EE5053 Hw4

b06902034 黄柏諭

Disparity Map

Bad Pixel Ratio

Tsukuba: 2.73%

Teddy: 9.32%

Algorithm

Cost Computation

Use census cost with different size of windows.

Small Window					Large Window						
							1		0		1
1	0	0							0		
1	X	1					0		X		1
1	0	1							1		
							1		1		0

Reference: Huang, CS., Huang, YH., Chan, DY. *et al.* Shape-reserved stereo matching with segment-based cost aggregation and dual-path refinement. *J Image Video Proc.* **2020**, 38 (2020). https://doi.org/10.118 6/s13640-020-00525-3

Use Large Window on Tsukuba as it performs better.

Cost Aggregation

Simply apply Joint Bilateral Filter on each disparity cost using the original RGB image as guide.

Disparity Optimization

Simply apply Winner-take-all.

Disparity Refinement

- Left-right consistency check $\text{If } D_L(x,y) \neq D_R(x-D_L(x,y),y) \, \text{ mark it as hole}$
- Hole filling
 - $\circ \;\; F_L$, the disparity map filled by closest valid disparity from left
 - $\circ \ F_R$, the disparity map filled by closest valid disparity from right
 - \circ Final filled disparity map $D=\min(F_L,F_R)$ (pixel-wise minimum)

Reference: Homework 4 slides http://media.ee.ntu.edu.tw/courses/cv/215/hw/hw4/hw4.pdf

Hyper Parameter

- Grid search on Teddy and Tsukuba
- Try and observe by eye on Cones and Venus