

CSI 436/536 (Fall 2024) Machine Learning

Lecture 19: Dimension Reduction

Chong Liu

Assistant Professor of Computer Science

Nov 19, 2024

+ +

+

No change – finished!

Recap: Clustering

- K-means algorithm
 - Assign hard labels to data points
 - How does it work?
 - Alternating makes updates
 - Which distance function to use?
 - How many cluster centers (centroids) to choose?
 - How to initialize the centroids?
- Gaussian mixture models
 - Assign soft labels to data points
 - A probabilistic model for clustering

Recap: Two broad categories of unsupervised learning (1) Clustering (2) Dimension reduction

Clustering aims at finding a partition of the data that makes sense.

• Dimension reduction aims at identifying a more compact

representation of data

Today

• Why dimension reduction?

Linear dimension reduction

Principal Component Analysis (PCA) algorithm

Non-linear dimension reduction

What is dimension reduction?

Why dimension reduction

- Computation and memory efficiency
 - Reduce file size
- Statistical efficiency (fewer features to learn):
 - "Curse of dimensionality"
- Fewer features are easier to understand. It can help identifying hidden causes factors.
- Often data are high-dimensional but the physics mandate that they should be lying on a low-dimensional subspace.

Linear dimension reduction

- Input: $X \in \mathbb{R}^{d \times m}$
 - Number of data points: *m*
 - Number of features: d
- Output: $X' = WX \in R^{d' \times m}$
 - Projection matrix $W \in R^{d' \times d}$
 - Discussion: Does a random W works as a valid projection matrix?
- What is a good X'?
 - As long as it makes sense to your task
 - A good low-dimensional representation that is good for further process (e.g., classification)

Example: from 2-d to 1-d

- Which project direction should we choose?
 - Red, gray, or?

- Max-variance is the best choice!
 - Data is distributed sparsely
 - Easier for further process

Key idea of Principal Component Analysis (PCA)

- These two are equivalent:
 - Maximum variance: the projections of samples onto the hyperplane should stay away from each other.
 - Minimum reconstruction error: the samples should have short distances to this hyperplane.

Principal Component Analysis (PCA)

Input: Data set $D = \{x_1, x_2, \dots, x_m\}$; Dimension d' of the lower dimensional space.

Process:

- 1: Center all samples: $x_i \leftarrow x_i \frac{1}{m} \sum_{i=1}^m x_i$; 0-mean samples
- 2: Compute the covariance matrix XX^T of samples;
- 3: Perform eigenvalue decomposition on the covariance matrix XX^{T} ;
- 4: Take the eigenvectors $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_{d'}$ corresponding to the d' largest eigenvalues.

Output: The projection matrix $\mathbf{W}^* = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_{d'})$.

Example of PCA on Gaussian data

Different choices of dimension of PCA in image compression

Non-linear dimension reduction

- Mixture of linear subspaces:
 - Subspace clustering
 - Mixture of probabilistic PCAs
 - A combination clustering and dim-reduction
- Kernel PCA
 - Run PCA on the kernel matrix instead of the covariance matrix
- Laplacian Eigenmaps (also the related Isomap)
 - First construct a nearest neighbor graph
 - Then run SVD on the Laplacian matrix of the graph
- Neural approaches:
 - Autoencoders / variational autoencoders
 - Transformers (for data-reconstruction)

Kernel PCA on the two-moon example

Increasing the number of principal components in kernel PCA improves the reconstruction

What's next?

- Thu Nov 21: Advanced Topic: Decision Making
 - Not part of the final exam
 - Most recent hot topics in machine learning!
 - It would be fun!

- Tue Nov 26: Course Review
- Tue Dec 3: Final project presentation
- Thu Dec 5: HW3 and HW4 Review
- Mon Dec 16, 8:30-10am: Final exam