

Chapter 8

Confidence Interval Estimation

Objectives

ALWAYS LEARNING

In this chapter, you learn:

- To construct and interpret confidence interval estimates for the mean and the proportion.
- To determine the sample size necessary to develop a confidence interval for the mean or proportion.

Chapter Outline

Content of this chapter

- Confidence Intervals for the Population Mean, µ:
 - when Population Standard Deviation σ is Known.
 - when Population Standard Deviation σ is Unknown.
- Confidence Intervals for the Population Proportion, π.
- Determining the Required Sample Size.

Point and Interval Estimates

DCOV<u>A</u>

- A point estimate is a single number.
- A confidence interval provides additional information about the variability of the estimate.

Point Estimates

We can esting Population Para	with a Sample Statistic (a Point Estimate)	
Mean	μ	X
Proportion	π	р

Confidence Intervals

DCOV<u>A</u>

- How much uncertainty is associated with a point estimate of a population parameter?
- An interval estimate provides more information about a population characteristic than does a point estimate.
- Such interval estimates are called confidence intervals.

Confidence Interval Estimate

DCOV<u>A</u>

- An interval gives a range of values:
 - Takes into consideration variation in sample statistics from sample to sample.
 - Based on observations from 1 sample.
 - Gives information about closeness to unknown population parameters.
 - Stated in terms of level of confidence:
 - e.g. 95% confident, 99% confident.
 - Can never be 100% confident.

ALWAYS LEARNING

Confidence Interval Example

Cereal fill example

ALWAYS LEARNING

- Population has $\mu = 368$ and $\sigma = 15$.
- If you take a sample of size n = 25 you know:
 - 368 ± 1.96 * 15 $\sqrt{25}$ = (362.12, 373.88) contains 95% of the sample means of sample size 25.
 - 95% of the intervals formed in this manner will contain μ.
 - When you don't know μ , you use \overline{X} to estimate μ .
 - If \overline{X} = 362.3 the interval is 362.3 ± 1.96 * 15 $\sqrt{25}$ = (356.42, 368.18).
 - Since 356.42 ≤ 368 ≤ 368.18 the interval based on this sample makes a correct statement about µ.

But what about the intervals from other possible samples of size 25?

Confidence Interval Example (continued)

DCOV<u>A</u>

Sample #	\overline{X}	Lower	Upper	Contain
	, ,	Limit	Limit	μ?
1	362.30	356.42	368.18	Yes
2	369.50	363.62	375.38	Yes
3	360.00	354.12	365.88	No
4	362.12	356.24	368.00	Yes
5	373.88	368.00	379.76	Yes

Confidence Interval Example

(continued)

DCOV<u>A</u>

- In practice you only take one sample of size n.
- In practice you do not know μ so you do not know if the interval actually contains μ.
- However you do know that 95% of the intervals formed in this manner will contain µ.
- Thus, based on the one sample you actually selected, you can be 95% confident your interval will contain μ (this is a 95% confidence interval).

Note: 95% confidence is based on the fact that we used Z = 1.96.

ALWAYS LEARNING

Estimation Process

DCOV<u>A</u>

We can be 95% confident that μ is between 40 & 60.

General Formula

DCOV<u>A</u>

The general formula for all confidence intervals is:

Point Estimate ± (Critical Value)(Standard Error)

Where:

- Point Estimate is the sample statistic estimating the population parameter of interest.
- Critical Value is a table value based on the sampling distribution of the point estimate and the desired confidence level.
- Standard Error is the standard deviation of the point estimate.

Confidence Level

DCOVA

- Confidence the interval will contain the unknown population parameter.
- A percentage (less than 100%).

Confidence Level, $(1-\alpha)$

(continued)

DCOV<u>A</u>

- Suppose confidence level = 95%.
- Also written $(1 \alpha) = 0.95$, (so $\alpha = 0.05$).
- A relative frequency interpretation:
 - 95% of all the confidence intervals that can be constructed will contain the unknown true parameter.
- A specific interval either will contain or will not contain the true parameter:
 - No probability involved in a specific interval.

ALWAYS LEARNING

Confidence Intervals

DCOVA

Confidence Interval for μ (σ Known)

DCOVA

- Assumptions:
 - Population standard deviation σ is known.
 - Population is normally distributed.
 - If population is not normal, use large sample (n > 30).
- Confidence interval estimate:

$$\frac{1}{X} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

where \overline{X} is the point estimate

is the normal distribution critical value for a probability of $\alpha/2$ in each tail is the standard error.

 \sqrt{n} is the standard error

Finding the Critical Value, $Z_{\alpha/2}$

DCOVA

Consider a 95% confidence interval:

$$Z_{\alpha/2} = \pm 1.96$$

Common Levels of Confidence

DCOVA

 Commonly used confidence levels are 90%, 95%, and 99%.

Confidence Level	Confidence Coefficient, $1-\alpha$	Z _{α/2} value
80%	0.80	1.28
90%	0.90	1.645
95%	0.95	1.96
98%	0.98	2.33
99%	0.99	2.58
99.8%	0.998	3.08
99.9%	0.999	3.27

Intervals and Level of Confidence

DCOVA

 $(1-\alpha)100\%$ of intervals constructed contain µ; $(\alpha)100\%$ do not.

Intervals

 $\overline{X} - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

 $\overline{X} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

Example

DCOVA

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms.
- Determine a 95% confidence interval for the true mean resistance of the population.

Example

(continued)

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms.
- Solution:

ALWAYS LEARNING

$$\overline{X} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
= 2.20\pm 1.96(0.35\sqrt{11})
= 2.20\pm 0.2068

 $1.9932 \le \mu \le 2.4068$

Interpretation

DCOV<u>A</u>

- We are 95% confident that the true mean resistance is between 1.9932 and 2.4068 ohms.
- Although the true mean may or may not be in this interval, 95% of intervals formed in this manner will contain the true mean.

Confidence Intervals

DCOVA

Do You Ever Truly Know σ?

Probably not!

ALWAYS LEARNING

- In virtually all real world business situations, σ is not known.
- If there is a situation where σ is known then μ is also known (since to calculate σ you need to know μ.)
- If you truly know µ there would be no need to gather a sample to estimate it.

Confidence Interval for μ (σ Unknown)

DCOV<u>A</u>

- If the population standard deviation σ is unknown, we can substitute the sample standard deviation, S.
- This introduces extra uncertainty, since
 S is variable from sample to sample.
- So we use the t distribution instead of the normal distribution.

Confidence Interval for μ (σ Unknown)

(continued)

Assumptions:

ALWAYS LEARNING

- Population standard deviation is unknown.
- Population is normally distributed.
- Use Student's t Distribution.
- Confidence Interval Estimate:

(where $t_{\alpha/2}$ is the critical value of the t distribution with n -1 degrees of freedom and an area of $\alpha/2$ in each tail.)

$$\bar{X} \pm t_{\alpha/2} \frac{S}{\sqrt{n}}$$

Student's t Distribution

DCOV<u>A</u>

- The t is a family of distributions.
- The $t_{\alpha/2}$ value depends on degrees of freedom (d.f.).
 - Number of observations that are free to vary after sample mean has been calculated.

d.f. = n - 1

Degrees of Freedom (df)

DCOVA

Idea: Number of observations that are free to vary after sample mean has been calculated.

Example: Suppose the mean of 3 numbers is 8.0.

Here, n = 3, so degrees of freedom = n - 1 = 3 - 1 = 2.

(2 values can be any numbers, but the third is not free to vary for a given mean.)

ALWAYS LEARNING

Student's t Distribution

DCOVA

Note: $t \rightarrow Z$ as n increases

Student's t Table

DCOV<u>A</u>

	Uppe	Upper Tail Area	
df	.10	.05	.025
I	3.078	6.314	12.706
2	1.886	2.920	4.303
3	1.638	2.353	3.182
	con	_	the table lues, not

ALWAYS LEARNING

Selected t distribution values

DCOVA

With comparison to the Z value

Confidence Level	t (10 d.f.)	t (20 d.f.)	t (30 d.f.)	Z (<u>∞ d.f.)</u>
0.80	1.372	1.325	1.310	1.28
0.90	1.812	1.725	1.697	1.645
0.95	2.228	2.086	2.042	1.96
0.99	3.169	2.845	2.750	2.58

Note: $t \rightarrow Z$ as n increases

Example of t distribution confidence interval DCOVA

A random sample of size n = 100 of travel times has a mean and standard deviation of $\overline{X} = 110.27$ and S = 28.95. Form a 95% confidence interval for μ .

• d.f. = n - 1 = 99, so
$$t_{\alpha/2} = t_{0.025} = 1.9842$$

The confidence interval is

$$\bar{X} \pm t_{\alpha/2} \frac{S}{\sqrt{n}} = 110.27 \pm (1.9842) \frac{28.95}{\sqrt{100}}$$

 $104.53 \le \mu \le 116.01$

Example of Excel, Minitab, & JMP Confidence Interval Output For Travel Time Sample

4	Α	В		
1	Confidence Interval Estimate	for the Mean		
2				
3	Data			
4	Sample Standard Deviation	28.95		
5	Sample Mean	110.27		
6	Sample Size	100		
7	Confidence Level	95%		
8				
9	Intermediate Calculations			
10	Standard Error of the Mean	2.895		
11	Degrees of Freedom	99		
12	t Value	1.9842		
13	Interval Half Width	5.7443		
14				
15	Confidence Interval			
16	Interval Lower Limit	104.53		
17	Interval Upper Limit	116.01		

ALWAYS LEARNING

One-Sample T Descriptive Statistics

N Mean StDev SE Mean 95% CI for μ
100 110.27 28.95 2.90 (104.53, 116.01)
μ: mean of Sample

Example of t distribution confidence interval

(continued)

DCOVA

- Interpreting this interval requires the assumption that the population you are sampling from is approximately a normal distribution (especially since n is only 25).
- This condition can be checked by creating a:
 - Normal probability plot or
 - Boxplot.

Confidence Intervals

DCOVA

Confidence Intervals for the Population Proportion, π

DCOVA

An interval estimate for the population proportion (π) can be calculated by adding an allowance for uncertainty to the sample proportion (p).

ALWAYS LEARNING

Confidence Intervals for the Population Proportion, π

(continued)

Recall that the distribution of the sample DCOVA proportion is approximately normal if the sample size is large, with standard deviation:

$$\sigma_{p} = \sqrt{\frac{\pi(1-\pi)}{n}}$$

We will estimate this with sample data:

$$\sqrt{\frac{p(1-p)}{n}}$$

Confidence Interval Endpoints

DCOVA

Upper and lower confidence limits for the population proportion are calculated with the formula:

$$p \pm Z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$

- where
 - $\mathbf{Z}_{\alpha/2}$ is the standard normal value for the level of confidence desired
 - p is the sample proportion
 - n is the sample size.
- Note: must have np > 5 and n(1-p) > 5.

Example

- A random sample of 100 people shows that 25 are left-handed.
- Form a 95% confidence interval for the population proportion of lefthanders.

Example

(continued)

A random sample of 100 people shows that 25 are left-handed. Form a 95% confidence interval for the population proportion of left-handers.

$$p \pm Z_{\alpha/2} \sqrt{p(1-p)/n}$$

$$= 25/100 \pm 1.96 \sqrt{0.25(0.75/100)}$$

$$= 0.25 \pm 1.96(0.0433)$$

$$= 0.1651 \le \pi \le 0.3349$$

Interpretation

- We are 95% confident that the population percentage of left-handers is between 16.51% and 33.49%.
- Although the interval from 0.1651 to 0.3349 may or may not contain the population proportion, 95% of intervals formed from samples of size 100 in this manner will contain the population proportion.

ALWAYS LEARNING

Example of Excel, JMP, & Minitab Confidence Interval for π

Test and CI for One Proportion Method

p: event proportion

Normal approximation method is used for this analysis.

Descriptive Statistics

N	Event	Sample p	95% CI for p
100	10	0.100000	(0.041201, 0.158799)
Test			

Null hypothesis H_0 : p = 0.5Alternative hypothesis H_1 : $p \neq 0.5$

Sampling Error

- The required sample size can be found to reach a desired margin of error (e) with a specified level of confidence (1 - α).
- The margin of error is also called sampling error:
 - the amount of imprecision in the estimate of the population parameter.
 - the amount added and subtracted to the point estimate to form the confidence interval.

(continued)

DCOVA

$$e = Z_{\alpha/2} \xrightarrow{\sigma} \xrightarrow{\text{Now solve for n to get}}$$

$$n = \frac{Z_{\alpha/2}^2 \sigma^2}{e^2}$$

(continued)

- To determine the required sample size for the mean, you must know:
 - The desired level of confidence (1α) , which determines the critical value, $Z_{\alpha/2}$
 - The acceptable sampling error, e.
 - The standard deviation, σ.

Required Sample Size Example

D<mark>C</mark>OVA

The population of download times for a particular video file has a standard deviation of σ = 25 seconds. If a random sample is taken, what sample size is needed to estimate μ within ± 5 seconds with 95% confidence?

$$n = \frac{Z^2 \sigma^2}{e^2} = \frac{(1.96)^2 (25)^2}{5^2} = 96.04$$

So the required sample size is n = 97

(Always round up)

Example Using Excel & Minitab For Calculating Sample Size For The Mean Video Download Time

1	Α	В	
1	For the Mean Sales Invoice Amount		
2			
3	Data		
4	Population Standard Deviation	25	
5	Sampling Error	5	
6	Confidence Level	95%	
7			
8	Internediate Calculations		
9	Z Value	-1.9600	
10	Calculated Sample Size	96.0365	
11			
12	Result		
13	Sample Size Needed	97	

Sample Size for Estimation

Method

Parameter	Mean
Distribution	Normal

Standard deviation 25 (population value)

Confidence level 95%

Confidence interval Two-sided

Results

Margin	Sample
of Error	Size
5	97

If σ is unknown

- If unknown, σ can be estimated when using the required sample size formula.
 - Use a value for σ that is expected to be at least as large as the true σ.
 - Select a pilot sample and estimate σ with the sample standard deviation, S.

ALWAYS LEARNING

(continued)

For the Proportion

$$e = Z\sqrt{\frac{\pi(1-\pi)}{n}} \longrightarrow \text{Now solve for n to get} \longrightarrow n = \frac{Z_{\alpha/2}^2 \pi (1-\pi)}{e^2}$$

(continued)

- To determine the required sample size for the proportion, you must know:
 - The desired level of confidence (1α) , which determines the critical value, $Z_{\alpha/2}$.
 - The acceptable sampling error, e.
 - The true proportion of events of interest, π .
 - π can be estimated with a pilot sample if necessary (or conservatively use 0.5 as an estimate of π .)

Required Sample Size Example

O<mark>C</mark>OVA

How large a sample would be necessary to estimate the true proportion of sales invoices containing errors in a large population within ±7%, with 95% confidence?

(Assume a pilot sample yields p = 0.15.)

ALWAYS LEARNING

Required Sample Size Example

(continued)

Solution:

DCOVA

For 95% confidence, use $Z_{\alpha/2} = 1.96$

$$e = 0.07$$

p = 0.15, so use this to estimate π .

$$n = \frac{Z_{\alpha/2}^2 \pi (1 - \pi)}{e^2} = \frac{(1.96)^2 (0.15)(1 - 0.15)}{(0.03)^2} = 99.96$$

So use n = 100

Example Excel & Minitab Output For Calculating Sample Size For A Proportion DCOVA

Excel Uses A Normal Approximation To Find n

4	Α	В	
1	For the Proportion of In-Error Sales Invoices		
2			
3	Data		
4	Estimate of True Proportion	0.15	
5	Sampling Error	0.07	
6	Confidence Level	95%	
7			
8	Intermediate Calculations		
9	Z Value	-1.9600	
10	Calculated Sample Size	99.9563	
11			
12	Result		
13	Sample Size Needed	100	

ALWAYS LEARNING

Minitab Uses The Binomial Distribution To Find n

Sample Size for Estimation

Method

Parameter	Proportion	
Distribution	Binomial	
Proportion	0.15	
Confidence level	95%	
Confidence interval	Two-sided	

Results

Margin	Sample	
of Error	Size	
0.07	141	

Ethical Issues

- A confidence interval estimate (reflecting sampling error) should always be included when reporting a point estimate.
- The level of confidence should always be reported.
- The sample size should be reported.
- An interpretation of the confidence interval estimate should also be provided.

ALWAYS LEARNING

Chapter Summary

In this chapter we discussed:

- The construction and interpretation of confidence interval estimates for the mean and the proportion.
- The determination of the sample size necessary to develop a confidence interval for the mean and the proportion.