COMPUTER SECURITY

Software Security

Adapted from *Security in Computing, Fifth Edition*, by Charles P. Pfleeger, et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education, Inc. All rights reserved

Malware: Malicious Software

Malware

- Programs planted by an agent with malicious intent to cause unanticipated or undesired effects
 - Can be used to:
 - Obtain your sensitive information
 - Delete or modify files
 - Any unwanted/malicious purpose

Malware

- Virus: A program that can replicate itself
 - pass on malicious code to other non-malicious programs by modifying them
- Worm: A program that spreads copies of itself through a network
- Trojan horse: code that, in addition to its stated effect, has a second, nonobvious, malicious effect

Viruses, Worms, Trojans, Rootkits

- Malware can be classified into several categories, depending on propagation and concealment
- Propagation
 - Virus: human-assisted propagation (e.g., open email attachment)
 - Worm: automatic propagation without human assistance
- Concealment
 - Rootkit: modifies operating system to hide its existence
 - Trojan: provides desirable functionality but hides malicious operation

Malware Payload

 Various types of payloads, ranging from annoyance to crime

Malware Payload

- Payload examples:
 - perform amusing or annoying pranks
 - destroy/corrupt files and applications
 - monitor and transmit user activity (spyware, logger)
 - install backdoor
 - makes the infected computer a zombie
 - email spam
 - launch denial-of-service attack
 - alter browser settings to display ads
 - dial out international or 900 numbers (dialer)

Harm from Malicious Code

- Harm to users and systems:
 - Sending email to user contacts
 - Deleting or encrypting files
 - Modifying system information, such as the Windows registry
 - Stealing sensitive information, such as passwords
 - Attaching to critical system files
 - Hide copies of malware in multiple complementary locations

Harm from Malicious Code

- Harm to the world:
 - Some malware has been known to infect millions of systems, growing at a geometric rate
 - Infected systems often become staging areas for new infections

Transmission and Propagation

- Setup and installer program
- Attached file
- Document viruses
- Autorun
- Using non-malicious programs:
 - Appended viruses
 - Viruses that surround a program
 - Integrated viruses and replacements

Malware Activation

- One-time execution (implanting)
- Boot sector viruses
- Memory-resident viruses
- Application files
- Code libraries

MALWARE TYPES

- The most known type of malware
- A computer virus attaches itself to some program
 - Similar to biological viruses that attach themselves to human body
- Virus is computer code that can replicate itself by modifying other files/programs
 - to insert code that is capable of further replication.
 - such as logic bombs.

- This self-replication property distinguishes computer viruses from other kinds of malware
- Another distinguishing property is that virus replication requires some user assistance
 - such as clicking on an email attachment or sharing a USB drive.

Biological Analogy

 Computer viruses share some properties with Biological viruses

Early History

- 1972 sci-fi novel "When HARLIE Was One" features a program called VIRUS that reproduces itself
- First academic use of term 'virus' by PhD student
 Fred Cohen in 1984
 - credits advisor Len Adleman with coining it

Early History

- In 1982, high-school student Rich Skrenta wrote first virus released in the wild: Elk Cloner
 - A boot sector virus
- Brain, by Basit and Amjood Farooq Alvi in 1986, credited with being the first virus to infect PCs

Dormant phase:

 The virus just exists—the virus is laying low and avoiding detection.

Propagation phase:

 The virus is replicating itself, infecting new files on new systems.

Virus Phases

Triggering phase:

 Some logical condition causes the virus to move from a dormant or propagation phase to perform its intended action.

Action phase:

- The virus performs the malicious action that it was designed to perform, called payload.
 - This action could include something seemingly innocent, like displaying a silly picture on a computer's screen
 - or something quite malicious, such as deleting all essential files on the hard drive.

https://festival.vconline.org/2017/films/nuwa/

Infection Types

- Overwriting
 - Destroys original code
- Pre-pending
 - Keeps original code, possibly compressed
- Infection of libraries
 - Allows virus to be memory resident
 - E.g., kernel32.dll
- Macro viruses
 - Infects MS Office documents
 - Often installs in main document template

Resident and Non-resident Viruses

- Resident viruses continue running after executing the infected file
 - Modified system calls
 - Modified DLLs
- Resident viruses are more common than nonresident viruses
 - essentially latch onto system calls, DLLs and the like, and stay resident
 - affecting every program run subsequent to them being introduced into memory.

Resident and Non-resident Viruses

 Non resident viruses are executed every time an infected file is executed

Viruses and DLL's

- All Windows DLLs have an export table listing the functions provided and their addresses
- A virus can hook onto a DLL
- Fairly easy for viruses using DLLs to get memory resident

Viruses and DLL's

- Example: kernel32.dll is a collection of core Windows API calls (system calls)
 - imported by most applications
- Most viruses relying on patching DLLs usually attack kernel32.dll

Viruses and Windows DLL's

- Example: W32.Kriz will attack any PE executable, and kernel32.dll
 - to get a hook on system calls
- Hooking system calls may be done by legitimate programs
 - such as Regmon (a registry monitoring utility)
- Viruses hook onto DLLs by either:
 - changing their exported symbol table, so as to call malicious code
 - adding malicious code to the DLL.

Degrees of Complication

 Viruses have various degrees of complication in how they can insert themselves in computer code.

Degrees of Complication

Concealment

Encrypted virus

- Decryption engine + encrypted body
- Randomly generate encryption key
- Detection looks for decryption engine

Polymorphic virus

- Encrypted virus with random variations of the decryption engine (e.g., padding code)
- Detection using CPU emulator

http://www.hoax-slayer.com/really-bad-virus-warning.shtml, https://sites.google.com/site/a14g32/home/different-types-of-computer-viruses

Concealment

DIFFERENT
TYPES OF COMPUTER VIRUS

- Metamorphic virus
 - Different virus bodies
 - Approaches include code permutation and instruction replacement
 - Challenging to detect

http://www.hoax-slayer.com/really-bad-virus-warning.shtml, https://sites.google.com/site/a14g32/home/different-types-of-computer-viruses

Virus Detection

- Virus scanners look for signs of malicious code infection
 - using signatures in program files and memory
- Traditional virus scanners have trouble keeping up with new malware
 - detect about 45% of infections

Virus Detection

- Detection mechanisms:
 - Known string patterns in files or memory
 - Execution patterns
 - Storage patterns

Virus Signatures

Computer Worms

- A computer worm is a malware program that spreads copies of itself
 - without the need to inject itself in other programs, and usually without human interaction.
- Thus, computer worms are technically not computer viruses
 - since they don't infect other programs
 - but some people nevertheless confuse the terms, since both spread by self-replication.

Computer Worms

- In most cases, a computer worm will carry a malicious payload
 - such as deleting files or installing a backdoor.

Early History

- First worms built in the labs of John Shock and Jon Hepps at Xerox PARC in the early 80s
- CHRISTMA EXEC written in REXX was the first worm to use e-mail service
 - released in December 1987
 - targeting IBM VM/CMS systems

Early History (cont.)

- The first internet worm was the Morris Worm
 - released on November 2, 1988
 - written by Cornell student Robert Tappan Morris and
 - First person to be indicted under the Computer Fraud and Abuse Act
 - Sentenced to probation

I love you Worm

- A famous worm
- Spread to millions of Windows machines
 - By Email
 - When opened, would execute many attacks
 - Spread by stealing email addresses from the computer
 - Resending the emails to multiple new targets

I love you worm

Worm Propagation

- Worms propagate by finding and infecting vulnerable hosts.
 - They need a way to tell if a host is vulnerable
 - They need a way to tell if a host is already infected.

Worm Propagation: Theory

Source:

Cliff C. Zou, Weibo Gong, Don Towsley, and Lixin Gao. <u>The Monitoring and Early Detection of Internet Worms</u>, IEEE/ACM Transactions on Networking, 2005.

Propagation: Practice

 Cumulative total of unique IP addresses infected by the first outbreak of Code-RedI v2 on July 19-20, 2001

Source:

David Moore, Colleen Shannon, and Jeffery Brown. <u>Code-Red: a</u> <u>case study on the spread</u> <u>and victims of an Internet</u> <u>worm</u>, CAIDA, 2002

Adware

Spyware

Spyware software payload

 Spyware engine infects a user's computer.

2. Spyware process collects keystrokes, passwords,

and screen captures.

Computer user

3. Spyware process periodically sends collected data to spyware data collection agent.

Spyware data collection agent

- A Trojan horse (or Trojan) is a malware program that appears to perform some useful task
 - but also does something with negative consequences (e.g., launches a keylogger).
- Trojan horses can be installed as part of the payload of other malware
- Often installed by a user or administrator, either deliberately or accidentally.

- Name derives from the wooden horse left by the Greeks at the gates of Troy
- A Trojan horse program intentionally hides malicious activity
 - while pretending to be something else
- Usually described as innocuous looking, or software delivered through innocuous means
 - May allow taking control of systems
- Trojan horse programs do not replicate themselves

- Sometimes passed on using commonly passed executables, things like jokes forwarded by e-mail
- Sometimes marketed/distributed as "remote administration tool"
- Often combined with rootkits to disguise activity and remote access
- Popularized to an extent by software like Cult of the Dead Cow's Back Orifice
 - offered as a free download for running "remote administration" tasks or playing spooky jokes on friends

- The line between user-launched worms and Trojans is highly blurred
 - many user-launched worms behaving in a manner similar to worms.
- Trojans are by definition malicious
 - The classic movie/television exploit of remotely opening disk drives is a symptom of being infected by a Trojan.
- Have lately begun using much of the same defense mechanisms used by viruses

Current Trends

- Trojans currently have largest infection potential
 - Often exploit browser vulnerabilities
 - Typically used to download other malware in multi-stage attacks

Source:
Symantec Internet
Security Threat
Report, April 2009

Percentage of top 50 by potential infections

Detected mobile apps by type (2017)

Rootkits

- A collection of software that an administrator would use
 - Hides itself from the system
 - Processes will not show in task manager
 - Can hide its own presence
 - -Hard to detect using software that relies on the OS itself

Harm from Malicious Code

- Harm to users and systems:
 - Sending email to user contacts
 - Deleting or encrypting files
 - Modifying system information, such as the Windows registry
 - Stealing sensitive information, such as passwords
 - Attaching to critical system files
 - Hide copies of malware in multiple complementary locations

Harm from Malicious Code

- Harm to the world:
 - Some malware has been known to infect millions of systems, growing at a geometric rate
 - Infected systems often become staging areas for new infections

Transmission and Propagation

- Setup and installer program
- Attached file
- Document viruses
- Autorun
- Using nonmalicious programs:
 - Appended viruses
 - Viruses that surround a program
 - Integrated viruses and replacements

Malware Activation

- One-time execution (implanting)
- Boot sector viruses
- Memory-resident viruses
- Application files
- Code libraries

Types of Malware

Code Type	Characteristics
Virus	Code that causes malicious behavior and propagates copies of itself to other programs
Trojan horse	Code that contains unexpected, undocumented, additional functionality
Worm	Code that propagates copies of itself through a network; impact is usually degraded performance
Rabbit	Code that replicates itself without limit to exhaust resources
Logic bomb	Code that triggers action when a predetermined condition occurs
Time bomb	Code that triggers action when a predetermined time occurs
Dropper	Transfer agent code only to drop other malicious code, such as virus or Trojan horse
Hostile mobile code agent	Code communicated semi-autonomously by programs transmitted through the web
Script attack, JavaScript, Active code attack	Malicious code communicated in JavaScript, ActiveX, or another scripting language, downloaded as part of displaying a web page

Types of Malware (cont.)

Code Type	Characteristics
RAT (remote access Trojan)	Trojan horse that, once planted, gives access from remote location
Spyware	Program that intercepts and covertly communicates data on the user or the user's activity
Bot	Semi-autonomous agent, under control of a (usually remote) controller or "herder"; not necessarily malicious
Zombie	Code or entire computer under control of a (usually remote) program
Browser hijacker	Code that changes browser settings, disallows access to certain sites, or redirects browser to others
Rootkit	Code installed in "root" or most privileged section of operating system; hard to detect
Trapdoor or backdoor	Code feature that allows unauthorized access to a machine or program; bypasses normal access control and authentication
Tool or toolkit	Program containing a set of tests for vulnerabilities; not dangerous itself, but each successful test identifies a vulnerable host that can be attacked
Scareware	Not code; false warning of malicious code attack

Malware

- We see that many types of malware exist
- Consequences of attacks can be significant
- How do we protect against them?

Countermeasures for Users

- Use software acquired from reliable sources
- Test software in an isolated environment
- Only open attachments when you know them to be safe
- Treat every website as potentially harmful
- Create and maintain backups

Countermeasures for Developers

- Modular code: Each code module should be
 - Single-purpose
 - Small
 - Simple
 - Independent
- Encapsulation
 - Restrict direct access to some of the object's components
 - Using built-in language mechanism

Countermeasures for Developers

- Mutual Suspicion
 - Mutually suspicious programs operate as if other routines in the system were malicious or incorrect.
 - A calling program cannot trust its called subprocedures to be correct
 - a called subprocedure cannot trust its calling program to be correct.
 - Each protects its interface data so the other has only limited access

Countermeasures for Developers

- Information hiding
 - Segregating the program design decisions most likely to change
 - => protecting other parts of the program from extensive modification if the design decision is changed
- Confinement
 - Isolate program data, functionality
 - For example, server should send only certain data to client

Code Testing

Unit testing:

- individual units/ components of a software are tested.
- Validate that each unit of the software performs as designed
 - A unit is the smallest testable part of any software. It usually has
 one or a few inputs and usually a single output.

Integration testing:

- individual software modules are combined and tested as a group
 - occurs after unit testing and before validation testing

Code Testing

Functional testing:

 Ensure the software has all the required functionality that's specified within its functional requirements

Performance testing:

- A testing practice to determine how a system performs
 - in terms of responsiveness and stability under a particular workload

Acceptance testing:

- Evaluate the system's compliance with the business requirements
 - assess whether it is acceptable for delivery

Code Testing

Installation testing:

- Most software systems have installation procedures
 - Needed before they can be used for their main purpose.
- Test these procedures to achieve a usable installed software system

Regression testing:

- Testing changes to computer programs
 - to make sure that the older programming still works with the new changes

Questions?

