6

1

2

3

4

1

2

3

4

5

6 7

9 10

11

12

13

14

15

WHAT IS CLAIMED IS:

- 1. An apparatus for canceling far end cross talk and intersymbol interference in a communication network, the apparatus comprising:
 - a decision feedback equalizer operable to determine a multidimensional
 steepest descent gradient to adjust matrix coefficients that are
 proportional to estimates of

$$\frac{\partial e_n}{\partial Q_k^{i,j}}, \text{ wherein } Q_k^{i,j} \leftarrow \left(Q_k^{i,j} - \mu \cdot (\frac{\partial e_n}{\partial Q_k^{i,j}})\right)$$

2. The apparatus as set forth in Claim 1, wherein:

$$\frac{\partial e_n}{\partial Q_k^{i,j}} = 2 \cdot \left(Z_n^i - X_{n-p}^i \right) \cdot Y_{n-k}^j.$$

- 3. The apparatus as set forth in Claim 1, further comprising:
- a vector data unit delay operator coupled to receive an input vector Y_n from a communication channel;
- a vector error scaling operator for generating an error signal proportional to the difference between the output Z_n of the feedforward equalizer and the input X_n to the communication channel;
- a first matrix multiplication operator coupled to multiply input from the vector data unit delay operator and the vector error scaling operator;
- a matrix summation operator coupled to add the output from the first matrix multiplication operator to the output from a matrix tap unit delay operator, wherein the matrix tap unit delay operator receives input from the matrix summation operator; and
- a second matrix multiplication operator coupled to multiply input from the matrix tap unit delay operator and the vector data unit delay operator, thereby generating.

	1
1	4. The apparatus, as set forth in Claim 3, wherein:
2	the vector data unit delay operator passes a data vector Y_n through a series of
3	unit delay operators to generate successive tap input data Y_n , Y_{n-1} , Y_{n-2} .
1	5. The apparatus, as set forth in Claim 4, wherein:
2	the first matrix multiplication operator receives the 1xN matrix Y _{n-k} from the
3	unit delay operator and multiplies it with the Nx1 matrix of scaled
4	vector error data $(Z_n - X_n)$ from the vector error scaling operator.
1	6. The apparatus, as set forth in Claim 3, wherein:
2	the matrix summation operator receives a NxN adjustment matrix from the
3	first matrix multiplication operator, adds the adjustment matrix to a
4	Q_{n-k} matrix from the matrix tap unit delay operator, and outputs a
5	corrected matrix Q_{n-k+1} .
1	7. The apparatus, as set forth in Claim 6, wherein:
2	the matrix tap unit delay operator receives the corrected matrix Q_{n-k+1} from the
3	matrix summation operator, and introduces a one cycle delay to
4	generate the ψ_{n-k} matrix.
1	att Al>