1.B

• Suppose S is a nonempty set. Let V^S denote the set of functions from S to V. Define a natural add and scalar multi on V^S , and show that V^S is a vecsp with these defs.

SOLUTION:

- Add on V^S is defined by (f + g)(x) = f(x) + g(x) for any $x \in S$ and $f, g \in V^S$.
- Scalar Multi on V^S is defined by $(\lambda f)(x) = \lambda f(x)$.

1 Prove that -(-v) = v for every $v \in V$.

SOLUTION:

$$(-(-v)) + (-v) = 0$$

$$v + (-v) = 0$$

$$\Rightarrow \text{ By the uniques of add inv. } \square$$

OR.
$$-(-v) = (-1)((-1)v) = ((-1)(-1))v = 1 \cdot v = v$$
.

2 Suppose $a \in \mathbb{F}$, $v \in V$, and av = 0. Prove that a = 0 or v = 0.

SOLUTION: If a = 0, then we are done.

Otherwise,
$$\exists \ a^{-1} \in \mathbf{F}, a^{-1}a = 1$$
, hence $v = 1 \cdot v = (a^{-1}a)v = a^{-1}(av) = a^{-1} \cdot 0 = 0$.

3 Suppose $v, w \in V$. Explain why there exists a unique $x \in V$ such that v + 3x = w.

SOLUTION:

[Existns] Let
$$x = \frac{1}{3}(w - v)$$
.

[Existns] Let
$$x = \frac{1}{3}(w - v)$$
.
[Uniques] Suppose $v + 3x_1 = w$,(I) $v + 3x_2 = w$ (II). Then (I) $-$ (II) $: 3(x_1 - x_2) = 0 \Rightarrow x_1 = x_2$.

5 *Show that in the definition of a vector space, the add inv condition can be replaced.*

SOLUTION: Using [1.31].
$$0v = 0$$
 for all $v \in V \iff (1 + (-1))v = 1 \cdot v + (-1)v = v + (-v) = 0$.

6 Let ∞ and $-\infty$ denote two distinct objects, neither of which is in R.

Define an add and scalar multi on $\mathbb{R} \cup \{\infty, -\infty\}$ as you could guess.

The operations of real numbers is as usual. While for $t \in R$ define

$$t\infty = \begin{cases} -\infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t > 0, \end{cases} \qquad t(-\infty) = \begin{cases} -\infty & \text{if } t > 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t < 0, \end{cases}$$

(II)
$$t + (-\infty) = (-\infty) + t = (-\infty) + (-\infty) = -\infty$$
,

(III)
$$\infty + (-\infty) = (-\infty) + \infty = 0$$
.

With these operations of add and scalar multi, is $R \cup \{\infty, -\infty\}$ a vecsp over R? Explain.

SOLUTION:

No. By Associ:
$$(a + \infty) + (-\infty) \neq a + (\infty + (-\infty))$$
.

OR. By Distributive properties:
$$\infty = (2 + (-1))\infty \neq 2\infty + (-\infty) = \infty + (-\infty) = 0$$
.

ENDED

7 Prove or give a counterexample: If $\emptyset \neq U \subseteq \mathbb{R}^2$ and U is closed under taking add invs and under add, then U is a subsp of \mathbb{R}^2 .

SOLUTION: Let $U = \mathbb{Z}^2$, $(\mathbb{Z}^*)^2$, $(\mathbb{Q}^*)^2$, $\mathbb{Q}^2 \setminus \{0\}$, or $\mathbb{R}^2 \setminus \{0\}$.

8 Give an example of $U \subseteq \mathbb{R}^2$ such that U is closed under scalar multi, but U is not a subsp of \mathbb{R}^2 .

Solution: Let $U = \{(x,y) \in \mathbb{R}^2 : x = 0 \lor y = 0\}$. Or. Let $U = \{(x,0) \in \mathbb{R}^2\} \cup \{(0,y) \in \mathbb{R}^2\}$.

9 A function $f: \mathbb{R} \to \mathbb{R}$ is called periodic if there exists $p \in \mathbb{N}^+$ such that f(x) = f(x+p) for all $x \in \mathbb{R}$.

Is the set of periodic functions from R to R a subsp of R^R ? Explain.

SOLUTION: Denote the set by S.

Suppose $h(x) = \sin \sqrt{2}x + \cos x \in S$, since $\sin \sqrt{2}x, \cos x \in S$.

Assume $\exists p \in \mathbb{N}^+$ such that $h(x) = h(x+p), \forall x \in \mathbb{R}$. Let $x = 0 \Rightarrow h(0) = h(\pm p) = 1$.

Thus $1 = \cos p + \sin \sqrt{2}p = \cos p - \sin \sqrt{2}p$

$$\Rightarrow \sin \sqrt{2}p = 0, \cos p = 1 \Rightarrow p = 2k\pi, k \in \mathbb{Z}, \text{ while } p = \frac{m\pi}{\sqrt{2}}, m \in \mathbb{Z}.$$

Hence
$$2k = \frac{m}{\sqrt{2}} \Rightarrow \sqrt{2} = \frac{m}{2k} \in \mathbb{Q}$$
. Contradiction!

11 Prove that the intersection of every collection of subsps of V is a subsp of V.

SOLUTION:

Suppose $\{U_{\alpha}\}_{\alpha\in\Gamma}$ is a collection of subsps of V; here Γ is an arbitrary index set.

We need to prove that $\bigcap_{\alpha \in \Gamma} U_{\alpha}$, which equals the set of vectors that are in U_{α} for each $\alpha \in \Gamma$, is a subsp of V.

- (-) $0 \in \bigcap_{\alpha \in \Gamma} U_{\alpha}$. Nonempty.
- $(\underline{\hspace{0.1cm}})\ u,v\in\bigcap_{\alpha\in\Gamma}U_{\alpha}\Rightarrow u+v\in U_{\alpha},\ \forall \alpha\in\Gamma\Rightarrow u+v\in\bigcap_{\alpha\in\Gamma}U_{\alpha}.$ Closed under add.
- $(\equiv) \ u \in \bigcap_{\alpha \in \Gamma} U_{\alpha}, \lambda \in \mathbb{F} \Rightarrow \lambda u \in U_{\alpha}, \ \forall \alpha \in \Gamma \Rightarrow \lambda u \in \bigcap_{\alpha \in \Gamma} U_{\alpha}.$ Closed under scalar multi.

Thus $\bigcap_{\alpha \in \Gamma} U_{\alpha}$ is nonempty subset of V that is closed under add and scalar multi.

Hence $\bigcap_{\alpha \in \Gamma} U_{\alpha}$ is a subsp of V.

12 *Prove that the union of two subsps of V is a subsp of V if and only if one of the subsps is contained in the other.*

SOLUTION: Suppose U and W are subsps of V.

- (a) Suppose $U \subseteq W$. Then $U \cup W = W$ is a subsp of V.
- (b) Suppose $U \cup W$ is a subsp of V. Suppose $U \nsubseteq W$ and $U \not\supseteq W$ ($U \cup W \neq U$ and W).

Then $\forall a \in U$ but $a \notin W$; $b \in W$ but $b \notin U$. $a + b \in U \cup W$.

Consider $a + b \in U \Rightarrow b = (a + b) + (-a) \in U$, contradicts! Consider $a + b \in W \Rightarrow a = (a + b) + (-b) \in W$, contradicts! $\Rightarrow U \cup W = U$ or W. Contradicts!

Thus $U \subseteq W$ and $U \supseteq W$.

13 Prove that the union of three subsps of V is a subsp of V if and only if one of the subsps contains the other two.

This exercise is not true if we replace ${\bf F}$ with a field containing only two elements.

SOLUTION: Suppose U_1, U_2, U_3 are subsps of V. Denote $U_1 \cup U_2 \cup U_3$ by \mathcal{U} .

(a) Suppose that one of the subsps contains the other two.

Then $\mathcal{U} = U_1, U_2$ or U_3 is a subsp of V.

(b) Suppose that $U_1 \cup U_2 \cup U_3$ is a subsp of V.

By distinct we notice that $A \cup B \cup C = (A \cup B) \cup (B \cup C) = (A \cup C) \cup (B \cup C) = (A \cup B) \cup (A \cup C)$.

Also note that, if $U \cup W = V$ is a vecsp, then in general U and W are not subsps of V.

Hence this literal trick is invalid.

- (I) ss
- (I) If any U_j is contained in the union of the other two, say $U_1 \subseteq U_2 \cup U_3$, then $\mathcal{U} = U_2 \cup U_3$. By applying Problem (12) we conclude that one U_j contains the other two. Thus we are done.
- (II) Assume that no U_j is contained in the union of the other two,

and no U_i contains the union of the other two.

Say $U_1 \not\subseteq U_2 \cup U_3$ and $U_1 \not\supseteq U_2 \cup U_3$.

 $\exists u \in U_1 \land u \notin U_2 \cup U_3; \ v \in U_2 \cup U_3 \land v \notin U_1. \text{ Let } W = \{v + \lambda u : \lambda \in F\} \subseteq \mathcal{U}.$

Note that $W \cap U_1 = \emptyset$, for if $v + \lambda u \in U_1$ then $v + \lambda u - \lambda u = v \in U_1$ while $v \notin U_1$.

 $\not \subseteq W \subseteq U_1 \cup U_2 \cup U_3$. Thus $W \subseteq U_2 \cup U_3$.

 $\forall v + \lambda u \in W, \exists i \in \{2,3\}, v + \lambda u \in U_i.$

Because U_2 , U_3 are subsps and hence have at least one element.

If $U_2 = U_3$, then $\mathcal{U} = U_1 \cup U_2$ and by Problem (12) we are done.

Otherwise, $\exists \lambda, \mu \in F$ with $\lambda \neq \mu$ such that $v + \lambda u, v + \mu u \in U_i$ for some $i \in \{2, 3\}$.

Then $u \in U_i$ while $u \notin U_2 \cup U_3$. Contradicts.

15 Suppose U is a subsp of V. What is U + U?

16 Suppose U and W are subsps of V. Prove that U + W = W + U?

Solution: $\forall x \in U, y \in W$, $\begin{cases} x + y = y + x \in W + U \Rightarrow U + W \subseteq W + U \\ y + x = x + y \in U + W \Rightarrow W + U \subseteq U + W \end{cases} \Rightarrow U + W = W + U.$

17 Suppose V_1, V_2, V_3 are subsps of V. Prove that $(V_1 + V_2) + V_3 = V_1 + (V_2 + V_3)$.

SOLUTION:

Let $x \in V_1, y \in V_2, z \in V_3$. Denote $(V_1 + V_2) + V_3$ by $L, V_1 + (V_2 + V_3)$ by R. $\forall u \in L, \exists x, y, z, u = (x + y) + z = x + (y + z) \in R \Rightarrow L \subseteq R$ $\forall u \in R, \exists x, y, z, u = x + (y + z) = (x + y) + z \in L \Rightarrow R \subseteq L$ $\Rightarrow L = R$.

18 Does the operation of add on the subsps of V have an additive identity? Which subsps have add invs?

SOLUTION: Suppose Ω is the additive identity.

For any subsp U of V. $\Omega \subseteq U + \Omega = U \Rightarrow \Omega \subseteq U$. Let $U = \{0\}$, then $\Omega = \{0\}$.

Now suppose *W* is an add inv of $U \Rightarrow U + W = \Omega$.

Note that $U + W \supseteq U, W \Rightarrow \Omega \supseteq U, W$. Thus $U = W = \Omega = \{0\}$.

Prove that $U + W = \{(x, x, y, z) \in \mathbb{F}^4 : x, y, z \in \mathbb{F}\}.$ **SOLUTION**: Let T denote $\{(x, x, y, z) \in \mathbb{F}^4 : x, y, z \in \mathbb{F}\}.$ (a) By def, $U + W = \{(x_1 + x_2, x_1 + x_2, y_1 + x_2, y_1 + y_2) \in \mathbb{F}^4 : (x_1, x_1, y_1, y_1) \in U, (x_2, x_2, x_2, y_2) \in W\}.$ $\Rightarrow \forall v \in U + W, \exists t \in T, v = t \Rightarrow U + W \subseteq T.$ (b) $\forall x, y, z \in F$, let $u = (0, 0, y - x, y - x) \in U, w = (x, x, x, -y + x + z) \in W$ \Rightarrow $(x, x, y, z) = u + w \in U + W$. Hence $\forall t \in T$, $\exists u \in U, w \in W, t = u + w \Rightarrow T \subseteq U + W$. **21** Suppose $U = \{(x, y, x + y, x - y, 2x) \in \mathbb{F}^5 : x, y \in \mathbb{F}\}.$ Find a subsp W of \mathbf{F}^5 such that $\mathbf{F}^5 = U \oplus W$. **SOLUTION:** (a) Let $W = \{(0, 0, z, w, u) \in \mathbb{F}^5 : z, w, u \in \mathbb{F}\}$. Then $W \cap U = \{0\}$. (b) $\forall x, y, z, w, u \in F$, let $u = (x, y, x + y, x - y, 2x) \in U, w = (0, 0, z - x - y, w - x - y, u - 2x) \in W$ \Rightarrow $(x, y, z, w, u) = u + w \Rightarrow \mathbf{F}^5 \subseteq U + W.$ **22** Suppose $U = \{(x, y, x + y, x - y, 2x) \in \mathbb{F}^5 : x, y \in \mathbb{F}\}.$ Find three subsps W_1 , W_2 , W_3 of \mathbf{F}^5 , none of which equals $\{0\}$, such that $\mathbf{F}^5 = U \oplus W_1 \oplus W_2 \oplus W_3$. **SOLUTION:** (1) Let $W_1 = \{(0,0,z,0,0) \in \mathbb{F}^5 : z \in \mathbb{F}\}$. Then $W_1 \cap U = \{0\}$. Let $U_1 = U \oplus W_1$. Then $U_1 = \{(x, y, z, x - y, 2x) \in \mathbb{F}^5 : x, y, z \in \mathbb{F}\}$. (Check it!) (2) Let $W_2 = \{(0,0,0,w,0) \in \mathbb{F}^5 : w \in \mathbb{F}\}$. Then $W_2 \cap U_1 = \{0\}$. Let $U_2 = U_1 \oplus W_2$. Then $U_2 = \{(x, y, z, w, 2x) \in \mathbb{F}^5 : x, y, z, w \in \mathbb{F}\}.$ (3) Let $W_3 = \{(0,0,0,0,u) \in \mathbb{F}^5 : u \in \mathbb{F}\}$. Then $W_3 \cap U_2 = \{0\}$. Let $U_3 = U_2 \oplus W_3$. Then $U_3 = \{(x, y, z, w, u) \in \mathbb{F}^5 : x, y, z, w, u \in \mathbb{F}\}.$ Thus $\mathbf{F}^5 = ((U \oplus W_1) \oplus W_2) \oplus W_3$. **23** Prove or give a counterexample: If V_1 , V_2 , U are subsps of V such that $V = V_1 \oplus U$ and $V = V_2 \oplus U$, then $V_1 = V_2$. **SOLUTION**: A counterexample: $V = \mathbb{F}^2$, $U = \{(x, x) \in \mathbb{F}^2 : x \in \mathbb{F}\}$, $V_1 = \{(x, 0) \in \mathbb{F}^2 : x \in \mathbb{F}\}$, $V_2 = \{(0, x) \in \mathbb{F}^2 : x \in \mathbb{F}\}$. **24** Let V_E denote the set of real-valued even functions on Rand let V_O denote the set of real-valued odd functions on R. Show that $R^R = V_F \oplus V_O$.

 $\begin{cases} f_e \in V_E \Leftrightarrow f_e(x) = f_e(-x) \Leftarrow \det f_e(x) = \frac{g(x) + g(-x)}{2} \\ f_o \in V_O \Leftrightarrow f_o(x) = -f_o(-x) \Leftarrow \det f_o(x) = \frac{g(x) - g(-x)}{2} \end{cases} \} \Rightarrow \forall g \in \mathbf{R}^\mathbf{R}, g(x) = f_e(x) + f_o(x). \quad \Box$

SOLUTION:

(a) $V_E \cap V_O = \{f : f(x) = f(-x) = -f(-x)\} = \{0\}.$

Example: Suppose $U = \{(x, x, y, y) \in \mathbf{F}^4 : x, y \in \mathbf{F}\}$, $W = \{(x, x, x, y) \in \mathbf{F}^4 : x, y \in \mathbf{F}\}$.

2·A

- **2** (a) A list (v) of length 1 in V is linely inde $\iff v \neq 0$.
 - (b) A list (v, w) of length 2 in V is linely inde $\iff \forall \lambda, \mu \in \mathbf{F}, v \neq \lambda w, w \neq \mu v$.

SOLUTION:

- (a) Suppose $v \neq 0$. Then let av = 0, $a \in \mathbf{F}$. Now a = 0. Thus (v) is linely inde. Suppose (v) is linely inde. $av = 0 \Rightarrow a = 0$. Then $v \neq 0$, for if not, $a \neq 0$ while av = 0. Contradicts.
- (b) Denote the list by (v, w), where $v, w \in V$. If (v, w) is linely inde, let $av + bw = 0 \Rightarrow a = b = 0$. If, say $v \neq cw \ \forall c \in \mathbf{F}$. Then let av + bw = 0, getting $a = b = 0 \Rightarrow (v, w)$ is linely inde.

1 Prove that if (v_1, v_2, v_3, v_4) spans V, then the list $(v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$ also spans V.

SOLUTION: Assume that $\forall v \in V, \exists a_1, ..., a_4 \in F$,

$$\begin{split} v &= a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4 \\ &= b_1(v_1 - v_2) + b_2(v_2 - v_3) + b_3(v_3 - v_4) + b_4v_4 \\ &= b_1v_1 + (b_2 - b_1)v_2 + (b_3 - b_2)v_3 + (b_4 - b_3)v_4, \text{ letting } b_i = \sum_{r=1}^i a_r. \end{split}$$
 Thus $\forall v \in V, \ \exists \ b_i \in \mathbf{F}, \ v = b_1(v_1 - v_2) + b_2(v_2 - v_3) + b_3(v_3 - v_4) + b_4v_4. \end{split}$

Hence the list $(v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$ also spans V.

6 Suppose (v_1, v_2, v_3, v_4) is linearly independent in V.

Prove that the list $(v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$ is also linearly independent.

$$\begin{split} \text{Solution:} \ & a_1(v_1-v_2) + a_2(v_2-v_3) + a_3(v_3-v_4) + a_4v_4 = 0 \\ & \Rightarrow a_1v_1 + (a_2-a_1)v_2 + (a_3-a_2)v_3 + (a_4-a_3)v_4 = 0 \\ & \Rightarrow a_1 = a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = 0 \Rightarrow a_1 = \dots = a_4 = 0. \end{split}$$

7 Prove that if $(v_1, v_2, ..., v_m)$ is a linely independent list of vectors in V, then $(5v_1 - 4v_2, v_2, v_3, ..., v_m)$ is linely indep.

Solution:
$$a_1(5v_1 - 4v_2) + a_2v_2 + a_3v_3 + a_4v_4 = 0$$

 $\Rightarrow 5a_1v_1 + (a_2 - 4a_1)v_2 + a_3v_3 + a_4v_4 = 0$
 $\Rightarrow 5a_1 = a_2 - 4a_1 = a_3 = a_4 = 0 \Rightarrow a_1 = \dots = a_4 = 0$

- Suppose (v_1, \dots, v_m) is a list of vectors in V. For $k \in \{1, \dots, m\}$, let $w_k = v_1 + \dots + v_k$.
 - (a) Show that span $(v_1, \dots, v_m) = \text{span}(w_1, \dots, w_m)$.
 - (b) Show that $(v_1, ..., v_m)$ is linely inde $\iff (w_1, ..., w_m)$ is linely inde.

SOLUTION:

(a) Let span
$$(v_1,\ldots,v_m)=U$$
. Assume that $\forall v\in U,\ \exists\ a_i\in \mathbf{F},$ $v=a_1v_1+\cdots+a_mv_m=b_1w_1+\cdots+b_mw_m=\sum\limits_{j=1}^m(\sum\limits_{i=j}^mb_i)v_j$
$$\Rightarrow b_1=a_1,\ b_i=a_i-\sum\limits_{r=1}^{i-1}b_r. \text{ Thus }\ \exists\ b_i\in \mathbf{F} \text{ such that } v=b_1w_1+\cdots+b_mw_m.$$
 $\not\boxtimes \text{ Each } w_i\in U\Rightarrow \text{ span }(v_1,\ldots,v_m)=\text{ span }(w_1,\ldots,w_m).$

(b)
$$a_1 w_1 + \dots + a_m w_m = 0$$

 $\Rightarrow (a_1 + \dots + a_m) v_1 + \dots + (a_i + \dots + a_m) v_i + \dots + a_m v_m = 0$

10 Suppose $(v_1, ..., v_m)$ is linely inde in V and $w \in V$.

- (a) Prove that if $(v_1 + w, ..., v_m + w)$ is linely depe, then $w \in \text{span}(v_1, ..., v_m)$.
- (b) Show that $(v_1, ..., v_m, w)$ is linely inde $\iff w \notin \text{span}(v_1, ..., v_m)$.

SOLUTION:

(a) Suppose $a_1(v_1+w)+\cdots+a_m(v_m+w)=0$, $\exists a_i\neq 0 \Rightarrow a_1v_1+\cdots+a_mv_m=0=-(a_1+\cdots+a_m)w$. Then $a_1+\cdots+a_m\neq 0$, for if not, $a_1v_1+\cdots+a_mv_m=0$ while $a_i\neq 0$ for some i, contradicts. Hence $w\in \operatorname{span}(v_1,\ldots,v_m)$.

- (b) Suppose $w \in \text{span}(v_1, \dots, v_m)$. Then (v_1, \dots, v_m, w) is linely depe. Thus have we proven the " \Rightarrow " by its contrapositive. Suppose $w \notin \text{span}(v_1, \dots, v_m)$. Then by [2.23], (v_1, \dots, v_m, w) is linely inde.
- **14** Prove that V is infinite-dim if and only if there is a sequence $(v_1, v_2, ...)$ in V such that $(v_1, ..., v_m)$ is linely inde for every $m \in \mathbb{N}^+$.

SOLUTION: Similar to [2.16].

Suppose there is a sequence (v_1,v_2,\dots) in V such that (v_1,\dots,v_m) is linely inde for any $m\in \mathbf{N}^+.$

Choose an m. Suppose a linely inde list (v_1, \dots, v_m) spans V.

Then there exists $v_{m+1} \in V$ but $v_{m+1} \notin \text{span } (v_1, \dots, v_m)$. Hence no list spans V. Thus V is infinite-dim.

Conversely it is true as well. For if not, *V* must be finite-dim, contradicting the assumption.

15 *Prove that* \mathbf{F}^{∞} *is infinite-dim.*

SOLUTION: Let $e_i = (0, ..., 0, 1, 0, ...) \in \mathbf{F}^{\infty}$ for every $m \in \mathbf{N}^+$, where '1' is on the ith entry of e_i . Suppose \mathbf{F}^{∞} is finite-dim. Then let span $(e_1, ..., e_m) = V$. But $e_{m+1} \notin \text{span}(e_1, ..., e_m)$. Contradicts. \square

16 Prove that the real vector space of all continuous real-valued functions on the interval [0,1] is infinite-dim.

SOLUTION: Denote the vecsp by U. Note that for each $m \in \mathbb{N}^+$, $(1, x, ..., x^m)$ is linely inde.

Because if $a_0, \dots, a_m \in \mathbb{R}$ are such that $a_0 + a_1x + \dots + a_mx^m = 0$, $\forall x \in [0, 1]$, then the poly has infinitely many roots and hence $a_0 = \dots = a_m = 0$.

OR. Note that for $a_n = \frac{1}{n}$, $a_1 < a_2 < \dots < a_m$, $\forall m \in \mathbb{N}^+$.

Suppose
$$f_n = \begin{cases} x - \frac{1}{n}, & x \in \left[\frac{1}{n}, 1\right) \\ 0, & x \in \left[0, \frac{1}{n}\right) \end{cases}$$
. Then for any $m, f_1(\frac{1}{m}) = \cdots = f_m(\frac{1}{m})$, while $f_{m+1}(\frac{1}{m}) \neq 0$.

Hence $f_{m+1} \notin \text{span}(f_1, ..., f_m)$. Thus by Problem (14), U is infinite-dim.

17 Suppose $p_0, p_1, ..., p_m \in \mathcal{P}_m(\mathbf{F})$ such that $p_k(2) = 0$ for each $k \in \{0, ..., m\}$. Prove that $(p_0, p_1, ..., p_m)$ is not linely inde in $\mathcal{P}_m(\mathbf{F})$.

SOLUTION:

Suppose $(p_0, p_1, ..., p_m)$ is linely inde. Define $p \in \mathcal{P}_m(\mathbf{F})$ by $p(z) = z \ \forall z \in \mathbf{F}$.

But $\forall a_i \in \mathbb{F}, z \neq a_0 p_0(z) + \dots + a_m p_m(z)$, for if not, let z = 2, contradicts. Thus $z \notin \text{span}(p_0, p_1, \dots, p_m)$.

Then span (p_0, p_1, \dots, p_m) $\mathcal{P}_m(\mathbf{F})$ while the list (p_0, p_1, \dots, p_m) has length m+1.

Hence (p_0, p_1, \dots, p_m) is linely depe in $\mathcal{P}_m(\mathbf{F})$.

For if not, notice that the list $(1, z, ..., z^m)$ spans $\mathcal{P}_m(\mathbf{F})$,

ENDED

2.B

• **Note For** *linely inde sequence and* [2.34]:

" $V = \text{span}(v_1, \dots, v_n, \dots)$ " is an invalid expression.

If we allow using "infinite list", then we must guarantee that $(v_1, \ldots, v_n, \ldots)$ is a spanning "list" such that for all $v \in V$, there exists a smallest positive integer n such that $v = a_1v_1 + \cdots + a_nv_n$, The key point is, how can we guarantee that such a "list" exists?

• Note For " $\mathbf{C}_VU\cap\{0\}$ ": " $\mathbf{C}_VU\cap\{0\}$ " is supposed to be a subsp "W" such that $V=U\oplus W$. But if we let $u\in U\setminus\{0\}$ and $w\in W\setminus\{0\}$, then $\begin{cases} w\in\mathbf{C}_VU\cap\{0\}\\ u\pm w\in\mathbf{C}_VU\cap\{0\} \end{cases} \Rightarrow u\in\mathbf{C}_VU\cap\{0\}.$ Contradicts. To fix this, denote the set $\{W_1,W_2\dots\}$ by \mathcal{S}_VU , where for each $W_i,V=U\oplus W_i$. See also in (1.C.23).

1 Find all vector spaces that have exactly one basis.

SOLUTION:

6 Suppose (v_1, v_2, v_3, v_4) is a basis of V. Prove that $(v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4)$ is also a basis.

SOLUTION: $\forall v \in V$, $\exists ! a_1, \dots, a_4 \in F$, $v = a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4$.

Assume that $v = b_1(v_1 + v_2) + b_2(v_2 + v_3) + b_3(v_3 + v_4) + b_4v_4$.

Then $v = b_1 v_1 + (b_1 + b_2) v_2 + (b_2 + b_3) v_3 + (b_3 + b_4) v_4$.

$$\Rightarrow \exists ! b_1 = a_1, b_2 = a_2 - b_1, b_3 = a_3 - b_2, b_4 = a_4 - b_3 \in \mathbf{F}.$$

7 Prove or give a counterexample: If v_1, v_2, v_3, v_4 is a basis of V and U is a subsp of V such that $v_1, v_2 \in U$ and $v_3 \notin U$ and $v_4 \in U$, then v_1, v_2 is a basis of U.

SOLUTION: Let $V = \mathbf{F}^4$, $v_1 = (1,0,0,0)$, $v_2 = (0,1,0,0)$, $v_3 = (0,0,1,1)$, $v_4 = (0,0,0,1)$. And $U = \{(x,y,z,0) \in \mathbf{R}^4 : x,y,z \in \mathbf{F}\}$. We have a counterexample.

• Suppose V is finite-dim and U, W are subsps of V such that V = U + W. Prove that there exists a basis of V consisting of vectors in $U \cup W$.

SOLUTION: Let $(u_1, ..., u_m)$ and $(w_1, ..., w_n)$ be bases of U and W respectively.

Then $V = \text{span}(u_1, ..., u_m) + \text{span}(w_1, ..., w_n) = \text{span}(u_1, ..., u_m, w_1, ..., w_n).$

Hence, by [2.31], we get a basis of V consisting of vectors in U or W.

8 Suppose U and W are subsps of V such that $V = U \oplus W$. Suppose also that $(u_1, ..., u_m)$ is a basis of U and $(w_1, ..., w_n)$ is a basis of W. Prove that $(u_1, ..., u_m, w_1, ..., w_n)$ is a basis of V.

SOLUTION: $\forall v \in V, \ \exists \,! \, a_i, b_i \in \mathbb{F}, v = (a_1 u_1 + \dots + a_m u_m) + (b_1 w_1 + \dots + b_n w_n)$ $\Rightarrow (a_1 u_1 + \dots + a_m u_m) = -(b_1 w_1 + \dots + b_n w_n) \in U \cap W = \{0\}. \text{ Thus } a_1 = \dots = a_m = b_1 = \dots = b_n. \quad \Box$

• OR (9.4) Suppose V is a real vector space. Show that if $(v_1, ..., v_n)$ is a basis of V (as a real vector space), then $(v_1, ..., v_n)$ is also a basis of the complexification V_C (as a complex vector space).

See Section 1B (4e) for the definition of the complexification $V_{\rm C}$.

```
SOLUTION: \forall u + iv \in V_C, \exists ! u, v \in V, a_i, b_i \in R,
    u + iv = (a_1v_1 + \dots + a_nv_n) + i(b_1v_1 + \dots + b_nv_n) = (a_1 + b_1i)v_1 + \dots + (a_n + b_ni)v_n
\Rightarrow u + iv = c_1v_1 + \cdots + c_nv_n, \exists ! c_i = a_i + b_i i \in C
\Rightarrow By the uniques of c_i and [2.29], (v_1, \dots, v_n) is a basis of V_C.
                                                                                                                             ENDED
2·C
1 Suppose V is finite-dim and U is a subsp of V such that \dim V = \dim U.
  Let (u_1, ..., u_m) be a basis of U. Then n = \dim U = \dim V. X, X, X and X is X.
  Then by [2.39], (u_1, \dots, u_m) is a basis of V. Thus V = U.
2 Show that the subsps of \mathbb{R}^2 are precisely \{0\}, all lines in \mathbb{R}^2
  containing the origin, and \mathbb{R}^2.
SOLUTION: Suppose U is a subsp of \mathbb{R}^2. Let dim U = n.
   If n = 0, then U = \{0\}.
   If n = 1, then U = \text{span}(v) = \{\lambda v : \lambda \in \mathbf{F}\}, for all linely inde v \in \mathbf{R}^2.
   If n = 2, then U = \mathbb{R}^2.
                                                                                                                             3 Show that the subsps of \mathbb{R}^3 are precisely \{0\}, all lines in \mathbb{R}^3
  containing the origin, all planes in \mathbb{R}^3 containing the origin, and \mathbb{R}^3.
SOLUTION: Suppose U is a subsp of \mathbb{R}^3. Let dim U = n.
   If n = 0, then U = \{0\}.
   If n = 1, then U = \text{span}(v) = \{\lambda v : \lambda \in \mathbf{F}\}, for all linely inde v \in \mathbf{R}^3.
   If n = 2, then U = \text{span}(v, w) = \{\lambda v + \mu w : \lambda, \mu \in \mathbb{F}\}, for all linely inde v, w \in \mathbb{R}^3.
   If n = 3, then U = \mathbb{R}^3.
                                                                                                                             7 (a) Let U = \{ p \in \mathcal{P}_4(\mathbf{F}) : p(2) = p(5) = p(6) \}. Find a basis of U.
   (b) Extend the basis in (a) to a basis of \mathcal{P}_{4}(\mathbf{F}).
  (c) Find a subsp W of \mathcal{P}_4(\mathbf{F}) such that \mathcal{P}_4(\mathbf{F}) = U \oplus W.
SOLUTION: Suppose p(z) = az^4 + bz^3 + cz^2 + dz + e and p(2) = p(5) = p(6).
                      p(2) = 16a + 8b + 4c + 2d + e(I)
   Then
                p(5) = 625a + 125b + 25c + 5d + e (II)
            p(6) = 1296a + 216b + 36c + 6d + e (III)
   You don't have to compute to know that the dimension of the set of solutions is 3.
   (a) A basis: 1, (z-2)(z-5)(z-6), z(z-2)(z-5)(z-6).
   (b) Extend to a basis of \mathcal{P}_4(\mathbf{F}) as 1, z, z^2, (z-2)(z-5)(z-6), z(z-2)(z-5)(z-6).
   (c) Let W = \operatorname{span}(z, z^2) = \{az + bz^2 : a, b \in \mathbb{F}\}, so that \mathcal{P}_4(\mathbb{F}) = U \oplus W.
                                                                                                                              9 Suppose (v_1, ..., v_m) is linely inde in V and w \in V.
   Prove that dim span (v_1 + w, ..., v_m + w) \ge m - 1.
```

 $\textbf{Solution:} \ \ \text{Note that} \ v_i-v_1=(v_i+w)-(v_1+w) \in \text{span} \ (v_1+w,\dots,v_n+w), \text{ for each } i=1,\dots,m.$

 \mathbb{Z} By the contrapositive of (2.A.10), $w \notin \text{span}(v_1, \dots, v_m) \Rightarrow (v_1 + w, \dots, v_m + w)$ is linely inde.

 (v_1, \dots, v_m) is linely inde $\Rightarrow (v_1, v_2 - v_1, \dots, v_m - v_1)$ is linely inde

 \Rightarrow $(v_2 - v_1, \dots, v_m - v_1)$ is linely inde of length m - 1.

10 Suppose m is a positive integer and $p_0, p_1, \ldots, p_m \in \mathcal{P}(\mathbf{F})$ are such that each p_k has degree k. Prove that (p_0, p_1, \dots, p_m) is a basis of $\mathcal{P}_m(\mathbf{F})$.

SOLUTION: Using mathematical induction on m.

- (i) For p_0 , deg $p_0 = 0 \Rightarrow \text{span}(p_0) = \text{span}(1)$.
- (ii) Suppose for $i \ge 1$, span $(p_0, p_1, ..., p_i) = \text{span } (1, x, ..., x^i)$.

Then span $(p_0, p_1, ..., p_i, p_{i+1}) \subseteq \text{span } (1, x, ..., x^i, x^{i+1}).$

$$\mathbb{Z} \operatorname{deg} p_{i+1} = i+1, \ p_{i+1}(x) = a_{i+1}x^{i+1} + r_{i+1}(x); \ a_{i+1} \neq 0, \ \operatorname{deg} r_{i+1} \leq i.$$

$$\Rightarrow x^{i+1} = \frac{1}{a_{i+1}} \left(p_{i+1}(x) - r_{i+1}(x) \right) \in \text{span} \left(1, x, \dots, x^i, p_{i+1} \right) = \text{span} \left(p_0, p_1, \dots, p_i, p_{i+1} \right).$$

$$\therefore x^{i+1} \in \text{span}(p_0, p_1, \dots, p_i, p_{i+1}) \Rightarrow \text{span}(1, x, \dots, x^i, x^{i+1}) \subseteq \text{span}(p_0, p_1, \dots, p_i, p_{i+1}).$$

Thus
$$\mathcal{P}_m(\mathbf{F}) = \operatorname{span}(1, x, \dots, x^m) = \operatorname{span}(p_0, p_1, \dots, p_m).$$

• Suppose m is a positive integer. For $0 \le k \le m$, let $p_k(x) = x^k(1-x)^{m-k}$. *Show that* $(p_0, ..., p_m)$ *is a basis of* $\mathcal{P}(\mathbf{F})$.

The basis in this exercise leads to what are called Bernstein polynomials. You can do a web search to learn how

Bernstein polynomials are used to approximate continuous functions on [0,1].

SOLUTION: Using mathematical induction.

(i)
$$k = 0, 1, 2, p_m(x) = x^m, p_{m-1}(x) = x^{m-1} - x^m, p_{m-2}(x) = x^{m-2} + x^m - 2x^{m-1}$$
.

(ii) $k \ge 2$. Suppose for $p_{m-k}(x)$, $\exists ! a_i \in \mathbf{F}$, $x^{m-k} = p_{m-k}(x) + a_m x^m + \dots + a_{m-k+1} x^{m-k+1}$.

Then for $p_{m-k-1}(x)$, $\exists ! c_i \in \mathbf{F}$,

$$x^{m-k-1} = p_{m-k-1}(x) + C_{k+1}^1(-1)^2 x^{m-k} + \dots + C_{k+1}^k(-1)^{k+1} x^{m-1} + (-1)^{k-2} x^m$$

$$\Rightarrow c_{m-i} = C_{k+1}^{k+1-i} (-1)^{k-i}.$$

Thus for each x^i , $\exists ! b_i \in \mathbf{F}, x^i = b_m p_m(x) + \cdots + b_{m-i} p_{m-i}(x)$

$$\Rightarrow \operatorname{span}(x^m, \dots, x, 1) = \operatorname{span}(\underline{p_m, \dots, p_1, p_0}).$$

• Suppose V is finite-dim and V_1 , V_2 , V_3 are subsps of V with

 $\dim V_1 + \dim V_2 + \dim V_3 > 2 \dim V$. Prove that $V_1 \cap V_2 \cap V_3 \neq \{0\}$.

$$\dim V_1 + \dim V_2 > 2\dim V - \dim V_3 \ge \dim V \Rightarrow V_1 \cap V_2 \ne \{0\}$$

 $\dim V_2 + \dim V_3 > 2\dim V - \dim V_1 \ge \dim V \Rightarrow V_2 \cap V_3 \neq \{0\} \quad \Big\} \Rightarrow V_1 \cap V_2 \cap V_3 \neq \{0\}.$ $\dim V_1 + \dim V_3 > 2\dim V - \dim V_2 \ge \dim V \Rightarrow V_1 \cap V_3 \ne \{0\}$

$$\begin{cases}
\{0\} \\
\{0\}
\end{cases} \Rightarrow V_1 \cap V_2 \cap V_3 \neq \{0\}.$$

• Suppose V is finite-dim and U is a subsp of V with $U \neq V$. Let $n = \dim V$, $m = \dim U$. Prove that there exist (n-m) subsps of V, say U_1, \ldots, U_{n-m} , each of dimension (n-1), such that $\bigcap^{n-m} U_i = U$.

SOLUTION: Let $(v_1, ..., v_m)$ be a basis of U, extend to a basis of V as $(v_1, ..., v_m, ..., v_n)$.

Define $U_i = \operatorname{span}(v_1, \dots, v_m, v_{m+1}, \dots, v_{m+i-1}, v_{m+i+1}, \dots, v_n)$ for each i. Thus we are done.

EXAMPLE: Suppose dim V = 6, dim U = 3.

$$\begin{array}{c} U_1 = \mathrm{span}\,(v_1,v_2,v_3) \oplus \mathrm{span}\,(v_5,v_6) \\ (\underbrace{v_1,v_2,v_3,v_4,v_5,v_6}), \, \mathrm{define} & U_2 = \mathrm{span}\,(v_1,v_2,v_3) \oplus \mathrm{span}\,(v_4,v_6) \\ \underbrace{Basis \, \mathrm{of} \, \mathrm{U}}_{\mathrm{Basis} \, \mathrm{of} \, \mathrm{V}} & U_3 = \mathrm{span}\,(v_1,v_2,v_3) \oplus \mathrm{span}\,(v_4,v_5) \end{array} \right\} \Rightarrow \dim U_i = 6-1, \ i = \underbrace{1,2,3}_{6-3=3}. \quad \Box$$

14 Suppose that V_1, \dots, V_m are finite-dim subsps of V.

Prove that $V_1 + \cdots + V_m$ is finite-dim and $\dim(V_1 + \cdots + V_m) \leq \dim V_1 + \cdots + \dim V_m$.

SOLUTION: Choose a basis \mathcal{E}_i of $V_i \Rightarrow V_1 + \dots + V_m = \operatorname{span} \left(\mathcal{E}_1 \cup \dots \cup \mathcal{E}_m\right)$; $\dim U_i = \operatorname{card} \mathcal{E}_i$.

Then $\dim(V_1 + \cdots + V_m) = \dim \operatorname{span} (\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m)$.

 \mathbb{X} dim span $(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) \leq \operatorname{card}(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) \leq \operatorname{card}\mathcal{E}_1 + \cdots + \operatorname{card}\mathcal{E}_m$.

Thus $\dim(V_1 + \dots + V_m) \le \dim U_1 + \dots + \dim U_m$.

COMMENT: $\dim(V_1 + \dots + V_m) = \dim U_1 + \dots + \dim U_m \iff V_1 + \dots + V_m$ is a direct sum.

For each i, $(V_1 + \cdots + V_i) \cap V_{i+1} = \{0\} \iff V_1 + \cdots + V_m$ is a direct sum $\iff \square$

17 Suppose V_1, V_2, V_3 are subsps of a finite-dim vector space, then

$$\dim(V_1 + V_2 + V_3) = \dim V_1 + \dim V_2 + \dim V_3$$

$$-\dim(V_1 \cap V_2) - \dim(V_1 \cap V_3) - \dim(V_2 \cap V_3) + \dim(V_1 \cap V_2 \cap V_3).$$

Explain why you might think and prove the formula above or give a counterexample.

SOLUTION:

[Similar to] Given three sets *A*, *B* and *C*.

Because $|X \cup Y| = |X| + |Y| - |X \cap Y|$; $(X \cup Y) \cap Z = (X \cap Z) \cup (Y \cap Z)$.

Now $|(A \cup B) \cup C| = |A \cup B| + |C| - |(A \cup B) \cap C|$.

And $|(A \cup B) \cap C| = |(A \cap C) \cup (B \cap C)| = |A \cap C| + |B \cap C| - |A \cap B \cap C|$.

Hence $|(A \cup B) \cup C| = |A| + |B| + |C| + |A \cap B \cap C| - |A \cap B| - |A \cap C| - |B \cap C|$.

Because $(V_1 + V_2) + V_3 = V_1 + (V_2 + V_3) = (V_1 + V_3) + V_2$.

$$\dim(V_1 + V_2 + V_3) = \dim(V_1 + V_2) + \dim(V_3) - \dim((V_1 + V_2) \cap V_3)$$
 (1)

$$= \dim(V_2 + V_3) + \dim(V_1) - \dim((V_2 + V_3) \cap V_1)$$
 (2)

$$= \dim(V_1 + V_3) + \dim(V_2) - \dim((V_1 + V_3) \cap V_2)$$
 (3)

Notice that in general, $(X + Y) \cap Z \neq X \cap Z + Y \cap Z$.

For example, $X = \{(x,0) \in \mathbb{R}^2 : x \in \mathbb{R}\}$, $Y = \{(0,y) \in \mathbb{R}^2 : y \in \mathbb{R}\}$, $Z = \{(z,z) \in \mathbb{R}^2 : z \in \mathbb{R}\}$.

• Corollary: If V_1 , V_2 and V_3 are finite-dim vector spaces, then $\frac{(1)+(2)+(3)}{3}$:

$$\dim(V_1 + V_2 + V_3) = \dim V_1 + \dim V_2 + \dim V_3$$

$$-\frac{\dim(V_{1}\cap V_{2})+\dim(V_{1}\cap V_{3})+\dim(V_{2}\cap V_{3})}{3}\\ -\frac{\dim\left((V_{1}+V_{2})\cap V_{3}\right)+\dim\left((V_{1}+V_{3})\cap V_{2}\right)+\dim\left((V_{2}+V_{3})\cap V_{1}\right)}{3}.$$

The formula above may seem strange because the right side does not look like an integer.

ENDED

3.A

• TIPS:
$$T: V \to W$$
 is linear $\iff \left| \begin{array}{c} \forall v, u \in V, T(v+u) = Tv + Tu \\ \forall v, u \in V, \lambda \in \mathbf{F}, T(\lambda v) = \lambda (Tv) \end{array} \right| \iff T(v+\lambda u) = Tv + \lambda Tu.$

3 Suppose $T \in \mathcal{L}(\mathbf{F}^n, \mathbf{F}^m)$. Prove that $\exists A_{i,k} \in \mathbf{F}$ such that

$$T(x_1, \dots, x_n) = (A_{1,1}x_1 + \dots + A_{1,n}x_n, \dots, A_{m,1}x_1 + \dots + A_{m,n}x_n)$$

for any $(x_1, \dots, x_n) \in \mathbf{F}^n$.

SOLUTION:

Let
$$T(1,0,0,\dots,0,0) = (A_{1,1},\dots,A_{m,1}),$$
 Note that $(1,0,\dots,0,0),\dots,(0,0,\dots,0,1)$ is a basis of \mathbf{F}^n . Then by $[3.5]$, we are done. \square

$$\vdots$$

$$T(0,0,0,\dots,0,1) = (A_{1,n},\dots,A_{m,n}).$$

4 Suppose $T \in \mathcal{L}(V, W)$ and $(v_1, ..., v_m)$ is a list of vectors in V such that $(Tv_1, ..., Tv_m)$ is linely inde in W. Prove that $(v_1, ..., v_m)$ is linely inde.

SOLUTION: Suppose $a_1v_1 + \cdots + a_mv_m = 0$. Then $a_1Tv_1 + \cdots + a_mTv_m = 0$. Thus $a_1 = \cdots = a_m = 0$.

5 Prove that $\mathcal{L}(V, W)$ is a vector space,

SOLUTION: Note that $\mathcal{L}(V, W)$ is a subsp of W^V .

7 Show that every linear map from a one-dim vector space to itself is multi by some scalar. More precisely, prove that if dim V=1 and $T\in\mathcal{L}(V)$, then there exists $\lambda\in\mathbf{F}$ such that $Tv=\lambda v$ for all $v\in V$.

SOLUTION:

Let *u* be a nonzero vector in $V \Rightarrow V = \text{span}(u)$.

Because $Tu \in V \Rightarrow Tu = \lambda u$ for some λ .

Suppose $v \in V \Rightarrow v = au$, $\exists ! a \in \mathbf{F}$. Then $Tv = T(au) = \lambda au = \lambda v$.

8 Give an example of a function $\varphi : \mathbb{R}^2 \to \mathbb{R}$ such that $\varphi(av) = a\varphi(v)$ for all $a \in \mathbb{R}$ and all $v \in \mathbb{R}^2$ but φ is not linear.

SOLUTION:

Define
$$T(x,y) = \begin{cases} x + y, & \text{if } (x,y) \in \text{span } (3,1), \\ 0, & \text{otherwise.} \end{cases}$$
 OR. Define $T(x,y) = \sqrt[3]{(x^3 + y^3)}$.

9 Give an example of a function $\varphi : \mathbb{C} \to \mathbb{C}$ such that $\varphi(w+z) = \varphi(w) + \varphi(z)$ for all $w,z \in \mathbb{C}$ but φ is not linear. (Here \mathbb{C} is thought of as a complex vector space.)

SOLUTION:

Suppose $V_{\rm C}$ is the complexification of a vector space V. Suppose $\varphi: V_{\rm C} \to V_{\rm C}$.

Define $\varphi(u + iv) = u = \text{Re}(u + iv)$

OR. Define $\varphi(u + iv) = v = \text{Im}(u + iv)$.

• Prove or give a counterexample:

If $q \in \mathcal{P}(\mathbf{R})$ and $T : \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ is defined by $Tp = q \circ p$, then T is linear.

SOLUTION: Because in general, $q(p_1(x) + \lambda p_2(x)) \neq (q \circ p_1)(x) + \lambda (q \circ p_2)(x)$.

• OR (3.D.16) Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Suppose ST = TS for every $S \in \mathcal{L}(V)$. Prove that T is a scalar multi of the identity.

SOLUTION:

If $V = \{0\}$, then we are done. Now suppose $V \neq \{0\}$.

Assume that (v, Tv) is linely depe for every $v \in V$, then by (2.A.2.(b)), $Tv = \lambda_v v$ for some $\lambda_v \in F$. To prove that λ_v is independent of v

(in other words, for any two distinct nonzero vectors v and w in V, we have $\lambda_v \neq \lambda_w$), we discuss in
two cases:
$(-) \text{ If } (v, w) \text{ is linely inde, } \lambda_{v+w}(v+w) = T(v+w) = Tv + Tw = a_v v + a_w w$ $\Rightarrow (\lambda_{v+w} - \lambda_v)v + (\lambda_{v+w} - \lambda_w)w = 0$ $\Rightarrow a_w = a_v.$
(=) Otherwise, suppose $w = cv$, $a_w w = Tw = cTv = ca_v v = a_v w \Rightarrow (a_w - a_v)w$ Now we prove the assumption by contradiction.
Suppose (v, Tv) is linely inde for every nonzero vector $v \in V$.
Fix one v . Extend to (v, Tv, u_1, \dots, u_n) a basis of V .
Define $S \in \mathcal{L}(V)$ by $S(av + bTv + c_1u_1 + \dots + c_nu_n) = bv \Rightarrow S(Tv) = v = T(Sv) = 0$. Contradicts. \square
OR. Let (v_1, \ldots, v_m) be a basis of V .
Define $\varphi \in \mathcal{L}(V, \mathbf{F})$ by $\varphi(v_1) = \cdots = \varphi(v_m) = 1$. Let $\lambda = \varphi(Tv_1) \in \mathbf{F}$.
For any $v \in V$, define $S_v \in \mathcal{L}(V)$ by $S_v u = \varphi(u)v$.
Then $Tv = T(\varphi(v_1)v) = T(S_v v_1) = S_v(Tv_1) = \varphi(Tv_1)v = \lambda v.$
10 Suppose U is a subsp of V with $U \neq V$. Suppose $S \in \mathcal{L}(U,W)$ and $S \neq 0$ (which means that $Su \neq 0$ for some $u \in U$).
Define $T: V \to W$ by $Tv = \begin{cases} Sv, \text{ if } v \in U, \\ 0, \text{ if } v \in V \setminus U. \end{cases}$ Prove that T is not a linear map on V .
Suppose T is a linear map. And $v \in V \setminus U$, $u \in U$ such that $Su \neq 0$.
Then $v + u \in V \setminus U$, (for if not, $v = (v + u) - u \in U$) while $T(v + u) = 0 = Tv + Tu = 0 + Su \Rightarrow Su = 0$.
Hence we get a contradiction. $\hfill\Box$
11 Suppose V is finite-dim. Prove that every linear map on a subsp of V can be extended to a linear map on V . In other words, show that if U is a subsp of V and $S \in \mathcal{L}(U,W)$, then there exists $T \in \mathcal{L}(V,W)$ such that $Tu = Su$ for all $u \in U$. Solution:
Define $T \in \mathcal{L}(V, W)$ by $T(a_1u_1 + \dots + a_nu_n + a_{n+1}u_{n+1} + \dots + a_mu_m) = a_1Su_1 + \dots + a_nSu_n$.
Where we let $(u_1,, u_n)$ be a basis of U , extend to a basis of V as $(u_1,, u_n,, u_m)$.
12 Suppose V is finite-dim with dim $V > 0$, and W is infinite-dim. Prove that $\mathcal{L}(V,W)$ is infinite-dim.
SOLUTION:
Let $(v_1,, v_n)$ be a basis of V . Let $(w_1,, w_m)$ be linely inde in W for any $m \in \mathbb{N}^+$.
Define $T_{x,y} \in \mathcal{L}(V, W)$ by $T_{x,y}(v_z) = \delta_{zy} w_y$, $\forall x \in \{1,, n\}, y \in \{1,, m\}$, where $\delta_{zy} = \begin{cases} 0, & z \neq y, \\ 1, & z = y. \end{cases}$
Suppose $a_1T_{x,1} + \cdots + a_mT_{x,m} = 0$. Then $(a_1T_{x,1} + \cdots + a_mT_{x,m})(v_x) = 0 = a_1w_1 + \cdots + a_mw_m$. $\Rightarrow a_1 = \cdots = a_m = 0. \ \forall m \text{ arbitrary}.$
Thus $(T_{x,1},, T_{x,m})$ is a linely inde list in $\mathcal{L}(V, W)$ for any x and length m . Hence by (2.A.14).
13 Suppose $(v_1,, v_m)$ is a linely depe list of vectors in V . Suppose also that $W \neq \{0\}$. Prove that there exist $(w_1,, w_m) \in W$ such that no $T \in \mathcal{L}(V, W)$ satisfies $Tv_k = w_k$ for each $k = 1,, m$.

SOLUTION:

We prove by contradiction. By linear dependence lemma, $\exists j \in \{1, \dots, m\}$ such that $v_j \in \text{span}(v_1, \dots, v_{j-1})$. Fix *j*. Let $w_i \neq 0$, while $w_1 = \dots = w_{i-1} = w_{i+1} = w_m = 0$. Define *T* by $Tv_k = w_k$ for all *k*. Suppose $a_1v_1 + \cdots + a_mv_m = 0$ (where $a_i \neq 0$). Then $T(a_1v_1 + \cdots + a_mv_m) = 0 = a_1w_1 + \cdots + a_mw_m = a_jw_j$ while $a_j \neq 0$ and $w_j \neq 0$. Contradicts. OR. We prove the contrapositive: Suppose for any list $(w_1, ..., w_m) \in W$, $\exists T \in \mathcal{L}(V, W), Tv_k = w_k$ for each w_k . (We need to) Prove that $(v_1, ..., v_n)$ is linely inde. Suppose $\exists a_i \in F, a_1v_1 + \cdots + a_nv_n = 0$. Choose a nonzero $w \in W$. By assumption, for the list $(\overline{a_1}w, \dots, \overline{a_m}w)$, $\exists T \in \mathcal{L}(V, W), Tv_k = \overline{a_k}w$ for each v_k . $0 = T(\sum_{k=1}^{m} a_k v_k) = \sum_{k=1}^{m} a_k T v_k = \sum_{k=1}^{m} a_k \overline{a_k} w = (\sum_{k=1}^{m} |a_k|^2) w. \text{ Hence } \sum_{k=1}^{m} |a_k|^2 = 0 \Rightarrow a_k = 0.$ • (4E 3.A.16) Suppose V is finite-dim. Show that the only two-sided ideals of $\mathcal{L}(V)$ are $\{0\}$ and $\mathcal{L}(V)$. A subsp \mathcal{E} of $\mathcal{L}(V)$ is called a two-sided ideal of $\mathcal{L}(V)$ if $TE \in \mathcal{E}, ET \in \mathcal{E}, \ \forall E \in \mathcal{E}, T \in \mathcal{L}(V)$. **SOLUTION:** Let $(v_1, ..., v_n)$ be a basis of V. If $\mathcal{E} = 0$, then we are done. Suppose $\mathcal{E} \neq 0$ and \mathcal{E} is a two-sided ideal of $\mathcal{L}(V)$. Let $S \in \mathcal{E} \setminus \{0\}$. Suppose $Sv_i \neq 0$ and $Sv_i = a_1v_1 + \cdots + a_nv_n$, where $a_k \neq 0$. Define $R_{x,y} \in \mathcal{L}(V)$ by $R_{x,y}(v_x) = v_y$, $R_{x,y}(v_z) = 0$ ($z \neq x$). Then for any $x, y \in \mathbb{N}^+$, $(R_{k,y}S)(v_i) = a_k v_y \Rightarrow ((R_{k,y}S) \circ R_{x,i})(v_x) = a_k v_y, \ ((R_{k,y}S) \circ R_{x,i})(v_z) = 0 \ (z \neq x).$ Thus $R_{k,y}SR_{x,i} = a_kR_{x,y}$. Denote by $T_{x,y}$. Getting $(\frac{1}{a_k}T_{1,1} + \dots + \frac{1}{a_k}T_{n,n})v_j = v_j \Rightarrow \sum_{r=1}^n \frac{1}{a_k}T_{r,r} = I.$ X By assumption, $T_{x,y} \in \mathcal{E} \Rightarrow I \in \mathcal{E}$. Hence for any $T \in \mathcal{L}(V)$, $I \circ T = T \circ I = T \in \mathcal{E} \Rightarrow \mathcal{E} = \mathcal{L}(V)$. **ENDED** 3.B **2** Suppose $S, T \in \mathcal{L}(V)$ are such that range $S \subseteq \text{null } T$. Prove that $(ST)^2 = 0$. **SOLUTION:** $TS = 0 \Rightarrow STST = (ST)^2 = 0$. **3** Suppose (v_1, \ldots, v_m) in V. Define $T \in \mathcal{L}(\mathbf{F}^m, V)$ by $T(z_1, \ldots, z_m) = z_1v_1 + \cdots + z_mv_m$. (a) The surj of T corresponds to $(v_1, ..., v_m)$ spanning V. (b) The inje of T corresponds to $(v_1, ..., v_m)$ being linely inde. 7 Suppose V is finite-dim with $2 \le \dim V$ and also $\dim V \le \dim W$, if W is finite-dim. Show that $U = \{ T \in \mathcal{L}(V, W) : \text{null } T \neq \{0\} \}$ is not a subsp of $\mathcal{L}(V, W)$. **SOLUTION:** Let $(v_1, ..., v_n)$ be a basis of V, $(w_1, ..., w_m)$ be linely inde in W. (Let dim W = m, if W is finite, otherwise, let $m \in \{n, n + 1, ...\}$; $2 \le n \le m$).

Define $T_1 \in \mathcal{L}(V, W)$ as $T_1: v_1 \mapsto 0, v_2 \mapsto w_2, v_i \mapsto w_i$.

Define $T_2 \in \mathcal{L}(V, W)$ as $T_2: v_1 \mapsto w_1, v_2 \mapsto 0, v_i \mapsto w_i, i = 3, ..., n$. Thus $T_1 + T_2 \notin U$. Comment: If dim V=0, then $V=\{0\}=\mathrm{span}\,(\,).\ \forall\ T\in\mathcal{L}(V,W)$, T is inje. Hence $U=\emptyset$. If dim V = 1, then $V = \text{span}(v_0)$. Thus $U = \text{span}(T_0)$, where $T_0v_0 = 0$. If *V* is infinite-dim, the result is true as well. **8** Suppose W is finite-dim with dim $W \ge 2$ and also dim $V \ge \dim W$, if V is finite-dim. Show that $U = \{ T \in \mathcal{L}(V, W) : \text{range } T \neq W \}$ is not a subsp of $\mathcal{L}(V, W)$. **SOLUTION:** Let $(v_1, ..., v_n)$ be linely inde in V, $(w_1, ..., w_m)$ be a basis of W. (Let $n = \dim V$, if V is finite, otherwise we choose $n \in \{m, m+1, ...\}$; $2 \le m \le n$). $v_2 \mapsto w_2, \qquad v_i \mapsto w_i,$ Define $T_1 \in \mathcal{L}(V, W)$ as $T_1 : v_1 \mapsto 0$, $v_{m+i} \mapsto 0$. Define $T_2 \in \mathcal{L}(V, W)$ as $T_2: v_1 \mapsto w_1, v_2 \mapsto 0, v_i \mapsto w_i$, $v_{m+i} \mapsto 0$. For each j = 2, ..., m; i = 1, ..., n - m, if V is finite, otherwise let $i \in \mathbb{N}^+$. Thus $T_1 + T_2 \notin U$. **COMMENT**: If dim W = 0, then $W = \{0\} = \text{span}()$. $\forall T \in \mathcal{L}(V, W), T \text{ is surj. Hence } U = \emptyset$. If dim W = 1, then $W = \text{span}(v_0)$. Thus $U = \text{span}(T_0)$, where $T_0v_0 = 0$. If *W* is infinite-dim, the result is true as well. **9** Suppose $T \in \mathcal{L}(V, W)$ is inje and $(v_1, ..., v_n)$ is linely inde in V. *Prove that* $(Tv_1, ..., Tv_n)$ *is linely inde in W*. **SOLUTION:** $a_1Tv_1 + \dots + a_nTv_n = 0 = T(\sum_{i=1}^n a_iv_i) \iff \sum_{i=1}^n a_iv_i = 0 \iff a_1 = \dots = a_n = 0.$ **10** Suppose $(v_1, ..., v_n)$ spans V and $T \in \mathcal{L}(V, W)$. Show that $(Tv_1, ..., Tv_n)$ spans range T. **SOLUTION:** (a) range $T = \{Tv : v \in V\} = \{Tv : v \in \text{span}(v_1, \dots, v_n)\} \Rightarrow Tv_1, \dots, Tv_n \in \text{range } T \Rightarrow \text{By } [2.7].$ OR. span $(Tv_1, \dots, Tv_n) \ni a_1Tv_1 + \dots + a_nTv_n = T(a_1v_1 + \dots + a_nv_n) \in \text{range } T$. (b) $\forall w \in \text{range } T$, $\exists v \in V$, w = Tv. ($\exists a_i \in F$, $v = a_1v_1 + \dots + a_nv_n$) $\Rightarrow w = a_1Tv_1 + \dots + a_nTv_n \Rightarrow \square$ **11** Suppose $S_1, ..., S_n$ are injellinear maps and $S_1 S_2 ... S_n$ makes sence. *Prove that* $S_1S_2...S_n$ *is inje.* **SOLUTION:** $S_1S_2...S_n(v) = 0 \iff S_2S_3...S_n(v) = 0 \iff \cdots \iff S_n(v) = 0 \iff v = 0.$ **12** Suppose that V is finite-dim and that $T \in \mathcal{L}(V, W)$. Prove that there exists a subsp U of V such that $U \cap \text{null } T = \{0\}$ and range $T = \{Tu : u \in U\}$. **SOLUTION:** By [2.34], there exists a subsp U of V such that $V = U \oplus \text{null } T$. $\forall v \in V, \ \exists ! \ w \in \text{null} \ T, u \in U, v = w + u. \ \text{Then} \ Tv = T(w + u) = Tu \in \{Tu : u \in U\} \Rightarrow \Box$ **COMMENT:** V can be infinite-dim. See the above of [2.34]. **16** Suppose there exists a linear map on V whose null space and range are both finite-dim. Prove that V is finite-dim. **SOLUTION:**

Denote the linear map by T. Let $(Tv_1, ..., Tv_n)$ be a basis of range T, $(u_1, ..., u_m)$ be a basis of null T.

Then for all $v \in V$, $T(\underbrace{v - a_1v_1 - \cdots - a_nv_n}) = 0$, where $Tv = a_1Tv_1 + \cdots + a_nTv_n$. $\Rightarrow u = b_1u_1 + \cdots + b_mu_m \Rightarrow v = a_1v_1 + \cdots + a_nv_n + b_1u_1 + \cdots + b_mu_m.$ Getting $V \subseteq \operatorname{span}(v_1, \dots, v_n, u_1, \dots, u_m)$. Thus V is finite-dim. \square

17 Suppose V and W are both finite-dim. Prove that there exists an inje $T \in \mathcal{L}(V, W)$ if and only if dim $V \leq \dim W$.

SOLUTION:

- (a) Suppose there exists an inje T. Then dim $V = \dim \operatorname{range} T \leq \dim W$.
- (b) Suppose dim $V \le \dim W$, letting (v_1, \dots, v_n) and (w_1, \dots, w_m) be bases of V and W respectively. Define $T \in \mathcal{L}(V, W)$ by $Tv_i = w_i$, $i = 1, \dots, n$ ($= \dim V$).
- **18** Suppose V and W are both finite-dim. Prove that there exists a surj $T \in \mathcal{L}(V, W)$ if and only if dim $V \ge \dim W$.

SOLUTION:

- (a) Suppose there exists a surj T. Then dim $V = \dim W + \dim \operatorname{null} T \Rightarrow \dim W \leq \dim V$.
- (b) Suppose dim $V \ge \dim W$, letting (v_1, \dots, v_n) and (w_1, \dots, w_m) be bases of V and W respectively. Define $T \in \mathcal{L}(V, W)$ by $T(a_1v_1 + \dots + a_mv_m + a_{m+1}v_{m+1} + \dots + a_nv_n) = a_1w_1 + \dots + a_mw_m$.
- **19** Suppose V and W are finite-dim and that U is a subsp of V. Prove that $\exists T \in \mathcal{L}(V, W)$, $\text{null } T = U \iff \dim U \ge \dim V \dim W$.

SOLUTION:

- (a) Suppose $\exists T \in \mathcal{L}(V, W)$, null T = U. Then $\dim \text{null } T = \dim U \ge \dim V \dim W$.
- (b) Suppose $\underbrace{\dim U}_{m} \ge \underbrace{\dim V}_{m+n} \underbrace{\dim W}_{p}$ ($\Rightarrow \dim W = p \ge n = \dim V \dim U$). Let (u_1, \dots, u_m) be a basis of U, extend to a basis of V as $(u_1, \dots, u_m, v_1, \dots, v_n)$. Let (w_1, \dots, w_p) be a basis of W. Define $T \in \mathcal{L}(V, W)$ by $T(a_1v_1 + \dots + a_nv_n + b_1u_1 + \dots + b_mu_m) = a_1w_1 + \dots + a_nw_n$.

• Tips: Suppose $T \in \mathcal{L}(V,W)$ and $R = (Tv_1, ..., Tv_n)$ is linely inde in range T. (Let $\dim \operatorname{range} T = n$, if $\operatorname{range} T$ is finite, otherwise let $n \in \mathbb{N}^+$.)

By (3.A.4), $L = (v_1, ..., v_n)$ is linely inde in V.

• New Notation:

Denote \mathcal{K}_R by span L, if range T is finite-dim, otherwise, denote it by a vecsp in \mathcal{S}_V null T. Note that if range T is finite-dim, then $\mathcal{K}_{\mathrm{range}\,T} = \mathcal{K}_R$ for any basis R of range T.

• New Theorem: $\mathcal{K}_R \in \mathcal{S}_V$ null T. Suppose range T is finite-dim. Otherwise, we are done immediately.

$$\mathcal{K}_R \oplus \operatorname{null} T = V \Longleftarrow \begin{cases} \text{ (a) } T(\sum\limits_{i=1}^n a_i v_i) = 0 \Rightarrow \sum\limits_{i=1}^n a_i T v_i = 0 \Rightarrow a_1 = \dots = a_n = 0 \Rightarrow \mathcal{K}_R \cap \operatorname{null} T = \{0\}. \\ \text{ (b) } \forall v \in V, T v = \sum\limits_{i=1}^n a_i T v_i \Rightarrow T v - \sum\limits_{i=1}^n a_i T v_i = T(v - \sum\limits_{i=1}^n a_i v_i) = 0 \\ \Rightarrow v - \sum\limits_{i=1}^n a_i v_i \in \operatorname{null} T \Rightarrow v = (v - \sum\limits_{i=1}^n a_i v_i) + (\sum\limits_{i=1}^n a_i v_i) \Rightarrow \mathcal{K}_R + \operatorname{null} T = V. \end{cases}$$

- Comment: null $T \in \mathcal{S}_V \mathcal{K}_R$.
- (4E 3.B.21) Suppose V is finite-dim, $T \in \mathcal{L}(V, W)$, and U is a subsp of W. Prove that $\mathcal{K}_U = \{ v \in V : Tv \in U \}$ is a subsp of V

and dim $\mathcal{K}_U = \dim \operatorname{null} T + \dim(U \cap \operatorname{range} T)$. **SOLUTION:** For any $u, w \in \mathcal{K}_U$ and $\lambda \in \mathbf{F}$, $T(u + \lambda w) = Tu + \lambda Tw \in U \Rightarrow \mathcal{K}_U$ is a subsp of V. Define $S \in \mathcal{L}(\mathcal{K}_U, U)$ as Rv = Tv for all $v \in \mathcal{K}_U$. Hence range $R = U \cap \text{range } T$. Suppose Tv = 0 for some $v \in V$. $X \in U \Rightarrow Rv = 0$. Thus null $T \subseteq \text{null } R$. **20** Suppose $T \in \mathcal{L}(V, W)$. Prove that T is inje $\iff \exists S \in \mathcal{L}(W, V), ST = I \in \mathcal{L}(V)$. **SOLUTION:** (a) Suppose $\exists S \in \mathcal{L}(W, V)$, ST = I. Then if $Tv = 0 \Rightarrow ST(v) = 0 = v$. (b) Suppose *T* is inje. Let $R = (Tv_1, ..., Tv_n)$ be linely inde in range $T \subseteq W$, where $n = \dim \operatorname{range} T$ if finite-dim, otherwise $n \in \mathbb{N}^+$. Then $\mathcal{K}_R \oplus \text{null } T = V$. And supose $U \oplus \text{range } T = W$. Define $S \in \mathcal{L}(W, V)$ by $S(Tv_i) = v_i$ and Su = 0, $u \in U$. Thus ST = I. **21** Suppose $T \in \mathcal{L}(V, W)$. Prove that T is surj $\iff \exists S \in \mathcal{L}(W, V), TS = I \in \mathcal{L}(W)$. **SOLUTION:** (a) Suppose $\exists S \in \mathcal{L}(W, V)$, TS = I. Then $\forall w \in W, TS(w) = w \in \text{range } T \Rightarrow \text{range } T = W$. (b) Suppose *T* is surj. Let $R = (Tv_1, ..., Tv_n)$ be linely inde in range T = W, where $n = \dim \operatorname{range} T$ if finite-dim, otherwise $n \in \mathbb{N}^+$. Then $\mathcal{K}_R \oplus \text{null } T = V$. Define $S \in \mathcal{L}(W, V)$ by $S(Tv_i) = v_i$. Then TS = I. **22** Suppose U and V are finite-dim vecsps and $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$. *Prove that* dim null $ST \leq \dim \text{null } S + \dim \text{null } T$. **SOLUTION:** Define $R \in \mathcal{L}(\text{null } ST, V)$ by Ru = Tu for all $u \in \text{null } ST \subseteq U$. $S(Tu) = 0 = S(Ru) \Rightarrow \operatorname{range} R \subseteq \operatorname{null} S \Rightarrow \operatorname{dim} \operatorname{range} R \leq \operatorname{dim} \operatorname{null} S$ $Tu = 0 = Ru \Rightarrow \operatorname{null} R \supseteq \operatorname{null} T \Rightarrow \operatorname{dim} \operatorname{null} R = \operatorname{dim} \operatorname{null} T$ OR. For any $u \in U$, note that $u \in \text{null } ST \iff S(Tu) = 0 \iff Tu \in \text{null } S$. Thus null $ST = \mathcal{K}_{\text{null } S \cap \text{range } T} = \{u \in U : Tu \in \text{null } S\}$. By Problem (4E 3B.21), $\dim \operatorname{null} ST = \dim \operatorname{null} T + \dim (\operatorname{null} S \cap \operatorname{range} T) \leq \dim \operatorname{null} T + \dim \operatorname{null} S.$ **COROLLARY:** (1) If *T* is inje, then dim null $T = 0 \Rightarrow \dim \text{null } ST \leq \dim \text{null } S$. (2) If *T* is surj, then range $R = \text{null } S \Rightarrow \dim \text{null } ST = \dim \text{null } S + \dim \text{null } T$. (3) If *S* is inje, then range $R = \{0\} \Rightarrow \dim \text{null } ST = \dim \text{null } R = \dim \text{null } T$. **23** Suppose U and V are finite-dim vecsps and $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$. *Prove that* dim range $ST \leq \min \{\dim \text{ range } S, \dim \text{ range } T\}$. **SOLUTION:** range $ST = \{Sv : v \in \text{range } T\} = \text{span } (Su_1, \dots, Su_{\dim \text{range } T}),$ where span $(u_1, ..., u_{\dim range T}) = \operatorname{range} T$. $\dim \operatorname{range} ST \leq \dim \operatorname{range} T \setminus \dim \operatorname{range} ST \leq \dim \operatorname{range} S \Rightarrow \square$ OR. Note that range $(S|_{\text{range }T}) = \text{range }ST$. Thus dim range $ST = \dim \operatorname{range}(S|_{\operatorname{range}T}) = \dim \operatorname{range}T - \dim \operatorname{null}(S|_{\operatorname{range}T}) \leq \operatorname{range}T$. **COROLLARY:**

- (1) If *S* is inje, then dim range $ST = \dim \operatorname{range} T$.
- (2) If T is surj, then dim range $ST = \dim \text{range } S$.
- (a) Suppose dim V = 5 and $S, T \in \mathcal{L}(V)$ are such that ST = 0. Prove that dim range $TS \leq 2$.
 - (b) Give an example of $S, T \in \mathcal{L}(\mathbf{F}^5)$ with ST = 0 and dim range TS = 2.

SOLUTION:

By Problem (23), dim range $TS \le \min \left\{ \frac{5 - \dim \text{null } T}{\dim \text{ range } S}, \frac{5 - \dim \text{null } S}{\dim \text{ range } T} \right\}$.

We show that dim range $TS \le 2$ by contradiction. Assume that dim range $TS \ge 3$.

Then min $\{5 - \dim \operatorname{null} T, 5 - \dim \operatorname{null} S\} \ge 3 \Rightarrow \max \{\dim \operatorname{null} T, \dim \operatorname{null} S\} \le 2$.

 \mathbb{X} dim null $ST = 5 \le \dim \text{null } S + \dim \text{null } T \le 4$. Contradicts.

And $ST = 0 \Rightarrow \text{range } T \subseteq \text{null } S \Rightarrow \text{dim range } TS \leq \text{dim range } T \leq \text{dim null } S$.

Thus dim range $TS \le 5$ – dim range $TS \Rightarrow$ dim range $TS \le \frac{5}{2}$.

EXAMPLE: Let $(v_1, ..., v_5)$ be a basis of \mathbf{F}^5 . Define $S, T \in \mathcal{L}(\mathbf{F}^5)$ by:

$$T: \quad v_1 \mapsto 0, \quad v_2 \mapsto 0, \quad v_i \mapsto v_i \ ;$$

$$S: v_1 \mapsto v_4, v_2 \mapsto v_5, v_i \mapsto 0 ; i = 3,4,5.$$

• Suppose dim V = n and $S, T \in \mathcal{L}(V)$ are such that ST = 0.

Prove that dim range $TS \leq \left\lceil \frac{n}{2} \right\rceil$.

SOLUTION:

By Problem (23), dim range $TS \le \min \left\{ \underbrace{\frac{n - \dim \text{null } T}{\dim \text{range } S}}, \underbrace{\frac{n - \dim \text{null } S}{\dim \text{range } T}} \right\}$. We prove by contradiction.

Assume that dim range $TS \ge \left[\frac{n}{2}\right] + 1$.

Then min $\{n - \dim \operatorname{null} T, n - \dim \operatorname{null} S\} \ge \left\lceil \frac{n}{2} \right\rceil + 1$

$$\Rightarrow$$
 max {dim null T , dim null S } $\leq n - \left\lceil \frac{n}{2} \right\rceil - 1$.

 \mathbb{X} dim null $ST = n \le \dim \text{null } S + \dim \text{null } T \le 2(n - \left\lceil \frac{n}{2} \right\rceil - 1)$

$$\Rightarrow \left[\frac{n}{2}\right] + 1 \le \frac{n}{2}$$
. Contradicts. Thus dim range $TS \le \left[\frac{n}{2}\right]$.

OR. dim null $S = n - \dim \operatorname{range} S \le n - \dim \operatorname{range} TS$.

And $ST = 0 \Rightarrow \dim \operatorname{range} TS \leq \dim \operatorname{range} T \leq \dim \operatorname{null} S \leq n - \dim \operatorname{range} TS$

$$\Rightarrow$$
 2 dim range $TS \le n \Rightarrow$ dim range $TS \le \frac{n}{2}$

$$\Rightarrow$$
 dim range $TS \le \left[\frac{n}{2}\right]$ (because dim range TS is an integer). \square

24 Suppose that W is finite-dim and $S,T \in \mathcal{L}(V,W)$.

Prove that $\operatorname{null} S \subseteq \operatorname{null} T \iff \exists E \in \mathcal{L}(W) \text{ such that } T = ES.$

SOLUTION:

Suppose $\exists E \in \mathcal{L}(W)$ such that T = ES. Then null $T = \text{null } ES \supseteq \text{null } S$.

Suppose null $S \subseteq \text{null } T$. Let $R = (Sv_1, \dots, Sv_n)$ be a basis of range S

 \Rightarrow (v_1, \dots, v_n) is linely inde.

Let $\mathcal{K}_R = \text{span}(v_1, \dots, v_n) \Rightarrow V = \mathcal{K}_R \oplus \text{null } S$.

Define $E \in \mathcal{L}(W)$ by $E(Sv_i) = Tv_i$, Eu = 0; for each i = 1 ..., n and $u \in \text{null } S$.

Hence $\forall v \in V$, $(\exists! a_i \in \mathbf{F}, u \in \text{null } S)$, $Tv = a_1 T v_1 + \dots + a_n T v_n = E(a_1 S v_1 + \dots + a_n S v_n) \Rightarrow T = ES. \square$

OR. Extend *R* to a basis $(Sv_1, ..., Sv_n, w_1, ..., w_m)$ of *W*.

Define $E \in \mathcal{L}(W)$ by $E(Sv_k) = Tv_k$, $Ew_i = 0$.

Because
$$\forall v \in V$$
, $\exists a_i \in \mathbf{F}, Sv = a_1Sv_1 + \dots + a_nSv_n$
 $\Rightarrow S\left(v - (a_1v_1 + \dots + a_nv_n)\right) = 0$
 $\Rightarrow v - (a_1v_1 + \dots + a_nv_n) \in \text{null } S$
 $\Rightarrow v - (a_1v_1 + \dots + a_nv_n) \in \text{null } T$.
 $\Rightarrow T\left(v - (a_1v_1 + \dots + a_nv_n)\right) = 0$

Thus $Tv = a_1v_1 + \cdots + a_nv_n$. Hence $E(Sv) = a_1E(Sv_1) + \cdots + a_nE(Sv_n) = a_1Tv_1 + \cdots + a_nTv_n = Tv$. \square

25 Suppose that V is finite-dim and $S,T \in \mathcal{L}(V,W)$.

Prove that range $S \subseteq \text{range } T \iff \exists E \in \mathcal{L}(V) \text{ such that } S = TE.$

SOLUTION:

Suppose $\exists E \in \mathcal{L}(V)$ such that S = TE. Then range $S = \text{range } TE \subseteq \text{range } T$.

Suppose range $S \subseteq \text{range } T$. Let (v_1, \dots, v_m) be a basis of V.

Because range $S \subseteq \text{range } T \Rightarrow Sv_i \in \text{range } T \text{ for each } i. \text{ Suppose } u_i \in V \text{ for each } i \text{ such that } Tu_i = Sv_i.$

Thus defining $E \in \mathcal{L}(V)$ by $Ev_i = u_i$ for each $i \Rightarrow S = TE$.

26 Prove that the differentiation map $D \in \mathcal{P}(\mathbf{R})$ is surj.

SOLUTION:

[Informal Proof]

Note that $\deg Dx^n = n - 1$.

Because span $(Dx, Dx^2, ...) \subseteq \text{range } D. \not \subseteq \text{By } (2.C.10), \text{ span } (Dx, Dx^2, ...) = \text{span } (1, x, ...) = \mathcal{P}(\mathbf{R}). \square$

[Proper Proof]

We will recursively define a sequence of polynomials $(p_k)_{k=0}^{\infty}$ where $Dp_k = x^k$.

Because dim $Dx = (\deg x) - 1 = 0$, we have $Dx = C \in \mathbb{F}$. Define $p_0 = C^{-1}x$. Then $Dp_0 = C^{-1}Dx = 1$.

Suppose we have defined $p_0, ..., p_n$ such that $Dp_k = x^k$ for each $k \in \{0, ..., n\}$.

Because deg $D(x^{n+2}) = n+1$, we let $D(x^{n+2}) = a_{n+1}x^{n+1} + a_nx^n + \dots + a_1x + a_0$, where $a_{n+1} \neq 0$.

Then
$$a_{n+1}^{-1}D(x^{n+2}) = x^{n+1} + a_{n+1}^{-1}(a_nDp_n + \dots + a_1Dp_1 + a_0Dp_0)$$

$$\Rightarrow x^{n+1} = D\left(a_{n+1}^{-1}(x^{n+2} - a_n p_n - \dots - a_1 p_1 - a_0 p_0)\right).$$

Thus defining $p_{n+1} = a_{n+1}^{-1}(x^{n+2} - a_n p_n - \dots - a_1 p_1 - a_0 p_0)$, we have $Dp_{n+1} = x^{n+1}$.

Hence we get the sequence $(p_k)_{k=0}^{\infty}$ by recursion.

Now it suffices to show that D is surj. Let $p = \sum_{k=0}^{\deg p} a_k x^k \in \mathcal{P}(\mathbb{R})$.

Then
$$D\left(\sum_{k=0}^{\deg p} a_k p_k\right) = \sum_{k=0}^{\deg p} a_k D p_k = \sum_{k=0}^{\deg p} a_k x^k = p.$$

27 Suppose $p \in \mathcal{P}(\mathbf{R})$. Prove that there exists a poly $q \in \mathcal{P}(\mathbf{R})$ such that 5q'' + 3q' = p.

SOLUTION:

Define $B \in \mathcal{L}(\mathcal{P}(\mathbf{R}))$ by $B = 5D^2 + 3D \Rightarrow B(q) = 5q'' + 3q'$.

Note that $\deg Bx^n = n - 1$. Similar to Problem (26), we conclude that B is surj.

28 Suppose $T \in \mathcal{L}(V, W)$ and $(w_1, ..., w_m)$ is a basis of range T. Prove that $\exists \ \varphi_1, \dots, \varphi_m \in \mathcal{L}(V, \mathbf{F}) \ such \ that \ for \ all \ v \in V, Tv = \varphi_1(v)w_1 + \dots + \varphi_m(v)w_m.$

SOLUTION:

Suppose $(v_1, ..., v_m)$ in V such that $Tv_i = w_i$ for each i.

Then (v_1, \ldots, v_m) is linely inde, extend it to a basis of V as $(v_1, \ldots, v_m, u_1, \ldots, u_n)$.

Note that $\forall v \in V, v = a_1v_1 + \dots + a_mv_m + b_1u_1 + \dots + b_nu_n, \exists ! a_i, b_i \in F \Rightarrow Tv = a_1w_1 + \dots + a_mw_m.$

Define $\varphi_i : V \to \mathbf{F}$ by $\varphi_i(v) = a_i v_i$ for each i. We now check the linearity.

 $\forall v, u \in V \ (\exists ! a_i, b_i, c_i, d_i \in \mathbf{F}), \lambda \in \mathbf{F}, \varphi_i(v + \lambda u) = a_i + \lambda c_i = \varphi(v) + \lambda \varphi(u).$

29 Suppose $\varphi \in \mathcal{L}(V, \mathbf{F}) \setminus \{0\}$. Suppose $u \in V \setminus \text{null } \varphi$. *Prove that* $V = \text{null } \varphi \oplus \{au : a \in F\}.$

SOLUTION:

(a) $\forall v = cu \in \text{null } \varphi \cap \{au : a \in F\}$, $\varphi(v) = 0 = c\varphi(u) \Rightarrow c = 0$. Hence $\text{null } \varphi \cap \{au : a \in F\} = \{0\}$.

$$(b) \ \forall \ v \in V, v = \left(v - \frac{\varphi(v)}{\varphi(u)}u\right) + \frac{\varphi(v)}{\varphi(u)}u. \left| \begin{array}{l} v - \frac{\varphi(v)}{\varphi(u)}u \in \operatorname{null}\varphi \\ \frac{\varphi(v)}{\varphi(u)}u \in \{au : a \in \mathbf{F}\} \end{array} \right\} \\ \Rightarrow V = \operatorname{null}\varphi \oplus \{au : a \in \mathbf{F}\}. \ \Box$$

This may seems strange. Here we explain why.

 $\varphi \neq 0 \Rightarrow \varphi(v_i) = a_i \neq 0$ for each v_i , for some linely inde list (v_1, \dots, v_k) .

Fix one v_k . Then $\varphi\left(v_k - \frac{a_k}{a_j}v_j\right) = 0$ for each $j = 1, \dots, k-1, k+1, \dots, n$.

Thus span $\left\{v_k - \frac{a_k}{a_j}v_j\right\}_{i \neq k} \subseteq \operatorname{null} \varphi$. Hence every vecsp in \mathcal{S}_V null φ is one-dim.

30 *Suppose* $\varphi_1, \varphi_2 \in \mathcal{L}(V, \mathbf{F})$ *and* $\text{null } \varphi_1 = \text{null } \varphi_2 = \text{null } \varphi$. *Prove that* $\exists c \in \mathbf{F}, \varphi_1 = c\varphi_2$

SOLUTION:

If null $\varphi = V$, then $\varphi_1 = \varphi_2 = 0$, we are done. Suppose $u \in V/\text{null } \varphi \Rightarrow \varphi_1(u), \varphi_2(u) \neq 0$.

By Problem (29), $V = \text{null } \varphi \oplus \text{span } (u)$.

Hence for any $v \in V$, $v = w + a_v u$, $\exists ! w \in \text{null } \varphi, a_v \in F$.

$$\varphi_1(v) = a_v \varphi_1(u), \quad \varphi_2(v) = a_v \varphi_2(u) \Rightarrow a_v = \frac{\varphi_1(v)}{\varphi_1(u)} = \frac{\varphi_2(v)}{\varphi_2(u)} \Rightarrow \frac{\varphi_1(u)}{\varphi_2(u)} = \frac{\varphi_1(v)}{\varphi_2(v)} = c \in \mathbf{F}.$$
Thus $\varphi_1 = c\varphi_2$.

ullet Suppose V is finite-dim, X is a subsp of V, and Y is a finite-dim subsp of W. *Prove that if* dim X + dim Y = dim V, then $\exists T \in \mathcal{L}(V, W)$, null T = X and range T = Y.

SOLUTION:

Suppose dim X + dim Y = dim V. Let $(u_1, ..., u_n)$ be a basis of X, $R = (w_1, ..., w_m)$ be a basis of Y.

Extend (u_1, \ldots, u_n) to a basis of V as $(u_1, \ldots, u_n, v_1, \ldots, v_m)$. Define $T \in \mathcal{L}(V, W)$ by $T(\sum_{i=1}^m a_i v_i + \sum_{i=1}^n b_i u_i) = \sum_{i=1}^m a_i w_i$. Now we show that null T = X and range T = Y

Suppose $v \in V$. Then $\exists ! a_i, b_j \in F, v = \sum_{i=1}^m a_i v_i + \sum_{i=1}^n b_i u_i$.

 $v \in \operatorname{null} T \Rightarrow Tv = 0 \Rightarrow a_1 = \dots = a_m = 0 \Rightarrow v \in X$ $v \in X \Rightarrow v \in \operatorname{null} T$ $\Rightarrow \operatorname{null} T = X.$

$w \in \operatorname{range} T \Rightarrow \exists \ v = \sum_{i=1}^{m} a_i v_i + \sum_{i=1}^{n} b_i u_i \in V, Tv = w = \sum_{i=1}^{m} a_i w_i \Rightarrow w \in Y$ $w \in Y \Rightarrow w = a_1 T v_1 + \dots + a_m T v_m = T(a_1 v_1 + \dots + a_m v_m) \Rightarrow w \in \operatorname{range} T$ $\Rightarrow \operatorname{range} T = Y.$	
• Suppose V is finite-dim and $T \in \mathcal{L}(V, W)$. Let $(Tv_1,, Tv_n)$ be a basis of range T . Extend $(v_1,, v_n)$ to a basis of V as $(v_1,, v_n, u_1,, u_m)$. Prove or give a counterexample: $(u_1,, u_m)$ is a basis of null T .	
SOLUTION: A counterexample: Suppose dim $V = 3$, $Tv_1 = Tv_2 = Tv_3 = w_1$. Then span $(Tv_1, Tv_2, Tv_3) = \text{span } (w_1)$. Extend (v_i) to (v_1, v_2, v_3) for each i . But none of (v_1, v_2) , (v_1, v_3) , (v_2, v_3) is a basis of null T . COMMENT: $(v_2 - v_1, v_3 - v_1)$, $(v_1 - v_2, v_3 - v_2)$ or $(v_1 - v_3, v_2 - v_3)$ are all bases of null T .	
• Suppose V is finite-dim and $T \in \mathcal{L}(V,W)$. Let (u_1,\ldots,u_m) be a basis of null T . Extend (u_1,\ldots,u_m) to a basis of V as $(u_1,\ldots,u_m,v_1,\ldots,v_n)$. Prove or give a counterexample: (Tv_1,\ldots,Tv_n) spans range T .	
SOLUTION:	
$\forall w \in \text{range } T, \exists v \in V, (\exists! a_i, b_i \in \mathbf{F}), Tv = T(a_1v_1 + \dots + a_nv_n) = w$	
$\Rightarrow w \in \operatorname{span}\left(Tv_1,\ldots,Tv_n\right) \Rightarrow \operatorname{range} T \subseteq \operatorname{span}\left(Tv_1,\ldots,Tv_n\right).$	
COMMENT: If T is inje, then $(Tv_1,, Tv_n)$ is a basis of range T .	
• OR (5.B.4) Suppose $P \in \mathcal{L}(V)$ and $P^2 = P$. Prove that $V = \text{null } P \oplus \text{range } P$.	
SOLUTION: Let (P^2v_1, \dots, P^2v_n) be a basis of range P^2 . Then (Pv_1, \dots, Pv_n) is linely inde in V . Let $\mathcal{K} = \operatorname{span}(Pv_1, \dots, Pv_n) \Rightarrow V = \mathcal{K} \oplus \operatorname{null} P^2$ $\not \subset \mathcal{K} = \operatorname{range} P = \operatorname{range} P^2$; $\operatorname{null} P = \operatorname{null} P^2$ $\Rightarrow \Box$	
OR. (a) Suppose $v \in \operatorname{null} P \cap \operatorname{range} P$. Then $\exists u \in V, v = Pu, Pv = 0 \Rightarrow v = Pu = P^2u = Pv = 0$. Hence $\operatorname{null} P \cap \operatorname{range} P = \{0\}$. (b) Note that $v = Pv + (v - Pv)$ and $P^2v = Pv$ for all $v \in V$. Then $P(v - Pv) = 0 \Rightarrow v - Pv \in \operatorname{null} P$. Hence $V = \operatorname{range} P + \operatorname{null} P$.	
• Suppose V is finite-dim with dim $V>1$. Show that if $\varphi:\mathcal{L}(V)\to \mathbf{F}$ is a linear map such that $\varphi(ST)=\varphi(S)\cdot\varphi(T)$ for all $S,T\in\mathcal{L}(V)$, then $\varphi=0$.	
Solution: Using notations in (4E 3.A.16). Suppose $\varphi \neq 0 \Rightarrow \exists i, j \in \{1, \dots, n\}, \ \varphi(R_{i,j}) \neq 0$. Because $R_{i,j} = R_{x,j} \circ R_{i,x}, \ \forall x = 1, \dots, n$ $\Rightarrow \varphi(R_{i,j}) = \varphi(R_{x,j}) \cdot \varphi(R_{i,x}) \neq 0 \Rightarrow \varphi(R_{x,j}) \neq 0 \text{ and } \varphi(R_{i,x}) \neq 0.$ Again, because $R_{i,x} = R_{y,x} \circ R_{i,y}, \ \forall y = 1, \dots, n$. Thus $\varphi(R_{y,x}) \neq 0$ for any $x, y = 1, \dots, n$. Let $l \neq i, k \neq j$ and then $\varphi(R_{l,k} \circ R_{i,j}) = \varphi(0) = 0 = \varphi(R_{l,k}) \cdot \varphi(R_{i,j})$	
$\Rightarrow \varphi(R_{l,k}) = 0 \text{ or } \varphi(R_{i,j}) = 0. \text{ Contradicts.}$	
OR. Note that by (4E 3.A.16), $\exists S, T \in \mathcal{L}(V), ST - TS \neq 0$. Then $\varphi(ST - TS) = \varphi(S)\varphi(T) - \varphi(T)\varphi(S) = 0 \Rightarrow ST - TS \in \text{null } \varphi \neq \{0\}$. Thus $\forall E \in \text{null } \varphi, T \in \mathcal{L}(V), \varphi(ET) = \varphi(TE) = 0 \Rightarrow ET, TE \in \text{null } \varphi$.	
Hence null φ is a nonzero two-sided ideal of $\mathcal{L}(V)$.	

• Suppose that V and W are real vector spaces and $T \in \mathcal{L}(V, W)$.

Define $T_C: V_C \to W_C$ by $T_C(u + iv) = Tu + iTv$ for all $u, v \in V$.

- (a) Show that T_C is a (complex) linear map from V_C to W_C .
- (b) Show that T_C is inje \iff T is inje.
- (c) Show that range $T_C = W_C \iff \text{range } T = W$.

SOLUTION:

(a)
$$\forall u_1 + iv_1, u_2 + iv_2 \in V_C, \lambda \in \mathbf{F},$$

 $T((u_1 + iv_1) + \lambda(u_2 + iv_2)) = T((u_1 + \lambda u_2) + i(v_1 + \lambda v_2)) = T(u_1 + \lambda u_2) + iT(v_1 + \lambda v_2)$
 $= Tu_1 + iTv_1 + \lambda Tu_2 + i\lambda Tv_2 = T(u_1 + iv_1) + \lambda T(u_2 + iv_2).$

(b) Suppose
$$T_{\rm C}$$
 is inje. Let $T(u) = 0 \Rightarrow T_{\rm C}(u+{\rm i}0) = Tu = 0 \Rightarrow u = 0$. Suppose T is inje. Let $T_{\rm C}(u+{\rm i}v) = Tu+{\rm i}Tv = 0 \Rightarrow Tu = Tv = 0 \Rightarrow u+{\rm i}v = 0$.

(c) Suppose
$$T_{\mathbf{C}}$$
 is surj. $\forall w \in W, \ \exists \ u \in V, T(u+\mathrm{i}0) = Tu = w+\mathrm{i}0 = w \Rightarrow \mathrm{T}$ is surj. Suppose T is surj. $\forall w, x \in W, \ \exists \ u, v \in V, Tu = w, Tv = x$ $\Rightarrow \forall w + \mathrm{i}x \in W_{\mathbf{C}}, \ \exists \ u + \mathrm{i}v \in V, T(u+\mathrm{i}v) = w+\mathrm{i}x \Rightarrow T_{\mathbf{C}}$ is surj. $\Rightarrow \Box$

ENDED

3·C

• Note For [3.47]:
$$LHS = (AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k} = \sum_{r=1}^{n} (A_{j,\cdot})_{1,r} (C_{\cdot,k})_{r,1} = (A_{j,\cdot} C_{\cdot,k})_{1,1} = A_{j,\cdot} C_{\cdot,k} = RHS.$$

• Note For [3.48]:

• Note For [3.49]:
$$: [(AC)_{\cdot,k}]_{j,1} = (AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k} = \sum_{r=1}^{n} A_{j,r} (C_{\cdot,k})_{r,1} = (AC_{\cdot,k})_{j,1}$$
$$: (AC)_{\cdot,k} = A_{\cdot,r} C_{\cdot,k} = AC_{\cdot,k}$$

•Suppose $C \in \mathbf{F}^{m,c}$, $R \in \mathbf{F}^{c,p}$.

(a) For
$$k = 1, ..., p$$
, $(CR)_{.,k} = CR_{.,k} = C_{.,.}R_{.,k} = \sum_{r=1}^{c} C_{.,r}R_{r,k} = R_{1,k}C_{.,1} + \cdots + R_{c,k}C_{.,c}$

(b) For
$$j = 1, ..., m$$
, $(CR)_{j,\cdot} = C_{j,\cdot}R = C_{j,\cdot}R_{\cdot,\cdot} = \sum_{r=1}^{c} C_{j,r}R_{r,\cdot} = C_{j,1}R_{1,\cdot} + \cdots + C_{j,c}R_{c,\cdot}$

EXAMPLE

$$P = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{pmatrix} \in \mathbf{F}^{2,3}.$$

$$P_{\cdot,1} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 5 \\ 8 \end{pmatrix} = 5 \begin{pmatrix} 1 \\ 3 \end{pmatrix} + 8 \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 21 \\ 47 \end{pmatrix};$$

$$\begin{split} P_{\cdot,2} &= \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 6 \\ 9 \end{pmatrix} = 6 \begin{pmatrix} 1 \\ 3 \end{pmatrix} + 9 \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 24 \\ 54 \end{pmatrix}; \\ P_{\cdot,3} &= \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 7 \\ 10 \end{pmatrix} = 7 \begin{pmatrix} 1 \\ 3 \end{pmatrix} + 10 \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 27 \\ 61 \end{pmatrix}; \\ P_{1,\cdot} &= \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{pmatrix} = 1 \begin{pmatrix} 5 & 6 & 7 \end{pmatrix} + 2 \begin{pmatrix} 8 & 9 & 10 \end{pmatrix} = \begin{pmatrix} 21 & 24 & 27 \end{pmatrix}; \\ P_{2,\cdot} &= \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{pmatrix} = 3 \begin{pmatrix} 5 & 6 & 7 \end{pmatrix} + 4 \begin{pmatrix} 8 & 9 & 10 \end{pmatrix} = \begin{pmatrix} 47 & 54 & 61 \end{pmatrix}; \end{split}$$

• Note For [3.52]:
$$A \in \mathbf{F}^{m,n}, c \in \mathbf{F}^{n,1} \Rightarrow Ac \in \mathbf{F}^{m,1}$$

$$(Ac)_{j,1} = \sum_{r=1}^{n} A_{j,r} c_{r,1} = \left[\sum_{r=1}^{n} (A_{\cdot,r} c_{r,1}) \right]_{j,1} = (c_1 A_{\cdot,1} + \dots + c_n A_{\cdot,n})_{j,1}$$

$$Ac = A_{\cdot,\cdot} c_{\cdot,1} = \sum_{r=1}^{n} A_{\cdot,r} c_{r,1} = c_1 A_{\cdot,1} + \dots + c_n A_{\cdot,n}$$
 OR. By $(Ac)_{\cdot,1} = Ac_{\cdot,1}$ Using (a) above.

EXERCISE 11:
$$a \in \mathbf{F}^{1,n}, C \in \mathbf{F}^{n,p} \Rightarrow aC \in \mathbf{F}^{1,p}$$

 $\therefore (aC)_{1,k} = \sum_{r=1}^{n} a_{1,r} C_{r,k} = [\sum_{r=1}^{n} a_{1,r} (C_{r,\cdot})]_{1,k} = (a_{1}C_{1,\cdot} + \dots + a_{n}C_{n,\cdot})_{1,k}$
 $\therefore aC = a_{1,\cdot}C_{\cdot,\cdot} = \sum_{r=1}^{n} a_{1,r}C_{r,\cdot} = a_{1}C_{1,\cdot} + \dots + a_{n}C_{n,\cdot}$ OR. By $(aC)_{1,\cdot} = a_{1,\cdot}C$. Using (b) above.

• COLUMN-ROW FACTORIZATION (CR Factorization)

Suppose
$$A \in \mathbf{F}^{m,n}$$
, $A \neq 0$. Let $S_c = \mathrm{span}(A_{\cdot,1}, \dots, A_{\cdot,n}) \subseteq \mathbf{F}^{m,1}$, $\dim S_c = c$.

And
$$S_r = \operatorname{span}(A_{1,r}, \dots, A_{n,r}) \subseteq \mathbf{F}^{1,n}, \dim S_r = r$$
.

Prove that A = CR. $\exists C \in \mathbf{F}^{m,c}$, $R \in \mathbf{F}^{c,n}$.

SOLUTION: Notice that $A \neq 0 \Rightarrow c, r \geq 1$.

Let $(C_{.,1},...,C_{.,c})$ be a basis of S_c , forming $C \in \mathbb{F}^{m,c}$.

Then for any $A_{\cdot,k}$, $A_{\cdot,k} = R_{1,k}C_{\cdot,1} + \cdots + R_{c,k}C_{\cdot,c} = (CR)_{\cdot,k}$, $\exists ! R_{1,k}, \ldots, R_{c,k} \in \mathbf{F}$. Hence, by letting $R = \begin{pmatrix} R_{1,1} & \cdots & R_{1,n} \\ \vdots & \ddots & \vdots \\ R_{c,1} & \cdots & R_{c,n} \end{pmatrix}$, we have A = CR.

OR. Let $(R_{1,r}, ..., R_{c,r})$ be a basis of S_r , forming $R \in \mathbf{F}^{c,n}$.

For any $A_{j,\cdot}$, $A_{j,\cdot} = C_{j,1}R_{1,\cdot} + \dots + C_{j,c}R_{c,\cdot} = (CR)_{j,\cdot}$, $\exists ! C_{j,1}, \dots, C_{j,c} \in \mathbf{F}$. Similarly.

EXAMPLE:

$$A = \begin{pmatrix} 10 & 7 & 4 & 1 \\ 26 & 19 & 12 & 5 \\ 46 & 33 & 20 & 7 \end{pmatrix} \stackrel{(1)}{=} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 10 & 7 & 4 & 1 \\ 26 & 19 & 12 & 5 \end{pmatrix} \stackrel{(2)}{=} \begin{pmatrix} 7 & 4 \\ 19 & 12 \\ 33 & 20 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix}$$

(1) Because $\begin{pmatrix} 46 & 33 & 20 & 7 \end{pmatrix} = 2 \begin{pmatrix} 10 & 7 & 4 & 1 \end{pmatrix} + \begin{pmatrix} 26 & 19 & 12 & 5 \end{pmatrix}$.

Hence dim $S_r = 2$. We choose $(A_{1,r}, A_{2,r})$ as the basis.

(2) Because
$$\begin{pmatrix} 10 \\ 26 \\ 46 \end{pmatrix} = 2 \begin{pmatrix} 7 \\ 19 \\ 33 \end{pmatrix} - \begin{pmatrix} 4 \\ 12 \\ 20 \end{pmatrix}; \quad \begin{pmatrix} 1 \\ 5 \\ 7 \end{pmatrix} = 2 \begin{pmatrix} 4 \\ 12 \\ 20 \end{pmatrix} - \begin{pmatrix} 7 \\ 19 \\ 33 \end{pmatrix}.$$

Hence dim $S_c = 2$. We choose $(A_{.2}, A_{.3})$ as the basis.

• COLUMN RANK EQUALS ROW RANK (Using the notation above)

For any
$$A_{j,.} \in S_r$$
, $A_{j,.} = (CR)_{j,.} = C_{j,1}R = C_{j,1}R_{1,.} + \dots + C_{j,c}R_{c,.}$

$$\Rightarrow$$
 span $(A_{1,r}, \dots, A_{m,r}) = S_r = \text{span}(R_{1,r}, \dots, R_{c,r}) \Rightarrow \dim S_r = r \le c = \dim S_c$.

Apply the result to
$$A^t \in \mathbf{F}^{n,m} \Rightarrow \dim S_r^t = \dim S_c = c \le r = \dim S_r = \dim S_c^t$$
.

- Suppose $T \in \mathcal{L}(V)$, and u_1, \ldots, u_n and v_1, \ldots, v_n are bases of V. Prove that the following are equi. Here $A = \mathcal{M}(T)$ means $\mathcal{M}(T, (u_1, \ldots, u_n), (v_1, \ldots, v_n))$.
 - (a) T is inje.
 - (b) The cols of $\mathcal{M}(T)$ are linely inde in $\mathbf{F}^{n,1}$.
 - (c) The cols of $\mathcal{M}(T)$ span $\mathbf{F}^{n,1}$.
 - (d) The rows of $\mathcal{M}(T)$ span $\mathbf{F}^{1,n}$.
 - (e) The rows of $\mathcal{M}(T)$ are linely inde in $\mathbf{F}^{1,n}$.

SOLUTION: T is inje \iff dim $V = \dim \operatorname{range} T + \dim \operatorname{null} T = \dim \operatorname{range} T$

$$\iff$$
 (Tu_1, \dots, Tu_n) is linely inde in V , and therefore is a basis of V

$$\Longleftrightarrow \big(\mathcal{M}(Tu_1), \dots, \mathcal{M}(Tu_n)\big) \text{ is linely inde, as well as } (A_{\cdot,1}, \dots, A_{\cdot,n})$$

$$\iff$$
 $(A_{\cdot,1},\ldots,A_{\cdot,n})$ is a basis of $\mathbf{F}^{n,1}$.

$$\left(\begin{array}{c} \mathbb{Z} \dim \operatorname{span} \left(A_{\cdot,1}, \dots, A_{\cdot,n} \right) = \dim \operatorname{span} \left(A_{1,\cdot}, \dots, A_{n,\cdot} \right) = n \end{array} \right) \\ \iff \left(A_{1,\cdot}, \dots, A_{n,\cdot} \right) \text{ is a basis of } \mathbf{F}^{1,n}.$$

• Suppose A is an m-by-n matrix with $A \neq 0$.

Prove that the rank of A is 1 if and only if there exist $(c_1, ..., c_m) \in \mathbf{F}^m$ and $(d_1, ..., d_n) \in \mathbf{F}^n$ such that $A_{i,k} = c_i \cdot d_k$ for every j = 1, ..., m and every k = 1, ..., n.

SOLUTION: Using the notation in CR Factorization.

(a) Suppose
$$A = \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} \begin{pmatrix} d_1 & \cdots & d_n \end{pmatrix} = \begin{pmatrix} c_1 d_1 & \cdots & c_1 d_n \\ \vdots & \ddots & \vdots \\ c_m d_1 & \cdots & c_m d_n \end{pmatrix}$$
. $(\exists c_j, d_k \in \mathbf{F}, \forall j, k)$

Then
$$S_c = \operatorname{span}\left(\begin{pmatrix} c_1d_1 \\ \vdots \\ c_md_1 \end{pmatrix}, \begin{pmatrix} c_1d_2 \\ \vdots \\ c_md_2 \end{pmatrix}, \dots, \begin{pmatrix} c_1d_n \\ \vdots \\ c_md_n \end{pmatrix}\right) = \operatorname{span}\left(\begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix}\right).$$

$$\text{OR.} \quad S_r = \text{span} \left(\begin{array}{ccc} \left(c_1 d_1 & \cdots & c_1 d_n \right), \\ \left(c_2 d_1 & \cdots & c_2 d_n \right), \\ & \vdots \\ \left(c_m d_1 & \cdots & c_m d_n \right) \end{array} \right) = \text{span} \left(\left(d_1 & \ldots & d_n \right) \right).$$
 Hence the rank of A is 1 .

(b) Suppose the rank of A is dim $S_c = \dim S_r = 1$

Let
$$c_j = \frac{A_{j,1}}{A_{1,1}} = \frac{A_{j,2}}{A_{1,2}} = \dots = \frac{A_{j,n}}{A_{1,n}}, \qquad d'_k = \frac{A_{1,k}}{A_{1,1}} = \frac{A_{2,k}}{A_{2,1}} = \dots = \frac{A_{m,k}}{A_{m,1}}. \quad (\forall j, k)$$

$$\Rightarrow A_{j,k} = d'_k A_{j,1} = c_j A_{1,k} = c_j d'_k A_{1,1} = c_j d_k$$
. Letting $d_k = d'_k A_{1,1}$.

1 Suppose $T \in \mathcal{L}(V, W)$. Show that with resp to each choice of bases of V and W, the matrix of T has at least dim range T nonzero entries.

SOLUTION:

Let $(v_1, ..., v_n)$ and $(w_1, ..., w_m)$ be bases of V and W respectively. We prove by contradiction.

Suppose $A = \mathcal{M}(T, (v_1, ..., v_n), (w_1, ..., w_m))$ has at most (dim range T - 1) nonzero entries.

Then by Pigeon Hole Principle, at least one of $A_{\cdot,k} = 0$.

Thus there are at most (dim range T-1) nonzero vectors in Tv_1, \dots, Tv_n .

While range $T = \operatorname{span}(Tv_1, \dots, Tv_n) \Rightarrow \dim \operatorname{range} T \leq \dim \operatorname{range} T - 1$. We get a contradiction.

3 Suppose V and W are finite-dim and $T \in \mathcal{L}(V, W)$.

Prove that there exist a basis of V and a basis of W such that [letting $A = \mathcal{M}(T)$ with resp to these bases], $A_{k,k} = 1$, $A_{i,j} = 0$, where $1 \le k \le \dim \operatorname{range} T$, $i \ne j$. **SOLUTION:** Let $R = (Tv_1, ..., Tv_n)$ be a basis of range T, extend it to the basis of W as $(Tv_1, ..., Tv_n, w_1, ..., w_n)$. Let $\mathcal{K}_R = \text{span}(v_1, \dots, v_n)$. Let (u_1, \dots, u_m) be a basis of null T. Then $(v_1, \ldots, v_n, u_1, \ldots, u_m)$ is the basis of V. Thus $T(v_k) = Tv_k$, $T(u_j) = 0 \Rightarrow A_{k,k} = 1$, $A_{i,j}$ for each $k \in \{1, ..., \dim \operatorname{range} T\}$ and $j \in \{1, ..., m\}$. **4** Suppose $(v_1, ..., v_m)$ is a basis of V and W is finite-dim. Suppose $T \in \mathcal{L}(V, W)$. Prove that there exists a basis (w_1,\ldots,w_n) of W such that $\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ or $\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$. Solution: If $Tv_1=0$, then we are done. If not then extend (Tv_1) . **5** Suppose $(w_1, ..., w_n)$ is a basis of W and V is finite-dim. Suppose $T \in \mathcal{L}(V, W)$. Prove that there exists a basis $(v_1, ..., v_m)$ of V such that $[letting\ A=\mathcal{M}\left(T,(v_1,\ldots,v_m),(w_1,\ldots,w_n)\right)], A_{1,\cdot}=\begin{pmatrix}0&\ldots&0\end{pmatrix} or \begin{pmatrix}1&0&\ldots&0\end{pmatrix}.$ **SOLUTION:** Let (u_1, \dots, u_m) be a basis of V. If $A_{1, \dots} = 0$, then let $v_i = u_i$ for each $i = 1, \dots, n$, we are done. Otherwise, $(A_{1,1} \cdots A_{1,m}) \neq 0$, choose one $A_{1,k} \neq 0$. Let $v_1 = \frac{u_k}{A_{1,k}}$; $v_j = u_{j-1} - A_{1,j-1}v_1$ for j = 2, ..., k; $v_i = u_i - A_{1,i}v_1$ for i = k+1, ..., n. **6** Suppose V and W are finite-dim and $T \in \mathcal{L}(V, W)$. Prove that dim range T = 1if and only if there exist a basis of V and a basis of W such that with resp to these bases, all entries of $A = \mathcal{M}(T)$ equal 1. **SOLUTION:** Denote the bases of V and W by $B_V = (v_1, \dots, v_n)$ and $B_W = (w_1, \dots, w_m)$ respectively. (a) Suppose B_V , B_W are the bases such that all entries of A equal 1. Then $Tv_i = w_1 + \cdots + w_m$ for all $i = 1, \dots, n$. Hence dim range T = 1. (b) Suppose dim range T = 1. Then dim null $T = \dim V - 1$. Let (u_2, \dots, u_n) be a basis of null T. Extend it to a basis of V as (u_1, u_2, \dots, u_n) . Let $w_1 = Tv_1 - w_2 - \cdots - w_m$. Extend it to B_W the basis of W.

Let $v_1 = u_1, v_i = u_1 + u_i$. Extend it to B_V the basis of V.

12 *Give an example of* 2-by-2 *mtcs* A *and* B *such that* $AB \neq BA$.

Solution:
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; \qquad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

13 *Prove that the distr property holds for matrix add and matrix multi.*

In other words, suppose A, B, C, D, E and F are matrices

whose sizes are such that A(B+C) and (D+E)F make sense.

Explain why AB + AC and DF + EF both make sense and prove that.

SOLUTION: Using [3.36], [3.43].

(a) Left distr: Suppose $A \in \mathbf{F}^{m,n}$ and $B, C \in \mathbf{F}^{n,p}$.

Because
$$[A(B+C)]_{j,k} = \sum_{r=1}^{n} A_{j,r}(B+C)_{r,k} = \sum_{r=1}^{n} (A_{j,r}B_{r,k} + A_{j,r}C_{r,k}).$$

Hence we conclude that $A(B+C) = AB + AC.$

OR. Let $(e_1, ..., e_M)$ be the standard basis of \mathbf{F}^M , where $M = \max\{m, n, p\}$.

Suppose $T \in \mathcal{L}(\mathbf{F}^n, \mathbf{F}^m)$ such that $Te_k = \sum_{j=1}^m A_{j,k} e_j$ for each k = 1, ..., n. Then $\mathcal{M}(T) = A$.

Similarly, define S, R such that $\mathcal{M}(S) = B$, $\mathcal{M}(R) = C$.

Thus
$$T(S+R) = TS + TR$$
 $\Rightarrow \mathcal{M}(T(S+R)) = \mathcal{M}(TS+TR)$
 $\Rightarrow \mathcal{M}(T)[\mathcal{M}(S) + \mathcal{M}(R)] = \mathcal{M}(T)\mathcal{M}(S) + \mathcal{M}(T)\mathcal{M}(R)$
 $\Rightarrow A(B+C) = AB + AC.$

Suppose
$$\mathcal{M}(T) = D$$
, $\mathcal{M}(S) = E$, $\mathcal{M}(R) = F$.

Then (T + S)R = TR + SR

(b) Right distr: Similarly.
$$\Rightarrow \mathcal{M}((T+S)R) = \mathcal{M}(TR) + \mathcal{M}(SR)$$
$$\Rightarrow [\mathcal{M}(T) + \mathcal{M}(S)] \mathcal{M}(R) = \mathcal{M}(T)\mathcal{M}(R) + \mathcal{M}(S)\mathcal{M}(R)$$
$$\Rightarrow (D+E)F = DF + EF.$$

14 *Prove that matrix multi is associ. In other words,*

suppose A, B and C are mtcs whose sizes are such that (AB)C makes sense.

Explain why A(BC) makes sense and prove that (AB)C = A(BC).

SOLUTION:

Because
$$[(AB)C]_{j,k} = (AB)_{j,\cdot}C_{\cdot,k} = \sum_{s=1}^{n} (A_{j,s}B_{s,\cdot})C_{\cdot,k} = \sum_{s=1}^{n} A_{j,s}(B_{s,\cdot}C_{\cdot,k}) = \sum_{s=1}^{n} A_{j,s}(BC)_{s,k} = A(BC)_{j,k}$$

Hence we conclude that $(AB)C = A(BC)$.

OR. Suppose $A \in \mathbf{F}^{m,n}$, $B \in \mathbf{F}^{n,p}$, $C \in \mathbf{F}^{p,s}$.

Let $(e_1, ..., e_M)$ be the standard basis of \mathbf{F}^M , where $M = \max\{m, n, p, s\}$.

Suppose $T \in \mathcal{L}(\mathbf{F}^n, \mathbf{F}^m)$ such that $Te_k = \sum_{j=1}^m A_{j,k} e_j$ for each k = 1, ..., n. Then $\mathcal{M}(T) = A$.

Similarly, define S, R such that $\mathcal{M}(S) = B$, $\mathcal{M}(R) = C$.

Hence
$$(TS)R = T(SR) \Rightarrow \mathcal{M}((TS)R) = \mathcal{M}(T(SR))$$

$$\Rightarrow [\mathcal{M}(T)\mathcal{M}(S)] \mathcal{M}(R) = \mathcal{M}(T)[\mathcal{M}(S)\mathcal{M}(R)]$$

$$\Rightarrow (AB)C = A(BC).$$

15 Suppose A is an n-by-n matrix and $1 \le j, k \le n$.

Show that the entry in row j, col k, of A^3

(which is defined to mean AAA) is $\sum_{n=1}^{n} \sum_{r=1}^{n} A_{j,p} A_{p,r} A_{r,k}$.

SOLUTION:

$$(AAA)_{j,k} = (AA)_{j,k} - \sum_{p=1}^{n} (A_{j,p}A_{p,p})A_{p,p} = \sum_{p=1}^{n} \sum_{r=1}^{n} A_{j,p}A_{p,r}A_{r,k}.$$

OR.
$$(AAA)_{j,k} = \sum_{r=1}^{n} (AA)_{j,r} A_{r,k} = \sum_{r=1}^{n} (\sum_{p=1}^{n} A_{j,p} A_{p,r}) A_{r,k}$$

$$= \sum_{r=1}^{n} (A_{j,1} A_{1,r} A_{r,k} + \dots + A_{j,n} A_{n,r} A_{r,k})$$

$$= A_{j,1} \sum_{r=1}^{n} A_{1,r} A_{r,k} + \dots + A_{j,n} \sum_{r=1}^{n} A_{n,r} A_{r,k} = \sum_{p=1}^{n} \sum_{r=1}^{n} A_{j,p} A_{p,r} A_{r,k}. \square$$

• Suppose $T \in \mathcal{L}(V, W)$ is inv. Show that T^{-1} is inv and $(T^{-1})^{-1} = T$. $\left. \begin{array}{l} TT^{-1} = (T^{-1})^{-1}T^{-1} = I \in \mathcal{L}(V) \\ T^{-1}T = T^{-1}(T^{-1})^{-1} = I \in \mathcal{L}(W) \end{array} \right\} \Rightarrow T = (T^{-1})^{-1}, \text{ by the uniques of inverse.}$ **1** Suppose $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$ are both inv linear maps. Prove that $ST \in \mathcal{L}(U, W)$ is inv and that $(ST)^{-1} = T^{-1}S^{-1}$. $(ST)(T^{-1}S^{-1}) = STT^{-1}S^{-1} = I \in \mathcal{L}(W)$ $(T^{-1}S^{-1})(ST) = T^{-1}S^{-1}ST = I \in \mathcal{L}(V)$ \Rightarrow $(ST)^{-1} = T^{-1}S^{-1}$, by the uniques of inverse. **SOLUTION: 9** Suppose V is finite-dim and $S, T \in \mathcal{L}(V)$. *Prove that ST is inv* \iff *S and T are inv.* **SOLUTION:** Suppose *S*, *T* are inv. Then $(ST)(T^{-1}S^{-1}) = (T^{-1}S^{-1})(ST) = I$. Hence *ST* is inv. Suppose ST is inv. Let $R = (ST)^{-1} \Rightarrow R(ST) = (ST)R = I$. $Tv = 0 \Rightarrow v = R(ST)v = RS(Tv) = 0$ $\forall v \in V, v = (ST)Rv = S(TRv) \in \text{range } S$ \rightarrow T is inje, S is surj. Notice that *V* is finite-dim. Hence *S*, *T* are inv. OR. Suppose ST is inv but S or T is not inv (\Rightarrow not surj and inje). If S is not inv then dim range $S < \dim V$ and by Problem (23) in (3.B), dim range $ST \leq \dim range S < \dim V$. Thus ST is not surj. Contradicts. If *T* is not inv then dim range T < 0. Similarly, *ST* is not surj. Contradicts. **10** Suppose V is finite-dim and $S,T \in \mathcal{L}(V)$. Prove that $ST = I \iff TS = I$. **SOLUTION:** Suppose ST = I. Notice that V is finite-dim. Thus T, S are inv. OR. By Problem (9), *V* is finite-dim and ST = I is inv $\Rightarrow S$, *T* are inv. $S((TS)v) = ST(Sv) = Sv \Rightarrow (TS)v = v \Rightarrow S \text{ is inv.}$ OR. $ST = I \Rightarrow S = T^{-1} \Rightarrow S^{-1} = T$. $\not \subset S = S \Rightarrow TS = S^{-1}S = I$. Reversing the roles of *S* and *T*, we conclude that $TS = I \Rightarrow ST = I$. **11** Suppose V is finite-dim and S, T, $U \in \mathcal{L}(V)$ and STU = I. Show that T is inv and that $T^{-1} = US$. **SOLUTION:** Using Problem (9) and (10). (ST)U = U(ST) = (US)T = T(US) = S(TU) = (TU)S = I. $\Rightarrow U^{-1} = ST, \quad T^{-1} = US, \quad S^{-1} = TU.$ **12** *Show that the result in Exercise* 11 *can fail without the hypothesis that* V *is finite-dim.* **SOLUTION:** $\text{Let } V = \mathbf{R}^{\infty}, S(a_1, a_2, \dots) = (a_2, \dots), T(a_1, \dots) = (0, a_1, \dots), U = I. \text{ Then } STU = I \text{ but } T^{-1} \text{ is not inv.}$ **13** Suppose V is finite-dim and R, S, $T \in \mathcal{L}(V)$ are such that RST is surj.

SOLUTION: By Problem (1) and (9), Notice that *V* is finite-dim. Then *RST* is inv. $(RST)^{-1} = ((RS)T)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}$.

Prove that S is inje.

OR. Let $X = (RST)^{-1}$ $| Tv = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T$ is inje, and therefore is inv. $\forall v \in V, v = (RST)Xv \in \text{range } R \Rightarrow R$ is surj, and therefore is inv.

Thus $S = R^{-1}(RST)T^{-1}$ is inv.

15 Prove that every linear map from $\mathbf{F}^{n,1}$ to $\mathbf{F}^{m,1}$ is given by a matrix multi. In other words, prove that if $T \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{m,1})$, then $\exists A \in \mathbf{F}^{m,n}, Tx = Ax, \forall x \in \mathbf{F}^{n,1}$.

SOLUTION:

Let
$$E_i \in \mathbb{F}^{n,1}$$
 for each $i = 1, ..., n$ (where $M = \max\{m, n\}$) be such that $(E_i)_{j,1} = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$

Then $(E_1, ..., E_n)$ is linely inde and thus is a basis of $\mathbf{F}^{n,1}$.

Similarly, let $(R_1, ..., R_m)$ be a basis of $\mathbf{F}^{m,1}$.

Suppose
$$T(E_i) = A_{1,i}R_1 + \dots + A_{m,i}R_m$$
 for each $i = 1, \dots, n$. Hence by letting $A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix}$. \square

Comment: $\mathcal{M}(T) = A$. Conversely it is true as well.

COMMENT: $\mathcal{M}(T) = A$. Conversely it is true as well.

• OR (10.A.2) Suppose $A, B \in \mathbf{F}^{n,n}$. Prove that $AB = I \iff BA = I$.

SOLUTION: Using Problem (10) and (15).

Define
$$T, S \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{n,1})$$
 by $Tx = Ax, Sx = Bx$ for all $x \in \mathbf{F}^{n,1}$. Then $\mathcal{M}(T) = A, \mathcal{M}(S) = B$.

Thus
$$AB = I \Leftrightarrow A(Bx) = x \Leftrightarrow T(Sx) = x \Leftrightarrow TS = I \Leftrightarrow ST = I \Leftrightarrow \mathcal{M}(S)\mathcal{M}(T) = BA = I.\Box$$

• Note For [3.60]: Suppose $(v_1, ..., v_n)$ is a basis of V and $(w_1, ..., w_m)$ is a basis of W.

Define
$$E_{i,j} \in \mathcal{L}(V, W)$$
 by $E_{i,j}(v_x) = \delta_{ix}w_j$; $\delta_{ix} = \begin{cases} 0, & i \neq x \\ 1, & i = x \end{cases}$ Corollary: $E_{l,k}E_{i,j} = \delta_{jl}E_{i,k}$.

Denote $\mathcal{M}(E_{i,j})$ by $\mathcal{E}^{(j,i)}$. $(\mathcal{E}^{(j,i)})_{l,k} = \begin{cases} 0, & i \neq k \text{ or } j \neq l \\ 1, & i = k \text{ and } j = l \end{cases}$

Because $\mathcal{L}(V, W)$ and $\mathbf{F}^{m,n}$ are iso. And $T = \mathcal{M}^{-1}\mathcal{M}(T)$, $E_{i,j} = \mathcal{M}^{-1}\mathcal{E}^{(j,i)}$.

Denote
$$\mathcal{M}(E_{i,j})$$
 by $\mathcal{E}^{(j,i)}$. $(\mathcal{E}^{(j,i)})_{l,k} = \begin{cases} 0, & i \neq k \text{ or } j \neq l \\ 1, & i = k \text{ and } j = l \end{cases}$

Hence
$$\forall T \in \mathcal{L}(V, W), \ \exists \,! \, A_{i,j} \in \mathbb{F}(\ \forall i \in \{1, \dots, m\}, j \in \{1, \dots, n\}), \mathcal{M}(T) = A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix}.$$

Thus
$$A = \begin{pmatrix} A_{1,1}\mathcal{E}^{(1,1)} + & \cdots & +A_{1,n}\mathcal{E}^{(1,n)} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{m,1}\mathcal{E}^{(m,1)} + & \cdots & +A_{m,n}\mathcal{E}^{(m,n)} \end{pmatrix} \iff T = \begin{pmatrix} A_{1,1}E_{1,1} + & \cdots & +A_{1,n}E_{n,1} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{m,1}E_{1,m} + & \cdots & +A_{m,n}E_{n,m} \end{pmatrix}.$$

$$\therefore \mathcal{L}(V, W) = \text{span} \begin{pmatrix} E_{1,1}, & \cdots & E_{n,1}, \\ \vdots & \ddots & \vdots \\ E_{1,m}, & \cdots & E_{n,m} \end{pmatrix}; \quad \mathbf{F}^{m,n} = \text{span} \begin{pmatrix} \mathcal{E}^{(1,1)}, & \cdots & \mathcal{E}^{(1,n)}, \\ \vdots & \ddots & \vdots \\ \mathcal{E}^{(m,1)}, & \cdots & \mathcal{E}^{(m,n)} \end{pmatrix}.$$

$$\therefore \mathcal{L}(V, W) = \operatorname{span}\left(\underbrace{\begin{bmatrix} E_{1,1}, & \cdots & E_{n,1}, \\ \vdots & \ddots & \vdots \\ E_{1,m}, & \cdots & E_{n,m} \end{bmatrix}}_{\mathcal{B}}; \quad \mathbf{F}^{m,n} = \operatorname{span}\left(\underbrace{\begin{bmatrix} \mathcal{E}^{(1,1)}, & \cdots & \mathcal{E}^{(1,n)}, \\ \vdots & \ddots & \vdots \\ \mathcal{E}^{(m,1)}, & \cdots & \mathcal{E}^{(m,n)} \end{bmatrix}}_{\mathcal{B}}\right)$$

Hence by [2.42] and [3.61], we conclude that B is a basis of $\mathcal{L}(V, W)$ and that B_M is a basis of $\mathbf{F}^{m,n}$.

 \circ Suppose V is finite-dim and $S \in \mathcal{L}(V)$.

Define $A \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{A}(T) = ST$ for $T \in \mathcal{L}(V)$.

- (a) Show that dim null $A = (\dim V)(\dim \operatorname{null} S)$.
- (b) *Show that* dim range $A = (\dim V)(\dim \operatorname{range} S)$.

SOLUTION:

(a) For all $T \in \mathcal{L}(V)$, $ST = 0 \Leftrightarrow \text{range } T \subset \text{null } S$. Thus null $\mathcal{A} = \mathcal{L}(V, \text{null } S)$.

(b) For all $R \in \mathcal{L}(V)$, range $R \subseteq \text{range } S \iff \exists T \in \mathcal{L}(V), R = ST$. (By Problem (25) in 3.B) Thus range $A = \mathcal{L}(V, \text{range } S)$.

OR. Using NOTE FOR [3.60].

Let $(w_1, ..., w_m)$ be a basis of range S, extend it to a basis of V as $(w_1, ..., w_m, ..., w_n)$.

Let $v_i \in V$ such that $Sv_i = w_i$ for m = 1, ..., m. Extend $(v_1, ..., v_m)$ to a basis of V as $(v_1, ..., v_m, ..., v_n)$. Define $E_{i,j} \in \mathcal{L}(V)$ by $E_{i,j}(v_x) = \delta_{ix}w_i$.

$$\text{Thus } S = E_{1,1} + \dots + E_{m,m}; \quad \mathcal{M}\left(S, (v_1, \dots, v_n), (w_1, \dots, w_n)\right) = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

Define $R_{i,j} \in \mathcal{L}(V)$ by $R_{i,j}(w_x) = \delta_{ix}v_i$.

Define
$$R_{i,j} \in \mathcal{L}(V)$$
 by $R_{i,j}(w_x) = \delta_{ix}v_i$.
Let $E_{j,k}R_{i,j} = Q_{i,k}$, $R_{j,k}E_{i,j} = G_{i,k}$

$$Because \ \forall T \in \mathcal{L}(V), \ \exists ! A_{i,j} \in \mathbf{F}(\ \forall i,j=1,\ldots,n), \ T = \begin{pmatrix} A_{1,1}R_{1,1} + & \cdots & +A_{1,m}R_{m,1} + & \cdots & +A_{1,n}R_{n,1} \\ + & \cdots & + & \cdots & + \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ + & \cdots & + & \cdots & +A_{m,n}R_{m,m} + & \cdots & +A_{m,n}R_{n,m} \\ + & \cdots & + & \cdots & +A_{m,n}R_{m,m} + & \cdots & +A_{m,n}R_{n,m} \end{pmatrix}.$$

$$\Rightarrow \mathcal{A}(T) = ST = (\sum_{r=1}^{m} E_{r,r}) (\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} R_{j,i}) = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{i,j} Q_{j,i} = \begin{pmatrix} A_{1,1} Q_{1,1} + & \cdots & + A_{1,m} Q_{m,1} + & \cdots & + A_{1,n} Q_{n,1} \\ + & \cdots & + & \cdots & + \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ + & \cdots & + & \cdots & + \\ A_{m,1} Q_{1,m} + & \cdots & + A_{m,m} Q_{m,m} + & \cdots & + A_{m,n} Q_{n,m} \end{pmatrix}.$$

Thus null
$$\mathcal{A} = \operatorname{span}\begin{pmatrix} R_{1,m+1}, & \cdots & R_{n,m+1}, \\ \vdots & \ddots & \vdots \\ R_{1,n}', & \cdots & R_{n,n}' \end{pmatrix}$$
, range $\mathcal{A} = \operatorname{span}\begin{pmatrix} Q_{1,1}, & \cdots & Q_{n,1}, \\ \vdots & \ddots & \vdots \\ Q_{1,m}', & \cdots & Q_{n,m}' \end{pmatrix}$.

Hence (a) dim null $A = n \times (n - m)$; (b) dim range $A = n \times m$.

COMMENT: Define $\mathcal{B} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{B}(T) = TS$ for $T \in \mathcal{L}(V)$.

Similarly,
$$\mathcal{B}(T) = TS = (\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} R_{j,i}) (\sum_{r=1}^{m} E_{r,r}) = \sum_{i=1}^{n} \sum_{j=1}^{m} A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1} G_{1,1} + & \cdots & + A_{1,m} G_{m,1} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{m,1} G_{1,m} + & \cdots & + A_{m,m} G_{m,m} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{n,1} G_{1,n} + & \cdots & + A_{n,m} G_{m,n} \end{pmatrix}.$$

• OR (10.A.1) Suppose $T \in \mathcal{L}(V)$ and $(v_1, ..., v_n)$ is a basis of V. *Prove that* $\mathcal{M}(T,(v_1,\ldots,v_n))$ *is inv* \iff T *is inv*.

SOLUTION:

Notice that \mathcal{M} is an iso of $\mathcal{L}(V)$ onto $\mathbf{F}^{n,n}$.

$$\text{(a)} \ \ T^{-1}T=TT^{-1}=I\Rightarrow \mathcal{M}(T^{-1})\mathcal{M}(T)=\mathcal{M}(T)\mathcal{M}(T^{-1})=I\Rightarrow \mathcal{M}(T^{-1})=\mathcal{M}(T)^{-1}.$$

(b)
$$\mathcal{M}(T)\mathcal{M}(T)^{-1} = \mathcal{M}(T)^{-1}\mathcal{M}(T) = I$$
. $\exists !S \in \mathcal{L}(V)$ such that $\mathcal{M}(T)^{-1} = \mathcal{M}(S)$ $\Rightarrow \mathcal{M}(T)\mathcal{M}(S) = \mathcal{M}(S)\mathcal{M}(T) = I = \mathcal{M}(TS) = \mathcal{M}(ST)$ $\Rightarrow \mathcal{M}^{-1}\mathcal{M}(TS) = \mathcal{M}^{-1}\mathcal{M}(ST) = I = TS = ST \Rightarrow S = T^{-1}$. \Box

• OR (10.A.4) Suppose that $(\beta_1, \dots, \beta_n)$ and $(\alpha_1, \dots, \alpha_n)$ are bases of V . Let $T \in \mathcal{L}(V)$ be such that $Tv_k = u_k$ for each $k = 1, \dots, n$. Prove that $\mathcal{M}\left(T, (\alpha_1, \dots, \alpha_n)\right) = \mathcal{M}\left(I, (\beta_1, \dots, \beta_n), (\alpha_1, \dots, \alpha_n)\right)$. Solution:

For ease of notation, let $\mathcal{M}(T, \alpha \to \beta) = \mathcal{M}\left(T, (\alpha_1, \dots, \alpha_n), (\beta_1, \dots, \beta_n)\right)$, $\mathcal{M}\left(T, \alpha \to \alpha\right) = \mathcal{M}(T, (\alpha_1, \dots, \alpha_n))$ Denote $\mathcal{M}(T, \alpha \to \alpha)$ by A and $\mathcal{M}(I, \beta \to \alpha)$ by B .

$$\forall k \in \{1, \dots, n\}, Iu_k = u_k = B_{1,k}\alpha_1 + \dots + B_{n,k}\alpha_n = Tv_k = A_{1,k}\alpha_1 + \dots + A_{n,k}\alpha_n \Rightarrow A = B. \qquad \Box$$

OR. Note that $\mathcal{M}(T, \alpha \to \beta)$ is the identity matrix.

$$\mathcal{M}(T,\alpha\to\alpha)=\mathcal{M}(I,\beta\to\alpha)\underbrace{\mathcal{M}(T,\alpha\to\beta)}_{=\mathcal{M}(I,\beta\to\beta)}=\mathcal{M}(I,\beta\to\alpha).$$

OR. Note that $\mathcal{M}(T, \beta \to \beta)\mathcal{M}(I, \alpha \to \beta) = \mathcal{M}(T, \alpha \to \beta) = I$.

$$\mathcal{M}(T,\alpha\to\alpha)=\mathcal{M}(I,\alpha\to\beta)^{-1}[\underbrace{\mathcal{M}(T,\beta\to\beta)\mathcal{M}(I,\alpha\to\beta)}]=\mathcal{M}(I,\beta\to\alpha).$$

COMMENT: Denote $\mathcal{M}(T, \beta \to \beta)$ by A'.

 $u_k = Iu_k = B_{1,k}\alpha_1 + \dots + B_{n,k}\alpha_n, \ \forall \ k \in \{1,\dots,n\}.$

OR. $\mathcal{M}(T, \beta \to \beta) = \mathcal{M}(T, \alpha \to \beta)\mathcal{M}(I, \beta \to \alpha) = B$.

16 Suppose V is finite-dim and $S \in \mathcal{L}(V)$.

Prove that $\exists \lambda \in \mathbf{F}, S = \lambda I \iff ST = TS$ *for every* $T \in \mathcal{L}(V)$.

SOLUTION: Using the notation and result in (o).

Suppose $S = \lambda I$. Then $ST = TS = \lambda T$ for every $T \in \mathcal{L}(V)$. Conversely, if S = 0, then we are done.

Suppose $S \neq 0$, ST = TS, $\forall T \in \mathcal{L}(V)$.

Let
$$S = E_{1,1} + \dots + E_{m,m} \Rightarrow \mathcal{M}(S, (v_1, \dots, v_1)) = \mathcal{M}(I, (w_1, \dots, w_n), (v_1, \dots, v_n)).$$

Then $\forall k \in \{m+1, ..., n\}, 0 \neq SR_{k,1} = R_{k,1}S$. Hence $n = \dim V = \dim \operatorname{range} S = m$.

Note that $R_{i,j}S = SR_{i,j} \iff Q_{i,j} = G_{i,j}$. Thus $Q_{i,j}(w_i) = w_j = a_{i,i}v_j = G_{i,j}(a_{1,i}v_1 + \cdots + a_{n,i}v_n)$. Where:

$$a_{i,j} = \mathcal{M}\left(I, (w_1, \dots, w_n), (v_1, \dots, v_n)\right)_{i,j} \Longleftrightarrow w_i = Iw_i = a_{1,i}v_1 + \dots + a_{n,i}v_n;$$

For each j, for all i. Thus $a_{i,i} = a_{k,k} = \lambda$, $\forall k \neq i$.

Hence
$$w_i = \lambda v_i \Rightarrow \mathcal{M}(S) = \begin{pmatrix} \lambda & 0 \\ & \ddots \\ 0 & \lambda \end{pmatrix} = \mathcal{M}\left(\lambda I, (v_1, \dots, v_n)\right) \Rightarrow S = \mathcal{M}^{-1}\left(\mathcal{M}(\lambda I)\right) = \lambda I.$$

• OR (10.A.3) Suppose V is finite-dim and $T \in \mathcal{L}(V)$.

Prove that T has the same matrix with resp to every basis of V if and only if T is a scalar multi of the identity operator.

SOLUTION: [Compare with the first solution of Problem (16) in (3.A)]

Suppose $T = \lambda I$ for some $\lambda \in \mathbf{F}$. Then T has the same matrix with resp to every basis of V.

Conversely, if T = 0, then we are done; Suppose $T \neq 0$. And v is a nonzero vector in V.

Assume that (v, Tv) is linely inde.

Extend (v, Tv) to a basis of V as $(v, Tv, u_3, ..., u_n)$. Let $B = \mathcal{M}(T, (v, Tv, u_3, ..., u_n))$.

$$\Rightarrow Tv = B_{1,1}v + B_{2,1}(Tv) + B_{3,1}u_3 + \dots + B_{n,1}u_n \Rightarrow B_{2,1} = 1, B_{i,1} = 0, \forall i \neq 2.$$

By assumption, $A = \mathcal{M}(T, (v, w_2, ..., w_n)) = B$ for any basis $(v, w_2, ..., w_n)$. Then $A_{2,1} = 1, A_{i,1} = 1$ $0(\cdots).$ \Rightarrow $Tv = w_2$, which is not true if we let $w_2 = u_3$, $w_3 = Tv$, $w_j = u_j$ (j = 4, ..., n). Contradicts. Hence (v, Tv) is linely depe $\Rightarrow \forall v \in V, \exists \lambda_v \in F, Tv = \lambda_v v$. Now we show that λ_v is independent of v, that is, to show that for any two nonzero distinct vectors $v, w \in V, \lambda_v = \lambda_w$. Thus $T = \lambda I, \exists \lambda \in \mathbf{F}$. (v, w) is linely inde $\Rightarrow T(v + w) = \lambda_{v+w}(v + w) = \lambda_{v+w}v + \lambda_{v+w}w$ $= \lambda_v v + \lambda_w w = Tv + Tw \Rightarrow \lambda_{v+w} = \lambda_v = \lambda_w$ $\Rightarrow \Box$ (v,w) is linely depe, $w=cv\Rightarrow Tw=\lambda_ww=\lambda_wcv=c\lambda_vv=T(cv)\Rightarrow \lambda_v=\lambda_w$ OR. Conversely, denote $\mathcal{M}(T,(u_1,\ldots,u_m))$ by A, where the basis (u_1,\ldots,u_m) is arbitrary. Fix one basis (v_1,\ldots,v_m) and then $(v_1,\ldots,\frac{1}{2}v_k,\ldots,v_m)$ is also a basis for any given $k\in\{1,\ldots,m\}$. Fix one *k*. Now we have $T(\frac{1}{2}v_k) = A_{1,k}v_1 + \dots + A_{k,k}(\frac{1}{2}v_k) + \dots + A_{m,k}v_m$ $\Rightarrow Tv_k = 2A_{1,k}v_1 + \dots + A_{k,k}v_k + \dots + 2A_{m,k}v_m = A_{1,k}v_1 + \dots + A_{k,k}v_k + \dots + A_{m,k}v_m.$ Then $A_{i,k} = 2A_{i,k} \Rightarrow A_{i,k} = 0$ for all $j \neq k$. Thus $Tv_k = A_{k,k}v_k$, $\forall k \in \{1, ..., m\}$. Now we show that $A_{k,k} = A_{j,j}$ for all $j \neq k$. Choose j,k such that $j \neq k$. Consider the basis $(v'_1, \ldots, v'_i, \ldots, v'_k, \ldots, v'_m)$, where $v'_i = v_k$, $v_k' = v_i$ and $v'_i = v_i$ for all $i \in \{1, ..., m\} \setminus \{j, k\}$. Remember that $\mathcal{M}\left(T,\left(v_{1}^{\prime},\ldots,v_{m}^{\prime}\right)\right)=\mathcal{M}\left(T,\left(v_{1},\ldots,v_{m}\right)\right)=A.$ Hence $T(v'_k) = A_{1,k}v'_1 + \dots + A_{k,k}v'_k + \dots + A_{m,k}v'_m = A_{k,k}v'_k = A_{k,k}v_j$, while $T(v'_k) = T(v_j) = A_{i,j}v_j$. Thus $A_{k,k} = A_{i,i}$. **17** Suppose V is finite-dim. Show that the only two-sided ideals of $\mathcal{L}(V)$ are $\{0\}$ and $\mathcal{L}(V)$. A subsp \mathcal{E} of $\mathcal{L}(V)$ is called a two-sided ideal of $\mathcal{L}(V)$ if $TE \in \mathcal{E}, ET \in \mathcal{E}, \forall E \in \mathcal{E}, T \in \mathcal{L}(V)$. **SOLUTION**: Using NOTE FOR [3.60]. Let $(v_1, ..., v_n)$ be a basis of V. If $\mathcal{E} = 0$, then we are done. Suppose $\mathcal{E} \neq 0$ and \mathcal{E} is a two-sided ideal of $\mathcal{L}(V)$. Then for any $E_{i,j} \in \mathcal{E}$, ($\forall x, y = 1, ..., n$), by assumption, $E_{i,x}E_{i,j} = E_{i,x} \in \mathcal{E}$, $E_{i,j}E_{y,i} = E_{y,j} \in \mathcal{E}$. Again, $E_{y,x'}, E_{y',x} \in \mathcal{E}$ for all x', y', x, y = 1, ..., n. Thus $\mathcal{E} = \mathcal{L}(V)$. **18** Show that V and $\mathcal{L}(\mathbf{F}, V)$ are iso vector spaces. **SOLUTION:** Define $\Psi \in \mathcal{L}(V, \mathcal{L}(\mathbf{F}, V))$ by $\Psi(v) = \Psi_v$; where $\Psi_v \in \mathcal{L}(\mathbf{F}, V)$ and $\Psi_v(\lambda) = \lambda v$. (a) $\Psi(v) = \Psi_v = 0 \Rightarrow \forall \lambda \in \mathbf{F}, \Psi_v(\lambda) = \lambda v = 0 \Rightarrow v = 0$. Hence Ψ is inje. (b) $\forall T \in \mathcal{L}(\mathbf{F}, V)$, let $v = T(1) \Rightarrow T(\lambda) = \lambda v = \Psi_v(\lambda)$, $\forall \lambda \in \mathbf{F} \Rightarrow T = \Psi(T(1))$. Hence Ψ is surj. \square OR. Define $\Phi \in \mathcal{L}(\mathcal{L}(\mathbf{F}, V), V)$ by $\Phi(T) = T(1)$. (a) Suppose $\Phi(T) = 0 = T(1) = \lambda T(1) = T(\lambda), \forall \lambda \in \mathbb{F} \Rightarrow T = 0$. Thus Φ is inje. (b) For any $v \in V$, define $T \in \mathcal{L}(\mathbf{F}, V)$ by $T(\lambda) = \lambda v$. Then $\Phi(T) = T(1) = v$. Thus Φ is surj. Comment: $\Phi = \Psi^{-1}$. • Suppose $q \in \mathcal{P}(\mathbf{R})$. Prove that $\exists p \in \mathcal{P}(\mathbf{R}), q(x) = (x^2 + x)p''(x) + 2xp'(x) + p(3), \forall x \in \mathbf{R}$. **SOLUTION:** Note that $\deg[(x^2 + x)p''(x) + 2xp'(x) + p(3)] = \deg p$. Define $T_n: \mathcal{P}_n(\mathbf{R}) \to \mathcal{P}_n(\mathbf{R})$ by $T_n(p) = (x^2 + x)p''(x) + 2xp'(x) + p(3)$.

Because $\deg(T_n p) = \deg p$. If $T_n(p) = 0 \Rightarrow \deg(T_n p) = -\infty$, then $\deg p = -\infty \Rightarrow p = 0$.

As can be easily checked, T_n is an operator.

Hence T_n is inje and therefore is surj.

For all $q \in \mathcal{P}(\mathbf{R})$, if q = 0, let m = 0; if $q \neq 0$, let $m = \deg q$. We have $q \in \mathcal{P}_m(\mathbf{R})$.

Hence $\exists p \in \mathcal{P}_m(\mathbf{R}), q(x) = T_m(p) = (x^2 + x)p''(x) + 2xp'(x) + p(3)$ for all $x \in \mathbf{R}$.

- **19** Suppose $T \in \mathcal{L}(\mathcal{P}(\mathbf{R}))$ is inje. deg $Tp \leq \deg p$ for every nonzero $p \in \mathcal{P}(\mathbf{R})$.
 - (a) *Prove that T is surj.*
 - (b) Prove that for every nonzero p, $\deg Tp = \deg p$.

SOLUTION:

- (a) T is inje $\iff T|_{\mathcal{P}_n(\mathbf{R})}: \mathcal{P}_n(\mathbf{R}) \to \mathcal{P}_n(\mathbf{R})$ is inje for any $n \in \mathbf{N}^+$ $\iff T|_{\mathcal{P}_n(\mathbf{R})}$ is surj for any $n \in \mathbf{N}^+ \iff T$ is surj.
- (b) Using mathematical induction.
 - (i) $\deg p = 0 \Rightarrow p = C \Rightarrow \deg Tp = \deg p = 0.$ $\deg p = -\infty \Rightarrow p = 0 \Rightarrow \deg Tp = \deg p = -\infty.$
 - (ii) Suppose $\deg f = \deg Tf$ for all $f \in \mathcal{P}_n(\mathbf{R})$. Then suppose $\deg g = n+1, g \in \mathcal{P}_{n+1}(\mathbf{R})$.

Assume that $\deg Tg < \deg g$ ($\Rightarrow \deg Tg \leq n, Tg \in \mathcal{P}_n(\mathbf{R})$).

Then by (a), $\exists f \in \mathcal{P}_n(\mathbf{R}), T(f) = (Tg). \ \ \ \ \ T \text{ is inje} \Rightarrow f = g.$

While $\deg f = \deg Tf = \deg Tg < \deg g$. Contradicts the assumption.

Hence $\deg Tp = \deg p$ for all $p \in \mathcal{P}_{n+1}(\mathbf{R})$.

Thus $\deg Tp = \deg p$ for all $p \in \mathcal{P}(\mathbf{R})$.

• Suppose $T \in \mathcal{L}(V)$ and $(v_1, ..., v_m)$ is a list in V such that $(Tv_1, ..., Tv_m)$ spans V. Prove that $(v_1, ..., v_m)$ spans V.

SOLUTION:

Because $V = \operatorname{span}(Tv_1, \dots, Tv_m) \Rightarrow T$ is surj, X V is finite-dim $\Rightarrow T$ is inv $\Rightarrow T^{-1}$ is inv.

 $\forall v \in V, \ \exists \, a_i \in \mathbf{F}, v = a_1 T v_1 + \dots + a_n T v_n \Rightarrow T^{-1} v = a_1 v_1 + \dots + a_n v_n \Rightarrow \mathrm{range} \, T^{-1} \subseteq \mathrm{span} \, (v_1, \dots, v_n). \square$

OR. Reduce $(Tv_1, ..., Tv_n)$ to a basis of V as $(Tv_{\alpha_1}, ..., Tv_{\alpha_m})$, where $m = \dim V$ and $\alpha_i \in \{1, ..., m\}$.

Then $(v_{\alpha_1},\ldots,v_{\alpha_m})$ is linely inde of length m, therefore is a basis of V, contained in the list (v_1,\ldots,v_m) . \square

2 Suppose V is finite-dim and dim V > 1.

Prove that the set of non-inv operators on V *is not a subsp of* $\mathcal{L}(V)$ *.*

SOLUTION: Denote the set by U.

Suppose dim V = n > 1. Let $(v_1, ..., v_n)$ be a basis of V.

Define $S, T \in \mathcal{L}(V)$ by $S(a_1v_1 + \dots + a_nv_n) = a_1v_1$ and $T(a_1v_1 + \dots + a_nv_n) = a_2v_1 + \dots + a_nv_n$.

Hence S + T = I is inv.

Thus *U* is not closed under add and therefore is not a subsp.

COMMENT: If dim V = 1, then $U = \{0\}$ is a subsp of $\mathcal{L}(V)$.

3 Suppose V is finite-dim, U is a subsp of V, and $S \in \mathcal{L}(U, V)$.

Prove that there exists an inv $T \in \mathcal{L}(V, V)$ *such that*

Tu = Su for every $u \in U$ if and only if S is inje. [Compare this with (3.A.11).]

SOLUTION:

- (a) Tu = Su for every $u \in U \Rightarrow u = T^{-1}Su \Rightarrow S$ is inje. OR. $\text{null } S = \text{null } T \cap U = \{0\} \cap U = \{0\}$.
- (b) Suppose $(u_1, ..., u_m)$ be a basis of U and S is inje $\Rightarrow (Su_1, ..., Su_m)$ is linely inde in V. Extend these to bases of V as $(u_1, ..., u_m, v_1, ..., v_n)$ and $(Su_1, ..., Su_m, w_1, ..., w_n)$.

```
Define T \in \mathcal{L}(V) by T(u_i) = Su_i; Tv_j = w_j, for each i \in \{1, ..., m\}, j \in \{1, ..., n\}.
```

4 Suppose that W is finite-dim and $S, T \in \mathcal{L}(V, W)$.

Prove that $\operatorname{null} S = \operatorname{null} T (= U) \iff S = ET, \exists inv E \in \mathcal{L}(W).$

SOLUTION:

Define $E \in \mathcal{L}(W)$ by $E(Tv_i) = Sv_i$, $E(w_i) = x_i$, for each $i \in \{1, ..., m\}$, $j \in \{1, ..., n\}$. Where:

Let $(Tv_1, ..., Tv_m)$ be a basis of range T, extend it to a basis of W as $(Tv_1, ..., Tv_m, w_1, ..., w_n)$.

Let (u_1, \ldots, u_n) be a basis of U. Then by (3.B.TIPS), $(v_1, \ldots, v_m, u_1, \ldots, u_n)$ is a basis of V.

 \mathbb{X} null $S = \text{null } T \Rightarrow V = \text{span}(v_1, \dots, v_m) \oplus \text{null } S \Rightarrow \text{span}(Sv_1, \dots, Sv_m) = \text{range } S$.

And dim range $T = \dim \operatorname{range} S = \dim V - \operatorname{null} U = m$. Hence (Sv_1, \dots, Sv_m) is a basis of range S.

Thus we let $(Sv_1, ..., Sv_m, x_1, ..., x_n)$ be a basis of W.

∴ E is inv and S = ET.

Conversely, $S = ET \Rightarrow \text{null } S = \text{null } ET$.

Then $v \in \operatorname{null} ET \iff ET(v) = 0 \iff Tv = 0 \iff v \in \operatorname{null} T$. Hence $\operatorname{null} ET = \operatorname{null} T = \operatorname{null} S$.

5 Suppose that W is finite-dim and $S, T \in \mathcal{L}(V, W)$. Prove that range $S = \text{range } T(=R) \iff S = TE, \ \exists \ inv \ E \in \mathcal{L}(V)$.

SOLUTION:

Define $E \in \mathcal{L}(V)$ as $E: v_i \mapsto r_i$; $u_j \mapsto s_j$; for each $i \in \{1, ..., m\}, j \in \{1, ..., n\}$. Where:

Let $(Tv_1, ..., Tv_m)$ and $(Sr_1, ..., Sr_m)$ be bases of R such that $\forall i, Tv_i = Sr_i$.

Let $(u_1, ..., u_n)$ and $(s_1, ..., s_n)$ be bases of null T and null S respectively.

Thus $(v_1, \ldots, v_m, u_1, \ldots, u_n)$ and $(r_1, \ldots, r_m, s_1, \ldots, s_n)$ are bases of V.

 \therefore *E* is inv and S = TE.

Conversely, $S = TE \Rightarrow \text{range } S = \text{range } TE$.

Then $w \in \text{range } S \iff \exists v \in V, Sv = TE(v) = T(E(v)) = w \in \text{range } T$. Hence range S = range T.

6 Suppose V and W are finite-dim and $S, T \in \mathcal{L}(V, W)$. [dim null $S = \dim \operatorname{null} T = n$] Prove that $S = E_2TE_1$, $\exists inv E_1 \in \mathcal{L}(V), E_2 \in \mathcal{L}(W) \iff \dim \operatorname{null} S = \dim \operatorname{null} T$.

SOLUTION:

Define $E_1: v_i \mapsto r_i$; $u_i \mapsto s_i$; for each $i \in \{1, ..., m\}, j \in \{1, ..., n\}$.

Define $E_2: Tv_i \mapsto Sr_i \; ; \; x_j \mapsto y_j; \; \text{ for each } i \in \{1, \dots, m\}, j \in \{1, \dots, n\}.$ Where:

Let $(Tv_1, ..., Tv_m)$ and $(Sr_1, ..., Sr_m)$ be bases of range T and range S.

Let $(u_1, ..., u_n)$ and $(s_1, ..., s_n)$ be bases of null T and null S respectively.

Thus $(v_1, \ldots, v_m, u_1, \ldots, u_n)$ and $(r_1, \ldots, r_m, s_1, \ldots, s_n)$ are bases of V.

Extend $(Tv_1, ..., Tv_m)$ and $(Sr_1, ..., Sr_m)$ to bases of W as

 $(Tv_1,\ldots,Tv_m,x_1,\ldots,x_p)$ and $(Sr_1,\ldots,Sr_m,y_1,\ldots,y_p)$.

 $\therefore E_1, E_2 \text{ are inv and } S = E_2 T E_1.$

Conversely, $S = E_2 T E_1 \Rightarrow \dim \text{null } S = \dim \text{null } E_2 T E_1$.

 $v \in \operatorname{null} E_2 T E_1 \iff E_2 T E_1(v) = 0 \iff T E_1(v) = 0$. Hence $\operatorname{null} E_2 T E_1 = \operatorname{null} T E_1 = \operatorname{null} S$.

 \nearrow By (3.B.22.Corollary), E is inv \Rightarrow dim null $TE_1 = \dim \text{null } T = \dim \text{null } S$.

8 Suppose V is finite-dim and $T: V \to W$ is a surj linear map of V onto W.

Prove that there is a subsp U *of* V *such that* $T|_{U}$ *is an iso of* U *onto* W.

 $T|_U$ is the function whose domain is U, with $T|_U$ defined by $T|_U(u) = Tu$ for every $u \in U$.

SOLUTION:

T is surj \Rightarrow range $T = W \Rightarrow \dim \operatorname{range} T = \dim W = \dim V - \dim \operatorname{null} T$.

Let $(w_1, ..., w_m)$ be a basis of range $T = W \Rightarrow \forall w_i, \exists ! v_i \in V, Tv_i = w_i$.

 $\Rightarrow (v_1, \dots, v_m)$ is a basis of \mathcal{K} . Thus dim $\mathcal{K} = \dim W$.

Thus $T|_{\mathcal{K}}$ maps a basis of \mathcal{K} to a basis of range T = W. Denote \mathcal{K} by U.

OR. By Problem (12) in (3.B), there is a subsp U of V such that

$$U \cap \text{null } T = \{0\} = \text{null } T|_U$$
, range $T = \{Tu : u \in U\} = \text{range } T|_U$.

• Suppose V and W are finite-dim and U is a subsp of V.

Let $\mathcal{E} = \{T \in \mathcal{L}(V, W) : U \subseteq \text{null } T\}.$

- (a) Show that \mathcal{E} is a subsp of $\mathcal{L}(V, W)$.
- (b) Find a formula for dim \mathcal{E} in terms of dim V, dim W and dim U.

Hint: Define $\Phi : \mathcal{L}(V, W) \to L(U, W)$ by $\Phi(T) = T|_{U}$. What is null Φ ? What is range Φ ?

SOLUTION:

- (a) $\forall S, T \in \mathcal{E}, \lambda \in \mathbf{F}, \forall u \in U, Su = \lambda Tu = (S + \lambda T)u = 0 \Rightarrow (S + \lambda T) \in \mathcal{E}.$
- (b) Define Φ as in the hint.

Because $T \in \text{null } \Phi \Longleftrightarrow \Phi(T) = 0 \Longleftrightarrow \forall u \in U, Tu = 0 \Longleftrightarrow T \in \mathcal{E}$.

Hence null $\Phi = \mathcal{E}$.

Because $S \in \mathcal{L}(U, W) \Rightarrow \exists T \in \mathcal{L}(V, W), \Phi(T) = S$, by (3.B.11) $\Rightarrow S \in \text{range } T$.

Hence range $\Phi = \mathcal{L}(U, W)$.

Thus dim null $\Phi = \dim \mathcal{E} = \dim \mathcal{L}(V, W) - \dim \operatorname{range} \Phi = (\dim V - \dim U) \dim W$.

OR. Extend (u_1, \dots, u_m) a basis of U to $(u_1, \dots, u_m, v_1, \dots, v_n)$ a basis of V. Let $p = \dim W$. (See NOTE FOR [3.60])

$$\forall T \in \mathcal{E}, k \in \{1, \dots, m\}, TE_{k,k} = 0 \Rightarrow \operatorname{span} \left\{ \begin{matrix} E_{1,1}, & \cdots & E_{m,1}, \\ \vdots & \ddots & \vdots \\ E_{1,p}', & \cdots & E_{m,p} \end{matrix} \right\} \cap \mathcal{E} = \{0\}.$$
Denote it by R

$$\mathbb{Z} \ W = \operatorname{span} \left\{ \begin{matrix} E_{m+1,1}, & \cdots & E_{n,1}, \\ \vdots & \ddots & \vdots \\ E_{m+1,p}, & \cdots & E_{n,p}, \end{matrix} \right\} \subseteq \mathcal{E}. \text{ Where } \mathcal{L}(V,W) = R \oplus W \Rightarrow \mathcal{L}(V,W) = R + \mathcal{E}.$$

Then dim $\mathcal{E} = \dim \mathcal{L}(V, W) - \dim R - \dim(R \cap \mathcal{E}) = (\dim V - \dim U) \dim W$.

ENDED

3.E

2 Suppose V_1, \ldots, V_m are vecsps such that $V_1 \times \cdots \times V_m$ is finite-dim. *Prove that every* V_i *is finite-dim.*

SOLUTION: Denote $V_1 \times \cdots \times V_m$ by U. Denote $\{0\} \times \cdots \{0\} \times V_i \times \{0\} \cdots \times \{0\}$ by U_i .

Let $(v_1, ..., v_M)$ be a basis of U. Note that $\forall u_i \in V_i, \in U_i \subseteq U$, for each i.

$$\begin{array}{l} \text{Define } R_i \in \mathcal{L}(V_i, U) \text{ by } R_i(u_i) = (0, \ldots, 0, u_i, 0, \ldots, 0). \\ \text{Define } S_i \in \mathcal{L}(U, V_i) \text{ by } S_i(u_1, \ldots, u_i, \ldots, u_m) = u_i \end{array} \right\} \Rightarrow S_i|_{U_i} = R_i^{-1}|_{U_i}. \\ \text{Thus } U_i \text{ and } V_i \text{ are iso. } \mathbb{X} U_i \text{ is a subsp of a finite-dim vecsp } U.$$

3 Give an example of a vecsp V and its two subsps U_1 , U_2 such that $U_1 \times U_2$ and $U_1 + U_2$ are iso but $U_1 + U_2$ is not a direct sum.

SOLUTION:

NOTE that at least one of U_1 , U_2 must be infinite-dim.

For if not, $U_1 \times U_2$ is finite-dim and $\dim(U_1 \times U_2) = \dim(U_1 + U_2) = \dim U_1 + \dim U_2$.

And V must be infinite-dim. For if not, both U_1 and U_2 are finite-dim subsps.

Let
$$V=\mathbf{F}^{\infty}=U_1, U_2=\left\{(x,0,\cdots)\in\mathbf{F}^{\infty}:x\in\mathbf{F}\right\}.$$

Define
$$T \in \mathcal{L}(U_1 \times U_2, U_1 + U_2)$$
 by $T((x_1, x_2, \dots), (x, 0, \dots)) = (x, x_1, x_2, \dots)$
Define $S \in \mathcal{L}(U_1 + U_2, U_1 \times U_2)$ by $S(x, x_1, x_2, \dots) = ((x_1, x_2, \dots), (x, 0, \dots))$ $\Rightarrow S = T^{-1}$.

4 Suppose V_1, \ldots, V_m are vecsps.

Prove that $\mathcal{L}(V_1 \times \cdots \times V_m, W)$ and $\mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W)$ are iso.

SOLUTION: Using the notations in Problem (2).

Note that
$$T(u_1, ..., u_m) = T(u_1, 0, ..., 0) + ... + T(0, ..., u_m)$$
.

Define
$$\varphi: T \mapsto (T_1, \dots, T_m)$$
 by $\varphi(T) = (TR_1, \dots, TR_m)$.
Define $\psi: (T_1, \dots, T_m) \mapsto T$ by $\psi(T_1, \dots, T_m) = T_1S_1 + \dots + T_mS_m$. $\} \Rightarrow \psi = \varphi^{-1}$.

5 Suppose W_1, \ldots, W_m are vecsps.

Prove that $\mathcal{L}(V, W_1 \times \cdots \times W_m)$ and $\mathcal{L}(V, W_1) \times \cdots \times \mathcal{L}(V, W_m)$ are iso.

SOLUTION: Using the notations in Problem (2).

Note that $Tv = (w_1, ..., w_m)$. Define $T_i \in \mathcal{L}(V, W_i)$ by $T_i(v) = w_i$.

$$\begin{array}{l} \text{Define } \varphi: T \mapsto (T_1, \dots, T_m) \text{ by } \varphi(T) = (S_1 T, \dots, S_m T). \\ \text{Define } \psi: (T_1, \dots, T_m) \mapsto T \text{ by } \psi(T_1, \dots, T_m) = T_1 S_1 + \dots + T_m S_m. \end{array} \right\} \Rightarrow \psi = \varphi^{-1}.$$

6 For $m \in \mathbb{N}^+$, define V^m by $\underbrace{V \times \cdots \times V}_{m \text{ times}}$. Prove that V^m and $\mathcal{L}(\mathbf{F}^m, V)$ are iso.

SOLUTION:

Define $T:(v_1,\ldots,v_m)\to \varphi$, where $\varphi:(a_1,\ldots,a_m)\mapsto v$ is defined by $\varphi(a_1,\ldots,a_m)=a_1v_1+\cdots+a_mv_m$.

- (a) Suppose $T(v_1, \dots, v_m) = 0$. Then $\forall (a_1, \dots, a_n) \in \mathbf{F}^m, \varphi(a_1, \dots, a_m) = a_1v_1 + \dots + a_mv_m = 0$ $\Rightarrow (v_1, \dots, v_m) = 0 \Rightarrow T$ is inje.
- (b) Suppose $\psi \in \mathcal{L}(\mathbf{F}^m, V)$. Let (e_1, \dots, e_m) be the standard basis of \mathbf{F}^m . Then $\forall (b_1, \dots, b_n) \in \mathbf{F}^m$, $\left[T\left(\psi(e_1), \dots, \psi(e_m) \right) \right] (b_1, \dots, b_m) = b_1 \psi(e_1) + \dots + b_m \psi(e_m) = \psi(b_1 e_1 + \dots + b_m e_m) = \psi(b_1, \dots, b_m).$ Thus $T\left(\psi(e_1), \dots, \psi(e_m) \right) = \psi$. Hence T is surj. \square

7 Suppose $v, x \in V$ (arbitrary) and U and W are subsps of V.

Suppose v + U = x + W. Prove that U = W.

SOLUTION:

- (a) $\forall u \in U$, $\exists w \in W, v + u = x + w$, let u = 0, now $v = x + w \Rightarrow v x \in W$.
- (b) $\forall w \in W$, $\exists u \in U, v + u = x + w$, let w = 0, now $x = v + u \Rightarrow x v \in U$.

Thus
$$\pm (v - x) \in U \cap W \Rightarrow$$

$$\begin{cases}
 u = (x - v) + w \in W \Rightarrow U \subseteq W \\
 w = (v - x) + u \in U \Rightarrow W \subseteq U
\end{cases} \Rightarrow U = W.$$

- Let $U = \{(x, y, z) \in \mathbb{R}^3 : 2x + 3y + 5z = 0\}$. Suppose $A \subseteq \mathbb{R}^3$. Prove that A is a translate of $U \iff \exists c \in \mathbb{R}, A = \{(x, y, z) \in \mathbb{R}^3 : 2x + 3y + 5z = c\}$. [Do it in your mind.]
- Suppose $T \in \mathcal{L}(V, W)$ and $c \in W$. Prove that $U = \{x \in V : Tx = c\}$ is either \emptyset or is a translate of null T.

SOLUTION:

If $c \in W$ but $c \notin \text{range } T$, then $U = \emptyset$ and we are done.

Suppose $c \in \text{range } T$, then $\exists u \in V, Tu = c \Rightarrow u \in U$. Suppose $y \in \operatorname{null} T \Rightarrow y + u \in U \Longleftrightarrow T(y + u) = Ty + c = c$. Thus $u + \text{null } T \subseteq U$. Hence u + null T = U, for if not, suppose $z \notin u + \text{null } T \text{ but } Tz = c (\Leftrightarrow z \in U)$, then $\forall w \in \text{null } T, z \neq u + w \Leftrightarrow z - u \notin \text{null } T$. $\not \subseteq \tilde{T}(z + \text{null } T) = \tilde{T}(u + \text{null } T) \Rightarrow z + \text{null } T = u + \text{null } T \Rightarrow z - u \in \text{null } T$, contradicts. **Corollary:** The set of solutions to a system of linear equations such as [3.28] is either \emptyset or a translate of the null subsp. **8** Suppose A is a nonempty subset of V. *Prove that A is a translate of some subsp of* $V \iff \lambda v + (1 - \lambda)w \in A$, $\forall v, w \in A, \lambda \in \mathbf{F}$. **SOLUTION:** Suppose A = a + U, where U is a subsp of V. $\forall a + u_1, a + u_2 \in A, \lambda \in \mathbf{F}$, $\lambda(a + u_1) + (1 - \lambda)(a + u_2) = a + [\lambda(u_1 - u_2) + u_2] \in A.$ Suppose $\lambda v + (1 - \lambda)w \in A$, $\forall v, w \in A$, $\lambda \in F$. Suppose $a \in A$ and let $A' = \{x - a : x \in A\}$. Then $\forall x - a, y - a \in A', \lambda \in \mathbf{F}$, (I) $\lambda(x-a) = [\lambda x + (1-\lambda)a] - a \in A'$. Then let $\lambda = 2$. (II) $\lambda(x-a) + (1-\lambda)(y-a) = \frac{1}{2}(x-a) + \frac{1}{2}(y-a) = \frac{1}{2}x + (1-\frac{1}{2})(y) - a \in A'$. By (I), $2 \times \left[\frac{1}{2}(x-a) + \frac{1}{2}(y-a)\right] = (x-a) + (y-a) \in A'$. Thus A' is a subsp of V. Hence $a + A' = \{(x - a) + a : x \in A\} = A$ is a translate. **9** Suppose $A_1 = v + U_1$ and $A_2 = w + U_2$ for some $v, w \in V$ and some subsps U_1, U_2 of V. *Prove that the intersection* $A_1 \cap A_2$ *is either a translate of some subsp of* V *or is* \emptyset . **SOLUTION:** Suppose $v + u_1, w + u_2 \in A_1 \cap A_2 \neq \emptyset$. By Problem (8), $\forall \lambda \in \mathbf{F}, \lambda(v+u_1) + (1-\lambda)(w+u_2) \in A_1 \text{ and } A_2. \text{ Thus } A_1 \cap A_2 \text{ is a translate of some subsp of } V. \ \Box$ **10** *Prove that the intersection of any collection of translates of subsps of V is either a translate of some subsp or* \emptyset *.* **SOLUTION:** Suppose $\{A_{\alpha}\}_{\alpha\in\Gamma}$ is a collection of translates of subsps of V, where Γ is an arbitrary index set. Suppose $x, y \in \bigcap_{\alpha \in \Gamma} A_{\alpha} \neq \emptyset$, then by Problem (18), $\forall \lambda \in \mathbf{F}, \lambda x + (1 - \lambda)y \in A_{\alpha}$ for every $\alpha \in \Gamma$. Thus $\bigcap_{\alpha \in \Gamma} A_{\alpha}$ is a translate of some subsp of V. **11** Suppose $A = \left\{ \lambda_1 v_1 + \dots + \lambda_m v_m : \sum_{i=1}^m \lambda_i = 1 \right\}$, where each $v_i \in V, \lambda_i \in F$. (a) *Prove that A is a translate of some subsp of V* (b) Prove that if B is a translate of some subsp of V and $\{v_1, ..., v_m\} \subseteq B$, then $A \subseteq B$. (c) Prove that A is a translate of some subsp of V and dim V < m. **SOLUTION:** (a) By Problem (8), $\forall u, w \in A, \lambda \in F$, $\exists a_i, b_i F, \lambda u + (1 - \lambda)w = \left(\lambda \sum_{i=1}^m a_i + (1 - \lambda) \sum_{i=1}^m b_i\right)v_i \in A$. (b) Let $v = \lambda_1 v_+ \cdots + \lambda_m v_m \in A$. To show that $v \in B$, use induction on m by k. (i) $k = 1, v = \lambda_1 v_1 \Rightarrow \lambda_1 = 1$. $\forall v_1 \in B$. Hence $v \in B$.

(ii) $2 \le k \le m$, we assume that $v = \lambda_1 v_1 + \dots + \lambda_k v_k \in A \subseteq B$. $(\forall \lambda_i \text{ such that } \sum_{i=1}^{n} \lambda_i = 1)$

For
$$u = \mu_1 v_1 + \dots + \mu_k v_k + \mu_{k+1} v_{k+1} \in A$$
. $\forall i = 1, \dots, k, \ \exists \ \mu_i \neq 1$, fix one such i by i .

Then $\sum_{i=1}^{k+1} \mu_i - \mu_i = 1 - \mu_i \Rightarrow (\sum_{i=1}^{k+1} \frac{\mu_i}{1 - \mu_i}) - \frac{\mu_i}{1 - \mu_i} = 1$.

Let $w = \underbrace{\frac{\mu_1}{1 - \mu_i} v_1 + \dots + \frac{\mu_{i-1}}{1 - \mu_i} v_{i-1} + \frac{\mu_{i+1}}{1 - \mu_i} v_{i+1} + \dots + \frac{\mu_{k+1}}{1 - \mu_i} v_{k+1}}_{k \ terms}$.

Let $\lambda_i = \frac{\mu_i}{1 - \mu_i}$ for $i = 1, \dots, i - 1$; $\lambda_j = \frac{\mu_{j+1}}{1 - \mu_i}$ for $j = i, \dots, k$. Then,
$$\sum_{i=1}^{k} \lambda_i = 1 \Rightarrow w \in B$$

$$v_i \in B \Rightarrow u' = \lambda w + (1 - \lambda) v_i \in B$$

$$\Rightarrow \text{Let } \lambda = 1 - \mu_i. \text{ Thus } u' = u \in B \Rightarrow A \subseteq B.$$

$$\Rightarrow \lambda \in \{1, \dots, m\}. \text{ Given } \lambda_i \in F \ (i \in \{1, \dots, m\} \setminus \{k\}).$$

(c) Fix a $k \in \{1, ..., m\}$. Given $\lambda_i \in \mathbf{F}$ ($i \in \{1, ..., m\} \setminus \{k\}$).

Let
$$\lambda_k = 1 - \lambda_1 - \dots - \lambda_{k-1} - \lambda_{k+1} - \dots - \lambda_m$$

Then $\lambda_1 v_1 + \dots + \lambda_k v_k + \dots + \lambda_m v_m = v_k + \sum_{i=1}^m \lambda_i (v_i - v_k)$.

Thus
$$A = v_k + \text{span}(v_1 - v_k, \dots, v_{k-1} - v_k, v_{k+1} - v_k, \dots, v_m - v_k).$$

12 Suppose U is a subsp of V such that V/U is finite-dim.

Prove that is V *is iso to* $U \times (V/U)$.

SOLUTION:

Let $(v_1 + U, ..., v_n + U)$ be a basis of V/U. Note that

$$\forall v \in V, \ \exists \ ! \ a_1, \dots, a_n \in \mathbf{F}, v + U = \sum_{i=1}^n a_i(v_i + U) = (\sum_{i=1}^n a_i v_i) + U$$

$$\Rightarrow$$
 $(v - a_1v_1 - \dots - a_nv_n) = u \in U$ for some $u; v = \sum_{i=1}^n a_iv_i + u$.

Thus define $\varphi \in \mathcal{L}(V, U \times (V/U))$ by $\varphi(v) = (u, \sum_{i=1}^{n} a_i v_i + U)$

and
$$\psi \in \mathcal{L}(U \times (V/U), V)$$
 by $\psi(u, w + U) = u + w; w = \sum_{i=1}^{n} b_i v_i + U$.

So that
$$\psi = \varphi^{-1}$$
.

• Suppose $V = U \oplus W$, $(w_1, ..., w_m)$ is a basis of W. *Prove that* $(w_1 + U, ..., w_m + U)$ *is a basis of* V/U.

SOLUTION:

Note that $\forall v \in V, \exists ! u \in U, w \in W, v = u + w \not \subseteq \exists ! c_i \in \mathbf{F} \text{ such that } w = \sum_{i=1}^m c_i w_i \Rightarrow v = u + \sum_{i=1}^m c_i w_i.$

Thus
$$v + U = \sum_{i=1}^{m} c_i w_i + U \Rightarrow v + U \in \text{span}(w_1 + U, \dots, w_m + U) \Rightarrow V/U \subseteq \text{span}(w_1 + U, \dots, w_m + U).$$

Now suppose $a_1(w_1 + U) + \dots + a_m(w_m + U) = 0 + U \Rightarrow \sum_{i=1}^m a_i w_i \in U$ while $U \cap W = \{0\}$.

Then
$$\sum_{i=1}^{m} a_i w_i = 0 \Rightarrow a_1 = \dots = a_m = 0.$$

13 Suppose $(v_1 + U, ..., v_m + U)$ is a basis of V/U and $(u_1, ..., u_n)$ is a basis of U. *Prove that* $(v_1, \ldots, v_m, u_1, \ldots, u_n)$ *is a basis of* V.

SOLUTION:

By Problem (12), U and V/U are finite-dim $\Rightarrow U \times (V/U)$ is finite-dim, so is V.

$$\dim V = \dim (U \times (V/U)) = \dim U + \dim V/U = m + n.$$

OR. Note that
$$\forall v \in V, v + U = \sum_{i=1}^{m} a_i v_i + U, \ \exists \ ! \ a_i \in \mathbb{F} \Rightarrow U \ni v - \sum_{i=1}^{m} a_i v_i = \sum_{i=1}^{m} b_i v_i, \ \exists \ ! \ b_i \in \mathbb{F}.$$

$$\Rightarrow v \in \operatorname{span}(v_1, \dots, v_m, u_1, \dots, u_n).$$

$$\mathbb{X}$$
 Notice that $(\sum_{i=1}^{m} a_i v_i) + U = 0 + U \iff \sum_{i=1}^{m} a_i v_i \in U) \iff a_1 = \cdots = a_m = 0.$

Hence span $(v_1, ..., v_m) \cap U = \{0\} \Rightarrow \text{span}(v_1, ..., v_m) \oplus U = V$ Thus $(v_1, ..., v_m, u_1, ..., u_n)$ is linely inde, so is a basis of V.

14 Suppose $U = \{(x_1, x_2, \dots) \in \mathbf{F}^{\infty} : x_k \neq 0 \text{ for only finitely many } k\}.$

- (a) Show that U is a subsp of \mathbf{F}^{∞} . [Do it in your mind]
- (b) Prove that \mathbf{F}^{∞}/U is infinite-dim.

SOLUTION:

For $u = (x_1, ..., x_p, ...) \in \mathbb{F}^{\infty}$, denote x_p by u[p]. For each $r \in \mathbb{N}^+$.

$$\text{Define } e_r[p] = \left\{ \begin{array}{l} 1 \text{, } (p-1) \equiv 0 \text{ } (\text{mod } r) \\ 0 \text{, otherwise} \end{array} \right. \text{, simply } e_r = (1, \underbrace{0, \ldots, 0}_{(p-1) \text{ } times}, 1, \underbrace{0, \ldots, 0}_{(p-1) \text{ } times}, 1, \ldots) \in \mathbf{F}^{\infty}.$$

Choose $m \in \mathbb{N}^+$ arbitrarily.

Suppose
$$a_1(e_1 + U) + \dots + a_m(e_m + U) = (a_1e_1 + \dots + a_me_m) + U = 0 + U = 0$$
.

$$\Rightarrow a_1e_1 + \dots + a_me_m = u$$
 for some $u \in U$.

Then suppose
$$u = (x_1, \dots, x_t, 0, \dots) \Rightarrow u[t + i] = 0, \forall i \in \mathbb{N}^+$$
,

then let
$$j = s \cdot m! + 1 \ge t \ (\exists \ s \in \mathbb{N}^+)$$
 so that $e_1[j] = \dots = e_m[j] = 1, \ u[j+i] = 0.$

Now we have: $u[j+i] = (\sum_{r=1}^m a_r e_r)[j+i] = \sum_{r=1}^m a_r e_r[s \cdot m! + 1 + i] = a_{i_1} + \dots + a_{i_{\tau(j)}} = 0$,

$$\Rightarrow (\sum_{r=1}^{m} a_r e_r)[j+i] = a_{i_1} + \dots + a_{i_{\tau(i)}} = 0. \ (\Delta)$$

where
$$i_1, \dots, i_{\tau(i)}$$
 are distinct ordered factors of i ($1 = i_1 \le \dots \le i_{\tau(i)} = i$).

(Note that by definition,
$$e_r[s \cdot m! + 1 + i] = 1 \iff s \cdot m! + i \equiv i \equiv 0 \pmod{r} \iff r \mid i$$
.)

Let $i' = i_{\tau(i)-1}$. Notice that $i'_l = i_l, \forall l \in \{1, ..., \tau(i')\}; \text{ and } \tau(i') = \tau(i) - 1.$

Again by
$$(\Delta)$$
, $(\sum_{r=1}^{m} a_r e_r)[j+i'] = a_{i'_1} + \dots + a_{i'_{\tau(i')}} = a_{i_1} + \dots + a_{i_{\tau(i)-1}} = 0$.

Thus $a_{i_{\tau}(i)} = a_i = 0$ for any $i \in \{1, ..., m\}$.

Hence (e_1, \dots, e_m) is linely inde in \mathbf{F}^{∞} , so is (e_1, \dots, e_m, \dots) , since $m \in \mathbf{N}^+$.

$$\not \subseteq e_i \notin U \Rightarrow (e_1 + U, e_2 + U, ...)$$
 is linely inde in F^{∞}/U . By [2.B.14].

15 Suppose $\varphi \in \mathcal{L}(V, \mathbf{F}) \setminus \{0\}$. Prove that dim $V/(\text{null } \varphi) = 1$.

Solution: By [3.91] (d), dim range
$$\varphi = 1 = \dim V / (\operatorname{null} \varphi)$$
.

• Note For [3.88, 3.90, 3.91]:

For any
$$W \in \mathcal{S}_V U$$
, because $V = U \oplus W$. $\forall v \in V$, $\exists ! u_v \in U, w_v \in W, v = u_v + w_v$.

Define
$$T \in \mathcal{L}(V, W)$$
 by $T(v) = w_v$. Hence $\text{null } T = U$, range $T = W$.

Then
$$\tilde{T} \in \mathcal{L}(V/\text{null } T, W)$$
 is defined as $\tilde{T}(v + U) = Tv = w_v$.

Thus
$$\tilde{T}$$
 is inje (by [3.91(b)]) and surj (range \tilde{T} = range T = W),

and therefore is an iso. We conclude that V/U and W, namely any vecsp in S_V , are iso.

16 Suppose dim V/U = 1. Prove that $\exists \varphi \in \mathcal{L}(V, \mathbf{F})$ such that null $\varphi = U$.

SOLUTION:

Suppose V_0 is a subsp of V such that $V = U \oplus V_0$. Then V_0 and V/U are iso. dim $V_0 = 1$.

Define a linear map
$$\varphi : v \mapsto \lambda$$
 by $\varphi(v_0) = 1$, $\varphi(u) = 0$, where $v_0 \in V_0$, $u \in U$.

- **17** Suppose V/U is finite-dim. W is a subsp of V.
 - (a) Show that if V = U + W, then dim $W \ge \dim V/U$.

(b) Suppose dim $W = \dim V/U$ and $V = U \oplus W$. Find such W. **SOLUTION**: Let $(w_1, ..., w_n)$ be a basis of W(a) $\forall v \in V$, $\exists u \in U, w \in W$ such that $v = u + w \Rightarrow v + U = w + U$ Then $V/U \subseteq \text{span}(w_1 + U, \dots, w_n + U) \Rightarrow V/U = \text{span}(w_1 + U, \dots, w_n + U)$. Hence dim $V/U = \dim \operatorname{span}(w_1 + U, \dots, w_n + U) \le \dim W$. (b) Let $W \in \mathcal{S}_V U$. In other words, reduce (w_1+U,\ldots,w_n+U) to a basis of V/U as (w_1+U,\ldots,w_m+U) and let $W=\text{span}(w_1,\ldots,w_m)$. **18** Suppose $T \in \mathcal{L}(V, W)$ and U is a subsp of V. Let π denote the quotient map. *Prove that* $\exists S \in \mathcal{L}(V/U, W)$ *such that* $T = S \circ \pi$ *if and only if* $U \subseteq \text{null } T$. **SOLUTION:** (a) Define $S \in \mathcal{L}(V/U, W)$ by S(v + U) = Tv. We have to check it is well-defined. Suppose $v_1 + U = v_2 + U$, while $v_1 \neq v_2$. Then $(v_1 - v_2) \in U \Rightarrow S((v_1 - v_2) + U) = T(v_1 - v_2) = 0 \Rightarrow Tv_1 = Tv_2$. Checked. (b) Suppose $\exists S \in \mathcal{L}(V/U, W), T = S \circ \pi$. Then $\forall u \in U, Tu = S \circ \pi(u) = S(0 + U) = 0 \Rightarrow U \subseteq \text{null } T.$ **20** Define $\Gamma : \mathcal{L}(V/U, W) \to \mathcal{L}(V, W)$ by $\Gamma(S) = S \circ \pi \ (=\pi'(S))$. (a) *Prove that* Γ *is linear*: By [3.9] distr properties and [3.6]. (b) *Prove that* Γ *is inje:* $\Gamma(S) = 0 = S \circ \pi \Longleftrightarrow \forall v \in V, S\left(\pi(v)\right) = 0 \Longleftrightarrow \forall v + U \in V/U, S(v + U) = 0 \Longleftrightarrow S = 0.$ (c) Prove that range Γ (= range π') = { $T \in \mathcal{L}(V, W) : U \subseteq \text{null } T$ }: By Problem (18). \square **ENDED** 3.F • By (18) in (3.D) we know that $\varphi: V \to \mathcal{L}(\mathbf{F}, V)$ is an iso. Now we prove that (v_1, \ldots, v_m) is linely inde $\iff (\varphi(v_1), \ldots, \varphi(v_m))$ is linely inde. **SOLUTION:** (a) Suppose $(v_1, ..., v_m)$ is linely inde and $\vartheta \in \text{span } (\varphi(v_1), ..., \varphi(v_m))$. Let $\vartheta = 0 = a_1 \varphi(v_1) + \dots + a_m \varphi(v_m)$. Then $\vartheta(1) = 0 = a_1 v_1 + \dots + a_m v_m \Rightarrow a_1 = \dots = a_m = 0$. OR. Because φ is inje. Suppose $a_1\varphi(v_1)+\cdots+a_m\varphi(v_m)=0=\varphi(a_1v_1+\cdots+a_mv_m)$. Then $a_1v_1 + \cdots + a_mv_m = 0 \Rightarrow a_1 = \cdots = a_m = 0$. Thus $(\varphi(v_1), \dots, \varphi(v_m))$ is linely inde. (b) Suppose $(\varphi(v_1), ..., \varphi(v_m))$ is linely inde and $v \in \text{span}(v_1, ..., v_m)$. Let $v=0=a_1v_1+\cdots+a_mv_m$. Then $\varphi(v)=a_1\varphi(v_1)+\cdots+a_m\varphi(v_m)=0 \Rightarrow a_1=\cdots=a_m=0$. Thus v_1, \dots, v_m is linely inde. **1** Explain why each linear functional is surj or is the zero map. For any $\varphi \in V'$ and $\varphi \neq 0$, $\exists v \in V$, such that $\varphi(v) \neq 0$. (a) $\dim \operatorname{range} \varphi = \dim \mathbf{F} = 1. \text{ (b)}$ **SOLUTION: 4** Suppose V is finite-dim and U is a subsp of V such that $U \neq V$. *Prove that* $\exists \varphi \in V'$ *and* $\varphi \neq 0$ *such that* $\varphi(u) = 0$ *for every* $u \in U$. **SOLUTION:**

Let (u_1, \dots, u_m) be a basis of U, extend to $(u_1, \dots, u_m, u_{m+1}, \dots, u_{m+n})$ a basis of V.

Soi	гт	וידיז	ıΛ	NI
5 ()	L	, ,	()	N.

For each
$$j$$
 and k , $(x^{j})^{(k)} = \begin{cases} j(j-1) \dots (j-k+1) \cdot x^{(j-k)}, & j \geq k. \\ j(j-1) \dots (j-j+1) = j!, & j = k. \end{cases}$ Then $(x^{j})^{(k)}(0) = \begin{cases} 0, & j \neq k. \\ k!, & j = k. \end{cases}$

8 Suppose m is a positive integer.

SOLUTION:

- (a) By [2.C.10], $B = (1, x 5, ..., (x 5)^m)$ is a basis of $\mathcal{P}_m(\mathbf{R})$.
- (b) Let $\varphi_k = \frac{p^{(k)}(5)}{k!}$ for each k = 0, 1, ..., m. Then $(\varphi_0, \varphi_1, ..., \varphi_m)$ is the dual basis of B.
- **9** Suppose (v_1, \ldots, v_n) is a basis of V and $(\varphi_1, \cdots, \varphi_n)$ is the corresptd dual basis of V'. Suppose $\psi \in V'$. Prove that $\psi = \psi(v_1)\varphi_1 + \cdots + \psi(v_n)\varphi_n$.

Solution:
$$\psi(v) = \psi(\sum_{i=1}^n a_i v_i) = \sum_{i=1}^n a_i \psi(v_i) = \sum_{i=1}^n \psi(v_i) \varphi_i(v) = [\psi(v_1) \varphi_1 + \dots + \psi(v_n) \varphi_n](v).$$
 Comment: For other basis (u_1, \dots, u_n) and the dual basis (ρ_1, \dots, ρ_n) , $\psi = \psi(u_1) \rho_1 + \dots + \psi(u_n) \rho_n.$

12 Show that the dual map of the identity operator on V is the identity operator on V'.

Solution:
$$I'(\varphi) = \varphi \circ I = \varphi, \ \forall \varphi \in V'.$$

• Suppose W is finite-dim and $T \in \mathcal{L}(V, W)$. Prove that $T' = 0 \iff T = 0$.

SOLUTION:
$$T = 0 \Leftrightarrow T'(\varphi) = \varphi \circ T = 0$$
 for all $\varphi \in V' \Leftrightarrow T' = 0$.

13 Define $T: \mathbb{R}^3 \to \mathbb{R}^2$ by T(x, y, z) = (4x + 5y + 6z, 7x + 8y + 9z).

Let (φ_1, φ_2) , (ψ_1, ψ_2, ψ_3) denote the dual basis of the standard basis of \mathbb{R}^2 and \mathbb{R}^3 .

(a) Describe the linear functionals $T'(\varphi_1), T'(\varphi_2) \in \mathcal{L}(\mathbb{R}^3, \mathbb{R})$

For any $(x, y, z) \in \mathbb{R}^3$, $(T'(\varphi_1))(x, y, z) = 4x + 5y + 6z$, $(T'(\varphi_2))(x, y, z) = 7x + 8y + 9z$.

(b) Write $T'(\varphi_1)$ and $T'(\varphi_2)$ as linear combinations of ψ_1, ψ_2, ψ_3 .

$$T'(\varphi_1) = 4\psi_1 + 5\psi_2 + 6\psi_3, \ T'(\varphi_2) = 7\psi_1 + 8\psi_2 + 9\psi_3.$$

- **14** Define $T: \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ by $(Tp)(x) = x^2p(x) + p''(x)$ for each $x \in \mathbf{R}$.
 - (a) Suppose $\varphi \in \mathcal{P}(\mathbf{R})'$ is defined by $\varphi(p) = p'(4)$. Describe $T'(\varphi) \in \mathcal{P}(\mathbf{R})'$.

 $\left(T'(\varphi)\right)(p) = [x^2p(x) + p''(x)]'(4) = [2xp(x) + x^2p'(x) + p'''(x)](4) = 8p(4) + 16p'(4) + p'''(4).$

(b) Suppose $\varphi \in \mathcal{P}(\mathbf{R})'$ is defined by $\varphi(p) = \int_0^1 p(x) dx$. Evaluate $(T'(\varphi))(x^3)$. $(T'(\varphi))(x^3) = \int_0^1 (x^5 + 6x) dx = \int_0^1 (\frac{1}{6}x^6 + 3x^2)' dx = \frac{6}{19}$.

$$(T'(\varphi))(x^3) = \int_0^1 (x^5 + 6x) dx = \int_0^1 (\frac{1}{6}x^6 + 3x^2)' dx = \frac{6}{19}.$$

• Suppose V and W are finite-dim and $T \in \mathcal{L}(V, W)$. Prove that T is inv \iff T' is inv.

SOLUTION: By [3.108] and [3.110].

16 Suppose V and W are finite-dim. Define Γ by $\Gamma(T) = T'$ for any $T \in \mathcal{L}(V, W)$. *Prove that* Γ *is an iso of* $\mathcal{L}(V, W)$ *onto* $\mathcal{L}(W', V')$.

SOLUTION:

- V, W are finite-dim \Rightarrow dim $\mathcal{L}(V, W) = \dim \mathcal{L}(W', V')$. And by [3.101], Γ is linear.
- \mathbb{X} Suppose $\Gamma(T) = T' = 0$. By Problem (15), T = 0. Thus T is inje $\Rightarrow T$ is inv.
- **17** Suppose $U \subseteq V$. Explain why $U^0 = \{ \varphi \in V' : U \subseteq null \varphi \}$.

SOLUTION: Because for $\varphi \in V'$, $U \subseteq \text{null } \varphi \iff \forall u \in U, \varphi(u) = 0$. By definition in [3.102].

18 Suppose V is a vecsp and $U \subseteq V$.

Then $U = \{0\} \iff \forall$	$p \in V' . U \subseteq \text{null}$	$\varphi \iff U^0 = V'$.
$111011 \text{ a} - (0) \longleftrightarrow V$	$\gamma \subseteq \gamma$, $\alpha \subseteq \text{man}$	$\varphi \hookrightarrow \alpha - \iota$.

19 Suppose V is a vecsp and $U \subseteq V$. Prove that $U = V \iff U_V^0 = \{0\} = V_V^0$.

SOLUTION:

- (a) Suppose $U_V^0 = \{0\}$. Then U = V.
- (b) Suppose U = V, then $U_V^0 = \{ \varphi \in V' : V \subseteq \text{null } \varphi \}$, hence $U_V^0 = \{ 0 \}$.

20, 21 Suppose U and W are subsets of V. Prove that $U \subseteq W \iff W^0 \subseteq U^0$.

SOLUTION:

(a) Suppose $U \subseteq W$. Then $\forall w \in W, u \in U, \varphi \in W^0, \varphi(w) = 0 = \varphi(u) \Rightarrow \varphi \in U^0$. Thus $W^0 \subseteq U^0$.

- (b) Suppose $W^0 \subseteq U^0$. Then $\varphi \in W^0 \Rightarrow \varphi \in U^0$. Hence $\text{null } \varphi \supseteq W \Rightarrow \text{null } \varphi \supseteq U$. Thus $W \supseteq U$. Corollary: $W^0 = U^0 \iff U = W$.
- **22** *Prove that* $(U + W)^0 = U^0 \cap W^0$.

SOLUTION:

- (a) $\begin{array}{c} U \subseteq U + W \\ W \subseteq U + W \end{array} \} \Rightarrow \begin{array}{c} (U + W)^0 \subseteq U^0 \\ (U + W)^0 \subseteq W^0 \end{array} \} \Rightarrow (U + W)^0 \subseteq U^0 \cap W^0.$
- (b) $\forall \varphi \in U^0 \cap W^0$, $\varphi(u+w) = 0$, where $u \in U$, $w \in W \Rightarrow \varphi \in (U+W)^0$. Thus $(U+W)^0 \supseteq U^0 \cap W^0$. \square
- **23** *Prove that* $(U \cap W)^0 = U^0 + W^0$.

SOLUTION:

- (a) $\begin{array}{c} U \cap W \subseteq U \\ U \cap W \subset W \end{array} \} \Rightarrow \begin{array}{c} (U \cap W)^0 \supseteq U^0 \\ (U \cap W)^0 \supset W^0 \end{array} \} \Rightarrow (U \cap W)^0 \supseteq U^0 + W^0 \supseteq U^0 \cap W^0.$
- (b) $\forall \varphi \in U^0, \psi \in W^0$ and $\forall v \in U \cap W, (\varphi + \psi)(v) = \varphi(v) + \psi(v) = 0$. Thus $U^0 + W^0 \subseteq (U \cap W)^0$. \square
- Corollary: Suppose $\{V_{\alpha_i}\}_{\alpha_i \in \Gamma}$ is a collection of subsps of V.

Then
$$(\sum_{\alpha_i \in \Gamma} V_{\alpha_i})^0 = \bigcap_{\alpha_i \in \Gamma} (V_{\alpha_i}^0);$$

And $(\bigcap_{\alpha_i \in \Gamma} V_{\alpha_i})^0 = \sum_{\alpha_i \in \Gamma} (V_{\alpha_i}^0).$

24 Suppose V is finite-dim and U is a subsp of V.

Prove, using the pattern of [3.104]*, that dimU+ dimU*⁰ = dimV.

SOLUTION:

Let (u_1, \dots, u_m) be a basis of U, extend to a basis of V as $(u_1, \dots, u_m, \dots, u_n)$, and let $(\varphi_1, \dots, \varphi_m, \dots, \varphi_n)$ be the dual basis.

- (a) Suppose $\varphi \in \text{span}(\varphi_{m+1}, \dots, \varphi_n)$, then $\exists a_i \in \mathbb{F}, \varphi = a_{m+1}\varphi_{m+1} + \dots + a_n\varphi_n$. For all $u \in U$, $\varphi(u) = 0$. Thus $\varphi \in U^0$, getting span $(\varphi_{m+1}, \dots, \varphi_n) \subseteq U^0$.
- (b) Suppose $\varphi \in U^0$, then $\exists a_i \in \mathbb{F}, \varphi = a_1 \varphi_1 + \dots + a_m \varphi_m + \dots + a_n \varphi_n$. For all $u_i \in U$, $0 = \varphi(u_i) = \sum_{i=1}^n \varphi(u_i) = a_i$. Then $\varphi = a_{m+1} \varphi_{m+1} + \dots + a_n \varphi_n$.

Thus $\varphi \in \text{span}(\varphi_{m+1}, \dots, \varphi_n)$, getting span $(\varphi_{m+1}, \dots, \varphi_n) \supseteq U^0$.

Hence span $(\varphi_{m+1}, \dots, \varphi_n) = U^0$, dim $U^0 = n - m = \dim V - \dim U$.

25 Suppose U is a subsp of V. Explain why $U = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\}$.

SOLUTION: Note that $U = \{v \in V : v \in U\}$ is a subsp of V and $\varphi(v) = 0$ for every $\varphi \in U^0 \iff v \in U$. \square

26 Suppose V is finite-dim and Ω is a subsp of V'. *Prove that* $\Omega = \{v \in V : \varphi(v) = 0, \forall \varphi \in \Omega\}^0$. **SOLUTION:** Using the corollary in Problem (20, 21). Suppose $U = \{v \in V : \forall \varphi \in \Omega, \varphi(v) = 0\}.$ Getting $U^0 = \{v \in V : \forall \varphi \in \Omega, \varphi(v) = 0\}^0$. We need to show that $\Omega = U^0$. (a) $\forall \varphi \in \Omega, v \in U, \varphi(v) = 0 \Rightarrow \varphi \in U^0 \Rightarrow \Omega \subseteq U^0.$ (b) $v \in U \Leftrightarrow \left\{ \begin{array}{l} \forall \varphi \in \Omega, \varphi(v) = 0 \\ \forall \psi \in U^0, \psi(v) = 0 \end{array} \right. \text{ Thus } \Omega \supseteq U^0.$ **27** Suppose $T \in \mathcal{L}(\mathcal{P}_5(\mathbf{R}) \text{ and null } T^{'} = \operatorname{span}(\varphi), \text{ where } \varphi \text{ is the linear functional on } \mathcal{P}_5(\mathbf{R})$ defined by $\varphi(p) = p(8)$. Prove that range $T = \{p \in \mathcal{P}_5(\mathbf{R}) : p(8) = 0\}$. **SOLUTION:** By Problem (26), span $(\varphi) = \{ p \in \mathcal{P}_5(\mathbf{R}) : \psi(p) = 0, \forall \psi \in \text{span}(\varphi) \}^0$, Hence span $(\varphi) = \{p \in \mathcal{P}_5(\mathbf{R}) : \varphi(p) = p(8) = 0\}^0$, \mathbb{X} span $(\varphi) = \text{null } T' = (\text{range } T)^0$. By the corollary in Problem (20, 21), range $T = \{ p \in \mathcal{P}_5(\mathbf{R}) : p(8) = 0 \}$. **28, 29** Suppose V, W are finite-dim, $T \in \mathcal{L}(V, W)$. (a) Suppose $\exists \varphi \in W'$ such that $\operatorname{null} T' = \operatorname{span}(\varphi)$. Prove that $\operatorname{range} T = \operatorname{null} \varphi$. (b) Suppose $\exists \varphi \in V'$ such that range $T' = \operatorname{span}(\varphi)$. Prove that $\operatorname{null} T = \operatorname{null} \varphi$. **SOLUTION:** Using Problem (26), [3.107] and [3.109]. Because span $(\varphi) = \{v \in V : \forall \psi \in \operatorname{span}(\varphi), \psi(v) = 0\}^0 = \{v \in V : \varphi(v) = 0\}^0 = (\operatorname{null}\varphi)^0.$ (a) $(\operatorname{range} T)^0 = \operatorname{null} T' = \operatorname{span}(\varphi) = (\operatorname{null} \varphi)^0 \Longleftrightarrow \operatorname{range} T = \operatorname{null} \varphi.$ (b) $(\operatorname{null} T)^0 = \operatorname{range} T' = \operatorname{span}(\varphi) = (\operatorname{null} \varphi)^0 \iff \operatorname{null} T = \operatorname{null} \varphi$. **31** Suppose V is finite-dim and $(\varphi_1, \ldots, \varphi_n)$ is a basis of V'. Show that there exists a basis of V whose dual basis is $(\varphi_1, \dots, \varphi_n)$. **SOLUTION:** Using Problem (29) and (30) in (3,B). $\forall \varphi_i$, $\text{null } \varphi_i \oplus \{au_i : a \in \mathbf{F}\} = V$. Because $\varphi_1, \dots, \varphi_m$ is linely inde. null $\varphi_i \neq \text{null } \varphi_i$ for each $i, j \in \mathbb{N}^+$ such that $i \neq j$. Thus $(u_1, ..., u_m)$ is linely inde, for if not, then $\exists i, j$ such that null $\varphi_i = \text{null } \varphi_i$, contradicts. \mathbb{X} dim $V' = m = \dim V$. Then (u_1, \dots, u_m) is a basis of V whose dual basis is $(\varphi_1, \dots, \varphi_n)$. \Box . • Suppose V is finite-dim and $\varphi_1, \ldots, \varphi_m \in V'$. Prove that the following sets are the same. (a) span $(\varphi_1, \dots, \varphi_m)$ (b) $((\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m))^0$ (c) $\{\varphi \in V' : (\text{null } \varphi_1) \cap \cdots \cap (\text{null } \varphi_m) \subseteq \text{null } \varphi\}$ Solution: By Problem (17), (b) and (c) are equi. By Problem (26) and the corollary in Problem (23), $\frac{\left(\left(\operatorname{null}\varphi_{1}\right) \cap \cdots \cap \left(\operatorname{null}\varphi_{m}\right)\right)^{0} = \left(\operatorname{null}\varphi_{1}\right)^{0} + \cdots + \left(\operatorname{null}\varphi_{m}\right)^{0}.}{\mathbb{Z}\operatorname{span}\left(\varphi_{i}\right) = \left\{v \in V : \forall \psi \in \operatorname{span}\left(\varphi_{i}\right), \psi(v) = 0\right\}^{0} = \left(\operatorname{null}\varphi_{i}\right)^{0}.} \right\} \Rightarrow (a) = (b).$ **Corollary:** 30 Suppose V is finite-dim and $\varphi_1, \ldots, \varphi_m$ is a linely inde list in V'. Then dim $((\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m)) = (\dim V) - m$. **6** Define $\Gamma: V^{'} \to \mathbf{F}^{m}$ by $\Gamma(\varphi) = (\varphi(v_{1}), \dots, \varphi(v_{m}))$, where $v_{1}, \dots, v_{m} \in V$.

(a) Show that span $(v_1, ..., v_m) = V \iff \Gamma$ is inje.

(b) Show that $(v_1, ..., v_m)$ is linely inde $\iff \Gamma$ is surj. **SOLUTION:** Suppose Γ is inje. Then let $\Gamma(\varphi)=0$, getting $\varphi=0\Leftrightarrow \operatorname{null}\varphi=V=\operatorname{span}(v_1,\ldots,v_m)$. Suppose span $(v_1, ..., v_m) = V$. Then let $\Gamma(\varphi) = 0$, getting $\varphi(v_i) = 0$ for each i, (a) null $\varphi = \operatorname{span}(v_1, \dots, v_m) = V$, thus $\varphi = 0$, Γ is inje. Suppose Γ is surj. Then let $\Gamma(\varphi_i) = e_i$ for each i, where (e_1, \dots, e_m) is the standard basis of \mathbf{F}^m . Then $(\varphi_1, \dots, \varphi_m)$ is linely inde, suppose $a_1v_1 + \dots + a_mv_m = 0$, then for each *i*, we have $\varphi_i(a_1v_1 + \cdots + a_mv_m) = a_i = 0$. Thus v_1, \dots, v_n is linely inde. (b) Suppose $(v_1, ..., v_m)$ is linely inde. Let $(\varphi_1, ..., \varphi_m)$ be the dual basis of span $(v_1, ..., v_m)$. Thus for each $(a_1, \ldots, a_m) \in \mathbf{F}^m$, we have $\varphi = a_1 \varphi_1 + \cdots + a_m \varphi_m$ so that $\Gamma(\varphi) = (a_1, \ldots, a_m)$. \square • Define $\Gamma: V \to \mathbf{F}^m$ by $\Gamma(v) = (\varphi_1(v), \dots, \varphi_m(v))$, where $\varphi_1, \dots, \varphi_m \in V'$. (c) Show that span $(\varphi_1, ..., \varphi_m) = V' \iff \Gamma$ is inje. (d) Show that $(\varphi_1, ..., \varphi_m)$ is linely inde $\iff \Gamma$ is surj. **SOLUTION:** Suppose Γ is inje. Then $\Gamma(v) = 0 \Leftrightarrow \forall i, \varphi_i(v) = 0 \Leftrightarrow v \in (\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m) \Leftrightarrow v = 0$. Getting $(\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m) = \{0\}$. By Problem (\bullet) above, span $(\varphi_1, \dots, \varphi_m) = V'$ Suppose span $(\varphi_1, \dots, \varphi_m) = V'$. Again by Problem (\bullet) , $(\operatorname{null} \varphi_1) \cap \dots \cap (\operatorname{null} \varphi_m) = \{0\}$. Thus $\Gamma(v) = 0 \Rightarrow \forall i, \varphi_i(v) = 0 \Rightarrow v = 0$. Suppose $(\varphi_1, ..., \varphi_m)$ is linely inde. Then by Problem (31), $(v_1, ..., v_m)$ is linely inde. Thus for any $(a_1, \ldots, a_m) \in \mathbf{F}$, by letting $v = \sum_{i=1}^m a_i v_i$, then $\varphi_i(v) = a_i \Rightarrow \Gamma(v) = (a_1, \ldots, a_m)$. Suppose Γ is surj. Let e_1, \dots, e_m be a basis of \mathbf{F}^m . For every e_i , $\exists v_i \in V$ such that $\Gamma(v_i) = (\varphi_1(v_i), \dots, \varphi_m(v)) = e_i$, fix v_i (\Rightarrow (v_1, \dots, v_m) is linely inde). Thus $\varphi_i(v_i) = 1, \varphi_i(v_j) = 0$. Hence $(\varphi_1,\ldots,\varphi_m)$ is the dual basis of the basis v_1,\ldots,φ_m of span (v_1,\ldots,v_m) . **33** Suppose $A \in \mathbf{F}^{m,n}$. Define $T: A \to A^t$. Prove that T is an iso of $\mathbf{F}^{m,n}$ onto $\mathbf{F}^{n,m}$ **SOLUTION**: By [3.111], T is linear. Note that $(A^t)^t = A$. (a) For any $B \in \mathbb{F}^{n,m}$, let $A = B^t$ so that T(A) = B. Thus T is surj. (b) If T(A) = 0 for some $A \in \mathbf{F}^{n,m}$, then A = 0. Thus T is inje, for if not, $\exists j, k \in \mathbb{N}^+$ such that $A_{j,k} \neq 0$, then $T(A)_{k,j} \neq 0$, contradicts. **32** Suppose $T \in \mathcal{L}(V)$, and $(u_1, ..., u_m)$ and $(v_1, ..., v_m)$ are bases of V. Prove that T is inv \iff The rows of $\mathcal{M}(T,(u_1,\ldots,u_m),(v_1,\ldots,v_m))$ form a basis of $\mathbf{F}^{1,n}$. **SOLUTION**: Note that T is invertible \iff T' is inv. And $\mathcal{M}(T') = \mathcal{M}(T)^t = A^t$, denote it by B. Let $(\varphi_1, \dots, \varphi_m)$ be the dual basis of (v_1, \dots, v_m) , (ψ_1, \dots, ψ_m) be the dual basis of (u_1, \dots, u_m) . (a) Suppose *T* is inv, so is *T'*. Because $T'(\varphi_1), \ldots, T'(\varphi_m)$ is linely inde. Noticing that $T'(\varphi_i) = B_{1,i}\psi_1 + \cdots + B_{m,i}\psi_m$. Thus the cols of *B*, namely the rows of *A*, are linely inde (check it by contradiction). (b) Suppose the rows of *A* are linely inde, so are the cols of *B*. Then $(T'(\varphi_1), \dots, T'(\varphi_m))$ is a basis of range T', namely V'. Thus T' is surj. Hence T' is inv, so is T. **34** The double dual space of V, denoted by V'', is defined to be the dual space of V'.

In other words, $V^{''} = \mathcal{L}(V^{'}, \mathbf{F})$. Define $\Lambda : V \to V^{''}$ by $(\Lambda v)(\varphi) = \varphi(v)$.

- (a) Show that Λ is a linear map from V to V''. (b) Show that if $T \in \mathcal{L}(V)$, then $T'' \circ \Lambda = \Lambda \circ T$, where T'' = (T')'. (c) Show that if V is finite-dim, then Λ is an iso from V onto V''. Suppose V is finite-dim. Then V and V' are iso, but finding an iso from V onto V' generally requires choosing a basis of V. In contrast, the iso Λ from V onto V'' does not require a choice of basis and thus is considered more natural. **SOLUTION:** (a) $\forall \varphi \in V'$, $\forall v, w \in V, a \in F$, $(\Lambda(v + aw))(\varphi) = \varphi(v + aw) = \varphi(v) + a\varphi(w) = (\Lambda v)(\varphi) + a(\Lambda w)(\varphi)$. Thus $\Lambda(v + aw) = \Lambda v + a\Lambda w$. Hence Λ is linear. $\left(\mathbf{b} \right) \; \left(T^{\prime\prime}(\Lambda v) \right) \left(\varphi \right) \; = \; \left(\left(\Lambda v \right) \circ \left(T^{\prime} \right) \right) \left(\varphi \right) \; = \; \left(\Lambda v \right) \left(T^{\prime}(\varphi) \right) \; = \; \left(T^{\prime}(\varphi) \right) \left(v \right) \; = \; \left(\varphi \circ T \right) \left(v \right) \; = \; \varphi \left(T v \right) \;$ $(\Lambda(Tv))(\varphi)$. Hence $T''(\Lambda v) = (\Lambda(Tv))$, getting $T'' \circ \Lambda = \Lambda \circ T$. (c) Suppose $\Lambda v = 0$. Then $\forall \varphi \in V'$, $(\Lambda v)(\varphi) = \varphi(v) = 0 \Rightarrow v = 0$. Thus Λ is inje. ∇ Because V is finite-dim. dim $V = \dim V' = \dim V''$. Hence Λ is an iso. **36** Suppose U is a subsp of V. Define $i: U \to V$ by i(u) = u. Thus $i' \in \mathcal{L}(V', U')$. (a) Show that null $i' = U^0$: null $i' = (\text{range } i)^0 = U^0 \Leftarrow \text{range } i = U$. (b) Prove that if V is finite-dim, then range i' = U': range $i' = (\text{null } i)_U^0 = (\{0\})_U^0 = U'$. (c) Prove that if V is finite-dim, then \tilde{i}' is an iso from V'/U^0 onto U': The iso in (c) is natural in that it does not depend on a choice of basis in either vecsp. **SOLUTION**: Note that $\tilde{i}': V'/\text{null } i' \to \text{range } i' \Rightarrow \tilde{i}': V'/U^0 \to U'$. By (a), (b) and [3.91(d)]. **37** Suppose U is a subsp of V and π is the quotient map. Thus $\pi' \in \mathcal{L}((V/U)', V')$. (a) Show that π' is inje: Because π is surj. Use [3.108]. (b) Show that $\pi' = U^0$. (c) Conclude that π' is an iso from (V/U)' onto U^0 . *The iso in (c) is natural in that it does not depend on a choice of basis in either vecsp. In fact, there is no assumption here that any of these vecsps are finite-dim.*

SOLUTION: [3.109] is not available. Using (3.E.18), also see (3.E.20).

- (b) $\psi \in \operatorname{range} \pi' \iff \exists \varphi \in (V/U)', \psi = \varphi \circ \pi \iff \operatorname{null} \psi \supseteq U \iff \psi \in U^0$. Hence $\operatorname{range} \pi' = U^0$.
- (c) $\psi \in U^0 \iff \text{null } \psi \supseteq U \iff \exists \varphi \in (V/U)', \psi = \varphi \circ \pi = \pi(\varphi)$. Thus π' is surj. And by (a).

ENDED

4

• **NOTE FOR [4.8]:** division algorithm for polynomials

Suppose $p, s \in \mathcal{P}(\mathbf{F})$, with $s \neq 0$. Then $\exists ! q, r \in \mathcal{P}(\mathbf{F})$ such that p = sq + r and $\deg r < \deg s$. Another Proof: Suppose $\deg p \geq \deg s$. Then $(\underbrace{1,z,\ldots,z^{\deg s-1}},\underbrace{s,zs,\cdots,z^{\deg p-\deg s}}s)$ is a basis of $\mathcal{P}_{\deg p}(\mathbf{F})$.

Because
$$q \in \mathcal{P}(\mathbf{F})$$
, $\exists ! a_i, b_j \in \mathbf{F}$,

$$\begin{split} q &= a_0 + a_1 z + \dots + a_{\deg s - 1} z^{\deg s - 1} + b_0 s + b_1 z s + \dots + b_{\deg p - \deg s} z^{\deg p - \deg s} s \\ &= \underbrace{a_0 + a_1 z + \dots + a_{\deg s - 1} z^{\deg s - 1}}_{r} + s \underbrace{(b_0 + b_1 z + \dots + b_{\deg p - \deg s} z^{\deg p - \deg s})}_{r}. \end{split}$$

With r, q as defined uniquely above, we are done.

• **Note For [4.11]:** each zero of a poly corresponds to a degree-one factor; Another Proof: First suppose $p(\lambda) = 0$. Write $p(z) = a_0 + a_1 z + \dots + a_m z^m$, $\exists ! a_0, a_1, \dots, a_m \in \mathbf{F}$ for all $z \in \mathbf{F}$. • Note For [4.13]: fundamental theorem of algebra, first version

Every nonconst poly with complex coefficients has a zero in C. Another Proof:

For any $w \in C$, $k \in \mathbb{N}^+$, by polar coordinates, $\exists r \ge 0, \theta \in \mathbb{R}$, $r(\cos \theta + i \sin \theta) = w$.

By De Moivre' theorem, $w^k = [r(\cos\theta + i\sin\theta)]^k = r^k(\cos k\theta + i\sin k\theta)$.

Hence $\left(r^{1/k}(\cos\frac{\theta}{k}+i\sin\frac{\theta}{k})\right)^k=w$. Thus every complex number has a k^{th} root.

Suppose a nonconst $p \in \mathcal{P}(\mathbf{C})$ with highest-order nonzero term $c_m z_m$.

Then $|p(z)| \to \infty$ as $|z| \to \infty$ (because $\frac{|p(z)|}{|z_m|} \to |c_m|$ as $|z| \to \infty$).

Thus the continuous function $z \to |p(z)|$ has a global minimum at some point $\zeta \in \mathbb{C}$.

To show that $p(\zeta) = 0$, assume $p(\zeta) \neq 0$. Define $q \in \mathcal{P}(\mathbf{C})$ by $q(z) = \frac{p(z + \zeta)}{p(\zeta)}$.

The function $z \to |q(z)|$ has a global minimum value of 1 at z = 0.

Write $q(z) = 1 + a_k z^k + \dots + a_m z^m$, where $k \in \mathbb{N}^+$ is the smallest such that $a_k \neq 0$.

Let $\beta \in \mathbb{C}$ be such that $\beta^k = -\frac{1}{a_k}$.

There is a const c > 1 so that if $\hat{t} \in (0,1)$, then $|q(t\beta)| \le |1 + a_k t^k \beta^k| + t^{k+1} c = 1 - t^k (1 - tc)$.

Now letting t = 1/(2c), we get $|q(t\beta)| < 1$. Contradicts. Hence $p(\zeta) = 0$, as desired.

• Prove that if $w, z \in \mathbb{C}$, then $||w| - |z|| \le |w - z|$.

SOLUTION:
$$|w - z|^2 = (w - z)(\overline{w} - \overline{z})$$

 $= |w|^2 + |z|^2 - (w\overline{z} + \overline{w}z)$
 $= |w|^2 + |z|^2 - (\overline{w}z + \overline{w}z)$
 $= |w|^2 + |z|^2 - 2Re(\overline{w}z)$
 $\geq |w|^2 + |z|^2 - 2|\overline{w}z|$
 $= |w|^2 + |z|^2 - 2|w||z| = ||w| - |z||^2$.

Geometric interpretation: The length of each side of a triangle is greater than or equal to the difference of the lengths of the two other sides.

• Suppose V is on C and $\varphi \in V'$. Define $\sigma : V \to R$ by $\sigma(v) = \operatorname{Re} \varphi(v)$ for each $v \in V$. Show that $\varphi(v) = \sigma(v) - i\sigma(iv)$ for all $v \in V$.

SOLUTION:

Notice that $\varphi(v) = \operatorname{Re} \varphi(v) + i \operatorname{Im} \varphi(v) = \sigma(v) + i \operatorname{Im} \varphi(v)$.

 $\mathbb{Z} \operatorname{Re} \varphi(iv) = \operatorname{Re} [i\varphi(v)] = -\operatorname{Im} \varphi(v) = \sigma(iv).$

Hence $\varphi(v) = \sigma(v) - i\sigma(iv)$.

2 Suppose $m \in \mathbb{N}^+$. Is the set $U = \{0\} \cup \{p \in \mathcal{P}(\mathbf{F}) : \deg p = m\}$ a subsp of $\mathcal{P}(\mathbf{F})$?

C	_	гт	TT	เด	ът
	()	Ы	l. L.	1()	N

$$x^{m}, x^{m} + x^{m-1} \in U$$
 but $\deg [(x^{m} + x^{m-1}) - (x^{m})] \neq m \Rightarrow (x^{m} + x^{m-1}) - (x^{m}) \notin U$.

Hence U is not closed under add, and therefore is not a subsp.

3 Suppose $m \in \mathbb{N}^+$. Is the set $U = \{0\} \cup \{p \in \mathcal{P}(\mathbb{F}) : 2 \mid \deg p\}$ a subsp of $\mathcal{P}(\mathbb{F})$?

SOLUTION:

$$x^{2}, x^{2} + x \in U$$
 but $deg[(x^{2} + x) - (x^{2})]$ is odd and hence $(x^{2} + x) - (x^{2}) \notin U$.

Thus *U* is not closed under add, and therefore is not a subsp.

5 Suppose that $m \in \mathbb{N}, z_1, \dots, z_{m+1}$ are distinct elements of \mathbb{F} , and $w_1, \dots, w_{m+1} \in \mathbb{F}$. Prove that $\exists ! p \in \mathcal{P}_m(\mathbb{F})$ such that $p(z_k) = w_k$ for each $k = 1, \dots, m+1$.

SOLUTION:

Define $T: \mathcal{P}_m(\mathbf{F}) \to \mathbf{F}^{m+1}$ by $Tq = (q(z_1), \dots, q(z_m), q(z_{m+1}))$. As can be easily checked, T is linear.

We need to show that T is surj, so that such p exists; and that T is inje, so that such p is unique.

$$Tq = 0 \Longleftrightarrow q(z_1) = \dots = q(z_m) = q(z_{m+1}) = 0$$

 \iff $q = 0 \in \mathcal{P}_m(\mathbf{F})$, for if not, q of deg m has at least m + 1 distinct roots. Contradicts [4.12].

 $\dim \operatorname{range} T = \dim \mathcal{P}_m(\mathbf{F}) - \dim \operatorname{null} T = m+1 = \dim \mathbf{F}^{m+1}$. \mathbf{X} range $T \subseteq \mathbf{F}^{m+1}$. Hence T is surj. \square

6 Suppose $p \in \mathcal{P}_m(\mathbb{C})$ has degree m. Prove that p has m distinct zeros $\iff p$ and its derivative p' have no zeros in common.

SOLUTION:

(a) Suppose p has m distinct zeros. By [4.14] and deg p=m, let $p(z)=c(z-\lambda_1)\cdots(z-\lambda_m)$, $\exists\,!\,c,\lambda_i\in\mathbf{C}$.

For each
$$j \in \{1, ..., m\}$$
, let $\frac{p(z)}{(z - \lambda_j)} = q_j \in \mathcal{P}_{m-1}(\mathbf{C})$, then $p(z) = (z - \lambda_j)q_j(z)$ and $q_j(\lambda_j) \neq 0$.

$$p'(z) = (z - \lambda_j)q_j'(z) + q_j(z) \Rightarrow p'(\lambda_j) = q_j(\lambda_j) \neq 0$$
, as desired.

(b) To prove the implication on the other direction, we prove the contrapositive:

Suppose p has less than m distinct roots.

We must show that p and its derivative p' have at least one zero in common.

Let λ be a zero of p, then write $p(z) = (z - \lambda)^n q(z)$, $\exists ! n \in \mathbb{N}^+, q \in \mathcal{P}_{m-n}(\mathbb{C})$.

 $p'(z) = (z - \lambda)^n q'(z) + n(z - \lambda)^{n-1} q(z) \Rightarrow p'(\lambda) = 0, \lambda \text{ is a common root of } p' \text{ and } p.$

7 Prove that every $p \in \mathcal{P}(\mathbf{R})$ of odd degree has a zero.

SOLUTION:

Using the notation and proof of [4.17]. $\deg p = 2M + m$ is odd $\Rightarrow m$ is odd. Hence λ_1 exists.

OR. Using calculus only.

Suppose $p \in \mathcal{P}_m(\mathbf{F})$, $\deg p = m, m$ is odd.

Let
$$p(x) = a_0 + a_1 x + \dots + a_m x^m$$
. Then $a_m \neq 0$. Denote $|a_m|^{-1} a_m$ by δ

Write
$$p(x) = x^m \left(\frac{a_0}{x^m} + \frac{a_1}{x^{m-1}} + \dots + \frac{a_{m-1}}{x} + a_m \right)$$
.

Thus p(x) is continuous, and $\lim_{x \to -\infty} p(x) = -\delta \infty$; $\lim_{x \to \infty} p(x) = \delta \infty$.

Hence we conclude that p has at least one real zero. \square

8 For $p \in \mathcal{P}(\mathbf{R})$, define $Tp : \mathbf{R} \to \mathbf{R}$ by $(Tp)(x) = \begin{cases} \frac{p(x) - p(3)}{x - 3} & \text{if } x \neq 3, \\ p'(3) & \text{if } x = 3 \end{cases}$ for all $x \in \mathbf{R}$.

Show that $Tp \in \mathcal{P}(\mathbf{R})$ for all $p \in \mathcal{P}(\mathbf{R})$ and that $T : \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ is a linear map.

SOLUTION:

For
$$x \neq 3$$
, $T(x^n) = \frac{x^n - 3^n}{x - 3} = \sum_{i=1}^n 3^{i-1} x^{n-i}$.

For x = 3, $T(x^n) = 3^{n-1} \cdot n$. Note that if x = 3, then $\sum_{i=1}^n 3^{i-1} x^{n-i} = \sum_{i=1}^n 3^{n-1} = 3^{n-1} \cdot n$.

Hence for all $x \in \mathbb{R}$ and for all $n \in \mathbb{N}$, $T(x^n) = \sum_{i=1}^n 3^{i-1} x^{n-i} \in \mathcal{P}(\mathbb{R})$.

Because *T* is linear, we conclude that $Tp \in \mathcal{P}(\mathbf{R})$ for all $p \in \mathcal{P}(\mathbf{R})$.

Now we show that *T* is linear:

Now we show that *T* is linear:
$$\forall p, q \in \mathcal{P}(\mathbf{R}), \lambda \in \mathbf{R}, T(p + \lambda q)(x) = \begin{cases} \frac{(p + \lambda q)(x) - (p + \lambda q)(3)}{x - 3} & \text{if } x \neq 3, \\ (p + \lambda q)'(3) & \text{if } x = 3 \end{cases} \text{ for all } x \in \mathbf{R}.$$
 Notice that
$$\begin{cases} (p + \lambda q)(x) - (p + \lambda q)(3) = (p(x) - p(3)) + (\lambda q(x) - \lambda q(3)) \\ (p + \lambda q)'(3) = p'(3) + \lambda q'(3). \end{cases}$$

Notice that
$$\begin{cases} (p + \lambda q)(x) - (p + \lambda q)(3) = (p(x) - p(3)) + (\lambda q(x) - \lambda q(3)) \\ (p + \lambda q)'(3) = p'(3) + \lambda q'(3). \end{cases}$$

Thus $T(p + \lambda q)(x) = (T(p) + \lambda T(q))(x)$ for all $x \in \mathbb{R}$.

9 Suppose $p \in \mathcal{P}(\mathbf{C})$. Define $q: \mathbf{C} \to \mathbf{C}$ by $q(z) = p(z)\overline{p(\overline{z})}$. Prove that $q \in \mathcal{P}(\mathbf{R})$.

SOLUTION:

$$p(z) = a_n z^n + \dots + a_1 z + a_0 \Rightarrow p(\overline{z}) = a_n \overline{\underline{z}}^n + \dots + a_1 \overline{z} + a_0 \Rightarrow \overline{p(\overline{z})} = \overline{a_n} z^n + \dots + \overline{a_1} z + \overline{a_0}.$$

Note that $q(z) = p(z)\overline{p(\overline{z})} = \overline{p(\overline{z})}p(z) = p(\overline{z})\overline{p(\overline{z})} = \overline{q(\overline{z})}$

Hence letting $q(z) = c_m x^m + \dots + c_1 x + c_0 \implies \overline{c_k} = c_k, c_k \in \mathbb{R}$ for each k.

10 Suppose $m \in \mathbb{N}$ and $p \in \mathcal{P}_m(\mathbb{C})$ such that $p(x_k) \in \mathbb{R}$ for each x_k , where $x_0, x_1, ..., x_m \in \mathbb{R}$ are distinct. Prove that $p \in \mathcal{P}(\mathbb{R})$.

SOLUTION:

Let $p(x_k) = y_k$ for each k. By Problem (5), $\exists ! q \in \mathcal{P}_m(\mathbf{R})$ such that $q(x_k) = y_k$. Hence p = q. OR. Using the Lagrange Interpolating Polynomial.

Define
$$q(x) = \sum_{j=0}^{m} \frac{(x - x_0)(x - x_1) \cdots (x - x_{j-1})(x - x_{j+1}) \cdots (x - x_m)}{(x_j - x_0)(x_j - x_1) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_m)} p(x_j).$$

 \mathbb{X} For each j, x_i , $p(x_i) \in \mathbb{R} \Rightarrow q \in \mathcal{P}_m(\mathbb{R}) \subseteq \mathcal{P}_m(\mathbb{C})$.

Notice that $q(x_k) = 1 \cdot p(x_k) \Rightarrow (q - p)(x_k) = 0$ for each $k \in \{0, 1, ..., m\}$.

Then (q-p) has (m+1) distinct zeros, while $(q-p) \in \mathcal{P}_m(\mathbb{C})$. Hence by [4.12], $q-p=0 \Rightarrow p=q.\square$

- **11** Suppose $p \in \mathcal{P}(\mathbf{F})$ with $p \neq 0$. Let $U = \{pq : q \in \mathcal{P}(\mathbf{F})\}$.
 - (a) Show that dim $\mathcal{P}(\mathbf{F})/U = \deg p$.
 - (b) Find a basis of $\mathcal{P}(\mathbf{F})/U$.

SOLUTION:

U is a subsp of $\mathcal{P}(\mathbf{F})$ because $\forall f, g \in \mathcal{P}(\mathbf{F}), \lambda \in \mathbf{F}, pf + \lambda pg = p(f + \lambda g) \in U$.

NOTE: Define $P :\to \mathcal{P}(\mathbf{F})$ by $(Pq)(x) = p(q(x)) = (p \circ q)(x)$ ($\neq p(x)q(x)$). P is not linear.

(a) By [4.8], $\forall f \in \mathcal{P}(\mathbf{F}), \exists ! q, r \in \mathcal{P}(\mathbf{F}), f = (p)q + (r); \deg r < \deg p$. Hence $\forall f \in \mathcal{P}(\mathbf{F}), \exists ! pq \in U, r \in \mathcal{P}_{\deg p-1}(\mathbf{F}), f = (pq) + (r); r \notin U.$

Thus $\mathcal{P}(\mathbf{F}) = U \oplus \mathcal{P}_{\deg p-1}(\mathbf{F})$. Therefore $\mathcal{P}(\mathbf{F})/U$ and $\mathcal{P}_{\deg p-1}(\mathbf{F})$ are iso. OR. $\forall f \in \mathcal{P}(\mathbf{F}), \exists ! q, r \in \mathcal{P}(\mathbf{F}), f = (p)q + (r); \deg r < \deg p$. Define $R : \mathcal{P}(\mathbf{F}) \to \mathcal{P}_{\deg p-1}(\mathbf{F})$ by (Rf)(z) = r(z) for each $z \in \mathbf{F}$. $\forall f, g \in \mathcal{P}(\mathbf{F}), \lambda \in \mathbf{F}, R(f + \lambda g)(z) = R(f) + \lambda R(g).$ BECAUSE: $\forall f, g \in \mathcal{P}(\mathbf{F}), \lambda \in \mathbf{F}$, $\exists ! q_1, r_1 \in \mathcal{P}(\mathbf{F}), f = (p)q_1 + (r_1), \deg r_1 < \deg p;$ $\exists ! q_2, r_2 \in \mathcal{P}(\mathbf{F}), g = (p)q_2 + (r_2), \deg r_2 < \deg p;$ $\exists \,!\, q_3, r_3 \in \mathcal{P}(F), \lambda g = (p)q_3 + (r_3) = (p)(\lambda q_2) + (\lambda r_2), \ \deg r_3 < \deg p \ \text{ and } \deg \lambda r_2 < \deg p.$ $\Rightarrow q_3 = \lambda q_2, r_3 = \lambda r_2.$ $\exists \,!\, q_0, r_0 \in \mathcal{P}(\mathbf{F}), (f + \lambda g) = (p)q_0 + (r_0)$ $= (p)(q_1 + \lambda q_2) + (r_1 + \lambda r_2), \deg r_0 < \deg p \text{ and } \deg(r_1 + \lambda r_2) < \deg p.$ $\Rightarrow q_1 + \lambda q_2 = q_0$; $r_1 + \lambda r_2 = r_0$. Hence *R* is linear. $R(f) = 0 \iff f = pq, \exists ! q \in \mathcal{P}(\mathbf{F}). \text{ Thus null } R = U.$ $\forall r \in \mathcal{P}_{\deg v-1}(\mathbf{F}), \det f = p+r, \text{ then } R(f) = r. \text{ Thus range } R = \mathcal{P}_{\deg v-1}(\mathbf{F}).$ Finally, by [3.91(d)], $\mathcal{P}(\mathbf{F})$ /null R, namely $\mathcal{P}(\mathbf{F})/U$, and range R, namely $\mathcal{P}_{\deg p-1}(\mathbf{F})$, are iso. (b) $(1 + U, x + U, ..., x^{\deg p - 1}) + U$) can be a basis of $\mathcal{P}(\mathbf{F})/U$. • Suppose nonconst $p, q \in \mathcal{P}(\mathbb{C})$ have no zeros in common. Let $m = \deg p$, $n = \deg q$. Use (a)–(c) below to prove that $\exists ! r \in \mathcal{P}_{n-1}(\mathbf{C}), s \in \mathcal{P}_{m-1}(\mathbf{C})$ such that rp + sq = 1. (a) Define $T: \mathcal{P}_{n-1}(\mathbf{C}) \times \mathcal{P}_{m-1}(\mathbf{C}) \to \mathcal{P}_{m+n-1}(\mathbf{C})$ by T(r,s) = rp + sq. *Show that the linear map T is inje.* (b) Show that the linear map T in (a) is surj. (c) Use (b) to conclude that $\exists ! r \in \mathcal{P}_{n-1}(\mathbf{C}), s \in \mathcal{P}_{m-1}(\mathbf{C})$ such that rp + sq = 1. **SOLUTION:** (a) T is linear because $\forall r_1, r_2 \in \mathcal{P}_{n-1}(\mathbb{C}), s_1, s_2 \in \mathcal{P}_{m-1}(\mathbb{C}), \lambda \in \mathbb{F}$, $T((r_1, s_1) + \lambda(r_2, s_2)) = T(r_1 + \lambda r_2, s_1 + \lambda s_2) = (r_1 + \lambda r_2)p + (s_1 + \lambda s_2)q = T(r_1, s_1) + \lambda T(r_2, s_2).$ Suppose T(r,s) = rp + sq = 0. Notice that p,q have no zeros in common. Then r = s = 0, for if not, write $\frac{q(z)}{r(z)} = \frac{p(z)}{s(z)}$, while for any zero λ of q, $\frac{q(\lambda)}{r(z)} = 0 \neq \frac{p(\lambda)}{s(z)}$. (b) $\dim(\mathcal{P}_{n-1}(\mathbf{C}) \times \mathcal{P}_{m-1}(\mathbf{C})) = \dim\mathcal{P}_{n-1}(\mathbf{C}) + \dim\mathcal{P}_{m-1}(\mathbf{C}) = n + m = \dim\mathcal{P}_{m+n-1}(\mathbf{C}).$

(c) Immediately.

ENDED

5.A

[1]: 31; [2]: 1, 2, 3, 15, 21; [3]: 23, (2E Ch5.20), (4E.5.A.37), 4, 5; [4]: 6, (4E.5.A.17, 18) OR 16, (4E.5.A.15); [5]: 7, 8, (4E.5.A.8), 22, 9, 10; [6]: 11, 12, 14, 30, 13, (4E.5.A.11); [7]: 17, (4E.5.A.16), 18; [8]: 19, 20, 24; [9]: 24′, 25, 26, 27, 28; [10]: (4E.5.A.39), 29; [11]: 32, (4E.5.A.35), (4E.5.A.38) OR 35, 36; [12] 32, 34.

 $\not \subseteq T$ is inje. Hence dim range $T = \dim(\mathcal{P}_{n-1}(\mathbb{C}) \times \mathcal{P}_{m-1}(\mathbb{C})) - \dim \operatorname{null} T = \dim \mathcal{P}_{m+n-1}(\mathbb{C})$.

• Note For [5.6]:

More generally, suppose we do not know whether V is finite-dim. Then $(a) \iff (b)$. Suppose (a) λ is an eigval of T with an eigvec v. Then $(T - \lambda I)v = 0$.

Thus range $T = \mathcal{P}m + n - 1 \Rightarrow T$ is surj, and therefore is an iso.

Hence we get (b), $(T - \lambda I)$ is not inje. And then (d), $(T - \lambda I)$ is not inv. But $(d) \Rightarrow (b)$ fails (because *S* is not inv \iff *S* is not inje *or S* is not surj). **31** Suppose V is finite-dim and $v_1, \ldots, v_m \in V$. Prove that (v_1, \ldots, v_m) is linely inde $\iff \exists T \in \mathcal{L}(V), v_1, \dots, v_m \text{ are eigvecs of } T \text{ correspd to distinct eigvals.}$ **SOLUTION:** Suppose $(v_1, ..., v_m)$ is linely inde, extend it to a basis of V as $(v_1, ..., v_m, ..., v_n)$. Define $T \in \mathcal{L}(V)$ by $Tv_k = kv_k$ for each $k \in \{1, ..., m, ..., n\}$. Conversely by [5.10]. **1** Suppose $T \in \mathcal{L}(V)$ and U is a subsp of V. (a) Prove that if $U \subseteq \text{null } T$, then U is invar under T. $\forall u \in U \subseteq \text{null } T, Tu = 0 \in U. \square$ (b) Prove that if range $T \subseteq U$, then U is invar under T. $\forall u \in U, Tu \in \text{range } T \subseteq U. \square$ • Suppose $S, T \in \mathcal{L}(V)$ are such that ST = TS. (a) Prove that null $(T - \lambda I)$ is invar under S for any $\lambda \in \mathbf{F}$. (b) Prove that range $(T - \lambda I)$ is invar under S for any $\lambda \in \mathbf{F}$. **S**OLUTION: Note that $ST = TS \Rightarrow (T - \lambda I)S = S(T - \lambda I)$. (a) Suppose $v \in \text{null } (T - \lambda I)$, then $(T - \lambda I)(Sv) = S(T - \lambda I)v = S(0) = 0$. Hence $Sv \in \text{null } (T - \lambda I)$ and therefore $\text{null } (T - \lambda I)$ is invar under S. (b) Suppose $v \in \text{range}(T - \lambda I)$, therefore $\exists u \in V, (T - \lambda I)u = v$. Then $Sv = S(T - \lambda I)u = (T - \lambda I)(Su) \in \text{range}(T - \lambda I)$. Hence $Sv \in \text{range}(T - \lambda I)$ and therefore range $(T - \lambda I)$ is invar under S. **COMMENT:** Reversing the roles of *S* and *T*, letting $\lambda = 0$, we conclude that null *S* and range *S* is invar under *T*, which will be shown in Problem (2) and (3) below. • Suppose $S, T \in \mathcal{L}(V)$ are such that ST = TS. **2** Show that W = null S is invar under T. $\forall u \in W, Su = 0 \Rightarrow TSu = 0 = STu \Rightarrow Tu \in W$. **3** Show that $U = \operatorname{range} S$ is invar under T. $\forall w \in U, \exists v \in V, Sv = w, STv = TSv = Tw \in U$. \square **15** Suppose $T \in \mathcal{L}(V)$. Suppose $S \in \mathcal{L}(V)$ is inv. (a) Prove that T and $S^{-1}TS$ have the same eigvals. (b) What is the relationship between the eigvecs of T and the eigvecs of $S^{-1}TS$? **SOLUTION:** Suppose λ is an eigval of T with an eigvec v. Then $S^{-1}TS(S^{-1}v) = S^{-1}Tv = S^{-1}(\lambda v) = \lambda S^{-1}v$. Thus λ is also an eigval of $S^{-1}TS$ with an eigvec $S^{-1}v$. Suppose λ is an eigval of $S^{-1}TS$ with an eigvec v. Then $S(S^{-1}TS)v = TSv = \lambda Sv$. Thus λ is also an eigval of T with an eigvec Sv. OR. Note that $S(S^{-1}TS)S^{-1} = T$. Hence every eigval of $S^{-1}TS$ is an eigval of $S(S^{-1}TS)S^{-1} = T$. And every eigvec v of $S^{-1}TS$ is $S^{-1}v$, every eigvec u of T is Su. **21** Suppose $T \in \mathcal{L}(V)$ is inv. (a) Suppose $\lambda \in \mathbf{F}$ with $\lambda \neq 0$. Prove that λ is an eigend of $T \iff \frac{1}{\lambda}$ is an eigend of T^{-1} .

(b) Prove that T and T^{-1} have the same eigvecs.	
SOLUTION:	
(a) Suppose λ is an eigval of T with an eigvec v .	
Then $T^{-1}Tv = \lambda T^{-1}v = v \Rightarrow T^{-1}v = \frac{1}{\lambda}v$. Hence $\frac{1}{\lambda}$ is an eigval of T^{-1} . (b) Suppose $\frac{1}{\lambda}$ is an eigval of T^{-1} with an eigvec v .	
Then $TT^{-1}v = v = \frac{1}{\lambda}Tv \Rightarrow Tv = \lambda v$. Hence λ is an eigval of T .	
OR. Note that $(T^{-1})^{-1} = T$ and $\frac{1}{\frac{1}{\lambda}} = \lambda$.	
33 Suppose V is finite-dim, $S,T \in \mathcal{L}(V)$. Prove that ST and TS have the same eigvals.	
Suppose λ is an eigval of ST with an eigvec v . Then $T(STv) = \lambda Tv = TS(Tv)$.	
If $Tv \neq 0$, then λ is an eigval of TS .	
Otherwise, $\lambda = 0$, ($v \neq 0$, $\lambda v = 0 = STv$), then T is not inv	
\Rightarrow TS is not inv \Rightarrow (TS - 0I) is not inv $\Rightarrow \lambda = 0$ is an eigenal of TS.	
Reversing the roles of T and S, we conclude that ST and TS have the same eigvals. \Box	
• (2E Ch5.20)	
Suppose $T \in \mathcal{L}(V)$ has dim V distinct eigvals and $S \in \mathcal{L}(V)$ has the same eigvecs	
(but might not with the same eigvals). Prove that $ST = TS$.	
Let $n = \dim V$. For each $j \in \{1,, n\}$, let v_j be an eigence with eigenal λ_j of T and α_j of S . Then $(v_1,, v_n)$ is a basis of V . Because $(ST)v_j = \alpha_j\lambda_jv_j = (TS)v_j$ for each j . Hence $ST = TS$.	
Then $(v_1,, v_n)$ is a basis of V . Because $(ST)v_j = \alpha_j \lambda_j v_j = (TS)v_j$ for each j . Hence	
Then $(v_1,, v_n)$ is a basis of V . Because $(ST)v_j = \alpha_j\lambda_jv_j = (TS)v_j$ for each j . Hence $ST = TS$.	
Then $(v_1,, v_n)$ is a basis of V . Because $(ST)v_j = \alpha_j\lambda_jv_j = (TS)v_j$ for each j . Hence $ST = TS$. \Box • Suppose V is finite-dim and $T \in \mathcal{L}(V)$.	
Then $(v_1,, v_n)$ is a basis of V . Because $(ST)v_j = \alpha_j\lambda_jv_j = (TS)v_j$ for each j . Hence $ST = TS$. \Box • Suppose V is finite-dim and $T \in \mathcal{L}(V)$. \Box Define $\mathcal{A} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{A}(S) = TS$ for each $S \in \mathcal{L}(V)$.	
Then (v_1, \ldots, v_n) is a basis of V . Because $(ST)v_j = \alpha_j\lambda_jv_j = (TS)v_j$ for each j . Hence $ST = TS$. \Box • Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Define $\mathcal{A} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{A}(S) = TS$ for each $S \in \mathcal{L}(V)$. Prove that the set of eigvals of T equals the set of eigvals of A .	
Then (v_1, \ldots, v_n) is a basis of V . Because $(ST)v_j = \alpha_j\lambda_jv_j = (TS)v_j$ for each j . Hence $ST = TS$. \Box • Suppose V is finite-dim and $T \in \mathcal{L}(V)$. \Box Define $\mathcal{A} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{A}(S) = TS$ for each $S \in \mathcal{L}(V)$. \Box Prove that the set of eigvals of T equals the set of eigvals of T . \Box (a) Suppose v_1, \ldots, v_m are all linely inde eigvecs of T	
Then (v_1, \ldots, v_n) is a basis of V . Because $(ST)v_j = \alpha_j\lambda_jv_j = (TS)v_j$ for each j . Hence $ST = TS$. \Box • Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Define $\mathcal{A} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{A}(S) = TS$ for each $S \in \mathcal{L}(V)$. Prove that the set of eigvals of T equals the set of eigvals of \mathcal{A} . (a) Suppose v_1, \ldots, v_m are all linely inde eigvecs of T with correspd eigvals $\lambda_1, \ldots, \lambda_m$ respectively (P) possibly with repetitions (P) .	
Then (v_1, \ldots, v_n) is a basis of V . Because $(ST)v_j = \alpha_j\lambda_jv_j = (TS)v_j$ for each j . Hence $ST = TS$. \Box • Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Define $\mathcal{A} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{A}(S) = TS$ for each $S \in \mathcal{L}(V)$. Prove that the set of eigvals of T equals the set of eigvals of \mathcal{A} . (a) Suppose v_1, \ldots, v_m are all linely inde eigvecs of T with correspd eigvals $\lambda_1, \ldots, \lambda_m$ respectively $(possibly with repetitions)$. Extend to a basis of V as $(v_1, \ldots, v_m, \ldots, v_n)$.	
Then $(v_1,, v_n)$ is a basis of V . Because $(ST)v_j = \alpha_j\lambda_jv_j = (TS)v_j$ for each j . Hence $ST = TS$. \Box • Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Define $\mathcal{A} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{A}(S) = TS$ for each $S \in \mathcal{L}(V)$. Prove that the set of eigvals of T equals the set of eigvals of \mathcal{A} . (a) Suppose $v_1,, v_m$ are all linely inde eigvecs of T with corresponding eigvals $\lambda_1,, \lambda_m$ respectively (P) possibly with repetitions (P) . Extend to a basis of P as (V) ,, (V) ,, (V) ,, (V) . Then for each (V) is a basis of (V) as (V) ,, (V) ,, (V) .	
Then $(v_1,, v_n)$ is a basis of V . Because $(ST)v_j = \alpha_j\lambda_jv_j = (TS)v_j$ for each j . Hence $ST = TS$. \Box • Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Define $\mathcal{A} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{A}(S) = TS$ for each $S \in \mathcal{L}(V)$. Prove that the set of eigvals of T equals the set of eigvals of \mathcal{A} . (a) Suppose $v_1,, v_m$ are all linely inde eigvecs of T with correspd eigvals $\lambda_1,, \lambda_m$ respectively $(possibly with repetitions)$. Extend to a basis of V as $(v_1,, v_m,, v_n)$. Then for each $k \in \{1,, m\}$, span $(v_k) \subseteq \text{null } (T - \lambda_k I)$. Define $S_k \in \mathcal{L}(V)$ by $S_k(v_j) = v_k$ for each $j \in \{1,, n\}$,	
Then $(v_1,, v_n)$ is a basis of V . Because $(ST)v_j = \alpha_j\lambda_jv_j = (TS)v_j$ for each j . Hence $ST = TS$. \Box • Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Define $\mathcal{A} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{A}(S) = TS$ for each $S \in \mathcal{L}(V)$. Prove that the set of eigvals of T equals the set of eigvals of \mathcal{A} . (a) Suppose $v_1,, v_m$ are all linely inde eigvecs of T with correspd eigvals $\lambda_1,, \lambda_m$ respectively $(possibly with repetitions)$. Extend to a basis of V as $(v_1,, v_m,, v_n)$. Then for each $k \in \{1,, m\}$, span $(v_k) \subseteq \text{null } (T - \lambda_k I)$. Define $S_k \in \mathcal{L}(V)$ by $S_k(v_j) = v_k$ for each $j \in \{1,, n\}$, so that range $S_k = \text{span } (v_k)$ for each $k \in \{1,, m\}$, then $\mathcal{A}(S_k) = TS_k = \lambda_k S_k$.	
Then (v_1, \dots, v_n) is a basis of V . Because $(ST)v_j = \alpha_j\lambda_jv_j = (TS)v_j$ for each j . Hence $ST = TS$. \Box • Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Define $\mathcal{A} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{A}(S) = TS$ for each $S \in \mathcal{L}(V)$. Prove that the set of eigvals of T equals the set of eigvals of T . (a) Suppose v_1, \dots, v_m are all linely inde eigvecs of T with correspd eigvals $\lambda_1, \dots, \lambda_m$ respectively (T_i, \dots, T_i) possibly with repetitions T_i . Extend to a basis of T_i as T_i and T_i by T_i considering the foreach T_i by T_i considering T_i by $T_$	

Thus the eigvals of A are eigvals of T .	
O_{R} .	
(a) Suppose λ is an eigval of T with an eigvec v.	
Let $v_1 = v$ and extend to a basis (v_1, \dots, v_m) of V .	
Define $S \in \mathcal{L}(V)$ by $Sv_1 = v_1$, $Sv_k = 0$ for $k \ge 2$.	
Then $(T - \lambda I)Sv_1 = 0 = (T - \lambda I)Sv_k = 0$.	
Hence $(T - \lambda I)S = 0 \Rightarrow TS = \lambda S$ while $S \neq 0$. Thus λ is also an eigral of A .	
(b) Suppose λ is an eigval of \mathcal{A} with an eigvec S . Then $(T - \lambda I)S = 0$ while $S \neq 0$.	
Hence $(T - \lambda I)$ is not inje. Thus λ is also an eigral of T .	
COMMENT: Define $\mathcal{B} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{B}(S) = ST$, $\forall S \in \mathcal{L}(V)$. Then the eigenst of \mathcal{B} are not the eigenst of T .	
4 Suppose $T \in \mathcal{L}(V)$ and V_1, \dots, V_m are invar subsps of V under T .	
Prove that $V_1 + \cdots + V_m$ is invar under T .	
S OLUTION: For each $i = 1,, m$, $\forall v_i \in V_i, Tv_i \in V_i$	
$Hence \ \forall v=v_1+\dots+v_m \in V_1+\dots+V_m, Tv=Tv_1+\dots+Tv_m \in V_1+\dots+V_m.$	
S Suppose $T \in \mathcal{L}(V)$. Prove that the intersection of every collection	
of subsps of V invar under T is invar under T.	
Suppose $\{V_{\alpha}\}_{\alpha\in\Gamma}$ is a collection of subsps of V invar under T ; here Γ is an arbitrary index	set.
We need to prove that $\bigcap_{\alpha \in \Gamma} V_{\alpha}$, which equals the set of vectors	
that are in V_{α} for each $\alpha \in \Gamma$, is invar under T .	
For each $\alpha \in \Gamma$, $\forall v_{\alpha} \in V_{\alpha}$, $Tv_{\alpha} \in V_{i}$.	
Hence $\forall v \in \bigcap_{\alpha \in \Gamma} V_{\alpha}$, $Tv \in V_{\alpha}$, $\forall \alpha \in \Gamma \Rightarrow Tv \in \bigcap_{\alpha \in \Gamma} V_{\alpha}$. Thus $\bigcap_{\alpha \in \Gamma} V_{\alpha}$ is invar un	ıder
<i>T</i> .	
S Prove or give a counterexample:	
If V is finite-dim and U is a subsp of V that is invar under every operator on V ,	
then $U = \{0\}$ or $U = V$.	
Notice that V might be $\{0\}$. In this case we are done. Suppose $\dim V \geq 1$. We prove	e by
contrapositive:	
Suppose $U \neq \{0\}$ and $U \neq V$, then $\exists T \in \mathcal{L}(V)$ such that U is not invar under T	· .
Let W be such that $V = U \oplus W$.	
Let (u_1, \ldots, u_m) be a basis of U and (w_1, \ldots, w_n) be a basis of W .	

Define $T \in \mathcal{L}(V)$ by $T(a_1u_1 + \cdots + a_mu_m + b_1w_1 + \cdots + b_nw_n) = b_1w_1 + \cdots + b_nw_n$.

Hence $(u_1, \dots, u_m, w_1, \dots, w_n)$ is a basis of V.

- Suppose $F = R, T \in \mathcal{L}(V)$.
 - (a) (OR (9.11)) $\lambda \in \mathbf{R}$. Prove that λ is an eigval of $T \iff \lambda$ is an eigval of $T_{\mathbf{C}}$.
 - (b) (OR Problem (16)) $\lambda \in \mathbb{C}$. Prove that λ is an eigral of $T_{\mathbb{C}} \iff \overline{\lambda}$ is an eigral of $T_{\mathbb{C}}$.
- (a) Suppose $v \in V$ is an eigvec correspd to the eigval λ .

Then
$$Tv = \lambda v \Rightarrow T_{\mathbf{C}}(v + \mathbf{i}0) = Tv + \mathbf{i}T0 = \lambda v$$
.

Thus λ is an eigral of T.

Suppose $v + iu \in V_C$ is an eigrec correspd to the eigral λ .

Then $T_{\rm C}(v+{\rm i}u)=\lambda v+{\rm i}\lambda u\Rightarrow Tv=\lambda v$, $Tu=\lambda u$. (Note that v or u might be zero). Thus λ is an eigval of $T_{\rm C}$.

(b) Suppose λ is an eigval of T_C with an eigvec v + iu.

Let
$$(v_1, ..., v_n)$$
 be a basis of V . Write $v = \sum_{i=1}^n a_i v_i$, $u = \sum_{i=1}^n b_i v_i$, where $a_i, b_i \in \mathbb{R}$.

Then $T_{\mathbf{C}}(v+\mathrm{i}u)=Tv+\mathrm{i}Tu=\lambda v+\mathrm{i}\lambda u=\lambda\sum_{i=1}^n(a_i+\mathrm{i}b_i)v_i$. Conjugating two sides, we have:

$$\overline{T_{\mathrm{C}}(v+\mathrm{i}u)} = \overline{Tv+\mathrm{i}Tu} = \overline{Tv}-\mathrm{i}\overline{Tu} = Tv-\mathrm{i}Tu = T_{\mathrm{C}}(\overline{v+\mathrm{i}u}) = \lambda \sum_{i=1}^{n} (a_i+\mathrm{i}b_i)v_i = \overline{\lambda} \sum_{i=1}^{n} (a_i-\mathrm{i}b_i)v_i.$$

Hence
$$\overline{\lambda}$$
 is an eigval of $T_{\mathbf{C}}$. To prove the other direction, notice that $\overline{\lambda} = \lambda$.

• Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbf{F}$.

Show that λ is an eigval of $T \iff \lambda$ is an eigval of the dual operator $T^{'} \in \mathcal{L}(V^{'})$.

(a) Suppose λ is an eigval of T with an eigvec v.

Then $(T - \lambda I_V)$ is not inv. X V is finite-dim.

Thus by [3.108, 110], [3.101] and Problem (12) in (3.F), $(T - \lambda I_V)' = T' - \lambda I_{V'}$ is not inv.

Hence λ is an eigval of T'.

(b) Suppose λ is an eigval T' with an eigvec ψ . Then $T'(\psi) = \psi \circ T = \lambda \psi$.

 $\not \subseteq \psi \neq 0 \Rightarrow \exists v \in V \text{ such that } \psi(v) \neq 0. \text{ Note that } \psi(Tv) = \lambda \psi(v).$

Thus
$$\lambda = \frac{\psi(Tv)}{\psi(v)} \Rightarrow Tv = \frac{\psi(Tv)}{\psi(v)}v = \lambda v$$
. Hence λ is an eigend of T .

SSuppose $T \in \mathcal{L}(\mathbb{R}^2)$ is defined by T(x,y) = (-3y,x). Find the eigenst of T.

Suppose $\lambda \in \mathbb{R}$ and $(x,y) \in \mathbb{R}^2 \setminus \{0\}$ such that $T(x,y) = (-3y,x) = \lambda(x,y)$. Then $-3y = \lambda x$ and $x = \lambda y$.

<u>30</u> Define $T \in \mathcal{L}(\mathbf{F}^n)$ by $T(x_1, x_2, x_3, ..., x_n) = (x_1, 2x_2, 3x_3, ..., nx_n)$

- (a) Find all eigvals and eigvecs of T.
- (b) Find all invar subsps of V under T.

(a) Suppose $v = (x_1, x_2, x_3, ..., x_n)$ is an eigerc of T with an eigeral λ . Then $Tv = \lambda v = (x_1, 2x_2, 3x_3, ..., nx_n) = (\lambda x_1, \lambda x_2, \lambda x_3, ..., \lambda x_n)$. Hence $1, \ldots, n$ are eigvals of T. And $\{(0,\ldots,0,x_{\lambda},0,\ldots,0)\in \mathbf{F}^n:\lambda=1,\ldots,n,\ x_{\lambda}\in \mathbf{F}\wedge x_{\lambda}\neq 0\}$ is the set of all eigences of T. (b) Let $V_{\lambda}=\{(0,\ldots,0,x_{\lambda},0,\ldots,0)\in \mathbf{F}^n:x_{\lambda}\in \mathbf{F}\wedge x_{\lambda}\neq 0\}$. Then V_1,\ldots,V_n are invar under T. Hence by Problem (4), every sum of V_1, \ldots, V_n is a invar subsp of V under T. **11** Define $T: \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ by Tp = p'. Find all eigens and eigens of T. *Note that in general,* $\deg p' < \deg p \pmod{\deg 0} = -\infty$). Suppose λ is an eigval of T with an eigvec p. Suppose $\lambda \neq 0$. Then $\deg \lambda p > \deg p'$ while $\lambda p \neq p'$. Contradicts. Thus $\lambda = 0$. Therefore $\deg \lambda p = -\infty = \deg p \Rightarrow p$ is a nonzero const poly. Hence the set of all eigences is $\{C: C \in \mathbb{R} \land C \neq 0\} = \mathcal{P}_0(\mathbb{R}) \setminus \{0\}$. **32** Define $T \in \mathcal{L}(\mathcal{P}_4(\mathbf{R}))$ by (Tp)(x) = xp'(x) for all $x \in \mathbf{R}$. Find all eigvals and eigvecs of T. Suppose λ is an eigral of T with an eigrec p, then $(Tp)(x) = xp'(x) = \lambda p(x)$. Let $p = a_0 + a_1 x + \dots + a_n x^n$. Then $xp'(x) = a_1x + 2a_2x^2 + \dots + na_nx^n = \lambda a_0 + \lambda a_1x + \lambda a_2x^2 + \dots + \lambda a_nx^n$. Similar to Problem (10), 0, 1, ..., n are eigvals of T. The set of all eigvecs of T is $\{cx^{\lambda} : \lambda = 0, 1, ..., n, c \in \mathbf{F} \land c \neq 0\}$. **30** Suppose $T \in \mathcal{L}(\mathbb{R}^3)$ and $-4, 5, \sqrt{7}$ are eigeals of T. Prove that $\exists x \in \mathbb{R}^3$ such that $Tx - 9x = (-4, 5, \sqrt{7})$. Because 9 is not an eigval. Hence (T - 9I) is surj. **14** Suppose $V = U \oplus W$, where U and W are nonzero subsps of V. Define $P \in \mathcal{L}(V)$ by P(u + w) = u for each $u \in U$ and each $w \in W$. Find all eigvals and eigvecs of P.

Then $P(u+w) = u = \lambda u + \lambda w \Rightarrow (\lambda - 1)u + \lambda w = 0$. By [1.44] and $V = U \oplus W$,

Suppose λ is an eigval of P with an eigvec (u + w).

 $(\lambda - 1)u = \lambda w = 0.$

Thus if $\lambda = 1$, then w = 0; if $\lambda = 0$, then u = 0.

Hence the eigvals of P are 0 and 1, the set of all eigvecs in P is $U \cup W$.

13 Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbf{F}$.

Prove that $\exists \alpha \in \mathbb{F}$, $|\alpha - \lambda| < \frac{1}{1000}$ and $(T - \alpha I)$ is inv.

Let
$$\alpha_k \in \mathbf{F}$$
 be such that $|\alpha_k - \lambda| = \frac{1}{1000 + k}$ for each $k = 1, ..., \dim V + 1$.

Note that each $T \in \mathcal{L}(V)$ *has at most* dim V *distinct eigvals.*

Hence $\exists k = 1, ..., \dim V + 1$ such that α_k is not an eigend of T and therefore $(T - \alpha_k I)$ is inv.

• Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbf{F}$.

Prove that $\exists \delta > 0$ *such that* $(T - \alpha I)$ *is inv for all* $\alpha \in \mathbf{F}$ *such that* $0 < |\alpha - \lambda| < \delta$.

If T has no eigvals, then $(T - \alpha I)$ is inje for all $\alpha \in \mathbf{F}$ and we are done.

Let $\delta > 0$ *be such that, for each eigral* $\lambda_k, \lambda_k \notin (\lambda - \delta, \lambda) \cup (\lambda, \lambda + \delta)$.

So that for all $\alpha \in \mathbf{F}$ such that $0 < |\alpha - \lambda| < \delta$, $(T - \alpha I)$ is not inje.

§7 Give an example of an operator on \mathbb{R}^4 that has no (real) eigvals.

SOLUTION:

$$Define \ T \in \mathcal{L}(\mathbf{R^4}) \ by \ \mathcal{M} \ (T, (e_1, e_2, e_3, e_4)) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & -1 \\ 3 & 8 & 11 & 5 \\ 3 & -8 & -11 & 5 \end{pmatrix}. \ Where \ (e_1, e_2, e_3, e_4) \ is \ the \ standard \ basis \ of \ \mathbf{R^4}.$$

Suppose λ is an eigral of T with an eigrec (x, y, z, w).

Then
$$T(x, y, z, w) = \lambda(x, y, z, w) \Rightarrow \begin{cases} (1 - \lambda)x + y + z + w = 0 \\ -x + (1 - \lambda)y - z - w = 0 \\ 3x + 8y + (11 - \lambda)z + 5w = 0 \\ 3x - 8y - 11z + (5 - \lambda)w = 0 \end{cases}$$

This linear equation has no solutions.

(You can type it on https://zh.numberempire.com/equationsolver.php to check.)

OR. Define $T \in \mathcal{L}(\mathbf{R}^4)$ by $T(x_1, x_2, x_3, x_4) = (-x_2, x_1, -x_4, x_3)$.

Suppose λ is an eigval of T with an eigvec (x, y, z, w).

Then
$$T(x, y, z, w) = (\lambda x, \lambda y, \lambda z, \lambda w) = (-y, x, -w, z) \Rightarrow \begin{cases} -y = \lambda x \\ x = \lambda y \\ -w = \lambda z \\ z = \lambda w \end{cases} \Rightarrow \begin{cases} -xy = \lambda^2 xy \\ -zw = \lambda^2 zw \end{cases}$$

If $xy \neq 0$ or $zw \neq 0$, then $\lambda^2 = -1$, we fail.

Otherwise, $xy = 0 \Rightarrow x = y = 0$, for if $x \neq 0$, then $\lambda = 0 \Rightarrow x = 0$, contradicts.

Similarly, y = z = w = 0. Then we fail.

Thus T has no eigvals.

• TODO Suppose (v_1, \ldots, v_n) is a basis of V and $T \in \mathcal{L}(V)$, $\mathcal{M}\left(T, (v_1, \ldots, v_n)\right) = A$. Prove that if λ is an eigral of T, then $|\lambda| \leq n \max\left\{\left|A_{j,k}\right| : 1 \leq j, k \leq n\right\}$.

First we show that $|\lambda| = n \max\{|A_{i,k}| : 1 \le j, k \le n\}$ for some cases.

Consider $A = \begin{pmatrix} k & \cdots & k \\ \vdots & \ddots & \vdots \\ k & \cdots & k \end{pmatrix}$. Then nk is an eigval of T with an eigvec $v_1 + \cdots + v_n$.

Now we show that if $|\lambda| \neq n \max\left\{\left|A_{j,k}\right| : 1 \leq j, k \leq n\right\}$, then $|\lambda| < n \max\left\{\left|A_{j,k}\right| : 1 \leq j, k \leq n\right\}$.

18 Show that the forward shift operator $T \in \mathcal{L}(\mathbf{F}^{\infty})$

defined by $T(z_1, z_2, \dots) = (0, z_1, z_2, \dots)$ has no eigvals.

Suppose λ is an eigval of T with an eigvec $(z_1, z_2, ...)$.

Then
$$T(z_1, z_2, \dots) = (\lambda z_1, \lambda z_2, \dots) = (0, z_1, z_2, \dots).$$

Thus
$$\lambda z_1 = 0, \lambda z_2 = z_1, \dots, \lambda z_k = z_{k-1}, \dots$$

Let $\lambda = 0$, then $\lambda z_2 = z_1 = 0 = \lambda z_k = z_{k-1}$, therefore $(z_1, z_2, \dots) = 0$ is not an eigeec.

Suppose $\lambda \neq 0$. Then $\lambda z_1 = 0 \Rightarrow z_1 = 0 \Rightarrow z_2 = 0 = z_k$ for all $k \in \mathbb{N}^+$.

And then $(z_1, z_2, ...) = 0$ is not an eigvec. Hence T has no eigvals.

Solution: $n \in \mathbb{N}^+$. Define $T \in \mathcal{L}(\mathbb{F}^n)$ by

$$T(x_1, \dots, x_n) = (x_1 + \dots + x_n, \dots, x_1 + \dots + x_n).$$

In other words, the entries of $\mathcal{M}(T)$ *with resp to the standard basis are all* 1's.

Find all eigvals and eigvecs of T.

Suppose λ is an eigval of T with an eigvec (x_1, \dots, x_n) .

Then
$$T(x_1,...,x_n) = (\lambda x_1,...,\lambda x_n) = (x_1 + ... + x_n,...,x_1 + ... + x_n).$$

Thus
$$\lambda x_1 = \dots = \lambda x_n = x_1 + \dots + x_n$$
.

For
$$\lambda = 0$$
, $x_1 + \dots + x_n = 0$.

For $\lambda \neq 0$, $x_1 = \cdots = x_n$ and then $\lambda x_k = nx_k$ for each k.

Hence 0, n are eigvecs of T.

And the set of all eigences of T is $\{(x_1, \dots, x_n) \in \mathbf{F}^n : x_1 + \dots + x_n = 0 \lor x_1 = \dots = x_n\}$. \square

20 Define the backward shift operator $S \in \mathcal{L}(\mathbf{F}^{\infty})$ by $S(z_1, z_2, z_3, \dots) = (z_2, z_3, \dots)$.

- (a) Show that every element of F is an eigval of S.
- (b) Find all eigvecs of S.

Suppose λ is an eigral of S with an eigrec $(z_1, z_2, ...)$.

Then
$$S(z_1, z_2, z_3 \dots) = (\lambda z_1, \lambda z_2, \dots) = (z_2, z_3, \dots).$$

Thus
$$\lambda z_1 = z_2, \lambda z_2 = z_3, ..., \lambda z_k = z_{k+1}, ...$$

For
$$\lambda = 0$$
, $\lambda z_1 = z_2 = 0 = \lambda z_2 = z_3 = \dots = z_k$ for all k .

While z_1 can be arbitrary, so that $(z_1, 0, ...)$ is an eigence with $z_1 \neq 0$.

For
$$\lambda \neq 0$$
, $\lambda^k z_1 = \lambda^{k-1} z_2 = \dots = \lambda z_k = z_{k+1}$ for all k .

Then
$$(z_1, \lambda z_1, \lambda^2 z_1, \dots, \lambda^k z_1, \dots)$$
 is an eigerc with $z_1 \neq 0$.

Hence (a) each element of $\lambda \in \mathbf{F}$ is an eigral of T.

And (b) the set of all eigences of T is
$$\{(z_1, \lambda z_1, \lambda^2 z_1, \dots, \lambda^k z_1, \dots) \in \mathbf{F}^{\infty} : \lambda \in \mathbf{F}, z_1 \neq 0\}$$

24 Suppose $A \in \mathbf{F}^{n,n}$. Define $T \in \mathcal{L}(\mathbf{F}^n)$ by Tx = Ax,

where elements of \mathbf{F}^n are thought of as n-by-1 col vectors.

- (a) Suppose the sum of the entries in each row of A equals 1. Prove that 1 is an eigval of T.
- (b) Suppose the sum of the entries in each col of A equals 1. Prove that 1 is an eigval of T.
- (a) Suppose λ is an eigval of T with an eigvec $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Then
$$Tx = Ax = \begin{pmatrix} \sum_{c=1}^{n} A_{1,c} x_c \\ \vdots \\ \sum_{c=1}^{n} A_{n,c} x_c \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
. While $\sum_{r=1}^{n} A_{R,c} = 1$ for each $R = 1, \dots, n$.

Thus if we let $x_1 = \cdots = x_n$, then $\lambda = 1$, and hence is an eigral of T.

(b) Suppose λ is an eigval of T with an eigvec $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Then
$$Tx = Ax = \begin{pmatrix} \sum_{r=1}^{n} A_{1,r} x_r \\ \vdots \\ \sum_{r=1}^{n} A_{n,r} x_r \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
. While $\sum_{r=1}^{n} A_{r,C} = 1$ for each $C = 1, \dots, n$.

Thus
$$\sum_{r=1}^{n} (Ax)_{r,\cdot} = \sum_{r=1}^{n} (Ax)_{r,1}$$

$$= \sum_{c=1}^{n} (A_{1,c} + \dots + A_{n,c}) x_c = \sum_{c=1}^{n} x_c = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Hence $\lambda = 1$, for all x such that $\sum_{c=1}^{n} x_{c,1} \neq 0$.

Or. Prove that (T - I) is not inv, so that we can conclude $\lambda = 1$ is an eigval.

Because
$$(T - I)x = (A - \mathcal{M}(I))x = \begin{pmatrix} \sum_{r=1}^{n} A_{1,r}x_r - x_1 \\ \vdots \\ \sum_{r=1}^{n} A_{n,r}x_r - x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}.$$

Then $y_1 + \dots + y_n = \sum_{r=1}^{n} \sum_{c=1}^{n} (A_{r,c}x_c - x_r) = \sum_{c=1}^{n} x_c \sum_{r=1}^{n} A_{r,c} - \sum_{r=1}^{n} x_r = 0.$

Thus range $(T - I) \subseteq \{ \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbf{F}^n : y_1 + \dots + y_n = 0 \}.$ Hence $(T - I)$ is not surj. \square

• Suppose $A \in \mathbf{F}^{n,n}$. Define $T \in \mathcal{L}(\mathbf{F}^n)$ by Tx = xA,

where elements of \mathbf{F}^n are thought of as 1-by-n row vectors.

- (a) Suppose the sum of the entries in each col of A equals 1. Prove that 1 is an eigval of T.
- (b) Suppose the sum of the entries in each row of A equals 1. Prove that 1 is an eigval of T.
- (a) Suppose λ is an eigval of T with an eigvec $x = (x_1 \dots x_n)$.

Then $Tx = xA = \left(\sum_{r=1}^{n} x_r A_{r,1} \cdots \sum_{r=1}^{n} x_r A_{r,n}\right) = \lambda (x_1 \cdots x_n)$. While $\sum_{r=1}^{n} A_{r,C} = 1$ for each $C = 1, \dots, n$.

Thus if we let $x_1 = \cdots = x_n$, then $\lambda = 1$, hence is an eigral of T.

(b) Suppose λ is an eigral of T with an eigrec $x = (x_1 \dots x_n)$.

Then $Tx = xA = \left(\sum_{c=1}^{n} x_{c}A_{c,1} \cdots \sum_{c=1}^{n} x_{c}A_{c,n}\right) = \lambda(x_{1} \cdots x_{n})$. While $\sum_{c=1}^{n} A_{R,c} = 1$ for each $R = 1, \dots, n$.

Thus
$$\sum_{c=1}^{n} (xA)_{.,c} = \sum_{c=1}^{n} (xA)_{1,c} = \sum_{c=1}^{n} (A_{c,1} + \dots + A_{c,n}) x_c = \sum_{c=1}^{n} x_c = \lambda (x_1 + \dots + x_n).$$

Hence $\lambda = 1$, for all x such that $\sum_{r=1}^{n} x_{1,r} \neq 0$.

Or. Prove that (T - I) is not inv, so that we can conclude $\lambda = 1$ is an eigval.

Because
$$(T - I)x = x (A - \mathcal{M}(I)) = \left(\sum_{c=1}^{n} x_c A_{c,1} - x_1 \cdots \sum_{c=1}^{n} x_c A_{c,n} - x_n\right) = (y_1 \cdots y_n).$$

Then $y_1 + \cdots + y_n = \sum_{c=1}^{n} \sum_{r=1}^{n} (x_r A_{r,c} - x_c) = \sum_{r=1}^{n} x_r \sum_{c=1}^{n} A_{r,c} - \sum_{c=1}^{n} x_c = 0.$

Thus range $(T-I) \subseteq \{(y_1 \dots y_n) \in \mathbf{F}^n : y_1 + \dots + y_n = 0\}$. Hence (T-I) is not surj. \Box

25 Suppose $T \in \mathcal{L}(V)$ and u, w are eigest of T

such that u + w is also an eigrec of T.

Prove that u and w are eigvecs of T correspd to the same eigval.

Suppose $\lambda_1, \lambda_2, \lambda_0$ are eigvals of T correspd to u, w, u + w respectively.

Then $T(u+w) = \lambda_0(u+w) = Tu + Tw = \lambda_1 u + \lambda_2 w \Rightarrow (\lambda_0 - \lambda_1)u = (\lambda_2 - \lambda_0)w$.

Notice that u, w, u + w *are nonzero.*

If (u, w) is linely depe, then let w = cu, therefore

$$\lambda_2 cu = Tw = cTu = \lambda_1 cu$$
 $\Rightarrow \lambda_2 = \lambda_1$.

$$\lambda_0(u+w) = T(u+w) = \lambda_1 u + \lambda_1 c u = \lambda_1(u+w) \quad \Rightarrow \lambda_0 = \lambda_1.$$

Otherwise,
$$\lambda_0 - \lambda_1 = \lambda_2 - \lambda_0 = 0 \implies \lambda_1 = \lambda_2 = \lambda_0$$
.

26 Suppose $T \in \mathcal{L}(V)$ is such that every nonzero vector in V is an eigeec of T.

Prove that T is a scalar multi of the identity operator.

Because $\forall v \in V, \exists ! \lambda_v \in F, Tv = \lambda_v v$.

Then for any two distinct nonzero vectors $v, w \in V$,

$$T(v+w) = \lambda_{v+w}(v+w) = Tv + Tw = \lambda_v v + \lambda_w w \Rightarrow (\lambda_{v+w} - \lambda_v)v = (\lambda_w - \lambda_{v+w})w.$$

If (v, w) is linely inde, then let w = cv, therefore

$$\lambda_v c v = c T v = T w = \lambda_w w \qquad \Rightarrow \lambda_w = \lambda_v.$$

$$\lambda_{v+w}(v+w) = T(v+w) = Tv + Tw = \lambda_v(v+cv) \ \Rightarrow \lambda_{v+w} = \lambda_v.$$

Otherwise,
$$\lambda_v = \lambda_{v+w} = \lambda_w$$
.

27. 28 *Suppose* V *is finite-dim and* $k \in \{1, ..., \dim V - 1\}$.

Suppose $T \in \mathcal{L}(V)$ is such that every subsp of V of dim k is invar under T.

Prove that T is a scalar multi of the identity operator.

We prove the contrapositive:

If $T \neq \lambda I$, $\forall \lambda \in \mathbf{F}$, then \exists a subsp U of V such that $\dim U = k$, and U is invar under T.

By Problem (26), $\exists v \in V$ and $v \neq 0$ such that v is not an eigeec of T.

Thus (v, Tv) is linely inde. Extend to a basis of V as $(v, Tv, u_1, ..., u_n)$.

Let $U = \text{span}(v, u_1, ..., u_{k-1}) \Rightarrow U$ is not an invar subsp of V under T.

Or. Suppose $0 \neq v = v_1 \in V$ and extend to a basis of V as (v_1, \dots, v_n) .

Suppose $Tv_1 = c_1v_1 + \cdots + c_nv_n$, $\exists ! c_i \in \mathbf{F}$.

Consider a k - dim $subsp U = span(v_1, v_{\alpha_1}, \dots, v_{\alpha_{k-1}}),$

where $\alpha_j \in \{2, ..., n\}$ for each j, and $\alpha_1, ..., \alpha_{k-1}$ are distinct.

Because every subsp such U is invar.

Thus
$$Tv_1 = c_1v_1 + \dots + c_nv_n \in U$$

$$\Rightarrow c_2 = \dots = c_n = 0,$$

for if not, for each $c_i \neq 0$, choose U_i such that $\alpha_j \in \{\underbrace{2, \dots, i-1, i+1, \dots, n}_{length (n-2)}\}$ for each j,

```
hence for Tv_1 = c_1v_1 + \cdots + c_{i-1}v_{i-1} + c_{i+1}v_{i+1} + \cdots + c_nv_n \in U_i, we conclude that
c_i = 0.
      • Suppose V is finite-dim and T \in \mathcal{L}(V). Prove that
  T has an eigval \iff \exists a subsp U of V
                                               such that dim U = \dim V - 1, U is invar under T.
(a) Suppose \lambda is an eigral of T with an eigrec v.
        ( If dim V = 1, then U = \{0\} and we are done. )
        Extend v_1 = v to a basis of V as (v_1, v_2 \dots, v_n).
        Step 1 If \exists w_1 \in \text{span}(v_2, ..., v_n) \text{ such that } 0 \neq Tw_1 \in \text{span}(v_1),
                 then extend w_1 = \alpha_{1,1} to a basis of span (v_2, \dots, v_n) as (\alpha_{1,1}, \dots, \alpha_{1,n-1}).
                 Otherwise, we stop at step 1.
       Step k If \exists w_k \in \text{span}(\alpha_{k-1,2}, \dots, \alpha_{k-1,n-k+1}) such that 0 \neq Tw_k \in \text{span}(v_1, w_1, \dots, w_{k-1}),
                 then extend w_k = \alpha_{k,1} to a basis of span (\alpha_{k-1,2}, \dots, \alpha_{k-1,n-k+1}) as (\alpha_{k,1}, \dots, \alpha_{k,n-k}).
                  Otherwise, we stop at step k.
        Finally, we stop at step m, thus we get (v_1, w_1, \dots, w_{m-1}) and (\alpha_{m-1,2}, \dots, \alpha_{m-1,n-m+1}),
        \operatorname{range} T|_{\operatorname{span}\,(w_1,\dots,w_{m-1})} = \operatorname{span}\,(v_1,w_1,\dots,w_{m-2}) \Rightarrow \dim\operatorname{null} T|_{\operatorname{span}\,(w_1,\dots,w_{m-1})} = 0,
        \mathrm{span}\,(\underbrace{v_1,w_1,\ldots,w_{m-1}})\; and\; \mathrm{span}\,(\alpha_{m-1,2},\ldots,\alpha_{m-1,n-m+1})\; are\; invar\; under\; T.
        Let U = \operatorname{span}\left(\alpha_{m-1,2}, \ldots, \alpha_{m-1,n-m+1}\right) \oplus \operatorname{span}\left(v_1, w_1, \ldots, w_{m-2}\right) and we are done. \square
       Comment: Both span (v_2, \ldots, v_n) and span (\alpha_{m-1,2}, \ldots, \alpha_{m-1,n-m+1}) \oplus \text{span}(w_1, \ldots, w_{m-1})
are in S_Vspan (v_1).
   (b) Suppose U is an invar subpsace of V under T with dim U = m = \dim V - 1.
        ( If m = 0, then dim V = 1 and we are done ).
        Let (u_1, \ldots, u_m) be a basis of U, extend to a basis of V as (u_0, u_1, \ldots, u_m).
        We discuss in cases:
        For Tu_0 \in U, then range T = U so that T is not surj \iff null T \neq \{0\} \iff 0 is an
eigval of T.
        For Tu_0 \notin U, then Tu_0 = a_0u_0 + a_1u_1 + \cdots + a_mu_m.
        (1) If Tu_0 \in \text{span}(u_0), then we are done.
```

(2) Otherwise, if range $T|_{U} = U$, then $Tu_0 = a_0u_0$ and we are done; otherwise, $T|_{U}: U \to U$ is not surj (\Rightarrow not inje), suppose range $T|_{U} \neq$ {0} (Suppose range $T|_{U} = \{0\}$. If dim U = 0 then we are done. Otherwise $\exists u \in U \setminus \{0\}$, Tu = 0 and we are done.) then $\exists u \in U \setminus \{0\}$, Tu = 0, we are done. **39** Suppose $T \in \mathcal{L}(V)$ and range T is finite-dim. *Prove that* T *has at most* $1 + \dim \operatorname{range} T$ *distinct eigvals.* Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigrals of T and let v_1, \ldots, v_m be the corresponding eigrecs. (Because range T is finite-dim. Let $(v_1, ..., v_n)$ be a list of all the linely inde eigvecs of T, so that the correspd eigvals are finite.) For every $\lambda_k \neq 0$, $T(\frac{1}{\lambda_k}v_k) = v_k$. And if T = T - 0I is not inje, then $\exists ! \lambda_A = 0$ and $Tv_A = \lambda_A v_A = 0.$ Thus for $\lambda_k \neq 0$, $\forall k$, $(Tv_1, ..., Tv_m)$ is a linely inde list of length m in range T. And for $\lambda_A = 0$, there is a linely inde list of length at most (m-1) in range T. Hence, by [2.23], $m \leq \dim \operatorname{range} T + 1$. **32** Suppose that $\lambda_1, \ldots, \lambda_n$ are distinct real numbers. *Prove that* $(e^{\lambda_1}x, \dots, e^{\lambda_n}x)$ *is linely inde in* $\mathbb{R}^{\mathbb{R}}$. *HINT:* Let $V = \text{span}(e^{\lambda_1}x, \dots, e^{\lambda_n}x)$, and define an operator $D \in \mathcal{L}(V)$ by Df = f'. Find eigvals and eigvecs of D. Define V and $D \in \mathcal{L}(V)$ as in Hint. Then because for each k, $D(e^{\lambda_k x}) = \lambda_k e^{\lambda_k x}$. Thus $\lambda_1, \ldots, \lambda_n$ are distinct eigrals of D. By [5.10], $(e^{\lambda_1}x, \ldots, e^{\lambda_n}x)$ is linely inde in \mathbb{R}^R . \square • Suppose $\lambda_1, \dots, \lambda_n$ are distinct positive numbers. *Prove that* $(\cos(\lambda_1 x), ..., \cos(\lambda_n x))$ *is linely inde in* $\mathbb{R}^{\mathbb{R}}$. Let $V = \text{span}\left(\cos(\lambda_1 x), \dots, \cos(\lambda_n x)\right)$. Define $D \in \mathcal{L}(V)$ by Df = f'. Then because $D(\cos(\lambda_k x)) = -\lambda_k \sin(\lambda_k x)$. $\not \subseteq D(\sin(\lambda_k x)) = \lambda_k \cos(\lambda_k x)$. Thus $D^2(\cos(\lambda_k x)) = -\lambda_k^2 \cos(\lambda_k x)$. Notice that $\lambda_1, \dots, \lambda_n$ are distinct $\Rightarrow -\lambda_1^2, \dots, -\lambda_n^2$ are distinct. Hence $-\lambda_1^2, \dots, -\lambda_n^2$ are distinct eigens of D^2 with the correspd eigvecs $\cos(\lambda_1 x), \dots, \cos(\lambda_n x)$ respectively. And then $(\cos(\lambda_1 x), \dots, \cos(\lambda_n x))$ is linely inde in $\mathbb{R}^{\mathbb{R}}$.

• Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and U is a subsp of V invar under T.

The quotient operator $T/U \in \mathcal{L}(V/U)$ is defined by

$$(T/U)(v+U) = Tv + U$$
 for each $v \in V$.

(a) Show that the definition of T/U makes sense

(which requires using the condition that U is invar under T)

and show that T/U is an operator on V/U.

- (b) (OR Problem 35) Show that each eigenal of T/U is an eigenal of T.
- (a) Suppose $v + U = w + U \iff v w \in U$).

Then because U is invar under T, $T(v-w) \in U \iff Tv + U = Tw + U$.

Hence the definition of T/U makes sense.

Now we show that T/U is linear.

$$\forall v + U, w + U \in V/U, \lambda \in \mathbf{F}, (T/U) ((v + U) + \lambda(w + U))$$

$$= T(v + \lambda w) + U = (Tv + U) + \lambda(Tw + U)$$

$$= (T/U)(v + U) + \lambda(T/U)(w).$$

(b) Suppose λ is an eigval of T/U with an eigvec v + U.

Then
$$(T/U)(v+U) = \lambda(v+U) = Tv + U = \lambda v + U \Rightarrow (T-\lambda I)v \in U$$
.

If
$$(T - \lambda I)v = 0 \Rightarrow Tv = \lambda v$$
, then we are done.

Otherwise, then $(T|_U - \lambda I) : U \to U$ is inv,

hence
$$\exists ! w \in U, (T|_U - \lambda I)(w) = (T - \lambda I)v \Rightarrow T(v - w) = \lambda(v - w).$$

Note that $v - w \neq 0$ (*for if not,* $v \in U \Rightarrow v + U = 0 + U$ *is not an eigvec*).

36 *Prove or give a counterexample:*

The result of (b) in Exercise 35 is still true if V is infinite-dim.

A counterexample:

Consider $V = \text{span}(1, e^x, e^{2x}, ...)$ in $\mathbb{R}^{\mathbb{R}}$, and a subsp $U = \text{span}(e^x, e^{2x}, ...)$ of V.

Define $T \in \mathcal{L}(V)$ by $Tf = e^x f$. Then range T = U is invar under T.

Consider
$$(T/U)(1 + U) = e^x + U = 0$$

 \Rightarrow 0 is an eigval of T/U but is not an eigval of T

(null $T = \{0\}$, for if not, $\exists f \in V \setminus \{0\}$, $(Tf)(x) = e^x f(x) = 0$, $\forall x \in \mathbb{R} \Rightarrow f = 0$, contradicts).

33 Suppose $T \in \mathcal{L}(V)$. Prove that T/(range T) = 0. $\forall v + \text{range } T \in V/\text{range } T, v + \text{range } T \in \text{null } (T/(\text{range } T))$ \Rightarrow null $(T/(\text{range }T)) = V/\text{range }T \Rightarrow T/(\text{range }T)$ is a zero map. **34** Suppose $T \in \mathcal{L}(V)$. Prove that T/(null T) is inje \iff $(\text{null } T) \cap (\text{range } T) = \{0\}$. (a) Suppose T/(null T) is inje. Then $(T/(\operatorname{null} T))(u + \operatorname{null} T) = Tu + \operatorname{null} T = 0$ $\Leftrightarrow Tu \in \text{null } T \not \subset Tu \in \text{range } T \Leftrightarrow u + \text{null } T = 0 \Leftrightarrow u \in \text{null } T \Leftrightarrow Tu = 0.$ Thus $(\text{null } T) \cap (\text{range } T) = \{0\}.$ (b) Suppose (null T) \cap (range T) = {0}. Then (T/(null T))(u + null T) = Tu + null T = 0 $\Leftrightarrow Tu \in \text{null } T \not \subset Tu \in \text{range } T \Leftrightarrow Tu = 0 \Leftrightarrow u \in \text{null } T \Leftrightarrow u + \text{null } T = 0.$ Thus T/(null T) is inje. **ENDED**

5.B: I [See 5.B: II below.]

COMMENT: 下面是第 5 章 B 节。为了照顾 5.B 节两版过大的差距,特别将 5.B 补注分成 I 和 II 两部分。 又考虑到第4版中5.8节的「本征值与极小多项式」与「奇维度实向量空间的本征值」 (相当一部分是从原第 3 版 8.C 节挪过来的) 是对原第 3 版 [多项式作用于算子] 与 [本征值的存在性](也即第3版5.B前半部分)的极大扩充,这一扩充也大大改变了 原第3版后半部分的[上三角矩阵]这一小节,故而将第4版5.B节放在第3版5.B节前面。

> I 部分除了覆盖第 4 版 5.B 节和第 3 版 5.B 节前半部分与之相关的所有习题, 还会覆盖第4版5.A节末。

II 部分除了覆盖第 3 版 5.B 节后半部分 [上三角矩阵]这一小节,还会覆盖第 4 版 5.C 节; 并且,下面 5.C 还会覆盖第 4 版 5.D 节。

```
[8.40] OR (4E 5.22) — mini poly;
[8.44,8.45] OR (4E 5.25,5.26) — how to find the mini poly;
[注: [8.40]
       [8.49]
                      OR (4E 5.27)
                                             ——eigvals are the zeros of the mini poly;
        [8.46]
                      OR (4E 5.29)
                                                 -q(T) = 0 \Leftrightarrow q \text{ is a poly multi of the mini poly.}
```

[1]: (4E.5.A.33), 13; [2]: (4E.5.B.25, 26, 27, 28, 22); [3]: 6, (4E.5.B.10, 23, 21), 19; [4]: (4E 5.B.13, 14);

[5]: (4E.5.B.20, 24), 10; [6]: 1, 2, 7, 3, (4E.5.A.32); [7]: 8, (4E 5.B.12, 3, 8); [8]: (4E.5.B.11), 5, (4E.5.B.7);

- [9]: 11, 12, (4E.5.B.17, 18); [10]: 18 OR (4E.5.B.15), (4E.5.B.9), (4E.5.B.16); [11]: (2E Ch5.24), (4E.5.B.29).
- Suppose $T \in \mathcal{L}(V)$ and m is a positive integer.
 - (a) Prove that T is inje \iff T^m is inje.
 - (b) Prove that T is surj \iff T^m is surj.
- (a) Suppose T^m is inje. Then $Tv = 0 \Rightarrow T^{m-1}Tv = T^mv = 0 \Rightarrow v = 0$. Suppose T is inje.

Then $T^m v = T(T^{m-1}v) = 0$

$$\Rightarrow T^{m-1}v = 0 = T(T^{m-2}v) \Rightarrow \cdots$$

$$\Rightarrow T^2v = TTv = 0$$

$$\Rightarrow Tv = 0 \Rightarrow v = 0.$$

$$(b) Suppose T^m is surj. $\forall u \in V$, $\exists v \in V$, $T^mv = u = Tw$, let $w = T^{m-1}v$.
$$Suppose T is surj.
$$Then \forall u \in V$$
, $\exists v \in V$, $T(v) = u$

$$\Rightarrow \exists v_2 \in V$$
, $Tv_2 = v$, $T^2(v_2) = u$

$$\vdots$$

$$\Rightarrow \exists v_k \in V$$
, $Tv_k = v_{k-1}$, $T^k(v_k) = u$

$$\vdots$$

$$\Rightarrow \exists v_{m-1} \in V$$
, $Tv_{m-1} = v_{m-2}$, $T^{m-1}(v_{m-1}) = u$

$$\Rightarrow \exists v_m \in V$$
, $Tv_m = v_{m-1}$, $T^{m-1}(Tv_m) = u$.
$$\Rightarrow T^{m-1}(T^m) = T^{m-1}(T^m) =$$$$$$

13 Suppose V is a complex vector space and $T \in \mathcal{L}(V)$ has no eigends.

Prove that every subsp of V *invar under* T *is either* $\{0\}$ *or infinite-dim.*

SOLUTION: Suppose U is a finite-dim nonzero invar subsp on C. Then by [5.21], T_{II} has an eigval.

$\mathbf{Solution}: For T_1, \dots, T_m \in \mathcal{L}(V)$

- (a) Suppose T_1, \ldots, T_m are all inje. Then $(T_1 \circ \cdots \circ T_m)$ is inje.
- (b) Suppose $(T_1 \circ \cdots \circ T_m)$ is not inje. Then at least one of T_1, \ldots, T_m is not inje.
- (c) At least one of T_1, \ldots, T_m is not inje $\Rightarrow (T_1 \circ \cdots \circ T_m)$ is not inje. EXAMPLE: On infinite-dim only. Let $V = \mathbf{F}^{\infty}$.

Solution: $0 \neq v \in V$. Define $S \in \mathcal{L}(\mathcal{P}_{\dim V}(\mathbf{C})), V)$ by S(p) = p(T)v. Prove [5.21].

Because $\dim \mathcal{P}_{\dim V}(\mathbf{C})$ = $\dim V + 1$. Then S is not inje. Hence $\exists 0 \neq p \in \mathcal{P}_{\dim V}(\mathbf{C})$, p(T)v = 0.

Using [4.14], write $p(z) = c(z - \lambda_1) \cdots (z - \lambda_m)$. Apply T to both sides: $p(T) = c(T - \lambda_1 I) \cdots (T - \lambda_m I)$.

Thus at least one of $(T - \lambda_i I)$ is not inje (because p(T) is not inje).

17 Suppose $0 \neq v \in V$. Define $S \in \mathcal{L}\left(\mathcal{P}_{(\dim V)^2}(\mathbf{C})\right)$, $\mathcal{L}(V)$ by S(p) = p(T). Prove [5.21 Solution:

Because $\dim \mathcal{P}_{(\dim V)^2}(\mathbf{C})) = (\dim V)^2 + 1$. Then S is not inje. Hence $\exists 0 \neq p \in \mathcal{P}_{(\dim V)^2}(\mathbf{C}))$, p(0).

Using [4.14], write $p(z) = c(z - \lambda_1) \cdots (z - \lambda_m)$. Applying T, we have $0 = p(T) = c(T - \lambda_1 I) \cdots (T - \lambda_m I)$.

Thus $(T - \lambda_1 I) \cdots (T - \lambda_m I) = 0 \Rightarrow \exists j, (T - \lambda_j)$ is not inje.

Comment: \exists monic $q \in \text{null } S \neq \{0\}$ of smallest degree, S(q) = q(T) = 0, then q is the mini poly.

Solveton For [8.40]: def for mini poly

Suppose V is finite-dim and $T \in \mathcal{L}(V)$.

Prove that \exists ! monic poly $p \in \mathcal{P}(\mathbf{F})$ of smallest degree, p(T) = 0. Moreover, $\deg p \leq \dim V$. Solution OR Another Proof:

[$Existns \ Part \]$ We use induction on $dim \ V$.

- (i) If dim V = 0, then $I = 0 \in \mathcal{L}(V)$ and let p = 1, we are done.
- (ii) Suppose dim $V \ge 1$.

Assume that dim V > 0 and that the desired result is true for all operators on all vecsps of smaller dim.

Let $u \in V$, $u \neq 0$. The list $(u, Tu, ..., T^{\dim V}u)$ of length $(1 + \dim V)$ is linely depe.

Then $\exists ! T^m$ of smallest degree such that $T^m u \in \text{span}(u, Tu, ..., T^{m-1}u)$.

Thus $\exists c_i \in \mathbf{F}, c_0 u + c_1 T u + \dots + c_{m-1} T^{m-1} u + T^m u = 0.$

Define q by $q(z) = c_0 + c_1 z + \dots + c_{m-1} z^{m-1} + z^m$.

Then $0 = T^k(q(T)u) = q(T)(T^ku), \forall k \in \{1, \dots, m-1\} \subseteq \mathbb{N}.$

Because $(u, Tu, ..., T^{m-1}u)$ is linely inde.

Thus dim null $q(T) \ge m \Rightarrow \dim \operatorname{range} q(T) = \dim V - \dim \operatorname{null} q(T) \le \dim V - m$.

Let W = range q(T).

By assumption, \exists monic $s \in \mathcal{P}(F)$ and $\deg s \leq \dim W$, so that $s(T|_W) = 0$.

Hence $\forall v \in V, ((sq)(T))(v) = s(T)(q(T)v) = 0.$

Thus sq is a monic poly such that $\deg sq \leq \dim V$ and (sq)(T) = 0.

[Uniques Part]

```
Let p,q \in \mathcal{P}(\mathbf{F}) be monic polys of smallest degree such that p(T) = q(T) = 0
     \Rightarrow (p-q)(T) = 0 \ \ \ \ \ \deg(p-q) < \deg p.
  If p-q=a_mz^m+\cdots+a_1z_1+a_0\neq 0, then \frac{1}{a_m}(p-q) is a monic poly of smaller degree than p.
  Hence contradicts the minimality of deg p. Thus p - q = 0 and we are done.
                                                                                                                                        • (4E 5.31, 4E 5.B.25 and 26) mini poly of restriction operator and mini poly of quotient operator
 Suppose V is finite-dim, T \in \mathcal{L}(V), and U is an invar subsp of V under T.
 Let p be the mini poly of T.
 (a) Prove that p is a poly multi of the mini poly of T|_{II}.
 (b) Prove that p is a poly multi of the mini poly of T/U.
 (c) Prove that (mini poly of T|_{U}) × (mini poly of T/U) is a poly multi of p.
 (d) Prove that the set of eigvals of T equals
     the union of the set of eigvals of T|_{U} and the set of eigvals of T/U.
(a) p(T) = 0 \Rightarrow \forall u \in U, p(T)u = 0 \Rightarrow p(T|_{U}) = 0 \Rightarrow By [8.46].\square
   (b) \ p(T) = 0 \Rightarrow \forall v \in V, p(T)v = 0 \Rightarrow p(T/U)(v+U) = p(T)v + U = 0.
                                                                                                                                        (c) Suppose r is the mini poly of T|_{U}, s is the mini poly of T/U.
      Because \forall v \in V, s(T/U)(v+U) = s(T)v + U = 0. So that \forall v \in V but v \notin U, s(T)v \in U.
      Thus \forall v \in V but v \notin U, (rs)(T)v = r(s(T)v) = 0.
      And \forall u \in U, (rs)(T)u = r(s(T)u) = 0 (because s(T)u = s(T|_{U})u \in U).
      Hence \forall v \in V, (rs)(T)v = 0 \Rightarrow (rs)(T) = 0.
                                                                                                                                        (d) By [8.49], immediately.
                                                                                                                                        • (4E 5.B.27)
 Suppose \mathbf{F} = \mathbf{R}, V is finite-dim, and T \in \mathcal{L}(V).
 Prove that the mini poly p of T_{\mathbf{C}} equals the mini poly q of T.
SOLUTION:
   \forall u + i0 \in V_C, p(T_C)(u) = p(T)u = 0 \Rightarrow \forall u \in V, p(T)u = 0 \Rightarrow p is a poly multi of q.
   q(T) = 0 \Rightarrow \forall u + \mathrm{i} v \in V_{\mathrm{C}}, q(T_{\mathrm{C}})(u + \mathrm{i} v) = q(T)u + \mathrm{i} q(T)v = 0 \Rightarrow q \ \textit{is a poly multi of } p.
• (4E 5.B.28)
 Suppose V is finite-dim and T \in \mathcal{L}(V).
 Prove that the mini poly p of T' \in \mathcal{L}(V') equals the mini poly q of T.
SOLUTION:
  \forall \varphi \in V', p(T')\varphi = \varphi \circ (p(T)) = 0 \Rightarrow \forall \varphi \in V', p(T) \in \operatorname{null} \varphi \Rightarrow p(T) = 0
                                          \Rightarrow p(T) = 0 \Rightarrow p \text{ is a poly multi of } q.  \rightarrow \rightarrow \sigma
 q(T) = 0 \Rightarrow \forall \varphi \in V', \varphi \circ (q(T)) = q(T')\varphi = 0 \Rightarrow q \text{ is a poly multi of } p.
• (4E 5.32) Suppose T \in \mathcal{L}(V) and p is the mini poly.
 Prove that T is not inje \iff the const term of p is 0.
T is not inje \iff 0 is an eigval of T \iff 0 is a zero of p \iff the const term of p is 0.
                                                                                                                                        OR. Because p(0)=(z-0)(z-\lambda_1)\cdots(z-\lambda_m)=0 \Rightarrow T(T-\lambda_1 I)\cdots(T-\lambda_m I)=0
   \mathbb{X} p is the mini poly \Rightarrow q define by q(z) = (z - \lambda_1) \cdots (z - \lambda_m) is such that q(T) \neq 0.
  Hence 0 = p(T) = Tq(T) \Rightarrow T is not inje.
  Conversely, suppose (T - 0I) is not inje, then 0 is a zero of p, so that the const term is 0.
```

• (4E 5.B.22)

Suppose V is finite-dim, $T \in \mathcal{L}(V)$. Prove that T is inv \iff $I \in \text{span}\,(T,T^2,\ldots,T^{\dim V})$. Denote the mini poly by p, where for all $z \in F$, $p(z) = a_0 + a_1z + \cdots + z^m$.

Notice that V is finite-dim. T is inv \iff T is inje \iff $p(0) \neq 0$.

Hence $p(T) = 0 = a_0I + a_1T + \cdots + T^m$, where $a_0 \neq 0$ and $m \leq \dim V$.

Suppose $T \in \mathcal{L}(V)$ and U is a subsp of V invar under T.

Prove that U is invar under p(T) for every poly $p \in \mathcal{P}(F)$. $\forall u \in U, Tu \in U \Rightarrow \forall u \in U, Iu, Tu, T(Tu), \ldots, T^m u \in U \Rightarrow \forall u \in U, (a_0I + a_1T + \cdots + a_mT^m)u \in U$.

• (4E 5.B.10, 5.B.23)

Suppose V is finite-dim, $T \in \mathcal{L}(V)$ and p is the mini poly with degree m. Suppose $v \in V$.

- (a) Prove that span $(v, Tv, ..., T^{m-1}v) = \text{span}(v, Tv, ..., T^{j-1}v)$ for some $j \le m$.
- (b) Prove that span $(v, Tv, \dots, T^{m-1}v) = \operatorname{span}(v, Tv, \dots, T^{m-1}v, \dots, T^nv)$.

Comment: By Note For [8.40], j has an upper bound m-1, m has an upper bound dim V.

Write $p(z) = a_0 + a_1 z + \dots + z^m$ ($m \le \dim V$). If v = 0, then we are done. Suppose $v \ne 0$.

(a) Suppose $j \in \mathbb{N}^+$ is the smallest such that $T^j v \in \text{span}(v, Tv, ..., T^{j-1}v) = U_0$. Then $j \leq m$.

Write $T^jv=c_0v+c_1Tv+\cdots+c_{j-1}T^{j-1}v$. And because $T(T^kv)=T^{k+1}\in U_0$. U_0 is invar under T.

By Problem (6), $\forall k \in \mathbb{N}$, $T^{j+k}v = T^k(T^jv) \in U_0$.

Thus $U_0 = \operatorname{span}(v, Tv, \dots, T^{j-1}v, \dots, T^nv)$ for all $n \ge j-1$. Let n = m-1 and we are done.

(b) Let
$$U = \text{span}(v, Tv, ..., T^{m-1}v)$$
.
By (a), $U = U_0 = \text{span}(v, Tv, ..., T^{j-1}, ..., T^{m-1}, ..., T^n)$ for all $n \ge m - 1$.

• (4E 5.B.21)

Suppose V is finite-dim and $T \in \mathcal{L}(V)$.

Prove that the mini poly p has degree at most $1 + \dim \operatorname{range} T$.

If dim range $T < \dim V - 1$, then this result gives a better upper bound for the degree of mini poly.

SOLUTION:

If T is inje, then range T = V and we are done. Now choose $0 \neq v \in \text{null } T$, then $Tv + 0 \cdot v = 0$.

1 is the smallest positive integer such that $T^1v \in \text{span}(v, ..., T^0v)$. Define q by $q(z) = z \Rightarrow q(T)v = 0$.

Let $W = \operatorname{range} q(T) = \operatorname{range} T$. $\exists monic s \in \mathcal{P}(\mathbf{F}) \text{ of smallest degree } (\operatorname{deg} s \leq \dim W)$, $s(T|_W) = 0$.

Hence sq is the mini poly (see Note For [8.40]) and $\deg(sq) = \deg s + \deg q \leq \dim \operatorname{range} T + 1$.

§ Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Let $\mathcal{E} = \{q(T) : q \in \mathcal{P}(F)\}$.

Prove that dim \mathcal{E} *equals the degree of the mini poly of* T.

Because the list $(I, T, ..., T^{(\dim V)^2})$ of length $\dim \mathcal{L}(V) + 1$ is linely depe in $\dim \mathcal{L}(V)$.

Suppose $m \in \mathbb{N}^+$ is the smallest such that $T^m = a_0 I + \cdots + a_{m-1} T^{m-1}$.

Then q defined by $q(z) = z^m - a_{m-1}z^{m-1} - \cdots - a_0$ is the mini poly (see [8.40]).

For any $k \in \mathbb{N}^+$, $T^{m+k} = T^k(T^m) \in \text{span}(I, T, ..., T^{m-1}) = U$.

Hence span $(I,T,\ldots,T^{(\dim V)^2})=\mathrm{span}\,(I,T,\ldots,T^{(\dim V)^2-1})=U.$

Note that by the minimality of m, the list $(I, T, ..., T^{m-1})$ is linely inde.

Thus dim $U = m = \dim \operatorname{span}(I, T, ..., T^{(\dim V)^2 - 1}) = \dim \operatorname{span}(I, T, ..., T^n)$ for all $m < n \in \mathbb{N}^+$.

Define $\varphi \in \mathcal{L}(\mathcal{P}_{m-1}(\mathbf{F}), \mathcal{E})$ by $\varphi(p) = p(T)$.

- (a) Suppose p(T) = 0. $\mathbb{Z} \deg p \leq m 1 \Rightarrow p = 0$. Then φ is inje.
- (b) $\forall S = a_0 I + a_1 T + \dots + a_{m-1} T^{m-1} \in \mathcal{E}$, define $p \in \mathcal{P}_{m-1}(\mathbf{F})$ by $p(z) = a_0 + a_1 z + \dots + a_{m-1} z^{m-1} \Rightarrow \varphi(p) = S$. Then φ is surj.

Hence \mathcal{E} and $\mathcal{P}_{m-1}(\mathbf{F})$ are iso. \mathbb{Z} dim $\mathcal{P}_{m-1}(\mathbf{F}) = m = \dim U$.

• (4E 5.B.13)

Suppose $T \in \mathcal{L}(V)$ and $q \in \mathcal{P}(\mathbf{F})$ is defined by

$$q(z) = a_0 + a_1 z + \dots + a_n z^n$$
, where $a_n \neq 0$, for all $z \in \mathbf{F}$.

Denote the mini poly of T by p defined by

$$p(z) = c_0 + c_1 z + \dots + c_{m-1} z^{m-1} + z^m \text{ for all } z \in \mathbf{F}.$$

Prove that $\exists ! r \in \mathcal{P}(\mathbf{F})$ *such that* q(T) = r(T), $\deg r < \deg p$.

If $\deg q < \deg p$, then we are done.

$$\begin{split} If \deg q &= \deg p, \, notice \, that \, p(T) = 0 = c_0 I + c_1 T + \dots + c_{m-1} T^{m-1} + T^m \\ &\Rightarrow T^m = -c_0 I - c_1 T - \dots - c_{m-1} T^{m-1}, \\ define \, r \, by \, r(z) &= q(z) + \left[-a_m z^m + a_m (-c_0 - c_1 z - \dots - c_{m-1} z^{m-1}) \right] \\ &= (a_0 - a_m c_0) + (a_1 - a_m c_1) z + \dots + (a_{m-1} - a_m c_{m-1}) z^{m-1}, \\ hence \, r(T) &= 0, \deg r < m \, and \, we \, are \, done. \end{split}$$

Now suppose $\deg q \ge \deg p$. *We use induction on* $\deg q$.

- (i) $\deg q = \deg p$, then the desired result is true, as shown above.
- (ii) $\deg q > \deg p$, assume that the desired result is true for $\deg q = n$.

Suppose $f \in \mathcal{P}(\mathbf{F})$ such that $f(z) = b_0 + b_1 z + \dots + b_n z^n + b_{n+1} z^{n+1}$. Apply the assumption to g defined by $g(z) = b_0 + b_1 z + \cdots + b_n z^n$, *getting s defined by* $s(z) = d_0 + d_1 z + \dots + d_{m-1} z^{m-1}$. Thus $g(T) = s(T) \Rightarrow f(T) = g(T) + b_{n+1}T^{n+1} = s(T) + b_{n+1}T^{n+1}$. Apply the assumption to t defined by $t(z) = z^n$, getting δ defined by $\delta(z) = c_0' + c_1'z + \dots + c_{m-1}'z^{m-1}$. Thus $t(T) = T^{n} = c_{0}' + c_{1}'z + \dots + c_{m-1}'z^{m-1} = \delta(T)$. \mathbb{X} span $(v, Tv, ..., T^{m-1}v)$ is invar under T. Hence $\exists ! k_i \in \mathbf{F}, T^{n+1} = T(T^n) = k_0 + k_1 z + \dots + k_{m-1} z^{m-1}$. And $f(T) = s(T) + b_{n+1}(k_0 + k_1T + \dots + k_{m-1}T^{m-1})$ $\Rightarrow f(T) = (d_0 + k_0) + (d_1 + k_1)z + \dots + (d_{m-1} + k_{m-1})z^{m-1} = h(T)$, thus defining $h.\Box$ • (4E 5.B.14) Suppose V is finite-dim, $T \in \mathcal{L}(V)$ has mini poly p defined by $p(z) = a_0 + a_1 z + \dots + a_{m-1} z^{m-1} + z^m, a_0 \neq 0.$ Find the mini poly of T^{-1} . *Notice that V is finite-dim. Then* $p(0) = a_0 \neq 0 \Rightarrow 0$ *is not a zero of* $p \Rightarrow T - 0I = T$ *is inv.* Then $p(T) = a_0 I + a_1 T + \dots + T^m = 0$. Apply T^{-m} to both sides, $a_0(T^{-1})^m + a_1(T^{-1})^{m-1} + \dots + a_{m-1}T^{-1} + I = 0.$ Define q by $q(z) = z^m + \frac{a_1}{a_0} z^{m-1} + \dots + \frac{a_{m-1}}{a_0} z + \frac{1}{a_0}$ for all $z \in \mathbb{F}$. We now show that $(T^{-1})^k \notin \text{span}(I, T^{-1}, ..., (T^{-1})^{k-1})$ for every $k \in \{1, ..., m-1\}$ by contradiction, so that q is exactly the mini poly of T^{-1} . Suppose $(T^{-1})^k \in \text{span}(I, T^{-1}, \dots, (T^{-1})^{k-1})$. Then let $(T^{-1})^k = b_0 I + b_1 T^{-1} + \dots + b_{k-1} T^{k-1}$. Apply T^k to both sides, *getting* $I = b_0 T^k + b_1 T^{k-1} + \dots + b_{k-1} T$, hence $T^k \in \text{span}(I, T, \dots, T^{k-1})$. Thus f defined by $f(z) = z^k + \frac{b_1}{b_0}z^{k-1} + \dots + \frac{b_{k-1}}{b_0}z - \frac{1}{b_0}$ is a poly multi of p. *While* $\deg f < \deg p$. *Contradicts*.

• Note For [8.49]: Suppose V is a finite-dim complex vecsp, $T \in \mathcal{L}(V)$.

By [4.14], the mini poly has the form $(z - \lambda_1) \cdots (z - \lambda_m)$, where $\lambda_1, \ldots, \lambda_m$ is a list of all eigenst of T, possibly with repetitions.

SCONDIENT: nonzero poly has at most as many distinct zeros as its degree (see [4.12]). Thus by the upper bound for the deg of mini poly given in NOTE FOR [8.40], and by [8.49,]

• NOTICE: (See also 4E 5.B.20,24)

Suppose $\alpha_1, \dots, \alpha_n$ are all the distinct eigrals of T,

and therefore are all the distinct zeros of the mini poly.

Also, the mini poly of T is a poly multi of, but not equal to, $(z - \alpha_1) \cdots (z - \alpha_n)$.

If we define q by $q(z) = (z - \alpha_1)^{\dim V - (n-1)} \cdots (z - \alpha_n)^{\dim V - (n-1)}$,

then q is a poly multi of the char poly (see [8.34] and [8.26])

(*Because* dim V > n and n - 1 > 0, $n[\dim V - (n - 1)] > \dim V$.)

The char poly has the form $(z - \alpha_1)^{\gamma_1} \cdots (z - \alpha_n)^{\gamma_n}$, where $\gamma_1 + \cdots + \gamma_n = \dim V$.

The mini poly has the form $(z - \alpha_1)^{\delta_1} \cdots (z - \alpha_n)^{\delta_n}$, where $0 \le \delta_1 + \cdots + \delta_n \le \dim V$.

10 Suppose $T \in \mathcal{L}(V)$, λ is an eigral of T with an eigrec v.

Prove that for any $p \in \mathcal{P}(\mathbf{F})$, $p(T)v = p(\lambda)v$.

Suppose p is defined by $p(z) = a_0 + a_1 z + \cdots + a_m z^m$ for all $z \in \mathbb{F}$. Because for any $n \in$ \mathbf{N}^+ , $T^n v = \lambda^n v$.

Thus
$$p(T)v = a_0v + a_1Tv + \dots + a_mT^mv = a_0v + a_1\lambda v + \dots + a_m\lambda^m v = p(\lambda)v$$
.

• Comment: For any $p \in \mathcal{P}(\mathbf{F})$ such that $p(z) = (z - \lambda_1)^{\alpha_1} \cdots (z - \lambda_m)^{\alpha_m}$, the result is true as well.

Now we prove that $(T - \lambda_1 I)^{\alpha_1} \cdots (T - \lambda_m I)^{\alpha_m} v = (\lambda - \lambda_1)^{\alpha_1} \cdots (\lambda - \lambda_m)^{\alpha_m} v$.

Define q_i by $q_i(z) = (z - \lambda_i)^{\alpha_i}$ for all $z \in \mathbf{F}$.

Because $(a + b)^n = a^n + C_n^1 a^{n-1} b + \dots + C_n^k a^{n-k} b^k + \dots + C_n^n b^n$.

Let a = z, $b = \lambda_i$, $n = \alpha_i$, so we can write $q_i(z)$ in the form $a_0 + a_1 z + \cdots + a_m z^m$.

Hence $q_i(T)v = q_i(\lambda)v \Rightarrow (T - \lambda_i I)^{\alpha_i}v = (\lambda - \lambda_i)^{\alpha_i}v$.

Then for each $k \in \{2, ..., m\}$, $(T - \lambda_{k-1}I)^{\alpha_{k-1}}(T - \lambda_kI)^{\alpha_k}v$

$$= q_{k-1}(T)(q_k(T)v)$$

$$= q_{k-1}(T)(q_k(\lambda)v)$$

$$= q_{k-1}(\lambda)(q_k(\lambda)v)$$

$$= (\lambda - \lambda_{k-1})^{\alpha_{k-1}}(\lambda - \lambda_k)^{\alpha_k}v.$$

So that $(T - \lambda_1 I)^{\alpha_1} \cdots (T - \lambda_m I)^{\alpha_m} v$

$$= q_1(T) (q_2(T)(...(q_m(T)v)...))$$

$$= q_1(\lambda) (q_2(\lambda) (... (q_m(\lambda)v) ...))$$

$$=(\lambda-\lambda_1)^{\alpha_1}\cdots(\lambda-\lambda_m)^{\alpha_m}v.$$

1 Suppose $T \in \mathcal{L}(V)$ and $\exists n \in \mathbb{N}^+$ such that $T^n = 0$.

Prove that (I - T) *is inv and* $(I - T)^{-1} = I + T + \cdots + T^{n-1}$.

Note that
$$1 - x^n = (1 - x)(1 + x + \dots + x^{n-1}).$$

$$\frac{(I-T)(1+T+\dots+T^{n-1})}{(I+T+\dots+T^{n-1})(I-T)} = I-T^n = I
(1+T+\dots+T^{n-1})(I-T) = I-T^n = I$$

$$\Rightarrow (I-T)^{-1} = 1+T+\dots+T^{n-1}. \qquad \Box$$

2 Suppose $T \in \mathcal{L}(V)$ and (T-2I)(T-3I)(T-4I) = 0.

Suppose λ is an eigend of T. Prove that $\lambda = 2$ or $\lambda = 3$ or $\lambda = 4$.

Suppose v is an eigvec correspd to λ . Then for any $p \in \mathcal{P}(\mathbf{F})$, $p(T)v = p(\lambda)v$.

Hence
$$0 = (T - 2I)(T - 3I)(T - 4I)v = (\lambda - 2)(\lambda - 3)(\lambda - 4)v$$
 while $v \neq 0 \Rightarrow \lambda = 2$ or $\lambda = 3$ or $\lambda = 4$.

Or. Because
$$(T-2I)(T-3I)(T-4I)=0$$
 is not inje. By Tips.

SSuppose $T \in \mathcal{L}(V)$. Prove that 9 is an eigval of $T^2 \iff 3$ or -3 is an eigval of T.

Solution: Comment: Note that V can be infinite-dim. See also in (5.A.22).

- (a) Suppose 9 is an eigval of T^2 . Then $(T^2 9I)v = (T 3I)(T + 3I)v = 0$ for some v. By T_{IPS} .
- (b) Suppose 3 or -3 is an eigval of T with an eigvec v. Then $Tv = \pm 3v \Rightarrow T^2v = T(Tv) = 9v$

3 Suppose $T \in \mathcal{L}(V)$, $T^2 = I$ and -1 is not an eigend of T. Prove that T = I.

$$T^2 - I = (T + I)(T - I)$$
 is not inje, \mathbb{Z} -1 is not an eigend of $T \Rightarrow By$ Tips.

Or. Note that $v = \left[\frac{1}{2}(I-T)v\right] + \left[\frac{1}{2}(I+T)v\right]$ for all $v \in V$.

And
$$(I - T^2)v = (I - T)(I + T)v = 0$$
 for all $v \in V$,

$$(I+T)(\frac{1}{2}(I-T)v) = \frac{1}{2}(I-T^2)v = 0 \Rightarrow \frac{1}{2}(I-T)v \in \text{null}(I+T) \\ (I-T)(\frac{1}{2}(I+T)v) = \frac{1}{2}(I-T^2)v = 0 \Rightarrow \frac{1}{2}(I+T)v \in \text{null}(I-T) \\ \} \Rightarrow V = \text{null}(I+T) + \text{null}(I-T).$$

 \mathbb{Z} -1 is not an eigral of $T \Rightarrow (I + T)$ is inje \Rightarrow null $(I + T) = \{0\}$.

Hence
$$V = \text{null } (I - T) \Rightarrow \text{range } (I - T) = \{0\}. \text{ Thus } I - T = 0 \in \mathcal{L}(V) \Rightarrow T = I. \quad \Box$$

• (4E 5.A.32) Suppose $T \in \mathcal{L}(V)$ has no eigenstand $T^4 = I$. Prove that $T^2 = -I$.

Because $T^4 - I = (T^2 - I)(T^2 + I) = 0$ is not inje $\Rightarrow (T^2 - I)$ or $(T^2 + I)$ is not inje.

 $X \cap T$ has no eigvals $\Rightarrow (T^2 - I) = (T - I)(T + I)$ is inje,

for if not, (T - I) or (T + I) is not inje. Contradicts.

Hence $T^2 + I = 0 \in \mathcal{L}(V)$, for if not, $\exists v \in V$, $(T^2 + I)v \neq 0$ while $(T^2 - I)((T^2 + I)v) =$

0. Contradicts. \square

Or. Note that $v = [\frac{1}{2}(I - T^2)v] + [\frac{1}{2}(I + T^2)v]$ for all $v \in V$.

And $(I - T^4)v = (I - T^2)(I + T^2)v = 0$ for all $v \in V$.

$$(I+T^2)(\frac{1}{2}(I-T^2)v) = 0 \Rightarrow \frac{1}{2}(I-T^2)v \in \text{null}\,(I+T^2) \\ (I-T^2)(\frac{1}{2}(I+T^2)v) = 0 \Rightarrow \frac{1}{2}(I+T^2)v \in \text{null}\,(I-T^2) \\ \end{cases} \Rightarrow V = \text{null}\,(I+T^2) + \text{null}\,(I-T^2).$$

 \mathbb{X} T has no eigvals \Rightarrow $(I - T^2)$ is inje \Rightarrow null $(I - T^2) = \{0\}$.

 $Hence\ V = \operatorname{null}(I+T^2) \Rightarrow \operatorname{range}(I+T^2) = \{0\}.\ Thus\ I+T^2 = 0 \in \mathcal{L}(V) \Rightarrow T^2 = -I.\Box$

8 (OR 4E 5.A.31) Give an example of $T \in \mathcal{L}(\mathbb{R}^2)$ such that $T^4 = -I$.

Simply by computing: $p(z) = z^4 + 1 = (z^2 + i)(z^2 - i) = (z + i^{1/2})(z - i^{1/2})(z - (-i)^{1/2})(z - (-i)^{1/2})(z + i^{1/2})(z - (-i)^{1/2})(z - (-i)^{1$ $(-i)^{1/2}$).

Note that
$$i^{1/2} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$
, $(-i)^{1/2} = \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$.

Hence $T = \pm (\pm i)^{1/2}$.

Hence
$$I = \pm (\pm 1)^{1/2}$$
.

Define T by $T(x,y) = (\frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y, \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y)$.

 $\mathcal{M}(T) = \begin{pmatrix} \cos(-\pi/4) & \sin(-\pi/4) \\ -\sin(-\pi/4) & \cos(-\pi/4) \end{pmatrix} \Rightarrow \mathcal{M}(T)^4 = \mathcal{M}(T^4) = \begin{pmatrix} \cos(-\pi) & \sin(-\pi) \\ -\sin(-\pi) & \cos(-\pi) \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -\mathcal{M}(I)$.

$$\begin{pmatrix} U\sin g \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}^n = \begin{pmatrix} \cos n\alpha & \sin n\alpha \\ -\sin \alpha & \cos n\alpha \end{pmatrix}.$$

• (4E 5.B.12 See also at 5.A.9)

Define $T \in \mathcal{L}(\mathbf{F}^n)$ by $T(x_1, x_2, x_3, \dots, x_n) = (x_1, 2x_2, 3x_3, \dots, nx_n)$. Find the mini poly. $T(x_1,...,0) = By (5.A.9)$ and [8.49], 1, 2, ..., n are zeros of the mini poly of T.

(X Each eigvals of T corresponds to exact one-dim subsp of F^n .)

Define a poly q by $q(z) = (z-1)(z-2)\cdots(z-n)$, for all $z \in \mathbb{F}$. (Then q is the char poly of T.)

Because $q(T)e_i = [(T - I) \cdots (T - (j - 1)I)(T - (j + 1)I) \cdots (T - nI)](T - jI)e_i = 0$ for each j,

where $(e_1, ..., e_n)$ is the standard basis. Thus $\forall v \in \mathbf{F}^n$, q(T)v = 0. Hence q is the mini poly of T.

• Suppose $n \in \mathbb{N}^+$. Define $T \in \mathcal{L}(\mathbf{F}^n)$ by $T(x_1, \dots, x_n) = (x_1 + \dots + x_n, \dots, x_1 + \dots + x_n)$. [See also at (5.A.19)] Find the mini poly of T.

Because n and 0 are all eigrals of T, X For all e_k , $Te_k = e_1 + \cdots + e_n$; $T^2e_k = n(e_1 + \cdots + e_n)$.

• (4E 5.B.8)

Suppose $T \in \mathcal{L}(\mathbb{R}^2)$ is the operator of counterclockwise rotation by the angel θ , where $x \in \mathbb{R}^+$. *Find the mini poly of T.*

If $\theta = \pi$, then T(w,z) = (-w,-z), $T^2 = I$ and the mini poly is z + 1.

If $2\pi | \theta$, then T = I and the mini poly is z - 1.

Now suppose (v, Tv) is linely inde.

Then span $(v, Tv) = \mathbb{R}^2$.

Suppose the mini poly p is defined by $p(z) = z^2 + bz + c$ for all $z \in \mathbb{R}$.

Because of B
$$\begin{cases}
Tv = \frac{|\vec{v}|}{2L}(T^2v + v) \Rightarrow T = \frac{|\vec{v}|}{2L}(T^2 + I) \\
L = |\vec{v}|\cos\theta \Rightarrow \frac{|\vec{v}|}{2L} = \frac{1}{2\cos\theta}
\end{cases}$$

Hence $p(T) = T^2 - 2\cos\theta T + I = 0$. $z^2 - 2\cos\theta z + 1$ is the mini poly of T.

• (4E 5.B.11)

Suppose V is a two-dim vecsp, $T \in \mathcal{L}(V)$, and the matrix of Twith resp to some basis of V is $\begin{pmatrix} a & c \\ b & d \end{pmatrix}$.

- (a) Show that $T^2 (a + d)T + (ad bc)I = 0$.
- (b) Show that the mini poly of T equals

$$\begin{cases} z-a & \text{if } b=c=0 \text{ and } a=d, \\ z^2-(a+d)z+(ad-bc) & \text{otherwise.} \end{cases}$$

 $\begin{cases} z-a & \text{if } b=c=0 \text{ and } a=d, \\ z^2-(a+d)z+(ad-bc) & \text{otherwise.} \end{cases}$ $(a) \text{ Suppose the basis is } (v,w). \text{ Because } \begin{cases} Tv=av+bw\Rightarrow (T-aI)v=bw, \text{ then apply } (T-dI) \text{ to both sides.} \\ Tw=cv+dw\Rightarrow (T-dI)w=cv, \text{ then apply } (T-aI) \text{ to both sides.} \end{cases}$

Hence $(T - aI)(T - dI) = bcI \Rightarrow T^2 - (a + d)T + (ad - bc)I = 0$.

(b) If b=c=0 and a=d. Then $\mathcal{M}(T)=\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}=a\mathcal{M}(I)$. Thus T=aI. Hence the mini poly is z-a.

Otherwise, by (a), $z^2 - (a + d)z + (ad - bc)$ is a poly multi of the mini poly.

Now we prove that $T \notin \text{span}(I)$ *, so that then the mini poly of* T *has exactly degree* 2*.*

(At least one of the assumption of (I),(II) below is true.)

- (I) Suppose a = d, then $Tv = av + bw \notin \text{span}(v)$, $Tw = cv + aw \notin \text{span}(w)$.
- (II) Suppose at most one of b, c is not 0. If b = 0, then $Tw \notin \text{span}(w)$; If c = 0, then $Tv \notin \text{span}(v)$.

SSuppose $S, T \in \mathcal{L}(V)$, S is inv, and $p \in \mathcal{P}(\mathbf{F})$. Prove that $p(TS) = S^{-1}p(ST)S$.

We prove $(TS)^m = S^{-1}(ST)^m S$ for each $m \in \mathbb{N}$ by induction.

(i)
$$m = 0, 1. TS^0 = I = S^{-1}(ST)^0 S$$
; $TS = S^{-1}(ST)S$.

(ii) m > 1. Assume that $(TS)^m = S^{-1}(ST)^m S$.

 $Then \ (TS)^{m+1} = (TS)^m (TS) = S^{-1} (ST)^m STS = S^{-1} (ST)^{m+1} S.$ $Hence \ \forall p \in \mathcal{P}(\mathbf{F}), p(TS) = a_0 (TS)^0 + a_1 (TS) + \dots + a_m (TS)^m$ $= a_0 [S^{-1} (ST)^0 S] + a_1 [S^{-1} (ST) S] + \dots + a_m [S^{-1} (ST)^m S]$ $= S^{-1} [a_0 (ST)^0 + a_1 (ST) + \dots + a_m (ST)^m] S = S^{-1} p(ST) S. \quad \Box$

- (4E 5.B.7)
 - (a) Give an example of $S, T \in \mathcal{L}(\mathbf{F}^2)$ such that the mini poly of ST does not equal the mini poly of TS.
 - (b) Suppose V is finite-dim and $S, T \in \mathcal{L}(V)$. Prove that if S or T is inv, then the mini poly of ST equals the mini poly of TS.
- (a) Define S by S(x,y)=(x,x). Define T by T(x,y)=(0,y). Then ST(x,y)=0, TS(x,y)=(0,x) for all $(x,y)\in \mathbf{F}^2$. Thus $ST=0\neq TS$ and $(TS)^2=0$.
 - Hence the mini poly of ST does not equal to the mini poly of TS.
 - (b) Denote the mini poly of ST by p, and the mini poly TS by q. Suppose S is inv.

$$\left. \begin{array}{l} p(ST) = 0 = Sp(TS)S^{-1} \Rightarrow p(TS) = 0, p \ is \ a \ poly \ multi \ of \ q. \\ q(TS) = 0 = S^{-1}q(ST)S \Rightarrow q(ST) = 0, q \ is \ a \ poly \ multi \ of \ p. \end{array} \right\} \Rightarrow p = q.$$

Reversing the roles of S and T, we conclude that if T is inv, then p = q as well.

11 Suppose F = C, $T \in \mathcal{L}(V)$, $p \in \mathcal{P}(C)$, and $\alpha \in C$.

Prove that α *is an eigval of* $p(T) \iff \alpha = p(\lambda)$ *for some eigval* λ *of* T.

(a) Suppose α is an eigral of $p(T) \Leftrightarrow (p(T) - \alpha I)$ is not inje.

Write
$$p(z) - \alpha = c(z - \lambda_1) \cdots (z - \lambda_m) \Rightarrow p(T) - \alpha I = c(T - \lambda_1 I) \cdots (T - \lambda_m I)$$
.
By Tips, $\exists (T - \lambda_i I)$ not inje. Thus $p(\lambda_i) - \alpha = 0$.

(b) Suppose $\alpha = p(\lambda)$ and λ is an eigval of T with an eigvec v. Then $p(T)v = p(\lambda)v = \alpha v$. \square Or. Define q by $q(z) = p(z) - \alpha$. λ is a zero of q.

Because $q(T)v = (p(T) - \alpha I)v = q(\lambda)v = (p(\lambda) - \alpha)v = 0$.

Hence q(T) is not inje $\Rightarrow (p(T) - \alpha I)$ is not inje.

\$2(SOLUTION: OR 4E.5.B.6) Give an example of an operator on R²

that shows the result above does not hold if C is replaced with R.

Define $T \in \mathcal{L}(\mathbb{R}^2)$ by T(w,z) = (-z,w).

By Problem (4E 5.B.11), $\mathcal{M}(T,((1,0),(0,1))) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \Rightarrow \text{ the mini poly of } T \text{ is } z^2 + 1.$

Define p by $p(z) = z^2$. Then $p(T) = T^2 = -I$. Thus p(T) has eigval -1. While $\nexists \lambda \in \mathbf{R}$ such that $-1 = p(\lambda) = \lambda^2$. • (4E 5.B.17) Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and p is the mini poly of T. Suppose $\lambda \in \mathbf{F}$. Show that the mini poly of $(T - \lambda I)$ is the poly q defined by $q(z) = p(z + \lambda)$. $q(T - \lambda I) = 0 \Rightarrow q$ is poly multi of the mini poly of $(T - \lambda I)$. Suppose the degree of the mini poly of $(T - \lambda I)$ is n, and the degree of the mini poly of T is m.By definition of mini poly, *n* is the smallest such that $(T - \lambda I)^n \in \text{span}(I, (T - \lambda I), ..., (T - \lambda I)^{n-1});$ m is the smallest such that $T^m \in \text{span}(I, T, ..., T^{m-1})$. $\not \subseteq \operatorname{span}(I, T, \dots, T^{k-1}) \iff (T - \lambda)^k \in \operatorname{span}(I, (T - \lambda I), \dots, (T - \lambda I)^{k-1}).$ Thus n = m. X q is monic. By the uniques of mini poly. • (4E 5.B.18) Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and p is the mini poly of T. Suppose $\lambda \in \mathbb{F} \setminus \{0\}$. Show that the mini poly of λT is the poly q defined by $q(z) = \lambda^{\deg p} p(\frac{z}{\lambda})$. $q(\lambda T) = \lambda^{\deg p} p(T) = 0 \Rightarrow q$ is a poly multi of the mini poly of λT . Suppose the degree of the mini poly of λT is n, and the degree of the mini poly of T is m. By definition of mini poly,

n is the smallest such that $(\lambda T)^n \in \text{span}(\lambda I, \lambda T, ..., (\lambda T)^{n-1});$

m is the smallest such that $T^m \in \text{span}(I, T, ..., T^{m-1})$.

 $\mathbb{X}(\lambda T)^k \in \operatorname{span}(\lambda I, \lambda T, \dots, (\lambda T)^{k-1}) \iff T^k \in \operatorname{span}(I, T \dots, T^{k-1}).$

Thus n = m. X q is monic. By the uniques of mini poly.

18 (**S**OCUTION: OR 4E 5.B.15)

Suppose V is a finite-dim complex vector space with dim V > 0 and $T \in \mathcal{L}(V)$.

Define $f: \mathbb{C} \to \mathbb{R}$ by $f(\lambda) = \dim \operatorname{range} (T - \lambda I)$. Prove that f is not a continuous function.

Note that V *is finite-dim.*

Let λ_0 be an eigval of T. Then $(T - \lambda_0 I)$ is not surj. Hence dim range $(T - \lambda_0 I) < \dim V$. Because T has finitely many eigvals. There exist a sequence of number $\{\lambda_n\}$ such that $\lim \lambda_n = \lambda_0.$

And λ_n is not an eigval of T for each $n \Rightarrow \dim \operatorname{range} (T - \lambda_n I) = \dim V \neq \dim \operatorname{range} (T - \lambda_n I)$ $\lambda_0 I$).

Thus
$$f(\lambda_0) \neq \lim_{n \to \infty} f(\lambda_n)$$
.

• (4E 5.B.9)

Suppose $T \in \mathcal{L}(V)$ is such that with resp to some basis of V, all entries of the matrix of T are rational numbers.

Explain why all coefficients of the mini poly of T are rational numbers.

Let (v_1,\ldots,v_n) denote the basis such that $\mathcal{M}\left(T,(v_1,\ldots,v_n)\right)_{j,k}=A_{j,k}\in\mathbf{Q}$ for all $j,k=1,\ldots,N$ $1, \dots, n$.

Denote $\mathcal{M}\left(v_i, (v_1, \dots, v_n)\right)$ by x_i for each v_i .

Suppose p is the mini poly of T and $p(z) = z^m + \cdots + c_1 z + c_0$. Now we show that each $c_i \in \mathbf{Q}$.

Note that $\forall s \in \mathbf{N}^+$, $\mathcal{M}(T^s) = \mathcal{M}(T)^s = A^s \in \mathbf{Q}^{n,n}$ and $T^s v_k = A^s_{1,k} v_1 + \dots + A^s_{n,k} v_n$ for *all* $k \in \{1, ..., n\}$.

Thus
$$\begin{cases} \mathcal{M}(p(T)v_{1}) = (A^{m} + \dots + c_{1}A + c_{0}I)x_{1} = \sum_{j=1}^{n} (A^{m} + \dots + c_{1}A + c_{0}I)_{j,1}x_{j} = 0; \\ \vdots \\ \mathcal{M}(p(T)v_{n}) = (A^{m} + \dots + c_{1}A + c_{0}I)x_{n} = \sum_{j=1}^{n} (A^{m} + \dots + c_{1}A + c_{0}I)_{j,n}x_{j} = 0; \\ \mathcal{M}(p(T)v_{n}) = (A^{m} + \dots + c_{1}A + c_{0}I)_{1,1} = \dots = (A^{m} + \dots + c_{1}A + c_{0}I)_{n,1} = 0; \\ \vdots & \ddots & \vdots \\ (A^{m} + \dots + c_{1}A + c_{0}I)_{1,n} = \dots = (A^{m} + \dots + c_{1}A + c_{0}I)_{n,n} = 0; \end{cases}$$

Hence we get a system of n^2 linear equations in m unknowns $c_0, c_1, \ldots, c_{m-1}$.

We conclude that $c_0, c_1, \dots, c_{m-1} \in \mathbb{Q}$.

• OR (4E 5.B.16), OR (8.C.18)

Suppose $a_0, \ldots, a_{n-1} \in \mathbf{F}$. Let T be the operator on \mathbf{F}^n such that

Suppose
$$a_0, \ldots, a_{n-1} \in \mathbf{F}$$
. Let T be the operator on \mathbf{F}^n such that
$$\mathcal{M}(T) = \begin{pmatrix} 0 & & -a_0 \\ 1 & 0 & & -a_1 \\ & 1 & \ddots & & \vdots \\ & & \ddots & 0 & -a_{n-2} \\ 0 & & 1 & -a_{n-1} \end{pmatrix}, \text{ with resp to the standard basis } (e_1, \ldots, e_n).$$

Show that the mini poly of T is p defined by $p(z) = a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + z^n$.

 $\mathcal{M}(T)$ is called the **companion matrix** of the poly above. This exercise shows that every monic poly is the mini poly of some operator. Hence a formula or an algorithm that could produce exact eigenls for each operator on each \mathbf{F}^n could then produce exact zeros for each poly [by 8.36(b)]. Thus there is no such formula or algorithm. However, efficient numeric methods exist for obtaining very good approximations for the eigvals of an operator.

Note that $(e_1, Te_1, ..., T^{n-1}e_1)$ is linely inde. X The deg of mini poly is at most n.

$$T^{n}e_{1} = \cdots = T^{n-k}e_{1+k} = \cdots = Te_{n} = -a_{0}e_{1} - a_{1}e_{2} - a_{2}e_{3} - \cdots - a_{n-1}e_{n}$$

$$= (-a_{0}I - a_{1}T - a_{2}T^{2} - \cdots - a_{n-1}T^{n-1})e_{1}. Thus \ p(T)e_{1} = 0 = p(T)e_{j} \text{ for each } e_{j} = T^{j-1}e_{1}.\square$$

- EIGENVALUES ON ODD-DIMENSIONAL REAL VECTOR SPACES (Eigvals on Odd-dim Real Vecsps)
- Even-Dimensional Null Space

Suppose F = R, V is finite-dim, $T \in \mathcal{L}(V)$ and $b, c \in R$ with $b^2 < 4c$.

Prove that dim null $(T^2 + bT + cI)$ *is an even number.*

Denote null $(T^2 + bT + cI)$ by R. Then $T|_R + bT|_R + cI_R = (T + bT + cI)|_R = 0 \in \mathcal{L}(R)$.

Suppose λ is an eigval of T_R with an eigvec $v \in R$.

Then
$$0 = (T|_R^2 + bT|_R + cI_R)(v) = (\lambda^2 + \lambda b + c)v = \left((\lambda + b)^2 + c - \frac{b^2}{4}\right)v.$$

Because $c - \frac{b^2}{4} > 0$ and we have v = 0. Thus T_R has no eigenst.

Let U be an invar subsp of R that has the largest, even dim among all invar subsps.

Assume that $U \neq R$. Then $\exists w \in R$ but $w \notin U$. Let W be such that $(w, T|_R w)$ is a basis of W.

Because $T|_R^2 w = -bT|_R w - cw \in W$. Hence W is an invar subsp of dim 2.

Thus $\dim(U+W) = \dim U + 2 - \dim(U \cap W)$, where $U \cap W = \{0\}$,

for if not, because $w \notin U, T|_R w \in U$,

 $U \cap W$ is invar under $T|_R$ of one dim (impossible because $T|_R$ has no eigences).

Hence U + W is even-dim invar subsp under $T|_R$, contradicting the maximality of dim U.

Thus the assumption was incorrect. Hence $R = \text{null}(T^2 + bT + cI) = U$ has even dim. \square

- Operators On Odd-Dimensional Vector Spaces Have Eigenvalues
 - (a) Suppose $\mathbf{F} = \mathbf{C}$. Then by [5.21], we are done.
 - (b) Suppose $\mathbf{F} = \mathbf{R}$, V is finite-dim, and dim $V = n \neq 0$ is an odd number.

Let $T \in \mathcal{L}(V)$ and the mini poly is p. Prove that T has an eigval.

- (i) If n = 1, then we are done.
- (ii) Suppose $n \ge 3$. Assume that every operator, on odd-dim vecsps of dim less than n, has an eigval.

If p is a poly multi of $(x - \lambda)$ for some $\lambda \in \mathbb{R}$, then by [8.49] λ is an eigend of T and we are done.

Now suppose $b, c \in \mathbf{R}$ such that $b^2 < 4c$ and p is a poly multi of $x^2 + bx + c$ (see [4.17]). Then $\exists q \in \mathcal{P}(\mathbf{R})$ such that $p(x) = q(x)(x^2 + bx + c)$ for all $x \in \mathbf{R}$.

Now $0 = p(T) = (q(T))(T^2 + bT + cI)$, which means that $q(T)|_{\text{range}(T^2 + bT + cI)} = 0$. Because deg $q < \deg p$ and p is the mini poly of T, hence range $(T^2 + bT + cI) \neq V$. \mathbb{Z} dim V is odd and dim null $(T^2 + bT + cI)$ is even (by our previous result). Thus dim V – dim null $(T^2 + bT + cI)$ = dim range $(T^2 + bT + cI)$ is odd. By [5.18], range $(T^2 + bT + cI)$ is an invar subsp of V under T that has odd dim less than n. Our induction hypothesis now implies that $T|_{\text{range}(T^2+bT+cI)}$ has an eigval. By mathematical induction. • (2E Ch5.24) Suppose $F = R, T \in \mathcal{L}(V)$ has no eigvals. *Prove that every invar subsp of V under T is even-dim.* Suppose U is such a subsp. Then $T|_U \in \mathcal{L}(U)$. We prove by contradiction. If dim U is odd, then $T|_U$ has an eigval and so is T, so that \exists invar subsp of 1 dim, contradicts. • (4E 5.B.29) Show that every operator on a finite-dim vecsp of dim ≥ 2 has an invar subsp of dim 2. Exercise (4E 5.C.6) will give an improvement of this result when $\mathbf{F} = \mathbf{C}$. *Using induction on* dim *V*. (i) dim V = 2, we are done. (ii) dim V > 2. Assume that the desired result is true for vecsp of smaller dim. Suppose p is the mini poly of degree m and $p(z) = (z - \lambda_1) \cdots (z - \lambda_m)$. If $T = \lambda I$ ($\Leftrightarrow m = 1 \lor m = -\infty$), then we are done. ($m \neq 0$ because dim $V \neq 0$.) Now define a q by $q(z) = (z - \lambda_1)(z - \lambda_2)$. By assumption, $T|_{\text{null } a(T)}$ has an invar subsp of dim 2. **ENDED** 5.B: II

If $T \in \mathcal{L}(V)$ and T^2 has an upper-trig matrix, then T has an upper-trig matrix.

• (4E 5.C.1) Prove or give a counterexample:

SOLUTION:

- (4E 5.C.2) Suppose A and B are upper-trig mtcs of the same size, with $\alpha_1, \ldots, \alpha_n$ on the diag of A and β_1, \ldots, β_n on the diag of B.
 - (a) Show that A + B is an upper-trig matrix with $\alpha_1 + \beta_1, \dots, \alpha_n + \beta_n$ on the diag.
 - (b) Show that AB is an upper-trig matrix with $\alpha_1\beta_1, \dots, \alpha_n\beta_n$ on the diag.

SOLUTION:

• (4E 5.C.3)

Suppose $T \in \mathcal{L}(V)$ is inv and $B = (v_1, \dots, v_n)$ is a basis of V such that $\mathcal{M}(T,B) = A$ is upper trig, with $\lambda_1, \dots, \lambda_n$ on the diag. Show that the matrix of $\mathcal{M}(T^{-1},B) = A^{-1}$ is also upper trig, with $\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_n}$ on the diag.

SOLUTION:

9 (4E 5.C.7)

Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $v \in V$.

- (a) Prove that $\exists !$ monic poly p_v of smallest degree such that $p_v(T)v = 0$.
- (b) Prove that the mini poly of T is a poly multi of p_v .

SOLUTION:

14 (OR 4E 5.C.4) Give an operator T such that with resp to some basis, $\mathcal{M}(T)_{k,k} = 0$ for each k, while T is inv.

SOLUTION:

15 (OR 4E 5.C.5) Give an operator T such that with resp to some basis, $\mathcal{M}(T)_{k,k} \neq 0$ for each k, while T is not inv.

SOLUTION:

20 (OR 4E 5.C.6)

Suppose $\mathbf{F} = \mathbf{C}$, V is finite-dim, and $T \in \mathcal{L}(V)$.

Prove that if $k \in \{1, ..., \dim V\}$ *, then* V *has a* k *dim subsp invar under* T.

SOLUTION:

- (4E 5.C.8) Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $\exists v \in V \setminus \{0\}$ such that $T^2v + 2Tv = -2v$.
 - (a) Prove that if F = R, then \exists a basis of V with resp to which T has an upper-trig matrix.

• (4E 5.C.14) Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Prove that T has an upper-trig matrix $\iff T'$ has an upper-trig matrix.

Solution:	
	Ended
	ENDED
5.C	
	Ended
5.E* (4E)	
1 Give an example of two commuting operators $S, T \in \mathbb{F}^4$ such that	
there is an invar subsp of ${f F}^4$ under S but not under T	
and an invar subsp of ${f F}^4$ under T but not under S .	
Solution:	
2 Suppose \mathcal{E} is a subset of $\mathcal{L}(V)$ and every element of \mathcal{E} is diagable.	
<i>Prove that</i> \exists <i>a basis of</i> V <i>with resp to which</i>	
every element of $\mathcal E$ has a diag matrix \Longleftrightarrow every pair of elements of $\mathcal E$ commutes.	
This exercise extends [5.76], which considers the case in which $\mathcal E$ contains only two elements.	
For this exercise, \mathcal{E} may contain any number of elements, and \mathcal{E} may even be an infinite set.	
Solution:	
3 Suppose $S, T \in \mathcal{L}(V)$ are such that $ST = TS$. Suppose $p \in \mathcal{P}(\mathbf{F})$.	
(a) Prove that $\operatorname{null} p(S)$ is invar under T .	
(b) Prove that range $p(S)$ is invar under T .	
See Note For [5.17] for the special case $S = T$.	
Solution:	
4 Prove or give a counterexample:	
A diag matrix A and an upper-trig matrix B of the same size commute.	
Solution:	
5 Prove that a pair of operators on a finite-dim vecsp commute \iff their dual operators commute	 mmute.
Solution:	

