| Help   Com thou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| $P(m) = \frac{1}{2\pi} 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HWG Wigian Thou.                                          |
| $P(m) = \frac{1}{2\pi} 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.17 for MAP, we mousinize lepton                         |
| $P(m) = \frac{1}{2\pi} 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1) l(pi) = Zlup(xk/pi).                                  |
| $ \mu' = \arg\max_{M} \lim_{N \to \infty} \lim$ | No trade 7 W.                                             |
| $ \mu' = \arg\max_{M} \lim_{N \to \infty} \lim$ | =-= ln(00/21)- =1xx-10/2-1(xx-n)                          |
| $ \mu' = \arg\max_{M} \lim_{N \to \infty} \lim$ | P(M) = 17570/2 12 15 OL Zyu-mo) 20 (M-mo)]                |
| 12) $M' = E[X'] = E[AX] = A E[X] = A\mu$ . $Z' = E[(X'-\mu')(X'-\mu')^{T}]$ $= E[(X'-\mu')(X'-\mu')^{T}]$ $= E[(X'-\mu)(AX - A\mu)^{T}]$ $= A E[(X'-\mu)(AX - A\mu)^{T}]$ $= A E[(X'-\mu)(X'-\mu)^{T}]$ $= A E[(X'-\mu)(X'-\mu)^{T}]$ $= A E[(X'-\mu)(X'-\mu)^{T}]$ $= A E[(X'-\mu)(AX - A\mu)^{T}]$ $= A E[(X'-\mu)(AX $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1-0-6                                                     |
| 12) $M' = E[X'] = E[AX] = A E[X] = A\mu$ . $Z' = E[(X'-\mu')(X'-\mu')^{T}]$ $= E[(X'-\mu')(X'-\mu')^{T}]$ $= E[(X'-\mu)(AX - A\mu)^{T}]$ $= A E[(X'-\mu)(AX - A\mu)^{T}]$ $= A E[(X'-\mu)(X'-\mu)^{T}]$ $= A E[(X'-\mu)(X'-\mu)^{T}]$ $= A E[(X'-\mu)(X'-\mu)^{T}]$ $= A E[(X'-\mu)(AX - A\mu)^{T}]$ $= A E[(X'-\mu)(AX $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1û = ara max line ) Dine)                                 |
| $Z' = \mathcal{E} L(x' - \mu')(x' - \mu')^{\frac{1}{2}}$ $= \mathcal{E} L(x' - \mu)(x' - \mu')^{\frac{1}{2}}$ $= \mathcal{A} \mathcal{E} L(x' - \mu)(x' - \mu)^{\frac{1}{2}} L(x' - \mu)^{\frac{1}{2}}$ $= \mathcal{A} \mathcal{E} L(x' - \mu)(x' - \mu)^{\frac{1}{2}} L(x' - \mu)^{\frac{1}{2}} L($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (CA) TO ME SOLL SPITES                                    |
| $Z' = \mathcal{E} L(x' - \mu')(x' - \mu')^{\frac{1}{2}}$ $= \mathcal{E} L(x' - \mu)(x' - \mu')^{\frac{1}{2}}$ $= \mathcal{A} \mathcal{E} L(x' - \mu)(x' - \mu)^{\frac{1}{2}} L(x' - \mu)^{\frac{1}{2}}$ $= \mathcal{A} \mathcal{E} L(x' - \mu)(x' - \mu)^{\frac{1}{2}} L(x' - \mu)^{\frac{1}{2}} L($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m' = Etx'J = EtAx7 = AEtx7 = AM                           |
| Therefore, for $l(\mu')p(\mu')$ ne home. $l(\mu') = \frac{1}{2\pi} ln p(Atk   \mu')$ $= -\frac{n}{2} ln p(Atk   Apu)$ $= -\frac{n}{2} ln $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           |
| Therefore, for $l(\mu')p(\mu')$ ne home:<br>$l(\mu') = \frac{1}{2\pi} ln p(Atk   A\mu)$<br>$= -\frac{n}{2} ln [12\pi)^{cl} [AZA^{\dagger}] - \frac{n}{2} [AXk - A\mu]^{\dagger} (AZA^{\dagger})^{-1}$<br>$= -\frac{n}{2} ln [12\pi)^{cl} [AZA^{\dagger}] - \frac{n}{2} [AXk - A\mu]^{\dagger} (AZA^{\dagger})^{-1} (Ak - A\mu)$<br>$= -\frac{n}{2} ln [12\pi)^{cl} [AZA^{\dagger}] - \frac{n}{2} [AXk - \mu]^{\dagger} Z^{\dagger} (Ak - \mu)$<br>$= \frac{1}{(2\pi)^{cl/2} [AZa^{\dagger}]^{\frac{1}{2}}} e^{[-\frac{1}{2}(\mu - \mu_0)^{\dagger}] Z^{-1} (\mu - \mu_0)}$<br>$= \frac{1}{(2\pi)^{cl/2} [AZa^{\dagger}]^{\frac{1}{2}}} e^{[-\frac{1}{2}(\mu - \mu_0)^{\dagger}] Z^{-1} (\mu - \mu_0)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $z' = \varepsilon L(x'-\mu')(x'-\mu')$                    |
| Therefore, for $l(\mu')p(\mu')$ ne home:<br>$l(\mu') = \frac{1}{2\pi} ln p(Atk   A\mu)$<br>$= -\frac{n}{2} ln [12\pi)^{cl} [AZA^{\dagger}] - \frac{n}{2} [AXk - A\mu]^{\dagger} (AZA^{\dagger})^{-1}$<br>$= -\frac{n}{2} ln [12\pi)^{cl} [AZA^{\dagger}] - \frac{n}{2} [AXk - A\mu]^{\dagger} (AZA^{\dagger})^{-1} (Ak - A\mu)$<br>$= -\frac{n}{2} ln [12\pi)^{cl} [AZA^{\dagger}] - \frac{n}{2} [AXk - \mu]^{\dagger} Z^{\dagger} (Ak - \mu)$<br>$= \frac{1}{(2\pi)^{cl/2} [AZa^{\dagger}]^{\frac{1}{2}}} e^{[-\frac{1}{2}(\mu - \mu_0)^{\dagger}] Z^{-1} (\mu - \mu_0)}$<br>$= \frac{1}{(2\pi)^{cl/2} [AZa^{\dagger}]^{\frac{1}{2}}} e^{[-\frac{1}{2}(\mu - \mu_0)^{\dagger}] Z^{-1} (\mu - \mu_0)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = ETIAX - Apr) (Ax - Apr)+3                               |
| Therefore, for $l(\mu')p(\mu')$ ne home:<br>$l(\mu') = \frac{1}{2\pi} ln p(Atk   A\mu)$<br>$= -\frac{n}{2} ln [12\pi)^{cl} [AZA^{\dagger}] - \frac{n}{2} [AXk - A\mu]^{\dagger} (AZA^{\dagger})^{-1}$<br>$= -\frac{n}{2} ln [12\pi)^{cl} [AZA^{\dagger}] - \frac{n}{2} [AXk - A\mu]^{\dagger} (AZA^{\dagger})^{-1} (Ak - A\mu)$<br>$= -\frac{n}{2} ln [12\pi)^{cl} [AZA^{\dagger}] - \frac{n}{2} [AXk - \mu]^{\dagger} Z^{\dagger} (Ak - \mu)$<br>$= \frac{1}{(2\pi)^{cl/2} [AZa^{\dagger}]^{\frac{1}{2}}} e^{[-\frac{1}{2}(\mu - \mu_0)^{\dagger}] Z^{-1} (\mu - \mu_0)}$<br>$= \frac{1}{(2\pi)^{cl/2} [AZa^{\dagger}]^{\frac{1}{2}}} e^{[-\frac{1}{2}(\mu - \mu_0)^{\dagger}] Z^{-1} (\mu - \mu_0)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $= A \in (1 \times -\mu) (1 \times -\mu) + 7 A^{\dagger}$ |
| $= \frac{n}{2} ln p[Ahk   Apu)$ $= -\frac{n}{2} ln [12\pi]^{0} [AZA^{\dagger}] - \frac{n}{2} [Ahk - Apu]^{\dagger} (AZA^{\dagger})^{-1}$ $= -\frac{n}{2} ln [12\pi]^{0} [AZA^{\dagger}] - \frac{n}{2} [Ahk - pu]^{\dagger} Z^{\dagger} [hk - pu]$ $= -\frac{1}{2} ln [12\pi]^{0} [AZA^{\dagger}] - \frac{n}{2} [Ahk - Amo]^{\dagger} (AZA^{\dagger})^{-1} (Am - Amo)$ $= \frac{1}{2\pi} [2ln - Amo]^{\dagger} [AZA^{\dagger}]^{\frac{1}{2}} e^{-\frac{1}{2}} [m - mo]^{\frac{1}{2}} [m - mo]^{\frac{1}{2}}$ $= \frac{1}{2\pi} [n]^{0} [aZa^{\dagger}]^{\frac{1}{2}} e^{-\frac{1}{2}} [m - mo]^{\frac{1}{2}} [n]^{-\frac{1}{2}} [m - mo]^{\frac{1}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Therefore for (101) (11)                                  |
| $= \frac{n}{2} ln p[Ahk   Apu)$ $= -\frac{n}{2} ln [12\pi]^{0} [AZA^{\dagger}] - \frac{n}{2} [Ahk - Apu]^{\dagger} (AZA^{\dagger})^{-1}$ $= -\frac{n}{2} ln [12\pi]^{0} [AZA^{\dagger}] - \frac{n}{2} [Ahk - pu]^{\dagger} Z^{\dagger} [hk - pu]$ $= -\frac{1}{2} ln [12\pi]^{0} [AZA^{\dagger}] - \frac{n}{2} [Ahk - Amo]^{\dagger} (AZA^{\dagger})^{-1} (Am - Amo)$ $= \frac{1}{2\pi} [2ln - Amo]^{\dagger} [AZA^{\dagger}]^{\frac{1}{2}} e^{-\frac{1}{2}} [m - mo]^{\frac{1}{2}} [m - mo]^{\frac{1}{2}}$ $= \frac{1}{2\pi} [n]^{0} [aZa^{\dagger}]^{\frac{1}{2}} e^{-\frac{1}{2}} [m - mo]^{\frac{1}{2}} [n]^{-\frac{1}{2}} [m - mo]^{\frac{1}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SIM'S TILL THE Name.                                      |
| $= -\frac{n}{2} \ln \left[ (2\pi)^{cl} [AZA^{\dagger}] \right] - \frac{n}{2} (AX_{k} - A_{ju})^{\dagger} (AZA^{\dagger})^{-\dagger}$ $= -\frac{n}{2} \ln \left[ (2\pi)^{cl} [AZA^{\dagger}] \right] - \frac{n}{2} (AX_{k} - A_{ju})^{\dagger} (AX_{k} - A_{ju})^{\dagger}$ $= -\frac{1}{2} \ln \left[ (2\pi)^{cl} [AZA^{\dagger}] \right] - \frac{1}{2} (AX_{k} - A_{ju})^{\dagger} (AX_{k} - A_{ju})^{\dagger} (AX_{k} - A_{ju})^{\dagger}$ $= \frac{1}{(2\pi)^{cl} (AZ_{k} + 1)^{\dagger}} e^{\frac{1}{2}} e^{\frac{1}{2}} [AX_{k} - A_{ju})^{\dagger} (AX_{k} - A_{ju})^{\dagger} (AX_{k} - A_{ju})^{\dagger}$ $= \frac{1}{(2\pi)^{cl} (AZ_{k} + 1)^{\dagger}} e^{\frac{1}{2}} e^{\frac{1}{2}} [AX_{k} - A_{ju})^{\dagger} (AX_{k} - A_{ju})^{\dagger} (AX_{k} - A_{ju})^{\dagger}$ $= \frac{1}{(2\pi)^{cl} (AZ_{k} + 1)^{\dagger}} e^{\frac{1}{2}} e^{\frac{1}{2}} [AX_{k} - A_{ju}]^{\dagger} (AX_{k} - A_{ju})^{\dagger} (AX_{k} - A_{ju})^{\dagger}$ $= \frac{1}{(2\pi)^{cl} (AZ_{k} + 1)^{\dagger}} e^{\frac{1}{2}} e^{\frac{1}{2}} [AX_{k} - A_{ju}]^{\dagger} (AX_{k} - A_{ju})^{\dagger} (AX_{k} - A_{ju})^{\dagger}$ $= \frac{1}{(2\pi)^{cl} (AZ_{k} + 1)^{\dagger}} e^{\frac{1}{2}} e^{\frac{1}{2}} [AX_{k} - A_{ju}]^{\dagger} (AX_{k} - A_{ju})^{\dagger} (AX_{k} - A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | to fire the                                               |
| $= -\frac{1}{2} \ln \left[ \frac{1}{2\pi} \right]^{d} \left[ \frac{A \times A + 1}{A \times A + 1} \right] - \frac{1}{2} \left[ A \times A + A \times $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = Elup(AAK)                                               |
| $= -\frac{1}{2} \ln \left[ \frac{1}{2\pi} \right]^{d} \left[ \frac{A \times A + 1}{A \times A + 1} \right] - \frac{1}{2} \left[ A \times A + A \times $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = - " lut 12 t 10/10 2 At 17 10 10 1 10 Transit           |
| $P(\mu') = \frac{1}{(2\pi)^{\alpha/2}  AZ_0A^{\dagger} ^{\frac{1}{2}}} e^{\frac{1}{2} (A\mu - Am_0)^{\frac{1}{2}} (AZ_0A^{\dagger})^{-\frac{1}{2}} (A\mu - Am_0)}$ $= \frac{1}{(2\pi)^{\alpha/2}  AZ_0A^{\dagger} ^{\frac{1}{2}}} e^{\frac{1}{2} (\mu - m_0)^{\frac{1}{2}} e^{\frac{1}{2}} (\mu - m_0)^{\frac{1}{2}}} e^{\frac{1}{2} (\mu - m_0)^{\frac{1}{2}} e^{\frac{1}{2}} (\mu - m_0)^{\frac{1}{2}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Z LING (AZA)                                              |
| $P(\mu') = \frac{1}{(2\pi)^{\alpha/2}  AZ_0A^{\dagger} ^{\frac{1}{2}}} e^{\frac{1}{2} (A\mu - Am_0)^{\frac{1}{2}} (AZ_0A^{\dagger})^{-\frac{1}{2}} (A\mu - Am_0)}$ $= \frac{1}{(2\pi)^{\alpha/2}  AZ_0A^{\dagger} ^{\frac{1}{2}}} e^{\frac{1}{2} (\mu - m_0)^{\frac{1}{2}} (\mu - m_0)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =- = hottonyd (AZA+1] - ELASAL-MISTIAN-14)                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P(M) = Ot- = LAM-Amo) (AZOA+) (AM-AMO)                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Th) of 1 A Zo At 12                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = - e-= (M-mo) 7 = (M-mo)]                                |
| A' = arg max elpi)p(pi).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Th) ME (AZOAT) &                                          |
| M' = arg max elpi)p(pi).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M = arg max cipi)p(pi).                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           |



## Question 2

a) Maximum-likelihood values mu and sigma

```
% a) maximum-likelihood

function [mu,sigma] = ML_estimate(x)
len = length(x);
mu = sum(x) / len;
sigma = sum((x - mu).^2) / len;
end
```

Three features xi of category w1

```
% a) three features xi of category wl
[mul,sigmal] = ML_estimate(pxwl(:,1));
[mu2,sigma2] = ML_estimate(pxwl(:,2));
[mu3,sigma3] = ML_estimate(pxwl(:,3));
disp('a) estimation for mean and variance for wl')
disp(['mean for xl = ', num2str(mul)]);
disp(['variance for xl = ',num2str(sigmal)]);
disp(['mean for x2 = ', num2str(mu2)]);
disp(['variance for x2 = ',num2str(sigma2)]);
disp(['mean for x3 = ', num2str(mu3)]);
disp(['variance for x3 = ',num2str(sigma3)]);
```

## Result:

```
a) estimation for mean and variance for wl mean for x1 = -0.0709 variance for x1 = 0.90618 mean for x2 = -0.6047 variance for x2 = 4.2007 mean for x3 = -0.911 variance for x3 = 4.5419
```

b/c) Multi-dimension estimation

```
% b/c) multi-dimensional Gaussian
function [mu,sigma] = ML estimate2(x)
      len = size(x,1);
      mu = sum(x) / len;
      tmp = x - repmat(mu, len, 1);
      sigma = (tmp'*tmp) / len;
 -end
b) Two-dimension
 % b) two-dimension
 [mul, sigmal] = ML estimate2(pxwl(:,1:2));
 [mu2,sigma2] = ML_estimate2(pxwl(:,2:3));
 [mu3, sigma3] = ML estimate2(pxwl(:,[1,3]));
 disp('b) 2-dimension estimation for mean and variance for wl')
 disp('mean for x1, x2 = '); disp(mul);
 disp('variance for x1,x2 = '); disp(sigmal);
 disp('mean for x2, x3 = '); disp(mu2);
 disp('variance for x2,x3 = '); disp(sigma2);
 disp('mean for x1, x3 = '); disp(mu3);
 disp('variance for x1,x3 = '); disp(sigma3);
Result:
b) 2-dimension estimation for mean and variance for wl
mean for x1, x2 =
   -0.0709 -0.6047
variance for x1, x2 =
    0.9062 0.5678
    0.5678 4.2007
mean for x2, x3 =
   -0.6047 -0.9110
variance for x2, x3 =
    4.2007 0.7337
    0.7337
             4.5419
mean for x1, x3 =
   -0.0709 -0.9110
variance for x1, x3 =
    0.9062 0.3941
    0.3941
             4.5419
```

c) Three-dimension

```
% c) three-dimension
 [mu,sigma] = ML estimate2(pxwl);
disp('c) 3-dimension estimation for mean and variance for wl')
disp('mean for x1,x2,x3 of w1 = '); disp(mu);
disp('variance for x1,x2,x3 of w1 = '); disp(sigma);
Result:
c) 3-dimension estimation for mean and variance for wl
mean for x1, x2, x3 of w1 =
   -0.0709 -0.6047 -0.9110
variance for x1, x2, x3 of w1 =
    0.9062 0.5678 0.3941
    0.5678 4.2007 0.7337
    0.3941 0.7337
                       4.5419
d) Diagonal of the covariance
  % d) diagonal component of coveriance
function [mu,sigma] = ML diagonal(x)
     len = size(x,1);
     mu = sum(x) / len;
     tmp = x - repmat(mu, len, 1);
     sigma = (tmp'*tmp) / len;
     sigma = diag(sigma);
 end
Result:
d) mean and diagnoal variance for w2
mean for x1, x2, x3 of w2 =
   -0.1126 0.4299 0.0037
```

e/f) compare the mean and variance calculated in above ways.

variance for x1, x2, x3 of w2 =

0.0539 0.0460 0.0073

```
[mul, sigmal] = ML estimate2([pxwl(:,1),pxw2(:,1),pxw3(:,1)]);
[mu2,sigma2] = ML_estimate2([pxw1(:,2),pxw2(:,2),pxw3(:,2)]);
[mu3,sigma3] = ML_estimate2([pxw1(:,3),pxw2(:,3),pxw3(:,3)]);
disp('e/f) mean and variance of each feature x1,x2,x3 using function ML estimate2')
disp('mean for xl = '); disp(mul);
disp('variance for xl = '); disp(sigmal);
disp('mean for x2 = '); disp(mu2);
disp('variance for x2 = '); disp(sigma2);
disp('mean for x3 = '); disp(mu3);
disp('variance for x3 = '); disp(sigma3);
[mul, sigmal] = ML diagonal([pxwl(:,1),pxw2(:,1),pxw3(:,1)]);
[mu2, sigma2] = ML diagonal([pxwl(:,2),pxw2(:,2),pxw3(:,2)]);
[mu3, sigma3] = ML diagonal([pxwl(:,3),pxw2(:,3),pxw3(:,3)]);
disp('e/f) mean and variance of each feature x1,x2,x3 using function ML diagonal')
disp('mean for xl = '); disp(mul);
disp('variance for xl = '); disp(sigmal);
disp('mean for x2 = '); disp(mu2);
disp('variance for x2 = '); disp(sigma2);
disp('mean for x3 = '); disp(mu3);
disp('variance for x3 = '); disp(sigma3);
Result:
e/f) mean and variance of each feature x1, x2, x3 using function ML estimate2
mean for x1 =
                      0.2747
   -0.0709 -0.1126
variance for x1 =
    0.9062 0.0753 -0.2760
    0.0753 0.0539 -0.0718
   -0.2760 -0.0718 0.3019
mean for x2 =
   -0.6047 0.4299 0.3001
variance for x2 =
    4.2007 0.1320 -0.5137
    0.1320 0.0460 0.0047
   -0.5137 0.0047 0.6450
mean for x3 =
   -0.9110 0.0037
                       0.6786
variance for x3 =
    4.5419 -0.0650 0.5060
   -0.0650 0.0073 0.0344
    0.5060 0.0344 1.2621
```

% e/f) mean and variance of each feature

```
e/f) mean and variance of each feature x1,x2,x3 using function ML_diagonal
mean for x1 =
  -0.0709 -0.1126 0.2747
variance for x1 =
   0.9062
   0.0539
   0.3019
mean for x2 =
 -0.6047 0.4299 0.3001
variance for x2 =
   4.2007
   0.0460
   0.6450
mean for x3 =
  -0.9110 0.0037 0.6786
variance for x3 =
   4.5419
   0.0073
   1.2621
```

## Conclusion:

The value of estimation of mean and covariance are the same.

For the mean, using the maximum-likelihood estimation, the estimated mean is the sample mean. Therefore, it doesn't matter the variance is diagonal matrix or not.

As for the variance, the diagonal one is actually the diagonal value of the covariance matrix in the former function. They are calculated by the same way and thus they are the same.