$\Diamond A \rightarrow \Box \Diamond A \text{ (in S5)}$

Build a Tableau

To Check Whether it is Valid

Hypothesis

 $\Diamond A \rightarrow \Box \Diamond A$ is a theorem of S5.

- We are going to use simplified S5 because normal S5 is really painful for cases like this one.
- Note that if we can prove this, we'll have shown in effect that in S5, all true modal claims are necessarily true. That's the distinctive feature of S5; modality itself is never contingent.

$$\Diamond A \rightarrow \Box \Diamond A$$

Start with it being false at 1.

$$\Diamond A \rightarrow \Box \Diamond A$$

This feels familiar by now.

$$\diamondsuit A \to \Box \diamondsuit A$$

- · Not necessarily the same 'somewhere'.

$$\Diamond A \rightarrow \Box \Diamond A$$

1.
1,
$$\mathbb{F}$$
 \diamondsuit A \rightarrow \square \diamondsuit A \checkmark Assumption
2.
1, \mathbb{T} \diamondsuit A \checkmark \rightarrow \mathbb{F} , 1
3.
1, \mathbb{F} \square \diamondsuit A \checkmark \rightarrow \mathbb{F} , 1
4.
2, \mathbb{T} A \diamondsuit \mathbb{T} , 2
5.
3, \mathbb{F} \diamondsuit A \square \square \mathbb{F} , 3
6.
2, \mathbb{F} A \diamondsuit \mathbb{F} , 5

- False \diamond sentences are false everywhere.
- That is, the part inside the \diamondsuit is false everywhere.

$\Diamond A \rightarrow \Box \Diamond A$

And so it closes, so this is a theorem.