המכללה האקדמית להנדסה אורט בראודה המחלקה להנדסת תוכנה ומערכות מידע

הסתברות להנדסת תוכנה – 61760 Probability for Software Engineering

היקף הקורס 5 שעות: 3 שעות הרצאה, 2 שעות תרגול

נקודות זכות 4.0

קורסי קדם 61747 מבני נתונים, 11006 חדו"א 2מ

מטרות הקורס

הקורס מקנה בסיס איתן של ידע וכישורים בתורת ההסתברות, המאפשר שימוש בטכניקות הסתברותיות לניתוח וישומים בתחומים רלבנטיים לתלמידי הנדסת תוכנה.

נושאי הלימוד

- .1 מרחב מאורעות, מאורעות זרים ומאורעות חופפים, הגדרה ותכונות של פונקצית הסתברות.
 - .2 מרחב מאורעות אחיד, קומבינטוריקה.
 - 3. הסתברות מותנית, נוסחת בייס, נוסחת ההסתברות השלמה, אי תלות.
 - .cmf, pmf, בדיד, משתנה מקרי בדיד, 4
 - .5 תוחלת, שונות, סטיית תקן.
 - 6. התפלגות משותפת, שונות משותפת, מקדם מתאם.
 - 7. משתני ברנולי/אינדיקטורים, ושימושים של לינאריות התוחלת.
 - .8 חסמי סטיה: מרקוב, צ'בישב, צ'רנוף.
 - 9. התפלגות בינומית. התפלגות פואסונית.
 - .10 התפלגות גיאומטרית, התפלגות בינומית שלילית, התפלגות גמא.
 - .pdf, cdf משתנה מקרי רציף, 11.
 - .12 התפלגות רציפה אחידה, התפלגות מעריכית.
 - .13 התפלגות נורמלית, משפט הגבול המרכזי.
 - .14 מבוא לאלגוריתמים אקראיים.

ספרות

- 1. Baron, M. (2007), *Probability and Statistics for Computer Scientists*, Chapman & Hall/CRC.
- 2. Mitzenmacher, M. and Upfal, E. (2005), *Probability and Computing:* Randomized Algorithms and Probabilistic Analysis, Cambridge University Press.

דרישות הקורס והרכב הציון

תרגילי בית: 20% (מגן)

20%: בחינה:

Upon successful completion of this course, students will be able to:

- 1. Model verbally described problems using probabilistic concepts.
- 2. Recognize events as joint or disjoint, depended or independent, union and intersection of events.
- 3. Recognize special distributions.
- 4. Master and understand all the key concepts in the course, such as expectation, for both discrete and continuous variables.
- 5. Apply probabilistic analysis on subjects learned in previous courses, as well as new ones.
- 6. Adapt analysis and proofs learned in class into given modified scenarios.
- 7. Be familiar with basics of randomized algorithm, understand their advantages and disadvantages, and analyze a few simple Las Vegas and Monte Carlo algorithms.
- 8. Value the importance of meticulous reading, data organization and systematic problem solving.
- 9. Compose clear and precise proofs.