Inteligência Artificial

Conceitos e aplicações

Prof. Msc. Solander P. L. Agostinho

Departamento de Engenharias e tecnologias Curso de Engenharia Informática

October 13, 2020

Sumário

- 1 Capitulo I: Introdução
 - Agentes Racionais
 - Caraterização do Ambiente

- Capitulo II: Metodos de busca ou pesquisa
 - Problemas e espaço de problemas

Capitulo I: Introdução

Principais conceitos: Emoção e Raciocinio

- Sistemas que raciocinam de forma semelhante a dos seres humanos
- Sistemas que pensam de forma racional
- Sistemas que agem como os seres humanos
- Sistemas que agem de forma racional

I.A: Linha de tempo

Areas de Impacto

Sistemas que agem como seres humanos: teste de Turing

- Proposto por Alan Turing
- Medir a abilidade de um sistema conseguir se comportar como um ser humano
- Análise baseadas em tarefas cognitivas
- humano se comunica com um ser humano e uma máquina sem poder saber quem é quem
- Máquina passa no teste se o ser humano emissor não souber distinguir quem é de facto a máquina

Teste de Turing

Requisitos de um sistema para executar teste de Turing

- Capacidade de processar uma linguagem natural
- Capacidade de representar o conhecimento (Deve ter a capcidade de armazenar informações antes, durante e obviamente após o processo)
- Poder automatizar o raciocínio de formas a geras novas conclusões
- Ter capacidade de se adaptar a novas circunstâncias (machine learning)

Agentes Racionais

"Um agente é uma entidade que percebe o ambiente no qual está inserido através de sensores e afeta essa ambiente por meio de atuadores". [Russel & Norvig, 2003]

Caracterização dos Agentes

Agentes humanos:

Sensores: Olhos, ouvidos olfato,...

Atuadores: Mãos, pernas, boca,...

Agente robotico:

Sensores: câmeras, detector infra-vermelho,...

Atuadores: Encoder, servo-motor, compressor...

Agentes Racionais

- Robos fisicos ou softbots
- conceito útil em uma variedade de aplicações/ambientes
- auxilia o desenvolvimento de princípios de projeto
- ajuda a construir agentes com chances de sucesso
- medida de desempenho é que define o critério de sucesso

Exemplos de agentes inteligentes

- Robos manipuladores
- robo crawler
- sistemas de voz assistentes (Siri, Svoice, Kortana, Alexa...)
- Controladores industriais
- ...

Habilidades e Metas

Inferências

Tabela de inferência

Projeto de Agentes

${\sf Exemplo}$

Sequência de percepts	Ação
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Righ
[A, Clean], [A, Dirty]	Suck
:	:
[A, Clean], [A, Clean], [A, Clean]	Righ
[A, Clean], [A, Clean], [A, Dirty]	Such
:	:

Taxonomia dos Agentes

Caracteristicas e dependencias

Os agentes podem ser:

- Reativos:
 - Agem (tomam decisões) de acordo com o estado atual de seus sensores.
- Não Reativos: agem (tomam decisões) de acordo com o estado atual e passado de seus sensores.

Principais pilares:

- P- performance
- E- Environment
- A- Actuators
- S- Sensors

Tipos de agentes

- Reativos simples
- Reativos baseados em modelo
- Basedo em metas
- Baseado em utilidade
- Aprendiz

OBS: Para os tipos acima, o nível de autonomia é de cima (MENOS) para baixo (MAIS)

Agentes reativos simples

Agentes baseados em metas

Agentes baseados em Utilidades

Exemplos

Agente	Dados perceptivos	Ações	Objetivos	Ambiente
Diagnóstico médico	Sintomas, resultados de exames,	Perguntar, realizar ou prescrever exames,	Maximizar a saúde do paciente, minimizar custos	Paciente, consultório, Laboratório,
Análise de imagens de satélite	Pixels	imprimir uma classificação	classificar corretamente	lmagens de satélite
Tutorial de português	Palavras digitadas	Imprimir exercícios, sugestões, correções,	Melhorar o desempenho do estudante	Conjunto de estudantes
Filtro de emails	mensagens	Aceitar ou rejeitar mensagens	Aliviar a carga de leitura do usuário	Mensagens, usuários
Motorista de taxi	Imagens, velocímetro, sons	brecar, acelerar, virar, falar com passageiro,	Segurança, rapidez, economia, conforto,	Ruas, pedestres, carros,
Músico de jazz	Sons, seus e de outros músicos, grades de acordes	Escolher e tocar notas no andamento	Tocar bem, se divertir, agradar	Músicos, público, grades de acordes

Caracterização do Ambiente

- observável vs parcialmente observável: Certeza no efeito da ação do Agente
- determinístico vs estocástico: Determinação do proximo estádo
- episódico vs sequencial: Necessidade de perceber o ambiente antes de agir
- estático vs dinâmico : Configuração do ambiente esua variancia de acordo o tempo
- discreto vs contínuo: Limitação quanto ao número de percepções e ações

Exemplo de ambientes

- Jogo de xadrez Observável (acessível) (ambiente)
- robô que seleciona peças parcialmente observável (inacessível)
- Jogo de xadrez determinístico
- robô que seleciona peças estocástico (não-determinístico)
- Jogo de xadrez sequencial
- robô que seleciona peças episódico
- Jogo de Xadrez sem relógio estático
- robô que seleciona peças dinâmico
- Jogo de xadrez discreto
- rrobô que seleciona peças contínuo

Revisão sobre gravos

Definição:Seja G(V,A) um grafo. Dada uma aresta $a=(v_i,v_j)\in A$ dizemos que:

- $lacktriangleq v_i e v_j$ São extremos da aresta a
- $lacktriangleq v_i e v_j$ São chamados de vertices adjacentes
- lacksquare Dada a aresta $a=(v_i,v_j)$, se $v_i=v_j$ então a é um loop ou laço

Exemplo

- $V = \{v_1, v_2, v_3, v_4, v_5\}$ $A = \{(v_1, v_2), (v_1, v_3), (v_2, v_4), (v_3, v_4), (v_4, v_5), (v_1, v_2), (v_2, v_2)\}$
- $V = \{1, 2, 3, 4, 5\}$ $A = \{(1, 2), (2, 3), (1, 4), (1, 3)\}$
- $V = \{a, b, c\}$ $A = \{\}$

Exemplos de aplicação dos grafos

Grafo	Vértice	Aresta
Comunicação	Centrais telefônicas, Computadores, Satélites	Cabos, Fibra óptica, Enlaces de microondas
Circuitos	Portas lógicas, registradores, processadores	Filamentos
Hidráulico	Reservatórios, estações de bombeamento	Tubulações
Financeiro	Ações, moeda	Transações
Transporte	Cidades, Aeroportos	Rodovias, Vias aéreas
Escalonamento	Tarefas	Restrições de precedência
Arquitetura funcional de um software	Módulos	Interações entre os módulos
Internet	Páginas Web	Links
Jogos de tabuleiro	Posições no tabuleiro	Movimentos permitidos
Relações sociais	Pessoas, Atores	Amizades, Trabalho conjunto em filmes

Propriedades do grafo

- Quanto à Orientação
- Quanto ao Ciclo
- Quanto aos pesos (ponderação)
- Quanto ao grau

Lista de adjacencia

LISTA DE ADJACÊNCIAS

Matriz de adjacencias

Matriz de Adjacência

	0	1	2	3	4	5
0		1		1		
1			1	1		
2			1	1		
3	1					
4						1
5						
		((a)			

	0	1	2	3	4	5
0		1	1			
1	1		1			
2	1	1				
3						
4						1
<u>4</u>					1	1

Matriz de adjacencias

Capitulo II: Metodos de busca ou pesquisa

Métodos de busca ou pesquisa

Resolução de problemas de pesquisa

- Agentes reativos
 não funcionam em ambientes para quais o número de regras
 condição-ação é grande demais para armazenar.
- Agente baseado em objetivo para resolução de problemas
- Fases para resolução do problema
 - 1- Formular objetivo
 - 2- Buscar objetivo
 - 3- Avaliar a sequencia de execuções
 - 4- Executar para alcançar o objrtivo

Formato do Ambiente

- Estático:
 - O Ambiente não pode mudar enquanto o agente está realizando a resolução do problema.
- Observável:
 - O estado inicial do ambiente precisa ser conhecido previamente.
- Determinístico:
 - O próximo estado do agente deve ser determinado pelo estado atual + ação. A execução da ação não pode falhar.

Busca em Largura (BFS)

Busca em profundidade

- Pré-Ordem
- Pós-Ordem
- Ordem simetrica

Casos particulares

- BFS: Busca de custo uniforme
- DFS:Busca limitadaBusca com profundidade iterativa

Espaço de problemas

- Resolução de problemas: Princípio essencial em I.A
- Problemas: Deterministicos (computacionais) e não deterministicos
- Problemas não deterministicos resolvidos baseado em busca de solução
- Ordem: Determinar objetivo, formular problema e decidir método de busca

Configuração do problema

- Entrada: Grafos constituidos por:
 Nós: Situação do problema;
 Arestas: Movimentos permitidos ações ou paços para chegar a solução;
- Objetivo: encontrar um caminho para atingir o alvo e avaliar o custo:
 Caminho minimo: Arestas sem custo
 Custo mínimo do caminho: Arestas com custo
- Problema: Inicial, subproblema, primitivos

Problema do Quebra cabeça

1	3		1	2	3
8	2	4	8		4
7	6	5	7	6	5
4	5	8			
	1	6			
7	2	3			

Configuração do problema (Quebra cabeça)

- Estado Inicial: Configuração inicial do tabuleiro;
- Objetivo: Peças no tabuleiro organizadas em ordem crescente;
- Operações: movimentos para direita, esquerda, cima e baixo;
- Espaço de estados: configuração inicial, novas posições e finais do tabuleiro
- Estado Final: Fornecido (único);
- Custo: 1 por movimento;

Problema das 4 rainhas

Configuração do problema (4 rainhas)

- Estado Inicial: Tabuleiro vazio;
- Objetivo: Tabuleiro com todas as rainhas sem possibilidade de interseção;
- Operações: Posicionar rainha em uma casa qualquer no tabuleiro;
- Espaço de estados: configuração inicial, novas configurações e finais do tabuleiro
- Estado Final: Quatro rainhas no tabuleiro (unico ou multiplos?);
- Custo: Nulo (Apenas o estado final interessa)

Problema das Pilhas

Missionarios e canibais

Referencias

- Barr, A. & Feigenbaum, E. *The Handbook of Artificial Intelligence*.
 2nd ed. (Makron books, 1981).
- Russel, S. J. & Norvig, P. Artificial Intelligence, A Modern Approach. 2nd ed. (Prentice Hall, 2003).

É tudo por hoje