CP533:Clean Combustion Technologies

Lecture 1 Combustion Theory

Dr Jun Li

Room: JW403g

Email: jun.li@strath.ac.uk

Overview

1. Basic combustion reactions

- Calculating air fuel ratios
- Stoichiometric combustion,
- lean combustion and
- rich combustion
- Equivalence ratio & Excess air ratio

2. Term enthalpy (total energy associated)

- Absolute enthalpy
- Enthalpy of formation

3. Adiabatic Flame temperatures

Basic combustion reaction

$$C_x H_y + a(O_2 + 3.76N_2) \rightarrow xCO_2 + \left(\frac{y}{2}\right)H_2O + bO_2 + 3.76aN_2$$

Air fuel mass ratios

 $\frac{m_{air}}{m_{fuel}} = \frac{a \cdot MW_{air}}{1 \cdot MW_{Fuel}}$

Stoichiometric combustion

b = 0

Equivalence ratio

$$\Phi = \frac{\left(m_{air}/m_{fuel}\right)_{stoic}}{\left(m_{air}/m_{fuel}\right)} = \frac{a_{stoi}}{a}$$

• Fuel lean mixture ($\Phi < 1$); fuel rich combustion ($\Phi > 1$)

Exercise 1: 1 mole $C_{10}H_{22}$ combustion with 16 mole air

$$a_{stoi} = 15.5$$
 $b = 0.5$ $\Phi = 0.969$

Basic combustion reaction

$$C_x H_y + a(O_2 + 3.76N_2) \rightarrow xCO_2 + \left(\frac{y}{2}\right)H_2O + bO_2 + 3.76aN_2$$

Known: 1 mole $C_{10}H_{22}$ combustion with 16 mole air

To obtain: a_{stoi}

b

Ф

Absolute Enthalpy and Enthalpy of Formation

$$\overline{h}_i(T) = \overline{h}_{f,i}^0(T_{ref}) + \Delta \overline{h}_{s,i}(T_{ref})$$

Absolute enthalpy at temperature *T*

Enthalpy of formation at standard reference state $(T_{ref} = 25 \, ^{\circ}\text{C}, P_{ref} = 1 \, atm)$

Sensible enthalpy change in going from T_{ref} to T

 $\Delta \overline{h}_{s,i}(T_{ref}) = \overline{h}_i(T) - \overline{h}_{f,i}^0(T_{ref})$

Table A.2 Carbon dioxide (CO₂), MW = 44.011, enthalpy of formation @ 298 K (kJ/kmol) = -393,546

T(K)	\bar{c}_p (kJ/kmol-K)	$(ar{h}^o(T) - ar{h}^o_f(298)) \ ext{(kJ/kmol)}$	$ar{h}_f^o(T)$ (kJ/kmol)	$\bar{s}^{o}(T)$ (kJ/kmol-K)	$ar{g}_f^o(T) \ ext{(kJ/kmol)}$
200	32.387	-3,423	-393,483	199.876	-394,126
298	37.198	0	-393,546	213.736	-394,428
300	37.280	69	-393,547	213.966	-394,433
400	41.276	4,003	-393,617	225.257	-394,718

Table A.11 Oxygen (O_2) , MW = 31.999, enthalpy of formation @ 298 K (kJ/kmol) = 0

T(K)	\bar{c}_p (kJ/kmol-K)	$\begin{array}{c} (\bar{h}^o(T) - \bar{h}^o_f(298)) \\ (\text{kJ/kmol}) \end{array}$	$ar{h}^o_f(T) \ (ext{kJ/kmol})$	$\bar{s}^{o}(T)$ (kJ/kmol-K)	$ar{g}_f^o(T)$ (kJ/kmol)
200	28.473	-2,836	0	193.518	0
298	29.315	0	0	205.043	0
300	29.331	54	0	205.224	0
400	30.210	3,031	0	213.782	0
500	31.114	6,097	0	220.620	0

The standard enthalpy of formation of a pure element is **zero**.

-

CPE @ STRATHCLYDE COMBUSTION THEORY

Absolute Enthalpy - mixtures

$$\overline{h}_i(T) = \overline{h}_{f,i}^0(T_{ref}) + \Delta \overline{h}_{s,i}(T_{ref})$$

For ideal-gas mixtures, mixture enthalpies are calculated:

$$\bar{h}_{mix} = \sum_{i} \boldsymbol{\chi}_{i} \bar{h}_{i}$$

 $h_{mix} = \sum_{i} Y_i h_i$

Mole basis (kJ/kmol) χ_i - mole fraction

Mass basis (kJ/kg) Y_i -mass fraction

Exercise 2:

A gas stream at 1 atm contains a mixture of CO, CO2 and N2 in which the CO mole fraction is 0.1 and the CO2 mole fraction is 0.2. The gas-stream temperature is 1200K. Determine the absolute enthalpy of the mixture on both a mole basis (kJ/kmol) and a mass basis (kJ/kg).

Exercise 2

For ideal-gas mixtures, mixture enthalpies are calculated:

$$\begin{split} \bar{h}_{mix} &= \sum_{i} \chi_{i} \bar{h}_{i} = \chi_{CO} \left[\bar{h}_{f,CO}^{0} + \left(\bar{h}(T) - \bar{h}_{f,298}^{0} \right)_{CO} \right] \\ &+ \chi_{CO2} \left[\bar{h}_{f,CO2}^{0} + \left(\bar{h}(T) - \bar{h}_{f,298}^{0} \right)_{CO2} \right] \\ &+ \chi_{N2} \left[\bar{h}_{f,N2}^{0} + \left(\bar{h}(T) - \bar{h}_{f,298}^{0} \right)_{N2} \right] \end{split}$$

$$\bar{h}_{mix} = 0.10[-110,541 + 28,440]$$
 $+0.20[-393,546 + 44,488]$
 $+0.70[0 + 28,118]$
 $= -58,339.1 \text{ kJ/kmol}$

$$Y_{CO} = ?$$
 $Y_{CO2} = ?$ $Y_{N2} = ?$ $h_{mix} = ?$

Enthalpy of combustion

$$\Delta h_{R} = H_{prod} - H_{reac} = -\Delta h_{c}$$

Enthalpy of combustion

Heat of combustion (heating value)

per-mole-of fuel (often applied to gaseous/liquid fuel)

per-mass-of fuel (often applied to solid fuel)

Enthalpy of combustion

Exercise 3

Determine the upper and lower heating values at 298K of gaseous n-decane ($C_{10}H_{22}$), per kilo-mole of fuel and per kilogram of fuel.

$$C_{10}H_{22} + 15.5(O_2 + 3.76N_2) \rightarrow 10CO_2 + 11H_2O + 58.28N_2$$

$$H_{reac} = H_{C10H22} + H_{air}$$

$$H_{prod} = H_{CO2} + H_{H2O} + H_{N2}$$

Note:

- \circ The numerical value of H_{prod} depends on whether the H₂O in the products is liquid or gaseous. Here <u>you could consider H₂O as gaseous product firstly.</u>
- \circ The sensible enthalpies for all species involved are <u>zero</u> as we desire Δh_c at the reference state (298K)
- \circ Also, the enthalpies of formation of the O₂ and N₂ are zero at 298K.

Adiabatic flame temperature

@ constant pressure

Fuel-air mixture burns adiabatically:

$$H_{reac}(T_i, P) = H_{prod}(T_{ad}, P)$$

$$\overline{h}_i(T_{ad}) - \overline{h}_{f,i}^0(T_{ref}) = \int_{298}^{T_{ad}} \overline{c}_{P,i} dT$$

Sensible enthalpy

Exercise

Estimate the constant-pressure adiabatic flame temperature for the combustion of stoichiometric CH₄-air mixture. The pressure is 1atm and the initial reactant temperature is 298K. Assumptions: (1) Complete combustion, the product mixture consists of only CO₂, H₂O and N₂; (2) The product mixture enthalpy is estimated using constant specific heats evaluated at 1200K ($\approx 0.5(T_i + T_{ad})$), with a first guess of T_{ad} to be ca. 2100K.

10

Discussions on adiabatic flame temperature

(text book 'An Introduction to Combustion : Concepts and Applications' – Chapter 2)

- How we could improve the accuracy of the calculated adiabatic flame temperature?
- What to consider for the calculation of adiabatic flame temperature when the equivalence ratio is less than or above one?

How pressure affects?

Equilibrium adiabatic flame temperature and major product species for propaneair combustion at 1 atm.

Summary

- Combustion fundamentals
- Absolute enthalpy and sensible enthalpy
- Enthalpy of combustion
- Constant-pressure adiabatic flame temperature

Nomenclature

a Molar oxygen–fuel ratio (kmol/kmol)

Constant-pressure specific heat (J/kmol-K)

 h_f^o, \overline{h}_f^o Enthalpy of formation (J/kg or J/kmol)

 H, h, \bar{h} Enthalpy (J or J/kg or J/kmol)

 Δh_c Enthalpy of reaction (J or J/kg or J/kmol) ΔH_R , Δh , $\Delta \bar{h}_R$ Heat of combustion (heating value) (J/kg)

m Mass (kg)

MW Molecular weight (kg/kmol)

T Temperature (K)Y Mass fraction (kg/kg)

Greek Symbols

φ Equivalence ratioχ Mole fraction

Subscripts

ad Adiabatic

f Formation

*i*th species

mix Mixture

prodproductreacReactant

ref Reference

s Sensible

stoic Stoichiometric

Superscripts

o Denotes standard-state pressure (P° = 1 atm)

Other Notation

[X] Molar concentration of X (kmol/m 3)