Comp 472 Project 1

by Maharaj Teertha Deb (40227747)

- Load the data
- Importing dataset to devite it between train and test datasets.

```
from keras.datasets import cifar10

(X_train, y_train), (X_test, y_test) = cifar10.load_data()

print("Training data shape:", X_train.shape, y_train.shape)

print("Test data shape:", X_test.shape, y_test.shape)

Downloading data from <a href="https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz">https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz</a>

170498071/170498071

4s Ous/step

Training data shape: (50000, 32, 32, 3) (50000, 1)

Test data shape: (10000, 32, 32, 3) (10000, 1)
```

Using first 500 training images and the first 100 test images of each class

```
import numpy as np
X_train_filtered = []
y_train_filtered = []
X test filtered = []
y_test_filtered = []
# Loop through each class
for class_label in range(10):
    train_indices = np.where(y_train.flatten() == class_label)[0][:500] # 500 images for each class for training purposes
    test_indices = np.where(y_test.flatten() == class_label)[0][:100] # 100 images for each class for test purposes.
    #data to the filtered arrays
    X_train_filtered.append(X_train[train_indices])
    y_train_filtered.append(y_train[train_indices])
    X_test_filtered.append(X_test[test_indices])
    y_test_filtered.append(y_test[test_indices])
# print("X_train: " , X_train_filtered)
# print("y_train: " , y_train_filtered)
# print("X_test: " , X_test_filtered)
# print("y_test: " , y_test_filtered)
# concatenating lists to form final arrays
X_train_filtered = np.concatenate(X_train_filtered)
y_train_filtered = np.concatenate(y_train_filtered)
X_test_filtered = np.concatenate(X_test_filtered)
y_test_filtered = np.concatenate(y_test_filtered)
# the shapes of the filtered datasets
print("training data shape:", X_train_filtered.shape, y_train_filtered.shape)
print("test data shape:", X_test_filtered.shape, y_test_filtered.shape)
→ training data shape: (5000, 32, 32, 3) (5000, 1)
     test data shape: (1000, 32, 32, 3) (1000, 1)
```

- Here we do:
 - 1. Resizing and

2. Normalizing

warnings.warn(

100%

warnings.warn(msg)

```
** imageNet means and std were taken from: stack-overflow
import torch
import torchvision.transforms as transforms
transform = transforms.Compose([
   transforms.ToPILImage(), # Convert to PIL image
   transforms.Resize((224, 224)), # Resize to 224x224
   transforms.ToTensor(), # Convert to tensor
   transforms.Normalize(mean=[0.485, 0.456, 0.406], # ImageNet means
                        std=[0.229, 0.224, 0.225]) # ImageNet stds
])
# now appling the transformation to the training and test sets
X_train_normalized = torch.stack([transform(img) for img in X_train_filtered])
X_test_normalized = torch.stack([transform(img) for img in X_test_filtered])
print("Training data shape after transformation:", X_train_normalized.shape)
print("Test data shape after transformation:", X_test_normalized.shape)
    Training data shape after transformation: torch.Size([5000, 3, 224, 224])
    Test data shape after transformation: torch.Size([1000, 3, 224, 224])
```

Now we can extract features using ResNet-18

device will be selected based on GPU and CPU. original code: Pytorch website

how to use pretrained resnet and evalute it, was taken from Stack-Overflow

```
from torch.utils.data import DataLoader, TensorDataset
from torchvision.models import resnet18
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # taken from pytorch
resnet18 = resnet18(pretrained=True).to(device)
resnet18.eval() # stackoverflow code
batch_size = 32 # with higher batch size, my colab environment crashes...
train_dataset = TensorDataset(X_train_normalized)
test_dataset = TensorDataset(X_test_normalized)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=False)
test loader = DataLoader(test dataset, batch size=batch size, shuffle=False)
# Function to extract features in batches
def extract_features_in_batches(model, loader):
   all_features = []
   for batch in loader:
       data = batch[0].to(device) # Move data to the same device as the model
        with torch.no_grad(): # No gradient computation for inference
            features = model(data).squeeze() # Extract features
        all_features.append(features.cpu()) # Move to CPU to free GPU memory
   return torch.cat(all_features)
# Now we extract features for training and test sets
X_train_features = extract_features_in_batches(resnet18, train_loader)
X_test_features = extract_features_in_batches(resnet18, test_loader)
print("Feature extraction complete with batch processing.")
print("Training features shape:", X_train_features.shape)
print("Test features shape:", X_test_features.shape)
```

44.7M/44.7M [00:00<00:00, 63.4MB/s]

```
https://colab.research.google.com/drive/17-eU0sA3gvnFQiaDmDIX2IJPLCY8CTRa#scrollTo=D8MmpYoE66Ug&printMode=true
```

🚁 /usr/local/lib/python3.10/dist-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.

Downloading: "https://download.pytorch.org/models/resnet18-f37072fd.pth" to /root/.cache/torch/hub/checkpoints/resnet18-f37072fd.pth

/usr/local/lib/python3.10/dist-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for

Final task for Dataset overview, PCA Dimensionality Reduction

```
from sklearn.decomposition import PCA

pca = PCA(n_components=50)

# Appling PCA on the training and test feature sets
X_train_pca = pca.fit_transform(X_train_features.cpu().numpy())
X_test_pca = pca.transform(X_test_features.cpu().numpy())

print("Training features shape after PCA:", X_train_pca.shape)
print("Test features shape after PCA:", X_test_pca.shape)
```

Naive Bayes:

Custom Gaussian Naive Bayes Implementation

idea was taken from:

- 1. StackOverflow
- 2. Scikit-learn's naive_bayes class
- ** Also Google GEMINI Suggeted some codes(like co-pilot) while writing it on colab environment.

```
import numpy as np
class GaussianNaiveBayes:
    def __init__(self) -> None:
        self.means = None
        self.variances = None
        self.priors = None
    def fit(self, X, y) -> None:
        self.classes = np.unique(y)
        n_features = X.shape[1]
        n_classes = len(self.classes)
        self.means = np.zeros((n_classes, n_features))
        self.variances = np.zeros((n_classes, n_features))
        self.priors = np.zeros(n_classes)
        for idx, cls in enumerate(self.classes):
            X_{cls} = X[y == cls]
            self.means[idx, :] = X_cls.mean(axis=0)
            self.variances[idx, :] = X_cls.var(axis=0) + 1e-9 # Added small value to avoid division by zero ** This idea is from GOOGLE GEM
            self.priors[idx] = X_cls.shape[0] / X.shape[0]
    def predict(self, X) -> np.ndarray:
        posteriors = np.zeros((X.shape[0], len(self.classes)))
        for idx, cls in enumerate(self.classes):
            prior = np.log(self.priors[idx])
            likelihood = -0.5 * np.sum(np.log(2 * np.pi * self.variances[idx, :]))
            likelihood -= 0.5 * np.sum(((X - self.means[idx, :]) ** 2) / self.variances[idx, :], axis=1)
            posteriors[:, idx] = prior + likelihood
        return self.classes[np.argmax(posteriors, axis=1)]
gnb_custom = GaussianNaiveBayes()
\verb"gnb_custom.fit(X_train_pca, y_train_filtered.flatten()) # Flatten y_train for compatibility
y_pred_custom = gnb_custom.predict(X_test_pca)
print("Custom Gaussian Naive Bayes completed.")
Custom Gaussian Naive Bayes completed.
```

Gaussian Naive Bayes Using Scikit-Learn

```
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score

gnb_sklearn = GaussianNB()
gnb_sklearn.fit(X_train_pca, y_train_filtered.flatten())

y_pred_sklearn = gnb_sklearn.predict(X_test_pca)
print("Scikit-learn Gaussian Naive Bayes completed.")

Scikit-learn Gaussian Naive Bayes completed.
```

Evaluate both of these models on the test set.

```
import matplotlib.pyplot as plt
from sklearn.metrics import classification report, confusion matrix, ConfusionMatrixDisplay
accuracy_custom = accuracy_score(y_test_filtered.flatten(), y_pred_custom)
accuracy_sklearn = accuracy_score(y_test_filtered.flatten(), y_pred_sklearn)
print("\nCustom GNB Classification Report:")
print(classification_report(y_test_filtered.flatten(), y_pred_custom))
print("\nScikit-learn GNB Classification Report:")
print(classification_report(y_test_filtered.flatten(), y_pred_sklearn))
fig, axes = plt.subplots(1, 2, figsize=(14, 6)) # confussion matrix
ConfusionMatrixDisplay.from_predictions(
    y_test_filtered.flatten(),
    y_pred_custom,
    ax=axes[0],
    cmap="Blues"
    colorbar=False
axes[0].set_title("Custom GNB")
ConfusionMatrixDisplay.from_predictions(
    y_test_filtered.flatten(),
   y_pred_sklearn,
    ax=axes[1],
   cmap="Greens"
    colorbar=False
axes[1].set_title("Scikit-learn GNB")
plt.tight_layout()
plt.show()
models = ['Custom GNB', 'Scikit-learn GNB']
accuracies = [accuracy_custom, accuracy_sklearn]
plt.figure(figsize=(8, 5))
plt.bar(models, accuracies, color=['blue', 'green'])
plt.title('Model Accuracy Comparison')
plt.ylabel('Accuracy')
plt.ylim(0, 1)
plt.show()
# now i save the naive_bayes_model::
import pickle
with open('naive bayes model.pkl', 'wb') as f:
    pickle.dump(gnb_custom, f)
    print("Model saved to naive_bayes_model.pkl")
from google.colab import files
files.download('naive_bayes_model.pkl')
```


Scikit-learn GNB Classification Report:

precision	recall	f1-score	support
0.75	0.77	0.76	100
0.90	0.86	0.88	100
0.75	0.63	0.68	100
0.62	0.70	0.66	100
0.70	0.74	0.72	100
0.72	0.68	0.70	100
0.75	0.83	0.79	100
0.84	0.78	0.81	100
0.86	0.82	0.84	100
0.85	0.90	0.87	100
		0.77	1000
0.77	0.77	0.77	1000
0.77	0.77	0.77	1000
	0.75 0.90 0.75 0.62 0.70 0.72 0.75 0.84 0.86	0.75 0.77 0.90 0.86 0.75 0.63 0.62 0.70 0.70 0.74 0.72 0.68 0.75 0.83 0.84 0.78 0.86 0.82 0.85 0.90	0.75 0.77 0.76 0.90 0.86 0.88 0.75 0.63 0.68 0.62 0.70 0.66 0.70 0.74 0.72 0.72 0.68 0.70 0.75 0.83 0.79 0.84 0.78 0.81 0.86 0.82 0.84 0.85 0.90 0.87

Section 4: Decision Tree.

Model saved to naive_bayes_model.pkl

Custom Decision Tree Classifier (Gini Index, Max Depth = 50)

the idea was taken from: Ander Fernandez's blog and Medium.com

```
import numpy as np
class DecisionTreeClassifier:
   def __init__(self, max_depth=50):
        self.max_depth = max_depth
        self.tree = None
   def gini(self, y):
       m = len(y)
        if m == 0:
            return 0
        _, counts = np.unique(y, return_counts=True)
        probabilities = counts / m
        return 1 - np.sum(probabilities ** 2)
   def split(self, X, y, feature, threshold):
        left_indices = X[:, feature] < threshold</pre>
        right_indices = ~left_indices
        return X[left_indices], y[left_indices], X[right_indices], y[right_indices]
   def best_split(self, X, y):
        m, n = X.shape
        if m <= 1:
            return None, None
       parent_gini = self.gini(y)
        best_gain = 0
        best_split_feature, best_split_threshold = None, None
        for feature in range(n):
            thresholds = np.unique(X[:, feature])
            for threshold in thresholds:
                X_left, y_left, X_right, y_right = self.split(X, y, feature, threshold)
                if len(y_left) == 0 or len(y_right) == 0:
                    continue
                n_left, n_right = len(y_left), len(y_right)
                child_gini = (n_left / m) * self.gini(y_left) + (n_right / m) * self.gini(y_right)
                gain = parent_gini - child_gini
                if gain > best_gain:
                    best_gain = gain
                    best_split_feature, best_split_threshold = feature, threshold
        return best_split_feature, best_split_threshold
   def build_tree(self, X, y, depth=0):
        if depth >= self.max_depth or len(np.unique(y)) == 1:
            return np.argmax(np.bincount(y))
        feature, threshold = self.best_split(X, y)
        if feature is None:
            return np.argmax(np.bincount(y))
       X_{\text{left}}, y_{\text{left}}, X_{\text{right}}, y_{\text{right}} = \text{self.split}(X, y, \text{feature, threshold})
        return {
            'feature': feature,
            'threshold': threshold,
```

```
'left': self.build_tree(X_left, y_left, depth + 1),
    'right': self.build_tree(X_right, y_right, depth + 1),
}

def fit(self, X, y):
    self.tree = self.build_tree(X, y)

def predict_sample(self, sample, tree):
    if isinstance(tree, dict):
        if sample[tree['feature']] < tree['threshold']:
            return self.predict_sample(sample, tree['left'])
        else:
            return self.predict_sample(sample, tree['right'])
    else:
        return tree

def predict(self, X):
    return np.array([self.predict_sample(sample, self.tree) for sample in X])</pre>
```

Train the tree:

```
custom_tree = DecisionTreeClassifier(max_depth=50)
custom_tree.fit(X_train_pca, y_train_filtered.flatten())
```

Save the model:

** code suggested by GOOGLE GEMINI. propt was: I want to download my custom dicision tree.

```
import cloudpickle
# Save the custom tree model using cloudpickle
with open('dtc_cloudpickle.pkl', 'wb') as f:
    cloudpickle.dump(custom_tree, f)

print("Model saved to dtc_cloudpickle.pkl")
# Download the model file
from google.colab import files
files.download('dtc_cloudpickle.pkl')

    Model saved to dtc_cloudpickle.pkl
```

Predict on Test Set:

```
y pred custom tree = custom tree.predict(X test pca)
```

Experimenting with Different Depths

```
depths = [5, 10, 15, 20, 35, 50] # We will experiment with 6 depts from 5 to 50
accuracies_for_custome_tree = []

for depth in depths:
    custom_tree = DecisionTreeClassifier(max_depth=depth)
    custom_tree.fit(X_train_pca, y_train_filtered.flatten())

    y_pred = custom_tree.predict(X_test_pca)
    #print(y_pred)

    accuracy = np.mean(y_pred == y_test_filtered.flatten())
    accuracies_for_custome_tree.append(accuracy)
    print(f"Tree Depth: {depth}, Accuracy: {accuracy:.4f}")

import matplotlib.pyplot as plt
```

```
plt.figure(figsize=(10, 6))
plt.plot(depths, accuracies_for_custome_tree, marker='o', label='Test Accuracy')
plt.title("Effect of Tree Depth on Model Accuracy")
plt.xlabel("Tree Depth")
plt.ylabel("Accuracy")
plt.grid(True)
plt.legend()
plt.show()

Tree Depth: 5, Accuracy: 0.5850
    Tree Depth: 10, Accuracy: 0.6030
    Tree Depth: 15, Accuracy: 0.5800
    Tree Depth: 20, Accuracy: 0.5780
    Tree Depth: 35, Accuracy: 0.5780
    Tree Depth: 50, Accuracy: 0.5780
    Tree Depth: 50, Accuracy: 0.5780
```


Scikit-learn's DecisionTreeClassifier

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
accuracies_for_sklearn_tree = []
for depth in depths:
    sk_tree = DecisionTreeClassifier(criterion="gini", max_depth=depth, random_state=42)
    sk_tree.fit(X_train_pca, y_train_filtered.flatten())
    y_pred_sklearn_tree = sk_tree.predict(X_test_pca)
    accuracy = accuracy_score(y_test_filtered.flatten(), y_pred_sklearn_tree)
    accuracies_for_sklearn_tree.append(accuracy)
    print(f"Tree Depth: {depth}, Accuracy: {accuracy:.4f}")
plt.figure(figsize=(10, 6))
plt.plot(depths, accuracies_for_sklearn_tree, marker='o', label='Test Accuracy')
plt.title("Effect of Tree Depth on Model Accuracy (Scikit-Learn)")
plt.xlabel("Tree Depth")
plt.ylabel("Accuracy")
plt.grid(True)
plt.legend()
plt.show()
```

```
Tree Depth: 5, Accuracy: 0.5860
Tree Depth: 10, Accuracy: 0.6100
Tree Depth: 15, Accuracy: 0.6050
Tree Depth: 20, Accuracy: 0.6000
Tree Depth: 35, Accuracy: 0.6000
Tree Depth: 50, Accuracy: 0.6000
```


Evaluation and Graphical Comparison

```
from sklearn.metrics import classification_report, ConfusionMatrixDisplay
print("Custom Decision Tree Classification Report:")
print(classification_report(y_test_filtered.flatten(), y_pred_custom_tree))
print("\nScikit-Learn Decision Tree Classification Report:")
print(classification_report(y_test_filtered.flatten(), y_pred_sklearn_tree))
fig, axes = plt.subplots(1, 2, figsize=(14, 6)) # for plotting confussion matrix
{\tt Confusion Matrix Display.from\_predictions} (
    y_test_filtered.flatten(),
    y_pred_custom_tree,
    ax=axes[0],
    cmap="Blues"
    colorbar=False
)
axes[0].set_title("Custom Decision Tree")
# Scikit-Learn Decision Tree confusion matrix
ConfusionMatrixDisplay.from_predictions(
    y_test_filtered.flatten(),
    y_pred_sklearn_tree,
    ax=axes[1],
    cmap="Greens"
    colorbar=False
)
axes[1].set_title("Scikit-Learn Decision Tree")
plt.tight_layout()
plt.show()
```

→	Custor	n Deci	ision	Tree (Classi	ificati	on Re	port:			
			precision			recall		f1-score		port	
	0			0.5	59	0.55		0.57	100		
	1			0.7		0.72				100	
	2			0.4		0.40		0.42	100		
	3			0.4		0.43		0.42	100		
	4			0.4	18	0.53		0.50		100	
	5			0.5	56	0.61		0.59		100	
	6			0.6	57	0.69	ı	0.68	100		
	7			0.4	19	0.48		0.48	100		
	8			0.6	53	0.63		0.63	.63 100		
	9			0.8	30	0.74		0.77	77 100		
	accuracy							0.58		1000	
	ma	macro avg			58	0.58		0.58 1000			
	weigh	weighted avg			58	0.58	1	0.58 100			
	Scikit-Learn Decision Tre										
			pr	ecisio	on	recall	f1-	score	sup	port	
	0		0.57		0.60		0.59		100		
		1			78 0.77			0.77		100	
	2			0.4	0.47 0.40		1	0.43		100	
	3			0.48		0.48		0.48		100	
	4		0.50		0.51		0.50		100		
	5		0.58		0.62		0.60		100		
	6			0.74		0.67		0.71		100	
	7		0.48		0.49		0.48		100		
	8		0.64		0.69		0.66		100		
	9			0.7	0.75 0.7		0.76		100		
	accuracy							0.60		1000	
	_			0.6	0.60 0.60)	0.60		1000	
	weighted avg		0.60		0.60		0.60				
	Custom Decision Tree										
	0 -	55	4	7	1	3	0	1	3	21	
	1 -	4	72	0	3	4	2	0	2	8	

< MLP

Implementation of the specified three-layer MLP using PyTorch:

Help taken from: pytorch discussion and medium.com

I just ignored the layers part. as we need to implement three-layerd MLP.

```
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
class MLP(nn.Module):
   def __init__(self):
        super(MLP, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(50, 512),
           nn.ReLU(),
            nn.Linear(512, 512),
           nn.BatchNorm1d(512),
            nn.ReLU(),
            nn.Linear(512, 10)
        )
   def forward(self, x):
        return self.model(x)
batch_size = 32
train_dataset = TensorDataset(torch.tensor(X_train_pca, dtype=torch.float32),
                               torch.tensor(y_train_filtered.flatten(), dtype=torch.long))
test_dataset = TensorDataset(torch.tensor(X_test_pca, dtype=torch.float32),
                              torch.tensor(y_test_filtered.flatten(), dtype=torch.long))
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
mlp_model = MLP().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(mlp_model.parameters(), lr=0.01, momentum=0.9)
num_epochs = 100
for epoch in range(num_epochs):
   mlp model.train()
   running_loss = 0.0
   for inputs, labels in train_loader:
        inputs, labels = inputs.to(device), labels.to(device)
        # Forward pass
        outputs = mlp_model(inputs)
        loss = criterion(outputs, labels)
        # Backward pass and optimization
       optimizer.zero_grad()
       loss.backward()
       optimizer.step()
       running_loss += loss.item()
   print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}")
mlp_model.eval()
correct = 0
total = 0
with torch.no_grad():
   for inputs, labels in test_loader:
       inputs, labels = inputs.to(device), labels.to(device)
       outputs = mlp_model(inputs)
        _, predicted = torch.max(outputs, 1)
        total += labels.size(0)
       correct += (predicted == labels).sum().item()
accuracy = correct / total
print(f"Test Accuracy: {accuracy:.4f}")
#now we save the model:
## Code suggested by Google GEMINI.
```

```
torch.save(mlp model.state dict(), 'mlp model.pth')
print("Model saved to mlp_model.pth")
# Download the model file
from google.colab import files
files.download('mlp_model.pth')
    Epoch [44/100], Loss: 0.0040
    Epoch [45/100], Loss: 0.0051
    Epoch [46/100], Loss: 0.0099
    Epoch [47/100], Loss: 0.0074
    Epoch [48/100], Loss: 0.0063
    Epoch [49/100], Loss: 0.0185
    Epoch [50/100], Loss: 0.0187
    Epoch [51/100], Loss: 0.0241
    Epoch [52/100], Loss: 0.0331
    Epoch [53/100], Loss: 0.0168
    Epoch [54/100], Loss: 0.0379
    Epoch [55/100], Loss: 0.0282
    Epoch [56/100], Loss: 0.0279
    Epoch [57/100], Loss: 0.0195
    Epoch [58/100], Loss: 0.0117
    Epoch [59/100], Loss: 0.0112
    Epoch [60/100], Loss: 0.0066
    Epoch [61/100], Loss: 0.0037
    Epoch [62/100], Loss: 0.0031
    Epoch [63/100], Loss: 0.0065
    Epoch [64/100], Loss: 0.0033
    Epoch [65/100], Loss: 0.0029
    Epoch [66/100], Loss: 0.0028
    Epoch [67/100], Loss: 0.0020
    Epoch [68/100], Loss: 0.0030
    Epoch [69/100], Loss: 0.0020
    Epoch [70/100], Loss: 0.0012
    Epoch [71/100], Loss: 0.0014
    Epoch [72/100], Loss: 0.0011
    Epoch [73/100], Loss: 0.0028
    Epoch [74/100], Loss: 0.0190
    Epoch [75/100], Loss: 0.0384
    Epoch [76/100], Loss: 0.0116
    Epoch [77/100], Loss: 0.0041
    Epoch [78/100], Loss: 0.0034
    Epoch [79/100], Loss: 0.0024
    Epoch [80/100], Loss: 0.0031
    Epoch [81/100], Loss: 0.0021
    Epoch [82/100], Loss: 0.0028
    Epoch [83/100], Loss: 0.0166
    Epoch [84/100], Loss: 0.0468
    Epoch [85/100], Loss: 0.0418
    Epoch [86/100], Loss: 0.0263
    Epoch [87/100], Loss: 0.0159
    Epoch [88/100], Loss: 0.0096
    Epoch [89/100], Loss: 0.0045
    Epoch [90/100], Loss: 0.0044
    Epoch [91/100], Loss: 0.0119
    Epoch [92/100], Loss: 0.0043
    Epoch [93/100], Loss: 0.0028
    Epoch [94/100], Loss: 0.0021
    Epoch [95/100], Loss: 0.0017
    Epoch [96/100], Loss: 0.0018
    Epoch [97/100], Loss: 0.0028
    Epoch [98/100], Loss: 0.0026
    Epoch [99/100], Loss: 0.0018
    Epoch [100/100], Loss: 0.0023
    Test Accuracy: 0.8070
```

experiment by varying the depth of the MLP and document the influence on performance:

```
layers.append(nn.BatchNorm1d(512))
            layers.append(nn.ReLU())
        layers.append(nn.Linear(512, 10))
        self.model = nn.Sequential(*layers)
    def forward(self, x):
        return self.model(x)
depths = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20]
accuracies = []
for depth in depths:
    model = MLPVariant(depth).to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(model.parameters(), 1r=0.001, momentum=0.9)
    num epochs = 10
    for epoch in range(num_epochs):
       model.train()
        running loss = 0.0
        for inputs, labels in train_loader:
            inputs, labels = inputs.to(device), labels.to(device)
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
        model.eval()
        correct = 0
        total = 0
        with torch.no_grad():
            for inputs, labels in test_loader:
               inputs, labels = inputs.to(device), labels.to(device)
                outputs = model(inputs)
                _, predicted = torch.max(outputs, 1)
                total += labels.size(0)
                correct += (predicted == labels).sum().item()
        accuracy = correct / total
        print(f"Epoch [\{epoch+1\}/\{num\_epochs\}], Depth: \{depth\}, Loss: \{running\_loss/len(train\_loader):.4f\}, Accuracy: \{accuracy:.4f\}")
    accuracies.append(accuracy)
    print(f"Final Depth: {depth}, Test Accuracy: {accuracy:.4f}")
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 6))
plt.plot(depths, accuracies, marker='o', label="Test Accuracy")
plt.title("Effect of MLP Depth on Test Accuracy")
plt.xlabel("Number of Layers")
plt.ylabel("Accuracy")
plt.grid(True)
plt.legend()
plt.show()
```

```
→ Epoch [1/10], Depth: 2, Loss: 0.8791, Accuracy: 0.7740
    Epoch [2/10], Depth: 2, Loss: 0.5201, Accuracy: 0.7740
    Epoch [3/10], Depth: 2, Loss: 0.4757, Accuracy: 0.8060
    Epoch [4/10], Depth: 2, Loss: 0.4122, Accuracy: 0.8180
    Epoch [5/10], Depth: 2, Loss: 0.3724, Accuracy: 0.8050
    Epoch [6/10], Depth: 2, Loss: 0.3435, Accuracy: 0.7980
    Epoch [7/10], Depth: 2, Loss: 0.3285, Accuracy: 0.8240
    Epoch [8/10], Depth: 2, Loss: 0.2791, Accuracy: 0.8160
    Epoch [9/10], Depth: 2, Loss: 0.2768, Accuracy: 0.8160
    Epoch [10/10], Depth: 2, Loss: 0.2468, Accuracy: 0.8170
    Final Depth: 2, Test Accuracy: 0.8170
    Epoch [1/10], Depth: 3, Loss: 1.1277, Accuracy: 0.7630
    Epoch [2/10], Depth: 3, Loss: 0.6654, Accuracy: 0.7840
    Epoch [3/10], Depth: 3, Loss: 0.5618, Accuracy: 0.8000
    Epoch [4/10], Depth: 3, Loss: 0.5083, Accuracy: 0.8140
    Epoch [5/10], Depth: 3, Loss: 0.4646, Accuracy: 0.8180
    Epoch [6/10], Depth: 3, Loss: 0.4313, Accuracy: 0.8170
    Epoch [7/10], Depth: 3, Loss: 0.4111, Accuracy: 0.8290
    Epoch [8/10], Depth: 3, Loss: 0.3851, Accuracy: 0.8240
    Epoch [9/10], Depth: 3, Loss: 0.3543, Accuracy: 0.8340
    Epoch [10/10], Depth: 3, Loss: 0.3375, Accuracy: 0.8260
    Final Depth: 3, Test Accuracy: 0.8260
    Epoch [1/10], Depth: 4, Loss: 1.0506, Accuracy: 0.7750
    Epoch [2/10], Depth: 4, Loss: 0.6120, Accuracy: 0.7990
    Epoch [3/10], Depth: 4, Loss: 0.5097, Accuracy: 0.8050
    Epoch [4/10], Depth: 4, Loss: 0.4436, Accuracy: 0.8230
    Epoch [5/10], Depth: 4, Loss: 0.3906, Accuracy: 0.8140
    Epoch [6/10], Depth: 4, Loss: 0.3548, Accuracy: 0.8160
    Epoch [7/10], Depth: 4, Loss: 0.3017, Accuracy: 0.8160
    Epoch [8/10], Depth: 4, Loss: 0.2657, Accuracy: 0.8170
    Epoch [9/10], Depth: 4, Loss: 0.2329, Accuracy: 0.8270
    Epoch [10/10], Depth: 4, Loss: 0.2087, Accuracy: 0.8250
    Final Depth: 4, Test Accuracy: 0.8250
    Epoch [1/10], Depth: 5, Loss: 1.0724, Accuracy: 0.7640
    Epoch [2/10], Depth: 5, Loss: 0.5944, Accuracy: 0.7970
    Epoch [3/10], Depth: 5, Loss: 0.4743, Accuracy: 0.7950
    Epoch [4/10], Depth: 5, Loss: 0.3942, Accuracy: 0.8010
    Epoch [5/10], Depth: 5, Loss: 0.3372, Accuracy: 0.8140
    Epoch [6/10], Depth: 5, Loss: 0.2822, Accuracy: 0.8140
    Epoch [7/10], Depth: 5, Loss: 0.2283, Accuracy: 0.8180
    Epoch [8/10], Depth: 5, Loss: 0.1916, Accuracy: 0.8160
    Epoch [9/10], Depth: 5, Loss: 0.1601, Accuracy: 0.8110
    Epoch [10/10], Depth: 5, Loss: 0.1341, Accuracy: 0.8030
    Final Depth: 5, Test Accuracy: 0.8030
    Epoch [1/10], Depth: 6, Loss: 1.0474, Accuracy: 0.7830
    Epoch [2/10], Depth: 6, Loss: 0.5766, Accuracy: 0.8040
    Epoch [3/10], Depth: 6, Loss: 0.4514, Accuracy: 0.8270
    Epoch [4/10], Depth: 6, Loss: 0.3532, Accuracy: 0.8260
    Epoch [5/10], Depth: 6, Loss: 0.2859, Accuracy: 0.8150
    Epoch [6/10], Depth: 6, Loss: 0.2239, Accuracy: 0.8050
    Epoch [7/10], Depth: 6, Loss: 0.1905, Accuracy: 0.8170
    Epoch [8/10], Depth: 6, Loss: 0.1373, Accuracy: 0.8160
    Epoch [9/10], Depth: 6, Loss: 0.1131, Accuracy: 0.8240
    Epoch [10/10], Depth: 6, Loss: 0.0866, Accuracy: 0.8180
    Final Depth: 6, Test Accuracy: 0.8180
    Epoch [1/10], Depth: 7, Loss: 1.0998, Accuracy: 0.7700
    Epoch [2/10], Depth: 7, Loss: 0.5950, Accuracy: 0.8020
    Epoch [3/10], Depth: 7, Loss: 0.4404, Accuracy: 0.7970
    Epoch [4/10], Depth: 7, Loss: 0.3441, Accuracy: 0.8010
    Epoch [5/10], Depth: 7, Loss: 0.2635, Accuracy: 0.8070
    Epoch [6/10], Depth: 7, Loss: 0.2077, Accuracy: 0.7970
    Epoch [7/10], Depth: 7, Loss: 0.1668, Accuracy: 0.8020
    Epoch [8/10], Depth: 7, Loss: 0.1409, Accuracy: 0.8060
    Epoch [9/10], Depth: 7, Loss: 0.1035, Accuracy: 0.8090
    Epoch [10/10], Depth: 7, Loss: 0.0936, Accuracy: 0.7920
    Final Depth: 7, Test Accuracy: 0.7920
    Epoch [1/10], Depth: 8, Loss: 1.1075, Accuracy: 0.7770
    Epoch [2/10], Depth: 8, Loss: 0.5813, Accuracy: 0.8060
    Epoch [3/10], Depth: 8, Loss: 0.4488, Accuracy: 0.7930
    Epoch [4/10], Depth: 8, Loss: 0.3531, Accuracy: 0.7980
    Epoch [5/10], Depth: 8, Loss: 0.2727, Accuracy: 0.8170
    Epoch [6/10], Depth: 8, Loss: 0.2053, Accuracy: 0.8030
    Epoch [7/10], Depth: 8, Loss: 0.1717, Accuracy: 0.8100
    Epoch [8/10], Depth: 8, Loss: 0.1378, Accuracy: 0.7910
    Epoch [9/10], Depth: 8, Loss: 0.1021, Accuracy: 0.8040
    Epoch [10/10], Depth: 8, Loss: 0.0955, Accuracy: 0.7780
    Final Depth: 8, Test Accuracy: 0.7780
    Epoch [1/10], Depth: 9, Loss: 1.1652, Accuracy: 0.7780
    Epoch [2/10], Depth: 9, Loss: 0.6125, Accuracy: 0.7930
    Epoch [3/10], Depth: 9, Loss: 0.4748, Accuracy: 0.7940
    Epoch [4/10], Depth: 9, Loss: 0.3843, Accuracy: 0.7920
    Epoch [5/10], Depth: 9, Loss: 0.3149, Accuracy: 0.7940
    Epoch [6/10], Depth: 9, Loss: 0.2581, Accuracy: 0.7980
    Epoch [7/10], Depth: 9, Loss: 0.2038, Accuracy: 0.7790
```

```
Epocn [8/10], Deptn: 9, Loss: 0.1580, Accuracy: 0./960
Epoch [9/10], Depth: 9, Loss: 0.1297, Accuracy: 0.7990
Epoch [10/10], Depth: 9, Loss: 0.1210, Accuracy: 0.7920
Final Depth: 9, Test Accuracy: 0.7920
Epoch [1/10], Depth: 10, Loss: 1.1944, Accuracy: 0.7610
Epoch [2/10], Depth: 10, Loss: 0.6291, Accuracy: 0.7810
Epoch [3/10], Depth: 10, Loss: 0.5185, Accuracy: 0.7940
Epoch [4/10], Depth: 10, Loss: 0.4026, Accuracy: 0.7940
Epoch [5/10], Depth: 10, Loss: 0.3081, Accuracy: 0.8040
Epoch [6/10], Depth: 10, Loss: 0.2585, Accuracy: 0.8020
Epoch [7/10], Depth: 10, Loss: 0.2237, Accuracy: 0.7890
Epoch [8/10], Depth: 10, Loss: 0.1936, Accuracy: 0.7930
Epoch [9/10], Depth: 10, Loss: 0.1809, Accuracy: 0.7860
Epoch [10/10], Depth: 10, Loss: 0.1597, Accuracy: 0.7920
Final Depth: 10, Test Accuracy: 0.7920
Epoch [1/10], Depth: 11, Loss: 1.2556, Accuracy: 0.7610
Epoch [2/10], Depth: 11, Loss: 0.6739, Accuracy: 0.7750
Epoch [3/10], Depth: 11, Loss: 0.5504, Accuracy: 0.7870
Epoch [4/10], Depth: 11, Loss: 0.4378, Accuracy: 0.7890
Epoch [5/10], Depth: 11, Loss: 0.3626, Accuracy: 0.7900
Epoch [6/10], Depth: 11, Loss: 0.3331, Accuracy: 0.7710
Epoch [7/10], Depth: 11, Loss: 0.2650, Accuracy: 0.7730
Epoch [8/10], Depth: 11, Loss: 0.2382, Accuracy: 0.7830
Epoch [9/10], Depth: 11, Loss: 0.2303, Accuracy: 0.7730
Epoch [10/10], Depth: 11, Loss: 0.1731, Accuracy: 0.7770
Final Depth: 11, Test Accuracy: 0.7770
Epoch [1/10], Depth: 12, Loss: 1.2609, Accuracy: 0.7580
Epoch [2/10], Depth: 12, Loss: 0.7062, Accuracy: 0.7960
Epoch [3/10], Depth: 12, Loss: 0.5665, Accuracy: 0.7820
Epoch [4/10], Depth: 12, Loss: 0.4741, Accuracy: 0.8050
Epoch [5/10], Depth: 12, Loss: 0.3988, Accuracy: 0.7990
Epoch [6/10], Depth: 12, Loss: 0.3563, Accuracy: 0.7930
Epoch [7/10], Depth: 12, Loss: 0.3437, Accuracy: 0.7820
Epoch [8/10], Depth: 12, Loss: 0.2991, Accuracy: 0.7870
Epoch [9/10], Depth: 12, Loss: 0.2615, Accuracy: 0.7830
Epoch [10/10], Depth: 12, Loss: 0.2095, Accuracy: 0.7830
Final Depth: 12, Test Accuracy: 0.7830
Epoch [1/10], Depth: 13, Loss: 1.3126, Accuracy: 0.7460
Epoch [2/10], Depth: 13, Loss: 0.7417, Accuracy: 0.7930
Epoch [3/10], Depth: 13, Loss: 0.6067, Accuracy: 0.7850
Epoch [4/10], Depth: 13, Loss: 0.5189, Accuracy: 0.7970
Epoch [5/10], Depth: 13, Loss: 0.4776, Accuracy: 0.7820
Epoch [6/10], Depth: 13, Loss: 0.3934, Accuracy: 0.7850
Epoch [7/10], Depth: 13, Loss: 0.3609, Accuracy: 0.7960
Epoch [8/10], Depth: 13, Loss: 0.2942, Accuracy: 0.7800
Epoch [9/10], Depth: 13, Loss: 0.2840, Accuracy: 0.7930
Epoch [10/10], Depth: 13, Loss: 0.2312, Accuracy: 0.7930
Final Depth: 13, Test Accuracy: 0.7930
Epoch [1/10], Depth: 14, Loss: 1.4029, Accuracy: 0.7370
Epoch [2/10], Depth: 14, Loss: 0.8240, Accuracy: 0.7380
Epoch [3/10], Depth: 14, Loss: 0.6595, Accuracy: 0.7810
Epoch [4/10], Depth: 14, Loss: 0.5575, Accuracy: 0.7820
Epoch [5/10], Depth: 14, Loss: 0.4876, Accuracy: 0.7790
Epoch [6/10], Depth: 14, Loss: 0.4465, Accuracy: 0.7680
Epoch [7/10], Depth: 14, Loss: 0.3720, Accuracy: 0.7830
Epoch [8/10], Depth: 14, Loss: 0.3673, Accuracy: 0.7860
Epoch [9/10], Depth: 14, Loss: 0.3379, Accuracy: 0.7720
Epoch [10/10], Depth: 14, Loss: 0.2710, Accuracy: 0.7900
Final Depth: 14, Test Accuracy: 0.7900
Epoch [1/10], Depth: 15, Loss: 1.4646, Accuracy: 0.6920
Epoch [2/10], Depth: 15, Loss: 0.8482, Accuracy: 0.7560
Epoch [3/10], Depth: 15, Loss: 0.7074, Accuracy: 0.7530
Epoch [4/10], Depth: 15, Loss: 0.5971, Accuracy: 0.7750
Epoch [5/10], Depth: 15, Loss: 0.5412, Accuracy: 0.7670
Epoch [6/10], Depth: 15, Loss: 0.4928, Accuracy: 0.7850
Epoch [7/10], Depth: 15, Loss: 0.4288, Accuracy: 0.7870
Epoch [8/10], Depth: 15, Loss: 0.3843, Accuracy: 0.7740
Epoch [9/10], Depth: 15, Loss: 0.3346, Accuracy: 0.7850
Epoch [10/10], Depth: 15, Loss: 0.3120, Accuracy: 0.7900
Final Depth: 15, Test Accuracy: 0.7900
Epoch [1/10], Depth: 16, Loss: 1.4949, Accuracy: 0.7010
Epoch [2/10], Depth: 16, Loss: 0.9126, Accuracy: 0.7460
Epoch [3/10], Depth: 16, Loss: 0.7441, Accuracy: 0.7650
Epoch [4/10], Depth: 16, Loss: 0.6435, Accuracy: 0.7750
Epoch [5/10], Depth: 16, Loss: 0.5903, Accuracy: 0.7750
Epoch [6/10], Depth: 16, Loss: 0.5088, Accuracy: 0.7870
Epoch [7/10], Depth: 16, Loss: 0.4231, Accuracy: 0.7720
Epoch [8/10], Depth: 16, Loss: 0.4119, Accuracy: 0.7950
Epoch [9/10], Depth: 16, Loss: 0.3846, Accuracy: 0.7600
Epoch [10/10], Depth: 16, Loss: 0.3504, Accuracy: 0.7960
Final Depth: 16, Test Accuracy: 0.7960
Epoch [1/10], Depth: 17, Loss: 1.5057, Accuracy: 0.6760
Epoch [2/10], Depth: 17, Loss: 0.9184, Accuracy: 0.7430
Epoch [3/10], Depth: 17, Loss: 0.7862, Accuracy: 0.7630
Epoch [4/10], Depth: 17, Loss: 0.7013, Accuracy: 0.7600
```

```
Epoch [5/10], Depth: 17, Loss: 0.6005, Accuracy: 0.7810
Epoch [6/10], Depth: 17, Loss: 0.5717, Accuracy: 0.7830
Epoch [7/10], Depth: 17, Loss: 0.5315, Accuracy: 0.7850
Epoch [8/10], Depth: 17, Loss: 0.4548, Accuracy: 0.7900
Epoch [9/10], Depth: 17, Loss: 0.4219, Accuracy: 0.7790
Epoch [10/10], Depth: 17, Loss: 0.3731, Accuracy: 0.7750
Final Depth: 17, Test Accuracy: 0.7750
Epoch [1/10], Depth: 18, Loss: 1.5274, Accuracy: 0.6720
Epoch [2/10], Depth: 18, Loss: 0.9520, Accuracy: 0.7440
Epoch [3/10], Depth: 18, Loss: 0.8378, Accuracy: 0.7480
Epoch [4/10], Depth: 18, Loss: 0.7235, Accuracy: 0.7720
Epoch [5/10], Depth: 18, Loss: 0.6389, Accuracy: 0.7740
Epoch [6/10], Depth: 18, Loss: 0.5854, Accuracy: 0.7860
Epoch [7/10], Depth: 18, Loss: 0.5511, Accuracy: 0.7840
Epoch [8/10], Depth: 18, Loss: 0.4824, Accuracy: 0.7820
Epoch [9/10], Depth: 18, Loss: 0.4674, Accuracy: 0.7760
Epoch [10/10], Depth: 18, Loss: 0.4163, Accuracy: 0.7810
Final Depth: 18, Test Accuracy: 0.7810
Epoch [1/10], Depth: 19, Loss: 1.5800, Accuracy: 0.6720
Epoch [2/10], Depth: 19, Loss: 0.9795, Accuracy: 0.7290
Epoch [3/10], Depth: 19, Loss: 0.8651, Accuracy: 0.7270
Epoch [4/10], Depth: 19, Loss: 0.7578, Accuracy: 0.7560
Epoch [5/10], Depth: 19, Loss: 0.7010, Accuracy: 0.7730
Epoch [6/10], Depth: 19, Loss: 0.6043, Accuracy: 0.7790
Epoch [7/10], Depth: 19, Loss: 0.5818, Accuracy: 0.7710
Epoch [8/10], Depth: 19, Loss: 0.5522, Accuracy: 0.7760
Epoch [9/10], Depth: 19, Loss: 0.4883, Accuracy: 0.7940
Epoch [10/10], Depth: 19, Loss: 0.4717, Accuracy: 0.7810
Final Depth: 19, Test Accuracy: 0.7810
Epoch [1/10], Depth: 20, Loss: 1.6040, Accuracy: 0.6650
Epoch [2/10], Depth: 20, Loss: 1.0489, Accuracy: 0.7140
Epoch [3/10], Depth: 20, Loss: 0.9209, Accuracy: 0.7380
Epoch [4/10], Depth: 20, Loss: 0.8057, Accuracy: 0.7740
Epoch [5/10], Depth: 20, Loss: 0.7087, Accuracy: 0.7640
Epoch [6/10], Depth: 20, Loss: 0.6947, Accuracy: 0.7670
Epoch [7/10], Depth: 20, Loss: 0.6226, Accuracy: 0.7680
Epoch [8/10], Depth: 20, Loss: 0.5601, Accuracy: 0.7820
Epoch [9/10], Depth: 20, Loss: 0.5433, Accuracy: 0.7890
Epoch [10/10], Depth: 20, Loss: 0.5273, Accuracy: 0.7820
Final Depth: 20, Test Accuracy: 0.7820
```


This time we vary the sizes of the hidden layers. And experiment with larger and smaller sizes.

And then we analyze the trade-offs in computational cost and performance of the model.

```
import torch
\verb"import torch.nn" as nn
import torch.optim as optim
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
import matplotlib.pyplot as plt
class MLPVariableHidden(nn.Module):
   def __init__(self, hidden_size):
        super(MLPVariableHidden, self).__init__()
        self.model = nn.Sequential(
           nn.Linear(50, hidden_size),
           nn.ReLU(),
           nn.Linear(hidden_size, hidden_size),
           nn.BatchNorm1d(hidden_size),
           nn.ReLU(),
            nn.Linear(hidden_size, 10)
   def forward(self, x):
        return self.model(x)
hidden_sizes = [64, 128, 256, 512, 1024]
accuracies = []
for hidden_size in hidden_sizes:
   model = MLPVariableHidden(hidden_size).to(device)
   criterion = nn.CrossEntropyLoss()
   optimizer = optim.SGD(model.parameters(), 1r=0.001, momentum=0.9)
   num_epochs = 10
   for epoch in range(num_epochs):
       model.train()
        running_loss = 0.0
        for inputs, labels in train_loader:
            inputs, labels = inputs.to(device), labels.to(device)
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
       print(f"Epoch [{epoch+1}/{num_epochs}], Hidden Size: {hidden_size}, Loss: {running_loss/len(train_loader):.4f}")
   model.eval()
   correct = 0
   total = 0
   all_preds = []
   all_labels = []
   with torch.no_grad():
        for inputs, labels in test_loader:
           inputs, labels = inputs.to(device), labels.to(device)
           outputs = model(inputs)
            _, predicted = torch.max(outputs, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
            all_preds.extend(predicted.cpu().numpy())
            all_labels.extend(labels.cpu().numpy())
   accuracy = correct / total
   accuracies.append(accuracy)
   print(f"Final Hidden Size: {hidden_size}, Test Accuracy: {accuracy:.4f}")
   # Plot confusion matrix
```

```
cm = confusion_matrix(all_labels, all_preds)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[str(i) for i in range(10)])
disp.plot(cmap=plt.cm.Blues)
plt.title(f'Confusion Matrix (Hidden Size: {hidden_size})')
plt.show()

plt.figure(figsize=(10, 6))
plt.plot(hidden_sizes, accuracies, marker='o', label='Test Accuracy')
plt.title('Effect of Hidden Layer Size on Test Accuracy')
plt.xlabel('Hidden Layer Size')
plt.ylabel('Accuracy')
plt.grid(True)
plt.legend()
plt.show()
```


Confusion Matrix (Hidden Size: 64) rue label n Predicted label

Epoch [1/10], Hidden Size: 128, Loss: 1.6121
Epoch [2/10], Hidden Size: 128, Loss: 0.9727
Epoch [3/10], Hidden Size: 128, Loss: 0.7769
Epoch [4/10], Hidden Size: 128, Loss: 0.6800
Epoch [5/10], Hidden Size: 128, Loss: 0.6201
Epoch [6/10], Hidden Size: 128, Loss: 0.5801
Epoch [7/10], Hidden Size: 128, Loss: 0.5453
Epoch [8/10], Hidden Size: 128, Loss: 0.5121
Epoch [9/10], Hidden Size: 128, Loss: 0.4885
Epoch [10/10], Hidden Size: 128, Loss: 0.4663
Final Hidden Size: 128, Test Accuracy: 0.8230

Confusion Matrix (Hidden Size: 128)

Epoch [1/10], Hidden Size: 256, Loss: 1.3531
Epoch [2/10], Hidden Size: 256, Loss: 0.7951
Epoch [3/10], Hidden Size: 256, Loss: 0.6702
Epoch [4/10], Hidden Size: 256, Loss: 0.5941
Epoch [5/10], Hidden Size: 256, Loss: 0.5484
Epoch [6/10], Hidden Size: 256, Loss: 0.5146
Epoch [7/10], Hidden Size: 256, Loss: 0.4852
Epoch [8/10], Hidden Size: 256, Loss: 0.4521
Epoch [9/10], Hidden Size: 256, Loss: 0.4314
Epoch [10/10], Hidden Size: 256, Loss: 0.4314

Final Hidden Size: 256, Test Accuracy: 0.8350

Epoch [1/10], Hidden Size: 512, Loss: 1.1041
Epoch [2/10], Hidden Size: 512, Loss: 0.6558
Epoch [3/10], Hidden Size: 512, Loss: 0.5735
Epoch [4/10], Hidden Size: 512, Loss: 0.5151
Epoch [5/10], Hidden Size: 512, Loss: 0.4691
Epoch [6/10], Hidden Size: 512, Loss: 0.4321
Epoch [7/10], Hidden Size: 512, Loss: 0.4069
Epoch [8/10], Hidden Size: 512, Loss: 0.3768
Epoch [9/10], Hidden Size: 512, Loss: 0.3569
Epoch [10/10], Hidden Size: 512, Loss: 0.3398
Final Hidden Size: 512, Test Accuracy: 0.8230

Confusion Matrix (Hidden Size: 512)

Epoch [1/10], Hidden Size: 1024, Loss: 0.9168
Epoch [2/10], Hidden Size: 1024, Loss: 0.5627
Epoch [3/10], Hidden Size: 1024, Loss: 0.4777
Epoch [4/10], Hidden Size: 1024, Loss: 0.4304
Epoch [5/10], Hidden Size: 1024, Loss: 0.3947
Epoch [6/10], Hidden Size: 1024, Loss: 0.3561
Epoch [7/10], Hidden Size: 1024, Loss: 0.3366
Epoch [8/10], Hidden Size: 1024, Loss: 0.2983
Epoch [9/10], Hidden Size: 1024, Loss: 0.2810
Epoch [10/10], Hidden Size: 1024, Loss: 0.2595
Final Hidden Size: 1024, Test Accuracy: 0.8250

Confusion Matrix (Hidden Size: 1024)

CNN

Define the VGG11 Class

idea taken from: debugger cafe

```
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
class VGG11(nn.Module):
   def __init__(self):
       super(VGG11, self).__init__()
       self.features = nn.Sequential(
           nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
           nn.BatchNorm2d(64),
           nn.ReLU(),
           nn.MaxPool2d(kernel_size=2, stride=2),
           nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
           nn.BatchNorm2d(128),
           nn.ReLU(),
           nn.MaxPool2d(kernel_size=2, stride=2),
           nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
           nn.BatchNorm2d(256),
           nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
           nn.BatchNorm2d(256),
           nn.ReLU(),
           nn.MaxPool2d(kernel_size=2, stride=2),
           nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
           nn.BatchNorm2d(512),
           nn.ReLU(),
           nn.Conv2d(512, 512, kernel size=3, stride=1, padding=1),
           nn.BatchNorm2d(512),
           nn.ReLU(),
           nn.MaxPool2d(kernel size=2, stride=2),
           nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
           nn.BatchNorm2d(512),
           nn.ReLU(),
           nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
           nn.BatchNorm2d(512),
           nn.ReLU().
           nn.MaxPool2d(kernel_size=2, stride=2),
       )
        self._to_linear = nn.Sequential(
           nn.Flatten(),
           nn.Linear(512 * 1 * 1, 4096)
       self.classifier = nn.Sequential(
           nn.Linear(512 * 1 * 1, 4096),
           nn.ReLU(),
           nn.Dropout(0.5),
           nn.Linear(4096, 4096),
           nn.ReLU(),
           nn.Dropout(0.5),
           nn.Linear(4096, 10)
       )
   def forward(self, x):
       x = self.features(x)
       x = x.view(x.size(0), -1) # Flatten the tensor
       x = self.classifier(x)
```

return x

for epoch in range(num_epochs):

model.train()
running_loss = 0.0
correct = 0
total = 0

Data Loading and Preprocessing

```
import numpy as np
def cifar_loader(batch_size, num_train_per_class=500, num_test_per_class=100):
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225])
    train_set = datasets.CIFAR10('./data', train=True, download=True,
                                transform=transforms.Compose([transforms.RandomHorizontalFlip(),
                                                              transforms.RandomCrop(32, 4),
                                                              transforms.ToTensor(), normalize]))
    test_set = datasets.CIFAR10('./data', train=False, download=True,
                               transform=transforms.Compose([transforms.ToTensor(), normalize]))
    # only include the first 500 images per class for training and 100 for testing
    train_indices = []
    test_indices = []
    for class_label in range(10):
        train_class_indices = np.where(np.array(train_set.targets) == class_label)[0][:num_train_per_class]
       test_class_indices = np.where(np.array(test_set.targets) == class_label)[0][:num_test_per_class]
       train_indices.extend(train_class_indices)
        test_indices.extend(test_class_indices)
    train_subset = torch.utils.data.Subset(train_set, train_indices)
    test_subset = torch.utils.data.Subset(test_set, test_indices)
    train_loader = DataLoader(train_subset, batch_size=batch_size, shuffle=True, pin_memory=True)
    test_loader = DataLoader(test_subset, batch_size=batch_size, shuffle=False, pin_memory=True)
    return train_loader, test_loader
batch_size = 64
train_loader, test_loader = cifar_loader(batch_size)
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz
     100%| 170M/170M [00:05<00:00, 31.1MB/s]
     Extracting ./data/cifar-10-python.tar.gz to ./data
     Files already downloaded and verified
  Inititialize the model.
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = VGG11().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
  Training the model
import matplotlib.pyplot as plt
train_losses = []
train_accuracies = []
num_epochs = 30
```

```
for inputs, labels in train loader:
       inputs, labels = inputs.to(device), labels.to(device)
       # Forward pass
       optimizer.zero_grad()
       outputs = model(inputs)
       loss = criterion(outputs, labels)
       # Backward pass
       loss.backward()
       optimizer.step()
       running_loss += loss.item()
       _, predicted = torch.max(outputs, 1)
       total += labels.size(0)
       correct += (predicted == labels).sum().item()
   avg_loss = running_loss / len(train_loader)
   accuracy = 100 * correct / total
   train_losses.append(avg_loss)
   train accuracies.append(accuracy)
   print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {avg_loss:.4f}, Accuracy: {accuracy:.2f}%')
→ Epoch [1/30], Loss: 2.0166, Accuracy: 24.54%
    Epoch [2/30], Loss: 1.7939, Accuracy: 34.16%
    Epoch [3/30], Loss: 1.6040, Accuracy: 39.38%
    Epoch [4/30], Loss: 1.4678, Accuracy: 46.26%
    Epoch [5/30], Loss: 1.3800, Accuracy: 50.10%
    Epoch [6/30], Loss: 1.3180, Accuracy: 52.98%
    Epoch [7/30], Loss: 1.2758, Accuracy: 55.14%
    Epoch [8/30], Loss: 1.2064, Accuracy: 57.48%
    Epoch [9/30], Loss: 1.1799, Accuracy: 59.04%
    Epoch [10/30], Loss: 1.1493, Accuracy: 59.76%
    Epoch [11/30], Loss: 1.0154, Accuracy: 63.98%
    Epoch [12/30], Loss: 0.9843, Accuracy: 64.96%
    Epoch [13/30], Loss: 0.9507, Accuracy: 66.84%
    Epoch [14/30], Loss: 0.9103, Accuracy: 68.16%
    Epoch [15/30], Loss: 0.8894, Accuracy: 69.92%
    Epoch [16/30], Loss: 0.8477, Accuracy: 70.50%
    Epoch [17/30], Loss: 0.7918, Accuracy: 73.24%
    Epoch [18/30], Loss: 0.8004, Accuracy: 73.38%
    Epoch [19/30], Loss: 0.7673, Accuracy: 73.24%
    Epoch [20/30], Loss: 0.7453, Accuracy: 74.86%
    Epoch [21/30], Loss: 0.7467, Accuracy: 74.86%
    Epoch [22/30], Loss: 0.6601, Accuracy: 77.96%
    Epoch [23/30], Loss: 0.6852, Accuracy: 77.26%
    Epoch [24/30], Loss: 0.6190, Accuracy: 78.86%
    Epoch [25/30], Loss: 0.5778, Accuracy: 80.08%
    Epoch [26/30], Loss: 0.5913, Accuracy: 80.20%
    Epoch [27/30], Loss: 0.6047, Accuracy: 79.58%
    Epoch [28/30], Loss: 0.5404, Accuracy: 81.78%
    Epoch [29/30], Loss: 0.5140, Accuracy: 83.20%
    Epoch [30/30], Loss: 0.5256, Accuracy: 81.72%
```

Save the model:

code suggested by Google Gemini.

```
torch.save(model, 'vgg11_full_model.pth')
print("Full model saved to vgg11_full_model.pth")
from google.colab import files
files.download('vgg11_full_model.pth')

Full model saved to vgg11_full_model.pth
```

Training loss and accuracy:

```
epochs = range(1, num_epochs + 1)
plt.figure(figsize=(12, 6))
```

```
plt.subplot(1, 2, 1)
plt.plot(epochs, train_losses, marker='o', color='b', label='Training Loss')
plt.title('Training Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.grid(True)
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(epochs, train_accuracies, marker='o', color='g', label='Training Accuracy')
plt.title('Training Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy (%)')
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()
```


Evalute the model:

```
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
import matplotlib.pyplot as plt
model.eval()
correct = 0
total = 0
all_preds = []
all_labels = []
with torch.no_grad():
    for inputs, labels in test_loader:
        inputs, labels = inputs.to(device), labels.to(device)
       outputs = model(inputs)
        _, predicted = torch.max(outputs, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
        all_preds.extend(predicted.cpu().numpy())
        all_labels.extend(labels.cpu().numpy())
accuracy = correct / total
print(f"Test Accuracy: {accuracy:.4f}")
```

```
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']

cm = confusion_matrix(all_labels, all_preds)

cm_display = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=class_names)

cm_display.plot(cmap='Blues')

plt.title('Confusion Matrix for VGG11')

plt.show()

Test Accuracy: 0.7040
```


Experiment with the model by adding and removing laters.

we will define a custome VG11 class for this.

```
# modified VGG architectures (idea from : https://debuggercafe.com/implementing-vgg11-from-scratch-using-pytorch/)
class ModifiedVGG(nn.Module):
   def __init__(self, layers_config):
       super(ModifiedVGG, self).__init__()
       layers = []
       in_{channels} = 3
       for config in layers_config:
           if config == 'M':
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
           else:
                   nn.Conv2d(in_channels, config, kernel_size=3, padding=1),
                    nn.BatchNorm2d(config),
                    nn.ReLU(inplace=True)
                1
                in_channels = config
        self.features = nn.Sequential(*layers)
       def compute_fc_input_size(x):
           x = self.features(x)
           return x.view(x.size(0), -1)
       dummy_input = torch.zeros(1, 3, 32, 32)
       self.fc_input_size = compute_fc_input_size(dummy_input).size(1)
        self.classifier = nn.Sequential(
           nn.Linear(self.fc_input_size, 4096),
           nn.ReLU(),
           nn.Dropout(0.5),
           nn.Linear(4096, 4096),
           nn.ReLU(),
```

```
nn.Dropout(0.5),
            nn.Linear(4096, 10)
    def forward(self, x):
       x = self.features(x)
       x = x.view(x.size(0), -1)
       x = self.classifier(x)
       return x
layer_configs = {
    "VGG_Light": [64, 'M', 128, 'M', 256, 'M', 512, 'M'],
    "VGG_Full": [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    "VGG_Deep": [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M']
}
results = {}
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
batch_size = 64
train_loader, test_loader = cifar_loader(batch_size)
for name, config in layer_configs.items():
   print(f"\nTraining {name}...")
   model = ModifiedVGG(config).to(device)
   criterion = nn.CrossEntropyLoss()
   optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
   num epochs = 30
   for epoch in range(num_epochs):
       model.train()
        running_loss = 0.0
        for inputs, labels in train_loader:
            inputs, labels = inputs.to(device), labels.to(device)
            optimizer.zero_grad()
           outputs = model(inputs)
           loss = criterion(outputs, labels)
           loss.backward()
            optimizer.step()
            running_loss += loss.item()
       print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}")
   model.eval()
   all preds = []
   all_labels = []
   with torch.no_grad():
        for inputs, labels in test_loader:
           inputs, labels = inputs.to(device), labels.to(device)
           outputs = model(inputs)
            _, predicted = torch.max(outputs, 1)
            all_preds.extend(predicted.cpu().numpy())
            all_labels.extend(labels.cpu().numpy())
   acc = sum(1 for x, y in zip(all_preds, all_labels) if x == y) / len(all_labels)
   cm = confusion_matrix(all_labels, all_preds)
   results[name] = {'accuracy': acc, 'confusion_matrix': cm}
   print(f"{name} Accuracy: {acc:.4f}")
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
for ax, (name, result) in zip(axes, results.items()):
   cm_display = ConfusionMatrixDisplay(confusion_matrix=result['confusion_matrix'], display_labels=class_names)
   cm_display.plot(ax=ax, cmap='Blues', colorbar=False)
   ax.set_title(f"{name} Confusion Matrix")
plt.tight_layout()
plt.show()
results
```

Files already downloaded and verified Files already downloaded and verified Training VGG_Light... Epoch [1/30], Loss: 2.0073 Epoch [2/30], Loss: 1.7059 Epoch [3/30], Loss: 1.6278 Epoch [4/30], Loss: 1.5147 Epoch [5/30], Loss: 1.4475 Epoch [6/30], Loss: 1.3815 Epoch [7/30], Loss: 1.3442 Epoch [8/30], Loss: 1.2764 Epoch [9/30], Loss: 1.2258 Epoch [10/30], Loss: 1.2398 Epoch [11/30], Loss: 1.1812 Epoch [12/30], Loss: 1.1641 Epoch [13/30], Loss: 1.0954 Epoch [14/30], Loss: 1.0569 Epoch [15/30], Loss: 1.0449 Epoch [16/30], Loss: 0.9909 Epoch [17/30], Loss: 0.9842 Epoch [18/30], Loss: 0.9685 Epoch [19/30], Loss: 0.9411 Epoch [20/30], Loss: 0.9059 Epoch [21/30], Loss: 0.8828 Epoch [22/30], Loss: 0.8675 Epoch [23/30], Loss: 0.8615 Epoch [24/30], Loss: 0.8204 Epoch [25/30], Loss: 0.7983 Epoch [26/30], Loss: 0.7795 Epoch [27/30], Loss: 0.7742 Epoch [28/30], Loss: 0.7298 Epoch [29/30], Loss: 0.7288 Epoch [30/30], Loss: 0.7435 VGG_Light Accuracy: 0.6660 Training VGG Full... Epoch [1/30], Loss: 2.0195 Epoch [2/30], Loss: 1.7245 Epoch [3/30], Loss: 1.5631 Epoch [4/30], Loss: 1.4857 Epoch [5/30], Loss: 1.3918 Epoch [6/30], Loss: 1.3131 Epoch [7/30], Loss: 1.2621 Epoch [8/30], Loss: 1.1862 Epoch [9/30], Loss: 1.1328 Epoch [10/30], Loss: 1.0784 Epoch [11/30], Loss: 1.0115 Epoch [12/30], Loss: 0.9916 Epoch [13/30], Loss: 0.9212 Epoch [14/30], Loss: 0.8869 Epoch [15/30], Loss: 0.8839 Epoch [16/30], Loss: 0.8476 Epoch [17/30], Loss: 0.7727 Epoch [18/30], Loss: 0.7865 Epoch [19/30], Loss: 0.7636 Epoch [20/30], Loss: 0.7167 Epoch [21/30], Loss: 0.7518 Epoch [22/30], Loss: 0.6855 Epoch [23/30], Loss: 0.6588 Epoch [24/30], Loss: 0.6342 Epoch [25/30], Loss: 0.6024 Epoch [26/30], Loss: 0.5678 Epoch [27/30], Loss: 0.5377 Epoch [28/30], Loss: 0.5390 Epoch [29/30], Loss: 0.5025 Epoch [30/30], Loss: 0.5374 VGG_Full Accuracy: 0.6870 Training VGG_Deep... Epoch [1/30], Loss: 2.0425 Epoch [2/30], Loss: 1.7501 Epoch [3/30], Loss: 1.6213 Epoch [4/30], Loss: 1.5043 Epoch [5/30], Loss: 1.4728 Epoch [6/30], Loss: 1.3740 Epoch [7/30], Loss: 1.3240 Epoch [8/30], Loss: 1.2165 Epoch [9/30], Loss: 1.1592 Epoch [10/30], Loss: 1.0765 Epoch [11/30], Loss: 1.1188 Epoch [12/30], Loss: 0.9757 Epoch [13/30], Loss: 0.9426 Epoch [14/30], Loss: 0.9410

```
Epocn [15/30], Loss: 0.8962
Epoch [16/30], Loss: 0.8201
Epoch [17/30], Loss: 0.7881
Epoch [18/30], Loss: 0.7345
Epoch [19/30], Loss: 0.7307
Epoch [20/30], Loss: 0.7081
Epoch [21/30], Loss: 0.7032
Epoch [22/30], Loss: 0.6438
Epoch [23/30], Loss: 0.6428
Epoch [24/30], Loss: 0.6424
Epoch [25/30], Loss: 0.5928
Epoch [26/30], Loss: 0.5356
Epoch [27/30], Loss: 0.6016
Epoch [28/30], Loss: 0.4859
Epoch [29/30], Loss: 0.5100
Epoch [30/30], Loss: 0.4892
VGG_Deep Accuracy: 0.6870
      cat
      deer
```



```
'confusion_matrix': array([[62, 13, 0,
                                              0, 3, 1, 12, 6],
                                       2,
                                          1,
                                          2],
                               0,
       [ 1, 95, 0, 0, 0, 0,
                                   1,
                                       1,
       [20,
            5, 30, 14,
                       2, 14,
                               9,
                                   2,
                                       2,
                                          2],
        5,
            8, 1, 45,
                        5, 20,
                               7,
                                  2,
                                       4,
                                          3],
                3, 13, 52, 4,
       Г3,
            3.
                               5, 11,
                                       6.
                                          0],
        0,
                                          0],
            5,
                2, 20,
                       2, 66,
                               1, 1,
                                       3,
         1,
                3,
                    8,
                           2, 75,
                                          1],
            6,
                        3,
                        1, 7, 1, 79,
                                       2, 2],
        1,
            5,
                0,
                    2,
       [6, 9,
                0,
                   0, 0, 0,
                              0, 0,82,
                                          31.
       [ 0, 13,
               0, 0,
                       0,
                           1,
                               0,
                                   0,
                                       6, 80]])},
'VGG_Full': {'accuracy': 0.687,
 'confusion_matrix': array([[69,
                               2,
                                   2,
                                       2,
                                          1,
                                              0, 2, 0, 13, 9],
       [ 4, 64, 0, 0, 0, 1,
                                       6, 25],
                               0,
                                   0,
                           7,
        9,
            1, 49, 13, 11,
                               1,
                                   3,
                                       4, 2],
                6, 59,
                           9,
       [8,
            0,
                       5,
                               2,
                                   2,
                                          7],
                4, 7, 70,
        4,
                                          2],
            1,
                           1,
                               0,
                                   9,
        0,
            0,
                8, 31,
                       2, 48,
                               2,
                                   2,
                                       1,
                                          6],
        0,
            0,
                3, 13,
                        9,
                           2, 68,
                                          3],
                                   1,
            0,
                        4, 3, 0, 78,
                                       3, 4],
       Γ2,
                0, 6,
                              0, 0, 89, 4],
       [ 4,
            1,
                0,
                    0,
                       2, 0,
       [ 1,
            1,
                0,
                    0,
                        0,
                           0,
                                   0,
                                       4, 93]])},
                               1,
'VGG_Deep': {'accuracy': 0.687,
 'confusion_matrix': array([[75,
                                   3,
                                          0.
                                              0, 0, 0, 8, 9],
                               3.
                                       2,
       [ 1, 91, 0, 0,
                       0,
                           0,
                               0,
                                   0,
                                       2,
                                          6],
            0,67,
                    8,
                                          2],
                        5,
                           1,
                               1,
                                       1,
       [10,
           1, 5, 62,
                       8,
                           2,
                               3,
                                   3,
                                       1,
                                          5],
                                          0],
       [6,
            1, 10, 12, 68, 2,
                               0,
                                   0,
                                       1,
                                          2],
       [ 3,
            0, 13, 34,
                       4, 39,
                               1,
                                   3,
       [ 4,
            2, 20, 14,
                       1,
                           0, 58,
                                   1,
                                       0,
                                          0],
       [6,
            2,
               7, 9, 14, 1,
                               0,55,
                                       0,
                                          6],
        9,
            2, 0,
                   0, 0, 0, 0,
                                   0, 86, 3],
            8, 0, 1, 0,
                           0, 0, 0, 4, 86]])}}
```

Double-click (or enter) to edit

Modified VGG Class with Adjustable Kernel Sizes:

```
class ModifiedVGGWithKernels(nn.Module):
   def init (self, layers config, kernel size=3):
       super(ModifiedVGGWithKernels, self).__init__()
       layers = []
       in\_channels = 3
       for config in layers_config:
           if config == 'M':
               layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
           else:
               layers += [
                   nn.Conv2d(in_channels, config, kernel_size=kernel_size, padding=kernel_size//2),
                   nn.BatchNorm2d(config),
                   nn.ReLU(inplace=True)
                1
                in_channels = config
       self.features = nn.Sequential(*layers)
       def compute_fc_input_size(x):
           x = self.features(x)
           return x.view(x.size(0), -1)
       dummy_input = torch.zeros(1, 3, 32, 32)
       self.fc_input_size = compute_fc_input_size(dummy_input).size(1)
        self.classifier = nn.Sequential(
           nn.Linear(self.fc_input_size, 4096),
           nn.ReLU(),
           nn.Dropout(0.5),
           nn.Linear(4096, 4096),
           nn.ReLU(),
           nn.Dropout(0.5),
           nn.Linear(4096, 10)
       )
   def forward(self, x):
       x = self.features(x)
       x = x.view(x.size(0), -1)
       x = self.classifier(x)
```

Experiment with different Kernel sizes:

```
kernel\_sizes = [2, 3, 5, 7]
results_kernel_sizes = {}
for kernel_size in kernel_sizes:
   print(f"\nTraining with kernel size {kernel_size}x{kernel_size}...")
   model = ModifiedVGGWithKernels([64, 'M', 128, 'M', 256, 'M', 512, 'M'], kernel_size).to(device)
   criterion = nn.CrossEntropyLoss()
   optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
   num\_epochs = 30
   for epoch in range(num_epochs):
       model.train()
       running_loss = 0.0
       for inputs, labels in train_loader:
           inputs, labels = inputs.to(device), labels.to(device)
           optimizer.zero_grad()
           outputs = model(inputs)
           loss = criterion(outputs, labels)
           loss.backward()
           optimizer.step()
           running_loss += loss.item()
```

```
print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}")
   model.eval()
   all_preds = []
   all_labels = []
   with torch.no_grad():
       for inputs, labels in test_loader:
           inputs, labels = inputs.to(device), labels.to(device)
          outputs = model(inputs)
           _, predicted = torch.max(outputs, 1)
           all_preds.extend(predicted.cpu().numpy())
           all_labels.extend(labels.cpu().numpy())
   acc = sum(1 \text{ for } x, y \text{ in } zip(all\_preds, all\_labels) \text{ if } x == y) / len(all\_labels)
   cm = confusion_matrix(all_labels, all_preds)
   results_kernel_sizes[kernel_size] = {'accuracy': acc, 'confusion_matrix': cm}
   print(f"Kernel size {kernel_size}x{kernel_size} Accuracy: {acc:.4f}")
fig, axes = plt.subplots(1, len(kernel_sizes), figsize=(18, 6))
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
for ax, (kernel_size, result) in zip(axes, results_kernel_sizes.items()):
   cm_display.plot(ax=ax, cmap='Blues', colorbar=False)
   ax.set_title(f"Kernel {kernel_size}x{kernel_size}")
plt.tight_layout()
plt.show()
results kernel sizes
```