CS250 VLSI Systems Design

Fall 2020

John Wawrzynek

with

Arya Reais-Parsi

MOSFET Threshold Voltage

Transistor "turns on" when Vgs is > Vt.

loff = (

CMOS Transistor Limitations

$$V_{GS}$$
 S
 C
 C
 D
 $Bad 0$

Tough luck ...

Transmission Gate

- Transmission gates are the way to build ideal "switches" in CMOS.
- In general, both transistor types are needed:
 - nFET to pass zeros.
 - pFET to pass ones.

if en==1 then A connects to B

Transmission-gate Multiplexor

2-to-1 multiplexor:

$$c = sa + s'b$$

Switches simplify the implementation:

Compare the cost to logic gate implementation.

Larger Multiplexors

a) 4-input mux symbol

Care must be taken to not string together many pass-transistor stages. Occasionally, need to "rebuffer" with static gate (or inverter).

Predecoded 4-to-1 Multiplexor

- This version has less delay from in to out.
- In both versions, care must be taken to avoid turning on multiple paths simultaneously (shorting together the inputs).

Tri-state Buffers

Variations:

Inverting buffer

Inverted enable

Tri-state Based Multiplexor

Multiplexor:

If s=1 then c=a else c=b

Transistor Circuit for inverting-multiplexor:

Sky130 Stdcell Multiplexor

10

LUT implementation

Higher Performance LUTs

Large Mux layout considerations

- 4-to-1 example
- p-path & n-path for all a,b combinations

separately group p's and n's

