Introduction to CUDA Programming

Lecture 2: different memory and variable types

高性能计算机研究中心

Memory

- Key challenge in modern computer architecture
 - no point in blindingly fast computation if data can't be moved in and out fast enough
 - need lots of memory for big applications
 - very fast memory is also very expensive
 - end up being pushed towards a hierarchical design

CPU Memory Hierarchy

Memory Hierarchy

- Execution speed relies on exploiting data *locality*
 - temporal locality: a data item just accessed is likely to be used again in the near future, so keep it in the cache
 - spatial locality: neighbouring data is also likely to be used soon, so load them into the cache at the same time using a 'wide' bus (like a multi-lane motorway)
- This wide bus is only way to get high bandwidth to slow main memory

Caches

- The cache line is the basic unit of data transfer; typical size is $64 \text{ bytes} = 8 \times 8 \text{-byte}$ items.
- With a single cache, when the CPU loads data into a register:
 - it looks for line in cache
 - if there (hit), it gets data
 - if not (miss), it gets entire line from main memory, displacing an existing line in cache (usually least recently used)
- When the CPU stores data from a register:
 - same procedure

Importance of Locality

Typical workstation:

```
10 Gflops CPU
20 GB/s memory ←→ L2 cache bandwidth
64 bytes/line
20GB/s = 300M line/s = 2.4G double/s
```

- At worst, each flop requires 2 inputs and has 1 output, forcing loading of 3 lines ⇒ 100 Mflops
- If all 8 variables/line are used, then this increases to 800 Mflops.
- To get up to 10Gflops needs temporal locality, re-using data already in the cache.

Kepler

Kepler

- usually 128 bytes cache line (32 floats or 16 doubles) (32 bytes under certain circumstances)
- 384-bit memory bus from device memory to L2 cache
- up to 250 GB/s bandwidth
- unified 1.5MB L2 cache for all SMX's
- each SMX has 64kB of shared memory / L1 cache (split 16/48, 32/32 or 48/16)
- no global cache coherency as in CPUs, so should (almost) never have different blocks updating the same global array elements

GPU Memory Hierarchy

Importance of Locality

- 1Tflops GPU
 250 GB/s memory ←→ L2 cache bandwidth
 128 bytes/line
 250GB/s = 2G line/s = 32G double/s
- At worst, each flop requires 2 inputs and has 1 output, forcing loading of 3 lines ⇒ 670 Mflops
- If all 16 doubles/line are used, increases to 11 Gflops
- To get up to 500Gflops needs about 15 flops per double transferred to/from device memory
- Even with careful implementation, many algorithms are bandwidth-limited not compute-bound

Practical 1 kernel

```
__global__ void my_first_kernel(float *x)
{
  int tid = threadIdx.x + blockDim.x * blockIdx.x;
  x[tid] = threadIdx.x;
}
```

- 32 threads in a warp will address neighbouring elements of array x
- if the data is correctly "aligned" so that x[0] is at the beginning of a cache line, then x[0]—x[31] will be in same cache line — a "coalesced" transfer
- hence we get perfect spatial locality

A bad kernel

```
__global__ void bad_kernel(float *x)
{
  int tid = threadIdx.x + blockDim.x * blockIdx.x;
  x[1000 * tid] = threadIdx.x;
}
```

- in this case, different threads within a warp access widely spaced elements of array x a "strided" array access
- each access involves a different cache line, so performance will be awful

Global arrays

- So far, concentrated on global / device arrays:
 - held in the large device memory
 - allocated by host code
 - pointers held by host code and passed into kernels
 - continue to exist until freed by host code
 - since blocks execute in an arbitrary order, if one block modifies an array element, no other block should read or write that same element

Global arrays

 Global variables can also be created by declarations with global scope within kernel code file

```
__device__ int reduction_lock=0;

__global__ void kernel_1(...) {
    ...
}

__global__ void kernel_2(...) {
    ...
}
```

Global arrays

- the __device__ prefix tells nvcc this is a global variable in the GPU, not the CPU.
- the variable can be read and modified by any kernel
- its lifetime is the lifetime of the whole application
- can also declare arrays of fixed size
- can read/write by host code using special routines cudaMemcpyToSymbol, cudaMemcpyFromSymbol or with standard cudaMemcpy in combination with cudaGetSymbolAddress
- in my own CUDA programming, I rarely use this capability but it is occasionally very useful

Constant variables

- Very similar to global variables, except that they can't be modified by kernels:
 - defined with global scope within the kernel file using the prefix
 __constant__
 - initialised by the host code using cudaMemcpyToSymbol, cudaMemcpyFromSymbol or cudaMemcpy in combination with cudaGetSymbolAddress
 - I use it all the time in my applications; practical 2 has an example

Constant variables

- Only 64KB of constant memory, but big benefit is that each
 SMX has a 8KB cache
 - when all threads read the same constant, almost as fast as a register
 - doesn't tie up a register, so very helpful in minimising the total number of registers required

Constants

- A constant variable has its value set at run-time
- But code also often has plain constants whose value is known at compile-time:

```
#define PI 3.1415926f
a = b / (2.0f * PI);
```

- Leave these as they are they are embedded into the executable code so they don't use up any registers
- Don't forget the f at the end if you want single precision; in C/C++

single × double = double

■ Within each kernel, by default, individual variables are assigned to registers:

```
__global__ void lap(int I, int J, float *u1, float *u2) {
    int i = threadIdx.x + blockIdx.x * blockDim.x;
    int j = threadIdx.y + blockIdx.y * blockDim.y;
    int id = i + j * I;

if (i == 0 || i == I-1 || j == 0 || j == J-1) {
      u2[id] = u1[id]; // Dirichlet b.c.' s
    }
    else {
      u2[id] = 0.25f * (u1[id - 1] + u1[id + 1] + u1[id - I] + u1[id + I]);
    }
}
```

- 64K 32-bit registers per SMX
- up to 63 registers per thread (up to 255 for K20 / K40)
- up to 2048 threads (at most 1024 per thread block)
- max registers per thread ⇒ 1024 threads (256 threads for K20 / K40)
- max threads ⇒ 32 registers per thread
- not much difference between "fat" and "thin" threads (except for K20 / K40)

- What happens if your application needs more registers?
- They "spill" over into L1 cache, and from there to device memory
- Precise mechanism unclear, probably the contents of some registers get "saved" to device memory so they can be used for other purposes, then the data gets "restored" later
- Anyway, the application suffers from the latency and bandwidth implications of using device memory

- Avoiding register spill is now one of my main concerns in big applications, but remember:
 - with 1024 threads, 400-600 cycle latency of device memory is usually OK because some warps can do useful work while others wait for data
 - provided there are 20 flops per variable read from (or written to) device memory, the bandwidth is not a limiting issue

Local arrays

What happens if your application uses a little array?

```
__global__ void lap(float *u) {
    float ut[3];

int tid = threadIdx.x + blockIdx.x * blockDim.x;

for (int k = 0; k < 3; k++)
    ut[k] = u[tid + k * gridDim.x * blockDim.x];

for (int k = 0; k < 3; k++)
    u[tid + k * gridDim.x * blockDim.x] =
        A[3 * k] * ut[0] + A[3 * k + 1] * ut[1] + A[3 * k + 2] * ut[2];
}</pre>
```

Local arrays

In simple cases like this (quite common) compiler converts to scalar registers:

```
__global__ void lap(float *u) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  float ut0 = u[tid + 0 * gridDim.x * blockDim.x];
  float ut1 = u[tid + 1 * gridDim.x * blockDim.x];
  float ut2 = u[tid + 2 * gridDim.x * blockDim.x];

  u[tid + 0*gridDim.x*blockDim.x] = A[0]*ut0 + A[1]*ut1 + A[2]*ut2;
  u[tid + 1*gridDim.x*blockDim.x] = A[3]*ut0 + A[4]*ut1 + A[5]*ut2;
  u[tid + 2*gridDim.x*blockDim.x] = A[6]*ut0 + A[7]*ut1 + A[8]*ut2;
}
```

Local arrays

- In more complicated cases, it puts the array into device memory
 - still referred to in the documentation as a "local array" because each thread has its own private copy
 - held in L1 cache by default, may never be transferred to L2 cache or device memory
 - 16kB of L1 cache equates to 4096 32-bit variables, which is only 4 per thread when using 1024 threads
 - beyond this, it will have to spill to device memory

■ In a kernel, the prefix __shared__ as in

```
__shared__ int x_dim;
__shared__ float x[128];
```

declares data to be shared between all of the threads in the thread block – any thread can set its value, or read it.

- There can be several benefits:
 - essential for operations requiring communication between threads (e.g. summation in lecture 4)
 - useful for data re-use (I use it for unstructured grid applications)
 - alternative to local arrays in device memory
 - reduces use of registers when a variable has same value for all threads

- If a thread block has more than one warp, it's not pre-determined when each warp will execute its instructions warp 1 could be many instructions ahead of warp 2, or well behind.
- Consequently, almost always need thread synchronisation to ensure correct use of shared memory.
- Instruction

__syncthreads();

inserts a "barrier"; no thread/warp is allowed to proceed beyond this point until the rest have reached it (like a roll call on a school outing)

- So far, have discussed statically-allocated shared memory the size is known at compile-time
- Can also create dynamic shared-memory arrays but this is more complex
- Total size is specified by an optional third argument when launching the kernel:

```
kernel<<<br/>blocks, threads, shared_bytes>>>(...)
```

Using this within the kernel function is complicated/tedious; see B.2.3 in Programming Guide

- Kepler has 64KB which is split 16/48, 32/32 or 48/16 between L1 cache and shared memory:
 - this split can be set by the programmer using cudaFuncSetCacheConfig or cudaDeviceSetCacheConfig
 - default is 48KB of shared memory if not set by cudaDeviceSetCacheConfig
 - might be good to switch to 16KB of shared memory if the kernel doesn't need much shared memory

Texture memory

- Finally, we have texture memory:
 - originally, intended primarily for pure graphics applications
 - in Kepler K20/K40, the texture cache is 48kB and can be used as a cache for read-only global arrays which are accessed non-uniformly (i.e. different threads read different elements)
 - need to declare global array with

```
const ___restrict___
```

qualifiers so that the compiler knows that it is read-only

Non-blocking loads/stores

What happens with the following code?

```
kernel << looks, threads, shared_bytes>>> (...)
_kernel void lap(float *u1, float *u2) {
  float a;

a = u1[threadIdx.x + blockIdx.x * blockDim.x]
    ...
    u2[threadIdx.x + blockIdx.x * blockDim.x] = a;
    ...
}
```

Load doesn't block until needed; store doesn't block unless, or until, danger of modification

Active blocks per SMX

- **Each block require certain resources:**
 - threads
 - \blacksquare registers (registers per thread \times number of threads)
 - shared memory (static + dynamic)
- Together these determine how many blocks can be run simultaneously on each SMX up to a maximum of 16 blocks

Active blocks per SMX

- My general advice:
 - number of active threads depends on number of registers each needs
 - good to have at least 4 active blocks, each with at least 128 threads
 - smaller number of blocks when each needs lots of shared memory
 - larger number of blocks when they don't need shared memory

Active blocks per SMX

- On Kepler:
 - maybe 4 big blocks (256 threads) if each needs a lot of shared memory
 - maybe 8 small blocks (128 threads) if no shared memory needed
 - or 4 small blocks (128 threads) if each thread needs lots of registers
- Very important to experiment with different block sizes to find what gives the best performance.

Summary

- dynamic device arrays
- static device variables / arrays
- constant variables / arrays
- registers
- spilled registers
- local arrays
- shared variables / arrays
- textures

Key reading

- CUDA Programming Guide, version 5.5:
 - Appendix B.2, B.4 essential
 - Chapter 3, sections 3.2.1-3.2.3
- Other reading:
 - Wikipedia article on caches:
 en.wikipedia.org/wiki/CPUcache
 - web article on caches: lwn.net/Articles/252125/
 - "Memory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor System":

portal.acm.org/citation.cfm?id=1637764