多元积分学 (2021.10)

- 1. 计算 $\iint_D \frac{(x+y)\ln(1+\frac{y}{x})}{\sqrt{1-x-y}} dxdy$, $D: x+y \le 1, x \ge 0, y \ge 0$. $(=\frac{16}{15})$
- 2. 计算 $\oint_{C} \frac{xdy-ydx}{4x^2+y^2}$, 其中 L 为以(1,0) 为中心, $R(R \neq 1)$ 为半径的正向圆周. (上半圆呢?) (2 π)
- 3. 122 计算 $\iint_{\Sigma} \frac{axdydz + (z+a)^2 dxdy}{\sqrt{x^2 + y^2 + z^2}}$, 其中 Σ 为下半球面 $z = -\sqrt{a^2 y^2 x^2}$ 的上侧 (常数 a > 0). $(= -\frac{\pi}{2}a^3)$
- 4. 已知常向量 \overrightarrow{a} , \overrightarrow{b} 满足 $\overrightarrow{a} \times \overrightarrow{b} = (1,1,1)$, $\overrightarrow{r} = (x,y,z)$.
 - (1) 证明: $\operatorname{rot}[(\overrightarrow{a} \cdot \overrightarrow{r})\overrightarrow{b}] = \overrightarrow{a} \times \overrightarrow{b};$
 - (2) 求向量 $\overrightarrow{A} = (\overrightarrow{a} \cdot \overrightarrow{r}) \overrightarrow{b}$ 沿闭曲线 $\Gamma : \begin{cases} x^2 + y^2 + z^2 = 1, \\ x + y + z = 0 \end{cases}$ (从 z 轴正向看去逆时针方向) 的环流量. $\left(= \sqrt{3}\pi \right)$
- 5. 6216 设 D 是平面上由光滑封闭曲线围成的有界区域, 其面积为 A>0, 函数 f(x,y) 在 D 及其边界上连续且 f(x,y)>0, 证 $I_n=\left(\frac{1}{A}\iint\limits_D f^{\frac{1}{n}}(x,y)d\sigma\right)^n$, 求极限 $\lim\limits_{n\to\infty}I_n$.
- 6. 524 设 $D = \{(x,y) | 0 \le x \le 1, \ 0 \le y \le 1\}, I = \iint\limits_D f(x,y) dx dy$, 其中函数 f(x,y) 在 D 上 具有二阶连续偏导,若 $\forall x,y$,有 f(0,y) = f(x,0) = 0,且 $\frac{\partial^2 f}{\partial x \partial y} \le A$. 证明 $I \le \frac{A}{4}$.
- 7. 证明: $\iint_{D} (\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}}) d\sigma = \oint_{L} \frac{\partial u}{\partial \vec{n}} ds. 其中 u(x,y) \in C^{2}(D), 光滑曲线 L = \partial D, \vec{n} 为 L 的 外法向.$
- 9. 316 证明: $\iint_S f(ax + by + cz)dS = 2\pi \int_{-1}^1 f(\sqrt{a^2 + b^2 + c^2}u)du$, 其中 $f \in C$, S 为球面 $x^2 + y^2 + z^2 = 1$.
- 10. 716 设 f(x,y) 在 $x^2 + y^2 \le 1$ 上有二阶连续偏导, $f_{xx}^2 + 2f_{xy}^2 + f_{yy}^2 \le M$. 若 $f(0,0) = f_x(0,0) = f_y(0,0) = 0$. 证明 $\left| \iint_{\mathbb{R}^2 + y^2 \le 1} f(x,y) d\sigma \right| \le \frac{\sqrt{M}}{4} \pi.$
- 11. 216 设函数 $\varphi(y)$ 连续可导, 且已知在围绕原点的任意逐段光滑简单闭曲线 C 上的曲线积分 $\oint_C \frac{2xydx+\varphi(x)dy}{x^4+y^2}$ 的值恒为同一常数.
 - (1) 设 L 为正向曲线 $(x-2)^2 + y^2 = 1$. 证明 $\oint_L \frac{2xydx + \varphi(x)dy}{x^4 + y^2} = 0$;
 - (2) 求 $\varphi(x)$ 的表达式; $\left(=-x^2\right)$
 - (3) 设 L 为任一围绕原点的逐段光滑简单正向闭曲线,求 $\oint_{\mathcal{C}} \frac{2xydx+\varphi(x)dy}{x^4+y^2}$.

12. 525 设函数 f(x) 在 \mathbb{R} 上连续可导, $P = Q = R = f\left(\left(x^2 + y^2\right)z\right)$,有向曲面 Σ 为圆柱体 $x^2 + y^2 \le t^2$, $0 \le z \le 1$ 的表面外侧. 记 $I(t) = \bigoplus_{\Sigma} Pdydz + Qdzdx + Rdxdy$. 求极限 $\lim_{t \to 0^+} \frac{I(t)}{t^4}$. $\left(=\frac{\pi}{2}f'(0)\right)$

(以下为课外演练题.)

- 13. 设函数 f(x,y) 有二阶连续偏导,且 f(1,y) = f(x,1) = 0, $\iint_D f(x,y) dx dy = a$, $D: 0 \le x \le 1$, $0 \le y \le 1$, 求 $\iint_D xy f_{xy}(x,y) dx dy$. (= a)
- 14. 516 设 $I_a(r) = \oint_L \frac{ydx xdy}{(x^2 + y^2)^a}$,其中 a 为常数, 曲线 C 为椭圆 $x^+xy + y^2 = r^2$, 取正向. 求极限 $\lim_{r \to +\infty} I_a(r)$. (= 0(a > 1), $-\infty(a < 1)$, $-2\pi(a = 1)$)
- 15. 416 设函数 f(x) 连续, 区域 Ω 由抛物面 $z = x^2 + y^2$ 和球面 $x^2 + y^2 + z^2 = t^2(t > 0)$ 所 围成. $F(t) = \iint\limits_{\Omega} f(x^2 + y^2 + z^2) dV$. 求导数 F'(t). $(= \pi(2t + 1 \sqrt{1 + 4t^2}) t f(t^2))$
- 16. 设 f(x) 连续, f(0) = 1, Ω : $x^2 + y^2 = t^2$ (t > 0), $0 \le z \le h$, \mathbb{Z} $F(t) = \iiint_{\Omega} (z^2 + f(x^2 + y^2)) dv$. 求 $\lim_{t \to 0^+} \frac{F(t)}{t^2} \cdot \left(= \pi(h + \frac{1}{3}h^3) \right)$
- 17. f(x,y) 定义于 $D: 0 \le x \le 1, 0 \le y \le 1$, f(0,0) = 0, 且 f(x,y) 在点 (0,0) 处可微. 求极限 $\lim_{x\to 0^+} \frac{\int_0^{x^2} dt \int_x^{\sqrt{t}} f(t,u) du}{1-e^{-\frac{x^4}{4}}}$. $\left(=f_y(0,0)\right)$
- 18. 设f(x)在 [0,1] 上连续且单减, f(x) > 0. 证:

$$\frac{\int_0^1 x f^2(x) dx}{\int_0^1 x f(x) dx} \le \frac{\int_0^1 f^2(x) dx}{\int_0^1 f(x) dx}.$$

19. 设f, g ∈ C[a,b], 且同为单增(减), 证明:

$$(b-a)\int_{a}^{b} f(x)g(x)dx \ge \int_{a}^{b} f(x)dx \int_{a}^{b} g(x)dx.$$

- 20. 设 P_0 是半径为 R 的球体表面上的一点,已知该球体上任一点处的密度与它到 P_0 的距离成正比(比例系数为 k > 0). 求球体的重心位置. $\left(= \left(-\frac{R}{4}, 0, 0 \right) \right)$
- 21. 813 某物体所在立体区域为 $\Omega: x^2 + y^2 \le x + y + 2z$. 密度为 $x^2 + y^2 + z^2$. 求质量 $\iint\limits_{\Omega} (x^2 + y^2 + z^2) dV. \ (= \frac{3+2\sqrt{2}}{6}\pi)$
- 22. 215 设 l 过原点, 方向为 (α, β, γ) , (其中 $\alpha^2 + \beta^2 + \gamma^2 = 1$)的直线, 均匀椭球 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$ (a > b > c > 0, 密度为 1) 绕 l 旋转.
 - 1) 求其转动惯量.
 - 2) 求其转动惯量关于方向 (α,β,γ) 的最大值与最小值. $(J_e=\frac{4}{15}abc\pi((1-\alpha^2)a^2+(1-\beta^2)b^2+(1-\gamma)^2c^2))$. $(J_{max}=\frac{4abc\pi}{15}(a^2+b^2),\ J_{min}=\frac{4abc\pi}{15}(b^2+c^2))$

23. 设函数 f(u) 连续可导. 试计算

$$\iint_{\Sigma} x^3 dy dz + \left[\frac{1}{z} f\left(\frac{y}{z}\right) + y^3 \right] dz dx + \left[\frac{1}{y} f\left(\frac{y}{z}\right) + z^3 \right] dx dy,$$

其中 Σ 为锥面 $x = \sqrt{y^2 + z^2}$ 与球面 $x^2 + y^2 + z^2 = 1$ 及 $x^2 + y^2 + z^2 = 4$ 所围立体的表面外侧. $\left(=\frac{93\pi}{5}(2-\sqrt{2})\right)$

- 24. 614 (1) 设一球缺高为 h,所在球半径为 R. 证明该球缺的体积为 $\frac{\pi}{3}(3R-)h^2$,球冠的面积为2 πRh ;
 - (2) 设球体 $(x-1)^2+(y-1)^2+(z-1)^2\leq 12$ 被平面 P:x+y+z=6 所截的小球缺为 W. 记球缺上的球冠为 Σ ,方向指向球外,求第二型曲面积分 $\iint\limits_{\Sigma} xdydzydzdxzdxdy$.
- 25. 求 $I = \iint_{\Sigma} rot \overrightarrow{F} \cdot dS$, 其中 $\overrightarrow{F} = (x z, x^3 + yz, -3xy^2)$, $\Sigma : z = 2 \sqrt{x^2 + y^2}$ $(z \ge 0)$, 取上 侧. $(= 12\pi)$
- 26. 设 $u=u(x,y,z)\in C^2$, 且 $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}=\sqrt{x^2+y^2+z^2}$. 试求 $\iint_{\Sigma}\frac{\partial u}{\partial n}dS$, 其中 Σ 为球面 $x^2+y^2+z^2=2z$, \overrightarrow{n} 为该球面的外法向量. $\left(=\frac{8}{5}\pi\right)$
- 27. 设对于半空间 x > 0 内的任意光滑有向封闭曲面 S 都有

$$\iint_{S} xf(x)dydz - xyf(x)dzdx - e^{2x}zdxdy = 0,$$

其中函数 f(x) 在 $(0, +\infty)$ 内连续可导, 且 $\lim_{x\to 0^+} f(x) = 1$. 求 f(x) 的表达式. $\left(=\frac{e^x}{x}(e^x-1)\right)$

28. 515 设 Σ 是一个光滑封闭曲面, 取外侧, 第二型曲面积分

$$I = \iint_{\Sigma} (x^3 - x) dy dz + (2y^3 - y) dz dx + (3z^3 - z) dx dy.$$

试确定曲面 Σ, 使得 I 的值最小, 并求出最小值. (Σ: $x^2+2y^2+3z^2=1$, $I_{min}=\frac{4}{15}\sqrt{6}\pi$)

- 29. 225 已知 S 是空间曲线 $\begin{cases} x^2 + 3y^2 = 0, \\ z = 0 \end{cases}$ 绕 y 轴旋转形成的椭球面的上半部分 $z \ge 0$, 取上侧, Π 是 S 在点 P(x,y,z) 处的切平面, $\rho(x,y,z)$ 是原点到切平面 Π 的距离, λ,μ,ν 表示的正法向的方向余弦. 计算:
 - (1) $\iint\limits_{S} \frac{\overline{z}}{\rho(x,y,z)} dS; (2) \iint\limits_{S} z(\lambda x, 3\mu y, \nu z) dS.$
- 30. 626 设 f(x,y) 为 \mathbb{R}^2 上的非负连续函数,若极限 $I=\lim_{t\to +\infty} \iint\limits_{x^2+y^2\leq t^2} f(x,y)d\sigma$ 存在,则称 广义积分 $\iint_{\mathbb{R}^2} f(x,y)d\sigma$ 收敛于 I.

 - (2) 若 $\iint_{\mathbb{R}^2} e^{ax^2+bxy+cy^2}d\sigma$ 收敛于 I, 其中实二次型 $ax^2+bxy+cy^2$ 在正交变换之下的标准型为 $\lambda_1u^2+\lambda_2v^2$. 证明 λ_1 , λ_2 均小于 0.