SOLUTIONS SHEET 1

YANNIS BÄHNI

Exercise 1.

a) It is well known, that the set $M_2(\mathbb{R})$ is a ring with identity. It is also clear, that the given set together with the usual operations constitutes a subring with identity of $M_2(\mathbb{R})$. Therefore it is enough to show commutativity and the existence of inverse elements regarding multiplication. Let $x, y, x', y' \in \mathbb{R}$. Then we have

$$\begin{pmatrix} x & y \\ -y & x \end{pmatrix} \begin{pmatrix} x' & y' \\ -y' & x' \end{pmatrix} = \begin{pmatrix} xx' - yy' & xy' + yx' \\ -yx' - xy' & -yy' + xx' \end{pmatrix}$$
$$= \begin{pmatrix} x'x - y'y & x'y + y'x \\ -y'x - x'y & -y'y + x'x \end{pmatrix}$$
$$= \begin{pmatrix} x' & y' \\ -y' & x' \end{pmatrix} \begin{pmatrix} x & y \\ -y & x \end{pmatrix}$$

Since \mathbb{R} is a field. Furthermore we have

$$\det \begin{pmatrix} x & y \\ -y & x \end{pmatrix} = x^2 + y^2 \tag{1}$$

Hence $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$ is invertible if and only if $(x,y) \neq (0,0)$, which means that every non-zero element is invertible. Thus the set constitutes a field under the given operations. Now define a mapping ι by

$$\iota(x+iy) := \begin{pmatrix} x & y \\ -y & x \end{pmatrix} \tag{2}$$

We have

$$\iota((x+iy)+(u+iv)) = \begin{pmatrix} x+u & y+v \\ -y-v & x+u \end{pmatrix} = \begin{pmatrix} x & y \\ -y & x \end{pmatrix} + \begin{pmatrix} u & v \\ -v & u \end{pmatrix} = \iota(x+iy) + \iota(u+iv)$$

and

$$\iota((x+iy)(u+iv)) = \begin{pmatrix} xu-yv & xv+uy \\ -xv-uy & xu-yv \end{pmatrix} = \begin{pmatrix} x & y \\ -y & x \end{pmatrix} \begin{pmatrix} u & v \\ -v & u \end{pmatrix} = \iota(x+iy)\iota(u+iv).$$

Obviously $\ker(\iota) = \{0\}$ and ι is surjective, hence ι is an isomorphism of fields.

b) Consider the abelian group (\mathbb{C},\cdot) . We show $(S^1,\cdot) \leq (\mathbb{C},\cdot)$, where

$$S^1:=\partial\mathbb{E}=\left\{z\in\mathbb{C}:|z|=1\right\}.$$

(Yannis Bähni) UNIVERSITY OF ZURICH, RÄMISTRASSE 71, 8006 ZURICH *E-mail address*: yannis.baehni@uzh.ch.

Clearly $1 \in S^1$. If $z, z' \in S^1$, we have |z| = |z'| = 1 and therefore |zz'| = |z| |z'| = 1 which implies $zz' \in S^1$. Also we have |1/z| = 1/|z| = 1 for $z \in S^1$ which implies $1/z \in S^1$. With the terminology established in (2) we consider the restriction

$$\iota|_{S^1}: S^1 \to \iota(S^1) \tag{3}$$

which is an isomorphism of groups. We will show that

$$\iota(S^1) = SO(2). \tag{4}$$

Let $x + iy \in S^1$. Then $1 = |x + iy|^2 = x^2 + y^2$ and so

$$\iota(x+iy)(\iota(x+iy))^t = \begin{pmatrix} x & y \\ -y & x \end{pmatrix} \begin{pmatrix} x & -y \\ y & x \end{pmatrix} = \begin{pmatrix} x^2+y^2 & -xy+yx \\ -yx+xy & x^2+y^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Since $\iota(S^1)$ is a subgroup of the abelian group in a), we have also that $(\iota(x+iy))^t\iota(x+iy)$ is the identity matrix. Also $\det(\iota(x+iy)) = x^2 + y^2 = 1$ so $\iota(S^1) \subseteq SO(2)$. Now we have

$$SO(2) = \left\{ \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} : \varphi \in \mathbb{R} \right\}$$

By

$$\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} = \begin{pmatrix} \cos(-\varphi) & \sin(-\varphi) \\ -\sin(-\varphi) & \cos(-\varphi) \end{pmatrix}$$

we have

$$\iota(\cos(-\varphi) + i\sin(-\varphi)) = \begin{pmatrix} \cos(-\varphi) & \sin(-\varphi) \\ -\sin(-\varphi) & \cos(-\varphi) \end{pmatrix}$$

and with

$$|\cos(-\varphi) + i\sin(-\varphi)|^2 = \cos^2(-\varphi) + \sin^2(-\varphi) = 1$$

this implies $SO(2) \subseteq \iota(S^1)$.

Exercise 2. See separate sheet.

Exercise 3. Clearly $\emptyset \in \mathcal{Z}$ and $\mathbb{C} \in \mathcal{Z}$ since $\mathbb{C}^c = \emptyset$ which is finite. Let $U, V \in \mathcal{Z}$. Then U^c and V^c are both finite and so is

$$(U \cap V)^c = U^c \cup V^c.$$

Hence $U \cap V \in \mathcal{Z}$. Let $(U_{\alpha})_{\alpha \in A}$ be a sequence in \mathcal{Z} . Then we have that U_{α}^{c} is finite for any $\alpha \in A$. Therefore by

$$\left(\bigcup_{\alpha \in A} U_{\alpha}\right)^{c} = \bigcap_{\alpha \in A} U_{\alpha}^{c} \subseteq U_{\beta}^{c}$$

for any $\beta \in A$ we have that $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{Z}$. Hence $(\mathbb{C}, \mathcal{Z})$ is a topological space. We show the following result:

LEMMA 0.1. Let X be an infinite set. Then (X, \mathcal{Z}) is not Hausdorff.

Proof. Towards a contradiction assume that (X, \mathcal{Z}) is Hausdorff. Hence for any $p, q \in X$ we find (open) neighbourhoods U of p and V of q such that $U \cap V = \emptyset$. Thus U^c is finite and since $U \cap V = \emptyset$ we have that $U \subseteq V^c$ and thus U is finite. But this would imply that

$$X = U \cup U^c$$

is the union of finite sets which would mean that X itself is finite. Contradiction.

Exercise 4. We use the terminology established in [FL05, pp. 8–16] which results in considering a function $f: M \to \mathbb{C}$. We show the implications (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (ii). Assume f is continuous in $z^* \in M$ and fix $\varepsilon > 0$. Now consider the set $B_{\varepsilon}(f(z^*))$ which is a neighbourhood of $f(z^*)$. By (i) there exists a neighbourhood U of z^* such that $f(U \cap M) \subseteq B_{\varepsilon}(f(z^*))$. Since U is a neighbourhood of z^* it contains a δ -neighbourhood $B_{\delta}(z^*)$ of z^* .

Assume that (ii) holds. Let $(z_{\nu})_{\nu\in\mathbb{N}}$ be a sequence in M such that $z_{\nu}\to z^*$ and U be any neighbourhood of $f(z^*)$. Since U is a neighbourhood of $f(z^*)$ it contains a ε -neighbourhood $B_{\varepsilon}(f(z^*))$. By (ii) we find $\delta>0$ such that $z\in B_{\delta}(z^*)$ implies $f(z)\in B_{\varepsilon}(f(z^*))$. Since $z_{\nu}\to z^*$ we also have $z_{\nu}\in B_{\delta}(z^*)$ for almost all z_{ν} . In conclusion, $f(z_{\nu})\in U$ for almost all $f(z_{\nu})$.

Assume that (iii) holds. Towards a contradiction assume that (i) does not hold. Hence there exists a neighbourhood V of $f(z^*)$ such that for any neighbourhood U of z^* we have $f(U \cap M) \not\subseteq V$. The latter means that $z \in f(U \cap M)$ but $z \notin V$ for some z. Consider the sets $B_{1/\nu}(z^*)$ for $\nu \in \mathbb{N}_{>0}$. They are clearly neighbourhoods of z^* . Now by assumption, for any $\nu \in \mathbb{N}_{>0}$ there is some $f(z_{\nu}) \in f(B_{1/\nu}(z^*) \cap M)$ which is not in V. This defines a sequence $(z_{\nu})_{n \in \mathbb{N}_{>0}}$ in M. We claim that $z_{\nu} \to z^*$. Indeed, if we have any neighbourhood U of z^* we find by definition an ε -neighbourhood $B_{\varepsilon}(z^*) \subseteq U$. But by the archimidean principle we have $1/\nu < \varepsilon$ for ν small enough, thus $z_{\nu} \in B_{\varepsilon}(z^*)$ for almost all ν . Now $z_{\nu} \to z^*$ but clearly $f(z_{\nu}) \not\to f(z^*)$ since none of the z_{ν} is in V. Contradiction.

References

[FL05] W. Fischer and I. Lieb. Funktionentheorie: Komplexe Analysis in einer Veränderlichen. vieweg studium; Aufbaukurs Mathematik. Vieweg+Teubner Verlag, 2005. ISBN: 9783834800138.