Задание 8. Канторова форма, ординалы Веблена.

- 1. Докажите, что любой ненулевой ординал α однозначно представляется в канторовой нормальной форме $\alpha = \omega^{\alpha_0} + \cdots + \omega^{\alpha_k}$, где $k < \omega$ и $\alpha_0 \ge \cdots \ge \alpha_k$. Это представление можно записать в виде "многочлена" $\alpha = \omega^{\beta_0} \cdot n_0 + \cdots + \omega^{\beta_l} \cdot n_l$, где $l < \omega$, $\beta_0 > \cdots > \beta_l$, и $0 < n_0, \ldots, n_l < \omega$.
- 2. Определим модифицированные операции \oplus , \otimes на ординалах, обращаясь с канторовыми представлениями как с многочленами. Точнее, полагаем $0 \oplus \alpha = \alpha \oplus 0 = \alpha$, $0 \otimes \alpha = \alpha \otimes 0 = 0$, а для ненулевых $\alpha = \omega^{\alpha_0} + \dots + \omega^{\alpha_k}$ и $\beta = \omega^{\beta_0} + \dots + \omega^{\beta_l}$ полагаем: $\alpha \oplus \beta = \omega^{\gamma_0} + \dots + \omega^{\gamma_{k+l+1}}$ и $\alpha \otimes \beta = \omega^{\delta_0} + \dots + \omega^{\delta_m}$, где γ_i и δ_j получаются сортировкой по невозрастанию массивов $(\alpha_0, \dots, \alpha_k, \beta_0, \dots, \beta_l)$ и $\{\alpha_i \oplus \beta_j \mid i \leq k, j \leq l\}$, соответственно.

Докажите, что операции \oplus , \otimes ассоциативны и коммутативны, вторая операция дистрибутивна относительно первой, и структуру $(Ord; <, \oplus, \otimes, 0, 1)$ можно вложить в упорядоченное кольцо, минимальное над этой структурой.

- 3. Докажите, что упорядоченное кольцо из задачи 2 можно вложить в упорядоченное поле, минимальное над этим кольцом.
- 4. Докажите, что упорядоченное поле из задачи 3 можно пополнить до вещественно замкнутого упорядоченного поля $\mathbb S$ (известного как поле сюрреальных чисел), и что $\mathbb S$ содержит изоморфную копию $\mathbb R$.
- 5. Определим последовательность $\{\varphi_{\alpha}\}$ одноместных функций Веблена на ординалах по рекурсии: $\varphi_0(\beta) = \omega^{\beta}$, а для ненулевого α определим $\varphi_{\alpha}(\beta)$ как β -й по величине ординал из $\{\gamma \mid \forall \delta < \alpha(\gamma = \varphi_{\delta}(\gamma))\}$. Докажите, что если $\alpha, \beta < \omega_1$, то и $\varphi_{\alpha}(\beta) < \omega_1$. Какие из ординалов Веблена $\varphi_{\alpha}(\beta)$ замкнуты относительно операций $+,\cdot,\oplus,\otimes$?