Gestion des données Business intelligence

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>

Master Statistiques Sorbonne Université

2022-2023

Business intelligence

ETL: Extract - Transform - Load

- Récupérer les données là où elles sont
- ▶ Transformer les données si besoin
- Stocker les données de façon exploitable

Data Warehouse

- Stockage des données
- Toute l'histoire de l'entreprise
- Stable dans le temps

OLAP: Online Analytical Processing

- Données en grande dimension
- Visualisation, structuration
- Pas forcément de traitement statistique compliqué

Processus

Stockages

Base de données opérationnelle

- Fonctionnement normal de l'entreprise
- Pas forcément un historique très grand
- Peut changer dans le temps

Datawarehouse

- Stockage pour le Bl
- Archivage sur toute l'histoire de l'entreprise
- Format stable dans le temps

Datamart

- Vue métier
- À destination du décideur

Entrepôt de données

Datawarehouse

Le terme entrepôt de données (ou base de données décisionnelle, ou encore data warehouse) désigne une base de données utilisée pour collecter, ordonner, journaliser et stocker des informations provenant de base de données opérationnelles et fournir ainsi un socle à l'aide à la décision en entreprise.

Datamart

Un DataMart (littéralement en anglais magasin de données) est un sous-ensemble d'un DataWarehouse destiné à fournir des données aux utilisateurs, et souvent spécialisé vers un groupe ou un type d'affaire.

Flux de données et données statiques

Données statiques

- Image à un instant donné de l'état de l'entreprise
- Rapports d'activité, bilans, inventaire

Flux de données

- Mise à jour en temps réel
- Compte rendus quotidiens, commandes, livraisons

Datawarehouse

- Archivage sur toute l'histoire de l'entreprise
- Format stable dans le temps

Objectifs

Stockage de toute l'information de l'entreprise

Collecter: récupérer l'information

Ordonner: structurer l'information

▶ **Journaliser**: conserver l'historique de l'information

Comparaison

	Base opérationnelle	Entrepôt de donnée	
Rôle	Fonctionnement quotidien	Prise de décision	

Contenu Information utile à un moment précis Historique des données Utilisateurs Techniciens, vendeurs Gestionnaires, analystes Usage Requêtes simples, prévisibles Requêtes complexes, spécifiques Conception Performances et disponibilité Flexibilité et facilité d'accès Requêtes Mise à jour fréquentes, sur peu de lignes Mise à jour périodiques, requêtes sur toute la base

Données orientées sujets

Production

Données organisées par processus fonctionnels

Aide à la décision

- Données organisées par thème
- À travers plusieurs fonctions, services, départements, etc

Modèle relationnel

Avantages

- Normalisé, garanties de sûreté
- Requêtes efficaces

Inconvénients

- Requêtes peu adaptées pour le BI
- Beaucoup de relations
- Trop complexe pour les utilisateurs de BI

Modèle relationnel

Modèle dimensionnel

Analyse du besoin

- Que veut l'utilisateur ?
- Sur quoi l'analyse porte-t-elle ?
- Quels sont les objets à étudier ? Selon quels critères ?

Contenu de l'entrepôt

- ► Faits: évènements élémentaires
- **Dimensions**: critères utilisés

Modèle dimensionnel

Faits

- Événements élémentaires intéressants l'entreprise
- Décrits par des *mesures* organisées selon des *dimensions*

Dimensions

Axes utilisés pour l'analyse

Mesures

Caractéristiques

Modèle dimensionnel

Modèle en étoile

Exemple: contexte

Plusieurs magasins qui vendent des produits

Produit

Nom, marque, couleur, taille, fabricant

Client

- Nom, prenom, adresse
- Achète un produit dans une certaine quantité pour un certain montant

Magasin

Responsable, région

Example: questions

Questions posées par le service marketing

- Ventes globales dans le temps
- Ventes par magasin
- Ventes par produit et par magasin

Exercice

- Dessiner le schéma de l'entrepôt de données, en suivant le modèle dimensionnel
- Avec un exemple

Example: schéma

Modèle en étoile

Exemple: plus de questions

- Ventes par jours
- Ventes par mois
- Ventes par saisons
- Ventes par couleur
- Ventes par catégories de produits
- Ventes par régions

Exercice

Comment adapter le schéma ?

Exemple: schéma

Modèle en flocon

Dimensions hiérarchiques

Fait de vente

- Date
- Autres informations

Une date?

- Jour, mois, année
- Jour de la semaine
- Week-end, pas week-end
- Vacances pas vacances
- Année civile, scolaire, fiscale

Dimensions hiérarchiques

Stabilité et flexibilité dans le temps

Objectif de l'entrepôt

- Stocker toutes les données sur toutes l'histoire de l'entreprise
- De façon organisée

Un produit change de nom

On veut se souvenir que ça reste le même produit

Dimensions à évolution lente

Définition

Changement de la description d'un objet dans la base

Exemples

- Nom d'un produit
- Adresse d'un client
- Fournisseur d'un produit

Solutions

Type 0

- ▶ Ne rien faire: l'application au-dessus s'en charge
- Dangereux

Type 1

- Écraser l'ancienne valeur
- Perte d'une partie de l'historique

Type 2

- Numéros de version ou dates de début et de fin
- Changements dans le passé délicats

Solutions

Type 3

- Colonnes supplémentaires pour stocker les anciennes valeurs
- Historique limité

Type 4

- Tables supplémentaires pour stocker les anciennes versions
- Plus de tables

Exemples

Donnée de base

Key	Code	Name	State
123	ABC	Acme Supply Co	CA

Changement de l'origine du produit

Type 1

Key	Code	Name	State
123	ABC	Acme Supply Co	IL

Exemples

Type 2

Versions:

Key	Code	Name	State	Version
		Acme Supply Co Acme Supply Co		0
147	, LDC	Actific Supply Co	16	1

Dates:

Key	Code	Name	State	StartDate	EndDate
123	ABC	Acme Supply Co	CA	01-Jan-2000	21-Dec-2004
124	ABC	Acme Supply Co	IL	22-Dec-2004	NULL

Exemples Type 3

Key	Code	Name	OriginalState	CurrentState	EffectiveDate
123	ABC	Acme Supply Co	CA	IL	22-Dec-2004

Type 4

Supplier:

Key	Code	Name	State
124	ABC	Acme Supply Co	IL

History:

Key Code Name State CreateDate

Analyse en ligne

Tableaux multidimensionnels

Hypercube

Cases

- Décrites par des dimensions
- Contenant une ou plusieurs mesures

Hypercube

OLAP: Online Analytical Processing

Online

Résultat obtenus immédiatement

Transversal

- Plusieurs départements
- Plusieurs activités

Prise de décision

Opposé du système opérationnel

OLAP

Opérations génériques

- ► Par des non-experts
- Peu importe la nature des données

But

Calcul et mise à jour des hypercubes

Requêtes dans l'hypercube

Langage de requête

Hiérarchies

Différents niveaux de détails possibles.

Manipulation du cube

- Rotate: sélection des dimensions
- Slicing: extraction d'une tranche
- Scoping: extraction d'un bloc de données
- Drill-up: zoom arrière
- Drill-down: zoom avant
- Drill-through: mouvement dans une dimension

Rotate

Slicing

Drill-up, drill-down

- ► Drill-up: plus de détails
- ▶ Drill-down: moins de détails

Drill-through

Mouvement selon une dimension

- ► Valeurs proches
- Proche selon quel critère ?
- Ordre numérique, alphabétique, proximité géographique, data-mining

Requêtes sur le cube

MDX: multidimensioal expressions

- Proche du SQL et des tableurs
- Traduction des demandes vers le stockage concret

Exemple

```
SELECT
{ [Measures].[Store Sales] } ON COLUMNS,
{ [Date].[2002], [Date].[2003] } ON ROWS
FROM Sales
WHERE ( [Store].[USA].[CA] )
```