Connectives exercises

Peter Rowlett

1. Consider the sentence: "Did you see Angharad or Ros earlier?"

Which type of 'or', OR (\vee) or XOR (\oplus) , is being used?

2. Consider the sentence: "The door is open or closed."

Which type of 'or', OR (\lor) or XOR (\oplus) , is being used?

3. Consider the following conversation.

Waiter: Would you like tea or coffee?

Customer: Tea, please.

Waiter: Would you like milk or sugar?

Customer: Both, please.

Which type of 'or', OR (\vee) or XOR (\oplus) , is intended by the waiter in each of the two questions?

4. In natural language, it is often irritating to communicate in a way that is strictly logical. Consider the following unhelpful dialogue. Is person 2 right?

Person 1: Is the window open or closed?

Person 2: Yes.

5. While we are on the subject of natural language, as an aside, can you make sense of the following dialogue?

Three people meet a friend in a pub.

Friend: Do you all want a beer?

Person 1: I don't know. Person 2: I don't know.

Person 3: Yes.

6. Suppose we have the following propositions.

p: "It is cold"

q: "It is raining"

u: "It is cold but not raining"

The relationship of u to p and q can be described using a combination of the operators discussed above.

$$u = p \text{ AND (NOT } q)$$

$$u = p \land \neg q$$

Complete the table below.

p	\overline{q}	$\neg q$	$u = p \land \neg q$
false	false		
false	true		
true	false		
true	true		

- 7. Express the following using simpler mathematical notation. The first is done for you.
 - (a) $(\pi > 0) \land (\pi < 10)$ [Answer: $0 < \pi < 10$.]
 - (b) $(p \ge 7) \land (p < 12)$.
 - (c) $(x > 5) \land (x < 7)$.
 - (d) $x < 4 \land x < 6$.
 - (e) $(x \ge 0) \land (x \le 0)$.
 - (f) $(x = 0) \lor (x > 0)$.
 - (g) $\neg (x > 7)$.
 - (h) $\neg (x = 1)$.
 - (i) $\neg (\neg (x > 0))$.
 - (j) $\neg (x \text{ is even}).$
- 8. Is this statement true or false? " $(3 < 5) \lor (1 = 2)$ ".
- 9. What would you need to do to demonstrate that $p \wedge q \wedge r \wedge s \wedge t$ is true?
- 10. What would you need to do to demonstrate that $p \wedge q \wedge r \wedge s \wedge t$ is false?
- 11. What would you need to do to demonstrate that $p \lor q \lor r \lor s \lor t$ is true?
- 12. What would you need to do to demonstrate that $p \lor q \lor r \lor s \lor t$ is false?
- 13. Is it possible for one of $(p \wedge q) \wedge r$ and $p \wedge (q \wedge r)$ to be true and the other false? Write out a truth table to investigate.
- 14. Is it possible for one of $(p \lor q) \lor r$ and $p \lor (q \lor r)$ to be true and the other false? Write out a truth table to investigate.
- 15. Simplify the following statements.
 - (a) $\neg (p \lor \neg q)$.
 - (b) $\neg(\neg p \land q)$.
 - (c) $\neg (p \lor q)$.
 - (d) $\neg (p \land q)$.
- 16. A tautology is a statement such that the truth table has 'true' for all outputs. Draw a truth table to show that ' $p \lor \neg p$ ' is a tautology.
- 17. A contradiction is a statement such that the truth table has 'false' for all outputs. Draw a truth table to show that ' $p \land \neg p$ ' is a contradiction.