

Design of Embedded System

Mars Rover Project Report

Luca Poli[1124244], Razvan Potcoveanu[1123076]

Version: 1.0.1

Table of Contents

1. Planning	3
1.1 Requirements	
1.1.1 Definition	
1.1.2 Timetable	
1.2 Sensors/Actuators Mapping	

1. Planning

1.1 Requirements

1.1.1 Definition

Group	Code	Priority	Description		
	F_SFT	М	The rover shall perform any mission safely (without falling of the edge or getting stuck in the lakes)		
	F_MSQ	М	The rover shall perform the missions in sequential order (from the first)		
	F COL	M	The rover shall be able to detect, find or avoid colors		
	F DIS	M	The rover shall be able to detect distant objects		
Functionality	F_IMP	М	The rover shall be able to detect impact with other objects		
	F_ARM	М	The rover shall be able to use the measurement arm		
	F_POB	S	The rover shall be able to push another object		
	F_FED	S	The rover shall give feedback (led or sound) on mission complete or errors		
	F_PRK	С	The rover shall be able to park		
	F_DNS	W	The rover shall be able to dance and sing		
	U_NHM	М	The rover shall perform any mission without human interaction		
Lloobility.	U_ELG	М	The user shall be able to see the error log		
Usability	U_ALG	S	The rover shall keep an activity log		
	U_TLG	С	The rover shall keep track of time required for a mission		
	R_ESR	М	The rover shall stop and restart after a critical error		
Reliability	R_BRC	М	After a Bluetooth connection lost, the rover shall try to reconnect		
-	R_SER	М	The rover shall be able to work normally even with some sensors read errors		
Performance	P_CTM	М	The rover shall be able to perform the missions in a reasonable time		
	P_BCM	М	The two bricks shall respond to each other's instructions immediately		
	P_TPR	М	The rover shall response to trigger in order of their priority		
	P_IEL	S	The rover shall log the errors immediately		
	P_EFM	W	The rover shall perform the missions in an efficient way		
Supportability	S_COL	М	The user shall be able to configure the colors to detect (and how to react to them)		
	S_MSP	S	The user shall be able to configure the speed of the motor		
	S_ARM	S	The user shall be able to configure on which objects the rover has to use the measurement arms		
	S_MOV	С	The user shall be able to configure the movement actions parameters (angle to turn, distance,)		

	1	1	
	S_FED	С	The user shall be able to configure the missions feedback
	S_POB	С	The user shall be able to configure which objects the rover has to move
	S_FSN	W	The user shall be able to add and use custom sounds for feedback
DSL	D_MIS	М	The user shall be able to define missions using the DSL
	D_VAL	М	The user shall be able to give their own values to specific parameters
	D_BLU	М	The user shall be able to specify the MAC address for the server
	D_NEW	М	The user shall be able to define their own missions
	D_ERR	М	The DSL shall check that the instance provided by the user is correct
	D_GEN	М	A valid DSL instance shall generate correct Python code
	D_FED	М	The DSL shall give feedback regarding the correctness of the provided instance
	D_ESY	М	The DSL shall be easy to use and understand for the user

The intended users for our DSL are high school students. They should be able to define mission specifying behaviors to follow and tasks to complete. For example they could define the following missions with a DSL instance:

- 1. Exploring The rover will move around the table and perform user-defined actions.
- 2. Obstacle avoidance The rover will navigate on a board with obstacles while avoiding collisions.
- 3. Sample Collection The rover will navigate and collect samples from the environment.

If the provided DSL instance passes validation, two Python files will be generated. The Python files will have to be uploaded on the EV3 Bricks, according to the MAC address specified in the instance.

1.1.2 Timetable

Week number	Activities
0: 22/11 – 27/11	Requirements definition and planning; Sensor/actuators mapping;
	DSL TypePal refactor; Refine of DSL grammar
1: 29/11 – 05/12	Basic must have functionalities [F_SFT, F_COL, F_DIS, F_IMP,
	F_ARM, U_NHM, U_ELG, R_SER, S_COL]. DSL functionalities
	[D_MIS, D_VAL, D_BLU, D_NEW, D_ERR, D_GEN, D_FED, D_ESY]
2: 06/12 – 12/12	Test and refine of implementation of F_SFT; Finish implementation of
	previous functionalities; Implementation of [F_MSQ, F_POB, F_FED,
	R_ESR, R_BRC, P_CTM, P_BCM, U_ALG]
3: 13/12 – 19/12	Finish implementation of previous functionalities; Implementation of
	[P_TPR, P_IEL, S_MSP, S_ARM, S_MOV, F_PARK]

4: 20/12 – 26/12	Finish implementation of previous functionalities; Implementation of
	[P_IEL, S_MOV, S_FED, S_POB, U_TLG]
5: 27/12 – 02/01	Finish implementation of previous functionalities; Implementation of
	[S_FSN, P_EFM, F_DNS]
6: 03/01 – 09/01	Testing and refining

1.2 Sensors/Actuators Mapping

Port	EV3 brick (server / left)	Port	EV3 brick (client / right)
S1	CL	S1	TL
S2	СМ	S2	TR
S3	CR	S3	ТВ
S4	UB	S4	UF
Α	ML	Α	
В	MR	В	
С	M	С	