Boxplots

Gaston Sanchez

Creative Commons Attribution Share-Alike 4.0 International CC BY-SA

Preliminary Concepts

Preliminary Concepts

Minimum
Maximum
Quantiles

Quantiles

interval of values

Special Quantiles

Number of quantiles	Name
2	Median
3	Terciles
4	Quartiles
5	Quintiles
6	Sextiles
10	Deciles
100	Percentiles

Special Quantiles

Number of quantiles	Name	
2	Median	
3	Terciles	
4	Quartiles	important for measures of spread
5	Quintiles	
6	Sextiles	
10	Deciles	
100	Percentiles	

Do not confuse

Quantile "N"

Quartile "R"

Range

Looking for a value that reflects the amount of spread

Measures of spread

Spread Value

Is there a "representative" value that tells us how much variation a variable has?

Range

Difference between the largest and smallest values of a data distribution

Range = maximum - minimum

Apple dataset

num	Weight oz	Carbs	Acidity	Shape
1	5	20.0	medium	round
2	6	24.3	high	oval
3	7	25.0	medium	round
4	7	25.5	low	square
5	6	24.7	medium	round
6	8	26.1	low	round
7	6	25.2	high	square
8	9	23.7	high	oval
9	10	21.0	low	round
10	8	27.4	medium	oval

Finding the Range

Apple weight values

maximum = 10

minimum = 5

Range =
$$10 - 5 = 5$$

About the Range

The range is one measure of variability.

The range is the distance spanned by the data.

It is an overall measure of spread.

It does not take into account any measure of center as a reference value.

Inter-Quartile Range (IQR)

Spread with Percentiles

We can describe the spread of a distribution by giving several percentiles.

The most common is to use the 25th and the 75th percentiles

Spread with Percentiles

1st quartile $Q_1 = 25th \ percentile$

2nd quartile $Q_2 = 50th percentile$

3rd quartile $Q_3 = 75th percentile$

4th quartile $Q_4 = 100th percentile$

Spread with Percentiles

1st quartile $Q_1 = 25th percentile$

2nd quartile $Q_2 = 50th percentile$

3rd quartile $Q_3 = 75th percentile$

4th quartile $Q_4 = 100th percentile$

Finding the SD

Apple weight values

5, 6, 7, 7, 6, 8, 6, 9, 10, 8

Ordered values

5, 6, 6, 6, 7, 7, 8, 8, 9, 10

median

$$Q_1$$
 Q_3
 Q_1
 Q_3
 Q_3

Boxplots

Box-plots

Box-and-whisker plots, most commonly known as box plots, are a simple yet very effective way to display the distribution of values by using five summary indicators.

Box-plots based on 5-number summary

5 summary indicators:

- 1. minimum
- 2. 25th percentile (Q1)
- 3. 50th percentile (Q2) or median
- 4. 75th percentile (Q3)
- 5. maximum

Very simple boxplot example

Gaston Sanchez

Anatomy of a boxplot

Anatomy of a boxplot

NFL Average Ticket Prices

Source: Team Marketing 2013

Num	Team	Price	Num	Team	Price
1	browns	54.20	17	steelers	81.13
2	bills	57.75	18	packers	82.61
3	buccaneers	63.59	19	49ers	83.54
4	raiders	64.80	20	falcons	83.71
5	chiefs	64.92	21	broncos	84.27
6	titans	65.28	22	chargers	84.55
7	panthers	66.84	23	colts	86.32
8	lions	67.60	24	texans	88.98
9	jaguars	68.44	25	eagles	93.01
10	bengals	68.96	26	redskins	94.80
11	dolphins	71.14	27	ravens	100.19
12	seahawks	71.21	28	bears	103.60
13	rams	74.49	29	cowboys	110.20
14	saints	74.99	30	jets	110.28
15	vikings	78.69	31	giants	111.69
16	cardinals	79.56	32	patriots	117.84

Gaston Sanchez 31

Normally, no dots are plotted

Boxplots and outliers

The 1.5 x IQR rule for outliers

Call an observation a suspected outlier if it falls more than 1.5 x IQR above the third quartile or below the first quartile

Anatomy of a boxplot

Your Turn

5-number summary

Summary	Value
minimum	110
Q ₁ (25th percentile)	182
$Q_2^{(50th percentile)}$	225
Q_3^- (75th percentile)	320
maximum	440

Graph a boxplot

