Applied Mathematics (241) Marking Scheme Class XII (2023-24)

Section A (1 Mark each)

Q-1 Option (c) Here X < 0 and Y > 0, hence -70 mod 13 is 8 :: 8 > 0.

1 Mark

Q-2 Option (b)
$$x \in (-\infty, -2)$$

$$\frac{x+1}{x+2} \ge 1 \Longrightarrow \frac{x+1}{x+2} - 1 \ge 0$$

$$\Rightarrow \frac{x+1-x-2}{x+2} \ge 0$$

$$\Rightarrow \frac{-1}{x+2} \ge 0 \implies x+2 < 0 \left[\because \frac{a}{b} > 0 \text{ and } a < 0 \Rightarrow b < 0 \right]$$

$$\Rightarrow x < -2$$

Q-3 Option (b) \bar{x} is a statistic

1 Mark

Q-4 Option (a)

1 Mark

Q-5 Option (a)

Let man's rate upstream = x km/hr

Let man's rate downstream = 2x km/hr

Hence, Man's rate in still water = $\frac{1}{2}(x + 2x)$

Therefore $\frac{3x}{2} = 6 \implies x = 4 \, km/hr$

Man's rate downstream = 8 km/hr

Hence rate of stream $\frac{1}{2}(8-4) = 2 \, km/h$

1 Mark

Q-6 Option (d)

x_i	Sample Event	$P(x_i) = p_i$	$x_i p_i$
0	TT	$\frac{1}{4}$	0
1	НТ,ТН	$\frac{4}{2}$	$\frac{1}{2}$
2	НН	$\frac{1}{4}$	$\frac{1}{2}$

Mathematical Expectation $E(X) = \sum p_i x_i = 1$

1 Mark

Q-7 Option (c)
$$3^1 \equiv 3 \pmod{7} \Rightarrow 3^2 \equiv 3 \times 3 = 2 \pmod{7}$$

 $\Rightarrow 3^3 = 3 \times 2 = 6 = -1 \pmod{7}$
 $\Rightarrow (3^3)^{16} = (-1)^{16} \pmod{7}$

$$\Rightarrow (3^3)^{16} = (-1)^{16} (mod7)$$

$$\Rightarrow (3^3)^{16} = 1 (mod7) \Rightarrow (3^3)^{16} \times 3^2 = 1 \times 3^2 (mod7)$$

$$\Rightarrow 3^{50} = 2 (mod7)$$

$$\Rightarrow$$
 3⁵⁰ = 2(mod7)

Q-8 Option (a)
$$i = \frac{r}{400}$$
.
 $P = \frac{R}{i} \implies 24000 = \frac{300 \times 400}{r} \implies r = \frac{120}{24} = 5\%$ 1 Mark

Q-9 Option (b)
$$\int \frac{\log x}{x} dx$$

Put $\log x = t$

Differentiating $\frac{1}{x}dx = dt$

Hence,
$$\int \frac{\log x}{x} dx = \int t dt = \frac{t^2}{2} + C = \frac{(\log x)^2}{2} + C$$

1 Mark

Mark

1 mark

$$D = \frac{C - S}{n} \implies D = \frac{30,000 - 4000}{4} = \frac{26000}{4} = 6500$$

Hence, the depreciation is Rs. 6500

1 Mark

Q-12. Option (c)

$$r_{eff} = \left[\left(1 + \frac{r}{m} \right)^m - 1 \right] \times 100$$

$$r_{eff} = [(1.03)^2 - 1] \times 100 = (1.0609 - 1) \times 100 = 6.09\%$$

Q-13 Option (b)

$$CAGR = \left[\left(\frac{EV}{SV} \right)^{\frac{1}{5}} - 1 \right] \times 100$$

$$= \left[\left(\frac{32000}{20000} \right)^{\frac{1}{5}} - 1 \right] \times 100$$

$$= \left[(1.6)^{\frac{1}{5}} - 1 \right] \times 100$$

$$= [1.098 - 1] \times 100 = 0.098 \times 100 = 9.8\%.$$

1 Mark

Q-14 Option (c)
$$x \frac{dy}{dx} + 2y = x^3$$

$$\frac{dy}{dx} + \frac{2y}{x} = \frac{x^3}{x}$$

$$\frac{dy}{dx} + \frac{2y}{x} = x^2$$

I.F =
$$e^{\int \frac{2}{x}} = e^{2lnx} = e^{lnx^2} = x^2$$

Q-15 Option (a)

1 Mark

Q-16 Option (a)

1 Mark

$$3P(X = 2) = 2P(X = 1)$$

$$\Rightarrow 3\frac{m^2e^{-m}}{2!} = 2\frac{me^{-m}}{1!} \Rightarrow m = \frac{4}{3}$$

Q-17 Option (c)

1 Mark

Q-18 Option (d)

$$Z = \frac{x - \mu}{\sigma} \Longrightarrow 5 = \frac{x - 12}{4} \Longrightarrow x = 32.$$

1 Mark

Q-19 Option(c)

Assertion : $P(x) = 41 + 24x - 8x^2$

$$P'(x) = 24 - 16x$$

$$P'(x) = 0 \Rightarrow 24 - 16x = 0 \Rightarrow x = \frac{24}{16} = \frac{3}{2}$$

$$P''(x) = -16 < 0 \implies x = \frac{3}{2}$$
 is a point of maxima

 $P''(x) = -16 < 0 \implies x = \frac{3}{2} \text{ is a point of maxima}$ $\text{Max Profit} = P = 41 + 24 \times \frac{3}{2} - 8 \times \frac{9}{4} = 41 + 36 - 18 = 59$ Assertion is true but Reason is false, for Maximum P'(x) = 0 and P''(x) < 0.

Q-20 Option (a) Both A and R are true and R is the correct explanation of A 1 Mark

(2 Marks each)

Q-21 Let rate of interest be r\% per annum, then $i = \frac{r}{200}$

Given $R = Rs \ 1500$ and $P = Rs \ 20,000$

$$P = \frac{R}{i} \Longrightarrow i = \frac{R}{p} = \frac{1500}{20000}$$
$$\Longrightarrow \frac{r}{200} = \frac{1500}{20000} \Longrightarrow r = 15\%$$

1 Mark

$$A^{2} = A. A = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 8 & -8 \\ -8 & 8 \end{bmatrix}$$

1 Mark

$$A^{2} = pA \Longrightarrow \begin{bmatrix} 8 & -8 \\ -8 & 8 \end{bmatrix} = p \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$$

$$A^{2} = A.A = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 8 & -8 \\ -8 & 8 \end{bmatrix}$$

$$A^{2} = pA \Rightarrow \begin{bmatrix} 8 & -8 \\ -8 & 8 \end{bmatrix} = p \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 8 & -8 \\ -8 & 8 \end{bmatrix} = \begin{bmatrix} 2p & -2p \\ -2p & 2p \end{bmatrix} \Rightarrow p = 4$$

$$\begin{bmatrix} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{bmatrix} = - \begin{bmatrix} 0 & 2 & c \\ a & b & 1 \\ 3 & -1 & 0 \end{bmatrix}$$

½ Mark

Comparing a = -2; $b = -b \implies 2b = 0 \implies b = 0$ and c = -3

11/2 Mark

Hence
$$a+b+c = -2+0-3 = -5$$
.

½ Mark

Q-23 Let 'x' hectares and 'y' hectares of land be allocated to crop A and Crop B

Max
$$Z = 8000x + 9500y$$
.

2 Mark

Subject to
$$x + y \le 10$$
; $2x + y \le 50$; $x \ge 0$ and $y \ge 0$

1½ mark

$$Q-24 \frac{time\ taken\ upstream}{time\ taken\ downstream} = \frac{2}{1}$$

1 Mark

Let speed of boat = 15 km/hr and speed of stream = y km/hr.

Hence
$$\frac{15+y}{15-y} = \frac{2}{1}$$

½ Mark

$$\Rightarrow 15 + y = 30 - 2y.$$

$$\Rightarrow$$
 3y = 15 \Rightarrow y = 5 Km/hr

½ Mark

OR

When B runs 50 m A runs 40 m

½ Mark

When B runs 1 m, A runs = $\frac{40}{50} = \frac{4}{5}$

½ Mark

When B runs 1000 m, A runs = $\frac{4}{5} \times 1000 = 800 \text{ m}$

½ Mark

Hence B beats A by 200 m

½ Mark

Q-25 Define Null hypothesis H_0 alternate hypothesis H_1 as follows:

 H_0 : $\mu = 0.50 \ mm$

 $H_1: \mu = 0.50 \ mm$

Thus a two-tailed test is applied under hypothesis H_0 , we have

$$t = \frac{\bar{X} - \mu}{s} \sqrt{n - 1} = \frac{0.53 - 0.50}{0.03} \times 3 = 3.$$

1 Mark

Since the calculated value of t i.e. $t_{cal}(=3) > t_{tab}(=2.262)$, the null hypothesis H_0 can be rejected. Hence, we conclude that machine is not working properly. 1 Mark

Section C (3 Marks each)

Q-26
$$\int \frac{x^3}{(x+2)} dx = \left(\int x^2 - 2x + 4 - \frac{8}{x+2} \right) dx$$
 2 Mark
= $\frac{x^3}{3} - x^2 + 4x - 8 \ln(x+2) + C$. 1 Mark

(where C is an arbitrary constant of integration)

OR

$$\int (x^2 + 1) \ln x dx$$
Integrating by parts
$$\ln x \left(\frac{x^3}{3} + x\right) - \int \frac{1}{x} \left(\frac{x^3}{3} + x\right) dx.$$

$$\ln x \left(\frac{x^3}{3} + x\right) - \int \left(\frac{x^2}{3} + 1\right) dx$$

$$lnx\left(\frac{x^3}{3}+x\right)-\left(\frac{x^3}{9}+x\right)+C.$$

Mark

2 mark

Q-27

Toy A. Toy B

 $\begin{bmatrix} 7 & 10 \\ 8 & 6 \end{bmatrix}$ Here Row 1 and Row 2 indicate Shopkeeper 1 and Shopkeeper 2

Cost Matrix =
$$\begin{bmatrix} 50 \\ 75 \end{bmatrix}$$

1 Mark

Amount =
$$\begin{bmatrix} 7 & 10 \\ 8 & 6 \end{bmatrix} \begin{bmatrix} 50 \\ 75 \end{bmatrix} = \begin{bmatrix} 350 + 750 \\ 400 + 450 \end{bmatrix} = \begin{bmatrix} 1100 \\ 850 \end{bmatrix}$$

Income of Shopkeeper P is Rs 1100/ and shopkeeper Q is Rs 850/ 2 Marks

Q-28
$$f(x) = 2x^3 - 9x^2 + 12x - 5$$

 $f'(x) = 6x^2 - 18x + 12 = 6(x^2 - 3x + 2)$
 $f'(x) = 6(x - 1)(x - 2)$

$$f'(x) = 6(x-1)(x-2)$$
 1 Mark
 $f'(x) = 0 \Rightarrow x = 1$ and $x = 2$ are the critical points. ½ Mark

The intervals are
$$(-\infty, 1)$$
; $(1,2)$; $(2,\infty)$ \quad \text{\lambda} Aark

Increasing in
$$(-\infty, 1) \cup (2, \infty)$$
 Decreasing in $(1,2)$ 1 Mark

Q-29 Under pure competition

$$p_d = p_s$$

$$\Rightarrow 16 - x^2 = 2x^2 + 4$$

$$\Rightarrow 3x^2 = 12 \Rightarrow x = 2, -2; \text{ since x can't be -ve, so x=2}$$

$$\text{When } x_0 = 2; p_0 = 12$$

$$\text{Hence, Consumer's surplus} = \int_0^2 p_d dx - p_0 x_0$$

$$= \int_0^2 (16 - x^2) dx - 12 \times 2$$

$$= 16/3 \text{ units}$$

$$1 \text{ Mark}$$

OR

$$p_d = p_s$$

$$\Rightarrow 56 - x^2 = 8 + \frac{x^2}{3}$$

$$\Rightarrow \frac{4}{3}x^2 = 48 \Rightarrow x^2 = 36 \Rightarrow x = 6, -6; \text{ since x can't be -ve, so } x = 6$$
When $x_0 = 6$; $p_0 = 20$

1/2 Mark

Hence, Producer's surplus = $p_0 x_0 - \int_0^6 p_s dx$

$$= 6 \times 20 - \int_0^6 \left(8 + \frac{x^2}{3}\right) dx$$

$$= 6 \times 20 - \int_0^6 \left(8 + \frac{x^2}{3}\right) dx$$

= 120 - [48+24]
= 48 units

1 Mark

Q-30 Here P = 5,00,000; I = 2,00,000; EMI = 12,500

$$EMI = \frac{P+I}{n}$$
 1½ Mark

$$12,500 = \frac{5,00,000 + 2,00,000}{n} \implies n = \frac{7,00,000}{12,500} = 56 \text{ months.}$$
 1½ Mark

Q-31 Let Rs. R be set aside biannually for 10 years in order to have

Rs. 500,000 after 10 years

Here
$$S = 500,000$$
.; $n = 10 \times 2 = 20$

$$i = \frac{5}{2 \times 100} = 0.025$$
 \quad \text{1/2 Mark}

$$i = \frac{5}{2 \times 100} = 0.025$$

$$R = \frac{iS}{(1+i)^{n}-1} = \frac{0.025 \times 500,000}{(1.025)^{20}-1} = \frac{12,500}{1.6386-1} = 19,574.07.$$
2½ Mark

Section D (5 Marks each)

Q-32 Here m = 0.4

$$P(X = r) = \frac{e^{-m} \cdot m^r}{r!} = \frac{e^{-0.4} \times (0.4)^r}{r!}$$

$$= \frac{0.6703 \times (0.4)^r}{r!}$$
1 Mark

In 1000 pages error =
$$1000 \times \frac{0.6703 \times (0.4)^{t}}{r!}$$
 1/2 Mark

For one error
$$P(X = 1) = 1000 \times 0.6703 = 670.3$$
 1½ Mar

$$= 1000 \times \frac{e^{-m}.m^{1}}{1!} = \frac{e^{-0.4} \times (0.4)^{1}}{1!}$$

$$= 670.3 \times 0.4 = 268.12$$
 2 Mark

OR

Here
$$p = \frac{1}{2}$$
 and $q = \frac{1}{2}$
 $P(X=r) = C(n, r)p^{r}q^{n-r}$
 $1-P(r=0) > \frac{90}{100}$
 1 Mark
 $1-C(n,0)(\frac{1}{2})^{0}(\frac{1}{2})^{n} > \frac{9}{10}$

$$\implies \frac{n!}{0!(n-0)!} \left(\frac{1}{2}\right)^n < \frac{1}{10}$$

2 Mark

$$\Rightarrow \left(\frac{1}{2}\right)^n < \frac{1}{10} \Rightarrow 2^n > 10 \Rightarrow n \text{ is 4 or more times}$$

2 Mark

Q-33 Let 'x' and 'y' be the number of units of items M and N respectively.

We have :
$$x \ge 0$$
, $y \ge 0$

$$x + 2y \le 12$$
; $2x + y \le 12$; $x + \frac{5}{4}y \ge 5$. 1½ Mark
Max Z = $600x + 400y$ 1 Mark

Graph 11/2 Mark

Corner Point		Z = 600x + 400y
E: (5,0)		3000
C: (6,0)		3600
G: (4,4)	YO.	4000 (Maximum)
B: (0,6)		2400
F: (0,4)		1600

Hence maximum profit is Rs 4000 when 4 units of each of the items M and N are produced. 1 Mark

- Q-34. Let 'x' units of product be produced and sold. As selling price of one unit is Rs 8 total revenue on 'x' units = Rs 8x
 - Cost Function C(x) = Fixed Cost + 25% of 8x

$$= 24000 + \frac{25}{100} \times 8x$$
$$= 24000 + 2x.$$

1 1/2 Mark

Revenue Function = 8x

1 Mark

Breakeven Point 8x = 24000+2x

$$x = 4000$$

11/2 Mark

(iv) Profit function =
$$R(x) - C(x) = 6x - 24000$$

1 Mark

Let x and y be the dimension of the printed pages then x.y = 180.

A = Area of the page =
$$(x+4)(y+5)$$

$$= xy + 5x + 4y + 20$$

$$= 180 + 5x + 4 \times \left(\frac{180}{x}\right) + 20$$

$$200 + 5x + \frac{720}{x}$$

 $= 200 + 5x + \frac{720}{x}$ For most economical dimension $\frac{dA}{dx} = 0 \implies 5 - \frac{720}{x^2} = 0$. $\implies x^2 = 144 \implies x = 12$

$$\Rightarrow x^2 = 144 \Rightarrow x = 12$$

Now
$$\frac{d^2 A}{dx^2} = \frac{1440}{x^3}$$

 $\left(\frac{d^2 A}{dx^2}\right)_{x=12} = \frac{1440}{12^3} > 0. \therefore A \text{ is minimum}$

Hence, the most economical dimensions are 16cm and 20 cm

21/2 Mark

I Mark

21/2 Mark

Q-35
$$x + y + z = 12$$

 $2x + 3y + 3z = 33$
 $x - 2y + z = 0$

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 12 \\ 33 \\ 0 \end{bmatrix}$$

$$|A| = 3 \neq 0$$
 \qquad \text{Mark}

$$adjA = \begin{bmatrix} 9 & -3 & 0 \\ 1 & 0 & -1 \\ -7 & 3 & 1 \end{bmatrix}$$
 2½ Mark

$$X = A^{-1}B \Longrightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 9 & -3 & 0 \\ 1 & 0 & -1 \\ -7 & 3 & 1 \end{bmatrix} \begin{bmatrix} 12 \\ 33 \\ 0 \end{bmatrix}$$

$$X = A^{-1}B \implies \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 108 - 99 + 0 \\ 12 + 0 - 0 \\ -84 + 99 + 0 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 9 \\ 12 \\ 15 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$$

Hence x = 3, y = 4, z = 51 Mark

Q- 36 Case Study – I

A + B fill the tank in 6 hrs B + C fill the tank in 10 hrs

B + C fill the tank in 10 hrs

A + C fill the tank in
$$\frac{15}{2}$$
 hrs

$$2(A + B + C) = \frac{6 \times 10 \times \frac{15}{2}}{6 \times 10 + 6 \times \frac{15}{2} + 10 \times \frac{15}{2}} = \frac{450}{60 + 45 + 75} = \frac{450}{180} = \frac{5}{2} hrs$$

Hence A,B and C together will fill the tank in 5 Hrs

Hence A,B and C together will fill the tank in 5 Hrs

(ii) A will in
$$[(A+B+C) - (B+C)] = \frac{10\times 5}{10-5} = 10 \text{ hrs}$$
 1 Mark

(iii) B will fill in
$$\frac{\frac{15}{2} \times 5}{\frac{15}{2} - 5} = 15 \ hrs$$
 1 Mark

OR

C will fill in
$$\frac{5\times6}{6-5}$$
 = 30 hrs

Q-37 Case Study - II

x_i	0	1	2	3	4	5
$P(X=x_i)$	0.2	k	2k	2k	0	0

(i) Since
$$\sum P = 1 \implies 0.2 + k + 2k + 2k = 1 \implies 0.2 + 5k = 1 \implies 5k = -0.2$$

$$\implies$$
 k = $\frac{4}{25}$

(ii)
$$P(X=2) = 2k = \frac{8}{25}$$

$$\Rightarrow k = \frac{4}{25}$$
(ii)
$$P(X=2) = 2k = \frac{8}{25}$$
(iii)
$$P(X \ge 2) = 4k = \frac{16}{25}$$

$$P(X \le 2) = 0.2 + 3k = \frac{17}{25}$$

Q-38 Case Study – III

Year	Y	X=Year - 2003	X^2	XY
2001	160	-2	4	-320
2002	185	-1	1	-185
2003	220	0	0	0
2004	300	1	1	300
2005	510	2	4	1020
	1375	6	10	815

2 Marks for table

$$a = \frac{\sum Y}{n} = \frac{1375}{5} = 275$$

1/2 Mark

$$b = \frac{\sum XY}{\sum X^2} = \frac{815}{10} = 81.5$$

1/2 Mark

$$Y_c = a + bX$$

$$Y_c = 275 + 81.5 X$$

The estimated value for 2008 will be $275 + 151.5 \times 5 = 275 + 757.5 = 1032.5$. 1 Mark

		3 years moving	3 years moving
Year	Rainfall(in cm)	total	average
2001	1.2		
2002	1.9	5.1	1.70
2003	2	5.3	1.77
2004	1.4	5.5	1.83
2005	2.1	4.8	1.60
2006	1.3	5.2	1.73
2007	1.8	4.2	1.40
2008	1.1	4.2	1.40
2009	1.3		

1½ Marks for table

21/2 Mark Marks for graph