Documentación Temporal Spatial

Daniel F. Gonzalez - Daniel Osorio Valencia

I. Introdución

La documentación espacio-temporal que se presentará a continuación aborda el proyecto de programación desarrollado en los lenguajes de Java y Python, en los cuales, se realiza la gestión y análisis de los datos obtenidos en cuanto a espacio-tiempo. La implementación se realizará en 3 diferentes computadores y 3 ejecuaciones por programa (3 en Java y 3 en Python) en cada computador con el fin de recaudar la información necesaria - se tomarán registros numéricos con el fin de comparar y sacar promedios de ejecución, así mismo se tendrán imágenes que ayudarán en la estructuración y documentación - y obtener un buen análisis de dicha información. Finalmente se sacarán las conclusiones del objetivo principal de este proyecto en cuanto espacio-tiempo.

II. MAQUINAS.

A. Maquina 1.

Nombre del dispositivo		
Procesador	AMD Ryzen 3 3200G with Radeon Vega Graphics 3.60 GHz	
RAM instalada	16,0 GB (13,9 GB utilizable)	
ld. del dispositivo	458F8A00-DAC8-4D01-B9FA-B91BB745D444	
ld. del producto	00331-10000-00001-AA863	
Tipo de sistema	Sistema operativo de 64 bits, procesador x64	
Lápiz y entrada táctil	La entrada táctil o manuscrita no está disponible para esta pantalla	

Figure 1. Caracteristicas maquina 1.

B. Maquina 2.

Nombre del dispositivo	DESKTOP-K0T9FQF
Procesador	Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz
RAM instalada	16,0 GB (15,9 GB utilizable)
ld. del dispositivo	B6EBCB0C-32B0-4068-B6BD-7C879FC16455
ld. del producto	00330-51561-21207-AAOEM
Tipo de sistema	Sistema operativo de 64 bits, procesador x64
Lápiz y entrada táctil	Compatibilidad con entrada manuscrita

Figure 2. Caracteristicas maquina 2.

C. Maquina 3.

Figure 3. Caracteristicas maquina 3.

III. RESULTADOS DE EJECUCION

A. Resultados de ejecución en Máquina 1

En nuestra primera maquina teniamos un procesador de 16 GB de memoria RAM, sabiendo esto podemos analizar que las tres ejecuciones fueron muy similares tanto en Java como en Python.

Pc Daniel Gonzalez.	JAVA	PYTHON
Ejecucion 1	1,307	51,13
Ejecucion 2	1,44	52,8
Ejecucion 3	1,394	51,02
Promedio	1,380	51,65

Figure 4. Tiempos de Ejecucion en Segundos.

Figure 5. Grafico Tiempos de Ejecucion en Segundos.

B. Resultados de ejecución en Máquina 2

En nuestra segunda maquina teniamos al igual que en la primera una memoria RAM de 16GB, pero para este caso, dos de las tres ejecuciones en Java tardaron un poco mas que en el primero, pero al final el promedio fue casi el mismo. Por otro lado, las tres ejecuciones en Python fueron un poco mas altas que las realizadas en la máquina 1, subiendo así su promedio de ejecución.

Pc 2.	JAVA	PYTHON
Ejecucion 1	1,23	54,23
Ejecucion 2	1,45	58,16
Ejecucion 3	1,462	54,05
Promedio	1,381	55,48

Figure 6. Tiempos de Ejecucion en Segundos.

Figure 7. Grafico Tiempos de Ejecucion en Segundos.

C. Resultados de ejecución en Máquina 3

En nuestra tercera maquina teniamos un procesador un poco igual al anterior pero la gran diferencia es que teniamos la mitad de memoria RAM, sabiendo esto podemos analizar que por la reduccion de memoria el algoritmo tanto en java como en python tarda mas.

Pc 2 Daniel Osorio.	JAVA	PYTHON
Ejecucion 1	3,274	129,03
Ejecucion 2	2,966	132,9
Ejecucion 3	3,211	127,85
Promedio	3,150	129,92667

Figure 8. Tiempos de Ejecucion en Segundos.

Figure 9. Grafico Tiempos de Ejecucion en Segundos.

IV. CONCLUSIONES

Con base a los resultados obtenidos podemos decir que los tiempos de ejecución de este algoritmo van a depender única y exclusivamente de la memoria RAM disponible cuestión para el sistema o más específicamente para el programa que esté ejecutando nuestro algoritmo, en caso de necesitar escalar el algoritmo seria importante conseguir una maquina con un procesador y una cantidad de memoria RAM que permitan una impecable ejecución de lo solicitado .

REFERENCES

Lorenz, K. (2021). Data Structures for Temporal and Spatial Analysis. GitLab. https://gitlab.com/konrad_lorenz/data_structures/temporal_spatial