

Email antonio.pucc@gmail.com
Phone +39 3426310876
Github antoniopucciarelli
LinkedIn Antonio Pucciarelli

SUMMARY

Five years ago, I moved from Salerno to Milano with the intent of building my career in the aerospace field. I started the MSc pointing to have a good comprehension of internal and external flows, so I decided to create a personalized learning track based on CFD, turbomachinery design and flows modeling. Over the next few years, I intend to develop as aerospace engineer in the field of turbulence modeling and combustion processes analysis, modeling and optimization. I am also interested in external aerodynamics, its modeling and the study of aeroelastic effects.

PROJECTS

Injector study and liquid jet breakup process in liquid rocket engines

May 2021 - Jun 2021

Politecnico di Milano, Milano - ITA

Study of injectors' properties and possible combustion chamber interactions. Analysis of conical jets, sprays and atomization process.

NASA CEA Python LATEX

Dec 2020 - Jan 2021

Politecnico di Milano. Milano - ITA

Study of steady incompressible flow around aircraft wings using Weissinger model. Worked on code scripting and its validation [link].

MATLAB git LATEX

Hess-Smith model • Study and modeling

Weissinger model • Study and modeling

Jul 2020 - Dec 2020

Politecnico di Milano, Milano - ITA

Study of flow around airfoils at steady and incompressible regime using Hess-Smith model. Coding fast and efficient script for modeling the problem [link].

Fortran BLAS LAPACK CMake gnuplot Python git LATEX

Pratt & Whitney RL10A-3 • Cooling jacket analysis and modeling

May 2020 - Jun 2020

Politecnico di Milano, Milano - ITA

Technical research on P&W RL10A-3 engine. Study of the heat exchange process phenomena and problem modeling. Analysis and comparison of results with collected data [link].

MATLAB NASA CEA Fortran git LATEX

PERSONAL PROJECTS

- Wrapping techniques between NASA CEA and Python (link)
- Airfoil generator program, easy and accessible way to make airfoils [link].
- · OpenFOAM airfoil's blockMesh generator [link].

SKILLS

Languages OpenFOAM, Fortran, Python, C++, C, CMake, MATLAB, Bash, LaTeX, gnuplot

Tools git, NumPy, SymPy, Pandas, FEniCS, vim, BLAS/LAPACK

Softwares NASTRAN, NASA CEA, xFoil, Femap, Solid-Works, SolidEdge, Inventor, xflr5, ParaView

EDUCATION

Aeronautical engineering

Track Combustion/rocket & aerodynamics

Duration 2021 - up to now

Master degree, Politecnico di Milano - Milano, ITA **Thesis** CFD based, subject to be defined

Aerospace engineering

Final grade 101 / 110

Duration 2017 - 2020

Bachelor degree, Politecnico di Milano - Milano, ITA **Thesis** Prova finale, consisting of 3 projects:

Aerospace propulsion project

30L / 30

Orbital dynamics project

30 / 30

Technology and aerospace materials project 24 / 30

PERSONAL GOALS

- Pollution reduction.
- · Electric transition.
- · Hydrogen transition.
- Green fuels transition.
- Manufacturing sustainability.

Master degree • Aeronautical engineering	120 CFU	27.25 / 30
○ Combustion in thermochemical propulsion	8 CFU	28 / 30
Numerical modeling of differential problems	6 CFU	30L/30
∘ Structural dynamics and aeroelasticity	10 CFU	25 / 30
Bachelor degree • Aerospace engineering	180 CFU	
∘ Analisi e geometria 1	10 CFU	27 / 30
∘ Analisi e geometria 2	10 CFU	29 / 30
∘ Calcolo numerico ed elementi di analisi	10 CFU	27 / 30
∘ Dinamica di sistemi aerospaziali	8 CFU	27 / 30
∘ Elettrotecnica e elettronica applicata	10 CFU	27 / 30
∘ Fisica tecnica	10 CFU	27 / 30
∘ Fluidodinamica	10 CFU	21/30
o Fondamenti di automatica	8 CFU	28 / 30
o Fondamenti di chimica	7 CFU	24 / 30
∘ Fondamenti di fisica sperimentale	12 CFU	27 / 30
o Fondamenti di meccanica del volo atmosferico	5 CFU	28 / 30
∘ Fondamenti di meccanica strutturale	10 CFU	26 / 30
 Fondamenti di sperimentazione aerospaziale 	6 CFU	20 / 30
∘ Impianti e sistemi aerospaziali	8 CFU	25 / 30
∘ Informatica	6 CFU	25 / 30
o Introduzione all'analisi di missioni aerospaziali	2 CFU	30 / 30
o Istituzioni di ingegneria aerospaziale	8 CFU	26 / 30
o Meccanica aerospaziale	10 CFU	27 / 30
○ Metodi di rappresentazione tecnica	7 CFU	29 / 30
 Modellazione di strutture aerospaziali 	6 CFU	22 / 30
o Propulsione aerospaziale	7 CFU	23 / 30
o Tecnologie e materiali aerospaziali	7 CFU	24 / 30
o Prova finale di analisi di missioni aerospaziali	1 CFU	30 / 30
o Prova finale di propulsione aerospaziale	1 CFU	30L/30
o Prova finale di tecnologie e material aerospaziali	1 CFU	24 / 30

LANGUAGES

Italian Mother tongue.

English Proficient user. Able to satisfy most work requirements with language that is often acceptable and effective.

o TOEIC 860 / 990 **B2** level 445 / 495 · Listening section · Reading section 415 / 495

o PET **B1** level