Linear Model

Alymzhan Toleu

alymzhan.toleu@gmail.com

Linear Model

Classification

Regression

A linear model specifies a linear relationship between a dependent variable (Y/f(x)) and d independent variables (X):

$$f(x) = w_1 x_1 + w_2 x_2 + \ldots + w_d x_d + b$$

Vectorization: $f(x) = w^{T}x + b$

Linear Regression

Trainning set

S	Size in feet ² (x)	Price (\$) in 1000's (y)	Supervised Learning	
	2104	460		
	1416	232	Given the "real	
	1534	315	value" for each	
852		178	example.	
	500		$f(x) = w_1 x_1 + b$	
	400	× × × × ×	Regression Problem	
:	300	$\times \times $	Predict real-valued	
Price	200 ×	output		
	100			
	0			

Size (feet²)

Linear Regression with One Variable

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	•••

Hypothesis/Model: $y \approx f_{\theta}(x) = w_1 x_1 + b$

Parameters are: $\theta = \{w_1, b\}$

How to choose θ ?

Linear Regression: Example

Hypothesis/Model: $f_{\theta}(x) = w_1 x_1 + b$ Parameters: $\theta = \{w_1, b\}$

Idea: Choose $\theta = \{w_1, b\}$ so that $f_{\theta}(x)$ is close to y for our training examples (x, y).

Linear Regression: Example

Hypothesis/Model: $f_{\theta}(x) = w_1 x_1 + b$

Parameters: $\theta = \{w_1, b\}$

Cost Function:

Size in feet ² (x)		Price (\$) in 1000's (y)	
	2104	460	
	1416	232	
m_	1534	315	
	852	178	
	•••	• • •	

$$E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Goal: minimize $E(\theta)$

$$f_{\theta}(x)$$
 Vs. $E(\theta)$

Simple hypothesis : $f_{\theta}(x) = w_1 x_1$ (ignoring parameter b)

$$E(w_1=1) = \frac{1}{2m}[(1-1)^2 + (2-2)^2 + (3-3)^2] = 0$$

$$E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$f_{\theta}(x)$$
 Vs. $E(\theta)$

Simple hypothesis : $f_{\theta}(x) = w_1 x_1$ (ignoring parameter b)

$$E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$E(w_1=0.5) = \frac{1}{2m} [(0.5-1)^2 + (1-2)^2 + (1.5-3)^2] = 0.548$$

$$f_{\theta}(x)$$
 Vs. $E(\theta)$

Simple hypothesis : $f_{\theta}(x) = w_1 x_1$ (ignoring parameter b)

$$E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$E(w_1=0) = \frac{1}{2m} [(0-1)^2 + (0-2)^2 + (0-3)^2] \approx 2.3$$

Choose parameter θ that minimizes cost function $E(\theta)$, which corresponds to finding a straight line that fits the data well.

Example: House price prediction

Hypothesis: $f_{\theta}(x) = 0.05x_1 + 50$

Parameters: $\theta = \{w_1, b\}$

How to plot the $E(\theta)$?

Cost Function: $E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\theta}(x^{(i)}) - y^{(i)})^2$

Goal: minimize $E(\theta)$

Hypothesis: $f_{\theta}(x) = w_1 x_1 + b$

Parameters: $\theta = \{w_1, b\}$

Cost Function: $E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\theta}(x^{(i)}) - y^{(i)})^2$

Goal: minimize $E(\theta)$

$$f_{\theta}(x) = w_1 x_1 + b$$

(for fixed $\theta = \{w_1, b\}$, this is a function of x)

$$E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$f_{\theta}(x) = w_1 x_1 + b$$

(for fixed $\theta = \{w_1, b\}$, this is a function of x)

$$f_{\theta}(x) = 0x_1 + 370$$

$$E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$f_{\theta}(x) = w_1 x_1 + b$$

(for fixed $\theta = \{w_1, b\}$, this is a function of x)

$$E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$f_{\theta}(x) = w_1 x_1 + b$$

(for fixed $\theta = \{w_1, b\}$, this is a function of x)

$$E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Gradient descent

Hypothesis: $f_{\theta}(x) = w_1 x_1 + b$

Parameters: $\theta = \{w_1, b\}$

Cost Function: $E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\theta}(x^{(i)}) - y^{(i)})^2$

Goal: minimize $E(\theta)$

Steps:

- Start with some $\theta = \{w_1, b\}; e.g. w_1 = 0, b = 0.$
- Keep changing θ to reduce $E(\theta)$ until end up at a minimum.

Intuition picture of gradient descent

Starting at some points on the surface of this fucntion.

Take a step in the direction of steepest descent.

Each step changes parameter θ to reduce $E(\theta)$ until end up at a local minimum.

Intuition picture of gradient descent

Starting at another point on the surface of this fucntion. Each step changes parameter θ to reduce $E(\theta)$ until end up at a local minimum. There are many local minimums.

Gradient descent algorithm

Repeat until convergence

- Simultaneous update
- Learning rate
 - α determines the step size at each iteration while moving toward a minimum of a cost function.
 - If α is too small, gradient descent can be slow;
 - If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.
- Gradient descent can converge to a local minimum, even with the learning rate α fixed.

Gradient descent for linear regression

Hypothesis:

$$f(x) = wx_i + b$$
 $f(x_i) \simeq y_i$

Cost Function:
$$(w^*, b^*) = \underset{(w,b)}{\operatorname{arg \, min}} \sum_{i=1}^{\infty} (f(x_i) - y_i)^2$$

= $\underset{(w,b)}{\operatorname{arg \, min}} \sum_{i=1}^{m} (y_i - wx_i - b)^2$

Minimize:

$$E(\theta) = E_{(w,b)} = \sum_{i=1}^{m} (y_i - wx_i - b)^2$$

Derivates

Finding partial derivates of function $E_{(w,b)}$ with two variables: w and b

$$\begin{split} \frac{\partial E_{(w,b)}}{\partial w} &= \frac{\partial}{\partial w} \left[\sum_{i=1}^{m} \left(y_i - w x_i - b \right)^2 \right] \\ &= \sum_{i=1}^{m} \frac{\partial}{\partial w} \left[\left(y_i - w x_i - b \right)^2 \right] \\ &= \sum_{i=1}^{m} \left[2 \cdot \left(y_i - w x_i - b \right) \cdot \left(-x_i \right) \right] \\ &= \sum_{i=1}^{m} \left[2 \cdot \left(w x_i^2 - y_i x_i + b x_i \right) \right] \\ &= 2 \cdot \left(w \sum_{i=1}^{m} x_i^2 - \sum_{i=1}^{m} y_i x_i + b \sum_{i=1}^{m} x_i \right) \\ &= 2 \left(w \sum_{i=1}^{m} x_i^2 - \sum_{i=1}^{m} \left(y_i - b \right) x_i \right) \end{split}$$

$$\frac{\partial E_{(w,b)}}{\partial b} = \frac{\partial}{\partial b} \left[\sum_{i=1}^{m} (y_i - wx_i - b)^2 \right]$$

$$= \sum_{i=1}^{m} \frac{\partial}{\partial b} \left[(y_i - wx_i - b)^2 \right]$$

$$= \sum_{i=1}^{m} \left[2 \cdot (y_i - wx_i - b) \cdot (-1) \right]$$

$$= \sum_{i=1}^{m} \left[2 \cdot (b - y_i + wx_i) \right]$$

$$= 2 \cdot \left[\sum_{i=1}^{m} b - \sum_{i=1}^{m} y_i + \sum_{i=1}^{m} wx_i \right]$$

$$= 2 \left(mb - \sum_{i=1}^{m} (y_i - wx_i) \right)$$

Gradient descent for linear regression

Hypothesis: $f_{\theta}(x) = w_1 x_1 + b$

Parameters: $\theta = \{w_1, b\}$

Cost Function:
$$E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: minimize $E(\theta)$

Repeat until convergence

$$\frac{\partial}{\partial \theta_j} E(\theta)$$

$$w_1 \coloneqq w_1 - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} [f_{\theta}(x^{(i)}) - y^{(i)}] x^{(i)} \right]$$

b :=
$$b - \alpha \frac{1}{m} \sum_{i=1}^{m} [f_{\theta}(x^{(i)}) - y^{(i)}]$$

update w_1 and b simultaneously

Linear Regression: Example

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178

starting point(can be random):

$$w = 0, b = 0$$

learning rate a = 0.5

max inter = 10

Normalizing & add a column with value one

Parameters: $\theta = \{w_1, b\}$

Estimation:
$$(\mathbf{w} = 0, \mathbf{b} = 0)$$
 Cost Function: $\mathbf{E}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\theta}(x^{(i)}) - y^{(i)})^2$

$$f_{\theta}(1) = (0 * 1 + 0) = 0$$

$$(0*1+0)=0$$

$$f_{\theta}(0.67) = (0 * 67 + 0) = 0$$

$$f_{\theta}(0.72) = (0 * 0.72 + 0) = 0$$

$$f_{\theta}(0.27) = (0 * 0.27 + 0) = 0$$

Cost:
$$E(\theta) = \frac{1}{2\pi 4} [(0 - 460)^2 + (0 - 232)^2 + (0 - 315)^2 + (0 - 178)^2] \approx 49541.62$$

Gradient:

$$w' = \frac{\partial E(\theta)}{\partial w} = \frac{1}{4} [(0 - 460) * 1 + (0 - 232) * 0.67 + (0 - 315) * 0.72 + (0 - 178) * 0.27] \approx -222.575$$

$$b' = \frac{\partial E(\theta)}{\partial h} = (\frac{1}{4})[(0 - 460) + (0 - 232) + (0 - 315) + (0 - 178)] \approx -296.25$$

Update:

$$w_1 \coloneqq w_1 - \alpha * w' = 0 - 0.5 * (-222.575) \approx 111.2875$$

 $b \coloneqq b - \alpha * b' = 0 - 0.5 * (-296.25) \approx 148.125$

New

Parameters: $\theta = \{w_1, b\}$

Cost Function: $E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\theta}(x^{(i)}) - y^{(i)})^2$

$$f_{\theta}(1) = (111.28 * 1 + 148.12) \approx 260$$

Estimation: (w = 111.28, b = 148.12)

$$f_{\theta}(0.67) = (111.28 * 67 + 148.12) \approx 223$$

$$f_{\theta}(0.72) = (111.28 * 0.72 + 148.12) \approx 229$$

$$f_{\theta}(0.27) = (111.28 * 0.27 + 148.12) \approx 179$$

$E(\theta) = \left(\frac{1}{2\pi 4}\right)\left[(260 - 460)^2 + (223 - 232)^2 + (229 - 315)^2 + (179 - 178)^2\right] \approx 5918.73$ Cost:

Gradient:

$$w' = \frac{\partial E(\theta)}{\partial w} = (\frac{1}{4}) \left[(260 - 460) * 1 + (223 - 232) * 0.67 + (229 - 315) * 0.72 + (179 - 178) * 0.27 \right] \approx -66.92$$

$$b' = \frac{\partial E(\theta)}{\partial h} = \left(\frac{1}{4}\right) \left[(260 - 460) + (223 - 232) + (229 - 315) + (179 - 178) \right] \approx -73.5$$

Update:

$$w_1 := w_1 - \alpha * w' = 0 - 0.5 * (-66.92) \approx 184.72$$

 $b := b - \alpha * b' = 0 - 0.5 * (-73.5) \approx 145.33$

New

Continue...

```
iter: 3 cost: 2778.85472457512
prediction: [330.06397483 282.53897763 290.69006727 224.92873394]
gradient: [-14.19456158 -25.16648269]
parameters: [191.8231828 157.92131416]
```

Iteration 4

```
iter: 4 cost: 2487.2205920097786
prediction: [349.74449696 298.10482769 306.96163143 235.50674024]
```

gradient: [1.32942408 -13.9300234]
parameters: [191.15847076 164.88632586]

Iteration 5

```
iter: 5 cost: 2398.9324937073943
```

prediction: [356.04479662 302.12759501 311.37502203 236.76866166]

gradient: [5.32901883 -10.78641023]
parameters: [188.49396135 170.27953098]

• • • • •

Until it converges

Linear Regression: Example

 $learning_rate = 0.5$

Converged.

iter: 296 cost: 1684.0276765926678

Linear Regression: Example-2

N = 100 samples

iter: 50 cost: 2.0982659858775956

iter: 0 cost: 24.973176452747104

iter: 138 cost: 1.6546338133174023

Converged.

Multivariate linear regression

Size in feet ² (x)	Price (\$) in 1000's (y)	
2104	460	
1416	232	$f_{\theta}(x) = w_1 x_1 + b$
1534	315	linear regression with one variable
852	178	

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
x_1	x_2	x_3	x_4	y	linear regression with
2104	5	1	45	460	multiple variables
1416	3	2	40	232	
1534	3	2	30	315	n - is number
852	2	1	36	178	of features
• • •			• • •	•••	

$$f_{\theta}(x) = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + \dots + w_n x_n + b$$

$$x_0 = 1$$

Hypothesis:
$$f_{\theta}(x) = \theta^{T}x = w_{0}x_{0} + w_{1}x_{1} + \dots + w_{n}x_{n}$$

Parameters: $\theta = \{w_0, ..., w_n\}$

Cost Function:
$$E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: minimize $E(\theta)$

Repeat until convergence

$$w_0 \coloneqq w_0 - \alpha \, \frac{1}{m} \sum_{i=1}^m [f_{\theta}(x^{(i)}) - y^{(i)}] x_0^{(i)}$$

$$w_1 \coloneqq w_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} [f_{\theta}(x^{(i)}) - y^{(i)}] x_1^{(i)}$$

$$w_2 \coloneqq w_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} [f_{\theta}(x^{(i)}) - y^{(i)}] x_2^{(i)}$$

update θ simultaneously

Feature scaling

Size (feet ²	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_1	x_2	x_3	x_4	y
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••		• • •		

Get every feature into approximately a $-1 \le x_i \le 1$ range.

Normalization:

Standard deviation:

$$S_i = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_i)^2}$$

For example:

$$x_1 = \frac{size - 1000}{2000}$$

$$x_2 = \frac{\#bedrooms - 2}{4}$$

Multivariate linear regression: Vectorization

	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178
•••	•••	•••	•••	•••	•••

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T y$$
Normal equation

 $(X^TX)^{-1}$ is inverse of matrix X^TX .

Logistic Regression

Binary Classification

Email: Spam / Not Spam?

Watermelon: Good / not?

Tumor: Malignant / Benign?

e.g. "tumor"
$$x \longrightarrow Model \longrightarrow y \in \{0, 1\}$$

0: "Negative Class" (e.g., benign tumor)

1: "Positive Class" (e.g., malignant tumor)

Classification with linear regression?

Hypothesis with linear regression : $f_{\theta}(x) = \theta^{T} x$

Threshold = 0.5 If $f_{\theta}(x) \ge 0.5$, output "Yes" If $f_{\theta}(x) \le 0.5$, output "No"

Classification with linear regression?

Hypothesis with linear regression : $f_{\theta}(x) = \theta^{T}x$

Threshold = 0.5
If
$$f_{\theta}(x) \ge 0.5$$
, output "Yes"
If $f_{\theta}(x) \le 0.5$, output "No"

Add extra samples, linear regression may give you a wrose hypothesis.

Applying linear regression to a classification is not a good idea.

Logistic regression model

Linear regression model: $f_{\theta}(x) = \theta^T x$

Linear regression can be: $f_{\theta}(x) > 1$ or. $f_{\theta}(x) < 0$

Want: $0 \le f_{\theta}(x) \le 1$

$$f_{\theta}(x) = g(\theta^T x)$$

$$f_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

where,

$$g(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid/Logistic function

Training set:

Hypothesis:
$$f_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$
 where, $\theta^T x = w_0 x_0 + w_1 x_1 + \dots + w_n x_n$

What cost function we choose?

How to choose parameters θ ?

Cost function

Chosee cost function same with linear regression

Cost Function:
$$E(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\theta}(x^{(i)}) - y^{(i)})^2$$

But the hypothesis looks like: $f_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$

Problem: it is non-convex function, there are many local minums. Gradient descent algorithm not guranteed to find a good local minma.

Want: the cost function should be convex.

Hypothesis:
$$f_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

where,
$$\theta^T x = w_0 x_0 + w_1 x_1 + \dots + w_n x_n$$

Parameters:
$$\theta = \{w_0, ..., w_n\}$$

$$y \in \{0,1\}$$
 Real-value from data set

Cost function:
$$E(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log f_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - f_{\theta}(x^{(i)})) \right]$$

if
$$y^{(i)} = 0$$
:

$$E(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} (1 - y^{(i)}) \log(1 - f_{\theta}(x^{(i)})) \right]$$

if
$$y^{(i)} = 1$$
:

$$E(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log f_{\theta}(x^{(i)}) \right]$$

Goal: minimize $E(\theta)$

Logistic regression: Gradient Descent

Cost function:
$$E(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log f_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - f_{\theta}(x^{(i)})) \right]$$

Goal: minimize $E(\theta)$

Repeat {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} E(\theta)$$
 (simultaneously update all θ)

Learning rate Gradient

Logistic regression: Gradient Descent

Cost function:
$$E(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log f_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - f_{\theta}(x^{(i)})) \right]$$

Goal: minimize $E(\theta)$

Repeat $\left\{ \theta_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left[f_{\theta}(x^{(i)}) - y^{(i)} \right] x^{(i)} \right\}$

(simultaneously update all θ)

Similar with linear regression.

Multiclass classification

Binary classification:

Multi-class classification:

One-vs-rest

• Thank you!