Открытая студенческая олимпиада по математике Казахстанского филиала МГУ 6 декабря 2009

- 1. Пусть $A = -10^6$. Сначала за 4 хода (сложений или удвоений) получаем (-10A). Затем за 3 хода (умножений или возведений в квадрат) получаем A^7 . Наконец, за 4 хода путем умножений (или возведений в квадрат) получаем $(-A^7)$. Осталось сделать последнее действие.
- 2. Ответ: $\frac{72}{11}$. Нужно решить оптимизационную задачу:

$$\max\{10\alpha + 8\beta + 15\gamma; 9 - (2\alpha + 3\beta + 4\gamma)\} \rightarrow \min$$

где α , β , $\gamma \in [0;1]$. Здесь α , β , $\gamma \in [0;1]$ обозначают доли торта, банки варенья и кастрюли молока, которые съедает малыш.

3. Уравнение касательной:

$$y = -\frac{1}{x_0^2}x + \frac{2}{x_0}.$$

- 4. Пусть $h(x) = (f(x))^{2001} \cdot (g(x))^{2009}$. Тогда $h'(x) \geqslant 0$ на [0;1].
- 5. Ответ: $\frac{\pi}{4}$. Заметим, что:

$$\operatorname{arctg}\left(\frac{1}{n^2+n+1}\right) = \operatorname{arctg}\frac{1}{n} - \operatorname{arctg}\frac{1}{n+1}.$$

6. Достаточно использовать неравенство Бернулли:

$$(1+x)^{\alpha} \leqslant 1 + \alpha x$$

при $x \geqslant 0$ и $0 \leqslant \alpha \leqslant 1$.

7. Ответ: $-\frac{1}{n}$. Заметим, что $(x_1+x_2+...+x_{n+1})^2\geqslant 0$. Откуда легко получить, что:

$$2\sum_{1 \le i < j \le n+1} (x_i, x_j) + (n+1) \ge 0.$$

Пусть искомая величина равна S.

$$2\frac{n(n+1)}{2}S \geqslant \sum_{1 \le i < j \le n+1} (x_i, x_j) \geqslant -(n+1).$$

Откуда и получается $S\geqslant -\frac{1}{n}.$

Докажем методом математической индукции, что существует пример для $s=-\frac{1}{n}$. При n=1 достаточно выбрать вектора $x_1=(1;0)$ и $x_2=(-1;0)$. Допустим для $n-1\geqslant 1$ построены вектора $x_1,\,x_2,\,...,\,x_n$ такие, что $(x_i,x_j)=-\frac{1}{n-1}$ для всех i< j и $(x_i,x_i)=1$.

Умножим все n векторов на $\sqrt{1-\frac{1}{n^2}}$ и дополним каждый вектор еще одной координатой со значением $-\frac{1}{n}$. Добавим к системе вектор (0,0,0,...,0,1). Легко убедиться, что скалярное произведение любых двух различных векторов новой системы равно $-\frac{1}{n}$ и все векторы единичной длины.