Artificial Intelligence

Clustering 2

Extended from Kyuseok Shim's slides

인공지능학과 Department of Artificial Intelligence

정 우 환 (whjung@hanyang.ac.kr) Fall 2022

K-means clustering

Hierarchical Clustering Approach

- Given k, the hierarchical algorithm is implemented in four steps:
 - Say "Every point is it's own cluster"
 - Find "most similar" pair of clusters
 - Merge it into a parent cluster
 - Repeat...until you've merged the whole dataset into k clusters

 Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition

Dendrogram: Shows How Clusters are Merged

Distance between Clusters

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., dist(K_i, K_j) = min(t_{ip}, t_{jq})
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., dist(K_i, K_j) = max(t_{ip}, t_{iq})
- Average: avg distance between an element in one cluster and an element in the other, i.e., dist(K_i, K_j) = avg(t_{ip}, t_{jq})
- Centroid: distance between the centroids of two clusters, i.e., dist(K_i, K_j) = dist(C_i, C_j)
- Medoid: distance between the medoids of two clusters, i.e., dist(K_i, K_j) = dist(M_i, M_j)
 - Medoid: a chosen, centrally located object in the cluster

Centroid, Radius and Diameter of a Cluster (for numerical data sets)

Centroid: the "middle" of a cluster

$$C_{m} = \frac{\sum_{i=1}^{N} (t_{ip})}{N}$$

• Radius: square root of average distance from any point of the cluster to its centroid $\sum_{r=0}^{N} \frac{1}{(r-c_r)^2}$

$$R_m = \sqrt{\frac{\sum_{i=1}^{N} (t_i - c_m)^2}{N}}$$

 Diameter: square root of average mean squared distance between all pairs of points in the cluster

$$D_{m} = \sqrt{\frac{\sum_{i=1}^{N} \sum_{i=1}^{N} (t_{ip} - t_{iq})^{2}}{N(N-1)}}$$

Hierarchical Algorithms

Single-link

Hierarchical Algorithms

Average-link

Mean-link

Centroid-link
 Cluster A
 Cluster B

-(1, 1)(2, 1)(1, 2)(5, 5)(6, 5)(5, 6)(7, 7)

Compare each distance from closest item in clusters

(1, 1)(2, 1)(1, 2)(5, 5)(6, 5)(5, 6)(7, 7)

Compare each distance from closest item in clusters

(1, 1)(2, 1)(1, 2)(5, 5)(6, 5)(5, 6)(7, 7)

Compare each distance from closest item in clusters

Python - Hierarchical Clustering

Enumerate function

The iteration index is stored in it

```
for i, x in enumerate(('A', 'B', 'C')):
    print("i: {}, x: {}".format(i, x))
```

```
i: 0, x: A
```

i: 1, x: B

i: 2, x: C

```
from sklearn.cluster import AgglomerativeClustering
for i, linkage in enumerate(('single', 'complete')):
    clustering = AgglomerativeClustering(
        linkage=linkage, n_clusters=4)
    y_pred = clustering.fit_predict(X)
    plt.figure(i + 1, figsize=(5, 5))
    plt.scatter(X[:, 0], X[:, 1], c=y_pred, s=4, cmap=cmap)
    plt.title(linkage)
plt.show()
```

Link Types

Iteration Index

```
from/sklearn.cluster import AgglomerativeClustering
for i, linkage in enumerate(('single', 'complete')):
    clustering = AgglomerativeClustering(
        linkage=linkage, n_clusters=4)
    y_pred = clustering.fit_predict(X)
    plt.figure(i + 1, figsize=(5, 5))
    plt.scatter(X[:, 0], X[:, 1], c=y_pred, s=4, cmap=cmap)
    plt.title(linkage)
plt.show()
```

```
from sklearn.cluster import AgglomerativeClustering
for i, linkage in enumerate(('single', 'complete')):
    clustering = AgglomerativeClustering(
        linkage=linkage, n_clusters=4)
    y_pred = clustering.fit_predict(X)
    plt.figure(i + 1, figsize=(5, 5))
    plt.scatter(X[:, 0], X[:, 1], c=y_pred, s=4, cmap=cmap)
    plt.title(linkage)
plt.show()
The index of each figure
```

The title of figure is named by the link type

Parameters

```
clustering = AgglomerativeClustering(
    linkage=linkage, n_clusters=4)
```

- n_clusters: the number of clusters to find
- linkage: the link type
 - Single
 - Complete
 - Average
 - Ward: minimize the variance of distances
- affinity: the distance metric
 - Default: "euclidean"

Clustering

Summary of Drawbacks of Traditional Methods

- Partitional algorithms split large clusters
- Centroid-based method splits large and non-hyperspherical clusters
 - Centers of subclusters can be far apart
- Single-link clustering algorithm is sensitive to outliers and slight change in position
 - Exhibits chaining effect on string of outliers
- Cannot scale up for large databases

DENSITY-BASED CLUSTERING

Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD'96)
 - OPTICS: Ankerst, et al (SIGMOD'99).
 - DENCLUE: Hinneburg & D. Keim (KDD'98)
 - CLIQUE: Agrawal, et al. (SIGMOD'98) (more grid-based)

DBSCAN

 http://primo.ai/index.php?title=Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

Comparing different clustering algorithms

Density-Based Clustering: Basic Concepts

- Two parameters:
 - ε: Maximum radius of the neighbourhood
 - MinPts: Minimum number of points in an Epsneighbourhood of that point
- $N_{\varepsilon}(q)$: {q belongs to D | dist(p,q) $\leq \varepsilon$ }
- Directly density-reachable: A point p is directly density-reachable from a point q w.r.t. Eps, MinPts if
 - p belongs to $N_{\varepsilon}(q)$
 - If $|N_{\varepsilon}(q)| \ge MinPts$
 - q is a core point
 - Otherwise, q is a border point

MinPts = 5

 $\varepsilon = 1 \text{ cm}$

Density-Reachable and Density-Connected

Density-reachable:

■ A point p is density-reachable from a point q w.r.t. ε , MinPts if there is a chain of points $p_1, ..., p_n, p_1 = q$, $p_n = p$ such that p_{i+1} is directly density-reachable from p_i

Density-connected

A point p is density-connected to a point q w.r.t. ε, MinPts if there is a point o such that both, p and q are density-reachable from o w.r.t. Eps and MinPts

Definition: Density-based Clusters

- Given a set of points D, a cluster C is a densitybased cluster w.r.t. ε and MinPts if
 - (Maximality) For every p_i , p_j in D, if $p_i \in C$ and p_j is density-reachable from p_i , p_j belongs to C
 - (Connectivity) For every p_i, p_j in C, p_i is densityconnected from p_j
- Outlier
 - If a point in p is a border point and does not belongs the any other clusters, p is a outlier

DBSCAN: Density-Based Spatial Clustering of Applications with Noise

- Relies on a density-based notion of cluster: A cluster is defined as a maximal set of density-connected points
- Discovers clusters of arbitrary shape in spatial databases with noise

DBSCAN: The Algorithm

- Arbitrary select a point p
- Retrieve all points density-reachable from p w.r.t. ε and MinPts
- If p is a core point, a cluster is formed
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database
- Continue the process until all of the points have been processed

$$\varepsilon = 1$$
 MinNumPoints = 3

Start from (1,1) point

Class A

(1,1)

Unclassified

$$\varepsilon = 1$$
 MinNumPoints = 3

Start from (1,1) point

Class A

(1,1)(1,2) (2,1)

Unclassified

$$\varepsilon = 1$$
 MinNumPoints = 3

Start from (2,1) point

Class A

(1,1)(1,2) (2,1)

Unclassified

$$\varepsilon = 1$$
 MinNumPoints = 3

Start from (1,2) point

Class A

(1,1)(1,2) (2,1)

Unclassified

$$\varepsilon = 1$$
 MinNumPoints = 3

Start from (5,5) point

Class A

(1,1)(1,2) (2,1)

Class B

(5,5)

Unclassified

(5,6) (6,5)(7,7)

$$\varepsilon = 1$$
 MinNumPoints = 3

Start from (5,5) point

Class A

(1,1)(1,2)(2,1)

Class B

(5,5) (5,6) (6,5)

Unclassified

(7,7)

$$\varepsilon = 1$$
 MinNumPoints = 3

Start from (6,5) point

Class A

(1,1)(1,2)(2,1)

Class B

(5,5) (5,6) (6,5)

Unclassified

(7,7)

$$\varepsilon = 1$$
 MinNumPoints = 3

Start from (5,6) point

Class A

(1,1)(1,2)(2,1)

Class B

(5,5) (5,6) (6,5)

Unclassified

(7,7)

(5,6) point: Border Point

Class A

(1,1)(1,2)

(2,1)

Class B

(5,5)(6,5) (5,6)

Class C

(7,7)

→ Outlier

Comparing different clustering algorithms

Python - DBSCAN

```
from sklearn.cluster import DBSCAN
dbscan = DBSCAN(eps=0.05, min samples=20)
y_pred = dbscan.fit predict(X)
print(y_pred[:10])

[ 0 4 -1 -1 -1 -1 -1 -1 -1 -1]

Maximum radius of the neighborhood
The number of points in a neighborhood to be a core point
```

```
from sklearn.cluster import DBSCAN
dbscan = DBSCAN(eps=0.05, min samples=20)
y pred = dbscan.fit predict(X)
print(y pred[:10])
      4 -1 -1 -1 -1 -1 -1 -1
                            Perform clustering and output the
                            cluster index for each data point
        Outliers are indexed as -1
```

Pairs of (eps, min_samples)

Iterate over 4 pairs of (eps, min_samples)

Parameters

```
dbscan = DBSCAN(
    eps=eps,
    min_samples=min_samples)
```

- eps: maximum radius of the neighborhood
- min_samples: the number of points in a neighborhood to be a core point
- metric: the distance metric (default: "euclidean")

References (1)

- R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD'98
- M. R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.
- M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering points to identify the clustering structure, SIGMOD'99.
- Beil F., Ester M., Xu X.: "Frequent Term-Based Text Clustering", KDD'02
- M. M. Breunig, H.-P. Kriegel, R. Ng, J. Sander. LOF: Identifying Density-Based Local Outliers. SIGMOD 2000.
- M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases. KDD'96.
- M. Ester, H.-P. Kriegel, and X. Xu. Knowledge discovery in large spatial databases: Focusing techniques for efficient class identification. SSD'95.
- D. Fisher. Knowledge acquisition via incremental conceptual clustering.
 Machine Learning, 2:139-172, 1987.
- D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynamic systems. VLDB'98.
- V. Ganti, J. Gehrke, R. Ramakrishan. CACTUS Clustering Categorical Data Using Summaries. KDD'99.

References (2)

- D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynamic systems. In Proc. VLDB'98.
- S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for large databases. SIGMOD'98.
- S. Guha, R. Rastogi, and K. Shim. ROCK: A robust clustering algorithm for categorical attributes. In *ICDE'99*, pp. 512-521, Sydney, Australia, March 1999.
- A. Hinneburg, D.I A. Keim: An Efficient Approach to Clustering in Large Multimedia Databases with Noise. KDD'98.
- A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Printice Hall, 1988.
- G. Karypis, E.-H. Han, and V. Kumar. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling. COMPUTER, 32(8): 68-75, 1999.
- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.
- E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. VLDB'98.

References (3)

- G. J. McLachlan and K.E. Bkasford. Mixture Models: Inference and Applications to Clustering. John Wiley and Sons, 1988.
- R. Ng and J. Han. Efficient and effective clustering method for spatial data mining.
 VLDB'94.
- L. Parsons, E. Haque and H. Liu, Subspace Clustering for High Dimensional Data: A Review, SIGKDD Explorations, 6(1), June 2004
- E. Schikuta. Grid clustering: An efficient hierarchical clustering method for very large data sets. Proc. 1996 Int. Conf. on Pattern Recognition
- G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution clustering approach for very large spatial databases. VLDB'98.
- A. K. H. Tung, J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-Based Clustering in Large Databases, ICDT'01.
- A. K. H. Tung, J. Hou, and J. Han. Spatial Clustering in the Presence of Obstacles, ICDE'01
- H. Wang, W. Wang, J. Yang, and P.S. Yu. Clustering by pattern similarity in large data sets, SIGMOD'02
- W. Wang, Yang, R. Muntz, STING: A Statistical Information grid Approach to Spatial Data Mining, VLDB'97
- T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering method for very large databases. SIGMOD'96
- X. Yin, J. Han, and P. S. Yu, "LinkClus: Efficient Clustering via Heterogeneous Semantic Links", VLDB'06