MODEL IDENTIFICATION USING ITERATIVE PCA

Shankar Narasimhan
Dept. of Chemical Engineering,
IIT Madras, Chennai, INDIA

MODEL IDENTIFICATION USING PCA

- Model $Az^*(i) = 0$
- Measurements : $z(i) = z^*(i) + e(i)$
- Errors e(i) identically distributed with mean zero and covariance matrix $\boldsymbol{\Sigma}_e$
- Model used in chemometrics
- Can be extended to dynamic process model identification

MOTIVATING EXAMPLE

• At steady state :
$$F_1 - F_2 - F_3 = 0$$

• Constraint model : $\begin{bmatrix} 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} F_1 \\ F_2 \\ F_3 \end{bmatrix} = 0$
• A z = 0

Constraint matrix

true values

 Objective: estimate A from a sample of measurements of z

RELATION TO REGRESSION

- Since one relation exists between three flow variables, can choose one flow variable as dependent (say F₁) and the remaining two as independent variables
- Can relate all flows to independent flow variables

 Objective: Estimate B from a sample of measurements of z

PCA – Method

Data matrix
$$\mathbf{Z} = \begin{bmatrix} z_{1}(1) & z_{2}(2) & \dots & z_{1}(N) \\ z_{2}(1) & z_{2}(2) & \dots & z_{2}(N) \\ \vdots & \vdots & \vdots & \vdots \\ z_{n}(1) & z_{n}(2) & \dots & z_{n}(N) \end{bmatrix}$$

Find orthonormal eigenvectors of S₇

$$\mathbf{S}_{\mathbf{z}} = \frac{1}{N} \mathbf{Z} \mathbf{Z}^{T}$$

- Eigenvectors corresponding to largest n—m eigenvalues is basis for the data subspace
- Transpose of eigenvectors corresponding to last m smallest eigenvalues (which are rejected) give a basis for the row space of constraints between variables Az = 0

PCA - INTERPRETATION

- Given a sample of data in Rⁿ
 - PCA decomposes R^n into two orthogonal subspaces V_z and V_c such that V_z is the space in which data lies and V_c is the row space of constraints
 - The orthonormal eigenvectors form orthonormal bases for V_z and V_c
 - Eigenvector corresponding to largest eigenvalue is also direction of maximum variability in data (Is it useful?)

CASE – Perfect measurements

- Data variance matrix $S_z(S_{z^*})$ will be singular
- Number of zero eigenvalues of S_z is equal to number of relationships
- Eigenvectors corresponding to non-zero eigenvalues is a basis for V_z
- Eigenvectors corresponding to zero eigenvalues is a basis for V_c

CASE – Perfect Measurements Effect of Scaling

- If PCA applied to transformed data $z_s = Dz$
 - Number of zero eigenvalues still equal to number of relations
 - Eigenvectors corresponding to zero eigenvalues gives a basis \mathbf{A}_s for the space orthogonal to \mathbf{Z}_s space
 - Basis (not orthonormal) for V_c can be obtained as $\mathbf{A}_s\mathbf{D}$

PROBLEMS WITH PCA

- How to deal with noisy data in a statistically rigorous manner?
- What happens if we scale the data before applying PCA?
 - PCA is scale dependent
 - Optimal scaling method unknown
- How to determine the number of independent variables (number of relations or model order)?
 - Heuristic criteria used for selecting model order

PCA - Optimization Problem

 The solution for A obtained using PCA is the solution of the following optimization problem

$$Min_{\mathbf{A},\mathbf{z}^{*}(i)} \sum_{i=1}^{N} [\mathbf{z}(i) - \mathbf{z}^{*}(i)]^{T} [\mathbf{z}(i) - \mathbf{z}^{*}(i)]$$

$$\mathbf{A}\mathbf{z}^{*}(i) = \mathbf{0} \quad \forall \quad i = 1...N$$

$$\mathbf{A}\mathbf{A}^{T} = \mathbf{I}$$

- Note all variables are given same weight in objective function
- PCA is statistically optimal if errors in all variables have identical variance

PCA using known Σ_e

- Square root of Σ_e ($\Sigma_e = LL^T$)
- Transform data $\mathbf{z}_s = \mathbf{L}^{-1}\mathbf{z}$ \Rightarrow $\mathbf{\Sigma}_{\mathbf{z}_s} = \mathbf{\Sigma}_{\mathbf{z}_s^*} + \mathbf{I}$
- ullet Eigenvectors of $oldsymbol{\Sigma}_{\mathbf{z}_s}$ same as $oldsymbol{\Sigma}_{\mathbf{z}_s^*}$
- \bullet Eigenvalues of $\Sigma_{\mathbf{z}_s}$ equal to eigenvalues of $\Sigma_{\mathbf{z}_s^*}$ shifted by unity
 - \Rightarrow Number of unity eigenvalues of $\Sigma_{\mathbf{z}_s}$ is equal to number of relationships
- Eigenvectors corresponding to unity eigenvalues of $\Sigma_{\mathbf{z}_c}$ gives basis for V_c

Case – Noisy measurements Unknown Σ_o

- ullet Simultaneously obtain estimates for $oldsymbol{\Sigma}_e$ and $oldsymbol{\mathsf{A}}$
- Estimate Σ_e given an initial estimate $\hat{\mathbf{A}}^0$ using likelihood function of constraint residuals

$$\mathbf{r}(j) = \hat{\mathbf{A}}^{0}\mathbf{z}(j) \sim N(0, \boldsymbol{\Sigma}_{r}) \quad \boldsymbol{\Sigma}_{r} = \hat{\mathbf{A}}^{0}\boldsymbol{\Sigma}_{e}(\hat{\mathbf{A}}^{0})^{T}$$

$$\underset{\boldsymbol{\Sigma}_{e}}{Min} \quad N\log\left|\hat{\mathbf{A}}^{0}\boldsymbol{\Sigma}_{e}\hat{\mathbf{A}}^{0T}\right| + \sum_{j=1}^{N}\mathbf{r}^{T}(j)(\hat{\mathbf{A}}^{0}\boldsymbol{\Sigma}_{e}\hat{\mathbf{A}}^{0T})^{-1}\mathbf{r}(j)$$

• Above procedure is similar to estimating Σ_e given covariance matrix of constraint residuals Σ_r

ALGORITHM – ITERATIVE PCA

- Use PCA on original data to get initial estimate of A say A⁰
- Obtain estimate of Σ_e by maximizing likelihood function of constraint residuals
- Use estimated Σ_e to scale data and apply PCA to get new estimate of A.
- Repeat steps 2 and 3 until convergence

Estimating Σ_e - Limitations

- Estimating Σ_p from Σ_r has limitations
 - Estimating full Σ_e from Σ_r does not give unique solution since Σ_r is m x m and Σ_e is n x n (n usually greater than m)
 - Maximum # of elements of Σ_e that can be estimated is m(m+1)/2 (exploiting symmetry)
 - If Σ_e is assumed to be diagonal, then it can be estimated provided m(m+1)/2 \geq n

Constraints $m = 3 \rightarrow m(m+1)/2 = 6$

Variables n = 5

SIMULATION PARAMETERS

Flow variable	True values		Std of measurement
	Base value	Std of fluctuation	error
F1	10	1.0	0.1
F2	10	2.0	0.08
F3		F1 + F2	0.15
F4		F3	0.2
F5		F4 – F2	0.18

Case	Scale	$\alpha \times 10^3$	θ (deg)
PCA	None	5.86	0.17
PCA	σ_y	10.22	0.24
PCA	σ_{ϵ}	1.62	0.028
IPCA		1.2	0.03

 α is distance between the rows of true A and estimated subspace A

 θ Is the angle (subspace angle) between estimated A and true A

Eigenvalues

PCA Case 1: [33.32 1.9 0.18 0.16 0.11]

Case 2: [238.9 18.8 1.06 0.99 0.97]

Case 3: [19.84 1.35 0.15 0.08 0.06]

IPCA: [236.5 17.7 1.01 1.0 0.99].

• Estimated Σ_e using IPCA

[0.1121 0.0837 0.1406 0.2031 0.1775] - Estimated [0.1 0.08 0.15 0.20 0.18] - True

RESULTS – Low S/N ratio

Signal fluctuations standard deviations reduced to 0.2 each

Case	Scale	$\alpha \times 10^3$	θ (deg)
PCA	None	447.0	12.73
PCA	σ_y	252.1	7.61
PCA	σ_{ϵ}	21.1	0.49
IPCA		32.5	1.39

Converged eigenvalues for IPCA are [233.5 2.6 1.01 1.0 0.98]

RESULTS

- m incorrectly assumed as 4
 - Eigenvalues obtained using IPCA :

[434.37 1.72 1.00 0.15 0.11]

Estimated error covariance matrix

[0.1121 0.0838 0.1406 0.2031 0.1774]

LARGER EXAMPLE

n = 28, m = 11

RESULTS – MODEL ORDER DETERMINATION

Index of singular value

If model order is overestimated, the last m eigenvalues are not equal to unity

CONCLUSIONS

- An improved PCA method developed for heteroscedastic noise – Noise variances estimated simultaneously along with model
- Optimal scaling issue resolved
- Rigorous method for model order determination based on analysis of eigenvalues

ACKNOWLEDGEMENTS

- Prof. Sirish Shah, University of Alberta,
 Canada
- Dr. Nirav Bhatt, DST Inspire faculty, Chemical Engg. Dept. IIT Madras