Shortest Path Problems

- Find the shortest path from V_1 to V_2 .
- Find the shortest path from V₁ to every vertex (Single Source Shortest Paths).
- Find the shortest path for all pairs of vertices (All Sources Shortest Paths).

Single Source Shortest Paths (Dijkstra's Algorithm)

Settled/Known: A

Candidates: B [distance (path cost) = 12]

C [distance (path cost) = 6]

Settled/Known: A, C

Candidates: B [distance (path cost) = 12]

E [distance (path cost) = 10]

Settled/Known: A, C, E

Candidates: B [distance (path cost) = 12]

D [distance (path cost) = 20]

Settled/Known: A, B, C, E

Candidates: D [distance (path cost) = 14]

Distance table	0	12	6	∞	∞
Index	A	В	C	D	E

Pick the smallest distance (consider only the unvisited vertices) and update the distance table:

Distance table	0	12	6	∞	∞
Index	A	В	C	D	E
Distance table	0	12	6	∞	10

Pick the smallest distance (consider only the unvisited vertices) and update the distance table:

Distance table	0	12	6	∞	10
Index	A	В	C	D	E
Distance table	0	12	6	20	10

Pick the smallest distance (consider only the unvisited vertices) and update the distance table:

Distance table	0	12	6	20	10
Index	A	В	C	D	E
Distance table	0	12	6	14	10

