Score - Based Generative Modelling

Manos Plitsis

What is Generative Modelling?

Given a dataset $\{x_i \in \mathbb{R}^D\}_{i=1}^N$, model the data distribution $p_{data}(x)$.

Once we have p(x) we can generate new data points by sampling from it.

Energy-Based Modelling

To model an arbitrarily flexible distribution p(x), we can model it as:

$$p_{ heta}(x) = rac{e^{-f_{ heta}(x)}}{Z_{ heta}}$$

e.g. with maximum likelihood.

 $f_{ heta}(x)$ is called the energy function $Z_{ heta}=\int e^{-f_{ heta}(x)}$ is a normalizing constant

Energy-Based Modelling

To model an arbitrarily flexible distribution p(x), we can model it as:

$$p_{ heta}(x) = rac{e^{-f_{ heta}(x)}}{Z_{ heta}}$$

e.g. with maximum likelihood.

But Z is not tractable!

What if we could get rid of Z?

$$egin{aligned}
abla_x log p_{ heta}(x) &=
abla_x log (rac{e^{-f_{ heta}(x)}}{Z_{ heta}}) \ &=
abla_x log (rac{1}{Z_{ heta}}) +
abla_x log (e^{-f_{ heta}(x)}) \ &= -
abla_x f_{ heta}(x) \ &pprox s_{ heta}(x) \end{aligned}$$

Score Networks

Def. The *(Stein) score* of a probability density p(x) is $\nabla_x log p(x)$

A score network $s_{ heta}(x):\mathbb{R}^D o\mathbb{R}^D$ is a neural network trained to approximate the score of $p_{data}(x)$

Score Networks

Def. The *(Stein) score* of a probability density p(x) is $s(x) = \nabla_x \log p(x)$

A score network $s_{ heta}(x): \mathbb{R}^D o \mathbb{R}^D$ is a neural network trained to approximate the score of $p_{data}(x)$

Q1: How do we learn $s_{\theta}(x)$?

Q2: How do we use it to generate

new samples?

Data scores

Score Matching

Q1. How do we learn $s_{\theta}(x)$?

A. We optimize the score matching objective:

$$L(heta) riangleq rac{1}{2} \mathbb{E}_{p_{data}}[\|s_{ heta}(x) -
abla_x \log p_{data}(x)\|_2^2]$$

Score Matching

Q1: How do we learn $s_{\theta}(x)$?

A: We optimize the score matching objective:

$$L(heta) riangleq rac{1}{2} \mathbb{E}_{p_{data}}[\|s_{ heta}(x) -
abla_x \log p_{data}(x)\|_2^2]$$

But we don't have access to $abla_x \log p_{data}(x)$!

L can be shown equivalent (up to a constant) to:

$$\mathbb{E}_{p_{data}(x)}[tr(
abla_x s_{ heta}(x)) + rac{1}{2} \lVert s_{ heta}(x)
Vert_2^2
Vert$$

We can compute this from data, but calculating $tr(
abla_x s_{ heta}(x))$ is too costly.

Score Matching

Denoising Score Matching

We perturb the data with a noise distribution $q_{\sigma}(\tilde{x}|x)$, then estimate the score of $q_{\sigma} \triangleq \int q_{\sigma}(\tilde{x}|x) p_{data}(x) dx$ with objective:

$$rac{1}{2}\mathbb{E}_{q_{\sigma}(ilde{x}|x)p_{ ext{data}}(x)}[\|s_{ heta}(ilde{x}) -
abla_{ ilde{x}}\log q_{\sigma}(ilde{x}|x)\|_2^2]$$

E.g. for Gaussian $abla_{ ilde{x}} \log q_{\sigma}(ilde{x}|x) = -rac{ ilde{x}-x}{\sigma^2}$

Then $s_{ heta*}(x) =
abla_x \log q_{\sigma}(x)$ almost surely.

But: $s_{\theta*}(x) = \nabla_x \log q_{\sigma}(x) \approx \nabla_x \log p_{data}(x)$ only when σ is small s.t. $q_{\sigma}(x) \approx p_{data}(x)$ (But not too small and the variance explodes)

Langevin Dynamics

Q2: How do we use $s_{\theta}(x)$ to generate new samples?

A: We recursively compute:

$$ilde{x}_t = ilde{x}_{t-1} + rac{\epsilon}{2}
abla_x \log p(ilde{x}_{t-1}) + \sqrt{\epsilon} z_t$$

where

- ullet $\epsilon>0$ a fixed step size
- $oldsymbol{ ilde{x}}_0 \sim \pi(x)$ with π a prior distribution
- $ullet z_t \sim \mathcal{N}(0,I)$

The distribution of $ilde x_T$ approaches p(x) when $\epsilon o 0, T o \infty$

Langevin Dynamics

Challenges of Score-Based Modelling

- 1. Data are concentrated on a low dimensional manifold
- 2. Scarcity of data leads to low density regions

1. The manifold hypothesis

Real world data tend to concentrate on **low dimensional manifolds** embedded in the ambient space.

- Score is undefined outside the manifold.
- ullet Score matching only works when the support of p(x) is the ambient space [Hyvärinen 2005]

2. Scarcity of data

Inaccurate score estimation

In practice, $\mathbb{E}_{p_{data}}$ is estimated using i.i.d. samples.

For regions $\mathcal{R}\subset\mathbb{R}^D$ s.t $p_{data}(\mathcal{R})pprox 0$ there usually isn't enough data to estimate the score.

Data scores

2. Scarcity of data

Slow mixing of Langevin Dynamics

Let $p_1(x),p_2(x)$ normalized distributions with disjoint support, and $p_{data}(x)=\pi p_1(x)+(1-\pi)p_2(x)$, $\pi\in(0,1)$

The score does not depend on π , so samples with LD will not depend on π .

In practice, also true when supports are approximately disjoint.

with Annealed Langevin Dynamics

Idea:

• Perturb data with various noise levels $\sigma_1, \ldots, \sigma_L$ using distribution

$$q_{\sigma}(x) riangleq \int p_{data}(t) \mathcal{N}(x|t,\sigma^2 I) dt$$

(this gives $q_{\sigma}(\tilde{x}|x) = \mathcal{N}(\tilde{x}|x,\sigma^2I)$, the "noising" distribution)

- Train a single conditional score network $s_{\theta}(x,\sigma)$ for all noise levels σ_i to predict the noised data score $\nabla x \log q_{\sigma_i}(x)$.
- In LD, start with high noise level scores, and gradually decrease the noise level.

$$ullet$$
 $rac{\sigma_1}{\sigma_2}=\ldots=rac{\sigma_{L-1}}{\sigma_L}>1$

- σ_1 is large enough to avoid previous problems.
- σ_L is small enough to minimize effect on data.

We defined $q_\sigma(ilde{x}|x)=\mathcal{N}(ilde{x}|x,\sigma^2I)$, so $abla_{ ilde{x}}\log q_\sigma(ilde{x}|x)=-rac{ ilde{x}-x}{\sigma^2}$.

For a given σ :

$$\ell(heta;\sigma) riangleq rac{1}{2} \mathbb{E}_{p_{ ext{data}}(x)} \mathbb{E}_{ ilde{x} \sim \mathcal{N}(x,\sigma^2 I)} \left[\left\| s_{ heta}(ilde{x},\sigma) + rac{ ilde{x} - x}{\sigma^2}
ight\|_2^2
ight]$$

So the final loss is:

$$\mathcal{L}(heta; \{\sigma_i\}_{i=1}^L) riangleq rac{1}{L} \sum_{i=1}^L \lambda(\sigma_i) \ell(heta; \sigma_i)$$

How to choose $\lambda(\sigma)$?

- We want $\lambda(\sigma_i)\ell(\theta;\sigma_i)$ to have the same order of magnitude for all $\{\sigma_i\}_{i=1}^L$.
- With optimally trained networks, we observe $\|s_{ heta}(x,\sigma)\|_2 \propto rac{1}{\sigma}$.
- This inspires the choice $\lambda(\sigma)=\sigma^2$, leading to $\lambda(\sigma)\ell(\theta;\sigma)=\sigma^2\ell(\theta;\sigma)=\frac{1}{2}\|\sigma s_\theta(x,\sigma)+\frac{\hat{x}-x}{\sigma}\|_2^2$.
- Given $\frac{\hat{x}-x}{\sigma}\sim \mathcal{N}(0,I)$ and $\|\sigma s_{\theta}(x,\sigma)\|_2 \propto 1$, the magnitude of $\lambda(\sigma)\ell(\theta;\sigma)$ does not depend on σ .

Annealed Langevin Dynamics

Algorithm 1: Annealed Langevin dynamics

$$\begin{array}{lll} \textbf{Require}: & \{\sigma_i\}_{i=1}^L, \epsilon, T. \\ & 1: & \text{Initialize } \tilde{x}_0 \\ & 2: & \textbf{for } i=1 \textbf{ to } L \textbf{ do} \\ & 3: & \alpha_i \leftarrow \epsilon \sigma_i^2/\sigma_L^2 \quad (\alpha_i \text{ is the step size}) \\ & 4: & \textbf{for } t=1 \textbf{ to } T \textbf{ do} \\ & 5: & \text{Draw } z_t \sim \mathcal{N}(0,I) \\ & 6: & \tilde{x}_t \leftarrow \tilde{x}_{t-1} + \frac{\alpha_i}{2} s_{\theta}(\tilde{x}_{t-1},\sigma_i) + \sqrt{\alpha_i} z_t \\ & 7: & \textbf{end for} \\ & 8: & \tilde{x}_0 \leftarrow \tilde{x}_T \\ & 9: & \textbf{end for} \\ & 10: & \textbf{return } \tilde{x}_T \end{array}$$

Annealed Langevin Dynamics

Annealed Langevin Dynamics

How to choose α_i ?

- Many ways to tune α_i . We use $\alpha_i \propto \sigma_i^2$.
- Aim: Fix the magnitude of the "signal-to-noise" ratio $\frac{\alpha_i s_{\theta}(x,\sigma_i)}{2\sqrt{\alpha_i}z}$ in Langevin dynamics w.r.t. σ_i .
- $ullet \ \mathbb{E}\left[\|rac{lpha_i s_ heta(x,\sigma_i)}{2\sqrt{lpha}_i z}\|_2^2
 ight] pprox \mathbb{E}\left[rac{lpha_i \|s_ heta(x,\sigma_i)\|_2^2}{4}
 ight] \propto rac{1}{4} \mathbb{E}\left[\|\sigma_i s_ heta(x,\sigma_i)\|_2^2
 ight].$
- Empirically, when networks are optimally trained, $\|s_{\theta}(x,\sigma_i)\|_2 \propto \frac{1}{\sigma_i}$.
- Thus $\mathbb{E}\left[\|\sigma_i s_{ heta}(x,\sigma_i)\|_2^2
 ight] \propto 1$.
- Therefore, the choice of α_i does not depend on σ_i .

Experimental Setup

- L = 10
- $\{\sigma_i\}_{i=1}^L$ is a geometric sequence with:

$$\circ \ \sigma_1 = \sigma_{max} = 1$$

$$\circ~\sigma_{10}=\sigma_{min}=0.01$$

For LD sampling:

$$\circ T = 10$$

$$\circ \epsilon = 2 imes 10^-5$$

o Initial samples are uniform noise.

Results

Model	Inception	FID
CIFAR-10 Unconditional		
PixelCNN [59]	4.60	65.93
PixelIQN [42]	5.29	49.46
EBM [12]	6.02	40.58
WGAN-GP [18]	$7.86 \pm .07$	36.4
MoLM 45	$7.90 \pm .10$	18.9
SNGAN [36]	$8.22 \pm .05$	21.7
ProgressiveGAN [25]	$8.80 \pm .05$	-
NCSN (Ours)	$8.87 \pm .12$	25.32
CIFAR-10 Conditional		
EBM [12]	8.30	37.9
SNGAN 36	$8.60 \pm .08$	25.5
BigGAN 6	9.22	14.73

NCSM vs DDPM

Reminder: DDPM

- $q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{lpha_t} x_{t-1}, (1-lpha_t)I)$ (noising step)
- $ullet p_{ heta}(x_T) = \mathcal{N}(x_T; 0, I).$
- $p_{ heta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{ heta}(x_t, t), \sigma(x_t, t)^2 I)$ (denoising step)

ELBO for DDPM

$$egin{aligned} \log p(x) &\geq \mathbb{E}_{q(x_1|x_0)} \left[\log p_{ heta}(x_0|x_1)
ight] & (L_0: ext{ Reconstruction term}) \ &- D_{KL}(q(x_T|x_0)||p(x_T)) & (L_T: ext{Prior matching term}) \ &- \sum_{t=2}^T \mathbb{E}_{q(x_t|x_0)} \left[D_{KL}(q(x_{t-1}|x_t,x_0)||p_{ heta}(x_{t-1}|x_t))
ight] & (L_{t-1}: ext{Denoising matching term}) \end{aligned}$$

To maximize the ELBO, we need to minimize the denoising matching term.

We can write
$$x_t = \sqrt{ar{a_t}} x_0 + \sqrt{1-ar{a_t}} \epsilon_0 \sim \mathcal{N}(x_t; \sqrt{ar{a_t}} x_t, (1-ar{a_t})I)$$

with
$$ar{a}_t = \prod_{i=1}^t a_i$$

Then:

$$q(x_{t-1}|x_{t},x_{0}) = \frac{q(x_{t}|x_{t-1},x_{0})q(x_{t-1}|x_{0})}{q(x_{t}|x_{0})} \quad \text{(Bayes rule)}$$

$$= \frac{\mathcal{N}(x_{t};\sqrt{\bar{a}_{t}}x_{t},(1-\bar{a}_{t})I) \quad \mathcal{N}(x_{t-1};\sqrt{\bar{a}_{t-1}}x_{0},(1-\bar{a}_{t-1})I)}{\mathcal{N}(x_{t};\sqrt{\bar{a}_{t}}x_{0},(1-\bar{a}_{t})I)}$$

$$= \dots$$

$$= \mathcal{N}(x_{t-1};\underbrace{\frac{\sqrt{\bar{a}_{t}}(1-\bar{a}_{t-1})x_{t} + \sqrt{\bar{a}_{t-1}}(1-a_{t})x_{0}}_{\mu_{q}(x_{t},x_{0})},\underbrace{\frac{(1-a_{t})(1-\bar{a}_{t-1})}{(1-\bar{a}_{t})}I}}_{\sum_{q}(t)})$$

Learning $\mu_{ heta}$

```
 \begin{aligned} & \operatorname{argmin}_{\theta} \, D_{KL}(q(x_{t-1}|x_t,x_0) \mid\mid p_{\theta}(x_{t-1}|x_t)) \\ &= \operatorname{argmin}_{\theta} \, D_{KL}(\mathcal{N}(x_{t-1};\mu_q(t),\Sigma_q(t)) \mid\mid \mathcal{N}(x_{t-1};\mu_{\theta}(t),\Sigma_q(t))) \\ &= \dots \\ &= \operatorname{argmin}_{\theta} \, \frac{1}{2\sigma_q^2(t)} \big[ ||\mu_{\theta} - \mu_q||_2^2 \big] \end{aligned} \tag{KL Divergence Gaussians}
```

Learning $\epsilon_{ heta}$

We can choose the parameterization: $x_0 = rac{x_t + \sqrt{1 - ar{a}_t} \epsilon_0}{\sqrt{ar{a}_t}}$

$$ullet \ \mu_q(x_t,x_0) = rac{1}{\sqrt{a_t}} x_t - rac{1-a_t}{\sqrt{1-ar{a}_t}\sqrt{a}_t} \epsilon_0$$

$$ullet \ \mu_ heta(x_t,t) = rac{1}{\sqrt{a_t}} x_t - rac{1-a_t}{\sqrt{1-ar{a}_t}\sqrt{a}_t} \epsilon_ heta(x_t,t)$$

Reformulate the loss to:

$$ext{argmin}_{ heta} = rac{(1-a_t)^2}{2\sigma_q^2(t)(1-ar{a}_t)a_t}ig[||e_0-e_{ heta}(x_t,t)||_2^2ig]$$

Learning $abla_x log p_{ heta}(x)$

Given a Gaussian variable $z \sim \mathcal{N}(z; \mu_z, \Sigma_z)$, Tweedie's Formula states:

$$\mathbb{E}[\mu_z|z] = z + \Sigma_z
abla_z \log p(z)$$

From a known equation, we have:

$$q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{lpha_t}x_0, (1-lpha_t)I)$$

By Tweedie's Formula, we get:

$$\mathbb{E}[\mu_{x_t}|x_t] = x_t + (1-lpha_t)
abla_{x_t}\log p(x_t)$$

The best estimate for the true mean $\mu_{x_t} = \sqrt{lpha_t} x_0$, is:

$$egin{aligned} \sqrt{lpha_t} x_0 &= x_t + (1-lpha_t)
abla_{x_t} \log p(x_t) \ \Rightarrow x_0 &= x_t + rac{(1-lpha_t)}{\sqrt{lpha_t}}
abla_{x_t} \log p(x_t) \end{aligned}$$

Learning $abla_x log p_{ heta}(x)$

Remember,

$$\mu_q(x_t,x_0) = rac{\sqrt{a_t}(1-ar{a}_{t-1})x_t+\sqrt{ar{a}_{t-1}}(1-a_t)x_0}{1-ar{a}_t} = rac{\sqrt{a_t}(1-ar{a}_{t-1})x_t+\sqrt{ar{a}_{t-1}}(1-a_t)(x_t+rac{(1-lpha_t)}{\sqrt{lpha_t}}
abla_{x_t}\log p(x_t))}{1-ar{a}_t}$$

$$ullet \ \mu_q(x_t,x_0) = rac{1}{\sqrt{a_t}} x_t - rac{1-a_t}{\sqrt{a_t}}
abla_{x_t} \log p(x_t)$$

$$ullet \ \mu_ heta(x_t,t) = rac{1}{\sqrt{a_t}} x_t - rac{1-a_t}{\sqrt{a}_t} s_ heta(x_t,t)$$

Reformulate the loss to:

$$ext{argmin}_{ heta} = rac{(1-a_t)^2}{2\sigma_q^2(t)a_t}ig[||s_{ heta}(x_t,t) -
abla_{x_t}\log p(x_t)||_2^2ig]$$

The score looks like ϵ_0 (?!)

$$egin{aligned} x_0 &= rac{x_t + \sqrt{1 - ar{a}_t} \epsilon_0}{\sqrt{ar{a}_t}} = x_t + rac{(1 - lpha_t)}{\sqrt{lpha_t}}
abla_{x_t} \log p(x_t) \ &\Rightarrow
abla_{x_t} \log p(x_t) = -rac{1}{\sqrt{1 - ar{lpha}_t}} \epsilon_0 \end{aligned}$$

Perturbing images with SDEs

When the noise levels approach infinity, we essentially perturb the data with a **Stochastic Differential Equation (SDE)**

SDEs

In general, SDEs have the form

$$dx = f(x,t)dt + g(t)dw$$

where $f(.,t):\mathbb{R}^D o \mathbb{R}^D$ is called the *drift coefficient* and $g(t) \in \mathbb{R}$ is called the *diffusion coefficient*.

w denotes a standard Brownian motion, and dw can be considered an infinitesimal white noise.

The solution is a continuous collection of random variables $\{x(t)\}_{t\in[0,1]}$.

Reversing the SDE

To sample from $x(T) \sim p_T$ and get new data from p_{data} , we can reverse the SDE (the reverse of a diffusion process is also a diffusion process [Anderson 1982]):

$$dx = ig[f(x,t) - g^2(t)
abla_x \log p_t(x)ig]dt + g(t)d ilde{w}.$$

Estimating the scores

To solve the reverse-time SDE we need:

- ullet The terminal distribution $p(T)pprox \pi(x)$
- ullet The score $abla_x \log p_t(x)$

To estimate the score we can use score matching techniques to train a *time dependent* score model, with objective:

$$\mathbb{E}_{t \in U(0,T)} \mathbb{E}_{p_t(x)}[\lambda(t) \|
abla_x \log p_t(x) - s_ heta(x,t) \|_2^2]$$

Then we can solve the reverse-time SDE with numerical SDE solvers (e.g. Euler - Maruyama)

Probability flow ODEs

For all diffusion processes, there exists a deterministic process whose trajectories share the same marginal probabilities $\{p_t(x)\}_{t=0}^T$ as the SDE.

This process satisfies the *probability flow ODE*:

$$dx = \left\lceil f(x,t) - rac{1}{2}g^2(t)
abla_x \log p_t(x)
ight
ceil dt.$$

Neural ODE

When $\nabla_x \log p_t(x)$ is replaced by s(x,t), it becomes a special case of *neural ODE*, specifically continuous normalizing flows.

So we get:

- Exact likelihood estimation.
- Encoding data points x(0) to latent space x(T).
 - Decoding by integrating corresponding ODE for reverse-time SDE.
 - We can manipulate the latent representation for editing by interpolation, temperature scaling.
- We get a uniquely identifiable encoding given sufficient data and model capacity.
- Efficient sampling by discretizing the ODE (link with DDIM?)

Thank you for your attention!

