# Population dynamics project: Internal dynamics of NPZD type ecosystem models

Jaume Colom and Abraham Cano
Mathematical models in biology
FME-UPC

#### Content

- The problem
- Proposal
- Results
- Our proposal

### The problem

#### The problem I: Climate change



#### The problem II: CO2 concentration



#### The problem III: The carbon cycle



Source: https://es.wikipedia.org/wiki/Ciclo\_del\_carbono#/media/Archivo:Carbon\_cycle-cute\_diagram.svg

## The problem IV: The marine ecosystem (ocean) is an essential part of the Earth carbon cycle



Source: https://es.wikipedia.org/wiki/Ciclo\_del\_carbono#/media/Archivo:Carbon\_cycle-cute\_diagram.svg

#### The problem V: How to model the ocean?

- Oceanography
  - Biological Oceanography
  - Chemical Oceanography
  - Geological Oceanography
  - Physical Oceanography

#### The problem V: How to model the ocean?

- Oceanography
  - Biological Oceanography
  - Chemical Oceanography
  - Geological Oceanography
  - Physical Oceanography

#### The problem V: How to model the ocean?

- Oceanography
  - Biological Oceanography -> Marine ecosystem
  - Chemical Oceanography
  - Geological Oceanography
  - Physical Oceanography

The problem VI: How to model the marine ecosystem?

## The problem VI: How to model the marine ecosystem?



Source: Yoshie, Naoki & Guo, Xinyu & Fujii, Naoki & Komorita, Tomohiro. (2011). Ecosystem and Nutrient Dynamics in the Seto Inland Sea, Japan. Interdisciplinary studies on environmental chemistry. 39-49.

#### Proposal: NPZD model

Nutrients (NO3)

Phytoplankton

Zooplankton

• Detritus

#### NPZD models: What are they used for?

• NPZD models (and concentration based models, more generally) are tools for quantitative investigation of a planktonic ecosystem

- 3 broad uses:
  - Theoretical experiments
  - Explanation of observations
  - Prediction

#### Proposal: NPZD model

• Nutrients (NO3)

Phytoplankton

Zooplankton

• Detritus



#### Proposal: NPZD model



$$J(N) = \mu_m * f_{N(N)} * f_I(I)$$

$$G(N) = \frac{g \epsilon P^2}{g + \epsilon P^2}$$