Leçon 246. Séries de Fourier. Exemples et applications.

1. Fonctions périodiques et séries de Fourier

1.1. Fonctions périodique

- [5] 1. DÉFINITION. Soit T > 0. Une fonction $f: \mathbf{R} \longrightarrow \mathbf{C}$ est T-périodique si $\forall t \in \mathbf{R}, \qquad f(t+T) = f(t).$
 - 2. Remarque. Clairement, une fonction f est T-périodique avec T>0 si et seulement si la fonction $f(\frac{T}{2\pi}\cdot)$ est 2π -périodique. On se limitera à l'étude des fonctions 2π -périodique.
 - 3. Exemple. Les fonctions cosinus, sinus et $x \mapsto e^{inx}$ avec $n \in \mathbb{Z}$ sont 2π -périodiques.
 - 4. REMARQUE. Une fonction 2π -périodique $\mathbf{R} \longrightarrow \mathbf{C}$ s'identifie à une fonction définie sur le tore $\mathbf{T} \coloneqq \mathbf{R}/2\pi\mathbf{Z}$ qui est un groupe topologique.
 - 5. DÉFINITION. Soit $p\geqslant 1$ un réel. L'ensemble $\mathrm{L}^p(\mathbf{T})$ des fonctions $f\colon\mathbf{R}\longrightarrow\mathbf{C}$ mesurables telles que

$$\int_0^{2\pi} |f(t)|^p < +\infty$$

est muni de la norme définie par l'égalité

$$||f||_p := \left(\frac{1}{2\pi} \int_0^{2\pi} |f(t)|^p dt\right)^{1/p}$$

L'ensemble $L^{\infty}(\mathbf{T})$ des fonctions $f \colon \mathbf{R} \longrightarrow \mathbf{C}$ mesurables telles que

$$\exists C \geqslant 0, \qquad |f(x)| \leqslant C \quad \text{pour presque tout } x \in \mathbf{R}$$

est muni de la norme définie par l'égalité

$$||f||_{\infty} := \inf\{C \ge 0 \mid |f(x)| \le C \text{ pour presque tout } x \in \mathbf{R}\}.$$

6. Proposition. L'espace $L^2(\mathbf{T})$ est un espace de Hilbert pour le produit salaire

$$\langle f, g \rangle \coloneqq \frac{1}{2\pi} \int_0^{2\pi} f(x) \overline{g(x)} \, \mathrm{d}x.$$

1.2. Coefficients de Fourier

[1] 7. DÉFINITION. Soit $n \in \mathbf{Z}$. On définit la fonction $e_n \in \mathrm{L}^2(\mathbf{T})$ par l'égalité

$$e_n(x) = e^{inx}, \qquad x \in \mathbf{R}.$$

Pour une fonction $f \in L^2(\mathbf{T})$, son n-ième coefficient de Fourier est le complexe $c_n(f) := \langle f, e_n \rangle$.

- $c_n(f) := \langle f, e_n \rangle.$
- 8. Proposition. La famille $(e_n)_{n \in \mathbb{Z}}$ est une famille orthonormale de $L^2(\mathbf{T})$.
- [5] 9. Proposition. Soient $f, g \in L^1(\mathbf{T}), a \in \mathbf{R}$ et $n \in \mathbf{Z}$. Alors
 - $-c_n(\overline{f}) = \overline{c_{-n}(f)};$
 - $-c_n(f(\cdot+a))=e^{ina}c_n(f);$
 - $c_n(f \star g) = c_n(f)c_n(g);$
 - si f est continue et de classe \mathscr{C}^1 par morceaux, alors $c_n(f') = inc_n(f)$.
- [1] 10. PROPOSITION (lemme de Riemann-Lebesgue). Soit $f \in L^1(\mathbf{T})$. La suite $(c_n(f))_{n \in \mathbf{Z}}$ tend vers zéro en $\pm \infty$.

11. THÉORÈME. Soit $c_0(\mathbf{Z})$ l'espace des suites de $\mathbf{C}^{\mathbf{Z}}$ qui tendent vers 0 en $\pm \infty$. L'application

$$\mathscr{F}: \begin{vmatrix} L^1(\mathbf{T}) \longrightarrow c_0(\mathbf{Z}), \\ f \longmapsto (c_n(f))_{n \in \mathbf{Z}} \end{vmatrix}$$

est un morphisme d'algèbre pour la convolution qui est continu.

- 12. Remarque. La fonction \mathscr{F} n'est pas surjective : la suite $(\sin(nx)/\ln n)_{n\geqslant 2}$ n'est pas atteinte.
- 13. NOTATION. Pour une fonction $f \in L^1(\mathbf{T})$ et un entier $N \in \mathbf{N}$, on note

$$S_N(f) := \sum_{n=-N}^{N} c_n(f)e_n.$$

- 14. THÉORÈME. Soit $f: \mathbf{R} \longrightarrow \mathbf{C}$ une fonction 2π -périodique.
 - On a $f \in L^2(\mathbf{T})$ si et seulement si $\mathscr{F} f \in \ell^2(\mathbf{Z}, \mathbf{C})$.
 - Si $f \in \mathscr{C}^k(\mathbf{R}, \mathbf{C})$, alors $n^k c_n(f) \longrightarrow 0$ lorsque $n \longrightarrow \pm \infty$.

2. Théorèmes de convergence

- 2.1. Noyaux de Fejér et de Dirichlet
- 15. DÉFINITION. Soit $N \in \mathbb{N}$. Le noyau de Dirichlet d'ordre N est la fonction

$$D_N := \sum_{n=-N}^{N} e_n.$$

- 16. Proposition. Le noyau de Dirichlet vérifie les points suivants.
 - La fonction D_N est paire et $\int_0^{2\pi} D_N(t) dt = 2\pi$.
 - Pour tout réel $x \in \mathbf{R}$, on a

$$D_N(x) = \frac{\sin((N+1/2)x)}{\sin(x/2)}.$$

- Pour toute function $f \in L^1(\mathbf{T})$, on a $S_N(f) = f \star D_N$.
- On a $||D_N||_1 \longrightarrow +\infty$.
- 17. DÉFINITION. Si $N \neq 0$, le noyau de Fejér d'ordre N est la fonction

$$K_N := \frac{1}{N} \sum_{n=0}^{N-1} D_n.$$

- 18. Proposition. Le noyau de Fejér vérifie les points suivants.
 - Pour tout réel $x \in \mathbf{R}$, on a

$$K_N(x) = \sum_{n=-N}^{N} \left(1 - \frac{|n|}{N}\right) e_n = \frac{1}{N} \left(\frac{\sin(Nx/2)}{\sin(x/2)}\right)^2.$$

- On a $||K_N||_1 = 1$.

$$f \star K_N = \frac{1}{N} \sum_{n=0}^{N-1} S_n(f) =: \sigma_N(f).$$

2.2. Théorèmes de Fejér et de Dirichlet

- [5] 19. PROPOSITION. Il existe une fonction continue 2π -périodique $f: \mathbf{R} \longrightarrow \mathbf{C}$ telle que la suite $(S_N(f)(0))_{N \in \mathbf{N}}$ diverge.
 - 20. Remarque. C'est une conséquence du théorème de Banach-Steinhaus.
 - 21. Théorème (Fejér). Les deux points suivants constituent le théorème.
 - Soit $f: \mathbf{R} \longrightarrow \mathbf{C}$ une fonction continue 2π -périodique. Alors

$$\forall n \in \mathbf{N}^*, \quad \|\sigma_N(f)\|_{\infty} \leqslant \|f\|_{\infty}$$

 $_{
m et}$

$$\|\sigma_N(f) - f\|_{\infty} \longrightarrow 0.$$

- Soit $f \in L^p(\mathbf{T})$. Alors on la même conclusion avec la norme p.
- [1] 22. COROLLAIRE. La famille $(e_n)_{n \in \mathbb{N}}$ est une famille totale de L²(**T**). En particulier, la forme de Parseval s'applique.
 - 23. COROLLAIRE. L'application $\mathscr{F}: L^1(\mathbf{T}) \longrightarrow c_0(\mathbf{Z})$ est injective. De plus, l'application $\mathscr{F}: L^2(\mathbf{T}) \longrightarrow c_0(\mathbf{Z})$ est un isométrie.
- [3] 24. APPLICATION (inégalité de Wirtinger). Pour toute fonction $f \in \mathcal{C}^0([a,b])$ de classe \mathcal{C}^1 par morceaux telle que f(a) = f(b) = 0, on a

$$\int_a^b |f(t)|^2 dt \leqslant \left(\frac{b-a}{\pi}\right)^2 \int_a^b |f'(t)|^2 dt.$$

[5] 25. COROLLAIRE. Soient $f: \mathbf{R} \longrightarrow \mathbf{C}$ une fonction continue 2π -périodique et $x_0 \in \mathbf{R}$. Alors

$$S_N(f,x_0) \longrightarrow \ell \in \mathbf{C} \implies \ell = f(x_0).$$

26. PROPOSITION. Soit $f: \mathbf{R} \longrightarrow \mathbf{C}$ une fonction continue 2π -périodique telle que la suite $(S_N(f))_{N \in \mathbf{N}}$ converge normalement sur \mathbf{R} . Alors

$$f = \sum_{n = -\infty}^{+\infty} c_n(f)e_n.$$

- 27. PROPOSITION. Soit $f: \mathbf{R} \longrightarrow \mathbf{C}$ une fonction continue 2π -périodique de classe \mathscr{C}^1 par morceaux. Alors la série $(S_N(f))_{N \in \mathbf{N}}$ converge normalement vers la fonction f.
- [1] 28. Théorème (Weierstrass). Toute fonction continue de [a,b] de ${\bf R}$ est la limite uniforme d'une suite de fonctions polynomiales sur [a,b].
- [5] 29. THÉORÈME (Dirichlet). Soient $f \in L^1(\mathbf{T})$ et $x_0 \in \mathbf{R}$. On suppose que
 - les limites $f^+ := \lim_{t \longrightarrow 0^+} f(x_0 + t)$ et $f^- := \lim_{t \longrightarrow 0^-} f(x_0 + t)$ existent;
 - il existe une constante $\delta > 0$ tel que

$$\int_0^\delta \frac{|f(x_0 \pm t) - f^{\pm}|}{t} \, \mathrm{d}t < +\infty.$$

Alors

$$S_N(f)(x_0) \longrightarrow \frac{1}{2}(f^+ + f^-).$$

30. APPLICATION. Soit $a \in \mathbb{C} \setminus \mathbb{Z}$. La fonction $f \in L^{\infty}(\mathbb{T})$ définie par l'égalité $f(t) = e^{iat}, \quad t[-\pi, \pi[$

vérifie les hypothèses du théorème de Dirichlet au point π et on tire l'égalité

$$\pi \cot \pi a = \frac{1}{a} + 2a \sum_{n=1}^{+\infty} \frac{1}{a^2 - n^2}.$$

3. Quelques applications

3.1. Formule sommatoire de Poisson

31. DÉFINITION. Pour une fonction $F \in L^1(\mathbf{R})$, on définit sa transformée de Fourier [5]

$$\hat{F}: \begin{vmatrix} \mathbf{R} \longrightarrow \mathbf{C}, \\ x \longmapsto \int_{\mathbf{R}} e^{-2i\pi xt} F(t) dt. \end{vmatrix}$$

32. Théorème. Soient $F \in L^1(\mathbf{R}) \cap \mathscr{C}^0(\mathbf{R})$ une fonction intégrable et continue. On suppose qu'il existe deux constantes M > 0 et $\alpha > 1$ telles que

$$\forall x \in \mathbf{R}, \qquad |F(x)| \leqslant M(1+|x|)^{-\alpha}$$

et que

$$\sum_{n=-\infty}^{+\infty} |\hat{F}(n)| < +\infty.$$

Alors

$$\sum_{n=-\infty}^{+\infty} F(n) = \sum_{n=-\infty}^{+\infty} \hat{F}(n).$$

33. Application. Pour tout t > 0, on a

$$\sum_{n \in \mathbf{Z}} e^{-\pi n^2/t} = \sqrt{t} \sum_{n \in \mathbf{Z}} e^{-\pi n^2 t}.$$

34. REMARQUE. La fonction $t \mapsto \sum_{n \in \mathbb{Z}} e^{-\pi n^2/t}$ joue un rôle dans la résolution de l'équation de la chaleur (1).

3.2. Équation de la chaleur

35. DÉFINITION. Soit $f \colon \mathbf{R} \longrightarrow \mathbf{R}$ une fonction. L'équation de la chaleur est le [2] problème de Cauchy

$$\begin{cases} \partial_t u(x,t) = \partial_{xx} u(x,t), & x \in \mathbf{R}, \ t > 0, \\ \lim_{t \to 0} u(x,t) = f(x) & x \in \mathbf{R}. \end{cases}$$
 (1)

36. Proposition. On suppose que la fonction f est 1-périodique et de classe \mathscr{C}^2 . Alors il existe une unique solution $u \colon \mathbf{R} \times \mathbf{R}_+^* \longrightarrow \mathbf{R}$ au problème (1) qui est 1-périodique par rapport à la variable d'espace.

- Vincent Beck, Jérôme Malick et Gabriel Peyré. Objectif Agrégation. 2e édition. H&K, 2005.
- [2] Bernard Candelpergher. Calcul intégral. Cassini, 2009.
- [3] Harry Dym et Henry McKean. Fourier Series And Integrals. Academic Press, 1972.
- Serge Francinou, Hervé Gianella et Serge Nicolas. Analyse 2. 2e édition. Cassini, 2009.
- [5] Hervé Queffélec et Claude Zully. Analyse pour l'agrégation. 5e édition. Dunod, 2020.