Statistics

Homework 3 – Estimation

Abraham Murciano

April 12, 2020

1. (a) Given a sample x_1, \ldots, x_n , we are to prove that $\forall k \in \{1, \ldots, n\}$,

$$\hat{\mu}_k = \frac{\sum_{i=1}^k x_i}{k}$$

is an unbiased estimator of the average μ . To demonstrate this, we must show that $E[\hat{\mu}_k] = \mu$.

$$E[\hat{\mu}_k] = \frac{\sum_{i=1}^k E[x_i]}{k} = \frac{\sum_{i=1}^k \mu}{k} = \frac{k\mu}{k} = \mu$$

(b) The larger the value of k, the better the estimator $\hat{\mu}_k$ is. This is because when an estimator's variance from its parameter is small, it is a better estimator. The variance of $\hat{\mu}_k$ is

$$\operatorname{Var}(\hat{\mu}_k) = \operatorname{Var}\left(\frac{\sum_{i=1}^k x_i}{k}\right) = \frac{1}{k^2} \operatorname{Var}\left(\sum_{i=1}^k x_i\right)$$

It is clear from this that the larger k is, the smaller $\frac{1}{k^2}$ is, so the smaller $Var(\hat{\mu}_k)$ is.