Semántica Denotacional

David de Frutos Escrig versión original elaborada por Yolanda Ortega Mallén

Dpto. de Sistemas Informáticos y Computación Universidad Complutense de Madrid

Sumario

- Función semántica; valores semnticos y definicin composicional.
- Teoría de puntos fijos. Dominios semánticos. Funciones continuas...
- Equivalencia entre la semántica operacional y la denotacional.

Bibliografía

- Hanne Riis Nielson & Flemming Nielson, Semantics with Applications. An Appetizer, Springer, 2007. Capítulo 5.
- Glynn Winskel, The Formal Semantics of Programming Languages: An Introduction, The Mit Press, 1993.
 - Capítulos 5, 8 y 12. (profundización en la Teoría de Dominios)

Función semántica para las sentencias de While

$$\mathcal{S}_d: \textbf{Stm} \longrightarrow (\textbf{State} \hookrightarrow \textbf{State})$$

$$\begin{split} \mathcal{S}_{\mathrm{d}} \llbracket x &:= a \rrbracket s &= s \llbracket x \mapsto \mathcal{A} \llbracket a \rrbracket s \rrbracket \\ \mathcal{S}_{\mathrm{d}} \llbracket \mathsf{skip} \rrbracket &= \mathsf{id} \\ \mathcal{S}_{\mathrm{d}} \llbracket \mathsf{S}_1 ; \mathcal{S}_2 \rrbracket &= \mathcal{S}_{\mathrm{d}} \llbracket \mathcal{S}_2 \rrbracket \circ \mathcal{S}_{\mathrm{d}} \llbracket \mathcal{S}_1 \rrbracket \\ \mathcal{S}_{\mathrm{d}} \llbracket \mathsf{if} \ b \ \mathsf{then} \ \mathcal{S}_1 \ \mathsf{else} \ \mathcal{S}_2 \rrbracket &= \operatorname{cond}(\mathcal{B} \llbracket b \rrbracket, \mathcal{S}_{\mathrm{d}} \llbracket \mathcal{S}_1 \rrbracket, \mathcal{S}_{\mathrm{d}} \llbracket \mathcal{S}_2 \rrbracket) \\ \mathcal{S}_{\mathrm{d}} \llbracket \mathsf{while} \ b \ \mathsf{do} \ \mathcal{S} \rrbracket &= \operatorname{FIX} \ F \\ \operatorname{donde} F \ g &= \operatorname{cond}(\mathcal{B} \llbracket b \rrbracket, g \circ \mathcal{S}_{\mathrm{d}} \llbracket \mathcal{S}_1 \rrbracket, \mathsf{id}) \end{split}$$

$$\mathsf{cond} : (State \longrightarrow T) \times (State \hookrightarrow State) \times (State \hookrightarrow State) \longrightarrow (State \hookrightarrow State)$$

$$cond(p, g_1, g_2) \ s = \begin{cases} g_1 \ s & \text{si } p \ s = \mathbf{tt} \\ g_2 \ s & \text{si } p \ s = \mathbf{ff} \end{cases}$$

 $\mathsf{FIX} : (\mathsf{State} \hookrightarrow \mathsf{State}) \longrightarrow (\mathsf{State} \hookrightarrow \mathsf{State}) \longrightarrow (\mathsf{State} \hookrightarrow \mathsf{State})$

David de Frutos Escrig (UCM) TPRO 20-21 3 / 1

Requisitos para el punto fijo

- Hay funcionales con más de un punto fijo, y
- hay funcionales que no tienen ningún punto fijo.

¿Cómo determinar el punto fijo que nos interesa?

- Imponer requisitos y demostrar que a lo sumo un punto fijo los satisfará, y
- garantizar que todos los funcionales utilizados en la definición de la semántica tienen un punto fijo tal.

FIX $F = g_0 : (\mathbf{State} \hookrightarrow \mathbf{State})$ tal que:

- g_0 es punto fijo: $F g_0 = g_0$, y
- Todo punto fijo de F, (F g = g), satisface $\forall s, s' \in \textbf{State} \quad g_0 \ s = s' \implies g \ s = s'$.

Conjuntos parcialmente ordenados

Orden parcial sobre $State \hookrightarrow State$:

$$g_1 \sqsubseteq g_2 \stackrel{\text{def}}{=} \forall s, s' \in \mathbf{State} \ g_1 \ s = s' \implies g_2 \ s = s'$$

Ejercicio 5.8

Demostrar la caracterización alternativa de \sqsubseteq para State \hookrightarrow State:

$$g_1 \sqsubseteq g_2 \iff \operatorname{grafo}(g_1) \subseteq \operatorname{grafo}(g_2)$$

Conjunto parcialmente ordenado (D, \sqsubseteq_D) :

$$d \sqsubseteq_D d$$
 (reflexiva)
 $d_1 \sqsubseteq_D d_2 \land d_2 \sqsubseteq_D d_3 \implies d_1 \sqsubseteq_D d_3$ (transitiva)
 $d_1 \sqsubseteq_D d_2 \land d_2 \sqsubseteq_D d_1 \implies d_1 = d_2$ (antisimétrica)

Interpretación: si $d_1 \sqsubseteq_D d_2$, entonces d_2 contiene más información que d_1 .

Elemento mínimo de $D: \forall d' \in D \ d \sqsubseteq_D d'. d$ no contiene información.

Notación (bottom): \perp_D .

El conjunto de transformadores de estado

(State \hookrightarrow State, \sqsubseteq) es un conjunto parcialmente ordenado.

 $\perp s = \text{INDEFINIDO}$, para todo s

Requisitos para FIX F

Punto fijo F(FIX F) = FIX F; Mínimo punto fijo; $Fg = g \implies FIX F \sqsubseteq g$.

¿Cómo garantizar que todo funcional que aparece en la definición de la semántica de While tiene un punto fijo mínimo?

Conjuntos parcialmente ordenados completos (cpo's)

Consideramos (D, \sqsubseteq_D) , $Y \subseteq D$, $d \in D$:

- d es una cota superior de Y si $\forall d' \in Y$ $d' \sqsubseteq d$;
- d es la cota superior mínima de Y si es cota superior y d'' cota superior de $Y \implies d \sqsubseteq d''$.

Una cota superior mínima de Y añade el mínimo posible de información a la contenida en los elementos de Y.

Cotas superiores mínimas (lub's) y Cadenas

Si Y tiene una cota superior mínima (única) se denota por $\bigsqcup Y$. Y es una cadena en (D, \sqsubseteq_D) , si $\forall d_1, d_2 \in Y$ $d_1 \sqsubseteq d_2 \lor d_2 \sqsubseteq d_1$.

Ejercicios 5.18 + 5.19

Considerar $(\mathcal{P}(S),\subseteq)$. Demostrar que todo subconjunto de $\mathcal{P}(S)$ tiene una cota superior mínima. Repetir para $(\mathcal{P}(S),\supseteq)$. ¿Qué ocurre con $(\mathcal{P}_{fin}(S),\subseteq)$?

Conjuntos parcialmente ordenados completos

Ejercicio 5.21

Construir un subconjunto de State \hookrightarrow State que no tenga cotas superiores.

Ejercicio 5.22

Siendo:
$$g_n s = \begin{cases} s[y \mapsto (s \ x)!, x \mapsto 1] & \text{si } 0 < s \ x \land s \ x \le n \\ \text{INDEFINIDO} & \text{e.c.c.} \end{cases}$$

Demostrar que $Y_0 = \{g_n \mid n \ge 0\}$ es una cadena.

Caracterizar las cotas superiores de Y_0 y determinar la mínima de ellas.

Ordenes completos por cadenas y Retículos completos

Orden completo por cadenas (ccpo): toda cadena tiene cota superior mínima.

Retículo completo: todo subconjunto de D tiene cota superior mínima.

Todo ccpo tiene elemento mínimo: $\bot = \bigcup \emptyset$

Lema 5.25: (State
$$\hookrightarrow$$
 State, \sqsubseteq) es un ccpo.

$$grafo(| | Y) = | | \{grafo(g) | g \in Y\}$$

Funciones monótonas

Monotonía y sus propiedades

$$f:D\longrightarrow D'$$
 es monótona entre los ccpo's (D,\sqsubseteq) y (D',\sqsubseteq') , si

$$\forall d_1, d_2 \in D \ d_1 \sqsubseteq d_2 \implies f \ d_1 \sqsubseteq' f \ d_2$$

Composición
$$f:D\longrightarrow D'$$
 y $f':D'\longrightarrow D''$ monótonas \Longrightarrow $f'\circ f:D\longrightarrow D''$ monótona.

Conservación de cadenas $f:D\longrightarrow D'$ monótona y $Y\subseteq D$ cadena \Longrightarrow $\{f\ d\mid d\in Y\}$ es también cadena en D', y

$$\bigsqcup' \{ f \ d \mid d \in Y \} \sqsubseteq' f(\bigsqcup Y)$$

Ejemplo

$$(\mathcal{P}(\mathbb{N} \cup \{a\}), \subseteq) \text{ ccpo y } f: \mathcal{P}(\mathbb{N} \cup \{a\}) \longrightarrow \mathcal{P}(\mathbb{N} \cup \{a\}):$$

$$f \ X = \left\{ \begin{array}{ll} X & \text{si } X \text{ es finito} \\ X \cup \{a\} & \text{si } X \text{ es infinito} \end{array} \right.$$

$$f$$
 es monótona, pero tomando $Y = \{ \{0,1,\ldots,n\} \mid n \ge 0 \}$, $| \{f \mid X \mid X \in Y\} = | |Y = \mathbb{N} \ne \mathbb{N} \cup \{a\} = f \mid \mathbb{N} = f(| \mid Y)$.

Funciones continuas

Continuidad y estricticidad

 $f: D \longrightarrow D'$ entre (D, \sqsubseteq) y (D', \sqsubseteq') (ambos ccpo),

Continua: Monótona y para toda cadena no vacía, $Y\subseteq D$,

$$\bigsqcup'\{f \ d \mid d \in Y\} = f(\bigsqcup Y)$$

Estricta: $f \perp = \perp$ (o sea, $\sqcup' \{f \mid d \mid d \in Y\} = f(\sqcup Y)$, para toda cadena).

Composición de funciones continuas

$$\begin{array}{c} f:D\longrightarrow D' \text{ y } f':D'\longrightarrow D'' \text{ continuas } \Longrightarrow \\ f'\circ f:D\longrightarrow D'' \text{ también continua.} \end{array}$$

Ejercicio 5.36

Demostrar que si f y f' son estrictas, entonces $f' \circ f'$ también es estricta.

Teorema del punto fijo

Teorema 5.37:

- Si $f: D \longrightarrow D$ es montona, existe $\bigsqcup \{f^n \perp \mid n \geq 0\} \in D$.
- Si $f: D \longrightarrow D$ es continua tomaremos

$$\mathsf{FIX}\, f = \bigsqcup\{f^n \perp \mid n \ge 0\} \in D$$

lo que est justificado pues FIX f es el mínimo punto fijo de f:

Punto fijo: f(FIX f) = FIX f.

Ejercicio 5.40: $f \ d \sqsubseteq d \implies \mathsf{FIX} \ f \sqsubseteq d$.

Aplicación de la teoría de puntos fijos

- 1 Nos aseguramos de manejar órdenes completos por cadenas (ccpo's).
- 2 Y de que las funciones con las que trabajamos sean continuas.
- 3 Usamos sus mínimos puntos fijos FIX f.

Dominio de funciones continuas

Dominio de funciones continuas - Ejercicio 5.41 (Primera parte)

Siendo (D,\sqsubseteq) , (D',\sqsubseteq') ccpo's, definimos $(D\longrightarrow D',\sqsubseteq_F)$, tomando sólo las funciones continuas entre D y D', y con

$$f_1 \sqsubseteq_F f_2 \stackrel{\text{def}}{=} \forall d \in D \ (f_1 \ d) \sqsubseteq (f_2 \ d).$$

Demostrar que $(D \longrightarrow D', \sqsubseteq_F)$ es un ccpo. ¿Qué función es su elemento mínimo?

Definición y continuidad del funcional FIX - Ejercicio 5.41 (Segunda parte)

Consideramos el funcional $FIX : (D \longrightarrow D) \longrightarrow D$.

Demostrar que FIX es monótono y continuo, o sea que

$$\mathsf{FIX}(\bigsqcup_F \mathcal{F}) = \bigsqcup\{\mathsf{FIX}\,f\mid f\in\mathcal{F}\}.$$

12 / 1

para toda cadena $\mathcal{F}\subseteq (D\longrightarrow D)$ de funciones continuas.

Definición cuidadosa de la semántica denotacional

$$\mathcal{S}_{\mathrm{d}}[\![\mathtt{while}\ b\ \mathtt{do}\ S]\!] = \mathsf{FIX}\ F\ \mathrm{donde}\ F\ g = \mathsf{cond}(\mathcal{B}[\![b]\!], g \circ \mathcal{S}_{\mathrm{d}}[\![S]\!], \mathsf{id})$$

Hay que demostrar que F es continua. Tenemos $F = F_1 \circ F_2$, con $F_1 \ g = \operatorname{cond}(\mathcal{B}[\![b]\!], g, \operatorname{id})$ y $F_2 \ g = g \circ \mathcal{S}_{\operatorname{d}}[\![S]\!]$, por lo que basta demostrar que F_1 y F_2 son continuas.

Funcional cond. Su continuidad (separada)

Fijados g_0 : State \hookrightarrow State, p: State \longrightarrow T, consideramos

 $F g = \operatorname{cond}(p, g, g_0)$. $F : (State \hookrightarrow State) \longrightarrow (State \hookrightarrow State)$, es continua.

Ejercicio 5.44: Demostrar que F' $g = \text{cond}(p, g_0, g)$ también es continua.

Funcional composición o. Su continuidad (separada)

Fijada g_0 : **State** \hookrightarrow **State**, se define $F g = g \circ g_0$.

 $F: (\mathbf{State} \hookrightarrow \mathbf{State}) \longrightarrow (\mathbf{State} \hookrightarrow \mathbf{State}), \text{ es continua}.$

Ejercicio 5.46: Demostrar que F' $g = g_0 \circ g$ también es continua.

Proposición 5.47:

La semántica denotacional de While está correctamente definida:

$$S_{d}: \mathbf{Stm} \longrightarrow (\mathbf{State} \hookrightarrow \mathbf{State}).$$

Ejercicios: evaluando la semántica y extendiendola

Ejercicio 5.49

Desarrollar la semántica de la sentencia z := 0; while $y \le x$ do (z := z + 1; x := x - y).

Ejercicio 5.50

Demostrar que $\mathcal{S}_d[\![$ while true do skip $\![]\!] = \bot$, o sea, es la función completamente indefinida.

Ejercicio 5.51

Extender el lenguaje **While** con la sentencia repeat S until b y dar la cláusula semántica que define S_d para sus aplicaciones.

Demostrar, de manera directa, que \mathcal{S}_d sigue estando bien definida tras la extensión.

Propiedades

Equivalencia semántica (bajo la semántica denotacional)

$$S_1$$
 y S_2 son equivalentes si $\mathcal{S}_d[S_1] = \mathcal{S}_d[S_2]$.

Ejercicio 5.53

Demostrar que los siguientes pares de sentencias son equivalentes:

- S; skip y S
- while $b ext{ do } S$ y if $b ext{ then } (S; ext{while } b ext{ do } S)$ else skip
- S_1 ; $(S_2; S_3)$ y $(S_1; S_2)$; S_3

Ejercicio 5.54

Demostrar que repeat S until b es semánticamente equivalente a S; while $\neg b$ do S.

Equivalencia con la semántica operacional

Teorema 5.55:

$$\forall S \in \mathbf{Stm} \ \mathcal{S}_{ss}[\![S]\!] = \mathcal{S}_{d}[\![S]\!]$$

Lema 5.56: $\forall S \in \mathbf{Stm} \ \mathcal{S}_{ss}[\![S]\!] \sqsubseteq \mathcal{S}_{d}[\![S]\!]$, o equivalentemente

$$\forall S \in \mathbf{Stm} \ \forall s, s' \in \mathbf{State} \ \langle S, s \rangle \Rightarrow^* s' \implies \mathcal{S}_{\mathbf{d}} \llbracket S \rrbracket s = s'$$

Lema 5.57: $\forall S \in \mathbf{Stm} \ \mathcal{S}_{\mathbf{d}} \llbracket S \rrbracket \sqsubseteq \mathcal{S}_{\mathbf{ss}} \llbracket S \rrbracket$

Resumen de la demostración (ambos lemas)

- Primero utilizar inducción sobre el árbol de derivación
 - Si una sentencia ejecuta un paso en la semántica de paso corto y no termina, entonces el significado en la semántica denotacional no cambia.
 - Si una sentencia ejecuta un paso en la semántica de paso corto y termina, entonces se obtiene el mismo resultado en la semántica denotacional.

Después utilizar inducción sobre la longitud de la secuencia de derivación.

Inducción estructural

 \mathcal{S}_{ss} satisface versiones "más débiles" de las cláusulas que definen \mathcal{S}_d : si $\mathcal{S}_d[S] = \Psi(\dots \mathcal{S}_d[S']\dots)$, vemos que $\mathcal{S}_{ss}[S] \supseteq \Psi(\dots \mathcal{S}_{ss}[S']\dots)$.

David de Frutos Escrig (UCM) TPRO 20-21

Ejercicios

Ejercicio 5.59

Extender la demostración del Teorema 5.55 para incluir la sentencia repeat S until b.

Ejercicio 5.61

Demostrar de forma directa que $\forall S \in \mathbf{Stm} \ \mathcal{S}_{bs}[S] = \mathcal{S}_{d}[S]$.