

## FY2045 Problem set 8 fall 2023

Professor Jens O. Andersen and Henning G. Hugdal

October 25, 2023

## Problem 1

Consider an electron in a hydrogen atom. The orbital angular momentum operator is denoted by  $\hat{\mathbf{L}}$  and the spin operator by  $\hat{\mathbf{S}}$ . Since  $\hat{\mathbf{L}}^2$ ,  $\hat{\mathbf{S}}^2$ ,  $\hat{L}_z$  and  $\hat{S}_z$  commute among themselves and commute with the Hamiltonian  $\hat{H}$  of the hydrogen atom, l,  $m_l$ , s, and  $m_s$  are good quantum numbers. We denote the energy eigenstates of hydrogen by  $|nlm_lm_s\rangle_{LS}$ , where n is the principal quantum number and the subscript LS denotes that these are eigenstates of  $\hat{\mathbf{L}}^2$  and  $\hat{\mathbf{S}}^2$ . Notice that we suppress the quantum number s since it is always  $\frac{1}{2}$ .

- a) Consider the case with l = 1. How many states are there?
- b) The total angular momentum is given by  $\hat{J} = \hat{\mathbf{L}} + \hat{\mathbf{S}}$ . Explain why  $\hat{J}^2$  and  $\hat{J}_z$  commute with  $\hat{\mathbf{L}}^2$ ,  $\hat{\mathbf{S}}^2$ , and  $\hat{H}$ .
- c) Instead of using the quantum numbers n, l,  $m_l$ , and  $m_s$ , we can make a change of basis and label the energy eigenstates by n, l, j, and  $m_j$ . These are denoted by  $|nljm_j\rangle_J$ , where the subscript J indicates that this is an eigenstate of  $\hat{\mathbf{J}}^2$ . For l=1, what are the possible values for j? Count the number of states with l=1 for one specific value of n, and compare with the result in a).

d) For l=1, express all the states  $|nljm_j\rangle_J$  in terms of  $|nlm_lm_s\rangle_{LS}$ . Hint: Start with the state with  $j=j_{max}$  and  $m_j=j_{max}$ , and operate with the total lowering operator  $J_-=L_-+S_-$  repeatedly until you reach the state with  $m_j=-j_{max}$ . Then construct a state with  $m_j=j_{max}-1$  which is orthogonal to the  $m_j=j_{max}-1$  state you already have, and operate with  $J_-$  repeatedly to find all states with  $j=j_{max}-1$ . Repeat this procedure until you have found all the states. See e.g. Ø13.3 for more details regarding this procedure. Remember that  $J_-$  does not affect the quantum number n.

## Problem 2

The total spin of two spin ½ particles can be either 1 or 0, where the states  $|s,m\rangle$  for the two cases are

$$|1,1\rangle = |\uparrow\uparrow\rangle, \tag{1}$$

$$|1,0\rangle = \frac{1}{\sqrt{2}}[|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle],$$
 (2)

$$|1,-1\rangle = |\downarrow\downarrow\rangle, \tag{3}$$

for s = 1, and

$$|0,0\rangle = \frac{1}{\sqrt{2}}[|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle],\tag{4}$$

for s=0, where  $|\uparrow\uparrow\rangle=|\uparrow\rangle|\uparrow\rangle$ , etc., with  $|\uparrow(\downarrow)\rangle$  denoting spin up (down) for one particle along the z direction.

a) Using the eigenspinors along x, y and z for spin  $\frac{1}{2}$ , show that we can write

$$|\uparrow\rangle \equiv |\uparrow_z\rangle = \frac{|\uparrow_x\rangle + |\downarrow_x\rangle}{\sqrt{2}} = \frac{|\uparrow_y\rangle + |\downarrow_y\rangle}{\sqrt{2}},\tag{5}$$

$$|\downarrow\rangle \equiv |\downarrow_z\rangle = \frac{|\uparrow_x\rangle - |\downarrow_x\rangle}{\sqrt{2}} = \frac{|\uparrow_y\rangle - |\downarrow_y\rangle}{\sqrt{2}i},$$
 (6)

where  $|\uparrow_x\rangle$  is the spin up state along x, etc.

**b)** Find expressions for the states  $|10\rangle$  and  $|00\rangle$  when the total spin is measured along the x and y direction by using the above relations. Any comments?