

New Voltage-dependent Checking Methodology in PDK1.2

Introduction

Voltage Recognition CAD layers

Voltage Assessment algorithm

Voltage Label Positioning

How to Debug Voltage Rules?

PDK 1.2 Updates on Voltage-dependent Checking

- Unified mechanics in between
 - Traditional voltage-related checking
 - Body Bias management
- An industry-standard approach
 - Voltage difference based
 - Deriving a min & max voltage for each net
 - Using labels to tag BB nets
 - With automatic propagation throughout connectivity & hierarchy
 - Enabling a continuous set of values
- A flexible & robust approach compatible with any mission profile
 - More appropriate for external customer usage
 - Simpler SoC integration
 - Slightly more conservative, due to coding: identical mission profile for every voltage
 - Covering voltage ranges up to 10V

Voltage determination & space requirement

- The DRC mechanism allows various voltage determination schemes
 - Information can be derived from the nature of the devices connected to the net (SG, EG, ...)
 - Information can be overridden using markers (already existing in previous PDK)
 - Information can be overridden using dedicated labels
 - Note: specific layers have been introduced for that purpose: no link with LVS nets / pins / labels
 - → No need to systematically add labels
 - → This new mechanism is backward compatible with existing GDS. It complements previous mechanism & handle previous markers
- The maximum voltage difference is determined in between the 2 nets from both voltage ranges
- A unique set of rules require a given spacing for a given maximum voltage difference

Need for new Labels or not?

- Most of the time: no GDS modification required (no label to add)
- Labels are <u>mandatory</u> if
 - Negative voltage is being used
 - Voltages greater than the nominal voltage of the connected devices is being used (typical case of cascoded devices)
 - Well biasing is performed from an external bias Note: only 2 labels (V high & V low) for each well supply are required

Impossible to determine w/o user input

- If wells are biased with a voltage generated internally to the circuit
 - By default this voltage is assumed to be in the range [0 → nominal voltage of the connected devices]
 - E.g. [0V-1V] if connected to a SG device
 - E.g. [0V-1.8V] if connected to an EG device
 - → safe: no need to add labels
 - If too conservative, can be overridden thanks to labels

Voltage Recognition CAD layers

Name	Number	Description
RX;VH	2;155	Used to define the highest voltage of the net for RX level
RX;VL	2;156	Used to define the lowest voltage of the net for RX level
PC;VH	7;155	Used to define the highest voltage of the net for PC level
PC;VL	7;156	Used to define the lowest voltage of the net for PC level
M1;VH	15;155	Used to define the highest voltage of the net for M1 level
M1;VL	15;156	Used to define the lowest voltage of the net for M1 level
M2;VH	17;155	Used to define the highest voltage of the net for M2 level
M2;VL	17;156	Used to define the lowest voltage of the net for M2 level
M3;VH	19;155	Used to define the highest voltage of the net for M3 level
M3;VL	19;156	Used to define the lowest voltage of the net for M3 level
M4;VH	21;155	Used to define the highest voltage of the net for M4 level
M4;VL	21;156	Used to define the lowest voltage of the net for M4 level
M5;VH	31;155	Used to define the highest voltage of the net for M5 level
M5;VL	31;156	Used to define the lowest voltage of the net for M5 level
M6;VH	44;155	Used to define the highest voltage of the net for M6 level
M6;VL	44;156	Used to define the lowest voltage of the net for M6 level
B1;VH	79;155	Used to define the highest voltage of the net for B1 level
B1;VL	79;156	Used to define the lowest voltage of the net for B1 level
B2;VH	81;155	Used to define the highest voltage of the net for B2 level
B2;VL	81;156	Used to define the lowest voltage of the net for B2 level
IA;VH	136;155	Used to define the highest voltage of the net for IA level
IA;VL	136;156	Used to define the lowest voltage of the net for IA level
IB;VH	137;155	Used to define the highest voltage of the net for IB level
IB;VL	137;156	Used to define the lowest voltage of the net for IB level
LB;VH	69;155	Used to define the highest voltage of the net for LB level
LB;VL	69;156	Used to define the lowest voltage of the net for LB level

Presentation Introduction Voltage Recognition CAD layers **Voltage Assessment algorithm** Voltage Label Positioning How to Debug Voltage Rules?

The net voltage is determined in the following way:

- Based on **voltage information** provided by designer through xx VL/VH labels. In case of net marked by different values on a same voltage label (VL/VH), it is assigned to the minimum/maximum one.
- If not xx VL/VH label marker is detected → Layout recognition (by decreasing prio order)
 - 1. RX substrate contact (strap contacting the substrate (not isolated p-well)) VL = 0.0 / VH = 0.0
 - 2. xx VDD maker (eq: M1 VDD5V // M3 VDD3V3) VL=0.0/VH=VDD marker value (eg: 5.0 // 3.3) In case of net marked by different markers, it is assigned to the maximum one
 - 3. SG device

VL=0.0 / VH=1.0

4. EGV MOS (EG underdriven to 1.5V)

VL=0.0 / VH=1.5

5. EG device

VL=0.0 / VH=1.8

6. Extended-drain devices (R&D device)

VL=0.0 / VH=5.0

7. Remaning floating nets

VL=0.0/VH=1.0

Introduction

Voltage Recognition CAD layers

Voltage Assessment algorithm

Voltage Label Positioning

How to Debug Voltage Rules?

Voltage Label Positioning (1/4)

xx_VH/xx_VL labels must obey the following rules:

- Label must be covered by its corresponding "drawing" layer (example: M4_VH label must be covered by M4 drawing shape).
- Only text data is allowed.
- Only single floating point value is allowed (see following slide).
- Voltage label must be within minimum/maximum authorized Design Rule Manual values.
- If xx_VH is used, xx_VL must be used on the same shape; in the same way if xx VL is used, xx VH must be used on the same shape.

Voltage High label in CAD RX_VH Voltage Low label in CAD RX VL Voltage High missing on left diffusion Voltage Low missing on right diffusion

ST Confidential

Voltage Label Positioning (2/4)

- In case of multiple Voltage labels on a same net:
 - Voltage High will be the maximum Voltage High value
 - Voltage Low will be the minimum Voltage Low value
- How to mark nets?

Voltage Label Positioning (3/4) 13

If a body biasing of +0.6V is used

Voltage Low label in CAD M1_VL

Voltage High = 0.6V Voltage Low = 0V Voltage High = 0.6V Voltage Low = 0V

Voltage Label Positioning (4/4)

If a body biasing of -0.6V is used

Voltage Low label in CAD M1_VL

Voltage High = 0V Voltage Low = -0.6V Voltage High = 0V Voltage Low = -0.6V

Introduction

Voltage Recognition CAD layers

Voltage Assessment algorithm

Voltage Label Positioning

How to Debug Voltage Rules?

How to Debug Voltage Rules? (1/4) 161

Use VOLTAGE DEBUG switch

Addition debug rules Volt_xx_voltage will be displayed within Calibre RVE windows (not sign-off)

Voltage information is stored within RDB file

ST Confidential

How to Debug Voltage Rules? (2/4)

How to Debug Voltage Rules? (3/4) 18

- DRM rule using "deltaV" wording as below example: Mx distance to (ViaBelow, ViaAbove) if delta V is ≥ 3 V, for x=1-7.
- DRC rule is including RDB file which is indicated voltage information detected, as well as corresponding deltaV which has been measured:

How to Debug Voltage Rules? (4/4)

- DRM rule using "deltaV" wording as below example: Mx space if delta V is >= 3V
- DRC rule is including RDB file which is indicated voltage information detected, as well as corresponding deltaV which has been measured:

