

## Ideia: Espaços para Princípio de Sobreposição

#### Princípio de Sobreposição:

Adição: 
$$\begin{cases} \mathbf{v}_1 \to T(\mathbf{v}_1) \\ \mathbf{v}_2 \to T(\mathbf{v}_2) \end{cases} \implies \mathbf{v}_1 + \mathbf{v}_2 \to T(\mathbf{v}_1) + T(\mathbf{v}_2)$$

▶ Multiplicação por  $c \in \mathbb{R}$ :  $\mathbf{v} \to T(\mathbf{v}) \implies c\mathbf{v} \to c T(\mathbf{v})$ 

Logo: no espaço tem de ser definida adição e multiplicação por nos reais

(tal como já considerado para matrizes reais  $m \times n$ )

### Definição

Chama-se **espaço linear** ou **espaço vectorial real** (resp., **complexo**) a um conjunto  $V \neq \emptyset$  com uma **adição** em V (aos elementos de V chama-se **vectores**) e uma **multiplicação por nºs reais** (resp., **complexos**) (chama dos escalares) com as propriedades (as mesmas propriedades básicas para matrizes reais  $m \times n$ ):

- ▶ Fecho da adição:  $\mathbf{v}_1, \mathbf{v}_2 \in V \Rightarrow \mathbf{v}_1 + \mathbf{v}_2 \in V$
- ▶ Fecho da multiplicação por escalares:  $c \in \mathbb{R}$ ,  $v \in V \Rightarrow cv \in V$
- V com adição é um grupo comutativo (propriedades: associatividade, existência de 0 e de simétricos, e comutatividade)
- Multiplicação por nºs reais é associativa, distributiva em relação às adições de reais e de vectores, e 1v=v para v∈V.

$$0\mathbf{v} = 0$$
 e  $(-1)\mathbf{v} = -\mathbf{v}$ , para todo  $\mathbf{v} \in V$ .  
 $Dem$ . Se  $\mathbf{z} = 0\mathbf{v}$ , é  $\mathbf{z} + \mathbf{z} = 0\mathbf{v} + 0\mathbf{v} = (0+0)\mathbf{v} = 0\mathbf{v} = \mathbf{z}$ ; como  $\mathbf{z}$  tem simétrico  $\mathbf{y} \in V$ , é  $\mathbf{z} + \mathbf{z} + \mathbf{y} = \mathbf{z} + \mathbf{y} = 0$ ; logo,  $\mathbf{z} = 0$  e  $0\mathbf{v} = 0$  para todo  $\mathbf{v} \in V$ . Para a  $2^{\mathbf{a}}$ ,  $\mathbf{v} + (-1)\mathbf{v} = 1\mathbf{v} + (-1)\mathbf{v} = (1-1)\mathbf{v} = 0\mathbf{v} = 0$   $Q.E.D$ .

### Exemplos

1.  $\mathbb{R}^n$ , para cada  $n \in \mathbb{N}$  (incluindo  $\mathbb{R}$ , com n=1) com as operações definidas componente a componente

$$(u_1,\ldots,u_n)+(v_1,\ldots,v_n)=(u_1+v_1,\ldots,u_n+v_n)$$
  
 $c(u_1,\ldots,u_n)=(cu_1,\ldots,cu_n).$ 

Operações análogas às de matrizes coluna  $n \times 1$ , logo com as mesmas propriedades Portanto,  $\mathbb{R}^n$  com estas operações **é espaço linear real**.

2.  $\mathbb{R}^{m \times n}$ , o conjunto das matrizes  $m \times n$  com componentes reais, com a adição de matrizes e a multiplicação por nos reais usuais (componente a componente). É espaço linear real.

### Exemplos

3.  $\mathbb{R}^S$ , o conjunto das funções definidas em  $S \neq \emptyset$  com valores reais, com as operações definidas ponto

$$(f+g)(t) = f(t) + g(t),$$
  $(cf)(t) = c f(t),$   $t \in S.$ 

Verificar todas as propriedades!

Fecho da adição?  $f,g \in \mathbb{R}^S \Rightarrow f(t),g(t) \in \mathbb{R} \Rightarrow f(t)+g(t) \in \mathbb{R}$ , para  $t \in S$ . Logo, satisfaz Fecho da adição.

Fecho da multiplicação por escalares?

 $c \in \mathbb{R}, f \in \mathbb{R}^S \Rightarrow f(t) \in \mathbb{R} \Rightarrow c f(t) \in \mathbb{R}, \text{ para } t \in S.$ 

Logo, satisfaz Fecho da multiplicação por escalares.

 $\mathbb{R}^{S}$  com a adição é um grupo comutativo?

Sim, porque a adição é definida ponto a ponto pela adição de nos reais e  $\mathbb{R}$ , + é grupo comutativo (associatividade, comutatividade, existência de zero: função f(t)=0 para  $t\in S$ , existência de simétricos: simétrico de f é -f, (-f)(t)=-f(t) para  $t\in S$ )

### Exemplos

3. (cont.)

Associatividade da multiplicação por escalares? Sim, devido à associatividade da multiplicação de n°s reais:  $a, b \in \mathbb{R}, f \in \mathbb{R}^S \Rightarrow (ab)f(t) = a(bf(t))$ , para  $t \in S$ ; logo, (ab)f = a(bf) para  $a, b \in \mathbb{R}, f \in \mathbb{R}^S$ .

Distributividade da multiplicação por escalares pelas adições? Sim, devido à distributividade da multiplicação pela soma com reais:

se 
$$a,b\in\mathbb{R},f,g\in\mathbb{R}^S$$
, então 
$$[(a+b)f](t)=af(t)+bf(t)\,,\quad [a(f+g)](t)=af(t)+ag(t)\,,\quad t\in S\,.$$
 Logo,  $(a+b)f=af+bf$  e  $a(f+g)=af+ag$  para  $a,b\in\mathbb{R},f,g\in\mathbb{R}^S.$ 

1f = f?

Sim, porque 1 é a identidade da multiplicação de reais:

1f(t) = f(t) para  $t \in S$ . Logo, 1f = f para  $f \in \mathbb{R}^S$ .

Portanto, se  $S \neq \emptyset$ , então  $\mathbb{R}^S$  é espaço linear real.

 $\mathbb{R}^n$  é o caso particular de  $\mathbb{R}^S$  com  $S = \{1, ..., n\}$ , e  $\mathbb{R}^{m \times n}$  com  $S = \{1, ..., m\} \times \{1, ..., n\}$ .

### Exemplos

4.  $\mathbb{R}^{\mathbb{N}}$ , o conjunto das sucessões de termos reais, com as operações definidas termo a termo

$$\{u_n\} + \{v_n\} = \{u_n + v_n\}, \qquad c\{u_n\} = \{cu_n\}.$$
 É caso particular do exemplo anterior com  $S = \mathbb{N}$  É espaço linear real.

- 5.  $\mathbb{R}^+$ , nos reais positivos.  $\mathbb{R}^+ \subset \mathbb{R}$  e 0 de  $\mathbb{R}$  não pertence a  $\mathbb{R}^+$ . Logo,  $\mathbb{R}^+$  não é espaço linear.
- 6.  $\mathbb{R}^+ \cup \{0\}$ , n°s reais não negativos.  $\mathbb{R}^+ \cup \{0\} \subset \mathbb{R}$ ,  $1 \in \mathbb{R}^+ \cup \{0\}$ , e  $-1 \notin \mathbb{R}^+ \cup \{0\}$ . Logo,  $\mathbb{R}^+ \cup \{0\}$  não é espaço linear.
- 7.  $\mathbb{Z}$ , nos inteiros.  $1 \in \mathbb{Z}$ , mas  $\frac{1}{2}1 \notin \mathbb{Z}$ . Logo,  $\mathbb{Z}$  não é espaço linear.

## Subespaços lineares

Chama-se **subespaço linear** de um espaço linear V a um subconjunto  $S \subset V$  que é espaço linear com os mesmos escalares e operações de V.

 $\{0\}$ , V são subespaços lineares de qualquer espaço linear V. Os outros, quando existem, contêm  $\{0\}$  e estão contidos em V.

Se V é um espaço linear,  $S \subset V$  é subespaço linear de V se e só se  $S \neq \emptyset$  e satisfaz as propriedades de Fecho das operações.

Dem. Se S é subespaço linear de V, como é um espaço linear satisfaz as Propriedades de fecho das operações.

Reciprocamente, se  $S \subset V$  satisfaz estas propriedades, como as propriedades operatórias são válidas em V também são em S (associatividade e comutatividade da adição, associatividade e distributividade da multipl. por escalares pelas adições,  $1\mathbf{u} = \mathbf{u}$ ,  $\mathbf{u} \in S$ ). Resta ver que 0 em V e simétricos em V de elementos de S pertencem a S. Para  $\mathbf{u} \in S$  é  $0\mathbf{u} = 0 \in V$ ,  $-\mathbf{u} = (-1)\mathbf{u}$ . Do Fecho da multiplicação por escalares em S é 0,  $-\mathbf{u} \in S$ , para todo  $\mathbf{u} \in S$ . Q.E.D.

## Exemplos de subespaços lineares

Se V é espaço linear, para verificar se  $S \subset V$  é subespaço linear, basta verificar  $S \neq \emptyset$  e propriedades de FECHO das operações



# Exemplos de subespaços lineares

- 1. Conjunto S das matrizes reais  $n \times n$  triangulares inferiores.  $S \subset \mathbb{R}^{n \times n}$ , e  $\mathbb{R}^{n \times n}$  é espaço linear.  $S \neq \emptyset$  (e.g. contém a matriz 0). Fecho da adição e da multiplicação por escalares? Somas de matrizes triangulares inferiores e produtos de escalares por matrizes triangulares inferiores são triangulares inferiores:  $A, B \in S, c \in \mathbb{R} \Rightarrow A+B, cA \in S$ . Portanto, S é espaço linear real.
- 2. Conjunto S das matrizes  $m \times n$  com componentes que são n°s racionais, em  $\mathbb{Q}$ .  $S \subset \mathbb{R}^{m \times n}$ , e  $\mathbb{R}^{m \times n}$  é espaço linear. Fecho da multiplicação por escalares? A multiplicação de  $c \in \mathbb{R} \setminus \mathbb{Q}$  (e.g.  $\sqrt{2}$ ) por  $A \in S$  tem todas as componentes irracionais. Portanto, S não é espaço linear. Mas  $A, B \in S \Rightarrow A + B \in S$ ; logo, S satisfaz Fecho da adição!
- 3. Conjunto S dos pares ordenados com  $(a,b) \in \mathbb{R}^2$  e  $ab \ge 0$ .  $S \subset \mathbb{R}^2$  e  $\mathbb{R}^2$  é espaço linear. Fecho da adição?  $(0,1), (-1,0) \in S$  e  $(0,1)+(-1,0)=(-1,1) \notin S$ . Portanto, S não é espaço linear. Mas  $c \in \mathbb{R}$  e  $(a,b) \in S \Rightarrow c(a,b) \in S$ , pois  $(ca)(cb)=c^2ab \ge 0$ ; logo S satisfaz Fecho da multiplicação por escalares!

### Exemplos de subespaços lineares

4. Conjunto S das sucessões de n°s reais de Fibonacci  $u_{n+2} = u_{n+1} + u_n$  com as operações definidas termo a termo.

 $S \subset \mathbb{R}^{\mathbb{N}}$ , e  $\mathbb{R}^{\mathbb{N}}$  é espaço linear.  $S \neq \emptyset$  (e.g. contém a sucessão com todos os termos 0). Se u e v são sucessões de Fibonacci, então

$$u_{n+2} = u_{n+1} + u_n$$
,  $v_{n+2} = v_{n+1} + v_n$ .

Fecho da adição?

$$(u+v)_{n+2}=u_{n+2}+v_{n+2}=(u_{n+1}+u_n)+(v_{n+1}+v_n)=(u+v)_{n+1}+(u+v)_n.$$

Fecho da multiplicação por escalares?

$$(cu)_{n+2} = cu_{n+2} = c(u_{n+1} + u_n) = (cu)_{n+1} + (cu)_n$$

Portanto, *S* é espaço linear real.

### Exemplos de subespaços lineares

5. Conjunto  $P_n$  dos **polinómios** reais de **grau**  $\leq n$ , com  $n \in \mathbb{N} \cup \{0\}$ , ou seja das funções  $p: \mathbb{R} \to \mathbb{R}$ ,

$$p(t) = \sum_{k=0}^{m} a_k t^k = a_n t^n + a_{n-1} t^{n-1} + \cdots + a_1 t + a_0, \quad t \in \mathbb{R},$$

com  $a_0, \ldots, a_n \in \mathbb{R}$ , com adição e multiplicação por escalares usuais (o **grau** de p é o maior k tal que  $a_k \neq 0$  e o grau de p = 0 é 0).

 $P_n \subset \mathbb{R}^\mathbb{R}$  e  $\mathbb{R}^\mathbb{R}$  é espaço linear com as operações usuais:

$$\mathbb{R}^S$$
 já considerado, com  $S = \mathbb{R}$ .  $P \neq \emptyset$  (e.g.  $p = 0$  pertence a  $P$ ).

Fecho da adição? Sim, porque soma de polinómios de grau  $\leq n$  é polinómio de grau  $\leq n$ : se  $p(t) = \sum_{k=0}^n a_k t^k, q(t) = \sum_{k=0}^n b_k t^k$  para  $t \in \mathbb{R}$ , então  $(p+q)(t) = \sum_{k=0}^n (a_k + b_k) t^k$ , para  $t \in \mathbb{R}$ ; logo,  $p+q \in P_n$ .

Fecho da multiplicação por escalares?

$$c \in \mathbb{R}$$
,  $p(t) = \sum_{k=0}^{n} a_k t^k$ ,  $t \in \mathbb{R} \Longrightarrow cp(t) = c \sum_{k=0}^{n} a_k t^k = \sum_{k=0}^{n} ca_k t^k$ ; logo,  $cp \in P_n$ .

Portanto,  $P_n$  é espaço linear real.

### Exemplos de subespaços lineares

6. Conjunto P dos polinómios reais de qualquer grau com adição e multiplicação por escalares.  $P \subset \mathbb{R}^{\mathbb{R}}$ , e  $\mathbb{R}^{\mathbb{R}}$  é espaço linear.  $P \neq \emptyset$  (e.g. o polinómio p = 0 pertence a P).

Fecho da adição e da multiplicação por escalares? Do exemplo precedente, adição de polinómios é polinómio e multiplicação de escalar por polinómio é polinómio.

#### Portanto, *P* é espaço linear real.

7. Conjunto S dos polinómios reais de grau n com adição e multiplicação por escalares usuais.  $S \subset \mathbb{R}^{\mathbb{R}}$  é espaço linear com operações usuais (cf. exemplo S). Se  $n \in \mathbb{N}$ , então  $0 \notin S$ ;

S não é espaço linear.

Fecho da adição? Falha:  $t^n + (-t^n) = 0 \notin S$ . Fecho da multiplicação por escalares? Falha:  $0t^n = 0 \notin S$ .

### Exemplos de subespaços lineares

8.  $C^k(I,\mathbb{R})$  conjunto das funções com valores reais com derivada de ordem k ( $k \in \mathbb{N} \cup \{0,\infty\}$ ) contínua num intervalo  $I \subset \mathbb{R}$  com a adição e multiplicação usuais (para k=0 são as funções contínuas, para  $k=\infty$  as indefinidamente diferenciáveis).

 $C^k(I,\mathbb{R}) \subset \mathbb{R}^I$  e  $\mathbb{R}^I$  é espaço linear com as operações usuais.  $C^k(I,\mathbb{R}) \neq \emptyset$  (e.g. f = 0 pertence a  $C^k(I,\mathbb{R})$ ).

Fecho da adição? Soma de funções com derivada de ordem  $k \in \mathbb{N}$  tem derivada de ordem k, soma de funções contínuas é contínua:  $f,g \in C^k(I,\mathbb{R}) \Rightarrow f+g \in C^k(I,\mathbb{R})$ .

Fecho da multiplicação por escalares? Multiplicação de real por função com derivada de ordem  $k \in \mathbb{N}$  tem derivada de ordem k, multiplicação de real por função contínua é contínua:

$$c \in \mathbb{R}, f \in C^k(I, \mathbb{R}) \Rightarrow cf \in C^k(I, \mathbb{R}).$$

Portanto,  $C^k(I,\mathbb{R})$  é espaço linear real.

São subespaços lineares sucessivos  $\neq$ s incluídos uns nos outros:

$$C^{\infty}(I,\mathbb{R}) \subsetneq \cdots \subsetneq C^{k+1}(I,\mathbb{R}) \subsetneq C^{k}(I,\mathbb{R}) \subsetneq C^{k-1}(I,\mathbb{R}) \subsetneq \cdots \subsetneq C^{0}(I,\mathbb{R}) \subsetneq \mathbb{R}^{I}$$

### Exemplos de subespaços lineares

9. S das funções  $y \in C^2(I, \mathbb{R})$  que são soluções da equação diferencial ay'' + by' + cy = 0, com  $a, b, c \in \mathbb{R}$ , com as operações usuais.

$$S \subset C^2(I,\mathbb{R})$$
 e  $C^2(I,\mathbb{R})$  é espaço linear com as operações usuais.  $S \neq \emptyset$  (e.g.  $y = 0$  satisfaz  $y \in S$ ).

Fecho da adição? Se  $y_1, y_2 \in S$ ,

$$a(y_1+y_2)''+b(y_1+y_2)'+c(y_1+y_2)=(ay_1''+by_1'+cy_1)+(ay_2''+by_2'+cy_2)=0+0=0$$
.  
Logo,  $y_1, y_2 \in S \Rightarrow y_1+y_2 \in S$ .

Fecho da multiplicação por escalares? Se  $\alpha \in \mathbb{R}$ ,  $y \in S$ ,

$$a(\alpha y)'' + b(\alpha y)' + c(\alpha y) = \alpha(ay'' + by' + cy) = 0$$

Portanto, *S* é espaço linear real para quaisquer  $a, b, c \in \mathbb{R}$ .

### Exemplos de subespaços lineares

10. Conjunto  $S_{a,b}$  das funções com valores reais definidas num intervalo I que num ponto  $a \in I$  têm um valor b, com as operações usuais.

 $S_{a,b} \subset \mathbb{R}^I$  e  $\mathbb{R}^I$  é espaço linear com as operações usuais.

O zero de  $\mathbb{R}^l$  é a função identicamente 0, que pertence a  $S_{a,b}$  se e só se  $b\!=\!0$ . Logo, **só para**  $b\!=\!0$   $S_{a,b}$  **pode ser espaço linear**.

Verificação da condição necessária e suficiente dada:

$$S_{a,b} \neq \emptyset$$
 (e.g.  $f = b$  pertence a  $S_{a,b}$ ).

Fecho da adição?  $f, g \in S_{a,b} \Rightarrow (f+g)(a) = f(a) + g(a) = b + b = 2b$ . Sim se e só se 2b = b, ou seja b = 0.

Fecho da multiplicação por escalares?  $c \in \mathbb{R}, f \in S_{a,b} \Rightarrow (cf)(a) = c(f(a)) = cb$ . Sim,se e só se cb = 0 para todos  $c \in \mathbb{R}$ , ou seja b = 0.

Portanto, para qualquer  $a \in I$ ,  $S_{a,b}$  é espaço linear real se e só se b=0 (só  $S_{a,0}$  é espaço linear).

### Exemplos de subespaços lineares

11. Conjunto S das soluções de sistema de equações lineares homogéneo  $A\mathbf{x} = 0$ , em que A é matriz real  $m \times n$ .

 $S \subset \mathbb{R}^n$  e  $\mathbb{R}^n$  com as operações usuais é espaço linear.  $S \neq \emptyset$  , pois  $0 \in S$ .

Fecho da adição e da multiplicação por escalares? Princípio de sobreposição já obtido para soluções de Ax = 0.

Portanto, *S* é espaço linear real.

Designa-se  $\mathcal{N}(A)$ .

### Exemplos de subespaços lineares

12. Conjunto S das matrizes coluna  $m \times 1$   $\mathbf{b}$  tais que sistema de equações lineares  $A\mathbf{x} = \mathbf{b}$ , em que A é matriz real  $m \times n$ , tem solução, com as operações usuais.

 $S \subset \mathbb{R}^m$  e  $\mathbb{R}^m$  com as operações usuais é espaço linear.  $S \neq \emptyset$ , pois A0 = 0, logo  $\mathbf{b} = 0 \in S$ .

Fecho da adição?

$$\mathbf{b}_1, \mathbf{b}_2 \in S \Rightarrow \exists \mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n : A\mathbf{x}_1 = \mathbf{b}_1, A\mathbf{x}_2 = \mathbf{b}_2 : A(\mathbf{x}_1 + \mathbf{x}_2) = \mathbf{b}_1 + \mathbf{b}_2 : Logo, \ \mathbf{b}_1, \mathbf{b}_2 \in S \Rightarrow \mathbf{b}_1 + \mathbf{b}_2 \in S :$$

Fecho da multiplicação por escalares?  $c \in \mathbb{R}, \mathbf{b} \in S \Rightarrow \exists \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{b}. \ A(c\mathbf{x}) = c\mathbf{b}.$  Logo,  $c \in \mathbb{R}, \mathbf{b} \in S \Rightarrow c\mathbf{b} \in S$ .

Portanto, S é espaço linear real. Designa-se  $\mathcal{R}(A)$ .

# Operações de subespaços: Intersecção

Intersecções  $\cap_{a\in A} U_a$  de subespaços lineares  $U_a$ ,  $a\in A\neq\emptyset$ , de espaço linear V são subespaços lineares de V.

*Dem.*  $\cap_{a \in A} U_a \subset V$  e V é espaço linear.  $\cap_{a \in A} U_a \neq \emptyset$  pois 0 de V pertence a  $U_a$  para todo  $a \in A$ , logo,  $0 \in \cap_{a \in A} U_a$ .

Fecho da adição? Se  $\mathbf{u}, \mathbf{v} \in \cap_{a \in A} U_a$ , então  $\mathbf{u}, \mathbf{v} \in U_a$  para todo  $a \in A$ . Como  $U_a$  é espaço linear, Fecho da adição em  $U_a \Rightarrow \mathbf{u} + \mathbf{v} \in U_a$ , todo  $a \in A$ . Logo,  $\mathbf{u} + \mathbf{v} \in \cap_{a \in A} U_a$ .

Fecho da multiplicação por escalares? Idem. Q.E.D.

# Operações de subespaços: Intersecção – exemplos

#### Exemplo:

 $\mathbb{R}^{3\times3}$  espaço linear real das matrizes reais  $3\times3$  com as operações usuais

 $U_1$  subespaço linear das matrizes  $3 \times 3$  triangulares inferiores

 $U_2$  subespaço linear das matrizes  $3 \times 3$  triangulares superiores

 $U_1 \cap U_2 =$  é subespaço linear; vectores são as matrizes  $3 \times 3$  diagonais

### Produto cartesiano de conjuntos

Chama-se **produto cartesiano** de um nº finito de conjuntos  $U_1, \ldots, U_n$  a  $\times_{j=1}^n U_j = U_1 \times \cdots \times U_n = \{(u_1, \ldots, u_n) \colon u_j \in U_j \ , \ j=1, \ldots, n\}$ . É o conjunto das funções  $f: \{1, \ldots, n\} \to \cup_{j=1}^n U_j$  tais que  $f(j) \in U_j$  para  $j=1,\ldots,n$ .

Chama-se **produto cartesiano** de um conjunto infinito numerável de conjuntos  $U_1, U_2, \ldots$  a

$$\times_{j\in\mathbb{N}} U_j = \times_{j=1}^{\infty} U_j = U_1 \times U_2 \times \cdots = \{(u_1, u_2, \ldots) : u_j \in U_j, j \in \mathbb{N}\}$$
$$= \{\{u_n\}_{n\in\mathbb{N}} : u_n \in U_n\}.$$

É o conjunto das funções  $f: \mathbb{N} o \cup_{j \in \mathbb{N}} U_j$  tais que  $f(j) \in U_j$  para  $j \in \mathbb{N}$  .

Definição geral de produto cartesiano: Se  $A \neq \emptyset$  é qualquer conjunto, chama-se **produto cartesiano** dos conjuntos em  $\{U_a\}_{a \in A}$  ao conjunto das funções  $f: A \rightarrow \bigcup_{a \in A} U_a$  tais que  $f(a) \in U_a$  para  $a \in A$ . É consistente com as definicões anteriores.

Se A não é finito, a definição pressupõe o **Axioma de Escolha**. Este axioma equivale a: O produto cartesiano de conjuntos  $\neq \emptyset$  é  $\neq \emptyset$ . Se A é finito, este axioma não é preciso: prova-se por indução.

### Operações: Produto cartesiano

Produtos cartesianos  $\times_{a\in A}U_a$ , de espaços lineares  $U_a$ , com  $A\neq\emptyset$ , com os mesmos escalares, e com adição e multiplicação por escalares definidas componente a componente pelas correspondentes operações nos espaços  $U_a$  são espaços lineares.

*Dem.* Verificar que  $V = \times_{a \in A} U_a$  satisfaz todas condições da definição!

$$V \neq \emptyset$$
?  $f(a) = 0 \in U_a$  para  $a \in A \Rightarrow f \in V$ .

Fecho da adição e da multiplicação por escalares?

Associatividade do produto por escalares e distributividade pelas adições de escalares e vectores?  $1\mathbf{v} = \mathbf{v}$ ?

Válidas em consequência da definição das operações, porque em cada componente  $a \in A$  são válidas, pois  $U_a$ ,  $a \in A$ , são espaços lineares.

V com a adição é grupo comutativo?

Associatividade e comutatividade válidas pela mesma razão.

Zero:  $f \in V$  tal que  $f(a) = 0 \in U_a$ .

Simétrico de  $f \in V$ :  $h \in V$  com  $h(a) = -f(a) \in U_a$ . Q.E.D

Antes, forma simples de determinar se conjuntos menores do que um espaço linear são espaços lineares: **axiomas de fecho**; agora, forma simples para **certos** conjuntos maiores: **produtos cartesianos**.

# Operações: Produto cartesiano – exemplos

- 1.  $\mathbb{R}^n$ ,  $\mathbb{R}^\mathbb{N}$ ,  $\mathbb{R}^\mathbb{R}$ ,  $\mathbb{R}^S$  com  $S \neq \emptyset$ , já vistos directamente.
- 2. Conjunto das sucessões de matrizes reais  $2\times 3$ ,  $(\mathbb{R}^{2\times 3})^{\mathbb{N}}$ , com as operações definidas componente a componente e as operações usuais de matrizes em cada componente.
- 3. Conjunto das sucessões de funções reais contínuas definidas em [0,1],  $C^0([0,1])^{\mathbb{N}}$ .
- 4.  $\times_{k \in \mathbb{N} \cup \{0\}} C^k(I, \mathbb{R})$  em que  $I \subset \mathbb{R}$  é um intervalo em  $\mathbb{R}$ , com as operações usuais de funções em cada componente.

# Operações de subespaços: União

Uniões de subespaços lineares de espaço linear V são espaços lineares? Podem não ser.

```
Contraexemplo: U = \{(x,0) \in \mathbb{R}^2\}, V = \{(0,y) \in \mathbb{R}^2\}. U, V \subset \mathbb{R}^2 e \mathbb{R}^2 é espaço linear. (1,0), (0,1) \in U \cup V e (1,1) \notin U \cup V. Para U \cup V falha Fecho da adição. (não falha Fecho da multiplicação por escalares)
```

Menor subespaço linear S de  $\mathbb{R}^2$  que contém  $U \cup V$ ? Para validade de Fecho da Adição, tem de ser  $(x,y)=(x,0)+(0,y)\in S$ , para todo  $x,y\in \mathbb{R}$ . Logo,  $S=\mathbb{R}^2$ .

É propriedade geral.

# Operações de subespaços: Soma

Chama-se **soma** de subconjuntos U, V de espaço linear W ao conjunto de todas as somas de vectores de U com vectores de V, ou seja a  $U+V=\{\mathbf{u}+\mathbf{v}:\mathbf{u}\in U,\mathbf{v}\in V\}$ .

Soma U+V de subespaços lineares U,V de espaço linear W é subespaço de W. É o menor subespaço de W que contém  $U\cup V$ .

*Dem.*  $U+V\subset W$  devido ao Fecho da adição no espaço linear W.  $U+V\neq\emptyset$  (e.g. contém 0=0+0; como U,V são espaços lineares  $0\in U,0\in V$ ).

Fecho da adição? Se  $\mathbf{w}_1, \mathbf{w}_2 \in U + V$ , então  $\mathbf{w}_1 = \mathbf{u}_1 + \mathbf{v}_1$ ,  $\mathbf{w}_2 = \mathbf{u}_2 + \mathbf{v}_2$ , com  $\mathbf{u}_1, \mathbf{u}_2 \in U$ ,  $\mathbf{v}_1, \mathbf{v}_2 \in V$ . Logo,

 $\mathbf{w}_1 + \mathbf{w}_2 = (\mathbf{u}_1 + \mathbf{v}_1) + (\mathbf{u}_2 + \mathbf{v}_2) = (\mathbf{u}_1 + \mathbf{u}_2) + (\mathbf{v}_1 + \mathbf{v}_2) \in U + V$ , do Fecho da adição nos espaços U, V.

Fecho da multiplicação por escalares? Se  $c \in \mathbb{R}$ ,  $\mathbf{w} \in U + V$ , então  $\mathbf{w} = \mathbf{u} + \mathbf{v}$ , com  $\mathbf{u} \in U$ ,  $\mathbf{v} \in V$ . Logo,  $c\mathbf{w} = c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v} \in U + V$ ,

do Fecho da multiplicação por escalares nos espaços U,V.

Portanto U+V é espaço linear.

Se  $S \supset U \cup V$  é subespaço linear de W e  $U, V \subset W$ , então  $U + V \subset S$  porque a adição é fechada em S. Q.E.D.

# Combinações e expansões lineares

#### A união de dois subespaços lineares de um espaço linear é espaço linear se e só se um é subconjunto do outro

*Dem.* Sejam  $U, V \subset W$  espaços lineares.

Se  $U \subset V$ ,  $U \cup V = V$  é espaço linear.

Se  $U \cup V$  é espaço linear, então  $U \cup V = U + V$ , pois este é o menor subespaço linear de W que contém  $U \cup V$ .

Se  $U \nsubseteq V$ , existe  $\mathbf{u} \in U \setminus V$ ; para todo  $\mathbf{v} \in V$  é  $\mathbf{u} + \mathbf{v} \in U + V = U \cup V$ , pelo que  $\mathbf{u} + \mathbf{v} \in U$  ou  $\mathbf{u} + \mathbf{v} \in V$ ; não pode ser o 2° caso, pois seria  $\mathbf{u} = (\mathbf{u} + \mathbf{v}) + (-\mathbf{v}) \in V$ , e  $\mathbf{u} \notin V$ ; logo, é o 1° caso, e  $\mathbf{v} = (-\mathbf{u}) + (\mathbf{u} + \mathbf{v}) \in U$ . Portanto, se  $U \nsubseteq V$ , é  $V \subset U$ , ou seja  $U \subset V$  ou  $V \subset U$ . Q.E.D.

# Combinações e expansões lineares

Como todo espaço linear V satisfaz o Fecho da adição e da multiplicação por escalares, o menor subespaço linear de V que contém  $\emptyset \neq S \subset V$  é o conjunto das **somas finitas** de vectores de S multiplicados por escalares.

Diz-se que um vector  $\mathbf{v}$  de um espaço linear V é **combinação linear** dos vectores  $\mathbf{v}_1, \dots, \mathbf{v}_k$  se  $\mathbf{v} = \sum_{j=1}^k c_j \mathbf{v}_j$ , com  $c_1, \dots, c_k$  escalares.

Se A é uma matriz real  $m \times n$  e  $\mathbf{u}$  é uma matriz coluna real  $n \times 1$ , então  $(A\mathbf{u})_i = \sum_{j=1}^n a_{ij} u_j, \ i=1,\ldots,m$ . Designando as colunas de A por  $\mathbf{a}_j = (a_{1j},\ldots,a_{mj})$  é  $A\mathbf{u} = \sum_{j=1}^n u_j \mathbf{a}_j$ . Logo,  $A\mathbf{u}$  é a **combinação linear das colunas de** A com coeficientes que são as componentes de  $\mathbf{u}$ , por ordem.

Chama-se **expansão linear** ou **espaço gerado** por um subconjunto  $S \neq \emptyset$  de um espaço linear V, ao conjunto de todas as combinações lineares de elementos de S. Designa-se por  $\mathcal{L}(S)$ . Diz-se que S **gera**  $\mathcal{L}(S)$ . Se  $S = \emptyset$ , define-se  $\mathcal{L}(S) = \{0\}$ .

# Combinações e expansões lineares

Se V é um espaço linear e  $\emptyset \neq S \subset V$ , então  $\mathcal{L}(S)$  é um espaço linear. É o menor subespaço linear de V que contém S.

Dem. Como V é um espaço linear, o Fecho da adição e da multiplicação por escalares em V garantem  $\sum_{j=1}^k c_j \mathbf{v}_j \in V$  para  $\mathbf{v}_j \in V$  e  $c_j$  escalares,  $j=1,\ldots,k$ ; logo,  $\mathcal{L}(S) \subset V$ .  $\mathcal{L}(S) \neq \emptyset$  (e.g.  $0=0\mathbf{v} \in \mathcal{L}(S)$ , com  $\mathbf{v} \in S$ ).

Fecho da Adição? Se  $\mathbf{u}, \mathbf{v} \in \mathcal{L}(S)$ , então  $\mathbf{u} = \sum_{i=1}^k a_i \mathbf{u}_i$ ,  $\mathbf{v} = \sum_{j=1}^m b_j \mathbf{v}_j$ , com  $\mathbf{u}_i, \mathbf{v}_j \in S$  e  $a_i, b_j$  escalares,  $i = 1, \ldots, k, j = 1, \ldots, m$ . Logo,  $\mathbf{u} + \mathbf{v} = \sum_{i=1}^k a_i \mathbf{u}_i + \sum_{j=1}^m b_i \mathbf{v}_j \in \mathcal{L}(S)$ .

Fecho da multiplicação por escalares? Se c é escalar,  $c\mathbf{u} = c \sum_{i=1}^{k} a_i \mathbf{u}_i = \sum_{i=1}^{k} c a_i \mathbf{u}_i \in \mathcal{L}(S)$ .

Portanto,  $\mathcal{L}(S)$  é subespaço linear de V.

Todo subespaço linear de um espaço linear V que contém  $\emptyset \neq S \subset V$ , para satisfazer o Fecho da adição e da multiplicação por escalares tem de conter todas as combinações lineares de elementos de S; logo, tem de conter  $\mathcal{L}(S)$ . Q.E.D.

### Expansão linear: exemplos

#### Exemplos:

- 1. O espaço linear  $\mathbb{R}^2$  é gerado por qualquer dos conjuntos  $\{(1,0),(0,1)\}, \qquad \{(1,1),(-1,1)\}, \qquad \{(1,0),(0,1),(1,1)\}, \\ \{(1,0),(0,k)\colon k\!=\!1,\ldots,m\}\,, \text{ qualquer } m\!\in\!\mathbb{N}\,, \\ \{(x,y)\colon x,y\!\in\!\mathbb{N}\}, \qquad \{(x,y)\colon x,y\!\in\!\mathbb{R}\}, \qquad \{(x,y)\colon x,y\!\in\!]0,1[\,\}\,$  Nenhum conjunto com 1 elemento gera  $\mathbb{R}^2$ .
- 2. A recta de declive 2 em  $\mathbb{R}^2$  que passa em (0,0),  $L=\{(x,2x)\colon x\in\mathbb{R}\}$ , é um espaço linear gerado por qualquer dos conjuntos  $\{(1,2)\}$ ,  $\{(1,2),(-2,-4)\}$ ,  $\{(k,2k),(0,0)\colon k=1,\ldots,m\}$ , qualquer  $m\in\mathbb{N}$ ,  $\{(x,2x)\colon x\in\mathbb{N}\}$ ,  $\{(x,2x)\colon x\in\mathbb{R}\}$ ,  $\{(x,2x)\colon x\in\mathbb{N}\}$ ,  $\{(x,2x)\colon x\in\mathbb{N}$

# Expansão linear: exemplos

3. O espaço linear  $P_n$  dos polinómios de grau  $\leq n$ , com  $n \in \mathbb{N}$  é gerado por qualquer dos conjuntos de polinómios  $\{p_0, \ldots, p_n\}, p_i(t) = t^j, t \in \mathbb{R}$ ,

$$\{q_0,\ldots,q_n\},\ q_j(t)=t,\ t\in\mathbb{R},\ \{r_0,\ldots,r_n\},\ r_j(t)=\frac{t^j}{j!},\ t\in\mathbb{R}.$$
 Não pode ser gerado por conjunto com menos de  $n+1$  elementos

4. O espaço linear de todos os polinómios reais é gerado pelo conjunto infinito numerável  $\{p_0,p_1,\ldots\}$ , com  $p_j(t)=t^j$ ,  $j\in\mathbb{N}$ . Não é gerado por qualquer conjunto finito.

# Expansão linear: exemplos

5. Se A uma matriz real  $m \times n$ , o espaço dos termos independentes  $\mathbf{b} \in \mathbb{R}^m$  para que o sistema  $A\mathbf{x} = \mathbf{b}$  tem solução é gerado pelas colunas de A, porque  $A\mathbf{x}$  é a combinação linear das colunas de A com coeficientes que são, por ordem, as componentes de  $\mathbf{x}$ .

Chama-se **espaço das colunas de** A, designado  $\mathcal{R}(A)$ . É subespaço linear de  $\mathbb{R}^m$ .

Chama-se **espaço das linhas de** A ao gerado pelas linhas de A. É  $\mathcal{R}(A^t)$ . É subespaço linear de  $\mathbb{R}^n$ .

Um sistema de equações lineares Ax = b tem solução se e só se b pertence ao espaço das colunas de A (i.e.  $b \in \mathcal{R}(A)$ ).

### Independência linear

Diz-se que  $\mathbf{v}_1,\ldots \mathbf{v}_n \in V$ , em que V é um espaço linear são **vectores linearmente independentes** se a única combinação linear deles igual a 0 tem todos os coeficientes 0, *i.e.*  $\sum_{j=1}^n c_j \mathbf{v}_j = 0 \Rightarrow c_j = 0, j = 1,\ldots,n$ . Caso contrário diz-se que são **vectores linearmente dependentes**.

Diz-se que  $S \subset V$  é um **conjunto linearmente independente** se qualquer n° finito de seus elementos são vectores linearmente independentes.

Caso contrário diz-se que é um conjunto linearmente dependente.

# Independência linear: exemplos

No espaço linear das matrizes reais  $3\times4$  as colunas da matriz real A são linearmente independentes? E as linhas?

$$A = \begin{bmatrix} 1 & 2 & -2 & 0 \\ -2 & 0 & 4 & 0 \\ 3 & 0 & -6 & 1 \end{bmatrix}$$

$$\begin{array}{lll} 3^{\text{a}} \text{ coluna} = 1^{\text{a}} \text{ multiplicada por } -2\,; \\ \logo, \ 2(1,-2,3) + 0(2,0,0) + (-2,4,-6) + 0(0,0,1) = 0\,; \\ \text{portanto, as colunas são linearmente dependentes.} \\ \text{Uma combinação linear das linhas} = 0 \text{ equivale a} \\ c_1(1,2,-2,0) + c_2(-2,0,4,0) + c_3(3,0,-6,1) = 0\,, \\ \text{que equivale a} \\ & c_1 - 2c_2 + 3c_3 = 0 \\ & 2c_1 = 0 \\ & -2c_1 + 4c_2 - 6c_3 = 0 \\ & c_2 = 0 \end{array}$$

ou seja  $c_1 = c_3 = 0$ , e, em consequência,  $c_2 = 0$ ; logo, as linhas são linearmente independentes.

# Independência linear: propriedades gerais

Sejam  $v_1, \dots v_n$  vectores de um espaço linear V:

- ▶ Se incluem o vector 0, são linearmente dependentes. Dem. Se  $\mathbf{v}_j = 0$  para um  $j \in \{1, \dots, n\}$ ,  $\sum_{\substack{i=1 \ i \neq i}} 0 \mathbf{v}_i + 1 \mathbf{v}_j = 0$ . Q.E.D.
- Se incluem vectores iguais, são linearmente dependentes. Dem. Se  $\mathbf{v}_j = \mathbf{v}_k$  para uns  $j \neq k \in \{1, \dots, n\}$ ,  $\sum_{\substack{i=1 \ i \neq j,k}} 0 \mathbf{v}_i + \mathbf{v}_j + (-1) \mathbf{v}_j = 0$ . Q.E.D.
- ▶ Se alguns são linearmente dependentes, todos são.

  Dem. Há uma combinação linear dos vectores linearmente
  dependentes com coeficientes não todos 0. Adicionando uma
  combinação linear dos outros com coeficientes 0 obtém-se uma
  combinação linear = 0 com coeficientes que não são todos 0. Q.E.D.

  ⇒ Se são linearmente independentes, quaisquer deles são.
- ▶ São linearmente dependentes se e só se pelo menos um deles é combinação linear dos outros. Dem. Se são linearmente dependentes, há combinação linear  $\sum_{j=1}^n c_j \mathbf{v}_j = 0 \text{ com pelo menos um } c_k \neq 0 \text{ , e } \mathbf{v}_k = -\sum_{j \neq k} \frac{c_j}{c_k} \mathbf{v}_j.$  Reciprocamente, se  $\mathbf{v}_k = \sum_{j \neq k} a_j \mathbf{v}_j$  , então  $\sum_{j=1}^n a_j \mathbf{v}_j = 0$  , com  $a_k = -1$  , pelo que os vectores são linearmente dependentes. Q.E.D.

### Independência linear e sistemas de equações lineares

Os vectores nas colunas de uma matriz com componentes escalares A  $m \times n$  são linearmente independentes se e só se o sistema de equações lineares homogéneo Ax=0 tem solução única.

*Dem.* Como  $A\mathbf{x}$  é a combinação linear das colunas de A com coeficientes que são as componentes de  $\mathbf{x}$ , na mesma ordem,  $A\mathbf{x} = 0$  tem solução única (0) se e só se as colunas de A são linearmente independentes. Q.E.D.

Quaisquer n > m vectores de  $\mathbb{R}^m$  são linearmente dependentes. Dem. Ax = 0 tem  $\infty$  soluções; resultado imediato do precedente. Q.E.D.

### Bases de espaço linear

Chama-se **base** de um espaço linear V a um conjunto  $B \subset V$  linearmente independente que gera V.

Chama-se **dimensão** de V à cardinalidade de uma base B de V e escreve-se  $\dim V = \#B$ .

(É preciso provar que é a mesma para todas bases)

Diz-se que o subespaço linear  $\{0\}$  de um espaço linear V tem **dimensão zero** e escreve-se  $\dim\{0\}=0$ ; também se considera de dimensão finita.

Diz-se que V tem **dimensão infinita** se cardinalidade de bases não é finita; não distinguindo  $\neq$ s cardinalidades infinitas escreve-se  $\dim V = \infty$ .

 $\#\mathbb{N} < \#\mathbb{R}$ . Há conjuntos com cardinalidade maior. Exemplo?

#### Bases de espaço linear

Se B é base de um espaço linear V, cada vector de V tem representação única como combinação linear de elementos de B.

*Dem.* Se  $\mathbf{v} = \sum_{j=1}^{m} a_j \mathbf{v}_{\lambda_j}$  e  $\mathbf{v} = \sum_{k=1}^{n} b_k \mathbf{v}_{\alpha_k}$ , subtraindo, obtém-se

$$\sum_{j=1}^m a_j \mathbf{v}_{\lambda_j} - \sum_{k=1}^n b_k \mathbf{v}_{\alpha_k} = 0.$$

Como elementos de B são linearmente independentes, agrupando os que correspondem aos mesmos vectores obtém-se uma combinação linear com coeficientes 0; logo, coeficientes  $a_j$ ,  $b_k$  de vectores iguais nas duas somas são iguais, e coeficientes de vectores só numa das somas são 0. Q.E.D.

Chama-se **componentes** ou **coordenadas** de um vector  $\mathbf{v}$  numa base B de um espaço linear V aos coeficientes de combinações lineares de elementos de B que são iguais a  $\mathbf{v}$ .

Para cada  $\mathbf{v} \in V$  apenas um nº finito dos coeficientes podem ser  $\neq 0$  e são únicos para cada correspondente elemento da base.

Bases de espaço linear V são sistemas de referência ou de coordenadas.

Cada vector  $\neq 0$  tem nº finito de coordenadas  $\neq 0$ , únicas.

#### Revisão: Bases e dimensão de espaço linear

**Base** de um espaço linear V é um conjunto  $B \subset V$  linearmente independente que gera V.

**Dimensão** de V é a cardinalidade de uma base B de V,  $\dim V = \#B$ . (é a mesma para todas bases de um mesmo espaço linear)

V tem **dimensão infinita** se cardinalidade de bases não é finita; não distinguindo  $\neq$ s cardinalidades infinitas escreve-se  $\dim V = \infty$ .

Define-se que subespaço linear  $\{0\}$  de espaço linear V tem **dimensão zero** ,  $\dim\{0\}=0$  ; também se considera de dimensão finita.

**Componentes** ou **coordenadas** de vector  $\mathbf{v}$  em base B de espaço linear V são os coeficientes da combinação linear de elementos de B que dá  $\mathbf{v}$ .

Base de espaço linear V é **sistema de referência** ou **de coordenadas** de V.

#### Dimensão

**Teorema da Dimensão:** Todo espaço linear  $V \neq \{0\}$  tem bases, todas com a mesma cardinalidade (o nº de elementos no caso de conjuntos finitos), chamada **dimensão de** V e designada  $\dim V$ . Todo  $S \subset V$  com  $\#S > \dim V$  é linearmente dependente.

Dem. Prova-se aqui só para dimensão finita.

Seja  $B = \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$  uma base de V e  $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\} \subset V$  com m < n. Como  $B_1$  gera V,  $\mathbf{v}_j = \sum_{i=1}^m c_{ij} \mathbf{u}_i$ . Como m < n, o sistema  $C\mathbf{x} = 0$  com  $C = [c_{ij}]_{i,i=1}^{m,n}$  tem  $\infty$  soluções, em particular soluções  $\mathbf{x} \neq 0$ , e

$$\sum_{j=1}^{n} x_{j} \mathbf{v}_{j} = \sum_{j=1}^{n} x_{j} \sum_{i=1}^{m} c_{ij} \mathbf{u}_{i} = \sum_{i=1}^{m} \left( \sum_{j=1}^{n} c_{ij} x_{j} \right) \mathbf{u}_{i} = 0,$$

pelo que S é linearmente dependente. Logo, não há qualquer base de V com mais elementos do que uma outra base de V. Q.E.D.

Prova-se para dim=∞ supondo validade do Axioma de Escolha. Foi provado em 1984 que Axioma de Escolha ⇔Teorema da Dimensão.

Bases dos espaços de colunas/linhas de matrizes em escada de linhas

#### Se U é uma matriz em escada de linhas:

- ► As colunas com pivots são uma base do espaço das colunas R(U). Dem. Se C é a matriz das colunas de U com pivots, Cx=0 tem solução única. Logo, as colunas de C são linearmente independentes. Portanto, são base de R(C). C é triangular superior com pivots na diagonal principal até às linhas 0 de U. Se v é uma combinação linear de colunas de U, as componentes correspondentes a estas linhas são 0 e, portanto, Cx=v tem solução; logo, R(U)=R(C). Portanto, as colunas de C são uma base de R(U). Q.E.D.
- ▶ As linhas  $\neq 0$  são uma base do espaço das linhas. Dem. As colunas de  $U^t$  com pivots são as  $\neq 0$ . Do resultado precedente são uma base do espaço das colunas de  $U^t$ . Logo, são uma base do espaço das linhas de U. Q.E.D.

#### Independência linear, bases e dimensão - exemplos

1. No espaço linear  $\mathbb{R}^n$ , os vectores  $\mathbf{e}_1, \dots, \mathbf{e}_n$  que são as colunas da matriz identidade  $I_n$ ,

$$\mathbf{e_1} = (1, 0, \dots, 0), \quad \mathbf{e_2} = (0, 1, 0, \dots, 0), \quad \dots, \quad \mathbf{e_n} = (0, \dots, 0, 1)$$

são linearmente independentes, pois  $I_n$  é matriz em escada de linhas com pivots em todas colunas ( $I_n$ **c**=0 tem solução única **c**=0).

$$\mathcal{L}(\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}) = \Big\{ \sum_{j=1}^n c_j \mathbf{e}_j = I_n \mathbf{c} = \mathbf{c} = (c_1,\ldots,c_n) : c_1,\ldots,c_n \in \mathbb{R} \Big\} = \mathbb{R}^n.$$

Logo,  $\{\mathbf{e_1},\ldots,\mathbf{e_n}\}$  é uma base de  $\mathbb{R}^n$ . dim  $\mathbb{R}^n=n$ .

Chama-se à base ordenada  $(e_1, \ldots, e_n)$  base canónica de  $\mathbb{R}^n$ . As componentes ou coordenadas de um vector  $\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$  na base canónica são  $x_1, \ldots, x_n$ , por ordem, pois  $\mathbf{x} = \sum_{j=1}^n x_j \mathbf{e_j}$ .

Representar geometricamente a base canónica de  $\mathbb{R}^n$ , n=1,2,3.

#### Independência linear, bases e dimensão - exemplos

2. O conjunto  $S = \{(1,2), (0,1)\} \subset \mathbb{R}^2$  é linearmente independente? Sim, porque um não é igual ao outro multiplicado por um escalar. S gera  $\mathbb{R}^2$ ?

A matriz com os elementos de S nas colunas  $A=\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$  é não singular, pois é uma matriz elementar.

Para  $(x, y) \in \mathbb{R}^2$  arbitrário,  $A\mathbf{c} = \begin{bmatrix} x \\ y \end{bmatrix}$  tem solução. Logo,  $\mathbb{R}^2 = \mathcal{L}(S)$ . S é uma base de  $\mathbb{R}^2$ .

As componentes de um vector de  $\mathbb{R}^2$ , *e.g.* (1,0) na base ordenada ((1,2),(0,1)) são  $(c_1,c_2)$  tais que  $A\mathbf{c} = \begin{bmatrix} 1\\0 \end{bmatrix}$ ; logo,

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = A^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

Representar geometricamente

#### Independência linear, bases e dimensão - exemplos

3. Ao espaço linear das soluções da equação homogénea Ux=0, chama-se **espaço nulo** ou **núcleo** de U, designado  $\mathcal{N}(U)$ , e chama-se **nulidade** de U a nul  $U = \dim \mathcal{N}(U)$ . Cada elemento de  $\mathcal{N}(U)$  é combinação linear de vectores com coeficientes que são as incógnitas livres, pois a solução geral é  $\mathbf{x} = \sum_{i=1}^{n-r} x_{i_i} \mathbf{u}_{i_i}$ , em que  $x_{i_1}, \dots, x_{i_{n-r}}$  são as incógnitas livres (n é o n° de colunas de U e  $r = \operatorname{rank} U$ ). Logo,  $\mathcal{N}(U) = \mathcal{L}(\{\mathbf{u}_i, \dots, \mathbf{u}_i\})$ . Se  $\{\mathbf{u}_{i_1}, \dots, \mathbf{u}_{i_{n-r}}\}$  fosse linearmente dependente, um dos vectores seria combinação linear dos outros e a solução geral poderia ser expressa com menos uma incógnita livre, o que é falso; logo,  $\{\mathbf{u}_{i_1}, \dots, \mathbf{u}_{i_{n-r}}\}$  é linearmente independente. Portanto,  $\{\mathbf{u}_{i_1}, \dots, \mathbf{u}_{i_{n-r}}\}$  é uma base de  $\mathcal{N}(U)$ .  $\dim \mathcal{N}(U) = n - r$ . os n-r vectores ( $n=n^{\circ}$  de colunas de U, r=característica de U)

os n-r vectores ( $n=n^\circ$  de colunas de U, r=característica de U) que são as soluções de Ux=0 obtidas com uma incógnita livre =1 e as outras 0 são uma base do espaço nulo de U.

$$\dim \mathcal{R}(U) + \dim \mathcal{N}(U) = n$$
,  $\operatorname{rank} U + \operatorname{nul} U = n$ .

#### Independência linear, bases e dimensão - exemplos

 Determinar bases e dimensão dos espaços de colunas, de linhas e nulo da matriz em escada de linhas

Base de espaço das colunas:  $\{(1,0,0,0),(-1,3,0,0)\}$  (colunas c/ pivots) Base de espaço das linhas:  $\{(0,1,2,-1,5),(0,0,0,3,-2)\}$  (linhas  $\neq 0$ ) Base do espaço nulo: As incógnitas livres de  $U\mathbf{x}=0$  são as componentes de  $(x_1,x_3,x_5)$ . Dando-lhes valores (1,0,0),(0,1,0) e (0,0,1) obtém-se base do espaço nulo:  $\{(1,0,0,0,0),(0,-2,1,0,0),(0,-\frac{13}{3},0,\frac{2}{3},1)\}$ . dim  $\mathcal{R}(U)=2$ , dimensão do espaço das linhas  $=\dim \mathcal{R}(U)=2$ , dim  $\mathcal{N}(U)=3$ .

#### Bases dos espaços das linhas, colunas e nulo de matrizes

Se A é uma matriz  $m \times n$  e U é a matriz em escada de linhas obtida com eliminação de Gauss:

- ► As linhas ≠0 de U são uma base do espaço das linhas de A. Dem. O espaço das linhas é invariante com as operações da eliminação de Gauss. Q.E.D.
- As colunas de A correspondentes às colunas de U com pivots são uma base de R(A).
   Dem. Au=0 ⇔ Uu=0.
   Colunas j<sub>1</sub>,...,j<sub>k</sub> de A são linearmente independentes
   ⇔ colunas j<sub>1</sub>,...,j<sub>k</sub> de U são linearmente independentes. Q.E.D.
- ▶ Os espaços das colunas e das linhas de A têm a mesma dimensão: a característica de A, rank A. Dem. Como para U. Q.E.D.
- ▶ Bases de  $\mathcal{N}(A)$  e  $\mathcal{N}(U)$  são as mesmas,  $\mathrm{nul}A = \dim \mathcal{N}(A) = n \mathrm{rank} A$ .  $Dem. \ A\mathbf{u} = 0 \Leftrightarrow U\mathbf{u} = 0$ . Logo,  $\mathcal{N}(U) = \mathcal{N}(U)$  Q.E.D.

#### Independência linear, bases e dimensão – exemplos

5. Uma base do espaço  $\mathbb{R}^{2\times 2}$  das matrizes reais  $2\times 2$  é

$$\begin{aligned} & \textbf{E}_{11} \! = \! \left[ \begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \ \textbf{E}_{12} \! = \! \left[ \begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \ \textbf{E}_{21} \! = \! \left[ \begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right], \ \textbf{E}_{22} \! = \! \left[ \begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \\ & \text{logo, } \dim \mathbb{R}^{2 \times 2} \! = \! 4 \, . \end{aligned}$$

- 6.  $\dim \mathbb{R}^{m \times n} = mn$ . Uma base é  $\{\mathbf{E}_{ij} : i = 1, \dots, m, j = 1, \dots, n\}$ ,  $\mathbf{E}_{ij}$  matriz  $m \times n$  com todas componentes 0 excepto a ij que é 1.
- 7. O conjunto das funções reais de variável real  $p_k(t) = t^k$ ,  $t \in \mathbb{R}$ , com  $k \in \mathbb{N} \cup \{0\}$ , é linearmente independente no espaço linear  $\mathbb{R}^{\mathbb{R}}$ ? Se  $\sum_{k=0}^{n} c_k t^k = 0$ , calculando em t = 0 obtém-se  $c_0 = 0$ . Dividindo por t e calculando em t = 0 obtém-se  $c_1 = 0$ . Repetindo sucessivamente, obtém-se  $c_k = 0$  para todos  $k = 0, \ldots, n$ . Logo,  $p_0, p_1, \ldots$  são linearmente independentes em  $\mathbb{R}^{\mathbb{R}}$ . Como  $\{p_0, \ldots, p_n\}$  gera  $P_n$  e é linearmente independente,  $\{p_0, \ldots, p_n\}$  é base de  $P_n$  e dim  $P_n = n + 1$ .

## Independência linear, bases e dimensão - exemplos

8. Espaço linear P de todos os polinómios reais  $P \supset P_n$ , todo  $n \in \mathbb{N}$ .  $\{p_0, p_1, \ldots\}$  é base de P, dim  $P = \infty$ .  $(\dim P = \#\mathbb{N})$ .

9.  $\dim C^0([-1,1],\mathbb{R}) = \infty$ , porque restrições dos polinómios a [-1,1] é subespaço linear P([-1,1]) de  $C^0([-1,1],\mathbb{R})$  e  $\dim P([-1,1]) = \infty$ .

#### Bases de espaço linear: propriedades gerais

▶ Se V é espaço linear de dimensão finita  $n = \dim V$ , então:  $S \subset V$  linearmente independente  $\Rightarrow$  existe base  $B \supset S$  de V.

Dem. 
$$S = S_k = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$$
.  $\mathcal{L}(S_k) = V \Rightarrow S$  é base.  $\mathcal{L}(S_k) \neq V \Rightarrow$  existe  $\mathbf{v}_{k+1} \in V \setminus \mathcal{L}(S_k)$ .  $S_{k+1} = S_k \cup \{\mathbf{v}_{k+1}\}$ .

 $S_{k+1}$  é linearmente independente?

$$\sum_{j=1}^k c_j \mathbf{v}_j + c_{k+1} \mathbf{v}_{k+1} = 0 \; ; \; c_{k+1} \neq 0 \Rightarrow \mathbf{v}_{k+1} = -\sum_{j=1}^k \frac{c_j}{c_{k+1}} \mathbf{v}_j \in \mathcal{L}(S_k) \; .$$
 Contradição! Logo,  $c_{k+1} = 0$  e  $\sum_{j=1}^k c_j \mathbf{v}_j = 0 \Rightarrow c_1 = \cdots = c_k = 0$  , pelo que  $S_{k+1}$  é linearmente independente.

Repete-se sucessivamente obtendo conjuntos linearmente independentes  $S_k, S_{k+1}, \ldots$  com  $\#S_{j+1} = \#S_j + 1$  enquanto não se tem uma base de V.

Do Teorema da Dimensão, não há subconjuntos de V linearmente independentes com > n elementos. Logo,  $S_n$  é base de V. Q.E.D.

Prova-se para dim  $V = \infty$  supondo validade do Axioma de Escolha.

#### Bases de espaço linear: propriedades gerais

Se V é espaço linear, dim  $V = n < \infty$  e  $S \subset V$ :

- ▶ #S=n e S linearmente independente  $\Rightarrow S$  é base de V. Dem. Como S é linearmente independente e dim  $V=n<\infty$ , existe base  $B\supset S$ . Do Teorema da Dimensão, #B=n=#S. Logo, S=B. Q.E.D.
- ▶ #S = n e  $\mathcal{L}(S) = V \Rightarrow S$  é base de V. Dem. Se S fosse linearmente dependente, poder-se-ia tirar a S sucessivamente um elemento combinação linear dos outros até obter conjunto linearmente independente B que ainda geraria V. B seria base e #B < #S = n, contrariando Teorema da Dimensão! Q.E.D.

#### Independência linear, bases e dimensão – exemplos

10. As funções reais de variável real  $u_1(t) = \cos at$ ,  $u_2(t) = \sin at$ ,  $t \in \mathbb{R}$ , com  $a \in \mathbb{R} \setminus \{0\}$ , são linearmente independentes no espaço linear  $\mathbb{R}^{\mathbb{R}}$ ?  $c_1 \cos at + c_2 \sin at = 0$  calculado em t = 0 dá  $c_1 = 0$  e em  $t = \pi/(2a)$  dá  $c_2 = 0$ . Logo,  $u_1$  e  $u_2$  são vectores linearmente independentes.

 $\cos^2 at + \sin^2 at = 1 \text{ , logo } u_1 + u_2 - 1 = 0 \text{ .}$  Portanto, são linearmente dependentes.  $\text{Calculando } c_1 \cos^2 at + c_2 \sin^2 at = 0 \text{ , } a_1 \cos^2 at + a_2 1 = 0 \text{ e}$   $b_1 \sin^2 at + b_2 1 = 0 \text{ em } t = 0 \text{ e } t = \frac{\pi}{2a} \text{ dá}$   $c_1 = 0 \text{ , } c_2 = 0 \text{ , } a_1 = 0 \text{ , } a_2 = 0 \text{ , } b_1 = 0 \text{ , } b_2 = 0 \text{ , }$  pelo que quaisquer duas das funções  $u_1, u_2, u_3$  são linearmente independentes. Logo, dim  $\mathcal{L}\big(\big\{u_1, u_2, u_3\big\}\big) = 2$  , e  $\big\{u_1, u_2\big\}, \big\{u_1, u_3\big\}, \big\{u_2, u_3\big\} \text{ são bases de } \mathcal{L}\big(\big\{u_1, u_2, u_3\big\}\big).$ 

11. E  $u_1(t) = \cos^2 at$ ,  $u_2(t) = \sin^2 at$ ,  $u_3(t) = 1$ , com  $a \in \mathbb{R} \setminus \{0\}$ ?

# Independência linear, bases e dimensão – exemplos (cont.)

12. **Decaimento de isótopo radioactivo** a velocidade y'(t)no instante t proporcional à quantidade de isótopo y(t), i.e. satisfaz a equação diferencial y' = -ay, com a > 0. O conjunto S das soluções é subespaço linear de  $C^1(\mathbb{R},\mathbb{R})$ . Para obter soluções  $\neq 0$ , com  $y(t_0) \neq 0$ , y > 0 num intervalo  $I \subset \mathbb{R}$  com  $t_0 \in I$ ,  $\frac{y'}{y} = -a \Leftrightarrow (\ln |y|)' = -a \Leftrightarrow \ln |y|(t) = -at + c, c \in \mathbb{R}$  constante. Logo,  $|y(t)| = e^c e^{-at}$ , ou seja  $y(t) = \pm e^c e^{-at}$ . Com sinal + ou - é  $v(t) \neq 0$  e v'(t) = -av(t) para  $t \in \mathbb{R}$ : não podem mudar de sinal porque são contínuas. Como  $e^c$  assume todos valores > 0 quando c varia em  $\mathbb{R}$ e y=0 é solução, a solução geral é  $y(t) = Ke^{-at}$ ,  $K \in \mathbb{R}$ .  $\stackrel{.}{\mathsf{E}} K = y(0)$ , pelo que  $y(t) = y(0) e^{-at}$ . Se  $E(t) = e^{-at}$ ,  $S = \mathcal{L}(\{E\})$ ,  $\{E\}$  é uma base de S e dim S = 1.

#### Independência linear, bases e dimensão – exemplos

13. As funções reais de variável real  $u_k(t) = e^{a_k t}$ ,  $t \in \mathbb{R}$ ,  $k = 1, \ldots, n$ , com  $a_1, \ldots, a_n \in \mathbb{R}$ , são linearmente independentes? Se  $a_i = a_j$  para alguns  $i \neq j$ , são linearmente dependentes (2 são =s). Se  $a_1, \ldots, a_n$  são distintos e  $a_M = \max\{a_1, \ldots, a_n\}$ ,  $\sum_{k=1}^n c_k u_k = 0 \Rightarrow \sum_{k=1}^n c_k e^{(a_k - a_M)t} = 0$ . Fazendo  $t \to +\infty$ , obtém-se  $c_M = 0$ . Repetindo obtém-se sucessivamente por ordem decrescente de magnitude de  $a_k$  que  $c_k = 0$  para  $k = 1, \ldots, n$ . Logo, se  $a_1, \ldots, a_n$  são distintos  $u_1, \ldots, u_n$  são vectores linearmente independentes.

$$S = \{f_a \in \mathbb{R}^{\mathbb{R}} : a \in \mathbb{R}\}$$
, com  $f_a(t) = e^{at}$ ,  $t \in \mathbb{R}$ , é linearmente independente  $\#S = \#\mathbb{R} \Rightarrow \dim \mathbb{R}^{\mathbb{R}} \geq \#\mathbb{R}$ .

# Bases e dimensão de espaços lineares: exemplo de Oscilador Harmónico Linear

14. Movimento livre de massa e mola com a outra extremidade fixa num ponto, numa recta e sem atrito. A equação do movimento obtém-se da **Lei de Newton** força = massa×aceleração e da **Lei de Hooke** da elasticidade linear forca =  $-k^2v$ , com  $k^2 > 0$ constante, chamada rigidez da mola, e y a posição da massa em relação ao ponto de equilíbrio. Obtém-se a equação  $my'' + k^2y = 0$ . O conjunto das soluções S é subespaço linear de  $C^2(\mathbb{R},\mathbb{R})$ . Com  $\omega_0 = \frac{k}{\sqrt{m}}$ ,  $y_1(t) = \cos \omega_0 t$  e  $y_2(t) = \sin \omega_0 t$  são soluções linearmente independentes. Geram S? Multiplicando por y',  $my'y'' + k^2yy' = 0 \Leftrightarrow \left[\frac{m}{2}(y')^2 + \frac{k^2}{2}y^2\right]' = 0$ ; logo,  $E = \frac{m}{2}(y')^2 + \frac{k^2}{2}y^2$  é constante para cada solução. Se z é solução,  $y = z - (c_1y_1 + c_2y_2)$  é solução com  $y(0) = z(0) - c_1$ e  $y'(0) = z'(0) - c_2\omega_0$ . Com  $c_1 = z(0)$  e  $c_2 = \frac{z'(0)}{\omega_0}$ , é y(0) = y'(0) = 0e E(t)=0, ou seja  $z(t)=z(0)\cos\omega_0t+z'(0)\sin\omega_0t$ ; logo,  $S = \mathcal{L}(\{y_1, y_2\}) \cdot \{y_1, y_2\}$  é base de S, dim S = 2. (E é uma energia)

#### Característica e nulidade de matrizes e sistemas de equações lineares

Se A, b são matrizes, resp.,  $m \times n$  e  $m \times 1$ , então  $A \mathbf{x} = \mathbf{b}$  tem:

- ▶ 0 soluções  $\iff \operatorname{rank} A < \operatorname{rank} [A \ \mathbf{b}]$ ,
- ▶ 1 só solução  $\iff$  rank A = rank  $[A \ b]$ , nul A = 0,
- ▶  $\infty$  soluções  $\iff$  rank A = rank  $[A \ b]$ , nul  $A \neq 0$ .

#### Característica de produtos de matrizes

 $\operatorname{rank} AB \leq \min \{ \operatorname{rank} A, \operatorname{rank} B \}$ . Q.E.D.

Se A,B são matrizes resp.  $m \times n, n \times p$ ,  $\operatorname{rank} AB \leq \min\{\operatorname{rank} A, \operatorname{rank} B\}$ . Dem. Cada coluna e cada linha de AB é combinação linear, resp., das colunas de A e das linhas de B;  $\log_{0}$ ,  $\mathcal{R}(AB) \subset \mathcal{R}(A)$ ,  $\mathcal{R}((AB)^{t}) = \mathcal{R}(B^{t}A^{t}) \subset \mathcal{R}(B^{t})$ , e, portanto,

# Produtos de matriz por matrizes não singulares (com dimensões compatíveis) não alteram a característica

Dem. Se A é matriz  $m \times n$  e X é matriz não singular  $m \times m$ , então  $A = X^{-1}XA$  e  $\operatorname{rank} A \leq \operatorname{rank} XA \leq \operatorname{rank} A$ . Logo,  $\operatorname{rank} XA = \operatorname{rank} A$ . Se Y é matriz não singular  $n \times n$ , então  $\operatorname{rank} AY = \operatorname{rank} A$ , pois  $A = AYY^{-1}$  e o mesmo argumento dá o resultado. Q.E.D.

Se A, B são matrizes  $n \times n$ ,  $AB = I_n \Rightarrow BA = I_n$  ( $\exists$  inversa à direita  $\Rightarrow \exists$  inversa à esquerda, e vice versa).

Dem.  $n = \operatorname{rank} I_n = \operatorname{rank} AB \le \min \{ \operatorname{rank} A, \operatorname{rank} B \} \le n$ .  $\operatorname{rank} A = n = \operatorname{rank} B$ . Existe  $A^{-1}$  e  $B = A^{-1}AB = A^{-1}$ ,  $B^{-1} = A$ . Q.E.D.

#### Característica de produto de matriz real por transposta

Se A é matriz real  $m \times n$ , então  $\operatorname{rank} A^t A = \operatorname{rank} A = \operatorname{rank} A^t$ .

*Dem.* rank  $A^t A < \operatorname{rank} A$ .

$$\mathbf{x} \in \mathcal{N}(A^t A) \Rightarrow A^t A \mathbf{x} = 0 \Rightarrow \mathbf{x}^t A^t A \mathbf{x} = 0 \Rightarrow (A \mathbf{x})^t (A \mathbf{x}) = 0$$
.  
 $\mathbf{y} = A \mathbf{x} \in n \times 1 \text{ e } \mathbf{y}^t \mathbf{y} = 0$ ; se  $\mathbf{y} = (y_1, \dots, y_n)$ ,  $\in \sum_{j=1}^n y_j^2 = 0$ ; logo,  $\mathbf{y} = 0$ , ou seja  $A \mathbf{x} = 0$ .

Portanto,  $\mathbf{x} \in \mathcal{N}(A^t A) \Rightarrow \mathbf{x} \in \mathcal{N}(A)$ , i.e.  $\mathcal{N}(A^t A) \subset \mathcal{N}(A)$ ,  $\text{nul } A^t A \leq \text{nul } A$ .

Como  $A^tA$  e A têm n colunas, é rank  $A^tA \ge \operatorname{rank} A$ .

Conjugando, rank  $A^tA = \operatorname{rank} A \cdot Q.E.D.$ 

#### Sistemas de equações lineares, característica e inversas de matrizes

#### Se A é matriz real $m \times n$ , para Ax = b verifica-se:

- 1. Existência:  $\forall_{\mathbf{b} \in \mathbb{R}^m} \exists$  solução  $\iff \operatorname{rank} A = m$  ( $m \le n$ )  $\iff \exists$  inversa à direita C de A,  $AC = I_m$ .
- 2. Unicidade:  $\forall_{\mathbf{b} \in \mathbb{R}^m} \exists$  no máximo 1 solução  $\iff \operatorname{rank} A = n \ (m \ge n)$   $\iff \exists$  inversa à esquerda B de A,  $BA = I_n$ .
- 3. Existência e unicidade:  $\forall_{\mathbf{b} \in \mathbb{R}^m} \exists \mathbf{1} \mathbf{e} \mathbf{so} \mathbf{1} \mathbf{solução}$   $\iff A \mathbf{e} \mathbf{quadrada} \mathbf{não} \mathbf{singular} \iff \exists \mathbf{inversa} A^{-1}.$  Dem.
- (1)  $\Leftrightarrow \mathcal{R}(A) = \mathbb{R}^m \Leftrightarrow \operatorname{rank} A = m$ . As colunas de C são as soluções correspondentes às colunas de  $I_m$ .
- (2)  $\Leftrightarrow$  não há incógnitas livres  $\Leftrightarrow$  rank  $A = n \Leftrightarrow$  rank  $A^t = n$ . de (1)  $\Leftrightarrow \forall_{\mathbf{d} \in \mathbb{R}^n} \exists$  solução de  $A^t \mathbf{y} = \mathbf{d} \Leftrightarrow \exists$  inversa à direita  $B^t$  de  $A^t$ ,  $A^t B^t = I_n$ .  $BA = (A^t B^t)^t = I_n$ .
- (3) De (1) e (2)  $\Leftrightarrow \operatorname{rank} A = m$ ,  $\operatorname{rank} A = n \Leftrightarrow A$  é quadrada não singular  $\Leftrightarrow \exists A^{-1}$ . *Q.E.D.*

Matrizes não quadradas com inversa à direita (resp., esquerda) têm infinitas destas inversas e nenhuma à esquerda (resp., direita).

#### Subespaços lineares de $\mathbb{R}^n$

Os subespaços lineares do espaço linear  $\mathbb{R}^n$  são:

- ▶ n=1:  $\{0\}$ ,  $\mathbb{R}$  dim=0, 1. (geometricamente: ponto 0 e recta real).
- ▶ n=2:  $\{0\}$ ,  $\mathcal{L}(\{(1,c)\})$ , com  $c \in \mathbb{R}$ ,  $\mathcal{L}(\{(0,1)\})$ ,  $\mathbb{R}^2$ . dim=0, 1, 2. (geometricamente: ponto 0, rectas que passam em 0, plano  $\mathbb{R}^2$ ) Para indicar as rectas de uma só vez:  $\mathcal{L}(\{(\cos\theta,\sin\theta)\})$ ,  $\theta \in [0,2\pi[$ .
- ▶ n=3: (geometricamente: ponto 0, rectas que passam em 0, planos que passam em 0,  $\mathbb{R}^3$ ). dim=0,1,2,3.

#### Subespaços lineares de $\mathbb{R}^n$

É preciso generalizar a ideia de rectas e planos clássicos:

Chama-se plano-k ou variedade linear de dimensão k ou espaço afim de dimensão k em  $\mathbb{R}^n$  a  $S+\{a\}$ , com S subespaço linear de  $\mathbb{R}^n$ ,  $\dim S=k$  e  $a\in\mathbb{R}^n$  é um ponto de  $\mathbb{R}^n$ . (paralelo ao subespaço S e passa no ponto a)

Os planos-1 são rectas, os planos-2 são planos clássicos, o plano-0 é o ponto 0, o plano-3 em  $\mathbb{R}^3$  é o espaço tridimensional clássico.

Os subespaços lineares do espaço linear  $\mathbb{R}^n$  são:

▶ geometricamente: ponto 0, rectas que passam em 0, planos-k que passam em 0, k=2,...,n-1, e  $\mathbb{R}^n$ . dim=0,1,...,n.

#### Equações cartesianas de planos-k em $\mathbb{R}^n$

**Equações cartesianas** de planos-k em  $\mathbb{R}^n$ :

- Rectas (planos-1)  $k=1, \ n=2: \ ax+by=c \ , \ \text{com} \ (a,b)\neq (0,0)$   $k=1, \ n=3: \ a_1x+b_1y+c_1z=d_1$   $a_2x+b_2y+c_2z=d_2 \ ,$   $\text{com} \ (a_1,b_1,c_1), \ (a_2,b_2,c_2) \ \text{linearmente independentes}$  (um não é o outro multiplicado por um escalar)  $k=1, \ n \ \text{geral}: \ A\mathbf{x}=\mathbf{b} \ , \ \text{com} \ A \ (n-1)\times n \ \text{e} \ \text{rank} \ A=n-1$
- Planos (clássicos) (planos-2) k=2, n=3: ax+by+cz=d, com  $(a,b,c)\neq 0$   $k=2, n\geq 3$ : Ax=b, com  $A(n-2)\times n$  e rank A=n-2►  $1\leq k\leq n-1$ : Ax=b, com  $A(n-k)\times n$  e rank A=n-k

Um plano-k em  $\mathbb{R}^n$  com equação cartesiana Ax = b é um subespaço linear de  $\mathbb{R}^n$  se e só se contém 0, ou seja se e só se b = 0.

Um plano-k em  $\mathbb{R}^n$  passa no ponto p e é paralelo ao plano com equação cartesiana Ax = 0 se e só se tem equação Ax = Ap.

# Quais foram os 10 resultados mais importantes provados desde o início (pela ordem em que foram dados)?

- 1. Sistemas  $A\mathbf{x} = \mathbf{b}$  têm 0, 1 ou  $\infty$  soluções
- 2. Sobreposição nas soluções de  $A\mathbf{x} = \mathbf{b}$
- 3. Matrizes têm factorização A = PLU
- 4.  $A\mathbf{x} = \mathbf{b}$  tem solução única,  $A \ n \times n \Leftrightarrow A^{-1}$  existe  $\Leftrightarrow A$  tem n pivots
- 5. Subconjunto de espaço linear é subespaço linear  $\Leftrightarrow$  é  $\neq \emptyset$  e verifica fecho da adição e da multiplicação por escalares
- 6. dim  $\mathcal{R}(A^t) = \dim \mathcal{R}(A)$
- 7. Teorema de Característica e Nulidade para matrizes: se A é  $m \times n$ , rank A + nul A = n
- 8. Teorema da Dimensão (provado p/ dimensão finita)
- 9.  $\operatorname{rank} AB \leq \min \{\operatorname{rank} A, \operatorname{rank} B\}$
- 10. Para matrizes reais  $\operatorname{rank} A^t A = \operatorname{rank} A = \operatorname{rank} A^t$ .

#### 7 provados com ELIMINAÇÃO DE GAUSS

2 relacionados com Princípio da Sobreposição 1 provado com ELIMINAÇÃO DE GAUSS e soma de quadrados de nos reais  $= 0 \Rightarrow$  todos os nos são 0

#### Notas históricas: Antecedentes da noção de espaço linear

(mecânica, coordenadas cartesianas, complexos e segmentos orientados, quaterniões, análise vectorial em electromagnetismo, teoria da extensão e axiomática)

| 1632<br>1637<br>1637<br>1659 | Galileo<br>R. Descartes<br>P. Fermat<br>J. de Witt | sistemas de referência p/ movimento de corpos (Princípio da Relatividade coordenadas cartesianas para plano idem mudanças lineares de coordenadas para cónicas                                                                    |
|------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1660<br>1687                 |                                                    | 1º modelo linear da mecânica ("Como a tensão, assim é a força") regra do paralelogramo para adição de forças                                                                                                                      |
| 1743<br>1762                 | L. Euler<br>J. d'Alembert                          | resolução de eq. difer. lineares de 2ª ordem c/ coef. constantes<br>Princípio de Sobreposição para eq. diferenciais lineares                                                                                                      |
| 1799<br>1818<br>1833<br>1837 | G. Bellavitis                                      | representação de nºs complexos no plano<br>segmentos orientados (adição e simétrico de colineares)<br>adição de segmentos orientados não colineares no plano<br>nºs complexos como pares ordenados de nºs reais e resp. operações |
| 1840                         | H. Grassman                                        | teoria da extensão (percursora da ideia e das operações de vectores)                                                                                                                                                              |
| 1843                         | W. Hamilton                                        | publica descoberta dos quaterniões<br>(C. Gauss tinha-os descoberto em 1819 mas só foi publicado em 1900)                                                                                                                         |
|                              |                                                    | álgebra de vectores, independência linear, base, dimensão cunha os termos "vector" e "escalar" para componentes de quaterniões $1^{\rm o}$ trabalho em espaços de dimensão $>3$                                                   |
|                              |                                                    |                                                                                                                                                                                                                                   |

# **Notas históricas:** Criação e consolidação da noção de espaço linear e vector (análise vectorial em electromagnetismo, axiomática)

| 1862                 | H. Grassman                                | prop. fundamentais semelhantes a axiomática de espaço linear actual                                                                                                                        |
|----------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1881<br>1888         | J.W. Gibbs<br>G. Peano                     | Elements of Vector Analysis (separa partes escalar e vect. de quaterniões) axiomática para sistemas lineares segundo H. Grassman (incluindo dim quase totalmente ignorada até 1932         |
| 1893                 | O. Heaviside                               | The Elements of Vectorial Algebra and Analysis (semelhante a Gibbs)                                                                                                                        |
| 1901<br>1918<br>1931 | S. Pincherle<br>H. Weyl<br>van der Waerden | cunha termo <b>"espaço linear"</b> Raum, Zeit, Materie, em que surge o termo <b>"Álgebra Linear"</b> Moderne Algebra com capítulo <b>"Álgebra Linear"</b>                                  |
| 1932                 | S. Banach                                  | Théorie des opérateurs linéaires retoma axiomática de Peano-Grassman para espaço linear e, finalmente, leva à sua ampla aceitação!                                                         |
| 1932<br>1934         | F. Hausdorff<br>H. Lowig                   | prova existência de bases para espaços lineares gerais prova que bases de um espaço linear têm a mesma cardinalidade, e p/ espaço linear real $V$ com $\#V > \#\mathbb{R}$ é dim $V = \#V$ |
| 1935                 | H. Whitney                                 | noção de matróide abstractizando independência linear para conjuntos                                                                                                                       |

#### **3 ÉPOCAS DE VECTORES**:

```
1799 a 1843 \approx 45 anos Plano complexo e segmentos orientados no plano (dim=2) 1843 a 1881/93 \approx 45 anos Quaterniões (dim=3) 1881/93 a 1932 \approx 45 anos Análise vectorial (dim=3) \approx 87 anos Espaço linear \approx 90 anos da ideia em 1840 até se generalizar
```