

SRM Institute of Science and Technology College of Engineering and Technology SCHOOL OF COMPUTING

Mode of Exam **OFFLINE**

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 20

2022-23

(EVEN)

SET-A

Test: CLAT-1
Course Code & Title: 18CSC304J -COMPILER DESIGN
Year & Sem: III & VI
Date: 17.2.2023
Duration: 1 HOUR
Max. Marks: 25

Course Articulation Matrix:

Cours	Course in ticulation viatrix.												
S.No.	Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	CO1	3	3	3									

	Part - A (5 x 1 = 5 Marks)					
	Instructions: Answer ALL					
Q. N o	Question	Mark s	B L	C	P O	PI Cod e
1	The regular expression (0 1)*(0 1) represents a language with a) Nonempty binary strings b) Empty and nonempty binary strings c) Odd nonempty strings d) Even nonempty strings Answer: a	1	2	1	1	1.4.1
2	The total number of states to build the given language using DFA: L={w w has exactly 2 a's and at least 2 b's} a) 10 b) 11 c)12 d)13 Answr\]er: a	1	3	1	2	2.1.3
3	Which of the following is not a regular expression? a) [(a+b)*-(aa+bb)]* b) [(0+1)-(0b+a1)*(a+b)]* c) (01+11+10)* d) (1+2+0)*(1+2)* Answer: b	1	2	1	2	2.1.2
4	Regular expression Φ^* is equivalent to a) ϵ b) Φ c) 0 d) 1 Answer :a	1	1	1	1	1.2.1
5	takes collection of rules that define the translation of each operation of the intermediate language into the machine language for the target machine. a. Parser generators b. Scanner generators c. Syntax-directed translation engines d. Automatic code generators Answer: D	1	1	1	1	1.3.1
	Part – B (2 x 4 = 8 Marks) Instructions: Answer any TWO					
6	The two tests schemes can be reduced to one in input buffering technique? justify your answer with an algorithm.	4	1	1	1	1.3.1

	The two tests can be reduced to one, if each buffer half holds a sentinel character at the end. The sentinel is a special character of eof. : : E: :=: : M:*:eof C:*:*:2:eof: : : : eof forward lexeme_beginning forward = forward + 1' if forward = eof then begin if forward at end of first half then begin reload second half; forward := forward + 1 end else if forward at end of second half then begin reload first half; move forward to beginning of first half end else terminate lexical analysis end					
7	Construct a syntax tree with firstpos and lastpos for all nodes of (a b)*abb. $ \begin{array}{c} (a b)*abb. \end{array} $ $ \begin{array}{c} (1,2,3) & (6) \\ (1,2,3) & (3) \\ (1,2) & (1,2) \\ (1,2) & (1,2) \\ (1,2) & (2) \\ (1,2) & (2) \\ (1) & (2) \\ (2) & (2) \\ \end{array} $ $ \begin{array}{c} (1,2,3) & (6) \\ (6) & (6) \\ (6) & (6) \\ (6) & (6) \\ (6) & (6) \\ (6) & (6) \\ (6) & (6) \\ (6) & (6) \\ (7) & (7) & (7) \\ (7) & (7) & (7) \\ (8) & (7) & (7) \\ (9) & (7) & (7) \\ (1) & (7) & (7) \\ $	4	2	1	2	2.3.1
8	Construct the minimal DFA for the below diagram.	4	3	1	2	2.3.1

Δ									
Δ									
13	inswer								
F	irst Construct Transit	ion table for the giv	en diagram						
		0	1						
	→q0	q1	q3						
	q1	q2	*q4						
	q2	q1	*q4						
	q3	q2	*q4						
	*q4	*q4	*q4						
ı	$P_0 = \{ q_0, q_1, q_2, q_3 \} \{ q_4 \}$ $P_1 = \{ q_0 \} \{ q_1, q_2, q_3 \} \{ q_4 \}$ $P_2 = \{ q_0 \} \{ q_1, q_2, q_3 \} \{ q_4 \}$								
1									
	→ q ₀ 0	0 q1q2q	3 1	0,1					
	→ Q 0 0	0 q1q2q 0 0,1 B	1 0,	0,1					
	→ q 0 0	•	0,°	0,1					
	→ q 0 0	0,1 B	0,°	0,1					
	→ q 0 0	0,1 B Minimal DF	-C (1 x 12 =						
ir). Consider the input is transformer ompiler.	O,1 Minimal DF Part Institut c=a+b*5. With	-C (1x12 = ructions: Answern a neat sketch, ill	any ONE ustrate how the		2	1	2	2.2

	A DEMEDIA		ı	I						
	return(LETTER);									
	[0-9]									
	<pre>c = yytext[0]; yylval = c - '0';</pre>									
	return(DIGIT);									
	}									
	[^a-z0-9\b] {									
	return(c);									
	}									
	OP									
10	OR O									
10	Deterministic Finite Automata (DFA) using subset construction	O		1	3	3.3.2				
	method.									
	0 0									
	$\rightarrow \stackrel{\text{\tiny q0}}{}$									
	$ \swarrow $									
	1 0,1									
	0,1									
	0 0,1									
		_								
		4								
	Annual Annual and A 1 C 2 C 2 C									
	Answer: Accept any method of conversion for this question									
-	+ Table									
	ransi lou									
-										
•	4									
	5 Pearl 0									
	tak									
1 1										
<i> </i>	-a a - a - q									
	790 90 91,2									
1	9, 9,92 92									
	1 10 12 1 12									
	1 7									
	191									
	92 90:91									
			1							

Let 8' be the trans	of the DFA.
Let [20] be the initial state of the	DFA-
$S'([Q_0],0) = S([Q_0],0) = [Q_0]$	
$S([90]) = S([90]) = [91, 92]$ $S'([41, 92], 1) = S([41, 1)) \cup S([41, 92]) \cup S([41, 9$	([42],)]) 22, 0) U S([22],0)
$= \begin{bmatrix} 20, 21, 22 \end{bmatrix}$ $= \begin{bmatrix} 20, 21, 22 \end{bmatrix}$ $= 8([20, 21, 22], 1) \cup 8([21], 1) \cup 8([21], 1)$	(Eq.7, 1)
- [21, 22] - [21, 22]	

Parser Generators

Input: Grammatical description of a programming language **Output:** Syntax analyzers.

Parser generator takes the grammatical description of a programming language and produces a syntax analyzer.

Scanner Generators

Input: Regular expression description of the tokens of a

language

Output: Lexical analyzers.

Scanner generator generates lexical analyzers from a regular

expression description of the tokens of a language.

Syntax-directed Translation Engines

Input: Parse tree.

Output: Intermediate code.

Syntax-directed translation engines produce collections of routines that walk a parse tree and generates intermediate

code.

Automatic Code Generators

Input: Intermediate language. **Output:** Machine language.

Code-generator takes a collection of rules that define the translation of each operation of the intermediate language into the machine language for a target machine.

Data-flow Analysis Engines

Data-flow analysis engine gathers the <u>information</u>, that is, the values transmitted from one part of a program to each of the other parts. Data-flow analysis is a key part of code optimization.

Compiler Construction Toolkits

The toolkits provide integrated set of routines for various phases of compiler. Compiler construction toolkits provide an integrated set of routines for construction of phases of compiler.

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

^{*}Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy.

Approved by the Audit Professor/Course Coordinator