

2011 级计算机学院《数值分析》期末试卷 A 卷 (信二学习部整理)

班	级_	学号	姓名	成绩		
注意	_	答题方式为闭卷。 ② 可! 请将填空题的答案直接填在		Ł.		
— 、	填空	题(每空2分,共40分)				
1.	正方升	形的边长约为 100cm,为了	使其面积的误差不超过 1cr	m²,则在测量边长时允许		
	的最为	大误差是cm.				
2.	设√2	$\frac{}{0}$ 的一个近似值的相对误差	差为 0.1%,则该近似值具有	位有效数字.		
3.	计算机	模型的近似解相对于参数。	模型的精确解的总误差由	误差和		
	误差	构成;两类误差合理的配	置原则是	0		
4.	设 f(x	$=a_nx^n+1 \ (a_n\neq 0), \ \ \text{If } f[x_0,x_1]$	$[x_1,\ldots,x_n]=$			
5.	用对约	分法求方程 f(x)=2x²-5x-1=0	在区间[1,3]内的根。进行两	两步对分后根所在区间		
	为	0				
6.	用牛顿下山法解 $f(x)=x^2-2=0$ 时,取 $x_0=0.5$,按其牛顿迭代公式 $x_{n+1}=$					
	计算品	出 $x_1 = 2.25$,此时下山条件	‡不满足,当下山因子 <i>λ</i> =_			
	件满	足。				
7.	向量?	X=(1,-2,3), Y=(3,4,0), 则:	X 的 1-范数 X ₁ =, Y	Y 的 2-范数 Y ₂ =。		
8.	设有知	拒阵 $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$,则 $\ \mathbf{A} \ _{\alpha}$	。=, A ₂ =	°		
1. 2. 3. 4. 5. 6. 11.	对任法	意初始向量 X ⁽⁰⁾ 及任意向量	${\mathbb E} N$,线性方程组的迭代么	$X^{(k+1)} = MX^{(k)} + N$		
	(k=0,	1,…) 收敛于方程组的精硕	角解的充分必要条件是			
			$\int 4x_1 - x_2 = 1$			
10.	用带棒	公弛因子的松弛法($\omega = 1.03$	B)解方程组 $\left\{-x_1+4x_2-x_3\right\}$,=4 的迭代公式是		
			•	3		
11		$f(0) = 0, \ f(1) = 16, \ f(2) = 0$		£[0 1 2] —		
		的二次牛顿基本差商公式为				
		$f = (X + \emptyset) \times X + X = 1$ 点的 3		o		
		n=4 时的牛顿-科特斯系数贝				
13.	□知1	n=4 时的午顿-科特斯系数以	$U C_0^{(1)} = \frac{1}{90}, C_3^{(1)} = \frac{1}{45}, C_2^{(1)}$	= o		

- 二、 计算题 (每题 10 分, 共 60 分)
- 1. 方程 $x^3 x^2 1 = 0$ 在x = 1.5 附近有一个实根,若将该方程变换成下列三种形式进行 迭代计算:

(1)
$$x = \sqrt{\frac{1}{x-1}}$$
 (2) $x = 1 + \frac{1}{x^2}$ (3) $x = \sqrt[3]{1+x^2}$

试判断这三种迭代格式在 $x_0 = 1.5$ 附近的收敛性,并选择一种收敛格式计算出 1.5 附近的实根,要求误差不超过 10^{-3} .

2. 用列主元素法解线性方程组, 计算结果保留小数点后 3 位。

$$\begin{bmatrix} 1 & 1 & 1 \\ 12 & -3 & 3 \\ -18 & 3 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 15 \\ -15 \end{bmatrix}$$

3. 对如下方程组

$$\begin{bmatrix} 1 & 0 & -1 & 2 & 0 \\ -1 & 1 & 1 & -1 & 3 \\ 2 & -1 & 1 & 0 & -1 \\ 0 & 3 & -1 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 25 \\ -11 \\ 15 \end{bmatrix}$$

分别写出雅克比迭代法和高斯-赛德尔迭代法的迭代计算公式,并采用高斯-赛德尔迭代法进行计算,取 $x_0 = (0,0,0,0)^T$,计算过程中保留小数点后 4 位,迭代到

$$\frac{\left\|x^{(k+1)} - x^{(k)}\right\|_{\infty}}{\left\|x^{(k+1)}\right\|_{\infty}} < 10^{-3} 为止$$

4. 己知函数表如下:

x_i	1	3	4	6	
$f(x_i)$	-7	5	8	14	

用三阶拉格朗日(Lagrange)插值多项式计算 f(2)的近似值。

5. 求满足下表条件的埃尔米特(Hermite)插值多项式

x_i	0	1	2
y_i	0	1	1
y_i	0	1	

6. 用复化辛卜生(Simpson)公式计算积分 $I=\int_0^1 \frac{\sin x}{x} dx$,并**估计舍入误差**,函数 $f(x)=\frac{\sin x}{x} \text{ 的值可以参考下表数据}.$

x	0	1/8	1/4	3/8	1/2	5/8	3/4	7/8	1
f(x)	1	0.9973978	0.9896158	0.9767267	0.9588510	0.9361556	0.9088516	0.8771925	0.8414709