TEA010 Matemática Aplicada II Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P03A, 29 set 2023

Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Sabendo que

$$\frac{a^2}{x^2 + a^2} \Leftrightarrow \frac{a}{2} e^{-|ka|}$$

formam um par de transformada-antitransformada de Fourier, encontre

$$\mathscr{F}^{-1}\left\{\frac{a^2}{4}\mathrm{e}^{-2|ka|}\right\}.$$

Deixe sua resposta na forma de uma integral de convolução.

SOLUÇÃO DA QUESTÃO:

$$\begin{split} \mathscr{F}\{f*f\} &= 2\pi \widehat{f}(k)\widehat{f}(k),\\ \mathscr{F}^{-1}\left\{[\widehat{f}(k)]^2\right\} &= \frac{1}{2\pi}f*f,\\ \mathscr{F}^{-1}\left\{\frac{a^2}{4}\mathrm{e}^{-2|ka|}\right\} &= \frac{1}{2\pi}\int_{-\infty}^{+\infty}\left[\frac{a^2}{\xi^2+a^2}\right]\left[\frac{a^2}{(x-\xi)^2+a^2}\right]\mathrm{d}\xi \,\blacksquare \end{split}$$

2 [25] Se

$$[A] = \begin{bmatrix} 1 & 0 & 4+3i \\ 1-i & 2 & 3 \\ 1+i & i & 3 \end{bmatrix},$$

obtenha a matriz adjunta $[A^{\#}]$.

SOLUÇÃO DA QUESTÃO:

$$[A^{\#}] = \begin{bmatrix} 1 & 0 & 4 - 3i \\ 1 + i & 2 & 3 \\ 1 - i & -i & 3 \end{bmatrix}^{\top}$$
$$= \begin{bmatrix} 1 & 1 + i & 1 - i \\ 0 & 2 & -i \\ 4 - 3i & 3 & 3 \end{bmatrix} \blacksquare$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x} = \frac{f(x)}{x}, \qquad y(0) = 0.$$

SOLUÇÃO DA QUESTÃO:

$$\frac{\mathrm{d}y}{\mathrm{d}\xi} + \frac{y}{\xi} = \frac{f(\xi)}{\xi},$$

$$G(x,\xi)\frac{\mathrm{d}y}{\mathrm{d}\xi} + \frac{G(x,\xi)y}{\xi} = \frac{G(x,\xi)f(\xi)}{\xi},$$

$$\int_{\xi=0}^{\infty} G(x,\xi)\frac{\mathrm{d}y}{\mathrm{d}\xi}\,\mathrm{d}\xi + \int_{\xi=0}^{\infty} \frac{G(x,\xi)y}{\xi}\,\mathrm{d}\xi = \int_{\xi=0}^{\infty} \frac{G(x,\xi)f(\xi)}{\xi}\,\mathrm{d}\xi,$$

$$G(x,\xi)y(\xi)\bigg|_{0}^{\infty} - \int_{\xi=0}^{\infty} y\frac{\mathrm{d}G}{\mathrm{d}\xi}\,\mathrm{d}\xi + \int_{\xi=0}^{\infty} \frac{G(x,\xi)y}{\xi}\,\mathrm{d}\xi = \int_{\xi=0}^{\infty} \frac{G(x,\xi)f(\xi)}{\xi}$$

Nesse ponto, como sempre, imponho $\lim_{\xi\to\infty} G(x,\xi)=0$; note que a condição inicial é y(0)=0, o que simplifica um pouco as coisas. Prosseguindo,

$$\begin{split} \int_{\xi=0}^{\infty} y \left[-\frac{\mathrm{d}G(x,\xi)}{\mathrm{d}\xi} + \frac{G(x,\xi)}{\xi} \right] \, \mathrm{d}\xi &= \int_{\xi=0}^{\infty} \frac{G(x,\xi)f(\xi)}{\xi} \, \mathrm{d}\xi, \\ -\frac{\mathrm{d}G(x,\xi)}{\mathrm{d}\xi} + \frac{G(x,\xi)}{\xi} &= \delta(\xi-x). \end{split}$$

A forma mais rápida de obter G é pelo método da variação das constantes. Procuro a solução da equação homogênea:

$$-\frac{\mathrm{d}h}{\mathrm{d}\xi} + \frac{h}{\xi} = 0,$$

$$\frac{\mathrm{d}h}{\mathrm{d}\xi} = \frac{h}{\xi},$$

$$\frac{\mathrm{d}h}{h} = \frac{d\xi}{\xi},$$

$$h(\xi) = A\xi,$$

(onde A é uma constante em relação a ξ), e tento

$$G(x,\xi) = A(x,\xi)\xi,$$

$$-\left[\xi\frac{\mathrm{d}A}{\mathrm{d}\xi} + A\right] + \frac{A\xi}{\xi} = \delta(\xi - x),$$

$$-\xi\frac{\mathrm{d}A}{\mathrm{d}\xi} = \delta(\xi - x),$$

$$\frac{\mathrm{d}A}{\mathrm{d}\xi} = -\frac{\delta(\xi - x)}{\xi},$$

$$\int_{u=0}^{\xi} \frac{\mathrm{d}A}{\mathrm{d}u} \, \mathrm{d}u = -\int_{u=0}^{\xi} \frac{\delta(u - x)}{u} \, \mathrm{d}u$$

$$A(x,\xi) = A(x,0) - \frac{H(\xi - x)}{x},$$

$$G(x,\xi) = \left[A(x,0) - \frac{H(\xi - x)}{x}\right] \xi.$$

Finalmente.

$$0 = G(x, \infty) = [A(x, 0) - 1/x] \infty \Longrightarrow$$

$$A(x, 0) = 1/x,$$

$$G(x, \xi) = [1 - H(\xi - x)] \frac{\xi}{x} \blacksquare$$

4 [25] As raízes da equação característica de uma EDO de coeficientes constantes, homogênea, de ordem 2, são

$$r_1 = -1 + 2\sqrt{\lambda},$$

$$r_2 = -1 - 2\sqrt{\lambda}.$$

Escreva a EDO na forma de uma equação diferencial de Sturm-Liouville, onde λ é o autovalor. Observação: por uma questão de consistência com a Teoria de Sturm-Liouville, a função-peso w(x) que multiplica λy na Equação de Sturm-Liouville deve ser positiva.

SOLUÇÃO DA QUESTÃO:

A equação característica é

$$(r - (-1 + 2\sqrt{\lambda}))(r - (-1 - 2\sqrt{\lambda})) = r^2 + 2r + 1 - 4\lambda.$$

A equação diferencial é

$$\begin{split} 0 &= y'' + 2y' + (1 - 4\lambda)y = \frac{\mathrm{d}}{\mathrm{d}x} \left(p(x) \frac{\mathrm{d}y}{\mathrm{d}x} \right) + q(x)y + \lambda w(x)y, \\ 0 &= y'' + 2y' + (1 - 4\lambda)y = py'' + p'y' + qy + \lambda wy, \\ 0 &= -\frac{1}{4}y'' - \frac{1}{2}y' - \frac{1}{4}y + \lambda y = \frac{p}{w}y'' + \frac{p'}{w}y' + \frac{q}{w}y + \lambda y \end{split}$$

Obtemos um conjunto de 3 equações diferenciais:

$$\frac{q}{w} = -\frac{1}{4},$$

$$\frac{p'}{w} = -\frac{1}{2},$$

$$\frac{p}{w} = -\frac{1}{4},$$

donde p = q, e

$$\frac{dp}{dx} = -\frac{1}{2}w = \frac{1}{2} \times 4p = 2p,$$

$$\frac{dp}{p} = 2dx,$$

$$p(x) = Ce^{2x}.$$

A constante C é totalmente arbitrária, exceto pelo seu sinal que deve ser escolhido de tal forma que w > 0. Sem perda de generalidade, portanto, faça C = -1. Então, $w = 4e^{2x}$, e a equação de Sturm Liouville é

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(-\mathrm{e}^{2x} \frac{\mathrm{d}y}{\mathrm{d}x} \right) - \mathrm{e}^{2x} y + 4\mathrm{e}^{2x} \lambda y = 0 \blacksquare$$