

INTERVALOS PONDERADOS

CIBELE MARA FONSECA

MALENA ALVES RUFINO

DISCIPLINA: ANÁLISE DE ALGORITMOS

PROFESSORA DRA.: MÁRCIA APARECIDA FERNANDES

Contextualizando...

- ·Suponhamos que temos apenas um caminhão para realizar n viagens;
- •O caminhão pode realizar apenas uma viagem por vez, logo só pode começar uma nova viagem ao terminar a anterior;
- •Cada viagem tem uma data de início, uma data de término e uma prioridade;
- •O objetivo é fazer as viagens cujo a soma de prioridades seja a maior possível durante o período de tempo disponível.

Cidade	Início	Término	Prioridade
Uberlândia	01	16	9
Belo Horizonte	11	23	10
Goiânia	19	31	2

Dado um conjunto S de n atividades onde para cada uma são definidos tempo de início si, tempo de término fi e peso vi. Deseja-se encontrar o subconjunto cujo a soma do pesos de tarefas mutuamente compatíveis entre si seja a maior possível.

Figure 6.1 A simple instance of weighted interval scheduling.

Atividade compatível: {1,3} com peso 2; {2} com peso 3, é a solução ótima.

- Restrição: Intervalos ordenados por tempo de término não decrescente: f1 f2 ≤ ... ≤ fn;
- i< j se fi < fj;
- Intervalo i é compatível a j, se fi ≤ Sj;
- p(j)=i para um intervalo j, seja i o maior índice i<j tal que os intervalos i e j são compatíveis;
- p(j)=0 se não existe nenhum intervalo i, tal que i<j e i é compatível a j;
- Para computar p(j) utilizamos uma busca binária, que procura identificar um fi ≤ sj e atribui p(j)=i.

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined for each interval j.

Um exemplo de agendamento de intervalos ponderados com a função p(j) definida para cada intervalo j.

- Considere uma solução ótima O (não temos ideia do que é);
- Intervalo n petence a O ou não;
- Se n ∈ O, então nenhum intervalo entre p(n) e n pertence a O;
- Se n ∈ O, então O deve conter solução ótima de {1,...,p(n)};
- Se n ∉ O, então O é igual a solução ótima do subproblema {1,...,n-1};

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined for each interval j.

- Definimos OPT(0)=0, considerando que essa é a solução ótima para conjuntos vazios;
- A solução que procuramos é On, com o valor de OPT(n);
- Para a solução ótima Oj em que j=n (Nos leva ao princípio do começo que n pertence ou não a O, ou seja, a escolha binária).

Escolha Binária

OPT (j) = valor da solução ótima para o problema que consiste em intervalos 1, 2, ..., j.

Caso 1: $j \in OPT(j)$

Não pode usar intervalos incompatíveis a j e deve incluir solução ótima para problema consistindo em intervalos compatíveis restantes 1, 2, ..., p (j).

Caso 2: j ∉ OPT(j)

Deve incluir a solução ótima para o problema de intervalos compatíveis 1, 2, ..., j-1.

Expressão Recursiva

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \max \left\{ v_j + OPT(p(j)), OPT(j-1) \right\} & \text{otherwise} \end{cases}$$

Escolha Binária

Como decidir se o intervalo j pertece a Oj?

Ele pertence à solução ótima, se somento se o Caso 1 for pelo menos tão bom quanto o caso 2.

Em outras palavras:

$$vj + OPT(p(j)) \ge OPT(J-1)$$

Expressão Recursiva

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \max \left\{ v_j + OPT(p(j)), OPT(j-1) \right\} & \text{otherwise} \end{cases}$$

Método Recursivo

```
Compute_Opt(j) {
    If j = 0
        Returna 0
    Else
        Retorna max(vj+Compute_Opt(p(j)) , Compute_Opt(j-1))
}
```

Árvore de Recursão

A árvore dos subproblemas cresce muito rapidamente!

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined for each interval j.

Figure 6.3 The tree of subproblems called by Compute-Opt on the problem instance of Figure 6.2.

Método Recursivo - Prova

- Compute_Opt(j) calcula a solução corretamente cada OPT(j) para j = 1,2,...,n
- Pela definição OPT(0)=0. Agora tome algum j>0 e supondo por indução que Compute_Opt(i) também computa OPT(i) corretamente para todo i<j. Pela hipótese de indução sabemos que Compute_Opt(p(j))=OPT(p(j)) e Compute_Opt(j-1)=OPT(j-1).
- Porém se implementarmos o algoritmo dessa forma, ele pode levar tempo exponencial no pior caso.

Memorização da Recursão

- Existem chamadas recursivas redundantes no algoritmo anterior.
- O algoritmo recursivo deve resolver n+1 problemas diferentes: Compute_Opt(0), Compute_Opt(1),...,Compute_Opt(n).
- O algoritmo anterior faz várias vezes uma mesma chamada. Por exemplo, chama várias vezes Compute_Opt(2) e resolve recursivamente.
- Para eliminar a redundância podemos armazenar o valor de Compute_Opt na primeira vez que o executamos, e usarmos esse valor no lugar de futuras chamadas recursivas.
- Para isso faremos o uso de um array M[0..n] que começará com valor vazio mas manterá o valor de Compute_Opt(j) assim que computado pela primeira vez.

Método Recursivo com Memorização

```
Input: n, s1,...,sn , f1,...,fn , v1,...,vn
Ordenar por f f1 \le f2 \le ... \le fn.
Compute p(1), p(2), ..., p(n)
for j = 1 to n
   M[j] = \emptyset
                                                                        O(n)
M[0] = 0
M-Compute-Opt {
  if M[j] == \emptyset
   M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
  return M[j]
```

Método Recursivo com Memorização - Prova

- M-Compute-Opt (j): cada chamada leva o tempo O (1) e também:
- retorna um valor existente M [j];
- ii. preenche uma nova entrada M [j] e faz duas chamadas recursivas.
- O caso (ii) ocorre no máximo n vezes → no máximo 2n chamadas recursivas em geral.
- Medida de progresso: avança conforme encontramos uma solução para subestrutura otima;
- Inicialmente esta medida é 0, cada vez que o metodo chama a recorrência emitindo as duas chamadas recursivas o M_Compute_Opt preenche uma nova posição de M aumentando o progresso em 1;
- Como M possui n+1 posições pode-se haver no máximo O(n) chamadas, portanto o tempo de execução total do M-Compute-Opt é O(n).

Conjunto ótimo de intervalos

- ·Ao calcular a solução ótima, também desejamos obter o conjunto ótimo de intervalos.
- •Sabemos que j pertence a uma solução ótima para o conjunto de intervalos {1,..., j} se e somente se

$$vj + OPT (p (j)) \ge OPT (j - 1).$$

•Usando esta observação, obtemos o seguinte procedimento, que "traça de volta" através do array M para encontrar o conjunto de intervalos em uma solução ótima.

Find-Solution

```
Run M-Compute-Opt(n)
Run Find-Solution(n)
Find-Solution(j) {
    if (j = 0)
      output Ø
   else if (vj + M[p(j)] \ge M[j-1])
       print j
       Find-Solution(p(j))
    Else
       Find-Solution(j-1)
```

O(n)

Exemplo

```
M[1] = max (2+M[0], M[0]) = max (2+0, 0) = 2

M[2] = max (4+M[0], M[1]) = max (4+0, 2) = 4

M[3] = max (4+M[1], M[2]) = max (4+2, 4) = 6

M[4] = max (7+M[0], M[3]) = max (7+0, 6) = 7

M[5] = max (2+M[3], M[4]) = max (2+6, 7) = 8

M[6] = max (1+M[3], M[5]) = max (1+6, 8) = 8
```


Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined for each interval i.

M[6]=M[5]: 6 não pertence ao OPT

M[5]=v5+M[3]: OPT contém 5 e uma solução ótima para o problema de {1,2,3}

M[3]=v3+M[1]: OPT contém 5,3 e uma solução ótima para o problema de {1}

M[1]=v1+M[0]: OPT contém 5,3 e 1 (e uma solução ótima para o problema vazio)

Solução: {5,3,1} Valores: 2+4+2=8

Find-Solution - Prova

Como o Find-Solution chama-se recursivamente somente em valores estritamente menores, faz um total de O (n) chamadas recursivas; e uma vez que gasta tempo constante por chamada, temos: Dado o array M dos valores ótimos dos sub-problemas, o Find-Solution retorna uma solução ótima no tempo O (n).

Iterações sobre os subproblemas

- Também pode-se solucionar o problema iterando sobre os subproblemas, em vez de computar soluções de forma recursiva.
- A chave para o algoritmo é o array M[n], mostrado anteriormente.
- M[j] contém solução ótima para um problema {1,...,j}.
- M[n] contém a solução ótima do problema como um todo.
- Logo é possível calcular a solução do problema usando um algoritmo iterativo, em vez de recursão com memorização.
- Abordagem bottom-up.
- Começa-se com M[0]=0 e incrementa o j, cada vez que temos que determinar o valor de M[j] a resposta é dada por:

max (vj + OPT(p(j)), OPT(j-1))

Método Iterativo


```
M[1] = max (2+M[0], M[0]) = max (2+0, 0) = 2

M[2] = max (4+M[0], M[1]) = max (4+0, 2) = 4

M[3] = max (4+M[1], M[2]) = max (4+2, 4) = 6

M[4] = max (7+M[0], M[3]) = max (7+0, 6) = 7

M[5] = max (2+M[3], M[4]) = max (2+6, 7) = 8

M[6] = max (1+M[3], M[5]) = max (1+6, 8) = 8
```

Método Iterativo

```
Input: n, s1,...,sn , f1,...,fn , v1,...,vn
Ordenar por f f1 \le f2 \le ... \le fn.
Compute p(1), p(2), ..., p(n)
Iterative-Compute-Opt {
   M[0] = 0
  for j = 1 to n
    M[j] = max(vj + M[p(j)], M[j-1])
```

O(n)

Curva de tempo

N Entradas	Tempo (ms)
100	0,5
1.000	0,5
5.000	3
10.000	16
50.000	35
100.000	43

Curva de tempo

N entradas	Tempo (ms)
22	0
23	13
24	14
25	15
26	15
27	16
28	15
29	Para!

