CMPT 413 - Spring 2011 - Midterm #2

Please write down "Midterm #2" on the top of the answer booklet.

When you have finished, return your answer booklet along with this question booklet.

Mar 15, 2011

(1) Consider a language model over character sequences that computes the probability of a word based on the characters in that word, so if word $w = c_0, c_1, \ldots, c_n$ then $P(w) = P(c_0, \ldots, c_n)$. Let us assume that the language model is defined as a bigram character model $P(c_i \mid c_{i-1})$ where

$$P(c_0, \dots, c_n) = \prod_{i=1,2,\dots,n} P(c_i \mid c_{i-1})$$
(1)

For convenience we assume that we have explicit word boundaries: $c_0 = \text{bos}$ and $c_n = \text{eos}$ where bos stands for *begin sentence marker* and eos stands for *end of sentence marker*. Based on this model, for the English word *booking* the probability would be computed as:

$$P(booking) = P(b \mid bos) \times P(o \mid b) \times P(o \mid o) \times P(k \mid o) \times P(i \mid k) \times P(n \mid i) \times P(g \mid n) \times P(eos \mid g)$$

The inflection ing is a suffix and is generated after the stem book with probability

$$P(ing) = P(i \mid k) \times P(n \mid i) \times P(g \mid n) \times P(eos \mid g)$$

In Semitic languages, like Arabic and Hebrew, the process of inflection works a bit differently. In Arabic, for a word like *kitab* the stem would be *k-t-b* where the place-holders '-' for inflection characters have been added for convenience. We will assume that each word is made up of a sequence of consonant-vowel sequences CVCVCV... and the vowels always form the inflection.

a. Provide the definition of an *n*-gram model that will compute the probability for the word *kitab* and *k-t-b* as follows:

$$P(kitab) = P(k \mid bos) \times P(t \mid k) \times P(b \mid t) \times P(i \mid b) \times P(a \mid i) \times P(eos \mid a)$$

$$P(k-t-b) = P(k \mid bos) \times P(t \mid k) \times P(b \mid t) \times P(- \mid b) \times P(- \mid -) \times P(eos \mid -)$$

Write down the equation for this n-gram model in the same mathematical notation as equation (1).

Answer:

$$P(c_0, ..., c_n) = \begin{cases} \prod_{i=1}^n P(c_i \mid c_{i-1}) & \text{if } n \leq 3\\ \left(P(c_1 \mid c_0) \times \prod_{i=3,5,...}^{\ell} P(c_i \mid c_{i-2}) \right) \times \\ \left(P(c_2 \mid c_{\ell_o}) \times \prod_{i=4,6,...}^{\ell} P(c_i \mid c_{i-2}) \times P(c_n \mid c_{\ell_e}) \right) & \text{if } n > 3 \end{cases}$$

Define $\ell = n - (n \mod 2)$ and ℓ_o is the last odd number less than ℓ and ℓ_e is the last even number less than ℓ . As long as the boundary cases are right for the bigrams, we don't penalize off by one in the length, and we don't penalize for $n \le 3$.

b. Using your *n*-gram model show how $P(kitab) = P(ktb) \times P(ia)$.

Answer:

$$P(kitab) = P(c_0 = bos, c_1 = k, c_2 = i, c_3 = t, c_4 = a, c_5 = b, c_6 = eos)$$

$$= P(ktb) \times P(ia, eos)$$

$$P(ktb) = P(c_1 = k \mid c_0 = bos) \times P(c_3 = t \mid c_1 = k) \times P(c_5 = b \mid c_3 = t)$$
this term corresponds to the first bracket in the eqn above

$$P(ia) = P(c_2 = i \mid c_{\ell_o} = c_5 = b) \times P(c_4 = a \mid c_2 = i) \times P(c_n = c_6 = eos \mid c_{\ell_e} = c_4 = a)$$

corresponds to the second bracket in the eqn above

(2) The probability model $P(t_i | t_{i-2}, t_{i-1})$ is provided below where each t_i is a part of speech tag, e.g. $P(D | N, V) = \frac{1}{3}$. Also provided is $P(w_i | t_i)$ that a word w_i has a part of speech tag t_i , e.g. $P(\text{flies} | V) = \frac{1}{2}$.

The part of speech tag definitions are: bos (begin sentence marker), N (noun), V (verb), D (determiner), P (preposition), eos (end of sentence marker).

$P(t_i \mid t_{i-2}, t_{i-1})$	t_{i-2}	t_{i-1}	t_i
1	bos	bos	N
$\frac{1}{2}$	bos	N	N
$\frac{\overline{1}}{2}$	bos	N	V
$\frac{1}{2}$	N	N	V
$\frac{1}{2}$	N	N	P
$\frac{1}{3}$	N	V	D
$\frac{1}{3}$	N	V	V
$\frac{1}{3}$	N	V	P
1	V	D	N
1	V	V	D
1	N	P	D
1	V	P	D
1	P	D	N
1	D	N	eos

$P(w_i \mid t_i)$	t_i	w_i
1	D	an
$\frac{\frac{2}{5}}{2}$	N	time
$\frac{2}{5}$	N	arrow
$\frac{1}{5}$	N	flies
1	P	like
$\frac{1}{2}$	V	like
$\frac{1}{2}$	V	flies
1	eos	eos
1	bos	bos

a. Consider a Jelinek-Mercer style interpolation smoothing scheme for $P(w_i \mid t_i)$:

$$P_{im}(w_i \mid t_i) = \Lambda[t_i] \cdot P(w_i \mid t_i) + (1 - \Lambda[t_i]) \cdot P(w_i)$$

 Λ is an array with a value $\Lambda[t_i]$ for each part of speech tag t_i , such that $0 \le \Lambda[t_i] \le 1$. Provide a condition on Λ that must be satisfied to ensure that P_{jm} is a well-defined probability model.

Answer: Because of the following fact about $P(w_i \mid t_i)$:

$$\sum_{w_i} P(w_i \mid t_i) = 1$$

and in P_{jm} we are given t_i , so to interpolate with $P(w_i)$ the following condition has to hold:

$$\sum_{t_i} \Lambda[t_i] = 1$$

b. Provide a Hidden Markov Model (*hmm*) that uses the trigram part of speech probability $P(t_i \mid t_{i-2}, t_{i-1})$ as the transition probability $P_{hmm}(s_j \mid s_k)$ and the probability $P(w_i \mid t_i)$ as the emission probability $P_{hmm}(w_i \mid s_i)$.

Important: Provide the *hmm* in the form of two tables as shown below. The first table contains transitions between states in the *hmm* and the transition probabilities and the second table contains the words emitted at each state and the emission probabilities. Do not provide entries with zero probability.

from-state s_k	to-state s_j	$P(s_j \mid s_k)$	state s_j	emission w	$P(w \mid s_j)$

Hint: In your *hmm* the state $\langle N, eos \rangle$ will have emission of word eos with probability 1 and will not have transitions to any other states.

Answer: Here are the two tables that define the HMM, the transition table on the left and the emission table on the right:

from-state s_k	to-state s_j	$P(s_j \mid s_k)$	
bos, bos	bos, N	$P(N \mid bos, bos)$	
bos, N	N, N	$P(N \mid bos, N)$	
bos, N	N, V	$P(V \mid bos, N)$	
N, N	N, V	$P(V \mid N, N)$	
N, N	N, P	$P(P \mid N, N)$	
N, V	V, D	$P(D \mid N, V)$	
N, V	V, V	$P(V \mid N, V)$	
N, V	V, P	$P(P \mid N, V)$	
V, D	D, N	$P(N \mid V, D)$	
V, V	V, D	$P(D \mid V, V)$	
N, P	P, D	$P(D \mid N, P)$	
V, P	P, D	$P(D \mid V, P)$	
P,D	D, N	$P(N \mid P, D)$	
D, N	N, eos	$P(eos \mid D, N)$	

		D(I)
state s_j	emission w	$P(w \mid s_j)$
bos, bos	bos	1
bos, N	time	$\frac{2}{5}$
bos, N	arrow	$\frac{2}{5}$
bos, N	flies	$\frac{1}{5}$
N, N	time	$\frac{2}{5}$
N, N	arrow	$\frac{2}{5}$
N, N	flies	$\frac{1}{5}$
N, V	like	$\frac{1}{2}$
N, V	flies	5 5 5 5 5 5 5 5 5
V, D	an	1
V, V	like	$\frac{1}{2}$
V, V	flies	$\frac{\overline{2}}{1}$
N, P	like	1
V, P	like	1
P, D	an	1
D,N	time	$\frac{2}{5}$
D,N	arrow	25 25 15 15
D,N	flies	$\frac{1}{5}$

c. Based on your *hmm* constructed in 2b. what is the state sequence that would be provided by the Viterbi algorithm for the following input sentence:

bos bos time flies like an arrow eos

Answer:

Note that the only ambiguous words are *flies* (could be N or V) and like (could be V or P) and so all you need to do is compare the scores for the following sub-sequence. The bold-faced outcome wins for this sub-sequence which determines the best state sequence for the entire input.

flies	like	
(N, V)	(\mathbf{V}, \mathbf{P})	$\frac{1}{2} \times \frac{1}{3} \times 1$
(N, V)	(V, V)	$\frac{1}{2} \times \frac{1}{3} \times \frac{1}{2}$
(N,N)	(N, P)	$\frac{1}{5} \times \frac{1}{2} \times 1$
(N,N)	(N, V)	$\frac{1}{5} \times \frac{1}{2} \times \frac{1}{2}$

Since the best state sequence is then (bos,N)-(N,V)-(V,P)-(P,D)-(D,N)-(N,eos) the output best state sequence will be bos/bos, time/N, flies/V, like/P, an/D, arrow/N, eos/eos.

Answer:	The full tal	ble is give	n below l	out you do	o not need	d to comp	oute the er	tire tab	le to solve this
	bos	time	flies	like	an	arrow	eos		
	(bos,bos)	(bos,N)	(N,V)	(V,P)	(P,D)	(D,N)	(N,eos)		
	1	$\times 1 \times \frac{2}{5}$	$\times \frac{1}{2} \times \frac{1}{2}$	$\times \frac{1}{3} \times 1$	$\times 1 \times 1$	$\times 1 \times \frac{2}{5}$	$\times 1 \times 1$	$=\frac{1}{75}$	
	(bos,bos)	(bos,N)	(N,V)	(V,V)	(V,D)	(D,N)	(N,eos)		
question.	1	$\times 1 \times \frac{2}{5}$	$\times \frac{1}{2} \times \frac{1}{2}$	$\times \frac{1}{3} \times \frac{1}{2}$	$\times 1 \times 1$	$\times 1 \times \frac{2}{5}$	$\times 1 \times 1$	$=\frac{1}{150}$	
	(bos,bos)	(bos,N)	(N,N)	(N,P)	(P,D)	(D,N)	(N,eos)		
	1	$\times 1 \times \frac{2}{5}$	$\times \frac{1}{2} \times \frac{1}{5}$	$\times \frac{1}{2} \times 1$	$\times 1 \times 1$	$\times 1 \times \frac{2}{5}$	$\times 1 \times 1$	$=\frac{1}{125}$	
	(bos,bos)	(bos,N)	(N,N)	(N,V)	(V,D)	(D,N)	(N,eos)		
	1	$\times 1 \times \frac{2}{5}$	$\times \frac{1}{2} \times \frac{1}{5}$	$\times \frac{1}{2} \times \frac{1}{2}$	$\times \frac{1}{3} \times 1$	$\times 1 \times \frac{2}{5}$	$\times 1 \times 1$	$=\frac{1}{750}$	