Stellar Masses

- Binary systems
- Kepler's 3rd Law
- Orbits

Mass Determination

- Mass of a star is difficult to infer from stellar spectra
- Instead use gravitational influence in a binary star system
- Most stars are in binary or multiple systems

Class Example

 How far is Sirius B from Sirius A when their separation is 11" and the distance to the system is 2.6 pc? Express answer in au.

A. 2.6 au

B. 11 au

C. 29 au

How far is Sirius B from Sirius A?

$$I = qd$$

$$= \frac{11}{206265} 2.6 \cdot 3.1 \cdot 10^{16}$$

$$= 4.3 \cdot 10^{12} \text{ m} = 29 \text{ au}$$

$$I(au) = q(")d(pc)$$

$$= 11 \cdot 2.6$$

$$= 29 \text{ au}$$

https://www.sciencecenter.net/whatsup/03/cm-stars.htm

Binary Systems

- consider two stars with masses M_1 and M_2 in circular orbits around their centre of mass (CM)
- radius of each orbit is r_1 and r_2 respectively and the total separation is a
- can use Newton's Laws and circular motion to determine masses

http://www.astronomy.ohio-state.edu/~pogge/Ast162/Movies/visbin.html

Circular Motion

$$F_1 = \frac{M_1 v_1^2}{r_1} = \frac{4\rho^2 M_1 r_1}{P^2}$$
 $v_1 = \frac{2\rho r_1}{P}$

and

$$F_2 = \frac{M_2 V_2^2}{r_2} = \frac{4\rho^2 M_2 r_2}{P^2}$$
 $V_2 = \frac{2\rho r_2}{P}$

where *P* is the period which is the same for both stars

Centre of Mass

definition of centre of mass means

$$M_1 r_1 = M_2 r_2$$

courses.lumenlearning.com

Newton's Law of Gravity

$$F_1 = F_2 = \frac{GM_1M_2}{a^2}$$

where

$$a = r_1 + r_2$$

Newton's form of Kepler's Third Law

combining these three equations gives

$$\frac{4\rho^2 M_1 r_1}{P^2} = \frac{G M_1 M_2}{a^2}$$

$$P^2 = \frac{4\rho^2 a^2 r_1}{GM_2}$$

Eliminate r₁ using

$$a = r_1 + r_2 = r_1 + \frac{M_1}{M_2} r_1 = \left(\frac{M_1 + M_2}{M_2}\right) r_1$$

SO

$$P^2 = \frac{4p^2a^3}{G(M_1 + M_2)}$$

and

$$M_1 + M_2 = \frac{4\rho^2 a^3}{GP^2}$$

Class Example

 What is the period of a binary system consisting of two solar mass stars separated by 30 au in years

$$P = \left[\frac{4\pi^2 a^3}{G(M_1 + M_2)} \right]^{\frac{1}{2}}$$

$$P = \left[\frac{4\pi^2 (30 \times 1.5 \times 10^{11})^3}{6.7 \times 10^{-11} (1+1) \times 2 \times 10^{30}} \right]^{\frac{1}{2}}$$

$$P = \left[\frac{3.6 \times 10^{39}}{2.7 \times 10^{20}} \right]^{\frac{1}{2}}$$

$$P = 3.7 \times 10^9 \,\mathrm{s}$$

$$P = 120$$
 years

Kepler's Third Law

the planets
 orbiting the Sun
 follow the relation

 $P^2 \sqcup a^3$

Kepler's Third Law

Can transform into useful units:

$$\left(P/yr\right)^{2}\left(M_{1}+M_{2}/M_{Sun}\right)=\left(a/au\right)^{3}$$

Real Orbits

 orbits are generally elliptical described by their semi-major axis a and semi-minor axis b

eccentricity of elliptical orbit is defined by

$$e = \frac{\sqrt{a^2 - b^2}}{a}$$
 $e = 0 \triangleright \text{circular orbit}$

https://www.tutorialspoint.com/satellite_communication/sal_mechanics.htm

 Newton's form of Kepler's third law also applies to elliptical orbits with a the sum of the semi-major axes (a=a₁+a₂)

By User:Zhatt - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=280063

Orbital Inclination

 in general the orbital plane of a binary system will be inclined by some angle i to the plane of the sky:

$$i = 0^{\circ}$$
 \Rightarrow face on $i = 90^{\circ}$ \Rightarrow edge on

Summary

- Binaries are the only direct way of measuring stellar masses
- Newton's form of Kepler's 3rd law is the starting point for measuring stellar masses

Class Example

Confirm
 Kepler's Third
 law by
 measuring the
 slope of this
 graph

