MACHINE LEARNING: USING OVERFITTING TO EVALUATE LINEAR REGRESSION MODEL AND NON-LINEAR REGRESSION

DONE BY: SAHITI EMANI

STUDENT ID:19556

GUIDED BY:PROF.HENRY CHANG

TABLE OF CONTENTS:

- INTRODUCTION: LINEAR AND NON-LINEAR REGRESSION MODELS
- HOW LINEAR REGRESSION MODEL IS USED AND EXPLAINED WITH EXAMPLE?
- HOW NON-LINEAR REGRESSION MODEL IS USED AND EXPLAINED WITH EXAMPLE?
- EXAMPLE BASED EXPLANATION
- CALCULATING FOR TRAINING PHASE
- CALCULATING FOR VALIDATION PHASE
- CALCULATING FOR TEST PHASE
- WHICH MODEL IS BETTER?
- KFY TAKFAWAYS
- BIBLIOGRAPHY

INTRODUCTION:

I. What is regression?

A regression is a statistical analysis assessing the association between two variables. It is used to find the relationship between two variables.

II. What are the types of regression?

There are two types of regression: Linear and Nonlinear.

III. What is meant by linear regression?

It is the most **widely used statistical technique**. It is a relationship between two sets of variables which results in a linear regression equation that is to make predictions about data.

IV. What is meant by non-linear regression?

It is a statistical technique that is used to describe non-linear relationships about the acquired experimental data.

LINEAR REGRESSION:

• Linear Regression is a **supervised machine learning algorithm**, we can say that the predicted output is continuous and has a constant slope. It's used to predict values within a continuous range, (e.g. sales, price) rather than trying to classify them into categories (e.g. cat, dog).

• SIMPLE LINEAR REGRESSION: This uses traditional slope-intercept form, where m and b are the variables our algorithm will try to produce the most

accurate predictions.

• x= represents our input data and y= represents our prediction.

y=mx+b

A dataset is given about how much a company spends on radio advertising each year and its annual sales.

Our prediction function outputs an estimate of sales with current W and B.i.e:Sales=Weight*Radio+Bias

Company	Radio (\$)	Sales
Amazon	37.8	22.1
Google	39.3	10.4
Facebook	45.9	18.3
Apple	41.3	18.5

Our algorithm will try to learn the correct values for Weight and Bias. By the end of our training, our equation will approximate the line of best fit.

The Fig for above data:

NON-LINEAR REGRESSION MODELS:

- Non-Linear regression is one type of polynomial regression.
- Nonlinear regression models are usually assumed to be parametric.
- Independent and dependent variables used in nonlinear regression should be quantitative.
- When we say a Parametric nonlinear regression models the dependent variable (also called the response) as a function of a combination of nonlinear parameters and one or more independent variables (called predictors).
- A model can be univariate (single response variable) or multivariate (multiple response variables).

	No of weeks	No of weeks *2	Sold cars
0	168	28224	272
1	428	183184	300
2	296	87616	311
3	392	153664	365
4	80	6400	167
5	56	3136	149
6	352	123904	366
7	444	197136	310
8	168	28224	192
9	200	40000	229
10	4	16	88
11	52	2704	118
12	20	400	62
13	228	51984	319
14	72	5184	193

Eg: A CURVILINEAR PLOT WHEN ITS A NON-LINEAR MODEL

Polynomial trend line over the scatter plot

EXAMPLE AND CALCULATION:

ò	CSS50_W2_HWQ8_ 19556_ SAHITI_EMANI
DO	CYPTER STORES THE TREATMENT OF THE STORES
(48)	The process of Machinelearning and wing Ourfetting to evaluate linear fregression model and non-linear Regression?
	Solving it through linear Regression Model
	Regussion Formula:
	y = a + bx (or) y = mx+c.
	$y = a + bx (or) y = mx + c.$ $Slope(b) = (N \leq xy - (\leq x) (\leq y))$ $(N \leq x^2 - (\leq x)^{\gamma})$
	$(N \ge \lambda - (\ge \lambda))$
	Intercept (a) = $(\leq y - b(\leq x))$
	N.
	Lette dellne our variables:
	Let's define our variables:-
	h=The stope of the iseasesslop lone
	a= The shope of the regression lone a= The intercept point of vegression live the
	y-axis.
	N = No. of Value flements.
	X = First Score.
	y- Second Score
	 XY = Sum of the product of first d Second Scores X = Sum of Pirst Scores Y = Sum of Second Scores X² = Sum of Square of Pirst Scores
	Ex = sum of first sure
	5 y = Sum of second schools
1	2 x = sum of square of Firm some
79	

```
Formula for Non-leviar Riquision:
  Slope(b)= (NEPY- (EP)(EY)
(NEP2- (EP))
  Intercept (a) = (Ey-b(EP))
 Now, P = X*X = X2
   Valldation phase = 25%
  Test phase = 25%.
```

Calculating for Ceneary Regression:			
Model -1: Linear Regression.			
×	У	ŷ=a1+b1*x	
1	1.8	y=0.51+0.86(1)=1.37	
2	2.4	y=0.51+0.86(2)= 2.74	
3.3	2.3	A=0.21+0.89(3.3)= 3.346	
4.3	3.8	4:0.21+0.86(4.3)= 4.208	
5.3	5.3	4=0.51+0.86(5.3)= 5.068	
1.4	1.5	4:0.81+0.86(1.4)= 1.714	
2.5	2.2	y=0.51+0.86 (2.5) 2 2.66	
2.8	3.8	y=0.51+0.86(2.8)= 2.918	
4.1	4.0	4:0.51+0.86(4.1)= 4.036	

	To yer yerst your	ed the regulation	ession equation :-	n we well
	Step 1	Count the N=10	no of Values.	
_	8-tep 2:	Find X*Y	4 X2.	
_	X-Valu	4-Valu	Ł X* Y	X* X ·
	1	1.8	1×1.8 = 1.8	1×1 = 1
	2	2.4	2x 2.4 = 4.8	2x2=4
	3.3	2.3	3.3 x2.3 = 7.59	3.3×3.3=10.89
	4.3	3.8	4.3x3.8=16.34	(4.3)= 18.49
-	5.3	5•3	5.3 x 5.3 = 28.09	(5.3) = 28.09
	1.4	1.5	1.4x 1.5 = 2.1	(1.4)= 1.96
	2.5	2.2	2.5 x 2.2 = 5.5	(2.5) = 6.25
	2.8	3.8	2.8 x 3.8 = 10.64	(2.8) = 7.84
	4.1	4.0		(4.1)=16.81
	5.1	5• y		(5.1)=26.01
1				and the first parties of the latest parties


```
Step 6: - Substitute the Values of a f b in
the rigression formula: -
               (y)= a+bx.
                  y = 0.51 + 0.86 x.
Step 4: - Suppose of we have to calculate the approximate Varue of y for variable
(i) x= 1
(y) = a+bx = 0.51+0.86(1) = 1.37
u) x = 244
(y)=a+bx=0.51+0.86(2.3)=2.8741
iii) sc= 3.3
(4) = a+bx = 0.5H0.86(3.3) = 3.348
Ev) x=4.3
(4) = a+bx = 0.51+0.86(4.3) = 4.208
V) X = 5.3
4)= a+bx = 0.51+(5.3)(0.86)=5.068
V1) X=1.4
(4) = a+bx = 0.51+0.86(1.4) = 1.714
Vi) 2 = 2.5
(4)=a+bx=0.51+0.86(2.5)=2.66
```

```
Semilarly, for

Vii) x = 2.8 = y = a+bx.

y = 0.51 + 0.86(2.8) = 2.918

1x) x = 4.1 = y = a+bx.

y = 0.51 + 0.86(4.1) = 4.036.

x) x = 5.1 = y = a+bx

y = 0.51 + 0.86(5.1) = 4.896.
```

+	your of	6 a mo	Training phase in the
	Regre	esson t	quation: (y)=a+bx2
1			PY - (& P) (& Y))
1	Stope		
	11-21-6	(N \(\frac{P}{2} - (\xeta P)^{})
	Tuteuc	upt(a):	(<u>Sy-b(SP</u>) [:where <u>P</u> = x*x = x2
-		PEM	odel 2 -> Non-linear Regression.
V	*	У	g-a2+b2 * x2.
1	11	1.8	1.67 +0.13 (1)}- (.8.
	2	2.4	1.67 + 0.139 (2) = 2.19
1	3.3	2.3	1.67 +0:13(3.3)= 3.0857
1	2.0	= [150]	1.67+0.13(4.3) 4.0737
1	4.3	3.3	
1	5.3	5.3	1.67+0.13(5.3)=5.3217
1	104	1.5	1.97+0.13(1.4)= 1.4548
1	5.6	2.2	1.67+0.13(2.5)= 2.4825
	2.8	3-8	1.67+0.13 (2.8) = 2.6892
1	u-1	4.0	1.67+0.13 (411) = 3.8553
1	54	5.4	1.67+0:13(5:1)= 5.0513

	NO.01	values N=10	
Step-2:			
x-Val	1195	× Values	
	-	- June	VI-
2		ч	
3.	3	10.8-9	10
	3	18·49 18·49	
	.3	28-09	William Committee
	.4	1.96	
	5.2	6.52	10-1-1-1-1-1
			0 0 60 5
	4.1	16.81	6
	5.1	26.01	
Step3: Fu	end Vev	11 12.	
3000-10	U1100 4-1	9 1	
× Value	Yvahu	e X *Y	X*X - X
1	1.8	1×1.8=1.8	$(1)^2 = 1$
	2.4	4x2.4= 9.6	(4)2= 16
4			
10.89	5.3	0.89 x 2.3 = 25.04	(1089) =118.59
18.44	3.8	18.49×3.8 = 70.262	(18.44) = 341.8
10.89 18.49 28.09	3·8 5·3	28.09×3.8 = 70.267	(18.44) = 341.8 (28.64) = 341.8
10.89 18.49 28.09 1.96	3·8 5·3 1·5	28.09×3.8 = 70.262 28.09×5.3=148 877 1.96×1.5 = 2.94	(1844)=341.8 (28.09)2=789.0 (1.96)=3.84
10.89 18.49 28.09 1.96 6.as	2·3 3·8 5·3 1·5 2·2	\$8.49x3.8 = 70.262 28.09x5.3=148 \$77 1.96x1.5 = 2.94 6.25 x 2.2=13.75	(1.96) = 3.84 (6.25) = 39.0
10.89 18.49 28.09 1.96 6.25 7.84	3.8 5.3 1.5 2.2 3.8	*8·49x3·8 = 70·262 28·09x5·3= 48 877 -96x1·5 = 2·94 6·25 x 2·2= 3·75 7·8 4x3·8=29·792	(18 44) = 341.8 (28.69) = 789.6 (1.96) = 3.84 (6.25) = 39.0 (4.84) = 61.0
10.89 18.49 28.09 1.96 6.as	2·3 3·8 5·3 1·5 2·2	\$8.49x3.8 = 70.262 28.09x5.3=148 \$77 1.96x1.5 = 2.94 6.25 x 2.2=13.75	(18 47) = 341.8 (1.96) = 3.84 (6.35) = 39.04 (7.84) = 61.4 (16.81) = 282.4

Stepy: Substitute the values: Slope • (b) = $(N \le XY - (\le X)(\le Y))$ $(N \le X^2 - (\le X^3)^2)$ $= (10 (509.755) - (121.34)(32.5))$ $(10 = 2329.963 - (21.34) \times$ = $5097.55 - 3943.55$ $23299.63 = 14723.3956$. 2 1154 = $0.13 = b$. 8576.2344. For: (a) Friencept: [a)= $(\le Y - b(\le X))$ N = $32.5 - 0.13(121.34) = 32.5 - 15.7742$ 10 [a= 1.672]		
= (10(509.755) - (121.34)(32.5)) $(10[2329.963 - (21.34))$ $= 5097.55 - 3943.55$ $23299.63 = 14723.3956$ $= 1154 = 0.13 = b$ 8576.2344 For: (a) Forteuept:= $(a) = (24 - b(2x))$ N $= 32.5 - 0.13(121.34) = 32.5 - 15.7742$ 10	Stepy: Substitute the values:	
$\begin{array}{c} (10 \ 2329 \cdot 963 - (21 \cdot 34)) \\ = (509 + \cdot 55 - 3943 \cdot 55) \\ = (32399 \cdot 63 - 14 + 23 \cdot 3956) \\ = (1154 = 0 \cdot 13 = b) \\ = (215 + 2344) \\$	Slope = (b) = $(N \leq X Y - (\leq X)(\leq Y))$ $(N \leq X^2 - (\leq X^2)^2)$	
For: (a) Intercept:- [a)= $(\pm y + b(\pm x.))$ N = $32.5 - 0.13(121.34) = 32.5 - 15.7742$ 10	= (10 (509.755) - (121.34)(32.5)) (10 [2329.963 - (21.34) ~	
For: (a) Friterupt:- [a)= $(\pm y - b(\pm x))$ N = $32.5 - 0.13(121.34) = 32.5 - 15.7742$ 10	= 5097.55 - 3943.55 23299.63 = 14723.3956.	
For: (a) Friteriept:= (a)= $(\le y - b(\le x))$ N = $32.5 - 0.13(121.34) = 32.5 - 15.7742$ 10	1154 = 0.13 = b.	
= 32.5 - 0.13(121.34) = 32.5 - 15.7742		
10.	(a)= (\(\x\))	2
		2
28 31 1 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
	20 11 1 2 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1	
	1 VS 1/2 1 -C 1 -2	
		_

	He	use the	e same values as	phase.
1			v	
1			Validation phas	1:
1	X		Madel1:LR	Model2: N-LR
H	1.00		9 = 91+ b1 * X	10-01 thi * X-
1	1.5	1.7	0.51+0.86(1.5)=1.8	1.67+0.13(1.5)7.9625
t	3.7	2.5		1.67+0.13(2.9)=0.103
ŀ	4.7			1.6710.13(3.7)=3.4477
t	5.1	5.5	0.51+0.86(4.7)=4.552	11.61+0.13(4.+)=4.3414
	X	X	V X	. 1
	X	×	×	×
	×	×	X	×
	X	X	×	X
	X	×	×	×
	X	X		

on	butter model is relicted from V.P bases analysis of ourselftling will be used t Test phase.
	Test phase.
×	9=92+62* X
	9-41-12-13
1.4	0.21+0.86(1.4)=1.414
2.5	0.21+0.86(3.2)=3.66
3.6	0.51 +0.86 (3.6) = 3.606
4.5	0.21+0.86 (4.2) = 4.38
5.4	0.51+0.86(5.4):5.154
X	Х
×	×
×	X
×	×
- X	×
	,

WHICH MODEL IS BETTER?

For Better model to choose:
The Mean Squared Foron (MSE) is a was use of how close a fitted the is to data points.
· The Emaller the MSE, the closer the
yet ils ito ithe dates.
Training Set:- Model 1
MSE = [(1.37-1.8) + (2.74 -2.4) + (3.348 - 2.8) +
(4.508-3.8) + (5.068-2) + (1.44-1.2)
(2.66-2.2) + (2.918 3 -3.8) + (4.036-4.0)
+(4.896-5.4)~]
10.
z 0.290972
Model 2 = MSE = [(1.8-1.8) + (2.19-2.4) + (3.0857-2.3)+
(4.0437-3.8) + (2.3217-2.3) + (1.0218-1.2)
+ (2.4832-9.8) + (3.6892-3.8) + (3.8523-4.0)
+ (2.4835-2.2) + (2.6842-38) + (3633) + (3
+ (5.0513-5.4)]
= 0.237344

```
Validation phase: -
 Model 1
    MSE= [(1.83-1.7)+ (3.004-2.7)+ (3.692-2.5)
          + (4.562-2.8) + (4.896-5.5) ]
        = 0.99152
Model 2
  ME = [(1.9625-1.7)+(2.7633-2.7)+(3.4497-2.5
         + (4.5417-2.8)+ (5.0513-5.5)
            0.841939
Calculating for Model 1
     MGE = 2,90972
                       = 0.293461
           0.99152
Calculating for model 2
     MSE = 0.237344 = 0.281902
             0 841939
 Conclusion: Model 1 is better.
```

KEY TAKEAWAYS:

- Both linear and nonlinear regression predict Y responses from an X variable (or variables).
- Nonlinear regression is a curved function of an X variable (or variables) that is used to predict a Y variable
- Nonlinear regression can show a prediction of population growth over time.

BIBLIOGRAPHY:

https://npu85.npu.edu/~henry/npu/classes/data science/algorithm/slide/linear regression example.html

https://ml-cheatsheet.readthedocs.io/en/latest/linear_regression.html#:~:text=Linear%20Regression% 20is%20a%20supervised,(e.g.%20cat%2C%20dog).

https://npu85.npu.edu/~henry/npu/classes/data_science/algorithm/slide/overfit.html

https://www.mathworks.com/discovery/nonlinear-regression.html