Single-Molecule Color Sensing

Taehwan Kim

From PSF Fitting

Single-Molecule Color Sensing Methods

Goal

Sensing spectral mean of a single emitter along with its position

- Available options
 - Optical filter bank & lambda stack construction
 - PSF engineering based on chromatic dispersion (gratings¹, prism², programmable phase mask with 4f setup³, etc.)
- What is desired?

¹Ma, Y. et al. Analytical Chemistry **72**, 4640–4645 (2000).

²Zhang, Z. et al. Nat Meth 12, 935-938 (2015).

³Shechtman, Y. et al. Nat Photon 10, 590-594 (2016).

Color Sensing Methods: Criteria

- Minimum overhead in the optical setup
 - Less aberration & insertion loss, easy to apply, avoid complicated calibration
- Minimum impact on lateral/axial localization accuracy
 - Localization accuracy degrades by \sqrt{N} for $N \times$ less photons due to beam-split
- Avoid PSF footprint enlargement
 - In SMLM context, minimize the probability of overlap of PSFs (affects temporal resolution)
- Flexibility (no need for a priori wavelength info)
- Good λ estimation accuracy for given photon budget
- Avoid possibility of bias from non-idealities

SM Color Sensing From PSF Fitting

Diffraction-limited image of a single molecule already contains color information

First minimum of Airy pattern
$$=0.61\frac{\lambda}{NA}$$

- In principle, it should be possible to estimate emitter color from the scale of the fitted PSF
- Spectrally resolved SMLM: just installation of a ImageJ plugin!
 - Literally zero impact on the optical setup/xyz accuracy
 - No PSF modification (more than whats required for 3D)
 - No a priori information

Questions to be answered

- Good enough λ estimation accuracy in realistic scenario?
 - Axial position dependency in 2D situation
- Possibility of bias from non-idealities (not limited to)
 - Chromatic/spherical aberration
 - Spectral profile of the fluorophore (bandwidth, skewness)
 - Non-uniform background
 - Deconvolution artifacts
 - Motion blur
 - Fluorophore orientation

Questions to be answered

- Good enough λ estimation accuracy in realistic scenario?
 - Axial position dependency in 2D situation
- Possibility of bias from non-idealities (not limited to)
 - Chromatic/spherical aberration
 - Spectral profile of the fluorophore (bandwidth, skewness)
 - Non-uniform background
 - Deconvolution artifacts
 - Motion blur
 - Fluorophore orientation

Performance of Measurement Method

Task

Estimation of $x, y, z, \overline{\lambda}$ of a single emitter from values of sensor array (EMCCD, sCMOS) within certain ROI

- A "measurement method" includes:
 - PSF design (how you encode the information to actual image: prism/grating, astigmatism, double helix, etc.)
 - Corresponding optical setting (affecting SNR, bias)
 - Reconstruction algorithm (LS/MLE, ROI selection, b/g correction, etc.)
- Performance metrics
 - Highest accuracy (smallest σ) for given number of photons & noise profile
 - Unbiased
 - PSF footprint

Design of Measurement Method

- Major design decisions in our context
 - PSF design/PSF model to use (optical setting is determined by this)
 - Deconvolution algorithm
- Today's question: what's the theoretical bound for wavelength estimation accuracy and the impact of PSF choice?
 - Fix everything other than PSF
 - Magnification, noise, pixel size, ROI, NA, illumination
 - Consider only major physical implication of PSF design choice
 - e.g. consider beam split, but not the insertion loss from additional optical elements

Problem Setting

- PSF options
 - Plain-vanilla circular aperture
 - Multifocus (biplane)
 - Astigmatism
 - Double-helix
- Assumptions
 - NA=1.4, effective pixel size=100nm, ROI=20x20 pixels
 - Only shot noise, uniform background of 10 photons/pixel
 - Ignore aberration
 - Model a fluorophore as an monochromatic/isotropic emitter
- Procedure
 - Compute Cramér-Rao lower bound (CRLB) for different z location & number of photons

Circular Aperture Case

• 3D PSF model for simple circular aperture: Born & Wolf model

$$q_{z_0}(\vec{r} - \vec{r}_0) = \left\| A \int_0^1 J_0\left(\frac{2\pi}{\lambda} \mathrm{NA} \|\vec{r} - \vec{r}_0\|\rho\right) e^{-j\frac{\pi}{\lambda}\rho^2 z_0\left(\frac{\mathrm{NA}^2}{n_i}\right)} \rho d\rho \right\|^2$$

A: normalization constant, n_i : refractive index of the immersion oil J_0 : zeroth order Bessel function of the first kind

Fisher information matrix with pixelation & shot noise⁴

$$I_{ij}(\boldsymbol{\theta}) = \sum_{k=1}^{N_{pixel}} \frac{1}{\mu_k(\boldsymbol{\theta}) + \beta} \left(\frac{\partial \mu_k(\boldsymbol{\theta})}{\partial \theta_i} \right) \left(\frac{\partial \mu_k(\boldsymbol{\theta})}{\partial \theta_j} \right)$$

 $\mu_k(\boldsymbol{\theta})$: the value of the model PSF in pixel k N_{pixel} : the number of pixels in the ROI β : background photons per pixel

⁴Ober, R. J. et al. Biophysical Journal **86**, 1185–1200 (2004).

Circular Aperture Case

• For z=0

Impact of Defocusing

- Defocusing introduces biasing to wavelength estimation
 - Accuracy bound should take into account both bias & CRLB
- Generalized CRLB in presence of bias

$$\operatorname{Var}(\hat{\lambda}) \ge \frac{[1 + b'(\lambda)]^2}{I(\lambda)}$$

 $b(\lambda)$: bias, $I(\lambda)$: Fisher information

CRLB is z dependent

$$b(\lambda) = \lambda(M(z) - 1), \quad b'(\lambda) = M(z) - 1$$

 $\operatorname{Var}(\hat{\lambda})|_{z} \ge \frac{M(z)^{2}}{I(\lambda)|_{z}}$

M(z): magnification factor of the PSF at z

Impact of Defocusing

- Assuming certain distribution for z, performance bound in presence of z variation can be calculated
 - Mean squared error at z: $E[(\hat{\lambda} \lambda)^2]|_z = Var(\hat{\lambda})|_z + b(z)^2$
 - ullet Final CRLB is calculated as a weighted sum over z

$$CRLB_{\lambda} = \int_{z_{min}}^{z_{max}} E[(\hat{\lambda} - \lambda)^{2}] f(z) dz$$

$$= \int_{z_{min}}^{z_{max}} \left(\operatorname{Var}(\hat{\lambda})|_{z} + b(\lambda)^{2} \right) f(z) dz$$

$$\geq 2 \int_{0}^{\Delta z_{max}} \left(\frac{M(z)^{2}}{I(\lambda)|_{z}} + \lambda^{2} (M(z) - 1)^{2} \right) f(z) dz$$

- PSF Symmetry over z, f(z): probability distribution of z
- For M(z) = 1, converges to the CRLB at z = 0

Impact of Defocusing

- Magnification factor & Fisher information vs. z
 - N_{photon} =1500, λ =600nm, n_i =1.5, Born & Wolf model

- For Δz_{max} =100nm & f(z)=uniform, CRLB=9.86nm (originally 4.97nm)
- For Δz_{max} =500nm, CRLB=177nm!

3D+Color: Multifocal Plane

 Total Fisher information matrix is the sum of FI from each imaging plane⁵

$$I_{tot}(oldsymbol{ heta}) = \sum_{i=1}^{N_{plane}} I_i(oldsymbol{ heta})$$

- Biplane setting
 - N_{photon} =1500, λ =600nm
 - 50/50 beam split (750 photons/plane)
 - Distance between planes:
 500nm

⁵Ram, S. et al. Biophysical Journal **95**, 6025-6043 (2008).

3D+Color: Double Helix/Astigmatic⁶

⁶Smith, C. et al. Optics Express 24 (2016).

3D+Color: Double Helix/Astigmatic⁶

⁶Smith, C. et al. Optics Express 24 (2016).

Conclusions

- Takeaways from CRLB calculation
 - Can work with useful accuracy (\sim 10nm) only when z & λ are disentangled
 - Looks promising for biplane & dual helix PSF
- Next steps:
 - Fluorophore spectrum/dipole moment dependence
 - If there's a performance difference between beads and single molecule, this
 could be the reason
 - · Quantitative comparison with chromatic dispersion-based methods
 - Characterize readout noise
 - Actual PSF & chromatic aberration analysis for microscopes in the lab
 - Tools such as PSFj⁷ can be applied
 - Compare to the fitted simulation dataset or experimental data
 - Right fitting algorithm to achieve close-CRLB performance

⁷Theer, P. et al. Nat Meth 11, 981-982 (2014).