Lecture 11 Recursion

Recursion

- Recursion is a fundamental programming technique that can provide an elegant solution certain kinds of problems
- Lecture 11 focuses on:
 - thinking in a recursive manner
 - programming in a recursive manner
 - the correct use of recursion
 - recursion examples

Outline

Recursive Thinking
Recursive Programming
Using Recursion

Recursive Thinking

- A recursive definition is one which uses the word or concept being defined in the definition itself
- When defining an English word, a recursive definition is often not helpful
- But in other situations, a recursive definition can be an appropriate way to express a concept
- Before applying recursion to programming, it is best to practice thinking recursively

Recursive Definitions

Consider the following list of numbers:

Such a list can be defined as follows:

```
A LIST is a: number or a: number comma LIST
```

- That is, a LIST is defined to be a single number, or a number followed by a comma followed by a LIST
- The concept of a LIST is used to define itself

Recursive Definitions

 The recursive part of the LIST definition is used several times, terminating with the non-recursive part:

```
number comma LIST
24 , 88, 40, 37

number comma LIST
88 , 40, 37

number comma LIST
40 , 37

number 37
```

Infinite Recursion

- All recursive definitions have to have a nonrecursive part
- If they didn't, there would be no way to terminate the recursive path
- Such a definition would cause infinite recursion
- This problem is similar to an infinite loop, but the non-terminating "loop" is part of the definition itself
- The non-recursive part is often called the base case

Recursive Definitions

- N!, for any positive integer N, is defined to be the product of all integers between 1 and N inclusive
- This definition can be expressed recursively as:

```
1! = 1
N! = N * (N-1)!
```

- A factorial is defined in terms of another factorial
- Eventually, the base case of 1! is reached

Recursive Definitions

Outline

Recursive Thinking

Recursive Programming

Using Recursion

- A method in Java can invoke itself; if set up that way, it is called a recursive method
- The code of a recursive method must be structured to handle both the base case and the recursive case
- Each call to the method sets up a new execution environment, with new parameters and local variables
- As with any method call, when the method completes, control returns to the method that invoked it (which may be an earlier invocation of itself)

- Consider the problem of computing the sum of all the numbers between 1 and any positive integer N
- This problem can be recursively defined as:

$$\sum_{i=1}^{N} i = N + \sum_{i=1}^{N-1} i = N + N-1 + \sum_{i=1}^{N-2} i$$

$$= N + N-1 + N-2 + \sum_{i=1}^{N-3} i$$

$$\vdots$$

```
// This method returns the sum of 1 to num
public int sum (int num)
    int result;
    if (num == 1)
        result = 1;
    else
        result = num + sum (n-1);
    return result;
```


- Note that just because we can use recursion to solve a problem, doesn't mean we should
- For instance, we usually would not use recursion to solve the sum of 1 to N problem, because the iterative version is easier to understand
- However, for some problems, recursion provides an elegant solution, often cleaner than an iterative version
- You must carefully decide whether recursion is the correct technique for any problem

Indirect Recursion

- A method invoking itself is considered to be *direct* recursion
- A method could invoke another method, which invokes another, etc., until eventually the original method is invoked again
- For example, method m1 could invoke m2, which invokes m3, which in turn invokes m1 again
- This is called indirect recursion, and requires all the same care as direct recursion
- It is often more difficult to trace and debug

Indirect Recursion

Outline

Recursive Thinking Recursive Programming

Using Recursion

Maze Traversal

- We can use recursion to find a path through a maze
- From each location, we can search in each direction
- Recursion keeps track of the path through the maze
- The base case is an invalid move or reaching the final destination
- See MazeSearch.java (page 583)
- See Maze.java (page 584)

- The Towers of Hanoi is a puzzle made up of three vertical pegs and several disks that slide on the pegs
- The disks are of varying size, initially placed on one peg with the largest disk on the bottom with increasingly smaller ones on top
- The goal is to move all of the disks from one peg to another under the following rules:
 - We can move only one disk at a time
 - We cannot move a larger disk on top of a smaller one

- An iterative solution to the Towers of Hanoi is quite complex
- A recursive solution is much shorter and more elegant
- See SolveTowers.java (page 590)
- See TowersOfHanoi.java (page 591)

Merge Sort

- Merge Sort is a recursive algorithm to sort a list (array) of items
- It performs significantly better than Insertion Sort and Selection Sort
- We will outline the key idea of the algorithm in this lecture and sketch it's recursive strategy
- The Java implementation of Merge Sort will be the main task for the next exercise sheet on recursion
- Try to understand the logic of the algorithm now; think about Java details later when you solve the exercises

Merge Sort

Divide and Conquer

- The Merge Sort algorithm sorts an array by
 - cutting the array in half
 - recursively sorting each half
 - merging the sorted halfs
- The recursion terminates if we are left with subarrays of length one
- Thus, the algorithm keeps dividing the array into smaller and smaller subarrays, sorting each half and merging them back together
- This algorithm carries out dramatically fewer steps than the insertion or selection sort algorithms

Merging two sorted subarrays

 merging two sorted subarrays is a simple operation which works in linear time in the size of the two subarrays

A full example

Partitioning

Recursive call, partitioning

Recursive call, partitioning

Recursive call, base case

Recursive call, base case

Merge

Recursive call, ..., base case, merge

Merge

Recursive call, ..., merge, merge

Merge

Complexity of Merge Sort

- The complexity of Merge Sort is O(n log n), where n is the size of the input
- Recall that Selection Sort and Insertion Sort have complexity O(n²)
- There are further efficient, recursively formulated sorting algorithms, e.g.
 - Quick Sort
- You will learn more about searching and sorting in the lecture "Datenstrukturen und Algorithmen"

Summary

- Lecture 11 has focused on:
 - thinking in a recursive manner
 - programming in a recursive manner
 - the correct use of recursion
 - recursion examples