Análise de arquiteturas de microsserviços empregados a jogos MMORPG voltada à otimização do uso de recursos computacionais

Orientado: Marlon Henry Schweigert

Orientador: Charles Christian Miers

OBJETIVO

 Analisar o consumo de recursos das arquiteturas de microsserviços Rudy, Salz e Willson para jogos MMORPG

OBJETIVOS ESPECÍFICOS

- Identificar os protocolos utilizados nessas arquiteturas
- Identificar os microsserviços dessas arquiteturas
- Identificar e avaliar ferramentas de análise de métricas para armazenar valores dos testes
- Analisar o comportamento das arquiteturas aplicadas

ROTEIRO

- Contexto
- Plano de Testes
- Resultados
- Considerações

Exemplo de Cliente MMORPG (Sandbox-Interactive Albion)

Arquiteturas encontradas:

- Rudy
- Salz
- Willson

Arquitetura Rudy

Arquitetura Salz

Arquitetura Willson

PLANO DE TESTES Cenário

- Cenário
 - Cliente e serviço separados
 - Dados armazenados no serviço

Cenário

Ambiente Físico:

up / scale / stop/ kill / rm

- Clientes
 - Docker Swarm
 - 9 Máquinas reais

Ambiente Físico:

- Clientes
 - Docker Swarm
 - 9 Máquinas reais

Ambiente Virtual:

- Serviço de Jogo
 - Docker Compose
 - 1 Máquina Virtual
- Banco de Dados
 - Docker Compose
 - 1 Máquina Virtual

- Dados de Monitoramento

- Docker Compose
- 1 Máquina Virtual

Swarm

Ambiente de experimentação

Automatização de Clientes

- Criar Conta
- Criar Personagem
- Autenticar
 - Movimentar
 - Comunicar

A: Autenticar M: Movimentar C: Comunicar

Comportamento dos experimentos

Comportamento dos experimentos

LabP2D

Tempo de Resposta: Operações Web

Arquitetura	Média Criar Conta	Média Criar Personagem
Rudy	263,09 ms	135,42 ms
Salz	152,53 ms	82,48 ms
Willson	135,98 ms	73,66 ms

Tempo de Resposta: Operação Sessão

MÉDIA POR QUADRANTE

Arquitetura	Primeiro	Segundo	Terceiro	Quarto
Rudy	18,6 ms	45,4 ms	86,92 ms	113,24 ms
Salz	20,88 ms	52,38 ms	70,88 ms	57,04 ms
Willson	15,68 ms	40,48 ms	55,04 ms	55,48 ms

VARIÂNCIA POR QUADRANTE

Arquitetura	Primeiro	Segundo	Terceiro	Quarto
Rudy	205,92	477,60	2785,59	4801,06
Salz	865,47	1138,57	4091,28	5192,71
Willson	247,58	960,09	2307,08	3740,09

$$\overline{Sessão}_s \leq \overline{Sessão}_w < \overline{Sessão}_r$$

Tempo de Resposta: Operações do Mundo

INSTANCIAR PERSONAGEM MÉDIA POR QUADRANTE

Arquitetura	Primeiro	Segundo	Terceiro	Quarto
Rudy	25,00 ms	59,12 ms	123,00 ms	143,56 ms
Salz	56,92 ms	107,00 ms	138,29 ms	202,12 ms
Willson	24,64 ms	42,24 ms	86,72 ms	118,56 ms

MOVER PERSONAGEM MÉDIA POR JOGADOR

Tempo de Resposta: Operações de Chat

ENVIAR MENSAGEM MÉDIA POR JOGADOR

RECEBER MENSAGEM MÉDIA POR JOGADOR

Consumo de CPU – Banco de Dados

MÉDIA POR QUADRANTE (4 CORES)

Arquitetura	Primeiro	Segundo	Terceiro	Quarto
Rudy	50,60 %	80,66 %	85,61 %	86,94 %
Salz	53,10 %	88,04 %	90,77 %	92,07 %
Willson	58,15 %	89,86 %	92,50 %	93,48 %

Consumo de CPU – Microsserviços

Consumo de Memória – Banco de Dados

MÉDIA POR JOGADOR COM TAXA DE ERROS

Consumo de Memória – Microsserviços

MÉDIA POR QUADRANTE (8GB)

Arquitetura	Primeiro	Segundo	Terceiro	Quarto
Rudy	33 %	41 %	49 %	53 %
Salz	34 %	41 %	51 %	60 %
Willson	26 %	31 %	39 %	47 %

 $\overline{MemMicrosserviços_{w}} < \overline{MemMicrosserviços_{r}} < \overline{MemMicrosserviços_{s}}$

LobP2D

Entrada de Rede

BANCO DE DADOS MÉDIA POR JOGADOR

MICROSSERVIÇOS MÉDIA POR JOGADOR

 $\overline{Entrada_r} < \overline{Entrada_s} < \overline{Entrada_w}$

Saída de Rede – Banco de Dados

Saída de Rede – Microsserviços

Resultados Unificados

Critério		Rudy	Salz	Willson	Otimizado
	Op. Web	Maior	Médio	Menor	Willson
Tempo	Op. Sessão	Maior	Menor	Médio	Salz
De Resposta	Op. Mundo	Médio	Maior	Menor	Willson
	Op. Chat	Maior	Médio	Menor	Willson
Consumo de CPU	Banco de Dados	Menor	Médio	Maior	Rudy
	Microsserviços	Médio	Menor	Maior	Salz
Consumo	Banco de Dados	Menor	Médio	Maior	Rudy
de Memória	Microsserviços	Médio	Maior	Menor	Willson
Entrada de Rede		Menor	Médio	Maior	Rudy
Saída de Rede	Banco de Dados	Menor	Médio	Maior	Rudy
	Microsserviços	Maior	Menor	Médio	Salz

CONSIDERAÇÕES OBSERVAÇÕES

- Comportamentos validados
- Gargalos encontrados:
 - Rcrud, Schat e Sgame
 - Separação de domínios conflitantes
 - Armazenamento de dados
- Consumo de CPU
 - Número de microsserviços
- A melhor arquitetura depende da dinâmica do jogo prevista pelos desenvolvedores
 - Podem ser usados os dados deste trabalho (slide 28) para identificar a arquitetura com mais pontos otimizados

CONSIDERAÇÕES

DIFICULDADES & CONTRIBUIÇÕES

- Dificuldades:
 - Referências bibliográficas
 - Organização de código
 - Infraestrutura do ambiente
- Contribuições:
 - Dados base de referências
 - Análise referencial de consumo de memória, processador e rede nas arquiteturas Salz, Willson e Rudy

CONSIDERAÇÕES

- TRABALHOS FUTUROS
- Predição do uso de recursos
- Análise do comportamento senoidal no consumo de CPU em serviços estressados dentro do ambiente Docker
- Análise do impacto na troca dos bancos de dados
- Analisar implantação e impacto do uso de JWT nos microsserviços
- Otimização dos protocolos de comunicação
- Análise dos dados capturados mas não analisados no atual trabalho
- Publicação de artigos com os resultados deste trabalho

REFERÊNCIAS

- CLARKE-WILLSON, S. Guild Wars Microservices and 24/7 Uptime. 2017.
- HUANG, G.; YE, M.; CHENG, L. Modeling system performance in mmorpg. In: IEEE Global Telecommunications Conference Workshops, 2004. GlobeCom Workshops 2004. Northwestern University, USA: IEEE, 2004. v. 1, p. 512–518.
- RUDDY, M. Inside Tibia, The Technical Infrastructure of an MMORPG. 2011.
- SALZ, D. Albion Online A Cross-Platform MMO (Unite Europe 2016, Amsterdam).
- SUZNJEVIC, M.; MATIJASEVIC, M. Towards reinterpretation of interaction complexity for load prediction in cloud-based mmorpgs. In: 2012 IEEE International Workshop on Haptic Audio Visual Environments and Games (HAVE 2012) Proceedings. Munich, Germany: IEEE, 2012. v. 1, n. 13171916, p. 148–149. ISSN 978-1-4673-1567-8.
- VILLAMIZAR, M. et al. Infrastructure cost comparison of running web applications in the cloud using aws lambda and monolithic and microservice architectures. In: 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). Cartagena, Colombia: IEEE, 2016. p. 179–182. ISSN 1863-2386.

DÚVIDAS?

marlon.schweigert@edu.udesc.br marlon.henry@magrathealabs.com marlon.schweigert@krakenlab.io

This work is under Creative Commons Attribution-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-sa/4.0/