Relevance-Promoting Language Model for Short-Text Conversation

Xin Li[†] Piji Li[‡] Wei Bi[‡] Xiaojiang Liu[‡] Wai Lam[†]

 † Department of Systems Engineering & Engineering Management, The Chinese University of Hong Kong

[‡]Tencent Al Lab

Overview

- **◆** Potential issues in the existing model:
- (i) Training data under-exploitation: decoder-only word-by-word prediction.
- (ii) Explanation-away issue: recency-bias in language model.
- (iii) Copy and Word Repetition: maximization-based decoding strategy.
- **♦** Contributions:
- (i) A non-encoder-decoder paradigm for the STC task.
- (ii) Two relevance-promoting components for language model.
- (iii) Generation with sampling-based decoding strategy.

Our Framework

- Transformer Language Model rather than Seq2Seq Encoder-Decoder.
- lacktriangle Top-k Sampling rather than Beam Search.
- ◆ Promote relevance modeling:
 - SSA: Supervised Source Attention component.
 - TI: Topic Inference component.

Figure 1: Our Framework.

Language Model as Response Generator

The predictions of words in source sentence are also considered:

Figure 2: Language model input during training.

Promote Relevance Modeling

♦ Vanilla Transformer Language Model:

$$\mathbf{h}_t', \boldsymbol{\alpha}_t' = \text{SLF-ATT}(\mathbf{q}_t'^{-1}, \mathbf{K}_{\leq t}'^{-1}, \mathbf{V}_{\leq t}'^{-1})$$

$$\mathbf{Q}^{\prime - 1} = \mathbf{H}^{\prime - 1} \mathbf{W}^Q$$

$$\mathbf{K}^{\prime - 1}, \mathbf{V}^{\prime - 1} = \mathbf{H}^{\prime - 1} \mathbf{W}^K, \mathbf{H}^{\prime - 1} \mathbf{W}^V$$

$$(1)$$

 $g_t = \sigma(\mathbf{W}^g \mathbf{h}^q + \mathbf{W}^l \mathbf{h}_t^L + \mathbf{b}),$

Transformer suffers from explanation away issue.

♦ Supervised Source Attention

♦ Topic Inference

Reconsider source-side information:
$$\hat{\mathbf{h}}_{t'}^{l}, \boldsymbol{\beta}_{t'}^{l} = \operatorname{Src-Att}(\hat{\mathbf{q}}_{t'}^{l}, \hat{\mathbf{K}}^{l}, \hat{\mathbf{V}}^{l})$$

 $\hat{\mathbf{Q}}' = \mathbf{H}' \mathbf{W}^Q$

 $\hat{\mathbf{K}}', \hat{\mathbf{V}}' = \mathbf{H}_{1:m}^I \mathbf{W}^K, \mathbf{H}_{1:m}^I \mathbf{W}^V$ $(2) \qquad \mathbf{s}_t = \left\{ \begin{array}{cc} (1-g_t) * \mathbf{h}_t^L + g_t * \mathbf{h}^q, & \text{if } t > m \\ \mathbf{h}_t^L, & \text{otherwise} \end{array} \right.$

Incorporate source representation in prediction:

 $\mathbf{h}^q = f(\mathbf{x}_{1:m}), P(z|\mathbf{x}_{1:m}) = \text{Softmax}(\mathbf{W}^o \mathbf{h}^q)$

Guide attention learning with source-side keywords:

 $\hat{\mathbf{y}}_{i}^{\text{src}} = \max\{\beta_{m+1,i}^{L}, \cdots, \beta_{n,i}^{L}\}$ (3) Infer relevance-clues from references:

$$\mathcal{L}^{\mathrm{src}} = \frac{1}{m} ||\hat{\mathbf{y}}_{i}^{\mathrm{src}} - \mathbf{y}^{\mathrm{src}}||_{2}^{2}$$
 (4) $\mathcal{L}^{\mathrm{kw}}$

 $\mathcal{L}^{\text{src}} = \frac{1}{m} ||\hat{\mathbf{y}}_{i}^{\text{src}} - \mathbf{y}^{\text{src}}||_{2}^{2} \qquad (4) \qquad \mathcal{L}^{\text{kwd}} = -\frac{1}{|\mathcal{V}|} \sum_{i=1}^{|\mathcal{V}|} \mathbf{y}_{i}^{\text{kwd}} \cdot \log P_{i}(z|\mathbf{x}_{1:m}) \qquad (7)$

Randomization-Over-Maximization Decoding Strategy

◆ Top-*k* Sampling:

Given a conditional distribution $P(x|x_{1:i-1})$

- (1) Obtain top-k vocabulary $V^{(k)}$.
- (2) Re-scale the distribution:

$$P'(x|x_{1:i-1}) = \begin{cases} P(x|x_{1:i-1}) \text{, if } x \in V^{(k)} \\ 0 \text{, Otherwise} \end{cases}$$
 (8)

(3) Do sampling: $x_i \sim P'(x|x_{1:i-1})$.

Training

Jointly consider auto-regressive LM loss ($\mathcal{L}^{\mathrm{mle}}$), source attention loss ($\mathcal{L}^{\mathrm{src}}$) and topic-based loss ($\mathcal{L}^{\mathrm{kwd}}$):

$$\mathcal{L}(\theta) = \frac{1}{|\mathbb{D}|} \sum_{(\mathbf{x}, \mathbf{y}^{\text{src}}, \mathbf{y}^{\text{kwd}}) \in \mathbb{D}} \mathcal{L}(\mathbf{x}, \mathbf{y}^{\text{src}}, \mathbf{y}^{\text{kwd}})$$

$$\mathcal{L}(\mathbf{x}, \mathbf{y}^{\text{src}}, \mathbf{y}^{\text{kwd}}) = \mathcal{L}^{\text{mle}} + \gamma_1 \mathcal{L}^{\text{src}} + \gamma_2 \mathcal{L}^{\text{kwd}}$$
(9)

Experiment

- ◆ Dataset: a large dataset built from Baidu Baike, Douban and Weibo.
- Evaluations: automatic evaluations and human evaluations.

N.4 a al a l	Relevance					Diversity	
Model	BLEU-2	BLEU-3	Bleu-4	HIT-Q	HIT-R	Dist-1	DIST-2
LSTM-LM	3.8	0.9	0.3	0.084	0.066	0.028	0.094
LSTM-S2S	5.6	2.8	1.8	0.293	0.145	0.039	0.137
TFM-LM	6.9	3.2	2.1	0.295	0.144	0.058	0.259
TFM-S2S	7.3	3.5	2.3	0.369	0.172	0.078	0.290
MMI	7.9	2.5	1.0	0.197	0.145	0.093	0.349
CVAE	5.8	1.5	0.4	0.211	0.135	0.060	0.211
MMPMS	6.7	3.0	1.8	0.151	0.102	0.057	0.220
OURS-tk w/o SSA & TI	4.9	1.0	0.3	0.119	0.076	0.086	0.441
OURS-tk w/o SSA	5.5	2.1	1.5	0.150	0.146	0.102	0.521
OURS- $tk w/o TI$	5.1	2.1	1.4	0.171	0.132	0.090	0.445
OURS-bm	10.3	5.3	3.4	0.510	0.193	0.102	0.398
OURS-tk	6.0	3.6	2.5	0.191	0.152	0.107	0.544

Model		Evaluation Metrics				
	Model	Relevance	Fluency	Acceptance		
	LSTM-LM	1.206	1.297	0.26		
	LSTM-S2S	1.386	1.285	0.37		
	TFM-LM	1.412	1.328	0.39		
	TFM-S2S	1.475	1.306	0.43		
	MMI	1.432	1.301	0.34		
	CVAE	1.316	1.274	0.33		
	MMPMS	1.528	1.396	0.42		
	OURS-tk w/o SSA & TI	1.273	1.368	0.28		
	OURS-tk w/o SSA	1.485	1.407	0.39		
	OURS-tk w/o TI	1.503	1.303	0.36		
	OURS-bm	1.515	1.359	0.38		
	OURS-tk	1.606	1.346	0.44		

Evaluation Metrics

Table 1: Automatic evaluations.

Table 2: Human evaluations.

video. It look cool!

Experiment							
TFM-LM	MMI	TFM-S2S	MMPMS	OURS-tk			
Query #1: 有了这样的花梯,回家的感觉真好 (With this flower ladder, it feels so good going back home.)							
好漂亮的花,好喜欢	我也有这样的感觉	我很喜欢!	我擦,这也太有才了吧	美得令人窒息的花梯			
The flower is beautiful! Like it!	I have the same feeling!	I really like it!	Oh my god! It is really funny	What a beautiful flower ladder!!			
Query #2: 抹茶与奶油的结合,精致得不忍下口 (This is the combination of matcha and cream. It is quite delicate such that I couldn't bear to eat.)							
不忍下口,不忍下口。	好想吃啊!	我能接受。	我喜欢抹茶味的抹茶。	我喜欢抹茶和奶油			
Couldn't bear to eat, couldn't bear to eat.	I really want to have a try.	The food is acceptable for me.	I like the matcha of matcha flavor.	I love matcha and cream!			
Query #3 : 移动的别墅。介个太强大了 (This moving cottage is awesome!)							
我也想要这样的房子	有创意,有创意啊	介个太强大了,房间装不下	移动和联通	这是哪儿啊,怎么拍的,好厉害 好酷哦			
I recommo a havea librathia taa	It is quite anostive	It is too strong to fit in the room	Chinese Mobile and Chinese Uni-	Where is it? How do you shoot this			

- ◆ OUR model performs better on relevance metrics, diversity metrics and also generates fluent & natural responses.
- Analysis:
 - Supervised Source Attention component and Topic Inference component are beneficial for the generation of informative topical words related to the query.
 - Top-k sampling is simple yet effective to achieve diverse response generation but we should be careful with its uncertainty on relevance and fluency.
 - Decoder trained on more data can give more fluent output.

Further Discussion about Top-k Sampling

Figure 3: Beam Search v.s. Top-k Sampling.

- lacktriangle Top-k sampling greatly reduces the query copy rate.
- lacktriangle Top-k sampling almost eliminates the phrase repetition phenomenon.

Conclusion

(6)

- ◆ An alternative LM-based solution is proposed for STC task.
- Relevance-promoting components make up for the LM in conditional generation.
- lacktriangle Top-k Sampling consistently improves the naturalness and diversity of generation but it may hurt the results on relevance metrics.