Topic V11

Clock Per Instruction (CPI)

Readings: (Section 1.6)

A trip to the grocery store

How much did I spend?

A trip to the grocery store

Quantity	Item	Cost Per	Cost
		Item	
3	Yogurt	1.50	4.50
5	Apples	0.50	2.50
2	Milk	3.50	7.00
10			

How many items did I buy?

How much did I spend?

What was the average cost per item?

Cost per Item =
$$\frac{3 \times 1.5 + 5 \times 0.5 + 2 \times 3.5}{3 + 5 + 2} = \frac{14.00}{10} = 1.40 \frac{\text{dollars}}{\text{item}}$$

Rendering the Explosion

Quantity	Instruction Class	Cycles Per Instruction	Cycles
300	Branches	2	
500	ALU	1	
200	Load/Store	5	

How many cycles were needed?

Rendering the Explosion

	Quantity	Instruction Class	Cycles Per Instruction	Cycles
,	300	Branches	2	600
	500	ALU	1	500
	200	Load/Store	5	1000
	1000			

How many instructions were executed?

How many cycles were needed?

Rendering the Explosion

Quantity	Instruction Class	Cycles Per Instruction	Cycles
300	Branches	2	600
500	ALU	1	500
200	Load/Store	5	1000
1000		Total	2100

How many instructions were executed?

How many cycles were needed?

What was the average number of cycles per instruction?

Cycle per Instruction =
$$\frac{300 \times 2 + 500 \times 1 + 200 \times 5}{300 + 500 + 200} = \frac{2100}{1000} = 2.10 \frac{\text{cycles}}{\text{instruction}}$$

CPU Time= #Clock Cycles × Clock Cycle Time

#Clock Cycles= #Instructions × CPI

CPU Time= #Instructions × CPI × Clock Cycle Time

Frequency

Frequency =
$$\frac{40,000,000,000 \text{ cycles}}{20 \text{ seconds}} = 2 \times 10^9 \frac{\text{cycles}}{\text{seconds}} = 2 \text{ GHz}$$

Frequency: number of clock cycles per seconds

Instruction Count for a program

Determined by program, ISA and compiler

Clock Cycle Time

Determined by ISA and technology

CPU Time= #Instructions × CPI × Clock Cycle Time

Average cycles per instruction (CPI)

Determined by CPU hardware

If different instructions have different CPI:

⇒ Average CPI is affected by instruction mix

CPI Example

Same ISA, same program, same compiler

Computer A

Cycle time: 250 ps

CPI: 2.0

Computer B

Cycle time: 500 ps

CPI: 1.2

Which one is faster, and by how much?

CPU TimeB = # Instructions ×CPIB ×Cycle TimeB

=
$$K \times 1.2 \times 500 \text{ ps} = K \times 600 \text{ ps}$$

$$\frac{\text{CPU TimeB}}{\text{CPU TimeA}} = \frac{\text{K} \times 600 \text{ ps}}{\text{K} \times 500 \text{ ps}} = 1.2$$

A is faster...

...by this much

CPI in More Detail

If different instruction classes take different numbers of cycles

Clock Cycles=
$$\sum_{k=1}^{n}$$
 (CPIk ×Instruction Countk)

CPI is a weighted average:

$$CPI = \frac{ClockCycles}{InstructionCount} = \sum_{k=1}^{n} \left(CPI_{k} \times \frac{InstructionCount_{k}}{InstructionCount} \right)$$
Relative frequency

CPI Example

Two compilers use a different number of instructions of classes A, B, C for a given program. What is the CPI for each version of this program?

Instruction	Class	Α	В	С
Count			-	

Compiler 1: IC = 5

Clock Cycles
$$= 2 \times 1 + 1 \times 2 + 2 \times 3$$

$$= 10 \text{ cycles}$$
Avg. CPI = $10/5 = 2.0$

Compiler 2: IC = 6

Clock Cycles
$$= 4 \times 1 + 1 \times 2 + 1 \times 3$$

$$= 9 \text{ cycles}$$
Avg. CPI = $9/6 = 1.5$

Performance Summary

CPU Time =
$$\frac{Instructions}{Program} \times \frac{Clock \ cycles}{Instruction} \times \frac{Seconds}{Clock \ cycle}$$
CPU Time = $\frac{IC}{IC} \times \frac{CPI}{IC} \times \frac{Seconds}{Instruction} \times \frac{Seconds}{$

Performance depends on

Algorithm: affects IC, possibly CPI

Programming language: affects IC, CPI

Compiler: affects IC, CPI

Instruction set architecture: affects IC, CPI, frequency