第1页共12页 **物理化学试题 A**

一、选择题: (每题 3 分共 30 分)
1. 在 p °, 263.15 K 下过冷水结成同温度下的冰,则该过程中: () (A) Δ S=0 Δ G =0 (B) Δ S>0 Δ G <0
(C) \triangle S <0 \triangle G<0 (D) \triangle S>0 \triangle G>0
2. 在 α 、 β 两相中都含有 A 和 B 两种物质, 当达到相平衡时, 下列三种情况, 正确的是: ()
(A) $\mu_A^{\infty} = \mu_B^{\infty}$, (B) $\mu_A^{\infty} = \mu_A^{\beta}$,
(C) $\mu_A^{\alpha} = \mu_B^{\beta}$ (D) 以上答案均不正确。
3.下列的过程可应用公式 \triangle $H=Q$ 进行计算的是: () (A) 不做非体积功,终态压力相同但中间压力有变化的过程 (B) 不做非体积功,一直保持体积不变的过程 (C) 273.15 K, p° 下液态水结成冰的过程 (D) 恒容下加热实际气体
4.CO 和 O_2 在绝热钢瓶中化学反应生成 CO_2 的过程: () (A) $\triangle H = 0$ (B) $\triangle U = 0$ (C) $\triangle S = 0$ (D) $\triangle G = 0$
5.在恒温恒压不做非体积功的情况下,下列哪一个过程肯定可以自发进行: (A) ΔH>0,且ΔS>0 (B) ΔH>0,且ΔS<0 (C) ΔH<0,且ΔS>0 (D) ΔH<0,且ΔS<0
6.公式 d <i>G</i> = <i>V</i> d <i>p</i> - <i>S</i> d <i>T</i> 可适用下述哪一过程: ((A) 298K、101325Pa 下的水蒸发过程 (B) 理想气体真空膨胀 (C) 电解水制取氢 (D) N ₂ (g) + 3H ₂ (g)=2NH ₃ (g) 未达平衡
7. 同一温度压力下,一定量某纯物质的熵值:()
(A) $S(气) > S(液) > S(固)$; (B) $S(气) < S(液) < S(固)$;
(C) $S(气)=S(液)=S(固);$ (D) 以上答案均不正确
8.已知 2NO(g)+O ₂ (g)=2NO ₂ (g)为放热反应,反应达平衡后,欲使平衡向右移动以获得更多 NO ₂ ,应采取的措施是 : () (A) 降温和减压 (B) 降温和增压

(C) 升温和减压

(D) 升温和增压

9	. 对于二组分系统能平衡共存的最多相数为: ()
7.	. // // ZN >//_ HN	,

(A) 1 (B) 2 (C) 3 (D) 4

10. 下述分子熵最大是: (),

(A) CH4 (B) C2H6 (C) C3H8 (D) C10H22

二、问答(30分)

1. (5 分) 冰在 0℃转变为水,dS>0,但在 0℃ P=P θ 时,冰与水处于平衡 状态,而 dS=0 是平衡条件,对吗?

- 2. (5 分) 在绝热过程中, ∵ δQ=0∴dS=0, 对吗?
- 3. (10分)试问下列过程哪些状态函数的改变值等于零?
 - 1) 理想气体的卡诺循环
 - 2)液体水在正常沸点汽化为水蒸气
 - 3) H2 与 02 在绝热的钢瓶中反应生成 H20 (1)
 - 4) 理想气体向真空容器中膨胀
- 4. (10分)说出下列公式的使用条件

(1) $\Delta G = \Delta H - \Delta$ (TS); $\Delta G = \Delta H - T \Delta S$

 $(2) (\Delta G) = W' f$

(3) $\Delta G = \int V dP$ $\Delta G = nRT1nP2/P1$

 $(4) \Delta S=Q/T$

 $(5) \Delta S=nCp1nT2/T1$

三、计算(40分)

- 1. $(10 \, \text{分})$ 将 1 mol 理想气体在 298K 下等温可逆膨胀,体积从 501 升膨胀到 1001 升,试计算过程的 Q、W、 Δ U、 Δ H 和 Δ S
- 2. (10分) 乙醇和甲醇组成的理想溶液, 在 293 K 时纯乙醇的饱和蒸气压为 5933 Pa, 纯甲醇的饱和蒸气压为 11826 Pa。
 - (1) 计算甲醇和乙醇各 100 g 所组成的溶液中两种物质的摩尔分数;
 - (2) 求溶液的总蒸气压与两物质的分压;
 - (3) 甲醇在气相中的摩尔分数。

已知甲醇和乙醇的相对分子质量分别为32和46。

- 3. (10 分) 已知水在正常沸点时的汽化热为 40.64kJ, 试计算:
 - (1) 水在 25℃时的饱和蒸汽压
- (2) 某反应釜内的蒸汽压最高为 233.0475kPa, 试求釜内压力达此值时, 釜 内温度为多少
- 4. (10 分) CuSO₄.3H₂O (s) = CuSO₄ (s) +3H₂O (g) 在 298K 时 Δ H₂₉₈^{θ} =147. 4 kJ.mol⁻¹, Δ S $^{\theta}$ =379.4J.K $^{-1}$ mol⁻¹, 若将 CuSO₄.3H₂O (s) 在 298K 下放入水蒸气分压为 0.02P $^{\theta}$ 的空气中,该反应是吸水还是失水?

第4页共12页 **物理化学 II 试卷 B**

一、选择题(每题2分,共20分)

1.	过冷水结成同温度下的冰,则该过程中 ()	
	A $\Delta S_{\tilde{x}} > 0$ B $\Delta S_{\tilde{x}} + \Delta S_{\tilde{x}} > 0$	
	C $\triangle S_{\text{ff}} < 0$ D $\triangle S_{\text{ff}} + \triangle S_{\text{ff}} < 0$	
	1mol 理想气体向真空膨胀,若其体积增加到原来的 10 倍,则体系、环境和体系的熵变分别为: ()	印孤
	19.14J·K ⁻¹ , -19.14J·K ⁻¹ , 0 B19.14J·K ⁻¹ , 19.14J·K ⁻¹ , 0 19.14J·K ⁻¹ , 0, 19.14J·K ⁻¹ D. 0, 0, 0 下列各式中表示偏摩尔量的是()	
A.	$\left(\frac{\partial U}{\partial n_B}\right)_{T,p,n_C(C\neq B)} \qquad \qquad \left(\frac{\partial A}{\partial n_B}\right)_{T,V,n_C(C\neq B)}$ B.	
C.	$\left(\frac{\partial H}{\partial n_B}\right)_{S,p,n_C(C\neq B)} \qquad \qquad \left(\frac{\partial G}{\partial n_B}\right)_{T,V,n_C(C\neq B)}$	
4.	下列求算熵变的公式中错误的是()	
	V_2	
	$\Delta S = nR \ln \frac{V_2}{V_1}$ 理想气体向真空膨胀	
В.	水在 25 ℃、 101325 Pa 时蒸发为水蒸气 $\Delta S = \frac{\Delta H - \Delta G}{T}$	
С.	$\Delta S = \frac{\Delta T}{T}$ 在恒温恒压条件下,可逆电池反应	
	$\Lambda S = \frac{2MT}{T}$	
		1 //
	体系中含有 H ₂ O、H ₂ SO ₄ ·4H ₂ O、H ₂ SO ₄ ·2H ₂ O、H ₂ SO ₄ ·H ₂ O、H ₂ SO ₄ , 其维 <i>K</i> 为:()	1分
	1 B. 2 C. 3 D. 4	
	在 373. 15K、101325Pa 时水和水蒸气构成两相平衡,两项化学势的关系是(
	$μ_g = μ_l$ B. $μ_g > μ_l$ C. $μ_g > μ_l$ D. π th the contraction of $μ_g = μ_l$ D. π th the contraction of $μ_g = μ_l$ D. π the contracti	
	在吸附过程中,以下热力学量的变化正确的是()	
	ΔG <0, ΔH <0, ΔS <0, B. ΔG >0, ΔH >0, ΔS >0,	
	$\Delta G < 0$, $\Delta H > 0$, $\Delta S > 0$, D. $\Delta G > 0$, $\Delta H < 0$, $\Delta S < 0$,	
8.	BET 吸附等温式中 V _∞ 的物理意义是()	
A.	平衡吸附量 B. 铺满第一层的吸附量	
C	饱和吸附量 D 无明确物理意义的常数	

9. 反应 $A \rightarrow B$,当实验测得其反应物 A 的浓度 C_A 与时间 t 成线性关系时,该反应

为()		
A. 一级反应; B. 二级反应; 10. 区域熔炼技术主要应用于(D. 零级反应;
A. 制备低共熔混合物	B. 提纯	
C. 制备不稳定化合物	D. 获得固溶体	
二、填空题(每空1分,共20分))	
1. 理想气体向真空膨胀, W	0, Q 0, ΔU _	0, ΔT 0 (填>、
=或<)		
2. 用热力学函数判断过程的方向和体系,在这个体系中熵		
自由焓判据用于的过程是自发过程。		体系,在这个体系中自由
3. 水在其沸点的组分数,相数和自	自由度数分别为	
4. 阳极极化使电极电势	,阴极极化使电极电	且势。
5. 固体表面上的吸附作用,按其和	作用力的性质,可允	分为
6. 一级反应的半衰期和初始浓度。若一级反应的速度常	<u> </u>	
7. 液体在固体表面是否润湿,常月 θ	用接触角 θ 来衡量,	θ为润湿,
三、判断对错,并做出解释(每题	[5分,共10分)	
1. 1mol 某纯理想气体,当其温度状态。 2. 偏摩尔量与化学势是一个公式四、计算题(共4小题,共38分)	式的两种不同说法。	育定值时,体系具有确定的
 (7分)已知25℃时下列电池 Pt, H₂(P°) HCl(aq) AgCl 求: 1. 写出正、负极反应和电池反 2. 求 25℃时化学反应的平衡常数 F 2. (8分)邻硝基氯苯的氨化是二组 	应方程式; (°	准电动势 E [°] =0. 223V。
$\lg(k / dm^3 \cdot mol^{-1} \cdot min^{-1}) = -\frac{4482}{T} + 7$	7.20	
求活化能及指前因子 A		

3. (8分) Ag 可能受到 $H_2S(g)$ 的腐蚀而发生如下反应:

 H_2S (g)+2Ag(s)=Ag₂S(s)+H₂(g),今在 298K,P=P°下将 Ag 放在等体积的 H₂和 H₂S(g)组成的混合气中,试问 Ag 是否可能发生腐蚀而生成 Ag₂S ? 已知在 298K 时 Ag₂S 和 H₂S 的 Δ_fG°分别为:-40. 25 和-32. 93kJ. mo1⁻¹

- 4. (15 分) 2mol 的理想气体在 27℃, 20. 0dm³下等温膨胀到 50. 0dm³, 试计算下列过程的 Q、W、 ΔH 、 ΔU 、 ΔS 。
 - (1) 可逆膨胀 (2) 自由膨胀 (3) 对抗恒外压 101kPa 膨胀。

五、(12分)两组分 HAc 和 C₆H₆的固液相图如下:

- (1) 指出各区域存在的稳定相态;
- (2)从图中可以看出最低共熔混合物中 C_6H_6 的质量分数为 0.64,试问将含苯 0.75(质量分数)和 0.25(质量分数)的溶液由 20°C开始冷却,首先析出的固体分别是什么?
- (3)如将含苯为 0.75(质量分数)的溶液 100 克冷却至-8 ℃,最多能得到纯固体 8 ৩ 0.75

物理化学试卷 A

一. 选择题

- 1. B
- 2. B
- 3. C
- 4. B
- 5. C
- 6. B
- 7. A
- 8. B
- 9. D
- 10. C
- 二. 问答
- 1. 不对, dS=0 作为平衡判据的条件是单组分,单相,封闭体系,而题中冰水为两相
- 2. 不对, dS ≥ δ Q/T 绝热过程 dS ≥ 0, 只有当可逆时, dS = 0
- 3. 1) 卡诺循环: 所有状态函数改变值为 0.
 - 2) 水→水蒸气(可看作理想气体) ΔU=0 ΔH=0 ΔG=0
 - 3) Δ U=0
 - 4) Δ U=0 Δ H=0
- 4.1) 封闭体系, 封闭体系, 恒温。
- 2) 封闭体系, 等温等压, 可逆过程。
- 3) 封闭体系, 等温, 不做非体积功;

封闭体系,等温,不做非体积功;理想气体。

- 4) 封闭体系, 等温, 可逆过程。
- 5) 封闭体系,可逆过程,等压。
- 三. 计算
- 1. 解:因为理想气体,等温可逆膨胀,所以 Δ U=0 Δ H=0

$$\mathbf{W} = -\int_{v1}^{v2} P_{\theta} dv = -nR \operatorname{Tl} n \frac{V_2}{V_1} = nRT \ln \frac{V_1}{V_2}$$

= 1*8.314*298ln (501/1001)

= -1714.8J

 $O = \Delta U - W = 0 + 1714.8 = 1714.8J$

$$S = \frac{Q}{T} = \frac{1714.8}{298} = 5.754$$
J/K

2. 解: n 申醇=100/32=3.125mol

- n =5.30mol
- 1) X 甲醇=0.59
- X ∠醇=0.41
- 2) P 甲醇=P 甲醇*X 甲醇=6977Pa

P z.醇=P z.醇*X z.醇=2432Pa

- P 总= P 用醇+ P Z醇=9409 Pa
- 3) 气相中

PV=nRT

n 甲醇/n Z醇=P 甲醇/P Z醇=2.88

X 甲醇=n 甲醇/n 总=0.742

3. 解: 由克-克方程, 得

$$\ln \frac{P_{298K}}{P_{373K}} = \frac{V_{vap}H}{R} (\frac{1}{373} - \frac{1}{298})$$

P298=3743.8Pa

$$\ln \frac{P}{P_{373K}} = \frac{V_{vap}H}{R} (\frac{1}{373} - \frac{1}{T})$$

4. 解: $\Delta G^{\theta} = \Delta H^{\theta} - T \Delta S^{\theta} = 147.4 \times 10^{3} - 298 \times 379.4 = 34.338 \times 10^{3} J$ $\Delta G = \Delta G^{\theta} + RTLnK_{P}$

Δ G=34. 338×10³+8. 314×298×Ln0. 02³=5261>0 该反应吸水

物理化学 II 试卷 B 答案

一、选择题(每题2分,共20分)

1.	过冷	水结	成同温度	下的冰,	则该	过程。	中	(В	
	٨	۸ ۵			D	۸ ۵				

A $\Delta S_{\tilde{s}} > 0$

B $\Delta S_{\text{s}} + \Delta S_{\text{s}} > 0$

 $C \Delta S_{\mathbb{R}} < 0$

D $\Delta S \approx + \Delta S \approx < 0$

2. 1mo1 理想气体向真空膨胀,若其体积增加到原来的 10 倍,则体系、环境和孤 立体系的熵变分别为: (C)

A.
$$19.14J \cdot K^{-1}$$
, $-19.14J \cdot K^{-1}$, 0 B. $-19.14J \cdot K^{-1}$, $19.14J \cdot K^{-1}$, 0 C. $19.14J \cdot K^{-1}$, 0, $19.14J \cdot K^{-1}$ D. 0, 0, 0

3. 下列各式中表示偏摩尔量的是(A

A.
$$\left(\frac{\partial U}{\partial n_B}\right)_{T,p,n_C(C \neq B)}$$
B.
$$\left(\frac{\partial A}{\partial n_B}\right)_{T,V,n_C(C \neq B)}$$

C.

下列求算熵变的公式中错误的是(

$$\Delta S = nR \ln rac{V_2}{V_1}$$
用相气休向直空膨胀

理想气体向真空膨胀

B. 水在 25 °C 、101325 Pa 时蒸发为水蒸气 $\Delta S = \frac{\Delta H - \Delta G}{T}$

C. 在恒温恒压条件下,可逆电池反应 $\Delta S = \frac{\Delta H}{T}$

D. 纯物质发生恒温恒压可逆相变时 $\Delta S = \frac{\Delta H}{T}$

5. 体系中含有 H₂O、H₂SO₄·4H₂O、H₂SO₄·2H₂O、H₂SO₄·H₂O、H₂SO₄ , 其组分 数 K 为: (B)

A. 1 B. C. 3 D. 4

6. 在 373.15K、101325Pa 时水和水蒸气构成两相平衡, 两项化学势的关系是(A)

C. μ_g> μ_l D.不能确定 B. $\mu_g > \mu_l$ A. $\mu_g = \mu_l$

7. 在吸附过程中,以下热力学量的变化正确的是(A)

 $\Delta H < 0$, $\Delta S < 0$, $\Delta G > 0$, $\Lambda G < 0$. B. $\Delta S > 0$,

C. $\Delta G < 0$, $\Delta H > 0$, $\Delta S > 0$, D. $\Delta S < 0$ $\Delta G > 0$, $\Delta H < 0$,

8. BET 吸附等温式中 V_∞的物理意义是(B)

A. 平衡吸附量 B. 铺满第一层的吸附量

C. 饱和吸附量 D. 无明确物理意义的常数.

9. 反应 $A \rightarrow B$,当实验测得其反应物 A 的浓度 C_A 与时间 t 成线性关系时,该反应

カ 10 尺 八 12 尺
为 (D) A. 一级反应; B. 二级反应; C. 分数级反应; D. 零级反应; 10. 区域熔炼技术主要应用于 (B)
A. 制备低共熔混合物 B. 提纯
C. 制备不稳定化合物 D. 获得固溶体
二、填空题(每空1分,共20分)
1. 理想气体自由膨胀, W _= 0, Q _= 0, ΔU _= 0, ΔT _= 0 (填>、
=或<)
2. 用热力学函数判断过程的方向和限度是有条件的,熵判据用于 <u>隔离</u> 体系,在这个体系中熵 <u>增加</u> 的过程是自发过程,自由焓判据用于等温等压非体积功为零 体系,在这个体系中自由焓 <u>减小</u> 的过程是自发过程。
3. 水在其沸点的组分数,相数和自由度数分别为 <u>1</u> , <u>2</u> ,, <u>1</u> 。
4. 阳极极化使电极电势 <u>正移</u> ,阴极极化使电极电势 <u>负移</u> 。
5. 固体表面上的吸附作用,按其作用力的性质,可分为 <u>物理吸附</u> 吸附和 <u>化学吸附</u> 吸附。
6. 一级反应的半衰期和初始浓度 <u>无关</u> ,二级反应的半衰期和初始度 <u>成反比</u> 。若一级反应的速度常数 $k=45min^{-1}$,则其半衰期 $t_{1/2}=$ <u>0.0154</u> min。 7. 液体在固体表面是否润湿,常用润湿角 θ 来衡量, θ <u>< 90$^{\circ}$</u> 为润湿, θ <u>> 90$^{\circ}$</u> 不润湿。
三、判断对错,并做出解释(每题 5 分,共 10 分)
1. 1mol 某纯理想气体,当其温度、热力学能、焓都有定值时,体系具有确定的状态。 答:错。 对于一定量的物质,如果有任意两个独立变量确定,体系就具有确定的状态。 1mol 某纯理想气体的热力学能、焓都只是温度的函数,所以温度、热力学能、焓三个变量之间只有一个独立变量,因此对于该体系来说,当温度、热力学能、焓都有定值时,体系不具有确定的状态。 2. 偏摩尔量与化学势是一个公式的两种不同说法。 答:错。
化学势和偏摩尔量的定义及物理意义都不相同。偏摩尔量的定义式为
$Z_{B} = (\frac{\partial Z}{\partial n_{B}})_{T,p,n_{C(C\neq B)}}$,式中 Z 代表体系任一广延量,它表示在恒温、恒压及除了该组分以外其余各组分的物质的量均保持不变的情况下,1 摩尔 B 对体系广延量 Z 的贡献,而化学势的定义有多种表示形式。

$$\mu_{B} \equiv (\frac{\partial G}{\partial n_{B}})_{T,p,n_{C}(c\neq B)} = (\frac{\partial U}{\partial n_{B}})_{S,V,n_{C}(c\neq B)} = (\frac{\partial H}{\partial n_{B}})_{S,p,n_{C}(c\neq B)} = (\frac{\partial A}{\partial n_{B}})_{T,V,n_{C}(c\neq B)}$$
, 只有组分 Example 1.

的偏摩尔吉布斯函数才称为化学势,其他的偏摩尔量都不是化学势。化学势表示在特性函数所对应的两个特性变量都恒定及除了该组分以外其余各组分的物质的量均保持不变的情况下,1摩尔B对体系该特性函数的贡献。

四、计算题(共4小题,共38分)

1. (7分)已知25℃时下列电池

Pt, H₂ (P^θ) | HCl (aq) | AgCl (s), Ag (s) 的标准电动势 E^θ=0. 223V。

求: 1. 写出正、负极反应和电池反应方程式;

2. 求 25℃时化学反应的平衡常数 K[®]

因为 $zE^{\theta}F = RT \ln K^{\theta}$

$$\ln K^{\theta} = \frac{zE^{\theta}F}{RT} = \frac{0.223 \times 96500}{8.3145 \times 298} = 8.685$$

$$K^{\theta} = 5.91 \times 10^{3}$$
(1 分)

2. (8分)邻硝基氯苯的氨化是二级反应,已知:

$$\lg(k/dm^3 \cdot mol^{-1} \cdot min^{-1}) = -\frac{4482}{T} + 7.20$$

求活化能及指前因子 A [答]:

$$k = A \exp\left(-\frac{E_a}{RT}\right) \Rightarrow \lg k = -\frac{E_a}{2.303RT} + \lg A$$
 (4 \Re)

$$-\frac{E_a}{2.303R} = -4482 \Rightarrow E_a = 85.82kJ \cdot mol^{-1}$$
 (2 \(\frac{1}{2}\))

lg
$$A = 7.2 \Rightarrow A = 1.59 \times 10^7 \, dm^3 \cdot mol^{-1} \cdot min^{-1}$$
 (2 分)

3. (8 分) Ag 可能受到 $H_2S(g)$ 的腐蚀而发生如下反应:

 $H_2S(g) + 2Ag(s) = Ag_2S(s) + H_2(g)$, 今在 298K, $P = P^{\circ}$ 下将 Ag 放在等体积的 H_2 和 $H_2S(g)$ 组成的混合气中,试问 Ag 是否可能发生腐蚀而生成 Ag_2S ?已知在 298K 时 Ag_2S 和 H_2S 的 Δ_fG° 分别为:-40.25 和-32.93kJ. $mo1^{-1}$

[答]:
$$\Delta G = \Delta G^{\theta} + RTLnJ_{P}$$
 (2分)
 $\Delta G^{\theta} = \Delta_{f}G^{\theta} [Ag_{2}S(s)] - \Delta_{f}G^{\theta} [H_{2}S(g)] = -40.25 - (-32.93) = -7.32 kJ (3分)$
 $J_{P}=1 (1分)$
 $\Delta G = -7.32 kJ < 0 (1分)$

反应正向进行, Ag 能被腐蚀(1分)

4. (15 分) 2mol 的理想气体在 27℃, 20. 0dm³下等温膨胀到 50. 0dm³, 试计算下列过程的 O、W、ΔH、ΔU、ΔS。

答案参见我的新浪博客: http://blog.sina.com.cn/s/blog 3fb788630100muda.html

(1) 可逆膨胀(2) 自由膨胀(3) 对抗恒外压 101kPa 膨胀。

[答]: (1) 等温过程理想气体 (5分)

$$\Delta H = \Delta U = 0$$

$$W = nRT \ln \frac{V_1}{V_2} = 2 \times 8.3145 \times 300 \times \ln \frac{20}{50} = -4.57kJ$$

$$Q = -W = 4.57kJ$$

$$\Delta S = \frac{Qr}{T} = \frac{4.57kJ}{300K} = 15.24J \cdot K^{-1}$$

(2) 自由膨胀 (5分)

$$\Delta H = \Delta U = 0$$

$$W = 0$$

$$Q = -W = 0$$

$$\Delta S = 15.24 J \cdot K^{-1}$$

(3) 对抗恒外压 101kPa 膨胀 (5分)

$$\Delta H = \Delta U = 0$$

$$\Delta S = 15.24 J \cdot K^{-1}$$

$$W = -P_{ex}\Delta V = -101 \times (50 - 20) = -3.03kJ$$

$$Q = -W = 3.03kJ$$

五. (12 分) 两组分 HAc 和 C₆H₆ 的固液相图如下:

- 1. 指出各区域存在的稳定相态;
- 2. 从图中可以看出最低共熔混合物中 C_6H_6 的质量分数为 0.64,试问将含苯 0.75 (质量分数)和 0.25 (质量分数)的溶液由 20 C 开始冷却,首先析出的固体分别是什么?
- 3. 如将含苯为 0.75 的溶液 100 克冷却至-8℃,最多能得到纯固体多少克?

[答]

1. (6分)

- (4分)含苯 0.75 的溶液由 20℃开始冷却,首先析出的固体:C₆H₆(s) 含苯 0.25 的溶液由 20℃开始冷却,首先析出的固体:HAc(s)
- 3. (2 分) W[C₆H₆(s)] × (1-0.75)={100-W[C₆H₆(s)]} × (0.75-0.64) 则 W[C₆H₆(s)]=30.56g