Math 320 Final Notes - Week 10

Christopher Kapic

December 2020

5.3

Definition 1 (differentiability). Let $g: A \to \mathbb{R}$ be a function defined on an interval A. Given $c \in A$, the derivative of g at c is defined by

$$g'(c) = \lim_{x \to c} \frac{g(x) - g(c)}{x - c},$$

provided this limit exists. In this case we say g is differentiable at c. If g' exists for all points $c \in A$, we say that g is differentiable on A.

Theorem 1 (5.2.3). If $g: A \to \mathbb{R}$ is differentiable at a point $c \in A$, then g is continuous at c as well. Proof on page 149.

Theorem 2 (Algebraic Differentiability Theorem - 5.2.4). Let f and g be functions defined on an interval A, and assume both are differentiable at some point $c \in A$. Then,

- (i) (f+g)'(c) = f'(c) + g'(c),
- (ii) (kf)'(c) = kf'(c), for all $k \in \mathbb{R}$,
- (iii) (fg)'(c) = f'(c)g(c) + f(c)g'(c), and
- (iv) $(f/g)'(c) = \frac{g(c)f'(c) f(c)g'(c)}{[g(c)]^2}$, provided that $g(c) \neq 0$.

Proof on page 149.

Theorem 3 (Chain Rule - 5.2.5). Let $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$ satisfy $f(A) \subseteq B$ so that the composition $g \circ f$ is defined. If f is differentiable at $c \in A$ and if g is differentiable at $f(c) \in B$, then $g \circ f$ is differentiable at c with $(g \circ f)'(c) = g'(f(c)) \cdot f'(c)$.

Proof on page 150.

Theorem 4 (Interior Extremum Theorem - 5.2.6). Let f be differentiable on an open interval (a,b). If f attains a maximum value at some point $c \in (a,b)$ (i.e., $f(c) \ge f(x)$ for all $x \in (a,b)$), then f'(c) = 0. The same is true if f(c) is a minimum value.

Proof on page 151.

Theorem 5 (Darboux's Theorem - 5.2.7). If f is differentiable on an interval [a,b], and if α satisfies $f'(a) < \alpha < f'(b)$ (or $f'(a) > \alpha > f'(b)$), then there exists a point $c \in (a,b)$ where $f'(c) = \alpha$.

Proof on page 152.

7.2 - The Definition of the Riemann Integral

Definition 2 (partition, lower sum, upper sum). A partition P of [a,b] is a finite set of points from [a,b] that includes both a and b. The notational convention is to always list the points of a partition $P = \{x_0, x_1, x_2, \ldots, x_n\}$ in increasing order; thus,

$$a = x_0 < x_1 < x_2 < \dots < x_n = b.$$

For each subinterval $[x_{k-1}, x_k]$ of P, let

$$m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}$$
 and $M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\}.$

The lower sum of f with respect to P is given by

$$L(f,P) = \sum_{k=1}^{n} m_k (x_k - x_{k-1}).$$

Likewise, we define the upper sum of f with respect to P by

$$U(f,P) = \sum_{k=1}^{n} M_k(x_k - x_{k-1}).$$

For a particular partion P, it is clear that $U(f, P) \ge L(f, P)$. The fact that this same inequality holds if the upper and lower sums are computed with respect to different partitions is the content of the next two lemmas.

Definition 3 (refinement - 7.2.2). A partition Q is a refinement of a partition P if Q contains all of the points of P; that is, if $P \subseteq Q$.

Lemma 1 (7.2.3). If $P \subseteq Q$, then $L(f, P) \leq L(f, Q)$ and $U(f, P) \geq U(f, Q)$. *Proof on page 218.*

Lemma 2 (7.2.4). If P_1 and P_2 are any two partitions of [a,b], then $L(f,P_1) \leq U(f,P_2)$. Proof on page 219.

Definition 4 (upper integral, lower integral). Let \mathcal{P} be the collection of all possible partitions of the interval [a,b]: The upper integral of f is defined to be

$$U(f)=\inf\{U(f,P):P\in\mathcal{P}\}.$$

In a similar way, define the lower integral of f by

$$L(f) = \sup\{L(f, P) : P \in \mathcal{P}\}.$$

Lemma 3 (7.2.6). For any bounded function f on [a, b], it is always the case that $U(f) \geq L(f)$.

Definition 5 (Riemann Integrability). A bounded function f defined on the interval [a,b] is Riemann-integrable if U(f) = L(f). In this case, we define $\int_a^b f$ or $\int_a^b f(x)dx$ to be this common value; namely,

$$\sum_{a}^{b} f = U(f) = L(f).$$

Theorem 6 (Integrability Criterion - 7.2.8). A bounded function f is integrable on [a,b] if and only if, for every $\epsilon > 0$, there exists a partition P_{ϵ} of [a,b] such that

$$U(f, P_{\epsilon}) - L(f, P_{\epsilon}) < \epsilon$$
.

Proof on page 221.

Theorem 7 (7.2.9). If f is continuous on [a,b], then it is integrable. Proof on page 222.

7.3 - Integrating Functions with Discontinuities

Theorem 8 (7.3.2). If $f:[a,b] \to \mathbb{R}$ is bounded, and f is integrable on [c,b] for all $c \in (a,b)$, then f is integrable on [a,b]. An analysis result holds at the other endpoint.

Proof on page 224.

7.4 - Properties of the Integral

Theorem 9 (7.4.1). Assume $f:[a,b] \to \mathbb{R}$ is bounded, and let $c \in (a,b)$. Then, f is integrable on [a,b] if and only if f is integrable on [a,c] and [c,b]. In this case, we have

$$\int_a^b f = \int_a^c f + \int_c^b f.$$

Proof on page 228.

Theorem 10 (7.4.2). Assume f and g are integrable functions on the interval [a, b].

- (i) The function f + g is integrable on [a, b] with $\int_a^b (f + g) = \int_a^b f + \int_a^b g$.
- (ii) For $k \in \mathbb{R}$, the function kf is integrable with $\int_a^b kf = k \int_a^b f$.
- (iii) If $m \le f(x) \le M$ on [a, b], then $m(b a) \le \int_a^b f \le M(b a)$.
- (iv) If $f(x) \leq g(x)$ on [a,b], then $\int_a^b f \leq \int_a^b g$.
- (v) The function |f| is integrable and $|\int_a^b f| \le \int_a^b |f|$.

Proof on page 230.

Definition 6 (7.4.3). If f is integrable on the interval [a, b], define

$$\int_{b}^{a} f = -\int_{a}^{b} f.$$

Also, for $c \in [a, b]$ define

$$\int_{c}^{c} f = 0.$$

Theorem 11 (Integrable Limit Theorem - 7.4.4). Assume that $f_n \to f$ uniformly on [a,b] and that each f_n is integrable. Then, f is integrable and

$$\lim_{n \to \infty} \int_{a}^{b} f_{n} = \int_{a}^{b} f.$$

Proof on page 232.