ENSA-ALHOCEIMA ANALYSE 4

CP II

SEMESTRE 2

Exercice 1:

Calculer les limites des suites suivantes :

$$u_n = \int_0^{\frac{\pi}{4}} tan^n x dx$$
 , $v_n = \int_0^{+\infty} \frac{1}{x^n + e^x} dx$, $w_n = \int_0^{+\infty} \frac{sin^n x}{x^2} dx$

$$\begin{split} z_n &= \int_0^{+\infty} \frac{n \cos x}{1 + n^2 x^2} dx \ , \quad t_n = n \int_0^1 \frac{e^{-nx}}{1 + x} dx, \qquad x_n = \int_0^{+\infty} e^{-x} \sin^n x dx \\ y_n &= \int_0^{+\infty} e^{-x^n} dx \ . \end{split}$$

Exercice 2:

Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ une fonction continue bornée.

Etudier les limites des intégrales suivantes:

$$I_n = \int_0^1 f(x^n) dx$$
 , $J_n = \int_0^{+\infty} n f(x) e^{-nx} dx$ et $K_n = \int_0^{+\infty} \frac{n f(x)}{1 + n^2 x^2} dx$.

Exercice 3:

1- Montrer que:
$$\lim_{n\to+\infty} \int_1^{+\infty} \frac{e^{-x}}{x} x^{\frac{1}{n}} dx = \int_1^{+\infty} \frac{e^{-x}}{x} dx$$
.

2- En déduire que:
$$\lim_{n\to+\infty} n \int_1^{+\infty} e^{-x^n} dx = \int_1^{+\infty} \frac{e^{-x}}{x} dx$$

Exercice 4:

Pour $(x, n) \in]0,1[\times \mathbb{N}, \text{ on pose:}$

$$f_n(x) = \frac{\ln x}{x^2 - 1} x^{2n+1}$$
, $I_n = \int_0^1 f_n(x) dx$ et $\varphi(x) = \frac{x \ln x}{x^2 - 1}$.

- 1- Montrer que φ est intégrable sur]0,1[.
- 2- En déduire que pour tout $n \in \mathbb{N}$, f_n est intégrable sur]0,1[.
- 3- Montrer que la suite $(I_n)_{n \in \mathbb{N}}$ est convergente.
- 4- Etablir l'égalité suivante:

$$\forall k \in \mathbb{N}^* : I_{k-1} - I_k = \frac{1}{4k^2}$$

et en déduire que: $I_n = \frac{1}{4} \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$

Exercice 5:

Considérons la fonction f définie sur $([0, +\infty[)^2 \text{ par} :$

2019/2020

$$f(x,y) = \frac{\ln(1+xy)}{1+x^2}$$

- 1) Etudier la dérivabilité de f par rapport à y sur $[0, +\infty[$ et calculer $\frac{\partial f}{\partial y}(x, y)$.
 - 2) Posons $I(y) = \int_0^y f(x, y) dx$
 - a- Montrer que I est dérivable sur $[0, +\infty[$ et calculer I'(y).
 - b- Montrer que:

$$I'(y) = \frac{ln(1+y^2)}{2(1+y^2)} + \frac{yArctany}{(1+y^2)}$$

3) En utilisant une intégration par parties, montrer que :

$$\int_0^y \frac{tArctant}{1+t^2} dt = \frac{1}{2} Arctany * ln(1+y^2) - \frac{1}{2} \int_0^y \frac{ln(1+t^2)}{(1+t^2)} dt$$

- 4) En déduire I(y)
- 5) Donner la valeur de $\int_0^1 \frac{\ln(1+x)}{1+x^2} dx$

Exercice 6:

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par:

$$f(x) = \int_0^1 \frac{e^{-x(1+t^2)}}{1+t^2} dt.$$

- 1) Montrer que f est dérivable sur \mathbb{R} et calculer f'(x).
- 2) Calculer f(0)
- et déterminer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to -\infty} f(x)$.
- 3) Posons $g(x) = f(x^2)$
 - a- Montrer que $\,g\,$ est dérivable sur $\,\mathbb{R}\,$ et que:

$$g'(x) = -2e^{-x^2} \int_0^x e^{-t^2} dt$$
.

b- En déduire que:

$$\forall x \in \mathbb{R}: \ g(x) + \left(\int_0^x e^{-t^2} dt\right)^2 = \frac{\pi}{4}.$$

c- Conclure que: $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}.$