Applied Linear Algebra in Data Analysis

Vector spaces: A set of vectors that is closed under vector scaling and vector addition. E.g. \mathbb{R}^n , \mathbb{C}^n . A vector space will always contain the zero vector.

Subspace: A subset of a vector space $\mathcal V$ which is also a vector space.

Span of a set (of vectors): The set of all linear combinations of a set of vectors $S = \{\mathbf{s}_i\}_{i=1}^p$ from the vector space V.

$$\operatorname{span} S = \left\{ \sum_{i=1}^{p} \alpha_{i} \mathbf{s}_{i} \mid \alpha_{i} \in \mathbb{R} \right\} \subseteq \mathcal{V}$$

Linear independence: A set S is linearly independent if and only if, $\sum_{i=1}^{p} \alpha_i \mathbf{s}_i = \mathbf{0} \implies \alpha_i = 0, \forall i$. *If the set has* $\mathbf{0}$, *then the set is linearly dependent.*

Basis: A set of vectors \mathcal{B} is a basis for a vector space \mathcal{V} if and only if, \mathcal{B} is linearly independent and span $\mathcal{B} = \mathcal{V}$. The elements of \mathcal{B} are called basis vectors of \mathcal{V} . There are infinitely many bases for a vector space. Every vector in \mathcal{V} can be written as a unique linear combination of the basis vectors.

Dimension: The number of basis vectors in a basis of a vector space $\mathcal V$ is called the dimension of $\mathcal V$.

Inner product: $\mathbf{x}^{\mathsf{T}}\mathbf{y} = \sum_{i=1}^{n} x_i y_i, \ \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Norm: Measure of the length of a vector. $\|\mathbf{x}\|_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$, $\mathbf{x} \in \mathbb{R}^n$. $\|\mathbf{x}\|_2^2 = \mathbf{x}^\top \mathbf{x}$.

Cauchy-Schwarz inequality: $|\mathbf{x}^{\mathsf{T}}\mathbf{y}| \leq ||\mathbf{x}||_2 ||\mathbf{y}||_2$.

Orthogonality: Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are orthogonal if and only if, $\mathbf{x}^{\mathsf{T}}\mathbf{y} = 0$.

Orthonormal basis: A basis $\mathcal{B} = \{\mathbf{b}_i\}_{i=1}^n$ is orthonormal if and only if, $\mathbf{b}_i^{\mathsf{T}} \mathbf{b}_j = \delta_{ij}$, where δ_{ij} is the Kronecker delta function.

Linear function: A function $f : \mathbb{R}^n \to \mathbb{R}$ that satisfies superposition. All linear functions f can be represented as $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x}$, where $\mathbf{w} \in \mathbb{R}^n$.

Matrix post-multiplication by a column vector: $\mathbf{A} \in \mathbb{R}^{n \times m}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{c} = \mathbf{A}\mathbf{b} = \sum_{i=1}^m b_i \mathbf{a}_i$.

Matrix pre-multiplication by a row vector: **A** $\in \mathbb{R}^{n \times m}$, $\mathbf{b} \in \mathbb{R}^{n}$, $\mathbf{c} = \mathbf{b}^{\top} \mathbf{A} = \sum_{i=1}^{n} b_{i} \tilde{\mathbf{a}}_{i}^{\top}$.

Matrix multiplication: $\mathbf{C} = \mathbf{AB}, \mathbf{C} \in \mathbb{R}^{n \times m}, \mathbf{A} \in \mathbb{R}^{n \times p}, \mathbf{B} \in \mathbb{R}^{p \times m}$. Four views of matrix multiplication:

- Inner product view: $c_{ij} = \tilde{\mathbf{a}}_i^{\mathsf{T}} \mathbf{b}_j$
- Column view: $\mathbf{c}_i = \mathbf{A}\mathbf{b}_i$
- Row view: $\tilde{\mathbf{c}}_i^{\mathsf{T}} = \tilde{\mathbf{a}}_i^{\mathsf{T}} \mathbf{B}$
- Outer product view: $\mathbf{C} = \sum_{i=1}^{p} \mathbf{a}_{i} \tilde{\mathbf{b}}_{i}^{\mathsf{T}}$

Outer product: $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\mathbf{A} = \mathbf{x}\mathbf{y}^{\top} \in \mathbb{R}^{n \times n}$. Columns of \mathbf{A} are scaled \mathbf{x} , and rows of \mathbf{A} are scaled \mathbf{y}^{\top} .

Rank of a matrix: The rank of a matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$ is the number of linearly independent columns or rows of \mathbf{A} . rank $\mathbf{A} = \min(n, m)$.

Matrix inverse: When **A** is sqyare matrix, and is full rank, $\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$ and \mathbf{A}^{-1} is unique.

Solutions to Ax = b: $A \in \mathbb{R}^{n \times m}$.

- **b** ∉ span **A** ⇒ No solution
- $\mathbf{b} \in \text{span } \mathbf{A} \text{ and rank } \mathbf{A} = m \implies \text{Unique solution}$
- $\mathbf{b} \in \text{span } \mathbf{A} \text{ and rank } \mathbf{A} < m \implies \text{Infinite solutions}$

Four fundamental subspaces of a matrix: $\mathbf{A} \in \mathbb{R}^{n \times m}$ and rank $\mathbf{A} = r$.

- Column space: $C(\mathbf{A}) = \text{span } \{\mathbf{a}_i\}_{i=1}^m \subseteq \mathbb{R}^n$, dim $C(\mathbf{A}) = r$.
- Row space: $C(\mathbf{A}^{\top}) = \text{span } \left\{ \tilde{\mathbf{a}}_{i}^{\top} \right\}_{i=1}^{n} \subseteq \mathbb{R}^{m}$, dim $C(\mathbf{A}^{\top}) = r$.
- Null space: $\mathcal{N}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{R}^m \mid \mathbf{A}\mathbf{x} = \mathbf{0}\} \subseteq \mathbb{R}^m$, dim $\mathcal{N}(\mathbf{A}) = m r$.
- Left null space: $\mathcal{N}(\mathbf{A}^{\top}) = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}^{\top}\mathbf{x} = \mathbf{0}\} \subseteq \mathbb{R}^n$, dim $\mathcal{N}(\mathbf{A}^{\top}) = n r$.

Orthogonal subspaces: Two subspace $\mathcal{U}, \mathcal{V} \subseteq \mathbb{R}^n$ are orthogonal if and only if, $\mathbf{u}^{\mathsf{T}}\mathbf{v} = 0, \forall \mathbf{u} \in \mathcal{U}, \forall \mathbf{v} \in \mathcal{V}$. $\mathcal{U} \perp \mathcal{V}$.

Sum of two subspaces: $\mathcal{U}, \mathcal{V} \subseteq \mathbb{R}^n$. $\mathcal{U} + \mathcal{V} = \{\mathbf{u} + \mathbf{v} \mid \mathbf{u} \in \mathcal{U}, \mathbf{v} \in \mathcal{V}\} \subseteq \mathbb{R}^n$. $\mathcal{U} + \mathcal{V}$ is a subspace of \mathbb{R}^n .

Complementary subspaces: $\mathcal{U}, \mathcal{V} \subseteq \mathbb{R}^n$. $\mathcal{U} \cap \mathcal{V} = \{0\}$ and $\mathcal{U} + \mathcal{V} = \mathbb{R}^n$.

Orthogonal complements: \mathcal{U}, \mathcal{V} are complementary subspace of \mathbb{R}^n . If $\mathcal{U} \perp \mathbf{V}$, then \mathcal{U}, \mathcal{V} are orthogonal complements. $\mathcal{U}^{\perp} = \mathcal{V}$ and $\mathcal{V}^{\perp} = \mathcal{U}$.

Orthogonal projection onto a subspace S: If $\{\mathbf{u}_i\}_{i=1}^m$ is an orthonormal basis for S with $\mathbf{u}_i \in \mathbb{R}^n$, then the orthogonal projection of \mathbf{x} onto S is $\mathbf{P}_S \mathbf{x} = \left(\sum_{i=1}^m \mathbf{u}_i \mathbf{u}_i^\top\right) \mathbf{x} = \sum_{i=1}^m \left(\mathbf{u}_i^\top \mathbf{x}\right) \mathbf{u}_i$.

Components of a vector: Let \mathcal{U}, \mathcal{V} be complementary subspaces of \mathbb{R}^n . Then $\mathbf{x} \in \mathbb{R}^n$ can be uniquely expressed as, $\mathbf{x} = \mathbf{x}_{\mathcal{U}} + \mathbf{x}_{\mathcal{V}}$, where $\mathbf{x}_{\mathcal{U}} \in \mathcal{U}$ and $\mathbf{x}_{\mathcal{V}} \in \mathcal{V}$. If $\mathcal{U}^{\perp} = \mathcal{V}$, then $\mathbf{x}_{\mathcal{U}}^{\top} \mathbf{x}_{\mathcal{V}} = 0$.

Gram-Schmidt orthogonalization: Let $\{\mathbf{a}_i\}_{i=1}^m$ be a set of linearly independent vectors in \mathbb{R}^n . Then, $\{\mathbf{u}_i\}_{i=1}^m$ is an orthonormal basis for span $\{\mathbf{a}_i\}_{i=1}^m$, where $\mathbf{u}_i = \frac{\mathbf{a}_i - \sum_{j=1}^{i-1} \left(\mathbf{u}_j^{\mathsf{T}} \mathbf{a}_i\right) \mathbf{u}_j}{\left\|\mathbf{a}_i - \sum_{i=1}^{i-1} \left(\mathbf{u}_i^{\mathsf{T}} \mathbf{a}_i\right) \mathbf{u}_i\right\|}$.

QR factorization: Let $\mathbf{A} \in \mathbb{R}^{n \times m}$ with rank $\mathbf{A} = m$. Then, $\mathbf{A} = \mathbf{QR}$, where $\mathbf{Q} \in \mathbb{R}^{n \times m}$ is an orthogonal matrix and $\mathbf{R} \in \mathbb{R}^{m \times m}$ is an upper triangular matrix.