Learning with large examples: A short survey

Sanyam Kapoor (sk6876@nyu.edu), Chhavi Yadav (cy1235@nyu.edu) December 19, 2017

Courant Institute, NYU

Motivation

- Most data has implicit or explicit internal structure
- Structured Prediction learning structures from input examples
- e.g. A large satellite image for segmentation, POS tagging in large corpus or analysis of large social networks (note exponential output space)
- Our focus Can we generalize from a single example with large internal structure?
- Analysis and critique of two approaches to obtain generalization bounds for such scenarios

Graph-based Hypotheses ${\cal H}$

Figure 1: A Markov Network, e.g. 1 ⊥ 7 |4 [Barber, 2012]

- Use Markov random fields Z = (X, Y)
- We define a graph based hypothesis for a graph G as

$$\mathbb{P}_{G,h}(Y_i|\mathbf{X},\mathbf{Y}\backslash Y_i) = \mathbb{P}_{G,h}(Y_i|\mathbf{X}_{\mathcal{N}^d(i)},\mathbf{Y}_{\mathcal{N}^d(i)})$$
(1)

where $\mathbf{Y} \triangleq h_G(\mathbf{X})$ and $\mathcal{N}^d(i)$ are the neighbors

Modelling the problem

- Graphs are a natural way of modelling dependencies
- [London et al., 2013] proposes Θ ∈ ℝ^{n×n} matrix to model the decay of dependence over the graph for some ordering of Z

$$\eta_{i,j} = \sup_{i} \|\mathbb{P}(\mathbf{Z}_{j:n}|\mathbf{Z}_{1:i-1}, z_i) - \mathbb{P}(\mathbf{Z}_{j:n}|\mathbf{Z}_{1:i-1}, z_i')\|_{TV}$$
 (2)

- We aim to see how empirical risk concentrates around the true risk (the generalization error bound)
- Key considerations Weak dependence, β -stability, (M, λ) -admissibility, Rademacher Complexity (\Re)

Main Result

- $\sup_{h \in \mathcal{H}} ||h(\mathbf{z}) h(\mathbf{z}')||_1 \le \beta \ (\beta\text{-stability})$ for hypothesis class \mathcal{H}
- $|\ell(y, \hat{y}) \ell(y', \hat{y})| \le M$ and $|\ell(y, \hat{y}) \ell(y, \hat{y}')| \le \lambda ||\hat{y} \hat{y}'||_1$ ((M, λ)-admissibility) for the loss function ℓ
- · Generalization bound for such graph-based Hypothesis

$$R_{G}(h) \leq \hat{R}_{G}(h, \mathbf{Z}) + 2\lambda \sum_{j=1}^{k} \Re_{n}(\mathcal{H}^{j}) + (M + \lambda \beta) ||\mathbf{\Theta}_{n}||_{\infty} \sqrt{\frac{In(1/\delta)}{2n}}$$
(3)

Discussion

- Intuitively, complexity of the Hypothesis set governed by the complexity of dependencies in the model
- The stability term captures how stable the predictions are, ideally we want β = O(1)
- $\|\mathbf{\Theta}_n\|_{\infty}$ captures the slowest decay of dependence, again ideally we want $\|\mathbf{\Theta}_n\|_{\infty} = O(1)$
- In practice, hard to qualify such constraints. [London et al., 2013] shows TSMs to obey but only with number of clique templates $|\mathcal{T}|=1$ as $\beta=O(1)$ and $\Re_n(\mathcal{H})=O\left(\sqrt{lg(n)/n}\right)$

A Different Approach

- PAC bounds for MLE (Maximum Likelihood Estimation)
- [He and Zhang, 2014] propose a combinatorial approach to calculate the sample complexity via a bound between the calculated estimate MLE $\hat{\theta}_n$ and the true parameter θ^*
- Key considerations Finite Distance Dependence, Bounded Features, Minimum Curvature (Hessian Positive Definite)

Results

 Upper-bounding the number of "close-by" cliques for a given clique

$$|C(c,\lambda)| < \frac{3}{2} \left(\frac{1}{m} + 1\right) {d \choose m-1} d^{\lambda}$$
 (4)

Achieve a polynomially dependent sample-complexity bound as

$$\mathbb{P}\left[\|\nabla \ell^{(n)}(\theta^*)\|_2 > t\right] < \frac{r^2 \phi_{max}^2}{nt^2} \left[\frac{3}{2} \left(\frac{1}{m} + 1 \right) \binom{d}{m-1} d^{\lambda^*} + 1 \right]$$
(5)

Discussion

$$n > \frac{4r^2\phi_{max}^2}{\epsilon^2\delta C_{min}^2} \left[\frac{3}{2} \left(\frac{1}{m} + 1 \right) {d \choose m-1} d^{\lambda^*} + 1 \right]$$
 (6)

- Importance of λ*
- C_{min} makes the Hessian more friendly for convex optimization
- Larger clique size or larger graph size would lead to a requirement of more samples
- Term of 1/n that hints at a harder learning problem

Comparisons and Challenges

- The second approach relaxes the "decay" of dependence condition and only requires the dependence to be zero after a certain graph distance.
- The choice of loss function is only L2 here whereas the former results admits a more generic problem with added unknowns
- For very large graphs, the degree of the graph might make the bound vacuous and instead the former approach may be more suitable and relevant

Future Directions

- $O(\log 1/\delta)$ v/s $O(1/\delta)$ order of dependence on the confidence, reveals a contradictory nature of both the approaches
- β-stability seemed essential for the purpose of joint inference, seems absent here. Is β-stability important in its current form?
- Number of parameters to be learnt, size of cliques, degree of the nodes.

References i

Barber, D. (2012).
Bayesian Reasoning and Machine Learning.
Cambridge University Press, New York, NY, USA.

He, P. and Zhang, C. (2014).

Non-Asymptotic Analysis of Relational Learning with One Network.

In Kaski, S. and Corander, J., editors, *Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics*, volume 33 of *Proceedings of Machine Learning Research*, pages 320–327, Reykjavik, Iceland. PMLR.

References ii

London, B., Huang, B., Taskar, B., and Getoor, L. (2013). Collective stability in structured prediction:
Generalization from one example.

In Dasgupta, S. and McAllester, D., editors, *Proceedings of the 30th International Conference on Machine Learning*, volume 28 of *Proceedings of Machine Learning Research*, pages 828–836, Atlanta, Georgia, USA. PMLR.