CHAPTER 1

Sensor Properties

In Table 1.1 on the following page the thermal sensor was exposed to the night sky at a capture rate of 1Hz for 4 minutes, with the sensing results combined to create a set of means and standard deviations to indicate the pixels at "rest".

$13.16 \\ 0.25$	14.71	13.35	11.06
14.92 0.3	14.88	14.44	11.39
14.28 0.33	14.49	12.59 0.25	12.42
9.84	12.09	11.11	9.99
8.24 0.27	10.3 0.24	11.52	8.25
9.29	10.64	11.22	10.74
9.63 0.29	11.15	11.95	10.36
6.67	8.57	9.58	8.15
7.79	9.02 0.35	9.15	8.36
$9.02 \\ 0.26$	11.43	10.66	11.78
10.84	11.47	12.64	12.2
8.15	11.79	13.11	10.18
8.77	11.51	11.97	11.53
12.34	12.73	14.15	15.0
14.33	15.62	16.62	16.81
14.95	14.54 0.34	18.25	16.02

Table 1.1: Mean and standard deviations for each pixel at rest

Figure 1.1: Comparison of noise levels at the *Melexis*'s various sampling speeds

Figure 1.2: Different Melexis pixel temperature values as hot object moves across row

Figure 1.3: Variation in temperature detected for hot object at 1Hz sampling ration

Bibliography