```
# Estimation of Change in Price of Rice Commodity in India
# Importing all libraries used
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import pyplot
from datetime import datetime
from pandas import Series
from pandas import DataFrame
from pandas import concat
import seaborn as sns
from sklearn import metrics
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import Normalizer
from pandas import read csv
from numpy import set printoptions
from sklearn.model_selection import KFold
from sklearn.model selection import cross val score
from sklearn.naive bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train test split
from sklearn.svm import SVC
from sklearn.svm import LinearSVC
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import BaggingClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.linear_model import LogisticRegression
from tabulate import tabulate
%matplotlib inline
pd.set option('display.max rows', None)
In [11]:
# Load food-prices dataset
df = pd.read csv("wfp market food prices.csv", encoding="latin-1")
# Drop unnecessary features
df.drop(['mp commoditysource','cm id','mkt id','mkt name','cur id','pt id','pt
_name', 'um_id','um_name','adm0_id','adm1_id','adm1_name','cur_name'],inplace=
True, axis=1)
# Consider only Rice commodity in India
df = df[df.adm0_name == "India"]
df = df[df.cm name =='Rice']
```

```
In [12]:
# Preprocessing of data

df['date'] = df.apply(lambda x: datetime(x['mp_year'],x["mp_month"],1),axis=1)
    df = df.rename(columns={'mp_month':'month','mp_year':'year','mp_price':'price'})
    df.drop(['adm0_name', 'cm_name'],inplace=True,axis=1)
    df.index = np.arange(1, len(df) + 1)
```

In [15]:

```
# Feature Engineering
# Read carbon dioxide data
df co2 = pd.read csv("carbon india.csv", sep=';')
# Merge co2 values into main dataframe
df = df.merge(df co2.set index('year'), on='year', how='left')
# Read temperature data
df temp = pd.read excel("temperature.xls")
df_temp = df_temp.rename(columns={' Month': 'month','\text{t}Year':'year','tas':'tem
perature'})
df_temp['date'] = df_temp.apply(lambda x: datetime(int(x['year']),int(x['month
'|),1),axis=1)
df temp.drop([' Country', 'month', 'year'],axis=1,inplace=True)
df = df.merge(df_temp.set_index('date'), on='date', how='left')
# Read inflation rate data
df inf = pd.read excel("inflation rate india.xls")
df = df.merge(df inf.set index('year'), on='year', how='left')
# Read consumer price index data
df cpi = pd.read excel("consumer price index india.xls")
df = df.merge(df cpi.set index('year'), on='year', how='left')
# Read rainfall data
df rain = pd.read excel("rainfall.xls")
df rain = df rain.rename(columns={' Month': 'month', '\tYear': 'year', 'pr': 'rain
fall'})
df rain['date'] = df rain.apply(lambda x: datetime(int(x['year']),int(x['month
']),1),axis=1)
df_rain.drop([' Country', 'month', 'year'],axis=1,inplace=True)
df = df.merge(df rain.set index('date'), on='date', how='left')
```

In [16]:

```
# Plot price versus date
dfp = pd.DataFrame(pd.Series(data=df.loc[:,'price'].values).values,columns=['p
rice'],index=df['date'])
dfp.plot()
plt.title("Price of Rice vs date in India")
plt.show()
```

Price of Rice vs date in India


```
In [17]:
# Calculate 3 month mean of price
width = 3
lag1 = dfp.shift(1)
lag3 = dfp.shift(width - 1)
window = lag1.rolling(window=width)
df3 = concat([window.mean()], axis=1)
df3.columns = ['3 month mean price']
df['3 month mean'] = df3.values
```

```
# Calculate 6 month mean of price
width = 6
lag1 = dfp.shift(1)
lag3 = dfp.shift(width - 1)
window = lag1.rolling(window = width)
df6 = concat([window.mean()], axis=1)
df6.columns = ['6 month mean price']
df['6 month mean'] = df6.values
# Calculate 9 month mean of price
width = 9
lag1 = dfp.shift(1)
lag3 = dfp.shift(width - 1)
window = lag1.rolling(window=width)
df9 = concat([window.mean()], axis=1)
df9.columns = ['9 month mean price']
df['9 month mean'] = df9.values
# Calculate 12 month mean of price
width = 12
lag1 = dfp.shift(1)
lag3 = dfp.shift(width - 1)
window = lag1.rolling(window=width)
df12 = concat([window.mean()], axis=1)
df12.columns = ['12 month mean price']
df['12 month mean'] = df12.values
df.dropna(axis=0,inplace=True)
```

In [9]:

```
# Description of dataset

actual_df = df
print('Shape:',df.shape)
print('\nColumns:',df.columns)
print('\nDatatypes:',df.dtypes)
display(df.describe(include="all").T)
```

year int64 float64 price date datetime64[ns] float64 co2 float64 temperature inflation float64 consumer_price_index float64 rainfall float64

3 month mean float64 6 month mean float64

9 month mean float64

12 month mean dtype: object

Shape: (7369, 13)

	count	unique	top	freq	first	last	mean	
month	7369	NaN	NaN	NaN	NaN	NaN	6.34957	3.
year	7369	NaN	NaN	NaN	NaN	NaN	2008.87	6.
price	7369	NaN	NaN	NaN	NaN	NaN	19.6229	8.
date	7369	275	2017- 01-01 00:00:00	59	1994- 01-01 00:00:00	2017- 06-01 00:00:00	NaN	N
co2	7369	NaN	NaN	NaN	NaN	NaN	1744.13	5
temperature	7369	NaN	NaN	NaN	NaN	NaN	25.4841	4.
inflation	7369	NaN	NaN	NaN	NaN	NaN	7.15222	2.
consumer_price_index	7369	NaN	NaN	NaN	NaN	NaN	104.009	4(
rainfall	7369	NaN	NaN	NaN	NaN	NaN	85.1589	86
3 month mean	7369	NaN	NaN	NaN	NaN	NaN	19.6173	8.
6 month mean	7369	NaN	NaN	NaN	NaN	NaN	19.6133	8.
9 month mean	7369	NaN	NaN	NaN	NaN	NaN	19.6094	8.
12 month mean	7369	NaN	NaN	NaN	NaN	NaN	19.6056	8.

float64

```
In [11]:
# Plot histogram of dataset
fig = plt.figure(figsize = (15,20))
ax = fig.gca()
df.hist(ax=ax)
D:\Anaconda\lib\site-packages\IPython\core\interactiveshell.py:296
1: UserWarning: To output multiple subplots, the figure containing
the passed axes is being cleared
  exec(code obj, self.user global ns, self.user ns)
Out[11]:
```

array([[<matplotlib.axes. subplots.AxesSubplot object at 0x0000012 DC0A35BA8>,

<matplotlib.axes. subplots.AxesSubplot object at 0x0000012</pre> DC1080FD0>,

<matplotlib.axes. subplots.AxesSubplot object at 0x0000012</pre> DC10B06A0>],

[<matplotlib.axes. subplots.AxesSubplot object at 0x0000012 DC10D6D30>,

<matplotlib.axes. subplots.AxesSubplot object at 0x0000012</pre> DC110A400>,

<matplotlib.axes. subplots.AxesSubplot object at 0x0000012</pre> DC110A438>],

[<matplotlib.axes. subplots.AxesSubplot object at 0x0000012 DC132C940>,

<matplotlib.axes. subplots.AxesSubplot object at 0x0000012</pre> DC1353FD0>,

<matplotlib.axes. subplots.AxesSubplot object at 0x0000012</pre> DC13846A0>],

[<matplotlib.axes. subplots.AxesSubplot object at 0x0000012</pre> DC13ADD30>,

<matplotlib.axes. subplots.AxesSubplot object at 0x0000012</pre> DC13DD400>,

<matplotlib.axes. subplots.AxesSubplot object at 0x0000012</pre> DC1405A90>]],

dtype=object)

In [6]:

```
# Calculate qcut which will be a label to indicate the percentage change in pr
ice

qcut = pd.qcut((df.price.sort_values(ascending=True).values), 10,labels=[1,2,3
,4,5,6,7,8,9,10])
print(qcut)
df.sort_values(by=['price'], inplace=True)
df['label'] = qcut
df.sort_index(inplace=True)
df.dropna(axis=0,inplace=True)
```

```
[1, 1, 1, 1, 1, ..., 10, 10, 10, 10, 10]
Length: 7381
Categories (10, int64): [1 < 2 < 3 < 4 ... 7 < 8 < 9 < 10]
```

In [13]:

```
# Plot correlation matrix plot

correlations = df.corr()
sns.heatmap(correlations, xticklabels=correlations.columns.values, yticklabels
=correlations.columns.values)
```

Out[13]: <matplotlib.axes. subplots.AxesSubplot at 0x12dc16650b8>

In [14]:

```
# Plot scatter matrix of the dataset

df.drop(columns=['date','price'],inplace=True)
palette = {1 : 'blue', 2 : 'red',3:'black',4:'yellow',5:'green',6:'gray',7:'ch
ocolate',8:'pink',9:'brown',10:'m'}
labels=df['label']
labels_c = list(map(lambda x: palette[int(x)], labels))
grr = pd.plotting.scatter_matrix(df,figsize=(35,35), alpha=0.8, c=labels_c)
```



```
In [16]:
```

```
#Standardizing data for Gaussian distribution
array = df.values
# separate array into input and output components
cols = 11
X = array[:,:cols]
Y = array[:,cols]
scaler = StandardScaler().fit(X)
X = scaler.transform(X)
# summarize transformed data
np.set printoptions(precision=3)
print(X[0:5,:])
# split train and test data
test size = 0.33
seed = 7
X train, X test, Y train, Y test = train test split(X, Y, test size=test size,
random state=seed)
 Y_train = Y_train.astype('int')
 Y test = Y test.astype('int')
actual = Y test
[[-1.26 \quad -1.786 \quad -1.48 \quad -1.483 \quad 0.004 \quad -1.471 \quad -0.906 \quad -1.344 \quad -1.317 \quad -1.483 \quad -1.483 \quad 0.004 \quad -1.471 \quad -0.906 \quad -1.344 \quad -1.317 \quad -1.483 \quad -1.
1.326
        -1.345]
    \begin{bmatrix} -0.97 & -1.786 & -1.48 & -0.337 & 0.004 & -1.471 & -0.772 & -1.364 & -1.327 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1.471 & -1
1.329
         -1.34
     [-0.681 -1.786 -1.48]
                                                                                                                0.169 0.004 -1.471 -0.523 -1.344 -1.337 -
1.329
         -1.34
     [-0.391 -1.786 -1.48]
                                                                                                                  0.803 0.004 -1.471 -0.491 -1.304 -1.337 -
1.329
         -1.338]
                                                                                                                                                    0.004 - 1.471 \quad 0.715 - 1.285 - 1.337 -
    [-0.101 -1.786 -1.48]
                                                                                                         0.799
1.329
         -1.335
D:\Anaconda\lib\site-packages\sklearn\utils\validation.py:475: Dat
aConversionWarning: Data with input dtype object was converted to
float64 by StandardScaler.
        warnings.warn(msg, DataConversionWarning)
D:\Anaconda\lib\site-packages\sklearn\utils\validation.py:475: Dat
aConversionWarning: Data with input dtype object was converted to
float64 by StandardScaler.
        warnings.warn(msg, DataConversionWarning)
```

In [17]:

```
# Gaussian NB model

Y = Y.astype('int')
kfold = KFold(n_splits=10, random_state=7)
model = GaussianNB()
model.fit(X_train,Y_train)
results = cross_val_score(model, X, Y, cv=kfold, scoring='accuracy')
print('Gaussian NB model Accuracy:\nMean=',round(results.mean()*100,3), '%\tSt
d deviation=',round(results.std()*100,3), '%')

prediction = model.predict(X_test)
precision,recall,fscore,support = metrics.precision_recall_fscore_support(actu
al,prediction,average=None)
results = {"precision":precision,"recall":recall,"fscore":fscore,"support" : s
upport}
print("\n",tabulate(results,headers="keys"))
```

Gaussian NB model Accuracy:
Mean= 62.952 % Std deviation= 5.199 %

recall	fscore	support
0.54	0.660147	250
0.818731	0.739427	331
0.825806	0.644836	155
0.461832	0.570755	262
0.730375	0.674016	293
0.404494	0.469565	267
0.608696	0.539499	230
0.442529	0.446377	174
0.802419	0.708185	248
0.621622	0.726316	222
	0.54 0.818731 0.825806 0.461832 0.730375 0.404494 0.608696 0.442529 0.802419	0.54 0.660147 0.818731 0.739427 0.825806 0.644836 0.461832 0.570755 0.730375 0.674016 0.404494 0.469565 0.608696 0.539499 0.442529 0.446377 0.802419 0.708185

```
# Decision Tree Classifier model

clf = DecisionTreeClassifier()
    clf.fit(X_train, Y_train)
    kfold = KFold(n_splits=10, random_state=7)
    model = DecisionTreeClassifier()
    model.fit(X_train,Y_train)
    results = cross_val_score(model, X, Y, cv=kfold, scoring='accuracy')
    print('Decision Tree Classifier Accuracy:\nMean=',round(results.mean()*100,3),
    '%\tStd deviation= ',round(results.std()*100,3), '%')

prediction = model.predict(X_test)
    precision,recall,fscore,support = metrics.precision_recall_fscore_support(actu al,prediction,average=None)
    results = {"precision":precision,"recall":recall,"fscore":fscore,"support" : s
    upport}
    print("\n",tabulate(results,headers="keys"))
```

Decision Tree Classifier Accuracy:
Mean= 68.354 % Std deviation= 3.637 %

precision	recall	fscore	support
0.818584	0.74	0.777311	250
0.727794	0.767372	0.747059	331
0.616438	0.580645	0.598007	155
0.758865	0.816794	0.786765	262
0.785714	0.788396	0.787053	293
0.707317	0.651685	0.678363	267
0.620087	0.617391	0.618736	230
0.613402	0.683908	0.646739	174
0.726908	0.729839	0.72837	248
0.820276	0.801802	0.810934	222

```
In [19]:
```

```
# SVC model
alphas = np.array([1,0.1,0.01,0.001,0.0001,0])
param grid = [
  {'C': [1, 10, 100, 1000], 'kernel': ['linear']},
  {'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001], 'kernel': ['rbf']},
 1
model = SVC()
grid = GridSearchCV(estimator=model, param_grid=param grid)
grid.fit(X train, Y train)
print(grid.best params )
print('SVC model Accuracy:',grid.best score *100)
prediction = grid.predict(X test)
precision,recall,fscore,support = metrics.precision recall fscore support(actu
al,prediction,average=None)
results = {"precision":precision, "recall":recall, "fscore":fscore, "support" : s
upport}
print("\n", tabulate(results, headers="keys"))
```

{'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'} SVC model Accuracy: 76.88879886570791

precision	recall	fscore	support
0.88835	0.732	0.802632	250
0.76781	0.879154	0.819718	331
0.769737	0.754839	0.762215	155
0.821561	0.843511	0.832392	262
0.812057	0.78157	0.796522	293
0.735178	0.696629	0.715385	267
0.649402	0.708696	0.677755	230
0.678788	0.643678	0.660767	174
0.733096	0.830645	0.778828	248
0.907216	0.792793	0.846154	222

```
# Logistic Regression model

kfold = KFold(n_splits=10, random_state=7)
model = LogisticRegression()
model.fit(X_train,Y_train)
results = cross_val_score(model, X, Y, cv=kfold)
print('Logistic Regression model Accuracy:\nMean=',round(results.mean()*100,3)
, '%\tStd deviation= ',round(results.std()*100,3), '%')

prediction = model.predict(X_test)
precision,recall,fscore,support = metrics.precision_recall_fscore_support(actu al,prediction,average=None)
results = {"precision":precision,"recall":recall,"fscore":fscore,"support" : s upport}
print("\n",tabulate(results,headers="keys"))
```

Logistic Regression model Accuracy:
Mean= 45.922 % Std deviation= 6.39 %

precision	recall	fscore	support
0.644737	0.588	0.615063	250
0.485944	0.731118	0.583836	331
0	0	0	155
0.362264	0.366412	0.364326	262
0.434615	0.771331	0.555966	293
0.490909	0.202247	0.286472	267
0.342857	0.156522	0.214925	230
0	0	0	174
0.405896	0.721774	0.519594	248
0.770751	0.878378	0.821053	222

In [21]:

```
# Linear Discrimination model

num_folds = 10
kfold = KFold(n_splits=10, random_state=7)
model = LinearDiscriminantAnalysis()
model.fit(X_train,Y_train)
results = cross_val_score(model,X, Y, cv=kfold)
print('Linear Discrimination model Accuracy:\nMean=',round(results.mean()*100, 3), '%\tStd deviation= ',round(results.std()*100,3), '%')

prediction = model.predict(X_test)
precision,recall,fscore,support = metrics.precision_recall_fscore_support(actu al,prediction,average=None)
results = {"precision":precision,"recall":recall,"fscore":fscore,"support" : s upport}
print("\n",tabulate(results,headers="keys"))
```

Linear Discrimination model Accuracy:
Mean= 51.744 % Std deviation= 4.474 %

	precision	recall	fscore	support
_				
	0.560137	0.652	0.602588	250
	0.51	0.616314	0.55814	331
	0.230769	0.0967742	0.136364	155
	0.505208	0.370229	0.427313	262
	0.555838	0.74744	0.637555	293
	0.369792	0.265918	0.309368	267
	0.456835	0.552174	0.5	230
	0.525773	0.293103	0.376384	174
	0.600559	0.866935	0.709571	248
	0.921212	0.684685	0.78553	222

- D:\Anaconda\lib\site-packages\sklearn\discriminant_analysis.py:442
- : UserWarning: The priors do not sum to 1. Renormalizing UserWarning)
- D:\Anaconda\lib\site-packages\sklearn\discriminant analysis.py:442
- : UserWarning: The priors do not sum to 1. Renormalizing UserWarning)
- D:\Anaconda\lib\site-packages\sklearn\discriminant analysis.py:442
- : UserWarning: The priors do not sum to 1. Renormalizing UserWarning)

```
# KNeighborsClassifier model

num_folds = 10
kfold = KFold(n_splits=10, random_state=7)
model = KNeighborsClassifier(n_neighbors=15)
model.fit(X_train,Y_train)
results = cross_val_score(model, X, Y, cv=kfold)
print('KNeighborsClassifier model Accuracy:\nMean=',round(results.mean()*100,3), '%\tStd deviation= ',round(results.std()*100,3), '%')

prediction = model.predict(X_test)
precision,recall,fscore,support = metrics.precision_recall_fscore_support(actu al,prediction,average=None)
results = {"precision":precision,"recall":recall,"fscore":fscore,"support" : s upport}
print("\n",tabulate(results,headers="keys"))
```

KNeighborsClassifier model Accuracy:
Mean= 63.129 % Std deviation= 3.599 %

precision	recall	fscore	support
0.743961	0.616	0.673961	250
0.582589	0.78852	0.67009	331
0.5	0.303226	0.37751	155
0.694561	0.633588	0.662675	262
0.629179	0.706485	0.665595	293
0.556017	0.501873	0.527559	267
0.454225	0.56087	0.501946	230
0.5	0.33908	0.40411	174
0.623333	0.754032	0.682482	248
0.860465	0.666667	0.751269	222

```
# Bagging Classifier model
seed = 7
kfold = KFold(n_splits=10, random_state=seed)
cart = DecisionTreeClassifier()
num_trees = 130
model = BaggingClassifier(base estimator=cart, n estimators=num trees, max feat
ures = 5, random state=seed)
model.fit(X_train,Y_train)
results = cross_val_score(model, X, Y, cv=kfold)
print('Bagging Classifier Accuracy:\nMean=',round(results.mean()*100,3), '%\tS
td deviation= ',round(results.std()*100,3), '%')
prediction = model.predict(X test)
precision,recall,fscore,support = metrics.precision recall fscore support(actu
al,prediction,average=None)
results = {"precision":precision, "recall":recall, "fscore":fscore, "support" : s
upport}
print("\n", tabulate(results, headers="keys"))
```

Bagging Classifier Accuracy:

Mean= 75.424 % Std deviation= 2.271 %

precision	recall	fscore	support
0.868644	0.82	0.843621	250
0.792507	0.830816	0.811209	331
0.742857	0.670968	0.705085	155
0.8125	0.89313	0.850909	262
0.8157	0.8157	0.8157	293
0.746888	0.674157	0.708661	267
0.663934	0.704348	0.683544	230
0.692308	0.672414	0.682216	174
0.745455	0.826613	0.783939	248
0.894472	0.801802	0.845606	222

```
# Random forest classifier model
num_trees = 150
max features = 6
kfold = KFold(n splits=10, random state=7)
model = RandomForestClassifier(n_estimators=num_trees, max_features=max_featur
es)
model.fit(X train, Y train)
results = cross_val_score(model, X, Y, cv=kfold)
print('Random forest classifier Accuracy:\nMean=',round(results.mean()*100,3),
'%\tStd deviation= ',round(results.std()*100,3), '%')
prediction = model.predict(X test)
precision,recall,fscore,support = metrics.precision recall fscore support(actu
al,prediction,average=None)
results = {"precision":precision, "recall":recall, "fscore":fscore, "support" : s
upport}
print("\n", tabulate(results, headers="keys"))
```

Random forest classifier Accuracy:
Mean= 77.731 % Std deviation= 2.442 %

precision	recall	fscore	support
 0.869748	0.828	0.848361	250
0.8	0.833837	0.816568	331
0.730496	0.664516	0.695946	155
0.826241	0.889313	0.856618	262
0.844595	0.853242	0.848896	293
0.800885	0.677903	0.73428	267
0.674419	0.756522	0.713115	230
0.691011	0.706897	0.698864	174
0.762846	0.778226	0.770459	248
0.874419	0.846847	0.860412	222

```
# Gradient Boosting Classifier model
seed = 7
num_trees = 100
kfold = KFold(n_splits=10, random_state=seed)
model = GradientBoostingClassifier(n_estimators=num_trees, random_state=seed)
model.fit(X_train,Y_train)
results = cross_val_score(model, X, Y, cv=kfold)
print('Gradient Boosting Classifier Accuracy:\nMean=',round(results.mean()*100
,3), '%\tstd deviation= ',round(results.std()*100,3), '%')

prediction = model.predict(X_test)
precision,recall,fscore,support = metrics.precision_recall_fscore_support(actu al,prediction,average=None)
results = {"precision":precision,"recall":recall,"fscore":fscore,"support" : s upport}
print("\n",tabulate(results,headers="keys"))
```

Gradient Boosting Classifier Accuracy: Mean= 78.423 % Std deviation= 2.679 %

precision	recall	fscore	support
0.882096	0.808	0.843424	250
0.788301	0.854985	0.82029	331
0.774436	0.664516	0.715278	155
0.816901	0.885496	0.849817	262
0.857143	0.83959	0.848276	293
0.784483	0.681648	0.729459	267
0.660079	0.726087	0.691511	230
0.674033	0.701149	0.687324	174
0.742424	0.790323	0.765625	248
0.857143	0.810811	0.833333	222

```
In [26]:
```

```
# Feature importances for Gradient Boosting Classifier model

print('\nFeature importances:',model.feature_importances_)
y_pos = np.arange(cols)
x = model.feature_importances_
f, ax = plt.subplots(figsize=(18,5))
plt.bar(y_pos, x, width=0.8,align='center', alpha=0.5)
plt.title('Bar plot')
plt.xticks(y_pos, df.columns,fontsize=10,rotation=30)
plt.ylabel('Feature Importance')
plt.xlabel('Features')
plt.show()
```

Feature importances: [0.026 0.014 0.02 0.054 0.034 0.014 0.053 0.357 0.155 0.117 0.157]

In []: