Introduction to Databases

Data in Astronomy

Much of astronomy, and especially survey astronomy, begins
with <u>collecting sets of well defined measurements</u> on samples
(or entire populations) of objects.

- We organize and publish these measurements as astronomical <u>catalogs</u>
 - These are collections of tables
 - Used to be published as (big, thick!) books

S T E L L A R U M INERRANTIUM

CATALOGUS BRITANNICUS,

Ad Annum CHRISTI completum, 1689.

Ab Observationibus Grenovici in Observatorio Regio habitis,

ASSIDUIS VIGILIIS, CURA ET STUDIO,

JOANNIS FLAMSTEEDII,

ASTRONOMI REGII.

DEDUCTUS ET SUPPUTATUS.

7	Ordo Ptol.		In Constellatione Arietis, 66.		Afcentio refta. 1690.		Distantia à Polo Borco.		Longitudo. 1690.			Latitudo.		Varia Asc. R pro 60' longit.		Varia D. à P. Pro 60' longit.		Magnitudo			
	۶	ь.	DENOMINATIO.	G	M.	5.	G.	M.	S.	Si. G	. 1	м. :	s. c		м,	S.	M.	S.	M.	s.	o.
1										0.2						58 B		7	22	25	
3				21		T,		10	25			6 1		9	17	26 B	157	31	22	19	
			1	22			74					9	4				17	28		07	
456	1	1	Que in Cornu duarum precedens.	24	8	30	72	14	45				- T	7	8		18	02	21	55	4
6	2	2	Sequens & Borea eff.	24	23		70	43	55	_ 2			-	-	73.0	16 B		22		50	
8	•	6	In Cervice.	24	39		73		45	0.2			0 1			12 B	18	57		49	te
å	,	°	In Vertice.	12	ii		-		25							47 B		00		44	1 %
9				26	32		65	35	Š			6 1				52 B		45			6.
1				27				48	Iſ		4	2 1	2 1	_	4	2 B	159	48	21	20	6
2		17	Infrà Lucidam.	27	19		68	ŞΙ	5		2 1	15	-1			29 B		10		21	6.
	inf. r	3	Infor. fup. Caput , Lucida Atietis.	27		,-	68	33	45				8	9	17	12 B	159	22	2I 2I	20 12	13
4				28			71	18	45				16	·	16	18 B			21	C8	
á			and an ear A	28	-		65		40		5	4		í	57		160		21	06	
71	3	4	In Roftro duarum Borea,	28		30	70	16	25		3 4	16	10	7	22	45 B	159	2	21	02	1
8				28		45	75	33	15		•		14	6	8		18	46		00	
2			1	25				12	ış	ı	50.0		10	I		2 5 B		47		00	6
ï			i i	25	, ,,		65	25	20	Ħ	?	9	101		27 46		60	13	20	14 13	1
90123456	4	5	In Roftro Australior. I ad 6	1 30	14		71	33	30				5		43		18		20	45	6
3		1	2 ad 6	130	29		71	45					163						20	43	
4			In extremitate Pedis posterioris. *	3				48			3	0	49	3	33		17		20	23	1
5				132				12					53	4	9		17		20	16	
6				13.	20		ZI	33	0				13		44		19		20		6
′ •			٠ ,	15.	26	0	1/3	41	55	II	۰.	4I	55	2	40	42 B	1 18	40	20	4	6

Left: The first page of J. J. Lalande's edited and corrected version of John Flamsteed's star catalogue, published in 1783. The stars shown here belong to the constellation Aries. In the first column, Lalande numbered each star consecutively by constellation. These are the numbers that we now call Flamsteed numbers.

2,935 entries (rows)

From http://www.ianridpath.com/startales/flamsteed.htm

Below: Hipparcos & Tycho Catalogs (1997)


```
photo.in
7757,301,1,74,186,6,8,12944435106658,26,6266172894736,17,04889,18,16535,0,01654805,0,02145229
7757,301,1,74,187,6,8.12783867556709,26.627245975921,17.37402,17.92875,0.02894481,0.02568013
7757,301,1,74,188,3,8,12732322524192,26,6251199416623,20,1466,21,35297,0,3003744,0,3302762
4288, 301, 1, 39, 682, 3, 24, 5161170422305, -1, 16579446393527, 22, 97032, 24, 3259, 0, 2672399, 0, 5240437
4288.301.1.39.683.3.24.5179406515354.-1.1792069022485.22.62052.25.09109.0.1850479.0.6585805
4288,301,1,39,684,6,24,5189463293148,-1,15915086108891,21,4247,23,04125,0,06608655,0,1968172
4136,301,1,61,935,6,36,4715922759092,-1.06093938828308,22.71782,23.14112,0.158014,0.1799687
4136,301,1,61,936,3,36.4717583013136,-1.1378448207726,22.81683,23.88123,0.1742272,0.3260605
4136,301,1,61,937,3,36.4717582434391,-1.13784497192974,22.81147,23.87586,0.1734457,0.3247895
4288.301.1.40.311.3.24.6839203338022.-1.23631696217547.21.2002.21.67521.0.05694564.0.06316777
4288,301,1,40,312,3,24,6840602692246,-1,21784918362007,20,30287,21,04976,0,02972161,0,04032911
4288,301,1,40,313,6,24,6840216690377,-1,08292772289886,24,92263,25,72778,0,68427,0,5471938
5598,301,1,61,792,3,351,787950113407,6,14573538435867,22,43574,23,83793,0,1125768,0,2867745
5598,301,1,61,793,3,351,787950113434,6,14573538316393,22,43573,23,77753,0,1174541,0,2741905
5598,301,1,61,794,6,351.787349107439,6.14481612145222,24.6701,24.8507,0.4675894,0.4849904
2699,301,1,48,527,3,12.0760019016408,-3.32677418219699,22.18116,23.27577,0.126546,0.2270369
2699,301,1,48,528,6,12.0770027529666,-3.32913243320258,22.12757,23.79366,0.1215217,0.3403472
2699,301,1,48,529,3,12.0832728187538,-3.52539818226738,22.29741,23.32008,0.1377919,0.2253349
94.301.1.38.279.6.340.524768659138,-0.843090883870374,20.75028,21.13888,0.04839022,0.04644739
94.301.1.38.280.6.340.525793656628.-0.965210498356983.24.23321.26.07633.0.8058653.0.7702702
94,301,1,38,281,6,340.53257887691,-1.02365035629542,21.10608,21.15248,0.06605724,0.04672106
4288.301.1.76.766.3.30.0899167300738.-1.25189466355601.22.57054.22.91144.0.1807321.0.1984752
4288,301,1,76,767,3,30,0899962733195,-1,14314301954175,21,99419,23,78533,0,1094794,0,4162939
4288,301,1,76,768,6,30.0899156247035,-1.19236549812758,22.64196,22.91776,0.1927483,0.2022232
7937,301,1,84,354,3,5.59132226470183,26.6120638856974,22.63659,23.76799,0.2950225,0.5986399
7937,301,1,84,355,3,5.58984744314193,26.6157353187021,21.27009,22.13992,0.08808753,0.1490507
7937,301,1,84,356,6,5,59007089167375,26,5703384153732,24,52393,26,33231,1,060107,0,6528299
3996,301,1,81,615,6,216.223187662076,11.9472286471793,19.93735,21.0716,0.02294876,0.03470354
3996,301,1,81,616,3,216.23835672109,12.0534224512804,20.22574,21.24497,0.02592515,0.03942162
3996,301,1,81,617,3,216.219379232008,11.9171402588482,22.60762,23.05279,0.1416738,0.1555459
6354,301,1,29,2997,6,332.302798261878,41.2179102291468,20.95895,22.51458,0.04065189,0.1163793
6354,301,1,29,2998,6,332.355200585822,41.2447081319807,20.78153,22.35575,0.03523929,0.09754675
6354.301.1.29.2999.3.332.38785409452.41.2613314909198.21.00566.22.75478.0.04217106.0.1353208
2986, 301, 1, 59, 251, 6, 127, 586395164415, 2, 97627035997022, 24, 42951, 26, 40598, 0, 6053675, 0, 9018285
2986,301,1,59,252,6,127.585997207459,2,98207493069978 25 42876 25 06479 0 5993609 0 8693208
2986.301.1.59.253.6.127.588133654789.2.
                                           1,231,051,050 rows (SDSS DR10, PhotoObjAll table)
5598.301.1.31.1254.6.347.289019727591.6
                                                                                    ~500 columns
5598,301,1,31,1255,6,347,292868060286,6
```

5598,301,1,31,1256,6,347.294399617648,6.00023232430/3/,24.012,23.40133,0.32/223/,0.4/4103

The Problems

1. How do we store and organize our ever-growing catalogs?

2. How do we make it easy to explore and analyze those catalogs (ask questions)?

Databases

Logically:

- Organized collections of data
- Typically, a set of tables and their relationships ("relational databases")
 - Terminology: for practical purposes, relation == table. For details, see
 http://en.wikipedia.org/wiki/Relation_%28database%29
- A table is made up of rows and columns
 - Each row can be considered as an entry corresponding to some real-world object, listing its attributes
 - Columns define the attributes; each column has a well defined data type (e.g., integer, real, text, etc.)

Physically:

A collection of files written in special format, that are accessed and manipulated using a
 Database Management System (DBMS)

Examples

Login	LastName	FirstName		
skol	Kovalevskaya	Sofia		
mlom	Lomonosov	Mikhail		
dmitri	Mendeleev	Dmitri		
ivan	Pavlov	Ivan		

Project

ProjectId	ProjectName
1214	Antigravity
1709	Teleportation
1737	Time Travel

Experiment

Projectid	ExperimentId	Numinvolved	ExperimentDate	Hours
1214	1	1	NULL	1.5
1214	2	1	1889-11-01	14.3
1709	1	3	1891-01-22	7.0
1709	2	1	1891-02-23	7.2
1737	1	1	1900-07-05	-1.0
1737	2	2	1900-07-05	-1.5

Involved

ProjectId	ExperimentId	InvolvedId	Login
1214	1	1	mlom
1214	2	1	mlom
1709	1	1	dmitri
1709	1	2	skol
1709	1	3	ivan
1709	2	1	mlom
1737	1	1	skol
1737	2	1	skol
1737	2	2	ivan

	run	ra	dec	mjdstart	mjdend	node	inclination	mu0	nu0
	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter
	94	336.4327791	-1.04429400	51075.23321	51075.45501	286.855205	0.009477	336.4326667	-1.05150869
	109	396.2418087	-1.25055686	51078.39078	51078.47494	283.3917469	0.008279	36.24187915	-1.25818616
i	125	350.4697426	-1.25274979	51081.25575	51081.49528	287.818732	0.007781	350.4696642	-1.25966106
	211	402.5811092	-1.26517002	51115.307	51115.46205	283.2197800	0.007975	42.58119581	-1.27212059
	240	375.1896778	-1.26440348	51132.185032	51132.24885	290.578187	0.010103	15.18965685	-1.27446183
	241	403.0295478	-1.26513669	51132.26214	51132.30359	266.7155050	0.005148	43.02963017	-1.26869244
	250	15.35717871	-1.03608421	51133.183	51133.36699	62.095899	0.024055	15.35688309	-1.01856644
	251	85.88000457	-1.00945333	51133.37808	51133.40792	11.252511	0.037496	85.87982628	-1.04560781
i.	256	-8.28409345	-1.05720709	51134.11449	51134.13357	58.141704	0.024019	351.7157311	-1.03519263
0	259	368.3751608	-1.04718589	51134.16041	51134.39053	299.408811	0.007597	8.375110834	-1.05427670
1	273	371.5027215	-1.25773504	51136.164	51136.38085	286.5415300	0.008068	11.50270590	-1.26577186
2	287	396.4868469	-1.15429721	51138.22760	51138.40424	295.298232	0.007857	36.48687773	-1.16200488
3	297	61.15102149	-1.15372111	51139.293	51139.37260	92.038416	0.040845	61.15032199	-1.13275302

Interacting with Databases: Database Management Systems (DBMS)

- As mentioned before, a database can logically be thought of as a set of tables. Physically (on disk) it's stored as one or more files. They're written in a special format that generally should not be directly read or written.
- A <u>Database Management System (DBMS)</u> is needed to read and write it
 - A software product tool that allows us to read or write data in databases
 - It allows us to query for and retrieve (a potentially transformed) subset of data from one or more tables

Note: the on-disk format is DBMS-specific

Structured Query Language

- SQL, or Structured Query Language is a special-purpose programming language designed for handling data managed by relational database management systems
- It is a language that virtually all databases
 "speak"
 - Allows one to ask for subsets of data, join tables, modify the outputs, as well as add and delete data in the database
 - Note: there are dialects and small
 differences from database to database

```
SELECT TOP 100
objID, ra ,dec
FROM
PhotoPrimary
WHERE
ra > 185 and ra < 185.1
AND dec > 15 and dec < 15.1
```

Above: An example query that returns the object ID, R.A., and Declination for objects in the PhotoPrimary table of the SDSS database that are within the given the ra/dec boundaries.

Why Databases for Astronomy:

1. Catalogs map perfectly to database tables.

 The DBMS <u>abstracts away the problem of physical storage of</u> <u>catalogs</u>: you start thinking in terms of tables, not files.

3. The DBMS provides a specialized <u>declarative language</u> to select/slice/dice/summarize the data contained within: you think more of <u>what</u> you need, rather than how to code it up.

SQLite

- http://sqlite.org
- Easy to use, simple, reasonably fast, free
- Comes with Anaconda, included in Python
- The database is a single file
- No need for special accounts, permissions, or servers
- GUI: http://sqlitebrowser.org
- Downsides:
 - Poor multi-user support
 - Does not scale well (won't scale to tens or hundreds of millions of rows)

- MariaDB (also, MySQL)
 - http://mariadb.org
 - Free, secure, scalable
 - Widely used and well supported
 - Comes in nearly all Linux distributions
 - There's no question that hasn't already been asked on StackOverflow ©
 - Client/server architecture
 - More advanced features compared to SQLite
 - Can handle tables with billions of rows
 - MariaDB vs MySQL: use MariaDB
 - Planned to be used by LSST to serve its PB+ dataset
 - Disadvantages:
 - Steeper learning curve, more initial setup

- PostgreSQL
 - http://postgresql.org
 - Free, secure
 - Similar to MySQL in terms of functionality
 - Some features are more advanced,
 performance can be better
 - Smaller community (though still widely used), steeper learning curve

- MS SQLServer
 - Not free, but performant and scalable
 - Used by the SDSS archive
- Oracle Database
 - The "industry standard" for mission critical databases
 - (Very) expensive
- Typically, there's no need to use a commercial solution today, except in very specialized circumstances – the free/open source databases <u>usually</u> work well enough

Non-Traditional DBMS

- "NoSQL" databases
- Systems for analyzing sets of large or unstructured data (e.g., web pages)
- Fast, very scalable (>petabytes of data), do not require fixed table schemas
- Examples: MongoDB, Hive, HBase, Cassandra, Redis, CouchDB, ...
- Also: <u>Spark</u>, Hadoop
- Disadvantages:
 - More difficult to work with and primitive compared to relational databases
 - Less expressive query languages, require programming for most tasks.
 - Note: This is rapidly changing!

Using a Database to Manage and Explore Astronomical Catalogs

SQL Basics

- CREATE
 - Creating tables
- INSERT/DELETE
 - Adding and deleting rows
- SELECT
 - Selecting a subset of data
 - Joining (combining) data from different tables
- More information: http://robots.thoughtbot.com/back-to-basics-sql

Creating a Database

- The details of database creation and data import are DBMS specific, but the general idea is similar:
 - 1. Create the database itself
 - 2. Create the tables within the database
 - Import the data

The "mini SDSS" Dataset

Sample data:

- See lectures/ lecture-o8-databases/* in the class git repository
- I extracted a random sample of ~50,000 objects from SDSS
 DR10 PhotoObjAll table. This is the catalog of all sources that the SDSS has detected and measured. The result is in sample.csv.
- I also have a list of SDSS "runs" (observations) with details about each run (runs.txt)
- I will import these two into a sqlite database

Sloan Digital Sky Survey

2.5m telescope

>14500 deg² 0.1" astrometry r<22.5 flux limit

5 band, better than 2%, photometry

Observing With SDSS

A raw data frame. The difference in bias levels from the two amplifiers is visible.

Faint object

masked in green.

Measured objects masked and enclosed in boxes. Small empty boxes are objects detected only in some other band.

Bias-corrected frame Frame corrected for Bright object with saturated pixels, bad saturated pixels, bad detections marked in columns, and cosmic rays columns, and cosmic blue.

the data frame.

image using postage stamps of individual objects and sky background from binned image.

The result? A catalog of object positions and properties.

Observing pattern in one *observing* <u>run</u>.

and processing easier)

run,rerun,camcol,field,obj,type,ra,dec,psfMag_r,psfMag_g,psfMagErr_r,psfMagErr_g
7757,301,1,74,186,6,8.12944435106658,26.6266172894736,17.04889,18.16535,0.01654805,0.02145229
7757,301,1,74,187,6,8.12783867556709,26.627245975921,17.37402,17.92875,0.02894481,0.02568013
7757,301,1,74,188,3,8.12732322524192,26.6251199416623,20.1466,21.35297,0.3003744,0.3302762

1489 px (== 10')

#1. Create the tables

);

CREATE TABLE sources (

);

INTEGER, run INTEGER, rerun INTEGER, camcol field INTEGER, obj INTEGER, INTEGER, type REAL, ra dec REAL, psfMag_r REAL, psfMag_g REAL, psfMqErr_r REAL, psfMagErr_g REAL

CREATE TABLE runs (

INTEGER, run REAL, ra dec REAL, mjdstart REAL, mjdend REAL, node REAL, inclination REAL, REAL, muo REAL nuo

#2a. Prepare the input data

Need to do some editing to remove the headers

```
# run RA Dec MJDstart MJDend node inclination mu0 nu0
94 336.43277918259321 -1.0442940032626229 51075.233210700004 51075.455013770021 286.855205 0.009477 336.4326667809695 -1.0
109 396.2418087606826 -1.2505568685469386 51078.390782900002 51078.474943690046 283.391746999999 0.008279 36.2418791557513
125 350.46974267690877 -1.252749794374115 51081.255758900006 51081.495288979975 287.818732 0.007781 350.46966429004527 -1.
211 402.58110922053515 -1.2651700227414813 51115.307000000001 51115.462054849995 283.219780000001 0.007975 42.581195816086
240 375.18967787787483 -1.2644034848494636 51132.185032000001 51132.248851429977 290.578187 0.010103 15.189656853896887 -1
```

```
IW sample.csv
run,rerun,camcol,field,obj,type,ra,dec,psfMag_r,psfMag_g,psfMagErr_r,psfMagErr_g
7757,301,1,74,186,6,8.12944435106658,26.6266172894736,17.04889,18.16535,0.01654805,0.02145229
7757,301,1,74,187,6,8.12783867556709,26.627245975921,17.37402,17.92875,0.02894481,0.02568013
7757,301,1,74,188,3,8.12732322524192,26.6251199416623,20.1466,21.35297,0.3003744,0.3302762
4288,301,1,39,682,3,24.5161170422305,-1.16579446393527,22.97032,24.3259,0.2672399,0.5240437
```

#2b. Import

```
sqlite> .mode csv
sqlite> .separator " "
sqlite> .import runs.in runs
sqlite> .separator ","
sqlite> .import sample.in sources
sqlite> .quit
```


Sanity Check

SELECT Statement

- SELECT ra, dec, psfMag_r FROM sources
- SELECT ra, dec, psfMag_r FROM sources WHERE psfMag_r < 21.5
- SELECT ra, dec, psfMag_r FROM sources WHERE psfMag_r < 21.5 LIMIT 5
- SELECT COUNT(psfMag_r), AVG(psfMag_r) FROM sources WHERE psfMag_r < 21.5
- SELECT COUNT(*), run FROM sources GROUP BY run
- SELECT COUNT(*), run FROM sources GROUP BY run ORDER BY run
- SELECT COUNT(*) as ct , run FROM sources GROUP BY run ORDER BY ct

NULL

- How do we mark missing data?
 - Typical way to do this is to designate a value as "magic"
 - E.g.,: -9999 in our example database
- Relational databases provide us with a special constant, a "NULL"
 - The meaning is always clear (i.e. no data)
 - Plays well with aggregate functions
 - I.e., AVG(), COUNT() ignore null values

UPDATE

UPDATE sources

The table to update

SET psfMag_r = NULL

Columns to update (and the values to use)

WHERE psfMag_r = -9999.0

Selecting the subset of rows to update

JOIN: Joining tables

• Example:

- Each row in the 'sources' table has a 'run' entry the ID of the SDSS run where this object was observed
- Each entry in the 'runs' table has a 'mjdstart' entry, indicating the time when the observing for this run started
- How can we find the mjdstart for each object? An algorithm for doing it by hand:
 - For each row in the sources table:
 - Read off the value of 'run'
 - Find the corresponding row in the 'runs' table
 - Read off the value of midstart

JOIN: Joining tables

The columns we're interested in.

Those appearing in more than one table need to be prefixed by the table name.

SELECT

sources.ra, sources.dec, sources.run, mjdstart

FROM

The table we're querying

sources

JOIN runs ON sources.run = runs.run

Instructions how to join the runs table onto the sources table.

SELECT <select_list> FROM TableA A LEFT JOIN TableB B ON A.Key = B.Key

SELECT <select_list>
FROM TableA A
LEFT JOIN TableB B
ON A.Key = B.Key
WHERE B.Key IS NULL

SELECT <select_list>
FROM TableA A
FULL OUTER JOIN TableB B
ON A.Key = B.Key

SQL JOINS

SELECT <select_list>
FROM TableA A
INNER JOIN TableB B
ON A.Key = B.Key

© C.L. Moffatt, 2008

SELECT <select_list>
FROM TableA A
RIGHT JOIN TableB B
ON A.Key = B.Key

SELECT <select_list>
FROM TableA A
RIGHT JOIN TableB B
ON A.Key = B.Key
WHERE A.Key IS NULL

SELECT <select_list>
FROM TableA A
FULL OUTER JOIN TableB B
ON A.Key = B.Key
WHERE A.Key IS NULL
OR B.Key IS NULL

B

Doing all of this from Python

- Python can connect to a variety of databases
- SQLite module comes built into Python (sqlite₃)
- We will also use a library called pandas ("Python Data Analysis Library")
 - http://pandas.pydata.org
 - Pandas provides high-performance data structures for manipulating and analyzing tabular data
- We'll also use astroquery (https://astroquery.readthedocs.io/en/latest/) to query remote databases.

More about SQL & Databases

- Interactive SQL tutorial
 - http://sqlzoo.net/wiki/Main_Page
- Introduction to SQL (Stanford)
 - https://class.stanford.edu/courses/DB/SQL/SelfPaced/courseware/ch-sql/seqvid-introduction_to_sql/
- Introduction to SQL (Phil Spector, Berkeley)
 - https://www.stat.berkeley.edu/~spector/sql.pdf
- Databases in depth: CSE444
 - http://courses.cs.washington.edu/courses/cse444/

Some More Reading

- Pandas
 - 10 minute tutorial: http://pandas.pydata.org/pandas-docs/stable/10min.html
 - 10 minute tutorial video:http://vimeo.com/59324550
 - Pandas Tutorials: http://pandas.pydata.org/pandas-docs/stable/tutorials.html