Delays

Channels 4 independent pulses controlled

in position and width. 8 delay channels available as an option

(see Output Options).

Range 0 to 2000 s

Resolution 5 ps

Accuracy $1 \text{ ns} + (\text{timebase error} \times \text{delay})$

Jitter (rms)

Ext. trig. to any output 25 ps + (timebase jitter \times delay) T_0 to any output 15 ps + (timebase jitter \times delay) Trigger delay 85 ns (ext. trig. to T_0 output)

Timebases

Model :	# Type	Jitter	Stability	Aging
		(s/s)	(20 to 30 °C)	(ppm/yr)
Std.	crystal	10 ⁻⁸	2×10^{-6}	5
Opt. 4	OCXO	10 ⁻¹¹	1×10^{-9}	0.2
Opt. 5	Rb	10 ⁻¹¹	1×10^{-10}	0.0005

External input $10 \text{ MHz} \pm 10 \text{ ppm}$, sine > 0.5 Vpp,

 $1 k\Omega$ impedance

Output $10 \,\mathrm{MHz}, 2 \,\mathrm{Vpp}$ sine into $50 \,\Omega$

External Trigger

Rate DC to 1/(100 ns + longest delay)

(maximum of 10 MHz)

Threshold $\pm 3.50 \, \text{VDC}$

Slope Trigger on rising or falling edge

Impedance $1 M\Omega + 15 pF$

Internal Rate Generator

Trigger modes Continuous, line or single shot

Rate 100 µHz to 10 MHz

Resolution 1 µHz

Accuracy Same as timebase

Jitter (rms) <25 ps (10 MHz/N trigger rate)

<100 ps (other trigger rates)

Burst Generator

Trigger to first T₀

Range 0 to 2000 s
Resolution 5 ps

Period between pulses

Range 100 ns to 42.9 s
Resolution 10 ns
Delay cycles per burst 1 to 2³² – 1

Outputs (T₀, AB, CD, EF, and GH)

Source impedance 50Ω Transition time <2 ns

Overshoot $<100 \,\mathrm{mV} + 10 \,\%$ of pulse amplitude

Offset $\pm 2 \text{ V}$

Amplitude 0.5 to 5.0 V (level+offset < 6.0 V)Accuracy $100 \,\text{mV} + 5 \,\%$ of pulse amplitude

General

Computer interfaces GPIB (IEEE-488.2), RS-232, and

Ethernet. All instrument functions can be controlled through the interfaces.

Non-volatile memory Nine sets of instrument configurations

can be stored and recalled.

Power <100 W, 90 to 264 VAC, 47 Hz to 63 Hz

Dimensions $8.5" \times 3.5" \times 13"$ (WHD)

Weight 9 lbs.

Warranty One year parts and labor on defects

in materials & workmanship

Output Options

Option 01 (8 Delay Outputs on Rear Panel)

Outputs (BNC) T₀, A, B, C, D, E, F, G and H

 $\begin{array}{lll} \text{Source impedance} & 50\,\Omega \\ \text{Transition time} & <1\,\text{ns} \\ \text{Overshoot} & <100\,\text{mV} \\ \text{Level} & +5\,\text{V CMOS logic} \end{array}$

Pulse characteristics

Rising edge At programmed delay Falling edge 25 ns after longest delay

Option 02 (8 High-Voltage Delay Outputs on Rear Panel)

Outputs (BNC) T₀, A, B, C, D, E, F, G and H

Source impedance 50Ω Transition time <5 ns

Levels 0 to 30 V into high impedance

0 to 15 V into $50\,\Omega$

(amplitude decreases by 1%/kHz)

Pulse Characteristics

Rising Edge At programmed delay Falling Edge 100 ns after the rising edge

Option 03 (Combinatorial Outputs on Rear Panel)

Outputs (BNC) T_0 , AB, CD, EF, GH, (AB+CD),

(EF+GH), (AB+CD+EF), (AB+CD+EF+GH)

Source impedance 50Ω Transition time <1 ns

Overshoot <100 mV + 10 % of pulse amplitude

Pulse characteristics

Load

T₀, AB, CD, EF, GH Logic high for time between delays (AB+CD), (EF+GH) Two pulses created by the logic OR

of the given channels

(AB+CD+EF) Three pulses created by the logic OR

of the given channels

(AB+CD+EF+GH) Four pulses created by the logic OR

50Ω

of the given channels

Option SRD1 (Fast Rise Time Module)

Rise time <100 ps Fall time <3 ns Offset 0.8 V to 1.1 V Amplitude 0.5 V to 5.0 V

phone: (408)744-9040 www.thinkSRS.com