Operativni sistem

Operativni sistem

Rad sa BIOS-om i komandnim režimom oslonjenim na BIOS podrazumeva

- poznavanje šta je zauzeto, a šta slobodno u radnoj memoriji
- poznavanje šta je zauzeto, a šta slobodno u masovnoj memoriji
- poznavanje mašinskog formata naredbi

Operativni sistem

Mnogo je lakše

- čuvati podatke i programe u obliku datoteka
 - datoteke sa podacima
 - datoteke sa programima
- pokretati programe bez ulaženja u detalje kao što su:
 - gde će se program smestiti u memoriji
 - koje naredbe ga čine

Koncept **procesa** (engl. *process*)

- angažovanje procesora koje daje neki rezultat

Koncept datoteke (engl. file)

razdvaja upotrebu sadržaja datoteke od načina organizacije

Struktura operativnog sistema

Modul za rukovanje datotekama

- podržava operacije za rad sa datotekama: stvaranje, brisanje, čitanje, pisanje...
- omogućava razlikovanje datoteka putem naziva
- deskriptor datoteke: sadrži atribute datoteke
 - naziv
 - veličina
 - redni brojevi blokova
 - vreme nastanka, izmene, prava pristupa, ...

•

Struktura operativnog sistema

Modul za rukovanje procesima

- podržava operacije za rad sa procesima: stvaranje, pokretanje, uništavanje
- slika procesa
 - naredbe koje čine program
 - vrednosti promenljivih
 - sadržaj steka
- deskriptor procesa: sadrži atribute procesa
 - broj lokacija za smeštanje
 - evidencija zauzetih lokacija
- inicijalna slika procesa se nalazi u izvršnoj datoteci

Struktura operativnog sistema

Modul za rukovanje radnom memorijom

- neophodan za rad prethodna dva modula
- rukovanje slobodnim i zauzetim lokacijama

Modul za rukovanje kontrolerima

- skup drajvera

modul za rukovanje procesima modul za rukovanje datotekama modul za rukovanje radnom memorijom modul za rukovanje kontrolerima

Iznad OS-a su korisnički programi

Interpreter komandi operativnog sistema

Kada se uvedu datoteke i procesi, više nije poželjno da se

- direktno pristupa lokacijama memorije
- direkno pristupa blokovima na disku

Interpreter ostaje sa samo jednom funkcijom

- pokretanje zadatog programa (putem naziva)
 - preuzimanje imena izvršne datoteke
 - modul za rad sa kontrolerima
 - pokretanje programa
 - modul za rukovanje datotekama
 - modul za rukovanje procesima i radnom memorijom

Interpreter komandi operativnog sistema

Spada u korisničke programe

- izvršavanje se oslanja na OS
- OS se prema korisničkim programima odnosi kao prema svojim potprogramima

Dva nivoa korišćenja OS-a

- interaktivni
- programski
 - pozivanje operacija modula operativnog sistema –
 sistemski pozivi

Sistemski programi

- editor
- makro pretprocesor
- prevodilac (engl. assembler/compiler)
- povezivač (engl. linker)
- punilac (engl. loader)
- dibager (eng. debugger)
- pomoćni programi za rad sa datotekama

BIOS i OS

Računar započinje rad izvršavanjem BIOS-a

Inicijalni punilac (engl. bootstrap loader)

- obično se nalazi u nultom bloku diska (engl. boot block)
 - MBR Master Boot Record
 - GPT GUID Partition Table
- BIOS (nakon početnih inicijalizacija računara) učitava nulti blok, smešta ga u memoriju i pokrene
- puni u radnu memoriju preostale delove OS-a

Više operativnih sistema – multiboot

Promena konteksta – preključivanje

(engl. context switch)

Promena konteksta

Izbegavanje radnog čekanja

Višeprocesni režim rada

- više slika procesa istovremeno u memoriji
- prebacivanje (preključivanje) procesora sa jedne na drugu sliku

Stanja procesa

- aktivan
- čeka
- spreman

Sistemski proces

aktivan kada svi ostali čekaju

Promena konteksta

Do promene konteksta dolazi

- kada se završi aktivnost procesa
- kada aktivnost procesa zavisi od spoljašnjeg događaja
 - komunikacija sa diskom
 - komunikacija sa terminalom
- Ul vođeno preključivanje obavljaju ga drajveri

Modul za rukovanje procesorom

bira proces kome će se dodeliti procesor

modul za rukovanje procesima
modul za rukovanje datotekama
modul za rukovanje radnom memorijom
modul za rukovanje kontrolerima
modul za rukovanje procesorom

Promena konteksta

- Ako su svi procesi nezavisni (zasebna memorija i datoteke), zajednički resurs su samo registri procesora, svakom procesu se dodeljuje registarski bafer
- %0 bafer tekućeg aktivnog procesa, % I bafer novog aktivnog procesa

	POČETAK	preključivanje	IZBACI	%12
IZBACI	MAKRO	R	IZBACI	%13
	PREBACI RP	R,(%0)	IZBACI	%14
	DODAJ 1	80	IZBACI	%15
	KRAJ —		UBACI	ક 2
UBACI	MAKRO	R	UBACI	%3
	PREBACI PR	(%1),R	UBACI	% 4
	DODAJ 1	% 1	UBACI	%5
	KRAJ		UBACI	ક 6
preključivanje:	IZBACI	% 2	UBACI	% 7
F	IZBACI	% 3	UBACI	88
	IZBACI	% 4	UBACI	%9
	IZBACI	% 5	UBACI	%10
	IZBACI	% 6	UBACI	%11
	IZBACI	% 7	UBACI	%12
	IZBACI	% 8	UBACI	%13
	IZBACI	%9	UBACI	%14
			UBACI	%15
	IZBACI	%10 011	NATRAG	
	IZBACI	%11	KRAJ	

Prekid (engl. interrupt)

Prekid

Provera spoljašnjih događaja samo prilikom preključivanja nije efikasna

 do reakcije na spoljašnji događaj dolazi tek kada dođe trenutak preključivanja, iako se događaj mogao desiti i ranije

Dešavanje spoljašnjeg događaja treba da odmah pokrene izvršavanje odgovarajućeg drajvera

- prekid izvršavanja tekućeg procesa
- obrada događaja
- nastavak aktivnosti prekinutog procesa

Prekid

Prekid (engl. interrupt)

- obrađivač prekida (engl. interrupt handler)
 - preko vektora prekida (ulazna adresa obrađivača)
- svaka vrsta prekida (tastatura, disk, ...) ima svoj vektor i obrađivač
- prekide izazivaju kontroleri
 - javi procesoru da se desio događaj
 - dostavi vektor obrađivača prekida

Mehanizam prekida

Svi vektori prekida čine **tabelu vektora prekida** kojoj se pristupa preko broja prekida

Linija najave prekida (engl. IRQ - interrupt request)

kontroler javlja da se desio događaj

Linija potvrde prekida (engl. interrupt acknowledge)

- procesor traži broj vektora

Čuvanje programskog brojača (%13) i status registra (%14) pre obrade prekida

Obrađivač prekida čuva preostale registre

Mehanizam prekida

Obrađivači prekida po završetku treba da restauriraju i programski brojač i status registar

- naredba NASTAVI
- kod KONCEPT-a nema prekida unutar prekida
 SR₄ bit prekida (I-omogućeni)
- postavlja se na 0 čim se uđe u obradu prekida

Stek omogućava prekide u više nivoa

Realizacija prekida

Upravljačka jedinica

registar prekida:

sadrži adresu mikroprograma prekida

Realizacija prekida

Logička promenljiva NAJAVA

Izvršavanje mikro programa prekida – pre faze dobavljanja sledeće naredbe

Mikro-program dobavljanja na 0000001₂

 $PRE_DOBAVLJANJA = \sim RS_6 \& \sim RS_5 \& \sim RS_4 \& \sim RS_3 \& \sim RS_2 \& \sim RS_1 \& RS_0$

Mogućnost obavljanja prekida

PREKID = NAJAVA&SR₄&PRE_DOBAVLJANJA

Rukovanje P56 i P54

P56 = R&T&PREKID

P54 = R&T&~IZA DOBAVLJANJA&~PREKID

Serijsko povezivanje kontrolera na liniju potvrde

Arhitektura računara SIIT

Realizacija prekida

Svaki kontroler ima u sebi registar broja prekida

stavlja ga na linije podataka po dobijanju potvrde

Mikro-program prekida

- 1. ciklus: programski brojač → %13
- 2. ciklus: status registar \rightarrow %14
- 3. ciklus: $0 \rightarrow sR_4$
- 4. ciklus: 1 → POTVRDA PREKIDA linije podataka → pomoćni registar
- 5. ciklus: pomoćni registar \rightarrow adresne linije $1 \rightarrow \check{c}$

linije podataka → programski brojač

Mikro-program naredbe NASTAVI

- 1. ciklus: %13 → programski brojač
- 2. ciklus: $\$14 \rightarrow \text{status registar}$

Odnos obrade prekida i preključivanja

Obrada prekida ne zahteva preključivanje, ali ga može izazvati

Prioritet procesa

Na početku rada

- inicijalizacija tabele prekida (funkcija modula za rukovanje kontrolerima)
- omogućavanje prekida

Podela drajvera

- donji deo obrađivač prekida
- gornji deo komunikacija sa višim slojevima

Organizacija drajvera terminala

Donji deo

- obrađivač prekida tastature
- obrađivač prekida ekrana

Gornji deo

potprogrami terminala

Organizacija drajvera diska

Donji deo

obrađivač prekida diska

Gornji deo

 ulazna i izlazna operacija (prijavljuju kraj rada tek kada ceo blok bude prenet)

Usklađivanje rada kontrolera i uređaja

Asinhroni rad:

- kontroleri
- procesor

Sinhroni rad:

- kontroler
- uređaj

Rukovanje (engl. handshaking)

- logička promenljiva KONTROLER
- logička promenljiva UREĐAJ
- samo kada su obe na 1 moguća je komunikacija

Arhitektura računara SIIT

Sabirnice (magistrale)

Sabirnica (magistrala)

Veliki broj prekida koje treba obraditi pri prenosu bloka sa diska ili na disk

Sabirnica (magistrala – engl. bus)

direktna veza između svih delova računara

DMA (engl. direct memory access) kontroler

- rukovanje sabirnicom
 - ZAHTEV (engl. bus request)
 - DOZVOLA (engl. bus grant)

Sabirnica (magistrala)

DMA kontroler diska

- registar broja staze
- registar broja sektora
- registar broja bajtova (za prenos)
- registar adrese (prva lokacija u radnoj memoriji)
- registar stanja (smer prenosa)
- registar podataka

Manje angažovanje procesora oko prekida

ali i usporenje procesora kada se koristi DMA

Koncept

DMA se vrši u toku dobavljanja naredbi

Početak obavljanja zavisi od P, Č i DOZVOLA

Više DMA kontrolera se serijski povezuju na signal DOZVOLA

Linije sabirnice:

- adresne linije
- linije podataka
- upravljačke linije

Arhitektura računara SIIT

Višekorisnički rad

Višekorisnički rad

Periodični prekidi

- kružno preključivanje (engl. round robin)
- (sistemski) sat: kristalni oscilator + brojač impulsa
- sistemsko vreme

Višekorisnički rad

- više terminala povezanih na jedan računar
- privid da računar istovremeno opslužuje više korisnika zasnovan na velikoj brzini procesora

Logički i fizički adresni prostori

Međusobna zaštita procesa (raznih korisnika)

Logički adresni prostor

- logička adresa i fizička adresa
- logička adresa: od 0 do granične (najveća log. adresa)
- poređenje tekuće logičke adrese sa graničnom
 - i-ti bit viši od granične adrese $V_i = L_i \& (\sim G_i)$
 - *i*-ti bit niži od granične adrese $N_i = (\sim L_i) \& G_i$
- izlazak van logičkog adresnog prostora:

```
V = V_{15} | (\sim N_{15} \& (V_{14} | (\sim N_{14} \& ( ... (V_1 | (\sim N_1 \& V_0)) ... ))))
```

Pretvaranje logičke adrese u fizičku

Moguće je samo ako je V netačno!

Sabiranje logičke adrese sa baznom

Granični (engl. limit)i bazni (engl. base) registar za čuvanje adresa

Pretvaranje logičke adrese u fizičku

MMU (engl. Memory Management Unit)

Izuzetak (engl. exception)

Ako je logička adresa neispravna (~V)

MMU detektuje izlazak van opsega adresa

Procesor obrađuje izuzetak

- mikro-program izuzetka
 - sličan mikro-programu prekida
- registar broja vektora
- obrađivač izuzetka (engl. exception handler)
- registar izuzetka (adresa mikro-programa)
 - sličan registru prekida, dodaje se upravljačkoj jedinici

Razlika između izuzetaka i prekida

- I. Pojavu izuzetka otkriva MMU, a ne kontroler
- 2. Broj vektora izuzetka pribavlja procesor, a ne kontroler
- 3. Obrada izuzetka počinje odmah po njegovom otkrivanju
- 4. Izuzeci ne mogu biti onemogućeni

Privilegovani i neprivilegovani režim rada

Rukovanje baznim i graničnim registrima

- privilegovane naredbe/režim rada (OS)
- neprivilegovane naredbe/režim rada (programi)

Fizička memorija

- korisničkom prostoru (engl. user space) pristupaju procesi u neprivilegovanom režimu rada
- sistemskom prostoru (engl. kernel space) pristupa OS u privilegovanom režimu rada
- SR₅ bit privilegije
 - Kako se SR₅ ne bi neovlašćeno menjao, NASTAVI spada u privilegovane naredbe
 - obrađivači prekida i izuzetaka privilegovani potprogrami

Realizacija sistemskih poziva

Kako pristupiti funkcijama operativnog sistema, kada spadaju u privilegovani kod?

Sistemski pozivi se realizuju kao obrađivači izuzetaka

Naredba IZAZOVI

broj_vektora>

Pored poziva operacije, prevodi i procesor u privilegovani režim rada