Basic Algorithms for Digital Image Analysis

Dmitrij Csetverikov

Eötvös Loránd University, Budapest, Hungary csetverikov@inf.elte.hu

Faculty of Informatics

Matching

- Matching and correspondence in computer vision
 - Correspondence in image analysis
 - Critical issues of matching
- Template matching
 - Measures of dissimilarity between image and template
 - Measures of similarity between image and template
- Robustness and localisation accuracy
- Invariance, robustness and speed
 - Fast template matching
 - Consistency check for stable matching

- Matching and correspondence in computer vision
 - Correspondence in image analysis
 - Critical issues of matching
- Template matching
 - Measures of dissimilarity between image and template
 - Measures of similarity between image and template
- 3 Robustness and localisation accuracy
- 4 Invariance, robustness and speed
 - Fast template matching
 - Consistency check for stable matching

Tasks of computer vision related to matching 1/3

- Given images of a scene taken by different sensors, bring them into registration
 - this is multimodal image registration
 - in medical imaging, images obtained by sensors of different types are called modalities
 - interfaces that use different sensors, such as images, video, sound, haptics (tactile), are also called multimodal
 - when data structures to be registered are different, the term data fusion is used
- Given images of a scene taken at different times, find correspondences, displacements, or changes
 - this is motion analysis
 - typical example: motion tracking

Tasks of computer vision related to matching 2/3

- Given images of a scene taken from different positions, find correspondent points to obtain 3D information about the scene
 - this is stereopsis, or simply stereo
 - matching provides disparity: shift of point between two views
 - by triangulation, disparity and baseline (distance between cameras) provide depth: 3D distance to point
 - generalised stereo is called 3D scene reconstruction from multiple views

Tasks of computer vision related to matching 3/3

- Find places in image or on contour where it matches a given pattern
 - template matching: pattern is specified by template
 - feature detection: feature is specified by description
- Match two contours for object recognition, measurement, or positioning
 - this is contour matching
- Only the above two tasks are considered in this course

- Matching and correspondence in computer vision
 - Correspondence in image analysis
 - Critical issues of matching
- Template matching
 - Measures of dissimilarity between image and template
 - Measures of similarity between image and template
- Robustness and localisation accuracy
- Invariance, robustness and speed
 - Fast template matching
 - Consistency check for stable matching

Problems with finding correspondences

- Widespread opinion in computer vision: Solving the correspondence problem is of key importance
 - opens way to solution of many other problems
 - however, hard to tackle because of numerous critical issues
- Invariance under varying imaging conditions
 - spatial (viewpoint, distance, perspective)
 - photometric (illumination, intensity)
- Sensitivity to noise, distortions, occlusion

Transformations considered in this course

- Spatial
 - 2D shift and rotation in image plane
- Photometric
 - intensity shift and scaling
 - $\Rightarrow l' = al + b$
- Meaning of intensity shift and scaling
 - a: change of direct illumination
 - ⇒ illumination directed at object
 - b: change of ambient light
 - ⇒ overall illumination of scene
 - lights coming from all directions

Template matching

- Compare subimage (**template**) w(x', y') with an image f(x', y') for all possible displacements (x, y)
 - in other words, **match** w(x', y') against f(x + x', y + y') for all (x, y)
- Template matching: Varying r and c, search for locations of
 - low dissimilarity (mismatch) between image and template, or
 - high similarity (match) between image and template

- Matching and correspondence in computer vision
 - Correspondence in image analysis
 - Critical issues of matching
- Template matching
 - Measures of dissimilarity between image and template
 - Measures of similarity between image and template
- Robustness and localisation accuracy
- Invariance, robustness and speed
 - Fast template matching
 - Consistency check for stable matching

Sum of Square Differences (SSD)

$$SSD(x, y) = \sum \{f(x + x', y + y') - w(x', y')\}^{2}$$

where for simplicity

$$\sum_{\substack{(x',y') \in W \\ (x+x',y+y') \in F}} denotes \sum_{\substack{(x',y') \in W \\ (x+x',y+y') \in F}}$$

- Here
 - *W* is set of pixel positions in template *w* (template coord.)
 - F is set of pixel positions in image f (image coord.)
- SSD(x, y) is not invariant under
 - 2D rotation ⇒ cannot find significantly rotated pattern
 - intensity changes ⇒ can't cope with varying illumination

Intensity shift-corrected SSD

$$SSD_{SC}(x,y) = \sum \left\{ \left[f(x+x',y+y') - \overline{f}(x,y) \right] - \left[w(x',y') - \overline{w} \right] \right\}^2$$

- $\bar{f}(x, y)$ is average value of image in region covered by template
 - computed in each position (x, y)
 - ⇒ use running box filter
- \bullet \overline{w} is average value of template
 - computed only once
- SSD_{SC}(x, y) is used to compensate for intensity shift due to varying illumination
 - handles changes in average level of signal
 - does not handle changes in amplitude of signal

- Matching and correspondence in computer vision
 - Correspondence in image analysis
 - Critical issues of matching
- Template matching
 - Measures of dissimilarity between image and template
 - Measures of similarity between image and template
- 3 Robustness and localisation accuracy
- Invariance, robustness and speed
 - Fast template matching
 - Consistency check for stable matching

Unnormalised cross-correlation (CC)

$$CC(x,y) = \sum f(x+x',y+y') \cdot w(x',y')$$

- Properties of cross-correlation and convolution already studied
- CC(x, y) is formally the same as filtering image f with mask w
 - ⇒ our knowledge of filters is applicable: normalisation, separability, fast implementation
- CC(x, y) is *not* invariant under intensity shift and scaling
- When w > 0 and f is large, CC(x, y) is large, independently from similarity between w and f
 - ⇒ to compensate for this, *normalised* version is used

Normalised cross-correlation (NCC)

$$NCC(x,y) = \frac{1}{N_1} \sum \left[f(x+x',y+y') - \overline{f}(x,y) \right] \cdot \left[w(x',y') - \overline{w} \right],$$

where normaliser

$$N_1 = \sqrt{S_f(x, y) \cdot S_w}$$

$$S_f(x, y) = \sum_{(x', y') \in W} \left[f(x + x', y + y') - \overline{f}(x, y) \right]^2$$

$$S_w = \sum_{(x', y') \in W} \left[w(x', y') - \overline{w} \right]^2$$

- $S_f(x, y)$ is computed in each position (x, y), S_W only once
- NCC(x, y) is invariant to any linear intensity transformation $g(x, y) = \alpha f(x, y) + \beta$

Modified normalised cross-correlation (MNCC)

$$MNCC(x,y) = \frac{1}{N_2} \sum \left[f(x+x',y+y') - \overline{f}(x,y) \right] \cdot \left[w(x',y') - \overline{w} \right],$$

where normaliser

$$N_2 = S_f(x, y) + S_w$$

- MNCC differs from NCC only in normalisation
- MNCC is used to avoid numerically unstable division by small number when $S_f(x, y)$ is small
 - small image variation
- Formally, MNCC is only shift-corrected
 - in practice, insensitive to scaling: $S_f(x, y) + S_w \propto S_f(x, y)$, approximately

Examples of matching a stereo pair

left image

template, zoomed

right image

NCC image

NCC surface

SDD image

SDD surface

- Pattern from right image is searched in left image
 - NCC is normalised cross-correlation
 - SSD is sum of square differences

Numerical example of matching

template				
0	0	0		
1	1	1		
0	0	0		

input image					
	0	0	0		
	1	1	1		
	0	0	0		

output of CC				
1	2	3	2	1

autout of CC

output of 110 c				
1.0	1.4	1.7	1.4	

1	1	1
1	1	1
1	1	1

1	2	3	2	1
1	2	3	2	1
1	2	3	2	1

1.0	1.2	1.0
	1.0	
1.0	1.2	1.0

output of NCC

1.0

- (N)CC is (normalised) cross-correlation
 - input image is surrounded by 0's
 - in output, values below 1 are set to 0 and not shown
- Perfect match close to near misses in position and shape
 - ⇒ match is not sharp

Interior matching versus outline matching 1/2

template					
0	0	0	0	0	
0	1	1	1	0	
0	1	1	1	0	
0	1	1	1	0	
0	0	0	0	0	

input	image
-------	-------

1	1	1
1	1	1
1	1	1

output	of	NCC
--------	----	-----

			1.2			
		1.3	2.0	1.3		
	1.2	2.0	3.0	2.0	1.2	
Ī		1.3	2.0	1.3		
			1.2			

0	0	0	0	0
0	1	1	1	0
0	1	0	1	0
0	1	1	1	0
0	0	0	0	0

1	1	1
1	0	1
1	1	1

		1.3		
		1.4		
1.3	1.4	2.8	1.4	1.3
		1.4		
		1.3		

- Matching of outlines yields sharper matches
 - interior matching: ratio perfect match/near miss is 1.5
 - outline matching: 2

Interior matching versus outline matching 2/2

ideal object distorted object

- dashed rectangle: template
- solid polygon: object
- circles: overlapping contour points
- For ideal object, small shift of template results in
 - drastic decrease of contour overlap
 - negligible descrease of area overlap
 - ⇒ outline matching is sharper
- For distorted (or rotated) object,
 - outline overlap is small ⇒ likely to miss object
 - area overlap is large ⇒ likely to find object
 - ⇒ outline matching is less robust

Localisation accuracy versus robustness

- Contours matching
 - sharper matches: higher localisation accuracy
 - less robust: objects may be missed
 - faster
- Interior matching
 - less sharp matches
 - more robust
 - slower
- In general, one trades localisation accuracy for robustness
 - higher localisation accuracy ⇒ less robust

Critical issues in template matching

- Invariance to changes in size and rotation
- Robustness to pattern distortion
 - for example, because of varying viewing angle
- Robustness to 'noisy' matches
 - unexpected patterns that produce high matching values
- Computational load

Handling variations in object size and orientation

- Image normalisation
 - transform image to standard size and orientation
 - assumes no size/orientation variation within image
 - requires definition of orientation
- Adaptive solutions
 - spatially scale and rotate template in each position
 - select best matching scale and rotation
 - very slow if number of scales and rotations is large
 - used only for small number of scales and rotations
- Invariant solutions
 - use scale and rotation invariant description
 - compare descriptions instead of comparing patterns

Normalising image for size and orientation

template

original image

normalised image

- Letter A in top right corner differs in size and orientation
 - ⇒ this letter will not match
- The other four letters will match
- How to define image orientation?

- Matching and correspondence in computer vision
 - Correspondence in image analysis
 - Critical issues of matching
- Template matching
 - Measures of dissimilarity between image and template
 - Measures of similarity between image and template
- 3 Robustness and localisation accuracy
- Invariance, robustness and speed
 - Fast template matching
 - Consistency check for stable matching

Fast impementation of matching

- Work with local features of images and templates rather that patterns themselves
 - edges, contours
 - useful for sparse and reliable features
 - may be sensitive to distortion (recall outline matching)
- For large templates (> 13 x 13 pixels), implement cross-correlation via Fast Fourier Transform (FFT)

$$f \otimes w = IFFT [FFT[f(x,y)]^* \cdot FFT[w(x,y)]]$$

- IFFT is inverse FFT, X* is complex conjugate of X
- FFT needs $O(N^2 \log N)$ operations for $N \times N$ image
- direct implementation needs $O(N^4)$ operations

Fast selection and rejection of candidates

- Select match candidates, reject mismatches rapidly
- Carefully test selected candidates only
 - Use coarse grid of template positions, rectify candidates
 - coarse-to-fine sampling for cross-correlation
 - works if peaks of cross-correlation has no spikes
 - Compute simple properties of template and image region
 - reject region if properties differ from template
 - Use subtemplates
 - reject candidate region if a subtemplate does not match
 - Set threshold on cumulative measure of mismatch
 - reject candidate when mismatch exceeds threshold

- Matching and correspondence in computer vision
 - Correspondence in image analysis
 - Critical issues of matching
- Template matching
 - Measures of dissimilarity between image and template
 - Measures of similarity between image and template
- 3 Robustness and localisation accuracy
- Invariance, robustness and speed
 - Fast template matching
 - Consistency check for stable matching

Forward-backward matching

- Standard way to discard invalid matches
- Match is accepted if backward one is also valid

left image

right image

original ME

consistent ME

- Matching of stereo pair in presence of occlusion
 - ME is matching error: lighter pixel shows larger error
 - Consist. check removes wrong matches due to occlusion