SAPIENZA, UNIVERSITY OF ROME COURSE OF APPLIED COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (ACSAI) 3RD YEAR, 2ND SEMESTER

Analisi e Calcolo Numerico

NOTES BY LEONARDO BIASON COURSE TAUGHT BY PROF. DOMENICO VITULANO

About these notes

Those notes were made during my three years of university at Sapienza, and **do not** replace any professor, they can be an help though when having to remember some particular details. If you are considering of using *only* these notes to study, then **don't do it**. Buy a book, borrow one from a library, whatever you prefer: these notes won't be enough.

License

The decision of licensing this work was taken since these notes come from university classes, which are protected, in turn, by the Italian Copyright Law and the University's Policy (thus Sapienza Policy). By licensing these works I'm not claiming as mine the materials that are used, but rather the creative input and the work of assembling everything into one file. All the materials used will be listed here below, as well as the names of the professors (and their contact emails) that held the courses The notes are freely readable and can be shared, but can't be modified. If you find an error, then feel free to contact me via the socials listed in my website. If you want to share them, remember to credit me and remember to not obscure the footer of these notes.

Bibliography & References

[1] S. C. Chapra, R. P. Canale. (2015) Numerical Methods for engineers (Seventh edition), McGraw Hill

The "Analisi e Calcolo Numerico" course was taught in the Spring semester in 2025 by prof. Domenico Vitulano (domenico.vitulano@uniroma1.it)

I hope that this introductory chapter was helpful. Please reach out to me if you ever feel like. You can find my contacts on my website. Good luck! Leonardo Biason

 \rightarrow leonardo@biason.org

INDICE

CHAPTER 1	► INTRODUZIONE AL CALCOLO NUMERICO	PAGE 1	
1.1	Errori di approssimazione	2	
1.2	La rappresentazione IEEE 754	4	
1.3	Algoritmi e Condizionamento dei problemi	8	
	► MATLAB	PAGE 11	
CHAPTER 3	► SISTEMI DI EQUAZIONI NON LINEARI	PAGE 13	
3.1	Metodo di Bisezione (o Dicotomico)	15	
	3.1.1 Ordine di corvengenza e Criteri di arresto	17	

CAPITOLO

Introduzione al calcolo numerico

Grazie al costante sviluppo dei computers negli scorsi decenni, la comunità scientifica ha avuto modo di usufruire di strumenti di calcolo sempre più precisi e complessi, necessari per risolvere alcuni problemi di vario tipo. Questo sviluppo ha visto anche un cospicuo interesse verso i metodi di calcolo numerico, che permettono di risolvere in modo non-analitico problemi specifici che non sarebbero, altrimenti, risolvibili. Infatti, seppur non esista sempre una soluzione analitica, **esiste sempre una soluzione numerica** per un modello matematico **ben posto** e **condizionato**, che assuma tuttavia certe assunzioni del corrispondente modello fisico.

La realtà infatti non è sempre modellabile attraverso semplici formule fisiche: a volte ci sono parecchie variabili da tenere in conto quando si cerca di risolvere un problema, e non è sempre plausibile considerare tutte queste variabili assieme, soprattutto se il problema va risolto senza l'assistenza di un calcolatore. Consideriamo il seguente esempio: un giocatore di golf colpisce una pallina con una certa velocità U, e noi vogliamo sapere per quale angolo α la distanza che verrebbe percorsa dalla pallina da golf sarebbe massima prima che quest'ultima tocchi terra.

Grazie alla seconda legge di Newton, possiamo calcolare la distanza percorsa dalla pallina, e se trascurassimo la resistenza dell'aria sarebbe abbastanza semplice trovare la soluzione analitica. Tuttavia, considerando questa resistenza, le equazioni del moto si complicano notevolmente, e determinare la soluzione analitica diventa ora impossibile. Tuttavia, la soluzione numerica rimane calcolabile attraverso l'impiego di metodi numerici adatti.

È comunque importante considerare anche il tipo di modello utilizzato: in base al modello matematico di partenza e al metodo utilizzato, si possono ottenere risultati diversi. L'importante è saper scegliere il metodo giusto e l'approssimazione migliore del modello.

Per il calcolo numerico, la risoluzione di un problema avviene attraverso i seguenti steps:

- formulare un **modello matematico** in base al problema dato, che diventi uno schema per definire il metodo numerico e l'algoritmo di soluzione;
- scegliere un **metodo numerico** che aiuti nella risoluzione del problema;
- definire un **algoritmo** che porti alla soluzione desiderata;
- analizzare la **soluzione numerica** e interpretarla, capendo se quest'ultima sia una valida soluzione o meno. Si dice che una soluzione numerica sia **accettabile** se e solo se sia possibile **stimare gli errori** che accompagnano la soluzione stessa.

Errori di approssimazione

Quando si calcola una soluzione numerica, ci sono varie, possibili fonti di errori che possono condizionare il risultato finale. È possibile avere errori di **misura** (dati dalla precisione dello strumento), **inerenti** (creati da un'eccessiva semplificazione del modello reale), di **troncamento** (generati da una discretizzazione del risultato, generalmente presenti quando si usano metodi numerici che richiedono convergenza), e di **arrotondamento** (creati dalla macchina che performa i calcoli, in quando la precisione è sempre limitata).

Ogni computer dispone di un sistema numerico piuttosto primitivo: questo infatti dispone di un sistema **finito** di numeri, la cui lunghezza è anch'essa **finita**. Se normalmente, in campi analitici, siamo abituati a pensare con un insieme di numeri infinito (come quello dei numeri reali, \mathbb{R}), con i computer, quando si performano calcoli di analisi numerica, si considera un insieme ristretto, detto dei **numeri macchina** \mathbb{F} . Consideriamo ad esempio alcune delle costanti più famose nel mondo matematico: π , e e $\sqrt{2}$. Noi sappiamo che questi numeri sono irrazionali, e che si espandono all'infinito. Proviamo a chiedere a una macchina di dirci quali sono questi numeri. Eseguendo il seguente script di Python, otterremo il seguente risultato:

Noi sappiamo che in realtà questi numeri si estendono molto più in profondità di quello che ci ha ritornato Python. Infatti:

- $\pi = 3,1415926535897932384626433...$;
- e = 2,71828182845904523536...;
- $\sqrt{2} = 1,4142135623730950488...$

Qua notiamo già uno dei primi errori che si incontra quando si usa un calcolatore: i numeri sono **arrotondati** ad una certa cifra. L'arrotondamento genera spesso qualche tipo di errore, ma è necessario che i numeri subiscano una procedura di arrotondamento prima di poter essere usati da un calcolatore, poiché altrimenti non entrerebbero nella memoria di quest'ultimo, che ricordiamo essere limitata.

Errore di arrotondamento

Definitiamo l'errore di arrotondamento come la differenza tra il numero reale $x \in \mathbb{R}$ e il numero macchina $m \in \mathbb{F}$ corrispondente:

 $e_{arr} = x - m$

Se un calcolatore approssima tutti i numeri alla *D*esima cifra decimale, allora diciamo che l'errore di arrotondamento è compreso nell'**intervallo** $[-0,5\cdot 10^{-D}, +0,5\cdot 10^{-D}]$.

Riguardo lo scopo di queste note: MATLAB verrà usato durante il corso per implementare certi metodi numerici. Tale linguaggio di programmazione lavora con 15 cifre decimali significative. Fino a quando non verrà introdotto MATLAB tuttavia, verrà usato Python, che ne usa fino a 17 (anche se negli esempi precedenti π e e hanno usato solo 15 cifre, probabilmente a causa del pacchetto numpy).

Consideriamo un esempio per comprendere l'importanza degli errori di arrotondamento:

• 1.1.1

Si considerino le due funzioni seguenti, che sono algebricamente equivalenti:

$$q_1(x) = (x-1)^7$$
 $q_2(x) = x^7 - 7x^6 + 21x^5 - 35x^4 + 35x^3 - 21x^2 + 7x - 1$

Vogliamo calcolare il valore numerico di $q_1(x)$ e $q_2(x)$ con due valori di x, ovverosia 1 e 1,0001, e confrontare il loro valore esatto con l'errore di arrotondamento. Vogliamo inoltre usare una macchina che lavori con 15 cifre significative. Usando il seguente script in Python, possiamo ottenere i nostri risultati:

```
ApproxExample.py
1 from math import pow
3 \text{ def q1(x)} \rightarrow \text{float:}
      return (x - 1) ** 7
6 \text{ def } q2(x) \rightarrow \text{float}:
      return pow(x, 7) - 7 * pow(x, 6) + 21 * pow(x, 5) \
           -35 * pow(x, 4) + 35 * pow(x, 3) - 21 * pow(x, 2) + 7 * x - 1
10 def rounding error(real, machine) -> float:
      return float(real) - float(machine)
12
13 # La lista contiene tuple del tipo (x, valore reale)
14 for i, expect in [(1, 0), (1.0001, 10**(-28))]:
      # Approssimazione del numero alla 10a cifra decimale
      res1, res2 = \{0:.10g\}".format(q1(i)), \{0:.10g\}".format(q2(i))
      err1, err2 = rounding error(expect, res1), rounding error(expect,
      print(f"With x = {i}, expect {expect} \nQ1 = {res1} | E1 = {err1} \
      nQ2 = {res2} \mid E2 = {err2} \setminus n''
     Out[1]: With x = 1, expect 0
              Q1 = 0 \mid E1 = 0.0
              Q2 = 0 | E2 = 0.0
              With x = 1.0001, expect 1e-28
              Q1 = 1e-28 \mid E1 = 0.0
              Q2 = 1.776356839e-15 \mid E2 = -1.7763568389999e-15
```

Come possiamo notare dall'output dello script, con x=1 non c'è alcuna differenza tra $q_1(x)$ e $q_2(x)$, ma con x=1,0001 iniziano ad esserci le prime differenze. Infatti, nel secondo caso abbiamo un errore di arrotondamento di circa $-1,78\cdot 10^{-15}$. Questo semplice esempio dimostra come due quantità che sono algebricamente uguali possono in realtà portare a due risultati numerici completamente diversi.

Questo comportamento può essere inoltre osservato attraverso il seguente grafico:

Notiamo infatti che, mentre $q_1(x)$ ha un comportamento più lineare, $q_2(x)$ è molto più scabro, e questo accade proprio a causa degli errori di approssimazione.

SEZIONE 1.2

La rappresentazione IEEE 754

Ogni numero reale x può essere espresso come una sequenza di infinite cifre, e tale sequenza dipende dalla **base di rappresentazione** β . Di norma, la base con cui noi esseri umani facciamo calcoli è $\beta = 10$.

Qualsiasi cifra può essere espressa in qualsiasi base. Per farlo, faremo un esempio con π . Il numero infatti può essere scritto come segue:

$$\pi = 3,14159... = \frac{3}{10^0} + \frac{1}{10^{-1}} + \frac{4}{10^{-2}} + \frac{1}{10^{-3}} + \frac{5}{10^{-4}} + \frac{9}{10^{-5}} + ...$$

L'idea è che per esprimere un qualsiasi numero x in una base β , possiamo scrivere il numero come

$$x = x_m \cdot \beta^m + x_{m-1} \cdot \beta^{m-1} + \dots + x_1 \cdot \beta^1 + x_0 \cdot \beta^0 + x_{-1} \cdot \beta^{-1} + \dots + x_{-m} \cdot \beta^{-m}$$

dove
$$0 \le x_i \le \beta - 1$$
, $\forall i \in [m, -m]$.

Sappiamo che i computer funzionano in codice binario, quindi non possono interpretare i numeri in base decimale come facciamo noi umani. Per poter far sì che un computer riconosca un numero, questo va prima convertito in base 2. Ci sono vari modi per rappresentare un numero in binario: che sia con o senza segno, a virgola mobile o meno...

C'è tuttavia uno standard che i computer adottano, che è stato sviluppato dall'IEEE, che viene usato per rappresentare tutti i numeri in binario, che abbiano un segno o che siano a virgola mobile: l'**IEEE 754**.

Per questo standard, ogni numero può essere espresso nella seguente rappresentazione:

$$x = \underbrace{\pm}_{\text{Segno}} \underbrace{(1 + a_{-1} \cdot 2^{-1} + a_{-2} \cdot 2^{-2} + a_{-3} \cdot 2^{-3} + \dots + a_{-m} \cdot 2^{-m})}_{\text{Mantissa normalizzata}} \cdot \underbrace{2^{e}}_{\text{Esponente}}$$

dove il segno viene rappresentato con 1 bit, la mantissa con m bits e l'esponente con n bits. Generalmente i numeri in IEEE 754 si possono esprimere con 16 (precisione dimezzata), 32 (singola precisione) o 64 bits (precisione doppia). Segue una tabella che segna quanti bits vengono assegnati ad ogni formato:

Formato	Segno	Esponente	Mantissa	Bias	Numero totale di bits
Precisione mezza	1	5	10	15	16
Singola precisione	1	8	23	127	32
Doppia precisione	1	11	52	1023	64

Dato che i computer hanno una precisione finita, limitata a *p* cifre, è chiaramente impossibile per questi rappresentare numeri che abbiano più di *p* cifre. Per poter rappresentare numeri con più cifre, è necessario **arrotondare** il numero. L'arrotondamento può avvenire in due modi: o tramite **troncamento** o tramite **arrotondamento simmetrico**.

Troncamento e Arrotondamento simmetrico

Per **troncamento** si definisce quell'operazione per cui un numero a n cifre viene rappresentato come un numero a p cifre, dove le ultime n-p cifre sono uguali a 0:

$$x^* = \operatorname{tronc}(x) \implies x_{-k} = 0, \forall k \ge p$$

Per **arrotondamento simmetrico** si definisce un'operazione di troncamento su un numero x a cui può essere aggiunta un'unità alla cifra x_{-p+1} se la cifra x_{-p} è maggiore o uguale di $\frac{\beta}{2}$:

$$x^* = \operatorname{tronc}(x+0, 5 \cdot \beta^{-p+1} \cdot \beta^e) \implies \begin{cases} x_{-p+1} = x_{-p+1} & \text{se } x_{-p} < \frac{\beta}{2} \\ x_{-p+1} = x_{-p+1} + 1 & \text{se } x_{-p} \ge \frac{\beta}{2} \end{cases}$$

Arrotondare comporta sempre la presenza di un errore, e tali errori **non possono essere trascurati**, in quanto possono potenzialmente alterare il risultato finale in modi disastrosi. Un esempio è il caso del processore Intel Pentium (1994), che portava a risultati imperfetti a causa dell'arrotondamento dei numeri alla quinta cifra decimale.

Un altro esempio di errore dato dall'arrotondamento è la **cancellazione numerica**. Per spiegare meglio questo fenomeno, consideriamo il seguente esempio:

• 1.2.1

Considerando un'equazione di secondo grado del tipo $ax^2 + bx + c = 0$, vogliamo calcolare le radici dell'equazione dati i valori di a, b e c. Vogliamo calcolare x_1 e x_2 sia attraverso la formula classica delle radici (quindi $x = \frac{-b \pm \sqrt{\Delta}}{2a}$), sia attraverso una forma più compatta:

$$x_1 = \frac{2c}{-b + \sqrt{\Delta}} \qquad x_2 = \frac{c}{ax_1}$$

Per farlo, consideriamo il seguente script di Python, che con la funzione solve_f() calcola le due radici con la formula classica e che con la funzione solve_f_alt() calcola invece le due radici con le formule alternative sopra menzionate:

```
NumericalAbsorption.py
1 def solve_f(a, b, c) -> tuple[float, float]:
     delta = pow(b, 2) - 4 * a * c
     x1, x2 = (-b - sqrt(delta)) / (2 * a), (-b + sqrt(delta)) / (2 * a)
     return (x1, x2)
6 def solve_f_alt(a, b, c) -> tuple[float, float]:
     delta = pow(b, 2) - 4 * a * c
     x1 = (2 * c) / (-b + sqrt(delta))
     x2 = c / (a * x1)
     return (x1, x2)
12 def f(a, b, c, x) -> float:
     return a * pow(x, 2) + b * x + c
14
16 \text{ inputs} = [[1, 4, 3], [1, -206.5, 0.01021]]
17 for a, b, c in inputs:
     x1, x2 = solve f(a, b, c)
     print(f''With a = {a}, b = {b}, c = {c}\n x1 = {x1}\n x2 = {x2}\n
       f({x1}) = {f(a, b, c, x1)} \ f({x2}) = {f(a, b, c, x2)} \")
     x1, x2 = solve_f_alt(a, b, c)
     b, c, x1)\n f(\{x2\}) = \{f(a, b, c, x2)\}\n\n'')
```

Raccogliamo gli output della prima parte del codice nella seguente tabella, in cui mostriamo i risultati ottenuti con la funzione solve_f():

a, b, c	\mathbf{x}_1	\mathbf{x}_2	f (x ₁)	$f(x_2)$
1, 3, 4	-3	-1	0	0
$ \begin{array}{c} 1, -206, 5, \\ 0, 01021 \end{array} $	$4,944\cdot 10^{-5}$	206,499	$5,454\cdot 10^{-13}$	$-3,702\cdot 10^{-13}$

In questa seconda tabella invece, raccogliamo i risultati ottenuti grazie alla funzione solve f alt():

a , b , c	\mathbf{x}_1	X 2	$f(x_1)$	$\mathbf{f}(\mathbf{x_2})$
1, 3, 4	-3	-1	0	0
$ \begin{array}{c c} 1, -206, 5, \\ 0, 01021 \end{array} $	$4,944\cdot 10^{-5}$	206,499	$1,734\cdot 10^{-18} \simeq 0_m$	$-3,702\cdot 10^{-13}$

Sebbene per il primo set di inputs (quindi con a=1, b=3 e c=4) i risultati siano gli stessi, con il secondo set i risultati iniziano ad essere diversi da quel che ci aspetteremmo. Infatti, il risultato di $f(x_1)$ e $f(x_2)$ dovrebbe essere uguale a 0, eppure è sempre un numero abbastanza vicino allo zero (nella seconda tabella, il risultato di $f(x_1)$ per il secondo set di inputs è infatti segnato come simile allo zero macchina, 0_m).

Ancora più interessante è il risultato di x_1 , quando viene usato il secondo set di inputs: il valore infatti è dato da $-b-\sqrt{\Delta}$, che, dati i nostri inputs, corrisponde al calcolo della differenza tra b e $\sqrt{\Delta}$. Questi due numeri però sono molto vicini fra di loro, e la loro differenza è un esempio di cancellazione numerica.

Realmente, la loro differenza dovrebbe risultare in un numero infinitesimamente piccolo, ma il computer lo approssima a 0 per impossibilità di immagazzinare numeri infinitesimamente piccoli.

Un errore non è mai fine a sé stesso: è possibile (talvolta certo) che si propaghi e che influenzi i risultati delle operazioni future. Definiamo qui i vari tipi di errori che si creano in base all'operazione che viene performata:

Errori di propagazione

Si consideri come fl(n) la rappresentazione in virgola mobile arrotondata del numero n, e si denoti con e_n l'errore corrispondente, cosicché:

$$e_n = \frac{fl(n) - n}{n} \implies fl(n) = n \cdot e_n + n = x \cdot (1 + e_n)$$

Si considerino due numeri x e y, e le loro rispettive rappresentazioni in virgola mobile. Definiamo i seguenti errori:

• errore del prodotto e_{xy} :

$$fl(x)\cdot fl(y) = (x\cdot (1+e_x))\cdot (y\cdot (1+e_y)) = xy\cdot (1+\underbrace{e_x+e_y}_{e_{xy}} + e_x\cdot e_y) \simeq xy\cdot (1+\underbrace{e_x+e_y}_{e_{xy}})$$

• errore della divisione $e_{\frac{x}{y}}$:

$$\frac{fl(x)}{fl(y)} = \frac{x \cdot (1 + e_x)}{y \cdot (1 + e_y)} = \frac{x}{y} \cdot (1 + e_x) \cdot (1 - e_y + e_y^2 + \dots) \simeq \frac{x}{y} \cdot (1 + \underbrace{e_x - e_y}_{e_{\frac{x}{y}}})$$

• errore della somma e_{x+y} :

$$fl(x) + fl(y) = x \cdot (1 + e_x) + y \cdot (1 + e_y) \approx x + y + xe_x + ye_y = 0$$

$$= (x+y) \cdot \left(1 + \underbrace{\frac{x}{x+y} \cdot e_x + \frac{y}{x+y} \cdot e_y}_{e_{x+y}}\right)$$

In quest'ultimo caso, se x, y > 0, allora $|e_{x+y}| \le |e_x| + |e_y|$; se x, y < 0, allora le quantità $\left|\frac{x}{x+y}\right|$ e $\left|\frac{y}{x+y}\right|$ possono essere molto grandi

SEZIONE 1.3

Algoritmi e Condizionamento dei problemi

Fin dall'antica Grecia c'è sempre stata varia ambiguità su cosa fosse un algoritmo e su come definirlo, nonostante ci fosse sempre stata un'intuizione. È solo grazie alla tesi di Church-Turing nel 1936, che fu possibile definire formalmente cosa fosse un algoritmo (definito nella tesi come *metodo efficace*):

"Un metodo efficace è un metodo per cui ogni istruzione è precisamente predeterminata, che è certo di produrre un output entro un numero finito di istruzioni"

~ Church-Turing

Possiamo tuttavia riformulare la tesi di Church-Turing per definire cosa sia un algoritmo, così da adattarla anche per i nostri scopi:

Algoritmo

Un algoritmo è una successione di istruzioni finita e non ambigua, che consente di ottenere risultati numerici a partire dai dati di input

Gli algoritmi che formuleremo attraverso queste note verranno implementate su un computer tramite un linguaggio di programmazione. Tutte le istruzioni sono operazioni logiche o aritmetiche, che vengono assegnate al computer seguendo la sintassi del linguaggio che useremo.

Come abbiamo visto in precedenza, la propagazione di un errore può avere effetti disastrosi, anche se l'errore è molto "piccolo". Se l'errore dovesse amplificarsi ad alti livelli, il risultato ottenuto non sarebbe affidabile. In questo caso, diremmo che l'algorimo è **instabile**. Se invece gli errori di arrotondamento non vengono amplificati durante i calcoli, allora diciamo che l'algoritmo è **stabile**.

• 1.3.1

Data la funzione $f(x) = x^2 + 2px - q$, con $p^2 + q \ge 0$, vogliamo calcolare la radice di valore maggiore. Questa è data dalla seguente equazione

$$y = -p + \sqrt{p^2 + q}$$

Proviamo a creare uno script di Python che esegua questa equazione e che calcoli anche l'errore tra la soluzione del computer e quella prevista (usando la funzione rounding_error() dall'esempio 1.1.1)

Come possiamo notare, l'errore è abbastanza cospicuo, e per questo l'algoritmo è detto instabile. Questo perché, per $p\gg q$, la sottrazione tra p e $\sqrt{p^2+q}$ comporta la cancellazione numerica. Proviamo invece con un altro algoritmo, che cerca di arrivare allo stesso risultato senza usare la sottrazione, così da essere stabile:

$$y = -p + \sqrt{p^2 + q} = \left(-p + \sqrt{p^2 + q}\right) \cdot \frac{\left(p + \sqrt{p^2 + q}\right)}{\left(p + \sqrt{p^2 + q}\right)} = \frac{q}{\left(p + \sqrt{p^2 + q}\right)}$$

Non solo gli algoritmi possono essere stabili o instabili, ma in base a come vengono posti i problemi ci può essere più o meno suscettibilità alle perturbazioni dei dati. Consideriamo ad esempio il seguente problema: abbiamo una funzione $f: \mathbb{R} \to \mathbb{R}$, e vogliamo calcolarne il valore y in un generico punto $x \in \mathbb{R}$. Normalmente avremmo che $x \to f(x) \to y$.

Ottenuto y, vogliamo misurare quale effetto produca una perturbazione $\Delta x = x^* - x$ (dove

 x^* è un valore a nostra scelta) durante il calcolo di y. Possiamo inoltre riconsiderare Δx come il seguente: $\Delta y = y^* - y = f(x^*) - f(x)$

Usando lo sviluppo in serie di Taylor fino al primo ordine, possiamo riscrivere Δy come segue:

$$\Delta y = f(x^*) - f(x) = f'(x) \cdot \underbrace{\Delta x}_{x^* - x}$$

Dividendo ciò che abbiamo ottenuto fino ad ora per y, possiamo ricavare l'**errore relativo**:

$$\left|\frac{\Delta y}{y}\right| \simeq \left|\frac{f'(x)}{f(x)}\right| \cdot |\Delta x| = \underbrace{\left|\frac{f'(x) \cdot x}{f(x)}\right|}_{C_{P}} \cdot \left|\frac{\Delta x}{x}\right|$$

Errore relativo

L'errore relativo e_r è l'errore che c'è tra un valore x^* e un valore comparato x, ed è sempre **espresso in percentuale**. Tale errore si calcola come segue:

$$e_r = \frac{|x^* - x|}{x}$$

Nel calcolo precedente abbiamo evidenziato una parte dell'equazione, chiamandola C_P . Tale numero è importante per noi, e si chiama **numero di condizionamento del problema**.

Numero di condizionamento del problema

Il numero di condizionamento del problema C_P è un numero che determina se un dato problema è malcondizionato (ovverosia che a piccole perturbazioni dei dati corrispondono grandi variazioni dei risultati) o ben condizionato. Se C_P è grande, allora il problema è malcondizionato, altrimenti è ben condizionato.

$$C_P = \left| \frac{f'(x) \cdot x}{f(x)} \right|$$

Sebbene la propagazione dell'errore dipenda dall'algoritmo, il condizionamento del problema non dipende né dall'algoritmo, né dagli errori generati. Infatti, il **condizionamento dipende solo ed unicamente dal problema** e dai dati di input. Se il problema è molto sensibile, e quindi malcondizionato, alle variazioni di input, allora **non esiste nessun algoritmo** che riesca a ritornare una soluzione stabile al problema.

MATLAB è un linguaggio di programmazione sviluppato negli anni '70, che viene usato per sviluppare modelli matematici, svolgere simulazioni e analisi dei dati. Il modo in cui MATLAB funziona è detto **interattivo**, poiché viene tutto eseguito nella console. È possibile anche eseguire più comandi assieme nello stesso prompt, separando tutti i comandi con delle virgole. Ad esempio:

```
>> 2+3, 7*2, 9+1*3

ans = 5
ans = 14
ans = 12
```

Operazioni più lunghe possono essere scritte su più righe usando i "...". Gli operatori disponibili sono i seguenti:

Operazione	Operatore
Somma	+
Sottrazione	_
Moltiplicazione	*
Divisione	/
Potenza	^
Minore	<
Maggiore	>
Minore o uguale	<=
Maggiore o uguale	>=
Uguale	==
Diverso	~=

In MATLAB, è possibile anche usare gli operatori logici, quali l'AND, l'OR e il NOT. Chiaramente, anche i gate logici più complessi, che vengono costruiti con gli operatori logici più semplici, sono disponibili.

Operazione	Operatore
AND	&
OR	I
NOT	~

Ci sono anche alcune costanti, che vengono incluse in MATLAB di default dalla libreria standard. Qui alcune di queste vengono elencate:

Operazione	Operatore
Infinito (∞)	inf
π	pi
i	i
Numero massimo rappresentabile	realmax
Numero minimo rappresentabile	realmin
Precisione della macchina	eps
Forma indeterminata / Not A Number	nan

CAPITOLO

Sistemi di Equazioni Non Lineari

Fino ad ora siamo sempre stati abituati a problemi analitici dove la soluzione a un problema era data da un'equazione, o al più un piccolo sistema di equazioni non lineari. Tuttavia nella realtà sono molti i casi dove la soluzione viene trovata risolvendo complessi sistemi di equazioni non lineari, che non sempre possono essere svolti a mano. Da qui, la nascita di alcuni metodi di calcolo numerico che aiutano nella risoluzione di tali sistemi. Prima di illustrare questi metodi, ci soffermeremo brevemente su cos'è un'equazione non lineare:

Equazione non lineare

Un'equazione non lineare è un'equazione avente la forma

$$f(x) = 0$$

Chiamamo soluzione ξ (o alternativamente radici dell'equazione o zeri della funzione f) di un'equazione non lineare quel valore tale che

$$f(\xi) = 0$$

All'interno di questo capitolo ci limiteremo prevalentemente al caso di radici reali. Per applicare un metodo su una funzione tuttavia, ci serve prima sapere le seguenti tre informazioni:

- 1) quante sono le radici (in questo caso, reali);
- 2) **dove** si trovano, approssimativamente, le radici;
- 3) se sono presenti delle **simmetrie** nella funzione.

Ci sono vari metodi per trovare queste informazioni: si può procedere allo **studio analitico**, alla **tabulazione** o all'analisi del **grafico** della funzione stessa. Procederemo ad illustrare tutti e tre i metodi su un'equazione di esempio:

9 3.0.1

Si consideri la seguente funzione $f(\lambda)$, che modella il tasso di crescita di una popolazione:

$$f(\lambda) = e^{\lambda} + \frac{0.435}{\lambda}(e^{\lambda} - 1) - 1.564 = 0$$

Procediamo a considerare lo **studio analitico** di questa funzione: notiamo che la funzione risulta definita e continua in $\mathbb{R}/\{0\}$, e studiando il semiasse positivo (non ha senso controllare il semiasse negativo, poiché quest'equazione modella la

crescita della popolazione) notiamo che:

$$\lim_{\lambda \to 0} f(\lambda) < 0 \qquad \text{e} \qquad \lim_{\lambda \to +\infty} f(\lambda) = +\infty$$

Calcolando la derivata prima, otteniamo invece la seguente funzione:

$$f'(\lambda) = e^{\lambda} + \left(1 + 0,435 \frac{\lambda - 1}{\lambda^2}\right) + \frac{0,435}{\lambda^2} > 0$$

Notiamo infatti che il comportamento della funzione è positivo oltre lo 0: questo significa che la funzione $f(\lambda)$ è monotona crescente. Possiamo dunque concludere che, nel semiasse positivo, sia presente un unico zero ξ .

Per il metodo della **tabulazione**, si considerano i valori ottenuti dalla funzione in corrispondenza di valori equidistanti di λ , e si osserva dunque il segno dei valori ottenuti. Ad esempio:

λ	$f(\lambda)$
0,10	-0,001335588295285
0,12	0,025672938554613
0,14	0,053195959592184
0,16	0,081243551500795
0,18	0,109825990666185
0,20	0,138953757158539

Come possiamo notare, abbiamo un cambio di segno tra $\lambda=0,10$ e $\lambda=0,12$: questo vuol dire che la radice della funzione si trova nell'intervallo $[0,10,\,0,12]$. Possiamo anche osservare la radice usando un grafico della funzione:

Come abbiamo potuto notare dall'esempio, grazie ai tre metodi possiamo trovare una posizione approssimativa delle varie radici di una funzione. Ma come mai ci interessa tanto sapere la posizione di dove la funzione cambia segno? Perché grazie al **teorema di Bolzano**, questo ci permette di localizzare una radice.

Teorema di Bolzano

Dato un **intervallo** [a, b] e una **funzione** f(x) **continua**, se f(a) ha **segno discorde** rispetto a f(b) (quindi, se $f(a) \cdot f(b) < 0$), allora f(x) **interseca almeno una volta** l'asse delle x

È importante tuttavia sapere anche restringere l'intervallo di osservazione delle radici. Supponiamo di avere in esame la funzione

$$p(x) = x^4 + 2x^3 + 7x^2 - 11 = 0$$

mostriamo qui due grafici della funzione, in intervalli diversi:

Notiamo come, in base all'intervallo, è più semplice notare la posizione delle radici. Infatti, p(x) ha 4 radici, di cui due reali e due complesse coniugate.

3.1 Metodo di Bisezione (o Dicotomico)

Tra i vari metodi utilizzabili per trovare le radici in una funzione, il più semplice e immediato da utilizzare è il **metodo di bisezione**, o **metodo dicotomico**. Questo metodo permette, una volta individuato un intervallo di separazione in cui si trova una **singola radice**, di costruire una successione $\{x_k\}$ di approssimazioni di ξ . Per applicare dunque questo metodo vanno rispettate due condizioni, dette **ipotesi di applicabilità**:

- è stato individuato un intervallo I = [a, b], all'interno del quale è presente **un'unica radice** ξ ;
- la funzione f in esame deve essere **continua in** I (formalmente, $f \in C^0[a, b]$, dove C^0 è l'insieme di funzioni continue);
- i due estremi a e b devono avere **segno discorde** (dunque $f(a) \cdot f(b) < 0$).

In sintesi, il teorema di Bolzano deve essere rispettato all'interno del nostro intervallo I; il metodo di bisezione infatti usa estensivamente il suddetto teorema. Passiamo dunque ad esaminare l'algoritmo del metodo di bisezione:

Algorithm 1: Metodo di bisezione (o dicotomico)

```
Input: L'intervallo [a,b], la funzione f(x) e la tolleranza
 1 a \leftarrow a_0, b \leftarrow b_0;
 2 \xi_{\text{seq}} \leftarrow \{\};
                                                                                          /\!/\,\xi_{
m seq} è una sequenza vuota
 {\bf 3} for k in 1, 2, 3, ... do
         x_k \leftarrow \frac{a+b}{2};
         d \leftarrow |x_k - x_{k-1}|;
 5
         Add x_k to \xi_{\text{seq}};
 6
         // Se si trova la radice oppure viene raggiunta la tolleranza, l'algoritmo si ferma
         if (f(x_k) = 0) or (d < tol) then
 7
             return \xi_{\rm seq}
 8
         end
 9
         // In base all'intervallo che contiene la radice, ripetere l'algoritmo con l'intervallo aggiornato
         if f(a) \cdot f(x_k) < 0 then
10
             a \leftarrow a, b \leftarrow x_k
11
         end
12
         if f(x_k) \cdot f(b) < 0 then
13
          a \leftarrow x_k, b \leftarrow b
14
         end
15
16 end
```

Per il metodo di bisezione, l'idea è che dato un intervallo I = [a, b], **dividendo** I sempre **in sotto-intervalli** più contenuti, riusciremmo eventualmente ad ottenere un intervallo più piccolo all'interno del quale troveremmo la nostra radice ξ . Ogni sotto-intervallo è costituito da una delle due metà di I. Per sapere quale sotto-intervallo contiene ξ , basta applicare il teorema di Bolzano. L'algoritmo è semplice, e genera una successione di tutte le approssimazioni di ξ , denominata $\{x_k\}$ (o, nell'algoritmo, ξ_{seq}). La precisione del metodo di bisezione è ottenibile calcolando il relativo **errore di troncamento**.

Errore di troncamento

L'errore di troncamento è l'errore commesso approssimando la radice ξ con il k-esimo elemento della successione creata tramite l'algoritmo del metodo di bisezione

$$e_k = \xi - x_k$$

Ma l'algoritmo **può convergere**? Intuitivamente, convergerà verso ξ solo se l'errore si dovesse ridurre a 0. Formalmente, possiamo esprimere questa relazione come

$$\lim_{k \to \infty} x_k = \xi \quad \Longleftrightarrow \quad \lim_{k \to \infty} |e_k| = 0$$

Possiamo però esprimere e_k anche in altri termini. Per il metodo di bisezione, noi sappiamo che alla k-esima iterazione, ξ sarà presente solo in $[a_{k-1}, x_k]$ o in $[x_k, b_{k-1}]$.

$$a_{k-1}$$
 x_k ξ b_{k-1}

Dunque, data una generica iterazione x_k , l'errore di troncamento alla suddetta sarà uguale a

$$|e_k| < \frac{b_{k-1} - a_{k-1}}{2}$$

Ora, siccome l'intervallo $[a_{k-1}, b_{k-1}]$ ha ampiezza pari alla metà dell'intervallo all'iterazione precedente (dunque $[a_{k-2}, b_{k-2}]$), possiamo costruire anche una formula generica dell'errore per qualsiasi iterazione k:

$$|e_k| < \frac{b_{k-1} - a_{k-1}}{2} = \frac{b_{k-2} - a_{k-2}}{2^2} = \dots = \frac{b - a}{2^k}$$

Dunque, anche il limite di prima può essere riscritto come

$$0 \le \lim_{k \to \infty} |e_k| < \lim_{k \to \infty} \frac{b - a}{2^k} = 0$$

3.1.1 Ordine di corvengenza e Criteri di arresto

Abbiamo visto che il metodo di bisezione converge, ma è anche importante che converga in tempi rapidi. Come possiamo determinare la "velocità" di convergenza? Questo viene determinato in base a un valore chiamato **ordine di convergenza** *p*.

Ordine e Fattore di Convergenza

Sia $\{x_k\}$ una successione di approssimazioni **convergente** a ξ . Si dice che la successione ha un **ordine di convergenza** p e un **fattore di convergenza** C se esistono due numeri reali $p \ge 1$ e C > 0 tali che

$$\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^p} = C$$

Se p=1, si dice che la convergenza è **lineare**, se p=2, si dice invece che la convergenza è **quadratica**.

Applicando la definizione di ordine e fattore di convergenza al metodo di bisezione, otteniamo che, per $k \to \infty$, si ha:

$$\frac{|e_{k+1}|}{|e_k|^p} = \frac{\frac{b-a}{2^{k+1}}}{\frac{b-a}{2^k}} = \frac{2^k}{2^{k+1}} = \frac{2^k}{2^k} \cdot \frac{1}{2} = \frac{1}{2}$$

Cosa ci dice il risultato appena ottenuto? Che, supponendo una convergenza lineare, otteniamo un fattore di convergenza di ½. Questo ci dice che la convergenza è in realtà **lenta**: ad ogni step dell'algoritmo riusciamo a dimezzare l'errore, e guadagnamo una cifra binaria per meglio esprimere il nostro risultato. Siccome $2^{-4} < 10^{-1} < 2^{-3}$, allora ogni 3 o 4 iterazioni si riesce a guadagnare una cifra decimale.

Tuttavia, a causa degli errori di arrotondamento e troncamento da parte del computer, è praticamente impossibile che si riesca a raggiungere $f(x_k) = 0$. Dunque, quando dovremmo interrompere i calcoli? Possiamo definire dei **criteri di arresto a posteriori**, ovverosia

$$\begin{cases} |e_k| \simeq |x_k - x_{k-1}| < \epsilon & \text{Se l'errore diventa minore di una tolleranza } \epsilon \dots \\ |f(x_k)| < \epsilon & \text{...o se la funzione ritorna numeri minori della tolleranza } \epsilon \end{cases}$$

Nel caso dell'algoritmo di bisezione, è stato scelto in precedenza di usare il primo criterio, ma potevano essere usati entrambi i criteri. Possiamo anche calcolare **a priori** una stima

di quante iterazioni K avremo bisogno prima di ottenere un errore minore di ϵ_{\min} . Per farlo, ci avvaliamo della formula dell'errore di troncamento:

$$|e_k| < \frac{b-a}{2^k} < \epsilon_{\min} \quad \Longrightarrow \quad K > \frac{\log(b-a) - \log(\epsilon_{\min})}{\log(2)}$$

K dovrà essere arrotondato all'intero più vicino, in quanto deve essere un intero positivo.