Analysis 1

15.12.2023

F. Gmeineder

P. Stephan

A. von Pippich

Wintersemester 2023

Abgabe: Bis zum 22.12.2023 um 10:00 Uhr

Übungsblatt 9

Aufgabe 1: (Gleichmäßige) Stetigkeit

5 + 5 = 10 Punkte

- (a) Zeigen Sie, dass $x\mapsto \sqrt{x}$ gleichmäßig stetig ist auf $\mathbb{R}_{\geq 0}$. Zeigen Sie hierzu die Ungleichung $|\sqrt{x}-\sqrt{y}|\leq \sqrt{|x-y|}$ für alle $x,y\geq 0$.
- (b) Zeigen Sie mit der ε - δ -Charakterisierung, dass

$$g: \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} \frac{1}{(x-1)^2}, & x \neq 1\\ 0, & x = 1, \end{cases}$$

auf $\mathbb{R}\setminus\{1\}$ stetig ist, nicht jedoch in $x_0=1$.

Aufgabe 2: Sätze über stetige Funktionen I

5+5=10 Punkte

- (a) Sei $f: \mathbb{R} \to \mathbb{R}$ eine stetige und ungerade Funktion. Letzteres bedeutet, dass f(-x) = -f(x) für alle $x \in \mathbb{R}$ gilt. Zeigen Sie, dass f eine Nullstelle besitzt: $f(x_0) = 0$ für ein $x_0 \in \mathbb{R}$. Tipp: Zwischenwertsatz.
- (b) Sei $K \subset \mathbb{R}$ nichtleer, kompakt und $f \colon K \to K$ eine Funktion mit |f(x) f(y)| < |x y| für alle $x, y \in K$. Zeigen Sie, dass f genau einen Fixpunkt $x_0 \in K$ besitzt. Tipp: Satz über stetige Funktionen auf Kompakta.

Aufgabe 3: Sätze über stetige Funktionen II

8 + 2 = 10 Punkte

- (a) Zeigen Sie, dass keine stetige Funktion $f: \mathbb{R} \to \mathbb{R}$ jeden ihrer Werte genau zweimal annimmt. Hinweis: Zwischenwertsatz und Satz über stetige Funktionen auf Kompakta.
- (b) Skizzieren Sie den Graphen einer unstetigen Funktion $f: \mathbb{R} \to \mathbb{R}$, die jede reelle Zahl genau zweimal annimmt.

Aufgabe 4: Funktionenfolgen

5 + 5 = 10 Punkte

Untersuchen Sie die folgenden Funktionenfolgen $(f_n)_{n\in\mathbb{N}}$, $(g_n)_{n\in\mathbb{N}}$ mit $f_n, g_n : \mathbb{R} \to \mathbb{R}$ für alle $n \in \mathbb{N}$ auf punktweise und gleichmäßige Konvergenz, und geben Sie gegebenenfalls die Grenzfunktion an.

(a)
$$f_n(x) := \sqrt{\frac{1}{n^2} + x^2}, \quad (n \in \mathbb{N}),$$

(b)
$$g_n(x) := x^2 \sum_{k=0}^{n-1} (1+x^2)^{-k}, \quad (n \in \mathbb{N}).$$