E7020e

HARDWARE #3

PCB LAYOUT

PCB PRINTED CIRCUIT BOARD

2-LAYER BOARD

PCB PRINTED CIRCUIT BOARD

4-LAYER BOARD

COMPONENT MOUNTING

THROUGH HOLE (TH)
SURFACE MOUNT (SMD)

FOOTPRINT

COMPONENT PACKAGES

SURFACE MOUNT

Size - design density
Assembly (hand? pick&place machine?)
Heat dissipation
Parasitics

THROUGH HOLE

ELECTROMAGNETIC FIELDS

Travels IN THE PLASTIC between signal and return paths

→ Current flow in the copper traces (waveguides)

Voltage between signal and return paths

Propagates at speed of light of the dielectric material

~15cm/ns in FR4

Electromagnetic compatibility (EMC)

The physical layout will affect the system's emission and susceptibility

If you must route across split – use return straps

SQUARE WAVE

Infinite number of sine waves (fundamental + harmonics)

High/low speed circuit is not determined by clock speed but by RISE and FALL times

LUMPED CIRCUIT

Rise/fall times are LONG compared to propagation time

DISTRIBUTED CIRCUIT

Rise/fall times are SHORT compared to propagation time

→ Reflection
Requires controlled impedance transmission lines

RISETIME → MAXTRACE LENGTH

		Max Line Length
DEVICE TYPE	RISETIME	Outer (inch/mm)
Standard TTL	5.0 ns	9.23 / 235
Schottky TTL	3.0 ns	5.54 / 141
10K ECL	2.5 ns	4.62 / 117
ASTTL	1.9 ns	3.51 / 89
FTTL	1.2 ns	2.22 / 56
BICMOS	0.7 ns	1.29 / 33
10KH ECL	0.7 ns	1.29 / 33
100K ECL	0.5 ns	.923 / 23
GaAs	0.3 ns	.554 / 14

Use slowest possible rise/fall times
Limited by clock speed (< 15% of total period time)
Set GPIO speed in firmware (OSPEEDR register)
Limit drive current using series resistor at driver

DIFFERENTIAL PAIR

Equal but opposite signals

Receiver sees DIFFERENCE

Ignores GND-offsets between sender and receiver Ignores common mode noise (twisted pair)

USB

GOOD LAYOUT HABITS

Partitioning your layout

GOOD LAYOUT HABITS

Put all components and route all signals / power on top layer

Use bottom layer for solid GND plane

Decoupling capacitors as close as possible to power pins

Place components for least congested routing

Space signal traces far apart

If you need to cross-under on the bottom layer, make it short

If you can't make it short, add a return strap over it

LET'S KICAD