MOWNIT

Laboratorium 2

Jakub Karbowski 23 marca 2022

Cel ćwiczenia

Dla zadanej funkcji

$$f(x) = e^{-k \cdot \sin(mx)} + k \cdot \cos(mx)$$
$$x \in [-3\pi, 3\pi]$$
$$k = 2$$
$$m = 1$$

wyznaczyć wielomian interpolujący wzorem Lagrange'a i Newtona. Sprawdzić wpływ liczby węzłów oraz ich rozmieszczenia na dokładność interpolacji.

1

Parametry doświadczenia

Język programowania:

· Julia

Typ zmiennoprzecinkowy:

· Float64

Obliczane błędy:

- max err = $\max |f(x_i) g(x_i)|$
- sum err² = $\sum [f(x_i) g(x_i)]^2$

Metoda Newtona

Rysunek 1: n = 7, Newton, równoodległe

Metoda Newtona

Rysunek 2: n = 10, Newton, równoodległe

Efekt Runge'go

Rysunek 3: n = 13, Newton, równoodległe

Wniosek

Za pomocą węzłów równoodległych nie jesteśmy w stanie dobrze interpolować zadanej funkcji na całej dziedzinie.

Rozwiązaniem problemu jest zastosowanie węzłów Czebyszewa.

Węzły Czebyszewa

Rysunek 4: n = 13, Newton, Czebyszew

Węzły Czebyszewa

Rysunek 5: n = 21, Newton, Czebyszew

Wniosek

Zastosowanie węzłów Czebyszewa pozwala na dalsze zwiększanie parametru *n*, bez występowania efektu Runge'go. Prowadzi to do zmniejszania się błędu.

Jak bardzo można zwiększyć n?

Więcej węzłów

Rysunek 6: n = 38, Newton, Czebyszew

Problem z metodą Newtona

Rysunek 7: n = 42, Newton, Czebyszew

Problem z metodą Newtona

Rysunek 8: n = 46, Newton, Czebyszew

Metoda Lagrange'a

Rysunek 9: n = 46, Lagrange, Czebyszew

Wniosek

Dla n > 40, liczenie wielomianu wzorem Newtona wprowadza znaczne błędy obliczeniowe.

Zastosowanie wzoru Lagrange'a nie powoduje wystąpienia tych błędów.

Wartości numeryczne

Tabela 1: Lagrange vs Newton

n	Błąd Lagrange'a	Błąd Newtona
10	2882.85	2882.85
15	1276.07	1276.07
20	208.65	208.64
25	93.26	93.255
30	7.79	7.78
35	3.00	3.00
40	0.32	1.78
45	0.09	3557.34
50	0.01	7.84e6

Liczony błąd to suma kwadratów. Widać moment, w którym metoda Newtona zaczyna odbiegać od Lagrange'a.

Wartości numeryczne

Tabela 2: Lagrange, duże *n*

n	Błąd Lagrange'a
100	1.06e-12
200	6.18e-26
300	8.35e-26
400	1.48e-25
500	2.14e-25
600	5.50e-25
700	4.80e-25
800	6.96e-25
900	6.82e-25
1000	9.97e-25

Widać zwiększanie się błędu dla dużych *n*. Dla większych *n* program wykonuje się zbyt długo.

Wnioski

- 1. Stosowanie węzłów równoodległych powoduje szybkie wystąpienie efektu Runge'go.
- 2. Węzły Czebyszewa skutecznie eliminują efekt Runge'go.
- 3. Dla dużej liczby węzłów metoda Newtona przestaje się sprawdzać.
- 4. Metoda Lagrange'a pozwala osiągnąć lepszą interpolację dla dużych *n*.
- 5. Metoda Lagrange'a przestaje być obliczalnie praktyczna dla bardzo dużych *n*, ze względu na czas obliczeń.