羧酸如取代羧酸 亲核加成-消除反应

一、羧酸和取代羧酸的定义及分类

羧	酸	分子中含有羧基的化合物称为羧酸 (carboxylic acid)
取代	定义	羧酸分子中烃基上的氢原子被其他原子或基团取代的化合物称为取代羧酸(substituted carboxylic acid)
羧酸	分类	卤代酸、羟基酸、氨基酸、羰基酸

二、羧酸的结构特点和物理性质

结构特点		R-C O $O-H$ $R-C$ O $O-H$ $R-C$ O
物	性状	低级饱和一元羧酸为液体、 $C_4 \sim C_{10}$ 的羧酸具异味。羧酸分子间易形成氢键,因此沸点高于相对分子质量接近的醇。羧酸可与水形成氢键,因此低级羧酸具有一定水溶性
理性质	波谱性质	IR: C=O 伸缩振动: $1725 \sim 1700 \mathrm{cm}^{-1}$ (与双键共轭时 $1700 \sim 1680 \mathrm{~cm}^{-1}$); O—H 伸缩振动: $3550 \mathrm{cm}^{-1}$ 附近 (缔合时出现 $3300 \sim 2500 \mathrm{cm}^{-1}$ 强宽峰); O—H 弯曲振动: $925 \mathrm{cm}^{-1}$; C—O 伸缩振动: $1320 \sim 1210 \mathrm{~cm}^{-1}$ 1 H-NMR: 羧基质子 δ 值 $10 \sim 13$; α – 氢 δ 值 $2 \sim 2.5$

三、羧酸的分类和命名

分多	烂	命名原则	命名实例		
	脂肪酸	(1)选择含 接链基为的 (2) 原种 (2) 原种 (3) 原种 (3) 和键的位置	8 γ β α CH ₃ CH ₂ CH ₂ CHCOOH CH ₃ CH ₂ CH-CHCH ₂ COOH CH ₃ CH ₃ C ₂ H ₅ 2-甲基戊酸或 α-甲基戊酸 2-methylpentanoic acid α-methylpentanoic acid α-methylpentanoic acid CH ₃ CH ₃ CH=CHCOOH CH ₂ =CHCHCOOH 2-丁烯酸(巴豆酸) 2-甲基-3-丁烯酸 2-butenoic acid 2-methyl-3-butenoic acid CH ₃ (CH ₂) ₄ CH=CHCH ₂ CH=CH(CH ₂) ₇ COOH 9,12-十八碳二烯酸 9,12-octadecadienoic acid		
按烃基结构	芳香酸	脂肪族 羧酸 为 母 体, 芳 基为取代基	Tooh COOH CH3 苯甲酸 benzoic acid 4-甲(基)苯甲酸或对甲(基)苯甲酸 4-methyl benzoic acid p-methyl benzoic acid COOH CH3 CH3 CH3 5-甲基-2-萘甲酸 5-methyl-2-naphthoic acid		
	脂环酸	脂肪族羧酸 为母体,碳 环为取代基	CH ₂ COOH COOH FR己基乙酸 (1R,2R)-1,3-环己烷二羧酸 cyclohexylethanoic acid (1R,2R)-1,3-cyclohexanedicarboxylic ac		

续表

分	类	命名原则	n	6 名 实 例
	一元酸			CH=CHCOOH 苯基丙烯酸(肉桂酸) acrylic acid (cinnamic acid)
按羧基数目	二元酸	j	H HOOC C=C COOH 順-丁烯二酸或马来酸 utenedioic acid (maleic acid)	COOH の一phthalic acid
	多元酸		CH ₂ COOI HO — C — COO CH ₂ COOI 3-羧基-3-羟基戊二酸或 3-hydroxyl-3-oxatylglutario	H H 枸橼酸或柠檬酸
取代羧酸	以羧酸为母体,分 子中的卤素、羟基、 氨基、羰基等官能 团作为取代基,取 代基在分子主链上 的位置以阿拉伯数 字或希腊字母表示		CH ₂ COOH	CH ₃ CHCH ₂ COOH OH β-羟基丁酸 β – hydroxy butanoic acid COOH 「回氯苯甲酸 m-chlorobenzoic acid CH ₃ SCH ₂ CH ₂ CHCOOH NH ₂ 2-氨基-4-甲硫基丁酸 α-氨基-γ-甲硫基丁酸 2-amino-4-methylthiobutanoic acid

四、羧酸的化学性质

(一)酸性和成盐反应

		表达式	备 注
电离式		$R - C - OH + H_2O \Longrightarrow R - C - O^- + H_3O^+$	pK.4~5, 能使蓝色 石蕊试纸 变红色
	一般规律	甲酸 > 苯甲酸 > 一般脂肪族羧酸	25
酸性影		$\begin{split} FCH_2COOH &> ClCH_2COOH > BrCH_2COOH > ICH_2COOH \\ CH_3COOH &< ClCH_2COOH < Cl_2CHCOOH < Cl_3COOH \\ CH_3CH_2CHCOOH > CH_3CHCH_2COOH > CH_2CH_2CH_2COOH \\ & $	诱导效应
响因素		COOH COOH COOH NO2 CH3 -I 效应 -C 效应 +I 效应 +C 效应 COOH COOH COOH COOH NO2 NO2 -I 效应 -C 效应 -I 效应 -C 效应	соон

			表达式	备 注
酸性	影响因素	芳香族羧酸	COOH COOH COOH OCH3 > OCH3 > OCH3 \$\text{accepted}\$ \times \text{OCOOH}\$ OCOOH COOH COOH COOH COOH COOH COOH \$\text{OT}\$ OH > OH > OH	СООН
		场效应	H Cl HO Cl H Cl H $Cl \rightarrow D$ $DK_a 6.07$ $DK_a 5.69$	OH CONTRACT
			RCOOH + NaOH \longrightarrow RCOONa + H ₂ O RCOOH + NaCl COONa + NaHCO ₃ \longrightarrow + H ₂ O + CO ₂ RCOOH + R'NH ₂ \longrightarrow RCOOH ₃ N'R' RCOOH ₃ N'R' + HCl \longrightarrow RCOOH + R'NH ₃ + Cl	用于羧酸的 分离与提纯 羧酸与碱式 盐成盐 可用于羧酸 类外消旋体 的拆分
成盐及其应用			$CH_{3}COONa + C_{2}H_{5} \longrightarrow CH_{2}CI$ $CH_{3}COOH \longrightarrow C_{2}H_{5} \longrightarrow CH_{2}OCCH_{3}$ $CH_{2} = C - COO^{-}Na^{+} + CICH_{2}CH - CH_{2}$ $CH_{3} \longrightarrow CH_{2}OCCH_{3}$ $CH_{2} = C - COOCH_{2}CH - CH_{2}$ $CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{2}$ $CH_{3} \longrightarrow CH_{2}CH - CH_{2}$	羧酸盐氧负 离子与卤代 烃发生亲核 取代反应, 合成羧酸酯

	表达式	备 注
成盐及其应用	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	羧酸盐氧负 离子与酰卤 发生亲核取 代反应,制 备混合酸酐

(二)羧基中羟基的取代反应

类型	反应式	备 注
生成	RCOOH + PCl ₃ \longrightarrow RCOCl + H ₃ PO ₃ RCOOH + PCl ₅ \longrightarrow RCOCl + POCl ₃ + HCl RCOOH + SOCl ₂ \longrightarrow RCOCl + SO ₂ † + HCl †	亚硫酰氯是实 验室制备酰氯 常用的试剂, 反应副产物易 于分离
	$R - C \xrightarrow{\downarrow} OH + H_{\downarrow} O - C - R \xrightarrow{\cancel{\mathbb{R}} \times \cancel{\mathbb{N}}} R - C - O - C - R + H_{2}O$	一元脂肪酸生 成对称酸酐
成酐反应	$\begin{array}{c} CH_{2} \\ CH_{2$	1,4-或 1,5-二 元羧酸分子内 脱水生成环状 酸酐
	HCOOH $\frac{\text{H}_{\text{s}}\text{SO}_4}{60 \sim 80 \text{°C}}$ CO † + H_2O	甲酸的特殊性
生成酰胺	$RCOOH \xrightarrow{NH_3} RCOONH_4 \stackrel{\triangle}{\Longrightarrow} R \stackrel{O}{=} R - C - NH_2 + H_2O$ $RCOOH \xrightarrow{HNR'_2} RCOONH_2R'_2 \stackrel{\triangle}{\Longrightarrow} R - C - NR'_2 + H_2O$	羧酸与氨(胺) 反应,首先形 成铵盐,然后 加热脱水得到 酰胺。酰胺结 构比较稳定, 较易生成

类型			反 应 式	备 注
生成酰胺			CH ₃ COONH ₄ $\xrightarrow{\text{Mfiffit}}$ CH ₃ C −NH ₂ + H ₂ O COOH + $\left\langle \begin{array}{c} \\ \\ \\ \\ \end{array} \right\rangle$ NH ₂ $\xrightarrow{180-190^{\circ}\text{C}}$ $\left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle$ + H ₂ O	羧酸与氨(胺) 反应,首先形 成铵盐,然后 加热脱水得到 酰胺。酰胺结 构比较稳定, 较易生成
	通式		RCOOH + R'OH $\stackrel{\text{H}^+}{\longleftarrow}$ RCOOR' + H ₂ O	可逆反应
酯反应	反应机制	伯醇与仲醇	R R R R R R R R R R	羧基的生氧化子四结决的酸基氢加化子四结决的酸基氢酯, 质碳强性中的反键醇的对质量的 人名英格兰 医多种 医人名 医多种
		叔醇	碳正离子机制: $R_3C - OH \stackrel{H^*}{\rightleftharpoons} R_3C \stackrel{O}{=} OH_2 \stackrel{-H_2O}{\rightleftharpoons} R_3C \stackrel{O}{=} C \stackrel{-R^*}{\rightleftharpoons}$ $OH \qquad O \qquad OH$ $R' - C - O - CR_3 \stackrel{H}{\rightleftharpoons} R' - C - OCR_3 + H^*$	叔醇体积大, 不易生成四面 体中间体;叔 醇在酸性介质 中易生成正碳 离子

类型	反 应 式	备 注
酯化 月 反应 木	一	酰基子是 \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P

(三)还原反应

	(二) 还原区应	
还原剂	代表反应	备 注
氢化铝锂	$CH_{3}CH_{2}COOH \xrightarrow{(1) \text{LiAlH}_{4}, \text{Et}_{2}O} CH_{3}CH_{2}CH_{2}OH$ $CH_{2} = CHCH_{2}COOH \xrightarrow{(1) \text{LiAlH}_{4}, \text{Et}_{2}O} CH_{2} = CHCH_{2}CH_{2}OH$	反应条件温和、产 率高;还原具有选 择性,对双键、三 键无影响
乙硼烷	O ₂ N — COOH 1. B ₂ H ₂ /四領呋喃 O ₂ N — CH ₂ OH	硼氢化钠(NaBH ₄) 不能还原羧酸。乙 硼烷在四氢呋喃溶 液中能使羧酸还原 成伯醇且有一定选 择性

还		
原剂	代表反应	备注
剂		
其他	$ \begin{array}{c} O \\ \parallel \\ CH_3CCH_2COOH \xrightarrow{H_3/N_i} CH_3CHCH_2COOH \\ R - COOH \xrightarrow{N_a} X \end{array} $	羧酸难以被一般还 原剂或催化氢化法 还原

(四)α-氢的反应

反应式	$CH_3CH_2CH_2COOH + Br_2 \xrightarrow{\text{ģTP}} CH_3CH_2CHCOOH + HBr$ Br $CH_3COOH \xrightarrow{Cl_2} CICH_2COOH \xrightarrow{Cl_2}$ $Cl_2CHCOOH \xrightarrow{Cl_2} Cl_3CCOOH$	羧酸在少量红磷 或三卤化磷存在 下与卤素反应, 得到 α- 卤代酸
反应机制	$RCH_{2}COOH \xrightarrow{PX_{3}} RCH_{2}C - X \Longrightarrow RCH = C - X \xrightarrow{O}$ $RCH_{2}COOH \xrightarrow{PX_{3}} RCH_{2}C - X \Longrightarrow RCH = C - X \xrightarrow{N}$ $RCH_{2}COOH \xrightarrow{PX_{3}} RCH_{2}COOH \Rightarrow RCH = C - OH + R$	x .

(五)脱羧反应

定义: 羧酸分子中脱去羧基并放出二氧化碳的反应称为脱羧反应 (decarboxylation)。

羧	酸	代表反应	备注
	饱和一 元羧酸	$CH_3COONa + NaOH \xrightarrow{CaO} CH_4 \uparrow + Na_2CO_3$	饱和一元羧酸 对热稳定,特殊 条件脱羧
脂肪酸	α-羟	$\begin{array}{c} H(R') \\ R - C - COOH \xrightarrow{H_2SO_4} R - C - H(R') + HCOOH \\ \downarrow OH \\ \end{array}$ $\begin{array}{c} O \\ \parallel \\ C - H(R') + HCOOH \\ \downarrow [O] \\ CO_2 \uparrow + H_2O \end{array}$	α-羟基酸若与 硫酸或酸性高 锰酸钾溶液共
	基酸	RCHCOOH $\xrightarrow{\text{KMnO}_4}$ R $\xrightarrow{\text{C}}$ H + CO ₂ † + H ₂ O OH	热,分解脱羧生 成醛或酮

100			续表
羧	酸	代表反应	备 注
脂肪酸	α - 氨 基酸	$R \xrightarrow{\text{CHCOOH}} \xrightarrow{\text{Ba(OH)}_2} R \xrightarrow{\text{CH}_2\text{NH}_2} + \text{CO}_2 \uparrow$ NH_2	α-氨基酸与碱 共热脱羧生成 伯胺
	α-羰 基酸	$CH_{3} - C - COOH \xrightarrow{H_{2}SO_{4}/H_{2}O} CH_{3}CHO + CO_{2} \uparrow$ $CH_{3} - C - COOH \xrightarrow{Ag(NH_{3})_{2}^{+}} CH_{3}COOH + CO_{2} \uparrow$ $HOOC - COOH \xrightarrow{\triangle} HCOOH + CO_{2} \uparrow$	α-酮酸与稀硫酸共热,或被弱氧化剂氧化,可脱羧生成少一个碳的醛或羧酸
	α – 碳	$ \begin{array}{c} O \\ \parallel \\ CH_3CCH_2COOH \xrightarrow{\triangle} CH_3CCH_3 + CO_2 \uparrow \end{array} $	α-碳上连有吸 电子基(硝基、
	上连有 吸电子 基团	CH_2 = CH - CH_2 - $COOH$ $\xrightarrow{\triangle}$ CH_2 = CH - CH_3 + CO_2 † O	卤素、酰基、羧基、氰基和不饱和键等)的羧酸 受热容易发生
		$Cl_3C - COOH \xrightarrow{\triangle} CHCl_3 + CO_2 \dagger$	脱羧反应
芳香酸	幾 邻 、 有 程 子 基	COOH COOH COOH COOH OH COOH OH COOH OH	芳香酸较脂肪酸容易脱羧,特别是环上连有吸电子取代基 更容易脱羧

(六)二元酸受热时的变化

二元酸	代表反应	备 注
乙二酸 丙二酸	HOOC — COOH $\xrightarrow{160\sim180^{\circ}\text{C}}$ HCOOH + CO ₂ ↑ HOOCCH ₂ COOH $\xrightarrow{140\sim160^{\circ}\text{C}}$ CH ₃ COOH + CO ₂ ↑	生成少一个碳原 子羧酸
丁二酸	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	脱水生成环状酸 酐。常用的脱水 剂包括乙酸酐、 乙酰氯、五氧化 二磷等
己二酸	$\begin{array}{c c} CH_2CH_2COOH & Ba(OH)_2 \\ CH_2CH_2COOH & \triangle \end{array} \longrightarrow \begin{array}{c c} O + H_2O + CO_2 \uparrow \\ CH_2CH_2COOH & Ba(OH)_2 \\ \hline \end{array} \longrightarrow \begin{array}{c c} O + H_2O + CO_2 \uparrow \\ \hline \end{array}$	生成少一个碳原子的环酮
更长碳链二 元羧酸	庚二酸以上的二元羧酸受热时分子间脱水生成链状聚合物	b

五、羧酸的制备

制备方法	代表反应	备注
烯烃 氧化	$ \begin{array}{c c} & \xrightarrow{KMnO_4} & \xrightarrow{CH_2CH_2COOH} \\ & \downarrow & \\ & CH_2CH_2COOH \end{array} $	
氧 化 法 芳烃侧 链氧化	CH ₃ KMnO ₄ /H ₂ SO ₄ COOH CH ₃	

	制备	代表反应	绥表
	方法	TO ACCOUNT	备 注
	伯醇 氧化	RCH ₂ OH $\xrightarrow{\text{KMnO}_4/\text{H}_2\text{SO}_4}$ RCOOH	
		RCHO $\frac{\text{KMnO}_{\sigma}/\text{H}_2\text{SO}_4}{\frac{1}{2}\frac{1}{N}\text{Na}_2\text{Cr}_2\text{O}_{\tau}/\text{H}_2\text{SO}_4}$ RCOOH	
	醛氧化	CHO — Ag₂O/H₂O → COOH	制备不饱和羧酸
氧化法		HCHO	制备无 α-H 的 羧酸
	环己酮 氧化	O HNO ₃ → HOOC(CH ₂) ₄ COOH	制备二元羧酸
	甲基醛酮氧化	RCOCH ₃ $\xrightarrow{I_3/N_aOH} \rightarrow \xrightarrow{H_3O^*}$ RCOOH [或RCH(OH)CH ₃] CH ₃ CHO $\xrightarrow{I_3/N_aOH} \rightarrow \xrightarrow{H_3O^*}$ HCOOH	制备少一个碳的一元酸
梭 彫 水解	设衍生物	$R - CN + 2H_2O \xrightarrow{H^* = 0 \text{ M}^2 \text{ CH}_2} R - COOH + NH_3$ $CH_2CN + 2H_2O \xrightarrow{H_3SO_4} R - COOH + NH_3$ $CH_2COOH + (NH_4)HSO_4$ $BrCH_2CH_2Br \xrightarrow{NaCN} NCCH_2CH_2CN \xrightarrow{H_3O^*} HOOCCH_2CH_2COOH$ $CH_2 = CHCH_2CI \xrightarrow{NaCN} CH_2 = CHCH_2CN \xrightarrow{H_3O^*} CH_2 = CHCH_2COOH$	腈水解是制备羧酸的常用方法 制备二元羧酸 制备不饱和羧酸
		$CH_{2} = CHCH_{2}COOH$ O $R - C - L \xrightarrow{H_{2}O} R - C - OH$ O \parallel $(L=Cl, OCR, OR, NH_{2}, NHR, NR_{2})$	酰卤、酸酐、酯、 酰胺的水解

制备 方法	代表反应	备 注
格氏试剂法	$CH_3CH_2CHCH_3+Mg$ $\xrightarrow{\text{无水乙醚}}$ $CH_3CH_2CHCH_3$ \downarrow	由脂肪族或芳香族 人名 电影 人名 电影 人名 电影 人名 电影

六、取代羧酸

(一)卤代酸

化学性质	α- 卤 代酸	$R-CH-COOH + H_2O \xrightarrow{ROH} R-CH-COOH$ X OH $R-CH-COOH + NH_3 \longrightarrow R-CH-COOH$ X 过量 NH_2 COO^- CH_3 COO^- CH_3 $COOH$ COOH	α- 卤 代 酸 易与亲核试 剂反应
	β- 卤 代酸	$ \begin{array}{c c} R - CH - CHCOOH \xrightarrow{\text{#OH}^-} RCH = CHCOOH \\ \downarrow & \downarrow \\ X & H \end{array} $	发生消除反 应生成烯酸
	γ、 δ-卤 代酸	RCHCH ₂ CH ₂ COOH Na ₂ CO ₃ /H ₂ O R O O	脱卤化氢形成内酯

	次权
概念	在亲核取代反应中,某些取代基当其位于分子的适当位置时,能够和反应中心部分或完全成键形成过渡态或中间体,从而影响反应的进行,这种现象称为邻基参与效应(neighboring group participation effect)
结果	或导致环状化合物的生成,或限制产物的构型,或促进反应速率明显加快,或几种情况同时存在
结构特点	能发生邻基参与效应的基团通常为具有未共用电子对的基团(例如 COO^- 、 $OCOR$ 、 $COOR$ 、 $COAr$ 、 OR 、 OH 、 NH_2 、 NHR 、 NR_2 、 $NHCOR$ 、 SH 、 SR 、 Br 、 I 、 Cl)、 含有碳碳双键等的不饱和基团、具有 π 键的芳基等
邻基参与效应实例	- COO ⁻ 作为邻近基团: OCC- CH3 (S)-2- 漢丙酸盐 OCC- CH3 第一次构型转化 OCC- CH3 CH3 OCC- CH3 F 一次内型转化 OCC- CH3 CH3 OCC- CH3 F 一次内型转化 OCC- CH3 CH3 OCC- CH3 H OH OCC- CH3 CH3 OCC- CH3 H OH OCC- CH3 OCC- CH3 CH3 OCC- CH3 OCC

制备	α - 卤 代酸	$CH_3CH_2CH_2COOH + Br_2$ $\xrightarrow{\xi \Gamma P}$ $CH_3CH_2CHCOOH + HBr$ l Br	羧酸直接卤代
	β – 卤 代酸	$RCH = CHCOOH + HBr \longrightarrow RCHCH_2COOH$ X	不饱和酸与卤化 氢加成
	γ、δ- 卤代酸	$\begin{array}{c} \text{CH}_3\text{OOC}(\text{CH}_2)_4\text{COOH} & \xrightarrow{\text{AgNO}_3} & \text{CH}_3\text{OOC}(\text{CH}_2)_4\text{COOAg} \\ & \xrightarrow{\text{Br}_2} & \text{CH}_3\text{OOC}(\text{CH}_2)_3\text{CH}_2\text{Br} \end{array}$	二元酸单酯经 Hunsdiecker 反 应制备

(二)羟基酸

化学性质受	α- 羟 基 酸	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	分子间 脱水形 成交酯
	β- 羟 基 酸	RCH—CHCOOH $\stackrel{\triangle}{\longrightarrow}$ RCH=CHCOOH + H ₂ O OH H	分子内 脱水形 成烯酸
热 反 应)	γ、 δ- 羟基酸	RCHCH ₂ CH ₂ COOH $\stackrel{\widehat{\Xi}}{\longrightarrow}$ R $\stackrel{\bigcirc}{\longrightarrow}$ 0 + H ₂ O OH RCHCH ₂ CH ₂ CH ₂ COOH $\stackrel{\triangle}{\longrightarrow}$ R $\stackrel{\bigcirc}{\longrightarrow}$ 0 + H ₂ O OH	分子内 脱水形 成内酯
制备		$\begin{array}{c} \text{CH}_3\text{CHCOOH} \xrightarrow{\text{(I) OH7 H}_2\text{O}} \text{CH}_3\text{CHCOOH} \\ \downarrow \\ \text{Cl} \end{array} \xrightarrow{\text{(2) H}^*} \text{CH}_3\text{CHCOOH} $	α- 卤 代酸水 解
	水解法	CHO (1) NaHSO ₃ (2) NaCN CH OH CH COOH OH	羟基腈 水解得 相应羟 基酸

(李柱来)

羧酸衍生物

一、羧酸衍生物的定义、结构及物理性质

定义		分子中的羟基被其他基团取代后所产生的化合物称为羧酸衍生物。羧酸衍生 是包括酰卤、酸酐、酯、酰胺和腈
结构		R-C C C C C C C C C C
	性状	低级酰卤和酸酐是具有刺激气味的无色液体,高级的为固体;低级酯是 易挥发并有芳香气味的无色液体;除甲酰胺和某些 N-取代酰胺为液体外, 其他酰胺均为固体。酰胺分子间可通过氢键缔合
物理性质	波谱性质	IR: $C = O$ 伸缩振动: 酰卤约 1800cm^{-1} ; 酸酐 $1845 \sim 1745 \text{cm}^{-1}$; 酯约 1735cm^{-1} ; 酰胺约 1650cm^{-1} 。酸酐 $C = O$ 伸缩振动 $1310 \sim 1050 \text{cm}^{-1}$; 酯 $C = O$ 伸缩振动 $1300 \sim 1050 \text{cm}^{-1}$; 酰胺 $N = H$ 伸缩振动 $3500 \sim 3200 \text{cm}^{-1}$; 脂肪族和芳香族腈 $C = N$ 伸缩振动特征吸收峰分别位于 $2260 \sim 2240 \text{cm}^{-1}$ 和 $2240 \sim 2220 \text{cm}^{-1}$ "H-NMR: 羧酸衍生物中 $\alpha = H$ 受羰基或氰基影响化学位移向低场移动,一般 δ 值为 $2 \sim 3$ 。酯分子中 $\alpha = H\delta$ 值 $3.7 \sim 4.1$; 酰胺分子中 $N = H\delta$ 值 $5 \sim 9.4$

二、羧酸衍生物的分类和命名

分类	命	名原则	实 例
酰卤	酰基名称加卤 素命名		CH ₃ O CH ₃ O CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₂ CHCH ₂ C — Cl 苯甲酰氯 benzoyl chloride 3-methyl pentanoyl chloride
酸酐		目应的羧酸	$H-C-O-C-CH_3$ $O = O$ O O O O O O O O O
酯	由相应的羧酸和醇	羧酸及多元 酸: 某酸某 (醇) 酯	O CH ₃ —C—OCH ₂ CH ₃ 乙酸乙酯 ethyl acetate CH ₂ CO ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₄ CH ₂ CO ₂ CH ₃ CH ₃ CHCOOCHCH ₃ CH ₃ CHC
	命名	多元醇: 某 醇某酸酯	0

续表

分类	命	名原则	实 例
酯	由相应的羧酸和醇命名	内酯: 用 阿拉或希腊 字母基 原 位置	CH ₃ O CH ₃ O CH ₃ O O 3-甲基-1,4-丁内酯(β-甲基-γ-丁内酯) γ-戊内酯 γ-butanoic lactone
	基作取代基,用 N 定位 乙酰胺 acetyl aniline N-et 酰基名称加上胺命名 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	的其他烃 基作取代 基,用 N 定位	CH3-C-NH2 CH3-C-NH- CH3-C-N CH3-C-N CH3-C-N CH3-C-N C2H5 乙酰胺 乙酰苯胺 N-甲基-N-乙基乙酰胺
酰胺		○ C C	
		用希腊字 母标明原	CH ₃ N O δ-hexanolactam
腈	按主链碳原子 数(包括氰基 碳)称为某腈		CH ₃ CN

三、羧酸衍生物的化学性质

(一)水解、醇解和氨解(亲核取代反应)

	.应	$R - C - L + HNu \longrightarrow R - C - Nu + HL$	
	.应	$HNu = H_2O$ 、 ROH 、 NH_3 ; $L = -X$ 、 $-OCOR'$ 、 $-OR'$ 、 $-NH_2$ 、 $-$ 亲核加成、消除即亲核取代反应: $R - C - L \xrightarrow{Nu} R - C - Nu \longrightarrow R - C - Nu + L$	
性2	应活 及其 响 素	活性顺序: 酰卤 > 酸酐 > 酯 > 酰胺 ≈ 腈 影响因素: (1)四面体中间体负离子的稳定性(电负性: -X >-OCOR' >-OCOR' > OCOR' > O	R' >—NH ₂)
	通式	$\begin{array}{c} O \\ \parallel \\ R - C - L + HOH \longrightarrow R - C - OH + HL \end{array}$	
水解	酰卤	$CH_3 - C - Cl + H_2O \longrightarrow CH_3 - C - OH + HCl$	不需催化 剂,室温 下易反应
	酸酐	$CH_3 - C - O - C - CH_3 + H_2O \xrightarrow{\triangle} 2CH_3 - C - OH$	反应需加 热
	門	反 应 + H ₂ O — COOH + C ₂ H ₅ OH	可逆反应
		(1) 伯醇、仲醇酯的碱催化水解: 酰氧键断裂 $R-C+OR'+OH-\longrightarrow R-C-O+R'OH$ 机 制 $R-C-OR'+OH-\biguplus R-C-O-R'-OH-\biguplus R-C-O-R-C-R-C$	H + R'O ⁻ + R'OH

			->1
	· E	影响反应速率的因素: 四面体中间体的稳定性 1) 电性效应(例如 $CCl_3COOC_2H_5 > CHCl_2COOC_2H_5 > CH_2COOC_2H_5$ 2) 空间效应(例如 $CH_3COOC_2H_5 > CH_3CH_2COOC_2H_5 > (CH_3)_2CHCOOC_2H_5 > (CH_3)_3CCOOC_2H_5$ (2) 伯醇、仲醇酯的酸催化水解: 酰氧键断裂 OH OH OR' OR' OR' OH OH OH OH OH OR'	子转移
水解		影响反应速率的因素: 四面体中间体的稳定性 1) 电性效应: 在酸催化条件下的影响不如在碱催化条件下大 2) 空间效应: 对反应速率影响较大, 同碱催化 (3) 叔醇酯的酸催化水解: 烷氧键断裂 OH CR OCR'3 R'3C'+ H ₂ O ====================================	· R' ₃ C ⁺
	酰胺	0 0	需要酸或碱催化并加热
	腈	$RCN \xrightarrow{H^{+} \times OH^{-}} RC \longrightarrow RC \longrightarrow NH_{2} \xrightarrow{H^{+} \times OH^{-}} RCOOH$ $CH_{3} \longrightarrow CN \longrightarrow CH_{3} \longrightarrow COOH$ $CH_{3} \longrightarrow COOH$	腈在酸或碱 作用下水解, 先生成酰胺, 再继续水解 生成羧酸
醇	通	$ \begin{array}{ccc} O & O \\ \parallel & \parallel \\ R - C - L + HOR' \longrightarrow R - C - OR' + HL \end{array} $	酰卤和酸酐的醇解常用

	酰卤	$CH_{3}C \longrightarrow CI + CH_{3}OH \longrightarrow CH_{3}COOCH_{3} + HCI$ O $ $ $CH_{3}CCI + HOC(CH_{3})_{3} \xrightarrow{C_{6}H_{3}N(CH_{3})_{2}} CH_{3}COOC(CH_{3})_{3}$	反应易发生
		(CH ₃ CO) ₂ O + ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	酰 化 反 应, 对药物合成 和改性有重 要意义
醇解	酸酐	$O + CH_3CH_2CHCH_3 \xrightarrow{H^*} COOC_2H_5$ $O + C_2H_5OH \xrightarrow{C_6H_5SO_3H} COOC_2H_5$	环状酸酐在 不同条件下 醇解,可以 得到单酯或 二酯
		$2CH_3 - C - OCH_3 + HOCH_2CH_2OH \longrightarrow O$ $CH_3 - C - OCH_2CH_2O - C - CH_3 + 2CH_3OH$	酯交换反
	酯	H_2N C C_2H_5 C_2H_5 C_2H_5	应。常用于 从廉价的简 单酯制备结 构复杂的酯
			17 Ø 7KH 7 HE

			头衣
		$R - CN + R' - OH \xrightarrow{H_2SO_4} R - C - OR' + NH_3$ O	腈在酸性条 件下和醇反 应生成酯
醇	腈	$CH_3C \equiv N + C_2H_5OH \xrightarrow{HCl} CH_3C \longrightarrow CC_2H_5$	
解		$CH_{3}COOH \xrightarrow{P, Cl_{2}} ClCH_{2}COOH \xrightarrow{NaOH, NaCN} $ $NaOOC - CH_{2}CN \xrightarrow{H^{*}/C_{2}H_{5}OH} C_{2}H_{5}OOC - CH_{2}COOC_{2}H_{5}$	腈的醇解制 备丙二酸二 乙酯
	通式	$R - C - L + HNH_{2}(H_{2}NR',HNR'_{2}) \longrightarrow$ $R - C - NH_{2}(NHR',NR'_{2}) + HL$	
	酰卤	$C_{6}H_{5}-C-Cl+HN \longrightarrow \begin{array}{c} O \\ \parallel \\ C_{6}H_{5}-C-N \end{array}$ $C_{6}H_{5}-C-N \longrightarrow \begin{array}{c} O \\ \parallel \\ CH_{3}CH_{2}C-Cl+2HNR_{2} \longrightarrow CH_{3}CH_{2}C-NR_{2}+R_{2}NH_{2}Cl \end{array}$	酰 卤 和 氨 (或胺)可 迅速反应生 成酰胺
氨解		$(CH_3CO)_2O + CH_3NH_2 \longrightarrow CH_3CONHCH_3 + CH_3COOH$ $CONHCH_3$ $COOH$	酸酐的活性 比酰卤稍弱 环状酸酐和 氨或胺反应
	酸酐	A H_2O NH_2 $NHCOCH_3$	生 成 酰 胺 酸,高温下 反应则生成 酰亚胺 酰化反应的
		$(CH_3CO)_2O + OH$ OH OH OH	应用:制备 毒性较小的 解热镇痛药 扑热息痛
	71	对羟基苯胺 对羟基乙酰苯胺 (扑热息痛)	

(二)与有机金属化合物的反应

化学性质	代表反应	备注
与格 机 剂的 反应	$\begin{array}{c} C \\ C \\ R \end{array} \longrightarrow \begin{array}{c} C \\ L \end{array} \longrightarrow \begin{array}{c} C \\ R \end{array} \longrightarrow \begin{array}{c} C \\ R \end{array} \longrightarrow \begin{array}{c} -MgXL \\ R \end{array} \longrightarrow \begin{array}{c} -MgXL \\ R \end{array} \longrightarrow \begin{array}{c} C \\ R \end{array} \longrightarrow \begin{array}{c} -MgXL \\ R \end{array} \longrightarrow \begin{array}{c} C \\ R \end{array} \longrightarrow \begin{array}{c} -MgXL \\$	羧酸衍生物 与格氏试成 原 位 电继统剂 反 应 酮, 配 医 医 医 医 医 医 医 医 医 医 医 医 医 医 医 医 医 医

续表

化学性	生质	代表反应	备 注
		$\begin{array}{c c} COOC_2H_5 & \xrightarrow{1.2CH_3MgI} & OH \\ \hline & 1 \\ \hline & 2.H_3O^* & $	酯与格氏试 剂反应是制 备叔醇的常 用的好方法
	实例	$\begin{array}{c} O & OH \\ & \downarrow \\ O & \xrightarrow{1.2C_2H_5MgI} & HOCH_2CH_2CH_2CC_2H_5 \\ & \downarrow \\ & C_2H_5 \\ \end{array}$ $\begin{array}{c} O \\ & \downarrow \\ & C_2H_5 \\ \end{array}$ $\begin{array}{c} O \\ & \downarrow \\ & C_2H_5 \\ \end{array}$ $\begin{array}{c} OH \\ & \downarrow \\ & C_2H_5 \\ \end{array}$ $\begin{array}{c} OH \\ & \downarrow \\ & C_2H_5 \\ \end{array}$ $\begin{array}{c} OH \\ & \downarrow \\ & C_2H_5 \\ \end{array}$ $\begin{array}{c} OH \\ & \downarrow \\ & C_2H_5 \\ \end{array}$	甲酸酯与格 氏试剂反应 得到对称的 仲醇
		$R - C \equiv N + R'MgX \longrightarrow R - C - R' \xrightarrow{H_3O^*} R - C - R'$ $CN \xrightarrow{1.C_2H_5MgX} C \xrightarrow{1.C_2H_5MgX}$	腈与格氏试剂 作 用 生成酮
酰与烃铜的应	通式	O $R-C-C1$ R'_2CuLi/Et_2O $R-C-R'$ 二烃基铜锂反应活性比格氏试剂低,低温下不与酯、酰胺和腈反应	
	实例	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	制备酮酸酯

(三)还原反应

氢化 铝锂 还原	通式	$R - C - Cl \xrightarrow{1.LiAlH_4/Et_2O} RCH_2OH + HX$	酰卤还原生 成伯醇
----------------	----	---	--------------

			级农
		$R - C - O - C - R' \xrightarrow{1.\text{LiAlH}/\text{Et}_2O} RCH_2OH + R'CH_2OH$	酸 酐 还 原生成两分子伯醇
	通式	$R - C - OR' \xrightarrow{1.LiAlH_4/El_2O} RCH_2OH + R'OH$	酯还原生成 两分子醇
	MEN	$R - C - N \stackrel{R}{\underset{R'}{\stackrel{1.\text{LiAlH}/Et_2O}{\sim}}} RCH_2N \stackrel{R}{\underset{R'}{\stackrel{\sim}{\underset{\sim}}}}$	酰胺还原生成相应的 胺(伯、仲、 叔胺)
氢化铝锂		$R - C \equiv N \xrightarrow{1.LiAlH/Et_2O} RCH_2NH_2$	腈还原生成 伯胺
铅锂还原	实例	$CH_{3} \xrightarrow{\text{CH}_{3}} CH_{3} \xrightarrow{\text{CH}_{3}} CH_{3} \xrightarrow{\text{CH}_{3}} CH_{2}OCC_{2}H_{5} \xrightarrow{\text{1.LiAlH}_{4}/\text{Et}_{2}O} CH_{3} \xrightarrow{\text{CH}_{3}} CH_{2}OCC_{2}H_{5} \xrightarrow{\text{CH}_{3}} CH_{3}$ $CH_{3}CH = CHCH_{2}CNHC_{6}H_{5} \xrightarrow{\text{1.LiAlH}_{4}/\text{Et}_{2}O} CH_{3}CH = CHCH_{2}CH_{2}NH_{2}C_{6}H_{5}$ $CH_{3}CH = CHCH_{2}CH_{2}NH_{2}C_{6}H_{5}$	酰氯、酸酐、酯和酰胺分子中被逐原成 亚甲基,而碳 对三碳 不受 數响
		COCI O_2N	酰氯在三叔 丁氧基氢化 铝理作用下 可还原成醛
其他还原	Bouveault- Blanc 还原	$CH_3CH = CHCH_2COC_2H_5 \xrightarrow{Na/C_2H_5OH}$ $CH_3CH = CHCH_2CH_2OH$	酯在金属还 原剂作用下 还原成醇。 反应条件温 和,非极性 不饱和键不 受影响
	催化氢化	$\begin{array}{c} \text{CH}_2\text{CN} \\ + \text{H}_2 \xrightarrow{\text{Ni/liq.NH}_3} \\ \end{array} + \text{H}_2 \xrightarrow{\text{Ni/liq.NH}_3} \begin{array}{c} \text{CH}_2\text{CH}_2\text{NH}_2 \\ \end{array}$	腈经催化氢 化 还 原 成 伯胺

(四)酰胺的特殊反应

化生性		代表反应	备注	
	酰胺	$CH_3-C-NH_2+Na\longrightarrow CH_3-C-NHNa+\frac{1}{2}H_2\uparrow$ $CH_3-C-NH_2+HCl\longrightarrow CH_3-C-NH_2 \bullet HCl$ 由于氨基氮原子上的未共用电子对与羰基发生共轭,使氮原子上电子云密度降低,酰胺碱性明显减弱	酰胺与碱 金属作用 酰胺与盐 酸作用	
酸		$\bigcap_{O} NH + KOH \longrightarrow \bigcap_{O} N^-K^+ + H_2O$	酰亚胺明 显呈酸性, 与碱作用 成盐	
碱性	酰亚胺	O NH + Br ₂ + KOH O N-Br + NaBr + H ₂ O N-溴代丁二酰亚胺(NBS)	重要的溴化 试剂(NBS) 的制备	
		$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	NBS 的应用	
Hof- mann 降解	定义	氮上未取代的酰胺在碱性溶液中与卤素作用生成少一个碳原子应, 也称作 Hofmann 重排反应 RCONH ₂ + Br ₂ + 4OH → RNH ₂ + CO ₃ ²⁻ + 2Br + 2H ₂		
	机制	$\begin{array}{c c} C & C & C & Br-Br & C & H & O \\ R & C & NH & -Br & R & C & H & O \\ H & & & & & & & & & & & \\ H & & & & &$	H	

化学性质	10000	代表反应	备注
	机制	$R \xrightarrow{O} R - N = C = O \xrightarrow{H_2O} R \xrightarrow{R} N \xrightarrow{C} OH - M$	→ RNH ₂ + CO ₂
Hof- mann 降解	实	$(CH_3)_3CH_2CONH_2 \xrightarrow{NaOH/Br_2} (CH_3)_3CH_2NH_2$ $COONa \xrightarrow{1.NaOC1/70 \cdot C} COOH$ $CONH_2 \xrightarrow{2.H^*} NH_2$ $CH_2 - C - NH_2 \xrightarrow{1.Br_2/NaOH} H_2NCH_2CH_2COOH$ $CH_2 - COONH_4 \xrightarrow{1.Br_2/NaOH} 2.H^*$	制备氨基酸
	例	$\begin{array}{c} O \\ H_5C_6 \\ H_5C_2 \\ \hline \end{array} C - C \\ NH_2 \\ \hline \end{array} \begin{array}{c} O \\ NaOBr \\ OH \\ \end{array} \begin{array}{c} H_5C_6 \\ NH_2 \\ \hline \end{array} \begin{array}{c} O \\ NH_2 \\ \hline \end{array}$	α-碳具有手性,反应前后构型不变 强心药氨力
		N Br ₂ /NaOH N	农合成最 后一步采用 Hofmann降解
脱水	反应	$CONH_2 \xrightarrow{P_2O_2/\triangle} CN + H_2O$ $CH_3(CH_2)_4CONH_2 \xrightarrow{SOCl_2/\triangle} CH_3(CH_2)_4CN + H_2O$	酰胺在强版 水 剂 作 用 下, 受热发 生分子内服 水生成腈