Міністерство освіти і науки України Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Звіт З виконання лабораторної роботи №2 з дисципліни "Аналогова схемотехніка"

Виконав:

студент групи ДК-61

Накоренко А.А

Перевірив:

доц. Короткий \in В.

1. Дослідження однонапівперіодного випрямляча.

- а. Було проведено симуляцію роботи випрямляча з напівпровідникового діоду та конденсатору в середовищі LTSpice з наступними параметрами:
 - Вхідний сигнал гармонійний біполярний, з амплітудою 5В та частотою 50Гц
 - Згладжуюча ємність 10мкФ
 - Навантаження резистор 9.8 кОм

На навантаженні отримано вихідний сигнал з амплітудою пульсацій 0.71 В:

Середній струм через навантаження склав:

$$I = \frac{376 + 450}{2} = 413 \,[\text{MA}]$$

Для такого випрямляча амплітуда коливань напруги має становити:

$$\Delta U = \frac{413 * 10^{-6}}{10 * 10^{-6} * 50} = 0.826B$$

- b. Схему однонапівперіодного випрямляча було складено у лабораторії. Використали наступні компоненти:
 - Згладжуюча ємність 10мкФ
 - Навантаження резистор 9,8 кОм

В якості генератора сигналу та осцилографу використали Analog Discovery 2. Під час роботи схеми отримали наступні результати (жовтий – C1, вихід, голубий – C2, вхід):

Середній струм: $I = \frac{\frac{3,62}{9,8*10^3} + \frac{4,37}{9,8*10^3}}{2} = 407$ мкА. За теоретичними очікуваннями, для такого випрямляча амплітуда пульсацій повинна складати $\Delta U = \frac{407*10^{-6}}{10*10^{-6}*50} = 0,814$ В.

ΔU	Симуляція	Експеремент
Виміряне значення	716 mB	746 mB
Розраховане	826 mB	814 mB
Абс.похибка	116мВ	68mB
Відносна похибка	16,2%	9,11%

Похибки можна пояснити недосконалістю формули $\Delta U = Iav$ C*f, спотворення сигналу внутрішнім опором генератора, а також допуском резистора і конденсатора.

Дослідження було виконано аналогічно для навантаження 19,81 кОм з такими результатами:

Амплітуда пульсацій: 402 мВ

Середній струм:
$$I = \frac{\frac{4,383}{198*10^3} + \frac{3,99}{198*10^3}}{2} = 211$$
 мкА

Теоретично розрахована амплітуда пульсацій: $\Delta U = \frac{21,1*10^{-6}}{10*10^{-6}*50} = 422$ мВ

Амплітуда пульсацій з симулятора: $\Delta U = 377 \text{ MB}$

Середній струм: I = 213.5 мкА

Теоретично розрахована амплітуда пульсацій: $\Delta U = \frac{213.5*10^{-6}}{10*10^{-6}*50} = 427 \text{ мB}$

ΔU	Симуляція	Експеремент
Виміряне значення	377 MB	402 MB
Розраховане	427 MB	422 MB
Абс.похибка	50 mB	20 MB
Відносна похибка	11.7%	4.97%

2. Дослідження двонапівперіодного випрямляча

- а. Було проведено симуляцію випрямляча на діодному мосту у середовищі LTSpice з наступними параметрами:
 - Вхідний сигнал гармонійний біполярний, з амплітудою 5В та частотою 50Гц
 - Згладжуюча ємність 10мкФ
 - Навантаження резистор 9,83 кОм

Амплітуда пульсацій вихідної напруги склала 287 мВ, середній струм через навантаження: $I=\frac{388+360}{2}=374$ [мкА]. Залежність $\Delta U=\frac{I_r}{2*C*f}=\frac{374*10^{-6}}{2*10*10^{-6}*50}=375$ мВ

Похибка склада ϵ :

(87/287)*100%= 30%

Похибку можна виправдати неврахуванням внутрішнього опору генератора, допуском елементів кола, а також впливом розряду конденсатора.

Схему випрямляча напруги на діодному мосту склали у лабораторії. В якості генератора та осцилографа використовували Analog Discovery 2.

Було отримано такі результати:

Амплітуда пульсацій склала 308,5 мВ, середній струм через навантаження: : $I=\frac{\frac{3,4}{9,3*10^3}+\frac{3,734}{9,3*10^3}}{2}=383$ мкА. За теоретичними очікуваннями, для такого випрямляча амплітуда пульсацій повинна складати $\Delta U=\frac{383*10^{-6}}{2*10*10^{-6}*50}=383$ мВ.

ΔU	Симуляція	Експеремент
Виміряне значення	287 MB	308.5 MB
Розраховане	375 MB	383 MB
Абс.похибка	88 mB	94.5 mB
Відносна похибка	23.4%	24.6%

<u>Аналогічне дослідження було проведено для опору навантаження 19.81 кОм</u>. Для вимірювання використали дві плати Analog Discovery 2, що використовували розв'язані джерела живлення. Отримали такі результати:

Амплітуда пульсацій вихідного сигналу склала 175 мВ. Середній струм через навантаження: $I = \frac{\frac{3,765}{19,81*10^3} + \frac{3,6}{19,81*10^3}}{2} = 185 \text{ мкА. За теоретичними очікуваннями, для такого випрямляча амплітуда пульсацій повинна складати <math>\Delta U = \frac{185*10^{-6}}{2*10*10^{-6}*50} = 185 \text{ мВ.}$

Тоді амплітуда коливань:

$$\Delta U = \frac{190 * 10^{-6}}{2 * 10 * 10^{-6} * 50} = 190 \text{ MB}$$

ΔU	Симуляція	Експеремент
Виміряне значення	156 MB	175 MB
Розраховане	190мВ	185 MB
Абс.похибка	34 mB	10 MB
Відносна похибка	21.7%	5.71%

3. Дослідження подвоювача напруги.

- а. Схему подвоювача напруги на послідовних каскадах з діоду та конденсатору було склали та симулювали у середовищі LTSpice. Використали наступні параметри:
 - Ємність конденсаторів: 10 мкФ
 - Діоди кремнієві
 - Вхідний сигнал гармонійний, амплітудою 5В, частотою 1 кГц

Було отримано наступні результати:

Сигнал на виході встановлюється на рівні 8.8В через 10 мс після ввімкнення живлення. Саме такий рівень напруги пояснюється падінням на діодах, що використані у схемі. Напруга на вихідному конденсаторі дорівнює амплітуді вхідного сигналу мінус ді напруги прямого зміщєння діоду.

Схему подвоювача склали на макетній платі, на подвоювач подали сигнал, аналогічний такому з симуляції. Було отримано наступні результати:

Напруга на виході склала 8.8В, що відповідає теоретичним очікуванням. Сигнал на виході можна вважати стабільним, так як схема нічим не навантажена, окрім вхідного опору вимірювального пристрою, котрим тут можна знехтувати.

4. Дослідження обмежувача напруги

а. Схему обмежувача напруги на діоді склали у середовищі LTSpice та провели симуляцію. Отримали наступні результати: при напрузі меньше, ніж напруга прямого зміщєння діода, обмежувач не змінює сигнал:

Але для напруги більше, ніж напруга прямого зміщення, схема обмежує сигнал:

b. Аналогічну поведінку схему було досліджено в лабораторії:

Висновки

Було проведено дослідження деяких широко застосованих схем на напівпровідникових діодах — випрямлячів, подвоювача, обмежувача. Поведінки схем було вивчено при різних умовах роботи — різних навантаженнях, амплітудах вхідних сигналів, тощо. Отримані в лабораторії дані продубльовані даними симуляцій, які виявили деякі похибки вимірювань.