개인 과제 레포트

제출일자 : 2021.01.12.(화)

이름 : 허지혜

1. 주제

운동 동작 분류 AI 알고리즘

2. 주제선정동기

스마트 시대에 맞게 스마트 헬스케어 산업에 적용 가능한 데이터 분석 방법을 찾아내고 운동 동작 인식 모형을 만들고 싶어 선정하게 되었습니다.

3. 사용데이터

3축 가속도계와 3축 자이로스코프를 활용해 측정된 센서 데이터

- 1) train_features.csv (1875000, 8)
- id 별 600 time 간 동작 데이터
- id 3125개 x 600 time =1875000 데이터

	id	time	acc_x	acc_y	acc_z	gy_x	gy_y	gy_z
0	0	0	1.206087	-0.179371	-0.148447	-0.591608	-30.549010	-31.676112
1	0	1	1.287696	-0.198974	-0.182444	0.303100	-39.139103	-24.927216
2	0	2	1.304609	-0.195114	-0.253382	-3.617278	-44.122565	-25.019629
3	0	3	1.293095	-0.230366	-0.215210	2.712986	-53.597843	-27.454013
4	0	4	1.300887	-0.187757	-0.222523	4.286707	-57.906561	-27.961234

- 2) train_labels.csv (3125, 3)
- id 별 동작과 동작 label(61개)

label_desc	label	id	
Shoulder Press (dumbbell)	37	0	0
Non-Exercise	26	1	1
Biceps Curl (band)	3	2	2
Non-Exercise	26	3	3
Non-Exercise	26	4	4

- 3) test_features.csv (469200, 8)
- id 별 600 time간 동작 데이터
- id 782개 x 600 time =469200 데이터

	id	time	acc_x	acc_y	acc_z	gy_x	gy_y	gy_z
0	3125	0	-0.628100	-0.160155	0.151487	49.665357	88.435961	13.597668
1	3125	1	-0.462548	0.012462	-0.053726	56.953059	96.185341	16.278458
2	3125	2	-0.363481	-0.091789	-0.130004	29.557396	93.836453	13.329043
3	3125	3	-0.351750	-0.239870	-0.193053	23.686172	88.608721	13.449771
4	3125	4	-0.312934	-0.123762	-0.318621	20.410071	85.327707	13.884912

- 4) sample_submission.csv (782, 62) id별 동작을 예측해 작성하는 csv
- 4. 진행방식
- 1) 데이터 형태 파악

train_feature.csv data를 train 변수에 저장해서 사용

- 한 개의 id 값에 600 Time이 들어가 있기 때문에 위를 표로 표현
- 예시로 id가 0, 64, 298은 모두 같은 label_desc를 가지고 있음.

마찬가지로 Non - Exercise 에 관한 600초 그래프이다.

```
#운동이 아니레염,, 퍼쓱 ,,
ex = train[train['id']==1]
ex.iloc[:,2:].plot()
```

<matplotlib.axes._subplots.AxesSubplot at 0x20365ccbb08>

train에 혹시나 결측값이 있을까봐 살펴보았다.

```
train.isnull().sum() # 클립하노
id
         0
time
        0
        0
acc_x
        0
acc_y
acc_z
         0
         0
gy_x
         0
gy_y
        0
gy_z
dtype: int64
```

```
train_labels['label_desc'].unique
                                                  Shoulder Press (dumbbell)
<bound method Series.unique of 0</pre>
                               Non-Exercise
2
                         Biceps Curl (band)
3
                               Non-Exercise
4
                               Non-Exercise
3120
                               Non-Exercise
3121
                               Non-Exercise
3122
        Dynamic Stretch (at your own pace)
3123
                               Non-Exercise
3124
                                 Bicep Curl
Name: label_desc, Length: 3125, dtype: object>
```

가독성이 떨어지길래 표로 만들어보았다.

```
In [80]: import matplotlib.pyplot as plt
               import seaborn as sns
               plt.rcParams['font.family'] = 'NanumGothic'
               import matplotlib as mpl
               import matplotlib.pyplot as plt
               import matplotlib.font_manager as fm
               %config InlineBackend.figure_format = 'retina'
               import matplotlib.font_manager as fm
              fontpath = '/usr/share/fonts/truetype/nanum/NanumBarunGothic.ttf'
font = fm.FontProperties(fname=fontpath, size=9)
plt.rc('font', family='NanumBarunGothic')
               sns.barplot(x = train_labels['label_desc'], y = b.value_counts())
              plt.xticks(rotation=-45)
Out [80]: (array([ 0,
                (array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]),
<a list of 61 Text xticklabel objects>)
                   1400
                   1200
                    1000
                    800
                     400
```

는 더 떨어지는 것 같다. 그래서 가장 많은 값을 차지한 Non-Exercise를 빼고 나머지를 표로 나타내보았다.

2) 학습 시킨 독립 변수, 종속 변수 지정

```
X=tf.reshape(np.array(train.iloc[:,2:]),[-1, 600, 6])
X.shape
```

TensorShape([3125, 600, 6])

```
import tensorflow
from tensorflow.keras.utils import to_categorical
y = to_categorical(train_labels['label'])
```

y.shape

(3125, 61)

- 3) model 학습 시키기
- 분류 모델
- 4) 정확도 올리기
- 5. 활용방안