# Solar (Data) Explosion: Challenges in Using Large Astrophysical Imaging Data Sets

Kathy Reeves, Harvard-Smithsonian Center for Astrophysics

# Data sources







H-alpha data

- Big Bear Solar Observatory
- •Kanzelhöhe Solar

Observatory

Global H-alpha Network

Extreme ultraviolet data

•Atmospheric Imaging

Assembly (AIA)

Helioseismic and Magnetic Imager (HMI)

Magnetic field data

Solar Dynamics Observatory (SDO)

# Meta-data sources





Spaceweather HMI Active Region Patch (SHARP) <a href="http://jsoc.stanford.edu/doc/data/hmi/sharp/sharp.htm">http://jsoc.stanford.edu/doc/data/hmi/sharp/sharp.htm</a>

Heliophysics Event Knowledgebase <a href="https://www.lmsal.com/isolsearch">https://www.lmsal.com/isolsearch</a>

# Meta-data sources





Thursday, May 14, 2020 17:45:01 UTC

Search

OME ABOUT SPACE WEATHER PRODUCTS AND DATA DASHBOARDS MEDIA AND RESOURCES SUBSCRIBE ANNUAL MEETING FEEDBACK

Home > Products and Data > Reports > Solar and Geophysical Event Reports

CURRENT SPACE WEATHER CONDITIONS on NOAA Scales

:Product: 20140107events.txt :Created: 2014 Jan 10 0332 UT



#### SOLAR AND GEOPHYSICAL EVENT REPORTS

| <pre># Prepared by the U.S. Dept. of Commerce, NOAA, Space Weather Prediction Center # Please send comments and suggestions to SWPC.Webmaster@noaa.gov # # Missing data: /// # Updated every 30 minutes. # Edited Events for 2014 Jan 07</pre> |                              |                              |                              |            |                  |            |                                |                          |                |                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------|------------------|------------|--------------------------------|--------------------------|----------------|------------------------------|
|                                                                                                                                                                                                                                                |                              |                              |                              |            |                  |            |                                |                          |                |                              |
| 8590                                                                                                                                                                                                                                           | 0000                         | 0040                         | 0323                         | LEA        | G                | RNS        | 245                            | 150                      |                |                              |
| 8670<br>8670                                                                                                                                                                                                                                   | 0000<br>0006                 | ////                         | 1054<br>1054                 |            |                  | RSP<br>RSP | 025-180<br>025-180             | IV/2<br>VI/1             |                |                              |
| 8560<br>8560                                                                                                                                                                                                                                   | 0229<br>0232                 | 0234<br>0232                 | 0239<br>0244                 | G15<br>LEA |                  | XRA<br>FLA | 1-8A<br>S14E18                 | C2.6<br>SF               | 1.1E-03<br>ERU | 1944<br>1944                 |
| 8570<br>8570<br>8570<br>8570                                                                                                                                                                                                                   | 0349<br>0350<br>0351<br>0351 | 0353<br>0351<br>0351<br>0351 | 0356<br>0404<br>0351<br>0351 | LEA<br>LEA | 5<br>3<br>G<br>G |            | 1-8A<br>N07E08<br>4995<br>8800 | M1.0<br>1N<br>100<br>110 | 2.7E-03<br>ERU | 1946<br>1946<br>1946<br>1946 |
| 8580<br>8580                                                                                                                                                                                                                                   | 0408<br>0409                 | 0411<br>0410                 | 0416<br>0421                 | G15<br>LEA | 5<br>3           | XRA<br>FLA | 1-8A<br>S10E13                 | C2.7<br>SF               | 8.9E-04<br>ERU | 1944<br>1944                 |
| 8600<br>8600                                                                                                                                                                                                                                   | 0440<br>0442                 | 0453<br>0448                 | 0520<br>A0453                | G15<br>LEA | 5<br>3           | XRA<br>FLA | 1-8A<br>S09E13                 | C2.4<br>SF               | 4.8E-03<br>ERU | 1944<br>1944                 |

- Curated by an observer
- Can be updated at a later date

# Challenges: Classification

- Same or similar phenomena can sometime have different names
  - Classic example: filaments vs. prominences
  - See also: jets, surges, microflares



# Challenges: Database cleaning

- Meta databases use different algorithms to identify different features
  - Sometimes algorithms can fail in opposite directions
    - Example: HEK undercounts filaments (especially in active regions) but overcounts sigmoids
- Meta databases often record instances of the same object over and over as it rotates across the solar disk
  - Tracking is not straightforward, since objects can evolve, split, appear and disappear
  - Kempton & Angryk tracking work for solar features
- Meta databases sometimes record multiple instances of the same event from different data sources
  - Example: flares HEK records instances from AIA, GOES, IRIS
- Propagation of mistakes from original sources
  - Example: SWPC Solar Event Report is a common source for flares, but it is human-maintained and sometimes errors enter in to the report. They are often corrected, but may not propagate to other meta databases.

## Challenges: Completeness and Consistency

- Solar conditions or ground-based weather can limit detection of some events during some time periods
  - Example: During active times, background flux in GOES limits the detection of smaller events
- Some meta databases use human observers
  - Different observers will record non-standard inputs to meta database
    - Example: HEK filament eruptions bounding boxes
  - Human observers may not record all events

### Challenges: Calibration & Instrumentation

- Some events are recorded using different instruments with different characteristics
  - Example: Filaments in HEK come from Big Bear and Kanzelhöhe Solar Observatories, which have different spatial resolutions, causing the algorithm to calculate different lengths for the same filament