Stochastic Optimisation - Problem Sheet 5

Dom Hutchinson

December 4, 2020

Question 3)

Consider a queueing system with room for n customers which operates over N time periods (denoted by $0, \ldots, N-1$). Regarding this system, we assume the following

- Only one customer can arrive during a period. A new customer arrives during a period with probability p.
- Customer arrivals in different periods are independent.
- A new customer is either allowed to join the queue or be rejected. Rejected customers depart without attempting to re-enter.
- The service of a customer can start/end at the beginning/end of a period.
- A customer in service at the beginning of a period terminates the service at the end of the period with probability q, with q < p. This is independent of the number of periods the customer has been in service and of the number of customers in the system.
- The cost of rejecting a customer is C. The cost of maintaining i customers in the queue over a single period is ci. The cost of admitting a new customer is c.

The problem is to decide, at each time period, whether to accept or reject a new customer so as the expected total cost is minimal. Each decision should be based on the current number of customers in the queue.

Question 3) (a)

Formulate the problem of minimizing the total expected cost as a *Markov Decision Problem*. Derive the optimality equations for the formulated decision problem.

Answer 3) (a)

Let X_t be the system state at the start of time-period t and Y_t be the action the agent takes at the start of time-period t.

Let W_t represent the number of people wishing to join the queue in time-period t and Z_t represent the number of customers to leave the queue in time-period t. They have the following distribution

$$\mathbb{P}(W_t = w) = \begin{cases} p & w = 1 \\ 1 - p & w = 0 \end{cases} \\
\mathbb{P}(Z_t = z) = \begin{cases} q & z = 1 \\ 1 - q & z = 0 \end{cases}$$

1

• Decision Epochs - At the start of each period.

- $Time-Horizon T = \{0, ..., N-1\}.$
- Action-Space.

We allow the agent to decide whether to allow customers to join the queue of not. This can be encoded into Y_t as

$$Y_t = \begin{cases} 1 & \text{if accepting customers} \\ 0 & \text{if } \underline{\text{not}} \text{ accepting customers} \end{cases}$$

As at most 1 customer may wish to join the queue in a given time-period, Y_t is equivalent to the maximum amount of customer being allowed to join the queue under each case.

The Action-Space is $A = \{0, 1\}$.

• State-Space

Let X_t take the value of the number of customers in the queue at the start of time-period t. As n is the capacity of the queue $X_t \in [0, n]$ and can take any value in this interval. This means the state-space is $S = \{0, 1, \ldots, n\}$.

This gives us the state-equation $X_{t+1} = X_t + Y_t W_t - Z_t$.

- Admissible Action-Space $A(s) = \begin{cases} \{0,1\} & \text{if } s \in [0,\ldots,n-1] \\ \{0\} & \text{if } s = n \end{cases}$.
- Transition Probabilities The definition of transition probabilities state

$$p_t(s'|s,a) := \mathbb{P}^{\pi}(X_{t+1} = s'|X_t = s, Y_t = a)$$

Specifically, from the state equation for X_{t+1} we want to derive

$$p_t(s'|s, a) = \mathbb{P}^{\pi}(X_{t+1} = s'|X_t = s, Y_t = a)$$

= $\mathbb{P}^{\pi}(X_t + Y_tW_t - Z_t = s'|X_t = s, Y_t = a)$
= $\mathbb{P}(s + aW_t - Z_t = s')$

Consider the following cases involving s' wrt s

i). s = 0.

If the queue is empty then no-one can leave so $\mathbb{P}(Z_t = 0) = 1$.

$$p_{t}(s'|0,a) = \mathbb{P}(aW_{t} = s')$$

$$= \begin{cases} 1 & \text{if } a = 0, s' = 0 \\ \mathbb{P}(W_{t} = 0) & \text{if } a = 1, s' = 0 \\ \mathbb{P}(W_{t} = 1) & \text{if } a = 1, s' = 1 \\ 0 & \text{otherwise} \end{cases}$$

$$= \begin{cases} 1 & \text{if } a = 0, s' = 0 \\ 1 - p & \text{if } a = 1, s' = 0 \\ p & \text{if } a = 1, s' = 1 \\ 0 & \text{otherwise} \end{cases}$$

ii). s=n.

If the queue is full then no-one can join the queue, so $\mathbb{P}(W_t = 0) = 1$.

$$p_{t}(s'|n,a) = \mathbb{P}(n - Z_{t} = s')$$

$$= \begin{cases} \mathbb{P}(Z_{t} = 0) & \text{if } s' = n \\ \mathbb{P}(Z_{t} = 1) & \text{if } s' = n - 1 \\ 0 & \text{if } s' < n - 1 \end{cases}$$

$$= \begin{cases} 1 - q & \text{if } s' = n \\ q & \text{if } s' = n - 1 \\ 0 & \text{if } s' < n - 1 \end{cases}$$

Note that these results are independent of the action taken a.

iii). $s' = s, s \notin \{0, n\}.$

The queue has not changed size, is non-empty and non-full. Thus, either no movements have occurred or, one customer joined the queue and another customer left the queue.

$$\begin{array}{rcl} p_t(s|s,a) & = & \mathbb{P}(s+aW_t-Z_t=s) \\ & = & \mathbb{P}(aW_t-Z_t=0) \\ & = & \begin{cases} \mathbb{P}(Z_t=0) & \text{if } a=0 \\ \mathbb{P}(W_t=Z_t) & \text{if } a=1 \end{cases} \\ & = & \begin{cases} 1-q & \text{if } a=0 \\ pq+(1-p)(1-q) & \text{if } a=1 \end{cases} \end{array}$$

iv). $s' = s + 1, s \notin \{0, n\}.$

In this case we must have allowed people to join the queue, thus a=1

$$p_{t}(s+1|s,a) = \mathbb{P}(s+aW_{t}-Z_{t}=s+1)$$

$$= \mathbb{P}(W_{t}-Z_{t}=1)$$

$$= \mathbb{P}(W_{t}=1)\mathbb{P}(Z_{t}=0)$$

$$= p(1-q)$$

v). $s' = s - 1, s \notin \{0, n\}.$

$$p_{t}(s-1|s,a) = \mathbb{P}(s+aW_{t}-Z_{t}=s-1)$$

$$= \mathbb{P}(aW_{t}-Z_{t}=-1)$$

$$= \begin{cases} \mathbb{P}(Z_{t}=1) & \text{if } a=0 \\ \mathbb{P}(W_{t}=0,Z_{t}=1) & \text{if } a=1 \end{cases}$$

$$= \begin{cases} q & \text{if } a=0 \\ (1-p)q & \text{if } a=1 \end{cases}$$

vi). All other cases.

All other cases require either the number of people in the queue to become negative or to change by more than 1 in a single time-step, both of these are impossible so have 0 probability.

$$p_t(s'|0,a) = 0$$

• Immediate Costs For costs in time-period t we always have to pay cX_t for the length of the queue. Additionally, if a customer is rejected C is payed as well. Mathematically, a customer is rejected if $W_t = 1$ and $Y_t = 0$. We can summarise the total cost G_t incurred in time-period t as

$$G_t := g_t(W_t, X_t, Y_t) = cX_t + \mathbb{1}\{W_t = 1, Y_t = 0\} \cdot C$$

This assumes that $Y_t = 0$ if the queue is already full.

• Equivalent Objective

The objective of this problem is to minimise expected total cost

$$\mathbb{E}^{\pi} \left[G_t \right] = \mathbb{E}^{\pi} \left[g_t(W_t, X_t, Y_t) \right]$$

This expectations depends upon the number of customers wishing to join the queue Y_0, \ldots, Y_{N-1} which is independent of a policy π so does not fit within the framework a *Markov Decision Problem*. Thus I shall transform the expect total cost.

$$\mathbb{E}^{\pi} \left[\sum_{t=0}^{N_1} G_t \right] = \sum_{t=0}^{N-1} \mathbb{E}^{\pi} [G_t]$$

$$= \sum_{t=0}^{T} \mathbb{E}^{\pi} \left[\mathbb{E}^{\pi} [G_t | X_t, Y_t] \right]$$

$$= \sum_{t=0}^{N-1} \mathbb{E}^{\pi} \left[\mathbb{E}^{\pi} [g_t(W_t, X_t, Y_t) | X_t, Y_t] \right]$$

Define reward functions $r_t(s, a)$ and $r_N(s)$

$$r_{N}(s) = 0$$

$$r_{t}(s, a) = -\mathbb{E}^{\pi}[g_{t}(W_{t}, X_{t}, Y_{t})|X_{t} = s, Y_{t} = a]$$

$$= -\mathbb{E}^{\pi}[g_{t}(W_{t}, s, a)|X_{t} = s, Y_{t} = a]$$

$$= -\mathbb{E}^{\pi}[g_{t}(W_{t}, s, a)]$$

$$= -p \cdot g_{t}(1, s, a) - (1 - p) \cdot g_{t}(0, s, a)$$

$$= -p(cs + \mathbb{1}\{a = 0\}C) - (1 - p)cs$$

$$= -cs - \mathbb{1}\{a = 0\} \cdot pC$$

Using these reward functions the negative total expected reward can be rephrased

$$-\mathbb{E}^{\pi} \left[r_N(X_n) + \sum_{t=0}^{N-1} r_t(X_t, Y_t) \right]$$
 (1)

The equivalent objective is to find a policy $\pi \in HR(T)$ which maximises (1).

Question 3) (b)

Solve the formulated Markov decision problem for the following case

- N = 2, n = 3.
- $p = \frac{1}{2}, q = \frac{1}{4}$.
- C = 2, c = 1.

Answer 3) (b)

From the markov decision problem formulated in 3) (a) and the given conditions we can state the following properties of the system

$$T = \{0,1\}$$

$$S = \{0,1,2,3\}$$

$$A = \{0,1\}$$

$$A(s) = \begin{cases} \{0,1\} & \text{if } s \in \{0,1,2\} \\ \{0,\} & \text{if } s = 3 \end{cases}$$

The transition probabilities $p_t(s'|s, a)$ are defined in the tables below, separated by what action a is taken.

The terminal cost value is $r_2(s, a) = 0$. The cost function values $r_t(s, a)$ are given in the table below

To find the optimal policy π^* we use the dynamic programming algorithm which is defined as

$$w_t^*(s, a) := r_t(s, a) + \sum_{s' \in S} u_{t+1}^*(s') p_t(s'|s, a)$$

$$u_t^*(s) = \max_{a \in A(s)} (w_t^*)$$

$$d_t^*(s) = \operatorname{argmax}_{a \in A(s)} (w_t^*)$$

where $u_2^*(s) := r_2(s) = 0 \ \forall \ s \in S$. Specifically, we need to determine $u_t^*(s)$, $d_t^*(s)$ for all states s in each time-period $t \in \{1,0\}$.

• $Time-Period\ t=1$.

In this case

$$w_1^*(s, a) = r_1(s, a) + \sum_{s' \in \{0, 1, 2, 3\}} u_2^*(s) p_t(s'|s, a)$$
$$= r_1(s, a) \text{ since } u_2^*(s) = 0 \ \forall \ s \in S$$

This gives the following table of values for $w_1^*(s,a)$

$$w_1^*(s,a) = \begin{array}{c|ccc} s & 0 & 1 \\ \hline 0 & -1 & 0 \\ 1 & -2 & -1 \\ 2 & -3 & -2 \\ 3 & -4 & -3 \end{array}$$

From this table, taking action a = 1 produces the greatest expected value in all states. This is summarised in the following table for $u_1^*(s), d_1^*(s)$

s	$u_1^*(s)$	$d_1^*(s)$
0	0	1
1	-1	1
2	-2	1
3	-3	1

• $Time-Period\ t=0$.

In this case

$$w_0^*(s,a) = r_0(s,a) + \sum_{s' \in \{0,1,2,3\}} u_1^*(s) p_t(s'|s,a)$$
$$= r_0(s,a) - p_t(1|s,a) - 2 \cdot p_t(2|s,a) - 3 \cdot p_t(3|s,a)$$

This gives the following table of values for $w_0^*(s,a)$

Again, from this table, taking action a = 1 produces the greatest expected value in all states. This is summarised in the following table for $u_1^*(s), d_1^*(s)$

The optimal policy is

$$\pi^* = (d_0^*(s), d_1^*(s)) = (1, 1) \ \forall \ s$$

The optimal value function is

$$u_0^*(s) = \begin{cases} -1/2 & \text{if } s = 0\\ -15/8 & \text{if } s = 1\\ -29/8 & \text{if } s = 2\\ -23/4 & \text{if } s = 3 \end{cases}$$

Question 4)

Consider the following machine maintenance problem.

A machine is operated over time-periods $0, \ldots, N-1$. The machine can be in one of states $1, \ldots, M$. For $s \in \{1, \ldots, M-1\}$, we assume that the condition of the machine is better in state s than in state s+1 (ie 1 is best condition, M is worst condition).

At the start of each period, the state of the machine is known and one of the following actions is taken

- The machine is allowed to operate in the current state for one more period.
- The machine is repaired: If the machine is in state $s \in \{2, ..., M\}$ at the beginning of the time-period, then its state can immediately be restored to (a better) state in $s' \in \{1, ..., s-1\}$ at cost $c_r(s, s')$.

The cost of operating the machine in state $s \in \{1, ..., M\}$ during a time-period is $c_o(s)$. (If the machine is in state s after the action taken at the beginning of a time-period, cost $c_0(s)$ is incurred during that period). We assume worst states cost more

$$c_o(1) < \cdots < c_0(M)$$

During each time-period, the state of the machine can become worse or it may stay unchanged. The machine changes its state randomly:

- If $s \in \{1, ..., M-1\}$ is the state after the action taken at the beginning of the time-period, the machine will be in state $s' \in \{s, ..., M\}$ at the end of this period with probability p(s'|s) where $p(s'|s) \ge 0$ and $\sum_{s'=s}^{M} p(s'|s) = 1$.
- If the machine is in state M after the action taken at the beginning of the time-period, the machine will remain in state M at the end of this period with probability one.

The problem is to decide, at the beginning of each time-period, what action to take so as to expect total cost of operating the machine over period $0, \ldots, N-1$ is minimal. The decision should be based on the state of the machine.

Question 4) (a)

Formulate the described machine maintenance problem as a finite horizon Markov decision problem. More precisely, state the state-space S, action-space A, time-horizon T, transition probabilities $p_t(s'|s,a)$ and immediate rewards $r_t(s,a)$.

Answer 4) (a)

- Decision Epochs -
- $Time-Horizon T = \{0, ..., N-1\}.$
- Action-Space A
- $Admissible\ Action-Space\ -\ A(s)$
- State-Space S
- Transition Probabilities $p_t(s'|s,a)$
- Immediate Costs $r_t(s, a)$
- Immediate Rewards $r_t(s, a)$
- Objective

Question 4) (b)

Find the optimal policy for the Markov decision problem formulated it 4) (a) under the following conditions

- M = 3, N = 2.
- $\bullet \ p(1|1) = \frac{1}{2}, \ p(2|1) = \frac{1}{4}, \ p(3|1) = \frac{1}{4}, \ p(2|2) = \frac{1}{4}, \ p(3|2) = \frac{3}{4}.$
- $c_r(2,1) = 1$, $c_r(3,2) = 2$, $c_r(3,1) = 4$.

•
$$c_o(1) = 1$$
, $c_o(2) = 2$, $c_o(3) = 5$.

Answer 4) (b) TODO