1 Formalni jezici

Zadatak 1.1 Neka je data azbuka $\Sigma = \{0,1\}$. Odrediti sve reči $x \in \Sigma^*$ za koje važi:

$$0x = x1\tag{1}$$

Rešenje: Indukcijom po dužini reči dokažimo da ne postoji reč $x \in \Sigma^*$ koja zadovoljava relaciju (1).

1. Ne postoji reč dužine 0, za koju važi relacija (1). Zaista, jedina reč dužine 0 je ε , a za nju ne važi da je

$$0\varepsilon = \varepsilon 1$$

Slično, ne postoji ni reč dužine dužine 1, tj. slovo za koje važe uslovi zadatka, jer je

$$00 \neq 01$$

i slično

$$01 \neq 11$$

Tvrdjenje je znači ispravno za reči dužine n=0 i n=1.

2. Induktivna hipoteza. Pretpostavimo dalje, da tvrdjenje važi za k < n, tj. da ne postoji reč dužine k koja zadovoljava relaciju (1).

Pokažimo da onda ne postoji ni reč dužine n > 2 koja zadovoljava uslov zadatka. Ako bi takva reč postojala, za nju bi važilo da je oblika

$$x = 0x_11$$

Iz polazne relacije bi dalje sledilo:

$$00x_11 = 0x_111$$

i dalje na osnovu zakona kancelacije:

$$0x_1 = x_1 1$$

Dužina reči $|x_1| = |x| - 2 = n - 2 < n$, tako da na osnovu induktivne hipoteze ne postoji reč x_1 koja bi zadovoljavala uslov zadatka. Samim tim, ne postoji ni reč x dužine n za koje bi relacija (1) bila tačna.

Zadatak 1.2 Neka je data azbuka $\Sigma = \{0, 1\}$. Odrediti sve reči $x \in \Sigma^*$ za koje važi:

$$0x = x0 \tag{2}$$

 $Re \check{s}enje \colon$ Skup rešenja jednačine je skup $A = \{0^n = \underbrace{0 \dots 0}_n \quad | \quad n \geq 0\}$

U zadacima ovog tipa, potrebno je dokazati da je svako rešenje jednačine sadržano u skupu A, kao i da je svaki elemenat skupa A rešenje jednačine.

 $(\supseteq:)$ Uzmimo proizvoljnu reč $x\in A.$ Ona je oblika $x=0^n,\,n\geq 0.$ Rečx zadovoljava jednačinu (2).

$$0x = 00^n = 0^{n+1} = 0^n 0 = x0$$

(\subseteq :) Dokažimo indukcijom po dužini reči da je svako rešenje jednačine (2) sadržano u A.

1. Jedina reč dužine 0 je prazna reč $\varepsilon=0^n\in A$. Prazna reč jeste rešenje jednačine (2) jer je :

$$0\varepsilon = 0 = \varepsilon 0$$

Jedina reč dužine 1, koja zadovoljava jednačinu (2) je $0 = 0^1 \in A$, jer je :

$$00 = 00, \quad 01 \neq 10$$

2. Induktivna hipoteza. Pretpostavimo da za sve reči x, koje su rešenje jednačine (2) i koje su dužine |x|=k < n, važi da $x \in A$.

Uzmimo reč x dužine |x| = n > 2. Tada važi da je x oblika :

$$x = 0x_10$$

Dužina reči $|x_1| = |x| - 2 = n - 2 < n$, tako da na osnovu induktivne hipoteze važi da je $x_1 \in A$. To znači da je $x = 0^m$, za neko $m \ge 0$. Pošto je $|x_1| = n - 2$, važi da je

$$x_1 = 0^{n-2}$$

a odatle sledi da je

$$x = 00^{n-2}0 = 0^n \in A$$

Objasnite zašto je u prethodna dva zadatka slučaj n=1 razmatran u okviru baze indukcije, a ne u okviru induktivnog koraka. U tom pravcu, uradite i sledeći zanimljiv zadatak, koji ilustruje koliko obazrivi moramo biti kada u dokazu nečega koristimo matematičku indukciju.

Objasnite šta ne valja u sledećem dokazu.

Zadatak 1.3 Neka je dat neprazan skup obojenih klikera. Svi klikeri u tom skupu su iste boje.

Δ

- 1. Baza indukcije. Ako imamo skup koji sadrži samo jedan kliker, svi klikeri tog skupa su iste boje.
- 2. Pretpostavimo da je tvrdjenje tačno za svaki skup koji sadrži n klikera. Uzmimo skup A koji u sebi ima n+1 kliker. Fiksirajmo kliker koji možemo da označimo sa a. Skup A \ a u sebi sadrži tačno n klikera, tako da na osnovu induktivne hipoteze možemo da zaključimo da su svi klikeri u tom skupu iste boje npr. crvene. Fiksirajmo sada neki drugi kliker iz skupa A \ a, npr. b. On je dakle crvene boje. Na osnovu induktivne hipoteze skup A \ b u sebi sadrži sve klikere iste boje. Pošto se u njemu nalazi i kliker a, zajedno sa svim ostalim crvenim klikerima, i on mora biti crven. Dakle svi klikeri skupa A su crveni, tj. iste boje.

1.1 Levijeva lema i njene primene

Zadatak 1.4 (Levijeva lema) Neka su x, y, z, w četiri reči iz Σ^* Ako je

$$xy = zw (3)$$

onda postoji jedinstvena reč $t \in \Sigma^*$, takva da je:

- 1. $ili \ x = z \ i \ y = w \ (tj. \ t = \varepsilon)$
- 2. $ili \ x = zt \ i \ w = ty$
- 3. $ili\ z = xt\ i\ y = tw$

 \triangle

Izvedimo dokaz indukcijom po dužini reči |xy|.

- 1. |xy|=0. Tada je $xy=\varepsilon$, pa je $x=y=\varepsilon$, jer reči iz Σ^+ nemaju inverzni elemenat. Znači da je onda i $zw=\varepsilon$, pa je i $z=w=\varepsilon$.
- 2. Pretpostavimo da tvrdjenje važi za sve reči dužine k < n.

Neka je |xy| = n > 0. Razlikujmo sledeće slučajeve :

- (a) $x = \varepsilon$. Tada je xy = y = zw, pa je reč t = z i važi da je z = xt i y = tw.
- (b) $z = \varepsilon$. Tada je xy = zw = w, pa je reč t = x i važi da je x = zt i w = ty.
- (c) $x \neq \varepsilon$ i $z \neq \varepsilon$. Tada se x može na jedinstven način napisati kao $x = ax_1$, gde je $a \in \Sigma$, $x_1 \in \Sigma^*$. Slično, z se može jedinstveno napisati u obliku $z = bz_1$, $b \in \Sigma$, $z_1 \in \Sigma^*$. Na osnovu relacije (3), sledi da mora da važi da je a = b. Pošto važi zakon leve kancelacije iz relacije

$$ax_1y = bz_1w$$

sledi da je

$$x_1 y = z_1 w$$

Važi da je $|x_1y| = n - 1 < n$, tako da možemo na ovom mestu da iskoristimo induktivnu hipotezu. Dakle, postoji jedinstvena reč $t \in \Sigma^*$, tako da je :

i. $x_1 = z_1 i y = w$.

U ovom slučaju važi i da je $x = ax_1 = az_1 = z$.

ii. $x_1 = z_1 t$ i w = t y.

Tada je i $x = ax_1 = az_1t = zt$.

iii. $z_1 = x_1 t$ i y = t w.

Tada je i $z = az_1 = ax_1t = xt$.

Zadatak 1.5 Neka je na skupu Σ^* definisana relacija \prec na sledeći način:

$$x \prec y \quad \Leftrightarrow \quad (\exists t \in \Sigma^*)y = xt$$
 (4)

Znači $x \prec y$, akko je x levi prefiks od y. Pokazati da važi:

$$(x \prec z) \land (y \prec z) \Rightarrow (x \prec y) \lor (y \prec x) \tag{5}$$

¹Ovo je takozvani prefiksni poredak

 \triangle

Pretpostavimo da je $x \prec z$ i $y \prec z$. Tada važi da postoje reči t_1 i t_2 , tako da je $z = xt_1$ i $z = yt_2$. Samim tim važi da je

$$xt_1 = yt_2$$

Na osnovu Levijeve leme sledi jedan od sledećih slučajeva:

- 1. x = y i $t_1 = t_2$. Tada je i $x \prec y$ i $y \prec x$.
- 2. $(\exists t \in \Sigma^*)$ x = yt i $t_2 = tt_1$. Iz x = yt sledi da je $y \prec x$.
- 3. $(\exists t \in \Sigma^*)$ y = xt i $t_1 = tt_2$. Iz y = xt sledi da je $x \prec y$.

Zadatak 1.6 Neka su $x, y \in \Sigma^*$. Pokazati da je

$$xy = yx \tag{6}$$

akko postoji $z \in \Sigma^*$ i $k, m \in \mathbb{N}$, tako da je $x = z^k$ i $y = z^m$.

 \triangle

(\Leftarrow :) Pretpostavimo da postoje $z \in \Sigma^*$ i $k, m \in \mathbb{N}$, tako da je $x = z^k$ i $y = z^m$. Pokažimo jednostavnom zamenom da je tada xy = yx

$$xy = z^k z^m = z^{k+m} = z^{m+k} = z^m z^k = yx$$

- (⇒:) Izvedimo dokaz indukcijom po dužini reči |xy|.
- 1. Neka je |xy|=0. Tada je $x=\varepsilon$ i $y=\varepsilon$. U tom slučaju je $z=\varepsilon$ i $x=z^1$ i $y=z^1$.
- 2. Pretpostavimo da tvrdjenje važi za reči dužine stroge manje od n. Neka je |xy|=n. Razlikujmo sledeće slučajeve:
 - (a) $x = \varepsilon$. Tada je z = y, $x = z^0$, a $y = z^1$
 - (b) $y = \varepsilon$. Tada je z = x, $x = z^1$, a $y = z^0$
 - (c) $x \neq \varepsilon$ i $x \neq \varepsilon$. U ovom slučaju na jednakost (6) primenimo Levijevu lemu. Može da se dogodi jedan od sledećih slučajeva:
 - i. x = y i y = x. Tada je z = x = y, a k = m = 1.
 - ii. Postoji $t \in \Sigma^*$, tdj. x = yt i ty = x. Odavde sledi da je yt = ty. Pošto je |yt| < n, postoji $z \in \Sigma^*$ tako da je $y = z^k$, $t = z^m$. Tada je i $x = yt = z^k z^m = z^{m+n}$, pa tvrdjenje važi i u ovom slučaju.
 - iii. Postoji $t\in \Sigma^*$, tdj. y=xt i tx=y. Odavde sledi da je xt=tx. Pošto je |xt|< n, postoji $z\in \Sigma^*$ tako da je $x=z^k$, $t=z^m$. Tada je i $y=xt=z^kz^m=z^{m+n}$, pa tvrdjenje važi i u ovom slučaju.