AutoEncoderの利用

Kentaro Fujita

欠陥検出手法

• Auto Encoderの利用

未学習の特徴を持つ画像を入力した場合、入出力画像の差が大きくなる

差分をとることで、欠陥の検出が可能である

Auto Encoderの実装

•損失関数 平均二乗誤差(MSE)

$$MSE = \frac{\sum_{i=1}^{n} (y_i - y_i^p)^2}{n}$$

• ネットワーク構造

16x16x32									8x8x64 16x16x32							
32x32x1	8x8x64 4x4x128					4x4x128							32	x32x	(1	
Input	Conv		Conv		Conv		特徴量		Deconv		Deconv		Deconv		Output	
						20	2048次元									
Encoder											De	ecode	? r		2	

項目

ブロックサイズ

学習エポック数

バッチサイズ

フィルタ一数

フィルターサイズ

フィルターストライド

値

 32×32

10

128

32

2 × 2

2

学習・検査手法

• 学習

学習画像からランダム位置のブロックを切り出し学習

⇒ 学習データの分散を変えず、サンプル数を増やすため

• 検査

検査画像を<mark>格子状</mark>に切り出し、<u>半ブロックずらしつつ</u>検査

⇒ 欠陥領域の見逃しを防ぐため

学習が容易な画像①

Class3

基本画像1

基本画像2

欠陥領域のコントラストが高い ⇒ 欠陥検出されやすい

欠陥画像

実行結果

欠陥画像

値が大きくなっている ⇒ 欠陥の検出が可能である

学習が容易な画像2

Class5

入出力画像の絶対差分和

学習が難しい画像①

Class2

基本画像1

基本画像2

⇒ Auto Encoderで 特徴を十分に学習しきれない

欠陥画像

欠陥領域のコントラストが低い ⇒ 基本画像と見分けることができない

実行結果

-100 -100 -200 -300 -300 -400 -70 -60 -70 -60 -70

検出できていない

⇒ 前処理にガンマ補正をかける

ガンマ補正

・学習・検査画像にガンマ補正をかける

Gamma = 0.1

基本画像1

欠陥画像

ガンマ補正

ガンマ補正をかけた結果

欠陥の検出が可能になった

学習が難しい画像2

Class6

基本画像1

基本画像2

欠陥画像

検出できていない

学習画像について

- ・ 分散が大きい
- ハイコントラストな領域が多い
- ⇒ フィルタ処理で抑える

入出力画像の絶対差分和

フィルタ処理

・学習・検査画像にガウシアンフィルタをかける

Sigma = 5

12

フィルタ処理をかけた結果

・学習・検査画像にガウシアンフィルタをかける

欠陥の検出が可能になった

まとめ

- 1. 学習が容易な画像
 - ・画像間の差異が小さい (分散が低い)
 - 欠陥領域のコントラストが高い
- 2. 学習が難しい画像
 - ・画像間の差異が大きい(分散が高い)
 - 学習画像にハイコントラストな領域を多く含む
 - ⇒ 適切な前処理を施すことで欠陥検出性能が向上する