

Lecture 20

Causality

Announcements

- Homework 7 is due Thursday, 03/10
- Midterm this Friday, March 11, 7-9pm PT
 - Prep Guide, Past Exams
 - Logistics post will be up today at 5pm PT
 - Room assignments will be out by Wednesday
 - Catch up sessions this week!

Weekly Goals

- Today
 - Causation
 - Randomized Control Experiments
- Wednesday
 - P-Value as an Error
 - Examples
- Friday
 - Midterm review

How We've Tested Thus Far

Hypothesis Testing Review

- 1 Sample: One Category (e.g. percent of flowers that are purple)
 - Test Statistic: observed_proportion, abs(observed_proportion null_proportion)
 - How to Simulate: sample_proportions(n, null_dist)
- 1 Sample: More Than 2 Categories (e.g. ethnicity distribution of jury panel)
 - Test Statistic: tvd (observed dist, null dist)
 - How to Simulate: sample proportions (n, null dist)
- 1 Sample: Numerical Data (e.g. scores in a lab section)
 - Test Statistic: observed mean, abs (observed mean null mean)
 - How to Simulate: population_data.sample(n, with_replacement=False)
- 2 Samples: Underlying Values (e.g. birth weights of smokers vs. non-smokers)
 - Test Statistic: group_a_mean group_b_mean, group_b_mean group_a_mean, abs(group_a_mean - group_b_mean)
 - How to Simulate: observed_data.sample(with_replacement=False)

Review: A/B Testing

(Demo)

Random Assignment

Importance of Random Assignment

Apple users more willing to pay for apps

Importance of Random Assignment

- iOS users spend 2x as much as Android users on 3rd party apps
 - Is higher spending caused by users owning iPhone?
 - Can't Tell:
 - Users aren't randomly assigned a phone
 - Other factors contribute to their phone purchasing decisions (e.g. income, geography)

Causality

Randomized Controlled Experiment

- Sample A: control group
- Sample B: treatment group
- If the treatment and control groups are selected at random, then you can make causal conclusions.
- Any difference in outcomes between the two groups could be due to
 - chance
 - the treatment

(Demo)

Before the Randomization

- In the population there is one imaginary ticket for each of the 31 participants in the experiment.
- Each participant's ticket looks like this:

Potential Outcome

Potential Outcome

Outcome if assigned to treatment group

Outcome if assigned to control group

The Data

16 randomly picked tickets show:

Outcome if assigned to control group

The remaining 15 tickets show:

Outcome if assigned to treatment group

The Hypotheses

Null:

- In the population, the distribution of all potential control scores is the same as the distribution of all potential treatment scores.
- tl;dr the treatment has no effect

• Alternative:

 In the population, more of the potential treatment scores are 1 (pain improves) than the potential control scores.

Random Assignment & Shuffling

Causality in the Real World

Source: FDA