

Intro. Number Theory

Arithmetic algorithms

Representing bignums

Representing an n-bit integer (e.g. n=2048) on a 64-bit machine

Note: some processors have 128-bit registers (or more) and support multiplication on them

Arithmetic

Given: two n-bit integers

• Addition and subtraction: linear time O(n)

• Multiplication: naively O(n²). Karatsuba (1960): O(n¹.585)

Basic idea: $(2^{b}x_{2} + x_{1}) \times (2^{b}y_{2} + y_{1})$ with 3 mults.

Best (asymptotic) algorithm: about O(n log n).

• **Division with remainder**: O(n²).

Exponentiation

Finite cyclic group G (for example $G = \mathbb{Z}_p^*$)

Goal: given g in G and x compute gx

Example: suppose $x = 53 = (110101)_2 = 32+16+4+1$

Then:
$$g^{53} = g^{32+16+4+1} = g^{32} \cdot g^{16} \cdot g^4 \cdot g^1$$

$$g \longrightarrow g^2 \longrightarrow g^4 \longrightarrow g^8 \longrightarrow g^{16} \longrightarrow g^{32}$$
 g^{53}

The repeated squaring alg.

```
Input: g in G and x>0 ; Output: g^x write x = (x_n x_{n-1} ... x_2 x_1 x_0)_2
```

```
y \leftarrow g, z \leftarrow 1

for i = 0 to n do:

if (x[i] == 1): z \leftarrow z \cdot y

y \leftarrow y^2

output z
```

example: g ⁵³	
У	<u>Z</u>
g^2	g
g^4	g
g ⁸	g ⁵
g^{16}	g^5
g^{32}	g^{21}
g ⁶⁴	g ⁵³

Running times

Given n-bit int. N:

- Addition and subtraction in Z_N : linear time $T_+ = O(n)$
- Modular multiplication in Z_N : naively $T_{\times} = O(n^2)$
- Modular exponentiation in Z_N (g^X):

$$O((\log x) \cdot T_x) \le O((\log x) \cdot n^2) \le O(n^3)$$

End of Segment