Feature selection and regularization

Fraida Fund

Contents

Feature selection	1
Motivation for feature selection problem	2
Feature selection	2
Many possible models	2
Feature selection methods	2
Univariate feature selection	2
Greedy feature selection	2
Scoring by mutual information (1)	2
Scoring by mutual information (2)	3
Scoring by mutual information (3)	3
Scoring by mutual information (4)	3
Scoring by mutual information (5)	3
Other scoring metrics	3
Illustration: scoring features	3
Regularization	3
Penalty for model complexity	3
Regularization vs. standard LS	3
Common regularizers: Ridge and LASSO	4
Graphical representation	4
Common features: Ridge and LASSO	4
Differences: Ridge and LASSO (1)	5
Differences: LASSO (2)	5
Standardization (1)	5
Standardization (2)	5
L1 and L2 norm with standardization (1)	6
L1 and L2 norm with standardization (2)	6
Ridge regularization	6
Ridge term and derivative	6
Ridge closed-form solution	6
LASSO term and derivative	7
Effect of regularization level	7
Effect of regularization - LASSO	7
Effect of regularization - Ridge	7
Selecting regularization level	7

Feature selection

Problem: given high dimensional data $\mathbf{X} \in R^{N \times p}$ and target variable y, Select a subset of k << p features, $\mathbf{X}_S \in R^{N \times k}$ that is most relevant to target y.

Motivation for feature selection problem

- · Limited data
- Very large number of features
- Examples: spam detection using "bag of words", EEG, DNA MicroArray data

Feature selection

Many possible models

- Given n features, there are 2^n possible feature subsets
- Feature selection is model selection over 2^n models too expensive for large n

Feature selection methods

- **Wrapper methods**: use learning model on training data, and select relevant features based on the performance of the learning algorithm.
- **Filter methods**: consider only the statistics of the training data, don't actually fit any learning model. Much cheaper!
- **Embedded methods**: use something built-in to learning method (e.g. coefficient magnitude in linear regression)

Univariate feature selection

- ullet Score each feature x_i according to its importance in predicting target y
- Pick k features that are most important (use CV to choose k?)
- Problem: features may not be independent (remember attractiveness rankings in linear regression lab?)

Greedy feature selection

- ullet Let S^{t-1} be the set of selected features at time t-1
- Compute the score for all combinations of current set + one more feature
- ullet For the next time step S^t , add the feature that gave you the best score.

(Alternatively: start with all features, and "prune" one at a time.)

Scoring by mutual information (1)

How to score features? One way is to use mutual information:

For continuous variables:

$$I(X;Y) = \int_X \int_Y p(x,y) log \frac{p(x,y)}{p(x)p(y)} dx dy$$

For discrete variables:

$$I(X;Y) = \sum_{X} \sum_{Y} p(x,y) log \frac{p(x,y)}{p(x)p(y)} dx dy$$

Scoring by mutual information (2)

Determines how similar the joint distribution p(x,y) is to the products of the marginal distributions p(x)p(y).

If X and Y are independent, p(x,y) = p(x)p(y) and then the integral will be zero.

Scoring by mutual information (3)

For feature selection: choose \mathbf{X}_S to maximize mutual information between \mathbf{X}_S and y.

$$\tilde{S} = \operatorname*{argmax}_{S} I(\mathbf{X}_{S}; y), \quad s.t. |S| = k$$

where k is the number of features we want to select.

Scoring by mutual information (4)

Greedy method: Let S^{t-1} be the set of selected features at time t-1. Select feature f_t so that

$$f_t = \arg\max_{i \notin S^{t-1}} I(\mathbf{X}_{S^{t-1} \cup i}; y)$$

Scoring by mutual information (5)

Basic intuition: MI is a measure of **relevancy** of new feature minus **redundancy** of new feature vs. features already in the set.

Other scoring metrics

- · Correlation coefficient between feature and target
- F-test: measures whether a feature is significant. F-test for one features is difference in MSE for single feature vs. prediction by mean.

$$F = (N - 2)\frac{R2}{1 - R2}$$

Illustration: scoring features

Regularization

Penalty for model complexity

With no bounds on complexity of model, we can always get a model with zero training error on finite training set - overfitting.

Basic idea: apply penalty in loss function to discourage more complex models

Regularization vs. standard LS

Least squares estimation:

Figure 1: F-test selects x_1 as the most informative feature, MI selects x_2 .

$$\hat{\beta} = \operatorname*{argmin}_{\beta} RSS(\beta), \quad RSS(\beta) = \sum_{i=1}^{N} (y_i - \hat{y_i})^2$$

Regularized estimation w/ regularizing function $\phi(\beta)$:

$$\hat{\beta} = \mathop{\rm argmin}_{\beta} J(\beta), \quad J(\beta) = RSS(\beta) + \phi(\beta)$$

Common regularizers: Ridge and LASSO

Ridge regression (L2):

$$\phi(\beta) = \alpha \sum_{j=1}^{d} |\beta_j|^2$$

LASSO regression (L1):

$$\phi(\beta) = \alpha \sum_{j=1}^{d} |\beta_j|$$

Graphical representation

Common features: Ridge and LASSO

- Both penalize large β_{j}
- Both have parameter α that controls level of regularization Intercept β_0 not included in regularization sum (starts at 1!), this depends on mean of y and should not be constrained.

Figure 2: LS solution (+), RSS contours. As we increase α , LASSO solution moves from the LS solution to 0.

Differences: Ridge and LASSO (1)

Ridge (L2):

- minimizes $|\beta_j|^2$,
- · does not penalize small non-zero coefficients
- · heavily penalizes large coefficients
- tends to make many "small" coefficients
- · Not for feature selection

Differences: LASSO (2)

LASSO (L1)

- minimizes $|\beta_i|$
- tends to make coefficients either 0 or large (sparse!) does feature selection (setting β_j to zero is equivalent to un-selecting feature)

Standardization (1)

Before learning a model with regularization, we typically standardize each feature and target to have zero mean, unit variance:

•
$$x_{i,j}
ightarrow rac{x_{i,j} - \bar{x}_j}{s_{x_j}}$$

•
$$y_i o \frac{y_i - \bar{y}}{s_y}$$

Standardization (2)

Why?

· Without scaling, regularization depends on data range

• With mean removal, no longer need β_0 , so regularization term is just L1 or L2 norm of coefficient vector

L1 and L2 norm with standardization (1)

Assuming data standardized to zero mean, unit variance:

· Ridge cost function:

$$J(\pmb{\beta}) = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 + \alpha \sum_{j=1}^{d} |\beta_j|^2 = ||\mathbf{A} \pmb{\beta} - \mathbf{y}||^2 + \alpha ||\pmb{\beta}||^2$$

L1 and L2 norm with standardization (2)

• LASSO cost function ($||\beta||_1$ is L1 norm):

$$J(\boldsymbol{\beta}) = \sum_{i=1}^N (y_i - \hat{y}_i)^2 + \alpha \sum_{i=1}^d |\beta_j| = ||\mathbf{A}\boldsymbol{\beta} - \mathbf{y}||^2 + \alpha ||\boldsymbol{\beta}||_1$$

Ridge regularization

Why minimize $||\boldsymbol{\beta}||^2$?

Without regularization:

- · large coefficients lead to high variance
- large positive and negative coefficients cancel each other for correlated features (remember attractiveness ratings in linear regression lab...)

Ridge term and derivative

Figure 3: L2 term and its derivative for one parameter.

Ridge closed-form solution

$$J(\boldsymbol{\beta}) = ||\mathbf{A}\boldsymbol{\beta} - \mathbf{y}||^2 + \alpha ||\boldsymbol{\beta}||^2$$

Taking derivative:

$$\frac{\partial J(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = 2\mathbf{A}^T(\mathbf{y} - \mathbf{A}\boldsymbol{\beta}) + 2\alpha\boldsymbol{\beta}$$

Setting it to zero, we find

$$\boldsymbol{\beta}_{ridge} = (\mathbf{A}^T \mathbf{A} + \alpha \mathbf{I})^{-1} \mathbf{A}^T \mathbf{y}$$

LASSO term and derivative

Figure 4: L1 term and its derivative for one parameter.

- No closed-form solution: derivative of $|\beta_i|$ is not continuous
- But there is a unique minimum, because cost function is convex, can solve iteratively

Effect of regularization level

Greater α , more complex model.

- Ridge: Greater α makes coefficients smaller.
- LASSO: Greater lpha makes more weights zero.

Effect of regularization - LASSO

Figure 5: Increasing α

Effect of regularization - Ridge

Selecting regularization level

How to select α ? by CV!

- Outer loop: loop over CV folds
- Inner loop: loop over α

Figure 6: Increasing α