Profa. Beti Kira

Entregar os exercícios assinalados com ♣ em 10.julho.2020

Os exercícios assinalados com $\mathscr Q$ serão resolvidos em aula.

1. Pelas funções densidade de probabilidade nota-se as seguintes relações.

Se
$$X \sim \chi^2(a)$$
 então $X \sim \operatorname{Gama}\left(\frac{a}{2}, \frac{1}{2}\right);$ e vice-versa.

Se
$$X \sim t(1)$$
 então $X \sim \text{Cauchy}(0, 1)$; e vice-versa.

2. Mostre que se X tem distribuição $\chi^2(2n)$ (qui-quadrado com 2n graus de liberdade), para n inteiro positivo, então

$$Y = \frac{X}{2\lambda}$$

tem distribuição Gama (n, λ) . A recíproca também é verdadeira, isto é, se $Y \sim \text{Gama}(n, \lambda)$ com n inteiro positivo, então $2\lambda \ Y \sim \chi^2(2n)$.

3. \clubsuit Sejam X_1, \ldots, X_n v.a. independentes com distribuição comum Uniforme [0,1]. Seja Y a média geométrica das X_i , mostre que

$$-2n \ln Y \sim \chi^2(2n)$$
, em que $Y = \left(\prod_{i=1}^n X_i\right)^{1/n}$

Sugestão: determine a distrib. da variável $(-\ln X)$, em seguida a dist. da soma.

4. Sejam X_1, \ldots, X_k v.a. **independentes** com $X_i \sim \mathrm{N}(\mu_i, \sigma_i^2), \ i = 1, \ldots, k,$ então mostre que

$$\sum_{i=1}^{k} \left(\frac{X_i - \mu_i}{\sigma_i} \right)^2 \sim \chi^2(k).$$

5. Dê uma prova rápida, sem calcular a densidade (mas mencione o resultado que está sendo utilizado), de que se $X \sim \chi^2(a)$ e $Y \sim \chi^2(b)$ são independentes então

$$\frac{X}{X+Y} \sim \operatorname{Beta}\left(\frac{a}{2}, \frac{b}{2}\right).$$

6. \clubsuit Sejam T e U variáveis aleatórias **independentes** tal que $T \sim \chi^2(m)$ e $U \sim \chi^2(n)$. Então

$$X = \frac{T/m}{U/n} \sim F(m, n)$$

- 7. Seja $X \sim F(m,n)$. Prove que $Y = 1/X \sim F(n,m)$. (Não precisa calcular a função densidade.)
- 8. Se X tem distribuição F(m, n) então

$$Y = \frac{mX/n}{1 + mX/n}$$

tem distribuição Beta (a, b) com a = m/2 e b = n/2.

(Veja a relação deste resultado com os Exercícios 5 e 6 desse conjunto de exercícios.)

- 9. Mostre que se $T \sim t(\nu)$ então $T^2 \sim F(1, \nu)$.
- 10. \clubsuit Se $Z \sim \text{Normal}(0,1)$ e $Y \sim \chi^2(k)$ são v.a. **independentes**, então mostre que

$$T = \frac{Z}{\sqrt{Y/k}}$$

tem distribuição t-Student com k graus de liberdade.

11. Dizemos que o vetor aleatório (X,Y) tem distribuição **normal bivariada** se a função densidade de probabilidade conjunta é dada por, para $-\infty < x, y < \infty$,

$$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \times \left\{ \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_x}{\sigma_x}\right)^2 + \left(\frac{y-\mu_y}{\sigma_y}\right)^2 - 2\rho\left(\frac{x-\mu_x}{\sigma_x}\right)\left(\frac{y-\mu_y}{\sigma_y}\right) \right] \right\}$$

$$f(\boldsymbol{x}) = \frac{1}{2\pi|V|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})'V^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\} \quad \text{(forma matricial)}$$

em que $\mathbf{x} = (x, y)'$, $\boldsymbol{\mu}$ = vetor de médias e V = a matriz de variância-covariâncias (ou matriz de covariâncias)

$$\boldsymbol{\mu} = \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}$$
 e $V = \begin{pmatrix} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{pmatrix}$

Notação: $\boldsymbol{X} = (X,Y)' \sim N(\ \boldsymbol{\mu}\ , \ V)$

- (a) Mostre que as distribuições marginais de X e de Y são $N(\mu_x, \sigma_x^2)$ e $N(\mu_y, \sigma_y^2)$, respectivamente.
- (b) Mostre que a f. densidade condicional de X dado que $Y=y_0$, é normal com parâmetros

$$\mu_x + \rho \frac{\sigma_x}{\sigma_y} (y_0 - \mu_y)$$
 (locação) e $\sigma_x^2 (1 - \rho^2)$ (dispersão)

- (c) Mostre que X e Y são independentes quando (se e só se) $\rho = 0$.
- 12. Sejam X e Y variáveis aleatórias com distribuição Normal bivariada, com densidade de probabilidade dada pelo exercício anterior. Mostre que a distribuição de X+Y é normal com média $\mu_x + \mu_y$ e variância $\sigma_x^2 + \sigma_y^2 + 2\rho\sigma_x\sigma_y$.
- 13. Se X e Y tem distribuição normal bivariada com médias zero, variâncias iguais a um e coeficiente de correlação $\rho,-1<\rho<1$, encontre a funcão densidade de probabilidade de

(a)
$$\clubsuit$$
 $Z = X/Y$ (NÃO é Cauchy se $\rho \neq 0$)

(b)
$$T = X/|Y|$$

(c)
$$W = |X|/Y$$

14. \mathscr{D} Se X_1, \ldots, X_n são independentes e identicamente distribuídas $N(\mu, \sigma^2)$. Considere a média amostral e variância amostral definidas, respectivamente por,

$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$$
 e $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$

- (a) Determine a distribuição de probabilidade de \overline{X}_n . Especifique os parâmetros.
- (b) Mostre que \overline{X}_n é independente de S^2 , mostrando que \overline{X}_n é independente do vetor aleatório $(X_1-\overline{X}_n,\dots,X_n-\overline{X}_n)$.
- (c) Mostre que

$$(n-1)\frac{S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_j - \overline{X}_n}{\sigma}\right)^2 \sim \chi^2(n-1)$$

(d) Portanto, pelos itens acima e pelo Exercício 10 desse conjunto de exercícios,

$$T = \frac{\overline{X} - \mu}{\sqrt{S^2/n}} = \frac{\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2}/(n-1)}} \sim t(n-1)$$