Divergenza delle serie perturbative

Laurendo Manuel Deodato *Relatore* Claudio Bonati

Introduzione

In meccanica quantistica, molti problemi non si risolvono esattamente \to si risolvono perturbativamente, scrivendo $\hat{H}=\hat{H}_0+\lambda\hat{V}$, con \hat{H}_0 noto e $\lambda\ll 1$.

Così facendo, energie e stati si sviluppano in serie:

$$\begin{split} E &= E^{(0)} + \lambda E^{(1)} + \lambda^2 E^{(2)} + \dots \\ &|\psi\rangle = |\psi\rangle^{(0)} + \lambda |\psi\rangle^{(1)} + \lambda^2 |\psi\rangle^{(2)} + \dots \end{split}$$

In linea di principio, la condizione di *perturbazione piccola* definita dalla richiesta $\mathcal{X} \ll 1$, assicura la validità dello sviluppo, ma questo non è vero in generale: in molti casi, le serie perturbative divergono.

L'obiettivo è di capire cosa causa questa divergenza e trovare delle condizioni per cui la convergenza è assicurata; a tale scopo, si considererà il caso specifico dell'oscillatore armonico perturbato da un potenziale quartico come riferimento per il caso generale.

L'oscillatore anarmonico

Particella 1D in potenziale

$$\hat{V} = \frac{1}{2}\hat{x}^2 + \frac{1}{2}g\hat{x}^4$$

Perturbativamente, le energie del fondamentale sono della forma $E=1/2+\sum g^nE_n$ e le funzioni d'onda degli stati eccitati si scrivono come $B(x)e^{-x^2/2}$. Se $|n\rangle$, $|m\rangle$ sono due autostati di \hat{H}_0 :

$$\langle n|\hat{x}^4|m\rangle \neq 0 \iff \begin{cases} \Delta n = |n-m| \leq 4\\ \pi_n = \pi_m \end{cases}$$

Si parte dal fondamentale, quindi $m \le 4$ e $\pi_m = +1$; il polinomio B(x) si può scrivere come:

$$B(x) = \sum_{k=0}^{+\infty} g^k B_k(x) \qquad B_k(x) = \sum_{j=0}^{2k} A_{k,j} x^{2j}$$

con $B_k(0) = 1$ come scelta di normalizzazione $\Rightarrow A_{k,0} = 1$. Dall'equazione di Schrödinger, si trovano delle relazioni ricorsive che permettono di determinare le energie; tramite calcolo numerico, si vede che queste sono divergenti con $E_n \sim n!$.

Origine della divergenza e scaling di Symanzik

Per evidenziare la divergenza, si considera la trasformazione unitaria $\hat{U}(\lambda)\psi(x) = \lambda^{1/2}\psi(\lambda x)$ che, su $\hat{H}(\alpha,g) = \hat{p}^2/2 + \alpha\hat{x}^2/2 + g\hat{x}^4/2$, agisce come:

$$\hat{U}(\lambda)\hat{H}(\alpha,g)\hat{U}(\lambda^{-1}) = \lambda^{-2}\hat{H}(\alpha\lambda^4,g\lambda^6)$$

Quindi, per $\lambda = g^{-1/6}$:

$$E_n(1,g) = g^{1/3} E_n(g^{-2/3},1) \implies E_n(g) = g^{1/3} \sum_k a_k g^{-2k/3} \sim g^{1/3}$$
 (da controllare)

Divergenza \Rightarrow non analiticità di E(g) in un intorno di g = 0 (da controllare).

Per g < 0, il potenziale è

$$V = \frac{1}{2}x^2 - \frac{1}{2}|g|x^4$$

Per g < 0, la particella si trova in una buca di potenziale \rightarrow per effetto tunnel vi può fuoriuscire e liberarsi.

Questo non è descrivibile perturbativamente.

Analiticità del dominio

 $D(\hat{H})\subset L^2$ è caratterizzato dalle funzioni che rendono \hat{H} Hermitiano; in particolare, il valore medio del potenziale deve esistere. Se $\psi\sim 1/x^2$ (per x grandi):

$$\int dx \ |\psi(x)|^2 x^2 < \infty \qquad \qquad \int dx \ |\psi(x)|^2 x^4 \sim \int dx \ \frac{1}{x^4} x^4 \to \infty$$

Allora $\psi \in D(\hat{H}_0)$, $\psi \notin D(\hat{H})$ perché il valore medio del potenziale perturbato diverge. \Rightarrow Per quanto g sia piccolo, la perturbazione non può mai essere considerata tale.

Teorema di Kato-Rellich.

Sia $\hat{H}(g)$ una famiglia di operatori con $g \in S \subset \mathbb{C}$ tale che:

- **1** $D(\hat{H}(g))$ è indipendente da g;
- 2 $\forall \psi \in D(\hat{H}(g))$, la funzione $\langle \psi | \hat{H}(g) | \psi \rangle$ è analitica per $g \in S$.

Allora $\forall g_0 \in S, \forall E(g_0)$ autovalore isolato di $\hat{H}(g_0)$, esiste un intorno I_{g_0} tale che $\hat{H}(g)$ ha un unico autovalore isolato E(g); in questo intorno, E(g) è analitica e esiste ψ_g anch'essa analitica e tale che $\hat{H}(g)\psi_g = E(g)\psi_g$.

Per l'oscillatore con $\hat{V} = \frac{1}{2}\hat{x}^2 + \frac{1}{2}g\hat{x}^4$ non è verificato il punto (1) del teorema di Kato-Rellich \longrightarrow il dominio dipende da g.

Conclusioni

Il problema della divergenza è, quindi, legato alla presenza di effetti non descrivibili perturbativamente, come l'effetto tunnel. Questi effetti si manifestano nella differenza tra i domini dell'Hamiltoniano imperturbato e quello perturbato: nel caso specifico dell'oscillatore anarmonico, $D(\hat{H}(g))$ non è indipendente da g. In generale, la convergenza dello sviluppo perturbativo può essere verificata dal teorema di Kato-Rellich.

Si nota, però, che questo non rende vano lo sviluppo: qualora la serie fosse asintotica, cioè soddisfa

$$\left| f(z) - \sum_{k=0}^{N} f_k z^k \right| \le C_{N+1} |z|^{N+1}$$

per f(z) analitica, come nel caso dell'oscillatore anarmonico, i primi termini dello sviluppo forniscono una buona approssimazione del problema per g relativamente piccolo; in particolare, necessitando di una precisione ε , si richiede $C_N|z|^N < \varepsilon$.