

When and Where does our Working Memory Take Place?

A multi-level sub-graph analysis of brain functional connectivities.

Maoran Xu, Leo Duan Department of Statistics, University of Florida

EEG Experiment and Working Memory

Analyzing Brain Connectivity

Task: compare the connectocomes among work loads over time.

Treed-SVD Decomposition

The Tree-Spanning Stiefel Space

For a given graph G=(V,E,A) with adjacency matrix A, we view it as a common signal-plus-noise graph

$$A = P\Lambda P^T + \mathcal{E},$$

where P is an orthonormal matrix and every column of P has a maximum of 2^{l-l} unique values. Λ is a diagonal matrix indicating the weight of each level.

We call such matrix space a Tree-Spanning Stiefel Space

$$\mathcal{V}_{\mathcal{T}}^{d imes n} = \mathcal{T}_d \cap \mathcal{V}^{d imes n}.$$

where

$$\mathcal{V}^{d imes n} \,=\, \{oldsymbol{P} \in \mathbb{R}^{n imes d}\,:\, oldsymbol{P}^\intercal oldsymbol{P} \,=\, oldsymbol{I}_d\}$$

and

$$\mathcal{T}_d = \{ \boldsymbol{P} \in \mathbb{R}^{n \times d} : P_{i,l} = P_{i',l} \text{ if } i, i' \in \mathcal{N}_{l,s} \ \forall l, s \}.$$

The Tree-Spanning Stiefel Space reduces the dimensionality while keeping the independence between different scales.

The Computing Algorithm

- Estimating the structure:
- 1. Compute the eigenvector of corresponding to the largest eigenvalue, and partition by the sign as \mathcal{T}_{k+1} .
 - 2. Maximize the conditional likelihood

$$L(P_{k+1}, \lambda_{k+1} | \tilde{\boldsymbol{A}}_{1:k}, \boldsymbol{A}) = \exp\{-||(\boldsymbol{A} - \tilde{\boldsymbol{A}}_{1:k}) - \lambda_{k+1} P_{k+1} P_{k+1}^\intercal||_F\}.$$

by solving the equivalent quadratic programming:

$$\max_{P_{k+1}} P_{k+1}^{\mathsf{T}} \left(\mathbf{A} - \tilde{\mathbf{A}}_{1:k} \right) P_{k+1}$$
subject to $\mathbf{P} \in \mathcal{V}_{\mathcal{T}}^{(k+1) \times n}$,

and set

$$\lambda_{k+1} = P_{k+1}^T A P_{k+1} .$$

Repeat step 1 and 2 until the sub-tree is not separable.

Change Point Detection

We model the change point detection task as a combination of Hidden Markov Model and clustering problem. Suppose there are K hidden states, where the center for the state is $\mu^{(k)}$. A_t belongs to state z_t .

The Hidden Markov Clustering

- 1. Conditioned on $\{z_t\}_t$, update $\{\mu^{(k)}\}_k$ using Treed-SVD algorithm.
- 2. Conditioned on $\{\mu^{(k)}\}_k$, update the latent assignment one-at-a-time, from the categorical distribution with

$$pr(z_t = k \mid z_{t-1}, z_{t+1}) = \frac{p_{z_{t-1}, k} p_{k, z_{t+1}} \exp\{-\|\boldsymbol{A}_t - \boldsymbol{\mu}^{(k)}\|\}}{\sum_{l=1}^{K} p_{z_{t-1}, l} p_{l, z_{t+1}} \exp\{-\|\boldsymbol{A}_t - \boldsymbol{\mu}^{(l)}\|\}}$$

3. Conditioned on $\{z_t\}_t$, update the transition probabilities by

$$(p_{k,1},\ldots,p_{k,K}) \sim \text{Dir}\{\alpha + \sum_{t=1}^{T} \mathbf{1}(z_{t-1} = k, z_t = 1),\ldots,\alpha + \sum_{t=1}^{T} \mathbf{1}(z_{t-1} = k, z_t = K)\}$$

The End

Thank you for listening.

Contact me: maoranxu at ufl dot edu