MIT 18.01

Lyshmily.Y

2022年9月30日

目录

1	导数和变化率	3
2	极限和连续	5
3	求导四则运算及三角函数导数	8
4	链式法则及高阶导数	10
5	隐函数微分法和反函数导数	11
6	指数与对数函数导数、对数微分法	13
7	线性和二阶近似	15
8	曲线构图	17
9	最值问题	19
10	相关变率	21
11	牛顿迭代法及应用	23
12	中值定理及重要不等式	24
13	无穷小量和不定积分	26
14	微分方程和分离变量	2 8
15	定积分	29

目录	2
16 微积分第一基本定理	30
17 微积分第二基本定理	31
18 定积分在对数和几何上的应用	33
19 壳层法、圆盘法求体积	34
20 功、平均值、概率	35
21 数值积分	37
22 三角函数的积分和三角替换	39
23 反向变量替换和配方	43
24 部分分式	45
25 分部积分	46
26 参数方程、弧长和表面积	48
27 极坐标和极坐标下的面积	50
28 不定型和洛必达法则	51
29 反常积分	52
30 无穷级数和收敛判定	54
31 泰勒级数	55

导数和变化率

微分

1. 几何解释

如何求某图像某点处的切线? 例如函数 y = f(x) 在点 $P(x_0, y_0)$ 处切线方程为: $y - y_0 = m(x - x_0)$, 其中 $y_0 = f(x_0)$, 要想确定切线的方程, 我们必须知道 m 的值; 我们令 $m = f'(x_0)$, 我们定义 f(x) 在 $x = x_0$ 处的导数 $f'(x_0)$ 为函数 y = f(x) 在此点处切线的斜率.

我们换一种方式来看切线: 假设函数有一条割线 l, 与函数图像交于 P,Q 两点, 当点 Q 不断接近于点 P 时,l 称为函数在点 P 处的切线, 切线就可以看作是割线 PQ 的极限. 由此我们假设 Q 点坐标 $(x_0 + \Delta x, f(x_0 + \Delta x))$, 割线 PQ 的斜率 $k_{PQ} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta}$; 因此切线的斜率:

$$m = \lim_{\Delta x \to 0} \left(\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \right) \Rightarrow m = f'(x_0)$$

我们来看一个简单的例子: $f(x) = \frac{1}{x}$, 求 f(x) 的导数, 根据函数切线斜率定义:

$$f'(x_0) = \lim_{\Delta x \to 0} \left(\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \right) = \lim_{\Delta x \to 0} \left(\frac{\frac{1}{x_0 + \Delta x} - \frac{1}{x_0}}{\Delta x} \right)$$

$$\updownarrow$$

$$\lim_{\Delta x \to 0} \left(\frac{-1}{x_0^2 + x_0 \Delta x} \right)$$

$$f'(x_0) = -\frac{1}{x_0^2}$$

当 $x_0 \to 0$ 时, 函数图像越陡峭; 当 $x_0 \to \infty$ 时, 函数图像越平缓.

我们进一步提出一个问题: 如何求 $f(x) = \frac{1}{x}$ 切线与坐标轴围成的面积.

根据上一个例子, 我们知道函数在点 $P(x_0, \frac{1}{x_0})$ 处切线斜率 $k_P = -\frac{1}{x_0^2},$ 切线方程为 $y-\frac{1}{x_0}=-\frac{1}{x_0^2}(x-x_0)$, 假设切线与 x,y 轴相交于 A,B 两点, 我 们得到 $A(2x_0,0), B(0,\frac{2}{x_0}), S_{\Delta AOB} = \frac{1}{2}|OA| * |OB| = 2.$

2. 导数表示方法:

$$(1).y = f(x), f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}$$

$$\begin{split} &(1).y = f(x), f^{'}(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} \\ &(2).y = f(x) \text{ 的导数可以写作 } y^{'}, f^{'}(x), \frac{\mathrm{d}f}{\mathrm{d}x}, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\mathrm{d}}{\mathrm{d}x}f, \frac{\mathrm{d}}{\mathrm{d}x}y. \end{split}$$

下一个例子是: 求 $y = x^n$ 的导数.

 $y' = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - x^n}{\Delta x}$,我们由二项展开式 $(x + \Delta x)^n = x^n + nx^{n-1}\Delta x + \dots + (\Delta x)^n \to (x + \Delta x)^n = x^n + nx^{n-1}\Delta x + O(\Delta x)$;因此我们得到:

$$y' = \lim_{\Delta x \to 0} \left(\frac{nx^{n-1}\Delta x + O(\Delta x)}{\Delta x} \right) = nx^{n-1}$$

3. 物理解释

在物理学中有许多通过比值定义的物理量, 比如速度; 我们在实际生活 中将 $\frac{\Delta s}{\Delta t}$ 称为物体在 Δt 内的平均速度, 当 $\Delta t \to 0$ 时, $\lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$ 称为物体在 某一点处的瞬时速度,也被称为函数在该点处的导数.

我们来看另一个很好的例子, 卫星的 GPS 定位, 假设基站和卫星距 离为 H, 人和卫星的距离为 L, 基站和人的距离为 S, 我们发现误差系数 $\frac{\Delta S}{\Delta L} = \frac{\mathrm{d}S}{\mathrm{d}L}$.

极限和连续

极限

例子和定义

1. 简单极限

形如: $\lim_{x\to 4} \frac{2x1}{x^2+1} = \frac{7}{17}$. 2. 导数

假设函数 f(x) 在 $x = x_0$ 处导数存在, $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$

3. 序列极限

假设有数列 $\{a_n\}$, $\exists A>0$, $\exists N_0>0$, 对于 $\forall \varepsilon>0$, 当 $n>N_0$ 时满足 $|a_n - A| < \varepsilon$, 我们称序列 $\{a_n\}$ 的极限为 A; 我们可以写作:

$$\lim_{n \to +\infty} a_n = A \text{ or } \lim_{n \to +\infty} (a_n - A) = 0$$

- 4. 函数极限
- (1). 函数在 $x = x_0$ 处极限

对于 $\forall \varepsilon > 0$, $\exists \delta > 0$ 当 $0 < |x - x_0| < \delta$ 时, 都有 $|f(x) - A| < \varepsilon$, 我们 称 f(x) 在 $x = x_0$ 处的极限为 A; 我们写作:

$$\lim_{x \to x_0} f(x) = A \text{ or } \lim_{x \to x_0} (f(x) - A) = 0$$

注意: 左右极限必须相等

(2). 函数在无穷远处极限

对于 $\forall \varepsilon > 0, \exists X > 0, \ \exists \ x > X$ 时,都有 $|f(x) - A| < \varepsilon$,我们称 f(x)

在 $+\infty$ 处的极限为 A; 我们写作:

$$\lim_{x \to +\infty} f(x) = A \text{ or } \lim_{x \to +\infty} (f(x) - A) = 0$$

对于 $\forall \varepsilon > 0, \exists X < 0, \ \exists \ x < X \ \text{时}, \ \text{都有} \ |f(x) - A| < \varepsilon, \ \text{我们称} \ f(x) \ \text{在} -\infty$ 处的极限为 A; 我们写作:

$$\lim_{x \to -\infty} f(x) = A \text{ or } \lim_{x \to -\infty} (f(x) - A) = 0$$

左右极限

极限分为左极限和右极限, 极限存在当且仅当左极限等于右极限; 函数 在某个点处的极限和该点处函数值无关.

$$Left\ Limit \lim_{x \to x_0^-} f(x)$$

Right Limit
$$\lim_{x \to x_0^+} f(x)$$

函数在某点处极限存在, 我们得到:

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x)$$

连续

定义

f(x) 在 $x = x_0$ 处连续 $\Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0)$

定理: 函数可导必连续, 连续不一定可导.

证明. 我们需要证明: $\lim_{x\to x_0} f(x) - f(x_0) = 0$

$$\lim_{x \to x_0} f(x) - f(x_0) \Leftrightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} (x - x_0)$$

根据函数在此点处可导得到: $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ 存在,且 $\lim_{x\to x_0} (x-x_0)=0$,因此我们得到:

$$\lim_{x \to x_0} f(x) - f(x_0) = f'(x_0) * 0 = 0$$

- 1. 第一类间断点
- (1). 可去间断点

 $Left\ Limit=Right\ Limit\$ 时, $\lim_{x\to x_0^-}f(x)=\lim_{x\to x_0^+}f(x)$,被称为可去间断点.

例如: 函数 $f(x)=\frac{\sin x}{x}$ 在 x=0 处是可去间断点, $\lim_{x\to 0}\frac{\sin x}{x}=1$; 函数 $f(x)=\frac{1-\cos x}{x}$ 在 x=0 处是可去间断点, $\lim_{x\to 0}\frac{1-\cos x}{x}=0$.

(2). 跳跃间断点

 $Left\ Limit \neq Right\ Limit\$ 时, $\lim_{x\to x_0^-}f(x)\neq \lim_{x\to x_0^+}f(x)$, 被称为跳跃间断点.

2. 第二类间断点

左极限和右极限至少有一个不存在.

重要极限: 使用几何证明法

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \tag{2.1}$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0 \tag{2.2}$$

求导四则运算及三角函数导数

求导法则

1. 三角函数求导

$$\frac{\mathrm{d}}{\mathrm{d}x}\sin x = \cos x; \ \frac{\mathrm{d}}{\mathrm{d}x}\cos x = -\sin x$$

(1).

$$\lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} \Leftrightarrow \lim_{\Delta x \to 0} (\sin x \frac{\cos \Delta x - 1}{\Delta x} + \cos x \frac{\sin \Delta x}{\Delta x})$$

由公式 (2.1) 和 (2.2) 得到
$$\lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \cos x$$
.

$$\lim_{\Delta x \to 0} \frac{\cos(x + \Delta x) - \cos x}{\Delta x} \Leftrightarrow \lim_{\Delta x \to 0} (\cos x \frac{\cos \Delta x - 1}{\Delta x} - \sin x \frac{\sin \Delta x}{\Delta x})$$

由公式 (2.1) 和 (2.2) 得到
$$\lim_{\Delta x \to 0} \frac{\cos(x + \Delta x) - \cos x}{\Delta x} = -\sin x$$
.

2. 求导四则运算

$$(1).(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

$$(2).(Cf(x))' = Cf'(x)$$

$$(3).(f(x)g(x))^{'} = f^{'}(x)g(x) + f(x)g^{'}(x)$$

证明.

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x + \Delta x) - f(x)g(x)}{\Delta x}$$

$$\updownarrow$$
(3.1)

$$\lim_{\Delta x \to 0} \frac{(f(x + \Delta x) - f(x))g(x + \Delta x) + f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x}$$
 (3.2)

$$\lim_{\Delta x \to 0} \frac{(f(x + \Delta x) - f(x))g(x + \Delta x) + f(x)(g(x + \Delta x) - g(x))}{\Delta x}$$
(3.3)

后面的式子可以写作:

$$\lim_{\Delta x \to 0} \left(\frac{f(x + \Delta x) - f(x)}{\Delta x}\right) g(x + \Delta x) * \left(\frac{g(x + \Delta x) - g(x)}{\Delta x}\right) (f(x))$$

,根据极限的运算法则,这个式子可以写作 $f^{'}(x)g(x)+f(x)g^{'}(x).$ $(4).(\frac{f(x)}{g(x)})^{'}=\frac{f^{'}(x)g(x)+f(x)g^{'}(x)}{g^{2}(x)}$

$$(4).(\frac{f(x)}{g(x)})' = \frac{f'(x)g(x) + f(x)g'(x)}{g^2(x)}$$

证明.

$$\lim_{\Delta x \to 0} \frac{\frac{f(x + \Delta x)}{g(x + \Delta x)} - \frac{f(x)}{g(x)}}{\Delta x}$$

$$\updownarrow$$
(3.4)

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x) - g(x + \Delta x)f(x)}{\Delta x g(x)g(x + \Delta x)}$$
(3.5)

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x) - g(x + \Delta x)f(x)}{\Delta x} * \frac{1}{g(x)g(x + \Delta x)}$$
(3.6)

由
$$(3.1), (3.2), (3.3)$$
 得到结果为 $\frac{f^{'}(x)g(x) - f(x)g^{'}(x)}{g^{2}(x)}$.

链式法则及高阶导数

链式法则

$$y=f(t), t=g(x), \frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\mathrm{d}y}{\mathrm{d}t}*\frac{\mathrm{d}t}{\mathrm{d}x}=f'g'$$

高阶导数

函数 y = f(x) 的 n 阶导数为 $y^{(n)} = f^n(x)$; 当然我们还可以换个写法:

$$y^{(n)} = f^n(x) = \frac{\mathrm{d}^n y}{\mathrm{d}x^n} \tag{4.1}$$

我们来看一个例子: $y = x^n$ 的 m 阶导数 (m < n):

$$y^{(n)} = \frac{n!}{(n-m)!} x^{n-m}$$

隐函数微分法和反函数导数

隐函数微分法

我们来看几个例子:

$$1.y = x^{\frac{m}{n}}$$

这个式子等价于 $y^n = x^m$, 我们看出这是一个隐函数, 我们可以使用隐函数微分法解决这个问题, 对上面的式子左右两边对 x 求导:

$$\frac{\mathrm{d}y^n}{\mathrm{d}x} = mx^{m-1} \Rightarrow ny^{n-1}\frac{\mathrm{d}y}{\mathrm{d}x} = mx^{m-1}$$

因此我们得到: $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{m}{n} x^{\frac{m}{n}-1}$.

$$2.x^2 + y^2 = 1$$

同样的我们知道 y = f(x), 我们对上面式子左右对 x 求导, 得到:

$$2x + 2y\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-x}{y}$$

我们发现我们并没有解出完整的导数, 但是我们只需要知道 $(x_0, f(x_0))$, 我们就能知道该点处切线的斜率、导数, 这是我们使用隐函数微分的目的, 大大简化我们的过程.

$$3.y^4 + xy^2 - 2 = 0$$

我们对式子两边同时对 x 求导:

$$4y^{3}\frac{\mathrm{d}y}{\mathrm{d}x} + y^{2} + 2xy\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-y^{2}}{4y^{3} + 2xy}$$

反函数导数

原函数 y=f(x) 和反函数 x=g(y) 满足 $\begin{cases} f(g(y))=y\\ g(f(x))=x \end{cases}$. 那么我们有 $f=g^{-1},g=f^{-1}$. 原函数的定义域为反函数的值域,原函数的值域为反函数的定义域。

如何求反函数导数?

我们通常采用隐函数求导的方法去求反函数的导数, 我们可以举出两个比较典型的例子, 比如 $y=\tan(x),\ x\in(-\frac{\pi}{2},\frac{\pi}{2})$ 和 $y=\sin(x),\ x\in(-\frac{\pi}{2},\frac{\pi}{2})$ 的反函数: 反正切函数 $y=\arctan x$ 和反正弦函数 $y=\arcsin x$

反正切函数: $\tan y = x$, 我们对式子两边对 x 求导得到:

$$\frac{1}{\cos^2 y} \frac{\mathrm{d}y}{\mathrm{d}x} = 1 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \cos^2 y$$

我们构造一个直角三角形,有一个角 $\theta=y,y\in(-\infty,+\infty)$ 满足 $tany=x,x\in(-\frac{\pi}{2},\frac{\pi}{2})$,那么这个直角三角形中 θ 对应的边为 x,另一条直角边为 1,斜边长为 $\sqrt{1+x^2}$,因此我们得到: $\cos y=\frac{1}{\sqrt{1+x^2}}$,所以反正切函数的导数:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1+x^2}$$

反正弦函数: $\sin y = x$, 和上面的做法类似, 我们得到 $\frac{dy}{dx} = \frac{1}{\cos x}$.

我们同样构造一个直角三角形有一个角 $\theta=y,y\in(-1,1)$ 满足 $\sin y=x,x\in(-\frac{\pi}{2},\frac{\pi}{2})$, 在这个直角三角形中 θ 对应的直角边为 x, 斜边长为 1, 因此 $\cos y=\sqrt{1-x^2}$, 所以反正弦函数的导数:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{1-x^2}}$$

指数与对数函数导数、对数微 分法

指数函数

函数 $y = a^x$, $(a > 0 \ a \neq 1)$ 为指数函数, 我们来求这个函数的导函数:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\Delta x \to 0} \frac{a^{x + \Delta x} - a^x}{\Delta x}$$

$$\updownarrow$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\Delta x \to 0} a^x \frac{a^{\Delta x} - 1}{\Delta x}$$

$$\updownarrow$$

$$\updownarrow$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = a^x \lim_{\Delta x \to 0} \frac{a^{\Delta x} - 1}{\Delta x} = a^x \frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x = 0} = a^x M(a)$$

我们定义 a=e 时满足 M(e)=1, 此时当 $y=e^x$ 时我们有:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = e^x \tag{6.1}$$

如何说明我们定义的 e 是存在的呢?

我们假设 $f(x)=2^x, f^{'}(0)=M(2),$ 那么对于函数 $g(x)=f(kx)=2^{kx}$ 而言, $g^{'}(x)=f^{'}(kx)=kf^{'}(kx),$ 所以 $g^{'}(0)=kM(2),$ 总能找到一个 $k=\frac{1}{M(2)},$ 使得 $g^{'}(0)=1,$ 此时 $b=2^k=e$ 存在.

假设有函数 $y = e^x$, 关于这个函数的反函数 $e^y = x$ 的导数, 我们采用隐 函数微分的方法来求, 对式子左右对 x 求导, 根据 (6.1) 得:

$$\frac{\mathrm{d}e^y}{x} = 1 \Rightarrow e^y \frac{\mathrm{d}y}{\mathrm{d}x} = 1 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x}$$

我们将函数 $y = e^x$ 的反函数记作 $y = \ln x$, 称作对数函数, 而且我们有:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x} \tag{6.2}$$

由 (6.1), (6.2) 两个式子和 e 的定义, 我们可以得到一般指数函数的求导公 式:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}a^x}{\mathrm{d}x} = \frac{\mathrm{d}e^{x\ln a}}{\mathrm{d}x} = \ln a(e^{x\ln a}) = a^x \ln a$$

对数函数

我们有一般指数函数 $y = a^x$, 它的反函数记作 $a^y = x$, 我们将其记作 $y = \log_a x$, 特别的, 当 a = e 时, 我们将其记作 $y = \ln x$, e 也被称为自然对

我们已经知道 $(\ln x)' = \frac{1}{x}$, 如何去求一般的对数函数的导数? 对于函数 $y = \log x \Leftrightarrow a^y = x$, 我们仍然利用隐函数微分法, 可以得到:

$$a^y \ln a \frac{\mathrm{d}y}{\mathrm{d}x} = 1 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x \ln a}$$

至此我们已经得到了关于指数和对数函数的求导法则:

$$\frac{da^x}{dx} = a^x \ln a, When \ a = e, \frac{de^x}{dx} = e^x$$

$$\frac{d \log_a x}{dx} = \frac{1}{x \ln x}, When \ a = e, \frac{d \ln x}{dx} = \frac{1}{x}$$

我们来看一个很经典的例子: $\lim_{n \to +\infty} (1 + \frac{1}{n})^n$ 假设极限存在, 我们不妨将其记作 A, 我们有 $\lim_{n \to +\infty} \ln((1 + \frac{1}{n})^n) = \ln A$, 化简得到 $\lim_{n \to +\infty} n \ln((1 + \frac{1}{n})) = \ln A$, 我们令 $\Delta x = \frac{1}{n}$, 上面的极限表达式等价于 $\lim_{\Delta x \to 0} \frac{\ln(1 + \Delta x) - \ln 1}{\Delta x} = \frac{\dim x}{dx} \big|_{x=1} = 1$, 因此 $\ln A = 1 \Rightarrow A = e$. 我们得到了我们一开始定义的 e 的数值表达式, 即:

$$e = \lim_{n \to +\infty} (1 + \frac{1}{n})^n \approx 2.71828$$

线性和二阶近似

线性近似

函数在某一点处附近近似于该点处的切线, 表达式是如下:

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

表示在 $x = x_0$ 附近可以将函数近似看作一个线性函数. 我们来看几个例子: $y = \sin x, y = \cos x, y = \ln(x-1), y = e^x, y = (1+x)^r$ 这几个函数在 x = 0 附近的线性近似.

当 $\delta > 0$ 很小时, $\forall x \in (-\delta, \delta)$, 我们有

$$\begin{cases}
\sin x \approx x \\
\cos x \approx 1 \\
\ln(x-1) \approx x \\
e^x \approx x+1 \\
(1+x)^r \approx 1+rx
\end{cases}$$
(7.1)

二阶近似

二阶近似是在线性近似的基础上进一步的精确结果, 表达式如下:

$$f(x) \approx f(x_0) + f'(x_0)x + \frac{f''(x_0)}{2}x^2$$

我们由 (7.1) 可以得到下面的二阶近似结果:

当 $\delta > 0$ 很小时, $\forall x \in (-\delta, \delta)$, 我们有

$$\begin{cases}
\sin x \approx x \\
\cos x \approx 1 - \frac{x^2}{2} \\
\ln(x - 1) \approx x - \frac{x^2}{2} \\
e^x \approx 1 + x + \frac{x^2}{2} \\
(1 + x)^r \approx 1 + rx + \frac{r(r - 1)}{2}x^2
\end{cases}$$
(7.2)

我们来看一个例子:
$$f(x)=e^{-3x}(1+x)^{-\frac{1}{2}}$$
 的二阶近似表达式 我们知道 $e^{-3x}\approx 1-3x-\frac{9}{2}x^2;\ (1+x)^{-\frac{1}{2}}\approx 1-\frac{1}{2}x+\frac{3}{8}x^2.$
$$f(x)\approx (1-3x-\frac{9}{2}x^2)(1-\frac{1}{2}x+\frac{3}{8}x^2)\approx 1-\frac{7}{2}x+\frac{51}{8}x^2+O(x^2)$$

曲线构图

1. 函数单调性和导数关系

对于函数 y = f(x) 在 (a,b) 上连续且二阶可导, 函数单调性和导数的关系为:

- $(1).f^{'}(x) > 0, f(x)$ 在 (a,b) 上单调递增; $f^{'}(x) < 0, f(x)$ 在 (a,b) 上单调递减.
- $(2).f^{''}(x) > 0,f^{'}(x)$ 在 (a,b) 上单调递增; $f^{''}(x) < 0,f^{'}(x)$ 在 (a,b) 上单调递减.
- (3).f''(x) > 0, f(x) 是凹函数 (Concave Up); f''(x) < 0, f(x) 是凸函数 (Concave Down).

2. 作出函数图像

我们只需要根据函数的导函数求出函数的单调区间和极值, 根据函数的二阶导函数看出函数的凸凹性质.

- (1). 描点, 找出特殊点, 比如和坐标轴交点; 无穷远处函数趋近值.
- (2). 令 f'(x) = 0, 求出函数的驻点.
- (3). 根据导函数判断函数的单调区间、单调性和极值.
- (4). 根据二阶导数判断函数的凸凹性.
- (5). 用平滑的曲线连接所描的点.

3. 极值和驻点

对于 $f'(x_0) = 0$ 的点 $(x_0, f(x_0))$ 称为 f(x) 的驻点, 对于很小的 $\delta > 0$, 满足 $f'(x_0 - \delta)f'(x_0 + \delta) < 0$ 的驻点被称为函数 f(x) 的极值点. 我们有极值点一定是驻点, 但是驻点不一定是极值点.

当 $f'(x_0 - \delta) < 0$, $f'(x_0 + \delta) > 0$, $f(x_0)$ 是 f(x) 的极小值, $x = x_0$ 是 f(x) 的极小值点; 当 $f'(x_0 - \delta) > 0$, $f'(x_0 + \delta) < 0$, $f(x_0)$ 是 f(x) 的极大值, $x = x_0$ 是 f(x) 的极大值点.

我们举了一个简单的例子: $f(x) = 3x - x^3$.

 $f^{'}(x)=3(1-x)(1+x), x\in \ (-\infty,-1), \\ f^{'}(x)<0; x\in \ (-1,1), \\ f^{'}(x)>0; x\in \ (1,+\infty), \\ f^{'}(x)<0.$

 $f^{''}(x) = -6x, x \in (-\infty, 0), f^{''} > 0, \ x \in (0, +\infty), f^{''} < 0.f(x)$ 图像如下图所示.

图 8.1: $f(x) = 3x - x^3$

最值问题

闭区间上的最值问题

f(x) 在闭区间 [a,b] 上连续可导,f(x) 在 [a,b] 上一定存在最大值 M 和最小值 m. 其中 $M = Max\{f(a),f(b),f(x_0)\}, m = Min\{f(a),f(b),f(x_0)\},f(x_0)$ 是函数的极值.

我们来看一个简单的例子: $f(x) = \frac{x}{\ln x}, x \in [2, e^3]$

我们对 f(x) 求导, 得到 $f'(x) = \frac{\ln x - 1}{(\ln x)^2}$, 令 f'(x) = 0 得到 x = e 是函数的驻点.

当 $x \in (2,e), f'(x) < 0, f(x)$ 单调递减; 当 $x \in (e,e^2), f'(x) > 0, f(x)$ 单调递增. $f(e) = e, f(2) = \frac{2}{\ln 2}, f(e^2 = \frac{e^2}{2}), f(x)$ 在区间 $[2,e^2]$ 上的最大值 $M = Max\{f(2), f(e), f(e^2)\} \rightarrow M = \frac{e^2}{2}; f(x)$ 在区间 $[2,e^2]$ 上的最小值 $m = Min\{f(2), f(e), f(e^2)\} \rightarrow m = e.$

当然生活中我们还能够碰到其他的问题,比如:

(1). 已知一条绳子长为 l, 将它围成两个正方形, 正方形面积之和的最大值?

我们不妨设其中一个正方形的边长为 x, 另一个正方形的边长为 $\frac{l-4x}{4}$, 两个正方形面积 $S=x^2+(\frac{l}{4}-x)^2$.

 $S^{'}=2x-2(\frac{l}{4}-x)$,令 $S^{'}=0$,得到函数的驻点 $x=\frac{l}{8}$,S 在闭区间 $[0,\frac{l}{4}]$ 上的最大值 M 和最小值 m 满足: $M=Max\left\{S(0),S(\frac{l}{8}),S(\frac{l}{4})\right\}$; $m=Min\left\{S(0),S(\frac{l}{8}),S(\frac{l}{4})\right\}$.

$$S(0) = \frac{l^2}{16}, S(\frac{l}{8}) = \frac{l^2}{32}, S(\frac{l}{4}) = \frac{l^2}{16}$$
. 因此 $M = \frac{l^2}{16}, m = \frac{l^2}{32}$

(2). 一个长方体体积固定为 V, 底面为正方形, 无盖, 这个无盖长方体表

面积 S_{max} ?

我们不妨设底边边长为 x, 高为 $h = \frac{V}{x^2}, S = x^2 + \frac{4V}{x}$.

对 S 求导得到 $S'=2x-\frac{4V}{x^2}$, 令 S'=0, 得到 $x=(2V)^{\frac{1}{3}}$, 此时 $h = 2^{-\frac{2}{3}}V^{\frac{1}{3}}$.

我们也可以使用隐函数求导的方式来解决这个问题, 我们有以下的两个 式子:

$$\begin{cases} S = x^2 + 4xh \\ V = x^2h \end{cases}$$

 $\begin{cases} S=x^2+4xh\\ V=x^2h \end{cases}$ 对上面的两个式子求导得到: $\begin{cases} \frac{\mathrm{d}S}{\mathrm{d}x}=2x+4h+4xh'\\ 0=2xh+x^2h' \end{cases} \Rightarrow \frac{\mathrm{d}S}{\mathrm{d}x}=2x-4h.$ 我们令 $\frac{\mathrm{d}S}{\mathrm{d}x}=0$ 得到当 $\frac{x}{h}=2$ 时, S_{max} .

相关变率

我们以几个具体的例子来说明这一节的问题:

1. 已知警察局在 B 点, 测速点在 A 点, 汽车从 C 向 A 行驶, 满足 AB=30km, 汽车相对于警察局的速度为 80km/h, 求测速点在距离汽车 x_0 处测得汽车的速度.

图 10.1: 警察问题图

我们由题意得到:
$$\begin{cases} D = 30^2 + x^2 \\ \frac{\mathrm{d}D}{\mathrm{d}t} = 80 \end{cases} \Rightarrow \begin{cases} \frac{\mathrm{d}D}{\mathrm{d}t} = 2x\frac{\mathrm{d}x}{\mathrm{d}t} \\ \frac{\mathrm{d}D}{\mathrm{d}t} = 80 \end{cases}$$
 我们得到:
$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{40}{x} \Rightarrow \frac{\mathrm{d}x_0}{\mathrm{d}t} = \frac{40}{x_0}$$

2. 己知 A(0,0), B(a,b), 有一绳子长 l > |AB|, 将绳子固定在 A, B 两点,

拉紧绳子, 绳子上的 D 点运动轨迹如下图 (10.2). 设 D 点坐标为 (x,y), 我

图 10.2: 绳子问题图

们可以得到 |AC| + |BC| = l, 也就是 $\sqrt{x^2 + y^2} + \sqrt{(a-x)^2 + (b-y)^2} = l$. 我们发现 y_D 最小值在 y' = 0 时取到; 这时候我们有 $\angle ACD = \angle BCE$, 这也是椭圆的几何性质.

牛顿迭代法及应用

我们通过一个例子来看一下牛顿迭代法, 比如求解方程 f(x) = 0

不妨设 x=r 是方程的解,我们选择 $x=x_0$ 作为 r 的初始近似值,过点 $(x_0,f(x_0))$ 做曲线 f(x) 的切线 $L_0,L_0:y=f(x_0)+f^{'}(x_0)(x-x_0),L$ 与 x 轴交点横坐标 $x_1=x_0-\frac{f(x_0)}{f^{'}(x_0)}$,则称 x_1 是 r 的一次近似值,过点 $(x_1,f(x_1))$ 做曲线 f(x) 的切线 $L_1,L_1:y=f(x_1)+f^{'}(x_1)(x-x_1),L_1$ 与 x 轴交点横坐标 $x_2=x_1-\frac{f(x_1)}{f^{'}(x_1)}$,则称 x_2 是 r 的二次近似值,不断重复这个过程,我们得到 r 的近似值序列, $x_{n+1}=x_n+\frac{f(x_n)}{f^{'}(x_n)}$,以上被称为牛顿迭代公式.

当然, 牛顿迭代法并不适用于所有的情况, 我们必须要求:

- $1.x_0$ 选取在 r 附近.
- 2. 二阶导数不是特别大, 一阶导数不接近 0.

我们用公式来表示的话就是: f(x) = 0 的解为 x = r, 取位于 x = r 附近的 $x = x_0$ 进行迭代, 我们有:

$$\begin{cases} x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \\ x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \\ \dots \\ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \end{cases}$$
(11.1)

中值定理及重要不等式

中值定理

注:中值定理又被称为微分中值定理和拉格朗日中值定理.

f(x) 在区间 (a,b) 上可导,f(x) 在区间 [a,b] 上连续, 那么 $\exists \ c \in (a,b)$ 满足 $f^{'}(c) = \frac{f(b) - f(a)}{b - a} \Leftrightarrow \exists \ c \in (a,b)$ 满足 $f(b) = f(a) + f^{'}(c)(b - a)$.

特别的, 当 f(a) = f(b) 时, 我们得到**罗尔定律**: f(x) 在区间 (a,b) 上可导, f(a), f(b) 存在且相等, 那么 $\exists c \in (a,b)$ 满足 f'(c) = 0.

证明. 我们首先来证明罗尔定理, f(x) 在闭区间 [a,b] 上连续, f(x) 在闭区间 [a,b] 上一定存在最大值和最小值, 且 f(a) = f(b), 所以 $\exists c \in [a,b]$, 使得 f(c) 是最大值或者最小值. 我们不妨假设 f(c) 是最大值,因此我们有以下的 式子:

$$\begin{cases} \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} \le 0\\ \lim_{x \to c^-} \frac{f(x) - f(c)}{x - c} \ge 0 \end{cases}$$

f(x) 在 [a,b] 上连续, $\lim_{x\to c^+} \frac{f(x)-f(c)}{x-c} = \lim_{x\to c^-} \frac{f(x)-f(c)}{x-c}$, 因此 $\lim_{x\to c} \frac{f(x)-f(c)}{x-c} = f'(c) = 0$ 得证.

接下来我们继续来证明中值定理, 我们构造 $g(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$, 令 G(x) = f(x) - g(x), 我们有 G(a) = G(b) = 0, f(x), g(x) 在区间 [a, b] 上连续, 利用罗尔定律, 我们知道 $\exists c \in [a, b]$ 使得 G'(c) = 0. 我们还可以得到下面的两种形式:

$$\frac{f(b) - f(a)}{b - a} = f^{'}(\varepsilon) \iff f(b) = f(a) + f^{'}(\varepsilon)(b - a), \ \varepsilon \in \ (a, b)$$

重要不等式

 $e^x > 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots + \frac{x^n}{n!} \Leftrightarrow e^x > \sum_{k=0}^n \frac{x^k}{k!}, \ x \in (0, +\infty)$ 我们采用数学归纳法来证明这个不等式:

- (1). $\stackrel{\text{def}}{=} n = 1 \text{ pd}, e^x > 1 + x.$
- (2). 假设当 n=r 时不等式 $e^x>1+x+\frac{x^2}{2}+\frac{x^3}{6}+\dots+\frac{x^r}{r!}$ 成立, 当 n=r+1 时, 令 $f(x)=e^x-1+x+\frac{x^2}{2}+\frac{x^3}{6}+\dots+\frac{x^r}{r!}+\frac{x^{r+1}}{(r+1)!}, f(0)=0, f'(x)=e^x-1+x+\frac{x^2}{2}+\frac{x^3}{6}+\dots+\frac{x^r}{r!}>0$, 因此 f(x) 单调递增, $f(x)>f(0)\Rightarrow f(x)>0$, 得证.

无穷小量和不定积分

微分

对于 y = f(x), 我们有 $\mathrm{d}y = f'(x)\mathrm{d}x$, 其中 $\mathrm{d}y$ 为 y 的微分, 也被称作为 f 的微分; 我们将上面的式子稍作变形得到 $\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$, 这说明函数在某一点处可微和在某一点处可导是完全等价的, 同时我们观察导函数的表达式可以得到, 导函数是由两个无穷小量相比得到.

不定积分

 $G(x) = \int g(x) dx$, G(x) 是 g(x) 的反导数, 也被称作为 g(x) 的不定积分.

积分唯一性: 假设 F' = G', 我们有 F(x) = G(x) + C.

常见的不定积分公式

$$\begin{cases}
\int x^{a} dx = \frac{x^{a+1}}{a+1} + C, & a \neq 1 \\
\int \sin x dx = -\cos x + C \\
\int \cos x dx = \sin x + C \\
\int \sec^{2} x dx = \tan x + C
\end{cases}$$

$$\begin{cases}
\int \frac{1}{x} dx = \ln|x| + C \\
\int e^{x} dx = e^{x} + C
\end{cases}$$

$$\begin{cases}
\int \frac{1}{\sqrt{1-x^{2}}} dx = \arcsin x + C \\
\int \frac{1}{1+x^{2}} dx = \tan x + C
\end{cases}$$
(13.1)

换元法求不定积分

- $(1).\int x^{3}(x^{4}+2)^{5} dx$ $(2).\int \frac{xdx}{\sqrt{1+x^{5}2}}$ $(3).\int xe^{-x^{2}}$

- $(4).\int \sin x \cos x dx$
- $(5).\int \frac{\mathrm{d}x}{x \ln x}$

微分方程和分离变量

微分方程

我们以一个具体的方程来说: $(\frac{d}{dx} + x)y = 0$ 这个式子可以化为

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -xy \Leftrightarrow \frac{\mathrm{d}y}{y} = -x\mathrm{d}x$$

对上式两边同时求不定积分得到:

$$\int \frac{1}{y} dy = \int -x dx \Leftrightarrow \ln|y| = -\frac{1}{2}x^2 + C$$

因此这个微分方程的解为 $y=\pm Ae^{-\frac{1}{2}x^2}, A=e^C$ (正态分布)

我们会碰到这样一类的微分方程: $\frac{dy}{dx} = f(x)g(y)$, 我们知道这和我们之前隐函数求导的结果很相似, 我们解出这个方程需要分离变量:

$$\frac{1}{g(y)}\mathrm{d}y = f(x)\mathrm{d}x \Leftrightarrow \int \frac{1}{g(y)}\mathrm{d}y = \int f(x)\mathrm{d}x$$

我们不妨设 $H(y) = \frac{1}{g(y)} dy, F(x) = \int f(x) dx$, 我们有:

$$H(y) - F(x) = C \Leftrightarrow y = H^{-1}(F(x) + C)$$

我们来看下一个例子: $\frac{dy}{dx} = 2\frac{y}{x}$.

我们利用分离变量的方法得到: $H(y) = \ln |y|, F(x) = \ln |x|^2$, 因此 $y = Ax^2$, 经过论证和讨论 $A \in R$, 但是我们发现函数在 x = 0 处没有定义, 因此 x < 0 和 x > 0 两部分的 A 可以不相同.

定积分

曲边梯形的面积

f(x) 在 [a,b] 上连续, 求 f(x) 和 x=a,x=b 以及 x 轴围成的曲边梯形面积 S.

$$S = \int_{a}^{b} f(x) \mathrm{d}x$$

我们以具体的例子来说明, $f(x)=x^2$ 与 x=0, x=b, y=0 围成的图形的面积. 我们将 [0,b] 分为 n 份,将图形面积近似处理为 n 个长方形的面积之和:

$$S \approx \sum_{i=1}^{n} f(x_i) \frac{b}{n} \Rightarrow S = \lim_{n \to +\infty} \sum_{i=1}^{n} f(x_i) \frac{b}{n}$$

我们将 $\sum_{i=1}^{n} f(x_i) \frac{b}{n}$ 称为黎曼和, 而黎曼和的极限就是黎曼积分或者称之为 定积分.

微积分第一基本定理

如果 F(x) = f'(x), 那么我们有 $\int_a^b f'(x) \mathrm{d}x = F(b) - F(a)$, 也可以写作 $\int_a^b f'(x) \mathrm{d}x = F(x)|_{x=a}^{x=b}, 这就是微积分第一基本定理.$

我们来看上一节定积分中的几个例子:

$$(1).\int_{a}^{b} x^{2} dx = \frac{x^{3}}{3} \Big|_{x=0}^{x=b}$$

$$(1). \int_{a}^{b} x^{2} dx = \frac{x^{3}}{3} \Big|_{x=a}^{x=b}$$

$$(2). \int_{0}^{\pi} \sin x dx = (-\cos x) \Big|_{x=0}^{x=\pi} = 2$$

定积分运算法则

$$1.\int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$

$$2.\int_a^b Cf(x)dx = C\int_a^b f(x)dx$$

$$3.\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$$

$$4.\int_a^b f(x) dx = -\int_b^a f(x) dx$$

5. 如果
$$f(x) \le g(x)$$
, 我们有 $\int_a^b f(x) dx \le \int_a^b g(x) dx$, $(a < b)$

$$6.\int_{u_1}^{u_2} g(u) du = \int_{x_1}^{x_2} g(u) u'(x) dx$$

7. 如果 f(x) 是奇函数, $\int_{-a}^a f(x) \mathrm{d}x = 0$; 如果 f(x) 是偶函数, $\int_{-a}^a f(x) \mathrm{d}x = 0$ $2\int_0^a f(x)\mathrm{d}x$

微积分第二基本定理

假设 $G(x) = \int_a^x f(t) dt$, 我们有 G'(x) = f(x), 这就是微积分第二定理.

证明. 我们根据黎曼和的定义: $\int_0^x f(x) = \lim_{n \to +\infty} \sum_{i=1}^n f(x_i)(\frac{x}{n})$

$$G^{'}(x) = \lim_{\Delta x \to 0} \frac{G(x + \Delta x) - G(x)}{\Delta x}$$

$$G(x) = \lim_{n \to +\infty} \sum_{i=1}^{n} f(x_i)(\frac{x}{n})$$

$$G(x + \Delta x) = \lim_{n \to +\infty} \sum_{i=1}^{n} f(x_i)(\frac{x}{n}) + f(x)\Delta x$$

因此:G'(x) = f(x)

$$1.F(x) = \int_1^x \frac{1}{t} dt$$

我们有
$$F'(x) = \frac{1}{x}$$
, $F''(x) = -\frac{1}{x^2}$, $F(1) = \int_1^1 \frac{1}{t} dt = 0$, $F'(1) = 1$.

函数 F(x) 有许多值得我们注意的性质:

(1).
$$\stackrel{\omega}{=} x \in (0,1), F(x) < 0; \stackrel{\omega}{=} x \in (1,+\infty), F(x) > 0.$$

$$(2).F(ab) = F(a) + F(b)$$

$$(3).F(x) = -F(\frac{1}{x})$$

$$2.G(x) = \int_0^x e^{-t^2} dt$$

我们有
$$\begin{cases} G'(x) = e^{-x^2} \\ G''(x) = -2xe^{-x^2} \\ G(0) = \int_0^0 e^{-t^2} dt = 0 \\ G'(0) = 1 \\ G''(0) = -2 \end{cases}$$

我们同样可以得到这个函数的一些性质:

- (1).G(-x) = -G(x)
- (2). $\stackrel{\text{def}}{=} x \in (-\infty, 0), G'(x) < 0; \stackrel{\text{def}}{=} x \in (0, +\infty), G'(x) > 0.$

(3).
$$\stackrel{\underline{\,}{}}{=} x \to -\infty$$
, $G(x) \to -\frac{\sqrt{\pi}}{2}$; $\stackrel{\underline{\,}{}}{=} x \to +\infty$, $G(x) \to \frac{\sqrt{\pi}}{2}$

3. 我们在第二个函数基础上进行改变, $R(x)=\frac{2}{\sqrt{\pi}}G(x)$, 这是正态分布的函数.

4.
$$\begin{cases} C(x) = \int_0^x \cos(t^2) dt \\ S(x) = \int_0^x \sin(t^2) dt \\ H(x) = \int_0^x \frac{\sin t}{t} dt \end{cases}$$

 $5.L(x) = \int_2^x \frac{\mathrm{d}t}{\ln t}$, 这个函数表示的是小于 x 的素数的个数. 即 L(x) = (N(primes) < x)(黎曼假设)

定积分在对数和几何上的应用

曲线围成的面积

函数 f(x), g(x) 在区间 [a,b] 中围成的面积 S, 求 S 表达式.

$$S = \int_{a}^{b} |f(x) - g(x)| \mathrm{d}x$$

我们来看一个例子: 曲线 $x=y^2$ 和 y=x-2 围成的面积 我们知道: $S=\int_0^1 2\sqrt{x}\mathrm{d}x+\int_1^4(\sqrt{x}-x+2)\mathrm{d}x=\frac{9}{2}$ 当然我们还可以换一种思维: $S=\int_{-1}^2(y+2-y^2)\mathrm{d}y=\frac{9}{2}$

壳层法、圆盘法求体积

1. 圆盘法求旋转体体积

已知函数 f(x) 在 [a,b] 上连续, 且 $f(x) > 0, x \in [a,b]$, 将 f(x) 绕 x 轴 旋转一周得到的旋转体体积 V.

我们由微分得: $dV = \pi y^2 dx$, 我们对这个式子积分得到:

$$V = \int_{a}^{b} \pi(f(x))^{2} \mathrm{d}x$$

我们可以依照这个推导出球的体积公式,假设 $f(x)=\sqrt{a^2-x^2}, x\in[-a,a],$ 将 f(x) 绕 x 轴旋转一周得到一个半径为 r=a 的球.

$$V = \int_{-a}^{a} \pi(f(x))^{2} dx \Rightarrow V = \pi \int_{-a}^{a} (a^{2} - x^{2}) dx = \frac{4a^{3}}{3}\pi$$

2. 壳层法求

我们需要一个具体的例子来说明这个方法, $f(x) = x^2, x \in [-a.a]$,将 f(x) 绕 y 轴旋转得到的旋转体体积 V.

我们由微分得: $\mathrm{d}V=2\pi x(a^2-f(x))^2\mathrm{d}x$, 对这个式子两边积分得到:

$$V = 2\pi \int_{-a}^{a} x(a^2 - x^2) dx = \frac{a^4}{3}\pi$$

功、平均值、概率

1. 平均值

我们有 $y = f(x), x \in [a, b], f(x)$ 在 [a, b] 上连续,假设存在 $a < x_1 < x_2 < ... < x_n < b$,那么我们有:

$$\lim_{n \to +\infty} \frac{y_1 + y_2 + \dots + y_n}{n} = \frac{1}{b - a} \int_a^b f(x) dx$$

我们不难发现: $\int_a^b f(x) \mathrm{d}x = \lim_{n \to 0} \sum_{i=1}^n f(x_i) \frac{b-a}{n}$,这是黎曼和的形式,当 $n \to +\infty$ 时,得到黎曼积分(定积分),我们对这个式子稍作变化得到:

$$\frac{1}{b-a} \int_a^b f(x) dx = \lim_{n \to 0} \sum_{i=1}^n f(x_i) \frac{1}{n} \Leftrightarrow \frac{1}{b-a} \int_a^b f(x) dx = \lim_{n \to 0} \frac{\sum_{i=1}^n f(x_i)}{n}$$

. 我们将 $\frac{1}{b-a}\int_a^b f(x)\mathrm{d}x$ 称作 f(x) 在 [a,b] 上的平均值.

我们不妨来看几个例子:

$$(1).y = \sqrt{1-x^2}$$
 在 $[-1,1]$ 上的平均值.

$$\overline{y} = \frac{1}{2} \int_{-1}^{1} \sqrt{1 - x^2} dx = \frac{\pi}{4}$$

 $(2).y = \sin x, x \in [0, \pi]$ 在 $[0, \pi]$ 上的平均值.

$$\overline{y} = \frac{1}{\pi} \int_0^{\pi} \sin x dx = \frac{2}{\pi}$$

加权平均值

$$\overline{f(x)} = \frac{\int_a^b f(x)w(x)dx}{\int_a^b w(x)dx}, \ w(x) \ is \ weight.$$

概率

假设平面内有一区域: $S \in \left\{ \begin{array}{c} -1 < x < 1 \\ 0 < y < 1 - x^2 \end{array} \right.$,从中任意取出一点,求出 $P(x > \frac{1}{2})$.

$$P(x > \frac{1}{2}).$$

$$P(x > \frac{1}{2}) = \frac{\int_{\frac{1}{2}}^{1} (1 - x^{2} dx)}{\int_{-1}^{1} (1 - x^{2}) dx} = \frac{5}{32}$$

我们继续来看一个例子:

一个人在远处扔飞镖, 在距离圆心 r 处单位面积被击中的次数 $N=ce^{-r^2}$, 另一个人在同心圆内, 内圆半径 r_1 , 外圆半径 r_2 , 另一个人被飞镖击中的概率 P.

$$P = \frac{N_{part}}{N_{all}} = \frac{\int_{r_1}^{r_2} 2\pi r e^{-r^2} dr}{\int_{0}^{+\infty} 2\pi r e^{-r^2} dr}$$

我们将上面的式子化简: $P = \frac{\int_{r_1}^{r_2} e^{-r^2} \mathrm{d}r^2}{\int_0^{+\infty} e^{-r^2} \mathrm{d}r^2} = \frac{-\int_{r_1}^{r_2^2} e^{-t} \mathrm{d}t}{-\int_0^{+\infty} e^{-t} \mathrm{d}t} = e^{-r_1^2} - e^{-r_2^2}$

数值积分

y = f(x) 在 [a, b] 上连续, 在 (a, b) 上可导.

1. 黎曼和

假设存在 $a=x_0 < x_1 < x_2 < ... < x_{n-1} < x_n = b$, 满足 $\Delta x = x_i - x_{i-1}$, 我们有 $y_0 = f(x_0), y_1 = f(x_1), ... y_n = f(x_n)$. 我们可以得到函数的左右黎曼和:

$$\begin{cases} (y_0 + y_1 + \dots + y_{n-1})\Delta x & Left \\ (y_1 + y_2 + \dots + y_n)\Delta x & Right \end{cases}$$

2. 曲边梯形法

和黎曼和类似,不过是采用梯形的面积和近似于曲边梯形面积,而不是矩形.

$$S = \Delta x(\frac{y_0}{2} + y_1 + y_2 + \dots + \frac{y_n}{2}) = \frac{Left + Right}{2}$$

3. 辛普森方法

采用一种加权求和的方式,将曲边梯形分成 n 个曲边梯形,n 是偶数,我们有下面的式子:

$$\begin{cases} S_1 = \Delta x \left(\frac{y_0 + 4y_1 + y_2}{6}\right) \\ S_2 = \Delta x \left(\frac{y_0 + 4y_1 + y_2}{6}\right) \\ \dots \\ S_n = \Delta x \left(\frac{y_{n-2} + 4y_{n-1} + y_n}{6}\right) \end{cases}$$

$$S = \Delta x \left(y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \dots + y_n\right)$$

我们来具体看一个例子, 就可以明白三种方法的优劣性: $a = \int_1^2 \frac{1}{x} dx$ 不妨令 n = 2;

- 1. 在梯形法中, $S = \frac{1}{2}(\frac{1}{2} + \frac{2}{3} + \frac{1}{2}) = \frac{17}{24} \approx 0.7083$
- 2. 在辛普森法中, $S = \frac{1}{6}(1 + \frac{8}{3} + \frac{1}{4}) = \frac{25}{36} \approx 0.69444$

我们知道: $\ln 2 \approx 0.69314$, 辛普森法的误差 $\Delta y \approx 0.0013$

重要积分

我们接下来看一个很重要的积分: $V = \int_0^{+\infty} 2\pi r e^{-r^2} dx = \pi$

我们可以将 V 看作是一个旋转体的体积, 是将 $G(x) = e^{-x^2}$ 绕 y 轴旋转一周得到, 此时的 y 轴变成 z 轴, 旋转体上任一点 A 满足 $z_A = e^{-r^2}$, 其中 r 是距离原点的距离. 我们将这个旋转体沿 y 轴切片

$$V = \int_{-\infty}^{+\infty} A(y) \mathrm{d}y$$

我们关键是要求出 A(y) 的表达式,

$$A(y) = \int_{-\infty}^{+\infty} e^{-x^2 - y^2} dx = e^{-y^2} \int_{-\infty}^{+\infty} e^{-x^2} dx$$

我们不妨令 $Q = \int_{-\infty}^{+\infty} e^{-x^2} dx$, 那么我们发现:

$$V = Q \int_{-\infty}^{+\infty} e^{-y^2} \mathrm{d}y = Q^2$$

对于 $F(x)=\int_0^x e^{-t^2}\mathrm{d}t$,我们发现 $F(+\infty)=\frac{Q}{2}$,所以 $V=4(F(+\infty))^2\Rightarrow F(+\infty)=\frac{\sqrt{\pi}}{2}$

三角函数的积分和三角替换

如下图所示, 对角线上的三角函数乘积为 1, 三个倒三角满足上面两个顶点平方和等于下面顶点的平方和.

图 22.1: 六个三角函数关系图

$$\begin{cases} \sec x = \frac{1}{\cos x} \\ \csc x = \frac{1}{\sin x} \\ \cot x = \frac{1}{\tan x} \\ \sin^2 x + \cos^2 x = 1 \\ \tan^2 x + 1 = \sec^2 x \quad (Important) \\ 1 + \cot^2 = \csc^2 x \end{cases}$$

三角恒等式和三角变换

$$\begin{cases} \sin^2 \theta + \cos^2 \theta = 1 \\ \sin 2\theta = 2\sin\theta\cos\theta \\ \cos 2\theta = 1 - 2\sin^2 \theta = 2\cos^2 \theta - 1 \\ \sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta \\ \cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta \end{cases}$$

和差化积、积化和差公式

$$\begin{cases} \sin(\alpha+\beta) + \sin(\alpha-\beta) = 2\sin\alpha\cos\beta \\ \sin(\alpha+\beta) - \sin(\alpha-\beta) = 2\cos\alpha\sin\beta \\ \cos(\alpha+\beta) + \cos(\alpha-\beta) = 2\cos\alpha\cos\beta \\ \cos(\alpha+\beta) - \cos(\alpha-\beta) = -2\sin\alpha\sin\beta \end{cases}$$

$$\begin{cases} \sin\alpha + \sin\beta = 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos\alpha + \cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \sin\alpha - \sin\beta = 2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ \cos\alpha - \cos\beta = -2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \end{cases}$$

- 1. 我们来看一个例子: $\int \sin^n(x) \cos^m(x) dx$; m, n = 0, 1, 2...
- (1). 当 m, n 至少有一个是奇数的时候, 我们不妨假设 m 是奇数, 原不定积分可以化为下面的形式:

$$\int \sin^n(x)\cos^{m-1} \mathrm{d} \sin x \Rightarrow \int \sin^n(x) (1 - \sin^2(x))^{\frac{m-1}{2}} \mathrm{d} \sin x$$

我们做一次三角替换 $u = \sin x$, 最终可以得到一个整数次幂多项式的不定积分, 进而可以求解.

(2). 当 m, n 都是偶数的时候, 需要利用倍角公式进行降幂处理, 让 m, n 至少出现一个奇数.

我们来看几个简单的例子:

- (i). $\int \sin^2 x \cos^2 dx$
- (ii). $\int \cos^2 x$
- 2. 我们来看三角替换的具体应用: $\int \sqrt{a^2 x^2} dx$ 我们不妨令 $x = a \sin \theta$, 原不定积分可以化为:

$$\int a^2 \cos^2 \theta d\theta \Rightarrow \int a^2 \frac{1 + \cos 2\theta}{2} d\theta = a^2 \left(\frac{\theta}{2} + \frac{\sin 2\theta}{4}\right) + C$$

将 $\theta = \arcsin(\frac{a}{x}), \sin 2\theta = 2\frac{x}{a}\sqrt{\frac{a^2 - x^2}{a^2}}$ 得到:

$$\int \sqrt{a^2 - x^2} dx = \frac{x\sqrt{a^2 - x^2}}{2} + \frac{a^2}{2}\arcsin(\frac{x}{a}) + C$$

- 3. 我们来求几个重要的不定积分:
- (1). $\int \tan x dx$

上面的不定积分可以化为 $\int \frac{\sin x}{\cos x} dx = \int -\frac{1}{\cos x} d\cos x = -\ln|\cos x| + C$

(2). $\int \cot x dx$

上面的不定积分可以化为 $\int \frac{\cos x}{\sin x} dx = \int \frac{1}{\sin x} \sin x = \ln |\sin x| + C$

 $(3).\int \frac{1}{x^2+a^2} \mathrm{d}x$

原不定积分为: $\frac{1}{a} \int \frac{1}{1+(\frac{x}{a})^2} d\frac{x}{a} = \frac{1}{a} \arctan \frac{x}{a} + C$

(4). $\int \frac{1}{a^2-x^2} dx$

原不定积分可化为: $\frac{1}{2a}\int(\frac{1}{a-x}+\frac{1}{a+x})\mathrm{d}x=\frac{1}{2a}(\ln|a-x|+\ln|a+x|)+C=\frac{1}{2a}\ln|\frac{a-x}{a+x}|+C$

 $(5).\int \frac{1}{\sqrt{a^2 - x^2}} \mathrm{d}x$

原不定积分可以化为: $\int \frac{1}{\sqrt{1-(\frac{x}{a})^2}} d^{\frac{x}{a}} = \arcsin \frac{x}{a} + C$

- $(6).\int \frac{1}{\sqrt{x^2+a^2}} dx$
- $(i)\int \frac{1}{\sqrt{x^2+a^2}} dx$

令 $x=a\tan\theta$, 原不定积分可以化为 $\int \frac{1}{\cos\theta}\mathrm{d}\theta$, 由 (9) 知道原不定积分为 $\ln |\frac{1+\sin\theta}{\cos\theta}|+C$, 将 $\sin\theta=\frac{x}{\sqrt{x^2+a^2}};\cos\theta=\frac{a}{\sqrt{x^2+a^2}}$ 可得 $\int \frac{1}{\sqrt{x^2+a^2}}\mathrm{d}x=\ln|x+\sqrt{x^2+a^2}|+C$

 $(ii)\int \frac{1}{\sqrt{x^2-a^2}} dx$

令 $x=a\sec\theta$, 原不定积分可以化为 $\int \frac{1}{\cos\theta}\mathrm{d}\theta$, 和 (i) 相同, 此时 $\sin\theta=\frac{\sqrt{x^2-a^2}}{x}$; $\cos\theta=\frac{a}{x}$, 我们得到: $\int \frac{1}{\sqrt{x^2-a^2}}\mathrm{d}x=\ln|x+\sqrt{x^2-a^2}|+C$

 $(7).\int \sqrt{a^2 + x^2} dx$

分部积分得到: $\int \sqrt{a^2 + x^2} dx = x\sqrt{a^2 + x^2} - \int \frac{x^2}{\sqrt{a^2 + x^2}} dx = x\sqrt{a^2 + x^2} - \int \sqrt{a^2 + x^2} dx + a^2 \int \frac{1}{\sqrt{a^2 + x^2}}.$

因此我们得出:

$$\int \sqrt{a^2 + x^2} dx = \frac{x\sqrt{a^2 + x^2}}{2} + \frac{a^2}{2} \int \frac{1}{\sqrt{a^2 + x^2}} = \frac{x\sqrt{a^2 + x^2}}{2} + \frac{a^2}{2} \ln|x + \sqrt{x^2 + a^2}| + C$$

$$(8).\int \frac{1}{\sin x} \mathrm{d}x$$
 原不定积分可以化为:
$$\int \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}} \mathrm{d}x = \int \frac{1}{\tan \frac{x}{2}} \frac{1}{\cos^2 \frac{x}{2}} \mathrm{d}\frac{x}{2} = \ln|\tan \frac{x}{2}| + C = \ln|\frac{1-\cos x}{\sin x}| + C$$

$$(9).\int \frac{1}{\cos x}\mathrm{d}x$$
 原不定积分可以化为:
$$\int \frac{1}{\sin(x+\frac{\pi}{2})}\mathrm{d}x = \ln|\frac{1-\cos(x+\frac{\pi}{2})}{\sin(x+\frac{\pi}{2})}| + C = \ln|\frac{1+\sin x}{\cos x}| + C$$

重要的积分公式

$$\int \frac{1}{\sin x} dx = \ln |\tan \frac{x}{2}| + C = \ln |\frac{1 - \cos x}{\sin x}| + C$$

$$\int \frac{1}{\cos x} dx = \ln |\frac{1 + \sin x}{\cos x}| + C$$

$$\int \cot x dx = \ln |\sin x| + C$$

$$\int \tan x dx = -\ln |\cos x| + C$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln |x + \sqrt{x^2 - a^2}| + C$$

$$\int \frac{1}{\sqrt{a^2 + x^2}} dx = \ln |x + \sqrt{x^2 + a^2}| + C$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \ln |\frac{a + x}{a - x}| + C$$

$$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln |\frac{x + a}{x - a}| + C$$

$$\int \sqrt{x^2 + a^2} dx = \frac{x\sqrt{a^2 + x^2}}{2} - \frac{a^2}{2} \ln |x + \sqrt{x^2 + a^2}| + C$$

$$\int \sqrt{x^2 - a^2} dx = \frac{x\sqrt{x^2 - a^2}}{2} - \frac{a^2}{2} \ln |x + \sqrt{x^2 - a^2}| + C$$

$$\int \sqrt{a^2 - x^2} dx = \frac{x\sqrt{a^2 - x^2}}{2} - \frac{a^2}{2} \arcsin \frac{x}{a} + C$$

反向变量替换和配方

不定积分练习

 $(1).\int \frac{1}{\sqrt{e^{-2x}-1}} \mathrm{d}x$

令 $e^x=t\Rightarrow t=\ln x$, 原不定积分可以化为: $\int \frac{1}{\sqrt{1-t^2}}\mathrm{d}t=\arcsin t+C$, 因此原不定积分为: $\arcsin e^x+C$

 $(2).\int \frac{1}{e^x - e^{-x}} \mathrm{d}x$

原不定积分可以化为: $\int \frac{e^x}{e^{2x}-1} \mathrm{d}x$, 令 $e^x = t \Rightarrow x = \ln t$, 原不定积分等价于: $\int \frac{1}{t^2-1} \mathrm{d}t = \frac{1}{2} \ln |\frac{t-1}{t+1}| + C$, 因此原不定积分为: $\frac{1}{2} \ln |\frac{e^x-1}{e^x+1}| + C$

$$(3).\int \frac{1}{1-\sin x} \mathrm{d}x$$

 $(4).\int \frac{x^{14}}{(x^5+1)^4} \mathrm{d}x$

原不定积分可以化为: $\frac{1}{5} \int \frac{x^{10}}{(x^5+1)^4} dx^5$, 令 $x^5 = t$, 原不定积分为: $\int \frac{t^2}{(t+1)^4} dt$

$$(5).\int \frac{1}{1+\sqrt{x-1}} dx$$

$$(6). \int \sqrt{7 + x - x^2} dx$$

$$(7).\int \frac{1}{\sqrt{3+x-x^2}} \mathrm{d}x$$

$$(8).\int \frac{e^{2x}}{\sqrt[3]{1+e^x}} \mathrm{d}x$$

$$(9).\frac{1}{x^6\sqrt{1+x^2}}dx$$

$$(10).\int \frac{1}{\sqrt{1+e^{3x}}} \mathrm{d}x$$

$$(11).\int \frac{x^2}{a^2 - x^2} dx, (a > 0)$$

$$(12).\int \frac{x^2 - a^2}{x} dx, (a > 0)$$

$$(13).\int \frac{1}{(a^2-x^2)^{\frac{3}{2}}} dx, (a>0)$$

$$(14).\int \frac{x^3+x}{\sqrt{1-x^2}} \mathrm{d}x$$

$$(15).\int \frac{e^{\arctan x} + x \ln(1+x^2)}{1+x^2} dx$$

$$(16).\int \frac{\ln(x+2)-\ln x}{x(x+2)} \mathrm{d}x$$

$$(17).\frac{1}{x(x^5+2)}\mathrm{d}x$$

$$(18).\frac{x^{2n}-1}{x^n}\mathrm{d}x$$

部分分式

 $f(x) = \frac{P(x)}{Q(x)}, P(x), Q(x)$ 都是多项式函数, f(x) 是有理函数.

在这种情况下, 如何去求解不定积分 $\int f(x) dx$?

我们先来看一个例子 $\int \frac{4x-1}{x^2+x-2} dx$,我们发现分式的分母可以因式分解,我们就不妨设 $\frac{4x-1}{x^2+x-2} = \frac{A}{x-1} + \frac{B}{x+2}$,如何去求解 A,B 呢?

我们需要使用一种掩盖的方法,等式两边分别乘以各个因式,我们得到:

$$\begin{cases} \frac{4x-1}{x+2} = A + \frac{B(x-1)}{x+2} \\ \frac{4x-1}{x-1} = B + \frac{A(x+2)}{x-1} \end{cases}$$

我们可以解出 A = 1, B = 3.

我们令 P(x) 的最高次数项的幂为 $Partial\ P(x),Q(x)$ 的最高次数项的幂为 $Partial\ Q(x)$.

- (1). 当 $Partial\ P(x) < Partial\ Q(x)$ 时,我们将这个分式进行因式分解, $Q(x) = (x-a)^n(x^2+px+q)^m$,可以通过代数证明得到,当因式分解结果没有二次多项式时, $\frac{P(x)}{Q(x)} = \frac{A}{x-a} + \frac{B}{(x-a)^2} + \dots + \frac{N}{(x-a)^2}$;当因式分解结果有二次多项式时, $\frac{P(x)}{Q(x)} = \frac{A}{x-a} + \frac{B}{(x-a)^2} + \dots + \frac{N}{(x-a)^2} + \frac{A_1x+B_1}{x^2+px+q} + \dots + \frac{A_mx+B_m}{(x^2+px+q)^m}$.
- (2). 当 $Partial\ P(x) > Partial\ Q(x)$ 时, 我们首先使用长除法, 将 P(x) 降幂, 使得当 $Partial\ P(x) < Partial\ Q(x)$ 时, 我们继续使用 (1) 中的方法.

分部积分

我们由导数乘法法则得到:(uv)' = u'v + uv', 我们将这个式子求不定积分可以得到 (25.1), 这就是分部积分的公式.

$$u(x)v(x) = \int u(x)v'(x)dx + \int u'(x)v(x)dx$$
 (25.1)

我们来看几个例子:

 $1.F_n(x) = \int (\ln x)^n dx$

根据分部积分公式: $F_n(x)=x(\ln x)^n-\int n(\ln x)^{n-1}(\frac{1}{x})x\mathrm{d}x\Rightarrow F_n(x)=x(\ln x)^n-nF_{n-1}(x).$

我们不难发现: $F_0(x) = x$; $F_1(x) = x \ln x - x$, 我们可以依次推出后面的每一项.

$$2.G_n(x) = \int x^n e^x dx$$

根据分布积分公式: $G_n(x) = x^{n+1}e^x - \int x(nx^{n-1}e^x + x^ne^x) dx \Rightarrow G_n(x) = x^{n+1}e^x - \int nx^ne^x + x^{n+1}e^x dx$, 我们发现: $G_{n+1}(x) = \int x^{n+1}e^x dx$, 因此我们得到下面的关系式:

$$G_{n+1}(x) = x^{n+1}e^x - (n+1)G_n(x)$$

我们有 $G_0 = e^x$; $G_1 = xe^x - e^x$, 由前两项和关系表达式我们可以推知后面的每一项.

 $3.H_n(x) = \int_0^{\frac{\pi}{2}} \sin^n x dx; \ P(x) = \int_0^{\frac{\pi}{2}} \cos^n x dx \$ 对于 $H_n(x)$,我们使用分部积分公式得到:

$$H_n(x) = -\int_0^{\frac{\pi}{2}} \sin^{n-1} x d\cos x = \cos x \sin^{n-1} x \Big|_{x=0}^{x=-\frac{\pi}{2}} + (n-1) \int_0^{\frac{\pi}{2}} \cos^2 x \sin^{n-2} x dx$$

$$H_n(x) = (n-1) \int_0^{\frac{\pi}{2}} (1 - \sin^2 x) \sin^{n-2} x dx = (n-1)(H_{n-2}(x) - H_n(x))$$

$$H_n(x) = \frac{n-1}{n} H_{n-2}(x)$$

我们发现: $H_0(x) = \frac{\pi}{2}; \ H_1(x) = 1.$

当 n 为奇数时,我们不妨假设 $n=2k+1,k\in\{0,1,2,3...\}$,此时 $H_{2k+1}(x)=\frac{2k}{2k+1}*\frac{2k-2}{2k-1}*...*\frac{1}{2}H_1(x)=\frac{(2k)!!}{(2k+1)!!}$

当 n 为偶数时,我们不妨假设 $n=2k,k\in\{0,1,2,3...\}$,此时 $H_{2k}(x)=\frac{2k-1}{2k}*\frac{2k-3}{2k-2}*...*\frac{1}{2}H_0(x)=\frac{(2k-1)!!}{(2k)!!}\frac{\pi}{2}$ 我们有:

$$\int_0^{\frac{\pi}{2}} \sin^n x \mathrm{d}x = \int_0^{\frac{\pi}{2}} \cos^n x \mathrm{d}x$$

参数方程、弧长和表面积

弧长

我们截取弧长中很小的一点 ds, 我们有 $(\mathrm{d}s)^2=(\mathrm{d}x)^2+(\mathrm{d}y)^2\Leftrightarrow\mathrm{d}s=\sqrt{1+(\frac{\mathrm{d}y}{\mathrm{d}x})^2\mathrm{d}x}$

对上面的式子求不定积分可以得到:

$$s = \int \sqrt{1 + (f'(x))^2} dx$$
 (26.1)

1. 抛物线的长度问题

 $x^2 = 4ay, x \in [0, 2a]$ 的长度.

我们由弧长微分得: $ds = \sqrt{1+y'^2}dx$, 两边同时积分可得: $s = \int_0^{2a} \sqrt{1+\frac{x^2}{4a^2}}dx$

旋转体表面积

在旋转函数上取一小段弧长 ds, 旋转体表面积 $dS = (2\pi y)(ds)$, 将 (26.1) 公式代入可以得到:

$$S = 2\pi \int f(x)\sqrt{1 + (f'(x))^2} dx$$
 (26.2)

2. 求球体的表面积

 $f(x) = \sqrt{a^2 - x^2}$ 绕 x 轴旋转一周得到的旋转体的表面积

我们由表面积微分可以得到: $\mathrm{d}S=2\pi y\mathrm{d}s\Rightarrow\mathrm{d}S=2\pi y\sqrt{1+y'^2}\mathrm{d}x,$ 两边同时积分可以得到:

$$S = \int_{-a}^{a} 2\pi \sqrt{a^2 - x^2} \sqrt{1 + \frac{x^2}{a^2 - x^2}} dx = 4\pi a^2$$

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
, t 是变量, x, y 是根据 t 变化的量, 这个方程被称作参数方

我们先来看一个例子:
$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}$$

我们先来看一个例子:
$$\begin{cases} x=a\cos t\\ y=b\sin t \end{cases}$$
 对于弧长微分, 我们有 $\mathrm{d} s=\sqrt{(\mathrm{d} x)^2+(\mathrm{d} y)^2}=\sqrt{1+(\frac{\mathrm{d} y}{\mathrm{d} x})^2}\mathrm{d} x=\sqrt{(\frac{\mathrm{d} x}{\mathrm{d} t})^2+(\frac{\mathrm{d} y}{\mathrm{d} t})^2}\mathrm{d} t$ 3. 椭圆弧长

- 3. 椭圆弧长
- 4. 椭球表面积

极坐标和极坐标下的面积

极坐标

平面上的点与原点的距离 r, 该点和原点的连线与 x 轴所成夹角为 θ , 我们有该点坐标和 r, θ 之间的关系:

$$\left\{ \begin{array}{l} x = r\cos\theta \\ y = r\sin\theta \end{array} \right. \Rightarrow r = r(\theta)$$

极坐标下的面积

$$dS = \frac{1}{2}r^2d\theta \Rightarrow S = \int_{\theta_1}^{\theta_2} \frac{1}{2}r^2d\theta$$

不定型和洛必达法则

洛必达法则

用于求解一些特定的极限, 比如 $\frac{0}{0}$ 型和 $\frac{\infty}{\infty}$ 型.

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}, f(a) = g(a) = 0$$

使用条件:

- (1).f(x),g(x) 在 $x \in U_0(a,\varepsilon)$ 中可导, 且 $g^{'}(x) \neq 0$
- (2) $\lim_{x \to a} \frac{f'(x)}{g'(x)} = b$ (3) $\frac{f(a)}{g(a)} = \frac{0}{0} \text{ or } \frac{\infty}{\infty}$

我们来看另一种类型的极限: $0^0,0^\infty$ 型

反常积分

一、无穷积分

1. 定义

 $\int_a^{+\infty} f(x) dx = \lim_{N \to +\infty} \int_a^N f(x) dx$, 当右边的极限存在时, 我们就说这个无穷积分是收敛的, 反之我们说这个无穷积分是发散的.

我们来看几个无穷积分:

Example 1

$$\int_0^\infty e^{-kx} dx, \ k > 0$$
 原积分等于:
$$\int_0^\infty e^{-kx} dx = -\frac{1}{k} e^{-kx} \Big|_{x=0}^{x=\infty} = \frac{1}{k}$$

Example 2

 $\int_{-\infty}^{+\infty} e^{-x^2} \mathrm{d}x = \sqrt{\pi}$, 也许结果我们不能轻易求出, 但是我们能证明这个无穷积分是收敛的.

Example 3

$$\int_1^\infty \frac{1}{x} \mathrm{d}x$$

原积分等于: $\int_1^\infty \frac{1}{x} dx = \ln x \Big|_{x=1}^{x=\infty} = \ln(\infty)$, 是发散的.

Example 4

$$\int_{1}^{\infty} \frac{1}{x^{p}} \mathrm{d}x, \ p \neq 1$$

原积分等于:
$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \frac{x^{1-p}}{1-p} \Big|_{x=1}^{x=\infty} = \frac{(\infty)^{1-p}}{1-p} - \frac{1}{1-p}$$

- (1). 当 $p \le 1$ 时, 原无穷积分发散》
- (2). 当 p > 1 时, 原无穷积分收敛.

2. 定理

如果 $\lim_{x\to\infty} \frac{f(x)}{g(x)}=1$, 我们有无穷积分 $\int_a^\infty f(x)\mathrm{d}x$, $\int_a^\infty g(x)\mathrm{d}x$ 敛散性相 同.

二、瑕积分

1. 定义

 $\int_a^b f(x) \mathrm{d}x, f(x)$ 在 [a, b] 上至少存在一个未定义的点, 我们称这样的积 分为瑕积分, 未定义的点称为瑕点.

Example 1

$$\int_0^1 \frac{1}{x^p} \mathrm{d}x$$

$$\int_{0}^{1} \frac{1}{x^{p}} dx$$

原积分为:
$$\int_{0}^{1} \frac{1}{x^{p}} dx = \lim_{a \to 0} \int_{a}^{1} \frac{1}{x^{p}} dx = \lim_{a \to 0} \frac{1 - a^{1 - p}}{1 - p}$$

(1). 当 $p \le 1$ 时,积分发散.

- (2). 当 p > 1 时, 积分收敛.

无穷级数和收敛判定

几何级数

记 $S_n = \sum_{i=0}^n a_0 q^n$ 为几何级数的部分和, 几何级数的敛散性和部分和 S_n 极限如下:

- (1). 当 $|q| \ge 1$, 几何级数发散, 部分和 S_n 无极限.
- (2). 当 |q| < 1, 几何级数收敛, 部分和 S_n 极限 $\lim_{n \to +\infty} S_n = \frac{a_0 q}{1-q}$.

Example 1

 $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, 级数收敛.

Example 2

 $\sum_{n=1}^{+\infty} \frac{1}{n^3}$, 级数收敛.

Example 3

 $\sum_{n=1}^{+\infty} \frac{1}{n}$, 级数发散.

收敛判定

(1). 积分判定

 $\sum_{n=1}^{+\infty} f(n)$ 和积分 $\int_{1}^{+\infty} f(x) dx$ 敛散性一致.

(2). 极限判定

 $f(n) \leq g(n)$, 当 g(n) 收敛时,f(n) 收敛; $f(n) \geq g(n)$, 当 g(n) 发散时,f(n) 发散.

搭积木问题

It's very insteresting!!!

泰勒级数

幂级数

我们将 $a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots$ 记作幂级数, 简写为 $\sum_{n=0}^{+\infty} a_n x^n.$

收敛半径

- (1). 当 $|x| \le R$ 时,幂级数收敛;R 是幂级数的收敛半径.
- (2). 当 |x| > R 时, 幂级数发散.

泰勒公式

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$$

$$(1).e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots ; R = \infty$$

(2).
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7} + \dots + \frac{x^{2n-1}}{(2n-1)!} - \frac{x^{2n+1}}{(2n+1)!} + \dots ; R = \infty$$

(3).cos
$$x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^{2n-2}}{(2n-2)!} - \frac{x^{2n+2}}{(2n+2)!} + \dots ; R = \infty$$

$$(4).\ln(x+1) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^{2n-1}}{2n-1} - \frac{x^{2n}}{2n} + \dots \; ; \; R = 1$$

$$(5).(1+x)^{\alpha} = 1 + \frac{\alpha}{1!}x + \frac{\alpha(\alpha-1)}{2!}x^3 + \ldots + \frac{\alpha(\alpha-1)(\alpha-2)\ldots(\alpha-n+!)}{n!}x^n + \ldots$$