

Progressão aritmética: soma dos termos

Resumo

Soma dos n primeiros termos de uma p.a.

Muitas foram as contribuições do alemão Carl F. Gauss à ciência em particular, à matemática . Sua incrível vocação para matemática . se manifestou desde cedo, perto dos 10 anos de idade Conta-se que Gauss surpreendeu seu professor ao responder o valor da soma (1 + 2 + 3 + 4 + 5...+ 99 + 100) em pouquíssimo tempo!!

Que ideia Gauss teria tido?

Ele notou a seguinte propriedade:

a1+a100= 1+100 =101

a2+a99= 2 + 99= 101

a3+a98 = 3 + 98 = 101

[...]

a50+a51 = 50 + 51 = 101

Assim, Gauss teria agrupado os 100 termos da soma em 50 pares de números cuja a soma é 101 . Obtendo $50 \times 101 = 5050$

Então, a soma dos 100 termos desta sequência é 5 050

Portanto, algebricamente o que Gauss fez foi:

$$S_{100} = \frac{(1+100).100}{2} = 5050$$

Então, podemos dizer que numa sequência de n termos, podemos escrever genericamente, como:

$$S_n = \frac{(a_1 + a_n).n}{2}$$

Onde: a₁, primeiro termo da sequência a_n, último termo da sequência n número de termos da sequência

Exercícios

- 1. Jogar baralho é uma atividade que estimula o raciocínio. Um jogo tradicional é a Paciência, que utiliza 52 cartas. Inicialmente são formadas sete colunas com as cartas. A primeira coluna tem uma carta, a segunda tem duas cartas, a terceira tem três cartas, a quarta tem quatro cartas, e assim sucessivamente até a sétima coluna, a qual tem sete cartas, e o que sobra forma o monte, que são as cartas não utilizadas nas colunas. A quantidade de cartas que forma o monte é
 - a) 21.
 - **b)** 24.
 - **c)** 26.
 - **d)** 28.
 - **e)** 31.
- 2. Um ciclista participará de uma competição e treinará alguns dias da seguinte maneira: no primeiro dia, pedalará 60 km; no segundo dia, a mesma distância do primeiro mais <u>r</u> km; no terceiro dia, a mesma distância do segundo mais <u>r</u> km; e, assim, sucessivamente, sempre pedalando a mesma distância do dia anterior mais r km. No último dia, ele deverá percorrer 180 km, completando o treinamento com um total de 1560 km. A distância <u>r</u> que o ciclista deverá pedalar a mais a cada dia, em km, é:
 - **a)** 3
 - **b)** 7
 - **c)** 10
 - **d)** 13
 - **e)** 20
- 3. Uma farmácia recebeu 15 frascos de um remédio. De acordo com os rótulos, cada frasco contém 200 comprimidos, e cada comprimido tem massa igual a 20mg. Admita que um dos frascos contenha a quantidade indicada de comprimidos, mas que cada um destes comprimidos tenha 30mg. Para identificar esse frasco, cujo rótulo está errado, são utilizados os seguintes procedimentos:
 - numeram-se os frascos de 1 a 15;
 - retira-se de cada frasco a quantidade de comprimidos correspondente à sua numeração;
 - verifica-se, usando uma balança, que a massa total dos comprimidos retirados é igual a 2540mg.

A numeração do frasco que contém os comprimidos mais pesados é:

- **a)** 12
- **b)** 13
- **c)** 14
- **d)** 15

4. Melhorando-se o nível de alimentação da população, condições sanitárias das casas e ruas, vacinação das crianças e pró-natal, é possível reduzir o índice de mortalidade infantil em determinada cidade. Considerando-se que o gráfico abaixo representa o número de crianças que foram a óbito a cada ano, durante dez anos, e que os pontos do gráfico são colineares, podemos afirmar corretamente que o total de crianças mortas neste intervalo de tempo foi de:

- a) 224
- **b)** 280
- **c)** 324
- **d)** 300
- **e)** 240
- **5.** Para um principiante em corrida, foi estipulado o seguinte plano de treinamento diário: correr 300 metros no primeiro dia e aumentar 200 metros por dia, a partir do segundo. Para contabilizar seu rendimento, ele utilizará um chip, preso ao seu tênis, para medir a distância percorrida nos treinos. Considere que esse chip armazena, em sua memória, no máximo 9,5 km de corrida/caminhada, devendo ser colocado no momento do início do treino e descartado após esgotar o espaço para reserva de dados. Se esse atleta utilizar o chip desde o primeiro dia de treinamento, por quantos dias consecutivos esse chip poderá armazenar a quilometragem desse plano de treino diário?
 - **a)** 7
 - **b)** 8
 - **c)** 9
 - **d)** 12
 - **e)** 13

- **6.** Um fisioterapeuta elaborou o seguinte plano de treinos diários para o condicionamento de um maratonista que se recupera de uma contusão:
 - primeiro dia corrida de 6 km;
 - dias subsequentes acréscimo de 2 km à corrida de cada dia imediatamente anterior.

O último dia de treino será aquele em que o atleta correr 42 km. O total percorrido pelo atleta nesse treinamento, do primeiro ao último dia, em quilômetros, corresponde a:

- a) 414
- **b)** 438
- **c)** 456
- **d)** 484
- **7.** A figura indica o empilhamento de três cadeiras idênticas e perfeitamente encaixadas umas nas outras, sendo h a altura da pilha em relação ao chão.

A altura, em relação ao chão, de uma pilha de n cadeiras perfeitamente encaixadas umas nas outras, será igual a 1,4 m se n for igual a

- a) 14.
- **b)** 17.
- **c)** 13.
- **d)** 15.
- **e)** 18.

- **8.** Um pai resolve depositar todos os meses uma certa quantia na caderneta de poupança de sua filha. Pretende começar com R\$5,00 e aumentar R\$5,00 por mês, ou seja, depositar R\$10,00 no segundo mês, R\$15,00 no terceiro mês e assim por diante. Após efetuar o décimo quinto depósito, a quantia total depositada por ele será de
 - a) R\$150,00
 - **b)** R\$250,00
 - c) R\$400,00
 - d) R\$520,00
 - e) R\$600,00
- **9.** Devido à epidemia de gripe do último inverno, foram suspensos alguns concertos em lugares fechados. Uma alternativa foi realizar espetáculos em lugares abertos, como parques ou praças. Para uma apresentação, precisou-se compor uma plateia com oito filas, de tal forma que na primeira fila houvesse 10 cadeiras; na segunda, 14 cadeiras; na terceira, 18 cadeiras; e assim por diante. O total de cadeiras foi:
 - a) 384
 - **b)** 192
 - **c)** 168
 - **d)** 92
 - **e)** 80
- **10.** As projeções para a produção de arroz no período de 2012 2021, em uma determinada região produtora, apontam para uma perspectiva de crescimento constante da produção anual. O quadro apresenta a quantidade de arroz, em toneladas, que será produzida nos primeiros anos desse período, de acordo com essa projeção.

Ano	Projeção da produção (t)
2012	50,25
2013	51,50
2014	52,75
2015	54,00

A quantidade total de arroz, em toneladas, que deverá ser produzida no período de 2012 a 2021 será de

- a) 497,25.
- **b)** 500,85.
- **c)** 502,87.
- **d)** 558,75.
- e) 563,25.

Gabarito

1. B

As cartas organizadas nas colunas formam uma PA de razão 1, (1,2,3,4,5,6,7). A soma desta PA pode ser calculada segundo a fórmula, sendo a_n o termo que ocupa a última posição e n o total de termos da PA.

Neste caso o monte é formado pelas cartas que sobraram 52 - 28 = 24.

2. C

As distâncias diárias percorridas correspondem a uma progressão aritmética de primeiro termo 60km e razão rkm. Logo, sabendo que a soma dos n primeiros termos dessa progressão é igual a 1.560km, e que a distância percorrida no último dia foi de 180km, temos

$$1560 = \left(\frac{60 + 180}{2}\right) \cdot n \Leftrightarrow n = 13.$$

Portanto, segue que

$$180 = 60 + (13 - 1) \cdot r \iff r = 10 \text{km}.$$

3. C

Supondo que todos os comprimidos tivessem massa igual a 20mg, a massa total retirada dos frascos seria igual a

$$20 \cdot (1+2+3+...+15) = 20 \cdot \frac{(1+15)}{2} \cdot 15$$

= 2400 mg.

Daí, como a diferença entre a massa dos comprimidos é de 30-20=10mg, segue que o número do frasco que contém os comprimidos mais pesados é

$$\frac{2540 - 2400}{10} = 14.$$

4. B

A sequência é uma P.A de 10 termos, pois sua variação é constante, pois no gráfico os pontos pertencem a uma mesma reta.

A soma dos 10 primeiros termos da P.A. será dada por:

$$S_{10} = \frac{(56+0)\cdot 10}{2} = 280$$

5. B

$$\begin{cases} a_1 = 300 \\ r = 200 \\ a_n = 300 + 200(n-1) \\ S_n = 9500 \end{cases}$$

$$9500 = \frac{[300 + 300 + 200(n-1)]n}{2}$$

$$19000 = 600n + 200n(n-1)$$

$$190 = 6n + 2n^2 - 2n$$

$$2n^2 + 4n - 190 = 0$$

$$n^2 + 2n - 95 = 0$$

$$n \approx 8.5$$

6. C

Sendo a quilometragem percorrida uma PA, pode-se escrever:

$$a_1 = 6$$

$$a_n = 42$$

n = número de dias

$$r = 2$$

$$42 = 6 + (n-1) \cdot 2 \rightarrow 18 = n-1 \rightarrow n = 19$$

$$S = \frac{(6+42)\cdot 19}{2} = \frac{48\cdot 19}{2} \to S = 456 \text{ km}$$

7. E

Tem-se que a altura h, em centímetros, de uma pilha de n cadeiras, $n \ge 1$, em relação ao chão, é dada por

$$h = 48 + 3(n-1) + 44 = 3n + 89.$$

Portanto, se h = 140 cm, então $140 = 3n + 89 \Leftrightarrow n = 17$.

8. E

$$\begin{cases} a_1 = 5 \\ r = 5 \\ a_{15} = 5 + (15 - 1)5 = 75 \end{cases}$$
$$S_n = \frac{(5 + 75)15}{2} = 600$$

9. B

$$\begin{cases} a_1 = 10 \\ r = 4 \\ a_8 = 10 + (8 - 1)4 = 38 \end{cases}$$
$$S_n = \frac{(10 + 38)8}{2} = 192$$

10. D

Como 51,50-50,25=52,75-51,50=54-52,75=1,25, podemos concluir que a sequência 50,25;51,50;52,75;54,00;... é uma progressão aritmética de primeiro termo $a_1=50,25$ e razão r=1,25. Portanto, queremos calcular a soma dos 10 primeiros termos dessa progressão aritmética, ou seja,

$$S_{10} = \left(\frac{2a_1 + 9r}{2}\right) \cdot 10$$
$$= \left(\frac{2 \cdot 50, 25 + 9 \cdot 1, 25}{2}\right) \cdot 10$$
$$= 558, 75.$$