CS 460/560 Introduction to Computational Robotics Fall 2019, Rutgers University

Lecture 03 Math. Foundations II

Instructor: Jingjin Yu

Outline

Topological spaces

Manifolds

Path and connectivity

Homotopic paths

Connectedness of space

Fixed point theorems

Topological Space

A set X and a collection Γ of subsets (called open sets) of X form a topological space if

- $\Rightarrow \emptyset \in \Gamma \text{ and } X \in \Gamma$
- \Rightarrow Arbitrary union (U) of elements of Γ is again in Γ
- \Rightarrow Finite intersection (\cap) of elements of Γ is again in Γ

Note: here, "open sets" are defined differently from earlier for Euclidean space; the definition here is more general

 \Rightarrow E.g., point set topologies with $X = \{1, 2, 3\}$ (from Wikipedia)

 $\{1,2\} \cap \{2,3\} = \{2\} \notin \Gamma$

A set A is closed if (X - A) is open

 $\{2\} \cup \{3\} = \{2,3\} \notin \Gamma$

Topological Spaces on $\mathbb R$

The "standard topology" on $\mathbb R$ is the one with basic open sets being (a,b) for all $a\leq b$, plus $\mathbb R$. This is the same as to what have defined before with Euclidean spaces

- \Rightarrow Is [0,1] open or closed?
- \Rightarrow Closed, because $(-\infty,0) \cup (1,\infty)$ is open
- \Rightarrow What about $\bigcup_{i=1}^{\infty} \left(i, i + \frac{1}{i}\right)$?

Alternatively, we can have $\Gamma = \{\emptyset, \mathbb{R}\}$

 \Rightarrow This is the **trivial topology** on $\mathbb R$

Or, we can have $\Gamma = \{ (-n, n) \mid n \in \mathbb{R} \} \cup \{\emptyset, \mathbb{R} \}$

So, many different topologies are possible!

Similar topologies can be defined for \mathbb{R}^n

Homeomorphism (I)

These parts are slightly "two-dimensional"

Why study topology?

- ⇒One of the use is that it helps us to classify spaces
- ⇒Intuitively, which two of the following spaces are similar?

- ⇒The first and the third are both "one dimensional"
- ⇒What about those?

⇒All "similar" to a circle

Homeomorphism: two spaces X and Y are **homeomorphic** if there is a continuous bijective function $F: X \to Y$ (that is, every member of X is mapped to a unique member of Y and vice versa)

Homeomorphism (II)

We can build a **bijection** $f: X \to Y$ by "sliding" from the green end to the red end on both lines

Homeomorphism (III) – Deformation

One can build a series of homeomorphisms to **deform** between two objects, that is,

 $\Rightarrow F_t, t \in [0, 1]$, is a bijective continuous function with domain X

$$\Rightarrow F_0(X) = X, F_1(X) = Y$$

- \Rightarrow There are many intermediate $F_{0.x}$, e.g., $F_{0.1}$, $F_{0.2}$, $F_{0.3}$, ...
 - \Rightarrow Every $F_{0,x}(X)$ represents a **deformed** X
- ⇒This is known as a **deformation**
- ⇒Classic example: coffee mug and donut

$$X = \text{cup}$$

 $F_0(X) = \text{cup}, F_1(X) = \text{donut}$

Topological Manifolds

Roughly speaking, an n-dimensional topological manifold M is a space such that for all $x \in M$, there exists a neighborhood U of x homeomorphic to \mathbb{R}^n

0-dimensional manifolds: discrete spaces

Alternative intuition: take a piece, and smash it flat... it should look like \mathbb{R}^n

1-dimensional manifolds:

$$(a,b)$$
, \mathbb{R}

2-dimensional manifolds: \mathbb{R}^2 , S^2 , T^2 , ...

 S^2 - 2 sphere

 T^2 - torus

"Flat Representation" of 2D Manifolds

2D manifolds can be represented as unit squares w/ sides identified.

Such a "flat" representation is called the fundamental polygon

Some Common 2-Dimensional Manifolds

There are infinitely many different types of 2-dimensional manifolds

The Real Projective Plane

Real projective spaces are something of an oddity

 $\mathbb{R}\mathrm{P}^n$ or real projective space of dimension n is formed by making each line of \mathbb{R}^{n+1} that goes through the origin into a point

 $\mathbb{R}P^2$ can be thought of the top half of a sphere, plus half of the equator

Generally, we cannot easily "visualize" high dimensional manifolds, but can work through the math

Can be useful however – camera projections are related to $\mathbb{R}P^2$

Why Topology and Manifolds?

Sensing, planning, and control are all related to manifolds Robotics examples

- \Rightarrow A point robot in 2D take any position $x \in \mathbb{R}^2$
 - \Rightarrow This is also a group E(2)
 - ⇒ 2-dimensional Euclidean group
- ⇒A car in 2D has one more dimension
 - \Rightarrow This is called $SE(2) = \mathbb{R}^2 \times S^1$
 - \Rightarrow SE(2) reads: Special Euclidean group of dimension 2
 - \Rightarrow Yes, each point in the space is also a group element, just like $\mathbb R$ and $\mathbb R^2$
 - \Rightarrow Using (x, y, θ) , can describe all possible positions of the car

Why Topology and Manifolds? Continued

Robotics examples, continued

- ⇒A quadcopter is in a six-dimensional manifold
 - \Rightarrow Three positions (x, y, z)
 - \Rightarrow Three rotations (yaw, pitch, roll)
 - \Rightarrow This is $SE(3) = \mathbb{R}^3 \times SO(3)$
 - ⇒ Special Euclidean group of three dimensions

- \Rightarrow For rotations in the plane, this is T^2 (torus)
- ⇒ Yes, a pose of such a robot arm corresponds to a point on a donut
- ⇒These are the **configuration spaces** of the robots
- ⇒ More on this later

(x, y, z, yaw, pitch, roll)

A robot arm with left end fixed to a wall and remaining horizontal. The arm may rotate in the plane along the two joints

Path and Notions of Connectivity

Path. A **path** in a manifold X is a continuous function $\tau: [0,1] \to X$

 \Rightarrow Note that [0,1] is the same as [0,t] – simple scaling – time is relative

 \Rightarrow E.g., for a car, τ : $[0,1] \rightarrow \mathbb{R}^2 \times S^1$

- ⇒Important: it's not (just) a set of points!
- ⇒The points are chained together through time
- ⇒It is important to see how they are connected

A topological space X is **connected** if it cannot be partitioned into two disjoint, nonempty open sets.

A topological space X is **path connected** if for any $x, y \in X$, there exists a path τ : $[0,1] \to X$ s.t. $\tau(0) = x$ and $\tau(1) = y$.

Topologist's Sine Curve

Topologist's sine curve:
$$X = \{y = \sin \frac{1}{x}, x > 0\} \cup \{x = 0\}$$

- ⇒Connected: you cannot separate the two parts
- \Rightarrow But not path connected: a point on $\{x=0\}$ is infinitely far from a point on $\{y=\sin\frac{1}{x}, x>0\}$

How to get rid of the problem?

- \Rightarrow Require *X* be a manifold
- \Rightarrow Recall: **roughly speaking**, an n-dimensional topological manifold M is a space such that for $x \in M$, there exists a neighborhood U of x homeomorphic to \mathbb{R}^n
- $\Rightarrow X$ is homeomorphic to $\mathbb R$ at any x>0
- $\Rightarrow X$ is not homeomorphic to \mathbb{R} at x=0

Generally want path connectivity

⇒ A robot cannot follow topologist's sine curve!

Image from scientific America

Homotopic Paths

Two paths τ_1 and τ_2 are **homotopic** to each other if there exists a map $h: [0,1] \times [0,1] \to X$ s.t.

- $\Rightarrow h(s,0) = \tau_1(s)$ for all $s \in [0,1]$
- $\Rightarrow h(s,1) = \tau_2(s)$ for all $s \in [0,1]$
- $\Rightarrow h(0,t) = h(0,0)$ for all $t \in [0,1]$
- $\Rightarrow h(1,t) = h(1,0)$ for all $t \in [0,1]$
- ⇒The definition can be a bit confusing on a first look

Example:

So, τ_1 and τ_2 are homotopic (roughly speaking) if they share the same end points and can be continuously morphed into each other

Simply Connected Space

A topological space X space is **simply connected** if $\forall x_1, x_2 \in X$ and any τ_1, τ_2 with $\tau_1(0) = \tau_2(0) = x_1$ and $\tau_1(1) = \tau_2(1) = x_2$, τ_1 and τ_2 are **homotopic**. Otherwise, X is **multiply connected**

Importance in robotics: partition paths into different "classes"

Another Example

Let *X* be a 2-sphere with a circular area removed. Is *X* simply connected?

⇒Yes!

What about 2 holes?

⇒Not anymore!

Intuition: the outer surface is equivalent to a disc

An empty ball with a "cap" removed

Fixed Point Theorems

Convexity. In a Euclidean space, a set X is **convex** if given any $x_1, x_2 \in X$, all points on the straight-line segment x_1x_2 belong to X.

Brouwer's fixed point theorem. Let X be a bounded, closed, convex set. Let $f: X \to X$ be a continuous function. Then there exists a point

 $x_0 \in X \text{ s.t. } f(x_0) = x_0$ $f = x_0$

Fixed Point Theorems, Continued

Discrete case: Sperner's lemma

Many other ones: https://en.wikipedia.org/wiki/Fixed-point theorem
Why interesting?

- ⇒Fundamental in the study of topological manifolds
- ⇒Used to prove the Jordan Curve Theorem