Algorytm windy

SCENARIUSZ	ALGORYTM I	ALGORYTM II	ALGORYTM III
Scenariusz 1	21.36 km	39.00 km	27.95 km
Scenariusz 2	33.06 km	39.31 km	35.46 km
Scenariusz 3	28.56 km	34.27 km	30.55 km
Wartość średnia	27.66 km	37.53 km	31.32 km

ZESTAWIENIE ALGORYTMÓW

ZESTAWIENIE DYSTANSÓW

Algorytm autorski

Algorytm nr 3 przybiera taktykę, w której próbuje zooptymalizować odległość przebywaną podczas pojedynczych przejazdów.

Możliwe są dwie opcje poruszania się windy w poszczególnych połowach budynku, który posiada 10 pięter:

- 1. Winda porusza się pomiędzy piętrami 0-4. Jeśli zakończy swój kurs na którymś z poziomów w tym przedziale cofa się wtedy na piętro 0, aby możliwie zminimalizować odległości między kolejnymi kursami.
- 2. Winda porusza się pomiędzy piętrami 5-10. Jeśli zakończy swój kurs na którymś z poziomów w tym przedziale cofa się wtedy na piętro 5, aby możliwie zminimalizować odległości, które są przebywane w wypadku, gdy ktoś z wyższych pięter chciałby zjechać niżej.

Schemat blokowy algorytmu:

Kod algorytmu:

```
def scriptIII(data):
    stops=0

44    previous=data[0][0]

45    default=lambda f: 0 if f<=4 else 5

46    for start,finish in data:

47         start_off=abs(start-previous)

48         finish_off=abs(finish-default(finish))

49         stops+=start_off+abs(start-finish)+finish_off

50

51         previous=default(finish)

52         return stops</pre>
```

Opis wyników

Algorytm I

Ten algorytm wypada najlepiej spośród wszystkich algorytmów, ponieważ przez podejście, w którym winda pozostaje na piętrze, na którym zakończyła kurs pozwala na zminimalizowanie niepotrzebnego przebywania trasy przez windę.

Algorytm osiąga najlepsze wyniki we wszystkich scenariuszach, ale zdecydowanie wyróżnia się w pierwszym scenariuszu, gdzie szansa na wybranie każdego z pięter jest taka sama, więc nie ma znaczenia gdzie winda skończy pracę, bo istnieje szansa, że zostanie wywołana z tego piętra.

Algorytm II

Ten algorytm wypada najgorzej ze wszystkich scenariuszy – w szczególności największa różnica pomiędzy nim a pozostałymi algorytmami jest najbardziej widoczna w scenariuszu 1, gdzie wypada on -82,5% gorzej od **algorytmu I** i -39% gorszy of **algorytmu III.**

Główną wadą tego algorytmu, jest brak efektywności spowodowany powracaniem windy na parter po każdym z przejazdów.

Algorytm III

Jest on drugim najbardziej efektywnym algorytmem, który średnio wypada jedynie -13% gorzej od **algorytmu I.** Algorytm stara się minimalizować dystans, którym winda porusza się po poszczególnych połowach budynku (0-4 oraz 5-10). Wraca on na najniższe piętro z danej połowy, aby możliwie zminimalizować dystans między piętrami na danej połowie.

Podsumowanie

Zarówno **Algorytm I** i **Algorytm III** sprawdzają się dobrze w każdym z podanych scenariuszy, aczkolwiek **Algorytm I** jest najbardziej optymalnym rozwiązaniem problemu minimalizacji dystansu przebywanego przez windę.

Algorytm I jest jednocześnie najprostszy do implementacji, jak i najbardziej optymalny w porównaniu do pozostałych, przy czym jako jedyny z oferowanych rozwiązań nie przyjmuje żadnej dodatkowej taktyki optymalizacyjnej, ponieważ po przebyciu kursu z piętra startowego na piętro końcowe - nie wykonuje innych działań.