EMPATYCZNY RÓJ ROBOTÓW

Konrad Pierzyński, Yevhenii Poliakov, Adrian Szczeszek, Witold Woch

Celem projektu jest opracowanie drugiej generacji empatycznego roju robotów, umożliwiającej przeprowadzanie fizycznych eksperymentów wygodniej, szybciej i na szerszą skalę. Celem badawczym jest analiza algorytmów sztucznej empatii na zminiaturyzowanej generacji roju robotów.

Model empatii

Empatia to umiejętność wczuwania się w stan drugiej osoby, po to, by móc ją zrozumieć i się od niej uczyć. Podczas kooperacji pozwala przewidzieć zachowania innych jednostek i odpowiednio planować własne działania, by osiągnąć globalny cel. Jest to niezwykle cenna umiejętność pozwalająca na efektywną pracę w grupach, którą warto przenieść na sztuczne systemy, takie jak roje. Podstawowym elementem sztucznej empatii jest porównywanie własnej wiedzy ze stanem wewnętrznym innego agenta, stąd kluczową rolę odgrywa tu komunikacja. Podobnie jak u ludzi, wymiana informacji między sobą jest procesem nieprecyzyjnym. W związku z tym do opisu tych informacji naturalnym wyborem jest zastosowanie zbiorów rozmytych. Do porównania własnej wiedzy z otrzymanym stanem wewnętrznym innego agenta można użyć podanej miary podobieństwa zbiorów rozmytych:

$$s\left(A^{j},A^{i}
ight)=1-rac{\sqrt[2]{\sum_{k=1}^{n}\left|x_{k}^{j}-x_{k}^{i}
ight|^{2}}}{n}$$

Agenci są wyposażeni w dwa moduły decyzyjne: egoistyczny oraz empatyczny. Pierwszy z nich odpowiada za działania, które przybliżają agenta do lokalnego celu. Drugi zapewnia akcje osiągające ten sam cel, ale w synergiczny sposób. Podczas interakcji między robotami, ewaluowane są nagrody za działania z obydwu modułów. Finalna decyzja zależy od porównania, która ze strategii jest bardziej opłacalna. Nagrody obliczane są na podstawie wzoru:

$$r\left(A^i
ight) = rac{\sum_{j=1}^m s\left(A^j,A^i
ight) imes r\left(A^j
ight)}{m}$$

W tym przypadku m oznacza liczbę stanów, natomiast pary (A^j,r_j) to nagrody przechowywane w pamięci.

Metodyka badań

- przeprowadzenie eksperymentów na fizycznej platformie z udziałem nowej generacji empatycznego roju robotów,
- realizacja symulacji w wirtualnym środowisku do badań empatycznych algorytmów

Specyfikacja

pierwsza generacja	nowa generacja
nieprecyzyjne poruszanie się spowodowane niską jakością silników oraz niedoskonałą metodą sterowania	ulepszone sterowanie dzięki czujnikom poboru prądu oraz użycie precyzyjnych silników
przewodowe ręczne ładowanie	bezprzewodowe automatyczne ładowanie
niska pojemność baterii - krótki czas pracy	wydajna bateria o 75% większej pojemności
obiektyw niskiej jakości o zbyt dużych wymaganiach co do oświetlenia	kamera o większej rozdzielczości, z większym kątem widzenia oraz szerszą rozpiętością kolorów

Ponadto, roboty będą wyposażone również w:

- kompas oraz żyroskop do lepszej orientacji w przestrzeni,
- czujniki odległości wspomagające unikanie kolizji,
- moduł zdalnego wybudzania,
- mikrokontroler STM32, który odciąży główny procesor od zarządzania silnikami i czujnikami,
- wieżyczkę stanów o poprawionych kątach widoczności,
- autorską płytkę PCB;

Wizualizacja

Rys. 1. Pierwsza generacja

Rys. 2. Nowa generacja poprawionych, zminiaturyzowanych robotów

Zastosowania

- Platforma badawcza dla naukowców do weryfikacji nowych algorytmów sztucznej empatii
- Środowisko dla nauczycieli wspierające dydaktykę z zakresu sztucznej inteligencji
- Infrastruktura do testowania nowych ścieżek automatyzacji i robotyzacji w przedsiębiorstwach

Literatura

• Siwek, J.; Żywica, P.; Siwek, P.; Wójcik, A.; Woch, W.; Pierzyński, K.; Dyczkowski, K. Implementation of an Artificially Empathetic Robot Swarm. *Sensors* **2024**, *24*, 242. https://doi.org/10.3390/s24010242

- M. Rubenstein, C. Ahler and R. Nagpal, "Kilobot: A low cost scalable robot system for collective behaviors," 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 2012, pp. 3293-3298, doi: 10.1109/ICRA.2012.6224638.
- Yalçın, Ö.N., DiPaola, S. Modeling empathy: building a link between affective and cognitive processes. Artif Intell Rev 53, 2983–3006 (2020). https://doi.org/10.1007/s10462-019-09753-0

