Gradient

Gradient Vanishing

활성화함수: 시그모이드

최적의 W값 찾기 위해

순전파, 역전파 과정 계속 거침.

시그모이드 함수 성질 때문에

계산 과정 반복하면 점점 0에 가까워 지는 값 출력.

 $w \leftarrow w - \eta \cdot \text{Gradient}$

n: 학습률

Gradient vanishing: Sigmoid

기울기 크거나 작아짐에 따라 미분 시 0 되는 형태.

Gradient vanishing: tanh

but.

0 범위 제외하고 결국 0에 수렴

$$anh(x)=rac{e^x-e^{-x}}{e^x+e^{-x}} \qquad \qquad anh'(x)=1- anh(x)^2$$

Gradient vanishing

Activation Functions

Sigmoid

tanh

tanh(x)

Leaky ReLU $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout / ELU
- Try out tanh but don't expect much
- Don't use sigmoid

이와 같이 여러 개선 activation F 존재.

하지만 완전한 기울기 소실 문제는 해결 X

Optimization(경사 하강법 연장선): Momentum

$$x_{t+1} = x_t - \eta
abla f(x_t)$$

기존 GD

x_t: 현재 위치

η: 학습률

∇f(x_t): 기울기

→ 결국 어디로 가야하는지의 의미

$$v_{t+1} =
ho v_t - lpha
abla f(x_t)$$

$$x_{t+1} = x_t + v_{t+1}$$

Momentum

v_t: 현재 속도

p: 파라미터.(관성값. 보통은 0.9)

α: 학습률

∇f(x_t): 기울기

→ 이전단계의 속도도 함께 고려. 진동 줄이면서 좀 더 빠르게

Optimization(경사 하강법 연장선): Nesterov Momentum

$$v_{t+1} =
ho v_t - lpha
abla f(x_t +
ho v_t)$$
 $x_{t+1} = x_t + v_{t+1}$

좀 더 세밀한 조정 가능.

결국 Momentum의 개선책.

v_t: 현재 속도

p: 파라미터.(관성값. 보통 은 0.9)

α: 학습률

x_t + pv_t: 현재 위치에서 관성 방향으로 움직인거

Optimization: Adagrad(Adaptive Gradient Algorithm)

$$g_t =
abla f(x_t)$$

g_t: 현재 시간t 에서의 기울기

G_t: 각 시간마다의 기울기 제곱 누적값

α: 초기 학습률

€: 어쩔 수 없는 오차

결국 G_t값 커질 수록 학습률 점차적 감소.

고정된 학습률이 아닌, 바뀌는 학습률.

→ 결국 점점 가중치 변화 줄어듦
오래 학습할 수록 기울기 0 수렴.

Optimization: RMSProp(Root Mean Square Propagation

$$E[g^2]_t = \gamma E[g^2]_{t-1} + (1-\gamma)g_t^2$$

EMA(Exponential Moving Average)

$$x_{t+1} = x_t - rac{lpha}{\sqrt{E[g^2]_t + \epsilon}} \cdot g_t$$

g_t: 현재 시간t 에서의 기울기

γ: 감쇠율(이전의 기울기 정보 얼마나 넣을지. 보통 0.9로 둠)

x_t: 현재 단계 가중치 값

α: 초기 학습률

$$E[g^2]_t = (1-\gamma)g_t^2 + \gamma(1-\gamma)g_{t-1}^2 + \gamma^2(1-\gamma)g_{t-2}^2 + \dots$$

결국은 현재 기울기에 더 큰 가중치 부여.

최근의 기울기 더 반영. 학습률 너무 빠르 게 감소하지 않도록 작동.

→ Adagrad 개선책

Optimization: Adam(Adaptive Moment Estimation)

$$g_t = \nabla f(x_t)$$

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

3.
$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

4.
$$\hat{m}_t = rac{m_t}{1-eta_1^t}$$
 $\hat{v}_t = rac{v_t}{1-eta_2^t}$

5.
$$x_{t+1} = x_t - rac{lpha}{\sqrt{\hat{v}_t} + \epsilon} \cdot \hat{m}_t$$

g_t: 현재 시간t 에서의 기울기

m_t: 기울기의 평균. 여러 단계의 기울기들 고려 가능 , 여기 서는 Momentum 역할

v_t: 기울기 변화량. 여기서는 RMSProp 역할

B_1, B_2: 파라미터 값, 보통 0.9, 0.99 로 설정

x_t: 현재 단계 가중치 값

α: 초기 학습률

Optimization: Adam(Adaptive Moment Estimation)

각 단계마다 학습률 자동 조정 좀 더 빡세게 됨.

다만,

초기 설정값들이 생각보다 많아서 감이 좋아야 한다고 하는데 그냥 default 값 넣고 해도 잘 됨.

그래서 딥러닝에서 많이 씀.

https://www.youtube.com/watch?v=_JB0AO7QxSA&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=7&ab_channel=StanfordUniversitySchoolofEngineering

CNN(Convolution Neural Network)

Conv 계층 연산

2	0	1		15	
0	1	2	\longrightarrow	10	_
1	0	2			

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

0

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Zero padding

0	0	0	0	0	0		
0							
0							
0							
0							

Pooling

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

Average Pooling

3.75	1.25
3.75	2.0

Dropout

Assignment

수업 자료 정리

Conv 계층 7개 이상 사용

FC 계층 1~3개 사용

BatchNormalization, maxPooling, Dropout 필수 사용

Train, test 정확도 65% 이상 확보

모델 학습 시간 10분 이하

