Вопросы по курсу «Введение в структурную теорию сложности» (зимняя сессия 2004 года)

- 1. Задачи поиска; классы $\widetilde{\mathbf{P}}$ и $\widetilde{\mathbf{NP}}$; сведе́ния; $\widetilde{\mathbf{NP}}$ -полные задачи, пример такой задачи. Задачи распознавания; классы \mathbf{P} и \mathbf{NP} , сведе́ние $\widetilde{\mathbf{NP}}$ -полной задачи к задаче распознавания. Оптимальный алгоритм для $\widetilde{\mathbf{NP}}$ -задачи.
- 2. $P \neq NP \Rightarrow$ никакой унарный язык не может быть NP-трудным по Карпу. $P \neq NP \Rightarrow$ никакой редкий язык не может быть co-NP-трудным по Карпу.
- 3. Не \mathbf{NP} -полные задачи в $\mathbf{NP} \setminus \mathbf{P}$.
- 4. Небольшое количество памяти, помогающее в вычислениях. Небольшое количество памяти, не помогающее в вычислениях.
- 5. Offline-вариант недетерминированных вычислений по памяти и почему он экспоненциально сильнее online-варианта.
- 6. **PSPACE** = **NPSPACE**. Замкнутость **DSpace**(f) относительно дополнения.
- 7. Полиномиальная иерархия. Полные задачи для $\Sigma^k \mathbf{P}$. Достаточные условия коллапса полиномиальной иерархии.
- 8. Булевы схемы. $\mathbf{NP} \subseteq \mathbf{P/poly} \Leftrightarrow \exists$ редкое \mathbf{NP} -трудное по Куку множество \Rightarrow $\mathbf{PH} = \Sigma^2 \mathbf{P}$.
- 9. Вероятностные алгоритмы. $\mathbf{BPP} \subseteq \Sigma^2 \mathbf{P}$. $\mathbf{BPP/poly} = \mathbf{P/poly}$.
- 10. Уменьшение вероятности ошибки алгоритма из **BPP** с использованием небольшого количества случайных битов.
- 11. Лемма Вэлианта-Вазирани.
- 12. Параллельные вычисления. $\mathbf{NC}^1 \subset \mathbf{DSpace}(\log) \subset \mathbf{NSpace}(\log) \subset \mathbf{NC}^2$.
- 13. IP = PSPACE.
- 14. Теорема Тода́ (первая часть: $\mathbf{PH} \subset \mathbf{BPP}^{\oplus \mathbf{P}}$).
- 15. Теорема Тода́ (вторая часть: $\mathbf{BPP}^{\oplus \mathbf{P}} \subset \mathbf{P^{PP}}$).
- 16. ???
- 17. ???