Given a distortion constraint

$$\sigma_{q}^{2} \leq D^{*} \longrightarrow \square$$

find the decision boundaries, reconstruction levels, and binary codes that minimize the rate given by: $R = \sum_{j=1}^{b} \ell_j \int_{X}^{b_j} f_{X}(x) dx$ while satisfying I.

Given a rate constraint $R \leq R^* \longrightarrow (II)$

find the decision boundaries, reconstruction levels, and binary codes that minimize the distortion given by:

$$G_{q}^{2} = \sum_{j=1}^{b} \int_{-1}^{b_{j}} (x-y_{j})^{2} f_{\chi}(x) dx$$
While satisfying Eqn. (II)

Uniform Quantizer

Decision Boundaries (Step Size= A) Reconstruction Levels

MIDTREAD QUANTIZER

$$\frac{(j-\frac{1}{2})\Delta}{(j-1)\Delta}$$

$$\frac{(j-\frac{1}{2})\Delta}{(j-1)\Delta}$$

$$\frac{(j-\frac{1}{2})\Delta}{(j-1)\Delta}$$

$$= 2 \sum_{J=1}^{J-1} \left(\chi - (\frac{2j-1}{2})\Delta \right) \frac{1}{2} d\chi$$

$$\frac{(J-1)\Delta}{(J-1)\Delta}$$

$$\begin{array}{c}
\uparrow + \chi(x) \\
 & \downarrow \\
 & \downarrow$$

$$\begin{aligned}
& \delta_{q}^{2} = \int_{\Delta/2}^{\Delta/2} q^{2} \frac{1}{\Delta} dq = \frac{\Delta^{2}}{12} \\
& \delta_{\chi}^{2} = \frac{(2 \times \text{max})^{2}}{12} = \frac{\Delta^{2} L^{2}}{12} \\
& (SNR)_{q} (dB) = 10 \log_{10} \left[\frac{\delta_{\chi}^{2}}{\delta_{q}^{2}} \right] \\
& = 10 \log_{10} L^{2}
\end{aligned}$$

$$L=2^{n}$$
(SNR)₁ = 10log₁₀ (2ⁿ)²

$$= 20log10 2^{n}$$

$$= 6.02 n dB$$

$$Sq^{2} = \Delta^{2} = 4 \times \frac{2}{12L^{2}} = \frac{\chi^{2}_{\text{max}}}{3}$$

$$Sq^{2} = \frac{\Delta^{2}}{12} = \frac{4 \times \frac{2}{12L^{2}}}{3}$$

$$Rate (bits/sample)$$

Example: [-100,100] [-1, 1]: 0.95 (Probability) $\{[-100,-1), (1,100]\}$ 0.05 $\Delta = 200 = 25$ $[-1,0) \longrightarrow -12.5$ $[0,1) \rightarrow +12.5$ [-1, 1]

 $\Delta = 0.3$

Reconstruction levels:

-1.05,-0.75,-0.45,-0.15,0.15,0.45,0.75,1.05

98.95

592

Granular and Overload probability for a 3-bit uniform quantizer

Quantization error for a uniform midrise Quantizer

Uniform Quantizer for Nonuniform PDF

$$\Delta$$
: Given L
msqe \rightarrow minimization
 $\sigma_q^2 = f(\Delta)$

$$69^{2} = \sum_{j=1}^{L} \int_{y_{j-1}}^{b_{j}} (x-y_{j})^{2} f_{x}(x) dx$$

- · þaf symmetric
- · Uniform midrise Q(·)
 bj -> n x A

L=8

$$b_{0} = -\infty$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0 = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0$$

$$-4\Delta - 3\Delta - 2\Delta - \Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - \Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - \Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - \Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - \Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - \Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - \Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - \Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - \Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - \Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - \Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - \Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - \Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - \Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - \Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - \Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - \Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - \Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - \Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - 2\Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - 2\Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - 2\Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - 2\Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - 2\Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - 2\Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - 2\Delta = 0$$

$$-2\Delta - 3\Delta - 2\Delta - 2\Delta = 0$$

$$-2\Delta - 3\Delta = 0$$

$$-2\Delta - 3\Delta$$

$$6q^{2} = \left[2\sum_{k=1}^{4/2} {\binom{k\Delta}{x - (2k+1)\Delta}} {\binom{2k+1}{\Delta}} {\binom{2k+1}$$

$$+2\int_{\Delta}^{\infty} \left(x-\left(\frac{L-1}{2}\right)^{2}\right)^{2} f_{x}(x) dx$$

$$= \int_{\Delta}^{\Delta} \left(x-\left(\frac{L-1}{2}\right)^{2}\right)^{2} f_{x}(x) dx$$

$$\frac{\partial \Phi^2}{\partial \Delta} = 0$$

$$\min\{f_{1}(x)+f_{2}(x)\}$$

$$\Rightarrow \frac{df_1(x) + df_2(x) = 0}{dx}$$

$$\Rightarrow \frac{df_1(x)}{dx} = -\frac{df_2(x)}{dx}$$

Leibnitz's rule states that if a(x) and b(x) are monotonic, then

$$\frac{\partial}{\partial x} \left[\begin{pmatrix} b(x) \\ 0(x) \end{pmatrix} + \begin{pmatrix} b(x) \\ 0(x) \end{pmatrix} \right] = \begin{pmatrix} b(x) \\ 0(x) \end{pmatrix}$$

$$\frac{\partial}{\partial x} \left[a(x) + b(x) + b(x) \right]$$

$$\frac{\partial}{\partial x} \left[a(x) + b(x) + b(x) \right]$$

$$+\phi(\alpha=b(x);x)\frac{\partial b(x)}{\partial x}$$

$$-\phi(\alpha=a(x);x)\frac{\partial a(x)}{\partial x}$$

$$\begin{pmatrix} k\Delta \\ (x-(\frac{2k-1}{2})\Delta \end{pmatrix}^{2} f_{X}(x) dx$$

$$\frac{\partial}{\partial \Delta} \begin{bmatrix} k\Delta \\ (x-(\frac{2k-1}{2})\Delta)^{2} f_{X}(x) dx \end{bmatrix}$$

$$= -(2k-1) \int_{(k-1)\Delta}^{k\Delta} \left\{ x - (\frac{2k-1}{2})\Delta \right\} f_{X}(x) dx$$

$$+ \left\{ k\Delta - (\frac{2k-1}{2})\Delta \right\}^{2} f_{X}(k\Delta) \cdot k - \left\{ (k-1)\Delta - (\frac{2k-1}{2})\Delta \right\} f_{X}(k-1)\Delta \right\}_{X}$$

$$= 1^{st} term + (\frac{\Delta}{2})^{2} f_{X}(k\Delta) \cdot k - (\frac{\Delta}{2})^{2} f_{X}(k-1)\Delta \cdot (k-1) \quad (k-1)$$

$$\begin{cases} (R+1)\Delta \\ R\Delta \end{cases} \left(x - (\frac{2R+1}{2})\Delta \right)^{2} f_{\chi}(x) dx \\ \frac{\partial}{\partial \Delta} \left[\int_{R\Delta}^{(R+1)\Delta} (x - (\frac{2R+1}{2})\Delta)^{2} f_{\chi}(x) dx \right] \\ = -(2R+1) \int_{R\Delta}^{(R+1)\Delta} \left\{ x - (\frac{2R+1}{2})\Delta \right\} f_{\chi}(x) dx \\ + \left\{ (R+1)\Delta - (\frac{2R+1}{2})\Delta \right\}^{2} f_{\chi}((R+1)\Delta) \times (R+1) \\ - \left\{ R\Delta - (\frac{2R+1}{2})\Delta \right\}^{2} f_{\chi}(R\Delta) \times R \\ = \int_{R\Delta}^{SL} term + \left(\frac{\Delta}{2} \right)^{2} f_{\chi}((R+1)\Delta) \times (R+1) - \left(\frac{\Delta}{2} \right)^{2} f_{\chi}(R\Delta) \times R \end{cases}$$

$$\frac{\partial G_q^2}{\partial \Delta} = -2 \sum_{k=1}^{1/2} (2k-1) \left(\frac{2k-1}{2} \right) \int_{X}^{1/2} (x-1) dx$$

$$(k-1)\Delta$$

$$-2\left(L-1\right)\int_{-\infty}^{\infty}\left(x-\left(L-1\right)\Delta\right)f_{\chi}(x)dx$$

$$=\frac{L}{2}\Delta$$

TABLE: OPTIMUM Δ, (SNR)_q FOR UNIFORM QUANTIZATION

Alphabet	Uniform		Gaussian		Laplacian	
Size	Step	(SNR) _q	Step	(SNR) _q	Step	(SNR) _q
	Size		Size		Size	
2	1.732	6.02	1.5960	4.40	1.414	3.00
4	0.866	12.04	0.9957	9.24	1.0873	7.05
6	0.577	15.58	0.7334	12.18	0.8707	9.56
8	0.433	18.06	0.5860	14.27	0.7309	11.39
10	0.346	20.02	0.4908	15.90	0.6334	12.81
12	0.289	21.60	0.4238	17.25	0.5613	13.98
14	0.247	22.94	0.3739	18.37	0.5055	14.98
16	0.217	24.08	0.3352	19.36	0.4609	15.84
32	0.108	30.10	0.1881	24.56	0.2799	20.46

J. Max, "Quantizing for Minimum Distortion", IRE Trans. on Information Theory, IT-6, pages 7-12, Jan. 1960.

A. K. Jain, "Fundamentals of Image Processing", Prentice Hall, 1989.