DAY 6

Time Series

What is a Time Series:

- A dependent variable that is observed at different time intervals usually equal intervals
- Examples
 - U.S.'s GDP over time
 - Customers Reviews during March 2019
 - GPAs of all sophomore students during the summer of '18.
 - Sales and revenue
 - Height of a boy over time.
- Time Series Plots
 - Possible Patterns
 - Horizontal Patterns
 - Where the data seems to fluctuate randomly around a mean
 - An adult's height. (Constant but only may change due to reading error / posture)
 - Trend Pattern
 - When random fluctuation occur, but has a constant trend about it.
 - Eg. Temperature at March (It keep increasing)
 - Types of Trends
 - Uptrend
 - Downtrend
 - Stationary Trend
 - Seasonal Pattern
 - Deals with **seasonality** short term periodic relationship
 - Identifying a common pattern in the data
 - Seasonal Patterns can exist without trends
 - Eg. Tides, and how far they recede throughout a day.
 - Eg. Low-Med-High is a constant shape shift of the data throughout the months.
 - Common with monthly data
 - Employment graph, Patio Furniture Sales graph
 - Cyclical Patterns
 - Has high runs and low runs (ups and downs)
 - Eg. Employment, Gasoline Prices
 - Irregular Patterns
 - Unobservable, but time dependant
 - E.g. Sales of Medicine due to floods
 - How to Plot
 - Take a variable that you care about
 - Take a series of Y's that are influence by time
 - Terms used in Plotting

- Seasonality
 - Short term periodic relationship
- Cycles
 - Long term periodic relationship
- Irregular
 - Unobservable, but time dependant
 - Eg. Oil spills

What can one achieve with Time-Series:

- Business Forecasting
- Understanding Past Behavior
- Plan the future
- Evaluating a current accomplishment.

When do we not use Time-Series:

- When values are constant.
 - Number of coffee sales are constant across months
- Values are in the form of functions
 - No point as you can use a function to calculate.

What is Stationarity:

- Dataset has a constant mean, one that doesn't vary across time
- Dataset has a constant variance, one that doesn't vary across time
- Autocovariance doesn't depend on time
 - Correlation between values of the different time frames shouldn't be there.
 - E.g. t-1's values and t's values don't have any correlation between them
- When a dataset has these 3 points it is said to be stationary, and then can time-series can be used upon it.

Checking Stationarity in Python:

- Python has two popular tools to check the stationarity of a dataset
- Rolling Statistics
 - o Plot the moving average, variance and check whether that is moving or not.
 - A moving average is one, that is taken in a specific time window only
 - Visual Technique
 - Not deployable on production, but it is useful for Proof of Concept
- Augmented Dickey Fuller Test
 - Statistical Test to check for stationarity
 - o Data Science related
 - Null Hypothesis is that the Time Series is non-stationary
 - Result consists of Test Statistics and Critical Values

Models to work with Time Series Data

Arima

- The ARIMA model shows great promise
- ARIMA = AR + I + MA
 - **AR -** Auto Regression
 - Describes co-relation between previous time period and current time period
 - o **I** Integration
 - o **MA -** Moving Average
 - The noise in the time series is averaged out and smoothened out and calculated.
 - The crest / throughs of noise are smoothened out to bring an average forecast
- Parameters of ARIMA (to predict)
 - P
- Autoregressive lags
- Prediction done using PACR graph (Partial Autocorellation)
- Q
- Moving average
- Prediction done using ACF Plot (Auto Correlation Plot)
- o **D**
- Order of differentiation
 - If the order of integration is 1, then D = 1
 - To make data stationary, we use differentiation