

XC6206 系列

线性稳压器

■ 产品简介

XC6206 系列是高纹波抑制率、低功耗、低压差,具有过流和短路保护的CMOS降压型电压稳压器。这些 器件具有很低的静态偏置电流(6.0µA Typ.),它们能在输入、输出电压差极小的情况下提供250mA的输出 电流,并且仍能保持良好的调整率。由于输入输出间的电压差很小和静态偏置电流很小,这些器件特别适 用于希望延长电池寿命的电池供电类产品,如计算机、消费类产品和工业设备等。

■ 产品特点

- 高精度输出电压: A档: ±1%, B档: ±2.5% 最高输入电压可达 8V
- 输出电压: 1.5V~5.0V(步长 0.1V)
- 极低的静态偏置电流(Typ. =6.0µ A)
- 低的温度调整系数

- 带载能力强: 当 Vin=4. 3V 且 Vout=3. 3V 时, Iout=250mA
 - 可以作为调整器和参考电压来使用
 - 输入稳定性好: Typ. 0.03%/V
 - 封装形式: SOT89-3、SOT23-3

■ 产品用途

- 电池供电系统
- 无绳电话设备
- 无线控制系统
- 便携/手掌式计算机

- 便携式消费类设备
- 便携式仪器
- 汽车电子设备
- 电压基准源

■ 封装形式和管脚定义功能

		管脚序			
	P 封装	M3封装	P1 封装	管脚	功能说明
	形式	形式	形式	定义	切形奶奶
Ī	S0T23-3	S0T89-3	S0T89-3		
	1	1	2	VSS	芯片接地端
Ī	2	3	1	VOUT	芯片输出端
	3	2	3	VIN	启动输入端

■ 型号选择

名	称	型号	最高输入电压(V)	输出电压(V)	容差	封装形式
XC62	06XXX	XC6206Pxx	8	1.5, 1.8, 2.5, 2.7, 3.0, 3.3, 3.6, 4.4, 5.0	<u>+</u> 3%	TO92 SOT89-3 SOT23-3

型号选择说明: XXX-第1个"X"封装形式, P、M3、P1; 第2个"XX"输出电压值。 如: XC6206P30, 就是 3.0V 输出电压, SOT23-3 封装。

■ 功能框图

■ 极限参数

项目	符号		参数	极限值	单位
电压	Vin	输	入电压	9	V
电压	Vout	输	出电压	Vss-0.3 ~Vout+0.3	V
电流	Iout	输	出电流	500	mA
T-1, \$1	DD	SOT23	具十 ム次 14 14	300	W
功耗	PD	S0T89-3	最大允许功耗	500	mW
	Tw	工	作温度	-25~+80	$^{\circ}$
温度	Tc	存	储温度	-40~+125	$^{\circ}$
	Th	焊	接温度	260	°C,10s

■ 电学特性 (Cin=Cout=10uF,Ta=25°C除特别指定)

特性	符号	条件		最小值	典型值	最大值	单位
输出电压	V _{OUT} (E)	$I_{OUT}=1$ mA, $V_{IN}=V_{OUT}(T)+1$ V		V _{OUT} (T) *0. 98	V _{OUT} (T)	V _{OUT} (T) * 1.02	V
最大输出电流	$I_{ ext{OUT}}$ (max)	$V_{IN}=V_{OUT}(T)+$	1V	100			mA
	Vdrop	I _{OUT} =50mA	$1.5V \leqslant V_{OUT}(T) \leqslant 2.5V$		200	280	mV
跌落压差			2. $6V \le V_{OUT}(T) \le 3.3V$		160	240	
			3. $4V \leq V_{OUT}(T) \leq 5.5V$		120	200	
静态电流	$I_{ ext{SS}}$	$V_{IN} = V_{OUT}(T) + 1V$			7		μA
负载稳定度	$\Delta V_{ ext{OUT}}$	$V_{\text{IN}} = V_{\text{OUT}}(T) + 1V$, $1\text{mA} \leq I_{\text{OUT}} \leq 80\text{mA}$			20		mV
输入稳定度	$\Delta V_{OUT} / (\Delta V_{IN} - V_{OUT})$	I_{OUT} =1mA, V_{OUT} (T) +0.5V \ll $V_{\text{IN}} \ll$ 5.5V			0. 1	0. 2	%/V
输出电压 温度系数	ΔV _{OUT} /(ΔTa •V _{OUT})	$V_{\text{IN}} = V_{\text{OUT}}(T) + 1V$, $I_{\text{OUT}} = 10 \text{mA}$ $-40 ^{\circ}\text{C} \leq \text{Ta} \leq 85 ^{\circ}\text{C}$			±100		ppm/°C
输入电压	$ m V_{IN}$			1.8		8.0	V
纹波抑制比	PSRR	V_{IN} = $[V_{OUT}(T)+1]V$ +1 V_p -pAC I_{OUT} =10mA, f=1kHz			40		dB
短路电流	Ishort	$V_{\text{IN}} = V_{\text{OUT}}(T)$	+1.5V , V _{OUT} =V _{SS}		30		mA
过流保护电流	Ilimt	$V_{IN} = V_{OUT}(T)$	+1.5V		380		mA

注:

- 1、 Vour (T): 规定的输出电压。
- 2、 V_{OUT} (E) : 有效输出电压 (即当 I_{OUT} 保持一定数值, V_{IN} = (V_{OUT} (T)+1.0V)时的输出电压)。
- 3、Iout (max): V_{IN}=Vout (T)+1V,缓慢增加输出电流,当输出电压≤Vout (E)*95%时的电流值。
- 4、 $Vdrop=V_{INI}-V_{0UT}$ (E) s : $V_{INI}=$ 逐渐减小输入电压, 当输出电压降为 V_{0UT} (E) 1 的 98%时的输入电压。

 V_{OUT} (E) $_{S}=V_{OUT}$ (E) *98%

 V_{OUT} (E) 1=当 V_{IN} = $V_{\text{OUT}}(T)$ +1V , Iout=某一数值时的输出电压值。

■ 测试电路

■ 应用电路

1、基本电路

2、大输出电流正电压型电压调整器

3、提高输出电压值电路(1)

Vout=Vxx(1+R2/R1)+IssR2

4、提高输出电压电路(2)

5、恒流调整器

Iout=Vxx/RA+Iss

6、双输出

特性曲线图

1、输出电压--输出电流(负载电流增加时)

3、Dropout 电压和输出电流

4、Dropout 电压和输出电压

5、输出电压和温度

6、纹波抑制

7、瞬态响应

输入过渡响应特性

负载过渡输入响应特性

■ 封装信息

SOT-89-3

符号	最小值(mm)	最大值(mm)	
Α	1.400	1.600	
ь	0.320	0.520	
b1	0.360	0.560	
С	0.350	0.440	
D	4.400	4.600	
D1	1.400	1.800	
E	2.300	2.600	
E1	3.940	4.250	
e	1.500TYP		
e1	2.900	3.100	
L	0.900	1.100	

SOT-23-3

Sumba I	Dimensions In	Millimeters	Dinensions	In Inches
Symbol	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
c	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.950(BSC)		0.037(B	SC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	O°	8°	O _o	81