Sistemi Opera	itivi – Appello 21 giugno 2019 – Ver. A
Matricola:	Posto:

Università degli Studi di Padova - Corso di Laurea in Informatica

Regole dell'esame

Il presente esame scritto deve essere svolto in forma individuale in un tempo massimo di 30 min dalla sua presentazione. Non è consentita la consultazione di libri o appunti in forma cartacea o elettronica, né l'uso di palmari e telefoni cellulari. Il candidato riporti generalità e matricola negli spazi indicati in alto e inserisca le proprie risposte interamente su questi fogli.

Quesito 1: 1 punti per risposta giusta, diminuzione di 0,5 punto per ogni sbaglio, 0 punti per risposta vuota

DOMANDA	
Una system call da sempre luogo ad un mode switch tra modalità utente e modalità kernel	
Un process switch tra processi utente avviene sempre contestualmente a 2 mode switch (utente->kernel, kernel->utente)	
Un interrupt viene gestito in modalità kernel	
Ogni interrupt è associato ad un processo che ha richiesto una operazione di I/O	
L'inversione di priorità è una tecnica utilizzata per evitare la starvation dei processi a bassa priorità	
Un processo per lanciare un nuovo processo deve fare una system call	

Ouesito 2:

Cognome e nome:

Si determini, utilizzando il grafo di allocazione delle risorse, se il sistema sia in stallo (deadlock) e, in caso affermativo, quali siano i processi e le risorse coinvolti.

		1	11	\mathcal{C}	
Cognome e nome:	 Matricola:			Posto:	

Quesito 3

Supponiamo di avere 2 processi che condividono una variabile x e che i loro pseudo-codici siano i seguenti (i numeri a sinistra delle istruzioni non fanno parte del codice, servono solo a identificare le istruzioni nei commenti di chi risolve l'esercizio):

P1:		P2:		
1:	P(SemA)	8:	P(SemB)	
2:	P(Mutex)	9:	P(Mutex)	
3:	if $(x<0)$ then print (x)	10:	x=x-2	
4:	V(Mutex)	11:	V(Mutex)	
5:	V(SemC)	12:	V(SemA)	
6 :	P(SemA)	13:	P(SemC)	
7:	<pre>print(x)</pre>	14:	P(Mutex)	
		15:	x=x-1	
		16:	V(Mutex)	
		17:	<pre>print(x)</pre>	

I due processi P1 e P2 tentano di eseguire in modo concorrente tra loro. Si assuma che il valore iniziale di x sia 1 e che i semafori abbiano i seguenti valori iniziali: SemA = 0, SemB = 1, SemC = 0, Mutex = 1.

- [A] Determinare se e quali istruzioni print(x) saranno mai eseguite (indicare il numero alla sinistra dell'istruzione corrispondente) e in caso positivo dichiararne l'output.
- [B] Si elenchi un possibile ordine di esecuzione delle istruzioni appartenenti ai due processi (Es. "1, 2, 3, 8, 9, 10, 11, 4, 5").

Quesito 4:

Un sistema ha 4 processi (A, B, C, D) e 5 risorse (R1, R2, R3, R4, R5) da ripartire. L'attuale allocazione e i bisogni massimi sono i seguenti:

Processo	Allocate	Massimo
A	10211	3 1 2 1 3
B	20111	3 3 4 2 1
C	11010	21410
D	11110	11321

Considerando il vettore delle risorse disponibili uguale a [0 1 3 1 2], e utilizzando l'Algoritmo del Banchiere, <u>si discuta</u> se il sistema sia in uno <u>stato sicuro</u>.

Cognome e nome: _____ Matricola: _____ Posto: ____

Soluzione

Soluzione al Quesito 1

DOMANDA	
Una system call dà sempre luogo ad un mode switch tra modalità utente e modalità kernel	
Un process switch tra processi utente avviene sempre contestualmente a 2 mode switch	V
(utente->kernel, kernel->utente)	
Un interrupt viene gestito in modalità kernel	
Ogni interrupt è associato ad un processo che ha richiesto una operazione di I/O	
L'inversione di priorità è una tecnica utilizzata per evitare la starvation dei processi a bassa priorità	
Un processo per lanciare un nuovo processo deve fare una system call	

Soluzione al Quesito 2

Sì, c'è uno stallo e il ciclo che lo determina è quello in giallo: P1=>R1=>P2=>R4=>P7=>R9=>P9=>R6=>P6=>R3=>P1

Si noti che P6=>R8=>P9=>R6=>P6 (ciclo in rosso) non vale come ciclo per la molteplicità di R8 e la risorsa R8=>P3 che potrebbe essere liberata da P3.

Soluzione al Quesito 3

SOLUZIONE [A]: sarà eseguita la print(x) istruzione numero 3 con risultato stampato -1 e poi anche la print(x) istruzione numero 17 con valore stampato -2.

SOLUZIONE [B]: c'è un unico flusso di istruzioni possibili: 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 13, 14, 15, 16, 17 Può però essere scritto in modi diversi. Es. va bene anche 1, 8, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 13, 14, 15, 16, 17 (o simili)

Soluzione al Quesito 4

La matrice delle necessità (massimo numero di risorse richieste dal processo - risorse allocate al processo) è la seguente:

21002

13310

10400

00211

Il proc. D potrebbe essere eseguito fino alla fine. Quando ha finito, il vettore delle risorse disponibili è [1 2 4 2 2].

Il proc. C potrebbe dunque essere eseguito e al suo completamento, il vettore delle risorse disponibili diverrebbe [2 3 4 3 2].

Questo permetterebbe di eseguire e terminare il processo A ottenendo [3 3 6 4 3] come vettore delle risorse disponibili.

Questo permetterebbe di eseguire anche il processo B.

Il sistema è quindi in uno stato sicuro.