Automatic Control

Sinusoidal disturbances attenuation requirements

Control input requirements

Automatic Control – M. Canale

Sensor noise

Sinusoidal disturbance attenuation

Automatic Control – M. Canale

Steady-state response to sinusoidal disturbances

- Here the problem of attenuating the effect of the sensor noise d_t on the controlled output y at steady state is considered.
- The focus is restricted to the class of sinusoidal signals, i.e.:

$$d_t(t) = \delta_t \sin(\omega t)$$
 $\omega \ge \omega_t$ given δ_t and ω_t

Steady-state response to sinusoidal disturbances

• At steady state, in the presence of d_t , we have:

$$y_{ss}(t) = \delta_t |T(j\omega)| \sin(\omega t + \angle(-T(j\omega)))$$

• The steady-state output error $\left|\mathcal{V}_{d_i}^{\infty}\right|$ is defined as:

$$\left| y_{d_t}^{\infty} \right| = \max_{t} \left| y_{ss}(t) \right| = \delta_t \left| T(j\omega) \right|$$

Automatic Control – M. Canale

AC L18 5

AC L18 7

Design constraints on $T(j\omega)$ and $L(j\omega)$ due to d_t

$$|T(j\omega)| \leq \frac{\rho_t}{\delta_t} = M_T^{HF} \quad \forall \omega \geq \omega_t$$

- Note that, disturbance attenuation is obtained if $\mid \mathcal{T}(j\omega) \mid << 1$
- Since $|T(j\omega)| << 1$ holds for $\omega >> \omega_c$, the requirement on $|y^{\infty}_{dt}|$ introduces a constraint on the value of ω_c such that:

$$\omega_c \ll \omega_t$$

Rule of thumb:

$$\omega_{c,des} \leq 0.1\omega_{t}$$

Steady-state response to sinusoidal disturbances

• The steady-state output error is required to be bounded by a given constant:

$$\left|y_{d_t}^{\infty}\right| \le \rho_t$$
 given $\rho_t > 0$

A design constraint on | T(jω_t) | is obtained as

$$\begin{aligned} \left| \mathbf{y}_{d_{t}}^{\infty} \right| &= \delta_{t} \left| \mathcal{T}(j\omega) \right| \leq \rho_{t} \implies \\ \Rightarrow \left| \mathcal{T}(j\omega) \right| &\leq \frac{\rho_{t}}{\delta_{t}} = M_{T}^{HF} \quad \forall \omega \geq \omega_{t} \end{aligned}$$

Automatic Control – M. Canale

AC L18 6

Design constraints on $T(j\omega)$ and $L(j\omega)$ due to d_t

On the Nichols plane, the constraint on $T(j_{\omega})$ can be represented as a constant magnitude locus:

The points of the loop function $\mathcal{L}(j_{\omega})$ corresponding to frequencies greater than ω_{r} , must lie below the constant magnitude locus defined by

$$\frac{\rho_t}{\delta_t} = M_T^{HF}$$

Output disturbance

Automatic Control – M. Canale

Steady-state response to sinusoidal disturbances

• At steady state, in the presence of d_y , we have:

$$y_{ss}(t) = \delta_y |S(j\omega)| \sin(\omega t + \angle S(j\omega))$$

• The steady-state output error $\left|\mathcal{V}_{d_{v}}^{\infty}\right|$ is defined as:

$$\left| y_{d_y}^{\infty} \right| = \max_{t} \left| y_{ss}(t) \right| = \delta_y \left| S(j\omega) \right|$$

Steady-state response to sinusoidal disturbances

- Now, the problem of attenuating the effect of the output disturbance d_y on the controlled output y at steady state is considered
- The focus is restricted to the class of sinusoidal signals, i.e.:

$$d_{y}(t) = \delta_{y} \sin(\omega t)$$
 $\omega \le \omega_{y}$ given δ_{y} and ω_{y}

Automatic Control – M. Canale

AC L18 10

Steady-state response to sinusoidal disturbances

• The steady-state output error is required to be bounded by a given constant:

$$\left|y_{d_{y}}^{\infty}\right| \leq \rho_{y}$$
 given $\rho_{y} > 0$

• A design constraint on $|S(j\omega)|$ is obtained as

$$\left| y_{d_{y}}^{\infty} \right| = \delta_{y} \left| S(j\omega) \right| \le \rho_{y} \Rightarrow$$

$$\Rightarrow \left| S(j\omega) \right| \le \frac{\rho_{y}}{\delta_{y}} = M_{S}^{LF} \quad \forall \omega \le \omega_{y}$$

Design constraints on $S(j\omega)$ and $L(j\omega)$ due to d_y

$$|S(j\omega)| \leq \frac{\rho_{y}}{\delta_{y}} = M_{S}^{LF} \quad \forall \omega \leq \omega_{y}$$

- Note that, disturbance attenuation is obtained if $|S(j\omega)| << 1$
- Since $|S(j\omega)| << 1$ holds for $\omega << \omega_c$, the requirement on $|y^{\infty}_{dy}|$ introduces a constraint on the value of ω_c such that:

$$\omega_c \gg \omega_y$$

• Rule of thumb:

$$\omega_{c,des} \ge 10\omega_{y}$$

Automatic Control – M. Canale

AC_L18 13

Design example

• Given the plant tf $G(s) = \frac{-0.3}{s^2 + 1.75s + 0.37}$

design a cascade controller C(s) in order to satisfy the following requirements.

$$\begin{aligned} &\left|\mathbf{y}_{\mathsf{d}_{\mathsf{s}}}^{\infty}\right| \leq 0.02, \, \mathsf{d}_{\mathsf{a}}(\mathsf{t}) = \delta_{\mathsf{a}} t \, \varepsilon(\mathsf{t}), \left|\delta_{\mathsf{a}}\right| \leq 0.03 \rightarrow \mathsf{C}_{\mathsf{SS}}(\mathsf{s}) = \frac{-1.5}{\mathsf{s}} \\ &\left|\mathbf{y}_{\mathsf{d}_{\mathsf{s}}}^{\infty}\right| \leq 6 \cdot 10^{-3}, \, \mathsf{d}_{\mathsf{y}}(\mathsf{t}) = \delta_{\mathsf{y}} \sin(\omega_{\mathsf{y}} t), \left|\delta_{\mathsf{y}}\right| \leq 6 \cdot 10^{-2}, \end{aligned}$$

$$\omega_{\rm v} \leq 0.08~{\rm rad/s} \rightarrow \omega_{\rm c,des} \gg 0.08~{\rm rad/s} \rightarrow$$

$$\omega_{\rm c.des} \ge 0.8 \text{ rad / s,} M_s^{LF} = -20 \text{ dB}$$

$$\hat{s} \le 10\% \rightarrow T_p = 0.42 \text{ dB, S}_p = 2.68 \text{ dB}$$

$$t_r \le 2.5 \ s, t_{s,2\%} \le 8 \ s \rightarrow \omega_{c,des} = 1 \ rad/s$$

Design constraints on $S(j\omega)$ and $L(j\omega)$ due to d_{ν}

On the Nichols plane, the constraint on $S(j_{\omega})$ can be represented as a constant magnitude locus:

The points of the loop function $\mathcal{L}(j\omega)$ corresponding to frequencies smaller than ω_y , must lie above the constant magnitude locus defined by

$$\frac{\rho_{y}}{\delta_{y}} = M_{S}^{LF}$$

Automatic Control – M. Canale

AC L18 14

Actuator saturation and control input requirements

Introduction

Physical limitations of the actuator devices impose *hard constraints* on the control input u(t). Examples:

- $\ ^{\bullet}$ amplifiers input voltage is bounded by the input swing (about \pm 22 mV for OpAmps);
- aircraft control moving surfaces deflections (i.e. ailerons, elevators, rudders) have a limited working range (about \pm 5°);
- ullet actuators employed to enhance vehicle lateral dynamics, such as active differentials, can provide limited values of the yaw moment (typically about \pm 2500 Nm);

Automatic Control – M. Canale

AC_L18 17

Input saturation constraint

In the presence of an **input saturation constraint**, the considered feedback control systems becomes

- When the input saturation is active (i.e. when either $u(t) > u_M$ or $u(t) < -u_M$), the feedback control system becomes non linear.
- Exceeding the input prescribed bounds causes unexpected behaviour of the systems such as large overshoots, low performance or, in the worst case, unstability.
- Note that, in this case, stability analysis of the feedback system can not be performed through the Nyquist criterion.

Input saturation constraint

The above described actuator limitations, impose to the control input u(t) a **saturation constraint** of the form

$$-u_{M} \leq u(t) \leq u_{M}, \forall t \geq 0$$

$$\rightarrow |u(t)| \leq u_{M}, \forall t \geq 0$$

The saturation constraints can be described as a nonlinear static function of the control input as

$$m(t) = \begin{cases} u(t), & \text{if } -u_M \le u(t) \le u_M \\ -u_M, & \text{if } u(t) < -u_M \\ u_M, & \text{if } u(t) > u_M \end{cases}$$

 $\begin{array}{c|c} u & & \\ \hline & & \\ & & \\ & & \\ \end{array}$

 $m(t) \rightarrow \text{saturated input}$

Note that, when $u_{M} \leq u(t) \leq u_{M}$, m(t) = u(t)

Automatic Control – M. Canale

AC L18 18

Input saturation constraint

 Thus, in order to avoid performance degradation in the presence of a control input saturation, a constraint of the form

$$|u(t)| \leq u_{M}, \forall t \geq 0$$

has to be taken into account during the design procedure.

 Typically, the input saturation requirement is provided in the presence of a specific working situation.

Example: $|u(t)| \le 10, \forall t \ge 0, r(t) = 2\varepsilon(t)$

 In this context, a step reference is usually considered since it introduces critical solicitations to the control input during the transient phase.

Input saturation constraint

- Unfortunately, the input saturation constraint can not be handled directly by the loop-shaping design procedure but it has to be checked "a posteriori".
- If it has not been satisfied, a common procedure is to reduce the value of the actual crossover frequency ω_c .
- However, reduction of ω_c may cause unsatisfaction of the transient requirements (i.e. rise time and settling time) \rightarrow conflicting requirements.

Automatic Control – M. Canale

AC L18 21

Input saturation requirement: a special case

... then

Property: the amplitude of the control input at time t = 0 is given by:

$$u_0 = u(0) = \rho K_C \frac{m_D}{m_I}$$
, Proof \rightarrow apply Initial Value Theorem

Remarks:

- The Property still holds in the presence of multiple lead and lag networks.
- In the presence of a pole at the origin in the controller, we have that u(0) = 0 (still apply IVT).
- In general, the greater are the values of K_C and m_D the greater is the maximum control input u_{MAX} while the greater is m_I the smaller is u_{MAX} \rightarrow aspects to be taken into account during the design.

Input saturation requirement: a special case

Consider the following feedback control system

and suppose that

- the reference is a step signal of the form $r(t) = \rho \epsilon(t)$;
- the plant transfer function G(s) is strictly proper;
- the controller transfer function C(s) is proper and does not contain any poles at the origin, i.e. it is (e.g.) of the form

$$C(s) = K_C \frac{1 + \frac{s}{\omega_D}}{1 + \frac{s}{m_D \omega_D}} \frac{1 + \frac{s}{m_I \omega_I}}{1 + \frac{s}{\omega_I}}$$

Automatic Control – M. Canale

Automatic Control – M. Canale

AC L18 22

Design example

A plant to be controlled is described by

$$G(s) = \frac{0.045}{s^2 + 2.6s + 1.2}$$

design a cascade controller C(s) in order to satisfy the following requirements:

$$|e_r^{\infty}| \le 0.2$$
, $r(t) = 0.25t\varepsilon(t) \to C_{ss}(s) = 34/s$
 $\hat{s} \le 10\% \to T_p = 0.4 \text{ dB}$, $S_p = 2.66 \text{ dB}$
 $t_r \le 2 \text{ s}$, $t_{s,5\%} \le 4 \text{ s} \to \omega_{c,des} = 1 \text{ rad/s}$
 $\max_t |u(t)| \le 60$, when $r(t) = \varepsilon(t)$