Database Management Systems: Practice Problem Set I: Relational Algebra

Q1. Suppose you are given the relational model below:

REGION(R_REGIONKEY, R_NAME, R_COMMENT)
PRIMARY KEY(R_REGIONKEY)

NATION(N_NATIONKEY, N_NAME, N_REGIONKEY, N_COMMENT)
PRIMARY KEY(N_NATIONKEY)
FOREIGN KEY(N_REGIONKEY) REFERENCES REGION(R_REGIONKEY)

PART(P_PARTKEY, P_NAME, P_MFGR, P_BRAND, P_TYPE, P_SIZE, P_CONTAINER, P_RETAILPRICE, P_COMMENT)
PRIMARY KEY(P_PARTKEY)

SUPPLIER(S_SUPPKEY, S_NAME, S_ADDRESS, S_NATIONKEY, S_PHONE, S_ACCTBAL, S_COMMENT) PRIMARY KEY(S_SUPPKEY)

FOREIGN KEY(S_NATIONKEY) REFERENCES NATION(N_NATIONKEY)

PARTSUPP(PS_PARTKEY, PS_SUPPKEY, PS_AVAILQTY, PS_SUPPLYCOST, PS_COMMENT)
PRIMARY KEY(PS_PARTKEY, PS_SUPPKEY)
FOREIGN KEY PS_PARTKEY REFERENCES PART(P_PARTKEY)
FOREIGN KEY PS_SUPPKEY REFERENCES SUPPLIER(S_SUPPKEY)

Write down the following queries using relational algebra. You may use any valid algebra expression. Make sure you rename attributes whenever selection conditions are ambiguous.

- 1. Find all parts in the PARTS relation.
- 2. Find all parts with available quantity greater than 1000 or are supplied by a country in 'East Asia' geographic region. Return the name of the part.
- 3. Find all nations with at least two different suppliers. Return the name of the nation.
- 4. Find all suppliers who do not supply any parts with retail price greater than 1,000. Return the name of the suppliers.
- 5. Find pairs of suppliers who supply exactly the same parts, no more, no less. Return the supplier key pairs.

Answer.

- 1. $\sigma_{true}PART$.
- 2. Find parts with available quantity is greater than 1000.

```
Temp1 := \Pi_{P\_NAME}(PART \bowtie_{P\_PARTKEY=PS\_PARTKEY} (\sigma_{PS\_AVAILQTY>1000}(PARTSUPP)))
```

Find parts which are supplied by a country in 'East Asia' geographic region $Temp2 := \prod_{P_NAME} (PART \bowtie_{P_PARTKEY=PS_PARTKEY} (PARTSUPP \bowtie_{PS_SUPPKEY=S_SUPPKEY} (SUPPLIER \bowtie_{S_NATIONKEY=N_NATIONKEY} (NATION \bowtie_{N_REGIONKEY=R_REGIONKEY} (\sigma_{R_NAME='EastAsia'}(REGION))))))$

 $Result := Temp1 \cup Temp2.$

3. $Temp1 := (\Pi_{S_SUPPKEY,S_NATIONKEY}SUPPLIER)[SUPPKEY1, NATIONKEY1]$

Find the nations which have two different suppliers.

 $Temp2 := \Pi_{S_NATIONKEY}(SUPPLIER \bowtie_{S_NATIONKEY=NATIONKEY1} AND SUPPKEY1 <> S_SUPPKEY Temp1)$

 $Result := \prod_{N_NAME} (NATION \bowtie_{S_NATIONKEY=N_NATIONKEY} Temp2).$

4. Find the suppliers one of whose parts's retail price is greater than 1000

 $Temp1 := \Pi_{PS_SUPPKEY}(PARTSUPP \bowtie_{PS_PARTKEY} = P_PARTKEY} (\sigma_{P_RETAILPRICE > 1000}(PART)))$

From all suppliers, substract the suppliers in Temp1.

 $Temp2 := \Pi_{N_NAME}(SUPPLIER \bowtie_{S_SUPPKEY} = S_SUPPKEY (\Pi_{S_SUPPKEY} SUPPLIER - Temp1)).$

Find all pairs of partkey and suppkey

 $Temp1 := (\Pi_{PS_PARTKEY,PS_SUPPKEY}(PARTSUPP))[PKEY1, SKEY1]$

Rename the partkey and suppkey

Temp2 := Temp2[PKEY2, SKEY2]

Find all pairs of suppliers who supply one common part

 $Temp3 := \Pi_{SKEY2.SKEY1.PKEY1}(Temp1 \bowtie_{SKEY1} <>SKEY2ANDPKEY1=PKEY2 Temp2)$

Find all pairs of suppliers who could possibly supply a common part

 $Temp4 := (\Pi_{SUPPKEY}(PARTSUPP))[SKEY2] \times Temp1$

Find all pairs of suppliers who don't supply one common part

 $Temp5 := \Pi_{SKEY2,SKEY1}(Temp4 - Temp3)$

 $Result := \Pi_{SKEY1.SKEY2}(Temp3) - Temp5$

Q2. Consider the following schema of a *company database*:

Employees(eid: integer, ename: string, address: string, supereid: integer)

Departments(did: integer, dname: string)

Projects(pid: integer, pname: string, did: integer)
Works_on(eid: integer, pid: integer, hours: integer)

Each Employee has a supervisor (another Employee) referenced by his/her supereid. Projects are uniquely assigned to a Department. The Works_on relation records which Employee works on which Project for how many hours a week.

Formulate each of the following queries in relational algebra (RA).

1. For each Employee, find his / her name and the name of his / her supervisor.

```
\rho(Supervisors,\ (1 \to supeid,\ 2 \to supname),\ Employees) \rho(EmpSup,\ (\sigma_{supereid=supeid}(Employees \times Supervisors))) \pi_{ename,supname}\ EmpSup
```

2. Find the eids of Employees who work on a project of every Department, i.e. find the eids of Employees who work for (a project of) every Department.

```
(\pi_{eid.did}(Works\_on \otimes Projects))/(\pi_{did}Departments)
```

3. Find the pid of Projects of Department with dname = "Toys" for which at least two different Employees work.

$$\rho(R1, \pi_{eid, pid}(Works_on \otimes Projects \otimes (\sigma_{dname = "Toys"}Departments)))$$

$$\rho(R2, (1 \rightarrow eid1, 2 \rightarrow pid1, 3 \rightarrow eid2, 4 \rightarrow pid2), R1 \times R1)$$

$$\rho(R3, \sigma_{pid1 = pid2 \ AND \ eid1 \neq eid2}R2)$$

$$\pi_{pid1}R3$$