Introduction to Logic Assignment 3

King Mongkut's Institute of Technology Ladkrabang

August 28, 2021

Problem 1

Determine whether each sentence below can be translated into a formula in Propositional Logic using the given propositional letters and their specified meanings. If so, provide a formula that has the closest meaning to the sentence; otherwise, state that there is no translation.

Example. "If you have not paid your tuition fee, you will not be allowed to graduate."

p =You have paid your tuition fee.

g =You are allowed to graduate.

Ans. Yes. $\neg p \rightarrow \neg g$

- (a) "Sweden and Norway will both not adopt the Euro."
 - s =Sweden will adopt the Euro.
 - n = Norway will adopt the Euro.
- (b) "Sweden and Norway will not both adopt the Euro."
 - s =Sweden will adopt the Euro.
 - n = Norway will adopt the Euro.
- (c) "Our leader doesn't dye his hair, use makeup, or wear a wig."
 - h = Our leader dyes his hairs.
 - m = Our leader uses makeup.
 - w = Our leader wears a wig.
- (d) "By signing this document, you agree to the terms and conditions of this software."
 - s =You sign this document.
 - a =You agree to the terms and conditions of this software.

- (e) "Unless I see it with my own eyes, and hear it with my own ears, I never will believe it." (Charles Dicken)
 - s = I see it with my own eyes.
 - h = I hear it with my own ears.
 - b = I believe it.
- (f) "The message was sent from an unknown system but it was not scanned for viruses."
 - u = The message was sent from an unknown system.
 - s = The message was scanned for virus.
- (g) "Access is granted whenever the user has paid the subscription fee and enters a valid password."
 - a =Access is granted.
 - f = The user has paid the subscription fee.
 - p =The user enters a valid password.
- (h) "John has a belief that both Mary and Tom lied."
 - j =John has a belief.
 - m = Mary lied.
 - t = Tom lied.
- (i) "Being affiliated with a major political party is not sufficient for you to become the President of the United States."
 - a =You are affiliated with a major political party.
 - p =You are becoming the President of the United States.
- (j) "High public debt and a sharp rise in consumer prices are necessary and sufficient conditions for an economic crises to happen in the country."
 - d = The country has high public debt.
 - p =There is a sharp rise in consumer prices in the country.
 - c = There is going to be an economic crisis in the country.
- (k) John and Mary are friends.
 - j = John is a friend.
 - m = Mary is a friend.

Problem 2

Suppose SE-Rocks is a popular rock band at KMITL, whose members are the following students in the Software Engineering program: Alex, Beth, and Carl. Let p_1 , p_2 , p_3 , q_1 , q_2 and q_3 be the following propositions:

 p_1 : Alex is a lead singer.

 p_2 : Beth is a lead singer.

 p_3 : Carl is a lead singer.

 q_1 : Alex plays guitar.

 q_2 : Beth plays guitar.

 q_3 : Carl plays guitar.

Write the following propositions about the band using p_1 , p_2 , p_3 , q_1 , q_2 , q_3 and logical connectives.

- (a) Beth does not play guitar and Carl is not a lead singer.
- (b) Neither Beth nor Carl is a lead singer.
- (c) The band's lead singers also play guitar.
- (d) There is one lead singer in the band.
- (e) At least two members of the band play guitar.

Problem 3

Rewrite the following formulas by inserting all the omitted parentheses.

- (a) $p \vee \neg q \vee r \wedge p \vee q \wedge \neg r$
- (b) $p \land \neg q \to p \lor q$

Problem 4

Suppose $\phi = ((p \land q) \to r) \leftrightarrow ((p \to r) \land (q \to r))$

- (a) Describe a truth assignment which makes ϕ true.
- (b) Describe a truth assignment which makes ϕ false.

Problem 5

Show by means of a truth table that the formulas $p \leftrightarrow q$ and $(p \lor \neg q) \land (\neg p \lor q)$ are logically equivalent.

Problem 6

Table 1 lists some well-known logical equivalences in propositional logic.

Theorem 1 (Replacement Theorem) Suppose ϕ is a formula and ψ is a subformula of ϕ . And suppose ψ' is a formula such that $\psi \equiv \psi'$. If ϕ' denotes the formula resulted from replacing an occurrence of ψ in ϕ by ψ' , then $\phi \equiv \phi'$.

The Replacement Theorem allows us to convert a formula into an equivalent one by replacing some subformula ψ in the original formula by any formula equivalent to ψ . The following example shows that the formulas $\neg(\neg p \land \neg q)$ and $p \lor q$ are logically equivalent by using repeated applications of the Replacement Theorem and the logical equivalences in Table 1.

Example 1

$$\neg(\neg p \land \neg q) \equiv \neg(\neg p) \lor \neg(\neg q) \qquad by E16$$

$$\equiv p \lor \neg(\neg q) \qquad by E9$$

$$\equiv p \lor q \qquad by E9$$

By applying the Replacement Theorem and the logical equivalences listed in Table 1, show (as in the previous example) that each pair of formulas below are logically equivalent.

(a)
$$\neg (p \to q)$$
 and $p \land \neg q$

(b)
$$(p \land q) \lor (\neg p \land \neg q)$$
 and $(\neg p \lor q) \land (p \lor \neg q)$

(c)
$$p \to (q \to r)$$
 and $q \to (p \to r)$

(d)
$$(q \vee \neg p) \rightarrow (q \wedge p)$$
 and $p \wedge (r \rightarrow p)$

Table 1: Some Logical Equivalences		
	Equivalences	Name
E1	$\phi \wedge \top \equiv \phi$	Identity Laws
E2	$\phi \lor \bot \equiv \phi$	
E3	$\phi \wedge \bot \equiv \bot$	Domination Laws
E4	$\phi \vee \top \equiv \top$	
E5	$\phi \wedge \neg \phi \equiv \bot$	Complement Laws
E6	$\phi \vee \neg \phi \equiv \top$	
E7	$\phi \wedge \phi \equiv \phi$	Idempotent Laws
E8	$\phi \vee \phi \equiv \phi$	
E9	$\neg(\neg\phi) \equiv \phi$	Double Negation Law
E10	$\phi \wedge \psi \equiv \psi \wedge \phi$	Commutative Laws
E11	$\phi \lor \psi \equiv \psi \lor \phi$	
E12	$\phi \wedge (\psi \wedge \chi) \equiv (\phi \wedge \psi) \wedge \chi$	Associative Laws
E13	$\phi \lor (\psi \lor \chi) \equiv (\phi \lor \psi) \lor \chi$	
E14	$\phi \wedge (\psi \vee \chi) \equiv (\phi \wedge \psi) \vee (\phi \wedge \chi)$	Distributive Laws
E15	$\phi \lor (\psi \land \chi) \equiv (\phi \lor \psi) \land (\phi \lor \chi)$	
E16	$\neg(\phi \land \psi) \equiv \neg\phi \lor \neg\psi$	De Morgan's Laws
	$\neg(\phi \lor \psi) \equiv \neg\phi \land \neg\psi$	
E18	$\phi \wedge (\phi \vee \psi) \equiv \phi$	Absorption Laws
E19	$\phi \lor (\phi \land \psi) \equiv \phi$	
E20	$\phi \to \psi \equiv \neg \phi \lor \psi$	
E21	$\phi \leftrightarrow \psi \equiv (\phi \to \psi) \land (\psi \to \phi)$	