소득이 50000\$를 초과하는지 아닌지 분류!

(uci adult.data 활용)

피처 소개

In [1]: # 27 조사 자료를 바탕으로 소득이 \$ 50,000 / 년을 초과하는지 예측합니다
import pandas as pd
import numpy as np
import seaborn as sns
names=['age','workclass', 'fnlwgt', 'education', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'se:
df_adult = pd.read_csv('adult.data.csv',names=names)
df_adult.head(5)

4

Out[1]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per-week	native- country	target
0	39	State-gov	77516	Bachelors	13	Never- married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United- States	<=50K
1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0	13	United- States	<=50K
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	0	40	United- States	<=50K
3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0	40	United- States	<=50K
4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K

age: 나이

• workclass: 노동 계급

· fnlwgt: ??

education: 교육

education-num: 교육 수

marital-status: 결혼 상태

occupation: 직업

• relationship: 가족내에서 관계

race: 인종

sex: 성별

• capital-gain: 자본이득

• capital-loss: 자본손실

• hours-per-week: 주당 근로시간

native-country: 출신 국가

In [2]: df_adult.shape # 데이터 모양 파악

Out[2]: (32561, 15)

이상치 제거

```
df_adult.info() # 데이터 정보 확인
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):
     Column
                     Non-Null Count
                                     Dtype
                     32561 non-null
                                     int64
 0
     age
     workclass
                     32561 non-null
                                     obiect
     folwat
                     32561 non-null
                                     int64
                     32561 non-null
     education
                                     obiect
                     32561 non-null
                                     int64
     education-num
                     32561 non-null
     marital-status
                                     object
     occupation
                     32561 non-null
                                     object
     relationship
                     32561 non-null
                                     object
                     32561 non-null
                                     object
     race
                     32561 non-null
                                     object
     sex
                     32561 non-null
                                      int64
     capital-gain
                     32561 non-null
     capital-loss
                                     int64
 12 hours-per-week
                     32561 non-null
                                     int64
    native-country
                     32561 non-null
                                     obiect
                     32561 non-null
                                     object
 14 target
dtypes: int64(6), object(9)
memory usage: 3.7+ MB
```

```
In [5]: # replace()로 데이터 과 중에 ? 과 => nan 으로 바꿔주기
        df_adult.replace(' ?',np.nan, inplace=True)
        df_adult.isna().sum()
Out [5]: age
                              0
        workclass
                           1836
        fnlwgt
                              Π
        education
                              Ω
        education-num
                              0
        marital-status
        occupation
                           1843
                              0
        relationship
        race
        sex
        capital-gain
                              0
                              0
        capital-loss
        hours-per-week
                              0
                            583
        native-country
        target
                              Π
        dtype: int64
In [6]: # dropna() 로 nan 과 없애주기
        df_adult=df_adult.dropna(axis=0)
        df_adult.isna().sum()
Out[6]: age
                          0
        workclass
                          0
                          \Box
        fnlwgt
        education
                           Π
                          0
        education-num
                          0
        marital-status
        occupation
                          0
                           0
        relationship
                          0
        race
                          0
        sex
                          Ω
        capital-gain
                          0
        capital-loss
                          0
        hours-per-week
                          0
        native-country
                          0
        target
        dtype: int64
```

데이터 전처리

2 38

3 53

4 28

```
macrye-country - 0.000
 In [9]: # tn/wat 컬럼은 필요없다고 판단하여 제거
         # marital-status, relationship 별로 상관업는 거 같은데 영향력이 커서 - 제거하고 해보기로함.
                                                                                                                 <AxesSubplot:>
         df_adult.drop(['fnlwgt','marital-status','relationship'],axis=1,inplace=True)
         df_adult.shape
                                                                                                                          age
                                                                                                                      workclass
                                                                                                                      education
Out [9]: (30162, 12)
                                                                                                                  education-num
                                                                                                                   marital-status
In [10]: # 레이블 인코더 사용해서 문자열=> 숫자
                                                                                                                     occupation
         from sklearn.preprocessing import LabelEncoder
                                                                                                                     relationship
                                                                                                                         race
         col=names=['workclass','education','occupation', 'race', 'sex', 'native-country','target']
                                                                                                                          sex
         Le=LabelEncoder()
                                                                                                                    capital-gain
         for k in col:
                                                                                                                     capital-loss
             df_adult[k]=le.fit_transform(df_adult[k])
                                                                                                                  hours-per-week
                                                                                                                   native-country
         df_adult.head()
                                                                                                                            0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Out [10]:
            age workclass education education-num occupation race sex capital-gain capital-loss hours-per-week native-country target
          0 39
                       5
                                 9
                                             13
                                                                         2174
                                                                                                  40
                                                                                                               38
                                                                                                                     0
          1
             50
                                 9
                                             13
                                                                           0
                                                                                      0
                                                                                                  13
                       4
                                                                                                                     0
                                                                                                               38
```

0

0

40

40

38

38

0

0

In [11]: # 데이터 비율 맞춰주기 위해 StandardScaler 적용
from sklearn.preprocessing import StandardScaler
Xdf=df_adult.loc[:,'age':'native-country']
ydf=df_adult.loc[:,'target']

scaler = StandardScaler()
scaler.fit(Xdf)
adult_scaled = scaler.transform(Xdf)

1

0

0

9

7

13

5

11

1

2

평가지표

```
In [16]: from sklearn.metrics import confusion_matrix, accuracy_score
        from sklearn.metrics import precision_score, recall_score
        from sklearn.metrics import fl_score, roc_auc_score
        # 배웠던 평가지표를 구현하는 함수
        def get_clf_eval(y_test , pred):
            confusion = confusion_matrix( y_test, pred)
            accuracy = accuracy_score(y_test , pred)
            precision = precision_score(y_test , pred)
            recall = recall_score(v_test , pred)
            f1 = f1_score(y_test,pred)
            roc_auc = roc_auc_score(y_test, pred)
            print('오차 행렬')
            print(confusion)
            print('정확도: {0:.4f}, 정밀도: {1:.4f}, 재현율: {2:.4f},₩
            F1: {3:.4f}, AUC:{4:.4f}'.format(accuracy, precision, recall, f1, roc_auc))
```

결정 트리 분류

```
In [20]: #결정트리분류기
         from sklearn.tree import DecisionTreeClassifier
                                                                                                       806
         clf=DecisionTreeClassifier(max_depth=8)
         clf.fit(X_train,y_train)
                                                                                                  workclass
        print("훈련 세트 정확도: {:.3f}".format(clf.score(X_train, y_train)))
        print("테스트 세트 정확도: {:.3f}".format(clf.score(X_test, y_test)))
        print()
        pred=clf.predict(X_test)
                                                                                                  education
        get_clf_eval(y_test , pred)
         훈련 세트 정확도: 0.845
        테스트 세트 정확도: 0.831
                                                                                              education-num
         오차 행렬
         [[5412 227]
                                                                                                 occupation
         [1048 854]]
         정확도: 0.8309, 정밀도: 0.7900, 재현율: 0.4490, F1: 0.5726, AUC:0.7044
In [21]: import seaborn as sns
                                                                                                      race
         import numpy as np
         %matplotlib inline
         # feature importance 奉書
                                                                                                       SEX.
        print("Feature importances:\(\format(np.round(clf.feature_importances_,
         3)))
         # feature對 importance 即到
         for name, value in zip(names , clf.feature_importances_):
                                                                                                capital-gain
            print('\{0\} : \{1:.3f\}', format(name, value))
         # feature importance를 column 별로 시각화 하기
        sns.barplot(x=clf.feature_importances_ , y=names)
                                                                                                capital-loss
         Feature importances:
         [0.178 0.002 0.001 0.219 0.007 0.002 0.087 0.365 0.098 0.041 0.001]
         age : 0.178
                                                                                             hours-per-week
         workclass : 0.002
         education : 0.001
         education-num : 0.219
                                                                                              native-country
         occupation : 0.007
         race : 0.002
         sex : 0.087
         capital-gain : 0.365
         capital-loss : 0.098
         hours-per-week : 0.041
         native-country : 0.001
```


랜덤 포레스트

```
In [41]: #랜덤포레스트
         from sklearn.ensemble import RandomForestClassifier
         clf=RandomForestClassifier(max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=300)
         clf.fit(X_train,y_train)
         print("훈련 세트 정확도: {:.3f}".format(clf.score(X_train, y_train)))
         print("테스트 세트 정확도: {:.3f}".format(clf.score(X_test, y_test)))
         print()
         pred=clf.predict(X_test)
         get_clf_eval(y_test , pred)
         훈련 세트 정확도: 0.849
         테스트 세트 정확도: 0.836
         오차 행렬
         [[5394 245]
         [ 995 907]]
         정확도: 0.8356, 정밀도: 0.7873. 재현율: 0.4769. F1: 0.5940. AUC:0.7167
In [42]: import seaborn as sns
         import numpy as np
         %matplotlib inline
         # feature importance 李謇
         print("Feature importances: \( \format(\text{np.round(clf.feature_importances_.} \))
         3)))
         # feature별 importance 메핑
         for name, value in zip(names , clf.feature_importances_):
            print('\{0\} : \{1:.3f\}', format(name, value))
         # feature importance를 column 별로 시각화 하기
         sns.barplot(x=clf.feature_importances_ , y=names)
         Feature importances:
         [0.181 0.014 0.033 0.201 0.04 0.006 0.081 0.272 0.08 0.089 0.004]
         age : 0.181
         workclass: 0.014
         education: 0.033
         education-num : 0.201
         occupation: 0.040
         race: 0.006
         sex : 0.081
         capital-gain: 0.272
         capital-loss: 0.080
         hours-per-week : 0.089
         native-country: 0.004
```


딥러닝

```
# 달러닝코드
# 답러님을 구동하는 데 필요한 케라스 함수를 불러옵니다.
from tensorflow.keras.models import Sequential
                                             LDOCH JUZI TOOU
                                             from tensorflow.keras.lavers import Dense
                                             Epoch 993/1000
# 필요한 라이브러리를 불러옵니다.
                                             import numpy as np
                                             Epoch 994/1000
import tensorflow as tf
                                             # 실행할 때마다 같은 결과를 출력하기 위해 설정하는 부분입니다.
                                             Epoch 995/1000
np.random.seed(0)
                                             tf.random.set_seed(0)
                                             Epoch 996/1000
                                             from keras.callbacks import EarlyStopping
                                             Epoch 997/1000
# 답러님 구조를 결정합니다(모델을 설정하고 실행하는 부분입니다).
                                             model = Sequential()
                                             Epoch 998/1000
model.add(Dense(30, input_dim=11, activation='relu'))
model.add(Dense(12, activation='relu'))
                                             model.add(Dense(8, activation='relu'))
                                             Epoch 999/1000
model.add(Dense(1, activation='sigmoid'))
                                             # 답러님을 실행합니다.
                                             Epoch 1000/1000
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
                                             early_stopping_callback=EarlyStopping(monitor='val_loss',patience=10)
model.fit(X_train, y_train, epochs=1000, batch_size=100)
```

	모델	정확도	정밀도	재현율	F1 score	AUC
0	딥러닝	0.8504	NaN	NaN	NaN	NaN
1	LGBM	0.8488	0.7737	0.5662	0.6539	0.7552
2	GBM	0.8472	0.7774	0.5526	0.6460	0.7496
3	XGB	0.8455	0.7744	0.5468	0.6410	0.7465
4	ada부스트	0.8373	0.7582	0.5210	0.6176	0.7325
5	랜덤포레스트	0.8356	0.7873	0.4769	0.5940	0.7167
6	결정트리	0.8309	0.7900	0.4490	0.5726	0.7044
7	svm	0.8211	0.7530	0.4327	0.5496	0.6924
8	로지스틱회귀	0.8118	0.7102	0.4290	0.5349	0.6850
9	knn	0.8088	0.6686	0.4795	0.5585	0.6997