٠

PCT/JP 99/00885 25.03.99

5

日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

REC'D 2 1 MAY 1999

WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 顊 年 月 日 Date of Application:

1998年 2月25日

出 願 番 号 Application Number:

平成10年特許顯第060613号

出 顧 人 Applicant (s):

中外製薬株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

1999年 4月30日

特許庁長官 Commissioner, Patent Office

是版业

出証番号 出証特平11-3026364

特平10-060613

【書類名】

特許願

【整理番号】

983061

【提出日】

平成10年 2月25日

【あて先】

特許庁長官 荒井 寿光 殿

【国際特許分類】

G01N 33/50

【発明の名称】

抗HM1. 24抗体の免疫化学的測定方法

【請求項の数】

12

【発明者】

【住所又は居所】 静岡県御殿場市駒門1-135 中外製薬株式会社内

【氏名】

尾嵜 恭子

【発明者】

【住所又は居所】 静岡県御殿場市駒門1-135 中外製薬株式会社内

【氏名】

小石原 保夫

【特許出願人】

【識別番号】 000003311

【氏名又は名称】 中外製薬株式会社

【代理人】

【識別番号】

100077517

【弁理士】

【氏名又は名称】 石田 敬

【電話番号】

03-5470-1900

【代理人】

【識別番号】

100087871

【弁理士】

【氏名又は名称】

福本 積

【代理人】

【識別番号】

100088269

【弁理士】

【氏名又は名称】 戸田 利雄

【代理人】

【識別番号】

100082898

【弁理士】

【氏名又は名称】

西山 雅也

【手数料の表示】

【予納台帳番号】

036135

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9207941

【書類名】 明細書

【発明の名称】 抗HM1. 24抗体の免疫化学的測定方法 【特許請求の範囲】

【請求項1】 可溶性HM1.24抗原タンパク質と被験試料中に含まれる抗HM1.24抗体とを反応させて、可溶性HM1.24抗原タンパク質に結合した抗HM1.24抗体を検出又は測定する工程を含む、抗HM1.24抗体の免疫化学的測定方法。

【請求項2】 可溶性HM1.24抗原タンパク質が、支持体と結合していることを特徴とする、請求項1に記載の免疫化学的測定方法。

【請求項3】 抗HM1.24抗体と被験試料中に含まれる可溶性HM1.24抗原タンパク質とを反応させて、抗HM1.24抗体に結合した可溶性HM1.24抗原タンパク質を検出又は測定する工程を含む、可溶性HM1.24抗原タンパク質の免疫化学的測定方法。

【請求項4】 抗HM1.24抗体が、支持体と結合していることを特徴とする、 請求項3に記載の免疫化学的測定方法。

【請求項5】 可溶性HM1.24抗原タンパク質が、他のペプチド又はポリペプチドと融合していることを特徴とする、請求項1~4のいずれか1項に記載の免疫化学的測定方法。

【請求項6】 支持体がビーズ又はプレートであることを特徴とする、請求 項2又は4に記載の免疫化学的測定方法。

【請求項7】 可溶性HM1.24抗原タンパク質に結合した抗HM1.24抗体又は抗HM1.24抗体に結合した可溶性HM1.24抗原タンパク質を、抗HM1.24抗体に対する一次抗体又は可溶性HM1.24抗原タンパク質に対する一次抗体により検出又は測定することを特徴とする請求項1~6のいずれか1項に記載の免疫化学的測定方法。

【請求項8】 可溶性HM1.24抗原タンパク質に結合した抗HM1.24抗体又は抗HM1.24抗体に結合した可溶性HM1.24抗原タンパク質を、抗HM1.24抗体に対する一次抗体又は可溶性HM1.24抗原タンパク質に対する一次抗体及び該一次抗体に対する二次抗体により検出又は測定することを特徴とする請求項1~7のいずれか1項に記載の免疫化学的測定方法。

【請求項9】 一次抗体又は二次抗体が放射性同位元素、酵素、ピオチン/

アビジン又は蛍光物質により標識されていることを特徴とする請求項1~8のいずれか1項に記載の免疫化学的測定方法。

【請求項10】 配列番号:1に示されるアミノ酸配列を有する可溶性HM1. 24抗原タンパク質。

【請求項11】 請求項10に記載の可溶性HM1.24抗原タンパク質と他のペプチド又はポリペプチドとの融合タンパク質。

【請求項12】 請求項10又は11に記載の可溶性HM1.24抗原タンパク質 又は可溶性HM1.24抗原タンパク質と他のペプチド又はポリペプチドとの融合タン パク質をコードするDNA。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、抗HM1.24抗体の免疫化学的測定方法に関する。また本発明は可溶性 HM1.24抗原タンパク質の免疫化学的測定方法に関する。さらに本発明は、可溶性 HM1.24抗原タンパク質及びそれをコードするDNA に関する。

[0002]

【従来の技術】

Goto, Tらはヒト形質細胞を免役して得られた、B 細胞系列に特異的に発現する分子量が22~39 kDaの抗原を認識するマウスモノクローナル抗体1.24抗体を報告している(Blood(1994)84,1922-1930)。このマウス抗HM1.24抗体はヒト形質細胞を移植したマウスにおいてin vivo 抗腫瘍効果ならびに、ヒト形質細胞に対するADCC (antibody-dependent cellular cytotoxicity) 活性によるin vitro抗腫瘍効果を示す (Ozaki, S et al., Blood,(1997)90, 3179-3189)。

[0003]

また、このマウス抗HM1.24抗体のキメラ抗体および再構成ヒト抗体が作製されている(小野浩一郎ら第20回日本分子生物学会年会(1997)抄録集一般演題3-501-P-478)。

一方、これらマウスHM1.24抗体、キメラ抗体、再構成ヒト抗体の活性測定はヒト形質細胞株RPMI8226を用いたcell-ELISA (Goto, T ら、Blood(1994)84, 1922-

1930) によって行われており、より精度の高い測定方法が求められていた。 【0004】

【発明が解決しようとする課題】

抗HM1.24抗体とその抗原である細胞膜上に発現しているHM1.24抗原タンパク質については上述のようにすでに報告されている。しかしながら、可溶性HM1.24抗原タンパク質や低濃度の可溶性HM1.24抗原タンパク質又は抗HM1.24抗体を検出又は測定する方法は知られていなかった。

したがって、本発明は低濃度の可溶性HM1.24抗原タンパク質又は抗HM1.24抗体 を検出又は測定する簡便な方法を提供する。

[0005]

【課題を解決するための手段】

すなわち、本発明は、(1)可溶性HM1.24抗原タンパク質と被験試料中に含まれる抗HM1.24抗体とを反応させて、可溶性HM1.24抗原タンパク質に結合した抗HM1.24抗体を検出又は測定する工程を含む、抗HM1.24抗体の免疫化学的測定方法を提供する。可溶性HM1.24抗原タンパク質は、好ましくは他のペプチド又はポリペプチドと融合している。可溶性HM1.24抗原タンパク質は、好ましくは支持体と結合している。

[0006]

支持体は、好ましくはビーズ又はプレートである。可溶性HM1.24抗原タンパク質は、好ましくは可溶性HM1.24抗原タンパク質又は可溶性HM1.24抗原タンパク質と融合した他のペプチド又はポリペプチドに対する抗体により支持体と結合している。

本発明はまた、(2)可溶性HM1.24抗原タンパク質に結合した抗HM1.24抗体を、抗HM1.24抗体に対する一次抗体により検出又は測定することを特徴とする前記(1)に記載の免疫化学的測定方法を提供する。

[0007]

本発明はまた、(3)可溶性HM1.24抗原タンパク質に結合した抗HM1.24抗体を、抗HM1.24抗体に対する一次抗体及び一次抗体に対する二次抗体により検出又は 測定することを特徴とする前記(1)又は(2)に記載の免疫化学的測定方法を 提供する。前記(1)又は(2)において、一次抗体又は二次抗体は、好ましく は放射性同位元素、酵素、ビオチン/アピジン又は蛍光物質により標識されてい る。

本発明はまた、(4) 抗HM1.24抗体と被験試料中に含まれる可溶性HM1.24抗原 タンパク質とを反応させて、抗HM1.24抗体に結合した可溶性HM1.24抗原タンパク 質を検出又は測定する工程を含む、可溶性HM1.24抗原タンパク質の免疫化学的測 定方法を提供する。可溶性HM1.24抗原タンパク質は、好ましくは他のペプチド又 はポリペプチドと融合している。HM1.24抗体は、好ましくは支持体と結合してい る。

[0008]

支持体は、好ましくはビーズ又はプレートである。抗HM1.24抗体は、好ましくは抗HM1.24抗体に対する抗体により支持体と結合している。

本発明はまた、(5) 抗HM1.24抗体に結合した可溶性HM1.24抗原タンパク質を、可溶性HM1.24抗原タンパク質に対する一次抗体又は可溶性HM1.24抗原タンパク質と融合した他のペプチド又はポリペプチドに対する一次抗体により検出又は測定することを特徴とする前記(4)に記載の免疫化学的測定方法を提供する。
[0009]

本発明はまた、(6)抗IM1.24抗体に結合した可溶性IM1.24抗原タンパク質を、可溶性IM1.24抗原タンパク質に対する一次抗体又は可溶性IM1.24抗原タンパク質と融合した他のペプチド又はポリペプチドに対する一次抗体及び一次抗体に対する二次抗体により検出又は測定することを特徴とする前記(4)又は(5)に記載の免疫化学的測定方法を提供する。前記(4)又は(5)において、一次抗体又は二次抗体は、好ましくは放射性同位元素、酵素、ビオチン/アビジン又は蛍光物質により標識されている。

本発明はまた、(7)配列番号:1に示されるアミノ酸配列を有する可溶性HM 1.24抗原タンパク質を提供する。

[0010]

本発明はまた、(8)前記(7)に記載の可溶性HM1.24抗原タンパク質と他のペプチド又はポリペプチドとの融合タンパク質を提供する。可溶性HM1.24抗原タ

ンパク質と他のペプチド又はポリペプチドとの融合タンパク質の具体例は、配列 番号:3及び4に記載されている。

本発明はさらに、(9)前記(7)又は(8)に記載の可溶性HM1.24抗原タンパク質又は可溶性HM1.24抗原タンパク質と他のペプチド又はポリペプチドとの融合タンパク質をコードするDNA を提供する。HM1.24抗原タンパク質又は可溶性HM1.24抗原タンパク質と他のペプチド又はポリペプチドとの融合タンパク質をコードするDNA は、配列番号:1に示される有する。他の具体例は、配列番号:3 および4に示される塩基配列である。

[0011]

【発明の実施の形態】

本発明の可溶性HM1.24抗原タンパク質としては、配列番号:1示すアミノ酸配列においてアミノ酸位置1位のAsnからアミノ酸位置132位のGlnからなるアミノ酸配列を有し、且つ可溶性HM1.24抗原タンパク質の生物学的活性を有するタンパク質であれば、いかなるものであってよい。可溶性HM1.24抗原タンパク質の生物学的活性とは、抗HM1.24抗体に特異的に結合され、細胞膜には結合しておらず細胞膜から遊離して可溶性であり、且つ二量体である。

[0012]

また、本発明の可溶性HM1.24抗原タンパク質は、可溶性HM1.24抗原タンパク質の生物学的活性を有し、且つ配列番号:1に示すアミノ酸配列に対する1又は複数個のアミノ酸残基の置換、欠失及び/又は付加により修飾されたアミノ酸配列を有する可溶性HM1.24抗原タンパク質であってよい。本発明の可溶性HM1.24抗原タンパク質は、より具体的には可溶性HM1.24抗原タンパク質の生物学的活性を有する限り、配列番号:1に示すアミノ酸配列において、1又は2個以上、好ましくは1又は24個以下、より好ましくは1又は12個以下のアミノ酸残基が置換したアミノ酸を有していてよい。

[0013]

又は、配列番号:1に示すアミノ酸配列において、1又は2個以上、好ましくは1又は42個以下、より好ましくは1又は17個以下のアミノ酸残基が欠失したアミノ酸を有していてよい。又は、配列番号:1に示すアミノ酸配列において、1

又は2個以上、好ましくは1又は50個以下、より好ましくは1又は14個以下のアミノ酸残基が付加したアミノ酸を有していてよい。本発明に使用される可溶性HM 1.24抗原タンパク質はまた、上記アミノ酸の置換、欠失及び/又は付加による修飾が同時になされていてもよい。

[0014]

可溶性BM1.24抗原タンパク質は、配列番号:1において1位のアミノ酸Asnから90位のアミノ酸Arg までのアミノ酸配列を有していればその生物学的活性を示すことが明らかになっている。したがって、本発明の可溶性EM1.24抗原タンパク質は、配列番号:1において1位のアミノ酸Asnから90位のアミノ酸Argまでのアミノ酸配列を有するか、あるいは1位のアミノ酸Asnから90位のアミノ酸Argまでのアミノ酸配列に対する1又は複数個のアミノ酸残基の置換、欠失及び/又は付加により修飾されたアミノ酸配列を有する可溶性HM1.24抗原タンパク質であってよい。

[0015]

可溶性HM1.24抗原タンパク質は、その生物学的活性有する限り、配列番号:1において90位のアミノ酸Argから132位のアミノ酸GInまでのアミノ酸配列を有するか、あるいはこのアミノ酸配列に対して1又は複数個のアミノ酸残基の置換、欠失及び/又は付加により修飾されたアミノ酸配列を有する可溶性HM1.24抗原タンパク質であってよい。

配列番号:1に示すアミノ酸配列に対する1又は複数個のアミノ酸残基の置換、欠失及び/又は付加により修飾されたアミノ酸配列を有する可溶性HM1.24抗原タンパク質として、配列番号:3及び4に示されるアミノ酸配列を有する可溶性HM1.24抗原タンパク質が挙げられる。

[0016]

あるアミノ酸配列に対する 1 又は複数個のアミノ酸残基の置換、欠失及び/又は付加により修飾されたアミノ酸配列を有するタンパク質がその生物学的活性を維持することはすでに知られている (Mark, D. F. et al., Proc. Natl. Acad. Sci. USA (1984) 81,5662-5666 、Zoller, M. J. & Smith, M. Nucleic Acids Research (1982) 10,6487-6500 、Wang, A. et al., Science 224,1431-1433

Dalbadie-McFarland, G. et al., Proc. Natl. Acad. Sci. USA (1982) 79, 6409-6413).

[0017]

本発明の可溶性HM1.24抗原タンパク質は、由来する種、それらを産生する宿主及び/又は精製方法により、アミノ酸配列、分子量、等電点、糖鎖付加の有無や糖鎖付加の位置、糖鎖の構造、リン酸化状態及び/又はジスルフィド結合の有無が異なる。しかしながら、本発明に好適に使用し得る限り、いかなる構造を有するタンパク質であってよい。タンパク質が由来する種としてはヒトが好ましい。【0018】

本発明の可溶性HM1.24抗原タンパク質をコードするDNA としては、配列番号: 1に示す塩基配列の塩基位置1 位の塩基アデニンから396 位の塩基グアニンからなる塩基配列が挙げられる。また、本発明の可溶性HM1.24抗原タンパク質をコードするDNA としては配列番号: 1に示す塩基配列を有するDNA であれば、いかなる由来のDNA であってよい。このようなDNA として、例えばジェノミックDNA、CDNA、合成DNA が挙げられる。これらは、種々の細胞、組織又は臓器あるいはヒト以外の種から得られたcDNAライブラリー、ジェノミックライブラリーから得られたDNA であってよいし、それらは市販のDNA ライブラリーであってもよい。これらライブラリーに用いられるベクターとしては、プラスミド、バクテリオファージ、YAC ベクター等いかなるものであってよい。

[0019]

本発明の可溶性HM1.24抗原タンパク質をコードするDNA としてはまた、配列番号:1に示す塩基配列に対しハイブリダイズし、且つ可溶性HM1.24抗原タンパク質の生物学的活性を有するポリペプチドをコードするDNA であってもよい。可溶性HM1.24抗原タンパク質をコードするDNA がハイブリダイズする条件としては、適度なストリンジェンシー条件下においてハイブリダイズするDNA が挙げられる

[0020]

このようなハイブリダイズ条件としては、例えば低ストリンジェンシーな条件が挙げられる。低ストリンジェンシーな条件としては、例えば42℃、5×SSC

、0.1%ドデシル硫酸ナトリウム、50% ホルムアミドにより与えられる洗浄条件である。より好ましくは、高ストリンジェンシーな条件が挙げられる。高ストリンジェンシーな条件としては、例えば60℃、0.1 ×SSC 、0.1%ドデシル硫酸ナトリウムにより与えられる洗浄条件である。あるタンパク質をコードする塩基配列に対し、適度な条件でハイブリダイズするDNA がコードするタンパク質がそのタンパク質と同じ生物学的活性を有することはすでに知られている。

[0021]

従って、本発明の可溶性HM1.24抗原タンパク質は、上記の「ハイブリダイズするDNA」によりコードされており、可溶性HM1.24抗原タンパク質の生物活性を有するタンパク質も包含する。

なお、細胞膜上に発現するヒトHM1.24抗原タンパク質のアミノ酸配列を配列番号: 16に示す。配列番号: 16のアミノ酸配列を有するヒトタンパク質をコードするDNA をpUC ベクターのXbaI切断部位間に保持するプラスミドpRS38-pUC19を含有する大腸菌はEscherichia coli DH5 α (pRS38-pUC19)と命名され、平成5(1993)年10月5日付けで工業技術院生命工学工業技術研究所(茨城県つくば市東1丁目1番3号)に寄託番号FERM BP-4434として、ブダペスト条約に基づき国際寄託されている。

[0022]

本発明の可溶性HM1.24抗原タンパク質はまた、可溶性HM1.24抗原タンパク質の生物学的活性を有する限り他のペプチド又はポリペプチドと融合した上記タンパク質であってよい。これら融合タンパク質を作製する方法は、すでに公知の手法を用いることができる。タンパク質との融合に付される他のペプチド又はポリペプチドとしては、本発明に有効に使用される限りいかなるペプチド又はポリペプチドであってよい。例えば、ペプチドとしては、FLAG(Hopp, T. P. et al., Bi oTechnology(1988)6,1204-1210)、6個のHis(ヒスチジン)残基からなる6×His、10×His、インフルエンザ凝集素(HA)、ヒトc-mycの断片、VSV-GPの断片、p18HIVの断片、T7-tag、HSV-tag、E-tag、SV40T 抗原の断片、lck tag、a-tubulinの断片、B-tag、Protein C の断片等、すでに公知であるペプチドが使用される。

[0023]

また例えば、ポリペプチドとしては、GST (グルタチオン・S・トランスフェラーゼ)、HA、イムノグロブリン定常領域、b-ガラクトシダーゼ、MBP (マルトース結合蛋白質)等が挙げられる。これらは市販されているものを用いることができる。

本発明のタンパク質をコードするDNA は、以上に述べたDNA を市販のキットや公知の方法によって構築することができる。例えば、制限酵素による消化、リンカーの付加、開始コドン(ATG)及び/又は終始コドン(ATT 、TGA 又はTAG)の挿入等により構築することができる。

[0024]

本発明のタンパク質の発現ベクターは、本発明に好適に使用される発現ベクターであればいかなる発現ベクターであってよい。発現ベクターとしては、哺乳動物由来の発現ベクター、例えばpEF、pCDM8、昆虫細胞由来の発現ベクター、例えばpBacPAK8、植物由来の発現ベクター、例えばpMH1、pMH2、動物ウィルス由来の発現ベクター、例えばpHSV、pMV、酵母由来の発現ベクター、例えばpNV11、枯草菌由来の発現ベクター、例えばpPL608、pKTH50、大腸菌由来の発現ベクター、例えばpCEX、pGEMEX、pMALp2が挙げられる。

[0025]

本発明のタンパク質の発現ベクターには、例えば可溶性HM1.24抗原タンパク質をコードするDNAをプロモーターの下流に連結し、これを発現ベクターに導入することにより製造することができる。プロモーター/エンハンサーとしては、哺乳動物由来のプロモーター/エンハンサー、例えばEFI-αプロモーター/エンハンサー、早中のアンプロモーター/エンハンサー、昆虫ウィルス由来のプロモーター/エンハンサー、見虫ウィルスカーター/エンハンサー、例えば多核体(ポリヘドリン)ウィルスプロモーター/エンハンサー、例えばタバコモザイクウィルスプロモーター/エンハンサー、動物ウィルス由来のプロモーター/エンハンサー、例えばSV40プロモーター/エンハンサー、日とCMVプロモーター/エンハンサー、例えばアルコール脱水素酵素プロモーター/エンハンサー、大腸菌由来のプロモーター/エンハンサー、

例えばLac プロモーター/エンハンサー、Trp プロモーター/エンハンサー、Ta c プロモーター/エンハンサーが挙げられる。

[0026]

本発明のタンパク質の発現には、発現に用いられる宿主に適したシグナル配列を付加して使用してもよい。シグナル配列としては、例えば分泌蛋白質のシグナル配列が挙げられる。分泌蛋白質のシグナル配列としては、例えば哺乳動物由来分泌蛋白質のシグナル配列、例えばイムノグロブリンのシグナル配列が挙げられる。また分泌蛋白質のシグナル配列としては、大腸菌由来分泌蛋白質のシグナル配列、例えばOmpA等のペリプラズム分泌シグナル配列が挙げられる。

[0027]

このように作製した発現ベクターは、公知の方法により宿主に導入することができる。宿主への導入の方法としては、例えばエレクトロポレーション、リン酸カルシウム法、リポソーム法が挙げられる。

本発明に使用されるタンパク質は、上述のように遺伝子組換え技術を用いて産生させた組換えタンパク質として得ることができる。例えば、組換えタンパク質は、本明細書に記載された遺伝子の塩基配列をそれらを発現する細胞、組織、又は臓器からクローニングし、適当なベクターに組み込んで、これを宿主に導入し産生させる。本発明には、この組換えタンパク質を用いることができる。

[0028]

具体的には、本発明に使用されるタンパク質を発現する細胞、組織、又は臓器から、その遺伝子をコードするmRNAを単離する。mRNAの単離は、公知の方法、例えば、グアニジン超遠心法(Chirgwin, J. M. et al., Biochemistry (1979) 18,5294-5299)、AGPC法 (Chomczynski, P. and Sacchi, N., Anal. Biochem. (1987) 162,156-159) 等により全RNAを調製し、mRNA Purification Kit (Pharmacia) 等を使用して全RNAからmRNAを精製する。また、QuickPrep mRNA Purification Kit (Pharmacia) を用いることによりmRNAを直接調製することもできる。

[0029]

得られたmRNAから逆転写酵素を用いて遺伝子のcDNAを合成する。cD

NAの合成は、 AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (生化学工業) 等を用いて行うこともできる。また、 c DNAの合成及び増幅を行うにはMarathon cDNA Amplification kit(CLONTECH製) 及びポリメラーゼ連鎖反応 (polymerase chain reaction; PCR) を用いた 5′-RACE法(Frohman, M. A. et al., Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 8998-9002; Belyavsky, A. et al., Nucleic Acids Res. (1989) 17, 2919-2932) を使用することができる。

[0030]

得られたPCR産物から目的とするDNA断片を調製し、ベクターDNAと連結する。さらに、これより組換えベクターを作製し、大腸菌等に導入してコロニーを選択して所望の組換えベクターを調製する。目的とするDNAの塩基配列を公知の方法、例えば、ジデオキシヌクレオチドチェインターミネーション法により確認する。目的とするDNAが得られれば、これを発現ベクターへ組み込む。【0031】

より具体的には、前記のように構築したDNAは、下記のように発現させ、タンパク質を取得することができる。哺乳類細胞を使用する場合、常用される有用なプロモーター/エンハンサー、発現される遺伝子、その3'側下流にポリAシグナルを機能的に結合させたDNAあるいはそれを含むベクターにより発現させることができる。例えばプロモーター/エンハンサーとしては、ヒトサイトメガロウィルス前期プロモーター/エンハンサー (human cytomegalovirus immediate early promoter/enhancer)を挙げることができる。

[0032]

また、その他にタンパク質発現に使用できるプロモーター/エンハンサーとして、レトロウィルス、ポリオーマウィルス、アデノウィルス、シミアンウィルス40 (SV 40) 等のウィルスプロモーター/エンハンサーやヒトエロンゲーションファクター1 α (HEF1α) の哺乳類細胞由来のプロモーター/エンハンサーを用いればよい。

例えば、SV 40 プロモーター/エンハンサーを使用する場合、Mulliganらの方法 (Nature (1979) 277, 108)、また、HEFl α プロモーター/エンハンサーを使

特平10-060613

用する場合、Mizushima らの方法 (Nucleic Acids Res. (1990) 18, 5322) に従えば容易に実施することができる。

[0033]

大腸菌の場合、常用される有用なプロモーター、タンパク質分泌のためのシグナル配列、発現させる遺伝子を機能的に結合させて発現させることができる。例えばプロモーターとしては、lacZプロモーター、araBプロモーターを挙げることができる。lacZプロモーターを使用する場合、Wardらの方法(Nature (1098) 34 1,544-546; FASEB J. (1992) 6,2422-2427)、araBプロモーターを使用する場合、Betterらの方法(Science (1988) 240,1041-1043)に従えばよい。

タンパク質分泌のためのシグナル配列としては、大腸菌のペリプラズムに産生させる場合、pelBシグナル配列 (Lei, S. P. et al J. Bacteriol. (1987) 169, 4379) を使用すればよい。

[0034]

複製起源としては、SV 40、ポリオーマウィルス、アデノウィルス、ウシパピローマウィルス(BPV)等の由来のものを用いることができる。さらに、宿主細胞系で遺伝子コピー数増幅のため、発現ベクターは選択マーカーとして、アミノグリコシドホスホトランスフェラーゼ(APH)遺伝子、チミジンキナーゼ(TK)遺伝子、大腸菌キサンチングアニンホスホリボシルトランスフェラーゼ(Ecogpt)遺伝子、ジヒドロ葉酸還元酵素(dhfr)遺伝子等を含むことができる。

本発明において、タンパク質の製造のために、任意の産生系を使用することができる。タンパク質製造のための産生系は、in vitro及びin vivo の産生系がある。in vitroの産生系としては、真核細胞を使用する産生系や原核細胞を使用する産生系が挙げられる。

[0035]

真核細胞を使用する場合、動物細胞、植物細胞、真菌細胞を用いる産生系がある。動物細胞としては、(1) 哺乳類細胞、例えばCHO (J. Exp. Med. (1995) 10 8,945)、COS、ミエローマ、BHK (baby hamster kidney)、HeLa、Vero、(2) 両生類細胞、例えばアフリカツメガエル卵母細胞 (Valle, et al., Nature (1981) 291,358-340)、あるいは(3) 昆虫細胞、例えばsf9、sf21、Tn5 が知ら

れている。CHO 細胞としては、特にDHFR遺伝子を欠損したCHO 細胞であるdhfr-C HO (Proc. Natl. Acad. Sci. USA (1980) 77, 4216-4220) やCHO K-1 (Proc. Natl. Acad. Sci. USA (1968) 60, 1275) を好適に使用することができる。

[0036]

植物細胞としては、ニコチアナ・タバクム (Nicotiana tabacum) 由来の細胞が知られており、これをカルス培養すればよい。真菌細胞としては、酵母、例えばサッカロミセス (Saccharomyces) 属、例えばサッカロミセス・セレビシエ (Saccharomyces cerevisiae)、糸状菌、例えばアスペルギウス属 (Aspergillus) 属、例えばアスペルギウス・ニガー (Aspergillus niger) が知られている。原核細胞を使用する場合、細菌細胞を用いる産生系がある。細菌細胞としては、大腸菌 (E. coli)、枯草菌が知られている。

[0037]

これらの細胞を目的とするDNAにより形質転換し、形質転換された細胞をin vitroで培養することによりタンパク質が得られる。培養は、公知の方法に従い行う。例えば、培養液として、DMEM、MEM 、RPMI1640、IMDMを使用することができる。その際、牛胎児血清(FCS)等の血清補液を併用することもできるし、無血清培養してもよい。培養時のPHは約6~8であるのが好ましい。培養は通常約30~40℃で約15~200時間行い、必要に応じて培地の交換、通気、撹拌を加える。

一方、in vivo の産生系としては、動物を使用する産生系や植物を使用する産 生系が挙げられる。これらの動物又は植物に目的とするDNAを導入し、動物又 は植物の体内でタンパク質を産生させ、回収する。

[0038]

動物を使用する場合、哺乳類動物、昆虫を用いる産生系がある。

哺乳類動物としては、ヤギ、ブタ、ヒツジ、マウス、ウシを用いることができる (Vicki Glaser, SPECTRUM Biotechnology Applications, 1993)。また、哺乳類動物を用いる場合、トランスジェニック動物を用いることができる。

例えば、目的とするDNAをヤギβカゼインのような乳汁中に固有に産生される蛋白質をコードする遺伝子の途中に挿入して融合遺伝子として調製する。この

DNAが挿入された融合遺伝子を含むDNA断片をヤギの胚へ注入し、この胚を雌のヤギへ導入する。胚を受容したヤギから生まれるトランスジェニックヤギ又はその子孫が産生する乳汁からタンパク質を得る。トランスジェニックヤギから産生されるタンパク質を含む乳汁量を増加させるために、適宜ホルモンをトランスジェニックヤギに使用してもよい。(Ebert, K.M. et al., Bio/Technology (19 94) 12, 699-702)。

[0039]

また、昆虫としては、例えばカイコを用いることができる。カイコを用いる場合、目的とするDNAを挿入したバキュロウィルスをカイコに感染させ、このカイコの体液より所望のタンパク質を得る(Susumu, M. et al., Nature (1985) 3 15,592-594)。

さらに植物を使用する場合、例えばタバコを用いることができる。タバコを用いる場合、目的とするDNAを植物発現用ベクター、例えばpMON 530に挿入し、このベクターをアグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens)のようなバクテリアに導入する。このバクテリアをタバコ、例えばニコチアナ・タバクム(Nicotiana tabacum)に感染させ、本タバコの葉より所望のタンパク質を得る(Julian, K.-C. Ma et al., Eur. J. Immunol. (1994) 24, 131-138)。

[0040]

なお、宿主への発現ベクターの導入方法としては、公知の方法、例えばリン酸カルシウム法 (Virology (1973) 52, 456-467) やエレクトロポレーション法 (EMBO J. (1982) 1, 841-845) 等が用いられる。また、発現に使用する宿主のコドン使用頻度を考慮して、より発現効率の高い配列を設計することができる (Grantham, R. et al., Nucleic Acids Research (1981) 9, r43-r74)。

これらの動物又は植物に上記のように遺伝子を導入し、動物又は植物の体内で タンパク質を産生させ、回収する。前記のように発現、産生されたタンパク質は 、細胞内外、宿主から分離し均一にまで精製することができる。本発明で使用さ れるタンパク質の分離、精製は通常のタンパク質で使用されている分離、精製方 法を使用すればよく、何ら限定されるものではない。 [0041]

例えば、アフィニティークロマトグラフィー等のクロマトグラフィーカラム、フィルター、限外濾過、塩析、透析、SDS ポリアクリルアミドゲル電気泳動、等電点電気泳動等を適宜選択、組み合わせれば、タンパク質を分離、精製することができる(新生化学実験講座1 (1990) 東京化学同人)。

クロマトグラフィーとしては、例えばアフィニティークロマトグラフィー、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、ゲル濾過、逆相クロマトグラフィー、吸着クロマトグラフィー等が挙げられる(Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996)。これらのクロマトグラフィーはHPLC、FPLC等の液相クロマトグラフィーを用いて行うことができる。

[0042]

タンパク質は、公知の方法を用いて濃度を測定することができる。例えば、吸 光度の測定又はBradford法を用いればよい。

本発明は、可溶性HM1.24抗原タンパク質と被験試料中に含まれる抗HM1.24抗体とを反応させて、可溶性HM1.24抗原タンパク質に結合した抗HM1.24抗体を検出又は測定する工程を含む、抗HM1.24抗体の免疫化学的測定方法;及び

抗HM1.24抗体と被験試料中に含まれる可溶性HM1.24抗原タンパク質とを反応させて、抗HM1.24抗体に結合した可溶性HM1.24抗原タンパク質を検出又は測定する工程を含む、可溶性HM1.24抗原タンパク質の免疫化学的測定方法に関する。

[0043]

本発明において提供される免疫化学的測定方法は、in vitroのアッセイ系として行われる。

in vitro のアッセイ系は、非細胞系において行われる。具体的には可溶性HM 1.24抗原タンパク質を支持体に結合させ、このタンパク質に抗HM1.24抗体を含む被験試料を加え、インキュベートをした後洗浄して支持体に結合した可溶性HM1.24抗原タンパク質に対する抗HM1.24抗体の結合を検出又は測定すればよい。又は、具体的には抗HM1.24抗体を支持体に結合させ、このタンパク質に可溶性HM1.24

抗原タンパク質を含む被験試料を加え、インキュベートをした後洗浄して支持体に結合した抗HM1.24抗体に対する可溶性HM1.24抗原タンパク質の結合を検出又は測定すればよい。

[0044]

可溶性HM1.24抗原タンパク質又は抗HM1.24抗体は、それらを固有に発現する細胞、それらをコードするDNA を導入した細胞、それらをコードするDNA を導入した動物又は植物から産生されるタンパク質を、精製した状態であるいは粗精製の状態で使用することができる。

精製された又は粗精製された可溶性HM1.24抗原タンパク質又は抗HM1.24抗体のいずれか一方のタンパク質を支持体に結合させる。タンパク質を支持体に結合させる際に標準的な方法でタンパク質を支持体に固相化することができる。タンパク質を結合させる支持体としては、例えば不溶性の多糖類、例えばアガロース、デキストラン、セルロース、合成樹脂、例えばポリスチレン、ポリアクリルアミド、シリコン等が挙げられる。

[0045]

より具体的にはそれらを原料として製造される市販のビーズ、プレートが用いられる。ビーズの場合、これらが充填されたカラム等を用いてもよい。プレートの場合、マルチウェルプレート(96穴マルチウェルプレート等)やバイオセンサーチップが挙げられる。

タンパク質と支持体との結合は、化学結合、物理的な吸着等、通常用いられる 方法により結合すればよい。また、タンパク質を特異的に認識する抗体を上述の 方法により予め支持体に結合せしめ、この抗体とタンパク質とを結合させること により結合することもできる。さらに、アビジン/ビオチンを介して結合させる ことができる。

[0046]

可溶性HM1.24抗原タンパク質と抗HM1.24抗体の結合は、通常緩衝液中で行われる。緩衝液としては、例えばリン酸緩衝液、Tris緩衝液等が使用される。また、インキュベートの条件としては、すでによく用いられている条件、例えば4 ℃~室温にて1 時間~2 4 時間のインキュベーションが行われる。インキュベート後

の洗浄は、可溶性HM1.24抗原タンパク質と抗HM1.24抗体との結合を妨げないものであれば何でもよく、例えば界面活性剤を含む緩衝液が使用される。界面活性剤としては、例えば0.05%Tween 20 が使用される。

本発明において測定される可溶性HM1.24抗原タンパク質又は抗HM1.24抗体を含む被験試料としては、ヒト体液(血液、血清、尿、関節液等)、細胞の培養上清、動物の分泌物(乳等)、医薬製剤等をあげることができる。

[0047]

これらの被験試料に含まれる可溶性HM1.24抗原タンパク質又は抗HM1.24抗体に対する抗HM1.24抗体又は可溶性HM1.24抗原タンパク質の結合を検出又は測定する際、適切な条件下でインキュベート及び洗浄することにより、特異的な結合と非特異的な結合を分離することができる。そして、可溶性HM1.24抗原タンパク質と抗HM1.24抗体との結合状態を評価すればよい。

本発明の免疫化学的測定方法において、被験試料をタンパク質に接触させる群と共にコントロール群を設置してもよい。コントロール群としては、被験試料を含まない陰性コントロール群又は精製された可溶性HM1.24抗原タンパク質又は抗HM1.24抗体の標品を含む陽性コントロール群あるいはその両群をおくことができる。

[0048]

本発明の免疫化学的測定方法により、結合したタンパク質を検出することができる。又は結合したタンパク質を定量的に測定することもできる。これらの場合、被験試料を含まない陰性コントロール群で得られた結果、被験試料を含む群で得られた結果及び/又は精製された可溶性HM1.24抗原タンパク質又は抗HM1.24抗体の標品を含む陽性コントロール群で得られた結果を比較することにより、可溶性HM1.24抗原タンパク質と抗HM1.24抗体との結合を検出することができる。

[0049]

また、それらの検出の結果を数値として得、それらの数値を比較することにより、被験試料に含まれる可溶性HM1.24抗原タンパク質又は抗HM1.24抗体を定量的に測定することもできる。定量的に測定する場合、被験試料を含まない陰性コントロール群で得られた数値と可溶性HM1.24抗原タンパク質又は抗HM1.24抗体を含

特平10-060613

む被験試料を適用した群で得られた数値を比較することにより、可溶性HM1.24抗原タンパク質と抗HM1.24抗体との結合量を定量することができる。被験試料中に可溶性HM1.24抗原タンパク質又は抗HM1.24抗体が含まれていれば、結合したタンパク質が存在することにより可溶性HM1.24抗原タンパク質又は抗HM1.24抗体を検出又は測定することができる。

[0050]

また、定量的に測定する場合、可溶性HM1.24抗原タンパク質又は抗HM1.24抗体 を既知量含む陽性コントロール群で得られた数値により作成された標準曲線を元 に定量することができる。

本発明の免疫化学的測定方法において、被験試料中の可溶性HM1.24抗原タンパク質又は抗HM1.24抗体を検出又は測定する手段として表面プラズモン共鳴現象を利用したバイオセンサーを使用することができる。表面プラズモン共鳴現象を利用したバイオセンサーはタンパク質ータンパク質間の相互作用を微量のタンパク質を用いてかつ標識することなく、表面プラズモン共鳴シグナルとしてリアルタイムに観察することが可能である(例えばBIAcore; Pharmacia 製)。したがって、BIAcore等のバイオセンサーを用いることにより可溶性HM1.24抗原タンパク質と抗HM1.24抗体との結合を検出又は測定することが可能である。

[0051]

具体的には、可溶性HM1.24抗原タンパク質又は抗HM1.24抗体を固定化したセンサーチップに、抗HM1.24抗体又は可溶性HM1.24抗原タンパク質を含む被験試料を接触させ、可溶性HM1.24抗原タンパク質又は抗HM1.24抗体に結合する抗HM1.24抗体又は可溶性HM1.24抗原タンパク質を共鳴シグナルの変化として検出又は測定することができる。

より具体的には、以下のように行えばよい。初めにセンサーチップCM5 (Biosen sor 社)を活性化して可溶性HM1.24抗原タンパク質又は抗HM1.24抗体をセンサーチップ上に固定化する。すなわち、EDC / NHS 水溶液 (200mM EDC (N-ethyl-N'-(3-dimethylaminopropyl) carbonate hydrochloride), 50mM NHS (N-hydroxys uccinimide))によりセンサーチップを活性化した後、HBS バッファー (10mM H EPES pH7.4, 150mM NaCl, 3.4m MEDTA, 0.05%Tween20)によりセンサーチップを

洗浄する。

[0052]

次に HBSバッファーに溶解した適量の抗HM1.24抗体又は可溶性HM1.24抗原タンパク質を含む被験試料をセンサーチップに接触させ、固定化する。 HBSバッファーによりセンサーチップを洗浄後、エタノールアミン溶液 (1M ethanolamine hy drochloride, pH8.5) によりセンサーチップ上の残存活性基をブロックする。再び HBSバッファーによりセンサーチップを洗浄し結合評価に用いる。

次にHBS バッファーに溶解した適量の抗HM1.24抗体又は可溶性HM1.24抗原タンパク質を含む被験試料を注入する。このときにセンサーチップに固定化された可溶性HM1.24抗原タンパク質又は抗HM1.24抗体に結合した被験試料中の抗HM1.24抗体又は可溶性HM1.24抗原タンパク質の量は共鳴シグナル値の増加として観察される。

[0053]

さらに、また被験試料を含む群と共に、コントロール群を設置してもよい。コントロール群としては、被験試料を含まない陰性コントロール群、既知量の可溶性HM1.24抗原タンパク質又は抗HM1.24抗体を含む陽性コントロール群あるいはその両群をおくことができる。結合したタンパク質は共鳴シグナル値の変化量として定量的に測定することができる。この場合、被験試料を含まない陰性コントロール群で得られた結果、被験試料を含む群で得られた結果及び/又は既知量の可溶性HM1.24抗原タンパク質又は抗HM1.24抗体を含む陽性コントロール群で得られた結果を比較することにより、被験試料中の目的とするタンパク質を検出又は測定することができる。

[0054]

本発明の免疫化学的測定方法において、結合した被験試料中のタンパク質を検 出又は測定する手段として、可溶性HM1.24抗原タンパク質又は抗HM1.24抗体を特 異的に認識する一次抗体を用いることができる。

例えば、可溶性HM1.24抗原タンパク質又は抗HM1.24抗体に被験試料を接触させ、洗浄して結合しているタンパク質をそのタンパク質を特異的に認識する一次抗体により検出又は測定する。すなわち、好ましくは支持体に結合させた一方のタ

ンパク質にもう一方のタンパク質を含む被験試料とを接触させる。インキュベートした後、洗浄して、結合しているタンパク質をそのタンパク質を特異的に認識する一次抗体により検出又は測定すればよい。一次抗体は、好ましくは標識物質により標識されている。

[0055]

可溶性BM1.24抗原タンパク質は、他のペプチド又はポリペプチドと融合していてもよい。したがって、被験試料中に含まれる可溶性BM1.24抗原タンパク質を検出するために抗HM1.24抗体を使用することができるし、可溶性HM1.24抗原タンパク質と融合した他のペプチド又はポリペプチドに対する抗体を使用することができる。また、被験試料中に含まれる抗HM1.24抗体を検出するために抗HM1.24抗体を特異的に認識する抗体を使用することができる。抗HM1.24抗体がマウス抗体である場合、抗HM1.24抗体を特異的に認識する抗体として抗マウスイムノグロブリン抗体を使用することができる。また、抗HM1.24抗体がキメラ抗体又はヒト型化抗体である場合、抗HM1.24抗体を特異的に認識する抗体として抗ヒトイムノグロブリン抗体を使用することができる。

[0056]

タンパク質は、通常知られる方法により標識されることができる。標識物質としては、例えば放射性同位元素、酵素、蛍光物質、ビオチン/アビジン等が挙げられる。これらの標識物質は市販の標識物質を使用することができる。放射性同位元素しては、例えば 32 P、 33 P、 131 I、 125 I、 3 H、 14 C、 35 Sが挙げられる。酵素としては、例えばアルカリフォスファターゼ、ホースラディッシュパーオキシダーゼ、 β - ガラクトシダーゼ、 β - グルコシダーゼ等が挙げられる。蛍光物質としては、例えばフロオロセインイソチオシアネート(FITC)、ローダミンが挙げられる。これらは市販のものを入手することができ、公知の方法によって標識される。

[0057]

具体的には、次のようにして行うことができる。すなわち、可溶性HM1.24抗原 タンパク質又は抗HM1.24抗体を含む溶液をプレートに加え、一夜放置してプレートに固定する。可溶性HM1.24抗原タンパク質又は抗HM1.24抗体を固定する際、各 々に対する抗体をあらかじめプレートに固定し、固定した抗体に可溶性HM1.24抗原タンパク質又は抗HM1.24抗体を結合させてもよい。プレートを洗浄の後、タンパク質の非特異的な結合を防ぐため例えばBSAでブロッキングする。再び洗浄し、抗HM1.24抗体又は可溶性HM1.24抗原タンパク質を含む被験試料をプレートに加える。同時に被験試料を含まない群(陰性コントロール)及び/又は既知濃度の抗HM1.24抗体又は可溶性HM1.24抗原タンパク質を加えた群(陽性コントロール)を置き、これらをインキュベートする。

[0058]

インキュベートの後、洗浄し被験試料に対する抗体を加える。適度なインキュベーションの後、プレートを洗浄しそのタンパク質を特異的に認識する一次抗体によりタンパク質を検出又は測定する。検出又は測定には、放射性同位元素の場合液体シンチレーションにより検出又は測定する。酵素の場合その基質を加え、基質の酵素的変化、例えば発色を吸光度計により検出又は測定する。蛍光物質の場合蛍光光度計より検出又は測定する。これらの結果を、コントロール群で得られた数値を比較すれば阻害物質を含む被験試料を決定することができる。

本発明の免疫化学的測定方法において、被験試料中の可溶性HM1.24抗原タンパク質又は抗HM1.24抗体を検出又は測定する手段として、可溶性HM1.24抗原タンパク質又は抗HM1.24抗体を特異的に認識する一次抗体及び一次抗体を特異的に認識する二次抗体を用いることができる。

[0059]

例えば、前述の免疫化学的測定方法において、可溶性HM1.24抗原タンパク質又は抗HM1.24抗体に被験試料を接触させ、インキュベートした後、洗浄して結合しているタンパク質をそのタンパク質を特異的に認識する一次抗体及び一次抗体を特異的に認識する二次抗体により検出又は測定する。すなわち、具体的には可溶性HM1.24抗原タンパク質又は抗HM1.24抗体を支持体に固定し、被験試料を接触させる。インキュベートした後、洗浄して、結合しているタンパク質をそのタンパク質を特異的に認識する一次抗体及び一次抗体を特異的に認識する二次抗体により検出又は測定すればよい。二次抗体は、好ましくは標識物質により標識されている。抗体は、通常知られる上述の方法により標識されることができる。

[0060]

具体的には、次のようにして行うことができる。すなわち、可溶性HM1.24抗原タンパク質又は抗HM1.24抗体を含む溶液をプレートに加え、一夜放置してプレートに固定する。プレートに固定する際、あらかじめ可溶性HM1.24抗原タンパク質又は抗HM1.24抗体に対する抗体をプレートに固定し、固定された抗体に可溶性HM1.24抗原タンパク質又は抗HM1.24抗体を結合させてもよい。プレートを洗浄の後、タンパク質の非特異的な結合を防ぐため例えばBSAでブロッキングする。再び洗浄し、被験試料をプレートに加える。同時に被験試料を含まない群(陰性コントロール)及び及び/又は既知濃度の抗HM1.24抗体又は可溶性HM1.24抗原タンパク質を加えた群(陽性コントロール)を置き、これらをインキュベートする。【0061】

インキュベートの後、洗浄し被験試料に含まれる抗HM1.24抗体又は可溶性HM1.24抗原タンパク質に対する一次抗体を加える。適度なインキュベーションの後、プレートを洗浄し、次いで一次抗体を特異的に認識する二次抗体を加える。適度なインキュベーションの後、洗浄して、その被験試料中に含まれるタンパク質を特異的に認識する一次抗体を特異的に認識する二次抗体によりタンパク質を検出又は測定する。検出又は測定には、放射性同位元素の場合液体シンチレーションにより検出又は測定する。酵素の場合その基質を加え、基質の酵素的変化、例えば発色を吸光度計により検出又は測定する。蛍光物質の場合蛍光光度計により検出又は測定する。

[0062]

これらの結果を、コントロール群で得られた数値を比較すれば阻害物質を含む 被験試料を決定することができる。可溶性HM1.24抗原タンパク質は、他のペプチド又はポリペプチドと融合していてもよい。したがって、被験試料中に含まれる可溶性HM1.24抗原タンパク質を検出するための一時抗体として抗HM1.24抗体を使用することができるし、可溶性HM1.24抗原タンパク質と融合した他のペプチド又はポリペプチドに対する抗体を使用することもできる。また、被験試料中に含まれる抗HM1.24抗体を検出するために抗HM1.24抗体を特異的に認識する抗体を使用することができる。

[0063]

抗HM1.24抗体がマウス抗体である場合、抗HM1.24抗体を特異的に認識する一次 抗体として抗マウスイムノグロブリン抗体を使用することができる。また、抗HM 1.24抗体がキメラ抗体又はヒト型化抗体である場合、抗HM1.24抗体を特異的に認識する一次抗体として抗ヒトイムノグロブリン抗体を使用することができる。また、二次抗体として、一次抗体を特異的に認識する抗体を適宜選択することができる。例えば、一次抗体がヒツジ抗体である場合、抗ヒツジイムノグロブリン抗体を使用することができる。また、一次抗体がウサギ抗体である場合、抗ウサギイムノグロブリン抗体を使用することができる。

[0064]

より詳しくは、本発明は特に好ましくはELISA (Enzyme-linked Immunosorben t Assay) により次のようにして行うことができる。すなわち、可溶性HM1.24抗原タンパク質と融合されたHA (インフルエンザ凝集素) に対する抗体を固相化バッファー (0.1 M NaHCO $_3$ 、0.02% NaN $_3$ 、pH9.6) により希釈する。96穴のイムノプレート (Nunc製) の各穴に希釈したこの水溶液を適量加え、4℃で一晩インキュベートして固相化する。

洗浄バッファー (PBS に0.05% Tween20 となるよう調製したもの) で3 回各穴を洗浄後、 PBSに溶解した5% BSA (SIGMA 製) 溶液200 μ1 を加え、室温で2 時間ブロッキングする。

[0065]

次に洗浄バッファーで3回各穴を洗浄し、希釈バッファー(1% BSA、0.5% Twe en20、PBS)で希釈したHAと融合した可溶性HM1.24抗原タンパク質を加え4℃で一晩インキュベートして抗HA抗体とHAと融合した可溶性HM1.24抗原タンパク質を結合させる。洗浄パッファーで3回洗浄した後、ヒトIgG 抗体定常領域(C 領域)を有するキメラ抗HM1.24抗体を含む被験試料を一定量加え、室温で1時間インキュベートする。

[0066]

洗浄バッファーで各穴を3回洗浄し、希釈バッファーで5000倍に希釈したアルカリフォスファターゼ標識ヤギ抗ヒトIgG 抗体(IBI 製)を 100μ1各穴に加え

、室温で1時間インキュベートする。洗浄バッファーで5 回各穴を洗浄し、発色溶液(基質バッファー;50 mM NaHCO3、10mM MgCl2、pH9.8 に 1 mg/mlの濃度に溶解したSigma 104)を 100μ1各穴に加え、室温で反応させた後に 405 m での吸光度をマイクロプレートリーダー (Model3550、BIO-RAD 製)を用いて測定する。これらの結果を陰性コントロール群及び/又は陽性コントロール群で得られた数値を比較することにより、キメラ抗HM1.24抗体を検出又は測定することができる。また、同様の方法により、可溶性HM1.24抗原タンパク質を検出又は測定することも可能である。

[0067]

本発明のスクリーニング方法は、High Throughput Screening (HTS) にも使用することができる。具体的には、ブロッキングまでを手作業で行い、その後の反応はロボットによって行うことでオートメーション化し、High Throughput screening を実現することができる。

すなわち、HAに対する抗体を固相化バッファー (0.1M NaHCO₃、0.02 % NaN₃、pH9.6)により希釈する。96穴のイムノプレート (Nunc製) の各穴に希釈したこの水溶液を適量加え4 ℃で一晩インキュベートして固相化する。

[0068]

洗浄バッファー (PBS に0.05% Tween20 となるよう調製したもの)で3 回各穴を洗浄後、 PBSに溶解した5% BSA (SIGMA 製)溶液200 μ1を加え、室温で2 時間ブロッキングする。次に洗浄バッファーで3 回各穴を洗浄し、希釈バッファー (1% BSA、0.5% Tween20、PBS)で希釈したHAと融合した可溶性HM1.24抗原タンパク質を加え4 ℃で一晩インキュベートして抗HA抗体とHAと融合した可溶性HM1.24抗原タンパク質を結合させる。

次いで、例えばBiomek2000 HTS system(Beckman 製) にこのイムノプレートをセットして、キメラ抗HM1.24抗体を含む被験試料、キメラ抗HM1.24抗体に対する一次抗体及び一次抗体に対する二次抗体を添加するようにシステムのコントロールプログラムを実行する。

[0069]

この際、分注機としてはBiomek 2000 分注機(Beckman製) あるいはMultipipet

te96穴同時分注器(Sagian 製)を用いることでイムノプレート各穴への溶液の分注や溶液の除去を行うことができる。また、イムノプレートの各穴の洗浄にはEL 404 マイクロプレートウオッシャー(Bio Tek社)を用いることができる。また、吸光度の測定にはSPECTRAmax250 プレートリーダー(Molecular Devices製)を用いることができる。

[0070]

プログラムは以下の操作を行うよう設定する。すなわち洗浄バッファーで3回各穴を洗浄し、被験試料と希釈バッファー(1% BSA、0.5% Tween20、PBS)で希釈したキメラ抗HM1.24抗体を含む被験試料を一定量加える。同時に被験試料を含まない群(陰性コントロール)及び既知濃度のキメラ抗HM1.24抗体を加えた群(陽性コントロール)を置き、これらを室温で1時間インキュベートする。洗浄バッファーで各穴を3回洗浄し、希釈バッファーで5000倍に希釈したウサギ抗ヒトIgG 抗血清(New England Biolabs 製)を100 μ1各穴に加え、室温で1時間インキュベートする。洗浄バッファーで各穴を3回洗浄し、希釈バッファーで5000倍に希釈したアルカリフォスファターゼ標識ヤギ抗ウサギIgG 抗体(TAGO製)を100μ1各穴に加え、室温で1時間インキュベートする。

[0071]

洗浄バッファーで5 回各穴を洗浄し、発色溶液(基質バッファー; 50 mM NaH CO_3 、 10 mM MgCl $_2$ 、 pH9.8 に 1mg/ml の濃度に溶解したp-ニトロフェニルフォスフェート(Sigma 製))を 100μ l 各穴に加え、室温で反応させた後に 405 m での吸光度をマイクロプレートリーダー、Biomekプレートリーダー(Beckman / Molecular Devices製)を用いて測定する。これらの結果をコントロール群で得られた数値と比較することにより、被験試料に含まれているキメラ抗HM1.24抗体を検出又は測定することができる。また、同様の方法により、可溶性HM1.24抗原タンパク質を検出又は測定することも可能である。

[0072]

本発明により提供される免疫化学的測定方法は、可溶性HM1.24抗原タンパク質 又は抗HM1.24抗体を500pg/mlの濃度まで測定することが可能である。

本発明に使用される抗体は、市販の抗体や市販のキットに含まれる抗体を用い

ることもできるし、公知の手段を用いてモノクローナル抗体又はポリクローナル 抗体として得ることができる。

モノクローナル抗体は、所望の感作抗原を使用して、これを通常の免疫方法に したがって免疫し、得られる免疫細胞を通常の細胞融合法によって公知の親細胞 と融合させ、通常のスクリーニング法により、モノクローナル抗体産生細胞をス クリーニングすることによって作製できる。

[0073]

具体的には、モノクローナル抗体又はポリクローナル抗体を作製するには次の ようにすればよい。

例えば、抗体取得の感作抗原は、その由来となる動物種に制限されないが、実際に本発明で使用するペプチド又はポリペプチドの由来となる哺乳動物、例えばヒト、マウス又はラット由来のものが好ましい。これらのうち、特にヒト由来の感作抗原が好ましい。例えば、ヒト可溶性HM1.24抗原タンパク質を感作抗原として使用する場合、それらの塩基配列及びアミノ酸配列は本明細書に開示される遺伝子配列を用いて得ることができる。また、可溶性HM1.24抗原タンパク質との融合に付される他のペプチドやポリペプチドを感作抗原として用いる場合、それらのペプチドやポリペプチドを化学的に合成するか、遺伝子工学的手法により得ることができる。

[0074]

感作抗原として使用されるタンパク質、ペプチド又はポリペプチドは、その全長を使用してもよいし、またその断片も用いることができる。断片としては、例えばC 末端断片やN 末端断片が挙げられる。あるいは、感作抗原として使用されるタンパク質、ペプチド又はポリペプチドを発現する細胞を感作抗原として使用することもできる。

感作抗原で免疫される哺乳動物としては、特に限定されるものではないが、細胞融合に使用する親細胞との適合性を考慮して選択するのが好ましく、一般的にはげっ歯目、ウサギ目、霊長目の動物が使用される。

[0075]

げっ歯目の動物としては、例えば、マウス、ラット、ハムスター等が使用され

る。ウサギ目の動物としては、例えば、ウサギが使用される。霊長目の動物としては、例えばサルが使用される。サルとしては、狭鼻下目のサル(旧世界ザル)、例えば、カニクイザル、アカゲザル、マントヒヒ、チンパンジー等が使用される。

[0076]

感作抗原を動物に免疫するには、公知の方法にしたがって行われる。例えば、一般的方法として、感作抗原を哺乳動物の腹腔内又は、皮下に注射することにより行われる。具体的には、感作抗原をPBS(Phosphate-Buffered Saline)や生理食塩水等で適当量に希釈、懸濁したものを所望により通常のアジュバント、例えば、フロイント完全アジュバントを適量混合し、乳化後、哺乳動物に4~21日毎に数回投与するのが好ましい。また、感作抗原免疫時に適当な担体を使用することができる。このように免疫し、血清中に所望の抗体レベルが上昇するのを常法により確認する。

[0077]

ここで、ポリクローナル抗体を得るには、血清中の所望の抗体レベルが上昇したことを確認した後、抗原を感作した哺乳動物の血液を取り出す。この血液から公知の方法により血清を分離する。ポリクローナル抗体としてポリクローナル抗体を含む血清を使用してもよいし、必要に応じこの血清からポリクローナル抗体を含む画分をさらに単離してもよい。

モノクローナル抗体を得るには、上記抗原を感作した哺乳動物の血清中に所望の抗体レベルが上昇するのを確認した後に、哺乳動物から免疫細胞を取り出し、 細胞融合に付せばよい。この際、細胞融合に使用される好ましい免疫細胞として 、特に脾細胞が挙げられる。

[0078]

前記免疫細胞と融合される他方の親細胞としての哺乳動物のミエローマ細胞としては、既に公知の種々の細胞株、例えば、P3 (P3x63Ag8.653)(Kearney, J. F. et al., J. Immunol. (1979) 123, 1548-1550)、P3x63Ag8. U1 (Yelton, D. E. et al., Current Topics in Microbiology and Immunology (1978) 81, 1-7)、NS-1 (Kohler, G. and Milstein, C., Eur. J. Im

munol. (1976) 6,511-519)、MPC-1 1 (Margulies, D. H. et al., Cell (1976) 8,405-415)、SP2/O (Shulman, M. et al., Nature (1978) 276,2 69-270)、FO (de St. Groth, S. F. and Scheidegger, D., J. Immunol. Met hods (1980) 35,1-21)、S194 (Trowbridge, I. S., J. Exp. Med. (1978) 148,313-323)、R210 (Galfre, G. et al., Nature (1979) 277,131-133) 等が好適に使用される。

[0079]

前記免疫細胞とミエローマ細胞の細胞融合は基本的には公知の方法、例えば、ミルステインらの方法(Galfre, G. and Milstein, C., Methods Enzymol. (1981) 73, 3-46) 等に準じて行うことができる。

より具体的には、前記細胞融合は例えば、細胞融合促進剤の存在下に通常の栄養培養液中で実施される。融合促進剤としては例えば、ポリエチレングリコール (PEG)、センダイウィルス (HVJ)等が使用され、更に所望により融合効率を高めるためにジメチルスルホキシド等の補助剤を添加使用することもできる

[0080]

免疫細胞とミエローマ細胞との使用割合は、例えば、ミエローマ細胞に対して 免疫細胞を1~10倍とするのが好ましい。前記細胞融合に用いる培養液として は、例えば、前記ミエローマ細胞株の増殖に好適なRPMI1640培養液、M EM培養液、その他、この種の細胞培養に用いられる通常の培養液が使用可能で あり、さらに、牛胎児血清(FCS)等の血清補液を併用することもできる。

細胞融合は、前記免疫細胞とミエローマ細胞との所定量を前記培養液中でよく 混合し、予め、37℃程度に加温したPEG溶液、例えば、平均分子量1000 ~6000程度のPEG溶液を通常、30~60%(w/v)の濃度で添加し、 混合することによって目的とする融合細胞(ハイブリドーマ)が形成される。続いて、適当な培養液を逐次添加し、遠心して上清を除去する操作を繰り返すこと によりハイブリドーマの生育に好ましくない細胞融合剤等を除去できる。

[0081]

当該ハイブリドーマは、通常の選択培養液、例えばHAT培養液(ヒポキサン

チン、アミノプテリン及びチミジンを含む培養液)で培養することにより選択される。当該HAT培養液での培養は、目的とするハイブリドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間、通常数日~数週間継続する。ついで、通常の限界希釈法を実施し、目的とする抗体を産生するハイブリドーマのスクリーニング及びクローニングが行われる。

[0082]

また、ヒト以外の動物に抗原を免疫して上記ハイブリドーマを得る他に、ヒトリンパ球、例えばEBウィルスに感染したヒトリンパ球をin vitroでペプチド又はポリペプチドやそれらの発現細胞又はその溶解物で感作し、感作リンパ球をヒト由来の永久分裂能を有するミエローマ細胞、例えばU266と融合させ、ペプチド又はポリペプチドへの結合活性を有する所望のヒト抗体を産生するハイブリドーマを得ることもできる(特開昭63-17688)。

[0083]

さらに、ヒト抗体遺伝子のレパートリーを有するトランスジェニック動物に抗原となるペプチド又はポリペプチド、それらの発現細胞又はその溶解物を免疫して抗体産生細胞を取得し、これをミエローマ細胞と融合させたハイブリドーマを用いて本発明に使用されるペプチド又はポリペプチドに対するヒト抗体を取得してもよい(国際特許出願公開番号WO92-03918、WO93-2227、WO94-02602、WO94-25585、WO96-33735及びWO96-34096参照)。

[0084]

このようにして作製されるモノクローナル抗体を産生するハイブリドーマは、 通常の培養液中で継代培養することが可能であり、また、液体窒素中で長期保存 することが可能である。

当該ハイブリドーマからモノクローナル抗体を取得するには、当該ハイブリドーマを通常の方法にしたがい培養し、その培養上清として得る方法、あるいはハイブリドーマをこれと適合性がある哺乳動物に移植して増殖させ、その腹水として得る方法などが採用される。前者の方法は、高純度の抗体を得るのに適しており、一方、後者の方法は、抗体の大量生産に適している。

ハイブリドーマを用いて抗体を産生する以外に、抗体を産生する感作リンパ球等の免疫細胞を癌遺伝子(oncogene)により不死化させた細胞を用いてもよい。
【0085】

このように得られたモノクローナル抗体はまた、遺伝子組換え技術を用いて産生させた組換え型抗体として得ることができる。例えば、組換え型抗体は、抗体遺伝子をハイブリドーマ又は抗体を産生する感作リンパ球等の免疫細胞からクローニングし、適当なベクターに組み込んで、これを宿主に導入し産生させる。本発明には、この組換え型抗体を用いることができる(例えば、Borrebaeck, C. A. K. and Larrick, J. W., THERAPEUTIC MONOCLONAL ANTIBODIES, Published in the United Kingdom by MACMILLAN PUBLISHERS LTD, 1990 参照)。

[0086]

本発明で使用される抗体は、所望の結合活性を有するかぎり、その抗体断片や抗体修飾物であってよい。例えば、抗体断片としては、Fab、F(ab′)2、Fv又はH鎖とL鎖のFvを適当なリンカーで連結させたシングルチェインFv(scFv)が挙げられる。具体的には、抗体を酵素、例えば、パパイン、ペプシンで処理し抗体断片を生成させるか、又は、これら抗体断片をコードする遺伝子を構築し、これを発現ベクターに導入した後、適当な宿主細胞で発現させる(例えば、Co, M. S. et al., J. Immunol. (1994) 152, 2968-2976; Better, M. and Horwitz, A. H., Methods Enzymol. (1989) 178, 476-496; Pluckthun, A. and Skerra, A., Methods Enzymol. (1989) 178, 497-515; Lamoyi, E., Methods Enzymol. (1986) 121, 652-663; Rousseaux, J. et al., Methods Enzymol. (1986) 121, 663-669; Bird, R. E. and Walker, B. W., Trends Biotech nol. (1991) 9, 132-137参照)。本発明には、公知の技術により作製されるキメラ抗体又はヒト型化抗体を使用することができる。

[0087]

また、本発明の免疫化学的測定方法により検出又は測定される抗体は、上述の 抗体、例えばハイブリドーマに産生される抗体、組換え型抗体、キメラ抗体及び ヒト型化抗体のいずれでもよい。

前記のように発現、産生された抗体は、細胞内外、宿主から分離し均一にまで

精製することができる。本発明で使用される抗体の分離、精製は通常のタンパク質で使用されている分離、精製方法を使用すればよく、何ら限定されるものではない。

[0088]

例えば、アフィニティークロマトグラフィー等のクロマトグラフィーカラム、フィルター、限外濾過、塩析、透析、SDS ポリアクリルアミドゲル電気泳動、等電点電気泳動等を適宜選択、組み合わせれば、抗体を分離、精製することができる(Antibodies: A Laboratory Manual, Ed Harlow and David Lane, Cold Spring Harbor Laboratory, 1988)。

アフィニティークロマトグラフィーに用いるカラムとしては、プロテインAカラム、プロテインGカラムが挙げられる。例えば、プロテインAカラムを用いたカラムとして、Hyper D, POROS, Sepharose F. F. (Pharmacia) 等が挙げられる

[0089]

アフィニティークロマトグラフィー以外のクロマトグラフィーとしては、例えば、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、ゲル濾過、逆相クロマトグラフィー、吸着クロマトグラフィー等が挙げられる(Strategies for Protein Purification and Characterization: A Laboratory Course Manual . Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996)。これらのクロマトグラフィーはHPLC、FPLC等の液相クロマトグラフィーを用いて行うことができる。

[0090]

上記で得られた抗体の濃度測定又は活性確認は、公知の方法、例えばELISA、EIA (酵素免疫測定法)、RIA (放射免疫測定法)あるいは蛍光抗体法を用いることができる。

抗HM1.24抗体を産生するハイブリドーマHM1.24は、工業技術院生命工学工業研究所(茨城県つくば市東1 丁目1 番3 号)に、平成7 (1995)年9月14日に FERM BP-5233としてブタペスト条約に基づき国際寄託された。

[0091]

【実施例】

以下に実施例を示して本発明をより詳細に説明するが、本発明の範囲を限定するものではない。

実施例 1. FLAGタグ付加可溶性HM1.24抗原発現ベクターの構築

EcoRI (宝酒造製) およびNotI (宝酒造製) で消化することにより調製したHE F 発現ベクター (国際特許出願公開番号W092-19759) と、イムノグロブリン (Ig) リーダー配列とFLAGタグをコードする遺伝子ペア (サワディーテクノロジー製) を、50 mM Tris-HCl, pH7.6 、10 mM MgCl₂ 、10 mM ジチオスレイトール、1 mMTP、50 mg/mlのポリエチレングリコールおよび1 ユニットT4 DNAリガーゼ (GI BCO-BRL 製) を含有する反応混合物中で、16℃にて3 時間反応させ連結した。

[0092]

揮入したIgリーダー配列とFLAGタグをコードする遺伝子はEcoRI、KpnI(宝酒造製)およびNotI制限酵素認識部位をリンカーとして接続した配列番号12および13に示す合成遺伝子ペアを用いた。次に連結反応混合物を大腸菌DH5aのコンピテント細胞(GIBCO-BRL製)に加え、これを氷上で30分間、42℃にて1分間、そして再び氷上で1分間静置した。

[0093]

次いで、400 μ1の2xYT培地(Molecular Cloning: A Laboratory Manual, S ambrook ら、Cold Spring Harbor Laboratory Press, (1989))を加え、37℃にて1時間インキュベーションした後、50μg/mlのアンピシリンを含有する2xYT寒天培地(Molecular Cloning: A Laboratory Manual, Sambrook ら、Cold Spring Harbor Laboratory Press, (1989))上にこの大腸菌を播き、37℃にて一夜インキュベートして大腸菌形質転換体を得た。この大腸菌形質転換体を50μg/mlのアンピシリンを含有する2xYT培地中で37℃にて一夜培養し、この培養物から、アルカリ法(Molecular Cloning: A Laboratory Manual, Sambrook ら、Cold Spring Harbor Laboratory Press, (1989))に従ってプラスミドDNA を調製した。

[0094]

一方、HM1.24抗原の細胞外領域の遺伝子はThermal Cycler (Perkin Elmer Cet

us製)を用いたPCR 法により増幅した。HM1.24抗原のcDNAを鋳型として、100 pm ole の配列番号9 ~10に示したプライマー、10 mM Tris-HCl, pH8.3 、50 mM KC l 、0.1 mM dNTPs (dATP, dGTP, dCTP, dTTP) 、1.5 mM MgCl₂ および5 ユニットのDNA ポリメラーゼAmpli Taq (Perkin Elmer Cetus製)を含有する混合物を最初に94℃にて最初の変性の後、94℃にて1 分間、55℃にて1 分間、72℃にて1分間のサイクルを30回行い、最後に72℃にて10分間インキュベーションした。

このPCR 産物をHM1.24抗原の細胞外領域の遺伝子として、KpnIおよびBamHI 消化した上記プラスミドDNA と50 mM Tris-HCl, pH7.6、10 mM MgCl₂、10 mM ジチオスレイトール、1 mM ATP、50 mg/mlのポリエチレングリコールおよび1 ユニットT4 DNAリガーゼ (GIBCO-BRL 製) を含有する反応混合物中で、16℃にて3 時間反応させ連結した。上記同様に、連結反応混合物を大腸菌DH5aのコンピテント細胞に加え、大腸菌形質転換体を得、これよりプラスミドDNA を調製した。

このプラスミドDNA をFLAGタグ付加可溶性抗原発現プラスミドとし、pSFHM1.2 4 と命名した。これの塩基配列決定を、自動DNA シークエンサー (Applied Biosystem Inc.製) およびTaq Dye terminator Cycle Sequencing kit (Applied Biosystem Inc.製) を用いて、メーカー指定のプロトコールに従って行った。その結果、可溶性抗原にFLAGのタグペプチドをつないだ融合タンパク(配列番号2)が発現する構造になっていることが確認された。

[0097]

[0095]

[0096]

実施例2. HAタグ付加可溶性抗原発現プラスミドの構築

FLAGタグ付加可溶性HM1.24抗原発現ベクターを利用して、HAタグ付加可溶性抗原発現プラスミドを構築した。

最初に、Cytomegalovirus (CMV) プロモーター/ エンハンサー、ネオマイシン 耐性遺伝子、Dehydrofolate reductase (DHFR) 遺伝子ならびに leader 配列を 含むBluescript SK-ベクター (Molecular Cloning: A Laboratory Manual, Sambrook ら、Cold Spring Harbor Laboratory Press, (1989)) にヘマグルチニン のエピトープタグをコードする遺伝子を挿入した。

[0098]

ヘマグルチニンのエピトープタグ(アミノ酸配列: YPYDVPDYA)をコードする遺伝子はDraIII、KpnI制限酵素認識部位をリンカーとして接続した合成DNA ペア(サイメディア製)を用いた(配列番号 1 4 および 1 5)。500 pmolずつのヘマグルチニンのエピトープタグをコードする遺伝子ペアHA-S、HA-Rを、KpnIおよび DraIII(宝酒造製)で消化することにより調製した5 μ g のベクター(CGM)と、DNA ligation kit Ver.2(宝酒造製)I 液5 μ 1 を含む反応混合溶液中で16でにて 1 時間反応させ連結した。

[0099]

次に、1 μ1の連結反応混合物を大腸菌JM109 のコンピテント細胞(ニッポンジーン製)100 μ1に加え、これを氷上で30分間、42℃にて1 分間、そして再び氷上で1 分間静置した。次いで、400 μ1のSOC 培地(Molecular Cloning: A Laboratory Manual, Sambrook ら、Cold Spring Harbor Laboratory Press, (1989))を加え、37℃にて 1時間インキュベートした後、50μg/ml のアンピシリンを含有する 2xYT 寒天培地(Molecular Cloning: A Laboratory Manual, Sambrook ら、Cold Spring Harbor Laboratory Press, (1989))上にこの大腸菌を播き、37℃にて一夜インキュベートして大腸菌形質転換体を得た。

[0100]

10 mM Tris-HCl, pH8.3, 50 mM KCl, 0.1 mM dNTPs, 100 pmole ずつの配列番号7~8 に示したプライマー、5 unitのAmpli Taq 酵素および上記形質転換体を鋳型として含む、20μ1の混合液を94℃にて30秒間、55℃にて30秒間、72℃にて30秒間インキュベートのサイクルを25回行った。4%アガロースゲル電気泳動によりこの PCR生成物が220 bpである大腸菌形質転換体を選択した。この大腸菌形質転換体を100 μg/ml のアンピシリンを含むLB培地(Molecular Cloning:A Laboratory Manual, Sambrook ら、Cold Spring Harbor Laboratory Press, (1989))300 ml中で37℃にて一夜培養し、そしてこの培養物から、アルカリ法(Mole cular Cloning:A Laboratory Manual, Sambrook ら、Cold Spring Harbor Laboratory Press, (1989))に従ってプラスミドDNA を調製した。こうして調製したヘマグルチニンのエピトープタグをコードする遺伝子を含有するプラスミドを

CGM/HAと命名した。

[0101]

一方、用いる可溶性HM1.24抗原遺伝子 (sHM) は、 pSFHM1.24より得た。 5μ gの pSFHM1.24をKpnIおよび、BamHI で消化した反応混合物から、1%アガロースゲル (SIGMA 製) を用いて410 bpの断片を精製することにより可溶性抗原を調製した。

次に、CGM/HAに、sHM を挿入した。CGM/HAをKpnIおよび、BamHI 消化した後、50 mM Tris-HCl, pH9.0, 1 mM MgCl₂ および2 ユニットのアルカリホスファターゼ (E. coli C75) (宝酒造製) を含む反応混合物中で、65℃にて15分間反応させ、脱リン酸化を行った。この脱リン酸化CGM/HA 100 ng とsHM をDNA ligation k it Ver.2 (宝酒造製) I 液5 μ1を含む反応混合溶液中で16℃にて1時間反応させ連結した。

[0102]

続いて、1 μ1の連結反応混合物を大腸菌JM109 のコンピテント細胞(ニッポンジーン製)100 μ1に加え、これを氷上で30分間、42℃にて1 分間、そして再び氷上で1 分間静置した。次いで、400 μ1のSOC 培地 (Molecular Cloning: A Laboratory Manual, Sambrook ら、Cold Spring Harbor Laboratory Press, (1989))を加え、37℃にて 1時間インキュベートした後、50 mg/mlのアンピシリンを含有する 2xYT 寒天培地 (Molecular Cloning: A Laboratory Manual, Sambrook ら、Cold Spring Harbor Laboratory Press, (1989))上にこの大腸菌を播き、37℃にて一夜インキュベートして大腸菌形質転換体を得た。

[0103]

10 mM Tris-HCl, pH8.3, 50 mM KCl, 0.1 mM dNTPs, 100 pmole ずつの配列番号7~8 に示した各プライマー、5 unitのAmpli Taq 酵素 (Perkin Elmer Cetus 製) および上記形質転換体を鋳型として含む、20μlの混合液を94℃にて30秒間、55℃にて30秒間、72℃にて30秒間インキュベートのサイクルを25回行った。 1% アガロースゲル電気泳動によりこの PCR生成物が630 bpである大腸菌形質転換体を選択した。

[0104]

この大腸菌形質転換体を100 μg/ml のアンピシリンを含むLB培地 (Molecula r Cloning: A Laboratory Manual, Sambrook ら、Cold Spring Harbor Laborat ory Press, (1989)) 600 ml中で37℃にて一夜培養し、そしてこの培養物から、アルカリ法 (Molecular Cloning: A Laboratory Manual, Sambrook ら、Cold S pring Harbor Laboratory Press, (1989)) に従ってプラスミドDNA を調製した。こうして調製したヘマグルチニンのエピトープタグをコードする遺伝子および可溶性HM1.24抗原をコードする遺伝子を含有するプラスミドをCGM/HA-SHMと命名し、HAタグ付加可溶性HM1.24抗原発現プラスミドとした。

[0105]

実施例 3. 塩基配列決定

ヘマグルチニンのエピトープタグをコードする遺伝子を含有するプラスミド(CG M/HA) の塩基配列決定を、自動DNA シークエンサー (Applied Biosystem Inc.製) およびTaq Dye terminator Cycle Sequencing kit (Applied Biosystem Inc.製) を用いて、メーカー指定のプロトコールに従って行った。反応に用いたプライマーを配列番号7~8、解読した塩基配列の範囲を図1、決定した塩基配列を配列番号5 に示した。これより理論上の配列と一致していることが確認された。 [0106]

実施例 4. COS-7 細胞へのトランスフェクション

 ${
m HAS}$ が付加可溶性 ${
m HM}$ 1.24抗原の一過性の発現を観察するため、前記発現ベクターをCOS-7 細胞 (ATCC ${
m \#CRL}$ -1651) において試験した。発現プラスミド (CGM/ ${
m HA}$ -s ${
m HM}$) をGene Pulser 装置 (Bio-Rad 製) を用いてエレクトロポレーションにより ${
m COS}$ -7 細胞を同時形質転換した。発現プラスミド (1 μ g) をPBS 中 1.1×10^7 細胞 / ${
m ml}$ 00.8 ${
m ml}$ 7 リコートに加え、1.5 kV、 25μ F の容量にてパルスを与えた

[0107]

室温にて 10 分間の回復期間の後、エレクトロポレーションされた細胞を、 1 0 mlの10% ウシ胎児血清 (GIBCO-BRL 製) を含有する DMEM 培養液 (GIBCO-BRL 製) に懸濁し、37℃、 5% CO₂ インキュベーターで培養した。6 日間の培養の後、培養上清を集め、遠心分離により細胞破片を除去し、0.22μmフィルター(MIL

LIPORE製)をかけ、4℃で保存した。

これをsandwich ELISA系の初期検討に用いた。

[0108]

実施例 5. CHO 細胞へのトランスフェクション

宿主細胞としてCHO 細胞DG44株 (Urlaub, G et al., Cell (1983) 33(2)405-4 12) を使用した。DG44株はDBFR欠損株なので、グリシン、プリンヌクレオチド、チミジンに対して栄養要求性を示す。そこで、ネオマイシン耐性遺伝子並びに DHFR を発現するプラスミドをトランスフェクションすると、G418添加ヌクレオシド欠損培地により、DHFR+、ネオマイシン耐性の形質転換細胞を選出することが出来る。更に、DHFR のインヒビターであるメトトレキセート (MTX) の培地中濃度を段階的に増加させることで選択し、生き残った細胞は導入した発現プラスミドのコピー数が増幅し、目的産物の産生量が増加する。

[0109]

HAタグ付加可溶性HM1.24抗原安定産生系を樹立するために、PacI (New England biolabs 製) で消化した後、0.7%アガロースゲルを用いて4.7 kb断片を精製して得た直鎖状にした前記発現ベクター (CGM/HA-SHM) をエレクトロポレーション法により前述と同様 (前記COS-7 細胞へのトランスフェクション) の条件下で同時にCHO 細胞に遺伝子を導入した。

遺伝子導入したCHO 細胞をヌクレオシド不含CHO-S-SFM II培養液(GIBCO BRL製)に懸濁し、100 μ 1/well (4x 10 4 cells/well) で平底96穴プレート(FA LCON製)に播種した。 37 $^{\circ}$ C、 5% CO $_2$ インキュベーターにて一晩培養した後、 1 mg/mlの濃度でG418(GIBCO BRL製)を添加したヌクレオシド不含CHO-S-SFM II 培養液を100 μ 1/well 加え、引き続き培養した。途中、播種後7 日目、14日目に培養上清を 100μ 1/well 抜いた後、1 mg/ml のG418添加ヌクレオシド不含CH O-S-SFM II培養液を100 μ 1/well 加えて、培地交換を行った。播種後16日目に検鏡を行い、増殖したクローンを選別した。

[0110]

G418で選別したクローン#1を更に、5 nM MTX (SIGMA 製)を添加したヌクレオシド不含CHO-S-SFM II培養液に懸濁し、5 x 10² cells/well、5 x 10³ cells/we

11、 5×10^4 cells/wellの三段に濃度を振って100 μ 1/well で平底96穴プレートに播種した。37 $^{\circ}$ 、5% CO_2 インキュベーターにて一晩培養した後、5 nM MTX 添加CHO-S-SFMII 選択培地を100 μ 1/well 加えた。途中、培地交換を行い、7 日~14日目に検鏡を行った。得られた#A、#B、#Cのコロニーについて拡大培養し、5 nM MTXで増幅した場合と同様にして50 nM、更に500 nMとMTX の濃度を上げて、増幅していった。最終的にCOS-7 細胞による培養上清の60% の産生量を示す CHO 細胞を得た。

[0111]

実施例 6. 可溶性抗原の調製

暫定的な可溶性HM1.24抗原を確保するため、G418で選択した # 1株 (CHO 細胞へのトランスフェクションの項に記述)を培養した。培地は1 mg/ml G418を含むヌクレオシド不含CHO-S-SFM II培養液を用いた。 500mlスピナーフラスコ (Techne製)2 本にて (1 L 分)を60 rpmで攪拌しながら、 37 ℃で10日間培養した。遠分離により培養上清を集め、0.22μmのフィルター (FALCON製)に通した後、可溶性抗原として - 80 ℃で保存した。この培養上清から精製したHM1.24抗原はHM1.24 対プンドの探索、あるいはHM1.24抗原の機能解析にも利用できると考えられる。

[0112]

実施例 7. ELISA 系予備検討

COS-7細胞による培養上清を用いてELISA 系の予備検討を行った。抗HA抗体のコントロールとして抗IL-6 receptor 抗体であるMT18抗体(マウスIgG2bk、(Hira ta,Y et al., J. Immunol. (1989) 143 (9) 2900-2906)) を使用した。キメラ型抗HM1.24抗体(参考例参照)のコントロールにはミエローマ由来ヒトIgG1(ヒト IgG1 kappa purified, (THE BINDING SITE製)をキメラ抗体と同様にプロテインA カラムで精製した抗体)を用いた。

[0113]

1. 抗HA抗体ーキメラ型抗HM1.24抗体

抗HA抗体 (マウスモノクローナル抗体: クローン12CA5 、 Boehringer Mannheim 製) ならびにコントロール抗体を1 μg/ml と5 μg/ml にC.B. (Coating Bu

ffer: 0.1 M NaHCO₃ 、緩衝液,pH9.6, 0.02%アジ化ナトリウム)で調製し、 1 00μl/well で平底96六プレート(Immuno plate I検定付: Nunc 製)に4 ℃で一晩コーティングした。 R.B.(Rinse Buffer: PBS, 0.05% Tween 20) で3 回洗浄した後、200μl/well でD.B. (Dilution Buffer: 50 mM Tris-HCl, pH8.1, 1 mM MgCl₂, 0.15M NaCl, 0.05% Tween 20, 0.02% アジ化ナトリウム, 1% BSA (SIGMA 製))を加え、室温で2 時間ブロッキングを行った。培養上清をD.B.で4 倍希釈ずつ4 段に段階希釈したものを室温で1 時間反応させた。

[0114]

R.B. で3 回洗浄した後、キメラ型抗HM1.24抗体を5 μg/ml にD.B.で調製したものを 100μl/well 加え、室温で1 時間反応させた。更に R.B. で3 回洗浄した後、アルカリフォスファターゼ標識ヤギ抗ヒトIgG 抗体 (BIOSOURCE 製)を D.B.で5000倍希釈、10,000倍希釈したものを 100μl/well ずつ加え、室温で1時間反応させた。R.B.で5 回洗浄した後、アルカリフォスファターゼ基質である SIGMA 104(p-Nitrophenyl phosphate, disodium, hexahydrate: SIGMA 製)をS.B. (Substrate Buffer: 0.05 M NaHCO3 緩衝液, pH9.8, 10mM MgCl2)で1 mg/ml にしたもを 100μl/well 加え、室温で発色させ、405 nm - 655 nm の吸光 度をmicroplate reader model 3550 (BIORAD製)にて測定した。

[0115]

2. キメラ型抗HM1.24抗体-抗HA抗体

キメラ型抗HM1.24抗体ならびにコントロール抗体を1 μg/ml と5 μg/ml にC. B.にて調製し、100 μ1/well で平底96穴プレート(Immuno plate I: Nunc 製)に4 ℃で一晩コーティングした。R.B.で洗浄した後、上記1 と同様に培養上清を反応させた。洗浄後、HA抗体を5 μg/ml にD.B.で調製したものを 100μ1/well 加え、室温で1 時間反応させた。アルカリフォスファターゼ標識ヤギ抗マウスIgG 抗体(ZYMED 製)を5000倍希釈、10,000倍希釈したものを 100μ1/well ずつ加え、室温で1 時間反応させた。 R.B. で5 回洗浄した後、 SIGMA104 を同様に加えて発色させ、405 nm~ 655 nm の吸光度を測定した。

[0116]

以上の試験において、a)抗HA抗体→キメラ型抗HM1.24抗体、b)キメラ型抗HM1.

24抗体→抗HA抗体のどちらのELISA 系でも抗原の濃度依存的にカーブが描け、いずれの系も利用可能であった。ヒト型化抗HM1.24抗体の測定系には1.の方法が適しているので上記1.のサンドイッチELISA 系を用いることとした。

[0117]

実施例 8. 培養上清を用いたsandwich ELISA

HA付加可溶性HM1.24抗原を用いたsandwich ELISA系を模式的に図2 に示した。

1. COS-7細胞による培養上清

抗HA抗体を1 μ g/ml でコーティングし、COS-7 細胞による培養上清を4 倍に希釈したものを 100μ l/well 加え、室温で2 時間反応させた。400 ng/ml のキメラ型抗HM1.24抗体およびヒト型化抗HM1.24抗体(参考例参照)を3 倍希釈の段階希釈を行い、 100μ l/well 加えて室温で1 時間反応させた。アルカリフォスファターゼ標識ヤギ抗ヒト IgG (BIOSOURCE 製)を加え、室温で1 時間反応させた。アルカリフォスファターゼ基質を同様に加えて発色させ、405 nm - 655 nm の吸光度を測定した。

[0118]

その結果、COS-7 細胞培養上清を用いた場合のヒト型化抗HM1.24抗体による標準曲線を作製したところ、図3 のようになり、このELISA 系の測定限界は500pg/mlであった。キメラ型抗体も同様であった。

2. CHO細胞による培養上清

G418で選択したCHO 細胞 #1 による培養上清(可溶性抗原の調製に記述した)を用いて1. COS-7細胞による培養上清の項と同様にサンドイッチ ELISAを行った。ただし、可溶性抗原はしっかり反応させるために4 ℃で一晩反応させ、AHM は 1 μg/ml から3 倍希釈の段階希釈を行った。

その結果、CHO 細胞による可溶性抗原を用いた場合の標準曲線は図4 のようになり、この場合の測定限界は数ng/ml 程度であった。

実施例 9. 細胞株の選択

なるべく高産生の株を得るために可溶性抗原の産生量を抗HA抗体とキメラ型抗HM1.24抗体およびヒト型化抗HM1.24抗体によるsandwich ELISAで比較し、細胞株の選択を行った。

抗HA抗体を1 μg/ml でコートしたプレートをブロッキングした後、HAタグ付 加可溶性抗原産生細胞の培養上清を段階希釈して加えた。精製抗原を得ていない ため、抗原濃度は分からないので、濃度を比較するために、初期播種量をそろえ、4 日間細胞を培養した培養上清を用いた。

[0119]

これを室温にて2 時間インキュベートした後、1 μg/ml のキメラ型抗HM1.24 抗体およびヒト型化抗HM1.24抗体を加え、室温にて1 時間インキュベートした。 アルカリフォスファターゼ標識ヤギ抗ヒトIgG (BIOSOURCE 社製)を加え、室温 で1 時間反応させた後、基質溶液を加えた。室温で発色させ、405 nm - 655 nm の吸光度をmicroplate reader model 3550 (BIORAD社製) にて測定した。

その結果クローン#1をG418で選別し、これを親株として5nM MTX(SIGMA 社製)で増幅させ、#A, #B, #Cを得た。

[0120]

実施例 10. Sandwich ELISA 系の利用

1. キメラ型抗HM1.24抗体を投与したアカゲザルにおけるキメラ型抗HM1.24抗体 の血中濃度の測定

キメラ型抗HM1.24抗体を4 mg/kg、40 mg/kgの投与量でi.v. infusion 投与したアカゲザルから投与前、投与後1、3、7、14日に採血し、4℃下で遠心分離し、血清を得た。またコントロール群として、キメラ型抗HM1.24抗体の代わりに生理食塩水を投与したアカゲザルからも同様に採血し、血清を得た。この血清中のキメラ型抗HM1.24抗体の濃度をHAタグ付加HM1.24可溶性抗原を用いたsandwich ELISAで測定した。

[0121]

抗HA抗体を $1~\mu~g/ml$ でコーティングしたプレートをブロッキングし、HAタグ 付加HM1.24可溶性抗原(CHO 細胞による培養上清を4 倍に希釈したもの)を 100 $\mu~l$ /well 加え、4 $^{\circ}$ にて一晩反応させた。キメラ型抗HM1.24抗体を投与したア カゲザルの血清を段階希釈して各穴に $100~\mu~l$ 加えた。また、スタンダードとし て投与に用いたキメラ型抗HM1.24抗体を $10~\mu~g/ml$ から3 倍希釈で11段に段階希釈して用いた。室温にて1 時間インキュベーションおよび洗浄の後、アルカリフ

オスファターゼ標識ヤギ抗ヒトIgG 抗体 (BIOSOURCE 製) を加えた。 【 O 1 2 2 】

室温にて1 時間インキュベーションした後洗浄し、基質溶液を加えた。インキュベーションの後、MICROPLATE READER Model 3550 (Bio-Rad 製)を用いて405 nmでの吸光度を測定した。その結果、アカゲザルの血清中におけるキメラ型抗師1.24抗体の濃度の推移は図5 の通りであった。このELISA 系の測定限界は508 pg/ml であった。

また、この sandwich ELISA は二次抗体をアルカリフォスファターゼ標識抗マウスIgG2a 抗体に変えることにより、マウス抗HM1.24抗体の血中動態の測定も可能である。

[0123]

2.ヒト型化抗HM1.24抗体の結合阻害活性の測定

ビオチン標識マウス抗HM1.24抗体によるヒト型化抗HM1.24抗体の結合阻害活性をHAタグ付加HM1.24可溶性抗原を用いたsandwich ELISAで測定した。抗HA抗体を1 μ g/ml でコーティングしたプレートをブロッキングし、HAタグ付加HM1.24可溶性抗原 (CHO 細胞による培養上清を4 倍に希釈したもの)を 100μ l/well 加え、4 $\mathbb C$ にて一晩反応させた。洗浄した後、ヒト型化抗HM1.24抗体およびキメラ型抗HM1.24抗体を 10μ g/ml から3 倍希釈で7 段に段階希釈して各穴に 50μ l加え、同時に20 ng/mlのビオチン標識マウス抗HM1.24抗体50 μ lも添加し、室温にて1 時間反応させた。

[0124]

洗浄後、アルカリフォスファターゼ標識ストレプトアビジン(PIERCE製)を加え、室温で2 時間反応させた後洗浄し、基質溶液を加えた。インキュベーションの後、MICROPLATEREADER Model 3550 (Bio-Rad 製)を用いて405 nmでの吸光度を測定した。その結果、図6 に示す通り、ビオチン標識マウス抗HM1.24抗体に対してヒト型化抗HM1.24抗体はマウス抗HM1.24抗体と同等の結合阻害活性を示した。このことより、ヒト型化抗HM1.24抗体はマウス抗HM1.24抗体と同じ V領域を有することが示された。

また、培養上清より精製した可溶性HM1.24抗原をStandardに用いた可溶性HM1.

24抗原の測定系にも応用が可能である。

[0125]

実施例 11. FCM解析

HAタグ付加可溶性HM1.24抗原産生CHO 細胞の抗原産生量はあまり高いものではなかった。この原因を究明するため、 G418 で選択したHAタグ付加可溶性抗原産生CHO 細胞 #1 、および5 nM MTXで増幅したHAタグ付加可溶性抗原産生CHO 細胞 #A についてFCM (フローサイトメトリー)解析を行った。 1×10^6 個の可溶性抗原発現CHO 細胞PBS で洗浄した後、 $500 \mu g/ml$ のマウス抗HM1.24抗体 $5 \mu 1$ および FACS 緩衝液 (2%ウシ胎児血清,0.1%アジ化ナトリウム含有PBS) 95 $\mu 1$ 、または $500 \mu g/ml$ の抗HA抗体 (Boehringer Mannheim 製) $5 \mu 1$ および FACS 緩衝液 95 $\mu 1$ を加え、氷温下30分間インキュベートした。

[0126]

コントロールとしてマウス抗HM1.24抗体の代わりに500 μ g/ml のマウスIgG2 ak (UPC10) (CAPPEL製) 5 μ l および FACS 緩衝液 95 μ l 、または抗 HA 抗体の代わりにマウス IgG2bk 抗体 (MT18) 5 μ l および FACS 緩衝液 95 μ l を加え、同様にインキュベートした。FACS緩衝液で洗浄した後、 10μ g/ml のFITC 標識ヤギ抗マウスIgG 抗体 (Becton Dickinson製) 100 μ l を加え、氷温下30分間インキュベートした。FACS緩衝液で洗浄した後、600 μ l の FACS 緩衝液に懸濁してFACScan (Becton Dickinson 製) にて各細胞の蛍光強度を測定した。

[0127]

その結果、図7に示すとおり、マウス抗HM1.24抗体ならびに抗 HA 抗体を添加した細胞では、コントロールと比較して蛍光強度のピークが右側にシフトしたことから、マウス抗HM1.24抗体ならびに抗 HA 抗体が、HAタグ付加可溶性抗原産生CHO 細胞を結合したことが明らかになった。このことより、細胞表面にHM1.24抗原ならびにヘマグルチニンタグペプチドが高発現していることが確認された。

[0128]

実施例 12. 細胞溶解物の作製

 1.2×10^7 個のG418で選択したHAタグ付加可溶性抗原産生CHO 細胞 #1 、および5 nM MTXで増幅した 1.6×10^7 個の #A 、 1.2×10^7 個の #B 、 1.1×10^7 個

の #C のHAタグ付加可溶性抗原産生CHO 細胞をPBS で洗浄した後、50mM NaHCO₃ 緩衝液, pH 8.0, 150 mM NaCl, 100μg/ml PMSF, 25倍希釈のprotease inhibit or cocktail (Boehringer Mannheim製), 0.5% デオキシコール酸ナトリウム, 1% Nonidet P-40 を含むlysis 緩衝液1 mlを加え、氷温下で30分間ソニケーションを行った。その後、4℃、14,000回転で10分間遠心し、上清を細胞溶解物として回収した。1.0 x 10⁷ 個のKPMM2 細胞 (特許出願公開番号特開平7-236475) についても同様に細胞溶解物を調製した。

[0129]

実施例 13. ウエスタンブロッティング

1. 還元状態における SDSポリアクリルアミドゲル電気泳動

HAタグ付加可溶性抗原産生CHO 細胞の細胞溶解物を調製する際、細胞を培養していた培養上清(Sup. #1 、Sup. #A 、Sup. #B 、Sup. #C)を $0.22\,\mu$ mのフィルターを通して4 ℃で保存した。この培養上清 $20\,\mu$ 1 に 5% 2-メルカプトエタノールを含むサンプルバッファー(10% グリセロール,2% SDS,0.25% ブロムフェノールブルーを含有する 0.5 M Tris-HCl 緩衝液,pH 6.8)を $10\,\mu$ 1 加え、100 ℃で5 分間加熱した。また、培養上清 $20\,\mu$ 1 に対応する細胞数($41:3\times10^4$ 個、 4×10^4 の 4×10^4

[0130]

陽性コントロールとして培養上清などの代わりにHM1.24抗原を高発現している骨髄腫細胞であるKPMM2 細胞溶解物(1×10^5 個) $10 \mu 1$ に 5% 2-メルカプトエタノールを含むサンプルバッファー $5 \mu 1$ 加え、同様に加熱した。4 - 20% グラジエントゲル(TEFCO 製)を用いて20 mA で1.5 時間SDS ポリアクリルアミドゲル電気泳動を行った。泳動後、ゲルをPVDFメンブレン(TEFCO 製)に150 mAで2時間トランスブロットした。このメンブレンを3%スキムミルクを含むTBS-T (0.1% Tween 20 含有Tris緩衝液(宝酒造製))で4 ℃にて一晩インキュベートした

[0131]

TBS-T洗浄後、10μg/ml マウス抗HM1.24抗体、10% FCS、0.025% Thimerosal を含有するPBS を加え、室温で振とうしながら1 時間反応させた。洗浄した後、1000倍希釈のペルオキシダーゼ標識ヤギ抗マウスIgG 抗体 (Zymed 製) を室温で振とうしながら1 時間反応させた。洗浄後、ECL 検出試薬 (Amersham製) を用いて化学発光させ、Hyper film-ECL (Amersham製) に写した。これを自動現像機 (Konica製 SRX-101) で現像してHM1.24抗原を検出した。

その結果、図8に示したとおり、陽性コントロールのKPMM2 細胞と同様に30 k Da付近にHM1.24抗原の発現が確認された。

[0132]

2. 非還元状態における SDSポリアクリルアミドゲル電気泳動

 $20\,\mu\,1\,0$ 的記培養上清 #C にサンプルバッファーを $10\,\mu\,1\,$ 加え、 $100\,$ で で5 分間加熱した。また、 $2.8\,\times\,10^4\,$ 個を含む #C の細胞溶解物 $10\,\mu\,1$ にサンプルバッファーを $5\,\mu\,1$ 加え、 $100\,$ でで5 分間加熱した。陽性コントロールとして培養上清などの代わりに $10\,\mu\,1$ にサンプルバッファー $10\,\mu\,1$ を加え、同様に加熱し溶解物($1\,\times\,10^5\,$ 個) $10\,\mu\,1$ にサンプルバッファー $10\,\mu\,1$ を加え、同様に加熱した。これらを還元状態に記述した条件下にて同様に試験し、抗原を検出した。【 $0\,1\,3\,3$ 】

その結果、図9に示したとおり、還元状態では 30 kDa 付近に検出された抗原が、非還元状態では60 kDaに検出した。つまりHAタグ付加可溶型HM1.24抗原もHM 1.24抗原と同様にホモダイマーを形成していた。

一方、HM1.24抗原はC端側にも14アミノ酸程度の疎水領域が存在するので、発現させた抗原の一部が可溶型として培養上清中に分泌されずに、細胞表面にとどまっていると考えられた。そこで、以下、N端の膜貫通領域を含むN末を削除したHAタグ付加可溶型抗原から更に、このC端側の疎水領域を含むC末を削除したHAタグ付加可溶型抗原を作製した。

[0134]

実施例 14. 発現プラスミドの構築

10 mM Tris-HCl, pH8.3、50 mM KCl 、0.1 mM dNTPs、1.5 mM MgCl $_2$ 、100 ngの鋳型DNA としてのpSFHM1.24、100 pmole の各プライマー(配列番号9 およ

で11)および5 ユニットのAmpli Taq (Perkin Elmer Cetus製)を含有する混合物を最初に 94 ℃にて変性した後、 94 ℃にて1 分間、55℃にて1 分間、および72℃にて1 分間の反応を25サイクル行った後、72℃にて7 分間インキュベーションを行った。このPCR 産物をKpnIおよびBamHI 消化したものをC 端も削除した可溶性抗原 (HM164)として、KpnIおよびBamHI 消化することにより調製した5 μgのベクター (CGM/HA)と、50 mM Tris-HCl, pH7.6、10 mM MgCl₂、10 mM ジチオスレイトール、1 mM ATP、50 mg/mlのポリエチレングリコールおよび1 ユニットT4 DNAリガーゼ (GIBCO-BRL 製)を含有する反応混合物中で、16℃にて3 時間反応させ連結した。

[0135]

次に、10μ1の上記連結混合物を大腸菌JM109 のコンピテント細胞(東洋紡製)100μ1に加え、この細胞を氷上で30分間、42℃にて1分間そして再び氷上で1分間静置した。次いで、400μ1のSOC 培地(Molecular Cloning: A Labora tory Manual, Sambrook ら、Cold Spring Harbor Laboratory Press, (1989))を加え、37℃にて1時間インキュベートした後、50μg/mlのアンピシリンを含有する LB 寒天培地(Molecular Cloning: A Laboratory Manual, Sambrook ら、Cold Spring Harbor Laboratory Press, (1989))上にこの大腸菌を播き、37℃にて一夜インキュベートして大腸菌形質転換体を得た。

[0136]

この形質転換体を50μg/ml のアンピシリンを含有する LB 培地 (Molecular Cloning: A Laboratory Manual, Sambrook ら、Cold Spring Harbor Laboratory Press, (1989)) 3 ml中で37℃にて一夜培養し、この培養物から、アルカリ法に従ってプラスミドDNA を調製した。このプラスミドDNA をKpnIおよびBamHI 消化した後、1%アガロースゲル電気泳動により360 bpのプラスミドを選択し、選択した形質転換体を50μg/ml のアンピシリンを含有する LB 培地300 ml中で37℃にて一夜培養した。この培養物からアルカリ法(Molecular Cloning: A Labora tory Manual, Sambrook ら、Cold Spring Harbor Laboratory Press, (1989))により、プラスミドDNA を調製し、これをC 端の疎水領域を削除したHAタグ付加可溶性抗原発現プラスミドとして(CGM/HA-HM164)と命名した。

[0137]

実施例 15. CGM/HA-sHM164 の塩基配列決定

C 端の疎水領域を削除したHAタグ付加可溶性抗原発現プラスミドプラスミド (CGM/HA-HM164) の塩基配列決定を、上記発現プラスミドをBgl II (宝酒造製) で消化したものを鋳型として自動DNA シークエンサー (Applied Biosystem Inc.製) およびTaq Dye terminator Cycle Sequencing kit (Applied Biosystem Inc.製) を用いて、メーカー指定のプロトコールに従って塩基配列を決定した。反応に用いたプライマーを配列番号9 および11、解読した塩基配列の範囲を図10に、決定した塩基配列を配列番号6 に示した。これより理論上の塩基配列と一致することが確認された。

[0138]

実施例 16. COS-7細胞およびCHO 細胞へのトランスフェクション

HAタグ付加C 端削除可溶性HM1.24抗原の一過性の発現を観察するため、前記発現プラスミドCGM/HA-HM164をエレクトロポレーション法により前述と同様(前記実施例4. COS-7細胞へのトランスフェクション)の条件下で同時にCOS-7 細胞へ遺伝子導入した。更に、エレクトロポレーション処理された細胞は前述(前記実施例4)と同様の条件にて6日間培養し、回収した培養上清は $0.22\,\mu$ mフィルター (MILLIPORE 製)をかけ、4 C で保存した。

[0139]

また、HAタグ付加可溶性HM1.24抗原安定産生系を樹立するために、PacI (New England Biolabs 製) で消化した後、0.7%アガロースゲルを用いて4.7 kb断片を精製して得た直鎖状にした前記発現ベクター (CGM/HA-HM164) をエレクトロポレーション法により前述と同様 (前記実施例4. COS-7細胞へのトランスフェクション) の条件下で同時にCHO 細胞 DG44 株 (Urlaub, G et al., Cell (1983) 33(2)405-412) に遺伝子を導入した。

更に前述 (前記実施例5) 同様にして、G418(GIBCO BRL製) で選択した。 【0140】

実施例 17. 培養上清を用いたサンドイッチ ELISA

前述(実施例 7. 培養上清を用いたsandwich ELISA)と同様の条件で行った。

 $1~\mu$ g/ml の抗HA抗体 (Boehringer Mannheim 製)をコーティングしたプレートを室温にて2 時間ブロッキングを行った後、 4倍に希釈したCOS-7 細胞およびCH 0~ 細胞による培養上清をものを $100~\mu$ 1/well 加え、4~ ℃で一晩反応させた。洗浄した後、 $1~\mu$ g/ml のヒト型化抗HM1.24抗体を3 倍希釈の段階希釈を行い、各穴に100 μ 1/well 加えて室温で1 時間応させた。洗浄後、5000倍希釈したアルカリフォスファターゼ標識ヤギ抗ヒト IgG (BIOSOURCE 製)を室温で1 時間反応させた。洗浄した後、基質溶液を加え、Microplate reader (BIORAD製)で405 nm~ 655 nm の吸光度を測定した。

[0141]

その結果、図11に示したとおり、C 端削除可溶型抗原を産生させたCOS-7 細胞の培養上清を用いて、ヒト型化抗HM1.24抗体の標準曲線が得られた。また、CHO 細胞の培養上清を用いた場合も、図12のとおりヒト型化抗HM1.24抗体の標準曲線が得られた。どちらのELISA 系の測定限界も数ng/ml であった。

[0142]

実施例 18. 細胞株の選択

高産生の株を選択するために可溶性抗原の産生量を抗HA抗体とキメラ型抗HM1. 24抗体によるサンドイッチ ELISAで比較し、細胞株の選択を行った。抗HA抗体を1 μg/ml でコートしたプレートをブロッキングした後、HAタグ付加可溶性抗原産生細胞の培養上清を段階希釈して加えた。精製抗原を得ていないため、抗原濃度は分からないので、濃度を比較するために、初期播種量をそろえ、4 日間細胞を培養した培養上清を用いた。これを室温にて2 時間インキュベートした後、1 μg/ml のキメラ型抗HM1.24抗体およびヒト型化抗HM1.24抗体を加え、室温にて1 時間インキュベートした。アルカリフォスファターゼ標識ヤギ抗ヒトIgG (BIOSOURCE 製)を加え、室温で1 時間反応させた後、基質溶液を加えた。室温で発色させ、405 nm~ 655 nm の吸光度をマイクロプレートリーダー (BIORAD製) にて測定した。

その結果、G418による細胞の選択において、産生量の多かった#1, #2, #21, #28の4クローンを選んだ。

[0143]

実施例 19. Western blotting

まず、細胞溶解物を作製した。HAタグ付加C 端削除可溶型抗原を発現させた、 1×10^7 個のCOS-7 細胞およびG418で選択した4 クローンのHAタグ付加C 端削除 可溶型抗原発現CHO 細胞(#1: 1.2×10^7 個、#2: 1.5×10^7 個、#21: 2.2×10^7 個、#28: 1.3×10^7 個)をそれぞれ、前述実施例12. の条件下にて細胞溶 解物を調製した。

[0144]

また、細胞溶解物を調製する際、細胞を培養していた培養上清(COS-7 Sup.、 CHO Sup. #2、#21、#28)を $0.22\,\mu$ mのフィルターを通して4 ℃で保存した。 この培養上清 $20\,\mu$ 1 に 5% 2-メルカプトエタノールを含むサンプルバッファー(10% glycerol, 2% SDS, 0.25% ブロムフェノールブルーを含有する 0.5 M Tris-HCl buffer, pH6.8)を $10\,\mu$ 1 加え、100 ℃で5 分間加熱した。また、培養上清 $20\,\mu$ 1 に対応する細胞数の $10\sim16$ 倍の細胞数の細胞溶解物(COS-7:1 x 10^5 cell s、#2:5.4 x 10^4 、#21:1 x 10^5 、#28:5.9 x 10^4)を含む細胞溶解物 $10\,\mu$ 1 に 5% 2-メルカプトエタノールを含むサンプルバッファーを $5\,\mu$ 1 加え、同様に加熱した。

[0145]

更に、陽性コントロールとして前述したC 端を削除していないHAタグ付加可溶型抗原発現CHO 細胞 #C の培養上清 (#C Sup.) 20μ1にも 5% 2-メルカプトエタノールを含むサンプルバッファーを10μ1 同様の処理を行った。これらを前述した条件下(実施例13.)にてマウス抗HM1.24抗体でwestern blotを行った結果を図13に示した。図に示したとおり、培養上清には前回同様に可溶型HM1.24抗原が検出されたが、今回作製したC 端削除可溶型抗原産生細胞の細胞溶解物にはHM1.24抗原の発現は見られなかった。これより C端の疎水領域を削除することで、細胞表面にトラップされていたHA付加可溶型HM1.24抗原は培養上清中に分泌されるようになった。

また、上記 C端削除可溶型抗原産生細胞の培養上清を用いて、非還元状態でSD S ポリアクリルアミド電気泳動を行い、Western blotを行った結果、C 端削除可 溶型抗原もホモダイマーを形成していた。

[0146]

参考例1. マウス抗HM1.24モノクローナル抗体産生ハイブリドーマの調製

Goto, T. et al., Blood (1994) 84, 1992-1930 に記載の方法にて、マウス抗 HM1.24モノクローナル抗体産生ハイブリドーマを調製した。

ヒト多発性骨髄腫患者骨髄由来の形質細胞株KPC-32 (1x10⁷ 個) (Goto, T. e t al., Jpn. J. Clin. Hematol. (1991) 32, 1400) をBALB/Cマウス (チャールスリバー製) の腹腔内に6 週間おきに2 回注射した。

[0147]

このマウスを屠殺する3 日前にマウスの抗体産生価をさらに上昇させるために、1.5 x 10⁶ 個のKPC-32をマウスの脾臓内に注射した(Goto, T. et al., Tokus hima J. Exp. Med. (1990) 37, 89)。マウスを屠殺した後に脾臓を摘出し、Groth, de St. & Schreideggerの方法(Cancer Research (1981) 41, 3465) に従い摘出した脾臓細胞とミエローマ細胞SP2/0 を細胞融合に付した。

[0148]

KPC-32を用いたCell ELISA (Posner, M. R. et al., J. Immunol. Methods (1982) 48, 23) によりハイブリドーマ培養上清中の抗体のスクリーニングを行った。5 x 10⁴ 個のKPC-32を50 ml のPBS に懸濁し、96穴プレート (U 底型、Corning, Iwaki製) に分注し37℃で一晩風乾した。1%ウシ血清アルブミン (BSA) を含むPBS でブロックした後、ハイブリドーマ培養上清を加え4℃にて2 時間インキュベートした。次いで、4℃にて1 時間ペルオキシダーゼ標識抗マウスIgG ヤギ抗体 (Zymed 製) を反応させ、洗浄後室温にて30分間のフェニレンジアミン基質溶液 (Sumitomo Bakelite 製) を反応させた。

[0149]

2N硫酸で反応を停止させ、ELISA reader (Bio-Rad 製)で492nm における吸光 度を測定した。ヒト免疫グロブリンに対する抗体を産生するハイブリドーマを除去するために、陽性ハイブリドーマ培養上清をヒト血清にあらかじめ吸着させ、他の細胞株に対する反応性をELISA にてスクリーニングした。陽性のハイブリドーマを選択し、種々の細胞に対する反応性をフローサイトメトリーで調べた。最後に選択されたハイブリドーマクローンを二度クローン化し、これをプリスタン

処理したBALB/Cマウスの腹腔に注射して、腹水を取得した。

[0150]

モノクローナル抗体は、硫酸アンモニウムによる沈澱とプロテインA アフィニティクロマトグラフィーキット (Ampure PA 、Amersham製) によりマウス腹水より精製した。精製抗体は、Quick Tag FITC結合キット (ベーリンガーマンハイム製) を使用することによりFITC標識した。

その結果、30のハイブリドーマクローンが産生するモノクローナル抗体がKPC-32およびRPMI 8226 と反応した。クローニングの後、これらのハイブリドーマの培養上清と他の細胞株あるいは末梢血単核球との反応性を調べた。

[0151]

このうち、3 つのクローンが形質細胞に特異的に反応するモノクローナル抗体であった。これらの3 つのクローンのうち、最もフローサイトメトリー分析に有用であり、かつRPMI 8226 に対するCDC 活性を有するハイブリドーマクローンを選択し、HM1.24と名付けた。このハイブリドーマが産生するモノクローナル抗体のサブクラスを、サブクラス特異的抗マウスウサギ抗体(Zymed 製)を用いたELISAにて決定した。抗HM1.24抗体は、IgG2a κのサブクラスを有していた。抗HM1.24抗体を産生するハイブリドーマHM1.24は、工業技術院生命工学工業研究所(茨城県つくば市東1 丁目1 番3 号)に、平成7 年9 月14日にFERM BP-5233としてブタペスト条約に基づき国際寄託された。

[0152]

参考例2. ヒト型化抗HM1.24抗体の作製

ヒト型化抗HM1.24抗体を下記の方法により得た。

参考例1 で作製されたハイブリドーマHM1.24から、常法により全RNA を調製した。これよりマウス抗体V 領域をコードするcDNAをポリメラーゼ連鎖反応 (PCR) 法および5'-RACE 法により、合成、増幅した。マウスV 領域をコードする遺伝子を含むDNA 断片を得、これらのDNA 断片を各々プラスミドpUC 系クローニングベクターに連結し、大腸菌コンピテント細胞に導入して大腸菌形質転換体を得た。この形質転換体から上記プラスミドを得、プラスミド中のcDNAコード領域の塩基配列を常法に従い決定し、さらに各々のV 領域の相補性決定領域 (CDR) を決

定した。

[0153]

キメラ抗HM1.24抗体を発現するベクターを作製するため、それぞれマウス抗HM 1.24抗体L 鎖およびH 鎖のV 領域をコードするcDNAをHEF ベクターに挿入した。また、ヒト型化抗HM1.24抗体を作製するために、CDR 移植法によりマウス抗HM1.24抗体のV 領域CDR をヒト抗体へ移植した。ヒト抗体のL 鎖としてヒト抗体REI のL 鎖を用い、ヒト抗体H 鎖としてフレームワーク領域 (FR) 1-3 についてはヒト抗体HG3 のFR1-3 を用いFR4 についてはヒト抗体JH6 のFR4 を用いた。CDR を移植した抗体が適切な抗原結合部位を形成するようにH 鎖V 領域のFRのアミノ酸を置換した。

[0154]

このようにして作製したヒト型化抗HM1.24抗体のL 鎖およびH 鎖の遺伝子を哺乳類細胞で発現させるために、HEF ベクターに、各々の遺伝子を別々に導入し、ヒト型化抗HM1.24抗体のL 鎖またはH 鎖を発現するベクターを作製した。

これら二つの発現ベクターをCHO 細胞に同時に導入することにより、ヒト型化抗HM1.24抗体を産生する細胞株を樹立した。この細胞株を培養して得られたヒト型化抗HM1.24抗体のヒト羊膜由来細胞株WISHへの抗原結合活性および結合阻害活性を、Cell ELISAにて調べた。その結果、ヒト型化抗HM1.24抗体は、キメラ抗体と同等の抗原結合活性を有し、さらにビオチン化マウス抗HM1.24抗体を用いた結合阻害活性についても、キメラ抗体あるいはマウス抗体と同等の活性を有した。

[0155]

なお、キメラ抗HM1.24抗体のL 鎖V 領域およびH 鎖V 領域をコードするDNA を含むプラスミドを有する大腸菌は、各々Escherichia coli DH5 α (pUC19-1.24L- $g\kappa$) およびEscherichia coli DH5 α (pUC19-1.24H- $g\gamma$ 1) として、工業技術院生命工学工業技術研究所(茨城県つくば市東1 丁目1 番3 号)に、平成8 年8月29日に、各々FERM BP-5646およびFERM BP-5644としてブダペスト条約に基づき国際寄託された。

[0156]

また、ヒト型化抗HM1.24抗体のL 鎖V 領域a バージョン (配列番号:17) およ

びH 鎖V 領域r バージョン (配列番号: 18) をコードするDNA を含むプラスミドを有する大腸菌は、各々Escherichia coli DH5α (pUC19-RVLa-AHM-gk) および Escherichia coli DH5α (pUC19-RVHr-AHM-gγ1) として、工業技術院生命工学工業技術研究所 (茨城県つくば市東1 丁目1 番3号) に、平成8年8月29日に、各々FERM BP-5645およびFERM BP-5643としてブダペスト条約に基づき国際寄託された。

[0157]

また、ヒト型化抗HM1.24抗体のH 鎖V 領域s バージョン (配列番号:19) をコードするDNA を含むプラスミドを有する大腸菌は、Escherichis coli DH5 α (pU C19-RVHs-AHM- g γ 1) として、工業技術院生命工学工業技術研究所 (茨城県つくば市東1 丁目1 番3 号) に、平成9 年 (1997年) 9 月29日にFERM BP-6127としてブダペスト条約に基づき国際寄託された。

[0158]

参考例3. HM1. 24抗原をコードするcDNAのクローニング

1)細胞株

ヒト骨髄腫細胞株RPMI8226, U266は10%ウシ胎児血清(FBS)を添加したRPMI1640培地(GIBCO-BRL)にて培養を行い、ヒト骨髄腫細胞株KPMM2(特開平7-236475)は20%ウシ胎児血清を添加したRPMI1640培地にて培養を行った。

[0159]

2) c D N A ライブラリーの構築

1×10⁸ 個のKPMM2細胞よりチオシアン酸グアニン/塩化セシウム法により全RNAを単離し、Fast Track mRNA Isolation Kit(Invitrogen)を用いてmRNAの精製を行った。10μgのmRNAよりNot I/oligo-dT₁₈ (Time Saver cDNA Synthesis Kit; Pharmacia Biotech)を用いてcDNAを合成した後、EcoRI adapterを連結した。0.7kbp以上のcDNAを1.0%低融点アガロースゲル(Sigma)を用いて分画し、NotIにて消化しpCOS1発現ベクター又はλExCellベクター (Pharmacia Biotech)のEcoRI/NotI site に挿入し、直接発現クローニング (panningによるスクリーニン

グ) に用いるライブラリー (ライブラリーA) 及び免疫スクリーニング用のライブラリー (ライブラリーB) をそれぞれ構築した。

[0160]

なお、p C O S 1 発現ベクターは、 HEF-PMh-g γ 1 (W092-19759参照) から、 E c o R I および S m a I 消化により含有される遺伝子を削除し、EcoRI-NotI-B amHI Adaptor (宝酒造) を連結することにより構築した。

[0161]

3) Panning

ライブラリーAをエレクトロポレーション法によりCOS-7細胞に導入した。すなわち、 20μ gのプラスミドDNA(5×10^5 個の独立クローンを含む)を0.8mlの細胞(1×10^7 細胞/ml in PBS)と混合し、Gene Pulser(Bio-Rad)を用いて1.5kV、 25μ FDの条件にてエレクトロポレーションを行った。室温にて10分間清置した後、細胞を10% FBS添加DMEM(GIBCO-BRL)に懸濁し4枚の100mB接ディッシュに分け37%にて72時間培養した。

[0162]

培養後細胞をリン酸緩衝液(PBS)で洗浄し、5mM EDTAを含むPBS を加え細胞を剥がし、5% FBS、0.02% NaN $_3$ 添加PBSにて $1-2\times10^6$ cells/mlの細胞懸濁液を調整した。続いて細胞は抗HM1.24抗体をコーティングした panningプレート(後述)上で2時間清置し、プレートを5% FBS、0.02% NaN $_3$ を含む3mlのPBSで穏やかに3回洗浄した。洗浄後、プレート上に結合した細胞から、Hirtの溶液(Hitt J., Mol.Biol.26:365-369,1983)(0.6% SDS、10mM EDTA)を用いてプラスミドDNAを回収した。回収したプラスミドDNAは大腸菌内で増幅し、次のpanningに使用した。

[0163]

Panningプレートの調製は次のようにして行った。3mlの抗HM1.2 4抗体溶液(10μg/ml in 50mM Tris-HC1、pH9.5)を60mm ディッシュ(Falcon)に加え、室温にて2時間清置し、0.15M Na C1にて3回洗浄した後、3mlの5% FBS、1mM EDTA、0.02% NaN₃ 添加PBSを加え、室温にて2時間清置しブロッキングを行った。ブロッキング溶液を除去した後panningプレートは使用するまで-20℃で保存した。

[0164]

5×10⁵ 個のクローンを含むプラスミドライブラリー(ライブラリーA)を 出発材料としてpanningを3回繰り返すことにより、約0.9kbpのcD NAをインサートとして持つプラスミドDNAが濃縮された。Dye Terminator C ycle Sequencing Kit (Applied Biosystems)を用いて373Aもしくは377DNA Sequencer (Applied Biosystems)により塩基配列の決定を行った結果、クローンP3.19は1,012bpのcDNAから成り、180アミノ酸をコードするオープンリーデングフレーム(23-549)を持つことが明らかとなった(図14及び図15)(配列番号:16)。このcDNAより予想されるアミノ酸配列はタイプIIの膜タンパクに特徴的な構造を示し、2箇所のN型糖鎖結合部位を有していた。

[0165]

4) 免疫スクリーニング

ライブラリーBは抗HM1. 24抗体を用いた免疫スクリーニングに供した。すなわち、1. 5×10⁵ 個の独立クローンを含むファージライブラリーを大腸菌NM522 (Pharmacia Biotech) と共に寒天上に重層し、42℃にて3. 5時間培養した。培養後、プレート上に10mM IPTGで前処置したニトロセルロースフィルター (Schleicher & Schuell) を重ね、さらに37℃にて3時間培養した。Filterは0.05% (v/v) Tween-20添加TBS (20mM Tris-HC1、pH7.4、150mM NaC1)で洗浄した後、1%(w/v) BSA添加TBSを加え、室温にて1時間インキュベートしてブロッキングを行った。

[0166]

ブロッキング後、抗HM1. 24抗体溶液(10μg/mlブロッキング緩衝液)を加え、室温にて1時間インキュベートし、洗浄後5,000倍希釈したアル

カリホスファターゼ結合抗マウス I g抗血清 (picoBlue Immunoscreening kit; Stratagene) を加え、さらに室温にて1時間インキュベートした。抗体と反応したスポットは $0.3\,\mathrm{mg/ml}$ ニトロブルーテトラゾリウム、 $0.15\,\mathrm{mg/ml}$ 5ープロモー4ークロロー3ーインドリルホスフェートを含む発色溶液($100\,\mathrm{mM}$ TrisーHCl、pH9. 5、 $100\,\mathrm{mM}$ NaCl、 $5\,\mathrm{mM}$ MgCl₂)にて発色させた。

[0167]

免疫スクリーニングにより5個の陽性クローンが単離され、それら全てがP3.19の部分配列と一致した(図16)。ホモロジー検索の結果、P3.19は骨髄または滑膜ストローマ細胞に発現するBST-2 (Ishikawa J.ら、Genomics,26;527-534,1995)の塩基配列と同一のものであることが明らかとなった。二通りのスクリーニング法により同一の分子が得られ、P3.19がコードする膜タンパクはHM1.24抗原分子であることを強く示唆している。

[0168]

なお、前記ヒトHM1. 24抗原タンパク質と同一の配列を有するヒトタンパク質をコードするDNAをpUCベクターのXbaI切断部位間に挿入したプラスミドpRS38-pUC19を含有する大腸菌はEscherichia coli DH5 α (pRS38-pUC19) と命名され、平成5 (1993)年10月5日に工業技術院生命工学工業技術研究所(茨城県つくば市東1丁目1番3号)に寄託番号FERMBP-4434として、ブダペスト条約に基づき国際寄託されている。

[0169]

5) FACS解析

さらに、P3.19によってコードされるタンパクが確かに抗HM1.24抗体と結合するのかを確認するために、P3.19を導入したCHO形質転換細胞株を樹立した。すなわち、P3.19クローンをエレクトロポレーション法によりCHO細胞に導入した後、 500μ g/mlのG418 (GIBCO-BRL)の存在下で培養し、HM1.24抗原発現CHO細胞株を得た。

[0170]

1×10⁶ 個の培養細胞をFACS緩衝液 (PBS (-) /2% FCS/0

. 1% NaN₃)に懸濁し、HM1. 24抗体を添加し、氷中で30分間反応した。FACS緩衝液で洗浄後、GAM-FITC溶液(25μg/ml in FACS緩衝液; Becton Dickinson)で再懸濁し、さらに氷中で30分間反応した。FACS緩衝液で2回洗浄した後、600μ1のFACS緩衝液に再懸濁しFACSにan (Becton Dickinson)にて測定した。

[0171]

なお、陰性対照抗体としてUPC10を用いた。

FACS解析の結果、P3. 19を導入したCHO細胞は抗HM1 $^\circ$. 24抗体と強く反応したのに対し、コントロールの発現ベクターのみを導入したCHO細胞 (CHO/NEO) では有意な結合は認められなかった (図17)。 したがって、P3. 19によってコードされるタンパク質は抗HM1. 24抗体と結合することが確認された。

[0172]

6) 免疫沈降

細胞はPBS(-)で2回洗浄した後、細胞溶解緩衝法(50mm) 前酸ナトリウム、150mm NaCl、0.5%デオキシコール酸ナトリウム、1% Nonide t P-40、0.1mg/mlフェニルメチルスルホニルフルオリド、プロテアーゼ阻害 剤カクテニル [Boehringer Mannheim])内で超音波破砕を行い、可溶化画分を 得た。可溶化画分は抗HM1.24抗体をコンジュゲートしたSepharose 4Bピーズに加えた。遠心後、沈殿物はSDS-PAGE(12% gel)により分離 し、PVDF膜に転写した。PVDF膜は抗HM1.24抗体、続いてPOD-anti-mouse IgGと反応させた後、ECLキット(Amersham)を用いて検出を 行った。

[0173]

KPMM2, RPMI8226及びU266の各種ミエローマ細胞株はHM1.24抗原を強く発現し、これらの細胞溶解物を抗HM1.24抗体で免疫沈降を行うと、分子量が約29~33kDaのタンパクが特異的に検出された(図18)。P3.19を導入したCHO細胞株(CHO/HM)においても同様の実験を行った結果、CHO/HM細胞においてもミエローマ細胞株と同様に免疫沈降物

が確認され(図18、レーン4)、発現ベクターpCOS1のみを導入したコントロール細胞(CHO/NEO)ではそのような免疫沈降物は確認されなかった(図18、レーン5)。

[0174]

P3.19は180アミノ酸からなる推定分子量19.8kDaのタンパクをコードしており、2カ所のN型糖鎖結合モチーフが存在している(図14)。従って、免疫沈降により認められた分子量の異なったものの存在は、N型糖鎖の修飾の違いによることが考えられた。事実、免疫沈降物が数種のレクチンと結合することが確認されている。

[0175]

【発明の効果】

本発明の免疫学的測定方法によれば、可溶性IM1.24抗原タンパク質又は抗IM1.24抗体を約500 pg/ml まで検出又は測定することが可能である。これまで、Cell Elisa で10ng/ml までしか検出又は測定できなかった可溶性IM1.24抗原タンパク質又は抗IM1.24抗体を高感度で迅速に、しかも大量の被験試料を同時に測定することが可能となった。

また、本発明の可溶性HM1.24抗原タンパク質及びそれをコードするDNA は、抗HM1.24抗体又は可溶性HM1.24抗原タンパク質の測定において有用である。

[0176]

配列表の説明

配列番号:1は、可溶性HM1.24抗原タンパク質の細胞外ドメインのアミノ酸配列及び塩基配列を示す。

配列番号:2は、リーダー配列、FLAGペプチド及び可溶性HM1.24抗原タンパク質からなる融合蛋白質のアミノ酸配列及び塩基配列を示す。1位のMet から18位のHis まではリーダー配列である。20位のAsp から27位のLys まではFLAGペプチドである。28位のGly および29位のThr はリンカーである。

[0177]

配列番号:3は、HAペプチド及び可溶性HM1.24抗原タンパク質からなる融合蛋白質のアミノ酸配列及び塩基配列を示す。1位のTyrから9位のAla まではHAペ

プチドである。28位のGly および29位のThr はリンカーである。

配列番号:4は、HAペプチド及びC末端を欠失させた可溶性HM1.24抗原タンパク質からなる融合蛋白質のアミノ酸配列及び塩基配列を示す。1位のTyrから9位のAlaまではHAペプチドである。28位のGlyおよび29位のThrはリンカーである。

[0178]

配列番号: 5 は、決定したCGM/HAの塩基配列及びHAペプチドのアミノ酸配列を示す。 1 位のTyr から 9 位のAla まではHAペプチドである。

配列番号: 6は、決定したCGM/HA-HM164のアミノ酸配列および塩基配列を示す。 1位のMet から20位のCys まではリーダー配列である。 22位のTyr から30位のAla まではHAペプチドである。 31位のGly および32位のThr はリンカーである。 33位のAsn から151位のAla まではC 末端を欠失させた可溶性HM 1.24抗原タンパク質である。

配列番号: 7は、プライマーCMV/L の塩基配列を示す。

配列番号:8は、プライマーBGH-1 の塩基配列を示す。

配列番号:9は、プライマーSol-1 の塩基配列を示す。

配列番号:10は、プライマーSol-2 の塩基配列を示す。

[0179]

配列番号:11は、プライマーSol-3 の塩基配列を示す。

配列番号:12は、リーダー配列及びFLAGペプチド配列を含む合成DNA ペアの 一方の塩基配列を示す。

配列番号:13は、12は、リーダー配列及びFLAGペプチド配列を含む合成DN A ペアのもう一方の塩基配列を示す。

配列番号:14は、HAペプチド配列を含む合成DNAペアの一方の塩基配列を示す。

配列番号:15は、HAペプチド配列を含む合成DNA ペアのもう一方の塩基配列を示す。

[0180]

配列番号: 16は、細胞膜上に発現するヒトHM1.24抗原タンパク質のアミノ酸

配列および塩基配列を示す。

配列番号:17は、ヒト型化抗HM1.24抗体のL鎖V領域a バージョンのアミノ酸配列および塩基配列を示す。

配列番号:18は、ヒト型化抗HM1.24抗体のH鎖V領域rバージョンのアミノ酸配列および塩基配列を示す。

配列番号:19は、ヒト型化抗HM1.24抗体のH 鎖V 領域s バージョンのアミノ酸配列および塩基配列を示す。

[0181]

【配列表】

配列番号:1

配列の長さ:399

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類: cDNA

85

配列

AAC AGC GAG GCC TGC CGG GAC GGC CTT CGG GCA GTG ATG GAG TGT CGC 48 Asn Ser Glu Ala Cys Arg Asp Gly Leu Arg Ala Val Met Glu Cys Arg 10 1 AAT GTC ACC CAT CTC CTG CAA CAA GAG CTG ACC GAG GCC CAG AAG GGC 96 Asn Val Thr His Leu Leu Gln Gln Glu Leu Thr Glu Ala Gln Lys Gly 25, 20 30 TTT CAG GAT GTG GAG GCC CAG GCC GCC ACC TGC AAC CAC ACT GTG ATG 144 Phe Gin Asp Val Glu Ala Gin Ala Ala Thr Cys Asn His Thr Val Met 35 40 45 GCC CTA ATG GCT TCC CTG GAT GCA GAG AAG GCC CAA GGA CAA AAG AAA 192 Ala Leu Met Ala Ser Leu Asp Ala Glu Lys Ala Gln Gly Gln Lys Lys 50 55 60 GTG GAG GAG CTT GAG GGA GAG ATC ACT ACA TTA AAC CAT AAG CTT CAG 240 Val Glu Glu Leu Glu Gly Glu Ile Thr Thr Leu Asn His Lys Leu Gln 70 65 75 80 GAC GCG TCT GCA GAG GTG GAG CGA CTG AGA AGA GAA AAC CAG GTC TTA 288 Asp Ala Ser Ala Glu Val Glu Arg Leu Arg Arg Glu Asn Gln Val Leu

95

90

AGC GTG AGA ATC GCG GAC AAG AAG TAC TAC CCC AGC TCC CAG GAC TCC 336 Ser Val Arg Ile Ala Asp Lys Lys Tyr Tyr Pro Ser Ser Gln Asp Ser 100 105 110 AGC TCC GCT GCG GCG CCC CAG CTG CTG ATT GTG CTG CTG GGC CTC AGC 384 Ser Ser Ala Ala Pro Gln Leu Leu Ile Val Leu Leu Gly Leu Ser 115 120 125 GCT CTG CTG CAG TGA 399 Ala Leu Leu Gln 130 [0182] 配列番号:2 配列の長さ:510 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類: cDNA 配列 GAATTCCCAC C ATG GGA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA 47 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala 1 5 10 ACA GCT ACA GGT GTC CAC TCC GAC TAC AAA GAC GAT GAC GAT AAA GGT 95 Thr Ala Thr Gly Val His Ser Asp Tyr Lys Asp Asp Asp Asp Lys Gly 15 20 25 ACC AAC AGC GAG GCC TGC CGG GAC GGC CTT CGG GCA GTG ATG GAG TGT 143 Thr Asn Ser Glu Ala Cys Arg Asp Gly Leu Arg Ala Val Met Glu Cys 30 35 40 CGC AAT GTC ACC CAT CTC CTG CAA CAA GAG CTG ACC GAG GCC CAG AAG 191 Arg Asn Val Thr His Leu Leu Gln Gln Glu Leu Thr Glu Ala Gln Lys 60 45 50 55

GGC	TTT	CAG	GAT	GTG	GAG	GCC	CAG	GCC	GCC	ACC	TGC	AAC	CAC	ACT	GTG	239
Gly	Phe	Gln	Asp	Val	Glu	Ala	Gln	Ala	Ala	Thr	Cys	Asn	His	Thr	Val	
				65					70					7 5		
ATG	GCC	CTA	ATG	GCT	TCC	CTG	GAT	GCA	GAG	AAG	GCC	CAA	GGA	CAA	AAG	287
Met	Ala	Leu	Met	Ala	Ser	Leu	Asp	Ala	Glu	Lys	Ala	Gln	Gly	Gln	Lys	
			80					85					90			
AAA	GTG	GAG	GAG	CTT	GAG	GGA	GAG	ATC	ACT	ACA	TTA	AAC	CAT	AAG	CTT	335
Lys	Val	Glu	Glu	Leu	Glu	Gly	Glu	Ile	Thr	Thr	Leu	Asn	His	Lys	Leu	
		95					100					105				
CAG	GAC	GCG	TCT	GCA	GAG	GTG	GAG	CGA	CTG	AGA	AGA	GAA	AAC	CAG	GTC	383
Gln	Asp	Ala	Ser	Ala	Glu	Val	Glu	Arg	Leu	Arg	Arg	Glu	Asn	Gln	Val	
	110					115]	120					
TTA	AGC	GTG	AGA	ATC	GCG	GAC	AAG	AAG	TAC	TAC	CCC	AGC	TCC	CAG	GAC	431
Leu	Ser	Val	Arg	He	Ala	Asp	Lys	Lys	Tyr	Tyr	Pro	Ser	Ser	Gln	Asp	
125					130					135		·			140	-
TCC	AGC	TCC	GCT	GCG	GCG	CCC	CAG	CTG	CTG	ATT	GTG	CTG	CTG	GGC	CTC	479
Ser	Ser	Ser	Ala	Ala	Ala	Pro	Gln	Leu	Leu	Ile	Val	Leu	Leu	Gly	Leu	
				145					150					155		
AGC	GCT	CTG	CTG	CAG	TGAG	GATCO	CCA (GGAT(CC							510
Ser	Ala	Leu	Leu	Gln												
			160	•												

[0183]

配列番号:3

配列の長さ:445

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類: cDNA

配列

TAC	CCA	TAC	GAC	GTC	CCA	GAC	TAC	GCT	GGT	ACC	AAC	AGC	GAG	GCC	TGC	48
Tyr	Pro	Tyr	Asp	Val	Pro	Val	Tyr	Ala	Gly	Thr	Asn	Ser	Glu	Ala	Cys	
1				5					10					15		
CGG	GAC	GGC	CTT	CGG	GCA	GTG	ATG	GAG	TGT	CGC	AAT	GTC	ACC	CAT	CTC	96
Arg	Asp	Gly	Leu	Arg	Ala	Val	Met	Glu	Cys	Arg	Asn	Val	Thr	His	Leu	
			20					25					30			
CTG	CAA	CAA	GAG	CTG	ACC	GAG	GCC	CAG	AAG	GGC	TTT	CAG	GAT	GTG	GAG	144
Leu	Gln	Gln	Glu	Leu	Thr	Glu	Ala	Gln	Lys	Gly	Phe	Gln	Asp	Val	Glu	
		35					40					45				
GCC	CAG	GCC	GCC	ACC	TGC	AAC	CAC	ACT	GTG	ATG	GCC	CTA	ATG	GCT	TCC	192
Ala	Gln	Ala	Ala	Thr	Cys	Asn	His	Thr	Val	Met	Ala	Leu	Met	Ala	Ser	
	50					55					60		•			
CTG	GAT	GCA	GAG	AAG	ĠĊC	CAA	GGA	CAA	AAG	AAA	GTG	GAG	GAG	CTT	GAG	240
Leu	Asp	Ala	Glu	Lys	Ala	Gln	Gly	Gln	Lys	Lys	Val	Glu	Glu	Leu	Glu	
65					70	•				75					80	
GGA	GAG	ATC	ACT	ACA	TTA	AAC	CAT	AAG	CTT	CAG	GAC	GCG	TCT	GCA	GAG	288
Gly	Glu	Ile	Thr	Thr	Leu	Asn	His	Lys	Leu	Gln	Asp	Ala	Ser	Ala	Glu	
				85					90					95		
GTG	GAG	CGA	CTG	AGA	AGA	GAA	AAC	CAG	GTC	TTA	AGC	GTG	AGA	ATC	GCG	336
Val	Glu	Arg	Leu	Arg	Arg	Glu	Asn	Gln	Val	Leu	Ser	Val	Arg	Ile	Ala	
			100					105					110			
GAC	AAG	AAG	TAC	TAC	CCC	AGC	TCC	CAG	GAC	TCC	AGC	TCC	GCT	GCG	GCG	384
Asp	Lys	Lys	Tyr	Tyr	Pro	Ser	Ser	Gln	Asp	Ser	Ser	Ser	Ala	Ala	Ala	
		115	•				120					125				
CCC	CAG	CTG	CTG	ATT	GTG	CTG	CTG	GGC	CTC	AGC	GCT	CTG	CTG	CAG		429
Pro	Gln	Leu	Leu	Ile	Val	Leu	Leu	Gly	Leu	Ser	Ala	Leu	Leu	Gln		
	130					135					140					
TGAG	GATC	CCA (GGAT	CC												445
t o	1 2	1 1														

配列番号: 4

配列の長さ:387

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類: cDNA

100

配列

TAC CCA TAC GAC GTC CCA GAC TAC GCT GGT ACC AAC AGC GAG GCC TGC 48 Tyr Pro Tyr Asp Val Pro Val Tyr Ala Gly Thr Asn Ser Glu Ala Cys 10 1 5 CGG GAC GGC CTT CGG GCA GTG ATG GAG TGT CGC AAT GTC ACC CAT CTC 96 Arg Asp Gly Leu Arg Ala Val Met Glu Cys Arg Asn Val Thr His Leu 25 30 20 CTG CAA CAA GAG CTG ACC GAG GCC CAG AAG GGC TTT CAG GAT GTG GAG 144 Leu Gln Gln Glu Leu Thr Glu Ala Gln Lys Gly Phe Gln Asp Val Glu 40 35 GCC CAG GCC GCC ACC TGC AAC CAC ACT GTG ATG GCC CTA ATG GCT TCC 192 Ala Gln Ala Ala Thr Cys Asn His Thr Val Met Ala Leu Met Ala Ser 50 55 CTG GAT GCA GAG AAG GCC CAA GGA CAA AAG AAA GTG GAG GAG CTT GAG 240 Leu Asp Ala Glu Lys Ala Gln Gly Gln Lys Lys Val Glu Glu Leu Glu 65 70 75 80 GGA GAG ATC ACT ACA TTA AAC CAT AAG CTT CAG GAC GCG TCT GCA GAG 288 Gly Glu Ile Thr Thr Leu Asn His Lys Leu Gln Asp Ala Ser Ala Glu 85 90 95 GTG GAG CGA CTG AGA AGA GAA AAC CAG GTC TTA AGC GTG AGA ATC GCG 336 Val Glu Arg Leu Arg Arg Glu Asn Gln Val Leu Ser Val Arg Ile Ala

110

105

GAC AAG AAG TAC TAC CCC AGC TCC CAG GAC TCC AGC TCC GCT

378

 $\Gamma \bigm|$

Asp Lys Lys Tyr Tyr Pro Ser Ser Gln Asp Ser Ser Ser Ala

115

120

125

TGAGGATCC

387

[0185]

配列番号:5

配列の長さ:85

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類: cDNA

配列

CTCTGGCTCC CAGGTGCACG ATGTGCA TAC CCA TAC GAC GTC CCA GAC TAC 51

1

Tyr Pro Tyr Asp Val Pro Val Tyr

5

.

GCT GGTACCAAGG TGGAAATCAA ACGTACGGAA T

85

Ala

[0186]

配列番号:6

配列の長さ:535

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類: cDNA

配列

AGATCTCTCA CC ATG AGG GTC CCC GCT CAG CTC CTG GGG CTC CTG CTG

48

Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu

· 1

5

10

CTC	TGG	CTC	CCA	GGT	GCA	CGA	TGT	GCA	TAC	CCA	TAC	GAC	GTC	CCA	GAC	96
Leu	Trp	Leu	pro	Gly	Ala	Arg	Cys	Ala	Tyr	Pro	Tyr	Asp	Val	Pro	Val	
		15					20					25				
TAC	GCT	GGT	ACC	AAC	AGC	GAG	GCC	TGC	CGG	GAC	GGC	CTT	CGG	GCA	GTG	144
Tyr	Ala	Gly	Thr	Asn	Ser	Glu	Ala	Cys	Arg	Asp	Gly	Leu	Arg	Ala	Val	
	30					35					40					
ATG	GAG	TGT	CGC	AAT	GTC	ACC	CAT	CTC	CTG	CAA	CAA	GAG	CTG	ACC	GAG	192
Net	Glu	Cys	Arg	Asn	Val	Thr	His	Leu	Leu	Gln	Gln	Glu	Leu	Thr	Glu	
45					50					55					60	
GCC	CAG	AAG	GGC	TTT	CAG	GAT	GTG	GAG	GCC	CAG	GCC	GCC	ACC	TGC	AAC	240
Ala	Gln	Lys	Gly	Phe	Gln	Asp	Val	Glu	Ala	Gln	Ala	Ala	Thr	Cys	Asn	
				65					70					75		
CAC	ACT	GTG	ATG	GCC	CTA	ATG	GCT	TCC	CTG	GAT	GCA	GAG	AAG	GCC	CAA	288
His	Thr	Val	Met	Ala	Leu	Net	Ala	Ser	Leu	Asp	Ala	Glu	Lys	Ala	Gln	
			80					85					90			
GGA	CAA	AAG	AAA	GTG	GAG	GAG	CTT	GAG	GGA	GAG	ATC	ACT	ACA	TTA	AAC	336
Gly	Gln	Lys	Lys	Val	Glu	Glu	Leu	Glu	Gly	Glu	Ile	Thr	Thr	Leu	Asn	
		95					100					105				
CAT	AAG	CTT	CAG	GAC	GCG	TCT	GCA	GAG	GTG	GAG	CGA	CTG	AGA	AGA	GAA	384
His	Lys	Leu	Gln	Asp	Ala	Ser	Ala	Glu	Val	Glu	Arg	Leu	Arg	Arg	Glu	
	110					115					120					
AAC	CAG	GTC	TTA	AGC	GTG	AGA	ATC	GCG	GAC	AAG	AAG	TAC	TAC	CCC	AGC	432
Asn	Gln	Val	Leu	Ser	Val	Arg	Ile	Ala	Asp	Lys	Lys	Tyr	Tyr	Pro	Ser	
125					130					135					140	
TCC	CAG	GAC	TCC	AGC	TCC	GCT	TGAC	GAT(CCT I	TGGT	TAC	CÀ AC	CTAC	CT AG	A	483
Ser	Gln	Asp	Ser	Ser	Ser	Ala										
				145												
CTG	CTGGATTCGT GACAACATGC GGCCGTGATA TCTACGTATG ATCAGCCTCG AC												535			

[0187]

配列番号:7

配列の長さ:20

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成DNA

配列

GGCCGCATGT TGTCACGAAT

20

[0188]

配列番号:8

配列の長さ:20

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成DNA

配列

ATCGCCTGGA GACGCCATCA

20

[0189]

配列番号:9

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成DNA

配列

TAAAGGTACC AACAGCGAGG CCTGCCG

27

[0190]

配列番号:10

配列の長さ:28

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成DNA

配列

CTGCTGCAGT GAGATCCCAG GATCCATA

28

[0191]

配列番号:11

配列の長さ:30

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成DNA

配列

CAGGACTCCA GCTCCGCTTG AGGATCCTAT

30

[0192]

配列番号:12

配列の長さ:106

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成DNA

配列

AATTCCCACC ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT 60

CCACTCCGAC TACAAAGACG ATGACGATAA AGGTACCGCG GCCGCG

106

[0193]

配列番号:13

配列の長さ:106

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成DNA

配列

GATCCGCGGC CGCGGTACCT TTATCGTCAT CGTCTTTGTA GTCGGAGTGG.ACACCTGTAG 60

CTGTTGCTAC CAAGAAGAG ATGATACAGC TCCATCCCAT GGTGGG

106

[0194]

配列番号:14

配列の長さ:37

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成DNA

配列

GTGCATACCC ATACGACGTC CCAGACTACG CTGGTAC

37

[0195]

配列番号:15

配列の長さ:36

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:合成DNA

配列

CAGCGTAGTC TGGGACGTCG TATGGGTATG CACATC

36

[0196]

配列番号:16

配列の長さ:1014

配列の型:核酸

鎖の数:一本鎖

トポロジー	:直線状				
配列の種類	: cDNA			. •	
配列					
GAATTCGGCA	CGAGGGATCT	GG ATG GCA	TCT ACT TCG TA	T GAC TAT TGC	49
		Met Ala	Ser Thr Ser Ty	r Asp Tyr Cys	
	4	1	5		
AGA GTG CCC	C ATG GAA G	AC GGG GAT A	AAG CGC TGT AAG	CTT CTG CTG GGG	97
Arg Val Pro	Met Glu A	sp Gly Asp 1	Lys Arg Cys Lys	Leu Leu Cly	
10		15	20	25	
ATA GGA ATT	CTG GTG C	TC CTG ATC	ATC GTG ATT CTG	GGG GTG CCC TTG	145
Ile Gly Ile	e Leu Val L	eu Leu [le]	[le Val]le Leu	Gly Val Pro Leu	
	30		35	40	
ATT ATC TTO	ACC ATC A	AG GCC AAC A	AGC GAG GCC TGC	CGG GAC GGC CTT	193
Ile Ile Phe	Thr Ile L	ys Ala Asn S	Ser Glu Ala Cys	Arg Asp Gly Leu	
	45		50	55	
CGG GCA GTG	ATG GAG T	GT CGC AAT (GTC ACC CAT CTC	CTG CAA CAA GAG	241
Arg Ala Val	Met Glu C	ys Arg Asn \	Val Thr His Leu	Leu Gin Gin Glu	
. 60)	65		70	
CTG ACC GAG	GCC CAG A	AG GGC TTT (CAG GAT GTG GAG	GCC CAG GCC GCC	289
Leu Thr Glu	ı Ala Gln L	ys Gly Phe (Gln Asp Val Glu	Ala Gln Ala Ala	
75		80	85		
ACC TGC AAC	CAC ACT G	IG ATG GCC (CTA ATG GCT TCC	CTG GAT GCA GAG	337
Thr Cys Asn	His Thr V	al Met Ala I	eu Met Ala Ser	Leu Asp Ala Glu	
90	!	95	100	105 ·	
AAG GCC CAA	GGA CAA A	AG AAA GTG C	GAG GAG CTT GAG	GGA GAG ATC ACT	385
Lys Ala Glm	Gly Gln L	ys Lys Val (Glu Glu Leu Glu	Gly Glu Ile Thr	
	110		115	120	

ACA	TTA	AAC	CAT	AAG	CTT	CAG	GAC	GCG	TCT	GCA	GAG	GTG	GAG	CGA	CIG	433
Thr	Leu	Asn	∄is	Lys	Leu	Gln	Asp	Ala	Ser	Ala	Glu	Val	Glu	Arg	Leu	
			125					130					135	•		
AGA	AGA	GAA	AAC	CAG	GTC	TTA	AGC	GTG	AGA	ATC	GCG	GAC	AAG	AAG	TAC	481
Arg	Arg	Glu	Asn	Gln	Val	Leu	Ser	Val	Arg	Ile	Ala	Asp	Lys	Lys	Tyr	
		140					145					150				
TAC	CCC	AGC	TCC	CAG	GAC	TCC	AGC	TCC	GCT	GCG	GCG	CCC	CAG	CTG	CTG	529
Tyr	Pro	Ser	Ser	Gln	Asp	Ser	Ser	Ser	Ala	Ala	Ala	Pro	Gln	Leu	Leu	
	155					160					165					
ATT	GTG	CTG	CTG	GGC	CTC	AGC	GCT	CTG	CTG	CAG	TGAG	GATC	CCA	GGAAG	GCTGGC	582
Ile	Val	Leu	Leu	Gly	Leu	Ser	Ala	Leu	Leu	Gln						
170					175					180						
ACA:	CTTO	GGA .	AGGT	CCGT	CC TO	GCTC	GCTT	TT(CGCT	TGAA	CAT	TCCC.	TTG	ATCT	CATCAG	642
TTC	rgag(CGG !	GTCAT	rggg(GC A	ACACO	GGTT <i>I</i>	GC	GGGG	AGAG	CAC	GGGG'	ΓAG	CCGG	AGAAGG	702
GCC:	CTG(GAG	CAGGT	rctg(GA GO	GGGC	CATGO	G GG(CAGT(CCTG	GGT	GTGG	GGA	CACAC	GTCGGG	762
TTG	ACCC	GG (GCTGT	CTC	CC TO	CCAG	AGCCT	CCC	CTCC	GGAC	AAT	GAGT	CCC	CCCT	CTTGTC	822
TCC	CACCO	CTG .	AGAT	rggg(CA TO	GGGG.	rgcgc	G TG	rggg(GGGC	ATG	TGCT(GCC	TGTT	GTTATG	882
GGT:	TTT	TTT	GCGGG	GGGG	GG T	rgc t :	TTTT	CTO	GGGG'	TCTT	TGAG	GCTC	CAA	AAAA	ATAAAC	942
ACT"	CCT	TTG .	AGGG!	AGAG	CA CA	ACCT:	ΓΑΑΑ	A A A	AAAA	AAAA	AAA	AAAA	AAA	AAAA	AAATTC	1002
GGG	CGGC	CGC	CA													1014
[0	1 9	7]														

配列番号:17

配列の長さ:379

配列の型:核酸

トポロジー:直鎖状

配列の種類:cDNA

配列

ATG GGA TGG AGC TGT ATC ATC CTC TCC TTG GTA GCA ACA GCT ACA GGT 48 Met Gly Trp Ser Cys Ile Ile Leu Ser Leu Val Ala Thr Ala Thr Gly -10-5 -15GTC CAC TCC GAC ATC CAG ATG ACC CAG AGC CCA AGC AGC CTG AGC GCC 96 Val His Ser Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala -1 1 AGC GTG GGT GAC AGA GTG ACC ATC ACC TGT AAG GCT AGT CAG GAT GTG 144 Ser Val Gly Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Val 20 25 15 AAT ACT GCT GTA GCC TGG TAC CAG CAG AAG CCA GGA AAG GCT CCA AAG 192 Asn Thr Ala Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys 45 30 35 CTG CTG ATC TAC TCG GCA TCC AAC CGG TAC ACT GGT GTG CCA AGC AGA 240 Leu Leu Ile Tyr Ser Ala Ser Asn Arg Tyr Thr Gly Val Pro Ser Arg 50 55 60 TTC AGC GGT AGC GGT AGC GGT ACC GAC TTC ACC TTC ACC ATC AGC AGC 288 Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser 70 75 65 CTC CAG CCA GAG GAC ATC GCT ACC TAC TAC TGC CAG CAA CAT TAT AGT 336 Leu Gln Pro Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln His Tyr Ser 85 90 80 ACT CCA TTC ACG TTC GGC CAA GGG ACC AAG GTG GAA ATC AAA C 379 Thr Pro Phe Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 95 100 105 [0198]配列番号:18

配列の長さ:418

トポロジー:直鎖状

配列の型:核酸

配列の種類: cDNA

配列

110

115

ATG GAC TGG ACC TGG AGG GTC TTC TTC TTG CTG GCT GTA GCT CCA GGT 48 Met Asp Trp Thr Trp Arg Val Phe Phe Leu Leu Ala Val Ala Pro Gly -5 -15-10 GCT CAC TCC CAG GTG CAG CTG GTG CAG TCT GGG GCT GAG GTG AAG AAG 96 Ala His Ser Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys 5 10 -1 1 CCT GGG GCC TCA GTG AAG GTT TCC TGC AAG GCA TCT GGA TAC ACC TTC 144 Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe 25 15 20 ACT CCC TAC TGG ATG CAG TGG GTG CGA CAG GCC CCT GGA CAA GGG CTT 192 Thr Pro Tyr Trp Met Gln Trp Val Arg Gln Ala Pro Gly Gln Gly Leu 45 30 35 40 GAG TGG ATG GGA TCT ATT TTT CCT GGA GAT GGT GAT ACT AGG TAC AGT 240 Glu Trp Met Gly Ser Ile Phe Pro Gly Asp Gly Asp Thr Arg Tyr Ser 50 55 60 CAG AAG TTC AAG GGC AGA GTC ACC ATG ACC GCA GAC AAG TCC ACG AGC 288 Gln Lys Phe Lys Gly Arg Val Thr Met Thr Ala Asp Lys Ser Thr Ser 70 75 65 ACA GCC TAC ATG GAG CTG AGC AGC CTG AGA TCT GAG GAC ACG GCC GTG 336 Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val 90 80 85 TAT TAC TGT GCG AGA GGA TTA CGA CGA GGG GGG TAC TAC TTT GAC TAC 384 Tyr Tyr Cys Ala Arg Gly Leu Arg Arg Gly Gly Tyr Tyr Phe Asp Tyr 95 100 105 TGG GGG CAA GGG ACC ACG GTC ACC GTC TCC TCA G 418 Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser

120

[0199]

配列番号:19

配列の長さ:418

配列の型:核酸

トポロジー:直鎖状

配列の種類: cDNA

80

配列

ATG GAC TGG ACC TGG AGG GTC TTC TTC TTG CTG GCT GTA GCT CCA GGT

Met Asp Trp Thr Trp Arg Val Phe Phe Leu Leu Ala Val Ala Pro Gly

-15 -10 -5

GCT CAC TCC CAG GTG CAG CTG GTG CAG TCT GGG GCT GAG GTG AAG AAG 96

Ala His Ser Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys

-1 1 5 10

CCT GGG GCC TCA GTG AAG GTT TCC TGC AAG GCA TCT GGA TAC ACC TTC 144

Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe

15 20 25

ACT CCC TAC TGG ATG CAG TGG GTG CGA CAG GCC CCT GGA CAA GGG CTT 192

Thr Pro Tyr Trp Met Gln Trp Val Arg Gln Ala Pro Gly Gln Gly Leu

30 35 40 45

GAG TGG ATG GGA TCT ATT TTT CCT GGA GAT GGT GAT ACT AGG TAC AGT 240

Glu Trp Met Gly Ser Ile Phe Pro Gly Asp Gly Asp Thr Arg Tyr Ser

50 55 60

CAG AAG TTC AAG GGC AGA GTC ACC ATC ACC GCA GAC AAG TCC ACG AGC 288

Gin Lys Phe Lys Gly Arg Val Thr Ile Thr Ala Asp Lys Ser Thr Ser

65 . 70 . 75

ACA GCC TAC ATG GAG CTG AGC CTG AGA TCT GAG GAC ACG GCC GTG 336

Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val

85

90

TAT TAC TGT GCG AGA GGA TTA CGA CGA GGG GGG TAC TAC TTT GAC TAC 384

Tyr Tyr Cys Ala Arg Gly Leu Arg Arg Gly Gly Tyr Tyr Phe Asp Tyr

95 100 105

TGG GGG CAA GGG ACC ACG GTC ACC GTC TCC TCA G 418

Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser

110 115 120

【図面の簡単な説明】

【図1】

図1は、HAタグを発現する遺伝子を挿入したベクターCGM/HAの塩基配列を解読 した範囲を示した模式図である。

【図2】

図2は、HAタグ付加可溶性抗原を用いたsandwich ELISA系を示す模式図である

【図3】

図3は、HAタグ付加可溶性抗原を一過性に発現させたCOS-7 細胞の培養上清を用いたsandwich ELISA系におけるヒト型化抗HM1.24抗体の標準曲線を示すグラフである。

【図4】

図4は、HAタグ付加可溶性抗原を安定産生させたCHO 細胞による培養上清を用いたsandwich ELISA系におけるヒト型化抗HM1.24抗体の標準曲線を示すグラフである。

【図5】

図5は、HAタグ付加可溶性抗原を用いたsandwich ELISA系にてキメラ型抗HM1. 24抗体を投与したアカゲザルの血中抗体濃度の推移を測定した結果を示したグラフである。

【図6】

図6は、HAタグ付加可溶性抗原を用いたsandwich ELISA系において、ヒト型化抗HM1.24抗体はキメラ型抗HM1.24抗体と同様にビオチン標識マウス抗HM1.24抗体のHAタグ付加可溶性抗原への結合を濃度依存的に阻害していることを示すグラフである。

【図7】

図7は、HAタグ付加可溶性抗原を安定産生させたCHO 細胞を用いたFCM 解析において、マウス抗HM1.24抗体(左半分のパネル)、抗HA抗体(右半分のパネル)の蛍光強度が、コントロール抗体(波線で示した)に比べシフトしていることを示すグラフである。なお、#1はG418で選択したCHO 細胞株、#Aは#1細胞を親株と

して5 nMのMTX で選択したCHO 細胞株である。

【図8】

図8は、HAタグ付加可溶性抗原を安定産生させたCHO 細胞による培養上清および細胞溶解物を還元状態にてSDS-ポリアクリルアミドゲル電気泳動を行った後、マウスHM1.24抗体によるwestern blotを行い、HM1.24抗原を検出した結果を示す図面代用写真である。なお、#1はG418で選択したCHO 細胞株、#A、#B、#Cは#1細胞を親株として5 nMのMTX で選択したCHO 細胞株であり、またKPMM2 細胞溶解物はHM1.24抗原の陽性コントロールである。

【図9】

図9は、HAタグ付加可溶性抗原を安定産生させたCHO 細胞#C株による培養上清および細胞溶解物を還元状態および非還元状態にてSDS-ポリアクリルアミドゲル電気泳動を行った後、マウスHM1.24抗体によるwestern blotを行い、HM1.24抗原を検出した結果を示す図面代用写真である。なお、#C株は5 nMのMTX で選択したCHO 細胞株であり、またKPMM2 細胞溶解物はHM1.24抗原の陽性コントロールである。

【図10】

図10は、HAタグ付加C端削除可溶性HM1.24抗原発現ベクターCGM/HA-HM164の 塩基配列を解読した範囲を示した模式図である。

【図11】

図11は、HAタグ付加C端削除可溶型HM1.24抗原を発現させたCOS-7細胞による培養上清を用いたsandwich ELISA系におけるヒト型化抗HM1.24抗体の標準曲線を示すグラフである。

【図12】

図12は、HAタグ付加C端削除可溶型HM1.24抗原を発現させたCHO細胞による培養上清を用いたsandwich ELISA系におけるヒト型化抗HM1.24抗体の標準曲線を示すグラフである。

【図13】

図13は、HAタグ付加C端削除可溶性HM1.24抗原を産生させたCOS-7細胞もしくはCHO細胞(#2、#21、#28)による培養上清および細胞溶解物を還元状態に

てSDS-ポリアクリルアミドゲル電気泳動を行った後、マウスHM1.24抗体によるwe stern blotを行い、HM1.24抗原を検出した結果を示す図面代用写真である。なお、CHO/sHM はHAタグ付加可溶性HM1.24抗原を発現させたCHO 細胞であり、その培養上清をHM1.24抗原の陽性コントロールとして用いている。

【図14】

図14は、HM1.24抗原タンパク質をコードするcDNAの塩基配列及び 対応するアミノ酸配列を示す図である。

【図15】

図15は、HM1.24抗原タンパク質をコードするcDNAの塩基配列及び 対応するアミノ酸配列を示す図である。

【図16】

図16は、Panning法を用いて単離したクローンP3.19及び免疫スクリーニング法により単離された5つのクローン(IS1~IS5)の模式図である。

【図17】

図17は、抗HM1.24抗体(A; CHO/NEO, B; CHO/HM)を 用いたフローサイトメトリー解析の結果を示す図である。抗HM1.24抗体の ヒストグラムは実線で、アイソタイプの一致したコントロール抗体(UPC10) のヒストグラムは波線で示す。なお、横軸は蛍光強度を、縦軸は細胞数を示す

【図18】

図18は、各種細胞株およびHM1.24発現CHO細胞におけるHM1.2 4抗原の発現を抗HM1.24抗体を用いた免疫沈降・ウエスタンブロッティン グ法により検出した結果を示す図面代用写真である。抗HM1.24抗体結合セ ファロース4B(レーン1~6)または非結合セファロース4B(レーン7及び 8)を用いて免疫沈降を行った後、抗HM1.24抗体を用いてウエスタン・ブ ロッティングを行い、HM1.24抗原の検出を行った(右側に表示)。(*; 抗HM1.24抗体H鎖) 【書類名】

[図1]

図面

【図2】

アルカリフォスファターゼ標識抗IgG

抗 HM1.24 抗体

HA タグ付加可溶型 HM1 24 抗原

抗 HA 抗体

【図3】

【図4】

【図5】

【図6】

抗体濃度 (ng/ml)

- ---□--- ヒト型化抗 HM1.24 抗体
- ---◇-- キメラ型抗 HM1.24 抗体

【図7】

マウス抗HM1.24 抗体

---- 抗HA抗体 ------ コントロール抗体 (UPC10) - ----- コントロール抗体 (MT18) [図8]

【図9】

W9T#+171 1 200000

【図10】

【図11】

[図12]

【図13】

【図14】

300 93 360 113 420 133 480 180 53 240 73 GAATTCGGCACGAGGGATCTGGATGGCATCTACTTCGTATGACTATTGCAGAGTGCCCAT CATCGTGATTCTGGGGGTGCCCTTGATTATCTTCACCATCAAGGCCAACAGGCGAGGCCTG SGAGGAGCTTGAGGGAGATCACTACATTAAACCATAAGCTTCAGGACGCGTCTGCAGA SGTGGAGCGACTGAGAAGAGAAAACCAGGTĆTTAAGCGTGAGAATCGCGGACAAGAAGTA CTACCCCAGCTCCCAGGACTCCAGCTCCGCTGCGGCGCCCCCAGCTGCTGATTGTGCTGCT GGAAGACGGGGATAAGCGTGTAAGCTTCTGCTGGGGATAGGAATTCTGGTGCTCCTGAT CCGGGACGGCCTTCGGGCAGTGATGGAGTGTCGCAATGTCACCCATCTCCTGCAACAAGA GCTGACCGAGGCCCAGAAGGGCTTTCAGGATGTGGAGGCCCAGGCCGCCACCTGCAACCA CACTGTGATGGCCCTAATGGCTTCCCTGGATGCAĠAGAAGGCCCCAAGGACAAAAGAAAGT ပ ы RAVMECRN<u>V</u>THLLQ ഗ × > ល L. V Ω A. a EAQAA VILGVPLIIFTIKAN ტ K Q Ö н ц Э ø Ц Ø × Ö ល ы Ħ A . A T GFQDV z 1 V Q Ø 7 Ø Ω ഗ ы S × ഗ ы Ø ഗ × ĸ Σ ы ρ; Ω E · A · O Н _O æ R D G L ч Ω Ø ы ĸ

(配列番号:16)

【図15】

GGGCCTCAGCGCTCTGCTGCAGTGAGATCCCAGGAAGCTGGCACATCTTGGAAGGTCCGT	600
G L S A L L Q *	180
CCTGCTCGGCTTTTCGCTTGAACATTCCCTTGATCTCATCAGTTCTGAGCGGGTCATGGG	9
GCAACACGGTTAGCGGGGAGAGCACGGGGTAGCCGGAGAGGGCCTCTGGAGCAGGTCTG	720
GAGGGCCCATGGGCAGTCCTGGGTGTGGGGACACAGTCGGGTTGACCCAGGGCTGTCTC	780
CCTCCAGAGCCTCCCTCCGGACAATGAGTCCCCCCTTTGTCTCCCACCCTGAGATTGGG 8	840
CATGGGGTGCGGTGTGGGGGGGGATGTGCTGCTTGTTATGGGTTTTTTTT	006
GGTTGCTTTTTTCTGGGGTCTTTGAGCTCCAAAAAAAAAA	960
CACACCTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	1014

(配列番号

【図16】

【図17】

【図18】

レーン1: KPMM2 (5×10⁵ 細胞相当)

レーン2: RPM | 8226 (25×10⁵ 細胞)

レーン3: U266 (25×10⁵ 細胞)

レーン4:CHO/HM(5×10⁵細胞)

レーン5:CHO/NEO (5x10⁵ 細胞)

レーン6:なし

レーン7: KPMM2 (5×10⁵ 細胞)

レーン8:CHO/HM (5×10⁵ 細胞)

【書類名】 要約書

【要約】

【課題】 抗HM1.24 抗体及びHM1.24 抗原の免疫測定のための新規な方法の提供。

【解決手段】 可溶性HM1.24抗原タンパク質と被験試料中に含まれる抗HM1.24抗体とを反応させて、可溶性HM1.24抗原タンパク質に結合した抗HM1.24抗体を検出又は測定する工程を含む、抗HM1.24抗体の免疫化学的測定方法;抗HM1.24抗体と被験試料中に含まれる可溶性HM1.24抗原タンパク質とを反応させて、抗HM1.24抗体に結合した可溶性HM1.24抗原タンパク質を検出又は測定する工程を含む、可溶性HM1.24抗原タンパク質の免疫化学的測定方法。

【選択図】 なし

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【特許出願人】

【識別番号】

000003311

【住所又は居所】

東京都北区浮間5丁目5番1号

【氏名又は名称】

中外製薬株式会社

【代理人】

申請人

【識別番号】

100077517

【住所又は居所】

東京都港区虎ノ門三丁目5番1号 虎ノ門37森ビ

ル 青和特許法律事務所

【氏名又は名称】

石田 敬

【代理人】

申請人

【識別番号】

100087871

【住所又は居所】

東京都港区虎ノ門三丁目5番1号 虎ノ門37森ビ

ル 青和特許法律事務所

【氏名又は名称】

福本 積

【代理人】

申請人

【識別番号】

100088269

【住所又は居所】

東京都港区虎ノ門三丁目5番1号 虎ノ門37森ビ

ル 青和特許法律事務所

【氏名又は名称】

戸田 利雄

【代理人】

申請人

【識別番号】

100082898

【住所又は居所】

東京都港区虎ノ門三丁目5番1号 虎ノ門37森ビ

ル 青和特許法律事務所

【氏名又は名称】

西山 雅也

出願人履歴情報

識別番号

[000003311]

1. 変更年月日

1990年 9月 5日

[変更理由]

新規登録

住 所

東京都北区浮間5丁目5番1号

氏 名

中外製薬株式会社