CME 345: MODEL REDUCTION

Moment Matching

David Amsallem & Charbel Farhat Stanford University cfarhat@stanford.edu

These slides are based on the recommended textbook: A.C. Antoulas, "Approximation of Large-Scale Dynamical Systems," Advances in Design and Control, SIAM, ISBN-0-89871-529-6

Outline

- 1 Moments of a Function
- 2 Moment Matching Method
- 3 Krylov-based Moment Matching Methods
- 4 Error Bounds
- 5 Comparison with POD and BPOD in the Frequency Domain
- 6 Application

Moments of a Function

LTI High-Dimensional Systems

$$\frac{d}{dt}\mathbf{w}(t) = \mathbf{A}\mathbf{w}(t) + \mathbf{B}\mathbf{u}(t)$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{w}(t) + \mathbf{D}\mathbf{u}(t)$$

$$\mathbf{w}(0) = \mathbf{w}_0$$

- $\mathbf{w} \in \mathbb{R}^N$: vector state variables
- $\mathbf{u} \in \mathbb{R}^p$: vector of input variables, typically $p \ll N$
- $\mathbf{y} \in \mathbb{R}^q$: vector output variables, typically $q \ll N$

Moments of a Function

Petrov-Galerkin Projection-Based ROMs

■ Goal: construct a Reduced-Order Model (ROM)

$$\frac{d}{dt}\mathbf{q}(t) = \mathbf{A}_r\mathbf{q}(t) + \mathbf{B}_r\mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C}_r\mathbf{q}(t) + \mathbf{D}_r\mathbf{u}(t)$$

- $\mathbf{q} \in \mathbb{R}^k$: vector of reduced state variables
- ROM resulting from Petrov-Galerkin projection

$$\begin{array}{lcl} \mathbf{A}_r & = & (\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T \mathbf{A} \mathbf{V} \in \mathbb{R}^{k \times k} \\ \mathbf{B}_r & = & (\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T \mathbf{B} \in \mathbb{R}^{k \times p} \\ \mathbf{C}_r & = & \mathbf{C} \mathbf{V} \in \mathbb{R}^{q \times k} \\ \mathbf{D}_r & = & \mathbf{D} \in \mathbb{R}^{q \times p} \end{array}$$

Moments of a Function

☐ Transfer Functions

Let **h** denote a general matrix-valued function of time

$$\mathbf{h}: t \in \mathbb{R} \longmapsto \mathbb{R}^{q \times p}$$

Example: impulse response of an LTI system

$$\mathbf{h}(t) = \mathbf{C}e^{\mathbf{A}t}\mathbf{B} + \mathbf{D}\delta(t)$$

■ And let $\mathbf{H}(s) \in \mathbb{R}^{q \times p}$ denote its Laplace transform

$$\mathbf{H}(s) = \int_0^\infty \mathbf{h}(t)e^{-st}dt$$

Example: impulse response of an LTI system

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I}_N - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

■ H(s) is the transfer function associated with the HDM defined by (A, B, C, D) as for each input U(s), it defines the output

$$\mathbf{Y}(s) = \mathbf{H}(s)\mathbf{U}(s)$$

└ Moments of a Function

└ Moment of a Function

Let $m \in \{0, 1, \dots, \}$ The m-th **moment** of $\mathbf{h}: t \in \mathbb{R} \longmapsto \mathbb{R}^{q \times p}$ at $s_0 \in \mathbb{C}$ is

$$\eta_m(s_0) = \int_0^\infty t^m e^{-s_0 t} \mathbf{h}(t) dt$$

• Hence, the m-th **moment** of h can be written in terms of the transfer function H(s) as follows

$$\eta_m(s_0) = (-1)^m \left. \frac{d^m}{ds^m} \mathbf{H}(s) \right|_{s=s_0}$$

Example: impulse response of an LTI system

$$\eta_0(s_0) = \mathbf{H}(s_0) = \mathbf{C}(s_0 \mathbf{I}_N - \mathbf{A})^{-1} \mathbf{B} + \mathbf{D}$$
 $\eta_m(s_0) = m! \mathbf{C}(s_0 \mathbf{I}_N - \mathbf{A})^{-(m+1)} \mathbf{B}, \forall m \ge 1$

Moments of a Function

Interpretation in Terms of Taylor Series

■ Development of $\mathbf{H}(s)$ in Taylor series

$$\begin{aligned} \mathbf{H}(s) &= & \mathbf{H}(s_0) + \frac{d}{ds}\mathbf{H}(s) \bigg|_{s=s_0} \frac{(s-s_0)}{1!} + \cdots \\ &+ \frac{d^m}{ds^m}\mathbf{H}(s) \bigg|_{s=s_0} \frac{(s-s_0)^m}{m!} + \cdots \\ &= & \eta_0(s_0) - \eta_1(s_0) \frac{(s-s_0)}{1!} + \cdots + (-1)^m \eta_m(s_0) \frac{(s-s_0)^m}{m!} + \cdots \\ &= & \eta_0(s_0) + \eta_1(s_0) \frac{(s_0-s)}{1!} + \cdots + \eta_m(s_0) \frac{(s_0-s)^m}{m!} + \cdots \end{aligned}$$

Moments of a Function

└ Markov Parameters

■ The **Markov parameters** of the system defined by **h** are defined as the coefficients $\eta_m(\infty)$ of the Laurent series expansion of the transfer function at infinity

$$\mathbf{H}(s) = \eta_0(\infty) + \frac{1}{s}\eta_1(\infty) + \frac{1}{s^2}\eta_2(\infty) + \dots + \frac{1}{s^m}\eta_m(\infty) + \dots$$

Example: impulse response of an LTI system

$$\eta_0(\infty) = \mathbf{D}$$

 $\eta_m(\infty) = \mathbf{C}\mathbf{A}^{m-1}\mathbf{B}, \ \forall m \ge 1$

Proof: Use the property that for $s \to \infty$:

$$(s\mathbf{I}_N - \mathbf{A})^{-1} = \frac{1}{s}\mathbf{I}_N + \frac{1}{s^2}\mathbf{A} + \cdots + \frac{1}{s^{m+1}}\mathbf{A}^m + \cdots$$

Moment Matching Method

└General Idea

- Let $s_0 \in \mathbb{C}$, and let $\mathbf{H}(s) = \mathbf{C}(s\mathbf{I}_N \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$ represent the HDM defined by $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$
- Objective: construct a ROM (\mathbf{A}_r , \mathbf{B}_r , \mathbf{C}_r , \mathbf{D}_r) such that the first I moments $\{\eta_{r,j}(s_0)\}_{j=0}^{l-1}$ of its transfer function at s_0 , $\mathbf{H}_r = \mathbf{C}_r(s_0\mathbf{I}_r \mathbf{A}_r)^{-1}\mathbf{B}_r + \mathbf{D}_r \in \mathbb{R}^{q \times p}$, match the first I moments $\{\eta_i(s_0)\}_{i=0}^{l-1}$ of the transfer function $\mathbf{H}(s) \in \mathbb{R}^{q \times p}$ of the HDM

$$\eta_{r,j}(s_0) = \eta_j(s_0) \Leftrightarrow \mathbf{H}^{(j)}(s_0) = \mathbf{H}^{(j)}_r(s_0), \ \forall j = 0, \cdots, l-1$$

- the direct matching of the moments is in general a numerically unstable procedure
- moment matching is performed best today using an equivalent procedure based on Krylov subspaces
- For simplicity, focus is set on the Single Input-Single Output (SISO) (p = q = 1) case throughout the remainder of this chapter

$$\mathbf{B} = \mathbf{b} \in \mathbb{R}^N, \ \mathbf{C}^T = \mathbf{c}^T \in \mathbb{R}^N$$

Moment Matching Method

 $ldsymbol{oxtlesh}$ Partial Realization - Moment Matching at Infinity

Theorem

Let **V** be a right Reduced-Order Basis (ROB) such that

$$range(\mathbf{V}) = \mathcal{K}_k(\mathbf{A}, \mathbf{b}) = span\{\mathbf{b}, \mathbf{Ab}, \cdots, \mathbf{A}^{k-1}\mathbf{b}\}$$

and W be a left ROB satisfying

$$\mathbf{W}^T\mathbf{V} = \mathbf{I}$$

Then, the ROM obtained by Petrov-Galerkin projection of the HDM $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ using \mathbf{W} and \mathbf{V} satisfies

$$\eta_{r,j}(\infty) = \eta_j(\infty) \Leftrightarrow \mathbf{H}_r^{(j)}(\infty) = \mathbf{H}^{(j)}(\infty), \ \forall j = 0, \cdots, k-1$$

Moment Matching Method

Partial Realization - Moment Matching at Infinity

Definition

The order-k Krylov subspace generated by $\mathbf{A} \in \mathbb{R}^{N \times N}$ and $\mathbf{b} \in \mathbb{R}^N$ is

$$\mathcal{K}_k(\mathbf{A}, \mathbf{b}) = \operatorname{span}\{\mathbf{b}, \mathbf{A}\mathbf{b}, \cdots, \mathbf{A}^{k-1}\mathbf{b}\}$$

Remark: Constructing $\mathcal{K}_k(\mathbf{A}, \mathbf{b})$ requires only the ability to compute the action of the matrix \mathbf{A} onto a vector. In many applications, such a computation can be performed without forming explicitly the matrix \mathbf{A} .

└ Moment Matching Method

└Partial Realization - Moment Matching at Infinity

The following lemma is introduced to prove the previous theorem

Lemma

The moments of the transfer function of a ROM do not depend on the underlying left and right ROBs, but only on the subspaces associated with these ROBs

Proof of the Theorem.

From the above lemma, it follows that ${f V}$ can be chosen, for example, as follows

$$\mathbf{V} = [\mathbf{v}_1, \cdots, \mathbf{v}_i, \cdots, \mathbf{v}_k] = [\mathbf{b}, \mathbf{Ab}, \cdots, \mathbf{A}^{k-1}\mathbf{b}]$$

$$\mathbf{W}^T\mathbf{V} = \mathbf{I}_k \Rightarrow \mathbf{A}\mathbf{V}\mathbf{W}^T\mathbf{v}_i = \mathbf{A}\mathbf{V}\mathbf{e}_i = \mathbf{A}\mathbf{v}_i = \mathbf{v}_{i+1} = \mathbf{A}^i\mathbf{b}$$

$$\Rightarrow \eta_{r,0}(\infty) = \mathbf{D} = \eta_0(\infty)$$

$$\eta_{r,1}(\infty) = \mathbf{c}_r \mathbf{b}_r = \mathbf{c} \mathbf{V} \mathbf{W}^T \mathbf{b} = \mathbf{c} \mathbf{V} \mathbf{W}^T \mathbf{v}_1 = \mathbf{c} \mathbf{v} \mathbf{e}_1 = \mathbf{c} \mathbf{b} = \eta_1(\infty)$$

$$\eta_{r,j}(\infty) = \mathbf{c}_r \mathbf{A}_r^j \mathbf{b}_r = \mathbf{c} \mathbf{V} \mathbf{W}^T (\mathbf{A} \mathbf{V} \mathbf{W}^T)^j \mathbf{b} = \mathbf{c} \mathbf{V} \mathbf{W}^T (\mathbf{A} \mathbf{V} \mathbf{W}^T)^j \mathbf{v}_1$$

$$= \mathbf{c} \mathbf{V} \mathbf{W}^T \mathbf{v}_{i+1} = \mathbf{c} \mathbf{v}_{i+1} = \mathbf{c} \mathbf{v}_{i+1} = \mathbf{c} \mathbf{A}^j \mathbf{b} = \eta_i(\infty)$$

Moment Matching Method

Rational Interpolation - Multiple Moment Matching at a Single Point

Theorem

Let $s_0 \in \mathbb{C}$, **V** be a right ROB satisfying

range(V) =
$$\mathcal{K}_k ((s_0 \mathbf{I}_N - \mathbf{A})^{-1}, (s_0 \mathbf{I}_N - \mathbf{A})^{-1} \mathbf{b})$$

 = $span \{(s_0 \mathbf{I}_N - \mathbf{A})^{-1} \mathbf{b}, \dots, (s_0 \mathbf{I}_N - \mathbf{A})^{-k} \mathbf{b}\}$

and **W** be a left ROB satisfying

$$\mathbf{W}^T\mathbf{V} = \mathbf{I}$$

Then, the ROM obtained by Petrov-Galerkin projection of the HDM (A,B,C,D) using W and V satisfies

$$\eta_{r,j}(s_0) = \eta_j(s_0) \Leftrightarrow \mathbf{H}_r^{(j)}(s_0) = \mathbf{H}^{(j)}(s_0), \ \forall j = 0, \cdots, k-1$$

■ This is a more computationally expensive procedure as the computation of each Krylov basis vector requires the solution of a large-scale system of equations

Moment Matching Method

Rational Interpolation - Moment Matching at Multiple Points

Theorem

Let $s_i \in \mathbb{C}, \ i=1,\cdots,k$, **V** be a right ROB satisfying

$$\textit{range}(\textbf{V}) = \textit{span}\left\{(\textit{s}_{1}\textbf{I}_{\textit{N}} - \textbf{A})^{-1}\textbf{b}, \cdots, (\textit{s}_{\textit{k}}\textbf{I}_{\textit{N}} - \textbf{A})^{-1}\textbf{b}\right\}$$

and W be a left ROB satisfying

$$\mathbf{W}^T\mathbf{V} = \mathbf{I}$$

Then, the ROM obtained by Petrov-Galerkin projection of the HDM $(\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D})$ using \mathbf{W} and \mathbf{V} satisfies

$$\eta_{r,0}(s_i) = \eta_0(s_i) \Leftrightarrow \mathbf{H}_r(s_i) = \mathbf{H}(s_i), \ \forall i = 1, \cdots, k$$

Moment Matching Method

└ Multiple Moment Matching at Multiple Points

Theorem

Let $s_i \in \mathbb{C}, i = 1, \dots, I$, **V** be a right ROB satisfying

$$\mathit{range}(\mathbf{V}) = \bigcup_{i=1}^{l} \mathcal{K}_k \left((s_i \mathbf{I}_N - \mathbf{A})^{-1}, (s_i \mathbf{I}_N - \mathbf{A})^{-1} \mathbf{b} \right)$$

and W be a left ROB satisfying

$$\mathbf{W}^T\mathbf{V} = \mathbf{I}$$

Then, the ROM obtained by Petrov-Galerkin projection of the HDM $(\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D})$ using \mathbf{W} and \mathbf{V} satisfies

$$\eta_{r,j}(s_i) = \eta_j(s_i) \Leftrightarrow \mathbf{H}_r^{(j)}(s_i) = \mathbf{H}^{(j)}(s_i), \ \forall i = 1, \cdots, l, \ \forall j = 0, \cdots, k-1$$

Moment Matching Method

Multiple Moment Matching at Multiple Points using Two-Sided Projections

Theorem

Let $s_i \in \mathbb{C}, \ i=1,\cdots,2$ I, **V** be a right ROB satisfying

$$range(\mathbf{V}) = \bigcup_{i=1}^{l} \mathcal{K}_k \left((s_i \mathbf{I}_N - \mathbf{A})^{-1}, (s_i \mathbf{I}_N - \mathbf{A})^{-1} \mathbf{b} \right)$$

and W be a left ROB satisfying

$$\textit{range}(\mathbf{W}) = \bigcup_{i=l+1}^{2l} \mathcal{K}_k \left((s_i \mathbf{I}_N - \mathbf{A}^T)^{-1}, (s_i \mathbf{I}_N - \mathbf{A}^T)^{-1} \mathbf{c}^T \right)$$

and $\mathbf{W}^T \mathbf{V}$ is nonsingular

Then, the ROM obtained by Petrov-Galerkin projection of the HDM $(\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D})$ using \mathbf{W} and \mathbf{V} satisfies

$$\eta_{r,i}(s_i) = \eta_i(s_i) \Leftrightarrow \mathbf{H}_r^{(j)}(s_i) = \mathbf{H}_r^{(j)}(s_i), \ \forall i = 1, \cdots, 2l, \ \forall j = 0, \cdots, k-1$$

Krylov-based Moment Matching Methods

Moment Matching by Krylov Methods

- Partial realization requires the construction of $\mathcal{K}_k(\mathbf{A}, \mathbf{b})$, that is the knowledge of the action of \mathbf{A} onto vectors
- Rational interpolation requires the following Krylov space

$$\mathcal{K}_k((s_0\mathbf{I}_N-\mathbf{A})^{-1},(s_0\mathbf{I}_N-\mathbf{A})^{-1}\mathbf{b}).$$

Since the knowledge of the action of $(s_0\mathbf{I}_N - \mathbf{A})^{-1} \in \mathbb{R}^{N \times N}$ is needed, two computationally efficient approaches are possible:

- if N is small enough, an LU factorization of $s_0\mathbf{I}_N \mathbf{A}$ can be performed and $(s_0\mathbf{I}_N \mathbf{A})^{-1}\mathbf{v}$ computed by forward and backward substitution for any vector $\mathbf{v} \in \mathbb{R}^N$
- if N is too large for an LU factorization to be performed, Krylov subspace recycling techniques allowing the reuse of Krylov subspaces for multiple right-hand sides can be used

Krylov-based Moment Matching Methods

The Arnoldi Method for Partial Realization

\mathbb{R} $\mathcal{K}_k(\mathbf{A}, \mathbf{b})$ can be efficiently constructed using the Arnoldi factorization method

Input: $\mathbf{A} \in \mathbb{R}^{N \times N}$, $\mathbf{b} \in \mathbb{R}^{N}$

Output: Orthogonal basis $V_k \in \mathbb{R}^{N \times k}$ for $\mathcal{K}_k(\mathbf{A}, \mathbf{b})$

■ The following recursion is satisfied:

$$\mathbf{AV}_k = \mathbf{V}_k \mathbf{H}_k + \mathbf{f}_k \mathbf{e}_k^T$$

with $\mathbf{H}_k = \mathbf{V}_k^T \mathbf{A} \mathbf{V}_k$ an upper Hessenberg matrix, $\mathbf{V}_k^T \mathbf{V}_k = \mathbf{I}_k$ and $\mathbf{V}_k^T \mathbf{f}_k = \mathbf{0}$.

Krylov-based Moment Matching Methods

└The Arnoldi Method for Partial Realization

Algorithm:

Input:
$$\mathbf{A} \in \mathbb{R}^{N \times N}$$
, $\mathbf{b} \in \mathbb{R}^{N}$
Output: Orthogonal basis $\mathbf{V}_{k} \in \mathbb{R}^{N \times k}$ for $\mathcal{K}_{k}(\mathbf{A}, \mathbf{b})$

1:
$$\mathbf{v}_1 = \mathbf{b} / \|\mathbf{b}\|$$
;

2:
$$\mathbf{w} = \mathbf{A}\mathbf{v}_1$$
; $\alpha_1 = \mathbf{v}_1^T \mathbf{w}$;

3:
$$\mathbf{f}_1 = \mathbf{w} - \alpha_1 \mathbf{v}_1$$
;

4:
$$V_1 = [v_1]; H = [\alpha_1];$$

5: **for**
$$j = 1, \dots, k-1$$
 do

6:
$$\beta_i = ||\mathbf{f}_i||; \mathbf{v}_{i+1} = \mathbf{f}_i/\beta_i;$$

7:
$$\mathbf{V}_{j+1} = [\mathbf{V}_j, \ \mathbf{v}_{j+1}];$$

8:
$$\hat{\mathbf{H}}_{j} = \begin{bmatrix} \mathbf{H}_{j} \\ \beta_{j} \mathbf{e}_{i}^{T} \end{bmatrix}$$

9:
$$\mathbf{w} = \bar{\mathbf{Av}}_{j+1};$$

10:
$$\mathbf{h} = \mathbf{V}_{i+1}^T \mathbf{w}; \ \mathbf{f}_{j+1} = \mathbf{w} - \mathbf{V}_{j+1} \mathbf{h}$$

11:
$$\mathbf{H}_{j+1} = [\hat{\mathbf{H}}_j, \mathbf{h}];$$

Krylov-based Moment Matching Methods

The Two-Sided Lanczos Method for Partial Realization

■ $\mathcal{K}_k(\mathbf{A}, \mathbf{b})$ and $\mathcal{K}_k(\mathbf{A}^T, \mathbf{c}^T)$ can be efficiently simultaneously constructed using the Two-sided Lanczos process

Input: $\mathbf{A} \in \mathbb{R}^{N \times N}$, $\mathbf{b} \in \mathbb{R}^{N}$, $\mathbf{c}^{T} \in \mathbb{R}^{N}$ Output: Bi-orthogonal bases $\mathbf{V}_{k} \in \mathbb{R}^{N \times k}$ and $\mathbf{W}_{k} \in \mathbb{R}^{N \times k}$ for $\mathcal{K}_{k}(\mathbf{A}, \mathbf{b})$ and $\mathcal{K}_{k}(\mathbf{A}^{T}, \mathbf{c}^{T})$ respectively satisfying $\mathbf{W}_{k}^{T} \mathbf{V}_{k} = \mathbf{I}_{k}$

■ The following recursions are satisfied:

$$\mathbf{AV}_k = \mathbf{V}_k \mathbf{T}_k + \mathbf{f}_k \mathbf{e}_k^T,$$

$$\mathbf{A}^T \mathbf{W}_k = \mathbf{W}_k \mathbf{T}_k^T + \mathbf{g}_k \mathbf{e}_k^T,$$

with $\mathbf{T}_k = \mathbf{W}_k^T \mathbf{A} \mathbf{V}_k$ a tridiagonal matrix, $\mathbf{W}_k^T \mathbf{V}_k = \mathbf{I}_k$, $\mathbf{W}_k^T \mathbf{g}_k = \mathbf{0}$ and $\mathbf{V}^T \mathbf{f}_k = \mathbf{0}$.

Krylov-based Moment Matching Methods

└ The Two-Sided Lanczos Method for Partial Realization

Algorithm:

Input: $\mathbf{A} \in \mathbb{R}^{N \times N}$, $\mathbf{b} \in \mathbb{R}^{N}$, $\mathbf{c}^{T} \in \mathbb{R}^{N}$ **Output:** Bi-orthogonal bases $\mathbf{V}_{k} \in \mathbb{R}^{N \times k}$ and $\mathbf{W}_{k} \in \mathbb{R}^{N \times k}$ for $\mathcal{K}_{k}(\mathbf{A}, \mathbf{b})$ and $\mathcal{K}_{k}(\mathbf{A}^{T}, \mathbf{c}^{T})$ respectively satisfying $\mathbf{W}_{k}^{T} \mathbf{V}_{k} = \mathbf{I}_{k}$

1:
$$\beta_1 = \sqrt{|\mathbf{b}^T \mathbf{c}^T|}$$
, $\gamma_1 = \operatorname{sign}(\mathbf{b}^T \mathbf{c}^T)\beta_1$
2: $\mathbf{v}_1 = \mathbf{b}/\beta_1$, $\mathbf{w}_1 = \mathbf{c}^T/\gamma_1$
3: for $j = 1, \cdots, k-1$ do
4: $\alpha_j = \mathbf{w}_j^T \mathbf{A} \mathbf{v}_j$;
5: $\mathbf{r}_j = \mathbf{A} \mathbf{v}_j - \alpha_j \mathbf{v}_j - \gamma_j \mathbf{v}_{j-1}$;
6: $\mathbf{q}_j = \mathbf{A}^T \mathbf{w}_j - \alpha_j \mathbf{w}_j - \beta_j \mathbf{w}_{j-1}$;
7: $\beta_{j+1} = \sqrt{|\mathbf{r}_j^T \mathbf{q}_j|}$, $\gamma_{j+1} = \operatorname{sign}(\mathbf{r}_j^T \mathbf{q}_j)\beta_{j+1}$
8: $\mathbf{v}_{j+1} = \mathbf{r}_j/\beta_{j+1}$;
9: $\mathbf{w}_{j+1} = \mathbf{q}_j/\gamma_{j+1}$;
10: end for

11: $V_k = [v_1, \dots, v_k], W_k = [w_1, \dots, w_k]$

Error Bounds

 $\vdash \mathcal{H}_2$ Norm

Definition

The \mathcal{H}_2 norm of a continuous dynamical system $\mathcal{S}=(\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D})$ is the \mathcal{L}_2 norm of its associated impulse response $\mathbf{h}(\cdot)$.

When **A** is stable and D = 0, the norm is bounded and

$$\|S\|_{\mathcal{H}_2} = \left(\int_0^\infty \operatorname{trace}\left(\mathbf{h}^T(t)\mathbf{h}(t)\right)dt\right)^{1/2}$$

• Using Parseval's theorem, one can obtain the expression in the frequency domain using the transfer function $\mathbf{H}(\cdot)$

$$\|S\|_{\mathcal{H}_2} = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \operatorname{trace}\left(\mathbf{H}^*(-i\omega)\mathbf{H}(i\omega)\right) d\omega\right)^{1/2}$$

• One can also derive the expression of $||S||_{\mathcal{H}_2}$ in terms of the reachability and observability gramians \mathcal{P} and \mathcal{Q} .

$$\|S\|_{\mathcal{H}_2} = \sqrt{\operatorname{trace}(\mathbf{B}^T \mathcal{Q} \mathbf{B})} = \sqrt{\operatorname{trace}(\mathbf{C} \mathcal{P} \mathbf{C}^T)}$$

Error Bounds

$\sqcup \mathcal{H}_2$ Norm-Based Error Bounds

In the SISO case, the transfer function is a rational function. Assuming for simplicity that it has distinct poles λ_i , $i=1,\cdots,N$ associated with the residues h_i , one can write it as

$$\mathbf{H}(s) = \sum_{i=1}^{N} \frac{h_i}{s - \lambda_i}$$

One can then establish the following theorem:

Theorem

Let $\mathbf{H}_r(\cdot)$ be the transfer function associated with the system \mathcal{S}_r resulting from moment matching using the Lanczos procedure of the underlying system \mathcal{S} . Denoting by $h_{r,i}$ and $\lambda_{r,i}$, $i=1,\cdots,k$ the respective residues and poles of $\mathbf{H}_r(\cdot)$, the following result holds:

$$\|\mathcal{S}-\mathcal{S}_r\|_{\mathcal{H}_2}^2 = \sum_{i=1}^N h_i \left(\mathbf{H}(-\lambda_i^*) - \mathbf{H}_r(-\lambda_i^*)\right) + \sum_{i=1}^k h_{r,i} \left(\mathbf{H}_r(-\lambda_{r,i}) - \mathbf{H}(-\lambda_{r,i})\right)$$

Error Bounds

∟_{H2}-Optimal Model Reduction

• One would like to build ROBs (\mathbf{V}, \mathbf{W}) of a given dimension k such that the corresponding reduced system S_r is \mathcal{H}_2 -optimal, i.e. minimizes the following problem

$$\min_{\mathcal{S}_r, \; \mathsf{rank}(\mathbf{V}) = \mathsf{rank}(\mathbf{W}) = k} \|\mathcal{S} - \mathcal{S}_r\|_{\mathcal{H}_2}$$

• One can show that a **necessary condition** is that the ROM matches the first two moments of the HDM at the points $-\lambda_{r,i}$, mirror images of the poles $\lambda_{r,i}$ of the reduced transfer function $\mathbf{H}_r(\cdot)$

$$\mathbf{H}_r(-\lambda_{r,i}) = \mathbf{H}(-\lambda_{r,i}), \ \mathbf{H}_r^{(1)}(-\lambda_{r,i}) = \mathbf{H}^{(1)}(-\lambda_{r,i}), \ s = 1, \cdots, k$$

- Unfortunately moment matching ensures that the moments of the transfer function are matched at $\lambda_{r,i}$, not $-\lambda_{r,i}$
- The IRKA (Iterative Rational Krylov Approximation) procedure is an iterative procedure to conciliate these two contradicting goals

- Comparison with POD and BPOD in the Frequency Domain
- └POD in the Frequency Domain and Moment Matching
 - POD in the frequency domain (LTI systems):

$$\begin{split} \mathsf{range}(\mathbf{V}) &= \mathsf{span}\{\mathcal{X}(\omega_1), \cdots, \mathcal{X}(\omega_k)\} \\ &= \mathsf{span}\left\{(j\omega_1\mathbf{I}_N - \mathbf{A})^{-1}\mathbf{b}, \cdots, (j\omega_k\mathbf{I}_N - \mathbf{A})^{-1}\mathbf{b}\right\} \end{split}$$

with $\omega_1, \cdots, \omega_k \in \mathbb{R}^+$

Rational interpolation with first moment matching at multiple points

$$range(\mathbf{V}) = span \left\{ (s_1 \mathbf{I}_N - \mathbf{A})^{-1} \mathbf{b}, \cdots, (s_k \mathbf{I}_N - \mathbf{A})^{-1} \mathbf{b} \right\}$$

with $s_1, \cdots, s_k \in \mathbb{C}$

- Question: would it be possible to extend the two-sided moment matching approach to POD?
- Answer: yes, this is the Balanced POD method

- CME 345: MODEL REDUCTION Moment Matching
- Comparison with POD and BPOD in the Frequency Domain
 - └The Balanced POD Method
 - The Balanced POD method generates snapshots for the dual system in addition to the POD snapshots:

$$\mathbf{S} = \left[(j\omega_1 \mathbf{I}_N - \mathbf{A})^{-1} \mathbf{b}, \cdots, (j\omega_k \mathbf{I}_N - \mathbf{A})^{-1} \mathbf{b} \right]$$

$$\mathbf{S}_{\text{dual}} = \left[(-j\omega_1 \mathbf{I}_N - \mathbf{A}^T)^{-1} \mathbf{c}^T, \cdots, (-j\omega_k \mathbf{I}_N - \mathbf{A}^T)^{-1} \mathbf{c}^T \right]$$

Right and left reduced-order bases can then be computed as

$$\mathbf{S}_{\mathsf{dual}}^{\mathsf{T}}\mathbf{S} = \mathbf{U}\mathbf{\Sigma}\mathbf{Z}^{\mathsf{T}} \; (\mathsf{SVD})$$
 $\mathbf{V} = \mathbf{S}\mathbf{Z}_{k}\mathbf{\Sigma}_{k}^{-1/2}$
 $\mathbf{W} = \mathbf{S}_{\mathsf{dual}}\mathbf{U}_{k}\mathbf{\Sigma}_{k}^{-1/2}$

where a subscript k is relative to the first k components of the singular value decomposition

■ If no truncation occurs, this is equivalent to two-sided moment matching at $s_i \in \{\omega_1, \dots, \omega_k\}$.

- -Application
 - └-Frequency Sweeps
 - Structural vibrations and interior noise/acoustics

Interior Helmholtz

Scattering (acoustics and electromagnetics)

Exterior Helmholtz

Electromagnetics (Maxwell) Aeroacoustics (Helmholtz)

△ Application

Frequency Response Problems

Structural dynamics

$$\mathbf{w}_s(\omega) = \left(\mathbf{K}_s + i\omega \mathbf{D}_s - \omega^2 \mathbf{M}_s\right)^{-1} \mathbf{f}_s(\omega)$$

Rayleigh damping $\mathbf{D}_s = \alpha \mathbf{K}_s + \beta \mathbf{M}_s$

Acoustics

$$\mathbf{w}_f(\omega) = \left(\mathbf{K}_f - \frac{\omega^2}{c_f^2} \mathbf{M}_f + \mathbf{S}_a(\omega)\right)^{-1} \mathbf{f}_f(\omega)$$

Structural (or vibro)-acoustics

$$\mathbf{w}_{\nu}(\omega) = \left(\mathbf{K}_{\nu} - \omega^{2} \mathbf{M}_{\nu} + \mathbf{S}_{\nu}(\omega)\right)^{-1} \mathbf{f}_{\nu}(\omega)$$

$$= \left(\left[\begin{array}{cc} \mathbf{K_s} & \mathbf{C}^{\mathsf{T}} \\ \mathbf{0} & \frac{1}{\rho_f} \mathbf{K}_f \end{array} \right] - \omega^2 \left[\begin{array}{cc} \mathbf{M_s} & \mathbf{0} \\ -\mathbf{C} & \frac{1}{\rho_f c_f^2} \mathbf{M}_f \end{array} \right] + \left[\begin{array}{cc} i\omega \mathbf{D_s} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array} \right] \right)^{-1} \left[\begin{array}{cc} \mathbf{f_s}(\omega) \\ \frac{1}{\rho_f} \mathbf{f_f}(\omega) \end{array} \right]$$

△Application

Frequency Sweeps

■ Frequency response function $\mathbf{w} = \mathbf{w}(\omega) \Longrightarrow$ problem with multiple left hand sides - very CPU intensive (1,000s of frequencies)

△ Application

Interpolatory Reduced-Order Model by Krylov-based Moment Matching

lacktriangle Approximate $lackwidth(\omega)$ by the Galerkin projection $lackwidth(\omega)$ by the Galerkin projection $lackwidth(\omega)$

$$\tilde{\mathbf{w}}(\omega) = \mathbf{V} \underbrace{\left(\mathbf{V}^H \mathbf{K} \mathbf{V} + i \omega \mathbf{V}^H \mathbf{D} \mathbf{V} - \omega^2 \mathbf{V}^H \mathbf{M} \mathbf{V}\right)^{-1}}_{\mathbf{ROM}} \mathbf{V}^H \mathbf{f}$$

- If the columns of V span the solution and its derivatives at some frequency, the projection is interpolatory
- Two ways to compute the vectors in V
 - lacksquare recursive differentiation with respect to ω at the interpolating frequency
 - construction of a Krylov space that spans the derivatives (special cases)

$$span \Big\{ (\mathbf{K} - \omega^2 \mathbf{M} + i\omega \mathbf{D})^{-1} \mathbf{f}, \\ (\mathbf{K} - \omega^2 \mathbf{M} + i\omega \mathbf{D})^{-1} \mathbf{M} (\mathbf{K} - \omega^2 \mathbf{M} + i\omega \mathbf{D})^{-1} \mathbf{f}, \\ \dots$$

$$[(\mathbf{K} - \omega^2 \mathbf{M} + i\omega \mathbf{D})^{-1} \mathbf{M}]^{n-1} (\mathbf{K} - \omega^2 \mathbf{M} + i\omega \mathbf{D})^{-1} \mathbf{f}$$

- **△**Application
 - **└**Structural-Acoustic Vibrations

- Frequency sweep analysis of a thick spherical steel shell submerged in water and excited by a point load on its inner surface
- Finite element model using isoparametric cubic elements incorporates with roughly N = 1,200,000 dofs

L Application

└Structural-Acoustic Vibrations

■ Frequency sweep analysis of a submerged shell

reference

Frequency [Hz]

-Application

-Structural-Acoustic Vibrations

- reference
- interpolating frequencies: 1,430Hz, 2,860Hz, and 4,290Hz

-Application

└Structural-Acoustic Vibrations

- reference
- interpolating frequencies: 1,430Hz, 2,860Hz, and 4,290Hz
- 3-points with 32+32+32 vectors
- sampling every 12Hz

△Application

└ Parameter Selection

- How to choose
 - number of interpolating frequencies
 - location of interpolating frequencies
 - number of derivatives (Krylov vectors)
- Error indicator: relative residual

$$\frac{\|(\mathbf{K} - \omega^2 \mathbf{M} + i\omega \mathbf{D})\tilde{\mathbf{w}}(\omega) - \mathbf{f}\|}{\|\mathbf{f}\|}$$

where

$$\tilde{\mathbf{w}}(\omega) = \mathbf{V} \left(\mathbf{V}^H \mathbf{K} \mathbf{V} + i \omega \mathbf{V}^H \mathbf{D} \mathbf{V} - \omega^2 \mathbf{V}^H \mathbf{M} \mathbf{V} \right)^{-1} \mathbf{V}^H \mathbf{f}$$

△ Application

LAutomatic Residual-Based Adaptivity by a Greedy Approach

- Specify the number of derivatives per frequency and an accuracy threshold
- 2 Use two interpolations frequencies at the extremities of the frequency band of interest and construct the ROB
- 3 Evaluate the residual at some *small* set of the frequencies in between
- 4 Add a frequency where the residual is largest and update the projection
- **Solution** Repeat until the residual is below a threshold at all sampling points
- **6** Check at the end the residual at all sampled (or user-specified) frequencies

L Application

Automatic Residual-Based Adaptivity by a Greedy Approach

- ROM with 16 vectors/frequency
- sampling every $\Delta f = 12 \text{Hz}$
- tolerance = 5e-4interpolating
- wavenumbers

△ Application

Automatic Residual-Based Adaptivity by a Greedy Approach

- ROM with 16 vectors/frequency
- sampling every $\Delta f = 12 \text{Hz}$
- tolerance = 5e-4interpolating
- wavenumbers
- sampled residual (at interpolating wavenumbers) *

△ Application

LAutomatic Residual-Based Adaptivity by a Greedy Approach

- ROM with 16 vectors/frequency
- sampling every $\Delta f = 12 \text{Hz}$
- tolerance = 5e-4
- interpolating wavenumbers
- sampled residual (at interpolating wavenumbers) *

△ Application

Automatic Residual-Based Adaptivity by a Greedy Approach

- ROM with 16 vectors/frequency
- sampling every $\Delta f = 12$ Hz \blacksquare tolerance = 5e-4
- interpolating
- wavenumbers
- sampled residual (at interpolating wavenumbers) *

△ Application

LAutomatic Residual-Based Adaptivity by a Greedy Approach

- ROM with 16 vectors/frequency
- lacktriangle sampling every $\Delta f = 12 ext{Hz}$
- tolerance = 5e-4interpolating
 - wavenumbers
- sampled residual (at interpolating wavenumbers) *

△ Application

LAutomatic Residual-Based Adaptivity by a Greedy Approach

- ROM with 16 vectors/frequency
- lacktriangle sampling every $\Delta f = 12 ext{Hz}$
- tolerance = 5e-4
- interpolating wavenumbers
- sampled residual (at interpolating wavenumbers) *

△ Application

LAutomatic Residual-Based Adaptivity by a Greedy Approach

- ROM with 16 vectors/frequency
- sampling every $\Delta f = 12 \text{Hz}$
- tolerance = 5e-4interpolating
- wavenumbers
- sampled residual (at interpolating wavenumbers) *

△ Application

Automatic Residual-Based Adaptivity by a Greedy Approach

- ROM with 16 vectors/frequency
- sampling every $\Delta f = 12 \text{Hz}$
- tolerance = 5e-4
- interpolating wavenumbers
- sampled residual (at interpolating wavenumbers) *

△ Application

LAutomatic Residual-Based Adaptivity by a Greedy Approach

- ROM with 16 vectors/frequency
- sampling every $\Delta f = 12 \text{Hz}$
- tolerance = 5e-4
- interpolating wavenumbers
- sampled residual (at interpolating wavenumbers) *
 - final residual

△Application

LAutomatic Residual-Based Adaptivity by a Greedy Approach

- ROM with 16 vectors/frequency
- sampling every $\Delta f = 12 \text{Hz}$
- tolerance = 5e-4
- interpolating wavenumbers
- sampled residual (at interpolating wavenumbers) *
 - final residual
 - final error