Social Graph Learning

Steve Poulson

Supervisor: Dell Zhang, Mark Levine

28 May 2013

Types of social graphs

Unipartite, Undirected e.g. LinkedIn

Unipartite, Directed e.g. Google Plus

Bipartite, UnDirected e.g. Netflix

Types of social graphs

Unipartite, Undirected e.g. LinkedIn

Unipartite, Directed e.g. Google Plus

Bipartite, UnDirected e.g. Netflix

Types of social graphs

Unipartite, Undirected e.g. LinkedIn

Unipartite, Directed e.g. Google Plus

Bipartite, UnDirected e.g. Netflix

We need to get the data, we could sample a real graph

- Breadth First
- Depth First
- Snowball
- Forest Fire

We need to get the data, we could sample a real graph

- Breadth First
- Depth First
- Snowball
- Forest Fire

We need to get the data, we could sample a real graph

- Breadth First
- Depth First
- Snowball
- Forest Fire

We need to get the data, we could sample a real graph

- Breadth First
- Depth First
- Snowball
- Forest Fire

Algorithm

```
Data: Directed Graph A
Result: Digraph B with n new vertices, m new edges
while not n vertices do
   pick random edge (v_1, v_2) from A where v_1 \in B
   add v_2 add (v_1, v_2) to graph B
end
while not m edges added do
   pick random edge (v_1, v_2) from A where v_1, v_2 \in B
   add (v_1, v_2) to graph B
end
                      Algorithm 1: Grow
```

Karate Dataset grown to t=4, n=10

Supervised learning problem

Formally

- $\bullet \ \ Y \leftarrow A^{t+1} A^t$
- $min(L(f(\phi(\mathbf{A}^{\mathbf{t}})), \mathbf{Y})))$

Supervised learning problem

Formally

- $\bullet \ \ Y \leftarrow A^{t+1} A^t$
- $min(L(f(\phi(\mathbf{A^t})), \mathbf{Y})))$

Supervised learning problem

Formally

- $\bullet \ \ Y \leftarrow A^{t+1} A^t$
- $min(L(f(\phi(\mathbf{A^t})), \mathbf{Y})))$

Maps
$$\mathbf{A}_{i,j} \rightarrow (x_1 \dots x_n)$$

- Random Walk between nodes
- Modularity
- Jaccard Distance of neighbour list
- Betweeness Centrality

Maps
$$\mathbf{A}_{i,j} \rightarrow (x_1 \dots x_n)$$

- Random Walk between nodes
- Modularity
- Jaccard Distance of neighbour list
- Betweeness Centrality

Maps
$$\mathbf{A}_{i,j} \rightarrow (x_1 \dots x_n)$$

- Random Walk between nodes
- Modularity
- Jaccard Distance of neighbour list
- Betweeness Centrality

Maps
$$\mathbf{A}_{i,j} \rightarrow (x_1 \dots x_n)$$

- Random Walk between nodes
- Modularity
- Jaccard Distance of neighbour list
- Betweeness Centrality

Betweeness

Jaccard Distance

Shortest Path

Local vs Global

- Global features from a 1 million node graph unfeasible
- Power Law graphs scale invariant so local features should characterize graph
- Can use Hadoop Map calculates subset of local features, reduce assembles training set which classifier runs on

Local vs Global

- Global features from a 1 million node graph unfeasible
- Power Law graphs scale invariant so local features should characterize graph
- Can use Hadoop Map calculates subset of local features, reduce assembles training set which classifier runs on

Local vs Global

- Global features from a 1 million node graph unfeasible
- Power Law graphs scale invariant so local features should characterize graph
- Can use Hadoop Map calculates subset of local features, reduce assembles training set which classifier runs on

Let's try it on a Kaggle competition

- Prototyped on sklearn / networkx
- Hadoop cluster on AWS
- Java: Weka / Hadoop / cern.colt.matrix / Jung
- Random Forrest classifer beat rest

Kaggle Evaluation

Facebook Recruiting Competition 16 entries in team BookFace

36th/422

- A bit of fun:)
- Mean Average Precision @ 10 = 0.71371
- Within 2% of winner

Kaggle Evaluation

36th/422

- A bit of fun:)
- Mean Average Precision @ 10 = 0.71371
- Within 2% of winner

Kaggle Evaluation

36th/422

- A bit of fun:)
- Mean Average Precision @ 10 = 0.71371
- Within 2% of winner

Summary

- Power law Sampling gives a time varying dataset
- Random Forrest best
- Pretty good results

Summary

- Power law Sampling gives a time varying dataset
- Random Forrest best
- Pretty good results

Summary

- Power law Sampling gives a time varying dataset
- Random Forrest best
- Pretty good results

Future work

- Factorial Machines
- Deep Learning
- Sample real data Twitter / Google+
- Bipartite Graphs