C.Física Moderna: Taller 7

Espectros atómicos y modelo de Bohr

1. Transiciones del átomo de hidrógeno

Se tienen las siguientes cuatro transiciones del átomo de hidrógeno:

- a) $n_i = 2$ $n_f = 5$
- b) $n_i = 5$ $n_f = 3$
- c) $n_i = 7$ $n_f = 4$
- d) $n_i = 4$ $n_f = 7$
- 1. ¿Para cuáles transiciones perdió energía el átomo?
- 2. ¿Para cuál transición se emite los fotones con menor longitud de onda?
- 3. ¿Para cuál transición gana mayor energía el átomo?

2. Serie de Lyman para el hidrógeno

Calcule la longitud más grande y pequeña en la serie de Lyman para el hidrógeno. Diga la transición electrónica que da lugar a cada una. ¿Hay lineas espectrales de Lyman que están en el espectro visible?.

3. Positronium

El Positronio es un átomo similar al de hidrógeno que consiste de un positrón y un electrón dando vueltas el uno alrededor del otro. Usando el modelo de Bohr:

- 1. Encuentre los radios permitidos (relativos al centro de masa) $a_{n,Ps}$ y las energías permitidas del sistema $E_{n,Ps}$.
- 2. Calcule la razón de la energía enésima del Positronio a la del átomo de hidrógeno $(E_{n,H}/E_{n,Ps})$.

Ayuda: El radio de Bohr y la mínima energía para el átomo de hidrógeno son: $a_{o,H}=0.53\text{Å y}\ E_{1,H}=-13.6\ \text{eV}.$

4. Energía para una transición

Calcule la energía de un foton que podría causar una transición electrónica de:

- a) $n_i = 4$ a $n_f = 5$
- b) $n_i = 5 \text{ a } n_f = 6$

Fórmulas útiles

Radio de Bohr:

$$a_0 = \frac{\hbar}{\mu c \alpha}$$

Radio enésimo para un átomo parecido al hidrógeno:

$$a_n = a_0 n^2$$

Energía enésima para un átomo parecido al hidrógeno:

$$E_n = -\frac{(k_e e^2)^2 \mu}{2\hbar^2 n^2} \tag{1}$$

Formula de Rydberg:

$$\frac{1}{\lambda} = R \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

Donde $R = 0.010972 \text{ nm}^{-1}$.