

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Counters - 2

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Counters - 2

Reetinder Sidhu

Department of Computer Science and Engineering

Course Outline

- Digital Design
 - Combinational logic design
 - Sequential logic design
 - ★ Counters 2
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)

Concepts covered

Arbitrary Modulus Counters

What is the Modulus of a Counter?

Counter Modulus

- The number of states a counter sequences through before repeating is the modulus of the counter
 - An *n*-bit counter counting from 0 to $2^n 1$ has a modulus of 2^n
- A counter of modulus k is also called a modulo k or mod k counter
- Counters studied so far have a modulus of 2ⁿ
- How to construct counters whose modulus is not 2^n ?

COUNTERS - 2 Arbitrary Modulus Counter

- Suppose we want a modulus k incrementing counter that counts from 0 to k-1
- Select value n such that $2^{n-1} < k < 2^n$
- Start with an n-bit (modulus 2ⁿ) incrementing counter
- Two things are required:
 - ightharpoonup Ability to detect when the count value has reached k-1
 - Ability to reset the count value to 0 when above happens

Arbitrary Modulus Counter

- Counter value can be reset to 0 if D flip-flops with reset are used
- An AND gate can be used to detect when the count value becomes k-1
 - Some inputs may need to be inverted

Modulus 5 Incrementing Counter

 Count sequence: 000, 001, 010, 011, 100, 000, 001, ...

Arbitrary Modulus Counter

- Counter value can be reset to 0 if D flip-flops with reset are used
- An AND gate can be used to detect when the count value becomes k-1
 - Some inputs may need to be inverted

Modulus 5 Incrementing Counter

- Count sequence: 000, 001, 010, 011, 100, 000, 001, ...
- Since 2² < 5 < 2³, we start with a 3-bit incrementing counter

Arbitrary Modulus Counter

- Counter value can be reset to 0 if D flip-flops with reset are used
- An AND gate can be used to detect when the count value becomes k-1
 - Some inputs may need to be inverted

Modulus 5 Incrementing Counter

- Count sequence: 000, 001, 010, 011, 100, 000, 001, ...
- Since $2^2 < 5 < 2^3$, we start with a 3-bit incrementing counter
- D flip-flops with reset are used

Arbitrary Modulus Counter

- Counter value can be reset to 0 if D flip-flops with reset are used
- An AND gate can be used to detect when the count value becomes k-1
 - Some inputs may need to be inverted

Modulus 5 Incrementing Counter

- Count sequence: 000, 001, 010, 011, 100, 000, 001, ...
- Since $2^2 < 5 < 2^3$, we start with a 3-bit incrementing counter
- D flip-flops with reset are used
- AND gate used to detect count value 100 (k - 1)

Resettable Flip-Flop

Flip-flop with additional reset signal used to store 0 irrespective of the input

Resettable Flip-Flop

Flip-flop with additional reset signal used to store 0 irrespective of the input

Logic Diagram:

Resettable Flip-Flop

Flip-flop with additional reset signal used to store 0 irrespective of the input

Logic Diagram:

Symbol:

Resettable Flip-Flop

Flip-flop with additional **reset** signal used to store 0 irrespective of the input

Logic Diagram:

Symbol:

• At the rising edge of *clk*:

reset	d	q
0	0	0
0	1	1
1	0	0
1	1	0

Settable Flip-Flop

Flip-flop with additional set signal used to store 1 irrespective of the input

Settable Flip-Flop

Flip-flop with additional **set** signal used to store 1 irrespective of the input

Logic Diagram:

Settable Flip-Flop

Flip-flop with additional set signal used to store 1 irrespective of the input

Logic Diagram:

Symbol:

Settable Flip-Flop

Flip-flop with additional set signal used to store 1 irrespective of the input

Logic Diagram:

Symbol:

• At the rising edge of *clk*:

set	d	q
0	0	0
0	1	1
1	0	1
1	1	1

COUNTERS - 2 Ring Counter

 Counters constructed by connecting together flip-flops in closed loop, typically with a single 1 bit circulating among them, are called ring counters

COUNTERS - 2 Ring Counter

- Counters constructed by connecting together flip-flops in closed loop, typically with a single 1 bit circulating among them, are called ring counters
- Modulus of an *n*-bit ring counter is *n*

Ring Counter

- PES UNIVERSITY
- Counters constructed by connecting together flip-flops in closed loop, typically with a single 1 bit circulating among them, are called ring counters
- Modulus of an *n*-bit ring counter is *n*

Ring Counter

- PES UNIVERSITY
- Counters constructed by connecting together flip-flops in closed loop, typically with a single 1 bit circulating among them, are called ring counters
- Modulus of an *n*-bit ring counter is *n*

Also called "one-hot" counters (as in one-hot encoding)

Think About It

• What is the modulus of an *n*-bit Johnson counter?