New York Taxi Data: Load Data from CSV files & **Work with Categorical Data**

```
In [4]: from os import path
         import bz2
         import pandas as pd
 In [3]: ! pip install pandas
         Collecting pandas
           Downloading pandas-1.1.0-cp37-cp37m-win amd64.whl (9.4 MB)
         Requirement already satisfied: numpy>=1.15.4 in c:\users\danal\anaconda3\envs\t
         rack\lib\site-packages (from pandas) (1.19.1)
         Collecting pytz>=2017.2
           Downloading pytz-2020.1-py2.py3-none-any.whl (510 kB)
         Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\danal\anacond
         a3\envs\track\lib\site-packages (from pandas) (2.8.1)
         Requirement already satisfied: six>=1.5 in c:\users\danal\anaconda3\envs\track
         \lib\site-packages (from python-dateutil>=2.7.3->pandas) (1.15.0)
         Installing collected packages: pytz, pandas
         Successfully installed pandas-1.1.0 pytz-2020.1
In [15]: fname = 'C:/Users/danal/Desktop/Ex Files Data Science Python/Exercise Files/Ch07,
In [16]: path.getsize(fname) / (1<<20)</pre>
Out[16]: 2.7408742904663086
In [17]: with bz2.open(fname) as fp:
             print(sum(1 for line in fp))
```

100001

```
In [18]: with bz2.open(fname, 'rt') as fp:
    for lnum, line in enumerate(fp):
        print(line[:-1])
        if lnum > 4:
            break
```

VendorID,lpep_pickup_datetime,Lpep_dropoff_datetime,Store_and_fwd_flag,RateCode ID,Pickup_longitude,Pickup_latitude,Dropoff_longitude,Dropoff_latitude,Passenge r_count,Trip_distance,Fare_amount,Extra,MTA_tax,Tip_amount,Tolls_amount,Ehail_f ee,improvement_surcharge,Total_amount,Payment_type,Trip_type 2,2015-03-04 15:39:16,2015-03-04 15:42:30,N,1,-73.992240905761719,40.6901206970 21484,-73.999664306640625,40.684993743896484,2,.71,4.5,0,0.5,0,0,,0.3,5.3,2,1,, 2,2015-03-22 17:36:49,2015-03-22 17:45:39,N,5,-73.930038452148438,40.8195762634 27734,-73.907173156738281,40.811305999755859,2,1.41,12,0,0,0,0,0,0,12,2,2,, 2,2015-03-25 22:08:45,2015-03-25 22:53:29,N,1,-73.961082458496094,40.8070220947 26563,-73.984642028808594,40.66314697265625,1,14.36,45,0.5,0.5,9.26,0,,0.3,55.5 6,1,1,
2,2015-03-16 13:45:20,2015-03-16 13:52:04,N,1,-73.913200378417969,40.7779617309 57031,-73.926994323730469,40.772743225097656,2,1.05,6.5,0,0.5,0,0,,0.3,7.3,2, 1,, 2,2015-03-19 18:53:50,2015-03-19 18:59:04,N,1,-73.925888061523438,40.8276023864 74609,-73.916351318359375,40.824966430664063,1,.92,5.5,1,0.5,0,0,,0.3,7.3,2,1,,

```
In [19]: df = pd.read_csv(fname)
```

In [20]: len(df)

Out[20]: 100000

In [21]: df.iloc[0]

```
Out[21]: VendorID
                                    2015-03-04 15:42:30
          lpep pickup datetime
                                                       Ν
          Lpep dropoff datetime
                                                       1
          Store and fwd flag
                                                -73.9922
          RateCodeID
                                                 40.6901
          Pickup longitude
                                                -73.9997
          Pickup_latitude
                                                  40.685
          Dropoff longitude
                                                       2
          Dropoff_latitude
                                                    0.71
          Passenger count
                                                     4.5
          Trip distance
                                                       0
          Fare amount
                                                     0.5
          Extra
                                                       0
          MTA tax
                                                       0
          Tip amount
                                                     NaN
          Tolls_amount
                                                     0.3
          Ehail fee
                                                     5.3
          improvement surcharge
                                                       2
          Total_amount
                                                       1
          Payment_type
                                                     NaN
          Trip type
                                                     NaN
          Name: (2, 2015-03-04 15:39:16), dtype: object
```

```
In [22]: with bz2.open(fname, 'rt') as fp:
             header = fp.readline()
             data = fp.readline()
         print(header)
         print(data)
         VendorID,lpep_pickup_datetime,Lpep_dropoff_datetime,Store_and_fwd_flag,RateCode
         ID,Pickup_longitude,Pickup_latitude,Dropoff_longitude,Dropoff_latitude,Passenge
         r count, Trip distance, Fare amount, Extra, MTA tax, Tip amount, Tolls amount, Ehail f
         ee,improvement_surcharge,Total_amount,Payment_type,Trip_type
         2,2015-03-04 15:39:16,2015-03-04 15:42:30,N,1,-73.992240905761719,40.6901206970
         21484, -73.999664306640625, 40.684993743896484, 2, .71, 4.5, 0, 0.5, 0, 0, 0, 3, 5.3, 2, 1, ,
In [23]: len(header.split(','))
Out[23]: 21
In [24]: len(data.split(','))
Out[24]: 23
In [25]:
         import numpy as np
         df = pd.read csv(fname, usecols=np.arange(21))
In [26]: df.iloc[0]
Out[26]: VendorID
                                                      2
         lpep pickup datetime
                                    2015-03-04 15:39:16
         Lpep dropoff datetime
                                    2015-03-04 15:42:30
         Store and fwd flag
                                                      Ν
         RateCodeID
                                                      1
                                               -73.9922
         Pickup longitude
         Pickup latitude
                                                40.6901
         Dropoff longitude
                                               -73.9997
         Dropoff latitude
                                                 40.685
         Passenger_count
                                                      2
         Trip_distance
                                                   0.71
         Fare amount
                                                    4.5
         Extra
                                                      0
         MTA_tax
                                                    0.5
         Tip_amount
                                                      0
         Tolls_amount
                                                      0
         Ehail fee
                                                    NaN
         improvement surcharge
                                                    0.3
         Total_amount
                                                    5.3
         Payment_type
                                                      2
                                                      1
         Trip type
         Name: 0, dtype: object
```

```
In [27]: df.dtypes
Out[27]: VendorID
                                      int64
         lpep pickup datetime
                                     object
         Lpep_dropoff_datetime
                                     object
         Store_and_fwd_flag
                                     object
         RateCodeID
                                      int64
         Pickup_longitude
                                    float64
         Pickup_latitude
                                    float64
         Dropoff_longitude
                                    float64
         Dropoff_latitude
                                    float64
         Passenger_count
                                      int64
         Trip_distance
                                    float64
         Fare_amount
                                    float64
         Extra
                                    float64
         MTA_tax
                                    float64
         Tip_amount
                                    float64
         Tolls_amount
                                    float64
         Ehail_fee
                                    float64
                                    float64
         improvement_surcharge
         Total_amount
                                    float64
         Payment_type
                                      int64
         Trip type
                                      int64
         dtype: object
         df = pd.read csv(fname, usecols=np.arange(21), parse dates=['lpep pickup datetime
In [31]:
         df.dtypes
In [32]:
Out[32]: VendorID
                                             int64
          lpep_pickup_datetime
                                    datetime64[ns]
                                    datetime64[ns]
          Lpep_dropoff_datetime
         Store and fwd flag
                                            object
         RateCodeID
                                             int64
         Pickup_longitude
                                           float64
         Pickup latitude
                                           float64
         Dropoff_longitude
                                           float64
         Dropoff_latitude
                                           float64
         Passenger count
                                             int64
                                           float64
         Trip distance
         Fare_amount
                                           float64
         Extra
                                           float64
         MTA_tax
                                           float64
         Tip_amount
                                           float64
         Tolls_amount
                                           float64
         Ehail fee
                                           float64
          improvement_surcharge
                                           float64
         Total amount
                                           float64
         Payment_type
                                             int64
         Trip_type
                                             int64
          dtype: object
```

```
In [33]: |df['VendorID'].unique()
Out[33]: array([2, 1], dtype=int64)
In [34]: |df['Vendor'] = df['VendorID'].apply({1: 'Creative', 2: 'VeriFone'}.get)
         df['Vendor'].head()
Out[34]: 0
              VeriFone
         1
              VeriFone
              VeriFone
              VeriFone
              VeriFone
         Name: Vendor, dtype: object
In [35]: df['Vendor'].memory_usage() / (1<<20)</pre>
Out[35]: 0.7630615234375
In [36]: df['Vendor'] = df['VendorID'].apply({1: 'Creative', 2: 'VeriFone'}.get).astype(
In [37]: df['Vendor'].memory_usage() / (1<<20)</pre>
Out[37]: 0.0955810546875
In [38]: |df['Vendor'].head().cat.codes
Out[38]: 0
              1
         1
              1
         2
              1
              1
         dtype: int8
In [39]: len(df[df['Vendor'] == 'VeriFone'])
Out[39]: 77946
In [40]: |df['lpep_pickup_datetime'].head().dt.round('H')
Out[40]: 0
             2015-03-04 16:00:00
             2015-03-22 18:00:00
         1
             2015-03-25 22:00:00
             2015-03-16 14:00:00
             2015-03-19 19:00:00
         Name: lpep_pickup_datetime, dtype: datetime64[ns]
In [41]:
         keys = df['lpep_pickup_datetime'].dt.round('H')
         df.groupby(keys)
Out[41]: <pandas.core.groupby.generic.DataFrameGroupBy object at 0x000002CA1B9D8748>
```

```
In [42]: df.groupby(keys).count().head()
```

Out[42]:

	• • -	' '- ' '- '		
lpep_pickup_datetime				
2015-03-01 00:00:00	153	153	153	153
2015-03-01 01:00:00	266	266	266	266
2015-03-01 02:00:00	241	241	241	241
2015-03-01 03:00:00	180	180	180	180
2015-03-01 04:00:00	172	172	172	172

VendorID Ipep pickup datetime Lpep dropoff datetime Store and fwd flag

5 rows × 22 columns

In [45]: !pip install matplotlib

Collecting matplotlib

Downloading matplotlib-3.3.0-cp37-cp37m-win amd64.whl (8.8 MB)

Collecting pillow>=6.2.0

Downloading Pillow-7.2.0-cp37-cp37m-win_amd64.whl (2.1 MB)

Collecting cycler>=0.10

Downloading cycler-0.10.0-py2.py3-none-any.whl (6.5 kB)

Collecting kiwisolver>=1.0.1

Downloading kiwisolver-1.2.0-cp37-none-win_amd64.whl (57 kB)

Requirement already satisfied: numpy>=1.15 in c:\users\danal\anaconda3\envs\track\lib\site-packages (from matplotlib) (1.19.1)

Requirement already satisfied: python-dateutil>=2.1 in c:\users\danal\anaconda3 \envs\track\lib\site-packages (from matplotlib) (2.8.1)

Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in c:\u sers\danal\anaconda3\envs\track\lib\site-packages (from matplotlib) (2.4.7)

Requirement already satisfied: six in c:\users\danal\anaconda3\envs\track\lib\s ite-packages (from cycler>=0.10->matplotlib) (1.15.0)

Installing collected packages: pillow, cycler, kiwisolver, matplotlib

Successfully installed cycler-0.10.0 kiwisolver-1.2.0 matplotlib-3.3.0 pillow-7.2.0

In [50]: | %matplotlib inline

```
import matplotlib.pyplot as plt
plt.style.use('seaborn-whitegrid')
plt.rcParams['figure.figsize'] = [12,8]
```

In [47]: df.groupby(keys).count()['Vendor'].plot()

Out[47]: <AxesSubplot:xlabel='lpep_pickup_datetime'>

In [51]: df.groupby(keys).count()['Vendor'].loc['2015-03-10'].plot.bar(rot=45)

Out[51]: <AxesSubplot:xlabel='lpep_pickup_datetime'>


```
In [52]: df['hour'] = df['lpep_pickup_datetime'].dt.hour
df['day'] = df['lpep_pickup_datetime'].dt.date
```

In [53]: df[['hour', 'day']].head()

Out[53]:

	hour	day
0	15	2015-03-04
1	17	2015-03-22
2	22	2015-03-25
3	13	2015-03-16
4	18	2015-03-19

```
In [54]: df.groupby(['Vendor', 'day', 'hour']).count().head()
```

Out[54]:

			· · –			
Vendor	day	hour				
Creative		0	60.0	60.0	60.0	60.0
	03-01	1	60.0	60.0	60.0	60.0
		2	51.0	51.0	51.0	51.0
		3	41.0	41.0	41.0	41.0
		4	28.0	28.0	28.0	28.0

VendorID Ipep_pickup_datetime Lpep_dropoff_datetime Store_and_fwd_flag

5 rows × 21 columns

```
In [55]: | df.groupby(['Vendor', 'day', 'hour']).count().index
Out[55]: MultiIndex([('Creative', 2015-03-01,
                                                 0),
                      ('Creative', 2015-03-01,
                                                 1),
                      ('Creative', 2015-03-01,
                                                 2),
                      ('Creative', 2015-03-01,
                                                3),
                      ('Creative', 2015-03-01,
                                                 4),
                      ('Creative', 2015-03-01,
                                                 5),
                                                6),
                      ('Creative', 2015-03-01,
                      ('Creative', 2015-03-01,
                                                 7),
                      ('Creative', 2015-03-01,
                                                 8),
                      ('Creative', 2015-03-01,
                                                 9),
                      ('VeriFone', 2015-03-31, 14),
                      ('VeriFone', 2015-03-31, 15),
                      ('VeriFone', 2015-03-31, 16),
                      ('VeriFone', 2015-03-31, 17),
                      ('VeriFone', 2015-03-31, 18),
                      ('VeriFone', 2015-03-31, 19),
                      ('VeriFone', 2015-03-31, 20),
                      ('VeriFone', 2015-03-31, 21),
                      ('VeriFone', 2015-03-31, 22),
                      ('VeriFone', 2015-03-31, 23)],
                     names=['Vendor', 'day', 'hour'], length=1488)
In [56]: | ddf = df.groupby(['Vendor', 'day', 'hour'], as_index=False).count()
```

In [57]: ddf.head()

Out[57]:

	Vendor	day	hour	VendorID	lpep_pickup_datetime	Lpep_dropoff_datetime	Store_and_fwd_fla
0	Creative	2015- 03-01	0	60.0	60.0	60.0	60
1	Creative	2015 - 03-01	1	60.0	60.0	60.0	60
2	Creative	2015 - 03-01	2	51.0	51.0	51.0	51
3	Creative	2015 - 03-01	3	41.0	41.0	41.0	41
4	Creative	2015- 03-01	4	28.0	28.0	28.0	28

5 rows × 24 columns

4

In [58]: hdf = ddf.groupby(['Vendor', 'hour'], as_index=False).median()
hdf.head()

Out[58]:

	Vendor	hour	VendorID	lpep_pickup_datetime	Lpep_dropoff_datetime	Store_and_fwd_flag	Rat
0	Creative	0	23.0	23.0	23.0	23.0	
1	Creative	1	18.0	18.0	18.0	18.0	
2	Creative	2	11.5	11.5	11.5	11.5	
3	Creative	3	8.0	8.0	8.0	8.0	
4	Creative	4	12.0	12.0	12.0	12.0	

5 rows × 23 columns

```
In [60]: vdf = hdf.pivot(columns='Vendor', index='hour', values='Extra')
vdf.plot.bar(rot=45)
```

Out[60]: <AxesSubplot:xlabel='hour'>


```
import sqlite3
In [62]:
         conn = sqlite3.connect('C:/Users/danal/Desktop/Ex Files Data Science Python/Exerc
In [63]: wdf = pd.read_sql('SELECT * FROM weather', conn)
         wdf.columns
Out[63]: Index(['STATION', 'DATE', 'PRCP', 'SNOW', 'TMAX', 'TMIN'], dtype='object')
In [64]: wdf = pd.read_sql("SELECT * FROM weather", conn, parse_dates=['DATE'], index_col=
         wdf.dtypes
Out[64]: STATION
                     object
                    float64
         PRCP
         SNOW
                    float64
         TMAX
                       int64
         TMIN
                       int64
         dtype: object
```

```
In [65]: wdf.index
Out[65]: DatetimeIndex(['2015-03-01', '2015-03-02', '2015-03-03', '2015-03-04',
                          '2015-03-05', '2015-03-06', '2015-03-07', '2015-03-08',
                          '2015-03-09', '2015-03-10',
                          '2016-03-23', '2016-03-24', '2016-03-25', '2016-03-26',
                          '2016-03-27', '2016-03-28', '2016-03-29', '2016-03-30',
                          '2016-03-31', '2016-04-01'],
                         dtype='datetime64[ns]', name='DATE', length=398, freq=None)
In [66]: wdf.describe()
Out[66]:
                     PRCP
                               SNOW
                                          TMAX
                                                      TMIN
           count 398.000000
                           398.000000
                                      398.000000
                                                 398.000000
           mean
                   0.109799
                             0.129146
                                       65.017588
                                                  50.035176
             std
                   0.310245
                              1.463461
                                       17.556593
                                                  16.336782
                   0.000000
                             0.000000
                                       15.000000
                                                  -1.000000
            min
            25%
                   0.000000
                             0.000000
                                       52.000000
                                                  38.000000
                                                  50.000000
            50%
                   0.000000
                             0.000000
                                       65.000000
            75%
                   0.020000
                             0.000000
                                       81.750000
                                                  65.000000
                   2.310000
                            27.300000
                                       97.000000
                                                  82.000000
            max
In [69]:
          ! pip install scipy
          Collecting scipy
            Downloading scipy-1.5.2-cp37-cp37m-win amd64.whl (31.2 MB)
          Requirement already satisfied: numpy>=1.14.5 in c:\users\danal\anaconda3\envs\t
          rack\lib\site-packages (from scipy) (1.19.1)
          Installing collected packages: scipy
          Successfully installed scipy-1.5.2
In [70]: from scipy.constants import convert temperature
          wdf['tempF']= convert_temperature(wdf['TMAX']/10, 'C', 'F')
          wdf.head()
Out[70]:
                                STATION PRCP SNOW TMAX TMIN tempF
               DATE
           2015-03-01 GHCND:USW00094728
                                          0.52
                                                  4.8
                                                         31
                                                               24
                                                                   37.58
           2015-03-02 GHCND:USW00094728
                                          0.00
                                                  0.0
                                                         39
                                                               27
                                                                   39.02
```

2015-03-04	GHCND:USW00094728	0.25	0.0	45	35	40.10
2015-03-05	GHCND:USW00094728	0.76	7.5	40	19	39.20

0.67

1.8

37

22

38.66

2015-03-03 GHCND:USW00094728

```
In [71]: ddf = df.groupby(df['lpep_pickup_datetime'].dt.date).count()
In [72]: jdf = ddf.join(wdf)
```

Out[72]:

jdf.head()

•	kup_latitude	Dropoff_longitude	Dropoff_latitude	Passenger_count	 Trip_type	Vendor	hour	day
	3177	3177	3177	3177	 3177	3177	3177	3177
	2775	2775	2775	2775	 2775	2775	2775	2775
	2990	2990	2990	2990	 2990	2990	2990	2990
	3072	3072	3072	3072	 3072	3072	3072	3072
	2491	2491	2491	2491	 2491	2491	2491	2491

```
In [73]: jdf.plot.scatter(x='tempF', y='Vendor')
```

Out[73]: <AxesSubplot:xlabel='tempF', ylabel='Vendor'>


```
In [74]: ax = jdf.plot.scatter(x = 'tempF', y = 'Vendor')
ax.set_ylabel('Daily_Rides')
```

Out[74]: Text(0, 0.5, 'Daily_Rides')

In []: