QUANTITATIVE ANALYSIS

DIFFERENCE OF MEANS (1)

AGENDA

- 1. Follow-up
- 2. Revisiting Distributions
- 3. One Sample
- 4. Independent Samples
- 5. Dependent Samples
- 6. Effect Sizes

1 FOLLOW-UP

2 REVISITING DISTRIBUTIONS

SECOND MOMENT

$$s^{2} = \frac{\sum_{i=1}^{n} (x - \overline{x})^{2}}{n - 1}$$

DEFINITION

SUM OF ALL DEVIANCES, SQUARED AND DIVIDED BY ONE DEGREE OF FREEDOM; EXPECTATION OF HOW DISTRIBUTION DEVIATES FROM THE MEAN

3 ONE SAMPLE

STUDENT'S T-TEST

- Employee of the Guinness company who published his work under the pseudonym "Student".
- Student of Karl Pearson's while on research leaves from Guinness.
- Original t-tests were developed to conducting quality control testing on Guinness stout.

Standard Normal (μ =0, σ =1.0) and Student's t (df=1)

Standard Normal (μ =0, σ =1.0) and Student's t (df=20)

Standard Normal (μ =0, σ =1.0) and Student's t (df=30)

Standard Normal (μ =0, σ =1.0) and Student's t (df=100)

DIFFERENCE IN MEANS

HYPOTHESES

▶ H_0 = there is no significant difference between the mean of y and the population

▶ H_1 = there is a significant difference between the mean of y and the population

ASSUMPTIONS

- \rightarrow continuous data (y)
- the distribution of y is approximately normal
- degrees of freedom (v) = n-1

FORMULA

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$$

standard error

FIND THE PROBABILITY OF T

```
display ttail(df,t)*2
```

- display ttail(72,3.6308)*2
- .0005255

- display ttail(72,1.6308)*2
- **.**1072996

FIND THE PROBABILITY OF T

```
display (1-ttail(df,-t))*2
```

```
display (1-ttail(72,-3.6308))*2
```

.0005255

```
display (1-ttail(72,-1.6308))*2
```

. 1072996

INTERPRETATION

The one-sample t-test (t=4.052,df=42, p<.001) suggests that these data are not representative of the population. The sample mean of 45 is significantly different from the population mean of 60.

4 INDEPENDENT SAMPLES

DIFFERENCE OF MEANS

DIFFERENCE OF MEANS

DIFFERENCE OF MEANS

MODEL

MODEL

MODEL

HYPOTHESES

▶ H_0 = there is no difference in the mean of y between x_a and x_b

 H_1 = there is a difference in the mean of y between x_a and x_b

ASSUMPTIONS

- \blacktriangleright dependent variable (y) is continuous
- \blacktriangleright the distribution of y is approximately normal
- independent variable is binary (x_a and x_b)
- be homogeneity of variance between x_a and x_b
- observations are independent
- $v = n_a + n_b 2$

EQUATION ASSUMING HOMOGENEITY OF VARIANCE

$$t = \frac{\bar{X}_a - \bar{X}_b}{\sqrt{\frac{s_p^2}{n_a} + \frac{s_p^2}{n_b}}}$$

pooled variance

POOLED VARIANCE EQUATION

$$s_p^2 = \frac{(n_a - 1)s_a^2 + (n_b - 1)s_b^2}{n_a + n_b - 2}$$

THE MEANS DO NOT HAVE TO BE DRAMATICALLY DIFFERENT

ASSUMPTIONS

- dependent variable (y) is continuous
- \blacktriangleright the distribution of y is approximately normal
- independent variable is binary (x_a and x_b)
- ▶ homogeneity of variance between x_a and x_b
- observations are independent
- $v = n_a + n_b 2$

EQUATION IF HOMOGENEITY OF VARIANCE CANNOT BE ASSUMED

$$t = \frac{\bar{X}_a - \bar{X}_b}{\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}}$$

variance values for each subgroup

CAUTION! CAUTION! CAUTION!

$$t = \frac{\bar{X}_a - \bar{X}_b}{\sqrt{\frac{s_p^2}{n_a} + \frac{s_p^2}{n_b}}} \quad \neq \quad t = \frac{\bar{X}_a - \bar{X}_b}{\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}}$$

WELCH'S CORRECTED DEGREES OF FREEDOM

$$v \approx \frac{\left(\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}\right)^2}{\frac{s_a^4}{(n_a^2)(n_a - 1)} + \frac{s_b^4}{(n_b^2)(n_b - 1)}}$$

INTERPRETATION

The independent t-test (t=4.052,df=42, p<.001) suggests that there is a significant difference in scores been men (mean of 20) and women (mean of 25). Results for women were found to be higher, on average, than results for men.

5 DEPENDENT SAMPLES

HYPOTHESES

▶ H_0 = there is no difference in the mean of y between x_{t1} and x_{t2}

▶ H_1 = there is a difference in the mean of y between x_{t1} and x_{t2}

HYPOTHESES

▶ H_0 = there is no difference in the mean of y between x_{g1} and x_{g2}

▶ H_1 = there is a difference in the mean of y between x_{g1} and x_{g2}

ASSUMPTIONS

- \blacktriangleright dependent variable (y) is continuous
- independent variable is binary (x_{g1} and x_{g2})
- the distribution of the differences between x_{g1} and x_{g2} is normally distributed
- scores are dependent

EQUATION

mean of difference between groups

$$t=rac{\omega}{\sqrt{rac{s_d^2}{n}}}$$

variance of difference between groups

INTERPRETATION

The dependent t-test (t=4.052,df=42, p<.001) suggests that there is a significant difference in scores been the pre-test (mean of 20) and the post-test (mean of 25). Post-test results were found to be higher, on average, than pre-test results.

LONG DATA

participant	score	timePoint
jane	10	before
jane	12	after
john	15	before
john	14	after

WIDE DATA

participant	score1	score2
jane	10	12
john	15	14
joe	12	12
jessica	8	11

RESHAPING DATA

participant	score	timePoint
jane	10	before
jane	12	after
john	15	before
john	14	after
joe	12	before
joe	12	after
jessica	8	before
jessica	11	after

participant	score1	score2
jane	10	12
john	15	14
joe	12	12
jessica	8	11

6 EFFECT SIZES

PROBLEM

Statistical Significance

≠

Real World Significance

COHEN'S D INTERPRETATION

COHEN'S D INTERPRETATION

COHEN'S D INTERPRETATION

COHEN'S D EQUATION

$$d = \frac{\bar{x}_a - \bar{x}_b}{\sqrt{\frac{(n_a - 1)s_a^2 + (n_b - 1)s_b^2}{n_a + n_b - 2}}}$$

pooled variance

COHEN'S D EQUATION

$$d = \frac{M_t - M_c}{\sqrt{\frac{(n_t - 1)s_t^2 + (n_c - 1)s_c^2}{n_t + n_c - 2}}}$$

COHEN'S D EQUATION SIMPLIFIED

$$d = \frac{2t}{\sqrt{v}} \qquad d = \frac{t (n_t + n_c)}{\sqrt{v} (\sqrt{n_t + n_c})}$$

DOCUMENT DETAILS

Document produced by <u>Christopher Prener, Ph.D</u> for the Saint Louis University course SOC 5050: QUANTITATIVE ANALYSIS - APPLIED INFERENTIAL STATISTICS. See the <u>course wiki</u> and the repository <u>README.md</u> file for additional details.

This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>.