Linear Algebra

Prof. Gerhard Jäger, winter term 2023/2024

Assignment 10

- 1. (2 points)
 - (a) Factor these two matrices into $A=X\Lambda X^{-1}$:

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$
 and $A = \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix}$.

- (b) If $A=X\Lambda X^{-1}$ then $A^3=(\quad)(\quad)(\quad)$ and $A^{-1}=(\quad)(\quad)(\quad)$.
- 2. (2 points) If A has $\lambda_1=2$ with eigenvector $x_1=\begin{bmatrix}1\\0\end{bmatrix}$ and $\lambda_2=5$ with eigenvector $x_2=\begin{bmatrix}0\\1\end{bmatrix}$, use $X\Lambda X^{-1}$ to find A. No other matrix has the same λ 's and x's.
- 3. (2 points) True or false: If the columns of X (eigenvectors of A) are linearly independent, then
 - (a) A is invertible
 - (b) A is diagonalizable
 - (c) X is invertible
 - (d) X is diagonalizable
- 4. (2 points) Diagonalize A and compute $X\Lambda^kX^{-1}$ to prove this formula for A^k :

$$A = egin{bmatrix} 2 & -1 \ -1 & 2 \end{bmatrix} \quad ext{has} \quad A^k = rac{1}{2} egin{bmatrix} 1+3^k & 1-3^k \ 1-3^k & 1+3^k \end{bmatrix}.$$

5. (2 points) Diagonalize B and compute $X\Lambda^kX^{-1}$ to prove this formula for B^k :

$$B = egin{bmatrix} 5 & 1 \ 0 & 4 \end{bmatrix} \quad ext{has} \quad B^k = egin{bmatrix} 5^k & 5^k - 4^k \ 0 & 4^k \end{bmatrix}.$$