The incremental algorithm

Let $(x_i, y_i)_{i=1}^n$ be the dataset and $(\tilde{x}_i)_{i=1}^m$ be the selected Nyström points. We want to compute $\tilde{\alpha}$ of Eq. 5, incrementally in m. Towards this goal we compute an incremental Cholesky decomposition R_t for $t \in \{1, ..., m\}$ of the matrix $G_t = K_{nt}^{\top} K_{nt} + \lambda n K_{tt}$, and the coefficients $\tilde{\alpha}_t$ by $\tilde{\alpha}_t = K_{nt}^{\top} K_{nt} + K_{nt}^{\top} + K_$ $R_t^{-1}R_t^{-\top}K_{nt}^{\top}y$. Note that, for any $1 \le t \le m-1$, by assuming $G_t = R_t^{\top}R_t$ for an upper triangular matrix R_t , we have

$$G_{t+1} = \begin{pmatrix} G_t & c_{t+1} \\ c_{t+1}^\top & \gamma_{t+1} \end{pmatrix} = \begin{pmatrix} R_t & 0 \\ 0 & 0 \end{pmatrix}^\top \begin{pmatrix} R_t & 0 \\ 0 & 0 \end{pmatrix} + C_{t+1} \quad \text{with} \quad C_{t+1} = \begin{pmatrix} 0 & c_{t+1} \\ c_{t+1}^\top & \gamma_{t+1} \end{pmatrix},$$

and c_{t+1} , γ_{t+1} as in Section 4.1. Note moreover that $G_1 = \gamma_1$. Thus if we decompose the matrix C_{t+1} in the form $C_{t+1} = u_{t+1}u_{t+1}^{\top} - v_{t+1}v_{t+1}^{\top}$ we are able compute R_{t+1} , the Cholesky matrix of G_{t+1} , by updating a bordered version of R_t with two rank-one Cholesky updates. This is exactly Algorithm 1 with u_{t+1} and v_{t+1} as in Section 4.1. Note that the rank-one Cholesky update requires $O(t^2)$ at each call, while the computation of c_t requires O(nt) and the ones of $\tilde{\alpha}_t$ requires to solve two triangular linear systems, that is $O(t^2 + nt)$. Therefore the total cost for computing $\tilde{\alpha}_2, \dots, \tilde{\alpha}_m$ is $O(nm^2 + m^3)$.

Preliminary definitions

We begin introducing several operators that will be useful in the following. Let $z_1, \ldots, z_m \in \mathcal{H}$ and for all $f \in \mathcal{H}$, $a \in \mathbb{R}^m$, let

$$Z_m: \mathcal{H} \to \mathbb{R}^m, \qquad Z_m f = (\langle z_1, f \rangle_{\mathcal{H}}, \dots, \langle z_m, f \rangle_{\mathcal{H}}),$$

 $Z_m^*: \mathbb{R}^m \to \mathcal{H}, \qquad \qquad Z_m^* a = \sum_{i=1}^m a_i z_i.$

Let $S_n = \frac{1}{\sqrt{n}} Z_m$ and $S_n^* = \frac{1}{\sqrt{n}} Z_m^*$ the operators obtained taking m = n and $z_i = K_{x_i}$, $\forall i = 1, \ldots, n$ in the above definitions. Moreover, for all $f, g \in \mathcal{H}$ let

$$C_n: \mathcal{H} \to \mathcal{H}, \quad \langle f, C_n g \rangle_{\mathcal{H}} = \frac{1}{n} \sum_{i=1}^n f(x_i) g(x_i).$$

The above operators are linear and finite rank. Moreover $C_n = S_n^* S_n$ and $K_n = n S_n S_n^*$, and further $B_{nm} = \sqrt{n} S_n Z_m^* \in \mathbb{R}^{n \times m}, G_{mm} = Z_m Z_m^* \in \mathbb{R}^{m \times m} \text{ and } \tilde{K}_n = B_{nm} G_{mm}^{\dagger} B_{nm}^{\top} \in \mathbb{R}^{n \times n}.$

Representer theorem for Nyström computational regularization and extensions

In this section we consider explicit representations of the estimator obtained via Nyström computational regularization and extensions. Indeed, we consider a general subspace \mathcal{H}_m of \mathcal{H} , and the following problem

$$\hat{f}_{\lambda,m} = \underset{f \in \mathcal{H}_m}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2. \tag{11}$$

In the following lemmas, we show three different characterizations of $f_{\lambda,m}$.

Lemma 1. Let $f_{\lambda,m}$ be the solution of the problem in Eq. (11). Then it is characterized by the following equation

$$(P_m C_n P_m + \lambda I) \hat{f}_{\lambda,m} = P_m S_n^* \hat{y}_n,$$
(12)

 $(P_m C_n P_m + \lambda I) \hat{f}_{\lambda,m} = P_m S_n^* \widehat{y}_n,$ with P_m the projection operator with range \mathcal{H}_m and $\widehat{y}_n = \frac{1}{\sqrt{n}} g$.

Proof. The proof proceeds in three steps. First, note that, by rewriting Problem (11) with the notation introduced in the previous section, we obtain,

$$\hat{f}_{\lambda,m} = \underset{f \in \mathcal{H}_m}{\operatorname{argmin}} \|S_n f - \hat{y}_n\|^2 + \lambda \|f\|_{\mathcal{H}}^2.$$
(13)

This problem is strictly convex and coercive, therefore admits a unique solution. Second, we show that its solution coincide to the one of the following problem,

$$\hat{f}^* = \underset{f \in \mathcal{H}}{\operatorname{argmin}} \|S_n P_m f - \hat{y}_n\|^2 + \lambda \|f\|_{\mathcal{H}}^2.$$
 (14)

Note that the above problem is again strictly convex and coercive. To show that $\hat{f}_{\lambda,m}=\hat{f}^*$, let $\hat{f}^*=a+b$ with $a\in\mathcal{H}_m$ and $b\in\mathcal{H}_m^\perp$. A necessary condition for \hat{f}^* to be optimal, is that b=0, indeed, considering that $P_mb=0$, we have

$$||S_n P_m f^* - \widehat{y}_n||^2 + \lambda ||f^*||_{\mathcal{H}}^2 = ||S_n P_m a - \widehat{y}_n||^2 + \lambda ||a||_{\mathcal{H}}^2 + \lambda ||b||_{\mathcal{H}}^2 \ge ||S_n P_m a - \widehat{y}_n||^2 + \lambda ||a||_{\mathcal{H}}^2.$$

This means that $\hat{f}^* \in \mathcal{H}_m$, but on \mathcal{H}_m the functionals defining Problem (13) and Problem (14) are identical because $P_m f = f$ for any $f \in \mathcal{H}_m$ and so $\hat{f}_{\lambda,m} = \hat{f}^*$. Therefore, by computing the derivative of the functional of Problem (14), we see that $\hat{f}_{\lambda,m}$ is given by Eq. (12).

Using the above results, we can give an equivalent representations of the function $\hat{f}_{\lambda,m}$. Towards this end, let Z_m be a linear operator as in Sect. B such that the range of Z_m^* is exactly \mathcal{H}_m . Morever, let

$$Z_m = U\Sigma V^*$$

be the SVD of Z_m where $U: \mathbb{R}^t \to \mathbb{R}^m$, $\Sigma: \mathbb{R}^t \to \mathbb{R}^t$, $V: \mathbb{R}^t \to \mathcal{H}$, $t \leq m$ and $\Sigma = \mathrm{diag}(\sigma_1,\ldots,\sigma_t)$ with $\sigma_1 \geq \cdots \geq \sigma_t > 0$, $U^*U = I_t$ and $V^*V = I_t$. Then the orthogonal projection operator P_m is given by $P_m = VV^*$ and the range of P_m is exactly \mathcal{H}_m . In the following lemma we give a characterization of $\hat{f}_{\lambda,m}$ that will be useful in the proof of the main theorem.

Lemma 2. Given the above definitions, $\hat{f}_{\lambda,m}$ can be written as

$$\hat{f}_{\lambda,m} = V(V^*C_nV + \lambda I)^{-1}V^*S_n^*\hat{y}_n.$$
(15)

Proof. By Lemma 1, we know that $\widehat{f}_{\lambda,m}$ is written as in Eq. (12). Now, note that $\widehat{f}_{\lambda,m} = P_m \widehat{f}_{\lambda,m}$ and Eq. (12) imply $(P_m C_m P_m + \lambda I) P_m \widehat{f}_{\lambda,m} = P_m S_n^* \widehat{y}_n$, that is equivalent to

$$V(V^*C_nV + \lambda I)V^*\hat{f}_{\lambda,m} = VV^*S_n^*\hat{y}_n,$$

by substituting P_m with VV^* . Thus by premultiplying the previous equation by V^* and dividing by $V^*C_mV + \lambda I$, we have

$$V^* \hat{f}_{\lambda,m} = (V^* C_m V + \lambda I)^{-1} V^* S_n^* \widehat{y}_n.$$

Finally, by premultiplying by V,

$$\hat{f}_{\lambda,m} = P_m \hat{f}_{\lambda,m} = V(V^* C_m V + \lambda I)^{-1} V^* S_n^* \hat{y}_n.$$

Finally, the following result provide a characterization of the solution useful for computations.

Lemma 3 (Representer theorem for $\hat{f}_{\lambda,m}$). Given the above definitions, we have that $\hat{f}_{\lambda,m}$ can be written as

$$\widehat{f}_{\lambda,m}(x) = \sum_{i=1}^{m} \tilde{\alpha}_i z_i(x), \quad \text{with } \tilde{\alpha} = (B_{nm}^{\top} B_{nm} + \lambda n G_{mm})^{\dagger} B_{nm}^{\top} y \qquad \forall \ x \in X.$$
 (16)

Proof. According to the definitions of B_{nm} and G_{mm} we have that

$$\tilde{\alpha} = (B_{nm}^{\top} B_{nm} + \lambda n G_{mm})^{\dagger} B_{nm}^{\top} y = ((Z_m S_n^*) (S_n Z_m^*) + \lambda (Z_m Z_m^*))^{\dagger} (Z_m S_n^*) \widehat{y}_n.$$

Moreover, according to the definition of Z_m we have

$$\hat{f}_{\lambda,m}(x) = \sum_{i=1}^{m} \tilde{\alpha}_i \langle z_i, K_x \rangle = \langle Z_m K_x, \tilde{\alpha} \rangle_{\mathbb{R}^m} = \langle K_x, Z_m^* \tilde{\alpha} \rangle_{\mathcal{H}} \quad \forall \ x \in X,$$

11

so that

$$\hat{f}_{\lambda,m} = Z_m^*((Z_m S_n^*)(S_n Z_m^*) + \lambda (Z_m Z_m^*))^{\dagger} (Z_m S_n^*) \hat{y}_n = Z_m^* (Z_m C_{n\lambda} Z_m^*)^{\dagger} (Z_m S_n^*) \hat{y}_n,$$

where $C_{n\lambda} = C_n + \lambda I$. Let $F = U\Sigma$, $G = V^*C_nV + \lambda I$, $H = \Sigma U^{\top}$, and note that F, GH, G and H are full-rank matrices, then we can perform the full-rank factorization of the pseudo-inverse (see Eq.24, Thm. 5, Chap. 1 of [1]) obtaining

$$(Z_m C_{n\lambda} Z_m^*)^{\dagger} = (FGH)^{\dagger} = H^{\dagger} (FG)^{\dagger} = H^{\dagger} G^{-1} F^{\dagger} = U \Sigma^{-1} (V^* C_n V + \lambda I)^{-1} \Sigma^{-1} U^*.$$

Finally, simplyfing U and Σ , we have

$$\hat{f}_{\lambda,m} = Z_m^* (Z_m C_{n\lambda} Z_m^*)^{\dagger} (Z_m S_n^*) \hat{y}_n$$

$$= V \Sigma U^* U \Sigma^{-1} (V^* C_n V + \lambda I)^{-1} \Sigma^{-1} U^* U \Sigma V^* S_n^* \hat{y}_n$$

$$= V (V^* C_n V + \lambda I)^{-1} V^* S_n^* \hat{y}_n.$$

C.1 Extensions

Inspection of the proof shows that our analysis extends beyond the class of subsampling schemes in Theorem 1. Indeed, the error decomposition Theorem 2 directly applies to a large family of approximation schemes. Several further examples are described next.

KRLS and Generalized Nyström In general we could choose an arbitrary $\mathcal{H}_m \subseteq \mathcal{H}$. Let $Z_m : \mathcal{H} \to \mathbb{R}^m$ be a linear operator such that

$$\mathcal{H}_m = \operatorname{ran} Z_m^* = \{ f \mid f = Z_m^* \alpha, \ \alpha \in \mathbb{R}^m \}.$$
(17)

Without loss of generality, Z_m^* is expressible as $Z_m^* = (z_1, \dots, z_m)^\top$ with $z_1, \dots, z_m \in \mathcal{H}$, therefore, according to Section B and to Lemma 3, the solution of KRLS approximated with the generalized Nyström scheme is

$$\hat{f}_{\lambda,m}(x) = \sum_{i=1}^{m} \tilde{\alpha}_i z_i(x), \quad \text{with } \tilde{\alpha} = (B_{nm}^{\top} B_{nm} + \lambda n G_{mm})^{\dagger} B_{nm}^{\top} y \tag{18}$$

with $B_{nm} \in \mathbb{R}^{n \times m}$, $(B_{nm})_{ij} = z_j(x_i)$ and $G_{mm} \in \mathbb{R}^{m \times m}$, $(G_{mm})_{ij} = \langle z_i, z_j \rangle_{\mathcal{H}}$, or equivalently

$$\hat{f}_{\lambda,m}(x) = \sum_{i=1}^{m} \tilde{\alpha}_i z_i(x), \quad \tilde{\alpha} = G_{mm}^{\dagger} B_{nm}^{\dagger} (\tilde{K}_n + \lambda n I)^{\dagger} \hat{y}_n, \quad \tilde{K}_n = B_{nm} G_{mm}^{\dagger} B_{nm}^{\dagger}$$
 (19)

The following are some examples of Generalized Nyström approximations.

Plain Nyström with various sampling schemes [2-4] For a realization $s: \mathbb{N} \to \{1, \dots, n\}$ of a given sampling scheme, we choose $Z_m = S_m$ with $S_m^* = (K_{x_{s(1)}}, \dots, K_{x_{s(m)}})^\top$ where $(x_i)_{i=1}^n$ is the training set. With such Z_m we obtain $\tilde{K}_n = K_{nm}(K_{mm})^\dagger K_{nm}^\top$ and so Eq. (18) becomes exactly Eq. (5).

Reduced rank Plain Nyström [5] Let $p \geq m$, S_p as in the previous example, the linear operator associated to p points of the dataset. Let $K_{pp} = S_p S_p^\top \in \mathbb{R}^{p \times p}$, that is $(K_{pp})_{ij} = K(x_i, x_j)$. Let $K_{pp} = \sum_{i=1}^p \sigma_i u_i u_i^\top$ its eigenvalue decomposition and $U_m = (u_1, \dots, u_m)$. Let $(K_{pp})_m = U_m^\top K_{pp} U_m$ be the m-rank approximation of K_{pp} . We approximate this family by choosing $Z_m = U_m^\top S_p$, indeed we obtain $\tilde{K}_n = K_{nm} U_m (U_m^\top K_{pp} U_m)^\dagger U_m^\top K_{nm}^\top = K_{nm} (K_{pp})_m^\dagger K_{nm}^\top$.

Nyström with sketching matrices [6] We cover this family by choosing $Z_m = R_m S_n$, where S_n is the same operator as in the plain Nyström case where we select all the points of the training set and R_m a $m \times n$ sketching matrix. In this way we have $\tilde{K_n} = K_n R_m^* (R_m K_n R_m^*)^\dagger R_m K_n$, that is exactly the SPSD sketching model.

D Probabilistic inequalities

In this section we collect five main probabilistic inequalities needed in the proof of the main result. We let ρ_X denote the marginal distribution of ρ on X and $\rho(\cdot|x)$ the conditional distribution on \mathbb{R} given $x \in X$. Lemmas 6, 7 and especially Proposition 1 are new and of interest in their own right.

The first result is essentially taken from [7].

Lemma 4 (Sample Error). *Under Assumptions 1, 2 and 3, for any* $\delta > 0$, *the following holds with probability* $1 - \delta$

$$\|(C+\lambda I)^{-1/2}(S_n^*\widehat{y}_n - C_n f_{\mathcal{H}})\| \le 2\left(\frac{M\sqrt{\mathcal{N}_{\infty}(\lambda)}}{n} + \sqrt{\frac{\sigma^2 \mathcal{N}(\lambda)}{n}}\right) \log \frac{2}{\delta}.$$

Proof. The proof is given in [7] for bounded kernels and the slightly stronger condition $\int (e^{\frac{|y-f_{\mathcal{H}}(x)|}{M}} - \frac{|y-f_{\mathcal{H}}(x)|}{M} - 1)d\rho(y|x) \le \sigma^2/M^2 \text{ in place of Assumption 2. More precisely, note that }$

$$(C + \lambda I)^{-1/2} (S_n^* \widehat{y}_n - C_n f_{\mathcal{H}}) = \frac{1}{n} \sum_{i=1}^n \zeta_i,$$

where ζ_1, \ldots, ζ_n are i.i.d. random variables, defined as $\zeta_i = (C + \lambda I)^{-1/2} K_{x_i} (y_i - f_{\mathcal{H}}(x_i))$. For any $1 \le i \le n$,

$$\mathbb{E}\zeta_i = \int_{X \times \mathbb{R}} (C + \lambda I)^{-1/2} K_{x_i} (y_i - f_{\mathcal{H}}(x_i)) d\rho(x_i, y_i)$$
$$= \int_X (C + \lambda I)^{-1/2} K_{x_i} \int_{\mathbb{R}} (y_i - f_{\mathcal{H}}(x_i)) d\rho(y_i | x_i) d\rho_X(x_i) = 0,$$

almost everywhere by Assumption 1 (see Step 3.2 of Thm. 4 in [7]). In the same way we have

$$\mathbb{E}\|\zeta_{i}\|^{p} = \int_{X \times \mathbb{R}} \|(C + \lambda I)^{-1/2} K_{x_{i}}(y_{i} - f_{\mathcal{H}}(x_{i}))\|^{p} d\rho(x_{i}, y_{i})$$

$$= \int_{X} \|(C + \lambda I)^{-1/2} K_{x_{i}}\|^{p} \int_{\mathbb{R}} |y_{i} - f_{\mathcal{H}}(x_{i})|^{p} d\rho(y_{i}|x_{i}) d\rho_{X}(x_{i})$$

$$\leq \sup_{x \in X} \|(C + \lambda I)^{-1/2} K_{x}\|^{p-2} \int_{X} \|(C + \lambda I)^{-1/2} K_{x_{i}}\|^{2} \int_{\mathbb{R}} |y_{i} - f_{\mathcal{H}}(x_{i})|^{p} d\rho(y_{i}|x_{i}) d\rho_{X}(x_{i})$$

$$\leq \frac{1}{2} p! \sqrt{\sigma^{2} \mathcal{N}(\lambda)^{2}} (M \sqrt{\mathcal{N}_{\infty}(\lambda)})^{p-2},$$

where $\sup_{x\in X}\|(C+\lambda I)^{-1/2}K_x\|=\sqrt{\mathcal{N}_\infty(\lambda)}$ and $\int_X\|(C+\lambda I)^{-1/2}K_{x_i}\|^2=\mathcal{N}(\lambda)$ by Assumption 3, while the bound on the moments of y-f(x) is given in Assumption 2. Finally, to concentrate the sum of random vectors, we apply Prop. 11.

The next result is taken from [8].

Lemma 5. Under Assumption 3, for any $\delta \geq 0$ and $\frac{9\kappa^2}{n} \log \frac{n}{\delta} \leq \lambda \leq \|C\|$, the following inequality holds with probability at least $1 - \delta$,

$$\|(C_n + \lambda I)^{-1/2}C^{1/2}\| \le \|(C_n + \lambda I)^{-1/2}(C + \lambda I)^{1/2}\| \le 2.$$

Proof. Lemma 7 of [8] gives an the extended version of the above result. Our bound on λ is scaled by κ^2 because in [8] it is assumed $\kappa \leq 1$.

Lemma 6 (plain Nyström approximation). Under Assumption 3, let J be a partition of $\{1, \ldots, n\}$ chosen uniformly at random from the partitions of cardinality m. Let $\lambda > 0$, for any $\delta > 0$, such that $m \geq 67 \log \frac{4\kappa^2}{\lambda \delta} \vee 5\mathcal{N}_{\infty}(\lambda) \log \frac{4\kappa^2}{\lambda \delta}$, the following holds with probability $1 - \delta$

$$||(I - P_m)C^{1/2}||^2 \le 3\lambda,$$

where P_m is the projection operator on the subspace $\mathcal{H}_m = \text{span}\{K_{x_j} \mid j \in J\}$.

Proof. Define the linear operator $C_m: \mathcal{H} \to \mathcal{H}$, as $C_m = \frac{1}{m} \sum_{j \in J} K_{x_j} \otimes K_{x_j}$. Now note that the range of C_m is exactly \mathcal{H}_m . Therefore, by applying Prop. 3 and 7, we have that

$$\|(I - P_m)C_{\lambda}^{1/2}\|^2 \le \lambda \|(C_m + \lambda I)^{-1/2}C^{1/2}\|^2 \le \frac{\lambda}{1 - \beta(\lambda)},$$

with $\beta(\lambda) = \lambda_{\max}\left(C_{\lambda}^{-1/2}(C - C_m)C_{\lambda}^{-1/2}\right)$. To upperbound $\frac{\lambda}{1-\beta(\lambda)}$ we need an upperbound for $\beta(\lambda)$. Considering that, given the partition J, the random variables $\zeta_j = K_{x_j} \otimes K_{x_j}$ are i.i.d., then we can apply Prop. 8, to obtain

$$\beta(\lambda) \le \frac{2w}{3m} + \sqrt{\frac{2w\mathcal{N}_{\infty}(\lambda)}{m}},$$

where $w = \log \frac{4 \operatorname{Tr}(C)}{\lambda \delta}$ with probability $1 - \delta$. Thus, by choosing $m \geq 67w \vee 5\mathcal{N}_{\infty}(\lambda)w$, we have that $\beta(\lambda) \leq 2/3$, that is

$$||(I - P_m)C_{\lambda}^{1/2}||^2 \le 3\lambda.$$

Finally, note that by definition $Tr(C) \le \kappa^2$.

Lemma 7 (Nyström approximation for ALS selection method). Let $(\hat{l}_i(t))_{i=1}^n$ be the collection of approximate leverage scores. Let $\lambda > 0$ and P_{λ} be defined as $P_{\lambda}(i) = \hat{l}_i(\lambda) / \sum_{j \in N} \hat{l}_j(\lambda)$ for any $i \in N$ with $N = \{1, \ldots, n\}$. Let $\Im = (i_1, \ldots, i_m)$ be a collection of indices independently sampled with replacement from N according to the probability distribution P_{λ} . Let P_m be the projection operator on the subspace $\mathcal{H}_m = \operatorname{span}\{K_{x_j} | j \in J\}$ and J be the subcollection of \Im with all the duplicates removed. Under Assumption 3, for any $\delta > 0$ the following holds with probability $1 - 2\delta$

$$||(I - P_m)(C + \lambda I)^{1/2}|| \le 3\lambda,$$

when the following conditions are satisfied:

- 1. there exists a $T \ge 1$ and a $\lambda_0 > 0$ such that $(\hat{l}_i(t))_{i=1}^n$ are T-approximate leverage scores for any $t \ge \lambda_0$ (see Def. 1),
- $2. \ n \ge 1655\kappa^2 + 223\kappa^2 \log \frac{2\kappa^2}{\delta},$
- 3. $\lambda_0 \vee \frac{19\kappa^2}{n} \log \frac{2n}{\delta} \le \lambda \le ||C||$,
- 4. $m \geq 334 \log \frac{8n}{\delta} \vee 78T^2 \mathcal{N}(\lambda) \log \frac{8n}{\delta}$.

Proof. Define $\tau = \delta/4$. Next, define the diagonal matrix $H \in \mathbb{R}^{n \times n}$ with $(H)_{ii} = 0$ when $P_{\lambda}(i) = 0$ and $(H)_{ii} = \frac{nq(i)}{mP_{\lambda}(i)}$ when $P_{\lambda}(i) > 0$, where q(i) is the number of times the index i is present in the collection \mathfrak{I} . We have that

$$S_n^* H S_n = \frac{1}{m} \sum_{i=1}^n \frac{q(i)}{P_{\lambda}(i)} K_{x_i} \otimes K_{x_i} = \frac{1}{m} \sum_{j \in J} \frac{q(j)}{P_{\lambda}(j)} K_{x_j} \otimes K_{x_j}.$$

Now, considering that $\frac{q(j)}{P_{\lambda}(j)} > 0$ for any $j \in J$, thus ran $S_n^*HS_n = \mathcal{H}_m$. Therefore, by using Prop. 3 and 7, we exploit the fact that the range of P_m is the same of $S_n^*HS_n$, to obtain

$$\|(I - P_m)(C + \lambda I)^{1/2}\|^2 \le \lambda \|(S_n^* H S_n + \lambda I)^{-1/2} C^{1/2}\|^2 \le \frac{\lambda}{1 - \beta(\lambda)},$$

with $\beta(\lambda) = \lambda_{\max} \left(C_{\lambda}^{-1/2} (C - S_n^* H S_n) C_{\lambda}^{-1/2} \right)$. Considering that the function $(1-x)^{-1}$ is increasing on $-\infty < x < 1$, in order to bound $\lambda/(1-\beta(\lambda))$ we need an upperbound for $\beta(\lambda)$. Here we split $\beta(\lambda)$ in the following way,

$$\beta(\lambda) \leq \underbrace{\lambda_{\max}\left(C_{\lambda}^{-1/2}(C - C_n)C_{\lambda}^{-1/2}\right)}_{\beta_1(\lambda)} + \underbrace{\lambda_{\max}\left(C_{\lambda}^{-1/2}(C_n - S_n^*HS_n)C_{\lambda}^{-1/2}\right)}_{\beta_2(\lambda)}.$$

Considering that C_n is the linear combination of independent random vectors, for the first term we can apply Prop. 8, obtaining a bound of the form

$$\beta_1(\lambda) \le \frac{2w}{3n} + \sqrt{\frac{2w\kappa^2}{\lambda n}},$$

with probability $1 - \tau$, where $w = \log \frac{4\kappa^2}{\lambda \tau}$ (we used the fact that $\mathcal{N}_{\infty}(\lambda) \leq \kappa^2/\lambda$). Then, after dividing and multiplying by $C_{n\lambda}^{1/2}$, we split the second term $\beta_2(\lambda)$ as follows:

$$\begin{split} \beta_2(\lambda) &\leq \|C_{\lambda}^{-1/2}(C_n - S_n^*HS_n)C_{\lambda}^{-1/2}\| \\ &\leq \|C_{\lambda}^{-1/2}C_{n\lambda}^{1/2}C_{n\lambda}^{-1/2}(C_n - S_n^*HS_n)C_{n\lambda}^{-1/2}C_{n\lambda}^{1/2}C_{\lambda}^{-1/2}\| \\ &\leq \|C_{\lambda}^{-1/2}C_{n\lambda}^{1/2}\|^2\|C_{n\lambda}^{-1/2}(C_n - S_n^*HS_n)C_{n\lambda}^{-1/2}\|. \end{split}$$

Let

$$\beta_3(\lambda) = \|C_{n\lambda}^{-1/2}(C_n - S_n^* H S_n) C_{n\lambda}^{-1/2}\| = \|C_{n\lambda}^{-1/2} S_n^*(I - H) S_n C_{n\lambda}^{-1/2}\|.$$
 (20)

Note that $S_n C_{n\lambda}^{-1} S_n^* = K_n (K_n + \lambda nI)^{-1}$ indeed $C_{n\lambda}^{-1} = (S_n^* S_n + \lambda I)^{-1}$ and $K_n = nS_n S_n^*$. Therefore we have

$$S_n C_{n\lambda}^{-1} S_n^* = S_n (S_n^* S_n + \lambda I)^{-1} S_n^* = (S_n S_n^* + \lambda I)^{-1} S_n S_n^* = (K_n + \lambda nI)^{-1} K_n.$$

Thus, if we let $U\Sigma U^{\top}$ be the eigendecomposition of K_n , we have that $(K_n + \lambda nI)^{-1}K_n = U(\Sigma + \lambda nI)^{-1}\Sigma U^{\top}$ and thus $S_nC_{n\lambda}^{-1}S_n^* = U(\Sigma + \lambda nI)^{-1}\Sigma U^{\top}$. In particular this implies that $S_nC_{n\lambda}^{-1}S_n^* = UQ_n^{1/2}Q_n^{1/2}U^{\top}$ with $Q_n = (\Sigma + \lambda nI)^{-1}\Sigma$. Therefore we have

$$\beta_3(\lambda) = \|C_{n\lambda}^{-1/2} S_n^*(I - H) S_n C_{n\lambda}^{-1/2} \| = \|Q_n^{1/2} U^\top (I - H) U Q_n^{1/2} \|,$$

where we used twice the fact that $||ABA^*|| = ||(A^*A)^{1/2}B(A^*A)^{1/2}||$ for any bounded linear operators A, B.

Consider the matrix $A = Q_n^{1/2}U^{\top}$ and let a_i be the *i*-th column of A, and e_i be the *i*-th canonical basis vector for each $i \in N$. We prove that $||a_i||^2 = l_i(\lambda)$, the true leverage score, since

$$||a_i||^2 = ||Q_n^{1/2}U^{\top}e_i||^2 = e_i^{\top}UQ_nU^{\top}e_i = ((K_n + \lambda nI)^{-1}K_n)_{ii} = l_i(\lambda).$$

Noting that $\sum_{k=1}^n \frac{q(k)}{P_\lambda(k)} a_k a_k^\top = \sum_{i=\Im} \frac{1}{P_\lambda(i)} a_i a_i^\top$, we have

$$\beta_3(\lambda) = ||AA^{\top} - \frac{1}{m} \sum_{i \in \mathfrak{I}} \frac{1}{P_{\lambda}(i)} a_i a_i^{\top}||.$$

Moreover, by the T-approximation property of the approximate leverage scores (see Def. 1), we have that for all $i \in \{1, \dots, n\}$, when $\lambda \geq \lambda_0$, the following holds with probability $1 - \delta$

$$P_{\lambda}(i) = \frac{\hat{l}_i(\lambda)}{\sum_{j} \hat{l}_j(\lambda)} \ge T^{-2} \frac{l_i(\lambda)}{\sum_{j} l_j(\lambda)} = T^{-2} \frac{\|a_i\|^2}{\operatorname{Tr} AA^{\top}}.$$

Then, we can apply Prop. 9, so that, after a union bound, we obtain the following inequality with probability $1 - \delta - \tau$:

$$\beta_3(\lambda) \leq \frac{2\|A\|^2 \log \frac{2n}{\tau}}{3m} + \sqrt{\frac{2\|A\|^2 T^2 \operatorname{Tr} AA^{\top} \log \frac{2n}{\tau}}{m}} \leq \frac{2 \log \frac{2n}{\tau}}{3m} + \sqrt{\frac{2T^2 \hat{\mathcal{N}}(\lambda) \log \frac{2n}{\tau}}{m}},$$

where the last step follows from $\|A\|^2 = \|(K_n + \lambda nI)^{-1}K_n\| \leq 1$ and $\operatorname{Tr}(AA^\top) = \operatorname{Tr}(C_{n\lambda}^{-1}C_n) := \hat{\mathcal{N}}(\lambda)$. Applying Proposition 1, we have that $\hat{\mathcal{N}}(\lambda) \leq 1.3\mathcal{N}(\lambda)$ with probability $1-\tau$, when $\frac{19\kappa^2}{n}\log\frac{n}{4\tau} \leq \lambda \leq \|C\|$ and $n \geq 405\kappa^2 \vee 67\kappa^2\log\frac{\kappa^2}{2\tau}$. Thus, by taking a union bound again, we have

$$\beta_3(\lambda) \le \frac{2\log\frac{2n}{\tau}}{3m} + \sqrt{\frac{5.3T^2\mathcal{N}(\lambda)\log\frac{2n}{\tau}}{m}},$$

with probability $1-2\tau-\delta$ when $\lambda_0\vee\frac{19\kappa^2}{n}\log\frac{n}{\delta}\leq\lambda\leq\|C\|$ and $n\geq405\kappa^2\vee67\kappa^2\log\frac{2\kappa^2}{\delta}$. The last step is to bound $\|C_\lambda^{-1/2}C_{n\lambda}^{1/2}\|^2$, as follows

$$\|C_{\lambda}^{-1/2}C_{n\lambda}^{1/2}\|^2 = \|C_{\lambda}^{-1/2}C_{n\lambda}C_{\lambda}^{-1/2}\| = \|I + C_{\lambda}^{-1/2}(C_n - C)C_{\lambda}^{-1/2}\| \le 1 + \eta,$$

with $\eta = \|C_{\lambda}^{-1/2}(C_n - C)C_{\lambda}^{-1/2}\|$. Note that, by applying Prop. 8 we have that $\eta \leq \frac{2(\kappa^2 + \lambda)\theta}{3\lambda n} + \sqrt{\frac{2\kappa^2\theta}{3\lambda n}}$ with probability $1 - \tau$ and $\theta = \log \frac{8\kappa^2}{\lambda \tau}$. Finally, by collecting the above results and taking a union bound we have

$$\beta(\lambda) \le \frac{2w}{3n} + \sqrt{\frac{2w\kappa^2}{\lambda n}} + (1+\eta) \left(\frac{2\log\frac{2n}{\tau}}{3m} + \sqrt{\frac{5.3T^2\mathcal{N}(\lambda)\log\frac{2n}{\tau}}{m}} \right),$$

with probability $1-4\tau-\delta=1-2\delta$ when $\lambda_0\vee\frac{19\kappa^2}{n}\log\frac{n}{\delta}\leq\lambda\leq\|C\|$ and $n\geq405\kappa^2\vee67\kappa^2\log\frac{2\kappa^2}{\delta}$. Note that, if we select $n\geq405\kappa^2\vee223\kappa^2\log\frac{2\kappa^2}{\delta}$, $m\geq334\log\frac{8n}{\delta}$, $\lambda_0\vee\frac{19\kappa^2}{n}\log\frac{2n}{\delta}\leq\lambda\leq\|C\|$ and $\frac{78T^2\mathcal{N}(\lambda)\log\frac{8n}{\delta}}{m}\leq1$ the conditions are satisfied and we have $\beta(\lambda)\leq2/3$, so that

$$||(I - P_m)C^{1/2}||^2 \le 3\lambda,$$

with probability $1-2\delta$.

Proposition 1 (Empirical Effective Dimension). Let $\hat{\mathcal{N}}(\lambda) = \operatorname{Tr} C_n C_{n\lambda}^{-1}$. Under the Assumption 3, for any $\delta > 0$ and $n \geq 405\kappa^2 \vee 67\kappa^2 \log \frac{6\kappa^2}{\delta}$, if $\frac{19\kappa^2}{n} \log \frac{n}{4\delta} \leq \lambda \leq ||C||$, then the following holds with probability $1 - \delta$.

$$\frac{|\hat{\mathcal{N}}(\lambda) - \mathcal{N}(\lambda)|}{\mathcal{N}(\lambda)} \le 4.5q + (1 + 9q)\sqrt{\frac{3q}{\mathcal{N}(\lambda)}} + \frac{q + 13.5q^2}{\mathcal{N}(\lambda)} \le 1.65,$$

with $q = \frac{4\kappa^2 \log \frac{6}{\delta}}{3\lambda n}$.

Proof. Let $\tau = \delta/3$. Define $B_n = C_\lambda^{-1/2}(C-C_n)C_\lambda^{-1/2}$. Choosing λ in the range $\frac{19\kappa^2}{n}\log\frac{n}{4\tau} \leq \lambda \leq \|C\|$, Prop. 8 assures that $\lambda_{\max}(B_n) \leq 1/3$ with probability $1-\tau$. Then, using the fact that $C_{n\lambda}^{-1} = C_\lambda^{-1/2}(I-B_n)^{-1}C_\lambda^{-1/2}$ (see the proof of Prop. 7) we have

$$\begin{split} |\hat{\mathcal{N}}(\lambda) - \mathcal{N}(\lambda)| &= |\operatorname{Tr} C_{n\lambda}^{-1} C_n - C C_{\lambda}^{-1} = \lambda \operatorname{Tr} C_{n\lambda}^{-1} (C_n - C) C_{\lambda}^{-1}| \\ &= |\lambda \operatorname{Tr} C_{\lambda}^{-1/2} (I - B_n)^{-1} C_{\lambda}^{-1/2} (C_n - C) C_{\lambda}^{-1/2} C_{\lambda}^{-1/2}| \\ &= |\lambda \operatorname{Tr} C_{\lambda}^{-1/2} (I - B_n)^{-1} B_n C_{\lambda}^{-1/2}|. \end{split}$$

Considering that for any symmetric linear operator $X: \mathcal{H} \to \mathcal{H}$ the following identity holds

$$(I-X)^{-1}X = X + X(I-X)^{-1}X,$$

when $\lambda_{\max}(X) \leq 1$, we have

$$\lambda |\operatorname{Tr} C_{\lambda}^{-1/2} (I - B_n)^{-1} B_n C_{\lambda}^{-1/2}| \leq \underbrace{\lambda |\operatorname{Tr} C_{\lambda}^{-1/2} B_n C_{\lambda}^{-1/2}|}_{A} + \underbrace{\lambda |\operatorname{Tr} C_{\lambda}^{-1/2} B_n (I - B_n)^{-1} B_n C_{\lambda}^{-1/2}|}_{B}.$$

To find an upperbound for A define the i.i.d. random variables $\eta_i = \langle K_{x_i}, \lambda C_\lambda^{-2} K_{x_i} \rangle \in \mathbb{R}$ with $i \in \{1, \dots, n\}$. By linearity of the trace and the expectation, we have $M = \mathbb{E}\eta_1 = \mathbb{E} \langle K_{x_i}, \lambda C_\lambda^{-2} K_{x_i} \rangle = \mathbb{E} \operatorname{Tr}(\lambda C_\lambda^{-2} K_{x_1} \otimes K_{x_1}) = \lambda \operatorname{Tr}(C_\lambda^{-2} C)$. Therefore,

$$|\lambda| \operatorname{Tr} C_{\lambda}^{-1/2} B_n C_{\lambda}^{-1/2}| = \left| M - \frac{1}{n} \sum_{i=1}^n \eta_i \right|,$$

and we can apply the Bernstein inequality (Prop. 10) with

$$|M - \eta_1| \le \lambda ||C_{\lambda}^{-2}|| ||K_{x_1}||^2 + M \le \frac{\kappa^2}{\lambda} + M \le \frac{2\kappa^2}{\lambda} = L,$$

$$\mathbb{E}(\eta_1 - M)^2 = \mathbb{E}\eta_1^2 - M^2 \le \mathbb{E}\eta_1^2 \le LM = \sigma^2.$$

An upperbound for M is $M = \text{Tr}(\lambda C_{\lambda}^{-2}C) = \text{Tr}((I - C_{\lambda}^{-1}C)C_{\lambda}^{-1}C) \leq \mathcal{N}(\lambda)$. Thus, we have

$$\lambda |\operatorname{Tr} C_{\lambda}^{-1/2} B_n C_{\lambda}^{-1/2}| \leq \frac{4\kappa^2 \log \frac{2}{\tau}}{3\lambda n} + \sqrt{\frac{4\kappa^2 \mathcal{N}(\lambda) \log \frac{2}{\tau}}{\lambda n}},$$

with probability $1-\tau$.

To find an upperbound for B, let \mathcal{L} be the space of Hilbert-Schmidt operators on \mathcal{H} . \mathcal{L} is a Hilbert space with scalar product $\langle U,V\rangle_{HS}=\operatorname{Tr}(UV^*)$ for all $U,V\in\mathcal{L}$. Next, note that $B=\|Q\|_{HS}^2$ where $Q=\lambda^{1/2}C_\lambda^{-1/2}B_n\left(I-B_n\right)^{-1/2}$, moreover

$$\|Q\|_{HS}^2 \le \|\lambda^{1/2}C_{\lambda}^{-1/2}\|^2 \|B_n\|_{HS}^2 \|(I-B_n)^{-1/2}\|^2 \le 1.5\|B_n\|_{HS}^2$$

since $||(I - B_n)^{-1/2}||^2 = (1 - \lambda_{\max}(B_n))^{-1} \le 3/2$ and $(1 - \sigma)^{-1}$ is increasing and positive on $[-\infty, 1)$.

To find a bound for $\|B_n\|_{HS}$ consider that $B_n=T-\frac{1}{n}\sum_{i=1}^n\zeta_i$ where ζ_i are i.i.d. random operators defined as $\zeta_i=C_\lambda^{-1/2}(K_{x_i}\otimes K_{x_i})C_\lambda^{-1/2}\in\mathcal{L}$ for all $i\in\{1,\ldots,n\}$, and $T=\mathbb{E}\zeta_1=C_\lambda^{-1}C\in\mathcal{L}$. Then we can apply the Bernstein's inequality for random vectors on a Hilbert space (Prop. 11), with the following L and σ^2 :

$$||T - \zeta_1||_{HS} \le ||C_{\lambda}^{-1/2}||^2 ||K_{x_1}||_{\mathcal{H}}^2 + ||T||_{HS} \le \frac{\kappa^2}{\lambda} + ||T||_{HS} \le \frac{2\kappa^2}{\lambda} = L,$$

$$\mathbb{E}||\zeta_1 - T||^2 = \mathbb{E}\operatorname{Tr}(\zeta_1^2 - T^2) \le \mathbb{E}\operatorname{Tr}(\zeta_1^2) \le L\mathbb{E}\operatorname{Tr}(\zeta_1) = \sigma^2,$$

where $||T||_{HS} \leq \mathbb{E} \operatorname{Tr}(\zeta_1) = \mathcal{N}(\lambda)$, obtaining

$$||B_n||_{HS} \le \frac{4\kappa^2 \log \frac{2}{\tau}}{\lambda n} + \sqrt{\frac{4\kappa^2 \mathcal{N}(\lambda) \log \frac{2}{\tau}}{\lambda n}},$$

with probability $1-\tau$. Then, by taking a union bound for the three events we have

$$|\hat{\mathcal{N}}(\lambda) - \mathcal{N}(\lambda)| \le q + \sqrt{3q\mathcal{N}(\lambda)} + 1.5\left(3q + \sqrt{3q\mathcal{N}(\lambda)}\right)^2$$

with $q=\frac{4\kappa^2\log\frac{6}{\delta}}{3\lambda n}$, and with probability $1-\delta$. Finally, if the second assumption on λ holds, then we have $q\leq 4/57$. Noting that $n\geq 405\kappa^2$, and that $\mathcal{N}(\lambda)\geq \|CC_\lambda^{-1}\|=\frac{\|C\|}{\|C\|+\lambda}\geq 1/2$, we have that

$$|\hat{\mathcal{N}}(\lambda) - \mathcal{N}(\lambda)| \leq \left(\frac{q}{3\mathcal{N}(\lambda)} + \sqrt{\frac{q}{\mathcal{N}(\lambda)}} + 1.5\left(\frac{q}{\sqrt{\mathcal{N}(\lambda)}} + \sqrt{q}\right)^2\right)\mathcal{N}(\lambda) \leq 1.65\mathcal{N}(\lambda).$$

E Proofs of main theorem

A key step to derive the proof of Theorem 1 is the error decomposition given by the following theorem, together with the probabilistic inequalities in the previous section.

Theorem 2 (Error decomposition for KRLS+Ny). Under Assumptions 1, 3, 4, let $v = \min(s, 1/2)$ and $\hat{f}_{\lambda,m}$ a KRLS + generalized Nyström solution as in Eq. (18). Then for any $\lambda, m > 0$ the error is bounded by

$$\left| \mathcal{E}(\hat{f}_{\lambda,m}) - \mathcal{E}(f_{\mathcal{H}}) \right|^{1/2} \le q(\underbrace{\mathcal{S}(\lambda,n)}_{Sample\ error} + \underbrace{\mathcal{C}(m)^{1/2+v}}_{Computational\ error} + \underbrace{\lambda^{1/2+v}}_{Approximation\ error}), \tag{21}$$

where $S(\lambda, n) = \|(C + \lambda I)^{-1/2} (S_n^* \widehat{y}_n - C_n f_{\mathcal{H}})\|$ and $C(m) = \|(I - P_m)(C + \lambda I)^{1/2}\|^2$ with $P_m = Z_m^* (Z_m Z_m^*)^{\dagger} Z_m$. Moreover $q = R(\beta^2 \vee (1 + \theta \beta))$, $\beta = \|(C_n + \lambda I)^{-1/2} (C + \lambda I)^{1/2}\|$, $\theta = \|(C_n + \lambda I)^{1/2} (C + \lambda I)^{-1/2}\|$.

17

Proof. Let $C_{\lambda}=C+\lambda I$ and $C_{n\lambda}=C_n+\lambda I$ for any $\lambda>0$. Let $\hat{f}_{\lambda,m}$ as in Eq. (18). By Lemma 1, Lemma 2 and Lemma 3 we know that $\hat{f}_{\lambda,m}$ is characterized by $\hat{f}_{\lambda,m}=g_{\lambda m}(C_n)S_n^*\widehat{y}_n$ with $g_{\lambda,m}(C_n)=V(V^*C_nV+\lambda I)^{-1}V^*$. By using the fact that $\mathcal{E}(f)-\mathcal{E}(f_{\mathcal{H}})=\|C^{1/2}(f-f_{\mathcal{H}})\|_{\mathcal{H}}^2$ for any $f\in\mathcal{H}$ (see Prop. 1 Point 3 of [7]), we have

$$|\mathcal{E}(\hat{f}_{\lambda,m}) - \mathcal{E}(f_{\mathcal{H}})|^{1/2} = ||C^{1/2}(\hat{f}_{\lambda,m} - f_{\mathcal{H}})||_{\mathcal{H}} = ||C^{1/2}(g_{\lambda,m}(C_n)S_n^*\hat{y}_n - f_{\mathcal{H}})||_{\mathcal{H}}$$

$$= ||C^{1/2}(g_{\lambda,m}(C_n)S_n^*(\hat{y}_n - S_nf_{\mathcal{H}} + S_nf_{\mathcal{H}}) - f_{\mathcal{H}})||_{\mathcal{H}}$$

$$\leq \underbrace{||C^{1/2}g_{\lambda,m}(C_n)S_n^*(\hat{y}_n - S_nf_{\mathcal{H}})||_{\mathcal{H}}}_{A} + \underbrace{||C^{1/2}(I - g_{\lambda,m}(C_n)C_n)f_{\mathcal{H}}||_{\mathcal{H}}}_{B}.$$

Bound for the term A Multiplying and dividing by $C_{n\lambda}^{1/2}$ and $C_{\lambda}^{1/2}$ we have

 $A \leq \|C^{1/2}C_{n\lambda}^{-1/2}\|\|C_{n\lambda}^{1/2}g_{\lambda,m}(C_n)C_{n\lambda}^{1/2}\|\|C_{n\lambda}^{-1/2}C_{\lambda}^{1/2}\|\|C_{\lambda}^{-1/2}S_n^*(\widehat{y}_n - S_nf_{\mathcal{H}})\|_{\mathcal{H}} \leq \beta^2\,\mathcal{S}(\lambda,n),$ where the last step is due to Lemma 8 and the fact that

$$\|C^{1/2}C_{n\lambda}^{-1/2}\| \leq \|C^{1/2}C_{\lambda}^{-1/2}\| \|C_{\lambda}^{1/2}C_{n\lambda}^{-1/2}\| \leq \|C_{\lambda}^{1/2}C_{n\lambda}^{-1/2}\|.$$

Bound for the term B Noting that $g_{\lambda,m}(C_n)C_{n\lambda}VV^* = VV^*$, we have

$$I - g_{\lambda,m}(C_n)C_n = I - g_{\lambda,m}(C_n)C_{n\lambda} + \lambda g_{\lambda,m}(C_n)$$

= $I - g_{\lambda,m}(C_n)C_{n\lambda}VV^* - g_{\lambda,m}(C_n)C_{n\lambda}(I - VV^*) + \lambda g_{\lambda,m}(C_n)$
= $(I - VV^*) + \lambda g_{\lambda,m}(C_n) - g_{\lambda,m}(C_n)C_{n\lambda}(I - VV^*).$

Therefore, noting that by Ass. 4 we have $\|C_{\lambda}^{-v}f_{\mathcal{H}}\|_{\mathcal{H}} \leq \|C_{\lambda}^{-s}f_{\mathcal{H}}\|_{\mathcal{H}} \leq \|C^{-s}f_{\mathcal{H}}\|_{\mathcal{H}} \leq R$, then, by reasoning as in A, we have

$$B \leq \|C^{1/2}(I - g_{\lambda,m}(C_n)C_n)C_{\lambda}^v\|\|C_{\lambda}^{-v}f_{\mathcal{H}}\|_{\mathcal{H}}$$

$$\leq R\|C^{1/2}C_{\lambda}^{-1/2}\|\|C_{\lambda}^{1/2}(I - VV^*)C_{\lambda}^v\| + R\lambda\|C^{1/2}C_{n\lambda}^{-1/2}\|\|C_{n\lambda}^{1/2}g_{\lambda,m}(C_n)C_{\lambda}^v\|$$

$$+ R\|C^{1/2}C_{n\lambda}^{-1/2}\|\|C_{n\lambda}^{1/2}g_{\lambda,m}(C_n)C_{n\lambda}^{1/2}\|\|C_{n\lambda}^{1/2}C_{\lambda}^{-1/2}\|\|C_{\lambda}^{1/2}(I - VV^*)C_{\lambda}^v\|$$

$$\leq R(1 + \beta\theta)\underbrace{\|C_{\lambda}^{1/2}(I - VV^*)C_{\lambda}^v\|}_{B,1} + R\beta\underbrace{\lambda\|C_{n\lambda}^{1/2}g_{\lambda,m}(C_n)C_{\lambda}^v\|}_{B,2},$$

where in the second step we applied the decomposition of $I - g_{\lambda m}(C_n)C_n$.

Bound for the term B.1 Since VV^* is a projection operator, we have that $(I-VV^*)=(I-VV^*)^s$, for any s>0, therefore

$$B.1 = \|C_{\lambda}^{1/2} (I - VV^*)^2 C_{\lambda}^v\| \le \|C_{\lambda}^{1/2} (I - VV^*)\| \|(I - VV^*) C_{\lambda}^v\|.$$

By applying Cordes inequality (Prop. 4) to $\|(I - VV^*)C_{\lambda}^v\|$ we have,

$$\|(I - VV^*)C_{\lambda}^v\| = \|(I - VV^*)^{2v}C_{\lambda}^{\frac{1}{2}2v}\| = \|(I - VV^*)C_{\lambda}^{1/2}\|^{2v}.$$

Bound for the term B.2 We have

$$\begin{split} B.2 &\leq \lambda \|C_{n\lambda}^{1/2} g_{\lambda,m}(C_n) C_{n\lambda}^v \| \|C_{n\lambda}^{-v} C_{\lambda}^v \| \\ &\leq \lambda \|C_{n\lambda}^{1/2} g_{\lambda,m}(C_n) C_{n\lambda}^v \| \|C_{n\lambda}^{-1/2} C_{\lambda}^{1/2} \|^{2v} \\ &\leq \beta^{2v} \lambda \|(V^* C_{n\lambda} V)^{1/2} (V^* C_{n\lambda} V)^{-1} (V^* C_{n\lambda} V)^v \| \\ &= \beta^{2v} \lambda \|(V^* C_n V + \lambda I)^{-(1/2-v)} \| \leq \beta \lambda^{1/2+v}, \end{split}$$

where the first step is obtained multipling and dividing by $C_{n\lambda}^v$, the second step by applying Cordes inequality (see Prop. 4), the third step by Prop. 6.

Proposition 2 (Bounds for plain and ALS Nyström). For any $\delta > 0$, let $n \geq 1655\kappa^2 + 223\kappa^2\log\frac{6\kappa^2}{\delta}$, let $\frac{19\kappa^2}{n}\log\frac{6n}{\delta} \leq \lambda \leq \|C\|$ and define

$$\mathcal{C}_{\rm pl}(m) = \min\left\{t > 0 \,\middle|\, (67 \vee 5\mathcal{N}_{\infty}(t)) \log\frac{12\kappa^2}{t\delta} \le m\right\},$$

$$\mathcal{C}_{\rm ALS}(m) = \min\left\{\frac{19\kappa^2}{n} \log\frac{12n}{\delta} \le t \le ||C|| \,\middle|\, 78T^2\mathcal{N}(t) \log\frac{48n}{\delta} \le m\right\}.$$

Under the assumptions of Thm. 2 and Assumption 2, 3, if one of the following two conditions hold

- 1. plain Nyström is used,
- 2. ALS Nyström is used with
 - (a) T-approximate leverage scores, for any $t \geq \frac{19\kappa^2}{n} \log \frac{12n}{\delta}$ (see Def. 1), (b) resampling probabilities P_t where $t = \mathcal{C}_{ALS}(m)$ (see Sect. 2),

 - (c) $m > 334 \log \frac{48n}{5}$,

then the following holds with probability $1 - \delta$

$$\left| \mathcal{E}(\hat{f}_{\lambda,m}) - \mathcal{E}(f_{\mathcal{H}}) \right|^{1/2} \le 6R \left(\frac{M\sqrt{\mathcal{N}_{\infty}(\lambda)}}{n} + \sqrt{\frac{\sigma^2 \mathcal{N}(\lambda)}{n}} \right) \log \frac{6}{\delta} + 3R\mathcal{C}(m)^{1/2+v} + 3R\lambda^{1/2+v}$$
(22)

where $C(m) = C_{pl}(m)$ in case of plain Nyström and $C(m) = C_{ALS}(m)$ in case of ALS Nyström.

Proof. In order to get explicit bounds from Thm. 2, we have to control four quantities that are $\beta, \theta, S(\lambda, n)$ and C(m). In the following we bound such quantities in probability and then take a union bound. Let $\tau = \delta/3$. We can control both β and θ , by bounding $b(\lambda) = \delta/3$. $\|C_{\lambda}^{-1/2}(C_n-C)C_{\lambda}^{-1/2}\|$. Indeed, by Prop. 7, we have that $\beta \leq 1/(1-b(\lambda))$, while

$$\theta^2 = \|C_{\lambda}^{-1/2} C_{n\lambda} C_{\lambda}^{-1/2}\| = \|I + C_{\lambda}^{-1/2} (C_n - C) C_{\lambda}^{-1/2}\| \le 1 + b(\lambda).$$

Exploiting Prop. 8, with the fact that $\mathcal{N}(\lambda) \leq \mathcal{N}_{\infty}(\lambda) \leq \frac{\kappa^2}{\lambda}$ and $\operatorname{Tr} C \leq \kappa^2$, we have that $b(\lambda) \leq \kappa^2$ $\frac{2(\kappa^2+\lambda)w}{3\lambda n}+\sqrt{\frac{2w\kappa^2}{\lambda n}}$ for $w=\log\frac{4\kappa^2}{\tau\lambda}$ with probability $1-\tau$. Simple computations show that with n and λ as in the statement of this corollary, we have $b(\lambda)\leq 1/3$. Therefore $\beta\leq 1.5$, while $\theta\leq 1.16$ and $q = R(\beta^2 \vee (1 + \theta \beta)) < 2.75R$ with probability $1 - \tau$. Next, we bound $S(\lambda, n)$. Here we exploit Lemma 4 which gives, with probability $1 - \tau$,

$$S(\lambda, n) \le 2 \left(\frac{M\sqrt{\mathcal{N}_{\infty}(\lambda)}}{n} + \sqrt{\frac{\sigma^2 \mathcal{N}(\lambda)}{n}} \right) \log \frac{2}{\tau}.$$

To bound C(m) for plain Nyström, Lemma 6 gives $C(m) \leq 3t$ with probability $1-\tau$, for a t>0 such that $(67\vee 5\mathcal{N}_{\infty}(t))\log \frac{4\kappa^2}{t\tau}\leq m$. In particular, we choose $t=\mathcal{C}_{\mathrm{pl}}(m)$ to satisfy the condition. Next we bound C(m) for ALS Nyström. Using Lemma 7 with $\lambda_0 = \frac{19\kappa^2}{n} \log \frac{2n}{\tau}$, we have $C(m) \leq 3t$ with probability $1-\tau$ under some conditions on t, m, n, on the approximate leverage scores and on the resampling probability. Here again the requirement on n is satisfied by the hypotesis on n of this proposition, while the condition on the approximate leverage scores and on the resampling probabilities are satisfied by conditions (a), (b) of this proposition. The remaining two conditions are $\frac{19\kappa^2}{n}\log\frac{4n}{\tau}\leq t\leq \|C\|$ and $(334\vee 78T^2\mathcal{N}(t))\log\frac{16n}{\tau}\leq m$. They are satisfied by choosing $t=\mathcal{C}_{\mathrm{ALS}}(m)$ and by assuming that $m\geq 334\log\frac{16n}{\tau}$. Finally, the proposition is obtained by substituting each of the four quantities $\beta,\theta,\mathcal{S}(\lambda,n),\mathcal{C}(m)$ with the corresponding upperbounds in Eq. (21), and by taking the union bounds on the associated events.

Proof of Theorem 1. By exploiting the results of Prop. 2, obtained from the error decomposition of Thm. 2 we have that

$$\left| \mathcal{E}(\hat{f}_{\lambda,m}) - \mathcal{E}(f_{\mathcal{H}}) \right|^{1/2} \le 6R \left(\frac{M\sqrt{\mathcal{N}_{\infty}(\lambda)}}{n} + \sqrt{\frac{\sigma^2 \mathcal{N}(\lambda)}{n}} \right) \log \frac{6}{\delta} + 3R\mathcal{C}(m)^{1/2+v} + 3R\lambda^{1/2+v}$$
(23)

with probability $1-\delta$, under conditions on λ, m, n , on the resampling probabilities and on the approximate leverage scores. The last is satisfied by condition (a) in this theorem. The conditions on λ, n are $n \geq 1655\kappa^2 + 223\kappa^2\log\frac{6\kappa^2}{\delta}$ and $\frac{19\kappa^2}{n}\log\frac{12n}{\delta} \leq \lambda \leq \|C\|$. If we assume that $n \geq 1655\kappa^2 + 223\kappa^2\log\frac{6\kappa^2}{\delta} + \left(\frac{38p}{\|C\|}\log\frac{114\kappa^2p}{\|C\|\delta}\right)^p$ we satisfy the condition on n and at the same time we are sure that $\lambda = \|C\|n^{-1/(2v+\gamma+1)}$ satisfies the condition on λ . In the plain Nyström case, if we assume that $m \geq 67\log\frac{12\kappa^2}{\lambda\delta} + 5\mathcal{N}_\infty(\lambda)\log\frac{12\kappa^2}{\lambda\delta}$, then $\mathcal{C}(m) = \mathcal{C}_{\rm pl}(m) \leq \lambda$. In the ALS Nyström case, if we assume that $m \geq (334 \vee 78T^2\mathcal{N}(\lambda))\log\frac{48n}{\delta}$ the condition on m is satisfied, then $\mathcal{C}(m) = \mathcal{C}_{\rm ALS}(m) \leq \lambda$, moreover the conditions on the resampling probabilities is satisfied by condition (b) of this theorem. Therefore, by setting $\lambda = \|C\|n^{-1/(2v+\gamma+1)}$ in Eq. (23) and considering that $\mathcal{N}_\infty(\lambda) \leq \kappa^2 \lambda^{-1}$ we easily obtain the result of this theorem.

The following lemma is a technical result needed in the error decomposition (Thm. 2).

Lemma 8. For any $\lambda > 0$, let V be such that $V^*V = I$ and C_n be a positive self-adjoint operator. Then, the following holds,

$$\|(C_n + \lambda I)^{1/2} V (V^* C_n V + \lambda I)^{-1} V^* (C_n + \lambda I)^{1/2} \| \le 1.$$

Proof. Let $C_{n\lambda} = C_n + \lambda I$ and $g_{\lambda m}(C_n) = V(V^*C_nV + \lambda I)^{-1}V^*$, then

$$\begin{split} \|C_{n\lambda}^{1/2} g_{\lambda m}(C_n) C_{n\lambda}^{1/2} \|^2 &= \|C_{n\lambda}^{1/2} g_{\lambda m}(C_n) C_{n\lambda} g_{\lambda m}(C_n) C_{n\lambda}^{1/2} \| \\ &= \|C_{n\lambda}^{1/2} V(V^* C_{n\lambda} V)^{-1} (V^* C_{n\lambda} V) (V^* C_{n\lambda} V)^{-1} V^* C_{n\lambda}^{1/2} \| \\ &= \|C_{n\lambda}^{1/2} g_{\lambda m}(C_n) C_{n\lambda}^{1/2} \|, \end{split}$$

and therefore the only possible values for $\|C_{n\lambda}^{1/2}g_{\lambda m}(C_n)C_{n\lambda}^{1/2}\|$ are 0 or 1.

F Auxiliary results

Proposition 3. Let $\mathcal{H}, \mathcal{K}, \mathcal{F}$ three separable Hilbert spaces, let $Z : \underline{\mathcal{H}} \to \mathcal{K}$ be a bounded linear operator and let W be a projection operator on \mathcal{H} such that $\operatorname{ran} P = \operatorname{ran} Z^*$. Then for any bounded linear operator $F : \mathcal{F} \to \mathcal{H}$ and any $\lambda > 0$ we have

$$||(I-P)X|| \le \lambda^{1/2}||(Z^*Z + \lambda I)^{-1/2}X||.$$

Proof. First of all note that $\lambda(Z^*Z + \lambda I)^{-1} = I - Z^*(ZZ^* + \lambda I)^{-1}Z$, that Z = ZP and that $\|Z^*(ZZ^* + \lambda I)^{-1}Z\| \le 1$ for any $\lambda > 0$. Then for any $v \in \mathcal{H}$ we have

$$\langle v, Z^*(ZZ^* + \lambda I)^{-1}Zv \rangle = \langle v, PZ^*(ZZ^* + \lambda I)^{-1}ZPv \rangle = \|(ZZ^* + \lambda I)^{-1/2}ZPv\|^2$$

$$\leq \|(ZZ^* + \lambda I)^{-1/2}Z\|^2 \|Pv\|^2 \leq \|Pv\|^2 = \langle v, Pv \rangle$$

therefore $P-Z^*(ZZ^*+\lambda I)^{-1}Z$ is a positive operator, and $(I-Z^*(ZZ^*+\lambda I)^{-1}Z)-(I-P)$ too. Now we can apply Prop. 5.

Proposition 4 (Cordes Inequality [9]). Let A, B two positive semidefinite bounded linear operators on a separable Hilbert space. Then

$$||A^sB^s|| < ||AB||^s$$
 when $0 < s < 1$.

Proposition 5. Let $\mathcal{H}, \mathcal{K}, \mathcal{F}, \mathcal{G}$ be three separable Hilbert spaces and let $X : \mathcal{H} \to \mathcal{K}$ and $Y : \mathcal{H} \to \mathcal{F}$ be two bounded linear operators. For any bounded linear operator $Z : \mathcal{G} \to \mathcal{H}$, if $Y^*Y - X^*X$ is a positive self-adjoint operator then $\|XZ\| \leq \|YZ\|$.

Proof. If $Y^*Y - X^*X$ is a positive operator then $Z^*(Y^*Y - X^*X)Z$ is positive too. Thus for all $f \in \mathcal{H}$ we have that $\langle f, (Q-P)f \rangle \geq 0$, where $Q = Z^*Y^*YZ$ and $P = Z^*X^*XZ$. Thus, by linearity of the inner product, we have

$$\|Q\| = \sup_{f \in \mathcal{G}} \langle f, Qf \rangle = \sup_{f \in \mathcal{G}} \left\{ \langle f, Pf \rangle + \langle f, (Q - P)f \rangle \right\} \ge \sup_{f \in \mathcal{G}} \langle f, Pf \rangle = \|P\|.$$

Proposition 6. Let \mathcal{H}, \mathcal{K} be two separable Hilbert spaces, let $A: \mathcal{H} \to \mathcal{H}$ be a positive linear operator, $V: \mathcal{H} \to \mathcal{K}$ a partial isometry and $B: \mathcal{K} \to \mathcal{K}$ a bounded operator. Then $\|A^rVBV^*A^s\| \leq \|(V^*AV)^rB(V^*AV)^s\|$, for all $0 \leq r, s \leq 1/2$.

Proof. By Hansen's inequality (see [10]) we know that $(V^*AV)^{2t} - V^*A^{2t}V$ is positive selfadjoint operator for any $0 \le t \le 1/2$, therefore we can apply Prop. 5 two times, obtaining

$$\|A^rV(BV^*A^s)\| \leq \|(V^*AV)^r(BV^*A^s)\| = \|((V^*AV)^rB)V^*A^s\| \leq \|((V^*AV)^rB)(V^*AV)^s\|.$$

Proposition 7. Let \mathcal{H} be a separable Hilbert space, let A, B two bounded self-adjoint positive linear operators and $\lambda > 0$. Then

$$||(A + \lambda I)^{-1/2}B^{1/2}|| \le (1 - \beta)^{-1/2}$$

when

$$\beta = \lambda_{\max} \left[(B + \lambda I)^{-1/2} (B - A)(B + \lambda I)^{-1/2} \right] < 1.$$

Proof. Let $B_{\lambda} = B + \lambda I$. Note that

$$\begin{split} (A+\lambda I)^{-1} &= \left[(B+\lambda I) - (B-A) \right]^{-1} \\ &= \left[B_{\lambda}^{1/2} \left(I - B_{\lambda}^{-1/2} (B-A) B_{\lambda}^{-1/2} \right) B_{\lambda}^{1/2} \right]^{-1} \\ &= B_{\lambda}^{-1/2} \left[I - B_{\lambda}^{-1/2} (B-A) B_{\lambda}^{-1/2} \right]^{-1} B_{\lambda}^{-1/2}. \end{split}$$

Now let $X = (I - B_{\lambda}^{-1/2} (B - A) B_{\lambda}^{-1/2})^{-1}$. We have that,

$$\begin{split} \|(A+\lambda I)^{-1/2}B^{1/2}\| &= \|B^{1/2}(A+\lambda I)^{-1}B^{1/2}\|^{1/2} \\ &= \|B^{1/2}B_{\lambda}^{-1/2}XB_{\lambda}^{-1/2}B^{1/2}\|^{1/2} \\ &= \|X^{1/2}B_{\lambda}^{-1/2}B^{1/2}\|, \end{split}$$

because $||Z|| = ||Z^*Z||^{1/2}$ for any bounded operator Z. Note that

$$\|X^{1/2}B_{\lambda}^{-1/2}B^{1/2}\| \leq \|X\|^{1/2}\|B_{\lambda}^{-1/2}B^{1/2}\| \leq \|X\|^{1/2}.$$

Finally let $Y=B_{\lambda}^{-1/2}(B-A)B_{\lambda}^{-1/2}$ and assume that $\lambda_{\max}(Y)<1$, then

$$||X|| = ||(I - Y)^{-1}|| = (1 - \lambda_{\max}(Y))^{-1},$$

since X=w(Y) with $w(\sigma)=(1-\sigma)^{-1}$ for $-\infty \leq \sigma < 1$, and w is positive and monotonically increasing on the domain.

G Tail bounds

Let $\|\cdot\|_{HS}$ denote the Hilbert-Schmidt norm.

Proposition 8. Let v_1, \ldots, v_n with $n \geq 1$, be independent and identically distributed random vectors on a separable Hilbert spaces \mathcal{H} such that $Q = \mathbb{E} \ v \otimes v$ exists, is trace class, and for any $\lambda > 0$ there exists a constant $\mathcal{N}_{\infty}(\lambda) < \infty$ such that $\langle v, (Q + \lambda I)^{-1}v \rangle \leq \mathcal{N}_{\infty}(\lambda)$ almost everywhere. Let $Q_n = \frac{1}{n} \sum_{i=1}^n v_i \otimes v_i$ and take $0 < \lambda \leq \|Q\|$. Then for any $\delta \geq 0$, the following holds

$$\|(Q + \lambda I)^{-1/2}(Q - Q_n)(Q + \lambda I)^{-1/2}\| \le \frac{2\beta(1 + \mathcal{N}_{\infty}(\lambda))}{3n} + \sqrt{\frac{2\beta\mathcal{N}_{\infty}(\lambda)}{n}}$$

with probability $1 - 2\delta$. Here $\beta = \log \frac{4 \operatorname{Tr} Q}{\lambda \delta}$. Moreover it holds that

$$\lambda_{\max}\left((Q+\lambda I)^{-1/2}(Q-Q_n)(Q+\lambda I)^{-1/2}\right) \le \frac{2\beta}{3n} + \sqrt{\frac{2\beta\mathcal{N}_{\infty}(\lambda)}{n}}$$

with probability $1 - \delta$.

Proof. Let $Q_{\lambda}=Q+\lambda I$. Here we apply Prop. 12 on the random variables $Z_i=M-Q_{\lambda}^{-1/2}v_i\otimes Q_{\lambda}^{-1/2}v_i$ with $M=Q_{\lambda}^{-1/2}QQ_{\lambda}^{-1/2}$ for $1\leq i\leq n$. Note that the expectation of Z_i is 0. The random vectors are bounded by

$$\|Q_{\lambda}^{-1/2}QQ_{\lambda}^{-1/2} - Q_{\lambda}^{-1/2}v_{i} \otimes Q_{\lambda}^{-1/2}v_{i}\| \leq \langle v, Q_{\lambda}^{-1}v \rangle + \|Q_{\lambda}^{-1/2}QQ_{\lambda}^{-1/2}\| \leq \mathcal{N}_{\infty}(\lambda) + 1$$

and the second orded moment is

$$\mathbb{E}(Z_1)^2 = \mathbb{E} \left\langle v_1, Q_{\lambda}^{-1} v_1 \right\rangle Q_{\lambda}^{-1/2} v_1 \otimes Q_{\lambda}^{-1/2} v_1 - Q_{\lambda}^{-2} Q^2$$

$$\leq \mathcal{N}_{\infty}(\lambda) \mathbb{E}Q_{\lambda}^{-1/2} v_1 \otimes Q_{\lambda}^{-1/2} v_1 = \mathcal{N}_{\infty}(\lambda) Q = S.$$

Now we can apply Prop. 12. Now some considerations on β . It is $\beta = \log \frac{4\operatorname{Tr} S}{\|S\|\delta} = \frac{4\operatorname{Tr} Q_\lambda^{-1}Q}{\|Q_\lambda^{-1}Q\|\delta}$, now $\operatorname{Tr} Q_\lambda^{-1}Q \leq \frac{1}{\lambda}\operatorname{Tr} Q$. We need a lowerbound for $\|Q_\lambda^{-1}Q\| = \frac{\sigma_1}{\sigma_1 + \lambda}$ where $\sigma_1 = \|Q\|$ is the biggest eigenvalue of Q, now $\lambda \leq \sigma_1$ thus $\frac{\operatorname{Tr} Q}{\lambda \delta}$.

For the second bound of this proposition, the analysis remains the same except for L, indeed

$$\sup_{f \in \mathcal{H}} \langle f, Z_1 f \rangle = \sup_{f \in \mathcal{H}} \langle f, Q_{\lambda}^{-1} Q f \rangle - \left\langle f, Q_{\lambda}^{-1/2} v_i \right\rangle^2 \le \sup_{f \in \mathcal{H}} \left\langle f, Q_{\lambda}^{-1} Q f \right\rangle \le 1.$$

Remark 1. In Prop. 8, let define $\kappa^2 = \inf_{\lambda>0} \mathcal{N}_{\infty}(\lambda)(\|Q\| + \lambda)$. When $n \geq 405\kappa^2 \vee 67\kappa^2 \log \frac{\kappa^2}{2\delta}$ and $\frac{9\kappa^2}{n} \log \frac{n}{2\delta} \leq \lambda \leq \|Q\|$ we have that

$$\lambda_{\max} \left((Q + \lambda I)^{-1/2} (Q - Q_n) (Q + \lambda I)^{-1/2} \right) \le \frac{1}{2},$$

with probability $1-\delta$, while it is less than 1/3 with the same probability, if $\frac{19\kappa^2}{n}\log\frac{n}{4\delta}\leq\lambda\leq\|Q\|$.

Proposition 9 (Theorem 2 [11]. Approximation of matrix products.). Let n,n be positive integers. Consider a matrix $A \in \mathbb{R}^{n \times n}$ and denote by a_i the i-th column of A. Let $m \leq n$ and $I = \{i_1, \ldots, i_m\}$ be a subset of $N = \{1, \ldots, n\}$ formed by m elements chosen randomly with replacement, according to a distribution that associates the probability P(i) to the element $i \in N$. Assume that there exists a $\beta \in (0,1]$ such that the probabilities $P(1), \ldots, P(n)$ satisfy $P(i) \geq \beta \frac{\|a_i\|^2}{\operatorname{Tr} AA^\top}$ for all $i \in N$. For any $\delta > 0$ the following holds

$$||AA^{\top} - \frac{1}{m} \sum_{i \in I} \frac{1}{P(i)} a_i a_i^{\top}|| \le \frac{2L \log \frac{2n}{\delta}}{3m} + \sqrt{\frac{2LS \log \frac{2n}{\delta}}{m}}$$

with probability $1 - \delta$. Here $L = ||A||^2$ and $S = \frac{1}{\beta} \operatorname{Tr} AA^{\top}$.

Proposition 10 (Bernstein's inequality for sum of random variables). Let x_1, \ldots, x_n be a sequence of independent and identically distributed random variables on \mathbb{R} with zero mean. If there exists an $L, S \in \mathbb{R}$ such that $x_1 \leq L$ almost everywhere and $\mathbb{E}x_1^2 \leq S$, then for any $\delta > 0$ the following holds with probability $1 - \delta$:

$$\frac{1}{n} \sum_{i=1}^{n} x_i \le \frac{2L \log \frac{1}{\delta}}{3n} + \sqrt{\frac{2S \log \frac{1}{\delta}}{n}}.$$

If there exists an $L' \ge |x_1|$ almost everywhere, then the same bound, computed with L' instead of L, holds for the for the absolute value of the left hand side, with probability $1-2\delta$.

Proof. It is a restatement of Theorem 3 of [12].

Proposition 11 (Bernstein's inequality for sum of random vectors). Let z_1, \ldots, z_n be a sequence of independent identically distributed random vectors on a separable Hilbert space \mathcal{H} . Assume $\mu = \mathbb{E}z_1$ exists and let $\sigma, M \geq 0$ such that

$$\mathbb{E}||z_1 - \mu||_{\mathcal{H}}^p \le \frac{1}{2}p!\sigma^2 L^{p-2}$$

for all $p \geq 2$. Then for any $\tau \geq 0$:

$$\left\|\frac{1}{n}\sum_{i=1}^{n} z_{i} - \mu\right\|_{\mathcal{H}} \leq \frac{2L\log\frac{2}{\delta}}{n} + \sqrt{\frac{2\sigma^{2}\log\frac{2}{\delta}}{n}}$$

with probability greater or equal $1 - \delta$.

Proof. restatement of Theorem 3.3.4 of [13].

Proposition 12 (Bernstein's inequality for sum of random operators). Let \mathcal{H} be a separable Hilbert space and let X_1, \ldots, X_n be a sequence of independent and identically distributed self-adjoint positive random operators on \mathcal{H} . Assume that there exists $\mathbb{E}X_1 = 0$ and $\lambda_{\max}(X_1) \leq L$ almost everywhere for some L > 0. Let S be a positive operator such that $\mathbb{E}(X_1)^2 \leq S$. Then for any $\delta \geq 0$ the following holds

$$\lambda_{\max}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) \leq \frac{2L\beta}{3n} + \sqrt{\frac{2\|S\|\beta}{n}}$$

with probability $1 - \delta$. Here $\beta = \log \frac{2 \operatorname{Tr} S}{\|S\| \delta}$.

If there exists an L' such that $L' \ge ||X_1||$ almost everywhere, then the same bound, computed with L' instead of L, holds for the operatorial norm with probability $1 - 2\delta$.

Proof. The theorem is a restatement of Theorem 7.3.1 of [14] generalized to the separable Hilbert space case by means of the technique in Section 4 of [15]. \Box

References

- [1] Adi Ben-Israel and Thomas NE Greville. Generalized inverses: theory and applications. Springer, 2003.
- [2] Alex J. Smola and Bernhard Schölkopf. Sparse Greedy Matrix Approximation for Machine Learning. In *ICML*, pages 911–918. Morgan Kaufmann, 2000.
- [3] C. Williams and M. Seeger. Using the Nyström Method to Speed Up Kernel Machines. In NIPS, pages 682–688. MIT Press, 2000.
- [4] S. Kumar, M. Mohri, and A. Talwalkar. Sampling methods for the Nyström method. *JMLR*, 13(1):981–1006, 2012.
- [5] Petros Drineas and Michael W. Mahoney. On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning. *JMLR*, 6:2153–2175, December 2005.
- [6] A. Gittens and M. W. Mahoney. Revisiting the Nystrom method for improved large-scale machine learning. 28:567–575, 2013.
- [7] Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares algorithm. *Foundations of Computational Mathematics*, 7(3):331–368, 2007.
- [8] Alessandro Rudi, Guillermo D. Canas, and Lorenzo Rosasco. On the Sample Complexity of Subspace Learning. In NIPS, pages 2067–2075, 2013.
- [9] Junichi Fujii, Masatoshi Fujii, Takayuki Furuta, and Ritsuo Nakamoto. Norm inequalities equivalent to Heinz inequality. *Proceedings of the American Mathematical Society*, 118(3), 1993.
- [10] F. Hansen. An operator inequality. *Mathematische Annalen*, 246(3), 1980.
- [11] A. Alaoui and M. W. Mahoney. Fast randomized kernel methods with statistical guarantees. arXiv, 2014.
- [12] Stéphane Boucheron, Gábor Lugosi, and Olivier Bousquet. Concentration inequalities. In *Advanced Lectures on Machine Learning*. 2004.
- [13] Vadim Vladimirovich Yurinsky. Sums and Gaussian vectors. 1995.
- [14] Joel A Tropp. User-friendly tools for random matrices: an introduction. 2012.
- [15] Stanislav Minsker. On some extensions of Bernstein's inequality for self-adjoint operators. arXiv, 2011.