

INSTRUCTION DIVISION FIRST SEMESTER 2015-2016

Course Handout (Part II)

Date: 3/8/2015

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : MATH F214

Course Title : Elementary Real Analysis

Instructor-in-charge: AMIT K. VERMA

1. Scope and objective of the Course:

The objective of this course is to train the students with the basic tools of Modern Mathematical analysis, train them in art of logical, deductive & constructive thinking and thus equip them with enough back ground for courses which involve deeper Mathematical analysis. Real analysis is needed in several science & enginnering disciplines, in study of dynamical systems, which are solutions of differential equations, theoretical study of differential equations, concept of fractal & fractal dimension is usually studied in Metric Spaces. Riemann integration technique is the basic technique of integration on which advance theory of integration is developed. Integration theory is also needed in study of theoretical & numerical solution of partial differential equations.

2. Course Description:

Real numbers, Countable and uncountable sets, Metric spaces, Continuous and uniformly continuous maps in metric spaces, Connectedness, Completeness and Compactness in a metric space, Numerical sequences and series, Riemann integration & Riemann Stieltjes Integral, Convergence & uniform convergence of sequence of functions, Approximation of continuous function, functions of several variables, derivative of function of several variables, inverse function theorem.

3. Text Book:

W. Rudin, Principles of Mathematical Analysis, McGraw, Hill India 3rd Edition, 2013.

4. Reference Books:

- 1. Apostal: Mathematical Analysis, Addison Wesley, 1983.
- 2. Real Analysis: John M Howie Springer Verlag, 2001.
- 3. Kenneth Ross : Elementary Analysis : The Theory of Calculus, Springer International Edition, 2000.

5. Course Plan:

Lect. No.	Learners Objective	Subject Matter	Ref.
1-2	Review	Review of certain concepts	Ross, Rudin

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus

3-6	Representation of real numbers	Ordered field, Construction of real numbers,	Ch. 1 Rudin
		the set of real numbers as ordered field,	Sec: 1.1 to
		extended real numbers	1.23
7-8	Difference between countable Finite, Countable & uncountable sets.		Ch. 2 Rudin
	& uncountable set. Sequences		Sec: 2.1 to
			2.14
9-11	Sequences	limsup & liminf of sequences, monotone sequences	Ch. 2 Ross
11-15	Generalization of concept of Euclidean	Metric spaces, compact sets, different	Ch. 2 Rudin
	distance to abstract sets	definition of compact sets, Cantor Intersection	Sec: 2.15 to
		theorem, Contraction Principle	2.47
16-20	Generalization of concept of continuity	Continuous & uniformly continuous functions	Ch. 4 Rudin
	& limit to metric spaces	& their properties	
21-23	How Riemann integral can be written as limit of sum	Elementary Riemann Integral & its properties	Ch. 6 Ross
24-28	Integration with respect to a function	Riemann Stieltjes Integral & Properties	Ch. 6 Ross
29-33	Distinguish between uniform & point	Point & uniform convergence of functions &	Ch. 7 Rudin
	wise convergence of sequence of	related properties of integrability &	
	functions. Functions not differentiable	differentiability	
	but continuous		
34-35	How bad functions can be	Some approximation theorems of continuous	Ch. 7 Rudin
	approximated with polynomials	functions	
36-40	How continuity & differentiability	Functions of several variables, Inverse	Ch. 9 Rudin
	have generalization for function of	Function Theorem	
	several variables		

6. Evaluation Scheme:

Components	Durations	Weightage	Date & Time	Remarks
Mid Semester Exam	90 min.	30%	8/10 2:00 - 3:30 PM	Closed Book (CB)
Quiz / Assignments / Viva		30%		Open Book or CB
Comprehensive Exam	3 hrs.	40%	9/12 FN	Open Book & CB

- 7. Chamber consultation hour: To be announced in class.
- **8. Notices:** Check Nalanda. All matters will also be discussed in class.
- 9. Extra Problems: Problem sheets will be given for the type of problems to be done.
- **10**. **Make up :** Prior permission is needed for makeup examination. Makeup will be given only to genuine cases. Application must be supported by relevant documents.

INSTRUCTOR-IN-CHARGE

