1 Some useful formulas and definitions

Definition 1.1 (Finite Set). Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted by |S|.

Definition 1.2 (Equality of Cardinality). The sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B. When A and B have the same cardinality, we write |A| = |B|.

Definition 1.3 (Countable Set). A set that is either finite or has the same cardinality as the set of positive integers is called countable. A set that is not countable is called uncountable.

Definition 1.4 (Mathematical Induction). To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps: Basis Step: We verify that P(1) is true.

Inductive Step: We show that the statement $P(k) \to P(k+1)$ is true for all positive integers k.

Definition 1.5 (Structural Induction). To prove that P(n) is true for a recursively defined structure, we complete two steps:

Basis Step: Show that P(n) holds for all elements specified in the basis step of the recursive definition.

Recursive Step: Show that if P(n) holds for each of the elements used to construct new elements in the recursive step of the definition, then P(n) holds for these new elements.

Definition 1.6 (Graph). A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes) and E, a set of edges. Each edge has either one or two vertices associated with it, called its endpoints. An edge is said to connect its endpoints.

Definition 1.7 (Simple Graph). A graph in which each edge connects two different vertices and where no two edges connect the same pair of vertices is called a simple graph.

Definition 1.8 (Degree). The degree of a vertex in a graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex. The degree of the vertex v is denoted by deg(v).

Closed Forms of some Common Summations

Sum $\left\ \sum_{k=0}^{n} ar^k (r \neq 0) \right\ $	$\mid \sum_{k=1}^{n} k \mid \sum_{k=1}^{n} k^2$	$\left \sum_{k=1}^{n} k^3 \right \sum_{k=0}^{\infty} x^k, x $	$ x < 1 \mid \sum_{k=1}^{\infty} kx^{k-1}, x < 1$
Formula $\left\ \frac{ar^{n+1}-a}{r-1}, r \neq 1 \right\ $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\left \begin{array}{c} \frac{n^2(n+1)^2}{4} \end{array} \right \qquad \frac{1}{1-x}$	$\frac{1}{(1-x)^2}$