

ScrambleMix: A Privacy-Preserving Image Processing for Edge-Cloud Machine Learning

Koki Madono ¹, Masayuki Tanaka ^{2,3}, Masaki Onishi ² Waseda University, AIST, Tokyo Institute of Technology

Edge Cloud Machine Learning

Use Cloud AI model for prediction

Want to know tower name

Edge side

Cloud side

Cloud AI Model

Edge Cloud Machine Learning

Use Cloud AI model for prediction

1. sending the data

Edge Cloud Machine Learning

Use Cloud AI model for prediction

- 1. sending the data
- 2. receive inference results

Problem

Personal image is dangerous to send public network

High Level Solution

Use AI understandable Image Encryption

High Level Solution

Use AI understandable Image Encryption

[approaches]

- (1) DataMix[Liu et al]
- (2) InstaHide[Haung et al]
- (3) Image Scrambling
- (4) ScrambleMix (extension of Image Scrambling)
 - Our approach

(0) Deploy Encoder/decoder on edge device and AI on cloud side

(1) Send encoded feature to the server

- (1) Send encoded feature to the server
- (2) Received feature and decode message.

- (1) Send encoded feature to the server
- (2) Received feature and decode message.

(1) Encoder/Decoder are necessary

- (1) Send encoded feature to the server
- (2) Received feature and decode message.

- (1) Encoder/Decoder are necessary
- (2) Feature limits accuracy.

(0) Prepare two imaegs & Cloud AI model

Edge Side

Cloud Side

Cloud AI Model

(1) Mix Images and Encrypt images

- (1) Mix Images and Encrypt images
- (2) Received Inference results.

- (1) Mix Images and Encrypt images
- (2) Received Inference results.

Problem: Two images are necessary for prediction

Approach to make scrambled image using a key

1. Send scrambled image

2. Get inference results

Situation: Chihuahua is dog or cat?

Limitation

1 Lower Accuracy

Differences from Image scrambling

1 One key pairs (,) for scrambling

Differences from Image scrambling

- 1 One key pairs (,) for scrambling
- 2 Mix two scrambled images

Training with ScrambleMix

1. Do ScrambleMix Augmentation

Training with ScrambleMix

- 1. Do ScrambleMix Augmentation
 - image is augmented **D** scrambled images.

2. Compute the loss for optimization

+ L_{CE} : Cross-entropy Loss

+ L_{ST} : Self-teaching Loss (proposed)

- 2.1. Cross Entropy Loss (CE)
 - + Minimize the posterior with supervised labels

Supervised Labels y_i

- 2.2. Self-Teaching Loss (ST)
 - + posterior changes due to different keys

- 2.2. Self-Teaching Loss (ST)
 - + Same original image should have same posterior

- 2.2. Self-Teaching Loss (ST)
 - + Approach : Minimize each posterior and average posterior

2D visualization

- 2.2. Self-Teaching Loss (ST)
 - + Average posterior: \bar{y}_i

$$\bar{y}_i = \text{StopGrad}\left[\frac{1}{D}\sum_{d=1}^{D} \widehat{y}_{i,d}\right]$$

 $\begin{array}{c}
 & \xrightarrow{\text{Classifier}} \\
 & \theta \\
\end{array} \qquad \qquad \{\widehat{y}_{i,1}, \dots, \widehat{y}_{i,D}\}$ Posterior estimations

2D visualization

- 2.2. Self-Teaching Loss (ST)
 - + Minimize the posterior with supervised labels

$$L_{ST} = \frac{1}{BD} \sum_{i=1}^{B} \sum_{d=1}^{D} KL(\hat{y}_{i,d} || \bar{y}_i)$$

 $\begin{array}{c}
 & \\
 & \\
\hline
\theta & \\
\end{array} \qquad \{\widehat{y}_{i,1}, ..., \widehat{y}_{i,D}\}$ Posterior estimations

2D visualization

Inference

ScrambleMix TTA (Test Time Augmentation)

- T Keys: same as training phase's keys

$$\widehat{y}_j = \frac{1}{T} \sum_{t=1}^T \widehat{y}_{j,t}$$

Experiment

Baseline

- + InstaHide [Haung 2020]
- + DataMix [Liu 2020]
- + Image Scrambling
 - Learnable Encryption [Tanaka 2018]
 - Random Pixel-wise Encryption [Sirichoptedumrong 2019]

Proposed

+ ScrambleMix

Evaluation

- 1. Classification task: on Cifar10/100, SVHN
- 2. Security score: on InstaHide attack[Carlini 2020]

Results (T=1, w/o Test-Time Augmentation)

WideResNet40x10

Accuracy scores	CIFAR10	CIFAR100	SVHN
DataMix	66.89	38.31	19.60
InstaHide	53.58	39.06	52.47
LE	91.34	70.62	96.50
Random PE	92.23	70.82	96.83
ScrambleMix (Proposed)	93.08	71.71	96.96

Shakedrop

Accuracy scores	CIFAR10	CIFAR100	SVHN
DataMix	80.10	50.97	93.42
InstaHide	52.93	39.95	52.87
LE	94.02	77.59	97.26
Random PE	93.51	77.10	97.26
ScrambleMix (Proposed)	95.02	79.39	97.47

Results (T>=1, with Test-Time Augmentation)

Our approach : better on several scores

+ Even if T is small, our approach can get a comparable result

WideResNet40x10

Accuracy scores	CIFAR10	CIFAR100	SVHN
InstaHide, T=10	94.92	78.32	94.97
ScrambleMix, T=4	93.12	71.87	97.01

Shakedrop

Accuracy scores	CIFAR10	CIFAR100	SVHN
InstaHide, T=10	92.91	74.06	93.38
ScrambleMix, T=4	95.31	79.41	97.54

Results (Security Evaluation)

Attacked Results by InstaHide Attack [Carlini 2020]

- + Evaluate by inception score: high inception score means unsecure state
- + Our approach keeps low score (→ keep security)

Results (Security Evaluation)

Attacked Results by InstaHide Attack

Summary

ScrambleMix: new scrambling method for edge-cloud machine learning

- improve classification accuracy over almost settings
- improve **security** over the strong attack method

