

EDGE JANUARY 8-19

Regression and Demand Forecasting

Hakim Qahtan

Department of Information and Computing Sciences
Utrecht University

Regression

Today

Demand Forecasting

Evaluation

Supervised Learning

Supervised Learning

Regression vs. Classification

Regression

- Algorithms attempt to estimate the mapping function f from the input variables x to numerical or continuous output variables y
- Given a dataset about house prices predict the price of a given house

Classification

- Algorithms attempt to estimate the mapping function f from the input variables x to discrete or categorical output variables y
- Houses dataset predict if the selling price is more or less than the recommended price

Regression

Regression

- Given the values of inputs X and the corresponding output Y belongs to the set of real values R, predict output accurately for new input.
- Formally:
 - Given:
 - A set of N observations $\{x_n\}_{n=1...N}$ with their corresponding target values $\{y_n\}_{n=1...N}$
 - Goal:
 - Predict the value of y_{n+1} for a give x_{n+1}
- Predictive technique where the target variable to be estimated is continuous

Regression (Cont.)

Let D denote a dataset containing N observations,

$$D = \{(x_i, y_i) | i = 1, 2, ..., N\}$$

- x_i corresponds to the values of attributes of the i-th observation.
 - These are called explanatory variables and can be discrete or continuous.
- y_i corresponds to the target variable.
- Target: find a function that can minimize the error between the predicted and the actual values
 - The error can be measured as the sum of absolute or squared error

sum absolute error(SAE) =
$$\sum_{i} |y_i - f(x_i)|$$

sum absolute error(SAE) =
$$\sum_{i} |y_i - f(x_i)|$$

sum squared error (SSE) = $\sum_{i} (y_i - f(x_i))^2$

What is Regression?

- Regression: making predictions about real-world quantities.
 - What would be the price of a product after producing a new version?
 - How much the discount will affect the sales volume?
 - How much the weather will affect the sales of the restaurants?
 - How many students are expected to show up in a lecture?
 - •
- Remember: regression is a supervised machine learning model

Regression – More Examples

- Processes, memory → Power consumption
- Protein structure → Energy
- Heart-beat rate, age, speed, duration → Fat
- Oil supply, consumption, etc. → Oil price
- ...
- **Definition**: Regression is the task of learning a target function f that maps each attribute set x into a continuous-valued output y.

Continuous Variables

Regression – Examples

Given $\{x_n, y_n\}_{n=1...N}$ Predict the value of y_{n+1} for a give x_{n+1}

Regression – Examples

• Prediction $\hat{y}_i = w_0 + w_1 x_{i,1} + w_2 x_{i,2}$

$$= (1 \ x_{i,1} \ x_{i,2}) \begin{pmatrix} w_0 \\ w_1 \\ w_2 \end{pmatrix}$$

• This is called linear regression as the function is linear in the parameters $w_{0,}$ w_1 and w_2 .

Simple Linear Regression

Given a set of points (x_i, y_i) such as the points in the scatterplot, find the best fitting line

$$f(x_i) = \omega_0 + \omega_1 x_i$$

such that:

$$SSE = \sum_{i} (y_i - f(x_i))^2$$

$$=\sum_{i}(y_i-\omega_0-\omega_1x_i)^2$$

is minimized

Simple Linear Regression (Cont.)

- The above optimization problem can be solved by:
 - 1. Taking the partial derivatives of SSE with respect to ω_0 and ω_1
 - 2. Setting $\frac{\partial SSE}{\partial \omega_0}$ and $\frac{\partial SSE}{\partial \omega_1}$ to 0
 - 3. Solving the system of linear equations

Since:
$$SSE = \sum_{i} (y_i - \omega_0 - \omega_1 x_i)^2$$

Then
$$\frac{\partial SSE}{\partial \omega_0} = -2\sum_i (y_i - \omega_0 - \omega_1 x_i) = 0$$

And
$$\frac{\partial SSE}{\partial \omega_1} = -2\sum_i x_i (y_i - \omega_0 - \omega_1 x_i) = 0$$

Simple Linear Regression (Cont.)

• The equations can be summarized by the normal equation:

$$\begin{pmatrix} N & \sum_{i} x_{i} \\ \sum_{i} x_{i} & \sum_{i} x_{i}^{2} \end{pmatrix} \begin{pmatrix} \omega_{0} \\ \omega_{1} \end{pmatrix} = \begin{pmatrix} \sum_{i} y_{i} \\ \sum_{i} x_{i} y_{i} \end{pmatrix}$$

Example

Consider the following dataset

x														
y	7	4	9	8	9	8	9	7	11	11	10	13	14	13

$$\sum_{i} x_{i} = 57.7$$

$$\sum_{i} x_{i}^{2} = 276.59$$

$$\sum_{i} y_{i} = 133$$

$$\sum_{i} x_{i}y_{i} = 598.7$$

Example (Cont.)

x	1	2	2.5	2	4	4	4	4.5	4.7	5	5	6	6	7
y	7	4	9	8	9	8	9	7	11	11	10	13	14	13

$$\sum_{i} x_{i} = 57.7 \qquad \sum_{i} x_{i}^{2} = 276.59 \qquad \sum_{i} y_{i} = 133 \qquad \sum_{i} x_{i} y_{i} = 598.7$$

$$\begin{pmatrix} 14 & 57.7 \\ 57.7 & 276.59 \end{pmatrix} {\omega_{0} \choose \omega_{1}} = {133 \choose 598.7}$$

By solving the equations, we get:

$$\omega_0 \approx 4.13$$
 and $\omega_1 \approx 1.3$

Hence:

$$f(x_i) = 1.3 x_i + 4.13$$

Simple Linear Regression (Cont.)

A general solution for the normal equation can be found as follows:

$$\omega_o = \bar{y} - \omega_1 \bar{x}$$

and

$$\omega_1 = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sum_i (x_i - \bar{x})^2}$$

where

 \bar{x} , \bar{y} are the mean (average) values for the vectors x, y

Multiple Linear Regression

- Fitting d-dimensional hyperplane to the d variables
- Simple, yet powerful
- If the relation between the response and independent variables is nonlinear, we can use non-linear transformation of the variables
- E.g. x_i^2 instead of x_i

Polynomial Regression

- Suitable when the relationship between the response and the independent variables is non-linear
- Higher order polynomials complicate the model
- May cause model overfitting
- Increase the computational complexity
- Case Study: Predicting the price of a new housing market – check the provided notebook

Linear Regression in Python


```
from sklearn.linear model import LinearRegression
import matplotlib
df = pd.read csv('sample data/diabetes data.csv')
matplotlib.rcParams.update({'font.size': 18})
x = np.array(df["BMXWAIST"]).reshape(-1,1)
y = np.array(df["BMXWT"]).reshape(-1,1)
mdl = LinearRegression()
mdl.fit(x, y)
test = np.arange(min(x), max(x)+4).reshape(-1,1)
test hat = mdl.predict(test)
```


Polynomial Regression in Python


```
x1 = np.array(df["BMXWAIST"])
y1 = np.array(df["BMXWT"])

poly_mdl = numpy.poly1d(numpy.polyfit(x1, y1, 3))

te = np.arange(min(x), max(x))

Test_hat = poly_mdl(test)
```

Try Larger Degrees

Coffee Break

Demand Forecasting

Decisions that Require Forecasting

- What products to produce?
- How many people to hire?
- How many units to purchase?
- How many units to produce?
- How many items to order?
- And so on.....

Common Characteristics of Forecasting

Forecasts are rarely perfect

Forecasts are more accurate for aggregated data than for individual items

Forecast are more accurate for shorter than longer time periods

Why Forecasting is Important?

Methods of Forecasting the Trend

- Naïve Forecasting
- Simple Mean
- Moving Average
- Weighted Moving Average
- Exponential Smoothing
- Regression models

Methods of Forecasting the Trend – Example

- Determine forecast for periods 11
 - Naïve forecast
 - Simple average
 - 3- and 5-period moving average
 - 3-period weighted moving average with weights 0.5, 0.3, and 0.2
 - Exponential smoothing with alpha=0.2 and 0.5

Period	Orders
1	122
2	91
3	100
4	77
5	115
6	58
7	75
8	128
9	111
10	88

Methods of Forecasting the Trend – Naïve Forecasting

 Next period's forecast = previous period's actual

$$\hat{y}_{t+1} = y_t$$

 \hat{y}_t represents the predicted value at time t

y represents the actual value at time t

Period	Orders	Naïve Forecast
1	122	
2	91	122
3	100	91
4	77	100
5	115	77
6	58	115
7	75	58
8	128	75
9	111	128
10	88	111
11		88

Methods of Forecasting the Trend – Simple Average

 Next period's forecast = average of previously overserved data

$$\hat{y}_{t+1} = \frac{y_1 + y_2 + \dots + y_t}{t}$$

Period	Orders	Simple Average
1	122	
2	91	122
3	100	107
4	77	104
5	115	98
6	58	101
7	75	94
8	128	91
9	111	96
10	88	97
11		97

Methods of Forecasting the Trend – Moving Average

• Next period's forecast = simple average of the last k periods

$$\hat{y}_{t+1} = \frac{y_{t-k+1} + y_{t-k+2} + \dots + y_t}{k}$$

- Also called Rolling Window
- A smaller k makes the forecast more responsive
- A larger k makes the forecast more stable

			FOR ALL
Period	Orders	Moving Average (k = 3)	Moving Average (k = 5)
1	122		
2	91		
3	100		
4	77	104	
5	115	89	
6	58	97	101
7	75	83	88
8	128	83	85
9	111	87	91
10	88	105	97
11		109	92
			33

Methods of Forecasting the Trend – Weighted Moving Average

 Next period's forecast = weighted average of the last k periods

$$\hat{y}_{t+1} = c_1 y_{t-k+1} + \dots + c_k y_t$$

With

$$c_1 + c_2 + \dots + c_k = 1$$

We take $c_1 = 0.2$, $c_2 = 0.3$ and $c_3 = 0.5$

Period	Orders	Weighted Moving Average (k = 3)
1	122	
2	91	
3	100	
4	77	102
5	115	87
6	58	101
7	75	79
8	128	78
9	111	98
10	88	109
11		103

Methods of Forecasting the Trend – Exponential Smoothing

 Next period's forecast = weighted average of the previous reading and the history

$$\hat{y}_{t+1} = \alpha y_t + (1 - \alpha)\hat{y}_t$$

$$\hat{y}_3 = 0.2 * 91 + 0.8 * 122 = 116$$

- A smaller α makes the forecast more **stable**
- A larger α makes the forecast more **responsive**

Orders	Exponential Smoothing(α = 0.2)	Exponential Smoothing($\alpha = 0.5$)
122		
91		
100	116	107
77	113	104
115	106	91
58	108	103
75	98	81
128	93	78
111	100	103
88	102	107
	99	98
	122 91 100 77 115 58 75 128 111	Smoothing($\alpha = 0.2$) 122 91 100 116 77 113 115 106 58 108 75 98 128 93 111 100 88 102

Methods of Forecasting the Trend – Regression Models

- Training dataset
 - Include the set of features (explanatory variables) and the target variable
- Train the regression model
 - Find the best estimation of the parameters

•
$$f(x) = w_0 + w_1 x_1 + \dots + w_n x_n$$
 where $x = (x_1, x_2, \dots, x_n)$

• Predict the value of the target variable for the new incoming record

Methods of Forecasting the Trend – Regression Models


```
from sklearn.linear model import LinearRegression
import matplotlib
df = pd.read csv('sample data/diabetes data.csv')
matplotlib.rcParams.update({'font.size': 18})
x = np.array(df["BMXWAIST"]).reshape(-1,1)
y = np.array(df["BMXWT"]).reshape(-1,1)
mdl = LinearRegression()
mdl.fit(x, y)
test = np.arange(min(x), max(x) + 4).reshape(-1, 1)
test hat = mdl.predict(test)
```


Coffee Break

Evaluation

Forecast Accuracy

 Tests of forecast accuracy are based on the difference between the forecast of the variables' values at time t and the actual value at the same time point t

The closer the two to each other ⇒ the smaller the forecast error,
 i.e. better forecast

Forecast Accuracy – Mean Squared Error (MSE)

The MSE statistic is defined as:

$$MSE = \frac{\sum_{t=T_1}^{T} (y_t - \hat{y}_t)^2}{T - T_1 + 1}$$

- T is the total number of samples in the time series
- T_1 the index of the first value to be forecast
- \hat{y}_t is the predicted value at time t
- y_t is the actual value at time t
- Another popular metric: Root Mean Squared Error (RMSE) = \sqrt{MSE}

Forecast Accuracy – More Metrics

• The Mean Absolute Error (MAE):

$$MAE = \frac{\sum_{t=T_1}^{T} |(y_t - \hat{y}_t)|}{T - T_1 + 1}$$

• It is also known as Mean Absolute Deviation (MAD)

Tracking Signal (TS)

$$TS = \frac{\sum_{t=T_1}^{T} (y_t - \hat{y}_t)}{MAE}$$

R-Square

• R-Square (R^2) is defined as:

$$R^{2} = 1 - \frac{\sum_{i} (f(x_{i}) - y_{i})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}}, \qquad \hat{y}_{i} = f(x_{i})$$

- R^2 close to 1 means that the data fits well to the regression line
- $\sum_{i} (f(x_i) y_i)^2$ is called the residual sum of squares
- $\sum_{i} (y_i \bar{y})^2$ is called the total sum of squares.

R-Square

• When adding more explanatory variables, the value of \mathbb{R}^2 increases so it is adjusted using the formula

Adjusted
$$R^2 = 1 - \left(\frac{N-1}{N-d-1}\right)(1-R^2)$$

where N is the number of data points and d+1 is the number of parameters of the regression model

Wrap-Up

 Summerize what you learned today in 2minutes

Thank You

