Improved Dropout for Shallow and Deep Learning

Zhe Li Joint work with Prof. Gong and Prof. Yang

The University of Iowa

Wednesday 29th March, 2017

- Introduction and Problem Setup
- 2 Improved Dropout for Shallow Learning
- 3 Improved Dropout for Deep Learning
- 4 Experimental Results
- 6 Conclusion

Outline

- 1 Introduction and Problem Setup
- 2 Improved Dropout for Shallow Learning
- Improved Dropout for Deep Learning
- 4 Experimental Results
- Conclusion

Outline
Introduction and Problem Setup
Improved Dropout for Shallow Learning
Improved Dropout for Deep Learning
Experimental Results
Conclusion

The success of deep learning

Outline
Introduction and Problem Setup
Improved Dropout for Shallow Learning
Improved Dropout for Deep Learning
Experimental Results
Conclusion

The success of deep learning

The success of deep learning

The success of deep learning

Deep Neural Network

The classical example: AlexNet [A Krizhevsky, et .al, 2012]

Dropout Layer

• Dropout Layer: Uniformly at randomly drop out features.

Before applying dropout

After applying dropout

Dropout Layer

Dropout Layer: Uniformly at randomly drop out features.

• Is uniformly dropout optimal?

Dropout Layer

Dropout Layer: Uniformly at randomly drop out features.

- Is uniformly dropout optimal?
 - Answered the above question in this work.

Improved Dropout

Improved Dropout

• Dropping out the output of the neuron based on multinomial distribution computed from the training data.

Figure: Evolutional dropout vs standard dropout on CIFAR100 datasets for deep learning

• Let (\mathbf{x}, y) denote a feature vector and a label, where $\mathbf{x} \in \mathbb{R}^d$ and $y \in \mathcal{Y}$.

- Let (\mathbf{x}, y) denote a feature vector and a label, where $\mathbf{x} \in \mathbb{R}^d$ and $y \in \mathcal{Y}$.
- Denote by \mathcal{P} the joint distribution of (\mathbf{x}, y) and by \mathcal{D} the marginal distribution of \mathbf{x} .

- Let (\mathbf{x}, y) denote a feature vector and a label, where $\mathbf{x} \in \mathbb{R}^d$ and $y \in \mathcal{Y}$.
- Denote by P the joint distribution of (x, y) and by D the marginal distribution of x.
- The goal is to learn a linear prediction function $(f(x) = \mathbf{w}^{\top}\mathbf{x})$ that minimizes the expected risk (considering loss function $\ell(\cdot, y)$):

$$\min_{\mathbf{w} \in \mathbb{R}^d} \mathcal{L}(\mathbf{w}) \triangleq \mathrm{E}_{\mathcal{P}}[\ell(\mathbf{w}^\top \mathbf{x}, y)] \tag{1}$$

• Denote by $\epsilon \sim \mathcal{M}$ a dropout noise vector of dimension d.

- Denote by $\epsilon \sim \mathcal{M}$ a dropout noise vector of dimension d.
- The corrupted feature vector is given by $\hat{\mathbf{x}} = \mathbf{x} \circ \boldsymbol{\epsilon}$, where the operator \circ represents the element-wise multiplication.

- Denote by $\epsilon \sim \mathcal{M}$ a dropout noise vector of dimension d.
- The corrupted feature vector is given by $\hat{\mathbf{x}} = \mathbf{x} \circ \boldsymbol{\epsilon}$, where the operator \circ represents the element-wise multiplication.
- Denote by $\widehat{\mathcal{P}}$ the joint distribution of the new data $(\widehat{\mathbf{x}}, y)$ and by $\widehat{\mathcal{D}}$ the marginal distribution of $\widehat{\mathbf{x}}$.

- Denote by $\epsilon \sim \mathcal{M}$ a dropout noise vector of dimension d.
- The corrupted feature vector is given by $\hat{\mathbf{x}} = \mathbf{x} \circ \boldsymbol{\epsilon}$, where the operator \circ represents the element-wise multiplication.
- Denote by $\widehat{\mathcal{P}}$ the joint distribution of the new data $(\widehat{\mathbf{x}}, y)$ and by $\widehat{\mathcal{D}}$ the marginal distribution of $\widehat{\mathbf{x}}$.
- With the corrupted data, the risk minimization becomes

$$\min_{\mathbf{w} \in \mathbb{R}^d} \widehat{\mathcal{L}}(\mathbf{w}) \triangleq \mathrm{E}_{\widehat{\mathcal{P}}}[\ell(\mathbf{w}^\top (\mathbf{x} \circ \boldsymbol{\epsilon}), y)]$$
 (2)

Definition 1

A **multinomial dropout** is defined as $\hat{\mathbf{x}} = \mathbf{x} \circ \boldsymbol{\epsilon}$, where $\epsilon_i = \frac{m_i}{kp_i}, i \in [d]$ and $\{m_1, \dots, m_d\}$ follow a multinomial distribution $Mult(p_1, \dots, p_d; k)$ with $\sum_{i=1}^d p_i = 1$ and $p_i \geq 0$.

Definition 1

A **multinomial dropout** is defined as $\hat{\mathbf{x}} = \mathbf{x} \circ \epsilon$, where $\epsilon_i = \frac{m_i}{kp_i}, i \in [d]$ and $\{m_1, \dots, m_d\}$ follow a multinomial distribution $Mult(p_1, \dots, p_d; k)$ with $\sum_{i=1}^d p_i = 1$ and $p_i \geq 0$.

 Ability of using non-uniformly sampling probabilities for different features.

Definition 1

A **multinomial dropout** is defined as $\hat{\mathbf{x}} = \mathbf{x} \circ \epsilon$, where $\epsilon_i = \frac{m_i}{kp_i}, i \in [d]$ and $\{m_1, \dots, m_d\}$ follow a multinomial distribution $Mult(p_1, \dots, p_d; k)$ with $\sum_{i=1}^d p_i = 1$ and $p_i \geq 0$.

- Ability of using non-uniformly sampling probabilities for different features.
- Easy to control the level of dropout by varying the value of k.

• Dropout is a data-dependent regularizer.

Dropout is a data-dependent regularizer.

Proposition 1

If
$$\ell(z,y) = \log(1 + \exp(-yz))$$
, then

$$\mathrm{E}_{\widehat{\mathcal{P}}}[\ell(\mathbf{w}^{\top}\widehat{\mathbf{x}}, y)] = \mathrm{E}_{\mathcal{P}}[\ell(\mathbf{w}^{\top}\mathbf{x}, y)] + R_{\mathcal{D}, \mathcal{M}}(\mathbf{w})$$

where ${\mathcal M}$ denotes the distribution of ϵ and

$$R_{\mathcal{D},\mathcal{M}}(\mathbf{w}) = \mathrm{E}_{\mathcal{D},\mathcal{M}} \left[\log \frac{\exp(\mathbf{w}^{\top} \frac{\mathbf{x} \circ \epsilon}{2}) + \exp(-\mathbf{w}^{\top} \frac{\mathbf{x} \circ \epsilon}{2})}{\exp(\mathbf{w}^{\top} \mathbf{x}/2) + \exp(-\mathbf{w}^{\top} \mathbf{x}/2)} \right].$$

Learning with Multinomial Dropout

Learning with Multinomial Dropout

• Give the initial solution \mathbf{w}_1 .

Learning with Multinomial Dropout

- Give the initial solution w₁.
- Update the model at tth iteration:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \nabla \ell(\mathbf{w}_t^{\top}(\mathbf{x}_t \circ \epsilon_t), y_t)$$
 (3)

Learning with Multinomial Dropout

- Give the initial solution **w**₁.
- Update the model at tth iteration:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \nabla \ell(\mathbf{w}_t^{\top}(\mathbf{x}_t \circ \epsilon_t), y_t)$$
 (3)

Output the final solution:

$$\widehat{\mathbf{w}}_n = \frac{1}{n} \sum_{t=1}^n \mathbf{w}_t$$

Outline

- Introduction and Problem Setup
- 2 Improved Dropout for Shallow Learning
- 3 Improved Dropout for Deep Learning
- 4 Experimental Results
- Conclusion

Theorem 1:

Let $\mathcal{L}(\mathbf{w})$ be the expected risk of \mathbf{w} defined in (1). Assume $\mathrm{E}_{\widehat{\mathcal{D}}}[\|\mathbf{x}\circ\boldsymbol{\epsilon}\|_2^2] \leq B^2$ and $\ell(z,y)$ is convex and G-Lipschitz continuous. For any $\|\mathbf{w}_*\|_2 \leq r$, by appropriately choosing η , we can have

$$E[\mathcal{L}(\widehat{\mathbf{w}}_n) + R_{\mathcal{D},\mathcal{M}}(\widehat{\mathbf{w}}_n)] \leq \mathcal{L}(\mathbf{w}_*) + R_{\mathcal{D},\mathcal{M}}(\mathbf{w}_*) + \frac{GBr}{\sqrt{n}}$$

How to prove the above theorem?

Theorem 1:

Let $\mathcal{L}(\mathbf{w})$ be the expected risk of \mathbf{w} defined in (1). Assume $\mathrm{E}_{\widehat{\mathcal{D}}}[\|\mathbf{x}\circ\boldsymbol{\epsilon}\|_2^2] \leq B^2$ and $\ell(z,y)$ is convex and G-Lipschitz continuous. For any $\|\mathbf{w}_*\|_2 \leq r$, by appropriately choosing η , we can have

$$E[\mathcal{L}(\widehat{\mathbf{w}}_n) + R_{\mathcal{D},\mathcal{M}}(\widehat{\mathbf{w}}_n)] \leq \mathcal{L}(\mathbf{w}_*) + R_{\mathcal{D},\mathcal{M}}(\mathbf{w}_*) + \frac{GBr}{\sqrt{n}}$$

How to prove the above theorem?

• Standard SGD analysis.

Theorem 1:

Let $\mathcal{L}(\mathbf{w})$ be the expected risk of \mathbf{w} defined in (1). Assume $\mathrm{E}_{\widehat{\mathcal{D}}}[\|\mathbf{x}\circ\boldsymbol{\epsilon}\|_2^2] \leq B^2$ and $\ell(z,y)$ is convex and G-Lipschitz continuous. For any $\|\mathbf{w}_*\|_2 \leq r$, by appropriately choosing η , we can have

$$E[\mathcal{L}(\widehat{\mathbf{w}}_n) + R_{\mathcal{D},\mathcal{M}}(\widehat{\mathbf{w}}_n)] \leq \mathcal{L}(\mathbf{w}_*) + R_{\mathcal{D},\mathcal{M}}(\mathbf{w}_*) + \frac{GBr}{\sqrt{n}}$$

How to prove the above theorem?

- Standard SGD analysis.
- Dropout is a data-dependent regularizer.

• Minimizing the term $E_{\widehat{\mathcal{D}}}[\|\mathbf{x} \circ \boldsymbol{\epsilon}\|_2^2]$ and the relaxed upper bound of term $R_{\mathcal{D},\mathcal{M}}(\mathbf{w}_*)$ yields the optimal sampling probabilities:

$$p_i^* = \frac{\sqrt{\mathrm{E}_{\mathcal{D}}[x_i^2]}}{\sum_{j=1}^d \sqrt{\mathrm{E}_{\mathcal{D}}[x_j^2]}}, i = 1, \dots, d$$
 (4)

• Minimizing the term $E_{\widehat{\mathcal{D}}}[\|\mathbf{x} \circ \boldsymbol{\epsilon}\|_2^2]$ and the relaxed upper bound of term $R_{\mathcal{D},\mathcal{M}}(\mathbf{w}_*)$ yields the optimal sampling probabilities:

$$\rho_i^* = \frac{\sqrt{E_{\mathcal{D}}[x_i^2]}}{\sum_{j=1}^d \sqrt{E_{\mathcal{D}}[x_j^2]}}, i = 1, \dots, d$$
 (4)

• Can we compute the above probability for dropout?

• Minimizing the term $E_{\widehat{\mathcal{D}}}[\|\mathbf{x} \circ \boldsymbol{\epsilon}\|_2^2]$ and the relaxed upper bound of term $R_{\mathcal{D},\mathcal{M}}(\mathbf{w}_*)$ yields the optimal sampling probabilities:

$$p_i^* = \frac{\sqrt{E_{\mathcal{D}}[x_i^2]}}{\sum_{j=1}^d \sqrt{E_{\mathcal{D}}[x_j^2]}}, i = 1, \dots, d$$
 (4)

- Can we compute the above probability for dropout?
 - X

 Practically, we use the empirical second-order statistics to compute the probabilities:

$$p_{i} = \frac{\sqrt{\frac{1}{n} \sum_{j=1}^{n} [[\mathbf{x}_{j}]_{i}^{2}]}}{\sum_{i'=1}^{d} \sqrt{\frac{1}{n} \sum_{j=1}^{n} [[\mathbf{x}_{j}]_{i'}^{2}]}}, i = 1, \dots, d$$
 (5)

Outline

- Introduction and Problem Setup
- 2 Improved Dropout for Shallow Learning
- 3 Improved Dropout for Deep Learning
- 4 Experimental Results
- Conclusion

• Could we directly use the above idea to Deep Learning?

- Could we directly use the above idea to Deep Learning?
 - X

- Could we directly use the above idea to Deep Learning?
 - X
- Why not?

- Could we directly use the above idea to Deep Learning?
 - X
- Why not?
 - Too expensive to compute dropout probablity from all examples.

- Could we directly use the above idea to Deep Learning?
 - X
- Why not?
 - Too expensive to compute dropout probablity from all examples.
- How to address this issue?

- Could we directly use the above idea to Deep Learning?
 - X
- Why not?
 - Too expensive to compute dropout probablity from all examples.
- How to address this issue?
 - Use a mini-batch of examples to calculate the dropout probablity.

• Let $X^l = (\mathbf{x}_1^l, \dots, \mathbf{x}_m^l)$ denote the outputs of the l^{th} layer for a mini-batch of m examples, calculate the probabilities for dropout by

$$p_{i}^{l} = \frac{\sqrt{\frac{1}{m} \sum_{j=1}^{m} [[\mathbf{x}_{j}^{l}]_{i}^{2}]}}{\sum_{i'=1}^{d} \sqrt{\frac{1}{m} \sum_{j=1}^{m} [[\mathbf{x}_{j}^{l}]_{i'}^{2}]}}, i = 1, \dots, d$$
 (6)

Evolutional Dropout for Deep Learning

Input: a batch of outputs of a layer:
$$X^l = (\mathbf{x}_1^l, \dots, \mathbf{x}_m^l)$$
 and dropout level parameter $k \in [0, d]$

Output: $\widehat{X}^l = X^l \circ \Sigma^l$

Compute sampling probabilities by (6)

For $j = 1, \dots, m$

Sample $\mathbf{m}_j^l \sim Mult(p_1^l, \dots, p_d^l; k)$

Construct $\epsilon_j^l = \frac{\mathbf{m}_j^l}{k\mathbf{p}^l} \in \mathbb{R}^d$, where $\mathbf{p}^l = (p_1^l, \dots, p_d^l)^\top$

Let $\Sigma^l = (\epsilon_1^l, \dots, \epsilon_m^l)$ and compute $\widehat{X}^l = X^l \circ \Sigma^l$

Figure: Evolutional Dropout applied to a layer over a mini-batch

Outline

- Introduction and Problem Setup
- 2 Improved Dropout for Shallow Learning
- Improved Dropout for Deep Learning
- 4 Experimental Results
- Conclusion

Experimental Results for Shallow Learning

Training/test error between standard and improved dropout

Figure: data-dependent dropout vs. standard dropout on three datasets (real-sim, news20 and RCV1) for logistic regression

Implemented in CudaConvNet Library.

- Implemented in CudaConvNet Library.
- Using four benchmark datasets: MNIST, SVHN, CIFAR10, CIFAR100.

- Implemented in CudaConvNet Library.
- Using four benchmark datasets: MNIST, SVHN, CIFAR10, CIFAR100.
- Different neural network stuctures from the existing literatures.

- Implemented in CudaConvNet Library.
- Using four benchmark datasets: MNIST, SVHN, CIFAR10, CIFAR100.
- Different neural network stuctures from the existing literatures.
- Training strategy.

Figure: Evolutional dropout vs. standard dropout on four benchmark datasets (MNIST, SVHN, CIFAR-10 and CIFAR-100) for deep learning

Compared to Batch Normalization

Figure: Evolutional dropout vs BN on CIFAR-10.

Outline

- Introduction and Problem Setup
- 2 Improved Dropout for Shallow Learning
- 3 Improved Dropout for Deep Learning
- 4 Experimental Results
- 6 Conclusion

• Proposed a multinomial dropout for shallow learning.

- Proposed a multinomial dropout for shallow learning.
- Demonstrated that this proposed distribution-dependent dropout leads to a faster convergence and a smaller generalization error through the risk bound analysis.

- Proposed a multinomial dropout for shallow learning.
- Demonstrated that this proposed distribution-dependent dropout leads to a faster convergence and a smaller generalization error through the risk bound analysis.
- Proposed an efficient evolutional dropout for deep learning.

- Proposed a multinomial dropout for shallow learning.
- Demonstrated that this proposed distribution-dependent dropout leads to a faster convergence and a smaller generalization error through the risk bound analysis.
- Proposed an efficient evolutional dropout for deep learning.
- Justified the proposed dropouts for both shallow and deep learning empirically.

Outline
Introduction and Problem Setup
Improved Dropout for Shallow Learning
Improved Dropout for Deep Learning
Experimental Results
Conclusion

Question?