Report of Entropy estimates based on NIST SP 800-90B non-IID track

 $2023\text{-}\mathrm{Feb}\text{-}26\ 09\text{:}50\text{:}17.787896$

1 Identification information

1.1 Identification of acquisition data from entropy source

Table 1 Identification information of acquisition data from entropy source

URL of the acquisition data	https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/bin/truerand_1bit.bin	
	the submitter of the acquisition data : lanation of the acquisition data (or entropy source) :	

1.2 Identification of analysis environment

Table 2 Identification information of analysis environment

Analysis tool	Name	Another entropy estimation tool with extensions
	Versioning information	1.0.43
Analysis environment	Hostname	
	CPU information	AMD Ryzen
	Physical memory size	MB
	OS information	Windows 10 or greater
	Username	

1.3 Identification of analysis conditions

Table 3 Identification information of analysis conditions

Number of samples	1000000
Bits per sample	1

1.4 Identification of analysis method

NIST SP 800-90B [1] 6.3 with corrections [2] is applied

2 Executive summary

2.1 Numerical results of min-entropy estimates based on non-IID track

Table 4 Numerical results

Estimator	$H_{ m bitstring}{}^{ m a}$
	[bit / 1 - bit]
The Most Common Value Estimate	0.995043
The Collision Estimate	0.900935
The Markov Estimate	0.998486
The Compression Estimate	0.829677
The t-Tuple Estimate	0.914226
The Longest Repeated Substring (LRS) Estimate	0.985818
Multi Most Common in Window Prediction Estimate	0.996972
The Lag Prediction Estimate	0.998292
The MultiMMC Prediction Estimate	0.99666
The LZ78Y Prediction Estimate	0.99705
The intial entropy source estimate [bit / 1 -bit]	0.829677
$H_I = H_{ m bitstring}$	
^a Entropy estimate of the sequential dataset [source: NIST SP 800-90B [1] 3.1.3]	

2.2 Visual comparison of min-entropy estimates from binary samples

Fig. 1 $\,$ Estimated Min-Entropy using $\S 6.3$ of NIST SP 800-90B $\,$

3 Detailed results of analysis from original samples

3.1 The Most Common Value Estimate (NIST SP 800-90B Section 6.3.1)

3.1.1 Supplemental information for traceability

Table 5 Supplemental information for traceability (NIST SP 800-90B Section 6.3.1)

Symbol	Value
mode	500433
\hat{p}	0.500433
p_u	0.501721

3.2 The Collision Estimate (NIST SP 800-90B Section 6.3.2)

Fig. 2 Solution to the equation in step 7

3.2.1 Supplemental information for traceability

Table 6 Supplemental information for traceability (NIST SP 800-90B Section 6.3.2)

Symbol	Value
p	0.53554
\bar{X}	2.49951
$ar{X}'$	2.49747
$\hat{\sigma}$	0.5

3.3 The Markov Estimate (NIST SP 800-90B Section 6.3.3)

Fig. 3 Transition probability $P_{i,j}$ of §6.3.3 of NIST SP 800-90B

[sequence index 1] $0000 \cdots 0000$

[sequence index 4] $0111 \cdots 1110$

[sequence index 5] $0000 \cdots 0001$ [sequence index 6] $0101 \cdots 0101$

[sequence index 7] $0111 \cdots 1111$ [sequence index 8] $1000 \cdots 0000$

[sequence index 9] $1010 \cdots 1010$ [sequence index 10] $1111\cdots 1110$

[sequence index 11] $1000 \cdots 0001$

[sequence index 14] $1111 \cdots 1111$

Fig. 4 Estimated Min-Entropy using $\S 6.3.3$ of NIST SP 800-90B

3.4 The Compression Estimate (NIST SP 800-90B Section 6.3.4)

3.4.1 Supplemental information for traceability

Table 7 Supplemental information for traceability (NIST SP 800-90B Section 6.3.4)

Symbol	Value
p	0.0317288
$ar{X}$	5.2153
$\hat{\sigma}$	1.01788
$ar{X}'$	5.20886

3.5 The t-tuple Estimate (NIST SP 800-90B Section 6.3.5)

Fig. 5 Intermediate value Q[i] in §6.3.5 of NIST SP 800-90B

Fig. 6 $P[i]^{1/i}$ in §6.3.5 of NIST SP 800-90B

3.5.1 Supplemental information for traceability

Table 8 Supplemental information for traceability (NIST SP 800-90B Section 6.3.5)

Symbol	Value
t	16
\hat{p}_{max}	0.529343
p_u	0.530628

3.6 The LRS Estimate (NIST SP 800-90B Section 6.3.6)

Fig. 7 Estimated W-tuple collision probability in Step 3 of $\S 6.3.6$ of NIST SP 800-90B

 $Fig.~8 \quad Estimated~average~collision~probability~per~string~symbol~in~Step~3~of~\S 6.3.6~of~NIST~SP~800-90B \\$

3.6.1 Supplemental information for traceability

Table 9 Supplemental information for traceability (NIST SP 800-90B Section 6.3.6)

Symbol	Value
u	17
v	39
\hat{p}	0.503651
p_u	0.504939

3.7 Multi Most Common in Window Prediction Estimate (NIST SP 800-90B Section 6.3.7)

Fig. 9 Distribution of correct

3.7.1 Supplemental information for traceability

Table 10 Supplemental information for traceability (NIST SP 800-90B Section 6.3.7)

Symbol	Value
N	999937
C	499731
P_{global}	0.499762
$P'_{ m global}$	0.50105
r	20
$P_{ m local}$	0.408813

3.8 Lag Prediction Estimate (NIST SP 800-90B Section 6.3.8)

Fig. 10 $\,$ Distribution of correct

3.8.1 Supplemental information for traceability

 $\begin{tabular}{ll} Table 11 & Supplemental information for traceability (NIST SP 800-90B Section 6.3.8) \\ \end{tabular}$

Symbol	Value
N	999999
C	499304
P_{global}	0.499304
$P'_{ m global}$	0.500592
r	23
$P_{ m local}$	0.461263

3.9 The MultiMMC Prediction Estimate (NIST SP 800-90B Section 6.3.9)

 ${\bf Fig.~11~~Distribution~of~} correct$

3.9.1 Supplemental information for traceability

Table 12 Supplemental information for traceability (NIST SP 800-90B Section 6.3.9)

Symbol	Value
N	999998
C	499870
$P_{ m global}$	0.499871
$P'_{ m global}$	0.501159
r	20
$P_{ m local}$	0.408812

3.10 The LZ78Y Prediction Estimate (NIST SP 800-90B Section 6.3.10)

Fig. 12 Distribution of correct

3.10.1 Supplemental information for traceability

Table 13 Supplemental information for traceability (NIST SP 800-90B Section 6.3.10)

Symbol	Value
N	999983
C	499727
$P_{ m global}$	0.499735
$P'_{ m global}$	0.501023
r	20
$P_{ m local}$	0.408812

3 References

^[1] Meltem Sönmez Turan, Elaine Barker, John Kelsey, Kerry A. McKay, Mary L. Baish, Mike Boyle Recommendation for the Entropy Sources Used for Random Bit Generation, NIST Special Publication 800-90B, Jan. 2018

^[2] G. Sakurai, Proposed list of corrections for NIST SP 800-90B 6.3 Estimators, Dec. 2022 https://github.com/g-g-sakura/AnotherEntropyEstimationTool/blob/main/documentation/ProposedListOfCorrections_SP800-90B.pdf