Тема 2

Пожарная опасность предприятия.

Основные причины возникновения пожаров на производстве

Каждое промышленное предприятие имеет потенциально высокий риск возникновения пожара. Связано это с тем, что в производственном цикле используются самые разнообразные горючие и легковоспламеняющиеся вещества. От типа и объема этих пожароопасных веществ и материалов напрямую зависит категория взрывопожарной и пожарной опасности здания и помещений.

Что несет угрозу возникновения пожара на производстве?

Прежде всего легковоспламеняющиеся жидкости (ЛЖВ), которые способны гореть самостоятельно после удаления источника загорания.

Взрывоопасная смесь или смесь паров ЛВЖ, горючих газов, горючих пылей и волокон, которая при определенной концентрации может взорваться при появлении вблизи источника инициирования взрыва (искра, открытое пламя и т.д.).

Если в технологическом процессе применяют горючие вещества и существует возможность их контакта с воздухом, то опасность пожара и взрыва может возникнуть как внутри аппаратуры, так и вне ее, в помещении и на открытых площадках.

Так, большую опасность представляют аппараты, емкости и резервуары с горючими жидкостями, так как они не бывают заполнены до предела и в пространстве над уровнем жидкости образуется паровоздушная взрывоопасная смесь. Опасны в пожарном отношении малярные участки и цехи предприятий, где в качестве растворителей используют легковоспламеняющиеся жидкости. Причиной взрыва или пожара может послужить наличие в помещении горючей пыли и волокон.

Различают тепловые, химические и микробиологические источники зажигания - импульсы. Наиболее распространен **тепловой импульс**, которым обладают: открытое пламя, искра, электрические дуги, нагретые поверхности и др. Для воспламенения горючей смеси газов и паров с воздухом достаточно нагреть до температуры воспламенения всего 0,5 - 1 куб.мм этой смеси. От открытого пламени почти всегда зажигается горючая смесь.

Искрой обычно называют точечный источник воспламенения. Искры могут образовываться при трении, ударе или вызываться электрическим разрядом. К источникам их образования относятся операции механической обработки (шлифование), а также заточка инструмента и т. п.

Источниками открытого огня бывают технологические нагреватели печи, аппараты и процессы газовой сварки и резки, установки для сжигания отходов и т. п.

Пожары могут возникнуть **от электроустановок**, в которых присутствуют нагревающиеся проводники электрического тока и горючее вещество (изоляция этих проводников). При коротких замыканиях электрические проводники быстро разогреваются до высоких температур. Во избежание возникновения пожаров курить разрешается только в специально отведенных местах.

Химический импульс обусловлен тем, что температура повышается за счет химических реакций. Их отличительная особенность заключается в том, что процессы, обусловливающие эти импульсы, начинаются при обычных температурах и приводят к самовозгоранию. Особую опасность в этом случае представляют промасленные специальная одежда и обтирочные материалы, сложенные в кучи. При условии плохого теплоотвода нагревание, начавшееся при нормальной температуре, через 3 - 4 часа может закончиться самовозгоранием.

Классификация пожаров и опасных факторов пожара дается в Законе РФ № 123-ФЗ в главе 2 (статьи 8 и 9).

Пожары классифицируются по виду горючего материала и подразделяются на следующие классы:

- 1) пожары твердых горючих веществ и материалов (А);
- 2) пожары горючих жидкостей или плавящихся твердых веществ и материалов (В);
- 3) пожары газов (С);
- 4) пожары металлов (D);
- 5) пожары горючих веществ и материалов электроустановок, находящихся под напряжением (Е);
- 6) пожары ядерных материалов, радиоактивных отходов и радиоактивных веществ (F).

Опасные факторы пожара

- 1. К опасным факторам пожара, воздействующим на людей и имущество, относятся:
- 1) пламя и искры;
- 2) тепловой поток;
- 3) повышенная температура окружающей среды;
- 4) повышенная концентрация токсичных продуктов горения и термического разложения;

- 5) пониженная концентрация кислорода;
- 6) снижение видимости в дыму.
- 2. К сопутствующим проявлениям опасных факторов пожара относятся:
- 1) осколки, части разрушившихся зданий, сооружений, строений, транспортных средств, технологических установок, оборудования, агрегатов, изделий и иного имущества;
- 2) радиоактивные и токсичные вещества и материалы, попавшие в окружающую среду из разрушенных технологических установок, оборудования, агрегатов, изделий и иного имущества;
- 3) вынос высокого напряжения на токопроводящие части технологических установок, оборудования, агрегатов, изделий и иного имущества;
- 4) опасные факторы взрыва, происшедшего вследствие пожара;
- 5) воздействие огнетушащих веществ.

Классификация веществ и материалов (за исключением строительных, текстильных и кожевенных материалов) по пожарной опасности изложена в статье 12 Закона № 123-ФЗ.

- 1. Классификация веществ и материалов по пожарной опасности основывается на их свойствах и способности к образованию опасных факторов пожара или взрыва.
- 2. По горючести вещества и материалы подразделяются на следующие группы:
- 1) негорючие вещества и материалы, неспособные гореть в воздухе. Негорючие вещества могут быть пожаровзрывоопасными (например, окислители или вещества, выделяющие горючие продукты при взаимодействии с водой, кислородом воздуха или друг с другом);
- 2) трудногорючие вещества и материалы, способные гореть в воздухе при воздействии источника зажигания, но неспособные самостоятельно гореть после его удаления;
- 3) горючие вещества и материалы, способные самовозгораться, а также возгораться под воздействием источника зажигания и самостоятельно гореть после его удаления.
- 3. Методы испытаний на горючесть веществ и материалов устанавливаются нормативными документами по пожарной безопасности.

4. Из горючих жидкостей выделяют группы легковоспламеняющихся и особо опасных легковоспламеняющихся жидкостей, воспламенение паров которых происходит при низких температурах, определенных нормативными документами по пожарной безопасности.

Показатели пожаровзрыво-опасности и пожарной опасности и классификация технологических сред по пожаровзрывоопасности и пожарной опасности изложены в главе 4 (статьи 14-16) Закона № 123-ФЗ.

Классификация технологических сред по пожаровзрывоопасности и пожарной опасности используется для установления безопасных параметров ведения технологического процесса.

Показатели пожаровзрывоопасности и пожарной опасности технологических сред

- 1. Пожаровзрывоопасность и пожарная опасность технологических сред характеризуется показателями пожаровзрывоопасности и пожарной опасности веществ, обращающихся в технологическом процессе, и параметрами технологического процесса. Перечень показателей, необходимых для оценки пожаровзрывоопасности и пожарной опасности веществ, приведен в таблице 1 приложения к настоящему Федеральному закону.
- 2. Методы определения показателей пожаровзрывоопасности и пожарной опасности веществ, входящих в состав технологических сред, устанавливаются нормативными документами по пожарной безопасности.

Классификация технологических сред по пожаровзрывоопасности

- 1. Технологические среды по пожаровзрывоопасности подразделяются на следующие группы:
- 1) пожароопасные;
- 2) пожаровзрывоопасные;
- 3) взрывоопасные;
- 4) пожаробезопасные.
- 2. Среда относится к пожароопасным, если возможно образование горючей среды, а также появление источника зажигания достаточной мощности для возникновения пожара.
- 3. Среда относится к пожаровзрыво-опасным, если возможно образование смесей окислителя с горючими газами, парами легковоспламеняющихся жидкостей,

горючими аэрозолями и горючими пылями, в которых при появлении источника зажигания возможно инициирование взрыва и (или) пожара.

- 4. Среда относится к взрывоопасным, если возможно образование смесей воздуха с горючими газами, парами легковоспламеняющихся жидкостей, горючими жидкостями, горючими аэрозолями и горючими пылями или волокнами и если при определенной концентрации горючего и появлении источника инициирования взрыва (источника зажигания) она способна взрываться.
- 5. К пожаробезопасным средам относится пространство, в котором отсутствуют горючая среда и (или) окислитель.

Классификация пожароопасных и взрывоопасных зон дана в главе 5 (статьи 17-19) Закона № 123-ФЗ.

Классификация пожароопасных и взрывоопасных зон применяется для выбора электротехнического и другого оборудования по степени их защиты, обеспечивающей их пожаровзрывобезопасную эксплуатацию в указанной зоне.

Классификация пожаро-опасных зон

- 1. Пожароопасные зоны подразделяются на следующие классы:
- 1) П-І зоны, расположенные в помещениях, в которых обращаются горючие жидкости с температурой вспышки 61 и более градуса Цельсия;
- 2) П-ІІ зоны, расположенные в помещениях, в которых выделяются горючие пыли или волокна:
- 3) П-IIa зоны, расположенные в помещениях, в которых обращаются твердые горючие вещества в количестве, при котором удельная пожарная нагрузка составляет не менее 1 мегаджоуля на квадратный метр;
- 4) П-III зоны, расположенные вне зданий, сооружений, строений, в которых обращаются горючие жидкости с температурой вспышки 61 и более градуса Цельсия или любые твердые горючие вещества.
- 2. Методы определения классификационных показателей пожароопасной зоны устанавливаются нормативными документами по пожарной безопасности.

Классификация взрыво-опасных зон

1. В зависимости от частоты и длительности присутствия взрывоопасной смеси взрывоопасные зоны подразделяются на следующие классы:

- 1) 0-й класс зоны, в которых взрывоопасная газовая смесь присутствует постоянно или хотя бы в течение одного часа;
- 2) 1-й класс зоны, расположенные в помещениях, в которых при нормальном режиме работы оборудования выделяются горючие газы или пары легковоспламеняющихся жидкостей, образующие с воздухом взрывоопасные смеси;
- 3) 2-й класс зоны, расположенные в помещениях, в которых при нормальном режиме работы оборудования взрывоопасные смеси горючих газов или паров легковоспламеняющихся жидкостей с воздухом не образуются, а возможны только в результате аварии или повреждения технологического оборудования;
- 4) 20-й класс зоны, в которых взрывоопасные смеси горючей пыли с воздухом имеют нижний концентрационный предел воспламенения менее 65 граммов на кубический метр и присутствуют постоянно;
- 5) 21-й класс зоны, расположенные в помещениях, в которых при нормальном режиме работы оборудования выделяются переходящие во взвешенное состояние горючие пыли или волокна, способные образовывать с воздухом взрывоопасные смеси при концентрации 65 и менее граммов на кубический метр;
- 6) 22-й класс зоны, расположенные в помещениях, в которых при нормальном режиме работы оборудования не образуются взрывоопасные смеси горючих пылей или волокон с воздухом при концентрации 65 и менее граммов на кубический метр, но возможно образование такой взрывоопасной смеси горючих пылей или волокон с воздухом только в результате аварии или повреждения технологического оборудования.
- 2. Методы определения классификационных показателей взрывоопасной зоны устанавливаются нормативными документами по пожарной безопасности.

Классификация электрооборудования по пожаровзрывоопасности и пожарной опасности дана в главе 6 (статьи 20 - 23) Закона № 123-Ф3.

Классификация электрооборудования по пожаровзрывоопасности и пожарной опасности применяется для определения области его безопасного применения и соответствующей этой области маркировки электрооборудования, а также для определения требований пожарной безопасности при эксплуатации электрооборудования.

Классификация электрооборудования по пожаровзрывоопасности и пожарной опасности

1. В зависимости от степени пожаровзрывоопасности и пожарной опасности электрооборудование подразделяется на следующие виды:

- 1) электрооборудование без средств пожаровзрывозащиты;
- 2) пожарозащищенное электрооборудование (для пожароопасных зон);
- 3) взрывозащищенное электрооборудование (для взрывоопасных зон).
- 2. Под степенью пожаровзрывоопасности и пожарной опасности электрооборудования понимается опасность возникновения источника зажигания внутри электрооборудования и (или) опасность контакта источника зажигания с окружающей электрооборудование горючей средой. Электрооборудование без средств пожаровзрывозащиты по уровням пожарной защиты и взрывозащиты не классифицируется.

Классификация пожарозащищенного электрооборудования

- 1. Электрооборудование, применяемое в пожароопасных зонах, классифицируется по степени защиты от проникновения внутрь воды и внешних твердых предметов, обеспечиваемой конструкцией этого электрооборудования. Классификация пожарозащищенного электрооборудования осуществляется в соответствии с таблицами 4 и 5 приложения к настоящему Федеральному закону.
- 2. Методы определения степени защиты оболочки пожарозащищенного электрооборудования устанавливаются нормативными документами по пожарной безопасности.
- 3. Маркировка степени защиты оболочки электрооборудования осуществляется при помощи международного знака защиты (IP) и двух цифр, первая из которых означает защиту от попадания твердых предметов, вторая от проникновения воды.

Классификация взрывозащищенного электрооборудования

- 1. Взрывозащищенное электрооборудование классифицируется по уровням взрывозащиты, видам взрывозащиты, группам и температурным классам.
- 2. Взрывозащищенное электрооборудование по уровням взрывозащиты подразделяется на следующие виды:
- 1) особовзрывобезопасное электрооборудование (уровень 0);
- 2) взрывобезопасное электрооборудование (уровень 1);
- 3) электрооборудование повышенной надежности против взрыва (уровень 2).
- 3. Особовзрывобезопасное электрооборудование это взрывобезопасное электрооборудование с дополнительными средствами взрывозащиты.

4. Взрывобезопасное электрооборудование обеспечивает взрывозащиту как при нормальном режиме работы оборудования, так и при повреждении, за исключением повреждения средств взрывозащиты. Электрооборудование повышенной надежности против взрыва обеспечивает взрывозащиту только при нормальном режиме работы оборудования (при отсутствии аварий и повреждений).

Классификация зданий, сооружений, строений и помещений по пожарной и взрывопожарной опасности изложена в главе 8 (статьи 26 и 27) Закона № 123-ФЗ.

Классификация зданий, сооружений, строений и помещений по пожарной и взрывопожарной опасности применяется для установления требований пожарной безопасности, направленных на предотвращение возможности возникновения пожара и обеспечение противопожарной защиты людей и имущества в случае возникновения пожара в зданиях, сооружениях, строениях и помещениях.

Определение категории зданий, сооружений, строений и помещений по пожарной и взрывопожарной опасности

- 1. По пожарной и взрывопожарной опасности помещения производственного и складского назначения независимо от их функционального назначения подразделяются на следующие категории:
- 1) повышенная взрывопожароопасность (А);
- 2) взрывопожароопасность (Б);
- 3) пожароопасность (В1 В4);
- 4) умеренная пожароопасность (Γ);
- 5) пониженная пожароопасность (Д).
- 2. Здания, сооружения, строения и помещения иного назначения разделению на категории не подлежат.
- 3. Категории помещений по пожарной и взрывопожарной опасности определяются исходя из вида находящихся в помещениях горючих веществ и материалов, их количества и пожароопасных свойств, а также исходя из объемно-планировочных решений помещений и характеристик проводимых в них технологических процессов.
- 4. Определение категорий помещений следует осуществлять путем последовательной проверки принадлежности помещения к категориям от наиболее опасной (A) к наименее опасной (Д).

- 5. К категории А относятся помещения, в которых находятся (обращаются) горючие газы, легковоспламеняющиеся жидкости с температурой вспышки не более 28 градусов Цельсия в таком количестве, что могут образовывать взрывоопасные парогазовоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 килопаскалей, и (или) вещества и материалы, способные взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом, в таком количестве, что расчетное избыточное давление взрыва в помещении превышает 5 килопаскалей.
- 6. К категории Б относятся помещения, в которых находятся (обращаются) горючие пыли или волокна, легковоспламеняющиеся жидкости с температурой вспышки более 28 градусов Цельсия, горючие жидкости в таком количестве, что могут образовывать взрывоопасные пылевоздушные или паровоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 килопаскалей.
- 7. К категориям В1 В4 относятся помещения, в которых находятся (обращаются) горючие и трудногорючие жидкости, твердые горючие и трудногорючие вещества и материалы (в том числе пыли и волокна), вещества и материалы, способные при взаимодействии с водой, кислородом воздуха или друг с другом только гореть, при условии, что помещения, в которых они находятся (обращаются), не относятся к категории А или Б.
- 8. Отнесение помещения к категории B1, B2, B3 или B4 осуществляется в зависимости от количества и способа размещения пожарной нагрузки в указанном помещении и его объемно-планировочных характеристик, а также от пожароопасных свойств веществ и материалов, составляющих пожарную нагрузку.
- 9. К категории Г относятся помещения, в которых находятся (обращаются) негорючие вещества и материалы в горячем, раскаленном или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и пламени, и (или) горючие газы, жидкости и твердые вещества, которые сжигаются или утилизируются в качестве топлива.
- 10. К категории Д относятся помещения, в которых находятся (обращаются) негорючие вещества и материалы в холодном состоянии.
- 11. Категории зданий, сооружений и строений по пожарной и взрывопожарной опасности определяются исходя из доли и суммированной площади помещений той или иной категории опасности в этом здании, сооружении, строении.
- 12. Здание относится к категории А, если в нем суммированная площадь помещений категории А превышает 5 процентов площади всех помещений или 200 квадратных метров.

- 13. Здание не относится к категории А, если суммированная площадь помещений категории А в здании не превышает 25 процентов суммированной площади всех размещенных в нем помещений (но не более 1000 квадратных метров) и эти помещения оснащаются установками автоматического пожаротушения.
- 14. Здание относится к категории Б, если одновременно выполнены следующие условия: здание не относится к категории А и суммированная площадь помещений категорий А и Б превышает 5 процентов суммированной площади всех помещений или 200 квадратных метров.
- 15. Здание не относится к категории Б, если суммированная площадь помещений категорий А и Б в здании не превышает 25 процентов суммированной площади всех размещенных в нем помещений (но не более 1000 квадратных метров) и эти помещения оснащаются установками автоматического пожаротушения.
- 16. Здание относится к категории В, если одновременно выполнены следующие условия: здание не относится к категории А или Б и суммированная площадь помещений категорий А, Б, В1 В2 и В3 превышает 5 процентов (10 процентов, если в здании отсутствуют помещения категорий А и Б) суммированной площади всех помещений.
- 17. Здание не относится к категории В, если суммированная площадь помещений категорий А, Б, В1 В2 и В3 в здании не превышает 25 процентов суммированной площади всех размещенных в нем помещений (но не более 3500 квадратных метров) и эти помещения оснащаются установками автоматического пожаротушения.
- 18. Здание относится к категории Г, если одновременно выполнены следующие условия: здание не относится к категории А, Б или В и суммированная площадь помещений категорий А, Б, В1, В2, В3 и Г превышает 5 процентов суммированной площади всех помещений.
- 19. Здание не относится к категории Γ , если суммированная площадь помещений категорий A, Б, B1, B2, B3 и Γ в здании не превышает 25 процентов суммированной площади всех размещенных в нем помещений (но не более 5000 квадратных метров) и помещения категорий A, Б, B1, B2 и B3 оснащаются установками автоматического пожаротушения.
- 20. Здание относится к категории Д, если оно не относится к категории А, Б, В или Γ .
- 21. Методы определения классификационных признаков отнесения зданий и помещений производственного и складского назначения к категориям по пожарной и взрывопожарной опасности устанавливаются нормативными документами по пожарной безопасности.

22. Категории зданий, сооружений, строений и помещений производственного и складского назначения по пожарной и взрывопожарной опасности указываются в проектной документации на объекты капитального строительства и реконструкции.

Пожарно-техническая классификация зданий, сооружений, строений и пожарных отсеков изложена в главе 9 (статьи 28 – 32) Закона № 123-ФЗ.

- 1. Пожарно-техническая классификация зданий, сооружений, строений и пожарных отсеков применяется для установления требований пожарной безопасности к системам обеспечения пожарной безопасности зданий, сооружений и строений в зависимости от их функционального назначения и пожарной опасности.
- 2. Степень огнестойкости зданий, сооружений, строений и пожарных отсеков, классы их функциональной и конструктивной пожарной опасности указываются в проектной документации на объекты капитального строительства и реконструкции.

Пожарно-техническая классификация зданий, сооружений, строений и пожарных отсеков

Классификация зданий, сооружений, строений и пожарных отсеков осуществляется с учетом следующих критериев:

- 1) степень огнестойкости;
- 2) класс конструктивной пожарной опасности;
- 3) класс функциональной пожарной опасности.

Классификация зданий, сооружений, строений и пожарных отсеков по степени огнестойкости

- 1. Здания, сооружения, строения и пожарные отсеки по степени огнестойкости подразделяются на здания, сооружения, строения и пожарные отсеки I, II, III, IV и V степеней огнестойкости.
- 2. Порядок определения степени огнестойкости зданий, сооружений, строений и пожарных отсеков устанавливается статьей 87 Федерального закона № 123.

Классификация зданий, сооружений, строений пожарных отсеков по конструктивной пожарной опасности

1. Здания, сооружения, строения и пожарные отсеки по конструктивной пожарной опасности подразделяются на классы C0, C1, C2 и C3.

2. Порядок определения класса конструктивной пожарной опасности зданий, сооружений, строений и пожарных отсеков устанавливается статьей 87 настоящего Федерального закона.

Анализ пожарной опасности производственных объектов (статья 95 Закона № 123-ФЗ)

- 1. Анализ пожарной опасности технологических процессов предусматривает сопоставление показателей пожарной опасности веществ и материалов, обращающихся в технологическом процессе, с параметрами технологического процесса.
- 2. Перечень показателей пожарной опасности веществ и материалов, необходимых и достаточных для характеристики пожарной опасности технологической среды, приведен в таблице 1 приложения Федеральному закону № 123-Ф3. Перечень потенциальных источников зажигания пожароопасной технологической среды определяется посредством сопоставления параметров технологического процесса и иных источников зажигания с показателями пожарной опасности веществ и материалов.
- 3. Определение пожароопасных ситуаций на производственном объекте должно осуществляться на основе анализа пожарной опасности каждого из технологических процессов и предусматривать выбор ситуаций, при реализации которых возникает опасность для людей, находящихся в зоне поражения опасными факторами пожара и вторичными последствиями воздействия опасных факторов пожара.
- 4. Для каждой пожароопасной ситуации на производственном объекте должно быть приведено описание причин возникновения и развития пожароопасных ситуаций, места их возникновения и факторов пожара, представляющих опасность для жизни и здоровья людей в местах их пребывания.
- 5. Для определения причин возникновения пожароопасных ситуаций должны быть определены события, реализация которых может привести к образованию горючей среды и появлению источника зажигания.
- 6. Анализ пожарной опасности производственных объектов предусматривает определение комплекса превентивных мероприятий, изменяющих параметры технологического процесса до уровня, обеспечивающего допустимый пожарный риск.