Крестики-Нолики

Киранов Дмитрий 5 мая 2019 г.

Если трактовать условие задачи, как кол-во возможных состояний поля во время игры, то:

Будем рассматривать течение игры по ходам(начинают - крестики):

- 1) на первом ходу крестик можно поставить 9 способами, так как все поля свободны.
- 2) на втором шаге в игре тоже нет существенных ограничений, занято всего одно поле, поэтому нолик можно поставить: $9 \cdot 8 = 72$ способами
- 3)
кол-во способов поставить 2 крестика C_9^2 , также выбирается один нолик на одну из оставшихся позиций: C_7^1 . Итого: 252 способа.
- 4) Крестики все также выбираются C_9^2 , нолики же теперь расставляются C_7^2 Значит на этом ходе может быть 759 вариантов .
- 5) Теперь крестиков нужно выбрать 3, а ноликов 2 на 6 оставшихся полей: $C_9^3 \cdot C_6^2 = 1260$

Начиная со следующего хода нужно будет убирать варианты, которых не может быть: победы одного из игроков на предыдущем шаге, победа одного из игроков на ходе другого.

- 6) Крестиков: C_9^3 , ноликов : C_6^3 . Итого: 1680, однако тут также учтены ходы, когда крестики были поставлены в ряд еще на 5 ходе. Всего рядов 8(3-горизонтали, 3-вертикали, 2 диагонали). Всего таких комбинаций на 6 ходе: $8 \cdot C_6^3 = 160$. Значит 1520 способов.
- 7) Выбираем крестики и нолики: $C_9^4 \cdot C_5^3 = 1260$, вычтем случаи, когда нолики стоят в ряд: $8 \cdot C_6^4$, итого 1260-120=1140
- 8)Полей: $C_9^4 \cdot C_5^4 = 630$ Снова вычитаем те, что не могут произойти на 8 ходе, то есть победа крестиков: $630-2\cdot 8\cdot C_6^4 = 390$ (выставляем 3 крестика в ряд, выбираем 4 нолика и остается свобода выбора еще одного крестика на одну из двух оставшихся позиций).
- 9) Полей C_9^5 , однако на этом ходе нолики не могут победить, значит 78 ИТОГ: 5477

Если требуется подсчитать кол-во оконченных уникальных партий:

Кол-во ничейных партий:
$$3\begin{pmatrix} O & X & O \\ X & O & X \\ X & O & X \end{pmatrix}\begin{pmatrix} O & X & O \\ O & X & X \\ X & O & X \end{pmatrix}\begin{pmatrix} X & O & X \\ O & O & X \\ X & X & O \end{pmatrix}$$

Кол-во партий, в которыйх начинают крестики, а побеждают нолики: Сначала рассмотрим, победу ноликов на 3 хода:

1)кол-во побед ноликов, когда они находятся в ряду сбоку:

 $egin{pmatrix} O & ? & ? \\ O & ? & ? \\ O & ? & ? \end{pmatrix}$ Второй и третий столбик при таком выборе могут быть за-

полнены 10 уникальными способами.

- 2)центральный ряд еще 5 способов
- 3) диагональ 6

Теперь за 4 хода:

- 1) центральный ряд: 5
- 2) диагональ: 8
- 3)боковой ряд 10: Итого: 44 комбинации

Кол-во партий, в которых начинают и побеждают крестики: Аналогичный рассчет для побед за $3,\,4,\,5$ шага дает, что всего для крестиков 91 уникальная победная партия. ИТОГО: 138 уникальных исходов