Does an LSTM forget more than a CNN? An empirical study of catastrophic forgetting in NLP

Gaurav Arora, Afshin Rahimi, Timothy Baldwin

The University of Melbourne

gaurava@student.unimelb.edu.au {rahimia,tbaldwin}@unimelb.edu.au

December 3, 2019

Catastrophic Forgetting

whereby a model trained on one task is fine-tuned on a second, and in doing so, suffers a "catastrophic" drop in performance over the first task.

3/19

Catastrophic Forgetting

Catastrophic forgetting is a hurdle in the development of better transfer learning techniques.

Catastrophic forgetting is a hurdle in the development of better transfer learning techniques.

Fine-tuning leads to forgetting when domains are different [Peters et al., 2019]

Catastrophic forgetting is a hurdle in the development of better transfer learning techniques.

Fine-tuning leads to forgetting when domains are different [Peters et al., 2019]

Catastrophic forgetting is a hurdle in the development of better transfer learning techniques.

Fine-tuning leads to forgetting when domains are different [Peters et al., 2019]

Previous Studies

Task Complexity Task sequence's total complexity is positively correlated with the forgetting [Nguyen et al., 2019].

Previous Studies

Task Complexity Task sequence's total complexity is positively correlated with the forgetting [Nguyen et al., 2019].

Regularisation Using dropout decreases catastrophic forgetting [Goodfellow et al., 2014].

Previous Studies

Task Complexity Task sequence's total complexity is positively correlated with the forgetting [Nguyen et al., 2019].

Regularisation Using dropout decreases catastrophic forgetting [Goodfellow et al., 2014].

Max Operation Using max operation in the network reduces forgetting [Srivastava et al., 2013].

TREC Question classification ("TREC"): coarse-grained classification of questions, based on 6 classes. [Voorhees and Tice, 1999]

Tasks	SOTA	CNN	(SOTA - CNN)	Type
TREC	0.98	0.91	0.07	Easy

TREC Question classification ("TREC"): coarse-grained classification of questions, based on 6 classes. [Voorhees and Tice, 1999]

Subjectivity ("SUBJ"): binary classification of Subjectivity vs. Objectivity in IMDB reviews. [Pang and Lee, 2004]

Tasks	SOTA	CNN	(SOTA - CNN)	Type
TREC	0.98	0.91	0.07	Easy
Subjectivity	0.95	0.92	0.03	Easy

- TREC Question classification ("TREC"): coarse-grained classification of questions, based on 6 classes. [Voorhees and Tice, 1999]
- **Subjectivity ("SUBJ"):** binary classification of Subjectivity vs. Objectivity in IMDB reviews. [Pang and Lee, 2004]
- Corpus of Linguistic Acceptability ("CoLA"): prediction of whether a sentence is grammatical or not. [Warstadt et al., 2018]

Tasks	SOTA	CNN	(SOTA - CNN)	Type
TREC	0.98	0.91	0.07	Easy
Subjectivity	0.95	0.92	0.03	Easy
CoLA	0.34	0.24	0.1	Hard

- TREC Question classification ("TREC"): coarse-grained classification of questions, based on 6 classes. [Voorhees and Tice, 1999]
- **Subjectivity ("SUBJ"):** binary classification of Subjectivity vs. Objectivity in IMDB reviews. [Pang and Lee, 2004]
- Corpus of Linguistic Acceptability ("CoLA"): prediction of whether a sentence is grammatical or not. [Warstadt et al., 2018]
- **Stanford Sentiment Treebank ("SST"):** fine-grained sentiment classification over five classes. [Socher et al., 2013]

Tasks	SOTA	CNN	(SOTA - CNN)	Type
TREC	0.98	0.91	0.07	Easy
Subjectivity	0.95	0.92	0.03	Easy
CoLA	0.34	0.24	0.1	Hard
SST	0.54	0.38	0.16	Hard

- TREC Question classification ("TREC"): coarse-grained classification of questions, based on 6 classes. [Voorhees and Tice, 1999]
- **Subjectivity ("SUBJ"):** binary classification of Subjectivity vs. Objectivity in IMDB reviews. [Pang and Lee, 2004]
- Corpus of Linguistic Acceptability ("CoLA"): prediction of whether a sentence is grammatical or not. [Warstadt et al., 2018]
- **Stanford Sentiment Treebank ("SST"):** fine-grained sentiment classification over five classes. [Socher et al., 2013]

Tasks	SOTA	CNN	$\frac{(SOTA-CNN)}{SOTA}$	Туре
TREC	0.98	0.91	0.07	Easy
Subjectivity	0.95	0.92	0.03	Easy
CoLA	0.34	0.24	0.29	Hard
SST	0.54	0.38	0.29	Hard

Continual Learning Setup

• Tasks are trained sequentially.

Continual Learning Setup

- Tasks are trained sequentially.
- Tasks are trained without access to data from previous tasks.

Normalisation

Lower Bound: normalise performance based on Majority Classifier(MAJ) performance.

8/19

Normalisation

Lower Bound: normalise performance based on Majority Classifier(MAJ) performance.

Upper Bound: normalise performance based on State of the Art Accuracy (SOTA).

Normalisation

Lower Bound: normalise performance based on Majority Classifier(MAJ) performance.

Upper Bound: normalise performance based on State of the Art Accuracy (SOTA).

$$P_{i,j} = \frac{\text{PER}_{i,j} - \text{PER}_{MAJ}}{\text{PER}_{SOTA} - \text{PER}_{MAJ}} \quad \forall i \leq j$$

8/19

Normalisation

Lower Bound: normalise performance based on Majority Classifier(MAJ) performance.

Upper Bound: normalise performance based on State of the Art Accuracy (SOTA).

$$P_{i,j} = \frac{\text{PER}_{i,j} - \text{PER}_{MAJ}}{\text{PER}_{SOTA} - \text{PER}_{MAJ}} \quad \forall i \leq j$$

Incorporates a measure of task difficulty.

Sequence Forgetting (F_{Seq})

Task forgetting is percentage performance drop from when task was first trained.

$$F_i = \frac{P_{i,i} - P_{i,T}}{|P_{i,i}|} \tag{1}$$

Sequence Forgetting (F_{Seq})

Task forgetting is percentage performance drop from when task was first trained.

$$F_i = \frac{P_{i,i} - P_{i,T}}{|P_{i,i}|} \tag{1}$$

Sequence forgetting is sum of forgetting for all tasks.

$$F_{Seq} = \sum_{i=1}^{i=T} F_i \tag{2}$$

Evaluation: Forgetting Metric

Sequence Forgetting (F_{Seq})

Task forgetting is percentage performance drop from when task was first trained.

$$F_i = \frac{P_{i,i} - P_{i,T}}{|P_{i,i}|} \tag{1}$$

Sequence forgetting is sum of forgetting for all tasks.

$$F_{Seq} = \sum_{i=1}^{i=T} F_i \tag{2}$$

Lower forgetting is better.

Experiments

Research Question 1

Do some neural architectures forget more than others?

ullet Compare forgetting (F_{Seq}) between LSTM and CNN architecture.

- Compare forgetting (F_{Seq}) between LSTM and CNN architecture.
- Across all 24 possible Task Sequence from four tasks.

- Compare forgetting (F_{Seq}) between LSTM and CNN architecture.
- Across all 24 possible Task Sequence from four tasks.

Max vs Average pooling

What makes CNN forget less, max-pooling vs average pooling?

Max vs Average pooling

What makes CNN forget less, max-pooling vs average pooling?

Sequence forgetting for TREC_SUBJ_SST_CoLA, single-layered network

CNN forgets less due to max-pooling.

Experiments

Research Question 2

Should we fine-tune pre-trained embedding in continual learning setup?

Experiments: ELMo Embeddings

• Using ELMo embeddings as feature extractor (Fix) vs fine-tunning (FT).

Experiments: ELMo Embeddings

• Using ELMo embeddings as feature extractor (Fix) vs fine-tunning (FT).

Experiments: ELMo Embeddings

• Using ELMo embeddings as feature extractor (Fix) vs fine-tunning (FT).

Freezing params is better in continual learning setup.

Experiments

Research Question 3

Do networks with more capacity forget less?

Does increasing the number of layers decrease forgetting?

16 / 19

Experiments

Research Question 4

Do networks forget more during training over a difficult task?

Task Sequencing

Curriculum Learning, placing hard tasks at the end of a task sequence [Bengio et al., 2009] reduces forgetting.

Task Sequence	F_{Seq}
TREC_SUBJ _CoLA_SST	0.63
TREC_SUBJ _SST_CoLA	0.78
SST_TREC_SUBJ _CoLA	0.81

Task Sequencing

Curriculum Learning, placing hard tasks at the end of a task sequence [Bengio et al., 2009] reduces forgetting.

Task Sequence	F_{Seq}
TREC_SUBJ _CoLA_SST	0.63
TREC_SUBJ <mark>_SST_CoLA</mark>	0.78
SST_TREC_SUBJ _CoLA	0.81
CoLA_SUBJ_SST _TREC	1.3
SST_CoLA _SUBJ_TREC	1.4
CoLA_SST _SUBJ_TREC	1.4

Table: Top three (Green) and bottom three (Red) tasks sequence with F_{Seq} for Layer = 1.

Hard Tasks

Training hard task later in the sequence is beneficial.

Hard Tasks

Training hard task later in the sequence is beneficial.

Embeddings

Fine-tuning embeddings perform worse than using them as a feature extractor.

Hard Tasks

Training hard task later in the sequence is beneficial.

Embeddings

Fine-tuning embeddings perform worse than using them as a feature extractor.

Architecture

CNN forgets less due to max-pooling.

Hard Tasks

Training hard task later in the sequence is beneficial.

Embeddings

Fine-tuning embeddings perform worse than using them as a feature extractor.

Architecture

CNN forgets less due to max-pooling.

Thanks!

O: gauravaror/catastrophic_forgetting

References

- Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning.
 - In *Proceedings of the 26th annual international conference on machine learning*, pages 41–48. ACM.
 - Goodfellow, I. J., Mirza, M., Da, X., Courville, A. C., and Bengio, Y. (2014). An empirical investigation of catastrophic forgeting in gradient-based neural networks. In 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings.
- Nguyen, C. V., Achille, A., Lam, M., Hassner, T., Mahadevan, V., and Soatto, S. (2019). Toward understanding catastrophic forgetting in continual learning. *CoRR*, abs/1908.01091.
- Pang, B. and Lee, L. (2004).

 A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts.

Figure: Performance of LSTM and CNN on task sequence TREC_SUBJ_SST_COLA, with one layer and hidden dimension 100.

More Network Capacity: Hidden Dimension

- We couldn't find any conclusive answer for how forgetting changes with hidden dimension.
- It seems to be dependent on the task sequence.

Regularisation

Does L2 regularisation help in decreasing forgetting?

