MAT 228B Notes

Sam Fleischer

March 15, 2017

1 Flux Limiters

- Set $\tilde{u} = u_j^n + \sigma_j^n(x x_j)$.
- We have a lot of freedom over how we choose the slope on each cell.
- Consider the advection equation with a > 0.
- We compute the flux through the j-1/2 edge.

$$\begin{split} F_{j-1/2}^n &= \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} f(\tilde{u}(x_{j-1/2},t)) \mathrm{d}t \\ &= \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} a\tilde{u}(x_{j-1/2},t) \mathrm{d}t \\ &= \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} a \Big(u_{j-1}^n + \sigma_{j-1}^n \Big(x_{j-1/2} - a(t-t_n) - x_{j-1} \Big) \Big) \mathrm{d}t \\ &= a u_{j-1}^n + a \sigma_{j-1}^n \Big(\frac{\Delta x}{2} - a \frac{\Delta t}{2} \Big) \\ &= \underbrace{a u_{j-1}^n}_{\text{upwind flux}} + \underbrace{\frac{a}{2} (1 - \nu) \Delta x \sigma_{j-1}^n}_{\text{second-order correction}} \end{split}$$

where $\nu = \frac{a\Delta t}{\Delta x}$ is the Courant number.

• For Lax-Wendroff,

$$\Delta x \sigma_{j-1}^n = u_j - u_{j-1} = (\Delta u)_{j-1/2}$$

• For a positive or negative, we can write

$$F_{j-1/2}^n = F_{j-1/2}^{\text{up}} + \frac{|a|}{2} (1 - |\nu|) \delta_{j-1/2}^n$$

where $\delta^n_{j-1/2}$ is a limited difference that depends on the solution.

- We need a way to measure smoothness of the solution in order to decide δ .
- Introduce $\theta_{j-1/2}$ be a ratio of successive differences

$$\theta_{j-1/2} = \frac{\Delta u_{J_{\text{up}}-1/2}}{\Delta u_{j-1/2}}$$

where

$$J_{\rm up} = \begin{cases} j-1 & a > 0\\ j+1 & a < 0 \end{cases}$$

1

• For smooth functions away from extreme points, we expect $\theta \approx 1$.

• Now we let

$$\delta_{j-1/2}^n = \phi(\theta_{j-1/2})(\Delta u)_{j-1/2}$$

and ϕ is called the flux limiter function.

- What are good choices of ϕ ?
 - If $\phi = 0$ we get upwinding.
 - If $\phi = 1$ we get Lax-Wendroff.
 - If $\phi(\theta) = \theta$ we get Beam Warming
 - "High resolution schemes" minmod: $\phi(\theta) = \min \text{minmod}(1, \theta)$. This picks between the above three. The problem is that this is really diffusive.
 - We have the "monotonized-centered" (MC) flux limiter $\phi(\theta) = \max(0, \min(\frac{1+\theta}{2}, 2, 2\theta))$. This is less diffusive.
 - Superbee: $\phi(\theta) = \max(0, \min(1, 2\theta), \min(2, \theta))$. This is the most sharpening.
 - Van Leer: $\phi(\theta) = \frac{\theta + |\theta|}{1 + |\theta|}$.

2 Simulations

- Upwinding had diffusion but small phase error
- Lax Wendroff has bad (negative) phase error for hogh frequencies with little diffusion.
- Beam Warming has bad (positive) phase error for high frequencies with little diffusion.
- Minmod has much less diffusion than upwinding, very little phase error. The most diffusive of the "high resolution schemes."
- MC limiter has even less diffusion than minmod. Also very little phase error.
- Superbee looks amazing. It preserves sharpness the best. The problem is that superbee sharpens smooth things that shouldn't be sharp. We saw that after testing for 10 periods.
- Van Leer is the most general "middle of the road" limiter function.

All of the high resolution methods are designed to be second-order on smooth data and to avoid introducing unphysical oscillations.

3 Total Variation

The total variation of a grid function

$$TV(\underline{u}) = \sum_{j} |u_{j+1} - u_{j}|$$

The total variation of a differentiable function f is

$$TV(f) = \int_{a}^{b} |f'(x)| dx$$

So f(x) = 0 is no variation. $f(x) = \sin(0.1x)$ is small variation. $f(x) = \sin(10x)$ is high variation. Let $f_k(x) = e^{ikx}$ on $[0, 2\pi)$. Then

$$TV(f_k) = \int_0^{2\pi} |ike^{ikx}| dx = 2\pi |k|$$

Next class we will derive the hig-res schemes as natural ways to reduce total variation in time.