Table of Contents

	FEST PROBLEMS FOR 2D RECTANGULAR STRIP PACKING: BENCHMARK PROBLEMS IN LITERATURE	2
A.1	Overview of Rectangular Test Problems	2
A.2	Test Problems	3
B.	REFERENCES	F

A.Test Problems for 2D Rectangular Strip Packing: Benchmark Problems in Literature

A.1 Overview of Rectangular Test Problems

Description of table entries:

reference: publication in which test problem has been used

name: name which the problem is referred to in the current work

size: number of items

shapes: geometric shape type which the problem consists of

source: source where the co-ordinates used for the experiments in this work have been obtained from;

i.e. stated in publication, extracted from sample layout in publication or extracted from scanned

sample layout in publication

Table B.1: Rectangular test problems from literature; optimum known

reference	name	size	source
Jakobs (1996)	J1	25	extracted from a sample layout in paper
Jakobs (1996)	J2	50	extracted from a sample layout in paper
Ratanapan and Dagli (1997b)	D2	21	dimensions are stated in paper
K endall and Burke (1999)	Kendall	13	dimensions are stated in paper

Table B.2: Rectangular test problems from literature; optimum not known

reference	name	size	source
Ratanapan and Dagli (1997b)	D1	31	dimensions are stated in paper
Ratanapan and Dagli (1998)	D3	37	dimensions are stated in paper
Dagli and Poshyanonda (1997)	D4	37	dimensions are stated in paper

A.2 Test Problems

Rectangular test problems from literature; optimum known

name: size: object:	J1 25 width = 4	0			name: size: object:	J2 50 width = 4	0			
no.	width	height			no.	width	height	no.	width	height
1	12	6			1	5	6	26	2	5
2	4	7			2	7	6	27	2	4
3	6	7			3	4	3	28	3	6
4	10	2			4	4	4	29	5	2
5	2	5			5	6	4	30	5	4
6	6	4			6	6	3	31	3	3
7	4	2			7	4	2	32	5	3
8	4	6			8	6	2	33	2	3
9	7	9			9	3	4	34	4	3
10	4	5			10	3	4	35	2	3
11	6	4			11	2	5	36	4	3
12	4	6			12	4	2	37	2	2
13	6	3			13	3	3	38	2	4
14	4	5			14	3	6	39	3	4
15	2	4			15	4	3	40	3	4
40	0				4.0	4		44	0	4
16	8	4			16	4 4	6	41	2	4
17	8	6			17		3	42	3	2
18	8	3			18	4	3	43	3	2
19	6	3			19	4	2	44	2	2
20	2	6			20	4	4	45	3	2
21	8	2			21	4	2	46	2	2
22	3	5			22	4	3	47	3	3
23	2	5			23	3	4	48	2	3
24	3	4			24	3	4	49	3	4
25	2	4			25	2	5	50	2	4
(a)		90	90		70	300	20 20			
	4					1				
1	Τ'	7	6	10020	555528	13	100	16		
		6 30		8	12	999	24	3000		
2	3	- 6	7			19	3 3	. 21		
	2	5								
9	0.5				10	14	18	22 23		
			g							
	0.40			· f			17			
	1				11	15	17	24 25		
Į.		1		1,0	*****	1.1				
-										
7	8	1			19		37	4 - 60 - 61		
7,5	. 50	9	10	1.7	30	35 3	35	39 40 41	i i	
4	6	-		7.5	20		38	20 20 2	1	
-			12	18	(a **)	33 3	14 29	42 43 4	4	
3	5	11	13	15	21		31 32	45 48	i	
100	- 1	-	1.2	18	(220)	25 26	20	1 96 3	J	
				L	22		29	47 40	1	
1	1 6		14	16			28			
45			3.0	58	23	24 27	30	49 50	d	
	<u> </u>		- 3		/macci	000	10000	1 000		

Figure B.1: Data set and optimal solution for test problems J1 and J2

name:	Dagli		
size:	21		
object:	width $= 60$		
no. 1 2 3 4	width 12 12 12 12	height 12 10 9 8	quantity 4 5 6
name: size: object:	Kendall 13 width = 80		
no.	width	height	quantity
1	24	16	1
2	28	16	2
3	60	14	2
4	20	28	1
5	22	26	2
6	42	44	1
7	18	70	1
	10		
8	62	26	1

Figure B.2: Data sets for problems D2 and Kendall and optimal solution for Kendall

Rectangular test problems from literature; optimum not known

name: size: object:	D1 31 width = 60		name: size: object:	D3 37 width = 30		name: size: object:	D4 37 width = 20	
width	height	no	width	height	no	width	height	no
12	10	5	12	10	3	10	12	3
10	11	7	8	11	4	11	8	4
9	13	4	9	13	6	13	9	6
4	5	4	4	5	4	5	4	4
9	10	6	9	10	3	10	9	3
6	8	5	6	8	6	8	6	6
			10	12	9	12	10	9
			15	7	2	7	5	2

B. References

Burke E. and Kendall G., 1999. Applying Simulated Annealing and the No Fit Polygon to the Nesting Problem. Proceedings of the World Manufacturing Congress, Durham, UK, pp. 27-30.

Dagli C. H. and Poshyanonda P., 1997. New approaches to nesting rectangular patterns. Journal of Intelligent Manufacturing 8, 177-190.

Jakobs S., 1996. On genetic algorithms for the packing of polygons. European Journal of Operational Research 88, 165-181.

Ratanapan K. and Dagli C. H., 1997a. An object-based evolutionary algorithm for solving rectangular piece nesting problems. In: IEEE (Eds.), Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, IEEE, Piscataway, NJ, USA, pp. 989-994.

Ratanapan K. and Dagli C. H., 1997b. An object-based evolutionary algorithm for solving irregular nesting problems. In: Proceedings for Artificial Neural Networks in Engineering Conference (ANNIE '97), vol. 7, ASME Press, New York, pp. 383-388.

Ratanapan K. and Dagli C. H., 1998. An object-based evolutionary algorithm: the nesting solution. In: IEEE (Eds.) Proceedings of the International Conference on Evolutionary Computation 1998, ICEC '98, IEEE, Piscataway, NJ, USA, pp. 581-586.