TESTOWANIE HIPOTEZ

- Badano sprawność optyczną próżniowego kolektora słonecznego przy natężeniu napromieniowania słonecznego I=800 W/m². Wykonano 12 pomiarów uzyskując następujące wyniki:

 - a. Na poziomie istotności α=0,05 sprawdzić hipotezę, że przeciętna sprawność kolektora słonecznego wynosi 0,75.
 - b. Na poziomie istotności α=0,05 sprawdzić hipotezę, że przeciętna sprawność kolektora słonecznego jest mniejsza niż 0,75.
- 2. W doświadczeniu badano zawartość popiołu (części niepalnych) dla ekogroszku wyprodukowanego na bazie węgla wysokogatunkowego z pewnej kopalni. Otrzymano następujące wyniki:

6,8 7,8 6,9 6,4 7,5 8,4 7,4 7,1

Na poziomie istotności α =0,01 sprawdzić hipotezę, że średnia zawartość popiołu dla ekogroszku jest wyższa niż 7.

- 3. W pewnym doświadczeniu chemicznym bada się ilość czystej substancji wydzielającej się w trakcie pewnego procesu. Przeprowadzono 5 obserwacji aby ustalić rozrzut dla obserwowanej zmiennej o rozkładzie normalnym N(μ;σ). Uzyskano obserwacje w mg 285; 293; 302; 297; 291. Na poziomie istotności α=0,01 sprawdzić, czy przeciętna ilość czystej substancji wydzielanej w procesie chemicznym jest wyższa niż 290mg.
- 4. W celu stwierdzenia sensowności budowy elektrowni wiatrowej w gminie badano średnią miesięczną prędkość wiatru przez kolejne 10 miesięcy. Uzyskano następujące wyniki (w m/s): 4,6 4,2 4,3 4,3 4,1 4,7 4,4 4,2 4,3 4,6 Na poziomie istotności α=0,05 sprawdzić hipotezę, że rzeczywista przeciętna prędkości wiatru

Na poziomie istotności α =0,05 sprawdzić hipotezę, że rzeczywista przeciętna prędkości wiatru wynosi 4,2 m/s.

- 5. Dokonano pomiaru żywotności dwóch typów żarówek energooszczędnych typu LED (w h). Czas świecenia pierwszego rodzaju świetlówek podlega rozkładowi normalnemu N(μ1;σ), a czas świecenia drugiego rodzaju świetlówek podlega rozkładowi normalnemu N(μ2;σ). Uzyskano 5 obserwacji dla świetlówek pierwszego rodzaju: 2830 2840 2800 2880 2820 oraz 5 obserwacji dla świetlówek drugiego rodzaju: 2790 2720 2770 2780 2760. Na poziomie istotności α=0,01 zweryfikować hipotezę, że przeciętna żywotność żarówek pierwszego typu jest wyższa niż świetlówek typu drugiego.
- 6. Opór oporników jest zmienną o rozkładzie normalnym. Z produkcji dwu firm pobrano próbki losowe. Wykonano pomiary oporu R 8 oporników produkowanych w jednej firmie i 8 oporników produkowanych w drugiej firmie. Na podstawie obserwacji oporu w pierwszej firmie: 198,1; 200,1; 200,7; 201,3; 198,5; 202,5; 201,9; 200,9; i w drugiej firmie: 202,7; 201,5; 201,3; 201,1; 201,0; 199,7; 198,2; 199,7, przyjmując poziom istotności α=0,05 zweryfikować hipotezę, ze przeciętne opory oporników produkowanych przez obie firmy są takie same.
- 7. Dokonano 30 pomiarów biomasy (w t/ha) uzyskanych w uprawie wierzby energetycznej. Wiedząc, że obserwowana zmienna podlega rozkładowi normalnemu N(μ;σ=1) zweryfikować hipotezę, że rzeczywista średnia wartość biomasy jest niższa niż 12,5 t/ha, jeżeli z przeprowadzonych obserwacji uzyskano x=12, ŝ²=1,21. Przyjmij poziom istotności α=0,01.

- 8. W laboratorium badano mieszaninę oleju rzepakowego z benzyną U95 pod względem poprawy składu frakcyjnego. Jest to zmienna o rozkładzie normalnym N(μ;σ=0,8). Badania wykonywano w temperaturze 300°C uzyskując następujące wyniki (w %): 20,4; 19,6; 22,1; 20,8; 19,2; 20,4; 20,9; 21,5; 22,0.
 - a. Na poziomie istotności α =0,05 sprawdzić hipotezę, że przeciętna frakcyjność mieszaniny wynosi 20.
 - b. Na poziomie istotności α=0,05 sprawdzić hipotezę, że przeciętna frakcyjność mieszaniny jest większa niż 20.

średnia	- 1 n		błąd standardowy średniej
	$\frac{1}{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$		$\hat{s} = \sqrt{\hat{s}^2}$
	1=1		$\hat{s}_{\bar{x}} = \frac{\hat{s}}{\sqrt{n}} = \sqrt{\frac{\hat{s}^2}{n}}$
worionoio	,,		$\frac{\sqrt{n}}{\sqrt{n}}$
wariancja	$(\sum_{i=1}^{n} x_{i})^{2}$		odchylenie standardowe
	$\hat{s}^2 - \frac{1}{n} (\sum_{i=1}^{n} x_i^2 - \frac{\sum_{i=1}^{n} x_i}{n})$		
	$\hat{s}^2 = \frac{1}{n-1} \left(\sum_{i=1}^n x_i^2 - \frac{\left(\sum_{i=1}^n x_i \right)^2}{n} \right)$		$\hat{s} = \sqrt{\hat{s}^2}$
TEST DLA ŚREDNIEJ			
σ - znane		Obszar krytyczny	
	$U = \frac{x - \mu_0}{\sigma} \sqrt{n}$	(odczyt z tablic testu	dwustronnego)
11	O H₁: μ ≠ μ ₀	 U > uα	
H_0 : $\mu = \mu_0$	$H_1: \mu > \mu_0$		
H_0 : $μ ≤ μ ₀$ H_0 : $μ ≥ μ ₀$	H ₁ : μ < μ ₀	$U > u_{2\alpha}$	
		U < - u _{2α}	
σ - nieznane	$\int_{1}^{1} x - \mu_0 \int_{1}^{\infty} x - \mu_0$	$= \frac{x - \mu_0}{x - \mu_0} \sqrt{n} = \frac{x - \mu_0}{x - \mu_0}$ Obszar krytyczny (odczyt z tablic testu	
	$t = \frac{x - \mu_0}{\hat{s}} \sqrt{n} = \frac{x - \mu_0}{\hat{s}_{\bar{x}}}$	(odožýt z tabilo tosta	awasii siinisgo)
H_0 : $\mu = \mu_0$	- H ₁ : μ ≠ μ ₀	$ t > t_{\alpha, n-1}$	
H ₀ : $\mu \le \mu$ 0	H_1 : $\mu > \mu_0$	$t > t_{2\alpha, n-1}$	
H_0 : $\mu \ge \mu_0$	H ₁ : $\mu < \mu_0$	$t < -t_{2\alpha, n-1}$	
TEST DLA RÓŻNICY ŚREDNICH			
założenie	$-\frac{1}{x_1-x_2}$		Obszar krytyczny
$\sigma_1^2 = \sigma_2^2$	$t = \frac{1}{(n-1)^{\frac{2}{n^2}} + (n-1)^{\frac{2}{n^2}}}$		(odczyt z tablic testu dwustronnego)
założenie $\sigma_1^2 = \sigma_2^2 \qquad \qquad t = \frac{\overline{x_1 - x_2}}{\sqrt{\frac{(n_1 - 1)\hat{s}_1^2 + (n_2 - 1)\hat{s}_2^2}{n_1 + n_2 - 2}}} \times \frac{n_1 + n_2}{n_1 n_2} \qquad \qquad \text{Obszar krytyczny (odczyt z tablic testu dwustronne)}$			
H ₀ : $\mu_1 - \mu_2 = 0$ H ₁ : $\mu_1 - \mu_2 \neq 0$			$ t > t_{\alpha; n_1 + n_2 - 2}$
H ₀ : $\mu_1 - \mu_2 \le 0$	H ₂ : $\mu_1 - \mu_2 > 0$		$t > t_{2\alpha;n_1+n_2-2}$