

Future Skills Academy for Emerging Technologies

CERTIFIED DEEP LEARNING **PROFESSIONAL** (CDLP)

Digital Tech Faculty Expert (DTeX)

Introduction to CNNs

- Welcome to the section on Convolutional Neural Networks!'
- CNNs are a specific architecture of Neural Networks that are extremely effective at dealing with image data.
- Let's review what we will learn in this section!

CNN Section

- Understanding CNNs
 - Image Kernels and Filters
 - Convolutions
 - Pooling Layers
- MNIST Dataset (Grayscale Images)
- CIFAR-10 Dataset (Color Images)

CNN Section

- Working with image files (jpg,png,etc...) with CNNs.
- CNNs for malaria blood cell classification.
- CNN exercise on Fashion Image Dataset.

MNIST Data

00 1010001 1010001 1010001 1010001 10100010101000 0101||000101||000101||000101||000101||000101| 00000|||00000|||00000|||00000|||00000|| 0|0|1|0|0|0|1|0|0|0|1|0|0|0|1|0|0|0|1|0|0|0|1|0|0|0|1 011000110110001101100011011000110110001101100011011 0101000| 101000| 101000| 101000| 101000| 10 1901/60/1/01/60/19 1/60/1901/60/19 1/60/1/01/60/1/0 0001; 1010001 0010001; 1010001; 1010001; 1010001 0101||000101||000101||000101||000101||000101| 00000|||00000|||00000|||00000|||00000|| 0101||0|0101||0|0101||0|0101||0|0101||0|0101||0|0101 11000|0||1000|0||1000|0||1000|0||1000|0||1000|0||100 011000110110001101100011011000110110001101100011011 0101000| 101000| 101000| 101000| 101000| 10 1001 10011

- A classic data set in Deep Learning is the MNIST data set.
- Let's quickly cover some basics about it since we'll be using it quite frequently during this section of the course!

- Fortunately this data is easy to access with PyTorch Vision. We will download:
 - 60,000 training images
 - 10,000 test images

 The MNIST data set contains handwritten single digits from 0 to 9

A single digit image can be represented as an array

Specifically, 28 by 28 pixels

The values represent the grayscale image

- We will first explore how we could approach this data set with a standard ANN.
- In this case, to feed it into our network we will need to flatten the 28 by 28 array to 784

inputs

- Flattening out the image ends up removing some of the 2-D information, such as the relationship of a pixel to its neighboring pixels.
- For now, we'll ignore this, but come back to it later when we discuss CNN in depth!

PART ONE: DATA

PART TWO: NEURAL NETWORK

PART THREE: TRAINING AND EVALUATION

PART FOUR: EVALUATION

Image Filters

- Before we dive into CNNs, let's first discuss a few key ideas in computer vision.
- Computer vision is a general term of using computer programs to process image data.

• If you've ever used photo editing software, you have probably seen filters, such as a blur filter. But how do these work?

- Filters are essentially an image kernel, which is a small matrix applied to an entire image.
- Certain popular filters are well known, for example a blur filter:

 Let's explore how these image kernel/filters actually get applied to an image.

Filters allow us to transform images

0	0	0	0	0	0
0	1	1	1	1	0
0	1	-1	-1	1	0
0	1	-1	-1	1	0
0	1	1	1	1	0
0	0	0	0	0	0

Here we have an grayscale image

0	0	0	0	0	0
0	1	1	1	1	0
0	1	-1	-1	1	0
0	1	-1	-1	1	0
0	1	1	1	1	0
0	0	0	0	0	0

Values scaled between -1 and 1

0	0	0	0	0	0
0	1	1	1	1	0
0	1	-1	-1	1	0
0	1	-1	-1	1	0
0	1	1	1	1	0
0	0	0	0	0	0

Filters allow us to transform images

0	0	0	0	0	0
0	1	1	1	1	0
0	1	-1	-1	1	0
0	1	-1	-1	1	0
0	1	1	1	1	0
0	0	0	0	0	0

0	0	0
0	-1	1
0	1	-1

3 by 3 Filter

Filters allow us to transform images

Filters are essentially a matrix

Notice how the resolution will decrease

We can also edit our stride distance

Stride Distance of 2 Example

Let's explore an interactive example!

setosa.io/ev/image-kernels/

- In the context of CNNs, these "filters" are referred to as convolution kernels.
- The process of passing them over an image is known as convolution.
- Let's go over a few more important factors!

During convolution, we would lose borders

3 by 3 Filter

During convolution, we would lose borders

3 by 3 Filter

We can pad the image with more values

This allows us to preserve the image size

 Now that we understand image filters, let's explore the architecture of a CNN that allows the network to come up with the best weights for a filter in the convolutional layer.

Convolutional Layers

- Recall that running an ANN for the MNIST data set resulted in a network with relatively good accuracy.
- However, there are some issues with always using ANN models for image data.

ANNs

- Large amount of parameters (over 100,000 for tiny 28 by 28 images)
- We lose all 2D information by flattening out the image
- Will only work on very similar, well centered images.

- A CNN can use convolutional layers to help alleviate these issues.
- A convolutional layer is created when we apply multiple image filters to the input images.
- The layer will then be trained to figure out the best filter weight values.

- A CNN also helps reduce parameters by focusing on local connectivity.
- Not all neurons will be fully connected.
- Instead, neurons are only connected to a subset of local neurons in the next layer (these end up being the filters!)

- Let's understand this local connectivity and its connection to filters by beginning with a simplified 1-D example.
- We will later expand this to 2-D inputs for a grayscale image and then later on to 3-D tensor inputs for color images.

ANN

Fully Connected, lots of parameters!

CNN -ConvolutionalLayer

CNN -LocalizedConnections

 CNN - Here we have 1 filter

 CNN - Here we have 2 filters

- We just saw a 1-D example of convolution, but recall, grayscale images are 2-D!
- Plus we want to preserve that 2-D relational information in the convolutional layer.

Input Image Convolutio nal Layer

- But this was just in 2D for grayscale images.
- What about color images?
- Color Images can be thought of as 3D Tensors consisting of Red, Green, and Blue color channels.

 Additive color mixing allows us to represent a wide variety of colors by simply combining different amounts or R, G, B.

RGB allows to produce a range of colors

- Each color channel will have intensity values.
- You may have already seen this sort of representation in other software with RGB sliders.

- The shape of the color array then has 3 dimensions.
- Height
- Width
- Color Channels

This means when you read in an image and check its shape, it will look something like:

- **•** (1280,720,3)
- 1280 pixel width
- 720 pixel height
- 3 color channels

- This means when you read in an image and check its shape, it will look something like:
 - o **(720,1280,3)**
 - 720 pixel height
 - **1280** pixel width
 - 3 color channels

Keep in mind the computer won't "know" a channel is Red, it just knows that there are now 3 intensity channels.

- How do we then perform a convolution on a color image?
- We end up with a 3D filter, with values for each color channel.

- Often convolutional layers are fed into another convolutional layer.
- This allows the networks to discover patterns within patterns, usually with more complexity for later convolutional layers.

 We've learned a lot so far and we have one final theory topic to cover before coding our own CNNs, and that is the Pooling Layer! (also known as a downsampling layer)

ANN

Pooling Layers

- Even with local connectivity, when dealing with color images and possibly 10s or 100s of filters we will have a large amount of parameters.
- We can use pooling layers to reduce this.

Pooling layers accept convolutional layers as input:

Our convolutional layers will often have many filters

Our convolutional layers will often have many filters

Our convolutional layers will often have many filters

Let's imagine a filter

We can reduce the size with subsampling

We can reduce the size with subsampling

Max Pooling: Window 2x2, Stride: 2

4 9

9 3

Max Pooling: Window 2x2, Stride: 2

4 2 9 7

8 7 3 2

7 9 1 1

4 9

9 3

Average Pooling: Window 2x2, Stride: 2

4 2 9 7

8 7 3 2

7 9 1 1

2.5 7.5

7.75

This greatly reduces our number of parameters!

This pooling layer will end up removing a lot of information, even a small pooling "kernel" of 2 by 2 with a stride of 2 will remove 75% of the input data.

- Another common technique deployed with CNN is called "Dropout"
- Dropout can be thought of as a form of regularization to help prevent overfitting.
- During training, units are randomly dropped, along with their connections.

- This helps prevent units from "co-adapting" too much.
- Let's also quickly point out some famous CNN architectures!

- LeNet-5 by Yann LeCun
- AlexNet by Alex Krizhevsky et al.
- GoogLeNet by Szegedy at Google Research
- ResNet by Kaiming He et al.
- Check out the resource links to the papers discussing these architectures!

AlexNet

AlexNet

CNNs can have all types of architectures!

CNNs can have all types of architectures!

CNNs can have all types of architectures!

CNNs can have all types of architectures!

MNIST Data Revisited

- Recall that flattening out the MNIST data caused us to lose 2D information.
- With CNNs, we can feed in the data as an array of 2D images.

 We can think of the entire group of the 60,000 images as a tensor (an n-dimensional array)

- For the labels we'll use One-Hot Encoding.
- This means that instead of having labels such as "One",
 "Two", etc... we'll have a single array for each image.

- The label is represented based off the index position in the label array.
- The corresponding label will be a 1 at the index location and zero everywhere else.
- For example, 4 would have this label array:
 - **•** [0,0,0,0,1,0,0,0,0,0]

Keep in mind that when dealing with tensors of image data, we actually end up with 4 dimensions:

- Number of Images
- Height
- Width
- Color Channels

MNIST with CNN

PART ONE - The Data

MNIST with CNN

PART TWO - Model and Training

MNIST with CNN

PART THREE - Model Evaluation

CIFAR-10 with CNN

PART ONE - Data

CIFAR-10 dataset are 32by32 images of 10 different objects:

- Airplane, Car, Bird, Cat, Deer, Dog, Frog, Horse, Ship, Truck
- These are color images!

 In this program, we will be reusing a lot of the previous CNN code, so we will only focus on new additions due to the introduction of 3 color channels (RGB).

CIFAR-10 with CNN

PART TWO - Model Evaluation

Downloading Image Data

- So far we've only dealt with pre-packaged data sets such as MNIST and CIFAR-10.
- But what about working with real image files? Like .jpg or .png?

- Let's learn about TensorFlow's built in tools for generating image data batches from directories with real files.
- First we need to download a large zip file of data.

- This dataset is available as a zip file called cell_images.zip
- The link is a supplemental resource in this lecture, it is also within the same Google Drive resource as the slides.
- Let's explore getting the data!

Part 1 - The Data

Part 2 Image Data Generator

Part 3 Creating the Model

Part 4 Model Evaluation

Let's get started!

CNN Exercises

CNN Exercises Solutions