Задание 1

Многопоточное вычисление числа π с помощью библиотеки pthreads

06.09.2022

Крайний срок сдачи задания: 20.09.2022

Задание

Задача: Реализовать параллельный алгоритм с использованием интерфейса POSIX Threads, вычисляющий число π , как интеграл:

$$\int_{0}^{1} \frac{4}{1+x^2} dx$$

методом прямоугольников.

Исследовать масштабируемость разработанной программы при увеличении числа используемых ядер (числа нитей), составить краткий отчёт. Возможный вариант отчёта представлен ниже.

Вход:

- ullet число отрезков, на которое разбивается отрезок [0,1]
- число нитей

Выход:

- \bullet число π
- время работы программы (секунды).

Формат командной строки:

hinary> <num-partition-intervals> <num-threads>

Пример запуска:

\$./run 10 1

3.142426

Elapsed time: 0.000462 s

Требования к решению

Код должен компилироваться $gcc\ v10.2.1\ c$ опциями компиляции -Wall -Werror -pthread.

Программа должна корректно отрабатывать при компиляции с опцией -fsanitize=address.

Для оценки производительности полученного решения, опцию -fsanitize=address следует отключить.

Требование к отчёту

Отчёт должен содержать:

- Краткое описание постановки решаемой задачи;
- Описание вычислительной системы, на которой проводилось исследование масштабируемости: название процессора, число ядер;
- Полученные результаты масштабируемости: время работы программы в секундах, ускорение.

Число отрезков N выбрать таким, чтобы время работы программы на одной нити составляло хотя бы около 1 секунды (допускается больше). Обычно подходит $N=10^8\dots 10^9$.

При фиксированном N запустить программу на числе нитей: $1, 2, \ldots, <$ число ядер процессора>.

Ускорение при использовании р ядер (нитей) вычисляется следующим образом:

$$S_p = \frac{T_1}{T_p},$$

где T_1 — время работы программы на одной нити, T_p — время работы на p нитях.

Возможный вариант отчёта:

Задание 1

Многопоточное вычисление числа π с помощью библиотеки pthreads

Отчёт

Шубин М.В.

2022

1. Постановка задачи

Реализовать параллельный алгоритм с использованием интерфейса POSIX Threads, вычисляющий число π , как интеграл:

$$\int_{0}^{1} \frac{4}{1+x^2} dx$$

методом прямоугольников.

2. Формат коммандной строки

./calc-pi-pthreads <число отрезков разбиения> <число нитей>

3. Спецификация системы

Процессор: Intel(R) Core(TM) i5-9300H CPU @ 2.40GHz

Число вычислительных ядер: 4

4. Результаты выполнения

Число отрезков: $N = 100\,000\,000$

Для каждого числа нитей проводилось 3 эксперимента, в таблице представлено усреднённое время.

Число нитей п	Время работы (с)	Ускорение
1	0.265492	1.0
2	0.1385	1.9169
3	0.094178	2.819
4	0.086602	3.0657