Embedded System Design and Modeling

IV. FSM Patterns

FSM Patterns

- ▶ **Design patterns**: reusable templates which appear often in applications
- Patterns
 - ► Operating on signal transitions
 - Set-Reset
 - ► Debounce (one-sided, two-sided)
 - Check-Synchronize

Operating on signal transitions

- ► For boolean signals/conditions
- ▶ Use when information is in the signals' **fronts** (edge / transition) rather than in its values
- ► Solution: detect signal transitions
 - rising edge
 - ► falling edge
 - both

Detect rising edge

- ► Draw here: detect rising edge

Detect falling edge

- ► Draw here: detect falling edge

Detect any edge

- ► Draw here: detect any edge

Set-Reset

- Scenario:
 - two conditions, A and B
 - when A is true, turn something ON
 - ▶ when B is true, turn it OFF
- ▶ Use when ON-OFF behavior is controlled by two conditions (A and B)

Set-Reset

- Draw here:
- **>**
- **>**
- **>**

Debouncing

- ► For boolean signals/conditions
- ▶ Bouncing: real signals look like this:

Figure 1: Signal change when pushing a button

▶ Use debouncing to avoid spurious transitions

Debouncing rising edge

- ▶ Draw here: debounce rising edge

Debouncing falling edge

- ▶ Draw here: debounce falling edge

Debouncing both edges

- ▶ Draw here: debounce both edges

Check-Synchronize

- Scenario:
 - A happens
 - B happens no later then T seconds after A
- ▶ Use when we want to check whether B and A happen approximately at the same time
- ▶ Need to find a good name for this

Check-Synchronize

- Draw here:

- •

Check-Synchronize

- Draw here:

- •