

Exercice 1: *

En informatique, on utilise le système binaire pour coder les caractères. Un bit (binary digit) est un élément qui prend la valeur 0 ou 1. Avec 8 bits (un octet), combien de caractères peut-on coder?

Exercice 2: *

- (1) Combien y a-t-il de nombres de quatre chiffres (le premier étant non nul)?
- (2) Parmi ces nombres, combien y en a-t-il constitués de chiffres distincts?
- (3) Composés d'au moins deux chiffres identiques?
- (4) Composés de quatre chiffres distincts autres que 5 et??

Exercice 3: ★★

Combien y a-t-il d'anagrammes du mot MATHEMATIQUES?

Exercice 4: ★★★

On extrait simultanément 5 cartes d'un jeu de 32. Cet ensemble de 5 cartes est appelé une main.

- (1) Combien y a-t-il de mains différentes possibles?
- (2) Combien y a-t-il de mains contenant
 - (a) un carré?
 - (b) deux paires distinctes?
 - (c) un full (trois cartes de même valeur, et deux autres de même valeurs)?
 - (d) un brelan (trois cartes de même valeur, sans full ni carré)?
 - (e) une quinte (5 cartes de même couleur se suivant dans l'ordre croissant)?

Exercice 5: ★★

Dans une classe de 45 élèves, on compte 11 filles et 34 garçons. On doit élire deux délégués.

- (1) Quel est le nombre de possibilités?
- (2) Quel est le nombre de choix si on impose un garçon et une fille?
- (3) Quel est le nombre de choix si on impose deux garçons?

Exercice 6: ★★★

Montrer que, dans le monde, au moins deux pays ont le même nombre de voisins.

Exercice 7: ★★★

Soit E un ensemble fini de cardinal n. Calculer

$$\sum_{X \in \mathscr{P}(E)} \operatorname{Card}(X), \ \sum_{X,Y \in \mathscr{P}(E)} \operatorname{Card}(X \cap Y), \ \sum_{X,Y \in \mathscr{P}(E)} \operatorname{Card}(X \cup Y).$$

Exercice 8: ★★★

Soit E un ensemble à n éléments. Combien y a-t-il de couples (X,Y) de parties de E telles que $X \subset Y$?

Exercice 9: ★★★

Soient $a,b,c\in\mathbb{C}$. Quel est le coefficient de $a^2b^5c^3$ dans le développement de $(a+b+c)^{10}$? Plus généralement, quel est le coefficient de $a_1^{k_1}a_2^{k_2}\dots a_p^{k_p}$ dans le dévelopement de $(a_1+a_2+\dots+a_p)^n$?

Exercice 10: ***

Soit $n \in \mathbb{N}$. Combien existe-t-il de p-uplets $(x_1, \dots, x_p) \in \mathbb{N}^p$ vérifiant $x_1 + x_2 + \dots + x_p = n$?

Exercice 11: ***

Soient E et F deux ensembles non vides de cardinaux respectifs n et p. On note S_n^p le nombre de surjections de E sur F.

- (1) Calculer S_n^1, S_n^n et S_n^p pour p > n.
- (2) On suppose $p \leq n$ et on considère a un élément de E. En observant qu'une surjection de E sur F réalise, ou ne réalise pas, une surjection de $E \setminus \{a\}$ sur F, établir

$$S_n^p = p \left(S_{n-1}^{p-1} + S_{n-1}^p \right).$$

(3) En déduire que $S_n^p = \sum_{k=0}^p (-1)^{p-k} \binom{p}{k} k^n$.

Exercice 12: $\star\star\star$

- (1) Soient E un ensemble non vide, $\{X,Y\}$ une partition de E. Montrer que $f: \mathscr{P}(E) \to \mathscr{P}(X) \times P(Y), A \mapsto (A \cap X, A \cap Y)$ est une bijection.
- (2) Soient $p,q,r\in\mathbb{N}$ tels que $r\leq p+q$. Montrer que $\sum_{i+j=r}\binom{p}{i}\binom{q}{j}=\binom{p+q}{r}$.
- (3) En déduire $\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$.

Exercice 13: ★★★

Soient E un ensemble, $a \in E$ et f l'application :

$$\begin{array}{cccc} f: & \mathscr{P}(E) & \to & \mathscr{P}(E) \\ & X & \mapsto & \left\{ \begin{array}{ccc} X \cup \{a\} & \text{si } a \not \in X \\ X \setminus \{a\} & \text{si } a \in X \end{array} \right. \end{array}$$

- (1) Montrer que f est une bijection.
- (2) On suppose désormais que E est fini de cardinal n. On pose $\mathscr{P}_0(E)$ l'ensemble des parties de E de cardinal pair et $\mathscr{P}_1(E)$ l'ensemble des parties de E de cardinal impair.

Montrer que $\mathscr{P}_0(E)$ et $\mathscr{P}_1(E)$ ont même cardinal.

(3) Calculer ce cardinal et en déduire la valeur de $\sum_{k=0}^{n} (-1)^k \binom{n}{k}$.

Exercice 14: ★★★★

1. Les nombres de Bell

Soit $n \in \mathbb{N}^*$. On définit le *n*-ième **nombre de Bell** b_n comme étant le nombre de partitions de [1, n]. Par exemple, $\{1, 2\}$ a deux partitions : $\{\{1, 2\}\}$ et $\{\{1\}, \{2\}\}\}$, donc $b_2 = 2$. Par convention, on pose $b_0 = 1$.

- (1) En utilisant la définition, déterminer b_3 .
- (2) Soit $n \in \mathbb{N}^*$.
 - (a) Soit $\{P_1, \ldots, P_s\}$ une partition de [1, n+1] où $n+1 \in P_s$. On note $k=n+1-\operatorname{Card}(P_s)$. Montrer que $\{P_1, \ldots, P_{s-1}\}$ est une partition d'un ensemble à k éléments.
 - (b) En déduire la formule $b_{n+1} = \sum_{k=0}^{n} \binom{n}{k} b_k$.
 - (c) Calculer 'a l'aide cette formule b_3 , b_4 et b_5 .
 - (d) Démontrer que $b_{n+1} \ge nb_{n-1}$. En déduire que pour tout $k \in \mathbb{N}^*$, $b_{2k} \ge \frac{(2k)!}{2^k k!}$ et $b_{2k+1} \ge 2^k k!$, puis finalement que pour tout $n \in \mathbb{N}^*$, $b_{n+1} \ge \sqrt{n!}$.
 - (e) Démontrer que pour tout $n \in \mathbb{N}$, $b_{n+1} \leq (n+1)b_n$. En déduire que pour tout $n \in \mathbb{N}^*$, $b_n \leq n!$.
- (3) On considère le problème de Cauchy suivant

$$(E) \qquad \left\{ \begin{array}{l} y' = e^x y \\ y(0) = 1 \end{array} \right.$$

- (a) Déterminer explicitement la solution f du problème de Cauchy (E).
- (b) Montrer que f est C^{∞} sur \mathbb{R} . Montrer par récurrence que

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, \ f^{(n+1)}(x) = e^x \sum_{k=0}^n \binom{n}{k} f^{(n)}(x).$$

- (c) En déduire que pour tout $n \in \mathbb{N}$, $b_n = f^{(n)}(0)$.
- (d) Déterminer le développement limité à l'ordre 5 de f au voisinage de 0 et en déduire les valeurs de b_3 , b_4 et b_5 (on citera avec précision le théorème utilisé).

2. Les nombres de Stirling de deuxième espèce

Soient $n \in \mathbb{N}^*$ et $k \in [1, n]$. Le **nombre de Stirling de deuxième espèce** noté $\begin{Bmatrix} n \\ k \end{Bmatrix}$ est le nombre de partitions de [1, n] à k parties exactement. Ainsi

$$\forall n \in \mathbb{N}^*, \ b_n = \sum_{k=1}^n \begin{Bmatrix} n \\ k \end{Bmatrix}.$$

- (1) Soient $n \in \mathbb{N}^*$ et $k \in [1, n]$.
 - (a) Soit s une surjection de [1, n] dans [1, k]. On définit la relation \sim_s par

$$\forall i, j \in [1, n], i \sim_s j \iff s(i) = s(j).$$

Montrer que \sim_s est une relation déquivalence, et qu'elle possède k classes d'équivalence.

- (b) Soient s_1 et s_2 deux surjections de $[\![1,n]\!]$ dans $[\![1,k]\!]$. Montrer que s_1 et s_2 définissent la même relation d'équivalence (*i.e.* pour tout $i,j,\,i\sim_{s_1}j\iff i\sim_{s_2}j$) si et seulement s'il existe une permutation σ de $[\![1,k]\!]$ telle que $s_2=\sigma\circ s_1$.
- (c) En déduire que $k! \begin{Bmatrix} n \\ k \end{Bmatrix}$ est égal au nombre de surjections de $[\![1,n]\!]$ à valeurs dans $[\![1,k]\!]$.
- (d) En déduire les valeurs de $\begin{Bmatrix} n \\ 1 \end{Bmatrix}$, $\begin{Bmatrix} n \\ 2 \end{Bmatrix}$, $\begin{Bmatrix} n \\ n-1 \end{Bmatrix}$ et $\begin{Bmatrix} n \\ n \end{Bmatrix}$.

(e) Démontrer que pour tout
$$n \in \mathbb{N}^*$$
, $\left\{ {n+1 \atop k} \right\} = k \left\{ {n \atop k} \right\} + \left\{ {n \atop k-1} \right\}$.

(f) En déduire que
$$\left\{ {n \atop k} \right\} \ge k^{n-k}$$
.

(2) (a) On note pour tout $x \in \mathbb{R}$, $\gamma_k(x) = x(x-1)\dots(x-k+1)$. Montrer par récurrence sur $n \in \mathbb{N}^*$ que

$$\forall x \in \mathbb{R}, \ x^n = \sum_{k=1}^n \begin{Bmatrix} n \\ k \end{Bmatrix} \gamma_k(x).$$

(b) En déduire que pour tout
$$a \in [1, n], \left\{ {n \atop a} \right\} \le {a^n \over a!}.$$

(3) Pour tout
$$k \in \mathbb{N}^*$$
, on note $f_k : x \mapsto \frac{1}{k!} (e^x - 1)^k$.

- (a) En développant avec la formule du binôme, montrer que pour tout $n \in \mathbb{N}^*$, $f_k^{(n+1)}(0) = kf_k^{(n)}(0) + f_{k-1}^{(n)}(0)$.
- (b) En déduire que pour tout $n \in \mathbb{N}^*$ et tout $k \in [1, n]$, $f_k^{(n)}(0) = \begin{Bmatrix} n \\ k \end{Bmatrix}$.
- (c) En déduire que pour tout $n \in \mathbb{N}^*$ et tout $k \in [1, n]$,

$$\left\{ {n\atop k} \right\} = \frac{1}{k!} \sum_{j=0}^k (-1)^{k-j} \binom{k}{j} j^n.$$

- (d) En déduire finalement que $\begin{Bmatrix} n \\ k \end{Bmatrix} \underset{n \to +\infty}{\sim} \frac{k^n}{k!}$.
 - 3. Arithmétique des nombre de Bell et des nombres de Stirling de seconde espèce

Soit p un nombre premier.

(1) Montrer que pour tout
$$k \in [1, p-1], p$$
 divise $\binom{p}{k}$.

(2) On admet le "petit théorème de Fermat" :

$$\forall a \in [1, p-1], \ p|(a^{p-1}-1).$$

À l'aide de ce théorème et de la relation prouvée à la question 2a, montrer que pour tout $a \in [2, p-1]$, p divise $\left\{ p \atop a \right\}$.

- (3) On suppose p > 3. Montrer que le reste de la division de b_p par p vaut 2, et que le reste de la division de b_{p+1} par p vaut 3.
- (4) Soit $n \in \mathbb{N}^*$. On note d_n le PGCD de $\begin{Bmatrix} n \\ 2 \end{Bmatrix}, \begin{Bmatrix} n \\ 3 \end{Bmatrix}, \dots, \begin{Bmatrix} n \\ n-1 \end{Bmatrix}$. Soit p un diviseur premier de d_n .
 - (a) Montrer que p divise n ou n-1.
 - (b) On suppose que $p \le n-1$. En utilisant la relation prouvée à la question 2a, aboutir à une contradiction.
 - (c) En déduire que $d_n=1$ si n n'est pas premier et que $d_n=n$ si n est premier.