Problem R-090 ($C_{10}H_7NO$). Shown below is the 250 MHz proton homonucear shift correlated spectrum (H,H-COSY) of quinoline 8-carboxaldehyde. The aldehyde proton at δ 9.5 is not shown (C. G. Anklin, P. S. Pregosin *Magn. Reson. Chem.* **1985**, 23, 672)

Asign the proton signals A through F to the protons H² to H⁷.

$$H^2 =$$

$$H^3 =$$

$$H^5 =$$

$$H^6 =$$

$$H^7 =$$

Problem R-090 ($C_{10}H_7NO$). Shown below is the 250 MHz proton homonucear shift correlated spectrum (H,H-COSY) of quinoline 8-carboxaldehyde. The aldehyde proton at δ 9.5 is not shown (C. G. Anklin, P. S. Pregosin *Magn. Reson. Chem.* **1985**, 23, 672)

Asign the proton signals A through F to the protons H^2 to H^7 .

Magn Reson, Chem. 1985, 23, 672

$$H^2 = \frac{F}{A}$$

$$H^3 = \frac{A}{A}$$

$$H^5 = C$$

$$H^6 = B$$

 H^2 can be assigned to F on the basis of chemical shift. It is correlated to A and D. A is a dd with two large couplings, so must be H^3 , and thus $D = H^4$

 ${\rm H}^7$ can be assigned to E on the basis of chemical shift (ortho shift of CHO larger than para shift). It is correlated to C and B. B is a triplet (two large couplings), so must be ${\rm H}^6$, and thus ${\rm C}={\rm H}^5$

Magn. Reson. Chem 1985, 23, 672