# **Stan Functions Reference**

# Stan Development Team

Version 2.18

Friday 13th July, 2018





# Contents

| Preface |                                       | v   |
|---------|---------------------------------------|-----|
| I F     | Built-In Functions                    | 8   |
| 1.      | Void Functions                        | 9   |
| 2.      | Integer-Valued Basic Functions        | 11  |
| 3.      | Real-Valued Basic Functions           | 14  |
| 4.      | Array Operations                      | 39  |
| 5.      | Matrix Operations                     | 46  |
| 6.      | Sparse Matrix Operations              | 68  |
| 7.      | Mixed Operations                      | 71  |
| 8.      | Compound Arithmetic and Assignment    | 74  |
| 9.      | Higher-Order Functions                | 78  |
| П       | Discrete Distributions                | 85  |
| 10.     | Conventions for Probability Functions | 86  |
| 11.     | Binary Distributions                  | 92  |
| 12.     | Bounded Discrete Distributions        | 94  |
| 13.     | Unbounded Discrete Distributions      | 101 |
| 14.     | Multivariate Discrete Distributions   | 106 |
| III     | Continuous Distributions              | 107 |
| 15.     | Unbounded Continuous Distributions    | 108 |
| 16.     | Positive Continuous Distributions     | 118 |
| 17.     | Non-negative Continuous Distributions | 127 |
| 18.     | Positive Lower-Bounded Probabilities  | 129 |
| 19.     | Continuous Distributions on [0, 1]    | 131 |
| 20.     | Circular Distributions                | 133 |
| 21.     | Bounded Continuous Probabilities      | 135 |

| 22.          | Distributions over Unbounded Vectors | 136 |
|--------------|--------------------------------------|-----|
| 23.          | Simplex Distributions                | 144 |
| 24.          | Correlation Matrix Distributions     | 146 |
| 25.          | Covariance Matrix Distributions      | 149 |
| A.           | Mathematical Functions               | 151 |
|              |                                      |     |
| Appendices   |                                      | 151 |
| Bibliography |                                      | 153 |
|              |                                      |     |
| References   |                                      | 153 |
|              |                                      |     |
| Index        |                                      | 154 |
| Index        |                                      | 155 |

# **About**

This is the reference for the functions defined in the Stan math library and available in the Stan programming language.

The Stan project comprises a domain-specific language for probabilistic programming, a differentiable mathematics and probability library, algorithms for Bayesian posterior inference and posterior analysis, along with interfaces and analysis tools in all of the popular data analysis languages.

### Interfaces and Platforms

Stan runs under Windows, Mac OS X, and Linux.

Stan uses a domain-specific programming language that is portable across data anlsysi languages. Stan has interfaces for R, Python, Julia, MATLAB, Mathematica, Stata, and the command line, as well as an alternative language interface in Scala. See the web site (link below) for links and getting started instructions.

### Web Site

The official resource for all things related to Stan is the web site:

The web site links to all of the packages comprising Stan for both users and developers. This is the place to get started with Stan. Find the interface in the language you want to use and follow the download, installation, and getting started instructions.

# **GitHub Organization**

Stan's source code and much of the developer process is hosted on GitHub. Stan's organization is:

```
http://https://github.com/stan-dev
```

Each package has its own repository within the stan-dev organization. The web site is also hosted and managed through GitHub. This is the place to peruse the source code, request features, and report bugs. Much of the ongoing design discussion is hosted on the GitHub Wiki.

### **Forums**

Stan hosts message boards for discussing all things related to Stan.

```
http://discourse.mc-stan.org
```

This is the place to ask questions about Stan, including modeling, programming, and installation.

# Licensing

The core C++ code underlying Stan, including the math library, language, and inference algorithms, is licensed under the BSD 3-clause licensed as detailed in each repository and on the web site along with the distribution links.

# Acknowledgements

The Stan project could not exist without the generous grant funding of many grant agencies to the participants in the project. For more details of direct funding for the project, see the web site and project pages of the Stan developers.

The Stan project could also not exist without the generous contributions of its users in reporting and in many cases fixing bugs in the code and its documentation. We used to try to list all of those who contributed patches and bug reports for the manual here, but when that number passed into the hundreds, it became too difficult to manage reliably. Instead, we will defer to GitHub (link above), where all contributions to the project are made and tracked.

Finally, we should all thank the Stan developers, without whom this project could not exist. We used to try and list the developers here, but like the bug reporters, once the list grew into the dozens, it became difficult to track. Instead, we will defer to the Stan web page and GitHub itself for a list of core developers and all developer contributions respectively.

# Part I Built-In Functions

# 1. Void Functions

Stan does not technically support functions that do not return values. It does support two types of statements that look like functions, one for printing and one for rejecting outputs. Documentation on these functions is included here for completeness. The special keyword void is used for the return type of void functions, because they behave like variadic functions with void return type, even though they are special kinds of statements.

Although print and reject appear to have the syntax of functions, they are actually special kinds of statements with slightly different form and behavior than other functions. First, they are the constructs that allow a variable number of arguments. Second, they are the the only constructs to accept string literals (e.g., "hello world") as arguments. Third, they have no effect on the log density function and operate solely through side effects.

# 1.1. Print "Function"

Printing has no effect on the model's log probability function. Its sole purpose is the side effect (i.e., an effect not represented in a return value) of arguments being printed to whatever the standard output stream is connected to (e.g., the terminal in command-line Stan or the R console in RStan).

# void print(T1 x1,..., TN xN)

Print the values denoted by the arguments x1 through xN on the output message stream. There are no spaces between items in the print, but a line feed (LF; Unicode U+000A; C++ literal '\n') is inserted at the end of the printed line. The types T1 through TN can be any of Stan's built-in numerical types or double quoted strings of ASCII characters.

# 1.2. Reject "Function"

The reject statement has the same syntax as the print statement, accepting an arbitrary number of arguments of any type (including string literals). The effect of executing a reject statement is to throw an exception internally that terminates the current iteration with a rejection (the behavior of which will depend on the algorithmic context in which it occurs).

# void reject(T1 x1,..., TN xN)

Reject the current iteration and print the values denoted by the arguments x1 through xN on the output message stream. There are no spaces between items

in the print, but a line feed (LF; Unicode U+000A; C++ literal '\n') is inserted at the end of the printed line. The types T1 through TN can be any of Stan's built-in numerical types or double quoted strings of ASCII characters.

# 2. Integer-Valued Basic Functions

This chapter describes Stan's built-in function that take various types of arguments and return results of type integer.

# 2.1. Integer-Valued Arithmetic Operators

Stan's arithmetic is based on standard double-precision C++ integer and floating-point arithmetic. If the arguments to an arithmetic operator are both integers, as in 2 + 2, integer arithmetic is used. If one argument is an integer and the other a floating-point value, as in 2.0 + 2 and 2 + 2.0, then the integer is promoted to a floating point value and floating-point arithmetic is used.

Integer arithmetic behaves slightly differently than floating point arithmetic. The first difference is how overflow is treated. If the sum or product of two integers overflows the maximum integer representable, the result is an undesirable wraparound behavior at the bit level. If the integers were first promoted to real numbers, they would not overflow a floating-point representation. There are no extra checks in Stan to flag overflows, so it is up to the user to make sure it does not occur.

Secondly, because the set of integers is not closed under division and there is no special infinite value for integers, integer division implicitly rounds the result. If both arguments are positive, the result is rounded down. For example, 1 / 2 evaluates to 0 and 5 / 3 evaluates to 1.

If one of the integer arguments to division is negative, the latest C++ specification (C++11), requires rounding toward zero. This would have 1 / 2 and -1 / 2 evaluate to 0, -7 / 2 evaluate to -3, and 7 / 2 evaluate to 3. Before the C++11 specification, the behavior was platform dependent, allowing rounding up or down. All compilers recent enough to be able to deal with Stan's templating should follow the C++11 specification, but it may be worth testing if you are not sure and plan to use integer division with negative values.

Unlike floating point division, where 1.0 / 0.0 produces the special positive infinite value, integer division by zero, as in 1 / 0, has undefined behavior in the C++ standard. For example, the clang++ compiler on Mac OS X returns 3764, whereas the g++ compiler throws an exception and aborts the program with a warning. As with overflow, it is up to the user to make sure integer divide-by-zero does not occur.

# **Binary Infix Operators**

Operators are described using the C++ syntax. For instance, the binary operator of addition, written X + Y, would have the Stan signature int operator+(int,int) indicating it takes two real arguments and returns a real value. As noted previously,

the value of integer division is platform-dependent when rounding is platform dependent before C++11; the descriptions below provide the C++11 definition.

The sum of the addends *x* and *y* 

$$operator+(x,y)=(x+y)$$

int **operator**-(int x, int y)

The difference between the minuend *x* and subtrahend *y* 

$$operator-(x, y) = (x - y)$$

int **operator**\*(int x, int y)

The product of the factors *x* and *y* 

$$operator*(x, y) = (x \times y)$$

int **operator/**(int x, int y)

The integer quotient of the dividend x and divisor y

$$\mathsf{operator}/(x,y) = \begin{cases} \lfloor x/y \rfloor & \text{if } x/y \ge 0 \\ -\lfloor \mathsf{floor}(-x/y) \rfloor & \text{if } x/y < 0. \end{cases}$$

int operator%(int x, int y)

x modulo y, which is the positive remainder after dividing x by y. If both x and y are non-negative, so is the result; otherwise, the sign of the result is platform dependent.

operator
$$%(x,y) = x \mod y = x - y * \lfloor x/y \rfloor$$

# **Unary Prefix Operators**

int operator-(int x)

The negation of the subtrahend x

$$operator-(x) = -x$$

int **operator**+(int x)

This is a no-op.

$$operator+(x) = x$$

# 2.2. Absolute Functions

R abs(T x)

Returns the (elementwise) absolute value of x,

$$abs(x) = |x|$$

for any argument type T; see Section 3.1 for details including return type R.

int int\_step(int x)
int int\_step(real x)

Returns the step function of *x* as an integer,

$$int\_step(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x \le 0 \text{orxis} Nan \end{cases}$$

Warning: int\_step(0) and int\_step(NaN) return 0 whereas step(0) and step(NaN) return 1.

See the warning in Section 3.7 about the dangers of step functions applied to anything other than data.

### 2.3. Bound Functions

int min(int x, int y)

Returns the minimum of x and y.

$$\min(x, y) = \begin{cases} x & \text{if } x < y \\ y & \text{otherwise} \end{cases}$$

int max(int x, int y)

Returns the maximum of x and y.

$$\max(x, y) = \begin{cases} x & \text{if } x > y \\ y & \text{otherwise} \end{cases}$$

# 3. Real-Valued Basic Functions

This chapter describes built-in functions that take zero or more real or integer arguments and return real values.

### 3.1. Vectorization of Real-Valued Functions

Although listed in this chapter, many of Stan's built-in functions are vectorized so that they may be applied to any argument type. The vectorized form of these functions is not any faster than writing an explicit loop that iterates over the elements applying the function—it's just easier to read and write and less error prone.

### **Unary Function Vectorization**

Many of Stan's unary functions can be applied to any argument type. For example, the exponential function, exp, can be applied to real arguments or arrays of real arguments. Other than for integer arguments, the result type is the same as the argument type, including dimensionality and size. Integer arguments are first promoted to real values, but the result will still have the same dimensionality and size as the argument.

### Real and real array arguments

When applied to a simple real value, the result is a real value. When applied to arrays, vectorized functions like exp() are defined elementwise. For example,

```
// declare some variables for arguments
real x0;
real x1[5];
real x2[4, 7];
...
// declare some variables for results
real y0;
real y1[5];
real y2[4, 7];
...
// calculate and assign results
y0 = exp(x0);
y1 = exp(x1);
y2 = exp(x2);
```

When exp is applied to an array, it applies elementwise. For example, the statement above,

```
y2 = exp(x2);
```

produces the same result for y2 as the explicit loop

```
for (i in 1:4)
  for (j in 1:7)
    y2[i, j] = exp(x2[i, j]);
```

Vector and matrix arguments

Vectorized functions also apply elementwise to vectors and matrices. For example,

```
vector[5] xv;
row_vector[7] xrv;
matrix[10, 20] xm;
...
vector[5] yv;
row_vector[7] yrv;
matrix[10, 20] ym;

yv = exp(xv);
yrv = exp(xrv);
ym = exp(xm);

Arrays of vectors and matrices work the same way. For example,
matrix[17, 93] u[12];
...
matrix[17, 93] z[12];
...
z = exp(u);
```

After this has been executed, z[i, j, k] will be equal to exp(u[i, j, k]).

# Integer and integer array arguments

Integer arguments are promoted to real values in vectorized unary functions. Thus if n is of type int, exp(n) is of type real. Arrays work the same way, so that if n2 is a one dimensional array of integers, then exp(n2) will be a one-dimensional array of reals with the same number of elements as n2. For example,

```
int n1[23];
...
real z1[23];
...
z1 = exp(n1);
```

It would be illegal to try to assign exp(n1) to an array of integers; the return type is a real array.

### 3.2. Mathematical Constants

Constants are represented as functions with no arguments and must be called as such. For instance, the mathematical constant  $\pi$  must be written in a Stan program as pi().

### real pi()

 $\pi$ , the ratio of a circle's circumference to its diameter

### real **e**()

e, the base of the natural logarithm

### real sqrt2()

The square root of 2

### real log2()

The natural logarithm of 2

# real **log10**()

The natural logarithm of 10

# 3.3. Special Values

# real not\_a\_number()

Not-a-number, a special non-finite real value returned to signal an error

# real positive\_infinity()

Positive infinity, a special non-finite real value larger than all finite numbers

# real negative\_infinity()

Negative infinity, a special non-finite real value smaller than all finite numbers

# real machine\_precision()

The smallest number x such that  $(x+1) \neq 1$  in floating-point arithmetic on the current hardware platform

# 3.4. Log Probability Function

The basic purpose of a Stan program is to compute a log probability function and its derivatives. The log probability function in a Stan model outputs the log density on the unconstrained scale. A log probability accumulator starts at zero and is then incremented in various ways by a Stan program. The variables are first transformed from unconstrained to constrained, and the log Jacobian determinant added to the log probability accumulator. Then the model block is executed on the constrained parameters, with each sampling statement (~) and log probability increment statement (increment\_log\_prob) adding to the accumulator. At the end of the model block execution, the value of the log probability accumulator is the log probability value returned by the Stan program.

Stan provides a special built-in function target() that takes no arguments and returns the current value of the log probability accumulator.<sup>1</sup>

This function is primarily useful for debugging purposes, where for instance, it may be used with a print statement to display the log probability accumulator at various stages of execution to see where it becomes ill defined.

### real target()

Returns the current value of the log probability accumulator.

### real get\_lp()

Returns the current value of the log probability accumulator; **deprecated**: — use target() instead).

Both target and the deprecated get\_lp act like other functions ending in \_lp, meaning that they may only may only be used in the model block.

# 3.5. Logical Functions

Like C++, BUGS, and R, Stan uses 0 to encode false, and 1 to encode true. Stan supports the usual boolean comparison operations and boolean operators. These all have the same syntax and precedence as in C++; for the full list of operators and precedences, see the reference manual.

# **Comparison Operators**

All comparison operators return boolean values, either 0 or 1. Each operator has two signatures, one for integer comparisons and one for floating-point comparisons.

<sup>&</sup>lt;sup>1</sup>This function used to be called get\_lp(), but that name has been deprecated; using it will print a warning. The function get\_lp() will be removed in a future release.

Comparing an integer and real value is carried out by first promoting the integer value.

int operator<(int x, int y)
int operator<(real x, real y)</pre>

Returns 1 if *x* is less than *y* and 0 otherwise.

$$operator < (x, y) = \begin{cases} 1 & \text{if } x < y \\ 0 & \text{otherwise} \end{cases}$$

int operator<=(int x, int y)
int operator<=(real x, real y)</pre>

Returns 1 if *x* is less than or equal *y* and 0 otherwise.

operator<=
$$(x, y) = \begin{cases} 1 & \text{if } x \le y \\ 0 & \text{otherwise} \end{cases}$$

int operator>(int x, int y)
int operator>(real x, real y)

Returns 1 if *x* is greater than *y* and 0 otherwise.

$$operator> = \begin{cases} 1 & if \ x > y \\ 0 & otherwise \end{cases}$$

int operator>=(int x, int y)
int operator>=(real x, real y)

Returns 1 if *x* is greater than or equal to *y* and 0 otherwise.

operator>= 
$$\begin{cases} 1 & \text{if } x \ge y \\ 0 & \text{otherwise} \end{cases}$$

int operator==(int x, int y)
int operator==(real x, real y)

Returns 1 if *x* is equal to *y* and 0 otherwise.

$$operator == (x, y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$$

Returns 1 if *x* is not equal to *y* and 0 otherwise.

operator!=
$$(x, y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{otherwise} \end{cases}$$

### **Boolean Operators**

Boolean operators return either 0 for false or 1 for true. Inputs may be any real or integer values, with non-zero values being treated as true and zero values treated as false. These operators have the usual precedences, with negation (not) binding the most tightly, conjunction the next and disjunction the weakest; all of the operators bind more tightly than the comparisons. Thus an expression such as !a && b is interpreted as (!a) && b, and  $a < b \mid \mid c >= d$  && e != f as (a < b) || (((c >= d) && (e != f))).

int operator!(int x)
int operator!(real x)

Returns 1 if x is zero and 0 otherwise.

operator!(x) = 
$$\begin{cases} 0 & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$$

int operator&&(int x, int y)
int operator&&(real x, real y)

Returns 1 if x is unequal to 0 and y is unequal to 0.

operator&&
$$(x, y) = \begin{cases} 1 & \text{if } x \neq 0 \text{ and } y \neq 0 \\ 0 & \text{otherwise} \end{cases}$$

int operator||(int x, int y)
int operator||(real x, real y)

Returns 1 if x is unequal to 0 or y is unequal to 0.

operator 
$$| (x, y) = \begin{cases} 1 & \text{if } x \neq 0 \text{ or } y \neq 0 \\ 0 & \text{otherwise} \end{cases}$$

### Boolean Operator Short Circuiting

Like in C++, the boolean operators && and || and are implemented to short circuit directly to a return value after evaluating the first argument if it is sufficient to resolve the result. In evaluating a || b, if a evaluates to a value other than zero, the expression returns the value 1 without evaluating the expression b. Similarly, evaluating a && b first evaluates a, and if the result is zero, returns 0 without evaluating b.

### **Logical Functions**

The logical functions introduce conditional behavior functionally and are primarily provided for compatibility with BUGS and JAGS.

### real **step**(real *x*)

Returns 1 if *x* is positive and 0 otherwise.

$$step(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{otherwise} \end{cases}$$

*Warning:* int\_step(0) and int\_step(NaN) return 0 whereas step(0) and step(NaN) return 1.

The step function is often used in BUGS to perform conditional operations. For instance, step(a-b) evaluates to 1 if a is greater than b and evaluates to 0 otherwise. step is a step-like functions; see the warning in Section 3.7 applied to expressions dependent on parameters.

Returns 1 if x is infinite (positive or negative) and 0 otherwise.

# int **is\_nan**(real x)

Returns 1 if x is NaN and 0 otherwise.

Care must be taken because both of these indicator functions are step-like and thus can cause discontinuities in gradients when applied to parameters; see Section 3.7 for details.

# 3.6. Real-Valued Arithmetic Operators

The arithmetic operators are presented using C++ notation. For instance operator+(x,y) refers to the binary addition operator and operator-(x) to the unary negation operator. In Stan programs, these are written using the usual infix and prefix notations as x + y and -x, respectively.

### **Binary Infix Operators**

Returns the sum of *x* and *y*.

$$(x + y) = operator + (x, y) = x + y$$

real **operator**-(real 
$$x$$
, real  $y$ )

Returns the difference between *x* and *y*.

$$(x - y) = \text{operator-}(x, y) = x - y$$

real **operator**\*(real x, real y)

Returns the product of x and y.

$$(x * y) = operator^*(x, y) = xy$$

real **operator/**(real x, real y)

Returns the quotient of x and y.

$$(x/y) = \text{operator}/(x, y) = \frac{x}{y}$$

real **operator** $^{\wedge}$ (real x, real y)

Return *x* raised to the power of *y*.

$$(x \wedge v) = \operatorname{operator}^{\wedge}(x, v) = x^{y}$$

# **Unary Prefix Operators**

real **operator**-(real x)

Returns the negation of the subtrahend x.

$$operator-(x) = (-x)$$

Returns the value of *x*.

$$operator+(x) = x$$

# 3.7. Step-like Functions

**Warning:** These functions can seriously hinder sampling and optimization efficiency for gradient-based methods (e.g., NUTS, HMC, BFGS) if applied to parameters (including transformed parameters and local variables in the transformed parameters or model block). The problem is that they break gradients due to discontinuities coupled with zero gradients elsewhere. They do not hinder sampling when used in the data, transformed data, or generated quantities blocks.

### **Absolute Value Functions**

### R fabs(T x)

Returns the (elementwise) absolute value of x,

$$abs(x) = |x|$$

See the warning at start of Section 3.7 for application to parameters. for any argument type T; see Section 3.1 for details including return type R.

# real abs(real x)

Returns the absolute value of x, defined by

$$abs(x) = |x|$$

See the warning at start of Section 3.7 for application to parameters.

# int abs(int x)

Returns the absolute value of x, defined by

$$abs(x) = |x|$$

# real fdim(real x, real y)

Returns the positive difference between x and y, which is x - y if x is greater than y and 0 otherwise; see warning at start of Section 3.7.

$$fdim(x, y) = \begin{cases} x - y & \text{if } x \ge y \\ 0 & \text{otherwise} \end{cases}$$

### **Bounds Functions**

real fmin(real x, real y)

Returns the minimum of *x* and *y*; see warning at start of Section 3.7.

$$fmin(x, y) = \begin{cases} x & \text{if } x \le y \\ y & \text{otherwise} \end{cases}$$

real fmax(real x, real y)

Returns the maximum of x and y; see warning at start of Section 3.7.

$$fmax(x, y) = \begin{cases} x & \text{if } x \ge y \\ y & \text{otherwise} \end{cases}$$

### **Arithmetic Functions**

real **fmod**(real x, real y)

Returns the real value remainder after dividing x by y; see warning at start of Section 3.7.

$$\mathsf{fmod}(x,y) = x - \left| \frac{x}{y} \right| y$$

The operator |u| is the floor operation; see below.

# **Rounding Functions**

*Warning:* Rounding functions convert real values to integers. Because the output is an integer, any gradient information resulting from functions applied to the integer is not passed to the real value it was derived from. With MCMC sampling using HMC or NUTS, the MCMC acceptance procedure will correct for any error due to poor gradient calculations, but the result is likely to be reduced acceptance probabilities and less efficient sampling.

The rounding functions cannot be used as indices to arrays because they return real values. Stan may introduce integer-valued versions of these in the future, but as of now, there is no good workaround.

R floor(T x)

Returns the (elementwise) floor of x, which is the largest integer less than or equal to x, converted to a real value; see warning at start of Section 3.7,

$$floor(x) = \lfloor x \rfloor$$

for any argument type T; see Section 3.1 for details including return type R.

### R ceil(T x)

Returns the (elementwise) ceiling of x, which is the smallest integer greater than or equal to x, converted to a real value; see warning at start of Section 3.7,

$$ceil(x) = [x]$$

for any argument type T; see Section 3.1 for details including return type R.

### R round(T x)

Returns the (elementwise) nearest integer to x, converted to a real value; see warning at start of Section 3.7,

$$round(x) = \begin{cases} \lceil x \rceil & \text{if } x - \lfloor x \rfloor \ge 0.5 \\ \lfloor x \rfloor & \text{otherwise} \end{cases}$$

for any argument type T; see Section 3.1 for details including return type R.

### R trunc(T x)

Returns the (elementwise) integer nearest to but no larger in magnitude than *x*, converted to a double value; see warning at start of Section 3.7,

$$trunc(x) = \lfloor x \rfloor$$

Note that this function is redundant with floor. for any argument type T; see Section 3.1 for details including return type R.

# 3.8. Power and Logarithm Functions

### R sqrt(T x)

Returns the (elementwise) square root of x,

$$\mathsf{sqrt}(x) = \begin{cases} \sqrt{x} & \text{if } x \ge 0\\ \text{NaN} & \text{otherwise} \end{cases}$$

for any argument type T; see Section 3.1 for details including return type R.

### R cbrt(T x)

Returns the (elementwise) cube root of x,

$$cbrt(x) = \sqrt[3]{x}$$

### R square(T x)

Returns the (elementwise) square of x,

$$square(x) = x^2$$

for any argument type T; see Section 3.1 for details including return type R.

### $R \exp(T x)$

Returns the (elementwise) natural exponential of x,

$$exp(x) = exp(x) = e^x$$

for any argument type T; see Section 3.1 for details including return type R.

### R exp2(T x)

Returns the (elementwise) base-2 exponential of x,

$$exp2(x) = 2^x$$

for any argument type T; see Section 3.1 for details including return type R.

### $R \log(T x)$

Returns the (elementwise) natural logarithm of x,

$$\log(x) = \log x = \begin{cases} \log_e(x) & \text{if } x \ge 0 \\ \text{NaN} & \text{otherwise} \end{cases}$$

for any argument type T; see Section 3.1 for details including return type R.

# R log2(T x)

Returns the (elementwise) base-2 logarithm of x,

$$\log_2(x) = \begin{cases} \log_2(x) & \text{if } x \ge 0\\ \text{NaN} & \text{otherwise} \end{cases}$$

for any argument type T; see Section 3.1 for details including return type R.

# R log10(T x)

Returns the (elementwise) base-10 logarithm of x,

$$\log 10(x) = \begin{cases} \log_{10}(x) & \text{if } x \ge 0 \\ \text{NaN} & \text{otherwise} \end{cases}$$

real pow(real x, real y)

Returns *x* raised to the power of *y*.

$$pow(x, y) = x^y$$

R inv(T x)

Returns the (elementwise) inverse of x,

$$\mathsf{inv}(x) = \frac{1}{x}$$

for any argument type T; see Section 3.1 for details including return type R.

R inv\_sqrt(T x)

Returns the (elementwise) inverse of the square root of x,

$$inv\_sqrt(x) = \begin{cases} \frac{1}{\sqrt{x}} & \text{if } x \ge 0\\ \text{NaN} & \text{otherwise} \end{cases}$$

for any argument type T; see Section 3.1 for details including return type R.

R inv\_square(T x)

Returns the (elementwise) inverse of the square of x,

$$inv\_square(x) = \frac{1}{x^2}$$

for any argument type T; see Section 3.1 for details including return type R.

# 3.9. Trigonometric Functions

real hypot(real x, real y)

Returns the length of the hypotenuse of a right triangle with sides of length *x* and *y*.

$$\mathsf{hypot}(x,y) = \begin{cases} \sqrt{x^2 + y^2} & \text{if } x, y \ge 0\\ \mathrm{NaN} & \text{otherwise} \end{cases}$$

R cos(T x)

Returns the (elementwise) cosine of the angle *x* (in radians),

$$cos(x) = cos(x)$$

### $R \sin(T x)$

Returns the (elementwise) sine of the angle x (in radians),

$$sin(x) = sin(x)$$

for any argument type T; see Section 3.1 for details including return type R.

### R tan(T x)

Returns the (elementwise) tangent of the angle *x* (in radians),

$$tan(x) = tan(x)$$

for any argument type T; see Section 3.1 for details including return type R.

### R acos(T x)

Returns the (elementwise) principal arc (inverse) cosine (in radians) of x,

$$acos(x) = \begin{cases} arccos(x) & \text{if } -1 \le x \le 1\\ NaN & \text{otherwise} \end{cases}$$

for any argument type T; see Section 3.1 for details including return type R.

### R asin(T x)

Returns the (elementwise) principal arc (inverse) sine (in radians) of x,

$$asin(x) = \begin{cases} arcsin(x) & if -1 \le x \le 1 \\ NaN & otherwise \end{cases}$$

for any argument type T; see Section 3.1 for details including return type R.

### R atan(T x)

Returns the (elementwise) principal arc (inverse) tangent (in radians) of x, with values from  $-\pi$  to  $\pi$ ,

$$atan(x) = arctan(x)$$

for any argument type T; see Section 3.1 for details including return type R.

# real atan2(real y, real x)

Returns the principal arc (inverse) tangent (in radians) of y divided by x,

$$atan2(y,x) = \arctan\left(\frac{y}{x}\right)$$

# 3.10. Hyperbolic Trigonometric Functions

### $R \cosh(T x)$

Returns the (elementwise) hyperbolic cosine of x (in radians),

$$cosh(x) = cosh(x)$$

for any argument type T; see Section 3.1 for details including return type R.

### R sinh(T x)

Returns the (elementwise) hyperbolic sine of x (in radians),

$$sinh(x) = sinh(x)$$

for any argument type T; see Section 3.1 for details including return type R.

### R tanh(T x)

Returns the (elementwise) hyperbolic tangent of x (in radians),

$$tanh(x) = tanh(x)$$

for any argument type T; see Section 3.1 for details including return type R.

### R acosh(T x)

Returns the (elementwise) inverse hyperbolic cosine (in radians),

$$acosh(x) = \begin{cases} cosh^{-1}(x) & \text{if } x \ge 1\\ NaN & \text{otherwise} \end{cases}$$

for any argument type T; see Section 3.1 for details including return type R.

# R asinh(T x)

Returns the (elementwise) inverse hyperbolic cosine (in radians),

$$asinh(x) = sinh^{-1}(x)$$

for any argument type T; see Section 3.1 for details including return type R.

# R atanh(T x)

Returns the (elementwise) inverse hyperbolic tangent (in radians) of x,

$$\mathsf{atanh}(x) = \begin{cases} \mathsf{tanh}^{-1}(x) & \text{if } -1 \le x \le 1 \\ \mathsf{NaN} & \text{otherwise} \end{cases}$$

### 3.11. Link Functions

The following functions are commonly used as link functions in generalized linear models. The function  $\Phi$  is also commonly used as a link function (see Section 3.12).

### R logit(T x)

Returns the (elementwise) log odds, or logit, function applied to x,

$$\mathsf{logit}(x) = \begin{cases} \log \frac{x}{1-x} & \text{if } 0 \le x \le 1\\ \mathrm{NaN} & \text{otherwise} \end{cases}$$

for any argument type T; see Section 3.1 for details including return type R.

# R inv\_logit(T x)

Returns the (elementwise) logistic sigmoid function applied to x,

$$inv\_logit(x) = \frac{1}{1 + exp(-x)}$$

for any argument type T; see Section 3.1 for details including return type R.

### R $inv_cloglog(T x)$

Returns the (elementwise) inverse of the complementary log-log function applied to x,

$$inv\_cloglog(x) = 1 - exp(-exp(x))$$

for any argument type T; see Section 3.1 for details including return type R.

# 3.12. Probability-Related Functions

### **Normal Cumulative Distribution Functions**

The error function erf is related to the standard normal cumulative distribution function  $\Phi$  by scaling. See Section 15.1 for the general normal cumulative distribution function (and its complement).

# $R \ \mathbf{erf}(T \ x)$

Returns the (elementwise) error function, also known as the Gauss error function, of x,

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

### $R \ erfc(T \ x)$

Returns the (elementwise) complementary error function of x,

$$\mathsf{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^2} dt$$

for any argument type T; see Section 3.1 for details including return type R.

### R **Phi**(T x)

Returns the (elementwise) standard normal cumulative distribution function of x,

$$\mathsf{Phi}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$

for any argument type T; see Section 3.1 for details including return type R.

### R $inv_Phi(T x)$

Returns the (elementwise) standard normal inverse cumulative distribution function of p, otherwise known as the quantile function,

$$Phi(inv_Phi(p)) = p$$

for any argument type T; see Section 3.1 for details including return type R.

# R Phi\_approx(T x)

Returns the (elementwise) fast approximation of the unit (may replace Phi for probit regression with maximum absolute error of 0.00014, see (Bowling et al., 2009) for details),

$$Phi_approx(x) = logit^{-1}(0.07056x^3 + 1.5976x)$$

for any argument type T; see Section 3.1 for details including return type R.

# Other Probability-Related Functions

# real **binary\_log\_loss**(int y, real y\_hat)

Returns the log loss function for for predicting  $\hat{y} \in [0,1]$  for boolean outcome  $y \in \{0,1\}$ .

binary\_log\_loss(
$$y, \hat{y}$$
) = 
$$\begin{cases} -\log \hat{y} & \text{if } y = 0 \\ -\log(1-\hat{y}) & \text{otherwise} \end{cases}$$

### real **owens\_t**(real *h*, real *a*)

Returns the Owen's T function for the probability of the event X > h and 0 < Y < aX where X and Y are independent standard normal random variables.

owens\_t(h, a) = 
$$\frac{1}{2\pi} \int_0^a \frac{\exp(-\frac{1}{2}h^2(1+x^2))}{1+x^2} dx$$

# 3.13. Combinatorial Functions

### real inc\_beta(real alpha, real beta, real x)

Returns the incomplete beta function up to x applied to a7pha and beta. See Section A.2 for a definition.

### real lbeta(real alpha, real beta)

Returns the natural logarithm of the beta function applied to a1pha and beta. The beta function,  $B(\alpha, \beta)$ , computes the normalizing constant for the beta distribution, and is defined for  $\alpha > 0$  and  $\beta > 0$ .

$$\mathsf{lbeta}(\alpha, \beta) = \log \Gamma(a) + \log \Gamma(b) - \log \Gamma(a+b)$$

See Section A.1 for definition of  $B(\alpha, \beta)$ .

# R tgamma(T x)

Returns the (elementwise) gamma function applied to x. The gamma function is the generalization of the factorial function to continuous variables, defined so that  $\Gamma(n+1)=n!$ . See Section A.3 for a full definition of  $\Gamma(x)$ . The function is defined for positive numbers and non-integral negative numbers,

$$tgamma(x) = \begin{cases} \Gamma(x) & \text{if } x \notin \{\dots, -3, -2, -1, 0\} \\ \text{error} & \text{otherwise} \end{cases}$$

See Section A.3 for a definition of  $\Gamma(x)$ . for any argument type T; see Section 3.1 for details including return type R.

### R lgamma(T x)

Returns the (elementwise) natural logarithm of the gamma function applied to  $x_n$ 

$$\mathsf{Igamma}(x) = \begin{cases} \log \Gamma(x) & \text{if } x \notin \{\dots, -3, -2, -1, 0\} \\ \text{error} & \text{otherwise} \end{cases}$$

### R digamma(T x)

Returns the (elementwise) digamma function applied to x. The digamma function is the derivative of the natural logarithm of the Gamma function. The function is defined for positive numbers and non-integral negative numbers,

$$\operatorname{digamma}(x) = \begin{cases} \frac{\Gamma'(x)}{\Gamma(x)} & \text{if } x \notin \{\dots, -3, -2, -1, 0\} \\ \text{error} & \text{otherwise} \end{cases}$$

See Section A.3 for definition of  $\Gamma(x)$ . for any argument type T; see Section 3.1 for details including return type R.

### R trigamma(T x)

Returns the (elementwise) trigamma function applied to x. The trigamma function is the second derivative of the natural logarithm of the Gamma function,

$$\operatorname{trigamma}(x) = \begin{cases} \sum_{n=0}^{\infty} \frac{1}{(x+n)^2} & \text{if } x \notin \{\dots, -3, -2, -1, 0\} \\ \text{error} & \text{otherwise} \end{cases}$$

for any argument type T; see Section 3.1 for details including return type R.

# real lmgamma(int n, real x)

Returns the natural logarithm of the multivariate gamma function  $\Gamma_n$  with n dimensions applied to x.

$$\label{eq:log_mass} \mathsf{Imgamma}(n,x) = \begin{cases} \frac{n(n-1)}{4}\log \pi + \sum_{j=1}^n \log \Gamma\left(x + \frac{1-j}{2}\right) & \text{if } x \notin \{\dots, -3, -2, -1, 0\} \\ \text{error} & \text{otherwise} \end{cases}$$

# real $gamma_p(real a, real z)$

Returns the normalized lower incomplete gamma function of a and z defined for positive a and nonnegative z.

$$\operatorname{gamma\_p}(a,z) = \begin{cases} \frac{1}{\Gamma(a)} \int_0^z t^{a-1} e^{-t} dt & \text{if } a > 0, z \ge 0 \\ \text{error} & \text{otherwise} \end{cases}$$

real  $qamma_q(real a, real z)$ 

Returns the normalized upper incomplete gamma function of a and z defined for positive a and nonnegative z.

$$\label{eq:gamma_q} \operatorname{gamma\_q}(a,z) = \begin{cases} \frac{1}{\Gamma(a)} \int_z^\infty t^{a-1} e^{-t} dt & \text{if } a > 0, z \geq 0 \\ \text{error} & \text{otherwise} \end{cases}$$

# real binomial\_coefficient\_log(real x, real y)

Warning: This function is deprecated and should be replaced with 1choose.

Returns the natural logarithm of the binomial coefficient of x and y. For nonnegative integer inputs, the binomial coefficient function is written as  $\binom{x}{y}$  and pronounced "x choose y." This function generalizes to real numbers using the gamma function.

For 
$$0 \le y \le x$$
,

binomial\_coefficient\_log(
$$x, y$$
) =  $\log \Gamma(x+1) - \log \Gamma(y+1) - \log \Gamma(x-y+1)$ .

### int **choose**(int x, int y)

Returns the binomial coefficient of x and y. For non-negative integer inputs, the binomial coefficient function is written as  $\binom{x}{y}$  and pronounced "x choose y." In its the antilog of the 1choose function but returns an integer rather than a real number with no non-zero decimal places.

For  $0 \le y \le x$ , the binomial coefficient function can be defined via the factorial function

$$\mathsf{choose}(x,y) = \frac{x!}{(y!) (x-y)!}.$$

# real bessel\_first\_kind(int v, real x)

Returns the Bessel function of the first kind with order v applied to x.

$$bessel\_first\_kind(v, x) = J_v(x),$$

where

$$J_{\nu}(x) = \left(\frac{1}{2}x\right)^{\nu} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}x^{2}\right)^{k}}{k!\Gamma(\nu+k+1)}$$

### real **bessel\_second\_kind**(int *v*, real *x*)

Returns the Bessel function of the second kind with order v applied to x defined for positive x and v.

For x, v > 0,

$$\texttt{bessel\_second\_kind}(\nu, x) = \begin{cases} Y_{\nu}(x) & \text{if } x > 0 \\ \text{error} & \text{otherwise} \end{cases}$$

where

$$Y_{\nu}(x) = \frac{J_{\nu}(x)\cos(\nu\pi) - J_{-\nu}(x)}{\sin(\nu\pi)}$$

### real modified\_bessel\_first\_kind(int v, real z)

Returns the modified Bessel function of the first kind with order v applied to z defined for all z and v.

modified\_bessel\_first\_kind(
$$v, z$$
) =  $I_v(z)$ 

where

$$I_{\nu}(z) = \left(\frac{1}{2}z\right)^{\nu} \sum_{k=0}^{\infty} \frac{\left(\frac{1}{4}z^{2}\right)^{k}}{k!\Gamma(\nu+k+1)}$$

# real $modified\_bessel\_second\_kind(int v, real z)$

Returns the modified Bessel function of the second kind with order v applied to z defined for positive z and v.

$$\label{eq:modified_bessel_second_kind} \text{modified\_bessel\_second\_kind}(\nu, z) = \begin{cases} K_{\nu}(z) & \text{if } z > 0 \\ \text{error} & \text{if } z \leq 0 \end{cases}$$

where

$$K_{\nu}(z) = \frac{\pi}{2} \cdot \frac{I_{-\nu}(z) - I_{\nu}(z)}{\sin(\nu \pi)}$$

# real falling\_factorial(real x, real n)

Returns the falling factorial of x with power n defined for positive x and real n.

falling\_factorial(
$$x, n$$
) = 
$$\begin{cases} (x)_n & \text{if } x > 0 \\ \text{error} & \text{if } x \le 0 \end{cases}$$

where

$$(x)_n = \frac{\Gamma(x+1)}{\Gamma(x-n+1)}$$

### real **lchoose**(real x, real y)

Returns the natural logarithm of the generalized binomial coefficient of x and y. For non-negative integer inputs, the binomial coefficient function is written as  $\binom{x}{y}$  and pronounced "x choose y." This function generalizes to real numbers using the gamma function.

For 
$$0 \le y \le x$$
,

binomial\_coefficient\_log(
$$x, y$$
) =  $\log \Gamma(x+1) - \log \Gamma(y+1) - \log \Gamma(x-y+1)$ .

### real log\_falling\_factorial(real x, real n)

Returns the log of the falling factorial of x with power n defined for positive x and real n.

$$\log_{\text{falling\_factorial}}(x, n) = \begin{cases} \log(x)_n & \text{if } x > 0 \\ \text{error} & \text{if } x \le 0 \end{cases}$$

# real rising\_factorial(real x, real n)

Returns the rising factorial of x with power n defined for positive x and real n.

rising\_factorial(
$$x, n$$
) = 
$$\begin{cases} x^{(n)} & \text{if } x > 0 \\ \text{error} & \text{if } x \le 0 \end{cases}$$

where

$$x^{(n)} = \frac{\Gamma(x+n)}{\Gamma(x)}$$

# real **log\_rising\_factorial**(real x, real n)

Returns the log of the rising factorial of x with power n defined for positive x and real n.

$$\log_{\text{rising\_factorial}}(x, n) = \begin{cases} \log x^{(n)} & \text{if } x > 0 \\ \text{error} & \text{if } x \le 0 \end{cases}$$

# 3.14. Composed Functions

The functions in this section are equivalent in theory to combinations of other functions. In practice, they are implemented to be more efficient and more numerically stable than defining them directly using more basic Stan functions.

### R expm1(T x)

Returns the (elementwise) natural exponential of *x* minus 1,

$$expm1(x) = e^x - 1$$

for any argument type T; see Section 3.1 for details including return type R.

real 
$$fma(real x, real y, real z)$$

Returns *z* plus the result of *x* multiplied by *y*.

$$fma(x, y, z) = (x \times y) + z$$

# real multiply\_log(real x, real y)

*Warning:* This function is deprecated and should be replaced with lmultiply. Returns the product of x and the natural logarithm of y.

$$multiply_log(x,y) = \begin{cases} 0 & \text{if } x = y = 0 \\ x \log y & \text{if } x, y \neq 0 \\ \text{NaN} & \text{otherwise} \end{cases}$$

# real lmultiply(real x, real y)

Returns the product of x and the natural logarithm of y.

$$lmultiply(x,y) = \begin{cases} 0 & \text{if } x = y = 0 \\ x \log y & \text{if } x, y \neq 0 \\ \text{NaN} & \text{otherwise} \end{cases}$$

# R log1p(T x)

Returns the (elementwise) natural logarithm of 1 plus x,

$$\log p(x) = \begin{cases} \log(1+x) & \text{if } x \ge -1\\ \text{NaN} & \text{otherwise} \end{cases}$$

### R log1m(T x)

Returns the (elementwise) natural logarithm of 1 minus x,

$$\log lm(x) = \begin{cases} log(1-x) & \text{if } x \le 1\\ NaN & \text{otherwise} \end{cases}$$

for any argument type T; see Section 3.1 for details including return type R.

### R $loglp_exp(T x)$

Returns the (elementwise) natural logarithm of one plus the natural exponentiation of x,

$$log1p_exp(x) = log(1 + exp(x))$$

for any argument type T; see Section 3.1 for details including return type R.

### R $log1m_exp(T x)$

Returns the (elementwise) logarithm of one minus the natural exponentiation of x,

$$\label{eq:log1mexp} \mbox{log1m\_exp}(x) = \begin{cases} \log(1 - \exp(x)) & \mbox{if } x < 0 \\ \mbox{NaN} & \mbox{if } x \geq 0 \end{cases}$$

for any argument type T; see Section 3.1 for details including return type R.

# real log\_diff\_exp(real x, real y)

Returns the natural logarithm of the difference of the natural exponentiation of x and the natural exponentiation of y.

$$log\_diff\_exp(x, y) = \begin{cases} log(exp(x) - exp(y)) & if x > y \\ NaN & otherwise \end{cases}$$

# real log\_mix(real theta, real 1p1, real 1p2)

Returns the log mixture of the log densities 1p1 and 1p2 with mixing proportion theta, defined by

$$\begin{split} \log_{-}\min \mathbf{x}(\theta, \lambda_1, \lambda_2) &= \log \left(\theta \exp(\lambda_1) + (1 - \theta) \exp(\lambda_2)\right) \\ &= \log_{-}\sup_{-}\exp(\log(\theta) + \lambda_1, \log(1 - \theta) + \lambda_2). \end{split}$$

real log\_sum\_exp(real x, real y)

Returns the natural logarithm of the sum of the natural exponentiation of x and the natural exponentiation of y.

$$\log_{\sup}(x, y) = \log(\exp(x) + \exp(y))$$

### R $log_inv_logit(T x)$

Returns the (elementwise) natural logarithm of the inverse logit function of x,

$$\log_{\text{inv}}\log(x) = \log \log(x^{-1})$$

See Section 3.11 for a definition of inverse logit. for any argument type T; see Section 3.1 for details including return type R.

### R log1m\_inv\_logit(T x)

Returns the (elementwise) natural logarithm of 1 minus the inverse logit function of x,

$$log1m_inv_logit(x) = log(1 - logit^{-1}(x))$$

See Section 3.11 for a definition of inverse logit. for any argument type T; see Section 3.1 for details including return type R.

# 4. Array Operations

## 4.1. Reductions

The following operations take arrays as input and produce single output values. The boundary values for size 0 arrays are the unit with respect to the combination operation (min, max, sum, or product).

#### Minimum and Maximum

real min(real[] x)

The minimum value in x, or  $+\infty$  if x is size 0.

int min(int[] x)

The minimum value in x, or error if x is size 0.

real max(real[] x)

The maximum value in x, or  $-\infty$  if x is size 0.

int max(int[] x)

The maximum value in x, or error if x is size 0.

## Sum, Product, and Log Sum of Exp

int sum(int[] x)

The sum of the elements in x, defined for x of size N by

$$\operatorname{sum}(x) = \begin{cases} \sum_{n=1}^{N} x_n & \text{if } N > 0 \\ 0 & \text{if } N = 0 \end{cases}$$

real sum(real[] x)

The sum of the elements in x; see definition above.

real prod(real[] x)

The product of the elements in x, or 1 if x is size 0.

real prod(int[] x)

The product of the elements in x,

$$\mathsf{product}(x) = \begin{cases} \prod_{n=1}^{N} x_n & \text{if } N > 0\\ 1 & \text{if } N = 0 \end{cases}$$

## real log\_sum\_exp(real[] x)

The natural logarithm of the sum of the exponentials of the elements in x, or  $-\infty$  if the array is empty.

### Sample Mean, Variance, and Standard Deviation

The sample mean, variance, and standard deviation are calculated in the usual way. For i.i.d. draws from a distribution of finite mean, the sample mean is an unbiased estimate of the mean of the distribution. Similarly, for i.i.d. draws from a distribution of finite variance, the sample variance is an unbiased estimate of the variance. The sample deviation is defined as the square root of the sample deviation, but is not unbiased.

### real mean(real[] x)

The sample mean of the elements in x. For an array x of size N > 0,

$$\mathsf{mean}(x) = \bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n.$$

It is an error to the call the mean function with an array of size 0.

## real variance(real[] x)

The sample variance of the elements in x. For N > 0,

$$\mathrm{variance}(x) \ = \begin{cases} \frac{1}{N-1} \sum_{n=1}^{N} (x_n - \bar{x})^2 & \text{if } N > 1 \\ 0 & \text{if } N = 1 \end{cases}$$

It is an error to call the variance function with an array of size 0.

## real sd(real[] x)

The sample standard deviation of elements in x.

$$sd(x) = \begin{cases} \sqrt{variance(x)} & \text{if } N > 1\\ 0 & \text{if } N = 0 \end{cases}$$

It is an error to call the sd function with an array of size 0.

 $<sup>^1\</sup>mathrm{Dividing}$  by N rather than (N-1) produces a maximum likelihood estimate of variance, which is biased to underestimate variance.

### **Euclidean Distance and Squared Distance**

real distance(vector x, vector y)

The Euclidean distance between x and y, defined by

$$distance(x,y) = \sqrt{\sum_{n=1}^{N} (x_n - y_n)^2}$$

where N is the size of x and y. It is an error to call distance with arguments of unequal size.

real **distance**(vector *x*, row\_vector *y*)

The Euclidean distance between x and y

real distance(row\_vector x, vector y)

The Euclidean distance between x and y

real **distance**(row\_vector x, row\_vector y)

The Euclidean distance between *x* and *y* 

real squared\_distance(vector x, vector y)

The squared Euclidean distance between x and y, defined by

$$squared\_distance(x,y) = distance(x,y)^2 = \sum_{n=1}^{N} (x_n - y_n)^2,$$

where N is the size of x and y. It is an error to call squared\_distance with arguments of unequal size.

real squared\_distance(vector x, row\_vector [] y)

The squared Euclidean distance between x and y

real squared\_distance(row\_vector x, vector [] y)

The squared Euclidean distance between x and y

real squared\_distance(row\_vector x, row\_vector[] y)

The Euclidean distance between x and y

## 4.2. Array Size and Dimension Function

The size of an array or matrix can be obtained using the dims() function. The dims() function is defined to take an argument consisting of any variable with up to 8 array dimensions (and up to 2 additional matrix dimensions) and returns an array of integers with the dimensions. For example, if two variables are declared as follows,

```
real x[7,8,9];
matrix[8,9] y[7];
```

then calling dims(x) or dims(y) returns an integer array of size 3 containing the elements 7, 8, and 9 in that order.

The size() function extracts the number of elements in an array. This is just the top-level elements, so if the array is declared as

```
real a[M,N];
```

the size of a is M.

The function  $num_elements$ , on the other hand, measures all of the elements, so that the array a above has  $M \times N$  elements.

The specialized functions rows() and cols() should be used to extract the dimensions of vectors and matrices.

### int[] dims(T x)

Returns an integer array containing the dimensions of x; the type of the argument T can be any Stan type with up to 8 array dimensions.

### int $num_elements(T[] x)$

Returns the total number of elements in the array x including all elements in contained arrays, vectors, and matrices. T can be any array type. For example, if x is of type real [4,3] then num\_elements(x) is 12, and if y is declared as matrix[3,4] y[5], then size(y) evaluates to 60.

## int size(T[] x)

Returns the number of elements in the array x; the type of the array T can be any type, but the size is just the size of the top level array, not the total number of elements contained. For example, if x is of type real[4,3] then size(x) is 4.

## 4.3. Array Broadcasting

The following operations create arrays by repeating elements to fill an array of a specified size. These operations work for all input types T, including reals, integers, vectors, row vectors, matrices, or arrays.

## T[] rep\_array(T x, int n)

Return the n array with every entry assigned to x.

## T[,] rep\_array(T x, int m, int n)

Return the m by n array with every entry assigned to x.

### T[,,] rep\_array(T x, int k, int m, int n)

Return the *k* by *m* by *n* array with every entry assigned to *x*.

For example, rep\_array(1.0,5) produces a real array (type real[]) of size 5 with all values set to 1.0. On the other hand, rep\_array(1,5) produces an integer array (type int[]) of size 5 with all values set to 1. This distinction is important because it is not possible to assign an integer array to a real array. For example, the following example contrasts legal with illegal array creation and assignment

If the value being repeated v is a vector (i.e., T is vector), then rep\_array(v, 27) is a size 27 array consisting of 27 copies of the vector v.

```
vector[5] v;
vector[5] a[3];
// ...
a = rep_array(v,3); // fill a with copies of v
a[2,4] = 9.0; // v[4], a[1,4], a[2,4] unchanged
```

If the type T of x is itself an array type, then the result will be an array with one, two, or three added dimensions, depending on which of the rep\_array functions is called. For instance, consider the following legal code snippet.

```
real a[5,6];
real b[3,4,5,6];
// ...
b = rep_array(a,3,4); // make (3 x 4) copies of a
b[1,1,1,1] = 27.9; // a[1,1] unchanged
```

After the assignment to b, the value for b[j,k,m,n] is equal to a[m,n] where it is defined, for j in 1:3, k in 1:4, m in 1:5, and n in 1:6.

## 4.4. Array Concatenation

## T append\_array(T x, T y)

Return the concatenation of two arrays in the order of the arguments. T must be an N-dimensional array of any Stan type (with a maximum N of 7). All dimensions but the first must match.

For example, the following code appends two three dimensional arrays of matrices together. Note that all dimensions except the first match. Any mismatches will cause an error to be thrown.

```
matrix[4, 6] x1[2, 1, 7];
matrix[4, 6] x2[3, 1, 7];
matrix[4, 6] x3[5, 1, 7];
// ...
x3 = append_array(x1, x2);
```

## 4.5. Sorting functions

Sorting can be used to sort values or the indices of those values in either ascending or descending order. For example, if v is declared as a real array of size 3, with values

$$v = (1, -10.3, 20.987),$$

then the various sort routines produce

```
sort\_asc(v) = (-10.3, 1, 20.987)sort\_desc(v) = (20.987, 1, -10.3)sort\_indices\_asc(v) = (2, 1, 3)sort\_indices\_desc(v) = (3, 1, 2)
```

```
real[] sort_asc(real[] v)
```

Sort the elements of v in ascending order

```
int[] sort_asc(int[] v)
```

Sort the elements of v in ascending order

```
real[] sort_desc(real[] v)
```

Sort the elements of v in descending order

```
int[] sort_desc(int[] v)
```

Sort the elements of v in descending order

### int[] sort\_indices\_asc(real[] v)

Return an array of indices between 1 and the size of v, sorted to index v in ascending order.

## int[] sort\_indices\_asc(int[] v)

Return an array of indices between 1 and the size of v, sorted to index v in ascending order.

### int[] sort\_indices\_desc(real[] v)

Return an array of indices between 1 and the size of v, sorted to index v in descending order.

### int[] sort\_indices\_desc(int[] v)

Return an array of indices between 1 and the size of v, sorted to index v in descending order.

### int rank(real[] v, int s)

Number of components of v less than v[s]

## int rank(int[] v, int s)

Number of components of v less than v[s]

# 5. Matrix Operations

## 5.1. Integer-Valued Matrix Size Functions

### int num\_elements(vector x)

The total number of elements in the vector *x* (same as function rows)

#### int num\_elements(row\_vector x)

The total number of elements in the vector x (same as function cols)

#### int **num\_elements**(matrix x)

The total number of elements in the matrix x. For example, if x is a  $5 \times 3$  matrix, then num\_elements(x) is 15

#### int **rows**(vector x)

The number of rows in the vector x

### int rows(row\_vector x)

The number of rows in the row vector *x*, namely 1

### int rows(matrix x)

The number of rows in the matrix x

#### int **cols**(vector x)

The number of columns in the vector x, namely 1

#### int cols(row\_vector x)

The number of columns in the row vector x

#### int **cols**(matrix x)

The number of columns in the matrix x

## 5.2. Matrix Arithmetic Operators

Stan supports the basic matrix operations using infix, prefix and postfix operations. This section lists the operations supported by Stan along with their argument and result types.

```
Negation Prefix Operators
vector operator-(vector x)
     The negation of the vector x.
row_vector operator-(row_vector x)
     The negation of the row vector x.
matrix operator-(matrix x)
     The negation of the matrix x.
Infix Matrix Operators
vector operator+(vector x, vector y)
     The sum of the vectors x and y.
row_vector operator+(row_vector x, row_vector y)
     The sum of the row vectors x and y.
matrix operator+(matrix x, matrix y)
     The sum of the matrices x and y
vector operator-(vector x, vector y)
     The difference between the vectors x and y.
row_vector operator-(row_vector x, row_vector y)
     The difference between the row vectors x and y
matrix operator-(matrix x, matrix y)
     The difference between the matrices x and v
vector operator*(real x, vector y)
     The product of the scalar x and vector y
row_vector operator*(real x, row_vector y)
     The product of the scalar x and the row vector y
matrix operator*(real x, matrix y)
     The product of the scalar x and the matrix y
vector operator*(vector x, real y)
     The product of the scalar y and vector x
```

```
matrix operator*(vector x, row_vector y)
     The product of the vector x and row vector y
row_vector operator*(row_vector x, real y)
     The product of the scalar y and row vector x
real operator*(row_vector x, vector y)
     The product of the row vector x and vector y
row_vector operator*(row_vector x, matrix y)
     The product of the row vector x and matrix y
matrix operator*(matrix x, real y)
     The product of the scalar v and matrix x
vector operator*(matrix x, vector y)
     The product of the matrix x and vector y
matrix operator*(matrix x, matrix y)
     The product of the matrices x and y
Broadcast Infix Operators
vector operator+(vector x, real y)
     The result of adding y to every entry in the vector x
vector operator+(real x, vector y)
     The result of adding x to every entry in the vector y
row_vector operator+(row_vector x, real y)
     The result of adding y to every entry in the row vector x
row_vector operator+(real x, row_vector y)
     The result of adding x to every entry in the row vector y
matrix operator+(matrix x, real y)
     The result of adding y to every entry in the matrix x
matrix operator+(real x, matrix y)
     The result of adding x to every entry in the matrix y
vector operator-(vector x, real y)
     The result of subtracting y from every entry in the vector x
```

```
vector operator-(real x, vector y)
     The result of adding x to every entry in the negation of the vector y
row_vector operator-(row_vector x, real y)
     The result of subtracting y from every entry in the row vector x
row_vector operator-(real x, row_vector y)
     The result of adding x to every entry in the negation of the row vector y
matrix operator-(matrix x, real y)
     The result of subtracting y from every entry in the matrix x
matrix operator-(real x, matrix y)
     The result of adding x to every entry in negation of the matrix y
vector operator/(vector x, real y)
     The result of dividing each entry in the vector x by y
row_vector operator/(row_vector x, real y)
     The result of dividing each entry in the row vector x by y
matrix operator/(matrix x, real y)
     The result of dividing each entry in the matrix x by y
Elementwise Arithmetic Operations
vector operator.*(vector x, vector y)
     The elementwise product of y and x
row_vector operator.*(row_vector x, row_vector y)
     The elementwise product of y and x
matrix operator.*(matrix x, matrix y)
     The elementwise product of y and x
vector operator./(vector x, vector y)
     The elementwise quotient of y and x
vector operator./(vector x, real y)
     The elementwise quotient of y and x
```

```
rector operator./(real x, vector y)
    The elementwise quotient of y and x

row_vector operator./(row_vector x, row_vector y)
    The elementwise quotient of y and x

row_vector operator./(row_vector x, real y)
    The elementwise quotient of y and x

row_vector operator./(real x, row_vector y)
    The elementwise quotient of y and x

matrix operator./(matrix x, matrix y)
    The elementwise quotient of y and x

matrix operator./(matrix x, real y)
    The elementwise quotient of y and x

matrix operator./(real x, matrix y)
    The elementwise quotient of y and x
```

## 5.3. Transposition Operator

Matrix transposition is represented using a postfix operator.

```
matrix operator'(matrix x)
    The transpose of the matrix x, written as x'
row_vector operator'(vector x)
    The transpose of the vector x, written as x'
vector operator'(row_vector x)
    The transpose of the row vector x, written as x'
```

## 5.4. Elementwise Functions

Elementwise functions apply a function to each element of a vector or matrix, returning a result of the same shape as the argument. There are many functions that are vectorized in addition to the ad hoc cases listed in this section; see Section 3.1 for the general cases.

## 5.5. Dot Products and Specialized Products

```
real dot_product(vector x, vector y)
     The dot product of x and y
real dot_product(vector x, row_vector y)
     The dot product of x and y
real dot_product(row_vector x, vector y)
     The dot product of x and y
real dot_product(row_vector x, row_vector y)
     The dot product of x and y
row_vector columns_dot_product(vector x, vector y)
     The dot product of the columns of x and y
row_vector columns_dot_product(row_vector x, row_vector y)
     The dot product of the columns of x and y
row_vector columns_dot_product(matrix x, matrix y)
     The dot product of the columns of x and y
vector rows_dot_product(vector x, vector y)
     The dot product of the rows of x and y
vector rows_dot_product(row_vector x, row_vector y)
     The dot product of the rows of x and y
vector rows_dot_product(matrix x, matrix y)
     The dot product of the rows of x and y
real dot_self(vector x)
     The dot product of the vector x with itself
real dot_self(row_vector x)
     The dot product of the row vector x with itself
row_vector columns_dot_self(vector x)
     The dot product of the columns of x with themselves
row_vector columns_dot_self(row_vector x)
     The dot product of the columns of x with themselves
```

#### row\_vector columns\_dot\_self(matrix x)

The dot product of the columns of *x* with themselves

### vector rows\_dot\_self(vector x)

The dot product of the rows of *x* with themselves

#### vector rows\_dot\_self(row\_vector x)

The dot product of the rows of *x* with themselves

### vector rows\_dot\_self(matrix x)

The dot product of the rows of *x* with themselves

### **Specialized Products**

#### matrix tcrossprod(matrix x)

The product of x postmultiplied by its own transpose, similar to the tcrossprod(x) function in R. The result is a symmetric matrix  $x x^{T}$ .

### matrix crossprod(matrix x)

The product of x premultiplied by its own transpose, similar to the crossprod(x) function in R. The result is a symmetric matrix  $x^{T}$  x.

The following functions all provide shorthand forms for common expressions, which are also much more efficient.

### matrix quad\_form(matrix A, matrix B)

The quadratic form, i.e., B' \* A \* B.

## real quad\_form(matrix A, vector B)

The quadratic form, i.e., B' \* A \* B.

## matrix quad\_form\_diag(matrix m, vector v)

The quadratic form using the column vector v as a diagonal matrix, i.e., diag\_matrix(v) \* m \* diag\_matrix(v).

## matrix quad\_form\_diag(matrix m, row\_vector rv)

The quadratic form using the row vector rv as a diagonal matrix, i.e., diag\_matrix(rv) \* m \* diag\_matrix(rv).

## matrix quad\_form\_sym(matrix A, matrix B)

Similarly to quad\_form, gives B' \* A \* B, but additionally checks if A is symmetric and ensures that the result is also symmetric.

#### real quad\_form\_sym(matrix A, vector B)

Similarly to quad\_form, gives B' \* A \* B, but additionally checks if A is symmetric and ensures that the result is also symmetric.

#### real **trace\_quad\_form**(matrix A, matrix B)

The trace of the quadratic form, i.e., trace(B' \* A \* B).

#### real trace\_gen\_quad\_form(matrix D, matrix A, matrix B)

The trace of a generalized quadratic form, i.e., trace(D \* B' \* A \* B).

#### matrix multiply\_lower\_tri\_self\_transpose(matrix x)

The product of the lower triangular portion of x (including the diagonal) times its own transpose; that is, if L is a matrix of the same dimensions as x with L(m,n) equal to x(m,n) for  $n \le m$  and L(m,n) equal to 0 if n > m, the result is the symmetric matrix LL<sup>T</sup>. This is a specialization of tcrossprod(x) for lower-triangular matrices. The input matrix does not need to be square.

## matrix diag\_pre\_multiply(vector v, matrix m)

Return the product of the diagonal matrix formed from the vector v and the matrix m, i.e., diag\_matrix(v)  $\star$  m.

### matrix diag\_pre\_multiply(row\_vector rv, matrix m)

Return the product of the diagonal matrix formed from the vector rv and the matrix m, i.e., diag\_matrix(rv) \* m.

## matrix diag\_post\_multiply(matrix m, vector v)

Return the product of the matrix m and the diagonal matrix formed from the vector v, i.e.,  $m * diag_{matrix}(v)$ .

## matrix diag\_post\_multiply(matrix m, row\_vector rv)

Return the product of the matrix m and the diagonal matrix formed from the the row vector rv, i.e.,  $m * diag_{matrix}(rv)$ .

### 5.6. Reductions

### Log Sum of Exponents

## real **log\_sum\_exp**(vector x)

The natural logarithm of the sum of the exponentials of the elements in x

## real log\_sum\_exp(row\_vector x)

The natural logarithm of the sum of the exponentials of the elements in x

### real log\_sum\_exp(matrix x)

The natural logarithm of the sum of the exponentials of the elements in x

#### Minimum and Maximum

#### real **min**(vector x)

The minimum value in x, or  $+\infty$  if x is empty

### real min(row\_vector x)

The minimum value in x, or  $+\infty$  if x is empty

#### real min(matrix x)

The minimum value in x, or  $+\infty$  if x is empty

### real max(vector x)

The maximum value in x, or  $-\infty$  if x is empty

### real max(row\_vector x)

The maximum value in x, or  $-\infty$  if x is empty

### real max(matrix x)

The maximum value in x, or  $-\infty$  if x is empty

#### **Sums and Products**

## real sum(vector x)

The sum of the values in x, or 0 if x is empty

## real sum(row\_vector x)

The sum of the values in x, or 0 if x is empty

## real sum(matrix x)

The sum of the values in x, or 0 if x is empty

## real **prod**(vector x)

The product of the values in x, or 1 if x is empty

## real prod(row\_vector x)

The product of the values in *x*, or 1 if *x* is empty

## real prod(matrix x)

The product of the values in x, or 1 if x is empty

#### Sample Moments

Full definitions are provided for sample moments in Section 4.1.

#### real mean(vector x)

The sample mean of the values in *x*; see Section 4.1 for details.

#### real mean(row\_vector x)

The sample mean of the values in x; see Section 4.1 for details.

#### real **mean**(matrix x)

The sample mean of the values in x; see Section 4.1 for details.

#### real **variance**(vector x)

The sample variance of the values in *x*; see Section 4.1 for details.

### real variance(row\_vector x)

The sample variance of the values in x; see Section 4.1 for details.

### real variance(matrix x)

The sample variance of the values in x; see Section 4.1 for details.

#### real **sd**(vector x)

The sample standard deviation of the values in *x*; see Section 4.1 for details.

### real sd(row\_vector x)

The sample standard deviation of the values in x; see Section 4.1 for details.

#### real **sd**(matrix x)

The sample standard deviation of the values in x; see Section 4.1 for details.

### 5.7. Broadcast Functions

The following broadcast functions allow vectors, row vectors and matrices to be created by copying a single element into all of their cells. Matrices may also be created by stacking copies of row vectors vertically or stacking copies of column vectors horizontally.

### vector rep\_vector(real x, int m)

Return the size m (column) vector consisting of copies of x.

```
row_vector rep_row_vector(real x, int n)
```

Return the size *n* row vector consisting of copies of *x*.

```
matrix rep_matrix(real x, int m, int n)
```

Return the m by n matrix consisting of copies of x.

```
matrix rep_matrix(vector v, int n)
```

Return the m by n matrix consisting of n copies of the (column) vector v of size m.

```
matrix rep_matrix(row_vector rv, int m)
```

Return the *m* by *n* matrix consisting of *m* copies of the row vector rv of size n.

Unlike the situation with array broadcasting (see Section 4.3), where there is a distinction between integer and real arguments, the following two statements produce the same result for vector broadcasting; row vector and matrix broadcasting behave similarly.

```
vector[3] x;
x = rep_vector(1, 3);
x = rep_vector(1.0, 3);
```

There are no integer vector or matrix types, so integer values are automatically promoted.

## 5.8. Diagonal Matrix Functions

```
vector diagonal(matrix x)
```

The diagonal of the matrix x

```
matrix diag_matrix(vector x)
```

The diagonal matrix with diagonal x

Although the diag\_matrix function is available, it is unlikely to ever show up in an efficient Stan program. For example, rather than converting a diagonal to a full matrix for use as a covariance matrix,

```
y ~ multi_normal(mu, diag_matrix(square(sigma)));
```

it is much more efficient to just use a univariate normal, which produces the same density,

```
y ~ normal(mu, sigma);
```

Rather than writing  $m * diag_matrix(v)$  where m is a matrix and v is a vector, it is much more efficient to write  $diag_post_multiply(m, v)$  (and similarly for premultiplication). By the same token, it is better to use  $quad_form_diag(m, v)$  rather than  $quad_form(m, diag_matrix(v))$ .

## 5.9. Slicing and Blocking Functions

Stan provides several functions for generating slices or blocks or diagonal entries for matrices.

#### Columns and Rows

```
vector col(matrix x, int n)
```

The n-th column of matrix x

row\_vector row(matrix x, int m)

The m-th row of matrix x

The row function is special in that it may be used as an Ivalue in an assignment statement (i.e., something to which a value may be assigned). The row function is also special in that the indexing notation x[m] is just an alternative way of writing row(x,m). The col function may *not* be used as an Ivalue, nor is there an indexing based shorthand for it.

## **Block Operations**

Matrix Slicing Operations

Block operations may be used to extract a sub-block of a matrix.

```
matrix block(matrix x, int i, int j, int n\_rows, int n\_cols)
```

Return the submatrix of x that starts at row i and column j and extends  $n\_rows$  rows and  $n\_co1s$  columns.

The sub-row and sub-column operations may be used to extract a slice of row or column from a matrix

```
vector sub\_col(matrix x, int i, int j, int n\_rows)
```

Return the sub-column of x that starts at row i and column j and extends  $n\_rows$  rows and 1 column.

```
row_vector sub\_row(matrix x, int i, int j, int n\_cols)
```

Return the sub-row of x that starts at row i and column j and extends 1 row and  $n\_co1s$  columns.

Vector and Array Slicing Operations

The head operation extracts the first n elements of a vector and the tail operation the last. The segment operation extracts an arbitrary subvector.

vector head(vector v, int n)

Return the vector consisting of the first *n* elements of *v*.

row\_vector head(row\_vector rv, int n)

Return the row vector consisting of the first *n* elements of *rv*.

T[] head(T[] sv, int n)

Return the array consisting of the first n elements of sv; applies to up to three-dimensional arrays containing any type of elements T.

vector tail(vector v, int n)

Return the vector consisting of the last *n* elements of *v*.

row\_vector tail(row\_vector rv, int n)

Return the row vector consisting of the last *n* elements of *rv*.

T[] **tail**(T[] *sv*, int n)

Return the array consisting of the last n elements of sv; applies to up to three-dimensional arrays containing any type of elements T.

vector segment(vector v, int i, int n)

Return the vector consisting of the n elements of v starting at i; i.e., elements i through through i + n - 1.

row\_vector segment(row\_vector rv, int i, int n)

Return the row vector consisting of the n elements of rv starting at i; i.e., elements i through through i + n - 1.

T[] **segment**(T[] *sv*, int i, int n)

Return the array consisting of the n elements of sv starting at i; i.e., elements i through through i+n-1. Applies to up to three-dimensional arrays containing any type of elements T.

## 5.10. Matrix Concatenation

Stan's matrix concatenation operations append\_col and append\_row are like the operations cbind and rbind in R.

#### Horizontal concatenation

#### matrix append\_col(matrix x, matrix y)

Combine matrices x and y by columns. The matrices must have the same number of rows.

#### matrix append\_col(matrix x, vector y)

Combine matrix *x* and vector *y* by columns. The matrix and the vector must have the same number of rows.

### matrix **append\_col**(vector x, matrix y)

Combine vector x and matrix y by columns. The vector and the matrix must have the same number of rows.

#### matrix **append\_col**(vector x, vector y)

Combine vectors *x* and *y* by columns. The vectors must have the same number of rows.

#### row\_vector append\_col(row\_vector x, row\_vector y)

Combine row vectors *x* and *y* of any size into another row vector.

### row\_vector append\_col(real x, row\_vector y)

Append *x* to the front of *y*, returning another row vector.

## row\_vector append\_col(row\_vector x, real y)

Append *y* to the end of *x*, returning another row vector.

#### Vertical concatenation

## $matrix append_row(matrix x, matrix y)$

Combine matrices *x* and *y* by rows. The matrices must have the same number of columns.

## matrix append\_row(matrix x, row\_vector y)

Combine matrix x and row vector y by rows. The matrix and the row vector must have the same number of columns.

## matrix append\_row(row\_vector x, matrix y)

Combine row vector x and matrix y by rows. The row vector and the matrix must have the same number of columns.

#### matrix append\_row(row\_vector x, row\_vector y)

Combine row vectors x and y by row. The row vectors must have the same number of columns.

#### vector append\_row(vector x, vector y)

Concatenate vectors *x* and *y* of any size into another vector.

#### vector append\_row(real x, vector y)

Append x to the top of y, returning another vector.

Append *y* to the bottom of *x*, returning another vector.

## 5.11. Special Matrix Functions

#### Softmax

The softmax function<sup>1</sup> maps  $y \in \mathbb{R}^K$  to the *K*-simplex by

$$\operatorname{softmax}(y) = \frac{\exp(y)}{\sum_{k=1}^{K} \exp(y_k)},$$

where  $\exp(y)$  is the componentwise exponentiation of y. Softmax is usually calculated on the log scale,

$$\log \operatorname{softmax}(y) = y - \log \sum_{k=1}^{K} \exp(y_k)$$
$$= y - \log_{-1} \operatorname{sum}_{-1} \exp(y).$$

where the vector y minus the scalar  $\log_{\text{sum}}\exp(y)$  subtracts the scalar from each component of y.

Stan provides the following functions for softmax and its log.

## vector softmax(vector x)

The softmax of x

## vector $log_softmax(vector x)$

The natural logarithm of the softmax of x

<sup>&</sup>lt;sup>1</sup>The softmax function is so called because in the limit as  $y_n \to \infty$  with  $y_m$  for  $m \neq n$  held constant, the result tends toward the "one-hot" vector  $\theta$  with  $\theta_n = 1$  and  $\theta_m = 0$  for  $m \neq n$ , thus providing a "soft" version of the maximum function.

#### **Cumulative Sums**

The cumulative sum of a sequence  $x_1, \ldots, x_N$  is the sequence  $y_1, \ldots, y_N$ , where

$$y_n = \sum_{m=1}^n x_m.$$

real[] cumulative\_sum(real[] x)

The cumulative sum of x

vector cumulative\_sum(vector v)

The cumulative sum of v

row\_vector cumulative\_sum(row\_vector rv)

The cumulative sum of rv

#### 5.12. Covariance Functions

### **Exponentiated quadratic covariance function**

The exponentiated quadratic kernel defines the covariance between  $f(x_i)$  and  $f(x_j)$  where  $f: \mathbb{R}^D \to \mathbb{R}$  as a function of the squared Euclidian distance between  $x_i \in \mathbb{R}^D$  and  $x_j \in \mathbb{R}^D$ :

$$cov(f(x_i), f(x_j)) = k(x_i, x_j) = \alpha^2 \exp\left(-\frac{1}{2\rho^2} \sum_{d=1}^{D} (x_{i,d} - x_{j,d})^2\right)$$

with  $\alpha$  and  $\rho$  constrained to be positive.

There are two variants of the exponentiated quadratic covariance function in Stan. One builds a covariance matrix,  $K \in \mathbb{R}^{N \times N}$  for  $x_1, \ldots, x_N$ , where  $K_{i,j} = k(x_i, x_j)$ , which is necessarily symmetric and positive semidefinite by construction. There is a second variant of the exponentiated quadratic covariance function that builds a  $K \in \mathbb{R}^{N \times M}$  covariance matrix for  $x_1, \ldots, x_N$  and  $x_1', \ldots, x_M'$ , where  $x_i \in \mathbb{R}^D$  and  $x_i' \in \mathbb{R}^D$  and  $K_{i,j} = k(x_i, x_j')$ .

matrix cov\_exp\_quad(row\_vectors x, real alpha, real rho)

The covariance matrix with an exponentiated quadratic kernel of x.

matrix cov\_exp\_quad(vectors x, real alpha, real rho)

The covariance matrix with an exponentiated quadratic kernel of x.

matrix  $cov_{exp_quad}(real[] x, real alpha, real rho)$ 

The covariance matrix with an exponentiated quadratic kernel of  $\boldsymbol{x}$ .

real *alpha*, real *rho*)

The covariance matrix with an exponentiated quadratic kernel of *x1* and *x2*.

real *alpha*, real *rho*)

The covariance matrix with an exponentiated quadratic kernel of x1 and x2.

matrix 
$$cov_exp_quad(real[] x1, real[] x2,$$

real *alpha*, real *rho*)

The covariance matrix with an exponentiated quadratic kernel of x1 and x2.

## 5.13. Linear Algebra Functions and Solvers

### **Matrix Division Operators and Functions**

In general, it is much more efficient and also more arithmetically stable to use matrix division than to multiply by an inverse. There are specialized forms for lower triangular matrices and for symmetric, positive-definite matrices.

Matrix division operators

row\_vector operator/(row\_vector b, matrix A)

The right division of b by A; equivalently b \* inverse(A)

matrix operator/(matrix B, matrix A)

The right division of B by A; equivalently B \* inverse(A)

vector operator\(matrix A, vector b)

The left division of b by A; equivalently inverse(A) \* b

matrix operator\(matrix A, matrix B)

The left division of B by A; equivalently inverse(A) \* B

Lower-triangular matrix division functions

There are four division functions which use lower triangular views of a matrix. The lower triangular view of a matrix tri(A) is used in the definitions and defined by

$$tri(A)[m, n] = \begin{cases} A[m, n] & \text{if } m \ge n, \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

When a lower triangular view of a matrix is used, the elements above the diagonal are ignored.

#### vector mdivide\_left\_tri\_low(matrix A, vector b)

The left division of b by a lower-triangular view of A; algebraically equivalent to the less efficient and stable form inverse(tri(A)) \* b, where tri(A) is the lower-triangular portion of A with the above-diagonal entries set to zero.

#### matrix mdivide\_left\_tri\_low(matrix A, matrix B)

The left division of B by a triangular view of A; algebraically equivalent to the less efficient and stable form inverse(tri(A)) \* B, where tri(A) is the lower-triangular portion of A with the above-diagonal entries set to zero.

### row\_vector mdivide\_right\_tri\_low(row\_vector b, matrix A)

The right division of b by a triangular view of A; algebraically equivalent to the less efficient and stable form b \* inverse(tri(A)), where tri(A) is the lower-triangular portion of A with the above-diagonal entries set to zero.

### matrix mdivide\_right\_tri\_low(matrix B, matrix A)

The right division of B by a triangular view of A; algebraically equivalent to the less efficient and stable form B \* inverse(tri(A)), where tri(A) is the lower-triangular portion of A with the above-diagonal entries set to zero.

#### Symmetric positive-definite matrix division functions

There are four division functions which are specialized for efficiency and stability for symmetric positive-definite matrix dividends. If the matrix dividend argument is not symmetric and positive definite, these will reject and print warnings.

## matrix mdivide\_left\_spd(matrix A, vector b)

The left division of b by the symmetric, positive-definite matrix A; algebraically equivalent to the less efficient and stable form inverse(A) \* b.

## vector mdivide\_left\_spd(matrix A, matrix B)

The left division of B by the symmetric, positive-definite matrix A; algebraically equivalent to the less efficient and stable form inverse(A) \* B.

## row\_vector mdivide\_right\_spd(row\_vector b, matrix A)

The right division of b by the symmetric, positive-definite matrix A; algebraically equivalent to the less efficient and stable form b \* inverse(A).

## matrix mdivide\_right\_spd(matrix B, matrix A)

The right division of B by the symmetric, positive-definite matrix A; algebraically equivalent to the less efficient and stable form B \* inverse(A).

### Matrix Exponential

The exponential of the matrix *A* is formally defined by the convergent power series:

$$e^A = \sum_{n=0}^{\infty} \frac{A^n}{n!}$$

matrix matrix\_exp(matrix A)

The matrix exponential of A

matrix matrix\_exp\_multiply(matrix A, matrix B)

The multiplication of matrix exponential of A and matrix B; algebraically equivalent to the less efficient form matrix\_exp(A) \* B.

matrix **scale\_matrix\_exp\_multiply**(real t, matrix A, matrix B)

The multiplication of matrix exponential of tA and matrix B; algebraically equivalent to the less efficient form matrix\_exp(tA) \* B.

### **Linear Algebra Functions**

Trace

real trace(matrix A)

The trace of A, or 0 if A is empty; A is not required to be diagonal

Determinants

real determinant(matrix A)

The determinant of A

real log\_determinant(matrix A)

The log of the absolute value of the determinant of A

#### Inverses

It is almost never a good idea to use matrix inverses directly because they are both inefficient and arithmetically unstable compared to the alternatives. Rather than inverting a matrix m and post-multiplying by a vector or matrix a, as in inverse(m) \* a, it is better to code this using matrix division, as in  $m \setminus a$ . The pre-multiplication case is similar, with b \* inverse(m) being more efficiently coded as as b / m. There are also useful special cases for triangular and symmetric, positive-definite matrices that use more efficient solvers.

*Warning:* The function inv(m) is the elementwise inverse function, which returns 1 / m[i, j] for each element.

## matrix inverse(matrix A)

The inverse of A

#### matrix inverse\_spd(matrix A)

The inverse of *A* where A is symmetric, positive definite. This version is faster and more arithmetically stable when the input is symmetric and positive definite.

### Eigendecomposition

### vector eigenvalues\_sym(matrix A)

The vector of eigenvalues of a symmetric matrix A in ascending order

#### matrix eigenvectors\_sym(matrix A)

The matrix with the (column) eigenvectors of symmetric matrix *A* in the same order as returned by the function eigenvalues\_sym

Because multiplying an eigenvector by -1 results in an eigenvector, eigenvectors returned by a decomposition are only identified up to a sign change. In order to compare the eigenvectors produced by Stan's eigendecomposition to others, signs may need to be normalized in some way, such as by fixing the sign of a component, or doing comparisons allowing a multiplication by -1.

The condition number of a symmetric matrix is defined to be the ratio of the largest eigenvalue to the smallest eigenvalue. Large condition numbers lead to difficulty in numerical algorithms such as computing inverses, and thus known as "ill conditioned." The ratio can even be infinite in the case of singular matrices (i.e., those with eigenvalues of 0).

## QR Decomposition

## matrix qr\_thin\_Q(matrix A)

The orthogonal matrix in the thin QR decomposition of *A*, which implies that the resulting matrix has the same dimensions as *A* 

## matrix qr\_thin\_R(matrix A)

The upper triangular matrix in the thin QR decomposition of *A*, which implies that the resulting matrix is square with the same number of columns as *A* 

### matrix qr\_Q(matrix A)

The orthogonal matrix in the fat QR decomposition of *A*, which implies that the resulting matrix is square with the same number of rows as *A* 

#### matrix qr\_R(matrix A)

The upper trapezoidal matrix in the fat QR decomposition of *A*, which implies that the resulting matrix will be square with the same number of rows as *A* 

The thin QR decomposition is always preferable because it will consume much less memory when the input matrix is large than will the fat QR decomposition. Both versions of the decomposition represent the input matrix as

$$A = OR$$
.

Multiplying a column of an orthogonal matrix by -1 still results in an orthogonal matrix, and you can multiply the corresponding row of the upper trapezoidal matrix by -1 without changing the product. Thus, Stan adopts the normalization that the diagonal elements of the upper trapezoidal matrix are strictly positive and the columns of the orthogonal matrix are reflected if necessary. Also, these QR decomposition algorithms do not utilize pivoting and thus may be numerically unstable on input matrices that have less than full rank.

### Cholesky Decomposition

Every symmetric, positive-definite matrix (such as a correlation or covariance matrix) has a Cholesky decomposition. If  $\Sigma$  is a symmetric, positive-definite matrix, its Cholesky decomposition is the lower-triangular vector L such that

$$\Sigma = LL^{\top}.$$

## matrix cholesky\_decompose(matrix A)

The lower-triangular Cholesky factor of the symmetric positive-definite matrix  $\boldsymbol{A}$ 

## Singular Value Decomposition

Stan only provides functions for the singular values, not for the singular vectors involved in a singular value decomposition (SVD).

## vector singular\_values(matrix A)

The singular values of A in descending order

### 5.14. Sort Functions

See Section 4.5 for examples of how the functions work.

### vector sort\_asc(vector v)

Sort the elements of *v* in ascending order

#### row\_vector sort\_asc(row\_vector v)

Sort the elements of *v* in ascending order

#### vector sort\_desc(vector v)

Sort the elements of *v* in descending order

### row\_vector sort\_desc(row\_vector v)

Sort the elements of *v* in descending order

### int[] sort\_indices\_asc(vector v)

Return an array of indices between 1 and the size of v, sorted to index v in ascending order.

### int[] sort\_indices\_asc(row\_vector v)

Return an array of indices between 1 and the size of v, sorted to index v in ascending order.

## int[] sort\_indices\_desc(vector v)

Return an array of indices between 1 and the size of v, sorted to index v in descending order.

## int[] sort\_indices\_desc(row\_vector v)

Return an array of indices between 1 and the size of v, sorted to index v in descending order.

## int rank(vector v, int s)

Number of components of v less than v[s]

## int rank(row\_vector v, int s)

Number of components of v less than v[s]

# 6. Sparse Matrix Operations

For sparse matrices, for which many elements are zero, it is more efficient to use specialized representations to save memory and speed up matrix arithmetic (including derivative calculations). Given Stan's implementation, there is substantial space (memory) savings by using sparse matrices. Because of the ease of optimizing dense matrix operations, speed improvements only arise at 90% or even greater sparsity; below that level, dense matrices are faster but use more memory.

Because of this speedup and space savings, it may even be useful to read in a dense matrix and convert it to a sparse matrix before multiplying it by a vector. This chapter covers a very specific form of sparsity consisting of a sparse matrix multiplied by a dense vector.

## 6.1. Compressed Row Storage

Sparse matrices are represented in Stan using compressed row storage (CSR). For example, the matrix

$$A = \begin{bmatrix} 19 & 27 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 52 \\ 81 & 0 & 95 & 33 \end{bmatrix}$$

is translated into a vector of the non-zero real values, read by row from the matrix A,

$$w(A) = \begin{bmatrix} 19 & 27 & 52 & 81 & 95 & 33 \end{bmatrix}^\mathsf{T},$$

an array of integer column indices for the values,

$$v(A) = \begin{bmatrix} 1 & 2 & 4 & 1 & 3 & 4 \end{bmatrix},$$

and an array of integer indices indicating where in w(A) a given row's values start,

$$u(A) = \begin{bmatrix} 1 & 3 & 3 & 4 & 7 \end{bmatrix},$$

with a padded value at the end to guarantee that

$$u(A)[n+1]-u(A)[n]$$

is the number of non-zero elements in row n of the matrix (here 2, 0, 1, and 3). Note that because the second row has no non-zero elements both the second and third elements of u(A) correspond to the third element of w(A), which is 52. The values (w(A), v(A), u(A)) are sufficient to reconstruct A.

The values are structured so that there is a real value and integer column index for each non-zero entry in the array, plus one integer for each row of the matrix, plus one for padding. There is also underlying storage for internal container pointers and sizes. The total memory usage is roughly 12K + M bytes plus a small constant overhead, which is often considerably fewer bytes than the  $M \times N$  required to store a dense matrix. Even more importantly, zero values do not introduce derivatives under multiplication or addition, so many storage and evaluation steps are saved when sparse matrices are multiplied.

#### 6.2. Conversion Functions

Conversion functions between dense and sparse matrices are provided.

#### Dense to Sparse Conversion

Converting a dense matrix m to a sparse representation produces a vector w and two integer arrays, u and v.

```
vector csr_extract_w(matrix a)
```

Return non-zero values in matrix *a*; see Section 6.1.

```
int[] csr_extract_v(matrix a)
```

Return column indices for values in csr\_extract\_w(a); see Section 6.1.

```
int[] csr_extract_u(matrix a)
```

Return array of row starting indices for entries in csr\_extract\_w(a) followed by the size of csr\_extract\_w(a) plus one; see Section 6.1.

#### **Sparse to Dense Conversion**

To convert a sparse matrix representation to a dense matrix, there is a single function.

```
matrix csr_to_dense_matrix(int m, int n, vector w, int[] v, int[]
u)
```

Return dense  $m \times n$  matrix with non-zero matrix entries w, column indices v, and row starting indices u; the vector w and arrays v and u must all be the same size, and the arrays v and u must have index values bounded by m and n. See Section 6.1 for more details.

## 6.3. Sparse Matrix Arithmetic

### **Sparse Matrix Multiplication**

The only supported operation is the multiplication of a sparse matrix A and a dense vector b to produce a dense vector Ab. Multiplying a dense row vector b and a sparse matrix b can be coded using transposition as

$$bA = (A^{\mathsf{T}} b^{\mathsf{T}})^{\mathsf{T}},$$

but care must be taken to represent  $A^{T}$  rather than A as a sparse matrix.

Multiply the  $m \times n$  matrix represented by values w, column indices v, and row start indices u by the vector b; see Section 6.1.

# 7. Mixed Operations

These functions perform conversions between Stan containers matrix, vector, row vector and arrays.

### matrix to\_matrix(matrix m)

Return the matrix *m* itself.

#### matrix to\_matrix(vector v)

Convert the column vector v to a size(v) by 1 matrix.

#### matrix to\_matrix(row\_vector v)

Convert the row vector v to a 1 by size(v) matrix.

### matrix to\_matrix(matrix m, int m, int n)

Convert a matrix m to a matrix with m rows and n columns filled in column-major order.

#### matrix **to\_matrix**(vector *v*, int *m*, int *n*)

Convert a vector v to a matrix with m rows and n columns filled in column-major order.

### matrix to\_matrix(row\_vector v, int m, int n)

Convert a row\_vector a to a matrix with m rows and n columns filled in column-major order.

## matrix to\_matrix(matrix m, int m, int n, int col\_major)

Convert a matrix m to a matrix with m rows and n columns filled in row-major order if col\_major equals 0 (otherwise, they get filled in column-major order).

## matrix $to_matrix$ (vector v, int m, int n, int col\_major)

Convert a vector v to a matrix with m rows and n columns filled in row-major order if col\_major equals 0 (otherwise, they get filled in column-major order).

## matrix to\_matrix(row\_vector v, int m, int n, int col\_major)

Convert a row\_vector a to a matrix with m rows and n columns filled in row-major order if col\_major equals 0 (otherwise, they get filled in column-major order).

## matrix to\_matrix(real[] a, int m, int n)

Convert a one-dimensional array a to a matrix with m rows and n columns filled in column-major order.

#### matrix to\_matrix(int[] a, int m, int n)

Convert a one-dimensional array a to a matrix with m rows and n columns filled in column-major order.

### matrix to\_matrix(real[] a, int m, int n, int col\_major)

Convert a one-dimensional array a to a matrix with m rows and n columns filled in row-major order if col\_major equals 0 (otherwise, they get filled in column-major order).

### matrix to\_matrix(int[] a, int m, int n, int col\_major)

Convert a one-dimensional array a to a matrix with m rows and n columns filled in row-major order if col\_major equals 0 (otherwise, they get filled in column-major order).

### matrix to\_matrix(real[,] a)

Convert the two dimensional array a to a matrix with the same dimensions and indexing order.

### matrix to\_matrix(int[,] a)

Convert the two dimensional array a to a matrix with the same dimensions and indexing order. If any of the dimensions of a are zero, the result will be a  $0 \times 0$  matrix.

### vector to\_vector(matrix m)

Convert the matrix *m* to a column vector in column-major order.

### vector to\_vector(vector v)

Return the column vector *v* itself.

## vector to\_vector(row\_vector v)

Convert the row vector *v* to a column vector.

## vector to\_vector(real[] a)

Convert the one-dimensional array a to a column vector.

## vector to\_vector(int[] a)

Convert the one-dimensional integer array  $\boldsymbol{a}$  to a column vector.

### row\_vector to\_row\_vector(matrix m)

Convert the matrix m to a row vector in column-major order.

## row\_vector to\_row\_vector(vector v)

Convert the column vector v to a row vector.

#### row\_vector to\_row\_vector(row\_vector v)

Return the row vector v itself.

### row\_vector to\_row\_vector(real[] a)

Convert the one-dimensional array *a* to a row vector.

#### row\_vector to\_row\_vector(int[] a)

Convert the one-dimensional array **a** to a row vector.

### real[,] to\_array\_2d(matrix m)

Convert the matrix m to a two dimensional array with the same dimensions and indexing order.

### real[] to\_array\_ld(vector v)

Convert the column vector v to a one-dimensional array.

### real[] to\_array\_ld(row\_vector v)

Convert the row vector v to a one-dimensional array.

## real[] to\_array\_ld(matrix m)

Convert the matrix *m* to a one-dimensional array in column-major order.

### real[] to\_array\_1d(real[...] a)

Convert the array a (of any dimension up to 10) to a one-dimensional array in row-major order.

## int[] to\_array\_ld(int[...] a)

Convert the array a (of any dimension up to 10) to a one-dimensional array in row-major order.

# 8. Compound Arithmetic and Assignment

Compound arithmetic and assignment statements combine an arithmetic operation and assignment,

```
x = x op y;
replacing them with the compound form
```

```
x op= y;
```

For example, x = x + 1 may be replaced with x += 1.

The signatures of the supported compound arithmetic and assignment operations are as follows.

# 8.1. Compound Addition and Assignment

```
void operator+=(int x, int y)
     x += y is equivalent to x = x + y.
void operator+=(real x, real y)
     x += y is equivalent to x = x + y.
void operator+=(vector x, real y)
     x += y is equivalent to x = x + y.
void operator+=(row_vector x, real y)
     x += y is equivalent to x = x + y.
void operator+=(matrix x, real y)
     x += y is equivalent to x = x + y.
void operator+=(vector x, vector y)
     x += y is equivalent to x = x + y.
void operator+=(row_vector x, row_vector y)
     x += y is equivalent to x = x + y.
void operator+=(matrix x, matrix y)
     x += y is equivalent to x = x + y.
```

# 8.2. Compound Subtraction and Assignment

```
void operator-=(int x, int y)
     x \rightarrow y is equivalent to x = x - y.
void operator-=(real x, real y)
     x \rightarrow y is equivalent to x = x - y.
void operator-=(vector x, real y)
     x \rightarrow y is equivalent to x = x - y.
void operator-=(row_vector x, real y)
     x \rightarrow y is equivalent to x = x - y.
void operator-=(matrix x, real y)
     x \rightarrow y is equivalent to x = x - y.
void operator-=(vector x, vector y)
     x \rightarrow y is equivalent to x = x - y.
void operator-=(row_vector x, row_vector y)
     x \rightarrow y is equivalent to x = x - y.
void operator-=(matrix x, matrix y)
     x \rightarrow y is equivalent to x = x - y.
```

# 8.3. Compound Multiplication and Assignment

```
void operator*=(int x, int y)
    x *= y is equivalent to x = x * y.

void operator*=(real x, real y)
    x *= y is equivalent to x = x * y.

void operator*=(vector x, real y)
    x *= y is equivalent to x = x * y.

void operator*=(row_vector x, real y)
    x *= y is equivalent to x = x * y.

void operator*=(matrix x, real y)
    x *= y is equivalent to x = x * y.
```

```
void operator*=(row_vector x, matrix y)
    x *= y is equivalent to x = x * y.
void operator*=(matrix x, matrix y)
    x *= y is equivalent to x = x * y.
```

# 8.4. Compound Division and Assignment

```
void operator/=(int x, int y)
    x /= y is equivalent to x = x / y.

void operator/=(real x, real y)
    x /= y is equivalent to x = x / y.

void operator/=(vector x, real y)
    x /= y is equivalent to x = x / y.

void operator/=(row_vector x, real y)
    x /= y is equivalent to x = x / y.

void operator/=(matrix x, real y)
    x /= y is equivalent to x = x / y.
```

# 8.5. Compound Elementwise Multiplication and Assignment

```
void operator.*=(vector x, vector y)
    x .*= y is equivalent to x = x .* y.

void operator.*=(row_vector x, row_vector y)
    x .*= y is equivalent to x = x .* y.

void operator.*=(matrix x, matrix y)
    x .*= y is equivalent to x = x .* y.
```

# 8.6. Compound Elementwise Division and Assignment

```
void operator./=(vector x, vector y)
    x ./= y is equivalent to x = x ./ y.
void operator./=(row_vector x, row_vector y)
    x ./= y is equivalent to x = x ./ y.
```

```
void operator./=(matrix x, matrix y)
    x ./= y is equivalent to x = x ./ y.

void operator./=(vector x, real y)
    x ./= y is equivalent to x = x ./ y.

void operator./=(row_vector x, real y)
    x ./= y is equivalent to x = x ./ y.

void operator./=(matrix x, real y)
    x ./= y is equivalent to x = x ./ y.
```

# 9. Higher-Order Functions

Stan provides a few higher-order functions that act on other functions. In all cases, the function arguments to the higher-order functions are defined as functions within the Stan language and passed by name to the higher-order functions.

# 9.1. Algebraic Equation Solver

Stan provides a built-in algebraic equation solver. Although it looks like other function applications, the algebraic solver is special in two ways.

First, the algebraic solver is a higher-order function, i.e. it takes another function as one of its arguments. The only other functions in Stan which share this feature are the ordinary differential equation solvers (see Section 9.2). Ordinary Stan functions do not allow functions as arguments.

Second, some of the arguments of the algebraic solvers are restricted to data only expressions. These expressions must not contain variables other than those declared in the data or transformed data blocks. Ordinary Stan functions place no restriction on the origin of variables in their argument expressions.

### Specifying an Algebraic Equation as a Function

An algebraic system is specified as an ordinary function in Stan within the function block. The algebraic system function must have this signature:

The algebraic system function should return the value of the algebraic function which goes to 0, when we plug in the solution to the algebraic system.

The argument of this function are:

- · *y*, the unknowns we wish to solve for
- · theta, parameter values used to evaluate the algebraic system
- ·  $x_r$ , data values used to evaluate the algebraic system
- ·  $x_i$ , integer data used to evaluate the algebraic system

The algebraic system function separates parameter values, *theta*, from data values,  $x_r$ , for efficiency in computing the gradients of the algebraic system.

### Call to the Algebraic Solver

```
vector algebra_solver(function algebra_system,
```

```
vector y_guess,
vector theta, real[] x_r, int[] x_i)
```

Solves the algebraic system, given an initial guess, using the Powell hybrid algorithm.

### vector algebra\_solver(function algebra\_system,

```
vector y_guess,
vector theta, real[] x_r, int[] x_i,
real rel_tol, real f_tol, int max_steps)
```

Solves the algebraic system, given an initial guess, using the Powell hybrid algorithm with additional control parameters for the solver.

### Arguments to the Algebraic Solver

The arguments to the algebraic solver are as follows:

1. *algebra\_system*: function literal referring to a function specifying the system of algebraic equations with signature

```
(vector, vector, real[], int[]):vector
```

The arguments represent (1) unknowns, (2) parameters, (3) real data, and (4) integer data, and the return value contains the value of the algebraic function, which goes to 0 when we plug in the solution to the algebraic system,

- 2. *y\_guess*: initial guess for the solution, type vector,
- 3. theta: parameters only, type vector,
- 4.  $x_r$ : real data only, type real[], and
- 5.  $x_i$ : integer data only, type int[].

For more fine-grained control of the algebraic solver, these parameters can also be provided:

- 6. *rel\_tol*: relative tolerance for the algebraic solver, type real, data only,
- 7. *function\_to1*: function tolerance for the algebraic solver, type real, data only,
- 8. *max\_num\_steps*: maximum number of steps to take in the algebraic solver, type int, data only.

### Return value

The return value for the algebraic solver is an object of type vector, with values which, when plugged in as y make the algebraic function go to 0.

### Sizes and parallel arrays

Certain sizes have to be consistent. The initial guess, return value of the solver, and return value of the algebraic function must all be the same size.

The parameters, real data, and integer data will be passed from the solver directly to the system function.

### Algorithmic details

The algebraic solver uses the Powell hybrid method (Powell, 1970), which in turn uses first-order derivatives. The Stan code builds on the implementation of the hybrid solver in the unsupported module for nonlinear optimization problems of the Eigen library (Guennebaud et al., 2010). This solver is in turn based on the algorithm developed for the package MINPACK-1 (Jorge J. More, 1980).

The Jacobian of the solution with respect to auxiliary parameters is computed using the implicit function theorem. Intermediate Jacobians (of the the algebraic function's output with respect to the unknowns *y* and with respect to the auxiliary parameters *theta*) are computed using Stan's automatic differentiation.

# 9.2. Ordinary Differential Equation Solvers

Stan provides built-in ordinary differential equation (ODE) solvers. Although they look like function applications, the ODE solvers are special in two ways.

First, the first argument to each of the solvers is a function specifying the ODE system as an argument, like PKBugs (Lunn et al., 1999). Ordinary Stan functions do not allow functions as arguments.

Second, some of the arguments to the ODE solvers are restricted to data only expressions. These expressions must not contain variables other than those declared in the data or transformed data blocks. Ordinary Stan functions place no restriction on the origin of variables in their argument expressions.

# Specifying an Ordinary Differential Equation as a Function

A system of ODEs is specified as an ordinary function in Stan within the functions block. The ODE system function must have this function signature:

The ODE system function should return the derivative of the state with respect to time at the time provided. The length of the returned real array must match the length of the state input into the function.

The arguments to this function are:

- time, the time to evaluate the ODE system
- · *state*, the state of the ODE system at the time specified
- · theta, parameter values used to evaluate the ODE system
- ·  $x_r$ , data values used to evaluate the ODE system
- ·  $x_i$ , integer data values used to evaluate the ODE system.

The ODE system function separates parameter values, *theta*, from data values,  $x_r$ , for efficiency in computing the gradients of the ODE.

### Non-Stiff Solver

Solves the ODE system for the times provided using the Runge Kutta Dopri algorithm with the implementation from Boost.

Solves the ODE system for the times provided using the Runge Kutta Dopri algorithm with the implementation from Boost with additional control parameters for the solver.

Deprecated. Solves the ODE system for the times provided with a non-stiff solver. This calls the Runge Kutta Dopri algorithm.

### Stiff Solver

Solves the ODE system for the times provided using the backward differentiation formula (BDF) method with the implementation from CVODES.

Solves the ODE system for the times provided using the backward differentiation formula (BDF) method with the implementation from CVODES with additional control parameters for the CVODES solver.

### **Arguments to the ODE solvers**

The arguments to the ODE solvers in both the stiff and non-stiff cases are as follows.

1. *ode*: function literal referring to a function specifying the system of differential equations with signature described in Section 9.2.1:

```
(real, real[], real[], data real[], data int[]):real[]
```

The arguments represent (1) time, (2) system state, (3) parameters, (4) real data, and (5) integer data, and the return value contains the derivatives with respect to time of the state,

- 2. *initial\_state*: initial state, type real[],
- 3. *initial\_time*: initial time, type int or real,
- 4. *times*: solution times, type real[],
- 5. *theta*: parameters, type real[],
- 6. data  $x_r$ : real data, type real [], data only, and
- 7. data  $x_i$ : integer data, type int[], data only.

For more fine-grained control of the ODE solvers, these parameters can also be provided:

8. data *rel\_tol*: relative tolerance for the ODE solver, type real, data only,

- 9. data abs\_to1: absolute tolerance for the ODE solver, type real, data only, and
- 10. data *max\_num\_steps*: maximum number of steps to take in the ODE solver, type int, data only.

### Return values

The return value for the ODE solvers is an array of type real[,], with values consisting of solutions at the specified times.

### Sizes and parallel arrays

The sizes must match, and in particular, the following groups are of the same size:

- state variables passed into the system function, derivatives returned by the system function, initial state passed into the solver, and rows of the return value of the solver,
- · solution times and number of rows of the return value of the solver,
- parameters, real data and integer data passed to the solver will be passed to the system function

# 9.3. Higher-Order Map

Stan provides a higher-order map function. This allows map-reduce functionality to be coded in Stan as described in the user's guide.

# Specifying the Mapped Function

The function being mapped must have a signature identical to that of the function f in the following declaration.

The map function returns the sequence of results for the particular shard being evaluated. The arguments to the mapped function are:

- · phi, the sequence of parameters shared across shards
- · theta, the sequence of parameters specific to this shard
- · x\_r, sequence of real-valued data

·  $x_i$ , sequence of integer data

All input for the mapped function must be packed into these sequences and all output from the mapped function must be packed into a single vector. The vector of output from each mapped function is concatenated into the final result.

### **Rectangular Map**

The rectangular map function operates on rectangular (not ragged) data structures, with parallel data structures for job-specific parameters, job-specific real data, and job-specific integer data.

vector  $map\_rect(F f, vector phi, vector[] theta, data real[,] <math>x\_r$ , data int[,]  $x\_i$ )

Return the concatenation of the results of applying the function f, of type (vector, vector, real[], int[]):vector elementwise, i.e.,  $f(phi, theta[n], x_r[n], x_i[n]$ ) for each n in 1:N, where N is the size of the parallel arrays of job-specific/local parameters theta, real data  $x_r$ , and integer data  $x_r$ . The shared/global parameters phi are passed to each invocation of f.

# Part II Discrete Distributions

# 10. Conventions for Probability Functions

Functions associated with distributions are set up to follow the same naming conventions for both built-in distributions and for user-defined distributions.

# 10.1. Suffix Marks Type of Function

The suffix is determined by the type of function according to the following table.

| function                                           | outcome    | suffix |
|----------------------------------------------------|------------|--------|
| log probability mass function                      | discrete   | _1pmf  |
| log probability density function                   | continuous | _lpdf  |
| log cumulative distribution function               | any        | _lcdf  |
| log complementary cumulative distribution function | any        | _lccdf |
| random number generator                            | any        | _rng   |

For example, normal\_lpdf is the log of the normal probability density function (pdf) and bernoulli\_lpmf is the log of the bernoulli probability mass function (pmf). The log of the corresponding cumulative distribution functions (cdf) use the same suffix, normal\_lcdf and bernoulli\_lcdf.

# 10.2. Argument Order and the Vertical Bar

Each probability function has a specific outcome value and a number of parameters. Following conditional probability notation, probability density and mass functions use a vertical bar to separate the outcome from the parameters of the distribution. For example,  $normal_lpdf(y \mid mu, sigma)$  returns the value of mathematical formula  $logNormal(y \mid \mu, \sigma)$ . Cumulative distribution functions separate the outcome from the parameters in the same way (e.g.,  $normal_lcdf(y_low \mid mu, sigma)$ )

# 10.3. Sampling Notation

The notation

```
y ~ normal(mu, sigma);
```

provides the same (proportional) contribution to the model log density as the explicit target density increment,

```
target += normal_lpdf(y | mu, sigma);
```

In both cases, the effect is to add terms to the target log density. The only difference is that the example with the sampling (~) notation drops all additive constants in the log density; the constants are not necessary for any of Stan's sampling, approximation, or optimization algorithms.

# 10.4. Finite Inputs

All of the distribution functions are configured to throw exceptions (effectively rejecting samples or optimization steps) when they are supplied with non-finite arguments. The two cases of non-finite arguments are the infinite values and not-anumber value—these are standard in floating-point arithmetic.

# 10.5. Boundary Conditions

Many distributions are defined with support or constraints on parameters forming an open interval. For example, the normal density function accepts a scale parameter  $\sigma > 0$ . If  $\sigma = 0$ , the probability function will throw an exception.

This is true even for (complementary) cumulative distribution functions, which will throw exceptions when given input that is out of the support.

### 10.6. Pseudorandom Number Generators

For most of the probability functions, there is a matching pseudorandom number generator (PRNG) with the suffix \_rng. For example, the function normal\_rng(real, real) accepts two real arguments, an unconstrained location  $\mu$  and positive scale  $\sigma > 0$ , and returns an unconstrained pseudorandom value drawn from Normal( $\mu$ ,  $\sigma$ ). There are also vectorized forms of random number generators which return more than one random variate at a time.

### Restricted to Generated Quantities

Unlike regular functions, the PRNG functions may only be used in the generated quantities block.

### Limited Vectorization

Unlike the probability functions, only some of the PRNG functions are vectorized.

### 10.7. Cumulative Distribution Functions

For most of the univariate probability functions, there is a corresponding cumulative distribution function, log cumulative distribution function, and log complementary cumulative distribution function.

For a univariate random variable *Y* with probability function  $p_Y(y \mid \theta)$ , the cumulative distribution function (CDF)  $F_Y$  is defined by

$$F_Y(y) = \Pr[Y < y] = \int_{-\infty}^{y} p(y \mid \theta) dy.$$

The complementary cumulative distribution function (CCDF) is defined as

$$\Pr[Y \ge y] = 1 - F_Y(y).$$

The reason to use CCDFs instead of CDFs in floating-point arithmetic is that it is possible to represent numbers very close to 0 (the closest you can get is roughly  $10^{-300}$ ), but not numbers very close to 1 (the closest you can get is roughly  $1-10^{-15}$ ).

In Stan, there is a cumulative distribution function for each probability function. For instance, normal\_cdf(y, mu, sigma) is defined by

$$\int_{-\infty}^{y} \mathsf{Normal}(y \mid \mu, \sigma) \; \mathrm{d}y.$$

There are also log forms of the CDF and CCDF for most univariate distributions. For example,  $normal_lcdf(y \mid mu, sigma)$  is defined by

$$\log \left( \int_{-\infty}^{y} \mathsf{Normal}(y \mid \mu, \sigma) \, \mathrm{d}y \right)$$

and  $normal_lccdf(y \mid mu, sigma)$  is defined by

$$\log \left(1 - \int_{-\infty}^{y} \operatorname{Normal}(y \mid \mu, \sigma) \, dy\right).$$

### 10.8. Vectorization

Stan's univariate log probability functions, including the log density functions, log mass functions, log CDFs, and log CCDFs, all support vectorized function application, with results defined to be the sum of the elementwise application of the function. Some of the PRNG functions support vectorization, see Section 10.8.3 for more details.

In all cases, matrix operations are at least as fast and usually faster than loops and vectorized log probability functions are faster than their equivalent form defined with

loops. This isn't because loops are slow in Stan, but because more efficient automatic differentiation can be used. The efficiency comes from the fact that a vectorized log probably function only introduces one new node into the expression graph, thus reducing the number of virtual function calls required to compute gradients in C++, as well as from allowing caching of repeated computations.

Stan also overloads the multivariate normal distribution, including the Cholesky-factor form, allowing arrays of row vectors or vectors for the variate and location parameter. This is a huge savings in speed because the work required to solve the linear system for the covariance matrix is only done once.

Stan also overloads some scalar functions, such as log and exp, to apply to vectors (arrays) and return vectors (arrays). These vectorizations are defined elementwise and unlike the probability functions, provide only minimal efficiency speedups over repeated application and assignment in a loop.

### **Vectorized Function Signatures**

Vectorized Scalar Arguments

The normal probability function is specified with the signature

```
normal_lpdf(reals | reals, reals);
```

The pseudotype reals is used to indicate that an argument position may be vectorized. Argument positions declared as reals may be filled with a real, a one-dimensional array, a vector, or a row-vector. If there is more than one array or vector argument, their types can be anything but their size must match. For instance, it is legal to use normal\_lpdf(row\_vector | vector, real) as long as the vector and row vector have the same size.

Vectorized Vector and Row Vector Arguments

The multivariate normal distribution accepting vector or array of vector arguments is written as

```
multi_normal_lpdf(vectors | vectors, matrix);
```

These arguments may be row vectors, column vectors, or arrays of row vectors or column vectors.

Vectorized Integer Arguments

The pseudotype ints is used for vectorized integer arguments. Where it appears either an integer or array of integers may be used.

### **Evaluating Vectorized Log Probability Functions**

The result of a vectorized log probability function is equivalent to the sum of the evaluations on each element. Any non-vector argument, namely real or int, is repeated. For instance, if y is a vector of size N, mu is a vector of size N, and sigma is a scalar, then

With the same arguments, the vectorized sampling statement

```
y ~ normal(mu, sigma);
```

has the same effect on the total log probability as

```
for (n in 1:N)
y[n] ~ normal(mu[n], sigma);
```

### **Evaluating Vectorized PRNG Functions**

Some PRNG functions accept sequences as well as scalars as arguments. Such functions are indicated by argument pseudotypes reals or ints. In cases of sequence arguments, the output will also be a sequence. For example, the following is allowed in the generated quantities block.

```
vector[3] mu = ...;
real x[3] = normal_rng(mu, 3);
```

# Argument types

In the case of PRNG functions, arguments marked ints may be integers or integer arrays, whereas arguments marked reals may be integers or reals, integer or real arrays, vectors, or row vectors.

| pseudotype | allowable PRNG arguments                                |
|------------|---------------------------------------------------------|
|            | <pre>int, int[]</pre>                                   |
| reals      | <pre>int, int[], real, real[], vector, row_vector</pre> |

### Dimension matching

In general, if there are multiple non-scalar arguments, they must all have the same dimensions, but need not have the same type. For example, the normal\_rng function may be called with one vector argument and one real array argument as long as they have the same number of elements.

```
vector[3] mu = ...;
real sigma[3] = ...;
real x[3] = normal_rnq(mu, sigma);
```

### Return type

The result of a vectorized PRNG function depends on the size of the arguments and the distribution's support. If all arguments are scalars, then the return type is a scalar. For a continuous distribution, if there are any non-scalar arguments, the return type is a real array (real[]) matching the size of any of the non-scalar arguments, as all non-scalar arguments must have matching size. Discrete distributions return ints and continuous distributions return reals, each of appropriate size. The symbol R denotes such a return type.

# 11. Binary Distributions

Binary probability distributions have support on  $\{0,1\}$ , where 1 represents the value true and 0 the value false.

### 11.1. Bernoulli Distribution

Probability Mass Function

If  $\theta \in [0, 1]$ , then for  $y \in \{0, 1\}$ ,

$$\mathsf{Bernoulli}(y|\theta) = \left\{ \begin{array}{ll} \theta & \text{if } y = 1, \text{ and} \\ 1 - \theta & \text{if } y = 0. \end{array} \right.$$

Sampling Statement

### y ~ bernoulli(theta);

Increment target log probability density with  $bernoulli_lpmf(y | theta)$ , dropping constant additive terms.

Stan Functions

# real bernoulli\_lpmf(ints y | reals theta)

The log Bernoulli probability mass of *y* given chance of success *theta* 

# real **bernoulli\_cdf**(ints y, reals theta)

The Bernoulli cumulative distribution function of y given chance of success theta

# real bernoulli\_lcdf(ints y | reals theta)

The log of the Bernoulli cumulative distribution function of *y* given chance of success *theta* 

# real bernoulli\_lccdf(ints y | reals theta)

The log of the Bernoulli complementary cumulative distribution function of *y* given chance of success *theta* 

# R bernoulli\_rng(reals theta)

Generate a Bernoulli variate with chance of success *theta*; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

# 11.2. Bernoulli Distribution, Logit Parameterization

Stan also supplies a direct parameterization in terms of a logit-transformed chance-of-success parameter. This parameterization is more numerically stable if the chance-of-success parameter is on the logit scale, as with the linear predictor in a logistic regression.

### Probability Mass Function

If  $\alpha \in \mathbb{R}$ , then for  $c \in \{0, 1\}$ ,

$$\mathsf{BernoulliLogit}(c|\alpha) = \mathsf{Bernoulli}(c|\mathsf{logit}^{-1}(\alpha)) = \begin{cases} \mathsf{logit}^{-1}(\alpha) & \text{if } y = 1, \text{ and} \\ 1 - \mathsf{logit}^{-1}(\alpha) & \text{if } y = 0. \end{cases}$$

### Sampling Statement

### y ~ bernoulli\_logit(alpha);

Increment target log probability density with  $bernoulli_logit_lpmf(y | alpha)$ , dropping constant additive terms.

### Stan Functions

# real bernoulli\_logit\_lpmf(ints y | reals alpha)

The log Bernoulli probability mass of y given chance of success inv\_logit(alpha)

# int bernoulli\_logit\_rng(real alpha)

Generate a Bernoulli variate with chance of success  $logit^{-1}(\alpha)$ ; may only be used in generated quantities block

# 12. Bounded Discrete Distributions

Bounded discrete probability functions have support on  $\{0,...,N\}$  for some upper bound N.

### 12.1. Binomial Distribution

Probability Mass Function

Suppose  $N \in \mathbb{N}$  and  $\theta \in [0, 1]$ , and  $n \in \{0, ..., N\}$ .

$$\mathsf{Binomial}(n|N,\theta) = \binom{N}{n} \theta^n (1-\theta)^{N-n}.$$

Log Probability Mass Function

$$\begin{array}{lcl} \log \operatorname{Binomial}(n|N,\theta) & = & \log \Gamma(N+1) - \log \Gamma(n+1) - \log \Gamma(N-n+1) \\ \\ & + n \log \theta + (N-n) \log (1-\theta), \end{array}$$

Gradient of Log Probability Mass Function

$$\frac{\partial}{\partial \theta} \log \operatorname{Binomial}(n|N,\theta) = \frac{n}{\theta} - \frac{N-n}{1-\theta}$$

Sampling Statement

# n ~ binomial(N, theta);

Increment target log probability density with  $binomial\_lpmf(n | N, theta)$ , dropping constant additive terms.

Stan Functions

# real $binomial_lpmf(ints n | ints N, reals theta)$

The log binomial probability mass of n successes in N trials given chance of success theta

# real binomial\_cdf(ints n, ints N, reals theta)

The binomial cumulative distribution function of n successes in N trials given chance of success theta

### real **binomial\_lcdf**(ints *n* | ints *N*, reals *theta*)

The log of the binomial cumulative distribution function of n successes in N trials given chance of success theta

### real binomial\_lccdf(ints n | ints N, reals theta)

The log of the binomial complementary cumulative distribution function of n successes in N trials given chance of success theta

### R binomial\_rng(ints N, reals theta)

Generate a binomial variate with *N* trials and chance of success *theta*; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

# 12.2. Binomial Distribution, Logit Parameterization

Stan also provides a version of the binomial probability mass function distribution with the chance of success parameterized on the unconstrained logistic scale.

Probability Mass Function

Suppose  $N \in \mathbb{N}$ ,  $\alpha \in \mathbb{R}$ , and  $n \in \{0, ..., N\}$ .

$$\begin{aligned} \mathsf{BinomialLogit}(n|N,\alpha) &=& \mathsf{Binomial}(n|N,\mathsf{logit}^{-1}(\alpha)) \\ &=& \binom{N}{n} \left(\mathsf{logit}^{-1}(\alpha)\right)^n \left(1 - \mathsf{logit}^{-1}(\alpha)\right)^{N-n}. \end{aligned}$$

Log Probability Mass Function

$$\begin{split} \log \mathsf{BinomialLogit}(n|N,\alpha) &= & \log \Gamma(N+1) - \log \Gamma(n+1) - \log \Gamma(N-n+1) \\ &+ n \log \log \mathsf{it}^{-1}(\alpha) + (N-n) \log \left(1 - \mathsf{logit}^{-1}(\alpha)\right), \end{split}$$

Gradient of Log Probability Mass Function

$$\frac{\partial}{\partial \alpha} \log \mathsf{BinomialLogit}(n|N,\alpha) = \frac{n}{\log \mathsf{it}^{-1}(-\alpha)} - \frac{N-n}{\log \mathsf{it}^{-1}(\alpha)}$$

Sampling Statement

n ~ binomial\_logit(N, alpha);

Increment target log probability density with  $binomial_logit_lpmf(n | N, alpha)$ , dropping constant additive terms.

Stan Functions

real **binomial\_logit\_lpmf**(ints *n* | ints *N*, reals *alpha*)

The log binomial probability mass of n successes in N trials given logit-scaled chance of success a1pha

### 12.3. Beta-Binomial Distribution

Probability Mass Function

If  $N \in \mathbb{N}$ ,  $\alpha \in \mathbb{R}^+$ , and  $\beta \in \mathbb{R}^+$ , then for  $n \in \{0, ..., N\}$ ,

$$\mathsf{BetaBinomial}(n|N,\alpha,\beta) = \binom{N}{n} \frac{\mathsf{B}(n+\alpha,N-n+\beta)}{\mathsf{B}(\alpha,\beta)},$$

where the beta function B(u, v) is defined for  $u \in \mathbb{R}^+$  and  $v \in \mathbb{R}^+$  by

$$B(u,v) = \frac{\Gamma(u) \Gamma(v)}{\Gamma(u+v)}.$$

Sampling Statement

n ~ beta\_binomial(N, alpha, beta);

Increment target log probability density with  $beta\_binomial\_lpmf(n | N, alpha, beta)$ , dropping constant additive terms.

Stan Functions

- real **beta\_binomial\_lpmf**(ints  $n \mid \text{ints } N$ , reals alpha, reals beta)

  The log beta-binomial probability mass of n successes in N trials given prior success count (plus one) of alpha and prior failure count (plus one) of beta
- real **beta\_binomial\_cdf**(ints *n*, ints *N*, reals *alpha*, reals *beta*)

  The beta-binomial cumulative distribution function of *n* successes in *N* trials given prior success count (plus one) of *alpha* and prior failure count (plus one) of *beta*

real **beta\_binomial\_lcdf**(ints *n* | ints *N*, reals *alpha*, reals *beta*)

The log of the beta-binomial cumulative distribution function of n successes in N trials given prior success count (plus one) of alpha and prior failure count (plus one) of beta

real **beta\_binomial\_lccdf**(ints *n* | ints *N*, reals *alpha*, reals *beta*)

The log of the beta-binomial complementary cumulative distribution function of n successes in N trials given prior success count (plus one) of alpha and prior failure count (plus one) of beta

R beta\_binomial\_rng(ints N, reals alpha, reals beta)

Generate a beta-binomial variate with N trials, prior success count (plus one) of a1pha, and prior failure count (plus one) of beta; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

# 12.4. Hypergeometric Distribution

Probability Mass Function

If  $a \in \mathbb{N}$ ,  $b \in \mathbb{N}$ , and  $N \in \{0, \dots, a+b\}$ , then for  $n \in \{\max(0, N-b), \dots, \min(a, N)\}$ ,

$$\mathsf{Hypergeometric}(n|N,a,b) = \frac{\binom{a}{n}\binom{b}{N-n}}{\binom{a+b}{N}}.$$

Sampling Statement

n ~ hypergeometric(N, a, b);

Increment target log probability density with hypergeometric\_lpmf( $n \mid N$ , a, b), dropping constant additive terms.

Stan Functions

real hypergeometric\_lpmf(int n | int N, int a, int b)

The log hypergeometric probability mass of n successes in N trials given total success count of a and total failure count of b

int hypergeometric\_rng(int N, int a, int2 b)

Generate a hypergeometric variate with N trials, total success count of a, and total failure count of b; may only be used in generated quantities block

# 12.5. Categorical Distribution

Probability Mass Functions

If  $N \in \mathbb{N}$ , N > 0, and if  $\theta \in \mathbb{R}^N$  forms an N-simplex (i.e., has nonnegative entries summing to one), then for  $y \in \{1, ..., N\}$ ,

Categorical(
$$y|\theta$$
) =  $\theta_y$ .

In addition, Stan provides a log-odds scaled categorical distribution,

CategoricalLogit( $y|\beta$ ) = Categorical( $y|softmax(\beta)$ ).

See Section 5.11 for the definition of the softmax function.

Sampling Statement

### y ~ categorical(theta);

Increment target log probability density with categorical\_lpmf( $y \mid theta$ ), dropping constant additive terms.

Sampling Statement

### y ~ categorical\_logit(beta);

Increment target log probability density with  $categorical\_logit\_lpmf(y \mid beta)$ , dropping constant additive terms.

### Stan Functions

All of the categorical distributions are vectorized so that the outcome *y* can be a single integer (type int) or an array of integers (type int[]).

# real categorical\_lpmf(ints y | vector theta)

The log categorical probability mass function with outcome(s) y in 1:N given N-vector of outcome probabilities theta. The parameter theta must have non-negative entries that sum to one, but it need not be a variable declared as a simplex.

# real categorical\_logit\_lpmf(ints y | vector beta)

The log categorical probability mass function with outcome(s) y in 1:N given log-odds of outcomes beta.

### int categorical\_rng(vector theta)

Generate a categorical variate with N-simplex distribution parameter *theta*; may only be used in generated quantities block

### int categorical\_logit\_rng(vector beta)

Generate a categorical variate with outcome in range 1:N from log-odds vector beta; may only be used in generated quantities block

# 12.6. Ordered Logistic Distribution

### Probability Mass Function

If  $K \in \mathbb{N}$  with K > 2,  $c \in \mathbb{R}^{K-1}$  such that  $c_k < c_{k+1}$  for  $k \in \{1, ..., K-2\}$ , and  $\eta \in \mathbb{R}$ , then for  $k \in \{1, ..., K\}$ ,

$$\mathsf{OrderedLogistic}(k|\eta,c) = \left\{ \begin{array}{ll} 1 - \mathsf{logit}^{-1}(\eta - c_1) & \text{if } k = 1, \\ \mathsf{logit}^{-1}(\eta - c_{k-1}) - \mathsf{logit}^{-1}(\eta - c_k) & \text{if } 1 < k < K, \text{and} \\ \mathsf{logit}^{-1}(\eta - c_{K-1}) - 0 & \text{if } k = K. \end{array} \right.$$

The k=K case is written with the redundant subtraction of zero to illustrate the parallelism of the cases; the k=1 and k=K edge cases can be subsumed into the general definition by setting  $c_0=-\infty$  and  $c_K=+\infty$  with  $\operatorname{logit}^{-1}(-\infty)=0$  and  $\operatorname{logit}^{-1}(\infty)=1$ .

### Sampling Statement

# $k \sim \text{ordered\_logistic}(eta, c);$

Increment target log probability density with  $ordered_logistic_lpmf(k \mid eta, c)$ , dropping constant additive terms.

### Stan Functions

# real $ordered_logistic_lpmf(ints k | vector eta, vectors c)$

The log ordered logistic probability mass of k given linear predictors eta, and cutpoints c.

# int **ordered\_logistic\_rng**(real *eta*, vector *c*)

Generate an ordered logistic variate with linear predictor *eta* and cutpoints *c*; may only be used in generated quantities block

### 12.7. Ordered Probit Distribution

### Probability Mass Function

If  $K \in \mathbb{N}$  with K > 2,  $c \in \mathbb{R}^{K-1}$  such that  $c_k < c_{k+1}$  for  $k \in \{1, ..., K-2\}$ , and  $\eta \in \mathbb{R}$ , then for  $k \in \{1, ..., K\}$ ,

$$\mathsf{OrderedProbit}(k|\eta,c) = \left\{ \begin{array}{ll} 1 - \Phi(\eta-c_1) & \text{if } k=1, \\ \Phi(\eta-c_{k-1}) - \Phi(\eta-c_k) & \text{if } 1 < k < K, \text{and} \\ \Phi(\eta-c_{K-1}) - 0 & \text{if } k=K. \end{array} \right.$$

The k=K case is written with the redundant subtraction of zero to illustrate the parallelism of the cases; the k=1 and k=K edge cases can be subsumed into the general definition by setting  $c_0=-\infty$  and  $c_K=+\infty$  with  $\Phi(-\infty)=0$  and  $\Phi(\infty)=1$ .

### Sampling Statement

### k ~ ordered\_probit(eta, c);

Increment target log probability density with ordered\_probit\_lpmf( $k \mid eta$ , c), dropping constant additive terms.

### Stan Functions

# real **ordered\_probit\_lpmf**(ints $k \mid \text{vector } eta$ , vectors c)

The log ordered probit probability mass of k given linear predictors eta, and cutpoints c.

# int **ordered\_probit\_rng**(real *eta*, vector *c*)

Generate an ordered probit variate with linear predictor *eta* and cutpoints *c*; may only be used in generated quantities block

# 13. Unbounded Discrete Distributions

The unbounded discrete distributions have support over the natural numbers (i.e., the non-negative integers).

# 13.1. Negative Binomial Distribution

For the negative binomial distribution Stan uses the parameterization described in Gelman et al. (2013). For alternative parameterizations, see Section 13.2.

Probability Mass Function

If  $\alpha \in \mathbb{R}^+$  and  $\beta \in \mathbb{R}^+$ , then for  $y \in \mathbb{N}$ ,

$$\mathsf{NegBinomial}(y | \alpha, \beta) = \binom{y + \alpha - 1}{\alpha - 1} \left(\frac{\beta}{\beta + 1}\right)^{\alpha} \left(\frac{1}{\beta + 1}\right)^{y}.$$

The mean and variance of a random variable  $y \sim \text{NegBinomial}(\alpha, \beta)$  are given by

$$\mathbb{E}[y] = \frac{\alpha}{\beta}$$
 and  $Var[Y] = \frac{\alpha}{\beta^2}(\beta + 1)$ .

Sampling Statement

 $n \sim \text{neg\_binomial}(alpha, beta);$ 

Increment target log probability density with  $neg\_binomial\_lpmf(n | alpha, beta)$ , dropping constant additive terms.

Stan Functions

real  $neg\_binomial\_lpmf(ints n | reals alpha, reals beta)$ 

The log negative binomial probability mass of *n* given shape *alpha* and inverse scale *beta* 

real **neg\_binomial\_cdf**(ints *n*, reals *alpha*, reals *beta*)

The negative binomial cumulative distribution function of n given shape alpha and inverse scale beta

real neg\_binomial\_lcdf(ints n | reals alpha, reals beta)

The log of the negative binomial cumulative distribution function of n given shape a l p h a and inverse scale b e t a

### real **neg\_binomial\_lccdf**(ints *n* | reals *alpha*, reals *beta*)

The log of the negative binomial complementary cumulative distribution function of n given shape alpha and inverse scale beta

### R neg\_binomial\_rng(reals alpha, reals beta)

Generate a negative binomial variate with shape alpha and inverse scale beta; may only be used in generated quantities block. alpha / beta must be less than  $2^{29}$ . For a description of argument and return types, see Section 10.8.3.

# 13.2. Negative Binomial Distribution (alternative parameterization)

Stan also provides an alternative parameterization of the negative binomial distribution directly using a mean (i.e., location) parameter and a parameter that controls overdispersion relative to the square of the mean. Section 13.3, below, provides a second alternative parameterization directly in terms of the log mean.

### Probability Mass Function

The first parameterization is for  $\mu \in \mathbb{R}^+$  and  $\phi \in \mathbb{R}^+$ , which for  $\gamma \in \mathbb{R}$  is defined as

NegBinomial2
$$(y \mid \mu, \phi) = \begin{pmatrix} y + \phi - 1 \\ y \end{pmatrix} \left( \frac{\mu}{\mu + \phi} \right)^y \left( \frac{\phi}{\mu + \phi} \right)^{\phi}$$
.

The mean and variance of a random variable  $y \sim \text{NegBinomial2}(y|\mu, \phi)$  are

$$\mathbb{E}[Y] = \mu$$
 and  $\operatorname{Var}[Y] = \mu + \frac{\mu^2}{\phi}$ .

Recall that  $Poisson(\mu)$  has variance  $\mu$ , so  $\mu^2/\phi > 0$  is the additional variance of the negative binomial above that of the Poisson with mean  $\mu$ . So the inverse of parameter  $\phi$  controls the overdispersion, scaled by the square of the mean,  $\mu^2$ .

### Sampling Statement

# y ~ neg\_binomial\_2(mu, phi);

Increment target log probability density with  $neg\_binomia1_2\_1pmf(y \mid mu, phi)$ , dropping constant additive terms.

### Stan Functions

# real $neg\_binomial\_2\_lpmf(ints y | reals mu, reals phi)$

The negative binomial probability mass of n given location mu and precision phi.

### real **neg\_binomial\_2\_cdf**(ints *n*, reals *mu*, reals *phi*)

The negative binomial cumulative distribution function of n given location mu and precision phi.

### real neg\_binomial\_2\_lcdf(ints n | reals mu, reals phi)

The log of the negative binomial cumulative distribution function of n given location mu and precision phi.

### real **neg\_binomial\_2\_lccdf**(ints *n* | reals *mu*, reals *phi*)

The log of the negative binomial complementary cumulative distribution function of n given location mu and precision phi.

# R neg\_binomial\_2\_rng(reals mu, reals phi)

Generate a negative binomial variate with location mu and precision phi; may only be used in generated quantities block. mu must be less than  $2^{29}$ . For a description of argument and return types, see Section 10.8.3.

# 13.3. Negative Binomial Distribution (log alternative parameterization)

Related to the parameterization in Section 13.2, the following parameterization uses a log mean parameter  $\eta = \log(\mu)$ , defined for  $\eta \in \mathbb{R}$ ,  $\phi \in \mathbb{R}^+$ , so that for  $y \in \mathbb{N}$ ,

NegBinomial2Log
$$(y | \eta, \phi)$$
 = NegBinomial2 $(y | \exp(\eta), \phi)$ .

This alternative may be used for sampling, as a function, and for random number generation, but as of yet, there are no CDFs implemented for it.

Sampling Statement

# y ~ neg\_binomial\_2\_log(eta, phi);

Increment target log probability density with  $neg\_binomia1\_2\_log\_lpmf(y \mid eta, phi)$ , dropping constant additive terms.

### 13.4. Stan Functions

# real $neg\_binomial\_2\_log\_lpmf(ints y | reals eta, reals phi)$

The log negative binomial probability mass of n given log-location eta and inverse overdispersion control phi. This is especially useful for log-linear negative binomial regressions.

### R **neg\_binomial\_2\_log\_rng**(reals *eta*, reals *phi*)

Generate a negative binomial variate with log-location *eta* and inverse overdispersion control *phi*; may only be used in generated quantities block. *eta* must be less than 29 log 2. For a description of argument and return types, see Section 10.8.3.

### 13.5. Poisson Distribution

Probability Mass Function

If  $\lambda \in \mathbb{R}^+$ , then for  $n \in \mathbb{N}$ ,

Poisson
$$(n|\lambda) = \frac{1}{n!} \lambda^n \exp(-\lambda)$$
.

Sampling Statement

### $n \sim poisson(lambda);$

Increment target log probability density with  $poisson_1pmf(n \mid lambda)$ , dropping constant additive terms.

Stan Functions

# real $poisson_lpmf(ints n | reals lambda)$

The log Poisson probability mass of n given rate lambda

# real poisson\_cdf(ints n, reals lambda)

The Poisson cumulative distribution function of *n* given rate *lambda* 

# real poisson\_lcdf(ints n | reals lambda)

The log of the Poisson cumulative distribution function of n given rate lambda

# real poisson\_lccdf(ints n | reals lambda)

The log of the Poisson complementary cumulative distribution function of n given rate lambda

# R poisson\_rng(reals lambda)

Generate a Poisson variate with rate lambda; may only be used in generated quantities block. lambda must be less than  $2^{30}$ . For a description of argument and return types, see Section 10.8.3.

# 13.6. Poisson Distribution, Log Parameterization

Stan also provides a parameterization of the Poisson using the log rate  $\alpha = \log \lambda$  as a parameter. This is useful for log-linear Poisson regressions so that the predictor does not need to be exponentiated and passed into the standard Poisson probability function.

Probability Mass Function

If  $\alpha \in \mathbb{R}$ , then for  $n \in \mathbb{N}$ ,

PoissonLog
$$(n|\alpha) = \frac{1}{n!} \exp(n\alpha - \exp(\alpha))$$
.

Sampling Statement

# $n \sim poisson_log(alpha);$

Increment target log probability density with  $poisson_log_lpmf(n \mid alpha)$ , dropping constant additive terms.

Stan Functions

# real poisson\_log\_lpmf(ints n | reals alpha)

The log Poisson probability mass of *n* given log rate *alpha* 

# R poisson\_log\_rng(reals alpha)

Generate a Poisson variate with log rate a1pha; may only be used in generated quantities block. a1pha must be less than  $30 \log 2$ . For a description of argument and return types, see Section 10.8.3.

# 14. Multivariate Discrete Distributions

The multivariate discrete distributions are over multiple integer values, which are expressed in Stan as arrays.

### 14.1. Multinomial Distribution

Probability Mass Function

If  $K \in \mathbb{N}$ ,  $N \in \mathbb{N}$ , and  $\theta \in K$ -simplex, then for  $y \in \mathbb{N}^K$  such that  $\sum_{k=1}^K y_k = N$ ,

$$\mathsf{Multinomial}(y|\theta) = \binom{N}{y_1, \dots, y_K} \prod_{k=1}^K \theta_k^{y_k},$$

where the multinomial coefficient is defined by

$$\binom{N}{y_1,\ldots,y_k} = \frac{N!}{\prod_{k=1}^K y_k!}.$$

Sampling Statement

### y ~ multinomial(theta);

Increment target log probability density with  $multinomial_lpmf(y \mid theta)$ , dropping constant additive terms.

Stan Functions

# real multinomial\_lpmf(int[] y | vector theta)

The log multinomial probability mass function with outcome array y of size K given the K-simplex distribution parameter *theta* and (implicit) total count N = sum(y)

# int[] multinomial\_rng(vector theta, int N)

Generate a multinomial variate with simplex distribution parameter *theta* and total count *N*; may only be used in generated quantities block

# Part III Continuous Distributions

# 15. Unbounded Continuous Distributions

The unbounded univariate continuous probability distributions have support on all real numbers.

### 15.1. Normal Distribution

Probability Density Function

If  $\mu \in \mathbb{R}$  and  $\sigma \in \mathbb{R}^+$ , then for  $\gamma \in \mathbb{R}$ ,

Normal
$$(y|\mu, \sigma) = \frac{1}{\sqrt{2\pi} \sigma} \exp\left(-\frac{1}{2} \left(\frac{y-\mu}{\sigma}\right)^2\right).$$

Sampling Statement

 $y \sim normal(mu, sigma);$ 

Increment target log probability density with  $normal\_lpdf(y \mid mu, sigma)$ , dropping constant additive terms.

Stan Functions

real  $normal_lpdf(reals y | reals mu, reals sigma)$ 

The log of the normal density of y given location mu and scale sigma

real normal\_cdf(reals y, reals mu, reals sigma)

The cumulative normal distribution of y given location mu and scale sigma; normal\_cdf will underflow to 0 for  $\frac{y-\mu}{\sigma}$  below -37.5 and overflow to 1 for  $\frac{y-\mu}{\sigma}$  above 8.25; the function Phi\_approx is more robust in the tails, but must be scaled and translated for anything other than a standard normal.

real  $normal_lcdf(reals y | reals mu, reals sigma)$ 

The log of the cumulative normal distribution of y given location mu and scale sigma; normal\_lcdf will underflow to  $-\infty$  for  $\frac{y-\mu}{\sigma}$  below -37.5 and overflow to 0 for  $\frac{y-\mu}{\sigma}$  above 8.25; see above for discussion of Phi\_approx as an alternative.

real  $normal_lccdf(reals y | reals mu, reals sigma)$ 

The log of the complementary cumulative normal distribution of y given location mu and scale sigma; normal\_lccdf will overflow to 0 for  $\frac{y-\mu}{\sigma}$  below -37.5 and underflow to  $-\infty$  for  $\frac{y-\mu}{\sigma}$  above 8.25; see above for discussion of Phi\_approx as an alternative.

### R normal\_rng(reals mu, reals sigma)

Generate a normal variate with location *mu* and scale *sigma*; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

### Standard Normal Distribution

The standard normal distribution is so-called because its parameters are the units for their respective operations—the location (mean) is zero and the scale (standard deviation) one. The standard normal is parameter free and the unit parameters allow considerable simplification of the expression for the density.

$$StdNormal(y) = Normal(y \mid 0, 1) = \frac{1}{\sqrt{2\pi}} exp\left(\frac{-y^2}{2}\right).$$

Up to a proportion on the log scale, where Stan computes,

$$\log Normal(y \mid 0, 1) = \frac{-y^2}{2} + const.$$

With no logarithm, no subtraction, and no division by a parameter, the standard normal log density is much more efficient to compute than the normal log density with constant location 0 and scale 1.

### Stan Functions

Only the log probabilty density function is available for the standard normal distribution; for other functions, use the normal\_versions with parameters  $\mu=0$  and  $\sigma=1$ .

# real std\_normal\_lpdf(reals y)

The standard normal (location zero, scale one) log probability density of y.

### Sampling Statement

# y ~ std\_normal();

Increment target log probability density with  $std_normal_lpmf(y)$ , dropping constant additive terms.

### 15.2. Exponentially Modified Normal Distribution

Probability Density Function

If  $\mu \in \mathbb{R}$ ,  $\sigma \in \mathbb{R}^+$ , and  $\lambda \in \mathbb{R}^+$ , then for  $\gamma \in \mathbb{R}$ ,

$$\mathsf{ExpModNormal}(y|\mu,\sigma,\lambda) = \frac{\lambda}{2} \; \exp\left(\frac{\lambda}{2} \left(2\mu + \lambda \sigma^2 - 2y\right)\right) \operatorname{erfc}\left(\frac{\mu + \lambda \sigma^2 - y}{\sqrt{2}\sigma}\right).$$

Sampling Statement

y ~ exp\_mod\_normal(mu, sigma, lambda);

Increment target log probability density with exp\_mod\_normal\_lpdf(*y* | *mu*, *sigma*, *lambda*), dropping constant additive terms.

Stan Functions

The log of the exponentially modified normal density of y given location mu, scale sigma, and shape lambda

real **exp\_mod\_normal\_cdf**(reals *y*, reals *mu*, reals *sigma*, reals *lambda*)

The exponentially modified normal cumulative distribution function of *y* given location *mu*, scale *sigma*, and shape *lambda* 

The log of the exponentially modified normal cumulative distribution function of *y* given location *mu*, scale *sigma*, and shape *lambda* 

The log of the exponentially modified normal complementary cumulative distribution function of *y* given location *mu*, scale *sigma*, and shape *lambda* 

R **exp\_mod\_normal\_rng**(reals *mu*, reals *sigma*, reals *lambda*)

Generate a exponentially modified normal variate with location *mu*, scale *sigma*, and shape *lambda*; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

### 15.3. Skew Normal Distribution

Probability Density Function

If  $\xi \in \mathbb{R}$ ,  $\omega \in \mathbb{R}^+$ , and  $\alpha \in \mathbb{R}$ , then for  $y \in \mathbb{R}$ ,

$$\mathsf{SkewNormal}(y \mid \xi, \omega, \alpha) = \frac{1}{\omega \sqrt{2\pi}} \, \exp\left(-\frac{1}{2} \left(\frac{y - \xi}{\omega}\right)^2\right) \, \left(1 + \operatorname{erf}\left(\alpha \left(\frac{y - \xi}{\omega \sqrt{2}}\right)\right)\right).$$

Sampling Statement

y ~ skew\_normal(xi, omega, alpha);
Increment target log probability density with skew\_normal\_lpdf(y | xi,
omega, alpha), dropping constant additive terms.

Stan Functions

- real **skew\_normal\_lpdf**(reals  $y \mid \text{reals } xi$ , reals *omega*, reals *alpha*)

  The log of the skew normal density of y given location xi, scale *omega*, and shape alpha
- real **skew\_normal\_cdf**(reals y, reals xi, reals omega, reals alpha)

  The skew normal distribution function of y given location xi, scale omega, and shape alpha
- real  $skew_normal_lcdf(reals y | reals xi, reals omega, reals alpha)$

The log of the skew normal cumulative distribution function of y given location xi, scale omega, and shape alpha

The log of the skew normal complementary cumulative distribution function of y given location xi, scale omega, and shape alpha

R **skew\_normal\_rng**(reals *xi*, reals *omega*, real *alpha*)

Generate a skew normal variate with location xi, scale *omega*, and shape a1pha; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

# 15.4. Student-t Distribution

Probability Density Function

If  $v \in \mathbb{R}^+$ ,  $\mu \in \mathbb{R}$ , and  $\sigma \in \mathbb{R}^+$ , then for  $y \in \mathbb{R}$ ,

$$\mathsf{StudentT}(y|\nu,\mu,\sigma) = \frac{\Gamma\left((\nu+1)/2\right)}{\Gamma(\nu/2)} \; \frac{1}{\sqrt{\nu\pi} \; \sigma} \; \left(1 + \frac{1}{\nu} \left(\frac{y-\mu}{\sigma}\right)^2\right)^{-(\nu+1)/2}.$$

Sampling Statement

y ~ student\_t(nu, mu, sigma);

Increment target log probability density with  $student_t_pdf(y \mid nu, mu, sigma)$ , dropping constant additive terms.

Stan Functions

- real **student\_t\_lpdf**(reals  $y \mid \text{reals } nu$ , reals mu, reals sigma)

  The log of the Student-t density of y given degrees of freedom nu, location mu, and scale sigma
- real **student\_t\_cdf**(reals *y*, reals *nu*, reals *mu*, reals *sigma*)

  The Student-*t* cumulative distribution function of *y* given degrees of freedom *nu*, location *mu*, and scale *sigma*
- real **student\_t\_lcdf**(reals  $y \mid \text{reals } nu$ , reals mu, reals sigma)

  The log of the Student-t cumulative distribution function of y given degrees of freedom nu, location mu, and scale sigma
- real **student\_t\_lccdf**(reals  $y \mid reals nu$ , reals mu, reals sigma)

  The log of the Student-t complementary cumulative distribution function of y given degrees of freedom nu, location mu, and scale sigma
- R **student\_t\_rng**(reals *nu*, reals *mu*, reals *sigma*)

Generate a Student-*t* variate with degrees of freedom *nu*, location *mu*, and scale *sigma*; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

### 15.5. Cauchy Distribution

Probability Density Function

If  $\mu \in \mathbb{R}$  and  $\sigma \in \mathbb{R}^+$ , then for  $\gamma \in \mathbb{R}$ ,

Cauchy
$$(y|\mu,\sigma) = \frac{1}{\pi\sigma} \frac{1}{1 + ((y-\mu)/\sigma)^2}$$
.

Sampling Statement

 $y \sim cauchy(mu, sigma);$ 

Increment target log probability density with  $cauchy_1pdf(y \mid mu, sigma)$ , dropping constant additive terms.

Stan Functions

real cauchy\_lpdf(reals y | reals mu, reals sigma)

The log of the Cauchy density of y given location mu and scale sigma

real cauchy\_cdf(reals y, reals mu, reals sigma)

The Cauchy cumulative distribution function of y given location mu and scale sigma

real  $cauchy_lcdf(reals y | reals mu, reals sigma)$ 

The log of the Cauchy cumulative distribution function of y given location mu and scale sigma

real cauchy\_lccdf(reals y | reals mu, reals sigma)

The log of the Cauchy complementary cumulative distribution function of y given location mu and scale sigma

R cauchy\_rng(reals mu, reals sigma)

Generate a Cauchy variate with location *mu* and scale *sigma*; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

### 15.6. Double Exponential (Laplace) Distribution

Probability Density Function

If  $\mu \in \mathbb{R}$  and  $\sigma \in \mathbb{R}^+$ , then for  $y \in \mathbb{R}$ ,

DoubleExponential
$$(y|\mu,\sigma) = \frac{1}{2\sigma} \exp\left(-\frac{|y-\mu|}{\sigma}\right)$$
.

Note that the double exponential distribution is parameterized in terms of the scale, in contrast to the exponential distribution (see Section 16.5), which is parameterized in terms of inverse scale.

The double-exponential distribution can be defined as a compound exponentialnormal distribution. Specifically, if

$$lpha \sim \mathsf{Exponential}\left(rac{1}{\lambda}
ight)$$

and

$$\beta \sim \text{Normal}(\mu, \alpha)$$
,

then

$$\beta \sim \text{DoubleExponential}(\mu, \lambda)$$
.

This may be used to code a non-centered parameterization by taking

$$\beta^{\text{raw}} \sim \text{Normal}(0, 1)$$

and defining

$$\beta = \mu + \alpha \beta^{\text{raw}}$$
.

Sampling Statement

### y ~ double\_exponential(mu, sigma);

Increment target log probability density with double\_exponential\_lpdf(*y* | *mu*, *sigma*), dropping constant additive terms.

Stan Functions

### real $double_exponential_lpdf(reals y | reals mu, reals sigma)$

The log of the double exponential density of y given location mu and scale sigma

# real double\_exponential\_cdf(reals y, reals mu, reals sigma)

The double exponential cumulative distribution function of *y* given location *mu* and scale *sigma* 

real double\_exponential\_lcdf(reals y | reals mu, reals sigma)

The log of the double exponential cumulative distribution function of *y* given location *mu* and scale *sigma* 

real double\_exponential\_lccdf(reals y | reals mu, reals sigma)

The log of the double exponential complementary cumulative distribution function of *y* given location *mu* and scale *sigma* 

R double\_exponential\_rng(reals mu, reals sigma)

Generate a double exponential variate with location *mu* and scale *sigma*; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

# 15.7. Logistic Distribution

Probability Density Function

If  $\mu \in \mathbb{R}$  and  $\sigma \in \mathbb{R}^+$ , then for  $y \in \mathbb{R}$ ,

$$\mathsf{Logistic}(y|\mu,\sigma) = \frac{1}{\sigma} \; \exp\!\left(-\frac{y-\mu}{\sigma}\right) \; \left(1 + \exp\!\left(-\frac{y-\mu}{\sigma}\right)\right)^{-2}.$$

Sampling Statement

 $y \sim logistic(mu, sigma);$ 

Increment target log probability density with  $logistic_1pdf(y | mu, sigma)$ , dropping constant additive terms.

Stan Functions

real  $logistic_lpdf(reals y | reals mu, reals sigma)$ 

The log of the logistic density of y given location mu and scale sigma

real logistic\_cdf(reals y, reals mu, reals sigma)

The logistic cumulative distribution function of y given location mu and scale sigma

real logistic\_lcdf(reals y | reals mu, reals sigma)

The log of the logistic cumulative distribution function of y given location mu and scale sigma

### real logistic\_lccdf(reals y | reals mu, reals sigma)

The log of the logistic complementary cumulative distribution function of *y* given location *mu* and scale *sigma* 

### R logistic\_rng(reals mu, reals sigma)

Generate a logistic variate with location *mu* and scale *sigma*; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

### 15.8. Gumbel Distribution

Probability Density Function

If  $\mu \in \mathbb{R}$  and  $\beta \in \mathbb{R}^+$ , then for  $\gamma \in \mathbb{R}$ ,

$$\mathsf{Gumbel}(y|\mu,\beta) = \frac{1}{\beta} \; \exp\left(-\frac{y-\mu}{\beta} - \exp\left(-\frac{y-\mu}{\beta}\right)\right).$$

Sampling Statement

### $y \sim \text{gumbel}(mu, beta);$

Increment target log probability density with  $gumbel_lpdf(y \mid mu, beta)$ , dropping constant additive terms.

Stan Functions

### real gumbel\_lpdf(reals y | reals mu, reals beta)

The log of the gumbel density of *y* given location *mu* and scale *beta* 

# real gumbel\_cdf(reals y, reals mu, reals beta)

The gumbel cumulative distribution function of y given location mu and scale beta

### real gumbel\_lcdf(reals y | reals mu, reals beta)

The log of the gumbel cumulative distribution function of y given location mu and scale beta

# real gumbel\_lccdf(reals y | reals mu, reals beta)

The log of the gumbel complementary cumulative distribution function of *y* given location *mu* and scale *beta* 

# R gumbel\_rng(reals mu, reals beta)

Generate a gumbel variate with location *mu* and scale *beta*; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

# 16. Positive Continuous Distributions

The positive continuous probability functions have support on the positive real numbers.

### 16.1. Lognormal Distribution

Probability Density Function

If  $\mu \in \mathbb{R}$  and  $\sigma \in \mathbb{R}^+$ , then for  $y \in \mathbb{R}^+$ ,

$$\mathsf{LogNormal}(y|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\ \sigma}\ \frac{1}{y}\ \exp\biggl(-\,\frac{1}{2}\,\left(\frac{\log y - \mu}{\sigma}\right)^2\biggr)\,.$$

Sampling Statement

 $y \sim lognormal(mu, sigma);$ 

Increment target log probability density with  $lognormal_lpdf(y | mu, sigma)$ , dropping constant additive terms.

Stan Functions

real  $lognormal_lpdf(reals y | reals mu, reals sigma)$ 

The log of the lognormal density of y given location mu and scale sigma

real lognormal\_cdf(reals y, reals mu, reals sigma)

The cumulative lognormal distribution function of y given location mu and scale sigma

real  $lognormal_lcdf(reals y | reals mu, reals sigma)$ 

The log of the lognormal cumulative distribution function of y given location mu and scale sigma

real lognormal\_lccdf(reals y | reals mu, reals sigma)

The log of the lognormal complementary cumulative distribution function of y given location mu and scale sigma

R lognormal\_rng(reals mu, reals beta)

Generate a lognormal variate with location *mu* and scale *sigma*; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

### 16.2. Chi-Square Distribution

Probability Density Function

If  $v \in \mathbb{R}^+$ , then for  $y \in \mathbb{R}^+$ ,

ChiSquare
$$(y|v) = \frac{2^{-v/2}}{\Gamma(v/2)} y^{v/2-1} \exp\left(-\frac{1}{2}y\right)$$
.

Sampling Statement

### $y \sim chi_square(nu);$

Increment target log probability density with  $chi_square_lpdf(y \mid nu)$ , dropping constant additive terms.

Stan Functions

### real chi\_square\_lpdf(reals y | reals nu)

The log of the Chi-square density of y given degrees of freedom nu

### real chi\_square\_cdf(reals y, reals nu)

The Chi-square cumulative distribution function of y given degrees of freedom nu

### real chi\_square\_lcdf(reals y | reals nu)

The log of the Chi-square cumulative distribution function of y given degrees of freedom nu

### real chi\_square\_lccdf(reals y | reals nu)

The log of the complementary Chi-square cumulative distribution function of y given degrees of freedom nu

# R **chi\_square\_rng**(reals *nu*)

Generate a Chi-square variate with degrees of freedom *nu*; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

### 16.3. Inverse Chi-Square Distribution

Probability Density Function

If  $v \in \mathbb{R}^+$ , then for  $y \in \mathbb{R}^+$ ,

$$\mathsf{InvChiSquare}(y \,|\, \nu) = \frac{2^{-\nu/2}}{\Gamma(\nu/2)} \, y^{-\nu/2-1} \, \exp\!\left(\!-\frac{1}{2} \, \frac{1}{y}\right).$$

Sampling Statement

### y ~ inv\_chi\_square(nu);

Increment target log probability density with  $inv\_chi\_square\_lpdf(y \mid nu)$ , dropping constant additive terms.

Stan Functions

### real inv\_chi\_square\_lpdf(reals y | reals nu)

The log of the inverse Chi-square density of y given degrees of freedom nu

### real inv\_chi\_square\_cdf(reals y, reals nu)

The inverse Chi-squared cumulative distribution function of y given degrees of freedom nu

# real inv\_chi\_square\_lcdf(reals y | reals nu)

The log of the inverse Chi-squared cumulative distribution function of y given degrees of freedom nu

# real inv\_chi\_square\_lccdf(reals y | reals nu)

The log of the inverse Chi-squared complementary cumulative distribution function of y given degrees of freedom nu

### R inv\_chi\_square\_rng(reals nu)

Generate an inverse Chi-squared variate with degrees of freedom *nu*; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

# 16.4. Scaled Inverse Chi-Square Distribution

Probability Density Function

If  $v \in \mathbb{R}^+$  and  $\sigma \in \mathbb{R}^+$ , then for  $y \in \mathbb{R}^+$ ,

$$\mbox{ScaledInvChiSquare}(y|\nu,\sigma) = \frac{(\nu/2)^{\nu/2}}{\Gamma(\nu/2)} \, \sigma^{\nu} \, y^{-(\nu/2+1)} \, \exp\!\left(\!-\frac{1}{2} \, \nu \, \sigma^2 \, \frac{1}{y}\right).$$

Sampling Statement

y ~ scaled\_inv\_chi\_square(nu, sigma);

Increment target log probability density with  $scaled_inv\_chi\_square\_lpdf(y | nu, sigma)$ , dropping constant additive terms.

Stan Functions

- real **scaled\_inv\_chi\_square\_lpdf**(reals *y* | reals *nu*, reals *sigma*)

  The log of the scaled inverse Chi-square density of *y* given degrees of freedom *nu* and scale *sigma*
- real **scaled\_inv\_chi\_square\_cdf**(reals *y*, reals *nu*, reals *sigma*)

  The scaled inverse Chi-square cumulative distribution function of *y* given degrees of freedom *nu* and scale *sigma*
- real **scaled\_inv\_chi\_square\_lcdf**(reals  $y \mid$  reals nu, reals sigma)

  The log of the scaled inverse Chi-square cumulative distribution function of y given degrees of freedom nu and scale sigma
- real **scaled\_inv\_chi\_square\_lccdf**(reals  $y \mid \text{reals } nu$ , reals sigma)

  The log of the scaled inverse Chi-square complementary cumulative distribution function of y given degrees of freedom nu and scale sigma
- R **scaled\_inv\_chi\_square\_rng**(reals *nu*, reals *sigma*)

Generate a scaled inverse Chi-squared variate with degrees of freedom *nu* and scale *sigma*; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

# 16.5. Exponential Distribution

Probability Density Function

If  $\beta \in \mathbb{R}^+$ , then for  $y \in \mathbb{R}^+$ ,

Exponential
$$(y|\beta) = \beta \exp(-\beta y)$$
.

Sampling Statement

### y ~ exponential(beta);

Increment target log probability density with exponential\_lpdf( $y \mid beta$ ), dropping constant additive terms.

Stan Functions

### real exponential\_lpdf(reals y | reals beta)

The log of the exponential density of y given inverse scale beta

### real exponential\_cdf(reals y, reals beta)

The exponential cumulative distribution function of y given inverse scale beta

### real exponential\_lcdf(reals y | reals beta)

The log of the exponential cumulative distribution function of y given inverse scale beta

### real exponential\_lccdf(reals y | reals beta)

The log of the exponential complementary cumulative distribution function of *y* given inverse scale *beta* 

# R exponential\_rng(reals beta)

Generate an exponential variate with inverse scale *beta*; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

### 16.6. Gamma Distribution

Probability Density Function

If  $\alpha \in \mathbb{R}^+$  and  $\beta \in \mathbb{R}^+$ , then for  $y \in \mathbb{R}^+$ ,

$$\mathsf{Gamma}(y|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \, y^{\alpha-1} \exp(-\beta \, y).$$

Sampling Statement

 $y \sim \text{gamma}(alpha, beta);$ 

Increment target log probability density with  $gamma_lpdf(y \mid alpha, beta)$ , dropping constant additive terms.

Stan Functions

real gamma\_lpdf(reals y | reals alpha, reals beta)

The log of the gamma density of y given shape alpha and inverse scale beta

real gamma\_cdf(reals y, reals alpha, reals beta)

The cumulative gamma distribution function of y given shape a1pha and inverse scale beta

real gamma\_lcdf(reals y | reals alpha, reals beta)

The log of the cumulative gamma distribution function of *y* given shape *alpha* and inverse scale *beta* 

real gamma\_lccdf(reals y | reals alpha, reals beta)

The log of the complementary cumulative gamma distribution function of y given shape a1pha and inverse scale beta

R gamma\_rng(reals alpha, reals beta)

Generate a gamma variate with shape a1pha and inverse scale beta; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

### 16.7. Inverse Gamma Distribution

Probability Density Function

If  $\alpha \in \mathbb{R}^+$  and  $\beta \in \mathbb{R}^+$ , then for  $y \in \mathbb{R}^+$ ,

$$\mathsf{InvGamma}(y|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \ y^{-(\alpha+1)} \ \exp\!\left(\!-\beta\,\frac{1}{y}\right).$$

Sampling Statement

 $y \sim inv_gamma(alpha, beta);$ 

Increment target log probability density with  $inv_gamma_lpdf(y \mid alpha, beta)$ , dropping constant additive terms.

real inv\_gamma\_lpdf(reals y | reals alpha, reals beta)

The log of the inverse gamma density of y given shape alpha and scale beta

real inv\_gamma\_cdf(reals y, reals alpha, reals beta)

The inverse gamma cumulative distribution function of y given shape alpha and scale beta

real inv\_gamma\_lcdf(reals y | reals alpha, reals beta)

The log of the inverse gamma cumulative distribution function of *y* given shape *alpha* and scale *beta* 

real inv\_gamma\_lccdf(reals y | reals alpha, reals beta)

The log of the inverse gamma complementary cumulative distribution function of y given shape a1pha and scale beta

R inv\_gamma\_rng(reals alpha, reals beta)

Generate an inverse gamma variate with shape *alpha* and scale *beta*; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

### 16.8. Weibull Distribution

Probability Density Function

If  $\alpha \in \mathbb{R}^+$  and  $\sigma \in \mathbb{R}^+$ , then for  $y \in [0, \infty)$ ,

$$\mathsf{Weibull}(y|\alpha,\sigma) = \frac{\alpha}{\sigma} \left(\frac{y}{\sigma}\right)^{\alpha-1} \exp\left(-\left(\frac{y}{\sigma}\right)^{\alpha}\right).$$

Note that if  $Y \propto \text{Weibull}(\alpha, \sigma)$ , then  $Y^{-1} \propto \text{Frechet}(\alpha, \sigma^{-1})$ .

Sampling Statement

y ~ weibull(alpha, sigma);

Increment target log probability density with weibull\_lpdf( $y \mid alpha$ , sigma), dropping constant additive terms.

real  $weibull_lpdf$ (reals  $y \mid reals alpha$ , reals sigma)

The log of the Weibull density of *y* given shape *alpha* and scale *sigma* 

real weibull\_cdf(reals y, reals alpha, reals sigma)

The Weibull cumulative distribution function of y given shape a1pha and scale sigma

real weibull\_lcdf(reals y | reals alpha, reals sigma)

The log of the Weibull cumulative distribution function of y given shape alpha and scale sigma

real weibull\_lccdf(reals y | reals alpha, reals sigma)

The log of the Weibull complementary cumulative distribution function of *y* given shape *a1pha* and scale *siqma* 

R weibull\_rng(reals alpha, reals sigma)

Generate a weibull variate with shape *a1pha* and scale *sigma*; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

### 16.9. Fréchet Distribution

Probability Density Function

If  $\alpha \in \mathbb{R}^+$  and  $\sigma \in \mathbb{R}^+$ , then for  $y \in \mathbb{R}^+$ ,

$$\mathsf{Frechet}(y|\alpha,\sigma) = \frac{\alpha}{\sigma} \left(\frac{y}{\sigma}\right)^{-\alpha-1} \exp\!\left(\!-\left(\frac{y}{\sigma}\right)^{-\alpha}\right).$$

Note that if  $Y \propto \text{Frechet}(\alpha, \sigma)$ , then  $Y^{-1} \propto \text{Weibull}(\alpha, \sigma^{-1})$ .

Sampling Statement

y ~ frechet(alpha, sigma);

Increment target log probability density with  $frechet_1pdf(y \mid alpha, sigma)$ , dropping constant additive terms.

real frechet\_lpdf(reals y | reals alpha, reals sigma)

The log of the Fréchet density of y given shape alpha and scale sigma

real frechet\_cdf(reals y, reals alpha, reals sigma)

The Fréchet cumulative distribution function of y given shape a1pha and scale siqma

real frechet\_lcdf(reals y | reals alpha, reals sigma)

The log of the Fréchet cumulative distribution function of *y* given shape *a1pha* and scale *sigma* 

real frechet\_lccdf(reals y | reals alpha, reals sigma)

The log of the Fréchet complementary cumulative distribution function of *y* given shape *a1pha* and scale *siqma* 

R frechet\_rng(reals alpha, reals sigma)

Generate an Fréchet variate with shape *a1pha* and scale *sigma*; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

# 17. Non-negative Continuous Distributions

The non-negative continuous probability functions have support on the non-negative real numbers.

### 17.1. Rayleigh Distribution

Probability Density Function

If  $\sigma \in \mathbb{R}^+$ , then for  $y \in [0, \infty)$ ,

Rayleigh
$$(y|\sigma) = \frac{y}{\sigma^2} \exp(-y^2/2\sigma^2)$$
.

Sampling Statement

 $y \sim rayleigh(sigma);$ 

Increment target log probability density with  $rayleigh\_lpdf(y \mid sigma)$ , dropping constant additive terms.

Stan Functions

real rayleigh\_lpdf(reals y | reals sigma)

The log of the Rayleigh density of y given scale sigma

real rayleigh\_cdf(real y, real sigma)

The Rayleigh cumulative distribution of y given scale sigma

real  $rayleigh\_lcdf(real y | real sigma)$ 

The log of the Rayleigh cumulative distribution of y given scale sigma

real rayleigh\_lccdf(real y | real sigma)

The log of the Rayleigh complementary cumulative distribution of y given scale sigma

R rayleigh\_rng(reals sigma)

Generate a Rayleigh variate with scale *sigma*; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

# 17.2. Wiener First Passage Time Distribution

Probability Density Function

If  $\alpha \in \mathbb{R}^+$ ,  $\tau \in \mathbb{R}^+$ ,  $\beta \in [0,1]$  and  $\delta \in \mathbb{R}$ , then for  $\gamma > \tau$ ,

$$\mathsf{Wiener}(y|\alpha,\tau,\beta,\delta) = \frac{\alpha^3}{(y-\tau)^{3/2}} \exp\left(-\delta\alpha\beta - \frac{\delta^2(y-\tau)}{2}\right) \sum_{k=-\infty}^{\infty} (2k+\beta) \phi\left(\frac{2k\alpha+\beta}{\sqrt{y-\tau}}\right)$$

where  $\phi(x)$  denotes the standard normal density function; see (Feller, 1968; Navarro and Fuss, 2009).

Sampling Statement

y ~ wiener(alpha, tau, beta, delta);
Increment target log probability density with wiener\_lpdf(y | alpha, tau,
beta, delta), dropping constant additive terms.

Stan Functions

The log of the Wiener first passage time density of *y* given boundary separation *a1pha*, non-decision time *tau*, a-priori bias *beta* and drift rate *de1ta* 

#### **Boundaries**

Stan returns the first passage time of the accumulation process over the upper boundary only. To get the result for the lower boundary, use

wiener
$$(y|\alpha, \tau, 1-\beta, -\delta)$$

For more details, see the appendix of Vandekerckhove and Wabersich (2014).

# 18. Positive Lower-Bounded Probabilities

The positive lower-bounded probabilities have support on real values above some positive minimum value.

#### 18.1. Pareto Distribution

Probability Density Function

If  $y_{\min} \in \mathbb{R}^+$  and  $\alpha \in \mathbb{R}^+$ , then for  $y \in \mathbb{R}^+$  with  $y \ge y_{\min}$ ,

Pareto(
$$y|y_{\min}, \alpha$$
) =  $\frac{\alpha y_{\min}^{\alpha}}{y^{\alpha+1}}$ .

Sampling Statement

 $y \sim pareto(y_min, alpha);$ 

Increment target log probability density with  $pareto_1pdf(y | y_min, alpha)$ , dropping constant additive terms.

Stan Functions

real pareto\_lpdf(reals y | reals y\_min, reals alpha)

The log of the Pareto density of y given positive minimum value  $y\_min$  and shape alpha

real pareto\_cdf(reals y, reals y\_min, reals alpha)

The Pareto cumulative distribution function of y given positive minimum value  $y\_min$  and shape alpha

real pareto\_lcdf(reals y | reals y\_min, reals alpha)

The log of the Pareto cumulative distribution function of y given positive minimum value  $y\_min$  and shape a1pha

real pareto\_lccdf(reals y | reals y\_min, reals alpha)

The log of the Pareto complementary cumulative distribution function of y given positive minimum value  $y\_min$  and shape a lpha

R pareto\_rng(reals y\_min, reals alpha)

Generate a Pareto variate with positive minimum value  $y\_min$  and shape a1pha; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

### 18.2. Pareto Type 2 Distribution

Probability Density Function

If  $\mu \in \mathbb{R}$ ,  $\lambda \in \mathbb{R}^+$ , and  $\alpha \in \mathbb{R}^+$ , then for  $y \geq \mu$ ,

$$\mathsf{Pareto\_Type\_2}(y|\mu,\lambda,\alpha) = \ \frac{\alpha}{\lambda} \left(1 + \frac{y - \mu}{\lambda}\right)^{-(\alpha + 1)}.$$

Note that the Lomax distribution is a Pareto Type 2 distribution with  $\mu = 0$ .

Sampling Statement

y ~ pareto\_type\_2(mu, lambda, alpha);

Increment target log probability density with  $pareto_type_2_1pdf(y \mid mu, lambda, alpha)$ , dropping constant additive terms.

Stan Functions

real  $pareto_type_2_lpdf(reals y | reals mu, reals lambda,$ 

reals *alpha*)

The log of the Pareto Type 2 density of *y* given location *mu*, scale *lambda*, and shape *alpha* 

real pareto\_type\_2\_cdf(reals y, reals mu, reals lambda, reals alpha)

The Pareto Type 2 cumulative distribution function of y given location mu, scale lambda, and shape alpha

The log of the Pareto Type 2 cumulative distribution function of *y* given location *mu*, scale *lambda*, and shape *alpha* 

The log of the Pareto Type 2 complementary cumulative distribution function of *y* given location *mu*, scale *lambda*, and shape *alpha* 

R pareto\_type\_2\_rng(reals mu, reals lambda, reals alpha)

Generate a Pareto Type 2 variate with location *mu*, scale *lambda*, and shape *alpha*; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

# 19. Continuous Distributions on [0, 1]

The continuous distributions with outcomes in the interval [0, 1] are used to characterized bounded quantities, including probabilities.

#### 19.1. Beta Distribution

Probability Density Function

If  $\alpha \in \mathbb{R}^+$  and  $\beta \in \mathbb{R}^+$ , then for  $\theta \in (0,1)$ ,

$$\mathsf{Beta}(\theta|\alpha,\beta) = \frac{1}{\mathsf{B}(\alpha,\beta)}\,\theta^{\alpha-1}\,(1-\theta)^{\beta-1},$$

where the beta function B() is as defined in Section 3.13.

*Warning:* If  $\theta = 0$  or  $\theta = 1$ , then the probability is 0 and the log probability is  $-\infty$ . Similarly, the distribution requires strictly positive parameters,  $\alpha, \beta > 0$ .

Sampling Statement

theta ~ beta(alpha, beta);

Increment target log probability density with beta\_lpdf(theta | alpha, beta), dropping constant additive terms.

Stan Functions

real beta\_lpdf(reals theta | reals alpha, reals beta)

The log of the beta density of theta in [0,1] given positive prior successes (plus one) *a1pha* and prior failures (plus one) *beta* 

real beta\_cdf(reals theta, reals alpha, reals beta)

The beta cumulative distribution function of theta in [0,1] given positive prior successes (plus one) *a1pha* and prior failures (plus one) *beta* 

real beta\_lcdf(reals theta | reals alpha, reals beta)

The log of the beta cumulative distribution function of theta in [0,1] given positive prior successes (plus one) *a1pha* and prior failures (plus one) *beta* 

real beta\_lccdf(reals theta | reals alpha, reals beta)

The log of the beta complementary cumulative distribution function of theta in [0,1] given positive prior successes (plus one) a7pha and prior failures (plus one) beta

# R beta\_rng(reals alpha, reals beta)

Generate a beta variate with positive prior successes (plus one) *alpha* and prior failures (plus one) *beta*; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

# 20. Circular Distributions

Circular distributions are defined for finite values y in any interval of length  $2\pi$ .

#### 20.1. Von Mises Distribution

Probability Density Function

If  $\mu \in \mathbb{R}$  and  $\kappa \in \mathbb{R}^+$ , then for  $\gamma \in \mathbb{R}$ ,

VonMises
$$(y|\mu, \kappa) = \frac{\exp(\kappa \cos(y - \mu))}{2\pi I_0(\kappa)}$$
.

In order for this density to properly normalize, y must be restricted to some interval  $(c, c + 2\pi)$  of length  $2\pi$ , because

$$\int_{c}^{c+2\pi} \mathsf{VonMises}(y|\mu,\kappa) dy = 1.$$

Similarly, if  $\mu$  is a parameter, it will typically be restricted to the same range as  $\gamma$ .

A von Mises distribution with its  $2\pi$  interval of support centered around its location  $\mu$  will have a single mode at  $\mu$ ; for example, restricting y to  $(-\pi,\pi)$  and taking  $\mu=0$  leads to a single local optimum at the model  $\mu$ . If the location  $\mu$  is not in the center of the support, the density is circularly translated and there will be a second local maximum at the boundary furthest from the mode. Ideally, the parameterization and support will be set up so that the bulk of the probability mass is in a continuous interval around the mean  $\mu$ .

Sampling Statement

# $y \sim \text{von\_mises}(mu, kappa);$

Increment target log probability density with  $von_mises_lpdf(y | mu, kappa)$ , dropping constant additive terms.

Stan Functions

# R $von_mises_lpdf(reals y | reals mu, reals kappa)$

The log of the von mises density of *y* given location *mu* and scale *kappa*. For a description of argument and return types, see Section 10.8.3.

# R von\_mises\_rng(reals mu, reals kappa)

Generate a Von Mises variate with location mu and scale kappa (i.e. returns

values in the interval  $[(\mu \mod 2\pi) - \pi, (\mu \mod 2\pi) + \pi])$ ; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

### Numerical Stability

Evaluating the Von Mises distribution for  $\kappa > 100$  is numerically unstable in the current implementation. Nathanael I. Lichti suggested the following workaround on the Stan users group, based on the fact that as  $\kappa \to \infty$ ,

VonMises
$$(y|\mu,\kappa) \rightarrow \text{Normal}(\mu,\sqrt{1/\kappa})$$
.

The workaround is to replace  $y \sim von_mises(mu, kappa)$  with

```
if (kappa < 100)
  y ~ von_mises(mu, kappa);
else
  y ~ normal(mu, sqrt(1 / kappa));</pre>
```

# 21. Bounded Continuous Probabilities

The bounded continuous probabilities have support on a finite interval of real numbers.

### 21.1. Uniform Distribution

Probability Density Function

If  $\alpha \in \mathbb{R}$  and  $\beta \in (\alpha, \infty)$ , then for  $\gamma \in [\alpha, \beta]$ ,

Uniform
$$(y|\alpha,\beta) = \frac{1}{\beta - \alpha}$$
.

Sampling Statement

y ~ uniform(alpha, beta);

Increment target log probability density with uniform\_lpdf( $y \mid alpha$ , beta), dropping constant additive terms.

Stan Functions

real uniform\_lpdf(reals y | reals alpha, reals beta)

The log of the uniform density of *y* given lower bound *a1pha* and upper bound *beta* 

real uniform\_cdf(reals y, reals alpha, reals beta)

The uniform cumulative distribution function of y given lower bound alpha and upper bound beta

real uniform\_lcdf(reals y | reals alpha, reals beta)

The log of the uniform cumulative distribution function of *y* given lower bound *alpha* and upper bound *beta* 

real uniform\_lccdf(reals y | reals alpha, reals beta)

The log of the uniform complementary cumulative distribution function of *y* given lower bound *a1pha* and upper bound *beta* 

R uniform\_rng(reals alpha, reals beta)

Generate a uniform variate with lower bound *alpha* and upper bound *beta*; may only be used in generated quantities block. For a description of argument and return types, see Section 10.8.3.

# 22. Distributions over Unbounded Vectors

The unbounded vector probability distributions have support on all of  $\mathbb{R}^K$  for some fixed K.

### 22.1. Multivariate Normal Distribution

Probability Density Function

If  $K \in \mathbb{N}$ ,  $\mu \in \mathbb{R}^K$ , and  $\Sigma \in \mathbb{R}^{K \times K}$  is symmetric and positive definite, then for  $y \in \mathbb{R}^K$ ,

$$\mathsf{MultiNormal}(y|\mu,\Sigma) = \frac{1}{(2\pi)^{K/2}} \; \frac{1}{\sqrt{|\Sigma|}} \; \exp\Bigl(-\frac{1}{2}(y-\mu)^\top \, \Sigma^{-1} \, (y-\mu)\Bigr),$$

where  $|\Sigma|$  is the absolute determinant of  $\Sigma$ .

Sampling Statement

y ~ multi\_normal(mu, Sigma);

Increment target log probability density with  $multi_normal_lpdf(y \mid mu, Sigma)$ , dropping constant additive terms.

#### Stan Functions

The multivariate normal probability function is overloaded to allow the variate vector y and location vector  $\mu$  to be vectors or row vectors (or to mix the two types). The density function is also vectorized, so it allows arrays of row vectors or vectors as arguments; see Section 10.8.1 for a description of vectorization.

- real multi\_normal\_lpdf(vectors y | vectors mu, matrix Sigma)

  The log of the multivariate normal density of vector(s) y given location vector(s) mu and covariance matrix Sigma
- real multi\_normal\_lpdf(vectors y | row\_vectors mu, matrix Sigma)

  The log of the multivariate normal density of vector(s) y given location row vector(s) mu and covariance matrix Sigma
- real **multi\_normal\_lpdf**(row\_vectors  $y \mid \text{vectors } mu$ , matrix Sigma)

  The log of the multivariate normal density of row vector(s) y given location vector(s) mu and covariance matrix Sigma

# real multi\_normal\_lpdf(row\_vectors y | row\_vectors mu, matrix Sigma)

The log of the multivariate normal density of row vector(s) *y* given location row vector(s) *mu* and covariance matrix *Sigma* 

Although there is a direct multi-normal RNG function, if more than one result is required, it's much more efficient to Cholesky factor the covariance matrix and call multi\_normal\_cholesky\_rng; see Section 22.3.

### vector multi\_normal\_rng(vector mu, matrix Sigma)

Generate a multivariate normal variate with location *mu* and covariance matrix *Sigma*; may only be used in generated quantities block

### vector multi\_normal\_rng(row\_vector mu, matrix Sigma)

Generate a multivariate normal variate with location *mu* and covariance matrix *Sigma*; may only be used in generated quantities block

### vectors multi\_normal\_rng(vectors mu, matrix Sigma)

Generate an array of multivariate normal variates with locations *mu* and covariance matrix *Sigma*; may only be used in generated quantities block

### vectors multi\_normal\_rng(row\_vectors mu, matrix Sigma)

Generate an array of multivariate normal variates with locations mu and covariance matrix Sigma; may only be used in generated quantities block

### 22.2. Multivariate Normal Distribution, Precision Parameterization

Probability Density Function

If  $K \in \mathbb{N}$ ,  $\mu \in \mathbb{R}^K$ , and  $\Omega \in \mathbb{R}^{K \times K}$  is symmetric and positive definite, then for  $y \in \mathbb{R}^K$ ,

MultiNormalPrecision $(y|\mu,\Omega)$  = MultiNormal $(y|\mu,\Sigma^{-1})$ 

Sampling Statement

# y ~ multi\_normal\_prec(mu, Omega);

Increment target log probability density with  $multi\_normal\_prec\_lpdf(y \mid mu, Omega)$ , dropping constant additive terms.

### 

The log of the multivariate normal density of vector(s) *y* given location vector(s) *mu* and positive definite precision matrix *Omega* 

### 

The log of the multivariate normal density of vector(s) *y* given location row vector(s) *mu* and positive definite precision matrix *Omega* 

### 

The log of the multivariate normal density of row vector(s) *y* given location vector(s) *mu* and positive definite precision matrix *Omega* 

The log of the multivariate normal density of row vector(s) *y* given location row vector(s) *mu* and positive definite precision matrix *Omega* 

# 22.3. Multivariate Normal Distribution, Cholesky Parameterization

Probability Density Function

If  $K \in \mathbb{N}$ ,  $\mu \in \mathbb{R}^K$ , and  $L \in \mathbb{R}^{K \times K}$  is lower triangular and such that  $LL^{\top}$  is positive definite, then for  $y \in \mathbb{R}^K$ ,

```
MultiNormalCholesky(y|\mu, L) = MultiNormal(y|\mu, LL^{T}).
```

If L is lower triangular and  $LL^{top}$  is a  $K \times K$  positive definite matrix, then  $L_{k,k}$  must be strictly positive for  $k \in 1:K$ . If an L is provided that is not the Cholesky factor of a positive-definite matrix, the probability functions will raise errors.

Sampling Statement

# y ~ multi\_normal\_cholesky(mu, L);

Increment target log probability density with  $multi\_normal\_cholesky\_lpdf(y \mid mu, L)$ , dropping constant additive terms.

### 

The log of the multivariate normal density of vector(s) y given location vector(s) mu and lower-triangular Cholesky factor of the covariance matrix L

### 

The log of the multivariate normal density of vector(s) y given location row vector(s) mu and lower-triangular Cholesky factor of the covariance matrix L

### 

The log of the multivariate normal density of row vector(s) y given location vector(s) mu and lower-triangular Cholesky factor of the covariance matrix L

### 

The log of the multivariate normal density of row vector(s) *y* given location row vector(s) *mu* and lower-triangular Cholesky factor of the covariance matrix *L* 

### vector multi\_normal\_cholesky\_rng(vector mu, matrix L)

Generate a multivariate normal variate with location mu and lower-triangular Cholesky factor of the covariance matrix L; may only be used in generated quantities block

# vector multi\_normal\_cholesky\_rng(row\_vector mu, matrix L)

Generate a multivariate normal variate with location mu and lower-triangular Cholesky factor of the covariance matrix L; may only be used in generated quantities block

# vectors multi\_normal\_cholesky\_rng(vectors mu, matrix L)

Generate an array of multivariate normal variates with locations mu and lower-triangular Cholesky factor of the covariance matrix L; may only be used in generated quantities block

# vectors multi\_normal\_cholesky\_rng(row\_vectors mu, matrix L)

Generate an array of multivariate normal variates with locations mu and lower-triangular Cholesky factor of the covariance matrix L; may only be used in generated quantities block

### 22.4. Multivariate Gaussian Process Distribution

Probability Density Function

If  $K, N \in \mathbb{N}$ ,  $\Sigma \in \mathbb{R}^{N \times N}$  is symmetric, positive definite kernel matrix and  $w \in \mathbb{R}^K$  is a vector of positive inverse scales, then for  $y \in \mathbb{R}^{K \times N}$ ,

$$\mathsf{MultiGP}(y|\Sigma,w) = \prod_{i=1}^K \mathsf{MultiNormal}(y_i|0,w_i^{-1}\Sigma),$$

where  $y_i$  is the ith row of y. This is used to efficiently handle Gaussian Processes with multi-variate outputs where only the output dimensions share a kernel function but vary based on their scale. Note that this function does not take into account the mean prediction.

Sampling Statement

Stan Functions

The log of the multivariate GP density of matrix y given kernel matrix Sigma and inverses scales w

# 22.5. Multivariate Gaussian Process Distribution, Cholesky parameterization

Probability Density Function

If  $K, N \in \mathbb{N}$ ,  $L \in \mathbb{R}^{N \times N}$  is lower triangular and such that  $LL^{\top}$  is positive definite kernel matrix (implying  $L_{n,n} > 0$  for  $n \in 1:N$ ), and  $w \in \mathbb{R}^K$  is a vector of positive inverse scales, then for  $y \in \mathbb{R}^{K \times N}$ ,

$$\mathsf{MultiGPCholesky}(y \mid L, w) = \prod_{i=1}^K \mathsf{MultiNormal}(y_i | 0, w_i^{-1} L L^\top),$$

where  $y_i$  is the ith row of y. This is used to efficiently handle Gaussian Processes with multi-variate outputs where only the output dimensions share a kernel function but vary based on their scale. If the model allows parameterization in terms of Cholesky

factor of the kernel matrix, this distribution is also more efficient than MultiGP(). Note that this function does not take into account the mean prediction.

### Sampling Statement

Increment target log probability density with multi\_gp\_cholesky\_lpdf(y | L, w), dropping constant additive terms.

Stan Functions

### real multi\_gp\_cholesky\_lpdf(matrix y | matrix L, vector w)

The log of the multivariate GP density of matrix y given lower-triangular Cholesky factor of the kernel matrix L and inverses scales w

### 22.6. Multivariate Student-t Distribution

Probability Density Function

If  $K \in \mathbb{N}$ ,  $\nu \in \mathbb{R}^+$ ,  $\mu \in \mathbb{R}^K$ , and  $\Sigma \in \mathbb{R}^{K \times K}$  is symmetric and positive definite, then for  $\gamma \in \mathbb{R}^K$ ,

MultiStudentT $(y|v, \mu, \Sigma)$ 

$$= \frac{1}{\pi^{K/2}} \; \frac{1}{\nu^{K/2}} \; \frac{\Gamma((\nu+K)/2)}{\Gamma(\nu/2)} \; \frac{1}{\sqrt{|\Sigma|}} \; \left(1 + \frac{1}{\nu} \; (y-\mu)^\top \; \Sigma^{-1} \; (y-\mu)\right)^{-(\nu+K)/2}.$$

### Sampling Statement

Increment target log probability density with multi\_student\_t\_lpdf(y | nu, mu, Sigma), dropping constant additive terms.

Stan Functions

The log of the multivariate Student-*t* density of vector(s) *y* given degrees of freedom *nu*, location vector(s) *mu*, and scale matrix *Sigma* 

The log of the multivariate Student-*t* density of vector(s) *y* given degrees of freedom *nu*, location row vector(s) *mu*, and scale matrix *Siqma* 

The log of the multivariate Student-*t* density of row vector(s) *y* given degrees of freedom *nu*, location vector(s) *mu*, and scale matrix *Sigma* 

The log of the multivariate Student-*t* density of row vector(s) *y* given degrees of freedom *nu*, location row vector(s) *mu*, and scale matrix *Sigma* 

vector multi\_student\_t\_rng(real nu, vector mu, matrix Sigma)

Generate a multivariate Student-*t* variate with degrees of freedom *nu*, location *mu*, and scale matrix *Sigma*; may only be used in generated quantities block

- vector multi\_student\_t\_rng(real nu, row\_vector mu, matrix Sigma)

  Generate a multivariate Student-t variate with degrees of freedom nu, location mu, and scale matrix Sigma; may only be used in generated quantities block
- vectors **multi\_student\_t\_rng**(real *nu*, vectors *mu*, matrix *Sigma*)

  Generate an array of multivariate Student-*t* variates with degrees of freedom *nu*, locations *mu*, and scale matrix *Sigma*; may only be used in generated quantities block
- vectors **multi\_student\_t\_rng**(real *nu*, row\_vectors *mu*, matrix *Sigma*)

  Generate an array of multivariate Student-t variates with degrees of freedom *nu*, locations *mu*, and scale matrix *Sigma*; may only be used in generated quantities block

# 22.7. Gaussian Dynamic Linear Models

A Gaussian Dynamic Linear model is defined as follows, For  $t \in 1, ..., T$ ,

$$y_t \sim N(F'\theta_t, V)$$
  
$$\theta_t \sim N(G\theta_{t-1}, W)$$
  
$$\theta_0 \sim N(m_0, C_0)$$

where y is  $n \times T$  matrix where rows are variables and columns are observations. These functions calculate the log-likelihood of the observations marginalizing over the latent states ( $p(y|F,G,V,W,m_0,C_0)$ ). This log-likelihood is a system that is calculated using the Kalman Filter. If V is diagonal, then a more efficient algorithm which sequentially processes observations and avoids a matrix inversions can be used (Durbin and Koopman, 2001, Sec 6.4).

### Sampling Statement

y ~ gaussian\_dlm\_obs(F, G, V, W, m0, C0);
Increment target log probability density with gaussian\_dlm\_obs\_lpdf(y |
F, G, V, W, m0, C0), dropping constant additive terms.

#### Stan Functions

The following two functions differ in the type of their V, the first taking a full observation covariance matrix V and the second a vector V representing the diagonal of the observation covariance matrix. The sampling statement defined in the previous section works with either type of observation V.

real **gaussian\_dlm\_obs\_lpdf**(matrix  $y \mid$  matrix F, matrix G, matrix V, matrix W, vector mO, matrix CO)

The log of the density of the Gaussian Dynamic Linear model with observation matrix y in which rows are variables and columns are observations, design matrix F, transition matrix G, observation covariance matrix V, system covariance matrix W, and the initial state is distributed normal with mean mO and covariance CO.

real **gaussian\_dlm\_obs\_lpdf**(matrix *y* | matrix *F*, matrix *G*, vector *V*, matrix *W*, vector *mO*, matrix *CO*)

The log of the density of the Gaussian Dynamic Linear model with observation matrix y in which rows are variables and columns are observations, design matrix F, transition matrix G, observation covariance matrix with diagonal V, system covariance matrix W, and the initial state is distributed normal with mean m0 and covariance C0.

# 23. Simplex Distributions

The simplex probabilities have support on the unit K-simplex for a specified K. A K-dimensional vector  $\theta$  is a unit K-simplex if  $\theta_k \ge 0$  for  $k \in \{1, ..., K\}$  and  $\sum_{k=1}^K \theta_k = 1$ .

### 23.1. Dirichlet Distribution

Probability Density Function

If  $K \in \mathbb{N}$  and  $\alpha \in (\mathbb{R}^+)^K$ , then for  $\theta \in K$ -simplex,

$$\mathsf{Dirichlet}(\theta|\alpha) = \frac{\Gamma\left(\sum_{k=1}^K \alpha_k\right)}{\prod_{k=1}^K \Gamma(\alpha_k)} \ \prod_{k=1}^K \theta_k^{\alpha_k - 1}.$$

*Warning:* If any of the components of  $\theta$  satisfies  $\theta_i = 0$  or  $\theta_i = 1$ , then the probability is 0 and the log probability is  $-\infty$ . Similarly, the distribution requires strictly positive parameters, with  $\alpha_i > 0$  for each i.

Meaning of Dirichlet Parameters

A symmetric Dirichlet prior is  $[\alpha, ..., \alpha]^T$ . To code this in Stan,

```
data {
  int<lower = 1> K;
  real<lower = 0> alpha;
}
generated quantities {
  vector[K] theta = dirichlet_rng(rep_vector(alpha, K));
}
```

Taking K = 10, here are the first five draws for  $\alpha = 0.001$ . For  $\alpha = 1$ , the distribution is uniform over simplexes.

```
1) 0.17 0.05 0.07 0.17 0.03 0.13 0.03 0.03 0.27 0.05
2) 0.08 0.02 0.12 0.07 0.52 0.01 0.07 0.04 0.01 0.06
3) 0.02 0.03 0.22 0.29 0.17 0.10 0.09 0.00 0.05 0.03
4) 0.04 0.03 0.21 0.13 0.04 0.01 0.10 0.04 0.22 0.18
5) 0.11 0.22 0.02 0.01 0.06 0.18 0.33 0.04 0.01 0.01
```

That does not mean it's uniform over the marginal probabilities of each element. As the size of the simplex grows, the marginal draws become more and more concentrated below (not around) 1/K. When one component of the simplex is large, the

others must all be relatively small to compensate. For example, in a uniform distribution on 10-simplexes, the probability that a component is greater than the mean of 1/10 is only 39%. Most of the posterior marginal probability mass for each component is in the interval (0,0.1).

When the  $\alpha$  value is small, the draws gravitate to the corners of the simplex. Here are the first five draws for  $\alpha = 0.001$ .

- 1) 3e-203 0e+00 2e-298 9e-106 1e+000 0e+00 0e+000 1e-047 0e+00 4e-279
- 2) 1e+000 0e+00 5e-279 2e-014 1e-275 0e+00 3e-285 9e-147 0e+00 0e+000
- 3) 1e-308 0e+00 1e-213 0e+000 0e+000 8e-75 0e+000 1e+000 4e-58 7e-112
- 4) 6e-166 5e-65 3e-068 3e-147 0e+000 1e+00 3e-249 0e+000 0e+00 0e+000
- 5) 2e-091 0e+00 0e+000 0e+000 1e-060 0e+00 4e-312 1e+000 0e+00 0e+000

Each row denotes a draw. Each draw has a single value that rounds to one and other values that are very close to zero or rounded down to zero.

As  $\alpha$  increases, the draws become increasingly uniform. For  $\alpha = 1000$ ,

### Sampling Statement

### theta ~ dirichlet(alpha);

Increment target log probability density with dirichlet\_lpdf(theta | alpha), dropping constant additive terms.

#### Stan Functions

# real dirichlet\_lpdf(vector theta | vector alpha)

The log of the Dirichlet density for simplex theta given prior counts (plus one) a lpha

# vector dirichlet\_rng(vector alpha)

Generate a Dirichlet variate with prior counts (plus one) *alpha*; may only be used in generated quantities block

## 24. Correlation Matrix Distributions

The correlation matrix distributions have support on the (Cholesky factors of) correlation matrices. A Cholesky factor L for a  $K \times K$  correlation matrix  $\Sigma$  of dimension K has rows of unit length so that the diagonal of  $LL^{\top}$  is the unit K-vector. Even though models are usually conceptualized in terms of correlation matrices, it is better to operationalize them in terms of their Cholesky factors. If you are interested in the posterior distribution of the correlations, you can recover them in the generated quantities block via

```
generated quantities {
  corr_matrix[K] Sigma;
  Sigma = multiply_lower_tri_self_transpose(L);
}
```

## 24.1. LKJ Correlation Distribution

Probability Density Function

For  $\eta > 0$ , if  $\Sigma$  a positive-definite, symmetric matrix with unit diagonal (i.e., a correlation matrix), then

$$\mathsf{LkiCorr}(\Sigma|n) \propto \det(\Sigma)^{(\eta-1)}$$
.

The expectation is the identity matrix for any positive value of the shape parameter  $\eta$ , which can be interpreted like the shape parameter of a symmetric beta distribution:

- · if  $\eta = 1$ , then the density is uniform over correlation matrices of order K;
- · if  $\eta > 1$ , the identity matrix is the modal correlation matrix, with a sharper peak in the density at the identity matrix for larger  $\eta$ ; and
- · for  $0 < \eta < 1$ , the density has a trough at the identity matrix.
- · if  $\eta$  were an unknown parameter, the Jeffreys prior is proportional to  $\sqrt{2\sum_{k=1}^{K-1} \left(\psi_1\left(\eta+\frac{K-k-1}{2}\right)-2\psi_1\left(2\eta+K-k-1\right)\right)}$ , where  $\psi_1()$  is the trigamma function

See (Lewandowski et al., 2009) for definitions. However, it is much better computationally to work directly with the Cholesky factor of  $\Sigma$ , so this distribution should never be explicitly used in practice.

#### Sampling Statement

```
y \sim lkj_{corr}(eta);
```

Increment target log probability density with  $lkj\_corr\_lpdf(y \mid eta)$ , dropping constant additive terms.

Stan Functions

```
real lkj_corr_lpdf(matrix y | real eta)
```

The log of the LKJ density for the correlation matrix *y* given nonnegative shape *eta*. The only reason to use this density function is if you want the code to run slower and consume more memory with more risk of numerical errors. Use its Cholesky factor as described in the next section.

```
matrix lkj_corr_rng(int K, real eta)
```

Generate a LKJ random correlation matrix of order K with shape eta; may only be used in generated quantities block

## 24.2. Cholesky LKJ Correlation Distribution

Stan provides an implicit parameterization of the LKJ correlation matrix density in terms of its Cholesky factor, which you should use rather than the explicit parameterization in the previous section. For example, if L is a Cholesky factor of a correlation matrix, then

```
L ~ lkj_corr_cholesky(2.0);
# implies L * L' ~ lkj_corr(2.0);
```

Because Stan requires models to have support on all valid constrained parameters, L will almost always <sup>1</sup> be a parameter declared with the type of a Cholesky factor for a correlation matrix; for example,

```
parameters {
  cholesky_factor_corr[K] L;
  # rather than corr_matrix[K] Sigma;
  // ...
```

 $<sup>^{1}</sup>$ It is possible to build up a valid L within Stan, but that would then require Jacobian adjustments to imply the intended posterior.

#### Probability Density Function

For  $\eta > 0$ , if L is a  $K \times K$  lower-triangular Cholesky factor of a symmetric positive-definite matrix with unit diagonal (i.e., a correlation matrix), then

$$\mathsf{LkjCholesky}(L|\eta) \propto |J| \det(LL^{\scriptscriptstyle \top})^{(\eta-1)} = \prod_{k=2}^K L_{kk}^{K-k+2\eta-2}.$$

See the previous section for details on interpreting the shape parameter  $\eta$ . Note that even if  $\eta = 1$ , it is still essential to evaluate the density function because the density of L is not constant, regardless of the value of  $\eta$ , even though the density of  $LL^{\top}$  is constant iff  $\eta = 1$ .

A lower triangular L is a Cholesky factor for a correlation matrix if and only if  $L_{k,k} > 0$  for  $k \in 1:K$  and each row  $L_k$  has unit Euclidean length.

#### Sampling Statement

#### L ~ lkj\_corr\_cholesky(eta);

Increment target log probability density with  $lkj\_corr\_cholesky\_lpdf(L \mid eta)$ , dropping constant additive terms.

#### Stan Functions

## real lkj\_corr\_cholesky\_lpdf(matrix L | real eta)

The log of the LKJ density for the lower-triangular Cholesky factor L of a correlation matrix given shape eta.

## matrix lkj\_corr\_cholesky\_rng(int K, real eta)

Generate a random Cholesky factor of a correlation matrix of order *K* that is distributed LKJ with shape *eta*; may only be used in generated quantities block

## 25. Covariance Matrix Distributions

The covariance matrix distributions have support on symmetric, positive-definite  $K \times K$  matrices.

#### 25.1. Wishart Distribution

Probability Density Function

If  $K \in \mathbb{N}$ ,  $v \in (K - 1, \infty)$ , and  $S \in \mathbb{R}^{K \times K}$  is symmetric and positive definite, then for symmetric and positive-definite  $W \in \mathbb{R}^{K \times K}$ ,

$$\mathsf{Wishart}(W|\nu,S) = \frac{1}{2^{\nu K/2}} \; \frac{1}{\Gamma_{\!K}\!\left(\frac{\nu}{2}\right)} \; |S|^{-\nu/2} \; |W|^{(\nu-K-1)/2} \; \exp\!\left(-\frac{1}{2} \; \mathrm{tr}\left(S^{-1}W\right)\right)\!,$$

where tr() is the matrix trace function, and  $\Gamma_K()$  is the multivariate Gamma function,

$$\Gamma_K(x) = \frac{1}{\pi^{K(K-1)/4}} \prod_{k=1}^K \Gamma\left(x + \frac{1-k}{2}\right).$$

Sampling Statement

### W ~ wishart(nu, Sigma);

Increment target log probability density with wishart\_lpdf( $W \mid nu$ , Sigma), dropping constant additive terms.

Stan Functions

## real wishart\_lpdf(matrix W | real nu, matrix Sigma)

The log of the Wishart density for symmetric and positive-definite matrix W given degrees of freedom nu and symmetric and positive-definite scale matrix Siama

## matrix wishart\_rng(real nu, matrix Sigma)

Generate a Wishart variate with degrees of freedom nu and symmetric and positive-definite scale matrix Sigma; may only be used in generated quantities block

#### 25.2. Inverse Wishart Distribution

#### Probability Density Function

If  $K \in \mathbb{N}$ ,  $v \in (K - 1, \infty)$ , and  $S \in \mathbb{R}^{K \times K}$  is symmetric and positive definite, then for symmetric and positive-definite  $W \in \mathbb{R}^{K \times K}$ .

$$\mathsf{InvWishart}(W|\nu,S) = \frac{1}{2^{\nu K/2}} \; \frac{1}{\Gamma_K \left(\frac{\nu}{2}\right)} \; |S|^{\nu/2} \; |W|^{-(\nu+K+1)/2} \; \exp\left(-\frac{1}{2} \; \mathrm{tr}(SW^{-1})\right).$$

#### Sampling Statement

#### W ~ inv\_wishart(nu, Sigma);

Increment target log probability density with inv\_wishart\_lpdf(*W* | *nu*, *Sigma*), dropping constant additive terms.

#### Stan Functions

### real inv\_wishart\_lpdf(matrix W | real nu, matrix Sigma)

The log of the inverse Wishart density for symmetric and positive-definite matrix W given degrees of freedom nu and symmetric and positive-definite scale matrix Sigma

## matrix inv\_wishart\_rng(real nu, matrix Sigma)

Generate an inverse Wishart variate with degrees of freedom nu and symmetric and positive-definite scale matrix Sigma; may only be used in generated quantities block

## A. Mathematical Functions

This appendix provides the definition of several mathematical functions used throughout the manual.

#### A.1. Beta

The beta function,  $B(\alpha, \beta)$ , computes the normalizing constant for the beta distribution, and is defined for a > 0 and b > 0 by

$$B(a,b) = \int_0^1 u^{a-1} (1-u)^{b-1} du = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}.$$

## A.2. Incomplete Beta

The incomplete beta function, B(x; a, b), is defined for  $x \in [0, 1]$  and  $a, b \ge 0$  such that  $a + b \ne 0$  by

$$B(x; a, b) = \int_0^x u^{a-1} (1-u)^{b-1} du,$$

where B(a,b) is the beta function defined in Section A.1. If x=1, the incomplete beta function reduces to the beta function, B(1;a,b)=B(a,b).

The regularized incomplete beta function divides the incomplete beta function by the beta function,

$$I_x(a,b) = \frac{B(x; a,b)}{B(a,b)}.$$

### A.3. Gamma

The gamma function,  $\Gamma(x)$ , is the generalization of the factorial function to continuous variables, defined so that for positive integers n,

$$\Gamma(n+1) = n!$$

Generalizing to all positive numbers and non-integer negative numbers,

$$\Gamma(x) = \int_0^\infty u^{x-1} \exp(-u) \, du.$$

## A.4. Digamma

The digamma function  $\Psi$  is the derivative of the  $\log\Gamma$  function,

$$\Psi(u) = \frac{d}{du} \log \Gamma(u) = \frac{1}{\Gamma(u)} \frac{d}{du} \Gamma(u).$$

## **Bibliography**

- Bowling, S. R., Khasawneh, M. T., Kaewkuekool, S., and Cho, B. R. (2009). A logistic approximation to the cumulative normal distribution. *Journal of Industrial Engineering and Management*, 2(1):114–127. 30
- Durbin, J. and Koopman, S. J. (2001). *Time Series Analysis by State Space Methods*. Oxford University Press, New York. 143
- Feller, W. (1968). *An Introduction to Probability Theory and its Applications*, volume 1. Wiley, New York. 128
- Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). *Bayesian Data Analysis*. Chapman & Hall/CRC Press, London, third edition. 101
- Google (2011). Google C++ testing framework. http://code.google.com/p/googletest/.
- Guennebaud, G., Jacob, B., et al. (2010). Eigen v3. http://eigen.tuxfamily.org. 80
- Jorge J. More, Burton S. Garbow, K. E. H. (1980). *User Guide for MINPACK-1*. Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439. 80
- Lewandowski, D., Kurowicka, D., and Joe, H. (2009). Generating random correlation matrices based on vines and extended onion method. *Journal of Multivariate Analysis*, 100:1989–2001. 146
- Lunn, D. J., Wakefield, J., Thomas, A., Best, N., and Spiegelhalter, D. (1999). PKBugs User Guide. Dept. Epidemiology and Public Health, Imperial College School of Medicine, London. 80
- Navarro, D. J. and Fuss, I. G. (2009). Fast and accurate calculations for first-passage times in Wiener diffusion models. *Journal of Mathematical Psychology*, 53(4):222–230. 128
- Powell, M. J. D. (1970). A hybrid method for nonlinear equations. In Rabinowitz, P., editor, *Numerical Methods for Nonlinear Algebraic Equations*. Gordon and Breach. 80
- Schäling, B. (2011). The Boost C++ libraries. http://en.highscore.de/cpp/boost/.
- van Heesch, D. (2011). Doxygen: Generate documentation from source code. http://www.stack.nl/ dimitri/doxygen/index.html.
- Vandekerckhove, J. and Wabersich, D. (2014). The RWiener package: an R package providing distribution functions for the Wiener diffusion model. *The R Journal*, 6/1. 128

# Index

| abs                                               | (T x): R, 28                                                |
|---------------------------------------------------|-------------------------------------------------------------|
| $(T \ x): R, 13$                                  | bernoulli                                                   |
| (int x): int, 22                                  | sampling statement, 92                                      |
| (real x): real, 22                                | bernoulli_cdf                                               |
| acos                                              | (ints y, reals theta): real, 92                             |
| (T x): R, 27                                      | bernoulli_lccdf                                             |
| acosh                                             | (ints y   reals theta): real, 92                            |
| (T x): R, 28                                      | bernoulli_lcdf                                              |
| algebra_solver                                    | (ints y   reals theta): real, 92                            |
| (function algebra_system, vector                  | bernoulli_logit                                             |
| y_guess, vector theta, real[]                     | sampling statement, 93                                      |
| $x_r$ , int[] $x_i$ ): vector, 79                 | bernoulli_logit_lpmf                                        |
| (function algebra_system, vector                  | (ints $y \mid \text{reals } alpha$ ): real, 93              |
| y_quess, vector theta,                            | bernoulli_logit_rng                                         |
| real[] $x_r$ , int[] $x_i$ , real                 | (real alpha): int, 93                                       |
| rel_tol, real f_tol, int                          | bernoulli_lpmf                                              |
| <pre>max_steps): vector, 79</pre>                 | (ints y   reals <i>theta</i> ): real, 92                    |
| append_array                                      | bernoulli_rng                                               |
| (T x, T y): T, 44                                 | (reals <i>theta</i> ): R, 92                                |
| append_col                                        | bessel_first_kind                                           |
| (matrix x, matrix y): matrix, 59                  | (int $v$ , real $x$ ): real, 33                             |
| (matrix x, vector y): matrix, 59                  | bessel_second_kind                                          |
| <pre>(real x, row_vector y): row_vector, 59</pre> | (int $v$ , real $x$ ): real, 34                             |
| (row_vector $x$ , real $y$ ): row_vector, 59      | beta                                                        |
| (row_vector $x$ , row_vector                      | sampling statement, 131                                     |
| y): row_vector, 59                                | beta_binomial                                               |
| (vector $x$ , matrix $y$ ): matrix, 59            | sampling statement, 96                                      |
| (vector $x$ , vector $y$ ): matrix, 59            | beta_binomial_cdf                                           |
| append_row                                        | (ints <i>n</i> , ints <i>N</i> , reals <i>alpha</i> , reals |
| (matrix $x$ , matrix $y$ ): matrix, 59            | beta): real, 96                                             |
| (matrix $x$ , row_vector $y$ ): matrix, 59        | beta_binomial_lccdf                                         |
| (real $x$ , vector $y$ ): vector, $60$            | (ints $n \mid$ ints $N$ , reals $alpha$ , reals             |
| (row_vector $x$ , matrix $y$ ): matrix, 59        | beta): real, 97                                             |
| <pre>(row_vector x, row_vector y):matrix,</pre>   | beta_binomial_lcdf                                          |
| 60                                                | (ints $n \mid$ ints $N$ , reals $alpha$ , reals             |
| (vector $x$ , real $y$ ): vector, $60$            | beta): real, 97                                             |
| (vector x, vector y): vector, 60                  | beta_binomial_lpmf                                          |
| asin                                              | (ints $n \mid$ ints $N$ , reals $alpha$ , reals             |
| (T x): R, 27                                      | beta): real, 96                                             |
| asinh                                             | beta_binomial_rng                                           |
| (T x): R, 28                                      | (ints N, reals <i>alpha</i> , reals <i>beta</i> ):R,        |
| atan                                              | 97                                                          |
| (T x): R, 27                                      | beta_cdf                                                    |
| atan2                                             | (reals theta, reals alpha, reals                            |
| (real $y$ , real $x$ ): real, 27                  | beta): real, 131                                            |
| atanh                                             | beta_lccdf                                                  |

| (reals <i>theta</i>   reals <i>alpha</i> , reals             | sampling statement, 113                                        |
|--------------------------------------------------------------|----------------------------------------------------------------|
| beta): real, 131                                             | cauchy_cdf                                                     |
| beta_1cdf                                                    | (reals y, reals mu, reals                                      |
| (reals <i>theta</i>   reals <i>alpha</i> , reals             | sigma): real, 113                                              |
| beta): real, 131                                             | cauchy_lccdf                                                   |
| beta_lpdf                                                    | (reals $y \mid$ reals $mu$ , reals                             |
| (reals <i>theta</i>   reals <i>alpha</i> , reals             | sigma): real, 113                                              |
| beta): real, 131                                             | cauchy_lcdf                                                    |
| beta_rng                                                     | (reals $y \mid$ reals $mu$ , reals                             |
| (reals <i>alpha</i> , reals <i>beta</i> ):R,132              | sigma): real, 113                                              |
| binary_log_loss                                              | cauchy_1pdf                                                    |
| (int <i>y</i> , real <i>y_hat</i> ): real, 30                | (reals $y \mid$ reals $mu$ , reals                             |
| binomial                                                     | sigma): real, 113                                              |
| sampling statement, 94                                       | cauchy_rng                                                     |
| binomial_cdf                                                 | (reals mu, reals sigma):R,113                                  |
| (ints <i>n</i> , ints <i>N</i> , reals <i>theta</i> ):real,  | cbrt                                                           |
| 94                                                           | (T x): R, 24                                                   |
| binomial_coefficient_log                                     | ceil                                                           |
| (real <i>x</i> , real <i>y</i> ): real, 33                   | (T x): R, 24                                                   |
| binomial_lccdf                                               | chi_square                                                     |
| (ints <i>n</i>   ints <i>N</i> , reals <i>theta</i> ): real, | sampling statement, 119                                        |
| 95                                                           | chi_square_cdf                                                 |
| binomial_lcdf                                                | (reals y, reals nu): real, 119                                 |
| (ints <i>n</i>   ints <i>N</i> , reals <i>theta</i> ):real,  | chi_square_lccdf                                               |
| 95                                                           | (reals $y \mid reals nu$ ): real, 119                          |
| binomial_logit                                               | chi_square_lcdf                                                |
| sampling statement, 96                                       | (reals $y \mid reals nu$ ): real, 119                          |
| binomial_logit_lpmf                                          | chi_square_1pdf                                                |
| (ints <i>n</i>   ints <i>N</i> , reals <i>alpha</i> ):real,  | (reals $y \mid reals nu$ ): real, 119                          |
| 96                                                           | chi_square_rng                                                 |
| binomial_lpmf                                                | (reals <i>nu</i> ):R,119                                       |
| (ints <i>n</i>   ints <i>N</i> , reals <i>theta</i> ): real, | cholesky_decompose                                             |
| 94                                                           | (matrix A): matrix, 66                                         |
| binomial_rng                                                 | choose                                                         |
| (ints N, reals theta): R, 95                                 | (int $x$ , int $y$ ): int, 33                                  |
| block                                                        | col                                                            |
| (matrix $x$ , int $i$ , int $j$ , int $n_rows$ ,             | (matrix $x$ , int $n$ ): vector, 57                            |
| int <i>n_cols</i> ): matrix, 57                              | cols                                                           |
| categorical                                                  | (matrix x):int, 46                                             |
| sampling statement, 98                                       | $(row\_vector x):int, 46$                                      |
| categorical_logit                                            | (vector $x$ ): int, 46                                         |
| sampling statement, 98                                       | columns_dot_product                                            |
| categorical_logit_lpmf                                       | $(\text{matrix } x, \text{ matrix } y): \text{row\_vector}, 5$ |
| (ints y   vector beta): real, 98                             | (row_vector x, row_vector                                      |
| categorical_logit_rng                                        | y): row_vector, 51                                             |
| (vector beta): int, 99                                       | <pre>(vector x, vector y):row_vector, 5:</pre>                 |
| categorical_lpmf                                             | columns_dot_self                                               |
| (ints y   vector theta): real, 98                            | (matrix x):row_vector,52                                       |
| categorical_rng                                              | <pre>(row_vector x): row_vector, 51</pre>                      |
| (vector theta): int, 99                                      | <pre>(vector x): row_vector, 51</pre>                          |
| cauchy                                                       | cos                                                            |

| (T x): R, 26                                        | sampling statement, 145                           |
|-----------------------------------------------------|---------------------------------------------------|
| cosh                                                | dirichlet_lpdf                                    |
| (T x): R, 28                                        | <pre>(vector theta   vector alpha): real,</pre>   |
| cov_exp_quad                                        | 145                                               |
| (real[] x1, real[] x2 real alpha,                   | dirichlet_rng                                     |
| real <i>rho</i> ):matrix,62                         | (vector alpha): vector, 145                       |
| (real[] x, real alpha, real                         | distance                                          |
| <i>rho</i> ): matrix, 61                            | <pre>(row_vector x, row_vector y): real, 41</pre> |
| (row_vectors x1, row_vectors x2 real                | <pre>(row_vector x, vector y): real, 41</pre>     |
| alpha, real rho):matrix,62                          | <pre>(vector x, row_vector y): real, 41</pre>     |
| (row_vectors x, real alpha, real                    | (vector x, vector y): real, 41                    |
| rho): matrix, 61                                    | dot_product                                       |
| (vectors $x1$ , vectors $x2$ real $alpha$ ,         | $(row\_vector x, row\_vector y): real, 51$        |
| real <i>rho</i> ):matrix,62                         | (row_vector $x$ , vector $y$ ): real, 51          |
| (vectors $x$ , real $alpha$ , real                  | <pre>(vector x, row_vector y): real, 51</pre>     |
| <i>rho</i> ): matrix, 61                            | (vector $x$ , vector $y$ ): real, 51              |
| crossprod                                           | dot_self                                          |
| (matrix <i>x</i> ):matrix,52                        | $(row\_vector x): real, 51$                       |
| csr_extract_u                                       | (vector <i>x</i> ): real, 51                      |
| (matrix <i>a</i> ):int[],69                         | double_exponential                                |
| csr_extract_v                                       | sampling statement, 114                           |
| (matrix a):int[],69                                 | double_exponential_cdf                            |
| csr_extract_w                                       | (reals <i>y</i> , reals <i>mu</i> , reals         |
| (matrix <i>a</i> ): vector, 69                      | sigma): real, 114                                 |
| csr_matrix_times_vector                             | double_exponential_lccdf                          |
| (int $m$ , int $n$ , vector $w$ int[] $v$ ,         | (reals <i>y</i>   reals <i>mu</i> , reals         |
| <pre>int[] u, vector b): vector, 70</pre>           | sigma): real, 115                                 |
| csr_to_dense_matrix                                 | double_exponential_lcdf                           |
| (int $m$ , int $n$ , vector $w$ , int[] $v$ ,       | (reals y   reals mu, reals                        |
| int[] <i>u</i> ): matrix, 69                        | sigma): real, 115                                 |
| cumulative_sum                                      | double_exponential_lpdf                           |
| (real[] x):real[],61                                | (reals y   reals mu, reals                        |
| <pre>(row_vector rv): row_vector, 61</pre>          | sigma): real, 114                                 |
| (vector v): vector, 61                              | double_exponential_rng                            |
| determinant                                         | (reals mu, reals sigma): R, 115                   |
| (matrix <i>A</i> ):real,64                          | e                                                 |
| diag_matrix                                         | (): real, 16                                      |
| (vector x): matrix, 56                              | eigenvalues_sym                                   |
| diag_post_multiply                                  | (matrix A): vector, 65                            |
| (matrix <i>m</i> , row_vector <i>rv</i> ):matrix,53 | eigenvectors_sym                                  |
| (matrix $m$ , vector $v$ ): matrix, 53              | (matrix A): matrix, 65                            |
| diag_pre_multiply                                   | erf                                               |
| (row_vector rv, matrix m):matrix,53                 | (T x): R, 29                                      |
| (vector v, matrix m): matrix, 53                    | erfc                                              |
| diagonal                                            | (T x): R, 30                                      |
| (matrix  x): vector, 56                             | exp                                               |
| digamma                                             | (T x): R, 25                                      |
| (T x): R, 32                                        | exp2                                              |
| dims                                                | T x): R, 25                                       |
| (T x): int[], 42                                    | exp_mod_normal                                    |
| dirichlet                                           | sampling statement, 110                           |

| exp_mod_normal_cdf                               | (reals <i>y</i>   reals <i>alpha</i> , reals     |
|--------------------------------------------------|--------------------------------------------------|
| (reals y, reals mu, reals sigma                  | sigma): real, 126                                |
| reals <i>lambda</i> ):real,110                   | frechet_lcdf                                     |
| exp_mod_normal_lccdf                             | (reals <i>y</i>   reals <i>alpha</i> , reals     |
| (reals y   reals mu, reals sigma                 | sigma): real, 126                                |
| reals <i>lambda</i> ):real,110                   | frechet_1pdf                                     |
| exp_mod_normal_lcdf                              | (reals <i>y</i>   reals <i>alpha</i> , reals     |
| (reals y   reals mu, reals sigma                 | sigma): real, 126                                |
| reals <i>lambda</i> ):real,110                   | frechet_rng                                      |
| exp_mod_normal_lpdf                              | (reals <i>alpha</i> , reals <i>sigma</i> ):R,126 |
| (reals y   reals mu, reals sigma                 | gamma                                            |
| reals <i>lambda</i> ):real,110                   | sampling statement, 123                          |
| exp_mod_normal_rng                               | gamma_cdf                                        |
| (reals mu, reals sigma, reals                    | (reals <i>y</i> , reals <i>alpha</i> , reals     |
| 7ambda): R, 110                                  | beta): real, 123                                 |
| expm1                                            | gamma_lccdf                                      |
| (T x): R, 36                                     | (reals <i>y</i>   reals <i>alpha</i> , reals     |
| exponential                                      | beta): real, 123                                 |
| sampling statement, 122                          | gamma_lcdf                                       |
| exponential_cdf                                  | (reals <i>y</i>   reals <i>alpha</i> , reals     |
| (reals y, reals beta): real, 122                 | beta): real, 123                                 |
| exponential_lccdf                                | gamma_lpdf                                       |
| (reals <i>y</i>   reals <i>beta</i> ): real, 122 | (reals <i>y</i>   reals <i>alpha</i> , reals     |
| exponential_lcdf                                 | beta): real, 123                                 |
| (reals $y \mid reals beta$ ): real, 122          | gamma_p                                          |
| exponential_lpdf                                 | (real <i>a</i> , real <i>z</i> ): real, 32       |
| (reals y   reals beta): real, 122                | gamma_q                                          |
| exponential_rng                                  | (real <i>a</i> , real <i>z</i> ): real, 33       |
| (reals <i>beta</i> ):R, 122                      | gamma_rng                                        |
| fabs                                             | (reals alpha, reals beta): R, 123                |
| (T x): R, 22                                     | gaussian_dlm_obs                                 |
| falling_factorial                                | sampling statement, 143                          |
| (real <i>x</i> , real <i>n</i> ):real,35         | gaussian_dlm_obs_lpdf                            |
| fdim                                             | (matrix $y \mid matrix F$ , matrix $G$ ,         |
| (real <i>x</i> , real <i>y</i> ):real,22         | matrix $V$ matrix $W$ , vector $m0$ ,            |
| floor                                            | matrix <i>CO</i> ): real, 143                    |
| (T x): R, 24                                     | $(matrix y \mid matrix F, matrix G,$             |
| fma                                              | vector $V$ matrix $W$ , vector $m0$ ,            |
| (real $x$ , real $y$ , real $z$ ): real, 36      | matrix <i>CO</i> ): real, 143                    |
| fmax                                             | get_lp                                           |
| (real x, real y): real, 23                       | (): real, 17                                     |
| fmin                                             | gumbel                                           |
| (real x, real y): real, 23                       | sampling statement, 116                          |
| fmod                                             | gumbel_cdf                                       |
| (real x, real y): real, 23                       | (reals y, reals mu, reals beta): real            |
| frechet                                          | 116                                              |
| sampling statement, 125                          | gumbel_lccdf                                     |
| frechet_cdf                                      | (reals $y \mid \text{reals } mu$ , reals         |
| (reals y, reals alpha, reals                     | beta): real, 116                                 |
| sigma): real, 126                                | gumbel_lcdf                                      |
| frechet_lccdf                                    | 90m2c1_1C41                                      |
|                                                  |                                                  |

```
(reals y \mid reals mu, reals
                                                          x_i, real rel_{tol}, real abs_{tol},
          beta): real, 116
                                                          int max_num_steps): real[ , ],81
gumbel_lpdf
                                               inv
     (reals y \mid reals mu, reals
                                                    (T x): R, 26
          beta): real, 116
                                               inv_Phi
gumbel_rng
                                                     (T x): R, 30
     (reals mu, reals beta): R, 117
                                               inv_chi_square
head
                                                    sampling statement, 120
     (T[] sv, int n):T[], 58
                                               inv_chi_square_cdf
     (row_vector rv, int n): row_vector, 58
                                                     (reals y, reals nu): real, 120
     (vector v, int n): vector, 58
                                               inv_chi_square_lccdf
hypergeometric
                                                     (reals y \mid reals nu): real, 120
                                               inv_chi_square_lcdf
     sampling statement, 97
hypergeometric_1pmf
                                                     (reals y \mid reals nu): real, 120
     (int n \mid \text{int } N, int a, int b): real,
                                               inv_chi_square_1pdf
                                                     (reals y \mid reals nu): real, 120
hypergeometric_rng
                                               inv_chi_square_rng
     (int N, int a, int2 b): int, 97
                                                     (reals nu): R, 120
hypot
                                               inv_cloglog
     (real x, real y): real, 26
                                                     (T x): R, 29
inc_beta
                                               inv_gamma
     (real alpha, real beta, real x): real,
                                                    sampling statement, 123
                                               inv_gamma_cdf
int_step
                                                    (reals y, reals alpha, reals
     (int x): int, 13
                                                         beta): real, 124
     (real x): int, 13
                                               inv_gamma_lccdf
integrate_ode
                                                     (reals y \mid reals \ alpha, reals
     (function ode, real[] initial_state,
                                                         beta): real, 124
          real initial_time, real[] times,
                                               inv_gamma_1cdf
          real[] theta, real[] x_r, int[]
                                                     (reals y \mid reals \ alpha, reals
          x_i: real[ , ], 81
                                                         beta): real, 124
integrate_ode_bdf
                                               inv_gamma_1pdf
     (function ode, real[] initial_state,
                                                     (reals y \mid reals \ alpha, reals
          real initial_time, real[] times,
                                                          beta): real. 124
          real[] theta, data real[] x_r,
                                               inv_gamma_rng
          data int[] x_i: real[], 82
                                                     (reals alpha, reals beta): R, 124
     (function ode, real[] initial_state,
                                               inv_logit
          real initial_time, real[] times,
                                                    (T x): R, 29
          real[] theta, data real[] x_r,
                                               inv_sqrt
          data int[] x_i, data real
                                                    (T x): R, 26
          rel_tol, data real abs_tol,
                                               inv_square
          dta int max_num_steps): real[],
                                                    (T x): R, 26
          82
                                               inv_wishart
integrate_ode_rk45
                                                    sampling statement, 150
     (function ode, real[] initial_state,
                                               inv_wishart_lpdf
          real initial_time, real[] times,
                                                     (matrix W | real nu, matrix
          real[] theta, real[] x_r, int[]
                                                         Sigma): real, 150
          x_i: real[ , ], 81
                                               inv_wishart_rng
     (function ode, real[] initial_state,
                                                     (real nu, matrix Sigma): matrix, 150
          real initial_time, real[] times,
                                               inverse
          real[] theta, real[] x_r, int[]
                                                    (matrix A): matrix, 65
```

| inverse_spd                                     | (real $x$ , real $n$ ): real, 35         |
|-------------------------------------------------|------------------------------------------|
| (matrix A): matrix, 65                          | log_inv_logit                            |
| is_inf                                          | (T x): R, 38                             |
| (real x):int, 20                                | log_mix                                  |
|                                                 | _                                        |
| is_nan                                          | (real theta, real lp1, real              |
| (real <i>x</i> ): int, 20                       | <i>1p2</i> ): rea1, 38                   |
| lbeta                                           | log_rising_factorial                     |
| (real <i>alpha</i> , real <i>beta</i> ):real,31 | (real <i>x</i> , real <i>n</i> ):real,35 |
| 1choose                                         | log_softmax                              |
| (real <i>x</i> , real <i>y</i> ): real, 35      | (vector x): vector, 60                   |
| lgamma                                          | log_sum_exp                              |
| (T x): R, 31                                    | (matrix <i>x</i> ): real, 54             |
|                                                 |                                          |
| 1kj_corr                                        | (real x, real y): real, 38               |
| sampling statement, 147                         | (real[] x): real, 40                     |
| lkj_corr_cholesky                               | $(row\_vector x): real, 53$              |
| sampling statement, 148                         | (vector <i>x</i> ): real, 53             |
| lkj_corr_cholesky_lpdf                          | logistic                                 |
| (matrix <i>L</i>   real <i>eta</i> ):real,148   | sampling statement, 115                  |
| lkj_corr_cholesky_rng                           | logistic_cdf                             |
| (int <i>K</i> , real <i>eta</i> ): matrix, 148  | (reals y, reals mu, reals                |
| 1kj_corr_1pdf                                   | sigma): real, 115                        |
| (matrix <i>y</i>   real <i>eta</i> ): real, 147 | logistic_lccdf                           |
| -                                               | <del>-</del>                             |
| lkj_corr_rng                                    | (reals $y \mid \text{reals } mu$ , reals |
| (int K, real eta): matrix, 147                  | sigma): real, 116                        |
| 1 mgamma                                        | logistic_lcdf                            |
| (int <i>n</i> , real <i>x</i> ):real,32         | (reals $y \mid$ reals $mu$ , reals       |
| lmultiply                                       | <i>sigma</i> ): real, 115                |
| (real <i>x</i> , real <i>y</i> ):real,36        | logistic_lpdf                            |
| log                                             | (reals $y \mid$ reals $mu$ , reals       |
| (T x): R, 25                                    | sigma): real, 115                        |
| log10                                           | logistic_rng                             |
| (): real, 16                                    | (reals mu, reals sigma): R, 116          |
| (T x): R, 25                                    | logit                                    |
|                                                 | _                                        |
| log1m                                           | (T x): R, 29                             |
| (T x): R, 37                                    | lognormal                                |
| loglm_exp                                       | sampling statement, 118                  |
| (T x): R, 37                                    | lognormal_cdf                            |
| log1m_inv_logit                                 | (reals $y$ , reals $mu$ , reals          |
| (T x): R, 38                                    | sigma): real, 118                        |
| loglp                                           | lognormal_lccdf                          |
| (T x): R, 36                                    | (reals $y \mid$ reals $mu$ , reals       |
| loglp_exp                                       | sigma): real, 118                        |
| (T x): R, 37                                    | lognormal_lcdf                           |
| log2                                            | (reals $y \mid$ reals $mu$ , reals       |
| _                                               |                                          |
| (): real, 16                                    | sigma): real, 118                        |
| (T x): R, 25                                    | lognormal_lpdf                           |
| log_determinant                                 | (reals y   reals mu, reals               |
| (matrix A):real,64                              | sigma): real, 118                        |
| log_diff_exp                                    | lognormal_rng                            |
| (real <i>x</i> , real <i>y</i> ):real,37        | (reals mu, reals beta):R,118             |
| log_falling_factorial                           | machine_precision                        |

```
(): real. 16
                                                    (matrix y \mid matrix L, vector w): real,
map rect
     (F f, vector phi, vector[] theta,
                                               multi_gp_lpdf
          data real[,] x_r data int[,]
                                                    (matrix y | matrix Sigma, vector
          x_i): vector, 84
                                                         w): real, 140
matrix_exp
                                               multi_normal
     (matrix A): matrix, 64
                                                    sampling statement, 136
matrix_exp_multiply
                                               multi_normal_cholesky
     (matrix A, matrix B): matrix, 64
                                                    sampling statement, 138
max
                                               multi_normal_cholesky_lpdf
     (int x, int y): int, 13
                                                    (row_vectors y | row_vectors mu
     (int[] x):int, 39
                                                         matrix L): real, 139
                                                    (row_vectors y | vectors mu matrix
     (matrix x): real, 54
     (real[] x): real, 39
                                                         L): real, 139
     (row\_vector x): real, 54
                                                    (vectors y | row_vectors mu matrix
     (vector x): real, 54
                                                         L): real, 139
mdivide_left_spd
                                                    (vectors y | vectors mu matrix
     (matrix A, matrix B): vector, 63
                                                         L): real, 139
     (matrix A, vector b): matrix, 63
                                               multi_normal_cholesky_rng
mdivide_left_tri_low
                                                    (row_vector mu, matrix L): vector, 139
                                                    (row_vectors mu, matrix L): vectors,
     (matrix A, matrix B): matrix, 63
     (matrix A, vector b): vector, 63
                                                         139
mdivide_right_spd
                                                    (vector mu, matrix L): vector, 139
     (matrix B, matrix A): matrix, 63
                                                    (vectors mu, matrix L): vectors, 139
     (row_vector b, matrix A):row_vector,
                                               multi_normal_lpdf
                                                    (row_vectors y | row_vectors mu,
mdivide right tri low
                                                         matrix Sigma): real, 137
                                                    (row_vectors y | vectors mu, matrix
     (matrix B, matrix A): matrix, 63
     (row_vector b, matrix A): row_vector,
                                                         Sigma): real, 136
          63
                                                    (vectors y | row_vectors mu, matrix
mean
                                                         Sigma): real, 136
     (matrix x): real, 55
                                                    (vectors y \mid vectors mu, matrix
     (real[] x): real, 40
                                                         Sigma): real, 136
     (row\_vector x): real, 55
                                               multi_normal_prec
     (vector x): real, 55
                                                    sampling statement, 137
                                               multi_normal_prec_lpdf
min
     (int x, int y): int, 13
                                                    (row_vectors y | row_vectors mu
     (int[] x):int, 39
                                                         matrix Omega): real, 138
     (matrix x): real, 54
                                                    (row_vectors y | vectors mu matrix
     (real[] x): real, 39
                                                         Omega): real, 138
     (row\_vector x): real, 54
                                                    (vectors y | row_vectors mu matrix
     (vector x): real, 54
                                                         Omega): real, 138
modified_bessel_first_kind
                                                    (vectors y \mid vectors mu matrix
     (int v, real z): real, 34
                                                         Omega): real, 138
modified_bessel_second_kind
                                               multi_normal_rng
     (int v, real z): real, 34
                                                    (row_vector mu, matrix Sigma): vector,
multi_gp
                                                         137
     sampling statement, 140
                                                    (row_vectors mu, matrix
multi_gp_cholesky
                                                         Sigma): vectors, 137
     sampling statement, 141
                                                    (vector mu, matrix Sigma): vector, 137
multi_gp_cholesky_lpdf
```

```
(vectors mu, matrix Sigma): vectors,
                                                neg_binomial_2_log_rng
                                                      (reals eta, reals phi): R, 104
multi student t
                                                neg_binomial_2_lpmf
     sampling statement, 141
                                                      (ints y \mid \text{reals } mu, reals phi): real,
multi_student_t_lpdf
     (row_vectors y \mid real nu,
                                                neg_binomial_2_rng
          row_vectors mu matrix
                                                      (reals mu, reals phi): R, 103
          Sigma): real, 142
                                                neg_binomial_cdf
     (row_vectors y | real nu, vectors mu
                                                     (ints n, reals alpha, reals
          matrix Sigma): real, 142
                                                          beta): real, 101
     (vectors y | real nu, row_vectors mu
                                                neg_binomial_lccdf
          matrix Sigma): real, 142
                                                      (ints n \mid reals \ alpha, reals
     (vectors y \mid \text{real } nu, vectors mu
                                                           beta): real, 102
          matrix Sigma): real, 141
                                                neq_binomial_lcdf
multi_student_t_rng
                                                      (ints n \mid reals \ alpha, reals
     (real nu, row_vector mu, matrix
                                                           beta): real, 101
          Sigma): vector, 142
                                                neg_binomial_lpmf
     (real nu, row_vectors mu, matrix
                                                      (ints n \mid reals \ alpha, reals
          Sigma): vectors, 142
                                                           beta): real, 101
     (real nu, vector mu, matrix
                                                neg_binomial_rng
          Sigma): vector, 142
                                                      (reals alpha, reals beta): R, 102
     (real nu, vectors mu, matrix
                                                negative_infinity
          Sigma): vectors, 142
                                                     (): real, 16
multinomial
                                                normal
     sampling statement, 106
                                                     sampling statement, 108
multinomial_lpmf
                                                normal cdf
     (int[] y \mid vector theta): real, 106
                                                      (reals y, reals mu, reals
multinomial_rng
                                                           sigma): real, 108
     (vector theta, int N): int[], 106
                                                normal_lccdf
multiply_log
                                                      (reals y \mid reals mu, reals
     (real x, real y): real, 36
                                                          sigma): real, 108
multiply_lower_tri_self_transpose
                                                normal 1cdf
     (matrix x): matrix, 53
                                                      (reals y \mid reals mu, reals
neg_binomial
                                                           sigma): real, 108
     sampling statement, 101
                                                normal_lpdf
neg_binomial_2
                                                      (reals y \mid reals mu, reals
     sampling statement, 102
                                                           sigma): real, 108
neg_binomial_2_cdf
                                                normal_rng
     (ints n, reals mu, reals phi): real,
                                                      (reals mu, reals sigma): R, 109
          103
                                                not_a_number
neg_binomial_2_lccdf
                                                      (): real, 16
     (ints n \mid reals mu, reals phi): real,
                                                num elements
          103
                                                      (matrix x): int, 46
neg_binomial_2_lcdf
                                                      (row\_vector x):int, 46
     (ints n \mid \text{reals } mu, reals phi): real,
                                                      (vector x): int, 46
          103
                                                     (T[] x): int, 42
neg_binomial_2_log
                                                operator!
     sampling statement, 103
                                                     (int x): int, 19
neg_binomial_2_log_lpmf
                                                     (real x): int, 19
     (ints y | reals eta, reals phi): real,
                                                operator!=
          103
                                                     (int x, int y): int, 19
```

```
(vector x, vector y): void, 74
     (real x, real y): int, 19
operator'
                                               operator-
     (matrix x): matrix, 50
                                                     (int x): int, 12
     (row\_vector x): vector, 50
                                                     (int x, int y): int, 12
     (vector x): row_vector, 50
                                                     (matrix x): matrix, 47
operator*
                                                     (matrix x, matrix y): matrix, 47
     (int x, int y): int, 12
                                                     (matrix x, real y): matrix, 49
     (matrix x, matrix y): matrix, 48
                                                     (real x): real, 21
     (matrix x, real y): matrix, 48
                                                     (real x, matrix y): matrix, 49
     (matrix x, vector y): vector, 48
                                                     (real x, real y): real, 21
     (real x, matrix y): matrix, 47
                                                     (real x, row_vector y): row_vector, 49
     (real x, real y): real, 21
                                                     (real x, vector y): vector, 49
     (real x, row_vector y): row_vector, 47
                                                     (row_vector x): row_vector, 47
     (real x, vector y): vector, 47
                                                     (row_vector x, real y): row_vector, 49
     (row_vector x, matrix y):row_vector,
                                                     (row_vector x, row_vector
          48
                                                          y): row_vector, 47
     (row_vector x, real y):row_vector, 48
                                                     (vector x): vector, 47
     (row\_vector x, vector y): real, 48
                                                     (vector x, real y): vector, 48
     (vector x, real y): vector, 47
                                                     (vector x, vector y): vector, 47
     (vector x, row_vector y): matrix, 48
                                               operator-=
operator*=
                                                     (int x, int y): void, 75
     (int x, int y): void, 75
                                                     (matrix x, matrix y): void, 75
     (matrix x, matrix y): void, 76
                                                     (matrix x, real y): void, 75
                                                     (real x, real y): void, 75
     (matrix x, real y): void, 75
     (real x, real y): void, 75
                                                     (row\_vector x, real y):void, 75
                                                     (row_vector x, row_vector y):void,75
     (row\_vector x, matrix y): void, 76
     (row\_vector x, real y): void, 75
                                                     (vector x, real y): void, 75
     (vector x, real y): void, 75
                                                     (vector x, vector y): void, 75
operator+
                                               operator.*
     (int x): int, 13
                                                     (matrix x, matrix y): matrix, 49
     (int x, int y): int, 12
                                                     (row_vector x, row_vector
     (matrix x, matrix y): matrix, 47
                                                          y): row_vector, 49
     (matrix x, real y): matrix, 48
                                                     (vector x, vector y): vector, 49
     (real x): real, 22
                                               operator.*=
     (real x, matrix y): matrix, 48
                                                     (matrix x, matrix y): void, 76
     (real x, real y): real, 21
                                                     (row_vector x, row_vector y): void, 76
     (real x, row_vector y): row_vector, 48
                                                     (vector x, vector y): void, 76
     (real x, vector y): vector, 48
                                               operator./
     (row_vector x, real y): row_vector, 48
                                                     (matrix x, matrix y): matrix, 50
     (row_vector x, row_vector
                                                     (matrix x, real y): matrix, 50
                                                     (real x, matrix y): matrix, 50
          y): row_vector, 47
     (vector x, real y): vector, 48
                                                     (real x, row_vector y): row_vector, 50
     (vector x, vector y): vector, 47
                                                     (real x, vector y): vector, 50
operator+=
                                                     (row_vector x, real y):row_vector, 50
     (int x, int y): void, 74
                                                     (row_vector x, row_vector
     (matrix x, matrix y): void, 74
                                                          v): row_vector, 50
     (matrix x, real y): void, 74
                                                     (vector x, real y): vector, 49
     (real x, real y): void, 74
                                                     (vector x, vector y): vector, 49
     (row\_vector x, real y): void, 74
                                               operator./=
     (row_vector x, row_vector y):void,74
                                                     (matrix x, matrix y): void, 77
     (vector x, real y): void, 74
                                                     (matrix x, real y): void, 77
```

```
(row\_vector x, real y): void, 77
                                                     (ints k \mid \text{vector } eta, vectors
     (row_vector x, row_vector y):void,76
                                                          c): real, 99
     (vector x, real y): void, 77
                                                ordered_logistic_rng
     (vector x, vector y): void, 76
                                                     (real eta, vector c): int, 99
operator/
                                                ordered_probit
     (int x, int y): int, 12
                                                     sampling statement, 100
     (matrix B, matrix A): matrix, 62
                                                ordered_probit_1pmf
     (matrix x, real y): matrix, 49
                                                     (ints k \mid \text{vector } eta, vectors
     (real x, real y): real, 21
                                                          c): real. 100
     (row_vector b, matrix A):row_vector,
                                                ordered_probit_rng
          62
                                                     (real eta, vector c): int, 100
     (row_vector x, real y): row_vector, 49
                                                owens_t
     (vector x, real y): vector, 49
                                                     (real h, real a): real, 31
operator/=
                                                pareto
     (int x, int y): void, 76
                                                     sampling statement, 129
     (matrix x, real y): void, 76
                                                pareto_cdf
     (real x, real y): void, 76
                                                     (reals y, reals y_min, reals
     (row\_vector x, real y): void, 76
                                                          alpha): real. 129
     (vector x, real y): void, 76
                                                pareto_lccdf
operator<
                                                     (reals y \mid reals y\_min, reals
                                                          alpha): real, 129
     (int x, int y): int, 18
     (real x, real y): int, 18
                                                pareto_1cdf
operator<=
                                                     (reals y \mid reals y\_min, reals
     (int x, int y): int, 18
                                                          alpha): real, 129
     (real x, real y): int, 18
                                                pareto_lpdf
                                                     (reals y \mid reals y\_min, reals
operator>
     (int x, int y): int, 18
                                                          alpha): real, 129
     (real x, real y): int, 18
                                                pareto_rng
operator>=
                                                     (reals y_min, reals alpha): R, 129
     (int x, int y): int, 18
                                                pareto_type_2
     (real x, real y): int, 18
                                                     sampling statement, 130
operator%
                                                pareto_type_2_cdf
     (int x, int y): int, 12
                                                     (reals y, reals mu, reals lambda
                                                          reals alpha): real. 130
operator^
                                                pareto_type_2_lccdf
     (real x, real y): real, 21
                                                     (reals y | reals mu, reals lambda
operator\
     (matrix A, matrix B): matrix, 62
                                                          reals alpha): real, 130
     (matrix A, vector b): vector, 62
                                                pareto_type_2_lcdf
operator==
                                                     (reals y \mid reals mu, reals lambda
     (int x, int y): int, 18
                                                          reals alpha): real, 130
     (real x, real y): int, 18
                                                pareto_type_2_1pdf
                                                     (reals y | reals mu, reals lambda
operator&&
                                                          reals alpha): real, 130
     (int x, int y): int, 19
                                                pareto_type_2_rng
     (real x, real y): int, 19
operator||
                                                     (reals mu, reals lambda, reals
     (int x, int y): int, 19
                                                          alpha): R, 130
     (real x, real y): int, 19
                                                Phi
ordered_logistic
                                                     (T x): R, 30
     sampling statement, 99
                                                Phi_approx
ordered_logistic_lpmf
                                                     (T x): R, 30
                                                рi
```

| (): real, 16                                        | (row_vector $v$ , int $s$ ): int, $67$         |
|-----------------------------------------------------|------------------------------------------------|
| poisson                                             | (vector $v$ , int $s$ ): int, $67$             |
| sampling statement, 104                             | rayleigh                                       |
| poisson_cdf                                         | sampling statement, 127                        |
| (ints n, reals lambda): real, 104                   | rayleigh_cdf                                   |
| poisson_lccdf                                       | (real y, real sigma): real, 127                |
| (ints $n \mid \text{reals } lambda$ ): real, 104    | rayleigh_lccdf                                 |
| poisson_lcdf                                        | (real $y \mid \text{real } sigma$ ): real, 127 |
| (ints $n \mid \text{reals } lambda$ ): real, $104$  | rayleigh_lcdf                                  |
| poisson_log                                         | (real y   real sigma): real, 127               |
| sampling statement, 105                             | rayleigh_lpdf                                  |
| poisson_log_lpmf                                    | (reals y   reals sigma): real, 127             |
|                                                     |                                                |
| (ints n   reals alpha): real, 105                   | rayleigh_rng                                   |
| poisson_log_rng                                     | (reals <i>sigma</i> ): R, 127                  |
| (reals <i>alpha</i> ): R, 105                       | reject                                         |
| poisson_lpmf                                        | (T1 $x1, \ldots$ , TN $xN$ ): void, 10         |
| (ints $n \mid reals\ lambda$ ): real, $104$         | rep_array                                      |
| poisson_rng                                         | (T x, int k, int m, int n): T[,,], 43          |
| (reals <i>lambda</i> ):R,104                        | (T x, int m, int n): T[,], 42                  |
| positive_infinity                                   | (T x, int n): T[], 42                          |
| (): real, 16                                        | rep_matrix                                     |
| pow                                                 | (real $x$ , int $m$ , int $n$ ): matrix, $56$  |
| (real $x$ , real $y$ ): real, 26                    | (row_vector $rv$ , int $m$ ): matrix, $56$     |
| print                                               | (vector $v$ , int $n$ ): matrix, $56$          |
| (T1 $x1, \ldots$ , TN $xN$ ): void, 9               | rep_row_vector                                 |
| prod                                                | (real $x$ , int $n$ ): row_vector, $56$        |
| (int[] x): real, 40                                 | rep_vector                                     |
| (matrix x): real, 54                                | (real x, int m): vector, 55                    |
| (real[] x): real, 39                                | rising_factorial                               |
| (row_vector x): real, 54                            | (real <i>x</i> , real <i>n</i> ): real, 35     |
| (vector x): real, 54                                | round                                          |
| qr_Q                                                | (T x): R, 24                                   |
| (matrix A): matrix, 66                              | row                                            |
| qr_R                                                | (matrix x, int m):row_vector,57                |
| (matrix A): matrix, 66                              | rows                                           |
|                                                     |                                                |
| qr_thin_Q                                           | (matrix x): int, 46                            |
| (matrix A): matrix, 65                              | (row_vector x): int, 46                        |
| qr_thin_R                                           | (vector x): int, 46                            |
| (matrix A): matrix, 65                              | rows_dot_product                               |
| quad_form                                           | (matrix x, matrix y): vector, 51               |
| (matrix A, matrix B): matrix, 52                    | (row_vector x, row_vector y):vector,           |
| (matrix A, vector B): real, 52                      | 51                                             |
| quad_form_diag                                      | (vector x, vector y): vector, 51               |
| (matrix <i>m</i> , row_vector <i>rv</i> ):matrix,52 | rows_dot_self                                  |
| (matrix $m$ , vector $v$ ): matrix, $52$            | (matrix $x$ ): vector, 52                      |
| quad_form_sym                                       | $(row\_vector x): vector, 52$                  |
| (matrix $A$ , matrix $B$ ): matrix, $52$            | (vector x): vector, 52                         |
| (matrix A, vector B): real, 53                      | scale_matrix_exp_multiply                      |
| rank                                                | (real $t$ , matrix $A$ , matrix $B$ ): matrix, |
| (int[] <i>v</i> , int <i>s</i> ):int,45             | 64                                             |
| (real[] <i>v</i> , int <i>s</i> ):int,45            | scaled_inv_chi_square                          |

| sampling statement, 121                                  | (vector $x$ ): vector, $60$                     |
|----------------------------------------------------------|-------------------------------------------------|
| scaled_inv_chi_square_cdf                                | sort_asc                                        |
| (reals y, reals nu, reals                                | (int[] v):int[],44                              |
| sigma):real,121                                          | (real[] <i>v</i> ): real[], 44                  |
| scaled_inv_chi_square_lccdf                              | <pre>(row_vector v): row_vector, 67</pre>       |
| (reals y   reals nu, reals                               | (vector v): vector, 67                          |
| sigma): real, 121                                        | sort_desc                                       |
| scaled_inv_chi_square_lcdf                               | (int[] v):int[],44                              |
| (reals $y \mid$ reals $nu$ , reals                       | (real[] v): real[], 44                          |
| sigma): real, 121                                        | (row_vector v): row_vector, 67                  |
| scaled_inv_chi_square_lpdf                               | (vector v): vector, 67                          |
| (reals $y \mid$ reals $nu$ , reals                       | sort_indices_asc                                |
| sigma): real, 121                                        | (int[] v):int[], 45                             |
| scaled_inv_chi_square_rng                                | (real[] v): int[], 45                           |
| (reals nu, reals sigma): R, 121                          | (row_vector v): int[], 67                       |
| sd                                                       | (vector v): int[], 67                           |
| (matrix <i>x</i> ): real, 55                             | sort_indices_desc                               |
|                                                          |                                                 |
| (real[] x): real, 40                                     | (int[] v):int[], 45                             |
| (row_vector x): real, 55                                 | (real[] v):int[], 45                            |
| (vector x): real, 55                                     | (row_vector v):int[],67                         |
| segment                                                  | (vector <i>v</i> ): int[], 67                   |
| (T[] sv, int i, int n):T[], 58                           | sqrt                                            |
| (row_vector rv, int i, int                               | (T x): R, 24                                    |
| n): row_vector, 58                                       | sqrt2                                           |
| (vector $v$ , int $i$ , int $n$ ): vector, $58$          | (): real, 16                                    |
| sin                                                      | square                                          |
| (T x): R, 27                                             | (T x): R, 25                                    |
| singular_values                                          | squared_distance                                |
| (matrix A): vector, 66                                   | $(row\_vector x, row\_vector[] y):real,$        |
| sinh                                                     | 41                                              |
| (T x): R, 28                                             | $(row\_vector x, vector [] y): real, 41$        |
| size                                                     | <pre>(vector x, row_vector [] y):real,41</pre>  |
| (T[] x): int, 42                                         | (vector $x$ , vector $y$ ): real, 41            |
| skew_normal                                              | std_normal                                      |
| sampling statement, 111                                  | sampling statement, 109                         |
| skew_normal_cdf                                          | std_normal_lpdf                                 |
| (reals <i>y</i> , reals <i>xi</i> , reals <i>omega</i> , | (reals <i>y</i> ): real, 109                    |
| reals <i>alpha</i> ):real,111                            | step                                            |
| skew_normal_lccdf                                        | (real <i>x</i> ): real, 20                      |
| (reals $y \mid$ reals $xi$ , reals omega                 | student_t                                       |
| reals <i>alpha</i> ):real,111                            | sampling statement, 112                         |
| skew_normal_lcdf                                         | student_t_cdf                                   |
| (reals $y \mid$ reals $xi$ , reals omega                 | (reals y, reals nu, reals mu, reals             |
| reals <i>alpha</i> ):real,111                            | sigma): real,112                                |
| skew_normal_lpdf                                         | student_t_lccdf                                 |
| (reals $y \mid \text{reals } xi$ , reals omega,          | (moole v.   moole my moole my moole             |
|                                                          | (reals $y \mid$ reals $nu$ , reals $mu$ , reals |
| reals <i>alpha</i> ):real,111                            | sigma): real, 112                               |
| reals alpha): real, 111 skew_normal_rng                  |                                                 |
|                                                          | sigma): real, 112                               |
| skew_normal_rng                                          | <pre>sigma): real, 112 student_t_lcdf</pre>     |

```
(reals y \mid reals nu, reals mu, reals
                                                     (real[] a, int m, int n, int
          sigma): real, 112
                                                          col_major): matrix, 72
student_t_rng
                                                     (row_vector v): matrix, 71
     (reals nu, reals mu, reals sigma): R,
                                                     (row_vector v, int m, int n): matrix,
sub_col
                                                     (row_vector v, int m, int n, int
     (matrix x, int i, int j, int
                                                          col_major): matrix, 71
          n_rows): vector, 57
                                                     (vector v): matrix, 71
sub row
                                                     (vector v, int m, int n): matrix, 71
     (matrix x, int i, int j, int
                                                     (vector v, int m, int n, int
          n_{cols}): row_vector, 57
                                                          col_major): matrix, 71
sum
                                                to_row_vector
     (int[] x): int, 39
                                                     (int[] a): row\_vector, 73
     (matrix x): real, 54
                                                     (matrix m): row_vector, 72
     (real[] x): real, 39
                                                     (real[] a): row_vector, 73
     (row\_vector x): real, 54
                                                     (row_vector v): row_vector, 73
     (vector x): real, 54
                                                     (vector v): row_vector, 72
tail
                                                to vector
     (T[] sv, int n):T[], 58
                                                     (int[] a): vector, 72
     (row_vector rv, int n):row_vector,58
                                                     (matrix m): vector, 72
     (vector v, int n): vector, 58
                                                     (real[] a): vector, 72
                                                     (row_vector v): vector, 72
tan
     (T x): R, 27
                                                     (vector v): vector, 72
tanh
                                                trace
     (T x): R, 28
                                                     (matrix A): real, 64
target
                                                trace_gen_quad_form
     (): real, 17
                                                     (matrix D, matrix A, matrix B): real,
tcrossprod
                                                          53
     (matrix x): matrix, 52
                                                trace_quad_form
                                                     (matrix A, matrix B): real, 53
tgamma
     (T x): R, 31
                                                trigamma
to_array_1d
                                                     (T x): R, 32
     (int[...] a):int[], 73
                                                trunc
     (matrix m): real[], 73
                                                     (T x): R, 24
     (real[...] a): real[], 73
                                                uniform
     (row\_vector v): real[], 73
                                                     sampling statement, 135
     (vector v): real[], 73
                                                uniform_cdf
to_array_2d
                                                     (reals y, reals alpha, reals
     (matrix m):real[,],73
                                                          beta): real, 135
                                                uniform_lccdf
to matrix
     (int[,] a): matrix, 72
                                                     (reals y | reals alpha, reals
     (int[] a, int m, int n): matrix, 72
                                                          beta): real, 135
                                                uniform_lcdf
     (int[] a, int m, int n, int
          col_major): matrix, 72
                                                     (reals y \mid reals \ alpha, reals
     (matrix m): matrix, 71
                                                          beta): real, 135
     (matrix m, int m, int n): matrix, 71
                                                uniform_lpdf
     (matrix m, int m, int n, int
                                                     (reals y \mid reals \ alpha, reals
          col_major): matrix, 71
                                                          beta): real. 135
     (real[,] a): matrix, 72
                                                uniform_rng
     (real[] a, int m, int n): matrix, 71
                                                     (reals alpha, reals beta): R, 135
                                                variance
```

```
(matrix x): real, 55
     (real[] x): real, 40
     (row\_vector x): real, 55
     (vector x): real, 55
von_mises
     sampling statement, 133
von_mises_lpdf
     (reals y \mid reals mu, reals kappa): R,
          133
von_mises_rng
     (reals mu, reals kappa): R, 134
weibull
     sampling statement, 124
weibull_cdf
     (reals y, reals alpha, reals
          sigma): real, 125
weibull_lccdf
     (reals y \mid reals \ alpha, reals
          sigma): real, 125
weibull_lcdf
     (reals y \mid reals \ alpha, reals
          sigma): real, 125
weibull_lpdf
     (reals y | reals alpha, reals
          sigma): real, 125
weibull_rng
     (reals alpha, reals sigma): R, 125
wiener
     sampling statement, 128
wiener_lpdf
     (reals y \mid reals alpha, reals tau,
          reals beta reals delta): real,
          128
wishart
     sampling statement, 149
wishart_lpdf
     (matrix W | real nu, matrix
          Sigma): real, 149
wishart_rng
     (real nu, matrix Sigma): matrix, 149
```