

Digital Image Processing IV

Image Enhancement in the Spatial Domain apl. Prof. Dr. Carsten Denker

Enhancement Using Arithmetic and Logic Operations

- Operations are performed on a pixelby-pixel basis
- □ Arithmetic operations
 ⇒ subtraction, addition, division, and multiplication
- Logic operations: AND, OR, and NOT

 ⇒ masking or region-of-interest (ROI)
 processing
- ☐ Gray-level vs. binary masks
- Image averaging
- Difference images
 - Visualization of temporal evolution
 - X-ray diagnostics using contrast enhancing means in medicine
 - Sliding average
 - Segmentation and feature tracking

www.roentgenkainberger.at

Coronal Dimming

Tripathi et al. (2004)

Averages

Additive noise

$$g(x, y) = f(x, y) + \eta(x, y)$$

□ For each coordinate (x, y) the noise is uncorrelated with a zero mean.

$$\overline{g}(x,y) = \frac{1}{K} \sum_{i=1}^{K} g_i(x,y)$$

Expected value

$$E\left\{\overline{g}\left(x,y\right)=f\left(x,y\right)\right\}$$

Variance

$$\sigma_{\overline{g}(x,y)}^2 = \frac{1}{K} \sigma_{\eta(x,y)}^2$$

Standard deviation

$$\sigma_{\bar{g}(x,y)} = \frac{1}{\sqrt{K}} \sigma_{\eta(x,y)}$$

- □ Careful alignment before adding individual images ⇒ artificats or loss of image information
- ☐ Faint astronomical objects☐ long exposure times (often many hours or even days)

Hubble Ultra Deep Field (HUDF)

- 2003 September 3 –2004 January 16
- Southwest of Orion
- 1/10th of the lunar diameter
- 800 single exposures
- □ 400 orbits
- □ 11.3 days with ACS
- 4.5 days with NICMOS
- Extremely faint galaxies out to a distance of 13 billion lightyears

Rauschen in astronomischen Bildern

Hubble Space Telescope image of the twin galaxy NGC 3314

Basics of Spatial Filtering

- Local operators
- ☐ The elements of filters, kernels, or masks are called coefficients.
- Linear filters (with $m \times n$ coefficients, m and n odd)

$$R = w(-1,-1) f(x-1, y-1) + w(-1,0) f(x-1, y)$$
$$+ \dots + w(0,0) f(x, y) + \dots$$
$$+ w(1,0) f(x+1, y) + w(1,1) f(x+1, y+1)$$

 General linear filter applied to M × N-pixel images

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Convolution with a kernel

$$R = \sum_{i=1}^{mn} w_i z_i$$

Smoothing Spatial Filters

- □ Blurring and noise reduction (removal of small details, reducing sharp transitions, bridging of gaps, ...)
- □ Averaging or low-pass filters
- Spatial filters in which all coefficients are equal are called box filters
- □ Filters with *weighted averages*
- □ Order-statistic filters
 (e.g. median filter ⇒ impulse or salt-and-pepper noise)

Weighted average filter

$$g(x,y) = \frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s, y+t)}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t)}$$

 □ Gauss filter are isotropic and decrease monotonically ⇒ apodisation

$$w_{mn} = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{m^2 + n^2}{2\sigma^2}\right)$$

Binomial filter

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \quad \text{with} \quad n \ge k$$

	1	4	6	4	1
1	4	16	24	16	4
$\frac{1}{4^4} \times$	6	24	36	24	6
4	4	16	24	16	4
	1	3	6	4	1

 Smoothing spatial filters are often used in combination with thresholds to identify objects.

Box Filter

Median Filter

- Non-linear filter, which replaces the gray value of a pixel by the median of its neighborhood.
- Median (50th percentile) ⇒ sort all gray values in a neighborhood and select the value in the middle.
- □ Effectively suppresses salt-and-pepper (white and black artifacts in a grayscale images)
- Minimum- (0th percentile) and maximum filter (100th percentile)

Sharpening Filters

- Highlight fine details and enhance details, which have been blurred
- □ Averaging ⇔ integration
- □ Sharpening ⇔ differentiation
- Strength of the response of a derivative operator is proportional to the degree of discontinuity (enhance edges and noise but deemphasize areas with slowly varying gray levels)
- First- and second-order derivative operators

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

Second-Order Differential Operators

- Isotropic operators
 - Do not depend on the direction of the discontinuities
 - Invariant with respect to rotation
- □ Laplacian

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^2 f}{\partial y^2} = f(x,y+1) + f(x,y-1) - 2f(x,y)$$

$$\nabla^2 f = \left[f(x+1,y) + f(x-1,y) + f(x,y-1) - 4f(x,y) \right]$$

The Laplacian is linear.

Various implementations of the Laplacian

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

0	-1	0
-1	4	-1
0	-1	0

-1	-1	-1
-1	8	-1
-1	-1	-1

Edge enhancement an inclusion of the background

$$g(x,y) = \begin{cases} f(x,y) - \nabla^2 f(x,y) \\ f(x,y) + \nabla^2 f(x,y) \end{cases}$$

for $w_0 < 0$ respectively $w_0 > 0$

Contrast Enhancement

$$g(x,y) = f(x,y) - \nabla^{2} f$$

$$= f(x,y) - [f(x+1,y) + f(x-1,y) + (x,y+1) + f(x,y-1) - 4f(x,y)]$$

$$= 5f(x,y) - [f(x+1,y) + f(x-1,y) + (x,y+1) + f(x,y-1)]$$

0	-1	0
-1	5	-1
0	-1	0

Laplacian with and without Diagonal Elements

0	-1	0
-1	5	-1
0	-1	0

-1	-1	-1
-1	9	-1
-1	-1	-1

- Laplacian with diagonal elements creates sharper contours.
- Linear operators ⇒ Laplacian + unit-center mask

0	0	0
0	1	0
0	0	0

Unsharp Masking – "High-Boost" Filter

 Unsharp masking has its origins in photography, where an unsharp negative image is combined with a positive image

$$f_s(x, y) = f(x, y) - \overline{f}(x, y)$$

High-boost filter

$$f_{hb}(x,y) = Af(x,y) - \overline{f}(x,y)$$

$$= (A-1)f(x,y) + f(x,y) - \overline{f}(x,y)$$

$$= (A-1)f(x,y) - f_s(x,y)$$

☐ If the value of A slowly becomes greater than unity, then the edge enhancement slowly diminishes.

$$f_{hb}(x,y) = \begin{cases} Af(x,y) - \nabla^2 f(x,y) \\ Af(x,y) + \nabla^2 f(x,y) \end{cases}$$

for $w_0 < 0$ respectively $w_0 > 0$

A+4

-1

Gradient Operators

Gradient

$$\nabla f = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

Gradient magnitude

$$\nabla f = |\nabla f|$$

$$= \left[G_x^2 + G_y^2 \right]^{1/2}$$

$$= \left[\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 \right]$$

☐ The gradient is a linear operator, but not ist magnitude (square root).

- □ Partial derivatives are not invariant with respect to rotation, but their magnitude is invariant.
- Approximation for faster computation

$$\nabla f \approx |G_x| + |G_y|$$

Roberts operator

$$G_x = (z_9 - z_5)$$
 and $G_y = (z_8 - z_6)$

$$\nabla f = \left[(z_9 - z_5)^2 + (z_8 - z_6)^2 \right]^{1/2}$$

$$\nabla f \approx |z_9 - z_5| + |z_8 - z_6|$$

Sobel operator

$$\nabla_{S} f \approx |(z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)| + |(z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)|$$

-1	0	1
-2	0	2
-1	0	1

-1	-2	-1
0	0	0
1	2	1

Sobel Operator

de.wikipedia.org

Combination of Different Methods

1D Gaussian Derivatives

1D Gaussian
$$G(x,\sigma) = e^{-\frac{x^2}{2\sigma^2}}$$

Derivatives $G_x(x,\sigma) = -\frac{x}{\sigma^2}G(x,\sigma) = -\frac{x}{\sigma^2}e^{-\frac{x^2}{2\sigma^2}}$
 $G_{xx}(x,\sigma) = \frac{x^2 - \sigma^2}{\sigma^4}G(x,\sigma) = \frac{x^2 - \sigma^2}{\sigma^4}e^{-\frac{x^2}{2\sigma^2}}$
 $G_{xxx}(x,\sigma) = \frac{x^3 - x\sigma^2}{\sigma^6}G(x,\sigma) = \frac{x^3 - x\sigma^2}{\sigma^6}e^{-\frac{x^2}{2\sigma^2}}$

2D Gaussian Derivatives

2D Gaussian
$$G(x, y, \sigma) = e^{-\frac{(x^2 + y^2)}{2\sigma^2}} = e^{-\frac{x^2}{2\sigma^2}} \cdot e^{-\frac{y^2}{2\sigma^2}}$$

Derivatives $G_x(x, \sigma) = -\frac{x}{\sigma^2} G(x, y, \sigma) = -\frac{x}{\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$
 $G_{xx}(x, \sigma) = \frac{x^2 - \sigma^2}{\sigma^4} G(x, y, \sigma) = \frac{x^2 - \sigma^2}{\sigma^4} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$
 $G_{xy}(x, \sigma) = \frac{xy}{\sigma^4} G(x, y, \sigma) = \frac{xy}{\sigma^4} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$
 $G_{xxx}(x, \sigma) = \frac{x^3 - x\sigma^2}{\sigma^6} G(x, y, \sigma) = \frac{x^3 - x\sigma^2}{\sigma^6} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$

2D Gaussian Derivatives

Discrete Forms of the Derivatives

