ELEC 207 Instrumentation and Control

14 – Errors in Digital Signals

Dr Roberto Ferrero

Email: Roberto.Ferrero@liverpool.ac.uk

Telephone: 0151 7946613

Office: Room 506, EEE A block

Noise in digital transmission

Errors in digital signals

Noise and interference affect not only analog signals but also digital ones, particularly when digital signals are transmitted over long distances:

 In case of digital signals, noise may result in data corruption, i.e. errors in the transmitted data;

 Error detection and correction methods are therefore usually employed to correct errors and ensure reliable communication.

Error detection and correction

Transmission redundancy

Error detection methods are based on **redundancy**:

- The information to be transmitted is composed of k bits;
- Other r bits are added to the message and are used to check the presence of errors;
- The total transmitted message is composed of n = k+r bits, and its redundancy is r/n.

Two methods are used for **error correction**:

- Automatic repeat request (ARQ);
- Forward error correction (FEC).

Automatic repeat request

General principles

The transmitted (check) data only contains sufficient information to detect errors, not to correct them:

 The receiver must then request a re-transmission in order to get the correct information;

This method uses a low number of check bits.

Automatic repeat request

Parity check (1)

The simplest **parity check** employs only one check bit (r = 1):

- If even parity code is used, the value of r is such that the total number of 1s in the code word is even;
- If **odd parity** code is used, the value of *r* is such that the total number of 1s in the code word is odd.

Information bits	Even parity code word	Odd parity code word
1011	1011 <mark>1</mark>	10110
1000	1000 <mark>1</mark>	1000 <mark>0</mark>
0101	01010	01011
1111	1111 <mark>0</mark>	1111 <mark>1</mark>

Automatic repeat request

Parity check (2)

This method is very simple but it has important **limitations**:

- It can only detect the presence of an odd number of errors, as an even number of errors produce the correct parity check bit:
 - This method is suitable when errors are unlikely to happen;
- When an error is detected, the corrupted bit cannot be located and therefore the error cannot be corrected:
 - The whole message has to be sent again;
 - This is convenient only if errors are unlikely to happen.

General principles

In order to allow **error correction**, the additional (redundant) bits must be enough to locate the position of the corrupted bits:

- The message (information bits) is split into **groups** and a **parity check bit** is assigned to each group:
- The groups are overlapping, so that each information bit belongs to more than one group:
 - ➤ If the parity check of two or more groups fails, the error is in the information bit;
 - ➤ If the parity check of only one group fails, the error is in the parity check bit itself.

Hamming code (1)

An example of forward error correction method is the **Hamming** (*n*,*k*) code:

- The total number of transmitted bits (n) includes k information bits and n-k check bits (r), therefore the k information bits are split into r = n-k groups;
- E.g., the following message uses the Hamming (7,4) code:

0	0	1	0	1	1	0
I_1	I_2	I_3	I_4	R_1	R_2	R_3

Group	Binary	Parity bit	Even parity
$ _{2} _{3} _{4}$	010	R_1	1
$ _{1} _{3} _{4}$	010	R_2	1
$l_1 l_2 l_4$	000	R_3	0

Hamming code (2)

The following examples allow understanding how an error in the information bits can be detected and located (therefore corrected):

$I_{2}I_{3}I_{4}(R_{1})$	I ₁ I ₃ I ₄ (R ₂)	I ₁ I ₂ I ₄ (R ₃)	Faulty bit	
OK	OK	OK	None	
OK	OK	Error	R_3	<u>1 fail</u> :
OK	Error	OK	R_2	parity bit
Error	OK	OK	R_1	error
OK	Error	Error	I ₁	
Error	OK	Error	I_2	2+ fails: data bit
Error	Error	OK	l ₃	error
Error	Error	Error	I_4	

Hamming code (3)

The required number of check bits (*r*) to detect and correct **single bit errors** in a complete code word of *n* bits is calculated as follows:

- The check bits must be able to distinguish between n+1 possible situations:
 - n different positions of the corrupted bit;
 - 1 situation corresponding to no errors;
- Therefore r must be chosen so that:

$$2^r \ge n+1$$
 $r \ge \log_2(n+1)$

 \triangleright E.g., for n = 7, the minimum value of r is 3.

References

Textbook: Principles of Measurement Systems, 4th ed.

For further explanation about the points covered in this lecture, please refer to the following chapters and sections in the **Bentley** textbook:

Chapter 18, Sec. 18.5: Error detection and correction.

NOTE: Topics not covered in the lecture are not required for the exam.

