最終レポート

数理 7 研 特任助教 坂上 晋作 sakaue@mist.i.u-tokyo.ac.jp

- 提出先は ITC-LMS.
- ファイル名は「学籍番号_final.pdf」とすること.
- 締切は 2021/1/18 (月) 23:59. **締切後に解答を公開するため,締切後の提出は** 0 点になる ことに注意.
- 問題の構成は6回の演習の内容から1問ずつ. 40点 ×6問で240点満点.
- **■問題** 1 (各 20 点, 計 40 点) 距離空間 (X,d) において以下を証明せよ.
 - 1. $S \subset X$ (ただし $S \neq \emptyset$) を 1 つ固定する. このとき,

$$f_S(x) = \inf_{y \in S} d(x, y)$$

として $f_S: X \to \mathbb{R}$ を定義すると f_S は連続である.

- 2. (Urysohn の定理) $A,B \subset X$ を閉集合とし, $A \cap B = \phi$ とする. このとき, 連続写像 $f: X \to \mathbb{R}$ で, 次の 3 条件をすべて満たすものが存在する.
 - (a) $0 \le f(x) \le 1$ $(x \in X)$
 - (b) f(x) = 1 $(x \in A)$
 - (c) f(x) = 0 $(x \in B)$
- ■問題 2 (素数の無限性の位相的証明) $X = \mathbb{Z}$ とする. $a,b \in \mathbb{Z}$ $(a \neq 0)$ に対して

$$T(a,b) := \{an + b : n \in \mathbb{Z}\}\$$

とする. X の部分集合族 T_X を以下のように定める:

 $T \in \mathcal{T}_X \iff T = \emptyset$ もしくは $\forall b \in T \exists a \in \mathbb{Z} \ (a \neq 0) \text{ s.t. } T(a,b) \subseteq T.$

- 1. (10点) T_X が位相であることを示せ.
- 2. (10 点) 位相空間 (X, \mathcal{T}_X) において T(a,b) は閉集合でもあることを示せ.
- 3. (20 点)

$$\{1,-1\} = X \setminus \bigcup_{p: \bar{\mathbf{x}}} T(p,0)$$

であることに注目して、素数が無限個あることを証明せよ.

■問題 3 ホモトピー同値と基本群に関して以下の問いに答えよ.

- 1. $(10 点)(X, \mathcal{T}_X)$ を位相空間とする. $l \in p \in X$ を基点とするループとし, $f: X \to X$ を連続関数とする. $f \circ l$ はループであることを示せ.また, $f \simeq id_X$ ならば,関数 $f \circ l$ と 関数 l がホモトープであることを示せ.
- 2. $(10 点) (X, \mathcal{T}_X)$ を位相空間とする. 上の問題と同様 l を $p \in X$ を基点とするループとし、 $f: X \to X$ を連続関数かつ $f \simeq id_X$ とする. さらに $X_l = \{x \mid x = l(t) \ (0 \le t \le 1)\}$ 、 $X_{f \circ l} = \{x \mid x = f \circ l(t) \ (0 \le t \le 1)\}$ としてそれぞれ位相は相対位相で定義する. このとき X_l と $X_{f \circ l}$ はホモトピー同値か?
- 3. $(20 点) (X, \mathcal{T}_X)$, (Y, \mathcal{T}_Y) をホモトピー同値な位相空間とし,それぞれ弧状連結であるとする.それらの基本群を $\pi_1(X)$, $\pi_1(Y)$ とするとき(基点のとり方に依存しないことに注意) $\pi_1(X)$, $\pi_1(Y)$ は同型であることを示せ.ただし,必要であれば,任意の連続写像 $f: X \to Y$ に対し,写像 $f_*: \pi_1(X) \to \pi_1(Y)$ を $f_*([l]) = [f \circ l]$ で定義すると, f_* はwell-defined であり,準同型写像となること,つまり $f_*([l] \cdot [m]) = f_*([l]) \cdot f_*([m])$ となることは用いて良い.(よって f_* が全単射であることを示せば十分)

■問題 4 次の複体 *K* について、問いに答えよ.

- 1. $(10 点) Z_r(K), B_r(K) (r = 0,1)$ を求めよ.
- 2. (10 点) 上で求めた $Z_r(K)$, $B_r(K)$ (r=0,1) に基づいて $H_r(K) := Z_r(K)/B_r(K)$ (r=0,1) を定義通りに直接計算することで求めよ.
- 3. (5点) オイラー数を求めよ.
- 4. (15点) 複体 K において,
 - 各0単体 $\langle i \rangle$ に整数 u_i を割り当てたものを K 上における離散的スカラー場,
 - 各1単体 $\langle ij \rangle$ について整数 v_{ij} を割り当てたものを K 上における離散的ベクトル場と考えることにする。また,各1単体 $\langle ij \rangle$ について, $\partial_+\langle ij \rangle := j$, $\partial_-\langle ij \rangle := i$ と定義する。ある離散的ベクトル場 $\{v_{ij}\}$ が与えられたとき,各0単体 $\langle k \rangle$ における流出・流入量の差

$$u_k = \sum_{(i,j)\in\{(p,q)|\partial_-\langle pq\rangle = k\}} v_{ij} - \sum_{(i,j)\in\{(p,q)|\partial_+\langle pq\rangle = k\}} v_{ij}$$
(1)

で定まる離散的スカラー場を離散的ダイバージェンスと呼ぶことにし、ある離散的スカ

ラー場 $\{u_i\}$ がある離散的ベクトル場 $\{v_{ij}\}$ の離散的ダイバージェンスになっているとき, $\{v_{ij}\}$ を $\{u_i\}$ のポテンシャルと呼ぶことにする。例えば、下図のように

$$u_0 = 1, u_1 = 4, u_2 = -8, u_3 = 0, u_4 = 3,$$

 $v_{01} = -1, v_{12} = 3, v_{02} = 2, v_{23} = -1, v_{24} = -2, v_{34} = -1$

とすると、 $\{u_i\}$ は $\{v_{ij}\}$ の離散的ダイバージェンスであるから、 $\{v_{ij}\}$ は $\{u_i\}$ のポテンシャルである。また、K 上の離散的スカラー場 $\{u_i\}$ が与えられたとき、そのポテンシャルは、常に存在するとは限らない。

さて,K に限らない一般の 1 次元複体 \tilde{K} において同様の枠組みを考えたとき, \tilde{K} 上の任意の離散的スカラー場 u (ただし $\sum_i u_i = 0$) に対して常にポテンシャルが存在するためには, \tilde{K} のホモロジー群にどのような条件が必要か.

■問題 5 n 個の反変ベクトル $\{v_1^{\kappa},\ldots,v_n^{\kappa}\}$ と共変ベクトル $\{w_{1},\ldots,w_{n}\}$ が $v_{i}^{\kappa}w_{j}^{\kappa}=\delta_{ij}$ を満たすとき、これらは相反系をなすという.

- 1. (10 点) 反変ベクトル $\{(1,2)^{\intercal},(3,1)^{\intercal}\}$ と相反系をなす共変ベクトル $\{w_{\kappa},w_{\kappa}\}$ を求めよ.
- 2. $(10 点) \mathbb{R}^2$ の $(\{(1,0)^\top,(0,1)^\top\}$ を基底とする) 通常の座標系においてベクトル \mathbf{a} の成分が $(8,1)^\top$ であるとする. このとき $\{(1,2)^\top,(3,1)^\top\}$ を基底ベクトルとする座標系 Σ における \mathbf{a} の成分を求めよ.
- 3. (20 点) 反変ベクトル $\{v_1^{\kappa},\dots,v_n^{\kappa}\}$ と共変ベクトル $\{w_{\kappa},\dots,w_{\kappa}\}$ が相反系をなすとき, $\{v_1^{\kappa},\dots,v_n^{\kappa}\}$ と $\{u_{\kappa},\dots,u_n^{\kappa}\}$ はそれぞれ一次独立であることを示せ.

■問題 6 (Newton 法のアフィン変換不変性) \mathbb{R}^2 におけるある座標系 (κ) 上で実数値関数 $f(x^\kappa)$ を最小化するときに、 $x_{(0)}^\kappa$ を初期点として Newton 法を用いると, $H(x^\kappa)$ を f の Hesse 行列

$$H(x^{\kappa}) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^1 \partial x^1} & \frac{\partial^2 f}{\partial x^1 \partial x^2} \\ \frac{\partial^2 f}{\partial x^2 \partial x^1} & \frac{\partial^2 f}{\partial x^2 \partial x^2} \end{pmatrix}$$

として $x^{\kappa}_{(k+1)}=x^{\kappa}_{(k)}-(H(x^{\kappa}_{(k)}))^{-1}\nabla f(x^{\kappa}_{(k)})$ という列が生成される. いま, $x^{\kappa'}=A^{\kappa'}_{\kappa}x^{\kappa}$ のように座標変換される別の座標系 (κ') 上で関数 $g(x^{\kappa'})=f(A^{\kappa}_{\kappa'}x^{\kappa'})$ を最小化することを考える.

1. (10 点) Hesse 行列 $(H(x^{\kappa}))$ を座標変換すると

$$H'(x^{\kappa'}) = \begin{pmatrix} \frac{\partial^2 g}{\partial x^{1'} \partial x^{1'}} & \frac{\partial^2 g}{\partial x^{1'} \partial x^{2'}} \\ \frac{\partial^2 g}{\partial x^{2'} \partial x^{1'}} & \frac{\partial^2 g}{\partial x^{2'} \partial x^{2'}} \end{pmatrix}$$

である. $x^i x^j \frac{\partial^2 f}{\partial x^i \partial x^j}$ がスカラーとなること,つまり $x^i x^j \frac{\partial^2 f}{\partial x^i \partial x^j} = x^{i'} x^{j'} \frac{\partial^2 g}{\partial x^{i'} \partial x^{j'}}$ を示せ. 2. (10 点) Hesse 行列の逆行列は反変 2 価のテンソルとなることを示せ.

- 3. (20 点) 初期点 $A_{\kappa}^{\kappa'}x_{(0)}^{\kappa}$ を用いて Newton 法を適用すると $A_{\kappa}^{\kappa'}x_{(0)}^{\kappa}$, $A_{\kappa}^{\kappa'}x_{(1)}^{\kappa}$, . . . という列が 生成されることを示せ.