

Review of Statistical Learning

FA690 Machine Learning in Finance

Dr. Zonghao Yang

Statistical Learning Problems

- Outcome measurement Y
 - Dependent variable, response, target
- Vector of p predictor measurements $X = (X_1, X_2, ..., X_p)$
 - Independent variables, inputs, regressors, covariates, features
- In the very general form, the relationship between Y and $X = (X_1, X_2, ..., X_p)$ can be written as $Y = f(X) + \epsilon$
 - where $f(\cdot)$ is some fixed but unknown function of $X_1, X_2, ..., X_p$, and ϵ is a random error term
- Objective of statistical learning: Based on observations $(x_1, y_1), ..., (x_n, y_n)$, we want to learn the function $f(\cdot)$ so that
 - Accurately predict unseen cases
 - Understand which inputs affect the outcomes, and how
 - Assess the quality of our predictions and inferences

A framework to analytical modeling

A framework to analytical modeling

- Sample: Take a sample from the dataset; partition into training, validation, and test datasets
- Explore: Examine the dataset statistically and graphically
- Modify: Transform the variables and impute missing values
- Model: Fit predictive models (e.g., regression tree, neural network)
- Assess: Compare models using a validation dataset

- Randomly sample data into train-test, or train-validation-test set
- Training and validation data are in-sample; Test data is out-of-sample
- Diagnose and avoid overfitting

Random Split

 Randomly divide the available set of observations into three parts: A training set, a validation set, and a test set

K-Fold Cross-Validation

- Rather than just keeping one part of the training data for validation, we can split the data into k folds
- We then train the model k times, each time by leaving out one of the folds for validation
- The final performance is the average performance across all k validation folds

Simple Time Split Validation

Time series data is a common type of financial data. For example, stock returns and the loan defaults.

Expanding Window

Rolling Window

STEVENS INSTITUTE of TECHNOLOGY

10

There are different ways to segment data

Qualitative and categorical data

- Structured and unstructured data
 - Structured data: Tabular data
 - Unstructured data: Text, images, audio

♦ STEVENS INSTITUTE of TECHNOLOGY

Graphics

- Univariate data
 - Histograms and density estimates can help learn about distributional shape: symmetric, skewed, fat-tailed, etc.
 - Time series plots reveal dynamics such as trend, seasonality, cycle, outliers, . . .
- Multivariate data
 - Scatterplots for relations: Does a relation exist? Is it linear or non-linear? Are there outliers?

STEVENS INSTITUTE of TECHNOLOGY

Graphics

Example: One-year government bond yield

• **Histogram** reveals distributional shape

• Time series plot reveals dynamics

Graphics

Example: One-year and 10-year government bond yields

Scatterplot reveals relation between two variables

Missing Values: The absence of data or a lack of recorded information in a dataset

- If the number of datapoints with missing values is small, those datapoints might be omitted
- If the number of missing entries is large, you need to consider removing the feature
- Can replace the missing value with an imputed value, based on the other values for that variable across all data points
 - Mean/median
 - Maximum/minimum
 - 0
- Scenario 1: "The employment length" is missing
- Scenario 2: "The number of months of delinquencies" is missing. According to the data description, these are the borrowers who haven't delinquent on any loans before.

STEVENS INSTITUTE of TECHNOLOGY

Feature Scaling

Feature scaling transforms data to the same scale

Standardization

$$\tilde{X} = \frac{X - \mu}{\sigma}$$

Normalization

$$\tilde{X} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

- Almost all algorithms are sensitive to feature scales
 - Tree-based methods are less sensitive to feature scaling

Feature Transformation

- Some data covers various orders of magnitude (e.g., wealth, salary)
- Standardization or normalization can be misleading and will be skewed towards the larger values
- Often, one first applies *log-transform* (and then standardization)

$$\tilde{X} = \log(X), X > 0$$

$$y = f(X) + \epsilon$$

- Supervised learning
 - Labeled outcome variable (*Y*)
 - Regression: *Y* is quantitative (e.g., sales)
 - Classification: Y takes values in a finite, unordered set (e.g., spam/not spam email, handwritten digits 0 9)
- Unsupervised learning
 - No outcome variable (Y), just a set of predictors (X)
 - Example: k-means clustering algorithm
- Parametric and non-parametric methods
 - Depend on whether a specific functional form for f(X) is specified

Linear Regression

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

Optimization objective

$$\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p = \underset{\beta_0, \dots, \beta_p}{\operatorname{argmin}} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_{i,1} - \dots - \beta_p x_{i,p})^2$$

Fitted hyperplane

$$Y = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \dots + \hat{\beta}_p X_p$$

• Prediction given $X = (x_{i,1}, x_{i,2}, ..., x_{i,p})$ $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i,1} + \hat{\beta}_2 x_{i,2} + \cdots + \hat{\beta}_n x_{i,n}$

Regularization

Ridge regression (or L2 regularization)

$$\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p = \underset{\beta_1, \beta_2, \dots, \beta_p}{\operatorname{argmin}} \sum_{i=0}^n (y_0 - \hat{y}_i)^2 + \lambda \sum_{j=0}^p \beta_j^2$$

Lasso regression (or L1 regularization)

$$\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p = \underset{\beta_1, \beta_2, \dots, \beta_p}{\operatorname{argmin}} \sum_{i=0}^n (y_0 - \hat{y}_i)^2 + \lambda \sum_{j=0}^n |\beta_j|$$

• Elastic net: A linear combination of the Ridge and Lasso regularization techniques

$$\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p = \underset{\beta_1, \beta_2, \dots, \beta_p}{\operatorname{argmin}} \sum_{i=0}^n (y_0 - \hat{y}_i)^2 + \lambda_1 \sum_j^p \beta_j^2 + \lambda_2 \sum_j^p |\beta_j|$$

Logistic Regression

Logistic regression uses sigmoid functions as the functional form

$$P(X) = \Pr(Y = 1|X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p)}}$$

Binary predictor: Given a decision threshold $\rho \in (0,1]$ $f(x) = \begin{cases} 0, & P(x) < \rho \\ 1, & P(x) \ge \rho \end{cases}$

Parameter estimation: Given a data sample S

$$\hat{\beta} = \underset{\beta}{\operatorname{argmax}} l(\beta|S) = \sum_{i=1}^{n} y_i \log p(x_i) + (1 - y_i) \log(1 - p(x_i))$$

Support Vector Machine

- Assume the data sample S is linearly separable by some margin
- Hyperplane

$$g(x) = \beta x + b = 0$$

Linear classifier

$$f(x) = \begin{cases} 0, & g(x) < 0 \\ 1, & g(x) \ge 0 \end{cases}$$

 SVM: Find two parallel hyperplanes that correctly classify all the points and maximize the distance between them

SVM Formulation

• SVM as an optimization problem maximize the distance: $\frac{2}{|\beta|}$ such that: $y_i(\beta x_i + b) \ge +1$ (for all i)

Equivalently:

maximize the distance: $\frac{1}{2}|\beta|^2$ such that: $y_i(\beta x_i + b) \ge +1$ (for all i)

 The constrained optimization problem can be rephrased as a convex quadratic program, and solved efficiently

Decision Trees

Bagging and Boosting

Neural Networks

- Input layer, hidden layers, output layer
- Neurons: Input neuron, hidden neuron, output neuron
- Activation function:
 - ReLU: max(0, x)
 - Sigmoid: $\frac{1}{1+e^{-x}}$
 - tanh: tanh(x)

K-Means Clustering Algorithm

- 1. Start with K initial clusters (user chooses K)
- 2. At every step, each data point is reassigned to the cluster with the "closest" centroid
- 3. Recompute the centroids of clusters that lost or gained a data point, and repeat Step 2
- 4. Stop when moving any more data points between clusters increases cluster dispersion

[Visualizing the K-means algorithm][Visualizing DBSCAN Algorithm]

STEVENS INSTITUTE of TECHNOLOGY

Evaluation metrics for Regression

Mean squared error (MSE)

$$MSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 / n$$

R-squared

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} e_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

Adjusted R-squared

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p} \sum_{i=1}^n e_i^2}{\frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2}$$

Confusion Matrix

Confusion matrix is a table that summarizes the performance of classification
 Actual Label

Misclassification occurs when the model assigns an incorrect class to the data

STEVENS INSTITUTE of TECHNOLOGY

Accuracy

The most common and intuitive metric is the accuracy score

$$Accuracy = \frac{\sum TP + TN}{\sum TP + FP + FN + TN}$$

- Accuracy score alone is not a good metric when the label imbalance exists
 - For example, if only 10% of the loans are charged off, a naive classifier that predicts all loans will not default has an accuracy of 90%

Example: Confusion Matrix in Loan Default Prediction

- False positive: Fully paid loans that are predicted to be charged off
- False negative: Defaulted loans that are predicted to be fully paid
- False negative in unsecured loans is costly for banks
- What about cancer detection? Both FN and FP are costly

Precision, Recall, and F1 Score

Precision and recall indicate the occurrence of false positives and false negatives, respectively
$$Precision = \frac{\sum TP}{\sum TP + FP}$$

$$Recall = \frac{\sum TP}{\sum TP + FN}$$

• F1 score: Weighted average (Harmonic mean) of precision and recall $F1 = 2 \times \frac{Precision \times Recall}{Precision + Recall}$

$$F1 = 2 \times \frac{\dot{P}recision \times Recall}{Precision + Recall}$$

Classification Threshold

Making a classification

$$f(x) = \begin{cases} 0, & P(x) < \rho \\ 1, & P(x) \ge \rho \end{cases}$$

- The threshold (ρ) is a hyperparameter
- As ρ changes between 0 and 1, the evaluation scores also change
 - False-positive rate: $FPR = \frac{\sum FP}{\sum TN + FP}$ True-positive rate: $TPR = \frac{\sum TP}{\sum TP + FN}$

Receiver Operating Characteristics (ROC) Curve

$$\rho \in [0,1], FPR = \frac{\sum FP}{\sum TN + FP}, TPR = \frac{\sum TP}{\sum TP + FN}$$

- If $\rho = 0$, then FPR = 1 and TPR = 1
- If $\rho = 1$, then FPR = 0 and TPR = 0
- For $\rho \in (0,1)$, there is a trade-off between *FPR* and *TPR*

AUC Scores

- Area Under the Curve (AUC) Score
 - *AUC* = 1: Perfect classification
 - AUC = 0.5: Random guess
 - Random guess is a naïve but often very useful benchmark
- Threshold independent: AUC measures how well the model can distinguish between the classes across all possible classification thresholds

STEVENS INSTITUTE of TECHNOLOGY

A framework to analytical modeling

- Sample: Take a sample from the dataset; partition into training, validation, and test datasets
- Explore: Examine the dataset statistically and graphically
- Modify: Transform the variables and impute missing values
- Model: Fit predictive models (e.g., regression tree, neural network)
- Assess: Compare models using a validation dataset

STEVENS INSTITUTE of TECHNOLOGY

THANK YOU

Stevens Institute of Technology
1 Castle Point Terrace, Hoboken, NJ 07030