Tutorial Session

Algorithm & Counting methods

Pseudo Code of Algorithms

- Algorithms are recipes to solve problems
 - Finite, precise
- For, while, if ... then ..., if ... else if ... then ...
- Recursive algorithms
 - A routine that calls itself (with a reduced input)

Algorithmic Complexity

- Measures the # of basic operations
 - A function of input size
- Asymptotic notation (Big-O, Big- Ω , Big- Θ , small- ω)
 - Definitions
 - Finding the dominating terms
 - Write functions in forms of the asymptotic notations and compare their complexity

Big-O definition

DEF: Let f, g be functions with domain $\mathbf{R}_{\geq 0}$ or \mathbf{N} and codomain \mathbf{R} . If there are constants C and k such

$$\forall x > k, |f(x)| \leq C \cdot |g(x)|$$

then we write:

$$f(x) = O(g(x))$$

• Big- Θ : f(x) = O(g(x)) & g(x) = O(f(x))

Rule of thumbs

- First, for input size n, determine the # of basic operations as f(n)
- Find the dominating term in f(n)
- The following functions are in growing order of complexity

$$\frac{1}{x}$$
, $\ln x$, x , x^e , e^x , x^x

Counting methods

- Multiplication principle
 - Count in stages
- Addition principle
 - Divide the original set into disjoint sets
- Inclusion-exclusion principle
 - Generalization of the addition principle to overlapping sets
- Pigeon hole principle
 - Given N pigeon, k holes, at least one hole contains | N/k | pigeons
 - Can also solve the inverse problem, how big N needs to be such that for k holes, at least one hole contains N/k pigeons