LIMITI - CONFRONTO LOCALE

Test di autovalutazione

- 1. Per $x \to 0$ le funzioni $1 \cos x$ e $\sin x$
 - (a) sono infinitesime dello stesso ordine
 - (b) $1 \cos x$ è infinitesima di ordine inferiore
 - (c) $1 \cos x$ è infinitesima di ordine superiore
 - (d) sono equivalenti
- 2. Per $x \to 0$ le funzioni $\log(x+1)$ ed $e^x 1$
 - (a) sono infinitesime dello stesso ordine
 - (b) $e^x 1$ è infinitesima di ordine inferiore
 - (c) $e^x 1$ è infinitesima di ordine superiore
 - (d) non sono equivalenti
- 3. Il prodotto delle funzioni \sqrt{x} e $\log x$ per $x \to 0$
 - (a) tende a zero
 - (b) tende ad 1
 - (c) tende a $-\infty$
 - (d) non esiste il limite per $x \to 0$
- 4. Il rapporto tra le funzioni \sqrt{x} e $\log x$ per $x \to +\infty$
 - (a) tende a zero
 - (b) tende ad 1
 - (c) tende $a + \infty$
 - (d) è limitato
- 5. Per $x \to 0$ le funzioni $\tan x$ ed x
 - (a) sono infinitesime dello stesso ordine e il limite del loro rapporto tende a π
 - (b) sono infinitesime dello stesso ordine e il limite del loro rapporto tende a 1
 - (c) x è un infinitesimo di ordine superiore
 - (d) $\tan x$ è un infinitesimo di ordine superiore
- 6. La funzione $\frac{x^3 x + 1}{1 x^2}$ per $x \to -\infty$
 - (a) tende $a + \infty$
 - (b) tende a 1
 - (c) tende a $-\infty$
 - (d) ha un asintoto orizzontale
- 7. La funzione $\sqrt{x} \sqrt{x+1}$ per $x \to +\infty$
 - (a) tende a 1
 - (b) tende a 0
 - (c) il limite è indeterminato
 - (d) tende $a + \infty$

- 8. $\lim_{x \to 0} M (1 x^2)$
 - (a) non esiste
 - (b) vale 1
 - (c) vale 0
 - è uguale a $M(\lim_{x\to 0} (1-x^2))$ (d)
- 9. $\lim_{x \to 0^{\pm}} \tan \left(\frac{\pi}{4} + x \sin \frac{1}{x} \right)$
 - (a) non esistono
 - (b) valgono rispettivamente ± 1
 - (c) sono infiniti
 - sono uguali a $\tan \left(\lim_{x \to 0^{\pm}} \left(\frac{\pi}{4} + x \sin \frac{1}{x} \right) \right)$ (d)
- 10. La funzione $\frac{x^2+1}{x}$
 - (a) ha come asintoto la retta y = x
 - (b) ha come asintoto la retta y = 1
 - (c) non ha asintoti verticali
 - (d) ha due distinti asintoti obliqui
- 11. La funzione $\frac{2x^2 3}{2 + x^2}$
 - ha come asintoto la retta y = 2x(a)
 - (b) è infinita di ordine 2
 - presenta un asintoto verticale in x = -2(c)
 - ha come asintoto la retta y=2(d)
- 12. La funzione e^{-1/x^3} per $x \to 0^-$
 - (a) tende a $-\infty$
 - (b) tende a $+\infty$
 - si comporta come per $x \to 0^+$ (c)
 - (d) tende a 1
- 13. Le funzioni $\frac{\sin x}{x}$ e $\frac{1}{x}$
 - (a) sono infinitesimi non confrontabili per $x \to +\infty$
 - (b) sono infiniti non confrontabili per $x \to +\infty$
 - (c) sono infinitesimi confrontabili per $x \to +\infty$
 - (d) sono equivalenti per $x \to +\infty$
- 14. Le funzioni $\sin(\frac{1}{x})$ e $\cos(\frac{1}{x})$ per $x \to 0$ (a) sono equivalenti

 - (b) la prima tende a 0 e la seconda ad 1
 - (c) tendono entrambe a zero
 - (d) non ammettono limite

RISPOSTE

1. RISPOSTA ESATTA: (c).

Per $x \to 0$ le funzioni $1 - \cos x$ e sin x sono equivalenti rispettivamente a $\frac{1}{2}x^2$ e a x. Pertanto non sono dello stesso ordine né equivalenti, ma $1 - \cos x$ è un infinitesimo di ordine superiore a x. Dunque le risposte (a), (b) e (d) sono false, mentre (c) è vera.

2. RISPOSTA ESATTA: (a).

Per $x \to 0$ si ha $\log(x+1) \sim x$ e anche $e^x - 1 \sim x$. Pertanto le due funzioni sono equivalenti tra di loro e dunque sono infinitesime dello stesso ordine.

3. RISPOSTA ESATTA: (a).

Si ricordi che $\lim_{x\to 0} x^{\alpha} \log x = 0$, $\forall \alpha > 0$. Pertanto $\lim_{x\to 0} x^{\frac{1}{2}} \log x = 0$.

4. RISPOSTA ESATTA: (c).

Si ricordi che $\lim_{x\to +\infty} \frac{x^{\alpha}}{\log x} = +\infty$, $\forall \alpha > 0$. Pertanto $\lim_{x\to +\infty} \frac{x^{\frac{1}{2}}}{\log x} = +\infty$.

5. RISPOSTA ESATTA: (b).

Dal limite fondamentale $\lim_{x\to 0} \frac{\sin x}{x}$ si ricava:

$$\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \frac{1}{\cos x} = \lim_{x \to 0} \frac{\sin x}{x} = 1$$

Poiché il limite del loro rapporto è un valore finito non nullo, le due funzioni sono infinitesime dello stesso ordine.

6. RISPOSTA ESATTA: (a).

Per $x \to -\infty$ si ha $x^3 - x + 1 \sim x$ e $1 - x^2 \sim -x^2$. Pertanto :

$$\lim_{x \to -\infty} \frac{x^3 - x + 1}{1 - x^2} = \lim_{x \to -\infty} \frac{x^3}{-x^2} = \lim_{x \to -\infty} (-x) = +\infty.$$

Dunque (a) è vera mentre (b) e (c) sono false. Anche (d) è falsa in quanto esisterebbe un asintoto orizzontale se il limite effettuato sopra desse come risultato un valore finito.

7. RISPOSTA ESATTA: (b).

Eseguiamo il limite razionalizzando la funzione:

$$\lim_{x \to +\infty} (\sqrt{x} - \sqrt{x+1}) = \lim_{x \to +\infty} \frac{(\sqrt{x} - \sqrt{x+1})(\sqrt{x} + \sqrt{x+1})}{\sqrt{x} + \sqrt{x+1}} = \lim_{x \to +\infty} \frac{x - (x+1)}{\sqrt{$$

$$= \lim_{x \to +\infty} \frac{-1}{\sqrt{x} + \sqrt{x+1}} = 0$$

8. RISPOSTA ESATTA: (b).

La risposta (d) è errata in quanto $\lim_{x\to 0}(1-x^2)=1$, però non esiste $\lim_{t\to 1}\mathrm{M}(t)$. Dunque non si possono applicare i teoremi sui limiti delle funzioni composte. Si ha però $\lim_{x\to 0}(1-x^2)=1^-$ ed esiste $\lim_{t\to 1^-}\mathrm{M}(t)=1$. Dunque esiste $\lim_{x\to 0}\mathrm{M}(x^2-1)=1$.

9. RISPOSTA ESATTA: (d).

Si ha: $\lim_{x\to 0^\pm} x \sin\frac{1}{x} = 0$ in quanto si tratta del prodotto di una funzione infinitesima per una funzione che, pur non ammettendo limite per $x\to 0^\pm$, si mantiene comunque sempre limitata. Dunque si ha anche $\lim_{x\to 0^\pm} \left(\frac{\pi}{4} + x \sin\frac{1}{x}\right) = \frac{\pi}{4}$.

Poiché la funzione $\tan t$ è continua per $t \to \frac{\pi}{4}$, applicando il teorema sui limiti delle funzioni composte si ha che $\lim_{x\to 0^\pm} \tan\left(\frac{\pi}{4} + x\sin\frac{1}{x}\right) = \tan\left(\lim_{x\to 0^\pm} \left(\frac{\pi}{4} + x\sin\frac{1}{x}\right)\right) = 1$

10. RISPOSTA ESATTA: (a).

La funzione $f(x) = \frac{x^2 + 1}{x}$ presenta un asintoto verticale (la retta x = 0); pertanto la risposta (c) è falsa.

Poiché $\lim_{x\to\pm\infty}\frac{x^2+1}{x}=\pm\infty$, la funzione non ha asintoti orizzontali; dunque la risposta (b) è falsa.

Si ha invece
$$\lim_{x \to +\infty} \frac{f(x)}{x} = 1$$
 e $\lim_{x \to +\infty} (f(x) - x) = 0$

Pertanto la retta y = x è l'unico asintoto obliquo di f(x).

11. RISPOSTA ESATTA: (d).

La funzione non ha asintoti verticali, perché il denominatore non si annulla.

Poiché $\lim_{x\to\pm\infty}f(x)=2$, la funzione ammette la retta y=2 come asintoto orizzontale completo. Dunque non può avere asintoti obliqui, e non è infinita, per nessun valore di $x\in\mathbb{R}$.

12. RISPOSTA ESATTA: (b).

Poiché $\lim_{x\to 0^-}\left(-\frac{1}{x^3}\right)=+\infty$ e poiché la funzione e^t è continua $\forall t\in\mathbb{R}$, si può asserire che:

$$\lim_{x \to 0^{-}} \left(e^{-\frac{1}{x^{3}}} \right) = e^{\lim_{x \to 0^{-}} \left(-\frac{1}{x^{3}} \right)} = +\infty$$

Invece, poiché $\lim_{x\to 0^+} \left(-\frac{1}{x^3}\right) = -\infty$, si ha:

$$\lim_{x \to 0^+} \left(e^{-\frac{1}{x^3}} \right) = e^{\lim_{x \to 0^+} \left(-\frac{1}{x^3} \right)} = 0$$

Pertanto la funzione non si comporta nello stesso modo per $x \to 0^-$ o per $x \to 0^+$.

13. RISPOSTA ESATTA: (a).

Le funzioni $f(x) = \frac{\sin x}{x}$ e $g(x) = \frac{1}{x}$ sono entrambe infinitesime per $x \to +\infty$; infatti $\lim_{x \to +\infty} \frac{\sin x}{x} = \lim_{x \to +\infty} \frac{1}{x} \sin x = 0$ in quanto si tratta del prodotto di una funzione infinitesima per una funzione che non ha limite ma si mantiene limitata.

Però i due infinitesimi non sono confrontabili (e quindi non sono equivalenti).

Infatti, eseguendo il limite del loro rapporto:

$$\lim_{x \to +\infty} \frac{\frac{\sin x}{x}}{\frac{1}{x}} = \lim_{x \to +\infty} \sin x$$

e tale limite non esiste.

14. RISPOSTA ESATTA: (d).

I due limiti non esistono. Infatti $\lim_{x\to 0^{\pm}}\frac{1}{x}=\pm\infty$ e non esistono i limiti $\lim_{t\to \pm\infty}\sin t$ e $\lim_{t\to \pm\infty}\cos t$.