科學哲學 101

A Brief Introduction to the Philosophy of Science(?)

231220103 劉贊宸

Department of Computer Science and Technology

Nanjing University

2025-02-11

Outline

1. 什麼是科學哲	Louis Bergson 的直	2.1.2 Isaac
學?4	覺主義時間觀念 8	Newton 的絕對時空
1.1 科學哲學的三	2.1.1 Henri-	觀9
個維度 5	Louis Bergson 的直	2.1.2 Isaac
2. 科學問題闡釋的	覺主義時間觀念 8	Newton 的絕對時空
哲學 6	2.1.1 Henri-	觀 9
2.1 時空觀 7	Louis Bergson 的直	2.1.2 Isaac
2.1.1 Henri-	覺主義時間觀念 8	Newton 的絕對時空
Louis Bergson 的直	2.1.1 Henri-	觀 9
覺主義時間觀念 8	Louis Bergson 的直	2.1.2 Isaac
2.1.1 Henri-	覺主義時間觀念 8	Newton 的絕對時空

Outline

觀 9	2.1.3 狹義相對	論時空觀 10
2.1.2 Isaac	論時空觀 10	2.1.4 廣義相對
Newton 的絕對時空	2.1.3 狹義相對	論時空觀 11
觀 9	論時空觀 10	2.1.5 物理的對
2.1.2 Isaac	2.1.3 狹義相對	時間和空間的理解
Newton 的絕對時空	論時空觀 10	12
觀 9	2.1.3 狹義相對	2.2 因果觀 13
2.1.3 狹義相對	論時空觀 10	2.2.1 經典因果
論時空觀 10	2.1.3 狹義相對	觀 13
2.1.3 狹義相對	論時空觀 10	2.2.2 統計因果
論時空觀 10	2.1.3 狹義相對	觀13

Outline

	2.2.1 經典因果	觀13	19
觀		2.2.1 經典因果	3.2 歷史主義 20
	2.2.2 統計因果	觀 13	3.2.1 Thomas
觀	13	2.2.2 統計因果	Kuhn 20
	2.2.1 經典因果	觀 13	3.2.1 Thomas
觀	13	2.2.3 量子力學	Kuhn 20
	2.2.2 統計因果	與因果觀 15	$3.2.2~\mathrm{Imre}$
觀		2.3 認識論 16	Lakatos 21
	2.2.1 經典因果	3. 有關於科學的哲	4. 更多的內容 22
觀		學 18	
	2.2.2 統計因果	3.1 批判理性主義.	

1. 科學問題闡釋的哲學

- 1. 科學問題闡釋的哲學
 - 時空觀
 - 因果觀
 - 認識論
 - ...

- 1. 科學問題闡釋的哲學
 - 時空觀
 - 因果觀
 - 認識論
 - ...
- 2. 有關於科學的哲學

- 1. 科學問題闡釋的哲學
 - 時空觀
 - 因果觀
 - 認識論
 - ...
- 2. 有關於科學的哲學
- 3. 科學化的哲學學科

- 1. 科學問題闡釋的哲學
 - 時空觀
 - 因果觀
 - 認識論
 - ...
- 2. 有關於科學的哲學
- 3. 科學化的哲學學科
 - 分析哲學
 - 心靈哲學

時空的本質是什麼?

時空是以怎樣的形式存在的?

時間是否是單向度流動的?

時空是連續的還是離散可分的?

時空是否是對易的?

2. 科學問題闡釋的哲學

2.1.1 Henri-Louis Bergson 的直覺主義時間觀念

當人們試圖測量某個瞬間的時候,那個瞬間已然消逝。測量到的 是靜止的,完整的線段,而時間是流動的,未完成的

- 當人們試圖測量某個瞬間的時候,那個瞬間已然消逝。測量到的 是靜止的,完整的線段,而時間是流動的,未完成的
- la durée (時間的綿延)是內在的時間體驗,不是均質化的科學 意義上的時間

- 當人們試圖測量某個瞬間的時候,那個瞬間已然消逝。測量到的 是靜止的,完整的線段,而時間是流動的,未完成的
- la durée (時間的綿延)是內在的時間體驗,不是均質化的科學 意義上的時間
- la durée 是內在的時間體驗,不是均質化的科學意義上的時間。 自由意志存在於時間棲居的綿延之中

- 當人們試圖測量某個瞬間的時候,那個瞬間已然消逝。測量到的 是靜止的,完整的線段,而時間是流動的,未完成的
- la durée (時間的綿延)是內在的時間體驗,不是均質化的科學 意義上的時間
- la durée 是內在的時間體驗,不是均質化的科學意義上的時間。 自由意志存在於時間棲居的綿延之中
- la durée 無法通過符號概念來表達,只能通過直覺把握其流動

2.1.2 Isaac Newton 的絕對時空觀

2. 科學問題闡釋的哲學

2.1.2 Isaac Newton 的絕對時空觀

 絕對時間和空間都是存在的,不會隨著任何外部的作用或觀察者 改變

2.1.2 Isaac Newton 的絕對時空觀

- 絕對時間和空間都是存在的,不會隨著任何外部的作用或觀察者 改變
- 對於相對速度恆定的兩參考系,有 Galilean 變換成立:

$$\begin{pmatrix} x' \\ t' \end{pmatrix} = \begin{pmatrix} 1 & -v \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix}$$

2.1.2 Isaac Newton 的絕對時空觀

- 絕對時間和空間都是存在的,不會隨著任何外部的作用或觀察者 改變
- 對於相對速度恆定的兩參考系,有 Galilean 變換成立:

$$\begin{pmatrix} x' \\ t' \end{pmatrix} = \begin{pmatrix} 1 & -v \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix}$$

• 這也意味着兩個慣性系不可分,且物理定律相同(相對性原理)

2.1.2 Isaac Newton 的絕對時空觀

- 絕對時間和空間都是存在的,不會隨著任何外部的作用或觀察者 改變
- 對於相對速度恆定的兩參考系,有 Galilean 變換成立:

$$\begin{pmatrix} x' \\ t' \end{pmatrix} = \begin{pmatrix} 1 & -v \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix}$$

- 這也意味着兩個慣性系不可分,且物理定律相同(相對性原理)
- Newton 認爲水桶實驗證實了絕對空間的存在性,也就是慣性系確實可以作爲特殊的參考系和非慣性系存在區別(?)

2.1.2 Isaac Newton 的絕對時空觀

- 絕對時間和空間都是存在的,不會隨著任何外部的作用或觀察者 改變
- 對於相對速度恆定的兩參考系,有 Galilean 變換成立:

$$\begin{pmatrix} x' \\ t' \end{pmatrix} = \begin{pmatrix} 1 & -v \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix}$$

- 這也意味着兩個慣性系不可分,且物理定律相同(相對性原理)
- Newton 認爲水桶實驗證實了絕對空間的存在性,也就是慣性系確實可以作爲特殊的參考系和非慣性系存在區別(?)
- 絕對時間的存在是不言自明的(?)

2.1.3 狹義相對論時空觀

- 2.1.3 狹義相對論時空觀
- Mach

 原理指出了水桶實驗的漏洞

2. 科學問題闡釋的哲學

- Maxwell 方程組在 Galilean 變換下不協變

2. 科學問題闡釋的哲學

- Maxwell 方程組在 Galilean 變換下不協變
- 以太理論被 Michelson-Morley 實驗推翻

- Maxwell 方程組在 Galilean 變換下不協變
- 以太理論被 Michelson-Morley 實驗推翻
- Lorentz 變換 取代了 Galilean 變換:

$$\begin{pmatrix} x' \\ t' \end{pmatrix} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \begin{pmatrix} 1 & -v \\ -\frac{v}{c^2} & 1 \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix}$$

2.1.3 狹義相對論時空觀

- Mach

 原理指出了水桶實驗的漏洞
- Maxwell 方程組在 Galilean 變換下不協變
- 以太理論被 Michelson-Morley 實驗推翻
- Lorentz 變換 取代了 Galilean 變換:

$$\begin{pmatrix} x' \\ t' \end{pmatrix} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \begin{pmatrix} 1 & -v \\ -\frac{v}{c^2} & 1 \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix}$$

• 狹義相對論中時間和相對觀測者的速度有關

- Maxwell 方程組在 Galilean 變換下不協變
- 以太理論被 Michelson-Morley 實驗推翻
- Lorentz 變換 取代了 Galilean 變換:

$$\begin{pmatrix} x' \\ t' \end{pmatrix} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \begin{pmatrix} 1 & -v \\ -\frac{v}{c^2} & 1 \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix}$$

- 狹義相對論中時間和相對觀測者的速度有關
- 狹義相對論中保守了狹義相對性原理

- Maxwell 方程組在 Galilean 變換下不協變
- 以太理論被 Michelson-Morley 實驗推翻
- Lorentz 變換 取代了 Galilean 變換:

$$\begin{pmatrix} x' \\ t' \end{pmatrix} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \begin{pmatrix} 1 & -v \\ -\frac{v}{c^2} & 1 \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix}$$

- 狹義相對論中時間和相對觀測者的速度有關
- 狹義相對論中保守了狹義相對性原理
- more explaination...

2.1.4 廣義相對論時空觀

- 廣義相對論中有廣義相對性原理,即在基本物理定律下,所有座標系都該是等價的
- Einstein 場方程描述了質量,時間和空間三者的統一:

$$R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}+\Lambda g_{\mu\nu}=\frac{8\pi G}{c^4}T_{\mu\nu}$$

• no more explaination...

2.1.5 物理的對時間和空間的理解

Time is what a clock measures.

——Albert Einstein

• e.g. $\Delta S > 0 \Rightarrow S$ is a time.

Space is where the momentum spans.

2.2.1 經典因果觀

2.2 因果觀

2.2.1 經典因果觀

- Aristotle: 因果是基本秩序
- Newton 力學: 強決定論

2. 科學問題闡釋的哲學

2.2.1 經典因果觀

- Aristotle: 因果是基本秩序
- Newton 力學: 強決定論

2.2.2 統計因果觀

• David Hume: constant conjunction, continuity

2. 科學問題闡釋的哲學

2.2.1 經典因果觀

- Aristotle: 因果是基本秩序
- Newton 力學: 強決定論

2.2.2 統計因果觀

- David Hume: constant conjunction, continuity
 - ▶ 因果 → 相關性

2.2.1 經典因果觀

- Aristotle: 因果是基本秩序
- Newton 力學: 強決定論

2.2.2 統計因果觀

- David Hume: constant conjunction, continuity
 - ▶ 因果 → 相關性
- Hans Reichenbach: 因果推理模型
 - P(B|A) > P(B)
- Pearl 三個層次:
 - 事件 → 事件的性質 → 性質

2.2 因果觀

- Lord 悖論
 - ▶ One statistician does not adjust for initial weight, instead using t-test and comparing gain scores (individuals' average final weight average initial weight) as the outcome.
 - ► The second statistician adjusts for initial weight, using analysis of covariance (ANCOVA), and compares (adjusted) final weights as the outcome.
- 隱變量的處理
 - ▶ 反事實推理
 - 直接的介入

2. 科學問題闡釋的哲學

2.2.3 量子力學與因果觀

- 延遲選擇實驗
- Schrödinger 方程:

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\Psi(t)\rangle = \hat{H} |\Psi(t)\rangle$$

- ▶ 哥本哈根詮釋:"事實以概率形式存在"
- ▶ 多世界詮釋
- ▶ 非定域隱變量
 - 大 Bell 實驗

2.3 認識論

- 科學實在論
 - ▶ 科學探索的世界是獨立於心靈而存在的
 - ▶ 科學對於這個世界的描述是以其字面意義來解釋
 - ▶ 科學理論構成了關於這個世界的知識
- 結構同構、物項實在...

2.3 認識論

- 科學實在論
 - ▶ 科學探索的世界是獨立於心靈而存在的
 - 科學對於這個世界的描述是以其字面意義來解釋
 - ▶ 科學理論構成了關於這個世界的知識
- 結構同構、物項實在...
- 工具主義
 - ▶ 科學理論是惟象的模型
 - ▶ 不保證真實性,但是確實有有效性

2.3 認識論

2. 科學問題闡釋的哲學

Force is a culture.

——Richard Feynman

3. 有關於科學的哲學

或有關於科學發展的科學

3.1 批判理性主義

3. 有關於科學的哲學

- Karl Popper, Imre Lakatos
- 可證僞性:科學需要提出能夠被否定的命題
 - ▶ e.g. 形式科學不是科學
- 被證偽後揚棄原有的理論,提出更準確逼近的理論
- 形式化:

$$\land_{p \in \{O_1, O_2, \dots\}} p \land \{O_1, O_2, \dots\} \vdash \neg S$$

• 反對通過驗證正確性的方式來確認理論正確(歸納主義)

3.2 歷史主義

3.2.1 Thomas Kuhn

3. 有關於科學的哲學

3.2.1 Thomas Kuhn

- 科學共同體
- 前科學 → 常態科學 → 科學危機 → <u>範式</u>轉換革命 → ...
- 非線性的"斷裂"和革命,不可通約
- 科學共同體決定了科學知識,科學是一種社會的建構
- e.g. 日心與地心
 - ▶ 基本假設
 - ▶ 具體解釋
 - ▶ 概念
- e.g. 月下世界與月上世界

3. 有關於科學的哲學

3.2.2 Imre Lakatos

- 硬核
 - ▶ 理論的核心假設和推理
 - ▶ 如 Newton 力學中三定律、地心說
 - ▶ 反面啓示
- 保護帶
 - ▶ 由核心導出的模型,或者附加的輔助假設
 - ▶ 海王星的發現、均輪
 - ▶ 正面啓示
- 積極的改進的增加和挽救性的增加
- e.g. 發射理論

4. 更多的內容

- 還原主義,機械決定論和當前的科學教育
- 科學進步的 Whig 史觀
- 科學與政治
 - ▶ 馬赫主義
 - ▶ 唯物主義與經驗批判主義
 - ▶ 李森科
 - ▶ 資產階級反動學術觀點相對論
- 科學哲學的歷史主義與馬克思主義的辯證法

• ...