ניסוי ברנולי

. F ניסוי ברנולי הוא ניסוי בעל שתי תוצאות אפשריות: הצלחה, המסומנת S, וכשלון, המסומן ניסוי ברנולי הוא ניסוי בעל שתי תוצאות אפשריות: P(S)=p

P(F) = 1 - P(S) = 1 - p = qההסתברות לכישלון מסומנת

מידת הסתברות בינומית בינומית בינומית

 $\Omega = \{0,1,...,n\}$ נתון מרחב המדגם $\Omega = \{0,1,...,n\}$ ועליו מוגדרת מידת ההסתברות המקיימת

פית
$$P(\{k\}) = \binom{n}{k} p^k q^{n-k}$$
 כאשר $0 \le p \le 1, \quad q = 1-p$ כאשר $0 \le p \le 1, \quad q = 1-p$

מודל בינומי של ניסויים (אחת הדרכים לתאר את מידת ההסתברות הבינומית)

k מבצעים סדרה של n ניסויי ברנולי ביית, בעלי הסתברות להצלחה p. ההסתברות לקבל בדיוק n מבצעים סדרה של p. $P(\{k\})$

: ועליו מוגדרת ההסתברות מידת $\Omega = \{1,2,...\}$ מנייה בן-מנייה מחדת מוגדרת מידת מוגדרת מקיימת

$$P(\{k\}) = q^{k-1}p$$
 איני פאטר $p(\{k\}) = q^{k-1}p$ איני פאטר $p(\{$

מודל גיאומטרי של ניסויים (אחת הדרכים לתאר את מידת ההסתברות הגיאומטרית) מבצעים סדרה של ניסויי ברנולי ביית עד להצלחה הראשונה. ההסתברות שיהיו בדיוק k ניסויים, זייא ההסתברות שההצלחה הראשונה תתרחש בניסיון ה- k היא $q^{k-1}p$.

תכונת חוסר הזיכרון למודל גיאומטרי

אם ידוע כי לא הייתה הצלחה עד לניסיון ה- m , ההסתברות עד לניסיון היעתה הצלחה עד לניסיון ה- $q^{k-1}p$ היא m+k .

מידת הסתברות בינומית שלילית

נתון מרחב המדגם בן-מנייה $\Omega = \{m,m+1,...\}$ ועליו מוגדרת מידת ההסתברות מסוים) נתון מרחב המדגם בן-מנייה החייה מסוים מחוים מחוים המקיימת יש

$$P(\{k\}) = {\binom{k-1}{m-1}} p^m q^{k-m} \quad \forall k \in \Omega$$

0 , <math>q = 1 - p כאשר

מודל בינומי שלילי

מבצעים סידרה של ניסויי ברנולי ביית עד להצלחה ה- m-ית. ההסתברות שיהיו בדיוק k ניסויים, מבצעים הסתברות לכך שההצלחה ה- m-ית תתקבל בדיוק בניסיון ה- k, היא $P(\{k\})$

λ מידת הסתברות פואסונית עם פרמטר

 $\Omega = \{0,1,...\}$ נתון מרחב המדגם $\Omega = \{0,1,...\}$ ועליו מוגדרת מידת ההסתברות המקיימת

$$P(\{k\}) = \frac{e^{-\lambda} \lambda^k}{k!}$$
 $k = 0,1,2,...$

N_iG_i מידת הסתברות היפר גיאומטרית עם

בתוך כד יש N כדורים שמתוכם G שחורים והשאר לבנים. מוציאים n כדורים באקראי. נגדיר תוצאה להיות מספר הכדורים השחורים מבין הכדורים שהוצאו.

$$\Omega = \{ max\{0, G - (N-n)\}, \ldots, min\{G, n\} \}$$
 נגדיר את מרחב המדגם להיות

מידת ההתסברות המתאימה היא זו המקיימת:

$$P(\{k\}) = \frac{\binom{G}{k} \binom{N-G}{n-k}}{\binom{N}{n}}$$

קירוב פואסוני למידת ההסתברות הבינומית

את מידת ההסתברות הבינומית עם פרמטרים n ו-p כך שמתקיים ש-n גדול דיו וכן p הינו מסדר

 $P(K) \approx P(K)$. $\lambda = np$ אונית כאשר פינות, $\alpha = np$... יוויא פינות, $\alpha = np$... יוויא פינות, $\alpha = np$... (מינון, $\alpha = np$... יוויא פינות פאר $\alpha = np$... יוויא פינות היפר גיאומטרית (הבינות החישוב בלי ההחזרה (ההיפר גיאומטרית). פרמטרי מידת ההסתברות הריווייי $\alpha = np$. α $\lambda=np$ גודל של $\frac{1}{n}$, ניתן לקרב באמצעות מידת ההסתברות הפואסונית כאשר n גודל של n (קיע, אאר) אורף) אורף אורף