Расчет тормозного резистора

Электромеханизм DA99

Проект: халтура для станка SURELOCK 3 в DAT (СУиТО)

Автор: Тихонов/Бормотов

Дата: 19.07.2018

Исходные данные:

n := 3600 об/мин Скорость двигателя при равномерном

движении в генераторном режиме (из

циклограммы)

 $W_{gen_0\Pi T} := n \cdot \frac{\pi}{30} = 376.991$ rad/sek n в рад/сек

 $F_{\text{ШТОК}} := 100$ N усилие на штоке (из T3)

ηgear1 := 0.786 прямой КПД РВП электромеханизма

ngear2 := 0.728 обратное КПД РВП электромеханизма

 $\eta_{\rm ДВИГ} := 0.9$ обратное КПД электродвигателя

 $K_{\rm PB\Pi} := 5$ $\frac{MM}{00}$ коэфф передачи РВП, мм/об (из КД на РВП ЭМП)

tрав H := 0.035 Сек Время равномерного движ в ген. режиме

тразг := 0.465
Сек
Время разгона в ген. режиме

 ${\sf tторм} := 0.035$ Сек Время торможения в ген. режиме

 $Tsumm_gen := tpaв_H + tpa_{3\Gamma} + trop_M = 0.535$ суммарное время движ в ген. режиме

T_total := 1.15 время цикла механизма (туда+обратно)

 $Kt_{mot} := 1.45$; $\frac{H_{M}}{A}$ Постоянная момента двигателя

Rphase := 1 = 1 Ом Сопротивление фазы мотора

Приведенные моменты инерции к валу двигателя

$$J_{DB\Pi} := 0.001473$$
 $K\Gamma \cdot M^2$ момент инерции РВП (от Анспука, уточненый) момент инерции двигателя (из РDF на мотор, не учитываю, т.к. он включен в Јрвп) суммарный момент инерции на валу $J_{CYMM} := J_{DB\Pi} + J_{DBM} = 1.473 \times 10^{-3}$ $K\Gamma \cdot M^2$

Момент инерции нагрузки неизвестен. Принимаем его равным нулю (бывает и не так) $_{
m Jharp} := 0$

$$Uac := 240$$
 В макс. переменное напряжение питания ПЧ (rms) $Udc := Uac \cdot \sqrt{2} = 339.411$ выпрямленное напряжение в ЗПТ

Выбираем ограничение по максимальному напряжению в ЗПТ. Самое слабое место - конденсаторы. Их номинал и будет являться ограничением.

$$U := 390$$
 V максимально допустимое напряжение ЗПТ (звено постоянного тока)

От БОРМОТОВА

Эл. мощность на участке разгона - генераторный режим

Pshunt_makc_pa $_{\text{T}} := \text{Pmex}_{\text{makc}} = \text{Pohm}_{\text{pa}} = 427.449 \text{ Bt}$

Пиковая мощнос

шунта

Т.к. максимальная мощность будет рассеиваться в режиме торможения, то по ней и выбираем мощность тормозного резистора

$$Pshunt_{Makc_{T}opm} := Pmex_{Makc_{T}opm} + Pohm_{T}opm = -5.823 \times 10^3$$

Вт Пиковая мс шунта

$$Pshunt_cpeдh_тopM := Pmex_cpeдh_тopM + Pohm_topM = -2.821 \times 10^3$$
 Вт Средняя ми шунта

$$Pshunt_AVG_gen := \frac{tropm \cdot Pshunt_cpeдн_topm}{T_total} = -85.869$$

$$Pshunt_AVG := \frac{Pshunt_AVG_gen}{1} = -85.869$$
 BT

Это усредненная мощность шунта за время, когда привод перемещается от одного конца хода до другого по заданному циклу и обратно.

5. Расчет тормозного резистора

$$Rbr := rac{U^2}{Pshunt_макс_торм} = -26.121$$
 Ом максимально допустимое значение тормоз резистора

Расчет мощности тормозного резистора

$$Pr_{peak} := \frac{U^2}{Rbr} = -5.823 \times 10^3$$
 BT

мгновенная мощность на резисторе. Эта мощнос будет рассеиваться все время пока резистор буде подключен к ЗПТ. Эта мощность будет рассеиват виде тепла все время движения привода в генера режиме

(Tsumm_gen). Это значение не должно превышать

пиковои мощности в течение времени Isumm_gel указанное в документации на резистор

Ires :=
$$\frac{U}{Rbr}$$
 = -14.931 A

ток через тормозной резистор во время его включения. Это значение не должно превышать максимально допустимого тока коммутирующего транзистора.

Для обеспечения пиковой мощности в 5,8 кВт, выбираем два параллельно включенных резистора по 50 Ом 200Вт серии HS

Эл. мощность на прямолинейном участке - генераторный режим

ля
$$\underbrace{\text{Мстат}}_{:=} \frac{\text{Fшток} \cdot \text{Kpвп} \cdot 10^{-3}}{2 \cdot \pi} \cdot \eta \text{gear2} = 0.058 \qquad \text{H·м} \qquad \text{стат. моме}$$

$$M$$
прям := M дин_прям - M стат = -0.058 $H \cdot M$ Суммарный мом

$$P_{\text{Mex_средн_прям}} := W_{\text{_gen_опт}} \cdot M_{\text{прям}} = -21.84$$
 Вт Средн: мощно

тся на

$$ext{Іпрям} := rac{ ext{Мпрям}}{ ext{Kt_mot}} = -0.04 \qquad ext{A} \qquad ext{Ток на прямолин}$$
 участке

 $Pshunt_{Makc_{ID}} = Pmex_{Makc_{ID}} - Pohm_{ID} = -21.842$

 $Pshunt_cpeдh_пpям := Pmex_cpeдh_пpям - Pohm_пpям = -21.842$

)ЩНОСТЬ

ощность

Вт Это усредненная мощность шунта за время, когда привод перемещается от одного конца хода до другого по заданному циклу и находится все время в генераторном режиме

НОГО

ть ет ъся в аторном

, знач.

Aluminium Housed Power Resistors

Type HS Series

Key Features

- Established product
 with proven reliability
 Leading the way with
 over 50 years of design
 and manufacturing
 experience
- 5 Watts to 300 Watts (500 Watt and 1000 Watt versions available)

 • Largest range on the
 - market
- Versatile product
 Bench mark in every industry
- Custom designs
 - Windings, terminations, mountings We have a solution for your

Power Overload

This graph indicates the amount that the rated power (at 20°C) of the standard HS Series resistor may be increased for overloads of 100mS to 60S

нт на валу двигателя

мент на валу ускорение=0

лент на валу двигателя

эльная механическая мощность

яя ють Эл. мощность на участке торможения режим

MCTAT:=
$$\frac{\text{FIIITOK} \cdot \text{KpbII} \cdot 10^{-3}}{2 \cdot \pi} \cdot \eta \text{gear2} = 0.058$$

$$M$$
дин_торм := J сумм· $\frac{W_gen_oпт}{tторм} = 15.866$ H

$$Mторм := -Mдин_торм - Mстат = -15.924$$
 H

ь, которая выделится на иотора

$$P$$
мех_макс_торм := W _gen_опт \cdot Мторм = $-6.003 \times$

$${
m B_{T}}$$
 Пиковая мощность шунта

$$\label{eq:PMex_cpedh_topm} \text{Рмеx_cpeдh_topm} := \frac{W_gen_oпт}{2} \cdot \text{Мторм} = -3.002$$

$$ext{Iторм} := rac{ ext{Mторм}}{ ext{Kt_mot}} = -10.959 ext{A} ext{Ток на разго-}$$

Pohm_торм := 1.5·Rphase·Іторм·Іторм = 180.16

- генераторный

- $H_{^{\prime}M}$ стат. момент на валу двигателя
- $\cdot_{
 m M}$ динамический момент на валу двигателя
- \cdot_{M} Суммарный момент на валу двигателя
- 10³ Вт максимальная механическая мощность

 $imes 10^3~\mathrm{B_T}$ Средняя мощность

ı участке на

 ${\rm B_{T}}$ Мощность, которая выделится на обмотке мотора