1 Билет 6. Первые интегралы автономных систем

1.1 Основные определения

Определение 1.1. Рассмотрим неавтономную систему дифференциальных уравнений $\vec{x} = \vec{f}(\vec{x},t)$. Пусть в некоторой области $G \subset \mathbb{R}^{n+1}_{t,\vec{x}}$ выполнены условия основной теоремы. Пусть функция $u(t,\vec{x})$ непрерывно дифференцируема в G, а $\vec{x} = \vec{x}(t)$ – решение системы. Тогда величину

$$\frac{du}{dt} = \frac{\partial u}{\partial t} + \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} \frac{\partial x_i}{\partial t} = \frac{\partial u}{\partial t} + \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} \frac{dx_i}{dt} = \frac{\partial u}{\partial t} + \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} f_i(t, \vec{x}) = \frac{\partial u}{\partial t} + (\nabla u, \vec{f})$$

будем называть производной функции и в силу системы, или производной Ли.

Для автономной системы $\frac{du}{dt} = (\nabla u, \vec{f}).$

Определение 1.2. Первым интегралом автономной системы $\dot{\vec{x}} = \vec{f}(\vec{x})$ в области \mathscr{D} ее фазового пространства называется функция $u = u(\vec{x})$, сохраняющая постоянное значение вдоль каждой траектории из \mathscr{D} , то есть u = C = const для каждой траектории в области \mathscr{D} .

1.2 Критерий первого интеграла

Теорема 1.1. Для того, чтобы некоторая функция $u(\vec{x})$ была первым интегралом системы $\dot{\vec{x}} = \vec{f}(\vec{x})$, необходимо и достаточно, чтобы она удовлетворяла соотношению $(\nabla u, \vec{f}) = 0$.

Доказательство.

Необходимость

Пусть $u = u(\vec{x})$ – первый интеграл системы. Тогда:

$$0 = \frac{du}{dt} = \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} \dot{x}_i = \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} f_i(\vec{x}) = (\nabla u, \vec{f})$$

Достаточность

Пусть условие выполнено. Тогда:

$$0 = (\nabla u, \vec{f}) = \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} f_i(\vec{x}) = \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} \dot{x}_i = \frac{du}{dt},$$

откуда и следует, что u – первый интеграл системы.

1.3 Теорема о числе независимых первых интегралов

Определение 1.3. Система первых интегралов $u_1(\vec{x}), u_2(\vec{x}), \dots, u_k(\vec{x}), \ \epsilon \partial e \ k < n$ называется функционально независимой в области \mathcal{D} , если:

$$rank\left(\frac{\partial u_i}{\partial x_k}\right) = rank \begin{pmatrix} \frac{\partial u_1}{\partial x_1} & \frac{\partial u_1}{\partial x_2} & \cdots & \frac{\partial u_1}{\partial x_n} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} & \cdots & \frac{\partial u_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial u_k}{\partial x_1} & \frac{\partial u_k}{\partial x_2} & \cdots & \frac{\partial u_k}{\partial x_n} \end{pmatrix} = k$$

Другими словами, если их градиенты $\nabla u_i(\vec{x})$ линейно независимы.

Примечание. Из линейной зависимости первых интегралов следует их функциональная зависимость. Обратное утверждение неверно.

Теорема 1.2. Пусть точка $M(\vec{x}_0) \in \mathscr{D}$ не является положением равновесия системы $\dot{\vec{x}} = \vec{f}(\vec{x})$. Тогда в окрестности $U(\vec{x}_0)$ этой точки существуют n-1 функционально независимых первых интегралов системы. Теорема имеет локальный характер.

Доказательство.

Пусть $\vec{x}(t)$ является решением: $\vec{x}(0) = \vec{x}_0$.

Так как $M \in \mathcal{D}$ не является положением равновесия, то через нее проходит единственная фазовая траектория, и хотя бы одна из компонент $\vec{f}(\vec{x}_0)$ не равна нулю. Пускай без ограничения общности это будет $f_n(\vec{x}_0)$.

В силу непрерывности $f_n(\vec{x})$ существует окрестность $U(\vec{x}_0)$, в которой $f_n(\vec{x}) \neq 0$. Поделим каждое уравнение нашей системы на последнее. Получим следующее:

$$\begin{cases} \frac{dx_1}{dx_n} = \frac{f_1}{f_n} = \widetilde{f}_1 \\ \frac{dx_2}{dx_n} = \frac{f_2}{f_n} = \widetilde{f}_2 \\ \vdots & \vdots \\ \frac{dx_{n-1}}{dx_n} = \frac{f_{n-1}}{f_n} = \widetilde{f}_{n-1} \end{cases}$$

Все $\widetilde{f_i}$ непрерывно дифференцируемы, поэтому существует окрестность $U(\vec{x}_0)$, где выполнены условия основной теоремы. Значит $\forall \vec{\xi} \in U(\vec{x}_0)$ $\exists !$ решение системы выше такое, что при $x_n = \xi_n$ мы имеем $x_1(\xi_n) = \xi_1, x_2(\xi_n) = \xi_2, \ldots, x_{n-1}(\xi_n) = \xi_{n-1}$.

Давайте запишем это решение. Оно имеет вид:

$$\begin{cases} x_1 = \varphi_1(x_n, \xi_1, \xi_2, \dots, \xi_{n-1}) \\ x_2 = \varphi_2(x_n, \xi_1, \xi_2, \dots, \xi_{n-1}) \\ \vdots & \vdots \\ x_{n-1} = \varphi_{n-1}(x_n, \xi_1, \xi_2, \dots, \xi_{n-1}) \end{cases}$$
(1)

На все это дело можно смотреть как на систему уравнений относительно $\xi_1, \xi_2, \dots, \xi_{n-1}$. Якобиан этой системы имеет вид:

$$J(x_n) = \begin{vmatrix} \frac{\partial \varphi_1}{\partial \xi_1} & \cdots & \frac{\partial \varphi_1}{\partial \xi_{n-1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \varphi_{n-1}}{\partial \xi_1} & \cdots & \frac{\partial \varphi_{n-1}}{\partial \xi_{n-1}} \end{vmatrix}$$

В силу того, что $J(x_n^0)=\begin{vmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{vmatrix}=|E|=1\neq 0,$ и все производные $\frac{\partial \varphi_i}{\partial \xi_k}$ непрерывны,

то существует окрестность точки $\vec{\xi}$, в которой $J(x_n) \neq 0$. Тогда по теореме о неявно заданной функции можно разрешить систему относительно ξ_k :

$$\begin{cases} \xi_1 = \psi_1(x_1, x_2, \dots, x_n) \\ \vdots & \vdots \\ \xi_{n-1} = \psi_{n-1}(x_1, x_2, \dots, x_n) \end{cases}$$
 (2)

Проинтегрируем формально последнее уравнение системы $\dot{\vec{x}} = \vec{f}(\vec{x})$ с условием, что при $t = \tau$: $x_n(\tau) = \xi_n$:

$$x_n = \xi_n + \int_{\tau}^{t} f_n(\vec{x}(\tau))d\tau = x_n(t).$$

Подставим это и (1) в (2). Тогда:

$$\forall k = \overline{1, n} : const = \xi_k = \psi_k(x_n, x_1, x_2, \dots, x_{n-1}) =$$

$$= \psi_k(x_n, \varphi_1(x_n, \xi_1, \dots, \xi_{n-1}), \varphi_2(x_n, \xi_1, \dots, \xi_{n-1}), \dots, \varphi_{n-1}(x_n, \xi_1, \dots, \xi_{n-1})) =$$

$$= \psi_k(\widetilde{\varphi}_1(t + \tau, \xi_1, \dots, \xi_{n-1}), \widetilde{\varphi}_2(t + \tau, \xi_1, \dots, \xi_{n-1}), \dots, \widetilde{\varphi}_{n-1}(t + \tau, \xi_1, \dots, \xi_{n-1}))$$

Так как $\vec{\xi}$ – произвольная точка из окрестности U, где выполняется основная теорема, то функции $\widetilde{\varphi}_1(t+\tau,\xi_1,\ldots,\xi_{n-1}),\widetilde{\varphi}_2(t+\tau,\xi_1,\ldots,\xi_{n-1}),\ldots,\widetilde{\varphi}_{n-1}(t+\tau,\xi_1,\ldots,\xi_{n-1})$ являются решениями исходной системы. Тогда система (2) является системой первых интегралов.

Таких интегралов n-1 штук. Причем:

$$\begin{vmatrix} \frac{\partial \psi_1}{\partial x_1} & \cdots & \frac{\partial \psi_1}{\partial x_{n-1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \psi_{n-1}}{\partial x_1} & \cdots & \frac{\partial \psi_{n-1}}{\partial x_{n-1}} \end{vmatrix} = \frac{1}{J(x_n)} \neq 0.$$

Откуда следует, что данная система первых интегралов функционально независима.

1.4 Применение первых интегралов для понижения порядка системы

Теорема 1.3. Пусть $u_1(\vec{x}), u_2(\vec{x}), \dots, u_k(\vec{x}), \ \textit{где } k < n - \textit{система первых интегралов системы <math>\vec{x} = \vec{f}(\vec{x})$. Тогда порядок системы может быть понижен на k.

Доказательство.

Если u_1, u_2, \ldots, u_k – первые интегралы, то они постоянны на любом решении системы. На систему первых интегралов

$$\begin{cases} u_1(\vec{x}) = C_1 \\ u_2(\vec{x}) = C_2 \\ \vdots \\ u_k(\vec{x}) = C_k \end{cases}$$

можно смотреть как на систему уравнений относительно неизвестных x_1, x_2, \ldots, x_n , где C_1, C_2, \ldots, C_k – известные константы.

Система первых интегралов функционально независима, поэтому ранг матрицы Якоби равен k. Пусть базисный минор матрицы Якоби расположен в первых k столбцах (иначе просто меняем порядок переменных). Тогда по теореме о неявно заданной функции получаем:

$$\begin{cases} x_1 = \varphi_1(x_{k+1}, \dots, x_n, C_1, \dots, C_k) \\ \vdots & \vdots \\ x_k = \varphi_k(x_{k+1}, \dots, x_n, C_1, \dots, C_k) \end{cases} \Longrightarrow \begin{cases} \dot{x}_{k+1} = f_{k+1}(\varphi_1, \dots, \varphi_k, x_{k+1}, \dots, x_n) \\ \vdots & \vdots \\ \dot{x}_n = f_n(\varphi_1, \dots, \varphi_k, x_{k+1}, \dots, x_n) \end{cases}$$

Решив последнюю систему относительно x_{k+1}, \ldots, x_n , то есть понизив порядок системы на k, найдем остальные x_1, x_2, \ldots, x_k .