1. Предел числовой последовательности

1.1. Определение числовой последовательности. Способы задания

Определение 1.1. Если каждому натуральному числу $n \in \mathbb{N}$ поставлено в соответствие некоторое число x_n , то говорят, что задана *числовая последова- тельность*

$$x_1, x_2, x_3, \dots x_n \dots$$

Итак, числовая последовательность - это функция

$$f: \mathbb{N} \longrightarrow \mathbb{R}$$
, где $f(n) = x_n$.

Последовательность обозначается символически

$$\{x_n\}, (x_n), \{x_n\}_{n=1}^{\infty}, (x_n)_{n=1}^{\infty}.$$

Определение 1.2. Совокупность чисел $\{x_1, x_2, x_3, ... x_n ...\}$ называется множеством значений числовой последовательности. Замечание. Это множество может быть как конечным, так и бесконечным, в то

время как число элементов последовательности всегда бесконечно.

Пример 1.

- 1^{0} . Рассмотрим последовательность с элементами вида $x_{n}=(-1)^{n}$. Множество значений этой последовательности состоит из двух чисел: $\{-1,1\}$.
- 2^{0} . Рассмотрим последовательность с элементами вида $x_{n}=n^{3}$. Множество значений этой последовательности бесконечно.

СПОСОБЫ ЗАДАНИЯ ПОСЛЕДОВАТЕЛЬНОСТИ

10. Аналитический (формулой общего члена):

$$x_n = f(n)$$
.

- 2^{0} . Рекуррентно (арифметические или геометрические прогрессии).
- 3^0 . Графически, точками x_n на прямой $\mathbb R$ или на плоскости: (n,x_n) .

Определение 1.3. Пусть $\{x_n\}$ и $\{y_n\}$ две последовательности. Суммой этих последовательностей называется последовательность $\{x_n+y_n\}$, такая что:

$${x_n + y_n} = {x_n} + {y_n}.$$

Произведением двух последовательностей называется последовательность, образованная по закону:

$$\{x_n \cdot y_n\} = \{x_n\} \cdot \{y_n\}.$$

Произведением числа λ на последовательность $\{x_n\}$ называется последовательность:

$$\{\lambda x_n\} = \lambda \{x_n\}.$$

Если $y_n \neq 0$. $\forall n \in \mathbb{N}$ можно определить отношение последовательностей:

$$\left\{\frac{x_n}{y_n}\right\} = \frac{\{x_n\}}{\{y_n\}}.$$

1.2. Предел числовой последовательности. Сходящиеся и расходящиеся последовательности

Определение 1.4. Число a называется npedenom числовой последовательности $\{x_n\}$, если для любого положительного числа ε найдётся такой номер N_{ε} , что для всех $n \geq N_{\varepsilon}$ выполняется неравенство:

$$|x_n - a| < \varepsilon$$

Пишут:
$$a = \lim_{n \to \infty} x_n$$
.

Определение 1.5. Последовательность $\{x_n\}$, имеющая предел называется cxodsumeŭcs. Последовательность не являющаяся сходящейся называется pacxodsumeŭcs.

Замечание 1.1.

$$\lim_{n \to \infty} x_n = a \Leftrightarrow \lim_{n \to \infty} (x_n - a) = 0.$$

Определение 1.6. Последовательность $\{\alpha_n\}$ называется бесконечно малой (б.м.п.), если

$$\lim_{n\to\infty}\alpha_n=0.$$

3амечание 1.2. $\{\alpha_n\}$ является бесконечно малой последовательностью, если $\forall \varepsilon>0$ $\exists N_\varepsilon$ такой, что $\forall n\geq N_\varepsilon$ $|\alpha_n|<\varepsilon.$

Замечание 1.3. Если $\lim_{x\to\infty} x_n = a$, то последовательность $\{x_n\}$ можно представить в виде $x_n = a + \alpha_n$, где $\{\alpha_n\}$ - бесконечно малая последовательность.

Замечание 1.4. Определение предела последовательности можно сформулировать эквивалентным образом на языке ε -окрестностей, а именно:

Число a называется пределом числовой последовательности $\{x_n\}$, если $\forall \varepsilon > 0$ $\exists N_{\varepsilon}$, что $\forall n \geq N_{\varepsilon}$ все элементы x_n лежат в ε -окрестности $U_{\varepsilon}(a)$ точки a:

$$x_n = U_{\varepsilon}(a).$$

Вне этой окрестности может находиться лишь конечное число элементов последовательности: $x_2, x_2, \dots x_{N_{\varepsilon}-1}$.

Пример 2.

 1^{0} . Покажем, что $\lim_{n\to\infty}\frac{1}{n}=0$.

Действительно, для любого $\varepsilon > 0$ можно найти номер N_{ε} , начиная с которого элементы последовательности $x_n = \frac{1}{n}$ попадают в $U_{\varepsilon} = (-\varepsilon, \varepsilon)$; то есть для

которых выполнено неравенство:

$$|x_n - 0| = \frac{1}{n} < \varepsilon.$$

Решая это неравенство, получим: $n > \frac{1}{\varepsilon}$.

Поэтому в качестве N_{ε} можно брать $N_{\varepsilon}=\left[\frac{1}{\varepsilon}\right]+1$. Например, если $\varepsilon=\frac{1}{10}$, то $N_{\varepsilon}=11$ и для любого $n\geq 11$ $x_n=\frac{1}{n}<\frac{1}{10}.$

Если же $\varepsilon = \frac{1}{100}$, то $N_{\varepsilon} = 101$.

Итак, N_{ε} зависит от ε .

 2^{0} . Покажем, что последовательность

$$x_n = \frac{(-1)^n + 1}{2} = \begin{cases} 0, & \text{если } n \text{ нечетное} \\ 1, & \text{если } n \text{ четное} \end{cases}$$

Рассмотрим $\varepsilon = \frac{1}{3}$ и окрестности $U_{1/3}(0)$ и $U_{1/3}(1)$. Они не пересекаются.

В каждой из этих окрестностей лежат члены последовательности $\{x_n\}$ со сколь угодно большими номерами. Следовательно, нельзя указать ни одну точку $a \in \mathbb{R}$, в окрестности которой лежали бы все элементы x_n , начиная с некоторого номера $N_{1/3}$.

1.3. Свойства сходящихся последовательностей.

ЕДИНСТВЕННОСТЬ ПРЕДЕЛА ЧИСЛОВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ.

Теорема 1.1. Числовая последовательность может иметь только один предел.

Доказательство

Предположим, что $\{x_n\}$ имеет два различных предела a и b:

$$\lim_{n\to\infty} x_n = a, \lim_{n\to\infty} x_n = b, \text{ if } a \neq b.$$

Для определенности считаем a < b.

Рассмотрим
$$\varepsilon = \frac{b-a}{3}$$
. Тогда $U_{\varepsilon}(a) \cap U_{\varepsilon}(b) = \varnothing$.

$$\lim_{\substack{n \to \infty \\ n \to \infty}} = a \implies \exists N(\varepsilon)_1 = N_1, \text{ что } \forall n \ge N_1 \ x_n \in U_{\varepsilon}(a)$$

$$\lim_{\substack{n \to \infty \\ n \to \infty}} = b \implies \exists N(\varepsilon)_2 = N_2, \text{ что } \forall n \ge N_2 \ x_n \in U_{\varepsilon}(b)$$

Пусть
$$N = \max(N_1, N_2)$$

Тогда $\forall n \geq N$ одновременно $x_n \in U_{\varepsilon}(a)$ и $x_n \in U_{\varepsilon}(b)$, что невозможно, так как эти окрестности не пересекаются.

Следовательно наше предположение не верно и a=b.

Теорема доказана.

1.3.2. Ограниченные и неограниченные последовательности.

Пусть $\{x_n\}$ - некоторая последовательность и E - множество её значений. Ограниченность сверху, снизу или просто ограниченность последовательности $\{x_n\}$ определяется через ограниченность сверху, снизу или просто ограниченность множества E.

Определение 1.7. Последовательность $\{x_n\}$ называется *ограниченной свер-* xy, если существует такое M, что

$$\forall n \in \mathbb{N} \ x_n \leq M \ (E \subset (-\infty, M]).$$

Последовательность $\{x_n\}$ называется *ограниченной снизу*, если существует такое m, что

$$\forall n \in \mathbb{N} \ x_n \ge m \ (E \subset [m, +\infty)).$$

Последовательность $\{x_n\}$ называется *ограниченной*, если она ограничена сверху и снизу:

$$x_n \in [m, M] \ E \subset [m, M].$$

Замечание 1.5. Последовательность x_n ограничена тогда и только тогда, когда существует такое положительное число A, что $\forall n \in \mathbb{N}$:

$$|x_n| \leq A$$
.

Определение 1.8. Последовательность x_n называется *неограниченной*, если для любого положительного A существует такое n_A , что $|n_A| > A$.

Теорема 1.2. Если последовательность <u>сходится</u>, то она ограничена.

Доказательство

Пусть $\lim_{n\to\infty} x_n = a$.

Тогда, для $\varepsilon=1$ существует номер N такой, что $\forall n\geq N \ |x_n-a|<1$. Следовательно

$$|x_n| = |(x_n - a) + a| \le |x_n - a| + |a| < 1 + |a|.$$

Положим $A=\max\{1+|a|, |x_1|, |x_2|, ... |x_{N-1}|\}$, тогда для любого $n\in\mathbb{N}$ выполняется неравенство

$$|x_n| \leq A$$
.

Следовательно, последовательность $\{x_n\}$ ограничена.

Теорема доказана.

Замечание. Обратное утверждение неверно.

Пример 3. Пусть последовательность задана по закону: $x_n = (-1)^n + 1$. Множество значений последовательности состоит из двух чисел: $E = \{0, 2\}$. Однако, последовательность $\{x_n\}$ расходится.

Лемма. Если последовательность $\{y_n\}$ сходится $u\lim_{n\to\infty}y_n=b\neq 0$, то найдётся номер N такой, что $\forall n\geq N$ $y_n\neq 0$ и тем самым определяется последовательность $\left\{\frac{1}{y_n}\right\}$, которая является ограниченной.

Доказательство

Пусть $\varepsilon=\frac{|b|}{2}$. Так как $\lim_{n\to\infty}y_n=b$, то найдётся номер N такой, что для всех $n\geq N$

$$|y_n - b| < \frac{|b|}{2}.$$

Но

$$|b - y_n| = |y_n - b| \ge |b| - |y_n|.$$

Следовательно

$$|b|-|y_n|<\frac{|b|}{2}.$$

Отсюда

$$|y_n| > \frac{|b|}{2} > 0 \quad \forall n \ge N.$$

Но тогда

$$\frac{1}{|y_n|} < \frac{2}{|b|}.$$

Таким образом последовательность $\left\{\frac{1}{y_n}\right\}$ ограничена при $n\geq N$.

Лемма доказана.

1.3.3. Бесконечно малые и бесконечно большие последовательности и их свойства

Как мы уже отмечали, если $\lim_{n\to\infty} x_n = \alpha$. то последовательность x_n представима в виде:

$$x_n = \alpha + \alpha_n,$$

где a_n бесконечно малая последовательность. Поэтому бесконечно малые последовательности играют в теории последовательностей особую роль. В этом пункте мы рассмотрим основные свойства таких последовательностей.

Сформулируем еще раз определение бесконечно малой последовательности.

Определение 1.9. Последовательность $\{\alpha_n\}$ называется бесконечно малой последовательностью, если

$$\forall \varepsilon > 0 \exists N_{\varepsilon} : \forall n \geq N_{\varepsilon} \mid \alpha_n \mid < \varepsilon$$

или эквивалентно, если

$$\lim_{n\to\infty} x_n = 0$$

Бесконечно малых последовательностей достаточно много.

Пример 4. Если $x_n = q^n$, |q| < 1, то x_n бесконечно малая последовательность. Действительно, так как |q| < 1, то возможны два случая:

- 1) q = 0 и тогда x_n очевидно бесконечно малая
- 2) $q \neq 0$ и тогда $1/\mid q \mid = 1 + \delta$, где $\delta > 0$. Отсюда

$$\frac{1}{|q^n|} = \frac{1}{|q|^n} = (1+\delta)^n \ge 1 + n\delta > n\delta$$

Следовательно

$$\mid q^n \mid < \frac{1}{n\delta}$$

Пусть $\varepsilon>0$. Найдем номер N_{ε} такой, что при $n\geq N_{\varepsilon}$ выполняется неравенство:

$$\frac{1}{n\delta} < \varepsilon$$

Так как это неравенство равносильно следующему:

$$n > \frac{1}{\varepsilon \delta}$$

то в качестве номера N_{ε} можно взять

$$N_{\varepsilon} = \left[\frac{1}{\varepsilon \delta}\right] + 1$$

Тогда при $n \geq N_{\varepsilon}$

$$|q^n| = |q|^n \le |q|^{N_{\varepsilon}} < \frac{1}{\delta N} < \varepsilon$$

то есть последовательность q^n бесконечно малая.

Заметим, что если α_n бесконечно малая последовательность, то она сходится $(\lim_{n\to\infty}\alpha_n=0)$, потому что бесконечно малая последовательность ограничена (Свойство 1^0)

Теорема 1.3. Если α_n и β_n б.м.п то их сумма $\{\alpha_n+\beta_n\}$ тоже б.м.п

Доказательство.

Так как $\{\alpha_n\}$ б.м.п то $\forall \varepsilon > 0 \exists N_1 : \forall n \geq N_1$

$$\mid \alpha_n \mid < \frac{\varepsilon}{2} \tag{1}$$

Так как $\{\beta_n\}$ б.м.п то для того же $\forall \varepsilon > 0 \exists N_2 : \forall n \geq N_2$

$$\mid \beta_n \mid < \frac{\varepsilon}{2} \tag{2}$$

Пусть $N = max\{N_1, N_2\}$. Тогда при $n \ge N$ оба неравенства (1) и (2) выполнены. Следовательно $\forall n \ge N$

$$|\alpha_n + \beta_n| \le |\alpha_n| + |\beta_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Следовательно $\{\alpha_n\} + \{\beta_n\} = \{\alpha_m + \beta_n\}$ б.м.п.

Теорема доказана.

Теорема 1.4. Если α_n и β_n б.м.п то их разность $\{\alpha_n-\beta_n\}$ тоже б.м.п

Доказательство повторяет доказательство предыдущей теоремы.

Следствие 1.1. Алгебраическая сумма любого конечного числа б.м.п является б.м.п (Свойство 2).

Таким образом, если $\{\alpha_n^{(1)}\}$ $\{\alpha_n^{(k)}\}$ б.м.п и $\delta_k=\pm 1$ то $\{\delta_1\alpha_n^{(1)}+\delta_2\alpha_n^{(2)}+...+\delta_k\alpha_n^{(k)}\}$ тоже б.м.п.

Теорема 1.5. Произведение ограниченной последовательности на бесконечно малую является бесконечно малой последовательностью.

Доказательство.

Пусть $\{x_n\}$ - ограниченная последовательность, а $\{\alpha_n\}$ - б.м.п. Тогда существует такое число $A{>}0$ что для любого натурального п

$$|x_n| < A$$

Пусть $\varepsilon>0$. Рассмотрим $\varepsilon_1=\frac{\varepsilon}{A}$ и по нему найдем такой номер N, что $\forall n\geq N$

$$\mid \alpha_n \mid < \varepsilon_1$$

Тогда $\forall n \geq N$

$$A \mid \alpha_n \mid < \varepsilon$$

Поэтому $\forall n \geq N$

$$|x_n\alpha_n|=|x_n||\alpha_n|< A\cdot\frac{\varepsilon}{A}=\varepsilon.$$

To есть $\{x_n\alpha_n\}$ - б.м.п.

Теорема доказана.

Следствие 1.2. Произведение любого конечного числа б.м.п. является б.м.п. (Свойство 3^0)

Частное двух бесконечно малых последовательностей может быть какой годно последовательностью и даже может быть неопределено.

Теорема 1.6. Если все элементы б.м.п. $\{\alpha_n\}$ равны одному и тому же числу C, то C=0 (Свойство 4^0)

Доказательство.

Допустим, что $C \neq 0$. Положим $\varepsilon = \frac{|C|}{2}$. Тогда существует N: что $\forall n \geq N$

$$\mid \alpha_n \mid < \varepsilon$$

то есть

$$\mid C \mid < \frac{\mid C \mid}{2}.$$

откуда мы получаем неверное неравенство $1<\frac{1}{2}$ Полученное противоречие показывает, что C=0.

Теорема доказана.

Определение 1.10. Последовательность $\{x_n\}$ называется бесконечно большой последовательностью, если $\forall A > 0 \exists N_A$, что $n \geq N_A$

$$\mid x_n \mid > A$$
.

3амечание 1.6. Если $\{x_n\}$ - б.б.п. то она неограничена. Однако не всякая неограниченная последовательность является б.б.п.

Пример 5.

$$x_n = \{n, n -$$
нечетное $\}$

Пример 6. Если $x_n = q^n$, |q| < 1, то $\{x_n\}$ - б.б.п.

Теорема 1.7. Если $\{x_n\}$ - б.б.п., то начиная с некоторого номера определена последовательность $\{\frac{1}{x_n}\}$ которая является б.м.п.

Если все элементы б.м.п. $\{\alpha_n\}$ отличны от нуля, то последовательность $\{\frac{1}{\alpha_n}\}$ бесконечно большая.

Доказательство.

1. Заметим, что если $\{x_n\}$ - б.б.п., то лишь конечное число ее элементов может быть равно нулю.

Действительно, пусть A>0, тогда существует N_1 , что что $n\geq N_1$

$$x_n > A$$
.

то есть

$$x_n \neq 0 npu, n \geq N_1$$

Тогда для $n \geq N_1$ определена последовательность $\{\frac{1}{x_n}\}$

$$\alpha_n = \frac{1}{x_n + N_1 - 1}$$

Пусть $\varepsilon>0$. Тогда существует $N_{\varepsilon}\geq N_1$ такой, что при $n\geq N_{\varepsilon}$

$$\mid x_n \mid > \frac{1}{\varepsilon}$$

Следовательно

$$\mid \frac{1}{x_n} \mid < \varepsilon.$$

то есть $\{\alpha_n\}<arepsilon$. Следовательно $\{\alpha_n\}$ - б.м.п.

2. Пусть $\{\alpha_n\}$ - б.м.п. $\alpha_n \neq 0 \forall n \in \mathbb{N}$.

Рассмотрим A>0 и $\varepsilon=\frac{1}{A}$. Так как $\{\alpha_n\}$ - б.м.п. то существует $N: \forall n\geq N$

$$\mid \alpha_n \mid < \varepsilon = \frac{1}{A}.$$

и последовательность $\left\{\frac{1}{\alpha_n}\right\} - \delta.\delta.n.$

Теорема доказана.

1.3.4. Арифметические свойства сходящихся последовательностей.

Теорема 1.8. Сумма сходящихся последовательностей $\{x_n\}$ и $\{y_n\}$ есть сходящаяся последовательность, причем

$$\lim_{n\to\infty}(x_n+y_n)=\lim_{n\to\infty}x_n+\lim_{n\to\infty}y_n.$$

Доказательство.

Так как $\{x_n\}$ и $\{y_n\}$ сходящиеся, то существуют α , b, α_n , β_n , такие. что

$$x_n = \alpha + \alpha_n$$

$$y_n = b + \beta_n$$

 $\{\alpha_n\}, \{\beta_n\}$ - бесконечно малые последовательности. $\}$ Следовательно

$$x_n + y_n = (a+b) + (\alpha_n + \beta_n).$$

но последовательности $\{\alpha_n+\beta_n\}$ - бесконечно малая. Следовательно последовательность $\{x_n+y_n\}$ сходится и

$$\lim_{n\to\infty} (x_n + y_n) = a + b = \lim_{n\to\infty} x_n + \lim_{n\to\infty} y_n.$$

Теорема доказана.

Теорема 1.9. Разность сходящихся последовательностей $\{x_n\}$ и $\{y_n\}$ есть сходящаяся последовательность, причем

$$\lim_{n\to\infty}(x_n-y_n)=\lim_{n\to\infty}x_n-\lim_{n\to\infty}y_n.$$

Теорема 1.10. Произведение сходящихся последовательностей $\{x_n\}$ и $\{y_n\}$ есть сходящаяся последовательность, причем

$$\lim_{n\to\infty}(x_n\cdot y_n)=\lim_{n\to\infty}x_n\cdot\lim_{n\to\infty}y_n.$$

Доказательство.

Пусть $\lim_{n\to\infty} x_n = a$. $\lim_{n\to\infty} y_n = b$. Тогда

$$x_n = a + \alpha_n, y_n = b + \beta_n$$

где $\{\alpha_n\}$, $\{\beta_n\}$ - бесконечно малые последовательности. Следовательно

$$x_n y_n = (\alpha + \alpha_n)(b + \beta_n) = ab + (\alpha_n b + \beta_n \alpha + \alpha_n \beta_n)$$

•

Но $(\alpha_n b + \beta_n \alpha + \alpha_n \beta_n)$ - бесконечно малая последовательность. Следовательно последовательность $\{x_n y_n\}$ сходится и

$$\lim_{n \to \infty} (x_n \cdot y_n) = ab = \lim_{n \to \infty} x_n \cdot \lim_{n \to \infty} y_n.$$

Теорема доказана.

Замечание 1.7. Очевидно, что если $\{x_n\}$ - стационарная, начиная с некоторого номера последовательность (то есть существует номер $N\colon \forall n\geq N$, $x_n=c$), то $\{x_n\}$ сходится и

$$\lim_{n \to \infty} x_n = c$$

.

Следствие 1.3. Если последовательность $\{x_n\}$ сходится, то $\forall c$ последовательность $\{cx_n\}$ также сходится и

$$\lim_{n \to \infty} (cx_n) = c \lim_{n \to \infty} x_n$$

Теорема 1.11. Если $\{x_n\}$ и $\{y_n\}$ - две сходящиеся последовательности, причем $\lim_{n\to\infty}y_n=b\neq 0$, то начиная с некоторого номера определена последовательность $\{\frac{x_n}{y_n}\}$ которая является сходящейся причем

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}$$

Доказательство.

Пусть $\forall n \geqslant N$ определена последовательность $\left\{\frac{1}{y_n}\right\}$. Следовательно $\forall n \geqslant N$ определена последовательность $\left\{\frac{x_n}{y_n}\right\}$.

Так как существует $\lim_{n\to\infty}x_n=a$ и $\lim_{n\to\infty}y_n=b$, то $x_n=a+\alpha_n,\ y_n=b+\beta_n,$ где $\lim_{n \to \infty} \alpha_n = 0$ и $\lim_{n \to \infty} \beta_n = 0$.
Тогда

$$\frac{x_n}{y_n} - \frac{a}{b} = \frac{x_n b - y_n a}{b y_n} = \frac{(a + \alpha_n)b - (b + \beta_n)a}{b y_n} = \frac{1}{y_n} \left(\alpha_n - \frac{a}{b}\beta_n\right).$$

Последовательность $\{\beta_n\} = \frac{1}{\beta_n} \left\{ \alpha_n - \frac{a}{b} \beta_n \right\}$ является бесконечно малой, следовательно $\frac{x_n}{y_n}=\frac{a}{b}+\beta_n$, где $\lim_{n\to\infty}\beta_n=0$. Таким образом, существует

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}$$

Теорема доказана.

1.3.5. Свойства сходящихся последовательностей, связанные с неравенствами

Теорема 1.12. Если $\{x_n\}$, $\{y_n\}$ и $\{z_n\}$ таковы, что

1.)
$$x_n \leqslant y_n \leqslant z_n \ \forall n \in \mathbb{N},$$

$$2.) \lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = a,$$

то $\{y_n\}$ тоже сходится и $\lim_{n \to \infty} y_n = a$

Доказательство.

Пусть N — номер такой, что для всех номеров n , начиная с него выполняется неравенство

$$x_n \leqslant y_n \leqslant z_n$$

Тогда

$$x_n - a \leqslant y_n - a \leqslant z_n - a \quad \forall n \geqslant N.$$

Следовательно

$$|y_n - a| \leq \max\{|x_n - a|, |z_n - a|\}.$$

Поскольку $\lim_{n\to\infty}x_n=\lim_{n\to\infty}z_n=a$, то $\forall \varepsilon>0$ $\exists N_1$ и N_2 такие, что

$$\forall n \geqslant N_1 \mid x_n - a \mid < \varepsilon$$

$$\forall n \geqslant N_2 \mid z_n - a \mid < \varepsilon$$

Тогда для всех $n: n \geqslant \max\{N_1, N_2, N\}$ выполняется неравенство

$$|y_n - a| < \varepsilon$$
.

Это означает, что последовательность $\{y_n-a\}$ — бесконечно малая. Следовательно последовательность $\{y_n\}$ сходится и $\lim_{n\to\infty}y_n=a$

Теорема доказана.

Теорема 1.13. Если
$$\lim_{n\to\infty}x_n=a,\ \lim_{n\to\infty}y_n=b$$
 и

$$a < b$$
,

то $\exists N$ такое, что $\forall n \geqslant N$ выполняется неравенство:

$$x_n < y_n$$
.

 $\mathit{Следствие}\ 1.$ Если $\lim_{n \to \infty} x_n = a$ и a < b, то $\exists N$ такой, что $\forall n \geqslant N$ выполнено неравенство:

$$x_n < b$$

Следствие 1.4. Если $\lim_{n\to\infty} y_n = b$ и b>a, то $\exists N$ такой, что $\forall n\geqslant N$ выполнено неравенство:

$$y_n > a$$

Следствие 3. Если $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$ и $\forall n \in \mathbb{N}$

$$x_n \geqslant y_n$$

TO

$$a \geqslant b$$
.

Следствие 1.5. Если $\lim_{n\to\infty} x_n = a$ и

$$m \leqslant x_n \leqslant M \ \forall n \in \mathbb{N}.$$

TO

$$m \leqslant a \leqslant M$$

Следствие 5.

- 1) Если $x_n > b$ и $\lim_{n \to \infty} x_n = a$, то $a \geqslant b$. 2) Если $x_n \geqslant b$ и $\lim_{n \to \infty} x_n = a$, то $a \geqslant b$. 3) Если $x_n < b$ и $\lim_{n \to \infty} x_n = a$, то $a \leqslant b$. 4) Если $x_n \leqslant b$ и $\lim_{n \to \infty} x_n = a$, то $a \leqslant b$.

1.4. Последовательность и частный предел последовательности

1.4.1. Подпоследовательности

1.11. Если $\{x_n\}$ — некоторая последовательность, Определение $\{n_k\}$: $n_1 < n_2 < n_3$... $< n_k <$... — возрастающая последовательность натуральных чисел, то последовательность $x_{n_1}, x_{n_2}, x_{n_3}, \dots$ называется подпоследовательностью последовательности $\{x_n\}$ и обозначается $\{x_{n_k}\}$ (или $y_k = x_{n_k}$).

Пример 7. Пусть $x_n = \frac{1}{n}$: 1: $\frac{1}{2}$: $\frac{1}{3}$: $\frac{1}{4}$, ... — последовательность. Выберем $n_k = 2k$. Тогда $x_{n_k} = \frac{1}{2k}$. Следовательно подпоследовательность имеет вид: $\frac{1}{2}$: $\frac{1}{6}$: $\frac{1}{4}$: ,...

Заметим, что $\frac{1}{2}$: $\frac{1}{6}$: $\frac{1}{4}$: ,... не является подпоследовательностью.

Теорема 1.14. Если $\{x_n\}$ сходится и $\lim_{n\to\infty}x_n=a$, то любая ее подпоследовательность $\{x_{n_k}\}$ также сходится и $\lim_{n_k \to \infty} x_{n_k} = a$.

Доказательство.

Так как $\lim_{n\to\infty}x_n=a,$ то $\forall \varepsilon>0$ $\exists n(\varepsilon)$ такое что $\forall n\geqslant N(\varepsilon)$ выполняется неравенство:

$$|x_n - a| < \varepsilon$$
,

поскольку $\{n_k\}$ возрастающая и, значит, $n_k \longrightarrow \infty$, то найдется такой номер L, что при $k \geqslant L$

$$n_k \geqslant N$$
.

Следовательно $|x_{n_k} - a| < \varepsilon$.

Ho это и означает, что $\lim_{n_k \to \infty} x_{n_k} = a$.

Теорема доказана.

Замечание. Часто вместо $n_k \longrightarrow \infty$ пишут $k \longrightarrow \infty$.

Аналогично может быть доказана теорема 2:

Теорема 1.15. Каждая подполедовательность бесконечно большой последовательности является бесконечно большой последовательностью.

1.4.2. Частичный предел последовательности. Верхний и нижний предел.

Определение 1.12. Число a (или символы $\pm \infty$) называется частичным пределом последовательности $\{x_n\}$ если в ней есть подпоследовательность, сходящаяся к этому числу.

Пример 8. Рассмотрим последовательность $x_n = (-1)^n$. Частичными пределами этой последовательности являются числа 1 и -1.

Замечание. Если $\{x_n\}$ сходится и $\lim_{n\to\infty} x_n = a$, то a — единственный ее частичный предел. Если же $\{x_n\}$ последовательность расходится, то у нее частичных пределов не менее двух.

Определение 1.13. Наибольший из частичных пределов последовательности $\{x_n\}$ называется верхним пределом этой последовательности и обозначается:

$$\overline{x} = \overline{\lim_{n \to \infty}} x_n.$$

Наименьший из частичных пределов последовательности $\{x_n\}$ называетс нижним пределом этой последовательности и обозначается:

$$\underline{x} = \underline{\lim}_{n \to \infty} x_n.$$

Ясно, что если $\{x_n\}$ ограничена, то \overline{x} и \underline{x} существуют и конечны. Если же $\{x_n\}$ неограничена, то \overline{x} и \underline{x} могут быть равны $\pm \infty$.

Пример 9.

- 1^{0} . Рассмотрим последовательность $x_{n}=(-1)^{n},\ n\in\mathbb{N}$. Верхний предел этой последовательности равен $\overline{x}=\overline{\lim_{n\to\infty}}x_{n}=1$, а нижний предел $\underline{x}=\underline{\lim_{n\to\infty}}x_{n}=-1$.
- $\overline{x} = \overline{\lim_{n \to \infty}} x_n = +\infty$ и нижний предел, равный $\underline{x} = \overline{\lim_{n \to \infty}} x_n = +\infty$ и нижний предел, равный $\underline{x} = \underline{\lim_{n \to \infty}} x_n = 0$.
- $\overline{x} = \frac{3^0}{\lim_{n \to \infty}} x_n = +\infty, \ \underline{x} = \lim_{n \to \infty} x_n = +\infty.$
- 4^0 . Последовательность $x_n=\frac{(-1)^n}{n},\ n\in\mathbb{N}$ имеет один предел, равный 0: $\overline{x}=\varlimsup_{n\to\infty}x_n=0,\ \underline{x}=\varliminf_{n\to\infty}x_n=0.$
- $\overline{x}=\dfrac{5^0.}{\displaystyle \lim_{n\to\infty}}x_n=-\infty, \ \underline{x}=\displaystyle \lim_{n\to\infty}x_n=-\infty.$
- $\overline{x} = \overline{\lim_{n \to \infty}} x_n = +\infty$ и нижний предел, равный $\underline{x} = \overline{\lim_{n \to \infty}} x_n = +\infty$.

1.5. Монотонные последовательности

1.5.1. Определение монотонных последовательностей. Примеры.

Определение 1.14. Последовательность $\{x_n\}$ называется неубывающей, если $\forall n \in \mathbb{N}$

$$x_n \leqslant x_{n+1}$$
.

Последовательность $\{x_n\}$ называется невозрастающей, если $\forall n \in \mathbb{N}$

$$x_n \geqslant x_{n+1}$$
.

Невозрастающие и неубывающие последовательности называются монотонными.

Определение 1.15. Если $\forall n \in \mathbb{N}$ выполняется неравенство $x_n < x_{n+1}$, то последовательность называется возрастающей (или строго возрастающей).

Если $\forall n \in \mathbb{N}$ выполняется неравенство $x_n > x_{n+1}$, то последовательность называется убывающей (или строго убывающей).

Убывающие и возрастающие последовательности называются строго монотонными.

Замечание 1.8. Монотонные последовательности ограничены либо сверху, либо снизу. А именно:

неубывающая последовательность ограничена снизу; невозрастающая последовательность ограничена сверху.

Поэтому неубывающая последовательность ограничена, если она ограничена сверху, а невозрастающая последовательность ограничена, если она ограничена снизу.

Пример 10. 1). $1, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \dots$ — ограниченная невозрастающая последовательность.

- 2). $1, 1, 2, 2, \dots$ монотонная, неубывающая, ограниченная только снизу по-
- следовательность. 3). $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots \frac{n-1}{n},$ возрастающая, ограниченная с обеих сторон последовательность.

Замечание 1.9. Из каждой сходящейся последовательности можно выделить монотонную сходящуюся подпоследовательность.

Пусть x_n сходится и $\lim_{n\to\infty} x_n = a$.

Имеют место три случая:

- 1). Имеется бесконечное число членов последовательности, равных a.
- 2). В любой ε -окрестности $U_{\varepsilon}(a)$ найдется бесконечное число элементов, удовлетворяющих неравенству $x_n < a$.
- 3). В любой ε -окрестности $U_{\varepsilon}(a)$ найдется бесконечное число элементов, удовлетворяющих неравенству $x_n > a$.

1.6. Необходимые и достаточные условия сходимости последовательности.

Первая теорема этого пункта связывает понятие частичных пределов в понятием сходимости последовательности.

Теорема 1.16. Для того, чтобы последовательность $\{x_n\}$ была сходящейся необходимо и достаточно, чтобы она была ограниченной и чтобы ее верхний и нижний пределы совпадали:

$$\overline{x} = \underline{x}$$
.

Доказательство

Необходимость. Пусть $\{x_n\}$ сходится, тогда $\{x_n\}$ ограничена и $a=\lim_{n\to\infty}x_n$ единственный предел $\{x_n\}$. Следовательно,

$$a = \overline{x}, \quad a = \underline{x},$$

то есть

$$\overline{x} = x$$
.

Достаточность. Пусть $\{x_n\}$ ограничена и $a = \overline{x} = \underline{x}$.

Покажем, что $a = \lim_{n \to \infty} x_n$.

Допустим, что это не так.

Тогда $\exists \ \varepsilon > 0$, что вне интервала $(a - \varepsilon, a + \varepsilon)$ содержится бесконечное число членов последовательности. Следовательно, в $[m, a - \varepsilon]$ или $[a + \varepsilon, M]$ $(m \cup M)$ - наибольшее и наименьшее значения ограничивающие последовательность) содержится бесконечное число членов последовательности.

Следовательно, по теореме Больцано-Вейерштрасса, в каждом из указанных интервалов:

$$\exists x_{n_k} \to x_0 \in [m, a - \varepsilon]([a + \varepsilon, M]).$$

Следовательно, либо

$$x_0 = \lim_{n \to \infty} x_{n_k} < \underline{x},$$

либо

$$x_0 = \lim_{n \to \infty} x_{n_k} > \overline{x}.$$

Но \underline{x} и \overline{x} наименьший и наибольший из всех возможных частичных пределов. Таким образом получено противоречие.

Теорема доказана.

1.6.1. Фундаментальная последовательность.

Определение 1.16. Последовательность $\{x_n\}$ называют фундаментальной, если она удовлетворяет следующему условию: для каждого $\varepsilon > 0$ $\exists N$, что $\forall n \geq N$ и $\forall p \in \mathbb{N}$:

$$|x_{n+p} - x_n| < \varepsilon.$$

Это понятие можно было сформулировать эквивалентным образом, положив n+p=m.

Определение 1.17. Последовательность $\{x_n\}$ называют ϕy н ∂ аментальной, если для каждого $\varepsilon>0$ $\exists N$, что $\forall n\geq N$ и $\forall m\geq N$:

$$|x_m - x_n| < \varepsilon$$
.

Отметим важное свойство фундаментальной последовательности.

Утверждение. Если последовательность $\{x_n\}$ фундаментальна, то $\forall \varepsilon > 0$ существует такой номер N,что $\forall n \geq N$ все элементы последовательности $\{x_n\}$ находятся в интервале $(x_N - \varepsilon, x_N + \varepsilon)$.

Доказательство

Так как $\{x_n\}$ фундаментальна, то $\forall \varepsilon > 0 \quad \exists N$, что $\forall n \geq N$ и $\forall m \geq N$:

$$|x_m - x_n| < \varepsilon$$
.

Положим m=N. Тогда

$$|x_N - x_n| < \varepsilon, \forall n \ge N.$$

Следовательно

$$-\varepsilon < x_n - x_N < \varepsilon$$
,

или

$$x_N - \varepsilon < x_n < x_N + \varepsilon$$
.

Окончательно имеем, что

$$\forall n \geq N, x_n \in (x_N - \varepsilon, x_N + \varepsilon).$$

Утверждение доказано.

Следствие 1.6. Если последовательность $\{x_n\}$ фундаментальна, то она ограничена.

Доказательство

Действительно, если последовательность фундаментальна, то

$$\forall \varepsilon > 0 \quad \exists N : \forall n \ge N \quad x_n \in (x_N - \varepsilon, x_N + \varepsilon).$$

Пусть $A = max\{|x_1| \cdot |x_2| \dots |x_{N-1}| \cdot |x_N - \varepsilon| \cdot |x_N + \varepsilon|\}.$

Тогда для любого натурального $n:|x_n|\leq A.$ То есть последовательность $\{x_n\}$ ограничена.

Следствие доказано.

1.6.2. Критерий Коши сходимости последовательности.

Теорема 1.17. (Критерий Коши). Для того, чтобы последовательность имела конечный предел, необходимо и достаточно, чтобы она была фундаментальной.

 \mathcal{A} оказательство

Необходимость. Пусть $\{x_n\}$ имеет конечный предел, равный a. По определению предела

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall p \ge N$$

выполняется

$$|x_p - a| < \frac{\varepsilon}{2}.$$

Будем считать, вначале, что p=n, а затем, что p=m и используя неравенство для модуля суммы (разности), получаем :

$$|x_n - x_m| = |(x_n - a) - (x_m - a)| \le |x_n - a| + |x_m - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Следовательно, для любого $n \geq N$ и для любого $m \geq N$ выполняется неравенство

$$|x_n - x_m| < \varepsilon,$$

то есть выполняется условие фундаментальности последовательности.

Достаточность. Пусть $\{x_n\}$ - фундаментальная последовательность. Докажем, что она имеет конечный предел. По определению фундаментальной последовательности

$$\forall \varepsilon > 0, \quad \exists M : \forall n \ge M \quad \forall m \ge M$$

выполняется неравенство

$$|x_n - x_m| < \frac{\varepsilon}{2}.$$

Так как фундаментальная последовательность $\{x_n\}$ является ограниченной, то по теореме Больцано-Вейерштрасса она содержит сходящуюся подпоследовательность $\{x_{n_k}\}$. Пусть ее предел равен a, то есть

$$\lim_{k \to \infty} x_{n_k} = a.$$

Покажем, что число a является пределом исходной последовательности $\{x_n\}$. По определению предела :

$$\forall \varepsilon > 0, \quad \exists K : \quad \forall k \ge K$$

выполняется

$$|x_{n_k} - a| < \frac{\varepsilon}{2}.$$

Пусть N = max(M, K). Фиксируем в предыдущем неравенстве номер $n_k \ge N$ (такой номер найдется, так как $n_k \to \infty$ при $k \to \infty$). Тогда при $m = n_k$ и при всех $n \ge N$ в силу условия фундаментальности выполняется неравенство:

$$|x_n - x_{n_k}| < \frac{\varepsilon}{2}.$$

Рассмотрим теперь разность

$$|x_n - a| = |(x_n - x_{n_k}) + (x_{n_k} - a)| \le |x_n - x_{n_k}| + |x_{n_k} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

То есть

$$\lim_{n\to\infty} x_n = a.$$

Теорема доказана.

Пример 11. Доказать, что последовательность $\{x_n\}$,где

$$x_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n},$$

расходится.

Последовательность $\{x_n\}$ расходится, если не выполняется условие Коши, то есть

$$\exists \varepsilon_0 > 0: \quad \forall k \in N \quad \exists n \ge k. \quad \exists m \ge k:$$

$$|x_n - x_m| \ge \varepsilon_0.$$

Пусть задано любое $k \in \mathbb{N}$, положим n = 2k, m = k. Тогда

$$|x_n - x_m| = |x_{2k} - x_k| = \frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{2k} \ge \frac{1}{2k} \cdot k = \frac{1}{2}.$$

Таким образом, выполнено условие противоположное условию Коши при $\varepsilon_0 = \frac{1}{2}$ и в силу критерия Коши последовательность $\{x_n\}$ расходится.

$$x_k = 1 + \frac{1}{2} + \dots + \frac{1}{k}$$

 $x_{2k} = 1 + \frac{1}{2} + \dots + \frac{1}{k} + \frac{1}{k+1} + \dots + \frac{1}{2k}$