

Electromagnetismo (LFIS 211)

Licenciatura en Física

Profesor: J. R. Villanueva Semestre I 2022

Nombre:	,	RUT:				
Prueba 3: P1:	P2:	P3:	P4:	NF:	manorman	

1. Considere el sistema compuesto por un conductor cilíndrico de largo infinito y radio R por el cual fluye una corriente de densidad

$$\vec{J}(s) = \frac{3I_0}{4\pi R^2} \left(2 - \frac{s}{R}\right) \hat{k},\tag{1}$$

y otro cascarón conductor cilíndrico de radio 2R concéntrico con el primero, y por el cual fluye una corriente I_0 en dirección opuesta distribuida homogéneamente por toda su superficie.

- (a) Encuentre el campo inducción magnética en todos los puntos del espacio.
- (b) Determine la energía magnética por unidad de largo del sistema.
- (c) Determine la autoinducción por unidad del largo del sistema.
- 2. Se dispone de un conductor recto y largo por el que fluye la corriente I. A las distancias a y b de éste se hallan dos cables paralelos al mismo, conectados en uno de sus extremos a la resistencia R (FIG.1). Una barra, puente de unión, se desplaza sin rozamiento a una velocidad constante v por los cables. Despreciando las resistencias de los mismos, de la barra y de los contactos deslizantes, así como de la inducción del circuito, hallar
 - (a) el valor y la dirección de la corriente de inducción en la barra;
 - (b) la fuerza necesaria para mantener constante la velocidad de la barra.
 - (c) La potencia disipada en la resistencia.

Figure 1: Esquema del problema 2.

- 3. Una cáscara esférica, de radio interno R_1 y radio externo R_2 , se magnetiza uniformemente en la dirección del eje z. La magnetización dentro de la cáscara es $\overline{M}_0 = M_0 \, \widehat{k}$. Encuentre el potencial escalar φ_m en puntos que estén sobre el eje z, tanto dentro como fuera de la cáscara.
- 4. Un condensador real C tiene una resistencia de fuga R en paralelo, está conectado en serie a una inductancia ideal L.
 - (a) Calcule |Z|.
 - (b) Calcule sus valores aproximados para frecuencias altas y bajas, y en resonancia.

