Curso de Estatística e Probabilidade DPA A-2.339 - Estatística e Probabilidade

Prof. Thiago VedoVatto thiago.vedovatto@ifg.edu.br thiagovedovatto.site

Instituto Federal de Educação, Ciência e Tecnologia de Goiás Campus de Goiânia

Data da Atualização: 7 de junho de 2021

Variáveis Aleatórias Discretas

Variável Aleatória

Seja Ω um espaço amostral definido para um determinado experimento aleatório. Uma variável aleatória associada à esse experimento é uma função real com domínio em Ω .

A figura acima define um espaço amostral Ω composto por sete eventos elementares:

$$\Omega = \{\omega_1, \ldots, \omega_7\}.$$

Também define uma variável aleatória X que associa um número real a cada um desses eventos elementares de Ω .

A associação feita é a seguinte:

$$\{\omega_1, \omega_2\} \to x_1$$

$$\{\omega_3\} \to x_2$$

$$A = \{\omega_4, \omega_5, \omega_6\} \to x_3$$

$$\{\omega_7\} \to x_4$$

Portanto:

$$\mathbb{P}(X = x_1) = \mathbb{P}(\omega_1 \cup \omega_2)$$

$$\mathbb{P}(X = x_2) = \mathbb{P}(\omega_3)$$

$$\mathbb{P}(X = x_3) = \mathbb{P}(\omega_4 \cup \omega_5 \cup \omega_6) = \mathbb{P}(A)$$

$$\mathbb{P}(X = x_4) = \mathbb{P}(\omega_7)$$

Variável Aleatória Discreta

Uma variável aleatória é discreta quando seu conjunto de valores possíveis (que apresentam probabilidade positiva) é finito ou enumerável.

Função de Distribuição de Probabilidade (FDP)

Seja X uma variável aleatória discreta assumindo valores num conjunto finito ou enumerável $\{x_1, x_2, \ldots\}$. Uma função de distribuição de probabilidade (FDP) para X é qualquer função $f(x_i) = \mathbb{P}(X = x_i)$ onde:

- $0 \le f(x_i) \le 1$ para todo x_i
- $\sum_{i} f(x_i) = 1$

Função de Distribuição Acumulada (FDA)

Associada essa mesma variável aleatória X define-se a função de distribuição acumulada (FDA) como:

$$F(x) = \mathbb{P}(X \le x), \quad x \in \mathbb{R}.$$

Exemplo: Canal Digital

Há uma chance de que um bit transmitido por meio de um canal de transmissão digital seja recebido com um erro. Seja X o número de bits com erro nos quatro próximos bits transmitidos. Os valores possíveis para X são $\{0,1,2,3,4\}$. Baseando-se em um modelo para os erros (que será apresentado na seção seguinte), as probabilidades para esses valores serão determinadas. Suponha que as probabilidades sejam:

$$\mathbb{P}(X = 0) = 0,6561$$

$$\mathbb{P}(X = 1) = 0,2916$$

$$\mathbb{P}(X = 2) = 0,0486$$

$$\mathbb{P}(X = 3) = 0,0036$$

$$\mathbb{P}(X = 4) = 0,0001$$

Qual a FDP da variável aleatória X e sua FDA? Faça um gráfico para cada uma dessas funções.

Exemplo: Tempo de recarga de flash

O tempo para recarregar o flash é testado em três câmeras de celulares. A probabilidade de uma câmera passar no teste é de 4 /5; as câmeras trabalham independentemente. Seja a variável aleatória X como sendo a quantidade de câmeras que passam no teste. O espaço amostral para o experimento e as probabilidades associadas são mostrados à seguir:

Câmera	Câmera	Câmera	Probabilidade	X
Passa	Passa	Passa	0,512	3
Passa	Passa	Falha	$0,\!128$	2
Falha	Passa	Passa	$0,\!128$	2
Passa	Falha	Passa	$0,\!128$	2
Passa	Falha	Falha	0,032	1
Falha	Passa	Falha	0,032	1
Falha	Falha	Passa	0,032	1
Falha	Falha	Falha	0,008	0

A última coluna da tabela mostra os possíveis valores assumidos pela variável aleatória X. Qual a FDP da variável aleatória X e sua FDA? Faça um gráfico para cada uma dessas funções.

Exercício Ref.:H345

Suponha o experimento de jogar três moedas honestas. Seja X o número de caras que apareceram ao final dos três lançamentos. Defina um espaço amostral para esse experimento aleatório e calcule $\mathbb{P}(X=i)$ para $i\in\mathbb{R}$.

Ross (2010, p. 117)

Suponha o experimento de jogar três moedas tais que a probabilidade de sair cara é p. Seja X o número de caras que apareceram ao final dos três lançamentos. Defina um espaço amostral para esse experimento aleatório e calcule $\mathbb{P}(X=i)$ para $i \in \mathbb{R}$. Faca um gráfico para a FDP e FDA de X assumindo que p=1/2.

Duas bolas são retiradas aleatoriamente sem reposição de uma urna contendo 8 bolas numeradas de 1 à 8. Se fizermos uma aposta que ao menos uma das bolas tenha um número maior ou igual à 6, qual é a probabilidade de vencermos essa aposta? Repita o exercício assumindo sorteio com reposição.

Ross (2010, p. 118)

Exercício Ref.:LMQD

Um experimento consiste em jogar sucessivamente uma moeda honesta até a ocorrência da primeira cara ou até o n-ésimo lançamento da moeda. Seja X o total de lançamentos feitos nesse experimento. Determine:

Um experimento consiste em jogar sucessivamente uma moeda com probabilidade de sair cara igual à p até a ocorrência da primeira cara ou até o n-ésimo lançamento da moeda. Seja X o total de lançamentos feitos nesse experimento. Determine:

- $\mathbb{P}(X=1)$

Exercício Ref.:K335

Duas bolas são simultaneamente sorteadas de uma urna contendo 3 bolas azuis, 3 vermelhas e 5 amarelas. Suponha que eu ganhe \$1 por cada bola azul sorteada e perca \$1 por cada bola vermelha. Seja X o ganho obtido com a retirada de duas bolas dessa urna. Determine:

- ${\color{red} {\mathfrak d}}$ Os possíveis valores que a variável aleatória X pode assumir.
- $footnote{b}$ As probabilidades de que X assuma cada um desses valores.
- $oldsymbol{\circ}$ Determine a FDP e a FDA da variável aleatória X
- d Faça o gráfico da FDP e da FDA.

Ross (2010, p. 119)

Duas bolas são simultaneamente sorteadas de uma urna contendo 8 bolas brancas, 4 pretas e 2 laranjas. Suponha que eu ganhe \$2 por cada bola preta sorteada e perca \$1 por cada bola branca. Seja X o ganho obtido com a retirada de duas bolas dessa urna. Determine:

- ${\color{red}_{\bf 0}}$ Os possíveis valores que a variável aleatória X pode assumir.
- $\color{red} \mathbf{b}$ As probabilidades de que X assuma cada um desses valores.
- d Faça o gráfico da FDP e da FDA.

Exercício Ref.:KN67

Dois dados honestos são jogados. Seja X o produto das duas faces obtidas. Calcule $\mathbb{P}(X=i)$ para $i\in\{1,\ldots,36\}$.

Ross (2010, p. 172)

Verifique se as funções a seguir são FDPs e ilustre seus gráficos:

$$f(x) = \begin{cases} 1/8 & \text{se } x = 1\\ 3/8 & \text{se } x = 2\\ 1/4 & \text{se } x = 3\\ 1/4 & \text{se } x = 4\\ 0 & \text{caso contrário} \end{cases}$$

$$\begin{cases}
1/4 & \text{se } x = 4 \\
0 & \text{caso contrário}
\end{cases}$$

$$f(x) = \begin{cases} 1/3 & \text{se } x = 1 \\ 2/3 & \text{se } x = 0 \\ 1/3 & \text{se } x = 2 \\ 0 & \text{caso contrário} \end{cases}$$

$$f(x) = \begin{cases} 1/2^x & \text{se } x = 1, 2, 3, \dots \\ 0 & \text{caso contrário} \end{cases}$$

o
$$f(x) = \begin{cases} 1/2^x & \text{se } x = 1, 2, 3, \dots \\ 0 & \text{caso contrário} \end{cases}$$
o $f(x) = \begin{cases} 2/3^x & \text{se } x = 1, 2, 3, \dots \\ 0 & \text{caso contrário} \end{cases}$
o $f(x) = \begin{cases} 1/2x & \text{se } x = 1, 2, 3, \dots \\ 0 & \text{caso contrário} \end{cases}$

Exercício Ref.:KNJ5

Existe k para que as funções a seguir sejam FDPs?

$$f(x) = \begin{cases} k/4 & \text{se } x = 10\\ k/2 & \text{se } x = 12\\ 0 & \text{caso contrário} \end{cases}$$

$$f(x) = \begin{cases} kx^2 & \text{se } x = 3, \dots, 6 \\ 0 & \text{caso contrário} \end{cases}$$

$$f(x) = \begin{cases} k/2 & \text{se } x = 0\\ -k/3 & \text{se } x = 1\\ 0 & \text{caso contrário} \end{cases}$$

(Rathie & Zörnig, 2012, p. 102)

Exercício Ref.:54KL

Obter a FDA para as FDPs à seguir e ilustrar os seus gráficos:

$$f(x) = \begin{cases} 1/4 & \text{se } x = -1 \\ 1/4 & \text{se } x = 0 \\ 2/4 & \text{se } x = 1 \\ 0 & \text{caso contrário} \end{cases}$$

$$f(x) = \begin{cases} 0,2 & \text{se } x = -15 \\ 0,4 & \text{se } x = -10 \\ 0,3 & \text{se } x = 0 \\ 0,1 & \text{se } x = 1 \\ 0 & \text{caso contrário} \end{cases}$$

$$f(x) = \begin{cases} 1/2^x & \text{se } x = 1, 2, 3, \dots \\ 0 & \text{caso contrário} \end{cases}$$

$$f(x) = \begin{cases} 1/2^x & \text{se } x = 1, 2, 3, \dots \\ 0 & \text{caso contrário} \end{cases}$$

$$f(x) = \begin{cases} \frac{2}{3} \left(\frac{1}{3}\right)^{x-1} & \text{se } x = 1, 2, 3, \dots \\ 0 & \text{caso contrário} \end{cases}$$

Exercício Ref.:M123

Com os dados do último censo, a assistente social de um Centro de Saúde constatou que para as famílias da região, 20% não têm filhos, 30% têm um filho, 35% têm dois e as restantes se dividem igualmente entre três, quatro ou cinco filhos. Suponha que uma família será escolhida, aleatoriamente, nessa região e o número de filhos averiguado. Qual a FDP da variável aleatória número de filhos?

(Magalhães & Lima, 2015, p. 70)

Exercício Ref.:12KL

Considere um jogo onde se lançam dois tetraedros (dados de quatro faces, com faces enumeradas de 1 à 4) distintos e não-viciados. Suponha que nesse jogo você ganhe R\$5,00 quando a soma dos dados for superior à 6. Ganhe R\$3,00 quando a soma for 5 ou 6 e perca R\$4,00 quando a soma for menor que 5. Qual é a distribuição dos ganhos possíveis?

Considere os experimentos aleatórios:

- A Lançar três moedas distintas e observar o número de caras.
- 8 Sortear duas bolas em uma urna contendo 3 bolas azuis, 4 bolas verdes e 5 bolas roxas e observar o número de bolas azuis.
- Cançar dois tetraedros (dados de quatro faces, com faces enumeradas de 1 à 4) distintos e não-viciados e observar a soma das faces.

Determine a FDP:

- a Do número de caras no experimento A?
- 6 Do número de bolas azuis no experimento B considerando que o sorteio é:
 - 1 com reposição;
 - sem reposição
- o Da soma das faces que saem para cima no experimento C?

Exercício Ref.:N5W9

Na construção de um certo prédio, as fundações devem atingir 15 metros de profundidade e, para cada 5 metros de estacas colocadas, o operador anota se houve alteração no ritmo de perfuração previamente estabelecido. Essa alteração é resultado de mudancas para mais ou para menos, na resistência do subsolo. Nos dois casos, medidas corretivas serão necessárias, encarecendo o custo da obra. Com base em evidências geológicas admite-se que a probabilidade de ocorrência de alterações é de 0,1 para cada 5 metros. O custo básico inicial e de 100UPCs (unidade padrão de construção) e será acrescido de 50k, com k representando o número de alterações observadas. Assumindo que as alterações ocorrem independentemente entre cada um dos três intervalos de 5 metros, qual a função de distribuição de probabilidade da variável custo das obras de fundação?

Magalhães & Lima (2015, p. 71)

Exercício Ref.:1G9E

Considere dois lançamentos independentes de uma moeda equilibrada. Defina X como o número de caras nos dois lançamentos. Quais são as FDP e FDA associadas a essa variável aleatória? Exiba os gráficos correspondentes.

Uma população de 1000 crianças foi analisada num estudo para determinar a efetividade de uma vacina contra um tipo de alergia. No estudo, as crianças recebiam uma dose de vacina e, após um mês, passavam por um novo teste. Caso ainda tivessem alguma reação alérgica, recebiam outra dose da vacina. Ao fim de 5 doses todas as crianças foram consideradas imunizadas. Os resultados completos estão na tabela a seguir.

Doses	1	2	3	4	5
freq.	245	288	256	145	66

Determine a FDP e a FDA para a variável aleatória número de doses recebidas. Qual a probabilidade de uma criança receber:

- a três doses?
- b no máximo duas doses?
- o no mínimo três doses?

Valor esperado e variância de uma variável aleatória discreta

Valor esperado de uma variável aleatória discreta

Seja X uma variável aleatória discreta com uma FDP f(x). Sua média ou valor esperado é dado por:

$$\mu = \mathbb{E}(X) = \sum_{x} x f(x).$$

Valor esperado de uma função de uma variável aleatória discreta

Seja X uma variável aleatória discreta com FDP f(x) e h(x) uma função qualquer. A média ou valor esperado da variável transformada h(X) é dado por:

$$\mathbb{E}\left[h(X)\right] = \sum_{x} h(x)f(x).$$

Variância de uma variável aleatória discreta

Seja X uma variável aleatória discreta com FDP f(x):

$$\sigma^{2} = \operatorname{var}(X) = \sum_{x} [x - \mathbb{E}(X)]^{2} f(x)$$
$$= \mathbb{E}(X^{2}) - \mathbb{E}^{2}(X)$$

Desvio padrão de uma variável aleatória discreta

O desvio padrão de X é dado por:

$$\sigma = \sqrt{\operatorname{var}(X)}$$

Exercício Ref.:J73P

Mostre que se X for uma variável aleatória discreta e se h(X)=aX+b, onde a e b são constantes, então:

- $o var(aX + b) = a^2 var(X)$

Exercício Ref.:N72L

$$f(x) = \begin{cases} 1/4 & \text{se } x = -1\\ 1/4 & \text{se } x = 0\\ 2/4 & \text{se } x = 1\\ 0 & \text{caso contrário} \end{cases}$$

$$f(x) = \begin{cases} 0,2 & \text{se } x = -15 \\ 0,4 & \text{se } x = -10 \\ 0,3 & \text{se } x = 0 \\ 0,1 & \text{se } x = 1 \\ 0 & \text{caso contrário} \end{cases}$$

Exercício Ref.:1D0Y

$$f(x) = \begin{cases} 1/2^x & \text{se } x = 1, 2, 3, \dots \\ 0 & \text{caso contrário} \end{cases}$$

Exercício Ref.:K7Y6

$$f(x) = \begin{cases} \frac{2}{3} \left(\frac{1}{3}\right)^{x-1} & \text{se } x = 1, 2, 3, \dots \\ 0 & \text{caso contrário} \end{cases}$$

Exercício Ref.:M29Y

Considere X como o número de caras obtidas no lançamento de quatro moedas, onde cada uma delas foi cunhada de modo que a probabilidade de dar cara seja quatro vezes menor do que de dar coroa. Determine:

- ${\color{red} a}$ A função de distribuição de probabilidade para X.
- \bullet A função de distribuição acumulada para X.
- o A probabilidade de obtermos
 - 1 exatamente uma cara;
 - fi pelo menos uma cara;
 - m no máximo três caras.
- ${\color{red}0}$ A probabilidade de que Xnão diste mais de um desvio padrão em torno da média.

Um florista fez estoque de uma flor que lhe custa R\$0,50 e que ele vende à R\$1,50 no primeiro dia em que a flor está na loja. Toda flor que não é vendida nesse primeiro dia não serve mais e é jogada fora. Seja X a variável aleatória que denota o número de flores que os fregueses compram em um dia casualmente escolhido. O florista descobriu que a FDP de X é dada pela tabela abaixo:

k	0	1	2	3
$\mathbb{P}(X=k)$	0,1	0,4	0,3	0,2

Quantas flores o florista deveria ter em estoque a fim de maximizar o seu lucro? R.: 2 flores

Exercício Ref.:K2L9

Seja X uma variável aleatória que assuma apenas os valores -1, 0 e 1. Sabendo que $\mathbb{P}(X=-1)=\frac{1}{5}$ e $\mathbb{P}(X=0)=\frac{1}{2}$. Determine:

- \bullet $\mathbb{P}(X=1)$
- $\mathbb{E}(X^2)$
- $\mathbb{P}(X = 1 | X > 0)$

Ross (2010, p. 66)

Exercício Ref.:CQ2L

Considere o experimento de lançar três moedas distintas (cada moeda é lançada apenas uma vez) e observar o número de caras. Encontre a FDP a FDA a média e a variância para a variável número de caras.

Considere o experimento de sortear duas bolas em uma urna contendo 3 bolas azuis, 4 bolas verdes e 5 bolas roxas e observar o número de bolas azuis. Encontre a FDP a FDA a média e a variância para a variável número de bolas azuis obtidas

Considere o experimento de lançar dois tetraedros (dados de quatro faces, com faces enumeradas de 1 à 4) distintos e não-viciados e observar a soma das faces. Encontre a FDP a FDA a média e a variância para a variável soma das faces dos tetraedros.

Exercício Ref.:N85G

Uma moeda honesta é lançada três vezes. Considere as seguintes variáveis aleatórias observadas nesse experimento:

- \Lambda número de caras
- [®] número de sequências de resultados iguais consecutivos

Calcule os valores esperados de A, B e A+B.

Carvalho (2016, p. 19)

Exercício Ref.:M1X5

Um vendedor de equipamento pesado pode visitar, num dia, um ou dois clientes, com probabilidade de $^{1}/_{3}$ ou $^{2}/_{3}$, respectivamente. De cada contato pode resultar a venda de um equipamento por R\$50.000,00 (com probabilidade $^{1}/_{10}$) ou nenhuma venda (com probabilidade $^{9}/_{10}$).

- a Qual a FDP do número de vendas diárias?
- b Qual o valor médio do número de vendas?
- o Qual a variância e o desvio padrão do número de vendas?

Um empresário pretende estabelecer uma firma para montagem de um produto composto de uma esfera e um cilindro. As partes são adquiridas em fábricas diferentes, e a montagem consistirá em juntar as duas partes e pintá-las. O produto acabado deve ter o comprimento (definido pelo cilindro) e a espessura (definido pela esfera) dentro de certos limites, e isso só poderá ser verificado após a montagem. O empresário quer ter uma ideia da distribuição do lucro por peça montada. Cada componente pode ser classificado como bom, longo ou curto, conforme sua medida esteja dentro da especificação, maior ou menor que a especificada, respectivamente. Cada componente tem custo igual à R\$5,00. As probabilidades de cada componente ter as características bom, longo e curto estão tabuladas abaixo. Se no produto final algum componente tiver a característica curto este será vendido como sucata por R\$5,00. Cada componente longo poderá ser recuperado a um custo adicional de R\$5,00. O preço de venda de cada unidade é R\$25,00. (Bussab & Morettin, 2013, p. 133)

Produto	Cilindro	Esfera
bom (B)	0,80	0,70
longo (L)	0,10	0,20
curto (C)	0,10	0,10

- 6 Como seria a distribuição de frequência do lucro por conjunto montado?
- **b** Encontre a FDA correspondente e calcule $\mathbb{P}(X \leq 13)$ e $\mathbb{P}(X \geq 7)$.
- Obtenha a esperança, a variância e o desvio padrão para a variável lucro por conjunto montado no problema do empresário?
- d Suponha que no problema do empresário tenha ocorrido uma alteração em todos os preços orçados, todos passam a custar o triplo acrescidos de R\$2,00. Qual será a nova esperança de lucro do empresário? E a nova distribuição do lucro?

Em um famoso jogo popular, o acertador deve apontar um dentre 25 resultados possíveis para um sorteio. Se acertar, ele recebe 18 vezes o valor apostado.

- Qual é o lucro (ou prejuízo) médio diário que deve ser esperado por alguém que aposte diariamente 1 real nesse jogo por um longo período de tempo?
- Qual deveria ser o valor mínimo a ser recebido ao acertar uma aposta, para que o valor esperado fosse positivo?

Exercício Ref.:J297

Um geólogo tem em seu laboratório dez amostras de solo tipo A e dez amostras de solo tipo B. Para um experimento ele seleciona ao acaso 15 amostras para serem analisadas.

- o Quais os possíveis valores para o número de amostras do tipo B que são selecionadas e quais suas probabilidades. R.: $X \in \{5, ..., 10\}$
- ${\color{red} \mathfrak b}$ Qual a probabilidade de que a seleção contenha todas as dez amostras do tipo A ou todas as dez amostras do tipo B? R.: 0,0326
- Qual a probabilidade de que o número de amostras tipo B selecionadas diste não mais que um desvio padrão da média? R.: 0,6966

Um poema de um autor desconhecido possui frases intrigantes. Este autor usa apenas 5 palavras do dicionário para compor as estrofes de seu poema, são elas {"a", "da", "dama", "cama", "ela"} com as probabilidades de ocorrências em uma estrofe $\mathbb{P}(\text{"a"}) = 0,3$; $\mathbb{P}(\text{"dama"}) = \mathbb{P}(\text{"dama"}) + \mathbb{P}(\text{"cama"})$; $\mathbb{P}(\text{"dama"}) = 0,15$; $\mathbb{P}(\text{"dama"}) = 0,1$. Qual o número médio de caracteres que cada palavra de uma estrofe deste poema possui ?

Referências

- Bussab, W. O. & P. A. Morettin (2013). Estatística Básica. São Paulo: Saraiva.
- Carvalho, P. C. P. (2016). O valor esperado de uma quantidade aleatória. Revista do Professor de Matemática (89), 18–23.
- Feller, W. (1968). An Introduction to Probability and its Applications, Volume 1. New York: John Wiley & Sons, Inc.
- Gelson Iezzi, Osvaldo Dolce, & David Degenszajn ans Roberto Périgo (2002). *Matemática Volume único* (2 ed.). Atual.
- Magalhães, M. N. (2011). Probabilidadade e Variáveis Aleatórias (3 ed.). São Paulo: EdUSP.
- Magalhães, M. N. & A. C. P. Lima (2015). Noções de Probabilidade e Estatística (7 ed.). São Paulo: EdUSP.
- Mckinney, E. H. (1966). Generalized birthday problem. The American Mathematical Monthly 73(4), 385–387.
- Montgomery, D. C. & G. C. Runger (2018). Applied Statistics and Probability for Engineers (7th ed.). Wiley.
- Morgado, A. C., J. B. P. Carvalho, P. C. P. Carvalho, & P. Fernandez (1991). *Análise Combinatória e Probabilidade* (9 ed.). Coleção do Professor de Matemática. SBM.

Peixoto, C. (2014). Álbum oficial da copa do mundo. Revista do Professor de Matemática (85), 46–48.

Rathie, P. N. & P. Zörnig (2012). Teoria da Probabilidade. Editora UnB.

Ross, S. M. (2010). A First Course in Probability (8 ed.). New York: Pearson Hall.

Selvin, S., M. Bloxham, A. I. Khuri, M. Moore, R. Coleman, G. R. Bryce, J. A. Hagans, T. C. Chalmers, E. A. Maxwell, & G. N. Smith (1975). Letters to the editor. *The American Statistician* 29(1), 67–71.

Weiss, N. A. (2012). *Introdutory Statistics* (9 ed.). Addison-Wesley.

