Healthcare Data Analytics

Decision Tress

Dr. Michael Strobel

09.05.2022

Inhalt

Letzte Woche

- Polynomielle Regression
- Overfitting
- Underfitting
- Regularisierung

Diese Woche

- Wiederholung Regularisierung
- Decision Trees

Wiederholung Definition: L₂ Regularisierung

Erinnerung: Minimierungsproblem

$$\hat{\alpha} = \min_{\alpha \in \mathbb{R}^n} ||X\alpha - \hat{y}||_2^2$$

Definition: L₂ Minimierungsproblem

Sei $\lambda \geq 0$, dann definieren wir das L_2 regulierte Minimierungsproblem

$$\hat{\alpha} = \min_{\alpha \in \mathbb{R}^n} \|X\alpha - \hat{y}\|_2^2 + \lambda \|\alpha\|_2^2$$

Weitere Namen sind auch Tikhonov- oder Ridge- Regularisierung.

Geschlossene Lösung: L₂ Minimierungsproblem

Sei $\lambda \geq 0$ und gegeben L_2 regulierte Minimierungsproblem

$$\hat{\alpha} = \min_{\alpha \in \mathbb{R}^n} ||X\alpha - \hat{y}||_2^2 + \lambda ||\alpha||_2^2$$

Dann ist die geschlossene optimale Lösung des Minimierungsproblems gegeben durch

$$\hat{\alpha} = (X^T X + \operatorname{Id} \lambda)^{-1} X^T \hat{y}$$

Visualisierung: *L*₂ **Minimierungsproblem**

Visualisierung der L₂ Regularisierung mit verschiedenen Parametern

Definition: L_1 **Minimierungsproblem**

Sei $\lambda \geq 0$, dann definieren wir das L_1 regulierte Minimierungsproblem

$$\hat{\alpha} = \min_{\alpha \in \mathbb{R}^n} ||X\alpha - \hat{y}||_2^2 + \lambda ||\alpha||_1$$

Ein weiterer gebräuchlicher Name ist *Lasso* (Least Absolute Shrinkage and Selection Operator Regression).

7

Visualisierung: L₁ Minimierungsproblem

L_1 vs L_2 Regularisierung

Generell neigt die L_1 Regularisierung dazu möglichst viele Koeffizienten auf 0 zu drücken und führt damit zu einem dünnbesetzten (engl. sparse) Modell. Die L_2 Regularisierung wiederum neigt dazu die Koeffizienten stärker gleichmäßig zu minimieren was zu mehr gleichverteilten Koeffizienten führt.

Visualisierung: L_1 vs L_2 Regularisierung

Géron, Aurélien. "Hands-on machine learning with scikit-learn and tensorflow"

Early Stopping

Ein weiterer Weg das Modell zu regularisieren ist *early stopping*. Hierbei stoppt man den Gradientenabstieg sobald der Fehler in der **Testmenge** nicht mehr sinkt beziehungsweise sogar steigt.

Géron, Aurélien. "Hands-on machine learning with scikit-learn and tensorflow"

Decision Trees

- Bis jetzt haben wir Machine Learning Methoden nur angewandt
- Jetzt gehen wir zumindest für eine Methoden ins Detail
- Eine sehr bekannte Methode sind *Decision Trees*
- Decision Trees eignen sich für Regression und auch für Mehrklassen-Klassifikation

Decision Trees - Visualisierung Klassifikation

Decision Tree auf dem Titanic Dataset

Decision Tree der Tiefe 2

Decision Trees - Visualisierung 2

Decision Tree der Tiefe 5

Decision Trees - Wie liest man einen Decision Tree

- Man starte an der Wurzel
- Die erste Zeile zeigt die Ja oder Nein Frage
 - links der der Unterbaum der die Frage mit ja beantwortet
 - rechts der der Unterbaum der die Frage mit nein beantwortet
- Die Blätter enthalten die jeweilige Klasse

Decision Tree - weitere Daten

Der Decision Tree enthält weitere Informationen

- wie viele Testdaten wurden dem Blatt zugeordnet (samples)
- welcher Klasse wurden diese zugeordnet (value)
- mit diesen Daten k\u00f6nnen Wahrscheinlichkeiten berechnet werden (klassisches Urnenmodell)

Decision Trees - Gini Impurity

Wie beurteilt man ob der Baum gute Entscheidungen trifft?

Gini Impurity

- Über die Anzahl aller Testdaten und Samples im Knoten können wir eine Klassen-Wahrscheinlichkeit $p_{i,k}$ berechnen, genauer $p_{i,k}$ ist das Verhältnis der Klasse k unter allen Traningsdaten im Knoten i
- Wir definieren die *Gini Impurity* im Knoten i als $G_i := 1 \sum_{k=1}^n p_{i,k}^2$
- G = 0 heißt, dass alle Testdaten in die gleiche Kategorie fallen, also *pure* sind.
- G = 0.5 heißt, dass die Angabe essentiell geraten it.

Gini Impurity - Beispiel

- Beispiel am Blatt links unten: $G = 1 (\frac{9}{170})^2 (\frac{161}{170})^2 = 0.1$
- Ein Wert von 0.1 ist gut, der Decision Tree ist sich sicher
- Der Nachbarknoten hat einen Gini Wert von 0.5, d.h. er rät
- Das finden des optimalen Baumes ist NP Schwer, es gibt polynomielle Algorithmen die gute Lösungen finden

Decision Trees – Entscheidungsgrenzen

Entscheidungsgrenzen

Da der Baum Stückweise lineare Funktionen repräsentieren können diese gut visualisiert werden

Hier ein Beispiel mit drei Klassen: Iris Dataset

Géron, Aurélien. "Hands-on machine learning with scikit-learn and tensorflow"

Decision Trees – Overfitting

Decision Tree neigen zu extremen Overfitting wenn der Parameterraum nicht begrenzt wird

Géron, Aurélien. "Hands-on machine learning with scikit-learn and tensorflow"

Decision Trees – Regularisierung

Decision Tree können über verschiedene Parameter regularisiert werden

- Maximale Tiefe des Baums (max_depth)
- Minimale Anzahl der Beobachtungseinheiten um einen Knoten aufzuteilen (min_samples_split)
- Minimale Anzahl der Beobachtungseinheiten in einem Blatt (min_samples_leaf)
- Maximale Anzahl der Features (max_features)
- ...

Decision Trees – Regression

Der Decision Tree kann auch zur Regression verwendet werden

Der Tree zur Regression ähnelt dem der Klassifikation: statt einer Klasse wird ein Wert zugeordnet.

Beispiel: Regression auf $f(x) = x^2$ mit etwas Rauschen

Géron, Aurélien. "Hands-on machine learning with scikit-learn and tensorflow"

Decision Trees - Regression Visualisierung

Géron, Aurélien. "Hands-on machine learning with scikit-learn and tensorflow"

Decision Trees – Regression Rauschen

Decision Trees neigen zu extremen Overfitting

Géron, Aurélien. "Hands-on machine learning with scikit-learn and tensorflow"

Decision Trees – Eigenschaften

Decision Trees haben einige interessante Eigenschaften:

- Features müssen vorher nicht skaliert oder normalisiert werden
- Sie haben eine extreme Anpassungsfähigkeit an die Daten
- Sie können direkt Mehrklassen-Klassifikation leisten

Nachteile sind z.B.:

- Neigen zu starkem Overfitting wenn sie nicht regularisiert werden
- Sind nicht invariant unter Rotation (nächste Folie)

Decision Trees – Instabilität

Das Training von Decision Trees ist nicht *rotationsinvariant* d.h. eine Rotation der Trainingsdaten führt nicht zur gleichen Rotation der Entscheidungsgrenzen

Géron, Aurélien. "Hands-on machine learning with scikit-learn and tensorflow"

Referenzen

• Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly Media.