

10.2 有穷自动机

- ■确定型有穷自动机(DFA)
- 非确定型有穷自动机(NFA)
- 带ε转移的NFA(ε-NFA)

确定型有穷自动机

定义确定型有穷自动机(DFA)是一个有序5元组

$$M = \langle Q, \Sigma, \delta, q_0, F \rangle$$
, 其中

- (1) 状态集合Q: 非空有穷集合
- (2) 输入字母表 Σ : 非空有穷集合
- (3) 状态转移函数 $\delta: Q \times \Sigma \rightarrow Q$
- (4) 初始状态 $q_0 \in Q$
- (5) 终结状态集 *F*⊆*Q*

M

DFA接受的语言

$$\delta^*(q,\varepsilon) = q$$
$$\delta^*(q,wa) = \delta(\delta^*(q,w),a)$$

定义 $\forall w \in \Sigma^*$, 如果 $\delta^*(q_0, w) \in F$, 则称 M接受w.

M接受的字符串的全体称作M接受的语言,记作 L(M),即

$$L(M) = \{ w \in \Sigma^* | \delta^*(q_0, w) \in F \}$$

DFA接受的语言(续)

例1 $M = \langle \{q_0, q_1\}, \{a\}, \delta, q_0, \{q_1\} \rangle$

$$\delta(q_0, a) = q_1, \, \delta(q_1, a) = q_0$$

$$\delta^*(q_0, a^n) = \begin{cases} q_1, & n \to 5 \\ q_0, & n \to 6 \end{cases}$$

$$\delta^*(q_1, a^n) = \begin{cases} q_0, & n \to 6 \\ q_0, & n \to 6 \end{cases}$$

$$\delta^*(q_1, a^n) = \begin{cases} q_0, & n \to 6 \\ q_1, & n \to 6 \end{cases}$$

$$L(M) = \{a^{2k+1} \mid k \in \mathbb{N}\}$$

非确定型有穷自动机

定义非确定型有穷自动机 (NFA)

$$M = \langle Q, \Sigma, \delta, q_0, F \rangle$$
,

其中 Q, Σ, q_0, F 的定义与 DFA 的相同, 而

$$\delta: Q \times \Sigma \rightarrow P(Q)$$

实例

例2 一台NFA

δ	$\rightarrow q_0$	q_1	*q ₂	q_3	$*q_4$
0	$\{q_0,q_3\}$	Ø	$\{q_2\}$	$\{q_4\}$	$\{q_4\}$
1	$\{q_0,q_1\}$	$\{q_2\}$	$\{q_2\}$	Ø	$\{q_4\}$

NFA接受的语言

$$\delta^*: Q \times \Sigma^* \to Q$$
 递归定义如下: $\forall q \in Q, a \in \Sigma$ 和 $w \in \Sigma^*$
$$\delta^*(q, \varepsilon) = \{q\}$$

$$\delta^*(q, wa) = \bigcup_{p \in \delta^*(q, w)} \delta(p, a)$$

定义 $\forall w \in \Sigma^*$, 如果 $\delta^*(q_0, w) \cap F \neq \emptyset$, 则称M接受w. M接受的字符串的全体称作M接受的语言,记作L(M), 即

$$L(M)=\{ w \in \Sigma^* | \delta^*(q_0,w) \cap F \neq \emptyset \}$$

w	$\delta^*(q_0, w)$
1	$\{q_0, q_1\}$
10	$\{q_0, q_3\}$
101	$\{q_0, q_1\}$
1011	$ \{q_0, q_1, q_2\} $
10110	$ \{q_0, q_2, q_3\} $

$$L(G) = \{ x00y, x11y \mid x,y \in \{0,1\}^* \}$$

.

DFA与NFA的等价性

定理 对每一个NFA M 都存在DFA M'使得 L(M)=L(M')

用
$$M'=\langle Q', \Sigma, \delta', q_0', F' \rangle$$
 模拟 $M=\langle Q, \Sigma, \delta, q_0, F \rangle$
$$Q'=P(Q), q_0'=\{q_0\}$$

$$F'=\{A\in Q\mid A\cap F\neq\emptyset\}$$

 $\forall A \in Q \ \pi \ a \in \Sigma$

$$\delta'(A,a) = \bigcup_{p \in A} \delta(p,a)$$

模拟实例

NFA M

δ	0	1
$ ightarrow q_0$	$\{q_0, q_1\}$	$\{q_0\}$
q_1	$\{q_2\}$	Ø
*q2	Ø	Ø

DFA M'

δ'	0	1
$\rightarrow \{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_1\}$	$\{q_2\}$	Ø
*{ q ₂ }	Ø	Ø
$\{q_0,q_1\}$	$\{q_0,q_1,q_2\}$	$\{\boldsymbol{q_0}\}$
$*\{q_0,q_2\}$	$\{q_0,q_1\}$	$\{q_0\}$
$*\{q_1,q_2\}$	$\{q_2\}$	Ø
$*\{q_0,q_1,q_2\}$	$\{q_0,q_1,q_2\}$	$\{\boldsymbol{q_0}\}$
Ø	Ø	Ø

模拟实例 (续)

不可达状态:从初始状态出发永远不可能达到的状态删去所有的不可达状态,不会改变FA接受的语言.如M'中的 $\{q_1\},\{q_2\},\{q_0,q_2\},\{q_1,q_2\}$ 和 \emptyset 都是不可达状态,删去这些状态得到M''

δ"	0 1	
$\rightarrow \{q_0\}$	$\{q_0, q_1\} \ \{q_0\}$	
$\{\boldsymbol{q}_0, \boldsymbol{q}_1\}$	$\{q_0,q_1,q_2\}\ \{q_0\}$	
$ *\{q_0,q_1,q_2\} $	$\{q_0,q_1,q_2\}\ \{q_0\}$	

带ε转移的非确定型有穷自动机

 ε 转移: 不读如何符号, 自动转移状态.

 ε -NFA: $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow P(Q)$

定理 对每一个 ε -NFA M 都存在DFA M' 使得 L(M)=L(M')

DFA, NFA 和 ε -NFA 接受同一个语言类

用DFA模拟ε-NFA

设 ε -NFA $M=\langle Q, \Sigma, \delta, q_0, F \rangle$, $q \in Q$ q的 ε 闭包E(q): 从q出发,经过 ε 转移能够到达的所有状态,递归定义如下

- (1) E(q)包含q;
- (2) 如果 $p \in E(q)$, 则 $\delta(p, \varepsilon) \subseteq E(q)$.

例3 ε-NFA M

δ	0	1	$\boldsymbol{\mathcal{E}}$
$\rightarrow q_0$	$\{q_1\}$	Ø	$\{q_2\}$
q_1	Ø	$\{q_2\}$	Ø
*q2	Ø	Ø	$\{q_0\}$

\boldsymbol{q}	E(q)	
q_0	$\{q_0,q_2\}$	
q_1	$\{q_1\}$	
q_2	$\{q_0,q_2\}$	

м

用DFA模拟ε-NFA(续)

模拟的方法与用DFA模拟不带 ε 的NFA的方法基本相同,只是要用E(q)代替q.

用DFA
$$M'=\langle Q', \Sigma, \delta', q_0', F' \rangle$$
模拟 ε -NFA $M=\langle Q, \Sigma, \delta, q_0, F \rangle$
$$Q'=P(Q), \ q_0'=E(q_0)$$

$$F'=\{A\in Q\mid A\cap F\neq\emptyset\}$$

$$\forall A \in Q \not \exists a \in \Sigma,$$

$$\delta'(A,a) = \bigcup_{q \in A} \{ r \in E(t) \mid \exists p, t \notin p \in E(q), t \in \delta(p,a) \}$$

构造DFA M'时不需要对不可达状态进行计算,做法如下: $\mathcal{M}_{q_0}' = E(q_0)$ 开始,对每一个 $a \in \Sigma$ 计算 δ' 的值,然后对每一个新出现的子集计算 δ' 的值,重复进行,直至没有新的子集出现为止.

模拟实例——例3(续)

ε-NFA M

δ	0	1	$\boldsymbol{\mathcal{E}}$
$ ightarrow q_0$	$\{q_1\}$	Ø	$\{q_2\}$
q_1	Ø	$\{q_2\}$	Ø
* q 2	Ø	Ø	$\{q_0\}$

DFA M'

δ'	0	1
$\rightarrow^*\{q_0,q_2\}$	$\{q_1\}$	Ø
$\{q_1\}$	Ø	$\{q_0,q_2\}$
Ø	Ø	Ø

11.3 有穷自动机和正则文法的等价性

- 用ε-NFA模拟右线性文法
- ■用右线性文法模拟DFA

м.

有穷自动机和正则文法的等价性

定理 设G是右线性文法,则存在 ε -NFA M 使得 L(M)=L(G);设M是DFA,则存在右线性文法G使 得L(G)=L(M).

定理 下述命题是等价的:

- (1) *L*是正则语言;
- (2) 语言L能由右线性文法生成;
- (3) 语言L能由左线性文法生成;
- (4) 语言L能被DFA接受;
- (5) 语言L能被NFA接受;
- (6) 语言L能被 ε -NFA接受.

用 ε -NFA模拟右线性文法

```
设右线性文法G=\langle V,T,S,P \rangle
    \varepsilon-NFA M=\langle Q, \Sigma, \delta, q_0, F \rangle构造如下:
                   Q=V\cup\{q_f\}, q_0=\{S\}, F=\{q_f\},
       \Sigma = \{ \alpha \in T^* - \{ \varepsilon \} \mid \overline{F} \in A \rightarrow \alpha B \in P \text{ od } A \rightarrow \alpha \in P \}
\forall A \in V \exists \alpha \in \Sigma \cup \{\varepsilon\},
      \forall \alpha \in \Sigma \cup \{\varepsilon\}, \quad \delta(q_f, \alpha) = \emptyset
```


$$G = \langle V, T, S, P \rangle$$
 $V = \{A, S\}$
 $T = \{0, 1\}$
 $P: S \rightarrow 11S$
 $S \rightarrow 11A$
 $A \rightarrow 0A$
 $A \rightarrow \varepsilon$

$$\varepsilon\text{-NFA}\ M=\langle Q, \Sigma, \delta, S, \{q_f\}\ \rangle$$

$$Q=\{A, S, q_f\}$$

$$\Sigma=\{11, 0\}$$

δ	11	0	$\boldsymbol{\mathcal{E}}$	
<i>→</i> S	{ S , A }	Ø	Ø	
\boldsymbol{A}	Ø	$\{A\}$	$\{q_f\}$	
$*q_f$	Ø	Ø	Ø	

$$L(G)=L(M)=\{ (11)^m0^n \mid m\geq 1, n\geq 0 \}$$

m

用右线性文法模拟DFA

设DFA $M=\langle Q, \Sigma, \delta, q_0, F \rangle$ 右线性文法 $G=\langle V, T, S, P \rangle$ 构造如下: $V=Q, T=\Sigma, S=q_0$ $\forall q \in Q$ 和 $a \in \Sigma,$ 若 $\delta(q,a)=p$,则有产生式 $q \rightarrow ap$ 若 $q \in F$,则有产生式 $q \rightarrow \varepsilon$

模拟实例

DFA M

δ	0	1
$ ightarrow q_0$	q_1	q_0
q_1	q_2	q_1
*q2	q_0	q_2

$G = \langle V, T, S, P \rangle$

$$V=\{q_0,q_1,q_2\},\ T=\{0,1\},\ S=q_0$$
 $P:\ q_0 \to 0 \ q_1 \qquad q_0 \to 1 \ q_0 \qquad q_1 \to 0 \ q_2 \qquad q_1 \to 1 \ q_1 \qquad q_2 \to 0 \ q_0 \qquad q_2 \to 1 \ q_2 \rightarrow \varepsilon$

L(M)=L(G),它们是所有含3k+2 $(k\geq 0)$ 个0的0,1串组成的集合