The Cliff-Hanger

Problem

From where he stands, one step toward a cliff would send a drunken man over the edge. He takes random steps, either toward or away from the cliff. At any step, his probability of taking a step away is $p = \frac{2}{3}$, and his probability of taking a step toward the cliff is $1 - p = \frac{1}{3}$. What is his chance of escaping the cliff?

Solution

We begin by representing the cliff as a number line, where x=0 is the edge, x=1 is the man's starting point, x=2 is 2 steps from the edge, and so on:

Figure 1: Number line representation of cliff

Let P_1 be the probability that the man eventually reaches x=0 (the edge) starting at x=1. We can write P_1 as follows:

$$P_1 = (1 - p) + pP_2$$

In the above, (1-p) represents the probability of immediately taking a step towards the edge. The latter part represents the probability of taking a step away and then eventually reaching x=0. Here, as before, P_2 represents the probability that the man eventually reaches x=0 starting at x=2.

We can continue expanding this equation recursively. For example, P_2 can be written as $P_2 = (1 - p)P_1 + pP_3$. However, this does not lead us closer to the solution.

An important insight to observe is that $P_2 = P_1P_1 = P_1^2$. The first P_1 is equivalent to the probability of moving from x = 2 to x = 1, and the second

 P_1 is used in the traditional sense, representing the probability of moving from x = 1 to x = 0. We can plug this identity into the original equation and apply the quadratic formula to get the following:

$$P_{1} = (1 - p) + pP_{1}^{2}$$

$$= \frac{1 \pm \sqrt{1 - 4p(1 - p)}}{2p}$$

$$= \frac{1 \pm (1 - 2p)}{2p}$$

$$= 1, \frac{1 - p}{p}$$

Applying the solution $P_1 = \frac{1-p}{p}$ to $p = \frac{2}{3}$ gives a probability of $1-P_1 = \frac{1}{2}$ of the man escaping the cliff.