

48V Open DC Grid Interface

Martin Jäger Hamburg, 13.10.2020

Open DC grid overview

Grid control basics: Water analogy

Voltage Levels according to ISO/DIS 21780

• IEEE P2030.10:

- Stay below 52V if possible, but voltage up to 58V is allowed
- Minimum supply voltage of 36V at the consumer (source voltage must be higher)

Selected Range for ODG Pilot

- Target voltage of renewable energy generators: 54V
- Lowest voltage for loads: 40V

Renewable Energy Source

 Always try to generate maximum grid voltage until maximum power / current is reached

Energy Storage System

- SOC determines nominal voltage
 - Low batteries are charged first and discharged last
- Hysteresis to prevent energy transfer between batteries
- Droop resistance defined by maximum device current

Smart Loads

- Load shedding determined by grid voltage
- Ideally, a load would ramp down its power slowly instead of shutting off immediately.
- Hysteresis needed between on and off thresholds

Example: Renewable energy source (left) and battery (right)

Backup

DC/DC buck converter basics

$$D = \frac{t_{\text{on}}}{t_{\text{on}} + t_{\text{off}}} = \frac{V_{\text{out}}}{V_{\text{in}}}$$

Bi-directional DC/DC converter

Buck converter

Boost converter

Synchronous converter