Calculus for some operators on multivariate function space

Bo Markussen (bomar@math.ku.dk)
Department of Mathematical Sciences
University of Copenhagen

September 11, 2014 September 10, 2015: Small corrections made

1 Introduction

This manuscript describes an algebra of linear operators defined on the space $C_{PW}([a,b];\mathbb{R}^{N\times M})$ of piecewise continuous functions defined on a compact interval [a,b] with values in the space of $N\times M$ -matrices. For brevity this space will be denoted by \mathcal{H} in the following. The interval [a,b] and an associated sampling mesh $a=t_0=t_1<\ldots< t_p=t_{p+1}=b$ with $p\geq 2$ will be fixed, whereas the dimensions $N,M\in\mathbb{N}$ may change. When necessary we write $\mathcal{H}(N,M)$ to specify the matrix dimensions. Furthermore, we will assume that functions $f\in\mathcal{H}$ are continuous from the right with limits from the left, and that possible points of discontinuity only may occur at t_j for $j=1,\ldots,p-1$.

2 Operator families

This section introduces different mathematical classes of linear operators on the function space \mathcal{H} . These classes have been called *families* in the section title to avoid confusion with the R classes introduced later.

2.1 Pointwise operators

The transpose f^{\top} and the sum f + g of $f, g \in \mathcal{H}(N, M)$, and the matrix product f * g of $f \in \mathcal{H}(N, K)$ and $g \in \mathcal{H}(K, M)$ are defined pointwise. Furthermore, for $f \in \mathcal{H}(N, M_1)$ and $g \in \mathcal{H}(N, M_2)$ the concatenation $f|g \in \mathcal{H}(N, M_2)$

 $\mathcal{H}(N, M_1 + M_2)$ is defined by (f|g)(t) = (f(t), g(t)). And as is common we sometimes will omit the asterisk in the notation for the matrix product.

2.2 Elementary operators

The forward integral F, the backward integral B, the integral I, and the triangular integrals T are defined on

$$F: \mathcal{H}(N, M) \to \mathcal{H}(N, M), \qquad B: \mathcal{H}(N, M) \to \mathcal{H}(N, M),$$
$$I: \mathcal{H}(N, M) \to \mathbb{R}^{N \times M}, \qquad T: \mathcal{H}(N, M) \to \mathbb{R}^{N \times M \times p}$$

and for $f \in \mathcal{H}(N, M)$ and $t \in [a, b]$ given by

$$Ff(t) = \int_a^t f(s) \, ds, \qquad Bf(t) = \int_t^b f(s) \, ds, \qquad If = \int_a^b f(s) \, ds,$$

and

$$Tf = \left\{ \int_{t_{j-1}}^{t_j} \frac{t - t_{j-1}}{t_j - t_{j-1}} f(t) dt + \int_{t_j}^{t_{j+1}} \frac{t_{j+1} - t}{t_{j+1} - t_j} f(t) dt \right\}_{j=1,\dots,p}.$$

Note that interchanging the order of integration gives identities like

$$I(fF(g)) = I(B(f)g),$$
 $I(fB(g)) = I(F(f)g).$

2.3 Multiplication operators

Multiplication operators will in general be denoted by the letter \mathcal{M} . A multiplication operator \mathcal{M} is described by a function $\alpha \in \mathcal{H}(N, N)$, and its action is given by pointwise multiplication

$$\mathcal{M}f = \alpha * f, \quad f \in \mathcal{H}. \tag{1}$$

The identity operator on \mathcal{H} is denoted by \mathcal{I} , and \mathcal{I} is a multiplication operator.

2.4 Triangle operators

Triangle operators will in general be denoted by the letter \mathcal{T} . A triangle operator \mathcal{T} is described by two functions $\beta, \gamma \in \mathcal{H}(N, K)$ for some $K \in \mathbb{N}$, and its action is given by

$$\mathcal{T}f = \beta * F(\gamma^{\top} * f), \quad f \in \mathcal{H}, \tag{2}$$

i.e. $\mathcal{T}f(t) = \beta(t) \int_a^t \gamma(s)^{\top} f(s) \, \mathrm{d}s.$

2.5 Projection operators

Projection operators will in general be denoted by the letter \mathcal{P} . A projection operator \mathcal{P} is described by two functions $\delta, \epsilon \in \mathcal{H}(N, L)$ for some $L \in \mathbb{N}$, and its action is given by

$$\mathcal{P}f = \delta * \mathbf{I}(\epsilon^{\top} * f), \quad f \in \mathcal{H}, \tag{3}$$

i.e. $\mathcal{P}f(t) = \delta(t) \int_a^b \epsilon(s)^{\top} f(s) \, \mathrm{d}s.$

2.6 Lattice operators

Lattice operators will in general be denoted by the letter \mathcal{L} . A lattice operator $\mathcal{L} = \mathcal{M} + \mathcal{T} + \mathcal{P}$ is given as a sum of a multiplication, a triangle, and a projection operator. We will also call such a sum for a lattice operator when the multiplication part vanishes. The 5-function parametrization of a lattice operator

$$\mathcal{L}f = \alpha * f + \beta * F(\gamma^{\top} * f) + \delta * I(\epsilon^{\top} * f), \quad f \in \mathcal{H},$$
 (4)

is given by the quintet $(\alpha, \beta, \gamma, \delta, \epsilon)$.

2.7 Symmetric lattice operators

Symmetric lattice operators will in general be denote by the letter \mathcal{S} . The 5-function parametrization of a symmetric lattice operator $\mathcal{S} \sim (\alpha, \beta, \gamma, \delta, \epsilon)$ has $\alpha = \alpha^{\top}$, and we may assume the form

$$\beta = \epsilon | -\delta, \qquad \gamma = \delta | \epsilon$$

with $\delta, \epsilon \in \mathcal{H}(N, L)$ and K = 2L. In particular, we have a 3-functions parametrization of a symmetric lattice operator given by the triplet $(\alpha, \delta, \epsilon)$.

3 Algebraic properties

The following table displays the structural result of adding two operators from the families introduced in sections 2.3 to 2.6:

Sum $A_1 + A_2$	Term A_2 :			
Term A_1 :	\mathcal{M}	${\mathcal T}$	${\cal P}$	$\mathcal L$
\mathcal{M}	\mathcal{M}	$\mathcal{M} + \mathcal{T}$	$\mathcal{M} + \mathcal{P}$	\mathcal{L}
\mathcal{T}	$\mathcal{M} + \mathcal{T}$	${\mathcal T}$	${\cal L}$	$\mathcal L$
\mathcal{P}	$\mathcal{M} + \mathcal{P}$	${\cal L}$	${\cal P}$	$\mathcal L$
\mathcal{L}	\mathcal{L}	${\cal L}$	${\cal L}$	\mathcal{L}

The following table displays the structural result of multiplying two operators from the classes introduced above:

Product $A_1 * A_2$	F	acto	$r A_2$:
Factor A_1 :	\mathcal{M}	${\mathcal T}$	${\mathcal P}$	$\mathcal L$
\mathcal{M}	\mathcal{M}	\mathcal{T}	\mathcal{P}	\mathcal{L}
\mathcal{T}	\mathcal{T}	${\mathcal T}$	${\mathcal P}$	$\mathcal L$
\mathcal{P}	\mathcal{P}	${\mathcal P}$	${\mathcal P}$	$\mathcal L$
\mathcal{L}	\mathcal{L}	${\cal L}$	${\cal L}$	${\cal L}$

The following table displays the structural result of inverting an invertible operator from the classes introduced above:

Operator A	\mathcal{M}	$\mathcal{M} + \mathcal{T}$	$\mathcal{M} + \mathcal{P}$	\mathcal{L}
Inverse A^{-1}	\mathcal{M}	$\overline{\mathcal{M} + \mathcal{T}}$	$\mathcal{M} + \mathcal{P}$	\mathcal{L}

Moreover, the sum of two symmetric lattice operators is a symmetric lattice operator, and the inverse of a symmetric lattice operator is a symmetric lattice operator.

3.1 Factorization

The \mathcal{TP} -factorization of a lattice operator $\mathcal{L} = \mathcal{M} + \mathcal{T} + \mathcal{P}$ is given by

$$\mathcal{M} + \mathcal{T} + \mathcal{P} = (\mathcal{M} + \mathcal{T})(\mathcal{I} + \mathcal{P}_*), \qquad \quad \mathcal{P}_* = (\mathcal{M} + \mathcal{T})^{-1}\mathcal{P},$$

and the \mathcal{PT} -factorization is given by

$$\mathcal{M} + \mathcal{T} + \mathcal{P} = (\mathcal{I} + \mathcal{P}_{\star})(\mathcal{M} + \mathcal{T}), \qquad \quad \mathcal{P}_{\star} = \mathcal{P}(\mathcal{M} + \mathcal{T})^{-1}.$$

We note that \mathcal{P}_* and \mathcal{P}_* are projection operators. Both factorizations may be used for the inversion of a lattice operator via inversion of the factors.

3.2 Addition of lattice operators

Using the 5-function parametrization the sum of two lattice operators is given by

$$(\alpha_1, \beta_1, \gamma_1, \delta_1, \epsilon_1) + (\alpha_2, \beta_2, \gamma_2, \delta_2, \epsilon_2) = (\alpha_1 + \alpha_2, \beta_1 | \beta_2, \gamma_1 | \gamma_2, \delta_1 | \delta_2, \epsilon_1 | \epsilon_2).$$

The (K, L)-dimension in the 5-function parametrization for the sum of two lattice operators is given by

$$(K_1, L_1) + (K_2, L_2) = (K_1 + K_2, L_1 + L_2).$$

3.3 Multiplication of lattice operators

Using the 5-function parametrization the product of two lattice operators is given

$$(\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}, \epsilon_{1}) * (\alpha_{2}, \beta_{2}, \gamma_{2}, \delta_{2}, \epsilon_{2})$$

$$= (\alpha_{1}\alpha_{2}, \beta_{1} | \alpha_{1}\beta_{2} - \beta_{1}B(\gamma_{1}^{\top}\beta_{2}), \alpha_{2}^{\top}\gamma_{1} + \gamma_{2}B(\beta_{2}^{\top}\gamma_{1}) | \gamma_{2}, \beta_{1} | \alpha_{1}\delta_{2} + \beta_{1}F(\gamma_{1}^{\top}\delta_{2}), \alpha_{2}^{\top}\epsilon_{1} + \gamma_{2}B(\beta_{2}^{\top}\epsilon_{1}) + \epsilon_{2}I(\delta_{2}^{\top}\epsilon_{1}) | \epsilon_{2}).$$

The (K, L)-dimension in the 5-function parametrization for the product of two lattice operators is given by

$$(K_1, L_1) * (K_2, L_2) = (K_1 + K_2, L_1 + L_2).$$

The above results follow invoking linearity on the following table:

Product $A_1 * A_2$		Factor A_2 :	
Factor A_1 :	$(\alpha_2, 0, 0, 0, 0)$	$(0,\beta_2,\gamma_2,0,0)$	$(0,0,0,\delta_2,\epsilon_2)$
$(\alpha_1, 0, 0, 0, 0)$	$(\alpha_1\alpha_2, 0, 0, 0, 0)$	$(0,\alpha_1\beta_2,\gamma_2,0,0)$	$(0,0,0,\alpha_1\delta_2,\epsilon_2)$
$(0, \beta_1, \gamma_1, 0, 0)$	$(0,\beta_1,\alpha_2^{\top}\gamma_1,0,0)$	$\left(0, \beta_1 -\beta_1 \mathbf{B}(\gamma_1^\top \beta_2), \gamma_2 \mathbf{B}(\beta_2^\top \gamma_1) \gamma_2, 0, 0\right)$	$(0, 0, 0, \beta_1 \mathbf{F}(\gamma_1^{T} \delta_2), \epsilon_2)$
$(0,0,0,\delta_1,\epsilon_1)$	$(0,0,0,\delta_1,\alpha_2^{\top}\epsilon_1)$	$\left(0,0,0,\delta_1,\gamma_2\mathrm{B}(eta_2^ op\epsilon_1) ight)$	$(0,0,0,\delta_1,\epsilon_2\mathrm{I}(\delta_2^{\top}\epsilon_1))$

Note also that the (K, L)-dimensions for multiplication are given by

Product $A_1 * A_2$	Factor A_2 :		
Factor A_1 :	$(K_2,0)$	$(0, L_2)$	
$(K_1,0)$	$(K_1 + K_2, 0)$	$(0, L_2)$	
$(0, L_1)$	$(0, L_1)$	$(0, L_1)$	

3.4 Inversion

The solution to the matrix value Volterra integral equation gives the inversion

$$(\alpha, \beta, \gamma, 0, 0)^{-1} = (\alpha^{-1}, -\alpha^{-1}\beta\kappa^{\top}, \alpha^{-1, \top}\gamma\kappa^{-1}, 0, 0),$$

where $\kappa \colon [0,1] \to \mathbb{R}^{K \times K}$ solves the linear differential equation

$$\kappa(0) = \mathbb{I}_K,$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\kappa(t) = -\kappa(t)\beta(t)^{\mathsf{T}}\alpha(t)^{-1,\mathsf{T}}\gamma(t).$$

And elementary matrix calculus gives the inversion

$$(\mathbb{I}_N, 0, 0, \delta, \epsilon)^{-1} = (\mathbb{I}_N, 0, 0, -\delta(\mathbb{I}_L + \mathbf{I}(\epsilon^\top \delta))^{-1}, \epsilon).$$

Inversion of a general lattice operator is done applying the \mathcal{PT} -factorization

$$\left(\mathcal{M}+\mathcal{T}+\mathcal{P}\right)^{-1}=(\mathcal{M}+\mathcal{T})^{-1}(\mathcal{I}+\mathcal{P}_{\star})^{-1}, \qquad \mathcal{P}_{\star}=\mathcal{P}(\mathcal{M}+\mathcal{T})^{-1}.$$

This gives

$$(\alpha, \beta, \gamma, \delta, \epsilon)^{-1} = (\alpha^{-1}, \tilde{\beta}, \tilde{\gamma}, 0, 0) * (\mathbb{I}_N, 0, 0, -\delta (\mathbb{I}_L + \mathbf{I}(\epsilon_{\star}^{\top} \delta))^{-1}, \epsilon_{\star})$$
$$= (\alpha^{-1}, \tilde{\beta}, \tilde{\gamma}, -\delta_{\star} (\mathbb{I}_L + \mathbf{I}(\epsilon_{\star}^{\top} \delta))^{-1}, \epsilon_{\star})$$

with

$$\tilde{\beta} = -\alpha^{-1}\beta\kappa^{\top},
\tilde{\gamma} = \alpha^{-1,\top}\gamma\kappa^{-1},
\delta_{\star} = (\mathcal{M} + \mathcal{T})^{-1}\delta = \alpha^{-1}\delta + \tilde{\beta} * F(\tilde{\gamma}^{\top}\delta),
\epsilon_{\star} = \alpha^{-1,\top}\epsilon + \tilde{\gamma} * B(\tilde{\beta}^{\top}\epsilon).$$
(5)

Here the formula for ϵ_{\star} follows from

$$(0, 0, 0, \delta, \epsilon_{\star}) = \mathcal{P}_{\star} = \mathcal{P}(\mathcal{M} + \mathcal{T})^{-1}$$

$$= (0, 0, 0, \delta, \epsilon) * (\alpha^{-1}, \tilde{\beta}, \tilde{\gamma}, 0, 0)$$

$$= (0, 0, 0, \delta, \alpha^{-1, \top} \epsilon + \tilde{\gamma} * B(\tilde{\beta}^{\top} \epsilon)).$$

3.5 Inversion of symmetric operators

Let $S = (\alpha, \delta, \epsilon)$ be a symmetric lattice operator, i.e. the associated 5-function parametrization satisfies

$$\alpha = \alpha^{\top}, \qquad \beta = \epsilon | -\delta, \qquad \gamma = \delta | \epsilon.$$

Then γ , δ , and ϵ may be inferred from β via

$$\gamma = \beta \begin{pmatrix} 0 & \mathbb{I}_L \\ -\mathbb{I}_L & 0 \end{pmatrix}, \qquad \delta = \beta \begin{pmatrix} 0 \\ -\mathbb{I}_L \end{pmatrix}, \qquad \epsilon = \beta \begin{pmatrix} \mathbb{I}_L \\ 0 \end{pmatrix}.$$

Suppose S^{-1} is derived using Eq. (5). Then we have

$$\begin{cases}
\dot{\kappa}^{\top} \begin{pmatrix} 0 & \mathbb{I}_{L} \\ -\mathbb{I}_{L} & 0 \end{pmatrix} \\
&= \begin{pmatrix} 0 & \mathbb{I}_{L} \\ -\mathbb{I}_{L} & 0 \end{pmatrix} \beta^{\top} \alpha^{-1} \beta \\
&= \begin{pmatrix} 0 & \mathbb{I}_{L} \\ -\mathbb{I}_{L} & 0 \end{pmatrix} \beta^{\top} \alpha^{-1} \beta \\
&= \begin{pmatrix} 0 & \mathbb{I}_{L} \\ -\mathbb{I}_{L} & 0 \end{pmatrix} \beta^{\top} \alpha^{-1} \beta \begin{cases} \kappa^{\top} \begin{pmatrix} 0 & \mathbb{I}_{L} \\ -\mathbb{I}_{L} & 0 \end{pmatrix} \end{cases}$$

and

$$\begin{cases} \begin{pmatrix} 0 & \mathbb{I}_L \\ -\mathbb{I}_L & 0 \end{pmatrix} (\kappa^{-1}) \\ \end{pmatrix} = \begin{pmatrix} 0 & \mathbb{I}_L \\ -\mathbb{I}_L & 0 \end{pmatrix} \beta^{\top} \alpha^{-1,\top} \gamma \kappa^{-1}$$

$$= \begin{pmatrix} 0 & \mathbb{I}_L \\ -\mathbb{I}_L & 0 \end{pmatrix} \beta^{\top} \alpha^{-1} \beta \\ \begin{pmatrix} 0 & \mathbb{I}_L \\ -\mathbb{I}_L & 0 \end{pmatrix} \kappa^{-1} \\ \end{pmatrix},$$

which together with $\kappa(0)^{\top} = \kappa(0)^{-1} = \mathbb{I}_K$ imply

$$\kappa^{\top} \begin{pmatrix} 0 & \mathbb{I}_L \\ -\mathbb{I}_L & 0 \end{pmatrix} = \begin{pmatrix} 0 & \mathbb{I}_L \\ -\mathbb{I}_L & 0 \end{pmatrix} \kappa^{-1},$$

and hence

$$\tilde{\gamma} = \alpha^{-1,\top} \gamma \kappa^{-1} = \alpha^{-1} \beta \begin{pmatrix} 0 & \mathbb{I}_L \\ -\mathbb{I}_L & 0 \end{pmatrix} \kappa^{-1} = \alpha^{-1} \beta \kappa^{\top} \begin{pmatrix} 0 & \mathbb{I}_L \\ -\mathbb{I}_L & 0 \end{pmatrix}$$
$$= \tilde{\beta} \begin{pmatrix} 0 & \mathbb{I}_L \\ -\mathbb{I}_L & 0 \end{pmatrix}.$$

3.6 Numerical inversion of symmetric lattice operators

Let $S_1 = (\alpha_1, \delta_1, \epsilon_1)$ and $S_2 = (\alpha_2, \delta_2, \epsilon_2)$ be two symmetric lattice operators. Then we have

$$S_1S_2 = (\alpha_1\alpha_2, \beta_{12}, \gamma_{12}, \delta_1 | \delta_{12}, \epsilon_{12} | \epsilon_2), S_2S_1 = (\alpha_2\alpha_1, \beta_{21}, \gamma_{21}, \delta_2 | \delta_{21}, \epsilon_{21} | \epsilon_1),$$

where $\beta_{12}, \beta_{21}, \gamma_{12}, \gamma_{21}$ are some functions, and where

$$\begin{split} &\delta_{12} = \alpha_1 \delta_2 + \epsilon_1 F(\delta_1^\top \delta_2) - \delta_1 F(\epsilon_1^\top \delta_2), \\ &\delta_{21} = \alpha_2 \delta_1 + \epsilon_2 F(\delta_2^\top \delta_1) - \delta_2 F(\epsilon_2^\top \delta_1), \\ &\epsilon_{12} = \alpha_2^\top \epsilon_1 + \delta_2 B(\epsilon_2^\top \epsilon_1) + \epsilon_2 F(\delta_2^\top \epsilon_1), \\ &\epsilon_{21} = \alpha_1^\top \epsilon_2 + \delta_1 B(\epsilon_1^\top \epsilon_2) + \epsilon_1 F(\delta_1^\top \epsilon_2). \end{split}$$

This implies that a sufficient condition for $\mathcal{S}_1 = \mathcal{S}_2^{-1}$ is

$$\alpha_1 \alpha_2 - \mathbb{I}_N = 0, \qquad \delta_{12} = 0, \qquad \delta_{21} = 0, \qquad \epsilon_{12} = 0, \qquad \epsilon_{21} = 0$$

and this is also necessary if δ_1 and ϵ_2 are not collinear and if δ_2 and ϵ_1 are not collinear. Thus, the inverse operator may be found minimizing the functional

$$E = \frac{1}{2} \mathbf{I} \left(\operatorname{tr} \left((\alpha_1 \alpha_2 - \mathbb{I}_N)^\top (\alpha_1 \alpha_2 - \mathbb{I}_N) \right) \right) + \frac{1}{2} \mathbf{I} \left(\operatorname{tr} \left(\delta_{12}^\top \delta_{12} \right) \right) + \frac{1}{2} \mathbf{I} \left(\operatorname{tr} \left(\delta_{21}^\top \delta_{21} \right) \right) + \frac{1}{2} \mathbf{I} \left(\operatorname{tr} \left(\epsilon_{12}^\top \epsilon_{12} \right) \right) + \frac{1}{2} \mathbf{I} \left(\operatorname{tr} \left(\epsilon_{21}^\top \epsilon_{21} \right) \right).$$

The minimum equals 0, the functions α_1 and $\delta_1 \epsilon_1^{\top}$ are unique at the minimizer, and we may compute the gradient. Using identities like I(fB(g)) = I(F(f)g) we find

$$\begin{split} &\frac{\partial E}{\partial \alpha_{1}} = \alpha_{1}\alpha_{2}\alpha_{2}^{\top} - \alpha_{2}^{\top} + \delta_{12}\delta_{2}^{\top} + \epsilon_{2}\epsilon_{21}^{\top}, \\ &\frac{\partial E}{\partial \delta_{1}} = \delta_{2}B(\delta_{12}^{\top}\epsilon_{1}) - \delta_{12}F(\delta_{2}^{\top}\epsilon_{1}) + \alpha_{2}^{\top}\delta_{21} + \delta_{2}B(\epsilon_{2}^{\top}\delta_{12}) - \epsilon_{2}B(\delta_{2}^{\top}\delta_{12}) + \epsilon_{21}B(\epsilon_{2}^{\top}\epsilon_{1}) + \epsilon_{2}B(\epsilon_{21}^{\top}\epsilon_{1}) \\ &\frac{\partial E}{\partial \epsilon_{1}} = \delta_{12}F(\delta_{2}^{\top}\delta_{1}) - \delta_{2}B(\delta_{12}^{\top}\delta_{1}) + \alpha_{2}\epsilon_{12} + \epsilon_{2}F(\delta_{2}^{\top}\epsilon_{12}) + \delta_{2}B(\epsilon_{2}^{\top}\epsilon_{12}) + \epsilon_{2}F(\epsilon_{21}^{\top}\delta_{1}) + \epsilon_{12}F(\epsilon_{2}^{\top}\delta_{1}) \end{split}$$

and for later usage we also compute the derivative w.r.t. S_2 , i.e.

$$\begin{split} &\frac{\partial E}{\partial \alpha_2} = \alpha_1^\top \alpha_1 \alpha_2 - \alpha_1^\top + \delta_{21} \delta_1^\top + \epsilon_1 \epsilon_{12}^\top, \\ &\frac{\partial E}{\partial \delta_2} = \alpha_1^\top \delta_{12} + \delta_1 B(\epsilon_1^\top \delta_{12}) - \epsilon_1 B(\delta_1^\top \delta_{12}) + \delta_1 B(\delta_{21}^\top \epsilon_2) - \delta_{21} F(\delta_1^\top \epsilon_2) + \epsilon_{12} B(\epsilon_1^\top \epsilon_2) + \epsilon_1 B(\epsilon_{12}^\top \epsilon_2), \\ &\frac{\partial E}{\partial \epsilon_2} = \delta_{12} F(\delta_1^\top \delta_2) - \delta_1 B(\delta_{21}^\top \delta_2) + \epsilon_1 F(\epsilon_{12}^\top \delta_2) + \epsilon_{12} F(\epsilon_1^\top \delta_2) + \alpha_1 \epsilon_{21} + \epsilon_1 F(\delta_1^\top \epsilon_{21}) + \delta_1 B(\epsilon_1^\top \epsilon_{21}). \end{split}$$

3.7 Dimension reduction (to be updated)

The formulae stated above may give 5-function parametrizations with unnecessarily large dimensions K or L. To investigate how these dimensions possibly may be reduced let us consider the triangular operator $\beta\langle\gamma 1_{(0,\cdot]},\cdot\rangle = (0,\beta,\gamma,0,0)$. Let $UDU^{\top} \in \mathbb{R}^{K\times K}$ be the eigen decomposition of the positive semi-definite matrix $\langle\beta,\beta\rangle \in \mathbb{R}^{K\times K}$, and let $U_0 \in \mathbb{R}^{K\times K_0}$ be the columns of U corresponding to the non-zero eigenvalues. Then we have $\beta(t) = \beta(t)UU^{\top} = \beta(t)U_0U_0^{\top}$, and hence

$$(0, \beta, \gamma, 0, 0) = (0, \beta U_0, \gamma U_0, 0, 0)$$

with $\beta U_0, \gamma U_0 \colon [0,1] \to \mathbb{R}^{q \times K_0}$ providing a dimension reduction if $K_0 < K$. The same eigenvalue analysis may be applied on the parameters γ , δ and ϵ .

4 Implementation in R

The mathematical objects introduced above have been implemented in an R package named operatorCalc using S4 classes.

4.1 Piecewise polynomial matrix functions

A function $f \in \mathcal{H}(N, M)$ is encoded in an S4 class named matFct with the following slots:

@mesh: An object of class mesh, which is a strictly increasing numeric sequence of length at least two encoding the sampling mesh $a = t_1 < \ldots < t_p = b$.

Of: (N, M, p)-array with the sampling of f at the knot points t_j .

@g: (N, M, p-1, r)-array representing the polynomial interpolation of f in the intervals $[t_j, t_{j+1})$. Here r = 0 is also legal, and implies that the sum over k vanishes in Eq. (6)

©continuous (p-1)-logical vector. The j'th entry specifies whether the function is assumed to be continuous on the interval $[t_j, t_{j+1}]$ in the approximation done when taking pointwise matrix inverses.

The evaluation of a matFct object x at $t \in [0, 1]$ is defined by

$$eval(t,x) = (1-s) \cdot x@f[,,j] + s \cdot x@f[,,j+1] + \sum_{k=1}^{r} s^{k} \cdot x@g[,,j,k] \quad (6)$$

when $t \in [t_j, t_{j+1})$ and with $s = \frac{t-t_j}{t_{j+1}-t_j}$, and where t = b is included in the closed interval $[t_{p-1}, t_p]$. We see that $eval(t_j, x) = x@f[, j]$ for $j = 1, \ldots, p-1$. Futhermore, $eval(\cdot, x)$ is continuous if and only if

$$\sum_{k=1}^{r} x@g[,,,k] = 0.$$

In the following subsections we describe the arithmetic methods defined on the matFct class.

4.1.1 Sum of matrix functions

The sum of two matFct objects x and y with the same sampling mesh and congruent matrix dimensions is given by

$$(x + y)$$
@f = x @f + y @f,
 $(x + y)$ @g = x @g + y @g,

where the terms in the g-slot are padded with zeros if the polynomial orders are different. A possible way to do this is to define $q = \min\{x@r, y@r\}$, $r = \max\{x@r, y@r\}$, and if q > 1 then

$$(x+y)@g[,,1:(q-1)] = x@g[,,1:(q-1)] + y@g[,,1:(q-1)],$$

and if q < r then

$$(x+y)@{\sf g}[,,,q:(r-1)] = \begin{cases} x@{\sf g}[,,,q:(r-1)] & \text{if } r = x@{\sf r}, \\ y@{\sf g}[,,,q:(r-1)] & \text{if } r = y@{\sf r}. \end{cases}$$

4.1.2 Product of matrix functions

The sum of two matFct objects x and y with the same sampling mesh and congruent matrix dimensions is given by $(x * y)@\mathbf{r} = x@\mathbf{r} + y@\mathbf{r}$ and

$$(x*y)@f[,,j] = x@f[,,j]*y@f[,,j],$$

and (x*y)@g[,,j,h] is given as the coefficient of s^h on the right hand side of

$$\begin{split} &x(t)*y(t) - (1-s) \cdot x@\mathbf{f}[,,j] * y@\mathbf{f}[,,j] - s \cdot x@\mathbf{f}[,,j+1] * y@\mathbf{f}[,,j+1] \\ &= (-s+s^2) \cdot \left(x@\mathbf{f}[,,j+1] - x@\mathbf{f}[,,j]\right) * \left(y@\mathbf{f}[,,j+1] - y@\mathbf{f}[,,j]\right) \\ &+ \sum_{k=1}^{y@\mathbf{r}} s^k \cdot x@\mathbf{f}[,,j] * y@\mathbf{g}[,,j,k] + \sum_{k=1}^{y@\mathbf{r}} s^{k+1} \cdot \left(x@\mathbf{f}[,,j+1] - x@\mathbf{f}[,,j]\right) * y@\mathbf{g}[,,j,k] \\ &+ \sum_{k=1}^{x@\mathbf{r}} s^k \cdot x@\mathbf{g}[,,j,k] * y@\mathbf{f}[,,j] + \sum_{k=1}^{x@\mathbf{r}} s^{k+1} \cdot x@\mathbf{g}[,,j,k] * \left(y@\mathbf{f}[,,j+1] - y@\mathbf{f}[,,j]\right) \\ &+ \sum_{k=1}^{x@\mathbf{r}} \sum_{l=1}^{y@\mathbf{r}} s^{k+l} \cdot x@\mathbf{g}[,,j,k] * y@\mathbf{g}[,,j,l]. \end{split}$$

4.1.3 Forward integral of a matrix function

The forward integral $\int_0^t x(u) du$ of a matFct object x is given by

$$Fx@f[,,1] = 0,$$

$$\begin{aligned} & \operatorname{F} x @ \mathbf{f} [, , j + 1] \overset{j \ge 1}{=} \operatorname{F} x @ \mathbf{f} [, , j] + (t_{j+1} - t_j) \cdot \left(\frac{x @ \mathbf{f} [, , j] + x @ \mathbf{f} [, , j + 1]}{2} + \sum_{k=1}^{x @ \mathbf{r}} \frac{x @ \mathbf{g} [, , j , k]}{k+1} \right), \\ & \operatorname{F} x @ \mathbf{g} [, , j , 2] = (t_{j+1} - t_j) \cdot \frac{x @ \mathbf{f} [, , j + 1] - x @ \mathbf{f} [, , j] + x @ \mathbf{g} [, , j , 1]}{2}, \\ & \operatorname{F} x @ \mathbf{g} [, , j , k] \overset{3 \le k \le r+1}{=} (t_{j+1} - t_j) \cdot \frac{x @ \mathbf{g} [, , j , k - 1]}{k}, \\ & \operatorname{F} x @ \mathbf{g} [, , j , 1] = - \sum_{k=2}^{r+1} \operatorname{F} x @ \mathbf{g} [, , j , k]. \end{aligned}$$

4.1.4 Backward integral of a matrix function

The backward integral $\int_t^1 x(u) du = \int_{t_j}^1 x(u) du - \int_{t_j}^t x(u) du$ of a matfet object x is given by

$$Bx@f[, p] = 0,$$

$$Bx@f[,,j-1] \stackrel{j \leq p}{=} Bx@f[,,j] + (t_j - t_{j-1}) \cdot \left(\frac{x@f[,,j-1] + x@f[,,j]}{2} + \sum_{k=1}^{x@f} \frac{x@g[,,j-1,k]}{k+1}\right),$$

$$Bx@g[,,j,2] = -(t_{j+1} - t_j) \cdot \frac{x@f[,,j+1] - x@f[,,j] + x@g[,,j,1]}{2},$$

$$Bx@g[,,j,k] \stackrel{3 \leq k \leq r+1}{=} -(t_{j+1} - t_j) \cdot \frac{x@g[,,j,k-1]}{k},$$

$$Bx@g[,,j,1] = -\sum_{l=0}^{r+1} Bx@g[,,j,k].$$

4.1.5 Triangular evaluation of a matrix function

The triangular evaluation $\left\{ \int_{t_{j-1}}^{t_j} \frac{t-t_{j-1}}{t_j-t_{j-1}} x(t) dt + \int_{t_j}^{t_{j+1}} \frac{t_{j+1}-t}{t_{j+1}-t_j} x(t) dt \right\}_{j=1,\dots,p}$ of a matfct object x is an (N,M,p)-array Tx with

$$\begin{aligned} \operatorname{T}x[,\,1] &= (t_2 - t_1) \cdot \left(\frac{x@\mathbf{f}[\,,\,1]}{3} + \frac{x@\mathbf{f}[\,,\,2]}{6} + \sum_{k=1}^{x@\mathbf{r}} \frac{x@\mathbf{g}[\,,\,1,\,k]}{(k+1)(k+2)}\right) \\ \operatorname{T}x[\,,\,j] &\stackrel{1 < j < p}{=} (t_j - t_{j-1}) \cdot \left(\frac{x@\mathbf{f}[\,,\,j-1]}{6} + \frac{x@\mathbf{f}[\,,\,j]}{3} + \sum_{k=1}^{x@\mathbf{r}} \frac{x@\mathbf{g}[\,,\,j-1,\,k]}{k+2}\right) \\ &+ (t_{j+1} - t_j) \cdot \left(\frac{x@\mathbf{f}[\,,\,j]}{3} + \frac{x@\mathbf{f}[\,,\,j+1]}{6} + \sum_{k=1}^{x@\mathbf{r}} \frac{x@\mathbf{g}[\,,\,j,\,k]}{(k+1)(k+2)}\right) \\ \operatorname{T}x[\,,\,p] &= (t_p - t_{p-1}) \cdot \left(\frac{x@\mathbf{f}[\,,\,p-1]}{6} + \frac{x@\mathbf{f}[\,,\,p]}{3} + \sum_{k=1}^{x@\mathbf{r}} \frac{x@\mathbf{g}[\,,\,p-1,\,k]}{k+2}\right), \end{aligned}$$
 where $t_0 = 0$ and $t_{p+1} = 1$.

4.1.6 Super sampling

Below we describe the recoding of a matFct object x sampled at a finer mesh. Suppose that $t_j \leq t_n^{\text{new}} < t_{n+1}^{\text{new}} \leq t_{j+1}$, and let $t \in [t_n^{\text{new}}, t_{n+1}^{\text{new}})$ be given. Then

$$s = \frac{t - t_j}{t_{j+1} - t_j} = \frac{t_{n+1}^{\text{new}} - t_n^{\text{new}}}{t_{j+1} - t_j} s_{\text{new}} + \frac{t_n^{\text{new}} - t_j}{t_{j+1} - t_j}, \qquad s_{\text{new}} = \frac{t - t_n^{\text{new}}}{t_{n+1}^{\text{new}} - t_n^{\text{new}}},$$

and hence

$$\sum_{l=1}^{r} g_{l} \cdot s^{l} = \sum_{l=1}^{r} \sum_{k=0}^{l} {l \choose k} \left(\frac{t_{n}^{\text{new}} - t_{j}}{t_{j+1} - t_{j}} \right)^{l-k} \left(\frac{t_{n+1}^{\text{new}} - t_{n}^{\text{new}}}{t_{j+1} - t_{j}} \right)^{k} g_{l} \cdot s_{\text{new}}^{k}$$

$$= \sum_{l=1}^{r} \left(\frac{t_{n}^{\text{new}} - t_{j}}{t_{j+1} - t_{j}} \right)^{l} g_{l} + \sum_{k=1}^{r} \sum_{l=k}^{r} {l \choose k} \left(\frac{t_{n}^{\text{new}} - t_{j}}{t_{j+1} - t_{j}} \right)^{l-k} \left(\frac{t_{n+1}^{\text{new}} - t_{n}^{\text{new}}}{t_{j+1} - t_{j}} \right)^{k} g_{l} \cdot s_{\text{new}}^{k}.$$

Here the first term should be added to the f^{new} of the super sampled function, the second term contributes to g_k^{new} , and the linear part added via diff (f^{new}) should be removed from the g_1^{new} .

4.2 Lattice operator

A lattice operator \mathcal{L} is encoded in an S4 class named operator with the following slots:

@alpha: matFct object.

@beta: matFct object.

@gamma: matFct object.

@delta: matFct object.

@epsilon: matFct object.

4.3 Symmetric lattice operator

A symmetric lattice operator S is encoded in an S4 class named symmOperator with the following slots:

@alpha: matFct object.

@delta: matFct object.

@epsilon: matFct object.

In principle the alpha-sloth should contain a symmetric matrix valued function. This is not checked, but the alpha-sloth will be symmetrized in the operator inversion.

5 Likelihood estimation of S operators

Let X_1, \ldots, X_n be i.id. from $\mathcal{N}(0, \hat{\mathcal{S}}_0)$ equidistant sampled at $t_j = \frac{j-1}{p-1}$ for $j = 1, \ldots, p$, where \mathcal{S}_0 is some symmetric lattice operator and the covariance matrix $\hat{\mathcal{S}}_0 \in \mathbb{R}^{p \times p}$ is defined below. Let $(\alpha, \delta, \epsilon)$ be the 3-function parametrization of symmetric lattice operators with some $N, L \in \mathbb{N}$, and let the upper triangular part of the symmetric matrix $\hat{\mathcal{S}}_{\alpha,\delta,\epsilon} \in \mathbb{R}^{(N \times N) \times (p \times p)}$ be defined by

$$\hat{\mathcal{S}}_{\alpha,\delta,\epsilon}(i,j) = \alpha(t_i) \mathbf{1}_{i=j} + p^{-1} \delta(t_i) \epsilon(t_i)^{\top} \in \mathbb{R}^{N \times N}, \quad \text{for } 1 \le i \le j \le p.$$

The inverse of a symmetric lattice operator is a symmetric lattice operator, and we have the precision operator $\mathcal{S}_{\alpha,\delta,\epsilon}^{-1} = \mathcal{S}_{\tilde{\alpha},\tilde{\delta},\tilde{\epsilon}}$ with $\tilde{\alpha}(t) = \alpha(t)^{-1}$ and some $\tilde{\delta}, \tilde{\epsilon} \colon [0,1] \to \mathbb{R}^{N \times L}$.

Twice the negative log likelihood may be expressed using either the covariance or the precision, i.e.

$$-2\log L(\alpha, \delta, \epsilon) = n\log \det \hat{\mathcal{S}}_{\alpha, \delta, \epsilon} + \sum_{i=1}^{n} \operatorname{tr} \langle X_{i}, \hat{\mathcal{S}}_{\alpha, \delta, \epsilon}^{-1} X_{i} \rangle$$
$$= -n\log \det \hat{\mathcal{S}}_{\alpha, \delta, \epsilon}^{-1} + \sum_{i=1}^{n} \operatorname{tr} \langle X_{i}, \hat{\mathcal{S}}_{\alpha, \delta, \epsilon}^{-1} X_{i} \rangle.$$

Let $X = \{X_i^{\text{embedding}}\}_{i=1,\dots,n} \in \mathcal{H}(N,n)$ be the concatenation of the embedded observations. The variational derivatives against $f = \alpha, \delta$ or ϵ are given by

$$\begin{split} \frac{-2\partial \log L(\alpha,\delta,\epsilon)}{\partial f} &= \sum_{i=1}^n \bigg\{ -\operatorname{tr} \bigg[\hat{S}_{\alpha,\delta,\epsilon}^{-1} \frac{\partial \hat{S}_{\alpha,\delta,\epsilon}}{\partial f} \bigg] + \operatorname{tr} \bigg\langle X_i, \frac{\partial \hat{S}_{\alpha,\delta,\epsilon}}{\partial f} X_i \bigg\rangle \bigg\} \\ &\approx \frac{\partial}{\partial f} \bigg\{ -n \int_0^1 \operatorname{tr} \big[\tilde{\alpha}(s)\alpha(s) \big] \mathrm{d}s - n \int_0^1 \operatorname{tr} \big[\tilde{\alpha}(s)\delta(s)\epsilon(s)^\top \big] \mathrm{d}s \\ &- n \int_0^1 \operatorname{tr} \big[\tilde{\delta}(s)\tilde{\epsilon}(s)^\top \alpha(s) \big] \mathrm{d}s - 2n \int_0^1 \int_s^1 \operatorname{tr} \big[\tilde{\delta}(s)\tilde{\epsilon}(u)^\top \epsilon(u)\delta(s)^\top \big] \mathrm{d}u \, \mathrm{d}s \\ &+ \int_0^1 \operatorname{tr} \big[\alpha(s)X(s)X(s)^\top \big] \mathrm{d}s + 2 \int_0^1 \int_s^1 \operatorname{tr} \big[\delta(s)\epsilon(u)^\top X(u)X(s)^\top \big] \mathrm{d}u \, \mathrm{d}s \bigg\} \\ &= \frac{\partial}{\partial f} \bigg\{ -n \int_0^1 \operatorname{tr} \big[\tilde{\alpha}(s)\alpha(s) \big] \mathrm{d}s - n \int_0^1 \operatorname{tr} \big[\tilde{\alpha}(s)\delta(s)\epsilon(s)^\top \big] \mathrm{d}s \\ &- n \int_0^1 \operatorname{tr} \big[\tilde{\delta}(s)\tilde{\epsilon}(s)^\top \alpha(s) \big] \mathrm{d}s - 2n \int_0^1 \int_0^u \operatorname{tr} \big[\tilde{\delta}(s)\tilde{\epsilon}(u)^\top \epsilon(u)\delta(s)^\top \big] \mathrm{d}s \, \mathrm{d}u \\ &+ \int_0^1 \operatorname{tr} \big[\alpha(s)X(s)X(s)X(s)^\top \big] \mathrm{d}s + 2 \int_0^1 \int_0^u \operatorname{tr} \big[\delta(s)\epsilon(u)^\top X(u)X(s)^\top \big] \mathrm{d}s \, \mathrm{d}u \bigg\}. \end{split}$$

This gives

$$\begin{split} &\frac{-2\partial \log L(\alpha,\delta,\epsilon)}{\partial \alpha} = -n\tilde{\alpha} - n\frac{\tilde{\delta}*\tilde{\epsilon}^\top + \tilde{\epsilon}*\tilde{\delta}^\top}{2} + X*X^\top, \\ &\frac{-2\partial \log L(\alpha,\delta,\epsilon)}{\partial \delta} = -n\tilde{\alpha}*\epsilon - 2n\tilde{\delta}*\mathrm{B}(\tilde{\epsilon}^\top*\epsilon) + 2X*\mathrm{B}(X^\top*\epsilon), \\ &\frac{-2\partial \log L(\alpha,\delta,\epsilon)}{\partial \epsilon} = -n\tilde{\alpha}*\delta - 2n\tilde{\epsilon}*\mathrm{F}(\tilde{\delta}^\top*\delta) + 2X*\mathrm{F}(X^\top*\delta). \end{split}$$

If α , δ , ϵ are piecewise linear, then derivative w.r.t. knot points may be found using triangular evaluation of the functional derivatives, i.e.

$$\left\{ \frac{-2\partial \log L(\alpha, \delta, \epsilon)}{\partial \alpha_{j}} \right\}_{j=1,\dots,p} = T\left(\frac{-2\partial \log L(\alpha, \delta, \epsilon)}{\partial \alpha}\right),$$

$$\left\{ \frac{-2\partial \log L(\alpha, \delta, \epsilon)}{\partial \delta_{j}} \right\}_{j=1,\dots,p} = T\left(\frac{-2\partial \log L(\alpha, \delta, \epsilon)}{\partial \delta}\right),$$

$$\left\{ \frac{-2\partial \log L(\alpha, \delta, \epsilon)}{\partial \epsilon_{j}} \right\}_{j=1,\dots,p} = T\left(\frac{-2\partial \log L(\alpha, \delta, \epsilon)}{\partial \epsilon}\right).$$

These computations may be done rather easily using the computational engine introduced above.