Лабораторная работа N = 2

Алгоритмы многомерной минимизации функции

Сысоев Александр, Зырянова Мария Верблюжий случай

1 Постановка задания

Требуется реализовать алгоритмы поиска минимума функции нескольких переменных, исследовать их, оценить поведение:

- метод градиентного спуска
- метод наискорейшего спуска
- метод сопряженных градиентов

Ограничение на исследуемые функции – они должны быть квадратичными, то есть представимы в виде

$$f(x) = f(x_1, x_2, \dots, x_n) = \frac{1}{2} \sum_{i,j=1}^{n} a_{ij} x_i x_j - \sum_{i=1}^{n} b_i x_i + c$$

В матричной форме эти функции имеют вид:

$$f(x) = \frac{1}{2}x^T A x - b^T x + c$$
, где $x = (x_1, \dots, x_n)^T, b = (b_1, \dots, b_n)^T$

2 Предварительное исследование

Основная задача — найти минимум заданной функции. По теореме Ферма, если точка x^* — минимум функции, то $f'(x^*)=0$. В многомерном случае можно применить этот критерий последовательно к каждой частной производной, и тогда получится критерий минимума функции нескольких переменных — равенство всех частных производных нулю. Величина, за это отвечающая — градиент, то есть если $x^*=(x_1^*,\cdots,x_n^*)$ — минимум функции, то

$$\nabla f(x^*) = 0$$

Рассмотрим частную производную по x_i квадратичной функции:

$$\frac{\delta}{\delta x_i} f(x_1, \dots, x_n) = a_{ii} x_i + \sum_{j \neq i} \frac{1}{2} (a_{ij} + a_{ji}) x_j - b_i$$

То есть в общем виде градиент квадратичной функции выглядит следующим образом:

$$\nabla f(x) = Ax - b$$

A – симметричная матрица (\Rightarrow ее можно рассматривать, как треугольную), у которой на пересечении i строки и j столбца стоит величина $\frac{1}{2}(a_{ij}+aji)$.

В случае, если градиент в точке не равен нулю, он показывает направление наибольшего локального увеличения функции. Поэтому, если двигаться в направлении антиградиента (то есть $-\nabla f(x)$), то будет происходить движение в направлении убывания f(x).

3 Исследуемые функции

Для анализа методов были выбраны следующие квадратичные функции:

1.

$$f(x) = 64x_1^2 + 126x_1x_2 + 64x_2^2 - 10x_1 + 30x_2 + 13$$

Рис. 1: График функции №1.

$$\min\{64\,x^2+126\,x\,y+64\,y^2-10\,x+30\,y+13\}\approx$$

$$-187.3937007874015748031496063\,\operatorname{at}(x,\,y)\approx$$

$$(9.96062992125984251968503937,\,-10.03937007874015748031496063)$$

Рис. 2: Минимум, найденный с помощью Wolphram Alpha.

2.

$$f(x) = x_1^2 + 4x_2^2 + 4x + 2y$$

Рис. 3: График функции №2.

$$\min\{x^2 + 4y^2 + 4x + 2y\} = -4.25 \text{ at } (x, y) = (-2, -0.25)$$

Рис. 4: Минимум, найденный с помощью Wolphram Alpha.

3.

$$f(x) = 29x^2 + 18y^2 - 8x + 10$$

Рис. 5: График функции №3.

 $\min \left\{ 29\,x^2 + 18\,y^2 - 8\,x + 10 \right\} \approx 9.44827586206896551724137931$ at $(x,\,y) \approx (0.1379310344827586206896551724,\,0)$

Рис. 6: Минимум, найденный с помощью Wolphram Alpha.

4 Метод градиентного спуска

Как было написано ранее, двигаясь в направлении антиградиента, функция убывает. То есть по точке x^k можно получить точку x^{k+1} с меньшим значением функции f. Повторяя это нескольно раз, построится последовательность $x^{k+1} = x^k - \alpha^k \nabla f(x^k)$. При этом, α_k (величина шага) такова, что $f(x^{k+1}) < f(x^k)$.

Точка является миниумом, если в ней квадратичная форма положительно определена. Матрица A — симметричная, будем считать, что положительно определенная. Пусть L — наибольшее собственное значение A, тогда при любых $\alpha \in \left(0; \frac{2}{L}\right)$ и x из области определения фукнции $x^{k+1} = x^k - \alpha^k \nabla f(x^k)$, будет сходиться к единственной точке глобального минимума x^* линейно, со скоростью геометрической прогрессии. В этом случае последовательность x_k будет релаксационной и не будет происходить "проскакивания" стационарной точки.

Таким образом, посчитав максимальное собственное число A, примем $\alpha=\frac{2}{L}$, и затем будем выстраивать последовательность. Если на каком-то шаге $f(x^{k+1})\geqslant f(x^k)$, то был сделан слишком большой шаг и следует уменьшить α . Примем новое $\alpha=\frac{\alpha}{2}$. Будем повторять до условия остановки: $\|\nabla f(x^k)\|\leqslant \epsilon$, либо до указанного колчиества итераций, если это было дано (в нашем исследовании – 10000).

_		m m	Кол-во	Значение					
ϵ	x_1	x_2	итераций	минимума	$x_{1_{min}}$	$x_{2_{min}}$			
	$f(x) = 64x_1^2 + 126x_1x_2 + 64x_2^2 - 10x_1 + 30x_2 + 13$								
10^{-2}	10	10	876	-187.39370078722567	9.9606205571591	-10.039360714639415			
10^{-3}	10	10	876	-187.39370078722567	9.9606205571591	-10.039360714639415			
10^{-4}	10	10	876	-187.39370078722567	9.9606205571591	-10.039360714639415			
10^{-5}	10	10	10000	-187.3937007873267	9.960623763053757	-10.039363920534072			
10^{-6}	10	10	10000	-187.3937007873267	9.960623763053757	-10.039363920534072			
				$f(x) = x_1^2 + 4$	$x_2^2 + 4x + 2y$				
10^{-2}	10	10	29	-4.249999999999996	-1.9999999329447746	-0.25			
10^{-3}	10	10	29	-4.24999999999999	-1.9999999329447746	-0.25			
10^{-4}	10	10	29	-4.249999999999996	-1.9999999329447746	-0.25			
10^{-5}	10	10	29	-4.24999999999999	-1.9999999329447746	-0.25			
10^{-6}	10	10	29	-4.249999999999996	-1.9999999329447746	-0.25			
				$29x^2 + 18y^2$	-8x + 10				
10^{-2}	10	10	15	9.44827586206899	0.137931034482758	-3.58174971296527E-08			
10^{-3}	10	10	15	9.44827586206899	0.137931034482758	-3.58174971296527E-08			
10^{-4}	10	10	15	9.44827586206899	0.137931034482758	-3.58174971296527E-08			
10^{-5}	10	10	15	9.44827586206899	0.137931034482758	-3.58174971296527E-08			
10^{-6}	10	10	16	9.448275862068968	0.13793103448275862	-1.3585947187109647E-08			

Рис. 7: Функция 1

Рис. 8: Функция 2

Рис. 9: Функция 3

5 Метод наискорейшего спуска

Это модификация предудщего метода, в которой коэффициент α каждый раз пересчитывается. После вычисления в начальной точке градиента, движение в направлении антиградиента делается не маленькими шагами, а до тех пор, пока функция убывает. При достижении минимума на выбранном направлении, снова вычисляется градиент функции и описанные действия повторяются.

На каждом k-ом шаге коэффициент α_k находится из решения задачи одномерной оптимизации:

$$\Phi_k(\alpha_k) \to min, \quad \Phi_k(\alpha_k) = f(x^k - \alpha_k \nabla f(x^k))$$

При этом, $\alpha_k > 0$, поэтому оптимизируем на промежутке $[0; \frac{2}{L}]$.

Таким образом, на каждом шаге будем находить α_k , принимать $x^{k+1} = x^k - \alpha^k \nabla f(x^k)$, до тех пор, пока $\|\nabla f(x^k)\| \le \epsilon$, либо до указанного колчиества итераций, если это было дано.

ϵ	x_1	x_2	Кол-во итераций	Значение минимума	$x_{1_{min}}$	$x_{2_{min}}$				
			f(x)	$(x) = 64x_1^2 + 126x_1x_2 + 6$	$64x_2^2 - 10x_1 + 30x_2 + 13$					
10^{-2}	10	10	727	-187.39367612608606	9.957118417601245	601245 -10.03585857508156				
10^{-3}	10	10	698	-187.39370053896903	9.96027747821606	-10.039017635696377				
10^{-4}	10	10	797	-187.39370078492178	9.96059470922056	-10.039334866700877				
10^{-5}	10	10	987	-187.39370078737676	9.960626416187417	-10.039366573667733				
10^{-6}	10	10	1250	-187.3937007874012	9.960629568354005	-10.039369725834321				
				$f(x) = x_1^2 + 4x$	$x_2^2 + 4x + 2y$					
10^{-2}	10	10	16	-4.249988667261994	-1.9970766063316312	-0.24916535824055244				
10^{-3}	10	10	20	-4.249999838918146	-1.9996335176315747	-0.2499181884365339				
10^{-4}	10	10	25	-4.249999999196022	-1.999975518591127	-0.250007152606546				
10^{-5}	10	10	29	-4.24999999998744	-1.9999969394487098	-0.25000089350317256				
10^{-6}	10	10	34	-4.249999999999927	-1.9999997681107133	-0.24999992938546808				
				$29x^2 + 18y^2$	-8x + 10					
10^{-2}	10	10	7	9.448275973454791	0.1378722480606154	-2.4906900895904814E-05				
10^{-3}	10	10	9	9.448275864130045	0.1379268474573064	9.287609823917025E-06				
10^{-4}	10	10	11	9.448275862076303	0.1379308093771439	5.709298815339414E-07				
10^{-5}	10	10	12	9.448275862069288	0.1379311181748114	8.101038924841543E-08				
10^{-6}	10	10	14	9.448275862068968	0.1379310416449409	1.0259368808164012E-09				

Сравнение количества итераций для внутренних методов одномерной оптимизации (на примере второй функции):

	Количество итераций
Метод дихотомии	300
Метод золотого сечения	400
Метод Фибоначчи	425
Метод парабол	125
Метод Брента	311

Рис. 10: Функция 1

Рис. 11: Функция 2

Рис. 12: Функция 3

6 Метод сопряженных градиентов

Отличительная особенность данного метода — он решает квадратичную задачу оптимизации за конечное число шагов (не более, чем n итераций, где n — размерность пространства).

Рассмотрим ненулевые векторы p^1, \dots, p^n . Они называются сопряженными относительно матрицы $A_{n\times n}$ или А-ортогональными, если для всех $i,j:i\neq j$ выполняется условие $(Ap^i,p^j)=0$. Система из таких векторов линейно независима и образует базис в E_n .

Тогда минимизация квадратичной функции $f(x) = \frac{1}{2} (Ax, x) + (b, x) + c (A$ – положительно определенная) сводится к итерационному процессу $x^k = x^{k-1} + \alpha_k p^k$, где p^k – А-ортогональные. Такой последовательный спуск по А-ортогональным направлениям приводит к точке минимума квадратичной формы не более чем за n шагов. На каждой итерации необходимо выбрать параметры, дающие наилучший многочлен, который можно построить, учитывая все сделанные до текущего шага измерения градиента.

Так как функция квадратичная и есть условие А-ортогональности, нахождение параметров сводится до следующих действий на каждом этапе итераций:

$$\alpha = \frac{\|\nabla f(x^k)\|^2}{(Ap^k, p^k)}, \quad x^{k+1} = x^k + \alpha_k p^k$$

$$\nabla f(x^{k+1}) = \nabla f(x^k) + \alpha_k A p^k$$

$$\beta_k = \frac{\|\nabla f(x^{k+1})\|^2}{\|\nabla f(x^k)\|^2}$$

$$p^{k+1} = -\nabla f(x^{k+1}) + \beta_k p^k$$

ϵ	x_1	x_2	Кол-во итераций	Значение минимума	$x_{1_{min}}$	$x_{2_{min}}$					
	$f(x) = 64x_1^2 + 126x_1x_2 + 64x_2^2 - 10x_1 + 30x_2 + 13$										
10^{-2}	10	10	2	-187.39367612608606	9.957118417601245 -10.03585857508						
10^{-3}	10	10	2	-187.39370053896903	9.96027747821606	-10.039017635696377					
10^{-4}	10	10	2	-187.39370078492178	9.96059470922056	-10.039334866700877					
10^{-5}	10	10	2	-187.39370078737676	9.960626416187417	-10.039366573667733					
10^{-6}	10	10	2	-187.3937007874012	9.960629568354005	-10.039369725834321					
				$f(x) = x_1^2 + 4x$	$x_2^2 + 4x + 2y$						
10^{-2}	10	10	2	-4.249988667261994	-1.9970766063316312	-0.24916535824055244					
10^{-3}	10	10	2	-4.249999838918146	-1.9996335176315747	-0.2499181884365339					
10^{-4}	10	10	2	-4.249999999196022	-1.999975518591127	-0.250007152606546					
10^{-5}	10	10	2	-4.24999999998744	-1.9999969394487098	-0.25000089350317256					
10^{-6}	10	10	2	-4.249999999999927	-1.9999997681107133	-0.24999992938546808					
				$29x^2 + 18y^2$	-8x + 10						
10^{-2}	10	10	2	9.448275973454791	0.1378722480606154	-2.4906900895904814E-05					
10^{-3}	10	10	2	9.448275864130045	0.1379268474573064	9.287609823917025E-06					
10^{-4}	10	10	2	9.448275862076303	0.1379308093771439	5.709298815339414E-07					
10^{-5}	10	10	2	9.448275862069288	0.1379311181748114	8.101038924841543E-08					
10^{-6}	10	10	2	9.448275862068968	0.1379310416449409	1.0259368808164012E-09					

Рис. 13: Функция 1

Рис. 14: Функция 2

Рис. 15: Функция 3

7 Сравнение методов

Для симметричной положительно определенной матрицы число обусловленности $\mu=\frac{L}{l}$, где L – наибольшее собственное число матрицы A, а l – наименьшее. Оно характеризует степень вытянутости линий уровня f(x)=const.

- Если *μ* велико, то линии уровня сильно вытянуты, функция имеет овражный характер, то есть резко меняется по одним направлениям и слабо по другим. В этом случае задача плохо обусловлена.
- Если $\mu \approx 1$, то линии уровня близки к окружностям и задача является хорошо обсуловленной.

Для исследования количества итераций каждого метода на разных числах обсуловленности, будем генерировать квадратичную функцию в виде $a_1 \cdot x_1^2 + \cdots + a_n \cdot x_n^2$, где $a_i > 0$, a_1 — наименьшее число и равно 1, a_n — наибольшее и равно заданному k. У нее положительно определенная матрица с l = 1, L = k, а значит $\mu = k$. Также исследуем зависимость от размерности пространства n.

Метод градиентного спуска:

n / k	10	50	100	200	400	600	800	1000	1250	1500
2	79	372	708	1355	2567	3796	4863	6016	7446	8647
10	84	372	708	1355	2567	3796	4863	6016	7446	8647
50	88	379	740	1355	2567	3796	4863	6016	7446	8647
100	89	419	746	1355	2567	3796	4863	6016	7446	8647
250	91	438	825	1434	2567	3796	5073	6187	7446	10000
500	92	447	863	1651	3167	3796	6341	6016	9677	10000
750	94	454	870	1722	3232	4758	6194	7909	9682	8647
1000	93	455	870	1652	3232	4859	6473	6016	7675	8647
1500	95	463	892	1709	3234	4860	6199	8023	10000	8902
10000	99	487	935	1820	3484	5219	6613	8239	10000	10000

Метод наискорейшего спуска:

n / k	10	50	100	200	400	600	800	1000	1250	1500
2	59	283	593	1154	2323	3510	4732	5917	7531	9038
10	61	307	595	1156	2324	3511	4733	5918	7531	9039
50	64	299	595	1156	2324	3511	4733	5918	7531	9038
100	67	307	613	1156	2324	3511	4733	5917	7531	9310
250	68	322	630	1190	2324	3510	4733	5917	7531	9038
500	69	322	652	1210	2434	3510	4733	5917	7531	9038
750	70	338	650	1245	2394	3616	4959	5917	7890	9038
1000	71	336	661	1245	2486	3722	4875	5917	7531	9469
1500	72	339	664	1284	2486	3722	5018	5917	7531	9310
10000	76	364	711	1352	2652	3923	5064	6576	8284	10000

Метод сопряженных градиентов:

n / k	10	50	100	200	400	600	800	1000	1250	1500
2	2	2	2	2	2	2	2	2	2	2
10	6	10	9	10	10	10	10	10	10	10
50	10	27	27	38	34	46	43	35	45	40
100	10	35	36	41	60	74	58	62	56	58
250	10	36	53	74	71	84	99	91	102	88
500	10	37	54	67	100	85	101	112	101	137
750	10	37	54	77	97	109	146	141	172	145
1000	10	37	54	78	110	133	141	133	160	144
1500	10	38	55	78	110	126	157	168	168	178
10000	10	38	56	81	115	140	162	181	202	221

8 Выводы

Мето сопряженных градиентов показал себя наилучшим образом — ему требуется малое количество итераций, однако при его реализации требуются различные вычислительные оптимизации, которые сильно зависят от вида функции нескольких переменных. Также производится несколько вычислений. На различных n и μ ведет себя относительно стабильно, почти без резких скачков.

Метод градиентного спуска прост в реализации, не требует затратных вычислений и применения одномерных оптимизаций. Однако, ему требуется наибольшее количество итераций, так как происходит движение по ломаной (зигзагом), а не ищется более оптимальная. Также, на различных n и μ ведет себя нестабильнее всех, совершая резкие скачки на больших μ .

Метод наискорейшего спуска требует меньшего количества итераций, однако внутри происходит вычисление минимума при помощи методов одномерной оптимизации, которые затрачивают итерации. Исходя из замеров, внутренний метод парабол ведет себя лучше остальных методов одномерной оптимизации, требуя меньшего количества как итераций, так и вычислений в целом.

Реализация: GitHub.