Question

Consider a quantum system made of one qubit. The system is in the initial state $|\psi\rangle = |1\rangle$. The quantum gate Pauli Z is applied on $|\psi\rangle$. Can you describe the action of this gate on the system? Can you give a graphical representation of the circuit? What is the final state of the system?

Answer 1

The Pauli Z gate is a single-qubit gate that is represented by the following matrix:

$$Z = |1 \ 0|$$

 $|0 \ -1|$

When this gate is applied to the initial state $|1\rangle$, we obtain:

$$Z|1\rangle = |0\rangle$$

So, the Pauli Z gate changes the state $|1\rangle$ to the state $|0\rangle$. Geometrically, this corresponds to a rotation of π around the Z-axis on the Bloch sphere.

The circuit diagram for this operation is:

$$|1\rangle$$
 --Z-- $|0\rangle$

where the qubit starts in the state $|1\rangle$ and then the Pauli Z gate is applied, resulting in the final state $|0\rangle$.

On the Bloch sphere, the initial state $|1\rangle$ corresponds to the point on the +Z axis, and the final state $|0\rangle$ corresponds to the point on the -Z axis, as shown below:

Here, the * represents the initial state $|1\rangle$ and the + represents the final state $|0\rangle$. The dashed line represents the equator of the Bloch sphere, which corresponds to the states $|+\rangle$ and $|-\rangle$. The rotation induced by the Pauli Z gate is a reflection across the equator, which takes $|1\rangle$ to $|0\rangle$.

Answer 2

The Pauli Z gate is a single-qubit gate that is represented by the matrix:

$$Z = [1 \ 0]$$
 [0 -1]

When applied to the qubit in the state $|1\rangle$, the Pauli Z gate flips the sign of the state. So the final state of the system after the application of the Pauli Z gate would be:

$$Z|1\rangle = -|1\rangle$$

Graphically, the circuit would be represented as:

Here, the state $|1\rangle$ enters the Pauli Z gate, which flips the sign of the state, resulting in the final state of $|1\rangle$.

In terms of the Bloch sphere representation, the initial state $|1\rangle$ corresponds to the north pole of the sphere, while the final state of $-|1\rangle$ corresponds to the south pole of the sphere. The Pauli Z gate is essentially a rotation of the qubit state around the Z-axis of the Bloch sphere by π radians.

Answer 3

The Pauli Z gate, also known as the Z gate or the phase flip gate, is a fundamental quantum gate that operates on a single qubit. It is represented by the matrix:

$$Z = |1 \ 0|$$

 $|0 \ -1|$

When the Pauli Z gate is applied to the initial state $|\psi\rangle = |1\rangle$, it flips the phase of the qubit, leaving the probability amplitudes unchanged. In other words, it changes the sign of the state corresponding to the basis state $|1\rangle$. Mathematically, the action of the Pauli Z gate on the initial state can be

$$Z|\psi\rangle = Z|1\rangle = |0\rangle$$

described as:

Graphically, the circuit representation of the Pauli Z gate applied to a single qubit can be depicted as follows:

$$|\psi\rangle$$
 ---- $|0\rangle$

This represents the qubit state $|\psi\rangle$ as an input, followed by the application of the Pauli Z gate (Z), resulting in the final state $|0\rangle$.

Therefore, the final state of the system after the Pauli Z gate is applied to the initial state $|\psi\rangle = |1\rangle$ is $|0\rangle$.