Skript Mathe 2

9. Mai 2018

0.1 Umordnung von Reihen: Beispiel

Man kan Reihen nicht bedenkenlos umordnen:

•
$$1-1+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3}}\pm \dots$$

$$Sn = \begin{cases} 0 & \text{falls gerade} \\ \sqrt{\frac{2}{n+1}} & \text{falls n ungerade} & \xrightarrow[n \to \infty]{} 0 \end{cases}$$

•
$$1 + \frac{1}{\sqrt{2}}\underbrace{-1}_{3} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} - \underbrace{\frac{1}{\sqrt{2}}}_{6} + \frac{1}{\sqrt{5}} + \frac{1}{\sqrt{6}} - \underbrace{\frac{1}{\sqrt{3}}}_{9} \pm \dots$$

$$S_{3n} = \frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n+2}} + \dots + \frac{1}{\sqrt{2n}} \ge \frac{n}{\sqrt{2n}} = \sqrt{\frac{n}{2}} \xrightarrow[n \to \infty]{} \infty$$

0.2 Definition: Umordnung

 $\sum_{k=1}^\infty b_k$ heißt Umordnung von $\sum_{k=1}^\infty a_k,$ falls eine bijektive Abbildung $\rho:\mathbb{N}\to\mathbb{N}$ existiert mit $b_k=a_{\rho(k)}\quad \forall k\in\mathbb{N}$

0.3 Umordnungssatz

Jede Umordnung $\sum_{k=1}^{\infty} b_k$ einer absolut konvergenten Reihe $\sum_{k=1}^{\infty} a_k$ in \mathbb{R} ist ebenfalls absolut konvergent und es gilt $\sum_{k=1}^{\infty} b_k = \sum_{k=1}^{\infty} a_k$ (ohne Beweis)

0.4 Riemannscher Umordnungssatz

Ist $\sum_{k=1}^{\infty} a_k$ konvergent, aber nicht absolut konvergent, dann existiert zu jedem $s \in \mathbb{R}$ eine Umordnung $\sum_{k=1}^{\infty} b_k$, mit $\sum_{k=1}^{\infty} b_k = s$ (ohne Beweis)

Potenzreihen 1

Grundbegriffe und Beispiel

a) $P(x) = \sum_{k=0}^{\infty} x^k$ ist für |x| < 1 absolut konvergent (geometrische Reihe), d.h für $x \in \underbrace{(-1,1)}$.

Konvergenzintervall (3.5)

Für |x| > 1 ist P(x) divergent.

b) $P(X) = \sum_{k=0}^{\infty} k! (x-1)^k$ ist für $x \neq 1$ divergent:

Quotientenkriterium liefert:

$$\left| \frac{(x+1)!(x-1)^{k+1}}{k!(x-1)^k} \right| = (k+1)(x-1) \xrightarrow[k \to \infty]{} \infty \quad \text{für } x \neq 1$$

Definition: Potenzreihen

Sei $(a_n)_{n\geq 0}$ reelle Folge und seien $x, x_0 \in \mathbb{R}$.

$$P(x) := \sum_{k=0}^{\infty} a_k (x - x_0)^k$$

heißt Potenzreihe mit Zentrum x_0 und Koeffizienten a_k

1.3 Bemerkung

- a) In Bsp 3.1a) ist $x_0 = 0$ und $a_k = 1 \ \forall k \in \mathbb{N}$. In 3.1b) ist $x_0 = 1$ und $a_k = k!$
- b) In 3.1a) konvergiert P(x) für $x \in (-1,1)$, in 3.1b) lediglich für $x = x_0 = 1$. Es wird sich heraussstellen, dass es für eine Potenzreihe P(x) mit Zentrum x_0 einen Konvergenzradius $\rho \in \mathbb{R}_+ = [0, \infty) \cup \{\infty\}$ gibt (3.5), so dass P(x)absolut konvergent für $x \in (x_0 - \rho, x_0 + \rho)$, (d.h. $|x - x_0| < \rho$) und divergent für $|x - x_0| > \rho$ ist. (3.7)

Dazu zeigt man zunächst:

Satz

Sei
$$P(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$$
 und $x \in \mathbb{R} \setminus \{x_o\}$.

Dann:

- 1. $P(x_1)$ konvergent $\Rightarrow P(x)$ ist absolut konvergent $\forall x \in \mathbb{R}$ mit $|x - x_0| < |x_1 - x_0|$
- 2. $P(x_1)$ divergent $\Rightarrow P(x)$ ist divergent $\forall x \in \mathbb{R}$ mit $|x - x_0| > |x_1 - x_0|$

Beweis:

1. P(x) konvergent $\Rightarrow_{2,9} (a_k(x_1-x_0)^k)$ Nullfolge

$$\Rightarrow \exists K \ge 0 : |a_k(x_1 - x_0)| \le K \forall k \in \mathbb{N}_0$$

$$\Rightarrow |a_k(x - x_0)^k| = |a_k(x_1 - x_0)^k| \cdot \left| \frac{x - x_0}{x_1 - x_0} \right|^k \le K \cdot \underbrace{\left| \frac{x - x_0}{x_1 - x_0} \right|^k}_{\leq 1}$$

 $\underset{2.10}{\Rightarrow} P(x)$ absolut konvergent für $|x-x_0|<|x_1-x_0|$ (Majorantenkriterium)

2. Sei $P(x_1)$ divergent und $|x-x_0|>|x_1-x_0|$. Wäre P(x) konvergent, so wäre wegen 1. auch $P(x_1)$ konvergent. 4

Also: P(x) divergent \square

1.5 Definition: Konvergenzradius und Intervall

Sei P(x) Potenzreihe mit Zentrum x_0 .

$$\rho = \sup\{|x - x_0| : P(x) \text{ mit } x \in \mathbb{R} \text{ konvergent}\} \in [0, \infty) \cup \{\infty\}$$

heißt Konvergenzradius von P(x).

Für $\rho \in \mathbb{R}_+$ heißt $(x_0 - \rho, x_0 + \rho)$ Konvergenzintervall von P(x). Ist $\rho = \infty$, so konvergiert P(x) $\forall x \in \mathbb{R}$ (3.7)

1.6 Beispiel

- a) Für $P(x) = \sum_{k=0}^{\infty} x^k$ ist $\rho = 1$, denn (-1,1) ist Konvergenzintervall von $P(x), x_0 = 0$
- b) Für $P(x) = \sum_{k=0}^{\infty} k!(x-x_0)^k$ ist $\rho = 0$, denn P(x) ist nur für $x = x_0 = 1$ konvergent.

Aus 3.4 ergibt sich direkt 3.7

1.7 Korollar

Sei P(X) Potenzreihe mit Zentrum x_0 und Konvergenzradius ρ .

Dann:

- 1. P(X) absolut konvergent $\forall x \in \mathbb{R}$ mit $|x x_0| < \rho$.
- 2. P(X) divergent $\forall x \in \mathbb{R}$ mit $|x x_0| > \rho$.
- 3. [Falls $|x x_0| = \rho \sim$ keine allgemeine Aussage möglich]