The LDA+U method: materials with strong electron correlations

Objectives

-Use of the LDA+U method within SIESTA-Study the electronic structure of MnO

Transition metal oxides are prototypes of highly correlated materials

An example: MnO (NaCl structure)

The NaCl structure follows a FCC lattice with 2 atoms of basis, however....

MnO (NaCl structure)

The NaCl structure follows a FCC lattice with 2 atoms of basis, however.... the ground state of MnO corresponds to a ferromagnetic alignment of the Mn atoms within the (111) planes and the antiferromagnetic alignment of those planes

MnO (NaCl structure)

The NaCl structure follows a FCC lattice with 2 atoms of basis, however.... the ground state of MnO corresponds to a ferromagnetic alignment of the Mn atoms within the (111) planes and the antiferromagnetic alignment of those planes

Lattice vectors

Thus we need to have at least 4 atoms in the unit cell (2 Mn atoms and 2 O atoms)

LDA+U method

LDA (or GGA) is supplemented with a Hubbard-like term in order to have a better description of the effect of electron-electron interactions in a localized atomic shell of a particular atom in the solid, i.e. 3d shell of Mn in MnO

In particular this reduces the problem of Self-Interaction

$$E^{LDA+U} = E^{LDA} + Un_{\uparrow}n_{\downarrow} - \frac{U}{2}N(N-1)$$

with

$$\begin{vmatrix} n_{\sigma} = \langle \hat{n}_{\sigma} \rangle \\ N = n_{\uparrow} + n_{\downarrow} \end{vmatrix}$$

Double counting term (cancels the electron-electron interaction in the localized shell in LDA)

LDA+U method

$$\left| \hat{H}_{\sigma}^{LDA+U} = \frac{\delta E^{LDA+U}}{\delta \langle \psi_{\sigma} |} = \hat{H}_{\sigma}^{LDA} + U \left(\frac{1}{2} - n_{\sigma} \right) \hat{n}_{\sigma} \right|$$

$$\varepsilon_{\sigma}^{LDA+U} = \frac{\delta E^{LDA+U}}{\delta n_{\sigma}} = \varepsilon_{\sigma}^{LDA} + U\left(\frac{1}{2} - n_{\sigma}\right)$$

GGA gap is too small for MnO

MnO bands can be corrected with the +U method


```
%block LDAU.proj
Mn 1  # number of shells of projectors
n=3 2  # n, I
3.000 0.000 # U(eV), J(eV)
0.000 0.000 # rc, \omega (default values)
%endblock LDAU.proj
```

Notice that only the 3d Mn states are significantly shifted (~2 eV, of the order of U)

Mulliken population to obtain the local moment

siesta: Total spin polarization (Qup-Qdown) = 0.000000

SIESTA output

WriteMullikenPop 1

mulliken: Atomic and Orbital Populations:								
mulliken: Spin UP								
Species: Mn Atom Qatom	Qorb 4s	4s	4Ppy	4Ppz	4Ppx	3d×y	3dyz	3dz2
1 5.554	3dxz 0.006	3dx2-y 0.241	2 3dxy 0.143	3dyz 0.143	3dz2 0.143	3dxz 0.989	3dx2- 0.989	0.958
2 0.846	0.989 -0.078 0.038	0.958 0.264 0.111	-0.015 0.119 -0.007	-0.015 0.119 -0.007	0.021 0.119 -0.007	-0.015 0.038 -0.007	0.021 0.038 -0.007	0.111
Species: O Atom Qatom	Qorb 2s	2s	2py	2pz	2px	2py	2pz	2px
3 3.300	3Pdxy	3Pdyz 0.015 0.004	3Pdz2 0.862 0.002	3Pdxz 0.862 0.004	3Pdx2 0.862 0.002		-0.063	-0.063
4 3.300		0.015	0.862	0.862	0.862	-0.063	-0.063	-0.063
mulliken: Qtot =		13.000	1					
mulliken: Spin DOWN								
Species: Mn Atom Qatom	Qorb	4	4.5	45	1.0	2.1	2.1	21.0
1 0.846		0.264	4Ppy 72 3dxy 0.119	4Ppz 3dyz 0.119	4Ppx 3dz2 0.119	3dxy 3dxz 0.038	3dyz 3dx2- 0.038	3dz2 ·y2 0.111
2 5.554	0.038 0.006 0.989	0.111 0.241 0.958	-0.007 0.143 -0.015	-0.007 0.143 -0.015	-0.007 0.143 0.021	-0.007 0.989 -0.015	-0.007 0.989 0.021	0.958
Species: O Atom Qatom	Qorb 2s	2.5	2000	2	20	2000	25-	2011
3 3.300	3Pdxy 0.872	2s 3Pdyz 0.015	2py 3Pdz2 0.862	2pz 3Pdxz 0.862	2px 3Pdx2 0.862	2py -y2 -0.063	2pz -0.063	2px -0.063
4 3.300	0.004 0.872 0.004	0.004 0.015 0.004	0.002 0.862 0.002	0.004 0.862 0.004	0.002 0.862 0.002	-0.063	-0.063	-0.063
mulliken: Qtot =		13.000						

Some important variables to control convergence

LDAU.FirstIteration .true.

LDAU.ThresholdTol 1.0d-2

LDAU.PopTol 4.0d-4

If .false. the Hubbard term is ignored in the first iterations

Local populations that define that the Hamiltonian are only updated is converged within this value

Local populations have to be converged below this value in order for the calculations to be considered as converged

Populations calculated using localized projectors

$$n_i = \sum_{n \in occup.} \langle \Psi_n | \phi_i \rangle \langle \phi_i | \Psi_n \rangle$$

Rotationally invariant formulation

$$n_{mm'} = \sum_{n \in occup.} \langle \Psi_n | \phi_m \rangle \langle \phi_{m'} | \Psi_n \rangle$$

$$E^{LDA+U} = E^{LDA} + \frac{U^{eff}}{2} \operatorname{Tr} \left[n - nn \right]$$

Dudarev et al., Phys. Rev. B 57, 1505 (1998)

Shift of the 3d Mn states (PDOS)

Energy (eV)

Shift of the 3d Mn states (PDOS)

Shift of the 3d Mn states (PDOS)

