UE18CS303: Machine Intelligence(4:0:0:0:4)

#of Credits:4 #of Hrs: 56

Clas Chapter Title /		ter Title /		% of Portion Covered		
s #	# Reference Literature		Topics to be Covered	% of Syllabus	Cumulativ e %	
Unit 1	:Intro					
1			Introduction to AI and ML			
2			Intelligent Agents and its Types			
3			Machine Learning and its Models			
4			Problem solving by Searching- Uninformed Search			
5	T1	1.1				
3	T1	1.2	Problem solving by Searching- Informed Search			
6	T1	3.3-3.4	Perspectives and Issues, designing learning systems			
7	T1	3.5-3.6	Concepts of hypotheses, Version space, inductive bias	21.4	21.4	
8	T2 T2	1.2-1.3 2.1-	Performance metrics-accuracy, precision, recall, sensitivity, specificity, AUC, RoC			
9	2.4,2	.7	Decision Trees- Basic algorithm (ID3)			
10	T2	3.1-3.7	Hypothesis search and Inductive bias, Entropy and Gain calculations			
11			Issues in Decision Tree Learning – Overfitting			
12			Solutions to overfitting, Dealing with continuous values			

Unit 2	2 : Classification	and Regression		
13		Instance-based learning: k-nearest		
		neighbor learning		
14		Simple problems – weighted KNN		
15		Issues with KNN – discussion		
16		Artificial Neural networks:		
		Introduction		
17		Perceptrons – implementing LOGIC		
	T2:Ch8:Pages	gates		
18	230-238,	Multi-layer networks and back-		
	Ch4:Pages 81-	propagation	21.4	42.8
19	105, 108-111	Back-propagation derivation		
20	R1 Ch7.3	Activation Units – discussion		
21		Support Vector Machines – margin		
		and maximization		
22		SVM - The primal problem, the		
		Lagrangian dual		
23		SVM – Solution to the Lagrangian		
		dual		
24		Simple problems on SVM		
	: Stochastic Lea	1		
25		Improving performance: Bagging and		
		Boosting		
26		Adaboost - combining weak learners		
27		Bayesian Learning – Bayes theorem,		
		Concept learning		
28		Maximum likelihood, Bayes optimal		
	R4: Pages 129-	classifier		
29	133, T2: Ch6 –	Naïve Bayes classifier and text		
	Pages 154-	classification.		
30	166, 170-171,	Expectation Maximization Algorithm	21.4	64.2
31	174-182, R3 -	Expectation Maximization Algorithm		
32	Ch13	Gaussian Mixture Models		
33		Hidden Markov models – discrete		
2.4		Markov processes		
34		Hidden Markov models – 3 basic		
		problems		
35		Learning the state sequence		
36		Learning the parameters, Baum-		
		Welch Algorithm		

Unit 4 Reduc	-	Learning and Dimensionality		
37		Unsupervised Learning: Hierarchical vs non-hierarchical clustering, Agglomerative and divisive clustering		
38		K-means clustering, Simple problems		
39		Bisecting k-means, issues with k-		
	R4: Ch10:	means.		
40	Pages 207-	K Means as special case of		
	217,Ch11:	Expectation Maximization		
41	Pages 224-	Apriori algorithm - Association		
	234,	analysis, the Apriori principle.		
42	Ch12:Pages 248-260,	Finding frequent itemsets, mining association rules	18	82.2
43	Course Notes	FP-growth – FP trees, building an FP- tree		
44		Mining frequent items from an FP-		
45		Dimensionality reduction techniques PCA		
46		SVD – Applications.		
Unit 5	_	thms and Computational Learning		
47	•	Genetic Algorithms – Representing hypothesis, Genetic operators		
48		Fitness function and selection methods, crossover, mutation		
49	T2: Ch7.1- 7.4,Ch9,Cours	Simple applications of the Genetic Algorithm, application of GA in Decision tree	17.8	100
50	e Notes	Genetic Algorithm based clustering		
51		Single Objective and Bi-objective optimization problems using GA		
52		Using GA to emulate Gradient descent/ascent		
53		Introduction to PSO		

54	Application in Single Objective optimization problems	
55	Computational Learning Theory, PAC- Learnability	
56	The Vapnik-Chervonenkis Dimension	

Literature:

Book Type	Cod e	Author & Title	Publication info		
			Editio n	Publisher	Year
Text books	T1	Artificial Intelligence: A Modern Approach by Stuart Russel and Peter Norvig	3 rd	Pearson	2009
	T2	Machine Learning by Tom Mitchell,	Indian Edition	McGraw Hill Education (India)	1997

Book	Cod e	Author & Title	Publication info		
Туре			Edition	Publisher	Year
Referenc	R1	Machine Learning The Art and Science of Algorithms that Make Sense of Data by Peter Flach	1 st editon	Cambridge University Press	2012
e books	R2	Pattern Recognition and Machine Learning by Christopher Bishop	2 nd printing	springer	2011

R3	Introduction to Machine Learning by Ethem Alpaydin	2 nd Editio n	PHI Learning	201 9
R4	Machine Learning in Action by PETER HARRINGTON	1st	Mannin g	201 2