Homework	
A) Let s be a subset of the tR^2 given by all pairs (x,y) , so that $x^2+y^2=2$. Show that s is a closed subset of R^2 .	(4)
If 5^c is open \Rightarrow 5 is closed, by def. $5^c = x^2 + y^2 \neq 2$	
$x^{2}+y^{2}>2$ Λ $x^{2}+y^{2}<2$	3
Since "<" and ">" are strict inequalities we have an open interval: (-\infty, \geq)/12	
Hence, 5 is closed.	
B) by showing that an sequence 900 AU has the same sequence of A, prove that $A \subseteq AUI$, where $I \subseteq B$. We show that $A \subseteq AUI$ where $I \subseteq B$.	© s ====================================
We show that $A \subseteq A \cup 3$ (In) ans an sepvence in A ? and $A \cup A \cup A$	
(2°) A 16 of closed set containing A	91(C= 19e A
As closed sets are seprentially chosed, we have that A comains all limit points in A, hence all limit paints	
in A unit paints	

(c) We show RHS is closed Usinge A is contained in any set containing A) Let on be a sequence fin AUL S.t. et on be a sepvence s.t. an EAUL. Let d(lan, B) 2 E, E=A =) lim a(an, 16)=0 => lim an = 6 Since an is a sepvence of points in AUL and an converges to 6 it concludes that E is in AUL. Hence closed. C. Show that a set A Pn 1R2 is open in the Eucidian metric

(=) It is open in the Manhattan metric. d_= V(X4 y1)2+(X2+y2)2 -> fucidian metric

di + X2-42

-> Manhattan metric