ISOM 2700: Operations Management Session 7.3. Revenue Management: price based control

Huijun Chen
Dept. of ISOM, HKUST

Recall from the beginning...

Suppose we have a capacity of 100 tons of oil, how should we sell it to maximize our profit?

Figure 1 Revenue without price differentiation

Recall from the beginning: Coca-Cola's Failure in 1999

- A vending machine with temperaturescanning capability was introduced, charging variable price depending on the weather
- "Charge higher price for more thirsty customers"
- Result: Failure
 - -Angry Coke drinkers denounced the idea
 - Pepsi gleefully accused its rival of exploiting customers
- Would this idea work in 2020?

Available Data is Exploding

-And Computing cost is plummeting
- Complete works of Shakespear: 5 megabytes
- One DVD: 17 gigabytes
- A terabyte hard drive now costs about HKD 400

Price Optimization is Everywhere

 Price optimization has become a common tactic in RM

A Horror Story on Amazon: \$2,630.52 for Used Paperback

Linear Demand Model

 Suppose the demand (# of textbooks) is a linear function of price p

$$D(p) = a - bp$$

• The revenue at price p is given by

$$R(p) = p \times D(p) = p(a-bp)$$

• The revenue-maximizing price p* satisfies

$$\frac{dR(p^*)}{dp} = 0$$

or equivalently,

$$p^* = \frac{a}{2b}$$

Linear Demand Model

 Linear demand model leads to quadratic revenue curve

• Unique maximum

• Too good to be true?

What If the Linear Model is Not Known?

• The coefficients a and b in the linear demand model are unknown

• Price experiments

- Days 1-4: Charge \$20
- Days 5-8: Charge \$40
- Days 9-12: Charge \$60
- Estimated parameters

$$-\hat{a} = 149.05$$

$$-\hat{b} = 2.1414$$

True parameters

$$-a = 140$$

$$-b = 2$$

What if the Linear Model is Not Known

- In general, the more data, the better approximation to the true revenue function
- That is, estimated optimal price p
 approaches to the true optimal price p* with more experimental data
- However...

What if the Linear Model is Not Known

Price experiments
Revenue exploitation
Selling horizon

- Too many price experiments may hurt revenue
- Too little price experiments may lead to an inaccurate estimation, eventually hurting revenue
- Current: Fix a price after price experiments
- Remedy: Adjust price dynamically by re-estimating the coefficients whenever new data arrives

Myopic Pricing Policy

Performance of Myopic Pricing Policy

myopic_pricing.xlsx

• What is the optimal price if the true demand model is known?

• Does the price converge to the optimal price?

• If not, why so and how to fix it?

Performance of Myopic Pricing Policy

- Price does not converge to \$35, even if you continue learning over 2000 periods
- Learning stopped prematurely (incomplete learning)

Remedy?

Semi-Myopic Pricing Policy

• The main culprit of incomplete learning

Not enough variation in price!

Semi-Myopic Pricing Policy

• If the estimated optimal price is too close to the average price, add a perturbation

$$\tilde{p}_t = \frac{\hat{a}_t}{2\hat{b}_t} \pm e_t$$

• Otherwise, just offer the estimated optimal price

$$p_t = \frac{\hat{a}_t}{2\hat{b}_t}$$

• In sum

$$p_t^* = \begin{cases} \frac{\hat{a}_t}{2\hat{b}_t} \pm \mathbf{e_t} & if \left| \frac{\hat{a}_t}{2\hat{b}_t} - \bar{p}_t \right| < e_t \\ \frac{\hat{a}_t}{2\hat{b}_t} & otherwise \end{cases}$$

Semi-Myopic Pricing Policy

- The amount of perturbation, e_t , must be
 - -Sufficiently large to ensure enough variation in price
 - -Sufficiently small as time t increases to infinity...
- Example: $e_t = \frac{c}{t^{1/4}}$ for some constant c > 0

semi_myopic_pricing.xlsx

Performance of Semi-Myopic Pricing

Optimal price = \$35

 Forced variation ensures that the estimated optimal price does not stuck at a wrong value!

Other related topics

- Other related topics
 - -Markdown Pricing
 - -Penetration Pricing
 - -Bundle Pricing
 - -Psychological Pricing

Markdown Pricing

 Markdown is a permanent reduction in price whereas promotions are temporary

Reasons for Markdowns

- Fixed inventory (capacity) must be sold by a certain date
 - -E.g., Halloween costumes, tickets for musicals
- Obsolescence
 - −E.g., markdown before the arrival of the next generation of iPad
- Time of use
 - -E.g., markdown for winter coats in February
- Deterioration
 - -E.g., 1-day old bread/bakery sold at half price

Markdown Pricing

Regular season vs. markdown season

• Cannibalization: What if customers wait for a cheaper product?

Penetration Pricing

- Penetration pricing is a pricing strategy where the price of a product is initially set low to rapidly reach a wide fraction of the market and initiate *Word of Mouth (WoM)*
 - -Example on Amazon
 - -Go to camelcamelcamel.com to see price history
- Advantages of penetration pricing
 - -Fast diffusion and adoption
 - -Create goodwill of early adopters
 - -Discourages the entry of competitors
 - -High inventory turnover

Bundle Pricing

- Two cable buyers, "sports lover" and "history lover"
- Willingness-to-pay for the two buyers

	ESPN	History channel
Sports lover	\$10	\$3
History lover	\$3	\$10

- A single channel costs \$9
- Sports lovers would buy ESPN and history lovers would buy History channel; hence, total revenue = \$9+\$9=\$18
- A bundle of the two channels costs \$11.7; hence, total revenue = \$11.7+\$11.7=\$23.4

Both buyers and sellers benefit from bundling

Psychological Pricing: Decoy Effect

- Customers have a preference between two options
- When a third option appears, customers tend to have a specific change in preference between two options
- The Economist magazine subscription
 - -Option 1: Economist.com subscription at 490 HKD
 - -Option 2: Print subscription at 990 HKD
 - Option 3: Both print and online subscriptions at 990 HKD

Video: Popcorn example

Psychological Pricing: The Magic Number 9

• Charm prices (\$49, \$79, \$1.49 and so on) are reported to boost sales by an average of 24% relative to nearby prices

Takeaways

• Willingness-to-pay determines whether a customer will purchase at a given price

• Understand pros and cons of pricing based on (linear) demand models