ST 705 Linear models and variance components Homework problem set 1

January 6, 2020

1. Let V be a vector space and $B = \{u_1, \dots, u_n\}$ be a subset of V. Then B is a basis if and only if each $v \in V$ can be expressed uniquely as

$$v = a_1 u_1 + \dots + a_n u_n$$

for some set of scalars $\{a_1, \ldots, a_n\}$.

- 2. Prove that the eigenvalues of an upper triangular matrix M are the diagonal components of M. Write pseudo-code for an algorithm that exploits this fact for more efficiently computing the matrix exponential e^M (recall the definition of the matrix exponential from your linear algebra course).
- 3. The defining property of a projection matrix A is that $A^2 = A$ (recall the definition of the square of a matrix from your linear algebra course). Establish the following facts.
 - (a) If A is a projection matrix, then all of its eigenvalues are either zero or one.
 - (b) If $A \in \mathbb{R}^p$ is a projection and symmetric (i.e., an orthogonal projection matrix), then for every vector v the projection Av is orthogonal to v Av.
 - (c) $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$.
 - (d) tr(AB) = tr(BA).
- 4. Let $A \in \mathbb{R}^{p \times p}$ be symmetric. Use the spectral decomposition of A to show that

$$\sup_{x \in \mathbb{R}^p} \frac{x'Ax}{x'x} = \lambda_{\max},$$

where λ_{max} is the largest eigenvalue of A. Observe that this is a special case of the Courant-Fischer theorem (see https://en.wikipedia.org/wiki/Min-max_theorem).

5. Let $x = (x_1, \dots, x_p)' \in \mathbb{R}^p$. Show that for $i \in \{1, \dots, p\}$,

$$|x_i| \le ||x||_2 \le ||x||_1,$$

where $\|\cdot\|_1$ and $\|\cdot\|_2$ are the l_1 and l_2 vector norms, respectively.

- 6. Show that every eigenvalue of a real symmetric matrix is real.
- 7. Show that if $X \sim N_p(\mu, \Sigma)$ and Y = X'AX, then $E(Y) = \operatorname{tr}(A\Sigma) + \mu'A\mu$.
- 8. Let U, V, and W be random variables. Establish the following inequalities.
 - (a) $P(|U+V| > a+b) \le P(|U| > a) + P(|V| > b)$ for every $a, b \ge 0$.
 - (b) $P(|UV|>a) \leq P(|U|>a/b) + P(|V|>b)$ for every $a\geq 0$ and b>0.