$\nabla f \cdot \begin{pmatrix} dx \\ dy = y' dx \end{pmatrix} \stackrel{!}{=} 0$$

2.8 ?Wie heisst dieser Abschnitt?

$$s(t): \quad P_0 + t \cdot \hat{v} \mid t \in \mathbb{R}$$

$$s(t): f(x_0 + t \cdot \hat{v}_1; y_0 + t \cdot \hat{v}_2)$$

$$\frac{ds(t)}{dt} = \dot{s}(t): \qquad t \mapsto \overbrace{\begin{pmatrix} x_0 + t \cdot v_1 \\ y_0 + t \cdot v_2 \end{pmatrix}}^{\left(x_0 + t \cdot v_1\right)} \mapsto f(x, y)$$

2.9 Richtungs-Ableitung

$$\frac{\partial f}{\partial \hat{v}} \stackrel{!}{=} D(f; (x_0; y_0)) \cdot \hat{v} \stackrel{\mathrm{Def.}}{\Leftrightarrow} \mathrm{grad}(f)^{\mathrm{tr}} \cdot \hat{v} = f_x \cdot v_1 + f_y \cdot v_2$$

Beispiel: Richtungs-Ableitung

$$\vec{x}: \vec{v} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \hat{e}_1 \quad \Rightarrow \quad \frac{\partial f}{\partial \hat{e}_1} = f_x \cdot 1 + f_y \cdot 0 = \underline{f_x}$$

2.9.1 Spezialfälle

• $\alpha = \frac{\pi}{2} \Rightarrow$ rechter Winkel • $\frac{\partial f}{\partial \hat{v}}$ extremal - $\alpha = 0$ (max): $\nabla f \cdot \hat{v} > 0 \Rightarrow \operatorname{grad}(f)$ liegt auf \hat{v} - $\alpha = \pi$ (min): $\nabla f \cdot \hat{v} < 0 \Rightarrow \operatorname{grad}(f)$ liegt invers auf \hat{v}

Trigo: $\nabla f \cdot \hat{v} \wedge \frac{\partial f}{\partial \hat{v}} \implies \cos(\alpha) \cdot |\nabla f|$

3 Extrema von Funktionen finden

Stationäritätsbedingung: $\nabla f \stackrel{!}{=} \vec{0}$

3.1 Extrema von Funktionen zweier Variablen finden

1. Gradient von f Null-setzten und kritische Stellen finden:

$$\nabla f = \begin{pmatrix} f_x \\ f_y \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \begin{cases} f_x = 0 \\ f_y = 0 \end{cases} \Rightarrow x_0 \text{ und } y_0 \text{ bestimmen}$$

2. Zweite Partielle Ableitungen bestimmen:

$$f_{xx} = \dots$$
 $f_{xy} = f_{yx} = \dots$ $f_{yy} = \dots$

3. Determinante Δ der Hesse-Matrix H bestimmen:

 $\Delta = f_{xx}(x_0; y_0) \cdot f_{yy}(x_0; y_0) - (f_{xy}(x_0; y_0))^2$

4. Auswertung:

$\Delta > 0$	AND	$f_{xx}(x_0;y_0)<0$	\Longrightarrow	lokales Maximum
$\Delta > 0$	AND	$f_{yy}(x_0;y_0)<0$	\Longrightarrow	lokales Maximum
$\Delta > 0$	AND	$f_{xx}(x_0;y_0) > 0$	\Longrightarrow	lokales Minimum
$\Delta > 0$	AND	$f_{yy}(x_0;y_0) > 0$	\Longrightarrow	lokales Minimum
$\Delta < 0$			\Longrightarrow	Sattelpunkt
$\Delta = 0$?	Multi-variate-Taylor-logik

3.2 Extrema von Funktionen mehrerer Variablen finden

1. Gradient von f Null-setzten und kritische Stellen finden:

$$\nabla f = \begin{pmatrix} f_x \\ f_y \\ \vdots \\ f_t \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \Rightarrow x_0, y_0, \dots, t_0 \text{ bestimmer}$$

2. Zweite Partielle Ableitungen für Hesse-Matrix H bestimmen:

$$\mathbf{H} = \begin{pmatrix} f_{xx} & f_{xy} & \cdots & f_{xt} \\ f_{yx} & f_{yy} & \cdots & f_{yt} \\ \vdots & \vdots & \ddots & \vdots \\ f_{tx} & f_{ty} & \cdots & f_{tt} \end{pmatrix}$$

- Symmetrien beachten!
- Nicht doppelt rechnen! $\Rightarrow f_{xt} = f_{tx}$
- 3. Hesse-Matrix H mit gefundenen Stellen füllen:

$$\mathbf{H}(x_0, y_0, \dots t_0) = \begin{pmatrix} f_{xx}(x_0, y_0, \dots t_0) & f_{xy}(x_0, y_0, \dots t_0) & \cdots & f_{xt}(x_0, y_0, \dots t_0) \\ f_{yx}(x_0, y_0, \dots t_0) & f_{yy}(x_0, y_0, \dots t_0) & \cdots & f_{yt}(x_0, y_0, \dots t_0) \\ \vdots & \vdots & \ddots & \vdots \\ f_{tx}(x_0, y_0, \dots t_0) & f_{ty}(x_0, y_0, \dots t_0) & \cdots & f_{tt}(x_0, y_0, \dots t_0) \end{pmatrix}$$

4. Eigenwerte λ_i der Hesse-Matrix bestimmen:

 $\det\left(\mathbf{H}(x_0,y_0,\ldots t_0)-\lambda\cdot\mathbf{E}\right)=0$ Nullstellen λ_i finden \rightarrow Eigenwerte

Zur Erinnerung:

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & 1 \end{pmatrix}, \quad \lambda \cdot \mathbf{E} = \begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & \lambda & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & \lambda \end{pmatrix}$$

$$\mathbf{H}(x_0, y_0, \dots t_0) - \lambda \cdot \mathbf{E} = \dots$$

$$\dots = \begin{pmatrix} f_{xx}(x_0, y_0, \dots t_0) - \lambda & f_{xy}(x_0, y_0, \dots t_0) & \cdots & f_{xt}(x_0, y_0, \dots t_0) \\ f_{yx}(x_0, y_0, \dots t_0) & f_{yy}(x_0, y_0, \dots t_0) - \lambda & \cdots & f_{yt}(x_0, y_0, \dots t_0) \\ \vdots & \vdots & \ddots & \vdots \\ f_{tx}(x_0, y_0, \dots t_0) & f_{ty}(x_0, y_0, \dots t_0) & \cdots & f_{tt}(x_0, y_0, \dots t_0) - \lambda \end{pmatrix}$$

5. Auswertung:

$\lambda_i < 0 \ \forall i$	\Longrightarrow	lokales Maximum
$\lambda_i > 0 \ \forall i$	\Longrightarrow	lokales Minimum
$\lambda_i > 0$ und $\lambda_i < 0$	\Longrightarrow	Sattelpunkt

- $\lambda_i < 0 \ \forall i \Leftrightarrow \text{Alle } \lambda_i \text{ sind negativ}$
- $\lambda_i > 0 \ \forall i \Leftrightarrow \text{Alle } \lambda_i \text{ sind positiv}$

3.3 Lokales oder Globales Extremum

Für eine beliebige die Funktion f(x, y, ..., t) gilt:

$f(x, y, \dots, t) \le M_{\text{max}}$	$\forall (x, y, \dots, t) \in \mathbb{D}_f$	\Rightarrow	globales Maxinum
$f(x, y, \dots, t) > M_{\text{max}}$	$\exists (x,y,\ldots,t)\in \mathbb{D}_f$	\Rightarrow	kein globales Maximum
$f(x, y, \dots, t) \ge M_{\min}$	$\forall (x, y, \dots, t) \in \mathbb{D}_f$	\Rightarrow	globales Minimum
$f(x, y, \dots, t) < M_{\min}$	$\exists (x,y,\ldots,t)\in \mathbb{D}_f$	\Rightarrow	kein globales Minimum

grösstes lokales Maximum $M_{\rm max}$: kleinstes lokales Minimum M_{\min} :

3.4 Extrema von Funktionen zweier Variablen mit NB finden

1. Nebenbedingung (NB) in Standardform bringen:

Standardform: $n(x, y) \stackrel{!}{=} 0$

Nebenbedingung: x + y = 1

Standardform der Nebenbedingung: x + y - 1 = 0

2. Lagrange-Funktion L aufstellen:

 $L(x, y, \lambda) = f(x, y) + \lambda \cdot n(x, y)$ Am besten gleich ausmultiplizieren

3. Gradient der Lagrange-Funktion L Null-setzten und kritische Stellen finden:

$$\nabla \mathbf{L} = \begin{pmatrix} \mathbf{L}_x \\ \mathbf{L}_y \\ \mathbf{L}_A \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \implies x_0 \text{ und } y_0 \text{ bestimmen}$$

4. Zweite Partielle Ableitungen bestimmen:

$$L_{\lambda\lambda} \stackrel{!}{=} 0 \qquad \qquad L_{\lambda x} = L_{x\lambda} = n_x = \dots$$

$$L_{xx} = \dots \qquad \qquad L_{\lambda y} = L_{y\lambda} = n_y = \dots$$

$$L_{yy} = \dots \qquad \qquad L_{xy} = L_{yx} = \dots$$

5. Geränderte Hesse Matrix $\overline{\mathbf{H}}$ aufstellen und kritische Stellen einsetzen:

$$\overline{\mathbf{H}}(x_0, y_0) = \begin{pmatrix} L_{\lambda\lambda}(x_0, y_0) & L_{\lambda x}(x_0, y_0) & L_{\lambda y}(x_0, y_0) \\ L_{x\lambda}(x_0, y_0) & L_{xx}(x_0, y_0) & L_{xy}(x_0, y_0) \\ L_{y\lambda}(x_0, y_0) & L_{yx}(x_0, y_0) & L_{yy}(x_0, y_0) \end{pmatrix}$$

$$= \begin{pmatrix} 0 & n_x(x_0, y_0) & n_y(x_0, y_0) \\ n_x(x_0, y_0) & L_{xx}(x_0, y_0) & L_{xy}(x_0, y_0) \\ n_y(x_0, y_0) & L_{yx}(x_0, y_0) & L_{yy}(x_0, y_0) \end{pmatrix}$$

6. Determinante der geränderten Hesse Matrix bestimmen:

$$det(\overline{\mathbf{H}}) = ...$$

7. Auswertung

$\det\left(\overline{\mathbf{H}}\right) > 0$	\Longrightarrow	lokales Maximum
$\det\left(\overline{\mathbf{H}}\right) < 0$	\Longrightarrow	lokales Minimum
$det(\overline{\mathbf{H}}) = 0$	\Longrightarrow	keine Aussage möglich

3.5 Extrema von Funktionen mehrerer Variablen mit NB finden

1. Nebenbedingung (NB) in Standardform bringen:

Standardform: $n(x, y, ..., t) \stackrel{!}{=} 0$

2. Lagrange-Funktion L aufstellen:

 $\mathbf{L}(x,y,...,t,\lambda) = f(x,y,...,t) + \lambda \cdot n(x,y,...,t) \quad \text{ Am besten gleich ausmultiplizieren}$

3. Gradient der Lagrange-Funktion L Null-setzten und kritische Stellen finden:

$$\nabla \mathbf{L} = \begin{pmatrix} \mathbf{L}_x \\ \mathbf{L}_y \\ \vdots \\ \mathbf{L}_t \\ \mathbf{L}_\lambda \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix} \Rightarrow x_0, y_0, ..., t_0 \text{ bestimme.}$$

4. Zweite Partielle Ableitungen bestimmen:

5. Geränderte Hesse Matrix $\overline{\mathbf{H}}$ aufstellen und kritische Stellen einsetzen:

$$\overline{\mathbf{H}}(x_{0}, y_{0}, \dots t_{0}) = \begin{pmatrix} L_{\lambda l}(\dots) & L_{\lambda r}(\dots) & L_{\lambda l}(\dots) & \dots & L_{\lambda l}(\dots) \\ L_{x \lambda l}(\dots) & L_{x x}(\dots) & L_{x y}(\dots) & \dots & L_{x l}(\dots) \\ L_{y \lambda l}(\dots) & L_{y x}(\dots) & L_{y y}(\dots) & \dots & L_{y l}(\dots) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ L_{t \lambda l}(\dots) & L_{t x}(\dots) & L_{t y}(\dots) & \dots & L_{t l}(\dots) \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & &$$

6. Determinante der geränderten Hesse Matrix bestimmen:

 $det(\overline{\mathbf{H}}) = ...$

7. Auswertung

$\det(\overline{\mathbf{H}}) > 0 \implies$		\Rightarrow	lokales Maximum	
-				
	$\det\left(\mathbf{H}\right) < 0$	\Rightarrow	lokales Minimum	
	$det(\mathbf{H}) = 0$	\Longrightarrow	keine Aussage möglich	

4 Support Vector Machine (SVM)

4.1 Lineare Trennbarkeit von Daten

4.1.1 Allgemeines

Datenpunkte: (2D Beispiel)

$$\overline{A:(\underbrace{(x_1,x_2)}_{\vec{x_1}};y_1)}, \quad B:(\underbrace{(x_1,x_2)}_{\vec{x_2}};y_2), \quad C:(\underbrace{(x_1,x_2)}_{\vec{x_3}};y_3), \quad \cdots, \quad N:(\underbrace{(x_1,x_2)}_{\vec{x_n}};y_n)$$

 \vec{x}_i sind Datenvektoren

 $y_i \in \{\pm 1\}$ klassifiziert die jeweiligen Datenvektoren

<u>Hyperebenen:</u>

$$\vec{w}^{tr} \cdot \vec{x} + b = 0$$

 \overrightarrow{w} : Normalenvektor, $\overrightarrow{w} \in \mathbb{R}^d$ und $\overrightarrow{w} \neq 0$

b: Konstante, $b \in \mathbb{R}$

Dimmension der Hyperebene = d - 1

Abstand der Hyperebene zum Ursprung: $\frac{|b|}{|\vec{w}|}$

Klassifizierung:

$$\vec{w}^{tr} \cdot \vec{x} + b > 0$$
 $\Rightarrow \vec{x}$ gehört zur Klasse $y = +1$ $\vec{w}^{tr} \cdot \vec{x} + b < 0$ $\Rightarrow \vec{x}$ gehört zur Klasse $y = -1$

Klassifizierung der Trainigsdaten:

$$\vec{w}^{fr} \cdot \vec{x}_j + b \ge 0$$
 $\Rightarrow \vec{x}_j$ gehört zur Klasse $y = +1$
 $\vec{w}^{fr} \cdot \vec{x}_j + b \le 0$ $\Rightarrow \vec{x}_j$ gehört zur Klasse $y = -1$

Zielfunktion:

$$\frac{2}{\left|\vec{w}\right|} = \frac{2}{w}$$

4.1.2 Das primale Optimierungsproblem

$$\frac{1}{2}\vec{w}^{tr}\cdot\vec{w} = \frac{1}{2}\left|\vec{w}\right|^2 = \frac{1}{2}w^2 \rightarrow \min! \quad \text{s.t.} \quad \left(\vec{w}^{tr}\cdot\vec{x}_j + b\right)y_j \geq 1 \quad (j=1,\cdots,N)$$

4.1.3 Das duale Optimierungsproblem

Nebenbedingung:

$$\underbrace{1 - \left(\vec{w}^{tr} \cdot \vec{x}_j + b\right) y}_{g_j(\vec{w}^{tr}, b)} \leq 0 \Leftrightarrow g_j(\vec{w}^{tr}, b) \leq 0 \quad (j = 1, \cdots, N)$$

<u>Lagrange-Funktion:</u>

Zusammengesetzt aus dem primalen Problem und den Nebenbedingungen.

$$L(\vec{w}^{tr}, b, \vec{a}) = L(w_1, w_2, ..., w_d, b, \alpha_1, \alpha_2, ..., \alpha_N)$$

$$= \frac{1}{2} \vec{w}^{tr} \cdot \vec{w} + \sum_{j=1}^{N} \alpha_j \underbrace{\left(1 - \left(\vec{w}^{tr} \cdot \vec{x}_j + b\right) y_j\right)}_{g_j(\vec{w}^{tr}, b)}$$

Stationaritätsbedingungen:

Aus der Bedingung, dass grad(L) = 0 sein muss, lassen sich folgende Formeln ableiten:

$$\boxed{grad_{\{\vec{w}^{tr},b\}}\left(L(\vec{w}^{tr},b,\vec{\alpha})\right) = \vec{0}} \Leftrightarrow \vec{w} = \sum_{j=1}^{N} \alpha_{j} y_{j} \vec{x}_{j} \quad \text{und} \quad \sum_{j=1}^{N} \alpha_{j} y_{j} = 0$$

Das duale Problem

Die oben erhaltenen Summen können nun in die Lagrange-Fkt. eingesetzt werden. Daraus entsteht

$$L(\vec{\alpha}) = \sum_{j=1}^{N} \alpha_j - \underbrace{\frac{1}{2} \sum_{j,j'=1}^{N} \alpha_j \alpha_{j'} y_j y_{j'} \vec{x}_j^{tr} \cdot \vec{x}_{j'}}_{=\frac{1}{3} \vec{w}^{tr} \cdot \vec{w}} \quad \rightarrow \quad \text{max!} \quad \text{s.t.} \quad \alpha_j \ge 0 \land \sum_{j=1}^{N} \alpha_j y_j = 0$$

Vorgehen zum lösen des dualen Optimierungsproblems:

1. Skizze mit Datenpunkten erstellen:

- Einzelne Datenpunkte klassenweise farblich hervorheben
- Falls ein Datenpunkt der gleichen Klasse weit weg von den anderen ist
 - \Rightarrow diesen vergessen, da sein $\alpha = 0$ sein wird

Be A = egal $\Rightarrow x_1$

2. Nebenbedingungen, Es muss gelten:

a:
$$\alpha_j \geq 0$$

$$\mathbf{b:} \quad \sum_{j=1}^{N} \alpha_j \cdot y_j = 0$$

Nach einem α unstellen und anschliessend jenes α

 $(damit\ die\ Nebenbedingung\ miteinbezogen\ wird)\ in\ der\ Lagrange-Funktion\ ersetzen$

3. Kernel-Matrix aufstellen:

$$K\left(\vec{x}^{tr}; \vec{x}\right) = \vec{x}^{tr} \bullet \vec{x}$$

• Einträge sind die Ergebnisse der Skalarprodukte

4. <u>Lagrange-Funktion aufstellen:</u>

$$L(\vec{\alpha}) = \sum_{j=1}^{N} \alpha_j - \frac{1}{2} \sum_{j,j'=1}^{N} \alpha_j \cdot \alpha_{j'} \cdot y_j \cdot y_{j'} \cdot \vec{x}_j^{tr} \bullet \vec{x}_{j'} \quad \to \quad \text{max!}$$

• 2. b und 3 brauchen

5. Alle α finden durch Stationaritätsbedingung

$$\nabla L = \vec{0}$$

 \Rightarrow ersetztes α mit gefundenen α berechnen

6. w berechnen:

$$\vec{\vec{w}} = \sum_{j=1}^{N} \alpha_j y_j \vec{x}_j$$

7. Konstante b berechnen:

Datenpunkte mit der Klasse y = 1 oder y = -1 wählen und einsetzen

- Variante 1: Stützvektor-Datenpunkt mit y = +1
- $\vec{w}^{tr} \cdot \vec{x}_{\dots} + b = 1 \iff b = 1 \vec{w}^{tr} \cdot \vec{x}_{\dots} = \dots$
- **Variante 2:** Stützvektor-Datenpunkt mit y = -1

$$\vec{w}^{tr} \cdot \vec{x}_{...} + b = -1 \iff b = -1 - \vec{w}^{tr} \cdot \vec{x}_{...} = ...$$

5 Koordinatensysteme

5.1 2D Koordinatensysteme

Neben den Kartesischen Koordinatensystemen kommen in zweidimensionalen Räumen Unter bi- oder multivariater Integration versteht man Integrale, welche sich über zwei oder auch Polare Koordinatensysteme zum Einsatz. Die beiden Systeme können mit Hilfe der mehr unabhängige Variablen erstrecken. Sie haben die Form: Trigonometrie in einander überführt werden.

5.1.1 Umrechnung Kartesisch ↔ Polar

Polar zu Kartesisch

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r \cdot \cos \varphi \\ r \cdot \sin \varphi \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r \cdot \cos \varphi \\ r \cdot \sin \varphi \end{pmatrix} \qquad \qquad \begin{pmatrix} r \\ \varphi \end{pmatrix} = \begin{pmatrix} \sqrt{x^2 + y^2} \\ \tan^{-1} \frac{y}{x} \end{pmatrix}$$

Dabei ist zu beachten, dass \tan^{-1} nur werte von $-\frac{\pi}{2}$ bis $\frac{\pi}{2}$ liefert, für φ jedoch $\varphi \in [0, \pi]$ gelten soll. φ wird also, je nach dem in welchem Quadranten sich \vec{p} befindet, nach folgendem Schema berechnet:

$$\frac{\pi + \tan^{-1} \frac{y}{x}}{\pi + \tan^{-1} \frac{y}{x}} \qquad \tan^{-1} \frac{y}{x}$$

Um eine ganzes Integral vom einen Koordinatensystem ins andere zu überführen, muss zum einen die Funktion f(x, y) zu $f(r, \varphi)$ (oder umgekehrt) umgeschrieben, sowie die differentiale angepasst werden. Hier dafür einige gängige Elemente:

	Kartesisch	Polar
x-Achsenelement	$\mathrm{d}x$	$dx = \cos\varphi dr - r\sin\varphi d\varphi$
y-Achsenelement	dy	$dx = \sin \varphi dr + r \cos \varphi d\varphi$
Linienelement	$ds^2 = dx^2 dy^2$	$\mathrm{d}s^2 = \mathrm{d}r^2 + r^2 \mathrm{d}\varphi^2$
Flächenelement	dA = dx dy	$dA = r dr d\varphi$

5.2 3D Koordinatensysteme

5.2.1 Umrechnen zwischen Koordinatensystemen

Beim Umrechnen zwischen den Koordinatensystemen gelten im Grunde genommen die obigen Formeln. Dabei muss jedoch in einigen Fällen auf die Wertebereiche von den trigonometrischen Funktionen rücksicht genommen werden.

Zylindrisch → Kartesisch:

Sphärisch → Kartesisch:

Keine weiteren Berücksichtigungen nötig, die Berechnung erfolgt nach der Formel oben.

Kartesisch \rightarrow Zylindrisch:

Der Parameter ϕ wird analog zum zweidimensionalen Fall, je nach dem in welchem Quadranten sich P befindet, nach dem Schema rechts berechnet.

$$\frac{x + \tan^{-1} \frac{y}{x}}{\pi + \tan^{-1} \frac{y}{x}} \qquad \frac{\tan^{-1} \frac{y}{x}}{2\pi + \tan^{-1} \frac{y}{x}}$$

Sphärisch → **Zylindrisch**:

Kartesisch → Sphärisch:

Keine weiteren Berücksichtigungen nötig, die Berechnung erfolgt nach der Formel oben.

Zylindrisch → Sphärisch:

Auch hier macht der tan⁻¹ Probleme, da er Werte von $-\frac{\pi}{2}$ bis $\frac{\pi}{2}$ liefert, für θ jedoch $\theta \in [0, \pi]$ gelten soll. Je nach dem, ob P sich oberhalb oder unterhalb der xy-Ebene befindet, wird θ wie rechts berechnet.

6 Integration

6.1 Allgemeines

$$\int_{\Omega} f(\omega) d\omega = \iint \cdots \int f(x_1, x_2, \dots, x_n) dx_1 dx_2 \cdots dx_n \quad | \Omega \in \mathbb{R}^n$$

Unter einem Normalbereich versteht man einen Bereich, welcher in allen Dimensionen so begrenzt ist, dass eine Funktion $f(x_1, x_2, \dots, x_n)$ für jeden Eingangsvektor jeweils nur einen Funktionswert zurückgibt.

Beispiel: Normalbereich in 2D

6.3 Satz von Fubini (Satz von Tonelli)

Der Satz von Fubini besagt, dass die Reihenfolge der Integrationen vertauscht werden kann, sofern die Funktion integrierbar ist.

$$\iint_{y_1 x_1}^{y_2 x_2} f(x, y) \, dx \, dy = \iint_{x_1 y_1}^{x_2 y_2} f(x, y) \, dy \, dx$$

6.4 Erster Metrischer Tensor

Der 1. metrische Tensor (oder auch erste Fundamentalmatrix, erste Fundamentalform, metrische Grundform) beschreibt den Zusammenhang zwischen einer Kurve oder Fläche im Parameterraum zum Raum, in dem sie sich befindet (z.B. 2D-Fläche im 3D-Raum). Er besteht aus den Skalarprodukten der partiellen Ableitungsvektoren nach den Parametern.

$$g_{ij} = \frac{\partial \vec{S}}{\partial u_i} \cdot \frac{\partial \vec{S}}{\partial u_j}$$

Folglich ergibt sich die Matrix: $\begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix}$ Die Einträge dieser Matrix werden benötigt, um Längen- oder Flächen(elemente) zu be-

Beispiel: Längenberechnung

Eine Flächenkurve sei als $\vec{x}(t) = \begin{pmatrix} u(t) \\ v(t) \end{pmatrix}$ gegeben. Davon wird das totale Differential gebil-

$$\dot{\vec{x}} = \vec{x}_u \cdot \dot{u} + \vec{x}_v \cdot \dot{v}$$

Um die Länge des Vektors (Längenelement) zu erhalten, muss man diesen im ersten Schritt quadrieren:

$$(\dot{\vec{x}})^2 = g_{11}\dot{u}^2 + 2g_{12}\dot{u}\dot{v} + g_{22}\dot{v}^2$$

Das einzelne Längenelement ist somit:

$$ds = \sqrt{g_{11} du^2 + 2g_{12} du dv + g_{22} dv^2}$$

Summiert man nun alle ds über die Kurve, so ergibt dies das Integral für die gesamte Län-

$$s = \int_{a}^{b} \sqrt{g_{11}\dot{u}^2 + 2g_{12}\dot{u}\dot{v} + g_{22}\dot{v}^2} \,dt$$

Beispiel: Flächenberechnung

6

Es sei eine parametrisierte Fläche als Funktion $\vec{S}(u, v) = \begin{cases} x(u, v) \\ y(u, v) \end{cases}$ gegeben. Das Flächen-

element lässt sich aus einem Parallelogramm der beiden partiellen Ableitungsvektoren bilden, was dem Betrag des Kreuzproduktes bzw. der Determinante entspricht:

$$dS = \sqrt{\left|\det\left|g_{ij}\right|\right|} du dv = \sqrt{g_{11}g_{22} - g_{12}^2} du dv = \left|\frac{\partial \vec{S}}{\partial u} \times \frac{\partial \vec{S}}{\partial v}\right| du dv$$

Daraus ergibt sich die Fläche über das Doppelintegral:

$$S = \iint_{v_1 u_1}^{v_2 u_2} \sqrt{g_{11}g_{22} - g_{12}^2} \, du \, dv$$

6.5 Längenintegrale

6.5.1 Längenelemente

$$ds^2 = \underbrace{dx^2 + dy^2 + dz^2}_{\text{Kartesisch}} = \underbrace{dr^2 + r^2 d\varphi^2 + dz^2}_{\text{Zylindrisch}} = \underbrace{dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2}_{\text{Sphärisch}}$$

6.5.2 Kurvenintegrale 1. Art: Länge einer Funktion

Die Bestimmung der Länge einer Kurve kann in folgende Schritte unterteilt werden:

- 1. Funktion in die Parameterdarstellung überführen (sofern nicht gegeben): Dafür wird einer der Parameter (z.B. x oder θ) = t gesetzt und die anderen Parameter ebenfalls als Funktion von t ausgedrückt.
- 2. Integral aufstellen:

Das Integral in der Form $\iiint ds$ wird mit $\frac{dt}{dt}$ erweitert.

3. Das Integral lösen

Beispiel: Längenintegral in kartesischen Koordinaten

Es soll die Länge der Kurve $\vec{v}(t) = \begin{cases} y(t) \\ z(t) \end{cases}$ auf dem Interval $[t_1, t_2]$ bestimmt werden. Dazu

werden die oben genannten Schritte abgearbeitet:

- 1. Funktion in die Parameterdarstellung überführen Hier nicht nötig.

2. Integral aufstellen
$$\iiint ds = \iiint \sqrt{dx^2 + dy^2 + dz^2} = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt$$
3. Integral lösen
$$\frac{dx}{dt} = \frac{dy}{dt} \text{ and } \frac{dz}{dt} \text{ approximation integrities at } \frac{dz}{dt} = \frac{dz}{dt} = \frac{dz}{dt} = \frac{dz}{dt}$$

 $\frac{dx}{dt}$, $\frac{dy}{dt}$ und $\frac{dz}{dt}$ ausrechnen, einsetzen, integrieren.

6.5.3 Kurvenintegral 2. Art

Beim Kurvenintegral 2. Art wird nicht die tatsächliche Länge einer Funktion, sondern die Länge deren Projektion auf eine Achse bestimmt. Dazu wird stat über alle Koordinatenrichtungen nur über eine der Koordinaten integriert.

Es folgen einige Paare von Kurvenintegralen 2. Art entlang einer Kontur K für Funktionen in expliziter Form und in Parameterdarstellung.

2D, Projektion auf x:

$$\int_{\nu} f(x)dx = \int_{t_0}^{T} \vec{f}(x(t), y(t)) \cdot x'(t) \cdot dt$$

3D, Projektion auf x:

$$\int\limits_K f(x,y)dx = \int_{t_0}^T \vec{f}(x(t),y(t),z(t)) \cdot x'(t) \cdot dt$$

6.6 (Ober-)Flächenintegrale

6.6.1 Flächenelemente

Das Bestimmen der Flächenelemente ist in drei Dimensionen nicht wie bei den Längenund Volumenelementen pauschal möglich. Dies, da jeweils nur über zwei der drei Koordinaten integriert werden muss. Ein einfaches Verfahren für das Berechnen von Flächeninhalten schafft jedoch abhilfe.

6.6.2 Flächeninhalt einer Oberfläche

Für das Berechnen der Oberflächen von Funktionen des Typs f(a,b) in 3D kann die Formel

$$S = \int_{B} \int_{A} \sqrt{(f_a)^2 + (f_b)^2 + 1} \, da \, db$$

verwendet werden. Dabei repräsentieren a und b die beiden Koordinatenrichtungen, in denen sich die Fläche erstreckt. f_a und f_b sind die partiellen Ableitungen der Funktion f(a,b)nach a bzw. b.

Beispiele zur Veranschaulichung:

Es soll die Oberfläche der Funktion f(x, y) im Bereich $x \in [x_1, x_2], y \in [y_1, y - 2]$ bestimmt werden. Das entsprechende integral lautet:

$$S = \int_{y_1}^{y_2} \int_{x_2}^{x_2} \sqrt{(f_x)^2 + (f_y)^2 + 1} \, dx \, dy$$

Wäre die Funktion f stat in kartesischen in polaren oder sphärischen Koordinaten formuliert, ändern sich lediglich die Namen der Variablen. Folglich ist das zu einer in sphärischen Koordinaten definierten Fkt. $f(\theta, \phi)$ gehörende Integral

$$S = \int_{\phi_1}^{\phi_2} \int_{\theta_1}^{\theta_2} \sqrt{(f_{\theta})^2 + (f_{\phi})^2 + 1} \, d\theta \, d\phi$$

sehr leicht aufzustellen

6.6.3 Allgemeine Wendelfläche

Die allgemeine Wendelfläche rotiert und verschiebt eine parametrisierte 3D Kurve $\vec{r}(t)$ = (x(t), y(t), z(t)) tr im Raum.

Parametrisierung bei vertikaler Rotationsachse und vertikaler Verschiebungsrichtung (z-

$$\vec{S}(t,\varphi) = \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix} \cdot \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} \qquad (t_1 \le t \le t_2, \land \varphi \in \mathbb{R}, c \equiv const.)$$

Bei $c = 1 \Rightarrow$ Voller Meter bei einer Kur

6.7 Volumenintegrale

6.7.1 Volumenelemente

$$dV = \underbrace{dx \, dy \, dz}_{\text{Kartesisch}} = \underbrace{r \, dr \, d\varphi \, dz}_{\text{Zylindrisch}} = \underbrace{r^2 \sin \theta \, d\theta \, d\phi \, dr}_{\text{Sphärisch}}$$

6.8 Anwendungsformeln 2D (Doppelintegrale)

Allgemein	Kartesische Koordinaten	Polarkoordinaten		
Flächeninhalt einer ebenen Figur F				
$A = \iint_F \mathrm{d}F$	$= \int\limits_X \int\limits_Y \mathrm{d}y \mathrm{d}x$	$= \int_{\Phi} \int_{R} r \mathrm{d}r \mathrm{d}\varphi$		
Oberfläche eine	r Ebene in drei Dimensionen			
$S = \iint\limits_A \frac{1}{\cos \gamma} \mathrm{d}A$	$= \iint_{X} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dy dx$	$= \int_{\Phi} \int_{R} \sqrt{r^2 + r^2 \left(\frac{\partial z}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial \varphi}\right)^2} dr d\varphi$		
Volumen eines Z	Zylinders			
$V = \iint_A z \mathrm{d}A$	$= \int\limits_X \int\limits_Y z \mathrm{d}y \mathrm{d}x$	$= \int_{\Phi} \int_{R} z r \mathrm{d}r \mathrm{d}\varphi$		
Trägheitsmome	nt einer ebenen Figur F, bezogen a	uf die x-Achse		
$I_x = \iint_F y^2 \mathrm{d}F$	$= \int\limits_X \int\limits_Y (y^2) \mathrm{d}y \mathrm{d}x$	$= \int_{\Phi} \int_{R} (r^2 \sin^2 \varphi) r dr d\varphi$		
Trägheitsmome	nt einer ebenen Figur F, bezogen a	uf den Pol (0,0)		
$I_x = \iint_F r^2 \mathrm{d}F$	$= \iint\limits_X \int\limits_Y (x^2 + y^2) \mathrm{d}y \mathrm{d}x$	$= \int_{\Phi} \int_{R} (r^2) r dr d\varphi$		
Masse einer ebenen Figur F mit Dichtefunktion ϱ				
$m = \iint_F \varrho \mathrm{d}F$	$= \int\limits_X \int\limits_Y \varrho(x,y) \mathrm{d}y \mathrm{d}x$	$= \int_{\Phi} \int_{R} \varrho(r,\varphi) r \mathrm{d}r \mathrm{d}\varphi$		
Koordinaten des Schwerpunkts S einer homogenen, ebenen Figur F				
$x_S = \frac{\iint\limits_F x \mathrm{d}F}{A}$	$= \frac{\int \int \int x dy dx}{\int \int dy dx}$	$= \frac{\int \int \int r^2 \cos \varphi dr d\varphi}{\int \int \int r dr d\varphi}$		
$y_S = \frac{\iint\limits_F y \mathrm{d}F}{A}$	$= \frac{\int\limits_{X}^{X} \int\limits_{Y}^{Y} y dy dx}{\int\limits_{V}^{V} \int\limits_{V}^{V} dy dx}$	$= \frac{\int\limits_{0}^{\tilde{\Phi}} \int\limits_{R}^{\tilde{R}} \sin \varphi dr d\varphi}{\int\limits_{0}^{R} \int\limits_{R} r dr d\varphi}$		

Hinweis: Damit die Flächenelemente leichter erkennbar und die Formeln entsprechend besser nachvollziebar sind, wurden sie teilweise nicht vollständig vereinfacht.

6.9 Anwendungsformeln 3D (Dreifachintegrale)

A 10	TZ 4 1 1 TZ 1 1 1 TZ	7 1 1 1 1 1	77 . H					
Allgemein	Kartesische Koordinaten	Zylinderkoordinaten	Kugelkoordinaten					
Volumen eines	Volumen eines Körpers K							
$V = \iiint_K \mathrm{d}V$	$= \iiint \mathrm{d}x\mathrm{d}y\mathrm{d}z$	$= \iiint r \mathrm{d}r \mathrm{d}\phi \mathrm{d}z$	$= \iiint r^2 \sin\theta \mathrm{d}\theta \mathrm{d}\phi \mathrm{d}r$					
Trägheitsmom	ent eines Körpers K , bezogen	auf die Z-Achse						
$I_z = \iiint_K r^2 \mathrm{d}V$	$= \iiint (x^2 + y^2) \mathrm{d}x \mathrm{d}y \mathrm{d}z$	$= \iiint (r^2) r \mathrm{d}r \mathrm{d}\phi \mathrm{d}z$	$= \iiint (r^2 \sin^2 \theta) r^2 \sin\theta d\theta d\phi dr$					
Masse eines Kö	Masse eines Körpers K mit der Dichtefunktion ϱ							
$M = \iiint_K \varrho \mathrm{d}V$	$= \iiint \varrho(x, y, z) \mathrm{d}x \mathrm{d}y \mathrm{d}z$	$= \iiint \varrho(r,\phi,z) r \mathrm{d}r \mathrm{d}\phi \mathrm{d}z$	$= \iiint \varrho(r, \theta, \phi) r^2 \sin\theta d\theta d\phi dr$					
Koordinaten de	Koordinaten des Schwerpunktes S eines homogenen Körpers K							
$x_S = \frac{\iint\limits_K x dV}{ccc^V}$	$= \frac{\iiint(x) \mathrm{d}x \mathrm{d}y \mathrm{d}z}{V}$	$= \frac{\iiint (r\cos\phi)r\mathrm{d}r\mathrm{d}\phi\mathrm{d}z}{V}$	$= \frac{\iiint (r\sin\theta\cos\phi)r^2\sin\theta\mathrm{d}\theta\mathrm{d}\phi\mathrm{d}r}{V}$					
$y_S = \frac{\iiint\limits_{K} y dV}{\prod\limits_{K} V}$	$= \frac{\iiint(y) \mathrm{d}x \mathrm{d}y \mathrm{d}z}{V}$	$= \frac{\iiint (r \sin \phi) r dr d\phi dz}{V}$	$= \frac{\iiint (r\sin\theta\sin\phi)r^2\sin\theta\mathrm{d}\theta\mathrm{d}\phi\mathrm{d}r}{V}$					
$z_S = \frac{\iint\limits_K z \mathrm{d}V}{V}$	$= \frac{\iiint(z) \mathrm{d}x \mathrm{d}y \mathrm{d}z}{V}$	$= \frac{\iiint(z)r\mathrm{d}r\mathrm{d}\phi\mathrm{d}z}{V}$	$= \frac{\iiint (r\cos\theta)r^2\sin\theta\mathrm{d}\theta\mathrm{d}\phi\mathrm{d}r}{V}$					

Hinweis: Damit die Volumenelemente leichter erkennbar und die Formeln entsprechend besser nachvollziebar sind, wurden sie teilweise nicht vollständig vereinfacht.

7 Vektoranalysis

7.1 Vektorfelder

Das Vektorfeld

$$\vec{V}: \mathbb{R}^n \to \mathbb{R}^n$$

weist jedem Punkt $P \in \mathbb{R}^n$ einen Vektor $\vec{v} \in \mathbb{R}^n$ zu. Die Notation eines Vektorfelds ist gleich deren eines Vektors, wobei Vektorfelder üblicherweise gross geschrieben werden. Weiter kann auch $\vec{V}(\vec{x})$ geschrieben werden, wobei \vec{x} der Stützvektor eines beliebigen Punktes ist.

7.2 Gradient

Wir erinnern uns an den Nabla- oder Del-Operator aus Kapitel 2.2 als Spaltenvektor der verschiedenen Raumableitungen:

$$\nabla = \begin{pmatrix} \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \dots & \frac{\partial}{\partial x_n} \end{pmatrix}^T$$

$$\nabla \cdot \phi(\vec{x}) = \begin{pmatrix} \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \dots & \frac{\partial}{\partial x_n} \end{pmatrix}^T \cdot \phi(\vec{x}) = \begin{pmatrix} \frac{\partial \phi}{\partial x_1}(\vec{x}) & \frac{\partial \phi}{\partial x_2}(\vec{x}) & \dots & \frac{\partial \phi}{\partial x_n}(\vec{x}) \end{pmatrix}^T = \vec{F}(\vec{x})$$

und resultiert in einem Vektorfeld.

- Wird als Potential das elektrische Potential verwendet, entspricht F dem (negativen, skalierten) elektrischen Feld.
- Wird als Potential eine Höhe verwendet, entspricht \vec{F} der negativen Hangabtriebskraft.
- Der Gradient kann als mehrdimensionale Ableitung verstanden werden.
- Der Gradient steht senkrecht auf allen Kontouren unz zeigt in Richtung hoher wert.
- Die Multiplikation $\nabla \cdot \phi$ wird normalerweise als $\nabla \phi$ abgekürzt.
- Zudem kann der Gradient auch als grad ϕ geschrieben werden.

7.3 Vektorgradient

Die Definition des Gradienten eines Vektorfeldes $\vec{V}:\mathbb{R}^n \to \mathbb{R}^m$ lautet

$$\frac{\partial \vec{V}}{\partial \vec{a}} = \vec{a} \cdot \operatorname{grad} \vec{V},$$

wobei \vec{a} ein beliebiger Vektor und $\frac{\partial \vec{V}}{\partial \vec{a}}$ die Richtungsableitung von \vec{V} nach \vec{a} ist. Daraus kann man schliessen, dass der Vektorgradient als

$$\operatorname{grad} \vec{V} = \nabla \vec{V} = \begin{pmatrix} \frac{\partial V_1}{\partial x_1} & \cdots & \frac{\partial V_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial V_m}{\partial x_1} & \cdots & \frac{\partial V_m}{\partial x_n} \end{pmatrix} = \mathbf{J} \quad \left(= \nabla^T \cdot \vec{V} \right)$$

berechnet werden kann.

• $\nabla \vec{V}$ entspricht der Jacobi-Matrix **J**. Mit dieser kann die Hesse-Matrix einer skalaren Funktion F (siehe Kap. 3) bestimmt werden:

$$\mathbf{H}(F) = \mathbf{J}^T(\nabla F) = (\operatorname{grad} \operatorname{grad} F)^T$$

- Der Vektorgradient wird als $\nabla \vec{V}$ geschrieben, da die Notation $\nabla^T \cdot \vec{V}$, die den tatsächlichen Rechenweg beschreibt, etwas umständlich ist.
- Die Notation ∇ \vec{V} ist nicht nur falsch, sondern zudem bereits durch die Divergenz besetzt.

7.4 Divergenz

Die Divergenz eines Vektorfelds

$$\nabla \cdot \vec{V}(\vec{x}) = \begin{pmatrix} \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \dots & \frac{\partial}{\partial x_n} \end{pmatrix}^T \cdot \begin{pmatrix} v_1(\vec{x}) & v_2(\vec{x}) & \dots & v_n(\vec{x}) \end{pmatrix}$$
$$= \frac{\partial v_1}{\partial x_1}(\vec{x}) + \frac{\partial v_2}{\partial x_2}(\vec{x}) + \dots + \frac{\partial v_n}{\partial x_n}(\vec{x})$$

ist ein Skalarfeld, das beschreibt, wie stark das Vektorfeld an einem gegebenen Punkt "nach aussen gerichtet" ist.

- Wird als Vektorfeld die Fliessgeschwindigkeit einer Flüssigkeit eingesetzt, so entspricht die Divergenz dem Fluss aus einem Punkt heraus.
 - An Punkten mit positiver Divergenz fliesst Flüssigkeit hinaus (Quelle)
 - An Punkten mit negativer Divergenz fliesst Flüssigkeit hinein (Senke)
- Wird das E-Feld eingesetzt, so entspricht die Divergenz der Ladungsdichte.
 - Pos. Ladungsdichte entspricht pos. Divergenz, bewirkt eine Quelle im E-Feld.
 - Neg. Ladungsdichte entspricht neg. Divergenz, bewirkt eine Senke im E-Feld.
- Das Skalarprodukt sollte zwingend $\nabla \cdot \vec{V}$ ausgschreiben werden, da sonst Verwechslungsgefahr mit dem Vektorgradienten besteht.
- Die Notation div \vec{V} ist ebenfalls gebräuchlich.

Eine alternative und gut visualisierbare Definition der Divergenz, ist in zwei dimensionen

$$\operatorname{div} \vec{V} = \nabla \bullet \vec{V} = \lim_{A \to 0} \frac{\oint_{C = \partial A} \vec{V}(\vec{x}) \bullet \hat{x} \, d\vec{x}}{A}$$

wobei A eine Fläche und C dessen Kontur darstellt.

Verallgemeinert für die Anwendung in mehr als 2 Dimensionen lautet die Definitin

$$\nabla \bullet \vec{V} = \text{div} \, \vec{V} = \lim_{\Omega \to 0} \frac{\oint_{C = \partial \Omega} \vec{V}(\vec{x}) \bullet \hat{x} \, \text{d}\vec{x}}{\Omega},$$

wobei Ω ein Bereich im Raum \mathbb{R}^n und C dessen Kontur in \mathbb{R}^{n-1} ist.

7.4.1 Verschiedene Koordinatensysteme

Kartesisch:

$$\overrightarrow{\text{div } \overrightarrow{V} = \nabla \bullet \overrightarrow{V} = \underbrace{\left(\frac{\partial}{\partial x}; \frac{\partial}{\partial y}; \frac{\partial}{\partial z}\right)}_{\nabla} \bullet \underbrace{\begin{pmatrix} V_x \\ V_y \\ V_z \end{pmatrix} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}}_{\nabla}$$

Zylinderkoordinaten:

$$\operatorname{div} \vec{V} = \frac{1}{r} \frac{\partial}{\partial r} (r V_r) + \frac{1}{r} \frac{\partial V_{\varphi}}{\partial \varphi} + \frac{\partial V_z}{\partial z}$$

Kugelkoordinaten:

7.5 Laplace Operator Δ

Der Laplaceoperator ist nichts anderes als die Divergenz des Gradienten eines Skalarfelds und vergleichbar mit der zweiten Ableitung. Folglich gilt

$$\Delta \phi = \nabla \cdot (\nabla \phi) = \nabla^2 \phi = \frac{\partial^2 \varphi_1}{\partial x_1^2} + \frac{\partial^2 \varphi_2}{\partial x_2^2} + \dots + \frac{\partial^2 \varphi_n}{\partial x_n^2},$$

wobei das Resultat ein Skalarfeld ist.

7.6 Rotation eines Vektorfelds (rot, curl)

Die Rotation eines Vektorfelds, auch Curl genannt, beschreibt, wie stark ein Vektorfeld um einen gegebenen Punkt "rotiert" und wird als

$$\mathrm{rot}\, \vec{V} = \nabla \times \vec{V} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \times \begin{pmatrix} V_x \\ V_y \\ V_z \end{pmatrix} = \begin{pmatrix} \frac{\partial V_z}{\partial y} - \frac{\partial V_y}{\partial z} \\ \frac{\partial V_z}{\partial z} - \frac{\partial V_z}{\partial z} \\ \frac{\partial V_z}{\partial z} - \frac{\partial V_z}{\partial z} \\ \frac{\partial V_z}{\partial z} - \frac{\partial V_z}{\partial z} \end{pmatrix}$$

berechnet. Der resultierende Vektor ist dabei die Rotationsachse, wobei die Rechte-Hand-Regel gilt.

Der Curl ist grundsätzlich nur in drei Raumdimensionen definiert. Wenn die Rotation eines auf der Ebene z=0 definierten Vektorfelds berechnet werden soll, kann die obige Formel mit $V_z=0$ angepasst werden:

$$\mathrm{rot}\, \vec{V}(x,y) = \nabla \times \vec{V}(x,y) = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \times \begin{pmatrix} V_x \\ V_y \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y} \end{pmatrix}$$

 Mit dem Curl-Operator kann z.B. elegant beschrieben werden, dass Wirbel im E-Feld auf zeitliche Änderungen im magnetischen Feld zurückzuführen sind:

$$\nabla \times \vec{E} = -\frac{\partial \vec{H}}{\partial t}$$

7.7 Rechenregeln mit ∇

Für das dalegen der Rechenregeln werden die folgenden Platzhalter verwendet:

 $\begin{array}{ll} A,B\colon & \text{Skalarfelder } (\mathbb{R}^n \to \mathbb{R}) \\ \vec{A},\vec{B}\colon & \text{Vektorfelder } (\mathbb{R}^n \to \mathbb{R}^n) \\ F\colon & \text{Skalare Funktion } (\mathbb{R}^n \to \mathbb{R}) \end{array}$

c: Konstante

Gradienten:

$$\begin{aligned} \operatorname{grad}(A+B) &= \operatorname{grad}(A) + \operatorname{grad}(B) & \longleftrightarrow & \nabla(A+B) &= \nabla A + \nabla B \\ \operatorname{grad}(A \cdot B) &= A \operatorname{grad}(B) + B \operatorname{grad}(A) & \longleftrightarrow & \nabla(A \cdot B) &= A \cdot \nabla B + B \cdot \nabla A \\ \operatorname{grad}(c \cdot A) &= c \operatorname{grad}(A) & \longleftrightarrow & \nabla(c \cdot A) &= c \cdot \nabla A \\ \operatorname{grad}(F(A)) &= F'(A) \cdot \operatorname{grad}A & \longleftrightarrow & \nabla F(A) &= F'(A) \cdot \nabla A \end{aligned}$$

Divergenzen:

$$\begin{array}{lll} \operatorname{div}(\vec{A} + \vec{B}) = \operatorname{div}(\vec{A}) + \operatorname{div}(\vec{B}) & \leftrightarrow & \nabla \bullet (\vec{A} + \vec{B}) = (\nabla \bullet \vec{A}) + (\nabla \bullet \vec{B}) \\ \operatorname{div}(A \cdot \vec{B}) = A \operatorname{div}(\vec{B}) + \vec{B} \operatorname{grad}(A) & \leftrightarrow & \nabla \bullet (A \cdot \vec{B}) = A \cdot (\nabla \bullet \vec{B}) + \vec{B} \bullet \nabla A \\ \operatorname{div}(\vec{A} \times \vec{B}) = \vec{B} \bullet \operatorname{rot}(\vec{A}) - \vec{A} \bullet \operatorname{rot}(\vec{B}) & \leftrightarrow & \nabla \bullet (\vec{A} \times \vec{B}) = \vec{B} \bullet (\nabla \times \vec{A}) - \vec{A} \bullet (\nabla \times \vec{B}) \\ \operatorname{div}(c \cdot \vec{A}) = c \operatorname{div}(\vec{A}) & \leftrightarrow & \nabla \bullet (c \cdot \vec{A}) = c \cdot (\nabla \bullet \vec{A}) \end{array}$$

Curl:

$$\begin{aligned} \operatorname{rot}(\vec{A} + \vec{B}) &= \operatorname{rot}(\vec{A}) + \operatorname{rot}(\vec{B}) &\longleftrightarrow & \nabla \times (\vec{A} + \vec{B}) &= (\nabla \times \vec{A}) + (\nabla \times \vec{B}) \\ \operatorname{rot}(A \cdot \vec{B}) &= A \operatorname{rot}(\vec{B}) + (\operatorname{grad}(A) \times \vec{B}) &\longleftrightarrow & \nabla \times (A \cdot \vec{B}) &= A \cdot (\nabla \times \vec{B}) + (\nabla A \times \vec{B}) \\ & \operatorname{rot}(c\vec{A}) &= c \operatorname{rot}(\vec{A}) &\longleftrightarrow & \nabla \times (c\vec{A}) &= c \cdot (\nabla \times \vec{A}) \\ \operatorname{rot}(\vec{A} \times \vec{B}) &= (\vec{B} \cdot \nabla)\vec{A} - (\vec{A} \cdot \nabla)\vec{B} + \vec{A} \operatorname{div} \vec{B} - \vec{B} \operatorname{div} \vec{A} \end{aligned}$$

$$\nabla \times (\vec{A} \times \vec{B}) = (\vec{B} \bullet \nabla) \vec{A} - (\vec{A} \bullet \nabla) \vec{B} + \vec{A} (\nabla \bullet \vec{B}) - \vec{B} (\nabla \bullet \vec{A})$$

Laplaceoperator:

$$\begin{aligned} \operatorname{div} \operatorname{grad} A &= \Delta A & \leftrightarrow & \nabla \bullet (\nabla A) &= \Delta A \\ \operatorname{rot}(\Delta \vec{A}) &= \Delta \operatorname{rot} \vec{A} & \leftrightarrow & \nabla \times (\Delta \vec{A}) &= \Delta (\nabla \times \vec{A}) \end{aligned}$$

Kombinationen:

$$\begin{aligned} \operatorname{div}\operatorname{rot}\vec{A} &= 0 && \leftrightarrow & \nabla \bullet (\nabla \times \vec{A}) = 0 \\ \operatorname{div}\operatorname{grad} A &= \Delta A && \leftrightarrow & \nabla \bullet \nabla A = \Delta A \\ \operatorname{rot}\operatorname{grad}\vec{A} &= \vec{0} && \leftrightarrow & \nabla \times (\nabla A) = \vec{0} \\ \operatorname{rot}\operatorname{rot}\vec{A} &= \operatorname{grad}\operatorname{div}\vec{A} - \Delta \vec{A} && \leftrightarrow & \nabla \times (\nabla \times \vec{A}) = \nabla (\nabla \bullet \vec{A}) - \Delta \vec{A} \end{aligned}$$

Gradient: (TODO: Check if this is right)

$$\nabla(\vec{A}\cdot\vec{B}) = (\vec{A}\cdot\nabla)\vec{B} + (\vec{B}\cdot\nabla)\vec{A} + \vec{A}\times(\nabla\times\vec{B}) + \vec{B}\times(\nabla\times\vec{A})$$

7.8 Anwendungen

7.9 Integralsatz von Gauss

$$\int_{(V)} \operatorname{div} \vec{A} \, \mathrm{d}V = \oint_{(S) = \partial V} \vec{A} \cdot \mathrm{d}\vec{S}$$

Fluss durch eingeschlossenen Körper = Gesamter Fluss durch geschlossenen Rand des Körpers

7.10 Poisson-Gleichung (Laplace-Gleichung)

$$\Delta \phi = \operatorname{div} \left(\operatorname{grad}(\phi) \right) = \nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = f(\vec{r})$$

Laplace-Operator

 ϕ : Potentialfeld Quellfunktion

7.10.1 Laplace-Gleichung

 $\Delta \phi = f = 0$ \Rightarrow Spezialfall der Poisson-Gleichung ohne äussere Quellfunktion

7.11 Integralsatz von Stokes

$$\oint_{(C)=\partial S} \vec{A} \cdot d\vec{r} = \int_{(S)} \operatorname{rot} \vec{A} \cdot d\vec{S}$$

 ∂S muss anhand Rechter-Hand-Regel orientiert sein. Stokes sagt aus, dass die Summe der Verwirbelungen in einer Fläche, der Summe der Vekter verwirbelungen in einer Fläche verwirbel toren dessen Randes entsprechen.

7.12 Anwendungen: Maxwell-Gleichungen

-TBD-