BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE - PILANI, HYDERABAD CAMPUS INSTRUCTION DIVISION SECOND SEMESTER 2023-2024

COURSE HANDOUT: PART - II

Date: 02.01, 2024

In addition to Part- I (a general handout for all courses appended to the time-table), this handout provides the specific details of this course.

Course No. : ME G631

Course Title : Advanced Heat Transfer

Instructor-in-charge: SANTANU PRASAD DATTA

1. Course Description

Heat conduction equations; Eigen value problems; analytical solution of heat conduction equation by Laplace transform, Duhamel's theorem, Fourier transform and separation of variables techniques; contact resistance; transient heat conduction - conduction with moving boundary, solidification and melting; problems with periodic boundary conditions; inverse heat conduction, micro-scale heat transfer; integral equation for radiative exchange; view factors; radiative exchange between surfaces: black surfaces, gray, diffuse partially specular surfaces; radiative properties of participating media: introduction to gas properties, wide band models, total emissivity, particle properties; radiative transfer through participating media: gray, plane-parallel slab; approximate methods; non-gray media.

2. Scope and Objective

To introduce and familiarize students with various analytical methods used as tools to analyse a wide range of engineering applications involving heat transfer by conduction and radiation. Emphasis will be given to understanding and the use of various mathematical techniques needed to develop the exact analytical and appropriate solutions for a broad class of heat conduction and radiation problems. Examples will be discussed to illustrate the applications of various exact solution techniques. In the first half, basics conduction heat transfer equations and analytical methods to the solutions of transient conduction heat transfer with and without heat generation, with moving heat source and phase change will be discussed. In the second half, the theory of radiation heat transfer and analytical methods to the solution of radiation heat exchange between different surfaces with and without participating media will be discussed.

3. Text Books (TBs)

- (a) TB1: M. Necati Ozisik, "Heat Conduction", John Wiley & Sons, 2nd edition, 1993.
- (b) TB2: A. Bejan, Convective Heat Transfer, Wiley India Pvt. Ltd, Third Edition, 2004.
- (c) TB3: Michael F. Modest, Radiative Heat Transfer, Academic Press, 2nd edition, 2003.

4. Reference Books (RBs)

- (a) RB1: Latif M. Jiji, "Heat Conduction", Springer, 3rd edition, 2009.
- (b) RB2: Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt, "Fundamentals of Heat and Mass Transfer", Wiley, 7th edition, 2011.
- (c) RB3: W.M. Kays, M. E. Crawford, and B. Weigand, Convective Heat and Mass Transfer, McGraw-Hill Int. Edition, Fourth Edition, 2005.
- (d) J.G. Collier, and J.R. Thome, Convective Boiling and Condensation, Oxford University Press, Third Edition, 1996.
- (e) RB4: John R. Howell and Robert Siegel, "Thermal Radiation Heat Transfer", Taylor & Francis, 4th Edition, 2002.
- (f) S. Kakac, Heat Exchangers: Selection, Rating, and Thermal Design, 2nd, CRC Press, 2002

5. Course Plan

5. Cour		T	Cl 4
Lecture	Learning Objectives	Topics to be covered	Chapter
No.	TT 1 1 1	To the state of Column	Nos.
1-5	Heat conduction equations with	Fundamental of conduction heat transfer (CHT) -	Ch. 1-3
	different geometry, boundary	steady and transient CHT, boundary conditions, 2-D	(TB1)
	conditions, solution methodology	Steady Heat Conduction and Separation of Variables	G1 2 4
6-9	Mathematical modelling of	Application of transient conduction heat transfer	Ch. 3-4
	moving heat source and heat sink	(TCHT) - stationary and moving heat source/sink, :	(RB1)
	problems	Conduction in Semi-infinite and infinite Regions:	
		The Similarity Method	
10-12	Heat conduction through porous	Introduction about porous media, steady state and	Ch. 5
	media	transient heat transfer through porous media	(RB1)
13-17	Phase-change problems with	Application of TCHT - moving boundary problems	Ch. 6
	variable boundary wall	(melting and solidification)	(RB1)
18-19	An overview of nonlinear	Source of nonlinearity, Taylor series method,	Ch. 7
	conduction problems	Kirchhoff Transformation, Boltzmann	(TB1)
		Transformation	
20	Approximate solution: Integral	Integral method approximation and accuracy of	Ch. 8
	method	integral method	(RB1)
21	Perturbation solutions	Perturbation solution procedure and example,	Ch. 9
		Variable thermal conductivity	(RB1)
22	Fundamental Principles	Conservation equations, Rules of scale analysis, and	TB:2
		Heat lines for visualization.	1.1 - 1.6
23-25	Laminar Boundary Layer Flow	Concept of boundary layer, Velocity and thermal	TB:2
		boundary layers, Integral solutions, Similarity	2.1 - 2.7
		solutions, Other wall heating conditions, and Flow	
		past a wedge and stagnation flow.	
26-27	Laminar Duct Flow	Hydrodynamic entrance length, Fully developed	TB:2
		flow, Hydraulic diameter and Pressure drop, Heat	3.1 - 3.5
		transfer to fully developed duct flow and developing	
		flow.	
28-29	External Natural Convection	Natural convection as a heat engine in motion,	TB:2
		Laminar boundary layer equations, Scale analysis,	4.1 –
		Integral solution, Similarity solution, Uniform wall	4.6;
		heat flux, Mixed convection, and Heat transfer	& 4.10 –
		results including the effect of turbulence.	4.11
30	Internal Natural Convection	Transient heating from the side and Enclosures	TB:2
		heated from below.	5.1; &
			5.4 - 5.5
31-32	Boiling and Condensation	Film Condensation on a Single Horizontal Tube,	TB:2
		Film Condensation in Tube Bundles, Condensation	10.1 –
		inside Tubes, Flow Boiling	10.2
33-34	Fundamentals of radiation, basic	Fundamental of radiation heat transfer (RHT) –	Ch. 1 &
	laws, some definition of radiative	radiation characteristics of matter, radiative	3 (TB3)
	heat transfer	properties of surfaces	
35-36	Definition and method to evaluate	View factors	Ch. 4
	view factor		(TB3)
37-39	Radiative heat exchange between	Radiative heat exchange between gray, diffusive,	Ch. 5-7
	different surfaces	partially-specular and non-gray surfaces, radiation	(TB3)
		network, radiation shield	
40-42	Equation of radiative transfer in	Radiative heat transfer with participating media –	Ch. 9
	participating media	absorbing, emitting and scattering	(TB3)

6. Evaluation Scheme

Evaluation Component	Duration	Weightage	Date & Time	Nature of
	(min.)	(%)		Component
Midsem	90	25%	To be announced	Closed Book
Term-project/Assignment	_	10%	Continuous	Open Book
Laboratory Experiment	_	10%	Continuous	Open Book
Class Assessment	-	20%	To be announced by I/C	Open Book
Comprehensive Exam	180	35%	To be announced	Closed Book

7. Chamber Consultancy Hour

To be announced by I/C in the class.

8. Notices

Students are advised to visit regularly *CMS* (institute's web based Course Management System) for all notices and updates.

9. Make-up Policy

Make-up request for tests shall be granted only for the genuine cases with sufficient evidence. Request letter duly signed by the student should reach the under signed well in advance.

10. Academic Honesty and Integrity Policy:

Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge (I/C) (ME G631)