Polynômes de Tchebychev

Partie I

On définit une suite de polynômes $\left(T_{n}\right)_{n\in\mathbb{N}}$ en posant $T_{0}=$ 1, $T_{1}=X$ et $\,\,\forall n\in\mathbb{N}$, $\,\,T_{n+2}=2XT_{n+1}-T_{n}$.

Ces polynômes sont appelés polynômes de Tchebychev de première espèce.

- 1.a Expliciter T_2 et T_3 .
- 1.b Déterminer le degré du polynôme T_n ainsi que son coefficient dominant.
- 2.a Etablir que pour tout $n \in \mathbb{N}$ et tout $\theta \in \mathbb{R}$, on a $T_n(\cos \theta) = \cos n\theta$.
- 2.b En déduire les valeurs de $T_n(1)$ et $T'_n(1)$.
- 2.c Pour $n\in\mathbb{N}^*$, déterminer les racines de T_n appartenant à l'intervalle [-1,1]. Combien y en a-t-il ? Qu'en déduire ?

Partie II

L'objectif de cette partie est de calculer $\lim_{n\to +\infty} S_n$ où $S_n = \sum_{k=1}^n \frac{1}{k^2}$.

1.a Réaliser la décomposition en éléments simples de $\frac{1}{X(X-1)}$.

En déduire la valeur de la somme $\sum_{k=2}^n \frac{1}{k(k-1)}$ et que pour tout $n \ge 1$, $S_n \le 2 - \frac{1}{n}$.

- 1.b Etablir que la suite (S_n) converge. On note ℓ sa limite.
- 2. On introduit $S'_n = \sum_{k=1}^n \frac{1}{(2k-1)^2}$.
- 2.a Former une relation exprimant S_{2n} en fonction de S_n et S'_n .
- 2.b En déduire que (S'_n) converge et exprimer sa limite ℓ' en fonction de ℓ . Nous allons maintenant poursuivre l'étude en calculant ℓ' à l'aide des polynômes de Tchebychev :
- 3. Soit $n \in \mathbb{N}^*$. Pour $k \in \{1,...,n\}$, on note $x_k = \cos \frac{(2k-1)\pi}{2n}$ les racines de T_n .
- 3.a Etablir l'égalité $\frac{T'_n}{T_n} = \sum_{k=1}^n \frac{1}{X x_k}$.
- 3.b En déduire $\sum_{k=1}^{n} \frac{1}{1 \cos \frac{(2k-1)\pi}{2n}} = n^2$,

puis les valeurs des sommes : $\sum_{k=1}^n \frac{1}{\sin^2 \frac{(2k-1)\pi}{4n}} \text{ et } \sum_{k=1}^n \frac{1}{\tan^2 \frac{(2k-1)\pi}{4n}} \, .$

- 4.a Justifier par un argument de convexité que, pour tout $x \in \left[0, \frac{\pi}{2}\right]$: $\sin x \le x \le \tan x$
- 4.b En déduire un encadrement de S'_n puis les valeurs de ℓ' et ℓ .