CSE2202: Numerical Methods Online: 1

N T	ID
Name:	ID

Problem Statement: Determine the real root of the equation: $f(x) = 2x^3 + 3x - 1$ using bisection/false position method. Employ initial guesses of $X_{lower} = 0$ and $X_{upper} = 1$ and iterate until the estimated relative error ϵ_a falls below a level of $\epsilon_s = 0.001$

Tasks:

- 1. Write a program using bisection/false position method to locate the approximate root of the function $(x) = 2x^3 + 3x 1$ with initial guesses [0, 1].
- 2. Iterate until the estimated relative error \in_a falls below a level of $\in_s = 0.001$
- 3. Use appropriate math function for your code.
- 4. Print the following table that show the values of approximate root, absolute error and relative error for each iteration.

[Hint:

Absolute Error =
$$\left| \frac{new\ approximation\ of\ root - previous\ approximation\ of\ root}{new\ approximation\ of\ root} \right| \frac{new\ approximation\ of\ root}{new\ approximation\ of\ root} \right|$$

Sample Input/ Output:

Enter The Value of: X_{lower} and X_{upper}

Table: Steps of Bisections / False Position Method

No. of	X_0	Absolute	Relative
Iteration		Error	Error

Approximate Root: