DCC638 - Introdução à Lógica Computacional 2023.1

Os Fundamentos: Regras de Inferência

Área de Teoria DCC/UFMG

Introdução

Regras de inferência: Introdução

- Em diversas situações é preciso deduzir **conclusões** a partir de **premissas**:
 - em matemática: estabelecer verdades absolutas (teoremas),
 - em ciência da computação: verificar que propriedades de um sistema são satisfeitas dada sua especificação,
 - em política/filosofia: demonstrar que certas ideias são bem fundamentadas.
- O processo de derivar conclusões de premissas é chamado de argumento.
 Um argumento é válido se, e somente se, é impossível que suas premissas sejam todas verdadeiras e sua conclusão seja falsa.
- Aqui estudaremos regras de inferência que nos permitem derivar argumentos válidos.

Regras de inferência

• Um argumento é uma sequência de proposições.

• As proposições iniciais são chamadas de premissas.

• A proposição final é chamada de conclusão.

• Um **argumento válido** é aquele em que a verdade de suas premissas implica na verdade de sua conclusão.

- Exemplo 1 Considere o seguinte argumento envolvendo proposições:
 - 1. "Se você está matriculado em Introdução à Lógica Computacional, você tem acesso à página da disciplina."
 - "Você está matriculado em Introdução à Lógica Computacional."
 Logo,
 - 3. "Você tem acesso à página da disciplina."

O argumento acima é válido?

Ou seja, é verdade que a <u>conclusão</u> (3) é verdadeira sempre que as <u>premissas</u> (1) e (2) forem ambas verdadeiras?

• Exemplo 1 (Continuação)

Solução. Vamos analisar a estrutura do argumento.

Sejam as proposições:

- p: "Você está matriculado em Introdução à Lógica Computacional", e
- q: "Você tem acesso à página da disciplina".

O argumento anterior tem a estrutura

$$\frac{p \qquad p \to q}{q}$$

representando que,

- **1** se as premissas $p \in p \rightarrow q$ são verdadeiras
- 2 então a conclusão q é verdadeira

• Exemplo 1 (Continuação)

Considerando p e q como variáveis proposicionais, podemos usar uma tabela da verdade para verificar que sempre que as premissas são verdadeiras, a conclusão também é.

		Premissas		Conclusão
р	q	$p \to q$	р	q
T	T	T	T	T
T	F	F	T	F
F	T	T	F	T
F	F	T	F	F

Assim, o argumento

$$\frac{p \qquad p \to q}{q}$$

é válido.

• Note que $(p \land p \rightarrow q) \rightarrow q$ é uma tautologia!

- Um argumento válido pode ser interpretada como uma regra de preservação da verdade:
 - De premissas verdadeiras um argumento válido garante uma conclusão verdadeira.
 - 2. Por outro lado de premissas falsas qualquer conclusão é possível.

- Um **argumento inválido** é aquele em que a verdade das premissas não garante a verdade da conclusão.
- Exemplo 2 Mostre que o argumento a seguir é inválido.

$$\frac{p o q}{p}$$

- Um **argumento inválido** é aquele em que a verdade das premissas não garante a verdade da conclusão.
- Exemplo 2 Mostre que o argumento a seguir é inválido.

$$\frac{p o q}{p}$$

Solução.

A terceira linha da tabela da verdade mostra que as premissas $p \rightarrow q$ e q podem ser ambas verdadeiros, e mesmo assim a conclusão q ser falsa. Assim, o formato de argumento é inválido.

		Premissas		Conclusão
р	q	$p \to q$	q	р
Τ	T	T	T	T
T	F	F	F	T
F	T	T	T	F
F	F	T	F	F

- Um **argumento inválido** é aquele em que a verdade das premissas não garante a verdade da conclusão.
- Exemplo 2 Mostre que o argumento a seguir é inválido.

$$\frac{p \to q}{p}$$

Solução.

A terceira linha da tabela da verdade mostra que as premissas $p \rightarrow q$ e q podem ser ambas verdadeiros, e mesmo assim a conclusão q ser falsa. Assim, o formato de argumento é inválido.

		Premissas		Conclusão
р	q	$p \to q$	q	р
T	T	T	T	T
T	F	F	F	T
F	T	T	T	F
F	F	T	F	F

• Note que $(p \to q \land q) \to p$ não é uma tautologia!

• Exemplo 2 (Continuação)

Como um exemplo de como este formato de argumento é inválido, note que das premissas

- "Se Bill Gates ganhar na loteria, ela fica rico" e
- "Bill Gates é rico"

não se pode concluir que necessariamente

• "Bill Gates ganhou na loteria".

Argumentos válidos em lógica proposicional: validade vs. verdade

- A validade é uma propriedade do argumento.
- A <u>verdade</u> é uma propriedade das premissas e <u>conclusões</u> do argumento.
- Exemplo 3

Considere o argumento

"Se a França é um país rico, então sua língua oficial é o inglês."

"A França é um país rico."

:. "A lingua oficial da França é o inglês."

Este argumento é um argumento válido.

Note, entretanto, que sua primeira <u>premissa é falsa</u>, assim como sua conclusão é falsa.

Argumentos válidos em lógica proposicional: validade vs. verdade

• Exemplo 3 (Continuação)

Considere o argumento:

"Se Londres é uma metrópole, então ela tem prédios altos." "Londres tem prédios altos."

:. "Londres é uma metrópole."

Este argumento é um argumento inválido.

Note, entretanto, que sua conclusão é verdadeira.

(Porém a veracidade da conclusão é incidental: ela não segue necessariamente da verdade das premissas.)

Argumentos válidos em lógica proposicional: validade vs. verdade

- Em resumo, a conclusão de um argumento é garantidamente verdadeira se:
 - o argumento for válido, e
 - todas as suas premissas forem verdadeiras.

Caso contrário, a verdade da conclusão não é garantida.

• Argumentos válidos correspondem a tautologias

- Argumentos complexos podem ser difíceis de verificar
 - Por exemplo, a tabela de verdade de um argumento com 10 variáveis tem $2^{10}=1\,024$ linhas.

 Construímos argumentações complexas com argumentos simples, verificados válidos, chamados de regras de inferência.

Modus ponens (do latim para "modo de afirmação"):

$$\frac{p \qquad p \to q}{q} \; \mathrm{MP}$$

A regra de modus ponens nos diz que:

- 1. se uma afirmação condicional p o q é verdadeira, e
- a hipótese p do condicional é verdadeira, então
- 3. a conclusão $\it q$ do condicional é necessariamente verdadeira.

- Exemplo 4 Suponha que saibamos que
 - "Se fizer sol hoje, eu vou ao clube", e que
 - "Está fazendo sol hoje", então, por modus ponens, podemos concluir que
 - 3. "Eu vou ao clube."

• Algumas regras de inferência importantes na lógica proposicional:

Nome	 Inferência	Nome	 Inferência
		INOTTIE	interencia
Modus ponens	$rac{p \qquad p ightarrow q}{q}$ MP	Adição disjuntiva	$\frac{p}{p \vee q}$ AD
Modus tollens	$\frac{p \to q \qquad \neg q}{\neg p} \text{ MT}$	Simplificação conjuntiva	$\frac{p \wedge q}{p}$ SC
Silogismo hipotético	$\frac{p \to q \qquad q \to r}{p \to r}$ SH	Adição conjuntiva	$\frac{p}{p \wedge q}$ AC
Silogismo disjuntivo	$\frac{p \vee q \qquad \neg p}{q} \text{SD}$	Resolução	$\frac{p \vee q \qquad \neg p \vee r}{q \vee r} $ R

• Exemplo 5 | Justifique a validade do argumento abaixo:

"Se Zeus é humano, então Zeus é mortal.

Zeus não é mortal.

Logo, Zeus não é humano."

• Exemplo 5 Justifique a validade do argumento abaixo:

"Se Zeus é humano, então Zeus é mortal.

Zeus não é mortal.

Logo, Zeus não é humano."

Solução. Sejam

- p a proposição "Zeus é humano", e
- q a proposição "Zeus é mortal".

O argumento utilizou modus tollens

$$\frac{p o q}{\neg p}$$
 MT

para concluir $\neg p$, ou seja, que Zeus não é humano.

• Exemplo 6 Justifique a validade do argumento abaixo:

"Se chover hoje, não faremos um pique-nique hoje.

Se não fizermos um pique-nique hoje, faremos um pique-nique amanhã.

Logo, se chover hoje, faremos um pique-nique amanhã."

• Exemplo 6 Justifique a validade do argumento abaixo:

"Se chover hoje, não faremos um pique-nique hoje.

Se não fizermos um pique-nique hoje, faremos um pique-nique amanhã.

Logo, se chover hoje, faremos um pique-nique amanhã."

Solução. Sejam

- p a proposição "Chove hoje",
- q a proposição "Não faremos um pique-nique hoje", e
- r a proposição "Faremos um pique-nique amanhã".

O argumento utilizou silogismo hipotético

$$\frac{p \to q \qquad q \to r}{p \to r} \text{ SH}$$

para concluir $p \rightarrow r$, i.e., que se chover hoje faremos um pique-nique amanhã.

Os Fundamentos: Regras de Inferência

- Quando há várias premissas, várias regras de inferência podem ser necessárias para mostrar que um argumento é válido.
- Exemplo 7 Mostre que as premissas
 - "Esta tarde não está ensolarada, e está mais frio hoje que ontem."
 - "Nós vamos nadar somente se estiver ensolarado."
 - "Se nós não formos nadar, vamos andar de canoa."
 - (1) "Se formos andar de canoa, estaremos em casa antes do pôr do sol."

levam à conclusão:

"Estaremos em casa ao pôr do sol."

• Exemplo 7 (Continuação)

Solução. Para formalizar os fatos que você sabe, vamos usar as proposições:

- p : "Esta tarde está ensolarada."
- q: "Está mais frio hoje que ontem."
- r: "Nós vamos nadar."
- s: "Nós vamos andar de canoa."
- t : "Estaremos em casa ao pôr do sol."

Assim, as premissas são:

 $\bigcirc p \land q$

 \bullet $r \rightarrow \mu$

E a conclusão é t.

• Exemplo 7 (Continuação)

Podemos construir um argumento para mostrar que as premissas levam à conclusão da seguinte forma:

Passo	Justificativa
1. $\neg p \land q$	Premissa (a)
2. <i>¬p</i>	Simplificação usando (1)
3. $r \rightarrow p$	Premissa (b)
4. <i>¬r</i>	Modus tollens usando (2) e (3)
5. $\neg r \rightarrow s$	Premissa (c)
6. <i>s</i>	Modus ponens usando (4) e (5)
7. $s \rightarrow t$	Premissa (d)
8. <i>t</i>	Modus ponens usando (6) e (7)

• Exemplo 8 Ao sair para a universidade de manhã eu percebo que não estou usando meus óculos.

Ao tentar descobrir onde estão meus óculos, me lembro dos seguintes fatos, que são todos verdadeiros:

- Se meus óculos estão na bancada da cozinha, então eu os vi durante o café da manhã.
- Eu estava lendo o jornal na sala ou estava lendo o jornal na cozinha.
- Se eu estava lendo o jornal na sala, então meus óculos estão na mesinha de centro.
- Eu não vi meus óculos durante o café da manhã.
- Se eu estava lendo um livro na cama, então meus óculos estão no criado-mudo.
- Se eu estava lendo o jornal na cozinha, então meus óculos estão na bancada da cozinha.

Usando regras de inferência válidas, quero deduzir onde estão meus óculos.

• Exemplo 8 (Continuação)

Solução. Para formalizar os fatos que eu sei, vamos usar as proposições:

- p : "Os meus óculos estão na bancada da cozinha."
- q : "Eu vi meus óculos durante café da manhã."
- r: "Eu estava lendo o jornal na sala."
- s : "Eu estava lendo o jornal na cozinha."
- t : "Meus óculos estão na mesinha de centro."
- u: "Eu estava lendo um livro na cama."
- v : "Meus óculos estão no criado-mudo."

Assim, os fatos que eu sei são:

 $r \rightarrow t$

lefteq u o v

 \bullet $r \vee \bullet$

¬c

 \bigcirc $s \rightarrow p$

• Exemplo 8 (Continuação)

Se eu quero deduzir onde estão os óculos eu precise que os fatos que eu sei me permitam concluir:

- ou p (óculos na bancada da cozinha)
- ou t (óculos na mesinha do centro)
- ou v (óculos no criado mudo)
- Note que o "ou" acima deve ser exclusivo para que o conjunto de fórmulas que estamos escrevendo faça sentido.
 - Os óculos não podem estar simultaneamente em mais de um lugar.
 - Logo eu não devo conseguir deduzir simultaneamente mais do que uma das opções acima a partir das premissas.

• Exemplo 8 (Continuação)

Podemos deduzir que os óculos se encontram na mesinha do centro da seguinte forma.

Passo	Justificativa
1. $p o q$	Premissa (a)
2. <i>¬q</i>	Premissa(d)
3. <i>¬p</i>	Modus tollens usando (1) e (2)
4. $s \rightarrow p$	Premissa (f)
5. <i>¬s</i>	Modus tollens usando (3) e (4)
6. <i>r</i> ∨ <i>s</i>	Premissa (b)
7. <i>r</i>	Silogismo disjuntivo usando (5) e (6)
8. $r \rightarrow t$	Premissa (c)
9. t	Modus ponens usando (7) e (8)

Como exercício, justifique que a partir das premissas não conseguimos deduzir que os óculos então na cozinha (p) ou no criado mudo (v).

- Vamos discutir regras de inferência para proposições quantificadas.
 - Muito usadas em argumentos matemáticos, muitas vezes de forma implícita.
- Regras de inferência importantes para lógica de predicados:

Nome	Inferência	Condição
Instanciação universal	$\frac{\forall x. P(x)}{P(c)} I_{\forall}$	para qualquer c do domínio do x
Generalização universal	$\frac{P(c)}{\forall x. P(x)} G_{\forall}$	se c é um elemento arbitrário do domínio
Instanciação existencial	$\frac{\exists x. P(x)}{P(c)} I_{\exists}$	para algum <i>c</i> do domínio
Generalização existencial	$\frac{P(c)}{\exists x.P(x)}_{\mathrm{G}_{\exists}}$	para algum <i>c</i> do domínio

- Exemplo 9 Mostre que as premissas
 - "Todos os matriculados em Introdução à Lógica Computacional são estudantes dedicados"

е

- "Felipe está matriculado em Introdução à Lógica Computacional"
 implicam a conclusão
- "Felipe é um estudante dedicado"

- Exemplo 9 Mostre que as premissas
 - "Todos os matriculados em Introdução à Lógica Computacional são estudantes dedicados"

е

- "Felipe está matriculado em Introdução à Lógica Computacional" implicam a conclusão
- (9) "Felipe é um estudante dedicado"

Solução. Vamos definir os seguintes predicados, tendo como domínio o conjunto de todas os estudantes:

- M(x): "x está matriculado em Introdução à Lógica Computacional."
- D(x): "x é um estudante dedicado."

• Exemplo 9 (Continuação)

As premissas do argumento são, então:

M(Felipe)

A conclusão do argumento é:

(c) D(Felipe)

A derivação da conclusão a partir das premissas pode ser feita assim:

	1
Passo	Justificativa
1. $\forall x : (M(x) \rightarrow D(x))$	Premissa (a)
2. $M(\mathtt{Felipe}) o D(\mathtt{Felipe})$	Instanciação universal de (1)
3. $M(\texttt{Felipe})$	Premissa (b)
4. $D(\texttt{Felipe})$	Modus ponens usando (2) e (3)

- Exemplo 10 | Mostre que as premissas
 - "Um estudante de Introdução à Lógica Computacional não leu o livro-texto", e
 - "Todos os estudantes de Introdução à Lógica Computacional foram bem na prova"
 - implicam a conclusão
 - "Algum estudante de Introdução à Lógica Computacional que foi bem na prova não leu o livro-texto"

- Exemplo 10 | Mostre que as premissas
 - (a) "Um estudante de Introdução à Lógica Computacional não leu o livro-texto", e
 - "Todos os estudantes de Introdução à Lógica Computacional foram bem na prova"
 - implicam a conclusão
 - "Algum estudante de Introdução à Lógica Computacional que foi bem na prova não leu o livro-texto"

Solução. Vamos definir os seguintes predicados, tendo como domínio o conjunto de todas as pessoas:

- M(x): "x é estudante de Introdução à Lógica Computacional."
- L(x): "x leu o livro-texto."
- P(x): "x foi bem na prova."

• Exemplo 10 (Continuação)

As premissas do argumento são, então:

$$\exists x : (M(x) \land \neg L(x))$$

A conclusão do argumento é:

(c)
$$\exists x : (M(x) \land \neg L(x) \land P(x))$$

• Exemplo 10 (Continuação)

A derivação da conclusão a partir das premissas pode ser feita assim:

Passo	Justificativa
1. $\exists x : (M(x) \land \neg L(x))$	Premissa (a)
2. $M(c) \wedge \neg L(c)$	Instanciação existencial de (1)
3. $\forall x: (M(x) \rightarrow P(x))$	Premissa (b)
4. $M(c) o P(c)$	Instanciação universal de (3)
5. <i>M</i> (<i>c</i>)	Simplificação conjuntiva de (2)
6. <i>P</i> (<i>c</i>)	Modus ponens de (4) e (5)
7. $M(c) \wedge \neg L(x) \wedge P(c)$	Adição conjuntiva de (2) e (6)
8. $\exists x : (M(c) \land \neg L(c) \land P(c))$	Generalização existencial de (7)

Combinando regras de inferência para proposições e predicados quantificados

 Como MP e I_∀ são combinadas com frequência, podemos usar a seguinte regra conhecida como modus ponens universal:

$$\frac{\forall x. P(x) \to Q(x) \qquad P(c)}{Q(c)} \text{ MP}_{\forall}$$

• Exemplo 11 Assuma que a seguinte premissa seja verdadeira:

"Para todo inteiro positivo n, se n > 4, então $n^2 < 2^n$ ".

Sabemos que a proposição "10 > 4" é verdadeira.

Por modus ponens universal, podemos concluir que $\,^{\prime\prime}10^2 < 2^{10}\,^{\prime\prime}.$