Deep Generative Models

Lecture 7

Roman Isachenko

2024, Spring

Assumptions

▶ Let $c \sim \text{Categorical}(\pi)$, where

$$\pi = (\pi_1, \ldots, \pi_K), \quad \pi_k = P(c = k), \quad \sum_{k=1}^{K} \pi_k = 1.$$

Let VAE model has discrete latent representation c with prior $p(c) = \text{Uniform}\{1, \dots, K\}$.

ELBO

$$\begin{split} \mathcal{L}(\phi, \theta) &= \mathbb{E}_{q(c|\mathbf{x}, \phi)} \log p(\mathbf{x}|c, \theta) - \underbrace{\mathit{KL}(q(c|\mathbf{x}, \phi)||p(c))}_{\phi, \theta} \rightarrow \max_{\phi, \theta}. \\ &\mathit{KL}(q(c|\mathbf{x}, \phi)||p(c)) = -\mathit{H}(q(c|\mathbf{x}, \phi)) + \log \mathit{K}. \end{split}$$

Vector quantization

Define the dictionary space $\{\mathbf{e}_k\}_{k=1}^K$, where $\mathbf{e}_k \in \mathbb{R}^C$, K is the size of the dictionary.

$$\mathbf{z}_q = \mathbf{q}(\mathbf{z}) = \mathbf{e}_{k^*}, \quad \text{where } k^* = \arg\min_{k} \|\mathbf{z} - \mathbf{e}_k\|.$$

Deterministic variational posterior

$$q(c_{ij} = k^* | \mathbf{x}, \phi) =$$

$$\begin{cases} 1, & \text{for } k^* = \arg\min_k \|[\mathbf{z}_e]_{ij} - \mathbf{e}_k\|; \\ 0, & \text{otherwise.} \end{cases}$$

ELBO

$$\mathcal{L}(\phi, \theta) = \mathbb{E}_{q(c|\mathbf{x}, \phi)} \log p(\mathbf{x}|\mathbf{e}_c, \theta) - \log K = \log p(\mathbf{x}|\mathbf{z}_q, \theta) - \log K.$$

Straight-through gradient estimation

$$\frac{\partial \log p(\mathbf{x}|\mathbf{z}_q, \boldsymbol{\theta})}{\partial \boldsymbol{\phi}} = \frac{\partial \log p(\mathbf{x}|\mathbf{z}_q, \boldsymbol{\theta})}{\partial \mathbf{z}_q} \cdot \frac{\partial \mathbf{z}_q}{\partial \boldsymbol{\phi}} \approx \frac{\partial \log p(\mathbf{x}|\mathbf{z}_q, \boldsymbol{\theta})}{\partial \mathbf{z}_q} \cdot \frac{\partial \mathbf{z}_e}{\partial \boldsymbol{\phi}}$$

Gumbel-max trick

Let $g_k \sim \text{Gumbel}(0,1)$ for k = 1, ..., K. Then

$$c = \arg\max_{k} [\log \pi_k + g_k]$$

has a categorical distribution $c \sim \mathsf{Categorical}(\pi)$.

Gumbel-softmax relaxation

Concrete distribution = **con**tinuous + dis**crete**

$$\hat{\mathbf{c}} = \mathsf{Softmax}\left(\frac{\log q(\mathbf{c}|\mathbf{x}, \phi) + \mathbf{g}}{ au} \right)$$

Reparametrization trick

$$\nabla_{\phi} \mathbb{E}_{q(c|\mathbf{x},\phi)} \log p(\mathbf{x}|\mathbf{e}_c,\theta) = \mathbb{E}_{\mathsf{Gumbel}(0,1)} \nabla_{\phi} \log p(\mathbf{x}|\mathbf{z},\theta),$$

where $\mathbf{z} = \sum_{k=1}^{K} \hat{c}_k \mathbf{e}_k$ (all operations are differentiable now).

Maddison C. J., Mnih A., Teh Y. W. The Concrete distribution: A continuous relaxation of discrete random variables, 2016

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_{i}, \boldsymbol{\phi})||p(\mathbf{z})) = KL(q_{\text{agg}}(\mathbf{z}|\boldsymbol{\phi})||p(\mathbf{z})) + \mathbb{I}_{q}[\mathbf{x}, \mathbf{z}].$$

ELBO surgery

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}(\phi, \theta) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i}, \phi)} \log p(\mathbf{x}_{i}|\mathbf{z}, \theta)}_{\text{Reconstruction loss}} - \underbrace{\mathbb{I}_{q}[\mathbf{x}, \mathbf{z}] - KL(q_{\text{agg}}(\mathbf{z}|\phi)||p(\mathbf{z}))}_{\text{Marginal KL}}$$

Optimal prior

$$\mathit{KL}(q_{\mathrm{agg}}(\mathbf{z}|\phi)||p(\mathbf{z})) = 0 \quad \Leftrightarrow \quad p(\mathbf{z}) = q_{\mathrm{agg}}(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_{i},\phi).$$

The optimal prior distribution $p(\mathbf{z})$ is the aggregated variational posterior distribution $q_{\text{agg}}(\mathbf{z}|\phi)$.

Hoffman M. D., Johnson M. J. ELBO surgery: yet another way to carve up the variational evidence lower bound, 2016

Outline

1. Learnable VAE prior

2. Likelihood-free learning

- 3. Generative adversarial networks (GAN)
- 4. Wasserstein distance

Outline

1. Learnable VAE prior

2. Likelihood-free learning

3. Generative adversarial networks (GAN

4. Wasserstein distance

Optimal VAE prior

- ▶ Standard Gaussian $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}) \Rightarrow$ over-regularization;
- $p(z) = q_{agg}(z|\phi) = \frac{1}{n} \sum_{i=1}^{n} q(z|x_i,\phi) \Rightarrow \text{ overfitting and}$ highly expensive.

Non learnable prior p(z) Learnable prior $p(z|\lambda)$

ELBO revisiting

$$\frac{1}{n}\sum_{i=1}^{n}\mathcal{L}_{i}(\phi,\boldsymbol{\theta}) = \mathsf{RL} - \mathsf{MI} - \mathit{KL}(q_{\mathsf{agg}}(\mathbf{z}|\phi)||p(\mathbf{z}|\boldsymbol{\lambda}))$$

It is Forward KL with respect to $p(\mathbf{z}|\lambda)$.

NF-based VAE prior

NF model in latent space

$$\log p(\mathbf{z}|\boldsymbol{\lambda}) = \log p(\mathbf{z}^*) + \log \left| \det \left(\frac{d\mathbf{z}^*}{d\mathbf{z}} \right) \right| = \log p(\mathbf{f}_{\boldsymbol{\lambda}}(\mathbf{z})) + \log \left| \det(\mathbf{J}_{\mathbf{f}}) \right|$$
$$\mathbf{z} = \mathbf{g}_{\boldsymbol{\lambda}}(\mathbf{z}^*) = \mathbf{f}_{\boldsymbol{\lambda}}^{-1}(\mathbf{z}^*)$$

- RealNVP with coupling layers.
- Autoregressive NF (fast $f_{\lambda}(z)$, slow $g_{\lambda}(z^*)$).

ELBO with NF-based VAE prior

$$\begin{split} \mathcal{L}(\phi, \theta) &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, \theta) + \log p(\mathbf{z}|\lambda) - \log q(\mathbf{z}|\mathbf{x}, \phi) \right] \\ &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, \theta) + \underbrace{\left(\log p(\mathbf{f}_{\lambda}(\mathbf{z})) + \log \left| \det(\mathbf{J}_{\mathbf{f}}) \right| \right)}_{\mathsf{NF-based prior}} - \log q(\mathbf{z}|\mathbf{x}, \phi) \right] \end{split}$$

Outline

1. Learnable VAE prior

- 2. Likelihood-free learning
- Generative adversarial networks (GAN)

4. Wasserstein distance

Likelihood based models

Poor likelihood Great samples

$$p_1(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \mathcal{N}(\mathbf{x} | \mathbf{x}_i, \epsilon \mathbf{I})$$

For small ϵ this model will generate samples with great quality, but likelihood of test sample will be very poor.

Great likelihood Poor samples

$$p_2(\mathbf{x}) = 0.01p(\mathbf{x}) + 0.99p_{\mathsf{noise}}(\mathbf{x})$$

$$\begin{split} &\log\left[0.01p(\mathbf{x}) + 0.99p_{\mathsf{noise}}(\mathbf{x})\right] \geq \\ &\geq \log\left[0.01p(\mathbf{x})\right] = \log p(\mathbf{x}) - \log 100 \end{split}$$

Noisy irrelevant samples, but for high dimensions $\log p(\mathbf{x})$ becomes proportional to m.

- Likelihood is not a perfect quality measure for generative model.
- Likelihood could be intractable.

Likelihood-free learning

Where did we start

We would like to approximate true data distribution $\pi(\mathbf{x})$. Instead of searching true $\pi(\mathbf{x})$ over all probability distributions, learn function approximation $p(\mathbf{x}|\boldsymbol{\theta}) \approx \pi(\mathbf{x})$.

Imagine we have two sets of samples

- \triangleright $S_1 = \{\mathbf{x}_i\}_{i=1}^{n_1} \sim \pi(\mathbf{x})$ real samples;
- \triangleright $S_2 = \{\mathbf{x}_i\}_{i=1}^{n_2} \sim p(\mathbf{x}|\theta)$ generated (or fake) samples.

Let define discriminative model (classifier):

$$p(y = 1|\mathbf{x}) = P(\{\mathbf{x} \sim \pi(\mathbf{x})\}); \quad p(y = 0|\mathbf{x}) = P(\{\mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta})\})$$

Assumption

Generative distribution $p(\mathbf{x}|\boldsymbol{\theta})$ equals to the true distribution $\pi(\mathbf{x})$ if we can not distinguish them using discriminative model $p(y|\mathbf{x})$. It means that $p(y=1|\mathbf{x})=0.5$ for each sample \mathbf{x} .

Generative adversarial networks (GAN)

The more powerful discriminative model we will have, the more likely we will get the "best" generative distribution $p(\mathbf{x}|\boldsymbol{\theta})$. The most common way to learn a classifier is to minimize cross entropy loss.

- ▶ **Generator:** generative model $\mathbf{x} = \mathbf{G}(\mathbf{z})$, which makes generated sample more realistic. Here \mathbf{z} comes from the base (known) distribution $p(\mathbf{z})$ and $\mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta})$. Generator tries to **maximize** cross entropy.
- ▶ **Discriminator:** a classifier $p(y = 1|\mathbf{x}) = D(\mathbf{x}) \in [0, 1]$, which distinguishes real samples from generated samples. Discriminator tries to **minimize** cross entropy (tries to enhance discriminative model).

Objective

$$\begin{aligned} & \min_{G} \max_{D} \left[\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log (1 - D(\mathbf{x})) \right] \\ & \min_{G} \max_{D} \left[\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(\mathbf{G}(\mathbf{z}))) \right] \end{aligned}$$

Outline

1. Learnable VAE prior

2. Likelihood-free learning

3. Generative adversarial networks (GAN)

4. Wasserstein distance

Generative models zoo

GAN optimality

Theorem

The minimax game

$$\min_{G} \max_{D} \left[\underbrace{\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(\mathbf{G}(\mathbf{z})))}_{V(G,D)} \right]$$

has the global optimum $\pi(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta})$, in this case $D^*(\mathbf{x}) = 0.5$.

Proof (fixed G)

$$V(G, D) = \mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log(1 - D(\mathbf{x}))$$

$$= \int \underbrace{\left[\pi(\mathbf{x}) \log D(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta}) \log(1 - D(\mathbf{x})\right]}_{y(D)} d\mathbf{x}$$

$$\frac{dy(D)}{dD} = \frac{\pi(\mathbf{x})}{D(\mathbf{x})} - \frac{p(\mathbf{x}|\boldsymbol{\theta})}{1 - D(\mathbf{x})} = 0 \quad \Rightarrow \quad D^*(\mathbf{x}) = \frac{\pi(\mathbf{x})}{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}$$

GAN optimality

Proof continued (fixed $D = D^*$)

$$V(G, D^*) = \mathbb{E}_{\pi(\mathbf{x})} \log \left(\frac{\pi(\mathbf{x})}{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})} \right) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log \left(\frac{p(\mathbf{x}|\boldsymbol{\theta})}{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})} \right)$$

$$= KL \left(\pi(\mathbf{x}) || \frac{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}{2} \right) + KL \left(p(\mathbf{x}|\boldsymbol{\theta}) || \frac{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}{2} \right) - 2 \log 2$$

$$= 2JSD(\pi(\mathbf{x}) || p(\mathbf{x}|\boldsymbol{\theta})) - 2 \log 2.$$

Jensen-Shannon divergence (symmetric KL divergence)

$$JSD(\pi(\mathbf{x})||p(\mathbf{x}|\theta)) = \frac{1}{2} \left[KL\left(\pi(\mathbf{x})||\frac{\pi(\mathbf{x}) + p(\mathbf{x}|\theta)}{2}\right) + KL\left(p(\mathbf{x}|\theta)||\frac{\pi(\mathbf{x}) + p(\mathbf{x}|\theta)}{2}\right) \right]$$

Could be used as a distance measure!

$$V(G^*, D^*) = -2 \log 2$$
, $\pi(\mathbf{x}) = p(\mathbf{x}|\theta)$, $D^*(\mathbf{x}) = 0.5$.

GAN optimality

Theorem

The minimax game

$$\min_{G} \max_{D} \left[\underbrace{\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(\mathbf{G}(\mathbf{z})))}_{V(G,D)} \right]$$

has the global optimum $\pi(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta})$, in this case $D^*(\mathbf{x}) = 0.5$. Expectations

If the generator could be **any** function and the discriminator is **optimal** at every step, then the generator is **guaranteed to converge** to the data distribution.

Reality

- Generator updates are made in parameter space, discriminator is not optimal at every step.
- Generator and discriminator loss keeps oscillating during GAN training.

GAN training

Let further assume that generator and discriminator are parametric models: $D_{\phi}(\mathbf{x})$ and $\mathbf{G}_{\theta}(\mathbf{z})$.

Objective

$$\min_{m{ heta}} \max_{m{\phi}} \left[\mathbb{E}_{\pi(\mathbf{x})} \log D_{m{\phi}}(\mathbf{x}) + \mathbb{E}_{m{
ho}(\mathbf{z})} \log (1 - D_{m{\phi}}(\mathbf{G}_{m{ heta}}(\mathbf{z})))
ight]$$

- **z** $\sim p(z)$ is a latent variable.
- $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \delta(\mathbf{x} \mathbf{G}_{\boldsymbol{\theta}}(\mathbf{z}))$ is deterministic decoder (like NF).
- ▶ We do not have encoder at all.

Mode collapse

The phenomena where the generator of a GAN collapses to one or few distribution modes.

Alternate architectures, adding regularization terms, injecting small noise perturbations and other millions bags and tricks are used to avoid the mode collapse.

Goodfellow I. J. et al. Generative Adversarial Networks, 2014 Metz L. et al. Unrolled Generative Adversarial Networks, 2016

Jensen-Shannon vs Kullback-Leibler

- $\blacktriangleright \pi(\mathbf{x})$ is a fixed mixture of 2 gaussians.
- $p(\mathbf{x}|\mu,\sigma) = \mathcal{N}(\mu,\sigma^2).$

Mode covering vs mode seeking

$$\mathit{KL}(\pi||p) = \int \pi(\mathbf{x}) \log rac{\pi(\mathbf{x})}{p(\mathbf{x})} d\mathbf{x}, \quad \mathit{KL}(p||\pi) = \int p(\mathbf{x}) \log rac{p(\mathbf{x})}{\pi(\mathbf{x})} d\mathbf{x}$$

$$JSD(\pi||p) = \frac{1}{2} \left[KL\left(\pi(\mathbf{x})||\frac{\pi(\mathbf{x}) + p(\mathbf{x})}{2}\right) + KL\left(p(\mathbf{x})||\frac{\pi(\mathbf{x}) + p(\mathbf{x})}{2}\right) \right]$$

Summary

- We could use NF-based prior in VAE (even autoregressive).
- Likelihood is not a perfect criteria to measure quality of generative model.
- Adversarial learning suggests to solve minimax problem to match the distributions.
- GAN tries to optimize Jensen-Shannon divergence (in theory).
- Mode collapse is one of the main problems of vanilla GAN. Lots of tips and tricks has to be used to make the GAN training is stable and scalable.