Ejercicios de programación lineal

8 de abril de 2019

1. Resuelve el problema:

Maximizar
$$x_1-2x_2$$

$$2x_1-x_2\geq 0$$
 sujeto a $-2x_1+3x_2\leq 6$
$$x_1,x_2\geq 0$$

2. Resuelve

$$\begin{array}{ll} \text{Maximizar} & x_1+4x_2\\ & x_1+2x_2\leq 5\\ \text{sujeto a} & 2x_1+x_2=4\\ & -x_1+x_2\leq -1\\ & x_1,x_2\geq 0 \end{array}$$

3. Un fabricante produce dos tipos de ropa: T_1 y T_2 . Para producir una unidad de T_1 se necesitan 4 unidades de la materia prima R1, 5 unidaes de materia prima R2 y una unidad de la materia prima R3. Para producir una unidad de T_2 los requerimientos, en el mismo orden, son 1, 3 y 2 unidades, respectivamente. Las cantidades disponibles de R1, R2 y R3 son: 56, 105 y 56, respectivamente.

Si la ganancia de la venta de una unidad de T_1 es de \$4 y la de una unidad de T_2 es \$5, ¿cuánto se debe producir de T_1 y T_2 para maximizar las ganancias?

4. Dos problemas de programación lineal tienen regiones factibles definidas como:

$$x_1 + x_2 \le 6$$
$$x_1 + 2x_2 \le 10$$
$$x_1, x_2 \ge 0$$

y
$$x_1 + x_2 + x_3 = 6$$
$$x_1 + 2x_2 + x_3 = 10$$
$$x_1, x_2, x_3 \ge 0$$

Demuestra que los problemas no son equivalentes. [Sugerencia: $x_1=3,\,x_2=3$ satisface las restricciones del primer problema. ¿Existe un valor de x_3 tal que $(3,3,x_3)$ satisfaga las restricciones del segundo problema?] Esto muestra que no se puede usar la misma variable de holgura para diferentes desigualdades.