Probabilidad II Primer semestre de 2019 Práctico 1

1. Probar que:

2)

1) $\limsup_n A_n = \{\omega \in \Omega : \omega \in A_n \text{ para infinitos valores de n} \}$ (ocurren infinitos A_n).

 $\liminf_n A_n = \{\omega \in \Omega : \omega \in A_n \text{ para todo } n \text{ salvo a lo sumo una cantidad finita de índices} \}$ (ocurre A_n para todos los n salvo una cantidad finita).

- 3) lím inf $A_n \subset \limsup A_n$.
- 4) Como la sucesión $B_n = \bigcup_{k=n}^{+\infty} A_k$ es decreciente, entonces

$$P(\limsup A_n) = \lim_{n \to \infty} P\left(\bigcup_{k=n}^{+\infty} A_k\right).$$

5) Como la sucesión $B_n = \bigcap_{k=n}^{+\infty} A_k$ es creciente, entonces

$$P(\liminf A_n) = \lim_{n \to \infty} P\left(\bigcap_{k=n}^{+\infty} A_k\right).$$

6) Si $\{A_n\}_{n\in\mathbb{N}}$ es creciente, entonces

$$\liminf_{n} A_n = \limsup_{n} A_n = \bigcup_{n=1}^{+\infty} A_n.$$

7) Si $\{A_n\}_{n\in\mathbb{N}}$ es decreciente, entonces

$$\lim \inf A_n = \lim \sup A_n = \bigcap_{n=1}^{+\infty} A_n.$$

8)
$$P(\liminf A_n) \leq \liminf P(A_n) \leq \limsup P(A_n) \leq P(\limsup A_n).$$

2. Sean $g:[a,b]\to\mathbb{R}$ continua y $F:[a,b]\to\mathbb{R}$ monótona y derivable tal que F'(x)=f(x) siendo f integrable Riemann en [a,b], probar que

$$\int_{a}^{b} g(x)dF(x) = \int_{a}^{b} g(x)f(x)dx.$$

3. Sean $g,h,F:[a,b]\to\mathbb{R}$ tales que existen $\int_a^b gdF$ y $\int_a^b hdF$. Demostrar que entonces también existe $\int_a^b (\alpha g+\beta h)dF$ para todo $\alpha,\beta\in\mathbb{R}$ y además

$$\int_{a}^{b} (\alpha g + \beta h) dF = \alpha \int_{a}^{b} g dF + \beta \int_{a}^{b} h dF.$$

- 4. (**Teorema del valor medio.**) Sean $g, F : [a, b] \to \mathbb{R}$ tales que g es continua, F es monótona creciente. Demostrar que existe $c \in [a, b]$ tal que $\int_a^b g dF = g(c)(F(b) F(a))$
- 5. Probar que si F es una función de distribución, a < b son puntos de continuidad de F y

$$\psi(x) = \begin{cases} 0, & x < a, x > b \\ 1/2, & x = a, x = b \\ 1, & a < x < b \end{cases},$$

entonces $\int_{-\infty}^{+\infty} \psi(x) dF(x) = F(b) - F(a)$

6. Demostrar la siguiente proposición y proponer un contraejemplo para justificar el que el recíproco no se cumple:

Proposición:

Si $g, F : [a, b] \to \mathbb{R}$ son tales que existe $\int_a^b g dF$ entonces para todo $c \in (a, b)$ existe $\int_a^c g dF$ y $\int_c^b g dF$ y vale

$$\int_{a}^{b} g dF = \int_{a}^{c} g dF + \int_{c}^{b} g dF$$