Cours Algorithmique des systèmes parallèles et distribués Exercices Série :5 Algorithmes répartis par Dominique Méry 21 mars 2022

Exercice 1 Soit le fichier exieee.tla contenant la description de l'élection du leader dans un graphe connexe acyclique.

----- MODULE ieee

```
EXTENDS Naturals
VARIABLES
      nb, sn, bm, bt, ba, root, msg, ack, tr, cnt, con
NODES == \{1, 2, 3, 4\}
(* le noeud i sait qu'il est le leader, puisque tous ses voisins sont ses enfant
election(i) ==
/\ i \in NODES
/\ nb[i]=sn[i]
       /\ root'=[root EXCEPT![i]= TRUE]
       /\ UNCHANGED <<nb,sn,bm,bt,ba,msg,ack,tr,cnt,con>>
-----
(* le noeud x envoie un message au noeud y, si le message n'est pas d�j� envoy
(* si $x$ n'a pas d�jï;½ envoyï;½ un message d'accord pour ï;½tre le parent d
sending_msg(x,y) ==
/\ x \setminus notin bm
/\ y \notin ba[x]
/\ nb[x]=sn[x] \ cup \{y\}
       /\ msg' = msg \cup {<<x,y>>}
/\ bm' = bm \setminus cup \{x\}
      /\ UNCHANGED <<nb,sn,bt,ba,root,ack,tr,cnt,con>>
   _____
(* x a envoy� un message � y; y n'a pas encore envoy� son accord � $x$; y n
(* de message � x pour lui demander d'�tre le chef.
sending_ack(x,y) ==
/\ x \setminus notin ba[y]
/\ y \notin bm
       /\ ba'=[ba EXCEPT![y]= @ \cup \{x\}]
/\ ack' = ack \ cup \{<<x,y>>\}
       /\ UNCHANGED <<nb, sn, bm, bt, root, msg, tr, cnt, con>>
```

```
progress(x,y) ==
/\ << x,y>> \ in ack
/\ x \setminus notin bt
        /\ tr'=tr \cup {<<x,y>>}
/\ bt' = bt \cup {x}
        /\ UNCHANGED <<nb, sn, bm, ba, root, msg, ack, cnt, con>>
rcv_cnf(x,y) ==
/\ << x,y>> \ in tr
/\ x \setminus notin sn[y]
        /\ sn' = [sn EXCEPT![y] = @ \cup {x}]
        /\ UNCHANGED <<nb,bm,bt,ba,root,msg,ack,tr,cnt,con>>
decontention(x,y) ==
/\ << x,y>> \ in cnt
/\ <<y,x>> \in cnt
        /\ msg'=msg - cnt
        /\ bm' = bm - \{x,y\}
        /\ cnt' = {}
        /\ UNCHANGED <<nb,sn,bt,ba,root,ack,tr,con>>
contention(x, y) ==
/\ con = 0
/\ << x,y>> \  in msg
/\ << x,y>> \ \ 
/\ x \in ba[y]
/\ y \in bm
        /\ cnt'=cnt\cup {<<x,y>>}
/ \setminus con' = 1
        /\ UNCHANGED <<nb,sn,bm,bt,ba,root,msg,ack,tr>>
solvecon(x, y) ==
/\ con = 1
/\ << x,y>> \  \in msg
/\ x \setminus notin ba[y]
/\ y \in bm
        /\ ba'=[ba EXCEPT![y]= @ \cup {x}]
/\ ack' = ack \cup {<< x,y>>}
        /\ UNCHANGED <<nb,sn,bm,bt,root,msg,tr,cnt,con>>
```

```
(* mod�lisation *)
Init ==
/\ nb = [i \in NODES \mid -> F i=1 \text{ THEN } \{2,3\} \text{ ELSE IF } i=3 \text{ THEN } \{1,4\} \text{ ELSE IF } i=4
/\ sn = [i \ nodes \ | -> \{\}]
/ \ bm = \{ \}
/\ bt ={}
/\ ack ={}
/\ ba = [i \in NODES |-> {}]
/\ root = [i \in NODES |-> FALSE]
/\ msg = {}
/\ cnt ={}
/\ tr ={}
/\ con = 0
Next ==
\/ \E i \in NODES: election(i)
```

Question 1.1 Montrer que ce modèle TLA vérifie les propriétés attendues de l'élection.

Question 1.2 Montrer que les invariants de présentation de la solution sont vérifiés.

Question 1.3 Modifier l'algorithme pour résoudre la contention en considérant un choix entre deux nœuds x et y oar exemple le plus petit.

Question 1.4 Traduire cette dernière version en utilisant le langage PlusCal.

Exercice 2 Soit le fichier exdijkstra.tla contenant la description de l'autostabilisation dans un anneau.

```
-----MODULE exdijkstra -----
EXTENDS Naturals
CONSTANTS
      N,M
VARIABLES
DOMAINE == 0 .. N
IMAGE == 0 .. M
(* actions *)
NToZero ==
/ \ V[0] = V[N]
/\ V' = [V \ EXCEPT![0] = (V[0] + 1) % (M+1)]
Others(I) ==
/\ I \in 0..N
/\ I # N
/\ V[I+1] # V[I]
       / \setminus V' = [V EXCEPT ![I+1] = V[I]]
Init == V = [i \setminus in 0..N \mid -> (IF i # N THEN i ELSE 0)]
Next == NToZero \/ (\E I \in 0..N-1:Others(I))
______
```

Question 2.1 Compléter le module et vérifier des propriétés attendues comme la stabilité.

Question 2.2 Traduire ce module en un module PlusCal qui définit cet algorithme.