Отчёт по лабораторной работе №5

Дисциплина: Администрирование локальных сетей

Исаев Булат Абубакарович НПИбд-01-22

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Вывод	17
	3.1. Контрольные вопросы	17

Список иллюстраций

2.1	Открытие проекта lab_PT-05.pkt	6
2.2	Настройка Trunk-портов на коммутаторе msk-donskaya-baisaev-sw-1.	7
2.3	Настройка Trunk-портов на коммутаторе msk-donskaya-baisaev-sw-2.	7
2.4	Настройка Trunk-портов на коммутаторе msk-donskaya-baisaev-sw-3.	8
2.5	Настройка Trunk-портов на коммутаторе msk-donskaya-baisaev-sw-4.	9
2.6	Настройка Trunk-портов на коммутаторе msk-pavlovskaya-baisaev-	
	sw-1	10
2.7	Настройка коммутатора msk-donskaya-baisaev-sw-1 как VTP-	
	сервера, добавление номеров и названий VLAN	11
2.8	Настройка коммутатора msk-donskaya-baisaev-sw-2 как VTP-	
	клиента и указание принадлежности к VLAN	12
2.9	Настройка коммутатора msk-donskaya-baisaev-sw-3 как VTP-	
	клиента и указание принадлежности к VLAN	13
2.10	Настройка коммутатора msk-donskaya-baisaev-sw-4 как VTP-	
	клиента и указание принадлежности к VLAN	13
2.11	Настройка коммутатора msk-pavlovskaya-baisaev-sw-1 как VTP-	
	клиента и указание принадлежности к VLAN	14
2.12	Пример указания статического ІР-адреса на оконечном устройстве	
	(Default Gateway)	14
2.13	Пример указания статического ІР-адреса на оконечном устройстве	
	(IP Configuration)	15
2.14	Проверка доступности устройств, принадлежащих одному VLAN, и	
	недоступность устройств, принадлежащих разным VLAN	15
2.15	Изучение процесса передвижения пакета ICMP (STP) по сети в	
	режиме симуляции в Packet Tracer	16

Список таблиц

1 Цель работы

Получить основные навыки по настройке VLAN на коммутаторах сети.

2 Выполнение лабораторной работы

Откроем проект с названием lab_PT-04.pkt и сохраним под названием lab_PT-05.pkt. После чего откроем его для дальнейшего редактирования (рис. 2.1)

Рис. 2.1: Открытие проекта lab_PT-05.pkt.

Используя приведённую в лабораторной работе последовательность команд из примера по конфигурации Trunk-порта на интерфейсе g01 коммутатора mskdonskaya-sw-1, настроим Trunk-порты на соответствующих интерфейсах всех коммутаторов (рис. 2.2) (рис. 2.3) (рис. 2.4) (рис. 2.5) (рис. 2.6)

Рис. 2.2: Настройка Trunk-портов на коммутаторе msk-donskaya-baisaev-sw-1.

Рис. 2.3: Настройка Trunk-портов на коммутаторе msk-donskaya-baisaev-sw-2.

Рис. 2.4: Настройка Trunk-портов на коммутаторе msk-donskaya-baisaev-sw-3.

Рис. 2.5: Настройка Trunk-портов на коммутаторе msk-donskaya-baisaev-sw-4.

Рис. 2.6: Настройка Trunk-портов на коммутаторе msk-pavlovskaya-baisaev-sw-1.

Далее настроим коммутатор msk-donskaya-baisaev-sw-1 как VTP-сервер и пропишем на нём номера и названия VLAN (рис. 2.7)

Рис. 2.7: Настройка коммутатора msk-donskaya-baisaev-sw-1 как VTP-сервера, добавление номеров и названий VLAN.

Теперь настроим коммутаторы msk-donskaya-baisaev-sw-2, msk-donskaya-baisaev-sw-3, msk-donskaya-baisaev-sw-4 и msk-pavlovskaya-baisaev-sw-1 как VTP-клиенты и на интерфейсах укажем принадлежность к VLAN (рис. 2.8) (рис. 2.9) (рис. 2.10) (рис. 2.11)

Рис. 2.8: Настройка коммутатора msk-donskaya-baisaev-sw-2 как VTP-клиента и указание принадлежности к VLAN.

Puc. 2.9: Настройка коммутатора msk-donskaya-baisaev-sw-3 как VTP-клиента и указание принадлежности к VLAN.

Puc. 2.10: Настройка коммутатора msk-donskaya-baisaev-sw-4 как VTP-клиента и указание принадлежности к VLAN.

Рис. 2.11: Настройка коммутатора msk-pavlovskaya-baisaev-sw-1 как VTP-клиента и указание принадлежности к VLAN.

(рис. 2.12)

Рис. 2.12: Пример указания статического IP-адреса на оконечном устройстве (Default Gateway).

(рис. 2.13)

Рис. 2.13: Пример указания статического IP-адреса на оконечном устройстве (IP Configuration).

После указания статических IP-адресов на оконечных устройствах проверим с помощью команды ping доступность устройств, принадлежащих одному VLAN, и недоступность устройств, принадлежащих разным VLAN (рис. 2.14):

Рис. 2.14: Проверка доступности устройств, принадлежащих одному VLAN, и недоступность устройств, принадлежащих разным VLAN.

Используя режим симуляции в Packet Tracer, изучим процесс передвижения пакета ICMP по сети (рис. 2.15)

Рис. 2.15: Изучение процесса передвижения пакета ICMP (STP) по сети в режиме симуляции в Packet Tracer.

3 Вывод

В ходе выполнения лабораторной работы мы получили основные навыки по настройке VLAN на коммутаторах сети.

3.1 Контрольные вопросы

1. Какая команда используется для просмотра списка VLAN на сетевом устройстве?

show vlan

2. Охарактеризуйте VLAN Trunking Protocol (VTP). Приведите перечень команд с пояснениями для настройки и просмотра информации о VLAN.

switchport mode trunk/access: switchport mode trunk: устанавливает порт в режим транка (trunk), который передает данные для нескольких VLAN через один физический интерфейс. switchport mode access: устанавливает порт в режим доступа (access), который предназначен для работы с одним определенным VLAN. switchport access vlan номер_VLAN: назначает определенный VLAN для порта в режиме доступа. vtp mode server/client: vtp mode server: устанавливает коммутатор в режим сервера VTP, позволяя ему рассылать информацию о VLAN другим коммутаторам в сети. vtp mode client: устанавливает коммутатор в режим клиента VTP, что позволяет ему принимать информацию о VLAN от серверов VTP. vtp domain: устанавливает домен VTP, в котором

находится коммутатор. Для синхронизации информации о VLAN, все коммутаторы в сети должны находиться в одном домене VTP с одинаковым именем. vtp password: устанавливает пароль VTP для доступа к домену VTP. Это помогает обеспечить безопасность и предотвратить несанкционированные изменения конфигурации VLAN. vlan: создает новый VLAN с указанным номером. name: присваивает имя VLAN, что делает его более понятным для администраторов сети.

3. Охарактеризуйте Internet Control Message Protocol (ICMP). Опишите формат пакета ICMP

Это протокол в семействе протоколов интернета, который используется для передачи сообщений об ошибках и других исключительных ситуациях, возникших при передаче данных в компьютерных сетях. ІСМР также выполняет некоторые сервисные функции, такие как проверка доступности хостов и диагностика сетевых проблем. Формат пакета ІСМР обычно состоит из заголовка и полезной нагрузки, которая может включать в себя различные поля, зависящие от типа сообщения ІСМР. Основные поля заголовка ІСМР включают в себя: Тип: определяет тип сообщения ІСМР, например, сообщение об ошибках, запрос эхо и т. д. Код: подтип сообщения, который помогает уточнить тип сообщения. Например, для сообщения об ошибке этот код может указывать на конкретный тип ошибки. Контрольная сумма: используется для обеспечения целостности пакета ІСМР. Дополнительные данные: в зависимости от типа и кода сообщения, может содержать дополнительные поля с информацией о сетевой проблеме или другой полезной информацией.

4. Охарактеризуйте Address Resolution Protocol (ARP). Опишите формат пакета ARP

Это протокол, используемый в компьютерных сетях для связывания

ІР-адресов с физическими МАС-адресами устройств в локальной сети. Он позволяет устройствам в сети определять МАС-адреса других устройств на основе их IP-адресов. Когда устройству требуется отправить пакет данных другому устройству в сети, оно сначала проверяет свою локальную таблицу ARP, чтобы узнать MAC-адрес получателя. Если необходимый MAC-адрес отсутствует в таблице ARP, устройство отправляет ARP-запрос на всю сеть, запрашивая MAC-адрес соответствующего ІР-адреса. Устройство, которое имеет этот ІР-адрес, отвечает на запрос, предоставляя свой MAC-адрес. Формат пакета ARP обычно состоит из следующих полей: Тип аппаратного адреса: определяет тип физического аппаратного адреса в сети, такой как Ethernet (значение 1). Тип протокола: указывает на протокол сетевого уровня, для которого запрашивается соответствие адресов, обычно IPv4 (значение 0x0800). Длина аппаратного адреса: указывает на размер физического адреса, обычно 6 байт для MAC-адресов Ethernet. Длина адреса протокола: указывает на размер адреса протокола, обычно 4 байта для IPv4. Код операции: определяет тип операции ARP, например, запрос (значение 1) или ответ (значение 2). МАС-адрес отправителя: физический адрес отправителя. ІР-адрес отправителя: ІР-адрес отправителя. МАС-адрес получателя: физический адрес получателя (обычно пустой в ARP-запросах). IP-адрес получателя: IP-адрес получателя, для которого запрашивается соответствие МАС-адреса.