MAT1830 - Discrete Mathematics for Computer Science Tutorial Sheet #5 and Additional Practice Questions

Tutorial Questions

- 1. Let $X = \{a, b, c, d\}$ and $Y = \{a, b, e, f, g, h\}$.
 - (a) Make up and draw the arrow diagram of a function $q: X \to Y$ whose image contains 3 elements, or explain why no such function exists.
 - (b) Make up and draw the arrow diagram of a function r: Y → X which is one-to-one, or explain why no such function exists.
 - (c) Make up and draw the arrow diagram of a function $s: Y \to X$ such that s(a) = a, s(b) = a, s(e) = a and the image of s is X, or explain why no such function exists.
- 2. Let p, q and s be the following functions.

$$p: \mathbb{Z} \to \mathbb{Z}$$
 defined by $p(x) = \begin{cases} 1, & \text{if } x \text{ is even;} \\ -1, & \text{if } x \text{ is odd.} \end{cases}$

 $q: \mathbb{Z} \to \mathbb{R}$ given by the set $\{(x, x^2 - \frac{1}{2}) : x \in \mathbb{Z}\}$

 $s: \{x: x \in \mathbb{R} \text{ and } x \geq 0\} \to \mathbb{R} \text{ defined by } s(x) = \sqrt{x} + 2$

$$t: \mathbb{Z} \to \mathbb{N} \times \{-1,1\}$$
 defined by $t(x) = (y,z)$ where $y = x^2$ and $z = \begin{cases} 1, & \text{if } x \geq 0; \\ -1, & \text{if } x < 0. \end{cases}$

- (a) What are the images of p, q, s and t? Which of them are onto?
- (b) Which of p, q, s and t are one-to-one?
- (c) Do p and q have inverse functions? If they do, give a formula for the function and give its domain, codomain, and image.
- 3. Let p, q, s and t be the functions defined in Question 2. State whether each of the following compositions exists and, if they do, give a formula for the function and give its domain, codomain, and image.
 - (a) $p \circ q$
 - (b) $q \circ t$
 - (c) $q \circ p$
- 4. Let *D* be the set of all dogs.
 - (a) Which of the following subsets of $D \times D$ correspond to functions from D to D? Why or why not?
 - i. $\{(x,y): y \text{ is the mother of } x\}$
 - ii. $\{(x,y): y \text{ is the brother of } x\}$
 - iii. $\{(x,y): y \text{ is the eldest dog in the same litter as } x\}$
 - iv. $\{(x,y): y \text{ is the eldest daughter of } x\}$
 - (b) Let $m: D \to D$ and $e: D \to D$ be the functions corresponding to i and iii in part (a). What are the following?
 - i. $m \circ m(Rover)$
 - ii. $e \circ m(Rover)$
 - iii. $m \circ e(Rover)$

(See over for practice questions.)

Practice Questions

- 1. Let $A = \{1, 2\}$ and $B = \{10, 11, 12\}$. Write down the set of ordered pairs which corresponds to the function $f: A \times B \to \mathbb{N}$ defined by $f((a, b)) = a^2b$.
- 2. Which of the following rules correspond to functions. If they do, are those functions one-to one?
 - (a) For each banana b, let $\ell(b)$ be the length of b in centimetres (rounded down).
 - (b) For each circle C in the (x, y)-plane whose centre is the origin, let r(C) be the radius of C.
 - (c) For each latitude-longitude pair (x, y), let C((x, y)) be the set of all coffee shops within one kilometer of (x, y).
 - (d) For each set of integers X, let m(X) be the smallest integer in X.
- 3. Let P be the set of all propositional logic sentences. Let $d: P \to \mathbb{R}$ be a function defined by $d(\psi) = \frac{c}{2^n}$ where c is the number of interpretations under which ψ is true and n is the number of different variables in ψ .
 - (a) What is $d(p \wedge q)$? What is $d(p \wedge (q \vee r))$? (where p, q and r are variables)
 - (b) What can we say about ψ if $d(\psi) = 1$?
 - (c) Can you think of a way to think of d as a probability?
 - (d) What do you think the image of d is?
 - (e) Can you prove your answer to (d)?
- 4. (a) Find a function $f: \mathbb{N} \to \mathbb{Z}$ which is one-to-one and has image \mathbb{Z} .
 - (b) Do you think your answer to (a) means that there is the "same number" of natural numbers as integers?
 - (c) Do you think your answer to (a) means that the natural numbers are "the same as the integers, just in disguise"?

Practice ayestions (Tutorial sheet 5)
1) $A = \{1, 2\}$, $B = \{10, 11, 12\}$; $f: A \times B \rightarrow N = \{1, (a,b)\} = a^2b$
{((1,10),10), ((1,11),11), ((1,12),12), ((2,10),40), ((2,11), 44), ((2,12),48)}
2) (a) function, NOT one-to-one
(b) function, one-to-one
(1) function, NOT one-to-one
(d) NOT function
3) P= set of all propositional logic sentence; d: P → IR where d(4)=0,
(a) $d(p \wedge q) = \frac{1}{3^2} = \frac{1}{4}$; $d(p \wedge (q \vee r)) = \frac{3}{3^2} = \frac{3}{4}$
(b) tautology; I vanable and I type of interpretation
(c) variables are chosen TRUE/FALSE at 50/50 independantly at random then its
the probability the statement will be evaluated as TRUE
(d) rationals between 0 to 1 with denominators that's power of 2
(e) idt
4) (a) even = $\frac{n}{2}$; odd = $\frac{-(n+1)}{2}$ (b) 10t (c) no, although both are infinite $\frac{1}{2}$ but one only accepts positive numbers whereas the other one accepts both negative and positive numbers