Number Theory: Lecture Notes

Anthony Dunford

Chris Nash

November 15, 2017

1 Divisibility and Primes

1.1 Introduction

Well ordering Principle:

Let $S \neq 0$ be a set of positive integers. Then there exists $s \in S$ such that for all $a \in S, s \leq a$

Induction:

If a set s of positive integers contains the integer 1 And contains n+1 whenever it contains nThen S consists of all the positive integers

1.2 Divisibility

Definition 1.1: Divisibility

An integer b is divisible by and integer $a \neq 0$ if there is an integer x such that b = ax.

s We write a|b (a divides b)

Theorem 1.1: Properties of divisibility

- 1. $a|b \rightarrow a|bc \quad c \in \mathbb{Z}$
- 2. $a|b \& b|c \rightarrow a|c$
- 3. $a|b \& a|c \rightarrow a|(bx+cy) \quad x,y \in \mathbb{Z}$
- 4. $a|b \& b|a \to a = \pm b$
- 5. $a|b, a > 0, b > 0 \rightarrow a \le b$
- 6. $m \neq 0$, $a|b \leftrightarrow ma|mb$

Proof: Theorem 1.1 (3)

 $a|b \to b = ar$ for some $r \in \mathbb{Z}$ and $a|c \to c = as$ for some $s \in \mathbb{Z}$ Hence bx + cy = a(rx + sy) and this proves that a|(bx + cy)

Theorem 1.2: The Division Algorithm

Let $a, b \in \mathbb{Z}, a > 0$.

Then there exists unique $q, r \in \mathbb{Z}$ such that $b = qa + r, \ 0 \le r < a$. If $a \nmid b$ then 0 < r < a

Proof: Theorem 1.2

Consider the arithmetic progression:

$$\dots, b-3a, b-2a, b-a, b, b+a, b+2a, b+3a, \dots$$

In the sequence select the smallest non-negative member and denote it by r. Thus by definition r satisfies the inequalities of the theorem. But also r, being in the sequence, is of the form b-qa, and thus q is defined in terms of r.

To prove uniqueness we suppose there is another pair q_1 and r_1 satisfying the same conditions. First we prove that $r = r_1$. If not, we may presume that $r < r_1$ so that $= < r_1 - r < a$ and then we see that $r_1 - r = a(q - q_1)$ and so $a|(r_1 - r)$, a contradiction to Theorem 1.1 (5). Hence $r = r_1$ and also $q = q_1$.

Note: We stated the theorem with a > 0. However this is not necessary and we may formulate as:

Given $a, b \in \mathbb{Z}$, $a \neq 0$, there exists $q, r \in \mathbb{Z}$ such that b = qa + r, $0 \leq r < |a|$.

Definition 1.2:

The integer a is a <u>common divisor</u> of b and c if a|b, a|c and at least $b \neq 0$ or $c \neq 0$, the greatest among their common divisors is called the <u>greatest common divisor</u> of b and c and is denoted by gcd(b,c) or (b,c).

Let $b_1,...,b_n \in \mathbb{Z}$, not all zero. We denote $g=(b_1,...b_n)$ to be the greatest common divisor.

Theorem 1.3:

If g = (b, c), then there exist $x_0, y_0 \in \mathbb{Z}$ such that $g = (b, c) = bx_0 + cy_0$

Proof: Theorem 1.3

Consider the linear combination bx + cy, where x, y range over all the integers. This set of integers $\{bx + cy\}$ includes positive and negative values and also 0. (x = y = 0). Choose x_0 and y_0 so that $bx_0 + cy_0$ is the least positive integer l in the set. Thus $l = bx_0 + cy_0$.

Next we prove that l|b and l|c. Assume that $l \nmid b$, then it follows that there exists integers q and r, by Theorem 1.2, such that b = lq + r with 0 < r < l. Hence we have $r = b - lq = b - q(bx_0 + cy_0) = b(l - qx_0) + c(-qy_0)$, and thus r is in the set $\{bx + cy\}$. This contradicts the fact that l is the least positive integer

in $\{bx + cy\}$. Similar proof for l|c. Now since g = (b,c) we may write b = gB, c = gC and $l = bx_0 + cy_0 = g(Bx_0 + Cy_0)$. Thus g|l and so by Theorem 1.1 (5) we conclude that $g \le l$. We know g < l is impossible since g is the greatest common divisor, so $g = l = bx_0 + cy_0$.

Theorem 1.4:

The greatest common denominator of b and c can be characterised in the following two ways:

- 1. It is the least positive value of bx + cy where $x, y \in \mathbb{Z}$
- 2. If d is any common divisor of b and c then d|g by Theorem 1.1 (3).

Proof: Theorem 1.4

- 1. Follows from Theorem 1.3
- 2. If d is any common divisor of b and c, then d|g by Theorem 1.1 (3). Moreover, there cannot be two distinct integers with property (2), because of Theorem 1.1 (4).

Note: If d = bx + cy, then d is not necessary the gcd(b,c). However, it does follow from such align that (b,c) is a divisor of d. In particular, if bx + cy = 1 for some $x,y \in \mathbb{Z}$, then (b,c) = 1.

Theorem 1.5:

Given $b_1,...,b_n \in \mathbb{Z}$ not all zero with greatest common divisor g, there exists integers $x_1,...,x_n$, such that

$$g = (b_1, ..., b_n) = \sum_{j=1}^{n} b_j x_j$$
 (1)

Furthermore, g is the least positive value of the linear form $\sum_{j=i}^{n} b_j y_j$ where the y_j runs over all integers; also g is the positive common divisor of $b_1, ..., b_n$ that is divisible by every common divisor.

Proof: Theorem 1.5

Exercise for the reader.

Theorem 1.6:

For any $m \in \mathbb{Z}, m > 0$

$$(ma, mb) = m(a, b) \tag{2}$$

Proof: Theorem 1.6

By Theorem 1.4 we have:

 $(ma, mb) = \text{least positive value of } max + mby = m \text{ } \{ \text{ least positive integer of } ax + by \} = m(a, b)$

Theorem 1.7:

If d|a, d|b and d > 0, then

$$\left(\frac{a}{d}, \frac{b}{d}\right) = \frac{1}{d}(a, b) \tag{3}$$

If (a, b) = g, then

$$\left(\frac{a}{g}, \frac{b}{g}\right) = 1\tag{4}$$

Proof: Theorem 1.7

The second assertion is the special case of the first using d=(a,b)=g. The first assertion is a direct consequence of Theorem 1.6, obtained by replacing m,a,b in Theorem 1.6 by $d,\frac{a}{d},\frac{b}{d}$ respectively.

Theorem 1.8:

If (a, m) = (b, m) = 1 then (ab, m) = 1

Proof: Theorem 1.8

Exercise for the reader.

Definition: 1.3

We say that a and b are relatively prime in case (a, b) = 1, and that $a_1, a_2, ..., a_n$ are relatively prime in the case $(a_1, a_2, ..., a_n) = 1$. We say that $a_1, a_2, ..., a_n$ are relatively prime in pairs in case $(a_i, a_j) = 1$ for all i = 1, 2, ..., n and j = 1, 2, ...n with $i \neq j$.

Note: (a, b) = 1 we also say a and b are coprime.

Theorem 1.9:

For any $x \in \mathbb{Z}$ we have

$$(a,b) = (b,a) = (a,-b) = (a,b+ax)$$
(5)

Proof: Theorem 1.9

Exercise for the reader.

Theorem 1.10: Euclid's Lemma If c|ab and (b,c) = 1, then c|a.

Proof: Theorem 1.10

By Theorem 1.6 , (ab,ac)=a(b,c)=a. By hypothesis c|ab and clearly c|ac, so c|a by Theorem 1.4 (2).

Now we observe for $c \neq 0$, we have (b, c) = (b, -c) by Theorem 1.9 and hence we may presume c > 0.

Theorem 1.11: The Euclidean Algorithm

Given $b, c \in \mathbb{Z}, c > 0$, we can make a repeated application of the division algorithm, **Theorem 1.2**, to obtain a series of aligns

$$b = cq_1 + r_1 \quad 0 < r_1 < c \tag{6}$$

$$c = r_1 q_2 + r_2 \quad 0 < r_2 < r_1 \tag{7}$$

$$r_1 = r_2 q_3 + r_3 \quad 0 < r_3 < r_2 \tag{8}$$

$$r_j = r_{j+1}q_j + r_j \quad 0 < r_j < r_{j-1} \tag{10}$$

$$r_{j-1} = r_j q_{j+1}. (11)$$

The greatest common divisor (b, c) of b and c is r_j , the last nonzero remainder in the division process. Values of x_0 and y_0 in $(b, c) = bx_0 + cy_0$ can be obtained by writing each r_i as a linear combination of b and c.

Proof: Theorem 1.11

See Theorem 1.11 in the textbook or Theorem 1.13 in the Lecture Notes.

Example 1 *gcd*(841, 160)

$$841 = 160 \times 5 + 41$$

$$160 = 41 \times 3 + 37$$

$$41 = 37 \times 1 + 4$$

$$37 = 34 \times 9 + 1$$

$$4 = 1 \times 4 + 0$$
(12)

Hence (841,160)=1 working backwards gives:

$$1 = 37 \times 1 - 4 \times 9 \tag{13}$$

$$1 = 37 \times 1 - (41 - 37) \times 9 \tag{14}$$

$$1 = 37 \times 10 - 41 \times 9 \tag{15}$$

$$1 = (160 - 3 \times 41) \times 10 - 41 \times 9 \tag{16}$$

$$1 = 160 \times 10 - 41 \times 39 \tag{17}$$

$$1 = 160 \times 10 - (841 - 160 \times 5) \times 39 \tag{18}$$

$$1 = (-39) \times 841 + 205 \times 160 \tag{19}$$

(20)

Note the solution is not unique:

$$1 = 121 \times 841 - 636 \times 160 \tag{21}$$

Example 2 Extended Algorithm

$$r_{i} = r_{i-2} - q_{i}r_{i-1}$$

$$x_{i} = x_{i-2} - q_{i}x_{i-1}$$

$$y_{i} = y_{i-2} - q_{i}y_{i-1}$$

$$r_{1} = b, r_{0} = c$$

$$x_{1} = 1, x_{0} = 0$$

$$y_{1} = 0, y_{0} = 1$$

$$(22)$$

We want to compute the gcd(841, 160) and express as a linear combination of 841 and 160.

Definition 1.4:

The integers $a_1, ..., a_n$, all different from zero, have a **common multiple** b if $a_i|b$ for i=1,...,n. The least of the positive common multiples is called the **least common multiple** and it is denoted by $[a_1,...,a_n]$ or $lcm(a_1,...,a_n)$

Theorem 1.12:

If b is any common multiple of $a_1, ..., a_n$, then $[a_1, ..., a_n] \mid b$. This is the same as saying that if $h = [a_1, ..., a_n]$ then $0, \pm h, 2 \pm h, ...$ comprise all the common multiples of $a_1, ..., a_n$.

Proof: Theorem 1.12

Let m be any common multiple and divide m and h. By Theorem 1.2, $\exists q, r$ such that m = qh + r, $0 \le r < h$. We must probe that r = 0. If $r \ne 0$ we argue as follows. For each i = 1, 2, ..., n we know that $a_i | h$ and a - i | m, so that $a_i | r$. Thus r is a positive common multiple of $a_1, a_2, ..., a_n$ contrary to the fact that h is the least of all positive common multiples.

Theorem 1.13:

If m > 0

- 1. [ma, mb] = m[a, b]
- 2. a,b = |ab|

Proof: Theorem 1.13

- 1. Let H = [ma, mb] and h = [a, b]. Then mh is a multiple of ma and mb, so that $mh \ge H$. Also, H is a multiple of both ma and mb so H/m is a multiple of a and b. Thus, $H/m \ge h$ from which it allows that mh = H.
- 2. It will suffice to prove this for $a,b \in \mathbb{Z}$ with a>0,b>0, since [a,-b]=[a,b]. We begin with the special case where (a,b)=1. Now [a,b]=1, is a multiple of a, say ma. Then b|ma and (a,b)=1, so by Theorem 1.10 we conclude that b|m. Hence $b\leq m$, $ba\leq ma$. But ba, being a positive

common multiple of 4b4 and a , cannot be less tahn the least common multiple, so ba = ma = [a, b].

Let (a,b) = g > 1. we have (a/g,b/g) = 1 by Theorem 1.7. Applying the result of the previous paragraph we have:

$$[a/g, b/g] \cdot (a/g, b/g) = ab/g \tag{23}$$

Multiplying by g^2 and using Theorem 1.6 as well as the first part (1.), we get $[a,b] \cdot (a,b) = ab$.

1.3 Primes

Definition 1.5:

An integer p > 1 is called a **prime number** if there is no divisor d of p satisfying 1 < d < p. If an integer a > 1 is not a prime, is is called a **composite number**.

Theorem 1.14:

Every integer n > 1 can be expressed as a product of primes (with perhaps only one factor).

Theorem 1.15:

If p|ab, p prime, then p|a or p|b. More generally if $p|a_1...a_n$, then p divides at least on of the factors a_i If $p \nmid a$, then (a, p) = 1 and so by **Thm 1,10**, p|b. For the general case, we use induction.

Theorem 1.16: Fundamental Theorem of Arithmatic

The factoring of any integer n > 1 into primes is unique apart from the order of the prime factors.

Definition 1.6:

We call a a square (or **perfect square**) if it can be written as $a = n^2$. By the **F.T.A.** a is a square if all the exponents $\alpha(p)$ in (1.6) are even. We say that a is **square free** if 1 is the largest square dividing a. Thus a is square free iff the exponents $\alpha(p) = 0$ or 1 If p is prime, then the assertion $p^k || a$ is equivalent to $k = \alpha(p)$.

Theorem 1.17: (Euclid)

The number of primes is infinite.

Definition 1.7:

Let $n \in \mathbb{N}$ and p a prime. Then

$$v_p(n) = \max(k \in \mathbb{N}_{\&()} : p^k | n) \tag{24}$$

where k is the unique non-negative integer such that $p^k|n$ but $p^{k+1}|n$ Equivalently $V_p(n)=k$ iff $n=p^kn'$ where $n'\in\mathbb{N}$ and $p\nmid n'$

Lemma: Let $n, m \in \mathbb{N}$ and p be a prime. then

$$v_p(mn) = v_p(m) + v_p(n) \tag{25}$$

2 Congruences

2.1 Congruences

Definition 2.1:

If $m \in \mathbb{Z}$, $m \neq 0$ is such that m|a-b, we say that a is <u>congruent to</u> b modulo m and we write $a \equiv b \pmod{m}$

Since a-b is divisible by -m, we can socus our attention to a positive modulus. We will assume in this chapter that m > 0.

Theorem 2.1: Properties of Congruences

- 1. $a \equiv b \pmod{m}$ $b \equiv a \pmod{m}$, and $a b \equiv 0 \pmod{m}$ are equivalent statements.
- 2. If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$
- 3. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$
- 4. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$
- 5. If $a \equiv b \pmod{m}$ and d|m, d > 0, then $a \equiv b \pmod{d}$
- 6. If $a \equiv b \pmod{m}$ then $ac \equiv bc \pmod{mc}$ for c > 0

Theorem 2.2:

Let f denote a polynomial with integral coefficients. If $a \equiv b \pmod{m}$ then $f(a) \equiv f(b) \pmod{m}$

Theorem 2.3:

- 1. If $ax \equiv by \pmod{m}$ and $x \equiv y \pmod{fracm(a, m)}$
- 2. $ax \equiv by \pmod{m}$ and (a, m) = 1, then $x \equiv y \pmod{m}$
- 3. $x \equiv y \pmod{m_i}$ for i = 1, ..., r iff $x \equiv y \pmod{[m_1, ..., m_r)}$

Definition 2.2:

If $x \equiv y \pmod{m}$ then y is called a <u>residue</u> of $x \pmod{m}$. A set $x_1, ..., x_m$ is called a <u>complete residue system modulo m</u> if for every integer y, there is one and only one x_j such that $y = x_j \pmod{m}$

Theorem 2.4:

If $b \equiv c \pmod{m}$, then (b, m) = (c, m).

Definition 2.3:

A reduced residue system modulo m is a set of integers r_i such that $(r_i, m) = 1, r_i \not\equiv r_j, \pmod{m}$ if $i \neq j$, and such that every x prime to m (coprime) is congruent modulo m to some member r_i of the set.

- You can obtains a reduced residue system by deleting from a complete residue system modulo m those members that are not relatively prime to m.
- We will denote by $\Phi(m)$ to be the number of elements of a reduced residue system modulo m.
- \bullet All reduced reside system modulo m have the same number of elements.
- $\Phi(m)$ is called the Euler's Φ -function or Euler's totient-function

Theorem 2.5:

The number $\Phi(m)$ is the number of positive integers less than or equal to m are relatively prime to m.

Theorem 2.6:

Let (a, m) = 1. Let $r_1, ..., r_n$ be a complete, or a reduced, residue system modulo m. Then $ar_1, ..., ar_n$ is a complete, or a reduced, residue system, respectively, modulo m.

Theorem 2.7: Fermat's Theorem

Let p denote a prime. If $p \nmid a$ then $a^{p-1} \equiv 1 \pmod{p}$. For every integer a, $a^p \equiv a \pmod{p}$.

Theorem 2.8: Euler's Generalization of Fermat's Theorem

If (a, m) = 1, then

$$a^{\phi}(m) \equiv 1 \pmod{m} \tag{26}$$

Theorem 2.9:

If (a, m) = 1 then there is an x such that $ax \equiv 1 \pmod{m}$. Any two such x are congruent \pmod{m} . If (a, m) > 1 then there is no such x.

Lemma 2.10:

Let p be a prime number. Then $x^2 \equiv 1 \pmod{p}$ iff $x \equiv \pm 1 \pmod{p}$.

Theorem 2.11: Wilson's Theorem

If p is prime, then $(p-1)! \equiv -1 \pmod{p}$

Theorem 2.12:

Let p denote a prime. Then $x^2 \equiv -1 \pmod{p}$ has solutions iff p=2 or $p \equiv 1 \pmod{4}$.

Proof: Theorem

Theorem 2.13:

If p is prime and $p \equiv 1 \pmod{4}$, then there exists positive integers a and b such that $a^2 + b^2 = p$.

Lemma 2.14:

Let q be a prime factor of $a^2 + b^2$. If $q \equiv 3 \pmod{4}$ then q|a and q|b.

Theorem 2.15: (Fermat)

Let

$$n = 2^{\alpha} \prod_{p \equiv 1(4)} p^{\beta} \prod_{q \equiv 3(4)} q^{\gamma}$$
 (27)

Then n can be expressed as a sum of two squares iff all the exponents of γ are even.

2.2 Solutions of Congruences

• Let f(x) denote a polynomial, e.g.

$$f(x) = a_n x^n + \dots + a_0 (28)$$

- if $u \in \mathbb{Z}$ such that $f(u) \equiv 0 \pmod{m}$ then we say that u is a solution of the congruence $f(x) \equiv 0 \pmod{m}$
- If u is a solution of $f(x) \equiv 0 \pmod{m}$ and if $v \equiv u \pmod{m}$, then theorem 2.2 shows that v is also a solution.
 - $-x \equiv u \pmod{m}$ is a solution of $f(x) \equiv 0 \pmod{m}$ meaning that every integer congruent to u modulo m satisfied $f(x) \equiv 0 \pmod{m}$.

Definition 2.4:

Let $r_1, ..., r_m$ denote a complete residue system modulo m.

The <u>number of solutions</u> of $f(x) \equiv 0 \pmod{m}$ is the number of the r_i such that $f(r_i) \equiv 0 \pmod{m}$

Definition 2.5:

Let $f(x) = a_n x^n + ... + a_0$. If $a_n \equiv 0 \pmod{m}$ the degree of the congruence $f(x) \equiv 0 \pmod{m}$ is n. If $a_n \equiv 0 \pmod{m}$, let j be the largest integer such that $a_j \not\equiv 0 \pmod{m}$; then the degree of the congruence is j. If there is no such integer j, then no degree is assigned to the congruence.

Theorem 2.16:

If d|m, d > 0, and if u is a solution of $f(x) \equiv 0 \pmod{m}$, then u is a solution of $f(x) \equiv 0 \pmod{d}$

- We say that $f(x) \equiv 0 \pmod{m}$ is an <u>identical congruence</u> if it holds for all integers x
 - If f(x) is a polynomial whose coefficients are divisible by m, then $f(x) \equiv 0 \pmod{m}$ is an identical congruence
 - e.g. $x^p \equiv x \pmod{p}$ is true for all integers x by theorem 2.5

Theorem 2.17: Linear Congruences

Let a, b and m > 0 be given integers, and put g = (a, m). The congruence $ax \equiv b \pmod{m}$ has a solution iff g|b. If this condition is met, then the solution forms an arithmetic progression with common difference $\frac{m}{g}$, giving g solutions \pmod{m} .

How to solve general linear congruences: Let $a, b \in \mathbb{Z}$ and let $n \in \mathbb{N}$. Suppose we wish to solve the linear congruence

$$ax \equiv b \pmod{n} \tag{29}$$

Firstly apply the Extended Euclidean Algorithm to compute d = gcd(a, n) and find $x', y' \in \mathbb{Z}$ such that

$$ax' + ny' = d (30)$$

If $d \nmid b$ then there are no solutions by theorem 2.17. Otherwise, there are exactly d solutions modulo n by theorem 2.17, which we can find as follows.

Write

$$a = da', \quad b = db', \quad n = dn'$$
 (31)

Dividing (18) by d gives

$$a'x' + n'y' = 1 (32)$$

Thus reducing mod n' gives $a'x' \equiv 1 \pmod{n'}$ and multiplying by b' gives $a'(b'x') \equiv b' \pmod{n'}$. Therefore t := b'x' is the unique solution to $a'x \equiv b' \pmod{n'}$. Now by theorem 2.17 the solutions to (17) are t, t+n', ..., t+(d-1)n'

2.3 The Chinese Remainder Theorem

Solve Simultaneous Congruences

Find x (is there are any) that satisfies

$$x \equiv a_1 \pmod{m_1}$$

$$x \equiv a_2 \pmod{m_2}$$
...
$$x \equiv a_r \pmod{m_r}$$
(33)

Theorem 2.18: The Chinese Remainder Theorem

Let $m_1, ..., m_r$ denote r positive integers that are relatively prime in pairs, and let $a_1, ..., a_r \in \mathbb{Z}$. Then the congruences (21) have have common solutions. If x_0 is one such solution, then an integer x satisfies the congruences (21) iff $x = x_0 + km$ for some integer k. Here $m - m_1 m_2 ... m_r$

• $m_1, ..., m_r$ positive integers relatively prime in pairs

- $m = m_1 m_2 ... m_r$
- Instead of considering just one set of aligns (21), we will consider all possible systems of this type
- Let

$$a_{1} \in \{1, ..., m_{1}\}$$
 $a_{2} \in \{1, ..., m_{2}\}$
...
$$a_{r} \in \{1, ..., m_{r}\}$$
(34)

- The number of such r-tuples $(a_1,...,a_r)$ is $m=m_1m_2...m_r$.
- By the C.R.T. each r-tuple determines precisely one residue class x modulo m.
 - Moreover, distinct r-tuples determine different residue classes. To see this, suppose that $(a_1, ..., a_r) \neq (a'_1, ..., a'_r)$. then $a_i \neq a'_i$ for some i, and we see that no integer x satisfies both the congruences $x \equiv a_i \pmod{m_i}$ and $x \equiv a'_i \pmod{m_i}$
- This we have a one-to-one correspondence between the r-tuples $(a_1, ..., a_r)$ and a complete residue system modulo m, such as the integers 1, ..., m

Theorem 2.19:

If m_1 , $m_2 > 0$, $(m_1, m_2) = 1$, then $\phi(m_1, m_2) = \phi(m_1)\phi(m_2)$ moreover, if $m = \prod p^{\alpha}$ then

$$\phi(m) = \prod_{p|m} (p^{\alpha} - p^{\alpha - 1}) = m \prod p|m(1 - \frac{1}{p})$$
(35)

Theorem 2.20:

Let f(x) be a fixed polynomial with integral coefficients, and for any positive integer m let N(m) denote the number of solutions of the congruence $f(x) \equiv 0 \pmod{m}$. If $m = m_1 m_2$ where $(m_1, m_2) = 1$, then $N(m) = N(m_1)N(m_2)$. If $m = \prod p^{\alpha}$, then $N(m) = \prod N(p^a l p h a)$

2.4 Public-key Cryptography

Lemma 2.22:

Suppose $m \in \mathbb{Z}$, m > 0, (a, m) = 1. If $k, \overline{k}\mathbb{Z}$ and $k, \overline{k} > 0$ such that $k, \overline{k} \equiv 1 \pmod{\phi(m)}$, then $a^{k\overline{k}} \equiv a \pmod{m}$.

Proof: Theorem 2.22

Write $k\overline{k} = 1 + r\phi(m)$ for some $r \in \mathbb{Z}$. Then by Euler's congruence

$$a^{k\overline{k}} = aa^{r\phi(m)} = a(a^{\phi(m)})^r \equiv a \cdot 1^r = a \ (mod \ m)$$

- If (a, m) = 1, k > 0, then $(a^k, m) = 1$. Thus if $n = \phi(m)$ and $r_1, ..., r_n$ is a system of reduced residues $(mod\ m)$, then the numbers $r_1^k, ..., r_n^k$ are also relatively prime to m. These k^{th} powers may not all be distinct $(mod\ m)$, as we see by considering the case $k = \phi(m)$. On the other hand, from lemma 2.22, we can deduce that these k^{th} powers are distinct $(mod\ m)$ provided that $(k, \phi(m)) = 1$.
- Suppose that $r_i^k \equiv r_j^k \pmod{m}$ and $(k, \phi(m)) = 1$. By theorem 2.9 we may find $\overline{k} > 0$ such that $k\overline{k} \equiv 1 \pmod{\phi m}$ and then it follows from the lemma that

$$r_i \equiv r_i^{k\overline{k}} = (r_i^k)^{\overline{k}} \equiv (r_j^k)^{\overline{k}} = r_j^{k\overline{k}} \equiv r_j \pmod{m}$$
 (36)

This implies that i=j. We will show later that the converse also holds: the numbers $r_i^k, ..., r_n^k$ are distinct $(mod\ m)$ only if $(k, \phi(m)) = 1$. Suppose that $(k, \phi(m)) = 1$. Since the numbers $r_1, ..., r_n^k$ are distinct $(mod\ m)$, they form a system of reduced residues $(mod\ m)$. That is the map $a \mapsto a^k$ permutates the reduced residues $(mos\ m)$ if $(k, \phi(m)) = 1$. The significance of the lemma is that the further map $b \mapsto b^{\overline{k}}$ is the inverse permutation.

- To apply these observations to cryptography, we take two distinct large primes, p_1, p_2 , say each one with about 100 digits.
 - So $m = p_1 p_2$ has about 200 digits.
 - Since we know the prime factorisation of m, from theorem 2.19 we have that $\phi(m) = (p_1 1)(p_2 1)$
 - $-\operatorname{So} \phi(m) < m$
 - we choose now a big number k, 0 < k, $\phi(m)$ and check by the Euclidean algorithm that $(k, \phi(m)) = 1$. We try until we get such a k.
 - We make the numbers m and k publicly available, by keep p_1, p_2 and $\phi(m)$ secret.
 - suppose now that some associate of ours wants to send us a message, say 'Gauss was a genuis!'. The associate first converts the characters to number in some standard way, say by emplying (ASCII). Then $G=071,\ a=097,\ldots,\ !=033.$ Then concatenate these codes to form a number

a = 071097117115115126119097115126097126103101110105117115033

- if the message were longer, it could be ficided into a number of blocks.
- the associate could send the number a and we could reconstruct the message. But suppose that message has some sensitive information. In that case the associate would use the number k and m that we have provided.
- Our associate quickly finds the unique number $b, 0 \le b < m$ such that $b \equiv a^k \pmod{m}$ and sends this b to us.
- We use Euclidean Algorithm to find $\overline{k} > 0$ such that $k\overline{k} \equiv 1 \pmod{\phi(m)}$ and then we find the unique c such that $0 \le c < m$, $c \equiv b^{\overline{k}} \pmod{m}$. From lemma 2.22 we deduce that a = c.

• In theory it might happen that (a,m)>1 in which case the lemma does not apply, but the chances of this is $\approx \frac{1}{p_i} \approx 10^{-100}$. Suppose that some third party gain access to the numbers m, k and b, and seeks to recover the number a. In principle, all that needs to be done is to factor m, which yields $\phi(m)$, and hence \overline{k} . The problem of locating the factors of m for a big number is not easy.

2.5 Prime Power Moduli

Let f(x) be a polynomial with integer coefficients. Let N(m) denote the number of solutions of $f(x) \equiv 0 \pmod{m}$. Suppose that $m = m_1 m_2$, where $(m_1, m_2) =$. With a "little work", theorem 2.19 shows that the roots of the congruence $f(x) \equiv 0 \pmod{m}$ are in one-to-one correspondence with pairs (a_1, a_2) in whic a_1 runs over all roots of the congruences $f(x) \equiv 0 \pmod{m_1 andin} \ a_2$ runs over all roots of the congruence $f(x) \equiv 0 \pmod{m_2}$.

• From theorem 2.16 and theorem 2.20 we have that the congruence $f(x) \equiv 0 \pmod{m}$ has solutions iff it has solutions $\pmod{p^{\alpha}}$ for each prime power p^{α} exactly dividing m.

Example: Let $f(x) = x^2 + x + 7$. Find all roots of $f(x) \equiv 0 \pmod{189}$, given that $189 = 3^3 \cdot 7$, that all roots $\pmod{27}$ are 4, 13, and 22, and that the roots $\pmod{7}$ are 0 and 6.

Solution: By the Eucliean algorithm and (2.2), we find that $x \equiv a_1 \pmod{27}$ and that $x \equiv a_2 \pmod{7}$ iff $x \equiv 28a_1 - 27a_2 \pmod{189}$. We let $a_1 = 4, 13, 22$ and $a_2 = 0, 6$. Thus we obtain the six solutions 13, 49, 76, 112, 139, 175 $\pmod{189}$

- The problem of solving a congruence is now reduced to the case of a prime-power modulus.
 - To solve $f(x) \equiv 0 \pmod{p^k}$ we start with a solutions modulo p and then move to $p^2, p^3, ..., p^k$.

Suppose that x = a is a solution of $f(x) \equiv 0 \pmod{p^j}$ and we want to use it to get a solution modulo p^{j+1} . The idea is to try to get a solution $x = a + tp^j$, where t is to be determined, by use of Taylor's expansion

$$f(a+tp^{j}) = f(a) + tp^{j}f'(a) + t^{2}p^{2j}\frac{f''(a)}{2!} + \dots + t^{n}p^{nj}\frac{f^{(n)}(a)}{n!}$$
(37)

where n = degree of f(x). All derivatives beyond the n^{th} are identically zero. Now with respect to the modulus p^{j+1} , equation (37) gives

$$f(a+tp^j) \equiv f(a) + tp^j f'(a) \pmod{p^{j+1}}$$

as the following argument shows. What we want to establish is that the coefficients of $t^1, t^3, ..., t^n$ in (37) are divisible by p^{j+1} and so can be ommitted in (38). This is almost obvious because the powers of p in those

terms. The explanation is that $\frac{f^{(k)}(a)}{k!}$ is an integer for each value of k, $2 \le k \le n$. To see this, let cx^r be a representative term from f(x). The corresponding term in $f^{(k)}(a)$ is $cr(r-1)(r-2)...(r-k+1)a^{r-k}$.

We now use the fact (without proof), that the product of k consecutive integers is divisible by k!, and the argument is complete. Thus, we have proved that the coefficients of $t^2, t^3, ..., t^n$ in (37) are divisible by p^{j+1} . The congruence (38) reveals how t should be chosen if $x = a + tp^j$ is to be a solution of $f(x) \equiv 0 \pmod{p^{j+1}}$. We want t to be a solution of

$$f(a) + tp^{j}f'(a) \equiv 0 \pmod{p^{j+1}}$$
 (38)

Since $f(x) \equiv 0 \pmod{p^j}$ have the solutions x = a, we see that p^j can be removed as a factor to given

$$tf'(a) \equiv -\frac{f(a)}{p^j} \pmod{p} \tag{39}$$

Which is a linear congruence in t. This congruence may have no solution, one solutions, or p solutions. If $f'(a) \equiv 0 \pmod{p}$, then this congruence has exactly one solution, and we obtain

Theorem 2.3: Hansel's Lemma:

Suppose that f(x) is a polynomial with integral coefficients. If $f(a) \equiv 0 \pmod{p^j}$ and $f'(a) \not\equiv 0 \pmod{p}$ then there is a unique $t \pmod{p}$ such that $f(a+tp^j) \equiv 0 \pmod{p^{j+1}}$

- If $f(a) \equiv 0 \pmod{p^j}$, $f(b) \equiv 0 \pmod{p^k}$, j < k and $a \equiv b \pmod{p^j}$, then we say that \underline{b} lies above \underline{a} , or \underline{a} lifts to \underline{b} .
- If $a \equiv b \pmod{p^j}$, then a is called a <u>nonsingular</u> root if $f'(a) \not\equiv 0 \pmod{p}$; otherwise it is <u>singular</u>.
- By Hensel's lemma we see that a nonsingular root $a \pmod{p}$ lifts to a unique root $a_2 \pmod{p^2}$. Since $a_2 \equiv a \pmod{p}$ it follows by theorem 2.2 that $f'(a_2) \equiv f'(a) \not\equiv 0 \pmod{p}$. By a second application of Hensel's lemma we may lift a_2 to form a root a_3 of f(x) modulo p^3 , and so on.
- In general we find that a nonsingular root a modulo p lifts to a uniques root a_j modulo p^j off j = 2, 3, ... by (2.5) we see that this sequence is generated bby means of the recursion

$$a_{j+1} = a_j - f(a_j)\overline{f'(a)} \tag{40}$$

where f'(a) is an integer chosen so that $f'(a)\overline{f'(a)} \equiv 1 \pmod{p}$.

Example: Solve $x^2 + x + 47 \equiv 0 \pmod{7^3}$

Solution: First we note that $x \equiv 1 \pmod{7}$ and $x \equiv 5 \pmod{7}$ are the only solutions of $x^2 + x + 47 \equiv 0 \pmod{7}$. Since f'(x) = 2x + 1, we see that

- $f'(1) = 3 \equiv 0 \pmod{7}$
- $f'(5) = 11 \equiv 0 \pmod{7}$

(So these roots are non singular)

Taking f'(1)=5, we see by (40) that the root $a\equiv 1\pmod{7}$ lifts to $a_2=1$. Since a_2 is considered $(mod\ 7^2)$, we may take instead $a_2=1$. Then $a_3=1-49\cdot 5\equiv 99\pmod{7^3}$. Similarly, we take $\overline{f'(5)}=2$ and see by (40) that the root 5 $(mod\ 7)$ lifts to $5-77\cdot 2=-149\equiv 47\pmod{7^2}$ and that 47 $(mod\ 7^2)$ lifts to $47-f(47)\cdot 2=47-2303\cdot 2=-4599\equiv 243\pmod{7^3}$. Thus we conclude that 99 and 243 are the desired roots and that there are no others.

2.6 Prime Modulus

$$f(x) \equiv 0 \pmod{m} \rightarrow f(x) \equiv 0 \pmod{p}$$
 (reduced)

Theorem 3.2: Gauss' Lemma

Let p be an odd prime and (a, p) = 1.

$$a, 2a, 3a, ..., \frac{p-1}{2}a$$
 (41)

and their least positive residues