Sistemas Operacionais - Prof. Rafael R. Obelheiro

Lista de Exercícios — Entrada e Saída — Respostas

1. A velocidade de rotação do disco (em rps) é r=7200/60=120 rps. O tempo do acesso de leitura é dado pela expressão $t_{acesso}=t_{seek}+t_{lat}+t_{transf}$.

O tempo de posicionamento é $t_{seek} = 9$ ms (dado do problema).

O tempo de latência t_{lat} é dado por

$$t_{lat} = \frac{1}{2r} = \frac{1}{2 \times 120} = 0.00417 \,\mathrm{s} = 4.17 \,\mathrm{ms}.$$

O tempo de transferência t_{transf} é dado por

$$t_{transf} = \frac{b}{r \cdot N} = \frac{512}{120 \times 65536} = 0,000065104 \,\text{s} = 0,0651 \,\text{ms}.$$

Somando as três componentes, obtém-se

$$t_{acesso} = t_{seek} + t_{lat} + t_{transf} = 9 + 4,17 + 0,0651 = 13,23 \text{ ms.}$$

2. A velocidade de rotação do disco (em rps) é r = 5400/60 = 90 rps. O tempo do acesso de leitura é dado pela expressão $t_{acesso} = t_{seek} + t_{lat} + t_{transf}$, cujas componentes são detalhadas abaixo.

O tempo de *seek* t_{seek} corresponde ao tempo necessário para deslocar a cabeça de gravação do cilindro 0 ao cilindro 10.000, a 0.1 ms por cilindro:

$$t_{seek} = 10.000 \times 0.1 = 1000 \,\mathrm{ms}.$$

O tempo de latência t_{lat} corresponde ao tempo necessário para que o setor desejado passe sob a cabeça de leitura/gravação. Como é impossível determinar o setor que está sob a cabeça quando o braço chega ao cilindro desejado, utiliza-se o caso médio, que é de meia rotação:

$$t_{lat} = \frac{1}{2r} = \frac{1}{2 \times 90} = 0.00556 \,\mathrm{s} = 5.56 \,\mathrm{ms}.$$

O tempo de transferência t_{transf} corresponde ao tempo necessário para ler o setor desejado. Como cada trilha possui 63 setores (dado do problema) e para ler a trilha gasta-se o tempo de uma rotação do disco, o tempo de transferência pode ser calculado da seguinte forma:

$$t_{transf} = \frac{1}{63r} = \frac{1}{63 \times 90} = 0,000176 \,\mathrm{s} = 0,176 \,\mathrm{ms}.$$

Somando as três componentes, obtém-se

$$t_{acesso} = t_{seek} + t_{lat} + t_{transf} = 1000 + 5,56 + 0,176 = 1005,74 \text{ ms.}$$

3. O entrelaçamento duplo intercala dois setores entre setores consecutivos do disco. Nesse caso, para ler os oito setores de uma trilha, a latência rotacional é composta pela latência rotacional do primeiro setor (adota-se meia rotação, que é o caso médio) e pela latência rotacional dos sete setores subseqüentes (de 2 a 8), que é correspondente à espera dos dois setores intercalados. Numericamente, tem-se:

$$r = 300 \text{ rpm} = \frac{300}{60} = 5 \text{ rps}$$

$$t_{lat} = \frac{1}{2r} + 7\left(\frac{2}{8} \cdot \frac{1}{r}\right) = \frac{1}{2 \times 5} + 7\left(\frac{2}{8 \times 5}\right) = 0.1 + 0.35 = 0.45 \text{ s}.$$

Como o braço já está corretamente posicionado, o tempo de seek é $t_{seek}=0$.

O tempo de transferência t_{transf} está relacionado ao número de setores lidos ou escritos, e independe do entrelaçamento. Neste caso, como será lida uma trilha inteira, o tempo de transferência é equivalente à duração de uma rotação do disco:

$$t_{transf} = \frac{1}{r} = \frac{1}{5} = 0.2 \,\mathrm{s}.$$

Somando as componentes, obtém-se

$$t_{acesso} = t_{seek} + t_{lat} + t_{transf} = 0 + 0.45 + 0.2 = 0.65 \text{ s.}$$

A taxa de dados representa a quantidade de dados transferidos por unidade de tempo. Numericamente, tem-se

$$taxa_{dados} = \frac{dados}{t} = \frac{8 \times 512}{0.65} = 6301.5 \text{ bytes/s}.$$

Quando não existe entrelaçamento, o que muda é a latência rotacional, que passa a ser de apenas meia rotação (para o primeiro setor):

$$t_{lat} = \frac{1}{2r} = \frac{1}{2 \times 5} = 0.1 \,\mathrm{s}$$

$$t_{acesso} = t_{seek} + t_{lat} + t_{transf} = 0 + 0.1 + 0.2 = 0.3 \text{ s.}$$

Neste caso, a taxa de dados passa a ser

$$taxa_{dados} = \frac{dados}{t} = \frac{8 \times 512}{0.3} = 13653.3 \text{ bytes/s}.$$

A degradação na taxa de dados devida ao entrelaçamento é de

$$1 - \frac{taxa\ entrelaçado}{taxa\ não\ entrelaçado} = 1 - \frac{6301,5}{13653,3} = 1 - 0,46 = 0,54,$$

ou 54%.

4. As tabelas abaixo mostram a ordem de atendimento das requisições e o deslocamento (em trilhas) a cada requisição atendida:

FO	CFS		SSF		elevador	
trilha	desloc.	trill	ha d	esloc.	trilha	desloc.
10	10	20)	0	20	0
22	12	22	2	2	22	2
20	2	10)	12	38	16
2	18	6		4	40	2
40	38	2		4	10	30
6	34	38	3	36	6	4
38	32	40)	2	2	4
total	146	tot	al	60	 total	58

2

Tempo para atender ao conjunto de requisições:

- (a) FCFS: $t = 146 \times 6 = 876 \text{ ms}$
- (b) SSF: $t = 60 \times 6 = 360 \text{ ms}$
- (c) elevador: $t = 58 \times 6 = 348 \text{ ms}$

5. As tabelas abaixo mostram a ordem de atendimento das requisições e o deslocamento (em trilhas) a cada requisição atendida:

FCFS		
trilha	desloc.	
27	73	
129	102	
110	19	
186	76	
147	39	
41	106	
10	31	
64	54	
120	56	
total	556	
média	61,8	

SSF		
trilha	desloc.	
110	10	
120	10	
129	9	
147	18	
186	39	
64	122	
41	23	
27	14	
10	17	
total	262	
média	29,1	

elevador			
trilha	desloc.		
64	36		
41	23		
27	14		
10	17		
110	100		
120	10		
129	9		
147	18		
186	39		
total	266		
média	29,6		
	•		

6. As tabelas abaixo mostram a ordem de atendimento das requisições e o deslocamento (em trilhas) a cada requisição atendida. Nota-se que, para SSF e elevador, o resultado é o mesmo:

FCFS		
trilha	desloc.	
27	73	
129	102	
110	19	
186	76	
147	39	
41	106	
10	31	
64	54	
120	56	
total	556	
média	61,8	

SSF		
trilha	desloc.	
110	10	
120	10	
129	9	
147	18	
186	39	
64	122	
41	23	
27	14	
10	17	
total	262	
média	29,1	

elevador			
trilha	desloc.		
110	10		
120	10		
129	9		
147	18		
186	39		
64	122		
41	23		
27	14		
10	17		
total	262		
média	29,1		

7. As tabelas abaixo mostram a ordem de atendimento das requisições e o deslocamento (em trilhas) a cada requisição atendida:

FCFS		
trilha	desloc.	
86	57	
1470	1384	
913	557	
1774	861	
948	826	
1509	561	
1022	487	
1750	728	
130	1620	
total	7081	
média	786,8	

SSF		
desloc.		
13		
44		
827		
35		
74		
448		
39		
241		
24		
1745		
193,9		

elevador			
trilha	desloc.		
913	770		
948	35		
1022	74		
1470	448		
1509	39		
1750	241		
1774	24		
130	1644		
86	44		
total	3319		
média	368,8		
'			

8. A velocidade de rotação do disco é de r = 7200/60 = 120 rps. No exercício anterior, são atendidas nove requisições de leitura, cada uma para quatro setores consecutivos. Portanto, a latência rotacional e o tempo de transferência são dados por

$$t_{lat} = 9 \times \frac{1}{2r} = 9 \times \frac{1}{2 \times 120} = 0.0375 \,\mathrm{s}$$

$$t_{transf} = 9 \times \frac{b}{r \cdot N} = 9 \times \frac{4 \times 512}{120 \times 49152} = 0,003125 \,\mathrm{s}$$

O tempo de deslocamento t_{seek} é dado pelo produto entre a distância total em cilindros (1745) e o tempo de deslocamento entre cilindros adjacentes (0,08 ms):

$$t_{seek} = 1745 \times 0.08 \times 10^{-3} = 0.1396 \,\mathrm{s}$$

Somando as três componentes, obtém-se

$$t_{acesso} = t_{seek} + t_{lat} + t_{transf} = 0.1396 + 0.0375 + 0.003125 = 0.18 s$$

9. Escala do disco, usando o algoritmo do elevador (inicialmente subindo):

elevador		
trilha	desloc.	
338	38	
646	308	
781	135	
847	66	
938	91	
264	674	
191	73	
43	148	
total	1533	

(a) O raciocínio é semelhante ao do exercício anterior.

$$t_{seek} = 1533 \times 0.05 \times 10^{-3} = 0.07665 \,\mathrm{s}$$

$$t_{lat} = 8 \times \frac{1}{2r} = 8 \times \frac{1}{2 \times 140} = 0.02857 \,\mathrm{s}$$

$$t_{transf} = 8 \times \frac{b}{r \cdot N} = 8 \times \frac{8 \times 512}{140 \times 65536} = 0,00357 \text{ s}$$

Somando as três componentes, obtém-se

$$t_{acesso} = t_{seek} + t_{lat} + t_{transf} = 0.07665 + 0.02857 + 0.00357 = 0.109 \,\mathrm{s}$$

(b) $1533 \div 8 = 191,6$ cilindros por requisição