Exercises Computational Mechanics (4MC10) – Lecture 1

Exercise 1

Are the following statements true or false?

a.
$$10^{100}h = O(h)$$
 as $h \to 0$

b.
$$|\ln(|h|)|h = O(h) \text{ as } h \to 0$$

c. If
$$f(h) = O(h^p)$$
 and $g(h) = O(h^{p+1})$ then $f(h) + g(h) = O(h^p)$ as $h \to 0$

d. If
$$f(h) = O(h^p)$$
 and $g(h) = O(h^{p+1})$ then $f(h) + g(h) = O(h^{p+1})$ as $h \to 0$

e. If
$$\lim_{h\to 0} f(h) = 0$$
 then $f(h) = o(1)$ as $h \to 0$

f. If
$$f(h) = o(1)$$
 as $h \to 0$ then $\lim_{h \to 0} f(h) = 0$

g.
$$e^h - (1 + h + h^2/2) = O(h^3)$$
 as $h \to 0$

Exercise 2

Consider the functions $f(x) = e^x + e^{-x} + \sin(x)$ and $g(x) = \cos(x) + x^{1/2}\sin(x)$.

- a. Determine the Taylor polynomial $p_4(x)$ of degree 4 of f(x) at x=0
- b. Determine the order of approximation of $p_4(x)$ as an approximation to f(x) near x = 0, i.e., what is the largest number p such that $f(x) p_4(x) = O(x^p)$ as $x \to 0$
- c. What is the Taylor polynomial $p_1(x)$ of degree 1 of g(x) near x=0?
- d. What is the Taylor polynomial $p_2(x)$ of degree 2 of g(x) near x=0?

Exercise 3

The finite-difference schemes

$$D_h u(x) = \frac{-3u(x) + 4u(x+h) - u(x+2h)}{2h} \tag{1}$$

and

$$\tilde{D}_h u(x) = \frac{u(x+h) - u(x)}{h} \tag{2}$$

represent approximations to the first-order derivative Du(x).

- a. Show by means of Taylor-series expansions that $D_h u(x)$ according to (1) provides an approximation to Du(x) with error $O(h^2)$ as $h \to 0$.
- b. Show by means of Taylor-series expansions that $\tilde{D}_h u(x)$ according to (2) provides an approximation to Du(x) with error O(h) as $h \to 0$.
- c. Which approximation to the first-order derivative Du is more accurate (for small step size h): $D_h u$ or $\tilde{D}_h u$?

d. Take the sample function $u(x) = e^x \cos(2x) + \sin(\sin(2x))$. Determine Du(0) and complete the table below (Hint: use Matlab).

h	$ D_h u(0) - Du(0) $	$ \tilde{D}_h u(0) - Du(0) $
2^{0}	2.426059258e + 00	4.342132040e + 00
2^{-1}	8.8786022402e - 01	1.727135908e + 00
2^{-2}		
2^{-3}		
2^{-4}		
2^{-5}		
2^{-6}		

- e. How do the results in the above table support the claim that the orders of approximation of $D_h u(x)$ according to (1) and of $\tilde{D}_h u(x)$ according to (2) as an approximation to Du(x) are $O(h^2)$ and O(h), respectively, as $h \to 0$?
- f. Make a plot of $\log_2 |D_h u(0) Du(0)|$ versus $\log_2 |h|$ for $h = 2^0, 2^{-1}, \dots, 2^{-6}$. How does the plot convey that $|D_h u(x) Du(x)| = O(h^2)$ as $h \to 0$?

Exercise 4

For any sufficiently smooth function, the finite-difference scheme $D_h^n u(x)$ in (3) yields an approximation to the *n*th-order derivative $D^n u(x)$ of u(x):

$$D_h^n u(x) = \frac{u(x-3h) - 4u(x-2h) + 6u(x-h) - 4u(x) + u(x+h)}{h^4}$$
(3)

- a. What is n?
- b. What is the order of approximation provided by (3) as an approximation to $D^n u(x)$ as $h \to 0$, i.e. what is the largest number p such that $|D_h^n u(x) D^n u(x)| = O(h^p)$ as $h \to 0$?