# Cross-layer optimization for energy efficient datacenters

Prof. Tajana Simunic Rosing, UCSD & MuSyC Datacenter Team







### Summary of key team's results



#### Energy efficiency

#### Performance

#### Resilience

**Applications** 

Runtimes

OS/VM

Storage

Network

**Powering** 

Cooling

Green energy

**SmartGrid** 

AS: 20% gain in energy efficiency with min perf. loss

RHK: 50% reduction in energy while meeting QoS requirements of web services and Hadoop workloads

VS: 35x energy and 17x performance improvement via heterogeneous job and HW scheduling

TSR: 70% improvement in energy efficiency while meeting QoS and throughput requirements of jobs

RAMCloud: > 100x reduction in energy/op

AV/GP: 6x energy reduction with Helios

RKG: 68% energy savings/node

RKG: 40% HVAC Savings

RHK: 62%
penetration of
renewables

RKG: 20-40% energy savings by deferral across grid TSR: 92% reduction in job perf. variability &17% power savings

RAMCloud: > 100x
reduction in latency for
small storage operations
AV/GP: 2.8x reduction
in cost-performance
with Helios

TSR: up to 40% energy savings with no performance hit with power gating

TSR: 70% reduction in energy cost of cooling with 0.2% performance overhead & no change to system reliability

TSR: 93% green energy usage efficiency and 22% performance improvement with green energy prediction

TSR: 1.5x profit per server due to battery peak power shaving with no performance overhead

RFL: up to 99% survival rate with double bit faults injected

TSR: 70% reduction in hot spots leads to reliability improvements via thermal prediction & OS/VM scheduling

RAMCloud: recovery
from isolated crashes in
1-2 seconds
JD: 30% energy
reduction for resilient
router

More than 100x energy savings while improving performance

## vGreen: Maximize energy efficiency while managing SLAs at VM level



## Integrating energy, temperature and cooling management

- Key contribution: fan control done jointly with job and memory scheduling
  - → fan power ~ fan speed³
  - today's fan controllers operate independently of workload scheduling
- □ Formal state-space control to ensure stability
- Controller decides the following on each tick:
  - > CPU power distribution
  - > DIMM power distribution
  - Desired temperature to control fan speed
- □ Actuators: CPU, mem & fan
- Sensor inputs: temperature, power, fan speed

Average energy savings of 70% relative to state-of-the-art



Jointly with: Raid Ayoub, Intel

### Energy & performance side effects of cooling

- Coupling between air-cooling system and hard disks
  - Mechanical vibrations from the fans lower the hard disk throughput
  - Overall performance degrades, especially for disk intensive workloads
- TPC-H queries running on Intel Xeon:

| Query                                     | 1    | 13   | 19   |
|-------------------------------------------|------|------|------|
| Ave. disk BW                              | 59%  | 67%  | 99%  |
| Performance hit with disk BW degradation: |      |      |      |
| 80% BW available                          | 24%  | 69%  | 20%  |
| 60% BW available                          | 81%  | 105% | 57%  |
| 40% BW available                          | 108% | 170% | 100% |

 Up to 90% energy savings by better balancing performance, temperature, cooling and vibrations





Jointly with: Kenny Gross, Oracle

Big problem to solve:

Complexity.....