Модификации метода анализа сингулярного спектра для анализа временных рядов: Circulant SSA и Generalized SSA

Погребников Николай Вадимович, гр. 21.Б04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: д. ф.-м. н., доц. Голяндина Н.Э.

Санкт-Петербург, 2025

Введение

Временные ряды представляют собой последовательность данных, собранных или измеренных в хронологическом порядке. Понимание эволюции явлений во времени является критическим для выявления тенденций, циклов и аномалий. В этих целях были созданы методы разложения временных рядов на сумму интерпретируемых компонент такие как SSA [3] и его модификации: GSSA [4], CiSSA [1].

Целью работы является описание модификаций в контексте теории **SSA** и на этой основе сравнение методов по теоретическим свойствам и численно.

Метод SSA. Алгоритм: разложение

Для временного ряда $X=(x_1,\ldots,x_N)$ выбирается длина окна L, 1 < L < N и определяется K = N - L + 1. Строится L-траекторная матрица X, состоящая из столбцов вида $X_i = (x_{i-1}, \dots, x_{i+L-2})^T, 1 < i < K.$

Пусть $\mathbf{S} = \mathbf{X}\mathbf{X}^{\mathrm{T}}$, $\lambda_1, \ldots, \lambda_L$ — собственные числа матрицы \mathbf{S} , взятые в неубывающем порядке.

Определение 1

Сингулярным разложением называется представление матрицы в виде:

$$\mathbf{X} = \mathbf{X}_1 + \dots + \mathbf{X}_d = \sum_{i=1}^d \sqrt{\lambda_i} U_i V_i^{\mathrm{T}},$$
 где (1)

 U_1, \ldots, U_L — ортонормированная система собственных векторов матрицы \mathbf{S} , $d = \max\{i : \lambda_i > 0\}$ и $V_i = \mathbf{X}^T U_i / \sqrt{\lambda_i}$.

Набор $(\sqrt{\lambda_i}, U_i, V_i^{\mathrm{T}})$ называется i-й собственной тройкой.

Метод SSA. Алгоритм: восстановление

На основе разложения (1) производится процедура группировки, которая делит все множество индексов $\{1,\ldots,d\}$ на m непересекающихся подмножеств I_1,\ldots,I_d . Пусть $I=\{i_1,\ldots,i_p\}$, тогда $\mathbf{X}_I=\mathbf{X}_{i_1}+\cdots+\mathbf{X}_{i_p}$. Такие матрицы вычисляются для каждого $I=I_1,\ldots,I_m$.

В результате получаются матрицы $\mathbf{X}_{I_1},\dots,\mathbf{X}_{I_m}$, для каждой из которых проводится операция диагонального усреднения, составляющая ряды длины $N\colon \mathsf{X}_1,\dots,\mathsf{X}_m$. При этом, $\mathsf{X}_1+\dots+\mathsf{X}_m=\mathsf{X}$.

Метод GSSA. Алгоритм

Алгоритм **GSSA** сильно схож с базовым **SSA**. Пусть N>2, вещественнозначный временной ряд $\mathbf{X}=(x_1,\dots,x_N)$ длины N. Фиксируется параметр $\alpha\geq 0$, отвечающий за веса:

$$\boldsymbol{w}^{(a)} = (w_1, w_2, \dots, w_L) = \left(\left| \sin \left(\frac{\pi n}{L+1} \right) \right| \right)^{\alpha}, \quad n = 1, 2, \dots, L.$$

Для временного ряда ${\sf X}=(x_1,\ldots,x_N)$ выбирается длина окна $L,\ 1< L< N$ и определяется K=N-L+1. Строится L-траекторная матрица ${\bf X}^{(\alpha)},$ состоящая из столбцов вида ${\sf X}_i^{(\alpha)}=(w_1x_{i-1},\ldots,w_Lx_{i+L-2})^{\rm T},\ 1\leq i\leq K.$

Остальные действия те же самые, что и в SSA.

Замечание 1

При $\alpha=0$, **GSSA** — в точности базовый алгоритм **SSA**.

Сравнение SSA и GSSA. Линейные фильтры 1

Определение 2

Пусть бесконечный временной ряд $X=(\dots,x_{-1},x_0,x_1,\dots)$. Линейный конечный фильтр — это оператор Φ , который преобразует временной ряд X в новый по следующему правилу:

$$y_j = \sum_{i=-r_1}^{r_2} h_i x_{j-i}; \quad r_1, r_2 < \infty.$$

Связанные определения:

- h_i импульсная характеристика фильтра;
- ullet $H_{\Phi}(z)=\sum_{i=-r_1}^{r_2}h_iz^{-i}$ передаточная функция;
- $A_{\Phi}(\omega) = \left| H_{\Phi}\left(e^{i2\pi\omega}\right) \right| \mathsf{AYX};$
- $\phi_{\Phi}(\omega) = \text{Arg}\left(H_{\Phi}\left(e^{i2\pi\omega}\right)\right) \Phi \mathsf{YX}.$

Пример. При применении фильтра Φ на $\mathsf{X}_{\cos}=\cos 2\pi\omega n$, получается ряд $y_j=A_\Phi(\omega)\cos (2\pi\omega j+\phi_\Phi(\omega))$.

Сравнение SSA и GSSA. Линейные фильтры 2

Пусть $\mathbf{X}=(x_1,\ldots,x_N)$ — временной ряд длины N, $(\sqrt{\lambda},\,U,\,V)$ — одна из собственных троек разложения методом \mathbf{SSA} . $U=(u_1,\ldots,u_L)$.

Тогда компонента временного ряда X, восстановленная с использованием собственной тройки $(\sqrt{\lambda},\,U,\,V)$, для средних точек (индексы от L до K) имеет вид:

$$\widetilde{x}_s = \sum_{j=-(L-1)}^{L-1} \left(\sum_{k=1}^{L-|j|} u_k u_{k+|j|} / L \right) x_{s-j}, \quad L \le s \le K.$$

Таким образом, имеется представление алгоритма **SSA** через линейные фильтры.

Аналогичное представления для GSSA:

$$\widetilde{x}_s = \sum_{j=-(L-1)}^{L-1} \left(\sum_{k=1}^{L-|j|} u_k^{(\alpha)} u_{k+|j|}^{(\alpha)} w_k / \sum_{i=1}^L w_i \right) x_{s-j}, \quad L \le s \le K.$$

Сравнение SSA и GSSA. Пример

$$X = X_{\sin} + X_{\cos} = \sin\left(\frac{2\pi}{12}n\right) + \frac{1}{2}\cos\left(\frac{2\pi}{19}n\right)$$
. $N = 96 \cdot 2 - 1$, $L = 48$.

Фильтры для различных α

Рис. 1: Ряд X = $X_{\sin}+X_{\cos}$. АЧХ фильтров, отвечающих за $X_{\sin}=\sin\left(\frac{2\pi}{12}n\right)$, при разных α

Сравнение SSA и GSSA. Пример, продолжение

Метод/Ошибка	X_{\sin}	X_{\cos}	Χ
SSA	5.15e-03	5.15e-03	6.01e-30
GSSA, $\alpha = \frac{1}{2}$	3.68e-04	3.68e-04	9.53e-30

Таблица 1: MSE разложений ряда $X=X_{\sin}+X_{\cos}$ для **SSA** и **GSSA** с $lpha=rac{1}{2}$

Добавим к X шумовую компоненту:

$$X=X_{\sin}+X_{\cos}+X_{\mathrm{noise}}=\sin\left(rac{2\pi}{12}x
ight)+rac{1}{2}\cos\left(rac{2\pi}{19}x
ight)+arepsilon_n$$
, где $arepsilon_n\sim\mathrm{N}(0,0.1^2)$.

Метод	X_{\sin}	X_{\cos}	X
SSA	5.68e-03	5.44e-03	7.48e-04
GSSA, $\alpha = \frac{1}{2}$	1.21e-03	1.25e-03	1.04e-03

Таблица 2: MSE разложений ряда X = X $_{\sin}$ + X $_{\cos}$ + X $_{\mathrm{noise}}$ для **SSA** и **GSSA** с $\alpha=\frac{1}{2}$

Сравнение SSA и GSSA. Выводы

По теоретическим результатам и примерам можно сделать понять, что **GSSA** позволяет улучшить разделимость периодических компонент ряда. Однако, вместе с тем, разложение будет захватывать больше шума в сравнении с базовым **SSA**.

Метод CiSSA. Алгоритм: разложение

Как и в **SSA** считается X, по которой строится \hat{C}_L :

$$\hat{c}_m = \frac{L-m}{L}\hat{\gamma}_m + \frac{m}{L}\hat{\gamma}_{L-m}, \ \hat{\gamma}_m = \frac{1}{N-m}\sum_{t=1}^{N-m} x_t x_{t+m}, \ m = 0: L-1.$$

$$\hat{C}_{L} = \begin{pmatrix} \hat{c}_{1} & \hat{c}_{2} & \dots & \hat{c}_{L} \\ \hat{c}_{2} & \hat{c}_{1} & \dots & \hat{c}_{L-1} \\ \vdots & \vdots & \vdots & \vdots \\ \hat{c}_{L} & \hat{c}_{L-1} & \dots & \hat{c}_{1} \end{pmatrix}.$$

Собственные числа и вектора матрицы $\hat{\mathrm{C}}_{L_{t}}$ задаются по формулам:

$$U_k = L^{-1/2}(u_{k,1}. \ \cdots, u_{k,L})$$
, где $u_{k,j} = \exp\left(-\mathrm{i}2\pi (j-1) rac{k-1}{L}
ight)$, $\lambda_{L,k} = \sum_{m=0}^{L-1} \hat{c}_m \exp\left(i2\pi m rac{k-1}{L}
ight)$, $k=1:L$.

Метод CiSSA. Алгоритм: восстановление

Для каждой частоты $w_k = \frac{k-1}{L}, \ k=2: \lfloor \frac{L+1}{2} \rfloor$, есть два собственных вектора: U_k и U_{L+2-k} . За частоту w_1 отвечает один собственный вектор — U_1 . Если L — четное, то частоте $w_{\frac{L}{2}+1}$ будет соответствовать один вектор $U_{\frac{L}{2}+1}$. Следовательно, индексы разбиваются на элементарную группировку следующим образом:

$$B_1=\{1\};\, B_k=\{k,L+2-k\},$$
 для $k=2:\lfloor rac{L+1}{2}
floor;$ $B_{rac{L}{2}+1}=\left\{rac{L}{2}+1
ight\},$ если $L\mid 2.$

 $\mathbf{X}_{B_k} = \mathbf{X}_k + \mathbf{X}_{L+2-k} = U_k U_k^H \mathbf{X} + U_{L+2-k} U_{L+2-k}^H \mathbf{X}$, где U^H — это комплексное сопряжение и транспонирование вектора U. Далее идет группировка по диапазонам интересующих частот, после чего следует диагональное усреднение.

Метод CiSSA. Свойства: связь с разложением Фурье

Определение 3

Разложение

$$x_n = c_0 + \sum_{k=1}^{\lfloor \frac{N+1}{2} \rfloor} (c_k \cos(2\pi nk/N) + s_k \sin(2\pi nk/N)),$$
 (2)

где $1 \leq n \leq N$ и $s_{N/2} = 0$ для четного N, называется разложением Фурье ряда X.

Замечание 2

 $U_k U_k^H + U_{L+2-k} U_{L+2-k}^H$ является оператором проектирования на подпространство, которое порождено синусами и косинусами с частотой $w_k = \frac{k-1}{L}$. То есть, воспроизводится разложение Фурье для K векторов матрицы X. Затем вычисляется диагональное усреднение.

Mетод CiSSA. Свойства: нестационарный ряд

Для использования на нестационарных временных рядах, нужно выполнить расширения ряда (экстраполировать) [1].

Рис. 2: Красный — настоящий ряд, черный — расширеннный

Так, алгоритм лучше выделяет нелинейную составляющую.

Сравнение SSA, Фурье, CiSSA. Разделимость

Определение 4

Есть метод разделения ряда на компоненты с параметрами Θ , ряд $X = X^{(1)} + X^{(2)}$. \exists набор параметров $\hat{\Theta}$, L, N, что при разделении ряда на компоненты этим методом, $\hat{X}^{(1)}$ является оценкой $X^{(1)}$, при этом, $\mathrm{MSE}\left(X^{(1)},\hat{X}^{(1)}\right) = 0$. Тогда ряды $X^{(1)}$ и $X^{(2)}$ точно разделимы данным методом.

Определение 5

Есть метод разделения ряда на компоненты с параметрами Θ , ряд ${\sf X}={\sf X}^{(1)}+{\sf X}^{(2)}$. \exists набор параметров $\hat{\Theta}$ и L=L(N), $N\to\infty$, что при разделении ряда на компоненты этим методом, $\hat{\sf X}^{(1)}$ является оценкой ${\sf X}^{(1)}$, при этом, ${\sf MSE}\left({\sf X}^{(1)},\hat{\sf X}^{(1)}\right)\to 0$. Тогда ряды ${\sf X}^{(1)}$ и ${\sf X}^{(2)}$ называются асимптотически L(N)-разделимыми данным методом.

Сравнение SSA, Фурье, CiSSA. Точная разделимость

Фиксируем временной ряд
$${\sf X}={\sf X}_1+{\sf X}_2=$$
 $=A_1\exp(\alpha_1n)\cos(2\pi w_1n+\varphi_1)+A_2\exp(\alpha_2n)\cos(2\pi w_2n+\varphi_2).$

Условия точной разделимости Х для разложения Фурье:

 $Nw_1, Nw_2 \in \mathbb{N}, \ w_1 \neq w_2, \ \alpha_1 = \alpha_2 = 0.$

Условия точной разделимости X для CiSSA:

 $Lw_1, Lw_2 \in \mathbb{N}, \ w_1 \neq w_2, \ \alpha_1 = \alpha_2 = 0.$

Условия точной разделимости X для SSA:

 $Lw_1, Lw_2, Kw_1, Kw_2 \in \mathbb{N}, \ w_1 \neq w_2, \ A_1 \neq A_2, \ \alpha_1 \neq \alpha_2.$

Таким образом, условия на разделение косинусов, слабее у методов CiSSA и Фурье, чем у SSA. Однако SSA может точно отличать друг от друга больше классов функций.

Сравнение SSA, Фурье, CiSSA. Асимптотическая разделимость

Асимптотически разделимы в методе **SSA** полиномы, гармонические функции, не удовлетворяющие условиям точной разделимости, экспоненты [3].

Замечание 3

Для **SSA** существуют алгоритмы улучшения разделимости, например, EOSSA и FOSSA [2]. По заданному набору компонент, они позволяют более точно отделять компоненты.

В алгоритме разложения **CiSSA** (Фурье) увеличение длины окна L (N) изменяет сетку частот. Это означает, что даже если не удастся подобрать такое L (N), при котором косинус будет точно отделим, его постепенное увеличение позволит приблизить частоты сетки к частоте компоненты. В итоге, можно снизить ошибку выделения нужной компоненты, учитывая соседние частоты.

Сравнение SSA, Фурье, CiSSA. Выделение тренда

Любая непериодическая компонента будет отвечать частотам, близким к нулю. Из-за этого алгоритмы **CiSSA** и разложение Фурье не смогут отличить друг от друга две непериодики.

Пример. Рассмотрим ряд

$$\mathsf{X} = \mathsf{X}_c + \mathsf{X}_e + \mathsf{X}_{\sin} + \mathsf{X}_{\cos} = 1 + e^{\frac{x}{100}} + \sin\frac{2\pi}{12}x + \frac{1}{2}\cos\frac{2\pi}{3}x.$$

Метод	Параметры	$MSE(X_c + X_e)$	$\mathrm{MSE}(X_{\sin})$	$\mathrm{MSE}(X_{\mathrm{cos}})$	MSE(X)
SSA	L = 96, K = 96	5.0e-03	8.9e-07	5.2e-05	4.4e-03
SSA EOSSA, $r=7$	L = 96, K = 96	1.7e-28	1.6e-29	8.7e-30	1.6e-28
Fourier	$N = 96 \cdot 2$	1.1e-01	6.1e-04	6.8e-03	1.1e-01
Fourier extended	$N = 96 \cdot 2$	1.4e-03	1.3e-03	8.4e-03	9.6e-03
CiSSA	L = 96	5.3e-02	1.6e-05	4.9e-04	4.4e-02
CiSSA extended	L = 96	5.0e-04	2.1e-04	1.1e-03	6.0e-04

Таблица 3: MSE разложений ряда
$$X = X_c + X_e + X_{\sin} + X_{\cos}$$

По таблице 3 видно, что расширение ряда негативно повлияло на выделение периодики и положительно на трендовую составляющую (непериодику).

Сравнение SSA, Фурье, CiSSA. Выводы 1

Метод/Условие	cos,	cos,	cos,	X_{np1}	X_{np}	group
	$Lw \in \mathbb{N}$,	$Lw \in \mathbb{N}$,	$Lw \not\in \mathbb{N}$,			
	$Kw \in \mathbb{N}$	$Kw \not \in \mathbb{N}$	$Kw \not \in \mathbb{N}$			
SSA	+	\rightarrow	\rightarrow	\rightarrow	\rightarrow	_
SSA EOSSA	+	\rightarrow	\rightarrow	\rightarrow	\rightarrow	+
CiSSA	+	+	\rightarrow	_	_	+
CiSSA extended	+	+	\rightarrow	\rightarrow	_	+

Таблица 4: Преимущества и недостатки методов SSA, CiSSA

Метод/Условие	cos,	COS,	$X_{\rm np1}$	$X_{\rm np}$	group
	$Nw \in \mathbb{N}$	$Nw \not \in \mathbb{N}$			
Fourier	+	\rightarrow	_	_	+
Fourier extended	+	\rightarrow	\rightarrow	_	+

Таблица 5: Преимущества и недостатки методов Fourier

Сравнение SSA, Фурье, CiSSA. Выводы 2

По полученным результатам, можно следующие выводы:

- Алгоритм CiSSA работает лучше разложения Фурье;
- Если понятно, что ряд состоит только из периодических компонент, стоит использовать CiSSA без процедуры расширения, поскольку она делает ошибки разделений периодики больше. И напротив, если есть непериодичность, лучше расширять ряд;
- Если данные зашумлены или имеется непериодичность, алгоритм SSA с улучшением разделимости справляется в среднеквадратичном лучше CiSSA с расширением ряда или без.

Список литературы

- [1] Juan Bogalo, Pilar Poncela, and Eva Senra. Circulant singular spectrum analysis: A new automated procedure for signal extraction. Signal Processing, 177, 2020.
- [2] Nina Golyandina, Pavel Dudnik, and Alex Shlemov. Intelligent identification of trend components in singular spectrum analysis. *Algorithms*, 16(7):353, 2023.
- [3] Nina Golyandina, Vladimir Nekrutkin, and Anatoly Zhigljavsky. Analysis of Time Series Structure: SSA and Related Techniques. Chapman and Hall/CRC, 2001.
- [4] Jialiang Gu, Kevin Hung, Bingo Wing-Kuen Ling, Daniel Hung-Kay Chow, Yang Zhou, Yaru Fu, and Sio Hang Pun. Generalized singular spectrum analysis for the decomposition and analysis of non-stationary signals. *Journal of the Franklin Institute*, Accepted/In Press, 2024.