USN NUMBER: 1RVU22BSC110

NAME: YASHWANT RAJ

Ex No: 4	Handwritten Digit Recognition using Convolutional Neural Network
Date: 28-08-24	(CNN)

Objective: To develop a Convolutional Neural Network (CNN) model for recognizing handwritten digits using the MNIST dataset.

Descriptions: Handwritten digit recognition is a well-known problem in the field of computer vision, where the goal is to classify images of handwritten digits into one of 10 classes (0-9). In this lab, we utilize a CNN model to achieve high accuracy in digit classification.

Model: The CNN model is designed with the following architecture:

1. Convolutional Layers:

- Two convolutional layers are used to extract features from the input images.
- The first layer has 32 filters of size 3x3, and the second has 64 filters of the same size.

2. Pooling Layer:

• A MaxPooling layer with a pool size of 2x2 is used to reduce the spatial dimensions of the feature maps.

3. Dropout Laver:

• A dropout layer with a dropout rate of 25% is included to prevent overfitting.

4. Flatten Layer:

• The feature maps are flattened into a 1D vector for input into the dense layers.

5. Dense Layers:

Two fully connected (Dense) layers are added. The first has 256 units with ReLU activation, followed by a dropout layer with a 50% dropout rate. The second Dense layer has 10 units (corresponding to the 10 classes) with softmax activation.

6. Compilation:

• The model is compiled using the categorical cross entropy loss function, the Adadelta optimizer, and accuracy as the evaluation metric.

USN NUMBER: 1RVU22BSC110

NAME: YASHWANT RAJ

Model: "sequential_3"

Layer (type)	Output Shape	Param #
conv2d_5 (Conv2D)	(None, 26, 26, 32)	320
conv2d_6 (Conv2D)	(None, 24, 24, 64)	18,496
max_pooling2d_2 (MaxPooling2D)	(None, 12, 12, 64)	0
dropout_4 (Dropout)	(None, 12, 12, 64)	0
flatten_2 (Flatten)	(None, 9216)	0
dense_4 (Dense)	(None, 256)	2,359,552
dropout_5 (Dropout)	(None, 256)	0
dense_5 (Dense)	(None, 10)	2,570

Total params: 7,142,816 (27.25 MB)

Trainable params: 2,380,938 (9.08 MB)

Non-trainable params: 0 (0.00 B)

Optimizer params: 4,761,878 (18.17 MB)

Building the Parts of the Algorithm:

1. Define the model structure:

- Number of input features: 28x28x1 for grayscale images.
- Number of output classes: 10 (digits 0-9).

2. Initialize the model's parameters:

• Weights and biases are initialized automatically by the Keras framework.

Accuracy:

1. Test loss: 0.7110332250595093 **2. Test accuracy:** 0.836899995803833

Implementation:

1. Import Libraries:

 Necessary libraries such as tensorflow, keras, numpy, and matplotlib are imported.

2. Data Loading and Preprocessing:

• The MNIST dataset is loaded, and data is preprocessed by normalizing the pixel values and converting labels to one-hot encoded vectors.

3. Model Creation:

• The CNN model is created using Keras Sequential API.

4. Model Training:

USN NUMBER: 1RVU22BSC110

NAME: YASHWANT RAJ

• The model is trained on the training set using a batch size of 128 and for 10 epochs.

5. Model Evaluation:

• The trained model is evaluated on the test set, and the test loss and accuracy are printed.

6. Model Saving:

• The trained model is saved to disk as mnist.h5.

7. **GUI for Prediction:**

o A simple GUI using Tkinter is created to predict digits drawn by the user.

GitHub Link:

https://github.com/Yashr22/Lab-4-Handwritten-digit-recognition-using-CNN.git