NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS

with credits to Chan Yu Ming, Poh Wei Shan Charlotte

MA3209 Mathematical Analysis III

AY 2008/2009 Sem 1

SECTION A

Question 1

(a)
$$\rho(z,w)$$
 is well-defined, since $\rho(z,w) = \sum_{k=1}^{\infty} |z_k - w_k| \le \sum_{k=1}^{\infty} |z_k| + \sum_{k=1}^{\infty} |w_k| < \infty$.

Note that
$$\rho(z, w) = \sum_{k=1}^{\infty} |z_k - w_k| \ge 0.$$

Suppose
$$\rho(z, w) = 0$$
, then $\sum_{k=1}^{\infty} |z_k - w_k| = 0 \Rightarrow \forall k \in \mathbb{N}, z_k = w_k$. So $z = w$.

Conversely, suppose
$$z = w$$
. Then $\forall k \in \mathbb{N}, z_k = w_k$. So $\rho(z, w) = \sum_{k=1}^{\infty} |z_k - w_k| = 0$.

We also have symmetry:
$$\rho(z, w) = \sum_{k=1}^{\infty} |z_k - w_k| = \sum_{k=1}^{\infty} |w_k - z_k| = \rho(w, z).$$

To show triangle inequality, take $z=(z_k), w=(w_k), v=(v_k)\in\ell^\infty.$

Then
$$\rho(z, w) = \sum_{k=1}^{\infty} |z_k - w_k| \le \sum_{k=1}^{\infty} |z_k - v_k| + \sum_{k=1}^{\infty} |v_k - w_k| = \rho(z, v) + \rho(v, w).$$

Therefore, ρ is a metric on ℓ^{∞} .

(b) Since
$$x_1 \neq x_2$$
, so $d(x_1, x_2) > 0$. Take $\epsilon_1 = \frac{d(x_1, x_2)}{2}, \epsilon_2 = \frac{d(x_1, x_2)}{2} > 0$.

Suppose
$$D(x_1, \epsilon_1) \cap D(x_2, \epsilon_2) \neq \phi$$
. Take an element $p \in D(x_1, \epsilon_1) \cap D(x_2, \epsilon_2)$.

Then
$$d(p, x_1) < \epsilon_1$$
 and $d(p, x_2) < \epsilon_2$.

So
$$d(x_1, x_2) \le d(x_1, p) + d(x_2, p) < \epsilon_1 + \epsilon_2 = \frac{d(x_1, x_2)}{2} + \frac{d(x_1, x_2)}{2} = d(x_1, x_2)$$
, which is a contradiction.

Question 2

- (i) We know that $A = \{y \in \mathbb{R}^n : d(w, y) \le 1\} = \{y \in \mathbb{R}^n : ||w y||_2 \le 1\}$ is closed and bounded in \mathbb{R}^n . By the Heine-Borel Theorem, A is compact.
- (ii) It suffices to show that $A = \{y \in \ell^{\infty} : d(w, y) \leq 1\}$ is not sequentially compact.

Given $w = (w_1, w_2, w_3, ...)$ where w is a bounded sequence in \mathbb{C} , define the following sequences:

Page: 1 of 6

$$z^{(1)} = (w_1 + 1, w_2, w_3, ...)$$

$$z^{(2)} = (w_1, w_2 + 1, w_3, ...)$$

$$z^{(3)} = (w_1, w_2, w_3 + 1, ...)$$

:

Since w is bounded, so all the $z^{(k)}$'s are bounded as well, i.e. $\forall k \in \mathbb{N}, z^{(k)} \in \ell^{\infty}$.

Note that for all k, $d(z^{(k)}, w) = 1$, so $z^{(k)} \in A$. So $\{z^{(1)}, z^{(2)}, z^{(3)}, ...\}$ is a sequence in A.

Furthermore, note that if $m \neq n$, then $d(z^{(m)}, z^{(n)}) = 1$, so any subsequence of $\{z^{(1)}, z^{(2)}, z^{(3)}, ...\}$ cannot be Cauchy, and hence cannot be convergent.

Thus, $\{z^{(1)}, z^{(2)}, z^{(3)}, ...\}$ is a sequence in A that has no convergent subsequence, so A is not sequentially compact, and hence not compact.

Question 3

- (a) Write $\lim_{k\to\infty} x_k = x$, $\lim_{k\to\infty} y_k = y$. Note that x and y exist as (M,d) is complete.
 - (⇒) Assume x = y. So given any $\varepsilon > 0$, there exists $K_1, K_2 \in \mathbb{N}$ such that $\forall k \geq K_1, d(x_k, x) < \frac{\varepsilon}{2}$, and $\forall k \geq K_2, d(y_k, x) < \frac{\varepsilon}{2}$. Then $\forall k \geq \max\{K_1, K_2\}, d(x_k, y_k) \leq d(x_k, x) + d(y_k, x) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. $\therefore d(x_k, y_k) \to 0$ as $k \to \infty$.
 - (\Leftarrow) Assume that $d(x_k, y_k) \to 0$ as $k \to \infty$.

Then given any $\varepsilon > 0$, there exists $K_3 \in \mathbb{N}$ such that $\forall k \geq K_3, d(x_k, y_k) < \frac{\varepsilon}{3}$.

There exists $K_4 \in \mathbb{N}$ such that $\forall k \geq K_4, d(x_k, x) < \frac{\varepsilon}{3}$.

Similarly, there exists $K_5 \in \mathbb{N}$ such that $\forall k \geq K_5, d(y_k, y) < \frac{\varepsilon}{3}$.

Let $K_0 = \max\{K_3, K_4, K_5\}$. Then $d(x, y) \leq d(x, x_{K_0}) + d(x_{K_0}, y_{K_0}) + d(y_{K_0}, y) < \varepsilon$. Since ε is arbitrary, d(x, y) = 0. Hence x = y.

- (b) Since A is closed in N, so its complement $N \setminus A$ is open in N. Note that:
 - $A \cap N = A \neq \phi$ (given)
 - $(N \setminus A) \cap N = (N \setminus A) \neq \phi$ (since $A \neq N$)
 - $A \cap (N \setminus A) \cap N = \phi$ (since $A \cap (N \setminus A) = \phi$)
 - $N = A \cup (N \setminus A)$.

Therefore, N is disconnected.

Question 4

(i) Given any $\varepsilon > 0$, choose $\delta = \varepsilon$. Then $\forall \mathbf{x} = (x_1, x_2, ..., x_n), \mathbf{y} = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$, whenever $\|\mathbf{x} - \mathbf{y}\|_2 < \delta$, we have $\sqrt{\sum_{k=1}^n |x_k - y_k|^2} < \delta$.

Hence, $\|f(\mathbf{x}) - f(\mathbf{y})\|_2 = \sqrt{\sum_{k=1}^s |x_k - y_k|^2} \le \sqrt{\sum_{k=1}^n |x_k - y_k|^2} < \varepsilon$.

So f is uniformly continuous on \mathbb{R}^n .

(ii) Since f is continuous from part (i), and A is closed in \mathbb{R}^s , so $B = f^{-1}(A)$ is closed in \mathbb{R}^n .

Question 5

- (i) For all $k \in \mathbb{N}$, define $g_k : \mathbb{R}^2 \to \mathbb{R}$, $g_k(x,y) = \frac{(-1)^k}{(k!)^2} e^{-k(x^2+y^2)}$. Note that for each $k \in \mathbb{N}$ and for all $(x,y) \in \mathbb{R}^2$, $|g_k(x,y)| = \frac{1}{(k!)^2} e^{-k(x^2+y^2)} \le \frac{1}{k!}$. Since $\sum_{k=1}^{\infty} \frac{1}{k!}$ converges by ratio test, so $\sum_{k=1}^{\infty} g_k(x,y)$ converges uniformly on \mathbb{R}^2 by Weierstrass M-test.
- (ii) Let $g: \mathbb{R}^2 \to \mathbb{R}$, $g(x,y) = \sum_{k=1}^{\infty} \frac{(-1)^k}{(k!)^2} e^{-k(x^2+y^2)} = \sum_{k=1}^{\infty} g_k(x,y)$. Note that since g_k is continuous for all k, and by (i), $\sum_{k=1}^{\infty} g_k(x,y)$ converges uniformly on \mathbb{R}^2 , so g is continuous on \mathbb{R}^2 .

Define $f:[0,1]\to\mathbb{R}^2$, $f(t)=(t,\cos t)$. Note that f is continuous on [0,1], since it is continuous at each of its components. Hence $h=g\circ f$ is continuous on [0,1].

By the Weierstrass Approximation Theorem, given any $\epsilon > 0$, there exists a polynomial p on [0,1] such that $|h(t) - p(t)| < \epsilon$ for all $t \in [0,1]$.

SECTION B

Question 6

(a)(i) True.

Take any $p \in \operatorname{int}\left(\bigcap_{k=1}^{\infty} A_k\right)$. Then there exists $\varepsilon > 0$ such that $D(p,\varepsilon) \subseteq \bigcap_{k=1}^{\infty} A_k$. Since $D(p,\varepsilon) \subseteq A_k$ for all $k \in \mathbb{N}$, so $p \in \operatorname{int}(A_k)$ for all $k \in \mathbb{N}$. Thus, $p \in \bigcap_{k=1}^{\infty} \operatorname{int}(A_k)$.

Hence,
$$\operatorname{int}\left(\bigcap_{k=1}^{\infty} A_k\right) \subseteq \bigcap_{k=1}^{\infty} \operatorname{int}(A_k).$$

(a)(ii) False. Let $M = \{3, 4\}, x = 3, r = 1$. Consider the discrete metric $d(x, y) = \begin{cases} 0 \text{ if } x = y \\ 1 \text{ if } x \neq y \end{cases}$.

Then $cl(\{y \in M : d(3, y) < 1\}) = cl(\{3\}) = \{3\}$ since any singleton set is closed. However, $\{y \in M : d(3, y) \le 1\} = \{3, 4\}.$ (b) Suppose \mathbb{Q} can be expressed as a countable intersection of open subsets of \mathbb{R} . For simplicity of notation, $\forall B \subseteq \mathbb{R}$, denote $\mathbb{R} \setminus B$ as B^c .

Write $\mathbb{Q} = \bigcap_{k=1}^{\infty} A_k$, where each A_k is an open subset of \mathbb{R} . So $\mathbb{R} - \mathbb{Q} = \left(\bigcap_{k=1}^{\infty} A_k\right)^c = \bigcup_{k=1}^{\infty} (A_k)^c$.

So
$$\mathbb{R} - \mathbb{Q} = \left(\bigcap_{k=1}^{\infty} A_k\right)^c = \bigcup_{k=1}^{\infty} (A_k)^c$$
.

Recall the following theorem:

Let (M,d) be a metric space, and $A \subseteq M$. Then A is nowhere dense in M if and only if $M \setminus [cl(A)]$ is dense in M.

Since each A_k contains \mathbb{Q} , and \mathbb{Q} is dense in \mathbb{R} , so A_k is dense in \mathbb{R} . Furthermore, each $(A_k)^c$ is closed in \mathbb{R} , so $\operatorname{cl}((A_k)^c) = (A_k)^c$.

Using the above theorem with $M = \mathbb{R}$, $A = (A_k)^c$, and the fact that $[\operatorname{cl}((A_k)^c)]^c = [(A_k)^c]^c = A_k$ is dense in \mathbb{R} , we conclude that $(A_k)^c$ is nowhere dense in \mathbb{R} .

Let $r_1, r_2, ...$ be an enumeration of \mathbb{Q} .

Note that $\forall k \in \mathbb{N}, (A_k)^c \cup \{r_k\}$ is nowhere dense. Otherwise, if $\exists x \in \text{int}[\text{cl}((A_k)^c \cup \{r_k\})] =$ $\operatorname{int}((A_k)^c \cup \{r_k\})$, then $\exists \varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon) \subseteq (A_k)^c \cup \{r_k\}$ which is a contradiction as the interval contains more than 2 rational numbers.

Then $\mathbb{R} = (\mathbb{R} - \mathbb{Q}) \cup \mathbb{Q} = \bigcup_{k=1}^{\infty} (A_k)^c \cup \bigcup_{k=1}^{\infty} \{r_k\} = \bigcup_{k=1}^{\infty} [(A_k)^c \cup \{r_k\}]$ is a countable union of nowhere dense subsets of \mathbb{R} . This is impossible because of Baire Category Theorem and that \mathbb{R} is complete.

Therefore, \mathbb{Q} cannot be expressed as a countable intersection of open subsets of \mathbb{R} .

Question 7

(a) Substitute y=0 into the given inequality. Then for each fixed $x_0 \in [-1,1]$, we obtain for all $k \in \mathbb{N}$,

$$|f_k(x_0) - f_k(0)| \le C|x_0|.$$

 $|f_k(x_0) - 1| \le C|x_0|.$
 $|f_k(x_0)| \le 1 + C|x_0|.$

Hence, for each fixed $x_0 \in [-1,1]$, the sequence $\{f_k(x_0)\}_{k=1}^{\infty}$ is bounded.

 $\therefore \{f_k\}$ is pointwise bounded.

Furthermore, given any $\varepsilon > 0$, choose $\delta = \frac{\varepsilon}{C}$. Then for all $k \in \mathbb{N}$, and for all $x, y \in [-1, 1]$, whenever $|x-y| < \delta$, we have $|f_k(x) - f_k(y)| \le C|x-y| \le C(\frac{\varepsilon}{C}) < \varepsilon$.

 $\therefore \{f_k\}$ is equicontinuous on [-1,1].

Lastly, [-1,1] is a compact subset of \mathbb{R} , so by the Arzelà-Ascoli Theorem, $\{f_k\}$ has a uniformly convergent subsequence.

(b) Note that if $(x,y) \in A$, then $(-x,-y) \in A$. So define $h:A \to \mathbb{R}, h(x,y)=f(x,y)-f(-x,-y)$. Since f is continuous on A, so h is also continuous on A. Suppose there is no $(x_0, y_0) \in A$ such that $f(x_0, y_0) = f(-x_0, -y_0)$. Take $(0, 1), (0, -1) \in A$. Then either f(0, 1) > f(0, -1)or f(0,1) < f(0,-1). Without loss of generality, assume f(0,1) > f(0,-1). Then h(0,1) = f(0,1)-f(0,-1)>0, and h(0,-1)=f(0,-1)-f(0,1)<0. By the intermediate value theorem, there exists a point $(x_1,y_1)\in A$ such that $h(x_1,y_1)=0$. This implies that $f(x_1,y_1)=f(-x_1,-y_1)$, which is a contradiction. Thus, there exists $(x_0,y_0)\in A$ such that $f(x_0,y_0)=f(-x_0,-y_0)$.

Question 8

(a) Let $\varepsilon > 0$ be given. Since f is uniformly continuous on A, so there exists $\delta > 0$ such that for all $x, y \in A$, if $d(x, y) < \delta$, then $\rho(f(x), f(y)) < \varepsilon$. Since $A \subseteq M$ is totally bounded, so there exists a finite subset $\{x_1, x_2, ..., x_n\} \subseteq M$ such that $A \subseteq \bigcup_{i=1}^n D_d(x_i, \delta)$, where $D_d(x_i, \delta) = \{y \in M : d(y, x_i) < \delta\}$.

Claim:
$$f(A) \subseteq \bigcup_{i=1}^{n} D_{\rho}(f(x_i), \varepsilon)$$
, where $D_{\rho}(f(x_i), \varepsilon) = \{z \in N : \rho(z, f(x_i)) < \varepsilon\}$.

Proof: For any $p \in f(A)$, there exists $q \in A$ such that f(q) = p. But $A \subseteq \bigcup_{i=1}^n D_d(x_i, \delta)$ implies that there exists $i_0 \in \{1, 2, ..., n\}$ such that $q \in D_d(x_{i_0}, \delta) \Rightarrow d(q, x_{i_0}) < \delta$. By the uniform continuity of f, we have $\rho(f(q), f(x_{i_0})) = \rho(p, f(x_{i_0})) < \varepsilon$. So $p \in D_\rho(f(x_{i_0}), \varepsilon)$. Hence, $p \in \bigcup_{i=1}^n D_\rho(f(x_i), \varepsilon)$. Thus, $f(A) \subseteq \bigcup_{i=1}^n D_\rho(f(x_i), \varepsilon)$.

 $\therefore f(A) \subseteq N$ is totally bounded.

(b)(i) Since Φ^r is a contraction, so there exists $\lambda \in (0,1)$ such that for all $x,y \in M$, we have

$$d(\Phi^r(x), \Phi^r(y)) < \lambda \ d(x, y).$$

Suppose that for some positive integer m, we have $d(\Phi^{rm}(x), \Phi^{rm}(y)) \leq \lambda^m d(x, y)$ for all $x, y \in M$. So for any $x, y \in M$, since $\Phi^r(x), \Phi^r(y) \in M$, we have:

$$\begin{array}{lcl} d(\Phi^{r(m+1)}(x),\Phi^{r(m+1)}(y)) & = & d(\Phi^{rm}(\Phi^r(x)),\Phi^{rm}(\Phi^r(y))) \\ & \leq & \lambda^m d(\Phi^r(x),\Phi^r(y)) \\ & \leq & \lambda^{m+1} d(x,y). \end{array}$$

So by induction, for any $\ell \geq 1$,

$$d(\Phi^{r\ell}(x), \Phi^{r\ell}(y)) \le \lambda^{\ell} d(x, y)$$
 for all $x, y \in M$.

(b)(ii) Lemma: Φ has a unique fixed point.

Proof: Since Φ^r is a contraction mapping on the complete metric space M, so by the contraction mapping principle, Φ^r has a unique fixed point which we shall denote it by x_0 . From the definition of contraction of Φ^r , we have

$$d(\Phi^{r}(\Phi(x_{0})), \Phi^{r}(x_{0})) \leq \lambda \ d(\Phi(x_{0}), x_{0})$$

$$d(\Phi(\Phi^{r}(x_{0})), \Phi^{r}(x_{0})) \leq \lambda \ d(\Phi(x_{0}), x_{0})$$

$$d(\Phi(x_{0}), x_{0}) \leq \lambda \ d(\Phi(x_{0}), x_{0})$$

Suppose $\Phi(x_0) \neq x_0$, then $d(\Phi(x_0), x_0) > 0$. Dividing both sides by $d(\Phi(x_0), x_0)$, we obtain $1 \leq \lambda$ which is a contradiction. Therefore, $\Phi(x_0) = x_0$, i.e. x_0 is also a fixed point of Φ .

Page: 5 of 6

To prove uniqueness, suppose Φ has two fixed points x_0, y_0 . From the definition of contraction of Φ^r , we have

$$d(\Phi^r(x_0), \Phi^r(y_0)) \leq \lambda d(x_0, y_0)$$

$$d(x_0, y_0) \leq \lambda d(x_0, y_0)$$

Suppose $x_0 \neq y_0$, then $d(x_0, y_0)$. Dividing both sides by $d(x_0, y_0) > 0$, we obtain $1 \leq \lambda$ which is a contradiction. Therefore, $x_0 = y_0$, i.e. Φ has a unique fixed point. \square

Returning to the main problem, fix $x \in M$. If x is the fixed point x_0 , then the sequence $\{\Phi^k(x_0)\}_{k=1}^{\infty}$ is just the constant sequence $\{x_0, x_0, ...\}$, which converges in M. So we shall assume that x is not a fixed point of M. Let $B = \max\{d(x, x_0), d(\Phi(x), x_0), d(\Phi^2(x), x_0), ..., d(\Phi^{r-1}(x), x_0)\}$. Note that B is positive because $x \neq x_0$ implies $d(x, x_0) > 0$.

Now, given any $\varepsilon > 0$, choose L large enough such that $\lambda^{\lfloor \frac{L}{r} \rfloor} < \frac{\varepsilon}{B}$, where $\lfloor \frac{L}{r} \rfloor$ is the quotient when L is divided by r. For any k, using the division algorithm, write $k = rm_1 + m_2$, where m_1 is the quotient, and $m_2 \in \{0, 1, 2, ..., r-1\}$ is the remainder. Then for all $k \geq L$,

Page: 6 of 6

$$d(\Phi^{k}(x), x_{0}) = d(\Phi^{rm_{1}+m_{2}}(x), x_{0})$$

$$= d(\Phi^{rm_{1}}(\Phi^{m_{2}}(x)), \Phi^{rm_{1}}(x_{0}))$$

$$\leq \lambda^{m_{1}} d(\Phi^{m_{2}}(x), x_{0})$$

$$\leq \lambda^{\lfloor \frac{L}{r} \rfloor} d(\Phi^{m_{2}}(x), x_{0})$$

$$< \left(\frac{\varepsilon}{B}\right)(B)$$

$$= \varepsilon$$

$$(1)$$

Note that (1) is derived from $m_1 = \lfloor \frac{k}{r} \rfloor \geq \lfloor \frac{L}{r} \rfloor$ and since $\lambda < 1$, $\lambda^{\lfloor \frac{k}{r} \rfloor} \leq \lambda^{\lfloor \frac{L}{r} \rfloor}$. Therefore, the sequence $\{\Phi^k(x)\}_{k=1}^{\infty}$ converges to x_0 for any fixed $x \in M$.