Лекция 8. Диагонализируемость линейных преобразований

(31 марта 2020).

Прежде чем перейти к следующему параграфу, отметим связь коэффициентов характеристического многочлена с характеристическими корнями.

Утверждение 4. Пусть $\lambda_1,...,\lambda_n$ - корни характеристического многочлена $\chi(\lambda) = \det(A_{\varphi} - \lambda E)$ матрицы $A = A_{\varphi}$, тогда $\lambda_1 + ... + \lambda_n = a_{11} + ... + a_{nn} = trA$ - след матрицы $A, \lambda_1 \cdot ... \cdot \lambda_n = \det A$.

Доказательство. Это утверждение – частный случай теоремы Виета. По условию,

$$\chi(\lambda) = (\lambda_1 - \lambda) \cdot \dots \cdot (\lambda_n - \lambda) = (-\lambda)^n + (\sum_{i=1}^n \lambda_i)(-\lambda)^{n-1} + \dots + \prod_{i=1}^n \lambda_i.$$

Сравнив эти формулы с выведенными в (5) выражениями, получим требуемое.

Формулы из утверждения 4 часто применяются.

§ 8. Диагонализируемость линейных преобразований.

Определение. Линейное преобразование $\varphi: L \to L$ будем называть диагонализипуемым, если в L существует базис, в котором матрица A_{φ} диагональна.

Напомним определение собственного подпространства $L_{\lambda} := \{x \in L : \varphi(x) = \lambda x\}$ преобразования φ .

Лемма 1. dim
$$L_{\lambda} = n - rg(A_{\omega} - \lambda E)$$
.

Доказательство. Координатные столбцы собственных векторов – решения системы линейных уравнений $(A_{\varphi} - \lambda E)X = 0$, а количество линейно независимых решений системы как раз и равно $n - rg(A_{\varphi} - \lambda E)$.

Лемма 2. Пусть λ_0 - характеристический корень кратности k матрицы A_{φ} , тогда имеет место неравенство $\dim L_{\lambda_0} \leq k$ (1).

Замечание. Размерность собственного подпространства $\dim L_{\lambda_0}$ часто называют геометрической кратностью корня λ_0 , в то время как k – его алгебраическая кратность. В этих терминах неравенство (1) формулируется так: геометрическая кратность характеристического корня не превосходит его алгебраической кратности.

Доказательство. Пусть $\dim L_{\lambda_0} = m \geq 1$. Выберем базис $\{e_1, e_2, ..., e_m\}$ в собственном подпространстве и дополним его до базиса $e = \{e_1, e_2, ..., e_m, e_{m+1}, ..., e_n\}$ в L. В этом базисе матрица преобразования φ приобретет блочно-треугольный вид

$$A_{\varphi,e} = egin{array}{c|c} A_1 & B \\ 0 & A_2 \end{bmatrix} = egin{array}{c|c} \lambda_0 E & B \\ 0 & A_2 \end{bmatrix}$$
 с диагональными блоками порядков m и n — m соответственно.

Вычислим характеристический многочлен матрицы преобразования φ (учтем, что он не зависит от выбора базиса):

$$\chi(\lambda) = \det(A_{\varphi} - \lambda E) = \begin{vmatrix} (\lambda_0 - \lambda)E_m & B \\ 0 & A_2 - \lambda E_{n-m} \end{vmatrix} = (\lambda_0 - \lambda)^m \left| A_2 - \lambda E_{n-m} \right|$$
. Видим, что λ_0 -

характеристический корень кратности по меньшей мере m, но он может быть еще корнем многочлена $|A_2 - \lambda E_{n-m}|$, так что полная кратность k больше или равна m. Ч.т.д.

Лемма 3. Если L_{λ_i} ,..., L_{λ_r} - собственные подпространства, отвечающие попарно различным собственным значениям, то их сумма — прямая сумма: $L_{\lambda_i} \oplus \cdots \oplus L_{\lambda_r}$. Доказательство. Это следствие линейной независимости собственных векторов, отвечающих различным собственным значениям. Пусть $e_{i1},...,e_{i,m_i}$ ($m_i = \dim L_{\lambda_i}$), i = 1,...,r - базис подпространства L_{λ_i} . Покажем, что векторы $e_{11},...,e_{r,m_r}$ (объединение всех базисов) линейно независимы. Проведем индукцию по г. Для r=1 это верно по построению.

Допустим, r >1 и
$$\sum_{i,j} c_{ij} e_{ij} = 0 \Leftrightarrow \sum_{i=1}^r \sum_{j=1}^{m_i} c_{ij} e_{ij} = 0$$
. Если вектор $v_i = \sum_{j=1}^{m_i} c_{ij} e_{ij} \neq 0$, то он

собственный с собственным значением λ_i . В этом случае хотя бы один коэффициент в этой линейной комбинации отличен от 0, без ограничения общности, c_{i1} . Тогда

$$v_i = c_{i1} \sum_{j=1}^{m_i} \frac{c_{ij}}{c_{i1}} e_{ij} = c_{i1} u_i$$
 и u_i тоже собственный. Таким образом, $\sum_{i:c_{i1}\neq 0}^r c_{i1} u_i = 0 \Rightarrow c_{i1} = 0, \ i=1,...,r$,

в силу линейной независимости собственных векторов, отвечающих различным собственным значениям — противоречие. Значит, $v_i = \sum_{i=1}^{m_i} c_{ij} e_{ij} = 0$, $\forall i = 1,...,r \Rightarrow c_{ij} = 0$, $\forall i,j$,

так как базисные векторы каждого подпространства линейно независимы. Итак, все векторы $e_{11},...,e_{r,m_r}$ линейно независимы, что и означает, что сумма собственных подпространств – прямая. Ч.т.д.

Сформулируем теперь необходимые и достаточные условия диагонализируемости матрицы линейного проебразования.

Теорема. Пусть $\lambda_1,...,\lambda_r$ - характеристические корни матрицы линейного преобразования $\varphi:L\to L$ кратностей соответственно $k_1,...,k_r$ ($k_i\geq 1,i=1,...,r$) следующие условия равносильны:

- 1) В L существует базис $h = \{h_1, ..., h_n\}$, в котором матрица преобразования φ диагональна.
- 2) В L существует базис из собственных векторов преобразования φ .
- 3) Все корни $\lambda_1,...,\lambda_r$ принадлежат основному полю K (если основное поле R поле действительных чисел, то все характеристические корни должны быть действительными), и для любого $i=1,...,r,\ k_i=\dim L_{\lambda_i}$.
- 4) $L = L_{\lambda_1} \oplus \cdots \oplus L_{\lambda_r}$.

Доказательство. Равносильность 1) и 2) почти очевидна. Если матрица является

диагональной:
$$A_{\varphi;h} = \begin{vmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \lambda_n \end{vmatrix}$$
 (диагональные числа могут повторяться), то

все векторы базиса h собственные, причем $\varphi(h_i) = \lambda_i h_i$, j = 1,...,n.

Обратно, если $h = \{h_1, ..., h_n\}$ - базис в L, причем $\varphi(h_j) = \lambda_j h_j$, j = 1, ..., n, то матрица φ в этом базисе диагональна (как объяснялось в конце предыдущей лекции). 1) $(unu\ 2) \Rightarrow 3$, 4) . Пусть h - базис, в котором матрица A_{φ} диагональна. Все диагональные элементы являются собственными значениями и корнями характеристического многочлена, т.е. он имеет n корней, и все они принадлежат основному полю (действительны). Все векторы базиса n - собственные для n0. Занумеруем их таким образом, чтобы сначала на диагонали стояло характеристическое число n1 (n2 pa3), затем n3 раз), и т.д. n4 (n4 pa3). Тогда

 $h_1,...,h_{p_1}\in L_{\lambda_1},h_{p_1+1},...,h_{p_1+p_2}\in L_{\lambda_2}$ и т.д., тем самым $\dim L_{\lambda i}\geq p_i,i=1,...,r$. Следовательно,

 $\dim(\sum_{i=1}^r L_{\lambda i}) = \sum_{i=1}^r \dim L_{\lambda i} \geq \sum_{i=1}^r p_i = n$, поскольку сумма собственных подпространств

прямая, по лемме 3. Таким образом, $L = L_{\lambda_{\mathsf{I}}} \oplus \cdots \oplus L_{\lambda_{\mathsf{r}}}$ - доказано 4).

Кроме того, теперь ясно, что $\dim L_{{\scriptscriptstyle \lambda} i} = m_{{\scriptscriptstyle i}} = p_{{\scriptscriptstyle i}}, i = 1,...,r$. Если для некоторого

 $k_i > \dim L_{\lambda_i} \Longrightarrow n = \sum_{i=1}^n k_i > \sum_{i=1}^n m_i = n$ - противоречие. Доказано 3). Обратно,

4) $(u \pi u 3) \Rightarrow$ 1) $(u \pi u 2)$. Теперь дано, что все характеристические корни

вещественные, и $i=1,...,r,\ k_i=\dim L_{\lambda_i}\Rightarrow\dim(\sum_{i=1}^rL_{\lambda_i})=\sum_{i=1}^r\dim L_{\lambda_i}=\sum_{i=1}^rk_i=n$, т.е. из 3)

следует 4). А справедливость 4) означает, что объединение базисов собственных подпространств — базис из собственных векторов преобразования φ . Теорема доказана.

Утверждение 4. Если φ диагонализируемо, то $L = \operatorname{Im} \varphi \oplus Ker \varphi$.

Доказательство. Собственные базисные векторы можно занумеровать так, что $h_1,...,h_r$ отвечают ненулевым собственным значениям, остальные $h_{r+1},...,h_n$, тогда $\langle h_1,...,h_r \rangle = \operatorname{Im} \varphi, \langle h_{r+1},...,h_n \rangle = \operatorname{Ker} \varphi$.

Покажем два применения приведения матриц линейных преобразований к диагональному виду.

Применение 1. Решение систем линейных уравнений $AX = b, |A| \neq 0$.

Матрицу A можно воспринимать как матрицу некоторого линейного преобразования φ . Допустим, что A, как матрица этого преобразования, приводится к диагональному виду. Это значит, что $\exists S: A' = S^{-1}AS$ (S – матрица

перехода к собственному базису) — диагональная матрица. Сделаем в системе замену X = SY, система примет вид $ASY = b \Leftrightarrow (S^{-1}AS)Y = S^{-1}b = b'$. Система

привелась к виду
$$\begin{cases} \lambda_1 y_1 = b_1' \\ \dots \\ \lambda_n y_n = b_n' \end{cases}, \ Y = \begin{pmatrix} b_1' \\ \lambda_1 \\ \vdots \\ b_n' \\ \lambda_n \end{pmatrix}, \ X = S^{-1}Y \;.$$

Применение 2. Пусть А – квадратная матрица порядка п, и

$$\exists S:\ A'=S^{-1}AS=egin{pmatrix} \lambda_1&\ldots&0\\ \vdots&\ddots&\vdots\\ 0&\cdots&\lambda_n \end{pmatrix}$$
 диагональная матрица. Пусть требуется возвести А

в натуральную степень т. Имеем

$$A = SA'S^{-1} \Rightarrow A^2 = (SA'S^{-1})(SA'S^{-1}) = S(A')^2S^{-1},...,$$

$$A^{m} = S \begin{pmatrix} \lambda_{1}^{m} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_{n}^{m} \end{pmatrix} S^{-1}$$

по индукции.

Что делать, если матрица не приводится к диагональному виду, обсудим в следующем параграфе.