NUMBER SYSTEMS - WORKSHEET 2

$$-2^{(5-1)} = -2^4 = -16$$

$$a^{(5-1)} = a^4 - 1 = 15$$

Total no. of lits =
$$2^8 \times 2^9 = 2^{17} = 2^{10} \times 2^7$$

(6)
$$\frac{10011001}{1001101} = \frac{15310}{15310}$$
 $\frac{010001000}{10011101} \Rightarrow 22110$

(7) $\frac{11011101}{10110} \Rightarrow 22100$
 $\frac{1101001000}{10001000} \Rightarrow 2100$
 $\frac{1101011}{100100} \Rightarrow 46$
 $\frac{101101}{100100} \Rightarrow 46$
 $\frac{101101}{100100} \Rightarrow 52$
(6) $\frac{1001}{100100} \times 1100$
 $\frac{1001}{100100} \times 1100$
 $\frac{1001}{100100} = 1101100$
 $\frac{1001}{100100} = 1101100$

(b)
$$||0||_{2} \times ||00||_{2}$$
 $||10|| \times ||00||$
 $||0000|$
 $||0000|$
 $||0000|$
 $||101||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11||$
 $||11$

Scanned with CamScanner

(a)
$$16_{10} + 9_{10}$$
 $16_{10} = 010000$
 $9_{10} = 001001$
 $011001_2 = 25_{10}$

(b) $27_{10} + 31_{10}$
 $27_{10} = 011011$
 $31_{10} = 011111$
 $111010_2 = 59_{10}$

(c) $-4_{10} + 19_{10}$
 $4 \Rightarrow 000100$
 $19_{10} + (-4)_{10}$
 111100
 111100
 111100
 111100
 111100
 111100
 111100
 111100
 111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 11111100
 11111100
 11111100
 11111100
 11111100
 11111100
 11111100
 11111100
 11111100
 11111100
 1111100
 11111100
 11111100
 11111100
 11111100
 11111100
 11111100
 11111100
 11111100
 11111100
 11111100
 11111100
 11111100
 11111100
 11111100
 11111100
 1111100
 11111100
 11111100
 11111100
 11111100
 11111100
 11111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 1111100
 111100
 111100
 111100
 1111100

Scanned with CamScanner

d)
$$4_{10} - 8_{10} = 4_{10} + (-8)_{10}$$
 $8_{10} \rightarrow 01000$
 10111
 $11000 \rightarrow -8_{10}$
 $111000 \rightarrow -8_{10}$
 $111000 \rightarrow -4_{10}$
 $11000 \rightarrow -4_{10}$

4)
$$18-(-3) = 18+3$$
 $18 = 10010$
 $3 \rightarrow 00011$
 $10101 = 21$

(10) I disagree with both Ben and Alyssa;
Ben: All integers divisible by 6 have exactly 2 1's in
their binary.

But,

30 = 0 11110

It has 4 118 in their binary.

Alyssa: All integers divisible by 6 have an even number of 1's in their binary.

But, 42 = 101010 It has 3 1's in their binary.