/TYO YHUBEPCUTET UTMO

«Моделирование»

АЛИЕВ Тауфик Измайлович, Лектор:

доктор технических наук, профессор

Национальный исследовательский университет ИТМО (НИУ ИТМО)

Факультет программной инженерии и компьютерной техники

3. ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ

- 1. Диаграммы функционирования одноканальной СМО
- 2. Методы формирования псевдослучайных величин
- 3. Сравнение методов формирования псевдослучайных величин с заданным законом распределения
- 4. Введение в GPSS
- 5. Классификация объектов GPSS
- 6. Операторы и структура GPSS-моделей
- 7. Процесс моделирования
- 8. Транзакты и модельное время
- 9. Завершение моделирования и списки
- 10. Простейшая GPSS-модель CMO D/U/1
- 11. Основные операторы блоков GPSS World
- 12. Стандартный отчет GPSS-модели СМО D/U/1
- 13. Операторы блоков GPSS World
- 14. GPSS-модель CMO M/U/5
- 15. GPSS-модель СМО с накопителем ограниченной емкости
- 16. GPSS-модель с гистограммой времени ожидания
- 17. GPSS-модель с произвольной гистограммой
- 18. Системные числовые атрибуты (СЧА / SNA)
- 19. GPSS-модель с обслуживанием по Эрлангу
- 20. Реализация гиперэкспоненциального распределения

Литература

для самостоятельной подготовки

1. Алиев Т.И. Основы моделирования дискретных систем. – СПб: СПбГУ ИТМО, 2009. – 363 с.

(Раздел 6 «Имитационное моделирование»)

https://books.ifmo.ru/book/445/osnovy_modelirovaniya_diskretnyh_sistem.htm

Методы формирования псевдослучайных величин

1. Равномерно распределённых в интервале (0; 1):

- а) метод квадратов;
- b) метод произведений;
- с) конгруэнтные методы;
- d) модификации перечисленных методов.

а) метод квадратов

Исх.число	Квадрат	Сл. число
7153	51 1654 09	→ 0,1654
1654	02 7357 16	0,7357
7357	54 1254 49	0,1254
1254	01 5725 16	0,5725
5725	32 7756 25	0,7756
7756	60 1555 36	0,1555
Исх.число	Квадрат	Сл. число
Исх.число 1357	Квадрат 01 8414 49	Сл. число > 0,8414
1357	01 8414 49	0,8414
1357 8414	01 8414 49 70 7953 96	0,8414 0,7953
1357 8414 7953	01 8414 49 70 7953 96 63 2502 09	0,8414 0,7953 0,2502

б) метод произведений

Ядро (множитель) = 5167

Множимое	Произведение	Сл. число
3729	19 2677 43	0,2677
7743	40 0080 81	0,0080
8081	41 7545 27	0,7545
4527	23 3910 09	0,3910
1009	05 2135 03	0,2135
3501	••••	

Длина периода генератора случайных величин

Методы формирования псевдослучайных величин

1. Равномерно распределённых в интервале (0; 1):

- а) метод квадратов;
- b) метод произведений;
- с) конгруэнтные методы;
- d) модификации перечисленных методов.

Смешанный конгруэнтный метод:

$$X_{i+1} = \lambda X_i + \mu(\text{mod } m)$$
 $(i = 0, 1, 2, ...)$

 λ – множитель; μ – аддитивная константа; m – модуль

Мультипликативный конгруэнтный метод ($\mu = 0$):

Множитель = 1357; модуль (делитель) = 5689

Исх.	Произве-	Частное,		Сл. Число
число	дение	(целая часть)	ТОК	(дробн.часть)
1357	1 8414 49	323	3902	0,6859
3902	5 2950 14	930	4244	0,7460
4244	5 7591 08	1012	1840	0,3234
1840	•••		• • •	•••

Сл.число=Остаток/модуль

Методы формирования псевдослучайных величин

2. С заданным законом распределения:

а) аналитический метод

$$F(x) = 1 - e^{-\alpha x} = s$$

$$s = 1 - e^{-\alpha x}$$

$$e^{-\alpha x} = 1 - s$$

$$-\alpha x = \ln(1 - s)$$

$$x = -\frac{1}{\alpha}\ln(1 - s)$$

$$x = -\frac{1}{\alpha}\ln s$$

b) <u>табличный метод</u>

F(x)	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.75	0.8	0.84	0.88
X	0	0.104	0.222	0.335	0.509	0.69	0.915	1.2	1.38	1.6	1.83	2.12
F(y)	0.0	0.92	0 94 0	05 0 0	06 0 97	0 08	0 00	0 995	0 998 0	000 0	9997	

F(x)	0.9	0.92	0.94	0.95	0.96	0.97	0.98	0.99	0.995	0.998	0.999	0.9997
X	2.3	2.52	2.81	2.99	3.2	3.5	3.9	4.6	5.3	6.2	7	8

с) метод композиций

[•]распределение Эрланга — сумма нескольких экспоненциальных величин с одинаковым матожиданием (гипоэкспоненциальное распределение - с разными матожиданиями);

[•]гиперэкспоненциальное распределение – вероятностная смесь экспоненциальных величин с разными матожиданиями.

Сравнение методов формирования псевдослучайных величин с заданным законом распределения

Аналитический метод

Достоинства:

- высокая точность метода;
- не требуется память для хранения многочисленных таблиц.

Недостатки:

- конечная формула может содержать функции (логарифмы и т.п.), что значительно увеличивает затраты времени;
- невозможность получения конечной формулы в явном виде для многих законов распределений;
- использование же численных методов для вычисления интегралов приводит к погрешностям и затратам времени.

Табличный метод

<u>Достоинства:</u>

- возможность построения таблиц для любых законов распределения;
- возможность обеспечения заданной точности формирования случайных чисел за счет уменьшения шага табуляции;
- простые вычисления (линейная интерполяция) и, как следствие, небольшое время формирования случайных величин.

Недостатки:

- значительные затраты памяти для хранения большого числа таблиц с разными законами распределений;
- наличие методической погрешности, обусловленной применением линейной интерполяции;
- уменьшение методической погрешности формирования случайных последовательностей может быть достигнуто за счет увеличения количество точек табуляции, что приводит к дополнительным затратам памяти и времени;
- для обеспечения высокой точности формирования случайных последовательностей табулирование должно выполняться с переменным шагом, выбор которого связан с определёнными проблемами.

Введение в GPSS

«Если эксперимент удался, что-то здесь не так...» (Первый закон Финэйгла)

Типовые процедуры имитационного моделирования систем с очередями:

- 1) выработка (генерирование) случайных величин равномерно распределенных и с заданным законом распределения;
- 2) формирование потоков заявок и имитация обслуживания;
- 3) организация очередей заявок;
- 4) организация службы времени;

mag1

s1d2f4

pribor

sys tem

5) сбор и статистическая обработка результатов моделирования.

<u>Система имитационного</u> <u>моделирования (СИМ)</u> GPSS World:

- •GPSS
- •PLUS
- •компилятор

Объекты СИМ GPSS World:

- 1. GPSS-модель
- 2. Процесс моделирования
- 3. Отчёт
- 4. Текстовый объект

Строковые

Выражения

Процедуры:

- стандартные (ABS, EXP, LOG, SQR, SIN, ...)
 - пользовательские

Классификация объектов GPSS

Операторы и структура GPSS-моделей

Процесс моделирования

Процесс моделирования в среде GPSS World:

- 1. Запуск процесса моделирования (Command / Create Simulation; START)
- Транзакты (GENERATE и TERMINATE)
- 3. Модельное время
- 4. Завершение моделирования (**HALT**; **STOP**; **Cч3**)
- 5. Списки: список текущих событий (СТС); список будущих событий (СБС); ...
- 6. Системные числовые атрибуты (СЧА): СЧА *объектов;* СЧА *системы;* СЧА *транзактов*
- 7. Встроенные вероятностные распределения

Транзакты и модельное время

TM=40

Процесс моделирования в среде GPSS World:

- 1. Запуск процесса моделирования (Command / Create Simulation; START)
- 2. Транзакты (GENERATE и TERMINATE)
- 3. Модельное время
- 4. Завершение моделирования (**HALT**; **STOP**; **Cч3**)
- 5. Списки: список текущих событий (СТС); список будущих событий (СБС); ...
- 6. Системные числовые атрибуты (СЧА): СЧА объектов; СЧА системы; СЧА транзактов
- 7. Встроенные вероятностные распределения

Завершение моделирования и списки

Процесс моделирования в среде **GPSS World:**

- 1. Запуск процесса моделирования (Command / Create Simulation; START)
- 2. Транзакты (GENERATE и TERMINATE)
- Модельное время
- 4. Завершение моделирования (**HALT**; STOP; C43)
- 5. Списки: список текущих событий (СТС); будущих событий (СБС); повторных попыток (СПП) ..
- Системные числовые атрибуты (СЧА): СЧА объектов; СЧА системы; СЧА транзактов
- 7. Встроенные вероятностные распределения

Завершение процесса моделирования:

- принудительно (НАLТ);
- по заданному условию (STOP);
- по счетчику завершений (Сч3):

Простейшая GPSS-модель CMO D/U/1

```
•количество обслуживающих приборов: 1;
          B(\tau)
                   •количество потоков (классов) заявок: 1;
A(\tau)
                   •ёмкость накопителя: не ограничена (равна бесконечности);
                   •интервалы между заявками в потоке: 10 с (детерминированный);
                   •длительность обслуживания заявок: 8±4 с (равномерный).
 GENERATE
              10;
                     формирование детерминированного потока заявок
 QUEUE
              1;
                     отметка момента поступления заявки в очередь 1
 SEIZE
              uzel;
                     занятия прибора с именем uzel
                     отметка момента покидания заявкой очереди 1
 DEPART
              1:
 ADVANCE
                     задержка на время 8±4 единицы времени
              8,4;
 RFI FASE
                     освобождение прибора с именем uzel
              uzel:
                     удаление заявки из модели
 TFRMINATE
 START
              100000
```

Основные операторы блоков GPSS World

GENERATE QUEUE SEIZE DEPART ADVANCE RELEASE TERMINATE	10; 1; uzel; 1; 8,4; uzel; 1;	формирование детерминированного потока заявок отметка момента поступления заявки в очередь 1 занятия прибора с именем uzel отметка момента покидания заявкой очереди 1 задержка на время 8±4 единицы времени освобождение прибора с именем uzel удаление заявки из модели
START	100000	*******

GENERATE	[A],[B],[C],[D],[E]	TERMINATE	[A]
GENERATE	10	TERMINATE	
GENERATE	25,10.5	TERMINATE	1
GENERATE	(Uniform(99,14.5,35.5))	TERMINATE	5
GENERATE	25,10,100,250,5	TERMINATE	2.5
GENERATE	(Exponential(1,0,50))		
GENERATE	10		

Основные операторы блоков GPSS World

GENERATE 10: формирование детерминированного потока заявок 1: QUEUE отметка момента поступления заявки в очередь 1 SEIZE занятия прибора с именем uzel uzel; **DEPART** 1; отметка момента покидания заявкой очереди 1 **ADVANCE** 8.4: задержка на время 8±4 единицы времени RELEASE освобождение прибора с именем uzel uzel: удаление заявки из модели TERMINATE START 100000 QUEUE A,[B] DEPART A.[B] Очередь RELEASE SEIZE **A,[B] ENTER LEAVE A,[B]** МК СМО **ADVANCE** [A],[B] QUEUE QUEUE buf er,5; **ADVANCE** 20: **ADVANCE** 10.5,10; **ENTER** did2,3; **ADVANCE** 100,FN\$Erl 1; **ENTER** s1 tu: **ADVANCE** (Exponential(35,5,50));

Стандартный отчет GPSS-модели СМО D/U/1

				ld Simulati sday, Janua	_		_			
S	LAKT	TIME	END I	IME	BLOCKS	F	ACILITI	ES	STORAG	ES
	0.0	000	100000	05.010	7		1		0	
			NAM	E		V	ALUE			
			UZE	<u> </u>		1	0000.000	0		
LABEL		L	OC BLOCK	TYPE	ENTRY	C	OUNT CU	RRENT	COUN'	retry
1		GENER	ATE		100000		0			0
2		QUEUE			100000		0			0
3		SEIZE			100000		0			0
4		DEPAR'	T		100000		0			0
5		ADVAN	CE		100000		0			0
6		RELEA	SE		100000		0			0
7		TERMI	NATE		100000		0			0
FACILITY	EN'	TRIES	UTIL.	AVE.TIME	AVAIL.	OWNER	R PEND	INTER	RETRY	DELAY
JZEL	10	0000	0.801	8.008	1	0	0	0	0	0
QUEUE	MAX	CONT.	ENTRY	ENTRY(0)	AVE.CO	NT.	AVE.TIME	E AVE	. (-0)	RETRY
1	1	0	100000	69780	0.040)	0.405	1.	339	0
FEC XN	PRI		BDT	ASSEM	CURRENT	NEX	T PA	RAMETER	R VAI	LUE
100001	0	100	00010.000	100001	0	1				

Операторы блоков GPSS World

*******	******
GENERATE	10
QUEUE	1
SEIZE	uzel
DEPART	1
ADVANCE	8,4
RELEASE	uzel
TERMINATE	1
******	*****
START	100000
******	*****

GENERATE [A	,[B],[C],[D=∞],[E] →	TERMINATE	[A]
GENERATE GENERATE GENERATE GENERATE	10 (Exponential(1,0,50)) 25,10.5; 25.85,FN\$Erlang	TERMINATE TERMINATE TERMINATE TERMINATE	1 5 2.5
GENERATE GENERATE	,,,10 25,10,100,250,5		

ADVANCE [A=0],[B=0] ADVANCE 20; ADVANCE (Exponential(35,5,50)); ADVANCE 10.5,10; ADVANCE 100,FN\$ErI_1;

QUEUE A,[B=1]	→	DEPART A,[B=1]
QUEUE 1		QUEUE buf_er,5
SEIZE A	→	RELEASE A
SEIZE dom		RELEASE 15
ENTER A,[B=1]	→	LEAVE A,[B=1]
ENTER did2,3		ENTER s1_tu

GPSS-модель CMO M/U/5

- •количество обслуживающих приборов: 5;
- •количество потоков (классов) заявок: 1;
- •ёмкость накопителя: не ограничена (равна бесконечности);
- •интервалы между заявками в потоке: 10 с (простейший);
- •длительность обслуживания заявок: 40±25 с (равномерный).

GPSS-модель СМО с накопителем ограниченной емкости

```
***************************
      STORAGE
***********************************
                  (exponential(33,0,10))
      GENERATE
                  Q$stu 1,20,otk 1
      TEST
      QUEUE
                  stu 1
      ENTER
                  pri m
      DEPART
                  stu 1
      ADVANCE
                   (uniform(99,15,65))
      LEAVE
                   pri m
      TFRMINATE
      TFRMINATE
otk 1
***********************************
      START
                  1000000
```

TEST X A,B,[C]

- **A** проверяемое значение
- В контрольное значение
- **С** имя (метка) блока назначения [отказ]
- X оператор отношения (условие проверки) между A и B:
- X = (L, E, G, LE, GE, NE)

GPSS-модель с гистограммой времени ожидания

*****	*************						
pri_m	STORAGE	5					
w_1	QTABLE	1,5,10,12					
******	*****	*******					
	GENERATE	(exponential(33,0,10))					
	TEST L	Q1,20,otk_1					
	QUEUE	1					
	ENTER	pri_m					
	DEPART	1					
	ADVANCE	(uniform(99,15,65))					
	LEAVE	pri_m					
	TERMINATE	1					
otk_1	TERMINATE	1					
******	******	*******					
	START	1000000					
******	******	********					

A – имя очереди

В – ширина 1-го частотного интервала

С — ширина остальных интервалов

D — кол-во частотных интервалов

GPSS-модель с гистограммой времени ожидания

```
*******************
      STORAGE
pri_m
w 1
      QTABLE
               stu_1,10,10,12
      GENERATE
                    (exponential(33,0,10))
      TEST
                    Q$stu_1,20,otk_1
      QUEUE
                    stu 1
      ENTER
                    pri m
      DEPART
                    stu 1
      ADVANCE
                    (uniform(99,15,65))
      LEAVE
                    pri m
      TERMINATE
      TERMINATE
otk 1
      START
                    1000000
```


А − имя очереди

В — ширина 1-го частотного интервала

С – ширина остальных интервалов

D – кол-во частотных интервалов

GPSS-модель с произвольной гистограммой

<MMЯ> TABLE A,B,C,D TABULATE A,[B=1] MARK [A]

А – имя случайной величины

В – ширина 1-го частотного интервала

С – ширина остальных интервалов

D – кол-во частотных интервалов

 $\overline{\mathbf{A}}$ – имя таблицы

В – весовой коэффициент

Системные числовые атрибуты (СЧА / SNA)

СЧА приборов (Facility)

Групповое имя	Значение
F	1, если прибор занят; 0, если свободен
FC	Число занятий прибора транзактами
FR	Загрузка прибора, выраженная в долях тысячи
FT	Среднее время занятия прибора транзактом

F5 FR\$*Pribor*

S\$mos_t
SA\$Bag
SR\$System_1

СЧА памятей (Storage) [многоканальных устройств]

Групповое имя	Значение
R	Количество незанятых элементов (приборов; каналов)
S	Количество занятых приборов
SA	Среднее количество занятых приборов
SC	Счетчик числа входов в многоканальное устройство
SM	Максимальное количество занятых приборов
SR	Загрузка многоканального устройства, выраженная в долях тысячи
ST	Среднее время нахождения транзакта в устройстве.

СЧА очередей (QUEUE)

Груп.	Значение	
имя		
Q	Текущее значение длины очереди	\mathbf{Q} \$bu_fer
QA	Среднее значение длины очереди	-
QC	Кол-во входов в очередь (увеличивается на величину В блока QUEUE)	QC \$Que_L
QM	Максимальное значение длины очереди	
QT	Ср. время пребывания в очереди с учетом нулевых входов	QT \$Q_auto
QX	Ср. время пребывания в очереди для входов без учета нулевых входов	
QZ	Кол-во нулевых входов в очередь (время ожидания было равно нулю)	QZ \$Syst_3

СЧА таблицы (TABLE):

ТВ\$ < <i>Имя</i> > – Среднее значение элементов таблицы	TB \$exp_1		
TD \$< <i>Имя</i> > – Стандартное отклонение элементов таблицы	TD \$Erlang		
ТС \$< <i>Имя</i> > – Количество учтенных в таблице элементов	TC\$Tab W		
СЧА функции (FUNCTION):	FN\$Lim_on		
FN\$ имя – результат вычисления функции			
СЧА переменной (VARIABLE):	V \$Sym_5		
V\$< Имя> — результат вычисления переменной			

GPSS-модель с обслуживанием по Эрлангу

```
********************************
    STORAGE
pri_m
tu 5
     TABLE M1,10,20,50
*************************
     GENERATE
                (exponential(33,0,10))
     TEST
                Q$stu 1,20,otk 1
     QUEUE
                stu 1
     ENTER
                pri_m
     DEPART
                stu 1
                (exponential(44,0,20)+exponential(55,0,20))
     ADVANCE
     TABULATE
                tu 5
     LEAVE
                pri_m
     TFRMINATE
     TERMINATE
otk 1
***********************************
     START
                1000000
```

 $k = \left] \frac{1}{v^2} \right[; \qquad M[\tau] = \frac{t}{k}$

Реализация гиперэкспоненциального распределения

```
* По параметрам двухфазного распределения: q, t_1 и t_2
PROCEDURE hyper1(q, t_1, t_2) BEGIN
        if (uniform(51,0,1) < q) then return exponential(99,0,t_1);
        else return exponential(199,0,t_2);
END;
* По мат.ожиданию tt и коэффициенту вариации k_var с заданным генератором rndgen
PROCEDURE hyper2(rndgen, tt, k_var, dolya) BEGIN
        temporary q_max, tt_1, tt_2;
        q_max = dolya#2/(1+k_var#k_var);
        tt_1 = tt#(1+SQR((1-q_max)#(k_var#k_var-1)/(2#q_max)));
        tt_2 = tt#(1-SQR(q_max#(k_var#k_var-1)/(2#(1-q_max))));
        return hyper1(q_max,tt_1,tt_2);
END;
```

/TYO YHUBEPCUTET UTMO

«Моделирование»

АЛИЕВ Тауфик Измайлович, Лектор:

доктор технических наук, профессор

Национальный исследовательский университет ИТМО (НИУ ИТМО)

Факультет программной инженерии и компьютерной техники