MTH 101-Calculus

Spring-2021

Assignment-10-Solns: Directional derivatives, Maxima, Minima, Lagrange Multipliers

1. $|f(x,y) - f(0,0)| \le |x| + |y|$. Thus f is continuous at (0,0).

$$\lim_{t \to 0} \frac{f(tu_1, tu_2) - f(0, 0)}{t} = \frac{|t|}{2t} \{ ||u_1| - |u_2|| - |u_1| - |u_2| \}.$$

Hence, the directional derivatives of f exist at (0,0) if and only if $|u_1| - |u_2| = |u_1| + |u_2|$, that is, either $u_1 = 0$ or $u_2 = 0$. Since the directional derivatives in all direction do not exist, the function cannot be differentiable at (0,0).

- 2. Let $(u,v) \in \mathbb{R}^2$ be such that ||(u,v)|| = 1. Then $D_{(u,v)}f(0,0) = \lim_{t\to 0} \frac{f(tu,tv)}{t} = u^2v$ but $D_{(0,0)}f(u,v) \neq \nabla f(0,0) \cdot (u,v)$ if u and v are non-zeros. Therefore f is not differentiable.
- 3. Since f_x and f_y are continuous, f is differentiable. Therefore $D_{(1,2)}f(\frac{3}{5},\frac{4}{5})=f_x(1,2)\cdot\frac{3}{5}+f_y(1,2)\cdot\frac{4}{5}$.
- 4. The normal to the given surface is $N=(1+yz^2,2z+xz^2,2y+2xyz)$. The normal at a point on the z-axis is (1,2t,0). If (x,y,z) is any point on the given surface generated then $\frac{x}{1}=\frac{y}{2t}$, z=t. Hence, the surface generated is y=2xz (by eliminating t).
- 5. (i) For $f(x,y) = 4xy x^4 y^4$, $f_x(x_0,y_0) = f_x(x_0,y_0) = 0$ for $(x_0,y_0) = (0,0)$, (1,1) or (-1,-1). These are the critical points. By second derivative test, (0,0) ia a saddle point and (-1,1) and (1,1) are local maxima.
 - (ii) $f(x,y) = x^3 3xy^2$, $f_x(x_0,y_0) = f_x(x_0,y_0) = 0$ for $(x_0,y_0) = (0,0)$. So (0,0) is the only critical point . Second derivative fails here. Along y = 0, $f(x,y) = x^3$, hence (0,0) is a saddle point.
- 6. $f(x,y) = xy \Rightarrow f_x = y, f_y = x$. Clearly, (0,0) is the only critical point. f(0,0) = 0.

Let us use the method of lagrange multipliers on $x^2+y^2=1$. Consider the function $F(x,y,z)=xy-\lambda(x^2+y^2-1)$. Here, $F_x=y-2\lambda x$, $F_y=x-2\lambda y$ and $F_\lambda=x^2+y^2-1$. Therefore, $y=2\lambda x$, $x=2\lambda y\Rightarrow x=0\Longleftrightarrow y=0$. But, $x^2+y^2=1$. Hence, $y=4\lambda^2 y$.

$$\lambda = \pm \frac{1}{2}$$
 and $y = \pm x \Rightarrow x = \pm \frac{1}{\sqrt{2}}$ and $x = \pm \frac{1}{\sqrt{2}}$.

Hence, we need to compute the absolute maximum and minimum at the points $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$, $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ and $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. The absolute maximum is attained at $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$.