

Credit Consumption Prediction Challenge.

Predicting the average spend by the customers.

Shubham Abhange

The problem

Company

The Common Man Bank Ltd (CMB)

Context

The Common Man Bank Ltd (CMB) wants to understand these patterns thoroughly and get insights on the customer persona and the spending patterns

Problem statement

Predict the average spend for a different set of customers for the coming 3 months.

Challenges deep-dive

Challenge 1

Knowing the current spend pattern

 So for the present data of the customer getting the current spend pattern.

Challenge 2

Predict the average spend.

Predicting the average spend of the customer for coming 3-months.

Solution

- 1.Building the strategy partnership with the vendors for discounts and other rewards to retain the customers.
- 2.And based on the spending they can target customer with the loans and financial products.

Overview of DATA

		~
Variable	Description	
id	Unique ID for every Customer	
account_type	Account Type – current or saving	
gender	Gender of customer	
age	Age of customer	
region_code	Code assigned to region of residence (has orde	er)
cc_cons_apr	Credit card spend in April	
dc_cons_apr	Debit card spend in April	
cc_cons_may	Credit card spend in May	
dc_cons_may	Debit card spend in May	
cc_cons_jun	Credit card spend in June	
dc_cons_jun	Debit card spend in June	
cc_count_apr	Number of credit card transactions in April	
cc_count_may	Number of credit card transactions in May	
cc_count_jun	Number of credit card transactions in June	
dc_count_apr	Number of debit card transactions in April	
dc_count_may	Number of debit card transactions in May	
dc_count_jun	Number of debit card transactions in June	
card_lim	Maximum Credit Card Limit allocated	
personal_loan_active	Active personal loan with other bank	
vehicle_loan_active	Active Vehicle Ioan with other bank	
personal_loan_closed	Closed personal loan in last 12 months	
vehicle_loan_closed	Closed vehicle loan in last 12 months	
investment_1	DEMAT investment in june	
investment_2	fixed deposit investment in june	
investment_3	Life Insurance investment in June	
investment_4	General Insurance Investment in June	
debit_amount_apr	Total amount debited for April	
credit_amount_apr	Total amount credited for April	
debit_count_apr	Total number of times amount debited in april	
credit_count_apr	Total number of times amount credited in april	l
max_credit_amount_apr	Maximum amount credited in April	
debit_amount_may	Total amount debited for May	
credit_amount_may	Total amount credited for May	
credit_count_may	Total number of times amount credited in May	
debit_count_may	Total number of times amount debited in May	
max_credit_amount_may	Maximum amount credited in May	
debit_amount_jun	Total amount debited for June	
credit_amount_jun	Total amount credited for June	
credit_count_jun	Total number of times amount credited in June	
debit_count_jun	Total number of times amount debited in June	
max_credit_amount_jun	Maximum amount credited in June	
loan_enq	Loan enquiry in last 3 months	
emi_active	Monthly EMI paid to other bank for active loans	
cc_cons	(Target) Average Credit Card Spend in next three	months

EDA

- Checking the null values in both the train and test set.
- 2. Also checking for the outliers in the data.
- 3. As this is a banking problem, there might be chances of data mislead, so using the null values will effect in the correlation.
- 4. Using the median to fill nan values in the data set.
- To get the consumption of the three months, we create a new columns which is the sum of all count, and rest others.

EDA

Correlation of Target and other variables

- We have plotted the correlation matrix to check the correlation between all the columns.
- Accordingly we can drop the columns which are not necessary.
- Apparently we can understand distribution of data between the strongest correlated columns.

Adding the Attribute

- After merging the featured and making a new feature,
- So we have checked that the new feature have high correlation with the Target feature.

Handling the Missing Value

- Our data have a missing values and for handling that we have replaced all the missing values with the median of the columns Hence our missing value problem has been solved.
- We have used chi-square to get the best features out of this.

Model & Approaches

Three vanilla models were assessed without performing hyperparameter tuning.

The models were

- Lasso
- Ridge
- Random Forest Regressor

None of the Four models were able to give an RMSLE score Below 1.09.

Thus called for performing hyperparameter tuning using Gradient Boosting Regressor.