F(f(t)) = F(t) = $\int_{0}^{\infty} f(t) \cdot e^{ijt} dt$ Force to angle

F(f(t)) = f(t) = $\int_{0}^{\infty} F(t) \cdot e^{ijt} dt$ Force to angle

C) we can also change variable t = t (No effect of changing root)

as it is symmetric

F'(f(t)) = f(t) = $\int_{0}^{\infty} F(t) \cdot e^{ijt} dt$

Let
$$= F(F(S(L)) = g(L))$$
 $F(S(L)) = F(W)$
 $g(L) = F(W)$
 $g(L) = F(W)$
 $g(L) = F(W)$
 $g(L) = g(L)$
 $g(L)$

F(F(F(+(+)1))'= f(+)