Control System Analysis and Synthesis via Linear Matrix Inequalities

Stephen Boyd (E. Fe

(E. Feron ...)

Electrical Engineering Department, Stanford University ACC, June 1993

Basic idea

Many problems in control can be cast in terms of linear matrix inequalities (LMIs) LMI problems can be solved extremely efficiently

Example problem

Question: how large can RMS(z) be?

- ignoring nonlinearities, $RMS(z) \le 4.1$
- Monte Carlo / simulation suggests $RMS(z) \le 5.6$ or so
- LMI-based analysis guarantees $RMS(z) \le 7.0$

Outline

- What is an LMI?
- \bullet Examples from control
 - Solving LMI problems
 - \bullet History of LMIs
- ullet Conclusions & challenges

Linear matrix inequality

LMI has form:

$$F(x) = F_0 + x_1 F_1 + \dots + x_m F_m \ge 0$$

 $F_i = F_i^T$ are given; $x \in \mathbf{R}^m$ is the variable

- a set of **polynomial inequalities** in x
- multiple LMIs can be combined into one

Optimization problems over LMIs:

- Feasibility: find x s.t. $F(x) \ge 0$, or show that none exists
- Linear objective: minimize $c^T x$ subject to $F(x) \ge 0$

LMI Problems

LMI problems

- appear difficult (nonlinear, nondifferentiable)
- have no "analytic solution"

but:

LMI problems are readily solved by computer

Why? ... convexity

What "readily solved" means

There are algorithms for LMI problems that

- are globally convergent (good initial guess not needed)
- compute the **global optimum** within a given tolerance, or find proof of infeasibility
- computational effort required is small and grows slowly with problem size

... more details later

LMI problems: two examples

Symmetric matrix P is the variable:

Lyapunov inequality:

$$P > 0, A^T P + PA < 0$$

analytic solution (1890)

Two Lyapunov inequalities:

$$P > 0, A^T P + PA < 0,$$

$$\tilde{A}^T P + P \tilde{A} < 0$$

no analytic solution, but readily solved

Outline

- \bullet What is an LMI?
- Examples from control
- multimodel LQR synthesis
- Popov analysis
- Solving LMI problems
- \bullet History of LMIs
- ullet Conclusions & challenges

A time-varying system

Consider time-varying linear system

$$\dot{x}(t) = A(t)x(t), \qquad A(t) \in \mathbf{Co} \{A_1, \dots, A_L\}$$

Question: is it stable?

Note: implies stability of nonlinear time-varying system

$$\dot{x} = f(x(t),t)$$

if for all x, t, $\frac{\partial f}{\partial x} \in \mathbf{Co} \{A_1, \dots, A_L\}$ ("global linearization")

Quadratic Lyapunov function search

Is there a quadratic Lyapunov function $V(z) \triangleq z^T P z$ that proves stability?

Equivalent to: is there P s.t.

$$P > 0, A_i^T P + P A_i < 0, i = 1, ..., L$$
?

- \bullet an LMI in P; no analytic solution but readily solved
- looks simple, but more powerful than many well known methods (multivariable circle criteria, ...)

Some extensions

- performance specifications, e.g., actuator effort, RMS gain, LQR cost
- synthesis of linear state feedback
- synthesis of gain-scheduled controllers

In these cases we get LMI problems that

- look more complicated
- also have no analytic solutions
- are just as readily solved

Multimodel LQR example

$$y''' + a_1(t)y'' + a_2(t)y' + a_3(t)y = a_4(t)u$$
$$y''(0) = y'(0) = y(0) = 1$$

Nominal LQR cost:

$$J_{\text{nom}} = \int_0^\infty (u(t)^2 + y(t)^2) dt$$
 with $a_i(t) = 1$

Worst-case LQR cost:

$$J_{\rm wc} = \max_{1/2 \le a_i(t) \le 2} \int_0^\infty (u(t)^2 + y(t)^2) dt$$

We'll explore linear state feedback ...

LQR vs. multi-model LQR

Two state feedback gains:

- $K_{
 m lqr}$ minimizes $J_{
 m nom}$ (requires solution of Riccati equation)
- $K_{
 m mmlqr}$ minimizes upper bound on $J_{
 m wc}$ (requires solution of an LMI problem)

$\overline{VJ_{ m wc}}$	∞ ($0.5 \le 4.00$
$\sqrt{J_{\rm nom}}$	1.00	1.7(
	$K_{ m lqr}$	$K_{ m mmlqr}$

- ullet K_{mmlqr} has traded off nominal performance for improved robustness
- ullet K_{mmlqr} performance guaranteed with nonlinear system

Outline

- What is an LMI?
- Examples from control
- multimodel LQR synthesis
 - Popov analysis
- Solving LMI problems
- History of LMIs
- ullet Conclusions & challenges

Search for Lyap fct with Popov terms

Consider system with scalar nonlinearities $\phi_1(\cdot), \ldots, \phi_r(\cdot)$

Lyapunov function with Popov terms:

$$V(x) = x^T P x + \lambda_1 \int_0^{y_1} \phi_1(a) da + \dots + \lambda_r \int_0^{y_r} \phi_r(a) da$$

We seek V that proves performance specification (stability, LQR cost, RMS gain, ...)

- can reduce to LMI problem in several ways (Skorodinsky, Pyatnitsky, Hall)
- hence readily solved

Popov analysis example

13

• actuator, sensor, springs are 10% nonlinear:

$$0.9 \le \frac{\phi_i(a)}{a} \le 1.1$$

- $0.9 \le \frac{\phi_i(a)}{a} \le 1.1$ C is simple LQG controller
- ullet $\mathrm{RMS}(F_{\mathrm{dist}}) \leq 1$

Question: how large can RMS(z) be?

Linearized vs. Popov performance analysis

• For **nominal linear** system: compute \mathbf{H}_{∞} norm to find

$$RMS(z) \le 4.13$$

 \bullet For nonlinear system, solve LMI problem to find

$$RMS(z) \le 7.00$$

- \bullet Extensive simulation only allows \mathbf{guess} of performance degradation
- This analysis **guarantees** a maximum performance degradation

Other problems that reduce to LMIs

- optimal filter / controller realization
- ullet linear controller design via Q-parametrization
- multi-criterion LQG
- \bullet inverse problem of optimal control
- synthesis of multipliers for analysis of systems with unknown constant parameters
- ullet analysis & design for stochastic systems

i.e., many other problems

Some problems that (probably) won't reduce to LMIs:

- output feedback synthesis
- ullet state feedback synthesis for Popov, multipliers

The V-K iteration

```
(synthesis)
                                   (analysis)
                                   fix K; find good V
                 fix V; design K
repeat {
```

- handles constraints on controller structure
- each step is LMI problem
- controller may not be globally optimal, but
- controller comes with certificate of performance
- appears to work in practice (Safonov, Skelton)

Outline

- What is an LMI?
- ullet Examples from control
- Solving LMI problems
 - History of LMIs
- Conclusions & challenges

Solving LMI problems

In theory:

• fundamental complexity is low (polynomial)

In practice:

- classical optimization methods do not work
- ellipsoid algorithm (1970s) is robust but slow
- can exploit problem structure (Lyapunov, etc)

• new interior-point methods (1988) extremely efficient

Example: multiple Lyapunov inequalities

(L. Vandenberghe)

Problem: minimize linear fct of P subject to:

$$A_i^T P + P A_i + Q_i \le 0, \quad i = 1, \dots, L$$

 $(A_i, Q_i \text{ given; } P \in \mathbf{R}^{n \times n} \text{ is the variable})$

- number of variables: $n(n+1)/2 = O(n^2)$
- \bullet cost of solving L independent Lyapunov equations: $O(Ln^3)$
- ullet new primal-dual method solves above problem in $O(L^{1.2}n^4)$
- ratio: $O(L^{0.2}n)$

solving 100 50×50 independent Lyapunov equations \approx solving 100 16×16 coupled Lyapunov inequalities

Outline

- What is an LMI?
- ullet Examples from control
 - Solving LMI problems
- History of LMIs
 Conclusions & challenges

LMIs in control: key events

1890s: Lyapunov's theory

1940s: Lur'e, Postnikov apply to real problems

Early 1960s: Yakubovich recognizes important role of LMIs

Late 1960s: graphical, ARE methods for solving some LMIs

Early 1980s: LMIs recognized as convex programs

(Skorodinsky, Pyatnitsky)

Late 1980s: Interior-point algorithms for LMIs

(Nesterov & Nemirovsky)

Outline

- What is an LMI?
- \bullet Examples from control
 - Solving LMI problems
- \bullet History of LMIs
- ullet Conclusions & challenges

Conclusion

Interesting and useful control problems can be cast as LMI problems, **hence solved**

- robust **performance** analysis
- some robust synthesis
- many other problems

LMI-based analysis / design will complement, not replace

- \bullet highly nonlinear feedback synthesis (e.g., geometric ...)
- simulation, Monte Carlo analysis

What constitutes a solution?

- reduction to an Algebraic Riccati equation?
- reduction to an LMI problem?

Challenges: theory

- output feedback?
- relation between system theory duality and convex optimization duality?
- what control problems can be cast as LMIs?

Challenges: applications

- Develop useful computer-aided robustness analysis / synthesis tools
- user interface
- automated translation, block diagram → LMI
- efficient specialized codes
- \bullet Try LMI-based analysis / synthesis on real problems
- are worst-case performance bounds too conservative?
- is multi-model robust synthesis useful?
- does V-K iteration work in practice?

LMI problem from Popov example

variables:

$$\mu$$
, $P > 0$, $L = diag(\lambda_1, ..., \lambda_4) \ge 0$, $T = diag(\tau_1, ..., \tau_4) \ge 0$

objective: μ

- looks ugly (to people)
- impossible to solve analytically or by hand
- easily solved numerically
- $\bullet \Longrightarrow$ should be hidden from user

(Some) recent work on LMIs

• Yakubovich, Megretsky:

robust control

 $S ext{-}procedure$

• Geromel, Peres & Bernussou: • Khargonekar, Rotea:

mixed $\mathbf{H}_2/\mathbf{H}_{\infty}$

• Barmish, Hollot:

quadratic stabilizability

 \bullet Doyle, Packard & associates:

LMIs, LFTs, μ

• Bernstein & Haddad, Hall & How:

multipliers, Popov

• Safonov:

 K_m -synthesis

• Skelton et al.:

covariance control

• Boyd, El Ghaoui, Feron & Balakrishnan:

 \bullet Nesterov & Nemirovsky, Vandenberghe &

monograph

Boyd, Overton & Haeberly, Fan:

algorithms

LMIlab

• Gahinet:

warning: advertisement

Boyd, El Ghaoui, Feron & Balakrishnan,

Linear Matrix Inequalities in System and Control Theory

- monograph in preparation, late 1993 (?)
- rough draft via ftp: email boyd@isl.stanford.edu
- ACC paper: end of Proceedings vol 2

& anonymous ftp into isl.stanford.edu