

Rafbók

REIT rafeindatækni 13. kafli Tyristor - triak Flemming Madsen

Þetta hefti er án endurgjalds á rafbókinni.

www.rafbok.is

Allir rafiðnaðarmenn og rafiðnaðarnemar geta fengið aðgang án endurgjalds að rafbókinni.

Heimilt er að afrita textann til fræðslu í skólum sem reknir eru fyrir opinbert fé án leyfis höfundar eða Rafmenntar, fræðsluseturs rafiðnaðarins. Hvers konar sala á textanum í heild eða að hluta til er óheimil nema að fengnu leyfi höfundar og Rafmenntar.

Höfundur er Flemming Madsen.

Umbrot í rafbók Bára Laxdal Halldórsdóttir.

Vinsamlegast sendið leiðréttingar og athugasemdir til höfundar Flemmings Madsen <u>flemmma@icloud.com</u> eða til Báru Laxdal Halldórsdóttur á netfangið <u>bara@rafmennt.is</u>

Efnisyfirlit

xafli Týristor, díakk og tríakk3	13. kaf
æmi 13.1	
æmi 13.23	Dær
æmi 13.34	Dær
æmi 13.44	Dær
æmi 13.55	Dær
æmi 13.65	Dær
æmi 13.76	Dær
æmi 13.8	Dær

13. kafli Týristor, díakk og tríakk

Dæmi 13.1

- 1. Merktu heiti tengiskautanna inn á týristorinn á myndinni.
- 2. Týristorar heita SCR á ensku. Hvað stendur SCR fyrir á íslensku?

Dæmi 13.2

- A. Jafngildismyndin skýrir virkni týristors.
 - a. Merkir pinni 1 A, K eða gate?
 - b. Merkir pinni 2 A, K eða gate?
 - c. Merkir pinni 3 A, K eða gate?

- C. Nýi base-straumurinn í T2 veldur því að collector-straumurinn í T1 eykst enn frekar. Hve mörg A verður hann?
- D. Hvað er það sem takmarkar það að straumurinn verði óendanlega mörg A?
- E. Í segulliðastýringum er ákveðin tenging sem vinnur svipað og rásin á myndinni.

Um hvaða tengingu er að ræða?

F. Hvers vegna þarf bara smá straumpúls á milli pinna 2 og 1 til þess að bæði T1 og T2 verði fullleiðandi (fari í mettun)?

Dæmi 13.3

Til þess að athuga virkni týristors er hægt að tengja hann eins og á tengimyndinni.

- A. Hvað á að gerast ef kveikt er á S1?
- B. Hvað á að gerast ef kveikt er á S2?
- C. Hvað á að gerast ef slökkt er aftur \$2?

- D. Ef ljósið logar, hvað gerist þá ef slökkt er og kveikt strax aftur á S1.
- E. Hvað gerist ef ljósið logar og tengt er á milli A og K í smástund?

Dæmi 13.4

- A. Hver er tilgangurinn með týristor stýrirásarinnar á tengimyndinni?
- B. Ofninn á myndinni er 1500 W. Hve mikið afl skilar sér í ofninn ef rofinn er stilltur á efri stillinguna?
- C. Hve mikið afl skilar sér í ofninn ef rofinn er stilltur eins og myndin sýnir?
- D. Teiknaðu sveiflusjármynd sem sýnir spennuna yfir ofninn eins og hún er sýnd á tengimyndinni.

Dæmi 13.5

A. Merktu heiti tengiskautanna inn á tríakkinn á myndinni.

- B. Tríakk er eins konar tvívirkur týristor. Reyndu að útskýra það.
- C. Hvers vegna er tríakk eingöngu notaður í stýrirásir fyrir 50 og 60 Hz?
- D. Teiknaðu jafngildistengimynd tríakks eins og gert var með týristor í dæmi 12.2.
- E. Teiknaðu tengimynd af rás eins og í dæmi 13.4 en nú með tríakk.

Dæmi 13.6

A. Díakk er helst notaður til að búa til kveikipúlsa á tríakk. Að hvaða leyti er hægt að bera tríakk saman við tvær 30 V zenerdíóður sem eru raðtengdar?

- B. Að hvaða leyti er tenging með 2 zenerdíóður frábrugðin díakk?
- C. Reyndu að útskýra hvað átt er við með "negative resistance" í tengslum við díakk.

Dæmi 13.7

- A. Teiknaðu spennuna yfir peruna inn á sveiflusjármyndina.
- B. Hvernig breytist vinnusvið rásarinnar ef þéttir sem myndar 90° fasvik er tengdur yfir 10 k ohm-viðnámið?
- C. Er hér um að ræða fasastýringu eða núll-gegnumgangs (zero crossing) stýringu?

Hver er mismunurinn?

- D. Um hvaða algengu ac-stýrirás verður að ræða, ef 10 k ohm-viðnámið er gert stillanlegt og hæfilega stórum þétti er bætt við rásina?
- E. Hvað myndi gerast ef núll-gegnumgagnsstýring væri notuð til að minnka afl í ljósaperum? Til hvers er hún notuð og hvaða kosti hefur hún fram yfir fasastýringu?
- F. Útskýrðu hvers vegna tríakk og týristor þurfa ekki kælingu fyrr en álags straumurinn fer yfir 1,5-2A.
- G. Hvaða afleiðingar myndi það hafa ef tríakk væri settur í rásina í dæmi 13.3 fyrir mistök?

Dæmi 13.8

Tengimyndin sýnir einfaldaða útgáfu af snertilausum segulrofa, sem er algengur í aflstýrirásum í iðnvélum.

- A. Hvaða kosti hefur snertilaus segulrofi fram yfir venjulegan segulrofa með spólu?
- B. Hvaða mikilvæga hlutverki gegnir optocoupler í innganginum?
- C. Hvað er átt við með "instant on" og "zero on" þegar um snertilausa segulrofa er að ræða? Er rásin á myndinni "instant on" eða "zero on"?
- D. Snertilausir segulrofar með týristor eru taldir þola best álagsstraum með fasvik.
 - Nefndu dæmi um álagsstraum þar sem snertilaus segulrofi með týristor myndi vera æskilegur.
- E. Teiknaðu tengimynd yfir snertilausan segulrofa með tríakk og optocoupler.
- F. Snertilausir rofar með tríakk eru aðallega notaðir í rásir án fasviks. Nefndu dæmi um þannig álagsstraum.