SBML Model Report

Model name: "DeVries2000-PancreaticBetaCells InsulinSecretion"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Ishan Ajmera¹ and Catherine Lloyd² at September 28th 2011 at 9:16 p. m. and last time modified at April eighth 2016 at 5:05 p. m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity	
compartment types	0	compartments	1	
species types	0	species	3	
events	0	constraints	0	
reactions	0	function definitions	0	
global parameters	24	unit definitions	0	
rules	10	initial assignments	0	

Model Notes

This a model from the article:

Channel sharing in pancreatic beta -cells revisited: enhancement of emergentbursting by noise.

De Vries G, Sherman A. <u>J Theor Biol</u>2000 Dec 21;207(4):513-30 11093836,

¹EMBL-EBI, ajmera@ebi.ac.uk

²The University of Auckland, The Bioengineering Institute, c.lloyd@aukland.ac.nz

Abstract:

Secretion of insulin by electrically coupled populations of pancreatic beta-cells is governed by bursting electrical activity. Isolated beta -cells,however, exhibit atypical bursting or continuous spike activity. We studybursting as an emergent property of the population, focussing on interactionsamong the subclass of spiking cells. These are modelled by equipping the fastsubsystem with a saddle-node-loop bifurcation, which makes it monostable. Suchcells can only spike tonically or remain silent when isolated, but can beinduced to burst with weak diffusive coupling. With stronger coupling, the cellsrevert to tonic spiking. We demonstrate that the addition of noise dramaticallyincreases, via a phenomenon like stochastic resonance, the coupling range overwhich bursting is seen. Copyright 2000 Academic Press.

This model was taken from the CellML repository and automatically converted to SBML. The original model was: **De Vries G, Sherman A. (2000) - version01**

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team. For more information see the terms of use.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
Compartment	Compartment		3	1	litre	Ø	

3.1 Compartment Compartment

This is a three dimensional compartment with a constant size of one litre.

Name Compartment

4 Species

This model contains three species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id Name		Compartment	Derived Unit	Constant	Boundary Condi- tion
V_membrane n	V_membrane n	Compartment Compartment	$\begin{array}{c} \operatorname{mol} \cdot \mathbf{l}^{-1} \\ \operatorname{mol} \cdot \mathbf{l}^{-1} \end{array}$		
s	S	Compartment	$\text{mol} \cdot 1^{-1}$	\Box	\Box

5 Parameters

This model contains 24 global parameters.

Table 4: Properties of each parameter.

Table 4: Properties of each parameter.						
Id	Name	SBO	Value	Unit	Constant	
tau_membrane	tau	0000345	20.000			
i_Ca	i_Ca		-7.445			
g_Ca	g_Ca	0000009	3.600			
$V_{-}Ca$	V_Ca	0000009	25.000		$ \overline{\mathscr{L}} $	
$\mathtt{m}_{-}\mathtt{infinity}$	m_infinity		0.023			
V_m	V_m	0000009	-20.000		\square	
$\verb theta_m $	theta_m	0000009	12.000			
$\mathtt{i}_{-}\!\mathrm{K}$	i_K		5.000			
V_K	$V_{-}K$	0000009	-75.000		\square	
g_K	g_K	0000009	10.000		<u></u>	
$\mathtt{n}_{\mathtt{-}}\mathtt{infinity}$	n_infinity	1.8	39405943825186 · 10	-4	⊿ ⊟	
V_n	V_n	0000009	-17.000			
theta_n	theta_n	0000009	5.600			
lamda	lamda	0000009	0.800		$\overline{\mathbf{Z}}$	
tau-	tau_2	0000345	20.000		$\overline{\mathscr{L}}$	
_potassium-						
_current_n-						
_gate						
i_s	i_s		1.000		\Box	
gs	$g_{-}S$	0000009	4.000		\square	
$\mathtt{s}_{-}\mathtt{infinity}$	s_infinity		0.005			
$V_{-}s$	V_{-S}	0000009	-22.000		\square	
${ t theta_s}$	theta_s	0000009	8.000		$ \overline{\mathscr{L}} $	
tau_s	tau_s	0000345	20000.000			
i_K_ATP	i_K_ATP		6.000			
g_K_ATP	g_K_ATP		1.200			
p	p	0000009	0.500			

6 Rules

This is an overview of ten rules.

6.1 Rule m_infinity

Rule m_infinity is an assignment rule for parameter m_infinity:

$$m_infinity = \frac{1}{1 + \exp\left(\frac{V_m - [V_membrane]}{theta_m}\right)}$$
(1)

6.2 Rule i_Ca

Rule i_Ca is an assignment rule for parameter i_Ca:

$$i_Ca = g_Ca \cdot m_infinity \cdot ([V_membrane] - V_Ca)$$
 (2)

6.3 Rule i_K

Rule i_K is an assignment rule for parameter i_K:

$$i_{-}K = g_{-}K \cdot [n] \cdot ([V_{-}membrane] - V_{-}K)$$
(3)

6.4 Rule n_infinity

Rule n_infinity is an assignment rule for parameter n_infinity:

$$n_infinity = \frac{1}{1 + exp\left(\frac{V_n - [V_membrane]}{theta_n}\right)}$$
 (4)

6.5 Rule i_s

Rule i_s is an assignment rule for parameter i_s:

$$i_{-}s = g_{-}s \cdot [s] \cdot ([V_{-}membrane] - V_{-}K)$$
(5)

6.6 Rule s_infinity

Rule s_infinity is an assignment rule for parameter s_infinity:

$$s_infinity = \frac{1}{1 + exp\left(\frac{V_s - [V_membrane]}{theta_s}\right)}$$
 (6)

6.7 Rule i_K_ATP

Rule i_K_ATP is an assignment rule for parameter i_K_ATP:

$$i_{K}ATP = g_{K}ATP \cdot p \cdot ([V_{membrane}] - V_{K})$$
(7)

6.8 Rule V_membrane

Rule V_membrane is a rate rule for species V_membrane:

$$\frac{d}{dt}V_{\text{membrane}} = \frac{(i_{\text{L}}Ca + i_{\text{L}}K + i_{\text{L}}K_{\text{L}}ATP + i_{\text{L}}s)}{tau_{\text{membrane}}}$$
(8)

6.9 Rule n

Rule n is a rate rule for species n:

$$\frac{d}{dt}n = \frac{\text{lamda} \cdot (n_{\text{infinity}} - [n])}{\text{tau_potassium_current_n_gate}}$$
(9)

6.10 Rule s

Rule s is a rate rule for species s:

$$\frac{d}{dt}s = \frac{s_infinity - [s]}{tau_s}$$
 (10)

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

7.1 Species V_membrane

Name V_membrane

Initial amount -65 mol

Involved in rule V_membrane

One rule which determines this species' quantity.

7.2 Species n

Name n

Initial amount 0.05 mol

Involved in rule n

One rule which determines this species' quantity.

7.3 Species s

Name s

Initial amount 0.025 mol

Involved in rule s

One rule which determines this species' quantity.

A Glossary of Systems Biology Ontology Terms

SBO:0000009 kinetic constant: Numerical parameter that quantifies the velocity of a chemical reaction

SBO:0000345 time: Fundmental quantity of the measuring system used to sequence events, to compare the durations of events and the intervals between them, and to quantify the motions or the transformation of entities. The SI base unit for time is the SI second. The second is the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom

SBML2LATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany