Redes de Petri

Definições:

Uma Rede de Petri (PN) é um grafo direto bipartido o qual tem dois tipos de nós denominados lugares (que representam estados) e transições (que representam eventos). O estado é alterado pelo evento. Arcos diretos ligam alguns lugares a algumas transições ou algumas transições a alguns lugares. Um arco direto nunca liga um lugar a um lugar ou uma transição a uma transição. Eles representam o fluxo entre estados e eventos.

Lugares são representados por círculos e transições por retângulos (retas)

Marcas (tokens) são utilizadas para representar a existência ou não de um estado. Cada lugar pode conter uma ou mais marcas, representadas por pontos. Estas marcas permitem modelar a dinâmica do sistema. A marcação de uma Rede de Petri é um vetor cujos componentes são valores inteiros positivos. A dimensão deste vetor é igual ao número de lugares, e seu *n-ésimo* componente é igual ao número de marcas no lugar descrito como *n* na Rede de Petri.

Considere a Rede de Petri mostrada na figura a seguir.

Figura 1. Rede de Petri

Esta PN contém quatro lugares deescritos por p1, p2, p3 e p4, e cinco transições, descritas como t1, t2, t3, t4 e t5. Sua marcação é o vetor $M_0 = [1, 2, 4, 3]$.

Existe um peso associado a cada arco. Este peso é um número inteiro positivo. Quando o peso não é especificado nos arcos, assume-se que ele é unitário.

Formalmente, uma Rede de Petri é uma quíntupla $PN = (P, T, A, W, M_0)$ onde:

 $P = \{p_1, p_2,p_n\}$ é um conjunto finito de lugares; $T = \{t_1, t_2,t_q\}$ é um conjunto finito de transições; $A \subseteq (P \times T) \cup (T \times P)$ é um conjunto finito de arcos; W: $A \to \{1,2,...\}$ é a função peso associada aos arcos; $M_0: P \to \{0, 1, 2,\}$ é a marcação inicial.

Obs.: $P \cap T = \emptyset$

Dinâmica das Redes de Petri

 ^{0}t é o conjunto dos lugares de entrada da transição t t^{0} é o conjunto dos lugares de saída da transição t

 ^{0}p é o conjunto das transições de entrada do lugar p

 p^0 é o conjunto das transições de saída do lugar p

Uma transição está habilitada se para qualquer $p \in {}^{0}t$, $M(p) \ge W(p,t)$. Isto significa que t está habilitada se cada um dos lugares de entrada contém, pelo menos o número de marcas igual ao valor do peso do arco ligando este lugar à transição t. Assim, para Redes de Petri ordinárias, t está habilitada se cada um dos lugares de entrada possui ao menos uma marca.

Se $t \in T$ está habilitada, ela pode ser disparada (*fired*). Tal disparo, de uma transição, consiste em:

- Remover W(p,t) marcas de cada $p \in {}^{0}t$;
- adicionar W(p,t) marcas a cada $p \in t^0$;

Formalmente, o disparo de uma transição t consiste em transformar a marcação inicial da Rede de Petri, M0, na marcação M, definida como segue.

$$\mathbf{M}(p) = \begin{cases} \mathbf{M}_0(p) - \mathbf{W}(p,t) \text{ se } p \in {}^0 t \\ \mathbf{M}_0(p) + \mathbf{W}(p,t) \text{ se } p \in t^0 \\ \mathbf{M}_0(p) \text{ caso contrário} \end{cases}$$

Exemplo 1:

Considere a Rede de Petri mostrada na figura 1, com marcação inicial M0 = [1,2,4,3].

O disparo da transição t_2 leva à marcação $M_1 = [0,3,4,4]$. Se, partindo de M_1 , dispararmos t_5 , obteremos $M_2 = [0,3,5,3]$. Se, posteriormente dispararmos t_3 , então a marcação irá tornar-se $M_3 = [0,2,5,3]$. Neste caso, dizemos que alcançamos M_3 de M_0 pelo disparo da seqüência $\sigma = \langle t_2, t_5, t_3 \rangle$, denotado por:

$$M_0 \xrightarrow{\sigma} M_3$$

A seqüência σ é dita "disparável" (ou possível).

Exemplo 2: Considere a Rede de Petri mostrada na figura 2, com marcação inicial M_0 = [3,1,1].

Figura 2. Rede de Petri com pesos não unitários.

Os números inteiros colocados sobre os arcos são seus pesos. Considere que a sequência de disparo $\sigma = \langle t_1, t_2, t_3 \rangle$ é disparada n vezes. O resultado esperado é a marcação final, ou seja,

$$M_0 \xrightarrow{\sigma} M_n$$

Após a primeira seqüência de disparo, a marcação torna-se $M_3 = [5,2,3]$, já que:

- o disparo de t_1 remove uma marca de p_1 e adiciona duas marcas a p_2 e tres marcas em p_3 ;
- o disparo de t_2 remove uma marca de p_2 e adiciona uma marca a p_1 ;
- o disparo de t_3 remove uma marca de p_3 e adiciona duas marcas a p_1 ;

	p_1	p_2	p_3
Marcação M ₀	3	1	1
Disparo de t_1	-1	2	3
Disparo de t2	1	-1	
Disparo de t_3	2		-1
Marcação M ₁	5	2	3

Podemos afirmar que, comparado a M_0 , existem duas marcas a mais em p_1 e p_3 e uma marca a mais em p_2 . Conclui-se, portanto, que

$$M_n = [3 + 2n, 1 + n, 1 + 2n]$$

Diz-se que a Rede de Petri mostrada na figura 2 é não-limitada pela marcação inicial (M_0) já que é possível incrementar a marcação de pelo menos um lugar até infinito.

Transições com Características especiais

Uma transição t sem lugares de entrada é denominada transição fonte. Tal transição está sempre habilitada. Uma transição t sem lugares de saída é denominada transição sink. Tal transição pode ser disparada se está habilitada. Neste caso, as marcas são removidas dos lugares de entrada seguindo a regra geral, mas não são propagadas marcas como saída. Na figura t0, t1, t1 é uma transição fonte e t3 uma transição sink.

a) Marcação Inicial: $M_0 = [1,2]$

b) Marcação após a seqüência de disparo $\sigma = \langle t_1, t_2, t_3, t_4, t_3, t_1 \rangle$: M = [3,0] Figura 3. Rede de Petri com transições fonte e *Sink*.

Circuitos Elementares e Auto-Loops

Um circuito elementar é um caminho direto que parte de um nó (lugar ou transição) e retorna a ele, passando por outros nós.

Exemplo:

Figura 4. Circuitos elementares.

Esta rede possui dois circuitos elementares:

$$\gamma_1 = \langle t_1, p_1, t_2, p_3, t_4, p_5, t_1 \rangle$$

e

$$\gamma_2 = \langle t_1, p_1, t_2, p_2, t_3, p_4, t_4, p_5, t_1 \rangle$$

Algoritmo utilizado para o cálculo de circuitos elementares.

Um Auto-Loop (p,t) é tal que p é um lugar de entrada e um lugar de saída para t.

Exemplo:

Figura 3. Um auto-loop.

Diz-se que uma Rede de Petri é pura se ela não contém auto-loops. Redes de Petri utilizadas na modelagem de sistemas de manufatura nunca são puras.

Redes de Petri com capacidade finita.

Uma Rede de Petri com capacidade finita é uma Rede cujo número de marcas em cada lugar $p \in P$ é limitado a uma quantidade Q(p) denominada capacidade de p. Em tal Rede de Petri, uma transição t está habilitada se as condições citadas usuais estão satisfeitas e, adicionalmente, as marcações dos lugares de t não excederão suas capacidades se t disparar.

Na rede da figura 5, a seguir, a transição t não está habilitada já que a marcação do lugar p_3 será igual a 5 depois do disparo de t e a capacidade de p_3 é somente 4.

Figura 5. Uma transição a qual não está habilitada em uma Rede de Petri com capacidade finita.

É sempre possível transformar uma Rede de Petri com capacidade finita em uma Rede de Petri com capacidade infinita. Considere a figura 6 a seguir.

a) Uma Rede de Petri com capacidade finita

b) A Rede de Petri equivalente com capacidade infinita

O comportamento da Rede de Petri dada na figura 6 b é equivalente ao comportamento da Rede da figura 6 a, assumindo que a soma das marcações de p e p* é igual à capacidade de p. Uma condição adicional é que o número da marcas deve permanecer constante no loop que foi introduzido para derivar a Rede de Petri de capacidade infinita da Rede de Petri de capacidade finita.

Para satisfazer esta condição, as seguintes igualdades devem ser mantidas:

Peso de
$$(p,t_2)$$
 = Peso (t_2, p^*)
Peso de (p^*,t_1) = Peso (t_1, p)

Redes de Petri com capacidade finita são apropriadas para a modelagem de buffers que tem uma capacidade finita em Sistemas Flexíveis de Manufatura.

Arvore de Alcançabilidade, Árvore de Cobertura e Grafo de Cobertura

O objetivo do uso da árvore de alcançabilidade é procurar todas marcações que podem ser alcançadas partindo da marcação inicial M_0 . A árvore de cobertura é derivada da árvore de alcançabilidade. Ambas são utilizadas para analisar o comportamento de Redes de Petri. Suas raízes são a marcação inicial M_0 .

Exemplo:

Marcação inicial: $M_0 = [2,1,0]$ a qual habilita as transições t_1 e t_3 .

Marcação iniciai. $M_0 = [2,1,0]$ a qual habilita as transições $t_1 \in t_3$.

O disparo de t_1 leva à marcação $(M_1)^1 = [1,2,1]$ e o disparo de t_3 leva à marcação $(M_1)^2 = [3,0,0]$. Este é o primeiro nível da árvore de alcançabilidade. $(M_1)^1$ habilita t_1 , t_2 e t_3 . O disparo destas transições leva respectivamente às marcações $(M_1)^2 = [0,3,2]$, $(M_2)^2 = [2,1,0]$ e $(M_2)^3 = [2,1,1]$. A marcação $(M_1)^2$ somente habilita t_1 . O disparo de t_1 leva à marcação $(M_2)^4 = [2,1,1]$ a qual é, de fato, $(M_2)^3$. Este representa apenas o segundo nível da árvore de alcançabilidade.

Árvore de Alcançabilidade em três níveis.

Marcação	Transição	Marcação
Considerada	Disparada	Obtida
$(M_2)^1 = [0,3,2]$	$ t_2 $	$(M_3)^1 = [1,2,1] = (M_1)^1$
$(M_2)^1 = [0,3,2]$	t_3	$(M_3)^2 = [1,2,2]$
$(M_2)^2 = [2,1,0]$	t_1	$(M_3)^3 = [1,2,1] = (M_1)^1$
$(M_2)^2 = [2,1,0]$	t_3	$(M_3)^4 = [3,0,0] = (M_1)^2$
$(M_2)^3 = [2,1,1]$	t_1	$(M_3)^5 = [1,2,2] = (M_3)^2$
$(M_2)^3 = [2,1,1]$	t_2	$(M_3)^6 = [3,0,0] = (M_3)^4$
$(M_2)^3 = [2,1,1]$	t_3	$(M_3)^7 = [3,0,1]$

Para limitar o tamanho da árvore, segue-se o seguinte critério:

- 1. uma marcação que já foi obtida em níveis anteriores da árvore é marcada como "old" (não são disparadas transições a partir desta marcação);
- 2. se uma marcação M^* obtida de um dado nível é tal que existe uma marcação M no caminho ligando M_0 a M^* a qual implica em
 - $M^*(p) \ge M(p)$ para todos o lugares p da Rede de Petri;
 - $M^*(p^*) > M(p^*)$ para pelo menos um lugar p^* da Rede de Petri;

então a marcação de p^* é denominada " ω ", onde ω tende a infinito. A marcação de p^* permanecerá ω em todas as marcações derivadas de M^* e a regra (1) também se aplica às marcações que contém ω ;

- 3. um nó correspondente a uma marcação a qual não habilita uma transição é marcada como "dead-end":
- 4. um nó que não é "old" e também não é "dead-end" é marcado como "new".

A árvore obtida utilizando-se estes critérios é denominada Árvore de Cobertura da Rede de Petri. Ela contém menos informações que a árvore de alcançabilidade, porém seu tamanho permanece limitado.

O algoritmo utilizado para construir a árvore de cobertura é mostrado a seguir.

- 1. Inicialize a árvore introduzindo sua raiz, a qual representa a marcação inicial M_0 . Marque este nó com "new";
- 2. Enquanto existir um nó marcado como "new":
 - 2.1 Selecione um nó A marcado como "new". Faça M a marcação correspondente a este nó;
 - 2.2 Se, no caminho ligando a raiz até A, existir um nó B cuja marcação correspondente é *M*, então marque A como "old". Vá para 2.
 - 2.3 Se nenhuma das transições é habilitada por M, então marque A com "dead-end". Vá para 2.
 - 2.4 Se pelo menos uma transição está habilitada por M, então, para cada transição habilitada:
 - 2.4.1 Calcule M' derivada de M pelo disparo de t. O nó correspondente é denotado por C;
 - 2.4.2 Se, no caminho da raiz até C, existe um nó D cuja marcação correspondente é M" tal que $M'(p) \ge M''(p)$ para qualquer $p \in P$, e

M'(p) > M''(p) para pelo menos um lugar $p \in P$, então faça $M'(p) = \omega$ para qualquer $p \in P$ tal que M'(p) > M''(p);

Adicione C à árvore, introduza o arco ligando A a C, e marque este arco com *t*; Se já existe um nó o qual corresponde a M', então marque C como "old", caso contrário marque C como "new".

2.5 Vá para 2.

A figura 7, a seguir, mostra a árvore de cobertura obtida pelo uso do algoritmo.

Figura 7. Árvore de cobertura.

Matriz incidência e Equação de Estado

A matriz incidência $U=[\mathbf{u}_{ij}],$ $\mathbf{i}=1,2,...,n;$ $\mathbf{j}=1,2,...,q,$ de uma Rede de Petri Pura é definida como:

$$u_{ij} = \begin{cases} W(t_j, p_i) \operatorname{se} t_j \in {}^{0}p_i \\ -W(p_i, t_j) \operatorname{se} t_j \in p_i^{0} \\ 0 \quad \text{caso contrário} \end{cases}$$

n é o número de lugares e q o número de transições da Rede de Petri sob consideração. W(x,y) é o peso do arco (x,y).

Exemplo:

A matriz incidência correspondente a esta Rede de Petri é a matriz U dada a seguir.

$$U = \begin{bmatrix} -1 & 0 & 1 & 0 \\ 2 & -1 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -2 \end{bmatrix}$$

As duas matrizes a seguir são também definidas:

$$U^{+} = [u_{i,j}^{+}] e U^{-} = [-u_{i,j}^{-}]$$

onde:

$$u_{i,j}^+ = Max(0, u_{i,j}) e u_{i,j}^- = Min(0, u_{i,j})$$

Se considerarmos a matriz U acima, obtemos as seguintes matrizes:

$$U^{+} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$U^{-} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

A seguinte relação é válida:

$$U = U^{\dagger} - U^{\dagger}$$