

RTL8305SB-D

SINGLE CHIP 5-PORT 10/100MBPS SWITCH CONTROLLER WITH DUAL MII INTERFACES

DEMO BOARD USER GUIDE

Rev. 1.0 01 March 2003

Track ID: JATR-1076-21

Realtek Semiconductor Corp.

No. 2, Industry E. Rd. IX, Science-Based Industrial Park, Hsinchu 300, Talwan Tel: +886-3-5780211 Fax: +886-3-5776047 www.realtek.com.tw

COPYRIGHT

©2003 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document "as is", without warranty of any kind, neither expressed nor implied, including, but not limited to, the particular purpose. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

USING THIS DOCUMENT

This document provides detailed user guidelines to achieve the best performance when implementing a 2-layer board PC design with the RTL8305SB-D 5-port 10/100Mbps single chip switch controller. Though every effort has been made to assure that this document is current and accurate, more information may have become available subsequent to the production of this guide. In that event, please contact your Realtek representative for additional information that may help in the development process.

REVISION HISTORY

Revision	Release Date	Summary
1.0	2003/03/01	First release.

Table of Contents

1.	GEN	ERAL DESCRIPTION	1
2.	JUM	PER & CONNECTOR LOCATIONS	1
3.	MOI	DE SETTINGS OVERVIEW	2
	3.1.	P4 MAC IN MII MODE (MAC-MODE MII/PHY-MODE MII)	5
		P4 MAC IN PHY-MODE SNI MODE	
	3.3.	Example 1	6
	3.3.1		
	3.3.2	Example 1 Settings (J3 Connector)	6
	3.3.3	Example 1 Settings (J1 Connector)	7
	3.3.4	Example 1 Optional Settings	8
	3.4.	Example 2	9
	3.4.1	Example 2 Settings (J2 Jumper Block)	9
	3.4.2	I	
	3.4.3	Example 2 Settings (J1 Connector)	11
	3.4.4	Example 2 Optional Settings	11
	3.5.	Example 3	
	3.5.1	Example 3 Settings (J2 Jumper Block)	12
	3.5.2	Example 3 Settings (J3 Connector)	12
	3.5.3	Example 3 Settings (J1 Connector)	
	3.5.4	Example 3 Optional Settings	13

List of Tables

Table 1.	Port 4 Mode Setting Table	4
Table 2.	P4 MAC in MII Mode (MAC-MODE MII/PHY-MODE MII)	
Table 3.	P4 MAC in PHY-MODE SNI Mode	5
Table 4.	Example 1 Settings (J2 Jumper Block)	6
Table 5.	Example 1 Settings (J3 Connector)	6
Table 6.	Example 1 Settings (J1 Connector)	7
Table 7.	Example 1 Optional Settings	8
Table 8.	Example 2 Settings (J2 Jumper Block)	9
Table 9.	Example 2 Settings (J3 Connector)	10
Table 10.	Example 2 Optional Settings	11
Table 11.	Example 3 Settings (J2 Jumper Block)	12
Table 12.	Example 3 Settings (J3 Connector)	12
Table 13.	Example 3 Optional Settings	

List of Figures

Figure 1.	Jumper & Connector Locations/Pin Assignments	. 1
Figure 2.	Single & Dual MII Applications	. 3

1. General Description

The RTL8305SB-D is a Fast Ethernet switch that integrates memory, five MACs, and five physical layer transceivers for 10Base-T and 100Base-TX operation into a single chip. To benefit BOM costs, one external PNP transistor is used to generate a 2.5V power source. The fifth port (port 4) supports an external MAC interface, which can be set to PHY mode MII, PHY mode SNI, or MAC mode MII to work with a routing engine, HomePNA, or VDSL transceiver. The MII interface layout also plays an important part in the system PCB design.

2. Jumper & Connector Locations

Figure 1. Jumper & Connector Locations/Pin Assignments

3. Mode Settings Overview

- The RTL8305SB-D supports a dual MII interface for Gateway/Router applications as shown in Figure 2, page 3.
- The RTL8305SB-D features 5 MAC and 5 PHY transceivers on a single chip. The fifth MAC supports PHY-Mode MII and SNI interface to connect with a CPU/DSL/Cable Modem chip supporting an Ethernet MII interface. This fifth MAC also supports MAC-Mode MII for connecting to HomePNA PHYceivers or VDSL PHYceivers. This function is the same as that of the RTL8305SB Rev. C.
- If DISDUALMII (Pin42) is tied to VDD (2.5V) and P4 MAC is operated in PHY-Mode MII for single MII operation, the PHY address = 4 when reading P4 MAC MII register 0.8, 0.13, and 1.2 via the SMI interface (MDC/MDIO).
- If DISDUALMII (Pin42) is tied to ground to enable the DUAL MII function, and the P4 MAC is operated in PHY mode MII for MII operation, then the PHY address = 5 when reading P4 MAC MII register 0.8, 0.13, 1.2, Reg.4, and Reg.5 via the SMI interface (MDC/MDIO).
- The operating mode of fifth MAC (P4 MAC) and fifth PHY (P4 PHY) may be set via DISDUALMII, P4MODE [1:0] signals as shown in Table 1, page 4.
- In PHY-Mode MII operation of the P4 MAC, the P4 MAC may be operated in force mode by setting P4LNKSTA# (Pin 49), P4DUPSTA (Pin 48), P4SPDSTA (Pin 47) and P4FLCTRL (Pin 46) as shown in Table 3, page 5.
- In the RTL8305SB-D, the fifth PHY transceiver (P4 PHY) supports a second MII interface (signal name: PHY2Pxxxx) as a standalone Ethernet PHYceiver (same as the RTL8201BL) when DISDUALMII (Pin 42) is tied to Ground.
 - The fifth PHY transceiver (P4 PHY) supports auto-negotiation in UTP mode, and the MII Register may be accessed via the SMI interface (MDC/MDIO) when PHY address = 4.
- Don't assemble R75, R76, R77, R78, R79, and R80 when the P4 MAC MII interface is disabled or in a 5-port dumb switch application. Assemble these resisters when the MII interface is enabled. The resistor's location is shown in Figure 1, page 1.
- If the RTL8305SB-D is operated as a 5-port dumb Switch, leave Jumper Block 2 jumpers DISDUALMII, P4LNKSTAB, P4SPDSTA, P4DUPSTA, P4FCTRL, P4MODE[1] and P4MODE[0] open.

Single MII Application

Dual MII Application

Figure 2. Single & Dual MII Applications

Table 1. Port 4 Mode Setting Table

Name	DISDUALMII	P4MODE [1]	P4MODE [0]	RESERVED1	
Component Location	J2.3, J2.4	J2.13, J2.14	J2.15, J2.16	R1	
5-Port Dumb Switch	Open	Open	Open	NC	
Enable Dual MII					
(P4MAC = MAC Mode,	Short	Open	Open	1K	
P4PHY = UTP Mode)					
Enable Dual MII					
(P4MAC = MAC Mode,	Short	Open	Short	1K	
P4PHY = 100FX Mode)					
Enable Dual MII					
(P4MAC = PHY Mode,	Short	Short	Open	1K	
P4PHY = UTP Mode)					
Enable Dual MII (P4MAC = SNI Mode, P4PHY = UTP Mode)	Short	Short	Short	1K	
Single MII (P4Mac = MAC Mode)	Open	Open	Open	1K	
Single MII (P4Mac = 100FX Mode)	Open	Open	Short	1K	
Single MII (P4Mac = PHY Mode)	Open	Short	Open	1K	
Single MII (P4Mac = SNI Mode)	Open	Short	Short	1K	

3.1. P4 MAC in MII Mode (MAC-MODE MII/PHY-MODE MII)

Table 2. P4 MAC in MII Mode (MAC-MODE MII/PHY-MODE MII)

P4MAC=MII	100M-Full	100M-Half	10M-Full	10M-Half
P4LNKSTAB	Short	Short	Short	Short
(J2.5, J2.6)	Short	Short	Short	
P4DUPSTA	Onon	Short	0,,,,,	Short
(J2.9, J2.10)	Open	Short	Open	
P4SPDSTA	Open	0,7,7,7	Short	Short
(J2.7, J2.8)	Open	Open	Short	
P4FCTRL	Open for Enable		Open for Enable	
(J2.11, J2.12)	Flow Control, Short	Open	Flow Control, Short	Open
(32.11, 32.12)	for disable		for disable	

3.2. P4 MAC in PHY-MODE SNI Mode

Table 3. P4 MAC in PHY-MODE SNI Mode

P4MAC=SNI	10M-Full	10M-Half	
P4LNKSTA# (J2.5, J2.6)	Short	Short	
P4DUPSTA (J2.9, J2.10)	Open	Short	
P4SPDSTA (J2.7, J2.8)	Short	Short	
DAECTRI (12.11, 12.12)	Open for Enable Flow Control,	Cl	
P4FCTRL (J2.11, J2.12)	Short for Disable	Short	

3.3. Example 1

Enable Dual MII function for P4 MAC = PHY-Mode MII and force to 100M-Full, Flow control Enabled, and P4 PHY = PHY MII.

3.3.1. Example 1 Settings (J2 Jumper Block)

Table 4. Example 1 Settings (J2 Jumper Block)

J2 Label Name	Jumper	Function	
PTT3	Open	Reserved	
DISDUALMII	Short	Enable Dual MII	
P4LNKSTAB	Short	Force Link On	
P4SPDSTA	Open	Speed = 100M	
P4DUPSTA	Open	Duplex = Full duplex	
P4FCTRL	Open	Enable Flow Control	
P4MODE[1]	Short	PHY-Mode MII	
P4MODE[0]	Open	PHY-Mode MII	

3.3.2. Example 1 Settings (J3 Connector)

For J3 connector location and pin assignments, see Figure 1, page 1.

Table 5. Example 1 Settings (J3 Connector)

J3 Label Name	PHY-Mode MII	I/O
SCL_MDC	MDC	Input
SCL_MDIO	MDIO	I/O
MRXD[3]	PTXD[3]	Input
MRXD[2]	PTXD[2]	Input
MRXD[1]	PTXD[1]	Input
MRXD[0]	PTXD[0]	Input
MRXDV	PTXEN	Input
MRXC	PTXC	Output
MTXC	PRXC	Output
MTXEN	PRXDV	Output

J3 Label Name	PHY-Mode MII	I/O
MTXD[3]	PRXD[3]	Output
MTXD[2]	PRXD[2]	Output
MTXD[1]	PRXD[1]	Output
MTXD[0]	PRXD[0]	Output
MCOL	PCOL	Output

3.3.3. Example 1 Settings (J1 Connector)

Table 6. Example 1 Settings (J1 Connector)

J1 Label Name	PHY MII	I/O
PHY2PRXD3	PHY2PRXD3	Output
PHY2PRXD2	PHY2PRXD2 Output	
PHY2PRXD1	PHY2PRXD1	Output
PHY2PRXD0	PHY2PRXD0	Output
PHY2PRXDV	PHY2PRXDV	Output
PHY2PRXC	PHY2PRXC	Output
PHY2PTXC	РНҮ2РТХС	Output
PHY2PTXEN	PHY2PTXEN	Input
PHY2PTXD3	PHY2PTXD3	Input
PHY2PTXD2	PHY2PTXD2	Input
PHY2PTXD1	PHY2PTXD1	Input
PHY2PTXD0	PHY2PTXD0	Input
PHY2PCOL	PHY2PCOL	Output

- Note 1. To change P4 MAC SPEED, DUPLEX, FLOW_CONTROL, refer to Table 2, page 5.
- Note 2. The CPU may poll the MII registers of P4 MAC by PHY Address = 5 via SMI (MDC/MDIO). The RTL8305SB-D supports MII registers (Reg. 0,1,4 and 5.) of P4 MAC and those registers are read only.
- Note 3. The RTL8305SB-D supports MII registers of P4 PHY by PHY Address = 4 via SMI (MDC/MDIO). See the RTL8305SB-D datasheet for details.

3.3.4. Example 1 Optional Settings

For R75, R76, R77, R78, R79, and R80 physical location on the board, see Figure 1, page 1.

Table 7. Example 1 Optional Settings

Location	Value	Comment
R75	10K	Assemble when Dual MII enabled
R76	10K	Assemble when MII enabled
R77	10K.	Assemble when MII enabled
R78	10K.	Assemble when MII enabled
R79	10K.	Assemble when MII enabled
R80	10K.	Assemble when MII enabled
R1	1K	
R2	1K	
R3	N.C.	Enable EEPROM
R4	N.C.	Enable Back-Pressure
R5	N.C.	Enable Group X Flow Control
R6	N.C.	Enable Group Y Flow Control
R8	N.C.	Enable Auto-Crossover
R9	N.C.	Reserved
D11	N.C.	Assembled means priority method is "Always
R11	N.C.	High Priority First"
D12	N. G	Assemble to set port 3 as high priority port.
R13	N.C.	Removed to disable this feature
R14	N.C.	Disable Priority Tag-based QoS
R15	N.C.	Disable Broadcast Control
R16	N.C.	Disable VLAN
U2	N.C.	Setting by Strapping Pins only

3.4. Example 2

Enable Single MII function for P4 MAC = PHY-Mode MII, force to 100M-Full, Disable Flow control.

3.4.1. Example 2 Settings (J2 Jumper Block)

Table 8. Example 2 Settings (J2 Jumper Block)

	. • •	•
J2 Label Name	Jumper	Function
PTT3	Open	Reserved
DISDUALMII	Open	Disable Dual MII
P4LNKSTAB	Short	Force Link On
P4SPDSTA	Open	Speed = 100M
P4DUPSTA	Open	Duplex = Full duplex
P4FCTRL	Short	Disable Flow Control
P4MODE[1]	Short	PHY-Mode MII
P4MODE[0]	Open	PHY-Mode MII

3.4.2. Example 2 Settings (J3 Connector)

For R75, R76, R77, R78, R79, and R80 physical location on the board, see Figure 1, page 1.

Table 9. Example 2 Settings (J3 Connector)

J3 Label Name	PHY-Mode MII	I/O
SCL_MDC	MDC	Input
SCL_MDIO	MDIO	I/O
MRXD[3]	PTXD[3]	Input
MRXD[2]	PTXD[2]	Input
MRXD[1]	PTXD[1]	Input
MRXD[0]	PTXD[0]	Input
MRXDV	PTXEN	Input
MRXC	PTXC	Output
MTXC	PRXC	Output
MTXEN	PRXDV	Output
MTXD[3]	PRXD[3]	Output
MTXD[2]	PRXD[2]	Output
MTXD[1]	PRXD[1]	Output
MTXD[0]	PRXD[0]	Output
MCOL	PCOL	Output

Note 1: To change P4 MAC SPEED, DUPLEX, or FLOW_CONTROL, see Table 3, page 5.

Note 2: The RTL8305SB-D supports MII Registers of P4 MAC by PHY Address = 4 via SMI (MDC/MDIO).

3.4.3. Example 2 Settings (J1 Connector)

The J1 connector should be floating.

3.4.4. Example 2 Optional Settings

For R75, R76, R77, R78, R79, and R80 physical location on the board, see Figure 1, page 1.

Table 10. Example 2 Optional Settings

Value N.C.	Note
N.C.	Disable Dort O smionity
	Disable Port 0 priority
10K	Assemble when MII is enabled
10K	Assemble when MII is enabled
10K	Assemble when MII is enabled
10K	Assemble when MII is enabled
10 K	Assemble when MII is enabled
1K	RXC tuning
1K	For EMI reduction
N.C.	Enable EEPROM
N.C.	Enable Back-Pressure
N.C.	Enable Group X Flow Control
N.C.	Enable Group Y Flow Control
N.C.	Enable Auto-Crossover
N.C.	Reserved
	Assembled means priority
N.C.	method is "Always High
	Priority First"
	Assembled sets port 3 as high
N.C.	priority port. Removed to
	disable this feature
N.C.	Disable Priority Tag base QoS
N.C.	Disable Broadcast Control
N.C.	Disable VLAN
N.C.	Setting by Strapping Pins only
	10K 10K 10K 10K 11K 11K 11K N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C

3.5. Example 3

Enable Single SNI function for P4 MAC = PHY-Mode SNI and force to 10M-Full, Disable Flow control.

3.5.1. Example 3 Settings (J2 Jumper Block)

Table 11. Example 3 Settings (J2 Jumper Block)

J2 Label Name	Jumper	Function
PTT3	Open	Reserved
DISDUALMII	Open	Disable Dual MII
P4LNKSTAB	Short	Force Link On
P4SPDSTA	Short	Speed = 10M
P4DUPSTA	Open	Duplex = Full duplex
P4FCTRL	Short	Disable Flow Control
P4MODE[1:0]		Value = 00b for PHY-Mode
	Short	SNI

3.5.2. Example 3 Settings (J3 Connector)

Table 12. Example 3 Settings (J3 Connector)

J3 Label Name	PHY-Mode SNI	I/O
SCL_MDC	MDC	Input
SCL_MDIO	MDIO	I/O
MRXD[3]	N/A	Input
MRXD[2]	N/A	Input
MRXD[1]	N/A	Input
MRXD[0]	PTXD[0]	Input
MRXDV	PTXEN	Input
MRXC	PTXC	Output
MTXC	PRXC	Output
MTXEN	PRXDV	Output
MTXD[3]	N/A	Output
MTXD[2]	N/A	Output

J3 Label Name	PHY-Mode SNI	I/O
MTXD[1]	N/A	Output
MTXD[0]	PRXD[0]	Output
MCOL	PCOL	Output

Note: To change P4 MAC DUPLEX, see Table 3, page 5.

3.5.3. Example 3 Settings (J1 Connector)

The J1 connector should be floating.

3.5.4. Example 3 Optional Settings

For R75, R76, R77, R78, R79, and R80 physical location on the board, see Figure 1, page 1.

Location Value Note R75 N.C. Disable Port 0 priority 10K R76 10K R77 R78 10K 10K R79 R80 10K 1K R1 RXC tuning R2 1K N.C. **Enable EEPROM** R3 N.C. R4 Enable Back-Pressure R5 N.C. Enable Group X Flow Control N.C. **R6** Enable Group Y Flow Control **R8** N.C. **Enable Auto-Crossover**

Table 13. Example 3 Optional Settings

R9

Reserved

N.C.

RTL8305SB-D **Demo Board User Guide**

Location	Value	Note
		R11, assembled means priority
R11	N.C.	method is "Always High
		Priority First"
		assembled to set port 3 as high
R13	N.C.	priority port and removed to
		disable this feature
R14	N.C.	Disable Priority Tag base QoS
R15	N.C.	Disable Broadcast Control
R16	N.C.	Disable VLAN
U2	N.C.	Setting by Strapping Pins only

Realtek Semiconductor Corp.

Headquarters

1F, No. 2, Industry East Road IX, Science-based Industrial Park, Hsinchu, 300, Taiwan, R.O.C.

Tel: 886-3-5780211 Fax: 886-3-5776047

www.realtek.com.tw