AG 2.3 - 1 Gleichung 3. Grades - OA - BIFIE

1. Gegeben ist die Gleichung $4x \cdot (x^2 - 2x - 15) = 0$

 $___/1$

Gib die Lösung dieser Gleichung!

AG 2.3

$$x_1 = 0$$

$$x_{2,3} = 1 \pm \sqrt{1+15}; \ x_2 = -3; \ x_3 = 5$$

AG 2.3 - 2 Quadratische Gleichung - LT - BIFIE

2. Gegeben ist eine quadratische Gleichung der Form

/1

AG 2.3

$$x^2 + px + q = 0 \quad \text{mit } p, q \in \mathbb{R}$$

Ergänze die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!

Die quadratische Gleichung hat jedenfalls für x __________ in \mathbb{R} , wenn ___________ gilt.

1	
keine Lösung	
genau eine Lösung	
zwei Lösungen	\boxtimes

2			
$p \neq 0 \text{ und } q < 0$	\boxtimes		
p = q			
p < 0 und q > 0			

AG 2.3 - 3 Lösung einer quadratische Gleichung - OA - BIFIE

3. Gegeben ist die Gleichung $(x-3)^2 = a$.

____/1

Ermittle jene Werte $a \in \mathbb{R}$, für die gegebene Gleichung keine reelle Lösung hat!

AG~2.3

Für alle a < 0 gibt es keine Lösungen.

AG 2.3 - 4 Graphische Lösung einer quadratischen Gleichung - LT - BIFIE

4. Der Graph der Polynomfunktion f mit $f(x) = x^2 + px + q$ berührt die x-Achse. _____/1 Welcher Zusammenhang besteht dann zwischen den Parametern p und q? AG 2.3 Ergänze die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!

Es gibt in diesem Fall _______ mit der x-Achse, deshalb gilt _______ (2)____ .

1	
keinen Schnittpunkt	
einen Schnittpunkt	\boxtimes
zwei Schnittpunkte	

2	
$\frac{p^2}{4} = q$	
$\frac{p^2}{4} < q$	
$\frac{p^2}{4} > q$	

AG~2.3 - 5 Quadratische Gleichungen - ZO - BIFIE

5. Quadratische Gleichungen können in der Menge der reellen Zahlen keine, genau ____/1 eine oder zwei verschiedene Lösungen haben. AG 2.3

Ordnen Sie jeder Lösungsmenge L die entsprechende quadratische Gleichung in der Menge der reellen Zahlen zu!

$L = \{\}$	D
$L = \{-4; 4\}$	E
$L = \{0; 4\}$	С
$L = \{4\}$	F

A	$(x+4)^2 = 0$
В	$(x-4)^2 = 25$
С	x(x-4) = 0
D	$-x^2 = 16$
Е	$x^2 - 16 = 0$
F	$x^2 - 8x + 16 = 0$

AG 2.3 - 6 Quadratische Gleichungen - ZO - BIFIE

6. Gegeben sind vier Lösungsmengen und sechs quadratische Gleichungen. Ordne $__/1$ jeder Lösungsmenge L die entsprechende quadratische Gleichung zu!

$L = \{ \}$	D
$L = \{-3; 3\}$	E
$L = \{0; 3\}$	С
$L = \{3\}$	В

A	$(x+3)^2 = 0$
В	$(x-3)^2 = 16$
С	$x \cdot (x - 3) = 0$
D	$-x^2 = 9$
Е	$x^2 - 9 = 0$
F	$x^2 - 6x + 9 = 0$

AG 2.3 - 7 Aussagen über Zahlen - OA - BIFIE - Kompetenzcheck 2016

7. Gegeben ist die folgende quadratische Gleichung in der Unbekannten x über der ____/1 Grundmenge \mathbb{R} :

$$4x^2 - d = 2 \text{ mit } d \in \mathbb{R}$$

Gib denjenigen Wert für $d \in \mathbb{R}$ an, für den die Gleichung genau eine Lösung hat.

$$d = -2$$

${ m AG~2.3}$ - 8 Quadratische Gleichung - OA - Matura 2015/16 - Haupttermin

8. Gegeben ist die quadratische Gleichung
$$x^2 + p \cdot x - 12 = 0$$
.

AG 2.3

Bestimme denjenigen Wert für p, für den die Gleichung die Lösungsmenge $L=\{-2;\ 6\}$ hat!

$$p = -4$$

AG 2.3 - 9 Lösungsfälle - MC - Matura 2014/15 - Nebentermin 1

9. Gegeben sind fünf Gleichungen in der Unbekannten x.

____/1

AG 2.3

Welche dieser Gleichungen besitzt/besitzen zumindest eine reelle Lösung?

Kreuze die zutreffende(n) Gleichung(en) an!

2x = 2x + 1	
x = 2x	X
$x^2 + 1 = 0$	
$x^2 = -x$	\boxtimes
$x^3 = -1$	\boxtimes

AG 2.3 - 10 Benzinverbrauch - OA - BIFIE

10. Der Zusammenhang zwischen dem Benzinverbrauch y (in L/100 km) und der ____/1 Geschwindigkeit x (in km/h) kann für einen bestimmten Autotyp durch die AG 2.3 Funktionsgleichung $y = 0,0005 \cdot x^2 - 0,09 \cdot x + 10$ beschrieben werden.

Ermittle rechnerisch, bei welcher Geschwindigkeit bzw. welchen Geschwindigkeiten der Verbrauch $6\,\mathrm{L}/100\,\mathrm{km}$ beträgt!

$$6 = 0,0005 \cdot x^2 - 0,09 \cdot x + 10 \ 0 = x^2 - 180 \cdot x + 8000$$

$$x_{1,2} = 90 \pm \sqrt{8100 - 8000} = 90 \pm 10$$

 $x_1 = 80, x_2 = 100$

Bei $80\,\mathrm{km/h}$ und bei $100\,\mathrm{km/h}$ beträgt der Benzinverbrauch $6\,\mathrm{L}/100\,\mathrm{km}$.

AG 2.3 - 11 Mehrwertsteuer - OA - Matura NT 2016

11. Gegeben ist die Gleichung $a \cdot x^2 + 10 \cdot x + 25 = 0$ mit $a \in \mathbb{R}, a \neq 0$.

Bestimme jene(n) Wert(e) von a, für welche(n) die Gleichung genau eine reelle Lösung hat!

AG 2.3

a = 1

${ m AG~2.3}$ - 12 Quadratische Gleichung - LT - Matura 2013/14 Haupttermin

12. Die Anzahl der Lösungen der quadratischen Gleichung $rx^2 + sx + t = 0$ in der Menge der reellen Zahlen hängt von den Koeffizienten r, s und t ab.

AG 2.3

Ergänze die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!

Die quadratische Gleichung $rx^2 + sx + t = 0$ hat genau dann für alle $r \neq 0; r, s, t \in \mathbb{R}$ _______, wenn __________gilt.

1	
zwei reelle Lösungen	\boxtimes
keine relle Lösung	
genau eine relle Lösung	

2	
$r^2 - 4st > 0$	
$t^2 = 4rs$	
$s^2 - 4rt > 0$	\boxtimes

AG 2.3 - 13 Quadratische Gleichung - OA- Matura 2013/14 1. Nebentermin

13. Gegeben ist die quadratische Gleichung $(x-7)^2=3+c$ mit der Variablen $x\in\mathbb{R}$ und dem Parameter $c\in\mathbb{R}$.

Gib den Wert des Parameters c so an, dass diese quadratische Gleichung in $\mathbb R$ genau eine Lösung hat!

c = -3

AG 2.3 - 14 Lösung einer quadratischen Gleichung - LT - Matura NT 116/17

14.	4. Gegeben ist eine quadratische Gleichung $x^2 + p \cdot x - 3 = 0$ mit $p \in \mathbb{R}$.						/1
	Ergänze die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!					AG 2.3	
	Diese Gleichung hat		, wenn	gilt.			
	1)			2			
	unendlich viele reelle Lösungen			$\frac{p^2}{4} + 3 > 0$			
	genau eine reelle Lösung			$\frac{p^2}{4} + 3 < 0$			
	keine reelle Lösung	\boxtimes		$\frac{p^2}{4} + 3 > 1$			