2D fluid beam couple by SPH and FEM

Zhengjiang Li

1 system governing equation

In this couple system, the self-dependent variable are particles' velocity vector v(x, y, t) and FEM node position vector w(x, t). so system governing equations are:

$$\rho \dot{v} = \nabla \sigma + g + f^{s2f}$$

$$\rho \frac{\partial^2 w}{\partial t^2} + \frac{\partial^2}{\partial x^2} (EI \frac{\partial^2 w}{\partial x^2}) - N(x, t) \frac{\partial^2 w}{\partial x^2} = q(x, t)$$

where N(x,t) is the normal force. defined as $N(x,t) = EA\epsilon(x,t)$ q(x,t) is the average traction of nodal force from fluid to structural f^{f2s} .

$$\int_{0}^{L} q(x,t)dx = \sum_{i=1}^{np} f_{i}^{f2s}$$
 (1a)

$$q_i = \frac{f_i + f_{i+1}}{2l_e}, \ 1 < i < np$$
 (1b)

$$q_1 = (f_1 + f_2/2)/l_e \tag{1c}$$

$$q_{np} = (f_{np-1}/2 + f_{np})/l_e \tag{1d}$$

where q(x,t) is the equivalent distributed traction, and np is the number of interface nodes. q_i stands for a constant traction on an element length.

The two equations are coupled by f^{s2f} and f^{f2s} . as one FEM node correspond to multi fluid particles, while each fluid particles correspond to at most 2 FEM node, so these two forces are actually not equivalent.

Note in this simple case, all beam nodes play dual-roles as FEM node as well as interface nodes. One way is to set interface node - fluid particle Pair $\langle i, I \rangle$, here i stands for fluid particle, and I stands for interface node, which obtain:

$$f^{s2f} = \sum_{:} repulse_force(< i, I >)$$

$$f^{f2s} = \sum_{I} -repulse_force(< i, I >)$$

2 weak form of structural governing equation

1. kinematic equation

An accurate 2D kinemtic relationship is, details in [?, p. 215]

$$U = u - z\sin\theta \tag{2a}$$

$$W = w - z(1 - \cos \theta) \tag{2b}$$

here, u, w are displacements of neutral axis, and θ is rotational angle of an arbitrary cross-section.

2. displacemnt-strain equation

taking derivative of kinematic equation, in terms of x, y respectively:

$$U_{,x} = u_{,x} - z\theta_{,x}\cos\theta\tag{3a}$$

$$U_{z} = -\sin\theta \tag{3b}$$

$$W_{,x} = w_{,x} - z\theta_{,x}\sin\theta\tag{3c}$$

$$W_{,z} = -(1 - \cos \theta) \tag{3d}$$

here we still adopt Euler-Boulluni Assumption, that the cross-section plane keep straight and vertical to neutral axis before and after deformation.

Giving Green-Lagrangian strain:

$$E_{xx} = U_{,x} + (U_{,x}^2 + W_{,x}^2)/2 = u_{,x} - z\theta_{,x}\cos\theta = u_{,x} + (u_{,x}^2 + w_{,x}^2)/2 + z^2\theta_{,x}^2/2 - z\theta_{,x}$$
 (4a)

$$E_{xz} = U_{,x} + W_{,x} + U_{,x}U_{,z} + W_{,x}W_{,z} = 0$$
 (4b)

$$E_{zz} = W_{,z} + (U_{,z}^2 + W_{,z}^2)/2 = 0$$
 (4c)

3. virtual work and weak form

3.1 virtual work

In finite deformation theory, Green-Lagrangian Strain E_{xx} is energy-conjugate couple correspond to Second Piola-Kirchhoff stress S_{xx} . so the internal force virtual work is

$$\delta W^{in} = \int (S_{xx} \delta E_{xx}^T) dx = \int (E_{xx} E \delta E_{xx}^T) dx$$

where E is the linear elastic constant constitution module.

$$\delta W^{out} = \int -\rho \ddot{\delta w} + q \delta w dx$$

3.2 weak form from balance equation

Consider Green-Lagrangian Strain as before, and multiply δv at both side of balance equation, and integration on the whole beam, we obtain the weak form:

$$\int (EI\frac{d^2\delta v}{dx^2}\frac{d^2w}{dx^2} + \rho \ddot{w}\delta v + N^L\frac{dw}{dx}\frac{d\delta v}{dx})dx = \int q\delta v dx - v(0)Q(0) + \frac{dv}{dx}|_{x=0}M(0) + v(L)Q(L) - \frac{dv}{dx}|_{x=L}M(L) + N^L\frac{dw}{dx}\frac{d\delta v}{dx} + \frac{dw}{dx}\frac{d\delta v}{dx} + \frac{dw}{dx}\frac{d\phi}{dx} + \frac{d$$

consider boundary condition: $\delta v(0) = \frac{\delta v}{dx} = M(L) = Q(L) = \frac{\partial w}{\partial x}|_{x=0} = 0$, so the weak form above is:

$$\int (EI\frac{d^2\delta v}{dx^2}\frac{d^2w}{dx^2} + \rho\ddot{w}\delta v + N^L\frac{dw}{dx}\frac{d\delta v}{dx})dx = \int q\delta v dx + N^L\frac{dw}{dx}v_|x = L$$

4. matrix approximation

virtual work equation above is easy to implement based on Timoshenko Beam Assumption; and weak form from balance equation is based on Euler-Boulluni Beam Assumption. so we can use either linear interpolations for u, w, θ as TB or linear interpolation for u and Hermite interpolation for w as EB.

Since only lateral deflection is obvious, an even simpler implementation here is to let $u_{,x}=0$, namely ignore axial displacement of neutral axis. And $z^2\theta_{,x}^2=o(dx^2)$.

For large rotation, Timonshenko Theory is better, and it's easy to implement on both Total Langrange Method and Update Langrange Method. While Euler-Boulluni Theory is an good approximate, but strict to UL implementation.

in the following, we will introduce these two ways.

4.1 EU Beam element

Hermite Interpolation:

$$w(x,t) = w_1(t)\phi_1(x) + \theta_1(t)\phi_2(x) + w_2(t)\phi_3(x) + \theta_2(t)\phi_4(x)$$

Define master element on length l_e with coordinate ξ , ranging from [-1,1]

$$\phi_1(x) = \frac{1}{4}(1-\xi)^2(2+\xi)$$

$$\phi_2(x) = \frac{l_e}{8}(1-\xi)^2(1+\xi)$$

$$\phi_3(x) = \frac{1}{4}(1+\xi)^2(2-\xi)$$

$$\phi_4(x) = \frac{l_e}{8}(1+\xi)^2(\xi-1)$$

define $[w_1, \theta_1, w_2, \theta_2] = [\Delta_1, \Delta_2, \Delta_3, \Delta_4]$

from master element to physical element we need define an Jacobian Transformation, which is simple for 2-node beam element as $x = \frac{l_e}{2}(\xi + 1)$

$$J = \frac{\partial \xi}{\partial x} = 2/l_e$$

in an element, the following satisfy:

$$\sum_{i=1}^{4} \sum_{j=1}^{4} \left(\int_{-1}^{1} (EI \frac{d^2 \phi_i}{dx^2} \frac{d^2 \phi_j}{dx^2} \Delta_j + \rho \frac{d^2 \Delta_j}{dt^2} \phi_i \phi_j + N^L \frac{d \phi_i}{dx} \frac{d \phi_j}{dx} \Delta_j \right) dx \right) = \int_{-1^1} \phi_i q(x,t) dx$$

From local coordinate system to global coordinate system, we need define transformation matrix T

$$\left\{\begin{array}{c} w^l \\ \theta^l \end{array}\right\} = \begin{bmatrix} \cos \varphi & 0 \\ 0 & 1 \end{bmatrix} \left\{\begin{array}{c} w^g \\ \theta^g \end{array}\right\}$$

Define element stiff matrix, element mass matrix and element force as:

$$k^{e} = \sum_{i=1}^{4} \sum_{j=1}^{4} \left(\int_{x_{i}}^{x_{i+1}} \left(EI \frac{d^{2}\phi_{i}}{dx^{2}} \frac{d^{2}\phi_{j}}{dx^{2}} \Delta_{j} + N^{L} \frac{d\phi_{i}}{dx} \frac{d\phi_{j}}{dx} \Delta_{j} \right) dx \right)$$
 (5a)

$$m^{e} = \sum_{i=1}^{4} \sum_{j=1}^{4} \left(\int_{x_{i}}^{x_{i+1}} \rho \frac{d^{2} \Delta_{j}}{dt^{2}} \phi_{i} \phi_{j} dx \right)$$
 (5b)

$$f^{e} = \sum_{i=1}^{4} \left(\int_{x_{i}}^{x_{i+1}} \int_{x_{i}}^{x_{i+1}} \phi_{i} q(x, t) dx \right)$$
 (5c)

Assembly up, we obtain the whole structural system Matrix Format:

$$\sum_{ne} T^T m^e T\{\ddot{\Delta}\} + \sum_{ne} T^T k^e T\{\Delta\} = \sum_{ne} T^T f^e$$

where ne is the total number of elements, T is the transformation matrix.

Define global Mass Matrix, Stiff Matrix and Force Vector as

$$M = \sum_{ne} T^T m^e T$$

$$K = \sum_{ne} T^T k^e T$$

$$F = \sum_{ne} T^T f^e$$

4.2 Tm beam element

Interpolate w, θ respectively, linear shape function is easy but not gurantee strain continuity at node, as $E_{xx} = w_{,x}^2/2 - z\theta_{,x}$, both w, θ here have first derivatives. So the right thing is to construct shape function at least second order. So both w, θ need use Hermite shape function.

$$w = \sum_{i=1}^{4} \Delta_i N_i$$
$$\theta = \sum_{i=1}^{4} \theta_j N_j$$

where N is shape function same as EB beam element. Taken into virtural work.

note that $\delta E_{xx} = w_{,x} \delta w_{,x} - z \delta \theta_{,x}$, for nonlinear term $w_{,x}^2$, decompose it as $w_{,x}^L w_{,x}$, here $w_{,x}^L$ is known from last step.

the element stiff matrix

$$(w_{,x}^L)^2 \begin{bmatrix} \frac{\partial N_i}{\partial x} \\ \frac{\partial \phi_i}{\partial x} \end{bmatrix}^T \times \begin{bmatrix} \frac{\partial N_i}{\partial x} \\ \frac{\partial \phi_i}{\partial x} \end{bmatrix}$$

the element mass matrix and element force vector are same as EB beam element, and matrix assembly is same as EB.

3 SPH fluid equation

assuming weak-compressible, the mass conservation equation is

$$\frac{d\rho}{dt} = -\rho \nabla v$$

momentum equation is

$$\rho \frac{dv}{dt} = -\nabla P + \mu \Delta^2 v + g$$

To update pressure here, introduce $p - \rho$ relationship

$$p = c^2 \rho$$

where $c^2 = 100u^2$ is virtual sound speed.

For sph particle velocity vector:

$$\frac{du}{dt} = \sum_{i} m_i \left(\frac{\sigma_i}{\rho_i^2} + \frac{\sigma_j}{\rho_j^2}\right) \nabla w_{ij} + \sum_{i} \frac{m_j}{\rho_j} f_j^{s2f} w_{ij}$$

4 coupled system approximation

here use EB beam element

$$\begin{bmatrix} M & & 0 \\ 0 & & I \end{bmatrix} \left\{ \begin{array}{cc} \ddot{\Delta_J} \\ \dot{v} \end{array} \right\} + \begin{bmatrix} K & & 0 \\ 0 & & L \end{bmatrix} \left\{ \begin{array}{cc} \Delta_J \\ v \end{array} \right\} = \left\{ \begin{array}{cc} f^{f2s} \\ f^{s2f} \end{array} \right\}$$

5 Reference