Data Complexity in Expressive Description Logics With Path Expressions

Bartosz Bednarczyk

Dresden Seminar 12.06.24 & DL Workshop 21.06.24 & IJCAI'24 05-08.08.24

Database (ABox)

Database (ABox)

hasParent(Heracles, Zeus)

Database (ABox)

hasParent(Heracles, Zeus)

Diety(Zeus), Female(Rhea)

Database (ABox)

hasParent(Heracles, Zeus)

Diety(Zeus), Female(Rhea)

Narcissist(Narcissus)

ALC

Database (ABox)

hasParent(Heracles, Zeus)

Diety(Zeus), Female(Rhea)

Narcissist(Narcissus)

Knowledge (TBox)

 $Mortal \sqsubseteq \neg Diety$

 $\top \sqsubseteq \exists hasParent.Male \sqcap \exists hasParent.Female$

Database (ABox)

hasParent(Heracles, Zeus)

Diety(Zeus), Female(Rhea)

Narcissist(Narcissus)

Knowledge (TBox)

 $Mortal \sqsubseteq \neg Diety$

ALC

 $\top \sqsubseteq \exists hasParent.Male \sqcap \exists hasParent.Female$

ALC

Self

Database (ABox)

hasParent(Heracles, Zeus)

Diety(Zeus), Female(Rhea)

Narcissist(Narcissus)

Knowledge (TBox)

 $Mortal \sqsubseteq \neg Diety$

 $\top \sqsubseteq \exists hasParent.Male \sqcap \exists hasParent.Female$

 $Narcissist \sqsubseteq \exists loves. Self$

Database (ABox)

hasParent(Heracles, Zeus)

Diety(Zeus), Female(Rhea)

Narcissist(Narcissus)

ALC

Self

Knowledge (TBox)

 $Mortal \sqsubseteq \neg Diety$

 $\top \sqsubseteq \exists hasParent.Male \sqcap \exists hasParent.Female$

 $Narcissist \sqsubseteq \exists loves. Self$

Database (ABox)

hasParent(Heracles, Zeus)

Diety(Zeus), Female(Rhea)

Narcissist(Narcissus)

ALC

Self

 $\mathcal{H}b$

Knowledge (TBox)

 $Mortal \sqsubseteq \neg Diety$

 $\top \sqsubseteq \exists hasParent.Male \sqcap \exists hasParent.Female$

 $Narcissist \sqsubseteq \exists loves. Self$

 $hasParent \equiv hasMother \cup hasFather$

Database (ABox)

hasParent(Heracles, Zeus)

Diety(Zeus), Female(Rhea)

Narcissist(Narcissus)

 \mathcal{ALC}

Self

 $\mathcal{H}b$

Knowledge (TBox)

 $Mortal \sqsubseteq \neg Diety$

 $\top \sqsubseteq \exists hasParent.Male \sqcap \exists hasParent.Female$

 $Narcissist \sqsubseteq \exists loves. Self$

 $hasParent \equiv hasMother \cup hasFather$

Database (ABox)

hasParent(Heracles, Zeus)

Diety(Zeus), Female(Rhea)

Narcissist(Narcissus)

ALC

Self

 $\mathcal{H}b$

reg

Knowledge (TBox)

 $Mortal \sqsubseteq \neg Diety$ $\top \sqsubseteq \exists hasParent.Male \sqcap \exists hasParent.Female$ $Narcissist \sqsubseteq \exists loves.Self$ $hasParent \equiv hasMother \cup hasFather$ $diety \sqsubseteq \forall hasParent^*.diety$

Database (ABox)

hasParent(Heracles, Zeus)

Diety(Zeus), Female(Rhea)

Narcissist(Narcissus)

 \mathcal{ALC}

Self

 $\mathcal{H}b$

reg

Knowledge (TBox)

 $Mortal \sqsubseteq \neg Diety$ $\top \sqsubseteq \exists hasParent.Male \sqcap \exists hasParent.Female$ $Narcissist \sqsubseteq \exists loves.Self$ $hasParent \equiv hasMother \cup hasFather$ $diety \sqsubseteq \forall hasParent^*.diety$

Database (ABox)

hasParent(Heracles, Zeus)

Diety(Zeus), Female(Rhea)

Narcissist(Narcissus)

ALC

Self

 $\mathcal{H}.b$

reg

0 & Q


```
Mortal \sqsubseteq \neg Diety
\top \sqsubseteq \exists hasParent.Male \sqcap \exists hasParent.Female
Narcissist \sqsubseteq \exists loves.Self
hasParent \equiv hasMother \cup hasFather
diety \sqsubseteq \forall hasParent^*.diety
\{Zeus\} \sqsubseteq (= 54hasChildren). \top
```

Database (ABox)

hasParent(Heracles, Zeus)

Diety(Zeus), Female(Rhea)

Narcissist(Narcissus)

ALC

Self

 $\mathcal{H}b$

reg

0 & Q


```
Mortal \sqsubseteq \neg Diety
\top \sqsubseteq \exists hasParent.Male \sqcap \exists hasParent.Female
Narcissist \sqsubseteq \exists loves.Self
hasParent \equiv hasMother \cup hasFather
diety \sqsubseteq \forall hasParent^*.diety
\{Zeus\} \sqsubseteq (= 54hasChildren). \top
```


Database (ABox)

hasParent(Heracles, Zeus)

Diety(Zeus), Female(Rhea)

Narcissist(Narcissus)

Knowledge (TBox)

ALC

Self

 $\mathcal{H}b$

reg

0 & Q

 $\mathcal{O} \& \mathcal{I}$

 $Mortal \sqsubseteq \neg Diety$ $\top \sqsubseteq \exists hasParent.Male \sqcap \exists hasParent.Female$ $Narcissist \sqsubseteq \exists loves.Self$ $hasParent \equiv hasMother \cup hasFather$ $diety \sqsubseteq \forall hasParent^*.diety$ $\{Zeus\} \sqsubseteq (= 54hasChildren). \top$

 $\{Ares\} \sqsubseteq \exists hasChildren^{-}.\{Zeus\}$

Database (ABox)

hasParent(Heracles, Zeus)

Diety(Zeus), Female(Rhea)

Narcissist(Narcissus)

ALC

Self

 $\mathcal{H}.b$

reg

0 & Q

O & I


```
Mortal \sqsubseteq \neg Diety
\top \sqsubseteq \exists hasParent.Male \sqcap \exists hasParent.Female
Narcissist \sqsubseteq \exists loves.Self
hasParent \equiv hasMother \cup hasFather
diety \sqsubseteq \forall hasParent^*.diety
\{Zeus\} \sqsubseteq (= 54hasChildren).\top
\{Ares\} \sqsubseteq \exists hasChildren^-.\{Zeus\}
```


Database (ABox)

We study the DL \mathcal{ZOIQ} a.k.a. $\mathcal{ALCHb}_{Self}^{reg}\mathcal{OIQ}$.

hasParent(Heracles, Zeus)

Diety(Zeus), Female(Rhea)

Narcissist(Narcissus)

ALC

Self

 $\mathcal{H}b$

reg

O & Q

 $\mathcal{O} \& \mathcal{I}$

 $Mortal \sqsubseteq \neg Diety$ $\top \sqsubseteq \exists hasParent.Male \sqcap \exists hasParent.Female$ $Narcissist \sqsubseteq \exists loves.Self$ $hasParent \equiv hasMother \cup hasFather$ $diety \sqsubseteq \forall hasParent^*.diety$ $\{Zeus\} \sqsubseteq (= 54hasChildren).\top$ $\{Ares\} \sqsubseteq \exists hasChildren^-.\{Zeus\}$

Database (ABox)

We study the DL \mathcal{ZOIQ} a.k.a. $\mathcal{ALCHb}_{Self}^{reg}\mathcal{OIQ}$.

hasParent(Heracles, Zeus)
Diety(Zeus), Female(Rhea)

Narcissist(Narcissus)

ALC

Self

 $\mathcal{H}b$

reg

0 & Q

 $\mathcal{O} \& \mathcal{I}$

 $Mortal \sqsubseteq \neg Diety$

 $\top \sqsubseteq \exists hasParent.Male \sqcap \exists hasParent.Female$

Narcissist $\square \exists loves. Self$

 $hasParent \equiv hasMother \cup hasFather$

 $diety \sqsubseteq \forall hasParent^*.diety$

 $\{\text{Zeus}\} \sqsubseteq (= 54 \text{hasChildren}). \top$

 $\{Ares\} \sqsubseteq \exists hasChildren^-. \{Zeus\}$

This work: further study of KBSat for decidable fragments of \mathcal{ZOIQ} .

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

1. Satisfiability (consistency) problem.

1. Satisfiability (consistency) problem.

IN: ABox \mathcal{A} (DB) + TBox \mathcal{T} (Knowledge)

1. Satisfiability (consistency) problem.

IN: ABox \mathcal{A} (DB) + TBox \mathcal{T} (Knowledge)

1. Satisfiability (consistency) problem.

IN: ABox \mathcal{A} (DB) + TBox \mathcal{T} (Knowledge)

1. Satisfiability (consistency) problem.

IN: ABox \mathcal{A} (DB) + TBox \mathcal{T} (Knowledge)

1. Satisfiability (consistency) problem.

IN: ABox \mathcal{A} (DB) + TBox \mathcal{T} (Knowledge)

1. Satisfiability (consistency) problem.

IN: ABox \mathcal{A} (DB) + TBox \mathcal{T} (Knowledge)

1. Satisfiability (consistency) problem.

IN: ABox \mathcal{A} (DB) + TBox \mathcal{T} (Knowledge)

OUT: Is there an extension of \mathcal{A} satisfying \mathcal{T} ?

• Decidability of full \mathcal{ZOIQ} is unknown!

1. Satisfiability (consistency) problem.

IN: ABox \mathcal{A} (DB) + TBox \mathcal{T} (Knowledge)

OUT: Is there an extension of A satisfying T?

- Decidability of full ZOIQ is unknown!
- Focus: max decidable fragments ZIQ, ZOQ, ZOI.

1. Satisfiability (consistency) problem.

IN: ABox \mathcal{A} (DB) + TBox \mathcal{T} (Knowledge)

OUT: Is there an extension of A satisfying T?

- Decidability of full ZOIQ is unknown!
- Focus: max decidable fragments ZIQ, ZOQ, ZOI.
- For uniformity: we study quasi-forest satisfiability of ZOIQ.

1. Satisfiability (consistency) problem.

IN: ABox \mathcal{A} (DB) + TBox \mathcal{T} (Knowledge)

OUT: Is there an extension of A satisfying T?

- Decidability of full ZOIQ is unknown!
- Focus: max decidable fragments ZIQ, ZOQ, ZOI.
- For uniformity: we study quasi-forest satisfiability of ZOIQ.

1. Satisfiability (consistency) problem.

IN: ABox \mathcal{A} (DB) + TBox \mathcal{T} (Knowledge)

OUT: Is there an extension of A satisfying T?

- Decidability of full ZOIQ is unknown!
- Focus: max decidable fragments ZIQ, ZOQ, ZOI.
- For uniformity: we study quasi-forest satisfiability of ZOIQ.

The Main Result

1. Satisfiability (consistency) problem.

IN: ABox \mathcal{A} (DB) + TBox \mathcal{T} (Knowledge)

OUT: Is there an extension of A satisfying T?

- Decidability of full ZOIQ is unknown!
- Focus: max decidable fragments ZIQ, ZOQ, ZOI.
- For uniformity: we study quasi-forest satisfiability of ZOIQ.

The Main Result

Checking if a \mathcal{ZOIQ} -KB $\mathcal{K} := (\mathcal{A}, \mathcal{T})$ has a quasi-forest model

1. Satisfiability (consistency) problem.

IN: ABox \mathcal{A} (DB) + TBox \mathcal{T} (Knowledge)

OUT: Is there an extension of A satisfying T?

- Decidability of full ZOIQ is unknown!
- Focus: max decidable fragments ZIQ, ZOQ, ZOI.
- For uniformity: we study quasi-forest satisfiability of ZOIQ.

The Main Result

Checking if a \mathcal{ZOIQ} -KB $\mathcal{K} := (\mathcal{A}, \mathcal{T})$ has a quasi-forest model can be done in

1. Satisfiability (consistency) problem.

IN: ABox \mathcal{A} (DB) + TBox \mathcal{T} (Knowledge)

OUT: Is there an extension of A satisfying T?

- Decidability of full ZOIQ is unknown!
- Focus: max decidable fragments ZIQ, ZOQ, ZOI.
- For uniformity: we study quasi-forest satisfiability of \mathcal{ZOIQ} .

The Main Result

Checking if a \mathcal{ZOIQ} -KB $\mathcal{K} := (\mathcal{A}, \mathcal{T})$ has a quasi-forest model can be done in $\exp(|\mathcal{T}|)$ + nondet-poly($|\mathcal{K}|$) + $\exp(|\mathcal{T}|) \cdot \operatorname{poly}(|\mathcal{K}|)$.

1. Satisfiability (consistency) problem.

IN: ABox \mathcal{A} (DB) + TBox \mathcal{T} (Knowledge)

OUT: Is there an extension of A satisfying T?

- Decidability of full ZOIQ is unknown!
- Focus: max decidable fragments ZIQ, ZOQ, ZOI.
- For uniformity: we study quasi-forest satisfiability of \mathcal{ZOIQ} .

The Main Result

Checking if a \mathcal{ZOIQ} -KB $\mathcal{K} := (\mathcal{A}, \mathcal{T})$ has a quasi-forest model can be done in $\exp(|\mathcal{T}|)$ + nondet-poly($|\mathcal{K}|$) + $\exp(|\mathcal{T}|)$ ·poly($|\mathcal{K}|$).

Corollaries

1. Satisfiability (consistency) problem.

IN: ABox \mathcal{A} (DB) + TBox \mathcal{T} (Knowledge)

OUT: Is there an extension of A satisfying T?

- Decidability of full ZOIQ is unknown!
- Focus: max decidable fragments ZIQ, ZOQ, ZOI.
- For uniformity: we study quasi-forest satisfiability of \mathcal{ZOIQ} .

The Main Result

Checking if a \mathcal{ZOIQ} -KB $\mathcal{K} := (\mathcal{A}, \mathcal{T})$ has a quasi-forest model can be done in $\exp(|\mathcal{T}|) + \operatorname{nondet-poly}(|\mathcal{K}|) + \exp(|\mathcal{T}|) \cdot \operatorname{poly}(|\mathcal{K}|)$.

Corollaries

• NP-c. of SAT (data-c) for ZIQ, ZOQ, ZOI.

1. Satisfiability (consistency) problem.

IN: ABox \mathcal{A} (DB) + TBox \mathcal{T} (Knowledge)

OUT: Is there an extension of A satisfying T?

- Decidability of full ZOIQ is unknown!
- Focus: max decidable fragments ZIQ, ZOQ, ZOI.
- For uniformity: we study quasi-forest satisfiability of \mathcal{ZOIQ} .

The Main Result

Checking if a \mathcal{ZOIQ} -KB $\mathcal{K} := (\mathcal{A}, \mathcal{T})$ has a quasi-forest model can be done in $\exp(|\mathcal{T}|)$ + nondet-poly($|\mathcal{K}|$) + $\exp(|\mathcal{T}|)\cdot \operatorname{poly}(|\mathcal{K}|)$.

Corollaries

- NP-c. of SAT (data-c) for ZIQ, ZOQ, ZOI.
- \bullet coNP-c. of RPQ Ent. (data-c) for \mathcal{Z} and \mathcal{SR} -families.

1. Satisfiability (consistency) problem.

IN: ABox \mathcal{A} (DB) + TBox \mathcal{T} (Knowledge)

OUT: Is there an extension of A satisfying T?

- Decidability of full ZOIQ is unknown!
- Focus: max decidable fragments ZIQ, ZOQ, ZOI.
- ullet For uniformity: we study quasi-forest satisfiability of \mathcal{ZOIQ} .

The Main Result

Checking if a \mathcal{ZOIQ} -KB $\mathcal{K} := (\mathcal{A}, \mathcal{T})$ has a quasi-forest model can be done in $\exp(|\mathcal{T}|) + \operatorname{nondet-poly}(|\mathcal{K}|) + \exp(|\mathcal{T}|) \cdot \operatorname{poly}(|\mathcal{K}|)$.

Corollaries

- NP-c. of SAT (data-c) for ZIQ, ZOQ, ZOI.
- ullet coNP-c. of RPQ Ent. (data-c) for \mathcal{Z} and \mathcal{SR} -families.
- coNEXP-c. of rooted (U)CQ Entailment for \mathcal{ZIQ} .

Parameter: \mathcal{ZOIQ} -TBox \mathcal{T} (Knowledge)

IN: ABox \mathcal{A} (Data)

OUT: Is there an extension of \mathcal{A} satisfying \mathcal{T} ?

Parameter: \mathcal{ZOIQ} -TBox \mathcal{T} (Knowledge)

IN: ABox \mathcal{A} (Data)

OUT: Is there an extension of \mathcal{A} satisfying \mathcal{T} ?

Parameter: \mathcal{ZOIQ} -TBox \mathcal{T} (Knowledge)

IN: ABox \mathcal{A} (Data)

OUT: Is there an extension of \mathcal{A} satisfying \mathcal{T} ?

Parameter: \mathcal{ZOIQ} -TBox \mathcal{T} (Knowledge)

IN: ABox \mathcal{A} (Data)

OUT: Is there an extension of \mathcal{A} satisfying \mathcal{T} ?

Proof plan: Use SAT as a black box!

Parameter: \mathcal{ZOIQ} -TBox \mathcal{T} (Knowledge)

IN: ABox \mathcal{A} (Data)

OUT: Is there an extension of A satisfying T?

Proof plan: Use SAT as a black box!

Parameter: \mathcal{ZOIQ} -TBox \mathcal{T} (Knowledge)

IN: ABox \mathcal{A} (Data)

OUT: Is there an extension of A satisfying T?

Proof plan: Use SAT as a black box!

TBox:
$$A \equiv \{o\}$$
, $A \equiv \neg B$, $A \equiv B \sqcup B'$, $A \equiv \exists s.Self$, $s = s'$, $A \equiv (\geq n s).\top$, $A \equiv \exists A.\top$

Parameter: \mathcal{ZOIQ} -TBox \mathcal{T} (Knowledge)

IN: ABox \mathcal{A} (Data)

OUT: Is there an extension of A satisfying T?

Proof plan: Use SAT as a black box! A

TBox: $A \equiv \{o\}$, $A \equiv \neg B$, $A \equiv B \sqcup B'$, $A \equiv \exists s. Self$, s = s', $A \equiv (\geq n s). \top$, $A \equiv \exists A. \top$

Parameter: ZOIQ-TBox T (Knowledge)

IN: ABox \mathcal{A} (Data)

OUT: Is there an extension of A satisfying T?

Proof plan: Use SAT as a black box!

TBox: $A \equiv \{o\}$, $A \equiv \neg B$, $A \equiv B \sqcup B'$, $A \equiv \exists s.Self$, s = s', $A \equiv (\geq n s).\top$, $A \equiv \exists A.\top$

• Main issue: regular path constraints are not local.

• Main issue: regular path constraints are not local. Consider the following run of A:

• Main issue: regular path constraints are not local. Consider the following run of A:

• Main issue: regular path constraints are not local. Consider the following run of A:

• Main issue: regular path constraints are not local. Consider the following run of A:

• Main issue: regular path constraints are not local. Consider the following run of A:

• Main issue: regular path constraints are not local. Consider the following run of A:

• Main issue: regular path constraints are not local. Consider the following run of A:

• Second issue: counting is not local.

• Second issue: counting is not local.

• Second issue: counting is not local. Consider a concept $(\geq 2r)$. \top .

• Second issue: counting is not local. Consider a concept $(\geq 2r)$. \top .

• Count the number of r-sucessors (i) in the clearing, (ii) among children, (iii) that a linked to a nominal.

• Second issue: counting is not local. Consider a concept $(\geq 2r)$. \top .

• Count the number of r-sucessors (i) in the clearing, (ii) among children, (iii) that a linked to a nominal.

• Second issue: counting is not local. Consider a concept $(\geq 2r)$. \top .

• Count the number of r-sucessors (i) in the clearing, (ii) among children, (iii) that a linked to a nominal.

ZIQ, ZOQ, and ZOI have NP-complete SAT (w.r.t. the data complexity).

How about \mathcal{ZOIQ} ? Notoriously difficult open problem!

How a	bout	ZOIQ?	Notoriously	difficult	open	problem!
-------	------	-------	--------------------	-----------	------	----------

1. Let start an end be individual names.

How about \mathcal{ZOIQ} ? Notoriously difficult open problem!

- 1. Let start an end be individual names.
- 2. Let edge be a role name, interpreted as functional and backward functional relation.

$$\top \sqsubseteq (\leq 1 \; edge). \top \qquad \top \sqsubseteq (\leq 1 \; edge^-). \top$$

How about ZOIQ? Notoriously difficult open problem!

- 1. Let start an end be individual names.
- 2. Let edge be a role name, interpreted as functional and backward functional relation.

$$\top \sqsubseteq (\leq 1 \ edge). \top \qquad \top \sqsubseteq (\leq 1 \ edge^{-}). \top$$

3. Every element can reach end and backwardly reach start.

$$\top \sqsubseteq \exists (edge^-)^*.\{start\} \sqcap \exists edge^*.\{start\}$$

How about ZOIQ? Notoriously difficult open problem!

- 1. Let start an end be individual names.
- 2. Let edge be a role name, interpreted as functional and backward functional relation.

$$\top \sqsubseteq (\leq 1 \ edge). \top \qquad \top \sqsubseteq (\leq 1 \ edge^{-}). \top$$

3. Every element can reach end and backwardly reach start.

$$\top \sqsubseteq \exists (edge^-)^*.\{start\} \sqcap \exists edge^*.\{start\}$$

How about ZOIQ? Notoriously difficult open problem!

- 1. Let start an end be individual names.
- 2. Let edge be a role name, interpreted as functional and backward functional relation.

$$\top \sqsubseteq (\leq 1 \; edge). \top \qquad \qquad \top \sqsubseteq (\leq 1 \; edge^{-}). \top$$

3. Every element can reach end and backwardly reach start.

$$\top \sqsubseteq \exists (edge^-)^*.\{start\} \sqcap \exists edge^*.\{start\}$$

SAT > FINSAT

- 1. Let start an end be individual names.
- 2. Let edge be a role name, interpreted as functional and backward functional relation.

$$\top \sqsubseteq (\leq 1 \ edge). \top \qquad \top \sqsubseteq (\leq 1 \ edge^{-}). \top$$

3. Every element can reach end and backwardly reach start.

$$\top \sqsubseteq \exists (edge^-)^*.\{\text{start}\} \sqcap \exists edge^*.\{\text{start}\}$$

Defines Finite
Linear Orders

SAT > FINSAT

• ZOIQ with fixed-points or intersection of regular expressions are undecidable.

- 1. Let start an end be individual names.
- **2.** Let *edge* be a role name, interpreted as functional and backward functional relation.

$$\top \sqsubseteq (\leq 1 \; edge). \top \qquad \qquad \top \sqsubseteq (\leq 1 \; edge^-). \top$$

3. Every element can reach end and backwardly reach start.

$$\top \sqsubseteq \exists (edge^-)^*.\{\text{start}\} \sqcap \exists edge^*.\{\text{start}\}$$

Defines Finite
Linear Orders

SAT > FINSAT

- ZOIQ with fixed-points or intersection of regular expressions are undecidable.
- [Jean+Carsten+T.Zeume, KR'20] \mathcal{ZOIQ} "is undecidable" \rightsquigarrow incorrect proof.

- 1. Let start an end be individual names.
- 2. Let edge be a role name, interpreted as functional and backward functional relation.

$$\top \sqsubseteq (\leq 1 \; edge). \top \qquad \qquad \top \sqsubseteq (\leq 1 \; edge^-). \top$$

3. Every element can reach end and backwardly reach start.

$$\top \sqsubseteq \exists (edge^-)^*.\{\text{start}\} \sqcap \exists edge^*.\{\text{start}\}$$

- ZOIQ with fixed-points or intersection of regular expressions are undecidable.
- [Jean+Carsten+T.Zeume, KR'20] \mathcal{ZOIQ} "is undecidable" \rightsquigarrow incorrect proof.
- Partial decidability results by Jung et al.

- 1. Let start an end be individual names.
- **2.** Let *edge* be a role name, interpreted as functional and backward functional relation.

$$op \sqsubseteq (\leq 1 \; edge). op \qquad op \sqsubseteq (\leq 1 \; edge^-). op$$

3. Every element can reach end and backwardly reach start.

$$\top \sqsubseteq \exists (edge^-)^*.\{\text{start}\} \sqcap \exists edge^*.\{\text{start}\}$$

SAT > FINSAT

- ZOIQ with fixed-points or intersection of regular expressions are undecidable.
- [Jean+Carsten+T.Zeume, KR'20] \mathcal{ZOIQ} "is undecidable" \rightsquigarrow incorrect proof.
- Partial decidability results by Jung et al.

Close to undecidability

- 1. Let start an end be individual names.
- 2. Let edge be a role name, interpreted as functional and backward functional relation.

$$\top \sqsubseteq (\leq 1 \ edge). \top \qquad \top \sqsubseteq (\leq 1 \ edge^{-}). \top$$

3. Every element can reach end and backwardly reach start.

$$\top \sqsubseteq \exists (edge^-)^*.\{\text{start}\} \sqcap \exists edge^*.\{\text{start}\}$$

- Defines Finite Linear Orders
- SAT > FINSAT

- ZOIQ with fixed-points or intersection of regular expressions are undecidable.
- [Jean+Carsten+T.Zeume, KR'20] \mathcal{ZOIQ} "is undecidable" \rightsquigarrow incorrect proof.
- Partial decidability results by Jung et al.

Close to undecidability

Completely new approach is needed (in contrast to \mathcal{ALCOIQ} and beyond)!

The Main Result

The Main Result

Checking if a $\mathcal{ZOIQ} ext{-KB }\mathcal{K}:=(\mathcal{A},\mathcal{T})$ has a quasi-forest model

The Main Result

Checking if a \mathcal{ZOIQ} -KB $\mathcal{K}:=(\mathcal{A},\mathcal{T})$ has a quasi-forest model can be done in

The Main Result

Checking if a \mathcal{ZOIQ} -KB $\mathcal{K}:=(\mathcal{A},\mathcal{T})$ has a quasi-forest model can be done in $\exp(|\mathcal{T}|)$ + nondet-poly($|\mathcal{K}|$) + $\exp(|\mathcal{T}|)\cdot \operatorname{poly}(|\mathcal{K}|)$.

The Main Result

Checking if a \mathcal{ZOIQ} -KB $\mathcal{K}:=(\mathcal{A},\mathcal{T})$ has a quasi-forest model can be done in $\exp(|\mathcal{T}|)$ + nondet-poly($|\mathcal{K}|$) + $\exp(|\mathcal{T}|)\cdot \operatorname{poly}(|\mathcal{K}|)$.

The Main Result

Checking if a \mathcal{ZOIQ} -KB $\mathcal{K}:=(\mathcal{A},\mathcal{T})$ has a quasi-forest model can be done in $\exp(|\mathcal{T}|)$ + nondet-poly($|\mathcal{K}|$) + $\exp(|\mathcal{T}|)\cdot \operatorname{poly}(|\mathcal{K}|)$.

Corollaries

• NP-c. of SAT (data-c) for ZIQ, ZOQ, ZOI.

The Main Result

Checking if a \mathcal{ZOIQ} -KB $\mathcal{K} := (\mathcal{A}, \mathcal{T})$ has a quasi-forest model can be done in $\exp(|\mathcal{T}|)$ + nondet-poly($|\mathcal{K}|$) + $\exp(|\mathcal{T}|)$ ·poly($|\mathcal{K}|$).

- NP-c. of SAT (data-c) for ZIQ, ZOQ, ZOI.
- ullet coNP-c. of RPQ Ent. (data-c) for \mathcal{Z} and \mathcal{SR} -families.

The Main Result

Checking if a \mathcal{ZOIQ} -KB $\mathcal{K} := (\mathcal{A}, \mathcal{T})$ has a quasi-forest model can be done in $\exp(|\mathcal{T}|)$ + nondet-poly($|\mathcal{K}|$) + $\exp(|\mathcal{T}|) \cdot \operatorname{poly}(|\mathcal{K}|)$.

- NP-c. of SAT (data-c) for ZIQ, ZOQ, ZOI.
- \bullet coNP-c. of RPQ Ent. (data-c) for \mathcal{Z} and \mathcal{SR} -families.
- coNEXP-c. of rooted (U)CQ Entailment for \mathcal{ZIQ} .

The Main Result

Checking if a \mathcal{ZOIQ} -KB $\mathcal{K}:=(\mathcal{A},\mathcal{T})$ has a quasi-forest model can be done in $\exp(|\mathcal{T}|)$ + nondet-poly($|\mathcal{K}|$) + $\exp(|\mathcal{T}|)\cdot \operatorname{poly}(|\mathcal{K}|)$.

- NP-c. of SAT (data-c) for ZIQ, ZOQ, ZOI.
- ullet coNP-c. of RPQ Ent. (data-c) for \mathcal{Z} and \mathcal{SR} -families.
- coNEXP-c. of rooted (U)CQ Entailment for \mathcal{ZIQ} .

The Main Result

Checking if a \mathcal{ZOIQ} -KB $\mathcal{K}:=(\mathcal{A},\mathcal{T})$ has a quasi-forest model can be done in $\exp(|\mathcal{T}|)$ + nondet-poly($|\mathcal{K}|$) + $\exp(|\mathcal{T}|)\cdot \operatorname{poly}(|\mathcal{K}|)$.

Corollaries

- NP-c. of SAT (data-c) for ZIQ, ZOQ, ZOI.
- ullet coNP-c. of RPQ Ent. (data-c) for \mathcal{Z} and \mathcal{SR} -families.
- coNEXP-c. of rooted (U)CQ Entailment for \mathcal{ZIQ} .

PhD Defense: Database-Inspired Reasoning Problems in DLs With Path Expressions

The Main Result

Checking if a \mathcal{ZOIQ} -KB $\mathcal{K}:=(\mathcal{A},\mathcal{T})$ has a quasi-forest model can be done in $\exp(|\mathcal{T}|)$ + nondet-poly($|\mathcal{K}|$) + $\exp(|\mathcal{T}|)\cdot \operatorname{poly}(|\mathcal{K}|)$.

Corollaries

- NP-c. of SAT (data-c) for ZIQ, ZOQ, ZOI.
- ullet coNP-c. of RPQ Ent. (data-c) for \mathcal{Z} and \mathcal{SR} -families.
- coNEXP-c. of rooted (U)CQ Entailment for \mathcal{ZIQ} .

PhD Defense: Database-Inspired Reasoning Problems in DLs With Path Expressions

Sebastian Rudolph (TU Dresden)

Emanuel Kieroński (Univ. of Wrocław)

The Main Result

Checking if a \mathcal{ZOIQ} -KB $\mathcal{K}:=(\mathcal{A},\mathcal{T})$ has a quasi-forest model can be done in $\exp(|\mathcal{T}|)$ + nondet-poly($|\mathcal{K}|$) + $\exp(|\mathcal{T}|)\cdot \operatorname{poly}(|\mathcal{K}|)$.

Corollaries

- NP-c. of SAT (data-c) for ZIQ, ZOQ, ZOI.
- ullet coNP-c. of RPQ Ent. (data-c) for \mathcal{Z} and \mathcal{SR} -families.
- coNEXP-c. of rooted (U)CQ Entailment for \mathcal{ZIQ} .

PhD Defense: Database-Inspired Reasoning Problems in DLs With Path Expressions

Tue 25.06.24 13:30 ICCL TU Dresden

Sebastian Rudolph (TU Dresden)

Emanuel Kieroński (Univ. of Wrocław)