a)

(i) Bestimme das Inverse von $\overline{9}$ im \mathbb{Z}_{25} :

Lemma von Bézout:

$$\begin{split} ggT(9,25): & 25 = 2 \cdot 9 + 7 \\ & 9 = 1 \cdot 7 + 2 \\ & 7 = 3 \cdot 2 + 1 \\ & 1 = 1 \cdot 1 + 0 \end{split} \qquad \Rightarrow ggT(9,25) = 1 \Rightarrow \text{Das Inverse existiert!}$$
 Ende des euklidischen Algorithmus

 $=7-3\cdot(9-1\cdot7)$

 $1 = 7 - 3 \cdot 2$

Aus $\overline{1} = \overline{14} \cdot \overline{9}$ folgt, dass $\overline{14}$ das Inverse zu $\overline{9}$ im \mathbb{Z}_{25} ist.

 $= \overline{14} \cdot \overline{9}$

(ii) Bestimme das Inverse von $\overline{7}$ im \mathbb{Z}_{25} : 18

Lemma von Bézout:

a)

Bestimme das Inverse von $\overline{16}$ im \mathbb{Z}_{123} :

Errechne ggt(16,123), um zu bestimmen ob es ein Inverses zu 16 im Z123 gibt:

$$\begin{split} ggT(16,123): & 123 = 7\cdot 16 + 11 \\ & 16 = 1\cdot 11 + 5 \\ & 11 = 2\cdot 5 + 1 \\ & 5 = 5\cdot 1 + 0 \end{split} \qquad \Rightarrow ggT(16,123) = 1 \Rightarrow \text{Das Inverse existiert!}$$
 Ende des euklidischen Algorithmus

$$= 11 - 2 \cdot (16 - 1 \cdot 11)$$

$$= -2 \cdot 16 - 1 \cdot 11$$

$$= -2 \cdot 16 - 1 \cdot (123 - 7 \cdot 16)$$

$$= -1 \cdot 123 + 5 \cdot 16$$

$$\Rightarrow \overline{1} = \overline{-1} \cdot 123 + \overline{5} \cdot \overline{16}$$

$$= \overline{-1} \cdot \overline{123} + \overline{5} \cdot \overline{16}$$

$$= \overline{5} \cdot \overline{16} \qquad \text{da } \overline{123} = \overline{0} \text{ im } \mathbb{Z}_{123}$$

 $1 = 11 - 2 \cdot 5$

Aus $\overline{1} = \overline{5} \cdot \overline{16}$ folgt, dass $\overline{5}$ das Inverse zu $\overline{16}$ im \mathbb{Z}_{123} ist.

b)

Das Inverse von $\overline{4}$ im \mathbb{Z}_{11} bestimmen, um später den Gauß-Algorithmus zu vereinfachen:

Da
$$\overline{4} \cdot \overline{3} = \overline{4 \cdot 3} = \overline{12} = \overline{1}$$
 im \mathbb{Z}_{11} gilt ist $\overline{3}$ das Inverse zu $\overline{4}$ im \mathbb{Z}_{11} !

Im Gauß-Schema unter Anwendung des Gauß-Algorithmus ergibt sich dann:

	x	y		
I:	$\overline{4}$	9	5	$\leftarrow \cdot \overline{3}$
II:	$\overline{2}$	$\overline{5}$	10	
I:	1	$\overline{5}$	$\overline{4}$	$\leftarrow \cdot \overline{9}$
П:	$\overline{2}$	$\overline{5}$	$\overline{10}$	
I:	9	1	3	
П:	$\overline{2}$	$\overline{5}$	$\overline{10}$	$\leftarrow + I$
I:	9	1	3	
II:	$\overline{0}$	$\overline{6}$	$\overline{2}$	

II:
$$\overline{0}x + \overline{6}y = \overline{2}$$

$$\Leftrightarrow \qquad \overline{6}y = \overline{2} \qquad | \cdot \overline{2}$$

$$\Leftrightarrow \qquad \overline{12}y = \overline{4}$$

$$\Leftrightarrow \qquad \overline{1}y = \overline{4}$$

$$\Leftrightarrow \qquad y = \overline{4}$$

II:
$$\overline{4}x + \overline{9}y = \overline{5}$$

$$\Leftrightarrow \qquad \overline{4}x + \overline{9} \cdot \overline{4} = \overline{5}$$

$$\Leftrightarrow \qquad \overline{4}x + \overline{3} = \overline{5} \qquad | + \overline{8}$$

$$\Leftrightarrow \qquad \overline{4}x + \overline{11} = \overline{13}$$

$$\Leftrightarrow \qquad \overline{4}x = \overline{2} \qquad | \cdot \overline{3}$$

$$\Leftrightarrow \qquad \overline{12}x = \overline{6}$$

$$\Leftrightarrow \qquad \overline{1}x = \overline{6}$$

$$\Leftrightarrow \qquad x = \overline{6}$$

Probe:

$$\overline{4}x + \overline{9}y = \overline{4} \cdot \overline{6} + \overline{9} \cdot \overline{4}$$

$$= \overline{24} + \overline{36}$$

$$= \overline{60}$$

$$= \overline{5}$$

$$\overline{2}x + \overline{5}y = \overline{2} \cdot \overline{6} + \overline{5} \cdot \overline{4}$$

$$= \overline{12} + \overline{20}$$

$$= \overline{32}$$

$$= \overline{10}$$

Zu lösen sind diese simulaten Kongruenzen:

$$\overline{x} = \overline{9} \text{ in } \mathbb{Z}_{17}$$
 $\overline{x} = \overline{4} \text{ in } \mathbb{Z}_7$

Hierfür benötigen wir die Inversen $\overline{a}\cdot\overline{7}=\overline{1}$ im \mathbb{Z}_{17} und $\overline{b}\cdot\overline{17}=\overline{1}$ im \mathbb{Z}_7 . Beide sind durch Hingucken/Ausprobieren gefunden worden:

$$\begin{array}{l} \overline{5} \cdot \overline{7} = \overline{5 \cdot 7} \\ = \overline{35} \\ = \overline{1} \\ \Rightarrow a = 5 \end{array}$$
 im \mathbb{Z}_{17}

$$\overline{5} \cdot \overline{17} = \overline{5} \cdot \overline{3} \qquad \text{im } \mathbb{Z}_7$$

$$= \overline{5} \cdot \overline{3}$$

$$= \overline{15}$$

$$= \overline{1} \qquad \text{im } \mathbb{Z}_7$$

$$\Rightarrow b = 5$$

Und damit ergibt sich nach dem chinesischen Restsatz:

$$x_0 = 9 \cdot a \cdot 7 + 4 \cdot b \cdot 17$$

$$= 9 \cdot 5 \cdot 7 + 4 \cdot 5 \cdot 17$$

$$= 315 + 340$$

$$= 655$$

Weitere Lösungen befinden sich in einem Abstand von $7 \cdot 17 = 119$ voneinander. Damit ist die kleinste Lösung also x = 60.

	x	y	z		
I:	3	1	1	b	$\leftarrow \Pi$
II:	-1	1	1	2	$\leftarrow III \rightarrow$
III:	1	3	3	-2	$\leftarrow \mathbf{I}$
I:	-1	1	1	2	
II:	1	3	3	-2	$\leftarrow + I$
III:	3	1	1	b	$\leftarrow +3\mathrm{I}$
I:	-1	1	1	2	
II:	0	4	4	0	
III:	0	4	4	b+6	$\leftarrow - II$
I:	-1	1	1	2	
II:	0	4	4	0	
III:	0	0	0	b+6	

Bei b=-6 gibt es hier also Lösungen, denn dann gilt $rg(\underline{\underline{A}})=rg(\underline{\underline{A}}|b)$. Unter der Annahme b=-6 haben wir also 3 Unbekannte und $rg(\underline{A})=2$, also wird ein freier Parameter t=z benötigt:

II:
$$0x + 4y + 4z = 0$$

$$\Leftrightarrow \qquad 4y = -4z$$

$$= -4t$$

$$\Rightarrow \qquad y = -t$$
I:
$$-1x + 1y + 1z = 2$$

$$\Leftrightarrow \qquad 1x = 1y + 1z - 2$$

$$\Leftrightarrow \qquad 1x = 1y + 1z - 2$$

	x_1	x_2	x_3	x_4		
I:	1	-3	2	2	1	
II:	4	1	-6	-3	2	$\leftarrow -4I$
III:	2	0	-1	0	3	$\leftarrow -2I$
IV:	0	1	1	1	4	
I:	1	-3	2	2	1	
II:	0	13	-14	-11	-2	\leftarrow IV
III:	0	6	-5	-4	1	$\leftarrow \Pi$
IV:	0	1	1	1	4	\leftarrow III
I:	1	-3	2	2	1	
II:	0	1	1	1	4	
III:	0	13	-14	-11	-2	$\leftarrow -13II$
IV:	0	6	-5	-4	1	$\leftarrow -6II$
I:	1	-3	2	2	1	
II:	0	1	1	1	4	
III:	0	0	-27	-24	-54	$\leftarrow \cdot (-1/3)$
IV:	0	0	-11	-10	-23	$\leftarrow \cdot (-1)$
I:	1	-3	2	2	1	
II:	0	1	1	1	4	
III:	0	0	9	8	18	
IV:	0	0	11	10	23	$\leftarrow \cdot 9 - 11III$
I:	1	-3	2	2	1	
II:	0	1	1	1	4	
III:	0	0	9	8	18	
IV:	0	0	0	2	9	

 $\mbox{Da } rg(\underline{A}) = 4 = rg(\underline{A}|b) \mbox{ folgt, dass wir keine freien Parameter benötigen und es definitiv eine Lösung gibt.}$

IV:
$$0x_1 + 0x_2 + 0x_3 + 2x_4 = 9$$

 $\Leftrightarrow 2x_4 = 9$
 $\Leftrightarrow x_4 = 4,5$
III: $0x_1 + 0x_2 + 9x_3 + 8x_4 = 18$
 $\Leftrightarrow 9x_3 = 18 - 8x_4$
 $= 18 - 36$
 $= -18$
 $\Leftrightarrow x_3 = -2$
II: $0x_1 + 1x_2 + 1x_3 + 1x_4 = 4$
 $\Leftrightarrow x_2 = 4 - 1x_3 - 1x_4$
 $= 4 - (-2) - 4,5$
 $= 1,5$
I: $1x_1 - 3x_2 + 2x_3 + 2x_4 = 1$
 $\Leftrightarrow x_1 = 1 + 3x_2 - 2x_3 - 2x_4$
 $= 1 + 4,5 - (-4) - 9$
 $= 0.5$

Damit ergibt sich für dieses LGS diese Lösungsmenge:
$$\mathbb{L} = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \right\} = \left\{ \begin{pmatrix} 0,5 \\ 1,5 \\ -2 \\ 4,5 \end{pmatrix} \right\}$$