

H31V-1791: Exploring Hydrothermal impacts of heterogeneous model configuration in the Next Generation Water Resources Modeling Framework

Ahmad Jan^{1,2}, Peter L. Follette^{1,2}, Mike Johnson^{1,2}, Jason Ducker^{1,2}, Xia Feng^{2,4}, Luciana Kindl da Cunha³, Keith Jennings^{1,2}, Fred L. Ogden², Rachel McDaniel², Trey Flowers²

Presenting author's email: ahmad.jan@noaa.gov

¹Lynker Technologies, LLC, ²NOAA Office of Water Prediction, National Water Center, ³WEST Consultants, ⁴University of Alabama

I. Role of Soil Moisture

- The vertical distribution of soil moisture significantly impacts the infiltration capacity of hydrologic models and the heat transport within soil thermal models
- Choosing an approach to simulate soil moisture dynamics holds substantial implications for predicting streamflow and soil moisture availability
- Frozen soils and those with high moisture content prevent vertical water movement, leading to an increased potential for high runoff

II. NextGen Framework

Next Generation Water Resources Modeling Framework (NextGen¹) is a language- and model-agnostic framework. NextGen allows to use heterogeneous modeling approach (i.e., run a mosaic of surface and subsurface models in a single basin comprised of 10s-100s sub-catchments).

Schematics illustrating the setup of two formulations: hydrologic model CFE² (a), and hydrologic model LASAM³ (b).

Physics-based hydrologic models demonstrate a better representation of soil moisture dynamics compared to conceptual models

V. Field sites

- USDA SCAN sites for evaluating NextGen formulations against observations
- Arid/semi-arid environment in seasonally frozen regioins

USDA Soil Climate Analysis Network (SCAN)

VI. Results

HUC12-100302030705)

Fig. 1: Observed vs simulated soil moisture (a) and soil temperature (b). LASAM (in yellow) more effectively captures soil moisture dynamics as compared to CFE(in grey).

Fig. 2: Observed vs simulated soil moisture (a) and soil temperature (b). LASAM (in yellow) more accurately captures soil moisture dynamics than CFE (in grey).

III) Models

A schematic illustration of of models coupling

The formulations designed here used two distinct hydrologic models:

Physics-based hydrologic model:

- Model name: Lumped Arid/Semi-Arid Model (LASAM³)
- Description: LASAM based on LGAR⁴ is a simplified physics-based model developed to simulate infiltration into layered soils and compares well against widely-used Richards' equation, showcasing its effectiveness in capturing hydrologic processes in arid/semi-arid environments

Conceptual hydrologic model:

- Model name: Conceptual Functional Equivalent (CFE²)
- CFE is a simplified conceptual model designed to be functionally equivalent to the NOAA's National Water Model.

IV) Summary

- Evaluated the quality of hydrologic models coupled with soil freeze-thaw and surface models running in the NextGen framework
- Physics-based hydrologic models better represent the evolution of near-surface soil moisture dynamics as compared to conceptual models
- The quality of the results/comparison will improve with systematic calibration, which is not performed here.

View my poster, GitHub repository and other AGU materials

