ENERGISA

LEILÃO ANEEL 004/2018 - LOTE 4 LINHAS DE TRANSMISSÃO 230 kV CIRCUITO SIMPLES

DIANÓPOLIS II / BARREIRAS II C1 DIANÓPOLIS II / GURUPI C1 DIANÓPOLIS II / PALMAS C1

TORRE TIPO E2EL

CÁLCULO ESTRUTURAL

00	FGS	RCM	PRRLS	13/01/20	APROVADO
REV.	FEITO	VERIF.	APROV.	DATA	DESCRIÇÃO

CLIENTE:

PROJETO ESTRUTURAL:

FEITO	VERIF.	V. PROJ.	APROV.	DATA	O.S.	Nº ENGETOWER	Nº CLIENTE	REV.	TOT. FOLHAS
FGS	RCM	RCM	PRRLS	24/10/19	1723	154.43-C1001	ETT1-3000-PE-576-0001	00	1/38

ÍNDICE

1 NOTAS GERAIS	S DE CÁLCULO	Pág.	3		
2 ESQUEMA ESTR	RUTURAL	Pág.	4		
3 HIPÓTESES DE	E CARGA	Pág.	5	a	22
4 CARGAS DEVII	DAS AO VENTO SOBRE A TORRE	Pág.	23	a	24
5 DIMENSIONAME	ENTO DE BARRAS E CONEXÕES	Pág.	25	a	32
6 CARGAS ÚLTIN	MAS SOBRE FUNDAÇÃO DO MASTRO	Pág.	33	a	36
7 DIMENSIONAME	NTO DOS ESTAIS E DE SUAS CONEXÕES À TORRE	Pág.	37		
8 CÁLCULO DO A	APOIO DA BASE DO MASTRO	Pág.	38		

1 NOTAS GERAIS DE CÁLCULO

1.1 PARÂMETROS BÁSICOS DA TORRE

Tensão	230	kV						
Circuito	SIMPLES, COM 2 PÁRA-RAIOS							
Aplicação	SUSPI	ENSÃO						
Vão básico (m)	50	00						
Ângulo de deflexão	0 °	1°						
Vão médio (m)	600	570						
Vão gravante sem vento (m)	390 a 750 (condutor) e	390 a 800 (pára-raios)						
Vão gravante com vento (m)	195 a 900 (condutor) e	195 a 960 (pára-raios)						
Cabo pára-raios	cabo OPGW (CAA "DOTTEREL"	Ø15.5 mm ou Ø14.1 mm ou 176.9 kcmil ou anizado Ø3/8" EAR						
Cabo condutor (2 cabos/fase)	CAL 823 kcm:	il (Al 1120)						

1.2 MATERIAIS EMPREGADOS

Aço estrutural:

Fy = 2531 kgf/cm^2 (Tensão de fluência) ASTM A36 Fu = 4077 kgf/cm^2 (Tensão de ruptura) ASTM A572 GRAU 50 Fy = 3515 kgf/cm^2 (Tensão de fluência) Fu = 4570 kgf/cm^2 (Tensão de ruptura) ASTM A572 GRAU 60 Fy = 4218 kgf/cm^2 (Tensão de fluência) Fu = 5273 kgf/cm^2 (Tensão de ruptura) Parafusos (rosca excluída da seção de corte): ASTM A394 TIPO "0" Fv = 2620 kgf/cm^2 (Tensão admissível ao corte) Estais: ASTM A475 (Ø11/16") CR = 25000 kgf (Carga mínima de ruptura)

1.3 NORMAS E ESPECIFICAÇÕES PARA DIMENSIONAMENTO

O dimensionamento da torre (barras e ligações) foi feito de acordo com a Norma ASCE 10-15 ("Design of Latticed Steel Transmission Structures"), adotando-se um coeficiente de minoração de resistências igual a 0.93. Isto significa que as tensões admissíveis utilizadas no dimensionamento estrutural foram obtidas multiplicando-se as tensões limites recomendadas pela ASCE pelo fator 0.93.

1.4 SOFTWARE USADO NO CÁLCULO

O cálculo estrutural foi feito com a utilização de programas de computador desenvolvidos por ENGETOWER, baseados no método dos elementos finitos e que fazem a análise estática não-linear de estruturas reticuladas. O modelo estrutural empregado foi o de treliça espacial.

2 ESQUEMA ESTRUTURAL

O desenho ENGETOWER nº 154.43-D1000 apresenta a silhueta da torre. Nesse desenho estão indicadas as barras carregadas (traço cheio) e respectivas denominações de cálculo, as barras redundantes (traço interrompido) e os painéis/níveis de aplicação das cargas devidas ao vento sobre a estrutura.

3 HIPÓTESES DE CARGA

3.1 DEFINIÇÕES BÁSICAS

```
3.1.1 CARACTERÍSTICAS DOS CABOS
      • CABO CONDUTOR (2 cabos / fase):
               - CAL 823 kcmil (Al 1120)
                - A = área da seção transversal = 4.1742 \text{ cm}^2
               - \emptyset = diâmetro = 2.6530 cm
               -\rho = peso = 1.1508 kgf/m
               - CR = carga de ruptura = 9299 kgf
               - Ef = módulo de elasticidade final = 0.6520 \times 10^6 \text{ kgf/cm}^2
                - \alphaf = coeficiente de dilatação térmica linear final = 2.3000 x 10<sup>-5</sup>/°C
               Obs.: Informações acima para 1 cabo
      • CABO PÁRA-RAIOS 1:
               - cabo OPGW Ø15.5mm
                - A = área da seção transversal = 1.4100 \text{ cm}^2
               - \emptyset = diâmetro = 1.5500 cm
               -\rho = peso = 0.8120 kgf/m
               - CR = carga de ruptura = 11855 kgf
                - Ef = módulo de elasticidade final = 1.3660 \times 10^6 \text{ kgf/cm}^2
               - \alpha f = coeficiente de dilatação térmica linear final = 1.4300 x 10<sup>-5</sup>/°C
      • CABO PÁRA-RAIOS 2:
               - cabo OPGW Ø14.1mm
                - A = área da seção transversal = 1.1500 \text{ cm}^2
                - \emptyset = diâmetro = 1.4100 cm
               - \rho = peso = 0.6080 kgf/m
               - CR = carga de ruptura = 7684 kgf
                - Ef = módulo de elasticidade final = 1.1998 \times 10^6 \text{ kgf/cm}^2
               -\alpha f = coeficiente de dilatação térmica linear final = 1.4800 x 10<sup>-5</sup>/°C
      • CABO PÁRA-RAIOS 3:
               - CAA "DOTTEREL", 176.9 kcmil
                - A = área da seção transversal = 1.4193 \text{ cm}^2
               - \emptyset = diâmetro = 1.5420 cm
               -\rho = peso = 0.6556 kgf/m
               - CR = carga de ruptura = 7857 kgf
                - Ef = módulo de elasticidade final = 1.0687 \times 10^6 \text{ kgf/cm}^2
               - \alpha f = coeficiente de dilatação térmica linear final = 1.5300 x 10^{-5}/°C
      • CABO PÁRA-RAIOS 4:
               - cabo de aço galvanizado Ø3/8" EAR
               - A = área da seção transversal = 0.5108 \text{ cm}^2
                - \emptyset = diâmetro = 0.9144 cm
```

3.1.2 CADEIAS DE ISOLADORES

```
• CADEIA DE SUSPENSÃO I:
```

- peso = 70 kgf

 $-\rho$ = peso = 0.4070 kgf/m

- CR = carga de ruptura = 6985 kgf

- Ae = área exposta ao vento \cong 0.519 m²
- CADEIA DE SUSPENSÃO V:
 - peso = 150 kgf
 - Ae = área exposta ao vento $\cong 1.038 \text{ m}^2$

- Ef = módulo de elasticidade final = $1.8500 \times 10^6 \text{ kgf/cm}^2$

 $-\alpha f$ = coeficiente de dilatação térmica linear final = 1.1500 x 10^{-5} /°C

3.1.3 AÇÃO DO VENTO 3.1.3.1 VENTO MÁXIMO

- De acordo com IEC/TR 60826, considerando-se período de integração igual a 2-3 segundos para a ação do vento sobre cabos, cadeia de isoladores e estrutura.
- T = período de retorno = 150 anos
- VR(50) = velocidade de referência do vento para T iqual a 50 anos = 23.61 m/s (85 km/h)
- VR(150) = velocidade de referência do vento para T iqual a 150 anos = 26.39 m/s (95 km/h)
- Terreno categoria "B" (Kr = 1.00)
- qo = pressão dinâmica de referência = $1/2 \times \rho \times [Kr \times VR(150)]^2/g$
 - $-\rho$ = massa específica do ar = 1.151 kg/m³
 - g = aceleração da gravidade = 9.81 m/s²
 - \Rightarrow qo = 40.9 kqf/m²

Obs.: A pressão dinâmica reduzida será tomada iqual a 36%

do valor acima calculado

3.1.3.2 VENTO DE ALTA INTENSIDADE

- Será considerado vento com velocidade Vi = 43.06 m/s (155 km/h), constante com a altura, atuando integralmente sobre a estrutura e sobre 25% do vão médio.
- qi = pressão dinâmica associada a Vi = $1/2 \times \rho \times \text{Vi}^2/\text{g}$
 - $-\rho$ = massa específica do ar = 1.151 kg/m³
 - q = aceleração da gravidade = 9.81 m/s²
 - \Rightarrow qi = 108.8 kqf/m²

3.1.4 TRAÇÕES NOS CABOS

- ESTADOS DE CARGA:
 - 1 EDS: 24°C, sem vento
 - 2 Temperatura mínima: 7°C
 - 3 Temperatura máxima: 66°C no condutor e 40°C no pára-raios
 - 4 Vento máximo 90° (transversal), temperatura = 19°C
 - 5 Vento máximo 75°, temperatura = 19°C
 - 6 Vento máximo 60°, temperatura = 19°C
 - 7 Vento máximo 45°, temperatura = 19°C
 - 8 Vento máximo 30°, temperatura = 19°C
 - 9 Vento máximo 15°, temperatura = 19°C
 - 10 Vento máximo 0°, temperatura = 19°C
 - 11 Vento reduzido 90°, temperatura = 19°C
- Resultados, na condição final, para vãos básicos máximos da LT:

ESTADO DE CARGA	1	2	3	4	5	6	7	8	9	10	11
CONDUTOR(*)	1860	1950	1680	3594	3434	3006	2466	2050	1897	1885	2211
PÁRA-RAIOS 1	1458	1510	1414	2519	2418	2149	1817	1568	1480	1473	1663
PÁRA-RAIOS 2	1091	1131	1057	2125	2032	1781	1460	1206	1110	1102	1304
PÁRA-RAIOS 3	1179	1223	1140	2320	2218	1942	1587	1306	1200	1191	1415
PÁRA-RAIOS 4	733	754	715	1398	1337	1175	967	805	744	739	868
(*) Trações para	1 cabo										

Notas: a) Trações em kgf para vão básico de:

- \Rightarrow cabo CONDUTOR: 500.0 m
- ⇒ cabo PÁRA-RAIOS 1: 500.0 m
- ⇒ cabo PÁRA-RAIOS 2: 500.0 m
- ⇒ cabo PÁRA-RAIOS 3: 500.0 m
- ⇒ cabo PÁRA-RAIOS 4: 500.0 m
- b) Trações para condição final, considerando-se:
 - ⇒ cabo CONDUTOR: Tração final EDS = 20.0% de CR
 - (flecha final condição EDS = 19.375 m)
 - ⇒ cabo PÁRA-RAIOS 1: Tração final EDS = 12.3% de CR (flecha final condição EDS = 17.430 m -> 90% CONDUTOR)

(flecha final temperatura mínima = 16.834 m -> 91% CONDUTOR)

```
⇒ cabo PÁRA-RAIOS 2: Tração final EDS = 14.2% de CR
      (flecha final condição EDS = 17.441 m -> 90% CONDUTOR)
      (flecha final temperatura mínima = 16.827 m -> 91% CONDUTOR)
   ⇒ cabo PÁRA-RAIOS 3: Tração final EDS = 15.0% de CR
      (flecha final condição EDS = 17.412 m -> 90% CONDUTOR)
      (flecha final temperatura mínima = 16.774 m -> 91% CONDUTOR)
   ⇒ cabo PÁRA-RAIOS 4: Tração final EDS = 10.5% de CR
      (flecha final condição EDS = 17.369 m -> 90% CONDUTOR)
      (flecha final temperatura mínima = 16.891 m -> 91% CONDUTOR)
c) Pressões máximas de vento sobre cabos:
                               : 77.89 \text{ kgf/m}^2 \text{ (H = 19.0m } G_C = 2.07 G_T = 0.92)
   \Rightarrow cabo CONDUTOR
   \Rightarrow cabo PÁRA-RAIOS 1
                             : 81.65 \text{ kgf/m}^2 \text{ (H = 25.0m } G_C = 2.17 G_T = 0.92)
   \Rightarrow cabo PÁRA-RAIOS 2 : 81.65 kgf/m<sup>2</sup> (H = 25.0m G<sub>C</sub> = 2.17 G<sub>L</sub> = 0.92)
   \Rightarrow cabo PÁRA-RAIOS 3 : 81.65 kgf/m<sup>2</sup> (H = 25.0m G<sub>C</sub> = 2.17 G<sub>L</sub> = 0.92)
   \Rightarrow cabo PÁRA-RAIOS 4 : 81.65 kgf/m<sup>2</sup> (H = 25.0m G<sub>C</sub> = 2.17 G<sub>L</sub> = 0.92)
d) Flechas na temperatura mínima para vão básico:
   \Rightarrow cabo CONDUTOR
   \Rightarrow cabo PÁRA-RAIOS 1
                                                 : 16.8 m
   ⇒ cabo PÁRA-RAIOS 2
                                                 : 16.8 m
   ⇒ cabo PÁRA-RAIOS 3
                                                 : 16.8 m
   ⇒ cabo PÁRA-RAIOS 4
                                                 : 16.9 m
e) Flechas na temperatura máxima para vão básico:
   \Rightarrow cabo CONDUTOR
f) Alturas médias dos cabos para vão básico:
   \Rightarrow cabo CONDUTOR: H = 7.5 + 21.5 + 1.3 - 2/3 x 18.5 =
       = 18.0 m (adotada: 19.0 m)
       Obs.: 7.5 m = distância mínima fase/solo
              1.3 m = distância típica fase inferior ao c.q. das fases
   \Rightarrow cabo PÁRA-RAIOS 1: H = 7.5 + 21.5 + 6.6 - 2/3 x 16.8 =
       = 24.4 \text{ m} (adotada: 25.0 \text{ m})
       Obs.: 6.6 m = altura típica pára-raios em relação à fase inferior
   \Rightarrow cabo PÁRA-RAIOS 2: H = 7.5 + 21.5 + 6.6 - 2/3 x 16.8 =
       = 24.4 \text{ m} (adotada: 25.0 \text{ m})
       Obs.: 6.6 m = altura típica pára-raios em relação à fase inferior
   \Rightarrow cabo PÁRA-RAIOS 3: H = 7.5 + 21.5 + 6.6 - 2/3 x 16.8 =
       = 24.4 \text{ m} (adotada: 25.0 \text{ m})
       Obs.: 6.6 m = altura típica pára-raios em relação à fase inferior
   \Rightarrow cabo PÁRA-RAIOS 4: H = 7.5 + 21.5 + 6.6 - 2/3 x 16.9 =
       = 24.3 m (adotada: 25.0 m)
       Obs.: 6.6 m = altura típica pára-raios em relação à fase inferior
g) Pressões máximas de vento sobre cabos para vão médio:
   \Rightarrow cabo CONDUTOR
                               : 78.77 \text{ kgf/m}^2 \text{ (H = 23.0m G}_{\text{C}} = 2.14 \text{ G}_{\text{L}} = 0.90 \text{)}
   \Rightarrow cabo PÁRA-RAIOS 1 : 82.45 kgf/m<sup>2</sup> (H = 30.0m G<sub>C</sub> = 2.24 G<sub>L</sub> = 0.90)
   \Rightarrow cabo PÁRA-RAIOS 2 : 82.45 kgf/m<sup>2</sup> (H = 30.0m G<sub>C</sub> = 2.24 G<sub>L</sub> = 0.90)
   \Rightarrow cabo PÁRA-RAIOS 3 : 82.45 kgf/m<sup>2</sup> (H = 30.0m G<sub>C</sub> = 2.24 G<sub>L</sub> = 0.90)
   \Rightarrow cabo PÁRA-RAIOS 4 : 82.45 kgf/m<sup>2</sup> (H = 30.0m G<sub>C</sub> = 2.24 G<sub>L</sub> = 0.90)
```

3.1.5 CARGAS LONGITUDINAIS DECORRENTES DE RUPTURA DE CABO

PÁRA-RAIOS: 1.25 x Tração EDS
FASES: 0.70 x Tração EDS

3.1.6 CARGAS LONGITUDINAIS PARA CONTENÇÃO DE QUEDA EM CASCATA

PÁRA-RAIOS: 0.60 x Tração EDS
FASES: 0.40 x Tração EDS

3.1.7 HIPÓTESES DE CARGA E FATORES DE SOBRECARGA - SUSPENSÃO

- HIP. 1: Cabos intactos, com vento transversal máximo (90°)
 - HIP. 2: Cabos intactos, com vento longitudinal máximo
 - HIP. 3: Cabos intactos, com vento máximo a 45°, 60° ou 75°
 - HIP. 4: Ruptura de 1 fase, sem vento
 - HIP. 5: Ruptura de 1 pára-raios, sem vento
 - HIP. 6: Construção/Manutenção, sem vento
 - HIP. 7: Cabos intactos, com vento transversal de alta intensidade
 - HIP. 8: Cabos intactos, com vento longitudinal de alta intensidade
 - HIP. 9: Cabos intactos, com vento de alta intensidade a 45°, 60° ou 75°
 - HIP. 10: Contenção de queda em cascata, sem vento
 - HIP. 11: Grampeamento, sem vento
- Fatores de sobrecarga:
 - ⇒ Cargas transversais:
 - HIP. 1, 2, 3, 4, 5, 7, 8, 9 e 10 : 1.00 - HIP. 6 e 11 : 1.50
 - ⇒ Cargas verticais:
 - HIP. 1, 2, 3, 4, 5, 7, 8, 9 e 10 : 1.15 (normais)
 - ou 0.87 (reduzidas)
 - HIP. 6 e 11 : 1.50
 - Para hipóteses com cargas verticais reduzidas, fator de sobrecarga considerado para o peso próprio da estrutura: 0.87
 - \Rightarrow Cargas longitudinais:
 - HIP. 1, 2, 3, 4, 5, 7, 8, 9 e 10 : 1.00 - HIP. 6 e 11 : 1.50

3.1.8 CARGAS POR HIPÓTESE

Notas:

1. Para as hipóteses com vento de alta intensidade (hip. 7, 8 e 9), considerou-se trações atuantes iquais às obtidas para Vento Reduzido (90°)

3.2 ÁRVORES DE CARGA

HIPOTESE 1 (VENTOMÁXIMOTRANSVERSAL) (CABOS INTACTOS)

HIPÓTESE 1E (VENTOMÁXIMOTRANSVERSAL) (CABOS INTACTOS)

ENERGISA

LT's 230 kV C.S. DI2-PAL C1, DI2-GUR C1 e DI2-BR2 C1 TORRE TIPO E2EL

14 R00

LT's 230 kV C.S. DI2-PAL C1, DI2-GUR C1 e DI2-BR2 C1 **ENERGISA TORRE TIPO E2EL**

(VENTO DE ALTA INTENSIDADE TRANSVERSAL) (CABOS INTACTOS)

HIPÓTESE 7E (VENTODE ALTA INTENSIDADE TRANSVERSAL) (CABOS INTACTOS)

HIPÓTESE 8 (VENTO DE ALTA INTENSIDADE LONGITUDINAL) (CABOS INTACTOS)

HIPÓTESE 8E (VENTO DE ALTA INTENSIDADE LONGITUDINAL) (CABOS INTACTOS)

HIPÓTESE 10 (SEM VENTO) (CONTENÇÃO DE QUEDA EM CASCATA)

3.3 NOTAS PARA ÁRVORES DE CARGA

- a) Cargas são últimas (incluem os respectivos fatores de sobrecarga) e estão em kqf.
- b) FVM indica a força devida à ação do vento máximo sobre a própria torre e FVI indica a força devida à ação do vento de intensidade. Para cálculo de FVM e FVI, ver páginas seguintes.
- c) PP indica o peso próprio da torre.
- d) Vento sobre a estrutura nas hipóteses 1E, 2E, 3E, 3-60E e 3-75E:
 - Acima da mísula dos estais: vento máximo, produzindo forças iguais a FVM;
 - Abaixo da mísula dos estais: vento reduzido (igual a 60% da velocidade máxima de vento), produzindo forças iguais a 0.36 x
- e) As árvores de carga apresentadas representam as hipóteses de carga básicas consideradas no cálculo. Algumas destas hipóteses foram desdobradas para a análise estrutural, conforme se esclarece nas notas subsequentes.
- f) Hipóteses 4 (ruptura de uma fase): e na denominação da hipótese de carga indica carga longitudinal na fase da esquerda, ${f d}$ indica carga longitudinal na fase da direita e ${\bf m}$ indica carga longitudinal na fase central.
- g) **Hipóteses 5** (ruptura de um pára-raios): **e** na denominação da hipótese de carga indica carga longitudinal no PR da esquerda e d indica carga longitudinal no PR da direita.
- h) **Hipóteses 6** (construção/manutenção):
 - Ae: cargas somente no PR esquerdo;
 - Ad: cargas somente no PR direito;
 - B : cargas somente nos 2 PR's;
 - Ce: cargas somente nos 2 PR's e na fase da esquerda;
 - Cd: cargas somente nos 2 PR's e na fase da direita;
 - Cm: cargas somente nos 2 PR's e na fase central;
 - De: sem as cargas da fase da esquerda;
 - Dd: sem as cargas da fase da direita;
 - Dm: sem as cargas da fase central;
 - E: todas as cargas aplicadas.
- i) Hipóteses 11 (grampeamento):
 - OBS.: 1) Para cabos em grampeamento, considerar cargas fora de parênteses na árvore de carga;
 - 2) Para cabos só lançados ou já grampeados, considerar cargas entre parênteses na árvore de carga;
 - 3) Fase central em grampeamento: aplicar cargas no ponto auxiliar para içamento/grampeamento dessa fase.

Nos desdobramentos abaixo especificados, considerar cargas de cabos só lançados/já grampeados nos pontos onde não houver cabos em grampeamento:

- Ae: cargas de grampeamento somente no PR esquerdo;
- Ad: cargas de grampeamento somente no PR direito;
- B : cargas de grampeamento somente nos 2 PR's;
- Ce: cargas de grampeamento somente nos 2 PR's e na fase da esquerda;
- Cd: cargas de grampeamento somente nos 2 PR's e na fase da direita;
- Cm: cargas de grampeamento somente nos 2 PR's e na fase central;
- De: sem as cargas de grampeamento da fase da esquerda;
- Dd: sem as cargas de grampeamento da fase da direita;
- Dm: sem as cargas de grampeamento da fase central;
- E: todas as cargas de grampeamento aplicadas.
- j) R na denominação da hipótese de carga indica cargas verticais mínimas (valores entre parênteses nas árvores de carga).
- k) ` na denominação da hipótese de carga indica inversão do sentido das cargas longitudinais.

4 CARGAS DEVIDAS AO VENTO SOBRE A TORRE

4.1 CARGAS DEVIDAS AO VENTO MÁXIMO SOBRE A TORRE

As cargas devidas à ação do vento máximo sobre a torre foram calculadas conforme metodologia da Publicação IEC/TR 60826, considerando-se a seguinte pressão dinâmica de referência:

- vento máximo: q0 = 40.9 kgf/m².

4.2 CARGAS DEVIDAS AO VENTO DE ALTA INTENSIDADE SOBRE A TORRE

As cargas devidas à ação do vento de alta intensidade sobre a torre foram calculadas com base na seguinte pressão dinâmica, constante ao longo da altura:

- vento de alta intensidade: qi = 108.8 kgf/m².

4.3 CARGAS DEVIDAS AO VENTO, POR PAINEL

Painel	H (m)	Ae (m²)	Ab (m²)	Ae/Ab	Ca	Gt	FW (kgf)	FWi (kgf)
1	46.80	1.27 2.89	9.39 9.18	0.14 0.31	3.19	2.47	409 727	441 783
2	42.60	1.15 1.74	7.74	0.31	3.14	2.43	359 462	393 505
3	39.40	2.22	9.72 10.61	0.23 0.24	2.79	2.40	608 683	674 757
4 5	33.40 27.40	1.51 1.48	7.95	0.19	2.96	2.35 2.28	430 403	486 470
6 7	27.40 21.40 15.40	1.48 1.48	7.50 7.50 7.50	0.20	2.92	2.20 2.20 2.09	389 369	470 470 470
8 9	9.40	1.48	7.50 7.50 2.13	0.20	2.92 2.92 2.52	1.94 1.67	343 108	470 470 173
10	18.40 13.90	1.12 1.12	5.63 5.63	0.30	2.92	2.15 2.06	288 276	356 356
	13.90	1.14 +] 5.03	0.20	2.92	2.00	2/6	330

NOTAS:

- 1. Para indicação dos painéis de vento, ver desenho ENGETOWER nº 154.43-D1000.
- 2. A linha supérior refere-se à face longitudinal da torre (vento transversal) e a linha inferior refere-se à face transversal da torre (vento longitudinal).
- 3. H = altura sobre o solo.
- 4. Gt = fator de rajada (para terreno com rugosidade B).
- 5. Ae = área exposta ao vento.
- 6. Ab = área de contorno associada a Ae.
- 7. Ca = coeficiente de arrasto (calculado com base na relação Ae/Ab).
- 8. FW e FWi = componente transversal (FWI) ou longitudinal (FWL) das forças de vento FVM e FVI. 9. FW = $90 \times \text{Gt} \times \text{Ca} \times \text{Ae}$, onde $90 = 40.9 \text{ kgf/m}^2$.
- 10.FWi = qi x Ca x Ae, onde qi = 108.8 kgf/m². 11.As forças devidas à ação do vento sobre os estais não estão incluídas na tabela acima.
- Para o valor considerado para esta força, ver nota seguinte.

 12.FWe = força devida ao vento máximo sobre 1 estai:
 60 kgf (torre H=39.9m) ou 44 kgf (torre H=30.9m) ou 28 kgf (torre H=21.9m)
 FWei= força devida ao vento de alta intensidade sobre 1 estai:
- - 70 kgf (torre H=39.9m) ou 54 kgf (torre H=30.9m) ou 38 kgf (torre H=21.9m).

4.4 CARGAS DEVIDAS AO VENTO, POR NÍVEL

+		VENIC) MÁXIMO (kgf)		
NÍVEL	VENIO a 90° (TRANSVERSAL)	VENIO a 0° (LONGITUDINAL)			VENIO a 75°
	FWI (FWL = 0)	(FWT = 0) FWL	FWI = FWL	FWI/FWL	FWI/FWL
1 2 3 3* 4 5 6 7 8 9 10 11 12 13 14	409 768 663 120 519 417 396 379 356 226 54+120 359 282 310 387	364 595 573 120 557 417 396 379 356 226 54+120 359 282 310 387	328 578 524 84 456 353 336 322 302 191 46+84 305 239 263 328	396/229 722/417 638/368 104/60 526/304 415/239 394/228 377/218 355/205 225/130 54+104/31+60 358/206 281/162 308/178 385/222	412/110 767/206 666/179 116/32 529/142 422/113 402/108 384/103 361/97 229/61 55+116/15+32 364/98 286/77 314/84 392/105

 		VENIO DE AI	LTA INTENSIDADE ()	 gf)	
NÍVEL	VENIO a 90° (TRANSVERSAL)	VENIO a 0° (LONGITUDINAL)			VENIO a 75°
	FWI (FWL = 0)	(FWT = 0) FWL	FWI = FWL	FWT/FWL	FWI/FWL
1 2 3 3* 4 5 6 7 8 9 10 11 12 13 14	441 834 730 140 580 478 470 470 470 322 87+140 421 356 413 478	392 644 631 140 622 478 470 470 470 322 87+140 421 356 413 478	353 627 577 100 510 406 399 399 273 73+100 357 302 350 406	427/246 783/452 702/406 120/72 588/339 476/275 468/270 468/270 468/270 320/185 86+120/50+72 419/242 355/205 411/237 476/275	444/119 833/223 734/197 136/36 591/158 485/130 477/128 477/128 477/128 326/87 88+136/24+36 427/114 361/97 419/112 485/130

NOTAS:

- 1. Para indicação dos níveis de vento, ver desenho ENGETOWER nº 154.43-D1000.
- Para indicação dos níveis de vento, ver desenho ENCETOWER nº 154.43-D1000.
 O nível 3* corresponde à ponta superior dos estais.
 Para obtenção dos valores acima, as cargas para vento transversal referentes aos painéis 1 e 2, determinadas no sub-item anterior, foram multiplicadas por 2, de modo a levar em conta a presença, na cabeça da torre, de 4 faces treliçadas interpondo-se à passagem do vento.
 FWT = componente transversal das forças de vento FVM ou FVI.
 FWL = componente longitudinal das forças de vento FVM ou FVI.
 FWT = [1 + 0.2sen²(2Ø)] x (FW(V.TRANSV)sen²Ø + FW(V.LONGIT)cos²Ø) x senØ
 FWL = [1 + 0.2sen²(2Ø)] x (FW(V.TRANSV)sen²Ø + FW(V.LONGIT)cos²Ø) x cosØ.
 As forças indicadas nos níveis 3* e 10 (segunda parcela) correspondem à carca devida à acão do vento sobre os estais na torre H=39.9m.
- - carga devida à ação do vento sobre os estais na torre H=39.9m.

5 DIMENSIONAMENTO DE BARRAS E CONEXÕES

NOTAS :

- 1 As forças máximas indicadas são últimas, ou seja, incluem os fatores de sobrecarga especificados.
- 2 Aços estruturais : ASTM/A36

ASTM/A572, grau 50 (indicado por ASTM A572) ASTM/A572, grau 60 (indicado por ASTM A572*)

- 3 Parafusos : ASTM/A394, tipo 0
- 4 Estais : ASTM/A475 (\emptyset 11/16", com carga mínima de ruptura = 25000 kgf)
- 5 Módulo de elasticidade longitudinal:

- Perfis e chapas : 2038894 kgf/cm^2 - Estais : 1600000 kgf/cm^2

- 6 Tensão de cisalhamento máxima nos parafusos : 2620 kgf/cm²
 - O valor acima foi estabelecido considerando-se que os parafusos estão permanentemente submetidos a uma carga de tração de cerca de 40% de sua carga de ruptura, tração esta produzida pelo torque com que são instalados.
 - Para a determinação da resistência ao cisalhamento dos parafusos, considerou-se rosca excluída da seção de corte.
- 7 Tensão de esmagamento considerando bordas padrões (Fp = 1.0833 x Fu) :

Aço ASTM/A36
 Aço ASTM/A572, grau 50
 4417 kgf/cm²
 4950 kgf/cm²
 Aço ASTM/A572, grau 60
 5712 kgf/cm²

- 8 Curvas de flambagem (dimensionamento à compressão): conforme "Design of Latticed Steel Transmission Structures" (Norma ASCE 10-15), itens 3.6 e 3.7.
- 9 Área líquida (An) para o dimensionamento à tração :
 - Cantoneiras presas em uma só aba : An = 0.90 x (Ab Aa)
 - Cantoneiras presas em ambas as abas : An = Ab Aa

onde : - Ab = Área bruta - Aa = Área dos furos

- 10 Na análise estrutural, considerou-se que os estais estavam prétensionados com uma carga igual a 8% de sua carga mínima de ruptura (0.08 x de 25000 = 2000 kgf).
- 11 No dimensionamento das barras e conexões, e também dos estais (item 7) e do apoio da base do mastro (item 8), adotou-se um coeficiente de minoração de resistências igual a 0.93, ou seja, as tensões e cargas admissíveis utilizadas foram obtidas multiplicando-se os valores limites pelo fator 0.93.

VERIFICAÇÃO DOS PERFILADOS E LIGAÇÕES

ENERGISA - LIT's 230 kV C.S. - TORRE TIPO E2EL

CONVENCOES ADOTADAS

NB = DENOMINAÇÃO DA BARRA

HIP = HIPOTESE DE CARREGAMENTO GOVERNANTE

FMAX= ESFORCO MAXIMO (KGF)

L = COMPRIMENIO DE FLAMBAGEM CRITICO (CM)

R = RAIO DE GIRAÇÃO CRITICO (CM)

A = AREA DA SECAO TRANSVERSAL (CM^2)

 $\mathtt{ESB} = \mathtt{ESBELTEZ} \ \mathtt{CRITICA} \ \mathtt{EFETIVA}$

C = CURVA DO ASCE P/ CORRECÃO DA ESBELITEZ

TA = TENSÃO ADMISSIVEL NA BARRA (KGF/CM 2)

FA = ESFORCO ADMISSIVEL NA BARRA (KCF)

NP = NUMERO DE PARAFUSOS

D = DIAMETRO DO PARAFUSO (MM)

SD = CISALHAMENIO DUPLO NO CORPO DO PARAFUSO (SECAO DUPLA)

 $\mbox{FCA} \ = \ \mbox{FORCA} \ \mbox{DE} \ \mbox{CISALHAMENIO} \ \mbox{ADMISSIVEL} \ \mbox{NA} \ \mbox{LIGACAO} \ \mbox{(KGF)}$

 $\texttt{FEA} = \texttt{FORCA} \ \texttt{DE} \ \texttt{ESWAGAMENIO} \ \texttt{ADMISSIVEL} \ \texttt{NA} \ \texttt{LIGACAO} \ \ (\texttt{KGF})$

EC = ESPESSURA DA CHAPA ADOTADA P/ CALCULO DE FEA (MM)

%~= TAXAS MAXIMAS DE TRABALHO (%) - BARRA/LIGACAO

DVPL ENERGISA - LT's 230 kV C.S. - TORRE TIPO E2EL PAG. 1 VERIFICACAO DOS PERFILADOS E LIGACOES * HIP * FMAX * L * **BTTOLY** * R * A *ESB* C * TA * *NP D SD* FCA * FEA/EC* 응 NB FΆ -523583 1L60x60x4 4.71 83 2 2236 -10531 3 12.7 9260 7017 .50 CS1a 1FR 1.18 1E 5146 ASIM-A572 3.44 3269 11246 4.0 .75 CS1b 1FIR -487775 1L60x60x4 1.18 4.71 78 2 2343 -11035 3 12.7 9260 7017 .44 3 - 754782 ASIM-A572 3.44 3269 11246 4.0 .70 2 1977 CS2a 3-75 -5837156 1L60x60x4 1.83 4.71 94 -9309 3 12.7 9260 7017 .63 3 - 754987 ASIM-A572 3.10 3269 10122 4.0 .83 CS2b 1ER -2312156 1L60x60x4 1.83 4.71 94 2 1977 -9309 3 12.7 9260 7017 .32 11De 3263 ASIM-A572 3.10 3269 10122 4.0 .47 -1830 132 1L50x50x3 0.99 2.96 133 4 1052 -3114 2 12.7 3508 .59 CS3 1ER 6173 3-75 1797 3269 5907 ASIM-A572 1.81 3.0 .52 3-75 -5645 90 1L60x60x4 2 2137 7017 CI1 1.18 4.71 87 -10063 3 12.7 9260 .56 3269 3-75 5343 ASIM-A572 3.10 10122 4.0 .80 9355 CI2a 11De -7247171 1L60x60x4 1.83 4.71 100 2 1820 -8572 4 12.7 12346 .85 1ER 4923 ASIM-A572 3.10 3269 10122 4.0 .77 CI2b 11De -7889 136 1L60x60x4 1.83 4.71 86 2 2170 -10220 4 12.7 12346 9355 .77 3.10 3269 4.0 .84 10°R 3732 10122 ASTM-A572 3167 0.78 1.69 181 4 3269 3508 .57 $M\Gamma$ 141 1L40x40x3 5513 2 12.7 6173 6De .90 3.0 ASTM-A572 -3762 1.83 1782 4.71 102 3 -8391 3 12.7 7017 PΜ 152 1160x60x4 9260 .45 40 4d'R 3345 3.10 3269 10122 .54 ASIM-A572 4.0 -1421ВVЛ 5e 54 1L60x60x4 1.18 4.71 64 2 2592 -12207 1 12.7 3087 2339 .12 5d'R 699 3.10 3269 10122 4.0 ASIM-A572 .61 BV2 6Dd -1303114 1L40x40x3 0.78 2.35 146 4 875 -2057 1 12.7 3087 1754 .63 ASIM-A572 3.0 .74 BV3 1ER -416117 1L60x60x4 1.18 4.71 110 3 1557 -7336 1 12.7 3087 2339 .11 1092 ASIM-A572 3.10 3269 10122 4.0 .47 BV4 11Dd -258 55 2L60x60x4 1.18 9.42 65 2 2581 -24313 2 12.7 6173 4678 .01 233 3269 11Dd ASIM-A572 6.19 20243 4.0 .06 -2210 1754 .50 BV5 1ER -1109110 1L40x40x3 0.78 2.35 141 940 1 12.7 3087 3269 1ER 100 ASIM-A572 1.69 5513 3.0 .63 BP1 5e` -686 92 1L40x40x3 0.78 2.35 119 3 1321 -3105 1 12.7 3087 1754 .22 5d`R 876 ASIM-A572 1.69 3269 5513 3.0 .50 BP2 1ER -273 107 1L75x75x5 2.29 7.36 83 3 2223 -16359 1 12.7 3087 2924 .02 334 ASIM-A572 5.20 3269 16985 5.0 .11

Nota: Se necessário por razões de detalhamento, o perfil laminado da barra BV4 poderá ser substituído por perfil em chapa dobrada de dimensão igual ou superior.

ENEDGICA	LT's 230 kV C.S. DI2-PAL C1, DI2-GUR C1 e DI2-BR2 C1	27 D00
ENERGISA	TORRE TIPO E2EL	27 R00

DVPL			ENERGISA -	- LT's 2 	:30 kV (C.S.	– T	ORRE TI	PO E2EL 	ı ———				P#	·G. 2
		VER	RIFICACAO	DOS	PEI	RFI	L	ADOS	E	LΙ	GΑ	СO	E S		
NB	* HIP *	FMAX *	L * BITOLA	* R	* A	*ESB*	C	* TA *	FA	*NP	D	SD*	FCA	* FEA/EC	 <u>}</u> * %
BP3	6De	-1613	95 11.40x40x3 ASTM-A572	0.78	2.35	122	4	1261	-2962	1	12.	7	308'		1 .54) .92
BP4	6Dd	905	108 1L40x40x3 ASIM-A572	0.78	1.69	138	4	3269	5513	1	12.	7	308'	_	1 .16) .52
DP	6Ad 6Ae	-132 285	81 1L40x40x3 ASTM-A572	0.78	2.35 1.26		3		-3508 4112		12.	7	308'		1 .07 0 .16
VF	5d`R 5e`	-1530 3031	116 11.40x40x3 ASIM-A572	0.78			4		-1987 5513		12.	7	617		3 .77
DVa.		-6790 4850	104 1L65x65x4 ASIM-A572	1.28	5.13 3.47		3	1771 3269	-9084 11357		12.	7	9260		7 .75) .97
DVb		-1473 2804	111 11.40x40x3 ASIM-A572	0.78					-2170 5513		12.	7	617	3.0	3 .68 3 .80
DVC		-2785 1437		0.99				1319 3269	-3903 7308		12.	7	617	3508	3 .71) .79
DVd.	5d`R 3-75	-1204 2338	104 1L40x40x3 ASIM-A572		2.35 1.69				-2472 5513		12.	7	617		3 .49 0 .67
DV1a		-1305 2062	88 1L40x40x4 ASIM-A572	0.78	3.08 2.20				-4250 7194		12.	7	308		31 .88
DV1b			89 1LA0x40x3 ASIM-A572	0.78			2		-3290 5513		12.	7	308		.41 3 .87
DV1c	5e` 5d	-1288 1352	91 11.40x40x3 ASIM-A572	0.78				1335 3269	-3138 5513				308	_	1 .41 0 .77
DH1			87 1L40x40x3 ASIM-A572		2.35 1.69			1448 3269			12.	7	308'		1 .11 24 .24
DH2			87 1L40x40x3 ASIM-A572					1448 3269			12.	7		7 1754 3.0	
DH3	11Cm 5d`	-19 18	107 2L100x100x7 ASIM-A572*	3.06	27.32 22.59	77	3	2562 3923	-69998 88615	4	12.	7	12346	5 11694 5.0	
GEa			96 1L75x75x6 ASIM-A572*					2641 3923							.65
GELb			128 1L75x75x6 ASIM-A572*												.65
GEC			96 1L75x75x6 ASIM-A572*			65	1	3046 3923	-26655 26854	10	12.	7	30866	5 40481 6.0	

ENERGISA LT's 230 kV C.S. DI2-PAL C1, DI2-GUR C1 e DI2-BR2 C1
TORRE TIPO E2EL

28 R00

DVPL			ENERGISA -	- LT's 2	30 kV C.S	5	· T	ORRE TI	PO E2EI	1				PAG	. 3
		VER	IFICACAO	DOS	PERF	ΓI		ADOS	====== S E	LΙ	G A	СО	E S		
NB	* HIP *	FMAX *	L * BITOLA	* R	* A *ES	:=== 3B*	C	* TA *	FA	*NP	D	SD*	FCA *	FEA/EC*	%
GI1	1ER 11Cm	-6343 9025	111 1L60x60x4 ASIM-A572	1.18	4.71 10 3.44)1	2	1808 3269	-8514 11246		12.7	7	12346	9355 4.0	
GI2	1ER 1E	-12790 13537	84 2L.45x45x4 ASIM-A572	1.35	6.98 7 5.14	77	2	2433 3269	-16980 16801		12.7	7SD	24693	16696 8.0	
DG1	10` 10`R	-2542 2068	88 11.40x40x3 ASTM-A572	0.78	2.35 11 1.69	L5	2	1424 3269	-3345 5513		12.7	7	6173	3508 3.0	
 DG2	10`R 10`	-2020 2426	89 11.40x40x3 ASIM-A572	0.78	2.35 11 1.69	 L6	2	1400 3269	-3290 5513		12.7	7	6173	3508 3.0	
DG3	10` 10`R	-2381 1919	90 1L40x40x3 ASIM-A572	0.78	2.35 11 1.69			1377 3269	-3236 5513		12.7	7	6173	3508 3.0	
BQT	11Cm 10`R	-5891 10194	150 2L60x60x4 ASIM-A572	1.82	9.42 10 6.19			1792 3269	-16879 20243		12.7	7SD	24693	16696 8.0	
BQL	1R 1E	-6486 1235	125 1L65x65x4 ASTM-A572	1.28	5.13 10 3.47)9	3	1572 3269	-8067 11357		12.7	7	12346	9355 4.0	
DQ	5e 4dR	-736 1008	98 11.40x40x3 ASTM-A572	0.78		 26		1185 3269	-2784 5513		12.7	7	6173	3508 3.0	
TME	3–75 1	-153 20107	204 2L60x60x4 ASIM-A572	1.83	9.42 11 7.33	 L6	3	1396 3269	-13151 23980		12.7	7	30866	23389	
PME	1R 5d`R	-7589 621	151 1L75x75x5 ASIM-A572	1.48	7.36 11 5.20	L1	3	1517 3269	-11168 16985		12.7	7	9260	8771 5.0	
QPE	10`R 10`	-6664 3943	148 1L65x65x4 ASIM-A572	1.98	5.13 9 3.47	97	3	1845 3269	-9465 11357		12.7	7	9260	7017 4.0	
Q'PE	6Dd 1	-20 3409	129 1L50x50x3 ASIM-A572						-3260 5907		12.7	7	6173	3508 3.0	
DQE	5e`R 5d`	-1114 1416	98 1L40x40x3 ASIM-A572	0.78					-2784 5513		12.7	7	3087	3.0	.81
 M1		-19502 9503	140 1L75x75x6 ASIM-A572*					2734 3923			12.7	7	24693	32384 6.0	.82
 M2a			153 1L75x75x6 ASIM-A572*						-26226 26854						.93
 M2b			153 1L75x75x6 ASIM-A572*		8.75 6 6.85	 57	1		-26226 26854						.89
 M2c			153 1L75x75x6 ASIM-A572*			57	1		-26226 26854		12.7	7	24693	32384 6.0	

ENERGISA LT's 230 kV C.S. DI2-PAL C1, DI2-GUR C1 e DI2-BR2 C1
TORRE TIPO E2EL

29 R00

DVPL ENERGISA - LT's 230 kV C.S. - TORRE TIPO E2EL PAG. 4 VERIFICACAO DOS PERFILADOS E LIGACOES * R * A *ESB* C * TA * NB * HIP * FMAX * L * BTTOT A *NP D SD* FCA * FEA/EC* 왕 FΆ D1 -7456204 1L65x65x5 1.98 6.34 112 3 1504 -9534 3 12.7 8771 .78 1 9260 4580 ASIM-A572 4.99 3269 16319 5.0 .85 5eR D2a9-60 -976 166 1L45x45x3 0.88 2.66 189 4 526 -1398 1 12.7 3087 1754 .70 9-60 1026 ASIM-A572 1.97 3269 6425 3.0 .58 1754 D2b 9-60 -1032165 1L45x45x3 0.88 2.66 188 4 532 -1415 1 12.7 3087 .73 9-60 989 ASIM-A572 1.97 3269 6425 3.0 .59 D2c 9-60 -998 164 1L45x45x3 0.88 2.66 186 4 538 -1432 1 12.7 3087 1754 .70 9-60 1040 ASIM-A572 1.97 3269 6425 3.0 .59 9-60 -10490.88 2.66 184 4 552 -1468 1 12.7 3087 1754 D2d 162 1L45x45x3 .71 1005 3269 9-60 ASIM-A572 1.97 6425 3.0 .60 9-60 -10140.88 2.66 183 4 559 -1486 1 12.7 1754 D2e 161 1L45x45x3 3087 .68 3269 9-60 1056 ASIM-A572 1.97 6425 3.0 .60 D2f 9-60 -1066 160 1L45x45x3 0.88 2.66 182 4 566 -1505 1 12.7 3087 1754 .71 9-60 1026 ASIM-A572 1.97 3269 6425 3.0 .61 D'1 1E-1714189 1L45x45x3 1.36 2.66 139 4 968 -2576 2 12.7 6173 3508 .67 456 3269 .49 604 1 97 6425 3.0 ASTM-A572 -2411 1 12.7 10` -15680.99 2.96 152 4 815 3087 1754 .65 D'2a 150 1T.50x50x3 1560 3269 7308 .89 10 2 24 3.0 ASTM-A572 -15720.99 793 -2348 1 12.7 1754 D'2b 10 152 1T50x50x3 2.96 154 4 3087 .67 10 1529 3269 7308 3.0 .90 ASIM-A572 2.. 24 10 -1552773 D'2c 154 1L50x50x3 0.99 2.96 156 4 -2288 1 12.7 3087 1754 .68 10 1528 3269 3.0 ASIM-A572 2.24 7308 .88 0.99 763 1754 D'2d 10 -1547155 1L50x50x3 2.96 157 4 -2258 1 12.7 3087 .69 10` 1512 ASIM-A572 2.24 3269 7308 3.0 .88 D'2e 10 -1527157 1L50x50x3 0.99 2.96 159 4 744 -2201 1 12.7 3087 1754 .69 10 1510 ASIM-A572 2.24 3269 7308 3.0 .87 D'2f 10 -1510 159 1L50x50x3 0.99 2.96 161 4 725 -2146 1 12.7 3087 1754 .70 10` 1493 3269 7308 ASIM-A572 2.24 3.0 .86 -157 0.99 2.96 141 4 935 -2768 1 12.7 1754 .06 Q1 9-60 140 1L50x50x3 3087 3269 5907 9-60 142 ASIM-A572 1.81 3.0 .09 Q'1 10R -247 140 1L50x50x3 0.99 2.96 141 4 935 -2768 1 12.7 3087 1754 .09 10 503 ASIM-A572 1.81 3269 5907 3.0 .29 DO1 5eR -207 99 1L40x40x3 0.78 2.35 127 4 1161 -2728 1 12.7 3087 1754 .08 5d 283 ASIM-A572 1.69 3269 5513 3.0 .16

ENIEDOIGA	LT's 230 kV C.S. DI2-PAL C1, DI2-GUR C1 e DI2-BR2 C1
ENERGISA	TORRE TIPO E2EL

					===										=====
		E S	CO	G A	ıΙ	E I	ADOS	L	RFI	PEF	DOS	IFICACAO	VER		
% 	FEA/EC*	FCA *	SD*	D	NP	FA *	* TA *	C	ESB*	* A *	* R	L * BITOLA	FMAX *	* HIP *	NB
	28066 6.0	24693	7	12.	8	-23199 22378	2651 3269	1	66		2.28	150 1L75x75x6 ASIM-A572	-21709 8828	10 10R	 МЗа
.93						-23199 22378	2651 3269	1	66	8.75 6.85	2.28	150 1L75x75x6 ASIM-A572	-21667 8747	10 10R	M3b
.93						-23199 22378	2651 3269	1	66	8.75 6.85	2.28	150 1L75x75x6 ASIM-A572	-21603 8641	10 10R	 M3c
	28066 6.0	24693	7	12.	8	-23199 22378	2651 3269	1	66	8.75 6.85	2.28	150 1L75x75x6 ASIM-A572	-21499 8510	10 10R	 M3d
	1754 3.0	3087	7	12.	1	-1543 6425		4	180	2.66 1.97	0.88	158 1L45x45x3 ASTM-A572	-814 816	10 10`	 D3a
	1754 3.0	3087	7	12.	1	-1099 5513	468 3269	4	200	2.35 1.69	0.78	156 11.40x40x3 ASIM-A572	-851 821	10` 10	 D3b
	1754 3.0	3087	7	12.	1	-1113 5513	474 3269	4	199	2.35 1.69	0.78	155 11.40x40x3 ASTM-A572	-864 859	10 10`	 D3c
	1754 3.0	3087	7	12.	1	-1142 5513	486 3269	4			0.78	153 1L40x40x3 ASIM-A572	-901 873	10` 10	 D3d
	1754 3.0	3087	 7	12.	1	-1173 5513	499 3269			2.35 1.69	0.78	151 1L40x40x3 ASIM-A572	-916 913	10` 10	 D3e
	1754 3.0	3087	7	12.	1	-1188 5513	506 3269		192	2.35 1.69	0.78	150 1L40x40x3 ASIM-A572	-955 929	10 10`	 D3f
	1754 3.0	3087	7	12.	1	-1221 5513	519 3269				0.78	148 11.40x40x3 ASIM-A572	 -971 971	10` 10	 D3g
.57	3.0	3087	 7	12.	1	-1237 5513					0.78	147 1L40x40x3 ASTM-A572		10 10`	 D3h
.09	1754 3.0	3087	7	12.	1	-3472 5907				2.96 1.81	0.99	125 1L50x50x3 ASIM-A572			 Q2
	1754 3.0	3087	7	12.	1	-2054	874	4	146	2.35		177 1L40x40x3 ASIM-A572	-73	1	DQ2
.85 .69	23389 5.0	24693	7	12.	8	-18928 18872	2572 3269	1	66	7.36 5.77	2.29	150 1L75x75x5 ASIM-A572	-16142 3627	10 9ER	 M4a
.79						-18928 18872						150 1L75x75x5 ASIM-A572			 M4b
.74						-18928 18872						150 1L75x75x5 ASIM-A572			 M4c

ENERGISA LT's 230 kV C.S. DI2-PAL C1, DI2-GUR C1 e DI2-BR2 C1
TORRE TIPO E2EL

31 R00

DVPL			ENERGISA	- LT's 23	0 kV C.	.s	- T	ORRE TI	PO EZEL	ı			PAG	. 6
		VER	RIFICACAO	DOS	PER	FΙ	L 2	A D O S	======= S E :	 Ь I	G A C	OES		
NB	* HIP *	FMAX *	L * BITOLA	* R *	A *E	SB*	С	* TA *	FA	*NP	D SI	D* FCA	* FEA/EC*	%
M4d	3-60 9ER	-13013 308	150 1L60x60x5 ASIM-A572	1.82	5.82 4.23	82	1	2299 3269	-13383 13837	_	12.7SI	D 37039	9 17542 5.0	.97 .74
D4	10 10	-1339 1330	146 1L.45x.45x.3 ASIM-A572	0.88	2.66 1 1.97	L66	4	679 3269	-1807 6425		12.7	3087	_	.74 .76
ME	10 10R	-21464 8277	150 1L75x75x6 ASIM-A572	2.28	8.75 6.85	66	1	2651 3269	-23199 22378	_	12.7	24693	3 28066 6.0	.93 .87
DE	10 10	-939 932	146 11.45x45x3 ASIM-A572	0.88	2.66 1 1.97	 L66	4	679 3269	-1807 6425		12.7	3087	7 1754 3.0	
MB	1	-12486	88 1L60x60x5 ASIM-A572	1.17	5.82	75	1	2462	-14326	6	12.7	18520	_	.87 .71
QB	3–75	2189	125 1L50x50x3 ASIM-A572	0.99	1.81 1	 L26	4	3269	5907	2	12.7	6173	3 3508 3.0	.37 .62

Verificação da barra de fixação do cabo pára-raios:

- Perfil: 2L 90x90x6 ASIM A572 grau 60
 - $A = \text{área} = 2 \times 10.60 = 21.20 \text{ cm}^2$
 - W = módulo de rigidez à flexão = $2 \times 12.20 = 24.40 \text{ cm}^3$
- Verificação para hipótese 5:
 - fb < 13 / 21.20 + (529 + 1823) x 35.0 / 24.40 = 3374 kgf/cm² < 0.93 x 4218 = 3923 kgf/cm²
- Verificação para hipótese 6:
 - fb < 48 / $21.20 + (1775 + 165) \times 35.0$ / $24.40 = 2785 \text{ kgf/cm}^2 < 0.93 \times 4218 = 3923 \text{ kgf/cm}^2$

Verificação da barra BP2 (apoio da barra de fixação do cabo pára-raios):

- Perfil: L 75x75x5 ASIM A572
 - W = módulo de rigidez à flexão = 7.10 cm³
- Verificação para hipótese 6:
 - fb = 1775 x 35.0 x 106.5 / $(75.0 \times 4 \times 7.10)$ = 3106 kgf/cm² < 0.93 x 3515 = 3269 kgf/cm²

Verificação da barra DH3 (fixação para grampeamento da fase central): * Perfil: 2L 100x100x7 - ASIM A572 grau 60

- - $W = m\acute{o}dulo de rigidez à flexão = 2 x 17.50 = 35.00 cm³$
- Verificação para hipótese 11:
 - fb < $(122 + 3264) \times 106.5 / (4 \times 35.00) = 2576 \text{ kgf/cm}^2 < 0.93 \times 4218 = 3923 \text{ kgf/cm}^2$

6 CARGAS ÚLTIMAS SOBRE FUNDAÇÃO DO MASTRO 6.1 CARGAS MÁXIMAS - TODAS AS ALTURAS DE TORRE

-1-

ENERGISA - LT's 230 kV C.S. - TORRE TIPO E2EL

CARGAS SOBRE FUNDAÇÃO

FORMACAO DAS ALTURAS DE TORRE

- 1 = H=39.9m
- 2 = H=30.9m
- 3 = H=21.9m

RESUMO DAS CARGAS ULTIMAS MAXIMAS SOBRE FUNDACOES - SISTEMA RETANGULAR

NOTAS:

- 1 Cargas em (kgf).
- 2 Sistema de referencia:
 - * V indica forca vertical.
 - * T $\,$ indica forca horizontal transversal que atua com V.
 - * L indica forca horizontal longitudinal que atua com V.
- 3 Para a forca V, o sinal "-" indica forca de compressao.
- 4 As cargas sao ultimas (incluem os fatores de sobrecarga especificados para o calculo da estrutura, mas nao incluem qualquer fator adicional de sobrecarga especifico para fundacoes).

```
Hip.= 1 T = 405 V = -40800 L = 0 COMB.= 1
Hip.= 9-75ER T = 1564 V = -14349 L = 306 COMB.= 1
Hip.= 10` T = -95 V = -29807 L = 2459 COMB.= 3
Hip.= 10 T = -96 V = -29807 L = -2459 COMB.= 3
Hip.= 3-75 T = 491 V = -39484 L = 107 COMB.= 1
Hip.= 1 T = 103 V = -39595 L = 0 COMB.= 2
Hip.= 1E T = -310 V = -39100 L = -0 COMB.= 1
Hip.= 3-60 T = 588 V = -38153 L = 336 COMB.= 1
Hip.= 1E T = -644 V = -37741 L = 0 COMB.= 3
Hip.= 9 T = 1092 V = -30591 L = 849 COMB.= 1
Hip.= 9-60 T = 1263 V = -31251 L = 543 COMB.= 1
Hip.= 10R T = -64 V = -23909 L = -2336 COMB.= 3
Hip.= 10`R T = -64 V = -23909 L = 2336 COMB.= 3
```

6.2 CARGAS MÁXIMAS - TORRE COM ALTURA H=39.9m

-2-

ENERGISA - LT's 230 kV C.S. - TORRE TIPO E2EL - H=39.9m

RESUMO DAS CARGAS ULTIMAS MAXIMAS SOBRE FUNDACOES - SISTEMA RETANGULAR

NOTAS:

- 1 Cargas em (kgf).
- 2 Sistema de referencia:
 - * V indica forca vertical.
 - * T indica forca horizontal transversal que atua com V.
 - * L $\,$ indica forca horizontal longitudinal que atua com V.
- 3 Para a forca V, o sinal "-" indica forca de compressao.
- 4 As cargas sao ultimas (incluem os fatores de sobrecarga especificados para o calculo da estrutura, mas nao incluem qualquer fator adicional de sobrecarga especifico para fundacoes).

```
Hip.= 9ER T = 1282 V = -17246 L =
                                      966 COMB.= 1
Hip.= 9-60ER T = 1516 V = -16400 L =
                                      648 COMB.= 1
Hip.= 3-75 T =
                 491 V = -39484 L =
                                       107 COMB.= 1
Hip.= 1E T =
                 -310 \text{ V} = -39100 \text{ L} =
                                        -0 COMB.= 1
Hip.= 3-60 T =
                 588 V = -38153 L =
                                       336 COMB.= 1
Hip.= 3-75E T = -240 V = -37768 L =
                                        -58 COMB.= 1
Hip.= 3
          T =
                 607 V = -34688 L =
                                        575 COMB.= 1
Hip.= 9 T =
                1092 V = -30591 L =
                                      849 COMB.= 1
Hip.= 9-60 T =
                1263 V = -31251 L =
                                      543 COMB.= 1
Hip.= 9E T =
                1241 V = -26341 L =
                                      914 COMB.= 1
Hip.= 9-60E T = 1474 \text{ V} = -25456 \text{ L} = 606 \text{ COMB.} = 1

Hip.= 9-75 T = 1282 \text{ V} = -30313 \text{ L} = 229 \text{ COMB.} = 1
```

6.3 CARGAS MÁXIMAS - TORRE COM ALTURA H=30.9m

-3-

ENERGISA - LT's 230 kV C.S. - TORRE TIPO E2EL - H=30.9m

RESUMO DAS CARGAS ULTIMAS MAXIMAS SOBRE FUNDACOES - SISTEMA RETANGULAR

NOTAS:

- 1 Cargas em (kgf).
- 2 Sistema de referencia:
 - * V indica forca vertical.
 - * T indica forca horizontal transversal que atua com V.
 - * L indica forca horizontal longitudinal que atua com V.
- 3 Para a forca V, o sinal "-" indica forca de compressao.
- 4 As cargas sao ultimas (incluem os fatores de sobrecarga especificados para o calculo da estrutura, mas nao incluem qualquer fator adicional de sobrecarga especifico para fundacoes).

```
Hip.= 10 T =
                 -80 \text{ V} = -28925 \text{ L} = -1757
                                             COMB.= 2
Hip.= 1E T =
                 -458 V = -38371 L =
                                        0 \quad \text{COMB.} = 2
Hip.= 3-75 T =
                 181 V = -38497 L =
                                       11 \quad \text{COMB.} = 2
Hip.= 3-75E T =
                -386 \text{ V} = -37087 \text{ L} = -118 \text{ COMB.} = 2
                298 V = -36949 L = 137
942 V = -29682 L = 312
Hip.= 3-60 T =
                                             COMB.= 2
Hip.= 9-60 T =
                                      312 COMB.= 2
Hip.= 9 T =
                822 V = -28907 L =
                                      510 COMB.= 2
Hip.= 10R T =
                 -52 V = -22917 L = -1654
                                             COMB.= 2
Hip.= 10 R T = -52 V = -22917 L = 1654 COMB.= 2
```

6.4 CARGAS MÁXIMAS - TORRE COM ALTURA H=21.9m

-4-

ENERGISA - LT's 230 kV C.S. - TORRE TIPO E2EL - H=21.9m

RESUMO DAS CARGAS ULTIMAS MAXIMAS SOBRE FUNDACOES - SISTEMA RETANGULAR

NOTAS:

- 1 Cargas em (kgf).
- 2 Sistema de referencia:
 - * V indica forca vertical.
 - * T indica forca horizontal transversal que atua com V.
 - * L indica forca horizontal longitudinal que atua com V.
- 3 Para a forca V, o sinal "-" indica forca de compressao.
- 4 As cargas sao ultimas (incluem os fatores de sobrecarga especificados para o calculo da estrutura, mas nao incluem qualquer fator adicional de sobrecarga especifico para fundacoes).

```
-231 \text{ V} = -38510 \text{ L} = 0 \text{ COMB.} = 3
-917 \text{ V} = -26013 \text{ L} = -522 \text{ COMB.} = 3
              T =
Hip.= 1
Hip.= 6De T =
                       -95 \text{ V} = -29807 \text{ L} = 2459 \text{ COMB.} = 3
Hip.= 10` T =
Hip.= 10 T =
                        -96 \text{ V} = -29807 \text{ L} = -2459 \text{ COMB.} = 3
Hip.= 1E T =
                       -644 \text{ V} = -37741 \text{ L} =
                                                      0 \quad \text{COMB.} = 3
                       -158 \text{ V} = -37688 \text{ L} = -103 \text{ COMB.} = 3
Hip.= 3-75 T =
Hip.= 3-75E T =
                       -575 \text{ V} = -36759 \text{ L} = -191 \text{ COMB.} = 3
Hip.= 3-60 T =
                        -16 V = -35939 L =
                                                    -91
                                                              COMB.= 3
Hip.= 3-60E T = -423 V = -34744 L = -282 COMB.= 3
Hip.= 10R T =
                       -64 \text{ V} = -23909 \text{ L} = -2336 \text{ COMB.} = 3
Hip.= 10`R T =
                       -64 \text{ V} = -23909 \text{ L} = 2336 \text{ COMB.} = 3
Hip.= 11E T = -93 V = -27643 L = -1307 COMB.= 3
```

7 DIMENSIONAMENTO DOS ESTAIS E DE SUAS CONEXÕES À TORRE

7.1- CARACTERÍSTICAS DOS ESTAIS

Cordoalha galvanizada de aço conforme ASTM A475, com pré-esticamento.

Diâmetro : 11/16"
Formação : 19 fios
Carga de ruptura mínima: 25000 kgf

7.2- VERIFICAÇÃO DOS ESTAIS

- E = força máxima de tração nos estais
 - torre H=39.9m = 16961 kgf (Hip. 3-75)
 - torre H=30.9m = 16484 kgf (Hip. 3-75)
- torre H=21.9m = 16124 kgf (Hip. 3-75R)
- $% = taxa de trabalho = 16961 / [0.93 x (0.75 x 25000)] = 0.973 \le 1.000$

7.3- VERIFICAÇÃO DAS CONEXÕES DOS ESTAIS À TORRE

Chapa 16.0 mm - ASTM A36 (Borda para Fp = 1.50 x Fu) Manilha com pino $\emptyset 25.4$ mm - Carga mínima de ruptura = 25000 kgf

a) Esmagamento na chapa de fixação da manilha

 $fp = 16961 / (2.54 \times 1.60) = 4173 \text{ kgf/cm}^2 < 0.93 \times (1.50 \times 4077) = 5687 \text{ kgf/cm}^2$

b) Tração na chapa

largura mínima da chapa: 190 mm ft < (2 x 16961) / [(19.0 - 2 x 2.86) x 1.60] = 1596 kgf/cm² < 0.93 x 2531 = 2354 kgf/cm²

7.4- RESISTÊNCIAS MÍNIMAS DAS FERRAGENS DOS ESTAIS E DAS HASTES DE ÂNCORA

- Carga mínima de ruptura : 25000 kgf - Carga mínima sem deformação permanente: 16961 kgf

8 CÁLCULO DO APOIO DA BASE DO MASTRO

8.1- CARGAS MÁXIMAS SOBRE FUNDAÇÃO DO MASTRO

HIPÓTESE 1	HIPÓTESE 9-75ER	HIPÓTESE 10
V = 40800 kgf	V = 14349 kgf	V = 29807 kgf
T = 405 kgf	T = 1564 kgf	T = 96 kgf
L = 0 kgf	L = 306 kgf	L = 2459 kgf

OBS.: V = Força Vertical de Compressão

---- T = Força Horizontal Transversal que atua com V

L = Força Horizontal Longitudinal que atua com V

8.2 VERIFICAÇÕES

8.2.1 Chumbador

chumbador : 1 φ 31.8 mm - SAE 1020 - $\mathbf{L}_{\mathrm{eng}}$ = 80 cm

base do mastro: chapa 25 mm - ASTM A36

= 341 kgf/cm² < 0.93 x (0.6 x 2100) = 1172 kgf/cm² $fv = 1.1 \times 2461 / 7.94$ fp = $1.1 \times 2461 / (3.18 \times 2.50) = 341 \text{ kgf/cm}^2 < 0.93 \times 4417$ = 4108 kgf/cm^2

8.2.2 Pressão no Concreto

Calota Ø250 mm - Área de apoio =
$$\pi$$
 x (25.0 2 - 3.5 $^2)$ / 4 = 481.3 cm 2

Concreto: fck = 200 kgf/cm²
$$\Rightarrow$$
 fcd = 200 / 1.4 = 142.9 kgf/cm²

Pressão =
$$1.1 \times 40800 / 481.3 = 93.2 \text{ kgf/cm}^2 < 142.9 \text{ kgf/cm}^2$$