RAG & CacheBlend

INTRODUCTION TO LLM
INFERENCE SERVING SYSTEMS
CHUHONG YUAN

Query Input

- Some retrieved contexts can be used for multiple chats
- Can we save time in prefill for these shared contexts?

- Some retrieved contexts can be used for multiple chats
- Can we save time in prefill for these shared contexts?
 - Cross-attention exists across the retrieved text chunks

- Some retrieved contexts can be used for multiple chats
- Can we save time in prefill for these shared contexts?
 - Cross-attention exists across the retrieved text chunks
- KV full-recompute
 - Accurate but slow

(a) Default: Full KV re-compute.

Prefill on entire input

- Some retrieved contexts can be used for multiple chats
- Can we save time in prefill for these shared contexts?
 - Cross-attention exists across the retrieved text chunks
- KV full-recompute
- Prefix caching
 - Doesn't help much

- Some retrieved contexts can be used for multiple chats
- Can we save time in prefill for these shared contexts?
 - Cross-attention exists across the retrieved text chunks
- KV full-recompute
- Prefix caching
- KV full-reuse
 - Fast but low quality

(c) Prior work: Full KV reuse.
Reusing all KV caches, ignoring cross-attention

- Some retrieved contexts can be used for multiple chats
- Can we save time in prefill for these shared contexts?
 - Cross-attention exists across the retrieved text chunks
- KV full-recompute
- Prefix caching
- KV full-reuse
 - Fast but low quality

(c) Full KV reuse gives wrong answer.

Chunk 1 Chunk 2

- Some retrieved contexts can be used for multiple chats
- Can we save time in prefill for these shared contexts?
 - Cross-attention exists across the retrieved text chunks
- KV full-recompute
- Prefix caching
- KV full-reuse
 - Fast but low quality

(a) Full KV recompute (correct cross-attention)

(b) Full KV reuse (ignoring cross-attention)

- Some retrieved contexts can be used for multiple chats
- Can we save time in prefill for these shared contexts?
 - Cross-attention exists across the retrieved text chunks
- KV full-recompute
- Prefix caching
- KV full-reuse
- Challenge: tradeoff between accuracy and efficiency

Figure 2. Generation quality improves as more text chunks are retrieved.

Core Idea – Selective KV Cache Recomputation

- Balance between accuracy and efficiency
 - Less KV Cache computation but maintain an acceptable accuracy
- Goal
 - With multiple reused text chunks, quickly update KV Cache, making the forward-attention matrices have the smallest difference from the one under full KV-recomputation
- Terminology
 - KV Deviation difference between the KV under selective recomputation and full recomputation
 - Attention Deviation difference between the forward attention matrices under two recomputations

Challenges For Selective Recomputation

- How many tokens should be selected for recomputation?
- Which tokens should be selected?
 - How to achieve the minimum accuracy loss?
 - How to get the ground truth of the forward attention matrix without large costs?

(a) Full KV recompute for reference

(b) Selective KV recompute on two selected tokens

- The tokens with higher KV deviation may also cause higher attention deviation
 - Recomputing the KV Cache of such tokens is intuitively more efficient
- How many tokens should be recomputed?

- The tokens with higher KV deviation may also cause higher attention deviation
 - Recomputing the KV Cache of such tokens is intuitively more efficient
- How many tokens should be recomputed?

- The tokens with higher KV deviation may also cause higher attention deviation
 - Recomputing the KV Cache of such tokens is intuitively more efficient
- How many tokens should be recomputed?
 - Attention sparsity only part of the tokens are highlighted

How To Identify HKVD Tokens?

- The ground truth can only be known under full recomputation.
 - Too time costly
- Tokens with high KVD on one layer are likely to be HKVD tokens in the next layer

How To Identify HKVD Tokens?

- The ground truth can only be known under full recomputation
 - Too time costly
- Tokens with high KVD on one layer are likely to be HKVD tokens in the next layer
- Gradual filtering
 - First layer all recomputation
 - Then select the ones with the highest r% KV deviation in the next layer
 - In the next layer, filter out the tokens with low KV deviation

How To Identify HKVD Tokens?

- The ground truth can only be known under full recomputation
 - Too time costly
- Tokens with high KVD on one layer are likely to be HKVD tokens in the next layer
- Gradual filtering
 - First layer all recomputation
 - Then select the ones with the highest r% KV deviation in the next layer
 - In the next layer, filter out the tokens with low KV deviation

CacheBlend Design

Loading Controller

- Pipeline KV Cache loading and recomputation
 - Avoid extra latency
- Device fixed, decide the recomputation ratio so that $T_{recomputation} < T_{load}$

Loading Controller

- Pipeline KV Cache loading and recomputation
 - Avoid extra latency
- Device fixed, decide the recomputation ratio so that $T_{recomputation} < T_{load}$
- Recomputation ratio fixed, decide the device so that $T_{recomputation} > T_{load}$

KV Cache Store & Fusor

- KV Cache store
 - Inputs are split into text chunks
 - Indexing with a hashing value
 - LRU policy to eviction
- Fusor
 - Merge the precomputed KV cache and the new one

Evaluation Settings

- Models: Mistral-7B, Yi-34B, Llama-70B
- GPUs: Runpod 128GB RAM, A40
- Storage: 1TB NVME SSD
- Baselines
 - Full KV recompute, prefix caching, full KV reuse
 - MapReduce: summarize the chunks then concatenate together
 - MapRerank: independently generate answers with each chunk then select the one with highest score

Workloads & Metrics

- Datasets
 - 2WikiMQA, Musique, SAMSum, MultiNews
 - Contexts split into chunks
 - Generate a database with the queries
- Metrics
 - Efficiency: TTFT, throughput (request rate)
 - Accuracy: F1-score (num of overlapped words), Rouge-L score (longest common sequence)

Evaluation – Latency vs. Accuracy

Figure 12. Cacheblend reduces TTFT by 2.2-3.3× compared to full KV recompute with negligible quality drop across four datasets and three models.

Evaluation – Latency vs. Accuracy

Figure 13. Generation quality of Cacheblend with Yi-34B vs MapReduce and MapRerank.

Evaluation – Throughput

Figure 14. Cacheblend achieves lower TTFT with higher throughput in RAG scenarios compared with baselines of similar quality.

Evaluation – Sensitivity Analysis

Figure 15. Cacheblend outperforms baseline with varying chunk numbers, chunk lengths, and batch sizes.

Evaluation – Sensitivity Analysis

Figure 16. Cacheblend has minimal loss in quality compared with full KV recompute, with 5%–18% selective recompute ratio, with Yi-34B.

Evaluation – Sensitivity Analysis

Figure 17. Cacheblend's outperforms baselines when using RAM and slower disks

Homework Review

- Challenges
 - Accuracy vs. Efficiency
 - Which tokens should be selected?
 - How to identify HKVD tokens?
- Design
 - Selective KV Cache recomputation
 - Select ~15% HKVD tokens
 - Gradual filtering
- Evaluation
 - Accuracy, efficiency for proving the successful tradeoff between two factors
 - Sensitivity: avoid the influence of other factors

Homework

- Read the paper SpecInfer: Accelerating Large Language Model Serving with Tree-based Speculative Inference and Verification, summarize the paper, specifically, including the points below:
 - What are the motivations/challenges of this work?
 - How does the design of this paper address the challenges?
 - How does the paper evaluate its design (experiment settings, workloads, metrics)?
 - How does the evaluation prove its claims?
- Note that it is essential to logically connect the motivation, design, and evaluation, rather than merely listing some points.
- Related link:
 - Paper of SpecInfer: https://dl.acm.org/doi/pdf/10.1145/3620666.3651335

Q&A