Sec. 2.2 36. Define $A \oplus B = \{x | x \in A \cup B \land x \not\in A \cap B\} = (A \cup B) \cap (\overline{A \cap B})$. Show $A \oplus B = (A - B) \cup (B - A)$. $(A - B) \cup (B - A)$ $= (A \cap \overline{B}) \cup (B \cap \overline{A})$ definition of complement $= [(A \cap \overline{B}) \cup B] \cap [(A \cap \overline{B}) \cup \overline{A}]$ distributive law $= [(A \cup B) \cap (\overline{B} \cup B)] \cap [(A \cup \overline{A}) \cap (\overline{B} \cup \overline{A})]$ distributive law $= [(A \cup B) \cap U] \cap [U \cap (\overline{B} \cup \overline{A})]$ complement law $= (A \cup B) \cap (\overline{A \cap B})$ domination law $= (A \cup B) \cap (\overline{A \cap B})$ commutative law, de Morgan's law.

Sec. 2.2 40. We shall show that $(A \oplus B) \oplus C = A \oplus (B \oplus C)$ is true. Before we do so, we shall make use of two simplier identities:

Fact 1: $(A \cup B) - C = (A - C) \cup (B - C)$.

This is established in additional problem 2h.

Fact 2: $A - (B \oplus C) = (A \cap \bar{B} \cap \bar{C}) \cup (A \cap B \cap C)$.

Let us prove this one:

$$A - (B \oplus C)$$

 $= A - (B \cup C - B \cap C)$ definition of \oplus

 $=A\cap B\cup C\cap \overline{B\cap C}$ definition of complement

 $=A\cap [\overline{B\cup C}\cup (B\cap C)]$ de Morgan's Law

 $=(A\cap \bar{B}\cap \bar{C})\cup (A\cap B\cap C)$ de Morgan's law and distributive law.

We are now ready to prove the associativity of \oplus .

 $(A \oplus B) \oplus C$

 $= [A \oplus B - C] \cup [C - A \oplus B]$ definition of \oplus

 $= [((A - B) \cup (B - A)) - C] \cup [(C \cap \bar{A} \cap \bar{B}) \cup (C \cap A \cap B)]$ definition of \oplus , fact 2

 $= [(A - B) - C \cup (B - A) - C] \cup [(C \cap \overline{A} \cap \overline{B}) \cup (C \cap A \cap B)] \quad \text{fact } 1$

 $= [(A \cap \bar{B} \cap \bar{C}) \cup (B \cap \bar{A} \cap \bar{C})] \cup [(C \cap \bar{A} \cap \bar{B}) \cup (C \cap A \cap B)] \quad \text{ definition of complement}$

 $A \oplus (B \oplus C)$

 $= [A - B \oplus C] \cup [B \oplus C - A]$

definition of complement

 $= [(A \cap \overline{B} \cap \overline{C}) \cup (A \cap B \cap C)] \cup [((B - C) \cup (C - B)) - A]$

fact 2, defintion of \oplus

 $= [(A \cap \overline{B} \cap \overline{C}) \cup (A \cap B \cap C)] \cup [((B - C) - A) \cup ((C - B) - A)]$

fact 1

 $= [(A \cap \overline{B} \cap \overline{C}) \cup (A \cap B \cap C)] \cup [(B \cap \overline{C} \cap \overline{A}) \cup (C \cap \overline{B} \cap \overline{A})]$ It is straightforward to check now that the two sets are in fact equal.

definition of complement

Additional Problem 2: True or False.

a.
$$A - (B - C) = (A - B) - C$$

False. Let $A = \{1, 2, 3, 4, 5\}, B = \{4, 5\}, C = \{5\}.$ $B - C = \{4\}$ while $A - B = \{1, 2, 3\}.$ Thus, $A - (B - C) = \{1, 2, 3, 5\}$ while $(A - B) - C = \{1, 2, 3\}.$ The two sets are not equal.

b. If $A \cup C = B \cup C$ then A = B.

False. Let $A = \{a\}, B = \{b\}$ and $C = \{a, b\}$. $A \cup C = B \cup C = C$ but $A \neq B$.

c. If $A \cap C = B \cap C$ then A = B.

False. Let $A = \{a, b\}, B = \{a, c\}$ and $C = \{a\}$. $A \cap C = B \cap C = C$ but $A \neq B$.

d. If A = B - C then $B = A \cup C$.

False. Let $B = \{0, 1, 2\}$ and $C = \{0, 3\}$ so that $A = B - C = \{1, 2\}$. Note, however, that $A \cup C = \{0, 1, 2, 3\} \neq B$.

e. |A - B| = |A| - |B|.

False. Let $A = \emptyset$, $B = \{b\}$. $|A - B| = |\emptyset| = 0$ but |A| - |B| = 0 - 1 = -1.

f. $(A - B) \cup B = A$.

False. Let $A = \{0, 1, 2\}, B = \{0, 3\}$. Thus, $A - B = \{1, 2\} \cup B = \{0, 1, 2, 3\} \neq A$.

g. $(A \cup B) - B = A$.

False. Use the same A and B above.

h. $(B - A) \cup (C - A) = (B \cup C) - A$.

True.

 $(B \cup C) - A = (B \cup C) \cap \bar{A}$ definition of complement $= (B \cap \bar{A}) \cup (C \cap \bar{A})$ distributive law $= (B - A) \cup (C - A)$ definition of complement