mp.	330 <i>-</i>	Lectw	re 5	-Septer	nber 14°	th 2023
An						
Q:	fênte se	t of	state	•	A S: 6	× Z > Q
<u>.</u> .	bansi s: B	tion × E	funct > 2	ion a	- 0 - 6 fo	
	set of a	start a	= Hates	= ightarrow AeT	of Pall	ļ.
= : 4			states			
Su	prose	we	have	Collow	ring NF	- Α Ν
o, →(g	1 2 3~9i) '	2	G=}q Z=10	9, 9, 192 S	
	An vere G. : A Su o,	In NFA vere: G: fente se L: beause L: beause Suppose 0,1	In NFA N is nere: G: finte set of E: input alpha A: B × E Lo: set of start a Bo C B F: set of accept Suppose we 0,1	In NFA N is a 5 were: G: finte set of states E: input alphabet A: beausition funct A: B × E > 2 O: set of start states Go C B E: set of accept states	An NFA N is a 5-tuple were: G: finite 4et of states IF E: input alphabet A: bransition function A: B × E > 2a O: 4et of start states Go C B E: 4et of accept states Suppose we have follows O:1	Q: finite set of states DFA S: Q : input alphabet 1: bransition function A: B × E > 2a O: set of start states Qo C B =: set of accept states Suppose we now following NF 0,1

Extended francition function Δ^* for NFA

NFA $N = (Q, \Xi, \Delta, S_0, F)$

So = 7905

F= 992?

 $\Delta(q_{0},0) = \frac{1}{2}q_{0}q_{1}$ $\Delta(q_{2},0) = \phi$

Language acceptance for NFA

50 WEE

Pestivation
Hale

40 70 70 W 50 Final

ATabo

NFAN, WEZ*

w is accepted by $N \iff A^*(S_0, \omega) \cap F_{\frac{1}{2}} \phi$ clertination accept
states states

$$L(N) = \frac{1}{2} \omega \in \Sigma^* : \Delta^*(S_0, \omega) \cap F \neq \emptyset$$

$$\frac{C}{2}$$

$$\frac{C}{2} = \frac{1}{2} = \frac{1}{2}$$

Then The family of languages accepted by DFA, LDFA, is exactly the same as the family of languages accepted by NFA, LNFA:

Proof (LDFA & LDFA. (4Ketch) & LNFA & LDFA.

1 LDFX = LNFX: A DFA is an NFX which does not use non-determinism.

(2) LNFA C LDFA: Given arbitrary NFAN, create an equivalent DFA M N.X.

L(N)= LM)

NFA N

$$q \rightarrow P_{2}$$
 $q \rightarrow P_{3}$
 $q \rightarrow P_{3}$

△(q, a) = }p,, p, p33

S (195,a) = {PriPriPs}

Fermal construction (Subset construction) Given NFA N= LGN, IN, AN, SN, FN) Construct an equivalent DFA M= (GN, EV.

Nest step: L(M) = L(N), post estra vote.

Example of subset construction

N

 $\Delta(90,9,3,0) \qquad \Delta(92,0) = \emptyset$ $= 90.9.5 \qquad E = 90.5$

M via subset construction will have $2^3 = 8$ states. Unreachable states removed.

Ex: Derign a DFA that accepts

{ W € {0,15 = W end in 01}

Presult LDFX = LNFA = LREG

Emplication: To prove L it reguler

(1) Construct DFA M 1t. L(M) = L

NEW(2) Construct NFA N et. L(N) = L

Exercise Z, L \(\int \) \(\int

NFA + E

Def (Informal) An NFA + E is an NFA which allows E-knavnitions.

E-fransitions are transitions labeled with E teat allow the machine to change state without reading any letter from the input tape.

Ex (Dexter)
$$Z = 1b$$
 {

 $NFA + E$
 $N = 90 \stackrel{E}{=} 92 \stackrel{E}{=} 94 \stackrel{b}{=} 95$
 $V = 10 \stackrel{E}{=} 10 \stackrel$

b is accepted.

The acceptance conditions for NFX+E are the same as NFX.

Exercise Check L(N)= of b, b, b, b.

NFA+E

Ex Perign NFX + E which accepts

L= { b^n (boa) ma P: n, m, p IN, pit

odd}

E Och # a's

E odd # a's

a odd # a's

b. Coma C., O

Thin LNFA = LNFA+E

DLNFX = LNFX+E: NFX are NFX+E without any E-transitions

Ex Prove That the language is rug.

L= {(ab)^n (ba) m: n, m > 0}

3 (aba)^n: n>0, n + oeld {

Closure Properties of Reg languages

Ex L, L2 are regular tren

L, ULz it also regular.

M

M

M

M

L, UL2

Ex L, ° L2, L, L, NL2,...