Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет систем управления и робототехники

Лабораторная работа № 2 "Преобразование Фурье"

по дисциплине Частотные методы

Выполнила: студентка гр. R3238

Нечаева А. А.

Преподаватель: Перегудин Алексей Алексеевич

В заданиях 1 и 2 используется унитарное преобразование Фурье κ угловой частоте ω .

1 Задание. Вещественное.

Все функции ниже $f: \mathbb{R} \to \mathbb{R}$.

1.1 Прямоугольная функция

$$f(t) = \begin{cases} a, & |t| \le b, \\ 0, & |t| > b \end{cases} \tag{1}$$

1.1.1 Аналитическое выражение Фурье-образа

Фурье-образ функции f(t) будем находить по формуле:

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$
 (2)

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt = \frac{1}{\sqrt{2\pi}} \int_{-b}^{b} ae^{-i\omega t}dt = \frac{a(e^{-i\omega b} - e^{i\omega b})}{-i\omega\sqrt{2\pi}}$$
(3)

1.1.2 Построение графиков функции f(t)

Puc. 1. $\Gamma pa\phi u\kappa f(t) npu a = 1, b = 1.$

Puc. 2. $\Gamma pa\phi u\kappa f(t)$ npu a=1, b=5.

Puc. 3. $\Gamma pa \phi u \kappa f(t) npu a = 5, b = 1.$

Puc. 4. График f(t) npu $a=5,\,b=5.$

1.1.3 Построение графиков Фурье-образа $\hat{f}(\omega)$

Puc. 5. $\Gamma pa\phi u\kappa \ \hat{f}(\omega) \ npu \ a = 1, \ b = 1.$

Puc. 6. $\Gamma pa\phi u\kappa \ \hat{f}(\omega) \ npu \ a=1, \ b=5.$

Puc. 7. $\Gamma pa\phi u\kappa \ \hat{f}(\omega) \ npu \ a=5, \ b=1.$

Puc. 8. $\Gamma pa\phi u\kappa \ \hat{f}(\omega) \ npu \ a=5, \ b=5.$

1.1.4 Проверка равенства Парсеваля

Таблица 1. Равенство Парсеваля для прямоугольной функции.

n	a	b	$ f ^2 = \int_{-d}^d f(t) ^2 dt$	$\ \hat{f}\ ^2 = \int_{-d}^d \hat{f}(\omega) ^2 d\omega$
1	1	1	2.000	2.018
2	1	5	10.000	10.001
3	5	1	50.000	50.445
4	5	5	250.000	250.037

Для вычисления квадратов норм функции и ее образа интегрирование велось от -100 до 100, то есть константа d=100 из таблицы 1. Заметим, что с точностью до целых равенства Парсеваля выполнены для всех рассматриваемых значений параметров a и b.

1.1.5 Анализ результатов

1.2 Треугольная функция

$$f(t) = \begin{cases} a - |at/b|, & |t| \le b, \\ 0, & |t| > b \end{cases}$$
 (4)

1.2.1 Аналитическое выражение Фурье-образа

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt = \frac{1}{\sqrt{2\pi}} \int_{-b}^{b} (a-|at/b|)e^{-i\omega t}dt = \frac{1}{\sqrt{2\pi}} \int_{-b}^{b} ae^{-i\omega t}dt - \frac{1}{\sqrt{2\pi}} \int_{-b}^{b} |at/b|e^{-i\omega t}dt = \frac{a(e^{-i\omega b} - e^{i\omega b})}{-i\omega\sqrt{2\pi}} + \frac{a}{b\sqrt{2\pi}} \left(\int_{-b}^{0} te^{-i\omega t}dt - \int_{0}^{b} te^{-i\omega t}dt \right) = 0$$

Отдельно вычислим неопределенный интеграл:

$$\int te^{-i\omega t}dt = ||u = t, dv = e^{-i\omega t}dt, du = dt, v = -\frac{e^{-i\omega t}}{i\omega}|| =$$

$$= -\frac{te^{-i\omega t}}{i\omega} + \int \frac{e^{-i\omega t}}{i\omega}dt = -\frac{te^{-i\omega t}}{i\omega} + \frac{e^{-i\omega t}}{\omega^2} + C = \frac{1+i\omega t}{\omega^2 e^{i\omega t}} + C \quad (5)$$

И два соотвествующих определенных интеграла:

$$\int_{-b}^{0} t e^{-i\omega t} dt = \left. \frac{1 + i\omega t}{\omega^2 e^{i\omega t}} \right|_{-b}^{0} = \frac{1}{\omega^2} - \frac{1 - i\omega b}{\omega^2 e^{-i\omega b}}$$
 (6)

$$\int_{0}^{b} t e^{-i\omega t} dt = \left. \frac{1 + i\omega t}{\omega^{2} e^{i\omega t}} \right|_{0}^{b} = \frac{1 + i\omega b}{\omega^{2} e^{i\omega b}} - \frac{1}{\omega^{2}}$$
 (7)

$$\int_{-b}^{0} te^{-i\omega t} dt - \int_{0}^{b} te^{-i\omega t} dt = \frac{2}{\omega^2} - \frac{1 - i\omega b}{\omega^2 e^{-i\omega b}} - \frac{1 + i\omega b}{\omega^2 e^{i\omega b}}$$
(8)

$$\boxed{\equiv} \frac{a(e^{-i\omega b} - e^{i\omega b})}{-i\omega\sqrt{2\pi}} + \frac{a}{b\sqrt{2\pi}} \left(\frac{2}{\omega^2} - \frac{1 - i\omega b}{\omega^2 e^{-i\omega b}} - \frac{1 + i\omega b}{\omega^2 e^{i\omega b}} \right) =
= \frac{a}{b\omega^2\sqrt{2\pi}} \left(i\omega b(e^{-i\omega b} - e^{i\omega b}) + 2 - e^{i\omega b} + i\omega be^{i\omega b} - e^{-i\omega b} - i\omega be^{-i\omega b} \right) =
= \frac{a}{b\omega^2\sqrt{2\pi}} \left(i\omega be^{-i\omega b} - i\omega be^{i\omega b} + 2 - e^{i\omega b} + i\omega be^{i\omega b} - e^{-i\omega b} - i\omega be^{-i\omega b} \right) =
= \frac{a}{b\omega^2\sqrt{2\pi}} \left(2 - e^{i\omega b} - e^{-i\omega b} \right) \quad (9)$$

1.2.2 Построение графиков функции f(t)

Puc. 9. $\Gamma pa \phi u \kappa f(t)$ npu a=1, b=1.

Puc. 10. $\Gamma pa \phi u \kappa f(t) npu a = 1, b = 5.$

Puc. 11. $\Gamma pa \phi u \kappa f(t) npu a = 5, b = 1.$

Puc. 12. $\Gamma pa \phi u \kappa f(t) npu a = 5, b = 5.$

1.2.3 Построение графиков Фурье-образа $\hat{f}(\omega)$

Puc. 13. $\Gamma pa\phi u\kappa \ \hat{f}(t) \ npu \ a=1, \ b=1.$

Puc. 14. $\Gamma pa\phi u\kappa \hat{f}(t)$ npu a = 1, b = 5.

Puc. 15. График $\hat{f}(t)$ при $a=5,\ b=1.$

Puc. 16. $\Gamma pa\phi u\kappa \hat{f}(t)$ npu a = 5, b = 5.

1.2.4 Проверка равенства Парсеваля

Таблица 2. Равенство Парсеваля для треугольной функции.

n	a	b	$ f ^2 = \int_{-d}^d f(t) ^2 dt$	$\ \hat{f}\ ^2 = \int_{-d}^d \hat{f}(\omega) ^2 d\omega$
1	1	1	0.6659	0.6641
2	1	5	3.329	3.323
3	5	1	16.65	16.60
4	5	5	83.25	83.08

1.2.5 Анализ результатов

1.3 Кардинальный синус

$$f(t) = asinc(bt) (10)$$

1.3.1 Аналитическое выражение Фурье-образа

Результат получен с помощью калькулятора Wolfram.

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} asinc(bt)e^{-i\omega t}dt = \frac{a}{|b|} \sqrt{\frac{\pi}{2}} \cdot \begin{cases} 0, & \left(\frac{b}{\omega}\right)^2 \le 1\\ 1 & (otherwise) \end{cases}$$
(11)

- 1.3.2 Построение графиков функции f(t)
- 1.3.3 Построение графиков Фурье-образа $\hat{f}(\omega)$
- 1.3.4 Проверка равенства Парсеваля

Таблица 3. Равенство Парсеваля для кардинального синуса.

n	a	b	$ f ^2 = \int_{-d}^d f(t) ^2 dt$	$\ \hat{f}\ ^2 = \int_{-d}^d \hat{f}(\omega) ^2 d\omega$
1	1	1	2.0	2.0
2	1	5		
3	5	1		
4	5	5		

1.3.5 Анализ результатов

1.4 Функция Гаусса

$$f(t) = ae^{-bt^2} (12)$$

1.4.1 Аналитическое выражение Фурье-образа

Результат получен с помощью калькулятора Wolfram.

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} ae^{-bt^2} e^{-i\omega t} dt = \frac{a}{\sqrt{2b}} e^{-\frac{\omega^2}{4b}}$$
(13)

- **1.4.2** Построение графиков функции f(t)
- 1.4.3 Построение графиков Фурье-образа $\hat{f}(\omega)$
- 1.4.4 Проверка равенства Парсеваля

Таблица 4. Равенство Парсеваля для функции Гаусса.

n	a	b	$ f ^2 = \int_{-d}^d f(t) ^2 dt$	$\ \hat{f}\ ^2 = \int_{-d}^d \hat{f}(\omega) ^2 d\omega$
1	1	1	2.0	2.0
2	1	5		
3	5	1		
4	5	5		

1.4.5 Анализ результатов

1.5 Двустороннее затухание

$$f(t) = ae^{-b|t|} (14)$$

1.5.1 Аналитическое выражение Фурье-образа

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} ae^{-b|t|} e^{-i\omega t} dt = \frac{a}{\sqrt{2\pi}} \left(\int_{-\infty}^{0} e^{bt} e^{-i\omega t} dt + \int_{0}^{\infty} e^{-bt} e^{-i\omega t} dt \right) =$$

$$= \frac{a}{\sqrt{2\pi}} \left(\int_{-\infty}^{0} e^{(b-i\omega)t} dt + \int_{0}^{\infty} e^{-(b+i\omega)t} dt \right) = \frac{a}{\sqrt{2\pi}} \left(\frac{e^{(b-i\omega)t}}{b-i\omega} \Big|_{-\infty}^{0} + \frac{e^{-(b+i\omega)t}}{-(b+i\omega)} \Big|_{0}^{\infty} \right) =$$

$$= \frac{a}{\sqrt{2\pi}} \left(\frac{1}{b-i\omega} + \frac{1}{b+i\omega} \right) = \frac{a}{\sqrt{2\pi}} \frac{b+i\omega+b-i\omega}{b^2+\omega^2} = \frac{2ab}{\sqrt{2\pi}(b^2+\omega^2)}$$
(15)

- **1.5.2** Построение графиков функции f(t)
- 1.5.3 Построение графиков Фурье-образа $\hat{f}(\omega)$

1.5.4 Проверка равенства Парсеваля

Таблица 5. Равенство Парсеваля для двустороннего затухания.

n	a	b	$ f ^2 = \int_{-d}^d f(t) ^2 dt$	$\ \hat{f}\ ^2 = \int_{-d}^d \hat{f}(\omega) ^2 d\omega$
1	1	1	2.0	2.0
2	1	5		
3	5	1		
4	5	5		

1.5.5 Анализ результатов

Для визуализации был написан код на языке *Python*. Код расположен на **GitHub**.