LECTURE

8

THE EUCLIDEAN SPACE \mathbb{R}^n . SEQUENCES OF POINTS IN \mathbb{R}^n

The Euclidean space \mathbb{R}^n

Let $n \in \mathbb{N}^*$. Consider the vector space

$$\mathbb{R}^n = \{ (x_1, x_2, \dots x_n) \mid x_1, x_2, \dots, x_n \in \mathbb{R} \}$$

of all ordered n-tuples of real numbers endowed with the vector addition and the multiplication of vectors by scalars (real numbers)

$$\forall (x,y) \in \mathbb{R}^n \times \mathbb{R}^n \longmapsto x + y \in \mathbb{R}^n$$
$$\forall (\alpha,x) \in \mathbb{R} \times \mathbb{R}^n \longmapsto \alpha x \in \mathbb{R}^n$$

defined componentwise:

$$x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

and

$$\alpha x = (\alpha x_1, \alpha x_2, \dots, \alpha x_n)$$

for any $x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$.

The zero vector (origin) of this vector space is the point

$$0_n = (0, 0, \dots, 0)$$

and the additive inverse of a point $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ is the point denoted by

$$-x = (-x_1, -x_2, \dots, -x_n) = (-1)x.$$

We also consider the canonical unit vectors:

$$e^{1} = (1, 0, 0, \dots, 0) \in \mathbb{R}^{n}$$

$$e^{2} = (0, 1, 0, \dots, 0) \in \mathbb{R}^{n}$$

$$\vdots$$

$$e^{n} = (0, 0, 0, \dots, 1) \in \mathbb{R}^{n}.$$

The set $\{e^1, e^2, \dots e^n\}$ is a basis of the vector space \mathbb{R}^n called the *standard (canonical) basis* of \mathbb{R}^n . If $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, then

$$x = x_1 e^1 + x_2 e^2 + \ldots + x_n e^n$$
.

Let $x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$. The real number defined by

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

is called the scalar product of x and y.

The nonnegative number

$$||x|| = \sqrt{\langle x, x \rangle} = \sqrt{(x_1)^2 + (x_2)^2 + \dots + (x_n)^2}$$

is called the Euclidean norm of x.

The Euclidean distance between x and y is given by

$$dist(x,y) = ||x - y|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}.$$

Remark 8.1 For $x \in \mathbb{R}^n$, ||x|| represents the Euclidean distance between x and 0_n .

Example 8.2 (i) When n = 1 every vector $x \in \mathbb{R}$ can be identified with exactly one point on the real line. If $x, y \in \mathbb{R}$, then $\langle x, y \rangle = xy$, ||x|| = |x| and ||x - y|| = |x - y|.

- (ii) When n=2 every vector $(x,y) \in \mathbb{R}^2$ can be identified with exactly one point in a plane Cartesian coordinate system Oxy. If $P_1=(x_1,y_1)$, $P_2=(x_2,y_2) \in \mathbb{R}^2$, then, by the Pythagoras' Theorem, the length of the segment $[P_1P_2]$ is $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$, which is exactly the Euclidean distance between the vectors (x_1,y_1) and (x_2,y_2) .
- (iii) When n=3 every vector $(x,y,z) \in \mathbb{R}^3$ can be identified with exactly one point in a Cartesian coordinate system Oxyz. Let $P_1=(x_1,y_1,z_1)$, $P_2=(x_2,y_2,z_2) \in \mathbb{R}^3$. Take $P_3=(x_2,y_2,z_1)$. Note P_2 and P_3 are on the same vertical line, so the length of the segment $[P_2P_3]$ is $|z_1-z_2|$. Also, P_1 and P_3 are on the same horizontal plane, so the length of the segment $[P_1P_3]$ is $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$. Since the points P_1 , P_2 and P_3 form a right triangle with right angle at P_3 , by the Pythagorean Theorem, we have that the length of the segment $[P_1P_2]$ is $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$, which is exactly the Euclidean distance between the vectors (x_1,y_1,z_1) and (x_2,y_2,z_2) .

Proposition 8.3 (Properties of the scalar product in \mathbb{R}^n)

- (i) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle, \quad \forall x, y, z \in \mathbb{R}^n.$
- (ii) $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$, $\forall \alpha \in \mathbb{R}, \forall x, y \in \mathbb{R}^n$.
- (iii) $\langle x, y \rangle = \langle y, x \rangle$, $\forall x, y \in \mathbb{R}^n$.
- (iv) $\langle x, x \rangle > 0$, $\forall x \in \mathbb{R}^n \setminus \{0_n\}$.
- (v) $\langle 0_n, x \rangle = 0, \quad \forall x \in \mathbb{R}^n.$
- (vi) $\langle x, x \rangle = 0 \Leftrightarrow x = 0_n$.

Proposition 8.4 (Cauchy-Buniakowski-Schwarz inequality)

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||, \quad \forall x, y \in \mathbb{R}^n.$$

Proof. Let $x, y \in \mathbb{R}^n$.

Case 1: If $y = 0_n$, then the desired inequality holds with equality.

Case 2: If
$$y \neq 0_n$$
, then let $\alpha := -\frac{\langle x, y \rangle}{\langle y, y \rangle}$. Then
$$0 \leq \langle x + \alpha y, x + \alpha y \rangle$$

$$= \langle x, x + \alpha y \rangle + \langle \alpha y, x + \alpha y \rangle$$

$$= \langle x + \alpha y, x \rangle + \alpha \langle x + \alpha y, y \rangle$$

$$= \langle x, x \rangle + \alpha \langle y, x \rangle + \alpha \langle x, y \rangle + \alpha^2 \langle y, y \rangle$$

$$= \langle x, x \rangle + 2\alpha \langle x, y \rangle + \alpha^2 \langle y, y \rangle$$

$$= \langle x, x \rangle - 2\frac{(\langle x, y \rangle)^2}{\langle y, y \rangle} + \frac{(\langle x, y \rangle)^2}{\langle y, y \rangle}$$

$$= \langle x, x \rangle - \frac{(\langle x, y \rangle)^2}{\langle y, y \rangle}.$$

Thus, $0 \le \langle x, x \rangle \langle y, y \rangle - (\langle x, y \rangle)^2$, so $|\langle x, y \rangle| \le ||x|| \cdot ||y||$.

Proposition 8.5 (Properties of the Euclidean norm)

- (i) $||x|| = 0 \Leftrightarrow x = 0_n$.
- (ii) $\|\alpha x\| = |\alpha| \cdot \|x\|, \quad \forall \alpha \in \mathbb{R}, \forall x \in \mathbb{R}^n.$
- (iii) $||x+y|| \le ||x|| + ||y||$, $\forall x, y \in \mathbb{R}^n$ (the triangle inequality).

Proof. (i) and (ii) are immediate consequences of Proposition 8.3. Statement (iii) follows from

$$||x+y||^2 = \langle x+y, x+y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$= ||x||^2 + 2\langle x, y \rangle + ||y||^2$$

$$\leq ||x||^2 + 2||x|| ||y|| + ||y||^2 \quad \text{by the Cauchy-Buniakowski-Schwarz inequality}$$

$$= (||x|| + ||y||)^2.$$

Definition 8.6 Let $x_0 \in \mathbb{R}^n$ and r > 0. The set

$$B(x_0, r) = \{x \in \mathbb{R}^n \mid ||x - x_0|| < r\}$$

is called open ball of radius r centered at x_0 while the set

$$\overline{B}(x_0, r) = \{x \in \mathbb{R}^n \mid ||x - x_0|| \le r\}$$

is called closed ball of radius r centered at x_0 .

Example 8.7 (i) n = 1: let $x_0 \in \mathbb{R}$ and r > 0. Then $B(x_0, r) = (x_0 - r, x_0 + r)$ and $\overline{B}(x_0, r) = [x_0 - r, x_0 + r]$.

- (ii) n = 2: let $(x_0, y_0) \in \mathbb{R}^2$ and r > 0. Then $B((x_0, y_0), r)$ is the open disc of radius r centered at (x_0, y_0) (excluding its enclosing circle) and $\overline{B}((x_0, y_0), r)$ is the closed disc of radius r centered at (x_0, y_0) (including its enclosing circle).
- (iii) n = 3: let $(x_0, y_0, z_0) \in \mathbb{R}^3$ and r > 0. Then $B((x_0, y_0), r)$ consists of all points inside the sphere of radius r centered at (x_0, y_0) excluding the sphere itself and $\overline{B}((x_0, y_0), r)$ consists of all points inside the sphere of radius r centered at (x_0, y_0) including the sphere itself.

Remark 8.8 Let $x_0 \in \mathbb{R}^n$, $r_1 > r > 0$. Then

- (i) $x_0 \in B(x_0, r)$.
- (ii) $B(x_0, r) \subseteq B(x_0, r) \subseteq B(x_0, r_1) \subseteq \overline{B}(x_0, r_1)$.
- (iii) $\forall x \in B(x_0, r), B(x, r ||x_0 x||) \subseteq B(x_0, r).$

Definition 8.9 By a neighborhood of $x \in \mathbb{R}^n$ we mean any set $V \subseteq \mathbb{R}^n$ such that

$$\exists r > 0 \text{ such that } B(x,r) \subseteq V.$$

We denote by $\mathcal{V}(x)$ the family of all neighborhoods of x.

Sequences in \mathbb{R}^n

Notation: $(x^k)_{k\geq 1}$, $(x^k)_{k\in\mathbb{N}^*}$, or (x^k) (we do not index this sequence by n since n is the dimension of \mathbb{R}^n ; we use an upper index notation since lower indices are used for vector coordinates). Written explicitly,

$$x^{1} = (x_{1}^{1}, x_{2}^{1}, \dots, x_{n}^{1}) \in \mathbb{R}^{n}$$

$$x^{2} = (x_{1}^{2}, x_{2}^{2}, \dots, x_{n}^{2}) \in \mathbb{R}^{n}$$

$$\vdots$$

$$x^{k} = (x_{1}^{k}, x_{2}^{k}, \dots, x_{n}^{k}) \in \mathbb{R}^{n}$$

$$\vdots$$

The sequences of real numbers

$$(x_1^k)_{k\in\mathbb{N}^*}, (x_2^k)_{k\in\mathbb{N}^*}, \ldots, (x_n^k)_{k\in\mathbb{N}^*}$$

are called the *component sequences* of the sequence (x^k) .

Definition 8.10 We say that a sequence (x^k) in \mathbb{R}^n converges to $x \in \mathbb{R}^n$ if

$$\forall \varepsilon > 0, \exists k_{\varepsilon} \in \mathbb{N} \text{ such that } \forall k \in \mathbb{N}, k \geq k_{\varepsilon}, \text{ we have } ||x^{k} - x|| < \varepsilon.$$

Proposition 8.11 A sequence in \mathbb{R}^n cannot converge to two distinct vectors in \mathbb{R}^n .

Proof. Let (x^k) be a sequence in \mathbb{R}^n and let $x, x' \in \mathbb{R}^n$ such that (x^k) converges both to x and x'. Suppose by the contrary that $x \neq x'$. Then, choose $\varepsilon := \frac{\|x - x'\|}{2} > 0$. Because (x^k) converges to x, it follows that

$$\exists k_{\varepsilon} \in \mathbb{N} \text{ s.t. } \forall k \geq k_{\varepsilon}, ||x^k - x|| < \varepsilon.$$

Likewise, since (x^k) converges to x', we have that

$$\exists k_{\varepsilon}' \in \mathbb{N} \text{ s.t. } \forall k \geq k_{\varepsilon}', ||x^k - x'|| < \varepsilon.$$

Thus, $\forall k \geq \max\{k_{\varepsilon}, k'_{\varepsilon}\}, \|x - x'\| \leq \|x - x^k\| + \|x^k - x'\| < \varepsilon + \varepsilon = 2\varepsilon = \|x - x'\|, \text{ a contradiction.}$

Definition 8.12 If a sequence (x^k) in \mathbb{R}^n converges to some $x \in \mathbb{R}^n$, we say that (x^k) is convergent. The vector x is called the limit of (x^k) and we write

$$\lim_{k \to \infty} x^k = x \quad or \quad x^k \to x.$$

If (x^k) does not converge to any vector in \mathbb{R}^n , we say that (x^k) is divergent.

Theorem 8.13 Let $(x^k)_{k\in\mathbb{N}}$ be a sequence in \mathbb{R}^n and let $x\in\mathbb{R}^n$. Then

$$\lim_{k\to\infty} x^k = x \iff \forall V \in \mathcal{V}(x), \exists k_V \in \mathbb{N} \text{ such that } \forall k \in \mathbb{N}, k \geq k_V \text{ we have } x^k \in V.$$

The following result gives a characterization of the limit of a sequence in \mathbb{R}^n in terms of the limits of the component sequences.

Theorem 8.14 Let $(x^k)_{k\in\mathbb{N}}$ be a sequence in \mathbb{R}^n with $x^k = (x_1^k, x_2^k, \dots, x_n^k)$ for all $k \in \mathbb{N}$ and let $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. Then

$$\lim_{k \to \infty} x^k = x \iff \forall j \in \{1, 2, \dots, n\}, \lim_{k \to \infty} x_j^k = x_j.$$

Proof. Suppose first that $\lim_{k\to\infty} x^k = x$. Let $j \in \{1, 2, \dots, n\}$ and $\varepsilon > 0$. Then

$$\exists k_{\varepsilon} \in \mathbb{N}^*, \forall k \ge k_{\varepsilon}, ||x^k - x|| < \varepsilon,$$

so $\forall k \geq k_{\varepsilon}$,

$$|x_i^k - x_j| \le \sqrt{(x_1^k - x_1)^2 + (x_2^k - x_2)^2 + \dots + (x_n^k - x_n)^2} = ||x^k - x|| < \varepsilon.$$

Thus, $\lim_{k\to\infty} x_j^k = x_j$.

Assume now that $\forall j \in \{1, 2, \dots, n\}, \lim_{k \to \infty} x_j^k = x_j$. Let $\varepsilon > 0$. Then

$$\forall j \in \{1, 2, \dots, n\}, \exists k_{\varepsilon, j} \in \mathbb{N}^*, \forall k \ge k_{\varepsilon, j}, \left| x_j^k - x_j \right| < \frac{\varepsilon}{\sqrt{n}}.$$

Take $k_{\varepsilon} = \max\{k_{\varepsilon,1}, k_{\varepsilon,2}, \dots, k_{\varepsilon,n}\}$. Then $\forall k \geq k_{\varepsilon}$,

$$||x^{k} - x|| = \sqrt{(x_{1}^{k} - x_{1})^{2} + (x_{2}^{k} - x_{2})^{2} + \ldots + (x_{n}^{k} - x_{n})^{2}} \le \sqrt{\frac{\varepsilon^{2}}{n} + \frac{\varepsilon^{2}}{n} + \ldots + \frac{\varepsilon^{2}}{n}} = \varepsilon.$$

Open and closed sets; interior, closure and boundary of a set

Definition 8.15 Let $A \subseteq \mathbb{R}^n$. A point $a \in A$ is called an interior point of A if there exists r > 0 such that $B(a,r) \subseteq A$. The set of all interior points of A is called the interior of A and is denoted by intA.

Definition 8.16 Let $A \subseteq \mathbb{R}^n$. The set $A \subseteq \mathbb{R}^n$ is called

- open: if every $a \in A$ is an interior point of A.
- closed: if $\mathbb{R}^n \setminus A$ is open.

Theorem 8.17 A set $A \subseteq \mathbb{R}^n$ is closed if and only if for every sequence (x^k) in A which converges to some $c \in \mathbb{R}^n$, we have that $c \in A$.

Remark 8.18 (i) A set in \mathbb{R}^n may be neither open, nor closed.

(ii) \mathbb{R}^n and \emptyset are both open and closed (in fact these are the only sets that are both open and closed).

Definition 8.19 Let $A \subseteq \mathbb{R}^n$. A point $c \in \mathbb{R}^n$ is called an adherent point of A if for every r > 0, $B(c,r) \cap A \neq \emptyset$. The set of all adherent points of A is called the closure of A and is denoted by clA.

Remark 8.20 For any set $A \subseteq \mathbb{R}^n$ we have

$$clA = \left\{ c \in \mathbb{R}^n \mid \exists (x^k) \text{ a sequence in } A \text{ which converges to } c \right\}.$$

Remark 8.21 (Interior vs. closure) Let $A \subseteq \mathbb{R}^n$. The following hold:

- 1° int $A \subseteq A$.
- 2° int A = A if and only if A is open.
- $3^{\circ} A \subset clA$.
- 4° A = clA if and only if A is closed.
- 5° intA is the largest open set contained in A.
- 6° clA is the smallest closed set containing A.
- 7° int $(\mathbb{R}^n \setminus A) = \mathbb{R}^n \setminus clA$.
- 8° $cl(\mathbb{R}^n \setminus A) = \mathbb{R}^n \setminus intA$.

Example 8.22 (i) n = 1:

- Let A = [0,1). Then intA = (0,1), clA = [0,1], A is neither closed nor open.
- Let $A = \mathbb{R}^*$. Then intA = A, A is open, $clA = \mathbb{R}$.
- Let $A = \mathbb{N}$. Then $intA = \emptyset$, clA = A, A is closed.

(ii) n = 2:

- Let $A = [0, 1] \times [0, 2] \setminus \{0_2\}$. Then $intA = (0, 1) \times (0, 2)$, $clA = [0, 1] \times [0, 2]$, A is neither closed nor open.
- Let $A = \{(x, y) \in \mathbb{R}^2 \mid x > 0, y \neq 0\}$. Then intA = A, A is open, and $clA = \{(x, y) \in \mathbb{R}^2 \mid x \geq 0\}$. (iii) Any open ball in \mathbb{R}^n is an open set.
- (iv) Any closed ball in \mathbb{R}^n is a closed set. Indeed, let $x \in \mathbb{R}^n$, r > 0. We show that $\mathbb{R}^n \setminus \overline{B}(x,r)$ is open. Let $y \in \mathbb{R}^n \setminus \overline{B}(x,r)$. Then $r_y = ||x-y|| r > 0$. For any $z \in B(y,r_y)$, $||z-y|| < r_y = ||x-y|| r \le ||x-z|| + ||z-y|| r$. Thus, ||x-z|| > r, so $z \in \mathbb{R}^n \setminus \overline{B}(x,r)$. Hence, $B(y,r_y) \subseteq \mathbb{R}^n \setminus \overline{B}(x,r)$. It follows that $\mathbb{R}^n \setminus \overline{B}(x,r)$ is open, which means that $\overline{B}(x,r)$ is closed.

Definition 8.23 Let $A \subseteq \mathbb{R}^n$. A point $c \in \mathbb{R}^n$ is called a boundary point of A if for every r > 0, $B(c,r) \cap A \neq \emptyset$ and $B(c,r) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$. The set of all boundary points of A is called the boundary of A and is denoted by bdA (sometimes we write bd(A)).

Remark 8.24 Let $A \subseteq \mathbb{R}^n$.

- (i) $bdA = clA \setminus intA = clA \cap cl(\mathbb{R}^n \setminus A)$.
- (ii) $bdA = bd(\mathbb{R}^n \setminus A)$.
- (iii) bdA is closed.

Definition 8.25 Let $A \subseteq \mathbb{R}^n$. A point an $c \in \mathbb{R}^n$ is called an accumulation point of A if for every r > 0, $B(c,r) \cap (A \setminus \{c\}) \neq \emptyset$. The set of all accumulation points of A is called the derived set of A and is denoted by A' (sometimes we write (A)').

Remark 8.26 For any set $A \subseteq \mathbb{R}^n$ we have

$$A' = \left\{ c \in \mathbb{R}^n \mid \exists (x^k) \text{ a sequence in } A \setminus \{c\} \text{ which converges to } c \right\}.$$

Remark 8.27 Let $A \subseteq \mathbb{R}^n$.

- (i) $intA \subseteq A' \subseteq clA$.
- (ii) $clA = A' \cup A$.
- (iii) A is closed if and only if $A' \subseteq A$.
- (iv) A' is closed.

Example 8.28 (i) For n = 1 let $A = \{0\} \cup [1,2] \cup (3,4)$. Then $intA = (1,2) \cup (3,4)$, $clA = \{0\} \cup [1,2] \cup [3,4]$, A is neither closed, nor open, $bdA = \{0,1,2,3,4\}$, $A' = [1,2] \cup [3,4]$.

(ii) For n = 2 let $A = \{(0,2)\} \cup (\{1\} \times [0,2])$. Then $intA = \emptyset$, clA = A, A is closed, bdA = A, $A' = \{1\} \times [0,2]$.