Student ID:

Name:

MAT2006: Elementary Real Analysis Mid-term Test

Two hours, closed book.

Question 1. [20 marks] State the following theorems (proofs are not required).

(a) The Least Upper Bound Property;

Every nonempty set of real numbers that is bounded above has a least upper bound. [3']

(b) The Archimedean Property;

For any $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that x < n. [2']

(c) The Nested Interval Property;

Let $I_1 \supset I_2 \supset I_3 \supset \cdots$ be a sequence of nested closed intervals, then

$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset.$$
 [3']

(d) The Monotone Convergence Theorem;

If a sequence is monotone and bounded, then it converges. [3']

 $(e)\ The\ Bolzano-Weierstrass\ Theorem;$

Every bounded sequence contains a convergent subsequence. [3']

(f) The Cauchy Criterion for sequences;

A sequence converges if and only if it is a Cauchy sequence. [3']

(g) The Heine–Borel Theorem.

A set $K \subset \mathbb{R}$ is compact if and only if it is closed and bounded. [3']

Question 2. [15 marks]

(i) Write down the sup, inf, max and min for the sets

$$A = (0,1]; \qquad B = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}.$$

(ii) For the sequence $x_n = (-1)^n$. Write down

$$\limsup_{n \to \infty} x_n$$
 and $\liminf_{n \to \infty} x_n$.

(iii) Assume $\{x_n\}$ and $\{y_n\}$ are two bounded sequences. Show that

$$\limsup_{n \to \infty} x_n + \limsup_{n \to \infty} y_n \ge \limsup_{n \to \infty} (x_n + y_n).$$

Solution. (i) [4']

$$\sup A = 1$$
, $\inf A = 0$, $\max A = 1$, $\min A$ does not exist.

$$\sup B = 1$$
, $\inf B = 0$, $\max B = 1$, $\min B$ does not exist.

(ii) [2']

$$\limsup_{n \to \infty} x_n = 1, \qquad \liminf_{n \to \infty} x_n = -1.$$

(iii) For $n, m \in \mathbb{N}$ and $n \geq m$, we have

$$x_n \le \sup\{x_n\}_{n=m}^{\infty}, \qquad y_n \le \sup\{y_n\}_{n=m}^{\infty}.$$
 [2']

which implies

$$x_n + y_n \le \sup\{x_n\}_{n=m}^{\infty} + \sup\{y_n\}_{n=m}^{\infty}, \qquad \forall n \ge m.$$
 [1']

This means that the right hand side of the last equation is an upper bound of the set

$$\{x_n + y_n\}_{n=m}^{\infty},$$

and therefore

$$\sup\{x_n\}_{n=m}^{\infty} + \sup\{y_n\}_{n=m}^{\infty} \ge \sup\{x_n + y_n\}_{n=m}^{\infty} \quad \forall m \in \mathbb{N}.$$
 [2']

Taking the limits when $m \to \infty$ to the above inequality, we have

$$\lim_{m \to \infty} \sup \{x_n\}_{n=m}^{\infty} + \lim_{m \to \infty} \sup \{y_n\}_{n=m}^{\infty}$$

$$= \lim_{m \to \infty} \left(\sup \{x_n\}_{n=m}^{\infty} + \lim_{m \to \infty} \sup \{y_n\}_{n=m}^{\infty} \right)$$

$$\geq \lim_{m \to \infty} \sup \{x_n + y_n\}_{n=m}^{\infty}$$
 [3']

which, by the definition of upper limits [1], is

$$\limsup_{n \to \infty} x_n + \limsup_{n \to \infty} y_n \ge \limsup_{n \to \infty} (x_n + y_n),$$

as desired.

Question 3.[10 marks] Using the Heine–Borel theorem to prove that any bounded infinite set must have a limit point.

Proof. Assume A is a bounded infinite set. Suppose, by contradiction, that A does not have a limit point. [1'] Then, by the definition, A is closed. [1'] Since A is also bounded, the Heine–Borel theorem, A is a compact set. [1'] For every $x \in A$, since A has no limit point, in particular, x is not a limit point of A. Therefore, there exists a neighborhood $V_{\epsilon_x}(x)$ of x, such that

$$(*) A \cap V_{\epsilon_x}(x) = \{x\}. [2']$$

It is clearly that

$$\bigcup_{x \in A} V_{\epsilon_x}(x) \supset A,$$

that is $\{V_{\epsilon_x}(x)\}_{x\in A}$ form an open cover of A. [1'] By the compactness of A, it has a finite subcover [1'] – there exists $N \in \mathbb{N}$ such that

$$\bigcup_{n=1}^{N} V_{\epsilon_{x_n}}(x_n) \supset A.$$

But from (*), we have

$$A \cap \left(\bigcup_{n=1}^{N} V_{\epsilon_{x_n}}(x_n)\right) = \bigcup_{n=1}^{N} \left(A \cap V_{\epsilon_{x_n}}(x_n)\right) = \{x_1, \dots, x_N\}.$$
 [1']

Thus

$$A = \{x_1, \cdots, x_N\}, \quad [1']$$

which implies A is a finite set and thus is a contradiction with A is infinite. [1'] Therefore, A must have a limit point.

Question 4.[15 marks] Suppose the series $\sum_{n=1}^{\infty} a_n$ converges.

- (i) Assume $a_n \geq 0$ for each $n \in \mathbb{N}$. Show that $\sum_{n=1}^{\infty} a_n^2$ also converges.
- (ii) If we don't assume $a_n \ge 0$, does $\sum_{n=1}^{\infty} a_n^2$ still converge? If so, provide a proof. If not, give an example.
 - (iii) Assume $a_n \geq 0$ and $a_{n+1} \leq a_n$ for each $n \in \mathbb{N}$. Show that $\lim_{n \to \infty} na_n = 0$.

Proof. (i) The series $\sum a_n$ converges implies $\{a_n\} \to 0$ [2']. Hence, there exists $N \in \mathbb{N}$ such that $|a_n| < 1$ for each $n \geq N$ [1']. From the hypothesis $a_n \geq 0$, we have $0 \leq a_n < 1$ for $n \geq N$ and $a_n^2 < a_n$ for $n \geq N$ [1']. By the comparison Test [2'], the series $\sum a_n^2$ also converges.

(ii) No [1']. If we set $a_n = \frac{(-1)^n}{\sqrt{n}}$ [1']. The series $\sum a_n$ converges, by the Alternating Series Test [1']. But

$$\sum_{n=1}^{\infty} a_n^2 = \sum_{n=1}^{\infty} \frac{1}{n}$$

diverges, this is the harmonic series. [1']

(iii) Let $b_n = a_n$. Proof by contradiction. Suppose $b_n = na_n$ does not converge to 0 [1']. Then, there exists $\epsilon_0 > 0$ and a subsequence $n_k a_{n_k}$ such that

$$|b_{n_k} - 0| = |n_k a_{n_k}| = n_k a_{n_k} \ge \epsilon_0.$$
 [1']

where we have made use of the fact that each a_n , and hence each a_{n_k} , is positive. Now, whenever $j \ge n_k$, we have

$$a_j \ge a_{n_k} \ge \frac{\epsilon_0}{n_k}.$$
 [1']

Therefore,

$$|a_{m+1} + a_{m+2} + \dots + a_n| = a_{m+1} + a_{m+2} + \dots + a_n$$

 $\ge \frac{n-m}{n_k} \epsilon_0$

Thus, for any $N \in \mathbb{N}$, choose a n_k such that $n_k \geq 2N$. Then, for the particular $n = n_k$ and m = N, we have

$$|a_{N+1} + \dots + a_{n_k}| \ge \frac{n_k - N}{n_k} \epsilon_0 \ge \frac{1}{2} \epsilon_0.$$
 [1']

That is the series $\sum a_n$ does not meet the Cauchy criterion for the series convergence [1'], and so $\sum a_n$ diverges, which is a contradiction with the assumption. Therefore, $na_n \to 0$ as $n \to \infty$.

Question 5.[20 marks]

Consider the following seven sets.

 \emptyset ; \mathbb{R} ; \mathbb{Q} ; \mathbb{I} ; [0,1]; (0,1]; C (the Cantor set).

- (i) Among the above sets, point out the finite, the countable, and the uncountable sets.
 - (ii) Among the above sets, point out the open, the closed, and the compact sets.
 - (iii) Show that any bounded open interval is F_{σ} .
 - (iv) Using the Baire Category Theorem show that \mathbb{I} is not F_{σ} .
- (v) Using part (iv), provide an example of "the countable intersection of F_{σ} sets is not F_{σ} ."

Solution.

- (i) Finite set: \emptyset . Countable set: \mathbb{Q} ; Uncountable sets: \mathbb{R} , \mathbb{I} , [0,1], (0,1], C. [3']
- (ii) Open sets: \emptyset , \mathbb{R} ; Closed sets: \emptyset , \mathbb{R} , [0,1], C; Compact sets: \emptyset , [0,1], C [3'].
- (iii) Let (a, b) be an bounded open interval, might be empty when $a \ge b$. Then

$$(a,b) = \bigcup_{n=1}^{\infty} \left[a + \frac{1}{n}, b - \frac{1}{n} \right].$$
 [2']

(Note that when b-a < 2, first few of or all of the above closed intervals might be empty set, which is also closed.) Thus, any bounded open interval can be written as a union of countable many of closed set, thus is a F_{σ} set. [1']

(iv) Assume, for contradiction, \mathbb{I} is F_{σ} , that is

$$\mathbb{I} = \bigcup_{n=1}^{\infty} I_n,$$

where each of I_n is a closed set. [1'] Recall that \mathbb{Q} is a F_{σ} set, since it is countable, we may write

$$\mathbb{Q} = \bigcup_{n=1}^{\infty} Q_n,$$

where each of Q_n is closed. [1'] Note that \mathbb{I} does not contain any open interval, since for otherwise, if a < b and $(a, b) \subset \mathbb{I}$, there will be no rational number exists on (a, b), which is a contradiction with the fact that \mathbb{Q} is dense in \mathbb{R} [1']. It then follows from $I_n \subset \mathbb{I}$ that I_n , and as its own closure, dosenot contain any nonempty open interval, thus each I_n is nowhere dense. Similarly, each of Q_n is also nowhere dense [2']. Then

$$\mathbb{R} = \mathbb{Q} \cup \mathbb{I} = \left(\bigcup_{n=1}^{\infty} Q_n\right) \cup \left(\bigcup_{n=1}^{\infty} I_n\right),$$

and the right-hand side is a countable union of nowhere dense sets [1'], which is a contradiction of Baire's Theorem [1']. Thus, \mathbb{I} is not F_{σ} .

(v) Since \mathbb{Q} is countable, we may write $\mathbb{Q} = \{q_1, q_2, q_3, \dots\}$. Note that

$$\mathbb{I} = \mathbb{Q}^c = \left(\bigcup_{n=1}^{\infty} \{q_n\}\right)^c = \bigcap_{n=1}^{\infty} \{q_n\}^c,$$

where we have made use of the De Morgan law. [2'] Note that $\{q_n\}^c = (-\infty, q_n) \cup (q_n, \infty)$, as a union of two F_{σ} sets is F_{σ} . [1'] The fact that \mathbb{I} is not F_{σ} provides a desired example. [1']

Question 6. [20 marks]

(i) Let A' denote the derived set of A, that is the set of all limit points of A. Show that $(A')' \subset A'$, that is A' is closed.

- (ii) Let $\{x_n\}$ be a bounded sequence and we may regard it as a set of real numbers, denoted by A and assume A is infinite. Let E := A' be the set of limits points of A. Show that $s = \sup E$ exists and $s = \sup E$ exists and
- (iii) We have shown that $\limsup_{n\to\infty} x_n = \sup E$. Prove that $\max E$ exists and that $\limsup x_n = \max E$.
- (iv) For a bounded nonempty set B, denote by $-B = \{-x \mid x \in B\}$. Show that $-\inf B = \sup(-B)$ and that $-\min B = \max(-B)$. Use this and part (iii) to show that $\liminf_{n \to \infty} x_n = \min E$.
- (v) We have shown that $\{x_n\}$ converges if and only if $\limsup_{n\to\infty} x_n = \liminf_{n\to\infty} x_n$. Using this to show that: if every convergent subsequence of $\{x_n\}$ converge to the same limit, then $\{x_n\}$ converges.
- Proof. (i) Let $y \in (A')'$, that is ℓ is a limit point of A', the derived set of A. By the definition of limit point, for any $\epsilon > 0$, $V_{\epsilon}^{0}(y) \cap A' \neq \emptyset$. [1'] That is, there exists $\ell \in A'$, such that $\ell \neq y$ and $\ell \in V_{\epsilon}(y)$ [1']. Now take $\epsilon' = \min\{|y-\ell|, |y+\epsilon-\ell|, |y-\epsilon-\ell|\} > 0$ [1']. By $\ell \in A'$, there exists a $x \in A$ such that $x \in V_{\epsilon'}(\ell) \subset V_{\epsilon}^{0}(y)$ [1']. That is $A \cap V_{\epsilon}^{0}(y) \neq \emptyset$. Therefore, by definition, y is also a limit point of A, that is $y \in A'$ [1']. Thus A' is closed.
- (ii) Since A is bounded and infinite, according to Problem 3, A must have a limit point [1']. That is E is nonempty [1']. For any $y \in E = A'$, there exists a sequence in A, not equal to y, converges to y. Thus, by carefully choosing, there exists a subsequence $\{x_{n_k}\}$ converges to y [1']. Since $\{x_n\}$ is bounded, assume $|x_n| \leq M$ for all $n \in \mathbb{N}$. Then by the Order Limit Theorem, the limit of x_{n_k} , y, satisfies $|y| \leq M$. That is E is a bounded set [1']. By the Least Upper Bound Property [1'], sup E exists.

By definition of $s = \sup E$, for any $n \in \mathbb{N}$, there exists $z_n \in E$ such that $s - \frac{1}{n} < z_n \le s$, that is $z_n \to s$ as $n \to \infty$. There are two cases, Case (1), if $z_n \ne s$ for each $n \in \mathbb{N}$, then s is a limit point of E, and since E is closed by part (i), $s \in E$. [2'] Case (2) if $z_{n_0} = s$ for some n_0 , then $s = z_{n_0} \in E$.

(iii) By part (ii), $s = \sup E \in E$, thus s is not only supremum, it is as well as the maximum of E, that is $s = \sup E = \max E$. [1']

Thus $\limsup x_n = \max E$.

(iv) Let $s = \sup(-B)$, then for all $x \in B$, $-x \le s$, that is $x \ge -s$, which means -s is a lower bound of B. Assume ℓ is also a lower bound of B, that is $x \le \ell$, then $-x \ge -\ell$ for all $-x \in (-B)$, that is $-\ell$ is an upper bound of (-B), thus $s = \sup(-B) \le -\ell$, that is $-s \ge \ell$. Thus, by definition, -s is the greatest lower bound of B, or, inf $B = -s = -\sup(-B)$. [2']

Suppose $M = \max(-B)$ exists, then $M \in B$ and $-x \leq M$ for all $x \in B$. Thus, $-M \in B$ and $x \geq -M$, which means that $\min B = -M = -\max(-B)$. [1'] Let $y_n = -x_n$, then it is clearly that

$$\inf_{n \ge m} \{x_n\} = -\sup_{n \ge m} y_n,$$

Student ID:

Name:

by taking limit $m \to \infty$, we have

$$\liminf_{n \to \infty} x_n = -\limsup_{n \to \infty} (-x_n) = -\max(-E) = \min E.$$

Here, we have made use of the facts we just proved. [2']

(v) By the assumption, the set A has only one limit point, that is E is a set contains only one point, say $E = \{s\}$. [1'] Thus max $E = \min E = s$. Therefore,

$$\limsup_{n \to \infty} x_n = \max E = s = \min E = \liminf_{n \to \infty} x_n,$$

and hence $\{x_n\}$ converges. [1']