

Ejercicio 2.33

[71.14] Modelos y Optimización I Curso 4 $2 \hbox{C 2021}$

Alumno:	Grassano, Bruno
Número de padrón:	103855
Email:	bgrassano@fi.uba.ar

$\mathbf{\acute{I}ndice}$

1.	Enunciado	2							
2.	Análisis de la situación problemática	3							
3.	Objetivo	4							
4.	. Hipótesis y supuestos								
5.	Definición de variables	4							
6.	Modelo de programación lineal6.1. Funcional6.2. Restricciones	4 4 5							
7.	Resolución por software	6							
8.	Informe de la solución óptima	8							

1. Enunciado

Una empresa de catering produce y comercializa tres tipos de torta.

La torta tipo A requiere 1 kg de harina, 500 gramos de azúcar, 400 gramos de chocolate, 6 huevos y 200 gramos de dulce de frutillas. La torta tipo B requiere 1,5 kg de harina, 600 gramos de azúcar, 6 huevos y 500 gramos de chocolate. La torta tipo C requiere 800 gramos de harina, 400 gramos de azúcar, 4 huevos y 400 gramos de dulce de frutillas.

Las tortas "A" y "B" llevan además una cobertura especial. La mezcla para coberturas lleva un $20\,\%$ de chocolate de chocolate., entre $40\,\%$ y un $60\,\%$ de crema y el resto de dulce de leche. La torta "A" lleva 200 gramos de cobertura y la torta "B" lleva 250 gramos de esta cobertura.

Por último, las tortas se guardan en cajas decoradas, de las que se puede disponer de $300~{\rm por}$ semana.

Semanalmente, se puede disponer de 500 kg de harina, 200 kg de azúcar, 120 kg de chocolate, 150 docenas de huevos, 40 kg de dulce de frutillas, 30 kg de crema y 15 kg de dulce de leche.

Se ha calculado que el beneficio de cada torta es el siguiente: Tortas "A": 20 pesos, Tortas "B": 25 pesos, Tortas "C": 12 pesos.

2. Análisis de la situación problemática

- Se observa que la cobertura es un problema de mezcla.
- \blacksquare La preparación de las tortas es un problema de armado.
- \blacksquare El siguiente es un esquema del problema:

3. Objetivo

Determinar las cantidades de tortas A, B, C a producir, junto con la cobertura para maximizar el beneficio obtenido durante una semana.

4. Hipótesis y supuestos

- 1. Las cantidades necesarias para fabricar las tortas son exactas.
- 2. No hay costos.
- 3. Todas las tortas producidas se venden.
- 4. Los limites que se tienen de recursos son exactos.
- 5. Las tortas no se pueden estropear.
- 6. Los ingredientes no se pueden estropear.
- 7. El beneficio que se saca de las tortas es estable.
- 8. Las coberturas solo pueden llevar como ingredientes chocolate, crema, y dulce de leche.
- 9. Las tortas solo tienen los ingredientes mencionados.
- 10. La cobertura es la suma de los ingredientes (en peso)
- 11. No se tienen stocks iniciales ni finales.
- 12. Se dispone del tiempo en la semana para producir lo analizado.
- 13. Se pueden vender tortas parcialmente.

5. Definición de variables

*Con tipos y unidades

- A,B,C: Cantidades de tortas A,B,C producidas. (unidad/semana) (Continua)
- CHOCOC: Chocolate dedicado a coberturas. (kg/semana) (Continua)
- CREMAC: Crema dedicada a coberturas. (kg/semana) (Continua)
- DULCEC: Dulce de leche dedicado a coberturas. (kg/semana) (Continua)

6. Modelo de programación lineal

*Indicando en cada restricción o grupo de restricciones la función que cumplen.

6.1. Functional

Buscamos maximizar el beneficio obtenido:

$$max(\frac{20\$}{unidad} \cdot A + \frac{25\$}{unidad} \cdot B + \frac{12\$}{unidad} \cdot C)$$

6.2. Restricciones

Planteamos primero las restricciones de los recursos de los cuales disponemos:

- Para las cajas: $A + B + C \le 300 \frac{unidad}{semana}$
- \blacksquare Para la harina: $1\frac{kg}{unidad}A+1, 5\frac{kg}{unidad}B+0, 8\frac{kg}{unidad}C \leq 500\frac{kg}{semana}$
- \blacksquare Para el azúcar: $0,5\frac{kg}{unidad}A+0,6\frac{kg}{unidad}B+0,4\frac{kg}{unidad}C\leq 200\frac{kg}{semana}$
- \blacksquare Para el chocolate: $0, 4\frac{kg}{unidad}A + 0, 5\frac{kg}{unidad}B + CHOCOC \leq 120\frac{kg}{semana}$
- \blacksquare Para los huevos: $6\frac{huevos}{unidad}A+6\frac{huevos}{unidad}B+4\frac{huevos}{unidad}C\leq 1800\frac{huevos}{semana}$
- \blacksquare Para el dulce de frutilla: $0, 2\frac{kg}{unidad}A + 0, 4\frac{kg}{unidad}C \leq 40\frac{kg}{semana}$
- Para la crema: $CREMAC \leq 30 \frac{kg}{semana}$
- Para el dulce de leche: $DULCEC \le 15 \frac{kg}{semana}$

Ahora planteo la relación entre la cobertura y las tortas:

•
$$0, 2\frac{kg}{unidad}A + 0, 25\frac{kg}{unidad}B = CHOCOC + CREMAC + DULCEC$$

Nos queda la mezcla de la cobertura:

- Para el chocolate: CHOCOC = (CHOCOC + CREMAC + DULCEC)0, 2
- Para el máximo de crema: $CREMAC \leq (CHOCOC + CREMAC + DULCEC)0,6$
- Para el mínimo de crema: $CREMAC \ge (CHOCOC + CREMAC + DULCEC)0,4$

7. Resolución por software

El modelo en GLPK:

```
var A>=0;
var B>=0;
var C>=0;
var CHOCOC>=0;
var CREMAC>=0;
var DULCEC>=0;
maximize z: 20 * A + 25 * B + 12 * C;
s.t. limCajas: A + B + C <= 300;
s.t. limHarina: A + 1.5 * B + 0.8 * C \leq 500;
s.t. limAzucar: 0.5 * A + 0.6 * B + 0.4 * C \le 200;
s.t. limChocolate: 0.4 * A + 0.5 * B + CHOCOC \le 120;
s.t. limHuevos: 6 * A + 6 * B + 4 * C <= 1800;
s.t. limFrutilla: 0.2 * A + 0.4 * C <= 40;
s.t. limCrema: CREMAC <= 30;</pre>
s.t. limDulce: DULCEC <= 15;</pre>
s.t. relCoberturaTorta: 0.2 * A + 0.25 * B = CHOCOC + CREMAC + DULCEC;
s.t. coberChoco: CHOCOC = (CHOCOC+CREMAC+DULCEC) * 0.2;
s.t. maxCoberCrema: CREMAC <= (CHOCOC+CREMAC+DULCEC) * 0.6;</pre>
s.t. minCoberCrema: CREMAC >= (CHOCOC+CREMAC+DULCEC) * 0.4;
```

Ejercicio 2.33 Grassano, Bruno

Los resultados:

Problem: Rows: 13 Columns: 6 Non-zeros: 36 Status: OPTIMAL

Objective: z = 6436.363636 (MAXimum)

No.			Activity			Upper bound	d	Marginal
	z	В	6436.36					
2	limCajas	NU	300			30	00	12
3	limHarina	В	392.727			50	00	
4	limAzucar	В	163.636			20	00	
5	limChocolate	NU	120			12	20	23.6364
6	limHuevos	В	1636.36			180	00	
7	limFrutilla	В	32.7273			2	10	
	limCrema					3	30	
9	limDulce	NU	15			-	15	< eps
10	relCoberturaTorta							
		NS	0		-0		=	4.72727
11	coberChoco	NS	0		-0		=	-23.6364
12	maxCoberCrema							
		В	-4.09091			-	-0	
13	minCoberCrema	a						
		В	6.81818		-0			
No.			Activity					
1	Α				0			-2.4
2	В	В	218.182		0			
3	C	В	81.8182		0			
4	CHOCOC		10.9091		0			
			28.6364		0			
6	DULCEC	В	15		0			
rush-	-Kuhn-Tucker	optin	nality conditi	ons:				
т ре	· max abs err	= 1	.78e-15 on row	r 11				
			.63e-17 on row					
	High quality							

High quality

KKT.PB: max.abs.err = 0.00e+00 on row 0 max.rel.err = 0.00e+00 on row 0High quality

KKT.DE: max.abs.err = 7.11e-15 on column 4 max.rel.err = 1.47e-16 on column 4 High quality

KKT.DB: max.abs.err = 0.00e+00 on row 0 max.rel.err = 0.00e+00 on row 0High quality

End of output

8. Informe de la solución óptima

La recomendación realizado el análisis es preparar 218.18 tortas de tipo B, 81,81 tortas de tipo C, y 0 de A. De esta forma se estaría obteniendo un beneficio de 6436,36\$ durante la semana.

Respecto de los valores limitantes, estos vienen a ser la cantidad de chocolate de la que se dispone, la cantidad de cajas, y el dulce de leche.