

Outline and Reading

- Divide-and-conquer paradigm
- Review Merge-sort
- Recurrence Equations
 - Iterative substitution
 - Recursion trees
 - Guess-and-test
 - The master method
- Integer Multiplication

Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data S in two or more disjoint subsets S₁, S₂, ...
 - Recur: solve the subproblems recursively
 - Conquer: combine the solutions for S_1 , S_2 , ..., into a solution for S
- The base case for the recursion are subproblems of constant size
- Analysis can be done using recurrence equations

AAD CSE SRMAP

Merge-Sort Review

- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S_1 and S_2 of about n/2 elements each
 - **Recur:** recursively sort S_1 and S_2
 - Conquer: merge S_1 and S_2 into a unique sorted sequence

Algorithm mergeSort(S, C)Input sequence S with nelements, comparator COutput sequence S sorted according to Cif S.size() > 1 $(S_1, S_2) \leftarrow partition(S, n/2)$ $mergeSort(S_1, C)$ $mergeSort(S_2, C)$ $S \leftarrow merge(S_1, S_2)$

Iterative Substitution

In the iterative substitution, or "plug-and-chug," technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern: T(n) = 2T(n/2) + bn

$$= 2(2T(n/2^2)) + b(n/2)) + bn$$

$$=2^2T(n/2^2)+2bn$$

$$=2^3T(n/2^3)+3bn$$

$$=2^4T(n/2^4)+4bn$$

$$=2^{i}T(n/2^{i})+ibn$$

Note that base, T(n)=b, case occurs when $2^{i}=n$. That is, i = log n.

$$\bullet$$
 So, $T(n) = bn + bn \log n$

◆ Thus, T(n) is O(n log n).

AAD CSE SRMAP

The Recursion Tree

Draw the recursion tree for the recurrence relation and look for a pattern:

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn & \text{if } n \ge 2 \end{cases}$$

Total time = $bn + bn \log n$ (last level plus all previous levels)

AAD CSE SRMAP

6