	Nazwa przedmiotu:	Grafika komputerowa - laboratorium	Wersja:	1.0
	Tytuł:	Silnik 3D - Sprawozdanie		
	Autor:	Paweł Drapiewski	Nr indeksu:	271050
	Data utworzenia:	31.10.2017	Data edycji:	7.11.2017

Silnik 3D

Sprawozdanie

Technologia

Budowa aplikacji w oparciu o język Python oraz framework PyGame był czystą przyjemnością. Co pozwoliło mi skupić się na implementacji problemu, a nie walką z problemami technicznymi.

Algorytm

Rzutowanie obrazu

Do rzutowania obrazu użyłem rzutowania perspektywicznego, które wraz z zastosowaniem znormalizowanej formy współrzędnych oraz użyciu macierzy przekształcenia pozwoliły na prostą implementację algorytmu.

Poruszanie kamery

Do poruszania kamery w obrębie sceny, podobnie jak w przypadku rzutowania obrazu użyłem macierzy przekształceń. Dzięki czemu przemnażając macierz przez wszystkich punkty wszystkich obiektów uzyskałem ich nowe położenia.

Zmienna ogniskowa kamery

By zaimplementować tą funkcjonalność należało skorzystać z zastosowanego algorytmu rzutowania obrazu i manipulować współczynnikiem oddalenia punktu zbiegu horyzontu (to gdzie znajduje się obserwator) od wirtualnego płótna, na które punkty były rzutowane.

	Nazwa przedmiotu:	Grafika komputerowa - laboratorium	Wersja:	1.0
	Tytuł:	Silnik 3D - Sprawozdanie		
	Autor:	Paweł Drapiewski	Nr indeksu:	271050
	Data utworzenia:	31.10.2017	Data edycji:	7.11.2017

Efekty

Zamierzone efekty zostały osiągnięte. Uzyskana wirtualna kamera bardzo realistycznie oddaje obraz, w porównaniu do mechanik znanych nam z prawdziwej kamery. Co osobiście było dla mnie bardzo pozytywnym zaskoczeniem.

Podsumowanie

Projekt ten był bardzo ciekawym doświadczeniem, choć po drodze napotkałem pewne problemy.

Jednym z pierwszych problemów była odwrócona oś OY w emulowanym płótnie frameworku PyGame. Rozwiązaniem było odwrócenie tej osi przez proste równanie y_{new} = $screeheight-y_{old}$

Drugim problemem był niepoprawny punkt zbiegu, który znajdował się w lewym dolnym rogu ekranu zamiast w centrum ekranu. Błąd ten pociągał za sobą także niekomfortowe odczucie sterowania po scenie. Rozwiązanie problemu było proste. W celu jego niwelacji należało punkt (0, 0) ekranu sztucznie przesunąć dodając połowę szerokości ekranu do osi OX i połowę wysokości ekranu do osi OY.