班号_[903201] 学号_[9040102_	姓名 方克	教师签字	N
实验日期_202(5.1)2组号	预习成绩	总成绩	

- 一個醫叉微振动的振幅
- 之间量外为8区对苦又的沿路抵曲净、

小位相控制的的等种的分数

的苦节校校一光说像和观察专之间有打取找过了,又见客看见他们到的假教会 发生的水、淡浓泉、咖啡较多等勒效位

/ 分射角由光神ので程表示 ○ dSin = n入

苦光和而在外的以速度火发的流畅,出身的沟海等面地以速度火在少方向争约的,在开羽时刻, 对应于同于设价的线线、Ap(t)= 类d8=类 VtSho.

 $\Delta\phi(t) = \frac{2\pi}{\lambda} V t \sin\theta = \frac{2\pi}{\lambda} V t \frac{n\lambda}{d} = 2n\pi \frac{V}{d} t = nw_a t$ 式中, Wa=2元岩

光俊刚成如下形式,E=Eoei(ust+sy(t)]=Eoei(us+nus)t

2, 光村有获得多楼侧

光电流 群電: 气東1: E1=E10Cos(20t+p1) 光東2: Ez=E20Cos(www.twa)t+p3) 光里检测器器结合则常是面插家讯号。用了 Eno Ezo Cos [Wat + (以一个)] For = Wa = VA = VANO. No = d

3. 《牧的射影动物和最级抽屉》

1423978378378464997848379 A= \$\int_{0}^{7}V(t)dt=\frac{7}{2}\int_{0}^{7}\frac{7}{16}(t)\alpha dt=\frac{7}{200}\int_{0}^{7}\frac{7}{16}(t)dt=\frac{7}{2}\int_{0}^{7}\frac{7}{16}(t)\alpha dt=\frac{7}{200}\int_{0}^{7}\frac{7}{16}(t)dt=\frac{7}{2}\int_{0}^{7}\frac{7}{16}(t)\alpha dt=\frac{7}{200}\int_{0}^{7}\frac{7}{16}(t)dt=\frac{7}{2}\int_{0}^{7}\frac{7}{16}(t)dt=\frac{7}{2}\int_{0}^{7}\int_{0}^{7}\frac{7}{16}(t)dt=\frac{7}{2}\int_{0}^{7}\frac{7}{16}(t)dt=\frac{7}{16}(t)d YI度形数计算说明,

造色波形数二波的新强新的中满1/2或1/4或3/4个发剂和对应分数(心)资例 28/2015, 1/4/18/11/28/20125, 3/4/28/2075/t arcsind

三. 数据处理

1. 计算音叉共振时微振动的振幅;

由公式

$$A = \frac{1}{2n_{\theta}} \int_{0}^{T/2} F_{H}(t) dt = \frac{1}{2n_{\theta}} \times n$$
 (1)

(n为T/2内的波的个数)

得到共振振幅 $A_{max} = 0.1175$ mm

2. 计算偏离共振频率下音叉的振幅,用坐标纸画出频率与振幅的关系曲线;根据(1)式处理得到

表格 1 偏离共振频率下音叉的在各频率振幅

						- 11 // - // //	-		
频率 <i>μ /</i> HZ	501.432	501.532	501.632	501.732	501.832	501.932	502.032	502.132	502.232
振幅 <i>A/</i> mm	0.0167	0.02375	0.041	0.09375	0.1175	0.0582	0.0367	0.0265	0.02065

作出曲线如图

图 1 A- µ曲线

四. 实验结论及现象分析

- 1. 共振振幅 $A_{\text{max}} = 0.1175 \text{mm}$
- 2. 偏离共振频率下音叉的振幅如表 1; 频率与振幅的关系曲线如图 1

表格 1 偏离共振频率下音叉的在各频率振幅									
频率 μ/HZ	501.432	501.532	501.632	501.732	501.832	501.932	502.032	502.132	502.232
振幅 A/mm	0.0167	0.02375	0.041	0.09375	0.1175	0.0582	0.0367	0.0265	0.02065

表格 1 偏离共振频率下音叉的在各频率振幅

图 1 A-µ曲线

五. 讨论问题

问题一:

驱动频率和功率都会引起音叉振幅改变。故需要控制变量——固定功率,在各频率下测音叉的振幅。即可得到振幅与频率的关系。

问题二:

不能互换,虽然静光栅和动光栅采用完全相同的两个光栅构成,但是二者的作用不同,动光栅的作用为频移作用,即产生不同频率的光,但之间没有叠加形成拍,而静光栅则起衍射作用,将不同频率的光合在一起形成拍。若调换位置,则会形成未合成拍的不同频率的光,故不可调换。

实验现象观察与原始数据记录

步卒(HZ)	制期(晚)	育又抵付包m
501.832	23,50	

频率版	€ 501.432	501.532	501.632	501.132	501.832	501.932	502.032	1502,132	502,232
捐繼	3.34	4.75	8,20	18.75	23.50	11.64	7.34	5,30	4.13
扩张的中	返	_							7.(>
					7				

学生	姓名	学号	日期
签字	院	190410102	2021.5.12

教师	姓名
签字	N