

Al on Chip Lab1 Al Model

AOC 2024 Lab1

TAs: course.aislab@gmail.com

Outline

- Google Colab
- What is Pytorch?
- Neural Networks(NN)
- Convolutional Neural Networks(CNN)
- Dataset
- Advanced Topics
- Assignment

Outline

- Google Colab
- What is Pytorch?
- Neural Networks(NN)
- Convolutional Neural Networks(CNN)
- Dataset
- Advanced Topics
- Assignment

Google Colab

- Google offer Jupyter Notebook develop environment
- Free 12GB GPU(Tesla T4)
- 50GB storage
- 12 hours continuous using limited.
- Idling over 90 minutes will be kick out by host. Need to reconnect.
- Google Colab run in Ubuntu Linux

Google Colab

Goto Google Drive and new Google Colaboratory file

First open Colab file

- It will show Jupyter Notebook like page
- After creating a file
 - 1. Code section
 - 2. Run cell (run your code)
 - 3. Append Code section or Text section
 - 4. Rename
 - 5. Resource usage
 - 6. Code section operation

Choose GPU as runtime

Default runtime: CPU

You can change it as needed

Runtime -> Change runtime type -> GPU

Choose a pet

If you want to use shell instruction in Colab

Add! For most shell instruction

Ex: !ls -a, for list all directories

```
!ls -a
. . . .config sample_data
```

Google Colab - Save & Export

Save: *.ipynb

Export: export as HTML, LaTex, Markdown, PDF, Python...

Outline

- Google Colab
- What is Pytorch?
- Neural Networks(NN)
- Convolutional Neural Networks(CNN)
- Dataset
- Advanced Topics
- Assignment

11

What is Pytorch

- https://pytorch.org/
- Developed by Facebook AI
- The most popular machine learning framework amongst ML developers.
- Other framework: Tensorflow, Caffe ...

12

Outline

- Google Colab
- What is Pytorch?
- Neural Networks(NN)
- Convolutional Neural Networks(CNN)
- Dataset
- Advanced Topics
- Assignment

Neural Networks(NN)

Neural networks, also known as artificial neural networks (ANNs) or simulated neural networks
 (SNNs), are a subset of <u>machine learning</u> and are at the heart of <u>deep learning</u> algorithms. Their
 name and structure are inspired by the human brain, mimicking the way that biological
 neurons signal to one another.

How Neural Networks(NN) work?

 Neural Networks in general are composed of a collection of neurons that are organized in layers, each with their own learnable weights and biases.

• A CNN is a neural network: An algorithm used to recognize patterns in data.

Convolution, Activation, Pool, Fully connection could repeat many times

Fully Connection

 A fully connected neural network consists of a series of fully connected layers that connect every neuron in one layer to every neuron in the other layer.

$$Y1 = X1*W1,1 + X2*W2,1 + X3*W3,1 + X4*W4,1 + bias1$$

$$\begin{bmatrix} W1,1 & \cdots & W4,1 \\ \vdots & \ddots & \vdots \\ W1,3 & \cdots & W4,3 \end{bmatrix} \begin{bmatrix} X1 \\ \dots \\ X4 \end{bmatrix} + \begin{bmatrix} \text{bias1} \\ \dots \\ \text{bias3} \end{bmatrix} = \begin{bmatrix} Y1 \\ \dots \\ Y3 \end{bmatrix}$$

Outline

- Google Colab
- What is Pytorch?
- Neural Networks(NN)
- Convolutional Neural Networks(CNN)
- Dataset
- Advanced Topics
- Assignment

Convolution layer

Basic operation of convolution

- Not fully connected

4x4 input

$$8x1 + (-9)x2 + 1x3 + (-1)x5 + 5x6 + (-7)x7$$

+ $(-3)x9 + (-2)x10 + 1x11 = -67$

- Stride

Here, set stride to 2. It means kernel slides on the input with step of 2. We will explain how it work in following pages.

Step 1.

Step 2.

- Stride

Step 4.

- Padding

Also, we could set padding. It means padding extra pixel surrounding to input.

Input: 5x5

Input: 7x7

Input: 9x9

- Padding mode

Besides, we could set padding mode, and there are four padding modes we can use in pytorch:

1. constant padding:

Constant padding refers to filling the edges of an array with constant values (e.g., 0). Padding: 2

Input: 5x5

Input: 7x7

Input: 9x9

torch.nn.functional.pad — PyTorch 2.2 documentation https://blog.csdn.net/weixin_42211626/article/details/122542323

What is CNN(Convolutional Neural Network)? - Padding mode

Besides, we could set padding mode, and there are four padding modes we can use in pytorch:

2. reflection padding:

Reflection padding involves symmetrically padding the edges of an array with respect to a particular

row or column in the array.

Original							
1	1	1	1	4			
1	6	8	9	1			
1	2	3	4	1			
7	5	6	7	1			
1	0	1	1	2			

Input: 5x5

Padding: 1	1
------------	---

6	1	6	8	9	1	9
1	1	1	1	1 •	4	1
6 •	1	6	8	9	1	9
2	1	2	3	4	1	4
5	7	5	6	7	1	7
0	1	0	1	1	2	1
5	7	5	6	7	1	7

Input: 7x7

torch.nn.functional.pad — PyTorch 2.2 documentation

https://blog.csdn.net/weixin_42211626/article/details/122542323

What is CNN(Convolutional Neural Network)? - Padding mode

Besides, we could set padding mode, and there are four padding modes we can use in pytorch:

3. replication padding:

Replication padding entails copying the edges of an array and filling them around the array.

Original							
1	1	1	1	4			
1	6	8	9	1			
1	2	3	4	1			
7	5	6	7	1			
1	0	1	1	2			

Input: 5x5

1	1	1	1	1	4	4
1+	71	1	1	1	4	4
1	1	6	8	9	1	1
1	1	2	3	4	1	1
7	7	5	6	7	1	1
1	1	0	1	1	2	2
1	1	0	1	1	2	2

Padding: 1

Input: 7x7

torch.nn.functional.pad — PyTorch 2.2 documentation

https://blog.csdn.net/weixin 42211626/article/details/122542323

What is CNN(Convolutional Neural Network)? - Padding mode

Besides, we could set padding mode, and there are four padding modes we can use in pytorch:

4. circular padding:

Circular padding involves infinitely extending from top to bottom.

Original

5	0	8	7	8	1				
1	9	5	0	7	7				
6	0	2	4	6	6				
9	7	6	6	8	4				
8	3	8	5	1	3				
7	2	7	0	1	0				

Input: 6x6

Circular Padding

0	7	2	7	0	1	0	7
1	5	0	8	7	8	1	5
7	1	9	5	0	7	7	1
6	6	0	2	4	6	6	6
4	9	7	6	6	8	4	9
3	8	3	8	5	1	3	8
0	7	2	7	0	1	0	7
1	5	0	8	7	8	1	5

Padding: 1

Input: 8x8

torch.nn.functional.pad — PyTorch 2.2 documentation

https://blog.csdn.net/weixin 42211626/article/details/122 42 323

Convolution layer – effect of filter

filter

$$\left[egin{array}{cccc} 0 & -1 & 0 \ -1 & 4 & -1 \ 0 & -1 & 0 \ \end{array}
ight]$$

Ridge detection

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Ridge detection

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$
Sharpen

$$\frac{1}{9} \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$$

Box blur

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Gaussian blur

- Use filter to extract object's **feature**.
- We can convolve the input with multiple filters to get <u>a multi-channel</u> output

(Output Channel = Filter Counts)

number of output channel: 5

Height = 26Width = 26Channel = 5 26*26*5

Count = 1

Input

Convolution layerIf input has multiple channel

- If input has multiple channel, filter's channel needs to be the same as the input.
- As in the previous ppt, 1 filter generates 1 channel output

- Filter, Channel

input
feature map shape:
number of 12x12x3

channel: 3

12

1 filters filter shape : 5x5x3 output feature map shape : 8*8*1

- The example is 3 channel input and 1 filter, so the filter has 3 channel, and output has 1 channel.
- The number of channel of filter must be same as the number of channel of input
- The number of channel

 of output is same as the number of

 filter

- Filter, Channel

5 filters filter shape: 5x5x3

output feature map shape : 8*8*5

- The example is 3 channel input and
 5 filter, so each filter has 3 channel,
 and output has 5 channel.
- The number
 of channel of filter must be
 same as the number of channel
 of input
- of channel of output is same as the number of filter

- Output feature map size

FORMULA:

$$Height_{out} = floor(\frac{Height_{in} + 2 \times padding - kernel_size}{stride} + 1)$$

Width_{out} = floor(
$$\frac{\text{Width}_{in} + 2 \times \text{padding} - \text{kernel_size}}{\text{stride}} + 1$$
)

In this example, we have

 $Height_{in}=12$

Width_{out} =12

padding = 0

 $kernel_size = 5$

stride = 1

Applying formula above, we get

Height_{out}= 8 = floor(
$$\frac{12+2 \times 0}{1}$$
 + 1)

Width_{out}= 8 = floor(
$$\frac{12+2 \times 0}{1}$$
 + 1)

Much more detail <u>Conv2d — PyTorch 1.10 documentation</u>

Pooling layer

Remain feature information and reduce parameters

Feature map

Pooled Feature map

Feature map

Pooled Feature map

Effect of pooling:

https://youtu.be/fApFKmXcr 24

Activation function

Sigmoid,
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\tanh(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

$$ReLU(x) = max(0, x)$$

It's a mathematical function used in neural networks to introduce **non-linearity** into the model. This helps neural networks learn and represent complex patterns and relationships in data.

Softmax
$$\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$
 for j = 1, ..., K .

Common CNN network – LeNet5

LeNet5

Layer		Feature Map	Size	Kernel Size	Stride	Activation
Input	Image	1	32x32	-	-	
1	Convolution	6	28x28	5x5	1	tanh
2	Average Pooling	6	14x14	2x2	2	tanh
3	Convolution	16	10x10	5x5	1	tanh
4	Average Pooling	16	5x5	2x2	2	tanh
5	Convolution	120	1x1	5x5	1	tanh
6	FC	:#s	84	-		tanh
Output	FC	-	10	-	-	softmax

Common CNN network – VGG16

• VGG16

37

Common CNN network – VGG16

Dense layer means fully connected layer

Common CNN network

- AlexNet
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenetclassification with deep convolutional neural networks. Advances in neural information processing systems, 25.
- ResNet
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition(pp. 770-778).
- DenseNet•Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition(pp. 4700-4708).
- MobileNet
- Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXivpreprint arXiv:1704.04861.
- ShuffleNet
- Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE conference on computer vision and pattern recognition(pp. 6848-6856).

From lecture pd?

Import predefined model in pytorch

- You could also import predefined model from pytorch.
 - VGG16
 - ResNet50
 - MobileNet
 - EfficientNet
 - DenseNet121
 - •

Classic flow for training a model

- Gathering data

 From network or gather by yourself
- Data preprocess

 Raw data will probably lead to bad classification performances
- Build model → Design a model for predicting data
- Train model → Learn good values for all the parameters from labeled training data
- Evaluate

 Evaluate model could give a suitable response from its experience

Outline

- Google Colab
- What is Pytorch?
- Neural Networks(NN)
- Convolutional Neural Networks(CNN)
- Dataset
- Advanced Topics
- Assignment

Dataset

training set

 A dataset of examples is used during the learning process and is used to fit the parameters(e.g., weights).

validation set

- A validation data set is a dataset of examples used to tune the hyperparameter (i.e. the architecture) of a model.
- Validation set is not necessary.

testing set

- A testing set is used to evaluate the final ability of the model.
- It should not be used as a basis for parameter adjustment, selection of features.

Dataset: Fashion-MNIST

Label	Description		
0	T-shirt/top		
1	Trouser		
2	Pullover		
3	Dress		
4	Coat		
5	Sandal		
6	Shirt		
7	Sneaker		
8	Bag		
9	Ankle boot		

Why Fashion-MNIST?

- MNIST is too easy and overused
- MNIST can not represent modern
 Computer Vision tasks

Fashion-MNIST

- 60,000 training data
- 10,000 testing data
- 10 categories (0~9).
- Each gray-scale image is 28x28.

Dataset: CIFAR-10

airplane automobile bird cat deer dog frog horse ship truck

CIFAR-10

- 32x32 color
- 50,000 training images
- 10,000 test images
- labeled over 10 categories.

Outline

- Google Colab
- What is Pytorch?
- Neural Networks(NN)
- Convolutional Neural Networks(CNN)
- Dataset
- Advanced Topics
- Assignment

Layer 1 : Conv2D

self.conv1 = nn.Conv2d(in_channels=1,out_channels=3,kernel_size=5)

When using this layer as the first layer in a model, provide the keyword argument input_shape.

Layer 2: Average Pooling

input feature map shape : 24x24x3

output feature map shape : 12x12x3

self.pool1 = nn.AvgPool2d(kernel_size =2,stride=2)

Layer 3: Conv2D

input feature map shape: 12x12x3

2 filters

filter shape: 5x5x3 kernel size: 5x5 output feature map shape: 8*8*2

of parameter : 2x5x5x3 + 2 = 152# of bias

(=# of filter)

self.conv2 = nn.Conv2d(in_channels=3,out_channels=2,kernel_size=5)

Layer 4: Average Pooling

input feature map shape: 8x8x2

output feature map shape: 4x4x2

self.pool2 = nn.AvgPool2d(kernel_size =2,stride=2)

Layer 6: Fully Connected Layer

input feature map shape: 32

output feature map shape: 15

of parameter : $32 \times 15 + 15 = 495$ # of bias

dense layer means fully connected layer

Layer 7: Fully Connected Layer

input

feature map shape: 15 output shape: 10

of parameter: $15 \times 10 + 10 = 160$ # of bias

Softmax:

Convert the input to a probability value, and the sum of the probability of all output classes is equal to 1

- Output 0 + Output 1 + ... Output 9 = 1
- Each output means the probability (confidense score) of the corresponding class

Total Parameters

from torchsummary import summary

summary(net)

number of filter

filter size number of bias (number of filter)

$$3x5x5x1 + 3$$

$$2x5x5x3 + 2$$

$$32x15 + 15$$
 number of bias

$$15x10 + 10$$

total parameters:

Total MACs

THOP: PyTorch-OpCounter

```
from thop import profile
input1 = torch.randn(1,3,32,32).cuda()
MACs, params = profile(net, inputs=(input1, ))
print('MACs = ' + str(MACs/1000**3) + 'G')
print('Params = ' + str(params/1000**2) + 'M')
```

MACs = 0.027222016G Params = 0.199242M

54

Loss function

- To evaluate if model is good/bad.
- Loss means residual between ground truth value and predict value. Thus, we want to minimize residual.
- Choose cross entropy to model our classification problem

Optimizer

• **Optimizers** are algorithms or methods used to minimize an error function(*loss function*) or to maximize the efficiency of production.

56

Netron - Introduction

- **Netron** is a tool for visualizing deep learning models.
- It helps you understand and explore the structure of neural networks, convolutional neural networks (CNNs), and other models.
- You can drag and drop trained model files (such as ONNX, Keras, Core ML, TensorFlow Lite, etc.) into Netron, and it will parse the model and display it in a visual format, helping you quickly understand the model architecture.

Al System Lab

<u>lutzroeder/netron: Visualizer for neural network, deep learning and machine learning models (github com)</u>

Netron - Model visualization

Using NETRON to visualize the each layer of the model

5

Outline

- Google Colab
- What is Pytorch?
- Neural Networks(NN)
- Convolutional Neural Networks(CNN)
- Dataset
- Advanced Topics
- Assignment

Assignment

- Requirement:
- Need to design 2 CNN models for 2 different datasets listed below.
- Each models achieves the specified accuracy respectively.

Parameter / MAC	Cifar Point	Fashion point	
Rank 1% - 25%	5/5	2.5 / 2.5	193
Rank 25% - 50%	4/4	2/2	
Rank 50% - 75%	3/3	1.5 / 1.5	
Rank 75%-100%	2/2	1/1	

(You can get the basic grade 40 if you meet the requirement of each dataset, otherwise get 0 point)

- According to the number of parameters and MACs, you will be rated 40-55, the fewer parameter
 and MAC are the better.
- We hope to maintain a certain level of precision while reduce hardware cost.
 - 1. Fashion MNIST dataset, an alternative to MNIST (classification)
 - Accuracy >= 85% (for test data)
 - 2. <u>CIFAR10 small images classification dataset</u> (classification)
 - Accuracy >= 75% (for test data)

60

Assignment

You can modify the two parts in the codes in the following:

Model Design

Configuration

```
### TODO : You can modify the configuration for model training ###

# For the classification task, we use cross-entropy as the measurement criterion = nn. CrossEntropyLoss()

# Initialize optimizer, you may fine-tune some hyperparameters such as optimizer = optim. SGD(net.parameters(), 1r=0.001, momentum=0.9)

# The number of batch size.

batch_size = 512

# If no improvement in 'patience' epochs, early stop.

patience = 10

# The number of training epochs
n_epoch = 5

_exp_name = sample
```

6

Assignment

You should save the model in .onnx format:

DNN.onnx file

6:

Question List

AND CALLER OF THE PROPERTY OF

● 假設有一個size為 32*32*1 input feature map ,若要用convolution來產生一個 28*28*1 output feature map

,請比較使用以下兩種 Kernal size 計算時,所需的 parameter數量 和 MAC數量,須包含計算過程才予以

計分。(16 points)

(p.s no padding & stride=1)

- [5x5x1 CONV] (p.s 一個convolution layer)
- [3x3x1 CONV] + [3x3x1 CONV] (p.s 兩個convolution layer串聯)
- 藉由 Netron 將你所設計的兩個模型視覺化並截圖 (5 points)
- 畫出 train/val loss curve ,並判斷是否overfitting? (10 points)
- 你覺得這個lab有什麼可以改進的地方以及你的心得? (4 points 認真表達心得一律滿分)
- 實作上你做了甚麼調整 (learning rate, image augmentation 等等)維持精準度,減少MAC, pararmeters, FLOP 和避免模型 overfitting?加不同的data augmentation 會在testing data 精準度上面有甚麼影響?請具體以文字和數據描述。(10 points)

Assignment Format

- Upload the assignment to Moodle
- File format: (total 3 files)
 - 1. StudentID_Name_mnist.ipynb
 - 2. StudentID_Name_cifar10.ipynb
 - 3. StudentID_Name_Lab1.pdf
 - ·ex: N123456789_蔡小明_cifar10.ipynb

Deadline: 3/14(Thu.)23:59

