

FR1 | Group 8 Gao Anni (N2402461C), Liu Chenyu (N2402421L)

Project Motivation

Order cancellations cause <u>lost revenue</u>, <u>wasted logistics</u>, and <u>inventory issues</u>

Motivation

Even a small % of cancellations can lead to major <u>operational</u> inefficiencies

Customer trust and
satisfaction are
negatively impacted by
cancellations

Identifying high-risk orders early can lead to cost savings and better planning

A data-driven approach
can help predict and
reduce cancellations at
scale

Problem Statement Dataset Cleaning

EDA

ML Models

Outcomes

Problem

Can we use order-level data to predict order cancellations and reduce revenue loss?

Problem Statement

Dataset Cleaning

EDA

ML Models

Outcomes

Conclusion

Motivation

Dataset Overview

Source and Scope

- Real-world dataset from Amazon.in, downloaded from Kaggle
- Contains around 128,975 ecommerce transactions
- Includes product, fulfillment, pricing, and order status details

Motivation

Fulfilment method (Amazon vs Merchant)

Ship service level (Standard vs Expedited)

Amount paid by the customer

Variables Selected

Promotion type (e.g., No Promo, Free Shipping, PLCC, etc.)

Product category

Target Variable

Order Status

Data Cleaning & Preparation

Removed irrelevant identifiers

Variables to keep

Status **Fulfilment** ship-service-level Category Amount promotion-ids

Variables to add

Category_name

to ensure interpretability of the analysis

Motivation

Variables to remove

Order ID Date Sales Channel Style SKU Size ASIN **Courier Status** Qty currency ship-city ship-state ship-postal-code ship-country B₂B fulfilled-by index Unnamed: 22

Handle Missing Values

- Filled missing values in promotion-ids with "no"
- Filled missing values in Amount with 0

Feature Encoding

- Converted Fulfilment, Shipping level, and Promotion type to numeric format
- Encoded Order Status as binary: 1 = Cancelled, 0 = Completed

Target Filtering

Filtered dataset to only include Cancelled and Completed orders

convert categorical variables into numerical format so that machine learning models can process them

Problem Statement

Dataset Cleaning

EDA

ML Models

Outcomes

Cleaned Dataframe

df							
	Status	Fulfilment	ship-service-level	Category	Amount	promotion-ids	Category_name
0	1	1	0	5	647.62	0	Set
1	0	1	0	8	406.00	2	kurta
2	0	0	1	8	329.00	1	kurta
3	1	1	0	7	753.33	0	Western Dress
4	0	0	1	6	574.00	0	Тор
128970	0	0	1	8	517.00	0	kurta
128971	0	0	1	5	999.00	1	Set
128972	0	0	1	7	690.00	0	Western Dress
128973	0	0	1	5	1199.00	1	Set
128974	0	0	1	5	696.00	1	Set
126825 rows × 7 columns							

Problem Statement Dataset Cleaning

EDA

ML Models

Outcomes

• To ensure model stability and avoid noise from low-frequency categories, we decided to focus on the <u>top 4</u> product categories for modeling.

- Most orders are between ₹300-₹1000.
- The distribution is right-skewed with a long tail of high-value orders.

Motivation

Problem Statement Dataset Cleaning

EDA

ML Models

Outcomes

- 85.55% of orders are Not Cancelled
- 14.45% of orders are Cancelled
- Significant class imbalance needs to be addressed in modeling (e.g., using class weights)

- Merchant orders are ~45% more likely to be cancelled
- Fulfilment method is a key factor influencing cancellations

Motivation

- Faster delivery is associated with lower cancellation likelihood
- Shipping speed is a relevant feature for cancellation prediction

- Promotions significantly reduce the risk of order cancellation
- Promotion Type is a highly predictive feature

Motivation

Problem Statement Dataset Cleaning

EDA

ML Models

Outcomes

- Highest cancellation in Set and Kurta (14.8%) also top-selling categories
- Suggests product type may influence cancellation behavior

Motivation

Problem Statement

Dataset Cleaning

EDA

ML Models

Outcomes

- Cancelled orders are typically lower in value.
- Higher-value orders are less likely to be cancelled.
- While order amount alone may not fully explain cancellations, it helps enhance predictions when used alongside fulfilment type, promotion, and category.

Motivation

- In the top 4 categories, cancelled orders tend to be lower in value
- Suggests order amount + category interaction may be predictive
- These patterns are important for modeling cancellation risk

Motivation

Machine Learning

- Logistic Regression
- Random Forest
- eXtreme Gradient Boosting

Problem Statement

Motivation

Dataset Cleaning

EDA

ML Models

Outcomes

Logistic Regression

- Used as a baseline model to test if order features are predictive of cancellations
- Simple and interpretable: easy to understand the relationship between features and target
- Fast and efficient to train, especially on large datasets or early-stage analysis

Logistic Regression

Goodness of Fit of Model: Test Dataset
Classification Accuracy: 0.9439
True Negative Rate: 0.9891
True Positive Rate: 0.6764
False Negative Rate: 0.3236
False Positive Rate: 0.0109

Test Dataset (Logistic Regression)

Accuracy: 94.39%

→ Overall prediction is highly accurate; the model performs well on general order classification.

True Negative Rate: 98.91%

→ Excellent at identifying noncancelled orders; very few "good orders" are mistakenly flagged.

True Positive Rate (Recall): 67.64%

→ Correctly catches about two-thirds of cancelled orders, but misses ~32% of high-risk cases.

Problem Statement

Motivation

Dataset Cleaning

EDA

ML Models

Outcomes

Random Forest

Goodness of Fit of Model: Test Dataset(Random Forest) Classification Accuracy: 0.9484 True Negative Rate : 0.9908 True Positive Rate : 0.6978 False Negative Rate : 0.3022 False Positive Rate : 0.0092

Why Are the Results Similar?

Class Imbalance

Our target variable is imbalanced: most orders are not cancelled (Status = 0)

Default Classifiers Are Biased

Both Logistic Regression and Random Forest focus on predicting the majority class to maximize accuracy.

Dataset Problem Statement Cleaning

EDA

ML Models

Outcomes

Our Solution: Make the Model Sensitive

Goodness of Fit of Model: Test Dataset (Balanced, Threshold = 0.4)

Classification Accuracy: 0.8000 True Negative Rate : 0.7739 True Positive Rate : 0.9546 : 0.0454 False Negative Rate False Positive Rate : 0.2261

What Changed After Tuning?

Much Higher Recall

True Positive Rate improved from 69.8% → 95.5% Model now catches almost all cancelled orders.

But at a Cost

False Positive Rate increased from 0.9% → 22.6% Meaning: More non-cancelled orders are mistakenly flagged.

Good for Risk-Averse Businesses

This setting is ideal if the cost of a missed cancellation is higher than the cost of a false alarm.

Problem Statement

Motivation

Dataset Cleaning

EDA

ML Models

Outcomes

eXtreme Gradient Boosting

Why we tried XGBoost?

- Known for high performance in many real-world prediction tasks
- Handles complex, non-linear feature interactions

What we found?

Motivation

Models	Random Forest	XGBoost		
Accuracy	94.84%	94.77%		
Recall	69.78%	68.89%		
True Negative Rate	99.08%	99.14%		

WHY?

- Data is structured & not very nonlinear
- Feature signals may already be captured by simpler models
- Random Forest is already a strong baseline

Model complexity ≠ better performance Data matters more

XGBoost didn't lead to better results.

Dataset Cleaning

EDA

ML Models

What we learned?

Key Model Observations

- Logistic Regression is simple but effective → good baseline
- Random Forest performed best even before tuning
- XGBoost didn't outperform → complexity ≠ better

Optimization Insights

Problem

Statement

- Tuning (threshold + class_weight) helps maximize recall
- Best model choice depends on business goals
- Imbalanced target affects all models → accuracy ≠ everything

Project Outcomes

Using Our ML Model, Sellers Can:

For risk-averse platforms

Use the **balanced model** with a lower threshold.

- -Catches almost all cancelled orders
- -Accepts some false alarms

Motivation

where cancellation losses outweigh the cost of intervention

Example: **luxury** e-commerce platforms

For cost-sensitive platforms

Use the unweighted (default) model

- Fewer false positives, more accurate overall
- May miss some cancellations

Ideal for cost-sensitive platforms, with limited resources for manual intervention

Example: **fast-moving** consumer goods

Problem Statement Dataset Cleaning

EDA

ML Models

Outcomes

Conclusion

- Data-Driven Insights
- Recommendations

Problem Statement

Motivation

Dataset Cleaning

EDA

ML Models

Outcomes

Conclusion

Data-Driven Insights

High Order Amount → Lower Cancellation
Customers placing larger orders tend to cancel
less often, indicating stronger purchase intent.

Fulfilment Method Matters

Merchant fulfilment shows higher cancellation rates—likely due to delays or service issues.

Promotion Usage Helps

Orders with promotions show lower cancellation rates, possibly driven by stronger incentives or urgency.

Recommendations

Predict and Prevent with RF-Model
Use a trained Random forest ML model to
flag high-risk orders early and trigger
proactive follow-up by customer service.

Improve Fulfilment Reliability

Optimize logistics for high-risk fulfilment types to reduce delays and cancellations.

Targeted Promotions for High-Risk Categories

Offer time-limited discounts or free shipping to reduce cancellations in vulnerable product categories.

Problem Statement

Motivation

Dataset Cleaning

EDA

ML Models

Outcomes

FR1 | Group 8 Gao Anni (N2402461C), Liu Chenyu (N2402421L)

