Homework №13

Author: David Oniani Instructor: Dr. Eric Westlund

April 5, 2019

- 18.2 (a) From the Table A, we get that $z_{\alpha/2}=1.96$. Therefore, the confidence interval is from $\overline{x}-1.96 \times \frac{\sigma}{\sqrt{n}}$ to $\overline{x}+1.96 \times \frac{\sigma}{\sqrt{n}}$ which is from 1.799 to 2.040.
 - (b) As the sample size is large (30 or more), the central limit theorem or CLT promises us that the sampling distribution of the sample mean is approximately normal.
 - (c) The reasons are selection and non-response bias.

 Selection bias as only the completed calls were present in the sample and non-response bias bias as only 5029 calls from 45956 possible calls were completed.
- 18.6 (a) Margin of Error = $1.96 \times \frac{7.5}{\sqrt{100}} = 1.47$.
 - (b) Margin of Error (400 young men) = $1.96 \times \frac{7.5}{\sqrt{400}} = 0.735$. Margin of Error (1600 young women) = $1.96 \times \frac{7.5}{\sqrt{1600}} = 0.3675$.
 - (c) From the formula, it is easy to see that as sample size n increases, the Margin of Error decreases.

1

18.8 (a) State the hypothesis

$$H_0: \mu = 514 \text{ or } H_a: \mu > 514$$

Compute test statistic

$$z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{541 - 514}{\frac{118}{\sqrt{50}}} \approx 1.62$$

Find the P-value

$$P = P(z > 1.62) = P(z < -1.62) = 0.0526$$

State the conclusion

Since $P > \alpha$, the null hyopthesis is accepted and the result is not statistically significant

(b) State the hypothesis

$$H_0: \mu = 514 \text{ or } H_a: \mu > 514$$

Compute test statistic

$$z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{542 - 514}{\frac{118}{\sqrt{50}}} \approx 1.68$$

Find the P-value

$$P = P(z > 1.68) = P(z < -1.68) = 0.0465$$

State the conclusion

Since $P < \alpha$, the null hyopthesis is rejected and the result is statistically significant

18.9 (a) For
$$n = 9$$
, $z = \frac{4.8 - 5.0}{\frac{0.6}{\sqrt{9}}} = -1$ and $P = P(z < -1) = 0.1587$

For
$$n = 9$$
, $z = \frac{4.8 - 5.0}{\frac{0.6}{\sqrt{16}}} = -1.33$ and $P = P(z < -1.33) = 0.0918$

For
$$n = 9$$
, $z = \frac{4.8 - 5.0}{\frac{0.6}{\sqrt{36}}} = -2$ and $P = P(z < -2) = 0.0228$

For
$$n = 64$$
, $z = \frac{4.8 - 5.0}{\frac{0.6}{\sqrt{36}}} = -2.67$ and $P = P(z < -2.67) = 0.0038$

And obviously, we observe that as the sample size increases, the P-value decreases.

(b) For n = 9

For n = 16

For n = 36

For n = 64

18.10 The confidence interval is from
$$4.8 - 1.96 \times \frac{0.6}{\sqrt{n}}$$
 to $4.8 + 1.96 \times \frac{0.6}{\sqrt{n}}$.

Thus, we have:

For n = 9, we have the confidence interval from 4.408 to 5.192.

For n = 16, we have the confidence interval from 4.506 to 5.094.

For n = 16, we have the confidence interval from 4.604 to 4.996.

For n = 16, we have the confidence interval from 4.653 to 4.947.

18.12 Let's use the formula for the sample size which is $n = \left(\frac{z_{\alpha/2} \times \sigma}{E}\right)^2$.

We get that
$$n = \left(\frac{1.96 \times 7.5}{1}\right)^2 \approx 217$$
.

18.13 Let's use the formula for the sample size which is $n = \left(\frac{z_{\alpha/2} \times \sigma}{E}\right)^2$.

We get that
$$n = \left(\frac{1.645 \times 125}{10}\right)^2 \approx 423$$
.

- 18.33 The effect of the outlier is obviously greater when the sample size is small. With large sample sizes, the effect of the outlier is relatively low.
- 18.36 (a) Test of significance does not answer this question. The researchers determine whether the design is proper or not.
 - (b) Test of significance answers this question. A significance test takes into consideration the sampling error, which is indeed the observed effect due to chance.
 - (c) Test of significance does not answer this question. The researchers determine whether the observed effect is important or not.