Assignment 4

1. Let $M=(Q,\Sigma,\delta,q_0,A)$ be an ϵ -NFA and let $S\subseteq Q$. Prove that $\epsilon(S)=\epsilon(\epsilon(S))$.

Proof. We need to prove 2 parts:

1) $\epsilon(S) \subseteq \epsilon(\epsilon(S))$

Let $T = \epsilon(S)$. We have $T \subseteq \epsilon(T)$ (According to definition of ϵ closure). Therefore, $\epsilon(S) \subseteq \epsilon(\epsilon(S))$ (since $T = \epsilon(S)$).

 $2) \ \epsilon(\epsilon(S)) \subseteq \epsilon(S)$

Let $q \in \epsilon(\epsilon(S))$. We have q is reachable from state x such that $x \in \epsilon(S)$ by an ϵ move. (according to definition of ϵ closure)

If $x \in \epsilon(S)$ then $\delta(x, \epsilon) \subseteq \epsilon(S)$ (according to definition).

We also know that q is an element of $\delta(x, \epsilon)$ and $\delta(x, \epsilon) \subseteq \epsilon(S)$. Then $q \in \epsilon(S)$.

Therefore, $\epsilon(\epsilon(S)) \subseteq \epsilon(S)$.

Since
$$\epsilon(S) \subseteq \epsilon(\epsilon(S))$$
 and $\epsilon(\epsilon(S)) \subseteq \epsilon(S)$, then $\epsilon(S) = \epsilon(\epsilon(S))$

2. Let $M = (Q, \Sigma, \delta, q_0, A)$ be an ϵ -NFA. Suppose that there are sets $S \subseteq Q$ and $T \subseteq Q$ such that $S = \epsilon(S)$ and $T = \epsilon(T)$. Prove that $S \cap T = \epsilon(S \cap T)$

Proof. We need to prove 2 parts:

1) $S \cap T \subseteq \epsilon(S \cap T)$

We have $S \cap T = \epsilon(S) \cap \epsilon(T)$ (since $S = \epsilon(S)$ and $T = \epsilon(T)$).

Let $q \in Q$ such that $q \in \epsilon(S) \cap \epsilon(T)$. Then $q \in \epsilon(S)$ and $q \in \epsilon(T)$.

Then $q \in S$ and $q \in T$ (since $S = \epsilon(S)$ and $T = \epsilon(T)$).

Which means $q \in S \cap T$.

According to ϵ closure, $S \cap T \subseteq \epsilon(S \cap T)$. Then $q \in \epsilon(S \cap T)$.

Therefore, $S \cap T \subseteq \epsilon(S \cap T)$.

2)
$$\epsilon(S \cap T) \subseteq S \cap T$$

Let $q \in \epsilon(S \cap T)$. Then we have q is reachable from state s such that $s \in S \cap T$ by an ϵ move. (according to ϵ closure). This also means $s \in \epsilon(S) \cap \epsilon(T)$ since $\epsilon(S) = S$ and $\epsilon(T) = T$

We also know that q is an element of $\delta(s, \epsilon)$ and $\delta(s, \epsilon) \subseteq \epsilon(S) \cap \epsilon(T)$ (according to definition). Then $q \in \epsilon(S) \cap \epsilon(T)$.

Thus, $q \in S \cap T$.

Therefore, $\epsilon(S \cap T) \subseteq S \cap T$.

Since $S \cap T \subseteq \epsilon(S \cap T)$ and $\epsilon(S \cap T) \subseteq S \cap T$, then we have $S \cap T = \epsilon(S \cap T)$.

3. Let $\Sigma = \{a, b\}$ and let $R = (a\star) + (b\star)$ be a regular expression. Prove that there cannot exist any deterministic finite state machine $M = (Q, \Sigma, \delta, q_0, A)$ such that $|Q| = 3 \wedge L(M) = L(R)$.

Proof. We will create an DFM with minimized number of states. We have DFM for R is:

We use Table Filling Algorithm to minimize number of states of the machine above.

	A	_	\mathbf{C}	D
A	-	×	×	×
ВС	×	-	×	×
С	×	× - ×	-	×
D	×	×	×	-

From the table, we can see that all states A, B, C and D are distinguishable and not equivalent. Therefore, the minimum number of states of M for R is 4 states.

Therefore, there cannot exist any deterministic finite state machine $M = (Q, \Sigma, \delta, q_0, A)$ such that $|Q| = 3 \wedge L(M) = L(R)$.