7TH ATMOSPHERIC SCIENCES SYMPOSIUM

28-30 APRIL 2015 ISTANBUL

PROCEEDINGS

EDITORS

DOÇ.DR. ALİ DENİZ BAHTİYAR EFE BİHTER DURNA PELİN CANSU ÇAVUŞ

Chairs

Assoc. Prof. Dr. Ali DENİZ, İstanbul Technical University (Chair)

Prof. Dr. Mustafa ÇIKRIKÇI, İstanbul Aydın University (Co-chair)

Assoc. Prof. Dr. Hüseyin TOROS, İstanbul Technical University (Vice Chair)

Prof. Dr. Osman UCAN, İstanbul Aydın University (Vice Chair)

Honoree Chairs

Prof.Dr Mehmet KARACA, Rector, İstanbul Technical University

Dr. Mustafa AYDIN, Head of Trustees, İstanbul Aydın University

Prof. Dr. Zekai SEN, Head of Water Foundation

Prof. Dr. Yadigar İZMİRLİ, Rector, İstanbul Aydın University

Prof. Dr. Lütfi AKÇA, Counselor in Ministry of Forestry and Water Affairs

Prof. Dr. Mustafa ÖZTÜRK, Counselor in Min. of Environment and Urban Planning

Bilal EKŞİ, General Manager, Directorate General of Civil Aviation

Hamdi TOPÇU, Chairman of the Board, Turkish Airlines

Assos. Prof. Dr. Temel KOTİL, General Manager, Turkish Airlines

İsmail GÜNEŞ, General Manager, Meteorological Service

Akif ÖZKALDI, General Manager, State Hydraulic Works

Funda OCAK, Deputy Genaral Manager, State Airports Authority

Firat ÇUKURÇAYIR, Head of the Chamber of Meteorological Engineers

Ramazan ÖZÇELİK, Regional Director, Marmara Clean Air Centre

Advisory Board

Prof. Dr. Ahmet Duran ŞAHİN, İstanbul Technical University, Turkey

Prof. Dr. Celal Nazım İREM, İstanbul Aydın University, Turkey

Prof. Dr. Hasan SAYGIN, İstanbul Aydın University, Turkey

Prof. Dr. H. Sema TOPÇU, İstanbul Technical University, Turkey

Prof. Dr. İbrahim ÖZKOL, İstanbul Technical University, Turkey

Prof. Dr. Kasım KOÇAK, İstanbul Technical University, Turkey

Prof. Dr. Levent SAYLAN, İstanbul Technical University, Turkey

Prof. Dr. M. Orhan KAYA, İstanbul Technical University, Turkey

Prof. Dr. Selahattin İNCECİK, İstanbul Technical University, Turkey

Prof. Dr. Zafer ASLAN, İstanbul Aydın University, Turkey

Prof. Dr. Zahit MECİTOĞLU, İstanbul Technical University, Turkey

Prof. Dr. Zerefsan KAYMAZ, İstanbul Technical University, Turkey

Isınma ve Soğuma Derece Günlerin Elektrik Tüketimi Üzerindeki Etkisi

Derya AYDIN (1), Ahmet Faruk KAVAK (2), Hüseyin TOROS (3)

1İstanbul Teknik Üniversitesi, Uçak ve Uzay Bilimleri Fakültesi, Meteoroloji Mühendisliği, İstanbul, (aydiinderya@gmail.com)

2Boğaziçi Üniversitesi, İdari ve İktisadi Bilimler Fakültesi, İktisat (ahmet_kavak91@yahoo.com)

3İstanbul Teknik Üniversitesi, Uçak ve Uzay Bilimleri Fakültesi, Meteoroloji Mühendisliği, İstanbul, (toros@itu.edu.tr)

ÖZET

Dünyadaki trende paralel olarak liberalleşen Türkiye Enerji Piyasası'nda elektrik talep tahmini konusu önemli bir çalışma alanı haline gelmektedir. İstatistiki araçlar kullanılarak yapılan öngörülerde hali hazırda yüksek volatilite gösteren elektrik talebini genellikle üretim göstergesi (GSYİH) takvim etkisi ve hava sıcaklığı ile açıklayan yöntemler mevcuttur. Bu etkenlerden elektrik talebine en çok etki edeceğini düşündüğümüz hava sıcaklığını, ısıtma derece gün ve soğutma derece gün olarak kullanmayı uygun bulduk. İsıtma derece gün, bir günlük periyodun ne kadar soğuk geçtiğini ve ne kadar ısınmaya ihtiyaç duyulduğunu, soğutma derece gün de bir günlük periyodun ne kadar sıcak geçtiğini ve ne kadar soğutmaya ihtiyaç duyulduğunu gösteren birimdir. Dış ortamın sıcaklığı hesaba katılarak baz alınan sıcaklığa göre soğuğun yada sıcağın şiddeti belirlenir. Çalışmamızda, ısınma ve soğuma için harcanan enerjiyi yansıtan ısınma derece günler ve soğuma derece günleri, gün tipi (takvimsel etki) etkisinden arındırılmış tüketim ile bir korelasyon analizine tabi tutarak; meteorolojik etmenlerin elektrik piyasası üzerindeki etkisini daha objektif bir yöntemle göstermeyi amaçladık.

Anahtar kelimeler: Isıtma derece gün, soğutma derece gün, elektrik tüketim

ABSTRACT

Energy demand forecasts are becoming an important topic in liberalized or semi-liberalized energy markets around the world, such as Turkish Energy Market. In explaining electricity demand, forecast models mainly focus on development indexes like GDP (for long-term forecasts), historical distribution of electricity demand and temperature (for short-term forecasts) to diagnose the dynamics of such a volatile-natured variable. In our work, we will try to explain this volatility via HDD (Heating Degree Day) and CDD (Cooling Degree Day) values. Respectively these indexes indicate how much change in temperature is needed for heating or cooling for a given day. This way it will be easier to reflect the energy spent for heating or cooling in a forecast model. Another novel feature of our work will be exclusion of the calendar effect on time series representing electricity demand. After this phase, we will enable ourselves to analyze the correlation between electricity demand and temperature more objectively and more accurately. Finally we will argue that a forecast model built on these assumptions will be more successful in explaining future consumption levels of electricity in a given network.

Key words: Heating degree day, cooling degree day, electricity demand

1. Giriş

Şehirlerdeki arazi kullanımının değişmesi, beton yapıların artması, yüksek binalar, kalabalık nüfus ve yoğun hava kirliliği hava sıcaklıklarının çevresindeki kırsal kesimlere oranla daha yüksek seviyelere ulaşmasına neden olmaktadır. Bu durum kentsel ısı adası olarak, ilk kez 1820'de Luke Howard tarafından tanımlanmış ve literatüre girmiştir. (Yüksel, Ü., D., Yılmaz, O., 2008) Şehirlerdeki kara kullanımının değişimi ısının radyatif transferini ve depolanmasını etkileyerek, hissedilir ve gizli ısıdaki dengeyi değiştirmektedir. Bu nedenle yüksek binaların yoğun olduğu bölgelerdeki hava sıcaklığı kırsal çevresine göre daha yüksek olmaktadır (Vardoulakis, E., ve ark., 2013) Kentsel ısı adası sıcaklıkları yükseltmesinin yanı sıra enerji talebinin artmasında da etkilidir.

Türkiye'de elektrik enerjisi talebi, artan nüfus, şehirleşme, sanayileşme, teknolojinin yaygınlaşması ve refah artışına paralel olarak yükselmesini sürdürmektedir. Türkiye'de elektrik enerjisi tüketimi, geçen 40 yılda, yıllık

ortalama %10'luk bir hızla büyümüştür. Bu artış hızı son 20 yılda % 8,5 düzeyine gerilemiştir. Azalan artış hızına rağmen talebin tüketimde doyuma ulaşılıncaya kadar daha uzun bir süre yüksek oranlarda artmaya devam etmesi beklenmektedir. (Güneği, O. O., 2002, Demirel, Ö., ve ark, 2010)

Enerjinin tüketicilere ucuz ve kaliteli olarak sunulması, elektrik enerjisinin üretimini, iletimini ve dağıtımını yapan kuruluşların hedefidir. Bu amacı güvenilir ve ekonomik bir şekilde yerine getirmek için elektrik enerji sistemleri, enerji ihtiyacını ve trafodan çekilen anlık yükü (puant) karşılayabilecek şekilde geliştirilmelidir. Enerji üretim, iletim ve dağıtım sistemlerinin düzenli olarak planlanması, talep değişimlerinin takibi, arz oluşturulması ve enerji eksikliğinin yaşanmamamı açısından önem arz etmektedir. Bu planlamalar yapılırken de en önemli safhayı enerji talep tahminleri oluşturmaktadır. (Demirel, Ö., ve ark., 2010)

Hava sıcaklığının şiddetini temsil etmesi açısından ısıtma ve soğutma derece günler çalışmalarda sıklıkla kullanılmaktadır. Isıtma ve soğutma derece gün, belirli bir zamanda belirli bir baz değerine göre hava sıcaklığının şiddetini ifade etmekte kullanılır. Isıtma derece gün sayısı (heating degree day, HDD) bir gün içinde ortalama hava sıcaklığının, baz değerine oranla ne kadar soğuk olduğunu ifade eder. Soğutma derece gün sayısı (cooling degree day, CDD) ise bir günün ortalama sıcaklığının, baz değerine oranla ne kadar sıcak olduğunu ifade eder. Başka bir değişle ısıtma derece gün sayısının yüksek olması o bölgede ısınma ihtiyacının yüksek olduğunu anlamına gelmektedir. Soğutma derece gün sayısı ise aynı şekilde soğutmaya ihtiyaç duyulan gün sayısını ifade etmektedir.

Çalışmada İstanbul un seçilmesinin nedeni hızlı şehirleşme ve sanayileşme ile kent ısı adasının etkili biçimde görülmesi ve yoğun popülasyonu nedeniyle ülkedeki enerji tüketiminin en çok olduğu şehir olmasıdır. Çalışma sonucunda sıcaklık ile elektrik tüketimi arasındaki ilişkinin yüksek olduğunun gösterilmesi ve bu doğrultuda elektrik talebinin yüksek doğrulukla tahmin edilmesi için model geliştirmek amaçlanmıştır.

2. Metot ve Materyal

Çalışmada İstanbul iline ait Aralık 2010 – Aralık 2014 yılları arası günlük sıcaklık verileri ve günlük elektrik tüketim verileri kullanılmıştır. Sıcaklık verileri wunderground.com sitesinden, tüketim verileri de Boğaziçi Elektrik A.Ş.'den temin edilmiştir. Sıcaklık verileri kullanılarak ısıtma ve soğutma derece gün sayıları (HDD ve CDD) hesaplanmıştır. Isıtma derece gün ve soğutma derece gün sayıları farklı yöntemler kullanılarak belirlenebilir. Bu çalışmada Avrupa Birliği İstatistik Ofisi (Eurostat) tarafından belirlenen yöntem kullanılmıştır. Türkiye oldukça büyük yüzey alanına sahiptir ve birçok farklı iklimi barındırır. Her bölgede konfor sıcaklığının aynı olması beklenemez. Ülkenin doğusunda ısıtma ihtiyacı için beklenen sıcaklıklar daha düşük, fakat daha ılıman iklime sahip batı bölgeler için bu eşik sıcaklığı daha yüksektir. Bu nedenle çalışmanın yapılacağı İstanbul için farklı baz değerleri seçilerek ısıtma ve soğutma derece gün sayıları belirlenmiş ve elektrik tüketim ile olan korelasyonları hesaplanmıştır. Böylece elektrik tüketimi ile en büyük korelasyona sahip olan sıcaklık değerleri daha objektif bir şekilde saptanmıştır.

Çalışmamızın ikinci bölümünde ise hava sıcaklığı-tüketim ilişkisini temel alan basit bir tahmin modeli oluşturarak hava durumu tahminlerini girdi olarak kullanabilecek doğrusal bir regresyon ile enerji tüketimine yönelik isabetli öngörüler sunabilecek bir denklem kurmak amaçlanmıştır.

2.1. Doğrusal Regresyon Modeli

İki ya da daha fazla değişkenin ortak dinamiklerini belirleyip aralarındaki ilişkiyi sayısal olarak ifade edebilmek üzerine özellikle iktisat alanında birçok araç sunan ekonometri disiplininde doğrusal regresyon çok temel bir yere sahiptir. Doğrusal regresyon modellerinin tanımda örnek verilen dışında zaman serilerini kullanarak geleceğe yönelik tahminler yapabilme gibi çok önemli işlevleri vardır. Burada bahsedilen zaman serileri belirli bir değişkenin herhangi bir zaman aralığı için düzenli aralıklarla verilen gözlemleridir. Doğrusal regresyon modeli, girdi olarak kullandığı bir değişkenin(açıklayıcı değişken) gelecek projeksiyonunu kullanarak, gerçekleşen değerler üzerinden sayısal ilişkilerini açıkladığı matematiksel model üzerinden başka bir değişkene(açıklanan değişken) yönelik öngörüler sunabilmektedir. Aşağıda basit bir doğrusal regresyon modeline ait matematiksel denklem örneği verilmiştir.

$$y_t = \beta_0 + \beta_1 \times x_t^1 + \beta_2 \times x_t^2 + \beta_3 \times y_{t-1} + \cdots \varepsilon_t$$

Basit bir örneklendirme yapılırsa, y_t bir şehirde t zamanında(bu bir yıl olabilir, 1997 gibi, bu durumda t-1, 1998'e karşılık gelmektedir) görülen adli vaka sayısı olsun. x_t^1 , t zamanında şehirdeki toplam polis sayısı, x_t^2 ise t zamanındaki işsizlik oranı olsun. y_{t-1} de tahmin edileceği gibi t'den bir önceki zaman periyodundaki adli vaka sayısı olacaktır. Doğrusal regresyon modelinde amaç basit olarak en doğru β değerlerini bularak, denklemin son parçası olan hata miktarını(ε_t = gerçekleşen değer – denklemin verdiği değer) minimum seviyede olmasıdır. (β_0 burada sabit bir sayıya karşılık gelmektedir, öyle ki tüm açıklayıcı değişkenler "0" olduğunda açıklanan değişkenin değerinin ne kadar olacağına dair bir başlangıç noktası verir, örnek üzerinden gidersek işsizlik ve polis sayısının "0" olduğu durumda kaç adli vaka görülür). Doğrusal denklemde bu metotla β değerlerinin belirlenmesi literatürde "Optimal Least Squares" olarak(OLS) isimlendirilmiştir.

Çalışmamız içerisinde iki bölümde regresyon modeli kullanılacaktır:

- 1. Tüketim değerlerini takvimsel etkiden arındırma
- 2. HDD ve CDD'vi acıklayıcı değisken olarak kullanan doğrusal bir tahmin modeli oluşturulması

2.2. Isıtma Derece Gün ve Soğutma Derece Gün Sayıları Hesaplanması

$$HDD = (Tb - Tm) * d$$

Tb= Baz sıcaklık değeri

Tm= Günlük ortalama sıcaklık

d= Gün sayısı

HDD= 0 Eğer Tm > Tb

$$CDD = (Tm - Tb) * d$$

Tb= Baz sıcaklık değeri

Tm= Günlük ortalama sıcaklık

d= Gün sayısı

CDD= 0 Eğer Tm<Tb

date	HDD14	HDD16	HDD18	date2	CDD20	CDD22	CDD24
1.12.2010	0	0	0	1.6.2011	0	0	0
2.12.2010	0	0	0	2.6.2011	0	0	0
3.12.2010	0	0	0	3.6.2011	1,01375	0	0
4.12.2010	0	0	0	4.6.2011	2,284583	0,284583	0
5.12.2010	4,01375	6,01375	8,01375	5.6.2011	2,534583	0,534583	0
6.12.2010	5,07625	7,07625	9,07625	6.6.2011	2,985833	0,985833	0
7.12.2010	3,319167	5,319167	7,319167	7.6.2011	2,735833	0,735833	0
8.12.2010	0,63875	2,63875	4,63875	8.6.2011	2,45125	0,45125	0
9.12.2010	0	0,631667	2,631667	9.6.2011	5,14625	3,14625	1,14625
10.12.2010	6,479167	8,479167	10,47917	10.6.2011	3,4375	1,4375	0
11.12.2010	10,13875	12,13875	14,13875	11.6.2011	0, 1070	0	0
12.12.2010	11,40958	13,40958	15,40958	12.6.2011	0,958333	0	0
13.12.2010	9,257083	11,25708	13,25708	13.6.2011	1,305417	0	0
14.12.2010	8,458333	10,45833	12,45833	14.6.2011	0,895833	0	0
15.12.2010	9,04875	11,04875	13,04875	15.6.2011	2,132083	0,132083	0
16.12.2010	6,243333	8,243333	10,24333	16.6.2011	1,993333	0	0
17.12.2010	9,007083	11,00708	13,00708	17.6.2011	2,305833	0,305833	0
18.12.2010	4,631667	6,631667	8,631667	18.6.2011	3,291667	1,291667	0
19.12.2010	4,895833	6,895833	8,895833	19.6.2011	3,360833	1,360833	0
20.12.2010	3,007083	5,007083	7,007083	20.6.2011	3,465417	1,465417	0
21.12.2010	0,007000	1,5625	3,5625	21.6.2011	3,847083	1,847083	0
22.12.2010	0,590417	2,590417	4,590417	22.6.2011	4,07625	2,07625	0,07625
23.12.2010	1,347083	3,347083	5,347083	23.6.2011	4,60375	2,60375	0,60375
24.12.2010	0,67375	2,67375	4,67375	24.6.2011	4,569167	2,569167	0,569167
25.12.2010	0,07070	0,73625	2,73625	25.6.2011	3,798333	1,798333	0
26.12.2010	0	1,493333	3,493333	26.6.2011	0,243333	0	0
27.12.2010	1,875	3,875	5,875	27.6.2011	0,24000	0	0
28.12.2010	7,82625	9,82625	11,82625	28.6.2011	1,117917	0	0
29.12.2010	8,784583	10,78458	12,78458	29.6.2011	0,625	0	0
30.12.2010	8,479583	10,47958	12,47958	30.6.2011	2,514167	0,514167	0
31.12.2010	9,5	11,5	13,5	1.7.2011	3,54875	1,54875	0
1.1.2011	9,944583	11,94458	13,94458	2.7.2011	2,32625	0,32625	0
2.1.2011	5,51375	7,51375	9,51375	3.7.2011	4,631667	2,631667	0,631667
3.1.2011	6,180833	8,180833	10,18083	4.7.2011	2,35375	0,35375	0
4.1.2011	8,889167	10,88917	12,88917	5.7.2011	3,520833	1,520833	0
5.1.2011	7,79875	9,79875	11,79875	6.7.2011	5,076667	3,076667	1,076667
6.1.2011	10,45125	12,45125	14,45125	7.7.2011	5,145833	3,145833	1,145833
7.1.2011	8,472083	10,47208	12,47208	8.7.2011	6,3125	4,3125	2,3125
8.1.2011	8,617917	10,61792	12,61792	9.7.2011	5,722083	3,722083	1,722083
9.1.2011	7,402917	9,402917	11,40292	10.7.2011	5,979167	3,979167	1,979167
10.1.2011	6,472083	8,472083	10,47208	11.7.2011	6,354167	4,354167	2,354167
11.1.2011	5,367917	7,367917	9,367917	12.7.2011	6,635417	4,635417	2,635417
12.1.2011	4,312083	6,312083	8,312083	13.7.2011	6,125	4,125	2,125
13.1.2011	5,375417	7,375417	9,375417	14.7.2011	6,347083	4,347083	2,347083
14.1.2011	5,492917	7,492917	9,492917	15.7.2011	7,451667	5,451667	3,451667
15.1.2011	5,632083	7,632083	9,632083	16.7.2011	6,305833	4,305833	2,305833
16.1.2011	4,8475	6,8475	8,8475	17.7.2011	8,382083	6,382083	4,382083
17.1.2011	6,9925	8,9925	10,9925	18.7.2011	7,944583	5,944583	3,944583
18.1.2011	7,569583	9,569583	11,56958	19.7.2011	7,257083	5,257083	3,257083
19.1.2011	7,507083	9,507083	11,50708	20.7.2011	7,514167	5,514167	3,514167
20.1.2011	6,9375	8,9375	10,9375	21.7.2011	7,784583	5,784583	3,784583
21.1.2011	4,347083	6,347083	8,347083	22.7.2011	7,687917	5,687917	3,687917
22.1.2011	2,444167	4,444167	6,444167	23.7.2011	8,0975	6,0975	4,0975
23.1.2011	3,784583	5,784583	7,784583	24.7.2011	7,54875	5,54875	3,54875
24.1.2011	8,222083	10,22208	12,22208	25.7.2011	7,014167	5,014167	3,014167
25.1.2011	9,430417	11,43042	13,43042	26.7.2011	7,944583	5,944583	3,944583
	,	,	,		,	,	,

26.1.2011	9,472083	11,47208	13,47208	27.7.2011	8,458333	6,458333	4,458333
27.1.2011	9,48625	11,48625	13,48625	28.7.2011	8,270958	6,270958	4,270958
28.1.2011	7,42375	9,42375	11,42375	29.7.2011	7,6525	5,6525	3,6525
29.1.2011	8,527917	10,52792	12,52792	30.7.2011	7,708333	5,708333	3,708333
30.1.2011	11,00667	13,00667	15,00667	31.7.2011	7,277917	5,277917	3,277917
31.1.2011	12,20125	14,20125	16,20125	1.8.2011	7,159583	5,159583	3,159583
1.2.2011	11,91	13,91	15,91	2.8.2011	6,652917	4,652917	2,652917
2.2.2011	11,42375	13,42375	15,42375	3.8.2011	6,180417	4,180417	2,180417
3.2.2011	9,117917	11,11792	13,11792	4.8.2011	6,354167	4,354167	2,354167
4.2.2011	8,055417	10,05542	12,05542	5.8.2011	5,958333	3,958333	1,958333
5.2.2011	7,98625	9,98625	11,98625	6.8.2011	5,090417	3,090417	1,090417
6.2.2011	5,645833	7,645833	9,645833	7.8.2011	5,11125	3,11125	1,11125
7.2.2011	5,409583	7,409583	9,409583	8.8.2011	5,332917	3,332917	1,332917
8.2.2011	6,527917	8,527917	10,52792	9.8.2011	5,583333	3,583333	1,583333
9.2.2011	5,32625	7,32625	9,32625	10.8.2011	5,527917	3,527917	1,527917
10.2.2011	7,91	9,91	11,91	11.8.2011	0,92375	0	0
11.2.2011	8,5	10,5	12,5	12.8.2011	0,777917	0	0
12.2.2011	4,145833	6,145833	8,145833	13.8.2011	3,340417	1,340417	0
13.2.2011	7,090417	9,090417	11,09042	14.8.2011	4,402917	2,402917	0,402917
14.2.2011	7,23625	9,23625	11,23625	15.8.2011	5,430417	3,430417	1,430417
15.2.2011	8,98625	10,98625	12,98625	16.8.2011	6,617917	4,617917	2,617917
16.2.2011	9,757083	11,75708	13,75708	17.8.2011	7,284583	5,284583	3,284583
17.2.2011	7,360833	9,360833	11,36083	18.8.2011	5,8125	3,8125	1,8125
18.2.2011	1,555417	3,555417	5,555417	19.8.2011	4,632083	2,632083	0,632083
19.2.2011	3,055417	5,055417	7,055417	20.8.2011	3,92375	1,92375	0
20.2.2011	8,131667	10,13167	12,13167	21.8.2011	4,395833	2,395833	0,395833
21.2.2011	8,208333	10,20833	12,20833	22.8.2011	4,895833	2,895833	0,895833
22.2.2011	7,027917	9,027917	11,02792	23.8.2011	4,340417	2,340417	0,340417
23.2.2011	5,916667	7,916667	9,916667	24.8.2011	4,88875	2,88875	0,88875
24.2.2011	6,805417	8,805417	10,80542	25.8.2011	5,242917	3,242917	1,242917
25.2.2011	7,8475	9,8475	11,8475	26.8.2011	4,8475	2,8475	0,8475
26.2.2011	11,57625	13,57625	15,57625	27.8.2011	4,742917	2,742917	0,742917
27.2.2011	11,29208	13,29208	15,29208	28.8.2011	4,027917	2,027917	0,027917
28.2.2011	9,152917	11,15292	13,15292	29.8.2011	4,4725	2,4725	0,4725
				30.8.2011	2,708333	0,708333	0
				31.8.2011	3,618333	1,618333	0
TE 11 1 2011	1 7 11		· . 1	1			

Table 1: 2011 yılı İstanbul'un günlük ısıtma ve soğutma derece gün sayıları

Tablo 1'de 2011 yılı için hesaplanan günlük HDD ve CDD sayıları mevcuttur. HDD değerleri için Aralık-Ocak-Şubat aylarını kapsayan kış dönemi verileri; CDD değerleri için de Haziran- Temmuz- Ağustos aylarının kapsayan yaz dönemi verileri kullanılmıştır. Çalışmada Aralık 2010 – Kasım2014 yılları günlük verileri kullanılmıştır. Fakat Tablo 1 temsili olması açısından sadece 2011 yılı değerlerini göstermektedir.

2.3. Günlük Tüketimin Takvim Etkisinden Arındırılması

Daha önce bahsedildiği gibi bu aşamada doğrusal regresyon denklemi kurularak değişik günlerin tüketim karakteristikleri incelenmiştir. Enerji piyasasında şehir şebekelerinin enerji tedariği ile yükümlü dağıtım şirketlerinin talep tahmini için kullandıkları "EPDK Calendar" bu konuda çalışmamıza önemli bir katkı sunacaktır. Şöyle ki Enerji Piyasası Denetleme Kurulunun yayınladığı bu gün tipi standardına göre haftanın 7 günü, bayram arifeleri, resmi tatiller ve bayram günleri toplamda 10 adet olmak üzere farklı gün tipi kodları almaktadır. Aşağıdaki listede gün tipleri detaylandırılmıştır.

Table 2: EPDK gün tipi kodları

1	Pazar
2	Pazartesi
3	Salı
4	Çarşamba
5	Perşembe
6	Cuma
7	Cumartesi
8	Dini Günler
9	Resmi Tatiller
10	Arife günleri

Burada kullanılacak regresyon modeli 10 adet basit değişken ("1" ya da "0" değerlerini alan "dummy variable") ve tüketim serisi içindeki zaman trendinin ayıklanmasına yönelik sabit bir şekilde artan zaman değişkeni olacaktır. Burada bahsedilen zaman trendi elektrik tüketiminin şebekedeki değişimlere bağlı olarak uzun dönemde görülecek büyüme oranına karşılık gelmektedir. Ana hatlarıyla matematiksel gösterim aşağıdaki gibi olacaktır:

$$T\ddot{U}KET\dot{I}M_t = \beta_1 \times D_1 + \beta_2 \times D_2 ... + \beta_{10} \times D_{10} + \beta_{11} \times t$$

Denklem günlük gözlemler ile kurulacaktır yani her t değeri bir güne karşılık gelmektedir. Ayrıca oluşturulan veri seti 1.12.2010'dan 31.12.2014'e kadar toplam 1492 gözlem içermektedir. Denklemdeki "D" değişkenleri gün tiplerine karşılık gelen basit değişkenlerdir. Örneğin Çarşamba günü gözlemi için D_4 , "1" e eşit olurken diğer tüm D değerleri "0" olacaktır. Bu model kurulduğunda çıkacak tüm β değerleri uzun dönem trendinden arındırılmış, gün tipine özel standart elektrik tüketimi değerlerini verecektir. Aşağıda EVIEWS istatistik programı üzerinden kurulan modelin çıktıları verilmiştir.

Table 3: EVIEWS model çıktıları

Dependent Variable: DEMA				
Method: Least Squares				
Date: 03/17/15 Time: 22:	14			
Sample: 12/01/2010 12/31	/2014			
Included observations: 149)2			
Variable	Coefficient*	Std. Error	t-Statistic	Prob.
@TREND	0.172777	0.012366	13.97159	0.0000
DAY TYPE=1	t		119.6461	0.0000
	2042.504	17.07121		
DAY_TYPE=2	2665.027	17.07820	156.0485	0.0000
DAY_TYPE=3	2766.807	17.11481	161.6616	0.0000
DAY_TYPE=4	2766.837	2766.837 17.03184 162.4509		0.0000
DAY_TYPE=5	2770.473 17.02269 162.7517		0.0000	
DAY_TYPE=6	2740.520	16.92112	161.9585	0.0000
DAY_TYPE=7	2459.816	17.15274	143.4066	0.0000
DAY_TYPE=8	1570.304	40.23010	39.03307	0.0000
DAY_TYPE=9	2223.407	43.86402	50.68864	0.0000
DAY_TYPE=10	1915.658	1915.658 73.42074 26.09150		
R-squared**	0.678921 Mean dependent var 27			
Adjusted R-squared	0.676753	76753 S.D. dependent var 361.6107		
S.E. of regression	205.5931	Akaike info criterion 13.4970		
Sum squared resid	62599688	Schwarz crite	rion	13.53615

Modelde incelenmesi gereken en önemli gösterge gün tipleri ve zaman trendi için hesaplanan β katsayılarının(Coefficient*) standart sapmalarına oranını veren t-istatistikleridir. Bu değerlerin hedef değişken (Tüketim) ile doğru orantıya sahip açıklayıcı değişkenler (gün tipleri ve trend) için 2.16'dan büyük, ters orantılı açıklayıcı değişkenler için -2.16'dan küçük olması standarttır. Bu standardı sağlayan değişkenler yeterli anlamlılık seviyesinde görülmektedirler. Görüldüğü gibi kurduğumuz modeldeki tüm değişkenler bu şartı sağlamaktadır. Ayrıca modelin bütününe yönelik bir açıklayıcılık göstergesi olan R-kare değeri** de %68 gibi bir oranla sadece gün tipinin bile tüketimi açıklamakta önemli bir yere sahip olduğunu göstermektedir. Çalışmamızın bir sonraki aşamasında yukardaki model üzerinden elde edilmiş gün tipine özel standart tüketim değerlerini kullanarak bütün günleri aynı objektif değerlendirebilecek sanal bir zaman serisi oluşturulacaktır. Basit olarak açıklamak gerekirse 1492 gözlemlik günlük zaman serisindeki tüm günler "ideal gün" olarak seçilen Çarşamba'ya çevrilecektir.

Gün Tipi İndeksi	
1	724,3323
2	101,8093
3	0,029777
4	0
5	-3,63626
6	26,31631
7	307,0205
8	1196,532
9	543,429
10	851,179

Yukarıda verilen tabloda gün tipine karşılık gelen değerler "ideal gün"den farkı vermektedir. Bu durumda bu farklar yine gün tipine göre tüm gözlemlere eklendiğinde takvim etkisinin ortadan kalkması beklenmektedir. Aşağıda TÜKETİM* olarak isimlendirilen bu yeni serinin 2011 Ocak ayı tüketim verileri üzerinden hazırlanan grafiksel karşılaştırması verilmiştir.

Figure 1: Ocak 2011 Tüketim Değerleri

Grafikte de görüldüğü gibi resmi tatil ve hafta sonları görülen düşüşten tüketim arındırılmış ve istenilen "ideal gün" serisi oluşturulmuştur. Bundan sonraki aşamada yeni seri ile sıcaklık-tüketim korelasyonunun, HDD ve CDD değerleri üzerinden yapılan kontrollerle artıp artmadığı kontrol edilecektir.

2.4. HDD, CDD ve Tüketim arasındaki Korelasvonun Belirlenmesi

Çalışmanın birinci amacı sıcaklığın elektrik tüketiminde ne kadar etkili olduğunu ispatlamaktı. Bu doğrultuda, belirlenen günlük HDD ve CDD değerleri ile elektrik tüketimi arasındaki korelasyonlar belirmiştir. İlk olarak, aynı tarihlere ait HDD, CDD değerleri ile tüketim verileri arasındaki korelasyonlar direkt olarak hesaplanmıştır. Fakat elektrik tüketimi takvim etkisinden arındırılmalıdır çünkü tatil, iş günü, bayram, arife, yılbaşı gibi özel gün tipleri elektrik tüketiminde değişikliklere neden olmaktadır. Tüketim verileri takvim etkisinden arındırıldığında kalan etkinin sıcaklıktan dolayı olduğu düşünülmektedir. Bunu saptayabilmek için, tüketim verileri gün tiplerine göre takvim etkisinden arındırılmış ve HDD, CDD ile arasındaki korelasyonlar hesaplanmıştır.

Table 4: HDD, CDD ve tüketim arasındaki korelasyon Tüketim*: Takvim etkisinden arındırılmış tüketim.

	TÜKETİM	TÜKETİM*
HDD14	0,425	0,812
HDD16	0,430	0,819
HDD18	0,431	0,822
CDD20	0,273	0,734
CDD22	0,277	0,735
CDD24	0.283	0.710

Tablo 2'de de görüldüğü gibi tüketim değerleri ise HDD, CDD arasındaki korelasyonlar hesaplanmıştır. İkinci sütunda ise tüketim verileri takvim etkisinden arındırıldıktan sonra tekrar korelasyona bakılmıştır. Bu iki durum kıyaslandığında ikinci korelasyon değerlerinde görülen artışın sıcaklıkla ilgili olduğu söylenebilir. Arındırılmış tüketim verileri ve sıcaklık değerleri arasındaki ilişki %80 seviyelerine ulaşmıştır. Ayrıca bu tablo İstanbul için baz kabul edilecek sıcaklık değerini de göstermektedir. HDD, CDD ve arındırılmış tüketim değerleri arasında ilişkinin en büyük olduğu değere bakıldığında soğutma derece gün için 18 derece, ısıtma derece gün için 22 derece olduğu görülmektedir.

2.5. Tahmin Modelinin Kurulması

Korelasyonun takvim etkisinden arındırılmış seri ile daha yüksek değerler verdiğinin sabit olması üzerine tahmin modelinin kurulması aşamasına geçilmiştir. Burada yine doğrusal regresyon yöntemi kullanılacak ve hedef değişken olarak da "TÜKETİM*" serisi seçilecektir. Literatürdeki birçok enerji tüketimi tahmin modelinin bir parçası olan(Autoregressive Model) daha önceki tüketim değerlerine karşılık gelen bir değişken(TÜKETİ M_{t-1}) burada bahsedilmesi gereken önemli bir detaydır. Şöyle ki bu değişkenin modelde bulunması daha önceki tüketim değerleri ile şimdiki tüketim değerlerinin açıklanabildiği yargısını öne sürmektir. Şebeke tüketiminin dinamikleri düşünüldüğünde, özellikle de takvim etkisisnden arındırılmış bir seride bir önceki dönemin tüketim değerleri ile şu anın tüketiminin açıklanması beklenen bir durumdur ve modelde de ilgili değişkenin anlamlılık seviyesinin(t-istatistiği) yüksek çıkması beklenecektir.

 $T\ddot{\mathbf{U}}KET\dot{\mathbf{I}}M_{t-1}$ değişkeni dışında HDD ve CDD değerleri diğer önemli açıklayıcı değişkenler olacaktır. Tüketimle doğru orantılı olduğunu öne sürdüğümüz bu değişkenlerin buna bağlı olarak pozitif katsayılara(β) sahip olmasını ve yine yüksek anlamlılık seviyesi vermesi beklenir bir sonuçtur. Başta da savunduğumuz üzere bu değerler elektrik tüketimindeki günlük volatilitenin önemli sebeplerinden olacaktır.

Son olarak şebekenin uzun dönemdeki gelişimini göz ardı etmemek amacıyla zaman trendi değişkeni eklenerek matematiksel model tamamlanacaktır.

3. Sonuçlar

Bölüm 2.5'te planlanan doğrusal regresyon modeli EVIEWS programı üzerinde kurulmuş ve aşağıdaki sonuçlar alınmıştır.

Table 5: Tahmin Modeli Resgresyon Çıktısı

Dependent Variable: T	ÜKETİM*						
Method: Least Squares	3						
Date: 03/18/15 Time:	10:20						
Sample (adjusted): 12/	03/2010 12/1	7/2014					
Included observations:							
Convergence achieved	after 14 itera	itions					
MA Backcast: 12/02/20							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
HDD	26.92590	1.225016	21.98003	0.0000			
CDD	38.49177	3.288846	11.70373	0.0000			
@TREND	0.216957	0.035359	6.135805	0.0000			
@MONTH=1	2651.798	39.42413	67.26332	0.0000			
@MONTH=2	2652.753	38.34448	69.18213	0.0000			
@MONTH=3	2598.714	37.78736	68.77205	0.0000			
@MONTH=4	2549.655	37.28855 68.37636		0.0000			
@MONTH=5	2529.773	37.95295	66.65552	0.0000			
@MONTH=6	2589.067	39.40918	65.69707	0.0000			
@MONTH=7	2587.362	40.73588	63.51556	0.0000			
@MONTH=8	2578.504	40.54019	63.60364	0.0000			
@MONTH=9	2552.897	40.49861	63.03666	0.0000			
@MONTH=10	2568.141	40.67325	63.14079	0.0000			
@MONTH=11	2618.730	41.08488	63.73951	0.0000			
@MONTH=12	2684.665	41.00229	65.47597	0.0000			
AR(1)	1.337639	0.043454	30.78252	0.0000			
AR(2)	-0.359595	0.038781	-9.272490	0.0000			
MA(1)	-0.841108	0.030669	-27.42531	0.0000			
R-squared	0.875114	Mean depe	ndent var	2893.408			
Adjusted R-squared	0.873658	S.D. depen		216.1810			
S.E. of regression	76.84061	Akaike info	criterion	11.53346			
Sum squared resid	8608731.	08731. Schwarz criterion 11.59806					
Log likelihood	-8493.696			11.55755			
Durbin-Watson stat	2.009885						
Inverted AR Roots	.97	.37					
Inverted MA Roots	.84						

Yukarıda verilen tablo incelendiğinde modelin 0.87 ile makul bir açıklayıcılık sunduğu ve kullanılan açıklayıcı değişkenlerin de yeterli anlamlılık seviyesine sahip olduğu görülmüştür. Aşağıda kullanılan tüm değişkenlerle ilgili detaylar listelenmiştir.

HDD: Güne ait ısınma derecesinin tüketime etkisi

CDD: Güne ait soğuma derecesi tüketime etkisi

@TREND: Uzun dönemde görülebilecek muhtemel şebeke büyümesine bağlı tüketim artışının etkisinin arındırılması için eklenen değişken

@MONTH: Okul sezonu, piyasalar gibi sezonsal karakteristikleri olan dış etkileri modele dahil etmek için regresyona eklenmiş, ilgili aya göre "1" yada "0"değerini alan basit değişkenler

AR(1): Bir önceki günün tüketim değerinin bugünün tüketimine etkisi

AR(2): İki önceki günün tüketim değerinin bugünün tüketimine etkisi

MA(1): Tahmin modelinin kendini eğitmesi için geçmiş hata oranının bugünün tahminine etkisini gösteren değişken. Bu modelde 1. derece yani bir önceki günün tahmin hatası üzerinden hesaplanmıştır.

Bu şekilde hazırlanan modelin tahmin performansına yönelik iki farklı kontrol yöntemi uygulanmıştır. Birinci yöntemde EVIEWS programı kullanılarak model geçmişe yönelik çalıştırılmış ve tahmin edilen değerler ile gerçekleşen değerler karşılaştırılmıştır.

	TÜKETİM* (MWh)	MAPE*	TÜKETİM (MWh)	MAPE	Gün Tipi	Farkları
3.12.2010	2,414	0.649251	2,387	0.66	1	724.3323
4.12.2010	2,429	2.289174	2,122	2.61	2	101.8093
5.12.2010	2,627	2.193144	1,903	3.00	3	0.029777
6.12.2010	2,665	3.282824	2,563	3.42	4	0
7.12.2010	2,627	2.927545	2,627	2.93	5	-3.63626
8.12.2010	2,563	1.00078	2,563	1.00	6	26.31631
9.12.2010	2,518	0.257277	2,521	0.26	7	307.0205
10.12.2010	2,735	0.847495	2,709	0.86	8	1196.532
11.12.2010	2,840	1.099349	2,533	1.23	9	543.429
12.12.2010	2,881	2.722973	2,157	3.60	10	851.179
13.12.2010	2,831	2.842177	2,729	2.95		
14.12.2010	2,816	2.099069	2,816	2.10		
15.12.2010	2,838	2.668902	2,838	2.67		
16.12.2010	2,769	4.600246	2,773	4.59		
17.12.2010	2,849	3.033852	2,823	3.06		
18.12.2010	2,738	5.607316	2,431	6.27		
19.12.2010	2,751	6.055637	2,026	8.05		

Figure 2:Model Performansı Analizi

Hatırlanacağı üzere kullanılan tüketim serisi takvim etkisinden arındırılmıştı(TÜKETİM*). Bir güne ait gerçek tüketim değerini tahmin etmek için ise takvimsel etkinin tekrar ilave edilmesi gerekmektedir. Yukarıda görüleceği gibi tahmin modeli geriye doğru çalıştırıldıktan sonra çıkan sonuçlardan "ideal gün" ile olan fark düşülmüş ve gerçek tüketim değerine yönelik tahmin performansı için bu aşamadan sonraki değerler esas alınmıştır. Sonuçlar incelendiğinde 4 yıl için %2,9 gibi bir ortalama hata(MAPE) hesaplanmıştır.

İkinci kontrolde ise son iki haftanın(18.12.2014 – 31.12.2014) tüketim değerleri hesaba katılmadan model kurulmuş ve bu aralık tahmin edilerek gerçek tüketim değeriyle karşılaştırılmıştır.

	/N/N/h	(0/)	
	(MWh	(%)	
Tarih	Gerçekleşen	Tahmin	MAPE
18.12.2014	3,144	3,145	0.04
19.12.2014	3,129	3,168	1.26
20.12.2014	2,833	2,876	1.50
21.12.2014	2,444	2,469	0.99
22.12.2014	3,165	3,172	0.20
23.12.2014	3,227	3,194	1.01
24.12.2014	3,156	3,159	0.08
25.12.2014	3,111	3,132	0.69
26.12.2014	3,116	3,112	0.12
27.12.2014	2,923	2,946	0.81
28.12.2014	2,493	2,564	2.83
29.12.2014	3,154	3,133	0.66
30.12.2014	3,425	3,425	0.00
31.12.2014	3,215	3,369	4.81

Bu performans kontrolünde de makul bir başarı oranı sağlandığı görülmüştür. Matematiksel açıklamalarla da kanıtlandığı üzere çalışmamızda öne sürdüğümüz iki argüman olan, takvimsel etkiden arındırıldığında tüketimin sıcaklıkla olan korelasyonunun artacağı ve HDD ve CDD üzerinden kurulan tahmin modelinin tüketimdeki günlük volatiliteyi iyi açıklayabilmesi, elektrik tüketimini etkileyen önemli dinamiklere ışık tutmaktadır.

Sonuç olarak elektrik tüketimi tahminine yönelik tahminlerde modelleme kadar, kullanılan değişkenlerin analizinin de çok önemli bir aşama olduğu görülmüştür. Örneğin HDD ve CDD ısınmaya veya soğumaya harcanan enerjiyi sıcaklıktan daha iyi yansıtabilecek birer değişken olarak tahmin modeline önemli oranda pratiklik kazandırmaktadır. Ayrıca takvimsel etkiden arındırıldığında bu pozitif korelasyon daha objektif sonuçlar sunmaktadır.

Elektrik tüketimi tahmininde, doğrusal regresyon dışında, yapay sinir ağları, fourrier serileri, üstel doğrulama gibi lineer özellik taşımayan tahmin modelleri de kullanılmaktadır. Bu bakımdan çalışmamızda kullandığımız model daha basit bir açıklama yöntemi olarak temel dinamikleri açıklamaya yönelik planlanmıştır. Hava sıcaklığı-tüketim ilişkisini başarılı bir şekilde yansıtan bu çalışma faklı tahmin modelleriyle geliştirilebilir olması dolayısıyla pilot bir proje olma özelliği de taşımaktadır.

Kaynaklar

Güneği, O., O., "Elektrik Enerjisinde Yeni Dönem", DPT Planlama Dergisi, Özel Sayı, Ankara, Türkiye, 2002.

Özkan, D., Kakilli, A., ve Tektaş, M., "Anfis ve Arma Modelleri İle Elektrik Enerjisi Yük Tahmini", Gazi Üniv. Müh. Mim. Fak. Der., 601-610, 2010.)

Vardoulakis, E., Karamanis, D., Fotiadi, A., Mihalakakou, G., "The urban heat island effect in a small Mediterranean city of high summer temperatures and cooling energy demands", Department of Environmental & Natural Resources Management, University of Ioannina, 2013.

Yüksel, Ü., D., ve Yılmaz, O., "Ankara Kentinde Kentsel Isı Adası Etkisinin Yaz Aylarında Uzaktan Algılama ve Meteorolojik Gözlemlere Dayalı Olarak Saptanması ve Değerlendirilmesi", 2008.