การวิเคราะห์ปริมาณน้ำฝน ที่เหมาะสมกับการปลูกพืช เศรษฐกิจ

DS525
Data Warehouse and Business Intelligence

สมาชิก

1.	นางสาวเจนจิรา วงค์อุคะ	66199160144
2.	นายธนกร กอวรพันธุ์	66199160152
3.	นายธราเทพ สุดวิไล	66199160154
4.	นางสาวนัยน์ภัค สถาพรพินิจกิจ	66199160158
5.	นายนิตินัย ทองคำ	66199160160
6.	นายวงศกร วงศ์เดชงาม	66199160177

ที่มาและความสำคัญ

ประเทศไทยมีจำนวนครัวเรือนที่เป็นเกษตรกรกว่า ร้อยละ 35 เนื่องจากมีสภาพภูมิอากาศที่เหมาะสมแก่การ เพาะปลูก ไม่ว่าจะเป็นในเรื่องของสภาพดิน แร่ธาตุในดิน ความสูงของพื้นที่ เส้นทางน้ำ อุณหภูมิ และอีกปัจจัยที่ ้สำคัญคือ**ปริมาณน้ำฝน** ซึ่งถือว่าเป็นปัจจัยที่มีความ สำคัญสูงสุด จึงมีความจำเป็นที่จะต้องวิเคราะห์ข้อมูล ปริมาณน้ำฝนที่เหมาะสมกับพืชแต่ละชนิด โดยพืชที่จะนำ มาใช้วิเคราะห์ได้แก่ ข้าว, ข้าวโพดเลี้ยงสัตว์, ปาล์มน้ำมัน, มันสำปะหลัง, ยางพารา และอ้อย ซึ่งเป็นพืชเศรษฐกิจที่ สำคัญของไทย

ปัญหา

- 1. พืชล้นตลาดและไม่มีคุณภาพ ส่งผลให้ ราคาพืชลดลง
- 2. ปัญหาหนี้สินของเกษตรกรจากการลงทุน ทำการเกษตร ซึ่งอาจไม่ได้ผลผลิตตามที่ คาดไว้

วัตถุประสงค์

- 1. วิเคราะห์ปริมาณน้ำฝนแต่ละจังหวัดที่ เหมาะสมกับการเพาะปลูกพืชแต่ละชนิด เพื่อให้ผลผลิตที่ได้มีคุณภาพ และป้องกัน พืชล้นตลาด
- 2. วิเคราะห์ช่วงเวลา (เดือน) ที่เหมาะสมกับ การเพาะปลูกพืชแต่ละชนิด เพื่อวาง แผนการทำการเกษตรกรรมในปีถัดไป

Data Modeling

<u>Tables</u> rainfall province id * province_id province_id * min_rain province_name province_name_en max_rain avg_rain region year month date

<u>Table</u> <u>Condition</u>

id *
name
min_value
max_value
condition

Data Ingestion - Workflow Orchestration

ขั้นตอนการทำงาน - สร้างฐานข้อมูล Postgresql

1. สร้าง Project "rainfall" และ Database "rainfall" ใน NEON จะได้ url ของ Postgres

ขั้นตอนการทำงาน - Insert ข้อมูลใน NEON โดย Google colab

2. เปิดไฟล์ load.ipynb ด้วย Google colab และนำ url ที่ได้จากขั้นตอนที่ 1 มาใช้เพื่อ connect กับ database ของ NEON และอัพโหลด rainfall.csv เข้า Google colab ซึ่งในขั้นตอนนี้จะทำการ สร้าง Table ชื่อ "rainfall" และ insert ข้อมูลจากไฟล์ เพื่อนำข้อมูลเข้าไปเก็บใน postgres database ที่อยู่ใน NEON

ขั้นตอนการทำงาน - สร้าง Data Warehouse โดยใช้ Google BigQuery

3. สร้าง Project และ Dataset สำหรับเก็บข้อมูล Tables และทำการ create table ชื่อ "agriculture_cond"

ขั้นตอนการทำงาน - สร้าง Data Warehouse บนระบบ Cloud โดยใช้ Google Cloud BigQuery (ต่อ)

4. ทำการ Insert Data เข้าสู่ Table "agriculture_cond" จะได้ Table Condition ปริมาณน้ำฝนที่เหมาะสมกับพืชแต่ละชนิด

ขั้นตอนการทำงาน - สร้าง Data Warehouse บนระบบ Cloud โดยใช้ Google Cloud BigQuery (ต่อ)

5. ทำการ Create service account ที่ IAM & Admin เพื่อสร้าง Key และกำหนด Role จากนั้นให้ download file key ในรูปแบบ .json แล้ว upload ใน folder capstone project ใน github

ขั้นตอนการทำงาน - เตรียมการเชื่อมต่อ Airflow

- 6. ใน Github ปรับแก้ไฟล์ ETL_Postgres_to_Bigquery.py ดังนี้
 - 🔸 แก้ dbname, user, password, host เพื่อเชื่อมต่อกับฐานข้อมูล NEON Postgres
 - แก้ keyfile, project_id และ dataset_id เพื่อเชื่อมต่อกับ Data Warehouse Google Cloud BigQuery

```
♣ ETL_Postgres_to_Bigguery.py M X
③ README.md capstone_project M
                                                                    w docker-compose.vaml
                                                                                              (i) RE
capstone_project > dags > @ ETL_Postgres_to_Bigguery.py
       def create tables():
 40
       # changes dbname
       # changes user
       # changes password
       # changes host
       def neon to rainfall csv():
            # เชื่อมต่อกับฐานข้อมูล Neon Postgres
 46
 47
            conn = psycopg2.connect(
 48
                dbname="rainfall",
 49
                user="neondb owner".
 50
                password="
 51
 52
                port="5432"
 53
```

```
# changes keyfile

# แต่เพื่อความง่ายเราสามารถกำหนด File Path ไปได้เลยตรง ๆ

keyfile = "/opt/airflow/dags/
service_account_info = json.load(open(keyfile))

credentials = service_account.Credentials.from_service_account_info(service_account_info)

# โค้ดส่วนนี้จะเป็นการสร้าง Client เชื่อมต่อไปยังโปรเจค GCP ของเรา โดยใช้ Credentials ที่

# สร้างจากโค้ดข้างต้น

# changes project_id

project_id = "
client = bigquery.client()

project=project_id,
 credentials=credentials,

main(dataset_id="rainfalltest", table_id="province", file_path="province.csv") # changes dataset_id
```

ขั้นตอนการทำงาน - เตรียมการเชื่อมต่อ Airflow (ต่อ)

7. เปิด terminal โดยเข้าสู่โฟลเดอร์ที่ต้องการด้วยคำสั่ง cd ชื่อโฟลเดอร์ และเปิดใช้งาน Airflow ด้วยคำสั่ง docker-compose up

docker-compose up

8. เปิด Port 8080 จะเข้าไปที่หน้า Airflow และใส่ username password โดยดู จากไฟล์ docker-compose.yaml

ขั้นตอนการทำงาน - สร้าง Data Pipeline ด้วย Airflow

9. add connection เพื่อเชื่อมต่อ NEON และ Google BigQuery

Airflow DAGs	Cluster Activity Datasets Security - Browse - Admin - Docs -	
Edit Connection		
Connection Id *	Project_id Bigquery	
Connection Type *	Google Bigquery Connection Type missing? Make sure you've installed the corresponding Alrflow Provider Package.	
Description	bigquery	
Host	Principal ann IAM gsen/ceaccount.com	
Schema		
Principal ann IAM gerviceaccount.com		
Password		
Port		
	0	

ขั้นตอนการทำงาน - สร้าง Data Pipeline ด้วย Airflow (ต่อ)

10. หาก save แล้วขึ้นว่า page can't be found ให้ลบ :8080 ออกแล้ว refresh

ขั้นตอนการทำงาน - สร้าง Data Pipeline ด้วย Airflow (ต่อ)

11. ใน Github ให้ปรับแก้ไฟล์ ETL_Postgres_to_Bigquery.py โดยแก้ postgres_conn_id="neon" ซึ่งได้มาจากการเพิ่ม connection NEON ใน UI Airflow tab Admin >> connection จากนั้นจะได้ Data Pipeline ใน DAGS

```
# changes postgres_conn_id="conn id" ได้มาจากการเพิ่ม connection ใน UI Airflow tab Admin >> connection

def _create_tables():
    hook = PostgresHook(postgres_conn_id="neon") #ใช้ PostgresHook เพื่อเชื่อมต่อกับฐานข้อมูล PostgreSQL
    conn = hook.get_conn()
    cur = conn.cursor()
```


ขั้นตอนการทำงาน - ทำการ Data Transformation ด้วย Airflow

- 12. ในหน้า UI Airflow ให้ทำการ run ETL_Postgres_to_Bigquery
- ี่ 13. จะได้ไฟล์ rainfall.csv กับ province.csv เข้ามาอยู่ใน dags เพื่อที่นำข้อมูลเข้าไปยัง Google BigQuery

ขั้นตอนการทำงาน - ทำการ Data Transformation ด้วย Airflow (ต่อ)

14. เมื่อเข้าไปยัง Google BigQuery จะพบว่ามี Tables rainfall และ province เพิ่มขึ้น มา

ขั้นตอนการทำงาน - สร้าง Data Visualization ด้วย Power BI

15. ทำการเชื่อมต่อกับ Google BigQuery เพื่อดึงข้อมูลเข้ามายัง Power BI โดยใส่ Project id ที่ต้องการเชื่อมต่อ

ขั้นตอนการทำงาน - สร้าง Data Visualization ด้วย Power BI (ต่อ)

ี่ 16. ทำการ Transform data และเลือกข้อมูลที่ต้องการ (ในที่นี้ใช้ข้อมูล rainfall) ที่อยู่ ใน Project Id ที่ได้ทำการเชื่อมต่อไว้

ขั้นตอนการทำงาน - สร้าง Data Visualization ด้วย Power BI (ต่อ)

17. ทำการสร้าง Visualization ตามวัตถุประสงค์ที่ต้องการ

