Investigating LLM based Android settings search with a generated dataset and an elicitation study

Student researcher: Maozheng Zhao Host: Shanging Cai Co-host: Michael Huang

Background: Android settings search

Search by keywords

Current search:

- 1. Only works well when keywords appears
- 2. Falls short of search by natural language

Search by natural language

A generated dataset for model fine-tuning

Generated by LLM and filtered by human.

30 setting items * 30 filtered queries = 900 queries

The training/validation/testing set has 600/150/150 examples.

Results on the generated test set

LaMDA models

temperature =1

150 testing queries for 30 items

Used the same few-shot prompting for all models.

The higher the better. Fined-tuned models outperforms the original models.

Dark theme

Display

What would you ask the Google assistant to make the following change?

Elicitation study for data collection

Design rationale:

- Avoiding verbal biases
- Showing pre/post visual effects

Before the setting

After the setting

Elicitation study for data collection

- Differences are highlighted with red boxes.
- Keywords are covered.

Before the setting

After the setting

Media volume <- Sound & vibration

Demo of the study APP

31 figures in randomized order 5 for warm up. 26 for data collection.

Participants statistics

Number of participants: 20 (10 male, 10 female)

Age: 23.65 +/- 1.136 (average +/- standard deviation)

How often do you use Android phones or tablets?

At least once a day (13), At least once a week (3), At least once a month (2), Rarely or never (2)

How often do you use smartphones or tablets in general (regardless of whether it's Android or not)?

At least once a day (20)

Familiarity with Android settings (1-5): 4.35 +/- 0.67 (average +/- standard deviation)

Data statistics

Effective queries: 520 (26*20)

Examples:

Dark theme <- Display:

change the background theme to dark

how to change my phone from light mode to dark mode

Media_volume <- sound & vibration:

increase the phone music volume

increase the sound level

Baseline methods

TF-IDF: (Term Frequency - Inverse Document Frequency) is a handy algorithm that uses the frequency of words to determine how relevant those words are to a given document.

Sentence Encoder encodes text into high dimensional vectors that can be used for text classification, semantic similarity, clustering, and other natural language tasks.

Sentence_transformers library

Results on the human dataset

Training set (generated data): 30 items 600 queries

Testing set (human data): 8 items 135 queries

Summary

- 1. Fine-tuned model outperformed the pretrained model, TFIDF and sentence encoding.
- 2. Model trained with synthetic dataset still performs well on human data.

Thank you!