Hochschule für Technik Rapperswil HSR

MRU: Sensors, Actors and Communication

Studienarbeit

Yolo auf Finger

im Studiengang Industrial Technologies

eingereicht von: Heinz Hofmann hhofmann@hsr.ch

eingereicht am: 9. Februar 2017

Betreuer/Betreuerin: Herr Prof. Dr. G. Schuster

Frau T. Mendez

2

Inhaltsverzeichnis

1	\mathbf{Abs}	stract	3
	1.1	Aufgabenstellung	3
	1.2	Vorgehen	3
	1.3	Fazit	3
2	Res	ultate	5
	2.1	Testvoraussetzungen	5
	2.2	Analyse	5
		2.2.1 Distanz	5
		2.2.2 Intersection Over Union IOU	9
3	Dat	enPipeline 1	.1
A		ildungsverzeichnis	
	1	Bedeutung der normierten Distanzwerte in der realen Welt	6
	2	Prediction knapp besser als Distanz=0.02	7
	3	Prediction knapp schlechter als Distanz=0.02	7
	4	Komplette Wahrscheinlichkeits-Dichte-Funktion der Distanz (Grenze: Dist=0.02)	8
	5	Wahrscheinlichkeits-Dichtefunktion der Distanz. Ausreisser nicht miteingerechnet (Grenze: Dist=0.02)	8
	6	Prediction knapp besser als IOU=0.4	10
	7	Prediction knapp schlechter als IOU=0.4	10
	8	Wahrscheinlichkeits-Dichte-Funktion der IOU (Grenze: IOU= 0.4)	11
	9	Label-Tensor	12

1 ABSTRACT 3

1 Abstract

1.1 Aufgabenstellung

Das Ziel dieser Projektarbeit war es, herauszufinden, ob Yolo geeignet wäre, die Fingerspitzen einer Hand in einem Bild zu klassifizieren und genau zu detektieren. Die Vorgaben, was die Genauigkeit betreffen liegen bei 0.1mm. Yolo ist eine Möglichkeit, um mittels Deep-Learning Objekte in einem Bild zu klassifizieren und gleichzeitig deren genaue Position zu detektieren. Daher auch der Ausdruck Yolo (You only look once). Yolo wurde als Konzept gewählt, weil es in diesem Bereich dem aktuellen Stand der Technik entspricht. Gerade die Geschwindigkeit dieses Netzwerks wird als extrem hoch angepriesen (bis zu 45fps). Diese Geschwindigkeit ist für die letztendliche Anwendung von hoher Wichtigkeit, weil es sich letzten Endes um eine Echtzeitanwendung handeln soll.

1.2 Vorgehen

Mithilfe der Apparatur und Software von Tabea Mendez sollten zuerst Daten generiert werden, auf welchen Yolo später lernen können soll. Gleichzeitig sollte die Architektur von Yolo in Tensorflow aufgebaut werden. Dies wäre nur begrenzt nötig, da fertige Architekturen in Keras oder Darknet online zur Verfügung stehen würden. Um aber einen Lerneffekt im erstellen von Neuronalen Netzwerken zu erzielen, wurde trotzdem alles von Grund auf selber aufgebaut. Rund um die Kernarchitektur von Yolo sollte das Datenhandling, die Kostenfunktionen aber auch sämtliche Validierungen und Tests zweimal erstellt werden. Einmal für das Pretraining der Kerngewichte auf dem ImageNet Klassifizierungsdatenset und einmal für das ëchte Training auf den selber generierten Daten. Sobald dies alles aufgebaut und lauffähig sein sollte, sollte noch soviel wie möglich experimentiert werden, mit welchen kleinen Änderungen und Einstellungen das Lernresultat noch optimiert werden könnte.

1.3 Fazit

Das Aufnehmen von "guten" Daten ist aktuell noch sehr Mühsam, weshalb man sich auf das Aufnehmen von einem kleinen Datenset beschränkt hatte. Um möglichst genaue Daten zu erhalten und den Aufwand der Datenerzeugung klein zu halten, wurden im Rahmen dieser Arbeit nur Daten vom

1 ABSTRACT 4

rechten Zeigefinger aufgenommen. Dies sollte für eine letztendliche Aussage zu den Möglichkeiten von Yolo in diesem Zusammenhang reichen, allerdings noch nicht für dessen wirkliche Anwendung.

Das Pretraining und auch das Training hatten seine Tücken, weil das originale Yolo-Netzwerk extrem gross ist, und entsprechend nahezu den ganzen RAM-Speicher einer GPU benötigte, wodurch nur noch begrenzt Platz für Daten übrigblieb. Diese Probleme konnten einigermassen umgangen werden, hatten jedoch zur Folge, dass die Bilder von 1280x960 auf 448x448 verkleinert werden mussten, um das Netzwerk zum laufen zu bringen. Dies hatte zur Folge, dass ein Pixel bereits bis zu 1,5mm entsprechen konnte. (Dies sollte Yolo theoretisch nicht daran hindern genauere Aussagen über die Position des Fingerspitzes zu machen.)

Trotzdem wurde mit rund 73% der Predictions "nur" eine Genauigkeit von 15mm erreicht, was in etwa 10 Pixeln entsprach. Mit diesem Ergebnis wurde zwar das Ziel der Aufgabenstellung um Faktor 100 verpasst, allerdings in 73% der Fälle Predictions gemacht, welche aus subjektiver menschlicher Sicht "gutßind. Dies ist ein einigermassen Erstaunliches Resultat, wenn man bedenkt, dass man zum Trainieren nur rund 15'000 Bilder verwendet hatte. Es ist anzunehmen, dass mit einer Verbesserung der Datengewinnung und entsprechend viel mehr Daten in naher Zukunft mit diesem oder einem ähnlichen Konzept eine Genauigkeit von bis zu 1mm erreicht werden können sollte.

2 Resultate

2.1 Testvoraussetzungen

Das Netzwerk wurde auf 1'200'000 Bildern des ImageNet-1000-class-Datasets vortrainiert. Danach wurde es auf rund 13'900 Bildern aus Tabeas Box trainiert. Der Test wiederum wurde auf rund 1'500 Bilder ebenfalls aus Tabeas Box getestet. Diese Testbilder waren dem Algorithmus während des Lernprozesses nicht zugänglich und haben entsprechend keinen Einfluss auf den Lernprozess genommen. Ausserdem wurden diese Bilder so gewählt, dass Sie nicht gleichzeitig aufgenommen wurden. Dies verhindert, dass fast identische Bilder im Training und im Test vorkommen.

2.2 Analyse

Um die genauigkeit der Predictions unseres Neuronalen Netzwerkes möglichst genau beschreiben zu können wurden die zwei Werte Distanz und IOU gewählt. Obwohl die beiden Werte korrelieren sagt jeder für sich nicht die volle Wahrheit über die Genauigkeit der Vorhersagen aus. Die Distanz ist für die geplante Anwendung der wesentlichere Wert, weil diese Informationen über den Standort des Fingers im Bild preisgibt. Die IOU ist mit der Distanz klar korelliert, denn ist die Distanz zu gross, ist die IOU schnell gleich Null. Sobald die Boundingbox der Prediction und die Boundingbox des Labels sich beginnen zu überlappen sagt die IOU etwas über die korrekte Vorhersage von Breite und Höhe der Boundingbox aus. Auch darüber ob die Box am richtigen Ort liegt, können aufgrund der IOU vage Annahmen getroffen werden. Aber wie gesagt, die Distanz ist dafür der sicherere Wert.

2.2.1 Distanz

Die Distanz beschreibt die normierte Differenz zwischen dem Zentrumspunkt des Labels und dem Zentrumspunkt der Vorhersage. Sämtliche Distanzen wurden so normiert, dass die Höhe des Bildes und auch die Breite gleich eins sind. Die maximale Distanz zwischen zwei Punkten ist also die Diagonale über ein Bild, welche entsprechend sqrt(2) ist. Was diese Normierten Distanzen in der realen Welt bedeuten ist auf Abbildung 1 erklärt. Zum Vergleich, ein Menschlicher Zeigefinger ist zwischen 10 und 20 mm breit. Eine normierte Distanz von 0.02 entspricht auf unserem Versuchsaufbau somit ziemlich genau der Breite eines menschlichen Fingers.

Abbildung 1: Bedeutung der normierten Distanzwerte in der realen Welt

Um die Resultate in gut und schlecht einteilen zu können wurde ein Threshold von 0.02 definiert. Die Definition dieses Thresholds wurde gemacht, indem Bilder zusammen mit der entsprechenden Distanz analysiert wurden. Der Wert 0.02 entspricht somit derjenigen Distanz, welche gerade noch knapp annehmbar ist, um einen Finger als detektiert gelten zu lassen. Um ein Gefühl für diese Distanzen zu kriegen lohnt es sich die Abbildungen 2 & 3 anzusehen, welche Bilder zeigen, die eine Distanz nahe dieses Thresholds aufweisen.

Um die Verteilung der Distanzen gut verstehen zu können, ist in Abbildung 4 eine Wahrscheinlichkeitsdichte der Distanzen im Testset zu sehen. Diese Dichtefunktion wurde erst nach der Bestimmung des Thresholds erzeugt und zeigt, dass rund 73% der Distanzen kürzer sind als 0.02 und somit die entsprechenden Finger ërfolgreichërkannt wurden.

Erstaunlich ist auch, dass die Distanzen, welche grösser als 0.25 sind in der Wahrscheinlichkeitsdichte in kleinen Bündeln vorkommen. Dies lässt darauf schliessen, dass die trainingsdaten nicht komplett Bias-Frei sind. Nach kurzer Kontrolle konnte tatsächlich festgestellt werden, dass z.B. bei einer Distanz von 0.6 immer ein bestimmter Punkt des Hintergrundes vorhergesagt wurde, welcher tatsächlich ganz selten in den Labels als Finger markiert wurde.

Abbildung 2: Prediction knapp besser als Distanz=0.02

Abbildung 3: Prediction knapp schlechter als Distanz=0.02

Abbildung 4: Komplette Wahrscheinlichkeits-Dichte-Funktion der Distanz (Grenze: Dist=0.02)

Abbildung 5: Wahrscheinlichkeits-Dichtefunktion der Distanz. Ausreisser nicht miteingerechnet (Grenze: Dist=0.02)

Um die Statistik nicht von Ausreissern, welche aufgrund von falschen Labels entstanden sind verfälschen zu lassen, wurde wie in Abbildung 5 noch eine zweite Wahrscheinlichkeitsdichte-Funktion erstellt. Spannend: Der Mittelwert ist sofort um einen Drittel kleiner als zuvor.

2.2.2 Intersection Over Union IOU

Die IOU beschreibt die Überlappung der vorhergesagten Boundingbox und der Boundingbox des Labels. Daher sagt die IOU einerseits etwas über die korrekte Grösse der Boundingbox, sowie deren korrekte Lage aus. Um wieder etwas über gut und schlecht aussagen zu können, wurde wieder ein Threshold definiert (0.4). Da durch die IOU wie erwähnt mehrere Faktoren beschrieben werden, ist die Grenze verschwommener. So gibt es nach menschlicher Ansicht hervorragende Vorhersagen, welche eine IOU von 0.3 haben und wiederum mässige Vorhersagen mit einer IOU von nahezu 0.4. Um ein Gefühl für diesen Threshold zu kriegen lohnt es sich die Abbildungen 6 & 7 zu berücksichtigen. So fiel die Entscheidung den Threshold konservativ zu wählen, sodass nur Werte als gut erachtet werden könne, welche auch gut sind.

Auch für die IOU gibt es zur Übersicht eine Wahrscheinlichkeitsdichte die in Abbildung 8 betrachtet werden kann. Aus dieser Grafik kann gelesen werden, dass rund 18% der Vorhersagen klar falsch sind, weil die IOU nur null ist, wenn sich die beiden Boundingboxen nicht berühren. Entsprechend kann gesagt werden, dass rund 82% der vorhersagen zumindest sehr grob richtig sind, weil sich bei diesen 82% die Boundingboxen von Label und Prediction zumindest ein ganz kleines bisschen überlappen.

Abbildung 6: Prediction knapp besser als IOU=0.4 $\,$

Abbildung 7: Prediction knapp schlechter als IOU=0.4

Abbildung 8: Wahrscheinlichkeits-Dichte-Funktion der IOU (Grenze: IOU=0.4)

3 Daten-Pipeline

Abbildung 9: Label-Tensor