HW4

- 1. (20%) Design a combinational circuit with three inputs, x (MSB), y, and z (LSB), and three outputs, A (MSB), B, and C (LSB). When the binary input is 0, 1, 2, or 3, the binary output is three greater than the input (xyz=001 (1) => ABC=100 (4), xyz=011 (3) => ABC=110 (6).). When the binary input is 4, 5, 6, or 7, the binary is two less than the input (xyz=110(6) => ABC=100 (4), xyz=100 (4) => ABC=010(2)).
 - (a) Derive the truth table. (5%)
 - (b) Derive the simplified Boolean expressions for A, B, and C using maps. (10%)
 - (c) Draw the related logic diagram. (5%)

(a)

Χø	y .	Z <i>o</i>	Α.	В	C.
0 0	0.0	0 %	0 0	1 .	1 .
0 0	0 0	1.	1 .	0.0	0.0
0 0	1.0	0.	1.	0 ₽	1.0
0 0	1.0	1.	1.	1.	0.
1.0	0.0	0.	0 @	1 .	0.
1.0	0.0	1 @	0 @	1 .	1 .
1.0	1.0	0 @	1 .	0.0	0.0
1.0	1 0	1 .	1 .	0 0	1 0

(b)

(c)

2. (10%) Design an excess-3-to-binary decoder using the unused combinations of the code as don't-care conditions.

e0	e1	e2	е3	b0	b1	b2	b3
0	0	0	0	х	х	х	х
0	0	0	1	х	х	х	х
0	0	1	0	х	х	х	х
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	0
0	1	1	0	0	0	1	1
0	1	1	1	0	1	0	0
1	0	0	0	0	1	0	1
1	0	0	1	0	1	1	0
1	0	1	0	0	1	1	1
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	1
1	1	0	1	х	х	х	х
1	1	1	0	х	х	х	х
1	1	1	1	х	х	х	х

e_2e_3 e_0e_1	00	01	11	10	
00	Х	Х	0	х	
01	0	0	0	0	
11	1	Х	х	х	
10	0	0	1	0	

$\mathbf{e}_{2}\mathbf{e}_{3}$ $\mathbf{e}_{0}\mathbf{e}_{1}$	00	01	11	10	
00	×	x	0	X	
01	0	0	1	0	
11	0	Х	х	х	
10	1	1	0	1	

$$b_0 = e_0 e_1 + e_0 e_2 e_3$$

$$b_1 = e_1{}'e_2{}' + e_1e_3e_3 + e_1{}'e_3{}'$$

$e_2 e_3$ $e_0 e_1$	00	01 11		10
00	Х	х	0	х
01	0	1	0	1
11	0	х	х	х
10	0	1	0	1
		ل		

e_2e_3 e_0e_1	00	01	11	10
00	Х	x	0	×
01	1	0	0	1
11	1	x	Х	х
10	1	0	0	1

 $b_2 = e_2{}'e_3 + e_2e_3{}'$

3. (10%) Design a combinational circuit that compares two 4-bit unsigned numbers A and B to see whether A is greater than B. The circuit has one output X, so that X = 0 if $A \le B$ and X = 1 if A > B

4. (10%) Design a 3-bit absolute value calculator. (Z=|z|).

以下提供兩種不同的做法供同學參考:

(I)

	23	2,	2,	A ₃	A,	Α,
0	0	0	o	0	0	0
1	0	0	1	0	0	1
2	0	ı	0	0	1	0
3	O	i	0	0	1	ı
-4	1	0	o	×	, *	ż
0 1 2 3 -4 -3	1	•	1	0 X 0	į.	î
	1	- 1	0	0	1	0
-1	1	1	- 1	0	0	1

2,2	2 00	٥١	n	10	
o	0	0	o	0 .	A, = 0
1	×	О	0	0	- 3

23	00	01	111	10		V
0	0	0	1	T	A	= 7,
ī	×	0	U	U		

Logic Diagram

Half adder

5. (10%) Design a 4x4 multiplier using four-bit adders (Ripple-Carry adders) and other logic gates.

6. (20%) Design a three-way magnitude comparator that outputs true if its three inputs are in strict order: a>b>c. a, b, and c are all three-bit unsigned numbers.

- 7. (10%) Design a 4->2 priority encoder with input D[3:0] and output A[1:0] where D_0 has the highest priority and D_3 has the lowest priority.
 - * 本題需注意 valid (V) 為 priority encoder 的一部分,因此不能省略

8. (10%) Which of the following circuits are combinational? Each box in the figure is itself a combinational circuit.

Ans: (a)(b)(d) are combinational. 参考老師上課講義 Combinational Logic P.6

- (c) is a sequential logic circuit because the feedback variable can remember the history of the circuits .
- (a)(b)(d) are combinational circuits whose outputs at any time are determined directly and only from the present input combination.