

Ascend 310 V100R001

网络模型配置参考

文档版本 01

发布日期 2019-03-12

版权所有 © 华为技术有限公司 2019。 保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明

HUAWEI和其他华为商标均为华为技术有限公司的商标。 本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受华为公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,华为公司对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

华为技术有限公司

地址: 深圳市龙岗区坂田华为总部办公楼 邮编: 518129

网址:http://www.huawei.com客户服务邮箱:support@huawei.com

客户服务电话: 4008302118

目录

1 简介	1
2 配置参考	4
2.1 ResNet-18	
2.2 ResNet-50.	5
2.3 ResNet-101	5
2.4 ResNet-152	6
2.5 ResNext-50	6
2.6 ResNext-101	7
2.7 VGG16	8
2.8 VGG19	8
2.9 SSD	
2.10 Faster-RCNN	
2.11 网络结果解析 Sample	10
2.11.1 分类网络结果解析	
2.11.2 检测网络结果解析(SSD)	11
2.11.3 检测网络结果解析(Faster-RCNN)	11

1 简介

网络模型指的是利用神经网络进行深度学习的算法合集,通过数据训练可以实现如图像分类,物体检测等功能。

表1-1为目前支持的网络模型。

表 1-1 网络模型视图

网络模型		说明	运行环境
分类网络 (classify_net)	ResNet-18	请参考 2.1 ResNet-18	支持EVB环境,PCIe,开发 板等环境下运行。
	ResNet-50	请参考 2.2 ResNet-50	支持EVB环境,PCIe,开发 板等环境下运行。
	ResNet-101	请参考 2.3 ResNet-101	支持EVB环境,PCIe,开发 板等环境下运行。
	ResNet-152	请参考 2.4 ResNet-152	支持EVB环境,PCIe,开发 板等环境下运行。
	ResNext-50	请参考 2.5 ResNext-50	支持EVB环境,PCIe,开发 板等环境下运行。
	ResNext-101	请参考 2.6 ResNext-101	支持EVB环境,PCIe,开发 板等环境下运行。
	VGG16	请参考 2.7 VGG16	支持EVB环境,PCIe,开发 板等环境下运行。
	VGG19	请参考 2.8 VGG19	支持EVB环境,PCIe,开发 板等环境下运行。
检测网络 (detection_ne t)	Faster- RCNN(VGG-1 6)	请参考 2.10 Faster- RCNN	支持EVB环境,PCIe,开发 板等环境下运行。
	SSD	请参考 2.9 SSD	支持EVB环境,PCIe,开发 板等环境下运行。

ResNet

ResNet(Residual Network)是2015年ImageNet图像分类、图像物体定位和图像物体检测比赛的冠军。针对训练卷积神经网络时加深网络导致准确度下降的问题,ResNet提出了采用残差学习的方法。在已有设计思路(BN,小卷积核,全卷积网络)的基础上,引入了残差模块。每个残差模块包含两条路径,其中一条路径是输入特征的直连通路,另一条路径对该特征做两到三次卷积操作得到该特征的残差,最后再将两条路径上的特征相加。

表1-1中的ResNet-18、ResNet-50、ResNet-101、ResNet-152分别指的是残差网络的层数,层数越高,训练误差越小。

ResNext

ResNext网络是ResNet的升级版,ResNext结构可以在不增加参数复杂度的前提下提高准确率,同时还减少了超参数的数量。ResNext同时采用VGG堆叠的思想和Inception的split-transform-merge 思想,但是可扩展性比较强,可以认为是在增加准确率的同时基本不改变或降低模型的复杂度。这里提到一个名词cardinality,原文的解释是the size of the set of transformations,如图1-1右边是 cardinality=32 的例子。

上表中提到的ResNext-50, ResNext-101, 分别指的是ResNext的层数, 层数越高, 训练误差越小。

图 1-1 ResNext 结构原理图

Figure 1. Left: A block of ResNet [14]. Right: A block of ResNeXt with cardinality = 32, with roughly the same complexity. A layer is shown as (# in channels, filter size, # out channels).

□说明

图1-1中每个被聚合的拓扑结构都是一样的。

VGG

牛津大学VGG(Visual Geometry Group)组在2014年ILSVRC提出的模型被称作VGG模型。该模型相比以往模型进一步加宽和加深了网络结构,它的核心是五组卷积操作,每两组之间做Max-Pooling空间降维。同一组内采用多次连续的3X3卷积,卷积核的数目由较浅组的64增多到最深组的512,同一组内的卷积核数目是一样的。卷积之后接两层全连接层,之后是分类层。由于每组内卷积层的不同,有11、13、16、19层这几种模型,图1-2展示一个16层的网络结构。VGG模型结构相对简洁,提出之后也有很多文章基于此模型进行研究,如在ImageNet上首次公开超过人眼识别的模型就是借鉴VGG模型的结构。

上表中提到的VGG16,VGG19指的是VGG模型里使用的层数是16层或19层,层数越高,准确度越高,内存消耗越大。

图 1-2 16 层网络模型结构

2 配置参考

2.1 ResNet-18

ResNet-18即18-layers的残差网络。

使用场景

通过ResNet-18分类网络模型对图像进行分类。

入参

参数	说明
待分类的JPEG图片	待分类的JPEG图片。
ResNet-18 model	模型名称。
Graph配置文件	串联整个运行流程的配置文件。
	说明 Graph配置文件样例请参见《Ascend 310 HiAI Engine样例(Emulator)》中的2.4章节。

出参

参数	说明
分类结果置信度	无

调用示例

结果解析请参见2.11.1 分类网络结果解析。

2.2 ResNet-50

ResNet-50即50-layers的残差网络。

使用场景

通过ResNet-50分类网络模型对图像进行分类。

入参

参数	说明
待分类的JPEG图片	待分类的JPEG图片。
ResNet-50 model	模型名称。
Graph配置文件	串联整个运行流程的配置文件。

出参

参数	说明
分类结果置信度	无。

调用示例

结果解析请参见2.11.1 分类网络结果解析。

2.3 ResNet-101

ResNet-101即101-layers的残差网络。

使用场景

通过ResNet-101分类网络模型对图像进行分类。

入参

参数	说明
待分类的JPEG图片	待分类的JPEG图片。
ResNet-101 model	模型名称。
Graph配置文件	串联整个运行流程的配置文件。

出参

参数	说明
分类结果置信度	无。

调用示例

结果解析请参见2.11.1 分类网络结果解析。

2.4 ResNet-152

ResNet-152即152-layers的残差网络。

使用场景

通过ResNet-152分类网络模型对图像进行分类。

入参

参数	说明
待分类的JPEG图片	待分类的JPEG图片。
ResNet-152 model	模型名称。
Graph配置文件	串联整个运行流程的配置文件。

出参

参数	说明
分类结果置信度	无。

调用示例

结果解析请参见2.11.1 分类网络结果解析。

2.5 ResNext-50

ResNext-50即50-layers的ResNext网络。

使用场景

通过ResNext-50模型对图像进行分类。

入参

参数	说明
待分类的JPEG图片	待分类的JPEG图片。
ResNext-50-model	模型名称。
Graph配置文件	串联整个运行流程的配置文件。

出参

参数	说明
分类结果置信度	无。

调用示例

结果解析请参见2.11.1 分类网络结果解析。

2.6 ResNext-101

ResNext-101即101-layers的ResNext网络。

使用场景

通过ResNext-101模型对图像进行分类。

入参

参数	说明
待分类的JPEG图片	待分类的JPEG图片。
ResNext-101-model	模型名称。
Graph配置文件	串联整个运行流程的配置文件。

出参

参数	说明
分类结果置信度	无

调用示例

结果解析请参见2.11.1 分类网络结果解析。

2.7 VGG16

VGG16即16层的VGG模型。

入参

参数	说明
待分类的JPEG图片	待分类的JPEG图片。
VGG16 model	模型名称。
Graph配置文件	串联整个运行流程的配置文件。

出参

参数	说明
分类结果置信度	无。

调用示例

结果解析请参见2.11.1 分类网络结果解析。

2.8 VGG19

VGG19即19层的VGG模型。

入参

参数	说明
待分类的JPEG图片	待分类的JPEG图片。
VGG19 model	模型名称。
Graph配置文件	串联整个运行流程的配置文件。

出参

参数	说明
分类结果置信度	无。

调用示例

结果解析请参见2.11.1 分类网络结果解析。

2.9 SSD

SSD,即 Single-Shot Detector,它的速度比 Faster-RCNN 要快很多,但其工作方式却和 R-FCN(Region Full Convolutional Network,全卷积网络,特点是在分类时用卷积层代替全连接层,用于分类)存在显著不同。

给定一个输入图像以及一系列真值标签, SSD 就会进行如下操作:

- 1. 在一系列卷积层中传递这个图像,产生一系列大小不同的特征图(比如 10x10、 6x6、3x3 等等。)
- 2. 对个这些特征图中的每个位置而言,都使用一个3x3 的卷积滤波器(convolutional filter)来评估一小部分默认的边界框。这些默认的边界框本质上等价于 Faster-RCNN 的 anchor box。
- 3. 对每个边界框都同时执行预测: a)边界框的偏移; b)分类的概率。
- 4. 在训练期间,用这些基于 IoU(Intersection over Union,也被称为 Jaccard 相似系数,值为0-1,0为不重合,1为完全重合)系数的预测边界框来匹配正确的边界框。被最佳预测的边界框将被标签为「正」。

入参

参数	说明
待分类的JPEG图片	待分类的JPEG图片。
ssd model	模型名称。
Graph配置文件	串联整个运行流程的配置文件。

出参

参数	说明
物体置信度, 框的坐标	无

调用示例

结果解析请参见2.11.2 检测网络结果解析(SSD)。

2.10 Faster-RCNN

早期,使用窗口扫描进行物体识别,计算量大。 RCNN去掉窗口扫描,用聚类方式,对图像进行分割分组,得到多个侯选框的层次组。RCNN中有CNN重复计算,Fast RCNN则去掉重复计算,并微调选框位置。

经过RCNN和Fast RCNN 的积淀, Ross B. Girshick等人在2015年提出了新的Faster-RCNN。在结构上,Faster-RCNN将特征提取、proposal提取、bounding box

regression(rect refine)、classification都整合在了一个网络中,使得综合性能有较大提高,在检测速度方面尤为明显。

入参

参数	说明
待分类的JPEG图片	待分类的JPEG图片。
faster-rcnn model	模型名称。
Graph配置文件	串联整个运行流程的配置文件。

出参

参数	说明
物体置信度, 框的坐标	无
物体类别	无

调用示例

结果解析请参见2.11.3 检测网络结果解析(Faster-RCNN)。

2.11 网络结果解析 Sample

2.11.1 分类网络结果解析

通过模型管家加载模型

```
std::vector<hiai::AIModelDescription> model_desc_vec;
hiai::AIModelDescription model_desc_;
model_desc_.set_path(model_path);
model_desc_.set_key("");
model_desc_vec.push_back(model_desc_);
ret = ai_model_manager_->Init(config, model_desc_vec);
```

∭ 说明

模型管家相关接口请参见《Ascend 310 HiAI Engine API参考》中的4.1章节。

通过模型管家执行模型处理

```
ret = ai_model_manager_->Process(ai_context, input_data_vec, output_data_vec, 0);
```

分类网络结果解析

```
将output转换为AINeuralNetworkBuffer
shared_ptr<AINeuralNetworkBuffer> output_tensor =
static_pointer_cast<AINeuralNetworkBuffer>(output_data_vec[0]);
//取出结果的buffer转换为float类型
```

```
float * result = (float *) output_tensor->GetBuffer();
int label_index = 0;
float max_value = 0.0;
//遍历查找最大的分类下标和对应的置信度值
for(int i=0; i< output_tensor->GetSize()/sizeof(float) ; i++)
{
    if(*(result + i) > max_value)
    {
        max_value = *(result + i);
        label_index = i;
    }
}
//结果展示
printf("label index:%d, Confidence:%f\n", label_index, max_value);
```

2.11.2 检测网络结果解析(SSD)

```
// 生成data_num和data_bbox信息
IMAGE HEIGHT = 300;
IMAGE WIDTH = 300;
//box_num 结果大小为4个字节,为一个float32的数,表示网络中检测到N个框
std::shared_ptr<hiai::AINeuralNetworkBuffer> output_data_num =
std::static_pointer_cast<hiai::AINeuralNetworkBuffer>(output_data_vec[1]);
// box_data 检测框的结果信息, shape(200,7), 数据类型为float32
std::shared_ptr<hiai::AINeuralNetworkBuffer> output_data_bbox =
std::static pointer cast<hiai::AINeuralNetworkBuffer>(output data vec[0]);
           --1--
                   --2--
                          --3--
                                 -3--
                                       -4--
                                              -5-
                                                       -6--
 image_id| Label |
                  score
                         xmin
                                ymin
                                                                      -bbox1
                                       xmax
                                             ymax | reserve
 image_id| Label | score | xmin | ymin | xmax | ymax |
                                                    reserve
                                                                      -bbox2
取对应的前N个框
```

2.11.3 检测网络结果解析(Faster-RCNN)

```
// 生成data_num和data_bbox信息,32个int32类型数,表示每个目标检测的框的数目
std::shared_ptr<hiai::AINeuralNetworkBuffer> output_data_num =
std::static_pointer_cast<hiai::AINeuralNetworkBuffer>(output_data_vec[0]);
                              -32-
 --1---2---3---4---5--
  0 | 0 | 1 | 2 | 0 | ..... | 0 |
表示label3 有1个框, label4 有两个框, label不包含background
// 生成box_data, 维度为(32, 608, 8)
std::shared_ptr<hiai::AINeuralNetworkBuffer> output_data_bbox =
std::static_pointer_cast<hiai::AINeuralNetworkBuffer>(output_data_vec[1]);
          xmin | ymin | xmax |
                              ymax | score | reserve | reserve |
                                                               reserve
                                                                             -bbox1
          xmin | ymin |
                       xmax
                              ymax | score | reserve | reserve |
                                                                             -bbox2
label1
          xmin | ymin | xmax | ymax | score | reserve | reserve | reserve
                                                                             -hhox1
          xmin
                 ymin
                       xmax
                              vmax
                                     score
                                             reserve
                                                      reserve
                                                                reserve
                                     score
                                                                             -bbox2
          xmin
                ymin
                       xmax
                              ymax
                                            reserve
                                                      reserve
                                                               reserve
label32
        | xmin | ymin | xmax | ymax | score | reserve | reserve | reserve | -----bbox608
```

box[i, j, 0] 表示第i个分类的第j个框 box的 xmin box[i, j, 1] 表示第i个分类的第j个框 box的 ymin box[i, j, 2] 表示第i个分类的第j个框 box的 xmax box[i, j, 3] 表示第i个分类的第j个框 box的 ymax box[i, j, 4] 表示第i个分类的第j个框 score */