$A = \{x \in E, x \text{ est pair}\}\$

 $B = \{x \in E, x \text{ est multiple de 3}\}\$

 $C = \{4; 8; 12\}$

Déterminer les ensembles suivants :

 $A; \\ B; \\ A \cap C; \\ A \cup B; \\ A \cup C; \\ \bar{A}; \\ \bar{B}; \\ \bar{A} \cap C; \\ (A \cup C) \cap \bar{B}$

EXZ: Soit f l'application de E dans F définie par le diagramme de la figure 5.6:

Figure 5.6

a) f est elle injective? surjective?

- b) Soit $A = \{a;b;c\}$ et $A' = \{c;d\}$. Déterminer f(A) et f(A').
- c) Déterminer f(E).
- d) Soit $B = \{1;2;3\}$ et $B' = \{4\}$. Déterminer $f^{-1}(B)$ et $f^{-1}(B')$.

 $E \times 3$: $E = \{a;b;c;d\}$, $F = \{1;2;3;4;5\}$. f est l'application de E vers F telle que f(a) = 2, f(b) = 3, f(c) = 5, f(d) = 3.

- a) f est-elle injective ? Surjective ? Bijective ?
- b) Quelle est l'image directe de $A = \{b; c; d\}$ par f?
- c) Ouelle est l'image réciproque de $B = \{1;2;3\}$ par f?

 $E \times G$; $E = \{0;1;2;3;4;5;6;7\}$, $F = \{0;1;2;3\}$. fest l'application de E dans F, qui à tout élément de E, associe son reste dans la division euclidienne par G.

FIZ

- a) f est-elle une injection? Une surjection?
- b) Soit $A = \{1; 3; 4\}$, déterminer $f^{-1}[f(A)]$. Est-ce que $f^{-1}[f(A)] = A$?
- c) Soit $B = \{2,3\}$, déterminer $f[f^{-1}(B)]$. Est-ce que $f[f^{-1}(B)] = B$?

E = $\{a;b;c;d\}$, $F = \{1;2;3\}$, $G = \{\alpha;\beta;\gamma\}$. On définit les applications f de E vers F et g de F vers G de la façon suivante : f(a) = 2, f(b) = 1, f(c) = 3, f(d) = 2, $g(1) = \gamma$, $g(2) = \alpha$, $g(3) = \beta$.

- a) Les applications f et g sont-elles des injections? Des surjections? Des bijections?
- b) Définir l'application $g \circ f$.
- c) Peut-on définir l'application réciproque de f? de g?

Ex6' On définit une application f de $E = \{-2; -1; 0; 1; 2\}$ dans $F = \{0; 1; 2; 3; 4\}$ par $f(x) = x^2$. Dans E, on considère les parties $A = \{-2; -1; 0\}$ et $A' = \{0; 1\}$.

- a) Est-ce que $f(A \cap A') = f(A) \cap f(A')$?
- b) Est-ce que $f(A \cup A') = f(A) \cup f(A')$?
- c) Est-ce que $f(\overline{A}) = \overline{f(A)}$?

On définit une application f de $E = \{-2; -1; 0; 1; 2\}$ dans $F = \{0; 1; 2; 3; 4\}$ par $f(x) = x^2$. Dans F, on considère les parties $B = \{0; 1; 2\}$ et $B' = \{2; 4\}$.

- a) Est-ce que $f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B')$?
- b) Est-ce que $f^{-1}(B \cup B^*) = f^{-1}(B) \cup f^{-1}(B^*)$?
- c) Est-ce que $f^{-1}(\overline{B}) = \overline{f^{-1}(B)}$?

Pour s'échanger des messages codés, Alice et Bob utilisent leur clavier téléphonique. Le chiffre 2 sert à coder les lettres A, B, C; le chiffre 3 sert à coder les lettres D, E, F etc.

- a) Quel nombre Alice va-t-elle envoyer à Bob pour lui dire BRAVO ?
- b) Bob est-il sûr de comprendre?
- c) Quelle propriété de l'application : lettre → chiffre n'est pas respectée, qui permettrait de décoder le message de façon certaine ?
- d) Proposer une adaptation de la méthode permettant d'avoir un décodage unique.

Application de E dans F

4+ Image et image réciproque

Soit f l'application de $\mathcal E$ dans $\mathcal F$ définie par le diagramme ci-dessous.

- **1.** Soit $A = \{a, b, c\}$ et $A' = \{a, d, e\}$.
- a) Déterminer f(A) et f(A').
- b) Comparer $f(A \cap A')$ et $f(A) \cap f(A')$.
- c) Déterminer $f(A \cup A')$ et $f(A) \cup f(A')$.
- **2.** Soit $B = \{1, 2\}$ et $B' = \{3, 4\}$.
- a) Déterminer $f^{-1}(B)$ et $f^{-1}(B')$.
- b) Déterminer $f^{-1}(B) \cap f^{-1}(B')$ et $f^{-1}(B \cap B')$.
- c) Déterminer $f^{-1}(B) \cup f^{-1}(B')$ et $f^{-1}(B \cup B')$.
- 3. f est-elle injective?
- 4. f est-elle surjective?

Mo Image et image réciproque

Soit g l'application de G dans H définie par le diagramme ci-dessous.

- **1.** Soit $C = \{1, 2\}$ et $C' = \{1, 3\}$.
- a) Déterminer g(C) et g(C').
- b) Comparer $g(C \cap C')$ et $g(C) \cap g(C')$.
- c) Déterminer $g(C \cup C')$ et $g(C) \cup g(C')$.
- **2.** Soit $D = \{a, b, c\}, D' = \{c, d, e\}, D'' = \{b, d\}.$
- a) Déterminer $g^{-1}(D)$, $g^{-1}(D')$ et $g^{-1}(D'')$.
- b) Déterminer $g^{-1}(D) \cap g^{-1}(D')$ et $g^{-1}(D \cap D')$.
- c) Déterminer $g^{-1}(D) \cup g^{-1}(D')$ et $g^{-1}(D \cup D')$.
- 3. g est-elle injective?
- 4. g est-elle surjective ?

14 . ++ Composition

- 1. Déterminer l'application composée $g \circ f$ où f est définie dans l'exercice G et où g est définie dans l'exercice G.
- 2. g o f est-elle injective?
- 3. g o f est-elle surjective?

12. +++ Composition

Soit f l'application de E dans F et g l'application de F dans E définies par les diagrammes ci-dessous.

3

. 8

p

P

- 1. a) f est-elle injective?
- b) f est-elle surjective?
- 2. Même question avec l'application g.
- 3. a) Déterminer l'application composée g of.
- b) g o f est-elle injective?
- c) g o f est-elle surjective ?
- 4. Reprendre la question 3. avec f o g