- greedy [[Shortest Path Algorithms]] to find all destinations from one source For a start vertex s, compute shortest paths from s to all $v \in V$ (tree structure + length).
 - **Input:** A connected graph G = (V, E, w) with non-negative edge weights w(u, v) and a vertex $s \in V$.

Output: The distances d(s, v) in G from s to all vertices $v \in V$ and the tree with the according shortest paths.

- Bellman Ford is an alternative for negative weights

Generic step: Given a set T of vertices where for all $v \in T$, d(s,v) is already computed. Choose a vertex $u \in V \setminus T$ whose shortest path from s "found so far" is minimal.

Paths "found so far": paths that only go via vertices in ${\cal T}.$

For each vertex v, we maintain:

L(v): length of the shortest path from s to v "found so far". pre(v): neighbor of v in T via which this shortest path goes.

- similar to Prim's algorithm [[Minimum Spanning Tree]]

* priority computation is different

$$L(v) = \begin{cases} d(s,v) & \text{if } v \in T \\ \infty & \text{if } v \text{ is not adjacent to } T \\ \text{shortest path from} & \text{if } v \notin T, \ v \text{ adjacent to } T \end{cases}$$

A **priority queue** Q contains all vertices that are not yet in T, organized by their L-values (for example a min-heap; initially contains all vertices).

• pseudo code

Runtime analysis for graph with n vertices and m edges:

- Min-heap with n elements:
 - $\circ \ \Theta(n)$ time for initialization Q = V.
 - \circ $O(\log n)$ time for removal of the minimum.
 - o $O(\log n)$ time per update of an L-value.
- Processing vertex u with $\deg(u)$ neighbors: removal of u from Q plus $O(\deg(u))$ updated L-values.
- $\Rightarrow \text{ Runtime in total for start vertex } s: \\ \Theta(n) + \sum_{u \in V} (1 + \deg(u)) \cdot O(\log n) \\ = \Theta(n) + \Theta(n + m) \cdot O(\log n) = O(m \log n), \\ \text{since the graph is connected.}$
- runtime may improve if Q is sorted
 - For dense graphs $(m = \Theta(n^2))$ the algorithm needs $\Theta(n^3 \log n)$ time to compute the distance matrix.
 - If an unsorted list is used for the queue Q, a runtime of $O(\sum_{v \in V} v \in V(n + \deg(v) \cdot 1)) = O(n^2 + m) = O(n^2)$ for start vertex s and $O(n^3)$ for the distance matrix is obtained (independent of m) \Rightarrow good for dense graphs, bad for sparse graphs ($m = \Theta(n)$), works also for Prim.
- bad heuristics
 - only considers distance from start to current vertex
 - completely ignores distance from current vertex to goal
 - therefore slow
 - unlike [[A-Star Algorithm]]