DEPARTMENT OF MATHEMATICS & STATISTICS MM102 APPLICATIONS OF CALCULUS

Complex Numbers: Exercise Sheet for Week 6

1. Express $z_1=2-2i$ and $z_2=-1+\sqrt{3}i$ in polar form. Hence evaluate the following in polar form using the principal value of the argument in each case:

(a)

(b) z_1^5 , (c) $\frac{1}{z_0^3}$, (d) $z_1^6 z_2^4$, (e) $\frac{z_1^9}{z_0^7}$.

2. Find the modulus and argument of the following complex numbers, and state the principal value of the argument.

(a) $(1-3i)^4$,

(b) $(-1+\sqrt{3}i)^5$, **(c)** $(-12-5i)^{-3}$, **(d)** $(-12-12i)^5$.

Use the polar form and de Moivre's theorem to simplify the following. (Give your 3. answers in the form x + iy where $x, y \in \mathbb{R}$):

(a) $\frac{(1+i)^5}{1-i}$ (b) $\frac{(1+\sqrt{3}i)^2}{(1+i)^3}$ (c) $(1+i)^{20} + (1-i)^{20}$ (d) $\frac{(\sqrt{3}+i)^{10}}{(1-i)^7}$ (e) $(\sqrt{2}+i\sqrt{2})^{-4}$ (f) $(\sqrt{2}+i\sqrt{2})^8$ (g) $\frac{(\cos\theta+i\sin\theta)^3}{(\sin\theta+i\cos\theta)^2}$

- Use de Moivre's theorem to express $\sin(2\theta)$ and $\cos(2\theta)$ in terms of $\sin\theta$ and $\cos\theta$. 4.
- Use de Moivre's theorem to show that $\cos^2 \theta = \frac{1}{2} (\cos(2\theta) + 1)$. **5**.
- Find constants a and b such that $\sin^3 \theta = a \sin(3\theta) + b \sin \theta$. 6. Hence, calculate $\int \sin^3 \theta \, d\theta$.
- Find constants a, b and c such that $\cos(4\theta) = a\cos^4\theta + b\cos^2\theta + c$. 7.
- Express $\cos^5 \theta$ in terms of cosines of integer multiples of θ . 8. Hence, calculate $\int \cos^5 \theta \ d\theta$.
- Use de Moivre's theorem to express 9.

(a) $\cos(5\theta)$ in terms of $\cos\theta$,

(b) $\sin 5\theta$ in terms of $\sin \theta$

(c) $\tan(5\theta)$ in terms of $\tan \theta$

(where $\theta \neq (2n+1)\frac{\pi}{2}$ for any integer n).

10. Express $\cos(6\theta)$ in terms of $\cos\theta$ and find real constants a, b and c such that

$$\sin(6\theta) = \sin\theta \left(a\cos^5\theta + b\cos^3\theta + c\cos\theta\right)$$

for all angles θ .

11. Express the following as linear combinations of cosines of multiples of θ :

(a) $\cos^4 \theta$, (b) $\cos^2 \theta \sin^4 \theta$.

12. Express the following as linear combinations of sines of multiples of θ :

(a) $\sin^5 \theta$.

(b) $\sin^3\theta\cos^3\theta$.

13. Use the results of the previous two questions to evaluate

(a) $\int_{0}^{\pi/4} \cos^4 \theta \, d\theta$, (b) $\int_{\pi/2}^{\pi} \sin^3 \theta \cos^3 \theta \, d\theta$.

- 14. Without any calculation, sketch all the sixth roots of 1 on an Argand diagram.
- **15.** Find the following in the form x + iy where $x, y \in \mathbb{R}$.

(a) the square roots of i,

(b) the square roots of $1 + \sqrt{3}i$,

(c) the cube roots of -8, (d) the cube roots of 27i,

the fourth roots of $-8 - 8\sqrt{3}i$,

(f) the sixth roots of -64.

16. Solve the equations: **(a)** $z^4 + 81 = 0$, **(b)** $z^6 + 1 = \sqrt{3}i$.

- 17. Find all distinct values of $(2 2\sqrt{3}i)^{1/3}$
- **18.** Find the fourth roots of $-2 2\sqrt{3}i$.
- 19. Determine the roots of the equation $z^3 = 4 + 4\sqrt{3}i$, leaving your answers in polar form.
- **20.** Determine the five roots of the equation $z^5 = -1$, giving your answers in the form a+ib to four decimal places in real numbers a, b. Verify that the sum of the roots is zero to this accuracy.
- [Equivalently, solve $z^4 + 16 = 0$ for $z \in \mathbb{C}$.] **21.** Find all the fourth roots of -16.
- **22.** Given that one of the fourth roots of z = -0.8432 + 0.5376i is 0.8 + 0.6i, sketch all the fourth roots of z on an Argand diagram.
- **23.** Determine, in the form a+ib $(a, b \in \mathbb{R})$, the roots of the equation $z^3=8$. Hence find the roots of the equation $(w-3)^3 = 8$.
- **24.** Find all solutions to the equation $z^3 + 6z + 20 = 0$ for $z \in \mathbb{C}$.
- **25.** Solve the equations

(a) $(1+iz)^3 = 8$, (b) $z^4 + 13z^2 + 36 = 0$.

26. Solve the equation $(z + 1)^4 = z^4$. Explain why there are only three solutions.

27. Express each of the following as a product of (i) linear factors and (ii) linear and quadratic factors with only real coefficients:

(a) $z^3 - 1$,

(b) $z^4 + 1$, **(c)** $z^6 + 1$, **(d)** $z^5 - 1$.

28. Verify that z = 3i is a root of the equation

$$P(z) = z^5 + 9z^3 + 8z^2 + 72 = 0.$$

Hence find all roots of this equation. Express P(z) as

(i) the product of linear factors, and

(ii) the product of linear and quadratic factors with only real coefficients.

29. Find all solutions of $z^4 + 2z^2 + 4 = 0$ where $z \in \mathbb{C}$. (Hint: set $w = z^2$ and solve the quadratic equation for w.)

30. Verify that z = 1 + i is a root of the equation

$$z^4 - 6z^3 + 23z^2 - 34z + 26 = 0$$

and hence find all four roots of the equation.

31. Express the following in the form a + ib $(a, b \in \mathbb{R})$:

(a) $\log(\sqrt{3}-i)$, (b) $\log(2+2i)$, (c) $\log(-i)$, (d) e^{3-4i} .