Operációs rendszerek BSc

8. Gyak.

2022. 03. 30.

Készítette:

Pázmán András Bsc Mérnökinformatikus H2Z4X3

Operációs rendszerek – 8. Gyakorlat

Ütemezési algoritmusok, teljesítmény értékek meghatározása

Feladatok

1. Adott a következő ütemezési feladat, amit a FCFS, SJF és Round Robin (RR:10ms) ütemezési algoritmus alapján határozza meg következő teljesítmény értékeket, metrikákat (különkülön táblázatba): Külön táblázatba számolja a teljesítmény értékét.

FCFS	p1	p2	р3	p4
Érkezés	0	7	11	20
CPU idő	14	8	36	10
Indulás	0	14	22	58
Befejezés	14	22	58	68
Várakozás	0	7	11	38
kör.ford	14	15	47	48
válaszidő	0	7	11	38

Algoritmus:							
CPU kihasználtásg	99.42%						
Körülfordulási idő	31						
Várakozási idők átlaga	14						
Válaszidők átlaga	14						

SJF	p1	p2	р3	p4
Érkezés	0	7	11	20
CPU idő	14	8	36	10
Indulás	0	14	32	22
Befejezés	14	22	68	32
Várakozás	0	7	21	2
Kör.ford.	14	15	57	12

Algoritmus:							
CPU kihasználtásg	99.42%						
Körülfordulási idő	24,5						
Várakozási idők átlaga	7,5						
Válaszidők átlaga	7,5						

RR	p1	p2	р3	p4
Érkezés	0,1	7	11,32	20
CPU idő	14,4	8	36,26	10
Indulás	0	10	22,42	32
Befejezés	10,22	18	32,68	42
Várakozás	8	3	11,1	12
Kör.ford.	22	11	57	22

Algoritmus:							
CPU kihasználtásg	98.69%						
Körülfordulási idő	28						
Várakozási idők átlaga	11						
Válaszidők átlaga	6.5ms						

- 2. Adott négy processz a rendszerbe, melynek a ready sorban a beérkezési sorrendje: A, B, C
- és D. Minden processz USER módban fut és mindegyik processz futásra kész.

Kezdetben mindegyik processz p uspri = 60.

Az A, B, C processz p nice = 0, a D processz p nice = 5.

Mindegyik processz p_cpu = 0, az óraütés 1 indul, a befejezés legyen 301. óraütés-ia.) Határozza meg az ütemezést *RR nélkül 301 óraütésig* és *RR*-nal 201 óraütésig - külön- külön táblázatba!

- **b.**) Minden óraütem esetén határozza meg a processzek sorrendjét óraütés *előtt/után*.
- **c.**) Igazolja a számítással a tanultak alapján. A táblázat javasolt formája *RR/RR nélkül* a következő:

korrekciós faktor kiszámítása KF=(2*KF)/(2*KF+1)

	A foly	amat	B foly	/amat	C foly	/amat	D foly	/amat	mat Átütem	
óraütés	p_pri	p_cpu	p_pri	p_cpu	p_pri	p_cpu	p_cpu		előtte fut	utána fut
kiindulás	60	0	60	0	60	0	60	0		Α
1	60	1	60	0	60	0	60	0	Α	Α
2	60	2	60	0	60	0	60	0	Α	Α
3	60	3	60	0	60	0	60	0	Α	Α
4	60	4	60	0	60	0	60	0	Α	Α
5	60	5	60	0	60	0	60	0	Α	Α
6	60	6	60	0	60	0	60	0	Α	Α
7	60	7	60	0	60	0	60	0	Α	Α
8	60	8	60	0	60	0	60	0	Α	Α
9	60	9	60	0	60	0	60	0	Α	Α
10	60	10	60	0	60	0	60	0	Α	Α
99	60	99	60	0	60	0	60	0	Α	Α
100	97	75	60	0	60	0	70	0	Α	В
101	97	75	60	1	60	0	70	0	В	В
102	97	75	60	2	60	0	70	0	В	В
103	97	75	60	3	60	0	70	0	В	В
104	97	75	60	4	60	0	70	0	В	В
105	97	75	60	5	60	0	70	0	В	В
106	97	75	60	6	60	0	70	0	В	В
107	97	75	60	7	60	0	70	0	В	В
108	97	75	60	8	60	0	70	0	В	В
109	97	75	60	9	60	0	70	0	В	В
110	97	75	60	10	60	0	70	0	В	В
199	97	75	60	99	60	0	70	0	В	В
200	88	56	97	75	60	0	70	0	В	С
201	88	56	97	75	60	1	70	0	С	O
202	88	56	97	75	60	1	70	0	С	С
203	88	56	97	75	60	1	70	0	С	С
204	88	56	97	75	60	1	70	0	С	С
205	88	56	97	75	60	1	70	0	С	С
206	88	56	97	75	60	1	70	0	С	С
207	88	56	97	75	60	1	70	0	С	С
208	88	56	97	75	60	1	70	0	С	С
209	88	56	97	75	60	1	70	0	С	С
210	88	56	97	75	60	1	70	0	С	С
299	88	56	97	75	60	99	70	0	С	С
300	81	42	88	56	97	75	70	0	С	D
301	81	42	88	56	97	75	70	1	D	D

ABC p_pri $60+p_cpu/2 \mid D$ p_pri = $60+p_cpu/2+2*5 \mid p_cpu = (p_cpu_+1)*0.5$ minden 100. óraütésre :p_usrpri = $50+p_cpu/4+2*p_n$ i ce

with RR	A foly	/amat	B foly	/amat	C foly	/amat	D folyamat Át		Átüte	Átütemezés	
óraütés	p_pri	р_сри	p_pri	р_сри	p_pri	р_сри	р_сри		előtte fut	utána fut	
kiindulás	60	0	60	0	60	0	60	0		Α	
1	60	1	60	0	60	0	60	0	Α	Α	
2	60	2	60	0	60	0	60	0	Α	Α	
3	60	3	60	0	60	0	60	0	Α	Α	
4	60	4	60	0	60	0	60	0	Α	Α	
5	60	5	60	0	60	0	60	0	Α	Α	
6	60	6	60	0	60	0	60	0	Α	Α	
7	60	7	60	0	60	0	60	0	Α	Α	
8	60	8	60	0	60	0	60	0	Α	Α	
9	60	9	60	0	60	0	60	0	Α	Α	
10	60	10	60	0	60	0	60	0	Α	Α	
50	60	20	60	10	60	10	60	10	Α	В	
90	60	30	60	20	60	20	60	20	Α	В	
99	60	30	60	29	60	20	60	20	В	В	
100	71	22	71	22	67	15	77	15	В	С	
101	71	22	71	22	67	16	77	15	С	С	
102	71	22	71	22	67	16	77	15	С	С	
103	71	22	71	22	67	16	77	15	С	С	
104	71	22	71	22	67	16	77	15	С	С	
105	71	22	71	22	67	16	77	15	С	С	
106	71	22	71	22	67	16	77	15	С	С	
107	71	22	71	22	67	16	77	15	С	С	
108	71	22	71	22	67	16	77	15	С	С	
109	71	22	71	22	67	24	77	15	С	С	
199	71	22	71	22	67	114	77	15	С	С	
200	68	16	68	16	103	86	75	11	С	Α	
201	68	17	68	16	103	86	75	11	Α	Α	

p_usrpri= P_USER + p_cpu/2+2*p_nice p_cpu = p_cpu * KF öregítéskor