ANÁLISE INTELIGENTE DE DADOS (COB 754)

ÁRVORES DE DECISÃO

LETÍCIA MARTINS RAPOSO

ÁRVORES DE DECISÃO

CARACTERÍSTICAS

- <u>SUPERVISIONADO</u>
- USADO PRINCIPALMENTE EM <u>CLASSIFICAÇÃO</u>
- <u>DIVIDIR PARA CONQUISTAR</u>
- REGRAS DO TIPO <u>SE-</u>
 <u>ENTÃO</u>
- <u>DIVISÃO</u> DO ESPAÇO EM <u>SUBESPAÇOS</u>
- ABORDAGEM <u>"DE CIMA"</u>
 PARA BAIXO"
- "GANANCIOSO": SE
 PREOCUPA APENAS SOBRE
 A DIVISÃO ATUAL

REPRESENTAÇÃO DE UMA ÁRVORE DE DECISÃO

REPRESENTAÇÃO DE UMA ÁRVORE DE DECISÃO

ÁRVORES DE REGRESSÃO × ÁRVORES DE CLASSIFICAÇÃO

ÁRVORES DE CLASSIFICAÇÃO

VARIÁVEL DEPENDENTE <u>CATEGÓRICA</u>.

O VALOR (CLASSE)
OBTIDO PELO NÓ
TERMINAL NOS DADOS DE
TREINAMENTO É O MODA
DAS OBSERVAÇÕES QUE
CAEM NESSA REGIÃO

ÁRVORES DE REGRESSÃO

- VARIÁVEL DEPENDENTE CONTÍNUA.
- O VALOR OBTIDO PELOS NÓS TERMINAIS NOS DADOS DE TREINAMENTO É A RESPOSTA MÉDIA DA OBSERVAÇÃO QUE CAI NESSA REGIÃO.

CONSTRUÇÃO DE UMA **ÁRVORE DE DECISÃO**

ESCOLHER UM ATRIBUTO

ESTENDER A ÁRVORE ADICIONANDO RAMOS DE ACORDO COM A PARTIÇÃO

PASSAR OS EXEMPLOS PARA OS NÓS (TENDO EM DE PARADA CONTA O VALOR DO ATRIBUTO ESCOLHIDO).

AVALIAR O CRITÉRIO

OBJETIVO: EXECUTAR UMA SEQUÊNCIA DE DIVISÕES DE CIMA PARA BAIXO A FIM DE CRIAR NÓS TERMINAIS (FOLHAS) EM QUE AS CLASSES ESTÃO BEM SEPARADAS (CLASSIFICAÇÃO) OU O ERRO QUADRÁTICO MÉDIO É PEQUENO (REGRESSÃO).

CRITÉRIOS PARA ESCOLHA DO ATRIBUTO

- O critério utilizado para realizar as partições é o da <u>utilidade do</u> <u>atributo para a classificação/regressão</u>.
- Na classificação, p. ex.:
 - Uma divisão que mantêm as proporções de classes em todas as partições é inútil.
 - Uma divisão onde em cada partição todos os exemplos são da mesma classe tem utilidade máxima.

Classificação

MEDIDAS DE PARTIÇÃO

- Maioria dos algoritmos de indução de árvores de decisão trabalha com funções de divisão univariável, ou seja, cada nó interno da árvore é dividido de acordo com um único atributo.
- Os critérios de seleção para a melhor divisão são baseados em diferentes medidas, tais como <u>impureza, distância e dependência</u>.
- Na maioria dos casos, <u>nem todas as possíveis variáveis</u> de entrada <u>serão usadas</u> para construir o modelo de árvore de decisão e, em alguns casos, <u>uma variável</u> de entrada específica pode ser usada <u>várias vezes em diferentes níveis</u> da árvore de decisão.

CLASSIFICAÇÃO:

- GANHO DE INFORMAÇÃO
- ÍNDICE GINI

REGRESSÃO:

 SDR (DO INGLÊS STANDARD DEVIATION REDUCTION).

MEDIDAS DE PARTIÇÃO

GANHO DE INFORMAÇÃO

Dado um conjunto de exemplos, qual atributo escolher para realizar a partição?

- O ganho de informação mede a <u>redução da entropia</u> causada pela partição dos exemplos de acordo com os valores do atributo.
- Entropia é uma medida da <u>aleatoriedade</u> (grau de pureza) de uma variável.
- A entropia de uma variável nominal X_i , com instâncias pertencentes à classe i, com probabilidade p_i , é dada por

$$Entropia(X) = -\sum_{i} p_{i} \log_{2} p_{i}$$

A ENTROPIA É MÁXIMA (IGUAL A 1) QUANDO O CONJUNTO DE DADOS É HETEROGÊNEO.

GANHO DE INFORMAÇÃO

$$Ganho (Exs, Atr) = \underbrace{Entropia (Exs)}_{N\'o pai} - \underbrace{\sum_{x \in P(Atr)} \frac{\#Exs_x}{\#Exs}}_{N\'o s \ filhos} Entropia (Exs_x)$$

Atr: atributo;

Entropia (Exs): entropia dos exemplos;

P(Atr): conjunto dos valores que Atr pode assumir;

x: elemento deste conjunto;

 Exs_x : subconjunto de Exs formado pelos dados em que Atr = x;

Entropia (Exs_x): entropia que se obtém ao particionar Exs em função do atributo Atr.

A construção de uma árvore de classificação é guiada pelo objetivo de diminuir a entropia.

DIA	APARÊNCIA	JOGAR TÊNIS
1	Ensolarado	Não
2	Ensolarado	Não
3	Nublado	Sim
4	Chuva	Sim
5	Chuva	Sim
6	Chuva	Não
7	Nublado	Sim
8	Ensolarado	Não
9	Ensolarado	Sim
10	Chuva	Sim
11	Ensolarado	Sim
12	Nublado	Sim
13	Nublado	Sim
14	Chuva	Não

	Sol	Nublado	Chuva
Sim	2	4	3
Não	3	0	2

$$Ganho(Exs, Atr) =$$

$$= Entropia\left(Exs\right) \ - \ \sum\nolimits_{x \in P(Atr)} \frac{\#Exs_x}{\#Exs} Entropia(Exs_x)$$

DIA	APARÊNCIA	JOGAR TÊNI
1	Ensolarado	Não
2	Ensolarado	Não
3	Nublado	Sim
4	Chuva	Sim
5	Chuva	Sim
6	Chuva	Não
7	Nublado	Sim
8	Ensolarado	Não
9	Ensolarado	Sim
10	Chuva	Sim
11	Ensolarado	Sim
12	Nublado	Sim
13	Nublado	Sim
14	Chuva	Não

	Sol	Nublado	Chuva
Sim	2	4	3
Não	3	0	2

$$Ganho(Exs, Atr) =$$

$$= \underbrace{Entropia(Exs)}_{x \in P(Atr)} - \sum_{x \in P(Atr)} \frac{\#Exs_x}{\#Exs} Entropia(Exs_x)$$

Entropia (Jogar Tênis) =
$$-\sum_i p_i \log_2 p_i$$
 2 classes

Entropia (Jogar Tênis) =
$$-\frac{5}{14}\log_2\frac{5}{14} - \frac{9}{14}\log_2\frac{9}{14} = 0,940$$

DIA	APARÊNCIA	JOGAR	TÊNIS		Cal	Nublada	Chuyo	1
1	Ensolarado	Não			Sol	Nublado	Chuva	-
2	Ensolarado	Não		Sim	2	4	3	
3	Nublado	Sim		Não	3	0	2	
4	Chuva	Sim			·	•		J
5	Chuva	Sim		(Ganho	(Exs, Atr)) =	
6	Chuva	Não	– Entronic	n (Fre)	_ Z	¬ <u>#</u>	Exs_x	$ropia(Exs_x)$
7	Nublado	Sim	— Епигори		_	$\bot x \in P(Atr)$ #	Exs	$Iopia(Lxs_{\chi})$
8	Ensolarado	Não	#Fvs	#F~	c C		#Frs	
9	Ensolarado	Sim	$\frac{\#Exs_s}{\#Exs}Entropia(Exs_s)$	$+\frac{HEX}{\#Ex}$	Sn Enti S	$ropia(Exs_n)$	$+\frac{HEXS_c}{\#Exs}$	$Entropia(Exs_c)$
10	Chuva	Sim	5 (2, 2 3,	3\ 4	(4	4 0	0) 5	$\frac{5}{4} \left(-\frac{3}{5} \log_2 \frac{3}{5} - \frac{2}{5} \log_2 \frac{2}{5} \right)$
11	Ensolarado	Sim	$\frac{14}{14} \left(-\frac{5}{5} \log_2 \frac{1}{5} - \frac{1}{5} \log_2 \frac{1}{5} \right)$	$\overline{5}$) + $\overline{14}$	$\left(-\frac{1}{4}\right)$	$\log_2 \frac{1}{4} - \frac{10}{4}$	$\left(\frac{g_2}{4}\right) + \frac{1}{1}$	$\overline{4}\left(-\overline{5}^{\log_2}\overline{5}-\overline{5}^{\log_2}\overline{5}\right)$
12	Nublado	Sim						= 0,693
13	Nublado	Sim						
14	Chuva	Não						

DIA	APARÊNCIA	JOGAR TÊNIS
1	Ensolarado	Não
2	Ensolarado	Não
3	Nublado	Sim
4	Chuva	Sim
5	Chuva	Sim
6	Chuva	Não
7	Nublado	Sim
8	Ensolarado	Não
9	Ensolarado	Sim
10	Chuva	Sim
11	Ensolarado	Sim
12	Nublado	Sim
13	Nublado	Sim
14	Chuva	Não

	Sol	Nublado	Chuva
Sim	2	4	3
Não	3	0	2

$$Ganho(Exs, Atr) =$$

$$= Entropia (Exs) - \sum_{x \in P(Atr)} \frac{\#Exs_x}{\#Exs} Entropia(Exs_x)$$

$$Ganho(Exs, Atr) = 0.940 - 0.693 = 0.247$$

GI (ATRIBUTOS NUMÉRICOS)

- No caso de atributos numéricos, o teste produz uma partição binária do conjunto de exemplos:
 - Exemplos em que o valor_do_atributo < ponto_referência
 - Exemplos em que o valor_do_atributo >= ponto_referência
- Escolha do ponto de referência:
 - Ordenar os exemplos por ordem crescente dos valores do atributo numérico.
 - Qualquer ponto intermediário entre dois valores diferentes (da classe) e consecutivos dos valores observados no conjunto de treinamento pode ser utilizado como possível ponto de referência.
 - É usual considerar o valor médio entre dois valores diferentes e consecutivos.

EXEMPLO - GI (ATRIBUTOS NUMÉRICOS)

TEMPERATURA	JOGAR TÊNIS				
64	Sim				
65	Não				
68	Sim				
69	Sim				
70	Sim	 Tem	peratura	< 70,5	
71	Não	Tem	peratura	≥ 70,5	
72	Sim		< 70,5	≥ 70,5	
72	Sim	Sim	4	5	Cambo (Essa Atm
75	Sim 🚤	Não	1	4	Ganho (Exs, Atr
75	Não				J
80	Sim				
81	Sim				
83	Sim				
85	Não				

GANHO DE INFORMAÇÃO

DEFINIDO O ATRIBUTO COM <u>MAIOR GANHO DE</u> <u>INFORMAÇÃO</u>, ESTE SERÁ UTILIZADO PARA INICIAR A PARTIÇÃO.

REPETE-SE O PROCESSO DE AVALIAÇÃO DOS ATRIBUTOS ATÉ O FINAL DA CONSTRUÇÃO DA ÁRVORE.

ÍNDICE GINI

- O índice Gini mede o grau de heterogeneidade dos dados → utilizado para medir a impureza de um nó.
- Este índice num determinado nó é dado por:

Índice Gini =
$$1 - \sum_{i=1}^{c} p_i^2$$

 p_i é a frequência relativa de cada classe em cada nó e c é o número de classes.

 Quando este índice é igual a zero, o nó é puro. Quando se aproxima de 1, o nó é impuro.

Índice
$$Gini_{Atr} = Índice \, Gini(Exs) - \sum_{x \in P(Atr)} \frac{\#Exs_x}{\#Exs} Índice \, Gini(Exs_x)$$

P(Atr): conjunto dos valores que Atr pode assumir;

x: elemento deste conjunto;

Exs,: subconjunto de Exs formado pelos dados em que Atr = x.

DIA	APARÊNCIA	JOGAR TÊNIS
1	Ensolarado	Não
2	Ensolarado	Não
3	Nublado	Sim
4	Chuva	Sim
5	Chuva	Sim <i>Índice</i>
6	Chuva	Não
7	Nublado	Sim
8	Ensolarado	Não
9	Ensolarado	Sim
10	Chuva	Sim
11	Ensolarado	Sim
12	Nublado	Sim
13	Nublado	Sim
14	Chuva	Não

	Sol	Nublado	Chuva
Sim	2	4	3
Não	3	0	2

Índice
$$Gini_{Atr} =$$
Índice $Gini(Exs) - \sum_{x \in P(Atr)} \frac{\#Exs_x}{\#Exs}$ Índice $Gini(Exs_x)$
Nó pai

Nós filhos

DIA	APARÊNCIA	JOGAR TÊNI	<u>S</u>		Cal	Muhlada	Churc
1	Ensolarado	Não	_		Sol	Nublado	Chuva
2	Ensolarado	Não		Sim	2	4	3
3	Nublado	Sim		Não	3	0	2
4	Chuva	Sim					
5	Chuva	Sim	Índice Gini =	= Índic	e Gini	i(Exs) —	$\sum \frac{\#}{2}$
6	Chuva	Não	Índice Gini _{Atr} =			$x \in \mathbb{R}^{n}$	P(Atr) #
7	Nublado	Sim			Ī		
8	Ensolarado	Não	Índice Gini(Ex	(cs) = 1	$-\left(\frac{5}{4}\right)$	$\left(\frac{5}{1}\right)^{2} - \left(\frac{9}{11}\right)^{2}$	$\right)^2 = 0.4$
9	Ensolarado	Sim	`		(1	4) (14	<i>)</i>
10	Chuva	Sim					
11	Ensolarado	Sim					
12	Nublado	Sim					
13	Nublado	Sim					
14	Chuva	Não					

DIA	APARÊNCIA	JOGAR TÊNIS
1	Ensolarado	Não
2	Ensolarado	Não
3	Nublado	Sim
4	Chuva	Sim

	Sol	Nublado	Chuva
Sim	2	4	3
Não	3	0	2

9 Ensolarado Sim

10	Chuva	Sim

$$\text{Índice } Gini_{Atr} = \text{Índice } Gini(Exs) - \sum_{x \in P(Atr)} \frac{\#Exs_x}{\#Exs} \text{Índice } Gini(Exs_x)$$

Índice Gini =
$$1 - \sum_{i=1}^{c} p_i^2$$

$$\sum_{x \in P(Atr)} \frac{\#Exs_x}{\#Exs} \text{ indice } Gini(Exs_x) = \frac{5}{14} \left(1 - \left(\frac{2}{5}\right)^2 - \left(\frac{3}{5}\right)^2 \right) +$$

$$+\frac{4}{14}\left(1-\left(\frac{4}{4}\right)^2-\left(\frac{0}{4}\right)^2\right)+\frac{5}{14}\left(1-\left(\frac{3}{5}\right)^2-\left(\frac{2}{5}\right)^2\right)=0,3429$$

DIA	APARÊNCIA	JOGAR TÊN	NIS		Sol	Nublado	Chuva
1	Ensolarado	Não			+	Nuniauv	
2	Ensolarado	Não		Sim	2	4	3
3	Nublado	Sim		Não	3	0	2
4	Chuva	Sim					
5	Chuva	Sim	Índice $Gini_{Atr} =$	= Índic	e Gini	i(Exs) —	$\sum \frac{\#}{}$
6	Chuva	Não	THEORE GUILLALT	170000	o am	xe^{-x}	P(Atr)
7	Nublado	Sim					
8	Ensolarado	Não	Índice $Gini_{Atr} =$	= 0,459	92 - 0	,3429 = 0,	1163
9	Ensolarado	Sim					
10	Chuva	Sim					
11	Ensolarado	Sim					
12	Nublado	Sim					
13	Nublado	Sim					
14	Chuva	Não					

ÍNDICE GINI (ATRIBUTOS CONTÍNUOS)

O <u>MESMO PROCEDIMENTO</u> PARA O GANHO DE INFORMAÇÃO É REALIZADO PARA <u>ATRIBUTOS NUMÉRICOS</u>.

DEFINIDO O ATRIBUTO COM <u>MAIOR ÍNDICE GINI</u>, REPETE-SE O PROCESSO PARA CADA PARTIÇÃO.

SDR (STANDARD DEVIATION REDUCTION)

Assuma um conjunto de exemplos. O desvio padrão da variável alvo,
 y, é dada pela expressão

$$sd(Exs) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

O desvio padrão de y em cada partição é sempre menor ou igual ao desvio padrão de y antes da divisão. Podemos estimar essa redução como

$$SDR_{Atr} = sd(Exs) - \sum_{x \in P(Atr)} \frac{\#Exs_x}{\#Exs} sd(Exs_x)$$

P(Atr): conjunto dos valores que Atr pode assumir;

x: elemento deste conjunto;

Exs_x: subconjunto de Exs formado pelos dados em que Atr = x.

O teste que provoca uma maior redução no desvio padrão é escolhido como teste para o nó.

EXEMPLO - SDR

DIA	APARÊNCIA	HORAS JOGADAS
1	Ensolarado	$SDR_{Atr} = sd(Exs) - \sum_{x \in P(Atr)} \frac{\#Exs_x}{\#Exs} sd(Exs_x)$ 52
2	Ensolarado	$\sum_{x \in P(Atr)} \#Exs$
3	Nublado	46
4	Chuva	$ \begin{array}{c c} \hline 1 & \\ \hline \end{array} $
5	Chuva	30 $sd(Exs) = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i - \bar{y})^2} = 9.32$ $\bar{y} = 39.8$
6	Chuva	35
7	Nublado	43 $\sum_{\text{HExs}} \frac{\#Exs_x}{\#Exs} sd (Exs_x) = \frac{\#Exs_c}{\#Exs} sd (Exs_c) + \frac{\#Exs_n}{\#Exs} sd (Exs_n) + \frac{\#Exs_s}{\#Exs} sd (Exs_s)$
8	Ensolarado	23 $x \in P(Atr)$ #Exs #Exs #Exs #Exs
9	Ensolarado	$= \frac{5}{14} sd (Exs_c) + \frac{4}{14} sd (Exs_n) + \frac{5}{14} sd (Exs_s) = 7,66$
10	Chuva	38
11	Ensolarado	30
12	Nublado	$SDR_{Atr} = 9,32 - 7,66 = 1,66$
13	Nublado	44
14	Chuva	48

- NÚMERO MÍNIMO DE OBSERVAÇÕES EM UM NÓ A SER CONSIDERADO PARA DIVISÃO
- NÚMERO MÍNIMO DE OBSERVAÇÕES EM UM NÓ TERMINAL (FOLHA)
- PROFUNDIDADE MÁXIMA DA ÁRVORE (PROFUNDIDADE VERTICAL)
- NÚMERO MÁXIMO DE NÓS TERMINAIS (pode ser definido no lugar da profundidade)
- MEDIDA DE PARTIÇÃO MENOR QUE UM VALOR PRÉ-DEFINIDO

CRITÉRIOS DE PARADA

PODA

Relembrando: algoritmo guloso → verifica a melhor divisão instantaneamente e avançará até que uma das condições de parada especificadas seja atingida.

Uma árvore de decisão com critérios de parada não verá o caminhão à frente e adotará uma abordagem gananciosa ao virar à esquerda. Por outro lado, se usarmos a poda, olhamos alguns passos à frente e fazemos uma escolha.

PODA

- Métodos de poda da árvore são utilizados para <u>detectar e</u> <u>excluir ramos e sub-árvores</u> com o objetivo de <u>melhorar a</u> <u>taxa de acerto</u> do modelo para novos exemplos.
- A árvore podada se torna mais simples, facilitando a sua interpretabilidade por parte do usuário.
- Pré-poda (critério de parada);
 - A pré-poda é mais rápida, porém menos eficiente que a póspoda pelo fato do risco de interromper o crescimento da árvore ao selecionar uma árvore sub-ótima.
- Pós-poda.

PÓS-PODA

- A pós-poda busca <u>encontrar o tamanho adequado</u> de uma árvore após a árvore ser induzida completamente.
 - É avaliada a confiabilidade de cada uma de suas sub-árvores, podando os ramos considerados não confiáveis.
- Dentre os métodos de pós-poda existentes, destacam-se:
 - Redução de erros (Reduced Error Pruning);
 - Custo-complexidade (Cost-Complexity Pruning);
 - Erro pessimista (Pessimistic Error Pruning);
 - Valor crítico (Critical Value Pruning);
 - Erro mínimo (Minimum Error Pruning);
 - Poda por estimativa de erro (Error-Based Pruning).

MÉTODO SIMPLES E RÁPIDO

SEGUE A ORIENTAÇÃO

BOTTOM-UP E NECESSITA DE
UM CONJUNTO DE
VALIDAÇÃO PARA O
PROCESSO DE PODA

Particione os dados de treinamento em conjuntos "crescimento" e "validação".

Construa uma árvore completa a partir dos dados de "crescimento".

Para cada nó não-folha, n, na árvore, faça:

Remova temporariamente a sub-árvore abaixo de n e substitua-a por uma folha rotulada com a classe majoritária atual nesse nó.

Meça e registre a acurácia da árvore podada no conjunto de validação.

Remova permanentemente o nó que resulta no maior aumento da acurácia no conjunto de validação.

Continue este processo até que a poda reduza a acurácia no conjunto de validação.

CUSTO-COMPLEXIDADE (COST-COMPLEXITY PRUNING)

MÉTODO COMPOSTO POR DUAS ETAPAS

MAIS COMPLEXO QUE O DE REDUÇÃO DE ERROS

CUSTO-COMPLEXIDADE (COST-COMPLEXITY PRUNING)

- 1. Uma sequência de árvores $T_0, T_1, ..., T_K$ é construída com os dados de treinamento. T_0 é a árvore original antes da poda e T_K é a árvore raiz (só com o nó raiz).
- 2. É selecionada a melhor árvore dessa sequência, levando-se em consideração o custo estimado dos erros/desvios de classificação/regressão e a complexidade (medida em número de folhas) de cada uma dessas árvores.

CUSTO-COMPLEXIDADE (COST-COMPLEXITY PRUNING)

- O primeiro passo é construir uma árvore suficientemente grande T_{max} .
 - T_{max} não precisa ser expandida de forma exaustiva, basta ser suficientemente grande. Para isso, basta estabelecer um número mínimo de exemplos por folha e adotá-lo como critério de parada.
- Para qualquer sub-árvore $T \leq T_{max}$, defina sua complexidade como $|\bar{T}|$, o número de folhas em T. Seja $\alpha>0$ um número real denominado parâmetro de complexidade e defina a medida de custo-complexidade $R_{\alpha}(T)$ como

$$R_{\alpha}(T) = R(T) + \alpha |\overline{T}|$$

CUSTO DE ERRO COMPLEXIDADE

• O problema central do método é encontrar, para cada valor de α , a sub-árvore $T(\alpha) \leq T_{max}$ que minimiza $R_{\alpha}(T)$.

ALGORITMOS

Dependendo do problema, um algoritmo pode ser mais eficiente que outro.

Dentre os algoritmos, tem-se:

- ID3;
- C4.5;
- **■** C5;
- CART Classification and Regression Trees;

...

ID3

- Algoritmo pioneiro em indução de árvores de decisão >
 recursivo e baseado em busca gulosa.
- Limitações:
 - Só lida com <u>atributos categóricos não-ordinais</u>.
 - Os atributos contínuos devem ser previamente discretizados.
 - Não apresenta nenhuma forma para <u>tratar valores</u> desconhecidos.
 - Necessário gastar um bom tempo com pré-processamento dos dados.
 - Não apresenta nenhum método de pós-poda.
- Utiliza o ganho de informação para selecionar a melhor divisão.
- Apenas problemas de <u>classificação</u>.

C4.5

- Evolução do ID3.
- Lida com <u>atributos categóricos (ordinais ou não-ordinais) e</u> atributos contínuos.
 - Atributos contínuos: define um limiar e então divide os exemplos de forma binária.
- Trata valores desconhecidos.
 - Permite que os valores desconhecidos para um determinado atributo sejam representados como '?', e o algoritmo trata esses valores de forma especial. Esses valores não são utilizados nos cálculos de ganho e entropia.
- Utiliza a medida de <u>razão de ganho</u> (ganho ponderado) para selecionar o atributo.
- Apresenta um método de <u>pós-poda</u> das árvores geradas.
- Algoritmo <u>guloso</u>, com estratégia "dividir para conquistar".
- Apenas problemas de <u>classificação</u>.

CART (CLASSIFICATION AND REGRESSION TREES)

- Classificação e regressão.
- As árvores são <u>sempre binárias</u>, questões simples do tipo "sim" ou "não".
 - Os nós que correspondem a atributos contínuos são representados por agrupamento de valores em dois conjuntos.
 - Dispõe de um tratamento especial para atributos ordenados e também permite a utilização de combinações lineares entre atributos (agrupamento de valores em vários conjuntos).
- Expande a árvore exaustivamente, realizando <u>pós-poda</u> por meio da redução do fator <u>custo-complexidade</u>.
- Utiliza o <u>índice Gini</u>.

VANTAGENS

FÁCIL DE <u>ENTENDER</u>

REPRESENTAÇÃO GRÁFICA INTUITIVA

ÚTIL EM <u>EXPLORAÇÃO DE</u>

<u>DADOS</u>

SELEÇÃO DE VARIÁVEIS

SENSIBILIDADE REDUZIDA A
OUTLIERS

PODE MANIPULAR <u>VARIÁVEIS</u> <u>NUMÉRICAS E CATEGÓRICAS</u>

MÉTODO <u>NÃO PARAMÉTRICO</u>

DESVANTAGENS

<u>OVERFITTING</u>: RESTRIÇÕES SOBRE OS PARÂMETROS DO MODELO E PODA

INSTABILIDADE: PEQUENA MUDANÇA NOS DADOS PODE CAUSAR UMA GRANDE MUDANÇA NA ESTIMATIVA FINAL DA ÁRVORE

MENOR ACURÁCIA

RESUMO

- ALGORITMO DE APRENDIZADO SUPERVISIONADO USADO PRINCIPALMENTE EM PROBLEMAS DE CLASSIFICAÇÃO.
- FUNCIONA PARA VARIÁVEIS DE ENTRADA E SAÍDA CATEGÓRICAS E CONTÍNUAS.
- DIVISÃO DA AMOSTRA EM DOIS
 OU MAIS CONJUNTOS
 HOMOGÊNEOS COM BASE NO
 DIVISOR MAIS SIGNIFICATIVO
 DAS VARIÁVEIS DE ENTRADA.
- TIPO DE ÁRVORE MAIS COMUM: CART.