
Sequence Listing could not be accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Keisha Douglas

Timestamp: [year=2007; month=12; day=29; hr=9; min=42; sec=8; ms=156;]

Reviewer Comments:

<210> 9

<211> 1421

<212> DNA

<213> murine

<220>

<221> misc_feature

<222> (40)..(40)

<223> n = degenefacy in code

<400> 9

The above "n" response for sequence id# 9 is invalid, please explain "n" location.

FYI, "n"s can only represent a single nucleotide.

Validated By CRFValidator v 1.0.3

Application No: 10559438 Version No: 2.0

Input Set:

Output Set:

Started: 2007-12-03 19:59:20.899

Finished: 2007-12-03 19:59:25.633

Elapsed: 0 hr(s) 0 min(s) 4 sec(s) 734 ms

Total Warnings: 86

Total Errors: 0

No. of SeqIDs Defined: 86

Actual SeqID Count: 86

Error code		Error Description
W	402	Undefined organism found in <213> in SEQ ID (1)
W	402	Undefined organism found in <213> in SEQ ID (2)
M	402	Undefined organism found in <213> in SEQ ID (3)
M	402	Undefined organism found in <213> in SEQ ID (4)
M	213	Artificial or Unknown found in <213> in SEQ ID (5)
M	213	Artificial or Unknown found in <213> in SEQ ID (6)
M	213	Artificial or Unknown found in <213> in SEQ ID (7)
M	213	Artificial or Unknown found in <213> in SEQ ID (8)
M	402	Undefined organism found in <213> in SEQ ID (9)
M	402	Undefined organism found in <213> in SEQ ID (10)
M	402	Undefined organism found in <213> in SEQ ID (11)
M	402	Undefined organism found in <213> in SEQ ID (12)
W	402	Undefined organism found in <213> in SEQ ID (13)
W	402	Undefined organism found in <213> in SEQ ID (14)
W	402	Undefined organism found in <213> in SEQ ID (15)
M	402	Undefined organism found in <213> in SEQ ID (16)
M	402	Undefined organism found in <213> in SEQ ID (17)
M	402	Undefined organism found in <213> in SEQ ID (18)
M	402	Undefined organism found in <213> in SEQ ID (19)
W	402	Undefined organism found in <213> in SEQ ID (20)

Input Set:

Output Set:

Started: 2007-12-03 19:59:20.899

Finished: 2007-12-03 19:59:25.633

Elapsed: 0 hr(s) 0 min(s) 4 sec(s) 734 ms

Total Warnings: 86

Total Errors: 0

No. of SeqIDs Defined: 86

Actual SeqID Count: 86

Error code		Error Description
W	402	Undefined organism found in <213> in SEQ ID (21)
W	402	Undefined organism found in <213> in SEQ ID (22)
W	402	Undefined organism found in <213> in SEQ ID (23)
M	402	Undefined organism found in <213> in SEQ ID (24) This error has occured more than 20 times, will not be displayed
W	213	Artificial or Unknown found in <213> in SEQ ID (44)
W	213	Artificial or Unknown found in <213> in SEQ ID (85)

SEQUENCE LISTING

<110)>	McWh	irte	r, Jo	ohn											
<120)>	CELL LEUKI		FACE	PRO:	rein	ASSO	OCIAT	red 1	WITH	HUMZ	AN C	HRONI	IC L	YMPHO	CYTIC
<130)>	ALEX-	-P01-	-107												
		10559 2007-		03												
		US 60 2003-			1											
		US 60			6											
<160)>	86														
<170)>	Pater	ntIn	vers	sion	3.2										
<210 <211 <212 <213	.>	1 183 PRT human	n													
< 400)>	1														
Met 1	Glr	ı Ala	Pro	Arg 5	Ala	Ala	Leu	Val	Phe 10	Ala	Leu	Val	Ile	Ala 15	Leu	
Val	Pro	val	Gly 20	Arg	Gly	Asn	Tyr	Glu 25	Glu	Leu	Glu	Asn	Ser 30	Gly	Asp	
Thr	Thr	Val	Glu	Ser	Glu	Arg	Pro 40	Asn	Lys	Val	Thr	Ile 45	Pro	Ser	Thr	
Phe	Ala 50	ı Ala	Val	Thr	Ile	Lys 55	Glu	Thr	Leu	Asn	Ala 60	Asn	Ile	Asn	Ser	
Thr 65	Asn	Phe	Ala	Pro	Asp 70	Glu	Asn	Gln	Leu	Glu 75	Phe	Ile	Leu	Met	Val 80	
Leu	Il∈	Pro	Leu	Ile 85	Leu	Leu	Val	Leu	Leu 90	Leu	Leu	Ser	Val	Val 95	Phe	
Leu	Ala	Thr	Tyr	Tyr	Lys	Arg	Lys	Arg	Thr	Lys	Gln	Glu	Pro	Ser	Ser	

Gln Gly Ser Gln Ser Ala Leu Gln Thr Tyr Glu Leu Gly Ser Glu Asn 115 120 125

Val Lys Val Pro Ile Phe Glu Glu Asp Thr Pro Ser Val Met Glu Ile 130 135 140

Asp Phe Glu Cys Leu Pro Thr Leu Lys Glu Glu Lys Glu Ser Asn His

165

170

Asn Pro Ser Asp Ser Glu Ser 180

<210> 2

<211> 675

<212> DNA

<213> human

<400> 2

aagcttagcc cggcgcagca tcctgagcgc gcctctgccg aggcgagcgg acatgcaggc 60 tccccgcgca gccctagtct tcgccctggt gatcgcgctc gttcccgtcg gccggggtaa 120 ttatgaggaa ttagaaaact caggagatac aactgtggaa tctgaaagac caaataaagt 180 gactattcca agcacatttg ctgcagtgac catcaaagaa acattaaatg caaatataaa 240 ttctaccaac tttgctccgg atgaaaatca gttagagttt atactgatgg tgttaatccc 300 attgatttta ttggtcctct tacttttatc cgtggtattc cttgcaacat actataaaag 360 aaaaagaact aacaagaacc ttctagccaa ggatctcaga gtgctttaca gacatatgaa 420 ctgggaagtg aaaacgtgaa agtccctatt tttgaggaag atacaccctc tgttatggaa 480 attgaaatgg aagagcttga taaatggatg aacagcatga atagaaatgc cgactttgaa 540 tgtttaccta ccttgaagga agagaaggaa tcaaatcaca acccaagtga cagtgaatcc 600 taaacctgaa tggcgctcat gttttccaag agaagcagcc cctgagggag tctgctgagg 660 675 ctgccaacag gatcc

<210> 3

<211> 181

<212> PRT

<213> murine

Met Thr Val Pro Cys Ala Ala Leu Val Leu Ala Leu Gly Leu Ala Phe 1 15

Gly Gln Ser Ser Gln Gly Asn Asp Glu Glu Ser Glu Tyr Ser Gly Gln
20 25 30

Ser Ile Thr Glu Glu Asn Ser Glu Asp Glu Thr Thr Arg Ser Ala
35 40 45

Leu Ala Thr Val Thr Thr Glu Ala Leu Ala Glu Asn Val Asn Ser Thr 50 55 60

His Thr Asn Asp Thr Ser Asn Gln Val Glu Phe Ile Leu Met Val Ala 65 70 75 80

Ile Pro Leu Ala Ala Leu Leu Ile Leu Leu Phe Met Val Leu Ile Ala 85 90 95

Thr Tyr Phe Lys Ser Lys Arg Pro Lys Gln Glu Pro Ser Ser Gln Gly
100 105 110

Ser Gln Ser Ala Leu Gln Thr His Glu Leu Gly Gly Glu Thr Leu Lys
115 120 125

Val Pro Ile Phe Glu Glu Asp Thr Pro Ser Val Met Glu Ile Glu Met 130 135 140

Glu Glu Leu Asp Lys Trp Met Asn Ser Met Asn Arg Asn Ala Asp Tyr 145 150 150 155 160

Glu Cys Leu Pro Thr Leu Lys Glu Glu Lys Glu Pro Asn Pro Ser Pro 165 170 175

Ser Asp Asn Glu Ser 180

<210> 4

<211> 367

<212> PRT

<213> rat

<400> 4

Met 1	Thr	Arg	Pro	Pro 5	Tyr	Gln	Glu	Ala	Pro 10	Val	Gly	Asp	Leu	Gln 15	Met
Gly	Asp	Arg	Gln 20	Glu	Ser	Ser	Gly	Asp 25	Lys	Asp	Arg	Asn	Asp 30	Glu	Asp
Ser	Glu	Tyr 35	Ser	Gly	His	Ser	Thr 40	Thr	Glu	Glu	Asp	Thr 45	Ala	Glu	Glu
Glu	Thr 50	Thr	Arg	Ala	Leu	Ala 55	Thr	Val	Thr	Thr	Glu 60	Ala	Leu	Ala	Glu
Ser 65	Ala	Asn	Ser	Thr	His 70	Ile	His	Gly	Thr	Ser 75	Asn	Gln	Val	Glu	Phe 80
Ile	Leu	Met	Val	Ala 85	Val	Pro	Leu	Ala	Ala 90	Leu	Leu	Ile	Leu	Leu 95	Phe
Ala	Ile	Leu	Ile 100	Val	Ile	Tyr	Phe	Lys 105	Ser	Arg	Arg	Pro	Lys 110	Gln	Glu
	Ser	115					120					125			
	Ser 130					135					140				
145	Pro				150					155					160
	Gln			165					170					175	
	Glu		180					185					190		
	Asn	195					200					205			
Ser	Phe 210	Asn	Ala	Asp	Tyr	Gly 215	Ala	Ser	His	Ser	Val 220	His	Leu	Glu	His

Phe Gly Asn Gly Phe Leu Asn Phe Ser Ile Ile Cys Met Gln Val Gly

225 230 235 240

Phe Cys Pro Pro Ser Leu Trp Gly Ala Gln Met Arg Val Glu Ile
245 250 255

Arg Ala His Ser Gly Thr Val Glu Pro Leu Ala Val Trp Glu Ile Gly 260 270

Gly Glu Val Ala Lys Gln Gly Lys Gly Thr Asp Asp Leu Gly Glu 275 280 285

Thr Leu Lys Val Pro Ile Phe Glu Glu Asp Thr Pro Ser Val Met Glu
290 300

Ile Glu Met Glu Glu Leu Asp Lys Trp Met Asn Ser Met Asn Arg Asn305310315320

Gly Thr Trp Lys Thr Lys Ala Phe Ala Cys Leu Cys Gly Asn Ala Gly
325 330 335

Leu Asp Gly Cys Leu Cys Phe Ile Ser Asn Ser Glu Asn Leu Lys Leu 340 345 350

Cys Phe Ile Trp His Ser Thr Cys Ala Leu Leu Lys Asp Pro Val 355 360 365

<210> 5

<211> 703

<212> DNA

<213> artificial sequence

<220>

<223> FLJ32028 with an HA epitope tag

<400> 5

aagettagee eggegeagea teetgagege geetetgeeg aggegagegg acatgeagge 60
teecegegea geectagtet tegeeetggt gategegete gtteeegteg geeggggtaa 120
ttateeatat gatgtteeag attatgetta tgaggaatta gaaaaeteag gagatacaae 180
tgtggaatet gaaagaceaa ataaagtgae tatteeaage acatttgetg eagtgaeeat 240
caaagaaaca ttaaatgeaa atataaatte taceaaettt geteeggatg aaaateagtt 300
agagtttata etgatggtgt taateeeatt gatttattg gteetettae ttttateegt 360

420

ggtattcctt gcaacatact ataaaagaaa aagaactaaa caagaacctt ctagccaagg

atctcagagt gc	tttacaga catat	gaact gggaagtgaa	aacgtgaaag tccct	atttt 480
tgaggaagat ac	accctctg ttatg	gaaat tgaaatggaa	gagcttgata aatg	gatgaa 540
cagcatgaat ag	aaatgccg acttt	gaatg tttacctacc	ttgaaggaag agaag	ggaatc 600
aaatcacaac cc	aagtgaca gtgaa	tccta aacctgaatg	gcgctcatgt tttco	caagag 660
aagcagcccc tg	agggagtc tgctg	aggct gccaacagga	tcc	703
<210> 6 <211> 192 <212> PRT <213> artifi	cial sequence			
<220> <223> FLJ320	28 with HA epi	tope tag		
<400> 6				
Met Gln Ala P	ro Arg Ala Ala	Leu Val Phe Ala	Leu Val Ile Ala	Leu
1	5	10	15	
	ly Arg Gly Asn O	Tyr Pro Tyr Asp 25	Val Pro Asp Tyr 30	Ala
Tyr Glu Glu L 35	eu Glu Asn Ser	Gly Asp Thr Thr	Val Glu Ser Glu 45	Arg
Pro Asn Lys V 50	al Thr Ile Pro	Ser Thr Phe Ala	Ala Val Thr Ile 60	Lys
Glu Thr Leu A	sn Ala Asn Ile 70	e Asn Ser Thr Asn 75	Phe Ala Pro Asp	Glu 80
Asn Gln Leu G	lu Phe Ile Leu 85	. Met Val Leu Ile 90	Pro Leu Ile Leu 95	Leu
	eu Leu Ser Val 00	Val Phe Leu Ala 105	Thr Tyr Tyr Lys	Arg
Lys Arg Thr L 115	ys Gln Glu Pro	Ser Ser Gln Gly 120	Ser Gln Ser Ala 125	Leu

Gln Thr Tyr Glu Leu Gly Ser Glu Asn Val Lys Val Pro Ile Phe Glu

Trp Met Asn Ser Met Asn Arg Asn Ala Asp Phe Glu Cys Leu Pro Thr

165 170 175

Leu Lys Glu Glu Lys Glu Ser Asn His Asn Pro Ser Asp Ser Glu Ser

180 185 190

<210> 7

<211> 637

<212> DNA

<213> artificial sequence

<220>

<223> FLJ32028 with HA epitope tag

<400> 7

aagettagee eggegeagea teetgagege geetetgeeg aggegagegg acatgeagge 60 tccccgcgca gccctagtct tcgccctggt gatcgcgctc gttcccgtcg gccggggtaa 120 ttatgaggaa ttagaaaact caggagatac aactgtggaa tctgaaagac caaataaagt 180 gactattcca agcacatttg ctgcagtgac catcaaagaa acattaaatg caaatataaa 240 ttctaccaac tttgctccgg atgaaaatca gttagagttt atactgatgg tgttaatccc 300 attgatttta ttggtcctct tacttttatc cgtggtattc cttgcaacat actataaaag aaaaagaact aaacaagaac cttctagcca aggatctcag agtgctttac agacatatga 420 480 actgggaagt gaaaacgtga aagtccctat ttttgaggaa gatacaccct ctgttatgga aattgaaatg gaagagcttg ataaatggat gaacagcatg aatagaaatg ccgactttga 540 atgtttacct accttgaagg aagagaagga atcaaatcac aacccaagtg acagtgaatc 600 ctatccatat gatgttccag attatgctta aggatcc 637

<210> 8

<211> 192

<212> PRT

<213> artificial sequence

<220>

<223> FLJ32028 with HA epitope tag

<400> 8

Met Gln Ala Pro Arg Ala Ala Leu Val Phe Ala Leu Val Ile Ala Leu 1 5 10 15

Val Pro Val Gly Arg Gly Asn Tyr Glu Glu Leu Glu Asn Ser Gly Asp Thr Thr Val Glu Ser Glu Arg Pro Asn Lys Val Thr Ile Pro Ser Thr Phe Ala Ala Val Thr Ile Lys Glu Thr Leu Asn Ala Asn Ile Asn Ser Thr Asn Phe Ala Pro Asp Glu Asn Gln Leu Glu Phe Ile Leu Met Val Leu Ile Pro Leu Ile Leu Leu Val Leu Leu Leu Ser Val Val Phe Leu Ala Thr Tyr Tyr Lys Arg Lys Arg Thr Lys Gln Glu Pro Ser Ser Gln Gly Ser Gln Ser Ala Leu Gln Thr Tyr Glu Leu Gly Ser Glu Asn Val Lys Val Pro Ile Phe Glu Glu Asp Thr Pro Ser Val Met Glu Ile Glu Met Glu Glu Leu Asp Lys Trp Met Asn Ser Met Asn Arg Asn Ala Asp Phe Glu Cys Leu Pro Thr Leu Lys Glu Glu Lys Glu Ser Asn His Asn Pro Ser Asp Ser Glu Ser Tyr Pro Tyr Asp Val Pro Asp Tyr Ala

<210> 9

<211> 1421

<212> DNA

<213> murine

<220>

<221> misc_feature

<222> (40)..(40)

<223> n = degenefacy in code

<210> 10

<211> 474

<212> PRT

<213> murine

```
<221>
      MISC_FEATURE
<222>
      (14)...(14)
<223>
      Xaa = any amino acid
<220>
<221>
      MISC_FEATURE
      (220)..(220)
<222>
<223> Xaa = any amino acid
<400> 10
Tyr Val Leu Met Thr Gln Thr Pro Leu Ser Leu Pro Val Xaa Phe Gly
                                   10
                                                       15
1
                5
Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser
           20
                               25
                                                   30
Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser
       35
                           40
                                               45
Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro
    50
                       55
                                           60
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65
                                       75
                                                           80
                   70
Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Gly
            85 90
Ser His Val Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys
           100
                               105
                                                   110
Arg Ala Asp Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu
       115
                                               125
                           120
Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe
   130
                       135
                                           140
Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg
145
                   150
                                       155
                                                           160
Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser
               165
                                   170
                                                       175
Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu
```

185

190

180

Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser 195 200 205

Asp Ile Ile Lys Glu Ile Asn Met Lys Tyr Leu Leu Pro Thr Ala Ala 225 230 230 235 235

Ala Gly Leu Leu Leu Ala Ala Gln Pro Ala Met Ala Leu Glu Val 245 250 255

Lys Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly Ser Leu 260 270

Lys Leu Ser Cys