

MITx: 6.041x Introduction to Probability - The Science of Uncertainty

■Bookmarks

- Unit 7: Bayesian inference > Problem Set 7a > Problem 5 Vertical: Hypothesis test between two normals
 - Bookmark

- Unit 0: Overview
- Entrance Survey
- Unit 1: Probability models and axioms
- Unit 2: Conditioning and independence
- Unit 3: Counting
- Unit 4: Discrete random variables
- Exam 1
- Unit 5: Continuous random variables
- Unit 6: Further topics

Problem 5: Hypothesis test between two normals

(4/4 points)

Conditioned on the result of an unbiased coin flip, the random variables T_1, T_2, \ldots, T_n are independent and identically distributed, each drawn from a common normal distribution with mean zero. If the result of the coin flip is Heads this normal distribution has variance $\mathbf{1}$, otherwise it has variance $\mathbf{4}$. Based on the observed values t_1, t_2, \ldots, t_n , we use the MAP rule to decide whether the normal distribution from which they were drawn has variance $\mathbf{1}$ or variance $\mathbf{4}$. The MAP rule decides that the underlying normal distribution has variance $\mathbf{1}$ if and only if

$$\left|c_1\sum_{i=1}^n t_i^2 + c_2\sum_{i=1}^n t_i
ight| < 1.$$

Find the values of $c_1 \geq 0$ and $c_2 \geq 0$ such that this is true. Express your answer in terms of n, and use 'ln' to denote the natural logarithm function, as in 'ln(3)'.

$$c_1 = \boxed{$$
 3/(8*n*ln(2))

✓ Answer: $3/(8*n*ln(2)) c_2 = 0$

0

~

Answer: 0

on random variables

▼ Unit 7: Bayesian inference

Unit overview

Lec. 14: Introduction to Bayesian inference

Exercises 14 due Apr 06, 2016 at 23:59 UTC

Lec. 15: Linear models with normal noise

Exercises 15 due Apr 06, 2016 at 23:59 UTC

Problem Set 7a

Problem Set 7a due Apr 06, 2016 at 23:59 UTC

Lec. 16: Least mean squares (LMS) estimation

Exercises 16 due Apr 13, 2016 at 23:59 UTC

Lec. 17: Linear least mean squares (LLMS) estimation

Exercises 17 due Apr 13, 2016 at 23:59 UTC

Problem Set 7b

Problem Set 7b due Apr 13, 2016 at 23:59 UTC

Solved problems

Answer:

Let $\Theta=0$ denote that the observations t_1,t_2,\ldots,t_n were generated from a normal distribution with variance 1, and let $\Theta=1$ denote that they were generated from a normal distribution with variance 4. For simplicity, let us use the notation $N(t_1,\ldots,t_n;0,\sigma^2)$ to denote the joint PDF of n i.i.d. normal random variables with mean 0 and variance σ^2 , evaluated at t_1,\ldots,t_n .

Therefore, given the observations t_1, \ldots, t_n , the posterior probability that the samples are generated from a normal distribution with variance 1 is

$$\mathbf{P}(\Theta=0 \mid T_1=t_1,\ldots,T_n=t_n) = rac{(1/2) \cdot N(t_1,\ldots,t_n;0,1)}{(1/2) \cdot N(t_1,\ldots,t_n;0,1) + (1/2) \cdot N(t_1,\ldots,t_n;0,4)}.$$

Similarly, the probability that the samples are generated from a normal distribution with variance $oldsymbol{4}$ is given by

$$\mathbf{P}(\Theta=1 \mid T_1=t_1,\ldots,T_n=t_n) = rac{(1/2) \cdot N(t_1,\ldots,t_n;0,4)}{(1/2) \cdot N(t_1,\ldots,t_n;0,1) + (1/2) \cdot N(t_1,\ldots,t_n;0,4)}.$$

The MAP rule favors $\Theta = 0$ if the following inequality holds:

$$\mathbf{P}(\Theta=0\mid T_1=t_1,\ldots,T_n=t_n)>\mathbf{P}(\Theta=1\mid T_1=t_1,\ldots,T_n=t_n)$$

Additional theoretical material

Unit summary

- ▶ Exam 2
- Unit 8: Limit theorems and classical statistics
- Unit 9: Bernoulli and Poisson processes
- Unit 10: Markov chains
- Exit Survey
- Final Exam

We notice that the denominators in the expressions for $\mathbf{P}(\Theta=0\mid\ldots)$ and $\mathbf{P}(\Theta=1\mid\ldots)$ are the same, so it suffices to compare the numerators. Therefore, the MAP rule favors $\Theta=0$ if the following inequality holds:

$$N(t_1,\ldots,t_n;0,1) \ > N(t_1,\ldots,t_n;0,4) \ \prod_{i=1}^n rac{1}{\sqrt{2\pi\cdot 1}} e^{-rac{t_i^2}{2\cdot 1}} \ > \prod_{i=1}^n rac{1}{\sqrt{2\pi\cdot 4}} e^{-rac{t_i^2}{2\cdot 4}}.$$

With a little bit of algebra, we obtain

$$\left|rac{3}{8}\sum_{i=1}^n t_i^2
ight| \ < n\cdot \ln(2).$$

You have used 1 of 2 submissions

DISCUSSION

Click "Show Discussion" below to see discussions on this problem.

© All Rights Reserved

© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

