CLASS 32, NOVEMBER 30: (BABY) ASCOLI'S THEOREM

Ascoli's Theorem produces an excellent peek into functional analysis, where you study the space of operators from a metric space to \mathbb{R} subject to various (continuity, differentiability, integrability) conditions. To state and prove the theorem, we need some prerequisites from real.

Recall the following theorem from real analysis:

Theorem 32.1. If X is a metric space, then TFAE:

- 1) X is compact.
- 2) X is sequentially compact (e.g. every sequence has a convergent subsequence).
- 3) X is complete and totally bounded (e.g. $\forall \epsilon > 0, \exists x_1, \dots, x_n \text{ such that } X = \bigcup_{i=1}^n B(x_i, \epsilon)$).

There is a proof in Munkres of 1) \Leftrightarrow 3), but this is a foundational result in Real analysis so I omit the proof here.

Next, I add some definition which are very important in functional analysis. Equicontinuous gives a kind of uniform continuity of a *collection* of functions, and pointwise-bounded means almost exactly what it says.

Definition 32.2. Let Y be a metric space, and X a topological space. Let C(X,Y) be the set of continuous functions $X \to Y$. A subset $D \subseteq C(X,Y)$ is said to be **equicontinuous** at x if for each $\epsilon > 0$, there exists a neighborhood U of x such that $\forall y \in U$,

$$d(f(x), f(y)) < \epsilon$$

D is **equicontinuous** if it is for every point $x \in X$.

D is said to be **pointwise bounded** if for each point $x \in X$, the set

$$D_x = \{ f(x) \mid f \in D \}$$

is bounded in Y.

Lemma 32.3. If X is a space and Y is a metric space, then if $Z \subseteq C(X,Y)$ is totally bounded, then Z is equicontinuous.

Proof. Choose $\epsilon > 0$. Given \mathcal{Z} is totally bounded, choose finitely-many f_1, \ldots, f_n such that balls of radius $\frac{\epsilon}{3}$ cover the space. This implies that every function $f \in \mathcal{Z}$ has

$$d(f_i(x), f(x)) < \frac{\epsilon}{3}$$

for some i and $all\ x \in X$. Choose U a neighborhood of x such that $d(f_i(y), f_i(x)) < \frac{\epsilon}{3}$ for $y \in U$. Again by the triangle inequality, we see that for $y \in U$, $d(f(y), f(x)) < \epsilon$.

In the compact case, a partial converse exists.

Lemma 32.4. If X is compact and Y is a compact metric space, and $\mathcal{Z} \subseteq C(X,Y)$ is equicontinuous, then \mathcal{Z} is totally bounded in the uniform topology.

Proof. Note that the uniform metric $\rho(f,g) = \sup_x \{d(f(x),g(x))\}$ is well-defined since X is compact and therefore so is it's image. Thus its image is totally bounded.

For a given $\epsilon > 0$, it suffices to cover \mathcal{Z} by finitely many ϵ -balls.

Choose neighborhoods $U_x \subseteq X$ of x such that $d(f(x), f(y)) < \frac{\epsilon}{3}$ for each $y \in U_x$ and $f \in \mathbb{Z}$. Since X is compact, finitely many will do, say U_{x_1}, \ldots, U_{x_n} . This is possible by equicontinuity. We can similarly cover Y by finitely many $\frac{\epsilon}{3}$ -balls, say C_1, \ldots, C_m .

For a given pair $(i, j) \in [n] \times [m]$, choose a function $f_{i,j} : U_{x_i} \to C_j$ with $f_{i,j} \in \mathbb{Z}$ if it exists. This is a finite collection of functions. Then I claim $B(f_{i,j}, \epsilon)$ cover \mathbb{Z} , proving total boundedness.

This follows again by the triangle inequality. Suppose $f \in \mathcal{Z}$ and $f(x_i) \in C_j$. Then

$$d(f(x), f_{i,j}(x)) \le d(f(x), f(x_i)) + d(f(x_i), f_{i,j}(x_i)) + d(f_{i,j}(x_i), f_{i,j}(x)) < \epsilon$$

But $x \in X$ was arbitrary, showing $\rho(f, f_{i,j}) < \epsilon$, as the supremum is a maximum given X is compact and Y is Hausdorff.

Theorem 32.5 (Ascoli's Theorem). Let X be a compact topological space. Let $\mathfrak{C} = C(X, \mathbb{R}^n)$ be the set of continuous functions from X to \mathbb{R}^n , with the uniform topology. Then $\mathfrak{Z} \subseteq \mathfrak{C}$ has compact closure if and only if \mathfrak{Z} is equicontinuous and pointwise bounded.

Proof. (\Rightarrow) : Suppose $\overline{\mathbb{Z}}$ is compact. It suffices to check $\overline{\mathbb{Z}}$ is equicontinuous and pointwise bounded.

By virtue of Lemma 32.3, we can can conclude that since $\overline{\mathcal{Z}}$ is compact, it is totally bounded, and therefore equicontinuous. Totally bounded implies bounded. Indeed, choose

$$R = \max_{i=2,...,n} \{ d(x_1, x_i) + \epsilon \mid X = \bigcup_{i=1}^{n} B(x_i, \epsilon) \}$$

then $\overline{\mathcal{Z}} \subseteq \overline{B}(x_1, R)$. But this implies $\overline{\mathcal{Z}}$ is pointwise-bounded since $\rho(f, g) = \sup\{f(x), g(x)\}$.

 (\Leftarrow) : First, I want to show that if \mathcal{Z} is equicontinuous and pointwise bounded, then so is $\overline{\mathcal{Z}}$. Given $x \in X$, $\epsilon > 0$, there is a neighborhood of x, say U, such that $d(f(x), f(x_0)) < \frac{\epsilon}{3}$ for each $x \in U$ and $f \in \mathcal{Z}$. We can furthermore choose $f \in \mathcal{Z} \cap B(g, \frac{\epsilon}{3})$ for some $g \in \overline{\mathcal{Z}}$. As a result, for $x \in U$,

$$d(g(x_0), g(x)) \le d(g(x_0), f(x_0)) + d(f(x_0), f(x)) + d(f(x), g(x)) < \epsilon$$

A similar argument shows pointwise boundedness.

Next, I show that if $\overline{\mathcal{Z}}$ is equicontinuous and pointwise bounded, then there exists a compact space $Y \subseteq \mathbb{R}^n$ such that $ev(X \times \overline{\mathcal{Z}}) \subseteq Y$.

For each $x \in X$, choose U_x a neighborhood such that for each $y \in U$, d(g(x), g(y)) < 1 for every $g \in \overline{\mathbb{Z}}$. Since X is compact, there exists a finite covering U_{x_1}, \ldots, U_{x_n} . Since each $\overline{\mathbb{Z}}_{x_i} = ev(U_{x_i} \times \overline{\mathbb{Z}})$ is bounded by pointwise boundedness, so is their union. Thus $\exists R > 0$ s.t.

$$\overline{\mathcal{Z}}_{x_i} \subseteq \bar{B}(0,R)$$

But this implies $\overline{\mathbb{Z}}_x \subseteq B(0, R+1) \subseteq \overline{B}(0, R+1) = Y$.

Finally, I prove the Theorem. It suffices to check that $\overline{\mathcal{Z}}$ is complete & totally bounded in \mathcal{C} . Since $\overline{\mathcal{Z}} \subseteq \mathcal{C}$ is closed, and \mathcal{C} is complete, $\overline{\mathcal{Z}}$ is automatically complete. Additionally, the previous parts show that $\overline{\mathcal{Z}} \subseteq C(X,Y)$ is equicontinuous when Y is compact. Thus Lemma 32.4 shows that it is totally bounded in \mathcal{C} . This completes the proof.

Rephrasing a few things, we note the following:

Corollary 32.6. If X is compact, and $C(X, \mathbb{R}^n)$ has the uniform topology, then $\mathbb{Z} \subseteq C(X, \mathbb{R}^n)$ is compact if and only if it is closed, bounded, and equicontinuous.