Week 8 - Lecture 1

Unsupervised Learning

In an unsupervised learning problem we have a dataset with unlabeled (unstructured) data, that may look like the following:

and we let the algorithm find some structure on the data for us.

Use cases of clustering:

K-Means Algorithm

In the clustering problem, we are given a dataset and we would like to find some structure in it, i.e., to divide it into some coherent groups. K-Means is one clustering algorithm.

• Step 1: Initialization. The algorithm randomly chooses k centroids.

• **Step 2**: (Cluster assignment step) The algorithm assigns a label to each data point depending on which centroid is closer.

• Step 3: (Move centroids step) The algorithm moves the centroids and then repeats itself from step 2.

Note: the algorithm repeates steps 2 and 3 until it converges.

K-means algorithm

Input:

- K (number of clusters) \leftarrow Training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$

$$x^{(i)} \in \mathbb{R}^n$$
 (drop $x_0 = 1$ convention)

K-means algorithm

Andrew Ng

Randomly initialize K cluster centroids $\underline{\mu}_1,\underline{\mu}_2,\ldots,\underline{\mu}_K\in\mathbb{R}^n$

Repeat {

Cluster for
$$i = 1$$
 to m
 $c^{(i)} := index$ (from 1 to K) of cluster centroid closest to $x^{(i)}$

for $k = 1$ to K
 $\Rightarrow \mu_k := average$ (mean) of points assigned to cluster k
 $x^{(i)} \times x^{(i)} \times x^{(i)} \times x^{(i)} = 1$
 $\mu_k := \frac{1}{4} \left[x^{(i)} + x^{(i)} + x^{(i)} + x^{(i)} \right] \in \mathbb{R}^n$

Example:

Optimization Objective

K-means optimization objective

- $ightharpoonup c^{(i)}$ = index of cluster (1,2,...,K) to which example $x^{(i)}$ is currently assigned
- $\rightarrow \mu_k$ = cluster centroid k ($\mu_k \in \mathbb{R}^n$)

 $\mu_{c^{(i)}}$ = cluster centroid of cluster to which example $x^{(i)}$ has been assigned $x^{(i)} \rightarrow 5$ $x^{(i)} = x^{(i)} = x^{(i)}$

Optimization objective:

Andrew Ng

Random Initialization

examples.

Random initialization

Should have K < m

Randomly pick K training

Set μ_1, \ldots, μ_K equal to these K examples. $\mu_i = \chi^{(i)}$

K examples. $\mu_{\lambda} = \chi^{(i)}$

Andrew N

Depending on which initialization centroids we choose, K-means might end up in a local optima.

In the figure above, the upper case might be the global optima and the two on the bottom might be the local optima (subotimal solutions)

Good practice to avoid this:

Choosing the Number of Clusters

The most common way of choosing the number K of clusters is by doing it manually, looking at visualizations or other kind of intuition. So this is a somewhat intuitive step and, to help develop this intuition, some examples are presented below.

What is the right value of K?

Andrew Ng

What is the right value of K?

Andrew Ng

Although, some methods might help with this choice:

Choosing the value of K

Elbow method:

Andrew Ng

Choosing the value of K

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

References

[1] Machine Learning - Stanford University (https://www.coursera.org/learn/machine-learning)