Randomized Matrix Computations Lecture 1

Daniel Kressner

Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL daniel.kressner@epfl.ch

Plan

- Organizational aspects!
- What is randomized NLA?
- Some fun questions
- Probability spaces, probabilistic method part 1.
- Random variables, random vectors, random matrices

Organizational aspects

- ▶ Lectures: Thursday 10-12, GC B330. First: September 12.
- Exercises: Friday 10-12, MA A331. First: September 13.
- Assessment of course: 2 graded homeworks (40%) and 1 project (60%). The project will be assessed in a short oral exam.
- Material: Slides, supplementary material, exercises will be posted on moodle. Password for self enrollment on moodle: rmc2024.
- daniel.kressner@epfl.ch, hysan.lam@epfl.ch
- Please feel encouraged to use the Ed Discussion board (link via moodle).

Randomization in numerical linear algebra...

- ... leads to new and cheap algorithms
- ... turns "statements that hold generically" into quantifiable results, guiding the analysis and improvement of algorithms
- ... replaces expensive components in classical algorithms by cheaper alternatives¹
- ... offers increased flexibility to exploit structure
- ... regularizes ill-conditioned problems

..

¹hopefully, without spoiling reliability

Randomization in numerical linear algebra...

- ... leads to new and cheap algorithms
- ... turns "statements that hold generically" into quantifiable results, guiding the analysis and improvement of algorithms
- ... replaces expensive components in classical algorithms by cheaper alternatives
- ... offers increased flexibility to exploit structure
- ... regularizes ill-conditioned problems
- ... features prominently on Netflix (The Lincoln Lawyer S1E3, spotted by Petros Drineas)

Thesis? What is it about?

Randomization in NLA

Randomized numerical linear algebra: Surveys

- Murray et al. 2023. Randomized numerical linear algebra. A perspective on the field with an eye to software. https://arxiv.org/abs/2302.11474v1
- Martinsson/Tropp'2020. Randomized numerical linear algebra: Foundations and algorithms. Acta Numerica.
- Drineas/Mahoney'2018. Lectures on randomized numerical linear algebra. AMS.
- Kannan/Vempala'2017. Randomized algorithms in numerical linear algebra. Acta Numerica.
- Woodruff'2014. Sketching as a tool for numerical linear algebra,
 Foundations and Trends in Computer Science.
- Halko/Martinsson/Tropp'2011. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review.

Example for generically true statements

- A real number $\alpha \in \mathbb{R}$ is generically nonzero.
- ▶ The norm of a vector $x \in \mathbb{R}^n$ is generically nonzero.
- Given a fixed vector $y \in \mathbb{R}^n$, a vector $x \in \mathbb{R}^n$ generically satisfies $\langle x, y \rangle \neq 0$.
- An $n \times n$ matrix A is generically invertible.
- An $n \times n$ matrix A is generically diagonalizable.
- ▶ An $m \times n$ matrix A with $m \ge n$ is generically of rank n.
- Given a fixed $m \times n$ matrix A of rank r, the columns of AX span, for generic choices of $X \in \mathbb{R}^{n \times r}$, the range of A.

What do these actually statements mean? Why do they hold?

Quantification of generic statements

- Given a random number $\alpha \in \mathbb{R}$, what is the probability that $|\alpha| > \epsilon$ for $\epsilon > 0$?
- Given a random vector $x \in \mathbb{R}^n$, what is the probability that $||x||_2 > \epsilon$ for $\epsilon > 0$?
- Given a random matrix $A \in \mathbb{R}^{n \times n}$, what is the probability that $||A^{-1}||_2 \le C$ for C > 0?

. . . .

What does "random" actually mean?

Basic Prob Foundations

- Probability spaces
- Real random variables
- Real random vectors

Literature:

Tropp'2023 Joel A. Tropp. *Probability Theory & Computational Mathematics*, Lecture notes, Caltech, 2023.

pdf available on Moodle

Probability space

Definition. A probability space is a measure space $(\Omega, \mathcal{F}, \mathbb{P})$, where:

- The sample space Ω is an abstract set of points, called *sample* points or outcomes.
- The master σ -algebra \mathcal{F} contains some subsets of Ω , called *events*.
- ▶ The probability measure $\mathbb{P}: \mathcal{F} \to [0,1]$ is a finite measure that satisfies $\mathbb{P}(\Omega) = 1$. It assigns a probability to each event.

We will try to work with the bare minimum of measure theory needed for the purpose of these lectures.

Probability space: σ -algebra

A family of subsets $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ is a σ -algebra on Ω if:

- $\triangleright \varnothing \in \mathcal{F}, \Omega \in \mathcal{F}$
- $E \in \mathcal{F}$ implies $E^c := \Omega \setminus E$
- ▶ $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$ and $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$ for $A_i \in \mathcal{F}$

Examples:

- $\{\emptyset, \Omega\}$ is a σ -algebra.
- ▶ $\mathcal{P}(\Omega)$ is a σ -algebra (called complete σ -algebra).
- Coin flips: Ω = {H,T} (head, tail).

$$\mathcal{P}(\Omega) = \{\emptyset, \{H\}, \{T\}, \{H, T\}\}\$$

- Dice: $\Omega = \{1, ..., 6\}$. $\mathcal{P}(\Omega)$ has 2^6 elements.
- Major problem: For interval $\Omega = [0,1]$, the complete σ -algebra $\mathcal{P}(\Omega)$ is not very useful because it contains subsets that are not measurable (assuming axiom of choice).

Probability space: σ -algebra

Given $S \subseteq \mathcal{P}(X)$, the minimal σ -algebra $\sigma(S)$ is (loosely speaking) the smallest σ -algebra that contains S.

Examples:

- For finite $\Omega = \{1, 2, ..., n\}$ and the set of singletons $S = \{\{1\}, \{2\}, ..., \{n\}\}$, the smallest σ -algebra coincides with the complete σ -algebra: $\sigma(S) = \mathcal{P}(\Omega)$. (This also holds for countable Ω .)
- ► For $\Omega = \mathbb{R}$, the Borel σ -algebra is generated by open intervals:

$$\mathcal{B}(\mathbb{R}) = \sigma(\{(a,b): a < b, a, b \in \mathbb{R}\})$$

Probability space: Measures

Let \mathcal{F} be a σ -algebra on Ω . A function $\mu: \mathcal{F} \to [0, +\infty]$ is called a measure if:

- 1. $\mu(\emptyset) = 0$.
- 2. For mutually disjoint subsets $(A_i \in \mathcal{F}: i \in \mathbb{N})$,

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i).$$

Basic properties:

- ▶ $A \subseteq B$ implies $\mu(A) \le \mu(B)$
- $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$
- $\mu \Big(\bigcup_{i=1}^{\infty} A_i \Big) \leq \sum_{i=1}^{\infty} \mu(A_i)$

 μ is called a finite measure if $\mu(\Omega) < \infty$.

 μ is called a σ -finite measure if Ω can be covered by countably many $A_i \in \mathcal{F}$ with $\mu(A_i) < \infty$.

Recall that μ is a probability measure if $\mu(\Omega) = 1$.

Probability space: Discrete case

Typical measures for finitely many sample Ω points:

- ▶ Counting measure: $\mu(A) = \#A$ (cardinality of A)
- ▶ Uniform measure: $\mathbb{P}(A) = \#A/\#\Omega$ is a probability measure
- ▶ Weighted measure: For $\Omega = \{1, ..., n\}$, define weights $w_i \ge 0$ and $\mu(A) = \sum_{i \in A} w_i$. This is a probability measure if $\sum_{i=1}^{n} w_i = 1$.

Example for a countable probability space: Flip a fair coin until it turns up heads. Outcome = number of flips until head appears.

$$\Omega = \mathbb{N}, \quad \mathcal{F} = \mathcal{P}(\mathbb{N}).$$

Probability measure defined from singleton outcome $\mathbb{P}(\{n\}) = 2^{-n}$ using additivity:

$$\mathbb{P}(E) = \sum_{n \in E} \mathbb{P}(\{n\}) = \sum_{n \in E} 2^{-n}.$$

EFY: What is the probability that head appears first after an even number of coin flips?

Probability space: Measures on the real line

Recall that $\mathcal{B}(\mathbb{R})$ denotes the Borel algebra.

A measure $\mu : \mathcal{B}(\mathbb{R}) \to [0, +\infty]$ is called a Borel measure on \mathbb{R} .

Dirac measure: For fixed $t \in \mathbb{R}$, define for $E \in \mathcal{B}(\mathbb{R})$,

$$\delta_t(E) := \mathbf{1}_E(t) := \left\{ \begin{array}{ll} 1, & t \in E, \\ 0, & t \notin E. \end{array} \right.$$

Then δ_t is a Borel (probability) measure on \mathbb{R} .

Lebesgue measure: The function $\lambda : \mathcal{B}(\mathbb{R}) \to [0, \infty]$ defined by

$$\lambda(E) := \inf \left\{ \sum_{i=1}^{\infty} |b_i - a_i| : E \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i) \right\}$$

is a Borel measure.

Clearly, $\lambda(\{a\}) = 0$, $\lambda([a, b]) = |b - a|$.

EFY: What is $\lambda(\mathbb{R})$? What is $\lambda(\mathbb{Q})$?

Uniform measure on $\Omega = [0,1]$: $\mathbb{P}(E) = \lambda(E)/\lambda([0,1]) = \lambda(E)$.

Probability space: Basic properties

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$:

- ▶ Recall that $\mathbb{P}(E \cup F) + \mathbb{P}(E \cap F) = \mathbb{P}(E) + \mathbb{P}(F)$.
- ▶ $\mathbb{P}(E_1 \cup \cdots \cup E_n) \leq \mathbb{P}(E_1) + \cdots + \mathbb{P}(E_n)$ (The union bound!).
- ▶ $\mathbb{P}(E^{c}) = 1 P(E)$ for every $E \in \Omega$
- If $\mathbb{P}(E) = 1$ one says that the event E occurs almost surely.
- If $\mathbb{P}(E) = 0$ one says that the event E occurs almost never.

Probabilistic method (flavor 1): For an event $E \in \mathcal{F}$, the condition $\mathbb{P}(E) > 0$ implies $E \neq \emptyset$.

EFY: Given a unit circle in the plane so that a (measurable) subset of 23% of the circle is red and the rest is blue. Show that we can always inscribe a square in the circle so that all four vertices are blue. Hint: Choose the square at random, and show that there is a positive probability that its vertices are all blue.

Real random variable

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A real random variable is a measurable function $X : \Omega \to \mathbb{R}$.

Remark: A function X is called measurable if the pre-image of every Borel set is in \mathcal{F} . For the purpose of this lecture, all functions are measurable.

This allows us to define the law or distribution of the random variable *X* as the Borel measure

$$\mu_X(B) := \mathbb{P}(X^{-1}(B)) = \mathbb{P}(X \in B) \quad \forall B \in \mathcal{B}(\mathbb{R}).$$

This is a probability measure, that is, the random variable X pushes the distribution $\mathbb P$ of probability on the sample space Ω forward to a distribution μ_X of probability on the real line $\mathbb R$.

Examples:

- When flipping a coin, let X = 1 for head and X = 0 otherwise. Then $\mu_X = \delta_0/2 + \delta_1/2$ (Bernoulli 1/2 distribution).
- Assuming the uniform measure on [0,1], let X denote the position within the interval [0,1]. Then $\mu_X = \lambda(\cdot \cap [0,1])$. (uniform distribution)

EFY: Reflect on the quote "A random variable is neither random nor variable." by Gian-Carlo Rota.

Real random variable: Distribution functions

Let X be a real random variable. Then

$$F_X(a) := \mathbb{P}(X \le a) = \mu_X(-\infty, a], \quad a \in \mathbb{R}$$

is called the cumulative distribution function (cdf) of X.

Properties:

- ▶ Monotonicity: If $a \le b$ then $F_X(a) \le F_X(b)$.
- ▶ Right continuity: We have $\lim_{x\to a^+} F_X(x) = F_X(a)$.
- $\mu_X(a,b] = F_X(b) F_X(a)$.

Two flavors relevant in this course:

- ▶ Discrete random variables: $\mu_X = \sum_{i=1}^{\infty} p_i \delta_{a_i}$ for $a_i \in \mathbb{R}$ and $p_i \ge 0$ s.t. $p_1 + p_2 + \cdots = 1$.
- ▶ Continuous random variables: Law μ_X has a *density* (pdf) $f_X : \mathbb{R} \to \mathbb{R}$ with respect to the Lebesgue measure:

$$\mu_X(B) = \int_B f_X(x) \lambda(\mathrm{d} x) = \int_B f_X(x) \mathrm{d} x.$$

(See Chapter 4 of [Tropp'23] for Lebesgue integrals.) Note that f_X is nonnegative and $\int_{\Omega} f_X(x) dx = 1$. Also, $F_X(a) = \int_{-\infty}^a f_X(x) dx$ and, hence, $f_X = F'_Y$.

Real random variable: Important examples

The two most important examples in this course:

- ▶ Rademacher distribution: $\mathbb{P}(X = 1) = 1/2$ and $\mathbb{P}(X = -1) = 1/2$.
- Normal distribution $X \sim N(m, \sigma^2)$ with mean $m \in \mathbb{R}$ and variance $\sigma^2 > 0$ has pdf

$$f_X(x) = \frac{e^{-(x-m)^2/(2\sigma^2)}}{\sqrt{2\pi\sigma^2}}.$$

It is best to think of X as the identity function on the probability space $(\mathbb{R}, \sigma(\mathbb{R}), \mu_X)$.

m = 0, $\sigma^2 = 1$: standard normal distribution.

Other important elementary continuous random variables include Gamma, Beta, exponential, Cauchy, χ^2 . pdfs and many other properties for these elementary variables are explicitly known (Wikipedia, MathOverflow, ...).

Often, random variables arise from composition of functions with elementary random variables. Only in *rare* cases, pdfs are simple.

EFY: Let $X \sim N(0,1)$. Prove that the pdf of X^2 is given by

$$f_{X^2}(x) = 0 \text{ for } x < 0, \quad f_{X^2}(x) = \frac{1}{\sqrt{2\pi}} x^{-1/2} e^{-x/2} \text{ for } x \ge 0.$$

This is called χ^2 distribution (with one degree of freedom).

Real random vectors

Let $X_1, ..., X_n$ be random variables defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then $X = [X_1, ..., X_n]^{\mathsf{T}}$ is called a random vector.

- ▶ In the case of real random variables $X_1, ..., X_n : \Omega \to \mathbb{R}$, we will call X a real random vector and write $X \in \mathbb{R}^n$.
- ▶ There are direct extensions of the notion of Borel σ -algebra $\mathcal{B}(\mathbb{R}^n)$ and Borel measures $\mu: \mathcal{B}(\mathbb{R}^n) \to [0, +\infty]$. The Lebesgue measure $\lambda: \mathcal{B}(\mathbb{R}^n) \to [0, \infty]$ is the product Lebesgue measure.
- The distributions μ_{X_i} of the individual random variables are called marginal distributions. **IMPORTANT:** Generally, the marginal distributions are *not* sufficient to describe X. We need to prescribe a joint distribution

$$\mu_{X_1,...,X_n}(B) = \mathbb{P}(X \in B) \quad \forall B \in \mathcal{B}(\mathbb{R}^n),$$

which is a Borel probability measure on $\mathcal{B}(\mathbb{R}^n) \to [0,1]$.

Real random vectors: Specifying joint distributions

For simplicity, consider n = 2 and a real random vector V = [X, Y].

To specify a *discrete joint distribution* ($\Omega = \{1, ..., k\}$), it suffices to prescribe the probabilities of the k^2 different singleton events:

$$\mathbb{P}(X = i \text{ and } Y = j), \quad i, j = 1, \dots, k.$$

The marginal distributions are recovered by summing up, e.g., $\mathbb{P}(X = i) = \sum_{j=1}^{k} \mathbb{P}(X = i \text{ and } Y = j).$

Real random vectors: Specifying joint distributions

To specify a continuous joint distribution, we can prescribe a joint cdf

$$F_{XY}(a,b) = \mathbb{P}\{X \leq a \text{ and } Y \leq b\} = \mu_{XY}((-\infty,a] \times (-\infty,b])$$

or, more commonly, a joint pdf $f_{X,Y}(x,y) = \frac{\partial^2 F_{XY}(x,y)}{\partial x \partial y}$. We have $f_{X,Y} \geq 0$, $\int_{\mathbb{R}^2} f_{X,Y} = 1$, and

$$F_{XY}(a,b) = \int_{(-\infty,a]\times(-\infty,b]} f_{X,Y}(x,y) (dx \times dy),$$

The pdfs of the marginal distributions are recovered by integrating the other variable, e.g.,

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy.$$

Fubini-Tonelli theorem

Theorem. For *σ*-finite measure spaces $(\Omega_i, \mathcal{F}_i, \mu_i)$, i = 1, 2, consider a measurable function $f : \Omega_1 \times \Omega_2 \to \mathbb{R}$.

1. If $f \ge 0$,

$$\int_{\Omega_{1}\times\Omega_{2}} f(x,y)(\mu_{1}\times\mu_{2})(\mathrm{d}x\times\mathrm{d}y)$$

$$= \int_{\Omega_{1}} \left(\int_{\Omega_{2}} f(x,y)\mu_{2}(\mathrm{d}y)\right)\mu_{1}(\mathrm{d}x)$$

$$= \int_{\Omega_{2}} \left(\int_{\Omega_{1}} f(x,y)\mu_{1}(\mathrm{d}x)\right)\mu_{2}(\mathrm{d}y)$$

2. Point 1 also holds when $\int_{\Omega_1 \times \Omega_2} |f(x,y)| (\mu_1 \times \mu_2) (\mathrm{d}x \times \mathrm{d}y) < \infty$.

Real random vectors: Independence

Two random variables are independent if

$$\mu_{XY} = \mu_X \times \mu_Y$$

or, equivalently,

$$F_{XY}(a,b) = F_X(a)F_Y(b).$$

In particular, the joint distribution is completely described by the marginal distributions.

• Discrete $\Omega = \{1, ..., k\}$: Independence equivalent to

$$\mathbb{P}(X = i \text{ and } Y = j) = \mathbb{P}(X = i) \cdot \mathbb{P}(Y = j), \quad i, j = 1, \dots, k.$$

Continuous: Independence equivalent to product pdf:

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y).$$

Real random vectors: Rademacher

For a Rademacher random vector $X = [X_1, ..., X_n]$, the components are independent Rademacher variables X_i , that is,

$$\mathbb{P}(X_i = 1) = 1/2, \quad \mathbb{P}(X_i = -1) = 1/2, \quad i = 1, ..., n.$$

Some trivial facts:

- ▶ The probability that X is a vector of all ones is 2^{-n} .
- ▶ $||X||_2 = \sqrt{n}$.

EFY: Let $X \sim N(0,1)$. Prove that sign(X) is Rademacher.

Example of nontrivial question: Behavior of Rademacher sum $\langle X, v \rangle$ for fixed vector v.

Real random vectors: Gaussian random

For a Gaussian random vector (also: standard normal random vector) $X = [X_1, \dots, X_n]$, the components are independent $X_i \sim N(0, 1)$. Its density is given by

$$f_X(x) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-x_i^2/2} = \frac{1}{(2\pi)^{n/2}} e^{-\|x\|_2^2/2}$$

We write $X \sim N(0, I_n)$.

Let $A \in \mathbb{R}^{n \times m}$ with $m \le n$ s.t. rank(A) = m. What is the distribution of random vector Y = AX for $X \sim N(0, I_n)$?

Real random vectors: Normal random vectors

Change of variables in Lebesgue integrals yields the following result:

Let $X \in \mathbb{R}^n$ be a continuous random vector with pdf f_X . Let $g: \mathbb{R}^n \to \mathbb{R}^n$ be bijective and continuously differentiable. Then Y = g(X) is a continuous random vector with pdf

$$f_Y(y) = f_X(g^{-1}(y))/|\det(J_g(g^{-1}(y)))|,$$

where J_q denotes the Jacobian of g.

Applied to Gaussian random vector $X \in \mathbb{R}^n$, this implies that Y = AX has the distribution

$$f_{Y}(y) = \frac{1}{(2\pi)^{n/2} |\det(A)|} \exp\left(-\frac{1}{2} ||A^{-1}y||_{2}^{2}\right)$$
$$= \frac{1}{(2\pi)^{n/2} \sqrt{\det C}} \exp\left(-\frac{1}{2} y^{T} C^{-1} y\right)$$

We write $Y \sim N(0, C)$ with the so called covariance matrix $C = AA^{T}$.

EFY: This result continues to hold when A is an $m \times n$ matrix of rank m. Why?

EFY: Given $Y \sim N(0, C)$, what is the marginal distribution of Y_1 ?

Real random vectors: Properties of Gaussian random

Corollaries. Let $X \sim N(0, I_n)$. Then:

- ▶ $\langle X, a \rangle \sim N(0, 1/\|a\|_2^2)$ for a fixed vector $a \in \mathbb{R}^n$.
- ▶ $QX \sim N(0, I_n)$ for any fixed orthogonal matrix $Q \in \mathbb{R}^{n \times n}$.
- ▶ $U^T X \sim N(0, I_p)$ for any matrix $U \in \mathbb{R}^{n \times p}$ with orthonormal columns.

How close is $Y = \langle X, a \rangle$ to zero? Because $|f_Y(y)| \le \frac{1}{\sqrt{2\pi} ||a||_2}$, it follows that

$$\mathbb{P}(-\epsilon \|\mathbf{a}\|_2 < \langle X, \mathbf{a} \rangle < \epsilon \|\mathbf{a}\|_2) \le \frac{\sqrt{2}}{\sqrt{\pi}} \epsilon.$$

Important: Oblivious to a! This is the simplest example of a small-ball probability.

Such bounds on small-ball probabilities are only that simple to obtain if the pdf is explicitly available.

Real random vectors: Uniform distribution on sphere

Let $Y = X/\|X\|_2$ for $X \sim N(0, I_n)$. Then:

- $||Y||_2 = 1 \text{ (almost surely)}$
- ► Y and QY have the same distribution for any orthogonal matrix Q Hence, Y is uniformly distributed in the sphere S^{n-1} . We write $Y \sim U(S^{n-1})$.
 - ▶ The components of *Y* are *not* independent.
 - ▶ The marginal distribution of the first k < n components is

$$f_{Y_1,...,Y_k}(y) = \begin{cases} 0 & \text{if } ||y||_2 > 1, \\ c_{k,n}(1 - ||y||_2^2)^{(n-k)/2-1} & \text{otherwise.} \end{cases}$$

The constant $c_{k,n}$ can be determined by the fact that the density integrates to 1:

$$c_{k,n} = \frac{\Gamma(n/2)}{\pi^{k/2}\Gamma((n-k)/2)}.$$

See [Muirhead'1982: Aspects of multivariate statistical theory].

Real random vectors: Uniform distribution on sphere

In particular,

$$f_{Y_1}(y) = c_{1,n}(1-y)^{(n-3)/2}, \quad y < 1.$$

with $c_{1,n} \leq \sqrt{n/2\pi}$.

How close is Y_1 to zero?

$$\mathbb{P}(-\epsilon < Y_1 < \epsilon) \leq \frac{\sqrt{2n}}{\sqrt{\pi}}\epsilon.$$

Another small-ball probability!

A first analysis of the power method

Given a symmetric positive definite matrix A with eigenvalues $\lambda_1 > \lambda_2 \ge \cdots \ge \lambda_n > 0$, the power method

$$\tilde{v}_{k+1} = Av_k, \quad v_{k+1} = \tilde{v}_{k+1}/\|v_{k+1}\|_2,$$

converges for almost every starting vector v_0 to an eigenvector u_1 belonging to λ_1 .

More specifically, we have (see course on Computational Linear Algebra) that

$$\tan \angle (u_1, v_k) \le \left(\frac{\lambda_2}{\lambda_1}\right)^k \tan \angle (u_1, v_0).$$

Note that $\tan \angle (u_1, v_0) \le 1/|u_1^T v_0|$ and $u_1^T v_0 \sim Y_1$ when choosing a random starting vector v_0 uniformly distributed on the sphere. Thus, the small-ball probability bound shows that $\tan \angle (u_1, v_0)$ is not much larger than \sqrt{n} with high probability.

There is no known, reasonably cheap deterministic construction for v_0 that is guaranteed to have an equally favorable property.

Real random matrices

There is no conceptual difference between defining real random vectors and real random matrices. An $m \times n$ real random matrix is an (mn)-tuple of real random variables.

Most important examples:

- Gaussian random matrix: $a_{ij} \sim N(0,1)$ iid
- Rademacher matrix: a_{ij} ~ Rademacher iid
- ▶ Uniform on Stiefel: $A \sim U(\operatorname{St}(m, n))$ for $m \ge n =$ uniformly distributed on the Stiefel manifold $\operatorname{St}(m, n)$ of $m \times n$ matrices with orthonormal columns.

Random matrix theory is primarily concerned with studying the distribution of eigenvalues of random matrix models.

Expectation

- Definition and basic properties
- Expectation and convexity

Literature:

Tropp'2023 Joel A. Tropp. *Probability Theory & Computational Mathematics*, Lecture notes, Caltech, 2023.

pdf available on Moodle

Expectation: Definition

Theorem. Given probability space $(\Omega, \mathcal{F}, \mathbb{P})$, the expectation of a real *non-negative* random variable $X : \Omega \to \mathbb{R}$ is defined as

$$\mathbb{E}[X] \coloneqq \int_0^\infty \mathbb{P}(X > t) \, \mathrm{d}t.$$

If X is not non-negative, we will always assume that X is integrable, that is, $\mathbb{E}[|X|] < \infty$. Then we define

$$\mathbb{E}[X] = \mathbb{E}[X_{+}] - \mathbb{E}[X_{-}], \quad X_{+} = \max\{0, X\}, \quad X_{-} = -\min\{0, X\}.$$

▶ Recall that $F_X(t) = \mathbb{P}(X \le t)$. Thus,

$$\mathbb{E}[X] = \int_0^\infty (1 - F_X(t)) dt - \int_{-\infty}^0 F_X(t) dt.$$

Expectation: Simpler formulas

For a discrete random variable X with measure $\mu_X = \sum_{i=1}^n p_i \delta_{a_i}$, a rearrangement of summation gives

$$\mathbb{E}[X] = \sum_{i=1}^n a_i p_i.$$

For a continuous random variable X with density f_X, a change of variable gives

$$\mathbb{E}[X] = \int_{\mathbb{R}} x \cdot f_X(x) \, \mathrm{d}x$$

Both formulas can be unified by using the Lebesgue integral

$$\mathbb{E}[X] = \int_{\mathbb{R}} x \, \mu_X(\mathrm{d}x).$$

Expectation: Law of the unconscious statistician

Let $h: \mathbb{R} \to \mathbb{R}$ be measurable such that $\mathbb{E}[h(X)]$ is well defined.

For a discrete random variable X with measure $\mu_X = \sum_{i=1}^n p_i \delta_{a_i}$, a rearrangement of summation gives

$$\mathbb{E}[X] = \sum_{i=1}^n h(a_i)p_i.$$

For a continuous random variable X with density f_X, a change of variable gives

$$\mathbb{E}[X] = \int_{\mathbb{R}} h(x) \cdot f_X(x) \, \mathrm{d}x$$

Both formulas can be unified by using the Lebesgue integral

$$\mathbb{E}[X] = \int_{\mathbb{R}} h(x) \, \mu_X(\mathrm{d}x).$$

Missing expectations: Cauchy random variables

EFY: Consider independent $X, Y \sim N(0, 1)$. Show that Z = X/Y has the pdf

$$f_Z(Z) = \frac{1}{\pi(1+x^2)}$$

on \mathbb{R} . Good luck!

This function is not integrable and, hence, the expectation of Z is not defined.

Z is the canonical example of a Cauchy random variable.

Properties of Expectation

For integrable real random variables X, Y (on the same probability space, but not necessarily independent), the following hold:

- 1. If $X \leq Y$ (almost surely) then $\mathbb{E}[X] \leq \mathbb{E}[Y]$.
- 2. If X = Y (almost surely) then $\mathbb{E}[X] = \mathbb{E}[Y]$.
- 3. If X is non-negative and $\mathbb{E}[X] = 0$ then X = 0 (almost surely).
- **4**. $\mathbb{E}[\alpha X + \beta Y] = \alpha \mathbb{E}[X] + \beta \mathbb{E}[X]$ for every $\alpha, \beta \in \mathbb{R}$,
- 5. $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$ if X, Y are independent.

These properties follow from basic properties of Lebesgue integrals, except for the last one (which follows from Fubini).

EFY: If $a \le X \le b$ then $a \le \mathbb{E}[X] \le b$.

Expectation and convexity

Let $I \subseteq \mathbb{R}$ be an interval (finite or infinite). Then $\varphi : I \to \mathbb{R}$ is called convex if

$$\varphi((1-\tau)x+\tau y) \leq (1-\tau)\varphi(x)+\tau\varphi(y), \quad \forall \ \tau \in [0,1], \ x,y \in I.$$

 φ is called concave if $-\varphi$ is convex.

EFY: Recap examples of convex and concave functions.

An important property of a convex function $\varphi: I \to \mathbb{R}$ on an open interval I is:

$$\varphi(y) \ge \varphi(a) + \varphi'(a) \cdot (y - a),$$

provided that φ is differentiable. If φ is not differentiable at a, the fomula still holds with $\varphi'(a)$ replaced by a subgradient of φ at a.

Jensen's inequality

Theorem. Let $\varphi: I \to \mathbb{R}$ be convex on an open interval $I \subseteq \mathbb{R}$ and bounded from below. Let X be an integrable, real random variable that takes values in I. Then

$$\mathbb{E}[\varphi(X)] \ge \varphi(\mathbb{E}[X]).$$

Proof. For simplicity, suppose that φ is differentiable. Setting $y = X(\omega)$ and $a = \mathbb{E}[X]$ in the "important property" gives

$$\varphi(X(\omega)) \ge \varphi(\mathbb{E}[X]) + \varphi'(\mathbb{E}[X]) \cdot (X(\omega) - \mathbb{E}[X]), \quad \forall \omega \in \Omega.$$

Taking expectations on both sides completes the proof.

Two important examples:

$$\mathbb{E}[X^2] \ge (\mathbb{E}[X])^2$$
, $\mathbb{E}[\exp(X)] \ge \exp(\mathbb{E}[X])$.

40

 \Diamond

Expectation of random vectors

For a random vector $X \in \mathbb{R}^n$, the expectation $\mathbb{E}[X]$ is simply defined entry-wise.

Law of the unconscious statistician: For a multivariate measurable function $h: \mathbb{R}^n \to \mathbb{R}$, it holds that

$$\mathbb{E}[h(X)] = \int_{\mathbb{R}^n} h(x) \mu_X(\mathrm{d}x).$$

In particular for a continuous random vector with joint density f_X , we have

$$\mathbb{E}[h(X)] = \int_{\mathbb{R}^n} h(x) f_X(x) dx.$$

Jensen's inequality: For a convex function $\varphi: C \to \mathbb{R}$ bounded from below on a convex open set C, we have

$$\mathbb{E}[\varphi(X)] \ge \varphi(\mathbb{E}[X]).$$

Example: $\mathbb{E}[\|X\|_2^2] \ge \|\mathbb{E}[X]\|_2^2$.