МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Лабораторная работа № 1 по дисциплине «Методы машинного обучения»

исполнитель:	морозенков О.Н		
	ФИО		
группа ИУ5-23М			
	подпись		
	""2022	2 г.	
ПРЕПОДАВАТЕЛЬ:	<u>Гапанюк Ю.Е.</u>		
	ФИО		
	подпись		
	""2022	2 г.	

Москва - 2022

Цель лабораторной работы: изучение различных методов визуализация данных и создание истории на основе данных.

Краткое описание. Построение графиков, помогающих понять структуру данных, и их интерпретация.

Задание:

- Выбрать набор данных (датасет).
- Создать "историю о данных" в виде юпитер-ноутбука, с учетом следующих требований:
 - 1. История должна содержать не менее 5 шагов (где 5 рекомендуемое количество шагов). Каждый шаг содержит график и его текстовую интерпретацию.
 - 2. На каждом шаге наряду с удачным итоговым графиком рекомендуется в юпитер-ноутбуке оставлять результаты предварительных "неудачных" графиков.
 - 3. Не рекомендуется повторять виды графиков, желательно создать 5 графиков различных видов.
 - 4. Выбор графиков должен быть обоснован использованием методологии data-to-viz. Рекомендуется учитывать типичные ошибки построения выбранного вида графика по методологии data-to-viz. Если методология Вами отвергается, то просьба обосновать Ваше решение по выбору графика.
 - 5. История должна содержать итоговые выводы. В реальных "историях о данных" именно эти выводы представляют собой основную ценность для предприятия.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
Исследуем основные характеристики датасета
data = pd.read_csv("./Video Games Sales.csv")
data.head()
                       Name Platform Year_of_Release
                                                              Genre Publisher
\
0
                 Wii Sports
                                 Wii
                                                             Sports
                                                                     Nintendo
                                               2006.0
1
          Super Mario Bros.
                                 NES
                                               1985.0
                                                           Platform
                                                                     Nintendo
2
            Mario Kart Wii
                                 Wii
                                               2008.0
                                                             Racing
                                                                     Nintendo
3
          Wii Sports Resort
                                 Wii
                                               2009.0
                                                             Sports
                                                                     Nintendo
  Pokemon Red/Pokemon Blue
                                  GB
                                               1996.0 Role-Playing
                                                                     Nintendo
   NA Sales EU Sales
                       JP_Sales Other_Sales Global_Sales Critic_Score \
0
      41.36
                28.96
                           3.77
                                        8.45
                                                     82.53
                                                                    76.0
                 3.58
1
      29.08
                           6.81
                                        0.77
                                                     40.24
                                                                     NaN
2
                12.76
                           3.79
                                        3.29
                                                     35.52
                                                                    82.0
      15.68
3
      15.61
                10.93
                           3.28
                                        2.95
                                                     32.77
                                                                    80.0
4
      11.27
                8.89
                          10.22
                                        1.00
                                                     31.37
                                                                     NaN
   Critic_Count User_Score User_Count Developer Rating
0
           51.0
                         8
                                 322.0 Nintendo
                                                      Ε
1
           NaN
                                                    NaN
                       NaN
                                   NaN
                                             NaN
2
                                                      Ε
           73.0
                       8.3
                                 709.0 Nintendo
3
                                 192.0 Nintendo
                                                      Ε
           73.0
                         8
4
           NaN
                                   NaN
                                             NaN
                       NaN
                                                    NaN
data.shape
(16719, 16)
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16719 entries, 0 to 16718
Data columns (total 16 columns):
 #
     Column
                      Non-Null Count
                                      Dtype
     ____
                      _____
                                      ____
 0
     Name
                      16717 non-null object
 1
     Platform
                      16719 non-null object
 2
    Year of Release 16450 non-null float64
 3
    Genre
                      16717 non-null object
 4
     Publisher
                      16665 non-null object
 5
                      16719 non-null float64
     NA Sales
```

16719 non-null float64

6

EU Sales

```
7
     JP Sales
                      16719 non-null
                                      float64
                      16719 non-null float64
     Other Sales
 8
 9
    Global_Sales
                      16719 non-null float64
 10 Critic Score
                      8137 non-null
                                      float64
 11 Critic_Count
                      8137 non-null
                                       float64
 12 User_Score
                      10015 non-null
                                      object
                                       float64
 13 User Count
                      7590 non-null
 14
    Developer
                      10096 non-null
                                      object
                                       object
 15 Rating
                      9950 non-null
dtypes: float64(9), object(7)
memory usage: 2.0+ MB
data.isnull().sum()
                      2
Name
Platform
                      0
Year of Release
                    269
                      2
Genre
Publisher
                     54
NA_Sales
                      0
EU_Sales
                      0
JP Sales
                      0
Other Sales
                      0
Global Sales
                      0
Critic Score
                   8582
Critic_Count
                   8582
User_Score
                   6704
User Count
                   9129
Developer
                   6623
Rating
                   6769
dtype: int64
data['Genre'].value_counts()
Action
                3370
Sports
                2348
Misc
                1750
Role-Playing
                1500
Shooter
                1323
Adventure
                1303
                1249
Racing
Platform
                 888
Simulation
                 874
                 849
Fighting
Strategy
                 683
Puzzle
                 580
Name: Genre, dtype: int64
plt.figure(figsize=(13,10))
sns.heatmap(data.corr(), cmap = "Oranges", annot=True, linewidth=3)
```

<AxesSubplot:>

Из матрицы корреляции видно, что наиболее сильно коррелируют показатели продаж Северной Америки и Европы

```
plt.figure(figsize=(15, 10))
sns.countplot(x="Genre", data=data, order =
data['Genre'].value counts().index)
plt.xticks(rotation=90)
(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]),
[Text(0, 0, 'Action'),
 Text(1, 0, 'Sports'),
 Text(2, 0, 'Misc'),
 Text(3, 0, 'Role-Playing'),
 Text(4, 0, 'Shooter'),
 Text(5, 0, 'Adventure'),
 Text(6, 0, 'Racing'),
 Text(7, 0, 'Platform'),
 Text(8, 0, 'Simulation'),
 Text(9, 0, 'Fighting'),
 Text(10, 0, 'Strategy'),
 Text(11, 0, 'Puzzle')])
```


Из гистограммы видно, что больше всего игр в жанре "Action", меньше игра в жанре "Sports" и т.д.

```
data_by_year = data.groupby(by = 'Year_of_Release').sum()
data_by_year.drop(columns=["Critic_Count", "User_Count",
    "Critic_Score"],inplace=True)
data_by_year
```

	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
Year_of_Release					
1980.0	10.59	0.67	0.00	0.12	11.38
1981.0	33.40	1.96	0.00	0.32	35.77
1982.0	26.92	1.65	0.00	0.31	28.86
1983.0	7.76	0.80	8.10	0.14	16.79
1984.0	33.28	2.10	14.27	0.70	50.36
1985.0	33.73	4.74	14.56	0.92	53.94
1986.0	12.50	2.84	19.81	1.93	37.07
1987.0	8.46	1.41	11.63	0.20	21.74
1988.0	23.87	6.59	15.76	0.99	47.22
1989.0	45.15	8.44	18.36	1.50	73.45
1990.0	25.46	7.63	14.88	1.40	49.39
1991.0	12.76	3.95	14.78	0.74	32.23
1992.0	33.89	11.71	28.91	1.65	76.17
1993.0	16.90	5.18	25.36	0.97	48.40
1994.0	28.16	14.88	33.99	2.20	79.18
1995.0	24.83	14.90	45.75	2.64	88.11

```
1996.0
                     86.76
                                47.26
                                           57.44
                                                          7.69
                                                                       199.15
1997.0
                     94.75
                                48.32
                                           48.87
                                                          9.13
                                                                       200.98
                    128.36
                                66.90
                                           50.04
                                                         11.01
                                                                       256.45
1998.0
1999.0
                    126.06
                                62.67
                                           52.34
                                                         10.04
                                                                       251.25
                     94.50
                                52.77
                                           42.77
                                                         11.62
                                                                       201.58
2000.0
2001.0
                    173.98
                                94.89
                                           39.86
                                                         22.73
                                                                       331.47
                                           41.76
2002.0
                    216.19
                               109.75
                                                         27.27
                                                                       395.51
                    193.61
                                           34.20
                                                         25.92
                                                                       357.80
2003.0
                               103.81
                                           41.65
                                                         47.24
2004.0
                    222.51
                               107.28
                                                                       419.05
                    242.15
                                           54.27
                                                         40.29
2005.0
                               121.11
                                                                       458.31
                    262.13
                               127.89
                                           73.74
                                                         53.95
2006.0
                                                                       518.22
                                           60.29
                                                         76.75
2007.0
                    309.89
                               157.82
                                                                       605.37
                                           60.25
2008.0
                    348.69
                               181.14
                                                         81.42
                                                                       671.79
2009.0
                    335.55
                               187.94
                                           61.89
                                                         73.44
                                                                       658.88
2010.0
                    300.65
                               171.42
                                           59.49
                                                         58.57
                                                                       590.59
                    238.79
                               162.97
                                           53.07
                                                         52.75
                                                                       507.79
2011.0
2012.0
                    153.26
                               114.59
                                           51.80
                                                         36.19
                                                                       355.84
                                           47.69
                                                         38.35
                                                                       361.24
2013.0
                    153.65
                               121.55
2014.0
                    132.27
                               122.74
                                           39.69
                                                                       331.51
                                                         36.83
2015.0
                    106.86
                                96.72
                                           34.09
                                                         30.31
                                                                       268.05
                     44.93
                                                         14.48
                                                                       130.10
2016.0
                                51.22
                                           19.31
2017.0
                      0.00
                                 0.00
                                            0.06
                                                          0.00
                                                                         0.06
2020.0
                      0.27
                                 0.00
                                            0.00
                                                          0.02
                                                                         0.29
```

```
data_by_year=data_by_year.apply(lambda x : x.astype("int"))
data_by_year.plot.line(figsize=(10,10), grid="on");
plt.ylabel("Millions_of_dollars");
```


Разбив игры по продажам в разные года по разным регионам, можно заметить, что наибольшие продажи игр по всему миру пришли на 2009 год. При этом, среди регионов больше всего игр было продано в Северной Америке, а меньше всего в Японии

```
data = pd.DataFrame([data['EU_Sales'], data['JP_Sales'], data['NA_Sales'],
data['Other_Sales']]).T
regions = ['Europe', 'Japan', 'North America', 'Other']
q = data.quantile(0.90)
data = data[data < q]
plt.figure(figsize=(12,8))

colors = sns.color_palette("Set1", len(data))
ax = sns.boxplot(data=data, orient='h', palette=colors)
ax.set_xlabel(xlabel='Revenue per Game in Millions of Dollars', fontsize=16)
ax.set_ylabel(ylabel='Region', fontsize=16)
ax.set_title(label='Distribution of Sales Per Game in Millions of Dollars Per Region', fontsize=20)</pre>
```

ax.set_yticklabels(labels=regions, fontsize=14) plt.show()

Из диаграммы "Ящик с усами" видно, что Северная Америка лидирует по продажам игр как в размахе, так и по медианному значению

```
top_sale_reg = data[['NA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales']]
top sale reg = top sale reg.sum().reset index()
top_sale_reg = top_sale_reg.rename(columns={"index": "Region", 0: "Sales"})
top_sale_reg
        Region
                  Sales
0
      NA_Sales 1674.46
1
      EU Sales
                 744.53
2
      JP Sales
                 242.07
  Other Sales
3
                 227.81
labels = top_sale_reg['Region']
sizes = top_sale_reg['Sales']
plt.figure(figsize=(10, 8))
plt.pie(sizes, labels=labels, autopct='%1.1f%%', wedgeprops=dict(width=0.5),
shadow=True, startangle=180)
([<matplotlib.patches.Wedge at 0x7f8594f84250>,
  <matplotlib.patches.Wedge at 0x7f8594f84910>,
  <matplotlib.patches.Wedge at 0x7f8594f66490>,
  <matplotlib.patches.Wedge at 0x7f85946671f0>],
 [Text(0.2723019312452782, -1.0657634156979174, 'NA_Sales'),
  Text(0.2836793891660941, 1.062791609000726, 'EU Sales'),
```

```
Text(-0.7982850337767683, 0.7567965412500403, 'JP_Sales'),
Text(-1.0664161445551974, 0.2697343260173396, 'Other_Sales')],
[Text(0.14852832613378808, -0.5813254994715913, '58.0%'),
Text(0.15473421227241493, 0.5797045140003959, '25.8%'),
Text(-0.4354282002418736, 0.4127981134091128, '8.4%'),
Text(-0.581681533393744, 0.14712781419127613, '7.9%')])
```


Из кольцевой диаграммы также видно, что Северная Америка имеет наибольшую долю продаж во всем мире

На основании проведенного анализа можно сделать следующий вывод:

- Наиболее популярным жанром игр во всем мире является "Action";
- Самую большую долю продаж в мире имеет Северная Америка;
- В 2009 году произошел скачок продаж видеоигр по всему миру, кроме Японии.