Exercices

Intégration sur un segment et techniques de calculs d'intégrales

CESI École d'ingénieurs

Valentin Bahier

Exercice 1

Soit a>0 et soit $f:[-a,a]\to\mathbb{C}$ une fonction continue par morceaux. Montrer que

$$\int_{-a}^{a} f(x) dx = \begin{cases} 0 & \text{si } f \text{ est impaire} \\ 2 \int_{0}^{a} f(x) dx & \text{si } f \text{ est paire} \end{cases}.$$

Exercice 2

Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction continue par morceaux et T-périodique, où T > 0. Montrer que pour tout $a \in \mathbb{R}$,

$$\int_{a}^{a+T} f(t) dt = \int_{0}^{T} f(t) dt.$$

Exercice 3

Calculer les intégrales suivantes

- 1. $\int_1^2 x^2 \ln x dx$ (intégrer par parties)
- 2. $\int_0^1 \frac{e^x}{\sqrt{e^x+1}} dx$ (changement de variable)
- 3. $\int_0^1 \frac{3x+1}{(x+1)^2} dx$ (commencer par décomposer en éléments simples)

Exercice 4

En faisant apparaître des sommes de Riemann de fonctions bien choisies sur l'intervalle [0,1], déterminer les limites suivantes :

1.

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{n+k}$$

2.

$$\lim_{n \to +\infty} \frac{1}{n^3} \sum_{k=1}^n k(n-k).$$

Pour le prochain exercice on rappelle l'inégalité des accroissements finis : Pour toute fonction $g: [\alpha, \beta] \to \mathbb{R}$ de classe \mathcal{C}^1 ,

$$|g(t) - g(\alpha)| \le |t - \alpha| \sup_{x \in [\alpha, \beta]} |g'(x)|.$$

Exercice 5

Soit $f:[a,b]\to\mathbb{R}$ de classe \mathcal{C}^1 . Pour tout $n\geq 1$, on considère la somme de Riemann de f selon la méthode des rectangles à gauche

$$S_n(f) := \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + \frac{k(b-a)}{n}\right).$$

Notons $M := \sup_{t \in [a,b]} |f'(t)|$.

1. Vérifier que

$$\int_{a}^{b} f(t)dt - S_{n}(f) = \sum_{k=0}^{n-1} \int_{a+\frac{k(b-a)}{n}}^{a+\frac{(k+1)(b-a)}{n}} \left(f(t) - f\left(a + \frac{k(b-a)}{n}\right) \right) dt.$$

2. En déduire que

$$\left| \int_{a}^{b} f(t) dt - S_n(f) \right| \le \frac{M(b-a)^2}{2n}.$$

3. Application algorithmique : On considère $f(x) = e^{-x^2}$ sur [a, b] = [0, 1]. Donner un majorant de M (à la main). Écrire alors un algorithme donnant une valeur approchée de $\int_0^1 f(t) dt$ à ε près.

Exercice 6

Calculer une primitive de
$$f: x \mapsto \frac{1-x}{(x^2+x+1)^2}$$
 et de $g: x \mapsto \frac{\sin^3 x}{1+\cos^2 x}$.