KONVERGENCA POTENČNE METODE

Trditev 0.1. Naj ima matrika $A \in \mathbb{R}^{n \times n}$ n lastnih vrednosti, pri čemer je ena dominantna. Zaporedje vektorjev $(x_i, \widetilde{\lambda}_i)$ iz potenčne metode konvergira proti lastnemu paru, ki pripada dominantni lastni vrednosti.

Če je λ_1 dominantna lastna vrednost, λ_2 pa po absolutni vrednosti druga največja lastna vrednost, potem je hitrost konvergence odvisna od razmerja $\frac{|\lambda_2|}{|\lambda_1|}$.

Dokaz. Zapišimo x_0 po bazi $\{v_1, \ldots, v_n\}$ lastnih vektorjev: $x_0 = \sum_{i=1}^n \beta_i v_i$. Potem je:

$$A^k x_0 = A^k \left(\sum_{i=1}^n \beta_i v_i \right) = A^{k-1} \left(\sum_{i=1}^n \beta_i \lambda_i v_i \right) = A^{k-2} \left(\sum_{i=1}^n \beta_i \lambda_i^2 v_i \right)$$
$$= \dots = \sum_{i=1}^n \beta_i \lambda_i^k v_i = \lambda_1^k \left(\beta_1 v_1 + \sum_{i=2}^n \left(\frac{\lambda_i}{\lambda_1} \right)^k \beta_i v_i \right).$$

Sledi

$$\frac{Ax_{k-1}}{\|Ax_{k-1}\|_2} = \frac{A^k x_0}{\|A^k x_0\|_2} = \frac{\left(\beta_1 v_1 + \sum_{i=2}^n \left(\frac{\lambda_i}{\lambda_1}\right)^k \beta_i v_i\right)}{\|\left(\beta_1 v_1 + \sum_{i=2}^n \left(\frac{\lambda_i}{\lambda_1}\right)^k \beta_i v_i\right)\|_2}$$

Ker je $|\frac{\lambda_i}{\lambda_1}| < 1$, velja $\left(\frac{\lambda_i}{\lambda_1}\right)^k \to 0$. Zato potenčna metoda res konvergira proti lastnemu vektorju v_1 , hitrost konvergence pa je odvisna od razmerja $\frac{\lambda_2}{\lambda_1}$, kjer je $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|$. \square