Generative Model

PHYS591000 Spring 2021

The slide is based on:

- MIT 6.S191[<u>slide</u>][<u>video</u>]
- Lil'Log: <u>VAE</u>, <u>GAN</u>

Supervised vs Unsupervised Learning

Supervised Learning

Goal: Learn function to map x (data) to y (label)

Examples:

- Classification
- Regression
- Object Detection
- Semantic segmentation
- ...

Unsupervised Learning

Goal: Learn the hidden or underlying structure of the data without labels.

Examples:

- Clustering
- Feature extraction
- Dimensionality reduction
- ...

Generative Models

Goal: Take as input training samples from some distribution and learn a model that represent that distribution

How can we learn $P_{\text{model}}(x)$ similar to $P_{\text{data}}(x)$?

Density Estimation

Sample Generation

Generative Models

Autoencoders (AE) and Variational Autoeconders (VAEs)

Generative Adversarial Network (GAN)

Autoencoders and Variational Autoencoders

Autoencoder

Bottleneck hidden layer: forces network to learn a compressed latent representation

$$\mathbf{x} \xrightarrow{\text{encoder}} \mathbf{z} \xrightarrow{\text{decoder}} \mathbf{x}' \qquad \mathcal{L}_{AE} = (\mathbf{x} - \mathbf{x}')^2$$

Variational Autoencoders (VAEs)

VAEs are a probabilistic variation on autoencoders?

Sample from the mean and standard deviation to compute latent sample

VAE:
$$\mathbf{x} \xrightarrow{\mathsf{encoder}} \begin{pmatrix} \boldsymbol{\mu} \\ \boldsymbol{\sigma} \end{pmatrix} \xrightarrow{\mathsf{sample}} \mathbf{z} \xrightarrow{\mathsf{decoder}} \mathbf{x}' \quad \mathcal{L}_{V\!AE} = \mathcal{L}_{AE} + \mathcal{L}_{lat}$$

β -Variational Autoencoders

Parametrization tricks: A fixed μ vector and a fixed σ vector scaled by random constants ϵ drawn from the prior distribution (usually Normal Gaussian)

$$\beta$$
- VAE: $\mathbf{x} \xrightarrow{\text{encoder}} \begin{pmatrix} \boldsymbol{\mu} \\ \boldsymbol{\sigma} \end{pmatrix} \xrightarrow{\text{sample}} \mathbf{z} \xrightarrow{\text{decoder}} \mathbf{x}' \quad \mathcal{L}_{VAE} = \mathcal{L}_{AE} + \mathcal{L}_{lat}$

β-VAE

Reconstruction Loss

Regularization term

$$\beta$$
-VAE: $\mathbf{x} \xrightarrow{\text{encoder}} \begin{pmatrix} \boldsymbol{\mu} \\ \boldsymbol{\sigma} \end{pmatrix} \xrightarrow{\text{sample}} \mathbf{z} \xrightarrow{\text{decoder}} \mathbf{z} \xrightarrow{\text{decoder}} \mathbf{z}' \quad \mathcal{L}_{VAE} = \mathcal{L}_{AE} + \mathcal{L}_{lat}$

Loss enforces Gaussian latent space

$$\mathcal{L}_{V\!AE} = \mathcal{L}_{AE} + \beta \cdot \frac{\mathsf{KL}(q_{x}(z)|\mathcal{N}(0,1))}{\mathsf{KL}(q_{x}(z)|\mathcal{N}(0,1))} \leftarrow \mathsf{similarity\ measure}$$
 $= \mathcal{L}_{AE} + \frac{\beta}{2} \sum_{j} 1 + \log(\sigma_{j}^{2}) - \mu_{j}^{2} - \sigma_{j}^{2}$

Kullback-Leibler (KL) divergence

- KL is a measure of how one probability distribution is different from a second
- Normal Gaussian encourages encodings to distribute encodings evenly around the center of the latent space

VAE summary

- Compress representation to something we can use to learn
- Reconstruction allows for unsupervised learning (no labels!)
- Reparameterization trick enables training
- Interpret hidden latent variables using perturbation
- Generating new examples

Generative Adversarial Networks (GAN)

To make a generative model by having two neural networks compete with each other

Learn data distribution

Generative Adversarial Networks

Training: adversarial objectives for D and G

Goal: G reproduces the true data distribution

instances that fool D

Discriminator

$$\operatorname{LD} = \left\langle \operatorname{log} D(x) \right\rangle_{x \sim P_{Truth}} + \left\langle \operatorname{log} (1 - D(x)) \right\rangle_{x \sim P_{Gen}}$$

D's decisions over real data are accurate

D's output $< D(G(z)) > = < D(x)_{x \sim Pgen} > close to zero over fake data$

Training Generator

Generator

$$\underset{\mathsf{G}}{\operatorname{arg\,min}} \ L_{\mathsf{G}} = \left\langle \ \ \ \log(1 - D(x)) \right\rangle_{x \sim P_{\mathsf{Gen}}}$$

G is trained to increase the chance of D producing a high probability for a fake example.

Training: min-max game

$$\underset{\mathsf{G}}{\operatorname{arg\;min\;max}}\;\; L_D = \big\langle \quad \log D(x) \big\rangle_{x \sim P_{\mathit{Truth}}} + \big\langle \quad \log (1 - D(x)) \big\rangle_{x \sim P_{\mathit{Gen}}}$$

Generative Models

Autoencoders and Variational Autoencoders (VAEs)

Learn lower-dimensional **latent** space and sample to generate input reconstructions

Generative Adversarial Network (GAN)

Competing **generator** and **discriminator** networks

Which face is real?

https://www.whichfaceisreal.com/methods.html

Lab this week

Dijet Production

LHCO2020

 $pp \rightarrow W' (3.5 \text{ TeV}) \rightarrow X + Y$

X→qq and Y→qq

mX= 500 GeV mY=100 GeV

Anti-kT fat-jet R = 1, cuts of pT > 1.2 TeV and $|\eta|$ < 2.5

DijetGAN (code)

Source: <u>arXiv:1903.02433</u>

GAN results

Orange: input data Blue: Generated Data

References

- Lil'Log: <u>VAE</u>, <u>GAN</u>, <u>Flow-based</u>
- A. Butta, Machine learning for particle physicists, <u>Vietnam 2020</u>
- Deep Generative Model for Fundamental Physics, <u>BIDS March 2021</u>
- CS 236 Fall 2019, Ermon & Grover, "Deep Generative Models"
- MIT 6.S191 A. Soleimany, "Introduction to Deep Learning" Lecture 4
 [slide][video]