2024 / 25

School of Science and Computing

+353 (0)51 302037

☑ Eleanor.Reade@setu.ie

www.wit.ie/schools/science_computing

Module Descriptor

3D Lighting and Rendering (Computing and Mathematics)

3D Lighting and Rendering (A11565)

Short Title: 3D Lighting and Rendering
Department: Computing and Mathematics

Credits: 5 Level: Advanced

Description of Module / Aims

This module looks at the lighting and rendering components of the 3D digital animation pipeline. The module will encompass materials editing, lighting and shadows, and rendering using an industry-standard rendering engine. Students will have the opportunity to explore advanced techniques and effects that may be used to light and render complex 3D scenes and, using pre-existing scene assets, and to produce a photo-realistic and production-quality rendered scene.

Programmes

m stage/so	${ m emester/status}$
COMP-0631 BSc (Hons) in Creative Computing (WD_KCRCO_B) COMP-0631 BSc (Hons) in Multimedia Applications Development (WD_KMULM_B)	4 / 7 / E 4 / 1 / E

Indicative Content

- Principles of light and colour
- Materials and Maps
- 3D lighting including standard, photometric, and HDRI lighting
- Shadows
- Rendering including indirect and global illumination
- Effects including lens and camera shaders

Learning Outcomes

On successful completion of this module, a student will be able to:

- 1. Appraise approaches to managing and creating materials used in 3D rendering.
- 2. Compare standard, photometric and HDRI lighting assemblies.
- 3. Evaluate, in terms of optimisation, techniques used to render shadows in 3D animation.
- 4. Create camera and lens effects in a pre-existing 3D scene.
- 5. Integrate lighting and rendering techniques to manage the production of a short animated scene.

Learning and Teaching Methods

- Interactive and open-forum lectures.
- Class discussions and presentations.
- Problem-based learning activities.
- Self-directed learning.

Learning Modes

Learning Type	F/T Hours	P/T Hours
Lecture	12	
Practical	36	
Independent Learning	87	

Assessment Methods

	Weighting	Outcomes Assessed
Continuous Assessment	100%	
Assignment	40%	1,2,3
Project	60%	3,4,5

Assessment Criteria

- <40%: Unable to interpret and describe key concepts of the specific knowledge domain(s).
- 40%-49%: Be able to interpret and describe key concepts of the specific knowledge domain(s).
- 50%-59%: Ability to discuss key concepts of the specific knowledge domain and ability to discover and integrate related knowledge in other knowledge domains.
- 60%-69%: Be able to solve problems within the specific knowledge domain(s) by experimenting with the appropriate skills and tools.
- 70%–100%: All the above to an excellent level. Be able to analyse and design solutions to a high standard for a range of both complex and unforeseen problems through the use and modification of appropriate skills and tools.

Essential Material(s)

• Lanier, J. Advanced Maya Texturing and Lighting. New York: Sybex, 2015.

Supplementary Material(s)

• Palamar, T. Mastering Autodesk Maya. New York: Sybex, 2016.

Requested Resources

• Computer Lab: BYOD Lab