Class 2a: Review of concepts in Probability and Statistics

Business Forecasting

Summary

- In the last class:
 - We discussed the organization of the course
 - We overviewed forecasting methods
 - We learned about methods of qualitative forecasting
 - o Reference: Forecasting Methods and Applications, chapter 1
- This set of classes:
 - We will start learning about exploratory analysis preparing the forecast
 - We will learn about various data types
 - We will learn how to summarize data graphically
 - We will learn how to summarize data with summary statistics
 - We will learn about comparisons and associations
 - Reference: Forecasting Methods and Applications, chapter 2.1-2.4

Scenario

- Nowadays, many online pharmacies appeared which write prescriptions and make drugs subscriptions
 - Example in Mexico: Choiz
- At the same time, a new wave of very effective anti-diabetes drugs appeared which help to lose weight
 - Example: *Ozempik*
- You are consulting a business which wants to provide subscription services for these drugs in Mexico
- Your boss asks you to do exploratory market research for potential sales forecast

Parameters vs Statistics

You need to know how many people in Mexico have diabetes

Parameter

- Call μ_d the proportion of Mexican population which has diabetes
 - Usually the parameter is an unknown number describing the whole population
 - You want to learn what it is
 - \circ In our example, μ_d is a parameter that you want to learn
 - More generally, parameter describes an aspect of the entire population

Statistic

- But you don't have data on the whole population. At best you can get a sample from a survey
 - So you will try to estimate this parameter with sample
 - Statistic is a guess of the parameter which can be calculated from the sample
 - $\circ~$ You will calculate a statistic $\hat{\mu}_p$ which is the proportion of diabetics in the sample

Parameters vs Statistics

- What is population, sample, parameter and statistic in the following examples?
- You want to know the probability that a user who got a match on tinder will go out on a date with that person. You survey 1000 users and ask them about each match they got if they went on a date. You then calculate the share of dates which ended up in a match for these users.
- You want to know what whether starbucks baristas are faster than Cielito Querido baristas. You go to 10 starbucks and 10 Cielito Querido and measure the time it takes to make a coffee. You then calculate the average time it takes to make a coffee in each of these chains.
- You want to know the average age of people who go to the gym. You go to a gym and ask 100 people about their age. You then calculate the average age of these people.
- You want to know the variance of internet speed during in Mexico City. You visit 500 households and calculate the variance of their internet speed.

Types of Data

Longitudinal Data

- Observations are collected for the same subject (entity) over a period of time
- Same as time series data
- Example: Tracking a company's annual revenue and number of employees over several years

Longitudinal Data Example

Cross-Sectional Data

- Observations are collected at a single point in time
- Example: A survey of customers' satisfaction with a product and likelihood of repurchase at a certain point in time

Cross-Sectional Data Example

Panel Data

- Combines both longitudinal and cross-sectional data
- Observations are collected for multiple subjects over multiple points in time
- Example: Tracking the annual revenue and number of employees of several companies over a few years

Panel Data Example

Q1

Panel data

• Multiple time observation per subject (currency) and multiple subjects

Q2

Cross-sectional data

• Single (time) observation per subject (user), many subjects

Q3

Longitudinal data

• Multiple (time) observations of a single subject

Primary vs Secondary Data

- **Primary data** is original data collected directly from the source for a specific research purpose.
 - Experimental data (if used by team designing the experiment)
 - Survey data (if used by survey team designing the surey)
 - It is customized for a particular research objective
- **Secondary data** is data that has already been collected by someone else for a different purpose but can be used for a new research question or analysis
 - National statisics death certificates
 - National surveys reused by researchers
 - Data from medical records
 - Data on stock market

What kind of data is it?

- Surveys: A company conducts a customer satisfaction survey to gather feedback from its customers regarding their products and services.
- Sales Reports: A business can analyze past sales data from previous years to identify trends and make strategic decisions.
- Interviews: A researcher interviews individuals to understand their opinions on a particular topic, such as political preferences or healthcare choices.
- Census Data: Government census data can be used by researchers to study demographic trends or population characteristics in a specific region
- Observations: An ecologist observes the behavior of a particular species in its natural habitat to gather data for a research project.
- Social Media Data: Companies can analyze social media posts and user engagement data from platforms like Twitter or Facebook to gain insights into customer preferences and sentiment.
- Experiments: Scientists conduct laboratory experiments to test a specific hypothesis and collect data directly from the experiments.
- Academic Journals: Researchers can review published studies and articles to gather data and insights related to their research topic.

Variable Types

Variable Types

We have two general types: Categorical and Numerical variables

Categorical Variables

- Variables that can be divided into one or more groups or categories.
 - Ordinal: These variables can be logically ordered or ranked.
 - Variable: Customer Satisfaction Survey Results
 - Example: Very Unsatisfied, Unsatisfied, Neutral, Satisfied, Very Satisfied
 - Nominal: These variables cannot be ordered or ranked.
 - Variable: Social Media Platforms Used
 - *Example:* Facebook, Instagram, Twitter, LinkedIn, TikTok, Snapchat

Numerical Variables

- Variables that hold numeric value and ordering is possible
 - **Discrete:** These variables can only take certain values
 - *Example*: Number of App Downloads from App Store
 - Example: Number of children you have
 - *Example*: Size of coke products: 0.33L, 0.5L, 1L, 2.25L

Numerical Variables

- Variables that hold numeric value and ordering is possible
 - **Discrete:** These variables can only take certain values
 - *Example*: Number of App Downloads from App Store
 - *Example*: Number of children you have
 - *Example*: Size of coke products
- **Continuous:** These variables can take any value within a range
 - o *Example*: Time spent on a Webpage
 - Example: Exchange rate between MXN and USD

- Continuous: These variables can take any value within a range
 - o Example: Time spent on a Webpage
 - o Example: Exchange rate between MXN and USD

Mexican Health Survey

Representative sample of the Mexican population n=37858

Show 5	∨ entries					
age 🌲	gender	weight 🛊	location_type 🝦	diabetes 🛊	Mother_diabetes 🍦	Difficulty_walking
51	Male	77.4657	Urban	0	1	A lot of difficulty
41	Female	80.0499	Urban	0	0	A lot of difficulty
44	Male	87.1874	Urban	0	1	No difficulty
68	Female	54.9827	Urban	0	0	No difficulty
52	Female	34.3283	Urban	0	0	A lot of difficulty
Showing 1 t	to 5 of 37,858 en	tries		Previous	1 2 3 4 5	5 7,572 Next

- Age: Numerical, Discrete
- Gender: Categorical, Nominal
- Weight: Numerical, Continuous
- Location_type: Categorical, Nominal
- Diabetes: Categorical, Nominal
- *Mother_diabetes*: Categorical, Nominal
- Difficulty_walking: Categorical, Ordinal

Summarizing Data

Graphical summaries

Categorical variables

Frequency Tables

Frequency table: present the absolute frequencies (counts) and relative frequencies (shares) of each category.

Show 8

✓ entries

- ullet Relative frequency of category i: $p_i=rac{n_i}{N}$
 - $\circ \; n_i$ is count of category i
 - $\circ \ N$ is total count in the sample

Show 8					
Location					
Category	n_i	p_i ♦			
Rural	9899	0.261			
Urban	27959	0.739			
Total	37858	1			
Showing 1 to 3 of 3 entries					
Previous 1 Next					

Difficulty Waking					
Category		n_i		p_i	
A lot of difficulty		1639		0.043	
Impossible		183		0.005	
No difficulty		31269		0.826	
Some difficulty		4767		0.126	
Total		37858		1	44

Bar Charts

Bar charts visually represents the frequency count of each category

Bar Charts

Bar charts visually represents the frequency count of each category

More Creative Bar Chart

Pie Charts

Pie chart: Each slice is proportional to the category's frequency

Pie Charts

Pie chart: (Angle of) Each slice is proportional to the category's frequency

My favorite pie chart

NETFLIX

Treemaps

Treemap: each group is represented by a rectangle, which area is proportional to its value.

Data

Show 8 ✓ entries			
Firm &	Revenue 🖣	Industry 🝦	
Apple	274515	Tech	
Microsoft	143015	Tech	
Johnson & Johnson	82483	Health	
JPMorgan Chase	142422	Finance	
Alphabet	182527	Tech	
Pfizer	51907	Health	
Bank of America	85205	Finance	
Intel	77956	Tech	

Treemap

Treemap of Industry Composition

Showing 1 to 8 of 20 entries

2

Numerical variables: Discrete

Dotplot: present one dot for each observation. Stacks observation of similar value

- Clearly see the distribution and the outliers
- Useless for larger data

Numerical variables: Discrete

Frequency Distribution

Suppose we survey people age 30-50 how many partners they had in their life.

- What's the distribution of partners?
- Calculate relative frequencies
- Show them on a bar graph

Data

Show 6 • entr	ies				
Number_of_partners		n_i	p_i		
0		5	0.033		
1		9	0.06		
2		13	0.087		
3		22	0.147		
4		27	0.18		
5		19	0.127		
Showing 1 to 6 of 22 entries					

Previous

2

Next

Distribution

Frequency Distribution

We can also show frequency of age of people who have diabetes from our data

Frequency Distribution

Compare it to the age distribution in the adult population (20+)

Frequency of Age

Numerical Variables: Continuous

• What about continuous values? Why can't we do the same?

Most values never repeat, so they have very low relative frequency

Histograms

Solution: Group similar values together

• Construct intervals and show how many observations are in a given interval

Process

- 1. Decide how many intervals
- 2. And how wide they are
- 3. Then calculate the absolute and relative frequencies of each interval
- 4. Plot it with bars

My approach

- I want k (example k=5) equal intervals
- ullet Divide the range of the data into k equal intervals
 - Range is max-min of the data

```
# Calculate max and min
max_value <- max(Health_data$weight)
min_value <- min(Health_data$weight)

# Calculate the difference
range <- max_value - min_value</pre>
```

```
## [1] "Range= 190.8078 - 30.3745 = 160.4333"
```

- With 5 intervals, each will be 32kg wide
- The first one starts at the minimum value (30.3745)
- The last one ends at the maximum value (190.8078)
- Calculate how many observations I have in each interval and what's the relative frequency

Histograms

- Midpoint represents middle of the interval center of the bar
- ullet P_i is cumulative frequency: share of observations in this or smaller interval
 - \circ Example: $P_{(62.46-94.55)} = 0.911$
 - o Interpretation: 91.1% of people have weight lower than 94.55kg

Show 6 ✓	entries			
Interval 🔷	Midpoint 🌲	n_i	p_i	P_i ♦
30.37 - 62.46	46.42	10068	0.2659411	0.2659411
62.46 - 94.55	78.5	24430	0.6453061	0.9112472
94.55 - 126.63	110.59	3206	0.0846849	0.9959321
126.63 - 158.72	142.68	143	0.0037773	0.9997094
158.72 - 190.81	174.76	11	0.0002906	1
Showing 1 to 5 of 5 entries			evious 1	Next

Histogram with 10 Classes

Now, let's increase the number of classes to 10.

Show 6 ✓ entries				
Interval 🌲	Midpoint 🖣	n_i ♦	p_i	P_i
30.37 - 46.42	38.4	796	0.0210259	0.0210259
46.42 - 62.46	54.44	9272	0.2449152	0.2659411
62.46 - 78.5	70.48	15742	0.415817	0.6817581
78.5 - 94.55	86.53	8688	0.2294891	0.9112472
94.55 - 110.59	102.57	2661	0.070289	0.9815362
110.59 - 126.63	118.61	545	0.0143959	0.9959321
Showing 1 to 6	of 10 entries	Previous	1 2	Next

Histogram with 100 Classes

Show 6				
Interval 🌲	Midpoint 🖣	n_i ♦	p_i	P_i ♣
30.37 - 31.98	31.18	8	0.0002113	0.0002113
31.98 - 33.58	32.78	11	0.0002906	0.0005019
33.58 - 35.19	34.38	7	0.0001849	0.0006868
35.19 - 36.79	35.99	16	0.0004226	0.0011094
36.79 - 38.4	37.59	24	0.0006339	0.0017433
38.4 - 40	39.2	24	0.0006339	0.0023772
Showing 1 to 6 of 100 entries				
Previ	ous 1 2	3	4 5	17
				Next

- Helps to see the distribution and outliers
- Is more always better?
- With smaller intervals, histogram tends to the **probability density function** 72 / 90

Probability Density Function (PDF)

Definition

- **Probability Density Function (pdf)** describes the probability distribution of a continuous random variable.
- It **does not** give probability at a given value (this is always 0 for continous variable)
- It shows which in which intervals that variable the most often appears
- It is used to calculate the probability of the random variable being in a given interval
- Area under it always adds up to 1

Example

We have a random variable X representing the weight of adults in Mexican population. The PDF of X helps to describe the likelihood of finding a person of a specific weight within a range (e.g., between 58kg and 60kg).

To calculate the probability of X falling within a specific range [a, b], you need to integrate the PDF from a to b:

$$P(a \le X \le b) = \int_a^b f(x) dx$$

To calculate the probability of X falling within a specific range [a, b], you need to integrate the PDF from a to b:

$$P(a \le X \le b) = \int_a^b f(x) \, dx$$

To calculate the probability of X falling within a specific range [a, b], you need to integrate the PDF from a to b:

$$P(a \le X \le b) = \int_a^b f(x) dx$$

To calculate the probability of X falling within a specific range [a, b], you need to integrate the PDF from a to b:

$$P(a \le X \le b) = \int_a^b f(x) dx$$

Distribution Shapes: Modality

Which is uniformaly distributed

- 1. weights of adult females
- 2. salaries of a random sample of people from CDMX
- 3. House prices in CDMX
- 4. birthdays of classmates (day of the month)

Distribution Shapes: Skewness

Age at death

We want to know how many people weight more than 100kg

Cumulative Distribution Function (CDF)

The Cumulative Distribution Function (CDF) gives the probability that a random variable X will take on a value less than or equal to a specific value.

For a continuous random variable X with PDF f(x), the CDF F(x) is defined as:

$$F(x) = \int_{-\infty}^{x} f(t) dt = P(X < x)$$

Characteristics:

- The CDF starts (for minus infinity) at 0 (minimum)
- It approaches 1 as x approaches infinity (maximum)
- It is non decreasing
- It is right continuous

Example 1: Standard Normal

$$F(-2) = \int_{-\infty}^{-2} f(t) \, dt = P(X < -2) = 0.02$$

Example 2: Standard Normal

$$F(0.2) = \int_{-\infty}^{0.2} f(t) \, dt = P(X < 0.2) = 0.58$$

Example 3: Standard Normal

$$F(3.2) = \int_{-\infty}^{3.2} f(t) \, dt = P(X < 3.2) = 0.99$$

Empirical CDF

We can do similar thing with our weight data.

$$ECDF(x) = rac{\sum I(w_i < x)}{N} = rac{ ext{Number of people with weight lower than x}}{N}$$

- ullet $I(w_i < x) = 1$ if weight of person i is lower than x (Indicator Function)
- *N* is total number of people (*Sample Size*)
- Share of people with weight lower than x

So how do we calculate share of people with weight>100kg?

$$P(weight > 100) = 1 - P(weight < 100) = 1 - ECDF(100)$$