	<pre>#load data from csv file tennis = pd.read_csv('play_tennis.csv') #transform label for tennis le = preprocessing.LabelEncoder() tennis = tennis.drop('day', axis = 1) tennis['outlook'] = le.fit_transform(tennis['outlook']) tennis['temp'] = le.fit_transform(tennis['temp']) tennis['humidity'] = le.fit_transform(tennis['windity']) tennis['wind'] = le.fit_transform(tennis['wind']) tennis['play'] = le.fit_transform(tennis['play']) X_cancer = cancer.data y_cancer = cancer.data y_cancer = cancer.target X_tennis = tennis.drop('play', axis = 1) y tennis = tennis.play</pre>					
[108	<pre>#Set training data to 80% and test data to 20% for cancer X_train_cancer, X_test_cancer, y_train_cancer, y_test_cancer = model_selection.train_test_split(X_cancer,y_cancer,y_cancer) #Set training data to 80% and test data to 20% for tennis X_train_tennis, X_test_tennis, y_train_tennis, y_test_tennis = model_selection.train_test_split(X_tennis,y_test) Decision Tree Classifier decision_tree = tree.DecisionTreeClassifier(criterion='entropy', max_depth=20) #decision_tree for tennis</pre>					
[110	<pre>decision_tree_tennis = decision_tree.fit(X_train_tennis, y_train_tennis) r_tennis = tree.export_text(decision_tree_tennis, feature_names=tennis.columns[:-1].tolist()) print("Play Tennis") print(r_tennis) Play Tennis wind <= 0.50 outlook <= 0.50 class: 1 outlook > 0.50 outlook <= 1.50 outlook <= 1.50 class: 0 outlook > 1.50</pre>					
[111	<pre> humidity <= 0.50 class: 0 humidity > 0.50 class: 1 wind > 0.50 class: 1</pre> prediction_tennis_decisionTreeClassifier = decision_tree_tennis.predict(X_test_tennis) print("Decision Tree Classifier: Tennis") print("Accuracy:", metrics.accuracy_score(y_test_tennis, prediction_tennis_decisionTreeClassifier)) print("F1 Macro avg:", metrics.f1_score(y_test_tennis, prediction_tennis_decisionTreeClassifier, average="mappint("F1 Weighted avg:", metrics.f1_score(y_test_tennis, prediction_tennis_decisionTreeClassifier,					
[112	Decision Tree Classifier: Tennis Accuracy: 0.333333333333333333333333333333333333					
	worst concave points <= 0.14					
	mean concavity <= 0.09 fractal dimension error <= 0.00 class: 0 fractal dimension error > 0.00 class: 1 mean concavity > 0.09 class: 0 worst radius > 16.80 mean texture <= 14.99 mean concavity <= 0.16 class: 1 mean concavity > 0.16 class: 0					
[113	<pre> mean texture > 14.99 worst concavity <= 0.20 mean concavity <= 0.05 class: 0 class: 1 class: 1 class: 0</pre> class: 1 class: 0 prediction_cancer_decisionTreeClassifier = decision_tree_cancer.predict(X_test_cancer) print("Decision Tree Classifier: Cancer") print("Accuracy:", metrics.accuracy_score(y_test_cancer, prediction_cancer_decisionTreeClassifier))					
[114	<pre>print("F1 Macro avg:", metrics.f1_score(y_test_cancer, prediction_cancer_decisionTreeClassifier, average="ma print("F1 Weighted avg:", metrics.f1_score(y_test_cancer, prediction_cancer_decisionTreeClassifier, average= Decision Tree Classifier: Cancer Accuracy: 0.9385964912280702 F1 Macro avg: 0.9246814535158093 F1 Weighted avg: 0.9377445501436461 Id3Estimator estimator = Id3Estimator()</pre>					
	<pre>estimator_tennis = estimator.fit(X_train_tennis, y_train_tennis) prediction_tennis_Id3 = estimator_tennis.predict(X_test_tennis) print("Id3Estimator: Tennis") print("Accuracy:", metrics.accuracy_score(y_test_tennis, prediction_tennis_Id3)) print("F1 Macro avg:", metrics.f1_score(y_test_tennis, prediction_tennis_Id3, average="macro")) print("F1 Weighted avg:", metrics.f1_score(y_test_tennis, prediction_tennis_Id3, average="weighted")) Id3Estimator: Tennis Accuracy: 0.333333333333333333333333333333333333</pre>					
[117	<pre>estimator_tennis_tree = export_text(estimator_tennis.tree_, feature_names=tennis.columns[:-1].tolist()) print("Play Tennis") print(estimator_tennis_tree) Play Tennis wind <=0.50</pre>					
	<pre>wind >0.50: 1 (5) estimator_cancer = estimator.fit(X_train_cancer, y_train_cancer) estimator_cancer_tree = export_text(estimator_cancer.tree_, cancer['feature_names']) print("Breast Cancer") print(estimator_cancer_tree) Breast Cancer worst radius <=16.80 worst concave points <=0.14</pre>					
	mean texture <=21.43: 1 (215) mean texture >21.43 worst area <=643.25: 1 (30) worst area >643.25 mean smoothness <=0.09 mean radius <=13.45 mean perimeter <=86.26: 0 (2) mean perimeter >86.26: 1 (1) mean radius >13.45: 1 (10) mean smoothness >0.09: 0 (2) worst concave points >0.14 worst texture <=25.67 concave points error <=0.01					
	mean texture <=16.98: 0 (2) mean texture >16.98: 1 (2) concave points error >0.01: 1 (10) worst texture >25.67 mean concavity <=0.09 mean radius <=13.34: 0 (1) mean radius >13.34: 1 (2) mean concavity >0.09: 0 (22) mean texture <=14.99 mean compactness <=0.13: 1 (5) mean compactness >0.13: 0 (2) mean texture >14.99					
[120	<pre> worst concavity <=0.20 mean compactness <=0.07: 0 (3) mean compactness >0.07: 1 (2) worst concavity >0.20: 0 (144) prediction_cancer_Id3 = estimator_cancer.predict(X_test_cancer) print("Id3Estimator: Cancer") print("Accuracy:", metrics.accuracy_score(y_test_cancer, prediction_cancer_Id3)) print("F1 Macro avg:", metrics.f1_score(y_test_cancer, prediction_cancer_Id3, average="macro")) print("F1 Weighted avg:", metrics.f1_score(y_test_cancer, prediction_cancer_Id3, average="weighted")) Id3Estimator: Cancer Accuracy: 0.9122807017543859</pre>					
[122	F1 Macro avg: 0.8952205882352942 F1 Weighted avg: 0.9122807017543859 K-Means kmeans = cluster.KMeans(n_clusters=2) kmeans_tennis = kmeans.fit(X_train_tennis, y_train_tennis) kmeans_tennis_centroid = pd.DataFrame(kmeans_tennis.cluster_centerstranspose())					
[124	<pre>kmeans_tennis_centroid.index = tennis.columns[:-1].tolist() kmeans_tennis_centroid.columns = ["Centroid 1", "Centroid 2"] print(kmeans_tennis_centroid)</pre>					
	<pre>print("F1 Macro avg:", metrics.f1_score(y_test_tennis, prediction_tennis_kmeans, average="macro")) print("F1 Weighted avg:", metrics.f1_score(y_test_tennis, prediction_tennis_kmeans, average="weighted")) K-Means: Tennis Accuracy: 0.66666666666666 F1 Macro avg: 0.4 F1 Weighted avg: 0.5333333333333333333333333333333333333</pre>					
	Centroid 1 Centroid 2 mean radius 12.630837 19.587429 mean texture 18.618429 21.724476 mean perimeter 81.683886 129.484762 mean area 501.985429 1206.572381 mean smoothness 0.094825 0.101158 mean compactness 0.092810 0.146516 mean concavity 0.064946 0.175317 mean concave points 0.034320 0.101167 mean symmetry 0.178605 0.190745 mean fractal dimension 0.063443 0.060226 radius error 0.302593 0.725070 texture error 1.196623 1.239931					
	texture error 1.196623 1.239931 perimeter error 2.166278 5.121648 area error 24.009317 92.783714 smoothness error 0.007092 0.006614 compactness error 0.023842 0.031844 concavity error 0.029107 0.042084 concave points error 0.010629 0.015767 symmetry error 0.020467 0.020688 fractal dimension error 0.003699 0.003944 worst radius 14.162960 23.785714 worst texture 24.897171 28.994000 worst perimeter 92.894286 158.588571 worst area 630.333714 1757.771429 worst smoothness 0.130538 0.139894					
	<pre>worst compactness</pre>					
[129	Accuracy: 0.10526315789473684 F1 Macro avg: 0.09832506203473944 F1 Weighted avg: 0.06640982107875146 Logistic Regression lr = linear_model.LogisticRegression(class_weight='balanced', max_iter=2500, random_state=0) lr_tennis = lr.fit(X_train_tennis, y_train_tennis) prediction_tennis_lr = lr_tennis.predict(X_test_tennis) print("Logistic Regression: Tennis")					
	<pre>print("Logistic Regression: Tennis") print("Accuracy:", metrics.accuracy_score(y_test_tennis, prediction_tennis_lr)) print("Fl Macro avg:", metrics.fl_score(y_test_tennis, prediction_tennis_lr, average="macro")) print("Fl Weighted avg:", metrics.fl_score(y_test_tennis, prediction_tennis_lr, average="weighted")) Logistic Regression: Tennis Accuracy: 0.666666666666666666666666666666666666</pre>					
[132	<pre>print("") print(lr_tennis_coefficient) Play Tennis</pre>					
	<pre>prediction_cancer_lr = lr_cancer.predict(X_test_cancer) print("Logistic Regression: Cancer") print("Accuracy:", metrics.accuracy_score(y_test_cancer, prediction_cancer_lr)) print("F1 Macro avg:", metrics.f1_score(y_test_cancer, prediction_cancer_lr, average="macro")) print("F1 Weighted avg:", metrics.f1_score(y_test_cancer, prediction_cancer_lr, average="weighted")) Logistic Regression: Cancer Accuracy: 0.956140350877193 F1 Macro avg: 0.9480448455017774 F1 Weighted avg: 0.9563202509966466 lr_cancer_coefficient = pd.DataFrame(lr_cancer.coeftranspose()) lr_cancer_coefficient.index = cancer.feature_names.tolist() lr_cancer_coefficient.sidex = cancer.feature_names.tolist()</pre>					
	<pre>lr_cancer_coefficient.columns = ["Coefficient"] print("Breast Cancer") print(lr") print(lr_cancer_coefficient) Breast Cancer</pre>					
	mean concavity -0.453349 mean concave points -0.250831 mean symmetry -0.272578 mean fractal dimension -0.035377 radius error -0.018472 texture error 1.699444 perimeter error 0.163954 area error -0.115496 smoothness error -0.022168 compactness error 0.057191 concavity error -0.028179 concave points error -0.031378 symmetry error -0.044235					
	fractal dimension error 0.013249 worst radius 0.228848 worst texture -0.516900 worst perimeter -0.084322 worst area -0.015815 worst smoothness -0.321128 worst compactness -0.805459 worst concavity -1.333088 worst concave points -0.552800 worst symmetry -0.782240 worst fractal dimension -0.113955					
[136	<pre>Neural Network neural = neural_network.MLPClassifier(max_iter=1000) neural_tennis = neural.fit(X_train_tennis,y_train_tennis) prediction_tennis_neural = neural_tennis.predict(X_test_tennis) print("Neural Network: Tennis") print("Accuracy:", metrics.accuracy_score(y_test_tennis, prediction_tennis_neural)) print("F1 Macro avg:", metrics.f1_score(y_test_tennis, prediction_tennis_neural, average="macro")) print("F1 Weighted:", metrics.f1 score(y test_tennis, prediction_tennis_neural, average="weighted"))</pre>					
[138	<pre>Neural Network: Tennis Accuracy: 0.333333333333333333333333333333333333</pre>					
	-9.06265515e-02, -2.21376682e-01, -1.20596133e-01, 1.88444635e-01, -3.54340810e-01, 6.61429659e-15, -5.28094546e-02, -3.81503808e-01, 4.49444827e-01, -1.95213540e-02, 1.37185919e-01, 1.20672159e-12, 5.86934673e-17, -1.02676464e-01, 2.66385365e-01, -4.51563274e-01, 2.10394437e-01, -1.80523375e-01, -3.11013355e-01, -4.47417100e-01, -2.03966360e-01, -2.81119334e-01, 3.11124510e-01, 3.41082278e-01, -1.44133846e-01, 1.57995447e-01, 2.80851474e-01, -7.71803262e-15, -2.49291742e-01, 2.74176017e-01, 5.13885296e-01, 2.69944061e-01, -1.26441045e-02, 3.11645708e-01, -5.18790618e-01, 1.19110390e-01, 1.57711164e-01, 3.39626225e-01, -7.42221896e-03,					
	-2.71517511e-01, -1.34756345e-01, -3.38879919e-01, -9.10015162e-02, -5.04658360e-02, 2.71309403e-06, 5.53541278e-02, 4.32160084e-02, 5.97821284e-03, 3.10139133e-01, 1.77522511e-01, -1.88450394e-01, -8.23213928e-02, -2.75422024e-04, 3.29975018e-01, -8.53137594e-02, -5.84935499e-04, 4.13871189e-01, 4.17478290e-03, 2.50034010e-01, 9.47225182e-02, 5.43758215e-04, 3.00828106e-01, 3.47799091e-01, 2.51413517e-01, 3.60284840e-01, -8.11275504e-03, -5.80145139e-02, 2.43757943e-01, 4.20669505e-01, -5.23198606e-01, 1.65709265e-16, 4.71571960e-01, 2.18371071e-01, -1.10982144e-01, -5.79039702e-01, 3.33609704e-01, 7.51543931e-02, 1.99877240e-01,					
	2.41442027e-01, 2.85976161e-02, 3.45188179e-01, -3.66621133e-01, 2.53797111e-01, 2.31103643e-01, -1.52540022e-01, 4.29239649e-01, 2.37039071e-01, 2.92877413e-01, 2.19416894e-01, 4.46748704e-01, -1.41400273e-02, -3.24052626e-02, -2.75981948e-01, -3.80065051e-01, 3.30143100e-01, 2.43518785e-01, -9.71636045e-02], [-3.55057601e-01, 3.04641218e-01, 1.86633415e-01, -2.12290526e-02, 3.54578979e-01, 1.12371168e-01, -9.65445190e-02, 2.28912950e-01, -9.40017382e-14, 1.69293884e-01, 4.05281997e-01, 1.70855796e-01, -7.48975678e-02, 2.33635393e-01, -1.71578431e-16,					
	5.52797814e-11, 1.77553079e-01, 1.49808827e-01, 1.35028853e-01, -1.64824832e-01, 6.01006619e-01, 1.27039678e-02, 1.56222679e-01, -8.58629634e-03, 6.27450603e-01, -3.81103053e-01, 2.34679830e-02, -4.41499492e-02, 2.69141945e-01, 1.04668450e-01, -3.22889247e-04, 4.35446611e-02, -4.41002819e-01, -9.45110527e-02, 6.83996655e-02, -7.94976426e-02, -1.43006272e-01, 7.36782198e-02, 2.46776782e-01, -8.04386764e-02, -1.41309198e-01, 1.84705924e-01, 4.47325379e-02, 3.33229599e-01, 3.92197819e-01, 4.56076297e-01, 3.84591014e-02, -1.19938554e-03, 2.51007365e-01, -3.02863666e-01, 4.96120440e-02, 1.023257332001, 6.38323315e-03, -2.68048501e-03, -2.68048501e-02, -1.48048501e-02, -1.48048501e-0					
	1.09385733e-01, 6.38839315e-02, -9.68048501e-02, 2.29793996e-01, -4.00486662e-02, -2.09410933e-02, 1.87766091e-01, -7.85692057e-07, 1.05906781e-01, -3.65658542e-01, -3.49555961e-01, -4.51832309e-01, 2.88869281e-01, -1.18553705e-01, -2.31479963e-03, -1.02059698e-01, 9.03435806e-02, -4.05882577e-02, -9.05062711e-03, -5.22651366e-01, -1.97637233e-01, 1.18510541e-01, 6.50353342e-10, -1.81192578e-01, -1.45560596e-01, -3.88007784e-03, 2.25607280e-01, -4.62093091e-01, 5.47255681e-02, 9.62841222e-02, -3.30827880e-01, 2.56777345e-01, 1.25143059e-01, 1.69738631e-01, -1.78546719e-01, -3.28682513e-01, 3.42744302e-01, -2.23628333e-01, -5.01104500e-02,					
	7.16197915e-02, -1.14211759e-01, 1.98530423e-02, 2.55054900e-01, -1.95189781e-01, 3.83997520e-01, 5.55597624e-02, -4.10660218e-01, -4.24141865e-01, 2.85933558e-01], [-6.60621367e-02, 3.73272579e-01, 3.67870300e-01, 5.90946749e-01, 3.48592753e-01, 4.69557404e-01, 1.17227478e-01, 4.58406291e-01, -6.91074651e-13, 3.44605324e-01, 1.80105684e-01, -2.63656958e-01, -8.28153799e-02, 2.40757245e-01, -1.38578858e-03, 3.27817909e-13, 1.64248466e-01, -3.02185780e-01, 2.69626076e-01, 1.65812768e-01, 6.63012638e-01, 2.57080826e-02, 3.12522867e-01, -1.69637576e-02,					
	4.08757192e-01, -1.00346030e-01, -1.46973662e-01, -8.89876274e-02, 1.09787356e-01, 2.10555325e-01, -1.62431321e-04, 8.76757216e-02, 1.20533498e-01, -5.57369593e-01, -1.81572290e-01, -6.64056831e-02, 4.20257582e-01, 1.47141244e-01, -6.66764319e-01, -1.89590104e-01, -4.39193312e-01, 2.75843178e-02,					
	8.87935492e-02, 2.89317845e-01, 3.96516197e-01, 6.79301893e-01, 1.77348422e-02, -1.09486644e-07, -6.42714901e-01, 3.49231049e-01, -3.11850333e-02, -4.04166069e-01, -3.23443653e-02, 3.37316329e-02, 2.70599694e-01, -3.74815428e-02, 5.81733410e-01, 3.18706058e-01, 2.04039458e-01, -1.30832825e-01,					
	8.87935492e-02, 2.89317845e-01, 3.96516197e-01, 6.79301893e-01, 1.77348422e-02, -1.09486644e-07, -6.42714901e-01, 3.49231049e-01, -3.11850333e-02, -4.04166069e-01, -3.23443653e-02, 3.37316329e-02, 2.70599694e-01, -3.74815428e-02, 5.81733410e-01, 3.18706058e-01, 2.04039458e-01, -1.30832825e-01, 4.86125702e-01, 1.17831644e-01, 3.19281612e-01, 4.55567067e-01, 6.02060732e-01, -3.21519252e-01, 3.67497656e-02, -4.58759937e-01, -1.40057238e-01, 2.77920557e-01, 1.16735052e-01, -5.28834168e-01, 2.37224645e-01, -4.09604057e-11, -2.04607581e-01, -4.00282070e-02, 3.56745990e-01, 4.51021244e-01, 2.31151124e-01, 3.17868984e-01, 1.91701526e-01, 3.28868229e-02, 4.61601137e-01, 3.03049188e-01, -4.82456403e-02, 3.85040583e-01, -4.77953713e-01, -4.82456403e-02, 3.85040583e-01, 6.81855989e-02, -5.97878479e-01, 2.47741064e-01, 2.09990689e-01, 1.10937953e-01, -1.54471116e-01, -2.56031597e-02,					
	8.87935492e-02, 2.89317845e-01, 3.96516197e-01, 6.79301893e-01, 1.77348422e-02, -1.09486644e-07, -6.42714901e-01, 3.49231049e-01, -3.11850333e-02, -4.04166069e-01, -3.23443653e-02, 3.37316329e-02, 2.70599694e-01, -3.74815428e-02, 5.81733410e-01, 3.18706058e-01, 2.04039458e-01, -1.30832825e-01, -4.86125702e-01, 1.17831644e-01, 3.19281612e-01, -4.55567067e-01, 6.02060732e-01, -3.21519252e-01, 3.67497656e-02, -4.58759937e-01, -1.40057238e-01, 2.77920557e-01, 1.16735052e-01, -5.28834168e-01, -4.00282070e-02, 3.56745990e-01, 4.51021244e-01, 2.31151124e-01, 3.17866984e-01, -1.91701526e-01, 3.28868229e-02, 4.61601137e-01, 3.0349188e-01, 3.39850831e-01, -5.88401761e-01, -4.76269243e-03, 6.99386438e-01, -4.45377475e-01, -4.179373713e-01, -4.82456403e-02, 3.85040583e-01, -6.81855989e-02, -5.97878479e-01, 2.47741064e-01, 2.09090689e-01, 1.10937953e-01, -1.54471116e-01, -2.56031597e-02, 3.31675877e-01], -3.62401582e-02, 1.83723478e-01, 3.96012322e-01, 3.6577965e-01, 4.0784070e-01, -1.343181e-01, -3.0343725e-07, 3.72458287e-01, -2.67245480e-01, 2.87134181e-01, 3.07841011e-01, 4.02227538e-01, 4.10713413e-01, 4.50015395e-01, -2.25603793e-01, 5.43422080e-01, 4.11713413e-01, 4.50015395e-01, -2.25680793e-01, 5.432280e-01, 4.4172448e-01, 4.5073285e-01, 5.432280e-01, 4.4172448e-01, 4.5073285e-01, 5.432280e-01, 4.4172448e-01, 4.5073285e-01, 3.43256434e-17, 5.39561281e-01, -6.01332292e-01, 3.43256434e-17, 5.39561281e-01, -6.01332292e-01,					
	8.87935492e-02, 2.89317845e-01, 3.96516197e-01, 6.79301893e-01, 1.77348422e-02, -1.09486644e-07, -3.4214901e-01, 3.49231049e-01, -3.11850333e-02, -4.04166069e-01, -3.23443653e-02, 3.37316329e-02, 2.70599694e-01, -3.74815428e-02, 5.81733410e-01, 3.18706058e-01, 2.04039458e-01, -1.30832825e-01, -4.86125702e-01, 1.17831644e-01, 3.19281612e-01, -4.55567067e-01, 6.02060732e-01, -3.21519252e-01, 3.67497656e-02, -4.58759937e-01, -1.40057238e-01, -2.37224645e-01, -4.09604057e-11, -2.04607581e-01, -2.37224645e-01, -4.09604057e-11, -2.04607581e-01, -3.2886229e-02, 4.61601137e-01, 3.17868984e-01, 1.91701526e-01, 3.39850831e-01, -5.86401761e-01, -4.76269243e-03, 6.99386438e-01, -4.45377475e-01, -4.17953713e-01, -4.82456403e-02, 3.85040583e-01, -4.17953713e-01, -5.97878479e-01, 2.47741064e-01, 2.09090689e-01, 1.10937953e-01, -1.54471116e-01, -2.56031597e-02, 3.31675877e-01], [4.01516957e-01, -3.62401582e-02, 1.83723478e-01, 3.96012322e-01, 3.8657965e-01, 4.80784070e-01, 3.72634934e-02, 3.20994255e-01, 4.80784070e-01, 4.3084070e-01, 3.78231525e-01, -8.99791618e-03, -5.39606797e-01, 3.4387306e-01, 3.98379947e-03, 3.69971798e-01, 3.4387306e-01, 3.07841011e-01, 4.52225860793e-01, 4.51013413e-01, 3.98379947e-03, 3.69971798e-01, 4.550015395e-01, 4.41172448e-01, 4.50015395e-01, 4.50015395e-01, 4.550015395e-01, 4.5					
	8.879364926-02, 2.893178456-01, 1.77348422-02, 2.1093869640-07, -0.427749016-01, 3.492310490-01, 3.118503338-02, -1.318503338-02, -1.318503338-02, -1.318503338-02, -1.318503338-02, -1.318503338-02, -1.318503338-02, -1.318503338-02, -1.318503338-02, -1.318506580-01, -1.324343638-01, -1.318533338-02, -1.318503338-02, -1.318503338-02, -1.318503338-02, -1.318503338-02, -1.318503338-02, -1.318503338-02, -1.318503338-02, -1.318503338-02, -1.318503328-01, -1.318503					
	8. 87935926-02, 2.8917989-01, 3.9821097-01, 6.79301893-01, 6.79301893-01, 7.77366228-02, -1.00466464-07, -6.027169018-01, 3.42231049-01, -3.13830336-02, -3.1373639938-01, -3.7263538-00, -3.1373639938-01, -3.7263538-00, -3.1373639938-01, -3.2635369038-01, -3.2635369038-01, -3.263569038-01, -3.26					
	8,87915-592-30, 2,4817545-31, 3,955.00.37-31, 3,18233348-31, 4,4714512-41, 3,18233348-31, 3,1823348-31, 3,18233448-31, 3,18233348-31, 3,18233					
	A. 3733333-0-10, 2.84317845-0-10, 3.49316195-0-10, 4.10845					
	8. # 2015 02 - 02 2. # 2015 02 - 02 2. # 2015 0					
	B. 1903 Miller D. 1907 Miller D. 1					
	S. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					
	B. 1700.1006.0 G. 1. B. 180.12006. G. 180.1200					
	Bartier Colored Colore					
[140	Description					
[140	B. T. T. C.					
[140	Contraction					
[140	Contractive Cont					
[140	Total Carlos 1, 100 100					
[140	Total Carlos 1, 100 100					
[140	Total Carlot Company					
[140	Total Carlos 1, 100 100					
[140	Total Carlos 1, 100 100					
[140	Total Carlos 1, 100 100					
[140	Total Carlot Company					
[140	Total Carlos 1, 100 100					
[140	Contractive Cont					
[140	Contractive Cont					
[140	Contractive Cont					
[140	Contraction					

	1.57711164e-01, -2.71517511e-01, -9.10015162e-02, 5.53541278e-02, 3.10139133e-01, -8.23213928e-02, -8.53137594e-02, 4.17478290e-03, 5.43758215e-04, 2.51413517e-01, -5.80145139e-02, -5.23198606e-01, 2.18371071e-01, 3.3609704e-01, 2.41442027e-01, -3.66621133e-01, -1.52540022e-01, 2.92877413e-01, -1.41400273e-02, -3.80065051e-01, -7.1636045e-02], -3.55057601e-01, -2.12290526e-02, -6.65445190e-02, -1.69293884e-01, -7.48975678e-02, 5.52797814e-11, 1.35028853e-01, 1.27039678e-02, -2.7450603e-01, -4.41499492e-02, -3.2889247e-04, -9.45110527e-02, -1.43006272e-01, -8.04386764e-02, -4.5567669e-01, -1.09385733e-01, -2.29793996e-01, -3.65558542e-01, -2.8869281e-01, -0.05662711e-03, -1.18510541e-01, -3.4560596e-01, -1.45560596e-01, -1.45560596e-01, -1.45560596e-01, -1.55597624e-02, -2.85933558e-01), -6.60621367e-02, -5.55054900e-01, -5.5597624e-02, -2.55054900e-01, -3.30827880e-01, -1.17227478e-01, -3.44605324e-01, -3.44605324e-01, -3.586749e-02, -3.593589e-01, -6.60621367e-02, -7.578099e-01, -7.779099e-01, -	-2.21376682e-01, -3.5430810e-01, -3.5430810e-01, -3.5150810e-01, -3.152610686e-01, -3.10267686e-01, -3.0394370e-01, -3.11124510e-01, -3.79524742e-01, -2.69944061e-01, -3.9626225e-01, -3.4658350e-02, -4.32160084e-02, -4.32160084e-02, -3.5752261e-01, -2.784252024e-04, -2.5034010e-01, -3.00228406e-01, -3.00283106e-01, -3.00283106e-01, -3.5622626e-02, -3.164084e-01, -2.55976161e-02, -2.55976161e-02, -2.55976161e-02, -2.55976161e-02, -3.5975259e-01, -3.24052626e-02, -3.3635392e-01, -3.56226729e-01, -3.3635392e-01, -3.56226729e-01, -3.81103053e-01, -5.6226729e-01, -3.81103053e-01, -5.622673e-01, -3.84591014e-02, -3.28628366e-02, -4.349585961e-02, -5.22661366e-01, -5.8660784e-03, -5.7577526e-02, -5.22651366e-01, -5.8546719e-01, -1.8512768e-01, -1.95189781e-01, -1.9518	-1.20596133e-01, 6.61429689e-15, 4.4944827e-01, 1.20672159e-12, 2.66385365e-01, -1.80523375e-01, -2.03966360e-01, 3.41082278e-01, 2.80851474e-01, 2.74176017e-01, -1.26441045e-02, 1.19110390e-01, -7.42221886e-03, 3.38879919e-01, 2.71309403e-06, 5.97821284e-03, -1.88450394e-01, 3.299750188e-01, 4.13871189e-01, 9.47725182e-02, 3.47799091e-01, -8.11275504e-03, 4.20669505e-01, 4.71571960e-01, -5.79039702e-01, 1.99877240e-01, 3.45188179e-01, 2.310363ae-01, 2.37039071e-01, 4.46748704e-01, -2.75981948e-01, 1.12371168e-01, -1.71578431e-16, 1.49808827e-01, 6.1006619e-01, -8.58629634e-03, 2.34679830e-02, 1.04668450e-01, -4.41002819e-01, -1.99476426e-02, 2.46776782e-01, 3.92197819e-01, -1.9938554e-01, -1.19938554e-01, -1.19938554e-01, -2.5507280e-01, -4.5103239e-01, -3.5816379e-01, -4.5103239e-01, -3.5816378e-01, -4.510338e-01, -5.966856958e-01, -1.3937528e-01, -4.593736e-01, -4.593736e-01, -4.593836e-01, -5.96167682e-01, -5.96167682e-01, -1.9376426e-02, -2.09410933e-02, -1.05906781e-01, -4.51832309e-01, -3.1938534e-03, -4.0598253e-01, -1.9337528e-01, -1.933854e-03, -3.0185780e-01, -4.51832309e-01, -3.5816958e-01, -3.9667576e-02, -1.469737233e-01, -1.1933854e-03, -3.0185780e-01, -3.18578385e-01, -3.2869513e-01, -3.978316929e-01, -3.98530423e-02, -3.98530423e-02, -3.98530423e-02, -3.98530423e-02, -3.98530423e-02, -3.98530423e-02, -3.98530423e-02, -3.98530423e-01, -4.2141865e-01, -4.519252e-01, -1.20533498e-01, -6.64056831e-02, -6.66764319e-01, -1.955325e-01, -1.20533498e-01, -1.20533498e-01, -2.55677280e-01, -3.985786e-01, -3.9977896e-01, -3.9977896e-01, -3.9977996e-01,			
In [143 In [144 In [145	<pre>svc_tennis = svc.fit(X_tr prediction_tennis_svm = s print("SVM: Tennis") print("Accuracy:", metric print("F1 Macro avg:", me print("F1 Weighted avg:", SVM: Tennis Accuracy: 0.333333333333333333333333333333333333</pre>	svc_tennis.predict cs.accuracy_score(etrics.f1_score(y_ metrics.f1_score	<pre>c(X_test_tennis) (y_test_tennis, predictest_tennis, predicte(y_test_tennis, predicte(y_test_tentis, predicte(y_test_tent</pre>	tion_tennis_svm, a	verage="macro"))	3"))
		rain_cancer, y_trainsvc_cancer.predictsvc_cancer.predictsvs.accuracy_score (etrics.f1_score (y_metrics.f1_score) 25950681 26950681 26950681 2702 25950681 2702 2702 2702 2702 2702 2702 2702 270	core dari masing- a algoritma di atas, nilai ression yaitu sebesar 0.0 on sebesar 0.66 untuk mengan keempat algoritm 0.167 untuk F1 Macro / core dari masing- a algoritma di atas, dida uk Accuracy, 0.948 untuajaran KMeans dengan i pembelajaran berbagai besar daripada untuk di aset breast cancer mem	tion_cancer_svm, a diction_cancer_svm -masing Algoritr tertinggi untuk Accura 66. Untuk untuk F1 Schacro average F1 dan valainnya yaitu Decisio Weighted average. -masing Algoritr patkan nilai tertinggi duk F1 Macro avg, dan (0.105 untuk Accuracy, dan (1.105 un	ma pada dataseh acy diperoleh dengan are, nilai tertinggi diperenghted average F1. Sin Tree, Neural Network ma pada dataseh engan menggunakan la 0.956 untuk F1 Weight 0.098 untuk F1 Macro at pola di mana skor yini kami asumsikan di banyak sedangkan dar	roleh edangkan k, ID3, dan Breast Neural ed avg. avg, dan

Breast Cancer Coefficient