More on hidden Markov models

ISTA 410 / INFO 510: Bayesian Modeling and Inference

U. of Arizona School of Information November 25, 2020

Outline

Last time:

- Temporal models
- Filtering and smoothing in HMMs

Today:

- Fitting in HMMs and unsupervised learning
- HMMs with other observation distributions

Temporal and dynamical models

Temporal and dynamical models

The models we'll look at next model are used to model sequential data, especially time series.

These models are intended to be usable in an on-line fashion – that is, incorporating data in real time as it comes.

Hidden Markov models

Last time: hidden Markov models

- Latent/hidden system state evolves according to a Markov chain
- Observations based on system state

Typical inference problems

Typical problems we want to solve, given a sequence of observations $\mathcal O$ of time length $\mathcal T$:

- Filtering: find the distribution of X_T that is, the distribution of the current state, accounting for all observations up to now.
- Prediction: find the distribution of X_t for some t > T.
- Smoothing: find the distribution of X_t for some $1 \le t < T$. This looks very similar to filtering, but differs in that we can take the observations after time t into account.
- MAP or best-explanation: find the sequence (X_i) maximizing $P(\mathcal{O}, X)$.
- Fitting: Given a sequence of observations, find the model parameters that maximize $P(\mathcal{O}|\lambda)$.

Typical inference problems

Typical problems we want to solve, given a sequence of observations $\mathcal O$ of time length $\mathcal T$:

- Filtering: find the distribution of X_T that is, the distribution of the current state, accounting for all observations up to now.
- Prediction: find the distribution of X_t for some t > T.
- Smoothing: find the distribution of X_t for some $1 \le t < T$. This looks very similar to filtering, but differs in that we can take the observations after time t into account.
- MAP or best-explanation: find the sequence (X_i) maximizing $P(\mathcal{O}, X)$.
- Fitting: Given a sequence of observations, find the model parameters that maximize $P(\mathcal{O}|\lambda)$.

Hidden Markov models

Simplest case

In a HMM, the underlying states are governed by a Markov process.

The simplest case, which we'll start with, is a finite state, multinomial HMM:

- Underlying state X_t follows a Markov chain with N states
- Observed values \mathcal{O}_t follow a multinomial distribution conditional on X_t

So the model is described by two matrices, A (transition matrix), and B (observation matrix).

To do calculations, we also need to assume a certain distribution π on the initial state X_1 . As a shorthand, I'll use the notation $\lambda = (A, B, \pi)$ to represent a choice of these parameters.

Naïve filtering

It is clear that we can compute the joint probability of a particular sequence of states:

$$P(X, \mathcal{O}|\lambda) = \pi_{X_1} \prod_{t=1}^{T} A_{X_{t-1}, X_t} B_{X_t, \mathcal{O}_t}$$

So, naïvely, we could compute this for all sequences of states, and then

$$P(X_t = x_i) = \sum_{\text{sequences with } X_t = x_i} P(X, \mathcal{O}|\lambda)$$

What's the problem?

Naïve filtering

It is clear that we can compute the joint probability of a particular sequence of states:

$$P(X, \mathcal{O}|\lambda) = \pi_{X_1} \prod_{t=1}^{T} A_{X_{t-1}, X_t} B_{X_t, \mathcal{O}_t}$$

So, naïvely, we could compute this for all sequences of states, and then

$$P(X_t = x_i) = \sum_{\text{sequences with } X_t = x_i} P(X, \mathcal{O}|\lambda)$$

What's the problem? N^T sequences – computationally infeasible for all but short sequences.

The forward algorithm

This problem can be solved by the *forward algorithm*, which exploits the Markov property to marginalize on the fly:

9

The forward algorithm

This problem can be solved by the *forward algorithm*, which exploits the Markov property to marginalize on the fly:

Let
$$\alpha_t(x_i) = P(X_t = X_i, \mathcal{O}|\lambda)$$
; then,

$$\alpha_t(x_i) = B_{x_i, \mathcal{O}_i} \sum_{j=1}^N \alpha_{t-1}(x_j) A_{x_j, x_i}$$

The backward pass

The smoothing problem asks us to calculate $P(X_t = x_i, \mathcal{O})$ for some t < T. We could just solve the filtering problem by running the forward algorithm up to time t, but we would lose the information from future states.

Solution: do a backward pass too.

Let $\beta_t(x_i) = P(\mathcal{O}_{t:T}|X_t = x_i)$; that is, the probability of the "remaining" observations from time t to the end, given $X_t = x_i$. Then,

$$\beta_t(x_i) = \sum_{j=1}^N A_{x_i,x_j} B_{x_i,\mathcal{O}_t} \beta_{t+1}(x_j)$$

so we can recursively calculate from the end of the sequence, letting $\beta_T(x_j)=1$ for each j.

The forward-backward algorithm

The forward-backward algorithm solves the smoothing problem for HMMs:

$$P(X_t = x_i | \mathcal{O}, \lambda) = \frac{\alpha_t(x_i)\beta_t(x_i)}{P(\mathcal{O}|\lambda)}$$

Where can we get the normalizing constant?

$$P(\mathcal{O}|\lambda) = \sum_{i=1}^{N} \alpha_{T}(x_{i})$$

Fitting parameters

The fitting problem gives a new challenge:

- Given a fixed state space $\{0,1,\ldots,n\}$ and a sequence $\mathcal O$ of observations, find the model parameters that best fit the sequence $\mathcal O$
- i.e., tune A (transition matrix), B (observation matrix), and π (initial state distribution)
- Target: maximize $P(\mathcal{O}|A,B,\pi)$

This is a form of unsupervised learning.

Baum-Welch algorithm

The Baum-Welch algorithm iteratively improves the fit of the model parameters in a two-step process:

- ullet Do a smoothing step, estimating the probability distributions of the hidden states X_t
- Re-adjust the model parameters to better fit this estimated distribution

Idea behind BW algorithm

Intuitively:

- The smoothing step allows us to estimate the probability that the underlying chain is in each state x_i at time t
- We can use this to count the estimated probability of transitions from state x_i to state x_i
- We can use this, together with the observation sequence, to estimate the probability of each observation from state x_i

Estimating the transition matrix

Smoothing gives us:

$$\gamma_t(i) = \frac{\alpha_t(i)\beta_t(i)}{P(\mathcal{O}|A, B, \pi)}$$

which estimate the probability that the chain was in state x_i at time t. We extend this to:

$$\gamma_t(i,j) = \frac{\alpha_t(i)A_{ij}B_{j,\mathcal{O}_t}, \beta_{t+1}(j)}{P(\mathcal{O}|A,B,\pi)}$$

which estimates the probability that the chain was in state x_i at time t and state x_i at time t + 1.

Then, we re-estimate the transition probability A_{ij} as:

$$A_{ij} = \frac{\sum_{t} \gamma_{t}(i, j)}{\sum_{t} \gamma_{t}(i)}$$

Estimating the rest

Similarly, we can re-estimate the observation probability B_{ij} as

$$B_{ij} = \frac{\sum_{t,\mathcal{O}_t=j} \gamma_t(i)}{\sum_t \gamma_i(i)}$$

the expected proportion of the time spent in state i that produces observation j.

Estimating the rest

Similarly, we can re-estimate the observation probability B_{ij} as

$$B_{ij} = \frac{\sum_{t,\mathcal{O}_t=j} \gamma_t(i)}{\sum_t \gamma_t(i)}$$

the expected proportion of the time spent in state i that produces observation j.

The estimate of the initial state vector is just:

Simple applications

A couple of simple applications that illustrate the usefulness of HMM fitting:

- Pattern recognition in text orthography
- Simple cipher analysis

Text analysis example

Imagine you're an alien with no knowledge of human language, but you gain access to a sample of English text, and you would like to extract some information about the relationships between characters.

Simplifying assumptions:

- No cases everything is lowercase
- No digits or punctuation; only characters are letters and spaces

Text analysis example

Idea: different characters play different roles in the written language;

Approach: fit a hidden Markov model with k different states to a large sample of text, and see if any patterns can be seen.

Let's take a look at the results for k = 2.

distributions

HMMs with other observation

Gaussian HMM

The most common alternative distribution for HMMs is the Gaussian (normal) distribution. In this model:

- X_t still evolves according to a Markov chain with transition matrix A
- $\mathcal{O}_t \sim \text{MVNormal}(\mu_{X_t}, \Sigma_{X_t})$
- Result: the observation distributions are Gaussian mixtures

Filtering and smoothing in Gaussian HMM

What has to change for our filtering and smoothing algorithms?

Filtering and smoothing in Gaussian HMM

What has to change for our filtering and smoothing algorithms?

- Only change: $P(\mathcal{O}_t = j | X_t = x_i)$ is no longer given by a matrix entry B_{ij}
- Instead, we have $p(\mathcal{O}_t = \mathbf{y} | X_t = x_i) = \text{MVNormal}(\mu_i, \Sigma_i)$ for a certain mean vector μ_i , covariance matrix Σ

Expectation-maximization

algorithms

EM algorithms

The Baum-Welch algorithm we saw before is an example of a much wider class of algorithms called *expectation-maximization* algorithms.

These are applicable when the observed data depends on hidden/latent state variables as well as model parameters. Roughly, the idea is:

- Expectation step: compute the distribution of hidden state variables, given current model parameters
- Maximization step: compute the model parameters that maximize (log) likelihood given the state parameters from the expectation step

Repeat until done – score model by total log-likelihood of the data.

Section 13.4-13.6 in BDA has another presentation of EM algorithms in a different context.

EM algorithms

Formally:

- θ : model parameters
- X: hidden variables
- Y: observations
- $L(\theta|X,Y)$: likelihood function
- 1. E-step: compute $Q(\theta|\hat{\theta}) = E_{X|Y,\hat{\theta}}[\log L(\theta|X,Y)]$
- 2. M-step: compute $\theta^{\mathrm{new}} = \underset{\theta}{\mathrm{arg}} \max_{\theta} Q(\theta | \hat{\theta})$

BW algorithm as EM

Recall the Baum-Welch algorithm has two steps:

- Perform smoothing to estimate the distribution of each X_t, given current transition/observation matrix values
- Update parameter values by counting transitions/observations given distributions of X_t

Although we don't explicitly calculate expectations of log-likelihoods, the smoothing step is an E step and the update step is an M step.

EM for Gaussian HMM

To fit the Gaussian HMM, we only need to make the following modifications to the M step:

- Replace B_{ij} with μ_i, Σ_i
- Replace the update of B_{ij} with a maximum-likelihood estimate for a Gaussian, weighted by the estimated state probabilities (from smoothing):

$$\mu_i^{\text{new}} = \frac{\sum_t P(X_t = i) \mathbf{y}_t}{\sum_t P(X_t = i)}$$

$$\Sigma_i^{\text{new}} = \frac{\sum_t P(X_t = i) (\mathbf{y}_t - \boldsymbol{\mu}_i^{\text{new}}) (\mathbf{y}_t - \boldsymbol{\mu}_i^{\text{new}})^T}{\sum_t P(X_t = i)}$$

where y_i are the observations.

A few comments

Missing data

Suppose we have an incomplete sequence of observations:

$$(\mathcal{O}_t) = (\mathcal{O}_1, \mathcal{O}_2, \dots, \mathcal{O}_T)$$

where some \mathcal{O}_t are unobserved (NA).

We can still perform forward and backward algorithms for filtering/smoothing; however, steps where $\mathcal{O}_t = NA$ only involve transition probabilities, no observation.

Result: estimated distribution of hidden states relaxes toward the stationary distribution of the \mbox{MC}

Continuous time

Continuous-time Markov chains do exist, so we could build a HMM on top of one of those.

- Applications:
- How a CT-MC works:
 - Each state x_i has an associated holding time an exponential random variable
 - Chain stays in current state for the holding time and then undergoes a transition according to a
- Challenge: transition times are unobserved, and may not correspond to the observation times

Continuous time

Reduction to discrete HMM:

- The continuous time chain can be expressed in terms of a transition rate matrix Q
- Each entry q_{ij} gives the rate parameter for an exponential random variable; transitions from state i are determined by the minimum of the exponential random variables
- Can reduce to a discrete-time Markov chain with transition matrix dependent on the time interval between two observations: P(t) = exp(Qt)

Details: Liu et al., "Efficient Learning of Continuous-Time Hidden Markov Models for Disease Progression" (2015)