

Curso "Electromagnetismo"

Tema 3: Campo *E* en medios materiales

Dieléctricos

J.E. Prieto

Fuente principal de figuras: "Physics for scientists and engineers" (5th edition), P.A. Tipler, G. Mosca

Comportamiento eléctrico de los materiales

- Hay básicamente dos tipos de materiales en cuanto a su comportamiento eléctrico:
 - **Conductores**: transportan una *corriente eléctrica* cuando se les somete a un campo *E*. Ejemplos típicos: metales.
 - Aislantes o dieléctricos: no son capaces de conducir una corriente significativa. Ejemplos típicos: cristales iónicos, sólidos moleculares, plásticos...
- (en realidad hay una tercera categoría...)
 - Semiconductores: propiedades de conductividad intermedias entre conductores y aislantes y fácilmente modificables ¡esenciales en la Electrónica! Ej.: Si, GaAs...

- Aislantes o dieléctricos no son capaces de conducir una corriente significativa. Ejemplos típicos: cristales iónicos, sólidos moleculares, plásticos...
- Como todos los materiales, están constituidos por cargas positivas y negativas, pero en un aislante están *ligadas*. No son "*libres*". *No pueden desplazarse "grandes" distancias* (sólo distancias del orden de las distancias atómicas) en presencia de campo *E*. Pueden estar formados por:
 - 1. Moléculas o átomos no polares (no tienen momento dipolar **p** en ausencia de **E**)
 - 2. Moléculas polares (poseen un momento dipolar intrínseco **p** también cuando **E** es 0)

- 1. Materiales con moléculas o átomos no polares (no tienen momento dipolar **p** en ausencia de **E**):
 - El campo E induce un momento dipolar p en la dirección del campo: polarización

- 2. Moléculas polares (tienen momento dipolar intrínseco **p**)
 - En ausencia de *E*, los dipolos están orientados aleatoriamente:

• En presencia de **E**, se orientan (parcialmente) en la dirección del campo:

Recordamos:

Hemos visto cómo un dipolo **p** se orienta en la dirección del campo **E** para minimizar su energía.

 En ambos casos, el campo eléctrico E₀ externo orienta los dipolos en la dirección del campo:

 \rightarrow el campo E_{ind} inducido (creado por la polarización inducida) se opone al campo externo:

¡ El campo neto $E = E_0 + E_{ind}$ disminuye!

 La polarización del dieléctrico origina una densidad superficial de carga ligada σ_b cuyo campo E_{ind} se opone al campo E₀ externo producido por cargas libres de forma que el campo resultante E es menor que E₀.

Dieléctricos ↔ Conductores

- Dieléctricos y conductores en presencia de *E*: la misma respuesta en principio (polarización), con diferente intensidad:
 - Dieléctrico: polarización parcial (\boldsymbol{E} resultante = $\boldsymbol{E_0}$ + $\boldsymbol{E_{ind}}$ < $\boldsymbol{E_0}$)
 - Conductor: polarización total (E resultante = $E_0 + E_{ind} = 0$)

$$\boldsymbol{E} = \boldsymbol{E_0} + \boldsymbol{E_{ind}} < \boldsymbol{E_0}$$

$$E = E_0 + E_{ind} = 0$$

Caracterización de dieléctricos

En general, en un dieléctrico, el campo inducido E_{ind} es proporcional (y opuesto) al campo externo aplicado E_0 :

$$E_{ind} = -\alpha E_0$$

donde α es la *polarizabilidad* eléctrica del material.

$$E = E_0 + E_{ind} = E_0 - \alpha E_0 = (1 - \alpha)E_0$$

$$E = \begin{bmatrix} E_0 \\ \kappa \end{bmatrix} = \begin{bmatrix} 1 \\ 1-\alpha \end{bmatrix}$$
 \times \text{constante dieléctrica o constante dieléctrica relativa del material constante dieléctrica relativa del material constante dieléctrica relativa del material constante dieléctrica constante dieléctr

$$\alpha < 1 \Rightarrow \kappa > 1$$

κ: constante relativa del material.

Es una magnitud adimensional.

Condensador con dieléctrico

Si el campo *E disminuye* en un factor κ, el potencial *V* disminuye también en el mismo factor κ.

$$E = \begin{bmatrix} E_0 \\ \kappa \end{bmatrix} V(r) = -\int_{r_0}^r E \, dr$$

$$V = \begin{bmatrix} V_0 \\ \kappa \end{bmatrix}$$

 \rightarrow La capacidad aumenta en un factor κ

$$C \equiv \begin{array}{c} Q \\ V \end{array} \rightarrow \begin{array}{c} C = C_0 \kappa \end{array}$$

 Aplicación de dieléctricos: aumento de la capacidad de condensadores.

Condensador con dieléctrico

 Aumento de la capacidad causada por un dieléctrico en el ejemplo más sencillo: el condensador plano-paralelo

$$E = \frac{E_0}{\kappa}$$

$$V = Ed = \begin{bmatrix} E_0 \\ \kappa \end{bmatrix} d = \begin{bmatrix} Qd \\ \kappa \epsilon_0 A \end{bmatrix}$$

Condensador con dieléctrico

 Vemos como en el ejemplo del condensador plano-paralelo la capacidad aumenta en un factor κ debido al dieléctrico

$$C \equiv \begin{array}{c} Q \\ V \end{array} = \begin{array}{c} \kappa \epsilon_0 A \\ d \end{array} = \begin{array}{c} \epsilon A \\ d \end{array}$$

• La combinación $\kappa \, \varepsilon_0$ aparece muy frecuentemente y recibe un nombre especial: *permitividad dieléctrica* del medio (tiene las mismas unidades que ε_0)

$$\epsilon = \kappa \epsilon_0$$

- ε: permitividad dieléctrica del medio
- κ: constante dieléctrica o constante dieléctrica relativa del medio

Campo eléctrico en dieléctricos

"RECETA"

Donde aparece ε_0 (para el vacío), se sustituye por ε ($\varepsilon = \kappa \varepsilon_0$)

- Ejemplos:
 - Capacidad en el condensador plano-paralelo con dieléctrico:

$$C_{pp} = \begin{matrix} \epsilon A \\ d \end{matrix} = \begin{matrix} \kappa \epsilon_0 A \\ d \end{matrix}$$

Densidad de energía del campo E en un dieléctrico.

$$u_{el} = \frac{1}{2} \epsilon E^2 = \frac{1}{2} \kappa \epsilon_0 E^2$$

Resumen: Dieléctricos

• Dieléctrico *reduce* el campo \boldsymbol{E} y el potencial V en un factor κ :

$$E = \begin{bmatrix} E_0 \\ \kappa \end{bmatrix}$$

$$V = \begin{bmatrix} V_0 \\ \kappa \end{bmatrix}$$

• La capacidad aumenta en un factor κ :

$$C = C_0 \kappa$$

- Magnitudes que caracterizan un medio dieléctrico:
 - κ : constante dieléctrica o constante dieléctrica relativa del medio (adimensional, $\kappa > 1$)
 - ε : permitividad dieléctrica del medio: (dimensiones de ε_0)

$$\epsilon = \kappa \epsilon_0$$

RECETA: Donde aparece ε_0 (para el vacío), se sustituye por ε ($\varepsilon = \kappa \varepsilon_0$)

Ruptura dieléctrica

- Además de la constante dieléctrica, hay otra magnitud importante que caracteriza a un dieléctrico: el campo eléctrico máximo E_{max} que resiste el material sin dejar de ser ser un aislante: campo de ruptura dieléctrica:
 - Ejemplo: en aire, por encima de E_{max} ≈ 3 kV / mm, salta un arco (chispa): el aire se rompe dieléctricamente (se ioniza, se forma un plasma) y pasa a ser conductor.

ABLE 24-1 ielectric Constants and Dielectric Strengths of Various Materials		
Air	1.00059	3
Bakelite	4.9	24
Glass (Pyrex)	5.6	14
Mica	5.4	10–100
Neoprene	6.9	12
Paper	3.7	16
Paraffin	2.1–2.5	10
Plexiglas	3.4	40
Polystyrene	2.55	24
Porcelain	7	5.7
Transformer oil	2.24	12

