

Universidade de Fortaleza

Centro de Ciências Tecnológicas

Curso de Ciência da Computação

Disciplina de Sistemas Ciberfísicos Colaborativos

Sistema Distribuído de Monitoramento e Retransmissão com ESP32 e Protocolo ESP-NOW

Equipe:

João Victor Lira Saraiva Leão

Lara Guerra Vilela

João Gabriel

Sumário

1 Introdução	3
2 Materiais e Métodos	3
3 Sistema Distribuído de Monitoramento	4
3.1 Arquitetura do Sistema	4
3.2 Camada de Borda	4
3.3 Camada de Comunicação e Nuvem	4
4 Resultados	5
5 Conclusão	6
Referências	6

1 Introdução

A Internet das Coisas (IoT) e os Sistemas Ciberfísicos (CPS) têm ampliado sua presença em cenários onde a conectividade, automação e coleta de dados são essenciais. A utilização de protocolos sem infraestrutura tradicional, como o ESP-NOW, permite a criação de redes resilientes em locais com pouca ou nenhuma conectividade externa (ATZORI et al., 2010).

Este projeto propõe a implementação de uma rede de monitoramento ambiental autônoma, com nós sensores que enviam dados para repetidores ESP32 que reencaminham os pacotes, aumentando o alcance e confiabilidade da rede.

Objetivos específicos:

- Implementar coleta de temperatura e umidade com ESP32 e DHT22.
- Desenvolver repetidores inteligentes com controle de duplicidade.
- Criar uma lógica de comunicação robusta entre múltiplos nós sem roteador Wi-Fi.

2 Materiais e <u>Métodos</u>

Os materiais utilizados no desenvolvimento do sistema foram os seguintes:

ESP32 – Microcontrolador com conectividade Wi-Fi e suporte ao protocolo ESP-NOW.

Sensor DHT22 – Sensor digital de temperatura e umidade com maior precisão que o DHT11.

ESP-NOW – Protocolo de comunicação sem fio ponto-a-ponto para ESP32.

ArduinoJson – Biblioteca para manipulação e serialização de dados em JSON.

Arduino IDE – Ambiente de desenvolvimento e carregamento dos códigos para ESP32.

3 Sistema Distribuído de Monitoramento

3.1 Arquitetura do Sistema

O sistema é composto por nós sensores que leem dados ambientais e os enviam via ESP-NOW. Esses dados são retransmitidos por repetidores inteligentes que filtram duplicações e controlam o tráfego com base em timestamps.

Essa arquitetura garante maior confiabilidade, já que os dados podem ser redirecionados mesmo que um dos nós fique temporariamente indisponível.

3.2 Camada de Borda

Dispositivos físicos presentes na borda:

- Sensor DHT22 conectado ao ESP32.
- LED no pino 2 utilizado como indicador de status.

Funções da borda:

- Medição de temperatura e umidade com as funções `dht.readTemperature()` e `dht.readHumidity()`.
- Geração e envio periódico (a cada 500ms) de pacotes de dados em formato JSON.
- Controle de estado com alternância de valor booleano a cada 5 mensagens enviadas.

3.3 Camada de Comunicação e Nuvem

O repetidor ESP32 atua como nó intermediário, recebendo e retransmitindo dados recebidos de outros nós sensores.

Entre suas funções estão:

- Verificação de duplicidade utilizando ID e contador de mensagens.
- Armazenamento das últimas 20 mensagens em buffer circular.
- Cálculo do tempo entre mensagens de um mesmo nó, por meio de controle de timestamp.
- Retransmissão de mensagens únicas via broadcast ESP-NOW para ampliação da cobertura.

Futuramente, o sistema pode ser integrado a um gateway MQTT para exibição em painel Node-RED hospedado em nuvem.

4 Resultados

Foram realizados os seguintes testes experimentais:

- Teste 1: Comunicação direta em campo aberto, com alcance médio de 30 a 40 metros.
- Teste 2: Comunicação com obstáculo (parede), com observação de perdas parciais de pacotes.
- Teste 3: Verificação de duplicidade e cálculo do tempo entre mensagens por ID.

Os resultados demonstraram o funcionamento correto da rede com retransmissão eficiente e controle de mensagens duplicadas.

5 Conclusão

O projeto demonstrou a viabilidade de criação de uma rede de sensores distribuída baseada em ESP-NOW, sem necessidade de infraestrutura de rede Wi-Fi tradicional.

Foram adquiridos conhecimentos práticos sobre:

- Programação de callbacks assíncronos.
- Serialização com JSON.
- Implementação de buffers e lógica de controle.

Como melhorias futuras estão previstas:

- Uso de criptografia ESP-NOW.
- Integração com painéis Node-RED.
- Adoção de ESP-MESH para malhas de comunicação mais robustas.

Referências

ATZORI, L.; IERA, A.; MORABITO, G. The Internet of Things: A survey. Computer Networks, v. 54, n. 15, p. 2787–2805, 2010.

SILVA, J. R. Redes de Sensores sem Fio para IoT. Revista Brasileira de IoT, v. 7, n. 2, p. 34-42, 2021. LEE, E. A.; BAGHERI, B.; KAO, H. Cyber-Physical Systems: Design Challenges. Proceedings of the IEEE, v. 100, n. 1, p. 1–16, 2015.