$\S 1$. Kvadratické rovnice v $\mathbb C$

A) Kvadratické rovnice s reálnými koeficienty

- Pozn: S kvadratickou rovnicí s reálnými koeficienty a reálnou neznámou jsme se seznámili ve IV. kapitole.
- Pozn: Nechť $a\in\mathbb{R}$. Binomická rovnice $z^2=-a^2; a\neq 0$ má v \mathbb{C} právě dva kořeny. $z_1=a\cdot i; z_2=-a\cdot i.$
- Def: Kvadratickou rovnicí s (komplexní) neznámou $z\in\mathbb{C}$ a reálnými koeficienty a,b,c nazýváme každou rovnici tvaru $az^2+bz+c=0$, kde $a,b,c\in\mathbb{R},a\neq0$.
- Pozn: Kvadratickou rovnici řešíme doplněním na čtverec:

$$z^{2} + \frac{b}{a}z + \frac{c}{a} = 0 \Rightarrow \left(z + \frac{b}{2a}\right)^{2} = \frac{b^{2}}{a^{2}} - \frac{ca - b^{2} - 4ac}{4a^{2}}$$
$$z = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

- V.1.1.: Nechť $az^1 + bz + z = 0$; $a \neq 0$ (*) je kvadratická rovnice s reálnými koeficienty a nechť $D = b^2 4ac$ je její diskriminant. Pak platí:
 - 1. $D>0 \Rightarrow (*)$ má 2 různé reálné kořeny $z_{1,2}=\frac{-b\pm\sqrt{D}}{2a}$
 - 2. $D=0 \Rightarrow (*)$ má 1 reálný dvonásobný kořeny $z_{1,2}=\frac{-b}{2a}$
 - 3. $D<0 \Rightarrow (*)$ má 2 komplexně sdružené kořeny $z_{1,2}=\frac{-b\pm i\sqrt{|D|}}{2a}$
- Př: Řešte c \mathbb{C} rovnice:

1.
$$z^2 + z + 1 = 0$$

 $z_{1,2} = \frac{-1 \pm i\sqrt{-3}}{2} = \frac{-1 \pm i\sqrt{3}}{2}$

2.
$$3z^2 - 2z\sqrt{3} - 1 = 0$$

 $z_{1,2} = \frac{2\sqrt{3} \pm 2\sqrt{3}}{6} = \frac{\sqrt{3} \pm \sqrt{6}}{3}$

Př: 155/6:

1.
$$x^2 - 4x + 6 = 0$$

 $x = \frac{4 \pm \sqrt{16 - 24}}{2} = 2 \pm i\sqrt{2}$

2.
$$5x^2 - 6x + 2 = 0$$

 $x = \frac{6 \pm \sqrt{36 - 40}}{10} = \frac{3 \pm i}{5}$

3.
$$x^2 - 2x + 5 = 0$$

 $x = \frac{2 \pm \sqrt{4 - 20}}{2} = 1 \pm 2i$

4.
$$2x^2 - 11x + 14 = 0$$
 $x = \frac{11 - \sqrt{121 - 112}}{2} = \frac{11 \pm 3}{4} \Rightarrow x_1 = 2; x_2 = \frac{7}{2}$

- Def: Kvadratickou rovnicí s (komplexní) neznámou $z\in\mathbb{C}$ a komplexními koeficienty a,b,c nazýváme každou rovnici tvaru $az^2+bz+c=0$, kde $a,b,c\in\mathbb{C}; a\neq 0$.
- V.1.2.: Každá kvadratická rovnice s komplexními koeficienty má v množině komplexních čísel právě dva kořeny, počítáme-li dvojnásobný kořen za dva.

Př:

1.
$$z^2 + 2iz + 1 = (z+1)^2 - i^2 + 1 = 0$$

 $t^2 = (z+i)^2 = -1$
 $t = \pm i\sqrt{2}$
 $z = -i \pm i\sqrt{2}$

2.
$$z = \frac{-2i \pm \sqrt{-8}}{2} = -i \pm i\sqrt{2} = i(-1 + \sqrt{2})$$

3.
$$z = x + iy$$

$$(x+iy)^2 + (x+iy) + 2i + 1 = x^2 + 2ixy - y^2 + 2ix - 2y + 1 = 0$$

Porovnání koeficientů:

$$i^0: x^2 - y^2 - 2y + 1 = 0$$

 $i^1: 2xy + 2x = x(y+1) = 0$

(a)
$$x = 0$$
:
 $y^2 + 2y - 1 = 0$ $y = \frac{-2 + pm\sqrt{4 + 4}}{2} = -1 \pm \sqrt{2}$
 $z = i(-1 \pm \sqrt{2})$
(b) $y = -1$: $x^2 = -2 \Rightarrow \text{nelze}$

Pozn: Pokud vyjde diskriminant D imaginární (s i), tak je potřeba vyřešit \sqrt{D} pomocí binomické rovnice, nebo III. způsobu – viz následující příklad (spojení II. a III. způsobu).

Př:
$$z^2 + 3z + 10i = 0$$

$$D = 9 - 40i$$

$$\sqrt{D} = \sqrt{9 - 40i} = x + yi$$

$$9 - 40i = x^2 + 2xyi - y^2$$

$$i^0 : 9 = x^2 - y^2$$

$$i^1 : -40 = 2xy$$

$$9 = x^2 - 400x^2$$

$$0 = x^4 - 9x^2 - 400$$

$$x^2 = \frac{9 \pm 41}{2}$$

$$x^2 = 25:$$

$$x = 5; y = -4 \Rightarrow \sqrt{D} = 5 - 4i$$

$$x = -5; y = 4 \Rightarrow \sqrt{D} = -5 + 4i$$

$$z = \frac{-3 \pm (5 - 4i)}{2}$$
$$z_1 = 1 - 2i$$
$$z_2 = -4 + 2i$$