Liquid-Chromatography Retention Order Prediction for Metabolite Identification

Eric Bach ^{1,⊠}, Sandor Szedmak ¹, Céline Brouard ¹, Sebastian Böcker ² and Juho Rousu ¹

¹Helsinki institute for Information Technology (HIIT), Department of Computer Science, Aalto University, Espoo, Finland

²Chair for Bioinformatics, Friedrich-Schiller-University, Jena, Germany.

ECCB conference in Athens: September 11, 2018

Liquid Chromatography (LC)

A method to reduce sample complexity when analyzing molecular mixtures.

Liquid Chromatography (LC)

A method to reduce sample complexity when analyzing molecular mixtures.

Observations

•0

- Retention time of a molecule varies across chromatographic system.
- Retention orders are preserved.

Utilizing retention times

• Retention times are valuable information.

Used to identify unknown molecular structures.

- Large number of methods to predict retention times exist. Regression
- Suffer from the different retention times across systems.

We propose to ...

- **predict the pairwise retention order** given molecular structures using preference learning.
- Prediction model can be trained on *multiple* retention time datasets arising from *heterogeneous* LC-systems.
- Retention orders are largely preserved across LC-systems [SNV15].

Retention order pairs for preference learning

Notation

- Molecule m_i from the molecular space \mathcal{M}
- $t_i \in \mathbb{R}_+$ its retention time
- $s_i \in \mathcal{S}$ chromatographic system it has been measured with

Pairwise molecule preference

- m_i is preferred over m_j when it *elutes before* m_j , i.e. $t_i < t_j$
- Set of pairwise preferences of given LC-system s is defined as:

$$\mathcal{P}(s) = \{(i,j) | s_i = s_i = s, t_i < t_i\}$$

• Set of pairwise preferences from multiple LC-systems: $\mathcal{P} = \bigcup_{s \in S} \mathcal{P}(s)$

Preference learning: Ranking Support Vector Machine

We want to learn a pairwise retention order prediction function:

$$f(m_i, m_j) = egin{cases} 1 & m_i ext{ elutes before } m_j \ -1 & ext{otherwise} \end{cases}$$

RankSVM prediction model

LC & Proposed method

$$f(m_i, m_j) = \operatorname{sign}(\mathbf{w}^T(\phi(m_j) - \phi(m_i)))$$

- w are the RankSVM [Joa02; KLL14] model parameters
- $\phi: \mathcal{M} \to \mathcal{F}_m$ function to embed the *representation* of the molecular structure m_i into a feature space.
- In the following the molecular representations is denoted with m_i .

Molecular graphs, molecular fingerprints

Training the RankSVM for retention order prediction

Optimizing \mathbf{w} considering the pairwise preferences \mathcal{P} from different systems.

Optimization problem

LC & Proposed method

$$\min_{\mathbf{w},\xi} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{(i,j) \in \mathcal{P}} \xi_{ij}$$
s.t.
$$\mathbf{w}^T (\phi(m_j) - \phi(m_i)) \ge 1 - \xi_{ij}, \forall (i,j) \in \mathcal{P}$$

$$\xi_{ij} \ge 0, \forall (i,j) \in \mathcal{P},$$

with C > 0 being the regularization parameter.

Learned model

$$\mathbf{w}^T \phi(m_i) < \mathbf{w}^T \phi(m_i), \text{ if } (i,j) \in \mathcal{P}$$

Dataset and molecule representation

• 1098 retention times of 946 unique molecular structures

Retention order prediction 00000000

- 5 different reversed phase LC-systems (denoted with \hat{S})
- Molecules represented using counting MACCS fingerprints:

Figure: Counting fingerprint

Evaluation measure and protocol

Pairwise prediction accuracy for a target system $s \in \hat{S}$:

$$Acc(s) \equiv \frac{|\{(i,j) \in \mathcal{P}(s) \mid \mathbf{w}^T \phi(m_i) < \mathbf{w}^T \phi(m_j)\}|}{\mathcal{P}(s)}$$

Accuracy accessed using repeated 10-fold cross-validation.

Train model with preferences from different systems

Can pairwise predictor benefit from information of different systems?

Compare performance of different training sets

- Single system, target data only: $\mathcal{P}(s)$
- Multiple systems, *no* target data: $\mathcal{P} \setminus \mathcal{P}(s)$
- Multiple systems, all available data: \mathcal{P}
- Vary percentage of target system molecules used for training

Comparison method

- Support Vector Regression (SVR) trained on retention times directly [Aic+15].
- Multiple systems: Retention times are considered jointly.

Train model with preferences from target system

Application setting: Training retention times only available from single target system.

- Increasing amount of training data improves prediction.
- RankSVM and SVR perform equally.

Application Setting: Training retention times only available from not target system.

- Performance of single system without data from the target.
- RankSVM outperforms SVR by considering retention orders.

Train model with preferences from different systems

Application Setting: Training retention times from target and others systems available.

- Considering target and non-target systems' data outperforms single system.
- RankSVM again outperforms SVR

Metabolite identification

- Small molecules (< 1000 Da) involved in biological processes
- Identification of metabolites present in a biological sample
- Widely used analysis workflow: Liquid chromatography (LC) combined with tandem mass spectrometry (MS/MS)
- Molecular structure is not measured, but inferred from the MS/MS spectrum.

State-of-the-art MS/MS based metabolite identification

Identification workflow

LC & Proposed method

- 1. For each MS/MS spectrum x_i define a set of molecular candidate structures $\{m_{i,1}, m_{i,2}, \ldots\}$. using the molecular mass
- 2. Assign a "MS/MS matching score" $y_{i,j}$ to each candidate.
 - ${\sf Input-Ouput-Kernel-Regression}[{\sf Bro}{+}16]$
- 3. Highest scoring candidate $m_{i,j}$ is the identification for spectrum x_i .

Predicted retention orders for metabolite identification

Identification workflow

- 1. execute 1. (query candidates) and 2. (predict matching scores)
- 2. Construct a layered graph:
 - Nodes: Molecular candidate structures $m_{i,j}$
 - Edges: Encode matching scores and predicted retention orders
- 3. Find the *overall* most consistent metabolite identification using the shorest path algorithm.

Predicted retention orders for metabolite identification

Edges connecting candidates of consecutive layers with edge weight:

$$\delta_{(i,j),(i+1,s)} = -y_{i+1,s} + D \cdot \max(0, \underbrace{\mathbf{w}^T(\phi(m_{i,j}) - \phi(m_{i+1,s}))}_{\text{RankSVM order penalty}})),$$

 $D \ge 0$ weight on order penmalty: max(...) > 0 if observed \ne predicted order.

Candidates along the shortest path from first to last layer: most consistent identification.

LC & Proposed method

Predicted retention orders for metabolite identification

• Edges connecting candidates of consecutive layers with edge weight:

$$\delta_{(i,j),(i+1,s)} = -y_{i+1,s} + D \cdot \max(0, \underbrace{\mathbf{w}^T(\phi(m_{i,j}) - \phi(m_{i+1,s}))}_{\text{RankSVM order penalty}})),$$

 $D \ge 0$ weight on order penmalty: max(...) > 0 if observed \ne predicted order.

• Candidates along the shortest path from first to last layer: most consistent identification.

Experiments metabolite identification

Dataset

LC & Proposed method

- 342 reversed phase LC-retention times
- \circ for 120 MS/MS spectra available \rightarrow (MS/MS, RT)-tuple
- o remaning 222 RTs are used for RankSVM training (target)
- 5 datasets (others) of previous experiments also used for RankSVM training

Evaluation measure and protocol

- randomly sample 1000 times 80 (MS/MS, RT)-tuples
- Construction of the graph containing the candidates to run the shortest path algorithm.
- Percentage of correct identifications for different values of D
- Comparison to baseline performance when D=0

Experiments metabolite identification

Baseline performance 22.7%: (D = 0, only MS/MS spectra used, black line)

- Improved identification accuracy for *Others* (23.9%) and *Others* & target (24.8%)
- RankSVM trained only on the target data cannot improve.

Summary

- Proposed a method for predicting liquid chromatographic orders using RankSVM.
- Prediction model can be trained on retention time data from different chromatographic systems.
- Proposed method to integrate predicted retention orders and MS/MS scores for metabolite identification in LC-MS setting
- Metabolite identification accuracy can be improved using predicted retention orders.

Acknowledgement

This work has been supported by Academy of Finland and the Aalto Science-IT infrastructure. Travel fellowship was granted from ECCB with support of the ISCB society.

Visit the poster at 18:30!

ID: P_Da080

Source code available

https://version.aalto.fi/gitlab/bache1/retention_order_prediction

Fabian Aicheler et al. "Retention Time Prediction Improves Identification in Nontargeted Lipidomics Approaches". In: *Analytical chemistry* 87.15 (2015), pp. 7698–7704.

Céline Brouard et al. "Fast metabolite identification with Input Output Kernel Regression". In: *Bioinformatics* 32.12 (2016), pp. i28–i36.

Thorsten Joachims. "Optimizing Search Engines Using Clickthrough Data". In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD '02. Edmonton, Alberta, Canada: ACM, 2002, pp. 133–142.

Tzu-Ming Kuo, Ching-Pei Lee, and Chih-Jen Lin. "Large-scale kernel rankSVM". In: *Proceedings of the 2014 SIAM international conference on data mining.* SIAM. 2014, pp. 812–820.

Liva Ralaivola et al. "Graph kernels for chemical informatics". In: *Neural networks* 18.8 (2005), pp. 1093–1110.

Jan Stanstrup, Steffen Neumann, and Urška Vrhovšek. "PredRet: Prediction of Retention Time by Direct Mapping between Multiple Chromatographic Systems". In: *Analytical Chemistry* 87.18 (2015). PMID: 26289378, pp. 9421–9428.

Liquid-Chromatography principle

Molecules represented using MACCS dictionary fingerprints

Kernels used for the feature embedding in RankSVM

• Binary: Tanimoto kernel [Ral+05]

$$k_m(m_i, m_j) = \frac{|b(m_i) \cap b(m_j)|}{|b(m_i) \cup b(m_i)|}$$

• Count: MinMax kernel [Ral+05]

$$k_{m}(m_{i}, m_{j}) = \frac{\sum_{s=1}^{N_{sub}} \min(c_{s}(m_{i}), c_{s}(m_{j}))}{\sum_{s=1}^{N_{sub}} \max(c_{s}(m_{i}), c_{s}(m_{j}))}$$

Compare binary and counting molecular fingerprints

- Pairwise prediction accuracy $(\pm 2\sigma)$ for different target systems
- RankSVM models trained using single system $\mathcal{P}(s)$.

Target system s	Binary MACCS	Counting MACCS
Eawag_XBridgeC18	$0.796(\pm0.015)$	$0.844(\pm 0.011)$
FEM_{Jong}	$0.882(\pm 0.016)$	$0.905(\pm0.015)$
RIKEN	$0.826(\pm0.024)$	$0.848 (\pm 0.017)$
$UFZ_Phenomenex$	$0.790(\pm 0.027)$	$0.802(\pm0.017)$
$LIFE_{old}$	$0.842(\pm 0.050)$	$0.862(\pm0.035)$