Lessons 24 + 25. The Simplex Method

1 Review

- Given an LP with n decision variables, a solution \mathbf{x} is **basic** if:
 - (a) it satisfies all equality constraints
 - (b) at least n linearly independent constraints are active at \mathbf{x}
- A basic feasible solution (BFS) is a basic solution that satisfies all constraints of the LP
- Canonical form LP:

$$\begin{array}{ll}
\text{maximize} & \mathbf{c}^\mathsf{T} \mathbf{x} \\
\text{subject to} & A\mathbf{x} = \mathbf{b} \\
\mathbf{x} \ge \mathbf{0}
\end{array}$$

- \circ m equality constraints and n decision variables (e.g. A has m rows and n columns).
- Standard assumptions: $m \leq n$, rank(A) = m
- If \mathbf{x} is a basic solution of a canonical form LP, there exist m basic variables of \mathbf{x} such that
 - (a) the columns of A corresponding to these m variables are linearly independent
 - (b) the other n-m nonbasic variables are equal to 0
- The set of basic variables is the **basis** of **x**

2 Overview

- General improving search algorithm
 - 1 Find an initial feasible solution \mathbf{x}^0
 - 2 Set t = 0
 - 3 while \mathbf{x}^t is not locally optimal do
 - Determine a simultaneously improving and feasible direction \mathbf{d} at \mathbf{x}^t
 - 5 Determine step size λ
 - 6 Compute new feasible solution $\mathbf{x}^{t+1} = \mathbf{x}^t + \lambda \mathbf{d}$
 - 7 Set t = t + 1
 - 8 end while
- The **simplex method** is a specialized version of improving search
 - o For canonical form LPs
 - Starts at a BFS in Step 1
 - Considers directions that point towards other BFSes in Step 4
 - Takes the maximum possible step size in Step 5

Example 1. Throughout this lesson, we will use the canonical form LP below:

maximize
$$13x + 5y$$

subject to $4x + y + s_1 = 24$
 $x + 3y + s_2 = 24$
 $3x + 2y + s_3 = 23$
 $x, y, s_1, s_2, s_3 \ge 0$

3 Initial solutions

• For now, we will start by guessing an initial BFS

Example 2. Verify that $\mathbf{x}^0 = (0, 0, 24, 24, 23)$ is a BFS with basis $\mathcal{B}^0 = \{s_1, s_2, s_3\}$.

4 Finding feasible directions

- Two BFSes are adjacent if their bases differ by exactly 1 variable
- Suppose \mathbf{x}^t is the current BFS with basis \mathcal{B}^t
- \bullet Approach: consider directions that point towards BFSes adjacent to \mathbf{x}^t
- To get a BFS adjacent to \mathbf{x}^t :
 - \circ Put one nonbasic variable into \mathcal{B}^t
 - \circ Take one basic variable out of \mathcal{B}^t
- Suppose we want to put nonbasic variable y into \mathcal{B}^t
- This corresponds to the simplex direction \mathbf{d}^y corresponding to nonbasic variable y
- \mathbf{d}^y has a component for every decision variable

$$\circ$$
 e.g. $\mathbf{d}^y = (d_x^y, d_y^y, d_{s_1}^y, d_{s_2}^y, d_{s_3}^y)$ for the LP in Example 1

• The components of the simplex direction \mathbf{d}^y corresponding to nonbasic variable y are:

$$\circ d_y^y = 1$$

- $\circ d_z^y = 0$ for all other nonbasic variables z
- $\circ d_w^y$ (uniquely) determined by $A\mathbf{d} = \mathbf{0}$ for all basic variables w
- \bullet Why does this work? Remember for LPs, **d** is a feasible direction at **x** if

$$\mathbf{a}^{\mathsf{T}}\mathbf{d} \left\{ \begin{array}{l} \leq \\ \geq \\ = \end{array} \right\} 0$$
 for each active constraint of the form $\mathbf{a}^{\mathsf{T}}\mathbf{x} \left\{ \begin{array}{l} \leq \\ \geq \\ = \end{array} \right\} b$

• Each nonbasic variable has a corresponding simplex direction

Example 3. The basis of the BFS $\mathbf{x}^0 = (0, 0, 24, 24, 23)$ is $\mathcal{B}^0 = \{s_1, s_2, s_3\}$. For each nonbasic variable, x and y, we have a corresponding simplex direction. Compute the simplex directions \mathbf{d}^x and \mathbf{d}^y .

5 Finding improving directions

- Once we've computed the simplex direction for each nonbasic variable, which one do we choose?
- We choose a simplex direction **d** that is improving
- Recall that if $f(\mathbf{x})$ is the objective function, d is an improving direction at \mathbf{x} if

$$\nabla f(\mathbf{x})^\mathsf{T} \mathbf{d} \begin{cases} > 0 & \text{when maximizing } f \\ < 0 & \text{when minimizing } f \end{cases}$$

- For LPs, $f(\mathbf{x}) = \mathbf{c}^\mathsf{T} \mathbf{x}$, and so $\nabla f(\mathbf{x}) = \mathbf{c}$ for any \mathbf{x}
- \bullet The **reduced cost** associated with nonbasic variable y is

$$\bar{c}_y = \mathbf{c}^\mathsf{T} \mathbf{d}^y$$

where \mathbf{d}^y is the simplex direction associated with y

• The simplex direction \mathbf{d}^y associated with nonbasic variable y is improving if

$$\bar{c}_y \begin{cases} > 0 & \text{for a maximization LP} \\ < 0 & \text{for a minimization LP} \end{cases}$$

Example 4. Consider the BFS $\mathbf{x}^0 = (0, 0, 24, 24, 23)$ with basis $\mathcal{B}^0 = \{s_1, s_2, s_3\}$. Compute the reduced costs \bar{c}_x and \bar{c}_y for nonbasic variables x and y , respectively. Are \mathbf{d}^x and \mathbf{d}^y improving?	
reduced costs c_x and c_y for nonbasic variables x and y , respectively. Are \mathbf{u}^- and \mathbf{u}^- improving:	
• If there is an improving simplex direction, we choose it	
• If there is more than 1 improving simplex direction, we can choose any one of them	
 One option – Dantzig's rule: choose the improving simplex direction with the m improving reduced cost (maximization LP – most positive, minimization LP – m negative) 	
• If there are no improving simplex directions, then the current BFS is a glob optimal solution	
6 Determining the maximum step size	
• We've picked an improving simplex direction – how far can we go in that direction?	
$ullet$ Suppose \mathbf{x}^t is our current BFS, \mathbf{d} is the improving simplex direction we chose	
• Our next solution is $\mathbf{x}^{t+1} = \mathbf{x}^t + \lambda \mathbf{d}$ for some value of $\lambda \geq 0$	
• How big can we make λ while still remaining feasible?	
• Recall that we computed d so that $A\mathbf{d} = 0$	
• \mathbf{x}^{t+1} satisfies the equality constraints $A\mathbf{x} = \mathbf{b}$ no matter how large λ gets, since	
$A\mathbf{x}^{t+1} = A(\mathbf{x}^t + \lambda \mathbf{d}) = A\mathbf{x}^t + \lambda A\mathbf{d} = A\mathbf{x}^t = \mathbf{b}$	
• So, the only thing that can go wrong are the nonnegativity constraints	
\Rightarrow What is the largest λ such that $\mathbf{x}^{t+1} = \mathbf{x}^t + \lambda \mathbf{d} \geq 0$?	
Example 5. Suppose we choose the improving simplex direction $\mathbf{d}^x = (1, 0, -4, -1, 3)$. Comp the maximum step size λ for which $\mathbf{x}^1 = \mathbf{x}^0 + \lambda \mathbf{d}^x$ remains feasible.	

ullet Note that only negative components of ${f d}$ determine maximum step size:

(nonnegative number) +
$$\lambda d \stackrel{?}{\geq} 0$$

• The **minimum ratio test**: starting at the BFS **x**, if any component of the improving simplex direction **d** is negative, then the maximum step size is

$$\lambda_{\max} = \min\left\{\frac{x_j}{-d_j} : d_j < 0\right\}$$

Example 6. Verify that the minimum ratio test yields the same maximum step size you found in Example 5.

- What if **d** has no negative components?
- For example:
 - Suppose $\mathbf{x}^0 = (0, 0, 1, 2, 3)$ is a BFS
 - \circ **d** = (1,0,2,4,3) is an improving simplex direction at **x**
 - Then the next solution is

$$\mathbf{x}^1 = \mathbf{x}^0 + \lambda \mathbf{d} = (\lambda, 0, 1 + 2\lambda, 2 + 4\lambda, 3 + 3\lambda)$$

- $\circ \mathbf{x}^1 \ge 0 \text{ for all } \lambda \ge 0!$
- We can improve our objective function and remain feasible forever!
- \Rightarrow The LP is unbounded
- Test for unbounded LPs: if all components of an improving simplex direction are nonnegative, then the LP is unbounded

7 Updating the basis

- We have our improving simplex direction d and step size λ_{max}
- We can compute our new solution $\mathbf{x}^{t+1} = \mathbf{x}^t + \lambda_{\max} \mathbf{d}$
- We also update the basis: update the set of basic variables

Example 7. Compute \mathbf{x}^1 . What is the basis \mathcal{B}^1 of \mathbf{x}^1 ?

• Entering and leaving variables

- The nonbasic variable corresponding to the chosen simplex direction enters the basis and becomes basic: this is the **entering variable**
- Any <u>one</u> of the basic variables that define the maximum step size leaves the basis and becomes nonbasic: this is the **leaving variable**

8 Putting it all together: the simplex method

- **Step 0: Initialization.** Identify a BFS \mathbf{x}^0 . Set solution index t = 0.
- Step 1: Simplex directions. For each nonbasic variable y, compute the corresponding simplex direction \mathbf{d}^y and its reduced cost \bar{c}_y .
- Step 2: Check for optimality. If no simplex direction is improving, stop. The current solution \mathbf{x}^t is optimal. Otherwise, choose any improving simplex direction \mathbf{d} . Let x_e denote the entering variable.
- Step 3: Step size. If $d \ge 0$, stop. The LP is unbounded. Otherwise, choose the leaving variable x_{ℓ} by computing the maximum step size λ_{\max} according to the minimum ratio test.
- Step 4: Update solution and basis. Compute the new solution $\mathbf{x}^{t+1} = \mathbf{x}^t + \lambda_{\max} \mathbf{d}$. Replace x_{ℓ} by x_e in the basis. Set t = t + 1. Go to Step 1.