Data Structures and Algorithms

Spring 2009-2010

- Algorithm Analysis (contd.)
 - Asymptotic Behaviour of Functions
 - Working with Asymptotic Behaviours
 - Our Computer Model

- Algorithm Analysis (contd.)
 - Asymptotic Behaviour of Functions
 - Working with Asymptotic Behaviours
 - Our Computer Model

Growth Rates of Some Commonly Occurring Functions

Function	Name	Example
С	Constant	Adding two numbers
log <i>n</i>	Logarithmic	Searching a balanced binary tree
log ² n	Log-squared	
n	Linear	Searching a list
n log n	"n log n"	mergesort, quicksort
n^2	Quadratic	Insertion/Selection/Bubble Sort
n^3	Cubic	Matrix Multiplication (the slow way!)
$2^{n}, a^{n}, n!$	Exponential	No. of ways to permute <i>n</i> objects (<i>n</i> !)
		No. of unique patterns of n bits (2^n)

- Algorithm Analysis (contd.)
 - Asymptotic Behaviour of Functions
 - Working with Asymptotic Behaviours
 - Our Computer Model

Some Rules

Some rules for combining "Big-Ohs"

Rule 1 If
$$T_1(n) = O(f(n))$$
 and $T_2(n) = O(g(n))$, then (a) $T_1(n) + T_2(n) = \max(O(f(n)) + O(g(n)))$;

(b)
$$T_1(n) * T_2(n) = O(f(n) * g(n))$$

- Rule 2 If T(x) is a polynomial of degree n, then $T(x) = \Theta(x^n)$
- Rule 3 $log^k n = O(n)$ for any constant k. Logarithms grow very slowly.

- Algorithm Analysis (contd.)
 - Asymptotic Behaviour of Functions
 - Working with Asymptotic Behaviours
 - Our Computer Model

Assumptions of Model

When analysing the running time of an algorithm we assume the following *computer model*:

- Instructions are executed sequentially
- Any of the fundamental mathematical operations take a constant single unit of time
- We do not care about what the units of time are
- No tricky operations permitted without paying for them
- Our computer has an infinite amount of memory no paging worries

Weaknesses of Model

Weaknesses of this model:

- Not all operations take same time
- e.g., addition vs. multiplication vs. disk reading

What to measure

- Almost always running time...
- When we quantify running time it will be as a function of the input size, the number of items the algorithm works on, expressed in "Big-Oh" notation
- Two types of running time of interest: worst and average
- Worst-case running time is the time the algorithm would take on the worst possibly arranged input
- Average-case running time is the time the algorithm can be expected to take on an "average" input
- Average-case is by far the most useful but by far the most difficult to derive
- We satisfy ourselves with finding a bound on the very worst our algorithm will perform
- We ignore the time taken to read the input, which must be O(n)