•	_		_
Date	#	Lecture	Assignment
(1) Wed. 24 Ang	7	Introd2. ODEs: Tobics (1)-(3), bb, 1-4.	1 Prob. # 1 (20 pts)
tri, 26 "-	2	ODEs: topics 4-9, pp. 4-9,	-
	3 4	ODEs: topics @-11, pp. 9-14. ODEs: topics 12-14, pp. 14-20.	@ Probs, # 2-5 (50pts)
- Fri. 2 Sept.	5	ODEs: topic & Exs: SHO4 Bessel's Eq., pp. 21-24.	_ (ODEs)
(3) Mm, 5 "	-	HOLIDAY (Liabor Day)	3 Probs#6-8 (45 pts
	6 7	finish ODEs: pp. 75-27 Start WKB, pp. 1-2.	[(ODEs)
	8	WKB, pp. 2-7 (through LRC cct example). WKB, pp. 7-10 (Through Neumann Serus), [4.63]	1 Probs # 9-11 (45 pt
Wed. 14 "	9	WKB, pp. 11-15 (solus to Airy Egtu).	- (ODEs)
	10	WKB, pp. 15 - 19 (connection formulas).	
	12	00 Series I: convergence; prelim. & comp ² tests, pp 1-5. 00 Series II: thru evaluation of series, pp. 5-9.	5 Prolis, # 12-15 (45pt
Fri. 23 11	13	a Series III: thru properties of power series, pp 9.13.	- (WKB)
6 Mon. 26 "(64)			@Probs,16-19 (50 pts),
** ** **	15 16	SI Theory I: thru orthonormality, pp. 1-4. SI Theory II: thru $\Lambda(u_{\lambda}) = \lambda$, pp. 5-8.	- (ou series)
(7) Mon. 3 Oct.	17	St Theory III: review (p.17); Λ(Ψ)>2, pp. 9-10.	Probs. 20-23 (40pts)
	18	56 Theory IV: An 70. Start Dn 70, bb, 11-14,	- (SLproblems)
	<u>19</u>		no assignment
Wed. 12 "(85)		Compl. Var. I: pp. 1-4 (thru Integral Thm). [4.25]	-
Fri. 94 "	21	Compl. Var. II: pp. 5-8 (at Invent Thm).	(A) Del 24-27 (5.4)
	22 23	MIDTERM: 7-9 PM. Probs. (1)-(5) (200 pts). Review. Laurent Thm & remarks. Residues. pp. 8-10.	3 Probs. 24-27 (50 pts).
Fri. 21 "	24	Compl. Var. IV: Residues & Contour Integration, pp. 10-13.	[(Complex Variables)
	25	Compl. Var. V: Contour Integration & Real Integral, 13-17.	
Wed. 26 " Fri. 28 "(106)	26	Compl. Var. II: Branch Cuts > thru B2n#5, \$6.18-21. Compl. Var. III: thru Crauss Sum : \$6.22-25. [4.08]	[Contour integrals; Leibniz]
77.	28	SpFI: Legendre Eq. & Generating Fons. pp. SpF1-4.	10 Probs. 31-33 (50 pts).
Wed. 2 Nov.	29	CANCELLED (CAR op 2). Made up on 11/21/94.	[(Gram-Schmidt; G-fens
	<u>30</u> 31	SpFII: Generating Fons & Legendre Eg. pp SpF4-7.	11) Probs. 34-37 (50 pts).
	32	SpFIII: Properties of the Pnd Qn, pp. SpF 7-11. SpFIX: Assoc. Leg. Fons Pn(x). Sph. Harmoniks, pp. 12-16.	1
Fr. 11 "	33	5p F V: Sph. Flarms, pp. 16-18. ASIDE on P-fons, p. P1.	_(all Legendre fins)
	34	thish P-fons, pp. 12-173. Start Bessel fons, pp. 3pt 19-19. She VIII: Based Parcel Have at T Lean, Nicht 10-22	
Fri. 18 "	36	Sp. F VIII: Bessel fons (thru g > In (sovies)): pp. 19-22. Sp. F VIII: Bessel > Hankel & mod. Bessel fons : pp. 22-25.	- (Pn, 1-fen, and J,3)
	37	56F IX & X: Bessel, p. 26; HG Eq., pp 27-33. [3.94]	no assignment
Wed. 23 " Fri. 25 "		HOLIDAY (Thanksgiving)	
7-3	38		3 Probs. 42-45 (40pts).
Wed.30 "	39	Spr XII I Singularities of Riemann's Egtn: pp. 36-39,	[(Bessel, HG& CHG fors)
	40 41	5pt XIII! CHG for particulars: pp. 40-45.	
Wed. 7	42	Evaluation of Integrals (partiel intogn, etc): pp. 1-3. Evaluation of Integrals (thru Fresnel) 1 pp. 4-8.	<u>No assignment</u>
	43	Exam Preview, Integrals: pp. 9-10. EVALUATION. [3.93]	Final on Ths. 12/15/94.
		J II	

φ566 (194)

signment

To 6. # 1 (20 pts) × ent 11 (20 pts) #2-5 (50pts).X ¥6-8 (45 pts).X F9-11 (45 pts)X # 12-15 (45pts) 5-19 (50 pts), X 20-23 (40 pts).X iblems) ment 4-27 (50 pts). X Variables) 8-30 (40pts) X tyrals; Leibniz) 1-33 (50 pts). X hmidt; G-fens). 34-37 (50 pts) X ndre fens) 38 - 41 (40 pts). X fon, and Just) rent 2-45 (4opts). X AGG CHG funs). ment

1 1		
# 255	Subject	REMARKS
① 20 20 20 20 20 20 20 20 20 20 20 20 20	Analyse egtis for a two-level (QM) system.	#10, \$566(87).
2 20 20	Solve 4 ODEs from M&W, p. 38.	#@, \$566('83).
(50) 3 10	Solve: y"+ay'+by=flx), a = b=const, when roots \u1=\u2.	#3, \$566 ('B3).
10	Examine linear dependence/independence of \fa(x) \ via Wronskian.	#Φ, \$566 ('83).
3 10	Convert y"+p(x)y'+q(x)y=0 to Ricatti's Egt.	-new-
3 6 10	Solve 2 ODEs from M&W, p.38.	#@, \$566 (183).
(45) (45) (20)	Find series solvis to hypergeometric egth: x(1-x)y"+ = 0.	#D, \$566 ('83).
8 15	Find a particular solt to: P+2xP+w2P=42E(x,t).	#6, \$566 (183).
4 9 15	Do Green's fan Solm. form for: p(x) y"+ q1x) y'+ r1x1y = o.	# @ , φ566 (°83).
(45) 1 20	Solve: xy"+2y'+(E-x)y=0, " y(0)=1, y(0)=0. What E's?	# @, \$566(*83).
(1) 10	Find energies of a QM SHO via Bohr-Sommerfeld formula.	#M, \$566(*83).
(5) (12) 10	Find asymptotic form for In (x) as x > 00, by WKB method.	# 39, \$ 506 (93).
(45) (3) 10	Iterate Un+ (s) Neumann series I from p. 10 of WKB notes I.	# \$ 6 (193)
(4) 10	Review pp. 6-10 of WKB notes: employ cct model Ω= we e-oct.	#(H) \$566 (*87).
(5) 15	Solution to: y"+ a E"y = O. Asymptotic form for y(E) as E>0.	#3, \$507 ('92).
© 650 (15) (15) (15) (15)	Prove two convergence tests: (A) ≥ Ian I conv. ⇒ ∑an conv., (B) Root Test.	##+® \$566 (\83).
	lest 8 series for convergence & identify tests used.	#66, 0566 (183).
10	Jum 3 series in closed form and find numerical values.	#19, 0 566 (83).
(19) 10	Sum f(x) = 2 (1-) 11 n2/(2n-1)! 1 x 2n-1 in closed form.	#(3), \$ 566(183).
(40) (21) 10	Stack books in an harmonic fashion.	#47,0566 (87).
₩ ₩ ₩ 1 ₩ 1	00=f(d'/dx")+g(d/dx)+h is self-adjoint =)f,g,h related?	# 4 0 566 (87) MidTm.
(295) (2) 10 (295) (2) 10	Write hypergeometric ODE in Shirm-Lionville form.	#20,056(187).
(the / 23) 10	Estimate lowest agenvalue for 4 + k 4 =0 min fenal A(m).	# @ 6566 ('87).
(50) (30) 10 (50) (30) 10		# (6), \$567 (188).
3 10 3 15	Prove Liouville's Thm: f(2) bounded for all 2 => f(2) = cnst.	# (9, 0567 (188)
	Freve Fundamental Thin of Algebra: Pn(2) = 0 has n roots.	# (1), \$567 (188). # (1), \$567 (188).
MID- 1 45		#6, \$566('87),
TERM 2 40		# 2, \$566(82) Midtim.
(3) 35	Convergence & summation of : S(x)=1+3x2+5x4+7x6+ Wronskian for: f(x)y"+g(x)y'+h(x)y=0(W~exp[-J(g)f)dx]).	#1 0566(183) Mian
(200 pts) 4 40	Orthogonality of SL eigenfon derivatives: Sumunpax = 2m 8mm.	#3, \$566 (187).
	Reflection of a radio-wave by the ionosphere via WKB.	#10, \$520('94).
	Evaluation of Fresnel Integrals by contour integration of \$e^2 dz.	#@, \$566 (183).
(40) (8) 20 (40) (8) 10	Evaluation of I(µ) = 5:00 [xsin x/(x-µ2)] dx by contour integration.	#35, \$566 (183).
30 10	Proof of Teibniz Thm: (d/dx)"[A(x)B(x)]= by math, induction.	#30, \$567 (183).
10 20 15	Gram-Schmidt orthogonalization procedure.	#180, \$507 (194).
(6) (3) 10	Apply GS or thogonalization to {xn} on x <1 => get Pn(x).	#(2), \$567(183) MidTm.
3 15	Generating for for for obeying: (A) (n+1) fin = x fn-fner, etc.	#3,0566(187).
		(over)

		<u> </u>		
(150) (#	PTS	SUBJECT	REMARKS &
	3	10	Potential generated by a linear electric quadrupole.	#®, \$566(*87).
		15	Legendre -> Parseval Thm. Toot for partial wave analysis.	# 3, \$566('87).
	36	15	Legendre polymomial series from Laplace's Integral.	-hew-
	<u>37</u>	10	m-reflection rule for associated tegendre polynomials Pin(x).	#到, \$566(187).
(12)	38	10	on Rodrigues' formula for Pn(x): (d/dx)"(x2)"-k over [2]+15k5n.	#\$P \$567(183).
(40) (39	10	Evaluation of Gaussian integrals: 50 x 2- ax dx.	new [Arfken # (10.1.11)]
	40	10	For Bessels Eq., show In & Y's are linearly independent.	#3 \$567 (83).
	41)	10	Prove: In (x) = (-) n xn (\frac{1}{x} a d x) n Jo (x), by mathematical induction	#3 \$566 (87).
(13)		10	For Bessel fons, analyse: (v2-µ2) \$ \$ \frac{1}{x} \frac{7}{x} (x) \frac{7}{x} \frac{1}{x}	#6 \$566 (187) Final.
(40)	(43)	10	Show F(a, b; c; x) & x1-c F(1+a-c, 1+b-c; 2-c; x) are dept. when C>N.	#1 \$567 (1871).
[565pts	1(4)	10	From a linear transfe on Fla, b; c; 2), find Mla, c, 2 >00).	#@ \$567('87),
total	1(43)	10	For the CHG Eq., find Wrons kean for M(2, c, x) & x1-c M(1+2-c, 2-c, x).	
(4	50	Solve: (A) xy'= ay+xp, as p=consts, and (B) y'= xy+1.	φ566('75) € φ566('83)
FINA	L2	40	WKB soluto: y"+x"y=0, near x=10, "y=0, y'=1@x=10.	#3, \$566 (187) Find.
EXAN	y (3).	50	Sum series to closed forms: (A) Sp= 5 (1/np"), (B) Sk(1)= Ek"Cosno.	\$566 (83) Mid Tum.
	4	40	Rudimentary analysis of Laguerre's ODE, using S-I Theory.	Arthur # 9.1.6.
	45	50	Evaluate by contour integration: J(a,b,c)= 50 dp/la+bcos+csig).	
	6	35	Legendre polynomials: Show J-1 Pn/x/dx = 0, for n31.	- new (as of Deci 94) -
	(7)	35	Show erfx ox M(\frac{1}{2},\frac{2}{2},-x2). Find asymptotic erfx as x+00.	# (P), \$567(187),
	(8)	50	Essalante two integrals, by series integration & parameteric diff.	
	i	1		
	-			
-		1 :		