目 錄

壹	`	F究動機	1
貳	`	[獻回顧	1
參	`	可品設計與架構	1
肆	`	atlab 代碼與程式結果	3
伍	`	5論	7

壹、研究動機

抗通膨債券 TIPS 是 1997 年由美國政府發行, TIPS 和公債不同的地方是,它的本金連結到 美國未經季節調整的都市消費者物價指數(CPI-U),當通膨上升,債券的本金就會增加,每六 個月,TIPS 根據實質利率發行利息,債券價值的增加或減少都和 CPI 有關,但政府不會讓債 券價格低於面額,債券到期時,投資者得到的金額一定至少會大於或等於當除所投入的金額, 因此 TIPS 可視為規避通膨風險的投資工具。

對風險趨避投資通貨膨脹人而言,投資債券看似低風險的選擇,但是隨著物價指數越來越高,高通貨膨脹率可能侵蝕投資債券的固定報酬,為了抑制高通貨膨脹,政府往往使用挑調整利率作為穩定物價的工具,然而債券價格和利率成反方向變動,因此利率的變動會影響債券價格的表現。

抗通膨債券不只保有債券固定收益的優點,更能隨著物價水準的變動調整本金,幫助投資 人規避通貨膨脹的風險。觀察到台灣物價水準年年上升,市場上卻沒發行抗通膨債券,因此本 文主要探討在台灣發行抗通膨債券的可行性。

貳、文獻回顧

本文章所參考的文獻有:

1. 周盈吟(2011),「中華民國政府發行抗通膨債券的可行性分析」

此篇論文中將即期利率的隨機過程假設為

$$df(t,T) = \alpha(t,T)dt + \sigma(t,T)dW(t)$$

其中W(t)符合布朗運動

再考慮當時物價指數和基準物價指數的比例,推估債券的價值,債券在時間0的現值為

$$B_r(0) = \frac{I(0)}{I(t_0)} \sum_{t=1}^{T} CP_n(0,t) + P_n(0,T)Fmax \left[\frac{I(T)}{I(t_0)}, 1 \right]$$

若到期日發生通貨緊縮,此折現式可確保投資人至少拿回和本金。

2. 專題報導:陳信憲、曾凱「抗通膨債券在台發行之需求性研究」

債券為固定收益,但逐漸上升的通貨膨脹會逐漸侵蝕掉報酬,近幾年,央行使用各項貨幣

工具維持物價的穩定,並提升重貼現率以抑制通貨膨脹,確定了在台發放抗通膨債券必要性,提供風險趨避投資人新的投資工具。

- 3. Brennan, M. J. and Xia, Y. H. (2002). Dynamic Asset Allocation under Inflation. Journal of Finance
- 4. Barr, D. G., Campbell, J. Y.(1997).Inflation, Real Interest Rates, and the Bond Market:

 A Study of UK Nominal and Index-Linked Government Bond Prices. Journal of Monetary

 Economics
- 5. Brown, R., Schaefer, S.(1994). The Term Structure of Real Interest Rates and the Cox, Ingersoll, and Ross Model. Journal of Financial Economics

參、商品設計與架構

通膨連動債券商品

利用 ARIMA 模擬每期 CPI 以計算通貨膨脹率調整本金,再用 Vasicek 模擬各期無風險利率 作為折現用,最後將每期利息和到期時本金折現,即可得債券價格。

CPI 模擬

ARMA(p,q):

$$X_t = c + \varepsilon_t + \sum_{i=1}^p \varphi_i X_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i}.$$

- 1. AR 部分:過去資料的加權平均,今天的股價會是過去股價的加權平均值
- 2. MA 部分: 隨機誤差的加權平均,今天的股價之隨機誤差會與過去產生的隨機誤差有關

3. P: 代表你要往後考慮幾期的資料數

4. Q:代表你要往後考慮幾期的資料隨機誤差項

5. 利用遞迴方式推算隨機誤差,然後利用 MLE 解參數

ARIMA(p, d, q):

$$\left(1-\sum_{i=1}^p \phi_i L^i
ight)(1-L)^d X_t = \left(1+\sum_{i=1}^q heta_i L^i
ight)arepsilon_t$$

建立在 ARMA 之上,但多了一個差分的動作。D 代表差分皆數',必須確認時間序列為 stationary (AR 模型的條件)

Discount rate 模擬

Vasicek Interest rate Model: $dr_t = a(b - r_t)dt + \sigma dW_t$

參數解釋: a 代表回到 reversion level 的速度

b: 平均值 reversion level

肆、Matlab 代碼與程式結果

Preprocess:

ARIMA Fitting & Prediction:

ARIMA(4,1,4) Model (Gaussian Distribution):

	Value	StandardError	TStatistic	PValue
Constant	0.13043	0.042774	3.0494	0.0022928
AR{1} AR{2}	-0.31351 -0.31557	0.09949 0.096447	-3.1512 -3.272	0.0022920 0.001626 0.001068
AR{3}	-0.3114	0.093593	-3.3271	0.0008774
AR{4} MA{1}	0.68263 0.15992	0.097882 0.082678	6.974 1.9343	3.0801e-12 0.05308
MA{2} MA{3}	0.16012 0.16036	0.077484 0.077061	2.0665 2.081	0.038781 0.037438
MA{4} Variance	-0.83984 0.41777	0.079655 0.026482	-10.543 15.776	5.4463e-26 4.5741e-56

Vasicek Simulation:

```
function assetpath = r_generator(a,b,r0,sigma,step,NumPath)

r = zeros(NumPath,step+1);
r(:,1) = r0;

for i=1:NumPath
    for j=1:step
        brownian = randn(1);
        r(i,j+1) = r(i,j) + a*(b-r(i,j)) + sigma*brownian;
end
end

assetpath = r(:,2:step+1); % Remove the initial interest rate
end

% a=0.1,b=0.015,r0=0.015,sigma=0.001,step=360
% test : r_generator(0.1,0.015,0.015,0.001,360,10)
```


Discount:

```
function PV = discount(y, n, C, obj, Face)

% BondPrice is the present value
% y is the interest rate
% n is the number of periods
% C is the coupon unit

% obj is the predicted inflation

CF = C.*obj; % Coupon times infaltion adjusting factor

CF(n) = CF(n) + Face; % Last period = Coupon + Face

value = 0; % Initialize the value
d = 1 + y/12; % Discount Factor

for i = n:-1:1

value = (value + CF(i)) / d(i);

end

PV = value

end
% test: discount(0.15, 12, 50, infl_pred, 1000)
```

Params Setting and Results:

```
%%% Params Settings
  a = 0.1;
 b = 0.015;
  r0 = 0.015;
  sigma = 0.001;
  step = 360;
 path = 1000;
 coupon = 10;
 % Generate discount rate by Vasicek Model & Monte Carlo
 assetpath = r_generator(a,b,r0,sigma,step,path);
 % Select 12 value from every simulation
 disc_rate = assetpath(:,[30,60,90,120,150,180,210,240,270,300,330,360]);
 % Calculate Infaltion-Linked Bond Price
 Price = zeros(path,1);
□ for i=1:path
    Price(i) = discount( disc_rate(i,:), 12, coupon, infl_pred, 1000);
 BondPrice = mean(Price)
```

• Coupon units : 10 Coupon units : 20 • Issue at Par : 2

```
        Command Window
        Command Window

        >> TIPS
        >> TIPS

        BondPrice =
        BondPrice =

        1.1043e+03
        1.2234e+03

        1.0090e+03
```

伍、結論

訂價方面,尚有許多可以更新的部分:

- 1. ARIMA 模擬 CPI 的合理性可能不足,近期論文有顯示使用 LogNormal Diffusion Model 模擬之結果應該會更好,且應該加入 Rolling Window 之方法,增加 CPI 之模擬準確性。
- 2. 在ARIMA 調整參數的部分,應加入ACF & PACF 之考慮,使模型更加準確
- 3. 由於方法的限制,債券只能進行1年期的估價,但通常通膨連動債券都為3年以上。
- 4. Vasicek 對於 Discount Rate 的模擬合理性不足。

商品方面:

由於 CPI 以及 Discount Rate 皆為政府所公布,所以不一定能準確反映消費者對於此商品的期待,應通過對於相關金融商品的價格反向推估投資人對於市場 CPI 以及 Discount Rate 的真值,提高商品的合理性。