MAT257 PSET 4—Question 1

Jonah Chen

October 15, 2021

(a) By 1-variable Fundamental Theorem of Calculus,

$$\partial_x f(x, y) = g(x + y)$$

 $\partial_y f(x, y) = g(x + y)$

(b)
$$\partial_x f(x,y) = g(x)$$
. Note that $\int_y^x g = -\int_x^y g$. Hence, $\partial_y f(x,y) = -g(y)$.

(c) Define $h(u)=\int_a^u g$ and k(x,y)=xy. Then, f(x,y)=h(k(x,y)) By chain rule,

$$\partial_x f(x,y) = h'(k(x,y)) \cdot \partial_x k = g(xy) \cdot y$$
$$\partial_y f(x,y) = h'(k(x,y)) \cdot \partial_y k = g(xy) \cdot x$$

(d) As f does not depend on x, $\partial_x f = 0$. For the y partial derivative, note that f(x,y) = h(h(y)) so $\partial_y f(x,y) = (h \circ h)'(y)$. By chain rule (single variable),

$$\partial_y f(x,y) = (h \circ h)'(y) = h'(h(y)) \cdot h'(y) = g(h(y)) \cdot g(y) = g\left(\int_b^y g\right) \cdot g(y)$$