#### A REPORT

ON

# Forecasting unemployment among graduates from different Fields of study

BY

**Utkarsh Agarwal** 

2016B3A70581P

IN FULFILMENT OF THE COURSE

**Study Project (ECON F266)** 

**SUBMITTED TO** 

Dr. Satyendra K Sharma
Department of Management



BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI

## **Table of Contents**

| The Data                                           | 2  |
|----------------------------------------------------|----|
| Time Series Analysis Introduction                  | 3  |
| Data Preprocessing                                 | 4  |
| Indexing with Time Series Data                     | 4  |
| Visualizing unemployed graduates -Time Series Data | 5  |
| Analysis of the breakdown component:               | 7  |
| Analysis of the Combined effect:                   | 7  |
| Time series forecasting with ARIMA                 | 8  |
| Fitting the ARIMA model                            | 10 |
| Validating forecasts                               | 12 |
| Producing and visualizing forecasts                | 15 |
| Conclusion                                         | 20 |

#### The Data

We are using data on the number of job seekers on the live registers on the employment exchanges by various Science & Technology fields. The data are taken from the publication - **Analysis of Budgeted Expenditure on Education, Department of Education, MHRD**We have a good 35 years unemployed unemployed graduates data.

| Year | Engineering Diploma Holders | Graduates - Medical* | Graduates - Agriculture* | Graduates - Veterinary* | Graduates - Science* | Graduates - Engineering* | Graduates - Total |
|------|-----------------------------|----------------------|--------------------------|-------------------------|----------------------|--------------------------|-------------------|
| 1971 | 54056                       | 3848                 | 7325                     | 361                     | 99189                | 19050                    | 129773            |
| 1972 | 59847                       | 5127                 | 9092                     | 200                     | 160644               | 22808                    | 197871            |
| 1973 | 55215                       | 5664                 | 8913                     | 371                     | 210716               | 23093                    | 248757            |
| 1974 | 53901                       | 6682                 | 7370                     | 376                     | 215089               | 19344                    | 248861            |
| 1975 | 55564                       | 7301                 | 7958                     | 511                     | 237607               | 17316                    | 270693            |
| 1976 | 62447                       | 8249                 | 8285                     | 489                     | 241319               | 18385                    | 276727            |
| 1977 | 74319                       | 8948                 | 9763                     | 299                     | 265656               | 19798                    | 304464            |
| 1978 | 84317                       | 10637                | 9765                     | 399                     | 281693               | 20113                    | 322607            |
| 1979 | 87275                       | 12923                | 10841                    | 433                     | 286639               | 21781                    | 332617            |
| 1980 | 90306                       | 14809                | 11375                    | 356                     | 310692               | 21862                    | 359094            |
| 1981 | 106183                      | 15536                | 13046                    | 353                     | 337190               | 20393                    | 386518            |
| 1982 | 119345                      | 17700                | 16075                    | 578                     | 353918               | 22982                    | 411253            |
| 1983 | 135141                      | 17607                | 17027                    | 528                     | 379931               | 23825                    | 438918            |
| 1984 | 148985                      | 20636                | 18938                    | 661                     | 416623               | 27044                    | 483902            |
| 1985 | 189836                      | 21800                | 24437                    | 713                     | 430095               | 35523                    | 512568            |
| 1986 | 232965                      | 26772                | 26677                    | 864                     | 515342               | 45226                    | 614881            |
| 1987 | 248179                      | 27233                | 24539                    | 1613                    | 494812               | 56992                    | 605189            |
| 1988 | 298535                      | 24781                | 26805                    | 1138                    | 500694               | 63538                    | 616956            |
| 1989 | 368561                      | 28051                | 28860                    | 1619                    | 545552               | 80198                    | 684280            |
| 1990 | 315502                      | 28988                | 29352                    | 2067                    | 636505               | 95563                    | 792475            |
| 1991 | 333174                      | 30827                | 31705                    | 2503                    | 659813               | 128422                   | 853270            |
| 1992 | 407837                      | 28080                | 29701                    | 2826                    | 675481               | 141225                   | 877313            |
| 1993 | 430577                      | 28560                | 29529                    | 3328                    | 676099               | 152015                   | 889531            |
| 1994 | 401832                      | 27446                | 28495                    | 3566                    | 695084               | 158509                   | 913100            |
| 1995 | 421029                      | 28207                | 31322                    | 3887                    | 704059               | 168066                   | 935541            |
| 1996 | NA                          | 28600                | 27800                    | 4400                    | 696900               | 171400                   | 753300            |
| 1997 | NA                          | 33700                | 33000                    | 5100                    | 873100               | 186100                   | 1131000           |
| 1998 | 553000                      | 31310                | 36600                    | 5000                    | 784000               | 180900                   | 1037810           |
| 1999 | NA                          | 46600                | 35300                    | 6800                    | 966700               | 212200                   | 1267600           |
| 2000 | 731700                      | 46400                | 35200                    | 6700                    | 963300               | 211400                   | 1263000           |
| 2001 | 762500                      | 47900                | 36300                    | 6900                    | 993800               | 218200                   | 1303100           |
| 2002 | 648400                      | 46000                | 34900                    | 6700                    | 954000               | 209400                   | 1251000           |
| 2003 | 690891                      | 48000                | 37300                    | 5300                    | 997600               | 218800                   | 1307000           |
| 2004 | 730944                      | 47300                | 36800                    | 5200                    | 984000               | 215800                   | 1289100           |
| 2005 | 773908                      | 48500                | 37700                    | 5400                    | 1007400              | 220900                   | 1319900           |

### **Time Series Analysis Introduction**

Time\_series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values.

Time series are widely used for non-stationary data, like economic, weather, stock price, and retail in this post. We will work on different approaches for forecasting unemployed graduates in different fields time series.



## **Data Preprocessing**

This step includes removing columns we do not need, check missing values, aggregate by date and so on.

#### **Indexing with Time Series Data**

```
DatetimeIndex(['1971-01-01', '1972-01-01', '1973-01-01', '1974-01-01', '1975-01-01', '1976-01-01', '1977-01-01', '1978-01-01', '1979-01-01', '1980-01-01', '1981-01-01', '1982-01-01', '1983-01-01', '1984-01-01', '1985-01-01', '1986-01-01', '1987-01-01', '1988-01-01', '1989-01-01', '1990-01-01', '1991-01-01', '1992-01-01', '1993-01-01', '1994-01-01', '1995-01-01', '1996-01-01', '1997-01-01', '1998-01-01', '1999-01-01', '2000-01-01', '2001-01-01', '2002-01-01', '2003-01-01', '2004-01-01', '2005-01-01'], dtype='datetime64[ns]', name='Year', freq=None)
```

For indexing purposes, we assumed the date of each year unemployed graduates as the first day of the respective year.

## Visualizing unemployed graduates -Time Series Data





The above figure depicts different behavior. We can also visualize our data using a method called time-series decomposition that allows us to decompose our time series into three distinct components: trend, seasonality, and noise.

Some distinguishable patterns appear when we plot the data. The time-series has an upward trend between any year and the growth rate for the unemployed unemployed graduates are increasing rapidly.

The Analysis for our data for unemployed graduates:

## **Analysis of the breakdown component:**



## **Analysis of the Combined effect:**



## Time series forecasting with ARIMA

We are going to apply for one of the most commonly used methods for time-series forecasting, known as ARIMA, which stands for **Autoregressive Integrated Moving Average**. ARIMA models are denoted with the notation ARIMA(p, d, q). These three parameters account for seasonality, trend, and noise in data:

```
Examples of parameter combinations for Seasonal ARIMA... SARIMAX: (0, 0, 1) \times (0, 0, 1, 12) SARIMAX: (0, 0, 1) \times (0, 1, 0, 12) SARIMAX: (0, 1, 0) \times (0, 1, 1, 12) SARIMAX: (0, 1, 0) \times (1, 0, 0, 12)
```

```
p = d = q = range(0, 2)
pdq = list(itertools.product(p, d, q))
seasonal_pdq = [(x[0], x[1], x[2], 12) for x in
list(itertools.product(p, d, q))]

print('Examples of parameter combinations for Seasonal ARIMA...')
print('SARIMAX: {} x {}'.format(pdq[1], seasonal_pdq[1]))
print('SARIMAX: {} x {}'.format(pdq[1], seasonal_pdq[2]))
print('SARIMAX: {} x {}'.format(pdq[2], seasonal_pdq[3]))
print('SARIMAX: {} x {}'.format(pdq[2], seasonal_pdq[4]))
```

This step is parameter Selection for our unemployed graduates's ARIMA Time Series Model. Our goal here is to use a "grid search" to find the optimal set of parameters that yields the best performance for our model.

```
ARIMA(0, 0, 0)x(0, 0, 0, 12)12 - AIC:797.6083922553523
ARIMA(0, 0, 0)x(0, 1, 0, 12)12 - AIC:491.8509270035107
ARIMA(0, 0, 0)x(1, 0, 0, 12)12 - AIC:485.63120623339006
ARIMA(0, 0, 0)x(1, 1, 0, 12)12 - AIC:226.87345341869212
ARIMA(0, 0, 1)x(0, 0, 0, 12)12 - AIC:755.4436705970667
ARIMA(0, 0, 1)x(0, 1, 0, 12)12 - AIC:458.50807066980843
ARIMA(0, 0, 1)x(1, 0, 0, 12)12 - AIC:523.9724363701845
ARIMA(0, 0, 1)x(1, 1, 0, 12)12 - AIC:240.7670566777688
ARIMA(0, 1, 0)x(0, 0, 0, 12)12 - AIC:630.7347939331952
ARIMA(0, 1, 0)x(0, 1, 0, 12)12 - AIC:412.83451485404544
ARIMA(0, 1, 0)x(1, 0, 0, 12)12 - AIC:430.52289480525724
ARIMA(0, 1, 0)x(1, 1, 0, 12)12 - AIC:203.4793800541981
ARIMA(0, 1, 1)x(1, 0, 0, 12)12 - AIC:432.0631171476646
ARIMA(0, 1, 1)x(1, 1, 0, 12)12 - AIC:205.05091416811905
ARIMA(1, 0, 0)x(0, 0, 0, 12)12 - AIC:647.3370346988787
ARIMA(1, 0, 0)x(0, 1, 0, 12)12 - AIC:433.4663130510298
ARIMA(1, 0, 0)x(1, 0, 0, 12)12 - AIC:432.77317108769165
ARIMA(1, 0, 0)x(1, 1, 0, 12)12 - AIC:207.94477937686477
ARIMA(1, 0, 1)x(0, 0, 0, 12)12 - AIC:629.304866847507
ARIMA(1, 0, 1)x(0, 1, 0, 12)12 - AIC:414.7075898171331
ARIMA(1, 0, 1)x(1, 0, 0, 12)12 - AIC:432.10971798342723

ARIMA(1, 0, 1)x(1, 1, 0, 12)12 - AIC:205.63157760729592
ARIMA(1, 1, 0)x(0, 0, 0, 12)12 - AIC:632.2419880606586
ARIMA(1, 1, 0)x(0, 1, 0, 12)12 - AIC:412.68368817037924
ARIMA(1, 1, 0)x(1, 0, 0, 12)12 - AIC:413.54719959787536
ARIMA(1, 1, 0)x(1, 1, 0, 12)12 - AIC:185.2797115778119
ARIMA(1, 1, 1)x(0, 0, 0, 12)12 - AIC:613.611388600176
ARIMA(1, 1, 1)x(0, 1, 0, 12)12 - AIC:395.8057835897643
ARIMA(1, 1, 1)x(1, 0, 0, 12)12 - AIC:413.28784704340524
ARIMA(1, 1, 1)x(1, 1, 0, 12)12 - AIC:187.12874154766428
```

The above output suggests that SARIMAX ARIMA(1, 1, 0)x(1, 1, 0, 12)12 yields the lowest AIC value of 185.27. Therefore we should consider this to be optimal option.

## Fitting the ARIMA model

| ======== | ========= |          |          |        | ========= | ======== |
|----------|-----------|----------|----------|--------|-----------|----------|
|          | coef      | std err  | z        | P>   z | [0.025    | 0.975]   |
| ar.L1    | 0.0146    | 0.342    | 0.043    | 0.966  | -0.655    | 0.684    |
| ma.L1    | -1.0000   | 0.360    | -2.781   | 0.005  | -1.705    | -0.295   |
| ar.S.L12 | -0.0253   | 0.042    | -0.609   | 0.543  | -0.107    | 0.056    |
| sigma2   | 2.958e+04 | 1.22e-05 | 2.43e+09 | 0.000  | 2.96e+04  | 2.96e+04 |
| ======== | ========  |          |          |        | ========  | ======== |

We should always run model diagnostics to investigate any unusual behavior.



It is not perfect, however, our model diagnostics suggests that the model residuals are near normally distributed.

## **Validating forecasts**

To help us understand the accuracy of our forecasts, we compare predicted to real of the time series, and we set forecasts to start at 2005 to the end of the data.



The line plot is showing the observed values compared to the rolling forecast predictions. Overall, our forecasts align with the true values very well, showing an upward trend starts from the beginning of the year and captured the seasonality toward the end of the year.



#### The Mean Squared Error of our forecasts is 1165.51

## The Root Mean Squared Error of our forecasts is 34.14.

In statistics, **the mean squared error (MSE)** of an estimator measures the average of the squares of the errors — that is, the average squared difference between the estimated values and what is estimated. The MSE is a measure of the quality of an estimator — it is always non-negative, and the smaller the MSE, the closer we are to finding the line of best fit.

Root Mean Square Error (RMSE) tells us that our model was able to forecast yearly unemployed graduates in the test set within 34.14 of the real sales. Our unemployed graduates yearly ranges from around 40000 to over 80000. In my opinion, this is a pretty good model so far.

#### **Code Snippet for the ARIMA model:**

The below written code by me used for fitting the ARIMA model to the dataset. Complete 350 lines of code is available in a separate file, it only shows ARIMA model.

```
]: import warnings
   import itertools
   import numpy as np
   import matplotlib.pyplot as plt
   warnings.filterwarnings("ignore")
   plt.style.use('fivethirtyeight')
   import pandas as pd
   import statsmodels.api as sm
   import matplotlib
   import pandas as pd
   from datetime import datetime
]: import statsmodels.api as sm
]: matplotlib.rcParams['axes.labelsize'] = 14
   matplotlib.rcParams['xtick.labelsize'] = 12
   matplotlib.rcParams['ytick.labelsize'] = 12
   matplotlib.rcParams['text.color'] = 'k'
]: df = pd.read csv("Downloads/data/Data distribution.csv")
]: df.head(10)
```

```
def arima(field):
   for param in pdg:
        for param seasonal in seasonal pdg:
            try:
                mod = sm.tsa.statespace.SARIMAX(graduates[field],order=param,seasonal order=param seasonal,
                                                enforce stationarity=False,
                                                enforce invertibility=False)
                #print("ds")
                results = mod.fit()
                #print("ds")
                #print('ARIMA{}x{}12 - AIC:{}'.format(param, param seasonal, results.aic))
            except:
                continue
   y=graduates[field]
   mod = sm.tsa.statespace.SARIMAX(y,
                                    order=(1, 1, 0),
                                    seasonal order=(1, 1, 0, 12),
                                    enforce stationarity=False,
                                    enforce invertibility=False)
    results = mod.fit()
    print(results.summary().tables[1])
    pred uc = results.get forecast(steps=25)
   pred ci = pred uc.conf int()
    ax = y.plot(label='observed', figsize=(14, 7))
    pred uc.predicted mean.plot(ax=ax, label='Forecast')
   ax.fill between(pred ci.index,
                    pred ci.iloc[:, 0],
                    pred ci.iloc[:, 1], color='k', alpha=.25)
    ax.set xlabel('Year')
    ax.set ylabel('Graduates '+field)
   plt.legend()
   plt.show()
   y forecasted = pred uc.predicted mean
    dfa=pd.DataFrame({'Year':y forecasted.index, 'Predicited '+field:y forecasted.values})
    dfa['Year'] = dfa['Year'].dt.year
    dfa.set index('Year',inplace= True)
   return dfa
```

## **Producing and visualizing forecasts**

Our model clearly captured unemployed graduates trend. As we forecast further out into the future, it is natural for us to become less confident in our values. This is reflected by the confidence intervals generated by our model, which grow larger as we move further out into the future.













|      | Predicited_Graduates | Predicited_Graduates |               |              | Predicited_Graduates - | Predicited_Graduates |
|------|----------------------|----------------------|---------------|--------------|------------------------|----------------------|
| Year | - Medical*           | - Agriculture*       | - Veterinary* | - Science*   | Engineering*           | - Total              |
| 2006 | 49658.509790         | 37248.071192         | 5578.799810   | 1.032473e+06 | 223912.028593          | 1.342755e+06         |
| 2007 | 49844.241995         | 39832.445678         | 5786.277856   | 1.063288e+06 | 227569.776136          | 1.371654e+06         |
|      | 52192.268786         | 37022.321957         | 6195.685148   | 1.128274e+06 | 230772.470534          | 1.419570e+06         |
| 2009 | 54346.844240         | 42261.500284         | 6727.152660   | 1.045418e+06 | 241134.665349          | 1.443083e+06         |
|      | 57478.262847         | 45683.347479         | 6691.074670   | 1.233089e+06 | 246354.569415          | 1.548263e+06         |
| 2011 | 61641.994184         | 44273.573553         | 8220.623616   | 1.093655e+06 | 263993.134042          | 1.534901e+06         |
| 2012 | 59751.813353         | 44483.508163         | 8024.132352   | 1.105166e+06 | 268330.788043          | 1.546835e+06         |
| 2013 | 62580.091097         | 45708.608564         | 8296.366471   | 1.158280e+06 | 282027.060620          | 1.614651e+06         |
| 2014 | 62808.851781         | 44556.451454         | 8262.983864   | 1.325531e+06 | 290128.358932          | 1.725372e+06         |
| 2015 | 64688.056834         | 46950.294681         | 7335.083699   | 1.336975e+06 | 315935.891645          | 1.786265e+06         |
| 2016 | 62452.041886         | 46253.277922         | 7343.851588   | 1.369726e+06 | 323988.713555          | 1.810965e+06         |
| 2017 | 63111.776467         | 47012.851084         | 7621.506486   | 1.357051e+06 | 333068.373568          | 1.822894e+06         |
| 2018 | 62565.059816         | 46484.673753         | 7815.528732   | 1.372491e+06 | 338515.738011          | 1.846470e+06         |
| 2019 | 63182.456606         | 49100.831013         | 8052.197356   | 1.368730e+06 | 346299.499187          | 1.868810e+06         |
| 2020 | 64063.487599         | 46197.454927         | 8488.242076   | 1.319507e+06 | 349594.030419          | 1.682891e+06         |
| 2021 | 68428.224711         | 51431.501082         | 9063.045388   | 1.646752e+06 | 362990.142394          | 2.066250e+06         |
| 2022 | 67416.530029         | 54876.685436         | 9010.530735   | 1.396278e+06 | 360922.230529          | 1.969890e+06         |
| 2023 | 79929.092482         | 53481.291366         | 10609.622437  | 1.766801e+06 | 388115.780088          | 2.203565e+06         |
| 2024 | 79307.174599         | 53650.626034         | 10437.942569  | 1.754707e+06 | 388860.092304          | 2.198701e+06         |
| 2025 | 81138.751033         | 54859.338886         | 10691.602682  | 1.772022e+06 | 397733.022476          | 2.238358e+06         |
| 2026 | 79770.151095         | 53674.715550         | 10615.376712  | 1.611499e+06 | 394013.333734          | 2.183657e+06         |
| 2027 | 81739.997193         | 56069.365284         | 9566.082589   | 1.673848e+06 | 408345.225451          | 2.239579e+06         |
| 2028 | 80656.563562         | 55398.156773         | 9546.882317   | 1.633223e+06 | 408667.560490          | 2.220998e+06         |
| 2029 | 81721.697731         | 56176.125174         | 9804.569329   | 1.677656e+06 | 414963.794719          | 2.252100e+06         |
| 2030 | 82454.533822         | 55657.936033         | 9994.677336   | 1.708346e+06 | 418707.853710          | 2.274943e+06         |

## Conclusion

So the above mentioned forecast are done for requirement of graduates for the period till 2030 in **INDIA**. The analysis is based **on MHRD** data available on government official webpage. The model used is **Autoregressive Integrated Moving Average**, which is one of the best model to fit the dataset. Root Mean Square Error (RMSE) tells us that our model was able to forecast yearly unemployed graduates in the test set within 34.14 of the real sales. Our unemployed graduates yearly ranges from around 40000 to over 80000. In my opinion, this is a pretty good model so far. The time-series has an upward trend between any year and the growth rate for the unemployed graduates are increasing rapidly. So we need to create a much more jobs to meet the requirement for the upcoming demands.