Feladatok lineáris algebrából szigorlatra készülő gépészmérnök szakos hallgatók számára

A vektor geometriai fogalma. Műveletek vektorokkal.

- 1. Legyen v = (2, 3, -1) és $\underline{u} = (0, -1, 4)$ két térbeli vektor.
 - a, Ábrázolja a fenti vektorokat a térbeli koordináta-rendszerben!
 - b, Határozza meg a 2<u>v</u>-3<u>u</u> vektort!
 - c, Határozza meg a <u>v</u> és az <u>u</u> vektorok hosszát!
 - d, Mekkora szöget zárnak be a <u>v</u> és az <u>u</u> vektorok?
 - e, Adja meg a \underline{v} vektor ellentettjét! Adjon meg \underline{v} -vel párhuzamos ill. \underline{v} -re merőleges vektorokat!
 - f, Adja meg a <u>v</u> vektorral megegyező irányú, egységnyi hosszúságú vektort!
- 2. Legyen $\underline{v} = (3, -1, 2)$, $\underline{a} = (1, 1, -2)$. Határozza meg a \underline{v} vektor \underline{a} irányába eső merőleges vetületvektorát!
- 3. Legyen $\underline{y} = (4, 6, -2)$, $\underline{a} = (2, 3, 0)$. Bontsa fel a \underline{y} vektort \underline{a} -val párhuzamos és \underline{a} -ra merőleges összetevőkre!
- 4. Legyen $\underline{v} = (4, 7, 9)$, $\underline{a} = (2, -1, 3)$. Bontsa fel a v vektort a-val párhuzamos és a-ra merőleges összetevőkre!
- 5. Legyen $\underline{a} = (2, -1, 4)$, $\underline{b} = (0, 5, -2)$, $\underline{c} = (1, 6, -4)$. Számítsa ki az alábbi vektorokat! $\underline{a} + \underline{b}$, $\underline{a} - \underline{b}$, $3\underline{a}$, $-2\underline{c}$, $\underline{a} + 3\underline{b} + (-2)\underline{c}$, $\underline{a} \cdot \underline{b}$, $\underline{a} \cdot \underline{c}$, $\underline{a} \times \underline{b}$, $\underline{b} \times \underline{a}$, $\underline{a} \times \underline{c}$, $\underline{a} \cdot (\underline{b} \times \underline{c})$
- 6. Legyen $\underline{a} = (4, -1, 3)$, $\underline{b} = (2, 2, -2)$, $\underline{c} = (8, -2, 6)$. Számítsa ki az alábbi vektorokat! $\underline{a} + \underline{b}$, $\underline{a} \underline{b}$, $5\underline{a}$, $-3\underline{c}$, $2\underline{a} + \underline{b} + (-4)\underline{c}$, $\underline{a} \cdot \underline{b}$, $\underline{a} \cdot \underline{c}$, $\underline{a} \times \underline{b}$, $\underline{b} \times \underline{a}$, $\underline{a} \times \underline{c}$, $\underline{a} \cdot (\underline{b} \times \underline{c})$

A tér analitikus geometriája

$$x = 1 - 2t$$
 $x = 3t$
 $e: y = t$, $f: y = 1 - t$, $S: x+3y-z=10$.
 $z = 2 + t$ $z = 6 + 2t$

- a, Milyen az *e* és *f* egyenesek kölcsönös helyzete? Ha metszők, akkor határozza meg a metszéspontot!
- b, Határozza meg az e és f egyenesek szögét!
- c, Milyen az *e* egyenes és az *S* sík kölcsönös helyzete? Ha metszők, akkor határozza meg a metszéspontot, ha párhuzamosak, akkor a távolságukat!
- d, Határozza meg az e egyenes és az S sík szögét!

8. Legyen

e:
$$\frac{x-2}{-3} = \frac{y+2}{4} = -z$$
, S_1 : $2x - y + 5z = 6$, S_2 : $x + y - 2z = 3$.

- a, Írja fel annak a síknak az egyenletét, amely merőleges az e egyenesre és tartalmazza a P = (1, 0, -5) pontot!
- b, Határozza meg az e egyenes és az S_1 sík szögét!
- c, Milyen az S_1 és S_2 sík kölcsönös helyzete? Ha párhuzamosak, akkor határozza meg a távolságukat, ha metszők, akkor adja meg a metszésvonal paraméteres egyenletrendszerét!
- d, Határozza meg az S_1 és S_2 sík szögét!

9. Legyen

S:
$$2x-3y+z=6$$
, $e: \frac{x+1}{2} = \frac{y}{4} = \frac{z-1}{-6}$,
 $x = 3t$
 $f: y = 2 + t$.
 $z = -2 + 5t$

- a, Határozza meg a Q = (5, -6, 6) pont és az S sík távolságát!
- b, Írja fel annak a síknak az egyenletét, amely illeszkedik az *e* és *f* egyenesekre!
- c, Határozza meg az e egyenes és az S sík szögét!
- d, Határozza meg az e és f egyenesek szögét!

$$x = -1 + t$$

 $e: y = 2t$, $f: \frac{x}{3} = y - 2 = \frac{z+2}{5}$.

- a, Milyen az *e* és *f* egyenesek kölcsönös helyzete? Ha van közös pontjuk, akkor határozza meg a metszéspontot!
- b, Határozza meg az e és f egyenesek szögét!
- 11. Írja fel annak a síknak az egyenletét, amely illeszkedik a $P_1 = (1, 1, 4)$, $P_2 = (6, 0, 1)$ és $P_3 = (4, -2, 1)$ pontokra!

12. Legyen

$$x = 1 + 3t$$
 $x = 10 - 3t$
 $e: y = 4t$ $f: y = -2 + 3t$,
 $z = -1 - t$ $z = -t$

- S: 2x y + 2z = 18.
- a, Milyen az e és f egyenesek kölcsönös helyzete? Ha van közös pontjuk, akkor határozza meg a metszéspontot!
- b, Határozza meg az e és f egyenesek szögét!
- c, Milyen az e egyenes és az S sík kölcsönös helyzete? Ha metszők, akkor határozza meg a metszéspontot, ha párhuzamosak, akkor a távolságukat!
- d, Határozza meg az e egyenes és az S sík szögét!

13. Legyen

$$x = 1 + 4t$$

 $e: y = 2t$, $S_1: 2x - y + 3z = 5$, $S_2: 4x - 2y + 6z = 38$
 $z = 3$

- a, Milyen az e egyenes és az S₁ sík kölcsönös helyzete? Ha metszők, akkor határozza meg a metszéspontot!
- b. Határozza meg az e egyenes és az S₁ sík szögét!
- c, Milyen az S_1 és S_2 sík kölcsönös helyzete?
- d, Határozza meg a Q = (1, 2, -3) pont és az S_2 sík távolságát!
- e, Határozza meg az S_1 és S_2 síkok szögét!

$$x = 1 + 2t$$
 $x = 2 + t$
 $e: y = 3 - t$, $f: y = 4 - 2t$,
 $z = 2 + 3t$ $z = 3$
 $S: x-y-z+4=0$.

- a, Milyen az e és f egyenesek kölcsönös helyzete? Ha van közös pontjuk, akkor határozza meg a metszéspontot!
- b, Határozza meg az e és f egyenesek szögét!
- c, Milyen az e egyenes és az S sík kölcsönös helyzete?
- d, Határozza meg az e egyenes és az S sík szögét!
- e, Határozza meg a P = (4, 4, 5) pont f egyenestől való távolságát!

15. Legyen

$$x = 3 + 2t$$
 $x = 1 + 2t$
 $e: y = 1 + t$, $f: y = t$, $z = 2$, $z = 4 - t$
 $S: -x + 2y + 3z = 5$.

- a, Milyen az *e* és *f* egyenesek kölcsönös helyzete? Ha van közös pontjuk, akkor határozza meg a metszéspontot!
- b, Határozza meg az e és f egyenesek szögét!
- c, Milyen az *e* egyenes és az *S* sík kölcsönös helyzete?
- d, Határozza meg az e egyenes és az S sík szögét!
- e, Határozza meg a P = (4, 4, 3) pont e egyenestől való távolságát!

16. Legyen

$$x = 1 + 2t$$
 $x = 4t$
 $e: y = t$, $f: y = 3 + 2t$,
 $z = 4 - 3t$ $z = 4 - 6t$
 $S: 2x-3y+z=4$.

- a, Milyen az e és f egyenesek kölcsönös helyzete? Határozza meg az e és f egyenesek távolságát!
- b, Határozza meg az e és f egyenesek szögét!
- c, Milyen az *e* egyenes és az *S* sík kölcsönös helyzete? Ha metszők, akkor határozza meg a metszéspontot, ha párhuzamosak, akkor a távolságukat!
- d, Határozza meg az e egyenes és az S sík szögét!

$$x = 2 + 3t$$
 $x = 5t$
 $e: y = 5 - 2t$, $f: y = 1 + 2t$, $z = 1 + t$ $z = 6 + t$
 $x = 5t$ $z = 1 + 2t$, $z = 6 + t$

- a, Milyen az *e* és *f* egyenesek kölcsönös helyzete? Ha metszők, akkor határozza meg a metszéspontot!
- b, Határozza meg az *e* és *f* egyenesek szögét!
- c, Milyen az f egyenes és az S sík kölcsönös helyzete? Ha metszők, akkor határozza meg a metszéspontot, ha párhuzamosak, akkor a távolságukat!
- d, Határozza meg az f egyenes és az S sík szögét!

Az Rⁿ vektortér (a vektorfogalma, műveletek vektorokkal, lineáris kombináció, altér)

- 18. Legyen $\underline{a} = (2, -3)$, $\underline{b} = (0, 5)$. Előállítható-e az \underline{a} és \underline{b} vektorok lineáris kombinációjával a $\underline{c} = (-2, 23)$ vektor?
- 19. Legyen $\underline{a} = (1, -2)$, $\underline{b} = (-2, 4)$. Előállítható-e az \underline{a} és \underline{b} vektorok lineáris kombinációjával a $\underline{c} = (1, 0)$ vektor?
- 20. Legyen $\underline{a} = (5, 4, -2, 3), \underline{b} = (2, 0, -1, 5), \underline{c} = (3, 0, 4, -6).$
 - a, Végezze el az alábbi műveleteket! a+b, -2c, -a+3b+c
 - b, Adja meg azt a vektort, amely az <u>a</u>, <u>b</u> és <u>c</u> vektorok 3, -1, 4 skalárokkal vett lineáris kombinációja!
 - c, Előállítható-e az \underline{a} , \underline{b} és \underline{c} vektorok lineáris kombinációjával az \underline{x} = (6, 4, 0, 19) vektor?
- 21. a, Az alábbi vektorhalmazok közül melyek alterek az R^3 térben? Az altereknél adja meg az altér dimenzióját és egy bázisát!
 - $H_1 = \{ \lambda_1 \cdot (1, 0, 0) + \lambda_2 \cdot (0, 1, 0) \mid \lambda_1, \lambda_2 \in R \},$
 - $H_2 = \{ \lambda \cdot (1, 2, -5) \mid \lambda \in \mathbb{R}^+ \},$
 - $H_3 = \{ \lambda \cdot (1, 2, -5) \mid \lambda \in R \},$
 - $H_4 = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1, x_2, x_3 < 0 \}$
 - $H_5 = \{ \lambda \cdot (3, -4, 2) \mid \lambda \in R \},$
 - $H_6 = \{ \lambda \cdot (3, -4, 2) + (1, 1, 1) \mid \lambda \in R \},$
 - $H_7 = \{ \lambda_1 \cdot (3, -4, 2) + \lambda_2 \cdot (1, 1, 1) \mid \lambda_1, \lambda_2 \in R \},$
 - $H_8 = \{ (\lambda, 0, 0) \mid \lambda \in R \}.$
 - b, Melyek azok az alterek a fentiek közül, amelyeknek direkt összege az *R*³ vektortér?

Vektorok lineáris függetlensége. A lineárisan független és a lineárisan összefüggő vektorhalmazok tulajdonságai. Vektorhalmaz rangja.

- 22. Legyen $\underline{a} = (-1, 2, 0), \underline{b} = (3, 5, 2), \underline{c} = (-2, 1, 4).$
 - a, Állítsa elő a 2a -3b -c lineáris kombinációt!
 - b, Legyen $H = \{\underline{a}, \underline{b}, \underline{c}\}$. Hogyan állítható elő a H vektorhalmaz elemeiből az R^3 vektortér nullvektora? Lineárisan független, vagy lineárisan összefüggő a H vektorhalmaz?
 - c, Legyen $\underline{x} = (1, 9, 2)$, $\underline{y} = (0, -3, 4)$. Előállítható-e az \underline{a} és \underline{b} vektorok lineáris kombinációjával az \underline{x} illetve az \underline{y} vektor?

Geometriailag is értékelje az eredményt!

- 23. Legyen $\underline{a} = (5, 2, 4), \underline{b} = (-1, 0, 3), \underline{c} = (6, -4, 5), \underline{d} = (3, 2, 10).$
 - a, Hogyan állítható elő az $\underline{a}, \underline{b}$ és \underline{c} vektorokból az R^3 vektortér nullvektora?
 - b, Hogyan állítható elő az $\underline{a}, \underline{b}$ és \underline{d} vektorokból az R^3 vektortér nullvektora?
- 24. Legyen $\underline{a}_1 = (1, 2, 4)$, $\underline{a}_2 = (-3, 1, 2)$, $\underline{a}_3 = (-2, 3, 6)$, $\underline{a}_4 = (-1, 5, 10)$, $\underline{a}_5 = (4, 1, 2)$,

 $H = \{\underline{a_1}, \underline{a_2}, \underline{a_3}, \underline{a_4}, \underline{a_5}\}$. Mennyi a H vektorhalmaz rangja?

- 25. Legyen $\underline{a} = (1, 0, 2), \underline{b} = (3, 2, 1), \underline{c} = (-1, 4, 0), \underline{d} = (6, 2, 7).$
 - a, Bázist alkotnak-e a térben az \underline{a} , \underline{b} , és \underline{c} vektorok? Ha igen, akkor határozza meg az $\underline{x} = (-8, -2, 1)$ vektor ezen bázisra vonatkozó koordinátáit!
 - b, Hogyan állítható elő az \underline{a} , \underline{b} , és \underline{d} vektorok lineáris kombinációjával az R^3 tér nullvektora?
 - c, Mennyi a $H = \{\underline{a}, \underline{b}, \underline{d}\}$ vektorhalmaz rangja?
- 26. Legyen $\underline{a}_1 = (1, 2, -1, 0), \quad \underline{a}_2 = (-1, -3, -1, 3), \quad \underline{a}_3 = (3, 7, -1, -3), \\ \underline{a}_4 = (2, 5, 0, -3), \, \underline{a}_5 = (0, 1, 2, -3). \quad H = \{\underline{a}_1, \, \underline{a}_2, \, \underline{a}_3, \, \underline{a}_4, \, \underline{a}_5\}.$
 - a, Mennyi a *H* vektorhalmaz rangja?
 - b, Adjon meg olyan $\underline{a} \neq \underline{o}$ vektort, amelyet a H vektorhalmazhoz csatolva nem növeli a vektorhalmaz rangját!
- 27. Egy bázistranszformációs eljárás során a következő táblázathoz jutottunk:

bázis	<u>a</u> 1	<u>a</u> ₂	<u>a</u> ₃	<u>a</u> 4	<u>a</u> 5
<u>a</u> 2			1		-3
<u>e</u> 2			0		0
<u>a</u> ₄			2		4
<u>a</u> 1			3		0

Számolás nélkül válaszoljon az alábbi kérdésekre!

- a, Mely vektortér elemei az \underline{a}_1 , \underline{a}_2 , \underline{a}_3 , \underline{a}_4 , \underline{a}_5 vektorok?
- b, Töltse ki a táblázat hiányzó adatait!
- c, Mennyi a $H = \{\underline{a_1}, \underline{a_2}, \underline{a_3}, \underline{a_4}, \underline{a_5}\}$ vektorhalmaz rangja?
- d, Adja meg a *H* vektorhalmaz egy maximális lineárisan független részhalmazát!
- e, A H vektorhalmaz mely elemei állíthatók elő \underline{a}_2 és \underline{a}_4 lineáris kombinációjaként?

28. Egy bázistranszformációs eljárás során a következő táblázathoz jutottunk:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> ₃	<u>a</u> 4	<u>a</u> 5
<u>e</u> 1	3			2	0
\underline{a}_2	2			-2	0
<u>a</u> ₃	3			0	-2
<u>e</u> 4	0			0	0

Számolás nélkül válaszoljon az alábbi kérdésekre!

- a, Mely vektortér elemei az <u>a</u>₁, <u>a</u>₂, <u>a</u>₃, <u>a</u>₄, <u>a</u>₅ vektorok?
- b, Töltse ki a táblázat hiányzó adatait!
- c, Mennyi a $H = \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}$ vektorhalmaz rangja?
- d, Adja meg a *H* vektorhalmaz egy maximális lineárisan független részhalmazát!
- e, A H vektorhalmaz mely elemei állíthatók elő \underline{a}_2 és \underline{a}_3 lineáris kombinációjaként?

29. Egy bázistranszformációs eljárás során a következő táblázathoz jutottunk:

<u>a</u> 1	<u>a</u> ₂	<u>a</u> ₃	<u>a</u> 4	<u>a</u> 5
0		0		0
1		3		-2
-2		0		0
0		0		0
	0 1 -2	0 1 -2	0 0 1 3 -2 0	0 0 1 3 -2 0

Számolás nélkül válaszoljon az alábbi kérdésekre!

- a, Mely vektortér elemei az <u>a</u>₁, <u>a</u>₂, <u>a</u>₃, <u>a</u>₄, <u>a</u>₅ vektorok?
- b, Töltse ki a táblázat hiányzó adatait!
- c, Mennyi a $H_1 = \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}$ vektorhalmaz rangja?
- d, Mennyi a $H_2 = \{\underline{a_2}, \underline{a_3}, \underline{a_5}\}$ vektorhalmaz rangja?
- e, Előállítható-e az $\underline{a_1}$ vektor az $\underline{a_2}$ és $\underline{a_4}$ vektorok lineáris kombinációjaként?
- f, Előállítható-e az \underline{a}_1 vektor az \underline{a}_3 és \underline{a}_4 vektorok lineáris kombinációjaként?
- g, Előállítható-e az $\underline{a_1}$ vektor az $\underline{a_2}$ és $\underline{a_3}$ vektorok lineáris kombinációjaként?

Generátorrendszer, bázis. A bázisokra vonatkozó tételek.

- 30. Legyen $\underline{a} = (5, 2, 4), \underline{b} = (-1, 0, 3), \underline{c} = (6, -4, 5), \underline{d} = (3, 2, 10).$
 - a, Bázist alkotnak-e az R^3 térben az \underline{a} , \underline{b} és \underline{c} (illetve az \underline{a} , \underline{b} és \underline{d}) vektorok? Ha igen, akkor határozza meg a \underline{v} = (16, 0, 13) vektor rájuk vonatkozó koordinátáit!
 - b, Megadható-e olyan $\underline{x} \in R^3$ vektor, amely nem állítható elő az $\underline{a}, \underline{b}$ és \underline{c} (illetve az $\underline{a}, \underline{b}$ és \underline{d}) vektorok lineáris kombinációjaként?
- 31. Legyen $\underline{a}_1 = (1, 2, 0)$, $\underline{a}_2 = (0, 1, 1)$, $\underline{a}_3 = (2, 2, -2)$. Megadható-e olyan $\underline{x} \in R^3$ vektor, amely az \underline{a}_1 , \underline{a}_2 és \underline{a}_3 vektorok lineáris kombinációjával nem fejezhető ki? Ha igen, akkor adjon példát ilyen vektorra!
- 32. Legyen $H_1 = \{ (1, 1, 1), (1, 1, 0) \},$ $H_2 = \{ (1, 1, 1), (1, 1, 0), (1, 0, 0) \},$ $H_3 = \{ (1, 1, 1), (1, 1, 0), (1, 0, 0), (0, 1, 1) \}.$

A fenti vektorhalmazokra mi illik az alábbi felsorolásokból?

- lineárisan független,
- lineárisan összefüggő,
- bázis
- a vektorhalmaz vektoraiból lineáris kombinációval előállítható az R^3 vektortér összes vektora.
- 33. Adjon példát az R^4 vektortérben olyan vektorhalmazra, amely
 - lineárisan összefüggő és nem generátorrendszer,
 - lineárisan összefüggő és generátorrendszer,
 - lineárisan független és nem bázis,
 - lineárisan független és bázis.

Elemi bázistranszformáció.

- 34. Legyen $\underline{a}_1 = (1, 2, 2, -1)$, $\underline{a}_2 = (0, -1, 1, -1)$, $\underline{a}_3 = (2, 5, 3, -1)$, $\underline{a}_4 = (1, 3, 1, 0)$, $a_5 = (1, 4, 0, 1)$. $H = \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}$.
 - a, Mennyi a *H* vektorhalmaz rangja?
 - b, Adjon meg olyan $\underline{a} \in \mathbb{R}^4$ vektort, amely nem állítható elő a H vektorhalmaz vektorainak lineáris kombinációjaként!
- 35. Legyen $\underline{a}_1 = (-3,4,2)$, $\underline{a}_2 = (1,0,0)$, $\underline{a}_3 = (1,2,-1)$, $\underline{a}_4 = (-5,0,7)$, $H = \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4\}$.
 - a, Mennyi a *H* vektorhalmaz rangja?
 - b, Előállítható-e az \underline{a}_1 vektor az \underline{a}_3 és \underline{a}_4 vektorok lineáris kombinációjaként?
 - c, Előállítható-e az $\underline{a_2}$ vektor az $\underline{a_3}$ és $\underline{a_4}$ vektorok lineáris kombinációjaként?
- 36. Legyen $\underline{a}_1 = (1, -2, 3)$, $\underline{a}_2 = (-3, 1, -1)$, $\underline{a}_3 = (-4, -2, 4)$, $\underline{a}_4 = (-6, 0, -4)$, $\underline{a}_5 = (2, -1, -4)$,
 - $H = \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}.$
 - a, Mennyi a *H* vektorhalmaz rangja?
 - b, Van-e a *H* vektorhalmaznak olyan legalább 3 elemű részhalmaza, amelynek rangja kisebb a *H* rangjánál?

- c, Van-e a *H* vektorhalmaznak 1, 2, 3 ill. 4 elemű lineárisan független részhalmaza? (Ha van, akkor adjon példát, ha nincs, akkor indoklást!)
- d, Van-e a *H* vektorhalmaznak 1, 2, 3 ill. 4 elemű lineárisan összefüggő részhalmaza? (Ha van, akkor adjon példát, ha nincs, akkor indoklást!)

37. Legyen
$$\underline{a}_1 = (1, 2, 1)$$
, $\underline{a}_2 = (-1, 0, 3)$, $\underline{a}_3 = (2, 1, 3)$, $\underline{a}_4 = (4, 1, -3)$, $\underline{a}_5 = (2, -1, -1)$,

 $H = \{\underline{a}_1, \, \underline{a}_2, \, \underline{a}_3, \, \underline{a}_4, \, \underline{a}_5\}.$

- a, Mennyi a *H* vektorhalmaz rangja?
- b, Válasszon ki *H*-ból egy maximális lineárisan független részhalmazt, és annak elemeivel állítsa elő *H* elemeit!
- c, Előállítható-e az R^3 vektortér minden vektora H elemeinek lineáris kombinációjaként? Ha igen: adjon meg olyan részhalmazt H-ban, amely bázis az R^3 térben! Ha nem: egészítse ki H-t úgy további vektorokkal, hogy az R^3 tér minden vektora előállítható legyen!

38. Legyen
$$\underline{a}_1 = (1, 1, 2)$$
, $\underline{a}_2 = (1, 2, -1)$, $\underline{a}_3 = (2, 3, 1)$, $\underline{a}_4 = (0, -1, 3)$, $\underline{a}_5 = (3, 4, 3)$,

 $H = \{\underline{a}_1, \, \underline{a}_2, \, \underline{a}_3, \, \underline{a}_4, \, \underline{a}_5\}.$

- a, Mennyi a *H* vektorhalmaz rangja?
- b, Válasszon ki *H*-ból egy maximális lineárisan független részhalmazt, és annak elemeivel állítsa elő *H* elemeit!
- c, Előállítható-e az R^3 vektortér minden vektora H elemeinek lineáris kombinációjaként? Ha igen: adjon meg olyan részhalmazt H-ban, amely bázis az R^3 térben! Ha nem: egészítse ki H-t úgy további vektorokkal, hogy az R^3 tér minden vektora előállítható legyen!

Mátrixok. Műveletek mátrixokkal. Mátrix rangja.

39. Legyen
$$A = \begin{pmatrix} 2 & -5 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & 1 & 0 \\ -2 & 2 & 5 \\ 4 & 1 & -3 \end{pmatrix}$, $C = \begin{pmatrix} 2 \\ -4 \\ 7 \end{pmatrix}$.

Mutassa meg, hogy $(A \cdot B) \cdot C = A \cdot (B \cdot C)$!

40. Legyen
$$A = \begin{pmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5 \end{pmatrix}$, $C = \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix}$.

Mutassa meg, hogy a fenti mátrixokra:

- *A ⋅B=B ⋅A=*0
- *A* ⋅*C*=*A*
- $C \cdot A = C$.

41. Legyen
$$A = \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 2 \\ -3 & 4 & 1 \end{pmatrix}$. $C = \begin{pmatrix} 2 & 3 & -4 \\ 5 & 0 & 1 \end{pmatrix}$.

Ellenőrizze az $A \cdot (B+C) = A \cdot B + A \cdot C$ disztributív tulajdonságot!

42. Legyen
$$A = \begin{pmatrix} -1 & 0 & 4 \\ 3 & 2 & 0 \end{pmatrix}$$
. $B = \begin{pmatrix} -1 & 5 \\ 2 & 3 \end{pmatrix}$, $C = \begin{pmatrix} 3 & 0 & 1 \\ -1 & 5 & 2 \end{pmatrix}$, $D = \begin{pmatrix} 3 & 4 \\ 2 & 5 \\ 0 & 6 \end{pmatrix}$, $E = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$, $F = \begin{pmatrix} 3 & 0 & 2 & 1 \\ 4 & 5 & 0 & -1 \\ 6 & 0 & 1 & 1 \end{pmatrix}$.

Melyik létezik az alábbi mátrixok közül? Amelyik létezik, azt számítsa ki!

2A-C, 3C+D, $C+D^{T}$, 4B+2E, $A\cdot B$, $A\cdot C$, $A\cdot D$, $E\cdot B$, $B\cdot E$, B^{2} , E^{3} , $A\cdot E$, $E\cdot A$, $C\cdot F$, $D\cdot C$, $C\cdot D$, $D\cdot E$.

43. Legyen
$$A = \begin{pmatrix} 1 & 2 & -1 & -3 \\ 0 & 1 & 3 & 2 \\ 4 & 5 & 0 & 6 \end{pmatrix}, B = \begin{pmatrix} 1 & 8 \\ -3 & 2 \\ 0 & 5 \\ -1 & -2 \end{pmatrix}, C = \begin{pmatrix} 0 & 4 \\ 1 & 5 \\ 2 & 6 \\ 3 & 7 \end{pmatrix}, D = \begin{pmatrix} 5 \\ -2 \\ 4 \\ 3 \end{pmatrix}, E = \begin{pmatrix} -3 \\ 2 \end{pmatrix}, F = \begin{pmatrix} 5 & 2 \end{pmatrix}.$$

Melyik létezik az alábbi mátrixok közül? Amelyik létezik, azt számítsa ki!

A+B, C+B, C+D, E+F, $E+F^{T}$, 5A, 3F, $B \cdot C$, $B \cdot C^{T}$, $B^{T} \cdot C$, $B \cdot A$, $A \cdot B$, $B \cdot D$, $B \cdot E$, $A \cdot D$, $D \cdot E$, $E \cdot E$, $E \cdot F$, $F \cdot E$.

$$44. \ A = \begin{pmatrix} 3 & 4 & -2 \\ 1 & 0 & 8 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 0 & 5 \\ 2 & 3 & 0 \\ 0 & 4 & 5 \end{pmatrix}, \ C = \begin{pmatrix} 2 & 6 & 10 & -4 \\ 0 & 2 & 2 & 0 \\ -1 & 4 & 2 & 2 \end{pmatrix}. \ D = \begin{pmatrix} 1 & -2 \\ 2 & 5 \\ 4 & 1 \end{pmatrix},$$

$$E = \begin{pmatrix} 1 & -4 & -2 & 5 \\ 2 & 3 & 7 & -1 \\ 3 & 1 & 7 & 2 \end{pmatrix}, \quad F = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 4 & 0 \\ 1 & 0 & 4 \\ 3 & 2 & 1 \end{pmatrix}$$

Határozza meg a fenti mátrixok rangját!

Négyzetes mátrix inverze

45. Legyen
$$A = \begin{pmatrix} 3 & 0 \\ 2 & -1 \end{pmatrix}$$
 és $B = \begin{pmatrix} 1/3 & 0 \\ 2/3 & -1 \end{pmatrix}$. Mutassa meg, hogy az A és B mátrixok egymás inverzei!

46. Legyen
$$A = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 6 \\ 1 & 3 & 2 \end{pmatrix}$$
 és $B = \begin{pmatrix} 2 & -1 & -1 \\ a & 1/4 & b \\ 1/8 & 1/8 & -1/8 \end{pmatrix}$. Megválaszthatóak-e az a és b valós

paraméterek úgy, hogy A és B egymás inverzei legyenek?

47. Legyen
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix}$, $C = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,
$$D = \begin{pmatrix} 2 & -3 & -4 \\ -1 & 7 & 2 \\ 3 & 1 & -6 \end{pmatrix}$$
, $E = \begin{pmatrix} 1 & 3 & 4 \\ 0 & 2 & 2 \\ -1 & 5 & 4 \end{pmatrix}$, $F = \begin{pmatrix} 1 & 0 & 5 \\ 0 & 1 & 1 \\ 3 & 2 & 4 \end{pmatrix}$, .

Invertálhatóak-e a fenti mátrixok? Ha igen, akkor bázistranszformáció alkalmazásával határozza meg az inverzüket!

Determinánsok. A Cramer szabály

48. Számítsa ki az alábbi mátrixok determinánsát! Milyen egyéb mátrixtulajdonságokra következtethetünk a determináns értékéből?

$$A = \begin{pmatrix} -2 & 5 \\ 4 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 2 \\ 10 & 5 \end{pmatrix}, \quad C = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix},$$

$$E = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad F = \begin{pmatrix} 1 & 4 & 8 \\ -2 & 1 & 5 \\ -3 & 2 & 4 \end{pmatrix}, \quad G = \begin{pmatrix} 2 & 4 & -4 \\ 5 & -6 & 3 \\ 4 & 2 & -3 \end{pmatrix},$$

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -1 & 0 \\ 0 & 2 & 0 & 0 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 & 3 & 2 \\ 2 & 1 & 5 & -1 \\ -4 & 1 & 0 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix}.$$

$$J = \begin{pmatrix} 2 & -1 & 0 & 2 \\ -4 & 2 & -9 & 3 \\ 2 & -6 & 4 & -2 \\ 1 & 3 & 2 & 2 \end{pmatrix}, \qquad K = \begin{pmatrix} 3 & 0 & -4 & 2 & 5 \\ 0 & 1 & 7 & 5 & -2 \\ 0 & 0 & -3 & 4 & 2 \\ 0 & 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 0 & -2 \end{pmatrix},$$

$$\begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 & 0 \end{pmatrix}$$

$$L = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 & 0 \\ 6 & 3 & 5 & 0 & 0 \\ 1 & 1 & 3 & 0 & 0 \\ 2 & 7 & 4 & 3 & 5 \end{pmatrix}.$$

49. Legyen
$$A = \begin{pmatrix} c & 0 & 2 \\ 1 & 3 & 1 \\ -1 & 2 & 5 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 & 1 \\ 1 & c & 3 \\ 1 & -3 & -c \end{pmatrix}$, $C = \begin{pmatrix} 5 & 2 & -3 \\ 3 & -2 & 0 \\ 4 & 3 & c \end{pmatrix}$.

Milyen legyen a c valós paraméter értéke, hogy a fenti mátrixok invertálhatóak legyenek?

50. Legyen
$$A = \begin{pmatrix} 1 & 3 & -1 \\ 0 & 5 & 7 \\ 0 & 0 & c \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 4 & 3 \\ -3 & 13 & c \\ 3 & -1 & 2 \end{pmatrix}$, $C = \begin{pmatrix} c & 1 & 3 \\ -1 & 1 & 1 \\ -3 & 1 & -c \end{pmatrix}$.

Milyen legyen a c valós paraméter értéke, hogy a fenti mátrixok <u>ne</u> legyenek invertálhatóak?

51. Oldja meg Cramer-szabállyal az alábbi lineáris egyenletrendszereket!

$$x + 4y + 2z = 5$$

 $-3x + 2y + z = -1$
 $4x - y - z = 2$

b,

$$x - 2y + z = 2$$

 $3x + 8y - 6z = -3$
 $6x + 10y + 3z = 4$

c,

$$x + y - z = 6$$

 $3x - 2y + 5z = 3$
 $6x + y + 2z = 21$

d,

$$x + y - z = 4$$

 $2x - 3y + z = -5$
 $4x - y - z = -3$

Lineáris egyenletrendszerek

52. Oldja meg bázistranszformáció alkalmazásával az alábbi lineáris egyenletrendszereket!

$$2x_1 + 3x_2 - x_3 + 5x_4 = 15$$

$$x_1 + x_2 - x_3 - x_4 = -3$$

$$x_2 + x_3 + 7x_4 = 21$$

$$x_1 + 2x_2 - x_3 = -6$$

$$-x_1 - 3x_2 + 4x_3 = 5$$

$$-x_2 + 3x_3 = -1$$

$$x_1 + x_2 + 2x_3 = -7$$

$$x_1 - x_2 + 3x_3 = 0$$

 $2x_1 + x_3 = 1$
 $6x_1 + 2x_2 - x_3 = 5$

$$3x_1 + 2x_2 = 6$$

 $x_1 - 3x_2 = -20$
 $x_1 + 8x_2 = 46$
 $8x_1 + 9x_2 = 38$

$$5x_1 + 3x_2 + x_3 - 4x_4 = 1$$

$$x_1 + x_2 - x_3 - x_4 = 4$$

$$3x_1 + x_2 + 3x_3 - 2x_4 = 2$$

$$5x_1 + 3x_2 + x_3 - 4x_4 = 0$$

$$x_1 + x_2 - x_3 - x_4 = 0$$

$$3x_1 + x_2 + 3x_3 - 2x_4 = 0$$

53. Legyen $A = [\underline{a}_1 \ \underline{a}_2 \ \underline{a}_3 \ \underline{a}_4]_{4x4}$ egy mátrix, $\underline{b} \in \mathbb{R}^4$. Az alábbi táblázatot ismerjük:

bázis	<u>a</u> 1	<u>a2</u>	<u>a</u> ₃	<u>a</u> 4	<u>b</u>
\underline{a}_1	1	0	0	6	0
<u>e</u> ₂	0	0	0		
<u>a</u> 2	0	1	0	3	2
<u>a</u> ₃	0	0	1	0	-1

A táblázat hiányzó helyeire válasszon számértékeket úgy, hogy

- az $A : \underline{x} = \underline{b}$ lineáris egyenletrendszernek <u>ne</u> legyen megoldása;
- az $A \underline{x} = \underline{b}$ lineáris egyenletrendszernek pontosan egy megoldásvektora legyen;
- az $A : \underline{x} = \underline{b}$ lineáris egyenletrendszernek végtelen sok megoldásvektora legyen!

Az utóbbi két esetben adja meg az egyenletrendszer megoldáshalmazát

Lineáris leképezések (definíció, alapfogalmak). Műveletek lineáris leképezésekkel.

54. Tekintsük az alábbi leképezéseket!

$$A: R^{3} \to R^{2}, \quad (x_{1}, x_{2}, x_{3}) \mapsto (2x_{1} + 3x_{2}, x_{1} + x_{2} - 3x_{3})$$

$$A: R^{2} \to R^{2}, \quad (x_{1}, x_{2}) \mapsto (x_{1}^{3} + 2x_{2}, 4x_{2})$$

$$A: R^{2} \to R^{2}, \quad (x_{1}, x_{2}) \mapsto (x_{1} \cdot x_{2}, 4x_{1} + x_{2}^{4})$$

$$A: R \to R^{4}, \quad x \mapsto (2x + 1, 3x^{2}, x + 5, 4x)$$

$$A: R^{2} \to R^{3}, \quad (x_{1}, x_{2}) \mapsto (3x_{1} + 5x_{2}, 0, x_{1} + x_{2})$$

$$A: R^{2} \to R^{2}, \quad (x_{1}, x_{2}) \mapsto (5x_{1} + 2x_{2}, x_{1} + 4x_{2})$$

Melyik lineáris a fenti leképezések közül? Amelyik lineáris, ott adja meg a leképezés mátrixát!

55. Adja meg azon lineáris leképezések típusát és hozzárendelési szabályát, amelyeknek a mátrixa:

$$A = \begin{bmatrix} 2 & 0 & -1 & 4 \\ 3 & 5 & 0 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & 3 \\ -1 & 6 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 1 & 0 \\ 2 & -3 & 4 \end{bmatrix}, \qquad D = \begin{bmatrix} -2 \\ 5 \end{bmatrix},$$

$$E = \begin{bmatrix} -1 & 3 \\ 0 & 2 \\ 4 & 5 \end{bmatrix}, \qquad F = \begin{bmatrix} 3 & 4 & 0 \\ -1 & 1 & 2 \\ 5 & 0 & 1 \end{bmatrix}, \qquad G = \begin{bmatrix} 2 & 5 & 0 & 3 \end{bmatrix}, \qquad H = \begin{bmatrix} 4 \end{bmatrix}.$$

56. Tekintsük az alábbi lineáris leképezéseket!

$$A: R^3 \to R^2$$
, $(x_1, x_2, x_3) \mapsto (2x_1 - x_2 + 4x_3, x_1 + 3x_2 + 2x_3)$
 $B: R^3 \to R^3$, $(x_1, x_2, x_3) \mapsto (x_1 + 3x_3, 4x_2, 5x_2 + x_3)$

- a, Adja meg a fenti lineáris leképezések mátrixát!
- b, Legyen x = (2, -1, 3). Adja meg az A(x) és a B(x) képvektort!
- c, Melyik létezik az AoB és a BoA leképezések közül? Amelyik létezik, annak adja meg a mátrixát!

57. Határozza meg az alábbi lneáris leképezések rangját!

A:
$$R^2 \to R^4$$
, $(x, y) \mapsto (3x, 0, x+y, -3y)$,
A: $R^3 \to R^3$, $(x, y, z) \mapsto (3x-y+2z, 2y, 3x+3y+2z)$,
A: $R^3 \to R^2$, $(x, y, z) \mapsto (x+y-2z, 2x+z)$.

58. Tekintsük az alábbi lineáris transzformációkat:

$$A: R^2 \to R^2, (x_1, x_2) \mapsto (2x_1 + 3x_2, -x_1 + 4x_2),$$

 $B: R^2 \to R^2, (x_1, x_2) \mapsto (4x_1 + 6x_2, -2x_1 - 3x_2).$

- a, Írja fel a fenti lineáris transzformációk mátrixát!
- b, Adja meg az A+B, 5A, AoB, BoA lineáris leképezéseket és azok mátrixát!
- c, Invertálhatóak-e a fenti lineáris transzformációk? Amelyik invertálható, annak adja meg az inverzét (az inverz transzformáció típusát és hozzárendelési szabályát)!
- 59. Tekintsük az alábbi lineáris transzformációkat:

$$A: R^2 \to R^2$$
, $(x_1, x_2) \mapsto (x_1 + 3x_2, 2x_1 + x_2)$,
 $B: R^2 \to R^2$, $(x_1, x_2) \mapsto (4x_1 + 6x_2, 2x_1 + 3x_2)$.

- a, Írja fel a fenti lineáris transzformációk mátrixát!
- b, Adja meg a fenti lineáris transzformációk magterét! Melyik invertálható? Az invertálható leképezések esetén adja meg az inverz leképezést!

c, Legyen $\underline{b} = (7, 4)$. Igaz-e, hogy $\underline{b} \in \text{im}(A)$. illetve $\underline{b} \in \text{im}(B)$? Ha igen, akkor adja meg azon \underline{x} vektorokat, amelyekre $A(\underline{x}) = \underline{b}$, illetve $B(\underline{x}) = \underline{b}$ teljesül!

Lineáris transzformáció sajátértékei, sajátvektorai

60. A definíció alapján ellenőrizze, hogy a megadott vektorok közül melyik sajátvektora az *A* lineáris transzformációnak!

a,
$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (x_1 + 3x_2, 2x_2)$, $\underline{v}_1 = (3, 1)$, $\underline{v}_2 = (5, 2)$, $\underline{v}_3 = (3, 3)$, $\underline{v}_4 = (2, -2)$

b,
$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (3x_1 + x_2, 4x_2)$, $\underline{v}_1 = (3,0)$, $\underline{v}_2 = (5,1)$, $\underline{v}_3 = (3,3)$, $\underline{v}_4 = (2,-2)$.

61. A definíció alapján ellenőrizze, hogy a megadott vektorok közül melyik sajátvektora az *A* négyzetes mátrixnak!

a,
$$A = \begin{bmatrix} 4 & -1 \\ 1 & 2 \end{bmatrix}$$
, $\underline{v}_1 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$, $\underline{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\underline{v}_1 = \begin{bmatrix} -3 \\ 3 \end{bmatrix}$, $\underline{v}_1 = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$.

b,
$$A = \begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix}$$
, $\underline{v}_1 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$, $\underline{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\underline{v}_1 = \begin{bmatrix} -3 \\ 3 \end{bmatrix}$, $\underline{v}_1 = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$.

c,
$$A = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}$$
, $\underline{v}_1 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$, $\underline{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\underline{v}_1 = \begin{bmatrix} -3 \\ 3 \end{bmatrix}$, $\underline{v}_1 = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$.

62. Határozza meg az alábbi lineáris transzformációk sajátértékeit, sajátaltereit! Adja meg a sajátértékek algebrai és geometriai multiplicitását!

Adjon példát egy sajátvektorra!

a,
$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (2x_1 - x_2, x_1 + 4x_2)$

b,
$$A: R^2 \to R^2$$
, $(x_1, x_2) \mapsto (x_1 + 3x_2, 2x_2)$

c,
$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (2x_1 + 2x_2, -2x_1 + 6x_2)$

d,
$$A: R^2 \to R^2$$
, $(x_1, x_2) \mapsto (2x_1 + 3x_2, x_1 + 4x_2)$

e,
$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (-x_1 + x_2, 9x_1 + 7x_2)$

f,
$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (-x_1 + 2x_2, -10x_1 - 5x_2)$

g,
$$A: \mathbb{R}^3 \to \mathbb{R}^3$$
, $(x_1, x_2, x_3) \mapsto (x_1 + x_2, -2x_1 + 4x_2, x_1 + 2x_2)$

h,
$$A: R^3 \to R^3$$
, $(x_1, x_2, x_3) \mapsto (x_1+x_2, x_2+x_3, x_1+x_3)$

i,
$$A: R^3 \to R^3$$
, $(x_1, x_2, x_3) \mapsto (3x_1 - x_2 - x_3, -x_1 + 3x_2 - x_3, -x_1 - x_2 + 3x_3)$

Skaláris szorzat. A Cauchy-Bunyakovszkij-Schwarz egyenlőtlenség

- 63. Legyen $\underline{x} = (2, 0, -3, 4)$, $\underline{y} = (1, -1, 0, 2)$, $\underline{z} = (0, 0, 1, 3)$. Határozza meg az \underline{x} és \underline{y} , az \underline{x} és \underline{z} valamint az \underline{y} és \underline{z} vektorok skaláris szorzatát!
- 64. Legyen $\underline{a} = (1, -2, -4), \underline{b} = (-1, 0, 3), \underline{c} = (2, -1, 1).$
 - a, Ellenőrizze a skaláris szorzatra vonatkozó tulajdonságokat a fenti vektorok esetén!
 - b, Ellenőrizze a Cauchy- Bunyakovszkij-Schwarz egyenlőtlenséget az \underline{a} és \underline{b} illetve a b és c vektorokra!
- 65. Legyen $\underline{x} = (2, 5, -1, 4), \underline{v} = (-1, 0, -3, 1).$
 - a, Határozza meg az <u>x</u> vektor <u>v</u> –re vonatkozó Fourier-együtthatóját!
 - b, Bontsa fel az \underline{x} vektort \underline{v} –vel párhuzamos és \underline{v} –re merőleges összetevőkre!
- 66. Legyen $\underline{x} = (3, -1, 0, 1), \underline{y} = (0, 2, 1, -1).$
 - a, Határozza meg az <u>x</u> vektor <u>v</u> –re vonatkozó Fourier-együtthatóját!
 - b, Bontsa fel az \underline{x} vektort \underline{v} –vel párhuzamos és \underline{v} –re merőleges összetevőkre!

Norma, távolság, szög. Az ortogonális felbontás tétele.

- 67. Legyen $\underline{x} = (2, 0, -3, 4), \quad \underline{y} = (1, -1, 0, 2), \quad \underline{z} = (0, 0, 1, 3).$
 - a, Határozza meg az x, az y valamint a z vektorok normáját (hosszát)!
 - b, Adja meg az <u>x</u>, az <u>y</u> valamint a <u>z</u> vektorokkal egyirányú, egységre normált vektorokat!
 - c, Határozza meg az x és y, az x és z valamint az y és z vektorok szögét!
- 68. Legyen a = (1, -2, -4), b = (-1, 0, 3), c = (2, -1, 1).
 - a, Ellenőrizze a skaláris szorzatra vonatkozó tulajdonságokat a fenti vektorok esetén!
 - b, Számítsa ki a következő normákat! ||a||, ||b||, ||c||
 - c, Ellenőrizze a Cauchy- Bunyakovszkij-Schwarz egyenlőtlenséget az \underline{a} és \underline{b} illetve a \underline{b} és \underline{c} vektorokra!
 - d, Ellenőrizze a Minkowsky egyenlőtlenséget az \underline{a} és \underline{b} illetve a \underline{b} és \underline{c} vektorokra!
 - e, Számítsa ki az <u>a</u> és <u>b</u> illetve a <u>b</u> és <u>c</u> vektorok szögét!
- 69. Az alábbi vektorok közül melyek ortogonálisak?
 - (-4, 2) és (1, 2),
 - (2, 0, -3) és (3, 5, -1),
 - (0, 4, -5) és (6, 10, 8),
 - (1, -1, 0, 1) és (1, 0, 6, -1),
 - (2, 4, -3, 0) és (1, -5, 1, 1).

70. x mely értékeire lesznek ortogonálisak az alábbi vektorok?

- (x, 0, -3, 2x) és (4, 5, 2, 1),
- (x, 4, 1) és (x, -x, 3),
- (2, 3x, 2) és (5, -2, 3x).
- 71. Adja meg a *H* altér ortogonális komplementerét!

a,
$$H = \{ (t, 0, t) \mid t \in R \}$$
,
b, $H = \{ (0, x_2, x_3) \mid x_2, x_3 \in R \}$,
c, $H = \{ \lambda_1 \cdot (1, -1, 2) + \lambda_2 \cdot (0, 1, 1) \mid \lambda_1, \lambda_2 \in R \}$,
d, $H = R^3$.

72. Adja meg az $\underline{x} \in R^3$ vektor H és H^{\perp} alterekbe eső összetevőit!

a,
$$\underline{x} = (-5, 4, 2)$$

 $H = \{ (x_1, x_2, 0) \mid x_1, x_2 \in R \},$

b,
$$\underline{x} = (3, 2, 2)$$

 $H = \{ \lambda_1 \cdot (1, 1, 1) + \lambda_2 \cdot (0, 1, 1) \mid \lambda_1, \lambda_2 \in R \},$

c,
$$\underline{x} = (0, 5, 2)$$

 $H = \{ \lambda_1 \cdot (-1, 0, 1) + \lambda_2 \cdot (1, 0, 1) \mid \lambda_1, \lambda_2 \in R \},$

d,
$$\underline{x} = (2, 4, -1)$$

 $H = \{ \lambda \cdot (1, 1, 1) \mid \lambda \in R \}.$