PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-203306

(43) Date of publication of application: 19.07.2002

(51)Int.CI.

5/667 G11B **G11B** 5/65 5/738 G11B 5/851 H01F 10/08 H01F 10/26 H01F 41/14

(21)Application number: 2000-401139

(71)Applicant: SHOWA DENKO KK

(22)Date of filing:

28.12.2000

(72)Inventor: SHIMIZU KENJI

SAKAI HIROSHI

(54) MAGNETIC RECORDING MEDIUM, ITS MANUFACTURING METHOD, AND MAGNETIC RECORDING/REPRODUCING DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a magnetic recording medium having a good noise characteristic, and the difficulty of the occurrence of thermal fluctuation phenomenon, and to provide its manufacturing method and a magnetic recording/reproducing device. SOLUTION: On a nonmagnetic substrate 1, a soft magnetic substrate film 2 made of a soft magnetic material, an orientation control film 3 for controlling the orientation of a film directly above, a perpendicular magnetic film 4 having a magnetization facilitation axis oriented perpendicularly to the substrate, and a protective film 5 are provided. The orientation control film 3 is provided with a second orientation control layer 3b made in an hcp structure on the first orientation control layer 3a of a B2 structure. The thickness of the first orientation control layer 3a is set in the range of 0.1 to 20 nm, and the thickness of the second orientation control layer is set in the range of 0.1 to 50 nm.

LEGAL STATUS

[Date of request for examination]

Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-203306 (P2002-203306A)

(43)公開日 平成14年7月19日(2002.7.19)

(51) Int.Cl.7	•	識別記号	FΙ		テ	-7]-ド(参考)
G11B	5/667		G11B	5/667		5D006
	5/65			5/65		5D112
	5/738			5/738		5 E O 4 9
	5/851			5/851		
H01F	10/08		H01F	10/08		
		審查請求	未請求 請求	項の数17 OL	(全 13 頁)	最終頁に続く
(21)出願番号		特顧2000-401139(P2000-401139)	(71) 出願人	000002004		
V				昭和電工株式	会社	
(22)出顧日		平成12年12月28日 (2000. 12.28)		東京都港区芝	大門1丁目13	番9号
			(72)発明者	計 清水 議治		
				千葉県市原市	八幡海岸通 5	番の1 昭和電
				エエイチ・テ	ィー株式会社	内
			(72)発明者	音 酒井 浩志		
				千葉県市原市	八幡海岸通 5	番の1 昭和電
					イー株式会社	内
			(74)代理人	-		•
				弁理士 志賀		6名)
			Fターム(401 CA03 CA05	
					A04 AA11 BD03	
				5E049 A	CO8 BAO8 DB12	DB20 EB03

(54) [発明の名称] 磁気記録媒体、その製造方法、および磁気記録再生装置

(57)【要約】

【課題】 ノイズ特性に優れ、かつ熱揺らぎ現象が起こりにくい磁気記録媒体、その製造方法、および磁気記録再生装置を提供する。

【解決手段】 非磁性基板1上に、軟磁性材料からなる 軟磁性下地膜2と、直上の膜の配向性を制御する配向制 御膜3と、磁化容易軸が基板に対し主に垂直に配向した 垂直磁性膜4と、保護膜5とが設けられ、配向制御膜3 は、B2構造をなす第1配向制御層3a上に、hcp構 造をなす第2配向制御層3bを設けた構成とされ、第1 配向制御層3aの厚さが0.1~20nmとされている。

1 ;非磁性基板 2 ;軟磁性下地膜 3 ;配印制御期間 3 a;第1配向制御 6 ;第2配付膜 4 ;垂直磁性膜 5 ;保護膜

10

4204

1337

·

Giller.

82999

【請求項1】 非磁性基板上に、少なくとも軟磁性材料からなる軟磁性下地膜と、直上の膜の配向性を制御する配向制御膜と、磁化容易軸が基板に対し主に垂直に配向した垂直磁性膜と、保護膜とが設けられ、

1

配向制御膜は、B2構造をなす第1配向制御層上に、hcp構造をなす第2配向制御層を設けた構成とされており、第1配向制御層の厚さが0.1~20nmであり、第2配向制御層の厚さが0.1~50nmであることを特徴とする磁気記録媒体。

【請求項2】 第1配向制御層の厚さが、1.5~1 0nmであることを特徴とする請求項1記載の磁気記録 媒体。

【請求項3】 第2配向制御層の厚さが、2~25nmであることを特徴とする請求項1または2記載の磁気記録媒体。

【請求項4】 第1配向制御層は、NiAl、FeAl、CoFe、CoZr、NiTi、AlCo、AlRu、CoTiのうち1種または2種以上の合金を主成分とする材料からなることを特徴とする請求項1乃至3記 20載のうちいずれか1項記載の磁気記録媒体。

【請求項5】 第2配向制御層は、Ti、Zn、Y、Zr、Ru、Re、Gd、Tb、Hfのうち1種または2種以上を主成分とする材料からなることを特徴とする請求項1乃至4記載のうちいずれか1項記載の磁気記録媒体。

【請求項6】 軟磁性下地膜の飽和磁束密度Bs

(T)と該軟磁性下地膜の膜厚 t (nm)との積 B s・t (T・nm)が40 (T・nm)以上であることを特徴とする請求項1乃至5記載のうちいずれか1項記載の磁気記録媒体。

【請求項7】 軟磁性下地膜の飽和磁束密度Bs

(T)と該軟磁性下地膜の膜厚 t (nm)との積B s・t (T・nm)が60 (T・nm)以上であることを特徴とする請求項1乃至6記載のうちいずれか1項記載の磁気記録媒体。

【請求項8】 配向制御膜と垂直磁性膜との間に、非磁性材料からなる非磁性中間膜が設けられていることを特徴とする請求項1乃至7記載のうちいずれか1項記載の磁気記録媒体。

【請求項9】 軟磁性下地膜の垂直磁性膜側の表面の 1 部または全面が酸化されていることを特徴とする請求 項1乃至8記載のうちいずれか1項記載の磁気記録媒 体。

【請求項10】 非磁性基板上に、少なくとも軟磁性 材料からなる軟磁性下地膜と、直上の膜の配向性を制御 する配向制御膜と、磁化容易軸が基板に対し主に垂直に 配向した垂直磁性膜と、保護膜とを設ける磁気記録媒体 の製造方法であって、

配向制御膜を、B2構造をなす第1配向制御層上に、h 50

c p構造をなす第2配向制御層を設けた構成とし、第1配向制御層の厚さを、0.1~20nmとし、第2配向制御層の厚さを、0.1~50nmとすることを特徴とする磁気記録媒体の製造方法。

【請求項11】 第1配向制御膜の厚さが1.5~1 0nmであることを特徴とする請求項10記載の磁気記 録媒体の製造方法。

【請求項12】 第2配向制御層の厚さが2~25 n mであることを特徴とする請求項10または11記載の磁気記録媒体の製造方法。

【請求項13】 軟磁性下地膜の表面を酸化させる工程を含むことを特徴とする請求項10万至12記載のうちいずれか1項記載の磁気記録媒体の製造方法。

【請求項14】 磁気記録媒体と、該磁気記録媒体に情報を記録再生する磁気ヘッドとを備えた磁気記録再生装置であって、磁気ヘッドが単磁極ヘッドであり、磁気記録媒体が、非磁性基板上に少なくとも軟磁性材料からなる軟磁性下地膜と、直上の膜の配向性を制御する配向制御膜と、磁化容易軸が基板に対し主に垂直に配向した垂直磁性膜と、保護膜とが設けられ、配向制御膜は、B2構造をなす第1配向制御層上に、hcp構造をなす第2配向制御層を設けた構成とされており、第1配向制御層の厚さが0.1~20nmであり、第2配向制御層の厚さが0.1~50nmであることを特徴とする磁気記録再生装置。

【請求項15】 磁気記録媒体が、第1配向制御層の 厚さが、1.5~10nmであることを特徴とする請求 項14記載の磁気記録再生装置。

【請求項16】 磁気記録媒体が、第2配向制御層の 厚さが、2~25 nmであることを特徴とする請求項1 4または15いずれか1項記載の磁気記録再生装置。

【請求項17】 磁気記録媒体が、軟磁性下地膜の垂直磁性膜側の表面の1部または全面が酸化されていることを特徴とする請求項14乃至16のうちいずれか1項記載の磁気記録再生装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、磁気記録媒体、その製造方法、およびこの磁気記録媒体を用いた磁気記録 再生装置に関するものである。

[0002]

40

【従来の技術】現在市販されている磁気記録媒体は、磁性膜内の磁化容易軸が主に基板に対し水平に配向した面内磁気記録媒体がほとんどである。このような面内磁気記録媒体では、高記録密度化するとビット体積が小さくなりすぎ、熱揺らぎ効果により記録再生特性が悪化する可能性がある。また、高記録密度化した際に、記録ビット境界での反磁界の影響により媒体ノイズが増加する。これに対し、磁性膜内の磁化容易軸が主に垂直に配向した、いわゆる垂直磁気記録媒体は、高記録密度化した際

2

にも、ビット境界での反磁界の影響が小さく、境界が鮮明な記録磁区が形成されるため低ノイズ化が可能であり、しかも比較的ビット体積が大きくても高記録密度化が可能であることから熱揺らぎ効果にも強く、近年大きな注目を集めており、垂直磁気記録に適した媒体の構造が提案されている。

[0.003]

 $\mathcal{N}_{\mathcal{M}}$

 $M_{\rm col}^{-1}$

ettend

【発明が解決しようとする課題】近年では、磁気記録媒体の更なる高記録密度化が要望されており、垂直磁性膜に対する書き込み能力に優れる単磁極ヘッドを用いるために、記録層である垂直磁性膜と基板との間に、裏打ち層と称される軟磁性材料からなる層を設け、単磁極ヘッドと、磁気記録媒体の間の磁束の出入りの効率を向上させた磁気記録媒体が提案されている。しかしながら、従来の磁気記録媒体が提案されている。しかしながら、従来の磁気記録媒体が提案されている。しかしながら、従来の磁気記録媒体が要望されていた。本発明は、上記事情に鑑みてなされたもので、記録再生特性、耐熱減磁耐性、および記録分解能を向上させ高密度の情報の記録再生が可能な磁気記録媒体、その製造方法、および磁気記録解体、その製造方法、および磁気記録再生装置を提供することを目的とする。

[0004]

【課題を解決するための手段】上記の目的を達成するた めに、本発明は以下の構成を採用した。本発明の磁気記 録媒体は、非磁性基板上に少なくとも軟磁性下地膜と直 上の膜の配向性を制御する配向制御膜と、磁化容易軸が 基板に対し主に垂直に配向した垂直磁性膜と、保護膜と が設けられ、前記配向制御膜がB2構造をなす第1配向 制御層上に、hcp構造をなす第2配向制御層を設けた 30 構成とされており、第1配向制御層の厚さが0.1~2 0 nmであり、第2配向制御層の厚さが0.1~50n mであることを特徴とする。さらに第1配向制御層の厚 さは1.5~10nmであることが好ましい。さらに第 2配向制御層の厚さは2~25nmであることが好まし い。本発明の磁気記録媒体は、第1配向制御層はNiA 1, FeAl, CoFe, CoZr, NiTi, AlC o、AlRu、CoTiのうち1種または2種以上の合 金を主成分とする材料からなるものであることが好まし い。本発明の磁気記録媒体は、第2配向制御層はTi、 Zn、Y、Zr、Ru、Re、Gd、Tb、Hfのうち 1種以上または2種以上を主成分とする材料からなるも のであることが好ましい。本発明の磁気記録媒体は、軟 磁性下地膜の飽和磁束密度 Bs (T)と該軟磁性下地膜 の膜厚 t (nm) との積Bs・t (T・nm) が40 (T・nm) 以上であることが好ましい。 さらに軟磁性 下地膜の飽和磁束密度Bs(T)と該軟磁性下地膜の膜 厚t (nm) との積Bs・t (T・nm) が60 (T・ nm)以上であることが好ましい。本発明の磁気記録媒 体は、配向制御膜と垂直磁性膜との間に非磁性材料から

なる非磁性中間膜が設けられていることが好ましい。本 発明の磁気記録媒体は、軟磁性下地膜の垂直磁性膜側の 表面の1部または全面が酸化されているが好ましい。本 発明の磁気記録媒体の製造方法は、非磁性基板上に、少 なくとも軟磁性材料からなる軟磁性下地膜と、直上の膜 の配向性を制御する配向制御膜と、磁化容易軸が基板に 対し主に垂直に配向した垂直磁性膜と、保護膜とを設け る磁気記録媒体の製造方法であって、配向制御膜を、B 2構造をなす第1配向制御層上に、hcp構造をなす第 2配向制御層を設けた構成とし、第1配向制御層の厚さ を、0.1~20nmとし、第2配向制御層の厚さを、 0.1~50nmとすることを特徴とする。さらに第1 配向制御層の厚さが、1.5~10nmであることが好 ましい。さらに第2配向制御層の厚さが、2~25nm であることが好ましい。本発明の磁気記録媒体の製造方 法は、軟磁性下地膜の表面を酸化させる工程を含むこと が好ましい。本発明の磁気記録再生装置は、磁気記録媒 体と、該磁気記録媒体に情報を記録再生する磁気ヘッド とを備えた磁気記録再生装置であって、磁気ヘッドが単 磁極ヘッドであり、磁気記録媒体が、非磁性基板上に少 なくとも軟磁性材料からなる軟磁性下地膜と、直上の膜 の配向性を制御する配向制御膜と、磁化容易軸が基板に 対し主に垂直に配向した垂直磁性膜と、保護膜とが設け られ、配向制御膜はB2構造をなす第1配向制御層上 に、hcp構造をなす第2配向制御層を設けた構成とさ れており、第1配向制御層の厚さが0.1~20nmで あり、第2配向制御層の厚さが0.1~50nmである ことを特徴とする。さらに第1配向制御層の厚さが、 1. 5~10 n m であることが好ましい。さらに第2配 向制御層の厚さが、2~25nmであることが好まし

[0005]

【発明の実施の形態】図1は、本発明の磁気記録媒体の 第1の実施形態を示すもので、ここに示す磁気記録媒体 は、非磁性基板 1 上に、軟磁性下地膜 2 と、配向制御膜 3と、垂直磁性膜4と、保護膜5と潤滑膜6とが順次形 成されて構成されている。非磁性基板1としては、アル ミニウム、アルミニウム合金等の金属材料からなる金属 基板を用いてもよいし、ガラス、セラミック、シリコ ン、シリコンカーバイド、カーボンなどの非金属材料か らなる非金属基板を用いてもよい。ガラス基板として は、アモルファスガラス、結晶化ガラスがあり、アモル ファスガラスとしては汎用のソーダライムガラス、アル ミノケートガラス、アルミノシリケートガラスを使用で きる。また、結晶化ガラスとしては、リチウム系結晶化 ガラスを用いることができる。セラミック基板として は、汎用の酸化アルミニウム、窒化アルミニウム、窒化 珪素などを主成分とする焼結体や、これらの繊維強化物 などが使用可能である。非磁性基板1としては、上記金 属基板、非金属基板の表面にメッキ法やスパッタ法によ

りNiP膜が形成されたものを用いることもできる。基板1表面の平均粗さRaは、0.01~2nm(好ましくは0.05~1.5nm)が好ましい。表面平均粗さRaが上記範囲未満であると磁気ヘッドの媒体への吸着や磁気ヘッドの振動が起こりやすくなり、上記範囲を越えるとグライド特性が不充分となりやすい。

【0006】軟磁性下地膜2は、磁気ヘッドから出る磁束の基板垂直方向成分を大きくするとともに、情報が記録される垂直磁性膜4の磁化を、より強固に基板1と垂直な方向に固定するために設けられているものである。この作用は特に、記録再生用の磁気ヘッドとして垂直記録用の単磁極ヘッドを用いる場合に、より顕著なものとなる。

【0007】上記軟磁性下地膜2は、軟磁性材料からな るもので、この材料としては、Fe、Ni、Coを含む 材料を用いることができる。この材料としては、FeC o系合金(FeCo、FeCoVなど)、FeNi系合 金(FeNi、FeNiMo、FeNiCr、FeNi Siなど)、FeAl系合金(FeAl、FeAlS i、FeAlSiCr、FeAlSiTiRu、FeA 20 1 Oなど)、FeCr系合金(FeCr、FeCrT i、FeCrCuなど)、FeTa系合金(FeTa、 FeTaC、FeTaNなど)、FeMg系合金(Fe MgOなど)、FeZr系合金(FeZrNなど)、F e C系合金、FeN系合金、FeSi系合金、FeP系 合金、FeNb系合金、FeHf系合金、FeB系合金 などを挙げることができる。またFeを60at%以上 含有するFeAlO、FeMgO、FeTaN、FeZ r、N等の微結晶構造、あるいは微細な結晶粒子がマトリ クス中に分散されたグラニュラー構造を有する材料を用 いてもよい。軟磁性下地膜2の材料としては、上記のほ か、Coを80at%以上含有し、Zr、Nb、Ta、 Cr、Mo等のうち少なくとも1種を含有し、アモルフ ァス構造を有するCo合金を用いることができる。この 材料としては、CoZr、CoZrNb、CoZrT a、CoZrCr、CoZrMo系合金などを好適なも のとして挙げることができる。

【0008】軟磁性下地膜2の保磁力Hcは200(Oe)以下(好ましくは50(Oe)以下)とするのが好ましい。この保磁力Hcが上記範囲を超えると、軟磁気 40特性が不十分となり、再生波形がいわゆる矩形波から歪みをもった波形になるため好ましくない。軟磁性下地膜2の飽和磁束密度Bsは、0.4 T以上(好ましくは1 T以上)とするのが好ましい。このBsが上記範囲未満であると、再生波形がいわゆる矩形波から歪みをもった波形になるため好ましくない。また、軟磁性下地膜2の飽和磁束密度Bs(T)と軟磁性下地膜2の隙厚t(nm)との積Bs・t(T・nm)は、40(T・nm)以上(好ましくは60(T・nm)以上)であること好ましい。このBs・tが上記範囲未満であると、再生波 50

【0009】軟磁性下地膜2の最表面(配向制御膜3側 の面)は、軟磁性下地膜2を構成する材料が部分的、あ るいは完全に酸化されていることが好ましい。つまり、 軟磁性下地膜2の表面(配向制御膜3側の面)およびそ の近傍(表面から所定の深さの領域)は、軟磁性下地膜 2を構成する材料が部分的または全体的に酸化されて形 成されていることが好ましい。これにより、軟磁性下地 膜2の表面の磁気的な揺らぎを抑えることができるの で、この磁気的な揺らぎに起因するノイズを低減して、 磁気記録媒体の記録再生特性を改善することができる。 また、軟磁性下地膜2上に形成される配向制御膜3の結 晶粒を微細化して、記録再生特性を改善することができ る。また酸化により形成された酸化膜のバリア層的機能 により、軟磁性下地膜2または非磁性基板1から腐食性 物質が媒体表面に移動するのを抑え、媒体表面の腐食の 発生を抑えることができる。

【0010】この軟磁性下地膜2の表面の酸化部分は、 例えば軟磁性下地膜2を形成した後、その表面を酸素を 含む雰囲気に曝す方法や、軟磁性下地膜2の表面に近い 部分を成膜する際のプロセス中に酸素を導入する方法に より形成することができる。具体的には、軟磁性下地膜 2の表面を酸素に曝す場合、ディスク (基板1上に軟磁 性下地膜2を形成したもの)を、純酸素、あるいは酸素 をアルゴンや窒素などのガスで希釈したガス雰囲気中に 0.1~30秒程度放置しておけばよい。また、上記デ ィスクを大気に曝すこともできる。導入する酸素の量、 酸素への曝露時間を適宜設定することにより、軟磁性下 地膜2の酸化度合いを調節することができる。例えば、 10-4~10-6 Paの真空度に対し、10-3 Pa以上の 酸素ガス圧の雰囲気に、上記ディスクを0.1~30秒 間曝すことによって、所定の酸化状態を得ることができ る。特に酸素をアルゴンや窒素などのガスで希釈したガ スを用いる場合には、酸素の希釈度を適宜設定すること によって、軟磁性下地膜2表面の酸化の度合いの調節が 容易になるので、安定した製造を行うことができる。ま た、軟磁性下地膜2の成膜用のガスに酸素を導入する場 合には、例えば成膜法としてスパッタ法を用いるなら ば、成膜時間の1部のみに酸素を導入したプロセスガス を用いてスパッタを行えばよい。このプロセスガスとし ては、例えばアルゴンに酸素を体積率で0.05%~5 0% (好ましくは0.1~20%) 程度混合したガスが 好適に用いられる。酸化膜の厚さは、例えば透過型電子 顕微鏡 (TEM) による観察によって得られた断面図か ら求めることができる。また酸化された状態は、オージェ電子分光法、SIMS法などにより確認することができる。

【0011】配向制御膜3は、直上に設けられた垂直磁性膜4の配向性や粒径を制御するもので、第1配向制御層3a上に第2配向制御層3bを設けた2層構造を有する。第1配向制御膜3aにはB2構造をなす材料が用いられる。B2構造をなす材料としては、NiAl、FeAl、CoFe、CoZr、NiTi、AlCo、AlRu、CoTiのうち1種または2種以上の合金を主成りとするものが使用できる。また、これらの合金にCr、Nb、V、W、Mo、B、O、N、Ru、Nd等のの元素を添加した材料を用いることもできる。上記2元系合金(NiAl、FeAl、CoFe、CoZr、NiTi、AlCo、AlRu、CoTi)を用いる場合には、この合金を構成する2つの成分の含有率を、いずれも40~60at%(好ましくは45~55at%)とするのが好ましい。

22.54

ek seg

1976

【0012】第1配向制御層3aの厚さは、次のように定めるのが好ましい。図2は、上記構成の磁気記録媒体において、第1配向制御層3aの厚さと、垂直磁性膜4の(0002)面の配向性との関係を示すグラフである。このグラフにおいて、横軸は第1配向制御層3aの厚さを示し、縦軸は垂直磁性膜4の(0002)面に相当するX線回折強度を示す。このグラフに示すように、X線回折強度は、第1配向制御層3aの厚さが0.1~20nmであるときに高い値を示し、以後、第1配向制御層3aの厚さが大きくなるにつれて低くなる。このグラフより、垂直磁性膜4の垂直配向性は、第1配向制御層3aの厚さが0.1~20nm(特に1.5~10nm)であるときに高くなり、厚さをさらに大きくすると徐々に低下することがわかる。

【0013】このため、本実施形態の磁気記録媒体で は、第1配向制御層3aの厚さを0.1~20nmとす る。特に第1配向制御層3aの厚さが1.5~10nm の範囲であるとき、垂直磁性膜4の垂直配向性が高くな り、かつ記録時における磁気ヘッドと軟磁性下地膜2と の距離を小さくすることができるので、再生信号の分解 能を低下させることなく記録再生特性を高めることがで きる。この厚さが上記範囲未満であると、垂直磁性膜4 における垂直配向性が低下し、記録再生特性および熱揺 らぎ耐性が劣化する。また、この厚さが上記範囲を超え ると、垂直磁性膜4における垂直配向性が低下し、ノイ ズ特性および熱揺らぎ耐性が劣化する。また記録時にお ける磁気ヘッドと軟磁性下地膜2との距離が大きくなる ため、再生信号の分解能が低下するため好ましくない。 【0014】第2配向制御層3bには、hcp構造をな す材料が用いられる。このhcp構造をなす材料として は、Ti、Zn、Y、Zr、Ru、Re、Gd、Tb、 Hfのうち1種または2種以上を用いるのが好ましい。

なかでも特にRuを用いると、垂直磁性膜4の垂直配向性を高めることができるのが好ましい。この材料としては、垂直磁性膜4に対する格子の整合性を考慮して、これらの材料にCo、Cr、Fe、Ni等を添加した合金を用いることができる。またこの材料としては、結晶粒子の観点から、これらの材料にC、O、N、Si、Bを添加した合金を用いることもできる。

【0015】第2配向制御層3bの厚さは、0.1~50nm(好ましくは2~25nm)とする。この厚さが上記範囲未満であると、垂直磁性膜4における垂直配向性が低下し記録再生特性および熱揺らぎ耐性が劣化する。またこの厚さが上記範囲を超えると、第2配向制御層3bにおいて結晶粒子が粗大化し、垂直磁性膜4において結晶粒子が粗大化し記録再生特性が悪化する。また記録再生時における、磁気ヘッドと軟磁性下地膜2との距離が大きくなることから、再生信号の分解能が低下するため好ましくない。

【0016】配向制御膜3の表面形状は、垂直磁性膜4、保護膜5の表面形状に影響を与えるため、磁気記録媒体の表面凹凸を小さくして、記録再生時における磁気ヘッド浮上高さを低くするには、配向制御膜3の表面平均粗さRaを2nm以下とするのが好ましい。この表面平均粗さRaを2nm以下とすることによって、磁気記録媒体の表面凹凸を小さくし、記録再生時における磁気ヘッド浮上高さを十分に低くし、記録密度を高めることができる。

【0017】配向制御膜3を形成する際には、第1配向制御層3aや第2配向制御層3bの成膜用のガスに酸素や窒素を導入し、その表面に酸化膜または窒化膜を形成してもよい。例えば、成膜法としてスパッタ法を用いるならば、プロセスガスとしては、アルゴンに酸素を体積率で0.05~50%(好ましくは0.1~20%)程度混合したガス、アルゴンに窒素を体積率で0.01~20%(好ましくは0.02~10%)程度混合したガスが好適に用いられる。

【0018】垂直磁性膜4は、その磁化容易軸が基板に対し主に垂直に配向した磁性膜であり、磁性材料からなるものとすることができ、その材料としては、CoCr系、CoCrPtX1系、CoCrPtX1系、CoPtX1系(X1:Ta、Zr、Nb、Cu、Re、Ni、Mn、Ge、Si、O、N、およびBのうち1種または2種以上)の合金を用いるのが好ましい。特に、垂直磁性膜4の垂直磁気異方性を高めるために、CoCrPtX1系、CoPtX1系(X1:Ta、Zr、Nb、Cu、Re、Ni、Mn、Ge、Si、O、N、およびBのうち1種または2種以上)の合金で、Pt含有量が8~24at%であるものを用いることが好ましい。また、垂直磁性膜4には、遷移金属(Co、Co合金、Fe、Fe合金など)と黄金属材料(Pd、Pd合金、Pt、Pt合金)とを多数回にわた

って積層した構造を採用できる。例えば、Co、CoX 2、Fe、FeX2のいずれかからなる層と、Pd、P dX2、Pt、PtX2(X2:Cr、Pt、Ta、 B、O、Ru、Siのうち1種または2種以上)のいずれかからなる層を多数回にわたって積層した構造を採用 することができる。上記に挙げたCoCr系、CoCr Pt系、CoCrTa系、CoCrPtX1系、CoP tX1系や積層構造型の垂直磁性膜はいずれも多結晶構造であるが、本発明の磁気記録媒体は、非晶質構造の垂 直磁性膜を適用することもできる。非晶質構造をなす材 料としては、特に限定されるものではないが、TbFe Co系合金などの希土類元素を含む合金を用いることが できる。

【0019】垂直磁性膜4の厚さは、3~100nm (好ましくは5~50nm)とするのが好ましい。垂直磁性膜4の厚さが上記範囲未満であると、十分な磁束が得られず、再生出力が低下する。また、垂直磁性膜4の厚さが上記範囲を超えると、垂直磁性膜4内の磁性粒子の粗大化が起き、記録再生特性が低下するため好ましくない。

【0020】なお、垂直磁性膜4は、組成、構造が異なる層を2層以上重ね合わせたものとしてもよい。例えば、垂直磁性膜4は、複数の磁性層とそれら各磁性層間に形成されている中間層とからなり、前記中間層には結晶構造がB2構造である構成またはhcp構造である構成を用いることもできる。このときの、磁性層の組成、構造は互いに同じものとしても、異なるものとしてもよい。中間膜の材料としては限定されるものではないが、格子の整合性を考慮すると、RuやRuにCo、Cr、Fe、Ni、C、O、N、Si、B等を添加した合金や、CoCrにFe、Ni、Ru、Pt、Ta、C、O、N、Si、B等を添加した合金を用いるのが特に好ましい。

【0021】垂直磁性膜4の保磁力は、3000(Oe)以上とすることが好ましい。保磁力が3000(Oe)より小さい磁気記録媒体は、高記録密度には不適であり、また熱揺らぎ耐性にも劣るため好ましくない。

【0022】垂直磁性膜4は、結晶粒子の平均粒径が5~15nmであることが好ましい。この平均粒径は、例えば垂直磁性膜4の結晶粒子をTEM(透過型電子顕微 40鏡)で観察し、観察像を画像処理することにより求めることができる。

【0024】上記構成の磁気記録媒体を製造するには、 基板1上に、軟磁性下地膜2、配向制御膜3、垂直磁性 膜4を順次、スパッタリング、真空蒸着、イオンプレー ティングなどにより形成する。次いで保護膜5を、好ま しくはプラズマCVD法、イオンビーム法、スパッタリ ング法により形成する。潤滑剤6を形成するには、ディ ッピング法、スピンコート法などの従来公知の方法を採 用することができる。

10

【0025】上記構成の磁気記録媒体にあっては、配向 制御膜3が、B2構造をなす第1配向制御層3a上に、 hcp構造をなす第2配向制御層3bを設けた構造を有 し、第1配向制御層3aの厚さが0.1~20nm(好 ましくは1.5~10nm)であるので、熱揺らぎ耐性 を高めるとともに、記録再生特性、記録分解能を高める ことができる。第1配向制御層3aの厚さを上記範囲と することによって熱揺らぎ耐性を高めることができるの は以下の理由によると考えられる。すなわち、B2構造 をなす第1配向制御層3aの厚さを上記範囲としたと き、この第1配向制御層3aが垂直磁性膜4の配向性を 最も高め得る表面状態となり、その結果、垂直磁性膜 4 における垂直磁性を向上し(図2参照)、磁気異方性を 高めることができる。このため、優れた熱揺らぎ耐性が 得られる。なお、熱揺らぎとは、記録ビットが不安定と なり記録したデータの熱消失が起こる現象をいい、磁気 記録媒体装置においては、記録したデータの再生出力の 経時的な減衰として現れる。

【0026】第1配向制御層3aの厚さを上記範囲とすることによって記録再生特性を向上させることができるのは、この第1配向制御層3aの影響下で成長する第2配向制御層3b、垂直磁性膜4では、結晶粒子の微細化、孤立化、均一化が進行するためだと考えられる。

【0027】第1配向制御膜3aの厚さを上記範囲とすることによって記録分解能を向上させることができるのは、磁気ヘッドと軟磁性膜2の距離を大きくすることなく垂直磁性膜4の垂直配向性を高めることができるためだと考えられる。

【0028】図3は本発明の磁気記録媒体の第2の実施形態を示すもので、ここに示す磁気記録媒体では、配向制御膜3と垂直磁性膜4との間に、非磁性中間膜7が設けられている。非磁性中間膜7にはhcp構造を有する非磁性材料を用いるのが好ましい。非磁性中間膜7には、非磁性のCoCr合金やCoCrX3合金やCoX3合金(X3:Pt、Ta、Zr、Ru,Nb、Cu、Re、Ni、Mn、Ge、Si、O、NおよびBのうち1種または2種以上)を用いるのが好適である。非磁性中間膜7の厚さは、垂直磁性膜4における磁性粒子の粗大化による記録再生特性の悪化や、磁気ヘッドと軟磁性下地膜2との距離が大きくなることによる記録分解能の低下を起こさないようにするために、20nm以下(好ましくは10nm以下)とするのが好ましい。本実施形

態の磁気記録媒体においては、非磁性中間膜7を設けることによって、垂直磁性膜4の垂直配向性を高めることができるので、垂直磁性膜4の保磁力Hcを高め、記録再生特性および熱揺らぎ耐性をさらに向上させることができる。

38.97

Gillian!

【0029】図4は、本発明の磁気記録媒体の第3の実 施形態を示すもので、ここに示す磁気記録媒体では、非 磁性基板1と軟磁性下地膜2との間に、磁気異方性が主 に面内方向を向いた硬磁性膜8が設けられている。 硬磁 性下地膜8にはCoSm合金や、CoCrCoX4合金 10 (X4: Pt, Ta, Zr, Nb, Cu, Re, Ni, Mn、Ge、Si、O、NおよびBのうち1種または2 種以上)を用いるのが好適である。硬磁性膜8は、保磁 カHcが500(Oe)以上(好ましくは1000(O e) 以上) であることが好ましい。 硬磁性膜 8 の厚さ は、20~150nm (好ましくは40~70nm) で あることが好ましい。20nm未満であると、エラーレ ートを低くする効果が低下し、硬磁性下地膜8の厚さが 150nmを超えると、配向制御膜3の表面平均粗さR aが大きくなるため好ましくない。硬磁性膜8は、軟磁 性下地膜2と交換結合しており、磁化方向が基板半径方 向に向けられた構成とするのが好ましい。硬磁性下地膜 8を設けることによって、より効果的に軟磁性下地膜2 での巨大な磁区の形成を抑えることができるので、磁壁 によるスパイクノイズの発生を防止して、記録再生時の エラーレートを十分に低くすることができる。

【0030】図5は、本発明の磁気記録媒体の第4の実 施形態を示すもので、ここに示す磁気記録媒体では、垂 直磁性膜4と保護膜5との間に軟磁性材料からなる磁化 安定膜9が設けられている。磁化安定膜9の材料として は、FeCo系合金(FeCo、FeCoVなど)、F eNi系合金 (FeNi、FeNiMo、FeNiC r、FeNiSiなど)、FeAl系合金 (FeAl、 FeAlSi, FeAlSiCr, FeAlSiTiR u、FeAlOなど)、FeCr系合金(FeCr、F eCrTi、FeCrCuなど)、FeTa系合金(F eTa、FeTaC、FeTaNなど)、FeMg系合 金 (FeMgOなど)、FeZr系合金 (FeZrNな ど)、FeC系合金、FeN系合金、FeSi系合金、 FeP系合金、FeNb系合金、FeHf系合金、Fe B系合金などを挙げることができる。またFeを60a t %以上含有するFe AlO、Fe Mg O、Fe Ta N、FeZrN等の微結晶構造、あるいは微細な結晶粒 子がマトリクス中に分散されたグラニュラー構造を有す る材料を用いてもよい。磁化安定膜9の材料としては、 上記のほか、Coを80at%以上含有し、Zr、N b、Ta、Cr、Mo等のうち少なくとも1種を含有 し、アモルファス構造を有するCo合金を用いることが できる。この材料としては、Co2r、CoZrNb、 CoZrTa、CoZrCr、CoZrMo系合金など 50 を好適なものとして挙げることができる。

【0031】磁化安定膜9の保磁力Hcは200(Oe)以下(好ましくは50(Oe)以下)とするのが好ましい。磁化安定膜9の飽和磁束密度Bsは、0.4T以上(好ましくは1T以上)とするのが好ましい。また、磁化安定膜9の飽和磁束密度Bs(T)と膜厚t(nm)との積Bs・t(T・nm)は7.2(T・nm)以下であること好ましい。このBs・tが上記範囲を超えると、再生出力が低下するため好ましくない。また、磁化安定膜9の最大透磁率は、1000~1000000(好ましくは10000~500000)とするのが好ましい。

【0032】磁化安定膜9は、磁化安定膜9を構成する 材料が部分的、あるいは完全に酸化されて構成されてい ることが好ましい。つまり、磁化安定膜9の表面(保護 膜5側もしくは垂直磁性膜4側の面)およびその近傍

(表面から所定の深さの領域)において、磁化安定膜9 を構成する材料が部分的または全体的に酸化されている のが好ましい。これにより、磁化安定膜9の表面の磁気 的な揺らぎを抑えることができるので、この磁気的な揺 らぎに起因するノイズの低減して、磁気記録媒体の記録 再生特性を改善することができる。

【0033】垂直磁性膜4と保護膜5との間に軟磁性材料からなる磁化安定膜9を設けることにより、熱揺らぎ耐性の向上、再生出力の増加を図ることができる。これは、垂直磁性膜4の表面に存在する磁化の揺らぎを、この磁化安定化膜9が安定化することにより、漏れ磁束が揺らぎの影響を受けなくなり、再生出力が増加するためであると考えられる。また、この磁化安定膜9が設けられていることにより、垂直磁性膜4の基板1に垂直な方向の磁化と、軟磁性下地膜2および磁化安定膜9の面内方向の磁化が、閉回路を形成する。この作用により、垂直磁性膜4の磁化がより強固に固定されるので、熱揺らぎ耐性が向上すると考えられる。

【0034】図3~図5に示す構成の磁気記録媒体は、図1に示す磁気記録媒体の製造工程(基板1上にスパッタ法などにより、軟磁性下地膜2を形成中、または形成後に軟磁性下地膜2の表面を酸化処理を施し、次いで配向制御膜3、垂直磁性膜4をスパッタ法などにより形成し、次いで保護膜5をCVD法、イオンビーム法、スパッタ法などにより形成する。次いで、ディッピング法、スピンコート法などにより潤滑膜6を形成する)において、必要に応じて基板1と軟磁性下地膜2との間に硬磁性膜8を形成する工程や、配向制御膜3と垂直磁性膜4との間に非磁性中間膜7を形成する工程や、垂直磁性膜4との間に非磁性中間膜7を形成する工程や、垂直磁性膜4と保護膜5との間に磁化安定膜9を形成する工程や、磁化安定膜9の表面を酸化処理する工程を行うことによって製造することができる。

【0035】図6は、上記磁気記録媒体を用いた磁気記録再生装置の例を示すものである。ここに示す磁気記録

再生装置は、磁気記録媒体10と、磁気記録媒体10を回転駆動させる媒体駆動部11と、磁気記録媒体10に情報を記録再生する磁気ヘッド12と、ヘッド駆動部13と、記録再生信号処理系14とを備えている。記録再生信号処理系14は、入力されたデータを処理して記録信号を磁気ヘッド12に送ったり、磁気ヘッド12からの再生信号を処理してデータを出力することができるようになっている。磁気ヘッド12としては、垂直記録用の単磁極ヘッドを例示することができる。図6(b)に示すように、この単磁極ヘッドとしては、主磁極12aと、補助磁極12bと、これら連結部12cに設けられたコイル12dとを有する構成のものを好適に用いることができる。

【0036】上記磁気記録再生装置によれば、上記磁気記録媒体10を用いるので、熱揺らぎ耐性および記録再生特性を高めることができる。従って、データ消失などのトラブルを未然に防ぐとともに、高記録密度化を図ることができる。なお、本明細書において、主成分とは当該成分を50at%を超えて含むことを指す。

[0037]

1.01

÷-,

5 1. A

33

4.25

【実施例】以下、実施例を示して本発明の作用効果を明確にする。ただし、本発明は以下の実施例に限定されるものではない。

(実施例1) 洗浄済みのガラス基板1 (オハラ社製、外 径2. 5インチ)をDCマグネトロンスパッタ装置(ア ネルバ社製C-3010)の成膜チャンバ内に収容し て、到達真空度1×10-5 Paとなるまで成膜チャンバ 内を排気した後、このガラス基板上に89at%Co-4at%Zr-7at%Nbのターゲットを用いて、1 00℃以下の基板温度で100mmの軟磁性下地膜2を スパッタリングにより成膜した。この膜の飽和磁束密度 Bs (T) と膜厚t (nm) の積Bs・t (T・nm) が200 (T·nm) であることを振動式磁気特性測定 装置(VSM)で確認した。次いで、基板を200℃に 加熱して、上記軟磁性下地膜2上に、50at%Ni-50at%Alからなる第1配向制御層3a (厚さ8n m)と、Ruからなる第2配向制御層3b (厚さ20n m)とからなる配向制御膜3を形成し、その後、62a t%Co-20at%Cr-14at%Pt-4at% Bからなる垂直磁性膜4 (厚さ30nm)を形成した。 上記スパッタリング工程においては、成膜用のプロセス ガスとしてアルゴンを用い、ガス圧力0.5 Paにて成 膜を行った。次いで、CVD法により5nmの保護膜5 を形成した。次いで、ディッピング法によりパーフルオ ロポリエーテルからなる潤滑膜6を形成し、磁気記録媒

【0038】(実施例2~15)実施例2~15として、第1配向制御層3a、第2配向制御層3bの材料と厚さを表1に示すようにした以外は、実施例1と同様の作製工程にて磁気記録媒体を作製した(表1を参照)。

【0039】(比較例1~4)比較例1~4として、第 1配向制御膜3aの厚さを0.1~20nmの範囲外、 または第2配向制御膜3bの厚さを0.1~50nmの 範囲外に設定した以外は、実施例1と同様の作製工程に て磁気記録媒体を作製した(表1を参照)。

【0040】(実施例16~19) 実施例16~19として、軟磁性下地膜2の飽和磁束密度Bs(T)と軟磁性下地膜2の膜厚t(nm)との積Bs・t(T・nm)を表2に示すように設定した以外は、実施例1と同様の作製工程にて磁気記録媒体を作製した(表2を参照)。

【0041】(実施例20~23)実施例20~23として、軟磁性下地膜2の材料として表2に示すものを用いた以外は、実施例1と同様の作製工程にて磁気記録媒体を作製した(表2を参照)。

【0042】(比較例5)比較例5として、軟磁性下地膜2を設けない以外は、実施例1と同様の作製工程にて磁気記録媒体を作製した(表2を参照)。

【0043】(実施例24~31)実施例24~31として、垂直磁性膜4の材料と厚さを表3に示すようにした以外は、実施例1と同様の作製工程にて磁気記録媒体を作製した(表3を参照)。

【0044】(実施例32~38)実施例32~38として、配向制御層3と垂直磁性膜4との間に非磁性中間膜7を設け、この非磁性中間膜7の材料と厚さを表4に示すようにした以外は、実施例1と同様の作製工程にて磁気記録媒体を作製した(表4を参照)。

【0045】(実施例39~43) 実施例39~43と して、基板1と軟磁性下地膜2との間に硬磁性膜8を設 け、この硬磁性膜8の材料と厚さを、表5に示すように した以外は、実施例1と同様の作製工程にて磁気記録媒 体を作製した(表5を参照)。

【0046】(実施例44~49) 実施例44~49として、垂直磁性膜4と保護膜6との間に磁化安定膜9を設け、この磁化安定膜9の材料と厚さを表6に示すようにした以外は、実施例1と同様の作製工程にて磁気記録媒体を作製した(表6を参照)。

【0047】 (実施例49) 軟磁性下地膜2を形成した後、チャンバ内に純酸素 (100vol%O2) を導入し、軟磁性下地膜2の表面を酸素に曝露し(曝露工程) 軟砕性下地膜2の表面に酸化膜4形は1.7階層3

程)、軟磁性下地膜2の表面に酸化膜を形成して磁気記 録媒体を作製した(表7を参照)。

【0048】(実施例50) 曝露工程において、軟磁性 下地膜2を酸素に曝露する時間を変えることによって、 酸化膜の厚さを変化させて磁気記録媒体を作製した(表 7を参照)。

【0049】(実施例51) 曝露工程において、軟磁性下地膜2を曝露するガスとして、純酸素に代えて表1に示すガスを用いて磁気記録媒体を作製した(表7を参照)。

16

【0050】(実施例52、53) 曝露工程を行わず、これに代えて、軟磁性下地膜2を形成する成膜工程に用いるプロセスガスとして、酸素含有アルゴンガスを用いることにより酸化膜を形成して磁気記録媒体を作製した(表7を参照)。

【0051】(実施例54、55) 軟磁性下地膜の材料として表7に示すものを用いること以外は実施例49と同様にして磁気記録媒体を作製した(表7を参照)。

【0052】上記磁気記録媒体の静磁気特性をkerr効果測定装置を用いて測定した。また、これら磁気記録 10 媒体の記録再生特性および熱揺らぎ耐性をGUZIK社製リードライトアナライザRWA1632、およびスピンスタンドS1701MPを用いて測定した。記録再生特性の評価には、磁気ヘッドとして、図6(b)に示すものと同様の垂直記録用の単磁極ヘッドを用い、再生出力を線記録密度50kFCIにて、エラーレートを線記録密度600kFCIにて測定した。また、熱揺らぎ耐

性の評価は、基板を70℃に加熱して線記録密度50kFCIにて書き込みをおこなった後、書き込み後1秒後の再生出力に対する出力の低下率(%/decade)を、(So-S)×100/(So×3)に基づいて算出した。この式において、Soは磁気記録媒体に信号記録後1秒経過時の再生出力を示し、Sは1000秒後の再生出力を示す。

【0053】またX線回折試験および電子線回折の結果、各実施例において、第1配向制御膜3aがB2構造をなすものであり、第2配向制御膜3bがhcp構造をなすものであることが確認できた。各磁気記録媒体の静磁気特性、記録再生特性の測定結果を表1~表7に示す。なお。表1~表7中、Co(0002)強度は垂直磁性膜4の(0002)面に相当するX線回折強度を示す。

[0054]

【表1】

	軟	蛟性!	莫	63	向制御	即模		垂直磁性膜		静磁気	I ラ-	Co	熟揺5
				第1配向 制御層		第2配向制御層				特性	レート	(0002) 強度	ぎ耐性
-	組成	5	Bs∙t	組成	厚さ	組成	厚さ	組成	厚さ	Ηс	10-X		
											1		(%/de
	(at%))	(T•nm)	(at%)	(nn)		(UID)	(at%)	(nm)	(0e)			-cade)
実施例	11 89Co4Z	r7Nb	200	50N150A1	8	Ru	20	62Co20Cr 14Pt4B	30	4620	6. 1	7600	0.79
実施例	12 89Co4Z	r7Nb	200	50Ni5DAI	0.3	Ru	20	62Co20Cr14Pt4B	30	4120	5. 1	4800	0. 92
実施例	93 89Co4Zi	r7Nb	200	50Ni50AI	2	Ru	20	62Co20Cr14Pt4B	30	4280	5. 4	6700	0.85
実施例	4 89Co4Z	r7Nb	200	50Ni5OAI	20	Ru	20	62Co20Cr14Pt4B	30	4720	5. 1	7150	0.88
実施例	15 89Co4Z	r7Nb	200	50Ni50AI	8	Ru	0.3	62Co20Cr14Pt4B	30	3810	5. 2	4050	0.91
実施例	16 89Co4Z	r7Nb	200	50Ni5OAJ	8	Ru	25	62Co20Cr14Pt4B	30	4650	6.0	8200	0.85
実施例	17 89Co4Z	r7Nb	200	50Ni5OAI	8	Ru	45	62Co20Cr14Pt4B	30	4810	5. 4	8900	0.81
実施例		r7Nb	200	50Fe50A1	8	Ru	20	62Co20Cr14Pt4B	30	4100	5. 7	7200	0.82
実施例	49 89Co4Z	r7Nb	200	50A150Ru	8	Ru	20	62Co20Cr 14Pt4B	30	4290	5. 4	8300	0. 78
	10 89Co4Z		200	45Ni55A1	8	Ru	20	62Co20Cr 14Pt4B	30	4550	6. 1	7250	0. 82
実施例	111 89Co4Z	r7Nb	200	45Ni 45A I 10B	8	Ru	20	62Co20Cr14Pt4B	30	4390	6. 2	6800	0.80
	112 89Co4Z		200	50Ni5OAI	8	Ti	20	62Co20Cr14Pt4B	30	3920	5. 3	8200	0.71
	113 89Co4Z		200	50Ni50A1	8	Zr	20	62Co20Cr14Pt4B	30	3800	5. 4	7750	0.88
	114 89Co4Z		200	50N150A1	8	70Ru30Cr	20	62Co20Cr14Pt4B	30	4460	6. 0	7450	0.82
	到15 89Co4Z		200	50Ni5OAI	8	80Ru20Ti	20	62Co20Cr14Pt4B	30	4290	6.0	7450	0.85
比較例				_	_	Ru	20	62Co20Cr14Pt4B	30	3380	3.8	3200	1. 22
比較化				50Ni50AI	30	Ru	20	62Co20Cr14Pt4B	30	4430	4. 2	2900	1. 18
比較				50NISOAI	8	_	-	62Co20Cr14Pt4B	30	2100	2. 1	820	1. 53
比較				50NISOAI	8	Ru	70	62Co20Cr14Pt4B	30	4380	3. 9	9750	0.79

[0055]

【表2】

	軟磁性:	漠		可制御			垂直磁性膜		静磁気	IŌ-	Co	熟揺ら
			第1配向 制御層	第2節制御				特性	レート	(0002) 強度	ぎ耐性	
	組成	Bs•t.	組成	厚さ	組成	厚さ	組成	厚さ	Hc	10-X		
	(at%)	(T•nm)	(at%)	(nm)		(nm)	(at%)	(mn)	(0e)			(%/de -cade)
実施例1	89Co4Zr7Nb	200	50Ni 50AI	8	Ru	20	62Co20Cr14Pt4B	30	4620	6. 1	7600	0.79
実施例16	89Co4Zr7Nb	40	50Ni 50AI	8	Ru	20	62Co20Cr14Pt4B	30	4620	5. 1	7600	0. 82
実施例17	89Co4Zr7Nb	60	50Ni 50AI	8	Ru	20	62Co20Cr14Pt4B	30	4450	5. 7	7350	0.78
実施例18	89Co4Zr7Nb	400	50Ni 50AI	8	Ru	20	62Co20Cr14Pt4B	30	4670	6. 2	7850	0.78
実施例19	89Co4Zr7Nb	30 -	50Ni 50AI	8	Ru	20	62Co20Cr14Pt4B	30	4760	4. 9	7700	0.81
実施例20	90Co6Zr4Ta	200	50Ni50AI	8	Ru	20	62Co20Cr14Pt4B	30	4580	5. 7	7600	0.78
実施例21	80Ni 20Fa	200	50Ni 50AI	8	Ru	20	82Co20Cr14Pt4B	30	4590	5. 5	7650	0. 82
実施例22	85Fe15Zr	200	50Ni 50AI	8	Ru	20	62Co20Cr14Pt4B	30	4660	5. 6	7700	0.81
実施例23	75Fe15Ta10N	200	50Ni 50AI	8	Ru	20	62Co20Cr14Pt4B	30	4710	6. 0	7800	0.76
比較例5			50Ni50AI	8	Ru	20	62Co20Cr14Pt48	30	4550	4. 2	7650	1. 02

[0056]

【表3】

	軟磁性!	漠	第1配向	第2面		垂直磁性膜		静磁気 特性	Iラ- レ-ト	Co (0002)	熟揺5 ぎ耐性	
	組成	Bs∙t	制御屬組成	制御層 組成 厚さ		厚さ	組成	厚さ	Нс	10-X	強度	(%/də
	(at%)	(T·mm)	(at%)	(mm)		(nm)	(at%)	(nm)	(0e)			-cade)
実施例1	89Co4Zr7Nb	200	50Ni 50A1	8	Ru	20	62Co20Cr 14Pt4B	30	4620	6. 1	7600	0.79
実施例24	89Co4Zr7Nb	200	50Ni 50AI	8	Ru	20	62Co20Cr14Pt4B	5	3270	5. 1	1200	0. 92
実施例25	89Co4Zr7Nb	200	50Ni 50AI	8	Ru	20	62Co20Cr14Pt4B	50	4620	6.0	14500	0.76
実施例26	89Co4Zr7Nb	200	50Ni 50AI	8	Ru	20	62Co20Cr14Pt4B	90	4010	5. 2	25200	0. 72
実施例27	89Co4Zr7Nb	200	50Ni 50A1	8	Ru	20	62Co20Cr14Pt4B	120	4420	4. 3	34900	0.73
実施例28	89Co4Zr7Nb	200	50Ni 50AI	8	Ru	20	64Co22Cr12Pt2Ta	30	4380	5. 5	7500	D. 76
実施例29	89Co4Zr7Nb	200	50Ni 50AI	8	Ru	20	61Co17Cr22Pt	30	4580	5. 2	8900	0.71
実施例30	89Co4Zr7Nb	200	50Ni50AI	8	Ru	20	Co/Pd積層(*1)	30	4320	5. 2	-	0. 58
実施例31	89Co4Zr7Nb	200	50N150A1	8	Ru	20	TbFeCo	30	4480	5. 1	-	0.51

^{*1:} Coからなる層とPoからなる層を多数回積層した。

30

[0057]

【表4】

	軟磁性	莫	配向部		P膜 第2		非磁性中間膜	į	垂直磁性膜	静磁気		Co	熱揺5	
			第1配向制御層								特性	レート	(0002) 強度	ぎ耐性
	組成	Bs∙t	組成	厚	組成		組成	厚さ	組成	厚	Нс	10-X		(1) (1)
	(at%)	(T·nm)	(at%)	C		Č	(at%)	C	(at%)	č	(0e)	İ		(%/de -cade)
実施例1	89Co4Zr7Nb	200	50Ni50AI	8	Ru	20	_	-	62Co20Cr14Pt4B	30	4620	6. 1	7600	0. 79
実施例32	89Co4Zr7Nb	200	50Ni50AI	8	Ru	20	60Co40Cr	5	62Co20Cr14Pt4B	30	4820	6. 7	10600	0.68
実施例33	89Co4Zr7Nb	200	50Ni50AI	8	Ru	20	60Co40Cr	2	62Co20Cr 14Pt4B	30	4780	6. 7	9050	0.70
実施例34	89Co4Zr7Nb	200	50Ni50AI	8	Ru	20	60Cr40Cr	20	62Co20Cr14Pt4B	30	4780	6. 4	14500	0. 65
実施例35	89Co4Zr7Nb	200	50Ni50AI	8	Ru	20	60Co40Cr	40	62Co20Cr14Pt4B	30	4720	5. 3	17200	0.60
実施例36	89Co4Zr7Nb	200	50Ni50AI	8	Ru	20	55Co35Cr 10Mn	5	62Co20Cr14Pt4B	30	4800	6. 4	9150	0.66
実施例37	89Co4Zr7Nb	200	50Ni50AI	8	Ru	20	55Co45Ru	5	62Co20Cr14Pt4B	30	4860	6. 8	8800	0.63
実施例38	89Co4Zr7Nb	200	50N150A1	8	Ru	20	60Co30Cr5Ta5B	5	62Co20Cr14Pt4B	30	4750	6. 8	9300	0.70

厚さの単位はnmとした。

[0058]

【表5】

	硬磁性膜		軟磁性膜				垂直磁性膜 2配向 御層			静磁気 特性	Iラ- レ-ト	Co (0002) 強度	熱揺ら ぎ耐性	
	組成 (at%)	厚、さ	組成 (at%)	Bs•t (T• nm)		厚さ	組成		組成 (at%)	厚さ	H c (0e)	10-X		(%/de -cade)
実施例1	(31/1)	_	89Co4Zr7Nb		50N150A1	0	Ru	20	62Co20Cr 14Pt4B	30		6. 1	7600	0. 79
天成1991	_	_	09C042F7ND	200	DUNIDUAL	0	nu	20	02002007 147 146	30	4020	0. 1	7000	0. 79
実施例39	62Co20Cr14Pt4B	50	89Co4Zr7Nb	200	50Ni 50AI	8	Ru	20	62Co20Cr14Pt4B	30	4680	6. 4	7400	0. 72
実施例40	62Co20Cr14Pt4B	20	89Co4Zr7Nb	200	50N i 50A I	8	Ru	20	62Co20Cr14Pt4B	30	4590	6. 4	7500	0.71
実施例41	62Co20Cr 14Pt4B	140	89Co4Zr7Nb	200	50N i 50A i	8	Ru	20	62Co20Cr 14Pt4B	30	4660	6. 4	7750	0. 69
実施例42	61Co17Cr22Pt	50	89Co4Zr7Nb	200	50N i 50A I	8	Ru	20	62Co20Cr 14Pt4B	30	4750	6:3	7350	0. 74
実施例43	84Co16Sm	50	89Co4Zr7Nb	200	50N i 50A I	8	Ru	20	62Co20Cr 14Pt4B	30	4580	6. 3	7600	0. 72

厚さの単位は n mとした。

[0059]

【表6】

ιv	0 3 3 1								1301							
ſ		軟磁性膜		配向5	制御	膜		垂直磁性膜		磁化安定睽		再生		Со	熟揺5	
}						第2配向制御屬						気特 性	出力	レート	(0002) 強度	ぎ耐性
1	j	組成	Bs·t	組成	厚	組成	厚さ	組成	厚	組成	Bs	Нс		10-X		(%/de
		(at%)	(T· nm)	(at%)	C		C	(at%)	C	(at%)	1	(0e)	(pV)			-cade)
Ī	実施例1	89Co4Zr7Nb	200	50Ni50AI	8	Ru	20	62Co20Cr 14Pt4B	30	_	-	4620	2880	6. 1	7600	0. 79
ł	実施例44	89Co4Zr7Nb	200	50N150A1	8	Ru	20	62Co20Cr 14Pt4B	30	89Co4Zr7Nb	3. 6	3270	3350	6. 3	7550	0. 45
	実施例45	89Co4Zr7Nb	200	50N150A1	8	Ru	20	62Co20Cr14Pt4B	30	89Co4Zr7Nb	7. 0	4010	2950	6. 0	7700	0.65
	実施例46	89Co4Zr7Nb	200	50NI50AI	8	Ru	20	62Co20Cr 14Pt4B	30	89Co4Zr7Nb	9. 6	4420	2210	5. 1	7600	0.85
-	実施例47	89Co4Zr7Nb	200	50N150A1	8	Ru	20	62Co20Cr 14Pt4B	30	85Fe15Zr	3. 6	4380	3390	5. 9	7900	0.48
	実施例48	89Co4Zr7Nb	200	50N150A1	8	Ru	20	62Co20Cr 14Pt4B	30	75Fe 15Ta 10N	3. 6	4580	3280	6. 2	7550	D. 48

Bs・t;飽和磁束密度Bsと膜厚tとの積(T·nm)

厚さの単位はnmとした。

[0060]

【表7】

	000,															
		軟磁性膜		酸化膜	•		向多				垂直磁性膜		静磁	I ラ-	Co	熱揺5
- [第1配向	第2配					レート	(0002)	ぎ耐性	
		組成	Bs∙t	ガス	条件	厚	制御層組成	厚	制御組成		組成	厚	性 H c	10-X	強度	
·			(1.		,,,,,	ð		ð,		č		ð] .			(%/de
Į		(at%)	nm)	' (vol%)			(at%)	L			(at%)		(0e)			-cade)
-	実施例1	89Co4Zr7Nb	200	_	_	-	50Ni 50AI	8	Ru	20	Co20Cr 14Pt4B	30	4620	6. 1	7600	0. 79
	実施例49	89Co4Zr7Nb	200	100%O2	騷鐂	1	50N150A1	8	Ru	20	Co20Cr 14Pt4B	30	5020	7. 3	4100	0.75
	実施例50	89Co4Zr7Nb	200	100%02	慶 露	2. 5	50Ni50A1	8	Ru	20	Co20Cr 14Pt4B	30	4990	7. 1	3600	0.75
	実施例51	89Co4Zr7Nb	200	50% O 2-50%Ar	暖露	1	50N150A1	8	Ru	20	Co20Cr 14Pt4B	30	5060	7. 5	3150	0.74
	実施例52	89Co4Zr7Nb	200	10%O2-90%Ar	成膜	1	50Ni50AI	8	Ru	20	Co20Cr 14P14B	30	4880	7. 2	2900	0. 78
	実施例53	89Co4Zr7Nb	200	10% O 2-90%Ar	成膜	2. 5	50N i 50A I	8	Ru	20	Co20Cr 14Pt4B	30	4900	7. 0	3200	0.71
	実施例54	85Fe15Zr	200	100%02	暖露	1	50N i 50A I	8	Ru	20	Co20Cr 14Pt4B	30	4780	6. 9	4200	0.69
- {	実施例55	75Fe 15Ta 10N	200	100%02	暖露	1	50N150A1	8	Ru	20	Co20Cr 14Pt4B	30	4920	7. 1	4100	0.71

厚さの単位はnmとした。

【0061】表1の結果より、配向制御膜3が、B2構造をなす第1配向制御層3a上に、hcp構造をなす第2配向制御層3bを設けた構成とされており、第1配向制御層3aの厚さが0.1~20nmであり、第2配向制御層3bの厚さが0.1~50nmである実施例1~15の磁気記録媒体は、上記層3a、3bを範囲外の厚さとした比較例1~4の磁気記録媒体に比べて、エラー50

レートが大きく改善した。

【0062】表2の結果より、軟磁性下地膜2を設けた磁気記録媒体は、軟磁性下地膜2を設けなかった比較例5の磁気記録媒体に比べて、エラーレートが大きく改善した。特に、軟磁性下地膜2の飽和磁束密度Bs(T)と軟磁性下地膜2の膜厚t(nm)との積Bs・t(T・nm)を40(T・nm)以上に設定した磁気記録媒

体は、再生波形の歪みがなく、エラーレートの改善効果 が大きい。

【0063】表3の結果より、垂直磁性膜4を所定の組成、構造にした磁気記録媒体は、高いエラーレートを得ることができた。垂直磁性膜4の厚さを3~100nmの範囲とした磁気記録媒体は、特に高いエラーレートを得ることができた。

【0064】表4の結果より、非磁性中間膜7を設けた磁気記録媒体は、高いエラーレートを得ることができ、熱揺らぎ耐性も改善した。非磁性中間膜7の厚さを20nm以下とした磁気記録媒体は、特に高いエラーレートを得ることができた。

【0065】表5の結果より、硬磁性膜8を設けた磁気 記録媒体は、高いエラーレートを得ることができた。

【0066】表6の結果より、磁化安定膜9を設けた磁気記録媒体は高いエラーレート、再生出力を得ることができ、熱揺らぎ耐性も改善した。磁化安定膜9の飽和磁束密度Bs(T)と磁化安定膜9の膜厚t(nm)との積Bs・t(T・nm)が2.4~7.2(T・nm)の範囲に設定した磁気記録媒体は、特に高い再生出力を20得ることができ、熱揺らぎ耐性も大きく改善した。

【0067】表7の結果より、軟磁性下地膜2の表面を 酸化させた磁気記録媒体は、エラーレートが大きく改善 した。

[0068]

【発明の効果】以上説明したように、本発明の磁気記録 媒体にあっては、少なくとも軟磁性材料からなる軟磁性 下地膜と、直上の膜の配向性を制御する配向制御膜と、 磁化容易軸が基板に対し主に垂直に配向した垂直磁性膜 と、保護膜とが設けられ、配向制御膜が、B 2 構造をなす第1配向制御層上に、h c p 構造をなす第2配向制御層を設けた構成とされており、第1配向制御層の厚さが $0.1\sim20$ n mであり、第2配向制御層の厚さが $0.1\sim50$ n mであるので、記録再生特性を向上させるとともに、熱揺らぎ耐性を向上することができる。

22

【図面の簡単な説明】

【図1】 本発明の磁気記録媒体の第1の実施形態を 示す1部断面図である。

【図2】 第1配向制御層の厚さと、垂直磁性膜の (0002) 面の配向性との関係を示すグラフである。

【図3】 本発明の磁気記録媒体の第2の実施形態を 示す1部断面図である。

【図4】 本発明の磁気記録媒体の第3の実施形態を示す1部断面図である。

【図5】 本発明の磁気記録媒体の第4の実施形態を示す1部断面図である。

【図6】 本発明の磁気記録再生装置の1例を示す概略 図であり、(a) は全体構成を示し、(b) は磁気ヘッ ドを示す。

【符号の説明】

1…非磁性基板、2…軟磁性下地膜、3…配向制御膜、3 a…第1配向制御層、3 b…第2配向制御層、4…垂直磁性膜、5…保護膜、6…潤滑膜、7…非磁性中間膜、8…硬磁性膜、9…磁化安定膜、10…磁気記録媒体、11…媒体駆動部、12…磁気ヘッド、12a…主磁極、12b…補助磁極、12c…連結部、12d…コイル、13…ヘッド駆動部、14…記録再生信号処理系

【図1】

【図2】

【図3】

【図5】

[図4]

【図6】

(a)

フロントページの続き

(51) Int.C1.7

HO1F 10/26 41/14 識別記号

FΙ H 0 1 F 10/26 41/14 テーマコード(参考)