CS & IT

ENGINEERING

Combinational Circuit

Lecture No.

By- CHANDAN SIR

TOPICS TO
BE
COVERED

01 DMux

02 Encoder

03 questons

05 Discussion

DECODER -> Circuit which is use to convert Binary into any other code.

- 1. 2×4 Decoder
- 2. 3 × 8 Decoder
- 3. 4 × 16 Decoder

2 × 4 DECODER

Step 1.

Step 2.

I ₁	Io	83	y ₂	y ₂	y _e
0	0	0	0	0	1
0	1	0	Q	1	0
1	0	0	1	0	0
1	1	1	G	Q	0

Step 3.

Step 4. Minimization

Step 5. Hardware Implementation

Example:

3 × 8 DECODER

3 × 8 DECODER

LSB MSB

LSB

Step 2.

MSB	_	KSD	14515							630
I ₂	I ₁	I ₀	y ₇	y ₆	y ₅	y ₄	y ₃	y ₂	y ₁	y ₀
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	4	0	0
0	1	1	0	0	0	0	J	0	0	0
1	0	0	0	0	O	1	O	0	0	0
1	0	1	0	O	1	0	0	0	0	0
1	1	0	0	1	O	0	٥	0	0	0
1	1	1	1	0	0	0	0	6	0	Q

DECODER,

step 5

Step 3.

Pw

Q (4x16 Becoder)

Q.
$$2x \neq Decoder$$

$$= 2x \neq Decoder$$

$$= 2x \neq Decoder$$

$$= 4x \neq Decoder$$

$$= 4x \neq 16$$

$$= 4x \Rightarrow 16$$

$$= 4x \Rightarrow 16$$

$$= 4x \Rightarrow$$

DESIGN 3 × 8 DECODER BY USING 2 × 4 DECODER

3×8 Decoder
$$\frac{16}{8}$$
 \Rightarrow 4×16 Decoder

$$\frac{64}{8} + \frac{8}{6}$$

$$8 + 1 = 9$$
Are

Q Design Binary to Decimal Decoder?

Q.1

A logic circuit consist of two 2×4 decoders as shown in the figure. The output of decoder are as follow:

$$D0 = 1$$
 when $A0 = 0$, $A1 = 0$
 $D1 = 1$ when $A0 = 1$, $A1 = 0$
 $D2 = 1$ when $A0 = 0$, $A1 = 1$

D3 = 1 when A0 = 1, A1 = 1

The value of f(x, y, z) is

		A, Ao &
A	0	0 0 00=1
B		0 1 0
	Z	1 0 05
		1 1 1

Z

$$A=0 B=0 D_0=1$$

$$A=0 B=1 D_3=1$$

$$A=1 B=1 D_1=1$$

$$B$$

$$D_0 ABBA$$

$$D_1 ABBA$$

$$D_2 ABBA$$

$$D_3 ABBA$$

$$D_3 ABBA$$

$$D_3 ABBA$$

The Boolean expression f(a, b, c) in its canonical form for the decoder circuit shown below is

- A Π M(4, 6)
- B $\Sigma m(0, 1, 2, 3, 5, 7)$
- Σ m(4, 6)
- D Π M(0, 1, 2, 3, 5)

$$f = \overline{C} \cdot \overline{\Sigma} M(3141617)$$

$$= \overline{C} \cdot \overline{\Gamma} \overline{\Lambda} BC + \overline{\Lambda} B\overline{C} + \overline{\Lambda} B\overline{C} + \overline{\Lambda} B\overline{C}$$

$$= \overline{\Lambda} BC \cdot \overline{C} + \overline{\Lambda} BC \cdot \overline{C} + \overline{\Lambda} BC \cdot \overline{C} + \overline{\Lambda} BC \cdot \overline{C}$$

$$= \overline{\Lambda} B\overline{C} + \overline{\Lambda} B\overline{C}$$

$$= \overline{\Lambda} B\overline{C} + \overline{\Lambda} B\overline{C}$$

= Em(4,6)

A logic function 'f' is implemented by the circuit shown in the figure below. The circuit consists of one 2×4 decoder, two 2×1 multiplexers and a two input or gate connected in cascade. Then the

$$f = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= \overline{Zm}(0,3,4,7)$$

What is the Boolean expression for the output f of the combinational logic circuit of NOR gates given below?

$$f = \begin{bmatrix} \bar{P} \bar{g} + \bar{g} \bar{R} \end{bmatrix} \cdot \begin{bmatrix} \bar{P} \bar{R} + \bar{g} \bar{R} \end{bmatrix}$$

$$= \bar{P} \bar{g} \bar{R} + \bar{P} \bar{g} \bar{R} + \bar{P} \bar{g} \bar{R} + \bar{g} \bar{R}$$

$$= \bar{P} \bar{g} \bar{R} + \bar{g} \bar{R}$$

$$= \bar{Q} \bar{R} \begin{bmatrix} 1 + \bar{P} \end{bmatrix}$$

$$= \bar{Q} \bar{R}$$

$$= \bar{Q} + \bar{Q}$$

$$= \bar{Q} + \bar{Q}$$

Q.4

The combinational circuit given below implements which of the following

- A NOR gate
- B XOR gate
- NAND gate
- None of these

Q.5

The combinational logic circuit shown in the given figure has an output Q which is

- A ABC
- B A + B + C
- C A ⊕ B ⊕ C
- D A.B + C

$$Max = 6ns$$

(asea) T=0 T=Txort THUXT TANDT TMUX =4+1+2+1 (are(2) T=1 T= TAND+ TMUT 1-2+1=3mg

Thank you

Soldiers!

