Preliminary Topology

(Springer Series in Soviet Mathematics) Beginner's course in topology

toshinari tong

February 13, 2023

1 Definitions

1.1 Preliminary preliminaries

- Function/Map $f: X \to Y$ s.t. $x \mapsto y$
- Image $\operatorname{Im} f$
- Restriction $f|_A:A\to Y$
- Identity map id X
- Family $\{X_{\mu}\}_{{\mu}\in M}$ is a map from index set M to set of objects $(X_{\mu},...)$ with ${\mu}\in M$ and ${\mu}\mapsto X_{\mu}$
- Sequence a family where the index set is \mathbb{N}
- Inclusion in : $A \to X$ s.t. $x \mapsto x$
- Abridgement / Compression If $A \subseteq X, B \subseteq Y$ and $f: X \to Y$ s.t. $f(A) \subseteq B$, abridgement is ab $f: A \to B, x \mapsto f(x)$
- Sequence map If sets of sets $(X, A_1, ..., A_n)$ and $(Y, B_1, ..., B_n)$ s.t. $A_1, ..., A_n \subseteq X$ and $B_1, ..., B_n \subseteq Y$, a sequence of maps is $(\varphi: X \to Y, \varphi_1: A_1 \to B_1, ..., \varphi_n: A_n \to B_n)$ s.t. $\varphi_i = \operatorname{ab} \varphi$, denoted $f = (\varphi, \varphi_1, ..., \varphi_n): (X, A_1, ..., A_n) \to (Y, B_1, ..., B_n)$
- Relation $f = (\varphi, \varphi_1, ..., \varphi_n)$ and φ are usually not distinguished; to emphasize this relationship we write $f = \text{rel } \varphi, \varphi = \text{abs } f$
- Quotient / Factor If $X = (a_1, ..., a_n, b_1, ..., b_m, ...)$ and p is a partition the quotient set X/p is $((a_1, ...), (b_1, ...), ...)$ quotient set = partition?
- **Projection** pr $X: X \to X/p$ s.t. $x \mapsto s$ where $x \in s$
- Saturated A subset of X which is the union of elements of the partition is saturated.
- Saturation The smallest saturated set containing $A \subseteq X$ which is $\operatorname{pr}^{-1}(\operatorname{pr}(A))$
- Factor map If p, q are partitions of X, Y and $f: X \to Y$ fact $f: X/p \to Y/q$ takes each element $A \in p$ into the element of q that contains f(A).
- Injective factor Given $f: X \to Y$, the paritition of X into preimages of points of Y is denoted $\operatorname{zer}(f)$. The injective factor of f is fact $f: X/\operatorname{zer}(f) \to Y$
- Sum of family of sets Denoted $\bigsqcup_{\mu \in M} X_{\mu}$, it is the set of pairs $((x, \mu), ...)$ s.t. $x_{\mu} \in X_{\mu}$, or $((x_1, \mu), (x_2, \mu), ..., (y_1, \nu), (y_2, \nu), ...)$.
- In map The map of a set X_{ν} for a $\nu \in M$ to $\bigsqcup_{\mu \in M} X_{\mu}$ defined by $x \mapsto (x, \nu)$ is denoted in ν . The maps $(\text{in}_{\nu}, ...)$ are injective and their images are pairwise disjoint and cover $\bigsqcup_{\mu \in M} X_{\mu}$.
- Sum of maps For families of sets $\{X_{\mu}\}_{{\mu}\in M}, \{Y_{\mu}\}_{{\mu}\in M}$, it is the unique map $f:\bigsqcup_{{\mu}\in M}X_{\mu}\to \bigsqcup_{{\mu}\in M}Y_{\mu}$. It satisfies relations $f\circ \operatorname{in}_{\nu}=\operatorname{in}_{\nu}\circ f.$ $(\bigsqcup_{{\mu}\in M}X_{\mu}\to \bigsqcup_{{\mu}\in M}Y_{\mu})\circ (Y_{\nu}\to \bigsqcup_{{\mu}\in M}Y_{\mu})$?

- i-th projection $\operatorname{pr}_i: X_1 \times ... \times X_n \to X_i \text{ s.t. } (x_1,...,x_n) \mapsto x_i$
- Product of maps $f_1 \times ... \times f_n : X_1 \times ... \times X_n \to Y_1 \times ... \times Y_n$ s.t. $(x_1, ..., x_n) \mapsto (f_1(x_1), ..., f_n(x_n))$
- Product of partitions $p \times q$ is the partition of $X \times Y$ into sets $A \times B$ where $A \in p$ and $B \in q$
- **Diagonal map** map of X to $X \times X$ given by $x \mapsto (x, x)$; its image is called the diagonal of $X \times X$

1.2 Topologies

- Topological structure / Topology T, a class of subsets of X which contains the union of any collection in the class and the intersection of any finite collection in the class.
- Topological space (X,T)
- Points $x \in X$
- Open sets $s \in T$
- Empty collection union and intersection of the empty collection is \varnothing and X.
- Closed sets a set S whose complement X S is open.
- Neighbourhood any open set containing the given point or subset in a topological space.
- Interior Int_X A the largest open set / the union of all open sets contained in a given subset A of a topological space X; A point is an interior point if it has a neighbourhood entirely contained in A.
- Closure $\operatorname{Cl}_X A$ the smallest closed set / the intersection of all closed sets that contain a given subset A of a topological space X; A point is an adherent point if each of its neighbourhoods intersects A.
- Frontier / boundary / limit $\operatorname{Fr}_X A = \operatorname{Cl} A \setminus \operatorname{Int} A$; A point is a boundary point if each of its neighbourhoods intersects both A and $X \setminus A$.
- Exterior $X \setminus ClA$; A point is exterior if it has a neighbourhood which does not intersect A.
- **Dense** A subset A is dense in topological space X if $\operatorname{Cl} A = X$ i.e. A intersects any nonempty open set in X.
- Nowhere dense A subset A is nowhere dense in topological space X if $X \setminus Cl A$ is dense.

1.3 Bases and prebases

- Base A base of a topological space is a collection Γ of open sets such that any open set is a union of sets from the collection. For any open set U and any $x \in U$ there is $V \in \Gamma$ s.t. $x \in V \subseteq U$.
- **Prebase** / **Subbase** A collection of subsets of a topological space s.t. the intersections of finite subcollections of sets from the given collection form a base
- Base at a point Base at the point x of a topological space X is a collection of neighbourhoods of x s.t. any neighbourhood of x contains a neighbourhood from this collection.
- Prebase at a point Prebase at the point x of a topological space X is a collection of sets s.t. the intersections of finite subcollections form a base at x.

1.4 Covers

- Cover of a set For a subset A in X, a cover of the set A in X is a collection of subsets of X such that its union contains A.
- Subcover a subset of a cover that still covers
- Refinement A cover Γ is a refinement of a cover Δ if any element of Γ is contained in an element of Δ .
- Locally finite if any point of the space has a neighbourhood which intersects only a finite number of elements of the cover
- Point finite if every point of X is contained in only finitely many sets in the cover
- Open cover A cover is open / closed if all its elements are open / closed.
- Star refinement The star st(S, U) of a subset S with respect to a cover U is the set of all sets in U that intersects with S;

1.5 Metrics

- **Metric** A nonnegative real function $\rho: X \times X \to \mathbb{R}^{\geq \mathcal{V}}$ is a metric if $\rho(x,y) = 0 \iff x = y$; $\forall x, y \in X \ (\rho(x,y) = \rho(y,x))$ and $\forall x, y, z \in X \ (\rho(x,z) \le \rho(x,y) + \rho(y,z))$ (triangle inequality).
- Metric space a set equipped with a metric denoted dist
- Ball The ball with center $x_0 \in X$ and radius r > 0 in metric space X is the set of points $x \in X$ s.t. $\operatorname{dist}(x_0, x) \leq r$.
- Open ball like ball but $dist(x_0, x) < r$
- **Sphere** like ball but $dist(x_0, x) = r$
- Unit ball and sphere The ball and sphere centered at the origin and radius 1 are called the n-dimensional ball D^n and the (n-1)-dimensional sphere S^{n-1} .
- Distance between two sets $\inf_{x \in A, y \in B} \operatorname{dist}(x, y)$ or the greatest number \leq all $\operatorname{dist}(x, y)$
- Diameter $\sup_{x,y\in A} \operatorname{dist}(x,y)$
- Bounded set a set is bounded if its diameter is finite.
- Metrizable if a topology is the metric topology relative to some metric
- Metric neighbourhood If A is a subset, its metric neighbourhood of radius r > 0 is the set of all points $x \in X$ s.t. dist(A, x) < r.

1.6 Subspaces

- Relative / subspace topology the open sets are defined to be $A \cap B$ where A is a given subset and B is any open subset of X
- Topological pair (X, A) where A is a subspace of X
- Topological triple (X, A, B) where A, B is a subspace of X and $B \subseteq A$

1.7 Fundamental Covers

• Fundamental cover a cover Γ of a topological space X is fundamental if each subset A of X s.t. $A \cap B$ is open in B for all $B \in \Gamma$ is itself open.

 $\forall B \in \Gamma \text{ and } \forall A \subseteq X, A \cap B \text{ is open in } B \iff A \text{ is open in } X.$

• **Triad** a triple (X, A, B) where X is a topological space and $A, B \subseteq X$ constitutes a fundamental cover. A triple forms a triad if $\operatorname{Int} A \cup \operatorname{Int} B = X$ or if $A \cup B = X$ and A and B are closed.

Figure 1: an open set in A that is neither open or closed in X

Figure 2: Visualization of a fundamental cover (only those that intersects A)

1.8 Continuous maps

- Continuous map A map f of a topological space X into a topological space Y is continuous if the preimage of each open subset of Y is open in X.
 - A map $f:(X,A_1,...,A_n)\to (Y,B_1,...,B_n)$ where $A_1,...,A_n\subseteq X$ and $B_1,...,B_n\subseteq Y$ is continuous if abs $f:X\to Y$ is continuous.
- Open / closed maps a (continuous) map is open / closed if the images of open / closed sets are open / closed.

1.9 Continuity at a point

- Continuous at a point A map $f: X \to Y$ is continuous at the point $x \in X$ if for any neighbourhood V of point f(x) there is a neighbourhood U of x s.t. $f(U) \subseteq V$.
 - Assume we are given an arbitrary prebase at the point x, Δ , and an arbitrary prebase at the point f(x), E. f is continuous at $x \iff$ each neighbourhood $V \in E$ contains the image of some $U \in \Delta$.

1.10 Homeomorphisms and embeddings

- Homeomorphism An invertible map f s.t. both f and f^{-1} are continuous; if there is a homeomorphism $X \to Y$, then X is said to be homeomorphic to Y. The homeomorphism of spaces is an equivalence relation.
- **Embedding** A map $f: X \to Y$ is an embedding if $ab f: X \to f(X)$ is a homeomorphism.

1.11 Retractions

- **Retraction** A retraction is a continuous map of a space X onto a subspace A is one which its restriction to A is the identity map.
- Retract A subset onto which a space can be retracted.

1.12 Numerical functions

• **Distinguishable** A subset A of a topological space X is said to be distinguishable if there is a continuous function $f: X \to I$ s.t. f(x) = 0 for $x \in A$ and f(x) > 0 for $x \in X \setminus A$.

1.13 Separation Axioms

- $\mathbf{T_1}$ Given 2 arbitrary distinct points a and b, there is a neighbourhood of a which does not contain b.
- T₂ 2 arbitrary distinct points have disjoint neighbourhoods.
- T₃ Any point and any closed set not containing this point have disjoint neighbourhoods.
- T₄ Any 2 disjoint closed sets have disjoint neighbourhoods.
- Hausdorff spaces that satisfy T₁
- Regular spaces that satisfy T_1 and T_3
- Normal spaces that satisfy T_1 and T_4
- Urysohn functions A continuous function $f: X \to \mathbb{I}$ s.t. f(x) = 0 for $x \in A \subseteq X$ and f(x) = 1 for $x \in B \subseteq X$ (A and B are disjoint) is referred to as a Urysohn function for the pair A, B.

1.14 Countability axioms

- Second countable space A topological space satisfies the second axiom of countability if it has a countable base.
- First countable space A topological space satisfies the first axiom of countability if it has a countable base at each point.
- Separable space A topological space is separable if it has a countable dense subset.

1.15 Compactness

- Compact A topological space is compact if every open cover contains a finite cover.
- Locally compact A topological space is locally compact if each of its point has a neighbour-hood with compact closure.
- Paracompact A Hausdorff space is paracompact if each of its open covers has a locally finite refinement.

2 Results

2.1 Topologies

- 1. \forall topologies (X,T): $\varnothing, X \in T$
- 2. Infinite unions are allowed because it mean there exists some set where an element is in that set (no limit involved)
- 3. The class of closed sets contains the intersection of any collection of sets from the class and the union of any finite collection of sets from the class.
- 4. A is open $\iff X \setminus A$ is closed
- 5. Fr A is closed. Fr $X = \operatorname{Cl} A \setminus \operatorname{Int} A = \operatorname{Cl} A \cap (X \setminus \operatorname{Int} A)$ and $\operatorname{Cl} A, X \setminus \operatorname{Int} A$ are closed
- 6. $X \setminus \operatorname{Int} A = \operatorname{Cl}(X \setminus A)$ and $X \setminus \operatorname{Cl} A = \operatorname{Int}(X \setminus A)$ $X \setminus \operatorname{Int} A = X \setminus \bigcup_{a \subseteq A}^{a \text{ open}} a = \bigcap_{a \subseteq A}^{a \text{ open}} X \setminus a = \bigcap_{X \setminus a \supseteq X \setminus A}^{X \setminus a \text{ closed}} X \setminus a = \operatorname{Cl}(X \setminus A)$ Similarly $X \setminus \operatorname{Cl} A = \operatorname{Int}(X \setminus A)$
- 7. Fr $A = \operatorname{Fr}(X \setminus A)$ Fr $A = \operatorname{Cl} A \setminus \operatorname{Int} A = (X \setminus \operatorname{Int} A) \setminus (X \setminus \operatorname{Cl} A) = \operatorname{Cl}(X \setminus A) \setminus \operatorname{Int}(X \setminus A) = \operatorname{Fr}(X \setminus A)$
- 8. A set A is open (closed) \iff $A = \operatorname{Int} A \ (A = \operatorname{Cl} A \supseteq \operatorname{Fr} A)$
- 9. If H is a non-empty family of topologies on S then $\bigcap H$ is a topology on S. $\forall G \in \bigcap H \ (\forall T \in H \ (G \subseteq T)) \Longrightarrow \forall T \in H \ (\text{any } \bigcup G \in T) \Longrightarrow \text{any } \bigcup G \in \bigcap_{T \in H} T = \bigcap H.$ Similarly any $\bigcap G \in \bigcap H$

2.2 Bases and prebases

- 1. It is not necessary for a base to contain \varnothing
- 2. Let Γ be a collection of subsets of a set X. A topology on X with base Γ exists \iff the intersection of finite subcollection of sets from Γ can be expressed as a union of sets from Γ . Necessity (forward) follows from the fact that Γ consists of open sets; Sufficiency follows from the fact that the class of subsets of X representable as unions of sets from Γ satisfies the definition of topology.
- 3. There is a topology on X with base $\Gamma \iff \Gamma$ cover X and $\forall U, V \in \Gamma$ and $\forall x \in U \cap V$ there exists $W \in \Gamma$ s.t. $x \in W \subseteq U \cap V$.
- 4. Γ covers X and the intersection of any two sets in Γ is itself in Γ or is empty $\Longrightarrow \Gamma$ is a base
- 5. Any collection Γ of subsets of a set X is the prebase of a unique topology on X.

- 6. A base for a topology does not have to be closed under finite intersections
- 7. Γ is a base for a topological $X \iff \forall x \in X$ the subcollection of Γ which contains x forms a base at x. how to prove?
- 8. If a base $S \subseteq (\emptyset, X)$, the topology generated is the indiscrete / trivial topology.
- 9. The usual topology on \mathbb{R} has a prebase containing all intervals of the form $(-\infty, a)$ or (b, ∞) .
- 10. If $\Gamma_1, ..., \Gamma_n$ are bases for $T_1, ..., T_n$, then $\Gamma_1 \times ... \times \Gamma_n$ is a base for $T_1 \times ... \times T_n$. This still applies in an infinite product, except all elements in the final topology must be the union of finitely many bases.

2.3 Covers

1. Every open cover of a topological space has a refinement whose sets belong to a given base of X.

2.4 Metrics

- 1. D^0 is a point and S^0 is a pair of points
- 2. Every metric space is a topology.

Triangle inequality \Longrightarrow if open ball with center x_0 and radius r contains x_1 , it also contains open ball with center x_1 and radius $r - \text{dist}(x_0, x_1) \Longrightarrow$ the intersection of 2 open balls contains some open ball centered at a point for every point in the intersection. \Longrightarrow the open balls cover the space so by Bases and prebases 3 they constitute the base of a topology.

- 3. Open balls centered at a given point of the metric space constitute a base at that point.
- 4. Open balls centered at a point with radii 1/n for $n \in \mathbb{N}$ is also a base at that point.
- 5. the metric neighbourhood of A of radius r is open. It is the union of all open balls of radius r centered at points of A

2.5 Subspaces

- 1. If A is a subspace, the closed sets of A are exactly $A \cap B$ where B is a closed subset of X.
- 2. If A is open, S is open in $A \iff S$ is open in X; if A is closed, S is closed in $A \iff S$ if closed in X.
- 3. If $B \subseteq A \subseteq X$, $\operatorname{Cl}_A B = (\operatorname{Cl}_X B) \cap A$
- 4. If Γ is a base (prebase) of X, then sets $A \cap B$ with $B \in \Gamma$ yields a base (prebase) of A.
- 5. the subspace topology is transitive: If B is a subset of subspace A of X, the topology induced on B by $B \subseteq A$ and that induced on B by $B \subseteq X$ coincide.
- 6. If X is a metric space and $A \subseteq X$, The restriction of dist to $A \times A$ is clearly a metric; any subset of a metric space is a metric space and its metric topology coincides with the relative topology induced on A by the metric topology of the ambient space.

2.6 Fundamental covers

- 1. A cover which admits a fundamental refinement is itself fundamental.
 - If Δ is a fundamental refinment of Γ , for all $C \in \Gamma$ there is $D \in \Delta$ s.t. $D \subseteq C$. If $A \cap C$ is open in C, by definition of subspace topology $A \cap C \cap D = A \cap D$ is open in D, which implies A is open because Δ is fundamental.
- 2. Equivalent definition for fundamental covers is that $A \cap B$ is closed in B for all $B \in \Gamma$ and $A \subseteq X \iff A$ is closed.
 - For A in the original definition, $X \setminus A$ satisfies this definition

3. All open covers and all finite or locally finite closed covers are fundamental.

For open covers, $A \cap C$ open in C and C open \Longrightarrow Subspaces.2 $A \cap C$ open $\Longrightarrow \bigcap A \cap C = A$ open;

For finite closed covers, $A \cap C$ closed in C and C closed \Longrightarrow Subspaces.2 $A \cap C$ closed \Longrightarrow $\bigcap^{<\infty} A \cap C = A$ closed (Topologies.3);

For locally finite closed covers Γ , consider an open cover Δ where each $D \in \Delta$ intersects finite number of sets in Γ . (exists because of definition of locally finite) For any $S \subseteq X$, if $S \cap C$ is open in C, $S \cap (D \cap C)$ is open in C because $C \cap D$ is open in C, which implies $S \cap (D \cap C)$ open in $D \cap C$. A cover of $D \in \Delta$ by sets $D \cap C$ is fundamental because it is finite and closed. For any $S \subseteq X$, $S \cap (D \cap C)$ open in $D \cap C \Longrightarrow D \cap S$ open in D. Since open covers are fundamental, $D \cap S$ open in $D \Longrightarrow S$ open.

4. If Γ is a set of sets s.t. $\bigcup \operatorname{Int} C = X$, it is fundamental.

For any $S \subseteq X$, if $S \cap C$ is open in C, then $(S \cap C) \cap \operatorname{Int} C = S \cap \operatorname{Int} C$ is open in $\operatorname{Int} C$. By Subspaces.2, $S \cap \operatorname{Int} C$ is open in X, so $\bigcup S \cap \operatorname{Int} C = S$ is open.

2.7 Continuous maps

- 1. If the preimages of the sets of some prebase of Y is open, then the map is continuous.
- 2. If $f: X \to Y$ and $g: Y \to Z$ are continuous, then composition $g \circ f: X \to Z$ is continuous.
- 3. id $X: X \to X$ is continuous.
- 4. If $f: X \to Y$ continuous and $A \subseteq X, B \subseteq Y, f(A) \subseteq B$, then the map $ab f: A \to B$ is continuous.
- 5. Given $f: X \to Y$ and fundamental cover of $X \Gamma$, all $f|_A$ where $A \in \Gamma$ is continuous $\iff f$ continuous

For an open set T in Y, consider $A \in \Gamma$ s.t. f(A) intersects T. (no need to consider if no f(A) intersects) $f(A) \cap T$ is open in f(A) so with continuous $f|_A A \cap f^{-1}(T)$ is open in A. Since $\Gamma \ni A$ is a fundamental cover $f^{-1}(T)$ is open.

- 6. Equivalently, if for each $A \in \Gamma$ there is a continuous map $f_A : A \to Y$ s.t. $f_A(x) = f_B(x)$ for all $x \in A \cap B$, then the map $f : X \to Y$ with $f(x) = f_A(x)$ for $x \in A$ is continuous.
- 7. If for each $x \in X$ there is a continuous map g_x from U, a neighbourhood of f(x), to $f^{-1}(U)$, then f is open.

For an open set A, $f(A) = \bigcup_{x \in X} g_x^{-1}(A)$; since open set in image of g_x implies its preimage is open, any open set in domain of g_x^{-1} implies its image is open, and union of open sets is open.

2.8 Continuity at a point

1. A map $f: X \to Y$ is continuous \iff it is continuous at each point of X.

If f is continuous at each point and V is open in Y, then each point of the set $f^{-1}(V)$ is an interior point because it has a neighbourhood U whose image $f(U) \subseteq f(f^{-1}(V)) \subseteq V$.

2.9 Retractions

1. A subspace A of a topological space X is a retract of $X \iff$ every continuous map $A \to Y$ can be extended to a continuous map $X \to Y$ for any topological space Y.

If $\rho: X \to A$ is a retraction and $f: A \to Y$ is continuous, the composition $f \circ \rho$ extends f to X.

If every continuous map $A \to Y$ extends to a continuous map $X \to Y$, extending $A \to A$ to $X \to A$ yields a retraction.

2.10 Numerical functions

1. Uniform limit theorem: let X be a topological space and Y be a metric space, and let $f_n: X \to Y$ be a sequence of functions converging uniformly to a function $f: X \to Y$. If each of f_n is continuous, f must be continuous as well.

We need to show that for every $\epsilon > 0$, \exists neighbourhood U of any point x of X s.t. $(\forall y \in U) \operatorname{dist}_Y(f(x), f(y)) < \epsilon$.

Since f_n converges uniformly, $\exists N \text{ s.t. } (\forall t \in X) \text{ dist}_Y(f_N(t), f(t)) < \epsilon/3$.

Since f_n is continuous, $\forall x \exists \text{neighbourhood } U \text{ s.t. } (\forall y \in U) \text{ dist}_Y(f_N(x), f_N(y)) < \epsilon/3.$

Applying the triangle inequality, $(\forall y \in U) \operatorname{dist}_Y(f(x), f(y)) \leq \operatorname{dist}_Y(f(x), f_N(x)) + \operatorname{dist}_Y(f_N(x), f_N(y)) + \operatorname{dist}_Y(f_N(y), f(y)) = \epsilon$.

2. If X is a metric space and $A \subseteq X$, then the function $X \to \mathbb{R}$, $x \mapsto \operatorname{dist}(x, A)$, is continuous.

Let $x, y \in X$ and $z \in A$. Then $\operatorname{dist}(x, A) \leq \operatorname{dist}(x, z) \leq \operatorname{dist}(x, y) + \operatorname{dist}(y, z) \Longrightarrow (\forall x, y \in X) \operatorname{dist}(x, A) \leq \operatorname{dist}(x, y) + \operatorname{dist}(y, A)$.

Since x and y appear symmetrically, $|\operatorname{dist}(x, A) - \operatorname{dist}(y, A)| \leq \operatorname{dist}(x, y)$.

3. A distinguishable set is closed.

At the limit point, f(x) = 0.

4. Any closed subset of a metric space is distinguishable.

The function $x \mapsto \min(1, \operatorname{dist}(x, A))$ distinguishes the closed subset A.

2.11 Separation Axioms

1. Equivalent formulation for T_1 : each point is a closed set.

Fixing $a, \forall b \in X$ ∃neighbourhood U s.t. $b \in U$ and $a \notin U$; therefore $\bigcup U = X \setminus (a)$ is open so (a) is closed.

If each point (a) is a closed set, $X\setminus(a)$ is open, and is a neighbourhood not containing a for every other point b.

2. Equivalent formulation for T_1 : every finite sets are closed.

If each point is closed, the finite union of them are closed; If every finite sets are closed, each point is also closed because it is a finite set.

3. Equivalent formulation for T_3 : every neighbourhood of an arbitrary point contains the closure of a neighbourhood of this point.

Consider an open set U: For a point $a \in U$ and closed set $X \setminus U$, there exists disjoint open sets V, W s.t. $a \in V$ and $W \subseteq X \setminus U \Longrightarrow X \setminus W \subseteq U$ so U contains closed set $X \setminus W$, which both contain a.

Note: This does not mean every neighbourhood is closed because it is a union of closed sets; it is either infinite or clopen or both.

- 4. Equivalent formulation for T_4 : every neighbourhood of an arbitrary closed set contains the closure of a neighbourhood of this set.
- 5. Equivalent formulation for T_4 : given a finite collection of pairwise disjoint closed sets, there are neighbourhoods of these sets with pairwise disjoint closures.
- 6. T_3 does not imply T_1 ; T_4 does not imply T_1 .
- 7. Every normal space is regular and every regular space is Hausdorff.
- 8. Every subspace of a Hausdorff space is Hausdorff, every subspace of a regular space is regular, and every closed subspace of a normal space is normal.
- 9. Every retract of a Hausdorff space is closed.

Let A be a retract of X and $\rho: X \to A$ be a retraction. $b \in X \setminus A \Longrightarrow b \neq \rho(b) \Longrightarrow b$ and $\rho(b)$ have disjoint neighbourhoods U and V. \therefore $(\forall x \in U) \ \rho(x) \neq x$; but from definition of retraction only points outside A have $\rho(x) \neq x$ so $U \cap A = \emptyset$. Therefore any point not contained in A have a neighbourhood not intersecting A.

10. Every metric space is normal.

Clearly every metric space satisfies axiom T_1 . Suppose A and B are disjoint closed subsets of a metric space. Then $\{x | \operatorname{dist}(x,A) - \operatorname{dist}(x,B) < 0\}$ and $\{x | \operatorname{dist}(x,B) - \operatorname{dist}(x,A) < 0\}$ are disjoint open sets containing A and B. They are open because numerical operations on continuous functions (dist) are continuous and preimage of open sets are open.

Urysohn Functions

11. Let A and B be two disjoint closed subsets of a topological space X. Let Δ be the set of dyadic rational numbers of the interval \mathbb{I} and let Γ be the collection of all neighbourhoods of A that doesn't intersect B. Then there is an injective function $\varphi: \Delta \to \Gamma$ s.t. $\mathrm{Cl}(\varphi(r_1) \subseteq \varphi(r_2)$ for $r_1 < r_2$ if X is normal.

Let $\varphi(1) = X \setminus B$ and $\varphi(0)$ be any neighbourhood of A of which its closure is contained in $X \setminus B$. (Separation axioms.4) If $\varphi(r)$ is already defined such that the ordering condition holds for numbers $r = m/2^n \in \Delta$, it can be extended to $m/2^{n+1}$: If m = 2k + 1, take $\varphi(r)$ to be any open set containing $\operatorname{Cl}(\varphi(k/2^n))$ and contained along with its closure in $\varphi((k+1)/2^n)$. (Separation axioms.4)

12. An Urysohn function exists for 2 arbitrary disjoint closed subsets A, B of a normal space X.

$$f(x) = \begin{cases} \inf\{r \mid \varphi(r) \ni x\} & x \in \varphi(1) \\ 1 & x \in X \setminus \varphi(1) \end{cases}$$

To show that f is continuous, note that intervals [0,r) and (r,1] with $r \in \Delta$ constitutes a prebase of \mathbb{I} . $f^{-1}([0,r]) = \bigcup_{r' < r} \varphi(r')$; $f^{-1}((r,1]) = X \setminus f^{-1}([0,r]) = X \setminus \bigcap_{r' > r} \varphi(r') = X \setminus \bigcap_{r' > r} \operatorname{Cl}(\varphi(r'))$ Therefore the prebase has open images and f is continuous.

- 13. If any pair of disjoint closed subsets of X admits an Urysohn function, then X satisfies T_4 .
- 14. If f is any Urysohn function for A, B and g distinguishes A, then $x \mapsto \min(f(x) + g(x), 1)$ provudes an Urysohn function which is only zero in A.

Extension Theorems

15. Let F be a closed subset of topological space X and $\phi: F \to \mathbb{R}$ be a continuous function where $|\phi(x)| < L$. If X is normal, there exists continuous function $\psi: X \to \mathbb{R}$ s.t.

$$\begin{cases} |\psi(x)| \le L/3 & x \in X \\ |\psi(x) - \phi(x)| \le 2L/3 & x \in F \end{cases}$$

The subsets of F determined by $\phi(x) \leq -L/3$ and $\phi(x) \geq L/3$ are closed in F, hence in X, and are disjoint. Therefore there is a continuous function $\psi: X \to [-L/3, L/3]$, which is an Urysohn function composed with a linear transformation, equal to -L/3 on the first set and equal to L/3 on the second set.

16. **Tietze extension theorem** If A is a closed subset of normal space X, then every continuous function $A \to \mathbb{R}$ extends to a continuous function $X \to \mathbb{R}$.

Let us show $f:A\to (-1,1)$ can be extended to $g:X\to [-1,1]$. Define g as the sum of a series of continuous functions $g_k:X\to\mathbb{R}$:

$$\begin{cases} |g_k(x)| \le 2^{k-1}/3^k & x \in X \\ |f(x) - \sum_{i=0}^k g_i(x)|_A \le (2/3)^k & x \in A \end{cases}$$

Take $g_0 = 0$ and $g_0, ..., g_n$ are constructed; define g_{n+1} to be the function obtained after applying (15) to $\phi = f - \sum_{i=0}^{n} (g_i|A)$, F = A and $L = (2/3)^n$. The first inequality shows that g converges uniformly so is continuous; the second inequality shows that $g|_A = f$.

 \mathbb{R} is homeomorphic to (-1,1), so it suffices to show that $f:A\to\mathbb{R}\to(-1,1)$ can be extended to $g':X\to(-1,1)\to\mathbb{R}$. We have shown that there exists $g:X\to[-1,1]$. Let $B=g^{-1}(-1)\cup g^{-1}(1)$; then A and B are closed and disjoint so it has an Urysohn function h. g'(x)=g(x)h(x) because $x\in A$ means h(x)=1 and g(x)=1 or -1 means h(x)=0.

17. If A is a closed subset of the normal space X, then every continuous map $A \to \mathbb{R}^n$ extends to a continuous map $X \to \mathbb{R}^n$. This claims remains true if one takes a cube instead of \mathbb{R}^n .

10

2.12 Countability axioms

- 1. The second axiom of countability implies the first axiom of countability and the separability.

 Clearly the second axiom implies the first axiom; the union of all sets in the countable base is a countable dense subset.
- 2. Every metric space is first countable. open balls centered at the point with radii 1/n
- 3. A separable metric space is second countable.

The open balls centered at the points of a countable dense set with radii 1/n consitute a countable base.

- 4. A set is dense in a metric space $X \Longleftrightarrow \forall x \in X$ and $\forall \epsilon > 0$, $\exists s \in S$ s.t. $|s x| < \epsilon$ This means every open ball centered at x contains a s so there is no open ball in $X \setminus S$ that is contained entirely in $X \setminus S$; which means $\operatorname{Int}(X \setminus S) = \emptyset \Longrightarrow \operatorname{Cl} S = X$.
- 5. \mathbb{R}^n and l_2 are separable and hence second countable.

The collection of all sequences $\{x_i\}_1^n$ with rational x_i 's is a countable dense set in \mathbb{R}^n . The set of all finitely supported (having a finite number of nonzero terms) sequences $\{x_i\}_1^\infty$ with rational x_i 's is a countable dense set in l_2 .

- 6. Every subspace of a second countable space is second countable.
- 7. In a separable space, every collection of pairwise disjoint open subsets is countable. $\operatorname{Cl} S = X \Longrightarrow \operatorname{Int}(X \backslash S) = \varnothing$ so there is no open set that is disjoint to S; For any set in the collection, pick a point of S contained in the set. This yields an injective mapping of the collection into S.
- 8. A continuous surjective map of topological spaces carries every dense set into a dense set; an open map transforms each base into a base and each base at a point into a base at the image of that point; the image of a separable space under a continuous map is separable; the image of a first or a second countable space under an open map is first and respectively second countable. For every open set in X there exists $x \in X$ s.t. $x \in S$; $\therefore \exists f(x) \text{ s.t. } f(x) \in f(X) \cap f(S)$; some of the open sets in X are preimages of open sets in Y so f(S) is dense.
- 9. Every regular second countable space is normal.

Let A and B be closed disjoint subsets of a regular second countable space. According to Separation axioms.3, each point of A, B has a neighbourhood whose closure is entirely contained in A or B respectively. Such neighbourhoods constitute open covers of A and B; if they are uncountable, we may refine them by covers made of sets from the countable base (since unions of sets in base can form any set). Index these 2 covers as U_1, U_2, \ldots and V_1, V_2, \ldots then set $U'_n = U_n \setminus \bigcup_{i=1}^n \operatorname{Cl} V_i$ and $V'_n = V_n \setminus \bigcup_{i=1}^n \operatorname{Cl} U_i$. The sets $U = \bigcup_{n=1}^\infty U'_n, V = \bigcup_{n=1}^\infty V'_n$ are open and disjoint.

$$u \in U \begin{cases} (u \in U_1 \land u \notin \operatorname{Cl} V_1) \land \\ (u \in U_2 \land u \notin \operatorname{Cl} V_1 \land u \notin \operatorname{Cl} V_2) \land \\ (u \in U_3 \land u \notin \operatorname{Cl} V_1 \land u \notin \operatorname{Cl} V_2 \land u \notin \operatorname{Cl} V_3) \land \\ \dots \end{cases}$$

Since $A \cap \operatorname{Cl} V_i = B \cap \operatorname{Cl} U_i = \emptyset$, $A \subseteq U$ and $B \subseteq V$.

Embedding and Metrization Theorems

10. Every regular second countable space can be embedded in l_2 .

Let X be a regular space with countable base Γ . We index the pairs (U_i, V_i) , $U_i, V_i \in \Gamma$, satisfying $\operatorname{Cl} U_i \subseteq V_i$. Define $f: X \to l_2$ by $f(x) = \{\phi_k(x)/k\}_{k=1}^{\infty}$ where ϕ_k is any Urysohn function for the pair $\operatorname{Cl} U_k, X \setminus V_k$. If $x \neq y$, \exists neighbourhood of x that doesn't include y ($\mathbf{T_3}$ and $\mathbf{T_1} \Longrightarrow (y)$ is a closed set); so there is a set V in Γ that contains x but not y. According to Separation Axioms.3, there is a neighbourhood U of x whose closure is contained in V. Therefore, $\exists k$ s.t. $x \in U_k, y \in X \setminus V_k$ and so f is injective.

Given $x_0 \in X$, $\epsilon > 0$, choose n s.t. $\sum_{k=n+1}^{\infty} k^{-2} < \epsilon^2/2$; \exists neighbourhood U of x_0 s.t. $\sum_{k=1}^{n} (|\phi_k(x) - \phi_k(x_0)|/k)^2 < \epsilon^2/2$. $\therefore \sum_{k=1}^{\infty} (|\phi_k(x) - \phi_k(x_0)|/k)^2 < \epsilon^2 \Longrightarrow \operatorname{dist}(f(x), f(x_0)) < \epsilon$ so f is continuous.

Let g denote the inverse of ab $f: X \to f(X)$. Given a point $y_0 \in f(X)$ and a neighbourhood U of $g(y_0)$, choose n s.t. $V_n \subseteq U$ and $g(y_0) \in U_n$. If $y \in f(X)$ and $\operatorname{dist}(y_0, y) < 1/n$, then $\sqrt{\sum_{k=1}^n (|\phi_k(g_y) - \phi_k(g_{y_0})|/k)^2} < 1/n \Longrightarrow |\phi_n(g(y)) - \phi_n(g(y_0))| < 1 \Longrightarrow g(y) \in V_n \Longrightarrow g(y) \in U$ so g is continuous.

11. A second countable topological space is metrizable \iff it is regular.

2.13 Compactness

- 1. A subspace A of a topological space X is compact \iff each open cover of A in X there is a finite subcover.
- 2. Every closed subset of a compact space is compact.

Let Δ be an open cover of A in X. Add $X \setminus A$ to Δ , extract a finite cover from Δ , then delete $X \setminus A$ if it remains. This yields a finite cover of A in X.

3. In a Hausdorff space, any two compact disjoint sets have disjoint neighbourhoods.

Let A, B denote the given sets. If B is a point, for each $x \in A$ consider disjoint neighbourhoods U_x, V_x of x and B, and extract a finite cover $U_{x_1}, ..., U_{x_s}$ from the open cover of A given by all of U_x . $\bigcup_{i=1}^s U_{x_i}$ and $\bigcap_{i=1}^s V_{x_i}$ are disjoint neighbourhoods of A and B.

In the general case, pick for each $x \in B$ disjoint neighbourhoods U_x and V_x of A and x using above procedure; repeat similar procedure to get disjoint neighbourhoods of A and B.

4. Every compact subset of a Hausdorff space is closed.

From Compactness.3 any point not contained in a compact subset has a neighbourhood which does not intersect this subset.

5. Every compact Hausdorff space is normal.

Follows from Compactness.2 and Compactness.3.

Compactness and fundamental covers

6. Suppose A is a compact subset of a Hausdorff space X. Then from every countable fundamental cover of X one can extract a finite cover of A.

Let $U_1, U_2, ...$ be the given cover. If none of the sets $\bigcup_{i=1}^m U_i$ covers A, pick a point from each set $A \setminus \bigcup_{i=1}^m U_i$ distinctly and denote the set Y. Since each intersection $Y \cap U_i$ is finite, they are closed in U_i respectively, so Y is closed (fundamental cover). In fact, by the same logic, all of its subsets are closed. Hence Y is compact (Compactness.2) and discrete. However, this means Y is finite as if it is infinite a cover consisting of all points will not have a finite subcover. This contradicts the construction of Y that implies it is infinite.

Compactness and maps

7. The image of a compact space under a continuous map is compact.

Define $f: X \to Y$ and let Δ be an open cover of Y. The setes $f^{-1}(V)$ for $V \in \Delta$ form an open cover of X and a subcover of this cover yields a subcover of Δ .

8. Every continuous map of a compact space into a Hausdorff space is closed.

Corollary of Compactness.2, 7, 4.

Every invertible continuous map of a compact space onto a Hausdorff space is a homeomorphism. Every injective continuous map of a compact space into a Hausdorff space is an embedding.

Consequences of Compactness.8 and the fact that a closed invertible map is a homeomorphism

Compactness and metrics

10. Every compact subset of a metric space can be covered by a finite number of open balls having radius ϵ for any positive ϵ .

Since it is compact, such a cover can be extracted from a cover consisting of balls of radius ϵ centered at all points.

11. Every compact metric space has a countable base.

For each positive integer n construct a finite cover of open balls of radius 1/n then take the union of these covers to get the base.

12. Every compact metric space is bounded.

From Compactness. 10, the diameter is at most ϵ times the number of balls in the finite cover.

13. Let X be a compact topological space. Then every continuous function $X \to \mathbb{R}$ attains its absolute maximum and absolute minimum.

Compactness. 7, 12 shows that the image of X in \mathbb{R} is bounded. Compactness. 8 shows that image is closed, which means it contains its greatest lower bound and its least upper bound.

14. Let A, B be disjoint subsets of a metric space. If A is compact and B is closed, then dist(A, B) > 0.

Since A is compact and $\operatorname{dist}(x, B)$ depends continuously on $x \in A$, there exists $a \in A$ s.t. $\operatorname{dist}(a, B) = \inf_{x \in A} \operatorname{dist}(x, B) = \operatorname{dist}(A, B)$ (Compactness.13). Since B is closed and $a \notin B$, $\operatorname{dist}(a, B) = \operatorname{dist}(A, B) > 0$.

15. Suppose f is a continuous map of a metric space X into a topological space Y and Δ is an open cover of Y. If X is compact, then there is $\epsilon > 0$ s.t. $\forall A \subseteq X$ with diameter $< \epsilon$, f(A) is contained in some element of Δ .

It is enough to show that there is an $\epsilon > 0$ s.t. $\forall x,y \in X$ with $\operatorname{dist}(x,y) < \epsilon$ are both contained in one of the sets of the open cover $\Gamma = f^{-1}(\Delta)$. $\forall x \in X$ pick an open ball centered at x and contained in one of the sets of Γ . Let U_x be the concentric ball with half the radius. Extract a finite cover $U_{x_1}, ..., U_{x_s}$ from the cover of X by all U_x . Let ϵ_i denote the radius of U_{x_i} , and $\epsilon = \min(\epsilon_1, ..., \epsilon_s)$. If $x, y \in X$ and $\operatorname{dist}(x, y) < \epsilon$, then $\exists i$ s.t. $\operatorname{dist}(x, x_i) < \epsilon_i$ (since it is a cover) so $\operatorname{dist}(x_i, y) < \operatorname{dist}(x_i, x) + \operatorname{dist}(x, y) < 2\epsilon_i$. Therefore x and y belong to the same ball (of twice the radius), and the same set of cover Γ .

Compactness in Euclidean Space

16. The cubes of \mathbb{R}^n are compact.

Any cube in \mathbb{R}^n can be divided into 2^n cubes of half the edge; if some open cover Γ of the original cube does not contain a finite subcover, then so does the smaller cubes. An iteration of this arguments yields a sequences of cubes Q_1, Q_2, \ldots However, the point common to all these cubes (least upper bound) is covered by some set from Γ , and by the topology that set is the union of open cuboids, so it must cover all the cubes Q_k with k large enough.

17. a subset of \mathbb{R}^n is compact \iff it is bounded and closed.

From compactness.4, 13 compact subsets are closed and bounded; from compactness.17, 2 any bounded subset is contained in some cube so is compact.

Local compactness

18. Every closed subset of a locally compact space is locally compact.

If a is a point of a closed subset A of locally compact space X, and U is the neighbourhood of a with compact $\operatorname{Cl}_X U$, then $\operatorname{Cl}_A(U\cap A)$ is compact because A is closed so it is closed in X and is a subset of compact $\operatorname{Cl}_X U$ so by compactness.2 it is compact.

19. Every open subset of a locally compact Hausdorff space is locally compact.

Let a be a point of the open subset A of locally compact X, and let U be the neighbourhood of a with compact $\operatorname{Cl}_X U$. By compactness.5, $\operatorname{Cl}_X U$ is regular so a has a neighbourhood V s.t. $\operatorname{Cl}_{\operatorname{Cl}_X} U V \subseteq U \cap A$.

V is open in $\operatorname{Cl}_X U$, hence it is open in $U \cap A$ (which is open in $\operatorname{Cl}_X U$), which in turn implies that V is open in A. $\operatorname{Cl}_{\operatorname{Cl}_X U} V$ is contained in $U \cap A$ so it equals $\operatorname{Cl}_{U \cap A} V$ and is equal to $\operatorname{Cl}_A V$.

(the property translates because the entire closure is contained in the sets); since $\operatorname{Cl}_{\operatorname{Cl}_X U} V$ is compact $\operatorname{Cl}_A V$ is compact.

20. Let U be a neighbourhood of point a of locally compact Hausdorff space X. Then a has a neighbourhood whose closure is compact and contained in U.

From compactness.19, a has a neighbourhood V in U with compact closure. Since U is open, V is open in U. Since $\operatorname{Cl}_U V$ is compact and X is Hausdorff, $\operatorname{Cl}_U V$ is closed in X so equal to $\operatorname{Cl}_X V$. Therefore V is the desired neighbourhood of a.

21. Locally compact Hausdorff spaces are regular.

Consequence of compactness.20.

3 Examples

3.1 Topologies

- Trivial topology $T = (\emptyset, X)$
- Discrete topology $T = \mathcal{P}(X)$
- Sierpinski topology $X = (a, b), T = (\emptyset, (a), (a, b))$
- Euclidean topology on a plane admits as a base the set of all open rectangles with horizontal and vertical sides; and a nonempty intersection of 2 basic sets is also a basic set
- Lower limit topology generated by the base $\{[a,b) \subseteq \mathbb{R} : a < b\}$; the corresponding topological space is called to Sorgenfrey line.
- Order topology on a totally ordered set X, it is generated by the prebase $(\{x: a < x\}, \{x: x < b\})$
- Metric topology

3.2 Bases

- The set Γ of all bounded open intervals in \mathbb{R} generates the usual Euclidean topology on \mathbb{R} .
- The set Σ of all bounded closed intervals in \mathbb{R} generates the discrete topology on \mathbb{R} . The Euclidean topology is a subset of discrete topology despite $\Gamma \not\subset \Sigma$.
- The $\Gamma_{\mathbb{Q}}$ of all intervals in Γ s.t. both endpoints of the interval are rational numbers generates the same topology as Γ . (?)
- The $\Sigma_{\mathbb{Q}}$ of all intervals in Σ s.t. both endpoints of the interval are rational numbers generates the same topology as Σ . (?)
- $\Sigma_{\infty} = \{(r, \infty) : r \in \mathbb{R}\}$ generates a topology strictly coarser than that generated by Σ . $\Gamma_{\infty} = \{[r, \infty) : r \in \mathbb{R}\}$ generates a topology that is strictly coaser than that generated by Γ or Σ_{∞} . The sets Γ_{∞} and Σ_{∞} are disjoint but Γ_{∞} is a subset of the topology generated by Σ_{∞} . (?)
- In the indiscrete topology (\emptyset, X) the base at a point x is (X).

3.3 Metrics

- The standard *n*-dimensional Euclidean space \mathbb{R}^n with metric being $\sqrt{\sum_{i=1}^n (x_i y_i)^2}$
- The standard Hilbert space l_2 has infinite sequences with metric $\sqrt{\sum_{i=1}^{\infty}(x_i-y_i)^2}$ satisfying $\sum_{i=1}^{\infty}x_i^2<\infty$

3.4 Continuous maps

- Restriction $f|_A:A\to Y$ is continuous and inclusion of a subspace into its ambient space is continuous.
- invertible continuous map needn't have a continuous inverse: an example is identity map of a set with discrete topology onto the same set but a different topology.

3.5 Continuity at a point

• When X and Y are metric spaces and Δ and E consists of open balls centered at points x and f(x), the topological continuity at a point reduces to the formulaion given in calculus: $f: X \to Y$ is continuous at $x \in X$ if $\forall \epsilon > 0 \ \exists \delta > 0$ s.t. $\operatorname{dist}_X(x, x') < \delta$ implies $\operatorname{dist}_Y(f(x), f(x')) < \epsilon$.

3.6 Homeomorphisms and embeddings

• The open ball Int D^n is homeomorphic to \mathbb{R}^n : $f: \mathbb{R}^n \to \text{Int } D^n$ where

$$f(v) = \frac{1}{1 + \|v\|} \cdot v$$
 $\|f(v)\| = \frac{\|v\|}{1 + \|v\|} < 1$

f is continuous because norm is continuous.

- The cube I^n is homeomorphic to D^n ; their interiors and boundaries are also homeomorphic. The homeomorphisms are realized by translation by $(ort_1 + ... + ort_n)/2$ followed by central projection $(ort_i$ denotes vector (0, 0, 0, ..., 1, ..., 0, 0, 0).
- The punctured sphere $S^n \setminus ort_1$ is homeomorphic to \mathbb{R}^n . It is given by the composition of homeomorphism $(x_1, ..., x_n) \mapsto (0, x_1, ..., x_n)$ onto a subspace of \mathbb{R}^{n+1} with the stereographic projection from the point ort_1 .