## STAT 628 Module 2 Presentation-1

Group 6: Qizheng Ren, Hanmo Li, Lixia Yi, Jiacheng Xu

# WHAT TO VECTOR

#### Data Overview

- General Idea: Word frequency in reviews differ
- Example:

5 stars and 1 star reviews have different word frequencies





# HOW TO VECTOR

#### Extract information from reviews

- Bag of Words
  - Sparse matrix of word frequency

#### Extract information from reviews

- Dimension reduction
  - Word2Vec
  - K-means
- Reduce dimension from 210,000 to 1000

#### Extract information from reviews

- Self-defined emotion score
  - Multiply lexicon scores with the weights from TF-IDF
  - positive and negative degree of reviews

#### Factor Variables

- There are 6 factor variables which maybe be useful
  - "name", "time", "city", "longitude", "latitude" and "category"
- Make them interpretable for machine to fit model
- Transform them into (0,1) matrices

#### Category to Sparse Matrix

- Under "Restaurant" category, there are 154 different subcategories
- There is not only "Restaurant"
- "Restaurant" tag it won't be included in (0,1) matrix
- Then we create a category matrix with 154 columns
- Example: ['Burgers', 'Fast Food', 'Restaurants']

| Afghan | ••••• | Burgers | ••••• | Fast Food | ••••• |
|--------|-------|---------|-------|-----------|-------|
| 0      | 0     | 1       | 0     | 1         | 0     |

## Date & Location to Sparse Matrix

- Similar transformation for date & location data
- Matrix columns are year (2005-2017), month (1-12), day (1-31), week (1-53)
- Example: 2017-01-15



## Date & Location to Sparse Matrix

- Unique longitude and latitude determine name and city for that restaurant
- 43035 different locations, encode them from 0 to 43034
- Example

| index | stars | name       | text      | date  | city      | longitude   | latitude  | category |
|-------|-------|------------|-----------|-------|-----------|-------------|-----------|----------|
| 1     | 1     | McDonald's |           | ••••• | Glendale  | -112.205020 | 33.509597 |          |
| 2     | 1     | McDonald's | • • • • • |       | Las Vegas | -115.256458 | 36.181713 |          |

| index | 0 | 1 | ••••• |
|-------|---|---|-------|
| 1     | 1 | 0 | 0     |
| 2     | 0 | 1 | 0     |

# VECTOR TO WHAT

#### Analysis Plan

- Feature Selection
- Model Selection
- Parameters Tuning
- "Deep Learning"

•

### Step1: Feature Selection

• Feature importance

- Feature combination
  - Among reviews; time; categories...

#### Step2: Model Selection

- Linear Regression
- Support Vector Machine
- Random Forest
- eXtreme Gradient Boosting (XGBoost)

•

## Step3: Parameters Tuning

- Random forest
  - max depth, number of trees...
- Linear Regression
  - L1&L2 regularization...

## Step4: "Deep Learning"

- Fetch deep patterns
  - dependent syntax; set phrase

# Thank you!