Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$ Casel: $\triangle > 0$

 $\triangle = 100 > 0$

Case2: △=0

Example 2.

∆=0

 $u_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \, ac}}{2a}$ computes the u-intercepts of multiplicity 1. q(0) = c computes the single q-intercept.

Given a quadratic $q(u) = a u^2 + b u + c$ compute its discriminant \triangle :

Example 1.

$$q(u) = -u^2 + 2u + 24 \text{ compute its discriminant } \triangle:$$

$$u_{1,2}=6,-4$$
 $q(0)=24$ $q-intercept.$

 $u_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single u-intercept of multiplicity 2.

$$u_{1,2}=6.6$$

 $q(0)=108$ q-intercept.

 $q(u) = 3u^2 - 36u + 108$ compute its discriminant \triangle :

 $q(u) = -4 u^2 + 56 u - 245$ compute its discriminant \triangle :

However there is a q-intercept.

no u-intercepts.

Example 3.

$$\triangle = -784 < 0$$
 $q(0) = -245$ $q-intercept$.