Statistics – Hypothesis Testing

Hypothesis Testing – an example

The ABC Company produces screws with a target length of 100 millimeters (mm).

The length of the screws follows a Normal Distribution with a (population) standard

deviation of 2 mm.

The machines need to be cleaned and recalibrated once a week. After the cleaning/recalibration process, ABC produces a sample of 20 screws to check whether the machines are correctly calibrated (mean length = 100 mm).

After the most recent calibration you suspect that the machines are incorrectly calibrated. Based on the drawn sample (sample size = 20) with sample mean 100.929 mm, test on a 2% level of significance, whether the machine is correctly calibrated or corrupted (two-tailed). Calculate the z-statistic and the p-value of your test.

Null Hypothesis and alternative Hypothesis

What you (actually) want to assess:

"you suspect that the machines are incorrectly calibrated"

But: You cannot really prove anything with statistics!

Solution: Reject the opposite statement / hypothesis:

"the machines are correctly calibrated"

Null Hypothesis (H_0)

mean length = 100 mm

The ABC Company produces screws with a target length of 100 millimeters (mm).

The length of the screws follows a Normal Distribution with a (population) standard deviation of 2 mm.

The machines need to be cleaned and recalibrated once a week. After the cleaning/recalibration process, ABC produces a sample of 20 screws to check whether the machines are correctly calibrated (mean length = 100 mm).

After the most recent calibration you suspect that the machines are incorrectly calibrated. Based on the drawn sample (sample size = 20) with sample mean 100.929 mm, test on a 2% level of significance, whether the machine is correctly calibrated or corrupted (two-tailed). Calculate the z-statistic and the p-value of your test.

Alternative Hypothesis (H_a)

mean length ≠ 100 mm

 \rightarrow When H_0 is rejected, the implication is that H_a is a valid statement!

we are almost there...

Sampling Distribution

...just a shift

...another example

...it depends on the...

...Level of Significance

Choosing the Level of Significance (α)

Intuition behind the Significance Level (α)

- Probability of rejecting H_0 when it is true. (Type I Error)
- Decreasing α lowers probability of Type I Error...
- ...but increases the probability of Type II Error (not rejecting H_0 when it s false)...
- ...and therefore it's getting harder to prove that H_a is a valid statement.
- The right α ? it depends:
 - Research: between 5% and 1% ... or even less
 - Business: it depends on the action:
 - Producing too long / too short screws vs.
 - Stopping the machines to recalibrate
 - → economic analysis / business decision

