Le Barycentre dans le plan

Barycentre de deux points pondérés

1.1 Point pondéré-Barycentre de deux points

Définition 1

Soit A un point du plan et α un nombre réel. Le couple $(A; \alpha)$ s'appelle un point pondéré, et le réel α s'appelle la masse du point $A(On dit aussi que le point A est affecté du coefficient <math>\alpha$).

Définition 2

On appelle barycentre de deux points pondérés (A, α) et (B, β) (avec $\alpha + \beta \neq 0$) le point G tel que :

$$\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} = \vec{0}$$

On fixe $\alpha + \beta \neq 0$ pour toute la suite.

cas particuliers:

- Si $\alpha = \beta$ alors G s'appelle l'isobarycentre dans le cas de deux points G est le mileu du segment [AB].
- Si $\alpha = 0$ et $\beta \neq 0$ alors on a $\beta \overrightarrow{GB} = \overrightarrow{0}$ d'où G = B.

1.2Propriétés du barycentre de deux points

1.2.1 Homogénéité

Théorème

Le barycentre de deux points reste inchangé lorsqu'on remplace les deux coefficients par des coefficients proportionnels (non nuls).

Démonstration

soit $k \in \mathbb{R}^*$ et le point G barycentre des deux points (A, α) et (B, β) (avec $\alpha + \beta \neq 0$), on a : $\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} = \overrightarrow{O}$ si on multiplie les deux membres de l'égalité par k on obtient :

 $k \times \alpha \overrightarrow{GA} + k \times \beta \overrightarrow{GB} = \overrightarrow{0}$ donc G est le barycentre des deux points $(A, k\alpha)$ et $(B, k\beta)$

Application: Soit G le barycentre des points $(A, \frac{3}{4})$ et $(B, -\frac{1}{2})$, G est le barycentre des points (A, 3) et (B, -2)

Propriété caractéristique

Propriété

G est le barycentre des points (A, α) et (B, β) si, et seulement si pour tout M du plan on a : $\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} = (\alpha + \beta) \overrightarrow{MG}$

Démonstration

G est le barycentre des points (A, α) et (B, β) donc on a :

$$\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} = \overrightarrow{0}$$
 on utilise la relation de Chasles

$$\alpha(\overrightarrow{GM} + \overrightarrow{MA}) + \beta(\overrightarrow{GM} + \overrightarrow{MB}) = \overrightarrow{0}$$
 d'où

$$\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} + (\alpha + \beta) \overrightarrow{GM} = \overrightarrow{0}$$

Alors: $\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} = (\alpha + \beta) \overrightarrow{MG}$

Remarques

1. G est le barycentre des points (A, α) et (B, β) si, et seulement si $\overrightarrow{AG} = \frac{\beta}{(\alpha + \beta)} \overrightarrow{AB}$. Cette relation permet de construire le point G.

Il suffit d'appliquer la propriété avec le point M=A. Ce qui donne : $\alpha \overrightarrow{AA} + \beta \overrightarrow{AB} = (\alpha + \beta) \overrightarrow{AG}$ soit $\overrightarrow{AG} = \frac{\beta}{(\alpha + \beta)} \overrightarrow{AB}$. On a aussi : $\overrightarrow{BG} = \frac{\alpha}{\alpha + \beta} \overrightarrow{BA}$ et $\overrightarrow{AG} = \frac{\beta}{\alpha + \beta} \overrightarrow{AB}$

2. Le barycentre de deux points (A, α) et (B, β) , avec $\alpha + \beta \neq 0$, appartient à la droite (AB).

2 Barycentre de trois points pondérés

2.1 Définition

On appelle barycentre de trois points pondérés (A,α) , (B,β) et (C,γ) (avec $\alpha+\beta+\gamma\neq 0$) le point G tel que :

$$\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} + \gamma \overrightarrow{GC} = \overrightarrow{0}$$

Cas particulier

Si $\alpha = \beta = \gamma$, alors le barycentre des points pondérés (A, α) , (B, β) et (C, γ) est appelé l'isobarycentre des points A, B et C. C'est le centre de gravité du triangle ABC (Dans le cas où les points A, B et C ne sont pas alignés).

2.2 Propriétés du barycentre de trois points

2.2.1 Propriété de l'homogénéité

Propriété

Si G est le barycentre de (A, α) , (B, β) et (C, γ) alors, pour tout réel k non nul G est aussi le barycentre de $(A, k\alpha)$, $(B, k\beta)$ et $(C, k\gamma)$

2.2.2 Propriété caractéristique

Propriété

G est le barycentre de trois points pondérés (A, α) , (B, β) et (C, γ) (avec $\alpha + \beta + \gamma \neq 0$) si, et seulement si $\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} + \gamma \overrightarrow{MC} = (\alpha + \beta + \gamma) \overrightarrow{MG}$

Remarques

$$\begin{array}{l} \text{Pour } M=A \text{, on obtient } \overrightarrow{AG} = \frac{\beta}{\alpha+\beta+\gamma}\overrightarrow{AB} + \frac{\gamma}{\alpha+\beta+\gamma}\overrightarrow{AC} \text{ .} \\ \text{On a aussi} : \overrightarrow{CG} = \frac{\alpha}{\alpha+\beta+\gamma}\overrightarrow{CA} + \frac{\beta}{\alpha+\beta+\gamma}\overrightarrow{CB} \\ \text{et } \overrightarrow{BG} = \frac{\alpha}{\alpha+\beta+\gamma}\overrightarrow{BA} + \frac{\gamma}{\alpha+\beta+\gamma}\overrightarrow{BC} \end{array}$$

2.2.3 Associativité du barycentre

Propriété

G est le barycentre de trois points pondérés (A, α) , (B, β) et (C, γ) (avec $\alpha + \beta + \gamma \neq 0$), on suppose de plus $(\alpha + \beta \neq 0)$ Si et seulement si G est le barycentre des deux points $(H, \alpha + \beta)$ et (C, γ) où H est le barycentre de (A, α) et (B, β) .

3 Barycentre de quatre points pondérés

3.1 Définition

On appelle barycentre de quatre points pondérés (A, α) , (B, β) , (C, γ) et (D, λ) (avec $\alpha + \beta + \gamma + \lambda \neq 0$) le point G tel que :

$$\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} + \gamma \overrightarrow{GC} + \lambda \overrightarrow{GD} = \overrightarrow{0}$$

3.2 Propriétés du barycentre de quatre points

3.2.1 Propriété de l'homogénéité

Propriété

Si G est le barycentre de (A, α) , (B, β) , (C, γ) et (D, λ) alors, pour tout réel k non nul G est aussi le barycentre de $(A, k\alpha)$, $(B, k\beta)$, $(C, k\gamma)$ et $(D, k\lambda)$

3.2.2 Propriété caractéristique

Propriété

G est le barycentre de quatre points pondérés (A, α) , (B, β) , (C, γ) et (D, λ) (avec $\alpha + \beta + \gamma + \lambda \neq 0$) si, et seulement si $\overrightarrow{\alpha MA} + \beta \overrightarrow{MB} + \gamma \overrightarrow{MC} + \lambda \overrightarrow{MD} = (\alpha + \beta + \gamma + \lambda) \overrightarrow{MG}$

Remarques

Pour
$$M=A$$
, on obtient $\overrightarrow{AG}=\frac{\beta}{\alpha+\beta+\gamma+\lambda}\overrightarrow{AB}+\frac{\gamma}{\alpha+\beta+\gamma+\lambda}\overrightarrow{AC}+\frac{\lambda}{\alpha+\beta+\gamma+\lambda}\overrightarrow{AD}$.
On a aussi : $\overrightarrow{BG}=\frac{\alpha}{\alpha+\beta+\gamma+\lambda}\overrightarrow{BA}+\frac{\gamma}{\alpha+\beta+\gamma+\lambda}\overrightarrow{BC}+\frac{\lambda}{\alpha+\beta+\gamma+\lambda}\overrightarrow{BD}$
 $\overrightarrow{CG}=\frac{\alpha}{\alpha+\beta+\gamma+\lambda}\overrightarrow{CA}+\frac{\beta}{\alpha+\beta+\gamma+\lambda}\overrightarrow{CB}+\frac{\lambda}{\alpha+\beta+\gamma+\lambda}\overrightarrow{CD}$
 $\overrightarrow{DG}=\frac{\alpha}{\alpha+\beta+\gamma+\lambda}\overrightarrow{DA}+\frac{\beta}{\alpha+\beta+\gamma+\lambda}\overrightarrow{DB}+\frac{\gamma}{\alpha+\beta+\gamma+\lambda}\overrightarrow{DC}$

4 Coordonnées du barycentre

Le plan est rapporté à un repère $(O; \vec{i}; \vec{j})$, soient (A, α) , (B, β) , (C, γ) et $(D; \lambda)$ des points pondérés et $A(x_A; y_A)$, $B(x_B; y_B)$, $C(x_C; y_D)$.

4.1 Coordonnées du barycentre de deux points pondérés

$$G \text{ est le barycentre de deux points}(A,\alpha) \text{ et } (B,\beta), \text{ avec } \alpha+\beta\neq0, \text{ a pour coordonnées } \bigg(\frac{\alpha x_A+\beta x_B}{\alpha+\beta}; \frac{\alpha y_A+\beta y_B}{\alpha+\beta}\bigg).$$

4.2 Coordonnées du barycentre de trois points pondérés

G est le barycentre de trois points pondérés
$$(A,\alpha)$$
, (B,β) et (C,γ) (avec $\alpha+\beta+\gamma\neq 0$) a pour coordonnées $\left(\frac{\alpha x_A+\beta x_B+\gamma x_C}{\alpha+\beta+\gamma}; \frac{\alpha y_A+\beta y_B+\gamma y_C}{\alpha+\beta+\gamma}\right)$.

4.3 Coordonnées du barycentre de quatre points pondérés

G est le barycentre de quatre points pondérés (A, α) , (B, β) , (C, γ) et (D, λ) (avec $\alpha + \beta + \gamma + \lambda \neq 0$) a pour coordonnées $\left(\frac{\alpha x_A + \beta x_B + \gamma x_C + \lambda x_D}{\alpha + \beta + \gamma + \lambda}; \frac{\alpha y_A + \beta y_B + \gamma y_C + \lambda y_D}{\alpha + \beta + \gamma + \lambda}\right).$