The risk-free rate in heterogeneous-agent incomplete-insurance economies

Huggett, 1993, JEDC

January 2022

1 Key Question

- Why has the average real risk-free interest rate been less than one percent? representative agent model have been unsuccessful
- He investigated the conjecture that market imperfections are important for determining the risk-free rate, specifically the importance of idiosyncratic shocks and incomplete insurance
- Why this structure generates a low risk-free rate? With a credit limit, agents are restricted in the level of their indebtedness. However, agents are not restricted from accumulating large credit balances. A low risk-free rate is needed to persuade agents not to accumulate large credit balances so that the credit market can clear

2 Model

2.1 Summary

- Heterogeneous-agent incomplete-insurance models of asset pricing
- Pure **exchange economy** where agents experience (uninsurable) idiosyncratic endowment shocks and smooth consumption by holding a single risk-free asset(credit balance)
- Each agent holds a credit balance with a central credit authority
- The credit balance must always remain above a fixed credit limit
- Agent accumulates credit balances in good times and runs down credit balances in bad times

2.2 Structure

- A continuum of agents of total mass equal to one
- Each period each agent receives an endowment of the one perishable consumption good, $high(e_h)$ or $low(e_l)$, $E = \{e_h, e_l\}$
- Endowment follows Markov process with stationary transition probability
- Preference

$$E[\sum_{t=0}^{\infty} \beta^t u(c_t)] \text{ where } \beta \in (0,1)$$
$$u(c) = \frac{c^{1-\sigma}}{1-\sigma} \text{ where } \sigma > 1$$

- To obtain a credit balance of a' units next period, an agent must pay a'q goods this perid, where q is the price of next-period credit balances(Let q > 0 be the constant price of credit balances each period)
- Credit balances must always remain above a credit limit a (a < 0)
- Budget constraint: chooses consumption c and next-period credit balances a', given credit balance a and endowment e

$$c + a'q \le a + e$$
 where $c \ge 0$ and $a' \ge \underline{a}$

- Individual state vector and state space: $x = (a, e) \in X = A \times E$ where $A = [\underline{a}, \infty), E = e_h, e_l$ and $e_h > e_l$
- Bellman equation

$$v(x;q) = \max_{(c,a') \in \Gamma(x;q)} u(c) + \beta \sum_{e'} v(a',e';q) \pi(e'|e)$$

where

$$\Gamma(x;q) = \{(c,a') : c + a'q \le a + e; c \ge 0; a' \ge a\}$$

3 Equilibrium

- Probability measure
 - Probability measure defined on subsets of the individual state space
 - Let ψ be a probability measure on (S, β_s) where $S = [\underline{a}, \overline{a}] \times E$ and β_s is the Borel σ algebra
 - For $B \in \beta_s$, $\psi(B)$ indicates the mass of agents whose individual state vectors lie in B

- Since the question at hand concerns the average interest rate, a useful simplification is that the probability measure ψ and the price of credit q remain unchanged over time
- This paper adopts the stationary recursive equilibrium structure described in Lucas(1980), concentrating on stationary equilibria
- For a probability measure ψ to be stationary or unchanged over time, a transition function P, $P: S \times \beta_s \to [0, 1]$, is needed
- -P(x,B) is the probability that an agent with state x will have an individual state vector lying in B next period

• Definition

- A stationary equilibrium for this economy is $(c(x), a(x), q, \psi)$ satisfying:
 - 1. c(x) and a(x) are optimal decision rules, given q
 - 2. Markets clear: (i) $\int_S c(x)d\psi = \int_S ed\psi$, (ii) $\int_S a(x)d\psi = 0$
 - 3. ψ is a stationary probability measure: $\psi(B) = \int_S P(x,B) d\psi$ for all $B \in \beta_s$
- Conditions say
 - 1. Agents optimize
 - 2. Consumption and endowment averaged over the population are equal and that credit balances averaged over the population are zero
 - 3. The distribution of agents over states is unchanging

4 Computation

- e_h, e_l : earnings when employed and not employed calibrate the endowment process to match measures of the variability of labor earnings and the time duration in a nonemployed state
- As there are six model periods in one year, the discount factor(β) on an annual basis is 0.96
- Risk aversion coefficient is from Mehra and Prescott(1985)
- \bullet <u>a</u> is selected to examine the sensitivity of the results to different credit limits
- A credit limit of -5.3 is equal to one year's average endowment
- Computation Method

_

Parameter	Value	-
e_h	1.0	-
e_l	0.1	-
$\pi(e_h e_h)$	0.925	-
$\pi(e_h e_l)$	0.5	-
β	0.99322	discount factor
σ	1.5	risk aversion coefficient
<u>a</u>	$\in \{-2, -4, -6, -8\}$	credit limit

5 Result

5.1 Optimal decision rules

• This figure graphs the decision rules $a(a,e_h)$ and $a(a,e_l)$ on a 45° line diagram, where the graph of $a(a,e_h)$ always lies above the graph of $a(a,e_l)$

Fig. 1. Optimal decision rule.

Fig. 2. Stationary distribution.

Table 1 Coefficient of relative risk aversion $\sigma = 1.5$.

Credit limit	Interest rate	Price
(<u>a</u>)	(r)	(q)
- 2	- 7.1%	1.0124
- 4	2.3%	0.9962
- 6	3.4%	0.9944
- 8	4.0%	0.9935

Table 2 Coefficient of relative risk aversion $\sigma = 3.0$.

Credit limit	Interest rate	Price
(<u>a</u>)	(r)	(q)
- 2	- 23 %	1.0448
- 4	- 2.6%	1.0045
- 6	1.8%	0.9970
- 8	3.7%	0.9940