Co-teaching: Robust Training of Deep Neural Networks with Noisy Labels

Bo Han*^{1,2} Quanming Yao*³ Xingrui Yu¹ Gang Niu² Miao Xu² Weihua Hu⁴ Ivor W. Tsang¹ Masashi Sugiyama^{2,5}

¹University of Technology Sydney ²RIKEN ³4Paradigm Inc. ⁴Stanford University ⁵University of Tokyo

Overview

TL;DR: We train **two** networks, and each network samples its **small-loss instances** as the useful knowledge to update the parameters of its **peer network**.

- Noisy labels are corrupted from ground-truth labels, which degenerates the robustness of learning models.
- Deep neural networks have the high capacity to fit any noisy labels. The solutions are as follows.
- ♦ Noise **transition** matrix estimation. E.g., F-correction.
- ♦ **Regularization**. E.g., VAT and Mean teacher.
- ♦ Training on **selected** samples. E.g., MentorNet.
- We present a new paradigm called **Co-teaching** combating with extremely noisy labels.
- ♦ We train **two** networks simultaneously.
- ♦ In each mini-batch data, each network **filters** noisy instances based on memorization effects.
- ♦ It teaches the **remaining** instances to its **peer** network for updating the parameters.
- Empirical results on MNIST, CIFAR-10 demonstrate that the robustness of deep learning models trained by Coteaching approach is superior than that of SOTA methods.

Motivation

Co-teaching Algorithm

for $T=1,2,\ldots,T_{\max}$ do

1: Shuffle training set \mathcal{D} ; //noisy dataset

for $N=1,\ldots,N_{\max}$ do

2: Fetch mini-batch $\bar{\mathcal{D}}$ from \mathcal{D} ;

3: Obtain $\bar{\mathcal{D}}_f = \arg\min_{\mathcal{D}':|\mathcal{D}'|\geq R(T)|\bar{\mathcal{D}}|} \ell(f,\mathcal{D}')$; //sample R(T)% small-loss instances

4: Obtain $\bar{\mathcal{D}}_g = \arg\min_{\mathcal{D}':|\mathcal{D}'|\geq R(T)|\bar{\mathcal{D}}|} \ell(g,\mathcal{D}')$; //sample R(T)% small-loss instances

5: Update $w_f = w_f - \eta \nabla \ell(f,\bar{\mathcal{D}}_g)$;

6: Update $w_g = w_g - \eta \nabla \ell(g,\bar{\mathcal{D}}_f)$; end

7: Update $R(T) = 1 - \min\left\{\frac{T}{T_k}\tau,\tau\right\}$;

Two Important Questions

Q1. Why can sampling **small-loss instances** based on R(T) help us find clean instances?

Q2. Why do need two networks and **cross-update** the parameters?

QR Code

end

Co-teaching with State-of-the-Art Methods

- "large class": can deal with a large number of classes;
- "heavy noise": can combat the heavy noise, i.e., high noise rates;
- "flexibility": not need combine with specific network architecture;
- "no pre-train": can be trained from scratch, i.e, Decoupling needs 5000 iterations to pre-train two networks first, then switches to training with the "Update by Disagreement" rule.

	Bootstrap	S-model	F-correction	Decoupling	MentorNet	Co-teaching
large class	×	×	×	√	√	√
heavy noise	×	×	X	×	√	√
flexibility	×	×	√	√	√	√
no pre-train	√	×	×	×	√	√

Results on MNIST

• Test accuracy vs number of epochs on **MNIST** dataset.

• Label precision vs number of epochs on **MNIST** dataset.

Results on CIFAR-10

• Test accuracy vs number of epochs on **CIFAR-10** dataset.

• Label precision vs number of epochs on **CIFAR-10** dataset.

