Department of Mathematics Indian Institute of Technology Guwahati

MA572: Lab Assignment 3

Date of Submission: 22/08/2024 by 11:59 PM

1. The equation $(x - 1.1)^2(x + 1) = 0$ has a double root at $\xi = 1.1$. Write a program to compute an approximate root to ξ by using the standard Newton's formula as well as the modified Newton's formula. Determine the order of convergence numerically for both the cases. Compute the order of convergence with the formula

$$p = \frac{\log_{10} \left(\frac{|e_{n+2}|}{|e_{n+1}|} \right)}{\log_{10} \left(\frac{|e_{n+1}|}{|e_{n}|} \right)}, \quad n = 0, 1, 2, \dots$$

where $e_n = \xi - x_n$. Take $TOL = 10^{-3}$ and $x_0 = 1$.

2. Write a MATLAB program to compute an approximate solution of the following nonlinear system

$$f_1(x_1, x_2) := \sin(x_1 x_2) + x_1 - x_2 = 0,$$

 $f_2(x_1, x_2) := x_2 \cos(x_1 x_2) + 1 = 0,$

using Newton's method. Take the starting value $[x_1^0, x_2^0] = [1, 2]$ and use stopping criteria for accepting the solution is $TOL = 10^{-3}$. Print the solutions at each iteration step as per the following format.

Iteration	x_1	x_2	$f_1(x_1, x_2)$	$f_2(x_1, x_2)$
1				
2				
:				