

Wealth Distribution Using Lattice Gas Automata (LGA)

Investigating economic dynamics through computational modeling

Agenda

- Theoretical Background
- Model:
 - Lattice gas automata (LGA)
 - Transaction rules, charity and taxation
- Investigation focus
- Research question
- Hypothesis

Theoretical Background

- Relevance
 - Income inequality
 - Knock-on effect of disparity
- Matthew effect
 - Individuals with more money higher probability to earn more and vice versa
 - Skewed income distributions
 - Gini coefficient
 - 0 perfectly equal
 - 1 perfectly unequal

Movement of agents

Simulation rules

Tax:

$$\Psi_i = \psi_i \Delta m,$$
 $\psi_i = \left(\frac{m_i}{m_{max}}\right)^{\omega} \psi_{max},$

Charity:

Investigation Focus

- Focus on effects of taxation and charity:
 - Most directly applicable to real-life economic reality
 - Possibility for policy to be adjusted and implemented based on findings
- Emergent behaviour:
 - Taxation effectiveness
 - Charity effectiveness
 - Phase transition

Research Objectives

How does varying charity and taxation rates affect inequality in an economy?

- 1. How does the ratio of rich over poor change over time?
- 2. Can we observe a phase transition in the number of rich agents?
- 3. How does grid size impact the fraction of rich agents?

Can we make policy recommendations for curbing income inequality growth?

Hypothesis

- We expect taxation to have a more pronounced effect on the income than charity contributions, since charity is not fully mandatory.
- We expect to see a sharp decline in the number of rich agents as the tax contribution increases but the charity contribution should not have a significant effect.
- We expect that increasing the grid size would lead to a lessening of income inequality, due to the redistributive effect of taxation and charity to is not localised.

Inequality

Distributions

Phase Transition (What happens to the rich?)

Grid size = 5x5

Tax contribution (psi_max) = 0.3

Phase Transition (What happens to the rich?)

Grid size = 5x5

Charity contribution m_c
= 0.4

Finite-Size Scaling

Finite-Size Scaling

Conclusion

- We find that charity contributions bring about a lesser inequality in large systems.
- The effect of the tax rate on the system is inconclusive, a clear effect is not to be seen.

Suggested Improvements/Limitations

- Implement dynamic thresholds for 'richness' and 'poorness' of agents such that the categorization of agents changes with increase in the wealth of the economy.
- Implement local charity and tax redistributions to compare with our current implementation and contrast with our current model.
- Run many simulations for each parameter set to get confidence interval for each result.
- Look at how hexagonal grids affect agent dynamics.

References

- 1. Cui, L., & Lin, C. (2020). Lattice-Gas-Automaton Modeling of Income Distribution. Entropy, 22(7), 778. https://doi.org/10.3390/e22070778
- 2. Lo, Shih-Ching. "Cellular Automata Simulation for Wealth Distribution." In *AIP Conference Proceedings*, vol. 1148, no. 1, pp. 476-479. American Institute of Physics, 2009.
- 3. J. Cerdá, C. Montoliu, R.J. Colom, LGEM: A lattice Boltzmann economic model for income distribution and tax regulation, Mathematical and Computer Modelling, Volume 57, Issues 7–8, 2013, Pages 1648-1655, ISSN 0895-7177, https://doi.org/10.1016/j.mcm.2011.10.051.
- 4. Champernowne, D. G., & Cowell, F. A. (1998). *Economic Inequality and Income Distribution*. Cambridge University Press.

Appendix

 $m_c = 0.2$

 $m_c = 0.3$

 $m_c = 0.4$

 $m_c = 0.5$

Simulation Design

LGCA framework

- Various parameters which are included in the model
- Key focus on charity and tax contributions

Key parameters

- Ψ_{max} maximum taxation rate $m_{_{\rm C}}$ contribution to charity

Other parameters

- P_m constant at 0.7
- P. constant at 0.8
- P. varied
- Δm constant at 1
- m_r 1.5 times the initial wealth
- m, 0.7 times the initial wealth

Step n

Step n+1