ICD Course SUT Instructor: Dr. Foshati

TCP PROTOCOL

Amirkasra Ahmadi

What is TCP

Stands for Transmission Control Protocol

One of the core Internet protocols (part of TCP/IP suite)

Ensures reliable, ordered, and error-checked data delivery between applications

Why was TCP Developed?

TCP was developed in the early 1970s by Vinton Cerf and Robert Kahn to address the need for reliable communication across large-scale and heterogeneous networks, such as the Internet.

It was designed to ensure reliable data transmission by incorporating mechanisms for error correction, congestion control, and flow control, making it a fundamental protocol for modern network communication.

TCP Characteristics

Connection-

Oriented: Establishes

a connection before

transmitting data

Reliable: Guarantees that data arrives intact and in order

Full-Duplex: Allows simultaneous data transfer in both directions

Stream-Based: Transfers a continuous stream of bytes rather than fixedsized packets

TCP Three-Way Handshake

Error DETECTION INTCP

```
###[ IP ]###
                      IP header
 version
           = 4
           = None
 tos
           = 0 \times 0
           = 180
 len
           = 1
 flags
 frag
 ttl
           = 64
 proto
           = tcp
 chksum
           = None
           = 188.184.100.182
 dst
           = 192.168.88.223
 \options \
###[ TCP ]###
              = http
    sport
              = 47566
    dport
              = 2381753352
    ack
              = 2093000791
                                                 TCP header
    dataofs
    reserved = 0
              = PA
    flags
              = 235
    window
              = None
    chksum
    urgptr
              = [('NOP', None), ('NOP', None), ('Timestamp', (2697522340, 1682671698))]
    options
###[ Raw ]###
                 = 'HTTP/1.1 304 Not Modified\r\nDate: Wed, 13 Mar 2024 07:56:28 GMT\r\nSe
       load
:0"\r\n\r\n'
                                                                                  Payload
```

Sender calculates and includes the checksum in the segment.

Receiver recalculates the checksum and verifies integrity.

Error Correction in TCP

Drops

Drops the corrupted segment

Retransmission

Requests retransmission

Acknowledgment

Uses acknowledgment numbers to confirm received data

Closing a TCP connection

Port numbers identify specific applications or services on a device

Each TCP connection uses:

- Source Port and Destination Port.
- Example: HTTP uses port 80, FTP uses port 21.

Role of Port Numbers in TCP

How Does TCP Handle
Data Transmission in a
Network

Sequence Number

Each segment has a unique sequence number

ACK

The receiver sends back an ACK for each segment.

outgoing segment from sender

TCP Segment Structure

Uses a Sliding Window Mechanism

Receiver informs sender of available buffer size (Window Size field)

Prevents buffer overflow at the receiver

Flow Control in TCP

Congestion Avoidance in TCP

Slow Start

Gradually increases transmission rate

Congestion Avoidance

Reduces rate when congestion is detected

Fast Recovery

Quickly recovers from packet loss

TCP Congestion Control

TCP Congestion Control

TCP CUBIC

TCP CUBIC

THANKS FOR YOUR ATTENTION