















### CONTENIDO

- 1. Introducción y contexto histórico
- 2. Versiones de RIP (RIP v1 vs. RIP v2)
- 3. Métrica y algoritmo de enrutamiento
- 4. Formato de mensajes y funcionamiento básico
- 5. Configuración práctica
- 6. Limitaciones y alternativas modernas



## INTRODUCCIÓN

#### ¿Qué es RIP?

Es uno de los protocolos de enrutamiento más antiguos utilizados en redes IP. Forma parte de la familia de protocolos de vector de distancia (distance-vector), y su función principal es ayudar a los routers a determinar la mejor ruta hacia una red destino.



#### **HISTORIA**

1980s: RIP fue desarrollado originalmente como parte del sistema Xerox PARC's y más tarde adoptado por Unix bajo el software BSD (Berkeley Software Distribution).

1988, se formalizó como RIP versión 1 (RIPv1) en el estándar RFC 1058.

1994, se creó RIP versión 2 (RIPv2) (RFC 2453), que incluye mejoras importantes.

RIP fue uno de los primeros protocolos usados en redes pequeñas y medianas antes de la popularización de alternativas más avanzadas como OSPF y EIGRP.



### **VECTOR DISTANCIA**

Es un método de enrutamiento, donde cada router informa a sus vecinos sobre:

- Las redes que conoce
- La distancia (métrica) hacia esas redes



RIP usa como distancia el número de saltos (hops) hacia la red destino.



#### VERSIONES DE RIP

////////

///////

RIP versión 1 (RIP v1)

RIP versión 2 (RIP v2)

RIPng (RIP next-generation)



## RIP VERSIÓN 1 (RIP V1)

- Clase basada (classful): RIP v1 no incluye información de máscara de subred en sus actualizaciones, por lo que asume las máscaras por defecto de cada clase (A, B, C).
- Difusión (broadcast): Dirección 255.255.255.255 cada 30 s.
- En términos de autenticación, no hay autenticación: No incorpora mecanismo alguno para verificar la fuente o integridad de los mensajes RIP.



## RIP VERSIÓN 2 (RIP V2)

RIP v2 nació como una extensión totalmente retrocompatible de v1, añadiendo capacidades para redes más complejas:

- Classless y VLSM: Incluye la máscara en cada entrada, permite subredes de distinto tamaño y una mayor eficiencia en el uso de direcciones Multicasting.
- Multicasting: Al enviar actualizaciones solo a 224.0.0.9 se reduce el tráfico innecesario en hosts que no participan en RIP.
- Autenticación: se Puede configurar "password simple" o MD5 en cada interfaz RIP para asegurar que solo routers de confianza intercambien información.
- no auto-summary: En entornos con redes discontiguas o superredes, se suele deshabilitar el auto-summary para evitar que RIP agregue automáticamente rutas a su clase original cuando atraviesa un router.



. . . . . . . . .

| Característica         | RIP v1                | RIP v2                                                                         |
|------------------------|-----------------------|--------------------------------------------------------------------------------|
| Información de máscara | No incluye (classful) | Incluye máscara en cada ruta<br>(classless)                                    |
| Tipo de envío          | Broadcast             | Multicast a 224.0.0.9                                                          |
| Autenticación          | No soportada          | Soporta autenticación simple<br>y MD5                                          |
| No auto-summary        |                       | Permite desactivar el auto-<br>summary<br>para evitar agregaciones de<br>clase |



## RIPNG (RIP NEXT-GENERATION)

- Soporte IPv6: RIPng es básicamente RIP v2 adaptado a IPv6: usa multicast a la dirección FF02::9, mensajes de 512 bytes máximo, y rutas con prefijos IPv6.
- Autenticación externa: No implementa autenticación dentro del protocolo; en su lugar se apoya en mecanismos de seguridad de IPv6 (IPsec).





## ¿CUÁNDO USAR CADA UNO?

 RIP v1: legado, muy raro hoy en día; solo en redes muy antiguas sin subredes VLSM.

 RIP v2: redes pequeñas o educativas donde la simplicidad prima sobre el rendimiento o la escalabilidad.

• RIPng: únicamente en entornos IPv6 sencillos, aunque hoy en día OSPFv3 suele ser más habitual.

## Métrica y algoritmo de enrutamiento

- Cada router mantiene una tabla de enrutamiento que contiene:
  - Las redes que puede alcanzar.
  - La "distancia" a cada red (en "saltos").
  - El siguiente router (gateway) hacia esa red.
- Los routers se comunican entre sí enviando periódicamente (cada 30 segundos) su tabla de enrutamiento a sus vecinos.
- Al recibir una tabla, un router actualiza su propia tabla si:
  - La nueva ruta es más corta.
  - La ruta anterior ha expirado.





- Split Horizon Update
- Hold Down
- Poison Reverse Triggered updates

## Formato del mensaje y funcionamiento básico

| 0                 | 8                   | 16      | 5 24         | 32 |  |
|-------------------|---------------------|---------|--------------|----|--|
|                   | COMMAND             | VERSION | MUST BE ZERO |    |  |
|                   | FAMILY OF NET 1     |         | MUST BE ZERO |    |  |
|                   | IP ADDRESS OF NET 1 |         |              |    |  |
|                   | MUST BE ZERO        |         |              |    |  |
|                   | MUST BE ZERO        |         |              |    |  |
| DISTANCE TO NET 1 |                     |         |              |    |  |
|                   | FAMILY OF NET 2     |         | MUST BE ZERO |    |  |
|                   | IP ADDRESS OF NET 2 |         |              |    |  |
| MUST BE ZERO      |                     |         |              |    |  |
|                   | MUST BE ZERO        |         |              |    |  |
|                   | DISTANCE TO NET 2   |         |              |    |  |
|                   |                     |         |              |    |  |

| 0                    | 8                    | 3 16                | 5                   | 24        | 32 |
|----------------------|----------------------|---------------------|---------------------|-----------|----|
| COMM                 | IAND                 | VERSION             | MUST                | Γ BE ZERO |    |
|                      | FAMILY               | OF NET 1            | ROUTE TAG FOR NET 1 |           |    |
|                      | IP ADDRESS OF NET 1  |                     |                     |           |    |
|                      | SUBNET MASK OF NET 1 |                     |                     |           |    |
|                      | NEXT HOP FOR NET 1   |                     |                     |           |    |
|                      | DISTANCE TO NET 1    |                     |                     |           |    |
| FAMILY OF NET 2      |                      | ROUTE TAG FOR NET 2 |                     |           |    |
| IP ADDRESS OF NET 2  |                      |                     |                     |           |    |
| SUBNET MASK OF NET 2 |                      |                     |                     |           |    |
| NEXT HOP FOR NET 2   |                      |                     |                     |           |    |
| DISTANCE TO NET 2    |                      |                     |                     |           |    |
|                      |                      |                     |                     |           |    |



# CONFIGURACIÓN PRACTICA







## CONFIGURACIÓN PRÁCTICA

- Red A (PC\_A): 192.168.10.0/24
- Link serial R1–R2: 10.0.0.0/30
- Red B (PC\_B): 192.168.20.0/24





| Dispositivo A | Interfaz A   | Cable            | Interfaz B        | Dispositivo B |
|---------------|--------------|------------------|-------------------|---------------|
| PC-A          | NIC          | Straight-through | Fa0/1 (switch)    | Switch-A      |
| Switch-A      | Fa0/24       | Straight-through | Fa0/0 (R1)        | R1            |
| R1            | S0/0/0 (DCE) | Serial (DCE)     | S0/0/0            | R2            |
| R2            | Fa0/0        | Straight-through | Fa0/24 (Switch-B) | Switch-B      |
| Switch-B      | Fa0/1        | Straight-through | NIC               | PC-B          |



### COMANDOS R1

```
R1> enable
```

R1# configure terminal

R1(config)# interface FastEthernet0/0

R1(config-if)# ip address 192.168.10.1 255.255.255.0

R1(config-if)# no shutdown

R1(config-if)# exit

R1(config)# interface Serial0/0/0

R1(config-if)# ip address 10.0.0.1 255.255.255.252

R1(config-if)# clock rate 64000

R1(config-if)# no shutdown

R1(config-if)# exit





### **COMANDOS R2**

```
R2> enable
```

R2# configure terminal

R2(config)# interface FastEthernet0/0

R2(config-if)# ip address 192.168.20.1 255.255.255.0

R2(config-if)# no shutdown

R2(config-if)# exit

R2(config)# interface Serial0/0/0

R2(config-if)# ip address 10.0.0.2 255.255.255.252

R2(config-if)# no shutdown

R2(config-if)# exit



## HABILITAR RIP V2 EN LOS ROUTERS

R1(config)# router rip

R1(config-router)# version 2

R1(config-router)# no auto-summary

R1(config-router)# network 192.168.10.0

R1(config-router)# network 10.0.0.0

R2(config)# router rip

R2(config-router)# version 2

R2(config-router)# no auto-summary

R2(config-router)# network 192.168.20.0

R2(config-router)# network 10.0.0.0



## VERIFICACIONES Y PRUEBAS DE CONECTIVIDAD

R1# show ip route rip R2# show ip route rip

PC-A> ping 192.168.10.1 PC-A su puerta de enlace

PC-A> ping 192.168.20.10 PC-A a PC-B

PC-B> ping 192.168.20.1 PC-B su puerta de enlace

PC-B>ping 192.168.10.10 PC-B a PC-A

Muestra en tiempo real el envío y recepción de actualizaciones RIP.

R1# debug ip rip

R2# debug ip rip





#### LIMITACIONES DE RIP

¿Por qué ya no se usa RIP en redes modernas?

Métrica limitada Solo cuenta saltos. Máximo: 15
Convergencia lenta Tarda en adaptarse a cambios
Sin jerarquía Difícil de escalar en redes grandes
Envío periódico Cada 30s, genera tráfico innecesario
Poca seguridad RIP v1 sin autenticación



## ALTERNATIVAS MODERNAS A RIP

¿Qué usamos hoy en lugar de RIP?

OSPF Convergencia rápida, jerarquía, métricas avanzadas

EIGRP Propietario (Cisco), rápido y fácil de configurar

IS-IS Escalable, usado en grandes ISP

BGP Usado en Internet, robusto, enruta entre AS



## BIBIOGRAFÍA

- Comer, D. E. (2014). Internetworking with TCP/IP Vol. 1
- RFC 1058 Routing Information Protocol. (1988): https://datatracker.ietf.org/doc/html/rfc1058
- Documento oficial que define RIP versión 1.
- RFC 2453 RIP Version 2. (1998): https://datatracker.ietf.org/doc/html/rfc2453
- Cisco Networking Academy. (2023). CCNA Introduction to Networks. Cisco Press.

