CENTRO UNIVERSITÁRIO FEI

LUCAS MATEUS DE MORAES - RA: 22.220.004-0

GERENCIAMENTO DE DADOS EM NUVENS E BLOCKCHAINS

LUCAS MATEUS DE MORAES - RA: 22.220.004-0

GERENCIAMENTO DE DADOS EM NUVENS E BLOCKCHAINS

Relatório inicial para a disciplina de Tópicos avançados de bancos de dados, ministrada pela professora Dra. Leila Bergamasco.

São Bernardo do Campo

"I'm sure that in 20 years there will either be very large transaction volume or no volume."
Satoshi Nakamoto
"A blockchain é uma forma inovadora de criar consenso sobre registros de transferência de va-
lor."
Fernando Ulrich

SUMÁRIO

1	INTRODUÇÃO	4
2	O ESTADO ATUAL DO GERENCIAMENTO DE DADO EM NUVEM .	5
3	O SURGIMENTO DA TECNOLOGIA BLOCKCHAIN	6
3.1	O FUNCIONAMENTO DA BLOCKCHAIN E SEU USO PARA REGISTRO	
	DE DADOS DO BITCOIN	6
4	AS PRINCIPAIS DIFERENÇAS ENTRE UMA BLOCKCHAIN E UM	
	BANCO DE DADOS CONVENCIONAL	8
5	PERSPECTIVAS FUTURAS E DESAFIOS PARA A BLOCKCHAIN	9
6	CONCLUSÕES E PROPOSTA DE APRESENTAÇÃO	10

1 INTRODUÇÃO

O objetivo deste relatório é estudar o tema "Gerenciamento de dados em nuvens e blockchains".

2 O ESTADO ATUAL DO GERENCIAMENTO DE DADO EM NUVEM

O gerenciamento de dados em nuvem consiste no processo de coletar, nuvem uma metáfora para a Internet(awsDataManagement), esse dados (computacaoNuvemIfrn). rápida e medição de serviços (computacaoNuvemUfc).

3 O SURGIMENTO DA TECNOLOGIA BLOCKCHAIN

Bitcoin e ao movimento *Cypherpunk*, esse movimento surge em 1988 com Timothy C. May e outros engenheiros e cientista da computação. Criptoanarquista (**cryptoManifesto**), em que defende a ideia da criação de sistemas de comunicação e negócios completamente ativista e jornalista Julian Assange em seus livros (**assange**).

forma de dinheiro, separado do sistema financeiro convencional, foram criadas, como a *B-Money*, *E-Gold*, *DigiCash*, *Hashcash* e *BitGold*, mas todas elas acabaram falhando com o tempo (**predecessoresBtc**), todas elas enfrentavam dois Nick Szabo da *BitGold* e Wei Dai da *B-Money*.

Após isso, no ano de 2008, um usuário anonimo do fórum *P2P Foundation*, usando o pseudônimo de Satoshi Nakamoto, publica um artigo intitulado *Bitcoin: A Peer-to-Peer Eletronic Cash System* (bitcoinWhitePaper), nesse artigo ele propõem uma nova forma governos, essa solução foi inicialmente nomeada de *Timechain* na publicação original do *white paper*, porém, o nome não tecnologia para *Blockchain*, nome pelo qual popularizou-se e é conhecida até hoje (p2pFoundation), a tecnologia nasceu e foi sendo aprimorada no ambiente *open source* até o seu estado

3.1 O FUNCIONAMENTO DA BLOCKCHAIN E SEU USO PARA REGISTRO DE DADOS DO BITCOIN

magnetismo, som (a expressão inglesa "sound money" era usada para referir-se ao barulho característico que duas moedas de ouro com alta pureza emitiam quando colidiam-se) e selos oficiais cunhados por países, atualmente, no caso do padrão monetário *Fiat* (padrão informações são chamados de *nodes* (nós em português).

Os *nodes* guardam todas as transações já feitas na história do Bitcoin, atualmente existem cerca de 10000 *nodes* rodando na (**blockchainInfo**), o que significado que existem 10000 máquinas no *nodes*.

das atividades na rede, são os chamador *miners* (mineradores m validadas, esse o chamado *hashrate* de uma blockchain, atualmente o Bitcoin possui 370 milhões de terahashes por segundo aplicados a rede ((**blockchainInfo**)).

monetária e um controle de juros se torna inviável (bitcoinFernandoUlrich).

bancárias algorítmicas e tokens sintéticos de moedas como o Real e o Dólar de forma digital (**sinteticos**), assim aumentando a escalabilidade na segunda camada (chamada de *Layer* 2) e mantendo a segurança na primeira camada da blockchain (chamada de *Layer 1*).

4 AS PRINCIPAIS DIFERENÇAS ENTRE UMA BLOCKCHAIN E UM BANCO DE DADOS CONVENCIONAL

da necessidade de cada situação, os principais pontos são:

- a) Centralização: Uma blockchain é descentralizada e sem um .
- b) Arquitetura: Uma blockchain usa uma arquitetura com a .
- c) Integridade: Uma blockcahin tem maior integridade dos dados, .
- d) Transparência: Uma blockchain oferece transparência total das .
- e) Operações: Um banco de dados suporta todas as operações CRUD.
- f) Custos: Um banco de dados oferece menor custo e maior.
- g) Performance: Como abordado anteriormente a escalabilidade não .
- h) Automações: Os bancos de dados possibilitam a criação de tarefas automáticas com *triggers*, já as blockchain possibilitam a criação dos chamados *smart contracts* que

5 PERSPECTIVAS FUTURAS E DESAFIOS PARA A BLOCKCHAIN

por estudos de Nelson Almeida (**redeHibridaMeshComLora**) e Matheus George Abel (**topologiaMeshComLora**).

proposta do Taproot (taproot) no próprio Bitcoin, mas ao que tudo

6 CONCLUSÕES E PROPOSTA DE APRESENTAÇÃO

funcionamento da tecnologia, seguindo os tópicos:

- a) O estado atual do gerenciamento de dados em nuvem
- b) O surgimento da tecnologia blockchain.
- c) As diferenças entre uma blockchain e um banco de dados
- d) Perspectivas futuras e desafios da tecnologia

Como um forma de demostração pretendo exemplificar o uso de uma blockchain através da *Testnet*, uma rede paralela para testes,