Para interpretar una fórmula de la lógica de predicados de primer orden:

- √ determinar qué objetos representan los términos (Dominio)
- ✓ definir las **funciones** y qué propiedades/relaciones representan los **predicados**

Determinar el valor de verdad de la fórmula

Ciencias de la Computación II - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2016

Semántica de Primer Orden

Modelos o interpretaciones:

Sea L = $\langle R, F, C \rangle$ un lenguaje de primer orden. Un modelo M en L es una estructura M = $\langle D, R^D, F^D, C^D \rangle$ donde:

- ✓ **D dominio** o universo de interpretación (conjunto no vacío del cual las variables toman valores)
- \checkmark R^D conjunto de relaciones n-arias sobre D tal que para cada símbolo P \in R existe una relación P^D \subset Dⁿ asignada a P
- ✓ F^D conjunto de funciones n-arias sobre D tal que para cada símbolo $f \in F$ existe una función f^D : $D^n \to D$ asignada a f
- ✓ \mathbf{C}^D conjunto de elementos distinguidos de D tal que para cada constante $c \in C$ existe un elemento $c^D \in D$ asignado a c

Funciones sobre un Dominio:

Sea D un conjunto no vacío.

• Una función f: $D^n \rightarrow D$ hace corresponder a cada n-upla de su dominio D^n un elemento de D.

Ejemplo $D = \{a, b, c\}$

> Función unaria f sobre D Función binaria g sobre D

 $f: D \rightarrow D$

g: $D \times D \rightarrow D$

 $a \rightarrow b$

 $(a, a) \rightarrow a$

 $(b, a) \rightarrow b$ $(c, a) \rightarrow c$

 $b \rightarrow c$

 $(a, b) \rightarrow b$ $(b, b) \rightarrow b$ $(c, b) \rightarrow b$

 $c \rightarrow a$

 $(a, c) \rightarrow c$ $(b, c) \rightarrow b$

 $(c, c) \rightarrow a$

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Semántica de Primer Orden

Relaciones sobre un Dominio:

Sea D un conjunto no vacío.

El conjunto Dⁿ es el conjunto de todas las n-uplas de D. Una relación n-aria R sobre D es un subconjunto de Dⁿ

Ejemplo $D = \{a, b, c\}$

 $D^2 = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)\}$

 $D^3 = \{(a, a, a), (a, a, b), (a, a, c), ..., (c, c, a), (c, c, b), (c, c, c)\}$

- Relación unaria es un subconjunto de D. Por ejemplo:

 $R_1 = \emptyset$ $R_2 = D$ $R_3 = \{b\}$ $R_4 = \{a, b\}$

- Relación binaria es un subconjunto de D2. Por ejemplo: $R_1 = \emptyset$ $R_2 = D^2$ $R_3 = \{(a, a), (a, b), (a, c), (b, b)\}$

- Relación ternaria es un subconjunto de D3. Por ejemplo:

 $R_1 = \emptyset$ $R_2 = D^3$ $R_3 = \{(a, a, a), (a, b, b), (a, c, b)\}$

Valor de verdad de una fórmula en un modelo:

Sea A una sentencia y M un modelo, $M = \langle D, R^D, F^D, C^D \rangle$. El valor de verdad de A en el modelo M, v(A), se define reemplazando primero cada constante a_j de A por el elemento $d_j \in D$ asignado, y luego por inducción sobre la estructura de A:

- 1) $A = P(a_1, ..., a_n)$ luego v(A) = T sí y sólo sí $(d_1, ..., d_n) \in P^D$ $P \in R$
- 2) $v(\neg A) = T$ sí y sólo sí v(A) = F
- 3) $A = A_1 \lor A_2$ V(A) = T sí y sólo sí $V(A_1) = T$ o $V(A_2) = T$ $A = A_1 \land A_2$ V(A) = T sí y sólo sí $V(A_1) = T$ y $V(A_2) = T$ $V(A_1) = T$ v $V(A_2) = T$ sí y sólo sí $V(A_1) = T$ o $V(A_2) = T$
- 4) $A = \forall x A_1 \quad v(A) = T \text{ sí y sólo sí para todo } d \in D, v(A_1[d]) = T$
- 5) $A = \exists x A_1 \quad v(A) = T \text{ sí y sólo sí para algún } d \in D, v(A_1[d]) = T$

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Semántica de Primer Orden

Definición

Dada una fórmula A y un modelo M, si v(A) = T en M diremos que A es válida en el modelo M, o que M es un modelo para A.

En símbolos M | A

Ejemplo: Sea $L = \langle \{P\}, \{f, g\}, \{a, b\} \rangle$ P binario, f y g binarias, se define $M = \langle Z, \{P^D\}, \{f^D, g^D\}, \{a^D, b^D\} \rangle$ Z = conj. de números enteros

 $P^{D}(x, y) = \{(x, y) \in D^{2} : x \le y \}$

 $f^D(x,\,y)=x\,{}^*\,y \qquad \qquad g^D(x,\,y)=x+y \qquad \quad a^D=0 \qquad b^D=2$

1) $M \models P(a, b)$ 2) $M \models P(g(b,b), a)$ 3) $M \models P(a, b) \lor P(b, a)$

4) M $\models \forall x (P(x, a) \rightarrow P(a, f(x, x)))$ 5) M $\models \exists x \forall y P(x, y)$

1), 3) y 4) SON FORMULAS VALIDAS EN M 2) y 5) SON FÓRMULAS FALSAS EN M

Ejemplos:

Sea $M = \langle D, \{P^D, Q^D, R^D\}, \{\}, \{c^D\}\rangle$ P y Q unarios y R binario

$$D = \{1, 2, 3, 4\}$$
 $c^D = 2$

$$P^{D} = \{1, 2\}$$
 $Q^{D} = \{3, 4\}$ $R^{D} = \{(3, 2), (2, 3), (2, 4)\}$

$$\checkmark A = \forall x (P(x) \lor R(c, x))$$

$$\checkmark A = \forall x (P(x) \lor Q(x))$$

$$\checkmark A = \forall x \exists y (R(x, y) \lor P(x))$$

$$\checkmark A = \exists y \forall x R(y, x)$$

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Semántica de Primer Orden

Ejemplo

$$M = \langle Z, \{P^D\}, \{f^D, g^D\}, \{a^D, b^D\} \rangle$$
 $Z = conj. de números enteros$

$$P^{D}(x, y) = \{(x, y) \in D^{2} : x \le y \}$$

$$f^{D}(x, y) = x * y$$
 $g^{D}(x, y) = x + y$ $a^{D} = 0$ $b^{D} = 2$

$$A(x) = P(g(x, b), b)$$
 x variable libre

En M
$$A(x) = x + 2 \le 2$$
 x variable libre

Es verdadera en M cuando a x se asignan valores negativos ó 0.

Valuación: asigna elementos del dominio a variable libres

Sea L = $\langle R, F, C \rangle$ y M = $\langle D, R^D, F^D, C^D \rangle$ un modelo Una valuación o asignación v es una función v: $Var \rightarrow D$

$$v = (a_1, ..., a_n, ...)$$
 donde cada $a_i \in D$ y $v(p_i) = a_i$ para cada $p_i \in Var$

$$\overrightarrow{a} = (a_1, ..., a_n, ...)$$
 notación vectorial

El valor de un término $t(x_1, ..., x_n)$ bajo una valuación $\overrightarrow{a} = (a_1, ..., a_n, ...)$ $t^D[\overrightarrow{a}]$ es un elemento de D que se define como:

- 1) Si $t \in Var$, $t_i = x_i$ entonces $x_i^D[\overrightarrow{a}] = a_i$
- 2) Si $\mathbf{t} \in \mathbf{C}$, $\mathbf{t} = \mathbf{c}$, y \mathbf{c}^{D} es la interpretación de c en D, entonces $\mathbf{t}^{D}[\overrightarrow{\mathbf{a}}] = \mathbf{c}^{D}$
- 3) Si $\mathbf{t} = \mathbf{f}(t_1, t_2, ..., t_n) \ t_1, t_2, ..., t_n \in \mathbf{Ter}(\mathbf{L})$ y f símbolo de función n-ario, $\mathbf{t}^D[\overrightarrow{\mathbf{a}}] = \mathbf{f}^D(\mathbf{t}_1, \mathbf{t}_2, ..., \mathbf{t}_n)[\overrightarrow{\mathbf{a}}] = \mathbf{f}^D(\mathbf{t}_1^D[\overrightarrow{\mathbf{a}}], \mathbf{t}_2^D[\overrightarrow{\mathbf{a}}], ..., \mathbf{t}_n^D[\overrightarrow{\mathbf{a}}])$

 $f^{D}: D^{n} \rightarrow D$ función n-aria que interpreta a f

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Semántica de Primer Orden

Sea M = < D, R^D, F^D, C^D > un modelo y A(x_1 , ..., x_n) una fórmula. Sea \overrightarrow{a} una valuación. A(x_1 , ..., x_n) es válida bajo \overrightarrow{a} , o \overrightarrow{a} satisface a A(x_1 , ..., x_n), en símbolos M \models A(x_1 , ..., x_n) [\overrightarrow{a}] si se cumple:

1) Si A \in At(L), A = P(t₁, t₂, ..., t_n) $t_i(x_1, x_2, ..., x_n) \in Ter(L)$ y P es un símbolo de predicado n-ario, P \in R

$$\mathsf{M} \models \mathsf{P}(\mathsf{t}_1,\,...,\,\mathsf{t}_n)[\vec{\mathsf{a}}] \leftrightarrow \ (\mathsf{t}_1{}^\mathsf{D}[\vec{\mathsf{a}}],\,\mathsf{t}_2{}^\mathsf{D}[\vec{\mathsf{a}}],\,...,\,\mathsf{t}_n{}^\mathsf{D}[\vec{\mathsf{a}}]) \in \,\mathsf{P}^\mathsf{D}$$

- 2) Si A = \neg B M \models A $[\vec{a}] \leftrightarrow$ M $\not\models$ B $[\vec{a}] \leftrightarrow$ M \models \neg B $[\vec{a}]$
- 3) Si A = B \wedge C M \models (B \wedge C) $[\overrightarrow{a}] \leftrightarrow$ M \models B $[\overrightarrow{a}]$ y M \models C $[\overrightarrow{a}]$
- 4) Si $A = B \lor C$ $M \models (B \lor C)[\overrightarrow{a}] \leftrightarrow M \models B[\overrightarrow{a}] \circ M \models C[\overrightarrow{a}]$
- 5) Si A = B \rightarrow C M \models (B \rightarrow C) $[\vec{a}] \leftrightarrow M \models \neg B [\vec{a}] \circ M \models C [\vec{a}]$

- 6) Si A(x₁, ..., x_n) = \forall xB(x, x₁, ..., x_n) entonces

 M $\models \forall$ xB(x, x₁, ..., x_n) $[\vec{a}] \leftrightarrow$ para todo d \in D M \models B (x, x₁, ..., x_n) $[\vec{d}, \vec{a}]$
- 7) Si A(x₁, ..., x_n) = $\exists x B(x, x_1, ..., x_n)$ entonces

 M $\models \exists x B(x, x_1, ..., x_n) [\vec{a}] \leftrightarrow \text{existe } d \in D M \models B(x, x_1, ..., x_n) [d, \vec{a}]$

Definiciones: Sea M un modelo y A una fórmula:

- ✓ A es válida bajo una valuación en M sí y sólo sí existe al menos una valuación a tal que M ⊨ A [a]
- ✓ A es **válida en M** sí y sólo sí A es válida bajo toda valuación en M M \models A \leftrightarrow M \models A $\left[\overrightarrow{a}\right]$ para toda valuación $\left[\overrightarrow{a}\right]$
- ✓ A es **falsa en M** sí y sólo sí A es falsa bajo toda valuación en M M \models A \leftrightarrow M $\not\models$ A (\overrightarrow{a}) para toda valuación \overrightarrow{a}

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Semántica de Primer Orden

Ejemplos:

 $\label{eq:continuous} \mbox{Sea M} = \mbox{ < D, } \{\mbox{P^D}, \mbox{ Q^D}, \mbox{R^D}\}, \mbox{ { } \{\mbox{$}\}$}, \mbox{ { } \{\mbox{$}c^D$}\} \mbox{ > } \mbox{ P y Q$ unarios y R$ binario}$

$$D = \{1, 2, 3, 4\} \qquad c^D = 2$$

$$\mathsf{P}^\mathsf{D} = \{1,\,2\} \qquad \mathsf{Q}^\mathsf{D} = \{3,\,4\} \qquad \mathsf{R}^\mathsf{D} = \{(3,\,2),\,(2,\,3),\,(2,\,4)\}$$

$$\checkmark A(x) = \exists y R(x, y)$$

$$\checkmark A(x) = P(x) \lor \exists y R(y, x)$$

$$\checkmark A(x) = P(x) \land Q(x)$$

Definiciones:

Sea A una fórmula:

- ✓ A es satisfacible sí y sólo sí A es válida en al menos un modelo
 A es satisfacible sí y sólo sí existe M Modelo tal que M = A
- ✓ A es válida o lógicamente válida sí y sólo sí A es válida en todo modelo
 A es válida sí y sólo sí para todo M Modelo M ⊨ A
- √ A es contradictoria sí y sólo sí A es falsa en todo modelo

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Semántica de Primer Orden

Ejemplo:

Sea M =
$$<$$
D, $\{A^D, B^D, C^D\}$, $\{f^D, g^D\}$, $\{c^D, d^D\}$ >

$$D = \{x \in \{a, b\}^* \ y \ x \text{ empieza con } a \}$$

$$A^{D}(x, y) = \{(x, y) \in D^{2}: x \text{ es prefijo de } y\} \text{ (es decir } y = x.z \text{ para } z \in \{a, b\}^{*})$$

$$B^{D}(x, y) = \{(x, y) \in D^{2}: x \text{ es subcadena de } y\}$$
 $C^{D}(x, y) = \{(x, y) \in D^{2}: x = y\}$

$$c^D = a$$
 $d^D = aa$

$$f^{D}(x, y) = x.y$$
 (x concatenada con y) $g^{D}(x) = a$

$$\checkmark \exists x \forall y (A(x, y) \land \neg C(x, d))$$

$$\checkmark \forall x \forall y (C(x, f(c, y)) \rightarrow A(f(c, c), x))$$

$$\checkmark \forall x (B(y, x) \rightarrow A(y, x))$$

$$\checkmark \ \forall x \forall y \forall z \ (A(x,\,y) \to A(f(x,\,z),\,f(y,\,z)))$$

Formalización de Lenguaje Natural

Formalizar frase en lenguaje natural → encontrar expresión en lenguaje formal que la represente fielmente

- ↓ No hay procedimientos generales para la formalización
- ↑Existen algunas estrategias o heurísticas
 - Si la estructura sintáctica de la frase es compleja, se puede **reescribir** con una estructura más sencilla que mantenga el mismo significado
 - Definir el dominio al cual pertenecen los elementos a utilizar
 - Determinar:

Constantes: elementos concretos del dominio

Variables: elementos genéricos

Funciones: representan cómo un elemento queda

determinado por otros

Predicados unarios: representan propiedades de un elem. **Predicados de aridad > 1**: representan relaciones entre elem

- Identificar conectivas linguísticas y cuantificadores y sustituir por **conectivos** y **cuantificadores** de la lógica de primer orden

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Formalización de Lenguaje Natural

Patrones más habituales:

• Universal afirmativo $\forall x(A(x) \rightarrow B(x))$

Todo A es B - Sólo los B son A - No hay ningún A que no sea B

• Universal negative $\forall x(A(x) \rightarrow \neg B(x))$

Ningún A es B

• Existencial afirmativo $\exists x(A(x) \land B(x))$

Algún A es B - Alguien es a la vez A y B

• Existencial negativo $\exists x(A(x) \land \neg B(x))$

Algún A no es B - No todos los A son B

Formalización de Lenguaje Natural

Relación entre cuantificadores:

• Universal/Existencial

$$\neg \forall x A(x) \equiv \exists x \neg A(x)$$

"No todos son A" equivale a decir "Algunos no son A"

• Existencial/Universal

$$\neg \exists x A(x) \equiv \forall x \neg A(x)$$

"No hay A" equivale a decir "Todos son no A"

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Semántica de Primer Orden

Equivalencia Lógica:

Sean A y B fórmulas con las mismas variables libres. $A \equiv B \text{ sí y sólo sí}$ para todo modelo M, M \models A \leftrightarrow M \models B.

Es decir, A y B son válidas en los mismos modelos.

Para cualquier fórmula A se verifica:

$$\checkmark \neg \forall x A \equiv \exists x \neg A$$

$$\checkmark$$
 $\neg \exists x A \equiv \forall x \neg A$

$$\checkmark$$
 $\forall xA \equiv \neg \exists x \neg A$

$$\checkmark$$
 $\exists xA \equiv \neg \forall x \neg A$

Sentencias satisfacibles:

Sea Γ un conjunto de sentencias en un lenguaje L.

 Γ es satisfacible si existe un modelo M tal que M \models A para toda sentencia $A \in \Gamma$.

En caso contrario Γ es insatisfacible.

Ejemplo:

1)
$$\Gamma = \{ \exists x (P(x) \land Q(x)), \forall x (P(x) \rightarrow R(x, x)), \forall x (Q(x) \rightarrow \neg R(x, x)) \}$$

Es un conjunto de sentencias insatisfacible

2)
$$\Gamma = \{ \forall x \exists y R(x, y), \ \forall x \forall y (R(x, y) \rightarrow \neg R(y, x)) \}$$

Es un conjunto de sentencias satisfacible (es posible definir al menos un modelo en el que toda sentencia del conjunto es válida)

Ciencias de la Computación II - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2016

Semántica de Primer Orden

Ejemplo:

1)
$$\Gamma = \{ \exists x (P(x) \land Q(x)), \forall x (P(x) \rightarrow R(x, x)), \forall x (Q(x) \rightarrow \neg R(x, x)) \}$$

Supongamos que existe un modelo arbitrario M que satisface a las tres sentencias. Entonces

Existe $a \in D$ tal que M $\models P(a)$ (1) y M $\models Q(a)$ (2) (primera sentencia)

En la segunda sentencia se debe cumplir M $\models P(a) \rightarrow R(a, a)$

Como por (1) $M \models P(a)$ debe ser que $M \models R(a, a)$ (3)

En la tercera sentencia se debe cumplir M $\models Q(a) \rightarrow \neg R(a, a)$

Como por (2) M \models Q(a) debe ser que M $\models \neg$ R(a, a) contradice (3)

Por lo tanto, como no existe modelo tal que $M \models \Gamma$ entonces

Γes insatisfacible

Consecuencia Semántica:

Una fórmula A es consecuencia semántica de un conjunto de sentencias Γ , $\Gamma \models A$, si para cada modelo M tal que M $\models \Gamma$ entonces M $\models A$.

Ejemplo:

 $\{\forall x (P(x) \rightarrow \neg Q(x)), \, \forall x (P(x) \land T(x))\} \, \models \forall x (T(x) \land \neg Q(x))$

Propiedades de la Consecuencia Semántica:

Sea Γ un conjunto de sentencias y A una sentencia.

- \checkmark Si A ∈ Γ entonces Γ = A
- ✓ Si $\Gamma \models A$ y $\Gamma \subseteq \Delta$ entonces $\Delta \models A$. Δ conjunto de sentencias

Teorema de la Deducción:

Sea $\Gamma \cup \{A, B\}$ un conjunto de sentencias. $\Gamma \cup \{A\} \models B \leftrightarrow \Gamma \models A \rightarrow B$

Corolario:

Sea $\Gamma \cup \{A\}$ un conjunto de sentencias. $\Gamma \models A \leftrightarrow \Gamma \cup \{\neg A\}$ es insatisfacible Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Herramienta FOLST

First Order Logic Semantics Tutor

http://sourceforge.net/projects/folst/