0 - INTRODUCTION

Statistika Terapan Semester Genap 2017/2018

COURSE ORGANIZATION

Kode Mata Kuliah	CSIM603216
Nama Mata Kuliah	Statistika Terapan
Prasyarat Mata Kuliah	Statistika dan Probabilitas
Total SKS	3 sks
Dosen Pengajar	Prof. Drs. T. Basaruddin, M.Sc., Ph.D chan@cs.ui.ac.id Meganingrum Arista Jiwanggi, M.Kom, MCS meganingrum@cs.ui.ac.id Dipta Tanaya, M.Kom diptatanaya@gmail.com
Asisten	TBA
Suggested Stats Tools	SPSS, AMOS, SmartPLS, atau tools opensource (e.g. R, Statistical Lab, dsb)

EXPECTED LEARNING OUTCOMES

Setelah mengikuti mata kuliah ini, mahasiswa diharapkan mampu untuk:

- 1. Menjelaskan berbagai teknik statistik untuk mengolah data
- 2. Memilih teknik statistik yang sesuai untuk memecahkan permasalahan tertentu
- Menginterpretasikan dengan benar hasil pengolahan statistik sebagai bagian dari critical thinking
- 4. Mengkomunikasikan hasil pengolahan statistik baik secara lisan maupun tulisan
- 5. Menggunakan alat bantu statistik untuk mengolah data

COURSE OUTLINE

No	D eskripsi	Tanggal
0	Review	5 Feb 2018
1	Comparing Two Means (t-Test):	5, 7, dan 12 Feb 2018
2	Comparing Several Means: ANOVA (Analysis of Variance)	14, 19, dan 21 Feb 2018
3	Analysis of Covariance (ANCOVA)	26 dan 28 Feb, 5 Maret 2018
4	Factorial ANOVA	5, 7, dan 12 Maret 2018
5	Correlation	14, 19, dan 21 Maret 2018
6	UTS	26 Maret - 3 April 2018
7	Regression	4, 9 April 2018
8	Logistic Regression	11, 16 18, April 2018
9	Exploratory Factor Analysis and Principle Component Analysis	23, 25, 30 April 2018
10	Causal Modeling: Path Analysis and Structural Equation Modeling (SEM)	2, 7, 9 Mei 2018
11	Non-parametric stats	14, 16, 21 Mei 2018
12	UAS	23 Mei - 1 Juni 2018

GRADING

Diskusi Kelompok : 40%

Kuis dan Partisipasi : 5%

UTS : 25%

UAS : 30%

TOTAL : 100%

GENERAL NOTICE

- 1. Metode perkuliahan Statistika Terapan Semester Genap 2017/2018 merupakan kombinasi dari pertemuan tatap muka dan diskusi kelompok.
- 2. Mahasiswa perlu membentuk kelompok beranggotakan 4-5 orang yang akan menjadi rekan diskusi dalam satu semester ke depan. Nama-nama anggota kelompok dapat ditulis di SCeLE
- 3. Pada setiap akhir diskusi kelompok, akan diundi kelompok yang akan melakukan presentasi sehingga setiap kelompok sudah harus siap untuk mempresentasikan hasil diskusi kelompoknya
- 4. Setiap kelompok juga WAJIB mengumpulkan laporan hasil diskusi dengan mengikuti format yang telah disiapkan.

SUGGESTED TEXT

- A. Field. Discovering statistics using SPSS (4th edition). Los Angeles: Sage, 2013.
- Sheldon Ross. Introduction to Probability and Statistics for Engineers and Scientists 4th Edition. Academic Press, 2009
- Dennis E. Hinkle, et al. Applied Statistics for the Behavioral Sciences 5th Edition.
 Houghton Mifflin, 2002

SAMPLING

Why sample?

Key Sampling Concepts

- The theoretical population: who do you want to generalize to?
- The study population: what population can you get access to?
- The sampling frame: how can you get access to them?
- The sample: who are on your study?

SAMPLING PROCESS

Defining the population

Specifying a sampling frame, a set of items or events possible to measure

Specifying a sampling method for selecting items or events from the frame

Determining the sample size

Implementing the sampling plan

Sampling and data collecting

Reviewing the sampling process

TYPE OF SAMPLING

Probability

- Random Sampling: everyone in population has an equal chance of being selected
- Systematic / interval Sampling : randomly select number y between 1 and n, n=population size/sample size. Sample element y, y+n, y+2n, y+3n, etc. Example : population size = 64, sample size = 8, n = 8. Select number y between 1 and 8, ex:3. The sample are 3^{rd} , 11^{th} , 19^{th} ,
- Stratified Sampling: divide the population into smaller groups (called strata), then take random sample from each strata.
- Cluster Sampling: divide the population into separate groups (called cluster), then take random sampling to choose the sampled cluster.

Non-probability

- Convenience: subjects are selected because of their convenient accessibility and proximity to the researcher.
- Quota: divide the population into smaller groups, then select the subjects or units from each segment based on a specified proportion
- Purposive: subjects are selected based on characteristics of a population and the objective of the study

NORMAL DISTRIBUTION

T DISTRIBUTION

Small sample size, unknown population standard deviation

F DISTRIBUTION

CONFIDENCE INTERVAL

A confidence interval for an unknown parameter θ is an interval that contains a set of plausible values of the parameter. It is associated with a confidence level $1-\alpha$, which measures the probability that the confidence interval actually contains the unknown parameter value.

CONFIDENCE INTERVAL FOR NORMAL MEAN WHEN THE VARIANCE IS KNOWN

A 100(1-lpha)% two-sided confidence interval for μ is

$$\mu \in \left(\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

Example

• Suppose that data set of milk container weights is normally distributed with mean μ and variance 4. The sample mean \overline{x} is 9. There were 16 samples in the experiment. Let us construct a 95% confidence interval for μ

CONFIDENCE INTERVAL

CONFIDENCE INTERVAL FOR NORMAL MEAN WHEN THE VARIANCE IS KNOWN

95% two-sided confidence interval for μ is

$$\mu \in \left(9 - 1.96 \frac{2}{\sqrt{16}}, 9 + 1.96 \frac{2}{\sqrt{16}}\right) = (8.02, 9.98)$$

How do we interpret that result?

• The observed interval (8.02, 9.98) brackets the true value of population mean with 95% confidence.

Which is better, wide or narrow interval?

CONFIDENCE INTERVAL

Two-sided Cl

$$\mu \in \left(\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

One-sided upper Cl

$$\mu \in \left(\overline{x} - z_{\alpha} \frac{\sigma}{\sqrt{n}}, \infty\right)$$

One-sided lower Cl

$$\mu \in \left(-\infty, \overline{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}}\right)$$

CONFIDENCE INTERVAL FOR NORMAL MEAN WHEN THE VARIANCE IS UNKNOWN

Two-sided Cl

$$\mu \in \left(\overline{x} - t_{\frac{\alpha}{2}, n-1} \frac{S}{\sqrt{n}}, \overline{x} + t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}\right)$$

One-sided upper Cl

$$\mu \in \left(\overline{x} - t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}, \infty\right)$$

One-sided lower Cl

$$\mu \in \left(-\infty, \overline{x} + t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}\right)$$

HYPOTHESIS

- Hypothesis: a statement about what findings are expected
- Null hypothesis: "the two groups will not differ"
- Alternative hypothesis :
 - "group A will do better than group B"
 - "group A and B will not perform the same"

POSSIBLE OUTCOMES IN HYPOTHESIS TESTING

	H ₀ is actually	
	TRUE	FALSE
ACCEPT H ₀	Correct desicion	Type II error
REJECT H _o	Type I error	Correct desicion

HYPOTHESIS TESTING

Steps:

- State the hypothesis: H₀ & H_a
- Set the criterion for rejecting H_0 : level of significance (α)
- Compute the Test-statistic : for example, compute z
- Decision about the Null Hypothesis
 - Accept the Null Hypothesis (H₀)
 - Reject the Null Hypothesis

HYPOTHESIS TESTING

- One sample case (test concerning the Mean of Normal Population)
 - Case 1 : known variance
 - Case 2 : unknown variance
- Two sample case (testing for Equality of Variance of Two Normal Population for independent samples)
- Two sample case (testing for Equality of Means of Two Normal Population for independent samples)
 - Case 1 : known variances
 - Case 2 : unknown variances, but $\sigma_1^2 = \sigma_2^2 = \sigma^2$
 - Case 3: unknown variances, but $\sigma_1^2 \neq \sigma_2^2$
 - Case 4 : unknown variances, unknown relation between σ_1^2 and σ_2^2
- Two sample case (testing for Equality of Means of Two Normal Population for dependent samples)

HYPOTHESIS TESTING (ONE SAMPLE CASE, WHEN σ^2 IS KNOWN)

	One-Tailed Test (i)	One-Tailed Test (ii)	Two-tailed Test
Hypothesis	$H_0: \mu = \mu_0$ $H_a: \mu > \mu_0$	$H_0: \mu = \mu_0$ $H_a: \mu < \mu_0$	$H_0: \mu = \mu_0$ $H_a: \mu \neq \mu_0$
Test Statistic (z-test)		$z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$	
Reject H ₀ if	$z > Z_{\alpha}$	$z < -Z_{\alpha}$	$ z > Z_{\alpha/2}$
Accept H ₀ if	$z \le Z_{\alpha}$	$z \ge -Z_{\alpha}$	$ z \le Z_{\alpha/2}$

HYPOTHESIS TESTING (ONE SAMPLE CASE, WHEN σ^2 IS UNKNOWN)

	One-Tailed Test (i)	One-Tailed Test (ii)	Two-tailed Test
Hypothesis	$H_0: \mu = \mu_0$ $H_a: \mu > \mu_0$	$H_0: \mu = \mu_0$ $H_a: \mu < \mu_0$	$H_0: \mu = \mu_0$ $H_a: \mu \neq \mu_0$
Test Statistic (t-test)	$t=\frac{\bar{X}-\mu_0}{S/\sqrt{n}}$ Where $S^2=\frac{\sum_{i=1}^n(X_i-\bar{X})^2}{n-1}, n=sample\ size$		
Reject H ₀ if	$t>t_{lpha,n-1}$	$t < -t_{\alpha,n-1}$	$ t > t_{\alpha/2, n-1}$
Accept H ₀ if	$t \leq t_{\alpha,n-1}$	$t \geq t_{lpha,n-1}$	$ t \le t_{\alpha/2, n-1}$

TESTING FOR THE EQUALITY OF VARIANCE OF TWO NORMAL POPULATION FOR INDEPENDENT SAMPLES

Hypothesis	$H_0:\sigma_1^2=\sigma_1^2$
	$H_0:\sigma_1^2\neq\sigma_1^2$
Test Statistic (F-test)	$F = \frac{S_1^2}{S_2^2},$ Where $S_1^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}$ and $S_2^2 = \frac{\sum_{i=1}^m (X_i - \bar{X})^2}{m-1}$
Reject H ₀ if	Case 1 $(S_1^2 > S_2^2)$ $F > F_{\frac{\alpha}{2}, n-1, m-1}$ Case 1 $(S_1^2 < S_2^2)$ $F < F_{\frac{\alpha}{2}, n-1, m-1}$