STAT 330 Mathematical Statistics

University of Waterloo - Winter 2025

26th April 2025

Instructor: Yeying Zhu

LaTeX: Xing Liu

Contents

1	Proba	bility	3
2	Rand	andom Variables	
	2.1	Random Variables	9
	2.2	Functions of Random Variables	14
3	Expec	tation and Moment Generating Functions	18
	3.1	Expectation	18
	3.2	Moment Generating Functions	24
4	Joint Distributions		
	4.1	Bivariate Joint & Marginal Distributions	31
	4.2	Independence	38
	4.3	Conditional Distributions	40
	4.4	Conditional Expectation	43
	4.5	Joint Expectation	45
	4.6	Joint Moment Generating Functions	46
5	More	on Joint Distributions	51
	5.1	Distributions of Functions of Multiple Random Variables	51

	5.2	Moment Generating Function Technique	54
	5.3	Bivariate Normal Distribution	56
	5.4	Multinomial Distribution	58
6	Asymj	ptotic Distributions	62
	6.1	Convergence in Distribution	62
	6.2	Convergence in Probability	65
	6.3	Moment Generating Funcion Technique for Limiting Distributions	68
7	Estim	ation	76
	7.1	Likelihood Function and MLE	76
	7.2	Score Function and Information Function	79
	7.3	Limiting Distribution of Maximum Likelihood Estimator	83
	7.4	Confidence Intervals and Pivotal Quantities	88
	7.5	Maximum Likelihood Method for Multiparameter Cases	07

1 Probability

Lecture 1, 2025/01/06

Definition 1.1 (Sample Space). A set of all possible outcomes from a random experiment, *S*, is called the **sample space**.

Example. Rolling a die twice: $S = \{(1,1), (1,2), \dots, (6,6)\}$. Each of the (i,j) is called an elementarity event.

Remark. Types of sample spaces:

- (1) Finite: $S = \{\omega_1, \dots, \omega_n\}$.
- (2) Countable: $S = \{\omega_1, \omega_2, ...\}.$

Example. Rolling a die until a 6 is obtained.

(3) Uncountable:

Example. Lifetime of a light bulb, $S = \{x : x \ge 0\} = [0, \infty)$.

Definition 1.2 (Event). An event is a subset of the sample space, $A \subseteq S$.

Remark.

- (1) We say that an event A occurs if the outcome ω of a random experiment is in A.
- (2) One goal of probability theory is to study how likely (probability) an event occurs.

Example. Rolling a die twice. We can define $A = \{(x, y) : x \le y\}$. Then the # of elementary events in A = 21.

Definition 1.3 (Probability Set Function).

Let $\mathcal{B} = \{A_1, A_2, ...\}$ be a suitable class of subsets of S. We call \mathcal{B} a σ -algebra. A **probability** set function (p.s.f) is a function $\mathbb{P} : \mathcal{B} \to [0, 1]$ such that:

- (1) $\mathbb{P}(A) \ge 0$ for all $A \in \mathcal{B}$.
- (2) $\mathbb{P}(S) = 1$.
- (3) If $A_1,A_2,... \in \mathcal{B}$ are pairwise mutually exclusive, i.e. $A_i \cap A_j = \emptyset$ for $i \neq j$, then

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}\mathbb{P}(A_{i}).$$

Definition 1.4 (σ -algebra). (not tested)

Given sample space S, a σ -algebra \mathcal{B} on S is a collection of subsets of S that satisfies:

- (1) $S \in \mathcal{B}$.
- (2) If $A \in \mathcal{B}$, then $A^c \in \mathcal{B}$.
- (3) If $A_1, A_2, ... \in \mathcal{B}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{B}$.

Example. Let $\mathcal{B} = \{\emptyset, S\}$. Then \mathcal{B} is a σ -algebra.

Proposition 1.1 (Properties of p.s.f).

If \mathbb{P} is a p.s.f and A, B are any set in \mathcal{B} , then:

- (1) $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$.
- (2) $\mathbb{P}(\emptyset) = 0$.
- (3) $\mathbb{P}(A) \leq 1$.
- (4) $\mathbb{P}(A \cap B^c) = \mathbb{P}(A) \mathbb{P}(A \cap B)$.
- (5) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.
- (6) If $A \subseteq B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$.

Proof.

(1)
$$\mathbb{P}(A \cup A^c) = \mathbb{P}(A) + \mathbb{P}(A^c) = \mathbb{P}(S) = 1$$
.

(2)
$$\mathbb{P}(\emptyset) = \mathbb{P}(S^c) = 1 - P(S) = 0.$$

(3)
$$\mathbb{P}(S) = \mathbb{P}(A \cup A^c) = \mathbb{P}(A) + \mathbb{P}(A^c) \ge \mathbb{P}(A)$$
, since $\mathbb{P}(A^c) \ge 0$.

(4) We have the following two equations:

$$\mathbb{P}\left((A \cap B^c) \cup (A \cap B)\right) = \mathbb{P}\left(A \cap (B^c \cup B)\right) = \mathbb{P}(A \cap S) = \mathbb{P}(A)$$
$$\mathbb{P}\left((A \cap B^c) \cup (A \cap B)\right) = \mathbb{P}(A \cap B^c) + \mathbb{P}(A \cap B).$$

Combining to get $\mathbb{P}(A \cap B^c) + \mathbb{P}(A \cap B) = \mathbb{P}(A)$.

- (5) Exercise.
- (6) Let $B^* = B \setminus A = B \cap A^c$. Then, $\mathbb{P}(B) = \mathbb{P}(A \cup B^*) = \mathbb{P}(A) + \mathbb{P}(B^*) \ge \mathbb{P}(A)$.

Lecture 2, 2025/01/08

Definition 1.5 (Conditional Probability).

Suppose *A* and *B* are subesets of *S*. The **conditional probability** of event *A* given event *B* is

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}, \quad \mathbb{P}(B) > 0.$$

Example. Rolling a die twice. Let $S = \{(1, 1), \dots, (6, 6)\}$ with 36 elements. Then $\mathbb{P}(i, j) = \frac{1}{36}$ for all $(i, j) \in S$. This is a probability set function.

Let *A* be the event that the sum is ≤ 4 , and *B* be the event that the sum ≥ 10 . Then $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) = \frac{1}{3}$, since *A* and *B* are mutually exclusive.

Let $C = \{i = j\}$. Suppose event C occurred, what is $\mathbb{P}(A \cup B)$?

Proof. Now, our sample space is $S^* = \{(1, 1), (2, 2), \dots, (6, 6)\}$ with 6 elements. Then

$$\mathbb{P}(A \cup B \mid C) = \frac{4}{6} = \frac{2}{3}.$$

Remark. $\mathbb{P}(\cdot \mid B)$ is a probability set function!

Proof. We will show the three conditions of a p.s.f:

- (1) For any $A \in S$, $\mathbb{P}(A \mid B) \ge 0$.
- (2) $\mathbb{P}(\underline{B}_{S^*} \mid B) = 1.$

(3) If $A_1, A_2, ...$ are pairwise mutually exclusive, then

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_i\mid B\right) = \frac{\mathbb{P}\left(\left(\bigcup_{i=1}^{\infty}A_i\right)\cap B\right)}{\mathbb{P}(B)} = \frac{\mathbb{P}\left(\bigcup_{i=1}^{\infty}\left(A_i\cap B\right)\right)}{\mathbb{P}(B)} = \frac{\sum_{i=1}^{\infty}\mathbb{P}(A_i\cap B)}{\mathbb{P}(B)} = \sum_{i=1}^{\infty}\mathbb{P}(A_i\mid B).$$

Proposition 1.2 (Law of Total Probability).

Suppose $B_1, B_2, ..., B_n$ is a collection of <u>mutually exclusive</u> and <u>exhaustive</u> events (i.e. $\bigcup_{i=1}^{n} B_i = S$). Then,

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(B_i) \mathbb{P}(A \mid B_i).$$

Proof. Since events $A \cap B_1, A \cap B_2, \dots, A \cap B_n$ mutually exclusive. Then,

$$\mathbb{P}(A) = \mathbb{P}(A \cap S) = \mathbb{P}\left(A \cap \left(\bigcup_{i=1}^{n} B_{i}\right)\right)$$

$$= \mathbb{P}\left(\bigcup_{i=1}^{n} (A \cap B_{i})\right)$$

$$= \sum_{i=1}^{n} \mathbb{P}(A \cap B_{i})$$

$$= \sum_{i=1}^{n} \mathbb{P}(B_{i})\mathbb{P}(A \mid B_{i}).$$

Example. An insurance company divides people into two groups, accident-prone and those who are not. For those accident-prone people, the chance of having an accident in a year is 0.4. For those who are not, the chance is 0.2. Suppose 30% of customers are accident-prone, what is the probability that a new policy holder will have a claim within a year?

Proof. Define $A = \{\text{have a claim}\}$, $B_1 = \{\text{accident-prone}\}$, and $B_2 = \{\text{not accident-prone}\}$. Note that $B_1 \cap B_2 = \emptyset$ and $B_1 \cup B_2 = S$, so B_1 and B_2 is a partition of S. Then,

$$\mathbb{P}(A) = \mathbb{P}(A \mid B_1) \cdot \mathbb{P}(B_1) + \mathbb{P}(A \mid B_2) \cdot \mathbb{P}(B_2) = 0.4 \cdot 0.3 + 0.2 \cdot 0.7 = 0.26.$$

Definition 1.6 (Independent Events).

Suppose A and B are events defined on S. A and B are **independent events** if

$$\mathbb{P}(A \mid B) = P(A)$$
 OR $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

Definition 1.7 (Mutually Independent Events).

Suppose A_1, \ldots, A_n are events defined on S. We say that A_1, \ldots, A_n are **mutually independent** if for any i_1, \ldots, i_k from $\{1, \ldots, n\}$, we have

$$\mathbb{P}(A_{i_1} \cap \cdots \cap A_{i_k}) = \mathbb{P}(A_{i_1}) \cdots \mathbb{P}(A_{i_k}).$$

Example. Tossing a fair coin twice. Let $S = \{HH, HT, TH, TT\}$ and that $\mathbb{P}_i = \frac{1}{4}$ for i = 1, 2, 3, 4. Note that this is a p.s.f. Let $A_1 = \{H \text{ on 1st toss}\}$, $A_2 = \{H \text{ on 2nd toss}\}$, and $B = \{\text{exactly 1 H and 1 T}\}$.

$$\mathbb{P}(A_1) = \mathbb{P}(A_2) = \mathbb{P}(B) = \frac{1}{2}.$$

Next,

$$\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1 \cap B) = \mathbb{P}(A_2 \cap B) = \frac{1}{4}.$$

However, $\mathbb{P}(A_1 \cap A_2 \cap B) = 0 \neq \mathbb{P}(A_1)\mathbb{P}(A_2)\mathbb{P}(B)$, so A_1, A_2, B are <u>pairwise independent</u> but not mutually independent.

Theorem 1.3 (Bayes' Theorem).

Suppose B_1, \ldots, B_n is a partition of S, then for any event A, we have

$$\mathbb{P}(B_i \mid A) = \frac{\mathbb{P}(B_i)\mathbb{P}(A \mid B_i)}{\sum_{j=1}^{n} \mathbb{P}(B_j)\mathbb{P}(A \mid B_j)}.$$

Proof. We have
$$\mathbb{P}(B_i \mid A) = \frac{\mathbb{P}(B_i \cap A)}{\mathbb{P}(A)} = \frac{\mathbb{P}(B_i)\mathbb{P}(A \mid B_i)}{\sum_{j=1}^n \mathbb{P}(B_j)\mathbb{P}(A \mid B_j)}$$
.

Example. John and Michelle communicate through emails. They agree that they will reply on the same day once they receive an email from each other. Due to a bad server, out of n emails, there will be one that cannot reach the destination on the same day. Now, John sends an email to Michelle, but did not receive a reply on the same day. What is the probability that Michelle receives John's email?

Proof. Use a tree diagram. Let $A = \{Michelle receives email\}$ and $B = \{John receives response\}$. Then,

$$\mathbb{P}(A \mid B^{c}) = \frac{\mathbb{P}(A)\mathbb{P}(B^{c} \mid A)}{\mathbb{P}(A)\mathbb{P}(B^{c} \mid A) + \mathbb{P}(A^{c})\mathbb{P}(B^{c} \mid A^{c})} = \frac{\frac{n-1}{n} \cdot \frac{1}{n}}{\frac{n-1}{n} \cdot \frac{1}{n} + \frac{1}{n} \cdot 1} = \frac{n-1}{2n-1}.$$

2 Random Variables

2.1 Random Variables

Definition 2.1 (Random Variable).

A **random variable** is a function from a sample space S to \mathbb{R} , i.e. $X: S \to \mathbb{R}$, such that $\mathbb{P}(X \le x)$ is defined for all $x \in \mathbb{R}$.

Remark. $X \le x$ is an abbreviation for the event $\{\omega \in S : X(\omega) \le x\}$.

Example. Tossing a fair coin three times. Let X = number of heads. Then,

$$X:S\to\mathbb{R}$$

where $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$. Consider $A = \{X \le 1\} = \{\omega \in S : X(\omega) \le 1\}$. Then,

$$\begin{split} \mathbb{P}_X(A) &= \mathbb{P}_S\left(\{\omega \in S : X(\omega) \leq 1\}\right) \\ &= \mathbb{P}_S\left(\{HTT, TTH, THT.TTT\}\right) \\ &= \frac{4}{8} = \frac{1}{2}. \end{split}$$

Remark. The sample space S and the probability set function induce the probability on the random variable X. From above example,

$$\mathbb{P}(X = 0) = \mathbb{P}(\{\omega \in S : X(\omega) = 0\}) = \frac{1}{8}$$

$$\mathbb{P}(X = 1) = \mathbb{P}(\{\omega \in S : X(\omega) = 1\}) = \frac{3}{8}$$

$$\mathbb{P}(X = 2) = \mathbb{P}(\{\omega \in S : X(\omega) = 2\}) = \frac{3}{8}$$

$$\mathbb{P}(X = 3) = \mathbb{P}(\{\omega \in S : X(\omega) = 3\}) = \frac{1}{8}$$

The probability mass function:

Definition 2.2 (Cumulative Distribution Function (CDF)).

The **cumulative distribution function** (CDF) of a random variable *X* is defined as

$$F(x) = \mathbb{P}(X \le x)$$
 for all $x \in \mathbb{R}$

and $F(x): \mathbb{R} \to [0,1]$.

Proposition 2.1 (Properties of CDF).

- (1) F(x) is non-decreasing, i.e., $F(x_1) \le F(x_2)$, $\forall x_1 < x_2$.
- (2) $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$.
- (3) F(x) is a right-continuous function, i.e., $\lim_{x \to a^+} F(x) = F(a)$.

Proof.

(1) Let $x_1 < x_2$. Then, $\{\omega : X(\omega) \le x_1\} \subseteq \{\omega : X(\omega) \le x_2\}$. Thus, by the property of probability set function,

$$\mathbb{P}(\{\omega: X(\omega) \leq x_1\}) \leq \mathbb{P}(\{\omega: X(\omega) \leq x_2\}) \iff \mathbb{P}(X \leq x_1) \leq \mathbb{P}(X \leq x_2) \iff F(x_1) \leq F(x_2).$$

- (2) Not a rigorous proof: As $x \to -\infty$, $\{\omega : X(\omega) \le x\} \to \emptyset \implies \mathbb{P}(X \le x) \to 0$. As $x \to \infty$, $\{\omega : X(\omega) \le x\} \to S \implies \mathbb{P}(X \le x) \to 1$.
- (3) See Prof's notes.

Remark.

- (1) If we define $F(x) = \mathbb{P}(X < x)$, then F is left-continuous.
- (2) Any function F(x) satisfying (1), (2), (3) is a valid CDF of some random variable.

Definition 2.3 (Discrete Random Variable).

If *S* is discrete (i.e. finite or countable), then *X* is a **discrete random variable**.

Remark. F(x) is a right-continuous step function.

Example. Tossing a fair coin three times with X = number of heads. Then

$$F(x) = \mathbb{P}(X \le x) = \begin{cases} 0 & x < 0 \\ \frac{1}{8} & 0 \le x < 1 \\ \frac{1}{2} & 1 \le x < 2 \\ \frac{7}{8} & 2 \le x < 3 \\ 1 & x \ge 3 \end{cases}$$

Definition 2.4 (Probability Mass Function (PMF)).

If X is a discrete random variable, then the **probability mass function** (PMF) of X is given by

$$f(x) = \mathbb{P}(X = x) = F(x) - \lim_{\epsilon \to 0^+} F(x - \epsilon) = F(x) - \lim_{a \to x^-} F(a).$$

Remark. If we can write all possible values of X in an increasing order, i.e. $x_1 < x_2 < \cdots$, then

$$f(x_1) = F(x_1)$$
 and for any $i > 1$, $f(x_i) = F(x_i) - F(x_{i-1})$.

Remark. The set $A = \{x : f(x) > 0\}$ is called the **support** of X.

Example. In the above example, $A = \{0, 1, 2, 3\}$.

Proposition 2.2 (Properties of PMF).

Let f be a PMF of a discrete random variable $X \iff$ the following hold.

- (1) $f(x) \ge 0$ for all $x \in \mathbb{R}$.
- (2) $\sum_{x \in A} f(x) = 1$.

Proof. Show: If f is a PMF, then $\sum_{x \in A} f(x) = 1$.

$$\sum_{x \in A} f(x) = \sum_{x_i \in A} \mathbb{P}(X = x_i) = \mathbb{P}\left(\bigcup_{i=1}^{\infty} \{X = x_i\}\right) = \mathbb{P}(S) = 1.$$

Example. Show that $f(x) = \frac{\mu^x e^{-\mu}}{x!}$, x = 0, 1, ... and $\mu > 0$ is a PMF.

- (1) $\frac{\mu^x e^{-\mu}}{x!} \ge 0$ for all x = 0, 1, ...(2) $\sum_{x=0}^{\infty} \frac{\mu^x e^{-\mu}}{x!} = e^{-\mu} \sum_{x=0}^{\infty} \frac{\mu^x}{x!} = e^{-\mu} e^{\mu} = 1.$

Definition 2.5 (Continuous Random Variable).

Suppose *X* is a random variable with CDF *F*. If *F* is a continuous function for all $x \in \mathbb{R}$ and *F* is differentiable except possibly at countably many points, then X is a **continuous random** variable.

Lecture 4, 2025/01/15

Example. Recall the example of tossing a coin three times with X = number of heads. We have

$$\mathbb{P}(X=1) = \mathbb{P}(X \le 1) - \mathbb{P}(X < 1) = F(1) - \lim_{a \to 1^{-}} F(a) = \frac{1}{2} - \frac{1}{8} = \frac{3}{8}.$$

Definition 2.6 (Probability Density Function (PDF)).

If X is a continuous random variable with CDF F(x), then the **probability density function** (\mathbf{PDF}) of X is defined as

$$f(x) = F'(x) = \frac{\mathrm{d}}{\mathrm{d}x}F(x)$$

if F is differentiable at x, and otherwise, we define f(x) = 0.

Example (Uniform Distribution).

Let
$$F(x) = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a < x < b \end{cases}$$
. Then, $f(x) = F'(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$.

In this case, the support of X is A = (a, b).

Note. F is not differentiable at x = a and x = b.

Proposition 2.3 (Properties of f(x)).

f(x) is the PDF for some continuous random variable $X \iff (1)$ and (2) hold.

- (1) $f(x) \ge 0$ for all $x \in \mathbb{R}$.
- $(2) \int_{-\infty}^{\infty} f(x) \, dx = 1.$
- (3) $f(x) = \lim_{h \to 0} \frac{F(x+h) F(x)}{h}$ if the limit exists.

 (4) $F(x) = \int_{-\infty}^{x} f(t) dt, x \in \mathbb{R}.$
- (5) $\mathbb{P}(a < X \le b) = \mathbb{P}(X \le b) \mathbb{P}(X \le a) = \int_{-\infty}^{b} f(t) dt \int_{-\infty}^{a} f(t) dt = \int_{a}^{b} f(t) dt.$
- (6) $\mathbb{P}(X=b) = F(b) \lim_{a \to b^{-}} F(a) = F(b) F(b) = 0$ since the CDF is continuous every-
- (7) $\mathbb{P}(a < X \le b) = \mathbb{P}(a \le X < b) = \mathbb{P}(a < X < b) = \mathbb{P}(a \le X \le b)$. That is, $\mathbb{P}(X \in A) = \int_{A} f(x) \, dx.$

Example. Consider the function $f(x) = \frac{\theta}{x^{\theta+1}}$ for $x \ge 1$. For what values of θ is f(x) a PDF? *Proof.* We check the first two conditions.

(1)
$$f(x) \ge 0$$
 for all $x \ge 1$.

(1)
$$f(x) \ge 0$$
 for all $x \ge 1$.
(2) $\int_{1}^{\infty} \frac{\theta}{x^{\theta+1}} dx = -x^{-\theta} \Big|_{1}^{\infty} = -\lim_{b \to \infty} \frac{1}{b^{\theta}} - (-1) = 1 \implies \theta > 0$.

Functions of Random Variables

Distribution of Functions of a Random Variable

· CDF technique.

Suppose X is a continuous random variable with PDF f(x) and CDF F(x) and we wish to find the PDF of Y = h(X) where h is a real-valued function.

Example. If $Z \sim N(0, 1)$, find the PDF of $Y = Z^2$.

Proof. Let

$$G(y) = \mathbb{P}(Y \le y) = \mathbb{P}(Z^2 \le y)$$

$$= \mathbb{P}(-\sqrt{y} \le Z \le \sqrt{y})$$

$$= F(\sqrt{y}) - F(-\sqrt{y})$$

$$= \int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$

$$= 2 \int_0^{\sqrt{y}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz.$$

Then,

$$g(y) = G'(y) = \frac{2}{\sqrt{2\pi}} \frac{d}{dy} \left(\int_0^{\sqrt{y}} e^{-\frac{z^2}{2}} dz \right)$$
$$= \frac{2}{\sqrt{2\pi}} e^{-\frac{(\sqrt{y})^2}{2}} \frac{1}{2\sqrt{y}}$$
$$= \frac{1}{\sqrt{2\pi y}} e^{-\frac{y}{2}}, \quad y > 0.$$

Theorem 2.4 (One-to-One Transformation of a Discrete Random Variable).

Suppose *X* is a discrete random variable with PMF f(x) and Y = h(X) is a one-to-one transformation of X ($X = h^{-1}(Y)$). Then, the PMF of *Y* is given by

$$g(y) = f(h^{-1}(y))$$
 for $y \in B$

where $B = \{y : g(y) > 0\}.$

Proof. Note that $g(y) = \mathbb{P}(Y = y) = \mathbb{P}(h(X) = y) = \mathbb{P}(X = h^{-1}(y)) = f(h^{-1}(y))$ for $y \in B$.

Example. Let $X \sim NB(r, p)$ be the number of trials required to obtain r successes in repeated independent Bernoulli trials. Then

$$f(x) = \mathbb{P}(X = x) = {x-1 \choose r-1} p^r (1-p)^{x-r}, \quad x = r, r+1, \dots$$

Let Y = h(X) = X - r be the number of failures before the rth success. Then

$$g(y) = \mathbb{P}(Y = y) = \mathbb{P}(X = y + r) = {y + r - 1 \choose r - 1} p^r (1 - p)^y, \quad y = 0, 1, \dots.$$

Lecture 5, 2025/01/20

Theorem 2.5 (One-to-One Transformation of a Continuous Random Variable).

Suppose *X* is a continuous random variable with PDF f(x) and support $A = \{x : f(x) > 0\}$ and Y = h(X), where *h* is one-to-one. Let *g* be the PDF of *Y*, then

$$g(y) = f(h^{-1}(y)) \left| \frac{\mathrm{d}}{\mathrm{d}y} h^{-1}(y) \right| \quad \text{for } y \in B$$

where $B = \{y : g(y) > 0\}$ is the support of Y.

Proof. Since h(x) is one-to-one, it is either monotonically increasing or monotonically decreasing.

(1) If h is increasing for $x \in A$, then h^{-1} is also increasing for $y \in B$ and $\frac{d}{dy}h^{-1}(y) > 0$. Then,

$$G(y)=\mathbb{P}(Y\leq y)=\mathbb{P}(X\leq h^{-1}(y))=F(h^{-1}(y)).$$

Then,

$$g(y) = G'(y) = f(h^{-1}(y)) \frac{d}{dy} h^{-1}(y) = f(h^{-1}(y)) \left| \frac{d}{dy} h^{-1}(y) \right| \quad \text{for } y \in B.$$

(2) If h is decreasing for $x \in A$, then h^{-1} is also decreasing for $y \in B$ and $\frac{d}{dy}h^{-1}(y) < 0$. Then,

$$G(y) = \mathbb{P}(Y \le y) = \mathbb{P}(X \ge h^{-1}(y)) = 1 - F(h^{-1}(y)).$$

And,

$$g(y) = G'(y) = -f(h^{-1}(y))\frac{\mathrm{d}}{\mathrm{d}y}h^{-1}(y) = f(h^{-1}(y))\left|\frac{\mathrm{d}}{\mathrm{d}y}h^{-1}(y)\right| \quad \text{for } y \in B.$$

Example. Find the PDF of $Y = \ln(X)$ where X is a continuous random variable with $f(x) = \frac{\theta}{x^{\theta+1}}$ for $x \ge 1$ and $\theta > 0$.

Proof. Let $h(X) = \ln(X)$ and $h^{-1}(Y) = e^{Y}$ for $y \ge 0$. Then,

$$g(y) = f(e^y) \left| \frac{\mathrm{d}}{\mathrm{d}y} e^y \right| = \frac{\theta}{(e^y)^{\theta + 1}} e^y = \theta e^{-(\theta + 1)y} e^y = \frac{\theta}{e^{y\theta}} \quad \text{for } y \ge 0.$$

Theorem 2.6 (Probability Integral Transformation).

If *X* is a continuous random variable with CDF *F* and *F* is strictly increasing, then $Y = F(X) \sim \text{Unif}(0, 1)$. Y = F(X) is called the **probability integral transformation**.

Proof. Note that

$$\mathbb{P}(Y \le y) = \mathbb{P}(F(X) \le y) = \mathbb{P}(X \le F^{-1}(y)) = F(F^{-1}(y)) = y \text{ for } 0 \le y \le 1.$$

Therefore, $Y \sim \text{Unif}(0,1)$.

Remark. Suppose we generate U_1, \ldots, U_n independently from Unif(0,1) by a computer. Then, $F^{-1}(U_1), \ldots, F^{-1}(U_n)$ are independent observations from F.

Example. If we want to generate random variables from $\text{Exp}(\lambda)$, where λ is the rate parameter, and $F(x) = 1 - e^{-\lambda x}$ for $x \ge 0$. So, $F^{-1}(u) = -\frac{\ln(1-u)}{\lambda}$ for $u \in [0,1]$. The steps are:

- 1. Generate U_1, \dots, U_n independently and identically from Unif(0, 1).
- 2. Compute $X_i = -\frac{\ln(1-U_i)}{\lambda}$ for $i=1,\ldots,n$, where $X_i \sim \text{Exp}(\lambda)$ for $i=1,\ldots,n$ independently and identically.

3 Expectation and Moment Generating Functions

3.1 Expectation

Definition 3.1 (Expectation). If X is a discrete random variable with PMF f(x) and support A, then the **expectation** of X is

$$\mathbb{E}\left[X\right] = \sum_{x \in A} x f(x)$$

provided that the sum converges absolutely, i.e. $\mathbb{E}|X| = \sum_{x \in A} |x| f(x) < \infty$.

If *X* is a continuous random variable with PDF f(x), then the **expectation** of *X* is

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f(x) \, dx$$

provided that the integral converges absolutely, i.e. $\mathbb{E}|X| = \int_{-\infty}^{\infty} |x| f(x) dx < \infty$.

Note. Intuitively, if the sum or integral does not converge absolutely, then the extreme values of x will dominate the expectation and there will be no meaningful interpretation of the central tendency.

Example. Let $f(x) = \frac{\theta}{x^{\theta+1}}$ for $x \ge 1$ and $\theta > 0$. Find $\mathbb{E}[X]$. For what values of θ does the expectation exist?

Proof. Note that

$$\mathbb{E}|X| = \mathbb{E}\left[X\right] = \int_{1}^{\infty} \frac{\theta x}{x^{\theta+1}} \, dx = \theta \int_{1}^{\infty} \frac{1}{x^{\theta}} \, dx = \theta \left[\frac{x^{1-\theta}}{1-\theta}\right]_{1}^{\infty} = \frac{\theta}{1-\theta} \lim_{b \to \infty} (b^{1-\theta} - 1).$$

We want this to be $<\infty$, so we need $1-\theta<0\implies\theta>1$. Hence, the expectation exists if $\theta>1$ and $\mathbb{E}[X]=-\frac{\theta}{1-\theta}$.

Example (Standard Cauchy Distribution does not have an expectation).

Let *X* follow a standard Cauchy distribution, i.e. $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$. Find $\mathbb{E}[X]$.

Proof. Note that

$$\mathbb{E}|X| = \int_{-\infty}^{\infty} \frac{|x|}{\pi} \frac{1}{1+x^2} \, dx = 2 \int_{0}^{\infty} \frac{1}{\pi} \frac{x}{1+x^2} \, dx = \frac{2}{\pi} \frac{\ln(1+x^2)}{2} \Big|_{0}^{\infty} = \infty.$$

Therefore, $\mathbb{E}[X]$ does not exist!

Example. Suppose X is a non-negative continuous random variable with CDF F(x) and $\mathbb{E}[X] < \infty$. Show that $\mathbb{E}[X] = \int_0^\infty [1 - F(x)] dx$.

Proof. Note that

$$\int_0^\infty [1 - F(x)] dx = \int_0^\infty \mathbb{P}(X > x) dx$$

$$= \int_0^\infty \int_x^\infty f_x(y) dy dx$$

$$= \int_0^\infty \int_0^y f_x(y) dx dy$$

$$= \int_0^\infty (y - 0) f_x(y) dy$$

$$= \int_0^\infty y f_x(y) dy = \mathbb{E}[X].$$

Lecture 6, 2025/01/22

Definition 3.2 (Expectation of a Function of X).

If X is discrete with PMF f(x) and support A, then,

$$\mathbb{E}\left[h(X)\right] = \sum_{x \in A} h(x)f(x)$$

provided that the sum converges absolutely, i.e. $\mathbb{E}|h(X)| = \sum_{x \in A} |h(x)| f(x) < \infty$.

If *X* is continuous with PDF f(x), then

$$\mathbb{E}[h(X)] = \int_{-\infty}^{\infty} h(x)f(x) dx$$

provided that the integral converges absolutely, i.e. $\mathbb{E}|h(X)|=\int_{-\infty}^{\infty}|h(x)|f(x)\,dx<\infty.$

Proposition 3.1 (Linearity of Expectation).

$$\mathbb{E}\left[ag(X) + bh(X)\right] = a\mathbb{E}\left[g(X)\right] + b\mathbb{E}\left[h(X)\right].$$

Proof. Assume that *X* is continuous for illustration. Then

$$\mathbb{E}\left[ag(X) + bh(X)\right] = \int_{-\infty}^{\infty} (ag(x) + bh(x))f(x) dx$$
$$= a \int_{-\infty}^{\infty} g(x)f(x) dx + b \int_{-\infty}^{\infty} h(x)f(x) dx$$
$$= a\mathbb{E}\left[g(X)\right] + b\mathbb{E}\left[h(X)\right].$$

Remark. $\mathbb{E}\left[\frac{g(X)}{h(X)}\right] \neq \frac{\mathbb{E}[g(X)]}{\mathbb{E}[h(X)]}$.

Proposition 3.2 (Special Expectations).

- (1) Variance: $\operatorname{Var}(X) = \mathbb{E}\left[(X \mu)^2\right] = \mathbb{E}\left[X^2\right] \mu^2$, where $\mu = \mathbb{E}\left[X\right]$.
- (2) k^{th} moment (about the origin): $\mathbb{E}[X^k]$.
- (3) k^{th} moment (about the mean): $\mathbb{E}[(X \mu)^k]$.

Note. $\operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X)$ and $\mathbb{E}[X^2] = \operatorname{Var}(X) + \mu^2$.

Theorem 3.3 (Markov's Inequality).

Suppose X is a random variable. Then

$$\mathbb{P}(|X| \ge c) \le \frac{\mathbb{E}|X|^k}{c^k} \quad \text{for all } k, c > 0.$$

Proof. We have

$$\frac{\mathbb{E}|X|^k}{c^k} = \int_{-\infty}^{\infty} \left| \frac{x}{c} \right|^k f(x) dx$$

$$= \int_{\left|\frac{x}{c}\right| \ge 1} \left| \frac{x}{c} \right|^k f(x) dx + \int_{\left|\frac{x}{c}\right| < 1} \left| \frac{x}{c} \right|^k f(x) dx$$

$$\ge \int_{\left|\frac{x}{c}\right| \ge 1} \left| \frac{x}{c} \right|^k f(x) dx$$

$$\ge \int_{\left|\frac{x}{c}\right| \ge 1} f(x) dx$$

$$= \mathbb{P}(|X| \ge c) \quad \text{for } c > 0.$$

Theorem 3.4 (Chebyshev's Inequality).

Suppose *X* is a random variable with finite mean μ and finite variance σ^2 . Then for any k > 0,

$$\mathbb{P}(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}.$$

Proof. By Markov's Inequality, we have

$$\mathbb{P}(|X - \mu| \ge k\sigma) \le \frac{\mathbb{E}|X - \mu|^2}{(k\sigma)^2} = \frac{\mathrm{Var}(X)}{k^2\sigma^2} = \frac{1}{k^2}.$$

Note. In particular,

$$\mathbb{P}(|X - \mu| \le 2\sigma) \ge 1 - \frac{1}{2^2} = \frac{3}{4}.$$

$$\mathbb{P}(|X - \mu| \le 3\sigma) \ge 1 - \frac{1}{3^2} = \frac{8}{9}.$$

Example. From below table of PMF,

we have $\mu=\mathbb{E}\left[X\right]=0$ and $\sigma^2=\mathrm{Var}\left(X\right)=\mathbb{E}\left[X^2\right]-\mu^2=\frac{1}{4}.$ By Chebyshev's Inequality,

$$\mathbb{P}(|X| \ge 1) = \mathbb{P}(|X - 0| \ge 2 \cdot \frac{1}{2}) \le \frac{1}{2^2} = \frac{1}{4}.$$

Proposition 3.5 (Degenerate Distribution).

If $\mu = \mathbb{E}[X]$ and Var(X) = 0, then we have $\mathbb{P}(X = \mu) = 1$ and X is said to have a **degenerate** distribution.

Proof. Look at the event $\{X \neq \mu\} = \bigcup_{i=1}^{\infty} \{|X - \mu| \ge \frac{1}{i}\}$. Then,

$$\begin{split} \mathbb{P}(X \neq \mu) &= \mathbb{P}\left(\bigcup_{i=1}^{\infty} \left\{ |X - \mu| \geq \frac{1}{i} \right\} \right) \leq \sum_{i=1}^{\infty} \mathbb{P}\left(|X - \mu| \geq \frac{1}{i}\right) \quad \text{by Boole's Inequality.} \\ &\leq \sum_{i=1}^{\infty} \frac{\mathbb{E}|X - \mu|^2}{\left(\frac{1}{i}\right)^2} \quad \text{by Markov's Inequality} \\ &= \sum_{i=1}^{\infty} i^2 \operatorname{Var}(X) = 0. \end{split}$$

$\label{proposition 3.6} \textbf{(Variance Stabilizing Transformation)}.$

Suppose X is a random variable with $\mathbb{E}[X] = \theta$, $Var(X) = \sigma^2(\theta)$ (a function of $\mathbb{E}[X]$). We aim to find Y = g(X) such that Var(Y) is a constant.

Let Y = g(X), where g is differentiable. By the linear approximation,

$$Y = g(X) \approx g(\theta) + g'(\theta)(X - \theta).$$

Therefore, $\mathbb{E}[Y] \approx g(\theta) + g'(\theta)(\mathbb{E}[X] - \theta) = g(\theta)$ and $\text{Var}(Y) \approx g'(\theta)^2 \text{Var}(X) = (g'(\theta)\sigma(\theta))^2$. If we want Var(Y) to be a constant, then we need $g'(\theta)\sigma(\theta) = k$ for some constant k. That is,

$$g'(\theta) = \frac{k}{\sigma(\theta)}$$
 this is how we pick g.

Example. If $X \sim \text{Exp}(\theta)$, where $\theta = \frac{1}{\lambda}$ is a scale parameter, then show that $Y = g(X) = \ln(X)$ has approximately constant variance.

Proof. Note that $f(x) = \frac{1}{\theta}e^{-x/\theta}$ for $x, \theta > 0$. Then,

$$\mathbb{E}[X] = \int_0^\infty x \frac{1}{\theta} e^{-x/\theta} dx \quad \text{let } y = \frac{x}{\theta}$$

$$= \int_0^\infty y \theta \frac{1}{\theta} e^{-y} \theta dy$$

$$= \theta \int_0^\infty y e^{-y} dy$$

$$= \theta \Gamma(2) = \theta.$$

Recall that $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx = (\alpha - 1)!$, for $\alpha = 1, 2, ...$ Also,

- (1) $\Gamma(1) = 1$.
- (2) $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.
- (3) $\Gamma(m) = (m-1)\Gamma(m-1)$ for m > 1.

Then,

$$\mathbb{E}[X^{2}] = \int_{0}^{\infty} x^{2} \frac{1}{\theta} e^{-x/\theta} dx = \int_{0}^{\infty} y^{2} \theta^{2} \frac{1}{\theta} e^{-y} \theta dy = \theta^{2} \Gamma(3) = \theta^{2} \cdot 2! = 2\theta^{2}.$$

Therefore, $\operatorname{Var}(X) = \mathbb{E}\left[X^2\right] - \mu^2 = 2\theta^2 - \theta^2 = \theta^2$. Hence, $\sigma(\theta) = \theta$ and $g'(\theta) = \frac{1}{\theta}$. Therefore, $\operatorname{Var}(Y) \approx g'(\theta)^2 \operatorname{Var}(X) = \frac{1}{\theta^2} \cdot \theta^2 = 1$.

Lecture 7, 2025/01/27

Example. If $X \sim \text{Poisson}(\theta)$, then show that $Y = g(X) = \sqrt{X}$ has approximately constant variance

Proof. Note that
$$\mathbb{E}[X] = \theta = \operatorname{Var}(X)$$
. Also, $g'(x) = \frac{1}{2\sqrt{x}} \implies g'(\theta) = \frac{1}{2\sqrt{\theta}}$. Therefore, $\operatorname{Var}(Y) \approx g'(\theta)^2 \operatorname{Var}(X) = \frac{1}{4\theta} \cdot \theta = \frac{1}{4}$.

3.2 Moment Generating Functions

Definition 3.3 (Moment Generating Function).

If *X* is a random variable, then $M(t) = \mathbb{E}\left[e^{tX}\right]$ is the **moment generating function** (MGF) of *X* if the expectation exists for all $t \in (-h, h)$ for some h > 0.

Remark. The value of *t* for which the expectation exists should always be stated.

Example. If $X \sim \text{Gamma}(\alpha, \beta)$, then find M(t).

Proof. Note that $f(x) = \frac{1}{\beta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{\frac{-x}{\beta}}$ for $x, \alpha, \beta > 0$ where α is the shape parameter and β is the rate parameter.

Now,

$$\begin{split} M(t) &= \mathbb{E}\left[e^{tX}\right] = \int_{0}^{\infty} e^{tx} \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{\frac{-x}{\beta}} \, dx \\ &= \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \int_{0}^{\infty} x^{\alpha - 1} e^{-\left(\frac{1}{\beta} - t\right)x} \, dx \quad \text{let } y = \left(\frac{1}{\beta} - t\right)x \\ &= \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \int_{0}^{\infty} \left(\frac{y}{\frac{1}{\beta} - t}\right)^{\alpha - 1} e^{-y} \frac{1}{\frac{1}{\beta} - t} \, dy \\ &= \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \left(\frac{1}{\frac{1}{\beta} - t}\right)^{\alpha} \int_{0}^{\infty} y^{\alpha - 1} e^{-y} \, dy \\ &= \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \left(\frac{1}{\frac{1}{\beta} - t}\right)^{\alpha} \Gamma(\alpha) \\ &= \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \cdot \frac{\beta^{\alpha}}{(1 - \beta t)^{\alpha}} \cdot \Gamma(\alpha) \\ &= \frac{1}{(1 - \beta t)^{\alpha}}, \quad \frac{1}{\beta} - t > 0 \implies t < \frac{1}{\beta}. \end{split}$$

Example. Find $M_Z(t)$ for $Z \sim N(0, 1)$.

Proof. We have

$$\begin{split} M_Z(t) &= \mathbb{E}\left[e^{tZ}\right] = \int_{-\infty}^{\infty} e^{tz} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \, dz \\ &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2} + tz} \, dz \\ &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(z-t)^2} e^{\frac{t^2}{2}} \, dz \\ &= e^{\frac{t^2}{2}} \underbrace{\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(z-t)^2} \, dz}_{\text{PDF of N}(t,1)} \\ &= e^{\frac{t^2}{2}} \cdot 1 = e^{\frac{t^2}{2}}, \quad t \in \mathbb{R}. \end{split}$$

Example. Let $X \sim \text{NB}(r, p)$ be the number of failures before obtaining r successes. Note that $\mathbb{P}(X = x) = {x+r-1 \choose r-1} p^r (1-p)^x$ for x = 0, 1, 2, ..., 0 . Find <math>M(t).

Proof. X is a discrete random variable. Then

$$M(t) = \mathbb{E}\left[e^{tX}\right] = \sum_{x=0}^{\infty} e^{tx} \binom{x+r-1}{r-1} p^r (1-p)^x$$
$$= \sum_{x=0}^{\infty} \binom{x+r-1}{r-1} p^r (e^t (1-p))^x$$

Note. Power series fact: $\sum_{i=0}^{\infty} \binom{i+r-1}{r-1} p^i = (1-p)^{-r}, 0$

$$= p^{r} (1 - e^{t} (1 - p))^{-r}$$
$$= \left(\frac{p}{1 - e^{t} (1 - p)}\right)^{r}$$

where $0 < e^{t}(1-p) < 1 \implies t < -\ln(1-p)$.

Theorem 3.7. Suppose *X* has MGF $M_X(t)$ for $t \in (-h, h)$. Let Y = aX + b where $a \neq 0$. Then, the MGF of *Y* is

$$M_Y(t) = e^{bt} M_X(at), \quad |t| < \frac{h}{|a|}.$$

Proof. We have
$$M_Y(t) = \mathbb{E}\left[e^{t(aX+b)}\right] = e^{bt}\mathbb{E}\left[e^{atX}\right] = e^{bt}M_X(at)$$
, for $|at| < h \implies |t| < \frac{h}{|a|}$.

Example. Let
$$Z \sim N(0,1)$$
 and $X \sim N(\mu, \sigma^2)$. Find $M_X(t)$.

Proof.
$$X = \sigma Z + \mu$$
. Then, $M_X(t) = e^{\mu t} M_Z(\sigma t) = e^{\mu t} e^{\frac{1}{2}\sigma^2 t^2} = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$, for $t \in \mathbb{R}$.

Lecture 8, 2025/01/29 ___

Note. Cauchy distribution does not have an MGF.

Theorem 3.8. Suppose *X* has an MGF M(t) defined for $t \in (-h, h)$. Then, M(0) = 1 and

$$M^{(k)}(0) = \frac{\mathrm{d}^k}{\mathrm{d}t^k} M(t) \Big|_{t=0} = \mathbb{E}\left[X^k\right]$$

for k = 1, 2,

Note. We use this theorem to compute moments of X.

Proof. We will prove the case when *X* is a continuous random variable, the discrete case is similar.

$$M(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$$

$$\implies M^{(k)}(t) = \frac{d^k}{dt^k} \int_{-\infty}^{\infty} e^{tx} f(x) dx$$

$$= \int_{-\infty}^{\infty} \frac{d^k}{dt^k} e^{tx} f(x) dx$$

$$= \int_{-\infty}^{\infty} x^k e^{tx} f(x) dx$$

$$\implies M^{(k)}(0) = \int_{-\infty}^{\infty} x^k f(x) dx = \mathbb{E}[X^k].$$

Example. If $X \sim \text{Gamma}(\alpha, \beta)$, then $M(t) = (1 - \beta t)^{-\alpha}$ for $t < \frac{1}{\beta}$. Find $\mathbb{E}[X^k]$.

Proof. Note that M(0) = 1 and

$$\begin{split} \mathbb{E}\left[X\right] &= M'(0) = -\alpha(1-\beta t)^{-\alpha-1}(-\beta)\Big|_{t=0} = \alpha\beta(1-\beta t)^{-\alpha-1}\Big|_{t=0} = \alpha\beta \\ \mathbb{E}\left[X^2\right] &= M''(0) = \alpha\beta(-\alpha-1)(1-\beta t)^{-\alpha-2}(-\beta)\Big|_{t=0} = (\alpha+1)\alpha\beta^2 = \frac{\Gamma(\alpha+2)}{\Gamma(\alpha)}\beta^2 \\ &\vdots \\ \mathbb{E}\left[X^k\right] &= \frac{\Gamma(\alpha+k)}{\Gamma(\alpha)}\beta^k. \end{split}$$

Proposition 3.9 (Maclaurin Series).

If we can obtain a Taylor series expansion for M(t) of X, then

$$M(t) = \sum_{k=0}^{\infty} \frac{M^{(k)}(0)}{k!} t^k = \sum_{k=0}^{\infty} \frac{\mathbb{E}[X^k]}{k!} t^k.$$

The coefficient of t^k is $\frac{\mathbb{E}[X^k]}{k!}$. Then, we can obtain $\mathbb{E}[X^k]$ by

 $\mathbb{E}\left[X^{k}\right]=k!\times \text{coefficient of }t^{k}\text{ in the Maclaurin series for }M(t).$

Example. Recall that the MGF of $X \sim \text{Gamma}(\alpha, \beta)$ is $(1 - \beta t)^{-\alpha}$ for $t < \frac{1}{\beta}$. Then

$$M(t) = (1 - \beta t)^{-\alpha}$$

$$= \sum_{k=0}^{\infty} {k + \alpha - 1 \choose \alpha - 1} (\beta t)^k \quad \text{power series fact}$$

$$= \sum_{k=0}^{\infty} {k + \alpha - 1 \choose \alpha - 1} \beta^k t^k.$$

$$\implies \mathbb{E}[X^k] = k! {k + \alpha - 1 \choose \alpha - 1} \beta^k$$

$$= k! \frac{(k + \alpha - 1)!}{k!(\alpha - 1)!} \beta^k$$

$$= \frac{\Gamma(\alpha + k)}{\Gamma(\alpha)} \beta^k.$$

Example. Let
$$M(t) = \frac{1+t}{1-t}$$
 for $|t| < 1$. Find $\mathbb{E}[X^k]$.

Proof. We have

$$M(t) = (1+t)\frac{1}{1-t}$$

$$= (1+t)\sum_{k=0}^{\infty} t^k$$

$$= \sum_{k=0}^{\infty} t^k + \sum_{k=0}^{\infty} t^{k+1}$$

$$= 1 + \sum_{k=1}^{\infty} 2t^k$$

$$\implies \mathbb{E}[X^k] = 2k! \quad \text{for } k = 1, 2, \dots$$

And,
$$\mathbb{E}\left[X^{0}\right] = 1$$
.

Remark. We talked about three approaches to find $\mathbb{E}[X^k]$: definition, $M^{(k)}(0)$, and Maclaurin series.

Theorem 3.10 (Uniqueness Theorem for MGFs). Suppose the random variable X has MGF $M_X(t)$ and Y has MGF $M_Y(t)$. Suppose also that $M_X(t) = M_Y(t)$ for all $t \in (-h, h)$ for some h > 0. Then, X and Y have the same distribution. That is,

$$\mathbb{P}(X \le s) = F_X(s) = F_Y(s) = \mathbb{P}(Y \le s)$$
 for all $s \in \mathbb{R}$.

Remark. The MGF uniquely determines the distribution of a random variable.

Example. If $X \sim \text{Exp}(1)$, then find the distribution of $Y = \beta x$ where $\beta > 0$.

Proof. Note that $X \sim \text{Gamma}(1,1)$. Then $M_X(t) = (1-t)^{-1}$ for t < 1. Also,

$$M_Y(t) = M_X(\beta t) = (1 - \beta t)^{-1} \quad \beta t < 1 \implies t < \frac{1}{\beta}$$

which is the MGF of Gamma(1, β) or Exp(β). By the Uniqueness Theorem, we have $Y \sim \text{Gamma}(1,\beta)$ or $Y \sim \text{Exp}(\beta)$.

Example (Example Proof of the Unique Theorem).

A naive example. Suppose *X* has the following PMF.

$$\begin{array}{c|cc} X & 0 & 1 \\ \hline f(x) & \frac{4}{10} & \frac{6}{10} \end{array}$$

Then, $M_X(t)=\mathbb{E}\left[e^{tX}\right]=\frac{4}{10}+\frac{6}{10}e^t$ for $t\in\mathbb{R}$. Now suppose we know $M_X(t)=\frac{4}{10}+\frac{6}{10}e^t$ for $t\in\mathbb{R}$. We want to get f(0) and f(1). Then

$$M_X(t) = f(0) \times 1 + f(1) \times e^t = \frac{4}{10} + \frac{6}{10}e^t, \quad t \in \mathbb{R}.$$

Question: what are f(0) and f(1)?

$$\left(\frac{6}{10} - f(1)\right)e^t - \left(\frac{4}{10} - f(0)\right) = 0, \quad t \in \mathbb{R}.$$

Then, $f(0) = \frac{4}{10}$ and $f(1) = \frac{6}{10}$.

Example (MGF and Moments for Uniform Distribution).

Let $X \sim \text{Unif}(a, b)$ with $f(x) = \frac{1}{b-a}$ for $x \in (a, b)$. Then,

$$\begin{split} M_X(t) &= \mathbb{E}\left[e^{tX}\right] = \int_a^b e^{tx} \frac{1}{b-a} \, dx \\ &= \begin{cases} \frac{1}{b-a} \left[\frac{e^{tx}}{t}\right]_a^b & \text{if } t \neq 0 \\ \frac{1}{b-a} \int_a^b 1 \, dx & \text{if } t = 0 \end{cases} \\ &= \begin{cases} \frac{1}{b-a} \left[\frac{e^{tb}-e^{ta}}{t}\right] & \text{if } t \neq 0 \\ 1 & \text{if } t = 0 \end{cases} \end{split}$$

Now,

$$\mathbb{E}[X] = M_X'(0) = \lim_{t \to 0} \frac{M_X(t) - M_X(0)}{t}$$

$$= \lim_{t \to 0} \frac{\frac{1}{b-a} \left[\frac{e^{tb} - e^{ta}}{t} \right] - 1}{t}$$

$$= \lim_{t \to 0} \frac{e^{bt} - e^{at} - (b-a)t}{t^2(b-a)}$$

$$= \lim_{t \to 0} \frac{be^{bt} - ae^{at} - (b-a)}{2t(b-a)}$$
 L'Hopital's Rule
$$= \lim_{t \to 0} \frac{b^2 e^{bt} - a^2 e^{at}}{2(b-a)}$$
 L'Hopital's Rule
$$= \frac{b^2 - a^2}{2(b-a)} = \frac{a+b}{2}.$$

To calculate $\mathbb{E}[X^2]$, we have

$$\mathbb{E}[X^{2}] = M''(0) = \lim_{t \to 0} \frac{M'(t) - M'(0)}{t}$$

$$\vdots$$

$$= \frac{a^{2} + ab + b^{2}}{3}.$$

Thus,
$$\operatorname{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{(b-a)^2}{12}$$
.

4 Joint Distributions

Lecture 9, 2025/02/03

4.1 Bivariate Joint & Marginal Distributions

Definition 4.1 (Random Vector). An *n*-dimentional **random vector** is a function from $S \to \mathbb{R}^n$, where \mathbb{R}^n is the *n*-dimensional Euclidean space.

Example. Toss a fair die twice. Then $S = \{(1,1), (1,2), \dots, (6,6)\}$ with 36 elementary events. Let $X = \text{sum of the two tosses and } Y = \text{absolute value of difference of the two tosses. Note that } \mathbb{P}(i,j) = \frac{1}{36}$ for $i = 1, \dots, 6$ and $j = 1, \dots, 6$. The joint distribution of X and Y is given by

Note that

$$\begin{split} \mathbb{P}(X=2,Y=0) &= \mathbb{P}(\{\omega \in S \, : \, X(\omega)=2, Y(\omega)=0\}) \\ &= \mathbb{P}(\{(1,1)\}) = \frac{1}{36}. \end{split}$$

And, $\mathbb{P}(X = 3, Y = 0) = \mathbb{P}(\emptyset) = 0...$

Definition 4.2 (Joint CDF).

Suppose (X, Y) is a random vector on a sample S. The **joint CDF** of (X, Y) is

$$F(x, y) = \mathbb{P}(X \le x, Y \le y)$$
 for $(x, y) \in \mathbb{R}^2$.

Proposition 4.1 (Properties of CDF).

- (1) F(x, y) is non-decreasing for both x, y, i.e. $\forall a < b, F(a, y) \le F(b, y), F(x, a) \le F(x, b)$.
- (2) $\lim_{x \to -\infty} F(x, y) = 0$, $\lim_{y \to -\infty} F(x, y) = 0$, $\lim_{\substack{x \to -\infty \\ y \to -\infty}} F(x, y) = 0$, $\lim_{\substack{x \to \infty \\ y \to \infty}} F(x, y) = 1$.
- (3) F(x, y) is right-continuous for both x, y, that is,

$$\lim_{h \to 0^+} F(x+h, y) = F(x, y) \quad \lim_{h \to 0^+} F(x, y+h) = F(x, y).$$

Definition 4.3 (Marginal CDF).

The **marginal CDF** of X (or Y) is

$$F_1(x) = \mathbb{P}(X \le x) = \lim_{y \to \infty} F(x, y)$$

$$F_2(y) = \mathbb{P}(Y \le y) = \lim_{x \to \infty} F(x, y).$$

Definition 4.4 (Joint Discrete Random Variable: Joint PMF).

If S is discrete, then X and Y are discrete random variables. The **joint PMF** of (X, Y) is

$$f(x, y) = \mathbb{P}(X = x, Y = y) \quad (x, y) \in \mathbb{R}^2.$$

 $A = \{(x, y) : f(x, y) > 0\}$ is called the **support set** of (X, Y).

Example. In the previous example, we have $A = \{(2,0), (4,0), \dots, (12,0), (3,1), \dots, \}$.

Proposition 4.2 (Properties of Joint PMF).

f(x, y) is the PMF of $(X, Y) \iff$ the following hold:

- (1) $f(x, y) \ge 0$ for all $(x, y) \in \mathbb{R}^2$.
- (2) $\sum_{x} \sum_{y} f(x, y) = 1$.

Also, for any set $D \subset \mathbb{R}^2$,

$$\mathbb{P}((X,Y) \in D) = \sum_{(x,y) \in D} f(x,y).$$

Definition 4.5 (Marginal PMF).

The **marginal PMF** of X (or Y) is

$$f_1(x) = \mathbb{P}(X = x) = \sum_{y} f(x, y) \quad x \in \mathbb{R}$$

$$f_2(y) = \mathbb{P}(Y = y) = \sum_{x} f(x, y) \quad y \in \mathbb{R}.$$

Example. In a fourth year stat course, there are 10 acturial science students, 9 stat students and 6 math students. 5 students are selected at random without replacement. Define the following random variables:

X = number of acturial science students selected

Y = number of stat students selected.

(a) The joint PMF of (X, Y) is

$$f(x,y) = \mathbb{P}(X=x, Y=y) = \frac{\binom{10}{x}\binom{9}{y}\binom{6}{5-x-y}}{\binom{25}{5}}.$$

(b) The marginal PMF of X is

$$f_1(x) = \mathbb{P}(X = x) = \sum_{y=0}^{5-x} f(x,y) = \frac{\binom{10}{x} \sum_{y=0}^{5-x} \binom{9}{y} \binom{6}{5-x-y}}{\binom{25}{5}} = \frac{\binom{10}{x} \binom{15}{5-x}}{\binom{25}{5}} \quad x = 0, \dots, 5.$$

Then, $X \sim \text{Hypergeometric}(10, 9, 5)$. Moreover, $0 \le x + y \le 5$ and $0 \le x \le 5, 0 \le y \le 5$. Note. $\sum_{y=0}^{5-x} {9 \choose y} {6 \choose 5-x-y} = {15 \choose 5-x}$ is by the hypergeometric identity.

(c) The marginal PMF of Y is

$$f_2(y) = \sum_{x=0}^{5-y} f(x,y) = \frac{\binom{9}{y} \sum_{x=0}^{5-y} \binom{10}{x} \binom{6}{5-x-y}}{\binom{25}{5}} = \frac{\binom{9}{y} \binom{16}{5-y}}{\binom{25}{5}} \quad y = 0, \dots, 5.$$

Then, $Y \sim \text{Hypergeometric}(9, 6, 5)$.

(d) Note that

$$\mathbb{P}(X > Y) = \sum_{x>y} f(x,y) = \sum_{x=1}^{5} \sum_{y=0}^{x-1} f(x,y)$$
$$= f(1,0) + f(2,0) + f(2,1) + f(3,0) +$$
$$f(3,1) + f(3,2) + f(4,0) + f(4,1) + f(5,0).$$

Definition 4.6 (Joint Continuous Random Variables: Joint PDF).

Suppose F(x, y) is continuous and $f(x, y) = \frac{\partial^2}{\partial x \partial y} F(x, y)$ exists except possibly along a finite number of curves. Then, X and Y are continuous random variables with **joint PDF** f(x, y).

The set $A = \{(x, y) : f(x, y) > 0\}$ is called the **support set** of (X, Y).

We arbitrarily define f(x, y) = 0 when $\frac{\partial^2}{\partial x \partial y} F(x, y)$ does not exist.

Proposition 4.3 (Properties of Joint PDF).

f(x, y) is the PDF of $(X, Y) \iff$ the following hold:

(1) $f(x,y) \ge 0$ for all $(x,y) \in \mathbb{R}^2$.

(2)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = 1.$$

Also, for any set $D \subset \mathbb{R}^2$,

$$\mathbb{P}((X,Y) \in D) = \iint_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$

Definition 4.7 (Marginal PDF).

The **marginal PDF** of X (or Y) is

$$f_1(x) = \int_{-\infty}^{\infty} f(x, y) \, dy \quad x \in \mathbb{R}$$
$$f_2(y) = \int_{-\infty}^{\infty} f(x, y) \, dx \quad y \in \mathbb{R}.$$

Example. Let f(x, y) = x + y, for $0 \le x \le 1$ and $0 \le y \le 1$.

(1) Show that f(x, y) is a joint PDF.

Proof.

- (1) $f(x, y) = x + y \ge 0$ for $0 \le x \le 1$ and $0 \le y \le 1$.
- (2) Check the following.

$$\int_0^1 \int_0^1 f(x, y) \, dx \, dy = \int_0^1 \int_0^1 (x + y) \, dx \, dy$$

$$= \int_0^1 \left[\frac{x^2}{2} + xy \right]_{x=0}^{x=1} \, dy$$

$$= \int_0^1 \left(\frac{1}{2} + y \right) \, dy$$

$$= \left[\frac{y}{2} + \frac{y^2}{2} \right]_0^1 = 1.$$

(2) Find $\mathbb{P}(X \le 1/3, Y \le 1/2)$.

Proof. We have

$$\int_0^{1/2} \int_0^{1/3} (x+y) \, dx \, dy = \int_0^{1/2} \left[\frac{x^2}{2} + xy \right]_{x=0}^{x=1/3} \, dy$$
$$= \int_0^{1/2} \left(\frac{1}{18} + \frac{y}{3} \right) dy$$
$$= \left[\frac{y}{18} + \frac{y^2}{6} \right]_0^{1/2} = \frac{1}{36} + \frac{1}{24} = \frac{5}{72}.$$

Lecture 10, 2025/02/05

Example (Above Continued).

(3) Find $\mathbb{P}(X \leq Y)$.

Proof. Note that
$$\mathbb{P}((X,Y) \in D) = \iint_D f(x,y) dx dy$$
. Thus,

$$\mathbb{P}(X \le Y) = \int_0^1 \int_0^y (x + y) \, \mathrm{d}x \, \mathrm{d}y$$

$$= \int_0^1 \left[\frac{x^2}{2} + xy \right]_{x=0}^{x=y} \, \mathrm{d}y$$

$$= \int_0^1 \left(\frac{y^2}{2} + y^2 \right) \, \mathrm{d}y$$

$$= \left[\frac{y^3}{6} + \frac{y^3}{3} \right]_0^1 = \frac{1}{6} + \frac{1}{3} = \frac{1}{2}.$$

(4) Find
$$\mathbb{P}(X + Y \leq \frac{1}{2})$$
.

Proof. We have

$$\mathbb{P}(X+Y \le 1/2) = \int_0^{1/2} \int_0^{1/2-y} (x+y) \, \mathrm{d}x \, \mathrm{d}y$$

$$= \int_0^{1/2} \int_0^{1/2-x} (x+y) \, \mathrm{d}y \, \mathrm{d}x$$

$$= \int_0^{1/2} \left[xy + \frac{y^2}{2} \right]_{y=0}^{y=1/2-x} \, \mathrm{d}x$$

$$= \int_0^{1/2} \left(\frac{1}{8} - \frac{x^2}{2} \right) \, \mathrm{d}x$$

$$= \left[\frac{x}{8} - \frac{x^3}{6} \right]_0^{1/2} = \frac{1}{16} - \frac{1}{48} = \frac{1}{24}.$$

(5) Find $\mathbb{P}(XY \leq \frac{1}{2})$.

Proof. We need to split the region into two parts.

$$\mathbb{P}(XY \le 1/2) = \int_0^1 \int_0^{1/2} (x+y) \, \mathrm{d}x \, \mathrm{d}y + \int_{1/2}^1 \int_0^{1/2x} (x+y) \, \mathrm{d}y \, \mathrm{d}x$$

$$\vdots$$

$$= \frac{3}{4}.$$

There is an easier way to do this.

$$\mathbb{P}(XY \le 1/2) = 1 - \mathbb{P}(XY > 1/2)$$

$$= 1 - \int_{1/2}^{1} \int_{1/2y}^{1} (x + y) \, dx \, dy$$

$$\vdots$$

$$= \frac{3}{4}.$$

(6) Find the marginal PDF of X and Y.

Proof. We have

$$f_1(x) = \int_0^1 (x+y) \, dy = x + \frac{1}{2} \quad 0 \le x \le 1$$
$$f_2(y) = \int_0^1 (x+y) \, dx = y + \frac{1}{2} \quad 0 \le y \le 1.$$

(7) Find the joint CDF of (X, Y).

Proof. For $x \in (0,1)$ and $y \in (0,1)$, we have

$$F(x,y) = \mathbb{P}(X \le x, Y \le y) = \int_0^y \int_0^x (x+y) \, dx \, dy$$
$$= \int_0^y \left(\frac{x^2}{2} + xy\right)_{y=0}^{y=y} \, dy$$
$$= \frac{1}{2}x^2y + \frac{1}{2}y^2.$$

For $x \ge 1$ and $y \in (0, 1)$, we have

$$F(x,y) = \int_0^y \int_0^1 (x+y) \, dx \, dy$$
$$= \int_0^y \left[x + xy \right]_{x=0}^{x=1} \, dy$$
$$= \int_0^y (1+y) \, dy = \frac{1}{2}y + \frac{1}{2}y^2.$$

For $x \in (0,1)$ and $y \ge 1$, we have

$$F(x,y) = \int_0^1 \int_0^x (x+y) \, dx \, dy$$
$$= \frac{1}{x}x + \frac{1}{2}x^2.$$

For $x \le 0$ or $y \le 0$, we have F(x, y) = 0. For $x \ge 1$ and $y \ge 1$, we have F(x, y) = 1. \square

(8) Find the marginal CDF of X (and Y).

Proof. We have

$$F_1(x) = \begin{cases} 0 & x \le 0\\ \int_0^1 \int_0^x (x+y) \, \mathrm{d}y \, \mathrm{d}x = \frac{1}{2}x^2 + \frac{1}{2}x & 0 < x < 1 \\ 1 & x \ge 1 \end{cases}$$

4.2 Independence

Theorem 4.4 (Independent Random Variables).

Suppose X and Y are random variables with joint CDF F(x, y) and marginal CDFs $F_1(x)$ and $F_2(y)$, joint PDF or PMF f(x, y) and marginal PDFs or PMFs $f_1(x)$ and $f_2(y)$. Let

$$A_1 = \{x : f_1(x) > 0\}$$

$$A_2 = \{y : f_2(y) > 0\}$$

$$A = \{(x, y) : f(x, y) > 0\}$$

be the support sets of X, Y and (X, Y) respectively. Then, X and Y are **independent** \iff either of the following holds.

- (1) $f(x,y) = f_1(x)f_2(y)$ for all $(x,y) \in A$, where $A = A_1 \times A_2 = \{(x,y) : x \in A_1, y \in A_2\}$. In other words, the support A is a rectangular region in \mathbb{R}^2 .
- (2) $F(x, y) = F_1(x)F_2(y)$ for all $x \in \mathbb{R}, y \in \mathbb{R}$.

Remark.

(1) The support set *A* is a Cartesion product (rectangular region).

Example. Let f(x, y) = 8xy, with 0 < x < y < 1. Are X and Y independent? Answer: No, because 0 < x < y < 1 is a triangular region. This is not a Cartesian product.

(2) If X and Y are independent, then h(X) and g(Y) are also independent.

Theorem 4.5 (Factorization Theorem for Independence).

X and *Y* are independet random variables $\iff A = A_1 \times A_2$ and \exists non-negative functions g(x) and h(y) such that

$$f(x, y) = g(x)h(y) \quad \forall (x, y) \in A.$$

Proof.

 (\Rightarrow) : If X and Y are independent, then $f(x,y) = f_1(x)f_2(y)$. Take $g(x) = f_1(x)$ and $h(y) = f_2(y)$.

(\Leftarrow): Suppose f(x, y) = g(x)h(y) for (x.y) ∈ [a, b] × [c, d] (WLOG). Then

$$f_1(x) = \int_c^d f(x, y) \, dy = \int_c^d g(x)h(y) \, dy = k_1 g(x) \quad \text{where } k_1 = \int_c^d h(y) \, dy$$
$$f_2(y) = \int_a^b f(x, y) \, dx = \int_a^b g(x)h(y) \, dx = k_2 h(y) \quad \text{where } k_2 = \int_a^b g(x) \, dx \, .$$

Also, we know that

$$1 = \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$$
$$= \int_{c}^{d} \int_{a}^{b} g(x)h(y) dx dy$$
$$= \int_{c}^{d} h(y) dy \int_{a}^{b} g(x) dx = k_{1}k_{2}.$$

Thus, since $k_1k_2 = 1$, we have

$$f(x, y) = g(x)h(y) = k_1k_2g(x)h(y) = f_1(x)f_2(y)$$
 for $(x, y) \in [a, b] \times [c, d]$.

This implies that $X \perp\!\!\!\perp Y$.

Example. Let $f(x, y) = \frac{\theta^{x+y}e^{-2\theta}}{x!y!}$ for x, y = 0, 1, 2, ... Are X and Y independent?

Proof. Note that

$$f(x,y) = \underbrace{\frac{\theta^x e^{-\theta}}{x!}}_{g(x)} \cdot \underbrace{\frac{\theta^y e^{-\theta}}{y!}}_{h(y)} \quad \text{for } A = \{(x,y) : x,y = 0,1,2,...\} = A_1 \times A_2.$$

Thus, *X* and *Y* are independent.

Lecture 11, 2025/02/10 _____

4.3 Conditional Distributions

Definition 4.8 (Conditional PMF/PDF).

The **conditional PMF/PDF** of X given Y = y is

$$f_1(x|y) = \frac{f(x,y)}{f_2(y)}$$
 for $(x,y) \in A$ provided $f_2(y) > 0$.

Similarly, the conditional PMF/PDF of Y given X = x is

$$f_2(y|x) = \frac{f(x,y)}{f_1(x)}$$
 for $(x,y) \in A$ provided $f_1(x) > 0$.

Remark.

(1) f(x|y) is a valid PMF/PDF, i.e. $f(x|y) \ge 0$ and $\sum_x f(x|y) = 1$ or $\int_{-\infty}^{\infty} f(x|y) dx = 1$. Note that

$$\sum_{x} f(x|y) = \sum_{x} \frac{f(x,y)}{f_2(y)} = \frac{\sum_{x} f(x,y)}{f_2(y)} = \frac{f_2(y)}{f_2(y)} = 1$$

$$\int f(x|y) \, \mathrm{d}x = \int \frac{f(x,y)}{f_2(y)} \, \mathrm{d}x = \frac{1}{f_2(y)} \int f(x,y) \, \mathrm{d}x = \frac{f_2(y)}{f_2(y)} = 1.$$

(2) X and Y are independent $\iff f(x|y) = f_1(x)$ for all $x \in A_1$ or $f(y|x) = f_2(y)$ for all $y \in A_2$.

Example. Let $f(x, y) = \frac{2}{\pi}$ for $0 < x < \sqrt{1 - y^2}, -1 < y < 1$. Find $f_1(x|y)$ and $f_2(y|x)$.

Proof. The support looks like the following.

Then,

$$f_1(x) = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{2}{\pi} \, dy = \frac{4}{\pi} \sqrt{1-x^2} \quad \text{for } 0 < x < 1$$

$$f_2(y) = \int_0^{\sqrt{1-y^2}} \frac{2}{\pi} \, dx = \frac{2}{\pi} \sqrt{1-y^2} \quad \text{for } -1 < y < 1.$$

Thus,

$$f_1(x|y) = \frac{f(x,y)}{f_2(y)} = \frac{2/\pi}{2/\pi\sqrt{1-y^2}} = \frac{1}{\sqrt{1-y^2}} - 1 < y < 1, 0 < x < \sqrt{1-y^2}$$

$$f_2(y|x) = \frac{f(x,y)}{f_1(x)} = \frac{2/\pi}{4/\pi\sqrt{1-x^2}} = \frac{1}{2\sqrt{1-x^2}} \quad 0 < x < 1, -\sqrt{1-x^2} < y < \sqrt{1-x^2}.$$

Hence, $X \mid Y \sim \text{Unif}(0, \sqrt{1-y^2})$ and $Y \mid X \sim \text{Unif}(-\sqrt{1-x^2}, \sqrt{1-x^2})$ and $X \not\perp \!\!\!\perp Y$.

Proposition 4.6 (Product Rule).

 $f(x,y) = f_1(x|y)f_2(y) = f_2(y|x)f_1(x).$

Example. Find the marginal PMF of *X* if $Y \sim Poi(\mu)$ and $X \mid Y = y \sim Bin(y, p)$.

Proof. We will eventually show that $X \sim \text{Poi}(p\mu)$. Now,

$$f_1(x|y) = {y \choose x} p^x (1-p)^{y-x} \quad x = 0, 1, 2, \dots, y$$

$$f_2(y) = \frac{e^{-\mu} \mu^y}{y!} \quad y = 0, 1, 2, \dots$$

$$f(x,y) = f_1(x|y) f_2(y) = {y \choose x} p^x (1-p)^{y-x} \frac{e^{-\mu} \mu^y}{y!} \quad x = 0, 1, 2, \dots, y \text{ and } y = 0, 1, 2, \dots$$

Thus, we know that *X* is not independent of *Y* because the support is not a Cartesian product.

$$f_{1}(x) = \sum_{y=x}^{\infty} f(x,y) = \sum_{y=x}^{\infty} \frac{y!}{x!(y-x)!} p^{x} (1-p)^{y-x} \frac{e^{-\mu}\mu^{y}}{y!}$$

$$= \frac{e^{-\mu}p^{x}\mu^{x}}{x!} \sum_{y=x}^{\infty} \frac{y!}{(y-x)!y!} (1-p)^{y-x}\mu^{y-x}$$

$$= \frac{(p\mu)^{x}e^{-\mu}}{x!} \sum_{y=x=0}^{\infty} \frac{[(1-p)\mu]^{y-x}}{(y-x)!}$$

$$= \frac{(p\mu)^{x}e^{-\mu}}{x!} e^{(1-p)\mu} = \frac{(p\mu)^{x}e^{-p\mu}}{x!} \quad x = 0, 1, 2, \dots$$

Therefore, $X \sim \text{Poi}(p\mu)$.

4.4 Conditional Expectation

Definition 4.9 (Conditional Expectation).

The **conditional expectation** of g(Y) given X = x is

$$\mathbb{E}\left[g(Y) \mid X = x\right] = \begin{cases} \sum_{y} g(y) f_2(y|x) & \text{if } Y \text{ is discrete} \\ \int_{-\infty}^{\infty} g(y) f_2(y|x) \, \mathrm{d}y & \text{if } Y \text{ is continuous} \end{cases}$$

provided that the sum/integral converges absolutely. Consider the following.

- 1. $\mathbb{E}[Y \mid x]$ is the conditional mean of Y given X = x.
- 2. $Var(Y \mid x)$ is the conditional variance of Y given X = x, which is given by

$$\operatorname{Var}(Y \mid x) = \mathbb{E}\left[\left(Y - \mathbb{E}\left[Y \mid x\right]\right)^{2} \mid x\right]$$
$$= \mathbb{E}\left[Y^{2} \mid x\right] - \left(\mathbb{E}\left[Y \mid x\right]\right)^{2}.$$

Example. Let $f(x, y) = \frac{2}{\pi}$ for $0 < x < \sqrt{1 - y^2}$, -1 < y < 1. Find $\mathbb{E}[Y \mid x]$, $\mathbb{E}[Y^2 \mid x]$, and $\text{Var}(Y \mid x)$.

Proof. Note that

$$f_{2}(y|x) = \frac{1}{2\sqrt{1-x^{2}}} \quad 0 < x < 1, -\sqrt{1-x^{2}} < y < \sqrt{1-x^{2}}$$

$$\implies \mathbb{E}[Y \mid x] = \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} y \frac{1}{2\sqrt{1-x^{2}}} \, dy = 0 \quad 0 < x < 1.$$

$$\implies \mathbb{E}[Y^{2} \mid x] = \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} y^{2} \frac{1}{2\sqrt{1-x^{2}}} \, dy$$

$$= 2 \int_{0}^{\sqrt{1-x^{2}}} y^{2} \frac{1}{2\sqrt{1-x^{2}}} \, dy = \frac{1-x^{2}}{3} \quad 0 < x < 1.$$

$$\implies \text{Var}(Y \mid x) = \mathbb{E}[Y^{2} \mid x] - (\mathbb{E}[Y \mid x])^{2} = \frac{1-x^{2}}{3} \quad 0 < x < 1.$$

Theorem 4.7. If $X \perp \!\!\! \perp Y$, then

$$\mathbb{E}[g(Y) \mid X = x] = \mathbb{E}[g(Y)]$$
 and $\mathbb{E}[h(X) \mid y] = \mathbb{E}[h(X)]$.

Proof. Note that

$$\begin{split} \mathbb{E}\left[g(Y) \mid X = x\right] &= \begin{cases} \sum_{y} g(y) f_2(y | x) & \text{if } Y \text{ is discrete} \\ \int_{-\infty}^{\infty} g(y) f_2(y | x) \, \mathrm{d}y & \text{if } Y \text{ is continuous} \end{cases} \\ &= \begin{cases} \sum_{y} g(y) f_2(y) & \text{if } Y \text{ is discrete} \\ \int_{-\infty}^{\infty} g(y) f_2(y) \, \mathrm{d}y & \text{if } Y \text{ is continuous} \end{cases} \\ &= \mathbb{E}\left[g(Y)\right]. \end{split}$$

Lecture 12, 2025/02/12

Theorem 4.8 (Law of Total Expectation).

$$\mathbb{E}\left[g(Y)\right] = \mathbb{E}\left[\mathbb{E}\left[g(Y) \mid X\right]\right].$$

Proof. We start from the RHS and look at the continuous case.

$$\mathbb{E}\left[\mathbb{E}\left[g(Y)\mid X\right]\right] = \int_{-\infty}^{\infty} \mathbb{E}\left[g(Y)\mid X=x\right] f_1(x) \, \mathrm{d}x$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} g(y) f_2(y|x) \, \mathrm{d}y\right) f_1(x) \, \mathrm{d}x$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(y) f(x,y) \, \mathrm{d}y \, \mathrm{d}x$$

$$= \int_{-\infty}^{\infty} g(y) \left(\int_{-\infty}^{\infty} f(x,y) \, \mathrm{d}x\right) \mathrm{d}y$$

$$= \int_{-\infty}^{\infty} g(y) f_2(y) \, \mathrm{d}y = \mathbb{E}\left[g(Y)\right].$$

Remark (Special Cases). In particular,

- (1) $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y \mid X]]$ if g is the identity map.
- (2) Variance Decomposition: $Var(Y) = \mathbb{E}[Var(Y \mid X)] + Var(\mathbb{E}[Y \mid X])$.

Proof of (2). Note that $Var(Y \mid X) = \mathbb{E}[Y^2 \mid X] - (\mathbb{E}[Y \mid X])^2$. Then,

$$\mathbb{E}\left[\operatorname{Var}\left(Y\mid X\right)\right] = \mathbb{E}\left[\mathbb{E}\left[Y^2\mid X\right] - \left(\mathbb{E}\left[Y\mid X\right]\right)^2\right] = \mathbb{E}\left[Y^2\right] - \mathbb{E}\left[\mathbb{E}\left[Y\mid X\right]^2\right]$$

$$\operatorname{Var}\left(\mathbb{E}\left[Y\mid X\right]\right) = \mathbb{E}\left[\mathbb{E}\left[Y\mid X\right]^2\right] - \left(\mathbb{E}\left[\mathbb{E}\left[Y\mid X\right]\right]\right)^2 = \mathbb{E}\left[\mathbb{E}\left[Y\mid X\right]^2\right] - \left(\mathbb{E}\left[Y\right]\right)^2.$$

Thus,
$$\mathbb{E}\left[\operatorname{Var}(Y\mid X)\right] + \operatorname{Var}\left(\mathbb{E}\left[Y\mid X\right]\right) = \mathbb{E}\left[Y^2\right] - \left(\mathbb{E}\left[Y\right]\right)^2 = \operatorname{Var}(Y)$$
.

Example. Suppose $P \sim \text{Unif}(0, 0.1)$ and $Y \mid P = p \sim \text{Bin}(10, p)$. Find $\mathbb{E}[Y]$ and Var(Y).

Proof. Note that

$$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y \mid P]] = \mathbb{E}[10P] = 10\mathbb{E}[P] = 10 \times \frac{0.1}{2} = 0.5$$

$$\operatorname{Var}(Y) = \mathbb{E}[\operatorname{Var}(Y \mid P)] + \operatorname{Var}(\mathbb{E}[Y \mid P]) = \mathbb{E}[10P(1-P)] + \operatorname{Var}(10P)$$

$$= 10\mathbb{E}[P] - 10\mathbb{E}[P^2] + 10^2 \operatorname{Var}(P) = 10 \times \frac{0.1}{2} - 10 \times \frac{0.1^2}{3} + 10^2 \times \frac{0.1^2}{12} = \frac{11}{20}. \square$$

4.5 Joint Expectation

Definition 4.10 (Joint Expectation).

Suppose X and Y are discrete random variables with joint PMF f(x, y) and support A. Then, the **joint expectation** of g(X, Y) is

$$\mathbb{E}[h(X,Y)] = \sum_{(x,y)\in A} \sum_{h(x,y)} h(x,y)f(x,y).$$

Similarly, if X and Y are continuous, then the joint expectation of g(X, Y) is

$$\mathbb{E}[h(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y) f(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

provided that the sum/integral converges absolutely.

Remark (**Independence**). If $X \perp \!\!\! \perp Y$, then $\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)] \mathbb{E}[h(Y)]$.

Proof of Remark. We start with the LHS and look at the continuous case.

$$\begin{split} \mathbb{E}\left[g(X)h(Y)\right] &= \iint_{A_1 \times A_2} g(x)h(y)f(x,y)\,\mathrm{d}x\,\mathrm{d}y \\ &= \int_{A_1} g(x)f_1(x)\,\mathrm{d}x \int_{A_2} h(y)f_2(y)\,\mathrm{d}y \\ &= \mathbb{E}\left[g(X)\right]\mathbb{E}\left[h(Y)\right]. \end{split}$$

Remark. More generally, if X_1, X_2, \dots, X_n are independent, then

$$\mathbb{E}\left[\prod_{i=1}^n h_i(X_i)\right] = \prod_{i=1}^n \mathbb{E}\left[h_i(X_i)\right].$$

4.6 Joint Moment Generating Functions

Definition 4.11 (Joint MGFs).

If X and Y are random variables, then

$$M(t_1, t_2) = \mathbb{E}\left[e^{t_1 X + t_2 Y}\right]$$

is called the **joint moment generating function** of X and Y if the expectation exists for all $t_1 \in (-h_1, h_1)$ and $t_2 \in (-h_2, h_2)$ for some $h_1, h_2 > 0$.

Remark (Marginal MGFs). The marginal MGF of *X* and *Y* are

$$\begin{split} M_X(t) &= \mathbb{E}\left[e^{tX}\right] = M(t,0) \quad t \in (-h_1,h_1) \\ M_Y(t) &= \mathbb{E}\left[e^{tY}\right] = M(0,t) \quad t \in (-h_2,h_2). \end{split}$$

Theorem 4.9 (Independence Theorem for MGFs).

Suppose X and Y are random variables with joitn MGF $M(t_1, t_2)$. Then

$$X \perp \!\!\!\perp Y \iff M(t_1, t_2) = M_X(t_1)M_Y(t_2)$$

for all $t_1 \in (-h_1, h_1)$ and $t_2 \in (-h_2, h_2)$.

Proof.

 (\Rightarrow) : If $X \perp \!\!\!\perp Y$, then

$$M(t_1, t_2) = \iint_{A_1 \times A_2} e^{t_1 x + t_2 y} f(x, y) \, dx \, dy$$

= $\int_{A_1} e^{t_1 x} f_1(x) \, dx \int_{A_2} e^{t_2 y} f_2(y) \, dy = M_X(t_1) M_Y(t_2).$

(\Leftarrow): If $M(t_1, t_2) = M_X(t_1)M_Y(t_2)$, then there exists (S, T) s.t. $S \perp \!\!\! \perp T$ and S has the same distribution as X and T has the same distribution as Y. Then,

$$M_{(S,T)}(t_1,t_2) = M_X(t_1) \\ M_Y(t_2) = M_{(X,Y)}(t_1,t_2) = M(t_1,t_2).$$

By the Unique Theorem for MGFs, we have (X, Y) and (S, T) have the same joint distribution. Thus, $X \perp \!\!\! \perp Y$.

Example. Let $f(x, y) = e^{-y}$ for $0 < x < y < \infty$. Find the joint MGF of X and Y. Are X and Y independent? What is the marginal distribution of X and Y?

Proof. First, note that X and Y are not independent because the support is not a Cartesian product. Then,

$$M(t_1, t_2) = \int_0^\infty \int_0^y e^{t_1 x + t_2 y} e^{-y} \, dx \, dy$$

$$= \int_0^\infty e^{(t_2 - 1)y} \frac{1}{t_1} e^{t_1 x} \Big|_0^{x = y} \, dy$$

$$= \frac{1}{t_1} \int_0^\infty e^{(t_1 + t_2 - 1)y} \, dy - \frac{1}{t_1} \int_0^\infty e^{(t_2 - 1)y} \, dy$$

$$= \frac{1}{t_1(t_1 + t_2 - 1)} e^{(t_1 + t_2 - 1)y} \Big|_0^\infty - \frac{1}{t_1(t_2 - 1)} e^{(t_2 - 1)y} \Big|_0^\infty = \frac{1}{(1 - t_1 - t_2)(1 - t_2)}$$

for $t_1 + t_2 < 1$ and $t_2 < 1$. Also, the marginal distribution of X and Y are

$$M_X(t_1) = M(t_1, 0) = \frac{1}{1 - t_1}$$
 $t_1 < 1$
 $M_Y(t_2) = M(0, t_2) = \frac{1}{(1 - t_2)^2}$ $t_2 < 1$.

Thus, $X \sim \text{Gamma}(1, 1) = \text{Exp}(1)$ and $Y \sim \text{Gamma}(2, 1)$.

Lecture 13, 2025/02/24

Theorem 4.10 (Computing Joint Moments).

Let $M(t_1, t_2)$ be the joint MGF of X and Y. Then

$$\mathbb{E}\left[X^{j}Y^{k}\right] = \left.\frac{\partial^{j+k}}{\partial t_{1}^{j}\partial t_{2}^{k}}M(t_{1},t_{2})\right|_{(t_{1},t_{2})=(0,0)}$$

Proof. Note that

$$\frac{\partial^{j+k}}{\partial t_1^j \partial t_2^k} M(t_1, t_2) = \frac{\partial^{j+k}}{\partial t_1^j \partial t_2^k} \mathbb{E} \left[e^{t_1 X + t_2 Y} \right]$$

$$= \frac{\partial^{j+k}}{\partial t_1^j \partial t_2^k} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{t_1 x + t_2 y} f(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial^{j+k}}{\partial t_1^j \partial t_2^k} e^{t_1 x + t_2 y} f(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^j y^k e^{t_1 x + t_2 y} f(x, y) \, \mathrm{d}x \, \mathrm{d}y.$$

Thus,
$$\frac{\partial^{j+k}}{\partial t_1^j \partial t_2^k} M(t_1, t_2) \Big|_{(t_1, t_2) = (0, 0)} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^j y^k f(x, y) \, \mathrm{d}x \, \mathrm{d}y = \mathbb{E} \left[X^j Y^k \right].$$

Definition 4.12 (Covariance and Correlation Coefficient).

The **covariance** of *X* and *Y* is

$$Cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$$

where $\mu_X = \mathbb{E}[X]$ and $\mu_Y = \mathbb{E}[Y]$. The **correlation coefficient** of *X* and *Y* is

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

where
$$\sigma_X = \sqrt{\operatorname{Var}(X)} = \sqrt{\mathbb{E}\left[(X - \mu_X)^2\right]}$$
 and $\sigma_Y = \sqrt{\operatorname{Var}(Y)} = \sqrt{\mathbb{E}\left[(Y - \mu_Y)^2\right]}$.

Remark. ρ only measures the linear relationship between X and Y. Also, we have

- (1) $-1 \le \rho(X, Y) \le 1$.
- (2) $\rho(X,Y) = 1 \iff Y = aX + b$ for some a > 0. Similarly, $\rho(X,Y) = -1 \iff Y = aX + b$ for some a < 0.

Proof of Remark.

(1) Let $W = \frac{Y}{\sigma_Y} - \rho \frac{X}{\sigma_X}$. We know that

$$\begin{split} 0 & \leq \mathrm{Var}\left(W\right) = \mathrm{Var}\left(\frac{Y}{\sigma_Y} - \rho \frac{X}{\sigma_X}\right) \\ & = \frac{\sigma_Y^2}{\sigma_Y^2} + \rho^2 \frac{\sigma_X^2}{\sigma_Y^2} - 2\rho \frac{\mathrm{Cov}\left(X,Y\right)}{\sigma_X \sigma_Y} \\ & = 1 + \rho^2 - 2\rho^2 = 1 - \rho^2 \geq 0. \end{split}$$

Thus, $\rho^2 \le 1 \implies -1 \le \rho \le 1$.

(2) (\Rightarrow): If $|\rho| = 1$, then Var(W) = 0, W is degenerated at its mean with probability 1. That is, $\mathbb{P}(W = \mu_W) = 1$. Thus,

$$\begin{split} \frac{Y}{\sigma_Y} - \rho \frac{X}{\sigma_X} &= \frac{\mu_Y}{\sigma_Y} - \rho \frac{\mu_X}{\sigma_X} \\ \Longrightarrow Y &= \underbrace{\rho \frac{\sigma_Y}{\sigma_X}}_{a} X + \underbrace{\mu_Y - \rho \frac{\sigma_Y}{\sigma_X} \mu_X}_{b}. \end{split}$$

 (\Leftarrow) : If Y = aX + b, then $\sigma_Y^2 = a^2 \sigma_X^2$ and

$$Cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$$
$$= \mathbb{E}[(X - \mu_X)(aX - a\mu_X)]$$
$$= a\mathbb{E}[(X - \mu_X)^2] = a\sigma_X^2.$$

Thus,
$$\rho = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{a\sigma_X^2}{\sigma_X |a|\sigma_X} = \frac{a}{|a|} = \pm 1.$$

Remark (Some Results).

- (1) $Cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$.
- (2) $\rho(X, X^2) = 0$ if *X* has a symmetric distribution about its mean.

5 More on Joint Distributions

5.1 Distributions of Functions of Multiple Random Variables

First, we look at the CDF technique.

Example. Let f(x, y) = 3y with $0 < x \le y < 1$. Find the PDF of T = XY.

Proof. The plot of this region is shown below.

We have

$$G(t) = \mathbb{P}(T \le t) = \mathbb{P}(XY \le t)$$

$$= \mathbb{P}(Y \le \frac{t}{X})$$

$$= 1 - \int_{\sqrt{t}}^{1} \int_{t/y}^{y} 3y \, dx \, dy$$

$$= 3t - 2t\sqrt{t} \quad \text{for } 0 < t \le 1.$$

Thus, $g(t) = G'(t) = 3 - 3\sqrt{t}$ for 0 < t < 1.

Example (Order Statistics).

Suppose X_1, \dots, X_n are i.i.d. continuous random variables with PDF f(x) and CDF F(x). Find the PDF of $Y = \max(X_1, \dots, X_n) = X_{(n)}$ and $T = \min(X_1, \dots, X_n) = X_{(1)}$.

Proof. Let $Y = X_{(n)}$. We have

$$G(y) = \mathbb{P}(Y \le y) = \mathbb{P}(X_{(n)} \le y) = \mathbb{P}(X_1 \le y, \dots, X_n \le y) = F(y)^n$$

$$\implies g(y) = G'(y) = nF(y)^{n-1}f(y).$$

Also, let $T = X_{(1)}$. We have

$$\begin{split} H(t) &= \mathbb{P}(T \leq t) = 1 - \mathbb{P}(T > t) = 1 - \mathbb{P}(X_{(1)} > t) \\ &= 1 - \mathbb{P}(X_1 > t, \dots, X_n > t) = 1 - (1 - F(t))^n \\ &\Longrightarrow h(t) = H'(t) = nf(t)(1 - F(t))^{n-1}. \end{split}$$

Definition 5.1 (Jacobian of One-to-One Transformation).

Let $S:(x,y) \to (u,v)$ be a one-to-one transformation for all $(x,y) \in \mathbb{R}_{xy}$ where $u=h_1(x,y)$ and $v=h_2(x,y)$. There exists an inverse transformation $T=S^{-1}:(u,v)\to (x,y)$ for all $(u,v)\in \mathbb{R}_{uv}$ where $x=w_1(u,v)$ and $y=w_2(u,v)$. The **Jacobian** of the transformation T is

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \left[\frac{\partial(u,v)}{\partial(x,y)} \right]^{-1}$$

where $\frac{\partial(u,v)}{\partial(x,y)}$ is the Jacobian of the transformation *S*.

Remark (Inverse Mapping Theorem: How do we check if S is one-to-one?).

If $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$ are continuous functions and $\frac{\partial (u,y)}{\partial (x,y)} \neq 0$ for all $(x,y) \in \mathbb{R}_{xy}$, then S is one-to-one and $T = S^{-1}$ exists.

Theorem 5.1 (One-to-One Bivariate Transformation Theorem).

Let X and Y be continuous random variables with joint PDF f(x,y) and support $\mathbb{R}_{xy} = \{(x,y): f(x,y) > 0\}$. Suppose $S: U = h_1(X,Y), V = h_2(X,Y)$ is a one-to-one transformation with inverse $T = S^{-1}: X = w_1(U,V), Y = w_2(U,V)$. Suppose also that S maps \mathbb{R}_{xy} into \mathbb{R}_{uv} . Then, the joint PDF of U and V is given by

$$g(u,v) = f(w_1(u,v), w_2(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right|$$
 for all $(u,v) \in \mathbb{R}_{uv}$.

Example. Suppose that $X \sim \operatorname{Gamma}(a,1)$ and $Y \sim \operatorname{Gamma}(b,1)$ are independent. Find the joint PDF of U = X + Y and $V = \frac{X}{X+Y}$. Show that $U \sim \operatorname{Gamma}(a+b,1)$ and $V \sim \operatorname{Beta}(a,b)$. Proof. Let $S: U = X + Y, V = \frac{X}{X+Y}$. We have $T = S^{-1}: X = w_1(U,V) = UV, Y = w_2(U,V) = U(1-V)$. The Jacobian of the transformation T is

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} v & u \\ 1-v & -u \end{vmatrix} = -uv - u(1-v) = -u.$$

Note that $\mathbb{R}_{uv} = (0, \infty) \times (0, 1)$. Then,

$$\begin{split} f_1(x) &= \frac{x^{a-1}e^{-x}}{\Gamma(a)} \quad \text{for } x > 0, \\ f_2(y) &= \frac{y^{b-1}e^{-y}}{\Gamma(b)} \quad \text{for } y > 0 \\ \implies f(x,y) &= f_1(x)f_2(y) = \frac{x^{a-1}y^{b-1}e^{-(x+y)}}{\Gamma(a)\Gamma(b)} \quad \text{for } x,y > 0 \\ \implies g(u,v) &= f(uv,u(1-v)) \cdot |-u| \\ &= \frac{(uv)^{a-1}(u(1-v))^{b-1}e^{-u}}{\Gamma(a)\Gamma(b)} \cdot |-u| \\ &= \underbrace{\frac{u^{a+b-1}e^{-u}}{\Gamma(a+b)}}_{U \sim \text{Gamma}(a+b,1)} \cdot \underbrace{\frac{v^{a-1}(1-v)^{b-1}\Gamma(a+b)}{\Gamma(a)\Gamma(b)}}_{V \sim \text{Beta}(a,b)} \quad u > 0, \, 0 < v < 1. \end{split}$$

Note that $U \perp \!\!\! \perp V$ by Factorization Theorem.

Lecture 14, 2025/02/26

Example. Back to a previous example, f(x, y) = 3y with $0 < x \le y < 1$. Find the PDF of U = XY.

Proof. We want to construct a one-to-one transformation. Let S: U=XY, V=X. Then, $T=S^{-1}: X=V, Y=\frac{U}{V}$. Also, $\mathbb{R}_{uv}=\{(u,v): 0< v\leq \frac{u}{v}<1\}=\{(u,v): v^2< u< v, 0< v<1\}$. The Jacobian of the transformation T is

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} 0 & 1\\ \frac{1}{v} & -\frac{u}{v^2} \end{vmatrix} = -\frac{1}{v}.$$

Then,

$$f(u,v) = 3\frac{u}{v} \cdot \left| -\frac{1}{v} \right|$$
$$= \frac{3u}{v^2} \quad (u,v) \in \mathbb{R}_{uv}.$$

Thus,
$$f_1(u) = \int_u^{\sqrt{u}} \frac{3u}{v^2} dv = 3 - 3\sqrt{u}$$
 for $0 < u < 1$.

5.2 Moment Generating Function Technique

Theorem 5.2 (MGF of Sum of Independent Random Variables).

Suppose that X_1, \dots, X_n are independent random variables and X_i has MGF $M_i(t)$ which exists for some $t \in (-h, h)$ for some h > 0. The MGF of $Y = \sum_{i=1}^{n} X_i$ is given by

$$M_Y(t) = \prod_{i=1}^n M_i(t)$$
 for $t \in (-h, h)$.

Remark. If X_i 's are i.i.d. random variables each with MGF M(t), then $M_Y(t) = M(t)^n$.

Proof. The MGF of $Y = \sum_{i=1}^{n} X_i$ is

$$\begin{split} M_Y(t) &= \mathbb{E}\left[e^{t\sum_{i=1}^n X_i}\right] = \mathbb{E}\left[e^{tX_1}\cdots e^{tX_n}\right] \\ &= \mathbb{E}\left[e^{tX_1}\right]\cdots \mathbb{E}\left[e^{tX_n}\right] \\ &= M_1(t)\cdots M_n(t) = \prod_{i=1}^n M_i(t). \end{split}$$

Proposition 5.3 (Special Results).

- (1) If $X \sim \text{Gamma}(\alpha, \beta)$, where α is a positive integer, then $\frac{2X}{\beta} \sim \chi^2(2\alpha)$.
- (2) If $X_i \sim \text{Gamma}(\alpha_i, \beta)$ independently, i = 1, ..., n, then $\sum_{i=1}^n X_i \sim \text{Gamma}(\sum_{i=1}^n \alpha_i, \beta)$.
- (3) If $X_i \sim \text{Gamma}(1,\beta) = \text{Exp}(\beta)$ independently for i = 1, ..., n, then $\sum_{i=1}^n X_i \sim \text{Gamma}(n,\beta)$.
- (4) If $X_i \sim \text{Gamma}\left(\frac{k_i}{2}, 2\right) = \chi^2(k_i)$ independently for i = 1, ..., n, then $\sum_{i=1}^n X_i \sim \chi^2\left(\sum_{i=1}^n k_i\right)$.

(5) If
$$X_i \sim N(\mu, \sigma^2)$$
 independently for $i = 1, ..., n$, then $\sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2(n)$.

(6) If
$$X_i \sim \text{Poi}(\mu_i)$$
 independently for $i = 1, ..., n$, then $\sum_{i=1}^n X_i \sim \text{Poi}\left(\sum_{i=1}^n \mu_i\right)$.

(7) If
$$X_i \sim \text{Bin}(n_i, p)$$
 independently for $i = 1, ..., n$, then $\sum_{i=1}^n X_i \sim \text{Bin}(\sum_{i=1}^n n_i, p)$.

(7) If
$$X_i \sim \text{Bin}(n_i, p)$$
 independently for $i = 1, ..., n$, then $\sum_{i=1}^n X_i \sim \text{Bin}\left(\sum_{i=1}^n n_i, p\right)$.
(8) If $X_i \sim \text{NB}(k_i, p)$ independently for $i = 1, ..., n$, then $\sum_{i=1}^n X_i \sim \text{NB}\left(\sum_{i=1}^n k_i, p\right)$.

Proof.

(1) We know that $M_X(t) = (1 - \beta t)^{-\alpha}$ for $t < \frac{1}{\beta}$. The MGF of $\frac{2X}{\beta}$ is

$$\begin{split} M_{\frac{2X}{\beta}}(t) &= \mathbb{E}\left[e^{t\frac{2X}{\beta}}\right] = M_X\left(\frac{2t}{\beta}\right) \\ &= \left(1 - \beta\frac{2t}{\beta}\right)^{-\alpha} = \left(1 - 2t\right)^{-\alpha} \quad \text{for } t < \frac{1}{2}. \end{split}$$

This is the MGF of Gamma(α , 2), i.e. $\chi^2(2\alpha)$.

(2) By Theorem 5.2, we have

$$M_{\sum_{i=1}^{n} X_i}(t) = \prod_{i=1}^{n} M_{X_i}(t) = \prod_{i=1}^{n} (1 - \beta t)^{-\alpha_i}$$
$$= (1 - \beta t)^{-\sum_{i=1}^{n} \alpha_i} \quad \text{for } t < \frac{1}{\beta}$$

which is the MGF of Gamma $\left(\sum_{i=1}^{n} \alpha_i, \beta\right)$. Thus, $\sum_{i=1}^{n} X_i \sim \text{Gamma}\left(\sum_{i=1}^{n} \alpha_i, \beta\right)$ by the Uniqueness Theorem for MGFs.

- (5) Suppose that $X_i \sim N(\mu, \sigma^2)$ independently for i = 1, ..., n. Then, $\frac{X_i \mu}{\sigma} \sim N(0, 1)$ independently. Then, $\left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2(1)$ independently. Therefore, $\sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2(n)$.
- (6) Suppose that $X_i \sim \text{Poi}(\mu_i)$ independently for $i=1,\ldots,n$. We know that $M_{X_i}(t)=e^{\mu_i(e^t-1)}$. Then, by Theorem 5.2, we have

$$M_{\sum_{i=1}^n X_i}(t) = \prod_{i=1}^n M_{X_i}(t) = \prod_{i=1}^n e^{\mu_i(e^t-1)} = e^{\left(\sum_{i=1}^n \mu_i\right)(e^t-1)} \quad \text{for } t \in \mathbb{R}.$$

This is the MGF of Poi $(\sum_{i=1}^{n} \mu_i)$.

Note. Proofs for (3), (4), (7), and (8) are left as exercises.

Theorem 5.4 (Linear Combination of Independent Normal Random Variables).

If $X_i \sim N(\mu_i, \sigma_i^2)$ independently for i = 1, ..., n, then

$$\sum_{i=1}^{n} a_i X_i \sim \mathbf{N} \left(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2 \right).$$

Proof. Suppose that $X_i \sim N(\mu_i, \sigma_i^2)$ independently for i = 1, ..., n. Then, $M_{X_i}(t) = e^{\mu_i t + \frac{1}{2}\sigma_i^2 t^2}$ for $t \in \mathbb{R}$. By Theorem 5.2, we have

$$\begin{split} M_{\sum_{i=1}^{n} a_{i}X_{i}}(t) &= \prod_{i=1}^{n} M_{X_{i}}(a_{i}t) = \prod_{i=1}^{n} e^{a_{i}\mu_{i}t + \frac{1}{2}a_{i}^{2}\sigma_{i}^{2}t^{2}} \\ &= e^{\left(\sum_{i=1}^{n} a_{i}\mu_{i}\right)t + \frac{1}{2}t^{2}\left(\sum_{i=1}^{n} a_{i}^{2}\sigma_{i}^{2}\right)} \quad \text{for } t \in \mathbb{R} \end{split}$$

which is the MGF of N $\left(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2\right)$.

Lecture 15, 2025/03/03

5.3 Bivariate Normal Distribution

Definition 5.2 (Bivariate Normal Distribution).

If (X_1, X_2) is a random vector with joint PDF:

$$f(x_1, x_2) = \frac{1}{2\pi |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(X - \mu)^{\mathsf{T}} \Sigma^{-1} (X - \mu)\right)$$

where
$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$
, $\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} = \begin{pmatrix} \mathbb{E}\left[X_1\right] \\ \mathbb{E}\left[X_2\right] \end{pmatrix}$, and $\Sigma = \begin{pmatrix} \sigma_1^2 & \rho\sigma_1\sigma_2 \\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix}$ and Σ is a non-singular matrix.

Then, (X_1, X_2) is said to have a **bivariate normal distribution**, $X \sim \text{BVN}(\mu, \Sigma)$.

Note. The (1,1) entry of Σ is $Var(X_1)$, the (2,2) entry of Σ is $Var(X_2)$, and the (1,2) entry of Σ is $Cov(X_1,X_2) = Cov(X_2,X_1)$.

Proposition 5.5 (Properties of Bivariate Normal Distribution).

Suppose that $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim \text{BVN}(\mu, \Sigma)$. Then,

- (1) X has joint MGF $M(t_1, t_2) = \exp\left(\mu^{\mathsf{T}}t + \frac{1}{2}t^{\mathsf{T}}\Sigma t\right)$ where $t = \begin{pmatrix} t_1 \\ t_2 \end{pmatrix} \in \mathbb{R}^2$.
- (2) $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$.
- (3) $\operatorname{Cov}(X_1, X_2) = \rho \sigma_1 \sigma_2$ and $\operatorname{Corr}(X_1, X_2) = \rho$, where $-1 \le \rho \le 1$.
- (4) $X_1 \perp \!\!\!\perp X_2 \iff \rho = 0$.
- (5) Let $c = (c_1, c_2)^{\mathsf{T}} \in \mathbb{R}^2$ be a non-zero vector of constants, then

$$c^{\mathsf{T}}X = c_1 X_1 + c_2 X_2 \sim \mathrm{N}(c^{\mathsf{T}}\mu, c^{\mathsf{T}}\Sigma c).$$

(6) If A is a 2×2 non-singular matrix and b is a 2×1 vector, then

$$Y = AX + b \sim \text{BVN}(A\mu + b, A\Sigma A^{\mathsf{T}}).$$

Proof.

- (1) See Prof's written notes.
- (2) We look at X_1 first.

$$M_{X_1}(t_1) = M(t_1, 0) = e^{\mu_1 t_1 + \frac{1}{2}\sigma_1^2 t_1^2} \quad t_1 \in \mathbb{R}$$

which is the MGF of N(μ_1 , σ_1^2). By the Uniqueness Theorem for MGFs, $X_1 \sim N(\mu_1, \sigma_1^2)$. Similarly, we can show that $X_2 \sim N(\mu_2, \sigma_2^2)$.

(3) Note that

$$\mathbb{E}[X_1 X_2] = \frac{\partial^2}{\partial t_1 \partial t_2} M(t_1, t_2) \bigg|_{(t_1, t_2) = (0, 0)}$$

$$= \rho \sigma_1 \sigma_2 + \mu_1 \mu_2.$$

$$Cov(X_1, X_2) = \mathbb{E}[X_1 X_2] - \mu_1 \mu_2$$

$$= \rho \sigma_1 \sigma_2 + \mu_1 \mu_2 - \mu_1 \mu_2 = \rho \sigma_1 \sigma_2.$$

- (4) Note that $M_{(X_1,X_2)}(t_1,t_2) = M_{X_1}(t_1)M_{X_2}(t_2) \iff \rho = 0.$
- (5) We have

$$\begin{split} M_{c^{\intercal}X}(t) &= \mathbb{E}\left[e^{t^{\intercal}c^{\intercal}X}\right] = \mathbb{E}\left[e^{(ct)^{\intercal}X}\right] \\ &= \exp\left(\underbrace{\mu^{\intercal}c}_{(\mu^{*})^{\intercal}}t + \frac{1}{2}t^{\intercal}\underbrace{c^{\intercal}\Sigma c}_{\Sigma^{*}}t\right). \end{split}$$

By the Uniqueness Theorem for MGFs, $c^TX \sim N(\mu^T c, c^T\Sigma c)$.

(6) Consider the MGF of Y = AX + b:

$$\begin{split} M_Y(t) &= \mathbb{E}\left[e^{t^\top (AX+b)}\right] = e^{t^\top b} \mathbb{E}\left[e^{t^\top AX}\right] \\ &= e^{t^\top b} \mathbb{E}\left[e^{(A^\top t)^\top X}\right] \\ &= e^{t^\top b} \exp\left(\mu^\top A^\top t + \frac{1}{2}(A^\top t)^\top \Sigma A^\top t\right) \\ &= \exp\left(\underbrace{(A\mu + b)^\top t + \frac{1}{2}t^\top \underbrace{A\Sigma A^\top}_{\Sigma^*} t}\right) \end{split}$$

which is the MGF of BVN($A\mu + b, A\Sigma A^{\mathsf{T}}$).

5.4 Multinomial Distribution

Definition 5.3 (Multinomial Distribution).

Suppose that $(X_1, ..., X_k)$ is a discrete random vector with joint PMF:

$$f(x_1, \dots, x_k) = \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}$$

for $x_i = 0, 1, \dots, n, i = 1, \dots, k$, $\sum_{i=1}^k x_i = n, 0 < p_i < 1 \ \forall i \ \text{and} \ \sum_{i=1}^k p_i = 1$. Then, (X_1, \dots, X_k) is said to have a **multinomial distribution**, $(X_1, \dots, X_k) \sim \text{Multinomial}(n; p_1, \dots, p_k)$.

Example. Recall a previous example where we select 5 students from 10 actsci students, 9 stat students and 6 math students.

- If we sample without replacement: Extended Hypergeometric.
- If we sample with replacement: Multinomial.

Remark.

- (1) If we conduct n independent trials with each trial resulting in one of k categories (outcomes) with probabilities p_1, \ldots, p_k (and $\sum_{i=1}^k p_i = 1$), then the number of times each category occurs in the n trials follows a multinomial distribution.
- (2) $x_k = n \sum_{i=1}^{k-1} x_i$ and $p_k = 1 \sum_{i=1}^{k-1} p_i$. Thus, X_k is redundant.

Lecture 16, 2025/03/05

Example. Rolling a fair die 10 times, the number of times each number appears follow Multinomial $\left(10; \frac{1}{6}, \dots, \frac{1}{6}\right)$.

Proposition 5.6 (Properties of Multinomial Distribution).

Suppose that $X = (X_1, ..., X_k) \sim \text{Multinomial}(n; p_1, ..., p_k)$. Then,

(1) $(X_1, ..., X_k)$ has joint MGF:

$$M(t_1, ..., t_k) = (p_1 e^{t_1} + ... + p_k e^{t_k})^n.$$

- (2) Any subset of (X_1,\ldots,X_k) also has a multinomial distribution. In particular, $X_i\sim \text{Binomial}(n,p_i)$ for $i=1,\ldots,k$.
- (3) If $T = X_i + X_j$ for $i \neq j$, then $T \sim \text{Binomial}(n, p_i + p_j)$.
- (4) $\operatorname{Cov}(X_i, X_j) = -np_i p_j$ for $i \neq j$.
- (5) The conditional distribution of $X_i \mid X_j = x_j$ with $i \neq j$, is Binomial $\left(n x_j, \frac{p_i}{1 p_j}\right)$.
- (6) The conditional distribution of $X_i \mid T = X_i + X_j = t$, with $i \neq j$, is Binomial $\left(t, \frac{p_i}{p_i + p_j}\right)$.

Proof.

(1) We have

$$\begin{split} M(t_1,\dots,t_k) &= \mathbb{E}\left[e^{t_1X_1+\dots t_kX_k}\right] \\ &= \sum_{x_1+\dots+x_k=n} e^{t_1x_1+\dots+t_kx_k} \frac{n!}{x_1!\dots x_k!} p_1^{x_1}\dots p_k^{x_k} \\ &= \sum_{x_1+\dots+x_k=n} \frac{n!}{x_1!\dots x_k!} (p_1e^{t_1})^{x_1}\dots (p_ke^{t_k})^{x_k} \\ &= \left(p_1e^{t_1}+\dots+p_ke^{t_k}\right)^n \quad (t_1,\dots,t_k) \in \mathbb{R}^k \text{ by Multinomial Theorem.} \end{split}$$

(2) Note that

$$M_{X_i}(t_i) = M(0, \dots, t_i, \dots, 0) = (p_1 e^0 + \dots + p_k e^{t_i} + \dots + p_k e^0)^n$$
$$= (p_i e^{t_i} + 1 - p_i)^n \quad \text{for } t_i \in \mathbb{R}$$

which is the MGF of Binomial (n, p_i) .

(3) Note that

$$\begin{split} M_T(t) &= \mathbb{E}\left[e^{t(X_i + X_j)}\right] = M(0, \dots, \underbrace{t}_i, \dots, \underbrace{t}_j, \dots, 0) \\ &= \left(p_i e^t + p_j e^t + 1 - p_i - p_j\right)^n \\ &= \left((p_i + p_j)e^t + 1 - (p_i + p_j)\right)^n \quad \text{for } t \in \mathbb{R} \end{split}$$

which is the MGF of Binomial $(n, p_i + p_j)$.

(4) We have

$$\begin{split} \mathbb{E}\left[X_{i}X_{j}\right] &= \frac{\partial^{2}}{\partial t_{i}\partial t_{j}}M(0,\ldots,0,t_{i},\ldots,t_{j},0\ldots,0)\bigg|_{t_{i}=0=t_{j}} \\ &= \frac{\partial^{2}}{\partial t_{i}\partial t_{j}}\left(p_{i}e^{t_{i}}+p_{j}e^{t_{j}}+1-p_{i}-p_{j}\right)^{n}\bigg|_{t_{i}=0=t_{j}} \\ &= \frac{\partial}{\partial t_{i}}np_{j}e^{t_{j}}\left(p_{i}e^{t_{i}}+p_{j}e^{t_{j}}+1-p_{i}-p_{j}\right)^{n-1}\bigg|_{t_{i}=0=t_{j}} \\ &= n(n-1)p_{i}p_{j}\left(p_{i}e^{t_{i}}+p_{j}e^{t_{j}}+1-p_{i}-p_{j}\right)^{n-2}\bigg|_{t_{i}=0=t_{j}} \\ &= n(n-1)p_{i}p_{j}. \end{split}$$

Also, $\mathbb{E}\left[X_{i}\right]=np_{i}$ and $\mathbb{E}\left[X_{j}\right]=np_{j}$. Thus, $\operatorname{Cov}\left(X_{i},X_{j}\right)=\mathbb{E}\left[X_{i}X_{j}\right]-\mathbb{E}\left[X_{i}\right]\mathbb{E}\left[X_{j}\right]=-np_{i}p_{j}$.

(5) Exercise. Hint: use the definition of conditional probability, i.e.

$$\mathbb{P}(X_i = x_i \mid X_j = x_j) = \frac{\mathbb{P}(X_i = x_i, X_j = x_j)}{\mathbb{P}(X_i = x_i)}.$$

(6) Exercise, similar to (5).

6 Asymptotic Distributions

Suppose that we want to measure the average height of women in Canada. Then, we take a sample from $N(\mu, \sigma^2)$.

Goal: Estimate μ .

Observations Statistic: Sample Mean $Z_1 \qquad X_1 = Z_1$ $Z_1, Z_2 \qquad X_2 = \frac{Z_1 + Z_2}{2}$ $Z_1, Z_2, Z_3 \qquad X_3 = \frac{Z_1 + Z_2 + Z_3}{3}$ $\vdots \qquad \vdots$ $Z_1, \dots, Z_n \qquad X_n = \frac{Z_1 + \dots + Z_n}{n}$

Question: What is the limiting (or asymptotic) distribution of X_n when $n \to \infty$?

6.1 Convergence in Distribution

Definition 6.1 (Convergence in Distribution).

Let $X_1, ..., X_n$ be a sequence of random variables such that X_n has CDF $F_n(x)$ for n = 1, 2, ...Let X be a random variable with CDF F(x). We say that X_n **converges in distribution** to X and denote this by $X_n \stackrel{d}{\to} X$ if

$$\lim_{n\to\infty} F_n(x) = F(x)$$

at all points x at which F(x) is continuous. We call F the **limiting/asymptotic distribution** of X_n .

Note. $X_n \stackrel{d}{\to} X$ means $\mathbb{P}(X_n \le a) \approx \mathbb{P}(X \le a)$ for large n but does not mean $X_n(\omega) \approx X(\omega)$.

Example. Let $X_i \sim \text{Exp}(1)$, i=1,2,..., independently. Consider $Y_1,...,Y_n$ where $Y_n = \max(X_1,...,X_n) - \log(n) = X_{(n)} - \log(n)$. Find the limiting distribution of Y_n .

Proof. Note that $F_i(x) = 1 - e^{-x}$ for $x \ge 0$. Let $G_n(y)$ be the CDF of Y_n . Then,

$$\begin{split} G_n(y) &= \mathbb{P}(Y_n \leq y) = \mathbb{P}(X_{(n)} - \log(n) \leq y) \\ &= \mathbb{P}(X_{(n)} \leq y + \log(n)) \\ &\stackrel{\text{ind}}{=} \prod_{i=1}^n \mathbb{P}(X_i \leq y + \log(n)) \quad \text{for } \log(n) + y > 0 \\ &= \left(1 - e^{-(y + \log(n))}\right)^n \\ &= \left(1 - \frac{e^{-y}}{n}\right)^n \quad y > -\log(n). \end{split}$$

Then, $\lim_{n\to\infty} G_n(y) = \lim_{n\to\infty} \left(1 - \frac{e^{-y}}{n}\right)^n = e^{-e^{-y}}$ for $y \in \mathbb{R}$. Thus, $Y_n \stackrel{d}{\to} Y$ where Y has CDF $F(y) = e^{-e^{-y}}$, $y \in \mathbb{R}$ and Y follows a Gumbel distribution.

Question; How do we show that $F(y) = e^{-e^{-y}}$ is a valid CDF?

Solution:

- 1. $\lim_{y \to -\infty} e^{-e^{-y}} = 0$ and $\lim_{y \to \infty} e^{-e^{-y}} = 1$. 2. $(e^{-e^{-y}})' = e^{-y}e^{-e^{-y}} > 0$ for all $y \in \mathbb{R}$. Thus, F(y) is increasing.
- 3. F(y) is continuous $\implies F(y)$ is right-continuous.

Remark (Limits Review).

$$(1) \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

$$(2) \lim_{n \to \infty} \left(1 + \frac{b}{n} \right)^{cn} = e^{bc}.$$

(3)
$$\lim_{n \to \infty} \left(1 + \frac{b}{n} + \frac{\psi(n)}{n} \right)^{cn} = e^{bc} \text{ if } \psi(n) \to 0.$$

Example. Suppose $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} \text{Pareto}(1,1)$ with $F(x) = \frac{x}{1+x}$ for x > 0. Let $Y_n = nX_{(1)} = x$ $n \cdot \min(X_1, \dots, X_n)$. Find the limiting distribution of Y_n .

Proof. We have

$$F_n(y) = \mathbb{P}(Y_n \le y) = \mathbb{P}(nX_{(1)} \le y)$$

$$= \mathbb{P}\left(X_{(1)} \le \frac{y}{n}\right)$$

$$= 1 - \mathbb{P}\left(X_{(1)} > \frac{y}{n}\right)$$

$$\stackrel{\text{ind}}{=} 1 - \prod_{i=1}^n \left(\frac{1}{1 + \frac{y}{n}}\right)$$

$$= 1 - \left(1 + \frac{y}{n}\right)^{-n} \quad y > 0.$$

Then, $\lim_{n\to\infty} F_n(y) = 1 - e^{-y}$ for y > 0. Thus, $Y_n \xrightarrow{d} Y$ where $Y \sim \text{Exp}(1)$.

Question: How about $Y_n = X_{(n)} = \max(X_1, \dots, X_n)$? Note that $F_n(y) = \mathbb{P}(Y_n \le y) = \mathbb{P}(X_{(n)} \le y) = \left(\frac{y}{1+y}\right)^n$ for y > 0. Then, $\lim_{n \to \infty} F_n(y) = 0$ which is not a valid CDF.

Remark. The limit of a sequence of CDF's is not necessarily a CDF.

Lecture 17, 2025/03/10

Example. Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Unif}(0, 1)$. Let $Y_n = \max(X_1, \ldots, X_n) = X_{(n)}$. Then,

$$G_n(y) = \mathbb{P}(Y_n \le y) = \mathbb{P}(X_{(n)} \le y)$$

$$= \begin{cases} 0 & \text{if } y \le 0 \\ y^n & \text{if } 0 < y < 1 \\ 1 & \text{if } y > 1 \end{cases}$$

The plot of CDF looks like the following for n = 1, 2, 3.

6.2 Convergence in Probability

Definition 6.2 (Convergence in Probability).

A sequence of random variables X_1, \dots, X_n converges in probability to a random variable X if for every $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbb{P}(|X_n - X| \ge \epsilon) = 0.$$

Equivalently,

$$\lim_{n\to\infty} \mathbb{P}(|X_n - X| < \epsilon) = 1.$$

We write $X_n \xrightarrow{P} X$.

Theorem 6.1. If $X_n \stackrel{P}{\to} X$, then $X_n \stackrel{d}{\to} X$.

Remark. $X_n \xrightarrow{d} X$ does not imply $X_n \xrightarrow{P} X$.

Example (Converge in D does not imply Converge in P).

Consider the sample space $\Omega = \{\omega_1, \omega_2\}$ and a probability distribution on Ω defined by $\mathbb{P}(\omega_1) = \frac{1}{2} = \mathbb{P}(\omega_2)$. Define the random variables:

$$X_n(\omega) = \begin{cases} 0 & \text{if } \omega = \omega_1 \\ 1 & \text{if } \omega = \omega_2 \end{cases} \quad \forall n \in \mathbb{N}$$

and

$$X(\omega) = \begin{cases} 1 & \text{if } \omega = \omega_1 \\ 0 & \text{if } \omega = \omega_2 \end{cases}.$$

Then, $X_n \sim \operatorname{Ber}(1/2)$ and $X \sim \operatorname{Ber}(1/2)$. Then, $F_n(x) = F(x) \implies \lim_{n \to \infty} F_n(x) = F(x)$. Thus, $X_n \stackrel{d}{\to} X$. However,

$$|X_n-X|=\begin{cases} 1 & \text{if } \omega=\omega_1\\ 1 & \text{if } \omega=\omega_2 \end{cases} \quad \forall n\in\mathbb{N}.$$

Therefore, $\forall \ 0 < \varepsilon < 1$, we have $\mathbb{P}(|X_n - X| \ge \varepsilon) = 1$, i.e. $X_n \overset{P}{\nrightarrow} X$.

Definition 6.3 (Convergence in Probability to a Constant).

A sequence of random variables X_1, \dots, X_n converges in probability to a constant b if, for every $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbb{P}(|X_n - b| \ge \epsilon) = 0$$

or equivalently, $\lim_{n\to\infty} \mathbb{P}(|X_n-b|<\varepsilon)=1$. We write $X_n\stackrel{P}{\to} b$.

Theorem 6.2 (Convergence in Probability to a Constant).

Suppose X_1, \dots, X_n is a sequence of random variables such that X_n has CDF $F_n(x)$. If

$$\lim_{n \to \infty} F_n(x) = \begin{cases} 0 & \text{if } x < b \\ 1 & \text{if } x > b \end{cases}$$

then, $X_n \xrightarrow{P} b$ (no mention of what happens at x = b, and it is a point of discontinuity).

Proof. For all $\epsilon > 0$,

$$\begin{split} \mathbb{P}(|X_n - b| \ge \varepsilon) &= \mathbb{P}(X_n - b \ge \varepsilon \text{ or } X_n - b \le -\varepsilon) \\ &= \mathbb{P}(X_n \le b - \varepsilon) + \mathbb{P}(X_n \ge b + \varepsilon) \\ &= \mathbb{P}(X_n \le b - \varepsilon) + [1 - \mathbb{P}(X_n < b + \varepsilon)] \,. \end{split}$$

Then,

$$\lim_{n \to \infty} \mathbb{P}(|X_n - b| \ge \varepsilon) = \lim_{n \to \infty} \mathbb{P}(X_n \le b - \varepsilon) + \left[1 - \lim_{n \to \infty} \mathbb{P}(X_n < b + \varepsilon)\right]$$
$$= 0 + 1 - 1 = 0.$$

Thus,
$$X_n \stackrel{P}{\to} b$$
.

Example. Let $X_i \sim \operatorname{Exp}(1,\theta)$, $i=1,2,\ldots$ independently, where 1 is a rate parameter and θ is a shift parameter. Consider Y_1,\ldots,Y_n where $Y_n=\min(X_1,\ldots,X_n)$. Show that $Y_n\stackrel{P}{\to}\theta$.

Proof. Since $X_i \sim \text{Exp}(1, \theta)$, we have

$$f_i(x) = e^{-(x-\theta)} \quad x > \theta$$

$$F_i(x) = \begin{cases} 1 - e^{-(x-\theta)} & \text{if } x > \theta \\ 0 & \text{if } x \le \theta. \end{cases}$$

Let $G_n(y)$ be the CDF of Y_n . Then,

$$G_n(y) = \mathbb{P}(Y_n \le y) = \mathbb{P}(X_{(1)} \le y)$$

$$= 1 - \mathbb{P}(X_{(1)} > y)$$

$$\stackrel{\text{ind}}{=} 1 - \prod_{i=1}^n \mathbb{P}(X_i > y)$$

$$= 1 - \left[1 - (1 - e^{-(y - \theta)})\right]^n$$

$$= 1 - e^{-n(y - \theta)} \quad y > \theta.$$

Then,
$$\lim_{n\to\infty} G_n(y) = \begin{cases} 1 & \text{if } y > \theta \\ & \text{, i.e. } Y_n \stackrel{P}{\to} \theta \text{, by Theorem 6.2.} \end{cases}$$

6.3 Moment Generating Funcion Technique for Limiting Distributions

Theorem 6.3 (Limit Theorem for MGFs or Lévy's Continuity Theorem).

Let $X_1, ..., X_n$ be a sequence of random variables such that X_n has MGF $M_n(t)$. Let X be a random variable with MGF M(t). If $\exists h > 0$ such that

$$\lim_{n \to \infty} M_n(t) = M(t) \quad \forall t \in (-h, h),$$

then $X_n \xrightarrow{d} X$.

Example. Suppose $X_n \sim \text{Binomial}(n, p)$. If $n \to \infty$, $p \to 0$ s.t. $np = \lambda$ for some $\lambda > 0$, find the limiting distribution of X_n .

Proof. Let's consider the MGF of X_n :

$$\begin{split} M_{X_n}(t) &= \left(pe^t + 1 - p\right)^n \\ &= \left(\frac{\lambda e^t}{n} + 1 - \frac{\lambda}{n}\right)^n \\ &= \left(1 + \frac{\lambda (e^t - 1)}{n}\right)^n \to e^{\lambda (e^t - 1)} \quad t \in \mathbb{R}, \text{ as } n \to \infty. \end{split}$$

This is the MGF of $\operatorname{Poisson}(\lambda)$. By Lévy's Continuity Theorem, $X_n \overset{d}{\to} X \sim \operatorname{Poisson}(\lambda)$.

Example. Suppose $Y_k \sim \text{NB}(k,p), k = 1,2,...$ Find the limiting distribution of Y_k as $k \to \infty, p \to 1$ s.t. $\frac{kq}{p} = \mu$ remains constant where q = 1 - p.

Proof. Since $Y_k \sim NB(k, p)$, we have

$$M_{Y_k}(t) = \left(\frac{p}{1 - qe^t}\right)^k \quad \text{for } t < -\log(q).$$

Note that $p = \frac{k}{k+\mu}$, then,

$$\begin{split} \lim_{k \to \infty} M_{Y_k}(t) &= \lim_{k \to \infty} \left(\frac{p}{1 - qe^t}\right)^k \\ &= \lim_{k \to \infty} \left(\frac{\frac{k}{k + \mu}}{1 - \left(\frac{\mu}{k + \mu}\right)e^t}\right)^k \\ &= \lim_{k \to \infty} \left(\frac{\frac{k}{k + \mu}}{\frac{k}{k + \mu} + \frac{\mu}{k + \mu}(1 - e^t)}\right)^k \\ &= \lim_{k \to \infty} \left(1 + \frac{\mu(1 - e^t)}{k}\right)^{-k} \to e^{\mu(e^t - 1)} \quad t \in \mathbb{R}, \text{ as } k \to \infty. \end{split}$$

This is the MGF of Poisson(μ). By Lévy's Continuity Theorem, $Y_k \xrightarrow{d} Y \sim \text{Poisson}(\mu)$.

Theorem 6.4 (Weak Law of Large Numbers (WLLN)).

Suppose X_1, \dots, X_n is a sequence of independent random variables with $\mathbb{E}[X_i] = \mu$ and $\mathrm{Var}(X_i) = \sigma^2 < \infty$. Then, $\overline{X}_n \stackrel{P}{\to} \mu$.

Note. The sequence X_1, \dots, X_n is not necessarily identically distributed.

Proof. We have

$$\mathbb{P}(|\overline{X}_n - \mu| \ge \epsilon) \stackrel{Markov's}{\le} \frac{\mathbb{E}\left[|\overline{X}_n - \mu|^2\right]}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \to 0 \quad \text{as } n \to \infty.$$

Thus, $\overline{X}_n \xrightarrow{P} \mu$.

Lecture 18, 2025/03/12

Theorem 6.5 (Central Limit Theorem (CLT)).

Suppose $X_1, ..., X_n$ is a sequence of i.i.d. random variables with $\mathbb{E}[X_i] = \mu$ and $\text{Var}(X_i) = \sigma^2 < \infty$. Then,

$$Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \xrightarrow{d} Z \sim N(0, 1).$$

Remark.

- (1) This means, for large n, the distribution of \overline{X}_n is approximately $N\left(\mu, \frac{\sigma^2}{n}\right)$. But we cannot write it as $\overline{X}_n \stackrel{d}{\to} N\left(\mu, \frac{\sigma^2}{n}\right)$ because for the limiting distribution, we have $n \to \infty$, so $\frac{\sigma^2}{n} \to 0$.
- (2) $\overline{X}_n \xrightarrow{P} \mu$ with a rate $\frac{1}{\sqrt{n}}$, i.e. \overline{X}_n is \sqrt{n} -consistent.

Proof. First, we can write $Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} = \frac{1}{\sqrt{n}} \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)$. Consider the MGF of Z_n :

$$\begin{split} M_{Z_n}(t) &= \mathbb{E}\left[e^{t\left(\frac{1}{\sqrt{n}}\sum_{i=1}^n\left(\frac{X_i-\mu}{\sigma}\right)\right)}\right] \\ &\stackrel{iid}{=} \left[M_{\frac{X_i-\mu}{\sigma}}\left(\frac{t}{\sqrt{n}}\right)\right]^n \\ &= \left[1 + \frac{\mathbb{E}\left[\frac{X_i-\mu}{\sigma}\right]}{1!}\frac{t}{\sqrt{n}} + \frac{\mathbb{E}\left[\left(\frac{X_i-\mu}{\sigma}\right)^2\right]}{2!}\left(\frac{t}{\sqrt{n}}\right)^2 + o\left(\left(\frac{t}{\sqrt{n}}\right)^2\right)\right]^n \quad \text{by Maclaurin series} \\ &= \left[1 + 0 \cdot \frac{t}{\sqrt{n}} + \frac{1}{2} \cdot \frac{t^2}{n} + o\left(\frac{t^2}{n}\right)\right]^n \\ &= \left[1 + \frac{t^2}{2n} + o\left(\frac{t^2}{n}\right)\right]^n \rightarrow e^{\frac{t^2}{2}} \quad \text{as } n \rightarrow \infty. \end{split}$$

This is the MGF of $Z \sim \mathrm{N}(0,1)$. Thus, $Z_n \overset{d}{\to} Z$ by Lévy's Continuity Theorem.

Example. Suppose that $Y_n \sim \chi^2(n)$, n = 1, 2, ... Show that $Z_n = \frac{Y_n - n}{\sqrt{2n}} \xrightarrow{d} Z \sim N(0, 1)$.

Proof. Note that $\mathbb{E}[Y_n] = n$ and $\mathrm{Var}(Y_n) = 2n$. Let X_1, \dots, X_n be i.i.d. $\chi^2(1)$ random variables. We have $\mathbb{E}[X_i] = \mu = 1$ and $\mathrm{Var}(X_i) = \sigma^2 = 2$. Also, $Y_n = \sum_{i=1}^n X_i$. Then,

$$Z_{n} = \frac{Y_{n} - n}{\sqrt{2n}} = \frac{\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i} - \sqrt{n}}{\sqrt{2}}$$

$$= \sqrt{n} \left(\frac{\overline{X}_{n} - 1}{\sqrt{2}} \right)$$

$$= \sqrt{n} \left(\frac{\overline{X}_{n} - \mu}{\sqrt{\sigma}} \right) \xrightarrow{d} Z \sim N(0, 1) \text{ by the CLT.}$$

Theorem 6.6 (Additional Limit Theorems).

(1) (Continuous Mapping Theorem): If $X_n \stackrel{P}{\to} a$ and g is continuous at x = a, then

$$g(X_n) \xrightarrow{P} g(a)$$
.

(2) (Extension of above): If $X_n \xrightarrow{P} X$, $Y_n \xrightarrow{P} Y$ and g(x,y) is continuous at (a,b), then

$$g(X_n, Y_n) \xrightarrow{P} g(a, b).$$

(3) (Slutsky's Theorem): If $X_n \xrightarrow{d} X$, $Y_n \xrightarrow{P} b$, and g(x,b) is continuous for all x, then

$$g(X_n, Y_n) \xrightarrow{d} g(X, b).$$

(4) If $X_n \stackrel{d}{\to} X$ and g(x) is a continuous function, then

$$g(X_n) \xrightarrow{d} g(X).$$

Proof. (1) Suppose that $X_n \stackrel{P}{\to} a$ and g is continuous at x = a. Then, $\forall \varepsilon > 0, \exists \delta > 0$ s.t.

$$|x - a| < \delta \implies |g(x) - g(a)| < \epsilon$$
.

Thus,

$$\begin{split} \mathbb{P}\left(|g(X_n)-g(a)|<\varepsilon\right) &\geq \mathbb{P}\left(|X_n-a|<\delta\right) \\ \Longrightarrow &\lim_{n\to\infty} \mathbb{P}\left(|g(X_n)-g(a)|<\varepsilon\right) \geq \lim_{n\to\infty} \mathbb{P}\left(|X_n-a|<\delta\right) = 1. \end{split}$$

Thus, $g(X_n) \xrightarrow{P} g(a)$.

Example. If $X_n \stackrel{P}{\to} a > 0$, $Y_n \stackrel{P}{\to} b \neq 0$, and $Z_n \stackrel{d}{\to} Z \sim N(0,1)$, then confirm the following limiting distributions.

$$(1) X_n^2 \xrightarrow{P} a^2 \qquad \qquad (6) 2Z_n \xrightarrow{d} 2Z \sim N(0,4)$$

$$(2)\sqrt{X_n} \xrightarrow{P} \sqrt{a} \qquad (7)Z_n + Y_n \xrightarrow{d} Z + b \sim N(b,1) \text{ (by Slutsky)}$$

$$(3) X_n Y_n \xrightarrow{P} ab$$
 $(8) X_n Z_n \xrightarrow{d} aZ \sim N(0, a^2) \text{ (by Slutsky)}$

$$(4) X_n + Y_n \xrightarrow{P} a + b \quad (9) Z_n^2 \xrightarrow{d} Z^2 \sim \chi^2(1)$$

Lecture 19, 2025/03/17

Theorem 6.7 (Delta Method).

Let X_1, \dots, X_n, \dots be a sequence of random variables such that

$$\sqrt{n}(X_n - a) \xrightarrow{d} X \sim N(0, \sigma^2).$$

Suppose that the function g(x) is differentiable and $g'(a) \neq 0$. Then,

$$\sqrt{n}(g(X_n) - g(a)) \xrightarrow{d} W \sim N(0, [g'(a)]^2 \sigma^2).$$

Proof. By Taylor's theorem, we have $g(X_n) = g(a) + g'(\theta_n)(X_n - a)$ where θ_n is some value between X_n and a. Then,

$$g(X_n) - g(a) = g'(\theta_n)(X_n - a)$$
$$\sqrt{n}(g(X_n) - g(a)) = g'(\theta_n)\sqrt{n}(X_n - a).$$

Since $X_n \xrightarrow{P} a$ and $\theta_n \xrightarrow{P} a$, we have

 $g'(\theta_n) \xrightarrow{P} g'(a)$ by the Continuous Mapping Theorem.

Then, we have $\sqrt{n}(g(X_n) - g(a)) \xrightarrow{d} g'(a)X \sim N(0, [g'(a)]^2\sigma^2)$ by Slutsky's Theorem.

Theorem 6.8. Let X_1, \dots, X_n, \dots be a sequence of random variables such that

$$n^b(X_n - a) \xrightarrow{d} X$$
 for some $b > 0$.

Suppose that the function g(x) is differentiable at a and $g'(a) \neq 0$. Then,

$$n^b(g(X_n) - g(a)) \xrightarrow{d} g'(a)X.$$

Example. Suppose that $X_i \sim \text{Poi}(\mu)$, i=1,2... independently. Consider the sequence of random variables Z_1,\ldots,Z_n ... where $Z_n=\frac{\sqrt{n}(\overline{X}_n-\mu)}{\sqrt{\overline{X}_n}}$. Find the limiting distribution of Z_n .

Proof. Note that $\mathbb{E}\left[X_i\right] = \mu = \mathrm{Var}\left(X_i\right)$. Then by WLLN, we have $\overline{X}_n \xrightarrow{P} \mu$. Also, by the CLT, we have $\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sqrt{\mu}} \xrightarrow{d} Z \sim \mathrm{N}(0,1)$. Then, $\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sqrt{\overline{X}_n/\mu}} \xrightarrow{d} Z \sim \mathrm{N}(0,1)$ by the Slutsky Theorem. \square

Example. Let $X_1, ..., X_n$ be i.i.d. with $\mathbb{E}[X_i] = \mu \neq 0$, $Var(X_i) = \sigma^2 < \infty$ and $\mathbb{E}[X_i^4] < \infty$. Show that

- (1) $S_n^2 \stackrel{P}{\to} \sigma^2$ where $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X}_n)^2$.
- (2) $T_n = \frac{\sqrt{n}(\overline{X}_n \mu)}{S_n} \xrightarrow{d} N(0, 1).$
- (3) Find the limiting distribution of $\sqrt{n} \frac{(\overline{X}_n^2 \mu^2)}{S_n}$.

Proof.

(1) Note that $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \sum_{i=1}^n X_i^2 - \frac{n}{n-1} \overline{X}_n^2$. From WLLN, we have

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} \xrightarrow{P} \mathbb{E}\left[X_{i}^{2}\right] = \sigma^{2} + \mu^{2} \quad \text{and} \quad \overline{X}_{n} \xrightarrow{P} \mu.$$

From the Continuous Mapping Theorem, we have, $\overline{X}_n^2 \xrightarrow{P} \mu^2$. Therefore,

$$S_n^2 = \frac{n}{n-1} \left(\frac{1}{n} \sum_{i=1}^n X_i^2 \right) - \frac{n}{n-1} \overline{X}_n^2 \xrightarrow{P} \mathbb{E} \left[X_i^2 \right] - \mu^2 = \sigma^2.$$

Also, we have $S_n \xrightarrow{P} \sigma$.

(2) Note that

$$T_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{S_n}$$
$$= \frac{\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma}}{\frac{S_n}{\sigma}} \xrightarrow{d} N(0, 1)$$

since the denominator $\frac{S_n}{\sigma} \xrightarrow{P} 1$. By Slutsky's Theorem, $T_n \xrightarrow{d} N(0,1)$.

(3) Since $\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \xrightarrow{d} N(0, 1)$ by the CLT, then by the Delta Method with $g(x) = x^2$, we have

$$\sqrt{n}\frac{(\overline{X}_n^2-\mu^2)}{\sigma} \xrightarrow{d} 2\mu \mathrm{N}(0,1) = \mathrm{N}(0,4\mu^2).$$

Therefore, $\sqrt{n} \frac{(\overline{X}_n^2 - \mu^2)}{S_n} = \frac{\sqrt{n} \frac{(\overline{X}_n^2 - \mu^2)}{\sigma}}{\frac{S_n}{\sigma}} \xrightarrow{d} N(0, 4\mu^2)$ from Slutsky's Theorem.

Example. Let $X_n \sim \text{Binomial}(n, p)$. Show that $Z_n = \frac{\sqrt{n}(\frac{X_n}{n} - p)}{\sqrt{\frac{X_n}{n}(1 - \frac{X_n}{n})}} \stackrel{d}{\to} N(0, 1)$.

Proof. Note that $X_n = \sum_{i=1}^n Y_i$ where $Y_1, \dots, Y_n \stackrel{iid}{\sim} \mathrm{Ber}(p)$. By WLLN, we have

$$\frac{X_n}{n} = \overline{Y}_n \xrightarrow{P} \mathbb{E}[Y_i] = p.$$

By Continuous Mapping Theorem, we have

$$\sqrt{\frac{X_n}{n}\left(1-\frac{X_n}{n}\right)} \xrightarrow{P} \sqrt{p(1-p)}.$$

Since $Var(Y_i) = p(1 - p)$, then by CLT, we have

$$\frac{\sqrt{n}\left(\frac{X_n}{n}-p\right)}{\sqrt{p(1-p)}}\overset{d}{\to} \mathrm{N}(0,1).$$

Therefore,

$$Z_n = \frac{\sqrt{n} \left(\frac{X_n}{n} - p\right)}{\sqrt{\frac{X_n}{n} \left(1 - \frac{X_n}{n}\right)}} = \frac{\frac{\sqrt{n} \left(\frac{X_n}{n} - p\right)}{\sqrt{p(1-p)}}}{\frac{\sqrt{\frac{X_n}{n} \left(1 - \frac{X_n}{n}\right)}}{\sqrt{p(1-p)}}} \xrightarrow{d} N(0, 1)$$

by Slutsky's Theorem.

Estimation

Likelihood Function and MLE

Basic Setup

Suppose that $X=(X_1,\ldots,X_n)$ are i.i.d. random variables (an i.i.d. sample) from the distribution with PMF/PDF $f(x; \theta)$. Suppose also θ is unknown and $\theta \in \Omega$ where Ω is the set of all possible values of θ , i.e. the parameter space.

Example. Let
$$X_i \sim N(\mu, \sigma^2)$$
. Then $\theta = (\mu, \sigma^2)$ and $\Omega = (-\infty, \infty) \times [0, \infty)$.

We are interested in making inference about θ :

- (1) Find estimates (point and interval) of θ .
- (2) Test hypothesis about θ .

Definition 7.1 (Statistic). A **statistic** $T = T(X) = T(X_1, ..., X_n)$ is a function of the data, which does not depend on any unknown parameters.

Example. Suppose $X_1, ..., X_n$ are i.i.d. with $\mu = \mathbb{E}[X_i]$ and $\sigma^2 = \text{Var}(X_i)$. Then,

- $\overline{X}_n = \frac{\sum X_i}{n}$ is a statistic. $S^2 = \frac{\sum (X_i \overline{X}_n)^2}{n-1}$ is a statistic. $\frac{\overline{X} \mu}{\sigma / \sqrt{n}}$ is NOT a statistic.

Definition 7.2 (Estimator and Estimate).

A statistic $T = T(X) = T(X_1, ..., X_n)$ that is used to estimate $\tau(\theta)$, a function of θ , is called an **estimator** of $\tau(\theta)$, and an observed value of T, i.e. $t = t(x) = t(x_1, \dots, x_n)$ is called an **estimate** of $\tau(\theta)$.

Example. \overline{X}_n is an estimator of μ and for a given set of observations x_1, \dots, x_n , the number \overline{x} is an estimate of μ .

Definition 7.3 (Likelihood Function).

Suppose that *X* is a discrete random variable with PMF $f(x; \theta)$, where θ is a scalar and $\theta \in \Omega$. If *x* is the observed data, then the **likelihood function** for θ based on *x* is

$$L(\theta) = L(\theta; x) = \mathbb{P}(X = x; \theta) = f(x; \theta)$$
 for $\theta \in \Omega$.

Suppose X_1, \ldots, X_n is an i.i.d. sample with PMF/PDF $f(x; \theta)$ and x_1, \ldots, x_n are the observed data. The **likelihood function** for θ based on x_1, \ldots, x_n is

$$L(\theta) = L(\theta; x_1, \dots, x_n)$$

$$= \mathbb{P}(\text{observing the data } x_1, \dots, x_n; \theta)$$

$$= \mathbb{P}(X_1 = x_1, \dots, X_n = x_n; \theta)$$

$$= \prod_{i=1}^n f(x_i; \theta) \quad \text{for } \theta \in \Omega.$$

Definition 7.4 (log-likelihood Function).

The log-likelihood function is defined as

$$\ell(\theta) = \log L(\theta) = \log L(\theta; x_1, \dots, x_n) = \sum_{i=1}^n \log f(x_i; \theta) \quad \text{for } \theta \in \Omega.$$

Definition 7.5 (Maximum Likelihood Estimate/Estimator).

The value of θ that maximizes $L(\theta)$ or $\ell(\theta)$ is called the **maximum likelihood estimate** (MLE) of θ , denoted by

$$\hat{\theta} = \hat{\theta}(x)$$
.

The corresponding **ML estimator** is denoted by

$$\hat{\theta}_n = \hat{\theta}_n(X).$$

Remark. In the absense of any other information, it seems logical that we should estimate θ using a value most compatible with the data.

Example. Let $X \sim \text{Binomial}(n, \theta)$. Then,

$$\begin{split} L(\theta) &= \mathbb{P}(\text{observing x successes in } n \text{ Bernoulli trials; } \theta) \\ &= \binom{n}{x} \theta^x (1-\theta)^{n-x} \quad \text{for } 0 \leq \theta \leq 1 \\ \ell(\theta) &= \log n! - \log(n-x)! - \log x! + x \log \theta + (n-x) \log(1-\theta) \\ \ell'(\theta) &= \frac{x}{\theta} - \frac{n-x}{1-\theta} = 0 \implies \hat{\theta} = \frac{x}{n}. \end{split}$$

First derivative test: note that

$$\ell'(\theta) > 0$$
 if $0 < \theta < \frac{x}{n}$
 $\ell'(\theta) < 0$ if $\frac{x}{n} < \theta < 1$.

Therefore, $\hat{\theta} = \frac{x}{n}$ is the MLE of θ .

Example. Suppose that we collected data $x_1, ..., x_n$ which we believe they are independent observations from a Poisson(θ) distribution. Then,

$$\begin{split} L(\theta) &= \mathbb{P}(\text{observing } (x_1, \dots, x_n); \theta) \\ &= \prod_{i=1}^n f(x_1; \theta) \\ &= \frac{e^{-n\theta} \theta^{\sum_{i=1}^n x_i}}{\prod_{i=1}^n x_i!} \quad \text{for } \theta > 0 \\ \ell(\theta) &= -n\theta + \sum_{i=1}^n x_i \log(\theta) - \sum_{i=1}^n \log(x_i!) \\ \ell'(\theta) &= -n + \frac{\sum_{i=1}^n x_i}{\theta} = 0 \implies \hat{\theta} = \frac{\sum_{i=1}^n x_i}{n} = \overline{x}. \end{split}$$

First derivative test:

$$\ell'(\theta) > 0$$
 if $0 < \theta < \hat{\theta}$
 $\ell'(\theta) < 0$ if $\theta > \hat{\theta}$.

Thus, $\hat{\theta} = \overline{x}$ is the MLE of θ .

7.2 Score Function and Information Function

Definition 7.6 (Score Function and Information Function).

The score function is defined as

$$S(\theta) = S(\theta; x) = \frac{\mathrm{d}}{\mathrm{d}\theta} \ell(\theta) = \frac{\mathrm{d}}{\mathrm{d}\theta} \log L(\theta) \quad \text{for } \theta \in \Omega.$$

The **information function** is defined as

$$I(\theta) = I(\theta; x) = -\frac{\mathrm{d}^2}{\mathrm{d}\theta^2} \ell(\theta) = -\frac{\mathrm{d}^2}{\mathrm{d}\theta^2} \log L(\theta) = -\frac{\mathrm{d}}{\mathrm{d}\theta} S(\theta) \quad \text{for } \theta \in \Omega.$$

Note that $S(\hat{\theta}) = 0$ and $I(\hat{\theta})$ is called the **observed information**.

Remark. $I(\theta)$ tells us about the concavity of $\ell(\theta)$.

Second derivative test:

- If $\ell''(\theta) = -I(\theta) < 0$ for all $\theta \in \Omega$, then $\ell(\theta)$ is concave down $\implies \hat{\theta}$ is the global maximum.
- If $\ell''(\theta) = -I(\theta) > 0$ for all $\theta \in \Omega$, then $\ell(\theta)$ is concave up $\implies \hat{\theta}$ is the global minimum.

Definition 7.7 (Expected/Fisher Information).

If θ is a scalar, then the **expected or Fisher Information** function is given by

$$J(\theta) = \mathbb{E}\left[I(\theta;X)\right] = \mathbb{E}\left[-\frac{\mathrm{d}^2}{\mathrm{d}\theta^2}\ell(\theta;X)\right] \quad \text{for } \theta \in \Omega.$$

Remark. If $X_1, ..., X_n$ is a random sample from $f(x; \theta)$, then

$$J(\theta) = \mathbb{E}\left[-\frac{\mathrm{d}^2}{\mathrm{d}\theta^2}\ell(\theta;X)\right] = n\mathbb{E}\left[-\frac{\mathrm{d}^2}{\mathrm{d}\theta^2}\log f(X;\theta)\right]$$

Example. Find the Fisher Information of the distributions in the previous two examples and compare it with the variance of the ML estimator of θ .

(1) For $X \sim \text{Binomial}(n, \theta)$. Recall that $\ell'(\theta) = \frac{x - n\theta}{\theta(1 - \theta)}$. Then,

$$\begin{split} \ell''(\theta) &= \frac{-n\theta(1-\theta) - (x-n\theta)(1-2\theta)}{\theta^2(1-\theta)^2} \\ \Longrightarrow J(\theta) &= \mathbb{E}\left[-\ell''(\theta;X)\right] = -\frac{-n\theta(1-\theta)}{\theta^2(1-\theta)^2} = \frac{n}{\theta(1-\theta)}. \end{split}$$

Note that $\operatorname{Var}(\hat{\theta}_n) = \operatorname{Var}\left(\frac{X}{n}\right) = \frac{n\theta(1-\theta)}{n^2} = \frac{\theta(1-\theta)}{n} = \frac{1}{J(\theta)}$.

(2) For $X_1, ..., X_n \sim \text{Poisson}(\theta)$ independently. Recall that $\ell'(\theta) = -n + \frac{\sum_{i=1}^n x_i}{\theta}$. Then,

$$\begin{split} \ell''(\theta) &= -\frac{\sum_{i=1}^n x_i}{\theta^2} \\ \Longrightarrow J(\theta) &= \mathbb{E}\left[-\ell''(\theta;X)\right] = \frac{\mathbb{E}\left[\sum_{i=1}^n x_i\right]}{\theta^2} = \frac{n\theta}{\theta^2} = \frac{n}{\theta}. \end{split}$$

Note that $\operatorname{Var}(\hat{\theta}_n) = \operatorname{Var}(\overline{X}) = \frac{\theta}{n} = \frac{1}{J(\theta)}$.

Example (Two Special Examples).

(1) Suppose that X_1, \dots, X_n is a random sample from $f(x; \theta) = \frac{1}{\theta}$, for $0 \le x \le \theta$. Find the MLE of θ .

Proof. Note that

$$L(\theta) = \begin{cases} \frac{1}{\theta^n} & \text{if } 0 \leq x_1, x_2, \dots, x_n \leq \theta \\ 0 & \text{otherwise.} \end{cases} = \begin{cases} \frac{1}{\theta^n} & \text{if } 0 \leq x_{(1)} \leq x_{(n)} \leq \theta \\ 0 & \text{otherwise.} \end{cases}$$

Then, $S(\theta) = \frac{\mathrm{d}}{\mathrm{d}\theta} \ell(\theta) = \frac{\mathrm{d}}{\mathrm{d}\theta} (-n \log \theta) = -\frac{n}{\theta} = 0$, which has no solutions. \square *Remark.* The support set of *X* depends on θ . Also, $\hat{\theta} = x_{(n)}$ is the MLE of θ .

Lecture 21, 2025/03/24

(2) Suppose that $X_1, \dots, X_n \stackrel{iid}{\sim} \text{Unif}\left(\theta - \frac{1}{2}, \theta + \frac{1}{2}\right)$ where $\theta \in \mathbb{R}$ and

$$f(x; \theta) = \begin{cases} 1 & \text{if } \theta - \frac{1}{2} \le x \le \theta + \frac{1}{2} \\ 0 & \text{otherwise.} \end{cases}$$

We have

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = \begin{cases} 1 & \text{if } \theta - \frac{1}{2} \le x_1, \dots, x_n \le \theta + \frac{1}{2} \\ 0 & \text{otherwise.} \end{cases}$$
$$= \begin{cases} 1 & \text{if } \theta - \frac{1}{2} \le x_{(1)} \le x_{(n)} \le \theta + \frac{1}{2} \\ 0 & \text{otherwise.} \end{cases}$$

Then, any statistic $\hat{\theta} = t(X_1, \dots, X_n)$ satisfying $x_{(n)} - \frac{1}{2} \le \hat{\theta} \le x_{(1)} + \frac{1}{2}$ is an MLE of θ .

Remark (Conclusion about Finding MLEs).

- (1) If $X_1, ..., X_n$ is a random sample from a distribution where the support set does not depend on θ , then we usually find $\hat{\theta}$ by solving $S(\theta) = 0$.
- (2) It is important to verify that $\hat{\theta}$ is the value of θ which maximizes $\ell(\theta)$ (need first/second derivative test).
- (3) Often $S(\theta) = 0$ must be solved numerically. We can use the Newton's Method.

Example. Suppose $X_1, \dots, X_n \overset{iid}{\sim}$ Weibull $(1, \theta)$ where 1 is the scale parameter and θ is the shape parameter. When $\theta = 1$, Weibull(1, 1) is Exp(1). We have

$$f(x;\theta) = \left(\frac{\theta}{1}\right) \left(\frac{x}{1}\right)^{\theta - 1} e^{-\left(\frac{x}{1}\right)^{\theta}} = \theta x^{\theta - 1} e^{-x^{\theta}} \quad \text{for } x > 0 \text{ and } \theta > 0.$$

Then,

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = \theta^n \left(\prod_{i=1}^{n} x_i \right)^{\theta-1} e^{-\sum_{i=1}^{n} x_i^{\theta}} \quad \theta > 0$$

$$\ell(\theta) = n \log(\theta) + (\theta - 1) \sum_{i=1}^{n} \log(x_i) - \sum_{i=1}^{n} x_i^{\theta} \quad \theta > 0.$$

$$S(\theta) = \ell'(\theta) = \frac{n}{\theta} + \sum_{i=1}^{n} \log(x_i) - \sum_{i=1}^{n} x_i^{\theta} \log(x_i).$$

Note that we cannot solve $S(\theta) = 0$ explicitly. We will need to use the Newton's Method (or Newton-Raphson Method).

Theorem 7.1 (Newton's Method).

Let $\theta^{(0)}$ be an initial estimate of θ . The estimate $\theta^{(i)}$ can be updated using

$$\theta^{(i+1)} = \theta^{(i)} + \frac{S(\theta^{(i)})}{I(\theta^{(i)})}$$
 for $i = 0, 1, 2, ...$

until $|\theta^{(i+1)} - \theta^{(i)}| < a$, where a is a very small number, say $a = e^{-10}$.

Note. Recall for solving f(x) = 0, $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$.

Example (Above Continued).

Back to Weibull(1, θ), we have

$$\begin{split} \ell''(\theta) &= -\frac{n}{\theta^2} - \sum_{i=1}^n x_i^\theta \log^2(x_i) \\ \theta^{(i+1)} &= \theta^{(i)} + \frac{S(\theta^{(i)})}{I(\theta^{(i)})} \\ &= \theta^{(i)} + \frac{\frac{n}{\theta^{(i)}} + \sum_{i=1}^n \log(x_i) - \sum_{i=1}^n x_i^{\theta^{(i)}} \log(x_i)}{\frac{n}{\theta^{(i)2}} + \sum_{i=1}^n x_i^{\theta^{(i)}} \log^2(x_i)}. \end{split}$$

Theorem 7.2 (Invariance of MLE).

Suppose that $\tau = h(\theta)$ is a one-to-one function θ and $\hat{\theta}$ is the MLE of θ . Then, $\hat{\tau} = h(\hat{\theta})$ is the MLE of τ .

Example. Suppose X_1, \dots, X_n is from $f(x, \theta) = \theta x^{\theta - 1}$ for 0 < x < 1 and $\theta > 0$. We know that $L(\theta) = \prod_{i=1}^n \theta x_i^{\theta - 1} = \theta^n \left(\prod_{i=1}^n x_i\right)^{\theta - 1}$ for $\theta > 0$. Then

$$\ell(\theta) = n \log(\theta) + (\theta - 1) \sum_{i=1}^{n} \log(x_i) \quad \theta > 0$$

$$S(\theta) = \ell'(\theta) = \frac{n}{\theta} + \sum_{i=1}^{n} \log(x_i) = 0$$

$$\implies \hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \log(x_i)}.$$

Find the MLE of the median τ .

Proof. We can find τ from $\int_0^{\tau} \theta x^{\theta-1} dx = \frac{1}{2} \implies \tau = \left(\frac{1}{2}\right)^{\frac{1}{\theta}}$. Thus, the MLE of τ is

$$\hat{\tau}_{\mathrm{MLE}} = \left(\frac{1}{2}\right)^{\frac{1}{\hat{\theta}}}$$
.

7.3 Limiting Distribution of Maximum Likelihood Estimator

Proposition 7.3 (Asymptotic Properties of MLE).

Suppose that $X = (X_1, ..., X_n)$ be a random sample from $f(x; \theta)$, and $\hat{\theta}_n = \hat{\theta}_n(X_1, ..., X_n)$ be the ML extimator of θ . Then, under regularity conditions:

A0 If $\theta \neq \theta'$, then $f(x; \theta) \neq f(x; \theta')$.

A1 The support of *X* does not depend on θ .

A2 θ_0 , the true unknown value of θ , is an interior point in Ω .

A3 $f(x_i; \theta)$ is twice differentiable as a function of θ .

A4-A6 We have:

$$(1) \ \hat{\theta}_n \xrightarrow{P} \theta_0.$$

(2)
$$[J(\theta_0)]^{\frac{1}{2}} (\hat{\theta}_n - \theta_0) \xrightarrow{d} Z \sim N(0, 1).$$

Remark.

- 1. (1) implies that $\hat{\theta}_n$ is a consistent estimator of θ or an asymptotically unbiased estimator of θ . Note that
 - Asymptotic unbiased estimator: $\hat{\theta}_n \stackrel{P}{\to} \theta_0$.
- 2. (2) indicates that the asymptotic variance $\hat{\theta}_n$ is $J^{-1}(\theta_0)$. Note that

$$J(\theta_0) = n \mathbb{E}\left[-\frac{\mathrm{d}^2}{\mathrm{d}\theta^2} \log f(X; \theta) \right] \Big|_{\theta = \theta_0}$$

And $\hat{\theta}_n$ is \sqrt{n} -consistent.

3. By Limit Theorems (CMT, Slutsky), (1) and (2) implies that

$$\left[J(\hat{\theta}_n)\right]^{\frac{1}{2}}(\hat{\theta}_n - \theta_0) \xrightarrow{d} Z \sim N(0, 1)$$

for sufficiently large n, $\operatorname{Var}\left(\hat{\theta}_{n}\right)\approx J^{-1}(\hat{\theta}_{n})$.

4. By WLLN, we have

$$\frac{1}{n}I(\theta;X) = -\frac{1}{n}\sum_{i=1}^{n}\frac{\mathrm{d}^{2}}{\mathrm{d}\theta^{2}}\log f(X_{i};\theta) \xrightarrow{P} \mathbb{E}\left[-\frac{\mathrm{d}^{2}}{\mathrm{d}\theta^{2}}\log f(X;\theta)\right] = \frac{1}{n}J(\theta)$$

which implies that $\left[I(\hat{\theta}_n;X)\right]^{\frac{1}{2}}(\hat{\theta}_n-\theta_0) \xrightarrow{d} Z \sim N(0,1)$. That is, $\operatorname{Var}\left(\hat{\theta}_n\right) \approx I^{-1}(\hat{\theta}_n)$ when n is large.

5. By Delta Method, we have

$$[J(\theta_0)]^{\frac{1}{2}} (\tau(\hat{\theta}_n) - \tau(\theta_0)) \xrightarrow{d} \tau'(\theta_0) Z$$

i.e. the asymptotic variance of $\tau(\hat{\theta}_n)$ is

$$\frac{\left(\tau'(\theta_0)\right)^2}{J(\theta_0)} \to \frac{\left(\tau'(\hat{\theta}_n)\right)^2}{J(\hat{\theta}_n)}.$$

Lecture 22, 2025/03/26

From above remarks, we have

- $\operatorname{Var}(\hat{\theta}_n) \approx J^{-1}(\theta_0) \approx J^{-1}(\hat{\theta}_n) \approx I^{-1}(\hat{\theta}_n)$.
- $\operatorname{Var}\left(\tau(\hat{\theta}_n)\right) \approx \frac{\left(\tau'(\theta_0)\right)^2}{J(\theta_0)} \approx \frac{\left(\tau'(\hat{\theta}_n)\right)^2}{I(\hat{\theta}_n)}.$

Example. Suppose that $X_1, \dots, X_n \stackrel{iid}{\sim}$ Weibull($\theta, 2$). We have

$$f(x;\theta) = \left(\frac{2}{\theta}\right) \left(\frac{x}{\theta}\right)^{2-1} e^{-\left(\frac{x}{\theta}\right)^2} = \frac{2}{\theta^2} x e^{-\left(\frac{x}{\theta}\right)^2} \quad \text{for } x > 0, \ \theta > 0.$$

Then,

$$\begin{split} L(\theta) &= \left(\frac{2}{\theta^2}\right)^n \left(\prod_{i=1}^n x_i\right) e^{-\sum_{i=1}^n \left(\frac{x_i}{\theta}\right)^2} \quad \theta > 0 \\ \ell(\theta) &= n \log 2 - 2n \log \theta + \sum_{i=1}^n \log(x_i) - \sum_{i=1}^n \left(\frac{x_i}{\theta}\right)^2 \quad \theta > 0 \\ S(\theta) &= -\frac{2n}{\theta} + \frac{2\sum_{i=1}^n x_i^2}{\theta^3} = \frac{2\left(\sum_{i=1}^n x_i^2 - n\theta^2\right)}{\theta^3}. \end{split}$$

Let
$$S(\theta) = 0 \implies \hat{\theta} = \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n}}$$
 and $\hat{\theta}_n = \sqrt{\frac{\sum_{i=1}^{n} X_i^2}{n}}$.

Exercise: Use the First (or Second) Derivative Test to check that $\hat{\theta}$ is the MLE (global maximum) of θ .

$$\begin{split} \ell''(\theta) &= S'(\theta) = -\frac{4n}{\theta^2} - \frac{6\left(\sum_{i=1}^n x_i^2 - n\theta^2\right)}{\theta^4} \\ I(\theta) &= \frac{4n}{\theta^2} + \frac{6\left(\sum_{i=1}^n x_i^2 - n\theta^2\right)}{\theta^4} \\ I(\hat{\theta}_n) &= \frac{4n}{\hat{\theta}_n^2} = \frac{4n}{\sum_{i=1}^n X_i^2} \\ J(\theta) &= \mathbb{E}\left[I(\theta; X)\right] = \frac{4n}{\theta^2} + \frac{6\left[n\mathbb{E}\left[X_i^2\right] - n\theta^2\right]}{\theta^4} \\ &= \frac{4n}{\theta^2} + \frac{6\left(n\theta^2 - n\theta^2\right)}{\theta^4} = \frac{4n}{\theta^2}. \end{split}$$

Note that $\mathbb{E}\left[X^k\right] = \theta^k \Gamma\left(\frac{k}{2} + 1\right)$ where 2 is the shape parameter. We also have

$$J(\hat{\theta}_n) = \frac{4n}{\hat{\theta}_n^2} = \frac{4n}{\frac{\sum_{i=1}^n X_i^2}{n}}.$$

In this particular case, $I(\hat{\theta}_n) = J(\hat{\theta}_n)$.

- (1) Show that $[J(\theta_0)]^{\frac{1}{2}}(\hat{\theta}_n \theta_0) \xrightarrow{d} Z \sim N(0, 1)$.
- (2) Show that $\left[I(\hat{\theta}_n)\right]^{\frac{1}{2}}(\hat{\theta}_n \theta_0) \xrightarrow{d} Z \sim N(0, 1).$

Proof.

(1) By CLT,

$$\begin{split} \frac{\sqrt{n} \left(\frac{\sum X_i^2}{n} - \mathbb{E} \left[X_i^2 \right] \right)}{\sqrt{\operatorname{Var} \left(X_i^2 \right)}} & \xrightarrow{d} Z \\ \Longrightarrow \frac{\sqrt{n} \left(\hat{\theta}_n^2 - \theta_0^2 \right)}{\sqrt{\mathbb{E} \left[X_i^4 \right] - \left(\theta_0^2 \right)^2}} & \xrightarrow{d} Z \\ \Longrightarrow \frac{\sqrt{n} \left(\hat{\theta}_n^2 - \theta_0^2 \right)}{\sqrt{\theta_0^4 \Gamma(3) - \theta_0^4}} &= \frac{\sqrt{n} \left(\hat{\theta}_n^2 - \theta_0^2 \right)}{\theta_0^2} & \xrightarrow{d} Z. \end{split}$$

Then, $[J(\theta_0)]^{\frac{1}{2}}(\hat{\theta}_n - \theta_0) = \frac{2\sqrt{n}}{\theta_0}(\hat{\theta}_n - \theta_0)$. By Delta Method with $g(x) = \sqrt{x}$, we have

$$\frac{\sqrt{n}(\hat{\theta}_n - \theta_0)}{\theta_0^2} \stackrel{d}{\to} \frac{1}{2}\theta_0^{-1}Z$$

$$\implies \frac{2\sqrt{n}}{\theta_0}(\hat{\theta}_n - \theta_0) \stackrel{d}{\to} Z.$$

That is, $[J(\theta_0)]^{\frac{1}{2}}(\hat{\theta}_n - \theta_0) \xrightarrow{d} Z \sim N(0, 1)$. We also have $\hat{\theta}_n \xrightarrow{P} \theta_0$.

(2) We have

$$LHS = \left(\frac{4n}{\frac{\sum X_i^2}{n}}\right)^{\frac{1}{2}} (\hat{\theta}_n - \theta_0) = \frac{2\sqrt{n}(\hat{\theta}_n - \theta_0)}{\sqrt{\frac{\sum X_i^2}{n}}}.$$

Since $\frac{2\sqrt{n}(\hat{\theta}_n-\theta_0)}{\theta_0^2} \xrightarrow{d} Z$, we have $\frac{\sum X_i^2}{n} \xrightarrow{P} \mathbb{E}\left[X_i^2\right] = \theta_0^2$ by WLLN. Then,

$$\sqrt{\frac{\sum X_i^2}{n}} \xrightarrow{P} \theta_0 \quad \text{by CMT}.$$

By Slutsky's Theorem, we have $\frac{2\sqrt{n}(\hat{\theta}_n-\theta_0)}{\sqrt{\frac{\sum X_i^2}{n}}} \stackrel{d}{\to} Z$ as desired.

Theorem 7.4 (Cramer-Rao Lower Bound).

Suppose that X_1, \dots, X_n is a random sample with PDF $f(x; \theta)$. For any unbiased estimator $T(X) = T(X_1, \dots, X_n)$ of $\tau(\theta)$, i.e. $\mathbb{E}[T(X)] = \tau(\theta)$, under regularity conditions, we have

$$\operatorname{Var}(T(X)) \ge \frac{(\tau'(\theta))^2}{J(\theta)}.$$

In particular, if $\tau(\theta) = \theta$, then $\operatorname{Var}(T(X)) \ge \frac{1}{J(\theta)}$.

Remark.

- (1) There is a lower bound on the variance of any unbiased estimator of $\tau(\theta)$, which we can call it Cramer-Rao lower bound.
- (2) $\tau(\hat{\theta}_{MLE})$ has asymptotically the smallest variance among all asymptotically unbiased estimators. This explains the popularity of MLEs.

Proof. Let $S(\theta;X) = \frac{d}{d\theta} \log L(\theta;X)$. We can prove that $\mathbb{E}[S(\theta;X)] = 0$ and $Var(S(\theta;X)) = J(\theta)$. Note that

$$\tau(\theta) = \mathbb{E}[T(X)] = \int \cdots \int T(x) L(\theta; x) dx_1 \cdots dx_n$$

Then,

$$\begin{split} \tau'(\theta) &= \frac{\mathrm{d}}{\mathrm{d}\theta} \int \cdots \int T(x) \, L(\theta; x) \, dx_1 \cdots dx_n \\ &= \int \cdots \int T(x) \frac{\mathrm{d}L(\theta; x)}{\mathrm{d}\theta} \, dx_1 \cdots dx_n \\ &= \int \cdots \int T(x) \underbrace{\frac{\mathrm{d}\log L(\theta; x)}{\mathrm{d}\theta}}_{S(\theta; x)} L(\theta; x) \, dx_1 \cdots dx_n \\ &= \mathbb{E}\left[T(X)S(\theta; X)\right] \\ &= \mathrm{Cov}\left(T(X), S(\theta; X)\right). \end{split}$$

Since
$$-1 \le \frac{\text{Cov}(T(X), S(\theta; X))}{\sqrt{\text{Var}(T(X))}\sqrt{\text{Var}(S(\theta; X))}} \le 1$$
, we have

$$\left[\operatorname{Cov}\left(T(X), S(\theta; X)\right)\right]^{2} \leq \operatorname{Var}\left(T(X)\right) \operatorname{Var}\left(S(\theta; X)\right)$$

$$\Longrightarrow \operatorname{Var}\left(T(X)\right) \geq \frac{\left[\operatorname{Cov}\left(T(X), S(\theta; X)\right)\right]^{2}}{\operatorname{Var}\left(S(\theta; X)\right)} = \frac{\left(\tau'(\theta)\right)^{2}}{J(\theta)}.$$

Confidence Intervals and Pivotal Quantities

Definition 7.8 (Confidence Interval, Confidence Coefficient, Pivotal Quantity).

Suppose that L(X) and U(X) are both statistics. If $\mathbb{P}(L(X) \le \theta \le U(X)) = p$ with 0 ,then [L(X), U(X)] is called a 100 p% **confidence interval** for θ and p is called the **confidence** coefficient.

The random variable $Q(X, \theta)$ is called a **pivotal quantity** if the distribution of Q does not depend on θ .

Example. Suppose that $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, 1^2)$. Then,

- $\overline{X}_n = \frac{\sum X_i}{n} \sim N(\mu, \frac{1}{n})$ is not a pivotal quantity.
- $\sqrt{n}(\overline{X}_n \mu) \sim N(0, 1)$ is a pivotal quantity.

To construct a 95% CI for μ :

$$\mathbb{P}(Z_{0.025} \le \sqrt{n}(\overline{X}_n - \mu) \le Z_{0.975}) = 0.95$$

$$\mathbb{P}(-1.96 \le \sqrt{n}(\overline{X}_n - \mu) \le 1.96) = 0.95$$

$$\mathbb{P}\left(\overline{X}_n - \frac{1.96}{\sqrt{n}} \le \mu \le \overline{X}_n + \frac{1.96}{\sqrt{n}}\right) = 0.95.$$

Therefore, the 95% CI for μ is $\left[\overline{x} - \frac{1.96}{\sqrt{n}}, \overline{x} + \frac{1.96}{\sqrt{n}}\right]$.

Lecture 23, 2025/03/31

Example. Suppose that $X_1, \dots, X_n \overset{iid}{\sim} \operatorname{Exp}(\theta)$, where θ is a scale parameter.

- (1) Show that $\hat{\theta}_n = \overline{X}_n$ and $Q = \frac{\hat{\theta}_n \cdot 2n}{\theta}$ is a pivotal quantity. (2) For the data n = 15, and $\sum_{i=1}^{15} x_i = 36$. Find the 95% equal-tailed CI for θ .

Proof.

(1) Note that $f(x_i) = \frac{1}{\theta} e^{-\frac{x_i}{\theta}}$ for $x_i > 0$. Also note that $\text{Exp}(\theta) = \text{Gamma}(1, \theta)$. Then,

$$M_{X_i}(t) = \frac{1}{1 - \theta t}$$
 for $t < \frac{1}{\theta}$.

Then,
$$Q = \frac{2n\overline{X}_n}{\theta} = \frac{2\sum_{i=1}^n X_i}{\theta}$$
. We have

$$M_Q(t) = \prod_{i=1}^n M_{X_i}\left(\frac{2t}{\theta}\right) = \left(\frac{1}{1-2t}\right)^n$$
 for $t < \frac{1}{2}$

which is the MGF of Gamma $(n, 2) = \chi^2(2n)$. Thus, $Q \sim \chi^2(2n)$.

(2) We have $\mathbb{P}\left(q_1 \le \frac{2n\overline{X}_n}{\theta} \le q_2\right) = 0.95$ where

$$q_1 = \chi^2_{0.025}(30) = 16.79$$

$$q_2 = \chi_{0.975}^2(30) = 46.98.$$

Then, $\mathbb{P}\left(\frac{2n\overline{X}_n}{q_2} \le \theta \le \frac{2n\overline{X}_n}{q_1}\right) = 0.95$. The 95% equal-tailed CI for θ is

$$\left[\frac{72}{q_2}, \frac{72}{q_1}\right] = [1.53, 4.29].$$

Definition 7.9 (Asymptotic Pivotal Quantity).

 $Q(X; \theta)$ is called an **asymptotic pivotal quantity** if the limiting distribution of Q as $n \to \infty$ does not depend on θ .

Example. Suppose that $X_1, \dots, X_n \stackrel{iid}{\sim} \operatorname{Poi}(\theta)$. Note that $\mathbb{E}[X_i] = \operatorname{Var}(X_i) = \theta$. Show that $\frac{\sqrt{n}(\overline{X}_n - \theta)}{\sqrt{\overline{X}_n}}$ is an asymptotic pivotal quantity and find the approximate 95% CI for θ .

Proof. By CLT, we have $\frac{\sqrt{n}(\overline{X}_n - \theta)}{\sqrt{\theta}} \xrightarrow{d} Z \sim N(0, 1)$. By WLLN, $\overline{X}_n \xrightarrow{P} \theta$. Then, we have

$$\frac{\sqrt{n}(\overline{X}_n - \theta)}{\sqrt{\overline{X}_n}} = \frac{\frac{\sqrt{n}(\overline{X}_n - \theta)}{\sqrt{\theta}}}{\sqrt{\frac{\overline{X}_n}{\theta}}} \xrightarrow{d} Z \sim N(0, 1) \text{ by Slutsky's Theorem.}$$

Note that $\sqrt{\frac{\overline{X}_n}{\theta}} \stackrel{P}{\to} 1$ by CMT and that the limiting distribution does not depend on θ . To find

the approximate 95% CI for θ :

$$\mathbb{P}\left(-1.96 \le \frac{\sqrt{n}(\overline{X}_n - \theta)}{\sqrt{\overline{X}_n}} \le 1.96\right) = 0.95$$

$$\mathbb{P}\left(-1.96\sqrt{\overline{X}_n} \le \sqrt{n}(\overline{X}_n - \theta) \le 1.96\sqrt{\overline{X}_n}\right) = 0.95$$

$$\mathbb{P}\left(\overline{X}_n - \frac{1.96}{\sqrt{n}}\sqrt{\overline{X}_n} \le \theta \le \overline{X}_n + \frac{1.96}{\sqrt{n}}\sqrt{\overline{X}_n}\right) = 0.95.$$

Therefore, the approximate 95% CI for θ is $\overline{X}_n \pm 1.96\sqrt{\frac{\overline{X}_n}{n}}$.

Then, for the data n = 30, $\sum_{i=1}^{30} x_i = 36$. We have

$$\overline{X}_n \pm 1.96\sqrt{\frac{\overline{X}_n}{n}} = 1.2 \pm 1.96\sqrt{\frac{1.2}{30}}$$

= [0.808, 1.592].

Remark. Since under regularity conditions, we have

$$\left[J(\hat{\theta}_n)\right]^{\frac{1}{2}}(\hat{\theta}_n - \theta_0) \xrightarrow{d} Z \sim N(0, 1)$$

then, $\left[J(\hat{\theta}_n)\right]^{\frac{1}{2}}(\hat{\theta}_n-\theta_0)$ is an asymptotic pivotal quantity. For an approximate 100p% CI for θ , we have

$$\mathbb{P}\left(-a \le \left[J(\hat{\theta}_n)\right]^{\frac{1}{2}}(\hat{\theta}_n - \theta_0) \le a\right) = p \quad \text{where } a = Z_{\frac{1+p}{2}}$$

$$\mathbb{P}\left(\hat{\theta}_n - a\left[J(\hat{\theta}_n)\right]^{-\frac{1}{2}} \le \theta_0 \le \hat{\theta}_n + a\left[J(\hat{\theta}_n)\right]^{-\frac{1}{2}}\right) = p.$$

Then, the approximate 100p% CI for θ is $\left[\hat{\theta}_n - a\left[J(\hat{\theta}_n)\right]^{-\frac{1}{2}}, \hat{\theta}_n + a\left[J(\hat{\theta}_n)\right]^{-\frac{1}{2}}\right]$.

Similarly, $\left[I(\hat{\theta}_n;X)\right]^{\frac{1}{2}}(\hat{\theta}_n-\theta_0) \stackrel{d}{\to} Z \sim N(0,1)$ is an asymptotic pivotal quantity. An approximate $100\,p\%$ CI for θ is $\left[\hat{\theta}_n-a\left[I(\hat{\theta}_n)\right]^{-\frac{1}{2}},\hat{\theta}_n+a\left[I(\hat{\theta}_n)\right]^{-\frac{1}{2}}\right]$.

Example. Let $X \sim \text{Bin}(n, \theta)$. Then, $\hat{\theta}_n = \frac{X}{n}$, $J(\theta) = \frac{n}{\theta(1-\theta)}$ and $J(\hat{\theta}_n) = I(\hat{\theta}_n) = \frac{n}{\hat{\theta}_n(1-\hat{\theta}_n)}$. Then, the asymptotic pivotal quantity is

$$\left[J(\hat{\theta}_n)\right]^{\frac{1}{2}}(\hat{\theta}_n-\theta) = \sqrt{\frac{n}{\hat{\theta}_n(1-\hat{\theta}_n)}}\left(\hat{\theta}_n-\theta_0\right) \xrightarrow{d} Z \sim \mathrm{N}(0,1).$$

An approximate 95% CI is

$$\mathbb{P}\left(-1.96 \le \sqrt{\frac{n}{\hat{\theta}_n(1-\hat{\theta}_n)}} \left(\hat{\theta}_n - \theta_0\right) \le 1.96\right) = 0.95$$

$$\implies \hat{\theta}_n \pm 1.96 \sqrt{\frac{\hat{\theta}_n(1-\hat{\theta}_n)}{n}}.$$

For example, for n = 50, x = 20. The 95% CI is

$$0.4 \pm 1.96 \sqrt{\frac{0.4 \cdot 0.6}{50}} = [0.2642, 0.5358].$$

Example. Suppose $X_1, ..., X_n$ is a random sample with CDF

$$F(x) = 1 - \left(\frac{\theta}{x}\right)^2$$
 for $x \ge \theta > 0$.

Let $Y_n = n\left(\frac{X_{(1)}}{\theta} - 1\right)$.

- (1) Show that $Y_n \stackrel{d}{\to} Y$ with $G(y) = 1 e^{-2y}$ for y > 0.
- (2) Construct an approximate 90% equal-tail CI for θ when n=30 and $X_{(1)}=0.4$.

Proof.

(1) Let's find the CDF of Y_n :

$$\begin{split} G_n(y) &= \mathbb{P}(Y_n \leq y) = \mathbb{P}\left(n\left(\frac{X_{(1)}}{\theta} - 1\right) \leq y\right) \\ &= \mathbb{P}\left(X_{(1)} \leq \frac{y}{n} + \theta\right) = \mathbb{P}\left(X_{(1)} \leq \frac{y\theta}{n} + \theta\right) \\ &= 1 - \mathbb{P}\left(X_{(1)} > \frac{y\theta}{n} + \theta\right) \\ &= 1 - \left(\frac{\theta}{\frac{y\theta}{n} + \theta}\right)^{2n} = 1 - \left(1 + \frac{y}{n}\right)^{-2n} \to 1 - e^{-2y}, \quad y > 0 \end{split}$$

as $n \to \infty$. So, $Y_n = n \left(\frac{X_{(1)}}{\theta} - 1 \right)$ is an asymptotic pivotal quantity.

(2) Note that

$$\mathbb{P}\left(q_1 \le n\left(\frac{X_{(1)}}{\theta} - 1\right) \le q_2\right) = 0.9$$

where q_1 is the 5th percentile of Y and q_2 is the 95th percentile of Y. Then, we have

$$1 - e^{-2q_1} = 0.05$$
 and $1 - e^{-2q_2} = 0.95$
 $\implies q_1 = 0.0256$ and $q_2 = 1.4979$.

Thus,

$$\mathbb{P}\left(\frac{X_{(1)}n}{q_2 + n} \le \theta \le \frac{X_{(1)}n}{q_1 + n}\right) = 0.9.$$

The 90% CI for θ is [0.381, 0.3997].

Lecture 24, 2025/04/02 _____

7.5 Maximum Likelihood Method for Multiparameter Cases

Definition 7.10 (Log-likelihood Function).

$$\ell(\theta) = \ell(\theta_1, \dots, \theta_k) = \log L(\theta_1, \dots, \theta_k; x_1, \dots, x_n).$$

Definition 7.11 (Maximum Likelihood Estimate).

 $\hat{\theta} = (\hat{\theta}_1, \dots, \hat{\theta}_k)$ which maximizes $L(\theta)$ or $\ell(\theta)$ is called the **maximum likelihood estimate** (**MLE**) of $\theta = (\theta_1, \dots, \theta_k)$.

Note. $\hat{\theta}$ is found by solving $\frac{\partial \ell}{\partial \theta_i} = 0$ for j = 1, ..., k simultaneously.

Question: How do we check if $\hat{\theta}$ is a global max point?

Answer: Check that $\left[\frac{\partial^2 \ell}{\partial \theta_i \partial \theta_j}\right]_{k \times k}$ is negative definite at $\hat{\theta}$.

Definition 7.12 (Score Vector).
$$S(\theta) = S(\theta; x) = \left(\frac{\partial \ell}{\partial \theta_1}, \dots, \frac{\partial \ell}{\partial \theta_k}\right)^{\mathsf{T}} \text{ for } \theta \in \Omega.$$

Note. $\hat{\theta}$ is found by solving $S(\theta) = 0$.

Definition 7.13 (Information Matrix, Observed Information).

 $I(\theta) = I(\theta; x) = \left[-\frac{\partial^2 \ell}{\partial \theta_i \partial \theta_i} \right]_{\text{total}}$ for $\theta \in \Omega$. Also, $I(\hat{\theta})$ is the **observed information**.

Theorem 7.5 (Newton's Method).

$$\theta^{(i+1)} = \theta^{(i)} + \left[I(\theta^{(i)}) \right]^{-1} S(\theta^{(i)}) \text{ for } i = 0, 1, \dots \text{ until } \left\| \theta^{(i+1)} - \theta^{(i)} \right\|_2 < a, \text{ say } a = 10^{-8}.$$

Definition 7.14 (Expected/Fisher Information Matrix).

$$J(\theta) = \mathbb{E}\left[-\frac{\partial^2}{\partial \theta_i \partial \theta_j} \ell(\theta; X)\right]_{k \times k} \text{ for } \theta \in \Omega.$$

Example. Suppose that X_1, \dots, X_n is a random sample form $N(\mu, \sigma^2)$. Note that $\theta = (\mu, \sigma^2)$ and $\Omega = (-\infty, \infty) \times [0, \infty)$. Then, the likelihood function is

$$L(\mu, \sigma^2) = \prod_{i=1}^n f(x_i; \mu, \sigma^2)$$

$$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

$$= (2\pi)^{-\frac{n}{2}} (\sigma^2)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2}.$$

Then,

$$\ell(\mu, \sigma^2) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i - \mu)^2.$$

The MLE is found by solving

$$\frac{\partial \ell}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = 0$$

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2 = 0.$$

We have

$$\hat{\mu} = \frac{\sum_{i=1}^{n} x_i}{n} = \overline{x}$$

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (x_i - \hat{\mu})^2}{n} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n} = \frac{n-1}{n} S^2$$

where $S^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$ is the sample variance.

For the information matrix, we have

$$\frac{\partial^2 \ell}{\partial \mu^2} = -\frac{n}{\sigma^2}, \quad \frac{\partial^2 \ell}{\partial \mu \partial \sigma^2} = -\frac{\sum_{i=1}^n (x_i - \mu)}{(\sigma^2)^2}, \quad \frac{\partial^2 \ell}{(\partial \sigma^2)^2} = \frac{n}{2(\sigma^4)} - \frac{1}{\sigma^6} \sum_{i=1}^n (x_i - \mu)^2.$$

Then,

$$I(\mu,\sigma) = -\begin{bmatrix} \frac{\partial^2 \ell}{\partial \mu^2} & \frac{\partial^2 \ell}{\partial \mu \partial \sigma^2} \\ \frac{\partial^2 \ell}{\partial \sigma^2 \partial \mu} & \frac{\partial^2 \ell}{\partial (\sigma^2)^2} \end{bmatrix} = \begin{bmatrix} \frac{n}{\sigma^2} & \frac{\sum_{i=1}^n (x_i - \mu)}{\sigma^4} \\ \frac{\sum_{i=1}^n (x_i - \mu)}{\sigma^4} & -\frac{n}{2(\sigma^4)} + \frac{1}{\sigma^6} \sum_{i=1}^n (x_i - \mu)^2 \end{bmatrix}$$

$$\implies I(\hat{\mu},\hat{\sigma}) = \begin{bmatrix} \frac{n}{\sigma^2} & \frac{\sum_{i=1}^n (x_i - \mu)}{\sigma^4} \\ \frac{\sum_{i=1}^n (x_i - \bar{x})}{\sigma^4} & -\frac{n}{2(\sigma^4)} + \frac{1}{\sigma^6} \underbrace{\sum_{i=1}^n (x_i - \hat{\mu})^2}_{n\hat{\sigma}^2} \end{bmatrix} = \begin{bmatrix} \frac{n}{\hat{\sigma}^2} & 0 \\ 0 & \frac{n}{2(\sigma^4)} \end{bmatrix}.$$

The Fisher information matrix is

$$\begin{split} J(\mu,\sigma) &= \mathbb{E}\left[I(\mu,\sigma;X)\right] \\ &= \begin{bmatrix} \frac{n}{\sigma^2} & \frac{\mathbb{E}\left[\sum_{i=1}^n(X_i-\mu)\right]}{\sigma^4} \\ \frac{\mathbb{E}\left[\sum_{i=1}^n(X_i-\mu)\right]}{\sigma^4} & -\frac{n}{2\sigma^4} + \frac{1}{\sigma^6}\mathbb{E}\left[\sum_{i=1}^n(X_i-\mu)^2\right] \end{bmatrix} = \begin{bmatrix} \frac{n}{\sigma^2} & 0 \\ 0 & \frac{n}{2\sigma^4} \end{bmatrix} \\ \implies J^{-1}(\mu,\sigma) &= \begin{bmatrix} \widehat{\mathrm{Var}}(\mu) & \widehat{\mathrm{Cov}}(\hat{\mu},\hat{\sigma}^2) \\ \widehat{\sigma}^2 & \widehat{0} \\ 0 & \frac{2\sigma^4}{n} \\ \widehat{\mathrm{Var}}(\hat{\sigma}) \end{bmatrix}. \end{split}$$

Proposition 7.6 (Asymptotic Properties of MLE - Multiparameter Case).

Under regularity conditions, we have

- (1) $\hat{\theta}_n \stackrel{P}{\to} \theta_0$, where θ_0 is a $k \times 1$ vector of true but unknown values of θ . (2) $[J(\theta_0)]^{\frac{1}{2}} (\hat{\theta}_n \theta_0) \stackrel{d}{\to} Z \sim \text{MVN}(\overrightarrow{0}_k, I_k)$, where $\overrightarrow{0}_k$ is a $k \times 1$ vector of zeros and I_k is the $k \times k$ identity matrix.

Remark. Note that (1) means $\forall \epsilon > 0$, $\lim_{n \to \infty} \mathbb{P}\left(\left\|\hat{\theta}_n - \theta_0\right\|_2 \ge \epsilon\right) = 0$, where $\|\cdot\|_2$ is the L^2 (Euclidean) norm. For (2), we can replace $J(\theta_0)$ with $J(\hat{\theta}_n)$ or $I(\hat{\theta}_n; X)$. For sufficiently large n, we have

$$\operatorname{Var}\left(\hat{\theta}_{n}\right) \approx \underbrace{J^{-1}(\theta_{0})}_{\text{asymptotic variance}} \approx J^{-1}(\hat{\theta}_{n}) \approx I^{-1}(\hat{\theta}_{n}).$$

Example. Back to the previous example for $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$.

- (1) from above implies that $\begin{pmatrix} \hat{\mu} \\ \hat{\sigma}^2 \end{pmatrix} = \begin{pmatrix} \overline{x} \\ \frac{\sum_{i=1}^{n} (x_i \overline{x})^2}{2} \end{pmatrix} \xrightarrow{P} \begin{pmatrix} \mu_0 \\ \sigma_0^2 \end{pmatrix}$.
- (2) from above implies that $\begin{bmatrix} \frac{\sqrt{n}}{\sigma_0} & 0 \\ 0 & \frac{\sqrt{n}}{\sqrt{2}\sigma^2} \end{bmatrix} \left(\begin{pmatrix} \hat{\mu} \\ \hat{\sigma}^2 \end{pmatrix} \begin{pmatrix} \mu_0 \\ \sigma_0^2 \end{pmatrix} \right) \xrightarrow{d} \text{BVN} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right). \text{ Equival-}$ ently,

$$\sqrt{n} \left(\begin{pmatrix} \hat{\mu} \\ \hat{\sigma}^2 \end{pmatrix} - \begin{pmatrix} \mu_0 \\ \sigma_0^2 \end{pmatrix} \right) \xrightarrow{d} \begin{bmatrix} \frac{1}{\sigma_0} & 0 \\ 0 & \frac{1}{\sqrt{2}\sigma_n^2} \end{bmatrix}^{-1} \text{BVN} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right).$$

In other words,
$$\sqrt{n} \left(\begin{pmatrix} \hat{\mu} \\ \hat{\sigma}^2 \end{pmatrix} - \begin{pmatrix} \mu_0 \\ \sigma_0^2 \end{pmatrix} \right) \overset{d}{\to} \text{BVN} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{bmatrix} \sigma_0^2 & 0 \\ 0 & 2\sigma_0^4 \end{bmatrix} \right).$$

Note (**Final Exam Information**). About 20% for the first three chapters. About 40-50% for joint distribution and limiting distribution. About 30-40% for the last chapter.

Update: about 50% for ch6 and ch7.

END OF STAT 330!