Problem 1 (28a). Use the Mayer-Vietoris sequence to compute the homology groups of the spa	ice
obtained from a torus $S^1 \times S^1$ by attaching a Möbius band via a homeomorphism from the bounda	iry
circle of the Möbius band to the circle $S^1 \times \{x_0\}$ in the torus.	

Proof.

Problem 2 (29). The surface M_g of genus g, embedded in \mathbb{R}^3 in the standard way, bounds a compact region R. Two copies of R, glued together by the identity map between boundary surfaces M_g , form a closed 3-manifold X. Compute the homology groups of X into two copies of R. Also compute the relative groups $H_i(R, M_g)$.

 \square

Problem 3 (30). For the mapping torus T_f of a map $f: X \to X$, we constructed in Example 2.48 a long exact sequence

$$\cdots \longrightarrow H_n(X) \xrightarrow{\operatorname{id} - f_*} H_n(X) \longrightarrow H_n(T_f) \longrightarrow H_{n-1}(X) \longrightarrow \cdots$$

Use this to compute the homology of the mapping tori of the following maps:

- (a) A reflection $S^2 \to S^2$
- (b) A map $S^2 \to S^2$ of degree 2.
- (c) The map $S^1 \times S^1 \to S^1 \times S^1$ that is the identity on one factor and a reflection on the other.
- (d) The map $S^1 \times S^1 \to S^1 \times S^1$ that is a reflection on each factor.
- (e) The map $S^1 \times S^1 \to S^1 \times S^1$ that interchanges the two factors and then reflects one of the factors.

Proof.