

ĐẠI HỌC ĐÀ NẮNG TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN Vietnam - Korea University of Information and Communication Technology

Chương 2:

HÀM SỐ MỘT BIẾN SỐ - GIỚI HẠN VÀ LIỀN TỤC - ĐẠO HÀM VÀ VỊ PHÂN

Chương 2:

- 2.1. HÀM SỐ MỘT BIẾN
- 2.2. GIỚI HẠN CỦA HÀM SỐ
- 2.3. VÔ CÙNG BÉ VÀ VÔ CÙNG LỚN
- 2.4. HÀM SỐ LIÊN TỤC
- 2.5. ĐẠO HÀM VI PHÂN
- 2.6. CÁC ĐỊNH LÝ VỀ HÀM KHẢ VI

2.6. CÁC ĐỊNH LÍ VỀ HÀM KHẢ VI

2.6.1. Các định lí về giá trị trung bình

Định lí Rolle

Nếu f(x) liên tục trên [a, b], khả vi trong (a, b) và có f(a) = f(b) thì:

Tồn tại ít nhất 1 điểm $c \in (a, b)$: f'(c) = 0

Định lí Lagrange

Nếu f(x) liên tục trên [a, b], khả vi trong (a, b) thì tồn tại ít nhất $c \in (a, b)$:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Định lí Côsi (Cauchy):

Nếu f(x), g(x) đều liên tục trên [a, b], khả vi trong khoảng (a, b) thì tồn tại ít nhất $c \in (a, b)$:

$$g'(c) [f(b) - f(a)] = f'(c) [g(b) - g(a)]$$

nếu g'(x) \neq 0, \forall x \in (a, b) thì:

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Chú ý:

- Định lí Rolle là trường hợp riêng của định lí Lagrange.
- Định lí Lagrange là trường hợp riêng của định lí Cauchy.

2.6.2. Quy tắc Lô-pi-tan (L`Hospital)

Định lí (Quy tắc L`Hospital) Giả sử các hàm số f(x), g(x)

khả vi trong lân cận x_o, thỏa:

i)
$$\lim_{x \to x_o} f(x) = \lim_{x \to x_o} g(x) = 0;$$

ii) $g(x) \neq 0$ ở lân cận x_0 ;

iii)
$$\lim_{x \to x_o} \frac{f'(x)}{g'(x)} = A.$$

Khi đó
$$\lim_{x \to x_o} \frac{f(x)}{g(x)} = \lim_{x \to x_o} \frac{f'(x)}{g'(x)} = A.$$

Định lí trên còn được áp dụng cho trường hợp:

•
$$\lim_{x \to x_o} f(x) = \lim_{x \to x_o} g(x) = \infty$$

•
$$X \to +\infty (-\infty)$$

Chú ý

- ightharpoonup Quy tắc Lô-pi-tan dùng để khử dạng: $\frac{0}{0}$; $\frac{\infty}{\infty}$
- → Khi áp dụng quy tắc L'hospital nếu: $\lim_{x \to x_o(\infty)} \frac{f'(x)}{g'(x)}$ vẫn có dạng $\frac{0}{0}$ hay $\frac{\infty}{\infty}$ thì vẫn áp dụng quy tắc lô-pi-tan một lần nữa.

Ví dụ. Tính các giới hạn sau:

a.
$$\lim_{x \to 0} \frac{x^3}{x - \sin x} \left(\frac{0}{0} \right)$$
 b. $\lim_{x \to \infty} \frac{\ln x}{x^{\alpha}}, \ \alpha > 0 \left(\frac{\infty}{\infty} \right)$

Giải

a. Ta có:
$$\lim_{x \to 0} \frac{\left(x^{3}\right)'}{\left(x - \sin x\right)'} = \lim_{x \to 0} \frac{3x^{2}}{1 - \cos x}$$
$$= \lim_{x \to 0} \frac{\left(3x^{2}\right)'}{\left(1 - \cos x\right)'} = \lim_{x \to 0} \frac{6x}{\sin x} = \lim_{x \to 0} \frac{\left(6x\right)'}{\left(\sin x\right)'} = 6.$$

b.
$$\lim_{x \to \infty} \frac{\ln x}{x^{\alpha}}, \ \alpha > 0 \left(\frac{\infty}{\infty}\right)$$

Ta có:

$$\lim_{x \to \infty} \frac{\left(\ln x\right)'}{\left(x^{\alpha}\right)'} = \lim_{x \to \infty} \frac{\frac{1}{x}}{\alpha x^{\alpha - 1}} = \lim_{x \to \infty} \frac{1}{\alpha x^{\alpha}} = 0.$$

Ví dụ. Tìm các giới hạn sau:

a.
$$\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right) (\infty - \infty)$$
 c. $\lim_{x\to \infty} \frac{x + \sin x}{2x} \left(\frac{\infty}{\infty} \right)$

$$c.\lim_{x\to\infty}\frac{x+\sin x}{2x}\left(\frac{\infty}{\infty}\right)$$

b.
$$\lim_{x\to 0} (x \ln x) (0.\infty)$$

$$d. \lim_{x\to 0^+} x^{\sin x} \left(0^0\right)$$

2.6.3. Công thức Taylor

a. Định lí

Nếu hàm f(x) xác định trên [a, b], có đạo hàm hữu hạn đến cấp (n + 1) trong khoảng (a, b) thì với bất kỳ $x_0 \in (a, b)$, ta có:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots$$

$$+ \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

với c ở giữa x_o và x.

(*) gọi là công thức khai triển Taylor của hàm f(x) tại x_o.

$$ightharpoonup ext{Dat:} ext{$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_o)^{n+1}$}$$

goi là phần dư dạng Lagrange của công thức Taylor.

 \rightarrow Nêu $x_0 = 0 \in (a, b)$ thì công thức Taylor gọi là công thức Maclaurin của hàm f(x):

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + ...$$

$$+ \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}$$

với c ở giữa 0 và x.

Xét giới hạn
$$\lim_{x \to x_0} \frac{R_n(x)}{(x - x_0)^n} = \lim_{x \to x_0} \frac{f(x) - \sum_{k=0}^n \frac{f^{(k)}(x_0)(x - x_0)^k}{k!}}{(x - x_0)^n}$$

$$= \lim_{x \to x_0} \frac{f'(x) - \sum_{k=1}^{n} \frac{f^{(k)}(x_0)(x - x_0)^{k-1}}{(k-1)!}}{n(x - x_0)^{n-1}} = \dots \lim_{x \to x_0} \frac{f^{(n)}(x) - f^{(n)}(x_0)}{n!} = 0$$

Suy ra
$$R_n(x) = o((x-x_o)^n)$$
.

Dạng thứ 2 của công thức Taylor

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots$$
$$+ \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + o((x - x_0)^n)$$

với phần dư dạng Peano $R_n(x) = o((x - x_o)^n)$

b. Khai triển Maclaurin của một số hàm số sơ cấp thường dùng.

a. Hàm
$$y = f(x) = e^x$$

Ta có:
$$y^{(n)} = e^x$$
, n ≥1

Khai triển Maclaurin của $y = e^x$:

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + ... + \frac{x^{n}}{n!} + \frac{e^{c}}{(n+1)!} x^{n+1}$$
(c nằm giữa 0 và x)
$$o(x^{n})$$

b. Hàm $y = f(x) = \sin x$; $y = f(x) = \cos x$

Ta có:
$$f^{(n)}(x) = (\sin x)^{(n)} = \sin(x + n\frac{\pi}{2}), n \ge 1$$

$$f^{(n)}(0) = \sin(n\frac{\pi}{2}) = \begin{cases} 0 & \text{khi } n = 2k \\ (-1)^k & \text{khi } n = 2k + 1 \end{cases}$$

Khai triển Maclaurin của y = sinx:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \dots +$$

$$(-1)^k \frac{x^{2k+1}}{(2k+1)!} + (-1)^{k+1} \cos c \frac{x^{2k+3}}{(2k+3)!} x^{2k+3}$$
(c nằm giữa 0 và x)
$$o(x^{2k+1})$$

Tương tự ta có:

Khai triển Maclaurin của y = cosx:

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$$

$$+ (-1)^k \frac{x^{2k}}{(2k)!} + (-1)^{k+1} \cos c \frac{x^{2k+2}}{(2k+2)!} x^{2k+2}$$
(c nằm giữa 0 và x)
$$O(x^{2k})$$

c. Hàm số
$$y = f(x) = (1 + x)^{\alpha}$$
, $\alpha \in R$

$$(1+x)^{\alpha} = 1 + \frac{\alpha}{1!}x + \frac{\alpha(\alpha-1)}{2!}x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^{3} + \dots$$

$$+ \frac{\alpha(\alpha-1)(\alpha-2)...(\alpha-n+1)}{n!}x^{n}$$

$$+ \frac{\alpha(\alpha-1)(\alpha-2)...(\alpha-n)(1+c)^{n+1}}{(n+1)!}x^{n+1}$$

$$= \frac{\alpha(\alpha-1)(\alpha-2)...(\alpha-n)(1+c)^{n+1}}{\alpha(\alpha-1)!}x^{n+1}$$

Đặc biệt:

$$(-1)^{n} x^{n} + (-1)^{n+1} \frac{1}{(1+c)^{n+2}} x^{n+1}$$

$$o(x^{n})$$

•
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} \dots$$

 $+ (-1)^{n-1} \frac{x^n}{n} + \frac{(-1)^n x^{n+1}}{(n+1)(1+c)^{n+1}}$

2.6.4. Ứng dụng đạo hàm để khảo sát hàm số

a. Chiều biến thiên và cực trị của hàm số:

Định lí 1: (về tính tăng giảm của hàm số)

Giả sử hàm số f(x) khả vi trong (a, b). Khi đó:

a.
$$f'(x) > 0$$
, $\forall x \in (a, b) \Rightarrow f(x)$ tăng trong (a, b)

b.
$$f'(x) < 0$$
, $\forall x \in (a, b) \Rightarrow f(x)$ giảm trong (a, b)

Điểm tới hạn của hàm số:

Là những điểm thuộc miền xác định của hàm số mà tại đó đạo hàm bằng 0 hoặc không tồn tại.

Định lí 2: (về tính cực trị của hàm số)

Giả sử hàm số f(x) khả vi trong (a, b) chứa điểm tới hạn x_o (có thể không khả vi tại x_o). Khi đó:

a. Nếu f'(x) đổi dấu từ dương (+) sang âm (-) khi x biến thiên tăng dần qua x_o thì f(x) đạt cực đại tai x_o .

b. Nếu f'(x) đổi dấu từ âm (-) sang dương (+) khi x biến thiên tăng dần qua x_0 thì f(x) đạt cực tiểu tai x_0 .

Định lí 3: (về tính cực trị của hàm số)

Giả sử f(x) có đạo hàm cấp 2 liên tục ở lân cận x_o và f'(x) = 0.

- Nếu f''(x) < 0 thì hàm số đạt *cực đại* tại x_o .
- Nếu f''(x) > 0 thì hàm số đạt *cực tiểu* tại x_0 .

Ví dụ

Tìm cực trị của các hàm số:

a.
$$y = f(x) = x\sqrt{4 - x^2}$$

b. $y = f(x) = x^3 e^{-x}$

b.
$$y = f(x) = x^3 e^{-x}$$

b. GTLN và GTNN của hàm số trên một đoạn:

Để tìm GTLN và GTNN của hàm số liên tục trên [a, b]:

- Tính giá trị của f(x) tại các điểm cực trị và tại 2 mút a, b.
- GTLN (GTNN) của hàm số là GTLN (GTNN) được tính ở trên.

Ví dụ

Tìm GTLN và GTNN của hàm số:

$$y = f(x) = 2\sin x + \sin 2x$$
 trên đoạn $\left[0; \frac{3\pi}{2}\right]$

c. Sự lồi, lõm, điểm uốn của đường cong:

Định lí

Giả sử hàm số f(x) có đạo hàm cấp 2 trong (a, b). Khi đó:

- Nếu $\mathbf{f''}(\mathbf{x}) > \mathbf{0}$ (<0) $\forall \mathbf{x} \in (\mathbf{a}, \mathbf{b})$ thì đồ thị của $\mathbf{f}(\mathbf{x})$ lõm (lồi) trong (\mathbf{a}, \mathbf{b}) .
- Nếu f''(x) đổi dấu khi qua x_o thì điểm $(x_o, f(x_o))$ là điểm uốn của đồ thị hàm số f(x).

Ví dụ

Xét tính lồi, lõm và tìm điểm uốn của hàm số:

$$y = \sqrt[3]{x - 1}$$

d. Tiệm cận của đường cong:

Nếu
$$\lim_{x\to a} f(x) = \infty$$
 thì đường thẳng $x = a$ là *tiệm* $cận$ đứng của đồ thị $y = f(x)$

Nếu
$$\lim_{x\to\infty} f(x) = b$$
 thì đường thẳng $y = b$ là *tiệm* c ận ng ang của đồ thị $y = f(x)$

$$N\hat{e}u\begin{cases} \lim_{x \to \pm \infty} \frac{f(x)}{x} = a\\ \lim_{x \to \pm \infty} [f(x) - ax] = b \end{cases}$$

thì đường thẳng y = ax + b là *tiệm cận xiên* của đồ thị y = f(x)

Ví dụ

Tìm các đường tiệm cận của đường cong sau:

$$y = f(x) = \sqrt{x^2 + 1}$$

e. Khảo sát và vẽ đồ thị của hàm số y = f(x)

Sơ đồ khảo sát:

- B1. Tìm miền xác định.
- B2. Xét tính chẵn, lẻ, tính tuần hoàn (nếu có).
- B3. Tìm giao điểm của đường cong với các trục tọa độ.
- B4. Tìm các đường tiệm cận.
- B5. Xét sự tăng giảm, cực trị của hàm số; xét sự lồi lõm và tìm điểm uốn của đường cong.

Lập bảng biến thiên.

B6. Vẽ đồ thị

Ví dụ

Khảo sát và vẽ đồ thị hàm số:

$$y = f(x) = \frac{x}{x^2 - 1}$$

Giải:

- TXĐ: $D = R | \{1, -1\}$
- Hàm số lẻ: đồ thị đối xứng qua gốc tọa độ nên chỉ cần khảo sát
- Khi x = 0 thì y = 0. Đồ thị đi qua gốc tọa độ.

$$\lim_{x \to \pm 1} \frac{x}{x^2 - 1} = \infty$$

nên x = 1 và x = -1 là 2 tiệm cận đứng.

$$\lim_{x \to \infty} \frac{x}{x^2 - 1} = 0 \quad \text{nên y} = 0 \text{ là tiệm cận ngang.}$$

$$y' = \frac{(x^2 - 1) - 2x \cdot x}{\left(x^2 - 1\right)^2} = \frac{-x^2 - 1}{\left(x^2 - 1\right)^2}$$

y' < 0, $\forall x \neq \pm 1$ nên hàm số giảm trên các khoảng xác định.

$$y'' = \frac{-2x(x^2 - 1)^2 - 4x(x^2 - 1)(-x^2 - 1)}{(x^2 - 1)^4} = \frac{2x^3 + 6x}{(x^2 - 1)^3} = \frac{2x(x^2 + 3)}{(x^2 - 1)^3}$$

$$y'' = 0 \iff x = 0 \implies y = 0$$
. Suy ra điểm uốn $O(0; 0)$

• Bảng biến thiên:

X	0	$1 + \infty$
y'	-	_
y"	0 -	+
У	0 $-\infty$	$+\infty$ 0

f(x)=x/(x*x-1)