Group actions and rigidity: around Zimmer program

Yuxiang Jiao

https://yuxiangjiao.github.io

These notes involve four minicourses of the research school Group actions and rigidity: around Zimmer program

- Random processes on symmetric spaces and discrete groups of semisimple Lie groups
 by Mikolaj Fraczyk
- Basics on measure rigidity by Aaron Brown
- Margulis-Zimmer's super-rigidity by Homin Lee
- Space of actions of groups on the real line by Bertrand Deroin

Contents

1	Random processes on symmetric spaces and discrete groups of semisim-	
	ple Lie groups (Mikolaj Fraczyk)	3
1.	Confined subgroups in higher rank	3
1		4
1.		6
2	Basics on measure rigidity (Aaron Brown)	9
2.	Lecture 1	9
2.:	Lecture 2	11
2.	3 Lecture 3	12
3	Margulis-Zimmer's super-rigidity (Homin Lee)	14
3.	Cocycles	14
3.	Rigidity theorems, relation with Zimmer's program	15
3.	Zimmer program	16
4	Space of actions of groups on the real line (Bertrand Deroin)	19
4.	Lecture 1	19
4.	Lecture 2	20
4.:		21

Random processes on symmetric spaces and discrete groups of semisimple Lie groups (Mikolaj Fraczyk)

Notation 1.0.1. • *G* real semisimple Lie group with the trivial center.

- *K* maximal compact subgroup.
- *P* minimal paraboli.
- A maximal split torus.
- *N* unipotent radical of *P*.
- X = G/K the symmetric space.
- *d* left invariant metric on *X* (and *G* with d(g,h) = d(gK,gK)).

§1.1 Confined subgroups in higher rank

Definition 1.1.1. A discrete subgroup $\Lambda \subset G$ is **confined** if there exists a bounded set $W \supset \{1\}$ such that $\Lambda^g \cap W \supsetneq \{1\}$ for every $g \in G$, where $\Lambda^g := g^{-1}\Lambda g$.

Remark 1.1.2 Λ is confined iff $\Lambda \setminus X$ has uniformly bounded injective radius.

Exercise 1.1.3. (1) Lattices in G are always confined.

- (2) Non-trivial normal subgroups of lattices are confined.
- (3) If *G* is of real rank 1 then there are plenty of other examples.

In the higher rank case, one of Margulis's results state that every normal subgroup of a lattice is either of finite index (hence also a lattice) or contained in the center (hence trivial in our case).

Conjecture 1.1.4 (Margulis)

If G is higher rank simple and Λ is confined then it is a lattice.

Theorem 1.1.5 (Fraczyk-Gelander, 2023) The conjecture is true.

Space of subgroups of *G***.** Let

$$Sub(G) := \{ H \leq G : H \text{ is a closed subgroup of } G \},$$

equipped with the topology induced by Hausdorff convergence on bounded subsets. Then Sub(G) is a compact metrizable space. G acts continuously on Sub(G) by conjugations $\Lambda^g := g^{-1}\Lambda g$ for every $g \in G$. We also consider

$$Sub_d(G) := \{ \Lambda \in Sub(G) : \Lambda \text{ is discrete } \}.$$

Fact 1.1.6. Sub_d(G) is not closed.

Exercise 1.1.7. Consider
$$\Lambda_t = \begin{bmatrix} e^{-t} & \\ & e^t \end{bmatrix} \begin{bmatrix} 1 & \mathbb{Z} \\ & 1 \end{bmatrix} \begin{bmatrix} e & \\ & e^{-t} \end{bmatrix}$$
, then $\Lambda_t \to \begin{bmatrix} 1 & \mathbb{R} \\ & 1 \end{bmatrix}$.

Exercise 1.1.8. (1) Show that if $\Lambda_n \to H$ with $\Lambda_n \in \operatorname{Sub}_{\operatorname{d}}(G)$ then H^0 (the identity compenent) is solvable.

(2) Show that Λ is confined iff $\{1\} \notin \overline{\{\Lambda^g : g \in G\}}$.

Lemma 1.1.9 (Local rigidity lemma)

If *G* is simple higher rank and $\Gamma \subset G$ is a lattice then any $\Lambda \in \operatorname{Sub}(G)$ close enough to Γ is also a lattice.

Proof. Let S be a finite generating set of Γ and \mathcal{R} be a finite set of relations such that $\Gamma = \langle S | \mathcal{R} \rangle$. Write $S = \{s_1, \cdots, s_k\}$. Choose r > 0 such that $S \subset B(r)$. Let $\delta > 0$ such that $\Gamma \cap B(\delta) = \emptyset$. Let $\varepsilon > 0$ such that for every $s_i' \in G$ with $d(s_i', s_i) < \varepsilon$ we have $w(s_1', \cdots, s_k') \in B(\delta/2)$ for every $w \in \mathcal{R}$. If Λ is close enough to Γ , then

- (1) there exists $S' \subset \Lambda$ with $S' = \{s'_1, \dots, s'_k\}$ and $d(s'_i, s_i) < \varepsilon$, and
- (2) $\Lambda \cap (B(\delta) \setminus B(\delta/2)) = \emptyset$.

We can take δ small enough such that $B(\delta)$ contains no compact subgroup. Then $\Lambda \cap (B(\delta) \setminus B(\delta/2)) = \emptyset$ implies that $\Lambda \cap B(\delta/2) = \{1\}$. Hence Λ contains a copy of a quotient of Γ . By Margulis's super-rigidity and Margulis's normal subgroup theorem, Λ is a lattice.

§1.2 Stationary random subgroups (I)

Let μ be a probability measure on G. We assume that μ is bi-K-invariant and absolutely continuous with respect to Haar. Let $G \cap Z$ be a continuous action.

Definition 1.2.1. A measure ν on Z is μ -stationary if $\nu = \mu * \nu$. The action $G \cap (Z, \nu)$ is stationary if ν is.

Definition 1.2.2. A stationary random subgroup (resp. discrete stationary random subgroup) of G is a stationary probability measure on Sub(G) (resp. $Sub_d(G)$).

Example 1.2.3

- 1. $\nu = \delta_{\{1\}}$.
- 2. If $\Gamma < G$ is a lattice, let $\nu_{\Gamma} := \frac{1}{\text{Vol}(\Gamma \setminus G)} \int_{\Gamma \setminus G} \delta_{\{\Gamma^g\}} dg$, which is G-invariant.
- 3. If Q is a parabolic subgroup (contains a conjugate of P) then there exists a unique K-invariant probability measure ν_Q on G/Q. Let $\widetilde{\nu}_Q \coloneqq \int_{G/Q} \delta_{Q^{g^{-1}}} \mathrm{d}\nu_Q(gQ)$, which is μ -stationary.

Theorem 1.2.4 (Fraczyk-Gelander, 2023)

An ergodic discrete μ -stationary random subgroup of G is either the trivial one or the ν_{Γ} induced by some lattice Γ .

How to turn Λ **into a stationary random subgroup?** For a discrete subgoup Λ , consider

$$\nu_n = \frac{1}{n} \sum_{k=0}^{n-1} \mu^{*k} * \delta_{\Lambda}.$$

Let ν be a weak* limit of $\{\nu_n\}$. Then ν is μ -stationary.

Question 1.2.5. Can ν be a non-discrete stationary random subgroup?

We define the function

$$I: \operatorname{Sub}(G) \to [0, +\infty], \ H \mapsto \sup \{r \geqslant 0 : B(r) \cap H = \{1\}\}.$$

Exercise 1.2.6. If $I(\Lambda) > 0$ then Λ is discrete.

To show ν is supported on $Sub_d(G)$, we make use of Margulis function.

Theorem 1.2.7 (Gelender-Levit-Margulis)

For a specific μ , there exists $\delta > 0$ such that $I^{-\delta}$ satisfies

$$\int_G I(\Lambda^g)^{-\delta} \mathrm{d}\mu(g) \leqslant c \cdot I(\Lambda)^{-\delta} + C$$

for some 0 < c < 1 and C > 0, for every $\Lambda \in Sub_d(G)$.

By this inequality, we have

$$\int_G I(\Lambda^g)^{-\delta} \mathrm{d}\mu^{*k}(g) \leqslant c^k I(\Lambda)^{-\delta} + c^{k-1}C + \dots + C \leqslant O(1).$$

By Markov's inequality,

$$\nu_n(\{\Lambda' \in \operatorname{Sub}(G) : I(\Lambda') < \varepsilon\}) \ll \varepsilon^{\delta}.$$

Taking the limit, we obtain that $\nu(\operatorname{Sub}(G) \setminus \operatorname{Sub}_{\operatorname{d}}(G)) = 0$. Therefore we obtain

Theorem 1.2.8

If $\Lambda \subset G$ is discrete, then any weak* limit of $\left\{\frac{1}{n}\sum_{k=0}^{n-1}\mu^{*k}*\delta_{\Lambda}\right\}$ is supported on $\operatorname{Sub_d}(G)$.

Now we show that the classification of discrete stationary random subgroups (Theorem 1.2.4) implies Margulis's conjecture (Theorem 1.1.5). Start with a discrete confined subgroup $\Lambda \subset G$. Turn it into a discrete stationary random subgroup ν supported on $\{\Lambda^g : g \in G\}$. Since Λ is confined, the ergodic decomposition of ν is of the form

$$u = \sum_{\Gamma \text{ lattice}} \alpha_{\Gamma} \cdot \nu_{\Gamma}.$$

Then there exists a lattice Γ with $\alpha_{\Gamma} \neq 0$. Therefore, $\Gamma \in \overline{\{\Lambda^g : g \in G\}}$ and hence Λ is a lattice by the local rigidity lemma (Lemma 1.1.9).

Proof of Theorem 1.2.4. The key ingredient to show this classification is the following theorem.

Theorem 1.2.9 (Nevo-Zimmer)

Suppose (Y, ν) is an ergodic μ -stationary G-action. Then either

- (1) ν is G-invariant, or
- (2) there exists a G-equivariant and measure preserving $\pi:(Y,\nu)\to (G/Q,\nu_Q)$ with $Q\neq G$ a parabolic subgroup, or
- (3) (if G is semisimple) the action factors through a rank-1 factor of G, that is, $G = G_1 \times G_2$ with rank $G_1 = 1$ and G_2 acts trivially.

Assume ν is an ergodic discrete stationary random subgroup. By Nevo-Zimmer's theorem, we have either

- (1) ν is G-invariant, or
- (2) $\pi: (\operatorname{Sub}_{\operatorname{d}}(G), \nu) \to (G/Q, \nu_O).$

Case (1). We use

Theorem 1.2.10 (Stuck-Zimmer)

If (Y, v) is an ergodic probability measure preserving action of a higher rank simple G, then either

- (1) the action is essentially free, i.e. $\operatorname{Stab}_G(y) = \{1\}$ for almost every $y \in Y$, or
- (2) $(Y, \nu) \cong (G/\Gamma, \text{Haar})$ for some lattice Γ .

But any $H \in \operatorname{Sub}(G)$ is stabilized by $N(H) \supset H$. So it can't be essentially free. Therefore $\nu = \nu_{\Gamma}$ for some Γ .

§1.3 Stationary random subgroups (II)

Case (2). There is $\pi: (\operatorname{Sub}_{\operatorname{d}}(G), \nu) \to (G/Q, \nu_Q)$ for some paraboli $Q \neq G$.

Furstenberg-Poisson boundary & decomposition. Let X_n be a random walk on G driven by μ with X_0 . That is,

$$\mathbf{P}(X_{n+1} \in A | X_n) = \mu(AX_n^{-1}).$$

It induces a probability measure on $G^{\mathbb{N}}$ (with the initial law $X_0 \sim \mu$), also denoted by **P**. For two elements $\xi, \xi' \in G^{\mathbb{N}}$, we define the equivalence relation $\xi \sim \xi'$ if there exists $n, m \geqslant 0$ such that $X_{n+k} = X'_{m+k}$ for every $k \geqslant 0$.

Definition 1.3.1. Poisson boundary for (G, μ) is probability space $(B, \tau) := (G^{\mathbb{N}}, \mathbf{P}) / \sim$.

Definition 1.3.2. For a given probability measure μ on G, a bounded function $f \in L^{\infty}(G)$ is **harmonic** if

$$\int f(gu)\mathrm{d}\mu(g) = f(u), \quad \forall u \in G.$$

The set of bounded harmonic function is denoted by $\mathcal{H}^{\infty}(G,\mu)$.

Using martingale convergence theorem, for every $f \in \mathcal{H}^{\infty}(G, \mu)$,

$$f(X_n) \to F(\xi)$$
, almost every $\xi = (X_0, X_1, \cdots)$.

The assignment

$$f \in \mathcal{H}^{\infty}(G, \mu) \to F \in L^{\infty}(B, \tau)$$

is a *G*-equivariant isomorphism.

Theorem 1.3.3 (Furstenberg) For
$$\mu$$
 as above, $(B, \tau) \cong (G/P, \nu_P)$.

For every μ -stationary probability action $G \cap (Y, \nu)$, there is a measurable map $\kappa : G/P \to \operatorname{Prob}(Y)$ satisfying

- (1) κ is *G*-equivariant;
- (2) $\kappa(gP)$ is a probability measure almost surely;
- (3) $\nu = \int_{G/P} \kappa(gP) d\nu_p(gP)$.

Now we have

- $\pi : (Sub(G), \nu) \to (G/Q, \nu_O);$
- $\kappa : (G/P, \nu_P) \to \operatorname{Prob}(\operatorname{Sub}(G));$
- $\kappa': (G/P, \nu_P) \to \operatorname{Prob}(G/Q)$.

We can check that $\kappa'(gP) = \delta_{gQ}$ works. So by the uniqueness, κ' has to be this one.

Similarly $\pi_*\kappa: G/P \to \text{Prob}(G/Q)$ also satisfies (1)(2)(3). So that $\pi_*\kappa(gP) = \delta_{gQ}$ for ν_P almost every gP. This means that $\kappa(gP)$ is a gPg^{-1} -invariant probability measure on $\text{Sub}_d(gQg^{-1})$.

It is enough to classify P-invariant discrete random subgroups of Q. Write τ for some discrete random subgroup of Q, that is, $\tau \in \operatorname{Prob}(\operatorname{Sub}_{\operatorname{d}}(Q))$.

Lemma 1.3.4 If
$$\tau$$
 is *P*-invariant then $\tau = \delta_{\{1\}}$.

Proof. Let A be a maximal split torus of P. Let L_Q be a Levi of Q containing A. Let N_Q be the unipotent radical of Q. Let A_Q be a maximal split torus in $Z(L_Q)$.

Example 1.3.5
$$Q = \left\{ \begin{bmatrix} * & * & * \\ * & * & * \\ * & * \end{bmatrix} \right\} \text{ and } P = \left\{ \begin{bmatrix} * & * & * \\ * & * \\ * & * \end{bmatrix} \right\}. \text{ Then}$$

$$L_Q = \left\{ \begin{bmatrix} * & * \\ * & * \\ * & * \end{bmatrix} \right\}, \quad N_Q = \left\{ \begin{bmatrix} 1 & * \\ 1 & * \\ 1 \end{bmatrix} \right\}, \quad A_Q = \left\{ \begin{bmatrix} s \\ s \\ t \end{bmatrix} \right\}.$$

Exercise 1.3.6. There is no nontrivial discrete random subgroup of \mathbb{R} which is invariant under dilations.

Step 1. A_O -invariant random discrete subgroups are contained in L_O .

Write $Q = L_O N_O$. Let $U \subset L_O$, $V \subset N_O$ be open neighborhoods of $\{1\}$. Consider

$$F_{U,V}(\Lambda) := \# \{ \Lambda \cap (UV \setminus L_Q) \}.$$

Then $\mathcal{F}_{U,V}$ is finite almost surely. Moreover, we have

$$F_{U,V}(a^{-1}\Lambda a) = F_{U,aVa^{-1}}(\Lambda), \quad \forall a \in A_Q.$$

Use this we can show that

$$F_{U,N_O} = 0$$
, almost surely.

Step 2. Show that
$$\bigcap_{p\in P}L_Q^p=\{\,1\,\}$$
 .

By this lemma, we have

$$\nu = \int_{G/P} \kappa(gP) d\nu_P(gP) = \int_{G/P} \delta_{\{1\}} d\nu_P(gP) = \delta_{\{1\}}.$$

We complete the proof of Theorem 1.2.4.

Basics on measure rigidity (Aaron Brown)

§2.1 Lecture 1

Consider a group action $G \cap X$. There are two philosophies:

- Extrainvariance. H < G, μ is H-invariant and some additional assumptions $\implies \mu$ is G-invariant.
- **Stiffness.** ν a measure on G, some assumptions on ν , then the ν -stationary measure μ is G-invariant.

Higher rank rigidity. Consider $X = \mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$ and $f: X \to X, x \mapsto 3x \mod 1$.

Fact 2.1.1. For every $0 \le \gamma \le 1$, there exists a closed f-invariant set $\Lambda \subset \mathbb{S}^1$ and an ergodic f-invariant probability measure μ on \mathbb{S}^1 with $\dim_H \Lambda = \gamma$ and $\dim_H \mu = \gamma$.

Now we add another element $g: x \mapsto 2x \mod 1$.

Question 2.1.2. What are the $\langle f, g \rangle$ joint invariant closed set / measures.

Theorem 2.1.3 (Furstenberg)

Let $\Lambda \subset \mathbb{S}^1$ be closed sets which is $\langle f, g \rangle$ -invariant. Then either

- $\Lambda = \mathbb{S}^1$, \varnothing , or
- Λ is a finite set.

Theorem 2.1.4 (Rudolph)

Let μ be an ergodic $\langle f, g \rangle$ -invariant probability measure. Then either

- (1) μ is Lebesgue, or
- (2) $\dim_{\mathrm{H}} \mu = 0$.

We will use an example to illustrate the main theorem. Consider two matrices

$$A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}.$$

Claim 2.1.5. (1) $\det A = \det B = 1$.

(2) A has three real eigenvalues

$$\chi_A^1 > 1 > \chi_A^2 > \chi_A^3 > 0.$$

(3) *B* has three real eigenvalues

$$\chi_B^1 > \chi_B^3 > 1 > \chi_B^2 > 0.$$

- (4) AB = BA, therefore they have 3 joint eigenspaces E_1 , E_2 , E_3 .
- (5) $A^{\ell}B^{m} = \text{id iff } \ell = m = 0.$

Then A, B induce a \mathbb{Z}^2 -action on \mathbb{T}^3 by $\alpha(n,m)(x+\mathbb{Z}^3)=A^nB^mx+\mathbb{Z}^3$. Moreover, α leaves no rational sub-torus invariant (irreducible).

Theorem 2.1.6 (Simple case of Katok-Spatzier)

The only ergodic α -invariant measure on \mathbb{T}^3 are

- (1) Lebesgue,
- (2) dim $\mu = 0$.

Structure in \mathbb{T}^3 **for** α **-action.** There exists $Q \in \operatorname{SL}(3,\overline{\mathbb{Q}})$ diagonalized both A and B. The **Lyapunov functionals** are $\lambda^j : \mathbb{Z}^2 \to \mathbb{R}$ with $\lambda^j(n,m) = \log((\chi_A^i)^n(\chi_B^j)^m) = \log \chi_A^j + m \log \chi_B^j$. The "**Lyapunov manifolds**" W^j are $W^j(x) := x + E^j$. Then $\alpha(n,m)$ expands or contracts W^j with the ratio $\lambda^j(n,m)$.

For each $1 \le j \le 3$, there exists (n, m) such that

$$\lambda^{j}(n,m) > 0$$
 and $\lambda^{k}(n,m) < 0$ for $k \neq j$.

Then W^j is the unstable manifold for $\alpha(n,m)$. The stable manifold of $\alpha(n,m)$ is $W^{k_1} \oplus W^{k_2}$. Let μ be an α -invariant, ergodic measure on \mathbb{T}^3 . We aim to study the behavior of μ along W^j . Let ξ^j be a measurable partition subordinate to W^j such that the boundary is a null set. Let $\widetilde{\mu}^j_x$ be conditional measures associate to ξ^i at x. The problem is that ξ^j and $\widetilde{\mu}^j_x$ are not α -equivariant.

Leafwise measures. For $x \in \mathbb{T}^3$, we build $(\mu$ -a.e.) measures ν_x^j on $E^j \cong \mathbb{R}$ such that

- (1) v_x^j is locally finite (but probably infinite),
- (2) $\Phi_x^j : E^j \to W^j(x), v \mapsto x + v \text{ satisfying } (\Phi_x^j)_* v_x^j = \mu_x^j,$
- (3) v_x^j is normalized on $I = [-1, 1] \subset E^j$,
- (4) $\mu_x^j \propto \mu_y^j$ for every $y \in W^j(x)$,
- (5) $\alpha(n,m)_*\mu_x^j \propto \mu_{\alpha(n,m)(x)}^j$, equivalently $(m_{e^{\lambda^j(n,m)}})_*\nu_x^j = \nu_{\alpha(n,m)(x)}^j$ where $m_{\lambda}: \mathbb{R} \to \mathbb{R}$, $t \mapsto \lambda t$.
- (6) can recover conditional measures from μ_x^j :

$$\widetilde{\mu}_x^j = \frac{\mu_x^j|_{\xi^j(x)}}{\mu_x^j(\xi^j(x))}.$$

Aim 2.1.7. Assuming $h_{\mu}(\alpha(n,m)) > 0$, show that v_x^j is the Lebesgue measure on \mathbb{R} for almost every x.

Remark 2.1.8 For $(n, m) \neq (0, 0)$, $\alpha(n, m)$ is Anosov. Replacing (n, m) with (-n, -m) if needed, we can pick $1 \leq j \leq 3$ such that

$$\lambda^{j}(n,m) > 0$$
 and $\lambda^{k}(n,m) < 0$ for $k \neq j$.

§2.2 Lecture 2

How does entropy help? Set $f = \alpha(n, m)$, $W_f^u = W^j$ and let μ be an ergodic f-invariant probability measure.

Proposition 2.2.1

The following are equivalent:

- (1) $h_u(f) = 0$,
- (2) for μ -almost every x, v_x^J has at least one atom,
- (3) for μ -almost every x, $v_x^j = \delta_0$ (i.e. $\mu_x^j = \delta_x$), (4) the partition of (\mathbb{T}^3, μ) into full W^s -leaves is measurable,
- (5) v_x^1 and μ_x^1 are finite measures.

Measure preserving translations. Let ν be a locally finite measure on \mathbb{R} . Consider

$$\mathscr{G}(\nu) := \{ \text{ translations of } \mathbb{R} \ T_v : x \mapsto x + v \text{ such that } (T_v)_* \nu \propto \nu \}.$$

Exercise 2.2.2. $\mathcal{G}(v)$ is a closed subgroup of \mathbb{R} .

Exercise 2.2.3. Suppose $\mathcal{G}(\nu)$ has a dense orbit in supp ν , then either

- (1) supp ν is countable, $\mathscr{G}(\nu)$ is discrete, or
- (2) $\mathscr{G}(v) = \mathbb{R}$ and v is absolutely continuous with respect to Haar.

Exercise 2.2.4. Suppose $\mathscr{G}(\nu) = \mathbb{R}$, then there exists C > 0 and $\kappa \in \mathbb{R}$ such that $d\nu = C \cdot e^{\kappa x} dLeb.$

Proof of Katok-Spatzier's theorem (Theorem 2.1.6). (1) The entropy assumption $\implies v_x^j$ are "thick" (supp(v_x^l) is not countable).

- (2) Isometry and recurrence $\implies \mathscr{G}(v_x^j)$ is big for almost every $x \implies v_x^j \approx \text{Leb}$.
- (3) Use dynamics on curvature $\kappa \implies \nu_x^j = \text{Leb}$.

There is another point of view to the third step using the entropy and the Ledrappier-Young formula. Let $f = \alpha(n, m)$ and W^{j} be the unstable foliation.

Proposition 2.2.5 (Ledrappier-Young formula)

The following are equivalent.

- (1) $h_{\mu}(f) = \lambda^{j}(n, m)$,
- (2) $\nu_{x}^{j} \ll \text{Leb}$,
- (3) $v_x^j \approx \text{Leb}$,
- (4) $\nu_{x}^{j} = \text{Leb}.$

In what follows, we will explain more carefully on the second step, which contains the most crucial argument. We already know that v_x^{J} has an uncountable support. We have the equivariant relation

$$(m_{e^{\lambda^j(n,m)}})_*\nu_x^j=\nu_{\alpha(n,m)(x)}^j.$$

Heuristic argument. Suppose $(n, m) \in \ker \lambda^j$, we have $v_x^j = (m_1)_* v_x^j = v_{\alpha(n, m)(x)}^j$, which gives an extra invariance.

Now we construct an \mathbb{R}^2 -action from the \mathbb{Z}^2 -action. Consider $\mathbb{R}^2 \times \mathbb{T}^3$, it admits a left \mathbb{R}^2 -action $s \cdot (t, x) = (s + t, x)$ and a right \mathbb{Z}^2 action $(t, x) \cdot n = (t + n, \alpha(-n)x)$. Let $N = \mathbb{R}^2 \times \mathbb{T}^3/\mathbb{Z}^2$, which admits an \mathbb{R}^2 -action and a fiber bundle structure over $\mathbb{R}^2/\mathbb{Z}^2$ (fibers are \mathbb{T}^3). We can equip fibers of N with good metrics such that E^j acts by translations on each fiber. For every $x \in N, v \in E^j, t \in \mathbb{R}^2$,

$$\widetilde{\alpha}(t)(x+v) = \widetilde{\alpha}(t)(x) + e^{\lambda^{j}(t)}v.$$

Given an $\alpha(\mathbb{Z}^2)$ -invariant ergodic measure μ , we can obtain an $\widetilde{\alpha}(\mathbb{R}^2)$ -invariant ergodic measure $\widetilde{\mu}$ on N. We can build $\widetilde{\mu}_x^j$, $\widetilde{\nu}_x^j$ similarly for $\widetilde{\mu}$ on N.

Then for $s \in \ker \lambda^j$, we have

$$\widetilde{\nu}_{x}^{j} = \widetilde{\nu}_{\widetilde{\alpha}(s)(x)}^{j}.$$

Therefore $x \mapsto \widetilde{v}_x^j$ is constant along orbits of $\ker \lambda^j$. Why is this useful? Suppose $\widetilde{\alpha}(s)$ is $\widetilde{\mu}$ -ergodic, then $x \mapsto v_x^j$ is a.s. constant. Then there exists ν on E^s such that $\widetilde{v}_x^j = \nu$. For another element y = x + v, this will gives an extra translation invariance $T_v \nu \propto \nu$.

§2.3 Lecture 3

Let $y = x + v \in x + E^j$. Recall that

$$(\Phi_y^j)_*\widetilde{\nu}_y^j = \widetilde{\mu}_y^j \propto \widetilde{\mu}_x^j = (\Phi_x^j)_*\widetilde{\nu}_x^j.$$

Taking the inverse, we obtain

$$(T_v)_*\widetilde{\nu}_y^j = ((\Phi_x^j)^{-1} \circ \Phi_y^j)_*\widetilde{\nu}_y^i \propto \widetilde{\nu}_x^j.$$

As we discussed before, we hope that $\ker \lambda^j$ acts on $(N, \widetilde{\mu})$ ergodically. In fact, we don't need $x \mapsto \widetilde{\nu}_x^t$ is constant. We only need $x \mapsto \widetilde{\nu}_x^j$ is constant on each W^j -leaf.

Fix $s_0 \neq (0,0) \in \ker \lambda^j$. Let \mathscr{E}_{s_0} be the ergodic decomposition of $\widetilde{\mu}$ with respect to $\widetilde{\alpha}(s_0)$. Then $x\widetilde{v}_x^j$ is \mathscr{E}_{s_0} -measurable. We want to show $x \mapsto \widetilde{v}_x^j$ is constant along W^j -leaves. Take the measurable hull Ξ^j of the partitions of $(N,\widetilde{\mu})$ into full W^j -leaves (each element in Ξ^j is W^j -saturated).

Aim 2.3.1. To show
$$\mathscr{E}_{s_0} \prec \Xi^j$$
.

If this holds, using the fact that $x \mapsto \widetilde{\nu}_x^j$ is constant on \mathscr{E}_{s_0} -atoms, we obtain the conclusion. To show the aim, we have some preparations.

1. **Ledrappier-Young.** Pick any $t \in \mathbb{R}^2$. Let

 Ξ_t^s = the measurable hull of partition into full stable manifolds for $\widetilde{\alpha}(t)$,

 $\Xi^u_t=$ the measurable hull of partition into full unstable manifolds for $\widetilde{\alpha}(t).$

Ledrappier-Young I Theorem B states that $\Xi_t^s = \Xi_t^u = \Pi$, where Π is the Pinsker partition.

- 2. Pointwise ergodic theorem. $\mathscr{E}_{s_0} \prec \Xi_{s_0}^s$.
- 3. Totally non-symplectic assumption. $\lambda^j \neq -c\lambda^i$ for every $i \neq j$.

Proof. We will use the Π -partition trick. First we have

$$\mathscr{E}_{s_0} \prec \Xi_{s_0}^s = \Pi_{s_0} = \Xi_{s_0}^u$$
.

Assume that $\lambda^j(s_0)=0, \lambda^i(s_0)<0$ and $\lambda^{i'}(s_0)>0$. Using the totally non-symplectic assumption. We can find another $t\in\mathbb{R}^2$ such that $\lambda^j(t)<0, \lambda^i(t)<0$ and $\lambda^{i'}(t)>0$. Therefore,

$$\Xi_{s_0}^u = \Xi_t^u = \Pi_t = \Xi_t^s \prec \Xi^j.$$

The last inequality follows from the fact that $W^j(x) \subset W^s_t(x)$.

Why care?

• Orbit closures. A group action Γ on a compact metric space. We want to classify the orbit closures. We always study the Γ -invariant / Γ -stationary measures on the orbit closures.

Theorem 2.3.2 (Einsiedler-Katok-Lindenstrauss)

Let μ be an ergodic A-invariant probability measure on $X = SL(3, \mathbb{R})/SL(3, \mathbb{Z})$ with $h_{\mu}(a) > 0$ for some $a \in A$. Then μ is Haar.

• **Joinings** / **Measurable factors.** By classifying the joinings, show that all measurable factors are smooth / homogeneous.

3 Margulis-Zimmer's super-rigidity (Homin Lee)

§3.1 Cocycles

Notation 3.1.1. • *G*, *H* nice topological groups.

- (S, μ) a Lebesgue space.
- $G \cap (S, \mu)$ and μ is G-quasi-invariant.

Definition 3.1.2. A measurable map $\alpha : G \times S \to H$ is called a **measurable cocycle** if for every $g_1, g_2 \in G$,

$$\alpha(g_1g_2,s) = \alpha(g_1,g_2 \cdot s)\alpha(g_2,s), \quad \text{a.e.} s \in S.$$

Remark 3.1.3 We may assume that the equality holds for every $g_1, g_2 \in G$ and $s \in S$.

Example 3.1.4

0. $\pi: G \to H$ homomorphism. $\alpha_{\pi}(g,s) = \pi(g)$ gives a cocycle.

1. $G \cap (M, \mu)$ by ρ where M is a compact smooth manifold and μ is G-invariant. Then TM is a measurably trivialized by $\{ \psi_x : T_xM \to \mathbb{R}^d \}$. Therefore

$$D\rho: G \times M \to GL(d, \mathbb{R}), \quad (g, x) \mapsto \psi_{g, x} \circ D_x \rho(g) \circ \psi_x^{-1}.$$

gives a cocycle.

Definition 3.1.5. Two cocycles α , β : $G \times S \to H$ are **cohomologous** to each other if there exists a measurable ϕ : $S \to H$ such that

$$\alpha(g,s) = \phi(g.s)^{-1}\beta(g,s)\phi(s), \quad \forall g \in G, s \in S.$$

Example 3.1.6

2. Let $\Gamma < G$ be a closed subgroup with a measurable fundamental domain $X \subset G$. **Definition 3.1.7.** The **return cocycle** is defined to be

$$\mathcal{R}: G \times G/\Gamma \to \Gamma$$
, $\mathcal{R}(g,x) = \gamma$,

where γ is the unique element such that $gx\gamma^{-1} \in X$.

Proposition 3.1.8

Let $\alpha: G \times G/L \to H$ be a cocycle, where L is a closed subgroup of G. Then there exists a homomorphism $\rho_{\alpha}: L \to H$ such that $\rho_{\alpha}(\ell) = \alpha(\ell, [e])$.

Conversely, for every group homomorphism $\rho: L \to H$, there exists a cocycle $\alpha_{\rho}: G \times G/L \to H$ so that $\rho_{\alpha_{\rho}}$ is conjugate to ρ .

This proposition gives a 1-1 correspondence

{ cocycles $G \times G/L \to H$ } /cohomologous \longleftrightarrow Hom(L, H)/conjugacy.

Let $\alpha : G \times S \to H$ be a cocycle.

Question 3.1.9. Does there exist a minimal subgroup L < H with a cocycle β cohomologous to α with $\beta(G \times S) \subset L$.

The answer in general is **NO**.

Proposition 3.1.10

Let $\alpha: G \times S \to H$ be a cocycle and $H < \operatorname{SL}_m(\mathbb{R})$ be a Zariski closed subgroup. Then there exists a Zariski closed subgroup $L \subset H$ with a cocycle β cohomologous to α taking values in L such that α is not cohomologous to a cocycle taking values in in any proper Zariski-closed subgroup of L. Moreover, L is unique up to conjugacy. Such L is called the **algebraic hull** of α .

Theorem 3.1.11 (Zimmer's cocycle super-rigidity)

Let $G = \operatorname{SL}_n(\mathbb{R})$ with $n \ge 3$. Consider $G \cap (S, \mu)$ where μ is an ergodic G-invariant probability measure. Let $\alpha : G \times S \to \operatorname{SL}_m(\mathbb{R}) = H$ and assume that H is the algebraic hull of α . Then $\alpha(g, x) = \phi(g.x)^{-1}\pi(g)\phi(x)$ for some homomorphism $\pi : G \to H$ and measurable map $\phi : S \to H$.

Theorem 3.1.12 (Margulis's super-rigidity)

Let $G = \mathrm{SL}_n(\mathbb{R})$ for $n \geq 3$. Let $\Gamma < G$ be a lattice and $\pi : \Gamma \to \mathrm{SL}_m(\mathbb{R}) = H$ be a homomorphism. If $\pi(\Gamma)$ is Zariski dense in H then π extends to a homomorphism $\tilde{\pi} : G \to H$.

Exercise 3.1.13. Show Margulis's super-rigidity by Zimmer's cocycle super-rigidity. **Hint.** Consider the cocycle $G \times G/\Gamma \to \Gamma \to H$, where the first map is given by the return cocycle.

§3.2 Rigidity theorems, relation with Zimmer's program

Theorem 3.2.1 (Zimmer, Fisher-Margulis)

Let $G \cap (S, \mu)$ and μ be an ergodic G-invariant measures. Let $\alpha: G \times S \to \operatorname{GL}_m(\mathbb{R})$ be a cocycle. Assume that $\log \|\alpha(g, -)\|_{\operatorname{op}} \in L^1(S, \mu)$ for every $g \in G$. Then there exists a measurable map $\phi: S \to \operatorname{GL}_m(\mathbb{R})$, a homomorphism $\pi: G \to \operatorname{GL}_m(\mathbb{R})$ and a cocycle $\mathcal{K}: G \times S \to K$ with $K < \operatorname{GL}_m(\mathbb{R})$ a compact subgroup, such that

$$\alpha(g,x) = \phi(g.x)^{-1}\pi(g)\mathcal{K}(g,x)\phi(x), \quad \forall g \in G, x \in S.$$

Fact 3.2.2. 1. Higher rank Lie groups and their lattices satisfy Property (T).

- 2. *H* Property (T) and amenable \implies *H* is compact.
- 3. *H* Property (T) and $H \cap (S, \mu)$ with an ergodic *H*-invariant measure μ . Then for every cocycle $\alpha : H \times S \to F$ with an amenable F, α is conjugate to a compact group valued cocycle.
- 4. F amenable group and $F \cap (S, \mu)$ with an ergodic F-invariant measure μ . Then for every cocycle $\alpha : F \times S \to GL_m(\mathbb{R})$, the algebraic hull of α is amenable.

Proof. Let H be the algebraic hull of α . By Levi decomposition, $H = F \ltimes U$ where F is reductive and U is unipotent.

Theorem 3.2.3 (Margulis)

Let $\Gamma < G$ be a lattice and $\pi : \Gamma \to GL_m(\mathbb{R})$ be a homomorphism. Then there exist homomorphisms $\widetilde{\pi} : G \to GL_m(\mathbb{R})$ and $\kappa : \Gamma \to K$ with a compact K, such that $\pi(\gamma) = \widetilde{\pi}(\gamma)\kappa(\gamma)$ for every $\gamma \in \Gamma$.

Relation with the Zimmer program. This is somehow in the same flavor as the Zimmer program:

Question 3.2.4. Consider a smooth action ρ of Γ on a closed manifold M. Can we classify ρ ? Does ρ come from "algebraic actions" and "isometric actions"?

Let $\Gamma = \operatorname{SL}_3(\mathbb{Z})$ act on $(\mathbb{T}^3, \operatorname{Vol})$ by volume-preserving diffeomorphisms. It induces the derivative cocycle $D: \Gamma \times \mathbb{T}^3 \to \operatorname{SL}_3(\mathbb{R})$. Zimmer's cocycle super-rigidity also holds: there exists a measurable map $\phi: \mathbb{T}^3 \to \operatorname{SL}_3(\mathbb{R})$, a homomorphism $\pi: G = \operatorname{SL}_3(\mathbb{R}) \to \operatorname{SL}_3(\mathbb{R})$ and a cocycle $\mathcal{K}: G \times \mathbb{T}^3 \to K$ with $K < \operatorname{SL}_3(\mathbb{R})$ a compact subgroup, such that

$$D(\gamma, x) = \phi(\gamma.x)^{-1}\pi(\gamma)\mathcal{K}(\gamma, x)\phi(x), \quad \forall \gamma \in G, x \in \mathbb{T}^3.$$

Here the homomorphism π is either trivial, defining representation, contragredient $(B \mapsto (B^{-1})^t)$. In fact, if π is not trivial then K is trivial.

Lemma 3.2.5

- (1) If there exists $\gamma \in \Gamma$ such that $h_{\text{Vol}}(\rho(\gamma)) > 0$ then π is non-trivial.
- (2) For every $\gamma \in \Gamma$, the Lyapunov exponent of $\rho(\gamma)$ is the logarithm of an algebraic number.

§3.3 Zimmer program

Let $G = \operatorname{SL}_n(\mathbb{R})$ for $n \ge 3$ and $\Gamma < G$ be a lattice. We consider a smooth action $\alpha : \Gamma \to \operatorname{Diff}(M)$ where M is a smooth closed manifold.

Critical dimension.

Example 3.3.1

Consider the action $G \cap \mathbb{R}^n$ by linear transformations. This induces a smooth action $G \cap \mathbb{RP}^{n-1} = G/Q$.

Recall that the Zimmer's cocycle super-rigidity $D\alpha(\gamma, x) = \phi(\gamma, x)^{-1}\pi(\gamma)\mathcal{K}(\gamma, x)\phi(x)$. If α preserves the volume, then $\pi: G \to \mathrm{SL}_d(\mathbb{R})$. If $d \leqslant n-1$, then there is no nontrivial homomorphism $\pi: \mathrm{SL}_n(\mathbb{R}) \to \mathrm{SL}_d(\mathbb{R})$.

Theorem 3.3.2 (Zimmer's Conjecture, Brown-Fisher-Hurtado)

Let $\alpha : \Gamma \to \text{Diff}^{\infty}(M)$ be a smooth action. Then

- 1. If dim M = n 1 and α is volume preserving, then α is isometric and hence $\alpha(\Gamma)$ is finite.
- 2. If dim M = n 2 then $\alpha(\Gamma)$ is finite.

Theorem 3.3.3 (Brown-Rodriguez Hertz-Wang)

Let $\alpha : \Gamma \to \text{Diff}^{\infty}(M)$ be a smooth action. If dim M = n - 1 then $M \cong \mathbb{RP}^{n-1}$ or \mathbb{S}^{n-1} and α is conjugate to the projective action.

Question 3.3.4. How about dim M = n?

- For *G*-actions, we can classify the C^2 -actions $\alpha: G \to \text{Diff}^2(M)$.
- For Γ -actions, it is conjectured that either α extends to G-actions or α is (blow up + toral automorphisms).

Uniform / non-uniform hyperbolic systems.

Theorem 3.3.5 (Brown-Rodriguez Hertz-Wang)

Let $\alpha : \Gamma \to \mathrm{Diff}^{\infty}(\mathbb{T}^n)$ be a smooth action. If there exists $\gamma \in \Gamma$ such that $\alpha(\gamma)$ is an Anosov diffeomorphism then α smoothly conjugates to an affine action.

Theorem 3.3.6 (Katok-Lewis-Zimmer, Lee)

Let $\alpha : \Gamma \to \mathrm{Diff}^\infty_{\mathrm{Vol}}(M)$ be a volume-preserving smooth action. Assume that dim M = n and there exists $\gamma \in \Gamma$ such that $\alpha(\gamma)$ is Anosov. Then $M \cong \mathbb{T}^n$ and α is smoothly affine.

Question 3.3.7. Let $\alpha: \Gamma \to \operatorname{Diff}^\infty(M)$ be a smooth action. Assume that there exists $\gamma \in \Gamma$ such that $\alpha(\gamma)$ is partially hyperbolic (or Anosov). Is M a bi-homogeneous space? Is α smoothly algebraic?

Theorem 3.3.8 (Damjanovic-Spatzier-Vinhage-Xu)

Let $\alpha:\Gamma\to \mathrm{Diff}^\infty_{\mathrm{Vol}}(M)$ be a volume-preserving smooth action. Assume that it is "totally Anosov". Then M is bi-homogeneous and α is smoothly algebraic.

Theorem 3.3.9

Let $\alpha : \Gamma \to \operatorname{Diff}^{\infty}(M)$ be a smooth action. Assume that dim M = n and there exists a $\gamma \in \Gamma$ such that $h_{\operatorname{top}}(\alpha(\gamma)) > 0$. Then there exists an $\alpha(\Gamma)$ -invariant absolutely continuous measure and hence M is measurably conjugate to \mathbb{T}^n and $\Gamma \cong \operatorname{SL}_n(\mathbb{Z})$.

Low-regularity / low-dimension.

Question 3.3.10. Let $\Gamma < \operatorname{SL}_n(\mathbb{R})$ and $\alpha : \Gamma \to \operatorname{QC}_{\operatorname{Vol}}(\Sigma)$ be a volume-preserving quasi-conformal action on a closed surface. Is $\alpha(\Gamma)$ finite?

 $SL_2(\mathbb{R}) \times SL_2(\mathbb{R})$.

Theorem 3.3.11 (Margulis's normal subgroup theorem)

Let $\Gamma < G$ be a lattice, where G is a semisimple Lie group with finite center and real rank at least 2. Then every normal subgroup of Γ is either finite or of finite index.

Now we consider $G = \operatorname{SL}_2(\mathbb{R}) \times \operatorname{SL}_2(\mathbb{R})$ and $\Gamma < G$ is an irreducible lattice in this part. Note that G does not have Property (T) so that there is no Zimmer's cocycle super-rigidity.

Theorem 3.3.12 (Franks-Handel)

Let $\Gamma < \operatorname{SL}_2(\mathbb{R}) \times \operatorname{SL}_2(\mathbb{R})$ be a non-cocompact irreducible lattice. Then for every volume preserving smooth action $\alpha : \Gamma \to \operatorname{Diff}_{\operatorname{Vol}}^{\infty}(\Sigma)$ on a closed surface, $\alpha(\Gamma)$ is finite.

Question 3.3.13. Let $\Gamma < G = \operatorname{SL}_2(\mathbb{R}) \times \operatorname{SL}_2(\mathbb{R})$ be an irreducible lattice. Is it true that every volume preserving smooth action $\alpha : \Gamma \to \operatorname{Diff}^{\infty}_{\operatorname{Vol}}(\Sigma)$ on a closed surface has a finite image or it is essentially $\Gamma \hookrightarrow \operatorname{SO}(3) \cap \mathbb{S}^2$ by isometries?

4 Space of actions of groups on the real line (Bertrand Deroin)

§4.1 Lecture 1

Proposition 4.1.1

A countable group Γ embeds in Homeo⁺(\mathbb{R}) iff it is left-orderable.

Definition 4.1.2. A group Γ is **left-orderable** if there exists a total order \prec on Γ which is left-invariant: if $g \prec h$ then $kg \prec kh$, for every $g, h, k \in \Gamma$.

Proof. Assume that $\Gamma < \operatorname{Homeo}^+(\mathbb{R})$. Let $(x_n)_n$ be a dense sequence of real numbers. For two different elements $g, h \in \Gamma$, letting $n_0 = \inf \{ n : g(x_n) \neq h(x_n) \}$, we take $g \prec h$ if $g(x_{n_0}) < h(x_{n_0})$. Hence Γ is left-orderable.

Suppose now that Γ is countable and have a leaf-invariant total order \prec . We pick a numbering $(g_n)_{n\geqslant 0}$ of the elements of Γ . We will construct an embedding $t:\Gamma\to\mathbb{R}$ which preserves the order. The map t can be defined inductively on g_0,g_1,\cdots . Then Γ acts on $t(\Gamma)$ by $g.t(g_n):=t(gg_n)$. We can prove that the Γ -action extends to a C^0 -action on $\overline{t(\Gamma)}$. We then extend the Γ -action on $\overline{t(\Gamma)}$ on the components of $\mathbb{R}\setminus\overline{t(\Gamma)}$ by affine maps. \square

Such constructions are called **dynamical realization of the order**.

Question 4.1.3 (Zimmer program). Which lattices $\Gamma < G$ of semisimple Lie groups are left-orderable?

Let G be the isometry group of a symmetric space. Its real rank rank \mathbb{R} G is the maximal dimension of a totally geodesic flat.

First we consider the case for the hyperbolic plane \mathbb{H}^2 .

Lemma 4.1.4 Any torsion free lattice of $Isom^+(\mathbb{H}^2)$ is left-orderable.

Proof. Note that Isom $^+(\mathbb{H}^2)$ acts by diffeomorphisms on $\partial \mathbb{H}^2 \cong \mathbb{R}/\mathbb{Z}$.

Question 4.1.5. Given $\Gamma < \text{Isom}^+(\mathbb{H}^2)$, is it possible to lift the action of Γ on $\partial \mathbb{H}^2$ to an action on $\widetilde{\partial \mathbb{H}^2} \cong \mathbb{R}$.

Case 1. If $\Gamma \backslash \mathbb{H}^2$ is non-compact, then Γ is freely generated by a finite set $S < \Gamma$. Therefore we can lift each element in S to \mathbb{R} individually.

Case 2. Γ is a surface group:

$$\Gamma = \langle a_1, b_1, \cdots, a_g, b_g | [a_1, b_1] \cdots [a_g, b_g] = 1 \rangle.$$

We can lift the a_i 's, b_i 's to homeomorphisms \widetilde{a}_i , \widetilde{b}_i 's on $\mathbb{R} = \widetilde{\partial \mathbb{H}^2}$. Then $[\widetilde{a}_1, \widetilde{b}_1] \cdots [\widetilde{a}_g, \widetilde{b}_g]$ is a deck transformation of $\widetilde{\partial \mathbb{H}^2} \to \partial \mathbb{H}^2$, which identifies with an integer. **BAD NEWS**: this integer is equal to $\pm (2-2g)$, which is not vanish in general.

So that we should choose another representation of Γ in $\mathrm{Isom}^+(\mathbb{H}^2)$. We look at the component of $\mathrm{Hom}(\Gamma,\mathrm{Isom}^+(\mathbb{H}^2))$ that contains the trivial representation. Every representation in this component can be lifted to \mathbb{R} successfully. In fact, there exists a faithful representation in this component, which gives us a desired action.

Question 4.1.6. Is it true that a lattice in Isom(real / complex hyperbolic space) is virtually left-orderable?

Question 4.1.7. Does there exists a left-orderable group with Kazhdan property (T)?

§4.2 Lecture 2

Theorem 4.2.1

If $\Gamma < G$ is an irreducible lattice in a semi-simple Lie group G of rank at least 2, and trivial center, then Γ is not left-orderable.

Definition 4.2.2. An element $h \in \text{Homeo}^+(\mathbb{R})$ is almost-periodic if the set

$$\{ \tau_{-s} \circ h \circ \tau_s : s \in \mathbb{R} \}$$

is relatively compact, where τ_s is the translation $t \mapsto t + s$ and $Homeo^+(\mathbb{R})$ is equipped with the compact-open topology on both g and g^{-1} .

Example 4.2.3

For some quasi-periodic function $f(t) = \sum_{k=0}^{n} [a_k \cos(\alpha_k t) + b_k \sin(\beta_k t)]$, the homeomorphism h(t) = t + f(t) is almost-periodic.

Fact 4.2.4. The subset $APH^+(\mathbb{R}) \subset Homeo^+(\mathbb{R})$ of almost-periodic homeomorphisms is a subgroup.

Proposition 4.2.5

Let Γ be a finitely generated group and $\phi: \Gamma \to \operatorname{Homeo}^+(\mathbb{R})$ be a homomorphism. Then ϕ is almost periodic $(\phi(\Gamma) \subset \operatorname{APH}^+(\mathbb{R}))$ iff there exists a compact space Z, a free flow $\mathcal{T} = \{T^t\}_{t \in \mathbb{R}}$ acting on Z, an action of Γ on Z and a point $z_0 \in Z$ such that the Γ -action preserves each \mathcal{T} -orbits and act on it by orientation-preserving maps and

$$g(T_t(z_0)) = T_{\phi(g)(t)}(z_0), \quad \forall g \in \Gamma, t \in \mathbb{R}.$$

Proof. Assume first that there is such space Z, flow \mathcal{T} and point z_0 satisfying properties given in the proposition. For every $z \in Z$, there exists a Γ -action on \mathbb{R} given by

$$\phi^z:\Gamma \to \operatorname{Homeo}^+(\mathbb{R}), \quad g(T_t(z))=T_{\phi^z(g)(t)}(z).$$

Pick $g \in \Gamma$, the map $z \mapsto \phi^z(g) \in \mathrm{Homeo}^+(\mathbb{R})$ is continuous. By construction, we have the formula

$$\phi^{T_s(z)}(g) = \tau_{-s} \circ \phi^z(g) \circ \tau_s, \quad \forall s \in \mathbb{R}, z \in Z, g \in \Gamma.$$

By the compactness of Z, this shows that $\phi^z(g)$ stay in a compact set for each fixed g. Therefore $\phi(g) = \phi^{z_0}(g)$ is almost-periodic for every g.

Assume now that ϕ is almost-periodic. Consider the space $Z' = \operatorname{Hom}(\Gamma, \operatorname{Homeo}^+(\mathbb{R}))$, endowed with the subspace topology from $(\operatorname{Homeo}^+(\mathbb{R}))^S$ where S is a finite generating set of Γ . The map $T^t \psi := \tau_{-t} \circ \psi \circ \tau_t$ defines a flow on Z'. We define the Γ -action on Z' given by

$$g(\psi) \coloneqq \tau_{-\psi(g)(0)} \circ \psi \circ \tau_{\psi(g)(0)} = T^{\psi(g)(0)}(\psi), \quad \forall g \in \Gamma, \psi \in Z'.$$

Let $Z = \overline{T^t(\phi)}$, which is preserved by T and by Γ . Let $z_0 = \phi \in Z$.

Definition 4.2.6. Z is called the **almost-periodic space** and \mathcal{T} is called the **translation** flow.

Theorem 4.2.7

Any Γ -action $\phi_0 : \Gamma \to \operatorname{Homeo}^+(\mathbb{R})$ is topologically conjugated to an almost-periodic action ϕ . Moreover, if the Γ -action ϕ_0 does not have any fixed point then ϕ does not "almost have fixed point".

Definition 4.2.8. An action $\phi: \Gamma \to \operatorname{Homeo}^+(\mathbb{R})$ is said to **almost have a fixed point** if $\inf_{t \in \mathbb{R}} \sup_{g \in S} |\phi(g)(t) - t| = 0,$

where S is a finite generating set of Γ .

Remark 4.2.9 Let Z be the almost-periodic space, then there exists a sequence $\{t_n\}$ such that $\phi(g)(t_n) - t_n \to 0$ for every $g \in S$. Let $z_n = T^{t_n}(z_0)$. Then any limit of z_n in Z is fixed by Γ .

Conjecture 4.2.10 (Linnell)

A finitely generated left-oderable group is either contains a non-abelian free group or it has a homomorphism onto \mathbb{Z} .

Theorem 4.2.11 (Witte)

Any finitely generated amenable left-orderable group has a homomorphism onto \mathbb{Z} .

§4.3 Lecture 3

Let Γ be a finitely generated group and μ be a symmetric finitely supported probability measure on Γ with the support S satisfying $\langle S \rangle = \Gamma$.

Definition 4.3.1. An action $\phi : \Gamma \to \text{Homeo}^+(\mathbb{R})$ is μ -harmonic if the Lebesgue measure is μ -stationary.

Definition 4.3.2. The random walk has the Derriennic property if

$$x = \int g(x) d\mu(g), \quad \forall x \in \mathbb{R}.$$

Proposition 4.3.3

A μ -stationary action is almost-periodic, does not have an almost periodic point, and it has the Derriennic property.

Proof (by Victor Kleptsyn). For $h \in \text{Homeo}^+(\mathbb{R})$ and $c \in \mathbb{R}$, we define

$$\Delta^{h}(c) := \begin{cases} \int_{h^{-1}(c)}^{c} [h(s) - c] ds, & h(c) \ge c; \\ \int_{h(c)}^{c} [h^{-1}(s) - c] ds, & h(c) < c. \end{cases}$$

Lemma 4.3.4
$$\int_a^b [h(s) - s] + [h^{-1}(s) - s] ds = \Delta^h(b) - \Delta^h(a).$$

From μ -harmonicity, we have that the drift

$$Dr(\phi, \mu) = \int [\phi(g)(x) - x] d\mu(g)$$

does not depend on choice of $x \in \mathbb{R}$. Integral the equality of the lemma over Γ , we have

$$\int_a^b \left\{ \int_{\Gamma} [\phi(g)(s) - s] d\mu(g) + \int_{\Gamma} [\phi(g)^{-1}(s) - s] d\mu(g) \right\} ds = \int_{\Gamma} [\Delta^{\phi(g)}(b) - \Delta^{\phi(g)}(a)] d\mu(g).$$

Note that the left hand side equals to $2Dr(\phi, \mu)(b-a)$. We have that the function

$$c \in \mathbb{R} \mapsto \int_{\Gamma} \Delta^{\phi(g)}(c) \mathrm{d}\mu(g)$$

is an affine function with the derivative $2\mathrm{Dr}(\phi,\mu)$. But $\Delta^h(c)$ is non-negative by our definition. So that the drift vanishes and the Derriennic property holds. Besides, $\int_{\Gamma} \Delta^{\phi(g)}(c) \mathrm{d}\mu(g)$ is the constant, which we denote by Δ .

To prove almost-periodicity, we will prove that the action is bi-Lipschitz and that the displacement $\sup_{s \in \mathbb{R}} |\phi(g)(s) - s| < \infty$ for every $g \in \Gamma$. The Lipschitz property is easy to establish. Note that for every x < y, we have

$$y - x = \int [\phi(g)(y) - \phi(g)(x)] d\mu(g) \ge \mu(g) [\phi(g)(y) - \phi(g)(x)].$$

Recall that $\int_{\Gamma} \Delta^{\phi(g)}(c) \mathrm{d}\mu(g) = \Delta.$ We have

$$\Delta^{\phi(g)}(c) \leqslant \frac{\Delta}{\mu(g)}, \quad \forall g \in S, c \in \mathbb{R}.$$

By the bi-Lipschitz property, we have

$$\Delta^{\phi(g)}(c) \geqslant \frac{\mu(g)}{2} |\phi(g)(c) - c| |\phi(g)^{-1}(c) - c| \geqslant \frac{|\phi(g)(c) - c|^2}{2}.$$

Therefore, we obtain a uniform boundedness of the displacement of $\phi(g)$.

Theorem 4.3.5

Any $\phi_0 : \Gamma \to \text{Homeo}_+(\mathbb{R})$ without a discrete orbit is semi-conjugate to a μ -harmonic action ϕ . Moreover, ϕ is unique up to conjugacy by an affine map.

Definition 4.3.6. ϕ_0 is **semi-conjugate** to ϕ if there is a nondecreasing proper map $k : \mathbb{R} \to \mathbb{R}$ such that $\phi \circ k = k \circ \phi_0$.

The principle of proof is the existence of a Radon stationary measure ν which is bi-infinite $(\nu([c,+\infty[)=\infty,\nu(]-\infty,c])=\infty)$ and atomless. Then $k(c)\coloneqq([0,c])$ gives a semiconjugacy from ϕ_0 to a μ -stationary action $\phi:\Gamma\to \operatorname{Homeo}^+(\mathbb{R})$. The unicity part of the theorem is the consequence of the uniqueness of the a Radon μ -stationary measure up to a multiplicative constant.

To show the existence of a such Radon μ -stationary measure, we consider the random sequence (g_n) which is an i.i.d. Γ-valued random variables obeying the law μ . Let $x_0 = x$ and $x_n = \phi(g_n) \cdots \phi(g_1)(x)$. There is an oscillation property:

$$\limsup_{n\to+\infty} x_n = \infty$$
, $\liminf_{n\to-\infty} x_n = -\infty$, almost surely.

This oscillation property leads to the existence of a such stationary measure.