Functions Learned So Far

Ronnie Steinitz

2025-09-25

Week 1: Is My Data Clean? Exploring, Diagnosing, and Visualizing Problems

0. Load Required Packages

- library() # Loads an installed package into your R session so its functions can be used. Example: library(tidyverse) → loads the tidyverse collection of packages.
- janitor::clean_names() # Cleans column names (lowercase, underscores instead of spaces/symbols). Example: data <- janitor::clean_names(data_raw) → turns "Flipper Length (mm)" into "flipper length mm".

1. Load and Preview Dataset

- getwd() # Shows the current working directory (the folder R is looking in by default).

 Example: getwd() → might return "/Users/rsteinitz/Documents/github/R Data Analysis Course".
- setwd() # Sets the working directory (where R should look for or save files).

 Example: setwd("/Users/rsteinitz/Documents/github/R Data Analysis Course").
- read_csv() # Reads a .csv file into R as a data frame (from the readr package). Example: data_raw <- read_csv("Week 1/Palmer Penguins Raw.csv").
- glimpse() # Provides a compact overview of a dataset (rows, columns, and types). Example: glimpse(data) → shows columns, data types, and sample values.
- str() # Displays the structure of an object.
 Example: str(data) → tells you number of rows, columns, and types.
- head() # Prints the first 6 rows of a dataset.
 Example: head(data) → shows the top rows of the penguins dataset.
- names() # Lists the column names in a dataset.
 Example: names(data) → returns column headers like "species", "island", "sex".
- View() # Opens the dataset in a spreadsheet-like viewer (interactive).
 Example: View(data) → opens a new tab in RStudio with your dataset.

2. Diagnosing Data Types and Structure

- class() # Shows the data type (numeric, character, factor, etc.) of an object. Example: class(data\$sex) → returns "character".
- table() # Summarizes counts of unique values in a variable.
 Example: table(data\$species) → counts how many penguins belong to each species.
- unique() # Lists unique values in a variable.
 Example: unique(data\$island) → shows "Biscoe", "Dream", "Torgersen".
- length() # Tells how many elements are in a vector.
 Example: length(unique(data\$flipper_length_mm)) → number of distinct flipper lengths.
- count() # Counts rows by categories of a variable (from dplyr).
 Example: count(data, island) → counts penguins per island.

3. Missing Data: Detection and Summary

- is.na() # Tests whether values are missing (returns TRUE/FALSE). Example: is.na(data\$sex) → shows TRUE for rows missing sex info.
- colSums() # Adds up values across each column. Often used with is.na(). Example: colSums(is.na(data)) → number of NAs in each column.
- sum() # Adds up all numeric values, or counts TRUE values in logical vectors.
 Example 1: sum(is.na(data\$flipper_length_mm)) → number of missing flipper lengths.
 Example 2: sum(data\$flipper_length_mm > 200, na.rm = TRUE) → number of penguins with long flippers.
- summary() # Gives descriptive statistics (mean, median, min, max). Example: summary(data\$bill_depth_mm) → outputs min, max, mean, etc.
- range(..., na.rm = TRUE) # Shows the minimum and maximum values.
 Example: range(data\$bill_length_mm, na.rm = TRUE) → min and max bill length.

4. Basic Visualizations

- hist() # Creates a histogram of a numeric variable (base R). Example: hist(data\$flipper_length_mm).
- ggplot() # Starts a ggplot graph.

 Example: ggplot(data, aes(x = flipper_length_mm)) + geom_histogram().

All ggplot() plots must have three basic components: data, aes, and a geom

- aes() # Maps variables to visual properties. Example: aes(x = species, fill = sex).
- geom_histogram() # Adds a histogram layer in ggplot. Example: geom_histogram(binwidth = 2, fill = "steelblue").
- facet_wrap() # Splits one plot into multiple panels by a grouping variable. Example: facet_wrap(~ species) → separate histograms per species.
- geom_bar() # Creates a bar chart for categorical variables.
 Example: geom_bar() → counts penguins per species.

By the end of Week 1, you should be comfortable with:

- Importing and previewing data (read_csv(), glimpse(), head(), names()).
- Checking and diagnosing data types (class(), unique(), table()).
- Detecting and summarizing missing data (is.na(), colSums(), summary()).
- Converting variables to correct types (mutate(), as.factor()).
- Making basic plots (hist(), ggplot(), geom_bar(), geom_histogram()).

Week 2: Wrangling Basics – Select, Filter, Mutate

1. Pipe Operator

• %>% (pipe operator) # Sends the output of one function as the input to the next. Example: data_raw %>% clean_names() %>% glimpse().

2. Select Columns

select() # Keeps or drops specific columns.
 Example 1: data %>% select(species, island) → keep these columns.
 Example 2: data %>% select(-comments) → drop the comments column.

3. Filter Rows

• filter() # Keeps rows meeting conditions.

Example 1: filter(data, species == "Adelie").

Example 2: filter(data, flipper_length_mm > 200) \rightarrow penguins with long flippers.

Example 3: ggplot(data %>% filter(flipper_length_mm > 200)) + geom_bar().

Logical operators: == equal, != not equal, >, <, & (and), | (or).
 Example: filter(data, species == "Adelie" & island == "Dream").

4. Mutate / Create New Variables

- mutate() # Adds or transforms columns in a dataset.

 Example: data <- mutate(data, body_mass_kg = body_mass_g / 1000).
- as.factor() # Converts a variable into a factor (categorical variable). Example: data\$sex <- as.factor(data\$sex).
- as.numeric(), as.integer(), as.logical(), as.character(), as.Date() # Convert variables between data types.

Example: as.Date(data $date_egg$, format = "\m/\%d/\%y").

- case_when() # Recode values or create categories.

 Example: data %>% mutate(size_class = case_when(flipper_length_mm < 185 ~ "Small", flipper_length_mm >= 200 ~ "Large")).
- ifelse() # Conditional operation: if [condition], then do [action], otherwise do [different action]. Example: data %>% mutate(size_class = ifelse(flipper_length_mm > 200, "Large", "Small")).
- word() # Extracts words from a text string.
 Example: data %>% mutate(species_simple = word(species, 1)) → "Adelie", "Gentoo", "Chinstrap".

5. Visualization

- labs() # Adds or edits labels for titles, axes, and legends.

 Example: labs(title = "Penguin Counts", x = "Species", y = "Number of Penguins").
- scale_fill_manual() # Manually sets fill colors.

 Example: scale_fill_manual(values = c("male" = "blue", "female" = "red")).

By the end of Week 2, you should be comfortable with:

- Using $\mbox{\ensuremath{\%}{\hspace{-0.05cm}}}\mbox{\ensuremath{\%}}$ pipes to link commands together and write clean, readable code.
- Selecting specific columns with select().
- Filtering rows with conditions using filter().
- Creating new variables with mutate() and case_when().
- Visualizing subsets of data using ggplot() with filters.