SI. no	Category of Courses	Continuous Assessment	Mid – Semester Assessment	End Semester
1.	Theory	40	20	40

CS6101	PROGRAMMING WITH C	L	Т	Р	EL	CREDITS
		2	1	4	3	6

Prerequisites for the course: None

OBJECTIVES:

- To learn programming using a structured programming language.
- To implement programs using basic features of C.
- To learn to use C pointers and dynamically allocated memory techniques.
- To learn advanced features of the C programming language
- To be able to use file operations in C

MODULE I:	L	Т	Р	EL
	2	1	4	3

Notion of memory, addresses, variables, instructions, execution of instructions. Operating system commands, file editing, compiling, linking, executing a program.

SUGGESTED ACTIVITIES:

Practical - Use of operating system commands and file editing operations.

SUGGESTED EVALUATION METHODS:

• Exercises on the use of operating system commands and file editing operations.

MODULE II:	L	T	Р	EL
	2	1	4	3

Data types - constants, variables - arithmetic operators - expressions - basic input/output. Relational, logical, increment, decrement operators. Bitwise, assignment, conditional operators.

SUGGESTED ACTIVITIES:

- EL Programs using integer type, arithmetic operators and basic input/output.
- EL Programs using other data types and operators.
- Practical Demonstration of programs using integer type, arithmetic operators and basic input/output.
- Practical Demonstration of programs using other data types and operators.

SUGGESTED EVALUATION METHODS:

• Programs on integer type, arithmetic operators, basic input output.

MODULE III:	L	Т	Р	EL
	2	1	4	3

Statements and blocks - Selection - if-else construct - iteration - while - for constructs. The constructs else-if, switch, do-while, break, continue, enum. Pseudocode, Programming style.

SUGGESTED ACTIVITIES:

- EL: Programs using if-else, while, for.
- EL: Programs using else-if, switch, do-while, break, continue, enum. Use of pseudocode, programming style.
- Practical: Demonstration of programs using if else, while, for.
- Practical: Use of pseudocode. Demonstration of programs using else-if, switch, do-while, break, continue, enum, programming style.

SUGGESTED EVALUATION METHODS:

Programs using if else, while, for.

MODULE IV:	L	Т	Р	EL
	4	2	8	6

Array, declaration, initialization. Multi dimensional arrays. Strings and character arrays, string operations on arrays.

SUGGESTED ACTIVITIES:

- EL Programs using arrays and operations on arrays.
- Practical Demonstration of programs using arrays and operations on arrays.
- EL Programs implementing string operations on arrays.
- Practical Demonstration of programs implementing string operations on arrays.

SUGGESTED EVALUATION METHODS:

- Evaluation: Programs using arrays and operations on arrays.
- Evaluation: Programs using strings and use of string library functions.
- Evaluation: Programs implementing string operations on arrays.

MODULE V:	L	Т	Р	EL
	4	2	8	6

Functions, definition, call, arguments, call by value. Call by reference. Recursion. Call stack. Header files, static variables, external variables.

SUGGESTED ACTIVITIES:

- EL Programs using functions.
- Practical Demonstration of programs using functions.
- EL Programs using recursion.
- Practical Demonstration of programs using recursion.

SUGGESTED EVALUATION METHODS:

- Evaluation: Programs using functions.
- Evaluation: Programs using recursion.

MODULE VI:	L	T	Р	EL
	6	3	12	9

Pointers and arrays - address arithmetic. Dynamic Memory Allocation - Two dimensional arrays and pointers. Pointers and strings, string library functions. Pointers to functions.

SUGGESTED ACTIVITIES:

- EL Programs using pointers and arrays, address arithmetic.
- Practical Demonstration of programs using pointers and arrays, address arithmetic...

- EL Programs using Dynamic Memory Allocation, two dimensional arrays and pointers.
- Practical Demonstration of programs using Dynamic Memory Allocation, two dimensional arrays and pointers.
- EL Programs using Pointers and strings..
- Practical Demonstration of programs using pointers and strings.

SUGGESTED EVALUATION METHODS:

- Evaluation: Programs on pointers and arrays, address arithmetic..
- Evaluation: Programs using Dynamic Memory Allocation, two dimensional arrays and pointers.
- Evaluation: Programs using pointers and strings.

MODULE VII:	L	Т	Р	EL
	4	2	8	6

Structures, Structures and arrays. Pointers to structures, Self referential structures. Enumeration types, Unions, bit fields, typedefs.

SUGGESTED ACTIVITIES:

- EL Programs using structures and arrays.
- Practical Demonstration of programs using Structures and arrays.
- EL Programs using Pointers to structures, Self referential structures.
- Practical Demonstration of programs using pointers to structures, Self referential structures.

SUGGESTED EVALUATION METHODS:

- Evaluation: Programs using Structures and arrays.
- Evaluation: Programs using pointers to structures, self referential structures.

MODULE VIII:	L	Т	Р	EL
	2	1	4	3

Files - binary, text - open, read, write, random access, close. Preprocessor directives. Command line arguments.

SUGGESTED ACTIVITIES:

- EL Programs using file operations in real-world applications.
- Practical Demonstration of real-world application using file operations.

SUGGESTED EVALUATION METHODS:

• Evaluation: Demonstration of real-world application.

TEXT BOOKS:

- 1. Reema Thareja, "Programming in C", 2nd ed., Oxford University Press, 2016.
- 2. Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", Pearson Education, 1988.
- 3. Brian W. Kernighan and Rob Pike, "The Practice of Programming" (Chap 1), Pearson Education, 1999.

REFERENCES:

- 1. Pradip Dey and Manas Ghosh, "Computer Fundamentals and Programming in C", 2nd ed., Oxford University Press, 2013.
- 2. Yashavant Kanetkar, "Let us C", 15th ed., BPB Publications, 2017.

3. Paul J. Deitel and Harvey Deitel, "C How to Program", 7th ed., Pearson Education, 2013.

OUTCOMES:

Upon completion of the course, the students will be able to:

- Apply appropriate programming constructs to solve problems.
- Write C programs for simple applications.
- Use C pointers and dynamically allocated memory to solve complex problems.
- Know advanced features of the C programming language.
- Apply file operations to develop solutions for real-world problems.

EVALUATION METHOD TO BE USED:

Continuous assessment	Mid term	End Semester
40 (P)	20	40

		L	T	Р	EL	CREDITS
CS6102	COMPUTATIONAL THINKING	0	0	4	3	3
Dona miletra for the common Name						

Prerequisites for the course: None

OBJECTIVES:

- To formulate problems in a way that enables the use of a computer to solve them.
- To logically organize and analyze data.
- To automate solutions through algorithmic thinking.
- To identify, analyze and implement possible solutions with the goal of achieving the most efficient and effective combination of steps and resources.
- To generalize and transfer this problem solving process to wide variety of problems.

MODULE I:	L	Т	Р	EL
	0	0	4	3

Algorithmic thinking - creating oral algorithms for everyday tasks - Data abstraction and representation - Abstraction and translation of everyday data for use on a computer.

SUGGESTED ACTIVITIES:

- Explore algorithm design by creating oral algorithms.
- Abstract the essential details of everyday objects.
- Translate the description of everyday objects into data types and variables.

SUGGESTED EVALUATION METHODS:

Evaluation of the oral algorithms and computer data.

MODULE II:	L	Т	Р	EL
	0	0	12	9

Decomposing a complex problem - Strategies for decomposition and algorithm design - Divide and conquer - Simple program implementations.