DAIA

Visualizations (basics) – week 2

DAIA - refresh

What do you know of its nature/origin?

Data Sourcing

Data Requirements

Data Collection

What can you tell about the data?

What can the data tell you?

Data Preparation

Data Understanding

AI project methodology: your roadmap

Project Methodology

Deliverables (beroepsproducten)

Proposal

Prepared dataset:

- Data storage solution
- Preparation notebook

Provisioning is a big toolbox: you don't need to use/demonstrate all tools, but select tools consciously and show how to apply those properly.

The exploration process

- Start with data
- Decide what your target audience is and what questions are interesting to investigate
- Explore the data to get insights, guided by the questions
- Start with looking at data distribution, relationships and timelines
- Enrich with new datasets, ask new questions
- Use descriptive statistics and advanced charts

Why exploring needs visualizations...

CAN YOU FIND 8 IN BELOW TEXT?

99999999999999999999999

99999999999999999999999

99999999999999999999999

explore

The Exploration Process

Data

categorical and numerical variables, (not) clean,

sufficiently diverse

Descriptive statistics

measures for *center* and *dispersion* of the dataset

Basic charts

Histogram, boxplot, barchart, scatterplot, linechart

Relevant insights

Outliers, Correlations, Clusters, Trends

Reporting

Dashboards, clear visuals, well-explained answers, advice

Types of Data

What about discrete and continuous numbers?

What about ordinal and nominal data?

Basic guidelines for data visualization

Descriptive Statistics

- central tendency
- Spread

Basic Charts

- 1. Histogram -> distribution, central tendency, spread
- 2. Boxplot -> distribution, central tendency, spread, comparisons
- 3. Bar Chart -> outliers, comparisons
- 4. Scatter Plot -> outliers, correlations
- 5. Line Chart -> trends

Descriptive statistics: Central Tendency

Measures to describe the **center** of the set

Mean = average

Median = middle value

Only for **numerical** data

"Elon Musk walks into a bar, and everyone inside becomes a millionaire, on average."

Mode = most frequent value

Typically for categorical data

Descriptive statistics: Central Tendency

Descriptive statistics: Spread

Measures to describe the **spread/dispersion** of the set

Descriptive statistics: Spread

Measures to describe the **spread/dispersion** of the set

• Standard deviation σ

Only for **numerical** data

• variance = σ^2

'distance' to the mean value

Normal Distributions with Different Standard Deviations

http://sam-koblenski.blogspot.com/2014/09/everyday-statistics-for-programmers_25.html

Basic Charts – 1. Histogram

Mean =37.0227 Std. Dev. =6.82549 N =132

1 nummerical variable

correct exposure

the peak of the black mountain sitting halfway between shadows and highlights

Basic Charts – 1. Histogram

Bin size:

- Too small: no grouping/ aggregation effect
- Too big: no differentation


```
#(bin) size does matter!
plt.hist([winedata['proline']], bins= 5, alpha=1, label='bin size = 5')
plt.hist([winedata['proline']], bins= 20, alpha=0.8, label='bin size = 20')
plt.hist([winedata['proline']], bins= 60, alpha=0.5, label='bin size 60')
plt.legend(loc='upper right')
plt.show()
```


IQR

Basic Charts – 2. Boxplot(s)

Box plots

Boxplots can show a lot of information in 1 graph

Make sure you can explain what you see (and what strikes you)

1 category, 1 nummerical

2 categorical keys, 1 quant. value

... insights through Outliers and Comparisons

Insights about how **special** something is

or **larger/smaller** than something else

Which mineral is an #outlier? Why, Diamond: 1,600 on Moh's Scale of Hardness.

2 numerical variables

Basic Charts – 4. Scatter plot

```
#plot 2 features as data points (a 3rd feature as hue)
sns.scatterplot(data=winedata, x='alcohol',
y='proline', hue='class', palette='viridis')
```


2 numerical variables, and more

Basic Charts – 4. Scatter plot

... insights through Outliers

Source: https://medium.com/analytics-vidhya/its-all-about-outliers-cbe172aa1309

... insights through Correlations

Insights about how strongly numerical features are **linked** and therefore possibly influence each other.

... insights through Correlations

also as a numerical value, most commonly used is the **correlation coefficient R**

Try this fun game: http://guessthecorrelation.com/

... insights through Correlations

Per capita cheese consumption

correlates with

Number of people who died by becoming tangled in their bedsheets

Correlation does not always mean a cause-effect relation!

See many more interesting examples here: http://www.tylervigen.com/spurious-correlations

Basic Charts – 5. Line chart

Number of hospital admissions per age group over time

Source: https://coronadashboard.government.nl/artikelen/leeftijdsverdeling-van-covid-patienten-in-de-ziekenhuizen

Basic Charts – 5. Line chart

... insights through Time:

Trends

... insights through Time:

Male 100 m Sprint Prediction

Trends

Source: https://matplotlib.org/3.2.1/gallery/specialty_plots/anscombe.html

Source: https://www.autodesk.com/research/publications/same-stats-different-graphs

Popular visualization tools

Tableau

and/or

- Simple for the exploration phase.
- Allows also for publishing online interactive visualizations with storytelling elements.
- Allows for connecting with Big Data sources such as Spark and MongoDB.

Python

- Complete control and reproducibility of datasets
- Active community
- Integration with complex libraries like machine learning
- Can serve web based visualizations (via, for instance, Dash by Plotly)

Tools for data exploration

- reproducibility of steps is key; that dismisses traditional Excel
- 2 classes of tools
 - end-user tools (GUI based), e.g. Tableau, KNIME, Power BI
 - scripting tools: SQL, Python, R, Julia, JavaScript, ...

Typical problems you can run into when using data prep tools

- data import decisions are usually based on the first n (n < 1000) rows
- dates, dates, dates
- discerning between missing values and empty values/strings
- adaptors for specific data sources / data storage solutions (HTML, XML, databases, filesystems, applications)
- level of documentability: Notebooks shine in this respect

pandas - what should you know

- inspired by R data frames, built on NumPy (and Matplotlib)
- there's more than one way you can do it. That makes using it convenient and difficult at the same time
- no smooth learning curve, although you can get initial work done with a small subset
- it takes quite some time (and necessary mileage) to become a pandas expert
- Numpy is stable, pandas is improved and extended at a rapid rate
- pandas: almost anything regarding data preparation can be done with it
- DataFrame size is bound to available, physical memory:
 - no fancy storage solutions in core pandas
 - a lot of fancy stuff is recently released or in the making (parquet, Arrow)

pandas - basic (necessary) subset

- importing data
 - read from an Excel or csv file
 - read from a Web API
- transforming data
 - handling missing values (NaN, None)
 - mutating: adding columns based on values in other columns
 - subsetting and filtering
 - grouping and aggregating
- presenting data
 - using pandas' built in plot functionality
 - using Seaborn
 - using MatPlotLib (only limited subset)

Useful standards, guidelines

Useful resources

• A comprehensive <u>Chart Guide</u> poster (+ <u>large hi-res</u> version)

• https://elitedatascience.com/python-seaborn-tutorial - short tutorial on the **Seaborn** library, a fast way of making beautiful charts in Jupyter Notebooks

• http://seaborn.pydata.org/examples/index.html - fancy chart examples made with Seaborn, with code samples

Check the exercise(s) on Canvas

