calcul vectoriel dans le plan

1 Activités préparatoires

Activité 1

Compléter le tableau suivant par "oui" ou "non" (voir les figures 1;2;3 et 4)

	Figure 1	Figure 2	Figure 3	Figure 4
$ec{u}$ et $ec{v}$ ont la même direction				
$ec{u}$ et $ec{v}$ ont le même sens				
$ec{u}$ et $ec{v}$ ont la même norme				

1

Figure 1

Figure 2

Figure 3

Figure 4

Activité2

Dans une droite graduée (OI) , on considére les points A , Bet C d'abscisses 2 ; 5 et -3.

- 1. Exprimer le vecteur $\overrightarrow{OA}; \overrightarrow{OB}$ et \overrightarrow{OC} en fonction de \vec{u} .
- 2. Construire les points G et H Définis par : $\overrightarrow{OG}=\frac{-1}{2}\vec{u}$ et $\overrightarrow{OH}=\frac{7}{3}\vec{u}$
- 3. Construire le point K tel que : $\overrightarrow{BK} = 2\vec{u}$
- 4. Exprimer les vecteurs $\overrightarrow{AB}; \overrightarrow{BA}; \overrightarrow{AC}$ et \overrightarrow{AK} en fonction de \vec{u} .
- 5. Que représente le point A pour le segment $\left[CK\right] ?.$

Activité 3

En utilisant la figure ci-conte, compléter les égalités suivante :

a)
$$\overrightarrow{AB} = \cdots$$

b)
$$\overrightarrow{BD} = \cdots$$

c)
$$\overrightarrow{AB} + \overrightarrow{BD} = \cdots$$

d)
$$\overrightarrow{AB} + \overrightarrow{AE} = \cdots$$

e)
$$\overrightarrow{AB} + \overrightarrow{CA} = \cdots$$

f)
$$\overrightarrow{ED} + \overrightarrow{CA} = \cdots$$

2 Les vecteurs du plan :(Rappels)

2.1 Éléments d'un vecteur

Définition

Soient A et B deux points distincts. Le vecteur \overrightarrow{AB} est caractérisé par :

- Sa direction est la droite (AB).
- Son sens (De A vers B)
- Sa norme (ou sa longueur) est notée $||\overrightarrow{AB}|| = AB$

Remarques

- 1. Le vecteur nul est noté $\vec{0}$,n'a pas de direction et sa norme est nulle.
- 2. $\overrightarrow{AB} = \overrightarrow{0}$ équivaut à A = B.
- 3. Les vecteurs \overrightarrow{BA} et \overrightarrow{AB} ont la même direction, la même norme et de sens contraire, le vecteur \overrightarrow{BA} est appelé l'opposé du vecteur \overrightarrow{AB} et on a : $\overrightarrow{BA} = -\overrightarrow{AB}$.

2.2 Égalité de deux vecteurs

Définition

On dit que deux vecteurs sont égaux s'ils ont la même direction ,la même norme et le même sens.

Exemple

- \overrightarrow{AB} et \overrightarrow{CD} ont la même direction ((AB)//(CD)).
- $-\overrightarrow{AB}$ et \overrightarrow{CD} ont le même sens (de \overrightarrow{A} vers \overrightarrow{B} et de C vers D).
- $-\overrightarrow{AB}$ et \overrightarrow{CD} ont la même norme (AB = CD)

Propriété

 \vec{u} est un vecteur et A est un point du plan. Il existe un point unique M tel que $\overrightarrow{AM} = \vec{u}$.

Propriété

Soit ABCD un quadrilatère. $\overrightarrow{AB} = \overrightarrow{DC}$ est équivaut à ABCD est un parallélogramme.

2.3 Somme de deux vecteurs

2.3.1 Relation de Chasles

Soient A,B et C trois points du plan. On a : $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$.

2.3.2 Règle du parallélogramme

 \overrightarrow{AB} et \overrightarrow{AC} deux vecteurs du plan. La somme des vecteurs \overrightarrow{AB} et \overrightarrow{AC} est le vecteur \overrightarrow{AD} tel que le quadrilatère ABCD soit un parallélogramme et on écrit : $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AC}$.

3 Multiplication d'un vecteur par un réel

3.1 Définition

Soit \vec{u} un vecteur non nul et k un réel non nul. Le produit du vecteur \vec{u} par un réel k est le vecteur noté $k\vec{u}$, est défini par :

- 1. Même direction que celle de \vec{u} .
- 2. Si k > 0 , $k\vec{u}$ et \vec{u} ont le même sens.
 - Si $k < 0, k\vec{u}$ a de sens contraire que \vec{u} .
- 3. Si k > 0 alors, $||k\vec{u}|| = k||\vec{u}||$
 - Si k < 0 alors, $||k\vec{u}|| = -k||\vec{u}||$

Propriété

Pour tous vecteurs \vec{u} et \vec{v} du plan et pour tous réels k et k',on a :

- 1. $k\vec{u} = \vec{0}$ équivaut à k = 0 ou $\vec{u} = \vec{0}$.
- 2. $k(k'\vec{u}) = (kk')\vec{u}$.
- 3. $k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$.
- 4. $(k + k')\vec{u} = k\vec{u} + k'\vec{u}$.

3.2 Colinéarité de deux vecteurs-Alignement de trois points

Définition

Soient \vec{u} et \vec{v} deux vecteurs non nuls. \vec{u} et \vec{v} sont dits colinéaires s'il existe un réel k non nul tel que : $\vec{v} = k\vec{u}$.

Propriété

 \overrightarrow{AB} et \overrightarrow{CD} deux vecteurs non nuls. \overrightarrow{AB} et \overrightarrow{CD} son colinéaires si et seulement si (AB)//(CD).

Propriété

Les points A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

4 Milieu d'un segment

Propriétés

Soit [AB] un segment.

Le point I est le milieu du segment [AB].On a :

1.
$$\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$$
.

- $2. \ \overrightarrow{AI} = \overrightarrow{IB}.$
- 3. $\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB}$. 4. $\overrightarrow{AB} = 2\overrightarrow{AI}$.

Propriété

Soit ABC un triangle. Si I est le milieu du segment [AB] et J est le milieu du segment [AC] alors, $\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{BC}$.

