Master AI and Data Science HHU Düsseldorf

Exercise sheet 2

Exercise 3 (8 points, eigenvalues will be discussed on Tuesday)

Compute the eigenvalues of the following matrix (4 points):

$$A = \begin{pmatrix} 2 & 12 & 17 \\ 0 & 0 & 3 \\ 0 & 2 & -1 \end{pmatrix}$$

For each eigenvalue find a basis for its space of eigenvectors (4 points).

Exercise 4 (10 points)

Let A be an $n \times m$ -matrix (i.e. n rows, m columns) of rank n.

- (a) (3 points) Show that $x \mapsto A^T x$ is an injective map.
- **(b)** (5 points) Show that $A \cdot A^T$ is an invertible $n \times n$ -matrix.
- (c) (2 points) Conclude from (b) that if B is an $n \times m$ -matrix with m linearly independent columns, then $B^T \cdot B$ is an invertible $m \times m$ -matrix.

[Hint for (b): Prove and use that for a vector v we have $v^T \cdot v = 0$ if and only if v = 0.]

Exercise 5 (12 points)

A pseudoinverse of a matrix A is a matrix A^+ such that all of the following equations hold:

- (i) $AA^{+}A = A$
- (ii) $A^{+}AA^{+} = A^{+}$
- (iii) $(AA^{+})^{T} = AA^{+}$
- (iv) $(A^+A)^T = A^+A$.

Let A be an $n \times m$ -matrix with linearly independent columns. Show that $(A^T A)^{-1} A^T$ is a pseudoinverse of A (2 points for each property).

Show that for invertible matrices B one has $(B^T)^{-1} = (B^{-1})^T$ and use it on the way (2 points).

[Warning: By exercise 4 above, A^TA is indeed invertible – but A need not be invertible (not even quadratic), so you can in general not form A^{-1} .]

Exercise 6 (10 points)

Write a Python function that, given an invertible matrix A, returns a list of elementary matrices whose product is A.

See the Notebook in the download folder for hints and more details!