Ejercicio 1:

- 1. Definir las variables
 - F: luces de freno, 0 apagado 1 encendido
 - A: marcha atrás, 0 apagado 1 encendido
 - L: luces altas, 0 apagado 1 encendido
 - S: salida
- 2. Tabla de verdad:

F	Α	L	S
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

3. Expresión S:

$$F'A'L + F'AL + FA'L' + FA'L + FAL$$

4. Optimizar aplicando algebra booleana

$$F'A'L + F'AL + FA'L' + FA'L + FAL$$

$$L(F'A' + F'A) + FA'L' + L(FA' + FA)$$

5. Optimizar aplicando mapas K:

6. Circuito

Ejercicio 2:

1. Definir variables:

M: temblor, 0 quieto 1 temblando H: humo, 0 sin humo 1 hay humo T: temperatura, 0 nominal 1 alta

A: puertas, 0 cerradas 1 abiertas

S: salida

2. Tabla de verdad

М	Н	Т	Α	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

3. Expresión S

M'H'TA' + M'HT'A' + M'HTA + M'HTA' + MH'TA + MH'TA' + MHT'A' + MHT'A + MHTA' + MHTA' + MHTA

4. Optimizar aplicando algebra booleana

5. Optimizar aplicando mapas K

	M'H'	M'H	MH	MH'
T'A'		1	1	
T'A		1	1	1
TA		1	1	1
TA'	1	1	1	1

H + TA' + AM

6. Circuito

Ejercicio 3:

- 1. Definir variables
 - T: Tarjeta de acceso, 0 invalida 1 valida
 - R: Reconocimiento facial, 0 invalido 1 valido
 - H: Hora de acceso, O fuera de hora 1 en hora
 - D: Dia laboral, 0 no es día laboral 1 dia laboral
 - S: salida

2. Tabla de verdad

Т	R	Н	D	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0 0 0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1 0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

3. Expresión S T'RHD + TR'H'D' + TR'HD + TRH'D' + TRH'D + TRHD' + TRHD

4. Ontimizar anlicando algebra booleana

5. Optimizar aplicando mapas K

	T'R'	T'R	TR	TR'
H'D'			1	
H'D			1	1
HD		1	1	1
HD'			1	

TR + TD + RHD

6. Circuito

