Programme de colle n°5

Calcul algébrique

- 1) Notation \sum , \prod .
- 2) Sommes classiques (à connaître par coeur) : $\sum_{k=n}^{n} 1$, $\sum_{k=0}^{n} k$, $\sum_{k=0}^{n} k^2$, $\sum_{k=0}^{n} k^3$, $\sum_{k=0}^{n} q^k$.
- 3) Calcul de sommes, de sommes télescopiques, de sommes doubles, de sommes triangulaires.
- 4) Factorisation de $a^n b^n$ et $a^n + b^n$ (pour n impair).
- 5) Factorisation d'un polynôme P par $(X \alpha)$ quand $P(\alpha) = 0$.
- 6) Coefficients binomiaux.
- 7) Formule de Pascal, formule du binôme de Newton.
- 8) Résolution de systèmes linéaires par la méthode du pivot de Gauss.

Nombres complexes

- 1) Forme algébrique et interprétation géométrique.
- 2) Conjugué, module, argument, forme polaire.
- 3) Inégalité triangulaire et cas d'égalité.
- 4) Formules de Moivre et d'Euler.

Questions de cours

- 1) Résoudre : $\sin t = \cos 3t$.
- 2) Résoudre : $|\sin \theta| < \frac{1}{2} \text{ pour } \theta \in [0, 2\pi].$
- 3) Preuve par récurrence de : $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$
- 4) Démontrer la formule pour $\sum_{k=0}^{n} q^k$ pour $tout \ q \in \mathbb{R}$.
- 5) Calculer la somme : $S_n = \sum_{k=1}^n \left(\frac{1}{k} \frac{1}{k+2}\right)$.
- 6) Calculer la somme : $S_5 = \sum_{k=0}^{2n} \frac{1+3^{2k}}{2^{k+2}}$.
- 7) Calculer la somme : $S = \sum_{j=1}^{n} \sum_{i=j}^{n} \frac{1}{i}$
- 8) En considérant la fonction $f(x) = \sum_{k=0}^{n} \binom{n}{k} x^k$, calculer $\sum_{k=0}^{n} k \binom{n}{k}$.
- 9) Montrer que $|z+z'|^2 = |z|^2 + 2\text{Re }(z\bar{z}') + |z'|^2$ pour tous $z, z' \in \mathbb{C}$. En déduire l'inégalité triangulaire.
- 10) Montrer que $|z+z'|^2=|z|^2+2\mathrm{Re}\ (z\bar{z}')+|z'|^2$ pour tous $z,z'\in\mathbb{C}$. En déduire l'identité du parallélogramme : $|z_1+z_2|^2+|z_1-z_2|^2=2|z_1|^2+2|z_2|^2$.