CAPITULO 1 PREDIMENSIONAMIENTO

1.00 PREDIMENSIONAMIENTO

Tabla 1.1
Rangos aproximados que cubren sistemas estructurales

Sistema o elemento estructural	n* Luz en		netros	
3 TO 4 SOCIETA POR SOURCE (1990) SOCIETA POR SOCIETA P		Mínima	Máxima	
DD MADDE.				_
DE MADERA:	** **	1.44	3.000	
Entablado	25-35	1.20	4.80	
Vigueteria y vigas macizas	18-20	1.80	7.20	
Vigas laminadas encoladas	18-20	3.00	24.00	
Vigas cajón clavadas o empernadas	18-20	4.50	29.00	
Tijerales con cuerda superior inclinada	5-7	6.00	20.00	
Tijerales de cuerdas paralelas, ligeros	18-20	9.00	30.00	
Tijerales de cuerdas paralelas, pesados	10-15	12.00	34.00	
Tijerales de cuerda superior curva	7-10	18.00	46.00	
Pórticos formados con tablas cortas clavadas .	4-6	6.00	30.00	
Pórticos laminados encolados	4-6	11.00	43.00	
DE ACERO				
Plancha delgada doblada	30-50	1.50	7.60	
Viga W laminada en caliente	18-28	3.00	21.00	
Viga W soldada	15-20	7.60	24.40	
Vigueta con alma de celosia	18-22	3:00	36.50	
Tijeral con cuerda superior inclinada	4-5	9.00		
Tijeral de cuerda superior curva	6-10	18.00	36.00	
Tijeral con cuerdas paraleias, especial	4-15	23.00		
Arco de celosia o rígido	3-5	18.00		
Cúpulas	3-5	15.00		
Cables	5-11	21.00		
Sistemas planos tridimensionales				
Apoyados sobre columnas	12-20	9.00	24.00	
Apoyados sobre vigas o muros	12-20	9.00	40.00	
DE CONCRETO ARMADO				
Losas Vaceadas in situ:				
Simplemente apoyadas	25	1.50	6.00	
Un extremo continuo	30	1.50	6.00	
Ambos extremos continuos	35	1.50	6.00	
En voladizo	12	1.00	3.00	
Vigas vaceadas in situ:	12	1.00	3.00	
	20	4.60	21.00	
Simplemente apoyadas	20	4.50	21.00	
Un extremo continuo	23	4.50	21.00	
Ambos extremos continuos	26	4.50	21.00	
En voladizo	10	1.50	4.50	
Losas nervadas vaceadas in situ	20-25	6.00	18.00	
Losas quebradas vaceadas in situ	8-15	12.00	45.00	
Losas con sección ondulada	8-15	15.00	40.00	
Vigas T premoldeadas	20-28	12.00	36.00	

Sistema o elemento estructural	n*	Luz en t	Luz en metros	
		Minima	Máxima	
Losas macizas sobre columnas				
Sin capitel	30-40	4.50	7.60	
Con Capitel	30-40	6.00	12.00	
Con vigas entre columnas	30-40	6.70	12.00	
Losa nervada con vigas entre columnas	23-35	7.60	20.00	
Cúpulas	4-8	9.00	90.00	

- El peralte o altura del elemento expresado en función de la luz:
- Peralte o altura = luz/n. Se da el valor de "n"

 Cuando se usa el máximo valor de "n", deben tenerse en cuenta otras consideraciones adicionales establecidas por los reglamentos respectivos, como por ejemplo el cálculo de deflexiones.

CAPITULO 2

2.00 CARGAS

Tabla 2.

Cargas vivas minimas repartidas (Según normas E-010 ININVI)

Tabla 2.2

Cargas permanentes en edificaciones

Tabla 2.3

Cargas Minimas repartidas equivalentes a la de tabiquería

Tabla 2.4

Factores de Forma (C)*

Tabla 2.5

Pesos unitarios (Normas Peruanas de Estructuras)

Tabla 2.6

Pesos Unitarios - Otros

Tabla 2.1

CARGAS VIVAS MÍNIMAS REPARTIDAS (SEGÚN NORMAS E-010 ININVI)

Ocupación o uso	Kg/m
Almacenaje (Ver *)	500
Baños	Igual a la carga del resto del áre
Bibliotecas (Ver *)	
Salas de Lectura	300
Salas de Almacenaje	750
Corredores y escaleras	400
Centros de Educación	
Aulas	300
Talleres (Ver+)	350
Auditorios, Gimnasios, etc.	De acuerdo a lugares de Asamblea
Laboratorios	300
Corredores y Escaleras	400
Garajes	
Para parqueo exclusivo de auto	omóviles con altura menor de 2.40 m. 250
Para otros vehículos	De acuerdo a requisitos de Puentes, carretera
Hospitales	N 19 3313 1000
Salas de operación, Laboratorio	os y áreas de servicios 300
Cuartos	200
Corredores y Escaleras	400
Hoteles	
Cuartos	200
Salas Públicas	De acuerdo a lugares de Asamble
Almacenaje y servicios	500
Corredores y Escaleras	400
Industria (Ver*)	1000
Instituciones Penales	
Zonas de habitación	200
Zonas Públicas	De acuerdo a lugares de Asamble
Corredores y Escaleras	400

Ocupación o uso Lugares de Asamblea	Kg/m2
Con asiento fijos	300
Con asientos móviles	400
Salones de baile Restaurantes Museos y Gimnasios	400
Graderías y Tribunas	500 500
Corredores y Escaleras Oficinas	300
Exceptuando salas de archivo y computación	250
Salas de Archivo	500
Salas de Computación	350
Corredores y Escaleras	400
Teatros	200
Vestidores Cuartos de Proyección	200 500
Escenario	750
Zonas Públicas De acuerdo a lugares de ass	
Tiendas (Ver*) Corredores y Escaleras	500
Viviendas	500
Corredores y Escaleras	200
Aceras y Pistas que no apoyan sobre el suelo	200
Cuando están sujetas a cargas de ruedas de camiones De acuerdo a Pistas	
y carreteras	
Barandas y Parapetas Alrededor de escaleras, balcones y techos con exclusión de las ubicadas en teatros, lugares de asamblea y viviendas. Fuerzas	
aplicadas en la parte superior. Horizontal y Vertical	60
En teatros y lugares de asamblea	00
Horizontal	75
Vertical	150
En viviendas Horizontal y Vertical	30
Horizontal y Vertical	30
La fuerza total horizontal y la fuerza total vertical será para Todos los casos como mínimo 100 Kg. Cada una	
En zonas de estacionamiento se diseñará para carga horizontal De 500 Kg/m aplicadas a 0.60m del piso pero no menor a 1.500 Kg. Por automóvil.	
Columnas en Zonas de estacionamiento Carga lateral a 0.60 m del piso y de 1.500 Kg	
En Techos y Marquesinas Techos con una inclinación de hasta 3º con relación a la	100
Horizontal	100
Techos con una inclinación mayor se reduce de 100 Kg/m2 5 Kg/m2 por cada grado de pendiente hasta llegar a un mínimo de	50
En techos curvos	50

En techos con coberturas livianas 30 En techos con jardines, el área con jardin 100

(* : ACT PERU, CONFORMIDAD) : Para determinar si la magnitud de la carga viva real es conforme con la carga viva mínima repartida, se hará una aproximación de la carga viva repartida real promediando la carga total que en efecto se aplica sobre un área rectangular representativa de 15 m2 que no tenga ningún lado menor a 2.50 m

TABLA 2.2 CARGAS PERMANENTES EN EDIFICACIONES

Partes de la obra	kg/m2
Pisos	
De Parquet	30
De madera machihembrada 34"	20
De mosaico con mortero adicional	100
De granito	90
De mayólica con mortero adicional	60
De mármol y mortero adicional	100
Enchapados	
De piedra arenisca o lajas para fachadas	85
De mármol	100
Coberturas	
Cartón bituminoso	
En tres capas sin gravilla	13
En tres capas con gravilla	35
Cielo raso de yeso con carrizo	25
Chapa de metal 0.8 mm sobre entablado	30
Teja plana sobrepuesta y desplazada media teja	100
Chapa de metal 0.4 mm sobre correas	15
Cubierta de Iona sin armazón	3
Vidrio de 5 mm sobre travesaños de acero	25
Igual, con vidrio de 6 mm	30
Igual, con vidrio armado de 5mm	30
Planchas de asbesto-cemento	
Corrugado de 4 mm	9
Corrugado de 5 mm	13
Canalón plegado de 5 mm	17
Teja cóncava con asiento de mortero sobre	
cabios cada 0.335 m	80
Teja cóncava de encaje con cabios a 0.335m	70
Teja plana sellada con mortero con cabios a 0.275 m.	80
Teja Plana o cola de castor con cabios de 0.275 m	70
Teja serrana de 105 kgm2 asentada sobre torta de barro de 0.02 m	5.
mas paja o ichu	160
Torta de barro de 2.5 cm sobre entablado simple de 34"	67
Torta de barro más paja	55
Placa de concreto por cm de espesor	25

TABLA 2.3 CARGAS MÍNIMAS REPARTIDAS EQUIVALENTES A LA DE TABIQUERÍA

Peso del Tabique (kg/m)	Carga Equivalente (kg/m²) a ser añadida a la carga muerta
74 o menos	30
75 a 149	60
150 a 249	90
250 a 399	150
400 a 549	210
550 a 699	270
700 a 849	330
850 a 1000	390

CARGA DE VIENTO

 $P_h = 0.005 CV_h^2$

Donde:

Ph = Es la presión o succión del viento a una altura h en Kg/m2

Vh = Velocidad de diseño en la altura h. en km/h

C = Factor de forma adimensional

$$V_h = V(h/10)^{6.22}$$

V = Velocidad de diseño hasta 10 m de altura, en km/h. Es la velocidad máxima del viento en la zona, pero no menos de 75 km/h.

h ... Altura sobre el terreno en metros

TABLA 2.4. FACTORES DE FORMA (C)*

CONSTRUCCIÓN	BARLOVENTO	SOTAVENTO
	+0.8	- 0.6
- Superficies verticales de edificios		
- Anuncios, muros aislados, elementos con una	+ 1.5	
dimensión corta en el sentido de viento.		
- Tanques de agua chimeneas y otros de	+ 0.7	
sección circular o elíptica.		
- Tanques de agua, chimeneas y otros de	+ 2.0	
sección cuadrada o rectangular.		
- Arcos y cubiertas cilíndricas con un ángulo		
de inclinación que no exceda 45°	± 0.8	- 0.5
- Superficies inclinadas a 15° o menos	+ 0.3	- 0.6
	- 0.7	
- Superficies inclinadas entre 15° y 60°	+ 0.7	- 0.6
	- 0.3	
- Superficies inclinadas entre 60° y la vertical.	+ 0.8	- 0.6

^{*} El signo positivo indica presión y el negativo succión

TABLA 2.5
PESOS UNITARIOS (NORMAS PERUANAS DE ESTRUCTURAS)

MATERIALES	PESO(KG/M³)
I. Aislamientos de	
Fibra de vidrio	300
Corcho	200
Poliuretano poliestireno	200
Fibrocemento	600
2. Albañileria de	(757.)
Adobe	1600
Unidades de albañilería sólidas	1800
Unidades de albañilería huecas	1350
3. Concreto simple de	
Grava	2300
Cascote de ladrillo	1800
Pómez	1600
4. Concreto Armado	: Añadir 100 kg/m3 al
	peso del concreto simple
5. Enlucido o Revoque de	
Mortero de cemento	2000
Mortero de cal y cemento	1850
Mortero de cal	1700
Yeso	1000

WASHAM TO THE TOTAL CO.	<u> </u>
6. Liquidos	
Agua	1000
Agua de mar	1030
Alcohol	800
Aceites	930
Acido Muriático	1200
Acido Nítrico	1500
Acido Sulfúrico	1800
Soda Cáustica	1700
Petróleo	870
Gasolina	670
7. Maderas	
Coniferas secas	550
Coniferas húmedas	750
Duras secas	700
Duras húmedas	1000
8. Mampostería de	
Caliza	2400
Granito	2600
Mármol	2700
Pómez	1200
Bloques de vidrio	1000
	1000
9. Materiales almacenados	1450
Cemento	1200
Coke	1550
Carbón de Piedra	1750
Briquetas de carbón de piedra	1250
Lignito	600
Turba	920
Hielo	660
Basuras domésticas	750
Trigo, frijoles, pallares, arroz	700
Papas	
Frutas	650
Harinas	700
Azücar	750
Sal	1000
Pastos secos	400
Papel	1000
Leña	600
10. Materiales amontonados	
Tierra	1600
Grava y arenas secas	1600
Coke	520
Escorias de carbón	1000
Escorias de altos homos	1500
Piedra Pómez	700
11. Metales	
Acero	7850

Hierro dulce	7800
Fundición	7250
Aluminio	2750
Plomo	11400
Cobre	8900
Bronce	8500
Zinc	6900
Estaño	7400
Latón	8500
Mercurio	13600
Niquel	9000
12. Otros	2.70.77
Acrilicos	1200
Vidrios	2500
Concreto asfáltico	2400
Losetas	2400
Teja artesanal	1600
Teja industrial	1800
Cartón bituminado	600
Ladrillo pastelero	1600
Asbesto - cemento	2500

Tabla 2.6 PESOS UNITARIOS - OTROS

MATERIAL	Kg/m ³
1.0 Materiales almacenados	7/11
Alfalfa prensada	170
Estanterías, armarios llenos de archivos, librerias	600
Cueros y pieles	900
Cal en sacos	1000
Mineral de hierro	3000
Porcelana y losa almacenada	1100
Lana y algodón prensado	1300
Clinker de cemento	1500
Malta verde	400
Carburo	900
2.0 Materiales de construcción	
Albañileria de cal y arena	1800
Albañilería de ladrillo prensado	2200
Albañilería de ladrillo refractario	1900
Albañileria de ladrillo calcáreo	1600
Asfalto	1300
Hormigón asfáltico	2000

CAPITULO **3**DISEÑO SISMO RESISTENTE

3.00 DISEÑO SISMO RESISTENTE

Tabla 3.1

Factores de zona

Tabla 3.2

Parámetros de Suelo

Tabla 3.3

Categoría de las Edificaciones

Tabla 3.4

Irregularidades Estructurales en Altura

Tabla 3.5

Irregularidades Estructurales en Planta

Tabla 3.6

Sistema Estructurales

Tabla 3.7

Categoría y Estructura de las Edificaciones

Tabla 3.8

Límites para Desplazamiento lateral

Tabla 3.9

Valores de C1

3.1. OBJETIVOS DEL DISEÑO SISMO RESISTENTE

- a) Resistir sismos leves sin daños
- Resistir sismos moderados considerando la posibilidad de da
 íos estructurales leves.
- c) Resistir sismos severos con posibilidad de daños estructurales importantes evitando el colapso de la edificación.

3.2. PARÁMETROS DE SITIO

3.2.1. ZONIFICACION

Tabla 3.1. Factores de zona

ZONA	FACTOR DE ZONA – Z(g)
3	0.4
2	0.3
1	0.15

A cada zona se asigna un factor Z según se indica en la tabla 3.1 Este factor se interpreta como la aceleración máxima del terreno con una probabilidad de 10% de ser excedida en 10 años.

3.2.2 CONDICIONES GEOTECNICAS

Tabla 3.2 Parámetros de Suelo			
Tipo	Descripción -	Tp (s) .	S
SI	Roca o sucios muy rigidos	0.4	1.0
S2	Suclos intermedios	0.6	1.2
S3	Suelos flexibles o con estratos de gran	5000	
	espesor	0.9	1.4
S4	Condiciones excepcionales	(*)	(*)

- S1 = Roca, grava densa, grava arenosa, suelos muy rigidos de material cohesivo, con Estrato de no más de 20 m de espesor
- S2 = Suclos intermedios
- S3 = Suelos flexibles o con estratos de gran espesor
- S4 = Suelos excepcionalmente flexibles, condiciones geológicas y/o topográficas desfavorables

3.2.3 FACTOR DE AMPLIFICACION SISMICA (C)

De acuerdo a las características de sitio, se define por la siguiente expresión:

$$C = 2.5 * (T_p/T)^{1.25}$$
 $C \le 2.5$

Este coeficiente se interpreta como el factor de amplificación de la respuesta estructural respecto a la aceleración en el suelo.

Donde:

T = Periodo fundamental de la estructura

Tp = Periodo que deline la plataforma del espectro para cada tipo de suelo

3.2.4 PERIODO FUNDAMENTAL (T)

a) El periodo fundamental para cada dirección se estimará con la siguiente expresión:

$$T = h_J C_c$$

Donde:

ha = Altura total de la edificación en metros

- C₁ = 35 para edificios cuyos elementos resistentes en la dirección considerada sean únicamente nórticos.
- C_i = 45 para edificios de concreto armado cuyos elementos sismoresistentes sean pórticos y las cajas de ascensores y escaleras.
- C₁ = 60 para estructuras de mampostería y para todos los edificios de concreto armado cuyos elementos sismoresistentes sean fundamentalmente muros de corte.

b) También podrá usarse un procedimiento de análisis dinúmico que considere las características de rigidez y distribución de masas en la estructura. Como una forma sencilla de este procedimiento puede usarse la siguiente expresión:

$$T = 2\pi \sqrt{\frac{\sum_{i=1}^{n} P_{i}D_{i}^{2}}{g\sum_{i=1}^{p} F_{i}D_{i}}}$$

Cuando el procedimiento dinámico no considere el efecto de los elementos no estructurales, el periodo fundamental deberá tomarse como el 0.85 del valor obtenido por este método.

3.3 REQUISITOS GENERALES

3.3.1 CATEGORIA DE LAS EDIFICACIONES

	Tabla 3.3 CATEGORIA DE LAS EDIFICACIONES	
CATE - GORIA	O TO TO THE PROPERTY OF THE PR	
A Edifica- ciones Esencia- les	Edificaciones esenciales cuya función no debería interrumpirse inmediatamente después que ocurra un sismo, como hospitales, centrales de comunicación, cuarteles de bomberos y policía, subestaciones eléctricas, reservorios de agua, Centros educativos y edificaciones que puedan servir de refugio después de un desastre. También se incluyen edificaciones cuyo colapso puede representar un riesgo adicional, como grandes hornos, depósitos de materiales inflamables o tóxicos.	1.5
B Edifica- ciones Impor - tantes	Edificaciones donde se reûnen gran cantidad de personas como teatros, estadios, centros comerciales, establecimientos penitenciarios, o que guarden patrimonios valiosos como museos, bibliotecas y archivos especiales. También se consideran depósitos de granos y otros almacenes importantes para el abastecimiento.	1.3
C Edifica - ciones comunes	Edificaciones comunes, cuya falla ocasionaria perdidas de cuantia intermedia como viviendas, oficinas, hoteles, restaurantes, depósitos e instalaciones industriales cuya falla no acarree peligros adicionales de incendios, fugas de contaminantes, etc.	1.0
D Edifica - ciones menores	Edificaciones cuyas fallas causan pérdidas de menor cuantia y normalmente la probabilidad de causar victimas es baja, como cercos de menos de 1.50 m de altura, depósitos temporales, pequeñas viviendas temporales y construcciones similares	(*)

(*) En estas edificaciones a criterio del proyectista, se podrá omitir el análisis por fuerzas sismicas, pero deberá proveerse de la resistencia y rigidez adecuadas para acciones laterales.

3.3.2 CONFIGURACION ESTRUCTURAL

Las estructuras deben ser clasificadas como regulares o irregulares con el fin de determinar el procedimiento adecuado de análisis y los valores apropiados del factor de reducción de fuerza sísmica

Estructuras Regulares. Son las que no tienen discontinuidades significativas horizontales o verticales en su configuración resistente a cargas laterales.

Estructuras irregulares. Aquellas que presentan una o más de las características indicadas en las tablas 3.4 ó 3.5

Tabla 3.4 IRREGULARIDADES ESTRUCTURALES EN ALTURA

Irregularidades de Rigidez - Piso blando

En cada dirección la suma de las áreas de las secciones transversales de los elementos verticales resistentes al corte en un entrepiso, columnas y muros, es menor que 85% de la correspondiente suma para el entrepiso superior, o es menor que 90% del promedio para los 3 pisos superiores. No es aplicable en sótanos.

Irregularidad de Masa

Se considera que existe irregularidad de masa cuando la masa de un piso es mayor que 150% de la masa de un piso adyacente. No es aplicable en azoteas.

Irregularidad Geométrica Vertical

La dimensión en planta de la estructura resistente a cargas laterales es mayor que 130% de la correspondiente dimensión en un piso adyacente. No es aplicable en azoteas ni en sótanos.

Discontinuidad en los Sistemas Resistentes

Desalineamiento de elementos verticales, tanto por un cambio de orientación, como por un desplazamiento de magnitud mayor que la dimensión del elemento.

Table 3.5 IRREGULARIDADES ESTRUCTURALES EN PLANTA

Irregularidad Torsional

Se considera solo en edificios con diafragmas rigidos

En cada una de las direcciones de análisis, el desplazamiento relativo máximo entre dos pisos consecutivos, es mayor que 1.3 veces el desplazamiento relativo de los centros de masas.

Esquinas Entrantes

La configuración en planta y el sistema resistente de la estructura, tienen esquinas entrantes, cuyas dimensiones en ambas direcciones, son mayores que el 20% de la correspondiente dimensión total en planta.

Discontinuidad del Diafragma

Diafragma con discontinuidades abruptas o variaciones en rigidez, incluyendo áreas abiertas mayores a 50% del área bruta del diafragma.

3.3.3 SISTEMAS ESTRUCTURALES

Tabla 3.6 SISTEMAS ÉSTRUCTURALES				
Coeficiente de Reducción, R	Limite de Altura			
o. ss y/o sistemas de arriostramiento. reto armado. 10 ue las cargas verticales y horizontales son sente por pórticos de concreto armado.	-			
al las fuerzas horizontales son resistidas por de pórticos y muros de concreto armado en a de ascensores o escaleras. Los pórticos hados para tomar por lo menos el 25% de la n la base.	-			
eto Armado que la resistencia sísmica está dada 7.5 te por muros de concreto armado.				
ada o Confinada ual les muros de albañilería resisten cargas izontales. El sistema puede incluir algunos acreto armado para resistir estas cargas.	15 m			
	. 6			

	10	
Construcciones de Madera	7	8 m
		10000

^(*) Estos coeficientes se aplicarán únicamente a estructuras en las que los elementos verticales y horizontales permitan la disipación de energia manteniendo la estabilidad de la estructura.

Para construcciones de tierra referirse a la Norma Técnica de Edificaciones E080. Este tipo de construcciones no se recomienda en suelos S3, ni se permite en suelos S4.

3.3.4. CATEGORÍA SISTEMA ESTRUCTURAL Y REGULARIDAD DE LAS EDIFICACIONES

CA	ATEGORIA Y	Tabla 3 ESTRUCT	.7 TURA DE LAS EDIFICACIONES
Categoria de la Edificación	Regularidad Estructural	Zona	Sistema Estructural
Α.	Regular	3	Acero, Muros de Concreto Armado, Albañilería Armada o Confinada, Sistema Dual.
(*) (**)		2 y 1	Acero, Muros de Concreto Armado, Albañilería Armada o Confinada, Sistema Dual, Madera,
В	Regular o	3 y 2	Acero, Muros de Concreto Armado, Albañilería Armada o Confinada, Sistema Dual, Madera.
	Irregular	1	Cualquier sistema.
ć	Regular o Irregular	3,2 y I	Cualquier sistema.

^(*) Para lograr los objetivos indicados en la tabla 3.3, la edificación será especialmente estructurada para resistir sismos severos.

3.3.5 PROCEDIMIENTOS DE ANALISIS

Cualquier estructura puede ser diseñada usando los resultados de los análisis dinámicos referidos en el acápite 3.4.3

Solo las estructuras clasificadas como regulares y de no más de 45 m de altura podrán analizarse mediante el procedimiento de fuerzas estáticas equivalentes del acápite 3.4.2

3.3.6 DESPLAZAMIENTOS LATERALES DESPLAZAMIENTOS LATERALES PERMISIBLES

^(**) Para estructuras irregulares, los valores de R deberán ser tomados como los % de los anotados en la tabla.

^(**) Para pequeñas construcciones rurales, como escuelas y postas médicas, se podrá utilizar materiales tradicionales siguiendo las recomendaciones de las normas correspondientes a dichos materiales.

Tabia 3.8 LIMITES PARA DESPLAZA	MIENTO LATERAL
Material Predominante	(Δi /he ₁)
Concreto Armado	0.007
Acero (*)	0.010
Albañileria	0.005
Madera	0.010

^{*} Estos límites no son aplicables a naves industriales

JUNTA DE SEPARACION SISMICA

"s": Distancia minima de separación entre estructuras vecinas, no será menor que los 2/3 de la suma de los desplazamientos máximos de los bloques advacentes ni menor que:

$$s = 3 + (0.004(h-500))$$
 (h y s en centimetros)

s > 3 cm

h es la altura medida desde el nivel del terreno natural hasta el nivel considerado para evaluar s.

3.4 ANALISIS DE EDIFICIOS

3.4.1 PESO DE LA EDIFICACION

El peso (P), se calculará adicionando a la carga permanente y total de la edificación un porcentaje de la carga viva o sobrecarga que se determinará de la siguiente manera:

- En edificaciones de las categorías A y B, se tomará el 50% de la carga viva.
- En edificaciones de la categoría C, se tomará el 25% de la carga viva.
- c. En depósitos, el 80% del peso total que es posible almacenar.

3.4.2 ANALISIS ESTATICO

FUERZA CORTANTE EN LA BASE

$$V = \frac{ZUSC}{R}P$$

Debiendo considerarse para C/R el siguiente valor mínimo:

$$C/R \ge 0.1$$

DISTRIBUCION DE LA FUERZA SISMICA EN ALTURA

Si el periodo fundamental T, es mayor que 0.7 segundos, una parte de la fuerza cortante V, denominada Fa, deberá aplicarse como fuerza concentrada en la parte superior de la estructura. Esta fuerza Fa se determinará mediante la expresión:

$$Fa = 0.07TV \le 0.15V$$

Donde el periodo T en la expresión anterior será el mismo que el usado para la determinación de la fuerza cortante en la base.

El resto de la fuerza cortante, es decir V - Fa se distribuirá en los siguientes niveles, incluyendo el último. de acuerdo a la siguiente expresión:

$$F_i = \frac{P_i h_i}{\sum_{j=1}^{n} P_j h_j}$$

EFECTO DE TORSION

M₁ = Momento accidental en cada vértice e = Excentricidad accidental en cada nivel.

FUERZAS VERTICALES SISMICAS

Se considerarà:

Zonas 3 y 2, se considerará 0.3 P

Zona 1, no se considera.

3.4.3 ANALISIS DINAMICO

ACELERACION ESPECTRAL

Para cada una de las direcciones horizontales analizadas se utilizará un espectro inelástico de pseudo-aceleración definido por:

R

CRITERIOS DE SUPERPOSICION

La respuesta máxima elástica esperada (r) correspondiente al efecto conjunto de los diferentes modos de vibración empleados (r_i) podrá determinarse usando la siguiente expresión:

$$r = 0.25 \sum_{i=1}^{m} |r_i| + 0.75 \sqrt{\sum_{i=1}^{m} r_i^2}$$

FUERZA CORTANTE MINIMA EN LA BASE

Para cada una de las direcciones consideradas en el análisis, la fuerza cortante en la base del edificio no podrá ser menor que el 80% del valor calculado según el acápite 3.4.2 para estructuras regulares, ni menor que el 90% para estructuras irregulares.

3.5 CIMENTACIONES

CAPACIDAD PORTANTE

En todo estudio de Mecánica de suelos deberán considerarse los efectos de los sismos para la determinación de la capacidad portante del suelo de cimentación.

MOMENTO DE VOLTEO

Toda estructura y su cimentación deberán ser diseñadas para resistir el momento de volteo que produce un sismo. El factor de seguridad deberá ser mayor o igual que 1.5.

ZAPATAS AISLADAS

Para zapatas aísladas con o sin pilotes en suclos tipo S3 y S4 y para las zonas 3 y 2 se proveerá elementos de conexión, los que deben soportar en tracción o compresión, una fuerza horizontal mínima equivalente al 10% de la carga vertical que soporta la zapata.

3.6 ELEMENTO NO ESTRUCTURALES, APENDICES Y EQUIPO

Son aquellos elementos que estando o no conectados al sistema resistente a fuerzas horizontales, su aporte a la rigidez del sistema es despreciable.

En el caso que los elementos no estructurales estén aislados del sistema estructural principal, estos deberán diseñarse para resistir una fuerza sísmica (V) asociada a su peso (P) tal como se indica a continuación:

 $V = ZUC_iP$

Los valores de U corresponden a los indicados en el acápite 3.3.

2.0
0.75
0.50
0.75
0.50

CAPITULO 4 ANALISIS DE VIGAS Y LOSAS

4.00 ANALISIS DE VIGAS Y LOSAS

TABLA 4.1

MOMENTOS FLECTORES Y FUERZAS CORTANTES APROXIMADOS PARA VIGAS Y LOSAS CONTINUAS (NORMAS PERUANAS DE ESTRUCTURAS)

TABLA 4.2

VIGAS DE UN SOLO TRAMO

Tabla 4.1 MOMENTOS FLECTORES Y FUERZAS CORTANTES APROXIMADOS Y LOSAS CONTINUAS (NORMAS PERUANAS DE ESTRUCTURAS)	PARA VIGA:
Momento positivo para tramos extremos	
El extremo discontinuo no esta empotrado:	wu ln2/11
El extremo discontinuo es monolítico con el apoyo	wu in2/14
Momento positivo para tramos interiores:	wu In2/16
Momento Negativo en la cara exterior del primer apoyo interior	
- Dos tramos	wu In2/9
- Mas de dos tramos	wu ln2 / 10
Momento negativo en las demás caras de los apoyos interiores	wu ln²/11
Momento negativo en la cara de todos los apoyos para:	
 Losas con luces que no excedan de 3 m y vigas en que la relación entre la suma de rigideces de la columna y la rigidez de la viga sea mas de 8 en cada 	
extremo del tramo:	wu In ² /12
Momento negativo en la cara interior de los apoyos exteriores para elementos	
Construidos monolíticamente con sus apoyos:	wu In ² /24
- Cuando el apoyo es una viga	wu in / 24 wu in / 16
- Cuando el apoyo es una columna	wu in-7 10
Fuerza cortante en la cara extérior del primer apoyo interior:	1.15wu ln/2
Fuerza cortante en la cara de todos los demás apoyos	wu ln/2

wu = Carga repartida de servicio

In = Luz libre para el cálculo de los momentos positivos y fuerzas cortantes, y el promedio de las luces libres de los tramos adyacentes para el cálculo de los momentos negativos.

Se supone:

- a) Existen dos o más tramos
- Los tramos son aproximadamente iguales, sin que la mayor de las luces adyacentes exceda en más de 20% a la menor.
- c) Las cargas están uniformemente distribuidas.
- d) La carga viva no excede en tres veces la carga muerta.
- e) Los elementos son prismáticos.

Notación usada en las tablas:

RA y Ra son las reacciones en los apoyos

VA y VB son las fuerzas ce corte en los puntos A y B

x, distancia al punto A en donde el cortante es igual a cero.

M A-B es el momento máximo en el tramo A-B.

f es la deflexión máxima en el tramo o en el punto que indique el subindice.

L es la luz del tramo

a, b, y c son longitudes

V. Cortante en un punto

M, Momento en punto

indica un apoyo simple.

/// Indica un empotramiento

Viga empotrada en un extremo y apoyada en el otro W . RA L RB	$R_A = 0.375 wL = V_A : R_B = 0.625 wL = -V_B$ $M_{A : B} = wL^2 / 14.2 : M_B = -wL^2 / 8$ $f = wL^4 / 185EI$
B M R B M S S S S S S S S S S S S S S S S S S	$R_{0} = \sum_{i=1}^{n} P_{i} - V_{0} M_{0} = \sum_{i=1}^{n} P_{i} b_{i};$ $Para \ a < x \le a_{j} + 1$ $V - \sum_{j=1}^{i} P_{j} M = \sum_{j=1}^{n} P_{j} (x - a_{j})$ $Para \ Z_{0} = L; \ M \ max = \sum_{j=1}^{n} P_{i} b_{i}$
W R N N N N N N N N N N N N N N N N N N	$\begin{array}{lll} R_{B} = wa & Para \ a \leq x \leq L \\ M_{B} = wa \ (L-a/2) & V = -wa \\ Para \ 0 \leq x \leq a & M = -wa \ (x-a/2) \\ V = -wz & Para \ x = L \ ; M = M \\ M = -wx^{2}/2 & M_{max} = -wa \ (L-a/2) \end{array}$
	$\begin{array}{lll} R_{a} = wa / 2 & Para \ a \leq x \leq L \\ M_{0} = wa (L-2a/3) / 2 & V = -wa / 2 \\ Para 0 \leq x \leq a & M = -wa (x - 2a/3) / 2 \\ V = -w x^{2} / 2 a & Para x = L ; M = M_{max} \\ M = -w x^{3} / 6a & M_{max} = -wa (L - 2a/3) / 2 \end{array}$
	$\begin{array}{l} R_B = wL / 2 \\ M_B = wL^2 / 4 \\ Pera 0 \le x \le L / 2 \\ V = -wx^2 / 2 \\ M = -wx^2 / 3L \\ Pera L / 2 \le x \le L \\ V = -wL (1/4 + (x/L - \frac{1}{2}) - (x/L - \frac{1}{2})^2) \\ M = wL^2 \left[(x/L - 1/3) + 2(x/L - \frac{1}{2})^2 - 4(x/L - \frac{1}{2})^3 / 4 \right] \\ Para x = L; M = M \\ M_{max} = -wL^2 / 4 \end{array}$

CAPITULO **5**CONCRETO ARMADO

5.0. CONCRETO ARMADO

Tabla 5.1

ABREVIATURAS

Tabla 5.2

RESISTENCIA REQUERIDA "U" (NORMAS PERUANAS DE ESTRUCTURAS).

FACTORES DE REDUCCION DE RESISTENCIA (N.P.E.)

Tabla 5.4

CUANTIAS MINIMAS Y MAXIMAS DE SECCIONES DE CONCRETO ARMADO

Tabla 5.5

MÍNIMO ESPESOR DE VIGAS Y LOSAS. NO PREESFORZADAS EN UNA DIRECCIÓN, A MENOS QUE SE CALCULEN LAS DEFORMACIONES

Tabla 5.6

DEFLEXIONES MÁXIMAS PERMISIBLES

RESISTENCIA AL CORTE PROPORCIONADO POR EL CONCRETO EN ELEMENTOS NO PRE ESFORZADOS

Tabla 5.8

REFUERZO POR CORTE

Tabla 5.9

ANCHO MINIMO DE VIGA PARA UN NUMERO DADO DE VARILLAS POR FILA EN CM (ACI-318-99)

Tabla 5.10

ANCHO MINIMO DE COLUMNA PARA UN NUMERO DADO DE VARILLAS POR FILA EN CM (ACI-318-99)

LONGITUD DE DESARROLLO (Id) EN CM PARA ACERO CORRUGADO DE REFUERZO SOMETIDO A TRACCION, PARA ACERO Fy = 4,200 KG/CM2

LONGITUD DE DESARROLLO EN CM PARA ACERO CORRUGADO DE REFUERZO SOMETIDO A COMPRESION, PARA ACERO Fy = 4,200 KG/CM2

LONGITUD DE EMPALME (L. O TRASLAPE EN CM PARA ACERO CORRUGADO EN TRACCION, PARA ACERO Fy = 4,200 KG/CM2

LONGITUD DE LOS GANCHOS ESTANDAR EN CM. Y DIAMETROS MINIMOS DE DOBLADO (N.P.E)

Tabla 5.15

RECUBRIMIENTOS MINIMOS DEL ACERO CORRUGADO DE REFUERZO

REQUISITOS DE ESPACIAMIENTO DEL ACERO DE REFUERZO (N.P.E).

Tabla 5.17

OTROS ARTÍCULOS DE INTERES DE LAS NORMAS PERUANAS DE ESTRUCTURAS.

Tabla 5.1 ABREVIATURAS

- Altura del bloque equivalente de esfuerzos
- b. Ancho del alma del elemento
- d Distancia desde la fibra extrema en compresión hasta el centroide del refuerzo longitudinal en tracción, pero no menor de 0.80 h para secciones circulares y elementos preesforzados
- h Altura del elemento
- Fc Resistencia cilindrica a la compresión del concreto a los 28 días en Kg/cm2
- fy Esfuerzo especificado de fluencia del acero
- A. Area del refuerzo en tracción
- A*, Area del refuerzo en compresión
- M. Momento último o momento de diseño
- N ... Carga axial amplificada normal a la sección transversal, actuando simultáneamente con Vu
- ø Factor de reducción de resistencia
- P Cuantía del refuerzo en tracción (As/bd)
- Ec Modulo de elasticidad del concreto. 15000 (f'c)^{6.5} en Kg/cm2 (200,000 kg/cm2)

Tabla 5.2 RESISTENCIA REQUERIDA "U" (NORMAS PERUANAS DE ESTRUCTURAS)

U = 1.5 CM + 1.8 CV

U = 1.25 (CM + CV + CS)

U = 0.9 CM ± 1.25 CS

Para Cargas de viento se sustituye CS por CVi

En las combinaciones anteriores donde se Incluya cargas de viento o sismo, deberá Considerarse el valor total y cero de la carga Viva (CV) para determinar la más severa de Carga Muerta (CM)

Carga Viva o sobrecarga (CV)

Carga de Sismo (CS)

Carga de Viento (CVi)

Empuje lateral del terreno (CE)

Carga de Fluidos (F)

Cargas debidas a asentamientos diferenciales, fluencia, contracción o cambios de temperatura (CT)

Las condiciones

Cuando se incluye el efecto del empuje lateral del terreno:

U = 1.5 CM + L8 CV + 1.8 CE

Cuando CM o CV reduzcan el efecto de CE use:

U = 0.9 CM + 1.8 CV

Cuando se incluye presión de líquidos

U=1.5 CM+1.8 CV+1.5 F

Cuando CM o CV reduzcan el efecto de F use:

U = 0.9 CM + 1.5 F

Cuando se incluya el efecto de CT

U = 1.25 (CM + CT + CV)

b) Otros elementos

Cortante con o sin torsión

Aplastamiento en el Concreto

U = 1.5 (CM + CT)

Cuando se incluya el efecto de las cargas de impacto esta se adicionará al de la carga viva en las expresiones correspondientes.

0.70

0.85

0.70

Esfuerzo Factor		
Esider 20	Pactor	
Flexión sin carga axial	0.90	
Flexión con carga axial de tracción Flexión con carga axial de compresión y p	0.90 para compresión sin flexión:	
a) Elementos con refuerzo en espiral	0.75	

Table 5.3

Elemento	Cuantia Minima	Cuantía máxima
Columnas	0.01	0.06
Muros, Refuerzo vertical		
- Barras corrugadas de diámetro menor o igual a 5/8"	con	
una resistencia a la fluencia no menor de 4,200 kg/ci	m2 0.0012	
- Otras barras corrugadas	0.0015	
- Malla electrosoldada lisa o corrugada de diámetro		
mayor a 15 mm	0.0012	
Muros, Refuerzo horizontal		
- Barras corrugadas de diámetro menor o igual a 5/8"	con	
una resistencia a la fluencia no menor de 4,200 kg/ci	m2 0.0020	
- Otras barras corrugadas	0.0025	
- Malla electrosoldada lisa o corrugada de diámetro		
no mayor a 15 mm	0.0020	

0.0018
0.0020
0.0018 (4,200/fy), pero no
menor de 0.0014
0.0025
74
0.0012 bh
1001000000000
0.7 Je /fy 0.75 pb

Elemento	Espesor minimo, h			
	Soportada Simplemente		Ambos extremos continuos	Voladizo
Losas macizas en una dirección	L/20	L/24	L/28	L/10
Vigas o losas nervadas en una				
Dirección	L/16	L/18.5	L/21	1./8
(1.65 – 0.0003Wc) pero no men En Losas deben cumplirse adici-		iguientes mini	mos	
		h	> 12.5 cm	
a) Losas sin vigas ni ábacos			Tanto delle	
 b) Losas sin vigas con ábacos 		h	≥ 10 cm	
 b) Losas sin vigas con ábacos c) Losas con vigas en cuatro bor 	des con un valo	h		
 b) Losas sin vigas con ábacos 	des con un valo	h or de		
 b) Losas sin vigas con ábacos c) Losas con vigas en cuatro bor 		h orde h	≥ 10 cm ≥ 9 cm	

Losas	
- Por contracción y temperatura	
Donde se usan barras corrugadas o malla de alambre	
con intersecciones soldadas fy = 4,200 kg/cm2	0.0018
Cuando se usan barras corrugadas con fy menor de	
4,200 kg/cm2	0.0020
Cuando se usan barras corrugadas con fy mayor de	
4.200 kg/cm2	0.0018 (4,200/fy), pero no
	menor de 0.0014
Donde se usan barras lisas	0.0025
- En cara inferior de losas armadas en dos direcciones	74
(momento positivo) y en la cara superior en voladizos	0.0012 bh
En elementos sujetos a flexión de sección rectangular	
excepto losas y zapatas	0.7 Jrc / fy 0.75 pb

		Espesor mi	nimo, h	
Elemento	Soportada Simplemente	Un extremo continuo	Ambos extremos continuos	Voladizo
Losas macizas en una dirección	1./20	L/24	L/28	L/10
Vigas o losas nervadas en una				
Dirección	L/16	L/18.5	L/21	1./8
(1.65 – 0.0003Wc) pero no men En Losas deben cumplirse adici-				
		1. 3	> 12.5 cm	
a) Losas sin vigas ni ábacos		n :	_ 12.5 Cm	
a) Losas sin vigas ni ábacos b) Losas sin vigas con ábacos		h 3		
a) Losas sin vigas ni ábacos	des con un valo	h 3		
a) Losas sin vigas ni ábacos b) Losas sin vigas con ábacos	des con un valo	h g orde		
a) Losas sin vigas ni ábacos b) Losas sin vigas con ábacos c) Losas con vigas en cuatro bor	des con un valo	h g orde	≥ 10 cm	

Tipo de Elemento	Deflexión considerada	Deflexion Limite
Techos planos que no soporten ni estén ligados a elementos no estructurales susceptibles de sufrir daños por deflexiones excesivas		L/180 (**)
Pisos que no soporten ni estén ligados a elementos no extructurales susceptibles de sufrir daños por deflexiones excesivas		1,/360
Pisos o techos que soporten o estén ligados a elementos no estructurales susceptibles de sufrir daños por deflexiones excesivas	total que ocurre después	L/480 (***)
Pisos o techos que soporten o estén ligados a elementos no estructurales no susceptibles de sufrir daños por deflexiones excesivas	diferida debida a todas las cargas sostenidas, y la deflexión inmediata debida a cualquier carga viva adicional) (*)	D240 (****)

L = Luz de cálculo

(****) Pero no mayor que la tolerancia establecida para los elementos no extructurales. Este límite se puede exceder si se proporciona una contraflecha de modo que la deflexión total menos la contraflecha no exceda dicho límite.

Tabla 5.7 RESISTENCIA AL CORTE PROPORCIONADO POR EL CONCRETO EN ELEMENTOS NO PRE ESFORZADOS

a) Elemento sometidos solo a corte y flexión Vc = 0.53 √Fc b_wd

 b) Para miembros sujetos adicionalmente a compresión axial Vc = 0.53 √rc b_wd (1+0.0071Nw/Ag)

Nu en Kg y Ag en centimetros cuadrados

Pero Vc no deberá tomarse mayor que: Vc = 0.9 √rc b.,d √1+0.028Nu/Ag

N_a/Ag en kg/cm²

^(*) Las deflexiones diferidas se pueden reducir según la cantidad de la deflexión que ocurra antes de unir los elementos no estructurales. Esta cantidad se determina basândose en los datos de Ingenieria aceptables con relación a las características tiempo-deformación de elementos similares a los que se están considerando.

^(**) Este limite no tiene por objeto constituirse en un resguardo contra el estancamiento de aguas.
(***) Este limite se puede exceder si se toman medidas adecuadas para prevenir daños en elementos apoyados o unidos.

Tabla 5.8

REFUERZO POR CORTE

Cuando la fuerza cortante Vu exceda de eVc, deberá proporcionarse refuerzo por corte de manera que se cumpla:

$$Vu \le \emptyset Vn$$
, $Vn = Vc + Vs$

a)Cuando se utilice estribos perpendiculares al eje del elemento:

$$Vs = Av fy d/s$$

Av : Area de refuerzo por cortante dentro de una distancia s proporcionada por la suma de las áreas de las ramas del o de los estribos ubicados en el alma.

 b) Cuando el refuerzo por corte consista en una serie de barras paralelas dobladas o grupos de barras paralelas dobladas a diferentes distancias del apoyo;

 c) Cuando el refuerzo de corte consista en una barra individual o en un solo grupo de barras paralelas, todas dobladas a la misma distancia del apoyo;

$$Vs = Av$$
 fy sen a

La Resistencia al cortante Vs no deberá considerarse mayor que:

Cuando se deba usar refuerzo por corte, el área mínima de corte será:

Donde b, y s están en centímetros

La sección crítica de diseño al corte se ubica a una distancia "d" del apoyo El espaciamiento del refuerzo perpendicular, no debe ser mayor de 0.5 d ni de 60 cm, pero si Vs excede a 1.1 $\sqrt{r_0}$ b_w d, el espaciamiento deberá reducirse a la mitad.

Tabla 5.9 ANCHO MINIMO DE VIGA PARA UN NUMERO DADO DE VARILLAS POR FILA EN CM (ACI-318-99)

Lesson File	4	5	6	7	8	9	10	Número de varillas
1/4"	15	16	17	17	18	19	19	
3/8"	20	21	22	23	24	25	26	
1/2"	25	26	27	29	30	31	33	
5/8"	29	31	33	34	36	37	39	Ancho
3/4"	34	36	38	40	42	44	46	- N K
7/8"	39	41	43	45	48	50	52	
I"	43	46	48	51	54	56	59	

					ARA	UN NU	MER	O DADO DE VARI
	4	5	6	7	8	9	10	Número de varilla
1/22	16	17	17	18	18	20	21	
3/8"	21	22	23	24	25	27	29	
1/2"	26	27	29	30	31	34	37	11/2 11
5/8"	31	33	34	36	37	41	45	
3/4"	36	38	40	42	44	48	53	
7/8"	41	43	46	48	50	55	61	
1"	46	49	51	54	57	63	69	< ancho →

Tabla 5.11 LONGITUD D CORRUGADO ACERO Fy = 4,2	DE REFUE	RZO SON	l _a) en (IETIDO A	CM PAR	A ACERO		
Diámetro f'c en kg/cm2							
en pulgadas	210	245	280	315	350		
3/8"	35	35	35	35	35		
1/2"	45	45	45	45	45		
5/8"	60	60	60	60	60		
%" I"	70	70	70	70	70		
P"	125	115	110	105	100		

I_d ≥ 30 cm, para barras corrugadas en tracción

l_d≥ 20 cm, para mallas electrosoldadas

Tabla 5.12	week weeks	ormanio anno an	TV 0 4		2000-000
LONGITUD I	DE DESAF	RROLLO	EN C	M PARA	ACERO
CORRUGADO	DE REFUER	ZO SOME	TIDO A	COMPRESI	ION, PARA
ACERO Fy = 4,2					
Diámetro	200	f'c en l	g/cm2	==500	7,555
en pulgadas	210	245	280	315	350
3/8"	25	25	25	25	25
1/2"	30	30	30	30	30
5/8"	- 40	35	35	30	30
3/4"	45	45	40	40	35
1"	60	55	55	50	50

l_d≥ 20 cm, para barras corrugadas en compresión

CORR	UGAD	O EN T	RACCH	IE (Ļ) ON, PAR	A ACER	RO Fy =				ACERO
fc 210 245		5	280		315		350			
TIPO	В	C	В	C	В	C	В	C	В	C
3/8	50	60	50	60	50	60	50	60	50	60
1/2	60	80	60	80	60	80	60	80	60	80
5/8	80	100	80	100	80	100	80	100	80	100
3/4	90	120	90	120	90	120	90	120	90	100
1	165	215	150	200	145	190	140	180	130	170
L min	imo =	30 cm.			9	6 Máxim	o de A	s empa	ilmado	
Empal	me tipe	B, I,=	1.3 ld			50%		100%		
Empal	me tipe	o C, I,=	1.7 ld		Tipo): B		C		

Ø" 3/8 1/2	5.7	estribos	Longitud total	Longitud total
1/2	0.000			
0.000		4	20	20
	7.6	5	25	25
5/8	9.5	6.5	25	30
3/4	11.5	-	30	35
1	20.0		40	45
1.0	Alambr Para el	e corrugado o resto		o de doblez mínimo será: le 6 mm 4 d _b 2 d _b dada 8 d _b

Concreto vaccado en obra	Recubrimiento minimo en cm			
a) Concreto vaceado contra el suelo o en e	ontacto			
Con agua de mar	7			
 b) Concreto en contacto con el suelo o exp ambiente 	ouesto al			
ø 5/8" o menores	4			
e 3/4 o mayores	5			
 c) Concreto no expuesto al ambiente (prot un revestimiento) ni en contacto con el con encofrado y/o solado) 	egido por suelo (vaceado			
Losas, aligerados	2			
Muros, o muros de corte	2			
Vigas y columnas (*)	4			
Cascarones y láminas plegadas	2			

Tab	9.5	1	6

Requisitos de espaciamiento del acero de refuerzo (N.P.E)

- 7.6.2 El espaciamiento libre entre barras paralelas de una capa deberá ser mayor o igual a su diámetro, 2.5 cm ó 1.3 veces el tamaño máximo nominal del agregado grueso
- 7.6.3 En columnas, la distancia libre entre barras longitudinales será mayor o igual a 1.5 cm su diámetro, 4 cm ó 1.3 veces el tamaño máximo nominal del agregado grueso.
- 7.6.5 En muros y losas, exceptuando las losas nervadas, la separación del refuerzo principal por flexión será menor o igual a 3 veces el espesor del muro o de la losa sin exceder de 45 cm.
- 7.6.6 El refuerzo por contracción y temperatura deberá colocarse a una separación menor o igual a 5 veces el espesor de la losa sin exceder de 45 cm.
- 7.11.2.1 Los espirales deben consistir en barras continuas, espaciadas uniformemente con un diámetro mínimo de 3/8". El espacio libre entre espirales será como mínimo 2.5 cm y como máximo 7.5 cm.
- 7.11.2.2 El espaciamiento máximo entre estribos debe ser 16 diámetros de la barra longitudinal, la menor dimensión del elemento sujeto a compresión o 30 cm.
- 13.3.3.1 El espaciamiento del refuerzo por corte colocado perpendicularmente al eje del elemento no deberá ser mayor de 0.5 d ni de 60 cm.
- 17.3.3 Por lo menos 1/3 del refuerzo por momento positivo, perpendicular a un borde discontinuo, deberá prolongarse hasta el borde de la losa y tener una longitud de anclaje de por lo menos 15 cm en las vigas o muros perimetrales.

Tabla 5.17

Otros artículos de interés de la Normas Peruanas de Estructuras.

- 12.4.2 El ancho mínimo de columnas (sujetas a flexocompresión que resistan fuerzas de sismo) será de 25 cm.
- 12.6.2 El refuerzo longitudinal mínimo deberá ser de 4 barras dentro de estribos rectangulares o circulares, 3 barras dentro de estribos triangulares y 6 barras en caso de que se usen espirales.
- 15.4.1.2 El espesor mínimo para los muros de corte será de 10 cm.
- 15.4.1.3 En el caso de muros de corte coincidentes con muros exteriores de sótano, el espesor mínimo será de 20 cm.

CAPITULO **6** ACERO ESTRUCTURAL, CABLES

6.00 ACERO ESTRUCTURAL Y CABLES

TABLA 6.1

CANALES

TABLA 6.2

PERFILES DOBLES DE ALA ANGOSTA

TABLA 6.3

OERFILES DOBLES DE ALA ANCHA

TABLA 6.4

ANGULOS

TABLA 6.5

TUBOS ESTANDAR

TABLA 6.6

VALORES APROXIMADOS DE LOS RADIOS DE GIRO PARA SECCIONES

TABLA 6.7

FACTORES DE LONGITUD EFECTIVA PARA COLUMNAS

TABLA 6.8

TAMAÑO MÍNIMO DE LA SOLDADURA

TABLA 6.9

TAMAÑO EFECTIVO DE LA SOLDADURA

TABLA 6.10

TAMAÑO MÁXIMO DE LA SOLDADURA

TABLA 6.11

CARGAS ADMISIBLES DE CORTE EN UNIONES EMPERNADAS Kips TABLA 6.12

CARGAS ADMISIBLES DE TRACCIÓN EN UNIONES EMPERNADAS EN Kips TABLA 6.13

TAMAÑO DE LOS AGUJEROS EN UNIONES EMPERANADAS EN "IN" TABLA 6.14

ESFUERZOS ADMISIBLES EN ELEMENTOS DE ACERO (AISC-8ª Edition)

TABLA 6.15

ESFUERZO ADMISIBLE Fa de MIEMBROS EN COMPRENSIÓN DE ACERO A-36 EN KIPS POR PULGADA CUADRADA (KS1)

TABLA 6.16

ALAMBRE GALVANIZADO PARA PUENTES RESISTENTES DE FLUENCIA RESISTENCIA A LA TENSIÓN Y ELONGACION

TABLA 6.17

ALAMBRE GALVANIZADO PARA PUENTES PESOS MINIMOS DE RECUBRIMIENTO

TABLA 6.18

PROPIEDADES MECANICAS DE LOS TORONES PARA PUENTES RECUBIERTOS DE ZINC (Normas establecidas por la "Wire Rope Techical Board") TABLA 6 19

PROPIEDADES MECANICAS DE LOS CABLES RECUBIERTOS DE ZINC

(Normas establecidas por la "Wire Rope Technuical Board")

ANGULOS GEOMETRIA DE LOS PERFILES LAMINADOS (AISC - 8° EDICION)

TABLA 6.1 CANALES								
	A in ²	d in	t., in	b _f in	t _c in	d/A _f	S	S _y in
17	VO. 1 CO CO.							
C15x50	14.7	15	0.716	3.716	0.65	6.21	53.8	3.78
x40	11.8	15	0.520	3.520	0.650	6.56	46.5	3.37
x33.9	9.96	15	0.400	3,400	0.650	6.79	42.0	3.11
C12x30	8.82	12	0.510	3.170	0.501	7.55	27.0	2.06
x25	7.35	12	0.387	3.047	0.501	7.85	24.1	1.88
x20.7	6.09	12	0.282	2.942	0.501	8.13	21.5	1.73
C10x30	8.82	10	0.673	3.033	0.436	7.55	20.7	1.65
x25	7.35	10	0.526	2.886	0.436	7.94	18.2	1.48
x20	5.88	10	0.379	2.739	0.436	8.36	15.8	1.32
x15.3	4.49	10	0.240	2.600	0.436	8.81	13.5	1.16
C9x20	5.88	9	0.448	2.648	0.413	8.22	13.5	1.17
C9x15	4.41	9	0.285	2.485	0.413	8.76	11.3	1.01
x13.4	3.94	9	0.233	2.433	0.413	8.95	10.6	0.963
C8x18.75	5.51	8	0.487	2.527	0.390	8.12	11.0	1.01
x13.75	4.04	8	0.303	2.343	0.390	8.75	9.03	0.854
x11.5	3.38	8	0.220	2.260	0.390	9.08	8.14	0.781
C7x14.75	4.33	7	0.419	2.299	0.366	8.31	7.78	0.779
x12.25	3.60	7	0.314	2.194	0.366	8.71	6.93	0.703
x9.8	2.87	7	0.210	2.090	0.366	9.14	6.08	0.625

C6x13	3.83	6	0.437	2.157	0.343	8.10	5.80	0.642
x10.5	3.09	6	0.314	2.034	0.343	8.59	5.06	0.564
x 8.2	2.40	6	0.200	1.920	0.343	9.10	4.38	0.492
C5x 9	2.64	5	0.325	1.885	0.320	8.29	3.56	0.450
x 6.7	1.97	5	0.190	1.750	0.320	8.93	3.00	0.378
C4x 7.25	2.13	4	0.321	1.721	0.296	7.84	2.29	0.343
x 5.4	1.59	4	0.184	1.584	0.296	8.52	1.93	0.283
C3x 6	1.76	3	0.356	1.596	0.273	6.87	1.38	0.268
x 5	1.47	3	0.258	1.498	0.273	7.32	1.24	0.233
x 4.1	1.21	3	0.170	1.410	0.273	7.78	1.10	0.202

	A •in²	d in	ζ. in	b _r in	t _f in	r, in	S _\	S ₅
S24x121	35.6	24.5	0.800	8.050	1.090	1.86	258	20.7
x106	31.2	24.5	0.620	7.870	1.090	1.86	240	19.6
x100	29.3	24.0	0.745	7.245	0.870	1.59	199	13.2
x90	26.5	24.0	0.625	7.125	0.870	1.60	187	12.6
x80	23.5	24.0	0.500	7.000	0.870	1.61	175	12.1
S20x96	28.2	20.3	0.800	7.200	0.920	1.63	165	13.9
x86	25.3	20.3	0.660	7.060	0.920	1.63	155	13.3
x75	22.0	20.0	0.635	6.385	0.795	1.43	128	9.32
x66	19.4	20.0	0.505	6.255	0.795	1.44	119	8.85
S18x70	20.6	18.0	0.711	6.251	0.691	1.36	103	7.72
x54.7	16.1	18.0	0.461	6.001	0.691	1,37	89.4	6.94
Sx15x50	14.7	15.0	0.550	5.640	0.622	1.26	64.8	5.57
x42.9	12.6	15.0	0.411	5.501	0.622	1.26	59.6	5.23
S12x50	14.7	12.0	0.687	5,477	0.659	1.25	50.8	5.74
x40.8	12.0	12.0	0.462	5.252	0.659	1.24	45.4	5.16
x35	10.3	12.0	0.428	5.078	0.544	1.16	38.2	3.89
x31.8	9.35	12.0	0.350	5.000	0.544	1.16	36.4	3.74
S10x35	10.3	10.0	0.594	4.944	0.491	1.10	29.4	3.38
x25.4	7.46	10.0	0.311	4.661	0.491	1.09	24.7	2.91

	A in ²	d in	t in	b _r in	t _r in	r _t in	S _x	S _y in ³
S8x23	6.77	8.0	0.411	4.171	0.426	0.95	16.2	2.07
x18.4	5.41	8.0		4.001	0.426	0.94	14.4	1.86
S7x20 x15.3	5.88 4.50	7.0 7.0	0.450 0.252	3.860 3.662	0.392	0.88 0.87	12.1 10.5	1.64
S6x17.25	5.07	6.0	0.465	3.565	0.359	0.81	8.77	1.30
x12.5	3.67	6.0	0.232	3.332	0.359		7.37	1.09
S5x14.75	4.34	5.0	0.494	3.284	0.326	0.74	6.09	1.01
x10	2.94	5.0	0.214	3.004	0.326	0.72	4.92	0.809
\$4x9.5	2.79	4.0	0.326	2.796	0.293	0.65	3.39	0.646
x7.7	2.26	4.0	0.193	2.663	0.293	0.64	3.04	0.574
S3x5.7 x5.7	2.21 1.67	3.0	0.349	2.509	0.260	0.59	1.95	0.468

	A in ²	d in	t. in	b _f in	t _e in	r _t in	S _x	S _y
W36x300	88.3	36.74	0.945	16.655	1.680		1110	156
x280	82.4	36.52	0.885	16.595	1.570		1030	144
x260	76.5	36.26	0.840	16.550	1.440	4.34	953	132
x245	72.1	36.08	0.800	16.510	1.350	4.32	895	123
x230	67.6	35.90	0.760	16.470	1.260	4.30	837	114
W36x210	61.8	36.69	0.830	12.180	1.360	3.09	719	67.5
x194	57.0	36.49	0.765	12.115	1.260	3.07	664	61.5
×182	53.6	36.33	0.725	12.075	1.180	3.05	623	57.6
×170	50.0	36.17	0.680	12.030	1.100	3.04	580	53.2
x160	47.0	36.01	0.650	12.000	1.020	3.02	542	49.1
x150	44.2	35.85	0.625	11.975	0.940	2.99	504	45.1
x135	39.7	35.55	0.600	11.950	0.790	2.93	439	37.7
W33x241	70.9	34.18	0.830	15.860	1.400	4.17	829	118
x221	65.0	33.93	0.775	15.805	1.275	4.15	757	106
x201	59.1	33.68	0.715	15.745	1.150	4.12	684	95.2
W33x152	44.7	33.49	0.635	11.565	1.055	2.94	487	47.2
x141	41.6	33.30	0.605	11.535	0.960	2.92	448	42.7
x130	38.3	33.09	0.580	11.510	0.855	2.88	406	37.9
×118	34.7	32.86	0.550	11.480	0.740	2.84	359	32.6

	in ²	d in	t, in	b _r in	tr in	r, in	S _{in}	S, in
W30x211	100000000000000000000000000000000000000	30.94	0.775	15.105	1.315	3.99	663	100
x191	7/03/70 70	30.68	0.710	15.040	1.185	3.97	598	89.5
x173	-	30.44	0.655	14.985	1.065	3.94	539	79.8
W30x132		30.31	0.615	10.545	1.000	2.68	380	37.2
x124	36.5	30.17	0.585	10.515	0.930	2.66	355	34.4
x116	100000000000000000000000000000000000000	30.01	0.565	10.495	0.850	2.64	329	31.3
x108		29.83	0.545	10.475	0.760	2.61	299	27.9
x99	29.1	29.65	0.520	10.450	0.670	2.57	269	24.5
5,520	4785100	Citties						
W27x178	52.3	27.81	0.725	14.085	1.190	3.72	502	78.8
x161	47.4	27.59	0.660	14.020	1.080	3.70	455	70.9
x146	42.9	27.38	0.605	13.965	0.975	3.68	411	63.5
W27x114	33.5	27.29	0.570	10.070	0.930	2.58	299	31.5
x102	30.0	27.09	0.515	10.015	0.830	2.56	267	27.8
x94	27.7	26.92	0.490	9.990	0.745	2.53	243	24.8
x84	24.8	26.71	0.460	9.960	0.640	2.49	213	21.2
W24x162	47.7	25.00	0.705	12.955	1.220	3.45	414	68.4
x146	43.0	24.74	0.650	12.900	1.090	3.43	371	60.5
x131	38.5	24.48	0.605	12.855	0.960	3.40	329	53.0
x117	34.4	24.26	0.550	12.800	0.850	3.37	291	46.5
x104	30.6	24.06	0.500	12.750	0.750	3.35	258	40.7
0.000000	1.53.5		37237	377 0750	1,720,70		2220	10000000
W24x94	27.7	24.31	0.515	9.065	0.875	2.33	222	24.0
-x84	24.7	24.10	0.470	9.020	0.770	2.31	196	20.9
×76	22.4	23.92	0.440	8.990	0.680	2.29	176	18.4
x68	20.1	23.73	0.415	8.965	0.585	2.26	154	15.7
W24x62	18.2	23.74	0.430	7.040	0.590	1.71	131	9.80
x55	16.2	23.57	0.395	7.005	0.505	1.68	114	8.30
W21x147	43.2	22.06	0.720	12.510	1.150	3.34	329	60.1
x132	38.8	21.83	0.650	12.440	1.035	3.31	295	53.5
x122	35.9	21.68	0.600	12.390	0.960	3.30	273	49.2
x111	32.7	21.51	0.550	12.340	0.875	3.28	249	44.5
x101	29.8	21.36	0.500	12.290	0.800	3.27	227	40.3
W21x93	27.3	21.62	0.580	8.420	0.930	2.17	192	22.1
x83	24.3		0.515	8.355	0.930	2.15	171	19.5
x73	21.5		0.455	8.295	.0.740	2.13	151	17.0
x68	20.0		0.433	8.270	0.685	2.12	140	15.7
x62	18.3		0.400	8.240	0.615	2.10	127	13.9

	A	d	t _a	bı	tr	r _c	S.	S,
- Times	in ²	in	in	in	m	in	in'	in
W21x57	16.7	21.06		6.555	0.650	1.64	111	9.35
x50	14.7		0.380	6.530	0.535	1.60	94.5	7.64
×44	13.0	20.66	0.350	6.500	0.450	1.57	81.6	6.36
W18x119	35.1	18.97	0.655	11.265	1.060	3.02	231	44.9
x106	31.1	18.73	0.590	11.200	0.940	3.00	204	39.4
×97	28.5	18.59	0.535	11 145	0.870	2.00	188	36.1
x86	25.3	18.39	0.480	11.090	0.770	2.97	166	31.6
×76	22.3	18.21	0.425	11.035	0.680	2,95	146	27.6
W 18×71	20.8	18.47	0.495	7.635	0.810	1.98	127	15.8
105	19.1		0.450	7.590	0.750	1.97	117	14.4
x60	17.6	10000170	0.415	7.555	0.695	1.96	108	13.3
x55	16.2	18.11	0.390	7.530	0.630	1.95	98.3	11.9
150	14.7	1,773,000	0.355	7.495	0.570	1.94	88.9	10.7
W18x46	13.5	18.06	0.360	6.060	0.605	1.54	78.8	7.43
x40	11.8	50.000	0.315	6.015	0.525	1.52	68.4	6.35
x35	10.3	200.5000	0.300	6.000	0.425	1.49	57.6	5.12
W16x100	29.4	16.97	0.585	10.425	0.985	2.81	175	35.7
x89	26.2	16.75	0.525	10.365	0.875	2.79	155	31.4
x77	22.6	16.52	0.455	10.295	0.760	2.77	134	26.9
x67	19.7	16.33	0.395	10.235	0.665	2.75	117	23.2
W16x57	16.8	16.43	0.430	7.120	0.715	1.86	92.2	12.1
x50	14.7	16.26	0.380	7.070	0.630	1.84	81.0	10.5
×45	13.3	16.13	0.345	7.035	0.565	1.83	72,7	9.3-
x40	11.8	16.01	0.305	6.995	0.505	1.82	64.7	8.25
x36	10.6	15.86	0.295	6.985	0.430	1.79	56.5	7.00
W16x31	9.12	15.88	0.275	5.525	0.440	1.39	47.2	4.49
x26	7,68		0.250	5.500	0.345	1.36	38.4	3.49
W14x132	38.8	14.66	0.645	14.725	1,030	4.05	209	74.5
x120	35.3	14.48	0.590	14.670	0.940	4.04	190	67.5
x109	32.0	711/17/27	0.525	14.605	0.860	4.02	173	61.2
x99	29.1	- CO. CO. CO.	0.485	14.565	0.780	4.00	157	55.2
x90	26.5	14.02	0.440	14.520	0.710	3.99	143	49.9
W14x82	24.1	14.31	0.510	10.130		2.74	123	29.3
x74	21.8	14,17	0.450	10.070	0.785	2.72	112	26.6
x68	20.0	14.04	0.415	10.035		2.71	103	24.2
x 61	17.9	13.89	0.375	9.995	0.645	2.70	92.2	21.5

	A in ²	d in	t _w	b _f in	t _r in	r, in	S _x	S _y
W14x53	15.6	13.92	0.370	8.060	0.660	2.15	77.8	14.3
x48	14.1	13.79	0.340	8.030	0.595	2.13	70.3	12.8
x43	12.6	13.66	0.305	7,995	0.530	2.12	62.7	11.3
W14x38	11.2	14.10	0.310	6.770	0.515	1.77	54.6	7.88
x34	10.0	13.98	0.285	6.745	0.455	1.76	48.6	6.9
x30	8.85	13.84	0.270	6.730	0.385	1.74	42.0	5.83
W14x26	7.69	13.91	0.255	5.025	0.420	1.28	35.3	3.54
x22	6.49	13.74	0.230	5.000	0.335	1.25	29.0	2.80
W12x120	35.3	13.12	0.710	12.320	1.105	3.38	163	56.0
x106	31.2	12.89	0.610	12.220	0.990	3.36	145	49.3
x 96	28.2	12.71	0.550	12,160	0.990	3.34	131	44.4
x 87	25.6	12.53	0.515	12.125	0.810	3.32	118	39.7
x 79	23.2	12.38	0.470	12.080	0.735	3.31	107	35.8
x 72	21.1	12.25	0.430	12.040	0.670	3.29	97.4	32.4
x 65	19.1	12.12	0.390	12.000	0.605	3.28	87.9	29.1
W12x58	17.0	12.19	0.360	10.010	0.640	2.72	78.0	21.4
x53	15.6	12.06	0.345	9.995	0.575	2.71	70.6	19.2
W12x50	14.7	12,19	0.370	8.080	0.640	2.17	64.7	13.9
x45	13.2	12.06	0.335	8.045	0.575	2.15	58.1	12.4
x40	11.8	11.94	0.295	8.005	0.515	2.14	51.9	11.0
x35	10.3	12.50	0.300	6.560	0.520	1.74	45.6	7.4
x30	8.79	12.34	0.260	6.520	0.440	1.73	38.6	6.2
x26	7.65	12.22	0.230	6.490	0.380	1.72	33.4	5.3
W12x22	6.48	12.31	0.260	4.030	0.425	1.02	25.4	2.3
x19	5.57	12.16	0.235	4.005	0.350	1.00	21.3	1.83
x16	4.71	11.99	0.220	3.990	0.265	0.96	17.1	1.4
x14	4.16	11.91	0.200	3.970	0.225	0.95	14.9	1.15
W10x112	32.9	11.36	0.755	10.415	1.250	2.88	126	45.3
x100	29.4	11.10	0.680	10.340	1.120	2.85	112	40.0
x88	25.9	10.84	0.605	10.265	0.990	2.83	98.5	34.8
x77	22.6	10.60	0.530	10.190	0.870	2.80	85.9	30.1
x68	20.0	10.40	0.470	10.130	0.770	2.79	75.7	26.4
x60	17.6	10.22	0.420	10.080	0.680	2.77	66.7	23.0
x54	15.8	10.09	0.370	10.030	0.615	2.75	60.0	20.6
x49	14.4	9.98	0.340	10.000	0.560	2.74	54.6	18.7
W10x45	13.3	10.10	0.350	8.020	0.620	2.18	49.1	13.3
x39	11.5	9.92	0.315	7.985	0.530	2.16	42.1	11.3
x33	9.71	9.73	0.290	7.960	0.435	2.14	35.0	9.2

	Α,	d	t.	bf	t_f	r _t	Sx	Sy
	in ²	in	in	in	in	in	in ³	in ³
W10x30	8.84	10.47	0.300	5.810	0.510	1.55	32.4	5.75
x26	7.61	10.33	0.260	5.770	0.440	1.54	27.9	4.89
x22	6.49	10.17	0.240	5.750	0.360	1.51	23.2	3.97
W10x19	5.62	10.24	0.250	4.020	0.395	1.03	18.8	2.14
x17	4.99	10.11	0.240	4.010	0.330	1.01	16.2	1.78
x15	4.4	9.99	0.230	4.000	0.270	0.99	13.8	1.45
x12	3.54	9.87	0.190	3.960	0.210	0.96	10.9	1.10
W8x67	19.7	9.00	0.570	8.280	0.935	2.28	60.4	21.4
x58	17.1	8.75	0.510	8.220	0.810	2.26	52.0	18.3
×48	14.1	8.50	0.400	8.110	0.685	2.23	43.3	15.0
x40	11.7	8.25	0.360	8.07	0.560	2.21	35.5	12.2
x35	10.3	8.12	0.310	8.020	0.495	2.20	31.2	10.6
x31	9.13	8.00	0.285	7.995	0.435	2.18	27.5	9.27
W8x28	8.25	8.06	0.285	6.535	0.465	1.77	24.3	6.63
x24	7.08	7.93	0.245	6.495	0.400	1.76	20.9	5.53
W8x21	6.16	8.28	0.250	5.270	0.400	1.41	18.2	3.71
x18	5.26	8.14	0.230	5.250	0.330	1.39	15.2	3.04
x15	4.44	8.11	0.245	4.015	0.315	1.03	11.8	1.70
x13	3.84	7.99	0.230	4.000	0.255	1.01	9.91	1.37
x10	2.96	7.89	0.170	3.940	0.205	0.99	7.81	1.06
W6x25	7.34	6.38	0.320	6.080	0.455	1.66	16.7	5.61
x20	5.87	6.20	0.260	6.020	0.365	1.64	13.4	4.41
x15	4.43	5.99	0.230	5.990	0.260	1.61	9.72	3.11
W6x16	4.74	6.28	0.260	4.030	0.405	1.08	10.2	2.20
x12	3.55	6.03	0.230	4.000	0.280	1.05	7.31	1.50
x9	2.68	5.90	0.170	3.940	0.215	1.03	5.56	1.11
W5x19	5.54	5.15	0.270	5.030	0.430	1.38	10.2	3.63
x16	4.68	5.01	0.240	5.000	0.360	1.37	8.51	3.00
W4x13	3.83	4.16	0.280	4.060	0.345	1.10	5.46	1.90

	w	A,	S _v	r _x	Y	S	r,	x	r,
	Lb/pie	in ²	in	in	in	in ³	in	in	in
1.4x3x1/2	11.1	3.25	1.89	1.25	1.33	1,12	0.864	0.827	0.639
x3/8	8.5	2.48	1.46	1.26	1.28	0.866	0.879	0.782	0.644
x5/16	7.2	2.09	1.23	1.27	1.26	0.734	0.887	0.759	0.647
81:4	5.8	1.69	1.00	1.28	1.24	0.299	0.896	0.736	0.651
1.3½x3½x3/8	8.5	2.48	1.15	1.07	1.01				0.687
x5/16	7.2	2.09	0.976	1.08	0.990				0.690
X1/4	5.8	1.69	0.794	1.09	0.968				0.694
L3½x3x3/8	7.9	2.30	1.13	1.09	1.08	0.851	0.897	0.830	0.625
x5/16	6.6	1.93	0.954	1.10	1.06	0.722	0.905	0.808	0.627
x1/4	5.4	1.56	0.776	1.11	1.04	0.589	0.914	0.795	0.631
1.31/4x21/4x3/8	7.2	2.11	1.09	1.10	1.16	0.592	0.719	0.660	0.537
x5/16	6.1	1.78	0.927	1.11	1.14	0.504	0.727	0.637	0.540
x1/4	- 4.9	1.44	0.755	1.12	1.11	0.412	0.735	0.614	0.544
1.3 x3 x1/2	9.4	2.75	1.07	0.898	0.932				0.584
x3/8	7.2	2.11	0.833	0.913	0.888				0.587
x5/16	6.1	1,78	0.707	0.922	0.865				0.589
1.3 x3 x1/4	4.9	1.44	0.577	0.930	0.842				0.592
x3/16	3.71	1.09	0.441	0.939	0.820				0.596
1.3 x2½x3/8	6.6	1.92	0.810	0.928	0.956	0.581	0.736	0.706	0.522
x1/4	4.5	1.31	0.561	0.945	0.911	0.404	0.753	0.661	0.528
x3/16	3.39	0.996	0.430	0.954	0.888	0.310	0.761	0.638	0.533
L3 x2 x 3/8	5.9	1.73	0.781	0.940	1.04	0.371	0.559	0.539	0.430
x5/16	5.0	1.46	0.664	0.948	1.02	0.317	0.567	0.516	0.432
x1/4	4.1 -		0.542	0.957	0.993	0.260	0.574	0.493	0.435
x3/16	3.07	0.902	0.415	0.966	0.970	0.200	0.583	0.470	0.439
1.21/4x21/4x3/8	5.9	1.73	0.566	0.753	0.762				0.487
x5/16	1000000	1.46	0.482	0.761	0.740				0.489
x1/4	4.1	1.19	0.394	0.769	0.717				0.491
x3/16	3.07	0.902	0.303	0.778	0.694				0.495
1.2½x2 x3/8	5.3	1.55	0.547	0.768	0.831	0.363	0.577	0.581	0.420
x5/16	4.5	1.31	0.466	0.776	0.809	0.310	0.584	0.559	0.422
x1/4	3.62	1.06	0.381	0.784	0.787	0.254	0.592	0.537	0.424
N3/16	2.75	0.809	0.293	0.793	0.764	0.196	0.600	0.514	0.427

L2 x2 x3/8	4.7	1.36	0.351	0.594	0.636		0.389
x5/16	3.92	1.15	0.300	0.601	0.614		0.390
x1/4	3.19	0.938	0.247	0.609	0.592		0.391
x3/16	2.44	0.715	0.190	0.617	0.569	22	0.394
x1/8	1.65	0.484	0.131	0.626	0.546		0.398

	diámetro	espe	90F	peso	área	momento	módulo	radio
Nominal in	exterior in	interior	pared in	lb/pie	in ²	inercia in ⁴	sección in ³	giro in
1/2	0.840	0.622	0.109	0.85	0.250	0.017	0.041	0.261
3/4	1.050	0.824	0.113	1.13	0.333	0.037	0.071	0.334
1	1.315	1.049	0.133	1.68	0.494	0.087	0.133	0.421
1 1/4	1.660	1.380	0.140	2.27	0.669	0.195	0.235	0.540
1 1/2	1.900	1.610	0.145	2.72	0.799	0.310	0.326	0.623
2	2.375	2.067	0.154	3.65	1.07	0.666	0.561	0.787
2 1/2	2.875	2.469	0.203	5.79	1.70	1.53	1.06	0.947
3	3.500	3.068	0.216	7.58	2.23	3.02	1.72	1.16
3 12	4.000	3.548	0.226	9.11	2.68	4.79	2.39	1.34
4	4.500	4.026	0.237	10.79	3.17	7.23	3.21	1.51
5	5.563	5.047	0.258	14.62	4.30	15.2	5.45	1.88
6	6.625	6.065	0.280	18.97	5.58	28.1	8.50	2.25
8	8.625	7.981	0.322	28.55	8.40	72.5	16.8	2.94
10	10.750	10.020	0.365	40.48	11.90	161	29.9	3.67
12	12.750	12.000	0.375	49.56	14.60	279	43.8	4.38

Seceion	r, h	r, b	Seccion	r _v ly	r, b
	0.250	0.250		0,40 0,45	0.19
<u> </u>	0.35	0.350		0,40 0,45	0,40 0,45
	0.294	0.294	7	0.25 0.30	0.19 0.22
b h	0.5 36 - 4 0.5 (46 - 40)	0-5 30 - A , 3(A - A)	[,]‡	0,27 0.30	0.35 0.38
	0.38	0.22 0.25		0,20 0,25	0.20 0.25
	0.20	0.40		0.38 0.40	0.19
- Fred - Fred	0.30 0.32	0.30 0.32	哑	0.38 0.43z	0.19 0.22
h b>h	0.28 0.31	0.31 0.33	Œ.	0.40 0.45	0.20 0.25
120-	0.30 0.32	0.21	*-[F]*	0.35	0.20

28> 0	0.31 0.33	0.19 0.21	[b]]h	0.35 0.37	0.42 0.46
6 20 < 6	0.28 0.30	0.22 0.25	H	0.35 0.37	0.54 0.56
h-b	0.21 0.22	0.21 0.22		0.33 0.36	0.52 0.54
	0.40 0.44	0.38 0.42]_b_[]h	0.40 0.44	0.50 0.54
	0.37 0.40	0.48 0.52] <u>+</u>	0.40 0.44	0.25 0.30
I	0.39 0.44	0.30 0.33		0.33 0.36	0.52 0.54
	0.42 0.46	0.27 0.29	H.	0.49 0.52	0.30 0.33
	0.49 0.52	0.27 0.29		0.46 0.49	0.27 0.30
Ħ.	0.36 0.40	0.52 0.56		0.36 0.40	0.23 0.26

CARACTERISTICAS DE LA SOLDADURA DE FILETE

TABLA 6.8 TAMAÑO MINIMO DE LA SOLD.	ADURA
Espesor de la parte más delgada	Tamaño mínimo
menos de 1/4	1/8
de1/4 a 1/2	3/16
de 1/2 a 3/4	1/4
más de 3/4	5/16

El tamaño nominal 'a' de la soldadura multiplicado por un factor f función del ángulo α entre las caras de fusión, da el tamaño efectivo 'd'.

TABLA 6.9 TAMAÑO E		"d" DE	LA SOLDA	DURA	
Ángulo α	60-90	91-100	101-106	107-113	114-120
factor f	0.70	0.65	0.60	0.55	0.50

TABLA 6.10 TAMAÑO MAXIMO I	DE LA SOLDADURA	`
E	spesor del material	Tamaño máximo
borde vívo	t < 1/4"	a = t
borde vivo	t > 1/4"	a = t-1/16"
borde laminado	t	a = 3t/4

LONGITUD DE LA SOLDADURA

La longitud mínima no debe ser menor que cuatro veces el tamaño nominal.

La soldadura debe tener un retorno en los extremos de por lo menos dos veces el tamaño nominal.

COLOCACION DE LA SOLDADURA

El tamaño máximo del cordón que puede depositarse en un solo paso depende de la posición de la soldadura y no deberá ser mayor que:

5/16 en posición sobra cabeza

3/8 en la posición plana

1/2 en la posición vertical

ESFUERZO Y RESISTENCIA ADMISIBLES

El esfuerzo admisible en corte es igual a 1050 kg/cm2 para acero A-36 y electrodo E-70.

La resistencia admisible T es igual a:

$$T = 1050 \Sigma dL$$

En Jonde:

∑ Sumatoria del tamaño efectivo d por su respectiva longitud L.

DESIGNACION DE LOS ELECTRODOS

Los electrodos se designan con la siguiente nomenclatura:

Resistencia a tracción en KSI (dos o tres dígitos)

Tipo de recubrimiento, tipo de recubrimiento y polaridad

Posición de la soldadura 1 toda posición

2 posición plana y horizontal

3 posición plana únicamente

ASTM	Tipo ajus	Tipo Aguj	Ev KSI	Tipo Carga	Diám 5/8	etro no	minal 7/8	en in	1 1/8	1 1/4	1 3/8	1 1/4
A307	444	STD	10:0	S	3.1	4.4	6.0	7.9	9.9	12.3	14.8	17.7
		NSL	10000	D	6.1	8.8	12.0	15.7	19.9	24.5	29.7	35.3
A325	F	STD	17.5	S	5.4	7.7	10.5	13.7	17.4	21.5	26.0	30.9
			0000	D S	10.7	15.5	21.0	27.5	34.8	42.9	52.0	61.8
		OVS	15.0	S	4.6	6.6	9.0	11.8	14.9	18.4	22.3	26.5
		SSL		D	9.2	13.3	18.0	23.6	29.8	36.8	44.5	53.0
		LSL	12.5	S	3.8	5.5	7.5	9.8	12.4	15.3	18.6	22.1
			10000	D	7.7	11.0	15.0	19.6	24.9	30.7	37.1	44.2
	N	STD	21.0	S	6.4	9.3	12.6	16.5	20.9	25.8	31.2	37.1
	107	NSL.	10000	D	12.9	18.6	25.3	33.0	41.7	51.5	62.4	74.2

TARLA 6 12

F Conexión tipo fricción S Corte simple N Conexión tipo aplastamiento D Corte doble

STD Agujero estándar (d + 1/16") LSL Long slotted holes

OVS Oversize round holes

SSL Short slotted holes

NSL Long or short slotted hole normal to load direction

CARGA KIPS		ISIBLES	DE TR	ACCIO?	N EN U	NIONES	EMP	ERNAI	DAS EN
		Dia	ámetro n	ominal y	y área er	n in ²			
ASTM	F _t	5/8	3/4	7/8	1	1 1/8	1 1/4	1.3/8	11/4
Area	KSI	0.3068	0.4418	0.6013	0.7854	0.9940	1.227	1.485	1.767

ASTM	F _t	5/8	3/4	7/8	1	1 1/8	1 1/4	1.3/8	11/4
Area	KSI	0.3068	0.4418	0.6013	0.7854	0.9940	1.227	1.485	1.767
A-307	20	6.1	8.8	12.0	15.7	19.9	24.5	29.7	35.3
A-325	44	13.5	19.4	26.5	34.6	43.7	54.0	65.3	77.7

TABLA 6. TAMAÑO		UJEROS EN	UNIONES EMPERNAI	DAS EN "IN"
Diametro	Agujero	Oversized	Short-slotted	Long-slotted
≤7/8 1 ≥11/8	d+1/16 1 1/16 d+1/16	d + 3/16 1 1/4 d + 5/16	(d + 1/16) x (d + 1/4) 1 1/16 x 1 5/16 (d + 1/16) x (d + 3/8)	1 1/16 x 2 1/2

d es el diàmetro del perno en pulgadas

TABLA 6.14

ESFUERZOS ADMISIBLES EN ELEMENTOS DE ACERO (AISC - 8º Editión)

A. Sección compacta

A.1
$$b_{\tau}/2t_{\tau} \le 65/F_{\nu}^{-1/2}$$

$$d/t_{*} \le 640(1-3.74 f_{*}/F_{*})/F_{*}^{1/2}$$

A.3 Cuando
$$f_a/F_y > 0.16$$

 $d/t_m \le 275 F_y^{-1/2}$

$$d/t_n \le 275 \, F_v^{-1/2}$$

B La longitud no arriostrada lateralmente del ala en compresión no debe exceder a: 76 b / F, 1/2 ni 20000 / (d/A c) F,

ESFUERZO ADMISIBLE EN FLEXION F.

1. Para secciones compactas

$$F_b = 0.66F_a$$

2. Para secciones que no cumplan con la condición A.1 de secciones compactas y que tengan un b // 21 r < 95 / F. 1/

$$F_b = 10.79 - 0.02(b_c/2t_c)F_c^{-1}1F_c$$

$$F_b = [0.79 - 0.02(b_f/2t_f)F_v]F_v$$

Cuando $b_f/2t_f = 95/F_v$

3. Cuando la flexión es en el eje débil

Para secciones compactas

 $F_b = 0.75F_v$

Para secciones que tengan b 1/2t c entre 65 / F, 12 y 95 / F, 12

$$F_b = [1.075 - 0.005(b_c/2t_c)F_b]^{1/2} [F_b]$$

4. Para secciones que no sean compactas y para acero A-36

Cuando 53.3 ≤ L / r, < 119

4.1 $F_b = [2/3 - F_v(1./r_1)^2/1530000]F_v$

Cuando L/r₁≥119

4.2 $F_b = 170000 / (L/r_s)^2$

Cuando el área del ala en compresión es aproximadamente rectangular e igual al área en tracción

4.3
$$F_b = 12000 / L (d / A_T)$$

Se toma el mayor valor de 4.1 y 4.3 o de 4.2 y 4.3.

ESFUERZO ADMISIBLE EN COMPRESION F.

Vertabla 6.15

ESFUERZO ADMISIBLE EN CORTE Fo-

 $F_x = 0.40 \, F_x$

Wr.	Fa	KI/r	Fa	KI/r	Fa	K1/r	Fa	Kl/r	Fa	Kl/r	Fa
1	21.66	31	19.87	61	17.33	91	14.09	121	10.14		6.65
2	21.52	32	19.80	62	17.24	92	13.97	122	9.99	152	6.46
3	21.48	33	19.73	63	17.14	93	13.84	123	9.85		6.38
4	21.44	34	19.65	64	17.04	94	13.72	124	9.70	154	6.30
5	21.39	35	19.58	65	16.94	95	13.60	125	9.55	155	6.22
6	21.35	36	19.50	66	16.84	96	13.48	126	9.41	136	6.14
7	21.30	37	19.42	67	16.74	97	13.35	127	9.26	157	6.06
8	21.25	38	19.35	68	16.64	98	13.23	128	9.11	158	5.98
9	21.21	39	19.27	69	16.53	99	13.10	129	8.97	159	5.91
10	21.16	40	19.19	70	16.43	100	12.98	130	8.84	160	5.83
11	21.10	41	19.11	71	16.33	101	12.85	131	8.70	161	5.76
12	21.05	42	19.03	72	16.22	102	12.72	132	8.57	162	5.69
13	21.00	43	18.95	73	16.12	103	12.59	133	8.44	163	5.62
14	20.95	44	18.86	74	16.01	104	12.47	134	8.32	164	5.55
15	20.89	45	18.78	75	15.90	105	12.33	135	8.19	165	5.49
16	20.83	46	18.70	76	15.79	106	12.20	136	8.07	166	5.42
17	20.78	47	18.61	77	15.69	107	12.07	137	7.96	167	5.35
18	20.72	48	18.53	78	15.58	108	11.94	138	7.84	168	5.29
19	20.66	49	18.44	79	15.47	109	11.81	139	7.73	169	5.23
20	20.60	50	18.35	80	15.36	110	11.67	140	7.62	170	5.17
21	20.54	51	18.26	81	15.24		11.54	141	7.51		5.11
22	20.48	52	18.17	82	15.13		11.40	142	7.41		5.05
23	20.41	53	18.08	83	15.02	100000	11.26	143	7.30		4.99
24	20.35	54	17.99	84	14.90		11.13	144	7.20		4.93
35	20.28	55	17.90	85	14.79	115	10.99	145	7.10	175	4.88
26	20.22	56	17.81	86	14.67		10.85	146	7.01		4.82
27	20.15	57	17,71	87	14.56		10.71	147	6.91		4.77
28	20.08	58	17.62	88	14.44	1000000	10.57	148	6.82		4.71
29	20.01	59	17.63	89	14.32		10.43	149	6.73	C 1 1 1 1 1 1 1	4.66
30	19.94	60	17.43	90	14.20	120	10.28	150	6.64	180	4.61

Recubri- miento Clase	Diámetro Plgs.	Resistencia mín. a la tensión, Kg/cm.2	Resistencia mín de fluencia a 0.7% de extensión bajo carga	Elongación total min. en 10 plgs., por ciento
A	0.041 y mayores	15470	11250	4.0
B	Todos los diámetros	14770	10550	4.0
C	Todos los diámetros	14060	9840	4.0

La resistencia minima de fluencia se mide al 0.7% de elongamiento bajo carga y el módulo de elasticidad del alambre varia de 1.97 x 10º hasta 2.11 x 16º Kg/cm.

Diámetro del alambre recubierto plgs.	Peso minimo de recubrimiento en onzas por pie cuadrado de superficie de alambre sin recubrir					
	Clase A	Clase B	Clase C			
De 0.041 a 0.061	0.40	0.80	1.20			
Mas de 0.061 a 0.079	0.50	1.00	1.50			
Mas de 0.079 a 0.092	0.60	1.20	1.80			
Mas de 0.092 a 0.103	0.70	1.40	2.10			
Mas de 0.103 a 0.119	0.80	1.60	2.40			
Más de 0.119 a 0.142	0.85	1.70	2.55			
Más de 0.142 a 0.187	0.90	1.80	2.70			
Más de 0.187	1.00	2.00	3.00			

	Normas establecia Resista	encia mínima d	e ruptura en toe	eladas métricas	
Diámetro nominal plgs.	Clase "A" Recubrimiento completo	Clase "A" recubrimiento en los alam- bres interiores. Clase "B" recubrimiento en los alam- bres exteriores	Clase "A" recubrimiento en los alam- bres interiores. Clase "C" recubrimiento en los alam- bres ext: nores	Area metálica aproximada en cm 2	Peso aproximado er Kg./m.
36	13.6	13.2	12.9	0.97	0.77
9/16	17.2	16.7	16.4	1.23	0.98
5/8	21.8	21.1	20.7	1.51	1.22
11/16	26.3	25.5	24.9	1.83	1.47
3/4	30.8	29.9	29.3	2.18	1.76
13/16	36.3	35.2	34.5	2.55	2.07
7/8	41.7	40.5	39.6	2.96	2.40
15/16	50.0	47.5	46.5	3.40	2.75
1	55.3	53.7	52.5	3.87	3.13
1 1/16	62.6	60.7	59.4	4.37	3.53
1 1/8	70.8	68.7	67.2	4.90	3.96
1 3/16	78.0	75.7	74.1	5.46	4.40
1 1/4	87.1	85.4	83.6	6.05	4.88
1.5/16	96.2	94.3	92.5	6.65	5.59
1 3/8	105.2	103.4	100.7	7.29	5.91
1 7/16	114.3	111.6	109.8	8.00	6.46
1 1/2	125.2	122.5	119.8	8.71	7.04
1.9/16	136.0	133.4	130.6	9.48	7.63
1 5/8	147.0	144.2	140.6	10.28	8.26
1.11/16	159.7	156.0	153.3	11.03	8.90
1 3/4	170.6	166.9	163.3	11.87	9.57
1 13/16	183.3	179.6	176.0	12.71	10.27
1.7/8	196.0	192.3	187.8	13.61	11.00
1.15/16	208.7	205.0	200.5	14.52	11.74
2	222.3	218.6	215.9	15.48	12.50
2 1/16	236.8	233.2	229.5	16.45	13.30
2 1/8	251.3	247.7	244.0	17.48	14.52
2 3/16	265.8	262.2	257.6	18.52	14.95
2 1/4	281.2	276.7	273.1	19.61	15.83
2 3/8	312.1	322.1	303.0	21.81	17.63
2.5/16	296.7	292.1	287.6	20.71	16.73
2 7/16	326.6	322.1	316.6	23.03	18.57
2 1/2	341.1	335.7	331.1	24.20	19.54
2 9/16	355.6	350.2	344.7	25.41	20.53
2 5/8	378.3	372.9	366.4	26.65	21.53
2 11/16	391.9	385.6	380.0	27.94	22.56
2 3/4	410.1	403.7	397.3	29.29	23.63
2.7/8	448.2	440.9	434.5	32.00	25.83
3	488.1	480.8	473.5	34.84	28.12

3.1.8	529.8	521.6	513.4	37.81	30.52
314	567.0	558.8	549.6	40.91	33.00
3.3/8	610.5	601.5	592.3	44.07	35.59
3 1 2	656.8	648.2	636.7	47.92	38.29
3.5/8	696.7	686.8	675.7	50.84	41.07
3 3 4	745.7	734.8	722.9	54.45	43.94
3.7/8	796.5	784.7	772.8	58.13	46.92
4	839.2	826.5	813.6	61.94	50.00

Diámetro nominal en pulgs.	Resistencia minima de ruptura en toneladas métricas, Recubrimiento Clase A	Peso aproximado Kg./m.	Area metálica aproximada en cm.2
3/8	5.9	0.36	0.419
1/2	10.4	0.62	0.768
5/8	16.3	0.97	1.174
3/4	23.6	1.41	1.729
7/8	31.7	1.90	2.328
.1	41.4	2.48	3.038
1 1/8	52.4	3.14	3.844
1.1/4	65.5	3.93	4.805
1.3/8	79.6	4.78	5.844
1.1/2	94.3	5.68	6.940
1.5/8	111.5	6.71	8.192
1 3/4	129.5	7.80	9.482
1 7/8	148.7	8.97	10,901
2	168.7	10.19	12.384
2 1/8	190.5	11.50	13.997
2 1/4	213.1	12.89	15.609
2 3/8	236.7	14.30	17,351
2 1/2	261.2	15.77	19.157
2 5/8	287.5	17.29	21.092
2 3/4	314.7	18.96	23.091
2 7/8	343.8	20.68	25.219
3	373.7	22.48	27.413
3 1/4	430.8	26.78	32,508
3 1/2	503.4	31.25	37.604
3 3/4	580.5	35.71	43.022
4	662.1	40.18	48.956

CAPITULO **7**DISEÑO DE MEZCLAS DE CONCRETO

7.0 DISEÑO DE MEZCLAS DE CONCRETO

TABLA 7.1

CARACTERÍSTICAS DE LOS CEMENTOS

TABLA 7.2

PORCENTAJE DE LA RESISTENCIA CON RESPECTO A LA RESISTENCIA DEL CONCRETO CON CEMENTO TIPO I

TABLA 7.3

TAMAÑO MÁXIMO DEL AGREGADO GRUESO

TABLA 7.4

TAMAÑO MÁXIMO NOMINAL DEL AGREGADO GRUESO

TABLA 7.5

GRANULOMETRIA RECOMENDABLE DEL AGREGADO

TABLA 7.6

RESISTENCIA REQUERIDA PROMEDIO A LA COMPRESIÓN (F'_{C R}) CUANDO NO HAY DATOS DISPONIBLES PARA ESTABLECER UNA DESVIACIÓN ESTÁNDAR. TABLA 7.7

ASENTAMIENTO O SLUMP RECOMENDADOS PARA DIVERSOS TIPOS DE ESTRUCTURAS

TABLA 7.8

AGUA EN LT/M3. PARA DIFERENTES VALORES DE ASENTAMIENTO Y TAMAÑOS MÁXIMOS DE AGREGADOS

TABLA 7.9

CONTENIDO DE AIRE INCORPORADO Y TOTAL

TABLA 7.10

RELACIÓN AGUA - CEMENTO POR RESISTENCIA

TABLA 7.11

RELACIÓN AGUA - CEMENTO POR RESISTENCIA PARA DIFERENTES TAMAÑOS DE AGREGADO GRUESO

TABLA 7.12

RELACIÓN AGUA-CEMENTO POR RESISTENCIA PARA DIVERSOS CONTENIDOS DE AIRE TOTAL

TABLA 7.13

VOLUMEN DE AGREGADO GRUESO POR UNIDAD DE VOLUMEN DE CONCRETO

TABLA 7.14

PORCENTAJE DE AGREGADO FINO

TABLA 7.15

PRIMERA ESTIMACIÓN DEL PESO DEL CONCRETO FRESCO

TABLA 7.16

DISEÑO POR MEZCLAS DE PRUEBA, PARA USO EN PEQUEÑAS OBRAS, RECOMENDADAS POR EL ACI

TABLA 7.17

COLORANTES DEL CONCRFTO (DEL 5 AL 10% EN PESO DE CEMENTO)

Tabla 7.1 Características de los	Cementos	
Nombre	Características	Norma ITINTEC
- Portland tipo I	Uso general	334.009
- Portland tipo II	Uso general, moderado calor de hidratación	
	y moderada resistencia al ataque de su ¹ fatos	334.038
- Portland tipo III(*)	Alta resistencia inicial	
- Portland tipo IV(*)	Bajo calor de hidratación	
- Portland tipo V	Alta resistencia al ataque de sulfatos	334.040
- Portland puzolánico	Puzolana hasta el 15% tipo IPM	
tipo IP y tipo IPM	Puzolana de 15 a 40% tipo IP	334.044
- Tipo MS	Para ambientes húmedos y salitrosos, estruct	u-
	ras expuestas	(ASTM C 1152)
(*) No se fabrican en	el país	

The second secon	le la resistencia con respecto a la resistencia del cemento tipo I.			
Accession of the	3 días	7 días	28 dias	
1	100	100	100	
H	80	85	100	
III	190	130	115	
IV	50	65.	90	
V	65	65	85	

Tabla 7.3	
Tamaño máximo del agregado grueso	
El tamaño máximo del agregado grueso se tomará como el menor valor el siguientes:	itre los
1/5 de la menor separación entre los lados del encofrado 1/3 del peralte de la losa	
3/4 del espaciamiento minimo libre entre varillas, paquetes de varillas o du preesfuerzo.	ctos de

Tabla 7.4

Tamaño Máximo nominal del agregado grueso

Tamaño máximo		Porcent	tajes que	pasan por	las siguie	ntes malla	is	
nominal	2"	114"	1"	3/4"	1/2"	3/8"	Nº 4	Nº 8
2"	95-100	42	35-70	14	10-30		0.5	
1.14"	100	95-100		35-70		10-30	0.5	
1-	1 2	100	95-100		25-60		0.1	0.5
3/4"	- 5	-	100	90-100		20-55	0.1	0.5
1/2"	60		3 ± 8	100	90-100	40-70	0.15	0.5
3/8"					100	85-100	10-30	0.1

Tabla 7 Granule		able del agregado fino
	Malla	% que pasa
3/8"	(9.50 mm)	100
4	(4.75 mm)	95-100
8	(2.36 mm)	80-100
16	(1.18 mm)	50-85
30	(0.60 mm)	25-60
50	(0.30 mm)	10-30
100	(0.15 mm)	2-10

La norma ASTM establece que la arena debe tener un módulo de fineza no menor que 2.3 ni mayor que 3.1 preferentemente.

El Módulo de fineza es igual a la suma de los porcentajes retenidos acumulados en las mallas Nº 4, 8, 16, 30, 50 y 100: dividido entre 100

Adicionalmente el % de partículas inconvenientes en el agregado fino no debe exceder lo siguiente:

 Lentes de arcilla y particulas desmenuzables 	3%
- Material que pasa la malla # 200	
a) Concretos sujetos a abrasión	3%
b) Otros concretos	5%
- Carbón	
a) Cuando la apariencia superficial es importante	0.5 %
b) Otros concretos	1 %

Tabla 7.6

Resistencia requerida promedio a la compresión (fe) cuando no hay datos disponibles para establecer una desviación estándar.

Resistencia fic especificada Resistencia fic requerida

Menos de 210 kg/cm2 fic + 70
210 a 345 kg/cm2 fic + 84
más de 345 kg/cm2 fic + 98

Tipo de Construcción	Asentamiento		
	Máximo	Minimo	
Zapatas y muros de cimentación reforzados. Cimentaciones simples, cajones y sub	3"	1"	
estructuras de muros	3"	1"	
Vigas y muros armados	4"	1	
Columnas de edificios	4"	1"	
Losas y pavimentos	3"	1	
Concreto ciclópeo	2"	1	

El asentamiento puede ser incrementado en 1" para un método de compactación diferente al de vibración.

Tabla 7. 8 * Agua en lt/m3, po agregados	ara dif	erentes	valores	de aser	stamiento	y tam	años má	ximos o
Asentamiento	3/8"	1/2"	3/4"	11"	1.94"	2"	3"	6"
	Con	creto si	n aire in	corporad	0			
1" a 2"	207	199	190	179	166	154	130	113
3" a 4"	228	216	205	193	181	169	145	124
6" a 7"	243	228	216	202	190	178	160	-
Contenido de aire	11000	2000	(cittee	39,000	00000	869.50	1,395,5	
atrapado en %	3	2.5	2	1.5	13	0.5	0.3	0.2
- Barthay	Con	creto co	n aire in	corporad	0		Warne =	-Sycal
1" a 2"	181	175	168	160	150	142	122	107
3" a 4"	202	193	184	175	165	157	133	119
6" a 7"	216	205	197	184	174	166	154	-

^{*} Tabla confeccionada por el Comité 211 del ACI

Table 7.7

Tabla 7.9 Contenido de aire incorporado y total

Tamaño Máximo	Contenido de aire total, en %				
nominal	Exposición suave	Exposición moderada	Exposición severa		
3/8"	4.5	6.0	7.5		
1/2"	4.0	5.5	7.0		
3/4*	3.5	5.0	6.0		
1"	3.0	4.5	6.0		
1 1/2"	2.5	4.5	5.5		
2**	2.0	4.0	5.0		
3**	1.5	3.5	4.5		
6**	1.0	3.0	4.0		

El contenido de aire incorporado se determina restando del valor de esta tabla, el del aire atrapado.

f'.,	Relación agua-ceme	nto de diseño en peso
(28 días)	Concretos sin aire incorporado	Concretos con aire incorporado
150	0.80	0.71
200	0.70	0.61
250	0.62	0.53
3010	0.55	0.46
150	0.48	0.40
400	0.43	N=4
450	0.38	

f), (28 dias)	3/8**	3/4"	1 1/4"	
140	0.87	0.85	0.80	
175	0.79	0.76	0.71	
210	0.72	0.69	0.64	
245	0.66	0.62	0.58	
280	0.61	0.58	0.53	
315	0.57	0.53	0.49	
350	0.53	0.49	0.45	

f , (28 días)	2%	4%	6%	8%
140	0.76	0.71	0.67	0.60
175	0.67	0.62	0.58	0.51
210	0.60	0.55	0.51	0.45
245	0.53	0.49	0.45	0.37
280	0.49	0.45	0.40	0.33
315	0.45	0.40	0.36	0.29
350	0.40			

^{*} Tabla confeccionada por Stanton Walker en la Universidad de Maryland.

Tamaño máximo del agregado	Volumen de agregado grueso, seco y compactado, por unidad de volumen del concreto, para diferentes módulos de fineza del agregado fino					
	2.40	2.60	2.80	3.00		
3/8"	0.50	0.48	0.46	0.44		
1/2"	0.59	0.57	0.55	0.53		
3/4"	0.66	0.64	0.62	0.60		
1"	0.71	0.69	0.67	0.65		
1 1/2"	0.76	0.74	0.72	0.70		
2"	0.78	0.76	0.74	0.72		
3"	0.81	0.79	0.77	0.75		
6"	0.87	0.85	0.83	0.81		

Los volúmenes de agregado grueso corresponden a éste en condición seca y compacta, tal como se define en la norma C-29 del ASTM

Tamaño máximo nominal del agregado grueso	Agrega	do redo	ondeado	>	Agregad	o angul	ar	
	Factor cemento expresado en sacos por metro cubico				Factor cemento expresado sacos por metro cubico			
	5	6	7	8	- 5	6	7	8
	Agrega	ado Fin	o – Mo	dulo de F	ineza de 2	3 a 2.4	4	
3.8	60	57	54	51	69	65	61	58
1/2**	49	46	43	40	57	54	51	48
3/4"	41	38	35	33	48	45	43	41
1"	40	37	34	32	47	44	42	40
1 1/2"	37	34	32	30	44	41	39	37
2"	36	33	31	29	43	40	38	36
	Agrega	ado Fin	o – Mo	dulo de F	ineza de 2	.6 a 2.	7	
3/8"	66	62	59	56	75	71	67	64
1/2"	53	50	47	44	61	58	5.5	53
3/4"	44	41	38	36	51	48	46	44
7"	42	39	37	35	49	46	44	42
1 1/2"	40	37	35	33	47	44	42	40
2"	37	35	33	32	45	42	40	38
	and the second second		o – Mo	dulo de F	ineza de 3	0.0 a 3.	1	
3/8"	74	70	66	62	84	80	76	73
1/2"	59	56	53	50	70	66	62	59
3/4"	49	46	43	40	57	54	51	48
1"	47	44	41	38	55	52	49	46
1 1/2"	44	41	38	36	52	49	46	44
2"	42	38	36	34	49	46	44	42

Los valores de la tabla corresponden a porcentajes del agregado fino en relación al volumen absoluto total del agregado.

Los valores corresponden a agregado grueso angular en concretos de peso norinal sin aire incorporado.

Primera E	Tabla 7.15 stimación del peso del Con	creto Fresco
Tamaño Máximo		del peso del concreto
Del agregado	Sin aire incorporado	Con aire incorporado
3/8"	2285	2190
1/2"	2315	2235
3/4"	2355	2280
1	2375	2315
1 1/2"	2420	2355
2"	2445	2375
3"	2475	2400
6"	2505	2435

Los valores han sido calculados empleando 330 kg, de cemento por metro cúbico y asentamientos que corresponden a consistencias plásticas y agregados de peso específico promedio de 2.7

Tamaño		Peso aprox	imado en kg./m3		
Máximo nominal	1000 EST		Agregado Fine	•	Agregado Grueso
	Mezcia	Cemento	Concreto con aire incorpo- rado. **	Concreto sin aire incorporado	Grava o piedra partida
1/2" .	A	400	769	817	865
	В	400	737	785	897
	C	400	705	753	929
3/4"	A	368	721	785	993
	В	368	689	753	1025
	C	368	657	721	1057
1	A	352	657	721	1121
	В	352	625	689	1153
	C	352	593	657	1185
1.16"	A	320	657	721	1202
	B	320	625	689	1234
	C	320	593	657	1266
2"	A	304	641	721	1266
	В	304	609	689	1298
	C	304	577	657	1330

Use la mezela B correspondiente al tamaño del agregado grueso; si se observa que la mezela tiene poca arena se cambia a la mezela A y si tiene exceso de arena se cambia a la mezela C..

Los pesos indicados en la tabla están basados en agregado fino seco o superficialmente seco. Si se emplea agregado mojado se incrementará el peso tabulado en 64 kg/m3.

Tabla 7.17 Colorantes del concreto (del 5 al 10% en peso de cemento)

Oxido de hierro negro
Oxido de hierro rojo
Oxido de hierro amarillo
Oxido negro de manganeso
Oxido verde de cromo
Oxido azul de Cobalto

CAPITULO **8**INSUMOS Y RENDIMIENTOS

8.00 INSUMOS Y RENDIMIENTOS

Concretos y Morteros - Insumos por metro cúbico

Tabla 8.2

Encofrados - Insumos por metro cuadrado

Labla 8.3

Muros. Insumos de Materiales por metro cuadrado

Características de ladrillos y bloques para muros

Tarrajeo de cielo rasos, paredes, vigas etc. - Insumos de materiales por metro cuadrado

Revestimiento de Escaleras - Insumos de materiales por metro

Coberturas - Insumos de material por metro cuadrado

Enchapes - Insumos de materiales por metro cuadrado

Tabla 8.9

Zócalos - Insumos de materiales por metro lineal

Tabla 8,10

Pisos - Insumos de materiales por metro cuadrado

Tabla 8.11

Rendimiento diario de mano de obra para edificaciones Tabla 8.12

Peso del acero de refuerzo por metro cúbico de concreto

Tabla 8.13

Concreto Asfáltico Típico

		Cemento bolsas	Arena m3	Piedra m3	Hormigór m3
Mortero Cemento-Arena	1:2	15	1.05		***
	1:3	12	1.10	***	***
	1:4	10	1.15	1522	2223
	1:5	10 8 7	1.20		***
	1:6	7	1.25		****
Concreto Cemento-Horm	igón 1:6	6.30			1.25
	1:8	4.75	·		1.25
	1:10	3.70			1.25
	1:12	3.17	***		1.25
Concreto f' c	140 kg/cm2	8	0.50	0.65	
(Para agregado	175	8	0.50	0.65	****
grueso o ¼"- 1")	210	10	0.50	0.65	

	Madera	Clavos	Alambre
Sobrecimientos	40	0.20	
Vigas de Cimentación	40	0.20	0.20
Muros de contención	40	0.20	0.20
Cisterna	30	0.15	0.15
Columnas	40	0.20	0.20
Muros o Placas	40	0.20	0.20
Cajas de Ascensor	40	0.20	0.20
Vigas	50	0.25	0.25
Techos Aligerados	30	0.15	
Losas	35	0.20	***
Escaleras	60	0.30	0.30
Tanques elevados	40	0.20	0.20

	Ladrille	os Cemento	Cal	Arena
	Unds	. Bolsa	Bolsa	m3
De ladrillo de arcilla "King	Kong" (14x10x24 cms)	asentados	con mortere
Cemento-Arena gruesa 1:5				
De cabeza	56	0.42	-	0.06
De soga	35	0.20	***	0.03
De canto	25	0.15		0.02
Igual, con mortero Cemento-Cal-	-Arena gru	jesa 1:2:9		
De cabeza	56	0.23	0.23	0.06
De Soga	35	0.13	0.13	0.03
De canto	25	0.07	0.07	0.02
De ladrillo de arcilla "Pandere	eta" (12 x	10 x 24 cms) asentados	con mortere
cemento - arena gruesa 1: 5 . Ac				
De cabeza	68	0.45	***	0.07
De soga	36	0.20		0.03
De ladrillo de arcilla corriente (12 x 06 x	24 cms) asentac	los con mor	tero cemento
arena gruesa 1:5, acabado en bru				
De cabeza	110	0.55		0.09
De soga	55	0.25		0.04
De canto	33	0.15		0.02
Igual, con mortero Cemento-Cal-	-Arena 1:	2:9. Acabado en	bruto	
De cabeza	110	0.28	0.28	0.09
	55	0.15	0.15	0.04
De soga	20			

De cabeza	120	0.60	***	0.09
De soga	60	0.30		0.04
De ladrillo calcáreo "King ki cal-arena 1:2:9	ong" (14x10x2	5 cms) asenta	ado con moi	rtero Cemento-
De cabeza	56	0.23	0.23	0.06
De soga	34	0.13	0.13	0.03
De canto	25	0.07	0.07	0.02
De ladrillo calcáreo "corrien	te estándar" (1	0.5x5.5x22 c	ms) asentad	lo con mortero
Cemento-cal-arena 1:2:9	300 100 CO DESCRIPTION 1 1 1 1			
De cabeza	125	0.30	0.30	0.10
De soga	60	0.15	0.15	0.04
De bloques de concreto vibra	do (20x40xesp	ecificado en	cms) asentae	do con mortero
Cemento-Arena 1:5				
De 15 de ancho	12	0.20	1222	0.04
De 20 de ancho	12	0.22		0.05
De 25 de ancho	12	0.25	2777	0.06
Bloques Pacasmayo tipo KK	5 huecos 24 x 1	3 x 9 cms.		
De cabeza	66	0.20	7771	0.04
De soga	38	0.10		0.02
Bloques Pacasmayo tipo pare	d			
De 39 x 12 x 19 cms	12.5	0.18	***	0.04
De 39 x 14 x 19 cms	12.5	0.20		0.04

Material	Tipo	Ancho	Alto	Largo	Peso en Kg
De arcilla	Corriente	12	6	24	3
	King-kong	14	10	24	5 a 6
	Pandereta	12	10	24	2.5 a 3
	Icaro	11.5	9.5	24	3
Calcáreo	Corriente	10.5	5.5	22	2.5
	King-kong de 14	14	10	25	6
	King-kong de 12	12	10	25	5
	Tabique	9	12	24	4
Concreto Vibrado	Parva Domus de	15	20	40	14
	Igual	20	20	40	17
	Igual	25	20	40	22
	Igual	30	20	40	26
Concreto Vibrado	Bloque Pacasmayo	13	9	24	4.8
	Igual	19	12	39	10.6
	Igual	19	14	39	11.3

En fachadas, Cemento - Arena 1:5

Igual, Cemento-Cal-Arena 1:2:9

cuadrado	Cemento	Cal	Yeso	Arena
1000	Bolsa	Bolsa	Bolsa	m3
Cielorasos de yeso, con cintas	***		0.80	
Cielorasos de yeso, con puntos		555	0.50	1966
Cielorasos con mortero				
Cemento - Arena 1:4	0.16	1000	2-3-5	0.02
Cemento-Cal-Arena 1.2:8	0.08	0.08	***	0.02
Enlucido de yeso en vigas	***	-	0.80	***
Tarrajeo frotachado en				
Vigas, Cemento-Arena 1:5	0.20		***	0.02
Muros interiores, C - A 1:5	0.14	***	***	0.02
Igual, Cemento-Cal-Arena 1:2:9	0.07	0.07		0.02
Columnas, Cemento-Arena 1:5	0.14	(202)		0.02
Columnas, Cemento-Cal-Arena 1:2:9	0.07	0.07	***	0.02

0.14

0.07

0.07

0.02

0.02

	Cemento	Arena	Oxido
	Bolsa	m3	Kg.
Vestidura de paso y contrapaso			
Mezcla 1:4 acabado planchado	0.10	0.01	
Vestidura de paso y contrapaso			
Con mortero de cemento colorea			
do acabado planchado	0.10	0.01	0.05

Tabla 8.7 Coberturas – Insumos de material	por metro	cuadrado		
	Ladrillos Unid.	Cemento Bolsa	Arena m3	Tierra m3
De ladrillo pastelero asentado sobre torta de barro	17	0.05	0.004	0.03
Igual, sobre mortero Cemento- arena 1:5	17	0.20	0.02	2007011
De torta de barro De tejas de arcilla (36x18x15				0.05
cms)	30	0.50		0.06

Tabla 8.8 Enchapes – Insumos de material	es por metro	cuadrado		
	Mayólica m2	Cemento Bolsa	Arena m3	Porcelana Kg.
De mayólica 11 x 11 cms Mortero Cemento-Arena 1:4 De mayólica de 15 x 15 cms	1.05	0.16	0.02	0.25
Mortero Cemento-Arena 1:4	1.05	0.16	0.02	0.15
De pepelma	1.05	0.16	0.02	0.50
Cerámico de fachada	1.05	0.20	0.03	0.25

Tabla 8.9 Zócalos – Insumos de materiales pe	or metro line Zócalo	Cemento	Arena
		Bolsa	m3
De losetas. Alto 10 cm	1.05	0.02	0.002
De mortero Cemento-Arena 1:4			
de alto 10 cm.		0.02	0.002
Igual, Alto 20 cm.		0.04	0.004
Igual, Alto 30 cm.		0.06	0.006

	Losetas o	Cemento	Arena	Piedra	Hormigón	(1)
	mayólica m2	Bolsa	m3	m3	m3	Kg
De losetas de 20x20 cm. con	1112	Croise	11147	HILD	mo	IV.S.
mortero Cemento-arena 1:5	1.05	0.20	0.03	***		
Igual, losetas 30x30	1.05	0.20	0.03	***	***	***
Igual, losetas 40x40	1.05	0.20	0.03		***	***
	92					60
Capa hase para pisos de Terrazo	***	0.20	0.04	***	***	***
Capa base para pisos de						
terrazo flotante	(50)	0.35	0.055	555	777	777
Piso de concreto de 10 cm. concre	eso de Ceme	nto-Hormi	ndn 1-8 v	nasta de		
Cemento-Arena 1:2	***	0.55	0.01	Practice of	0.125	
2.50		0.000			0.020	
Piso de concreto de 10 cm. concre	ею Гс 140 в	g/cm² y pa	sta de			
Cemento-Arena 1:2	***	0.80	0.045	0.09		
Igual, con aditivo endurecedor						
de superficie	***	0.80	0.045	0.09	-	5
De concreto de 5 cm, vaceado se	shoe loss o	falso pien	de conco	en Como	aro hornico	. 1.9
pasta 1:2	2015 1038 O	0.30	0.045	oto C Cime	0.06	11.0
De concreto coloreado de 5 cm.	vaceado sob			hase Cer		v can
de acabado de 1.5 cm	***	0.35	0.05	***	0.06	
De mayólica de 11x11 cms, con						
mortero Cemento-Arena 1:3	1.05	0.30	0.03		***	0.25
Igual con mayólica 15x15 cms	1.05	0.30	0.03	***		0.15
De gres cerámico de 10x10 cms.	non.					
mortero Cemento-Arena 1:4	1.05	0.25	0.04	***	****	1
De Baldosas cerámicas, varias for						
mortero Cemento-Arena 1:4	1.05	0.25	0.04	***	***	***
Capa base para pisos de						
lajas de piedra	***	0.40	0.05			4
Capa base para pisos de						
capa oase para pisos de canto rodado			0.40	0.05		

⁽¹⁾ Preparado para fragua de juntas u Oxido para pisos coloreados.

Partida	Per	sonal b	Rendir	miento	
	OP.	Of.	Pe.	Cant.	Und
Movimientos de tierras					
Excavación de cimientos hasta					
1 m de profundidad			1	4	m3
1.4 m de profundidad			- 9	3.5	m3
1.7 m de profundidad			Ŷ	3	m3
Relleno y compactado			- 1	7	m3
Nivelación y refine	1	1	2	120	m2
Obras de Concreto					
Concreto (Dosificación, batido, tra	nsporte v	coloca	ción)		
Cimientos de concreto ciclópeo	2	2	8	25	m3
Cimientos de concreto armado	2	2	8	20	m3
Sobrecimiento concreto ciclópeo	2	2	8	10	m3
Sobrecimiento concreto armado	2	2	8	10	m3
Falsa zapata	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2	8	25	m3
Solados para zapatas	2	1	8	100	m2
Zapatas	2	2	8	25	m3
Vigas de cimentación	2	2	8	25	m3
Muros de contención	2	2	10	12	m3
Cisternas -	2	2	10	12	m3
Columnas	2	2	10	10	m3
Cajas de ascensores	2	2	10	10	m ³
Placas y muros	2	2	10	10	m^3
Vigas	3	3	12	25	m³
Losas	3	3	12	25	m ³
Techos aligerados	3	3	12	25	m ³
Escaleras	2	2	10	10	m ³
Tanques elevados	2	2	10	10	m^3
Habilitación, transporte y colocación					
del acero de refuerzo	1	1		250	Kg
Encofrados	200				
Sobrecimiento	1	. 1		20	m ²
Vigas de cimentación	1	1		12	m^2
Muros de contención	1	1		12	m ²
Cisterna	1	. 1		10	m ²
Columnas	1	1		10	m^2
Columnas concreto expuesto	1	1		8	m ²
Muros	- 1	- 1		12	m ²

Partida	Pers	onal ba	ise	Rendimiento		
	OP.	Of.	Pe.	Cant.	Und	
Muros concreto expuesto	1	-1		10	m	
Cajas de ascensor	1	1		12	m²	
Vigas	91	1		10	m	
Vigas concreto expuesto	1	1		8	m ²	
Techos aligerados	1	1		16	m ²	
Losas	1	1		12	m ²	
Losas concreto expuesto	1	1		10	m ²	
Escaleras	1	1		6	m ²	
Tanque elevado	1	1		10	m ²	
Muros de albañileria						
Muros de ladrillo de arcilla tipo king-kon	g				0.00	
De cabeza	1		3/4	7	m	
De soga	1		3/4	9	m^2	
De canto	1		3/4	11	m^2	
Muros de ladrillo corriente de arcilla					201	
De cabeza	1		3/4	4.6	m^2	
De soga	1		3/4	6	m^2	
De canto	1		3/4	8	m ²	
De cabeza una caravista	1		3/4	3.7	m ²	
De soga una caravista	1		3/4	4.8	m ²	
De cabeza dos caravistas	1		3/4	2.8	m ²	
De soga dos caravistas	1		3/4	3.6	m ²	
Muros de bloques de concreto vibrado					<u></u>	
De 0.15 de ancho	1		3/4	12	m ²	
De 0.20 de ancho	1		3/4	10	m ²	
De 0.25 de ancho	13		3/4	8	m ²	
Tarrajeado de paredes y cielorasos						
Empastado de yeso sin cintas	1		1/3	13	m^2	
Empastado de yeso con cintas	1		1/3	10	m ²	
Cieloraso con mortero	1		1/3	8	m^2	
Enlucido de yeso en vigas	î		1/3	8	m ²	
Tarrajeo frotachado en vigas	1		1/3	6	m ²	
Tarrajeo frotachado en muros interiore	s 1		1/3	15	m ²	
Tarrajeo en columnas	1		1/3	8	m^2	
Tarrajeo de fachadas	Î.		1/3	10	m^2	
Pisos			67	5335	-	
Falso piso de 4"	2	1	6	120	m ²	
Falso piso de 3"	2	1	6	150	m ²	
Contrapiso de 4 cm	1	2	6	100	m ²	

Partida	Pers	onal b	ase	Rendi	miento
	OP.	Of.	Pe.	Cant.	Und
Asentado de losetas de 20x20 cms	-1		1/2	Q	m
Asentado de losetas de 30x30 cms	1		1/2	10	m²
Asentado de losetas de 40x40 cms	1		1.2	12	m ²
De concreto de 10 cms	2	2	8	100	m
De concreto de 5 cms sobre losa	1	2	6	100	m ²
De concreto coloreado	1	2	6	80	m,
De vinilico	1			32	m ²
De parquet	1		1/2	8	m ²
De mayólica de 11x11 cms	1		1/3	4	m ²
De gres cerámica de 10x10 cms	1		1/3	6	m ²
De baldosas cerámicas	1		1/3	6	m^2
nchapes y zócalos					
De mayólica de 11x11 ems-	1		1/3	3	m ²
De mayólica de 15x15 cms	1		1/3	4	m^2
De pepelma	1		1/3	2	m ²
Zócalo de loseta de 10 cm	1		1/3	18	m
Zócalo de cemento de 10 cm	1		1/3	24	m
Zócalo de cemento de 30 cm	1		1/3	17	m
Revestimiento de pasos de escalera					
Vestidura de paso y contrapaso	1		1/2	6	m
Igual coloreado	1		1/2	5	m
Coberturas e impermeabilizaciones					
De ladrillo pastelero		1	1	16	m ²
De torta de barro		1	2	40	m²
De tejas sobre losa de concreto		1	1/2	7	m ²

Tabla 8.12	
Peso del acero de refuerzo por metro cú	bico de concreto
Vigas rectangulares (sin incluir losa)	90 – 110 Kg
Vigas T maestras, incluyendo losas	60 - 75
Viguetas de concreto	55 - 75
Losas planas	25 - 60
Columnas	170 - 275
Cimientos	30 - 45

Concreto Asfáltico Típico		
Componente	% Peso	% Volumen
Asfalto	6	14.4
Agregado grueso	53	43.7
Agregado fino	35	33.4
Polvo mineral	6	4.9
Aire	O	3.6

CAPITULO **9**TABLAS DE USO GENERAL

9.0 TABLAS DE USO GENERAL

TABLA 9.1

AREAS Y VOLUMENES

TABLA 9.2

MOMENTOS DE INERCIA "I" Y MODULO DE SECCION "S"

TABLA 9.3

FORMULAS PARA EL CALCULO DEL INTERES COMPUESTO

TABLA 9.4

MEDIDAS EQUIVALENTES DE LONGITUD

TABLA 9.5

MEDIDAS EQUIVALENTES DE SUPERFICIE

TABLA 9.6

MEDIDAS EQUIVALENTES DE VOLUMEN Y CAPACIDAD

TABLA 9.7

MEDIDAS EQUIVALENTES DE MASA Y PESO

TABLA 9.8

MEDIDAS EQUIVALENTES – FUERZAS O PESOS POR UNIDAD DE LONGITUD

TABLA 9.9

MEDIDAS EQUIVALENTES DE FUERZAS O PESOS POR UNIDAD DE SUPERFICIE. PRESION

TABLA 9.10

MEDIDAS EQUIVALENTES DE FUERZAS O PESOS POR UNIDAD DE VOLUMEN, DENSIDAD

TABLA 9.11

MEDIDAS EQUIVALENTES: ENERGIA, TRABAJO, CALOR

TABLA 9.12

MEDIDAS EQUIVALENTES: FUERZA, DURACION DE LA ENERGIA Y CALOR

TABLA 9.13

MEDIDAS EQUIVALENTES: VELOCIDAD Y ACELERACION

TABLA 9.14

MEDIDAS EQUIVALENTES VARIAS

TABLA 9.15

CARACTERISTICAS DE LAS BARRAS DE CONSTRUCCION

TABLA 9.16

UNIDADES DE LAS MAGNITUDES GEOMETRICAS Y MECANICAS

TABLA 9.17

LA HORA EN EL MUNDO CUANDO SON LAS 12:00 (HORAS) EN LIMA

Area y Volúmen irregular A=h[(yo+yn)+4(y1+y2+y5+...)+2(y2+y4+y6+...)]/3 V=h(A+B+4M)/6

SECTOR CIRCULAR:

Area =
$$\frac{Tr^2A^0}{360}$$
 = $\frac{Arco \times Radio}{2}$

$$C = 2\sqrt{2br - b^2} = 2r \operatorname{Sen} \frac{A}{2}$$

TABLA 9.3

FORMULAS PARA EL CALCULO DEL INTERES COMPUESTO

Valor Presente (P)

Valor Futuro (F)

Amortización o Renta del periodo (A)

Periodo de Capitalización (n)

Tasa de interés para el periodo de capitalización expresada como decimal (i)

$$F = P(1+i)^n$$

 $P = F/(1+i)^n$

$$P = A [(1+i)^{n}-1]/i(1+i)^{n}$$

$$A = Fi/[(1+i)^{n}-1]$$

$$F = A [(1+i)^{n} - 1]/i$$

$$A = Pi(1+i)^{n}/[(1+i)^{n}-1]$$

IABLA 9.4	
MEDIDAS FOUTVAL	ENTES DE LONGITUD

Metros	Pulgadas	Pies	Yardas	Perchas	Cadenas	Millas de los	Est. Unidos
(m)	(pulg Inches, in.)	(Feet, ft)	(yards, Yd.)	(Rods, r.)	(Chains, ch.)	Terrestre (Statute)	Nautica
1	39.37	3.28083	1.09361	0.19884	0.04971	0.0006214	0.0005396
0.02540	1	0.08333	0.02778	0.00505	0.00126	0.0000158	0.0000137
0.30480	12	1.	0.33333	0.06061	0.01515	0.0001894	0.0001645
0.91440	36	3	1	0.18182	0.04545	0.0005682	0.0004934
5.02921	198	16.5	5.5	1	0.25	0.003125	0.002714
20.1168	792	66	22	4	t	0.01250	0.01085
1609.35	63360	5280	1760	320	80	1	0.86839
1853.25	72962.5	6080.20	2026.73	368.497	92.1243	1.15155	1
1000	39370	3280.83	1093.61	198.838	49.7096	0.62137	0.53959

1 metro (m) = 10 decimetros (dm) = 100 centímetros (cm.) = 1000 milímetros (mm.).

1 metro (m) = 0.1 decâmetro (dm) = 0.01 hectómetro (hm) = 0.001 kilómetro (Km).

1 metro (m) = 39.37 pulgadas. Normales de los E.U. = 39.370113 pulgadas. Normales Británicas

1 milimetro (mm.) = 1000 micrones (a) = 0.03937 pulgadas = 39.37 milésimos de pulgada (mils.)

l yarda. E. U. (yd.) = 1.0000029 yardas británicas.

1 yarda Británica = 0.9999971 vardas de los Estados Unidos.

I Cadena Gunter = 100 eslabones

I cable E. U. = 120 brazas = 720 pies = 219.457 metros

1 legua. E. U. = 120 brazas = 720 pies = 219.457 metros 1 legua. E. U. = 3 millas terrestres = 4827 9456 metros

I milla geográfica internacional = 1/15º en el Ecuador = 7422 metros = 4.611808 millas terrestres E.U.

1 milla nautica internacional = 1/60° sobre el meridiano = 1852 m = 0.999326 millas nauticas, E.U.

1 milla nàutica de los E. 11 = 1/60° de la circunferencia de una esfera de superficie igual a la tierra = 6080.27 pies = 1.15155 millas terrestres = 1853.27 metros.

1 milla nautica Británica = 6080 pies = 1.15152 millas terrestres = 1853.19 metros

I wara = 835.9 mm.

1 Brasa = 1.828 m.

TABLA 9.5							
MEDIDAS I	EQUIVALENT	TES DE SUPE	RFICIE				
Metros	Pulg. Cuadr.	Pies	Yardas	Perchas	Acres	Hectáreas	Millas Cuadradas
Cuadrados	(pulg.2)	Cuadr.	Cuadrados	Cuadradas	(Acres.A)	Ha	Terrestres
(m2)	(Sq. Inches)	(pies2)	(Sq. Yards)	(Sq. Rods)			(Statute)
	sq.ft)	(Sq. Feet)	sq.yd)	sq.r)			
		Sq. fit		_			
1	1550.00	10.7639	1.19599	0.03954	0.0002471	0.0001	0.0000003861
0.0006452	1	0.006944	0.0007718	0.00002551	0.0000001594	0.0000000645	0.000000000249
0.09290	144	1	0.11111	0.003873	0.00002296	0.00000929	0.00000003587
0.83613	1296	9	1	0.03306	0.0002066	0.00008361	0.0000003228
25.2930	39204	272.25	30.25	1	0.00625	0.002529	0.000009766
4046.87	6272640	435.00	48.40	160	1	0.40469	0.001563
10000	1549969	1076.39	11959.9	395.366	2.47104	1	0.003861
2589999		27878400	3097600	102400	640	259.000	1
1000000		10763867	1195985	39536.6	247.104	100	0.38610

¹ metro cuadrado (m²) = 100 decimetros cuadrados (dm²) = 10.000 centímetros cuadrados (cm²)

¹ acre = 4 "roods" cuadrados

TABLA 9.6														
MEDIDAS I	MEDIDAS EQUIVALENTES DE VOLUMEN Y CAPACIDAD													
Litros (1)	Pulgadas	Pies	Yardas	Cuar	Cuartillos		ones	"Bushels"						
Ó	Cúbicas	Cúbicos	Cúbicas	(U.S (Quarts)	(U.S. G	allones)	(U.S bu)						
Decímetros	(Pulg 3)	(pies ³)	(Cubic Yards,	Líquidos	Sólidos	Líquidos	Sólidos							
Cúbicos	(Cubc. Inches)	(Cubic Feet,	cu yd)	(l.ql)	(d.qt)	(l.gal)	(d.gal)							
(dm³)	cu, in)	cu fit)												
1	61.0234	0.03531	0.001308	1.05668	0.90808	0.26417	0.22702	0.02838						
0.01639	1	0.0005787	0.00002143	0.01732	0.01488	0.004329	0.00372	0.000465						
28.3170	1728	1	0.03704	29.9221	25.7140	7.48055	6.42851	0.80356						
764.559	466.56	27	1	807.896	694.279	201.974	173.570	21.6962						
0.94636	57.75	0.03342	0.001238	1	0.85937	0.25	0.21484	0.02686						
1.10123	67.2006	0.03889	0.001440	1.16365	1	0.29091	0.25	0.03125						
3.78543	231	0.133.68	0.004951	4	3.43747	1	0.85937	0.10742						
4.40492	268.803	0.15556	0.005761	4.65460	4	1.16365	1	0.125						
35.2393	2150.42	1.24446	0.04609	38.2368	32	9.30920	8	1						

¹ metro cúbico (m³) = 1000 decímetros cúbicos (dm³) = 1.000.000 centímetros cúbicos (cm³)

Medidas para líquidos (E.U) = 1 galón = 4 cuartillos = 8 intas = 32 gills = 128 onzas fluidas

Medidas para drogas (E.U) = 1 onza fluida (f^3) = 8 dracmas (f^3) = 480 mínimas (m) = 29.574 centímetros Cúbicos (cm3)

1 galón imperial inglés para líquidos y sólidos = 1.03202 galones (sólidos) de los E.U. = 1.200091 galones (líquidos) de los E.U.

1 galón imperial ingles = 277.410 pulg2 = 4545.9631 cm3

Peso de agua a su máxima densidad 4°C; 45° de latitud al nivel del mar.

1 pie3= 62.4283 lbs.av= 28.317 Kgs 1 pulg = 0.57804 av = 16.3872 gramos

1 galón (EU líquidos) = 8.34545 lbs = 3.78543 Kgs

1 galón imperial inglés = 10.0221 lbs = 4.5459631 Kgs.

1 barril (Petróleo) = 158.9826 litros = 42 galones E.U.

¹ metro cuadrado $(m^2) = 0.01$ área(a) = 0.0001 hectárea (ha)

¹ milimetro cuadrado (mm²) = 0.01 cm² = 0.00155 pulgadas cuadradas (pulg²)

¹ área (a) = 1 decámetro cuadrado = 0.0247104 acres

 $^{1 \}text{ rod. Pole. O percha cuadrada} = 625 \text{ eslabones cuadrados} = 1/160 \text{ de acre}$

¹ cadena Gunter cuadrada = 16 perchas cuadradas = 1/10 de acre

¹ litro (L) = 10 decilitros (dl) = 100 centilitros (cl) = 1.000 mililitros (ml) = 1.000 centímetros cúbicos (cm³)

¹ litro (L) = 0.1 decalitro (dL) = 0.01 hectolitro (HL) = 1 decímetro cúbico (dm3)

Medidas para sólidos (E..U): 1 bushel = 4 pecks = 8 galones = 31 cuartillo = 64 pintas

Kilogramos	Granos	Granos Onzas		Libras		Toneladas			
	Gr.	Tray (or 1)	Avetrde pois (ne av.)	(fb t)	Avordu pois (lb av)	Neta o Corta 2000 lhs	Bruta o larga 2240 lbs.	Métrica 1000 kgs.	
1 0 0000648 6 00109 9 02455 6 27724 0 45159 9 07 185 1006 05 1000	15412 4 1 490 417 5 5760 3000 14000000 154122154	12 1507 0 002023 1 0 91146 12 14 5613 29166 7 32866 7 32866 7	35 2746 9 002386 1 09714 1 11657 15 12000 35540 35274 0	2 67923 0 0000736 0 00333 0 07945 1 1 21528 2430 56 2722 22 2879 23	2 20462 0 000141 0 06857 0 06250 0 82280 1 2000 2240 2204 62	0 001102 0 0000000714 0 00000429 0 00005125 0 0004114 0 00050 1 1 12 1 10231	0 0009542 0 000000038 0 00003001 0 00002790 0 0003574 0 0004464 0 89286 1 0 98421	0 001 0 0000000644 0 00003110 0 00002835 0 0004536 0 90719 1 01605	

t gramo (g.) = 10 decigramos (dg.) = 100 centigramos (cg.) = 1000 miligramos (mg.)

TABLA 9.8

6.31342

10

247.475

391.983

MEDIDAS EQUIVALENTES – FUERZAS O PESOS POR UNIDAD DE LONGITUD											
Gramos por Centimetro (g /em.)	Granes por Pulgada (gr./pulg.)	Libras por Pulgada (lbs/pulg.)	Libras por Pie (lbs./pié)	Libras por Yarda (lbs/yd.)	Kilogramos per Mozo (kgs /m.)	Toneladas Netas por Milla	Toneladas Brutas por Mulla	Toneladas Métricas, 1000 kgs p Kilómetro			
1	39.1983	0.005600	0.06720	0.20159	0.10	0.17740	0.15839	0.10			
0.02551	1	0.0001429	0.001714	0.005143	0.002551	0.004526	0.004041	0.002551			
178.579	7000	1	12	36	17.8579	31.6800	28.2857	17.8579			
14.8816	583.333	0.08333	1	3	1.48816	2.64000	2.35714	1.48816			
4.96054	194.444	0.02778	0.33333	1	0.49605	0.88000	0.78571	0.49605			
5.63698	220.960	0.03157	0.37879	1.13636	0.56370	1	0.89286	0.56370			

1.27273

2.01591

0.03535

0.05600

0.42424

0.67197

1.12

1.77400

1.58393

0.63134

0.63134

I gramo (g.) = 0.1 decagramo (dg.) = 0.01 hectogramo (kg.) = 0.001 kilogramo (kg.).
I kilogramo (kg.) = 1 litro 6 dm. * de agua a 4* C. 45* de latitud y al nivel del mar = 15432.35639 granos (E. U. 6 Británicos).

I onza (avoirdipois) = 16 dracms, av.

I onza (troy) = 20 escrúpulos (penyveight, dwt.).

I onza (aporhecary: 3) = 8 dracmas (3) = 24 escrupulos (3) = 480 granos (gr.) = 31.1035 gramos (g.).

¹ quintal (hundredweight) = 1/20 tonclada (fong ton) = 4 cuartos = 8 stone = 112 lbs. = 50.8024 killogramos (kg.).

¹ dina por cm. = 0.00101979 g./cm = 0.000183719 poundals/pulg.

¹ gramo por cm. = 980.5966 dinas/cm. = 0.180154 poundals/pulg.

^{1 &}quot;poundal" por pulg. = 5443.11 dinas/em. = 5.55081 g/cm = 0.0310832 pound/pulg.

TABLA 9.9								
MEDIDAS I	EQUIVALE	NTES DE FU	JERZAS O PI	ESOS POR U	NIDAD DE S	UPERFICI	Œ	
Kilogramos	Libras por	Libras por	Toneladas		Colum	nas de	Columna	as de Agua
por	Pulgada	Pie	Netas	Atmósferas	Mercur	io Hg.	Densidad	l Max. 4°C
Centímetro	Cuadrada	Cuadrado	2000 Lbs.	700 mm	1359593	P. Esp		
Cuadrado	(lbs/pul ²)	(lbs/pie ²)	Por pie		Milímetros	Pulgadas	metros	Pies
(Kgs/cm ²)			Cuadrado			_		
1	14.2234	2048.17	1.02408	0.96778	735.514	28.9572	10	32.8083
0.07031	1	144	0.07200	0.06804	51.7116	203.588	0.70307	2.30665
0.0004882	0.006944	1	0.00050	0.0004725	0.35911	0.01414	0.004882	0.01602
0.97648	13.8889	2000	1	0.94502	718.246	28.2762	0.76482	32.0365
1.03329	14.6969	2116.35	1.05818	1	760	29.9212	10.3329	33.9006
0.001360	0.01934	2.78468	1.001392	0.001316	1	0.03937	0.01360	0.04461
0.03453	0.49119	70.7310	0.03537	0.03342	25.4001	1	0.34534	2.13299
0.10	1.42234	204.817	0.10241	0.09678	73.5514	289572	1	3.28083
0.03048	0.43353	62.4283	0.03121	0.02950	22.4185	0.88262	0.30480	1

¹ dina por cm² = $0.00101979 \text{ g/cm}^2 = 0.00046646 \text{ pulgadas/ pulg}^2$

TABLA 9.10 MEDIDAS EQUIVALENTES DE FUERZAS O PESOS POR UNIDAD DE VOLUMEN DENSIDAD

Gramos por	Libras por	Libras por	Libras por	Kilogramos	Libras por	Libras	Libras por	Kilogramos
Centímetro	Pulgada	Pie Cúbico	Yarda	Por Metro	Bushel	por Galón	Galón	por
Cúbico	Cúbica	(lbs/pi ³)	Cúbica	Cúbico		Sólidos	Líquido	Hectolitro
(g/cm ³)	(lbs/pulg ³)		(lbs/yd ³)	(Kg/m^3)		E.U.	E.U.	(Kgs/Hl)
1	0.03613	62.4283	1685.56	1000	77.6893	9.71116	8.34545	100
27.6797	1	1728	466.56	27679.7	2150.42	268.803	231	276.97
0.01602	0.0005787	1	27	16.0184	1.24446	0.15556	0.13368	1.60184
0.0005933	0.00002143	0.03704	1	0.59327	0.04609	0.005762	0.004951	0.05933
0.001	0.00003613	0.06243	1.68556	1	0.07769	0.009711	0.008345	0.10
0.01287	0.0004650	0.80356	21.6962	12.8718	1	0.125	0.10742	1.28718
0.10297	0.003720	6.42851	173.570	102.974	8	1	0.85937	10.2974
0.11983	0.004329	7.48052	201.974	119.826	9.30920	1.16365	1	11.9826
0.01	0.0003613	0.62428	16.8557	10	0.77689	0.09711	0.08345	1

¹ dina por cm² = $0.00101979 \text{ g/cm}^2 = 0.00118528 \text{ poundal/pulg}^2$

¹ gramo por cm² = 980.5966 dinas / cm² = 1.162283 poundal/pulg² 1 poundal por pulg² = 843.683 dinas/cm² = 0.860378 gr/cm² = 0.0310832 pound/pulg².

TABLA 9.11								
MEDIDAS EQ	UIVALENT	TES: ENERGIA	, TRABAJO, CA	ALOR				
		Caballo de Fuer	za por Hora	Poncelet	Kilovatio	Joules	Unidades To	érm icas
Kilogrametros	Libras	E.U.	Métrico	Horas	Horas	1000000	Británica	Calorías
(Kg-m)	Pie	(H.P-h)	(75Kg-m-h)	(100 Kg-m-h)	(Kw-h)	ergs	(British	(Kg-cal)
	(Lbs-					(j-s)	Termal	
	pie)						Unit b.t.u)	
1	7.23300	0.000003704	0.000003704	0.000002778	0.000002724	9.80597	0.009296	0.002342
0.13826	1	0.0000005051	0.0000005121	0.0000003840	0.0000003766	1.35573	0.001285	0.0003239
273745	1980000	1	1.01387	0.76040	0.74565	2684.340	2544.65	641.240
270000	1952910	0.98632	1	0.75	0.73545	2647610	2509.83	632.467
360000	2603880	1.31509	1.33333	1	0.98060	3530147	3346.44	843.289
367123	265.5403	1.3411	1.35972	1.01979	1	3600000	3412.66	859.975
0.10198	0.73761	0.0000003725	0.0000003777	0.0000002883	0.0000002778	1	0.0009480	0.0002389
107.577	778.104	0.0003930	0.0003984	0.0002988	0.000002930	1054.90	1	0.25200
426.900	3087.77	0.001559	0.001581	0.001186	0.001163	4186.17	3.96832	1

 $^{1\} dina-centímetro=1\ erg=0.00101979\ gramos-centímetros=0.00000737612\ libras-pie$

¹ gramo por cm² = 980.5966 dinas / cm² = 0.457592 pulgadas/pulg² 1 poundal por pulg² = $2142.95 \text{ dinas/cm}^2 = 2.18536 \text{ gr/cm}^2 = 0.0310832 \text{ pound/pulg}^2$.

¹gramos - centímetro = 980.5966 ergs = 0.00007233 libras - pie

¹ libra – pie = 13557300 ergs = 13825.5 gramos – centímetros.

Kilogramet ros por	Libras-Pie por	Caballo de l	uerza	Poncelet (100 kg-	Kilovatsio (kw-)	Vatios (10000000	Unidades Té segundo	rmicas por
segundo (Kg-m/s)	segundo (libs. pié/s.)	E U (550 lbs - pic/s.)	Metrico (75 kg-m/s)	m/s)	A Velocite	erga/s)	Británicas (b.t.u.)	Calorias (kgcal/s
1 0.13826 76.0404 75 100 104.979 0.10198 107.577 426.900	7,23300 1 550 542,175 723,300 737,612 0,73761 778,104 3087,77	0.01315 0.001818 1 0.88632 1.31509 1.34111 0.001341 1.41474 3.61412	0.01333 0.001843 1.01387 1 1.33333 1.35972 0.001360 1.43436 5.09200	0.01 0.001383 0.76040 0.75 1 1.01979 0.001020 1.07577 4.26900	0.009906 0.001356 0.74565 0.73545 0.98060 1 0.001 1.05490 4.186.17	9.80597 1.35573 745.650 735.448 980.397 1000 1 1054.90 4186.17	0.009296 0.001285 0.70685 0.69718 0.92957 0.94796 0.0009480 1 3.96832	0.002342 0.0003237 0.17812 0.17569 0.23425 0.23888 0.0002389 0.25200

¹ erg per segundo = 1 dina-em/s = 0.00101979 g.cm/s = 0.0000000737612 lbs-pie/s 1 grano-centimetro por segundo = 980.5966 ergs/s = 0.00007238 lbs.-pie/s

l lb -pié por segundo - 13557300 ergs/s. = 13825.5 g -cm./s.

Metros por Segundo (m/s)	Pies por segundo (Pies/s)	Millas por Hora (M/h)	Nudos por Hora E.U.	Kilometros por Hora (km/h)	Metros por seg /seg. (m/s/s ò m/s ²)	Pies por seg_/seg (pies/s/s o pies/s²)	Millas por hora/seg. (M/h-s)	Kilómetros por hora/seg (km/h-s)
0 30480 0 44704 0 51479 0 27778	3 28083 t E 46667 E 68894 0.91134	2 23693 0.68182 1 1 15155 0.62137	1 94254 0 59209 0 86839 1 0.53959	3.6 1.09728 1.60935 1.85325	1 0.30480 0.44704 0.27778	3.28083 1 1.46667 0.91134	2 23693 0.68182 1 0.62137	3.6 1.09728 1.60933

¹ kine = 1 cm /s = 0.0328083 pies/s.

TABLA 9.14 MEDIDAS EQUIVALENTES VARIAS

Medidas Angulares

60 segundos = 1 minuto

60 minutos = 1 Grado

30 grados = 1 señal

90 grados = 1 cuadrante

La rotación de la tierra es de 15º en 1 hora, por lo tanto 1º es igual a 4 minutos.

Velocidad de la luz = 300,000 km/seg.

Velocidad del sonido = 360 m/seg

¹ radiante por segundo = 57 2958 grados/s. = 0.159155 revoluciones por segundo 1 gravedad = 980.5966 cm/s/s. = 32.1717 pies/s/s

T ABLA \$45 CARACTERISTICAS DE LAS BARRAS

	12	3.84	8 52	15.48	24.00	34.08	61.20	120,72
	=	3.52	7.81	14.19	22.00	31.24	\$6.10	99.01
	10	3.20	7.10	12.90	20.00	28.40	31.00	100.60
AREA EN CENTIMETROS CUADRADOS (Según número de barras)	6	2.88	639	1911	18.00	25.56	45.90	90.54
CUAD barras)	00	2.56	5.68	10.32	16.00	22.22	40.80	80.48
Según número de barras	7	2.24	4.97	9.03	14.00	19.88	35.70	70.42
ENTIN gún núr	9	1.92	4.26	7.74	12.00	17.04	30.60	96.09
(Se	v	091	3.55	6.45	10.00	14.20	25.50	\$0.30
AR	4	1.28	2.84	\$ 16	8.00	11.36	20.40	40.24
Ī	m	960	2.13	3.87	9009	8.52	15.30	30.18
	2	0.64	1.42	2.58	4.00	5.68	10.20	20.12
	1	0.32	0.71	1.29	2 00	284	5.10	90:01
9	Barra	2.30	5.30	9.30	14 60	20.70	37.00	72.70
Peso	Kg/ml	0.25	0.58	1.02	1.60	2.26	4.04	1.9
Perim.	Cms.	~			*	٥	90	11 20
Diámetro	Cms.	0.635	0.953	1.270	1.587	1.905	2.540	3.581
Dia	Pulg	1/4	3/8	1/2	8/8	3/4	-	13/8
No		7	m		· vi	9	80	=

*****	Fórmula determinante	Fórm dimens		1	Unidad	
Magnitud	determinante	SI y CGS	MKgfS	SI	CGS	MKgfS
		O tentre	S Contraction	1000	1	-
Longitud	T.	L	1	m	cm	m
Masa	m = F/a	M	L' FT'	kg	g	imu.t.m.=kgf.s²/r
Тіетро	t	T	T	8	S	8
Area	5 = 12	L	L	m ¹	cm ²	m2
Volumen	V = 1	i.	L ³	m'	cm'	m ^x
Angulo plano	φ= Ur	1	1	rad	rad	rad
Angulo sólida	Ω= s/r ²	1	1.0	sr	sr	ST
Curvatura	p∞ I/r	L.s.	L-1	m.i	cm ⁻¹	m ⁻¹
Curvatura de Gauss	K = 1/r2	Lª	L3	m.g	cm.1	m-2
Momento de resisten- cia de una figura plana	S. =f,rdS	L*	L'	m³	cm'	m³
Momentos de inercia, axial y polar, del á-	J _{x,y} =f _y r ² dS	Ľ.	Ľ,	m*	cm*	m*
rea de una figura plans			1	1		t
Velocidad	V = 1/t	LT'	LT'	m/s	cm/s	m/s
Aceleración	a=(v2 - v1)/t	LT-2	LT2	m/s²	cm/s2	m/s²
Velocidad angular	$\omega = \phi/t$	T"	T'	rad/s	rad/s	rad/s
Aceleración angular	$\xi = (\omega_T \omega_t)/t$	T-2	T ²	rad/s2	rad/s2	rad/s ²
Periodo	$\tau = 2\pi /\omega$	T	T	5	8	8
Frecuencia Gradiente de	v = V r	T	T-1	Hz	Hz	Hz
velocidad	grady = dv/di	T'	T'	8.1	s't	2,1
Gasto volumétrico Densidad del gasto	Q _v = dV/dt	L'T'	L'T'	m³/s	cm ³ /s	m³/s
volumétrico	g = Ov/\$	LT-1	LT"	m/s	cm/s	m/s
Gasto de masa	Om = dm/dt	MT-1	L' FT	kg/s	g/s	i/s=kgf.s/m
Fuerza	F = ma	LMT-1	F	N	dyn	kgf
Momento de fuerza Impulsión de la	M = Fh	L'MT ²	LF	N.m	dyn.cm	kgf.m
fuerza Cantidad de movi-	Ft	LMT'	FT	N.s	dyn.s	kgfs
miento (impulsión)	My	LMT1	FT	kg.m/s	g.cm/s	i.m/s=kgf.s
Trabajo y energia Densidad volumétrica	A = Flcos(F,1)	L'MT'	LF	3	erg	kgf.m
de la energia	w = W/V	L'MT2	L.BF	1/m'	erg/cm ¹	kgf/m²
Potencia Impulsión del mo -	P = A/t	L2MT-3	LPT-1	W	erg/s	kgf.m/s
mento de la fuerza	Mt	L ² MT ⁻¹	LPT	N.m.s	dyn.cm.s	kgf.m/s
Momento de la canti- dad de movimiento (impulsión)	L = mvr = Je	L ³ MT ⁻¹	LFT	kg,m³/s	g.cm ³ /s	i.m²/s=kgf.m.s
(impuision) Presión	A CONTRACTOR	L ⁴ MT ²	Lª F	Pa	dyn/cm ¹	kgf/m²
Gradiente de Presión	p = F/S	L4 MT	L° F	Pa/m	dyn/cm ³	kgf/m ²
Momento de Inercia	grad p = dp/dl		33	1000	177.75	
(dinámico)	J= j.r²dm	L ¹ M	LFT2	Kg.m ²	g.cm ²	i.m2-kgf.m.s2
Densidad	J= J,ram o = m/V	L-3M	Lª FTZ	Kg/m ³	g/cm ³	i.m ³ =kgf.s ² /m ⁴

Magnitud	Fórmula determinante	2,5,675	nula asional		Unidad	
	Courses among	Sty CGS	MKgfS	SI	CGS	MKgfS
Módulo de elastici - dad longitudinal (mó dulo de Young)	1.4	L4 MT4	L°F	Pa=N/m²	dyn/cm ¹	kgf/m²
Coeficiente de pre sión triaxial Viscosidad dinámica	$K = \begin{cases} v & dp \\ \mu = -\begin{cases} F & v \\ S & dv / dI \end{cases} \end{cases}$	LM ⁻¹ T [‡] L ⁻¹ MT ^{-‡}	L ² F ² L ² FT	Pa ⁻¹ =m ² /N Pa s	cm²/dyn P	m²/kgf kgfs/m²
Viscosidad cinemàtica Coeficiente de ten	- µlp	LIT	$\Gamma_2 L_{\rm cl}$	m²/s	cm ² /s	m²/s
sión superficial	$\sigma = F/I$	MT ⁻²	Lª F.	N/m=J/m ²	dyn/cm=	kg//m
Coeficiente de difusión	D== \Dm \DiSdp/dl	L ² T-1	L ² T ⁻¹	m²/s	erg/cm ² cm ² /s	m²/s

Amsterdam, Holanda	18:00	Manchester, Inglaterra	18:00
Angora, Turquia	19:00	Manila, Filipinas	1:00
Argel, Argelia	18:00	Marsella, Francia	18:00
Asunción, paraguay	14:00	Mazatlán, México	11:00
Atenas, Grecia	19:00	Melbourne, Australia	2:00
Auckland, Nueva Zelanda	5:00	México, México	11:00
Bagdad, Irak	19:00	Miami, Florida, E.U.	12:00
Bangkok, Tailandia	24:00	Milán, Italia	18:00
Barcelona, España	18:00	Montevideo, Uruguay	14:00
Belén, Brasil	14:00	Montreal, Canada	12:00
Belgrado, Yugoslavia	18:00	Moscú, Rusia	19:00
Berlin Alemania	18:00	Munich, Alemania	18:00
Birmingham, Inglaterra	18:00	Nagasaki, Japón	2:00
Bogotá, Colombia	12:00	Nagoya, Japón	2:00
Bombay, India	22:30	Nanking, China	1:00
Boston, Mass., E.U.	12:00	Nápoles, Italia	18:00
Brasilia, Brasil	14:00	Nueva Delhi, India	22:00
Bremen, Alemania	18:00	Nueva Orleans, E.U.	11:00
Brisbane, Australia	3:00	Nueva York, E.U.	12:00
Bristol, Inglaterra	18:00	Odessa, Rusia	19:00
Bruselas, Bélgica	18:00	Osaka, Japón	2:00
Bucarest, Rumania	19:00	Oslo, Noruega	18:00
Budapest, Hungria	18:00	Ottawa, Canadá	12:00
Buenos Aires, Argentina	14:00	Panamá, Panamá	12:00
Burdeos, Francia	18:00	Paramaribo, Surinam	13:00
Cairo, Egipto	19:00	Paris, Francia	18:00
Calcuta, India	23:30	Beijing (Pekin), China	1:00

Cantón, China	23:00	Port-au-Prince, Haití	12:00
Caracas, Venezuela	13:00	Praga, Checoslovaquia	18:00
Cayena, Guayana Francesa	13:00	Puerto España, Trinidad	13:00
Copenhague, Dinamarca	18:00	Quito, Ecuador	12:00
Córdova, Argentina	14:00	Rangún, Birmania	23:00
Chicago, E.U.	11:00	Reikiavik, Islandia	16:00
Chihuahua, México	11:00	Río de Janeiro, Brasil	14:00
Dakar, Senegal	17:00	Roma, Italia	18:00
Darwin, Australia	2:30	Salvador (Bahía), Brasil	14:00
Detroit, Michigan, E.U.	12:00	San Antonio, Texas, E.U.	11:00
Dublin, Irlanda	17:00	San Francisco, E.U.	9:00
El Cabo, Sudáfrica	19:00	San José, Costa Rica	11:00
Estambul, Turquia	19:00	San Juan, Puerto Rico	13:00
Estocolmo, Suecia	18:00	San Salvador, El Salvador	11:00
Frankfurt, Alemania	18:00	Santiago, Chile	13:00
Georgetown, Guyana	13:15	Sto.Domingo, Rep.Dominican	a 13:00
Ginebra, Suiza	18:00	Sao Pulo, Brasil	14:00
Glasgow, Escocia	18:00	Seattle, Washington, E.U.	9:00
Guatemala, Guatemala	11:00	Shanghai, China	1:00
Guayaquil, Ecuador	12:00	Sofia, Bulgaria	19:00
Habana, Cuba	12:00	Sydney, Australia	3:00
Hamburgo, Alemania	18:00	Tegucigalpa, Honduras	11:00
Helsinki, Finlandia	19:00	Teherán, Irán	20:00
Honolulu, Hawai	7:00	Taipei, Taiwan	1:00
Iquique, Chile	13:00	Tokio, Japón	2:00
Johannesburg, Sudáfrica	19:00	Trípoli, Libia	19:00
Kingston, Jamaica	12:00	Valparaíso, Chile	13:00
Kinshasa, Congo	19:00	Varsovia, Polonia	18:00
La Paz, Bolivia	13:00	Venecia, Italia	18:00
Leningrado, Rusia	19:00	Veracruz, México	11:00
Lisboa, Portugal	17:00	Viena, Austria	18:00
Leverpool, Inglaterra	18:00	Vladivostok, Siberia	2:00
Londres, Inglaterra	18:00	Washington, E.U.	12:00
Los Angeles, California, E.U.	9.00	Wellington, Nueva Zelanda	5:00
Lyon, Francia	18:00	Yakarta, Indonesia	0:30
Madrid, España	18:00	Zurich, Suiza	18:00
Managua, Nicaragua,	11:00		

CAPITULO 10 ENCOFRADOS

10.00 ENCOFRADOS

Tabla 10.1

Clasificación por grupo estructural de especies estudiadas por el Padt-Refort de la Junta del Acuerdo de Cartagena.

Tabla 10.2

Densidad Básica

Tabla 10.3

Módulo de elasticidad

Tabla 10.4

Esfuerzos admisibles

Tabla 10.5

Formulas para el diseño de elementos estructurales de madera

Tabla 10.6

Relación de esbeltez ()

Tabla 10.7

Relación de esbeltez Ck límite entre columnas intermedias y largas

Tabla 10.8

Longitud Efectiva I ef

Tablá 10.9

Resistencia mínima del concreto para desencofrar con seguridad

Tabla 10.10

Tiempos mínimos de desencofrado

Tabla 10.11

Numero de clavos por kilogramo

Tabla 10.12

Carga admisible por clavo a simple cizallamiento

Tabla 10.13

Factores Modificatorios de las cargas admisibles para uniones clavadas sometidas a

Tabla 10.14

Carga admisible de extracción de clavos en kilogramos

Tabla 10.15

Espaciamientos Mínimos entre clavos a Cizallamiento

Tabla 10.16

Tolerancias admisibles en estructuras de concreto armado

	ta del Acuerdo de Cartag	
Grupo *	Nombre Común	Nombre Cientifico
Α	Estoraque	Myroxylon peruiferum
A	Palo sangre negro	Pterocarpus sp
A	Pumaquiro	Aspidosperma macrocarpor
В	Huayruro	Ormosia Coccinea
В	Manchinga	Brosimum uleanun
C	Catahua amarilla	Hura Crepitans
C	Copaiba	Copaifera officinalis
C	Diablo fuerte	Podocarpus sp
C	Tornillo	Cedrelinga catenaeformis

^{*} El agrupamiento está basado en los valores de la densidad básica y de la resistencia mecánica.

Tabla 10.2 Densidad Básica	
Grupo	Densidad básica g/cm ³
A	≥0.71
В	0.56 a 0.70
C	0.40 a 0.55

Grupo	Modulo de Ela MPa (kg/c	
Street, 15	E minimo	E promedio
A	9 316 (96 000)	12 748 (130 000)
В	7 355 (75 000)	9 806 (100 000)
C	5 394 (55 000)	8 826 (90 000)

-3	(g/cm²)	y 92			
Grupo	Flexión	Tracción Paralela ft	Compresión Paralela fc//	Compresión Perpendicular fc	Corte Paralelo fv
Α	20.6 (210)	14.2 (145)	14.2 (145)	3.9 (40)	1.5 (15)
В	14.7 (175)	10.3 (105)	10.8 (110)	2.7 (28)	1.2 (12)
C	9.8 (100)	7.3 (75)	7.8 (80)	1.5 (15)	0.8 (8)

Tabla 10.5

Formulas para el diseño de elementos estructurales de madera

Cargas admisibles en elementos sometidos a Tracción axial

 $N_{adm} = f_i A$

N_{son} = Carga admisible en tracción

A = Area de la sección

f, = Esfuerzo admisible en tracción

Elementos sometidos a Flexo-tracción

N = Carga axial aplicada

A = Area de la sección

M = Valor absoluto del momento flector máximo en el elemento

Z " Módulo de sección con respecto al eje alrededor del cual se produce la flexión

f_m = Esfuerzo admisible en flexión

Diseño de elementos en compresión

$$\lambda = l_{ef}/b$$
, o l_{ef}/d

z = Esbeltez

lef = Longitud efectiva

b, d = Ancho o diámetro del elemento

Para columnas cortas

f, Esfuerzo admisible en compresión

Para columnas intermedias

Para columnas largas

- Para columnas rectangulares Nadm = 0.329 E A/(à) 2
- Para columnas circulares N_{ades} = 0.2467 E A/(x)²

Diseño de elementos sometidos a Flexo-compresión

$$N/N_{adm} + K_m \mid M \mid /Z f'_m < 1$$

 $K_{ac} = 1 / (1 - 1.5 N/N_{cr})$
 $N_{cr} = \pi^2 EI/(1_{cf})^2$

K_m = Factor de magnificación de momentos

N_{c r} = Carga crítica de Euler para pandeo en la dirección en que se aplican los momentos de flexión

Tabla 10.6 Relación de esbeltez (λ)					
	Columnas cortas	Columnas intermedias	Columnas largas		
Rectangulares Circulares	λ < 10 °	10< λ < C₁ 9 < λ < C₁	$C_k < \lambda < 50$ $C_k < \lambda < 43$		

	Company of the Compan	(Ck	
	Rectangulares		Circulares	
Grupo	Columnas	Entramados	Columnas	Entramados
A	17.98	20.06	15.57	17.34
В.	18.34	20.20	15.89	17.49
C	18.42	22.47	15.95	19.46

	bla 10.8 ngitud Efectiva I ef			
	ndición de Apoyos	k	1 _{ef}	
1.	Articulado en ambos extremos	1	1	
2.	Empotrado en un extremo (prevención del desplzamiento y rotación) y el otro impedido de rotar pero libre de desplazarse.	1.2	1.21	
3.	Empotrado en un extremo y el otro parcialmente impedido de rotar pero libre de desplazarse.	1.5	1.51	Tu.
4.	Empotrado en un extremo y libre del otro.	2.0	2.01	2.04
5.	Articulado en un extremo y el otro impedido de rotar, pero libre de desplazarse.	2.0	2.01	2.04
6.	Articulado en un extremo, libre en el otro.	α	α -	~

Resistencia minima del concreto para desencofrar co	n seguridad
Tipo de Estructura	kg/cm2
Concreto no sometido a flexión, ni sometido a	
deterioro por el desencofrado; Ejemplo: Columnas	35
Concreto sometido a flexiones moderadas, sin sobre-	
Cargas: Ejemplo: Muros encofrados por ambas caras	50
Concreto sometido a flexiones moderadas, con sobre-	
Cargas; Ejemplo: Muro de contención	100
Concreto sometido a flexiones altas, concreto totalmente	
Soportado por el encofrado, Ejemplo: Viga, Losa	140

Tabla 10.10 Tiempos mínimos de desencofrado				
Muros	12 horas			
Columnas	12 horas			
Costados de vigas	12 horas			
	Cuando la ca	rga viva es :		
	> que la	< que la		
	carga muerta	carga muerta		
Vigas	11 15 15 15 15 15 15 15 15 15 15 15 15 1			
Longitud menor que 3 metros	4 días	7 dias		
Longitud de 3 a 6 metros	7 dias	14 días		
Longitud mayor que 6 metros	14 dias	21 días		
Losas armadas en un sentido				
Longitud menor que 3 metros	3 días	4 días		
Longitud de 3 a 6 metros	4 días	7 días		
Longitud mayor que 6 metros	7 días	10 días		

Largo Pulg	Diámetro mm	Número Und.	Largo Pulg	Diámetro mm	Número Und.	Largo Pulg	Diámetro mm	Número Und.
1	1.83	1929	2	2.87	398	3	3.76	156
1 1/4	2.03	1250	2.1/4	2.87	354	3 1/4	3.76	139
1 1/2	2.39	675	2 1/2	3.33	233	3 1/2	4.11	108
1 3/4	2.39	596	2 3/4	3.33	211			
4	4.88	68	5	5.72	40	6	6.88	24
4 1/2	5.26	53	5 1/2	6.20	31			

Long	gitud	d	Carga ad	lmisible en	Newtons (N) y en ki	logramos	
			Grupe		Grup			po C
mm	pulg	mm	N	Kg	N	Kg	N	kg
51	2	2.4	411	45	343	35	245	25
		2.6	490	50	382	39	275	28
		2.9	569	58	441	45	304	31
		3.3	647	66	520	53	373	38
63	2	2.6	490	50	382	39	275	28
	2 1/2	2.9	569	58	441	45	304	31
		3.3	647	66	520	53	373	38
		3.7	745	76	588	60	431	44
76	3	3.3	647	66	520	53	373	38
		3.7	745	76	588	60	431	44
		4.1	863	88	667	68	481	49
89	3 1/2	3.7	745	76	588	60	431	44
		4.1	863	88	667	68	481	49
		4.5	961	98	745	76	539	55
102	4	4.1	863	88	667	68	481	49
	-	4.5	961	98	745	76	539	55
		4.9	1069	109	834	85	598	61

La Carga admisible para un clavo sometido a doble cizallamiento, clavos lanceros y clavos a tope se debe determinar multiplicando los valores de la tabla anterior por los factores correspondientes a cada caso según la tabla 9.13

Fac	bla 10.13 ctores Modificatorios de las cargas admisibles para uniones clav- allamiento	adas sometidas a
Tip	no de Unión	Factor
а.	Cizallamiento simple, clavo perpendicular al grano	1.00
b.	Cizallamiento simple, clavo a tope (paralelo al grano de la madera que contiene la punta).	0.67
c.	Cizallamiento simple, clavos lanceros	0.83
d.	Cizallamiento doble, clavo perpendicular al grano	1.80

-1117		Grupo				
	A	В	C	*1	80	b.(II
a)	16 ad	12 ad	8 ad	-22	+ 27	1070
b)	32 ad/3	* 8 ad	16 ad/3	_ 131		- 111
c)	0	0	0			

a = Longitud de penetración del clavo en el elemento que contiene la punta

d = Diámetro del clavo (cm)

Elementos Cargados Paralelamente al	Elementos cargados Perpendicularmente a	
grano	grano	
A lo largo del grano Espaciamiento entre clavos 16 d Distancia al extremo 20 d Perpendicular a la dirección del grano Espaciamiento entre clavos 8 d Distancia a los bordes 5 d	A lo largo del grano Espaciamiento entre clavos 16 d Perpendicular a la dirección del grano Espaciamiento entre clavos 8 d Distancia al borde cargado 10 d Distancia al borde no cargado 5 d	

Tabla 10.16

Tolerancias admisibles en estructuras de concreto armado

Dimensiones de sección transversal de vigas, columnas, zapatas y espesor de losas, muros y zapatas:

Posición de los ejes de columnas y tabiques respecto a los ejes indicados en los planos de construcción:

En un paño ó 6 m máx. $\pm i = 1.3$ cm

En 12 m ó más $\pm i = 2.5$ cm

Entre 6 m y 12m se interpolarán los valores de i

Nivel de losas entre dos pisos consecutivos:

Luces de vigas:

i = Tolerancia en cm

dB = Dimensión considerada para establecer su tolerancia en cm.