Discovery, Integration and Aggregation of Sensor Data Using the Semantic Web

Ivo de Liefde i.deliefde@student.tudelft.nl

January 8, 2016

1 Introduction

From 2020 onwards all member states of the European Union (EU) should provide sensor data to the Infrastructure for Spatial Information in Europe (INSPIRE) in order to comply with annex II and III of the INSPIRE directive (INSPIRE, 2015). For this a number of Sensor Web Enablement (SWE) standards are required to be used (INSPIRE, 2014). The sensor web is a relatively new development and there are still many questions on how to structure it. This thesis aims to design a method to publish and link sensor metadata on the semantic web to improve the discovery, integration and aggregation of sensor data.

1.1 Background

In 2008 the Open Geospatial Consortium (OGC) introduced a new set of standards called Sensor Web Enablement (SWE). These standards make it possible to connect sensors to the internet and retrieve data in a uniform way. This allows users or applications to retrieve sensor data through standard protocols, regardless of the type of observations or the sensor's manufacturer (Botts et al., 2008). Among other standards SWE includes the Observations and Measurements (O&M) which is a model for encoding sensor data, the Sensor Modelling Language (SensorML) which is a model for describing sensor metadata and the Sensor Observation Service (SOS) which is a service for retrieving sensor data (Botts et al., 2007). O&M has also been adopted by the International Organisation for Standardisation (ISO) under ISO 19156:2011 (ISO, 2011).

Recently OGC has defined the role which their standards could play in smart city developments (Percivall, 2015). Smart cities can be defined as "enhanced city systems which use data and technology to achieve integrated management and interoperability" (Moir et al., 2014, p. 18). Research on smart cities has shown a great potential for using sensor data in urban areas. Often this is presented in the context of the Internet Of Things (IoT) (Zanella et al., 2014; Wang et al., 2015a). The IoT can be described as "the pervasive presence around us of a variety of *things* or *objects* ... [which] are able to interact with each other and cooperate with their neighbors to reach common goals" (Atzori et al., 2010, p. 2787).

Parallel to the development of the sensor web other research has focused on the semantic web, as proposed by Berners-Lee et al. (2001). This is a response to the traditional way of using the web, where information is only available for humans to read. The semantic web is an extension of the internet which contains meaningful data that machines can understand as well. Rather than publishing documents on the internet the semantic web contains linked data using the Resource Description Framework (RDF), also known as the 'web of data' (Bizer

et al., 2009). Data in RDF can be queried using the SPARQL Protocol and RDF Query Language (SPARQL) at so-called SPARQL endpoints. The Web Ontology Language (OWL) is an extension of RDF and was designed "to represent rich and complex knowledge about things, groups of things, and relations between things" (OWL working group, 2012). Originally, the semantic web intended to add metadata on the internet (Lassila and Swick, 1999). However, today it is being used for linking any kind of data from one source to another in a meaningful way (Cambridge Semantics, 2015).

Sheth et al. (2008) proposes to use semantic web technologies in the sensor web. This Semantic Sensor Web (SSW) builds on standards by OGC and the World Wide Web Consortium (W3C) "to provide enhanced descriptions and meaning to sensor data" (Sheth et al., 2008, p. 78). W3C responded to this development by creating a standard ontology for sensor data on the semantic web (Compton et al., 2012).

1.2 Problem statement

Finding sensor data that can be retrieved using open standards is not easy. The implementation of the sensor web is still in an early stage. At the moment there are only a limited number of SOS implementations available on the web and they contain a limited amount of data. In the Netherlands the SOS by the Dutch national institute for public health and the environment (RIVM) is one of the first ones to be developed. It has only recently been launched and contains data on air quality. A number of other organisations still use a custom Application Program Interface (API) to retrieve data from sensors connected to the internet. The problem of these custom APIs is that it is very hard to create an application that automatically retrieves data from them, because they have not implemented standards regarding the content of their service, the metadata models behind it or the kind of requests that can be made. It forces the application to have knowledge built in on the specifics of the individual APIs that are being used.

It has been researched to what extent a catalogue service could be useful for discovering sensor data from a SOS using the web service interfaces Sensor Instance Registry (SIR) (Jirka and Nüst, 2010) and Sensor Observable Registry (SOR) (Jirka and Bröring, 2009). Catalogue services have already been available for example for the Web Map Service (WMS), Web Feature Service (WFS) or Web Coverage Service (WCS) (Nebert et al., 2007). However, for the sensor data sources used in this paper no register or catalogue service has been implemented. Atkinson et al. (2015) also argues that catalogue services have a number of major disadvantages. It places a very high burden on the client to not only know where to find the catalogue service, but also to have knowledge on all kinds of other aspects (e.g. its organisation, access protocol, response format and response content) (Atkinson et al., 2015, p. 128). Atkinson et al. suggest that linked data is therefore a much better solution for discovering sensor data.

However, in order for sensor data to be discovered on the semantic web there have to be inward links, from other sources linking towards the sensor (meta)data. Current research on the SSW have focused on publishing sensor data on the semantic web with links that point outwards (Atkinson et al., 2015; Janowicz et al., 2013; Pschorr, 2013). This gives meaning to the data and is useful in order to work with the data, but it has a very limited effect on the discovery of the sensor data by others.

One of the challenges of using sensor data is the difficulty of integrating data from different sources to perform data fusion (Corcho and Garcia-Castro, 2010; Ji et al., 2014; Wang et al., 2015b). Data fusion is "a data processing technique that associates, combines, aggregates, and integrates data from different sources" (Wang et al., 2015a, p. 2). Even if the sources comply with the SWE standards it is challenging, since the data can be of a different granularity, both in time and space. Spatio-temporal irregularities are a fundamental property of sensor data

(Ganesan et al., 2004).

A question that comes to mind is to what extent the semantic web could be a better solution for publishing sensor data than the current geoweb solutions like SOS. The geoweb has some very good qualities, such as very structured approaches through which (sensor) data can be retrieved using well defined services. These standardised services have been accepted by large organisations as OGC and ISO. Furthermore, they are often based on years of discussion. This is different from for example web pages where content can be completely unstructured. The response of a SOS also contains some semantics about sensor data. There can be x-links inside the Extensible Markup Language (XML) with Uniform Resource Identifier (URI)s that point to semantic definitions of objects.

Still, the semantic web could be beneficial for the geoweb. Since data on the web has a distributed nature it can be questioned whether centralised catalogue services are feasible to create. It places a burden on the owner of the SOS to register with a catalogue service. Also, there could be multiple of these services on the web creating issue regarding the discovery of relevant catalogues. The semantic web could solve this issue by getting rid of the information silos and storing data directly on the web instead. This allows the interlinking and reuse of data on the web, which makes it easier to find related data. For automatic integration and aggregation it could be useful that the semantic web is machine understandable.

In conclusion, the problem to be addressed is the lack of knowledge on how to exploit the full potential of the sensor web using the semantic web. Creating the right links could greatly enhance the discovery, integration and aggregation of sensor data. However, there is no method yet to establish this linked metadata for sensors, while the standardised nature of a SOS should allow for generating it in an automated process. This thesis will create a design for such an automated process, research how to establish inward links and explore the advantages and disadvantages of publishing sensor metadata on the semantic web with a proof-of-concept implementation.

1.3 Scientific relevance

Sensor data ties together many different fields of research. On the one hand there is research on how to create the most efficient sensor networks that uses the least amount of power to transfer the observed data over long distances (Korteweg et al., 2007; Xiang et al., 2013). This involves academic fields such as mathematics, physics and electrical engineering. On the other hand there is research that uses sensor data to gain insights into real world phenomenon. This involves academic fields such as geography, environmental studies and urbanism. In order to connect these scientific fields, studies have focused on the use of computer science and standardisation for transferring sensor data over the internet.

In the future more sensor data is expected to be produced (Price Waterhouse Coopers, 2014). Both experts and non-experts will be involved in this development. Exports will produce more data because of European legislation (INSPIRE). Non-experts will be involved more often via smart cities and IoT developments where users or consumer electronics produce sensor data as well. This vast amount of data could be very useful for academic research, provided researchers are able to find the data they need online and are able to integrate and aggregate data from heterogeneous sources. Publishing sensor metadata on the semantic web could make it easier to find what you need through related data on the internet. Having a automated process for this and being able to seamlessly integrate and aggregate data from different sources could be of great use for research such as van der Hoeven et al. (2014), Van der Hoeven and Wandl (2015) and Theunisse (2015). They are examples of studies that try to understand phenomenon in the built environment using sensor data. Currently data collection and processing takes up a large part of the research, while with the implementation of SWE

standards and the use of the semantic web this might be significantly reduced.

1.4 Research question

This thesis aims to design a method that uses the semantic web to improve sensor data discovery as well as the integration and aggregation of sensor data from heterogeneous sources. The following question will be answered in this research: *To what extent can the semantic web improve the discovery, integration and aggregation of distributed sensor data?*

2 Related work

A number of research topics are relevant for this thesis: how to use existing standards for publishing sensor data to the semantic web, developing ontologies that are suitable for many different kinds of sensor data and how to aggregate sensor data based on geographical features and time. This chapter discusses the recent relevant literature on these topics.

2.1 Sensor data catalogue service

The SOR is "a web service interface for managing the definitions of phenomena measured by sensors as well as exploring semantic relationships between these phenomena" (Jirka and Bröring, 2009, p. vi). This is a web service developed by OGC to enable semantic reasoning on sensor networks, especially concerning phenomenon definitions. This should make it easier to discover sensors that observe a certain phenomenon and to interpret sensor data.

Another web service interface specification by OGC is SIR. SIR is aimed at "managing the metadata and status information of sensors" (Jirka and Nüst, 2010, p. xii). The goal of this web service is to close the gap between metadata models based on SensorML, which is used in SWE, and the metadata model used in OGC catalogue services. Furthermore, it provides functionalities to discover sensors, to harvest sensor metadata from a SOS, to handle status information about sensors and to link SIR instances to OGC catalogue services.

2.2 Semantic sensor data middleware

Henson et al. (2009) and Pschorr (2013) suggest adding semantic annotations to a SOS which they call Semantically Enabled SOS (Sem-SOS). In Sem-SOS the raw sensor data goes through a process of semantic annotating before it can be requested with a SOS service. The retrieved data is still an XML document, but with embedded semantic terminology as defined in an ontology. The data retrieved from Sem-SOS is therefore semantically enriched.

Janowicz et al. (2013) has specified a method that uses a Representational State Transfer (REST)ful proxy as a façade for SOS. When a specific URI is requested the so-called Semantic Enablement Layer (SEL) translates this to a SOS request, fetches the data and translates the results back to RDF. In this method the sensor data is converted to RDF on-the-fly. This allows the data to be interpreted by both humans and machines.

Atkinson et al. (2015) have identified that "distributed heterogeneous data sources are a necessary reality in the case of widespread phenomena with multiple stakeholder perspectives" (Atkinson et al., 2015, p.129). Therefore, they propose that methods should be developed to move away from the traditional dataset centric approaches and towards using linked data for cataloguing. This has the potential to bring together data and knowledge from different areas of research about the same (or similar) features-of-interest. It is also argued that using both linked data services and data-specific services could ease the transition into the linked data world.

Figure 1: The stimulus–sensor–observation pattern (Compton et al., 2012, p. 28)

2.3 Sensor data ontologies

Ontologies are necessary to provide meaning to data on the semantic web and to create semantic interoperability. Three recent efforts for developing a standard ontology for sensor data based on SWE standards will be discussed here.

Semantic sensor network ontology

W3C has developed an ontology for sensors and observations called the Semantic Sensor Network Ontology (SSNO). This ontology aims to address semantic interoperability on top of the syntactic operability that the SWE standards provide. To accommodate different definitions of the same concepts the broadest definitions have been used. Depending on the interpretation these can be further defined with subconcepts. The SSNO is based on the stimulus-sensor-observation pattern, describing the relations between a sensor, a stimulus and observations (Figure 1). Sensors are defined as "physical objects ... that observe, transforming incoming stimuli ... into another, often digital, representation", stimuli are defined as "changes or states ... in an environment that a sensor can detect and use to measure a property" and observations are defined as "contexts for interpreting incoming stimuli and fixing parameters such as time and location" (Compton et al., 2012, p. 28). The ontology can be used to model sensor networks from four different perspectives (sensor, observation, system, and feature & property), which have been discussed together with additional relevant concepts.

Observation capability metadata model

Hu et al. (2014) have reviewed a number of metadata models (including SensorML and SSNO) for the use of earth observation (including remote sensing). They argue that all of the current metadata models are not sufficient for sensor data discovery. This conclusion is based on an evaluation of six criteria. Three steps have been identified in the process of obtaining relevant sensor data for earth observation, which have been used to derive criteria for their evaluation framework. These steps are sensor filtration, sensor optimisation and sensor dispatch. The filtration of sensors should result in a set of sensors that meets the requirements of the application: It should measure the right phenomenon, be active, be inside the spatial and temporal range, and have a certain sample interval. In sensor optimisation the selected sensors should be combined to complement or enhance each other. To do this, the observation quality,

coverage and application is relevant. In the last step – sensor dispatch – the data should be retrieved, stored and transmitted. In every evaluated model the same sensors can be described in different ways or only partially, which affects the outcome of the sensor dispatch.

Therefore, a metadata model is proposed that "reuses and extends the existing sensor observation-related metadata standards" (Hu et al., 2014, p. 10546). It is composed of five modules: observation breadth, observation depth, observation frequency, observation quality and observation data. They should be derived from metadata elements described using the Dublin Core metadata element set. These five modules can then be formalised following the SensorML schema which can be queried by users via a 'Unified Sensor Capability Description Model-based Engine'.

Om-lite & sam-lite ontologies

Cox (2015b) has been working on new semantic ontologies based on O&M. Previous efforts, such as the SSNO have been using pre-existing ontologies and frameworks. However, there are already many linked data ontologies that could be useful for describing observation metadata, such as space and time concepts. Also, the SSNO does not take sampling features into account. Therefore, Cox (2015b) proposes two new ontologies: OWL for observations or omlite (Cox, 2015a), which defines the concepts from O&M regarding observations and OWL for sampling features or sam-lite, which defines the sampling feature concepts (Cox, 2015d). A mapping of the SSNO to om-lite is also provided.

Cox (2015b) describes how the PROV ontology (Lebo et al., 2013) can be directly used inside om-lite. The PROV ontology is "concerned with the production and transformation of Entities through time-bounded Activities, under the influence or control of Agents" (Cox, 2015b, p. 12). This is a very convenient ontology for modelling real world entities, such as sensors, observation processes and sampling processes. Many other ontologies could be implemented in combination with om-lite and sam-lite, depending on the kind of observations that are being modelled and the data publisher's preference.

2.4 Sensor data aggregation

Sensor data aggregation can be performed for two purposes: To reduce the energy constraint of sensor networks (Korteweg et al., 2007) or to sample a feature-of-interest in space and/or time (INSPIRE, 2014). Sampling is performed when a feature-of-interest is not accessible, in which case "observations are made on a subset of the complete feature, with the intention that the sample represents the whole" (Cox, 2015a). Stasch et al. (2011a) proposes a Web Processing Service (WPS) that retrieves sensor data from a SOS service in order to aggregate it based on features-of-interest. The approach by Stasch et al. (2011b) is similar, but takes sensor data as input that is already published on the semantic web.

Ganesan et al. (2004) stresses that spatio-temporal irregularities are fundamental to sensor networks. Irregular sampling can have a potentially large influence on the accuracy of the aggregated outcome. For example, averaging sensor data from a feature-of-interest that is being sampled densely in some parts and more sparsely in other parts could lead to inaccurate results. To counter this the values of the densely sampled area should have a lower weight than the values from the sparsely sampled area. The same holds true for temporal irregularities (Ganesan et al., 2004). Also, Stasch et al. (2014) argue that in order for automatic aggregation to work there needs to be semantics on which kind of aggregation methods are appropriate for a specific kind of sensor data. Not all kinds of aggregation are meaningful (e.g. taking the sum of temperature values). This requires a formalisation of expert knowledge which they call semantic reference systems.

3 Research objectives

3.1 Research question

The main question this thesis will try to answer is:

To what extent can the semantic web improve the discovery, integration and aggregation of distributed sensor data?

To answer the main question a number of sub-questions need to be answered:

- To what extent can sensor metadata be automatically retrieved from a SOS and published on the semantic web?
- How can metadata on the semantic web be linked to relevant features-of-interest using existing vocabularies?
- To what extent can incoming links be automatically generated from DBPedia¹?
- How can aggregation methods be represented on the semantic web to formalise expert knowledge and prevent meaningless aggregation?
- To what extent can already existing standards for retrieving geographic data be used for a service that supplies integrated and aggregated sensor data?

3.2 Objectives

This thesis explores a method to store metadata of sensors on the semantic web, and to link it to real world features-of-interest and to appropriate methods for aggregation. This should improve the discovery of sensor data through links to other related data on the internet.

To improve the integration of sensor data a middleware architecture will be designed that can return sensor data for features-of-interest from different sources. It finds the relevant sensors and the SOS from where they can be queried to retrieve the required data on the semantic web. The sensor data can be returned raw or aggregated. Only appropriate methods of aggregation are offered for each kind of observations, based on a formalisation of expert knowledge on the semantic web. The service can be accessed as a WPS. A prototype implementation will be created as a proof of concept. The prototype should also include a visualisation in either QGIS (as a Python plugin) or on a web map.

3.3 Scope

The focus of this thesis is to explore the role of the semantic web in discovering, integrating and aggregating sensor data from heterogeneous sources. Therefore, accepted OGC and ISO standards will be used, such as SOS, SensorML and O&M. The data on the semantic web will use the om-lite and sam-lite ontologies in combination with geoSPARQL. An in-depth analysis of different (upcoming) standards lies outside the scope of this research.

The idea by Jones et al. (2014) of delivering data to users through a service with which they are already familiar is very appealing, because it enables data to be immediately used in any existing Geographical Information System (GIS). This is also suggested by Atkinson et al. (2015) to ease the transition to the linked data world. However, current research has mainly been concerned with static geographic data, not with sensor data. Therefore, this thesis

¹DBPedia is an online knowledge base with linked data extracted from Wikipedia. It consists of 1.46 billion facts available in 14 languages (Lehmann et al., 2012)

aims to provide a proof of concept for integrating and aggregating sensor data using the OGC standard WPS.

The proof of concept implementation will cover the Netherlands and Belgium. This area has been selected because there is already sensor data available via a SOS service. Also, the shared boundary will be used to test querying sensor data from different sources. The implementation should be able to receive a request for sensor data with a specified bounding box that overlaps both countries. It should efficiently retrieve the relevant data from two different sources, process the data and return the data with a single response. The processing includes integrated data from different sources, but the WPS should also have a parameter that can be used to aggregate the data as well.

4 Methods

A number of studies related to this thesis have been reviewed in Chapter 2. This chapter discusses why the semantic web will be used for linking sensor metadata and which methods will be used to achieve this. The SWE standards, the om-lite and sam-lite ontologies, and RDF will be described.

4.1 Sensor metadata on the semantic web

Sem-SOS (Henson et al., 2009; Pschorr, 2013) as well as SEL (Janowicz et al., 2013) focus on combining the sensor web with the semantic web, but do not address the integration and aggregation of sensor data. Similarly, Atkinson et al. (2015) proposes to expose sensor data to the semantic web in order to find other kinds of related data about the same feature-of-interest. Data that can be collected for another area of research. However, Atkinson et al. (2015) do not mention the integration of complementary sensor data from heterogeneous sources either. Stasch et al. (2011b) and Stasch et al. (2011a) suggest interesting methods for aggregating sensor data based on features-of-interest. However, also these studies use sensor data from only a single source into account. Moreover, Corcho and Garcia-Castro (2010) and Ji et al. (2014) argue that methods for integration and fusion of sensor data on the semantic web is still an area for future research. Data fusion is "a data processing technique that associates, combines, aggregates, and integrates data from different sources" (Wang et al., 2015a, p. 2).

Jirka and Nüst (2010) and Jirka and Bröring (2009) present methods for including SOS services in an OGC catalogue service using SOR and SIR. Making sensor metadata available in a catalogue service will improve the discovery. However, discovery through the semantic web is likely to be more effective, since links can be created towards the sensor data from many different sources of related information. Another advantage is that links can be created by everybody that publishes linked data on the web, allowing sensor data to be used for implementations that were not identified beforehand by the publisher. Also, the semantic web will be easier to access, while the catalogue service can only be requested at a certain Uniform Resource Locator (URL) which has to be known to potential users.

Since data on the web has a distributed nature it can be questioned whether centralised catalogue services are feasible to create. It places a burden on the owner of the SOS to register with a catalogue service. Also, there could be multiple of these services on the web creating issue regarding the discovery of relevant catalogues. The semantic web could solve this issue by getting rid of the 'dataset-centric' approach by adding metadata directly to the web instead. This thesis therefore focuses on the discovery, integration and aggregation of distributed sensor (meta)data using the semantic web.

Delft	is a	municipality		
Subject	predicate	object		
Delft	has geometry		$POLYGON(x_1,y_1 x_2,y_2 x_n,y_n)$	
Subject	predicate		object	

Figure 2: Triples of object, predicate and subject define Delft as a municipality with a geometry

4.2 Sensor observation service

There are a number of different requests that can be made to retrieve sensor (meta)data from a SOS: GetCapabilities, DescribeSensor and GetObservation. GetCapabilities returns a complete overview of what the SOS has to offer. This includes metadata on the kind of observations the service can offer, the spatial extent and the temporal extent. The DescribeSensor request returns detailed information about individual sensors. Using GetObservation actual measurements can be retrieved. These requests can be made as a HyperText Transfer Protocol (HTTP) GET request or a HTTP POST request. The response is an XML document using O&M (for GetObservation) or SensorML (for DescribeSensor).

4.3 Resource description framework

For publishing static geographic data on the semantic web a conversion of Shapefiles to RDF is required. For this the method by Missier (2015) will be used. First the Shapefile is loaded into a Postgres database with the Postgis extension. After that a Python script retrieves the records from the database. Attributes of the records will be mapped to classes from predefined ontologies. Then the script creates an RDF graph and serialises it to a certain RDF notation. This is written it to a file. The final step is to publish the RDF on the web and create a SPARQL endpoint to query the data (Missier, 2015).

In RDF data is stored as so-called 'triples'. These triples are structured as: subject, predicate and object (Berners-Lee et al., 2001). The subject and the object are things and the predicate is the relation between these two things. For example, to define a geographic feature such as the municipality of Delft on the semantic web a number of triples can be made. First of all, Delft is an municipality. Figure 2 shows how Delft can be defined as a municipality with a certain geometry using triples of subject, predicate and object.

Three types of data can make up these triples. The first type is an International Resource Identifier (IRI). This is a reference to a resource and can be used for all positions of the triple. A URL is an example of an IRI, but IRIs can also refer to resources without stating where a location or how it can be accessed. It is a generalisation of an URI, also allowing non-ASCII characters. In the example of the municipality of Delft, IRIs can be used to define 'Delft' and 'Municipality', but also for the predicates 'is a' and 'has geometry'. The second type of data is a literal. A literal is a value which is not an IRI, such as strings, numbers or dates. These values can only be used as object in a triple. In the example of Delft, a literal could be used to store the actual geometry of the boundary: $POLYGON(x_1, y_1 \ x_2, y_2 \ ... \ x_n, y_n)$. Sometimes it is useful to refer to things without assigning them with a global identifier. The third type is the blank node and can be used as an subject or object without using an IRI or literal (Manola et al., 2014).

There are a number of different notations for writing down these triples (serialisation), such as XML (Gandon and Schreiber, 2014), N3 (Berners-Lee and Connolly, 2011) and Turtle (Beckett et al., 2014). Turtle will be used in this thesis, because it is a common notation, which

Figure 3: Triples of Figure 2 in the Turtle notation

is also relatively readable. Figure 3 shows the triples of Figure 2 in the Turtle notation. An example IRI is used for subject 'Delft' and the DBPedia IRI for is used for the object 'Municipality'. The predicate 'is a' is a built-in RDF predicate which can be written as simple 'a'. The second predicate is 'hasGeometry' for which the GeoSPARQL IRI is used. The geometry is a literal in the Well-Known Text (WKT) format. Note that the subject is only written once when there are multiple triples with the same subject. Triples that shares the same subject are divided by semicolons. A point marks the end of the last triple with a specific subject.

The sensor metadata will also be published on the semantic web. To do this an XML document is automatically retrieved from a SOS by a Python script. This script then extracts the relevant data from the XML and maps it to an ontology. It outputs an RDF file that will be published online. When new sources of sensor data are added the RDF documents will be updated.

4.4 Ontology mapping

When publishing data on the semantic web, ontologies are required to specify what things are and how they relate to other things. The evaluation of observation metadata ontologies by Hu et al. (2014) is interesting, since it exposes what the relevant aspects are in the process of observation discovery. However, its proposed model focusses mainly on including remote sensing and imagery data in metadata models that were not originally created for this kind of data. The SSNO is an ontology that clearly describes the process between sensor, stimulus and observation. However, Cox (2015b) points out that an important aspect of describing a sensor network is missing in this ontology: the sampling. Also, the om-lite and sam-lite ontologies by Cox (2015b) are lightweight ontologies that can be complemented by already existing linked data ontologies. They do not rely on the (heavy) ISO specifications that date from before the semantic web, unlike the SSNO. The om-lite and sam-lite ontologies will therefore be used in this thesis.

The Unified Modeling Language (UML) diagram (Figure 4) describes different components of a SOS. The SOS has a number of metadata attributes such as the service provider's details (including contact information), its spatial and temporal extent (spatialFiler & temporalFilter) and the capabilities to query a subset of this extent. It receives data from a sensor which makes observations. An observation can be defined as "an action whose result is an estimate of the value of some property of the feature-of-interest, obtained using a specified procedure" (Cox, 2015a). The sensor is placed at a sampling point. The sampling point is part of a sampling feature which intents to resemble the feature-of-interest. In the case of air quality the feature-of-interest is the bubble of air surrounding the sensor, therefore the sampling point equals the feature-of-interest (INSPIRE, 2014). The design is that an observation of the sampling feature describes the feature-of-interest through measuring one of its properties. The measurement procedure is described by a short string of text, input and output parameters and the units of measurement of the ouput. The relation between feature-of-interest and administrative units is added to improve the discovery of sensor data on the semantic web.

To publish data on the semantic web ontologies are required to specify the different classes and their relations. An ontology for static geographic data has to be connected to an ontology for sensor metadata. From the UML diagram in Figure 4 the classes Observation, Process, ObservedProperty and FeatureOfInterest can be mapped to classes belonging to OWL for ob-

Figure 4: UML diagram of sensor observations service, based on Cox (2015a) and INSPIRE (2014)

servations (Cox, 2015c). SamplingFeature and Sampling point can be mapped to classes from OWL for sampling features (Cox, 2015d). GeoSPARQL can be used for the administrativeUnit class (Perry and Herring, 2011) and the PROV ontology for the sensor and sensor observation service classes (W3C Semantic Sensor Network Incubator Group, 2011).

4.5 Sensor data aggregation

There are many different ways to aggregate sensor data, for example by taking the minimum value, the maximum value, the average value, the sum, etc. Also, spatial aggregation techniques (based on neighbourhood analysis) can be considered to adjust for spatio-temporal irregularities as mentioned by Ganesan et al. (2004). In order to determine which method of aggregation is applicable for a specific kind of sensor data the sensor metadata will contain links to appropriate aggregation methods. However, which methods are appropriate should be based on expert knowledge.

5 Planning

This chapter provides an overview of the deadlines for the thesis, ranging from the start of the thesis on November 10th, 2015 to the final deadline on June 20th, 2016. Based on these dead-

Figure 5: GANTT chart showing the planning of the thesis

lines a planning has been made, which breaks down the total workload into thirteen parts. A GANTT chart is presented as a graphical presentation of the thesis planning (Figure 5).

5.1 Deadlines

For the planning of the thesis a number of deadlines are import. At 5 moments in time the status of the thesis has to be presented and at three of these moments it is required to hand in a report. The five deadlines are referred to as P1 to P5 in the graduation manual. P1 took place on November 10th, 2015. The general idea for the thesis was presented here and a number of students and staff was present to provide feedback. This document is part of the deliverables for P2. At P2 the research proposal for the thesis needs to be handed in. This contains the research question, its relevance, a literature analysis of related work, a description of the methods, a planning and an overview of the tools and data that will be used. The research proposal is due January 11th, 2016. The P2 presentation is scheduled on January 18th, 2016. Preliminary results are presented at P3, for which the date is still unknown. The P4 deadline is on May 2nd, 2016. This is the deadline for handing in the first draft of the thesis report. It should also be presented on May 7th, 2016. The final deadline (P5) is on the 13th of June, 2016. The thesis outcomes will be presented on June 20th, 2016.

5.2 GANTT

Figure 5 shows the planning as a GANTT chart. The first six weeks were mainly focused on the preparations for writing the thesis. A literature analysis and the data collection gave insights in the current state-of-the-art of the sensor web and helped defining the research question. After P2 the work of the thesis is organised in two iterations. This way earlier work can be revisited after the first iteration to either improve it or to make changes due to unforeseen issues. Throughout the process every step will be documented right away, instead of scheduling a number of weeks before P4 to write the complete first draft of the thesis. Four weeks before the P4 deadline have also been left mostly empty to accommodate for any delays or a potential third iteration if necessary. Between P4 and P5 there is a month to improve the first draft of the thesis based on feedback.

6 Tools and Data

The methods that will be researched in this thesis are also going to be tested in a prototype application. Creating a prototype requires data and software tools. This chapter briefly describes the tools and data that will be used.

6.1 Data

The data can be divided into static geographic data and sensor data. For static data the topographic data sets from the Dutch central agency for statistics (CBS) and the Dutch cadaster will be used. Shapefiles of Dutch neighbourhoods (wijken, Figure 6) have been downloaded from http://www.cbs.nl/nl-NL/menu/themas/dossiers/nederland-regionaal/publicaties/geografische-data/archief/2015/wijk-en-buurtkaart-2014-art.htm. The dataset of Dutch provinces (provincies, Figure 8) and municipalities (gemeenten, Figure 7) has been downloaded from https://www.pdok.nl/nl/producten/pdok-downloads/basis-registratie-kadaster/bestuurlijke-grenzen-actueel. It was very difficult to obtain

Figure 6: Dataset of neighbourhoods in the Netherlands in 2014 (from CBS)

data of administrative boundaries of Belgium (even from the INSPIRE data portal). Therefore, all data for Belgium was retrieved from http://www.gadm.org/. Data on Belgian neighbourhoods is not available as open data. The geographic data contains the name of the administrative units and their (polygon) geometry.

Data on landcover will be used to complement the data of administrative units. A section of the 2012 dataset from the Coordination of Information on the Environment (CORINE) programme will be used (Figure 9). This dataset contains polygons (Figure 10) with a unique identifier, a code that defines the type of landcover and the size of the polygon's surface. It was downloaded from http://land.copernicus.eu/pan-european/corine-landcover/clc-2012.

To store the static geographic data a spatial database will be created. A Postgres database will be used for this with the Postgis extension. With the plugin 'PostGIS 2.0 Shapefile and DBF loader' the downloaded shapefiles can be imported into the database.

Air quality sensor data will be used from the RIVM (http://inspire.rivm.nl/sos/) and from the Belgian interregional environment agency (IRCEL-CELINE) (http://sos.irceline.be/). Both of these organisations have a SOS where data can be retrieved according to the SWE standards. They provide three kinds of sensor data: particulate matter (PM_{10}), nitrogen dioxide (NO^2) and ozone (O^3). Figure 11 shows one of the sensor locations in the city center of Amsterdam.

Create map with the locations of sensors

Figure 7: Dataset of municipalities in the Netherlands and Belgium in 2015 (from Dutch cadaster and GADM.org)

Figure 8: Dataset of provinces in the Netherlands and Belgium in 2015 (from Dutch cadaster and GADM.org)

6.2 Prototype

The methods researched in this thesis will be implemented in a prototype. The prototype will be written in the Python programming language and will use a number of Python packages and libraries:

- Psycopg2 will be used to connect a Python script to a Postgres database.
- Python's Request library will be used for making HTTP POST and GET requests.
- For working with XML Python's xml package will be used.
- To create RDF documents the Python library RDFLib will be used.
- The scripts will be part of a WPS using PyWPS

6.3 Server

The prototype will be created on a localhost at first. Once finished it could be hosted on the university server. For the localhost the Apache software will be used, since the PyWPS software requires this. Fuseki Jena is the SPARQL endpoint that is being used (https://jena.apache.org/documentation/serving_data/).

Figure 9: Dataset of landcover in the Netherlands and Belgium in 2012 (from Copernicus The European Earth Observation Programme)

Figure 10: Landcover of the province of South Holland (subsection of the dataset from Figure 9)

Figure 11: Google Streetview image of RIVM sensor location in Amsterdam

References

- Atkinson, R. A., Taylor, P., Squire, G., Car, N. J., Smith, D., and Menzel, M. (2015). Joining the Dots: Using Linked Data to Navigate between Features and Observational Data. In *Environmental Software Systems*. *Infrastructures, Services and Applications*, pages 121–130. Springer.
- Atzori, L., Iera, A., and Morabito, G. (2010). The internet of things: A survey. *Computer networks*, 54(15):2787–2805.
- Beckett, D., Berners-Lee, T., Prud'hommeaux, E., and Carothers, G. (2014). W3C RDF 1.1 Turtle. [online] http://www.w3.org/TR/turtle/[accessed on December 9th, 2015].
- Berners-Lee, T. and Connolly, D. (2011). W3C Notation3 (N3): A readable RDF syntax. [online] http://www.w3.org/TeamSubmission/n3/ [accessed on December 9th, 2015].
- Berners-Lee, T., Hendler, J., Lassila, O., et al. (2001). The semantic web. *Scientific american*, 284(5):28–37.
- Bizer, C., Heath, T., and Berners-Lee, T. (2009). Linked data-the story so far. *Semantic Services*, *Interoperability and Web Applications: Emerging Concepts*, pages 205–227.
- Botts, M., Percivall, G., Reed, C., and Davidson, J. (2007). OGC Sensor Web Enablement: Overview And High Level Architecture. OGC document 06-021r1.
- Botts, M., Percivall, G., Reed, C., and Davidson, J. (2008). OGC sensor web enablement: Overview and high level architecture. In *GeoSensor networks*, pages 175–190. Springer.
- Cambridge Semantics (2015). Introduction to the Semantic Web. [online] https://www.cambridgesemantics.com/semantic-university/introduction-semantic-web [accessed on December 8th, 2015].
- Compton, M., Barnaghi, P., Bermudez, L., GarcíA-Castro, R., Corcho, O., Cox, S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., et al. (2012). The SSN ontology of the W3C semantic sensor network incubator group. *Web Semantics: Science, Services and Agents on the World Wide Web*, 17:25–32.
- Corcho, O. and Garcia-Castro, R. (2010). Five challenges for the Semantic Sensor Web. *Semantic Web-Interoperability, Usability, Applicability*, 1.1(2):121–125.
- Cox, S. J. D. (2015a). Observations and Sampling. [online] https://www.seegrid.csiro.au/wiki/AppSchemas/ObservationsAndSampling [accessed on December 1st, 2015].
- Cox, S. J. D. (2015b). Ontology for observations and sampling features, with alignments to existing models.
- Cox, S. J. D. (2015c). OWL for Observations. [online] http://def.seegrid.csiro.au/ontology/om/om-lite [accessed on November 24th, 2015].
- Cox, S. J. D. (2015d). OWL for Sampling Features. [online] http://def.seegrid.csiro.au/ontology/om/sam-lite [accessed on November 24th, 2015].
- Gandon, F. and Schreiber, G. (2014). W3C RDF 1.1 XML Syntax. [online] http://www.w3.org/TR/rdf-syntax-grammar/[accessed on December 9th, 2015].
- Ganesan, D., Ratnasamy, S., Wang, H., and Estrin, D. (2004). Coping with irregular spatiotemporal sampling in sensor networks. *ACM SIGCOMM Computer Communication Review*, 34(1):125–130.

- Henson, C., Pschorr, J. K., Sheth, A. P., Thirunarayan, K., et al. (2009). SemSOS: Semantic sensor observation service. In *Collaborative Technologies and Systems*, 2009. CTS'09. International Symposium on, pages 44–53. IEEE.
- Hu, C., Guan, Q., Chen, N., Li, J., Zhong, X., and Han, Y. (2014). An Observation Capability Metadata Model for EO Sensor Discovery in Sensor Web Enablement Environments. *Remote Sensing*, 6(11):10546–10570.
- INSPIRE (2014). Guidelines for the use of Observations & Measurements and Sensor Web Enablement-related standards in INSPIRE Annex II and III data specification development.
- INSPIRE (2015). INSPIRE Roadmap. [online] http://inspire.ec.europa.eu/index.cfm/pageid/44 [accessed on December 2nd, 2015].
- ISO (2011). ISO 19156:2011; Geographic information Observations and measurements. [online] http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=32574 [accessed on December 2 nd, 2015].
- Janowicz, K., Broring, A., Stasch, C., Schad, S., Everding, T., and Llaves, A. (2013). A RESTful Proxy and Data Model for Linked Sensor Data. *International Journal of Digital Earth*, 6(3):233–254.
- Ji, C., Liu, J., and Wang, X. (2014). A Review for Semantic Sensor Web Research and Applications. *Advanced Science and Technology Letters*, 48:31–36.
- Jirka, S. and Bröring, A. (2009). OGC Sensor Observable Registry Discussion Paper. Reference number: OGC 09-112.
- Jirka, S. and Nüst, D. (2010). OGC Sensor Instance Registry Discussion Paper. Reference number: OGC 10-171.
- Jones, J., Kuhn, W., Keßler, C., and Scheider, S. (2014). Making the web of data available via web feature services. In *Connecting a Digital Europe Through Location and Place*, pages 341–361. Springer.
- Korteweg, P., Marchetti-Spaccamela, A., Stougie, L., and Vitaletti, A. (2007). *Data aggregation in sensor networks: Balancing communication and delay costs*. Springer.
- Lassila, O. and Swick, R. R. (1999). Resource Description Framework (RDF) Model and Syntax Specification. [online] http://www.w3.org/TR/PR-rdf-syntax/[accessed on December 8th, 2015].
- Lebo, T., Sahoo, S., and McGuinness, D. (2013). PROV-O: The PROV Ontology. [online] http://www.w3.org/TR/prov-o/[accessed on December 11th, 2015].
- Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., Sebastian, H., Morsey, M., Kleef, P. v., Auer, S., and Bizer, C. (2012). DBpedia A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia. *Semantic Web*, 1(5).
- Manola, F., Miller, E., and McBride, B. (2014). W3C RDF Primer. [online] http://www.w3.org/TR/rdf11-primer/ [accessed on December 9th, 2015].
- Missier, G. A. (2015). Towards a Web application for viewing Spatial Linked Open Data of Rotterdam. Master's thesis, Delft University of Technology.
- Moir, E., Moonen, T., and Clark, G. (2014). What are Future Cities: Origins, Meanings and Uses.

- Nebert, D., Whiteside, A., and Vretanos, P. (2007). Opengis catalogue services specification.
- OWL working group (2012). Web Ontology Language (OWL). [online] http://www.w3.org/2001/sw/wiki/OWL [accessed on December 18th, 2015].
- Percivall, G. (2015). OGC Smart Cities Spatial Information Framework. OGC Internal reference number: 14-115.
- Perry, M. and Herring, J. (2011). GeoSPARQL A Geographic Query Language for RDF Data. [online] http://www.opengeospatial.org/standards/geosparql [accessed on December 9th, 2015].
- Price Waterhouse Coopers (2014). Sensing the future of the Internet of Things. [online] https://www.pwc.com/us/en/increasing-it-effectiveness/assets/future-of-the-internet-of-things.pdf [accessed on December 18th, 2015].
- Pschorr, J. K. (2013). SemSOS: an Architecture for Query, Insertion, and Discovery for Semantic Sensor Networks. Master's thesis, Wright State University.
- Sheth, A., Henson, C., and Sahoo, S. S. (2008). Semantic Sensor Web. *IEEE Internet Computing*, 12(4):78–83.
- Stasch, C., Autermann, C., Foerster, T., and Pebesma, E. (2011a). Towards a spatiotemporal aggregation service in the sensor web. Poster presentation. In *The 14th AGILE International Conference on Geographic Information Science*.
- Stasch, C., Schade, S., Llaves, A., Janowicz, K., and Bröring, A. (2011b). Aggregating linked sensor data. In Taylor, K., Ayyagari, A., and de Roure, D., editors, *Proceedings of the 4th International Workshop on Semantic Sensor Networks*, page 46.
- Stasch, C., Scheider, S., Pebesma, E., and Kuhn, W. (2014). Meaningful spatial prediction and aggregation. *Environmental Modelling & Software*, 51:149–165.
- Theunisse, I. A. H. (2015). The Visualization of Urban Heat Island Indoor Temperatures. Master's thesis, TU Delft, Delft University of Technology.
- van der Hoeven, F., Wandl, A., Demir, B., Dikmans, S., Hagoort, J., Moretto, M., Sefkatli, P., Snijder, F., Songsri, S., Stijger, P., et al. (2014). Sensing Hotterdam: Crowd sensing the Rotterdam urban heat island. *SPOOL*, 1(2):43–58.
- Van der Hoeven, F. D. and Wandl, A. (2015). Hotterdam: How space is making Rotterdam warmer, how this affects the health of its inhabitants, and what can be done about it. Technical report, TU Delft, Faculty of Architecture and the Built Environment.
- W3C Semantic Sensor Network Incubator Group (2011). Semantic Sensor Network Ontology. [online] http://www.w3.org/2005/Incubator/ssn/ssnx/ssn [accessed on December 9th, 2015].
- Wang, M., Perera, C., Jayaraman, P. P., Zhang, M., Strazdins, P., and Ranjan, R. (2015a). City Data Fusion: Sensor Data Fusion in the Internet of Things.
- Wang, X., Zhang, X., and Li, M. (2015b). A Review of Studies on Semantic Sensor Web. *Advanced Science and Technology Letters*, 83:94–97.
- Xiang, L., Luo, J., and Rosenberg, C. (2013). Compressed data aggregation: Energy-efficient and high-fidelity data collection. *Networking*, *IEEE/ACM Transactions on*, 21(6):1722–1735.

Zanella, A., Bui, N., Castellani, A., Vangelista, L., and Zorzi, M. (2014). Internet of things for smart cities. *Internet of Things Journal, IEEE*, 1(1):22–32.