宮島研究室 2019 年度 B4 XRD 実験

東京理科大学 理学部 応用物理学科 宮島研究室 B4 渡辺慧

2019年5月14日

目次

1	本研究の目的	1
2	原理	1
2.1	X 線回折	1
2.2	結晶面	1
2.3	NaCl の結晶構造	2
2.4	NaCl 粉末の回折パターン	3
3	NaCl 粉末及び単結晶の回折パターンの観測方法	4
4	NaCl 粉末及び単結晶の回折パターンの解析	7
4.1	NaCl 粉末	7
4.2	NaCl 単結晶	9
5	·····································	11

1 本研究の目的

なんとか

2 原理

2.1 X線回折

X線は電磁波であり、結晶にX線を入射したとき、X線は構成原子の原子核と電子によって散乱される。荷電粒子による電磁波の散乱には、散乱波の波長が元の波長から変化しない Thomson 散乱と、散乱はの波長が元の波長よりも長くなる Compton 散乱の 2 種類がある。 Thomson 散乱は干渉性散乱、Compton 散乱は非干渉性散乱である。 結晶による回折においては、干渉性散乱のみを考えればよいので、Thomson 散乱のみを考える。 Thomson 散乱において、散乱断面積は散乱体の質量の自乗に反比例するため、X線は電子により散乱される。

2.2 結晶面

X線の回折の条件を考える。X線がある結晶面によって散乱を起こすときの光路を図 1 に示す。入射光と結晶面の角度を θ 、結晶面の間隔を d としたとき、この時、2 つの光の光路差は $2d\sin\theta$ である。散乱前後で光の波長が変化しないとき、この光路差が X線の波長の整数倍であれば、散乱光は強め合う。よって、X線の回折の条件は

$$2d\sin\theta = n\lambda\tag{1}$$

となる。この条件を Bragg 条件と呼ぶ。

図1 X線の散乱光路.

2.3 NaCl の結晶構造

NaCl 結晶は。、NaCl 型構造をとる。NaCl の構造の概形を図 2 に示す。

図2 NaClの結晶構造.

2.4 NaCl 粉末の回折パターン

 2θ の値が 90 よりも小さいときの、NaCl 粉末の回折パターンを表 1 に示す。実験データの解析のおいては、この表のデータを参照する。

表 1	NaCl 粉末の回折パターン	[1].

$2\theta(\deg)$	h	k	1	Intensity	d-spacing [nm]
26.886	1	1	1	10	0.3312
31.145	2	0	0	99	0.2869
44.629	2	2	0	61	0.2028
52.878	3	1	1	3	0.173
55.426	2	2	2	19	0.1656
64.959	4	0	0	8	0.1434
71.633	3	3	1	2	0.1316
73.797	4	2	0	19	0.1283
82.251	4	2	2	13	0.1171
88.472	5	1	1	2	0.1104

3 NaCl 粉末及び単結晶の回折パターンの観測方法

NaCl 粉末及び単結晶の回折パターンを、X 線回折装置"SmartLab"を用いて観測した。 SmartLab の構造を図 3 に示す。

図3 SmartLab の内部構造.

X線源から放射された光を NaCl 粉末及び単結晶に照射し、光検出器で回折光を観測した。X線源から等方的に放射された光を、放物面人工多層膜ミラーを用いて単色化・平行化し、2 枚の入射スリットとソーラースリットを用いて発散を制限した。2 枚の出射スリットとソーラースリットを用いて、試料からの回折光の発散を制限した。T アッテネーターを用いて、光検出器に入射する光を減衰させた。T は入射光と出射光

のなす角である。表 2 の実験条件の下試料ごとに 2θ を変えてゆき、回折パターンを測定した。試料は NaCl 粉末と NaCl 単結晶の 2 種類である。単結晶試料の寸法を図 4 に示す。

表 2 実験条件.

実験条件							
入射スリット	1 mm						
出射スリット	$1 \mathrm{\ mm}$						
ソーラースリット	$0.5 \deg$						
X 線波長	$1.543\text{Å},\ 1.392\text{Å}$						

図4 NaCl 単結晶の寸法.

実験に用いた単結晶は、縦 3.2 mm、横 5.2 mm、高さ 1.1 mm の直方体のものである。この結晶を、最も面積の広い面を下にして試料台に設置した。

4 NaCl 粉末及び単結晶の回折パターンの解析

4.1 NaCl 粉末

NaCl 粉末における回折パターンを図5に示す。

図 5 NaCl 粉末の回折パターン.

横軸は A の回転角、縦軸は回折強度である。グラフから、鋭いピークが複数見られる。これらのピークのうち、頂点における 2θ が、表 1 の値と近いものだけを抜き出したものを表 3 に示す。

$2\theta[\deg]$	$2\theta[\mathrm{rad}]$	G_m	h	k	l	a
27.306	0.468753	1.891361571	1	1	1	5.751031023
31.646	0.543256333	2.185068392	2	0	0	5.748103832
45.397	0.779315167	3.093719005	2	2	0	5.741478885
53.828	0.924047333	3.63032518	3	1	1	5.737338297
56.419	0.968526167	3.791544409	2	2	2	5.737650888
66.178	1.136055667	4.381295096	4	0	0	5.733464524
73.041	1.2538705	4.777872498	3	3	1	5.729304283
75.259	1.291946167	4.902560146	4	2	0	5.728642375
83.979	1.4416395	5.375122452	4	2	2	5.723700519

表 3 NaCl 粉末の格子定数.

逆格子ベクトルの大きさ G_m は

$$G_m = \frac{4\pi}{\lambda} \sin \theta \tag{2}$$

で計算した。 λ は、今回は K_{lpha} 線の波長である 1.543 nm を用いた。格子定数 a は、 G_m から

$$a = \frac{2\pi}{G_m} \sqrt{h^2 + k^2 + l^2} \tag{3}$$

で計算した。各 θ におけるaの平均をとって、格子定数は

$$a = 5.736746 \tag{4}$$

と求まった。

4.2 NaCI 単結晶

図6に示す。

図 6 NaCl 単結晶の回折パターン.

横軸は A の回転角、縦軸は回折強度である。グラフから、鋭いピークが複数見られるが、どのピークが、どの X 線による回折を示しているのか判断ができない。そこで、 $2\theta/\theta$ 法を用いた単結晶の X 線回折測定では、(001) 面に平行な面での回折しか観測できないことを利用し、(h,k,l)=(0,0,2n) となるように回折指数をとり、粉末試料で得た格子定数に近い計算結果が得られるよう、 2θ を逆算した。その結果を表 4 に示す。

表 4 2θ の見積もり.

a	λ	1	$\theta[\mathrm{rad}]$	$2\theta[\deg]$
5.73674607	1.39	2	0.244733355	28.04437672
5.73674607	1.54	2	0.271778272	31.14349589
5.73674607	1.39	4	0.505900419	57.97191777
5.73674607	1.54	4	0.566746084	64.94431732

この表から、 K_{α} 線及び K_{β} 線由来の、(0,0,2n) 面による回折角が見積もれた。図 6 のピークの うち、頂点における 2θ が、表 4 に近いものだけを抜き出したものを表 5 に示す。

表 5 NaCl 単結晶の格子定数.

$2\theta[\deg]$	$2\theta[\mathrm{rad}]$	$G_{m\beta}$	$G_{m\alpha}$	h	k	l	a_{eta}	a_{α}
28.598	0.490932333	2.195818211	1.982945083	0	0	2	5.71996349	6.334013034
31.739	0.544852833	2.431301177	2.195599203	0	0	2	5.165958095	5.72053405
59.173	1.015803167	4.394597543	3.968564221	0	0	4	5.716109326	6.329745117
66.28	1.137806667	4.867753959	4.395850588	0	0	4	5.160490899	5.714479939

単結晶においては、(001) 面に平行な面での回折のみが見られることから、 K_{β} 線による回折も観測できる。そのため、各回折指数 hkl において、2 つの格子定数が計算できる。この逆算から、特性 X 線 K_{α} と K_{β} による 1 次と 2 次の回折角が得られた。それを図 7 に示す。

図7 NaCl 結晶の回折パターン.

ブラッグの回折条件より、 $2d\sin\theta=n\lambda$ である。よって、表 7 の値から、[001] 方向の面間隔を計算できる。計算結果を表 6 に示す。

表 6 NaCl 単結晶の面間隔.

$2[\deg]$	d
28.598	2.859981745
31.739	2.861717794
59.173	2.858054663
66.28	2.858689203

各 θ におけるdの平均をとって、面間隔は

$$d = 2.859610851 \tag{5}$$

と求まった。

5 結論

かんとか

参考文献

- [1] 株式会社島津 https://www.shimadzu.co.jp/products/opt/guide/07.html 2019/4/12
- [2] キヤノンサイエンスラボ https://global.canon/ja/technology/s_labo/light/003/04.html 2019/04/12
- [3] 分光計器株式会社 http://www.bunkoukeiki.co.jp/technology.fiber.html 2019/04/12
- $[4]\,$ Y.P.Varshni TEMPERATURE DEPENDENCE OF THE ENERGY GAP IN SEMICONDUCTORS
- [5] キッテル固体物理学入門上第8版 p.119