Dans un lot de 20 pièces fabriquées, 4 sont mauvaises. De combien de façon différentes peut-on en prélever 4 dans les cas suivants :

- a) les 4 pièces sont bonnes
- **b)** Une au moins d'entre elles est mauvaise.
- c) Deux au moins sont mauvaises.

Solution

Les réponses dépendent de l'expérience. D'après l'énoncé il n'y a pas répétition mais est-ce que l'ordre compte ? Tirages successifs, arrangements, ou tirage simultané, combinaisons ?

- a) Si l'ordre compte il y a A_4^{16} façons sinon une $\binom{16}{4}$
- b) On prend l'évènement contraire, aucune mauvaise ou quatre bonnes donc il y a : $A_{20}^4 A_{16}^4$ ou $\binom{20}{4} \binom{16}{4}$
- c) L'évènement « deux au moins » est égale à l'évènement « un au moins » moins l'évènement « un exactement » . On choisit une mauvaise parmi 4, 4 choix, puis trois bonnes parmi 16, $\binom{16}{3}$ choix, si l'ordre compte il y a 4! (nombre de permutations) façon de ranger ces 4 éléments donc :

$$A_{20}^4 - A_{16}^4 - 4 \times 4! \binom{16}{3} = A_{20}^4 - A_{16}^4 - 16 A_{16}^3$$
 ou $\binom{20}{4} - \binom{16}{4} - 4 \binom{16}{3}$

Rappel: $A_n^p = p! \binom{n}{p}$

Une classe de 30 élèves, 12 filles et 18 garçons, doit élire un comité composé d'un président, un vice-président et un secrétaire.

- a) Combien de comités peut-on constituer?
- **b)** Combien de comités peut-on constituer sachant que le poste de secrétaire doit être occupé par une fille ?
- c) Quel est le nombre de comités comprenant l'élève X?
- **d)** Quel est le nombre de comités pour lesquels le président est un garçon et le secrétaire une fille ?
- e) Quel est le nombre de comités pour lesquels le président et le vice-président sont de sexes différents ?

Solution

L'ordre compte et il n'y a pas de répétition donc les comités sont des arrangements. a) Il y a A_{30}^3 comités possibles.

- b) On choisit une fille parmi 12 donc 12 choix pour la secrétaire puis deux élèves parmi les 29 restants donc : 12 A_{29}^2
- c) II y a 3 postes possibles pour X puis on choisit 2 élèves parmi les 29 restants donc : $3 A_{29}^2$
- d) II y a 18 choix pour le président puis 12 pour le secrétaire et il à choisir le viceprésident parmi les 28 restants donc $18 \times 12 \times 28$
- e) On choisit un garçon puis une fille donc 18×12 cas, puis 2 cas selon que la fille ou le garçon est président, puis un secrétaire parmi les 28 restants donc : $18 \times 12 \times 2 \times 28$

Une assemblée de 15 hommes et 12 femmes désire élire un comité de 6 membres, madame A refuse de siéger dans tout comité dont ferait partie monsieur B.

- a) Quel est le nombre de comités qui pourront être constitués dans ces conditions ?
- b) Dénombrer ceux de ces comités dont madame A ferait partie.
- a) On va compter le nombre de comités où A et B siégeraient, A et B étant choisis il reste à choisir 4 personnes parmi les 25 restantes sans ordre donc : $\binom{25}{4}$

Nombre total de comités de 6 personnes parmi 27 : $\binom{27}{6}$

Nombre de comités où A et B ne siègent pas en même temps : $\binom{27}{6} - \binom{25}{4}$

b) A est choisi, il reste à choisir 5 personnes parmi 25 (ni A, ni B) donc : $\begin{pmatrix} 25 \\ 5 \end{pmatrix}$

On choisit 5 cartes dans un jeu de 32. Combien y a-t-il de résultats comprenant : 1) exactement 2 valets ; 2) aucun as ; 3) au moins 3 dames ; 4) 2 trèfles et 3 carreaux ; 5) 2 cartes d'une couleur et trois de l'autre ; 6) au moins un roi ; 7) 3 piques et 2 roi ?

Solution

1) On choisit 2 valets parmi quatre sans ordre, $\binom{4}{2}$ choix, puis 3 cartes parmi les non valets donc, $\binom{28}{3}$ choix. En tout $\binom{4}{2}\binom{28}{3}$ choix.

- 2) On choisit 5 cartes parmi 28 donc $\binom{28}{5}$ choix.
- 3) Attention à ne pas compter deux fois la même main (3 dames puis 2 parmi les 29 restantes est faux). Il faut étudier 2 cas :
- 4 dames puis 1 parmi 28
- 3 dames, 4 cas, puis 2 parmi 28

En tout, $28 + 4 \binom{28}{2}$

- 4) 2 parmi 8 puis 3 parmi 8 donc $\binom{8}{2}\binom{8}{3}$
- 5) Attention, il faut bien lire la question, ici couleur désigne noir ou rouge et non pique, cœur, carreau, trèfle. On choisit la couleur des deux cartes donc 2 cas, puis cas précédent donc : $2\binom{8}{2}\binom{8}{3}$
- 6) Evènement contraire, aucun roi, $\binom{28}{5}$ donc $\binom{32}{5} \binom{28}{5}$
- 7) Deux cas; avec le roi de pique, 3 choix pour le deuxième roi, puis 2 piques parmi 7 donc $\binom{7}{2}$ puis une carte ni pique ni roi donc 21 choix, donc $3 \times 21 \binom{16}{4}$

sans le roi de pique, 2 rois parmi 3, 3 choix, 3 piques parmi 7 $\binom{7}{3}$ donc $3\binom{7}{3}$

En tout $3 \times 21 \binom{16}{4} + 3 \binom{7}{3}$

On tire successivement 4 boules d'un sac contenant 10 boules : 3 vertes et 7 jaunes. Déterminer le nombre de tirages permettant d'obtenir : a) 4 boules jaunes ; b) 4 boules vertes ; c) 3 jaunes et 1 verte dans cet ordre ; d) 3 jaunes et une verte ; e) 2 jaunes et deux vertes dans cet ordre ; f) deux jaunes et deux vertes ; g) au moins 3 vertes ; h) au plus 3 jaunes.

On distinguera deux cas suivant que le tirage est effectué avec ou sans remise.

Solution

On suppose que les boules sont numérotées, avec remise un résultat est une 4-liste de l'ensemble produit E^4 où E est l'ensemble des dix boules, sans remise un résultat est un arrangement.

- a) 4 jaunes, 7^4 ou A_7^4 cas
- b) 4 vertes, 3⁴ ou 0 cas
- c) 3 jaunes en premier puis une verte donc $7^3 \times 3$ ou $A_7^3 \times 3$
- d) 2 jaunes puis deux vertes donc $7^2 \times 3^2$ ou $A_7^2 A_3^2$
- e) On choisit les deux places non ordonnées des deux vertes donc $\binom{4}{2}$ cas, puis on retombe sur le cas précédent donc $7^2 \times 3^2 \binom{4}{2}$ ou $A_7^2 A_3^2 \binom{4}{2}$
- f) 3 vertes exactement ou 4 vertes exactement.
- 3 vertes, 4 choix pour la place de la jaune puis 7×3^3 ou $A_7^1 A_3^3$ choix donc

 $4 \times 7 \times 3^3$ ou $4 \times A_7^1 A_3^3$ choix

4 vertes, 3⁴ ou 0 choix.

Donc en tout, $4 \times 7 \times 3^3 + 3^4$ ou $4 \times A_7^1 A_3^3$ choix

g) Evènement contraire, 3 jaunes exactement ou 4 jaunes exactement.

Avec le même raisonnement que ci-dessus on obtient $4 \times 7^3 \times 3 + 7^4$ ou

 $4 \times A_7^3 A_3^1 + A_7^4$ choix donc $10^4 - (4 \times 7^3 \times 3 + 7^4)$ ou $A_{10}^4 - (4 \times A_7^3 A_3^1 + A_7^4)$ choix.

On garde tous les cœurs et tous les trèfles d'un jeu de 32 cartes. Combien y a-t-il de permutations de ces 16 cartes dans lesquelles deux cartes consécutives quelconques sont de couleurs différentes.

Solution

D'après l'énoncé les couleurs sont alternées, cœur trèfle cœur trèfle ... ou trèfle cœur trèfle ... Donc deux cas.

Pour les cœurs il y a 8! cas (nombre de permutations de 8 éléments) et idem pour les trèfles donc $2 \times (P_8)^2 = 2 \times (8!)^2$ permutations.

On considère les cinq lettres a, b, c, d, e. Combien peut-on former de mots avec ces cinq lettres, dans lesquels les voyelles a et e ne sont pas voisines ?

Solution

On considère l'évènement contraire, mots avec a et e consécutifs ou e et a consécutifs, donc deux cas. On choisit deux rangs consécutifs, 4 choix (de 1,2 à 4,5). On place les trois lettres restantes dans les trois cases donc $P_3 = 3!$ choix. Donc 2×4 P_3 choix

Donc il y a $P_5 - 2 \times 4 P_3$ mots.

Soit un polygone convexe de n côtés. Combien a-t-il de diagonales ?

Une diagonale joint deux sommets non consécutifs. Par chaque sommet il passe n-3 diagonales, il y a n sommets mais chaque diagonale est comptée deux fois donc $\frac{n(n-3)}{2}$ diagonales.

Calculer le nombre d'anagrammes formées avec les lettres des mots PERE, THEOREME, ANANAS.

Solution

On place déjà P et R, il y a A_4^2 choix, puis les E dans les deux places restantes, donc A_4^2 anagrammes de PERE.

On place T,H,O,R et M puis les 3 E donc A_5^8 anagrammes de THEOREME On place S, 6 choix, puis on choisit deux places non ordonnées parmi 5 pour les N donc $\binom{5}{2}$, on place les A dans les places restantes donc $\binom{5}{2}$ anagrammes.

Soit E un ensemble de cardinal n, et A un ensemble inclus dans E de cardinal p. Quel est le nombre de parties de E contenant A ?

5 pts

Soit E un ensemble de cardinal fini n et A une partie de E de cardinal p.

- 1. Quel est le nombre de parties de E à k éléments qui contiennent un et un seul élément de A?
- **2.** Quel est le nombre de parties de E à k éléments qui contiennent au moins un élément de A ?

Solution

- **1.** On choisit un élément dans A (il y a p choix), puis on a $\binom{n-p}{k-1}$ choix pour les autres éléments (k-1 éléments dans le complémentaire de A) donc on a $p\binom{n-p}{k-1}$ parties.
- **2.** Il y a $\binom{n-p}{k}$ parties de E qui ne contiennent aucun élément de A, donc $\binom{n}{k} \binom{n-p}{k}$ qui contiennent au moins un élément de A.

Soit E un ensemble de cardinal fini n

Trouver le cardinal des ensembles suivants :

$$F = \{ (A; B) \in P(E)^2 / A \cup B = E, A \cap B = \emptyset \}$$

$$G_A = \{ B \in P(E) / A \cup B = E \} \text{ avec } card(A) = p \text{ fixé}$$

$$H = \{ (A; B) \in P(E)^2 / A \cup B = E \}$$

Solution

 $F = \{(A; \overline{A}) \in P(E)^2 \}$ donc card $(F) = 2^n$. L'application qui a A associe \overline{A} est bijective !!)

Soit $f: P(A) \rightarrow G_A$ définie par $f(X) = X \cup \overline{A}$ est une bijection de P(A) dans G_A donc $card(G_A) = 2^p$

 $H = \{(A; B) | A \in P(E), B \in G_A\}$ donc il y a n+1 cas correspondants au nombre p d'éléments de A, $0 \le p \le n$. On choisit un ensemble A de p éléments,Il y a $\binom{n}{p}$

choix. Puis on choisit $B \in G_A$, il y a 2^p choix.

Donc $card(H) = \sum_{p=0}^{n} \binom{n}{p} 2^p = (2+1)^n = 3^n$ d'après la formule du binôme de Newton

Quelle est le nombre de surjections d'un ensemble à n éléments dans un ensemble à 2 éléments ?

Quelle est le nombre de surjections d'un ensemble à n+1 éléments dans un ensemble à n éléments ?

Solution

Il y a 2^n applications dont 2 ne sont pas des surjections (tous les éléments ont la même image) donc 2^n -2 surjections Un élément x de l'ensemble d'arrivée a 2 antécédents , les autres en ont un seul. Choisissons l'élément x (n choix possibles), il y a alors $\binom{n+1}{2}$ choix possibles pour choisir les 2 antécédents , puis (n-1)! choix possibles pour les autres images soit (n-1)! $n\binom{n+1}{2} = n!\binom{n+1}{2}$ surjections.

Trouver le cardinal de $Q = \{(A; B) \in P(E)^2 / A \cap B = \emptyset\}$ Calculer la somme des cardinaux de toutes les parties de E avec card (E)=n.

Solution

Soit A fixé de cardinal k, $A \cap B = \emptyset$ donc $B \in P(\overline{A})$ et il y a 2^{n-k} parties de E qui ne contiennent aucun élément de A. Il y a $\binom{n}{k}$ parties A de k éléments,

Donc $card(Q) = \sum_{k=0}^{n} {n \choose k} 2^{n-k} = (1+2)^n = 3^n$ d'après la formule du binôme de Newton

Il y a $\binom{n}{k}$ parties de cardinal k donc le cardinal cherché est $\sum_{k=0}^{n} k \binom{n}{k}$ $(1+x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k$ et en dérivant des 2 côtés : $n(1+x)^{n-1} = \sum_{k=0}^{n} k \binom{n}{k} x^k$ puis en donnant la valeur 1 à x , on obtient : $n2^{n-1} = \sum_{k=0}^{n} k \binom{n}{k} x^k$

Calculer $|1+i|^2$.

En déduire que
$$\left(1 - \binom{n}{2} + \binom{n}{4} ...\right)^2 + \left(\binom{n}{1} - \binom{n}{3} + ...\right)^2 = 2^n$$

Solution

Un nombre complexe s'écrit z=a+ib, on le représente dans le plan par le point M de coordonnées (a,b) (on dit M d'affixe z). Le module de z noté |z|=|a+ib| est la longueur OM, donc $|a+ib|^2=a^2+b^2$ et $|1+i|^2=2$

$$|1+i|^{2n} = 2^n$$
 mais aussi
 $|1+i|^{2n} = |(1+i)^n|^2 = \left(1+\binom{n}{1}i+\binom{n}{2}i^2+\binom{n}{3}i^3+\binom{n}{4}i^4+\ldots\right)$

 $i^2 = -1$, $i^3 = -i$, $i^4 = 1$, $i^5 = i$... en écrivant les termes réels puis les termes imaginaires purs puis en factorisant i on obtient la formule.

officiel 04 (5 pts)

On considère 7 boules numérotées de 1 à 7. L'expérience consiste à en tirer simultanément 3.

- 1. Soit k un entier vérifiant $3 \le k \le 7$. Combien y a-t-il de tirages de 3 boules dont le plus grand numéro est k?
- **2.** En déduire une expression de $\binom{2}{2} + \binom{3}{2} + \binom{4}{2} + \binom{5}{2} + \binom{6}{2} + \binom{7}{2}$ sous forme d'un unique coefficient binomial.

Solution

On tire simultanément 3 boules numérotées parmi sept donc un résultat est une combinaison et il y a $\binom{7}{3}$ tirages possibles.

- 1. k est le plus grand numéro du tirage donc il reste à choisir 2 boules parmi k-1 soit $\binom{k-1}{2}$ tirages.
- 2. D'après le résultat du 1. il y a $\binom{2}{2} + \binom{3}{2} + \binom{4}{2} + \binom{5}{2} + \binom{6}{2} + \binom{7}{2}$ tirages possibles donc : $\binom{2}{2} + \binom{3}{2} + \binom{4}{2} + \binom{5}{2} + \binom{6}{2} + \binom{7}{2} = \binom{7}{2}$