Упражнение 3

Обща и канонична задача на линейното оптимиране. Канонично многостенно множество

1. Обща и канонична задача на ЛО

Произволна задачата на ЛО може да се запише в следния вид: Търси се минимумът на функцията

$$(1) z = \sum_{j=1}^{n} c_j x_j$$

при ограничения (условия)

(2)
$$\sum_{i=1}^{n} a_{ij} x_j \le b_i, \qquad i = 1, \dots, s,$$

(3)
$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i}, \qquad i = s+1, \dots, m,$$

(4)
$$x_j \ge 0, \quad j = 1, ..., p \quad (p \le n).$$

Функцията (1) се нарича *целева функция*. Променливите, на които не е наложено условие за неотрицателност, се наричат *свободни променливи*. В случая такива са x_{p+1}, \ldots, x_n .

Определение 1. Допустима точка на задачата се нарича всяко решение $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\mathrm{T}}$ на системата (2)–(4).

Определение 2. Допустимо множество на задачата се нарича множеството P от всички решения на системата (2)–(4).

P е изпъкнало затворено многостенно множество.

Ако задачата е за търсене на максимум на функцията (1) в множеството (2)–(4), тя е еквивалентна на задачата за търсене на минимум на $-z=\sum\limits_{j=1}^{n}(-c_{j})x_{j}$ в същото множество. Двете задачи имат едно и също допустимо множество, като търсената максимална стойност на целевата фун-

кция се получава чрез умножаване с -1 на намерената минимална стойност на -z. Ако има ограничение от вида $\sum\limits_{i=1}^n a_{ij}x_j \geq b_i$, то е еквивалентно на

$$\sum_{j=1}^{n} (-a_{ij}) x_j \le -b_i.$$

2. Алгоритъм за свеждане на произволна задача на ЛО към канонична задача на ЛО

В случай че s=0 и p=n, т. е. когато всички ограничения са равенства и всички променливи са неотрицателни, задачата на линейното оптимиране

(K)
$$\min z = \sum_{j=1}^{n} c_j x_j,$$
$$\sum_{j=1}^{n} a_{ij} x_j = b_i, \qquad i = 1, \dots, m,$$
$$x_j \ge 0, \qquad j = 1, \dots, n,$$

където $b_i \geq 0$, $i=1,\ldots,m$, се нарича *канонична задача* (КЗ). Нека **A** е матрицата с елементи a_{ij} , $i=1,\ldots,m$, $j=1,\ldots,n$, $\mathbf{c}=(c_1,\ldots,c_n)^{\mathrm{T}}$ е векторът с коефициентите в целевата функция, $\mathbf{x}=(x_1,\ldots,x_n)^{\mathrm{T}}$ е векторът с неизвестните, а $\mathbf{b}=(b_1,\ldots,b_m)^{\mathrm{T}}$ е векторът с десните страни на ограниченията. Тогава каноничната задача на линейното оптимиране има следния вид: $\min \mathbf{c}^{\mathrm{T}}\mathbf{x}$, $\mathbf{A}\mathbf{x}=\mathbf{b}$, $\mathbf{x}\geq\mathbf{0}$.

2. Алгоритъм за свеждане на произволна задача на ЛО към канонична задача на ЛО

Нека е дадена задачата (1)–(4). Всяко ограничение неравенство (2) се свежда към ограничение равенство чрез добавяне на нова неотрицателна допълнителна променлива $x_{n+i} \ge 0$, $i = 1, \ldots, s$, в лявата му страна

$$\sum_{j=1}^{n} a_{ij} x_j + x_{n+i} = b_i, \qquad i = 1, \dots, s.$$

Ограничение от тип \geq се превръща директно в равенство (без да се умножава предварително с -1) чрез *изваждане* на допълнителната променлива от лявата му страна. Така броят на променливите се увеличава с s, защото всяко ограничение неравенство води до нова допълнителна променлива.

Ако някоя дясна страна b_i , $i=1,\ldots,m$, е отрицателна, равенството се умножава с -1.

Всяка *свободна променлива* се замества с разликата на две неотрицателни променливи по един от следните два начина:

- 1. $x_j = x_j^+ x_j^-, x_j^+ \ge 0, x_j^- \ge 0, j = p + 1, \dots, n$. При този начин броят на променливите се увеличава с n p.
- 2. $x_j = x_j^+ \xi, \, x_j^+ \ge 0, \, \xi \ge 0, \, j = p+1,\dots,n$. При този начин броят на променливите се увеличава с 1 независимо от това колко е n-p.

Така от задача (1)-(4) се получава следната задача

(5)
$$\min z = \sum_{j=1}^{p} c_j x_j + \sum_{j=p+1}^{n} c_j (x_j^+ - x_j^-)$$

при ограничения (условия)

(6)
$$\sum_{j=1}^{p} a_{ij} x_j + \sum_{j=p+1}^{n} a_{ij} (x_j^+ - x_j^-) + x_{n+i} = b_i, \qquad i = 1, \dots, s,$$

(7)
$$\sum_{j=1}^{p} a_{ij} x_j + \sum_{j=p+1}^{n} a_{ij} (x_j^+ - x_j^-) = b_i, \qquad i = s+1, \dots, m,$$

(8)
$$x_j \ge 0$$
, $j = 1, ..., p$, $x_i^+, x_i^- \ge 0$, $j = p + 1, ..., n$, $x_{n+i} \ge 0$, $i = 1, ..., s$.

Задачите (1)–(4) и (5)–(8) са *еквивалентни*. Това означава, че те едновременно са разрешими или неразрешими (доказва се с допускане на противното). Ако $\bar{\mathbf{x}} = (\bar{x}_1, \dots, \bar{x}_p, \bar{x}_{p+1}^+, \bar{x}_{p+1}^-, \dots, \bar{x}_n^+, \bar{x}_n^-, \bar{x}_{n+1}, \dots, \bar{x}_{n+s})^{\mathrm{T}}$ е оптимално решение на задача (5)–(8), то $\mathbf{x}^* = (x_1^*, \dots, x_n^*)^{\mathrm{T}}$ е оптимално решение на (1)–(4), където

$$x_{j}^{*} = \bar{x}_{j}, \quad j = 1, \dots, p, \qquad x_{j}^{*} = \bar{x}_{j}^{+} - \bar{x}_{j}^{-}, \quad j = p + 1, \dots, n.$$

Така на всяка задача (1)–(4) по единствен начин се съпоставя еквивалентна на нея канонична задача (5)–(8).

Пример 1. Да се приведе в каноничен вид задачата

$$z = 3x_1 - x_2 + 2x_3 \to \max,$$

$$2x_1 - x_2 = -3,$$

$$x_1 - x_3 \ge 1,$$

$$x_1 + 4x_3 \le 4,$$

$$x_1 \ge 0, x_3 \ge 0.$$

Решение. Свободната променлива се замества с разликата на две неотрицателни променливи $x_2 = x_2^+ - x_2^-, x_2^+ \ge 0, x_2^- \ge 0$, както в целевата функция, така и в ограниченията. Целевата функция се умножава с -1, а критерият става минимум. Първото ограничение също се умножава с -1 заради отрицателната му дясна страна. Изважда се допълнителна променлива $x_4 \ge 0$ от лявата страна на второто ограничение. Прибавя се допълнителна променлива $x_5 \ge 0$ в лявата страна на третото ограничение. Така второто и

третото ограничение се превръщат в равенства. Търсената канонична задача е

$$\bar{z} = -z = -3x_1 + x_2^+ - x_2^- - 2x_3 \rightarrow \min,$$

$$-2x_1 + x_2^+ - x_2^- = 3,$$

$$x_1 - x_3 - x_4 = 1,$$

$$x_1 + 4x_3 + x_5 = 4,$$

$$x_1, x_2^+, x_2^-, x_3, x_4, x_5 \ge 0.$$

3. Канонично многостенно множество

Определение 3. Допустимо множество M на канонична задача на линейното оптимиране се нарича *канонично* (*многостенно*) *множество*. С други думи нека $M = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{b}, \, \mathbf{x} \geq \mathbf{0} \}$, където $\mathbf{A} = [a_{ij}]_{m \times n}$ е матрица $m \times n$, $\mathbf{b} \in \mathbb{R}_+^m$. Ще предполагаме, че $M \neq \emptyset$ и rank $\mathbf{A} = m$, т. е. между ограниченията няма линейно зависими. Ясно е също така, че $m \leq n$.

Определение 4. Нека M е непразно канонично множество и \mathbf{B} е неособена $m \times m$ матрица, съставена от m линейно независими стълба на матрицата

A. Векторьт
$$\bar{\mathbf{x}} = \begin{bmatrix} \bar{\mathbf{x}}_B \\ \bar{\mathbf{x}}_N \end{bmatrix}$$
, където $\bar{\mathbf{x}}_B = \mathbf{B}^{-1}\mathbf{b} \in \mathbb{R}_+^m$, $\bar{\mathbf{x}}_N = \mathbf{0} \in \mathbb{R}^{n-m}$ се нарича базисно решение спрямо базис (базисна матрица) **B**.

За всяко базисно решение е изпълнено $\mathbf{A}\mathbf{x} = \mathbf{b}$, но то може да не бъде точка от M, ако има отрицателна(и) координата(и).

Определение 5. Ако $\bar{\mathbf{x}}_B \geq \mathbf{0}$, $\bar{\mathbf{x}}$ се нарича *базисно допустимо решение* (бдр) (защото $\bar{\mathbf{x}}$ тогава е допустима точка).

Теорема 1. Ако $M \neq \emptyset$, следните твърдения са еквивалентни:

- а) $\bar{\mathbf{x}}$ е връх на M, т. е. $\bar{\mathbf{x}}$ не е вътрешна точка за нито една отсечка, чиито краища са различни точки от множеството M.
- б) $\bar{\mathbf{x}}$ е бдр.
- в) $\bar{\mathbf{x}}$ е допустима точка, като на ненулевите (положителните) ѝ координати съответстват линейно независими стълбове на матрицата \mathbf{A} .

Забележка. Като се има предвид, че rank $\mathbf{A} = m$, броят на ненулевите (положителните) координати на един връх $\bar{\mathbf{x}}$ на непразно канонично множеството M не може да бъде по-голям от m.

Теорема 2. Ако $M \neq \emptyset$ е канонично множество, то M има връх.

Определение 6. Нека
$$\bar{\mathbf{x}} = \begin{bmatrix} \bar{\mathbf{x}}_B \\ \bar{\mathbf{x}}_N \end{bmatrix} = \begin{bmatrix} \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} \end{bmatrix}$$
 е връх на M и $\mathbf{A} = [\mathbf{B}, \mathbf{N}]$.

Матрицата **B** се нарича *базис* на $\bar{\mathbf{x}}$, а представянето на множеството M във вида $\{\mathbf{x}: \mathbf{x}_B + \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N = \mathbf{B}^{-1}\mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ — *базисно представяне* спрямо върха $\bar{\mathbf{x}}$ (спрямо базиса **B**). Тогава \mathbf{x}_B се наричат *базисни координати*, а \mathbf{x}_N — *небазисни координати*.

Определение 7. Един връх $\bar{\mathbf{x}}$ на непразно канонично множество се нарича *неизроден*, ако $\bar{\mathbf{x}}_B > \mathbf{0}$. В противен случай $\bar{\mathbf{x}}$ се нарича *изроден*.

Следствие 1. Всеки неизроден връх $\bar{\mathbf{x}}$ има *единствен базис*, състоящ се от онези m стълба на матрицата \mathbf{A} , които съответстват на положителните му координати. Един изроден връх $\bar{\mathbf{x}}$ в общия случай има повече от един базис. Всеки такъв базис включва стълбовете на матрицата \mathbf{A} , съответстващи на ненулевите координати на $\bar{\mathbf{x}}$, допълнени до m на брой с някои от другите стълбове на \mathbf{A} по такъв начин, че получената съвкупност от стълбове да бъде линейно независима.

При изроден връх някои от базисните му координати са равни на нула. Прието е те да се наричат *базисни нули*.

При направените предположения $M \neq \emptyset$, rank $\mathbf{A} = m$, от всеки връх на M излизат точно n-m ръба на M. Ръбовете, излизащи от върха $\bar{\mathbf{x}} = \begin{bmatrix} \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} \end{bmatrix}$, се представят във вида

(9)
$$\{\bar{\mathbf{x}} + t\mathbf{d}_j, \ t \ge 0\} \subset M, \qquad \mathbf{d}_j = \begin{bmatrix} -\mathbf{B}^{-1}\mathbf{A}_j \\ \mathbf{e}_j \end{bmatrix} = \begin{bmatrix} -\mathbf{w}_j \\ \mathbf{e}_j \end{bmatrix}, \quad j \in N,$$

където N е множеството от индексите на небазисните променливи и $\mathbf{e}_j \in \mathbb{R}^{n-m}$ е j-тият единичен вектор.

Ако $\bar{\mathbf{x}}$ е неизроден връх, той има единствен базис \mathbf{B} . Това позволява еднозначно да се определят n-m-те посоки на ръбовете, излизащи от $\bar{\mathbf{x}}$, като на небазисната променлива $x_j, j \in N$, се съпостави векторът \mathbf{d}_j от (9). При движение по посока на вектора \mathbf{d}_j небазисната променлива $x_j, j \in N$, нараства от 0 до някакво число $\bar{t} > 0$. За построяването на вектора \mathbf{d}_j се използва стълбът от коефициенти $\mathbf{w}_j = [\mathbf{B}^{-1}\mathbf{N}]_j$ в базисното представяне $\mathbf{x}_B + \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N = \mathbf{B}^{-1}\mathbf{b}$ спрямо $\bar{\mathbf{x}}$.

Ако $\bar{\mathbf{x}}$ е изроден връх, възможно е числото $\bar{t}=0$. Тогава можем да кажем, че освен действителни посоки от $\bar{\mathbf{x}}$ излизат и фиктивни, т. е. такива, за които $\bar{\mathbf{x}}+t\mathbf{d}_j\notin M$ за t>0. Този факт геометрично е представен на фиг. 1. Там \mathbf{d}_1 е действителна посока, а \mathbf{d}_2 — фиктивна.

За да определим действителните посоки \mathbf{d}_j , $j=1,\ldots,n-m$, на изроден връх $\bar{\mathbf{x}}$, се налага да се изследват посоките, които се получават от всички

Фиг. 1. Действителна и фиктивна посоки от изроден връх

базисни представяния на $\bar{\mathbf{x}}$.

Ръбовете на допустимото множество могат да бъдат ограничени или неограничени. Ако един ръб е ограничен, това е отсечка, която свързва два върха на допустимото множество. Разпознаването на това дали един ръб на допустимото множество е ограничен или неограничен става лесно. Ако $\mathbf{d}_j \geq \mathbf{0}$, тогава $\bar{\mathbf{x}} + t\mathbf{d}_j \geq \mathbf{0}$ за всяко $t \geq 0$. Но $\mathbf{d}_j \geq \mathbf{0}$ точно когато $\mathbf{w}_j \leq \mathbf{0}$. В последния случай векторът \mathbf{d}_j е *посока* за допустимото множество.

Пример 2. Да се определи кои от векторите

$$\mathbf{x}^{1} = (4, 0, 0, 0, 2)^{\mathrm{T}},$$

$$\mathbf{x}^{2} = \left(1, 0, 0, \frac{6}{5}, \frac{1}{5}\right)^{\mathrm{T}},$$

$$\mathbf{x}^{3} = (0, 1, 1, 0, 0)^{\mathrm{T}},$$

$$\mathbf{x}^{4} = (0, 2, 0, 0, 0)^{\mathrm{T}}$$

са върхове на множеството

$$M: \begin{vmatrix} x_1 + x_2 + x_3 + x_4 - x_5 = 2 \\ -x_1 + x_2 + x_3 + 2x_4 + 3x_5 = 2 \\ x_j \ge 0, \quad j = 1, \dots, 5. \end{vmatrix}$$

Решение. За да се установи кои от дадените вектори са върхове на даденото канонично многостенно множество M, се използва Теорема 1. Чрез непосредствена проверка се установява, че и четирите точки са допустими. Тъй като матрицата \mathbf{A} в този случай има вида

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & -1 \\ -1 & 1 & 1 & 2 & 3 \end{bmatrix},$$

очевидно е, че rank A = 2 (има неособена квадратна подматрица от ред 2, например тази, получена от първите два стълба на A). Тъй като векторът \mathbf{x}^2 има три ненулеви (положителни) координати, той не може да бъде връх, защото трите стълба A_1 , A_4 , A_5 на матрицата A са линейно зависими.

Векторът \mathbf{x}^1 има две ненулеви координати и съответните стълбове $\mathbf{A}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ и $\mathbf{A}_5 = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ на матрицата \mathbf{A} са линейно независими. Следователно \mathbf{x}^1 е

неизроден връх с базис
$$\mathbf{B} = \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix}$$
 и $\mathbf{x}_B^1 = [x_1, x_5].$

Векторът \mathbf{x}^3 има две ненулеви координати и съответните стълбове $\mathbf{A}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ и $\mathbf{A}_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ на матрицата \mathbf{A} са линейно зависими. Следователно \mathbf{x}^3 не е връх.

Векторът \mathbf{x}^4 има една ненулева координата и съответният ѝ стълб от матрицата \mathbf{A} е $\mathbf{A}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Следователно \mathbf{x}^4 е изроден връх. Лесно се проверява, че \mathbf{x}^4 има три базиса: $\mathbf{B}_1 = [\mathbf{A}_1, \mathbf{A}_2], \, \mathbf{B}_2 = [\mathbf{A}_2, \mathbf{A}_4], \, \mathbf{B}_3 = [\mathbf{A}_2, \mathbf{A}_5].$

Пример 3. Да се намерят всички върхове и ръбовете, излизащи от тях, на множеството

(10)
$$M: \begin{vmatrix} x_1 - x_2 - 2x_3 + 2x_4 = 6 \\ -x_1 + 3x_2 = 0 \\ x_j \ge 0, \quad j = 1, \dots, 4. \end{vmatrix}$$

Решение. Всички възможни базиси (съответните подматрици са неособени) са: $[A_1, A_2]$, $[A_1, A_3]$, $[A_1, A_4]$, $[A_2, A_3]$, $[A_2, A_4]$.

Последователно се построяват съответните базисни представяния на множеството M спрямо изброените по-горе базиси.

а) За построяването на базисното представяне на M спрямо базиса $[{\bf A}_1,{\bf A}_2]$ системата (10) се решава спрямо променливите x_1 и x_2 , като се използва методът на Гаус-Жордан. Най-напред се преписва първото уравнение, а на мястото на второто се записва сборът на двете уравнения. При тази операция променливата x_1 е елиминирана от второто уравнение, а в първото уравнение коефициентът пред нея е +1

$$M: \begin{vmatrix} x_1 - x_2 - 2x_3 + 2x_4 = 6 \\ 2x_2 - 2x_3 + 2x_4 = 6 \\ x_j \ge 0, \quad j = 1, \dots, 4, \end{vmatrix}$$

т. е. пред променливата x_1 е първият стълб на единичната матрица от ред 2. Така системата е решена спрямо променливата x_1 . След това системата се решава и спрямо другата базисна променлива x_2 . За целта второто уравнение се разделя на 2 и се прибавя към първото уравнение. Така пред променливата x_2 се получава вторият стълб на единичната матрица. Окончателно

(11)
$$M: \begin{vmatrix} x_1 & -3x_3 + 3x_4 = 9 \\ x_2 - x_3 + x_4 = 3 \\ x_j \ge 0, \ j = 1, \dots, 4. \end{vmatrix}$$

Тъй като десните страни в полученото представяне са неотрицателни, намерен е връх (бдр) на допустимото множество, като на мястото на небазисните променливи x_3 и x_4 се слагат нули. Веднага се получава $x_1 = 9$ и $x_2 = 3$. Намерен е върхът $\mathbf{x}^1 = (9, 3, 0, 0)^T$.

От \mathbf{x}^1 излизат два ръба, съответстващи на небазисните променливи x_3 и x_4 . Най-напред да разгледаме стълба пред x_3 в представянето (11). От него се получава векторът $\mathbf{d}_3^1 = (3, 1, 1, 0)^T$ по следния начин:

- коефициентът -3 пред x_3 в първото уравнение се записва с обратен знак на мястото на x_1 (базисната променлива в първото уравнение);
- коефициентът -1 пред x_3 във второто уравнение се записва с обратен знак на мястото на x_2 (базисната променлива във второто уравнение);
- останалите две координати на \mathbf{d}_3^1 са тези на единичния вектор с размерност n-m=4-2=2, в който единицата е точно пред небазисната променлива x_3 , с чийто стълб работим.

Координатите на точките от ръба, излизащ от \mathbf{x}^1 , се получават по формулата

$$\mathbf{x}^1 + t\mathbf{d}_3^1 = \begin{bmatrix} 9 + 3t \\ 3 + t \\ t \\ 0 \end{bmatrix} \ge \mathbf{0}$$

за всяко $t \ge 0$. Така ръбът, излизащ от \mathbf{x}^1 и съответстващ на небазисната променлива x_3 , е неограничен.

Аналогично се намира векторът $\mathbf{d}_4^1 = (-3, -1, 0, 1)^{\mathrm{T}}$, а след това и предс-

тавянето на съответния ръб

$$\mathbf{x}^1 + t\mathbf{d}_4^1 = \begin{bmatrix} 9 - 3t \\ 3 - t \\ 0 \\ t \end{bmatrix} \ge \mathbf{0}$$

при $0 \le t \le 3$. Полученият ръб е ограничен. Геометрично той представлява отсечка. Единият край на отсечката (при t=0) е върхът \mathbf{x}^1 . При t=3 се получава другият край на отсечката, който е съседен на \mathbf{x}^1 връх $\mathbf{x}^2=(0,0,0,3)^{\mathrm{T}}$. Базисите на два съседни върха се различават само на едно място. Една от базисните променливи на \mathbf{x}^1 (в този случай или x_1 , или x_2) е небазисна за \mathbf{x}^2 , а една от небазисните променливи на \mathbf{x}^1 (x_4) е базисна за \mathbf{x}^2 .

б) За получаването на базисното представяне на даденото канонично множество спрямо базиса $[{\bf A}_1,{\bf A}_3]$ системата (10) се решава спрямо неизвестните x_1 и x_3 , като се използва методът на Гаус-Жордан. Така се стига до

$$M: \begin{vmatrix} x_1 - 3x_2 & = & 0 \\ - & x_2 + x_3 - x_4 = -3 \\ x_j \ge 0, \ j = 1, \dots, 4. \end{vmatrix}$$

В този случай базисното решение $(0,0,-3,0)^{\mathrm{T}} \not\geq \mathbf{0}$ не е допустимо и следователно не е връх на множеството M.

в) За получаването на базисното представяне на даденото канонично множество спрямо базиса [\mathbf{A}_1 , \mathbf{A}_4] системата (10) се решава спрямо неизвестните x_1 и x_4 , като се използва методът на Гаус-Жордан

$$M: \begin{vmatrix} x_1 - 3x_2 & = 0 \\ x_2 - x_3 + x_4 & = 3 \\ x_j \ge 0, \ j = 1, \dots, 4. \end{vmatrix}$$

След анулиране на небазисните променливи x_2 и x_3 се стига до бдр (връх) $\mathbf{x}^2 = (0,0,0,3)^{\mathrm{T}}$. Този връх е изроден, защото в случая x_1 е базисна нула.

Ръбът, съответстващ на небазисната променлива x_2 , е

$$\mathbf{x}^2 + t\mathbf{d}_2^2 = \mathbf{x}^2 + t \begin{bmatrix} 3\\1\\0\\-1 \end{bmatrix} = \begin{bmatrix} 3t\\t\\0\\3-t \end{bmatrix} \ge \mathbf{0}$$

за $0 \le t \le 3$. При t = 3 се попада в съседния връх \mathbf{x}^1 . Ръбът, съответстващ на небазисната променлива x_3 , е

$$\mathbf{x}^2 + t\mathbf{d}_3^2 = \mathbf{x}^2 + t \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ t \\ 3 + t \end{bmatrix} \ge \mathbf{0}$$

за всяко $t \ge 0$. Следователно този ръб е неограничен (за него $\mathbf{w}_3 = (0, -1)^T \le \mathbf{0}$).

г) За получаването на базисното представяне на даденото канонично множество спрямо базиса [\mathbf{A}_2 , \mathbf{A}_3] системата (10) се решава спрямо неизвестните x_2 и x_3 , като се използва методът на Гаус-Жордан

$$M: \begin{vmatrix} -\frac{1}{3}x_1 + x_2 & = 0\\ -\frac{1}{3}x_1 + x_3 - x_4 & = -3\\ x_j \ge 0, \ j = 1, \dots, 4. \end{vmatrix}$$

Базисното решение $(0, 0, -3, 0)^T$ не е допустимо и следователно не е връх.

д) За получаването на базисното представяне на даденото канонично множество спрямо базиса [\mathbf{A}_2 , \mathbf{A}_4] системата (10) се решава спрямо неизвестните x_2 и x_4 , като се използва метода на Гаус-Жордан

$$M: \begin{vmatrix} -\frac{1}{3}x_1 + x_2 & = 0\\ \frac{1}{3}x_1 & -x_3 + x_4 = 3\\ x_j \ge 0, \ j = 1, \dots, 4. \end{vmatrix}$$

Базисното решение $(0,0,0,3)^T$ е допустимо и следователно е връх. Това е изроденият връх \mathbf{x}^2 , получен в подточка в), но сега базисната му нула е x_2 . Следователно \mathbf{x}^2 има два базиса — $[\mathbf{A}_1,\mathbf{A}_4]$ и $[\mathbf{A}_2,\mathbf{A}_4]$. Посоките на ръбовете, излизащи от \mathbf{x}^2 , в този случай са $\mathbf{d}_1^2 = \left(1,\frac{1}{3},0,-\frac{1}{3}\right)^T$ и $\mathbf{d}_3^2 = (0,0,1,1)^T$. Първата не е съществено различна от получената в подточка в) \mathbf{d}_2^2 , защото $3\mathbf{d}_1^2 = \mathbf{d}_2^2$, а втората съвпада с вече определената в подточка в).

В този пример изроденият връх \mathbf{x}^2 няма фиктивни посоки.

Задачи

1. Да се приведат в каноничен вид следните задачи:

1.1.
$$x_1 - x_5 \to \min,$$

 $-4x_1 + 3x_2 - 2x_3 + x_4 \le 8,$
 $x_1 - 2x_2 + 3x_3 - 4x_4 \ge 1,$
 $x_1 + x_2 - 2x_3 + x_5 = 3;$

1.3.
$$\sum_{j=1}^{n} c_j x_j \to \max,$$

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, \quad i = 1, \dots, m,$$

$$0 \le x_j \le d_j, \quad j = 1, \dots, n;$$
1.4.
$$\sum_{j=1}^{n} c_j x_j \to \min,$$

1.4.
$$\sum_{j=1}^{n} c_j x_j \to \min,$$

$$b_i \le \sum_{j=1}^{n} a_{ij} x_j \le d_i, \quad i = 1, \dots, m.$$

2. Симетричната задача на ЛО

$$\max \left\{ \sum_{j=1}^{n} c_j x_j : \sum_{j=1}^{n} a_{ij} x_j \le b_i, i = 1, \dots, m, \ x_j \ge 0, \ j = 1, \dots, n \right\}$$

се привежда в каноничен вид след въвеждане на допълнителните променливи $x_{n+1}, x_{n+2}, \ldots, x_{n+m}$. Получава се каноничната задача

$$\min \left\{ -\sum_{i=1}^{n} c_{j} x_{j} : \sum_{i=1}^{n} a_{ij} x_{j} + x_{n+i} = b_{i}, \ i = 1, \dots, m, \right.$$

$$x_j \ge 0, \ j = 1, \dots, n + m \bigg\}.$$

Нека $\mathbf{x} = (x_1, \dots, x_n)^{\mathrm{T}}$, $\mathbf{y} = (x_{n+1}, \dots, x_{n+m})^{\mathrm{T}}$. Да се докаже, че ако $(\mathbf{x}^*, \mathbf{y}^*)^{\mathrm{T}}$ е решение на каноничната задача, то $-\mathbf{x}^*$ е решение на изходната симетрична задача.

3. Общата задача на ЛО (1)-(4) се свежда към следната канонична задача

$$\sum_{j=1}^{p} c_{j}x_{j} + \sum_{j=p+1}^{n} c_{j}(x'_{j} - \xi) \to \min,$$

$$\sum_{j=1}^{p} a_{ij}x_{j} + \sum_{j=p+1}^{n} a_{ij}(x'_{j} - \xi) + x_{n+i} = b_{i}, \quad i = 1, \dots, s,$$

$$\sum_{j=1}^{p} a_{ij}x_{j} + \sum_{j=p+1}^{n} a_{ij}(x'_{j} - \xi) = b_{i}, \quad i = s+1, \dots, m,$$

$$\xi \ge 0, \quad x_{j} \ge 0, \quad j = 1, \dots, p, \quad x'_{k} \ge 0, \quad k = p+1, \dots, n,$$

$$x_{n+i} \ge 0, \quad i = 1, \dots, s.$$

Да се докаже, че ако $\widetilde{\mathbf{x}} = (\bar{x}_1, \dots, \bar{x}_p, \bar{x}'_{p+1}, \dots, \bar{x}'_n, \bar{\xi}, \bar{x}_{n+1}, \dots, \bar{x}_{n+m})^{\mathrm{T}}$ е решение на каноничната задача, то $\bar{\mathbf{x}} = (\bar{x}_1, \dots, \bar{x}_p, \bar{x}'_{p+1} - \bar{\xi}, \dots, \bar{x}'_n - \bar{\xi})^{\mathrm{T}}$ е решение на изходната задача (1)–(4).

4. Като се използва Теорема 1, да се провери кои от зададените вектори са върхове на съответните канонични множества и да се посочат изродените между тях.

4.1.
$$\begin{vmatrix} x_1 - x_2 + 4x_3 - 2x_4 = 2 \\ 3x_1 + 2x_2 - x_3 + 4x_4 = 3 \\ x_j \ge 0, \ j = 1, \dots, 4, \end{vmatrix}$$
 $\bar{\mathbf{x}} = (0, 0, 1, 1)^T,$ $\bar{\mathbf{y}} = \left(\frac{14}{13}, 0, \frac{3}{13}, 0\right)^T;$

4.2.
$$\begin{vmatrix} x_1 + x_2 + x_3 + 3x_4 = 3 \\ x_1 + x_2 - x_3 + x_4 = 1 \\ x_1 - x_2 + x_3 + x_4 = 1 \\ x_j \ge 0, \ j = 1, \dots, 4,$$
 $\bar{\mathbf{x}} = (0, 0, 0, 1)^T,$ $\bar{\mathbf{y}} = (1, 1, 1, 0)^T;$

4.3.
$$\begin{vmatrix} x_1 - x_2 = 1 \\ x_1 \ge 0, x_2 \ge 0, \end{vmatrix}$$
 $\bar{\mathbf{x}} = (1, 0)^{\mathrm{T}};$

4.4.
$$\begin{vmatrix} x_1 - x_2 = 0 \\ x_1 \ge 0, \ x_2 \ge 0, \end{vmatrix}$$
 $\bar{\mathbf{x}} = (0, 0)^{\mathrm{T}};$

4.5.
$$\begin{vmatrix} -2x_1 + 3x_2 + x_3 & = 9 & \bar{\mathbf{x}} = (4,0,17,23,9)^{\mathrm{T}}, \\ 2x_1 + 5x_2 & + x_4 & = 31 & \bar{\mathbf{y}} = (3,5,0,0,17)^{\mathrm{T}}, \\ 3x_1 - x_2 & + x_5 = 21 & \bar{\mathbf{z}} = (0,0,9,31,21)^{\mathrm{T}}, \\ x_j \ge 0, \ j = 1,\dots,5, & \bar{\mathbf{u}} = (1,1,8,24,19)^{\mathrm{T}}; \end{vmatrix}$$
4.6.
$$\begin{vmatrix} -x_1 + x_2 + 4x_3 & + x_5 = 12 \\ 2x_1 & + x_3 + x_4 + x_5 = 12 \\ x_j \ge 0, \ j = 1,\dots,5, & \bar{\mathbf{y}} = (5,9,2,0,0)^{\mathrm{T}}, \\ \bar{\mathbf{v}} = (6,18,0,0,0)^{\mathrm{T}}, \\ \bar{\mathbf{v}} = (6,18,0,0,0)^{\mathrm{T}}, \\ \bar{\mathbf{v}} = (0,0,3,9,0)^{\mathrm{T}}, \\ \bar{\mathbf{v}} = (0,0,0,0,0,12)^{\mathrm{T}}. \end{vmatrix}$$

5. Да се намерят всички базиси на върховете на дадените множества и съответстващия им базисен вид на системата уравнения:

5.1.
$$\begin{vmatrix} 3x_1 + 2x_2 = 1 \\ x_1 \ge 0, & x_2 \ge 0, \end{vmatrix}$$
 $\bar{\mathbf{x}} = (0, \frac{1}{2})^T, \\ \bar{\mathbf{y}} = (\frac{1}{3}, 0)^T;$
5.2. $\begin{vmatrix} x_1 + x_2 = 2 \\ x_1 - x_2 = 0 \\ x_1 \ge 0, & x_2 \ge 0, \end{vmatrix}$ $\bar{\mathbf{x}} = (1, 1)^T;$

5.3.
$$\begin{vmatrix} x_1 \ge 0, & x_2 \ge 0, \\ x_1 + x_2 + x_3 = 1 & \bar{\mathbf{x}} = (\frac{1}{2}, 0, \frac{1}{2})^T, \\ x_1 - x_3 = 0 & \bar{\mathbf{y}} = (0, 1, 0)^T; \\ x_j \ge 0, & j = 1, 2, 3, \end{vmatrix}$$

5.4.
$$\begin{vmatrix} x_1 + x_2 + x_3 = 0 \\ x_1 - x_2 + x_3 = 0 \\ x_j \ge 0, \ j = 1, 2, 3, \end{vmatrix}$$
 $\bar{\mathbf{x}} = (0, 0, 0)^{\mathrm{T}};$

- **5.5.** По условието на зад. **4.1**;
- **5.6.** По условието на зад. 4.2.
- 6. Да се намерят върховете, като се използват дадените им базиси:

6.1.
$$\begin{vmatrix} 2x_1 + x_2 = 2 \\ x_1 \ge 0, \ x_2 \ge 0, \end{vmatrix}$$
 $\mathbf{B}_{\bar{\mathbf{y}}} = [x_2],$ $\mathbf{B}_{\bar{\mathbf{y}}} = [x_1];$

6.2.
$$\begin{vmatrix} 2x_1 + x_2 + x_3 + 3x_4 - 4x_5 &= 11 \\ x_1 + 2x_2 - x_3 &+ x_5 - 3x_6 &= -2 \\ x_j \ge 0, \ j = 1, \dots, 6, & \mathbf{B}_{\bar{\mathbf{z}}} = [x_1, x_3], \\ \mathbf{B}_{\bar{\mathbf{z}}} = [x_2, x_3], \\ \mathbf{B}_{\bar{\mathbf{z}}} = [x_3, x_4]; \end{aligned}$$

6.3.
$$\begin{vmatrix} x_1 + 2x_2 + 3x_3 & = 15 \\ 2x_1 + x_2 + 5x_3 & = 20 \\ x_1 + 2x_2 + x_3 + x_4 & = 10 \\ x_j \ge 0, \ j = 1, \dots, 4, \end{vmatrix}$$

6.4.
$$\begin{vmatrix} x_1 + 3x_2 - x_3 & + 2x_5 & = 7 & \mathbf{B}_{\bar{\mathbf{x}}} = [x_1, x_4, x_6], \\ -2x_2 + 4x_3 + x_4 & = 12 & \mathbf{B}_{\bar{\mathbf{y}}} = [x_1, x_3, x_6], \\ -4x_2 + 3x_3 & + 8x_5 + x_6 = 10 & \mathbf{B}_{\bar{\mathbf{z}}} = [x_2, x_3, x_6]. \\ x_j \ge 0, \ j = 1, \dots, 6,$$

- 7. Да се докаже, че $\min\{f(\mathbf{x}): \mathbf{x} \in Q\} = -\max\{-f(\mathbf{x}): \mathbf{x} \in Q\}$ за произволна функция $f(\mathbf{x})$ и произволно множество Q.
- **8.** Да се докаже, че ако $\widetilde{\mathbf{x}} = (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_{n+m})^{\mathrm{T}}$ с координати $\bar{x}_j \geq 0, \ j = 1, \dots, n,$ и $\bar{x}_j = 0, \ j = n+1, \dots, n+m,$ е връх на множеството

$$\widetilde{M}: \begin{cases} \sum_{j=1}^{n} a_{ij} x_j + x_{n+i} = b_i, & i = 1, ..., m, \\ x_j \ge 0, & j = 1, ..., n+m, \end{cases}$$

то $\bar{\mathbf{x}} = (\bar{x}_1, \dots, \bar{x}_n)$ е връх на множеството

$$M: \begin{cases} \sum_{j=1}^{n} a_{ij}x_j = b_i, & i = 1, \dots, m, \\ x_j \ge 0, & j = 1, \dots, n. \end{cases}$$

Отговори и решения

- **4.1.** $\bar{\mathbf{x}}$ и $\bar{\mathbf{y}}$ са неизродени върхове.
- **4.2.** \bar{x} е изроден връх, \bar{y} е неизроден връх.
- **4.3.** $\bar{\mathbf{x}}$ е неизроден връх.
- **4.4.** $\bar{\mathbf{x}}$ е изроден връх.
- **4.5.** $\bar{\mathbf{x}}$, $\bar{\mathbf{u}}$ не са върхове; $\bar{\mathbf{y}}$, $\bar{\mathbf{z}}$ са неизродени върхове.
- **4.6.** $\bar{\mathbf{y}}$ не е връх; $\bar{\mathbf{w}}$ е изроден връх; останалите са неизродени върхове.

5.1.
$$\mathbf{B}_{\bar{\mathbf{x}}} = [\mathbf{A}_2]$$
: $\frac{3}{2}x_1 + x_2 = \frac{1}{2}$; $\mathbf{B}_{\bar{\mathbf{v}}} = [\mathbf{A}_1]$: $x_1 + \frac{2}{3}x_2 = \frac{1}{3}$.

5.2.
$$\mathbf{B}_{\bar{\mathbf{x}}} = [\mathbf{A}_1, \mathbf{A}_2]$$
: $x_2 = 1$, $x_1 = 1$.

5.3.

$$\mathbf{B}_{\bar{\mathbf{x}}} = [\mathbf{A}_{1}, \mathbf{A}_{3}] : \begin{vmatrix} \frac{1}{2}x_{2} + x_{3} = \frac{1}{2} \\ x_{1} + \frac{1}{2}x_{2} = \frac{1}{2}, \end{vmatrix}$$

$$\mathbf{B}_{\bar{\mathbf{y}}} = [\mathbf{A}_{2}, \mathbf{A}_{1}] : \begin{vmatrix} x_{2} + 2x_{3} = 1 \\ x_{1} - x_{3} = 0, \end{vmatrix}$$

$$\mathbf{B}_{\bar{\mathbf{y}}} = [\mathbf{A}_{2}, \mathbf{A}_{3}] : \begin{vmatrix} 2x_{1} + x_{2} = 1 \\ -x_{1} + x_{3} = 0. \end{vmatrix}$$

5.4.
$$\mathbf{B}_{\bar{\mathbf{x}}} = [\mathbf{A}_1, \mathbf{A}_2] \text{ if } \mathbf{B}_{\bar{\mathbf{x}}} = [\mathbf{A}_2, \mathbf{A}_3] \text{: } x_1 + x_3 = 0, x_2 = 0.$$

5.5.

$$\mathbf{B}_{\bar{\mathbf{x}}} = [\mathbf{A}_3, \mathbf{A}_4] : \begin{vmatrix} \frac{5}{7}x_1 & + x_3 & = 1\\ \frac{13}{14}x_1 + \frac{1}{2}x_2 & + x_4 = 1, \end{vmatrix}$$
$$\mathbf{B}_{\bar{\mathbf{y}}} = [\mathbf{A}_1, \mathbf{A}_3] : \begin{vmatrix} -\frac{5}{13}x_2 + x_3 - \frac{10}{13}x_4 = \frac{3}{13}\\ x_1 + \frac{7}{13}x_2 & + \frac{14}{13}x_4 = \frac{14}{13}. \end{vmatrix}$$

5.6.

$$\mathbf{B}_{\bar{\mathbf{x}}} = [\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_4] : \begin{vmatrix} x_1 & -x_3 & = 0 \\ & x_3 + x_4 = 1 \\ & x_2 - x_3 & = 0, \end{vmatrix}$$

$$\mathbf{B}_{\bar{\mathbf{x}}} = [\mathbf{A}_1, \mathbf{A}_3, \mathbf{A}_4] : \begin{vmatrix} x_1 - x_2 & = 0 \\ -x_2 + x_3 & = 0 \\ x_2 & +x_4 = 1, \end{vmatrix}$$

$$\mathbf{B}_{\bar{\mathbf{x}}} = [\mathbf{A}_2, \mathbf{A}_3, \mathbf{A}_4] : \begin{vmatrix} x_1 & +x_4 = 1 \\ -x_1 & +x_3 & = 0 \\ x_1 + x_2 & = 0, \end{vmatrix}$$

$$\mathbf{B}_{\bar{\mathbf{y}}} = [\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3] : \begin{vmatrix} x_1 & +x_4 = 1 \\ x_3 + x_4 = 1 \\ x_2 & +x_4 = 1. \end{vmatrix}$$

6.1.
$$\bar{\mathbf{x}} = (0, 2)^{\mathrm{T}}, \bar{\mathbf{y}} = (1, 0)^{\mathrm{T}}.$$

6.2.
$$\bar{\mathbf{x}} = (3, 0, 5, 0, 0, 0)^T$$
, $\bar{\mathbf{y}} = (0, 3, 8, 0, 0, 0)^T$, $\bar{\mathbf{z}} = (0, 0, 2, 3, 0, 0)^T$.

6.3.
$$\bar{\mathbf{x}} = \left(\frac{5}{2}, \frac{5}{2}, \frac{5}{2}, 0\right)^{\mathrm{T}}, \bar{\mathbf{y}} = \left(0, \frac{15}{7}, \frac{25}{7}, \frac{15}{7}\right)^{\mathrm{T}}.$$

6.4.
$$\bar{\mathbf{x}} = (7, 0, 0, 12, 0, 10)^{\mathrm{T}}, \bar{\mathbf{y}} = (10, 0, 3, 0, 0, 1)^{\mathrm{T}}, \bar{\mathbf{z}} = (0, 4, 5, 0, 0, 11)^{\mathrm{T}}.$$

7. Ако $\min\{f(\mathbf{x}): \mathbf{x} \in Q\} = f(\mathbf{x}^*)$ за всяко $\mathbf{x} \in Q$, тогава $-f(\mathbf{x}) \le -f(\mathbf{x}^*)$ за всяко $\mathbf{x} \in Q$, т. е. $\max\{-f(\mathbf{x}): \mathbf{x} \in Q\} = -f(\mathbf{x}^*)$; аналогично е и доказателството в обратната посока.