

Computer Organization

605.204

Module Two
Part Two
Integer Arithmetic

Module Two

- Part Two
- In this presentation, we are going to talk about :
- Integer Addition and Subtraction
- Overflow
- Integer Multiplication and Division

Previously

- Previously we talked about:
- Integer Computer Numbers

• Now: Integer Arithmetic

Integer Addition

Bitwise right to left

Always a SUM and a CARRY

Integer Addition & Subtraction

Just like in grade school (carry/borrow 1s)

$$\begin{array}{r}
0111 \\
- 0110 \\
0001
\end{array}$$

- Two's complement operations
 - subtraction using addition of negative numbers

Overflow!

• Overflow is simply a result too large for the finite computer word:

BTW: The overflow term is somewhat misleading,

it does not mean a Carry "flowed over"

Detecting Overflow

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction
- Overflow occurs when the value affects the sign:
 - when adding two positives yields a negative
 - or, adding two negatives gives a positive
 - or, subtract a negative from a positive and get a negative
 - or, subtract a positive from a negative and get a positive

When Overflow happens

- An exception (interrupt) occurs
 - Control jumps to predefined address for exception processing
 - Interrupted address is saved for possible resumption
- Details based on software system / language
 - example: flight control vs. homework assignment
- Don't always want to detect overflow
 - some MIPS instructions: addu, addiu, subu

Overflow Discussion

- Consider the operations A + B, and A B
 - Can overflow occur if B is 0 ?
 - Can overflow occur if A is 0 ?

We will discuss this question, this week during the Office Hours

Integer Multiplication

- More complicated than addition
 - accomplished via shifting and addition
- More time and more area
- Let's look at 3 versions based on grade school algorithm

Negative numbers: convert to positive, multiply, adjust the sign

Grade school multiply

```
\begin{array}{cccc} & 0010 & \text{(multiplicand)} & 2_{10} \\ & \times & \underline{1011} & \text{(multiplier)} & 11_{10} \\ & & 0010 & \\ & & 0010 & \\ & & 0010 & \\ \hline & & 0010110 & 22_{10} \\ \end{array}
```


First Version

First Version

Second Version

Third Version

Booth's Algorithm

A.D. Booth

Technique for multiplying two n-bit two's complement integers without regard to sign of multiplier or multiplicand.

Faster Multiply

Use 16 + 8 + 4 + 2 + 1 = 31 adders; operate in parallel

- Combine the results; time = 5
- Use shift left 1 = multiply by 2 ₁₇

Division

- Long division from fourth grade
- Binary digits
- If the divisor <= dividend digits
 - then put 1 in the quotient
 - and subtract
 - otherwise put 0 in the quotient,
 - and bring down the next digit
 - Until remainder less than divisor.

Restoring Division

Subtract

Step two sets the bits in the

Improved Division Hardware

- As previously, the dividend is placed in the Remainder register to begin.
- At the end, the remainder register contains both remainder and quotient
- Same as Multiply
- Hi and Lo registers

Signed numbers Division

- Dividend = Quotient x Divisor + Remainder
- The sign of the Quotient is negative if the signs of the Divisor and Dividend are different; otherwise, positive.
- Rule: Dividend and Remainder always have the same sign.
- Discussion:
 - Shift right for divide; complement of shift left for multiply?

Integer Summary

- Two's complement representation for integers.
- Subtract Change the Sign and Add
- Overflow Value too large for the number of digits
- Multiply Booth's Algorithm
- Divide Signed numbers
- Next: Floating Point Numbers