UENF

Universidade Estadual do Norte Fluminense Darcy Ribeiro

Curso: Ciência de Computação Data: 12./.09./2022

Atividade: Questões Prova 1 Período: 4º Disciplina: Estrutura de dados II

Professor: Fermín Alfredo Tang **Turno:** Diurno

Nome do Aluno:Matrícula:

- 1. Responda com verdadeiro (V) ou falso (F), justificando a sua resposta:
 - i) Sempre é possível afirmar que um algoritmo A é melhor que outro Algoritmo B apenas comparando seus tempos de execução para um tamanho fixo de entrada *n*.
 - ii) A função T(n) mede de forma precisa o número de operações realizadas por um algoritmo em função da entrada do algoritmo.
 - iii) A função E(n) mede de forma aproximada o número de posições de mémória realizadas por um algoritmo em função da entrada do algoritmo.
 - iv) A notação O(f(n)) serve para classificar o comportamento de um algoritmo com função T(n) na categoria f(n) mas não para medir seu desempenho.
 - v) Na notação O(f(n)) podemos descartar termos de menor grau e coeficientes multiplicativos, o que significa que eles não são necessários para medir o seu desempenho.

Respostas

i) Falso. Esse tipo de comparação pontual não permite concluir se um algoritmo A é melhor que outro algoritmo B.

Em geral, podemos ter as seguintes situações:

- i) Um algoritmo é sempre melhor que o outro. Por exemplo: a função de tempo $T_A(n)$ é sempre menor que $T_B(n)$.
- ii) Um algoritmo é melhor que o outro somente a partir de um valor de n suficientemente grande. Por exemplo: $T_A(n) < T_B(n)$ para $n \ge n_0$.
- ii) Falso. A função T(n) mede o número de operações realizadas por um algoritmo em função da entrada do algoritmo. Mas essa medição não deixa de ser uma aproximação da realidade. Já que a contagem de operações sempre sofre simplificações.
- iii) Verdadeiro. Usando a explicação dada acima aplicada ao caso da memória.
- iv) Verdadeiro. A função f(n) dá uma ideia geral da taxa de crescimento do algoritmo (em tempo ou memória) e pode servir como limite assintótico. Mas deixa de fora constantes multiplicativas e termos de menor grau que são necessários para medir o desempenho.
- v) Falso. Pelo explicado anteriormente, todos os termos da função T(n) são necessários para medir o desempenho do algoritmo (em tempo ou memória).

2. Considerando o seguinte vetor:

0									
15	5	16	4	10	23	18	39	26	2

Execute o **algoritmo shellsort** considerando espaçamento h=4 e obtenha a ordenação em 4. Observe que o algoritmo começa tentando inserir o elemento que se encontra na posição 4, no seu subconjunto correspondente. E prosegue tentando inserir os elementos das posições 5 até 9.

Indique o número de comparações. Indique o número de deslocamentos.

Resposta2.-

i) Execute o **algoritmo shellsort** considerando espaçamento h=4 e obtenha a ordenação em 4. Observe que o algoritmo começa tentando inserir o elemento que se encontra na posição 4, no seu subconjunto correspondente. E prosegue tentando inserir os elementos das posições 5 até 9.

0	1	2	3	4	5	6	7	8	9
15	5	16	4	10	23	18	39	26	2
10	5	16	4	15	23	18	39	26	2
10	5	16	4	15	23	18	39	26	2
10	5	16	4	15	23	18	39	26	2
10	5	16	4	15	23	18	39	26	2
10	5	16	4	15	23	18	39	26	2
10	2	16	4	15	5	18	39	26	23

Vetor ordenado h = 4

Indique o número de comparações:

$$1+1+1+1+1+2=7$$

Indique o número de deslocamentos: 1+0+0+0+0+2=3

- 3. Determine o valor do espaçamento inicial *h*, no algoritmo de Shellsort, usando a função de Knuth, considerando um vetor de tamanho *n* igual a:
 - i) 500 elementos;
 - ii) 5.000 elementos;
 - iii) 50.000 elementos;

Em cada caso, usando a função inversa de Knuth, indique também a sequência de valores de h usada na redução do espaçamento até h=1

Resposta3.-

Usando a função de Knuth: 3h + 1, para valores menores do que n e (n - 1)/3, temos respectivamente:

h	3h+1	
1	4	
4	13	
13	40	
40	121	(n-1)/3 = 166
121	364	n = 500
364	1.093	(n-1)/3 = 1.666
1.093	3.280	n = 5.000
3.280	9.841	(n-1)/3 = 16.666
9.841	29.524	n = 50.000
29.524	88.573	

i) 500 elementos; h = 121

Usando a função inversa de Knuth temos a sequência:

40, 13, 4, 1.

ii) 5.000 elementos; h = 1.093

Usando a função inversa de Knuth temos a sequência:

364, 121, 40, 13, 4, 1.

n	(n-1)/3
500	166
5.000	1.666
50.000	16.666

iii) 50.000 elementos; h = 9.841

Usando a função inversa de Knuth temos a sequência:

1.093, 364, 121, 40, 13, 4, 1.

4. Considerando o seguinte vetor:

0									
15	5	16	4	10	23	18	39	26	2

Execute o **algoritmo mergesort** mostrando apenas as árvores de: i) decomposição em subproblemas mediante copias e ii) composição dos subproblemas ordenados mediante copias.

Indique o número de comparações. Indique o número de copias.

Resposta 4.-

i) A árvore de decomposição em subproblemas é:

3.280,

ii) A árvore de composição de subproblemas ordenados é:

Indique o número de comparações: Subida: Nivel 4: 2

Nivel 3: 2 + 1 + 2 + 1 = 6Nivel 2: 3 + 4 = 7Nivel 1: 6Total: 21

Indique o número de copias: Descida: 3(10) + 4

Subida: 3(10) + 4

Total: 68 copias

5. Considerando os seguintes vetores:

			_	4	Ü	-	_	-	4
3	9	27	81	243	4	10	28	82	244

Execute o **algoritmo merge** de intercalação. Indique o número de comparações.

Generalizando esta situação para dois vetores de tamanho n/2. Qual seria o número de comparações em termos de n?. Isso representa o melhor caso ou pior caso?.

Resposta6.- Como os elementos do primeiro e segundo vetor se encontram perfeitamente intercalados o menor elemento será sempre alternado entre um elemento do primeiro vetor e outro do segundo vetor. Dessa forma, ambos vetores diminuem de tamanho juntos, sendo realizadas 9 comparações até esgotar um deles. O menor elemento é copiado no vetor ordenado com 10 elementos.

Generalizado a situação para dois vetores de tamanho n/2, o número de comparações seria n-1. Isso representa o pior caso.

6. Considerando o seguinte vetor:

			2								
ſ	5	2	30	4	10	23	18	39	26	15	16

Execute o algoritmo particiona do algoritmo quicksort

Indique o número de comparações. Indique o número de trocas.

Resposta6.- Usamos como elemento pivô o ultimo elemento. Usamos a versão 2, do Quicksort que percorre os elementos do vetor simultaneamente pela esquerda e pela direita.

O algoritmo percorre os elementos pela esquerda enquanto forem menores que 16. Ao encontrar o elemento 30 para. Também percorre os elementos pela direita enquanto forem maiores que 16. Ao encontrar o elemento 15 para. Os elementos 15 e 30 são trocados de posição, porque estão no lado errado.

O algoritmo retoma o percursos pela esquerda e pela direita. Ambos percursos param em 23 e 10 respectivamente. Mas desta vez a posição de parada do percurso esquerdo cruzou com a posição de parada do percurso direito. O que significa que não há elementos fora de lugar.

Finalmente, o pivô é trocado com a posição de parada esquerda.

5	2	15	4	10	16	18	39	26	30	23
---	---	----	---	----	----	----	----	----	----	----

Indique o número de comparações: 12 Indique o número de trocas: 2

7. Considere a sequência de chaves mostrada abaixo, processadas linha por linha, e uma tabela hash com 19 elementos.

Use o método do módulo da divisão para *hashing* inicial e endereçamento aberto com tentativa linear para resolver colisões;

Resposta7.- Sabemos que a tabela possui 19 elementos, com posições de 0 a 18.

Usando o módulo da divisão temos: $h(x) = x \mod 19$

Na tentativa linear fazemos: $h(x, i) = (h(x) + i) \mod 19$

Assim:

- 1) Para x = 224562 temos: $h(224562) = 224562 \mod 19 = 1$
- 2) Para x = 137456 temos: h(137456) = 137456 mod 19 = 10
- 3) Para x = 214562 temos: $h(214562) = 214562 \mod 19 = 14$
- 4) Para x = 140145 temos: $h(140145) = 140145 \mod 19 = 1$ Existe colisão, para i = 1 temos: $h(140145, 1) = (1 + 1) \mod 19 = 2$
- 5) Para x = 214576 temos: $h(214576) = 214576 \mod 19 = 9$
- 6) Para x = 162145 temos: h(162145) = 162145 mod 19 = 18
- 7) Para x = 144467 temos: $h(144467) = 144467 \mod 19 = 10$ Existe colisão, para i = 1 temos: $h(144467, 1) = (10 + 1) \mod 19 = 11$
- 8) Para x = 199645 temos: h(199645) = 199645 mod 19 = 12
- 9) Para x = 234534 temos: h(234534) = 234534 mod 19 = 17

A tabela *hash* é preenchida da seguinte forma:

0	
1	224562
2	140145
3	
4	
5	
6	
7	
8	
9	214576
10	137456
П	144467
12	199645
13	
14	214562
15	
16	
17	234534
18	162145

- 8.- Na mesma sequência da questão 7, use o método de *hashing* da extração de dígitos (primeiro, terceiro e quinto dígitos), lembre de normalizar os endereços usando o módulo da divisão, caso necessário. Use o endereçamento aberto com tentativa quadrática para o tratamento das colisões;
- **Resposta2.-** Fazendo a extração de três dígitos ainda teremos chaves com valores maiores que a dimensão da tabela, com isso teremos que normalizar usando o módulo da divisão: $h(x) = x \mod 19$

Na tentativa quadrática utilizamos como novo endereço o lugar da colisão mais o quadrado da tentativa. Caso necessário, normalizar.

Assim:

- 1) Para x = 224562 extraímos: $h(246) = 246 \mod 19 = 18$
- 2) Para x = 137456 extraímos: $h(175) = 175 \mod 19 = 4$
- 3) Para x = 214562 extraímos: $h(246) = 246 \mod 19 = 18$

A chave simplificada é idêntica a outra chave anterior. Existe colisão em 18.

Para a tentativa i = 1 a nova posição seria: $18 + (1)^2 = 19$

Aplicando módulo da divisão temos: $h(x) = 19 \mod 19 = 0$

- 4) Para x = 140145 extraímos: $h(104) = 104 \mod 19 = 9$
- 5) Para x = 214576 extraímos: $h(247) = 247 \mod 19 = 0$ Existe colisão em 0.

Para a tentativa i = 1 a nova posição seria: $0 + (1)^2 = 1$

- 6) Para x = 162145 extraímos: $h(124) = 124 \mod 19 = 10$
- 7) Para x = 144467 extraímos: $h(146) = 146 \mod 19 = 13$
- 8) Para x = 199645 extraímos: $h(194) = 194 \mod 19 = 4$ Existe colisão em 4.

Para a tentativa i = 1 a nova posição seria: $4+(1)^2 = 5$

9) Para x = 234534 extraímos: $h(243) = 243 \mod 19 = 15$ A tabela hash é preenchida da seguinte forma:

0	214562
I	214576
2	
3	
4	137456
5	199645
6	
7	
В	
9	140145
0	162145
I	
2	
3	144467
4	
5	234534
6	
7	
8	224562

9.- Na mesma sequência da questão 7, use o método midsquare, com os dois dígitos centrais para *hashing* inicial, (lembre de normalizar os endereços usando o módulo da divisão, caso necessário). Use o método key-offset para tratamento de colisões.

Resposta9.-

O método midsquare usará o quadrado dos dois dígitos centrais usando o módulo da divisão: $h(x) = x \mod 19$ para normalizar o resultado.

Em caso de colisão, o método *key offset* deve utilizar a seguinte expressão para calcular o deslocamento: $offset = \lfloor x/19 \rfloor$, onde x representa o quadrado.

A nova chave será calculada somando o deslocamento à posição colidida e normalizando. novo endereço = (colisão + offset) mod 19

Assim:

- 1) Para x = 224562 extraímos 45: $h(45^2) = 2025 \mod 19 = 11$
- 2) Para x = 137456 extraímos 74: $h(74^2) = 5476$ mod 19 = 4
- 3) Para x = 214562 extraímos 45: h(45²) = 2025 mod 19 = 11
 A chave simplificada é idêntica a outra chave anterior. Existe colisão em 11.
 Para a tentativa i = 1, calculamos o offset = [2025/19] = 106
 novo endereço = (11 + 106)mod 19 = 3
- 4) Para x = 140145 extraímos 01: $h(1^2) = 1 \mod 19 = 1$
- 5) Para x = 214576 extraímos 45: $h(45^2) = 2025 \mod 19 = 11$ Existe colisão em 11. Calculamos o $offset = \lfloor 2025/19 \rfloor = 106$ Para a tentativa i = 1, $novo\ endereço = (11 + 106)\ mod\ 19 = 3$ Existe colisão em 3.

Para a tentativa i = 2, novo endereço = (3 + 106) mod 19 = 14

- 6) Para x = 162145 extraímos 21: $h(21^2) = 441 \mod 19 = 4$ Existe colisão em 4. Calculamos o $offset = \lfloor 441/19 \rfloor = 23$ Para a tentativa i = 1, $novo\ endereço = (4 + 23) \mod 19 = 8$
- 7) Para x = 144467 extraímos 44: $h(44^2) = 1936 \mod 19 = 17$
- 8) Para x = 199645 extraímos 96: h(96²) = 9216 mod 19 = 1
 Existe colisão em 1. Calculamos o offset = [9216/19] = 485
 Para a tentativa i = 1, novo endereço = (1 + 485) mod 19 = 11
 Para a tentativa i = 2, novo endereço = (11 + 485) mod 19 = 2
- 9) Para x = 234534 extraímos 45: $h(45^2) = 2025 \mod 19 = 11$ Existe colisão em 11. Calculamos o $offset = \lfloor 2025/19 \rfloor = 106$

Para a tentativa i = 1, novo endereço = (11 + 106) mod 19 = 3Existe colisão em 3.

Para a tentativa i = 2, novo endereço = (3 + 106) mod 19 = 14

Para a tentativa i = 3, novo endereço = (14 + 106) mod 19 = 6

A tabela *hash* é preenchida da seguinte forma:

- 10.- Considerando questões sobre *hashing*, responda com verdadeiro ou falso as seguintes questões justificando em cada caso.
 - i) As técnicas de *hashing* garantem que o tempo de busca, inserção e remoção de um dado seja sempre O(1).
 - ii) A menos que o *hashing* seja perfeito independente da função de *hash* utilizada sempre existe a possibilidade de acontecer uma colisão.
 - iii) Podemos usar uma função de *hash* para o posicionamento inicial da chave na tabela e outra função de *hash* para o tratamento das colisões.
 - iv) Todo *Hash* duplo elimina o clustering secundário.

Resposta10.-

- i) Falso. Embora o comportamento O(1) seja o desejado. Na prática, não existe garantia de que esse comportamento seja atingido, devido a ocorrência de colisões. Quanto maior for o fator de carga da tabela, maior será número de tentativas necessárias para encontrar um elemento.
- ii) Verdadeiro. Somente quando o *hashing* é perfeito temos um mapeamento um a um entre as chaves e as posições na tabela *hash*. Caso contrário, apenas pelo fato de existirem um número muito maior e chaves potenciais do que posições disponíveis na tabela *hash* se torna inevitável a ocorrência de colisões.
- iii) Verdadeiro. Essa abordagem é chamada de *hash* duplo.
- iv) Falso. Nem todo *hash* duplo elimina o *clustering* secundário. O método de *key offset* elimina o *clustering* secundário. Já o *hashing* duplo pseudoaleatório não elimina o *clustering* secundário.