

Modelagem de Dados





# **Material Teórico**



### Responsável pelo Conteúdo:

Prof. Ms. Rafael de Alencar Segura

#### Revisão Textual:

Profa. Ms. Magnólia Gonçalves Mangolini

#### Revisão Técnica:

Prof. Ms. Douglas Almendro

## UNIDADE Conceitos Iniciais



- Introdução
- Redundância de Dados
- Aplicação dos Bancos de Dados
- SGBD O Sistema Gerenciador de Banco de Dados
- Modelo de Dados





Na unidade I da disciplina Modelagem de Dados, trataremos sobre a importância dos bancos de dados, os principais termos desta área tais como BD e SGBD e suas principais características. Abordaremos também os modelos de dados e suas diferenças.

Figue atento aos prazos!

Hoje trabalharemos assuntos introdutórios, na nossa disciplina.

Aproveito para apresentar-lhe alguns conceitos que iremos utilizar na estrutura de todas as nossas unidades.

Para obter um bom aproveitamento nesta unidade, vamos conferir sua estrutura:

- ✓ Conteúdo Teórico: nesse link você encontrará o material principal de estudos na forma de texto escrito.
- ✓ Apresentação Narrada: aqui você terá acesso a um resumo com os principais tópicos do conteúdo teórico na forma de Power Point e áudio.
- ✓ Exercícios de Sistematização: os exercícios disponibilizados são de autocorreção, cujo intuito é praticar o que você aprendeu na disciplina e identificar os pontos em que precisa prestar mais atenção, ou pedir esclarecimentos a seu tutor. Além disso, as notas atribuídas aos exercícios serão parte de sua média final na disciplina.

- ✓ **Fórum de Discussão ou Produção Textual:** em cada Unidade, além dos exercícios de sistematização, você participará de um fórum de discussão sobre o tema da Unidade, ou terá de produzir um pequeno texto. As instruções para cada uma das atividades estarão sempre disponíveis num link identificado. Essa atividade poderá ser pontuada.
- ✓ Material Complementar e Referências Bibliográficas: nestes links você poderá ampliar seus conhecimentos.
- √ Vídeo Aula: nestes links serão apresentadas algumas ferramentas e também a resolução de alguns exercícios de forma prática. Observação: este item não aparecerá em todas as unidades.

Lembre-se da importância em realizar todas as atividades propostas dentro do prazo estabelecido para cada Unidade, dessa forma, você evitará que o conteúdo se acumule; evitará ainda problemas ao final do semestre.

Uma última recomendação, caso tenha problemas para acessar algum item da disciplina, ou dúvidas com relação ao conteúdo: não deixe de entrar em contato com seu professor tutor através do botão mensagens.

### Contextualização

Certamente vocês estão ansiosos em saber sobre o que trataremos nesta disciplina!

O termo modelagem de dados significa na prática modelar ou projetar soluções em termos de banco de dados, para resolvermos problemas do mundo real. Para isto, iremos, neste momento, introduzir o assunto com bastante ênfase aos conceitos teóricos usados na área, para em um segundo momento colocarmos em prática, através de ferramentas, os conceitos aprendidos nesta unidade.



### Introdução



Este material apresenta os conceitos dessa unidade. Trataremos sobre a importância dos bancos de dados, os principais termos desta área, tais como BD e SGBD, e suas principais características. Abordaremos também os modelos de dados e suas diferenças.

### Redundância de Dados



A redundância de dados ocorre quando você tem a mesma representação da informação diversas vezes, no computador. Temos dois tipos de redundância, segundo [Heuser, 2004]:

- Controlada: quando o próprio sistema conhece a redundância e é responsável por sincronizar as representações. A grande vantagem deste tipo de redundância é a confiabilidade e também o desempenho global do sistema. Um exemplo são os sistemas distribuídos.
- **Não Controlada:** quando o usuário é o responsável por sincronizar as representações. Esta abordagem traz inúmeros problemas uma vez que gera:
  - o Entrada repetida da mesma informação
  - o Inconsistência de dados

A solução para a redundância não controlada é o compartilhamento de dados, que é uma das principais características do sistema gerenciador de banco de dados.

### Aplicação dos Bancos de Dados



Atualmente os bancos de dados estão presentes na vida da maioria das pessoas, sem que elas percebam. Um exemplo é: você já se perguntou sobre o que armazena seus dados, tais como CPF, RG, Certidão de Casamento, e outros documentos? Ou até mesmo quando vamos até uma loja para comprar um produto de forma parcelada, é necessário um cadastro... onde ficam armazenados os dados deste cadastro? A resposta é simples! Todos estes dados ficam armazenados em um tipo de sistema computadorizado, denominado de **B**anco de **D**ados, ou seja **BD**. A definição de um **BD**, segundo [Heuser,2009], é: um banco de dados = um conjunto de dados integrados que atendem a uma comunidade distinta de usuários.

Os bancos de dados estão presentes no nosso dia a dia:

- Compra de bilhetes aéreos
- Compra em um site de e-commerce
- Pesquisa de antecedentes criminais
- Sistema de notas de uma universidade
- Teatro, na venda de ingressos
- Bancos

### SGBD - O Sistema Gerenciador de Banco de Dados



O SGBD é um sistema que tem por objetivo final gerenciar os dados existentes em um banco de dados. Um exemplo deste mecanismo é apresentado através da figura 1.



### Principais SGBDs do Mercado

- Oracle
- SQL Server
- DB2
- Mysql
- Postgree

Os SGBDs têm como principais características:

- ✓ controle de redundância informações devem possuir um mínimo de redundância, visando a estabelecer estabilidade do modelo;
- ✓ compartilhamento de dados as informações devem estar disponíveis para qualquer número de usuários de forma concomitante e segura;



- ✓ controle de acesso necessidade de saber quem pode realizar qual função dentro do banco de dados:
- ✓ esquematização os relacionamentos devem estar armazenados no banco de dados para garantir a facilidade de entendimento e aplicação do modelo;
- ✓ natureza autodescritiva do sistema de banco de dados através dos catálogos existentes no BD que contém: informações sobre a estrutura de cada arquivo, tipo e formato de armazenamento de cada item de dado e várias restrições sobre os dados. Estes dados são os metadados, ou seja, descrevem dados sobre dados;
- ✓ isolamento entre os programas e os dados, e a abstração de dados diferente do processamento tradicional de arquivos (em que a estrutura do arquivo de dados está embutida no programa da aplicação), os programas que acessam o banco não exigem essa alteração na maioria dos casos.

Exemplo: Sistema tradicional de arquivos: se acrescentado um campo (data de nascimento, por exemplo) no arquivo de clientes, será necessário alterar todos os programas que acessam este arquivo. Em um Banco de dados, não existe a necessidade de alterar todas as aplicações que acessam essa tabela.

✓ Suporte para as múltiplas visões dos dados - um banco de dados normalmente tem muitos usuários, e cada qual pode solicitar diferentes visões do BD. Visão = é um subconjunto de dados que contém um "resumo" de uma ou mais tabelas.

Por exemplo, um usuário A precisa ter acesso somente ao histórico de cada aluno, conforme item (a) e outro usuário B precisa ter acesso aos pré-requisitos de cada curso conforme item (b).

(a) Histórico Escolar do Aluno HISTORICO\_ESCOLAR NomedoAluno NumerodoCurso **IdDisciplina** Nota Semestre Ano CC1310 C 99 119 Outono Smith MAT2410 В 99 112 Outono MAT2410 Outono 98 Α 85 CC1310 Outono 98 92 Brown CC3320 В Primavera 99 102

CC3380

Outono

99

135

(b)

PRE\_REQUISITOS NomedoAluno NumerodoCurso Pre\_Requisitos

Banco de Dados CC3380 CC3320

MAT2410

Estruturas de Dados CC3320 CC1310

### Modelo de Dados



#### Modelo

Primeiramente gostaria de saber o que você pensa a respeito do conceito de modelo? Pensou? Um modelo nada mais é do que uma **abstração da realidade. Os modelos são utilizados em todas as áreas do conhecimento, a saber:** 

- Montadora de automóveis [os famosos protótipos]
- Construtora [ plantas/maquetes]
- Computação [ diagramas UML, DER, protótipos]

A modelagem de dados nada mais é do que uma proposta de resolução de um problema existente no mundo real.

Um SGBD é classificado de acordo com o modelo de dados. Abaixo apresentamos alguns deles.

#### Modelo hierárquico

- o **Surgimento:** década de 60
- o **Aplicação:** sistemas de grande porte (seguradoras, sistemas bancários etc.).
- o **Características:** ainda utilizado em mainframes. É considerado o primeiro banco de dados que se tem notícia.
- o **Exemplos:** IMS, ADABAS e o System 2000



10



#### Modelo de Redes

o **Surgimento:** em meados da década de 60

o Aplicação: em sistemas de computadores de grande porte

#### Características:

- No modelo em rede as informações são representadas por uma coleção de registros e o relacionamento entre elas é formado através de ligações (link);
- Extensão do modelo hierárquico;
- É uma relação membro-proprietário, na qual um membro pode ter muitos proprietários.
- o **Exemplos:** IDMS e TOTAL



Em um BD estruturado como um modelo em rede, há frequentemente mais de um caminho para acessar um determinado elemento de dado.

A principal diferença entre a abordagem hierárquica e a abordagem em rede é que um registro-filho tem exatamente um pai na abordagem hierárquica, enquanto na estrutura de rede um registro-filho pode ter qualquer número de pais.

#### Modelo Relacional (dos mais utilizados na atualidade)

- o **Surgimento:** em meados da década de 1970
- o Aplicação: sistemas comerciais, bancários, contábeis, entre outros.
- o Características: é relacional, os dados são armazenados em tabelas. Por exemplo, para elaboração de um relatório, buscamos dados em diferentes tabelas por meio dos relacionamentos que é um conceito fundamental para banco de dados relacionais. Temos duas "categorias" de banco de dados relacional : os pagos e os gratuitos.

#### o Exemplos:

| Num-Matrícula | Nome-Aluno | Sexo-Aluno |
|---------------|------------|------------|
| 1             | Maria      | F          |
| 2             | João       | M          |
| 3             | Pedro      | M          |
| 4             | Carla      | F          |
| 5             | Sandra     | F          |

#### Regras:

- Nomes de tabelas devem ser únicos no banco de dados;
- De preferência a nomes no singular;
- De preferência a nomes curtos.

#### o Pagos:

• Oracle, Sqlserver.

#### o Gratuitos:

Mysql, Postgree.

| (a) |                            |             |               |        |           |     |              |
|-----|----------------------------|-------------|---------------|--------|-----------|-----|--------------|
| (/  | Histórico Escolar do Aluno |             |               |        |           |     |              |
|     | HISTORICO_ESCOLAR          | NomedoAluno | NumerodoCurso | Nota   | Semestre  | Ano | IdDisciplina |
|     |                            | Cuaith      | CC1310        | C      | Outono    | 99  | 119          |
|     | Smith                      | SITIILIT    | MAT2410       | В      | Outono    | 99  | 112          |
|     |                            |             | MAT2410       | Α      | Outono    | 98  | 85           |
|     |                            | Brown       | CC1310        | Α      | Outono    | 98  | 92           |
|     |                            |             | CC3320        | В      | Primavera | 99  | 102          |
|     |                            | CC3380      | Α             | Outono | 99        | 135 |              |

| (b) |                |                     |               |                |
|-----|----------------|---------------------|---------------|----------------|
| ( ) | PRE_REQUISITOS | NomedoAluno         | NumerodoCurso | Pre_Requisitos |
|     |                | Banco de Dados      | CC3380        | CC3320         |
|     |                |                     | CC3360        | MAT2410        |
|     |                | Estruturas de Dados | CC3320        | CC1310         |

Figura 3 – Exemplo de Tabelas [Elmasri,2005]

#### • Modelo Orientado a Objetos

- o **Surgimento:** originalmente por volta de 1985
- o **Aplicação:** Multimídia, GIS Geographic Information Systems.
- o **Características:** funcionalidades de orientação a objetos são integradas às do banco de dados.
- o Exemplos: OO: ONTOS, Jasmine, Caché.

Vistas essas questões introdutórias sobre Banco de dados, vamos às atividades?



## **Material Complementar**

Caro aluno,

Como complemento desta unidade, sugiro a leitura do capítulo I do livro:

Heuser, Calos Alberto. Projeto de Banco de Dados. 6. ed - Porto Alegre: Bookman, 2009.



### **Explore**

Para maiores informações sobre o livro e autor, basta acessar: <a href="http://www.inf.ufrgs.br/~heuser/">http://www.inf.ufrgs.br/~heuser/</a>

### Referências

Elmasri, Ramez. Sistemas de Banco de Dados. 4. ed. São Paulo: Pearson Addison Wesley, 2005.

Fanderuff, Damaris. Dominando o Oracle 9i: Modelagem e Desenvolvimento. São Paulo : Pearson Education do Brasil, 2003.

Heuser, Calos Alberto. Projeto de Banco de Dados. 6. ed. Porto Alegre: Bookman, 2009.



| Anotações |  |
|-----------|--|
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |



www.cruzeirodosulvirtual.com.br Campus Liberdade Rua Galvão Bueno, 868 CEP 01506-000 São Paulo SP Brasil Tel: (55 11) 3385-3000











