Laboratorio 4

Curso de verano 2025

Presentación general de la materia

Pablo Cobelli

Departamento de Física, FCEN UBA

Pequeño paréntesis para resolver las plazas de cursada

Por qué tenemos plazas limitadas?

- 8 experiencias diferentes para trabajar3 integrantes por grupo
- = 24 plazas disponibles en cada cursada

Otras limitaciones no despreciables

- disponibilidad de plantel docente (incluyendo pañoleros)
- disponibilidad de prácticas experimentales
- disponibilidad de equipos de medición y/o control

Pequeño paréntesis para resolver las plazas de cursada

Correlatividades para cursar Laboratorio 4

- Laboratorio 2 (final)

- Laboratorio 3 (final)
 Física 2 (final)
 Física 3 (final)
 Física 4 (trabajos prácticos)

Correlatividades para aprobar el final de Laboratorio 4

• Física 4 (final)

Objetivos de Laboratorio 4

Objetivos de la materia

- Estudio experimental de fenómenos físicos complejos (i.e., multiárea)
- Primer paso en la aproximación al trabajo en un laboratorio de investigación

Objetivos en el desarrollo formativo

- comenzar a forjar autonomía en el trabajo experimental
- generar criterio para planificar y conducir experiencias
- desarrollar workflows productivos en el laboratorio
- estimular el pensamiento crítico vía análisis de datos
- motivar las discusiones de conceptos físicos* (no sólo de los fenómenos)

Quiénes somos

- Damián Pérez
- María del Pilar Campos Marino
- Gianni Moretti
- Tomás Bazzano
- Pablo Cobelli

Condiciones de regularidad

- Llegar en horario a cada clase
- Ausencia a 1 (una) única clase (con o sin justificativo!)

Instancias de evaluación

La nota final de la materia (en caso de aprobarla) será un promedio pesado de las siguientes instancias de evaluación:

- Cuaderno de laboratorio (analógico o digital, es indistinto)
- Informes de prácticas (entrega y discusión en las devoluciones)
- Trabajo en clase
- Respuesta a preguntas de los docentes durante la clase
- Ciclo de charlas breves (10 min) durante el curso
- Póster y su exposición

Desarrollo de las clases

Las clases se desarrollarán de la siguiente forma:

- usaremos la primera media hora de las clases para breves explicaciones generales cuando sean necesarias (sobre todo al principio del curso)
- ciclo de charlas breves sobre herramientas de análisis (10 min + preguntas)

Luego:

- solicitar materiales (llegar con listado de instrumentos y materiales necesarios*)
- armar la experiencia de trabajo (sin encendido)
- solicitar revisión con un docente
- toma de mediciones y análisis de datos
- discusión con docentes, consultas, etc.

Acerca de las guías prácticas de la materia (parte 1)

Temáticas

- Difusividad
- Resistividad
- Piezoelectricidad
- Ferromagnetismo
- Vacio y transferencia de calor
- Peltier y medición de temperatura
- Módulo de Young vía método estático
- Módulo de Young vía método dinámico

Acerca de las guías prácticas de la materia (parte 2)

Espíritu de las guías

Las prácticas constituyen, en buena medida, un escenario donde ensayar métodos experimentales y técnicas avanzadas de análisis de datos.

Enfoque del curso

- instrumentación
- automatización de mediciones
- comunicación y control de instrumentos asistidos por computadora
- técnicas avanzadas de medición
- procesamiento digital de mediciones
- técnicas análisis de datos
- interpretación física de resultados

Procesamiento de señales y análisis de datos

Tanto para series temporales como para imágenes, buscamos explorar las siguientes técnicas de procesamiento y análisis de datos

- integración
- filtrado de ruido
- transformada rápida de Fourier*
- demodulación homodina
- detección de señales en condiciones de baja SNR

Cronograma de la materia

- 14 clases 1 feriado inamovible = 13 clases
- $\frac{1}{2}$ clase de introducción + repaso + nivelación
- 4 prácticas por grupo; la dedicación horaria es
 - P1: 2 + $\frac{1}{2}$ clases
 - P2: 3 clases
 - o P3: 3 clases
 - P4: 2(+1) clases
- ciclo de charlas centradas en temas de laboratorio de física
- preparación de póster y exposición final (P3; ya entregada y devuelta por los docentes)

Ciclo de charlas durante el curso (I)

Objetivo

- revisitar conceptos ahora con mayor madurez
- hacer una exposición consistente e incremental en complejidad
- comprender por qué trabajamos como trabajamos en el laboratorio
- sentar un base sólida tanto para el trabajo en el laboratorio como para la lectura crítica de resultados experimentales (propios o ajenos)

En qué consiste esta propuesta

- Cada clase (a partir del 6/2) un grupo realizará una presentación de 10 minutos sobre un tema que le será asignado
- Las dos presentaciones iniciales (30/1 y 3/2) estarán a cargo de los docentes
- Cada charla construirá conceptos sobre la base de las anteriores
- Conforme avance el curso las temáticas ganarán complejidad

Ciclo de charlas durante el curso (II)

Temáticas

- Magnitudes físicas y unidades
- Incerteza en mediciones directas e indirectas
- Conceptos básicos de probabilidad y estadística
- Distribuciones de variables aleatorias
- Niveles de confianza
- Correlación entre magnitudes físicas
- Test de hipótesis χ²

Fuente bibliográfica*

The Uncertainty in Physical Measurements: An Introduction to Data Analysis in the Physics Laboratory, Paolo Fornasini (Springer Verlag, 2008).

Entrega de informes

Para la entrega de informes vamos a usar Google Classroom. Les daremos más detalles sobre cómo usarlo cuando nos aproximemos a la primera entrega de informe.

De mientras, el Google Classroom del curso está en:

https://classroom.google.com/c/Njg4MTE1MjcwNzQ0

Bibliografía de la materia

- Bibliografía particular de cada guía
- Bibliografía transversal o material de referencia
- Manuales de instrumentos

Material de referencia

Sobre incertezas en mediciones

- Introduction to error analysis; Taylor.
- Introduction to uncertainty in measurement; Kirkup & Frenkel.
- The uncertainty in physical measurements; Fornasini.

Sobre análisis estadístico

- Statistical data analysis; Cowan.
- Basic concepts of data and error analysis; Kaloyerou.

Sobre señales eléctricas y electrónica

• The art of electronics; Horowitz & Hill.

Sobre el uso de Python para análisis de datos

• Python for data analysis; McKinney.

Acerca del material disponible de cursadas previas

- Los docentes de la materia desarrollaron y depuraron mucho material y actividades durante las cursadas no-presenciales (pandemia)
- Nuestra intención es utilizar ese material como complemento a las guías
- Ese material estará a disposición de uds (en la página de la materia)
- Les recomendamos fuertemente consultarlo y aprovecharlo!

Formación de grupos

Sólo una persona por grupo, escanee este código QR

https://forms.gle/ebG1u7ysHG7AS1iUA

y complete el formulario con los números de libreta universitaria de cada integrante del grupo