Homework #1

Dustin Leatherman 1/11/2020

1.5

For a moving average process of the form $x_t = w_{t-1} + 2w_t + w_{t+1}$

where w_t are independent with zero means and variance σ_w^2 , determine the autocovariance and autocorrelation functions as a function of lag h and sketch the ACF as a function of h.

$$\begin{split} \gamma(\hat{h}) &= cov(x_t, x_{t+h}) = E(x_t \times x_{t+h}) \\ &= E[(w_{t-1} + 2w_t + w_{t+1})(w_{t+h-1} + 2w_{t+h} + w_{t+h+1})] \\ &= E[w_{t-1}w_{t+h-1} + 2w_{t-1}w_{t+h} + w_{t-1}w_{t+h+1} + 2w_tw_{t+h-1} + 4w_tw_{t+h} + 2w_tw_{t+h+1} + w_{t+1}w_{t+h-1} + 2w_{t+1}w_{t+h} + w_{t+1}w_{t+h}] \end{split}$$

 $\rho(\hat{h}) = \frac{\gamma(\hat{h})}{\gamma(\hat{0})} = \frac{\hat{\gamma}(h)}{\sigma_w^2}$

Note the following definitions

$$E(w_t^2) = var(w_t) + E(w_t)^2$$

$$E(w_t) = 0$$

$$E(w_t w_s) = 0, \text{ where } s \neq t$$

$$var(w_t) = \sigma_w^2$$

$$E(w_t^2) = \sigma_w^2$$

In the interest of brevity and readability, the following Expectations only contain non-zero terms.

When $|\mathbf{h}| = 0$:

$$E[x_t^2] = E[w_{t-1}^2 + 4w_t^2 + w_{t+1}^2] = \sigma_w^2 + 4\sigma_w^2 + \sigma_w^2 = 6\sigma_w^2$$

When $|\mathbf{h}| = 1$:

$$E[x_t x_{t+1}] = E[2w_t^2 + 2w_{t+1}^2] = 4\sigma_w^2$$

When $|\mathbf{h}| = 2$:

$$E[x_t x_{t+2}] = E(w_{t+1}^2) = \sigma_w^2$$

When $|\mathbf{h}| = 3$:

$$E[x_t x_{t+3}] = 0$$

data <- data.frame(h =
$$c(0,1,2,3)$$
, acf = $c(6,4,1,0)$)

ggplot(data, aes(x = h, y = acf)) +

geom_bar(stat = "identity", fill = "blue")

1.12

Let w_t , for $t = 0, \pm 1, \pm 2, ...$ be a normal white noise process, and consider the series $x_t = w_t w_{t-1}$ Determine the mean and autocovariance function of x_t , and state whether it is stationary.

Given $w_t \sim ind \ N(0, \sigma_w^2)$.

$$\mu_{x_t} = E(x_t) = E(w_t w_{t-1}) = E(w_i) * E(w_{t-1}) = 0$$

$$\hat{\gamma}(h) = E(x_t \times x_{t+h})$$

$$= E(w_t w_{t-1} w_{t+h} w_{t+h-1})$$

$$= E(w_t w_{t-1}) \times E(w_{t+h} w_{t+h-1})$$

Since this time series is the product of two stationary time series, it is considered stationary. This is further proven by the mean and covariance functions being independent of time.

1.14

- (a) Simulate a series of n = 500 Gaussian white noise observations as in Example 1.6 and compute the sample ACF, $\hat{\rho}(h)$ to lag 20. Compare the sample ACF you obtain to the actual ACF, $\rho(h)$. [Recall Example 1.18.]
- (b) Repeat part (a) using only n = 50. How does changing n affect the results?

a

```
set.seed(123)
w500 <- rnorm(500)
w500.acf <-
bind_cols(
  acf(w500, type="correlation", plot = FALSE) %>%
```

```
tidy %>%
    select(lag, correlation = acf),
    acf(w500, type="covariance", plot = FALSE) %>%
        tidy %>%
        select(covariance = acf)
)

w500.acf %>%
    filter(lag <= 20) %>%
    kable(
        caption = "First 20 lags of 500 random Normal observations"
    ) %>%
    kable_styling(full_width = FALSE, protect_latex = TRUE, latex_options = "hold_position")
```

Table 1: First 20 lags of 500 random Normal observations

correlation	covariance
1.0000000	0.9443877
-0.0544080	-0.0513823
-0.0559941	-0.0528801
0.0034130	0.0032232
-0.0557653	-0.0526641
-0.0154724	-0.0146120
-0.0477022	-0.0450494
0.0094094	0.0088861
0.0355565	0.0335792
0.0301090	0.0284346
0.0076819	0.0072547
0.0052141	0.0049241
-0.1076564	-0.1016694
-0.0043968	-0.0041523
0.0318318	0.0300616
0.0779817	0.0736450
-0.0529327	-0.0499890
0.0009872	0.0009323
-0.0538619	-0.0508665
0.0090796	0.0085747
-0.0073696	-0.0069597
	1.0000000 -0.0544080 -0.0559941 0.0034130 -0.0557653 -0.0154724 -0.0477022 0.0094094 0.0355565 0.0301090 0.0076819 0.0052141 -0.1076564 -0.0043968 0.0318318 0.0779817 -0.0529327 0.0009872 -0.0538619 0.0090796

```
ggplot(w500.acf, aes(x = lag)) +
  geom_line(aes(y = correlation), linetype = "dotted") +
  geom_line(aes(y = covariance, color = "red"), linetype = "dotted", show.legend = FALSE)
```


The actual correlation coefficient for Normal White Noise is equal to the covariance between a given time point and lag h. The values are very close as seen in the table and the graph.

b

```
w50 \leftarrow rnorm(50)
w50.acf <-
  bind_cols(
  acf(w50, type="correlation", plot = FALSE) %>%
    tidy %>%
    select(lag, correlation = acf),
  acf(w50, type="covariance", plot = FALSE) %>%
    tidy %>%
    select(covariance = acf)
)
w50.acf %>%
  filter(lag <= 20) %>%
  kable(
    caption = "Lags of 50 random Normal observations"
  ) %>%
  kable_styling(full_width = FALSE, protect_latex = TRUE, latex_options = "hold_position")
ggplot(w50.acf, aes(x = lag)) +
  geom_line(aes(y = correlation), linetype = "dotted") +
  geom_line(aes(y = covariance, color = "red"), linetype = "dotted", show.legend = FALSE)
```

Table 2: Lags of 50 random Normal observations

correlation	covariance
1.0000000	0.7843009
0.0654295	0.0513164
-0.1984148	-0.1556169
0.1683970	0.1320739
-0.0991071	-0.0777298
-0.2328667	-0.1826376
0.0390622	0.0306365
-0.0549713	-0.0431140
0.1102303	0.0864537
0.0801589	0.0628687
0.0797302	0.0625325
0.1412409	0.1107754
-0.0590652	-0.0463249
-0.0698747	-0.0548028
0.2882476	0.2260728
-0.0181276	-0.0142175
-0.1623468	-0.1273287
	1.0000000 0.0654295 -0.1984148 0.1683970 -0.0991071 -0.2328667 0.0390622 -0.0549713 0.1102303 0.0801589 0.0797302 0.1412409 -0.0590652 -0.0698747 0.2882476 -0.0181276

Changing n reduces the number of lags that are created and the sample correlation drifts further from the actual correlation. This is an expected effect when using smaller sample sizes.