Linear Regression (Reading: <u>Ch 13</u>)

Learning goals:

- Reframe loss minimization framework for modeling.
- Introduce multivariable linear models within the loss minimization framework.

UC Berkeley Data 100 Summer 2019 Sam Lau

(Slides adapted from Sandrine Dudoit and Joey Gonzalez)

Announcements

- HW4 due Tuesday
- HW5 out Tuesday, due Friday
- Leo was out sick! Hopefully back today.
- Today's lecture might get split into two
 - Ask lots of questions if we're going too fast

Last Time

- Draw conclusions about population using a sample through statistical estimation.
- Make estimations by picking the estimator that minimizes empirical risk / loss.
- Today:
 - Connect estimation with prediction and modeling.
 - First foray into machine learning with linear models.

Modeling

Making Predictions

- Loss minimization framework useful for predictions too!
- Suppose we have a dataset of cars and we'd like to prodict fuel officiona, /miles per gellen er mag)

pre	aict iue	ei eiliciend	zy (miles į	Jei	gallon, c	n mpg).		
mpa	cylinders	displacement	horsepower		acceleration	model vear	origin	

	69	oyao.o	alopiacomonic	погоорониог	•••	accoloration	inouoi_youi	ong	namo
0	18.0	8	307.0	130.0	•••	12.0	70	usa	chevrolet chevelle malibu

- name
- buick 15.0 11.5 350.0 165.0 70 usa skylark 320 plymouth 18.0 318.0 11.0 70 150.0 usa

satellite

Models

- To make a prediction, we choose a model.
 - Takes input data and outputs a prediction.
- Constant model:

Simple linear model:

$$f_{\theta}(x) = \theta_1 x + \theta_0$$

weights

The Constant Model

8

8

8

18.0

15.0

18.0

Intuition: pick θ to be close to most of the values in data

mpg cylinders displacement horsepower acceleration model_year ori		J				
	mpg cylinders	displacement	horsepower	 acceleration	model_year	origin

130.0

165.0

150.0

	•						
mpg	cylinders	displacement	horsepower	 acceleration	model_year	origin	name

12.0

11.5

11.0

70

70

70

usa

usa

usa

chevrolet

chevelle

malibu

buick

skylark 320

plymouth

satellite

Start simple: if constant model, how do we pick θ ? $f_{\theta}(x) = \theta$

307.0

350.0

318.0

Model Loss

- Use x_i to denote what we use to make predictions
- Use y_i to denote what we're trying to predict
- But both x and y come from a single sample
- Idea: Pick the θ that minimizes the average loss between y in our sample and model predictions.

$$L(\theta, y_1, \dots, y_n) = \frac{1}{n} \sum_{i=1}^n (y_i - f_{\theta}(x))^2$$

Constant Model Loss

$$L(\theta, y_1, \dots, y_n) = \frac{1}{n} \sum_{i=1}^n (y_i - f_{\theta}(x))^2$$

Since $f_{\theta}(x) = \theta$ for constant model:

$$L(\theta, y_1, \dots, y_n) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta)^2$$

- Remember this expression from last lecture?
- θ = sample mean is the best model parameter.
- So, for car MPGs, we set θ = mean(mpg)

Modeling is Estimation in New Clothes

- Estimation: making best guess at population parameter
- Modeling: making predictions for population values
- Two sides of the same coin! Why?
- Modeling assumes pop values generated by parameters:

$$f_{\theta}^{*}(x) = \theta^{*} + \epsilon$$

- RTA: assume that data from population generated by taking a constant θ^* and adding noise ϵ .
- Estimation = Finding θ , our best estimate for θ^*
- Modeling = Using Θ to make predictions

The Modeling Pipeline

We choose what goes in the blue boxes!

The Modeling Recipe

- Pick a model, pick a loss function, fit the model to sample.
- Preview of model and loss function combos:

Model	Loss Function	Technique Name
$oldsymbol{ heta} \cdot oldsymbol{x}$	$rac{1}{n}\sum (y_i - f_{ heta}(oldsymbol{x}))^2$	Least squares linear regression
$oldsymbol{ heta} \cdot oldsymbol{x}$	$rac{1}{n}\sum (y_i - f_{ heta}(oldsymbol{x}))^2 + \lambda oldsymbol{ heta} ^2$	Lasso regression
$oldsymbol{ heta} \cdot oldsymbol{x}$	$rac{1}{n}\sum (y_i - f_{ heta}(oldsymbol{x}))^2 + \lambda oldsymbol{ heta} _{\ell_1}$	Ridge regression
$oldsymbol{ heta} \cdot oldsymbol{x}$	$rac{1}{n}\sum y_i-f_{ heta}(oldsymbol{x}) $	Least absolute deviations
$\sigma(m{ heta}\cdotm{x})$	$\frac{1}{n}\sum \left[-y_i\ln f_{\theta}(\boldsymbol{x}) - (1-y_i)\ln(1-f_{\theta}(\boldsymbol{x}))\right]$	Logistic regression

Linear Models

Using Our Data

- If we're trying to predict MPG, we can do better than a constant model by incorporating more information.
 - E.g. higher horsepowers have lower MPGs:

	mpg	cylinders	displacement	horsepower
0	18.0	8	307.0	130.0
1	15.0	8	350.0	165.0
2	18.0	8	318.0	150.0

Simple Linear Model

- We want our predictions to depend on the input data x.
- Simple linear model:

$$f_{\theta}^{*}(x) = \theta_{1}^{*}x + \theta_{0}^{*} + \epsilon \qquad \epsilon \sim N(0, \sigma^{2})$$

$$f_{\theta}(x) = \theta_{1}x + \theta_{0}$$

As usual, we can minimize the loss. This time, we have two parameters.

$$L(\theta_1, \theta_0, y_1, \dots, y_n) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_{\theta}(x_i))^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta_1 x_i - \theta_0)^2$$

Simple Linear Model

$$L(\theta_1, \theta_0, y_1, \dots, y_n) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta_1 x_i - \theta_0)^2$$

$$\frac{\partial}{\partial \theta_1} L = \frac{1}{n} \sum 2(y_i - \theta_1 x_i - \theta_0)(-x_i)$$

$$\frac{\partial}{\partial \theta_0} L = \frac{1}{n} \sum 2(y_i - \theta_1 x_i - \theta_0)(-1)$$

This ends up being a lot of algebra, so we'll skip to the answer.

Skipping Ahead

Let r be the average of the products of x and y when both variables are measured in standard units.

$$\hat{\theta}_1 = r \cdot \frac{\text{SD of } y}{\text{SD of } x}$$
 $\hat{\theta}_0 = \text{mean of } y - \hat{\theta}_1 \cdot \text{mean of } x$

- <u>Data 8 textbook</u> has example slope/intercept calculations.
- Takeaway: Can derive these formulas by minimizing loss.
- You should know how to take the derivative but won't need to solve it.

Multivariable Linear Model

Simple linear model uses one variable to predict:

$$f_{\theta}(x) = \theta_1 x + \theta_0$$

- Time to graduate from Data 8!
- Multivariable linear model uses ≥1 variable:

$$f_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_p x_p$$

- x is a vector containing one row of input data.
- IOW: Predict by combining multiple features together.

Intuition

$$f_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_p x_p$$

- Using horsepower and model year to predict mpg
 - Expect θ_1 to be negative and θ_2 to be positive. Why?

Using Matrix Multiplication

$$f_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_p x_p$$

 Many terms to write! We'll use a trick: add a column of 1s to the table:

	mpg	bias	horsepower	weight	model_year
0	18.0	1	130.0	3504	70
1	15.0	1	165.0	3693	70
2	18.0	1	150.0	3436	70

$$m{x} = [1, x_1, x_2, x_3]$$
 $m{ heta} = [heta_0, heta_1, heta_2, heta_3]$

Bolded letters means vector or matrix.

ullet This means our model is: $f_{ heta}(oldsymbol{x}) = oldsymbol{ heta} \cdot oldsymbol{x}$

More Notation!

0

2

y: column vector of sample points to predict

X: matrix of input data $(n \times p)$

			1	(1)
npg	bias	horsepower	weight	model_year
18.0	1	130.0	3504	70

- 70 3436
- 150.0
- 70 15.0 165.0 3693 18.0
- - X_i : row i of input data x: row vector of input data
 - θ : vector of model weights
 - $\hat{\boldsymbol{\theta}}$: loss-minimizing model weights
- ••• 32.0 84.0 2295 82 **Your turn**: Write the matrix
- 395 expression that computes a 28.0 82 396 79.0 2625 vector with a fitted linear model's 31.0 82.0 2720 82 397 predictions for all sample points.

Your Turn

Write the matrix expression that computes a vector with a fitted linear model's predictions for all sample points.

Prediction for one point: $\hat{\boldsymbol{\theta}} \cdot \boldsymbol{x}$

Prediction for one point:
$$\boldsymbol{\theta} \cdot \boldsymbol{x}$$

Prediction for all points: $\hat{\boldsymbol{y}} = \begin{bmatrix} \hat{\boldsymbol{\theta}} \cdot \boldsymbol{X}_1 \\ \hat{\boldsymbol{\theta}} \cdot \boldsymbol{X}_2 \\ \vdots \\ \hat{\boldsymbol{\theta}} \cdot \boldsymbol{X}_n \end{bmatrix} = \boldsymbol{X} \hat{\boldsymbol{\theta}} \\ (n \times p)(p \times 1) = (n \times 1)$

Your Turn

Write the matrix expression that computes the average MSE loss for all data points (this is a scalar!).

Your Turn

Write the matrix expression that computes the average MSE loss for all data points (this is a scalar!).

$$L(\boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{y}) = \frac{1}{n} \sum (y_i - \boldsymbol{X}_i \cdot \boldsymbol{\theta})^2$$

= $\frac{1}{n} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||^2$ (Bonus points if you got this)
 $||\boldsymbol{v}||^2 = \boldsymbol{v} \cdot \boldsymbol{v} = \boldsymbol{v}^{\top} \boldsymbol{v}$

Using matrix notation takes a lot of practice to get used to, but the results are worth it. Always check your dimensions!

Fitting a Linear Model

How do we pick θ to minimize loss?

$$L(\boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{y}) = \frac{1}{n} \sum_{i} (y_i - \boldsymbol{X_i} \cdot \boldsymbol{\theta})^2$$

- Want to take partial derivatives for θ_0 , θ_1 , ...
- Instead, we'll take the gradient and set it equal to zero.
- This solves for all model weights at once!

$$\nabla_{\boldsymbol{\theta}} L = \begin{bmatrix} \frac{\partial}{\partial \theta_0}(L) \\ \frac{\partial}{\partial \theta_1}(L) \\ \vdots \\ \frac{\partial}{\partial \theta_p}(L) \end{bmatrix}$$

The Normal Equation

- Saving the setup for the Gradient Descent lecture
 - \circ Again, you need to know how to take the gradient but not how to solve for Θ .
- Skipping ahead to the answer:

$$m{X}^ op m{X}\hat{m{ heta}} = m{X}^ op m{y}$$
 $\hat{m{ heta}} = (m{X}^ op m{X})^{-1} m{X}^ op m{y}$

What are the matrix shapes in these expressions?

- Expression above called normal equation
- Gives a closed-form recipe for fitting linear model

The Abnormal Equation

In practice, it takes too long to compute this:

$$\hat{\boldsymbol{\theta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$

- Inverting an $(n \times n)$ matrix takes at least $O(n^2)$ time.
 - \circ State of the art: O(n^{2.3})
- Takeaway: analytic solutions are elegant but are sometimes hard to find and slow.
 - Next lecture: gradient descent

Demo: Predicting MPGs

Break! Fill out Attendance: http://bit.ly/at-d100

Feature Engineering (moved to Wed lecture)

Linear Models Level Up

- Horsepower and mpg have a nonlinear relationship.
- Can still use linear regression to capture this!
- Feature engineering: creating new features from data to give model more complexity.

Adding Features

- For now, predict MPG from horsepower alone.
- Insight: Add a new column to X with horsepower².

	bias	hp	hp^2
0	1	130.0	16900.0
1	1	165.0	27225.0
2	1	150.0	22500.0

395	1	84.0	7056.0
396	1	79.0	6241.0
397	1	82.0	6724.0

Now we fit a quadratic function!

$$f_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$
$$= \theta_0 + \theta_1 h p + \theta_2 h p^2$$

• This is still linear in model weights θ , so we call it a linear model.

(Demo)

Polynomial Regression

- For polynomial features of degree n, usually add every possible combination of columns.
 - 4 original columns, degree 2:

$$x_1, x_2, x_3, x_4,$$

 $x_1^2, x_2^2, x_3^2, x_4^2,$
 $x_1x_2, x_1x_3, x_1x_4, x_2x_3, x_2x_4, x_3x_4$

- Can end up being a lot of columns
- To cope, use kernel trick (covered in advanced courses)

Categorical Features

- Origin column is correlated with MPG. Can we use it?
- Idea: Encode categories as numbers in a smart way.
- Discuss: Why can't we just encode "usa" as 0, "japan" as 1, "europe" as 2?

One-Hot Encoding

 One-hot encoding makes one new column for each unique category:

One-Hot Encoding

• What do you expect the largest weight to be?

origin=usa	origin=europe	origin=japan
1	0	0
1	0	0
0	1	0
1	0	0
0	0	1
0	0	1

Can interpret weight as "contribution" of that category

One Hot Problem

- Problem: Adding a new column for each category makes columns of X linearly dependent! Why?
- One-hot columns always sum to 1:

bias	origin=usa		origin=europe	origin=japan
1		1	0	0
1		1	0	0
1		0	1	0
			+	+
1		1	0	0
1		0	0	1
1		0	0	1

 This makes normal equations unsolvable.

$$\hat{\boldsymbol{\theta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$

Not invertible ^

Weight Interpretation

- Invertibility isn't a problem for gradient descent, but this still affects how we interpret the model weights.
- Linearly dependent columns can "swap" weights:
 - Left: All categories matter. Right: No categories matter!

Drop it Like it's Hot

- Simple fix: Drop the last one-hot column.
- In this case, the weight for USA can be interpreted as "change in MPG between USA and Japan".

Features feat. More Features

- Feature engineering is often domain-specific:
 - Standardizing: "How many SDs away from average?"
 - Log transform: Used to fit exponential models.
 - Absolute difference: "How different is the current temperature from 70°?"
 - Binning data, then one-hot encoding: "Are we driving during morning rush hour? Evening rush hour?"
 - Date-related features: year, month, weekday
 - Image-related features: blurring, edge detection, etc.

Summary

- Modeling and estimation are closely related.
 - We can view modeling as estimation of model parameters.
- Linear models can incorporate an arbitrary number of features to make a prediction.
- Feature engineering extends linear models to generate more complex models.