Représentation et analyse automatique des discontinuités syntaxiques dans les corpus arborés en constituants du français

Maximin Coavoux^{1,2} – Benoît Crabbé^{1,2,3}

¹Univ Paris Diderot – Sorbonne Paris Cité (SPC)
 ²Laboratoire de Linguistique Formelle (LLF, CNRS)
 ³Institut Universitaire de France (IUF)

TALN - Orléans - Juin 2017

Introduction

Contexte: Analyse syntaxique en constituants discontinus

Contributions:

- Corpus en constituants discontinus pour le français
 - Obtenus par conversion de corpus existants (French Treebank, French Question Bank, Sequoia Treebank)
- Analyseur syntaxique en constituants discontinus
 - ► Analyse morphologique et fonctionnelle réalisée conjointement
 - Architecture multi-tâche

Outline

Introduction

Arbres en constituants discontinus

Analyse syntaxique en constituants discontinus

Expériences

Conclusion

Arbres discontinus: motivations

- Représentation unifiée pour les phénomènes de variation d'ordre des mots et d'extraction
- Dépendances à longue distance

Mais ...

- ▶ Plus difficile à analyser en théorie
 - ▶ Grammaires légèrement sensibles au contexte (⊃ CFG)
 - ▶ LCFRS binaires: parsing tabulaire **exact** en $\mathcal{O}(n^{3f})$ (f > 1: fan-out, mesure le 'degré' de discontinuité)

Représentations alternatives

- Chemins fonctionnels (LFG)
- ► Traces indexées (Penn Treebank)

Habituellement, les parsers en constituants utilisent des versions prétraitées des corpus où ces informations sont retirées

Conversions

- Données:
 - French Treebank (FTB, Abeillé et al. 2003)
 - ▶ French Question Bank (FQB, Seddah et Candito, 2016)
 - Sequoia Treebank (SEQ, Candito et al. 2014)
- Schéma d'annotation du FTB
- Candito et Seddah (2012): ajouts de chemins fonctionnels sur les constituants pour certains types de dépendances à longue distance.
 - On utilise ces chemins fonctionnels pour convertir les corpus vers un format en constituants discontinus.

Phénomènes cibles

- Relatives
 - Conseiller municipal socialiste, il était déjà cependant directeur général de la banque qu'il va présider. FTB
- Questions
 - ► Pour quel type de logement puis-je bénéficier d'une aide au logement ? FQB
- Clivées
 - C'est donc toute la vie industrielle du bassin de Saint-Dizier, sans oublier les papeteries de Jeand'Heurs, les carrières de Savonnières, que les visiteurs du lavoir pourront découvrir. SEQ
- Dislocations
 - À un "déterminisme technologique", développé notamment par Alain Touraine, où l'histoire des techniques s'impose à l'organisation du travail et à l'emploi, on doit opposer "une dialectique à trois termes, technologie, organisation et travail". FTB
- Clitiques
 - ► La crise, tout le monde la sentait, mais ce mois terrible en fait prendre la mesure. FTB

Algorithme de conversion

Quelques statistiques

Quels phénomènes sont à l'origine des discontinuités ?

Phénomène	FTB-TRAIN		FQB		SEQUOIA	
Propositions relatives	183	72%	4	5%	36	77%
Questions	8	3%	83	95%	2	4%
Constructions clivées	5	2%	0	0%	4	9%
Dislocations	1	< 1%	0	0%	1	2%
en	57	22%	0	0%	4	9%
Total	254	100%	87	100%	47	100%

Phénomènes les plus fréquents

- Relatives
- Questions (FQB)
- en

Quelques statistiques

	FTB-TRAIN	FQB-ALL	SEQUOIA
Tokens	443,113	23,222	67,038
Phrases	1,4759	2,289	3,099
Phrases avec discontinuité	253 (1.71%)	88 (3.84%)	46 (1.48%)
Constituants	298,025	15,966	47,586
Constituants discontinus	374 (0.13%)	94 (0.59%)	70 (0.15%)

- Discontinuités très rares dans les corpus obtenus
 - ▶ 4 fois plus fréquentes dans le French Question Bank que dans les autres corpus
 - mais seuls certains phénomènes sont pris en compte

Plan

Introduction

Arbres en constituants discontinus

Analyse syntaxique en constituants discontinus

Expériences

Conclusion

Hypothèses

Arbres binaires et lexicalisés

- SENT: symbole temporaire (introduit par binarisation)
- Encode implicitement un arbre en dépendances (non projectif)

Construire des constituants discontinus

Shift-Reduce standard: les réductions s'appliquent aux 2 éléments en sommet de pile

Pour les discontinuités: on voudrait faire des réductions avec n'importe quel constituant de la pile

Shift-Reduce+Gap (Coavoux et Crabbé, 2017)

Solution:

- Extension de Shift-Reduce: Shift-Reduce+Gap
- On divise la pile habituelle en 2 structures de données (Pile+File).

- ► Les réductions s'appliquent aux sommets respectifs des 2 structures
- ► Nouvelle action (GAP) pour contrôler les mouvements entre les 2 structures

Exemple: créer un constituant X avec pour descendants x_0 et x_3

Exemple: créer un constituant X avec pour descendants x_0 et x_3 \rightarrow GAP

Exemple: créer un constituant X avec pour descendants x_0 et $x_3 \rightarrow \text{GAP}$, GAP

Exemple: créer un constituant X avec pour descendants x_0 et x_3 \rightarrow GAP, GAP, REDUCE avec x_0 et x_3

Exemple: créer un constituant X avec pour descendants x_0 et x_3 \rightarrow GAP, GAP, REDUCE avec x_0 et x_3 . Créer un nouveau noeud.

Exemple: créer un constituant X avec pour descendants x_0 et x_3 \rightarrow GAP, GAP, REDUCE avec x_0 et x_3 . Créer un nouveau noeud. Vider la File sur la Pile.

Exemple: créer un constituant X avec pour descendants x_0 et x_3 \rightarrow GAP, GAP, REDUCE avec x_0 et x_3 . Créer un nouveau noeud. Vider la File sur la Pile. Ajouter le nouveau noeud sur la File.

Système de transitions

- ➤ 3 structures de données: Pile et File (stockent des sous-abres), Buffer (stocke les tokens)
- ► Configuration = (Pile, File, Buffer)
 - ▶ Configuration initiale = $(\emptyset, \emptyset, [w_1, w_2 \dots w_n])$
 - ▶ Configuration finale = $(\emptyset, [A], \emptyset)$
 - ► A = axiome

Transitions

	Input O			Output		
Shift Reduce-Left/Right(X) Gap	(S,	D,	<i>b</i> ₀ B)	(S D,	[<i>b</i> ₀],	B)
	$(S s_0,$	D <i>d</i> ₀ ,	B)	(S D,	[X],	B)
	$(S s_0,$	D,	B)	(S,	<i>s</i> ₀ D,	B)

Initialisation

Reduce-Unary(NP)

Shift-Reduce-Gap : Pile - File - Buffer Reduce(VN)

sh, ru(NP), sh, sh, rl(VN), sh

ReduceUnary(VN)

sh, ru(NP), sh, sh, rl(VN), sh, ru(VN)

sh, ru(NP), sh, sh, rl(VN), sh, ru(VN), gap

${\sf Shift\text{-}Reduce\text{-}Gap: Pile-File-Buffer}$

ReduceLeft(VPinf)

sh, ru(NP), sh, sh, rl(VN), sh, ru(VN), gap, rl(VPinf)

$Shift-Reduce-Gap: \ \, \textbf{Pile}-File-Buffer$

ReduceRight(SENT:)

sh, ru(NP), sh, sh, rl(VN), sh, ru(VN), gap, rl(VPinf), rr(SENT:)

sh, ru(NP), sh, sh, rl(VN), sh, ru(VN), gap, rl(VPinf), rr(SENT:), sh

Shift-Reduce-Gap : Pile - File - Buffer ReduceLeft(SENT)

sh, ru(NP), sh, sh, rl(VN), sh, ru(VN), gap, rl(VPinf), rr(SENT:), sh, rl(SENT)

Modèle statistique

- Architecture neuronale multitâches (Caruana 1997) qui modélise conjointement:
 - ▶ $P(t|w_1^n)$: la probabilité d'un arbre t pour la phrase w_1^n
 - ▶ $P(M_1^n|w_1^n)$: la probabilité de la matrice de tags M_1^n

	POS	nombre	genre	temps	mode	fonction
Le	D	sg	m	NA	NA	det
chat	N	sg	m	NA	NA	suj
dort	V	sg	NA	pres	ind	root

- Multitâches: partage de représentations entre le tagger et le parser
 - intuition: les tâches se profitent mutuellement
 - biais inductif: on contraint les représentations apprises pour le parser à être de bons prédicteurs de la morphologie

Introduction

Arbres en constituants discontinus

Analyse syntaxique en constituants discontinus

Représentations partagées: bi-LSTM hiérarchique

Prédire les tags

Prédire les arbres

Expériences

Conclusion

Codeur LSTM bi-directionnel

- Réseau récurrent permettant de représenter une séquence
- ▶ LSTM avant: calcule des représentations pour les préfixes $x_1^k = (x_1, x_2, ..., x_k)$ $(k \in \{1, ..., n\})$
- LSTM arrière: calcule des représentations pour les suffixes $x_k^n = (x_k, x_{k+1}, \dots, x_n) \ (k \in \{1, \dots, n\})$

- ▶ $[\mathbf{f}_n; \mathbf{b}_1]$ représente toute la séquence x_1^n
- ▶ $[\mathbf{f}_i; \mathbf{b}_i]$ représente le token x_i en contexte (embedding contextuel)

Représentations partagées entre tagger et parser

Réseau bi-LSTM hiérarchique (Plank et al. 2016):

- Une entrée lexicale x est représentée par la concaténation [w; c]
 - ▶ w : embedding de mot
 - ▶ c = bi-LSTM(caractères)
- ▶ Un token x_i en contexte dans une phrase x₁ⁿ est représenté par un second bi-LSTM
 - $h_i^{(1)} = [\mathbf{f}_i; \mathbf{b}_i]$

Architecture

En pratique: bi-LSTM profond (2 étages), supervision du tagging sur la 1ère couche (Søgaard et al. 2016)

Prédire les tags

Hypothèses d'indépendance entre les différents types de tags (POS, nombre, fonction . . .) et entre les tags de chaque token:

$$P(M_1^n|w_1^n) = \prod_{i=1}^n \prod_{j=1}^k P(M_{i,j}|w_1^n)$$

▶ Pour le type j et le token en position i:

$$P(m_{i,j} = \cdot | w_1^n) = \mathsf{Softmax}(\mathbf{W}^{(j)} \cdot \mathbf{h}_i)$$
 $j \in \{1, \dots k\}$

Prédire les actions de parsing

Réseau feed-forward (Chen et Manning 2014)

- ► Pour prédire une action à partir d'une configuration, l'input est la concaténation v :
 - Des embeddings simples pour les non-terminaux
 - Les embeddings contextuels du bi-LSTM h; pour les éléments lexicaux
- $P(a_i|a_1^{i-1},w_1^n) = \operatorname{Softmax}(\mathbf{W}^{(p)} \cdot \mathbf{v})$

Plan

Introduction

Arbres en constituants discontinus

Analyse syntaxique en constituants discontinus

Expériences

Conclusion

Expériences

Données:

- 3 corpus : FTB, FQB, Sequoia
- ► Entraînement: soit FTB (split standard), soit FQB (80%)
- Prétraitements standards (binarisation)

Optimisation:

SGD moyennée (vraisemblance des tags et des arbres golds)

$$-\log \prod_{i=1}^{n} \prod_{j=1}^{k} P(M_{i,j}|w_{1}^{n}) - \log \prod_{a=1}^{K} P(a_{i}|a_{1}^{i-1}|w_{1}^{n})$$

 Grid search pour les hyperparamètres (tailles des couches cachées, des embeddings, learning rate), sélection du meilleur modèle sur le corpus de développement

Décodage:

▶ Recherche gloutonne (\approx 480 tokens / seconde)

Évaluation:

► F1 standard / F1 calculé uniquement sur les constituants discontinus

Résultats: Expérience 1

Les discontinuités sont plus faciles à prédire sur le French Question Bank.

	All	Constituants discontinus F1 P R				
Corpus (dev)	F1	F1	Р	R		
French Treebank French Question bank	82.3	17.4	36.4	11.4		
French Question bank	95.2	62.5	55.6	71.4		

Hypothèses:

- Discontinuités beaucoup plus fréquentes
- ► Types de discontinuités homogènes (questions à 95%)
- ▶ Phrases plus courtes en moyenne

Résultats: Expérience 2

Variabilité des résultats (sur 64 modèles avec différents hyper-paramétrages, Dev)

Constituants									
	All			Disc.					
	F1	Р	R	F1	Р	R			
FT	FTB-DEV - Entraînement sur FTB-TRAIN								
Maximum	82.33	82.3	82.39	32.0	60.0	22.86			
Minimum	80.2	80.11	80.3	3.85	5.88	2.86			
Écart-type	0.428	0.431	0.433	6.931	12.8	4.853			
FQ	FQB-DEV — Entraînement sur FQB-TRAIN								
Maximum	95.18	95.23	95.26	75.0	71.43	85.71			
Minimum	93.75	93.73	93.76	40.0	30.77	57.14			
Écart-type	0.317	0.324	0.33	8.838	11.42	7.785			

- ▶ Résultats très stables pour F-score sur tous les constituants
- Résultats très instables sur les constituants discontinus
- Trop peu de données pour évaluation fiable

Résultats: Expérience 3 – Évaluation finale (corpus de test)

- Comparaison à un perceptron structuré (même système de transitions)
- Comparaison à des analyseurs en dépendances non projectifs

	Const All F1	ituants Disc. F1	Dépen UAS	dances LAS	Tagging		
Entraînement sur FTB-TRAIN							
Analyseur bi-LSTM, faisceau=1 (glouton) FTB-TEST ^a FQB-ALL	82.04 85.14	14.46 11.43	88.24 89.08	83.40 79.39	97.66 93.89		
Perceptron structuré, faisceau=16 FTB-TEST ^a	79.42	19.05	-	-	97.35		
FTB-TEST: Michalon et al. (2016) FQB-ALL: Seddah et Candito (2016)	-	-	86.6 87.70	83.3 76.48			

Plan

Introduction

Arbres en constituants discontinus

Analyse syntaxique en constituants discontinus

Expériences

Conclusion

Conclusion

Contributions

- Corpus discontinus pour le français obtenus par conversion de corpus existants
 - https://github.com/mcoavoux/french_disco_data
- Expériences d'analyse en constituants discontinus
 - https://github.com/mcoavoux/mtg

Perspectives

- Représentations discontinues pour d'autres phénomènes (incises, relatives extraposées)
- Évaluation multilingue (Anglais, Allemand, Français)

https://github.com/mcoavoux/mtg/mcoavoux@linguist.univ-paris-diderot.fr

Merci!

Questions? Commentaires?

Merci à Marie Candito et Djamé Seddah.

Résultats multi-lingues (Dev)

	English (PTB)		Allemand (Tiger)		Français (FTB)	
Transition System	F	Disc. F	F	Disc. F	F	Disc. F
sr-gap	90.71	71.93	86.7	58.89	81.7	13.64
unlex-cl-gap	91.13	72.71	87.39	62.64	82.3	18.18