

Data Mining: Imbalance Class Problem

马锦华

数据科学与计算机学院 中山大学

Class Imbalance Problem

- Lots of classification problems where the classes are skewed (more records from one class than another)
 - Credit card fraud
 - Intrusion detection
 - Defective products in manufacturing assembly line

Challenges

Evaluation measures such as accuracy is not well-suited for imbalanced class

 Detecting the rare class is like finding needle in a haystack

Confusion Matrix

Confusion Matrix:

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	а	b
CLASS	Class=No	С	d

a: TP (true positive)

b: FN (false negative): Type II error

c: FP (false positive): Type I error

d: TN (true negative)

Accuracy

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	a (TP)	b (FN)
CLASS	Class=No	c (FP)	d (TN)

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Problem with Accuracy

- Consider a 2-class problem
 - Number of Class NO examples = 990
 - Number of Class YES examples = 10
- If a model predicts everything to be class NO, accuracy is 990/1000 = 99 %
 - This is misleading because the model does not detect any class YES example
 - Detecting the rare class is usually more interesting (e.g., frauds, intrusions, defects, etc)

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	а	b
CLASS	Class=No	С	d

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	0	10
CLASS	Class=No	0	990

Precision (p) =
$$\frac{0}{0+0} = 1$$

Recall (r) = $\frac{0}{0+10} = 0$
F-measure (F) = $\frac{2*1*0}{1+0} = 0$
Accuracy = $\frac{990}{1000} = 0.99$

	PREDICTED CLASS		
		Class=Ye s	Class=No
ACTUAL CLASS	Class=Ye s	10	0
<u> </u>	Class=No	10	980

Precision (p) = $\frac{10}{10+10}$ = 0.5
Recall (r) = $\frac{10}{10+0}$ = 1
F-measure (F) = $\frac{2*1*0.5}{1+0.5}$ = 0.62
Accuracy = $\frac{990}{1000}$ = 0.99

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	1	9
CLASS	Class=No	0	990

Precision (p) =
$$\frac{1}{1+0}$$
 = 1
Recall (r) = $\frac{1}{1+9}$ = 0.1
F-measure (F) = $\frac{2*0.1*1}{1+0.1}$ = 0.18
Accuracy = $\frac{991}{1000}$ = 0.991

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	10	40

Precision (p) = 0.8

Recall (r) = 0.8

F - measure (F) = 0.8

Accuracy = 0.8

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	10	40

Precision (p) = 0.8

Recall (r) = 0.8

F - measure (F) = 0.8

Accuracy = 0.8

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	1000	4000

Precision (p) = ~ 0.04

Recall (r) = 0.8

F-measure (F) = ~ 0.08

Accuracy = ~ 0.8

Measures of Classification Performance

	PREDICTED CLASS		
ACTUAL CLASS		Yes	No
	Yes	TP	FN
	No	FP	TN

 α is the probability that we reject the null hypothesis when it is true. This is a Type I error or a false positive (FP).

 β is the probability that we accept the null hypothesis when it is false. This is a Type II error or a false negative (FN).

$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

$$ErrorRate = 1 - accuracy$$

$$Precision = Positive \ Predictive \ Value = \frac{TP}{TP + FP}$$

$$Recall = Sensitivity = TP Rate = \frac{TP}{TP + FN}$$

$$Specificity = TN \ Rate = \frac{TN}{TN + FP}$$

$$FP\ Rate = \alpha = \frac{FP}{TN + FP} = 1 - specificity$$

$$FN\ Rate = \beta = \frac{FN}{FN + TP} = 1 - sensitivity$$

$$Power = sensitivity = 1 - \beta$$

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	10	40

Precision $(p) = 0.8$
TPR = Recall $(r) = 0.8$
FPR = 0.2
F-measure $(F) = 0.8$
Accuracy $= 0.8$

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	40	10		
CLASS	Class=No	1000	4000		

Precision (p) =~
$$0.04$$

TPR = Recall (r) = 0.8
FPR = 0.2
F - measure (F) =~ 0.08
Accuracy =~ 0.8

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	10	40		
CLASS	Class=No	10	40		

Precision $(p) = 0.5$
TPR = Recall(r) = 0.2
FPR = 0.2

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL CLASS	Class=Yes	25	25		
	Class=No	25	25		

Precision
$$(p) = 0.5$$

 $TPR = Recall(r) = 0.5$
 $FPR = 0.5$

	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTUAL	Class=Yes	40	10			
CLASS	Class=No	40	10			

Precision (p) =
$$0.5$$

TPR = Recall (r) = 0.8
FPR = 0.8

ROC (Receiver Operating Characteristic)

- A graphical approach for displaying trade-off between detection rate and false alarm rate
- Developed in 1950s for signal detection theory to analyze noisy signals
- ROC curve plots TPR against FPR
 - Performance of a model represented as a point in an ROC curve
 - Changing the threshold parameter of classifier changes the location of the point

ROC Curve

(TPR,FPR):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

ROC (Receiver Operating Characteristic)

- To draw ROC curve, classifier must produce continuous-valued output
 - Outputs are used to rank test records, from the most likely positive class record to the least likely positive class record
- Many classifiers produce only discrete outputs (i.e., predicted class)
 - How to get continuous-valued outputs?
 - Decision trees, rule-based classifiers, neural networks, Bayesian classifiers, k-nearest neighbors, SVM

ROC Curve Example

- 1-dimensional data set containing 2 classes (positive and negative)
- Any points located at x > t is classified as positive

sing ROC for Model Comparison

- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

How to Construct an ROC curve

<u></u>		
Instance	Score	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use a classifier that produces a continuous-valued score for each instance
 - The more likely it is for the instance to be in the + class, the higher the score
- Sort the instances in decreasing order according to the score
- Apply a threshold at each unique value of the score
- Count the number of TP, FP, TN, FN at each threshold
 - TPR = TP/(TP+FN)
 - FPR = FP/(FP + TN)

How to construct an ROC curve

	Class	+	_	+	-	-	-	+	-	+	+	
Threshold >	=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
→	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

ROC Curve:

Handling Class Imbalanced Problem

- Class-based ordering (e.g. RIPPER)
 - -Rules for rare class have higher priority

- Cost-sensitive classification
 - Misclassifying rare class as majority class is more expensive than misclassifying majority as rare class
- Sampling-based approaches

Cost Matrix

	PREDICTED CLASS				
ACTUAL		Class=Yes	Class=No		
CLASS	Class=Yes	f(Yes, Yes)	f(Yes,No)		
	Class=No	f(No, Yes)	f(No, No)		

C(i,j): Cost of misclassifying class i example as class j

Cost Matrix	PREDICTED CLASS				
	C(i, j)	Class=Yes	Class=No		
ACTUAL	Class=Yes	C(Yes, Yes)	C(Yes, No)		
CLASS	Class=No	C(No, Yes)	C(No, No)		

$$Cost = \sum C(i, j) \times f(i, j)$$

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS			
	C(i,j)	+	•	
ACTUAL CLASS	+	-1	100	
	-	1	0	

Model M ₁	PREDICTED CLASS			
		+	-	
ACTUAL CLASS	+	80	20	
	-	80	320	

Model M ₂	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	60	40
	•	10	390

Accuracy = 80%

Cost = 2000

Accuracy = 90%

Cost = 3950

Sampling-based Approaches

- Modify the distribution of training data so that rare class is well-represented in training set
 - Undersample the majority class
 - -Oversample the rare class
- Advantages and disadvantages

References

 P.-N. Tan, M. Steinbach, V. Kumar: Introduction to data mining, Second Edition, https://www-users.cs.umn.edu/~kumar001/dmbook/index.ph