EP1 – Laboratório de Métodos Numéricos

Adriano Elias Andrade

Data: 30/04/2023

PARTE 1

Para a parte 1, foram encontradas 3 funções, nas quais dependendo do x_0 usado, cada uma converge para uma raiz diferente:

- $g_1 = ln(2x^2)$: Essa função foi encontrada ao usar ln em ambos os lados da equação $e^x = 2x^2$. Para ela, é possível achar a raiz 2.62, quando $x_0 > 2$.
- $\mathbf{g_2} = \sqrt{\frac{e^x}{2}}$): Essa função foi encontrada ao isolar o x do lado direito da equação $e^x = 2x^2$. Para ela, é possível achar a raiz 1.49, quando $x_0 < 2.07944$ aproximadamente.
- $g_3 = -\sqrt{\frac{e^x}{2}}$: Essa função também foi encontrada ao isolar o x do lado direito da equação $e^x = 2x^2$. Para ela, é possível achar a raiz -0.54, quando $x_0 < 2.07944$ aproximadamente.

Para x_0 escolhidos fora dos intervalos especificados, as respectivas funções não encontram uma raiz diferente, pois cada uma converge apenas para uma raiz. Assim, ao escolher um x_0 fora do intervalo, o método diverge, ou então no caso de g_1 , não é possível calcular ln(x) negativo.

PARTE 2

Para a parte 2, foram escolhidas algumas funções para avaliar o método de Newton:

• $f(x) = x^k-1$:

As funções do tipo x^k - 1 podem ser comparadas com os exemplos do pdf do enunciado, e é possível notar que o número de "traços de fractais" que irradiam do ponto (0,0) é igual a k. Também se nota que o tamanho do círculo formado em (0,0) onde o método não converge, aumenta.

• $f(x) = \sin(x)+20$, $e f(x) = \cos(x)+20$:

Nessa função, é possível notar várias repetições das bacias de convergência, que irradiam de forma circular. Para a função cos(x) + 20, é observada a mesma imagem, com um offset vertical.

• $f(x) = \frac{1}{x^2} + x + 5$:

Nessa função, escolhida ,de certa forma, ao acaso, foi possível notar alguma semelhança ao fractal de Mandelbrot.

Imagem feita pelo programa

Mandelbrot

Detalhes da implementação dos métodos:

Para as implementações, foram utilizados os seguintes métodos:

 No método de Newton, ao serem calculadas as bacias, elas são impressas em "output.txt", cada ponto em uma linha, da seguinte maneira:

<parte real do ponto> <parte imaginária do ponto> <índice da cor>

- Para detectar ou não convergências, as funções que fazem a iteração dos métodos, utilizam um ponteiro que terá seu valor alterado de acordo com a convergência ou não convergência para o ponto sendo testado.
- Para o critério de parada das iterações, é sempre verificado se $|x_{k+1} x_k|$ é menor que o valor da tolerância (e⁻²⁰). Existe também um número máximo de iterações que serão feitas para cada ponto, 40 para o método de Newton, e 10000 para o ponto fixo. Para o método de Newton, também é verificado se $f'(x_0)$ é igual a 0 em cada iteração, para não fazer uma divisão inapropriada.
- A compilação dos programas deve ser feita com a flag -lm, pois utilizam a biblioteca "cmath.h".