A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 6EC

Bookmark

Show all steps: (

ON

Problem

Prove the following for all integers a, b, c, d and all positive integers m and n:

If $a^2 \equiv b^2 \pmod{p}$, where p is a prime, then $a \equiv \pm b \pmod{p}$.

Step-by-step solution

Step 1 of 2

Consider the congruence equation

$$a^2 \equiv b^2 \pmod{p}$$
, where p is a prime

The object of the problem is to prove that if $a^2 \equiv b^2 \pmod{p}$, where p is a prime then $a \equiv \pm b \pmod{p}$.

Use the definition, $a \equiv b \pmod{n}$ iff n divides a - b to prove the given result.

By the definition, p divides $a^2 - b^2$

This implies that p divides (a-b)(a+b)

Comment

Step 2 of 2

Here p is a prime and the result, if $p \mid cd$, where p is prime then $p \mid c$ or $p \mid d$

Thus, p divides a-b or p divides a+b.

Again by the definition of congruence equation,

$$a-b\equiv 0\ (\mathrm{mod}\ p)$$
 or $a+b\equiv 0\ (\mathrm{mod}\ p)$
$$a\equiv b\ (\mathrm{mod}\ p) \text{ or } a\equiv -b\ (\mathrm{mod}\ p)$$
 Therefore, if $a^2\equiv b^2\ (\mathrm{mod}\ p)$, where p is a prime then $a\equiv \pm b\ (\mathrm{mod}\ p)$