

ESCOLA REGIONAL DE INFORMÁTICA DO ESPÍRITO SANTO

WORKSHOP: INTRODUÇÃO À ARQUITETURA TRANSFORMER E VISION TRANSFOMER PARA APLICAÇÕES EM SAÚDE

Apresentação

- Mestrando em Informática (2024-Atual) -UFES
- Membro do Programa de Assistência
 Dermatológica da UFES
- Graduado em Engenharia de Controle e Automação (2014-2019) - UFLA
- Contato:
 - pedro.bouzon@edu.ufes.br
 - www.linkedin.com/in/pedro-bouzon/

Áreas de atuação

- Machine learning
- Deep Learning
- Medical imaging
- Medical datasets

Informações sobre o Workshop

Informações sobre o Workshop

 Tópico: Introdução à arquitetura Transformers e Visual Transformers para aplicações em saúde

Objetivos:

- Apresentar a arquitetura do Transformer e implementar cada uma de suas partes.
- Apresentar o Bidirectional Encoder Representations from Transformers (BERT).
- Aplicação 1: classificação de especialidade médica a partir de transcrições médicas.
- Introduzir a arquitetura do Vision Transformer.
- Aplicação 2: classificação de câncer de pele.
- Propor um desafio.

<u>Informações sobre o Workshop</u>

Dinâmica:

- Slides v\u00e3o introduzir t\u00f3picos/temas
- Implementações serão apresentadas em Jupyter notebooks.
 - Código disponível em: <u>drive</u>.

Apresentações

Apresentações

- Apresentação individual dos participantes
 - Seu nome
 - Formação (concluída ou em andamento)
 - O que te trouxe aqui? Trabalha na área? Quer começar?
 Entusiasta? etc

Introdução à arquitetura Transformers

- A arquitetura Transformer foi proposta por Vaswani et al. (2017) no paper "Attention is all you need"
 - Alternativa às Redes Neurais Recorrentes (RNN) para neural machine translation.
 - Mudança de paradigma.

Arquitetura Encoder-Decoder

Arquitetura Encoder-Decoder

• Encoder:

 Cria uma representação rica e contextualizada da frase na língua original

Decoder:

 Gera o texto na língua desejada levando em conta o contexto fornecido pelo **Encoder**.

- Principais contribuições
 - o Diminuiu o problema do "Vanishing gradient".

- Principais contribuições
 - Aumentou a eficiência do treinamento (mecanismo de atenção)

- Principais contribuições
 - Definiu um novo estado da arte para neural machine translation (WMT14):
 - De 40.4 BLEU para 41.8 BLEU (En-Fr).
 - De 26.03 BLEU para 28.4 BLEU (En-De)

Implementação dos blocos do Transformer

Let's code!

- Proposto por Devlin et al. 2018 (Google)
 - Baseado no Encoder do Transformer

- Proposto por Devlin et al. 2018 (Google)
 - Baseado no Encoder do Transformer
 - [CLS] Token

- Proposto por Devlin et al. 2018 (Google)
 - Baseado no Encoder do Transformer
 - [CLS] Token
 - Treinamento n\u00e3o supervisionado (Wikipedia e BookCorpus)
 - Masked Language Modeling
 - Next Sentence Prediction

- Principais contribuições
 - Avançou o estado da arte em 3 tarefas e 8 benchmarks diferentes:
 - Inferência de linguagem natural (RTE, QNLI, MNLI)
 - Similaridade de sentenças (STS-B, MRPC, QQP)
 - Classificação de sentenças (SST-2, CoLA)

Aplicação 1: classificação de especialidade médica a partir de transcrições médicas

Let's code!

- An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Dosovitskiy et al. 2020)
 - Desafiou a soberania das Redes Neurais Convolucionais (CNN).

- An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Dosovitskiy et al. 2021)
 - Desafiou a soberania das Redes Neurais Convolucionais (CNN).
 - Atingiu resultados competitivos na ImageNet1K.
 - Acurácia: 88.55 vs 88.5 (EfficientNet-L2)

- An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Dosovitskiy et al. 2020)
 - Desafiou a soberania das Redes Neurais Convolucionais (CNN).
 - Atingiu resultados competitivos na ImageNet1K.
 - Acurácia: 88.55 vs 88.5 (EfficientNet-L2)
 - Mais eficiente que CNNs: 2.5k vs 12.3k
 TPUv3-core-days (JFT-300M).

Transformer Encoder Lx **MLP** Norm Multi-Head Attention Norm Embedded

Patches

- Patch Embeddings
 - 16x16 pixels
 - (224/16)×(224/16)=196 patches.

- Pontos negativos:
 - Não possui o viés indutivo das CNNs
 - Necessita de grandes volumes de dados ou formas alternativas de treinamento.

Transformer Encoder Lx **MLP** Norm Multi-Head Attention Norm Embedded

Patches

Pontos negativos:

- Não possui o viés indutivo das CNNs
 - Necessita de grandes volumes de dados ou formas alternativas de treinamento.
 - Data-efficient Image Transformers (Touvron et al. 2020)

Transformer Encoder

Pontos negativos:

- Não possui o viés indutivo das CNNs
 - Necessita de grandes volumes de dados ou formas alternativas de treinamento.
 - Data-efficient Image Transformers (Touvron et al. 2020)
- Ineficiente com imagens de alta resolução
 - Problema atacado pelo Swin Tranformer (Liu et al. 2021)

Transformer Encoder

Aplicação 2: classificação de câncer de pele

Let's code!

Desafio

Parte 1: Transferência de aprendizado:

- Altere o exemplo do VIT para utilizar um transformer pré-treinado em outro conjunto de dados.
- Você pode obter este modelo em <u>HuggingFace</u>.
- Como o resultado se compara com o modelo treinado do zero?

Parte 2: Mão na massa

 Altere o exemplo do BERT ou VIT para utilizar dados relacionados a sua área de pesquisa ou atuação.

Dúvidas?

Obrigado!

