The proposal problem of the problem	Formulario di fisica 2 v0.1	•	Le cariche si distribuiscono sempre su		· Leggi di Kirchhoff	■ INDUZIONE	Disco di Barlow	· Dens. SUPERFICIALE corrente	orrente
The continue of the continue	NOME:			$W = \int_{\theta_i}^{\theta_f} M \mathrm{d} \theta$		· Coefficienti mutua induzione			(169)
The contraction of the contract	COGNOME: MATRICOLA:	f^B				$\Phi_{2,1}=MI_2$		$\mu + \mu_0$	(102)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TI ATINGPAA CINOG -	$(A) = -\int_A \mathbf{E} \cdot d\mathbf{r}$		$W = pE[\cos(\theta_i) - \cos(\theta_f)]$	Legge delle maglie	· Flusso generato da 1 attraverso 2	F.e.m. indotta	$J_1 = \bigvee \times H$	(163)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Teorema (divergenza)			· Frequenza dipolo oscillante		$\Phi_1 := NB_1 \Sigma^{\circ} \tag{124}$		$ \oint \mathbf{H} \cdot d\mathbf{l} = I_{l,c} $	(104)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•	<u>S</u> = <u>S</u>		k=0		Corrente in un circuito chiuso	· Energia di B	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				$\nu = \frac{1}{2\pi} \sqrt{\frac{pE}{I}}$	■ MAGNETOSTATICA	· Induttanza Φ autoflusso		$U_B = \frac{1}{2\mu_0} \int_{\mathbb{R}^3} \mathbf{B}^2 \mathrm{d}\tau$	(165)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· Teorema (Stokes)			•			i cono forza estama il m	$U_B = \frac{1}{2} \int_{-1} \mathbf{j} \cdot \mathbf{A} d\tau$	(166)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\mathcal{L}_{\mathcal{L}}$ JE Equazione di Poisson		$U = -\mathbf{p} \cdot \mathbf{E}$	ge di Laplace		Smorzato Momento francanto	2 J™³ con N circuiti filiformi	
The continuous and another formulation of the continuous and another formulation and another formulation of the continuous and another formulation and anot	· Teorema (Gradiente)						пепапле	$U_B = \frac{1}{2} \sum_{i}^{N} I_i \Phi_i$	(167)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				$\mathbf{F} = abla ig(\mathbf{p} \cdot \mathbf{E} ig)$				$\sum_{i=1}^{n} Z_i$,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				· Energia pot. tra due dipoli		(2 /D . k)		■ CIRCUITI RLC	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· Flusso di un campo	$\mathbf{E} = \frac{q}{\sqrt{q}} \mathbf{u}_r$				_	$\tau = \frac{2mR}{B^2 r^2}$	· Impedenza La somma delle impedenze in	serie
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					Seconda legge di Laplace	· Fem autoindotta	■ DIPOLO MAGNETICO	parallelo segue le regole dei resistori	tori
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· Equazioni di Maxwell	$V = \frac{x}{4\pi\varepsilon_0 r}$					· Momento di dipolo	$Z = R + i \left(\omega L + \frac{1}{\omega G} \right)$	(168)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nel vuoto:		$C \equiv \frac{\ln R}{r}$	3p1p2	· B di corpi notevoli (ATTENZIONE:				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\mathbf{E}(r) = \begin{cases} \frac{\sqrt{e^{r}}}{4\pi\varepsilon_{0}R^{3}} = \frac{2r}{\varepsilon_{0}} & \text{se } r < R \\ \frac{r}{4\pi\varepsilon_{0}R^{3}} & \text{se } r \ge R \end{cases}$			viene indicata la direzione, il verso dipen-	· Fem indotta		$ Z = \sqrt{R^2 + \left(\omega L + \frac{1}{\omega G}\right)^2}$	(169)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{pmatrix} 4\pi\varepsilon_0\kappa^2 \\ \rho(3R^2-r^2) \end{pmatrix}$	$C_{ea} = \left(\sum_{i=1}^{n} \frac{1}{z^{i}}\right)^{-1}$		de dana contente 1) Asse di una spira			. BLC serie in DC smorzato	
10 10 10 10 10 10 10 10		$V(r) = \begin{cases} \frac{660}{\sqrt{2}} & \text{se r} < R \\ \frac{Q}{\sqrt{2}} & \text{se r} \ge R \end{cases}$. Comonto indotta		Equazione differenziale	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			In parallelo 			5	· Campo magnetico B generato	$I''(t) + 2\gamma I'(t) + \omega_0 I(t) = 0$	(170)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>#</u> 0	$\mathbf{E}(r) = \begin{cases} 0 \\ 0 \end{cases}$						$\omega_0 = \frac{1}{\sqrt{\pi}}$ $\gamma = \frac{R}{2\pi}$	
(1) $1 \cdot 1 \cdot 1 \cdot \frac{1}{1 \cdot 1 \cdot 1} = 0$ (1) $1 \cdot 1 \cdot 1 \cdot \frac{1}{1 \cdot 1 \cdot 1} = 0$ (1) $1 \cdot 1 \cdot 1 \cdot \frac{1}{1 \cdot 1} = 0$ (1) $1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 0$ (1) $1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 0$ (1) $1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 0$ (1) $1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 0$ (1) $1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 0$ (1) $1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 0$ (1) $1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 0$ (1) $1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 0$ (1) $1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 0$ (1) $1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 0$ (1) $1 \cdot 1 \cdot 1 \cdot 1 = 0$ (1) $1 \cdot 1 \cdot 1 \cdot 1 = 0$ (1) $1 \cdot 1 \cdot 1 \cdot 1 = 0$ (1) $1 \cdot 1 \cdot 1 \cdot 1 = 0$ (1) $1 \cdot 1 \cdot 1 \cdot 1 = 0$ (1) $1 \cdot 1 = 0$ (1)		$E(I) = \begin{pmatrix} Q \\ 4\pi\epsilon_0 R^2 \end{pmatrix}$			28		· Momento torcente	$\omega = \sqrt{LC} \qquad 2L$ $\omega = \sqrt{\omega_0^2 - \gamma^2} \qquad \tau = -1$	
1.1 $\frac{11}{12}$ $\frac{11}{$		$V(r) = \begin{cases} \frac{Q}{4\pi\varepsilon_0 R} & \text{se } r < R \end{cases}$		dτ · Dielettrici lineari	ra			174	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	D.C.	$\frac{\sqrt{4\pi\varepsilon_0 r}}{4\pi\varepsilon_0 r} \text{se } r \ge R$		$\mathbf{P} = \varepsilon_0 \chi_E \mathbf{E}_k = \varepsilon_0 (k-1) \mathbf{E}_k$	$\frac{2+a^2}{2+a^2}$ u ϕ			$I(t) = I_0 e^{-\gamma t} \sin(\omega t + \varphi)$	(171)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	Figure 7 ratio in the following λ		. Done sunomfeisle di a noloniare	leale	Interna		Smorz. FORTE $\gamma^2 > \omega_0^2$	
		$\mathbf{E}(r) = \frac{\lambda}{2\pi\varepsilon_0 r} \mathbf{u}_r$. Dens. supernolate on q potarizza $k-1$				$I(t) = e^{-\gamma t} (Ae^{\omega} + Be^{-\omega})$	(172)
(13) Fig. 2. (7) and a contract minimal of the contract of a position of a contract of a position of a contract o	Nei mezzi:			$\sigma_p = \mathbf{P} \cdot \mathbf{u}_n = {k} - \sigma_l \tag{84}$		-	· Energia del dipolo	Smorz. CRITICO $\gamma^2 = \omega_0^2$	
11 $\frac{1}{2} - \frac{1}{2} - \frac{1}{2}$		$2\pi arepsilon = \left(egin{array}{c} r \end{array} ight)$ Piano Σ infinito con carica uniforme		· Dens. volumetrica di q polarizza		In un circuito (conta una volta ogni induttanza ed una ogni coppia)		$I(t) = e^{-\gamma t} (A + Bt)$	(173)
[15] $(1)^2 = \frac{1}{25}(x^2 - x^2)$ [15] Satisfactorises (iii) $(1)^2 = \frac{1}{25}(x^2 - x^2)$ [15] Satisfacto		$\mathbf{F} \equiv \frac{\sigma}{m} \mathbf{n}$			xy, con	$\frac{1}{N}$ $\frac{N}{N}$ \frac{N}	· Energia pot. tra due dipoli	A, B e φ si ricavano impost	ando le
Expression of the control of the		$2\varepsilon_0^{-n}$		· Spostamento elettrico				condizioni iniziali	
1. A Able to contain uniformic fall way) Contains the contains Contains the contains Contains the contains C		$V(x) = \frac{\sigma}{2\varepsilon_0}(x - x_0)$	13)	$\mathbf{D} = \varepsilon_0 \mathbf{E}_k + \mathbf{P} = \varepsilon_0 k \mathbf{E}_k = \varepsilon_0 \mathbf{E}_0$		(133)	Bè il campo magnetico generato dall'al-	· RLC serie in AC forzato Forzante	
17 17 17 17 17 17 17 17				•	· Effetto Hall b spessore sonda, b // B, b \perp I, n car/vol	· Legge di Felici	tro dipolo	$\varepsilon(t) = \varepsilon_0 \cos(\Omega t + \Phi)$	(174)
(8) Decoursion elementarie (8) Decoursion elementarie (8) $E_{-2} \frac{\lambda R}{2 \sqrt{3} - 5} = \frac{\lambda R}{2 \sqrt{3}}$ (4) Translating of materials (9) Decoursion elementarie (8) Decoursion elementa	. Discontinuità dei campi Generali		•	. Lavoro del generatore $W=\int^{t_2}W d\omega(t)=g U_z$	$V_H = \frac{IB}{n a b} \tag{112}$		Forza eta mpon $\mathbf{F}(\mathbf{r})=rac{3\mu_0}{4\pi r^4}ig[(\mathbf{m_1}\cdot\mathbf{u_r})\mathbf{m_2}+(\mathbf{m_2}\cdot\mathbf{u_r})\mathbf{m_1}+$	Equazione differenziale	,
(8) The carbon distribution of the carbon distr		$V(x) = \lambda R$		$Vgen = \int_{t_1} V \mathrm{d}q(t) = 20 \mathrm{E}$	· Forza di Amnere	Od a: 1d office.		$I''(t) + 9 \sim I'(t) + c_{11} I(t) = \frac{\Omega \varepsilon_0}{1} \sin(\Omega t + \Delta t)$	(O++ \Phi)
		$2\varepsilon_0\sqrt{x^2+R^2}$ Disco carico uniformemente		. Densità di corrente Nqv	Corr. equiversa = for. attrattiva	L si oppone alle variazioni di I smorzan-	1		(175)
(2) $V(x) = \frac{2a_0}{2a_0} \left(\sqrt{1 + \frac{a_0}{2a_0}} \right)^2 \left($		$\mathbf{E}(\omega) = \sigma \left(1 1 \right)$.					■ MAGNETISMO	Soluzione	
[22] $V(z) = \frac{c}{2c_0} = \frac{c}{2c_0} = \frac{c}{2c_0}$ (33) $V(z) = \frac{c}{4c_0} = \frac{c}{$		$L(x) = 2\varepsilon_0 \left(1 - \sqrt{1 + \frac{R^2}{x^2}}\right)^{4x}$		· Intensità di corrente $\mathrm{d} a(t)$ f	ttore A		· Campo magnetico nella materia	$I(t) = I_0(\Omega) \cos(\Omega t)$	(176)
		$V(x) = \frac{\sigma}{2\varepsilon_0}(x - \sqrt{x^2 + R^2})$		$I = \frac{1}{dt} = \int_{\Sigma} \mathbf{J} \cdot d\Sigma$,	Quando il circuito viene aperto		Corrente massima	
(23) $V(x) = \frac{g}{4g_0} \frac{R^2}{3}$ (48) $\frac{F}{2} - \frac{Q^2}{2g_0} = \frac{Q^2}{2g_0}$ (88) $\frac{F}{2} - \frac{Q^2}{2g_0} = \frac{Q^2}{2g_0}$ (89) $\frac{F}{2} - \frac{Q^2}{2g_0} = \frac{Q^2}{2g_0}$ (91) $\frac{F}{2} - \frac{Q^2}{2g_0} = \frac{Q^2}{2g_0}$ (92) $\frac{F}{2} - \frac{Q^2}{2g_0} = \frac{Q^2}{2g_0}$ (93) $\frac{F}{2} - \frac{Q^2}{2g_0} = \frac{Q^2}{2g_0}$ (94) $\frac{A^2}{4} + \sqrt{\psi}$ (115) $\frac{A^2}{4g_0} + \sqrt{\psi}$ (115) $\frac{A^2}{4g_0} + \sqrt{\psi}$ (117) $\frac{A^2}{4g_0} + \sqrt{\psi}$ (118) $\frac{A^2}{4g_0} + \sqrt{\psi}$ (119) $\frac{A^2}{4g_0} + \sqrt{\psi}$ (119) $\frac{A^2}{4g_0} + \sqrt{\psi}$ (119) $\frac{A^2}{2g_0} + \sqrt{\psi}$ (119) \frac	Inearita	Disco carico uniformemente		i Ohm	$\int \frac{\mathbf{j(r_2)}}{r_{2,1}} \mathrm{d}\tau_2$			$I_0(\Omega) = \frac{\varepsilon_0}{ Z } = \frac{\varepsilon_0}{\sqrt{R^2 + (\Omega L + \frac{1}{2})^2}}$	(177)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\mathbf{E}(x) = \frac{\sigma}{2} \frac{R^2}{s} \mathbf{u}_x$		V = KI		· Circuiti con barra mobile (b lunghez-	. Campo magnetizzazione M	V	
(25) $V(x) = \frac{1}{4.0} \frac{L}{4.0}$ (49) Momento difficient carried carried carried dispole (37) $V(x) = \frac{1}{4.0} \frac{L}{4.0}$ (37) $V(x) = \frac{1}{4.0} \frac{L}{4.0}$ (49) Perturbation carried carri		$2\varepsilon_0 x^2$				za barra) F.e.m. indotta		$L\Omega - \frac{1}{3C}$	(140)
Care discretification uniformement earlies of the page of the pag		$V(x) = \frac{o}{4\varepsilon_0} \frac{n}{x}$	<u> </u>			$\varepsilon(t) = -Bbv(t) \tag{137}$		$\tan \Phi(M) = \frac{R}{R}$	(1/8)
	Rifrazione linee di B $\frac{1}{1}$	Guscio cilindrico uniformemente cari		σ . Potenza conduttore ohmico		Corrente in un circuito chiuso	$(\chi_m + 1)\mu_0$. Campo magnetizzante H	NOTA: Lo stasamento di I rispetto a ε e $-\Phi$	tto a ε e
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\mathbf{E}(r) = \begin{cases} 0 & \text{se } r < R \\ \frac{Q}{2\pi\varepsilon_0 h r} & \text{se } r \ge R \end{cases}$		$P = VI = RI^2 = \frac{V^2}{D}$	· Moto ciclotrone			Kisonanza 1	3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	■ ELETTROSTATICA	se r < R		$dP = \mathbf{J}(\mathbf{r}) \cdot \mathbf{E}(\mathbf{r}) d\tau$		erred el evenoum red		$Im(Z) = 0 \rightarrow \omega_0 = \frac{1}{\sqrt{LC}}$	(179)
(25) Comportry or (26) - Identification equilibrio E = $\frac{qd(2\cos(\theta) \mathbf{u}_{\mathbf{u}} + \sin(\theta) \mathbf{u}_{\theta})}{4\pi\varepsilon r^{3}}$ (71) $R_{eq} = \sum_{i=1}^{n} R_{i}$ (96) $T = \frac{2\pi n}{qB}$ (120) All'interno Conduttori in equilibrio All'interno (26) - Identification equilibrio E = 0 Conduttori in equilibrio T = $\frac{2\pi n}{qB}$ (121) $R_{eq} = \sum_{i=1}^{n} R_{i}$ (122) $R_{eq} = \left(\frac{n}{i+1} R_{i}\right)^{-1}$ (123) $R_{eq} = \left(\frac{n}{i+1} R_{i}\right)^{-1}$ (124) $R_{eq} = \left(\frac{n}{i+1} R_{i}\right)^{-1}$ (125) $R_{eq} = \left(\frac{n}{i+1} R_{i}\right)^{-1}$ (126) $R_{eq} = \left(\frac{n}{i+1} R_{i}\right)^{-1}$ (127) $R_{eq} = \left(\frac{n}{i+1} R_{i}\right)^{-1}$ (128) $R_{eq} = \left(\frac{n}{i+1} R_{i}\right)^{-1}$ (129) $R_{eq} = \left(\frac{n}{i+1} R_{i}\right)^{-1}$ (120) $R_{eq} = \left(\frac{n}{i+1} R_{i}\right)^{-1}$ (121) $R_{eq} = \left(\frac{n}{i+1} R_{i}\right)^{-1}$ (122) $R_{eq} = \left(\frac{n}{i+1} R_{i}\right)^{-1}$ (123) $R_{eq} = \left(\frac{n}{i+1} R_{i}\right)^{-1}$ (124) $R_{eq} = \left(\frac{n}{i+1} R_{i}\right)^{-1}$ (125) $R_{eq} = \left(\frac{n}{i+1} R_{i}\right)^{-1}$ (126) $R_{eq} = \left(\frac{n}{i+1} R_{i}\right)^{-1}$ (127) $R_{eq} = \left(\frac{n}{i+1} R_{i}\right)^{-1}$ (128) $R_{eq} = \left(\frac{n}{i+1} R_{i}\right)^{-1}$ (129) $R_{eq} = \left($	· Forza di Coulomb	$\frac{2}{\epsilon_0 h} \ln\left(\frac{r}{R}\right)$ se $r \ge R$					· Dens. LINEARE di corrente sulla SUPERFICIE	· Effetto Joule	
. Conduttori in equilibrio E = $\frac{qd(2\cos(\theta)\mathbf{u}_r + \sin(\theta)\mathbf{u}_\theta)}{4\pi \varepsilon r^3}$ (71) All'interno All'interno All'interno (26) - il campo è nullo (27) - il campo è nullo (28) - il campo è nullo (29) - il campo è nullo (20) - il campo è nullo (21) - il potenziale è costante (22) - il potenziale è costante (27) - il potenziale è costante (28) - il potenziale è costante (27) - il campo è nullo (28) - il campo è nullo (29) - il campo è nullo (29) - il campo è nullo (20) - il campo è nullo (20) - il campo è nullo (20) - il campo è nullo (21) - il campo è nullo (22) - il campo è nullo (23) - il campo è nullo (24) - il campo è nullo (25) - il campo è nullo (26) - il campo è nullo (27) - il campo è nullo (28) - il campo è nullo (29) - il campo è nullo (29) - il campo è nullo (29) - il campo è nullo (20) - il campo è nullo (21) - il campo è nullo (21) - il campo è nullo (22) - il campo è nullo (24) - il campo è nullo (25) - il campo è nullo (26) - il campo è nullo (27) - il campo è nullo (28) - il potenziale è costante (29) - il campo è nullo (20) - il campo è nullo (20) - il campo è nullo (21) - il campo è nullo (21) - il campo è nullo (22) - il campo è nullo (23) - il campo è nullo (24) - il potenziale è costante (27) - il campo è nullo (28) - il campo è nullo (29) - il campo è nullo (20) - il campo è nullo (21) - il campo è nullo (22) - il campo è nullo (23) - il campo è nullo (24) - il campo è nullo (27) - il campo è nullo (28) - il campo è nullo (29) - il campo è nullo (20) - il campo è nullo (20) - il campo è nullo (20) - il campo è nullo (21) - il campo è nullo (22) - il campo è nullo (23) - il campo è nullo (24) - il campo è nullo (25) - il campo è nullo (26) - il campo è nullo (27) - il campo è nullo (28) -		•	· Campo elettrico E generato				$\mathbf{K_m} = \mathbf{M} \times \mathbf{u}_r \tag{159}$	$\langle P_R \rangle = \frac{V_0}{2R}$	(180)
(26) — il campo è nullo (27) — Momento torcente (28) — il campo è nullo (29)	Definizione campo elettrico	· Conduttori in equilibrio	$\mathbf{E} = \frac{qd\left(2\cos\left(\theta\right)\mathbf{u}_r + \sin\left(\theta\right)\mathbf{u}_\theta\right)}{4\pi\varepsilon r^3}$	$K_{eq} = \sum_{i=1}^{r} K_i$	flessione elica (n 2 dimen	Forza magnetica sulla barra	$\mathbf{K_m} = K_m \mathbf{u}_\phi$	· Potenza media totale	
(20) E = 0 (52) M = $\mathbf{a} \times q\mathbf{E}(x, y, z)$ (72) $R_{eq} = \begin{pmatrix} \sum_{i=1}^{n} I \\ \sum_{i=1}^{n} R_i \end{pmatrix}$ (97) Passo elica becostarial e costante \mathbf{A} and \mathbf{A}			· Momento torcente	In parallelo $\prime n \rightarrow 1 - 1$				$\langle P \rangle = \frac{V_0 I_0}{\sigma} \cos(\phi)$	(181)
- il potenziale è costante (27) $\Delta V = 0$ (53) $\mathbf{M} = \mathbf{p} \times \mathbf{E}$ (73) $\Delta V = V_0 - r_i I$ (98) $A = \frac{2\pi R}{\tan(\theta)}$ (122) e l'écesaria una F esterna; autriment I				$R_{eq} = \left(\sum_{i=1}^{n} \frac{1}{R_i}\right)$		ATTENZIONE: per tenere v costante		. V e I efficace	
(27) $\Delta V = 0$ (53) $\mathbf{M} = \mathbf{p} \times \mathbf{E}$ (73) $\Delta V = V_0 - r_i I$ (98) $\tan(\theta)$ esponenzialmente $\phi \cdot \mathbf{M} \cdot d\mathbf{l} = I_{m,c}$	En. potenziale due cariche	 il potenziale è costante 	Se E uniforme			e necessaria una F esterna; altrimenti essa è opposta a v e il moto è smorzato		$\sqrt{2}_{1}$	(100)
		$\Delta V = 0$	$\mathbf{M} = \mathbf{p} \times \mathbf{E}$	$(73) \Delta V = V_0 - r_i I (98)$		емронендляниение	$\oint \mathbf{M} \cdot d\mathbf{l} = I_{m,c} \tag{161}$		(102)

(237)		(238)	(000)	(239)		(240)	(241)	angolare	ngoraro	(242)		(949)	(c47)		(244)		(245)		(246)	(247)		(248)	(249)	interfe-	lei due	$\frac{1}{2}$	(250)		(251)		(252)		(253)		(254)	(271)	(272)	,	(273)	(274)		$\frac{x}{-}$ (275)
$I_{MAX} = N^2 I_0$ Massimi secondari	$m \in \mathbb{Z} - \{kN, kN - 1 \text{ con } k \in \mathbb{Z}\}$	$\delta = \frac{2m+1}{2N} \pi \to \sin \theta = \frac{2m+1}{2N} \frac{\lambda}{d}$	In I	$I_{SEC} = \frac{1}{\left(\sin\frac{\pi d \sin\theta}{\lambda}\right)^2}$	Minimi $m \in \mathbb{Z} - \{kN\}$	$\delta = \frac{2m}{N}\pi \to \sin\theta = \frac{m\lambda}{Nd}$	$I_{MTN} = 0$	e angolare (distanza	tra min. e max. adiacente)	$\Delta\theta \approx \frac{1}{1-\lambda}$	$N d \cos \theta$ Potere risolutore	$\delta\lambda_{-1}$	$\frac{\lambda}{\lambda} = \frac{Nn}{Nn}$	· Diffrazione Intensità	$I(\theta) = I_0 \left(\frac{\sin\left(\frac{\pi a \sin \theta}{\lambda}\right)}{\frac{\pi a \sin \theta}{\pi a \sin \theta}} \right)^2$	Massimo pincipale in $\theta = 0$	$I_{MAX} = I_0$	Massimi secondari $m \in \mathbb{Z} - \{-1, 0\}$. $2m + 1 \lambda$	$\sin \theta = \frac{2}{a} - \frac{1}{a}$	$I_{SEC} = \frac{I_0}{\left(\frac{\pi(2m+1)}{2}\right)^2}$	Minimi $m \in \mathbb{Z} - \{0\}$	$\sin \theta = \frac{m\lambda}{a}$	$I_{MIN} = 0$	• Reticolo di diffrazione Sovrapposizione di diffrazione e interfe-	renza, l'intensità è il prodotto d effetti	$I(\theta) = I_0 \left(\frac{\sin(\frac{\pi a \sin \theta}{\lambda})}{\sin(\frac{\lambda \pi d \sin \theta}{\lambda})} \right)^2$	$\frac{\lambda}{\lambda}$ Sin($\frac{\lambda}{\lambda}$)	Dispersione	$D = \frac{\mathrm{d}\theta}{\mathrm{d}\lambda} = \frac{m}{d\cos\theta_m}$	Fattore molt. di inclinazione	$f(\theta) = \frac{1 + \cos \theta}{2}$	· Filtro polarizzatore Luce NON polarizzata	$I = \frac{I_0}{2}$	Luce polarizzata (Legge di Malus)	$I = I_0 \cos^2(\theta)$	$\int \frac{1}{(x^2 + r^2)^{3/2}} \mathrm{d}x = \frac{x}{r^2 \sqrt{r^2 + x^2}}$	$\int \frac{x}{-x} dx = \sqrt{r^2 + x^2}$	$\int \sqrt{x^2 + r^2}$	$\int \frac{x}{(x^2 + r^2)^{3/2}} \mathrm{d}x = -\frac{1}{\sqrt{r^2 + x^2}}$	$\int \frac{1}{\cos x} dx = \log \left(\frac{1 + \sin x}{\cos x} \right)$		$\int \sin^3 ax dx = -\frac{3a\cos ax}{4a} + \frac{\cos 3ax}{12}$
ZIO-			(220)		(221)		(222)		(223)		(224)		(225)		(226)	(227)	,		(228)		(229)		$n \in \mathbb{Z}$	(250) tile		(231)	(232)		(233)		(234)		(235)		(236)		(267)		(268)		(269)	(270)
■ INTERFERENZA e DIFFRAZIO-	NE · Interferenza generica	onda risultante	$f(\mathbf{r},t) = Ae^{i(kr_1-\omega t + \alpha)}$	Ampiezza	$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2 \cos \delta}$	Diff. cammino ottico	$\delta = \alpha_2 - \alpha_1 = \left(\Phi_2 - \Phi_1 + k(r_2 - r_1)\right)$	Intensità	$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \delta$	Fase risultante α	$\tan \alpha = \frac{A_1 \sin \alpha_1 + A_2 \sin \alpha_2}{A_2 \cos \alpha_2 + A_2 \cos \alpha_2}$	$A_1 \cos \alpha_1 + A_2 \cos \alpha_2$ Massimi	$\delta = 2n\pi$	Minimi	$\delta = (2n+1)\pi$. Condizione di Fraunhofer $\theta = \frac{\Delta y}{2}$	L L grande tale che tan $\theta \approx \theta$	· Interferenza in fase Diff. cammino ottico	$\delta = k(r_2 - r_1) = \frac{2\pi}{\lambda} d\sin\theta$	Costruttiva	$r_2 - r_1 = n\lambda \to \sin\theta = n\frac{\lambda}{d} n \in \mathbb{Z}$	Distruttiva	$r_2 - r_1 = \frac{2n+1}{2}\lambda \to \sin\theta = \frac{2n+1}{2}\frac{\lambda}{d}$	· Interf. riflessione su lastra sott	(n indice rifr., t spessore lastra) Diff. cammino ottico	$\delta = \frac{2\pi}{\lambda} \frac{2nt}{\cos \theta_t}$	Massimi $m \in \mathbb{N}$ $t = \frac{2m+1}{\lambda} \lambda \cos \theta,$	$4n$ Minimi $m \in \mathbb{N}$	$t = \frac{m}{2n}\lambda\cos\theta_t$	· Interferenza N fenditure Diff. cammino ottico	$\delta = \frac{2\pi}{\lambda} d\sin\theta$	Intensità	$I(\theta) = I_0 \left(\frac{\sin(N\frac{\delta}{2})}{\sin\frac{\delta}{2}} \right)^{\omega}$	Massimi principali $m \in \mathbb{Z}$	$\delta = 2m\pi \to \sin\theta = \frac{m\lambda}{d}$	· Attrito viscoso Equazione differenziale	$v' + \frac{v}{\tau} = K$	Soluzione	$v(t) = k\tau(1 - e^{-\frac{t}{\tau}})$	■ ANALISI MATEMATICA · Integrali ricorrenti	$\int \frac{1}{x^2 + r^2} dx = \frac{1}{r} \arctan \frac{x}{r}$	$\int \frac{1}{\sqrt{x^2 + r^2}} dx = \ln \sqrt{x^2 + r^2} + x$
l	(200)		(201)		(202)		(203)	,	(204)		(205)		(206)	(207)		(208)	= 1)	(209)		(210)	(211)	(919)	(212)	non oss	(213)	(214)	(215)		(216)		(217)		(218)		(219)	(961)	(707)	(262)	(263)	(264)	(265)	(266)
· Coefficienti di Fresnel Definizione	$r = \frac{E_r}{E_s} \qquad R = \frac{P_r}{P_s} = \frac{I_r}{I_s}$		$t = \frac{E_t}{E_i} \qquad T = \frac{P_t}{P_i} = \frac{I_t}{I_i}$	E.	$r_{-} = \frac{\sin(\theta_t - \theta_i)}{\sin(\theta_t - \theta_i)}$	$\sin(\theta_t + \theta_i)$	$r_{\pi} = \frac{\tan(\theta_t - \theta_i)}{2}$	$\tan(\theta_t + \theta_i)$	$R_{\sigma} = r_{\sigma}^2 \qquad R_{\pi} = r_{\pi}^2$	Raggio TRASMESSO polarizzato	$t_{\sigma} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_i \cos \theta_i}$	$n_i \cos \theta_i + n_t \cos \theta_t$	$t_p i = \frac{2n_i \cos \theta_i}{n_i \cos \theta_t + n_t \cos \theta_i}$	$T_{\sigma} = 1 - R_{\sigma} \qquad T_{\pi} = 1 - R_{\pi}$	izza	$R = \frac{1}{2}(R_{\sigma} + R_{\pi}) \qquad T = \frac{1}{2}(T_{\sigma} + T_{\pi})$	Incidenza normale ($\cos \theta_i ? \cos \theta_t =$	$r = \frac{n_i - n_t}{n_1 + n_2}$	2 \	$R = \left(\frac{n_i - n_t}{n_i + n_t}\right)$	$t = \frac{2n_i}{n_i + n_t}$	$T - \frac{4n_in_t}{}$	$a = (n_i + n_t)^2$ A result of B December (i) morning with	Angolo di Drewster (u raggio rinesso non ha polar. parallela)	$\theta_i + \theta_t = \frac{\pi}{2} \to \theta_B = \theta_i = \arctan \frac{n_t}{n_i}$	$R = \frac{1}{2}\cos^2(2\theta_i)$	T = 1 - R	· Pressione di radiazione Superficie ASSORBENTE	$p = rac{I_i}{v}$	Superficie RIFLETTENTE	$p = \frac{I_i + I_t + I_r}{v}$	· Rapporto di polarizzazione	$\beta_R = \frac{P_R^{\sigma} - P_R^{\pi}}{P_{\sigma}^{\sigma} + P_{\pi}^{\pi}}$	$P_{\mu}^{\sigma} - P_{\pi}$	$\beta_T = \frac{T - T_T}{P_T^{\sigma} + P_T^{\pi}}$	· Lavoro	Moto circolare unif. accelerato	$v = \omega r$	$a = \frac{v^2}{r} = \omega^2 r$	$\theta(t) = \theta(0) + \omega(0)t + \frac{1}{2}\alpha t^2$. Moto armonico	Equazione differenziale $x'' + \omega^2 x = 0$	Soluzione $x(t) = A\sin(\omega t + \varphi)$
			(183)	(184)				(185)			(186)		(187)	di Σ		(188)		(189)		(190)	(191)		(192)		(193)		(194)	(195)		(196)	(197)		(198)		(199)		(255)	(256)	(257)	(258)		(260)
■ CAMPO EM e OTTICA	Campi in un'onda EM	(Nel vuoto $v = c$)	$E(x,t) = E_0 \cos(kx - \omega t)$	$B(x,t) = \frac{E_0}{v}\cos(kx - \omega t)$	$\omega = kv k = \frac{2\pi}{r} \lambda = \frac{v}{r}$	ν	· Vettore di Poynting	$\mathbf{S} = \frac{1}{\mathbf{E} \times \mathbf{B}}$	μ_0	· Intensità media onda	$I = \langle S \rangle = \langle E^2 \varepsilon v \rangle$	· Potenza	$P = I\Sigma$	L'intensità varia in base alla scelta di	· Equazioni di continuità Teorema di Poynting	$\nabla \cdot \mathbf{S} + \mathbf{E} \cdot \mathbf{j} + \frac{\partial u}{\partial t} = 0$	Conservazione della carica	$\nabla \cdot \mathbf{j} + \frac{\partial \rho}{\partial t} = 0$	· Densità di en. campo EM	$u_{EM} = \frac{1}{2} (\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H})$	$U_{EM} = \int_{\mathbb{R}^3} u_{EM} \mathrm{d} au$	· Densità di quantità di moto	∞ ∞ ⊴	. Effetto Doppler	$\nu' = \nu \frac{v - v_{oss}}{v - v_{sorg}}$	Oscillazione del dipolo	$I(r,\theta) = \frac{I_0}{r^2} \sin^2(\theta)$	$P = \int \int I(r,\theta) dr d\theta = \frac{8}{3}\pi I_0$	Velocità dell'onda	$v^2 = \frac{1}{k_e \varepsilon_0 k_m \mu_0}$	$c^2 = \frac{1}{\varepsilon_{o.0.0}}$	oreo · Indice di rifrazione	$n = \frac{c}{v} = \sqrt{k_e k_m}$	· Legge di Snell-Cartesio	$n_1\sin\theta_1=n_2\sin\theta_2$	■ UNITÀ DI MISURA Wh c m²ka	$H = \frac{1}{A} = Tm^2 = \frac{10^{-13}}{A^2 s^2}$ $V = V^2 = \frac{10^{-13}}{10^{-13}}$	$\Omega = \frac{V}{A} = \frac{V}{W} = \frac{m \log y}{A^2 s^3}$	$T = \frac{N}{Am} = \frac{kg}{As^2}$	$V = \frac{J}{C} = \frac{W}{A} = \frac{m \log 3}{8^3 A}$ $F = \frac{C}{V} = \frac{C^2}{V} = \frac{A^2 s^4}{m \log 4 s}$	FISICA 1	. Momento torcente $M = \mathbf{r} \times \mathbf{F} = I \alpha$

· Differenziale di primo ordine	ne Soluzioni	oni	-	Identità vettoriali		· Identità geometriche	
Colma generale		0		$\nabla \cdot (\nabla \times \mathbf{A}) = 0$	(282)	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ (288)	3 (288)
y(t) + a(t)y(t) = b(t)	(2/0) $y(t) =$	$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$	(279)	$\nabla \times (\nabla f) = 0$	(283)		
Soluzione $a(t) = c^{-A(t)}(c+\int b(t)e^{A(t)}dt)$	Se $\Delta = 0$	0 =		$\nabla \cdot (f\mathbf{A} = f\nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla f$		$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta (289)$	β (289)
g(t) = c Differentiale di secondo ordine omo-		$y(t) = c_1 e^{\lambda_1 t} + t c_2 e^{\lambda_2 t}$	(280)	$\nabla(\mathbf{A}\cdot\mathbf{B}) = \mathbf{B}\cdot(\nabla\times\mathbf{A}) - \mathbf{A}\cdot(\nabla\times\mathbf{B})$	$\mathbf{A} \cdot (\nabla \times \mathbf{B})$	$\cos\frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos\alpha}{2}}$	(290)
geneo	Se $\Delta < 0$	0 >			(285)		
Forma generale $y'' + ay' + by = 0$ $a, b \in \mathbb{R}$	(278) $y(t) =$	$y(t) = c_1 e^{\alpha t} \cos(\beta t) + c_2 e^{\alpha t} \sin(\beta t) (281)$		$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$	(286)	$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$	(291)
$\lambda_{1,2} \in \mathbb{C}$ sono le soluzioni dell'equazione associata		$con \alpha = Re(\lambda) e \beta = Im(\lambda)$		$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$	(287)	$\tan \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 + \cos \alpha}$	(292)
		Cartesiane	S	Sferiche	Cilindriche		
	Gradiente $(\nabla f =)$	$\frac{\partial f}{\partial x} \mathbf{x} + \frac{\partial f}{\partial y} \mathbf{y} + \frac{\partial f}{\partial z} \mathbf{z}$	$\frac{\partial f}{\partial r} \mathbf{r} + \frac{1}{r} \frac{\partial}{\partial r}$	$\frac{\partial f}{\partial r} \mathbf{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \theta + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \phi$	$\frac{\partial f}{\partial r} \mathbf{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \theta + \frac{\partial f}{\partial z} \mathbf{z}$	s	
	Divergenza $(\nabla \cdot \mathbf{F} =)$	$\frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$	$\frac{1}{r^2} \frac{\partial r^2 F_r}{\partial r} + \frac{1}{r \sin \theta}$	$\frac{1}{r^2}\frac{\partial r^2F_r}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial F_\theta \sin\theta}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial F_\phi}{\partial \phi}$	$\frac{1}{r}\frac{\partial F_r}{\partial r} + \frac{1}{r}\frac{\partial F_\theta}{\partial \theta} + \frac{\partial F_z}{\partial z}$	$\frac{F_z}{\partial z}$	
		$\left(\begin{array}{c} \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \end{array}\right)$	$\left(\frac{1}{r\sin\theta}\left(\frac{\partial_{\lambda}}{\partial \theta}\right)\right)$	$\frac{1}{r\sin\theta} \left(\frac{\partial F_{\phi} \sin\theta}{\partial \theta} - \frac{\partial F_{\theta}}{\partial \phi} \right)$	$\left(\begin{array}{c} \left(\frac{1}{r}\frac{\partial F_z}{\partial \phi} - \frac{\partial F_\phi}{\partial z}\right) \end{array}\right)$		
	Rotore $(\nabla \times \mathbf{F} =)$	$\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}$	$\frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\delta}{\theta} \right)$	$\frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial F_r}{\partial \phi} - \frac{\partial (r F_{\phi})}{\partial r} \right)$	$\left(\frac{\partial F_r}{\partial z} - \frac{\partial (rF_z)}{\partial r}\right)$		
		$\left(\begin{array}{c} \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \end{array}\right)$	$\left(\frac{1}{r} \left(\frac{\partial (r)}{\delta} \right) \right)$	$\frac{1}{r} \left(\frac{\partial (r F_{\theta})}{\partial r} - \frac{\partial F_r}{\partial \theta} \right)$	$\left(\frac{1}{r} \left(\frac{\partial (rF_{\phi})}{\partial r} - \frac{\partial F_r}{\partial \phi} \right) \right)$		
		Il laplaciano di un cam	po scalare Φ , in qu	ll laplaciano di un campo scalare Φ , in qualunque coordinata, è $\nabla \cdot \nabla \Phi$	$\Phi \Delta$.		