Module-3: Data Structures

Dr. P. Gayathri
Associate Professor
SCOPE, VIT University

Arrays

Array is a data structure, which provides the facility to store a collection of data of same type under single variable name.

- Continuous storage structure
- Elements are sequential

Array-Based Implementation of Lists

- An array is a viable choice for storing list elements
 - Element are sequential
 - Algorithm development is easy
- Normally sequential orderings of list elements.

> sequence of zero or more elements

$$A_1, A_2, A_3, ... A_N$$

- N: length of the list
- ▶ A₁: first element
- \triangleright A_N: last element
- ▶ A_i: position i
- ▶ If N=0, then empty list
- Linearly ordered
 - ▶ A_i precedes A_{i+1}
 - ▶ A_i follows A_{i-1}

Array Implementation

Elements are stored in contiguous array

positions

Operations

- printList: print the list
- find: locate the position of an elements in a list
 - ▶ list: 34,12, 52, 16, 12
 - \blacktriangleright find(52) \rightarrow 3
- insert: insert an object to a list
 - ▶ insert(x,4) \rightarrow 34, 12, 52, x, 16, 12
- remove: delete an element from the list
 - remove(52) \rightarrow 34, 12, x, 16, 12
- ▶ findKth: retrieve the element at a certain position

Operations

- Insert
 - Shift elements to right of insertion point
- Delete
 - Shift elements back

Also adjust size up or down

Types

- Ordered list
- Unordered list

An Array-Based Implementation - Summary

Good things:

- Fast, random access of elements
- Very memory efficient

Bad things:

- Slow deletion and insertion of elements
- Size must be known when the array is created and is fixed (static)