Definición O(F(n)): orden de (de orden). Si F(n) es una función de $\mathbb{N} \to \mathbb{R} \cup \{0\}$, se define O(F(n)) como el conjunto de todas las funciones $t: \mathbb{N} \to \mathbb{R}^+ \cup \{0\}$, tales que $t(n) \le CF(\mathbb{N})$ para todo $n > n_o$ siendo C una constante real positiva y un entero $n_o > 0$.

$$O(F(n)) = \{t : N \to R^+ \cup \{0\} | \exists C \in R^+, \exists n_0, \forall n \ge n_0, t(n) \le Cf(n) \}$$

Corolario: Cuando t(n) y F(n) son funciones positivas \mathbb{R}^+ t(n) es O(F(n)) si existe $C \ge 0$ tal que $t(n) < CF(n) \ \forall n > 0$ (es decir, no siempre es cero)

Álgebra de O(F(n)): si t1 es O(F(n)) y t2 es O(G(n)), entonces:

- a) $t_1(n) + t_2(n)$ es de $O(\max\{F(n), G(n)\})$
- b) $t_1(n) * t_2(n)$ es de O(F(n) * G(n))

Regla del límite:

1) Si
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = L \in \Re^+$$
 entonces $f(n) \in O(g(n))$ y $g(n) \in O(f(n))$

2) Si
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$
 entonces $f(n) \in O(g(n))$ pero $g(n) \notin O(f(n))$

3) Si
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} \to \infty$$
 entonces $f(n) \notin O(g(n))$ pero $g(n) \in O(f(n))$

Propiedades de O(f(n)):

- 1) F(n) es O(F(n))
- 2) Si t(n)es O(F(n)) y F(n) es O(G(n)), entonces t(n) es O(G(n))

Definición $\Omega(\mathbf{F}(\mathbf{n}))$: Cota inferior. Si $t: \mathbb{N} \to \mathbb{R}^+ \cup \{0\}$, $t(\mathbf{n})$ está en $\Omega(\mathbf{F}(\mathbf{n}))$ si t(n) está acotada inferiormente por un múltiplo real positivo de $\mathbf{F}(\mathbf{n})$ para todo n suficientemente grande. Es decir, si existe $d \in \mathbb{R}^+$ y un entero n_o tal que $t(n) \le dF(n)$ para todo $n \ge n_o$

$$\Omega(F(n)) = \{t : N \to R^+ \cup \{0\} | \exists d \in R^+, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, t(n) \ge dF(n), siendo \mid n \ge n_0 \}$$

Propiedad 3: Si $F(n) \in \Omega(G(n))$, entonces G(n) es O(F(n))

Notación theta. $\theta(\mathbf{F}(\mathbf{n}))$. Definición: Si $t: \mathbb{N} \to \mathbb{R}^+ \cup \{0\}$, t(n) es $\theta(\mathbf{F}(\mathbf{n}))$ (está en el orden exacto de $\mathbf{F}(\mathbf{n})$) si t(n) es $O(\mathbf{F}(\mathbf{n}))$ y t(n) es $\Omega(\mathbf{F}(\mathbf{n}))$.

Se puede expresar como: $\theta(F(n)) = O(F(n)) \wedge \Omega(F(n))$

$$\Theta(F(n)) = \{t : N \to R^+ \cup \{0\} | \exists c, d \in R^+, \exists n_0 \in \mathbb{N}, dF(n) \le t(n) \le cF(n), \forall n \ge n_0\}$$

Propiedad de límite para $\theta(\mathbf{F}(\mathbf{n}))$: Si $\mathbf{F}(\mathbf{n})$ y $\mathbf{G}(\mathbf{n})$ son funciones $\mathbb{N} \to \mathbb{R}^+ \cup \{0\}$,

1) Si
$$\lim_{n\to\infty} \frac{F(n)}{G(n)} = L \in \Re^+$$
 entonces $F(n)$ es θ (G(n))

2) Si
$$\lim_{n\to\infty} \frac{F(n)}{G(n)} = 0$$
 entonces $F(n)$ es $O(G(n))$ pero $F(n)$ no es $\Theta(G(n))$

3) Si
$$\lim_{n\to\infty} \frac{F(n)}{G(n)} \to \infty$$
 entonces $F(n) \notin \Theta(G(n))$ pero $G(n) \in O(F(n))$