:bitwise הבהרה בנוגע לשימוש

למימוש הפנימי של ייצוג המספר הוצעו מספר דרכים שונות:

- 1. שיטת המשלים ל2
 - 2. סיבית זוגיות

קיימת שיטה נוספת, משלים ל-1, אבל אין לממש אותה (המעבר ממשלים ל-1 למשלים ל-2 הינו פשוט).

שימו לב שתצטרכו לציין בקובץ קונפיגורציות איזה שיטה בחרתם לממש. הודעה מפורטת תצא בהמשך.

and, not, or, xor, — כתלות בשיטה שבחרתם לממש, יש הבדלים עם האופרטורים הלוגיים shift

לפני ביצוע פעולה לוגית **בינארית** – יש לדאוג ששני האופרנדים באותו אורך. במידה ולא – יש לייצג את המספרים מחדש, באורך הראוי, **באופן שלא ישנו את ערכם**.

:כלומר

בשיטת המשלים ל-2, נרפד מספר שלילי באחדות, ומספר חיובי באפסים. (משמאל)

בשיטת סיבית זוגיות תמיד נרפד באפסים. דוגמא להמרה ל8 ביטים:

סיבית זוגיות	מספר ישן	משלים ל-2	מספר ישן
00000100	4(0100)	00000100	4(0100)
10000100	-4(1100)	11111100	-4(1100)
10001101	-13(11101)	11110011	-13(10011)
10000001	-1(11)	11111111	-1(11)

בנוגע לסימן, יש לבצע גם עליו את הפעולה הבינארית.

מספר שלילי – 1

מספר חיובי - 0

הפעולה NOT מבוטלת ואין צורך לממש אותה.

בנוגע לפעולות Shift:

- 1. ניתן להניח שהפרמטר של השיפט הוא int חיובי.
- 2. הפעולות שלכם אמורות להיות שקולות לפעולות הבאות:

$$n \ll k = n * 2^k$$
$$n \gg k = \left\lfloor \frac{n}{2^k} \right\rfloor$$

הפר על מספר (דהיינו, \ll) לא יבוצע על מספר לצורך פישוט התרגיל ניתן להניח כי שיפט ימני (דהיינו, \ll) לא יבוצע על מספר שלילי.