What is claimed is:

1. A compound of general formula:

$$R^7$$
 R^8
 R^1
 R^2
 R^3
 R^7
 R^6
 R^4
 R^5

wherein X and X' are independently O or S;

Y is:

- (a) substituted or unsubstituted phenyl wherein the substitutents are independently 1-5 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₂-C₄)alkenyl, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, hydroxy, amino, cyano, or nitro; or
- (b) substituted or unsubstituted 2-pyridyl, 3-pyridyl, or 4-pyridyl, wherein the substitutents are independently 1-4 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₂-C₄)alkenyl, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, hydroxy, amino, cyano, or nitro;

 R^1 and R^2 are independently: H; cyano; cyano-substituted or unsubstituted (C_1 - C_7) branched or straight-chain alkyl; cyano-substituted or unsubstituted (C_2 - C_7) branched or straight-chain alkenyl; cyano-substituted or unsubstituted (C_3 - C_7) branched or straight-chain alkenylalkyl; or together the valences of R^1 and R^2 form a (C_1 - C_7) cyano-substituted or unsubstituted alkylidene group ($R^aR^bC=$) wherein the sum of non-substituent carbons in R^a and R^b is 0-6;

R³ is H, methyl, ethyl, n-propyl, isopropyl, or cyano;

 R^4 , R^7 , and R^8 are independently: H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₂-C₄)alkenyl, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, hydroxy, amino, cyano, or nitro; and

 R^5 and R^6 are independently: H, (C_1-C_4) alkyl, (C_2-C_4) alkenyl, (C_3-C_4) alkenylalkyl, halo (F, Cl, Br, I), C_1-C_4 haloalkyl, (C_1-C_4) alkoxy, hydroxy, amino, cyano, nitro, or together as a linkage of the type (– OCHR 9 CHR 10 O-) form a ring with the phenyl carbons to which they are attached; wherein R^9 and R^{10} are independently: H, halo, (C_1-C_3) alkyl, (C_2-C_3) alkenyl, (C_1-C_3) alkoxy (C_1-C_3) alkyl, benzoyloxy (C_1-C_3) alkyl, hydroxy (C_1-C_3) alkyl, halo (C_1-C_3) alkyl, formyl, formyl (C_1-C_3) alkyl, cyano, cyano (C_1-C_3) alkyl, hydroxy (C_1-C_3)

 $C_3) alkyl, carboxy, carboxy(C_1-C_3) alkyl, (C_1-C_3) alkoxycarbonyl(C_1-C_3) alkyl, (C_1-C_3) alkylcarbonyl(C_1-C_3) alkyl, (C_1-C_3) alkyl, aminocarbonyloxy (-OC(O)NHR^g), aminocarbonyloxy(C_1-C_3) alkyl, pentafluorophenyloxycarbonyl, pentafluorophenyloxycarbonyl(C_1-C_3) alkyl, p-toluenesulfonyloxy(C_1-C_3) alkyl, arylsulfonyloxy(C_1-C_3) alkyl, (C_1-C_3) thio(C_1-C_3) alkyl, (C_1-C_3) alkyl, (C_1-C_3) alkyl, or (C_1-C_3) alkyl, or (C_1-C_5) trisubstituted-siloxy(C_1-C_3) alkyl (-(CH_2)_n SiOR^d R^e R^g); wherein n=1-3, R^c and R^d represent straight or branched hydrocarbon chains of the indicated length, R^g represents (C_1-C_3) alkyl or aryl optionally substituted with halo or (C_1-C_3) alkyl, and R^c, R^d, R^e, R^f, and R^g are independent of one another;$

provided that

- i when R⁹ and R¹⁰ are both H, or
- ii when either R^9 or R^{10} are halo, (C_1-C_3) alkyl, (C_1-C_3) alkoxy (C_1-C_3) alkyl, or benzoyloxy (C_1-C_3) alkyl, or
- iii when R⁵ and R⁶ do not together form a linkage of the type (-OCHR⁹CHR¹⁰O-),

then the number of carbon atoms, excluding those of cyano substitution, for either or both of groups R^1 or R^2 is greater than 4, and the number of carbon atoms, excluding those of cyano substitution, for the sum of groups R^1 , R^2 , and R^3 is 10, 11, or 12.

2. The compound of claim 1, wherein:

X and X' are O;

Y is:

- (a) substituted or unsubstituted phenyl wherein the substitutents are independently 1-5 H, (C_1 - C_4)alkyl, (C_1 - C_4)alkoxy, halo (F, Cl, Br, I), (C_1 - C_4)haloalkyl, cyano, or nitro; or
- (b) substituted or unsubstituted 2-pyridyl, 3-pyridyl, or 4-pyridyl, wherein the substitutents are independently 1-4 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, cyano, or nitro;

 R^1 and R^2 are independently: H; cyano; cyano-substituted or unsubstituted (C_1 - C_7) branched or straight-chain alkyl; cyano-substituted or unsubstituted (C_2 - C_7) branched or straight-chain alkenyl;

cyano-substituted or unsubstituted (C_3 - C_7) branched or straight-chain alkenylalkyl; or together the valences of R^1 and R^2 form a (C_1 - C_7) cyano-substituted or unsubstituted alkylidene group ($R^aR^bC=$) wherein the sum of non-substituent carbons in R^a and R^b is 0-6;

R³ is H, methyl, ethyl, or cyano;

 R^4 , R^7 , and R^8 are independently: H, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, halo (F, Cl, Br, I), (C_1-C_4) haloalkyl, cyano, or nitro; and

 R^5 and R^6 are independently: H, (C_1 - C_4)alkyl, halo (F, Cl, Br, I), C_1 - C_4 haloalkyl, (C_1 - C_4)alkoxy, hydroxy, amino, cyano, nitro, or together as a linkage of the type ($-OCHR^9CHR^{10}O$ -) form a ring with the phenyl carbons to which they are attached; wherein R^9 or R^{10} is H, and the alternate R^9 or R^{10} is: H, halo(C_1 - C_3)alkyl, formyl, formyl(C_1 - C_3)alkyl, cyano, cyano(C_1 - C_3)alkyl, carboxy, carboxy(C_1 - C_3)alkyl, amino(C_1 - C_3)alkyl, (C_1 - C_3)alkylamino(C_1 - C_3)alkyl ($-(CH_2)_nR^cR^c$), oximo (-CH=NOH), oximo(C_1 - C_3)alkyl, (C_1 - C_3)alkoximo ($-C=NOR^d$), alkoximo(C_1 - C_3)alkyl, (C_1 - C_3)carboxamido ($-C(O)NR^cR^f$), ($-C_1$ - $-C_3$)carboxamido($-C_1$ - $-C_3$)alkyl, ($-C_1$ - $-C_3$)alkyl, aminocarbonyloxy ($-C_1$ - $-C_3$)alkyl, aminocarbonyloxy ($-C_1$ - $-C_3$)alkyl, aminocarbonyloxy($-C_1$ - $-C_3$)alkyl, p-toluenesulfonyloxy($-C_1$ - $-C_3$)alkyl, arylsulfonyloxy($-C_1$ - $-C_3$)alkyl, ($-C_1$ - $-C_3$)alkyl, arylsulfonyloxy($-C_1$ - $-C_3$)alkyl, ($-C_1$ - $-C_3$)alkyl, ($-C_1$ - $-C_3$)alkyl, ($-C_1$ - $-C_3$)alkyl, or branched hydrocarbon chains of the indicated length, $-C_1$ - $-C_3$ -alkyl or aryl optionally substituted with halo or ($-C_1$ - $-C_3$ -alkyl, and $-C_1$ - $-C_1$ - $-C_1$ -and the indicated length of the independent of one another;

provided that

- i when R⁹ and R¹⁰ are both H, or
- ii when R⁵ and R⁶ do not together form a linkage of the type (-OCHR⁹CHR¹⁰O-),

then the number of carbon atoms, excluding those of cyano substitution, for either or both of groups R^1 or R^2 is greater than 4, and the number of carbon atoms, excluding those of cyano substitution, for the sum of groups R^1 , R^2 , and R^3 is 10, 11, or 12.

3. The compound of claim 2 wherein:

X and X' are O;

Y is:

- (a) substituted or unsubstituted phenyl wherein the substitutents are independently 1-5 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, cyano, or nitro; or
- (b) substituted or unsubstituted 2-pyridyl, 3-pyridyl, or 4-pyridyl, wherein the substitutents are independently 1-4 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, cyano, or nitro;

 R^1 and R^2 are independently: H; cyano; cyano-substituted or unsubstituted (C_1 - C_7) branched or straight-chain alkyl; cyano-substituted or unsubstituted (C_2 - C_7) branched or straight-chain alkenyl; cyano-substituted or unsubstituted (C_3 - C_7) branched or straight-chain alkenylalkyl; or together the valences of R^1 and R^2 form a (C_1 - C_7) cyano-substituted or unsubstituted alkylidene group ($R^aR^bC=$) wherein the sum of non-substituent carbons in R^a and R^b is 0-6;

R³ is H, methyl, ethyl, or cyano;

 R^4 , R^7 , and R^8 are independently: H, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, halo (F, Cl, Br, I), (C_1-C_4) haloalkyl, cyano, or nitro; and

 R^5 and R^6 are independently: H, (C_1-C_4) alkyl, halo (F, Cl, Br, I), C_1-C_4 haloalkyl, (C_1-C_4) alkoxy, hydroxy, amino, cyano, nitro, or together as a linkage of the type ($-OCHR^9CHR^{10}O^-$) form a ring with the phenyl carbons to which they are attached; wherein R^9 or R^{10} is H, and the alternate R^9 or R^{10} is: H, halo(C_1-C_3)alkyl, formyl, formyl(C_1-C_3)alkyl, cyano, cyano(C_1-C_3)alkyl, carboxy, carboxy(C_1-C_3)alkyl, amino(C_1-C_3)alkyl, (C_1-C_3) alkyl, amino(C_1-C_3)alkyl, (C_1-C_3) alkyl, amino(C_1-C_3)alkyl, (C_1-C_3) alkyl, (C_1-C_3) alkyl, aminocarboxamido((C_1-C_3) alkyl, (C_1-C_3) alkyl, aminocarboxyloxy((C_1-C_3) alkyl, aminocarboxyloxy((C_1-C_3) alkyl, aminocarboxyloxy((C_1-C_3) alkyl, p-toluenesulfonyloxy((C_1-C_3) alkyl, arylsulfonyloxy((C_1-C_3) alkyl, (C_1-C_3) alkyl, (C_1-C_3) alkyl, (C_1-C_3) alkyl, arylsulfonyloxy((C_1-C_3) alkyl, (C_1-C_3) alkyl, (C_1-C_3) alkyl, (C_1-C_3) alkyl, (C_1-C_3) alkyl, or (C_1-C_3) alkyl, or (C_1-C_3) alkyl, or (C_1-C_3) alkyl, or branched hydrocarbox chains of the indicated length, (C_1-C_3) alkyl or aryl optionally substituted with halo or (C_1-C_3) alkyl, and (C_1-C_3) alkyl, or (C_1-C_3) alkyl or aryl optionally substituted with halo or (C_1-C_3) alkyl, and (C_1-C_3) alkyl, and (C_1-C_3) alkyl or aryl optionally substituted with halo or (C_1-C_3) alkyl, and (C_1-C_3) alkyl, and (C_1-C_3) alkyl or aryl optionally substituted with halo or (C_1-C_3) alkyl, and (C_1-C_3) alkyl, and (C_1-C_3) alkyl or aryl optionally substituted with halo or (C_1-C_3) alkyl, and (C_1-C_3) alkyl, and (C_1-C_3) alkyl or aryl optionally substituted with halo or (C_1-C_3) alkyl, and (C_1-C_3) alkyl, and (C_1-C_3) alkyl or aryl optionally substituted with halo or (C_1-C_3) alkyl, and (C_1-C_3) alkyl.

provided that

- i when R⁹ and R¹⁰ are both H, or
- ii when R⁵ and R⁶ do not together form a linkage of the type (-OCHR⁹CHR¹⁰O-),

then the number of carbon atoms, excluding those of cyano substitution, for either or both of groups R^1 or R^2 is greater than 4, and the number of carbon atoms, excluding those of cyano substitution, for the sum of groups R^1 , R^2 , and R^3 is 10, 11, or 12; and

when R⁵ and R⁶ together as a linkage of the type (-OCHR⁹CHR¹⁰O-) form a ring with the phenyl carbons to which they are attached, and R⁹ and R¹⁰ are not both H,

then R¹ and R² are (C₁-C₄) straight or branched alkyl, and R³ is H or methyl.

4. The compound of claim 3 wherein:

X and X' are O;

Y is:

- (a) substituted or unsubstituted phenyl wherein the substitutents are independently 1-5 H, (C_1 - C_4)alkyl, (C_1 - C_4)alkoxy, halo (F, Cl, Br, I), (C_1 - C_4)haloalkyl; or
- (b) substituted or unsubstituted 3-pyridyl, wherein the substitutents are independently 1-4 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl;

 R^1 and R^2 are independently: H; cyano; cyano-substituted or unsubstituted (C_1 - C_7) branched or straight-chain alkyl; cyano-substituted or unsubstituted (C_2 - C_7) branched or straight-chain alkenyl; cyano-substituted or unsubstituted (C_3 - C_7) branched or straight-chain alkenylalkyl; or together the valences of R^1 and R^2 form a (C_1 - C_7) cyano-substituted or unsubstituted alkylidene group ($R^aR^bC=$) wherein the sum of non-substituent carbons in R^a and R^b is 0-3;

R³ is methyl;

 R^4 , R^7 , and R^8 are independently selected from: H, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, halo (F, Cl, Br, I), (C_1-C_4) haloalkyl; and

 R^5 and R^6 are independently: H, (C_1 - C_4)alkyl, halo (F, Cl, Br, I), C_1 - C_4 haloalkyl, (C_1 - C_4)alkoxy, or together as a linkage of the type ($-OCHR^9CHR^{10}O$ -) form a ring with the phenyl carbons to which they are attached; wherein R^9 or R^{10} is H, and the alternate R^9 or R^{10} is: H, halo(C_1 - C_2)alkyl, formyl, cyano(C_1 - C_2)alkyl, carboxy, amino(C_1 - C_2)alkyl, oximo (-CH=NOH), (C_1 - C_3)carboxamido ($-C(O)NR^eR^f$), (C_1 - C_2)semicarbazido ($-C=NNHC(O)NR^eR^f$), aminocarbonyloxy ($-OC(O)NHR^g$), pentafluorophenyloxycarbonyl, p-toluenesulfonyloxy(C_1 - C_3)alkyl, methylthio(C_1 - C_2)alkyl, methylsulfoxido(C_1 - C_2)alkyl, methylsulfonyl(C_1 - C_2)alkyl, or (C_1 - C_5)trisubstituted-siloxy(C_1 - C_3)alkyl ($-(CH_2)_nSiOR^dR^eR^g$); wherein n=1-3, R^d represents a straight or branched hydrocarbon chain of the indicated length, R^e , R^f represent H or straight or branched hydrocarbon chains of the indicated length,

 R^g represents (C_1-C_3) alkyl or aryl optionally substituted with halo or (C_1-C_3) alkyl, and R^c , R^d , R^e , R^f , and R^g are independent of one another;

provided that

- i) when R⁹ and R¹⁰ are both H, or
- ii) when R⁵ and R⁶ do not together form a linkage of the type (-OCHR⁹CHR¹⁰O-),

then the number of carbon atoms, excluding those of cyano substitution, for either or both of groups R^1 or R^2 is greater than 4, and the number of carbon atoms, excluding those of cyano substitution, for the sum of groups R^1 , R^2 , and R^3 is 10, 11, or 12; and

when R⁵ and R⁶ together as a linkage of the type (-OCHR⁹CHR¹⁰O-) form a ring with the phenyl carbons to which they are attached, and R⁹ and R¹⁰ are not both H.

then R¹ and R² are methyl.

- 5. The compound of claim 4 selected from the group consisting of:
- a) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-hydroxymethyl-5-methyl-2,3-dihydrobenzo[1,4]dioxine-6-carbonyl)-hydrazide,
- $b) \qquad 3,5-Dimethyl-benzoic\ acid\ N-tert-butyl-N'-[3-(tert-butyl-dimethyl-silanyloxymethyl)-5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl]-hydrazide,$
- c) 7-[N'-tert-Butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxine-2-carboxylic acid,
- d) 7-[N'-tert-Butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxine-2-carboxylic acid methyl ester,
- e) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-semicarbazidomethyl-5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl)-hydrazide,
- f) Phenyl-carbamic acid 7-[N'-tert-butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl ester,
- g) 3,5-Dimethyl-benzoic acid N'-[3-(2-amino-ethyl)-5-methyl-2,3-dihydrobenzo[1,4]dioxine-6-carbonyl]-N-tert-butyl-hydrazide,

- h) 7-[N'-tert-Butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxine-2-carboxylic acid pentafluorophenyl ester,
- i) 7-[N'-tert-Butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxine-2-carboxylic acid methylamide,
- j) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-formyl-5-methyl-2,3-dihydrobenzo[1,4]dioxine-6-carbonyl)-hydrazide,
- k) Toluene-4-sulfonic acid 7-[N'-tert-butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl ester,
- l) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-[3-(hydroxyimino-methyl)-5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl]-hydrazide,
- m) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-cyanomethyl-5-methyl-2,3-dihydrobenzo[1,4]dioxine-6-carbonyl)-hydrazide,
- n) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(5-methyl-3-methylsulfanylmethyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl)-hydrazide,
- o) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-methanesulfonylmethyl-5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl)-hydrazide,
- p) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-fluoromethyl-5-methyl-2,3-dihydrobenzo[1,4]dioxine-6-carbonyl)-hydrazide,
- q) 3,5-Dimethyl-benzoic acid N-(1-tert-butyl-heptyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide,
 - r) 3,5-Dimethyl-benzoic acid N-(1-tert-butyl-heptyl)-N'-(4-ethyl-benzoyl)-hydrazide,
- s) 3,5-Dimethoxy-4-methyl-benzoic acid-N-(1-tert-butyl-heptyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide,
- t) 3,5-Dimethoxy-4-methyl-benzoic acid-N-(1-tert-butyl-heptyl)-N'-(4-ethyl-benzoyl)-hydrazide,
 - u) 2-Methoxy-nicotinic acid N-(1-tert-butyl-heptyl)-N'-(4-ethyl-benzoyl)-hydrazide,
- v) 3,5-Dimethyl-benzoic acid N-(1-tert-butyl-3,4,4-trimethyl-pent-2-enyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide,

- w) 3,5-Dimethyl-benzoic acid N-(1-tert-butyl-2-cyano-vinyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide,
- x) 3,5-Dimethyl-benzoic acid N-(1-butyl-2,2-dimethyl-pentyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide, and
 - y) 3,5-Dimethyl-benzoic acid N-(1-butyl-2,2-dimethyl-pent-4-enyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide.
- **6.** A method of modulating the expression of a target gene in a host cell, wherein the host cell includes a first gene expression cassette comprising a first polynucleotide encoding a first polypeptide comprising:
 - (i) a transactivation domain;
 - (ii) a DNA-binding domain; and
 - (iii) a Group H nuclear receptor ligand binding domain;

a second gene expression cassette comprising:

- (i) a response element capable of binding to said DNA binding domain;
- (ii) a promoter that is activated by the transactivation domain; and
- (iii) said target gene;

the method comprising contacting said host cell with a compound of the formula:

$$R^7$$
 R^8
 R^4
 R^2
 R^3
 R^3
 R^4
 R^5

wherein X and X' are independently O or S;

Y is:

(a) substituted or unsubstituted phenyl wherein the substitutents are independently 1-5 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₂-C₄)alkenyl, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, hydroxy, amino, cyano, or nitro; or

(b) substituted or unsubstituted 2-pyridyl, 3-pyridyl, or 4-pyridyl, wherein the substitutents are independently 1-4 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₂-C₄)alkenyl, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, hydroxy, amino, cyano, or nitro;

100

 R^1 and R^2 are independently: H; cyano; cyano-substituted or unsubstituted (C_1 - C_7) branched or straight-chain alkyl; cyano-substituted or unsubstituted (C_2 - C_7) branched or straight-chain alkenyl; cyano-substituted or unsubstituted (C_3 - C_7) branched or straight-chain alkenylalkyl; or together the valences of R^1 and R^2 form a (C_1 - C_7) cyano-substituted or unsubstituted alkylidene group ($R^aR^bC=$) wherein the sum of non-substituent carbons in R^a and R^b is 0-6;

R³ is H, methyl, ethyl, n-propyl, isopropyl, or cyano;

 R^4 , R^7 , and R^8 are independently: H, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, (C_2-C_4) alkenyl, halo (F, Cl, Br, I), (C_1-C_4) haloalkyl, hydroxy, amino, cyano, or nitro; and

 $R^{5} \text{ and } R^{6} \text{ are independently: } H, (C_{1}\text{-}C_{4}) \text{alkyl, } (C_{2}\text{-}C_{4}) \text{alkenyl, } (C_{3}\text{-}C_{4}) \text{ alkenylalkyl, halo } (F, Cl, Br, I), \\ R^{5} \text{ and } R^{6} \text{ are independently: } H, (C_{1}\text{-}C_{4}) \text{alkyl, } (C_{2}\text{-}C_{4}) \text{alkenyl, } (C_{3}\text{-}C_{4}) \text{ alkenylalkyl, halo } (F, Cl, Br, I), \\ R^{5} \text{ and } R^{6} \text{ are independently: } H, (C_{1}\text{-}C_{4}) \text{alkyl, } (C_{2}\text{-}C_{4}) \text{alkenyl, } (C_{3}\text{-}C_{4}) \text{ alkenylalkyl, halo } (F, Cl, Br, I), \\ R^{5} \text{ and } R^{6} \text{ are independently: } H, (C_{1}\text{-}C_{4}) \text{alkyl, } (C_{2}\text{-}C_{4}) \text{ alkenylalkyl, } (C_{3}\text{-}C_{4}) \text{ alkenylalkyl,$ C₁-C₄ haloalkyl, (C₁-C₄)alkoxy, hydroxy, amino, cyano, nitro, or together as a linkage of the type (-OCHR⁹CHR¹⁰O-) form a ring with the phenyl carbons to which they are attached; wherein R⁹ and R¹⁰ are independently: H, halo, (C₁-C₃)alkyl, (C₂-C₃)alkenyl, (C₁-C₃)alkoxy(C₁-C₃)alkyl, benzoyloxy(C₁-C₃)alkyl, hydroxy(C₁-C₃)alkyl, halo(C₁-C₃)alkyl, formyl, formyl(C₁-C₃)alkyl, cyano, cyano(C₁- $C_3) alkyl, carboxy, carboxy(C_1-C_3) alkyl, (C_1-C_3) alkoxycarbonyl(C_1-C_3) alkyl, (C_1-C_3) alkyl, (C_$ C_3)alkyl, (C_1-C_3) alkanoyloxy (C_1-C_3) alkyl, amino (C_1-C_3) alkyl, (C_1-C_3) alkylamino (C_1-C_3) alkyl (- $(CH_2)_n R^c R^c$, oximo (-CH=NOH), oximo (C_1-C_3) alkyl, (C_1-C_3) alkoximo (-C=NOR^d), alkoximo (C_1-C_3) alkoximo (-C=NOR^d), alkoximo (-C=NOR^d C₃)alkyl, (C₁-C₃)carboxamido (-C(O)NR^eR^f), (C₁-C₃)carboxamido(C₁-C₃)alkyl, (C₁-C₃)semicarbazido $(-C=NNHC(O)NR^{e}R^{f})$, semicarbazido (C_1-C_3) alkyl, aminocarbonyloxy $(-OC(O)NHR^{g})$, $amino carbonyloxy (C_1-C_3) alkyl, pentafluor ophenyloxy carbonyl, pentafluor ophenyloxy carbonyl (C_1-C_2) alkyl, pentafluor ophenyloxy (C_1-C_2) alkyl, pentafluor ophenyl$ C_3)alkyl, p-toluenesulfonyloxy(C_1 - C_3)alkyl, arylsulfonyloxy(C_1 - C_3)alkyl, (C_1 - C_3)thio(C_1 - C_3)alkyl, $(C_1-C_3) alkyl sulfoxido (C_1-C_3) alkyl, (C_1-C_3) alkyl sulfonyl (C_1-C_3) alkyl, or (C_1-C_5) trisubstitute defect of the context of th$ siloxy(C₁-C₃)alkyl (-(CH₂)_nSiOR^dR^eR^g); wherein n=1-3, R^c and R^d represent straight or branched hydrocarbon chains of the indicated length, Re, Rf represent H or straight or branched hydrocarbon chains of the indicated length, R^g represents (C₁-C₃)alkyl or aryl optionally substituted with halo or (C₁-C₃)alkyl, and R^c, R^d, R^e, R^f, and R^g are independent of one another;

provided that

- i when R⁹ and R¹⁰ are both H, or
- ii when either R^9 or R^{10} are halo, (C_1-C_3) alkyl, (C_1-C_3) alkyl, or benzoyloxy (C_1-C_3) alkyl, or

- when R^5 and R^6 do not together form a linkage of the type (-OCHR 9 CHR 10 O-), then the number of carbon atoms, excluding those of cyano substitution, for either or both of groups R^1 or R^2 is greater than 4, and the number of carbon atoms, excluding those of cyano substitution, for the sum of groups R^1 , R^2 , and R^3 is 10, 11, or 12.
- 7. The method of claim 6 wherein the compound is of the specified formula and:

X and X' are O;

Y is:

- (a) substituted or unsubstituted phenyl wherein the substitutents are independently 1-5 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, cyano, or nitro; or
- (b) substituted or unsubstituted 2-pyridyl, 3-pyridyl, or 4-pyridyl, wherein the substitutents are independently 1-4 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, cyano, or nitro;

 R^1 and R^2 are independently: H; cyano; cyano-substituted or unsubstituted (C_1 - C_7) branched or straight-chain alkyl; cyano-substituted or unsubstituted (C_2 - C_7) branched or straight-chain alkenyl; cyano-substituted or unsubstituted (C_3 - C_7) branched or straight-chain alkenylalkyl; or together the valences of R^1 and R^2 form a (C_1 - C_7) cyano-substituted or unsubstituted alkylidene group ($R^aR^bC=$) wherein the sum of non-substituent carbons in R^a and R^b is 0-6;

R³ is H, methyl, ethyl, or cyano;

 R^4 , R^7 , and R^8 are independently: H, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, halo (F, Cl, Br, I), (C_1-C_4) haloalkyl, cyano, or nitro; and

 R^5 and R^6 are independently: H, (C₁-C₄)alkyl, halo (F, Cl, Br, I), C₁-C₄ haloalkyl, (C₁-C₄)alkoxy, hydroxy, amino, cyano, nitro, or together as a linkage of the type ($-OCHR^9CHR^{10}O$ -) form a ring with the phenyl carbons to which they are attached; wherein R^9 or R^{10} is H, and the alternate R^9 or R^{10} is: H, halo(C₁-C₃)alkyl, formyl, formyl(C₁-C₃)alkyl, cyano, cyano(C₁-C₃)alkyl, carboxy, carboxy(C₁-C₃)alkyl, amino(C₁-C₃)alkyl, (C₁-C₃)alkylamino(C₁-C₃)alkyl ($-(CH_2)_nR^cR^e$), oximo (-CH=NOH), oximo(C₁-C₃)alkyl, (C₁-C₃)alkoximo ($-C=NOR^d$), alkoximo(C₁-C₃)alkyl, (C₁-C₃)carboxamido ($-C=NNHC(O)NR^eR^f$), semicarbazido(C₁-C₃)alkyl, aminocarbonyloxy ($-OC(O)NHR^g$), aminocarbonyloxy(C₁-C₃)alkyl, pentafluorophenyloxycarbonyl, pentafluorophenyloxycarbonyl(C₁-C₃)alkyl, p-toluenesulfonyloxy(C₁-C₃)alkyl, arylsulfonyloxy(C₁-C₃)alkyl, (C₁-C₃)thio(C₁-C₃)alkyl, (C₁-C₃)alkyl ($-(CH_2)_nSiOR^dR^eR^g$); (C₁-C₃)alkylsulfonyl(C₁-C₃)alkyl, or (C₁-C₅)trisubstituted-siloxy(C₁-C₃)alkyl ($-(CH_2)_nSiOR^dR^eR^g$);

wherein n=1-3, R^c and R^d represent straight or branched hydrocarbon chains of the indicated length, R^e , R^f represent H or straight or branched hydrocarbon chains of the indicated length, R^g represents (C_1-C_3) alkyl or aryl optionally substituted with halo or (C_1-C_3) alkyl, and R^c , R^d , R^e , R^f , and R^g are independent of one another;

provided that

- i when R⁹ and R¹⁰ are both H, or
- ii when R⁵ and R⁶ do not together form a linkage of the type (-OCHR⁹CHR¹⁰O-),

then the number of carbon atoms, excluding those of cyano substitution, for either or both of groups R^1 or R^2 is greater than 4, and the number of carbon atoms, excluding those of cyano substitution, for the sum of groups R^1 , R^2 , and R^3 is 10, 11, or 12.

8. The method of Claim 7 wherein the compound is of the specified formula and:

X and X' are O;

Y is:

- (a) substituted or unsubstituted phenyl wherein the substitutents are independently 1-5 H, (C_1 - C_4)alkyl, (C_1 - C_4)alkoxy, halo (F, Cl, Br, I), (C_1 - C_4)haloalkyl, cyano, or nitro; or
- (b) substituted or unsubstituted 2-pyridyl, 3-pyridyl, or 4-pyridyl, wherein the substitutents are independently 1-4 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, cyano, or nitro;

 R^1 and R^2 are independently: H; cyano; cyano-substituted or unsubstituted (C_1 - C_7) branched or straight-chain alkyl; cyano-substituted or unsubstituted (C_2 - C_7) branched or straight-chain alkenyl; cyano-substituted or unsubstituted (C_3 - C_7) branched or straight-chain alkenylalkyl; or together the valences of R^1 and R^2 form a (C_1 - C_7) cyano-substituted or unsubstituted alkylidene group ($R^aR^bC=$) wherein the sum of non-substituent carbons in R^a and R^b is 0-6;

R³ is H, methyl, ethyl, or cyano;

 R^4 , R^7 , and R^8 are independently: H, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, halo (F, Cl, Br, I), (C_1-C_4) haloalkyl, cyano, or nitro; and

 R^5 and R^6 are independently: H, (C_1-C_4) alkyl, halo (F,Cl,Br,I), C_1-C_4 haloalkyl, (C_1-C_4) alkoxy, hydroxy, amino, cyano, nitro, or together as a linkage of the type $(-OCHR^9CHR^{10}O^-)$ form a ring with the phenyl carbons to which they are attached; wherein R^9 or R^{10} is H, and the alternate R^9 or R^{10} is: H, halo (C_1-C_3) alkyl, formyl, formyl, (C_1-C_3) alkyl, cyano, cyano (C_1-C_3) alkyl, carboxy, carboxy(C_1-C_3)alkyl, amino (C_1-C_3) alkyl, (C_1-C_3) alkylamino (C_1-C_3) alkyl, (C_1-C_3) alkyl, aminocarboxyloxy $(-OC(O)NHR^g)$, aminocarboxyloxy (C_1-C_3) alkyl, pentafluorophenyloxycarboxyl, pentafluorophenyloxycarboxyl, pentafluorophenyloxycarboxyl, pentafluorophenyloxycarboxyl, pentafluorophenyloxycarboxyl, pentafluorophenyloxycarboxyl, (C_1-C_3) alkyl, pentafluorophenyloxy((C_1-C_3) alkyl, (C_1-C_3) alkyl, or (C_1-C_3) alkyl, or branched hydrocarbon chains of the indicated length, (C_1-C_3) alkyl or aryl optionally substituted with halo or (C_1-C_3) alkyl, and (C_1-C_3) alkyl, or (C_1-C_3) alkyl or aryl optionally substituted with halo or (C_1-C_3) alkyl, and (C_1-C_3) alkyl, or (C_1-C_3) alkyl or aryl optionally substituted with halo or (C_1-C_3) alkyl, and (C_1-C_3) alkyl, or (C_1-C_3) alkyl or aryl optionally substituted with halo or (C_1-C_3) alkyl, and (C_1-C_3) alkyl.

provided that

- i when R⁹ and R¹⁰ are both H, or
- ii when R⁵ and R⁶ do not together form a linkage of the type (-OCHR⁹CHR¹⁰O-),

then the number of carbon atoms, excluding those of cyano substitution, for either or both of groups R^1 or R^2 is greater than 4, and the number of carbon atoms, excluding those of cyano substitution, for the sum of groups R^1 , R^2 , and R^3 is 10, 11, or 12; and

when R^5 and R^6 together as a linkage of the type (-OCHR 9 CHR 10 O-) form a ring with the phenyl carbons to which they are attached, and R^9 and R^{10} are not both H, then R^1 and R^2 are (C_1 - C_4) straight or branched alkyl, and R^3 is H or methyl.

9. The method of Claim 8 wherein the compound is of the specified formula and:

X and X' are O;

Y is:

(a) substituted or unsubstituted phenyl wherein the substitutents are independently 1-5 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl; or

(b) substituted or unsubstituted 3-pyridyl, wherein the substitutents are independently 1-4 H, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, halo (F, Cl, Br, I), (C_1-C_4) haloalkyl;

 R^1 and R^2 are independently: H; cyano; cyano-substituted or unsubstituted (C_1 - C_7) branched or straight-chain alkyl; cyano-substituted or unsubstituted (C_2 - C_7) branched or straight-chain alkenyl; cyano-substituted or unsubstituted (C_3 - C_7) branched or straight-chain alkenylalkyl; or together the valences of R^1 and R^2 form a (C_1 - C_7) cyano-substituted or unsubstituted alkylidene group ($R^aR^bC=$) wherein the sum of non-substituent carbons in R^a and R^b is 0-3;

R³ is methyl;

 R^4 , R^7 , and R^8 are independently selected from: H, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, halo (F, Cl, Br, I), (C_1-C_4) haloalkyl; and

 R^5 and R^6 are independently: H, $(C_1\text{-}C_4)$ alkyl, halo (F, Cl, Br, I), $C_1\text{-}C_4$ haloalkyl, $(C_1\text{-}C_4)$ alkoxy, or together as a linkage of the type ($-\text{OCHR}^9\text{CHR}^{10}\text{O-}$) form a ring with the phenyl carbons to which they are attached; wherein R^9 or R^{10} is H, and the alternate R^9 or R^{10} is: H, halo $(C_1\text{-}C_2)$ alkyl, formyl, cyano $(C_1\text{-}C_2)$ alkyl, carboxy, amino $(C_1\text{-}C_2)$ alkyl, oximo (-CH=NOH), $(C_1\text{-}C_3)$ carboxamido ($-\text{C(O)NR}^e\text{R}^f$), $(C_1\text{-}C_2)$ semicarbazido ($-\text{C=NNHC}(\text{O)NR}^e\text{R}^f$), aminocarbonyloxy ($-\text{OC(O)NHR}^g$), pentafluorophenyloxycarbonyl, p-toluenesulfonyloxy($C_1\text{-}C_3$)alkyl, methylthio $(C_1\text{-}C_2)$ alkyl, methylsulfoxido $(C_1\text{-}C_2)$ alkyl, methylsulfonyl $(C_1\text{-}C_2)$ alkyl, or $(C_1\text{-}C_5)$ trisubstituted-siloxy($(C_1\text{-}C_3)$ alkyl ($-\text{(CH}_2)_n\text{SiOR}^d\text{R}^e\text{R}^g$); wherein n=1-3, $-\text{R}^d$ represent a straight or branched hydrocarbon chain of the indicated length, $-\text{R}^g$ 0, $-\text{R}^g$ 1 represent H or straight or branched hydrocarbon chains of the indicated length, $-\text{R}^g$ 1 represents ($-\text{C}_1\text{-}C_3$)alkyl or aryl optionally substituted with halo or $-\text{C}_1\text{-}C_3$ alkyl, and $-\text{R}^g$ 2, $-\text{R}^g$ 3, are independent of one another;

provided that

- i) when R_{2}^{9} and R_{3}^{10} are both H, or
- ii) when R⁵ and R⁶ do not together form a linkage of the type (-OCHR⁹CHR¹⁰O-),

then the number of carbon atoms, excluding those of cyano substitution, for either or both of groups R^1 or R^2 is greater than 4, and the number of carbon atoms, excluding those of cyano substitution, for the sum of groups R^1 , R^2 , and R^3 is 10, 11, or 12; and

when R^5 and R^6 together as a linkage of the type (-OCHR 9 CHR 10 O-) form a ring with the phenyl carbons to which they are attached, and R^9 and R^{10} are not both H, then R^1 and R^2 are methyl.

- 10. The method of claim 9, wherein the compound is selected from the group consisting of:
- a) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-hydroxymethyl-5-methyl-2,3-dihydrobenzo[1,4]dioxine-6-carbonyl)-hydrazide,
- b) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-[3-(tert-butyl-dimethyl-silanyloxymethyl)-5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl]-hydrazide,
- c) 7-[N'-tert-Butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxine-2-carboxylic acid,
- d) 7-[N'-tert-Butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxine-2-carboxylic acid methyl ester,
- e) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-semicarbazidomethyl-5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl)-hydrazide,
- f) Phenyl-carbamic acid 7-[N'-tert-butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl ester,
- g) 3,5-Dimethyl-benzoic acid N'-[3-(2-amino-ethyl)-5-methyl-2,3-dihydrobenzo[1,4]dioxine-6-carbonyl]-N-tert-butyl-hydrazide,
- h) 7-[N'-tert-Butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxine-2-carboxylic acid pentafluorophenyl ester,
- i) 7-[N'-tert-Butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxine-2-carboxylic acid methylamide,
- j) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-formyl-5-methyl-2,3-dihydrobenzo[1,4]dioxine-6-carbonyl)-hydrazide,
- k) Toluene-4-sulfonic acid 7-[N'-tert-butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl ester,
- l) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-[3-(hydroxyimino-methyl)-5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl]-hydrazide,
- m) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-cyanomethyl-5-methyl-2,3-dihydrobenzo[1,4]dioxine-6-carbonyl)-hydrazide,

- n) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(5-methyl-3-methylsulfanylmethyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl)-hydrazide,
- o) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-methanesulfonylmethyl-5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl)-hydrazide,
- p) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-fluoromethyl-5-methyl-2,3-dihydrobenzo[1,4]dioxine-6-carbonyl)-hydrazide,
- q) 3,5-Dimethyl-benzoic acid N-(1-tert-butyl-heptyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide,
 - r) 3,5-Dimethyl-benzoic acid N-(1-tert-butyl-heptyl)-N'-(4-ethyl-benzoyl)-hydrazide,
- s) 3,5-Dimethoxy-4-methyl-benzoic acid-N-(1-tert-butyl-heptyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide,
- t) 3,5-Dimethoxy-4-methyl-benzoic acid-N-(1-tert-butyl-heptyl)-N'-(4-ethyl-benzoyl)-hydrazide,
 - u) 2-Methoxy-nicotinic acid N-(1-tert-butyl-heptyl)-N'-(4-ethyl-benzoyl)-hydrazide,
- v) 3,5-Dimethyl-benzoic acid N-(1-tert-butyl-3,4,4-trimethyl-pent-2-enyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide,
- w) 3,5-Dimethyl-benzoic acid N-(1-tert-butyl-2-cyano-vinyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide,
- x) 3,5-Dimethyl-benzoic acid N-(1-butyl-2,2-dimethyl-pentyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide, and
 - z) 3,5-Dimethyl-benzoic acid N-(1-butyl-2,2-dimethyl-pent-4-enyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide.
- 11. A method to modulate the expression of one or more exogenous genes in a subject, comprising administering to the subject an effective amount of a ligand of the formula:

$$R^{7}$$
 R^{8}
 R^{1}
 R^{2}
 R^{3}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{5}

wherein X and X' are independently O or S;

Y is:

- (a) substituted or unsubstituted phenyl wherein the substitutents are independently 1-5 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₂-C₄)alkenyl, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, hydroxy, amino, cyano, or nitro; or
- (b) substituted or unsubstituted 2-pyridyl, 3-pyridyl, or 4-pyridyl, wherein the substitutents are independently 1-4 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₂-C₄)alkenyl, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, hydroxy, amino, cyano, or nitro;

 R^1 and R^2 are independently: H; cyano; cyano-substituted or unsubstituted (C_1 - C_7) branched or straight-chain alkyl; cyano-substituted or unsubstituted (C_2 - C_7) branched or straight-chain alkenyl; cyano-substituted or unsubstituted (C_3 - C_7) branched or straight-chain alkenylalkyl; or together the valences of R^1 and R^2 form a (C_1 - C_7) cyano-substituted or unsubstituted alkylidene group ($R^aR^bC=$) wherein the sum of non-substituent carbons in R^a and R^b is 0-6;

R³ is H, methyl, ethyl, n-propyl, isopropyl, or cyano;

 R^4 , R^7 , and R^8 are independently: H, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, (C_2-C_4) alkenyl, halo (F, Cl, Br, I), (C_1-C_4) haloalkyl, hydroxy, amino, cyano, or nitro; and

 R^5 and R^6 are independently: H, (C_1-C_4) alkyl, (C_2-C_4) alkenyl, (C_3-C_4) alkenylalkyl, halo (F, Cl, Br, I), C_1-C_4 haloalkyl, (C_1-C_4) alkoxy, hydroxy, amino, cyano, nitro, or together as a linkage of the type (- OCHR 9 CHR 10 O-) form a ring with the phenyl carbons to which they are attached; wherein R^9 and R^{10} are independently: H, halo, (C_1-C_3) alkyl, (C_2-C_3) alkenyl, (C_1-C_3) alkoxy (C_1-C_3) alkyl, benzoyloxy (C_1-C_3) alkyl, hydroxy (C_1-C_3) alkyl, halo (C_1-C_3) alkyl, formyl, formyl (C_1-C_3) alkyl, cyano, cyano (C_1-C_3) alkyl, carboxy, carboxy (C_1-C_3) alkyl, (C_1-C_3) alkoxycarbonyl (C_1-C_3) alkyl, (C_1-C_3) alk

 C_3)alkyl, (C_1-C_3) carboxamido $(-C(O)NR^eR^f)$, (C_1-C_3) carboxamido (C_1-C_3) alkyl, (C_1-C_3) semicarbazido $(-C=NNHC(O)NR^eR^f)$, semicarbazido (C_1-C_3) alkyl, aminocarbonyloxy $(-OC(O)NHR^g)$, aminocarbonyloxy (C_1-C_3) alkyl, pentafluorophenyloxycarbonyl, pentafluorophenyloxycarbonyl (C_1-C_3) alkyl, p-toluenesulfonyloxy (C_1-C_3) alkyl, arylsulfonyloxy (C_1-C_3) alkyl, (C_1-C_3) alkyl, (C_1-C_3) alkylsulfoxido (C_1-C_3) alkyl, (C_1-C_3) alkylsulfonyl (C_1-C_3) alkyl, or (C_1-C_5) trisubstituted-siloxy (C_1-C_3) alkyl $(-(CH_2)_nSiOR^dR^eR^g)$; wherein n=1-3, R^c and R^d represent straight or branched hydrocarbon chains of the indicated length, R^g represents (C_1-C_3) alkyl or aryl optionally substituted with halo or (C_1-C_3) alkyl, and R^c , R^d , R^e , R^f , and R^g are independent of one another;

provided that

- i when R⁹ and R¹⁰ are both H, or
- ii when either R^9 or R^{10} are halo, (C_1-C_3) alkyl, (C_1-C_3) alkoxy (C_1-C_3) alkyl, or benzoyloxy (C_1-C_3) alkyl, or
- iii when R⁵ and R⁶ do not together form a linkage of the type (-OCHR⁹CHR¹⁰O-),

then the number of carbon atoms, excluding those of cyano substitution, for either or both of groups R^1 or R^2 is greater than 4, and the number of carbon atoms, excluding those of cyano substitution, for the sum of groups R^1 , R^2 , and R^3 is 10, 11, or 12.

12. A method for regulating endogenous or heterologous gene expression in a transgenic subject comprising contacting a ligand with an ecdysone receptor complex within the cells of the subject, wherein the cells further contain a DNA binding sequence for the ecdysone receptor complex when in combination with the ligand and wherein formation of an ecdysone receptor complex-ligand-DNA binding sequence complex induces expression of the gene, and where the ligand has the following formula:

$$R^{7}$$
 R^{8}
 R^{1}
 R^{2}
 R^{3}
 R^{7}
 R^{6}
 R^{4}
 R^{5}

wherein X and X' are independently O or S;

Y is:

- (a) substituted or unsubstituted phenyl wherein the substitutents are independently 1-5 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₂-C₄)alkenyl, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, hydroxy, amino, cyano, or nitro; or
- (b) substituted or unsubstituted 2-pyridyl, 3-pyridyl, or 4-pyridyl, wherein the substitutents are independently from 1-4 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₂-C₄)alkenyl, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, hydroxy, amino, cyano, or nitro;

 R^1 and R^2 are independently: H; cyano; cyano-substituted or unsubstituted (C_1 - C_7) branched or straight-chain alkyl; cyano-substituted or unsubstituted (C_2 - C_7) branched or straight-chain alkenyl; cyano-substituted or unsubstituted (C_3 - C_7) branched or straight-chain alkenylalkyl; or together the valences of R^1 and R^2 form a (C_1 - C_7) cyano-substituted or unsubstituted alkylidene group ($R^aR^bC=$) wherein the sum of non-substituent carbons in R^a and R^b is 0-6;

R³ is H, methyl, ethyl, n-propyl, isopropyl, or cyano;

 R^4 , R^7 , and R^8 are independently: H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₂-C₄)alkenyl, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, hydroxy, amino, cyano, or nitro; and

 R^5 and R^6 are independently: H, $(C_1\text{-}C_4)$ alkyl, $(C_2\text{-}C_4)$ alkenyl, $(C_3\text{-}C_4)$ alkenylalkyl, halo (F, Cl, Br, I), $C_1\text{-}C_4$ haloalkyl, $(C_1\text{-}C_4)$ alkoxy, hydroxy, amino, cyano, nitro, or together as a linkage of the type (– OCHR 9 CHR 10 O-) form a ring with the phenyl carbons to which they are attached; wherein R^9 and R^{10} are independently: H, halo, $(C_1\text{-}C_3)$ alkyl, $(C_2\text{-}C_3)$ alkenyl, $(C_1\text{-}C_3)$ alkoxy $(C_1\text{-}C_3)$ alkyl, benzoyloxy $(C_1\text{-}C_3)$ alkyl, hydroxy $(C_1\text{-}C_3)$ alkyl, halo $(C_1\text{-}C_3)$ alkyl, formyl, formyl $(C_1\text{-}C_3)$ alkyl, cyano, cyano $(C_1\text{-}C_3)$ alkyl, carboxy, carboxy $(C_1\text{-}C_3)$ alkyl, $(C_1\text{-}C_3)$ alkoxycarbonyl $(C_1\text{-}C_3)$ alkyl, $(C_1\text{-}C_3)$ alkyl, pentafluorophenyloxycarbonyl, pentafluorophenyloxycarbonyl $(C_1\text{-}C_3)$ alkyl, $(C_1\text{-}C_3)$ a

chains of the indicated length, R^g represents (C_1 - C_3)alkyl or aryl optionally substituted with halo or (C_1 - C_3)alkyl, and R^c , R^d , R^c , R^f , and R^g are independent of one another;

provided that

- i when R⁹ and R¹⁰ are both H, or
- ii when either R^9 or R^{10} are halo, (C_1-C_3) alkyl, (C_1-C_3) alkoxy (C_1-C_3) alkyl, or benzoyloxy (C_1-C_3) alkyl, or
- iii when R⁵ and R⁶ do not together form a linkage of the type (-OCHR⁹CHR¹⁰O-),

then the number of carbon atoms, excluding those of cyano substitution, for either or both of groups R^1 or R^2 is greater than 4, and the number of carbon atoms, excluding those of cyano substitution, for the sum of groups R^1 , R^2 , and R^3 is 10, 11, or 12.

- 13. The method of Claim 12, wherein the ecdysone receptor complex is a chimeric ecdysone receptor complex and the DNA construct further comprises a promoter.
- 14. The method of Claim 12, wherein the subject is a plant.
- 15. The method of Claim 12, wherein the subject is a mammal.
- 16. A method of modulating the expression of a gene in a host cell comprising the steps of:
 - a) introducing into the host cell a gene expression modulation system comprising:
 - i) a first gene expression cassette that is capable of being expressed in a host cell comprising a polynucleotide sequence that encodes a first hybrid polypeptide comprising:
 - (a) a DNA-binding domain that recognizes a response element associated with a gene whose expression is to be modulated; and
 - (b) an ecdysone receptor ligand binding domain;
 - ii) a second gene expression cassette that is capable of being expressed in the host cell comprising a polynucleotide sequence that encodes a second hybrid polypeptide comprising:
 - (a) a transactivation domain; and
 - (b) a chimeric retinoid X receptor ligand binding domain; and
 - iii) a third gene expression cassette that is capable of being expressed in a host cell comprising a polynucleotide sequence comprising:

- (a) a response element recognized by the DNA-binding domain of the first hybrid polypeptide;
- (b) a promoter that is activated by the transactivation domain of the second hybrid polypeptide; and
 - (c) a gene whose expression is to be modulated; and

111

b) introducing into the host cell a ligand of the formula:

$$R^7$$
 R^8
 R^4
 R^2
 R^3
 R^3
 R^4

wherein X and X' are independently O or S;

Y is:

- (a) substituted or unsubstituted phenyl wherein the substitutents are independently 1-5 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₂-C₄)alkenyl, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, hydroxy, amino, cyano, or nitro; or
- (b) substituted or unsubstituted 2-pyridyl, 3-pyridyl, or 4-pyridyl, wherein the substitutents are independently 1-4 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₂-C₄)alkenyl, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, hydroxy, amino, cyano, or nitro;

 R^1 and R^2 are independently: H; cyano; cyano-substituted or unsubstituted (C_1 - C_7) branched or straight-chain alkyl; cyano-substituted or unsubstituted (C_2 - C_7) branched or straight-chain alkenyl; cyano-substituted or unsubstituted (C_3 - C_7) branched or straight-chain alkenylalkyl; or together the valences of R^1 and R^2 form a (C_1 - C_7) cyano-substituted or unsubstituted alkylidene group ($R^aR^bC=$) wherein the sum of non-substituent carbons in R^a and R^b is 0-6;

R³ is H, methyl, ethyl, n-propyl, isopropyl, or cyano;

 R^4 , R^7 , and R^8 are independently: H, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, (C_2-C_4) alkenyl, halo (F, Cl, Br, I), (C_1-C_4) haloalkyl, hydroxy, amino, cyano, or nitro; and

R⁵ and R⁶ are independently: H, (C₁-C₄)alkyl, (C₂-C₄)alkenyl, (C₃-C₄) alkenylalkyl, halo (F, Cl, Br, I), C₁-C₄ haloalkyl, (C₁-C₄)alkoxy, hydroxy, amino, cyano, nitro, or together as a linkage of the type (-OCHR⁹CHR¹⁰O-) form a ring with the phenyl carbons to which they are attached; wherein R⁹ and R¹⁰ are independently: H, halo, (C₁-C₃)alkyl, (C₂-C₃)alkenyl, (C₁-C₃)alkoxy(C₁-C₃)alkyl, benzoyloxy(C₁- C_3) alkyl, hydroxy(C_1 - C_3) alkyl, halo(C_1 - C_3) alkyl, formyl, formyl(C_1 - C_3) alkyl, cyano, cyano(C_1 - C_3)alkyl, carboxy, carboxy(C_1 - C_3)alkyl, (C_1 - C_3)alk C_3)alkyl, (C_1-C_3) alkanoyloxy (C_1-C_3) alkyl, amino (C_1-C_3) alkyl, (C_1-C_3) alkylamino (C_1-C_3) alkyl (- $(CH_2)_n R^c R^e$, oximo (-CH=NOH), oximo (C_1-C_3) alkyl, (C_1-C_3) alkoximo (-C=NOR^d), alkoximo (C_1-C_3) alkoximo (-C=NOR^d), alkoximo (-C=NOR^d C₃)alkyl, (C₁-C₃)carboxamido (-C(O)NR^eR^f), (C₁-C₃)carboxamido(C₁-C₃)alkyl, (C₁-C₃)semicarbazido (-C=NNHC(O)NReRf), semicarbazido(C₁-C₃)alkyl, aminocarbonyloxy (-OC(O)NHRf), aminocarbonyloxy(C₁-C₃)alkyl, pentafluorophenyloxycarbonyl, pentafluorophenyloxycarbonyl(C₁- C_3)alkyl, p-toluenesulfonyloxy(C_1 - C_3)alkyl, arylsulfonyloxy(C_1 - C_3)alkyl, (C_1 - C_3)thio(C_1 - C_3)alkyl, (C_1-C_3) alkylsulfoxido (C_1-C_3) alkyl, (C_1-C_3) alkylsulfoxyl (C_1-C_3) alkyl, or (C_1-C_5) trisubstitutedsiloxy(C₁-C₃)alkyl (-(CH₂)_nSiOR^dR^eR^g); wherein n=1-3, R^c and R^d represent straight or branched hydrocarbon chains of the indicated length, R^e, R^f represent H or straight or branched hydrocarbon chains of the indicated length, R^g represents (C₁-C₃)alkyl or aryl optionally substituted with halo or (C₁-C₃)alkyl, and R^c, R^d, R^e, R^f, and R^g are independent of one another:

provided that

- i when R⁹ and R¹⁰ are both H, or
- ii when either R^9 or R^{10} are halo, (C_1-C_3) alkyl, (C_1-C_3) alkoxy (C_1-C_3) alkyl, or benzoyloxy (C_1-C_3) alkyl, or
- iii when R⁵ and R⁶ do not together form a linkage of the type (-OCHR⁹CHR¹⁰O-),

then the number of carbon atoms, excluding those of cyano substitution, for either or both of groups R^1 or R^2 is greater than 4, and the number of carbon atoms, excluding those of cyano substitution, for the sum of groups R^1 , R^2 , and R^3 is 10, 11, or 12.

- 17. A method for producing a polypeptide comprising the steps of:
 - a) selecting a cell which is substantially insensitive to exposure to a ligand comprising the formula:

$$R^7$$
 R^8
 R^9
 R^4
 R^4
 R^2
 R^3
 R^3
 R^4

wherein X and X' are independently O or S;

Y is:

- (a) substituted or unsubstituted phenyl wherein the substitutents are independently 1-5 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₂-C₄)alkenyl, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, hydroxy, amino, cyano, or nitro; or
- (b) substituted or unsubstituted 2-pyridyl, 3-pyridyl, or 4-pyridyl, wherein the substitutents are independently 1-4 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₂-C₄)alkenyl, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, hydroxy, amino, cyano, or nitro;

 R^1 and R^2 are independently: H; cyano; cyano-substituted or unsubstituted (C_1 - C_7) branched or straight-chain alkyl; cyano-substituted or unsubstituted (C_2 - C_7) branched or straight-chain alkenyl; cyano-substituted or unsubstituted (C_3 - C_7) branched or straight-chain alkenylalkyl; or together the valences of R^1 and R^2 form a (C_1 - C_7) cyano-substituted or unsubstituted alkylidene group ($R^aR^bC=$) wherein the sum of non-substituent carbons in R^a and R^b is 0-6;

R³ is H, methyl, ethyl, n-propyl, isopropyl, or cyano;

 R^4 , R^7 , and R^8 are independently: H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₂-C₄)alkenyl, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, hydroxy, amino, cyano, or nitro; and

 R^5 and R^6 are independently: H, (C_1-C_4) alkyl, (C_2-C_4) alkenyl, (C_3-C_4) alkenylalkyl, halo (F, Cl, Br, I), C_1-C_4 haloalkyl, (C_1-C_4) alkoxy, hydroxy, amino, cyano, nitro, or together as a linkage of the type (– OCHR 9 CHR 10 O-) form a ring with the phenyl carbons to which they are attached; wherein R^9 and R^{10} are independently: H, halo, (C_1-C_3) alkyl, (C_2-C_3) alkenyl, (C_1-C_3) alkoxy (C_1-C_3) alkyl, benzoyloxy (C_1-C_3) alkyl, hydroxy (C_1-C_3) alkyl, halo (C_1-C_3) alkyl, formyl, formyl (C_1-C_3) alkyl, cyano, cyano (C_1-C_3) alkyl, carboxy, carboxy (C_1-C_3) alkyl, (C_1-C_3) alkoxycarbonyl (C_1-C_3) alkyl, (C_1-C_3) alkyl

 C_3)alkyl, (C_1-C_3) carboxamido $(-C(O)NR^eR^f)$, (C_1-C_3) carboxamido (C_1-C_3) alkyl, (C_1-C_3) semicarbazido $(-C=NNHC(O)NR^eR^f)$, semicarbazido (C_1-C_3) alkyl, aminocarbonyloxy $(-OC(O)NHR^g)$, aminocarbonyloxy (C_1-C_3) alkyl, pentafluorophenyloxycarbonyl, pentafluorophenyloxycarbonyl (C_1-C_3) alkyl, p-toluenesulfonyloxy (C_1-C_3) alkyl, arylsulfonyloxy (C_1-C_3) alkyl, (C_1-C_3) alkyl, (C_1-C_3) alkyl, or (C_1-C_3) alkyl, or (C_1-C_3) alkylsulfoxido (C_1-C_3) alkyl, (C_1-C_3) alkylsulfonyl (C_1-C_3) alkyl, or (C_1-C_5) trisubstituted-siloxy (C_1-C_3) alkyl $(-(CH_2)_nSiOR^dR^eR^g)$; wherein n=1-3, R^c and R^d represent straight or branched hydrocarbon chains of the indicated length, R^g represents (C_1-C_3) alkyl or aryl optionally substituted with halo or (C_1-C_3) alkyl, and R^c , R^d , R^e , R^f , and R^g are independent of one another;

provided that

- i when R^9 and R^{10} are both H, or
- ii when either R^9 or R^{10} are halo, (C_1-C_3) alkyl, (C_1-C_3) alkoxy (C_1-C_3) alkyl, or benzoyloxy (C_1-C_3) alkyl, or
- when R^5 and R^6 do not together form a linkage of the type (-OCHR 9 CHR 10 O-), then the number of carbon atoms, excluding those of cyano substitution, for either or both of groups R^1 or R^2 is greater than 4, and the number of carbon atoms, excluding those of cyano substitution, for the sum of groups R^1 , R^2 , and R^3 is 10, 11, or 12;
 - b) introducing into the cell:
 - 1) a DNA construct comprising:
 - i) an exogenous gene encoding the polypeptide; and
 - ii) a response element;

wherein the gene is under the control of the response element; and

- 2) an ecdysone receptor complex comprising:
 - i) a DNA binding domain;
 - ii) a binding domain for the ligand; and
 - iii) a transactivation domain; and
- c) exposing the cell to the ligand.