Indian Institute of Technology Guwahati Statistical Inference and Multivariate Analysis (MA 324) Problem Set 02

- 1. Let $X_1, X_2, \ldots, X_n \overset{i.i.d.}{\sim} Bernoilli(p)$, where $p \in (0, 1)$ is an unknown parameter. Evaluate $\mathcal{I}_{\boldsymbol{X}}(p)$, $\mathcal{I}_{\overline{X}}(p)$, and compare. Can we use these Fisher information to claim the sufficiency of \overline{X} ?
- 2. Let $X_1, X_2, \ldots, X_n \overset{i.i.d.}{\sim} N(\mu, \sigma^2)$, where $\sigma > 0$ is unknown, but $\mu \in \mathbb{R}$ is known parameter. Assume that $n \geq 2$. Let

$$U^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \mu)^{2}$$
$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}.$$

Evaluate $\mathcal{I}_{U^2}(\sigma^2)$ and $\mathcal{I}_{S^2}(\sigma^2)$. Show that $\mathcal{I}_{U^2}(\sigma^2) > \mathcal{I}_{S^2}(\sigma^2)$.

3. Suppose that X_1, X_2, \ldots, X_n are i.i.d. RVs with common Rayleigh PDF

$$f(x, \sigma) = \begin{cases} \frac{2}{\sigma} x e^{-\frac{x^2}{\sigma}} & \text{if } x > 0\\ 0 & \text{otherwise,} \end{cases}$$

where $\sigma > 0$ is unknown parameter. Denote a statistic $T = \sum_{i=1}^{n} X_i^2$. Evaluate $\mathcal{I}_{\boldsymbol{X}}(\sigma)$ and $\mathcal{I}_{T}(\sigma)$. Are they same? If so, what conclusion can one draw from this?

- 4. Let $X_1, X_2, X_3 \overset{i.i.d.}{\sim} N(\theta, 1)$, where $\theta \in \mathbb{R}$ is an unknown parameter. Denote $T_1 = X_1 X_2$, $T_2 = X_1 + X_2 2X_3$, and $\mathbf{T} = (T_1, T_2)$. Is \mathbf{T} ancillary for θ ? Are T_1 and T_2 independent?
- 5. Let $X_1, X_2, \ldots, X_n \overset{i.i.d.}{\sim} U(\theta \frac{1}{2}, \theta + \frac{1}{2})$, where $\theta \in \mathbb{R}$ is unknown parameter. Assume that $n \geq 2$. Show that $X_{(n)} X_{(1)}$ is ancillary for θ . Is $\frac{X_{(n)} X_{(1)}}{\overline{X} X_{(1)}}$ ancillary for θ ?
- 6. Let $X_1, X_2 \stackrel{i.i.d.}{\sim} Poi(\lambda)$, where $\lambda > 0$ is unknown parameter. Is the family of distributions induced by the statistic $\mathbf{T} = (X_1, X_2)$ complete?
- 7. Let $X_1, X_2, \ldots, X_n \stackrel{i.i.d.}{\sim} Geo(p)$ with common PMF

$$f(x; p) = \begin{cases} p(1-p)^x & \text{if } x = 0, 1, 2, \dots \\ 0 & \text{otherwise,} \end{cases}$$

where $p \in (0, 1)$ is an unknown parameter. Is $T = \sum_{i=1}^{n} X_i$ complete sufficient statistic for p.

8. Let $X_1, X_2, \ldots, X_n \overset{i.i.d.}{\sim} N(2\theta, 5\theta^2)$, where $\theta > 0$ is an unknown parameter. Is the minimal sufficient statistic complete?