2023 年全国硕士研究生招生考试(数学一) 试题

绝密 ★ 启用前

考试形式: 闭卷 考试时间: _180_ 分钟 满分: _150_ 分

注意: 1. 所有答题都须写在试卷密封线右边, 写在其他纸上一律无效.

- 2. 密封线左边请勿答题, 密封线外不得有姓名及相关标记.
- 3. 如答题空白不够, 可写在当页背面, 并标明题号.
- 一、选择题: 1-10 题. (每题 10 分, 共 50 分)
 - 1. 曲线 $y = x \ln \left(e + \frac{1}{x-1} \right)$ 的斜渐近线方程为()

A.
$$y = x + e$$

A.
$$y = x + e$$
 B. $y = x + \frac{1}{e}$ C. $y = x$

C.
$$y = x$$

D.
$$y = x - \frac{1}{e}$$

2. 若微分方程 y'' + ay' + by = 0 的解在 $(-\infty, +\infty)$ 上有界, 则()

A.
$$a < 0, b > 0$$

B.
$$a > 0, b > 0$$

C.
$$a = 0, b > 0$$

B.
$$a > 0, b > 0$$
 C. $a = 0, b > 0$ D. $a = 0, b < 0$

3. 设函数
$$y = f(x)$$
 由
$$\begin{cases} x = 2t + |t|, \\ y = |t| \sin t \end{cases}$$
 确定,则()

- A. f(x) 连续, f'(0) 不存在.
- B. f'(0) 存在, f'(x) 在 x = 0 处不连续.
- C. f'(x) 连续, f''(0) 不存在.
- D. f''(0) 存在, f'(x) 在 x = 0 处不连续.
- 4. 已知 $a_n < b_n (n=1,2,\cdots)$,若级数 $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} b_n$ 均收敛,则" $\sum_{n=1}^{\infty} a_n$ 绝对收敛"是" $\sum_{n=1}^{\infty} b_n$ 绝对收敛" 的()
 - A. 充分必要条件.
 - B. 充分不必要条件.
 - C. 必要不充分条件.
 - D. 既不充分也不必要条件.
- 5. 已知 n 阶矩阵 A,B,C 满足 ABC=O,E 为 n 阶单位矩阵. 记矩阵 $\begin{vmatrix}O&A\\BC&E\end{vmatrix}$, $\begin{vmatrix}AB&C\\O&E\end{vmatrix}$. $\left| \begin{array}{cc} E & AB \\ AB & O \end{array} \right|$ 的秩分别为 $r_1, r_2, r_3, \, \mathbb{M}(\quad)$

A.
$$r_1 < r_2 < r_3$$

B.
$$r_1 < r_2 < r_3$$

A.
$$r_1 \le r_2 \le r_3$$
 B. $r_1 \le r_3 \le r_2$ C. $r_3 \le r_2 \le r_1$ D. $r_2 \le r_1 \le r_3$

D.
$$r_2 < r_1 < r_2$$

6. 下列矩阵中不能相似于对角矩阵的是()

A.
$$\begin{pmatrix} 1 & 1 & a \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$
. B. $\begin{pmatrix} 1 & 1 & a \\ 1 & 2 & 0 \\ a & 0 & 3 \end{pmatrix}$ C. $\begin{pmatrix} 1 & 1 & a \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ D. $\begin{pmatrix} 1 & 1 & a \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}$

B.
$$\begin{pmatrix} 1 & 1 & a \\ 1 & 2 & 0 \\ a & 0 & 3 \end{pmatrix}$$

$$C. \left(\begin{array}{cccc} 1 & 1 & a \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right)$$

$$D. \left(\begin{array}{ccc} 1 & 1 & a \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{array} \right)$$

7. 已知向量
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$, $\beta_1 = \begin{pmatrix} 2 \\ 5 \\ 9 \end{pmatrix}$, $\beta_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, 若 γ 既可由 α_1, α_2 线性表示, 也可由 β_1, β_2 线性表示, 则 $\gamma = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

A.
$$k \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix}, k \in \mathbf{R}$$

B.
$$k \begin{pmatrix} 3 \\ 5 \\ 10 \end{pmatrix}, k \in \mathbb{R}$$

A.
$$k \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix}$$
, $k \in \mathbf{R}$. B. $k \begin{pmatrix} 3 \\ 5 \\ 10 \end{pmatrix}$, $k \in \mathbf{R}$ C. $k \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$, $k \in \mathbf{R}$ D. $k \begin{pmatrix} 1 \\ 5 \\ 8 \end{pmatrix}$, $k \in \mathbf{R}$.

D.
$$k \begin{pmatrix} 1 \\ 5 \\ 8 \end{pmatrix}$$
, $k \in \mathbf{R}$.

8. 设随机变量 X 服从参数为 1 的泊松分布, 则 E(|X - EX|) = (

A.
$$\frac{1}{e}$$
.

B.
$$\frac{1}{2}$$

C.
$$\frac{2}{e}$$

9. X_1, X_2, \cdots, X_n 为来自总体的 $N(\mu_1, \sigma^2)$ 的简单随机样本, Y_1, Y_2, \cdots, Y_n , 为来自总体的 $N(\mu_2, 2\sigma^2)$ 的简 单随机样本, 且两样本相互独立, 记

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \bar{Y} = \frac{1}{m} \sum_{i=1}^{m} Y_i, S_1^2 = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \bar{X} \right)^2, \ S_2^2 = \frac{1}{m-1} \sum_{i=1}^{m} \left(Y_i - \bar{Y} \right)^2$$

则()

$$\mathrm{A.}\ \frac{S_{1}^{2}}{S_{2}^{2}}\sim F\left(n,m\right) .$$

B.
$$\frac{S_1^{\tilde{2}}}{S_2^2} \sim F(n-1, m-1)$$
.

C.
$$\frac{2S_1^2}{S_2^2} \sim F(n, m)$$
.

D.
$$\frac{2\bar{S}_1^2}{S_2^2} \sim F(n-1, m-1)$$
.

10. 设 X_1, X_2 为来自总体 (μ, σ^2) 的简单随机样本, 其中 $\sigma(\sigma > 0)$ 是末知参数, 若 $\hat{\sigma} = a | X_1 - X_2 |$ 为 σ 的 无偏估计,则 a = (

A.
$$\frac{\sqrt{\pi}}{2}$$

B.
$$\frac{\sqrt{2\pi}}{2}$$

C.
$$\sqrt{\pi}$$

D.
$$\sqrt{2\pi}$$

二、填空题: 11-16 题.(每题 5 分, 共 30 分)

- 11. 当 $x \to 0$ 时, 函数 $f(x) = ax + bx^2 + \ln(1+x)$ 与 $g(x) = e^{x^2} \cos x$ 是等价无穷小, 则 $ab = \underline{\hspace{1cm}}$
- 12. 曲面 $z = x + 2y + \ln(1 + x^2 + y^2)$ 在点 (0,0,0) 处的切平面方程为_____.
- 13. 设 f(x) 是周期为 2 的周期函数,且 $f(x) = 1 x, x \in [0,1]$. 若 $f(x) = \frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos n\pi x$,则 $\sum a_{2n} = \underline{\qquad}.$

14. 设连续函数
$$f(x)$$
 满足: $f(x+2) - f(x) = x$, $\int_0^2 f(x) dx = 0$, 则 $\int_1^3 f(x) dx =$ _____

15. 已知向量
$$\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} -1 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 0 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \beta = \begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \end{pmatrix}, \gamma = k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3.$$
 若 $\gamma^{\mathsf{T}}\alpha_1 = \beta^{\mathsf{T}}\alpha_i (i = 1, 2, 3), \quad \mathcal{M} \quad k_1^2 + k_2^2 + k_3^2 = \dots$

16. 设随机变量
$$X$$
 与 Y 相互独立,且 $X \sim B\left(1,\frac{1}{3}\right), Y \sim B\left(2,\frac{1}{2}\right),$ 则 $P\{X=Y\}$. _____

三、解答题: 17-22 小题, 共 70 分.

- 17. (**本小题满分 10 分**) 设曲线 y = y(x)(x > 0) 经过点 (1,2), 该曲线上任一点 P(x,y) 到 y 轴的距离等于该点处的切线在 y 轴上的截距.
 - (1) 求 y(x);

(2) 求函数
$$f(x) = \int_1^x y(t) dt$$
 在 $(0, +\infty)$ 上的最大值.

18. (本小题满分 12 分)

求函数
$$f(x,y) = (y-x^2)(y-x^3)$$
 的极值.

19. (本小题满分 12 分)

设空间有界区域 Ω 由柱面 $x^2+y^2=1$ 与平面 z=0 和 x+z=1 围成. Σ 为 Ω 的边界曲面的外侧. 计算曲面积分

$$I = \iint_{\Sigma} 2xz \, dy \, dz + xz \cos y \, dz \, dx + 3yz \sin x \, dx \, dy.$$

20. (本小题满分 12 分)

设函数 f(x) 在 [-a,a] 上具有 2 阶连续导数. 证明:

(1) 若 f(0) = 0, 则存在 $\xi \in (-a, a)$, 使得

$$f''(\xi) = \frac{1}{a^2} [f(a) + f(-a)]$$

(2) 若 f(x) 在 (-a,a) 内取得极值, 则存在 $\eta \in (-a,a)$, 使得

$$|f''(\eta)| \ge \frac{1}{2a^2} |f(a) - f(-a)|$$

21. (本小题满分 12 分)

已知二次型

$$f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 - 2x_1x_3,$$

$$g(y_1, y_2, y_3) = y_1^2 + y_2^2 + y_3^2 + 2y_2y_3.$$

- (1) 求可逆变换 $\mathbf{x} = \mathbf{P}\mathbf{y}$ 将 $f(x_1, x_2, x_3)$ 化成 $g(y_1, y_2, y_3)$;
- (2) 是否存在正交变换 x = Qy 将 $f(x_1, x_2, x_3)$ 化成 $g(y_1, y_2, y_3)$?

22. (本小题满分 12 分)

设二维随机变量
$$(X,Y)$$
 的概率密度为 $f(x,y) = \begin{cases} \frac{2}{\pi} \left(x^2 + y^2\right), & x^2 + y^2 \leq 1, \\ 0, & \text{其他.} \end{cases}$

- (1) 求 *X* 与 *Y* 的协方差;
- (2) X 与 Y 是否相互独立?
- (3) 求 $Z = X^2 + Y^2$ 的概率密度.