

Chapter 7

Image Segmentation (Part2)

Thresholding

Original image f(x,y)

Output Image

g(x,y)

Original image

Object of interest Background

Threshold image

Thresholding

Global Thresholding

- Global Thresholding: setting threshold *T* in histogram to segment the object from background.
- Assumption: the range of intensity levels covered by objects of interest is different from the background.

$$g(x,y) = \begin{cases} 1 & \text{if } f(x,y) > T \\ 0 & \text{if } f(x,y) \le T \end{cases}$$

Global Single Thresholding

Global Multiple Thresholding

Example: Global Single Thresholding

$$g(x,y) = \begin{cases} 1 & \text{if } f(x,y) > T \\ 0 & \text{if } f(x,y) \le T \end{cases}$$

Example: Global Multiple Thresholding

Original image

Example: Global Single Thresholding

$$g(x,y) = \begin{cases} 1 & f_R(x,y) \ge T_R, f_G(x,y) \ge T_G, f_B(x,y) \ge T_B \\ 0 & \text{otherwise} \end{cases}$$

$$T_R = T_G = T_B = 200$$

Example: Global Multiple Thresholding

$$g(x,y) = \begin{cases} T_{R1} \le f_R(x,y) \le T_{R2}, \\ T_{G1} \le f_G(x,y) \le T_{G2}, \\ T_{B2} \le f_B(x,y) \le T_{B2} \end{cases}$$
0 otherwise

$$[T_{R1}, T_{R2}] = [50,100]$$

 $[T_{G1}, T_{G2}] = [100,150]$
 $[T_{B1}, T_{B2}] = [150,200]$

Example: Global Multiple Thresholding

$$g(x,y) = \begin{cases} 1 & d(x,y) \le d_{MAX} \\ 0 & \text{otherwise} \end{cases}$$

$$d(x,y) = \sqrt{(f_R(x,y) - T_R)^2 + (f_G(x,y) - T_G)^2 + (f_B(x,y) - T_B)^2}$$

$$(T_R, T_G, T_B) = (80,100,50)$$
 $d_{MAX} = 50$

Automatic Global Thresholding

- The major problem of intensity thresholding is to find a good threshold level.
- Global single thresholding algorithm.
 - 1) Set initial value of T_0 , segment image to two regions.

2)
$$\mu_1 = Average(p(x, y)|p(x, y) > T)$$

3)
$$\mu_2 = Average(p(x, y)|p(x, y) \le T)$$

4)
$$T = \frac{\mu_1 + \mu_2}{2}$$

5) Repeat step 2 through 4 until the difference in T is smaller than a predefined $T_{\rm 0}$

Example: Global Thresholding

Noise Role in Thresholding

Example: Noise Role in Thresholding

Illumination and Reflection Role in Thresholding

Illumination and Reflection Role in Thresholding

 Divide the image into sub-images and utilize a different threshold to segment each sub-image.

Nonuniform Illumination and Local Thresholding

- Local thresholding:
- 1) Divide an image into sub-images.
- 2) Threshold each sub-image independently
 - 2.1) Compute histogram of each sub-image and select a suitable threshold value for each sub-image
 - 2.2) threshold each sub-image using a threshold value in 2.1
 - 2.3) Combine all local thresholding results

16 sub-images

Result of local thresholding

Nonuniform Illumination and Local Thresholding

If areas of object and background are not balanced, a histogram will be multiple threshold.

If areas of object and background are nearly equal, a histogram will be single threshold.

Thanks for your attention