$$\frac{0.5 \text{ mol HCl}}{1.0 \text{ L of solution}} \times 0.8 \text{ L of solution} = 0.4 \text{ mol HCl}$$

EVALUATE

The answer is correctly given to one significant digit. The units cancel correctly to give the desired unit, mol. There should be less than 0.5 mol HCl, because less than 1 L of solution was used.

SAMPLE PROBLEM C

For more help, go to the *Math Tutor* at the end of this chapter.

To produce 40.0 g of silver chromate, you will need at least 23.4 g of potassium chromate in solution as a reactant. All you have on hand is 5 L of a 6.0 M K₂CrO₄ solution. What volume of the solution is needed to give you the 23.4 g K₂CrO₄ needed for the reaction?

SOLUTION

ANALYZE

Given: volume of solution = 5 L

concentration of solution = $6.0 \text{ M K}_2\text{CrO}_4$

mass of solute = $23.4 \text{ g K}_2\text{CrO}_4$ mass of product = $40.0 \text{ g Ag}_2\text{CrO}_4$

Unknown: volume of K₂CrO₄ solution in L

2 **PLAN** The molarity indicates the moles of solute that are in 1 L of solution. Given the mass of solute needed, the amount in moles of solute can then be found. Use the molarity and the amount in moles of K₂CrO₄ to determine the volume of K₂CrO₄ that will provide 23.4 g.

> grams of solute ---- moles solute moles solute and molarity ----- liters of solution needed

3 **COMPUTE** To get the moles of solute, you'll need to calculate the molar mass of K₂CrO₄.

$$1 \text{ mol } K_2\text{CrO}_4 = 194.2 \text{ g } K_2\text{CrO}_4$$

$$23.4 \text{ g } K_2\text{CrO}_4 \times \frac{1 \text{ mol } K_2\text{CrO}_4}{194.2 \text{ g } K_2\text{CrO}_4} = 0.120 \text{ mol } K_2\text{CrO}_4$$

$$6.0 \text{ M } K_2\text{CrO}_4 = \frac{0.120 \text{ mol } K_2\text{CrO}_4}{x \text{ L } K_2\text{CrO}_4 \text{ soln}}$$

 $x = 0.020 \text{ L K}_2\text{CrO}_4 \text{ soln}$

EVALUATE

The answer is correctly given to two significant digits. The units cancel correctly to give the desired unit, liters of solution.

PRACTICE

Answers in Appendix E

- 1. What is the molarity of a solution composed of 5.85 g of potassium iodide, KI, dissolved in enough water to make 0.125 L of solution?
- 2. How many moles of H₂SO₄ are present in 0.500 L of a 0.150 M H₂SO₄ solution?
- **3.** What volume of 3.00 M NaCl is needed for a reaction that requires 146.3 g of NaCl?

Go to go.hrw.com for more practice problems that ask you to calculate molarity.

