Introduction to Soft Computing

Brijesh Bhatt, 25th June 2015

Soft Computing

Ability to deal with Imprecision, Uncertainty and Approximation.

Human like abilities

Human like abilities

- 1. It seems like raining today!!
- 2. You look like Shahrukh Khan!!
- 3. Your voice is heavy.
- Did you catch cold?

Why Soft Computing?

Hard Computing is Expensive. Precise Information is often not available.

Identify variables and their range to predict weather!!

Imprecision Fuzzy Logic

Uncertainty
Genetic Algorithm

Approximation Neural Network

Imprecision Fuzzy Logic

Fuzzy Logic

Making Decisions using imprecise knowledge Playing with subjective variables: tall, fast, hot etc. 'You are too fast, slow down!!' How tall is tall? Degree of membership!!

Fuzzy Systems

- 1. Define Fuzzy Variables & Rules
- 2. Fuzzify Input data
- 3. Fuzzy Inference
- 4. Defuzzification

Example

Automatic Speed breaking of vehicle 1. Fuzzy Variables

Example

Automatic Speed breaking of vehicle 1. Fuzzy Variables

12

Fuzzy Rules

Low

Medium

Near

Break Medium Break High

Far

Break Low Break Medium

Fuzzy Inference

What amount of break should be applied if Speed is 38 kms/hr and Distance is 13 mtr?

Uncertainty Genetic Algorithm

Genetic Algorithm

Evolutionary method to solve optimization problem.

Optimization: Selecting best out of many feasible solutions.

Genetic Algorithm Process

- 1. Initial Population: Start with intial set of randomly choosen solutions.
- 2. Calculate fitness of each solution
- 3. Select candidates for reproduction using cross over and mutation
- 4. Generate new population
- 5. Repeeat until the optimal solution is found

Example: Knapsack problem

Item 1 2 3 4 5 6
P 8 6 12 14 5 16
W 4 2 3 6 1 8

18

Example: Knapsack problem

```
Item 1 2 3 4 5 6
P 8 6 12 14 5 16
W 4 2 3 6 1 8
```

1. Initial Population

G1 100100 G2 101000 G3 100110 G4 110110 Item 1 2 3 4 5 6
P 8 6 12 14 5 16
W 4 2 3 6 1 8

1. Initial Population

G1 100100 G2 101000 G3 100110 G4 110110

2. Fitness

 $\sum P, \sum W$

1. Initial Population

G1 100100 G2 101000 G3 100110 G4 110110

2. Fitness

$$\sum P, \sum W$$

3. Crossover

G2 101000 G3 100110 G5 101110 G6 100000 21

3. Crossover
G2 101000 G3 100110
G5 101110 G6 100000

4. Mutation G5 101010

22

Approximation Neural Network

Neural Network

Computation method Inspired by functioning of Human Brain.

24

Human Brain

Human Brain

- -Signals are processed via excitation of neurons
- Summation is the only operation performed
 - Information is storad/nrocass

- -Signals are processed via excitation of neurons
- Summation is the only operation performed
- Information is stored/processed in multidimension by linked structure of millions of neurons
- Very good capabilities to approximate.
- good at recognition, classification tasks, bad at calculations

 Axon
- -Ability to Learn

28

Perceptron

Perceptron

Linear Classifier

Summation

Transformation

$$s = \sum w \cdot x$$

$$s = \sum w \cdot x \qquad f(s) = \frac{1}{1 + e^{-s}}$$

Learning

Brain stores information as synaptic weight.

If a neuron is more frequently excited then it becomes

easier to excite it.

Learning happens in form of updation of weights Weights values can be updated in a controlled or uncontrolled way: Supervise or Unsupervise learning

Unsupervised Learning: (Learning without teacher)

The neurons which are fired more frequently gets strongers

Supervised Learning: (Learning with teacher)

update the weight of neurons to match output with expected value

Supervised Learning Algorithm

- 1. Created tagged data set.
- 2. Apply input to network
- 3. Calculate output
- 4. calculate error = f(output target)
 if(error > minE)
 Update the weight in
 proportion to error
 Repeat 2

lue

r Classifier Supervised Learning Algorithm

- 1. Created tagged data set.
- 2. Apply input to network
- 3. Calculate output
- 4. calculate error = f(output target) if(error > minE) Update the weight in proportion to error Repeat 2

Error reduction

With each update in weight error should reduce.

Convergence

Algorithm should terminate with min. error

Gradient Descent

Update the weight in proportion to gradient of error.

It guaratees covergence!!!

Gradient Descent

Update the weight in proportion to gradient of error.

It guaratees covergence!!!

Conclusion
Soft computing techniques are inspired by behavior of intelligent species
Used to solve Hard Optimization problems
Intelligent: ability to learn

Introduction to Soft Computing

Brijesh Bhatt, 25th June 2015

Why Soft Computing? Hard Computing is Expensive Precise Information is often not

available.
Identify variables and their range to predict weather!!

Genetic Algorithm

Evolutionary method to solve optimization problem.

Optimization: Selecting best out of many feasible solutions.

Genetic Algorithm Process

- 1. Initial Population: Start with intial set of randomly choosen solutions.
- 2. Calculate fitness of each solution
- 3. Select candidates for reproduction using cross over and mutation
- 4. Generate new population
- 5. Repeeat until the optimal solution is found.

Example: Knapsack problem Computation method Inspired by functioning of Human Brain

1. Initial Population
G1 100100
G2 101000
G3 100110
G4 110110

2. Fitness

4. Mutation G5 101010

Human Brain

- -Signals are processed via excitation of neurons
- Summation is the only operation performed
- Information is stored/processed
- in multidimension by linked structure of millions of neurons
- Very good capabilities to approximate.
- good at recognition, classification tasks,

bad at calculations

-Ability to Learn

Linear Classifier Supervised Learning Algorithm Gradient Descent

4. calculate error = f(output - target) if(error > minE)

Update the weight in proportion to error Repeat 2

Perceptron

Brain stores information as synaptic weight.

If a neuron is more frequently excited then it becomes easier to excite it. Learning happens in form of updation of weights

Weights values can be updated in a controlled or uncontrolled way: Supervise or Unsupervise learning

Unsupervised Learning: (Learning without teacher) The neurons which are fired more frequently gets strongers Supervised Learning: (Learning with teacher)
update the weight of neurons to match output with expected value

Fuzzy Logic

Making Decisions using imprecise knowledge Playing with subjective variables: tall, fast, hot etc. 'You are too fast, slow down!!

How tall is tall? Degree of membership!!

Imprecision Fuzzy Logic

Uncertainty Genetic Algorithm

Approximation Neural Network

Neural Network

Human Brain

10 20 40 50

30 40 60 70

Soft Computing

Human like abilities

3. Your voice is heavy.

Did you catch cold?

Fuzzy Systems

3. Fuzzy Inference

4. Defuzzification

1. Fuzzy Variables

Example

Low

Near

М

0,0

0.0

2. Fuzzify Input data

Ability to deal with Imprecision, Uncertainty and Approximation.

1. It seems like raining today!!

1. Define Fuzzy Variables & Rules

Automatic Speed breaking of vehicle

speed with membership 0.5

Medium

Speed (km/hr)

Far

Distance (meter)

35 belongs to low speed and medium

2. You look like Shahrukh Khan!!

Fuzzy Inference

What amount of break should be applied if Speed is 38 kms/hr and Distance is 13 mtr?

Error reduction

With each update in weight error should reduce. Convergence

Algorithm should terminate with min. error

Update the weight in proportion to gradient of

It guaratees covergence!!!

Conclusion

Soft computing techniques are inspired by behavior of Used to solve Hard Optimization problems

Thank You!!

Thank You!!