

## Agenda



### Section 1

# Summary

## **Project Summary**

### Stakeholder

Caixa bank

### Objective

Identify clients more likely to subscribe the long term deposit, in order to avoid waste of resources (human and monetary).

### Methodology

Building four different binary classification models in order to predict the outcome for each client.

- Logistic Regression

- Decision Trees
- Support Vector Machines
- Gradient Boosting/Xgboost

### Evaluation

Metric for evaluation is Area Under the Curve (AUC) since sensitivity is very important for this problem. Accuracy isn't enough

## **Data Set**

| age | job           | marital  | education | default | balance | housing | loan | contact  | day | month | duration | campaign | pdays | previous | poutcome | У   |
|-----|---------------|----------|-----------|---------|---------|---------|------|----------|-----|-------|----------|----------|-------|----------|----------|-----|
| 30  | unemployed    | married  | primary   | no      | 1787    | no      | no   | cellular | 19  | oct   | 79       | 1        | -1    | 0        | unknown  | no  |
| 33  | services      | married  | secondary | no      | 4789    | yes     | yes  | cellular | 11  | may   | 220      | 1        | 339   | 4        | failure  | no  |
| 35  | management    | single   | tertiary  | no      | 1350    | yes     | no   | cellular | 16  | apr   | 185      | 1        | 330   | 1        | failure  | no  |
| 30  | management    | married  | tertiary  | no      | 1476    | yes     | yes  | unknown  | 3   | jun   | 199      | 4        | -1    | 0        | unknown  | no  |
| 59  | blue-collar   | married  | secondary | no      | 0       | yes     | no   | unknown  | 5   | may   | 226      | 1        | -1    | 0        | unknown  | no  |
| 35  | management    | single   | tertiary  | no      | 747     | no      | no   | cellular | 23  | feb   | 141      | 2        | 176   | 3        | failure  | no  |
| 36  | self-employed | married  | tertiary  | no      | 307     | yes     | no   | cellular | 14  | may   | 341      | 1        | 330   | 2        | other    | no  |
| 39  | technician    | married  | secondary | no      | 147     | yes     | no   | cellular | 6   | may   | 151      | 2        | -1    | 0        | unknown  | no  |
| 41  | entrepreneur  | married  | tertiary  | no      | 221     | yes     | no   | unknown  | 14  | may   | 57       | 2        | -1    | 0        | unknown  | no  |
| 43  | services      | married  | primary   | no      | -88     | yes     | yes  | cellular | 17  | apr   | 313      | 1        | 147   | 2        | failure  | no  |
| 39  | services      | married  | secondary | no      | 9374    | yes     | no   | unknown  | 20  | may   | 273      | 1        | -1    | 0        | unknown  | no  |
| 43  | admin.        | married  | secondary | no      | 264     | yes     | no   | cellular | 17  | apr   | 113      | 2        | -1    | 0        | unknown  | no  |
| 36  | technician    | married  | tertiary  | no      | 1109    | no      | no   | cellular | 13  | aug   | 328      | 2        | -1    | 0        | unknown  | no  |
| 20  | student       | single   | secondary | no      | 502     | no      | no   | cellular | 30  | apr   | 261      | 1        | -1    | 0        | unknown  | ye: |
| 31  | blue-collar   | married  | secondary | no      | 360     | yes     | yes  | cellular | 29  | jan   | 89       | 1        | 241   | 1        | failure  | no  |
| 40  | management    | married  | tertiary  | no      | 194     | no      | yes  | cellular | 29  | aug   | 189      | 2        | -1    | 0        | unknown  | no  |
| 56  | technician    | married  | secondary | no      | 4073    | no      | no   | cellular | 27  | aug   | 239      | 5        | -1    | 0        | unknown  | no  |
| 37  | admin.        | single   | tertiary  | no      | 2317    | yes     | no   | cellular | 20  | apr   | 114      | 1        | 152   | 2        | failure  | no  |
| 25  | blue-collar   | single   | primary   | no      | -221    | yes     | no   | unknown  | 23  | may   | 250      | 1        | -1    | 0        | unknown  | no  |
| 31  | services      | married  | secondary | no      | 132     | no      | no   | cellular | 7   | jul   | 148      | 1        | 152   | 1        | other    | no  |
| 38  | management    | divorced | unknown   | no      | 0       | yes     | no   | cellular | 18  | nov   | 96       | 2        | -1    | 0        | unknown  | no  |
| 42  | management    | divorced | tertiary  | no      | 16      | no      | no   | cellular | 19  | nov   | 140      | 3        | -1    | 0        | unknown  | no  |
| 44  | services      | single   | secondary | no      | 106     | no      | no   | unknown  | 12  | jun   | 109      | 2        | -1    | 0        | unknown  | no  |
| 44  | entrepreneur  | married  | secondary | no      | 93      | no      | no   | cellular | 7   | jul   | 125      | 2        | -1    | 0        | unknown  | no  |

- Source: UCI Machine Learning
- Bank clients data
- No NAs
- 45k observations, 16 covariates
- 80% train data, 20% test

Section 2

**EDA** 

## **Correlation matrix**



## Age variable





## Job variable



- Blue collar new deposit: 13%
- Management new deposit: 24%
- Technician new deposit: 15%
- Student new deposit: 5%. But with percentage of success 28%.

## Marital variable



- About 52% of clients that opened a new deposit is married, 12% results divorced and 36% single.
- Percentage of success from single is 15%, for divorced is 12% and for married is 10%.

## **Education variable**



- New deposit from secondary: 44%
- New deposit from tertiary: 38%
- New deposit from primary: 11%
- New deposit from unknown: 5%
- The highest percentage of success is from tertiary and unknown respectively 18% and 15%

## Balance variable



 Most of the time the balance of people who opened a new long term deposit results lower than the one of who didn't

## Low balance clients



## Housing variable



- New deposit from people without house loan: 63%
- New deposit from people with house loan:
   37%

## Month variable



- In the last month of each (almost) trimester the percentage of success is larger
- Percentage of success in March: 52%
- Percentage of success in September: 46%
- Percentage of success in December: 46%

## Campaign variable



 It show the number of contacts performed during this campaign for a specific client

## Poutcome variable



 It indicates the outcome of previous marketing campaing

## Other variables

### Loan

Categorical variable which tells if a client has a personal loan or not

### Day

Numerical variable indicating the last contact day of the month

### Duration

Numerical variable that returns the last contact duration in seconds

## Pdays

Numerical variable which indicate the number of days that passed by after the client was last contacted from a previous campaign

### Previous

Numerical variable that refers to the number of contacts performed before this campaign and for each client

### Contact

Categorical variable referring to the type of contact given by the client

### Section 3

# Data Analysis

## **DATA ANALYSIS**

- 1 Logistic Regression
- 2 Decision Trees
- **3** Support Vector Machines
- **4** Gradient Boosting

## **Logistic Regression**

## **Logistic Regression**



### **Model Fitting**

Optimal threshold: 0.09

Specificity: 0.79 Sensitivity: 0.89

Area under the curve: 0.909

#### **Actual Values**

| LOGISTIC | NO   | YES |
|----------|------|-----|
| NO       | 6372 | 111 |
| YES      | 1632 | 928 |

## **Decision Trees**

### **Decision Trees**



### Model Fitting

Optimal threshold: 0.08

Specificity: 0.86 Sensitivity: 0.74

DT

NO

YES

Area under the curve: 0.832

### Actual Values NO YES



## **Decision Trees**



### Model Fitting

Optimal threshold: 0.08

Specificity: 0.86 Sensitivity: 0.74

Area under the curve: 0.832

### **Actual Values**

DT NO YES

NO 6873 266

YES 1131 773

## **Support Vector Machines**

## **Support Vector Machines**

**Actual Values** 

Model Fitting

Specificity: 0.98

Sensitivity: 0.16

Area under the curve: 0.58

SVM

NO

YES



## **Gradient Boosting**

## Tree-based algorithms over time

### **Decision Trees**

Supervised learning algorithms based on stratifying or segmenting the predictors space into homogeneous subgroups.

### Bagging

Bootstrap Aggregation, is an ensemble algorithm combining predictions from multiple decision tress.

## Bagging



Bagging is used when the goal is to reduce variance. The idea is to create several subsets of data from training samples chosen randomly. Each collection of subset data is used to train the decision trees. As a result, we end up with an ensemble of different models.

**Bagging Classifier Process Flow** 

## Tree-based algorithms over time

### **Decision Trees**

Supervised learning algorithms based on stratifying or segmenting the predictors space into homogeneous subgroups.

### Random Forest

Bagging based algorithm where only a subset of features are selected at random to build a collection of decision trees.

### Bagging

Bootstrap Aggregation, is an ensemble algorithm combining predictions from multiple decision tress.

### Boosting

Models are built sequentially by minimizing the errors from previous models while increasing influence of high performing models

## **Boosting**



Boosting is another ensemble technique to create a collection of models. In this technique, models are learned sequentially with early models fitting simple models to the data and then analyzing the data for errors. Recall that bagging had each model run independently and then aggregate the outputs at the end without preference to any model. In other words, with boosting, we fit consecutive trees and at every step. The goal is to solve for the net error from the prior tree.

## Tree-based algorithms over time

### **Decision Trees**

Supervised learning algorithms based on stratifying or segmenting the predictors space into homogeneous subgroups.

### Random Forest

Bagging based algorithm where only a subset of features are selected at random to build a collection of decision trees.

### **Gradient Boosting**

Gradient boosting employs gradient descent algorithm to minimize errors in sequential models.

### Bagging

Bootstrap Aggregation, is an ensemble algorithm combining predictions from multiple decision tress.

### Boosting

Models are built sequentially by minimizing the errors from previous models while increasing influence of high performing models

### **XGBoost**

Optimized Gradient Boosting algorithm.

### **XGBoost**

#### Definition

XGBoost is a decision-tree based ensemble machine learning algorithm that uses a gradient boosting framework.

#### How does it work?

As other GBM it involves three main steps:

- The first step that is required is that a loss function has to be optimized.
- The second step is the use of a weak learner, in our case a decision tree. Often, weak learners can be constrained using a maximum number of layers, nodes, splits or leaf nodes.
- The third step is combing many weak learners in an additive fashion. Decision trees are added one at a time. A gradient descent procedure is used to minimize the loss when adding trees. That's the gradient part of gradient boosters.

### What is different?

- A regularization term is added to the loss function to penalize complexity of the model. The additional regularization term helps to smooth the final learnt weights to avoid over-fitting.
- Shrinkage scales newly added weights by a factor η after each step of tree boosting. Similar to a learning rate in stochastic optimization, shrinkage reduces the influence of each individual tree and leaves space for future trees to improve the model.
- Others technical features for speeding up computation.

$$\mathcal{L}(\emptyset) = \sum_{i} l(\hat{y}_i, y_i) + \sum_{k} \Omega(f)_k$$

### **XGBoost**



### Model Fitting

Optimal threshold: 0.125

Specificity: 0.85 Sensitivity: 0.89

Area under the curve: 0.932

#### **Actual Values**

| XGBOOST | NO | YES  |     |  |  |
|---------|----|------|-----|--|--|
| NO      |    | 6873 | 126 |  |  |
| YES     |    | 1167 | 913 |  |  |

### **Model Comparison**



#### **Evaluation**

As expected the Xgboost model is the one that performs better. It is followed from the logistic regression which despite being a much simpler model, it has a good performance and leaves room for interpretation.

## Conclusions and future applications

- Based on AUC, Xgboost is the best model, but if we consider the trade-off between complexity and interpretability of the models the choice would be the logistic regression. Indeed, the AUC are marginally different but the second allows also interpretation and inference on the variables.
- We advise Caixa Bank to continue collecting this data since it has been proven that they're effective in terms of both prediction and inference. The dataset could be expanded by adding macroeconomics data; such as inflation, employment variation rate and three-month Euribor.
- Since this kind of client's data is quite standard in banks, we expect to be able to extend the use of this model easily also to other financial institutions.

### Sources

- L. Breiman, J.H. Friedman, R.A. Olshen, , and C.J Stone. Classification and Regression Trees. Wadsworth, Belmont, Ca, 1983.
- G. James, D. Witten, T. Hastie and R. Tibshirani, An Introduction to Statistical Learning, Springer, London, 2017.

#### Medium

https://medium.com/ml-research-lab/bagging-ensemble-meta-algorithm-for-reducing-variance-c98fffa5489f https://medium.com/@gabrieltseng/gradient-boosting-and-xgboost-c306c1bcfaf5

#### • Quora

https://www.quora.com/What-is-an-intuitive-explanation-of-Gradient-Boosting

- S. Moro, R. Laureano, P. Cortez, Using data mining for bank direct marketing:an application of the crisp-dm methodology, Lisbon, 2011
- Tianqi Chen, Carlos Guestrin, XGBoost: A Scalable Tree Boosting System, University of Washington, 2016

#### • Towards Data Science

https://towardsdatascience.com/boosting-algorithm-gbm-97737c63daa3 https://towardsdatascience.com/decision-trees-and-random-forests-df0c3123f991

#### Uci Machine Learning repository

https://archive.ics.uci.edu/ml/datasets/Bank+Marketing