Міністерство освіти і науки України НТУУ «КПІ ім. Ігоря Сікорського» Навчально-науковий інститут атомної та теплової енергетики Кафедра цифрових технологій в енергетиці

Лабораторна робота №3

з дисципліни «Безпека інформаційних систем» «Шифр гамування» Варіант № 22

Виконав: Студент групи ТР-12

Ковальов Олександр

Перевірив: доцент, к.ф.-м.н.

Тарнавський Ю. А.

Мета роботи. Розробити криптосистему на основі шифру гамування. Діаграма прецедентів.

Діаграма класів.

В просторі імен Cryptography знаходяться всі шифри, які наслідуються від класу SymmetricCipher. Також там ϵ перелік CipherEnum.

В класі XORCipher знаходяться основні методи для шифрування та розшифрування даних цим методом. Клас наслідується від класу SymmetricCipher. Це означає, що API класу складається з двох основних методів – Encrypt та Decrypt. В них викликаються приватні методи.

Методи приймають аргументи: повідомлення типу String, масив типу object[] keys. Перший аргумент — повідомлення, яке треба зашифрувати або розшифрувати. Друге — масив, помічений ключовим словом рагать. Це означає, що методу можна передавати будь-яку кількість аргументів. Вони автоматично запакуються в масив.

Фрагмент коду з реалізацією алгоритму шифрування/розшифрування.

```
public class XORCipher : SymmetricCipher
    public override string Encrypt(string message, params object[] keys)
        return ValidateAndReturn(message, keys);
    public override string Decrypt(string message, params object[] keys)
        return ValidateAndReturn(message, keys);
    private string CipherSeed(string message, int seed)
        var random = new Random(seed);
        var sb = new StringBuilder();
        foreach (var c in message)
            var gamma = (char) random.Next(1, UnicodeCardinal + 1);
            sb.Append((char) (c ^ gamma));
        return sb.ToString();
    }
    private string CipherGamma (string message, string gamma)
        if (gamma.Length != message.Length)
            throw new Exception ("Message and pad lengths must be equal");
        var sb = new StringBuilder();
        for (var i = 0; i < message.Length; i++)</pre>
            sb.Append((char) ((message[i] ^ gamma[i]) % UnicodeCardinal));
        return sb.ToString();
    }
    private string ValidateAndReturn(string message, params object[] keys)
        if (keys.Length != 1) throw new Exception("Wrong args");
        return keys[0] switch
        {
            int seed => CipherSeed(message, seed),
            string gamma => CipherGamma(message, gamma),
            _ => throw new Exception("Wrong key type")
        };
    }
}
```

Скріншоти програми.

Головне вікно:

ХОК шифрування. \in дві кнопки — шифрування та розшифрування. Також, можна або використати ключ, або завантажити шифро-блокнот:

Можна обрати лише один варіант ключа — при виборі одного блокується введення іншого, та розблоковуються кнопки шифрування (за умови, що текст вже ϵ в робочій області):

Результат шифрування:

Ciphers:	Encrypt	Decrypt	Open Pad	Close Pad	Seed:
檛dK♂戌洘戏C튧虷덳✎					

Результат розшифрування:

Ciphers:		<u></u>		×	Seed:
XORCipher ~	Encrypt	Decrypt	Open Pad	Close Pad	-120
Hello World!					

Шифро-блокнот генерується в цьому ж вікні – треба обрати вкладку OneTimePad:

Ciphers:		Length:
OneTimePad	Generate	

Результатом ϵ абсолютно випадкова послідовність вказаної довжини.

Для того, щоб збільшити криптостійкість, на XOR шифр поставлене обмеження – блокнот має бути такої ж довжини як і повідомлення:

Довжину повідомлення можна дізнатись зі status bar знизу:

Приклад шифрування з шифро-блокнотом:

Також, ϵ можливість зашифрувати текст шифром Вернама. Це абсолютно криптостійкий шифр, якщо в ньому виконуються три умови. Одна з умов — ключ повинен співпадати за розміром з текстом. Це встановлено в коді. Інші дві — залежать від користувача. Ключ повинен бути істинно випадковим та використовуватись один раз. Істинно випадковий ключ можна згенерувати на вкладці "OneTimePad".

Режим СВС.

Перетворення:
$$C_i = E_{ki}(p_i \oplus C_{i-1})$$

$$p_i = C_{i-1} \oplus D_{ki}(C_i)$$

Доведення: $p_i = C_{i-1} \oplus D_{ki} \big(E_{ki} (p_i \oplus C_{i-1}) \big) =$

$$p_i = C_{i-1} \oplus p_i \oplus C_{i-1} =$$

(Commutative) $p_i = C_{i-1} \oplus C_{i-1} \oplus p_i =$

(Abelian) $p_i = 0 \oplus p_i = p_i$

Доведено

Схема:

Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining (CBC) mode decryption

Режим CFB.

Перетворення:
$$C_i = E_{ki}(C_{i-1}) \oplus p_i$$

$$p_i = E_{ki}(C_{i-1}) \oplus C_i$$

Доведення: $p_i = E_{ki}(C_{i-1}) \oplus E_{ki}(C_{i-1}) \oplus p_i$

(Abelian) $p_i = 0 \oplus p_i = p_i$

Доведено

Схема:

Cipher Feedback (CFB) mode encryption

Cipher Feedback (CFB) mode decryption

Режим OFB.

Перетворення:
$$C_i = p_i \oplus O_i$$

$$p_i = C_i \oplus O_i$$

$$O_i = E_{ki}(O_{i-1})$$

$$O_1 = E_{ki}(C_0)$$

Доведення: $p_i = p_i \oplus O_i \oplus O_i$

(Abelian) $p_i = p_i \oplus 0 = p_i$

Доведено

Схема:

Output Feedback (OFB) mode encryption

Output Feedback (OFB) mode decryption

Режим CTR.

Перетворення:
$$C_i = p_i \oplus O_i$$

$$p_i = C_i \oplus O_i$$

$$O_i = E_{ki}(T_i)$$

Доведення: $p_i = p_i \oplus O_i \oplus O_i$ (Abelian) $p_i = p_i \oplus 0 = p_i$

Доведено

Схема:

Counter (CTR) mode encryption

Counter (CTR) mode decryption

Висновок: за результатами виконання цієї лабораторної роботи було ознайомлено з принципом роботи блокових шифрів та шифрів гамування. В криптосистему було імплементовано такі шифри як XOR та Вернама. Також, був розроблений генератор одноразових шифро-блокнотів. При розробці в основі була концепція абсолютної криптостійкості.