10/8 SPINに向けて

赤塚浩明

toffo 10.0E3→9.3E3 に変更

誤差の修正

• Error =
$$\sqrt{(\partial(\frac{A}{A+B})/\partial A)^2 E_a^2 + (\partial(\frac{A}{A+B})/\partial B)^2 E_b^2}$$

•
$$f = A/(A + B) = 1/(1 + B/A)$$

•
$$\partial f/\partial A = 1/(A+B) - A/(A+B)^2 = B/(A+B)^2$$

• $\partial f/\partial B - A/(A+B)^2$

1.2				hq2
1.2			Entries Mean	141 0.296
1		l	Std Dev	0.13
0.8		.44		
		i.		
0.6				
0.4				
0.2				
٨	<u> </u>			
Ö.	1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5		0.55	0.6 [nm ^{·1}]

NAME VALUE		ERROR
qc	1.29263E-01	1.65796E-03
R0	1E+00	fixed
m2	5.79721E+00	2.05227E-01

NAME	VALUE	ERROR
qc	1.36239E-01	1.33794E-03
R0	1E+00	fixed
m2	5.83252E+00	1.76362E-01

偏極度のモデル化

parameter $(0.11 < q_c < 0.15), (1 < m_2 < 10), (Fix <math>W = 2.5 \times 10^{-3}), (Fix \alpha = 0.28), (Fix m = 5.2), (Fix R_0 = 1)$

$$q < q_c$$
の時

$$y = R_0$$

$$q_c < q < q_{c,Ni}$$
の時

$$R_{\rm up} = R_0$$

$$R_{\text{down}} = \frac{R_0}{[1 + m_2(q - q_c)]^4}$$

$$R = \frac{1}{2}R_{\rm up} + \frac{1}{2}R_{\rm down}$$

•
$$q>q_{c,\mathrm{Ni}}$$
の時

$$R_{\rm up} = \frac{1}{2} R_0 (1 - \tanh((q - mq_c)/W))(1 - \alpha(q - q_c))$$

$$R_{\text{down}} = \frac{R_0}{[1 + m_2(q - q_c)]^4}$$

$$R = \frac{1}{2}R_{\rm up} + \frac{1}{2}R_{\rm down}$$

パラメータ修正後

• パラメータを修正した結果を考慮して、理論曲線と偏極どの席を図に表した

進捗状況

- M1での反射、透過のデータから、偏極度を決定した
- 偏極度にサンプルによる理論的な反射率をかけ、実験値との比較を行った

$$R = \frac{R_{\mathrm{up,s}} N_{\mathrm{up}}}{(N_{\mathrm{up}} + N_{\mathrm{down}})} + \frac{R_{\mathrm{down,s}} N_{\mathrm{down}}}{(N_{\mathrm{up}} + N_{\mathrm{down}})}$$
を図示 : $R_{\mathrm{up,s}}$, $R_{\mathrm{down,s}}$ サンプルによるup, downの反射率

サンプルへの入射ビームのup,dwonの割合

入射ビームの発散角0.1% 0.5 下流のコリメータで決まる発散角 3.4 ミラー反射後 波長分解能1%

幕が歪んでいるか

$$\frac{N_{\rm up}}{N_{\rm up} + N_{\rm down}} = 1 - \frac{1}{2} R_{\rm down}$$

$$\frac{N_{\text{down}}}{(N_{\text{up}} + N_{\text{down}})} = \frac{1}{2} R_{\text{down}}$$

$$R = \frac{R_{\text{up,s}} N_{\text{up}}}{(N_{\text{up}} + N_{\text{down}})} + \frac{R_{\text{down,s}} N_{\text{down}}}{(N_{\text{up}} + N_{\text{down}})} \approx$$

印加磁場に対してスピンが平行、反平行の場合で 書き下した結果

M1によるビームの偏極度二よって、q~0.15付近で 反射率が減少することを説明できている

フェルポテンシャルの値をパラメータにして、 fitすれば、ポテンシャルを決定できる

解析したデータ

- 20210717004515_list.root
- M1のみ置いた時の反射、透過を同時に測定 1.0e2s 9.5e3

偏極度のモデル化

parameter $(0.11 < q_c < 0.15), (1 < m_2 < 10), (Fix <math>W = 2.5 \times 10^{-3}), (Fix \alpha = 0.28), (Fix m = 5.2), (Fix R_0 = 1)$

$$q < q_c$$
の時

$$y = R_0$$

$$q_c < q < q_{c,Ni}$$
の時

$$R_{\rm up} = R_0$$

$$R_{\text{down}} = \frac{R_0}{[1 + m_2(q - q_c)]^4}$$

$$R = \frac{1}{2}R_{\rm up} + \frac{1}{2}R_{\rm down}$$

•
$$q>q_{c,\mathrm{Ni}}$$
の時

$$R_{\rm up} = \frac{1}{2} R_0 (1 - \tanh((q - mq_c)/W))(1 - \alpha(q - q_c))$$

$$R_{\text{down}} = \frac{R_0}{[1 + m_2(q - q_c)]^4}$$

$$R = \frac{1}{2}R_{\rm up} + \frac{1}{2}R_{\rm down}$$

横橋修論(スイス)から、M1(日野さん作成)のパラメータを決定する

$$R_{\rm up} = \frac{1}{2} R_0 (1 - \tanh((q - mq_c)/W))(1 - \alpha(q - q_c))$$

- $\alpha \sim 0.28$, $m \sim 5.2$, $W \sim 2.5 \times 10^{-3}$
- $q_{c,Ni} = 0.0217$

図 5.2.6: スケーリング後の 1st ミラーの反 射率

ミラー番号	m	W	α
1	5.171 ± 0.003	$(2.66\pm0.10)\times10^{-3}$	2.87 ± 0.04
2	-	-	-
3	5.236 ± 0.002	$(2.47\pm0.06)\times10^{-3}$	$2.68 {\pm} 0.03$
4	5.162 ± 0.002	$(2.25\pm0.06)\times10^{-3}$	2.69 ± 0.03
5	5.249 ± 0.002	$(2.32\pm0.05)\times10^{-3}$	$2.84 {\pm} 0.03$
6	5.239 ± 0.002	$(2.62\pm0.06)\times10^{-3}$	2.74 ± 0.03
7	5.255 ± 0.002	$(2.38\pm0.05)\times10^{-3}$	2.80 ± 0.03
8	5.260 ± 0.002	$(2.51\pm0.06)\times10^{-3}$	3.01 ± 0.03

表 5.1: 1st ミラー反射率のフィッティング結果

フィッティングの結果

parameter $(0.11 < q_c < 0.15), (1 < m_2 < 10), (Fix W = 2.5 × 10^{-3}), (Fix \alpha = 0.28), (Fix m = 5.2), (Fix R_0 = 1)$

フィット関数

$$q < q_c$$
の時

$$y = R_0$$

$$q_c < q < q_{c,Ni}$$
の時

$$R_{\rm up} = R_0$$

$$R_{\text{down}} = \frac{R_0}{[1 + m_2(q - q_c)]^4}$$

$$R = \frac{1}{2}R_{\rm up} + \frac{1}{2}R_{\rm down}$$

• $q > q_{c,Ni}$ の時

$$R_{\rm up} = \frac{1}{2} R_0 (1 - \tanh((q - mq_c)/W))(1 - \alpha(q - q_c))$$

$$R_{\text{down}} = \frac{R_0}{[1 + m_2(q - q_c)]^4}$$

$$R = \frac{1}{2}R_{\rm up} + \frac{1}{2}R_{\rm down}$$

 R_0 をfixした理由

 $R_0 > 1$ となってしまいうまく フィットできなかったため

toffoできる部分を変えることで

-						
R0 1E+00				fixed		
m2 5.79721E+00 2			2.	05227	E-01	
M1_	M1_Direct					
			·		12	
				Entries	520	
				Mean	0.2885	
				Std Dev	0.1271	
<u>E</u>	. 6	[<u></u>	****	

ERROR

1.65796E-03

VALUE

1.29263E-01

NO.

qc

実験概要

$$R = \frac{R_{\mathrm{up,s}} N_{\mathrm{up}}}{(N_{\mathrm{up}} + N_{\mathrm{down}})} + \frac{R_{\mathrm{down,s}} N_{\mathrm{down}}}{(N_{\mathrm{up}} + N_{\mathrm{down}})}$$
を図示 : $R_{\mathrm{up,s}}$, $R_{\mathrm{down,s}}$ サンプルによるup, downの反射率

サンプルへの入射ビームのup,dwonの割合

Rup,s
入射ビームの発散角0.1%
下流のコリメータで決まる発散角
ミラー反射後
波長分解能1%
幕が歪んでいるか

$$\frac{N_{\rm up}}{N_{\rm up} + N_{\rm down}} = 1 - \frac{1}{2} R_{\rm down}$$

$$\frac{N_{\text{down}}}{(N_{\text{up}} + N_{\text{down}})} = \frac{1}{2} R_{\text{down}}$$

$$R = \frac{R_{\text{up,s}} N_{\text{up}}}{(N_{\text{up}} + N_{\text{down}})} + \frac{R_{\text{down,s}} N_{\text{down}}}{(N_{\text{up}} + N_{\text{down}})} \approx$$

印加磁場に対してスピンが平行、反平行の場合で 書き下した結果

M1によるビームの偏極度二よって、q~0.15付近で 反射率が減少することを説明できている

フェルポテンシャルの値をパラメータにして、 fitすれば、ポテンシャルを決定できる

- フリンジの落ち込みが見やすい
- qが大きいほど統計エラーが 大きくなってしまうため、 フィットがうまくかからない

粗さが評価できる

• 209.0602neV

Back up

- ・まだできていないこと
 - 独立でない誤差の評価
 - フェルミポテンシャルでフィット
 - M2のデータの解析 AFPの性能がわかる()

- 今後の方針
 - 表面荒さ、発散角、波長分解能

モデル化の後の作業

赤の曲線 = f(x)として

• 偏極度 P = 2(1 - f(x))

$$\frac{N_{\text{up}}}{(N_{\text{up}} + N_{\text{down}})} = \frac{1}{2}(1+P) = (1.5 - f(x))$$

$$\frac{N_{\text{down}}}{(N_{\text{up}} + N_{\text{down}})} = \frac{1}{2}(1 - P) = (f(x) - 0.5)$$

• サンプルに当てた反射率のヒストグラム(右図)に

$$R = \frac{R_{\text{up}}N_{\text{up}}}{(N_{\text{up}} + N_{\text{down}})} + \frac{R_{\text{down}}N_{\text{down}}}{(N_{\text{up}} + N_{\text{down}})}$$

を書き加える

偏極度のモデル化

parameter (Fix $q_c = 0.13$), (Set W = 0.01)(Set $\alpha = 0.01$), (Fix $R_0 < 1$),

$$q < q_c$$
の時

$$y = R_0$$

$$q > q_c$$
の時

$$R_{\rm up} = \frac{1}{2} R_0 (1 - \tanh((q - mq_c)/W))(1 - \alpha(q - q_c))$$

$$R_{\text{down}} = \frac{1}{2}R_0(1 - \tanh((q - q_c)/W))$$

$$R = \frac{1}{2}R_{\rm up} + \frac{1}{2}R_{\rm down}$$

NO.	VALUE	ERROR	SIZE	DERIVATIVE
1 p0	1.3E-01	1.95422E-04	1.26757e-03**	at limit **
2 p1	7.16389E-02	1.4028E-03	8.98162E-06	-1.24534E+00
3 p2	1E+00	8.03522E-03	1.14623e-02**	at limit **
4 p3	-8.03288E-02	1.92862E-02	1.23482E-04	1.87795E-02

偏極度のモデル化 反射率/(反射率+透過率) $R = \frac{N_R/N_{Direct}}{N_R/N_{Direct} + N_T/N_{Direct}} = \frac{N_R}{N_R + N_T}$

parameter (Fix $q_{c,\text{down}} < 0.15$), (Set W = 0.01)(Set $\alpha = 0.01$), (Fix $R_0 < 1$),

$$q < q_c$$
の時

$$y = R_0$$

$$q > q_c$$
の時

$$R_{\rm up} = R_0$$

$$R_{\text{down}} = \frac{R_0}{[1 + m_2(q - q_c)]^4}$$

$$R = \frac{1}{2}R_{\rm up} + \frac{1}{2}R_{\rm down}$$

NAME	VALUE	ERROR	SIZE	DERIVATIVE
qc	1.32968E-01	1.50085E-03	1.26215E-04	-8.23586E-03
R0	9.90621E-01	6.47428E-03	1.17224E-03	1.57558E-03
m2	6.24502	3.45632E-01	1.5942E-04	-4.60213E-03

偏極度のモデル化 反射率/(反射率+透過率) $R = \frac{N_R/N_{Direct}}{N_R/N_{Direct} + N_T/N_{Direct}} = \frac{N_R}{N_R + N_T}$

parameter $(0.11 < q_{c,down} < 0.15)$, (Set W = 0.01)(Set $\alpha = 0.01$), $(0.95 < R_0 < 1)$,

$$q < q_c$$
の時

$$y = R_0$$

$$q_c < q < q_{c,Ni}$$
の時

$$R_{\rm up} = \frac{1}{2} R_0 (1 - \tanh((q - mq_c)/W))(1 - \alpha(q - q_c))$$

$$R_{\text{down}} = \frac{R_0}{[1 + m_2(q - q_c)]^4}$$

$$R = \frac{1}{2}R_{\rm up} + \frac{1}{2}R_{\rm down}$$

NAME	VALUE	ERROR	SIZE	DERIVATIVE
qc	1.32968E-01	1.50085E-03	1.26215E-04	-8.23586E-03
R0	9.90621E-01	6.47428E-03	1.17224E-03	1.57558E-03
m2	6.24502	3.45632E-01	1.5942E-04	-4.60213E-03

偏極度のモデル化 反射率/(反射率+透過率) $R = \frac{N_R/N_{Direct}}{N_R/N_{Direct} + N_T/N_{Direct}} = \frac{N_R}{N_R + N_T}$

parameter $(0.11 < q_{c,down} < 0.15)$, (Set W = 0.01)(Set $\alpha = 0.01$), $(0.95 < R_0 < 1)$,

$$q < q_c$$
の時

$$y = R_0$$

$$q_c < q < q_{c,Ni}$$
の時

$$R_{\rm up} = \frac{1}{2}R_0(1 - \tanh((q - mq_c)/W))(1 - \alpha(q - q_c))$$

$$R_{\text{down}} = \frac{R_0}{[1 + m_2(q - q_c)]^4}$$

$$R = \frac{1}{2}R_{\rm up} + \frac{1}{2}R_{\rm down}$$

NAME	VALUE	ERROR	SIZE	DERIVATIVE
qc	1.32968E-01	1.50085E-03	1.26215E-04	-8.23586E-03
R0	9.90621E-01	6.47428E-03	1.17224E-03	1.57558E-03
m2	6.24502	3.45632E-01	1.5942E-04	-4.60213E-03

モデル化の後の作業

赤の曲線 = f(x)として

• 偏極度 P = 2(1 - f(x))

$$\frac{N_{\text{up}}}{(N_{\text{up}} + N_{\text{down}})} = \frac{1}{2}(1 + P) = (1.5 - f(x))$$

$$\frac{N_{\text{down}}}{(N_{\text{up}} + N_{\text{down}})} = \frac{1}{2}(1 - P) = (f(x) - 0.5)$$

• サンプルに当てた反射率のヒストグラム(右図)に

$$R = \frac{R_{\text{up}}N_{\text{up}}}{(N_{\text{up}} + N_{\text{down}})} + \frac{R_{\text{down}}N_{\text{down}}}{(N_{\text{up}} + N_{\text{down}})}$$

を書き加える

$$R = \frac{R_{\text{up}}N_{\text{up}}}{(N_{\text{up}} + N_{\text{down}})} + \frac{R_{\text{down}}N_{\text{down}}}{(N_{\text{up}} + N_{\text{down}})}$$
を図示

AFPによってSPINを 変換させたデータを用いる より会うかもしれない

カイジジョウが1になっていれば良い 残渣/自由度

 $(N_{\rm up} + N_{\rm down})$

何Tに磁化したのかをどの程度の 精度で求めたいか

横橋さんの修論から 傾きのパラメータを持ってくる

> どこまでの精度が ポテンシャルを パラメータにしてみたい

縦軸対数

上流をラムダ? 反射率vsラムダの関係で書いた方が良い? qcが異なっている場合 角度がm!,m2で異なることに注意

物理的なパラメータを変えることで

(鉄のポテンシャル、磁束密度など)

バルクの鉄の密度とかかえると合ってくるかも

反射率の図(左上図)に $\frac{N_{
m up}}{(N_{
m up}+N_{
m down})}$, $\frac{N_{
m down}}{(N_{
m up}+N_{
m down})}$ をかけることで偏極度を考慮した反射率の理論曲線がかける

カイジジョウが1になっていれば良い

残渣/自由度

縦軸対数

上流をラムダ? 反射率vsラムダの関係で書いた方が良い? qcが異なっている場合

角度がm!,m2で異なることに注意 バルクの鉄の密度とかかえると合ってくるかも

> 物理的なパラメータを変えることで (鉄のポテンシャル、磁束密度など)

AFPによってSPINを 変換させたデータを用いると より会うかもしれない

独立でない誤差

• Error =
$$\sqrt{(\partial(\frac{A}{A+B})/\partial A)^2 E_a^2 + (\partial(\frac{A}{A+B})/\partial B)^2 E_b^2}$$

- f = A/(A + B) = 1/(1 + B/A)
- $\partial f/\partial A = 1/(A+B) A/(A+B)^2 = B/(A+B)^2$
- $\partial f/\partial B A/(A+B)^2$

$$P = \frac{N_{up} - N_{down}}{N_{up} + N_{down}} \approx$$

•
$$P_{up} = \frac{N_{up}}{N_{up} + N_{down}}$$
 求められない

•
$$R = R_{up}P_{up,R} + R_{down}P_{down,R}$$

: R_{up} , R_{down} up, downの理論上の反射率: $P_{up,R}$, $P_{down,R}$ 反射するup, downの割合

•
$$T = 1 - R = 1 - (R_{up}P_{up,R} + R_{down}P_{down,R}) = (1 - R_{up})(1 - P_{up,R}) + (1 - R_{down})(1 - P_{down,R})$$

25

$$R = \frac{N_R/N_{Direct}}{N_R/N_{Direct} + N_T/N_{Direct}} = \frac{N_R}{N_R + N_T}$$

RはM1なしで行ったダイレクト測定に依存しない

$$N_R = N_{up,R} + N_{down,R}$$

$$2T = \frac{2N_T}{N_R + N_T}$$

【スーパーミラーの反射率】

$$R = \begin{cases} R_0 & (Q \le Q_c) \\ \frac{1}{2} R_0 \left[1 - \tanh(\frac{Q - mQ_c}{W})\right] \left[1 - \alpha(Q - Q_c)\right] & (Q > Q_c) \end{cases}$$

$$Q = |\mathbf{k_i} - \mathbf{k_f}| = 4\pi \sin \theta / \lambda \quad (運動量移行)$$

【m=5のミラーの反射率】(SwissNeutronics 提供)

【低発散ブランチのセットアップ】

として各波長に対し計算

ミラーの性能 up50%+down50%の図でフィットを行う

0.3 < q < 1.1であれば偏極率 $P \sim 1$ 、 $q \sim 0.2$ でP > 0.9

Fe / Si polarising supermirror

 $\alpha \sim 0.25/4.5 = 0.0625$

反射率が落ちるから偏極度が落ちる

Spin dependent reflectivity and polarization of a Fe/Si polarizing supermirror m = 5.5