Math 318: Assignment 3 Solutions

Problem 1

Part (A)

q, p	0	1
0	0	1
1	1	1

This is not a tautology.

Part (B)

$$\begin{array}{c|c|c|c} q, p & 0 & 1 \\ \hline 0 & 1 & 0 \\ \hline 1 & 1 & 1 \\ \end{array}$$

This is not a tautology.

Part (C)

q, p	0	1
0	1	1
1	1	1

This is a tautology.

Part (D)

$$\begin{array}{c|cccc} q, p & 0 & 1 \\ \hline 0 & 1 & 0 \\ \hline 1 & 1 & 1 \end{array}$$

This is not a tautology.

Problem 2

Part (A)

A formula for this truth table is $p \vee \neg q$, which is represented by the following diagram:

Part (B)

A formula for this truth table is $p \lor q$, which is represented by the following diagram:

Problem 3

We have:

$$((p \vee \neg q) \wedge (r \vee p)) \vee r \equiv (p \vee \neg q \vee r) \wedge (r \vee p \vee r) \equiv (p \vee \neg q \vee r) \wedge (p \vee r) \equiv p \vee r$$

This is the DNF and the CNF.

Problem 4

Part (1)

Note that $\neg \phi \equiv \phi \text{ NAND } \phi$. Thus:

$$p \to q \equiv \neg p \lor q \equiv p \text{ NAND } \neg q \equiv p \text{ NAND } (q \text{ NAND } q)$$

Part (2)

We have:

$$(p \land q) \lor \neg p \equiv (p \lor \neg p) \land (q \lor \neg p) \equiv \neg p \lor q \equiv \neg (\neg p \text{ NOR } q)$$

By using $\neg \phi \equiv \phi \text{ NOR } \phi$, we have:

$$\neg(\neg p \text{ NOR } q) \equiv \neg((p \text{ NOR } p) \text{ NOR } q) \equiv ((p \text{ NOR } p) \text{ NOR } q) \text{ NOR } ((p \text{ NOR } p) \text{ NOR } q)$$

Problem 5

We will show that $\{\vee, \wedge\}$ is not 1-complete.

Let F be the set of formulas in $\{p,\vee,\wedge\}$ and let $s:\{p\}\to\{0,1\}$ be the truth assignment s(p)=0. We claim that for any $\phi\in F$, we have $\tilde{s}(\phi)=0$. We proceed by induction on ϕ . The base case is $\phi=p$, and we have $\tilde{s}(\phi)=\tilde{s}(p)=s(p)=s(p)=0$. For the inductive step, suppose we have $\psi,\psi'\in F$ with $\tilde{s}(\psi)=\tilde{s}(\psi')=0$. Then $\tilde{s}(\psi\vee\psi')=\max\{\tilde{s}(\psi),\tilde{s}(\psi')\}=0$ and $\tilde{s}(\psi\wedge\psi')=\min\{\tilde{s}(\psi),\tilde{s}(\psi')\}=0$. Thus the claim holds by induction. Now $\tilde{s}(\neg p)=1-\tilde{s}(p)=1$, so $\neg p\notin F$. Thus $\{\vee,\wedge\}$ is not 1-complete, and thus it is not complete. \Box

Problem 6

We will show that $\{XOR\}$ is not 1-complete.

Let F be the set of formulas in $\{p, \mathrm{XOR}\}$ and let $s:\{p\} \to \{0,1\}$ be the truth assignment s(p)=0. We claim that for any $\phi \in F$, we have $\tilde{s}(\phi)=0$. We proceed by induction on ϕ . The base case is $\phi=p$, and we have $\tilde{s}(\phi)=\tilde{s}(p)=s(p)=0$. For the inductive step, suppose we have $\psi,\psi'\in F$ with $\tilde{s}(\psi)=\tilde{s}(\psi')=0$. Then $\tilde{s}(\psi)=0$. Thus the claim holds by induction.

As in the previous problem, we have $\neg p \notin F$ and thus $\{XOR\}$ is not 1-complete, and thus it is not complete. \square

Problem 7

Define the formulas ϕ_n recursively for $n \ge 1$ by $\phi_1 = p$ and $\phi_{n+1} = \phi_n \to p$. We are trying to find which ϕ_n are tautologies.

We claim that we have:

$$\phi_n \equiv \begin{cases} p & n \text{ odd} \\ \top & n \text{ even} \end{cases}$$

We proceed by induction on $n \ge 1$. The base case is n = 1, and we have $\phi_1 = p$ (by definition). For the inductive step, there are two cases:

• If n is even, then we have:

$$\phi_n = \phi_{n-1} \to p \equiv p \to p \equiv \top$$

ullet If n is odd, then we have:

$$\phi_n = \phi_{n-1} \to p \equiv \top \to p \equiv p$$

Thus the claim holds by induction. Thus ϕ_n is a tautology iff n is even.

Problem 8

Note that we have:

$$a \leftrightarrow b \equiv (a \to b) \land (b \to a) \equiv (b \to a) \land (a \to b) \equiv b \leftrightarrow a$$

In other words, thus \leftrightarrow is commutative.

We also have:

$$(a \leftrightarrow b) \leftrightarrow c \equiv ((a \land b) \lor (\neg a \land \neg b)) \leftrightarrow c$$

$$\equiv (((a \land b) \lor (\neg a \land \neg b)) \land c) \lor (\neg ((a \land b) \lor (\neg a \land \neg b)) \land \neg c)$$

$$\equiv (a \land b \land c) \lor (\neg a \land \neg b \land c) \lor ((\neg a \lor \neg b) \land (a \lor b) \land \neg c)$$

$$\equiv (a \land b \land c) \lor (\neg a \land \neg b \land c) \lor (\neg a \land b \land \neg c) \lor (a \land \neg b \land \neg c)$$

A similar argument shows that $a \leftrightarrow (b \leftrightarrow c)$ is also equivalent to this, so $(a \leftrightarrow b) \leftrightarrow c \equiv a \leftrightarrow (b \leftrightarrow c)$. In other words, \leftrightarrow is associative. Since \leftrightarrow is commutative and associative, we can ignore the ordering of variables and any parentheses in expressions involving only \leftrightarrow .

Now let ϕ be a formula whose only connective is \leftrightarrow , and let $\{p_1, \dots, p_n\}$ be the set of variables used in ϕ . For each $1 \le i \le n$, let m_i be the number of times that p_i appears in ϕ . Define ψ_i by:

$$\psi_i = \underbrace{p_i \leftrightarrow \cdots \leftrightarrow p_i}_{m_i \text{ times}}$$

Then we have:

$$\phi \equiv \psi_1 \leftrightarrow \cdots \leftrightarrow \psi_n$$

Note that by an identical argument to Problem 7, we have:

$$\psi_i \equiv egin{cases} p_i & m_i ext{ odd} \ op & m_i ext{ even} \end{cases}$$

Now suppose that each m_i is even. Then we have:

$$\phi \equiv \underbrace{\top \leftrightarrow \cdots \leftrightarrow \top}_{n \text{ times}} \equiv \top$$

So ϕ is a tautology.

On the other hand, suppose that m_k is odd for some $1 \le k \le n$. Consider the truth assignment s defined by:

$$s(p_i) = \begin{cases} 0 & i = k \\ 1 & i \neq k \end{cases}$$

Then we have $\tilde{s}(\psi_k)=\tilde{s}(p_k)=0$ and for $i\neq k$, we have:

$$\tilde{s}(\psi_i) = \begin{cases} \tilde{s}(p_i) & m_i \text{ odd} \\ \tilde{s}(\top) & m_i \text{ even} \end{cases} = \begin{cases} 1 & m_i \text{ odd} \\ 1 & m_i \text{ even} \end{cases} = 1$$

Thus:

$$\tilde{s}(\phi) = 0 \leftrightarrow \underbrace{1 \leftrightarrow \cdots \leftrightarrow 1}_{n-1 \text{ times}} = 0$$

Thus ϕ is not a tautology.