Problem Sheet 1 – Importance sampling

Autumn School Uncertainty Quantification for High-dimensional Problems

Problem 1 (Warm up)

- a) Let f be the pdf of the uniform random variable U on the interval [0, 1]. Let g be the pdf of the uniform random variable V on the interval [0, 1/2]. Let $H(u) = u^2$. Show that $\mathbb{E}[H(U)] \neq \mathbb{E}[H(V)f(V)/g(V)]$.
- b) Let f be the pdf of the univariate standard normal density and $H(u) = \exp(-(u 10)^2/2)$. Find the optimal importance sampling density!
- c) Let f be the pdf of the univariate standard normal density and $H(u) = \exp(ku)$, where $k \neq 0$. Find the optimal importance sampling density!

Problem 2 (Self-normalized importance sampling)

Let $U \sim f$ be a random vector with pdf f. Consider estimating

$$Q := \mathbb{E}[H(\boldsymbol{U})] = \int_{D_f} H(\boldsymbol{u}) f(\boldsymbol{u}) d\boldsymbol{u}$$

with the self-normalized importance sampling estimator

$$E_{sn,g}^{IS}[Q] = \frac{\frac{1}{N} \sum_{i=1}^{N} W(\mathbf{V}^{(i)}) H(\mathbf{V}^{(i)})}{\frac{1}{N} \sum_{i=1}^{N} W(\mathbf{V}^{(i)})},$$

where $W(\mathbf{u}) = f(\mathbf{u})/g(\mathbf{u})$ is the likelihood ratio and $\mathbf{V}^{(i)} \sim g$ i.i.d. for i = 1, ..., N. In this problem we assume that the density g dominates the density f, that is, $\mathcal{D}_f \subseteq \mathcal{D}_g$.

a) Let $Z^{(i)}$ be i.i.d. copies of a random vector taking values in \mathbb{R}^n with distribution \mathbb{P}_Z . Let $\overline{Z} := \frac{1}{N} \sum_{i=1}^N Z^{(i)}$ denote the Monte Carlo estimator of $\mathbb{E}[Z]$. Let $v : \mathbb{R}^n \to \mathbb{R}$ denote a smooth function. The *delta method* approximates $v(\overline{Z})$ by a truncated Taylor expansion of v with anchor point $v(\mathbb{E}[Z])$ as follows:

$$\widetilde{v}(\overline{Z}) := v(\mathbb{E}[Z]) + \nabla v(\mathbb{E}[Z])^{\top}(\overline{Z} - \mathbb{E}[Z]).$$

Show that the variance of $\widetilde{v}(\overline{Z})$ is given by

$$\operatorname{var}(\widetilde{v}(\overline{\boldsymbol{Z}})) = \frac{1}{N} \nabla v(\mathbb{E}\left[\boldsymbol{Z}\right])^{\top} \operatorname{Cov}\left(\boldsymbol{Z}, \boldsymbol{Z}\right) \nabla v(\mathbb{E}\left[\boldsymbol{Z}\right]).$$

b) Let $\sigma_{sn,g}^2 := \mathbb{E}[W(V)^2(H(V) - Q)^2]$, where $V \sim g$ is a random vector with pdf g. Show that the delta method approximates the variance of the self-normalized IS estimator as follows

$$\operatorname{var}(E_{sn,g}^{IS}[Q]) \approx \frac{\sigma_{sn,g}^2}{N}.$$
 (1)

c) Show that the importance sampling density which minimizes the approximate variance of $E_{sn,q}^{IS}[Q]$ in (1) is given by

$$g_{opt,sn}(\boldsymbol{u}) = \frac{|H(\boldsymbol{u}) - Q|f(\boldsymbol{u})}{\int |H(\boldsymbol{u}) - Q|f(\boldsymbol{u})d\boldsymbol{u}}.$$

d) Show that

$$\sigma_{sn,q}^2 \ge \mathbb{E}[|H(\boldsymbol{U}) - Q|]^2.$$

e) Finally, let $H(\mathbf{u}) = \mathbb{1}_{\{G \leq 0\}}(\mathbf{u})$ be the indicator function of a failure domain with probability of failure $P_f = Q$. Which lower bound for $\sigma_{sn,g}^2$ do we obtain in this case? Derive an (approximate) lower bound for the c.o.v. of the self-normalized IS estimator! Compare this bound with the c.o.v. of the standard Monte Carlo estimator for P_f !