Problems-2 (Acid-Base, Solubility & pH

<u>Problem 1</u>. The solubility product of $CuCl_2$ is 3.2×10^{-7} at 25°C. Calculate the solubility of $CuCl_2$ in mole litre⁻¹.

- CuCl₂ is a sparingly soluble salt.
- Let x is the solubility of CuCl₂ in mole litre⁻¹
- The following equilibrium exists in its saturated solution:

$$CuCl2 \leftrightarrow Cu+2 + 2Cl-1$$

- Equilibrium concentration, x x 2x
- Therefore, solubility product, K_{sp} = [Cu⁺²] [Cl⁻]²*

or,
$$3.2 \times 10^{-7} = [x] [2x]^2$$

or,
$$4x^3 = 3.2 \times 10^{-7}$$

$$x = 4.3 \times 10^{-3} \text{ mole litre}^{-1}$$

* As per laws of rate equation

Ans

Problem 3. K_{sp} of CaF_2 is 1.7×10^{-10} and its mol. wt. is 78 g mole⁻¹. What volume of the saturated solution will contain 0.078 g of CaF_2 ?

- CaF₂ is a sparingly soluble salt.
- Let x is the solubility of CaF₂ in mole litre⁻¹
- The following equilibrium exists in its saturated solution:

•
$$CaF_2 \leftrightarrow Ca^{+2} + 2F^{-1}$$

- Equilibrium concentration, X X 2x
- Therefore, solubility product, K_{sp} = [Ca⁺²] [F⁻]²

or,
$$1.7 \times 10^{-10} = [x] [2x]^2$$

or,
$$4x^3 = 1.7 \times 10^{-10}$$

- $x = 3.5 \times 10^{-4} \text{ mole litre}^{-1}$
- ∴ 1 litre saturated solution contains 3.5×10^{-4} mole of CaF_2

.....Problem-3 (contd.)

No. moles of CaF₂ = 0.078g / (78g/mole)

$$= 1.0 \times 10^{-3} \text{ moles}$$

• : Volume of the solution =
$$\frac{1 litre \times 1.0 \times 10^{-3} mole}{3.5 \times 10^{-4} mole}$$

= 2.857 litre

Thus, 0.078 g of CaF2 is contained in 2.9 litres of the saturated solution.

<u>Problem 5</u>. Calculate the solubility of AgCl ($K_{sp} = 1.7 \times 10^{-10}$) in 0.01 M NaCl solution.

- AgCl \leftrightarrow Ag⁺ + Cl⁻ NaCl \leftrightarrow Na⁺ + Cl⁻ equilib. conc. x x x x 0.01 0.01 0.01M
- Complete ionization of the salt in aqueous solution is assumed.
 Therefore, total concentration of Cl⁻ in the solution =
- 0.01 M (from NaCl) + x M (from AgCl)
- As AgCl is sparingly soluble, x is negligibly small.

$$\therefore$$
 [Cl⁻] \cong 0.01 M

or,
$$1.7 \times 10^{-10} = (x)(0.01) \text{ M}$$

or,
$$x = 1.7 \times 10^{-8} \text{ M}$$

∴ The solubility of AgCl in 0.01M NaCl solution is 1.7 x 10⁻⁸ M Ans

<u>Problem 7</u>. K_{sp} of $Mg(OH)_2$ is 1.8×10^{-11} at $25^{\circ}C$. Calculate the solubility of $Mg(OH)_2$ in 0.1 M aqueous NaOH solution.

```
Mg(OH)<sub>2</sub> \leftrightarrow Mg<sup>+2</sup> + 2OH<sup>-</sup> NaOH \leftrightarrow Na<sup>+</sup> + OH<sup>-</sup> equilib. conc. x x 2x 0.1 0.1 0.1M
```

- Complete ionization of the salt in aqueous solution is assumed.
 Therefore, total concentration of OH⁻ in the solution =
 - 0.1 M (from NaOH) + 2x M (from Mg(OH)₂)
- As Mg(OH)₂ is sparingly soluble, x is negligibly small.

$$: [OH^{-}] = (0.1 + 2x)M \approx 0.1 M$$

:.
$$K_{sp} = [Mg^{+2}][OH^{-}]^{2}$$

or,
$$1.8 \times 10^{-11} = (x)(0.1)^2 \text{ M}$$

or,
$$x = 1.8 \times 10^{-9} \text{ M}$$

∴ The solubility of Mg(OH)₂ in 0.1M NaOH solution is 1.8 x 10⁻⁹M

<u>Ans</u>

Problem 9. Calculate pH and pOH of 0.02 M H_2SO_4 solution. $K_w = 1 \times 10^{-14}$ at 25°C.

$$(2H_3O^+)$$

If H₂SO₄ in 1M solution ionizes completely, [H₃O⁺] will be 2M.

- Therefore, in a 0.02 M H₂SO₄ solution
- $[H_3O^+] = 0.04 M$
- $: [OH^-] = K_w / [H_3O^+] = (1 \times 10^{-14}) / 0.04 = 2.5 \times 10^{-13} M$
- \therefore pH = -log [H₃O⁺] = -log (0.04) = 1.40
- : $pOH = -log [OH^-] = -log (2.5 \times 10^{-13}) = 12.60$ Ans.

Problem 11. pH of an aqueous solution of HCl is 2.699 at 25°C. Calculate the molarity of the solution.

We know from the definition of pH,

$$pH = -\log_{10}[H^+] = \log_{10}\frac{1}{[H^+]}$$

- \therefore 2.699 = -log [H₃O⁺]
- or, $[H_3O^+]$ = antilog (- 2.699) = 0.002 M
- As HCl is a strong acid, it will ionize completely in the aqueous solution. So the molarity of HCl in the solution will be equal to the concentration of H₃O⁺.
- Molarity of HCl in the solution is 0.002. Ans.

Problem 13. Calculation of normality of strong acids, (a) 36% (w/w) HCl, specific gravity 1.18; (b) 96% (w/w) H₂SO₄, specific gravity 1.84.

- (a) Given, 36% (w/w) HCl, specific gravity 1.18
- Mol. Wt. of HCl = 36.5, gram-equiv-wt = 36.5
- ∴ 1 ml conc. HCl contains = 0.36 x 1.18 gm of HCl
- ∴ 1000 ml conc. HCl contains = 0.36 x 1.18 x 1000
- = 424.8 gm of HCl
- ∴ 36.5 gm of HCl in 1000ml solution = 1.0 N HCl
- ∴ 424.8 gm HCl in 1000ml = (1 x 424.8 gm) / 36.5 gm
 = 11.64 N HCl Ans.

.....Problem-13 (contd.)

- (b) Given, 96% (w/w) H₂SO₄, specific gravity 1.84
- Mol. Wt. of $H_2SO_4 = 98$, gram-equiv-wt = 49
- ∴ 1 ml conc. H_2SO_4 , contains = 0.96 × 1.84 gm of H_2SO_4 ,
- <u>○</u> : 1000 ml conc. H_2SO_4 , contains = 0.96 × 1.84 × 1000
- $= 1766.4 \text{ gm} \text{ of } H_2SO_4,$
- \bullet ∴ 49 gm of H_2SO_4 , in 1000ml solution = 1.0 N H_2SO_4 ,
- ∴ 1766.4 gm H_2SO_4 , in 1000ml = (1 x 1766.4 gm) / 49 gm = 36.05 N H_2SO_4 , Ans.