Assignment 10

Akhila Kumbha, CS21BTECH11031

June 14, 2022

Outline

Question

Solution

Question

The random variable x is uniformly distributed in the interval $\theta - 2 < x < \theta + 2$. We observe 100 samples x_i and find that their average equals $\bar{x} = 30$. Find the 0.95 confidence interval of θ .

Solution

In this problem, x is uniform with $E\left\{x\right\}=\theta$ and $\sigma^2=\frac{4}{3}$. We can use , however, the normal approximation for \bar{x} because n =100. Here, $\gamma=0.95$ We know,

$$\gamma = 1 - \delta \tag{1}$$

$$\implies \delta = 1 - \gamma = 1 - 0.95 = 0.05$$
 (2)

Also,

$$u = 1 - \frac{\delta}{2} = 1 - \frac{0.05}{2} = 0.975 \tag{3}$$

Standard normal percentile z_u for $u=1-\frac{\delta}{2}$ is $z_{0.975}$ which is equal to 1.967.

We obtain the interval

$$\bar{x} \pm z_{0.975} \frac{\sigma}{\sqrt{n}} = 30 \pm 1.967 \frac{\frac{2}{\sqrt{3}}}{\sqrt{100}}$$
 (4)

$$=30\pm 1.967\frac{1}{5\sqrt{3}}\tag{5}$$

$$=30\pm0.227$$
 (6)