

$$\Rightarrow G_{M}(\delta) = \frac{g_{M}}{1 + g_{M}k_{S}}$$

$$= \frac{g_{M}}{1 + g_{M}k_{S}} \cdot \frac{1 + g_{M}k_{S}}{1 + g_{M}k_{S}}$$

$$\Rightarrow G_{M}(\delta) = \frac{1 + g_{M}k_{S}}{1 + g_{M}k_{S}}$$

$$\Rightarrow G_{M}(\delta) \cdot \frac{1 + g_{M}k_{S}}{1 + g_{M}k_{S}}$$

$$\Rightarrow G_{M}(\delta) \cdot \frac{1 + g_{M}k_{S}}{1 + g_{M}k_{S}}$$

$$= G_{M}(\delta) \cdot \frac{1 + g_{M}k_{S}}{1 + g_{M}k_{S}} \cdot \frac{g_{M}k_{S}}{1 + g_{M}k_{S}}$$

$$= G_{M}(\delta) \cdot \frac{1 + g_{M}k_{S}}{1 + g_{M}k_{S}} \cdot \frac{g_{M}k_{S}}{1 + g_{M}k_{S}}$$

$$= G_{M}(\delta) \cdot \frac{1 + g_{M}k_{S}}{1 + g_{M}k_{S}} \cdot \frac{g_{M}k_{S}}{1 + g_{M}k_{S}}$$

$$= G_{M}(\delta) \cdot \frac{1 + g_{M}k_{S}}{1 + g_{M}k_{S}} \cdot \frac{g_{M}k_{S}}{1 + g_{M}k_{S}}$$

$$\frac{f_{+} - dvnblevs}{\omega_{T} = 2\pi f_{T}} = \frac{g_{m}}{g_{s} + g_{d}} \approx \frac{g_{m}}{g_{s}} = \frac{g_{m}}{G_{s}}$$

$$(i) \quad Diff_{-}pan'r:$$

$$(i) \quad Diff_{-}pan'r:$$

$$i_{od} = i_{1} - i_{2}$$

$$g_{m_{A}} = g_{m_{1,2}} \quad undhayed$$

$$C_{id} = (g_{s_{1}})serius(g_{s_{2}})$$

$$\Rightarrow f_{T}' \approx 2 f_{T}$$

remember that for a single transitor $f_{T} = \frac{g_{m}}{G_{g}} \times \sqrt{P_{bins}} \; (long-unannel)$ $P_{bins} > 2P_{bins} > f_{T} > 1.41f_{T} \; (best case)$ But diff. pair : 2Poins >> f_{T} = 2f_{T}

* Diff rignal path may not be unversiont

(ii) Single-ended f_{T}-doubler (Similar to

Darlington pair)

* interchange 6 & S connections on one of

the diff pair devices & sum the outputs

but Cgs. & Cgs. are in parallel

$$\Rightarrow$$
 Cas = (Cgs.) series (Cgs. 11 (gs.))

 $f_{+}' \approx (1.5) f_{-}$
 $f_{-} - doublers$ will not write welly. C

* fr -doublers will not work welly Cis
limited by other factors

> load cap CL

> pararitic Cso cap

overall cancade
$$TF$$
 is
$$H(s) = \left(\frac{Ao}{1 + s/w_0}\right)^n$$

 $A(s) = \frac{A_0}{1 + \frac{s}{W_0}}$

find -3dB BW of the cascade (Won):

at
$$W = W_{on}$$
, $|H(jw)| = \frac{1}{\sqrt{2}}|H(o)|$

$$\Rightarrow \left(\frac{A_0}{1+\left(\frac{W_{on}}{W_o}\right)^2}\right)^n = \frac{1}{\sqrt{2}}A_0^n$$

$$\Rightarrow Won = Wo \sqrt{\frac{2}{n-1}}$$

Recall that $A_0 W_0 = W_0 \Rightarrow W_{on} = \frac{W_0}{A_0}\sqrt{\frac{2}{n-1}}$

a) BW shrinkage

ax
$$n \rightarrow \infty$$
, Won $\rightarrow 0$

ax $n \rightarrow \infty$, DC gain $A_{0n} = A_{0n} \rightarrow \infty$

We want to find approximate

expression for won as $f(n)$
 $2^{n} = \exp \left\{ \ln \left(2^{n} \right) \right\} = \exp \left\{ \frac{1}{n} \ln 2 \right\}$

for large n , we the first two terms in expansion

 $\exp \left\{ \frac{1}{n} \ln 2 \right\} \approx 1 + \frac{1}{n} \ln 2$
 $\Rightarrow w_{0n} \approx w_{0} \left\{ \frac{1}{n} \ln 2 \right\} \approx \frac{0.883 \, \text{Wo}}{\sqrt{n}}$

i.e. BW Shrinks as //n for large n

n 24 => error < 5%.

b) optiming gain per stage

Criven total gain Atot., we want to

find optimal n & manimum BW

And = Atot. => And = Atot.

Won = Wu
Atot.

apply dwon
dn = 0

after some algebra:

Noyt. = $\frac{\ln 2}{\ln 2 \ln A_{tot}}$ for large Atot., $\ln \frac{\ln 2}{2 \ln A_{tot}} \approx \frac{\ln 2}{2 \ln A_{tot}}$ $\ln (1+x) \approx x \text{ for } x <<1$ $\Rightarrow \ln \rho + x \approx 2 \ln A_{tot}$

optimum gain/stage! $Ao_{opt} = (A_{bot})^{Y_{opt}} = exp \left\{ \frac{1}{ln} A_{bot} \right\}$ $\approx e^{l2}$ $Ao_{opt} = \sqrt{e}$ optimum BW: $Won_{opt} = \frac{Wu}{A_{tot}} \frac{Y_{opt}}{2^{ln}}$ $\approx \frac{Won_{opt}}{A_{tot}} = \frac{Wu}{A_{tot}} \frac{Y_{opt}}{2^{ln}}$ $\approx \frac{Wu}{Ve} \left[exp \left\{ \frac{1}{n_{opt}} . ln 2 \right\} - 1 \right]$

Worropt.
$$\approx N_{1} \frac{\ln 2}{2e \ln A_{10} + ...}$$

$$\frac{N_{0}}{2e \ln A_{10} + ...}$$

$$\frac{N_{0}}{\sqrt{\ln A_{10}}} = \frac{0.357N_{1}}{\sqrt{\ln A_{10}}}$$
in other words,

* BW × Jan a = constant

* If Atot. -> Atot. × 100, BW -> < BW x2 * Overall amp does not have constant about product (obviously, be cause about constant only for ringle-pole systems)

GBW product for this cascaded amp = Atot. Won A tot. : 0.357Wn = in weaker In (Atot) without bound a-BW-delay tradeoff * Dulay is less important in Systems with l-way comm. (e.g. TV, optical fibre comm.) * Coupling between a & BN is weak for higher order carcaded systems * If delay can be arbitrary, what G NB can be achieved?

* recall: BW \(\text{rise fime} \)

* imagine an amp that stores energy in input step for a long time, then dumps it suddenly into an output \(\rightarrow \text{very} \)

* past rise time \(\rightarrow \text{night} \)

**Distributed Amplifier (Travelling Wave Amp.)

**R=Z. \(\frac{7}{2} \)

**Zo \(\frac{7}{2} \)

**Vin \(\frac{7}{2} \)

**Zo \(\frac{7}{2} \)

**Zo \(\frac{7}{2} \)

**Zo \(\frac{7}{2} \)

**Vin \(\frac{7}{2} \)

**Zo \(\frac{7}{2}

* at each point of the tapped delay line,

Zin = Zo/2

* Overall gain Av = n. fm. Zo for n stayes

Av xn

Av > 0 if 9m > 0

BW does not factor directly into tradeoff

absorbed into RLCC of TDL

Cin > Court > matching between TDLs

is difficult & Cgs > Cab}

Can be power-hungry

TDL's can be replaced by lamped LC

equivalents (artificial T-lines)

Marin advantage; You can achieve

significant gain a frequency close to for

high gain a low NF not paraible

area is large

Zo's for a D T-lines need not be

the same

If T-lines are lossy. An >0 as N >0

→ Vin m gate line decays exponentially

→ Av increases linearly with n

→ nopt. exists for a given set of

TDL's and MOSFETS.

Artificial T-lines

* has BW limitation because of lumbed LC

(ideal lousless TDL has no bu limitation)

* Toely = VLC per LC-section

(ideal TDL Tdel. = VLC. 3, 3=length)