AUTONOMOUS MOBILE ROBOTICS

ROBOT LOCALIZATION

GEESARA KULATHUNGA

MARCH 7, 2023

ROBOT LOCALIZATION

CONTENTS

- A Taxonomy of Localization Problems
- Markov localization
 - ► Environment Sensing
 - ► Motion in the Environment
 - ► Localization in the Environment
- EKF localization with known correspondence
- Particle filter localization with known correspondence

■ Local Versus Global

- Local Versus Global
 - Position tracking where initial position is known (local tracking)

- Local Versus Global
 - Position tracking where initial position is known (local tracking)
 - Robot position is unknown, initially has to assume that pose of robot is uniform in the most of the cases (global)

- Local Versus Global
 - Position tracking where initial position is known (local tracking)
 - Robot position is unknown, initially has to assume that pose of robot is uniform in the most of the cases (global)
 - Kidnapped robot problem; anytime robot can be moved to different location without prior knowledge (global)

- Local Versus Global
 - Position tracking where initial position is known (local tracking)
 - Robot position is unknown, initially has to assume that pose of robot is uniform in the most of the cases (global)
 - Kidnapped robot problem; anytime robot can be moved to different location without prior knowledge (global)
- Static Versus Dynamic Environments

- Local Versus Global
 - Position tracking where initial position is known (local tracking)
 - Robot position is unknown, initially has to assume that pose of robot is uniform in the most of the cases (global)
 - Kidnapped robot problem; anytime robot can be moved to different location without prior knowledge (global)
- Static Versus Dynamic Environments
 - In static environment, robot's pose is only the variable quantity

- Local Versus Global
 - Position tracking where initial position is known (local tracking)
 - Robot position is unknown, initially has to assume that pose of robot is uniform in the most of the cases (global)
 - Kidnapped robot problem; anytime robot can be moved to different location without prior knowledge (global)
- Static Versus Dynamic Environments
 - In static environment, robot's pose is only the variable quantity
 - Dynamics environment, whole configuration can be changed over the time

- Local Versus Global
 - Position tracking where initial position is known (local tracking)
 - Robot position is unknown, initially has to assume that pose of robot is uniform in the most of the cases (global)
 - Kidnapped robot problem; anytime robot can be moved to different location without prior knowledge (global)
- Static Versus Dynamic Environments
 - In static environment, robot's pose is only the variable quantity
 - Dynamics environment, whole configuration can be changed over the time
- Passive Versus Active Approaches

- Local Versus Global
 - Position tracking where initial position is known (local tracking)
 - Robot position is unknown, initially has to assume that pose of robot is uniform in the most of the cases (global)
 - Kidnapped robot problem; anytime robot can be moved to different location without prior knowledge (global)
- Static Versus Dynamic Environments
 - In static environment, robot's pose is only the variable quantity
 - Dynamics environment, whole configuration can be changed over the time
- Passive Versus Active Approaches
 - ► In passive, robot is controlled through some other means, robot motion is not aiming at facilitating localization

MARKOV LOCALIZATION

```
Algorithm Markov localization (bel(x_{t-1}), u_t, z_t, m): for all x_t do \overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}, m) \ bel(x_{t-1}) \ dx bel(x_t) = \eta \ p(z_t \mid x_t, m) \ \overline{bel}(x_t) endfor return \ bel(x_t)
```

Markov localization is derived from the algorithm Bayes filter

Algorithm Markov_localization($bel(x_{t-1}), u_t, z_t, m$): for all x_t do $\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}, m) \ bel(x_{t-1}) \ dx$ $bel(x_t) = \eta \ p(z_t \mid x_t, m) \ \overline{bel}(x_t)$ endfor $return \ bel(x_t)$

- Markov localization is derived from the algorithm Bayes filter
- However, it requires information about the map to estimate the measurement model $p(z_t|x_t, m)$

Algorithm Markov_localization($bel(x_{t-1}), u_t, z_t, m$): for all x_t do $\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}, m) \ bel(x_{t-1}) \ dx$ $bel(x_t) = \eta \ p(z_t \mid x_t, m) \ \overline{bel}(x_t)$ endfor $return \ bel(x_t)$

- Markov localization is derived from the algorithm Bayes filter
- However, it requires information about the **map** to **estimate** the measurement model $p(z_t|x_t, m)$
- Markov localization addresses the global localization, the position tracking, and the kidnapped robot problem in static environment

MARKOV LOCALIZATION

Illustration of the Markov localization algorithm, Thrun, Sebastian. "Probabilistic robotics." Communications of the ACM 45.3 (2002): 52-57.

■ The map is discretized into 16 cells, each of which has an area of 1m²

.02	.05	.05	.05
.02	.05	.18	.05
.05	.05	.18	.05
.05	.05	.05	.05

robot initial belief

.02	.05	.05	.05
.02	.05	.18	.05
.05	.05	.18	.05
.05	.05	.05	.05

robot initial belief

- The map is discretized into 16 cells, each of which has an area of 1m²
- Consider the initial belief of the robot position is given

.02	.05	.05	.05
.02	.05	.18	.05
.05	.05	.18	.05
.05	.05	.05	.05

robot initial belief

- The map is discretized into 16 cells, each of which has an area of 1m²
- Consider the initial belief of the robot position is given
- If **the control command** to the robot is given by δx , δy = -1.0 cells, 0.0 cells, what is the probability that robot be in the position (2,3)

.02	.05	.05	.05
.02	.05	.18	.05
.05	.05	.18	.05
.05	.05	.05	.05

robot initial belief

- The map is discretized into 16 cells, each of which has an area of 1m²
- Consider the initial belief of the robot position is given
- If the control command to the robot is given by δx , δy = -1.0 cells, 0.0 cells, what is the probability that robot be in the position (2,3)
- The following outcomes are possible when the control command is being applied

	.00		(Δx,Δy)		.20	
.00	.00	1.0	<u>(△</u> ,∠y)	.00	.50	.10
.00	.00	.00		.00	.20	.00

■ How many possible ways to get to (2,3)?

■ How many possible ways to get to (2,3)?

► Prediction step

$$p(x_k|z_{1:k-1},u_{1:k-1}) = \sum_{x_{k-1} \in X} p(x_k|x_{k-1},u_{k-1}) p(x_{k-1}|z_{1:k-1},u_{0:k-1})$$
(1)

■ How many possible ways to get to (2,3)?

Prediction step

$$p(x_k|z_{1:k-1},u_{1:k-1}) = \sum_{x_{k-1}\in X} p(x_k|x_{k-1},u_{k-1})p(x_{k-1}|z_{1:k-1},u_{0:k-1})$$
(1)

Correction step

$$p(x_k|z_{1:k}, u_{0:k-1}) = \frac{p(z_k|x_k)p(x_k|z_{1:k-1}, u_{0:k-1})}{p(z_k|z_{1:k-1}, u_{0:k-1})}$$
(2)

, where

$$p(z_k|z_{1:k-1},u_{0:k-1}) = \sum_{x_k \in X} p(z_k|x_k)p(x_k|z_{1:k-1},u_{0:k-1})$$

■ How many possible ways to get to (2,3)?

■ How many possible ways to get to (2,3)?

► Prediction step

$$p(x_{i,t}|u_t) = \sum_{j=1}^{n} p\left(x_{i,t}|x_{j,t-1}, u_t\right) p\left(x_{j,t-1}\right)$$

$$= p\left(x_{i,t} = (2,3)|x_{j,t-1} = (3,3), u_t = (-1,0)\right) p\left(x_{j,t-1} = (3,3)\right)$$

$$+ p\left(x_{i,t} = (2,3)|x_{j,t-1} = (2,3), u_t = (-1,0)\right) p\left(x_{j,t-1} = (2,3)\right)$$

$$+ p\left(x_{i,t} = (2,3)|x_{j,t-1} = (3,2), u_t = (-1,0)\right) p\left(x_{j,t-1} = (3,2)\right)$$

$$+ p\left(x_{i,t} = (2,3)|x_{j,t-1} = (3,4), u_t = (-1,0)\right) p\left(x_{j,t-1} = (3,4)\right)$$

$$= 0.5 \cdot 0.18 + 0.1 \cdot 0.05 + 0.18 \cdot 0.2 + 0.05 \cdot 0.2$$

= 0.141

Correction step

■ How can we estimate the $p(z_t|x_{i,t})$?

Correction step

■ How can we estimate the $p(z_t|x_{i,t})$?

■ If each sensor reading consists of N measurements, i.e., $z = \{z_1, ..., z_n\}$, assuming each such **measurement is independent** given the robot pose,

$$p(z_t|x_{i,t}) = \prod_{j=1}^{n} p(z_j|x_{i,t}, m)$$

8 | 1

Correction step

■ How can we estimate the $p(z_t|x_{i,t})$?

■ If each sensor reading consists of N measurements, i.e., $z = \{z_1, ..., z_n\}$, assuming each such **measurement is independent** given the robot pose,

$$p(z_t|x_{i,t}) = \prod_{j=1}^{n} p(z_j|x_{i,t}, m)$$

■ Such measurements can be caused by known obstacles, dynamic obstacles, reflections, etc.

■ Correction step

$$p(x_{i,t}|z_t) = \frac{p(z_t|x_{i,t})p(x_{i,t}|u_t)}{p(z_t)}$$

■ Correction step

$$p(x_{i,t}|z_t) = \frac{p(z_t|x_{i,t})p(x_{i,t}|u_t)}{p(z_t)}$$

■ $p(z_t|x_{i,t})$ getting measurement z_t from state $x_{i,t}$

)

Correction step

$$p(x_{i,t}|z_t) = \frac{p(z_t|x_{i,t})p(x_{i,t}|u_t)}{p(z_t)}$$

- $p(z_t|x_{i,t})$ getting measurement z_t from state $x_{i,t}$
- Let z_t be 1.2m and range sensor has the following distribution

■ $p(z_t)$ probability of the sensor measurement z_t . Calculated so that the sum over all states $x_{i,t}$ equals 1

$$\begin{aligned} 1 &= \Sigma_{i=1}^n p(x_{i,t}|z_t = 1.2) \\ 1 &= \frac{\sum_{i=1}^n p(z_t = 1.2|x_{i,t}) p(x_{i,t}|u_{i,t})}{p(z_t = 1.2)} \\ p(z_t = 1.2) &= \Sigma_{i=1}^n p(z_t = 1.2|x_{i,t}) p(x_{i,t}|u_{i,t}) \end{aligned}$$

■ $p(z_t)$ probability of the sensor measurement z_t . Calculated so that the sum over all states $x_{i,t}$ equals 1

$$1 = \sum_{i=1}^{n} p(x_{i,t}|z_{t} = 1.2)$$

$$1 = \frac{\sum_{i=1}^{n} p(z_{t} = 1.2|x_{i,t}) p(x_{i,t}|u_{i,t})}{p(z_{t} = 1.2)}$$

$$p(z_{t} = 1.2) = \sum_{i=1}^{n} p(z_{t} = 1.2|x_{i,t}) p(x_{i,t}|u_{i,t})$$

$$p(x_{i,t}|z_t) = \frac{p(z_t|x_{i,t})p(x_{i,t}|u_t)}{p(z_t)}$$

$$= \frac{p(z_t = 1.2|x_{i,t} = (2,3))p(x_{i,t}|u_t)}{p(z_t = 1.2)} = \frac{0.04 \cdot 0.141}{p(z_t = 1.2)}$$

 $p(z_t)$ probability of the sensor measurement z_t . Calculated so that the sum over all states $x_{i,t}$ equals 1

$$1 = \sum_{i=1}^{n} p(x_{i,t}|z_t = 1.2)$$

$$1 = \frac{\sum_{i=1}^{n} p(z_t = 1.2|x_{i,t}) p(x_{i,t}|u_{i,t})}{p(z_t = 1.2)}$$

$$p(z_t = 1.2) = \sum_{i=1}^{n} p(z_t = 1.2|x_{i,t}) p(x_{i,t}|u_{i,t})$$

$$p(x_{i,t}|z_t) = \frac{p(z_t|x_{i,t})p(x_{i,t}|u_t)}{p(z_t)}$$

$$= \frac{p(z_t = 1.2|x_{i,t} = (2,3))p(x_{i,t}|u_t)}{p(z_t = 1.2)} = \frac{0.04 \cdot 0.141}{p(z_t = 1.2)}$$

Can we calculate this?

$$p(z_t = 1.2) = \sum_{i=1}^{n} p(z_t = 1.2|x_{i,t})p(x_{i,t}|u_{i,t})$$

EKF LOCALIZATION

https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/ekf-localization-howto.html

EKF LOCALIZATION

■ Specific case of Markov localization

- Specific case of Markov localization
- Represents beliefs $bel(x_t)$ by **their first and second moment**, i.e., the mean μ_t and the covariance Σ_t

- Specific case of Markov localization
- Represents beliefs $bel(x_t)$ by **their first and second moment**, i.e., the mean μ_t and the covariance Σ_t
- Map is represented by a collection of features and those are known

- Specific case of Markov localization
- Represents beliefs $bel(x_t)$ by **their first and second moment**, i.e., the mean μ_t and the covariance Σ_t
- Map is represented by a collection of features and those are known
- Initially, it requires following information:

- Specific case of Markov localization
- Represents beliefs $bel(x_t)$ by **their first and second moment**, i.e., the mean μ_t and the covariance Σ_t
- Map is represented by a collection of features and those are known
- Initially, it requires following information:
 - ▶ robot pose at time k-1 with μ_{t-1}, Σ_{t-1}

- Specific case of Markov localization
- Represents beliefs $bel(x_t)$ by **their first and second moment**, i.e., the mean μ_t and the covariance Σ_t
- Map is represented by a collection of features and those are known
- Initially, it requires following information:
 - ▶ robot pose at time k-1 with μ_{t-1}, Σ_{t-1}
 - ightharpoonup Control input u_{t-1}

- Specific case of Markov localization
- Represents beliefs $bel(x_t)$ by **their first and second moment**, i.e., the mean μ_t and the covariance Σ_t
- Map is represented by a collection of features and those are known
- Initially, it requires following information:
 - ▶ robot pose at time k-1 with μ_{t-1}, Σ_{t-1}
 - ightharpoonup Control input u_{t-1}
 - Map and a set of features $z_t = \{z_t^1, z_t^2, ...\}$ measured at time k and those are corresponded to variables $c_t = \{c_t^1, c_t^2, ...\}$

- Specific case of Markov localization
- Represents beliefs $bel(x_t)$ by **their first and second moment**, i.e., the mean μ_t and the covariance Σ_t
- Map is represented by a collection of features and those are known
- Initially, it requires following information:
 - ▶ robot pose at time k-1 with μ_{t-1}, Σ_{t-1}
 - ► Control input u_{t-1}
 - Map and a set of features $z_t = \{z_t^1, z_t^2, ...\}$ measured at time k and those are corresponded to variables $c_t = \{c_t^1, c_t^2, ...\}$
- lacksquare Output is a new, revised estimation: μ_t and Σ_t

COMPARISON BETWEEN KF AND EKF

KF	EKF
	$\boxed{ \Phi_k = \left. \frac{\partial f(\mathbf{x}_k, t)}{\partial \mathbf{x}} \right _{\mathbf{x}_k} }$
$\hat{\mathbf{x}}_k^- = \Phi_k \mathbf{x}_k$	$\left \left \hat{\mathbf{x}}_{k}^{-} = f(\mathbf{x}_{k}, \mathbf{t}) \right \right $
$\mathbf{P}_k^- = \Phi_k \mathbf{P}_k \Phi_k^T + \mathbf{Q}_k$	$\mathbf{P}_{k}^{-} = \Phi_{k} \mathbf{P}_{k} \Phi_{k}^{T} + \mathbf{Q}_{k}$
	$oxed{\mathbf{H} = rac{\partial h(\hat{\mathbf{x}}_k^-)}{\partial \hat{\mathbf{x}}}igg _{\hat{\mathbf{x}}_k^-}}$
$\mathbf{y} = \mathbf{z}_k - \mathbf{H}_k \hat{\mathbf{x}}_k^-$	$\mathbf{y} = \mathbf{z}_k - h(\hat{\mathbf{x}}_k^-)$
$\begin{aligned} \mathbf{K}_{\mathbf{k}} &= \mathbf{P}_{\mathbf{k}}^{-} \mathbf{H}_{\mathbf{k}}^{\top} (\mathbf{H}_{\mathbf{k}} \mathbf{P}_{\mathbf{k}}^{-} \mathbf{H}_{\mathbf{k}}^{\top} + \mathbf{R}_{\mathbf{k}})^{-1} \\ \hat{\mathbf{x}}_{\mathbf{k}} &= \hat{\mathbf{x}}_{\mathbf{k}}^{-} + \mathbf{K}_{\mathbf{k}} \mathbf{y} \\ \mathbf{P}_{\mathbf{k}} &= (\mathbf{I} - \mathbf{K}_{\mathbf{k}} \mathbf{H}_{\mathbf{k}}) \mathbf{P}_{\mathbf{k}}^{-} \end{aligned}$	$ \begin{vmatrix} \mathbf{K}_{\mathbf{k}} = \mathbf{P}_{\mathbf{k}}^{T} \mathbf{H}_{\mathbf{k}}^{T} (\mathbf{H}_{\mathbf{k}} \mathbf{P}_{\mathbf{k}}^{T} \mathbf{H}_{\mathbf{k}}^{T} + \mathbf{R}_{k})^{-1} \\ \hat{\mathbf{x}}_{k} = \hat{\mathbf{x}}_{k}^{T} + \mathbf{K}_{k} \mathbf{y} \\ \mathbf{P}_{k} = (\mathbf{I} - \mathbf{K}_{\mathbf{k}} \mathbf{H}_{\mathbf{k}}) \mathbf{P}_{\mathbf{k}}^{T} $

PROBABILISTIC MOTION MODEL

■ Motion models comprise the state transition probability $p(\mathbf{x}_t|\mathbf{u}_t,\mathbf{x}_{t-1})$ (prediction step of the Bayes filter)

4 |

PROBABILISTIC MOTION MODEL

- Motion models comprise the state transition probability $p(\mathbf{x}_t|\mathbf{u}_t,\mathbf{x}_{t-1})$ (prediction step of the Bayes filter)
- Robot pose $[x \ y \ \theta]^{\top}$, shown in a global coordinate system

4 |

PROBABILISTIC MOTION MODEL

- Motion models comprise the state transition probability $p(\mathbf{x}_t|\mathbf{u}_t,\mathbf{x}_{t-1})$ (prediction step of the Bayes filter)
- Robot pose $[x \ y \ \theta]^{\top}$, shown in a global coordinate system

■ Probabilistic kinematic model, or motion model (velocity motion model or odometry motion model), describes the posterior distribution over kinematic states that a robot assumes when executing the motion command \mathbf{u}_t at \mathbf{x}_t

+

■ A robot can be control through linear and angular velocities $\mathbf{u}_t = [\mathbf{v}_t \quad \omega_t]^{\top}$

- A robot can be control through linear and angular velocities $\mathbf{u}_t = [\mathbf{v}_t \quad \omega_t]^{\top}$
- Differential drives, Ackerman drives, and synchro-drives can be controlled in this way

- A robot can be control through linear and angular velocities $\mathbf{u}_t = \begin{bmatrix} \mathbf{v}_t & \omega_t \end{bmatrix}^{\top}$
- Differential drives, Ackerman drives, and synchro-drives can be controlled in this way
- Let $\mathbf{x}_{t-1} = [x_{t-1} \quad y_{t-1} \quad \theta_{t-1}]^{\top}, \mathbf{x}_t = [x_t \quad y_t \quad \theta_t]^{\top}$ be pose and time t-1 and successor pose, respectively, after applying applying control u_{t-1} for δt duration

- A robot can be control through linear and angular velocities $\mathbf{u}_t = \begin{bmatrix} \mathbf{v}_t & \omega_t \end{bmatrix}^{\top}$
- Differential drives, Ackerman drives, and synchro-drives can be controlled in this way
- Let $\mathbf{x}_{t-1} = [x_{t-1} \quad y_{t-1} \quad \theta_{t-1}]^{\top}, \mathbf{x}_t = [x_t \quad y_t \quad \theta_t]^{\top}$ be pose and time t-1 and successor pose, respectively, after applying applying control u_{t-1} for δt duration
- If both velocities are kept at a fixed value for the entire time interval, [t-1, t], robot moves on a circle with radius $r = |\frac{v}{u}|$

- A robot can be control through linear and angular velocities $\mathbf{u}_t = [\mathbf{v}_t \quad \omega_t]^\top$
- Differential drives, Ackerman drives, and synchro-drives can be controlled in this way
- Let $\mathbf{x}_{t-1} = [x_{t-1} \quad y_{t-1} \quad \theta_{t-1}]^{\top}, \mathbf{x}_t = [x_t \quad y_t \quad \theta_t]^{\top}$ be pose and time t-1 and successor pose, respectively, after applying applying control u_{t-1} for δt duration
- If both velocities are kept at a fixed value for the entire time interval, [t-1, t], robot moves on a circle with radius $r = |\frac{v}{u}|$
- For linear motion, r becomes infinite

- A robot can be control through linear and angular velocities $\mathbf{u}_t = [\mathbf{v}_t \quad \omega_t]^\top$
- Differential drives, Ackerman drives, and synchro-drives can be controlled in this way
- Let $\mathbf{x}_{t-1} = [x_{t-1} \quad y_{t-1} \quad \theta_{t-1}]^{\top}, \mathbf{x}_t = [x_t \quad y_t \quad \theta_t]^{\top}$ be pose and time t-1 and successor pose, respectively, after applying applying control u_{t-1} for δt duration
- If both velocities are kept at a fixed value for the entire time interval, [t-1, t], robot moves on a circle with radius $r = |\frac{v}{u}|$
- For linear motion, r becomes infinite
- After δt units of time, the noise-free robot has progressed $v\delta t$ along the circle, which caused its heading direction to turn by $\omega \delta t$

■ The center of the circle is at, assuming v and ω , denoted linear and angular velocities relative to $\langle x, y \rangle$,

$$\begin{bmatrix} x_c \\ y_c \end{bmatrix} = \begin{bmatrix} x - \frac{v}{\omega} sin(\theta) \\ y + \frac{v}{\omega} cos(\theta) \end{bmatrix}$$

■ The center of the circle is at, assuming v and ω , denoted linear and angular velocities relative to $\langle x, y \rangle$,

$$\begin{bmatrix} x_c \\ y_c \end{bmatrix} = \begin{bmatrix} x - \frac{v}{\omega} sin(\theta) \\ y + \frac{v}{\omega} cos(\theta) \end{bmatrix}$$

■ After δt time, ideal robot will be at $\mathbf{x}_{t+1} = \begin{bmatrix} x_{t+1} & y_{t+1} & \theta_{t+1} \end{bmatrix}$

$$= \begin{bmatrix} x_c + \frac{v}{\omega} sin(\theta_t + \omega \delta t) \\ y_c - \frac{v}{\omega} cos(\theta_t + \omega \delta t) \\ \theta_t + \omega \delta t \end{bmatrix} = \begin{bmatrix} x_t \\ y_t \\ \theta_t \end{bmatrix} + \begin{bmatrix} -\frac{v}{\omega} sin(\theta_t) + \frac{v}{\omega} sin(\theta_t + \omega \delta t) \\ \frac{v}{\omega} cos(\theta_t) - \frac{v}{\omega} cos(\theta_t + \omega \delta t) \\ \omega \delta t \end{bmatrix}$$