< 서보 루프 게인 설정 방법 >

2008-11-24 엄일용

1. 개요

현재 다수의 로봇에서 사용하고 있는 신규 PPI(신 PPI) 튜닝 방법을 누구든 쉽게 튜닝할 수 있도록 알고리즘 및 튜닝 기법을 TP, Main, DSP 코드에 적용하였다. 따라서 아래와 같은 방법으로 게인 파라미터들을 변경하기만 하면 된다. 좀 더 구체적인 방법을 알고 싶으면 'Servo Gain Tuning Procedure.pdf' 파일을 참고하기 바란다.

2. 튜닝 방법

아래와 같은 버전 이상으로 버전업이 되어 있다면 튜닝에 관련된 소프트웨어는 모두 적용되어 있는 상태이며, 순서에 따라서 튜닝을 시작하면 된다.

- Main 버전 MV30.05-10 2008.11.20 - TP 버전 TV30.05-10 2008.11.20

- DSP 버전 SV5.30

- 1) 엔지니어 코드 입력
 - A. R+314입력
- 2) 서보 루프 게인 설정 창 선택
 - A. '시스템'

B. '3. 로봇 파라미터'

C. '33. 서보 파라미터'

D. '1. 서보 루프 게인'

E. 서보 루프게인 설정 화면

3) 서보 루프 게인 설명 이전에 사용하던 PPI 게인의 크기 및 의미가 다른 면이 많기 때문에 주의가 필요하다.

Кр	위치 비례 게인	자동 계산
Kf	Feedforward Ratio (1 = 16384), 15000 추천	사용자 입력
Kv	속도 비례 게인	사용자 입력
Kb	신규 PPI 사용시 '0'으로 셋팅	신규 PPI시 자동으로 '0' 셋팅
Ki	속도 적분 게인	자동 계산
F1, F2	MAF 값	사용자 입력
Pf	Phase Lag Filter 게인	자동 계산

4) 서보 루프 게인 설정 활성화 방법

<u>신규 PPI 값을 설정하기 위해서는 숨겨져 있는 선택 키를 눌러야 한다.</u> 이는 기존에 사용하던 PPI 와 기능을 같이 사용하기 위해서 만들어졌다.

'서보 루프 게인 '설정 창에서 '<u>F3</u>'키를 누르면 아래와 같은 화면이 활성화 된다. 아래와 같은 화면이 활성화가 되어야 신규 PPI 제어 알고리즘의 게인 파라미터를 설정할 수 있게 된다.

5) 신규 파라미터 설명

- A. STRKP: 위치 루프 비례 게인 시정수 비
 - 위치 루프의 시정수를 결정하기 위한 게인이다.
 - 값이 작아지면 Kp가 증가하며 시정수가 짧아진다.
 - 보통 0.3~0.6 사이의 값을 사용하며, default 값은 0.5이다.
 - 이 값에 의해서 Kp 값이 변경된다.
- B. STRKi: 속도 루프 적분 게인 시정수 비
 - 속도 루프의 적분 시정수를 결정하기 위한 게인이다.
 - 값이 작아지면 Ki 값이 증가하며 속도 오차를 빨리 줄일 수 있다.
 - 하지만 값이 너무 작아지면 진동이 커지는 단점이 있다.
 - 따라서, 0.6 값을 추천하며 왜만하면 이 값은 수정하지 않는 것이 좋다.
 - 이 값에 의해서 Ki 값이 변경된다.

- C. HNF: 로봇 최소 부하 자세에서의 고유 진동 주파수
 - Phase Lag Compensator Filter 값과 속도 적분 게인 값을 결정하기 위한 변수이다.
 - 실제 로봇 최소 부하자세에서의 고유 진동 주파수를 입력해주면 된다.
 - 주파수가 결정되면 내부적인 계산식에 의해서 값이 결정된다.
 - 이 값에 의해서 PLF와 Ki 값이 변경된다.
- D. LNF: 로봇 최대 부하 자세에서의 고유 진동 주파수
 - 위치 루프 비례 게인을 결정하기 위한 파라미터이다.
 - 실제 로봇 최대 부하자세에서의 고유 진동 주파수를 입력해주면 된다.
 - 로봇 최대 부하 자세에서의 시정수를 모든 축에 동기화 시켜주기 위함이다.
 - 이 값에 의해서 Kp 값이 변경된다.

_

3. 튜닝 값 설정 방법

신규 PPI 알고리즘으로 값을 튜닝하기 위해서는 서보 루프 게인 창에서 F3키를 눌러 신규 파라미터 설정 창(STRKp, STRKi, HNF, LNF)이 나타나 있어야 한다. 이 창이 보이지 않으면 기존 PPI 알고리즘 값이 튜닝 된다.

튜닝시에는 항상 신규 파라미터 창이 열려 있도록 주의가 필요하다.

1) F1, F2 값의 설정

A. 이 값은 기구의 특성에 맞게 기존에 설정 방법과 동일하게 적용한다.

- 2) HNF, LNF 설정
 - A. 파라미터 설정 창에서 HNF, LNF값을 설정한다.
 - B. Default값은 HNF = 6(Hz), LNF = 3(Hz)이다.
- 3) 각 축 Kv 값의 설정
 - A. 신규 파라미터 창이 열려 있어야 한다.
 - B. Kv 값의 설정은 마지막 축부터 시작한다.(6축 -> 5축 -> 4축 -> ...)
 - C. 튜닝을 하고자 하는 축이 동작할 때 가장 부하가 작게 걸리는 자세를 잡아준다.
 - 초기 게인 값은 default 값이 설정되어 있어서 자세를 변경하기 위해 motor on을 하면 소음이 날 수 있다.
 이 딸수 있다.
 이 때는, 각 축의 kv값을 현재 값의 절반 이상을 낮추어서 일단 소음을 제거한다.(항상 신규 파라미터 창은 열려 있어야 한다.)
 - D. 부하가 최소가 되는 자세가 되었으면 현재 설정되어 있는 kv 값 보다 값을 조금씩 높이면서(약 100 단위로) 조그 모드로 움직인다.
 - 항상 신규 파라미터 창은 열려 있어야 한다.
 - 최소 부하 자세에서 kv를 높이면서 조그 동작중 소음이 나는 값까지 kv를 높여준다.
 - 소음이 발생하면 그 때의 kv 값에 절반을 설정한다.
 - ✓ 이와 같은 이유는 소음이 발생하는 순간이 주파수 응답 그래프에서 보면 Mp 값이 +3db 를 넘는 순간이기 때문이다. 이를 안정화 시키기 위해서는 약 -6db를 낮추어 주어야 하 는데 이를 계산해 보면 소음이 발생할 때의 kv 값에 절반 정도로 계산이 된다.
 - 최소 부하 자세에서 등속구간이 나올 수 있도록 작업 프로그램을 작성하고 재생속도 100%로

동작시키며 토크 파형과 소음을 들어보며 다시 세부적인 kv값을 설정한다.

4) STRKp 값의 설정

- A. 각 축 kv값이 결정되면 위치 루프의 시정수를 결정해야 한다.
- B. 위치 루프의 시정수를 결정하는 파라미터는 STRKp, LNF 두 개이다.
- C. LNF는 기구에 의해서 결정되어 변경이 불가능하기 때문에 STRKp를 이용하여 위치 루프의 시정수를 결정한다.
- D. Default 값은 0.5이다.
- E. 이 값은 로봇의 진동을 보면서 결정한다.
- F. 값이 작아지면 로봇의 응답속도는 빨라지나 진동이 증가할 수 있다.
- G. 보통 0.3~0.6정도의 값을 사용하며 기구의 상황에 따라 적절히 조절해야 한다.

5) Kf 값의 설정

- A. 이 값은 속도 Feedforward 값을 결정한다.
- B. 16384일 때 지령속도와 동일한 feedforward값이 적용되며, 이보다 작을 경우 (설정값/16384)의 비율로 적용된다.
- C. 보통 15000값이 설정되며, 너무 클 경우 overshoot가 발생할 수 있다.
- D. 또한, feedforward로 인하여 진동이 커지는 경우도 있다.
- E. 이 값은 모든 축에 동일하게 적용되어야 한다.