Distinguished Engineering

BERT

- Bidirectional Encoder Representations from Transformers
 - •••

BW

Plan

- Transformer, recap
- Pre-traing entree
- BERT, the main dish.
- BERT, dessert.

Transformer, recap

• Multi-head Attention

Transformer, recap

• Residual connection, Layer Normalization

$$oxed{ln_i = LayerNorm(x_i)}$$

$$\hat{x}_{i,k} = rac{x_{i,k} - \mu_i}{\sqrt{\sigma_i^2 + \epsilon}}$$

$$ln_i = \gamma \hat{x}_i + eta = LayerNorm(x_i)$$

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR2021

The MLP contains two layers with a GELU non-linearity.

$$\mathbf{z}_0 = [\mathbf{x}_{\text{class}}; \, \mathbf{x}_p^1 \mathbf{E}; \, \mathbf{x}_p^2 \mathbf{E}; \cdots; \, \mathbf{x}_p^N \mathbf{E}] + \mathbf{E}_{pos}, \qquad \mathbf{E} \in \mathbb{R}^{(P^2 \cdot C) \times D}, \, \mathbf{E}_{pos} \in \mathbb{R}^{(N+1) \times D} \tag{1}$$

$$\mathbf{z}'_{\ell} = \text{MSA}(\text{LN}(\mathbf{z}_{\ell-1})) + \mathbf{z}_{\ell-1}, \qquad \qquad \ell = 1 \dots L$$
 (2)

$$\mathbf{z}_{\ell} = \text{MLP}(\text{LN}(\mathbf{z}'_{\ell})) + \mathbf{z}'_{\ell},$$
 $\ell = 1...L$ (3)

$$\mathbf{y} = \mathrm{LN}(\mathbf{z}_L^0) \tag{4}$$

Model	Layers	${\it Hidden \ size \ } D$	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Table 1: Details of Vision Transformer model variants.

Warm-ups, Language Modeling Process

(1) Predict the masked word(2) Next sentence prediction

*Objective

(2) Fine-tuning (supervised)

Training on a specific downstream task with a labeled dataset

Warm-ups, pre-training vs fine-tuning

BERT

	L (# of trmlayers)	d_model	num_heads	# of Parameters
Transformer base	6	512	8	65M
Transformer big	6	1024	16	213M
BERT base	12	768	12	110M
BERT large	24	1024	16	340M

BERT:

BERT: Bidirectional Encoder Representation from Transformer

 "BERT is designed to pre- train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers"

BERT: Embeddings

BERT: pre-training #1 Masked Language Model (MLM)

Mask out 15% of the input words, and then predict the masked word

```
the man went to the [MASK] to buy a [MASK] of milk

Predict

"store" "gallon"
```

- But [MASK] token will be naver seen at fine tuning.
 →Mismatch pre vs fine tuning
- Solution: out of 15%

```
80% of the time :
replace with [MASK]

went to the store

→ went to the [MASK]

**Teplace with random word went to the store

went to the store

→ went to the running

**Teplace with random word went to the store

**Teplace with [MASK]

**Teplace with random word went to the store

**Teplace with [MASK]

**Teplace with random word went to the store went to
```


BERT: pre-training #2 Next Sentence Prediction (NSP)

- 두개의 문장을 준 후에 이 문장이 이어지는 문장인지 아닌지 맞추는 방식으로 훈련
- 50:50의 비율로 실제 이어지는 문장과 랜덤으로 이어 붙인 문장을 주고 학습

이어지는 문장의 경우
 Sentence A: The man went to the store.
 Sentence B: He bought a gallon of milk.
 Label = IsNextSentence

이어지는 문장이 아닌 경우 경우
Sentence A: The man went to the store.
Sentence B: dogs are so cute.
Label = NotNextSentence

- 1) 하나의 텍스트에 대한 텍스트 분류 (Single Text Classification)
 - 영화리뷰, 감성분석, 뉴스분류

2) 하나의 텍스트에 대한 태깅 (Tagging) ○ 품사.소속

- 3) 텍스트 쌍에 대한 분류 또는 회귀 (Text pair Classification or Regression)
 - 모순 관계(contradiction), 함의 관계 (entailment), 중립 관계 (neutral)

- 4) 질의 응답 (Question Answering)
 - 질문과 본문 입력 → 본문의 일부분을 추출해서 대답

A: 중력

Q: 강우가 떨어지도록 영향을 주는 것은?

본군: 기상학에서 강우는 대기 수증기가 응결되어 중력의 영향을 받고 떨어지는 것을 의미합니다. 강우의 주요 형태는 이슬비, 비, 진눈깨비, 눈, 싸락눈 및 우박이 있습니다

GPT: What is Different from Others

- **Generation VS Understanding**
 - OpenAl's GPT is an unidirectional Language Model(LM)
 - GPT is good for text generation tasks because of the auto-regressive LM
 - ☐ On the other hand, BERT and XLNet are bidirectional LMs
 - They are good for natural language understanding (NLU) tasks

Natural Language Generation (NLG)

OpenAI

GPT-2

OpenAI

GPT-3

2018.02

2018.06

GPT-1

2018.10

2019.02

2019.06

2019.07

2020.05

OpenAI

facebook

ELMo feature-based

GPT-1

BERT

XLNet

RoBERTa

fine-tuning approach

GPT: Generative Pre-Training

A. Radford et al., "Improving Language Understanding by Generative Pre-Training"

- Significance of the first GPT (known as GPT-1 now)
 - □ The first successful model of the pre-training and (then) fine-tuning approach using large model with large corpus
 - ☐ GPT-1 outperforms the previous state-of-the-arts on 9 out of 12 tasks
- Two phase of training GPT-1 (similar to BERT)
 - □ Pre-training:
 - LM is trained to predict the next word using the previous context, which is an auto-regressive (generative) language modeling
 - Fine-tuning:
 Almost all layers of pre-trained LM is transferred into any downstream task with minimal task-specific modification

GPT: Comparison with BERT

- Pre-training objective
 - □ GPT: "Next Word Prediction"

auto-regressive language modeling

BERT: "Masked Word Prediction"

masked language modeling

+ "Next Sentence Prediction"

- Performances on NLU tasks
 - ☐ **ELMo < GPT-1**:
 - > The betterment of fine-tuning approach than feature-based approach
 - □ GPT-1 < BERT:</p>
 - In natural language understanding tasks, there is a fundamental limitation of auto-regressive language modeling:
 - GPT-1 uses only unidirectional context, while BERT uses full contextual information.

GPT: After BERT Beats GPT-1

- Different goal of GPT-3 (and GPT-2)
 - They have focused on enhancing language model
 - Using large and various corpus and model sizes for LM training

	GPT-1	GPT-2	GPT-3
dataset_size	1B words (BooksCorpus)	10B words (WebText)	300B (Mixture of corpus)
max_token_num	512	1024	2048
batch_size	64	512	0.5 - 3.2M
model_size	0.1B params 12 layers)	{0.1 - 1.5}B params {12-48} layers	{0.1 - 175}B params {12-96} layers

- □ They have applied GPT to unsupervised learning tasks
 - They have explored the few-shot behaviors
 - GPT-2 and GPT-3 are NOT fine-tuned to any target tasks

Amost Everything can be found in https://wikidocs.net/book/2155
https://arxiv.org/abs/1810.04805
thanks to prof. Kyomin Jung