离散数学(2) 第八次作业讲解

2024 秋季学期

1. 判断下面每对图是否同构,如果同构,给出对应双射;如果不同构,请给出理由。

知识点:图的同构

■ 设图 $G=\langle V, E, \Psi \rangle$ 和 $G'=\langle V', E', \Psi' \rangle$,如果存在

双射 $f:V \to V'$ 和 双射 $g:E \to E'$,

使得对于任意 $e \in E$ 及 $v_1, v_2 \in V$ 都有:

$$\Psi'(g(e)) = \begin{cases} \{f(v_1), f(v_2)\}, \not\exists \Psi(e) = \{v_1, v_2\} \\ < f(v_1), f(v_2) >, \not\exists \Psi(e) = < v_1, v_2 \end{cases}$$

则称 G = G' 同构,记做 $G \cong G'$,并称 f 和 g 为 G = G' 之间的同构映射,简称同构。

两个同构的图必有相同的结点个数、边数、结点度数,且双射 f 保持结点之间的邻接关系,双射 g 保持边之间的邻接关系。

1. 判断下面每对图是否同构,如果同构,给出对应双射,如果不同构,请给出理由。

解: (1) 设两个图分别为 $G = \langle V, E, \Psi \rangle$, $G' = \langle V', E', \Psi' \rangle$ 。 如下构造两个函数 $f: V \rightarrow V'$ 与 $g: E \rightarrow E'$,使得 f(a) = a', f(b) = b', f(c) = c', f(d) = d', f(k) = k', $g(e_i) = e_i'$,i = 1, 2, ..., 7

显然,f和g构成图G到G'的同构映射。

1. 判断下面每对图是否同构,如果同构,给出对应双射,如果不同构,请给出理由。

解: (2) 设两个图分别为 $G = \langle V, E, \Psi \rangle$, $G' = \langle V', E', \Psi' \rangle$ 。 图G中与图G'分别只有两个度为4的点。

图G中,两个度为 4的结点 b与 d 不邻接,即不存在以b和d 为起点和终点的边,但在图G'中两个度为 4 的结点 b'与 d'邻接。

因此,G与G'不可能为同构。

2. 画出 K_4 的所有不同构的子图,指出哪些是生成子图,哪些是导出子图,并找出互为补图的生成子图。

知识点: 生成子图、导出子图、补图、同构

- 设 $G = \langle V, E, \Psi \rangle$, $G' = \langle V', E', \Psi' \rangle$ 为图,
 - \triangleright 如果 V' = V, $E' \subseteq E$, $\Psi' \subseteq \Psi$,则称 $G' \neq G$ 的生成子图(Spanning Subgraph)
- 设图 $G = \langle V, E, \Psi \rangle$, $V' \subseteq V \perp L V' \neq \emptyset$,
 - \triangleright 由V'导出的子图 G[V']: 以 V' 为结点集合,以所有起点和终点均在V' 中的边的全体为边集合的 G 的子图
- 设图 $G = \langle V, E, \Psi \rangle$, $E' \subseteq E \perp E' \neq \emptyset$, $V' = \{v \mid v \in V \perp E \neq E' \notin v \vdash e \neq E' \}$
 - \triangleright 由 E'导出的子图 G[E']: 以 V' 为结点集合,以 E' 为边集合的 G 的子图
- 设n 阶无向图 $G=\langle V, E, \Psi \rangle$ 是n 阶完全无向图 K_n 的生成子图,则G 的补图 $\overline{G}=K_n-E$
 - ightharpoonup 若 $E' \subseteq E$, $G E' = \langle V, E E', \Psi |_{(E E')} \rangle$

2. 画出 K_4 的所有不同构的子图,指出哪些是生成子图,哪些是导出子图,并找出互为补图的生成子图。

知识点: 生成子图、导出子图、补图、同构

■ 设图 $G=\langle V, E, \Psi \rangle$ 和 $G'=\langle V', E', \Psi' \rangle$,如果存在 双射 $f:V\to V'$ 和 双射 $g:E\to E'$,

使得对于任意 $e \in E$ 及 $v_1, v_2 \in V$ 都有:

$$\Psi'(g(e)) = \begin{cases} \{f(v_1), f(v_2)\}, 若 \Psi(e) = \{v_1, v_2\} \\ \langle f(v_1), f(v_2) \rangle, 若 \Psi(e) = \langle v_1, v_2 \rangle \end{cases}$$

则称 G = G' 同构,记做 G = G' ,并称 f 和 g 为 G = G' 之间的同构映射,简称同构。

2. 画出 K_4 的所有不同构的子图,指出哪些是生成子图,哪些是导出子图,并找出互为补图的生成子图。

解:如下图所示 K_4 的所有不同构的子图。

- > 所有四阶子图都是生成子图
- > (a), (c), (g), (r) 为结点导出子图
- (c), (f), (g), (j), (l), (m), (o), (p), (q),(r)为边导出子图
- > 互为补图的生成子图:
 - (h)与(r)、(i)和(q)、(j)和(o)
 - (k)和(p)、(m)和(m)、(l)和(n)

知识点:图的可运算

■ 设 $G=\langle V, E, \Psi \rangle$ 与 $G'=\langle V', E', \Psi' \rangle$ 同为无向图或有向图,如果对于任意 $e \in E \cap E'$,均有 $\Psi(e) = \Psi'(e)$,则称G 和 G'是可运算的

知识点:图的运算——交、并、环和

- 设 $G=\langle V, E, \Psi \rangle$ 和 $G'=\langle V', E', \Psi' \rangle$ 是可运算的
 - $ightharpoonup G_1 \cap G_2 = \langle V_1 \cap V_2, E_1 \cap E_2, \Psi_1 \cap \Psi_2 \rangle$: 以 $V_1 \cap V_2$ 为结点集合,以 $E_1 \cap E_2$ 为边集合的 $G_1 \cap G_2$ 的公共子图
 - \succ G_1 和 G_2 的并 G_1 U G_2 =< V_1 U V_2 , E_1 U E_2 , Ψ_1 U Ψ_2 > : 以 V_1 U V_2 为结点集合,以 E_1 U E_2 为边集合的 G_1 和 G_2 的公共母图
 - $> G_1 和 G_2$ 的环和 $G_1 \oplus G_2 = < V_1 \cup V_2, E_1 \oplus E_2, \Psi_1 \cup \Psi_2 |_{E_1 \oplus E_2} > : 以 V_1 \cup V_2$ 为结点集合,以 $E_1 \oplus E_2$ 为边集合的 $G_1 \cup G_2$ 的子图

解:两个图的交为:

解:两个图的并为:

解:两个图的环和为:

4. 证明3度正则图必有偶数个结点。

知识点: 节点的度、d度正则图

- 设 *v* 是图 *G* 的结点,
 - \rightarrow 如果 G 是无向图, v 的度 $d_G(v)$ 为G中与 v 关联的边的数目
 - \triangleright 如果 G 是有向图,v 的出度 $d_G^+(v)$ 为G中以v 为起点的边的数目
 - v 的入度 $d_G(v)$ 为G中以v 为终点的边的数目
 - v 的度 $d_{c}(v)$ 为v 的出度与入度之和
- 握手定理: 设图 $G = \langle V, E, \Psi \rangle$ 有m条边,
 - ightharpoonup 如果 G 是无向图,则 $\Sigma_{v \in V} d_G(v) = 2m$
 - ightarrow 如果 G 是有向图,则 $\Sigma_{v \in V}$ $d_G^+(v) = \Sigma_{v \in V}$ $d_G^-(v) = m$ 且 $\Sigma_{v \in V}$ $d_G(v) = 2m$
- d 度正则图: 所有结点的度均为自然数 d 的无向图

4. 证明3度正则图必有偶数个结点。

证明:设 $G = \langle V, E, \Psi \rangle$ 是 n 阶3度正则图,则一定有

$$\sum_{v \in V} d_G(v) = 3n.$$

又由握手定理知, $\Sigma_{v \in V} d_G(v) = 2|E|$,得2|E| = 3n为偶数。

因此,n必为偶数,即3度正则图必有偶数个结点。

5. 画出3个结点的所有可能的简单无向图,但不能出现同构的图。

解: 3个结点的互不不同构的简单无向图一共有 4 个:

