Mathematical Methods in Physics

Workshop 3

3.1

A matrix is said to be idempotent if $A = A^2$.

- a) Explain why all eigenvalues of A must be 0 or 1. [Hint: Start by considering the expression $A\mathbf{x} = \lambda \mathbf{x}$.]
- b) Show that the matrix

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 3 & 6 \\ 0 & -1 & -2 \end{array}\right)$$

is idempotent and find its eigenvalues and eigenvectors. If possible, choose a set of linearly independent eigenvectors.

c) Confirm that $\text{Tr}A = \lambda_1 + \lambda_2 + \lambda_3$ and $|A| = \lambda_1 \lambda_2 \lambda_3$, where λ_i are the eigenvalues.

3.2

The same similarity transformation diagonalise each of two matrices A and B. Show that the matrices A and B must commute i.e. AB = BA.

3.3

Diagonalise the matrix A

$$A = \left(\begin{array}{cc} 0 & \theta \\ -\theta & 0 \end{array} \right),$$

and calculate its exponential i.e. the matrix $B = e^A$.

 $[\mathit{Hint: You \ can \ find \ a \ matrix \ S \ that \ is \ unitary.}]$

3.4

Consider a matrix

$$A = \left(\begin{array}{ccc} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array}\right)$$

and a column vector **b** whose components are b_1 , b_2 , b_3 .

- a) If $A\mathbf{b} = \mathbf{c}$, what is the relationship between the vectors \mathbf{b} and \mathbf{c} ?
- b) Find the eigenvalues of A and show that \mathbf{a} , whose components are a_1 , a_2 , a_3 , is one of its eigenvectors, that is $A\mathbf{a} = \lambda \mathbf{a}$, where λ is one of the eigenvalues. Explain why this must be so.

3.5

An elastic membrane in the xy-plane with boundary circle $x^2 + y^2 = 1$ is stretched so that a point P = (x, y) goes over into the point P' = (x', y') given by $\mathbf{x}' = A\mathbf{x}$, where

$$A = \left(\begin{array}{cc} 5 & 3\\ 3 & 5 \end{array}\right),$$

and \mathbf{x} , \mathbf{x}' are the position vectors of P and P' respectively.

- a) Find the *principal directions*, i.e the directions of \mathbf{x} for which \mathbf{x}' is the same or exactly opposite.
- b) What is the shape of the boundary circle of the membrane after the deformation?

[Hint: This is an eigenvalue problem.]