Mecánica Cuántica Avanzada Profesor: Álvaro Valdés de Luxán

Tarea 1

II Sean los operadores \hat{A} y \hat{B} definidos en el espacio desarrollado por los vectores $\{|u_1\rangle, |u_2\rangle\}$ como:

$$\hat{A} = -|u_1\rangle\langle u_2| - |u_2\rangle\langle u_1|$$

У

$$\hat{B} = 3|u_1\rangle\langle u_1| + 3|u_2\rangle\langle u_2| - |u_1\rangle\langle u_2| - |u_2\rangle\langle u_1|$$

Compruebe si los operadores conmutan aplicando el conmutador $[\hat{A}, \hat{B}]$ sobre una función cualquiera $|\Psi\rangle = C_1|u_1\rangle + C_2|u_2\rangle$. Encuentre los autovalores del operador \hat{B} , $\{|\psi_1\rangle, |\psi_2\rangle\}$, y compruebe que $\{\hat{A}|\psi_1\rangle, \hat{A}|\psi_2\rangle\}$ son también autovectores de \hat{B} . Por qué deberían ser los autovectores de \hat{B} también autovectores de \hat{A} ? Compruébelo.

2. Sean los operadores \hat{A} y \hat{B} definidos en el espacio desarrollado por los vectores $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$ como:

$$\hat{A} = |u_1\rangle\langle u_1| + |u_2\rangle\langle u_2| + |u_1\rangle\langle u_2| + |u_2\rangle\langle u_1| + |u_2\rangle\langle u_3| + |u_3\rangle\langle u_2| - |u_1\rangle\langle u_3| - |u_3\rangle\langle u_1|$$

У

$$\hat{B} = 3|u_1\rangle\langle u_1| + 3|u_2\rangle\langle u_2| + 2|u_3\rangle\langle u_3| + |u_1\rangle\langle u_2| + |u_2\rangle\langle u_1|$$

Represente matricialmente $|u_1\rangle, |u_2\rangle, |u_3\rangle, \langle u_1|, \langle u_2|$ y $\langle u_3|$. Calcule las matrices de los operadores \hat{A} y \hat{B} en la base $\{|u_i\rangle\}_{i=1,2,3}$ y compruebe si las matrices conmutan. Encuentre los autovalores y autovectores de \hat{A} y \hat{B} y calcule la matriz de \hat{A} en la base de autovectores de \hat{B} y viceversa. Encuentre una base común de autofunciones a partir del resultado anterior. Les recomiendo que usen Mathematica o algún otro lenguaje de programación para resolver las operaciones planteadas en este problema.

- Consideramos el espacio desarrollado por la base ortonormal $\{|n\rangle\}_{i=0,1,2,3,4}$. El operador \hat{a} actúa sobre los elementos de la base como $\hat{a}|n\rangle \equiv \sqrt{n|n-1\rangle}$ y el operador \hat{a}^{\dagger} lo hace como $\hat{a}^{\dagger}|n\rangle \equiv \sqrt{n+1|n+1\rangle}$. Muestre la representación matricial de los operadores \hat{a} y \hat{a}^{\dagger} en esta base. Calcule también la matriz del operador $\hat{N} = \hat{a}^{\dagger}\hat{a}$. Desarrolle estos operadores en la base $\{|n\rangle\}$ y compruebe cómo actúan sobre los vectores de la base.
- 1. Consideremos una rotación en el espacio desarrollado por $\{|u_1\rangle, |u_2\rangle\}$ definida como:

$$|\psi_1\rangle = \cos(\theta)|u_1\rangle + \sin(\theta)|u_2\rangle$$

$$|\psi_2\rangle = -\sin(\theta)|u_1\rangle + \cos(\theta)|u_2\rangle$$

Encuentre la matriz de la transformación U y su hermítica conjugada U^{\dagger} . Considere una matriz real que representa un operador hermítico \hat{A} en ese espacio. Encuentre la matriz del operador en el espacio rotado y encuentre el ángulo θ_0 que diagonaliza la matriz. Encuentre el ángulo de rotación que diagonaliza la matriz $\begin{pmatrix} a & a \\ -a \end{pmatrix}$ donde a es un número real. Use esta rotación para calcular los autovalores del operador y sus autovectores en la base original.

5. Use el método de Gram-Schmidt para ortogonalizar el conjunto formado por $\{x^n\}_{n=0,1,2,3,4}$ en el intervalo $-1 \le x \le 1$. Use Mathematica para comparar el conjunto obtenido con el formado por los polinomios de Legendre con n=0,1,2,3,4. Además, normalice las funciones y desarrolle $f(x) = \cos(x)\sin(x)$ en ese intervalo con las funciones obtenidas.