Enhancing Genetic Insights with Polyploid Tools and User-friendly Interfaces

Cris Taniguti cht47@cornell.edu

Genomics Coordinator
Breeding Insight, Cornell University

Outline

About Breeding Insight

Tools for Polyploids Project

Ploidy Estimation

Updates on Linkage Map Packages

Microhaplotypes

User-Friendly Interfaces

Breeding Insight Mission

Transform breeding by enabling the implementation of genomic insight and selection as part of routine specialty crop and livestock breeding across all of USDA-ARS.

About

Who we are:

- We connect and build resources for specialty crop and livestock breeders.
- We are a USDA-ARS-funded initiative located at Cornell University.
- We are a service and technology transfer model providing additional support to USDA specialty breeding programs.
- We are a team made up of scientists and software developers.

About

What we are not:

- We are not a private company.
- We are not interested in duplicating established technology, techniques, or patents.
- We are not selling and we are not receiving commission for the technology we provide or recommend.

Breeding Insight Tools and Capacity

- Phenomics
- Genomics
- Bioinformatics
- Statistics
- Software Developers
- Image Analysis
- o Data QC
- Pedigree
- Marker Validation

27 species59 breeding programs

Exploring Resistance Traits

- Salt resistance
- > Drought Stress tolerance
- > pH tolerance
- > Aphanomyces resistance
- > Anthracnose resistance

Potato Cys Nematore (PCN) resistance

- Nematode resistance.
- > Fusarium resistance
- Wireworm, Diabrotica, and Systena (WDS) resistance
- > Insect resistance

Mite resistance

Powdery mildew resistance

Powdery mildew resistance

Impatiens necrotic spot virus resistance

- Powdery mildew resistance
- Downy mildew resistance
- Cold resistance

Shock virus resistance

Resilience to changes in water quality and pathogen load

Genomic Resources

*Purchased by collaborators

**Designed and purchased by collaborators

***Co-designed with collaborators

Species	Available Panels
Grape	2K rhAmpSeq**
Alfalfa	3K DArTag
Blueberry	3K DArTag
NA Atlantic Salmon	50K Infinium array*
NA Atlantic Salmon	3K DArTag
Lettuce	3K DArTag
Cucumber	3K DArTag
Pecan	3K DArTag
Cranberry	3K DArTag
Honeybee	81 DArTmp
Sweetpotato weevil	101 DArTmp
Sweetpotato	3K DArTag
Strawberry	3K DArTag**
Strawberry	5K DArTag**
Cranberry v2.0	3K DArTag

Species	In Progress Panels
Grape & Muscadine	3K DArTag***
Нор	3K DArTag
Hemp	3K DArTag
Blackberry	3K DArTag
Red clover	3K DArTag
Lettuce (parentage ver.)	100 KASP
Honeybee	105 AgriSeq
Trout	GTSeq
Sugar beet	5K AgriSeq**
-	-

Species	Planned Panels
Raspberry	3K DArTag
Hydrangea	3K DArTag

Genomic Challenges for Specialty Species

Heteromorphic sex chromosomes

Allopolyploid
Autopolyploid
Mixed (some level
of preferential
paring)

Tools for Polyploids Project

- Computational Tools Development and Improvement
- ► Collaboration between developers and breeders
- Website: www.polyploids.org
- Workshops 2021 2024 (records available)

Genetic Analysis Tools for Polyploid

Mchap MicroHapDB

Reads processing

SNP calling

Genotype calling

comparison

Reads

Micro-haplotypes

Tools for Polyploids Project Survey

David Byrne Texas A&M University

Genetic Analysis Tools for Polyploid

Mchap **Micro Hap DB**

Ploidy Estimation

Ploidy Estimation

- Requisite for all downstream analysis
- Texas A&M postdoc
 - Roses
 - Axiom Array data
 - 89% agreement
 - 0.83 Cohen's Kappa coefficient
 - MS submitted!
 - Package and tutorial already available!

Oscar Riera-Lizarazu

Tessa Hocchaus

Jeekin Lau

		Based on past reports		
Based on	Ploidy level	2x	3x	4x
Qploidy	2x	78	1	0
	3x	4	27	0
	4x	2	15	90
	5x	0	0	1

Input File Formats

Sequencing VCF (w/allele depth)

Array Illumina Axiom

Qploidy Method

• B allele frequency= B/(A+B)

1 marker: Total depth/intensity = 100; ideal ratios:

AAAA	AAAB	AABB	ABBB	BBBB
A = 100	A = 75	A = 50	A = 25	A = 0
B = 0	B = 25	B = 50	B = 75	B = 100
Ratio = 0	Ratio = 0.25	Ratio = 0.5	Ratio = 0.75	Ratio = 1

Reality for Arrays and Target Sequencing:

- High variation in marker-to-marker ratio
- Low variation in sample-to-sample ratio

Sample-level ploidy determination

4 samples and all markers in chromosome

Human Genetics

- CNV studies in humans: PennCNV, QuantiSNP, Birdsuite, ...
- They always have diploid samples as reference
- Qploidy is the expansion of the PennCNV method (Wang et al., 2007)
- Using higher ploidies as reference

Sample-level ploidy determination

4 samples and all markers

The improvement – chromosomal-level estimations

90_MBxBE (4x)

Diploids as reference

The improvement – chromosomal-level estimations

Tetraploids as reference

The improvement – chromosomal-level estimations

A triploid sample using diploids as reference

Tetraploids as reference

The improvement – chromosomal-level estimations

Tetraploids as reference

Z Score of the Total Allele Intensity/Depth

Oploid

Other Species and Technologies

--- Expected peak position

When to use

When does Qploidy work?

- Marker data derived from **Array** or **Target sequencing** platforms
- All DNA samples prepared following same library preparation
- Known ploidy of at least 60 samples or known most common ploidy
- Heterozygous
- Sample collected represents whole individual

When Qploidy does NOT work?

- RADseq or GBS libraries
- Combined datasets from genotyping in different batches
- Do not have a subset of samples with known ploidy or lack a predominant ploidy
- Samples consist of inbred lines
- Sample is possible from **chimeric or mosaic** tissue

What is next for Qploidy?

- Integrate Z score with BAF (HMM, deep learning?)
- Locus-level resolution

Linkage Mapping

University of São Paulo

NCState University

Gabriel Gesteira **NCState University**

- Outcrossing populations
- Autopolyploids
- Interconnected full-sib populations
- Combination of ploidies
- Speed optimization
- Documentation
- Prepared to be implemented in an interface

Linkage Mapping

NCState University

Gabriel Gesteira **NCState University**

- OneMap: no more new features since 3.2.0
 - Still the best option for:
 - Recombinant Inbred Lines
 - Dominant and multiallelic markers
- OneMap and MAPpoly are stable
- Development efforts are now in MAPpoly2

Linkage Mapping - Alfalfa

Summary

LG	Map length (cM)	Markers/cM	Simplex	Double-simplex	Multiplex	Total	Max gap
1	60.69	2.39	37	27	81	145	4.53
2	64.12	1.89	39	24	58	121	5.01
3	63.89	1.77	35	23	55	113	5.81
4	65.66	2.15	51	22	68	141	3.23
5	65.14	1.58	40	17	46	103	5.32
6	61.58	2.24	47	32	59	138	3.86
7	53.39	0.75	15	7	18	40	7.49
8	59.18	2.23	46	19	67	132	4.86
Total	493.65	1.88	310	171	452	933	5.01

Based on bi-parental F1 population of parents susceptible (I195) and resistant (J432) to *Aphanomyces euteiches*

Haplotype Reconstruction

Example of haplotype reconstruction in individual 85_99, LG4

X85.99 LG 4

Aneuploids and Linkage Maps

Impact on Linkage Maps

filter_aneuploid(
mappoly.obj,

Qploidy.out.csv)

Population ID	# of samples	Female parent	Male parent	Aneuploid individuals	Aneuploid chromosomes
MBxBE	95	Morden Blush	Brite Eyes	18 (18.94 %)	2.3 %
HVxLF	91	High Voltage	Lemon Fizz	13 (14.28 %)	1.9 %
MBxRR	94	Morden Blush	Ramblin Red	14 (14.89 %)	2.0 %
MBxGV	94	Morden Blush	George Vancouver	9 (9.57 %)	1.3 %
BExMG	121	Brite Eyes	My Girl	20 (16.53 %)	2.6 %
SWxBE	208	Stormy Weather	Brite Eyes	51 (24.52 %)	3.3 %
BExMG	66	My Girl	Brite Eyes	7 (10.6 %)	1.5 %

Alfalfa - Aphanomyces Resistance QTL Analysis

LG	Position (cM)	LOD	PVE (BLUE*)	PVE (SMA**)
3	11.04	19.28	38.61	16.13

PVE - Percentage of variation explained

- *BLUE: Best linear unbiased estimates
- ** Single marker analysis
- The alleles originating from homologues 1, 2, 3 of parent 1 and homologues 5 and 7 of parent 2 contributes positively to the trait.
- > The most appropriate model is oooQ x oQQQ.

Limited to Mapping Populations Designs

Development of Microhaplotype Database

DONGYAN ZHAO Genomics Lead

Reference haplotype:
Reference Match:
Alternative haplotype:
Alternative Match:

CTATCCATCCAGCGTCCCTGCATTTCTCTGGTCACCCCATGAAGATGGGTATGC
CTATCCATCCAGCGTCCCTGCATTTCTCTTGGTCACCCCATGAAGATGGGTATGC
CTATCCATCCAGCGTCCCTGCATTTCTCTTAGTCACCCCATGAAGATGGGTATGC
CTATCCATCCAGCGTCCCTGCATTTCTCTTAGTCACGCCATGAAGATGGGTATGC
Target SNP

- Establish best workflow for filtering and processing genotype data
- Create file formats that work with other applications for downstream analysis

Off-target SNP

Microhaplotype Database allele capture curves

- 156,076 alleles across 7 species
- Allele capture curves are expected to follow a diminishing returns pattern. The slope is very steep in early builds but begins to asymptote in later builds as fewer new alleles are discovered.
- Databases are considered mature when they asymptote.

Multiallelic Genotypes for GWAS

HaploSearch: user interface to search for microhaplotypes

TYLER SLONECKI

Biosoftware Coordinator

MENG LIN
Bioinformatics
Coordinator

Data sharing model

Open to **Public**

- Allele IDs
- Allele sequences
- Limited metadata:
 - Institutions holding allele

Limited between Collaborators

- Everything from Public, plus
- Metadata of germplasm owners

Private to breeder

- Everything from **Limited**, plus
- Full sample metadata for only their own germplasm

Introducing BIGapp

ALEX SANDERCOCK
Genomics Postdoc

BIGapp is a web-based application to make BI genomics and bioinformatics analyses

BIGapp's Key Design Principles:

1. Accessibility:

Intuitive interface; no coding experience needed.

2.Integrated Help:

 Tutorials and help pages for guidance and result interpretation.

3. Broad Support:

Designed for all species and ploidy levels.

https://github.com/Breeding-Insight/BIGapp https://github.com/Breeding-Insight/BIGr

BIGapp v1.0 Features

ALEX SANDERCOC Genomics Postdoc

- Genotype processing
 - Dosage call from read counts
 - SNP filtering
 - Sample filtering
- Summary metrics
 - SNP minor allele frequency
 - Sample observed heterozygosity
 - Population dosage ratios
- Population Structure
 - PCA
 - DAPC
- Genome-wide association studies (GWAS)
- Genomic Selection (GS)

Input File Formats

***Adding support for genotyping platform outputs

Availability and Future Plans

Genomics Postdoc

How to get BIGapp?

Visit https://github.com/Breeding-Insight and install it like an R package.

Future Plans:

- 1. Integrate ploidy estimation support (Qploidy)
- 2. Integrate linkage mapping support (MAPpoly2).
- 3. Integrate support for GWAS analysis with microhaplotypes

Highlights

- New Tools available:
 - Qploidy
 - MAPpoly2
 - BIGapp
- Keep and eye out for updates and releases:
 - Qploidy
 - MAPpoly2
 - BIGapp
 - MicroHaplotypeDB
 - HaploSearch
 - GWASpoly
- Shiny Power: Implementing Genomic Tools in user-friendly interfaces

BI is supported by

BI OnRamp Staff:

Amanda Hulse-Kemp Keo Corak Heather Manching Brian Scheffler

ARS ONP:

Jose Costa
Kevin Hackett
Joe Munyaneza
Jack Okamuro
Peter Vadas
Caird Rexroad III
Tim Rinehart (POC)

Former BI members:

Katherine Mejia-Guerra, Liz Woods, Tim Parsons, Chris Tucker, Vanessa Greenlee, & Chris Strock BREEDING LISTA

Breeding Insight Staff:

AJ Ackerman
Bhoja Basnet
Craig Beil
Sam Bouabane
Alex Casa
Shufen Chen
Josue Chinchilla
Rebecca Cubitt
Meng Lin
Kristen Lind

Matthew Mandyck
David Meidlinger
Shahana Mustafa
Nick Palladino
Kristina Petrilose
Kirsten Richardson
Edwin Reidel
Alex Sandercock
Manoj Sapkota
Tyler Slonecki

Dexter Stigger
Madhav Subedi
Heather Sweeney
Xuemei Tang
Cris Taniguti
Tyr Weisner-Hanks
Meseret Wondifraw
Shawn Yarnes
Dongyan Zhao

Scientific Advisory Board:

Pete Cyr

Gina Brown-Guedira

Scott Jackson (Vice Chair)

Steve Kresovich

Steve Larson

Tim Parsons

Trevor Rife

Steve Rounsley

Pete Selby

Philipp Simon (Chair)

Allen Van Deynze

Margaret Worthington

Ed Buckler

Jean-Luc Jannink

GitHub: https://github.com/Breeding-Insight

Funding and Support

U.S. Department of Agriculture – Agriculture Research Service through Cornell University