# Index:

- 1. Goal
- 2. Overview
- 3. Specification
- 4. Out of Space
- 5. ER Diagram
- 6. Applying Normal Forms (1NF, 2NF, 3NF)
- 7. Final Schema Diagram
- 8. SQL Queries

# Goal:

The objective is to build a database management system to maintain details of various inventions and the related details of that invention.

# **Overview:**

With the required information, we started by creating different entities and established various relationships between them like one to one, many to one, many to many, unary, aggregation, total participation, partial participation.

# **Specification:**

We started by creating the Invention entity set which has details of the various invention(s). Next, we created the Inventor entity set with the details of the inventor(s) and these two entity sets are in many-to-many relation with total participation. Next, we created an entity set for Awards with details of all the awards and it has a multi-valued attribute, Category. The award is a unary relation which can be National or International. A many-to-many relationship is established between Awards and Invention with a total participation of Awards to store the details of various nominations for each award and different nomination for the given invention. This entire relationship is aggregated and has a one-to-one relationship with Panel who decides the winner for each award by considering the different nominations for the award. The Panel maintains one-to-many relation with the Jury. We are considering the case that an award can get nominated in its year of invention.

# Out of space:

An Award cannot be nominated after it's the year of invention. We are also neglecting the case where there is no award that can declare a winner without the panel's decision.

**ER Diagram** 



------

# The initial table contains the following attributes:

invention\_id,invention\_name, year\_invention, story,invention\_category, invertor\_id, inventor\_name, DOB, Job\_type, Address, nomination\_year, Award\_id, Award\_name, Significance, Award\_Category, Jury\_id, Jury\_name, Span)

## The Relation is defined by

Invention\_Management(invention\_id, invention\_name, year\_invention, story,invention\_category, invertor\_id, inventor\_name, DOB, Job\_type, Address, nomination\_year,

Award\_id, Award\_name, Significance, Award\_Category, Jury\_id, Jury\_name, Span)

**Invention Management** 

Inventor\_ID

Invention Name

Year of Invention

year\_invention

invention\_category

Story

Inventor\_id

F\_Name

L Name

DOB

Job\_type

Area

City

Pincode

Nomination\_year

Award\_id

Award\_name

Significance

Award Category

Jury\_id

Jury\_name

Start Year

End\_Year

## The attributes are defined as follows:

invention\_id: used to identify the invention details

invention\_name: Name of the invention year\_invention: Year of the invention.

story: The story behind the invention.

invertor\_id: Used to identify inventors details

inventor\_name: Name of the inventor, contains the First name and the Last name

Age: Age of inventor

Job\_type: Job of the inventor

Address: Address of inventor, contains Area, City, Pincode

Award\_id: Used to identify all the awards uniquely

Award\_name: Name of the award

Award\_Category: The category to which this award belongs to

Jury\_id: Used to identify jury Jury\_name: Name of the Jury

|   | invention_id | invention_name       | year_invention | invention_category | story | inventor_id | inventor_name  | job_type        | age   |
|---|--------------|----------------------|----------------|--------------------|-------|-------------|----------------|-----------------|-------|
| • | 1            | autonomous cars      | 2017-03-16     | automated system   | abc   | I1,I2       | ahnaan,nishant | student,student | 17,17 |
|   | 2            | automatic web design | 2016-07-03     | automated system   | def   | 13          | vijay S        | student         | 16    |
|   | 3            | text processing      | 2019-08-26     | AI                 | dd    | 14          | anshul         | student         | 20    |
|   | 4            | sales prediction     | 2020-03-06     | ML                 | aeec  | 15          | arham          | scientist       | 29    |
|   | 5            | facial recognition   | 2021-11-29     | DL                 | ac    | 16          | manan          | professor       | 31    |
|   | NULL         | NULL                 | NULL           | NULL               | NULL  | NULL        | NULL           | NULL            | NULL  |

| award_id | award_name                | jury_id | jury_name        |
|----------|---------------------------|---------|------------------|
| 101      | best tech                 | J1      | dr suresh patel  |
| 102      | best tool for development | 32      | dr kritika singh |
| 103      | best potention student    | 33      | mike rooney      |
| 104      | future tech               | 34      | dr siba panda    |
| 105      | best tech                 | 34      | david malan      |
| NULL     | NULL                      | NULL    | NULL             |

# **Applying Normal Forms**

In 1NF, each tuple will have only single-valued attributes i.e, they should be atomic. All the multi-valued attributes will be split into individual tuples.

Now by applying First Normal Form (1NF):

- 1. Invention\_name is split into (F\_name, L\_name)
- 2. An invention can have multiple inventors, so each of the inventor details for a specific invention will be shown in separate tuples.

## Rules of 1st Normal Form:

- There are only Single Valued Attributes.
- Attribute Domain does not change.
- There is a Unique namefor every Attribute/Column.

| Invention Management |
|----------------------|
| Inventor_ID          |
| Invention Name       |
| Year of Invention    |
| year_invention       |
| invention_category   |
| Story                |
| Inventor_id          |
| F_Name               |
| L_Name               |
| DOB                  |
| Job_type             |
| Area                 |
| City                 |
| Pincode              |
| Nomination_year      |
| Award_id             |
| Award_name           |
| Significance         |
| Award_Category       |
| Jury_id              |
| Jury_name            |
| Start_Year           |
| End_Year             |

|   | invention_id | invention_name       | year_invention | invention_category | story | inventor_id | inventor_name | job_type  | age  |
|---|--------------|----------------------|----------------|--------------------|-------|-------------|---------------|-----------|------|
|   | 1            | autonomous cars      | 2017-03-16     | automated system   | abc   | I1          | ahnaan        | student   | 17   |
|   | 1            | autonomous cars      | 2017-03-16     | automated system   | abc   | I2          | nishant       | student   | 17   |
|   | 2            | automatic web design | 2016-07-03     | automated system   | def   | 13          | vijay S       | student   | 16   |
|   | 3            | text processing      | 2019-08-26     | AI                 | dd    | 14          | anshul        | student   | 20   |
| • | 4            | sales prediction     | 2020-03-06     | ML                 | aeec  | 15          | arham         | scientist | 29   |
|   | 5            | facial recognition   | 2021-11-29     | DL                 | ac    | 16          | manan         | professor | 31   |
|   | NULL         | NULL                 | NULL           | NULL               | NULL  | NULL        | NULL          | NULL      | NULL |

| award_id | award_name                | jury_id | jury_name        |
|----------|---------------------------|---------|------------------|
| 101      | best tech                 | J1      | dr suresh patel  |
| 101      | best tech                 | J1      | dr suresh patel  |
| 102      | best tool for development | 32      | dr kritika singh |
| 103      | best potention student    | J3      | mike rooney      |
| 104      | future tech               | J4      | dr siba panda    |
| 105      | best tech                 | J4      | david malan      |
| NULL     | NULL                      | NULL    | NULL             |

# 2<sup>nd</sup> NORMAL FORM

# Rules for 2nd Normal Form

- Be in 1NF.
- Single Column Primary Key

|   | invention_id | invention_name       | invention_category | story | year_invention |
|---|--------------|----------------------|--------------------|-------|----------------|
| • | 1            | autonomous cars      | automated system   | abc   | 2017-03-16     |
|   | 2            | automatic web design | automated system   | def   | 2016-07-03     |
|   | 3            | text processing      | AI                 | dd    | 2019-08-26     |
|   | 4            | sales prediction     | ML                 | aeecc | 2020-03-06     |
|   | 5            | facial recognition   | DL                 | ac    | 2021-11-29     |
|   | NULL         | NULL                 | NULL               | NULL  | NULL           |

|   |             | 4.            |      |           |        |
|---|-------------|---------------|------|-----------|--------|
|   | inventor_id | inventor_name | age  | job_type  | city   |
| • | I1          | ahnaan        | 17   | student   | mumbai |
|   | I2          | nishant       | 17   | student   | mumbai |
|   | 13          | vijay s       | 16   | student   | mumbai |
|   | 14          | anshul        | 20   | student   | rajkot |
|   | 15          | arham         | 29   | scientist | jammu  |
|   | 16          | manan         | 31   | professor | mumbai |
|   | NULL        | NULL          | NULL | NULL      | NULL   |

|   | award_id | award_name                | jury_id | jury_name        |
|---|----------|---------------------------|---------|------------------|
| • | 101      | best tech                 | J1      | dr suresh patel  |
|   | 102      | best tool for development | 32      | dr kritika singh |
|   | 103      | best potention student    | 13      | mike rooney      |
|   | 104      | future tech               | 34      | dr siba panda    |
|   | 105      | best tech                 | 34      | david malan      |
|   | NULL     | NULL                      | NULL    | NULL             |

|   | invention_id | award_id | nomination_year |
|---|--------------|----------|-----------------|
| • | 1            | 101      | 2013            |
|   | 2            | 102      | 20119           |
|   | 3            | 103      | 2020            |
|   | 4            | 104      | 2020            |
|   | 5            | 105      | 2020            |

In 3NF, we eliminate all transitive dependencies. Transitive dependencies mean that a non-prime attribute is dependent on another attribute which is not a part of the candidate key but is dependent on candidate key.

# After applying 3NF:

- Invention(invention\_id, invention\_name, year\_invention, story)
- Inventor(inventor\_id, inventor\_name, DOB, Job\_type, City)
- Award(Award\_id, Award\_name,jury\_id)
- Award\_Nomination(invention\_id, Award\_id, nomination\_year)
- Jury(jury\_id,jury\_name)

|   | invention_id | invention_name       | invention_category | story | year_invention |
|---|--------------|----------------------|--------------------|-------|----------------|
| • | 1            | autonomous cars      | automated system   | abc   | 2017-03-16     |
|   | 2            | automatic web design | automated system   | def   | 2016-07-03     |
|   | 3            | text processing      | AI                 | dd    | 2019-08-26     |
|   | 4            | sales prediction     | ML                 | aeecc | 2020-03-06     |
|   | 5            | facial recognition   | DL                 | ac    | 2021-11-29     |
|   | NULL         | NULL                 | NULL               | NULL  | NULL           |

|   |             | 4.            |      |           |        |
|---|-------------|---------------|------|-----------|--------|
|   | inventor_id | inventor_name | age  | job_type  | city   |
| • | I1          | ahnaan        | 17   | student   | mumbai |
|   | 12          | nishant       | 17   | student   | mumbai |
|   | 13          | vijay s       | 16   | student   | mumbai |
|   | 14          | anshul        | 20   | student   | rajkot |
|   | 15          | arham         | 29   | scientist | jammu  |
|   | 16          | manan         | 31   | professor | mumbai |
|   | NULL        | NULL          | NULL | NULL      | NULL   |

|   | award_id | award_name                | jury_id | jury_name        |
|---|----------|---------------------------|---------|------------------|
| ١ | 101      | best tech                 | J1      | dr suresh patel  |
|   | 102      | best tool for development | 32      | dr kritika singh |
|   | 103      | best potention student    | J3      | mike rooney      |
|   | 104      | future tech               | 34      | dr siba panda    |
|   | 105      | best tech                 | J4      | david malan      |
|   | NULL     | NULL                      | NULL    | NULL             |

|   | invention_id | award_id | nomination_year |
|---|--------------|----------|-----------------|
| • | 1            | 101      | 2013            |
|   | 2            | 102      | 20119           |
|   | 3            | 103      | 2020            |
|   | 4            | 104      | 2020            |
|   | 5            | 105      | 2020            |

|   | jury_id | jury_name        |  |  |
|---|---------|------------------|--|--|
| • | J1      | dr suresh patel  |  |  |
|   | 32      | dr kritika singh |  |  |
|   | J3      | mike rooney      |  |  |
|   | 34      | dr siba panda    |  |  |
|   | 35      | david malan      |  |  |
|   | NULL    | NULL             |  |  |



## Schema diagram



## Differences between the ER model and Normalization\_Model

1. Before applying the normalization the tables were defined based on the ER diagram. By doing so, there is a possibility for data redundancy and inconsistency. In order to avoid that, we applied normalization on the complete table.

- 2. From the table defined from the ER model, we neglect some of the cases like an invention can get an award after many years of invention, in other words, an invention will get nominated for an award only in its year of invention. However, from the table, we got after normalization, resolves this issue.
- 3. Unnecessary data usage is also reduced by removing unnecessary attributes.
- 4. The number of tables of the final model is also reduced.

# **Questions**

#### To select inventor name and his/her invention

create view temp as select inventor.inventor\_name, invention\_managmentt.invention\_id from inventor inner join invention\_managmentt on inventor.inventor\_id = invention\_managmentt.inventor\_id;

selecttemp.inventor\_name, invention.invention\_name from temp inner join invention on temp.invention\_id=invention.invention\_id;



#### To select nominated invention

selectinvention\_id from invention where invention.invention\_id in (select nomination.invention\_id from nomination);



# To cocatinventor\_name and city for some use

selectconcat\_ws(', ', inventor\_name, city) as text from inventor;



# To print name and invention of those inventors who are student

create view temp2 as select inventor.inventor\_name, inventor.inventor\_id from inventor where inventor.job\_type = 'student';

create view temp3 as select temp2.inventor\_name, temp2.inventor\_id, invention\_managmentt.invention\_id from temp2 inner join invention\_managmentt on temp2.inventor\_id=invention\_managmentt.inventor\_id;

select temp3.inventor\_name, temp3.invention\_id, invention.invention\_name from temp3 inner join invention on invention.invention\_id = temp3.invention\_id;

|   | inventor_name | invention_id | invention_name       |
|---|---------------|--------------|----------------------|
| • | ahnaan        | 1            | autonomous cars      |
|   | nishant       | 1            | autonomous cars      |
|   | vijay s       | 2            | automatic web design |
|   | anshul        | 3            | text processing      |

# **Invention Management**

By- Anshul S

**ArhamL** (captain)

Ahnaan M (VC)

Nishant (Pp)

MiitM (sub)