## **Deep Learning Introduction**

-> Nachine Learning is twining things (data)

Ento numbered and Zinding patterns in those

numbered

ML V& DL



Traditional Rusquamming:

AIP:

Vegetables + chicken

Rules:

i) out Vegetables

IP + Rules => 0/P

Start with

makes

| ı              | IIP.                                           | + Rules                                                              | 2                                                                                       | 0/P                                                                 |
|----------------|------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|                | Start                                          | e with                                                               |                                                                                         | makes                                                               |
|                | neng                                           |                                                                      |                                                                                         |                                                                     |
| Algorith       | m:                                             |                                                                      |                                                                                         |                                                                     |
| IP:            |                                                | les:                                                                 |                                                                                         |                                                                     |
| oked<br>Jicken |                                                |                                                                      |                                                                                         |                                                                     |
|                | Lie                                            | quella or                                                            | ut_                                                                                     |                                                                     |
|                | n for 30 m<br>which<br>cooked)  Algorithm  Red | Stand  no  no  por 30 mbre  cooked)  Algorithm:  prince  ked  hicken | Starts with  ho  ho  ho  ho  cooked)  Afgordthm:  P: —————————————————————————————————— | Starts with  no no no pose 30 mbrs  white  cooked)  Algorithm:  red |

E why use ML ( ON DL) ? Jood reason: why not ? Better suason: Eve a complex problem, can you thenk of all the sulled? Aj you can build a simple deule-based System that doesn't elequeur ML, do that. Quehat DL is good for ? -> Publime with long like of rule - when the treadétional approvach fails, ML/DL may help. 2 Continually Changing environments - DL can adapt ('Ceaun') to new scenauise. Tiscovering ûneights within large collections

of data - Can you renagine treying to hand
craft realle for what I 01 defurent

kinds of food look like. Quhat DL & not good Zor? when you need explainability. - The patterne leavening model are leavening model are typically uninterpretable by a human. > when the treaditional opproach is a better option - if you can accomplish what you reed with a fample level-based system. When everel are unacceptable - since the outhut of deep bouning model oven 1+ always pudictable. when you don't have much data- Deep Learning modeld usually regruine à jainly. Vouge amount of data to produce great