FINAL PROJECT

Problem Description

In this project, we aim to design and implement a digital filter within a microcontroller to effectively mitigate noise in signal processing applications. This involves distinguishing essential signal components from noise within the same frequency spectrum to ensure data integrity and accuracy. Utilizing a Butterworth filter design for its flat passband characteristic, the project entails programming a pre-existing difference equation, calculating and applying specific filter coefficients, and embedding the solution in a microcontroller environment. This setup is expected to enhance the signal-to-noise ratio, thus improving the reliability and performance of systems dependent on precise data readings.

Calculations for N and Ω_c

Passband cutoff frequency (ω_p): 0.2π rad/s

Stopband cutoff frequency (ω_s): 0.7π rad/s

Passband ripple: 1 dB (Typical for Butterworth)

Stopband attenuation: -25 dB

Justification for ω_p and ω_s -

The selected passband cutoff frequency (ω_p) 0.2π rad/s and stopband cutoff frequency (ω_s) 0.7π rad/s for the digital filter are strategically chosen to optimize filter performance within design constraints. Setting (ω_p) 0.2π rad/s ensures the essential 10 Hz signal is comfortably included within the passband, preserving its integrity with minimal attenuation, while (ω_s) 0.7π rad/s effectively places unwanted frequencies like the 203 Hz noise well into the stopband, ensuring significant attenuation. This choice balances the need for effective noise reduction with maintaining a manageable filter order (N \leq 10), simplifying implementation and minimizing potential side effects such as aliasing and phase distortions in higher frequency components.

- 1	$50^{-1} = 10^{1/20} = 0.8913$
{\$	s = -25 = 10 ^{-25/20} = 0.0562
C	hoosing We and Ws:
	Op = 0.2 T rad/s
	S=0.7T rad/s
	01 9 11 11 11
	nding ke and ks:
K	$s = \frac{1}{8\rho^2} - \frac{1}{(0.8913)^2} - \frac{1}{(0.8913)^2}$
Ks	$= \frac{1}{8s^2} - \frac{1}{(0.0562)^2} - \frac{1}{316}$
+	85. (0.0562).
F	indica Naud. C.:
1 5	heling N and Sc:
	5 = 05 = 2.198
	TT
lн	$\left(\left \Delta \right ^{2} \right) = \frac{1}{\left + \left(\frac{\Delta}{2 - C_{c}} \right)^{2M}}$
_	1+(<u>-2-</u>)24
=	$\frac{1}{1 + \left(\frac{\Delta P}{\Delta r L}\right)^{2N}} \qquad \frac{\delta_{\delta}^{2} = \frac{1}{1 + \left(\frac{\Delta S}{\Delta r L}\right)^{2N}}$
	$= \left(\frac{\Omega \rho}{\Omega c}\right)^{2N} \qquad \qquad \approx \left(\frac{\Omega_{S}}{\Omega c}\right)^{2N}$
	$= \frac{1}{\varsigma_{\rho^2}} - (= k_{\rho}) = \frac{1}{\varsigma_{\sigma^2}} - (= k_{\varsigma})$
_	
H	ence, $\left(\frac{\Omega P}{\Omega c}\right)^{2N} = KP$ and $\left(\frac{\Omega S}{\Omega c}\right)^{2N} = KS$
	$K\rho = \left(\frac{\Delta \rho}{\Delta}\right)^{2N}$
+	$\frac{K\rho}{Ks} = \frac{\left(\frac{\Omega\rho}{\Omega c}\right)^{2N}}{\left(\frac{\Omega s}{\Omega c}\right)^{2N}}$
1	$1 = 1 \cdot \frac{\log\left(\frac{K_5}{K_4}\right)}{2 \cdot \log\left(\frac{\Delta c_5}{\Delta c_5}\right)}$
	$= \frac{1 \cdot log\left(\frac{316}{0.4588}\right)}{2 log\left(\frac{2.198}{0.628}\right)}$
	$2 \log \left(\frac{2.198}{0.688}\right)$
	= 2·8367
	≃ 3 → N=3
+	(0 0 2 N
	Now, $\left(\frac{\Omega \rho}{\Omega c}\right)^{2N} = K_{\rho} \Rightarrow \left(\frac{0.628}{\Omega c}\right)^{2\times3} = 0.2588 \Rightarrow \Omega c = 0.786$
ſ-	$\frac{\Omega_{S}}{\Omega_{C}}$) ^{2N} = $\frac{1}{4}$ S $\Rightarrow \frac{\left(\frac{2\cdot198}{\Omega_{C}}\right)^{6}}{\Omega_{C}} \Rightarrow \frac{316}{\Omega_{C}} \Rightarrow \Omega_{C} = 0.8422$
Œ	nc)
H	ence, N=3 and _2c=0.7867

A and B filter coefficients

A = [1.0000 -1.5274 0.9673 -0.2141]

 $B = [0.0282 \quad 0.0846 \quad 0.0846 \quad 0.0282]$

Plot of the magnitude of your digital filter frequency response abs(H) vs digital frequency-

Plots from microcontroller

Plot of the microcontroller output without filtering applied:

Plot of the microcontroller output with filtering applied:

