

Normalizing Flow based Feature Synthesis for Outlier-Aware Object Detection

Nishant Kumar¹, Siniša Šegvić², Abouzar Eslami³, Stefan Gumhold¹

¹TU Dresden, ²University of Zagreb – FER, ³Carl Zeiss Meditec AG

Motivation

Vanilla Object Detectors like Faster R-CNN are not reliable to distinguish outliers from inliers.

- Prior works synthesize outliers using class-conditional Gaussians for training an outlier-aware object detector.
- A synthesized outlier may have higher likelihood with respect to another inlier class when compared with its parent class.

Flow Feature Synthesis

➤ Trains Normalizing Flow to map inlier object features to normal distribution latent space. Ensures a good estimation of the whole inlier distribution.

- > Selects outlier features from the low-likelihood region of the synthetically generated features after random sampling from the latent space.
- > Guarantees sampled outliers to be outlier with respect to all inlier classes.

Results

Our Normalizing Flow based approach better distinguishes the inlier, background and outlier distributions than VOS.

Better in detecting outliers, reducing incorrect bounding boxes and decreasing the confidence on false inlier detection.

ID/OD	Method	FPR95	AUROC	dog 100%		
VOC/COCO	VOS	47.77	89.00	dog 98%	car 46%	bottle 100% bottle 87% bottle 98%
	FFS	44.15	89.71		MacBook Pro	
VOC/OpenImages	VOS	48.33	87.59		WERTY	
	FFS	45.08	88.29	FFS	FFS	FFS
BDD100K/nulmages	STUD	79.75	76.55	OOD dog 82%	OOD	bottle 100%
	FFS	76.68	77.53		MacBaok Pro	OOD OOD
Youtube-VIS/COCO	STUD	81.14	74.82			
	FFS	83.06	76.37		WERTY SDFGH	

Conclusion

- > Learns a combined data distribution from all inlier classes.
- Generates suitable outliers for training classification head.
- Achieves state-of-the-art for outlier-aware object detection.
- > Scan QR Code for https://github.com/nish03/FFS.

