

Laboratorio 2: Electrónica Básica

Motivación

- Conocimientos básicos de electrónica son necesarios para seleccionar y utilizar sensores o actuadores en proyectos básicos de IoT.
- Interpretar las señales de voltaje/corrientes provenientes de sensores y convertirlas a la magnitud física o química para la cual están diseñados.
- Saber cómo leer fichas de datos de componentes electrónicos.

Herramientas de Simulacion en línea

- DCANLAB: https://dcaclab.com/es/lab (Lab 2)
- Wowki: https://wokwi.com/ (Lab 3 y 4)
- Otras herramientas:

CircuitLab: permite diseñar, simular y compartir circuitos. www.circuitlab.com.

Tinkercad: simulación de circuitos, 3D y programación. www.tinkercad.com/circuits.

Falstad Circuit Simulator: permite diseñar, simular y compartir circuitos.www.falstad.com/circuit/

Circuitos en Serie y Paralelo

Circuitos en Serie y Paralelo: Corriente

Circuitos en Serie y Paralelo: Voltage

Ley De Ohm

$$V = I \times R$$

$$I = \frac{V}{R}$$

$$R = \frac{V}{I}$$

$$R_{circuito\ series} = \frac{V}{I} = \frac{1.5\ V}{0.75\ A} = 2\ \Omega$$

$$R_{circuito\ paralelo} = \frac{V}{I} = \frac{1.5\ V}{3\ A} = 0.5\ \Omega$$

Sumar Resistencias en Series y Paralelo

$$R_{circuito\ series} = \frac{V}{I} = \frac{1.5\ V}{0.75\ A} = 2\ \Omega$$

$$R_{Total}=R_1+R_2$$
 , $si~R_1=R_2~entonces~$; $R_1=R_2=1~\Omega$

$$R_{circuito\ paralelo} = \frac{V}{I} = \frac{1.5\ V}{3\ A} = 0.5\ \Omega$$

$$\frac{1}{R_{Total}} = \frac{1}{R_1} + \frac{1}{R_2}$$
, si $R_1 = R_2$ entonces $\frac{1}{0.5 \Omega} = \frac{2}{R_1}$; $R_1 = R_2 = 1 \Omega$

Como leer Resistencias

• Heramientas online permiten calcular los valores de resistencias: https://www.digikey.com/es/resources/conversion-calculators/conversion-calculator-resistor-color-code.

Division de Voltage

$$V_1 = \frac{R_1 \times V_{Total}}{R_1 + R_2} = \frac{1000\Omega \times 5 V}{1000\Omega + 1500\Omega} = 2V$$

$$V_2 = \frac{R_2 \times V_{Total}}{R_1 + R_2} = \frac{1500\Omega \times 5 V}{1000\Omega + 1500\Omega} = 3V$$

Como leer señales de voltaje

= 0.0004V

$$V_{2 \ con \ emizion \ de \ luz} = \frac{R_2 \times V_{Total}}{R_1 + R_2} = \frac{400\Omega \times 5 \ V}{400\Omega + 400\Omega} = 2.5 V$$

$$V_{2\,sin\,emizion\,de\,luz} = \frac{R_2 \times V_{Total}}{R_1 + R_2} = \frac{400\Omega \times 5\,V}{1M\Omega + 400\Omega}$$

Parameter	Conditions	Min.	Тур.	Max.	Units
Cell resistance	1000 lux	-	400	-	Ω
	10 lux	-	9	-	$k\Omega$
Dark resistance	-	1.0	-	-	ΜΩ
Dark capacitance	-	-	3.5	-	рF
Rise time 1	1000 lux	-	2.8	-	ms
	10 lux	-	18	-	ms
Fall time 2	1000 lux	-	48	-	ms
	10 lux	_	120	_	ms

^{1.} Dark to 110% F

^{2.} To $10 \times R_L$

R_L = photocell resistance under given illumination

Como encender un LED

$$R = \frac{V_{total} - V_F}{I_F} = \frac{3.3 V - 1.5V}{20 mA} = 90 \Omega$$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Luminous Intensity	I _V	I _F = 20 mA	0.9	3.0	-	mcd
Peak Wavelength	$\lambda_{\mathbf{p}}$	I _F = 20 mA	-	-	660	nm
Spectral Line Half Width	Δλ	I _F = 20 mA	-	20	-	nm
Forward Voltage	V _F	I _F = 20 mA	-	1.65	2.0	V
Reverse Current	In	V _R = 5.0V	-	-	100	λΑ
Reverse Voltage	λΑ	I _R = 100 λA	-	5.0	-	V
Capacitance	С	V = 0	-	35	-	pF
Viewing Angle	201/2	Between 50% Points	-	60	-	degree
Rise Time	t _r	10% – 90% 50Ω	-	50	-	ns
Fall Time	t _f	90% – 10% 50Ω	-	50	-	ns

Resistencia Ajustable

SHAFT SHOWN IN CCW POSITION

Otros Sensores

Sensor de Humedad: DHT22

Sensor de Temperatura: DS18B20

Resistencia Ajustable

LED

LCD Display

Motor Paso a Paso

Botones

Sensor Ultrasonico de Distancia

Sensor de aceleración de 6 ejes y Gyroscopio

Zumbador

Microcontrolador: Arduino Uno

6 Pines Análogos de entrada

11 Pines Digitales I/O (5V o 0V)

6 Pines PWM de los Pines digitales

2 Pines de comunicación serial

3.3 V Pin de Poder

5 V Pin de Poder Otros Sensores

Simulación en plataforma Wowki:

https://wokwi.com/projects/new/arduino-uno

Microcontrolador: Pines Análogos (entrada)

6 Pines Análogos I/O (5V o 0V)

Pines de entrada o salida

Microcontrolador: Pines Digitales

11 Pines Digitales I/O (5V o 0V)

Pines de entrada o salida

Microcontrolador: Pines PWM (salida)

6 Pines PWM de los Pines digitales

