KHAN G.S. RESEARCH CENTER

Kisan Cold Storage, Sai Mandir, Musallahpur Hatt, Patna - 6
Mob.: 8877918018, 8757354880

By : Khan Sir (मानचित्र विशेषज्ञ)

Physics

⇒ समतापीय प्रक्रम (Isothermal): वैसा प्रक्रम जिसमें ऊष्मा तो दिया जाता है किन्तु उस ऊष्मा से तापमान नहीं बढ़ता है वह ऊष्मा कार्य करने में खर्च हो जाता है अत: इस प्रक्रम में सर्वाधिक कार्य किया जा सकता है। यह प्रक्रम धीमा होता है क्योंकि तेज प्रक्रम में तापमान बढ़ जाएगा और धीमे तापमान में घट जाता है।

Ex: बर्फ तथा मोम का गलना।

Work = Max

⇒ रूद्धोष्म प्रक्रम (Adiobetic Process): वैसा प्रक्रम जिसमें बाहर से ऊष्मा नहीं दिया जाता है। बिल्क आन्तरिक अणुओं में गिति अत्यिधिक तेज हो जाने के कारण उन अणुओं में ऊर्जा उत्पन्न हो जाता है और इसी आन्तरिक ऊर्जा से वे कार्य करते है। यह प्रक्रम बहुत ही तेज होता है, इसमें किया गया कार्य ऋणात्मक होता है।

Ex: टायर या गुब्बारा का फटना।

$$Q = \Delta u + \omega$$
$$O = \Delta u + \omega$$
$$\Delta u = -\omega$$

रूद्धोष्म प्रक्रम पायसन गुणांक पर अधारित है।

- \bigcirc C_p (Specitic Heat and Constant Pressure): जब किसी वस्तु की विशिष्ट ऊष्मा स्थिर दाब पर निकाली जाती है तो उसे C_p कहते हैं।
- ullet C_v (Specitic Heat and Constant Volume) : जब किसी वस्तु की विशिष्ट ऊष्मा स्थिर आयतन पर निकाली जाती है तो उसे C_v कहते हैं।

Ex: (i)
$$C_P > C_v$$

(ii)
$$C_P - C_v = R$$
 मेयर गुणांक)

(iii)
$$\overline{\frac{C_P}{C_V}} = \gamma$$
 (पायसन गुणांक)

→ Antharapy (ऊष्मा ग्रहण) : किसी वस्तु के द्वारा ऊष्मा सोखने की क्रिया को Antharapy कहते हैं, इसे H द्वारा दिखाया जाता है।

$$H = \Delta u + Pv$$

u = आन्तरिक तापमान

P = Presure

V = Volume

Q. एक वस्तु की Antharapy $6 \, \text{KJ/K}$ है इस निकाय का आन्तरिक तापमान $2 \, \text{J}$ हो जाता है। यदि इसका आयतन $2 \, \text{m}^3$ हो तो इसका दाव दाब करें।

Sol.
$$M = \Delta u + Pv$$

$$6 = 2 + P \times 2$$

$$P \times 2 = 4$$

$$P=2$$

● Entropy (ऊष्मा हानि): किसी वस्तु की ऊष्मा खोने की क्रिया Entropy कहलाती है, वस्तु जितनी गतिशील होगी (Randomness) उसकी Entropy उतनी अधिक होगी और वह जल्दी ठंडा होगा।

गैस > द्रव > ठोस

Ex: बर्तन के ऊपर ढ़कन लगाने से गैस की गित कम हो जाती है जिस कारण Entropy भी कम हो जाती है और ऊष्मा हानि कम होती है।

Q. दिए गए चित्र में किसकी Entropy अधिक होगी अर्थात् पहले कौन ठंड़ा होगा।

Pdf Downloaded webs te-- www.techssra.in

Sol. (B) इसमें अणु जगह के अभाव में तेजी से घुमेंगा।

- → Degree of Freedom: कोई वस्तु स्वतंत्रता पूर्वक जितने दिशाओं में गित कर सकती है उसे Degree of Freedom कहते हैं।
- ⇒ आगे पिछे करना एक Degree of Freedom होता है।

 Ex: रस्सी या दीवार पर चढ़ना। Lift या Train की गति।
- जब कोई वस्तु आगे-पीछे के अतिरिक्त दाहिने बाएँ की गित कर ले तो उसका Degree of Freedom दो होता है।

Ex: मैदान में चल रहा व्यक्ति, बस, नाव।

Ex: वायुयान, पक्षी, पनडुब्बी, उडता पतंग।

⇒ जब कोई वस्तु आगे–पीछे तथा ऊपर–नीचे के अतिरिक्त दाहिने–बाएं भी गति करें तो उसका Degree of Freedom तीन होता है।

ताप प्रवणता (Tempreture qradiant): दो समतापीय प्लेटो को जब बहुत ही करीब रखते हैं तो उनकी ऊर्जा हानि की दर घट जाती है इस निकाय को Tempreture quadiant) कहते हैं।

ताप प्रवणता =
$$\frac{\pi \Pi V}{\zeta}$$
 में परिवर्तन

Q. दो समतापीय प्लेट के बीच की दूरी $10~{\rm cm}$ है यदि इनकी ताप प्रवणता $15~{\rm k/m}$ है तो इनके ताप में कितना परिवर्तन होगा।

Sol.
$$\operatorname{and} \operatorname{qamm} = \frac{\operatorname{and} \operatorname{h} \operatorname{h} \operatorname{tr} \operatorname{qtaff}}{\operatorname{qth}}$$

$$15 = \frac{x}{10}$$

$$x = \frac{150}{100} = 1.5k$$

⇒ स्टीफन का नियम : किसी वस्तु द्वारा ऊर्जा उत्सर्जन की दर उसके परमताप के चतुर्थघात के समानुपाती होती है।

$$\sigma \alpha T^4$$

Q. एक वस्तु का तापमान 400 k है इससे उत्सर्जित होने वाले ऊष्मा की मात्रा ज्ञात करें।

Sol.
$$T = 400k$$

$$\sigma = T^4$$

$$\sigma = (400)^4$$

