rows: how much variables affect I mensurement) Steady state. Cols! how much one variable affects all masurements. 1 x st Ax=3 ⇒ span (roll of A) incl. b. eigrec. $\lambda = 1$. Clarar Dependence 3 steady state when 1 2=1, all other 2 < 1. {di,..., an} are D if Idi, ..., dn find X! = NAISPAR(A-NI) det(A-NI)=0. - (a-N)(d-N-k st a, a, + ... + am an = 0 Not all di, ..., am 20. det(A)= | a | = ad - be : From 2) { \(, ... , \sqrt{n} \) is to of \$ \(\frac{1}{2} \) d = Find eigrec : and holes i st Vi = Z (x) Vi Plug & . Lito (A-AI)=0. one vector is linear consination of others Eigenspace! vector space mapped out by eigrec. transition metric! 4 Nol(A-XI) cols represent outflows, eigral = 0 -> not invertible nows represent inflows Matrix Inversion is unique In Gaussian Elimhation! A=[ab], A= ad-be = a] 1) scale row byd: scale det by a Ax-5 has unique sola ⇔ col of A are LI \ dolet≠0 ⇔ A is inventible \ (₽a|| λ;≠0 2) Add multiple of one ron to another shear - det storys same devery colin any REF has pivot 3) swap rows - multiply det by -1 (RREF of A leads to identify matrix 2 xx are distinct Subspace W 3 Properties! JV, ..., Vx are LI (eigher) 1) contains zero rector O & W 2) closed under rector addition Represent is in terms of a and az (Charge of Ban's) プモル, プモロ V. - VLEU u= u= a, + u, az 3) closed under scalar nultiplication [at of] [uaz = [uz] a. VI EU Visarector space and (Vi, Vi, , Vr) CV, Find Ua, , Uaz st a, az span (Vi, ..., Vn) is Always a V.S. and are expressed as I Subspace of V. Ua = A-17 Basis's minset of vectors to represent change to to suris of A. all vectors " -vectors should be LI. Basis ai, an - span Vector space and LI Std Sasis Dimension! # of basis vectors. + Basis bi , ... ba col space: span (cols (A)) (range) row space: span (rows(A)) NUIL Space: space you cannot reach (AZO) Lim (col space (A)) = dim (range (+1)) by # independent mos = RANK, = # independent als e# pivots in REF Null Space is a Vector Space. Digoralizate Town if it has n LI eight Runk - Nullity Theorem : T= ADA-1 A= [a, .., an] (eigrec) rank(A) + din(NullA1) = N # cols (A) # pivots # cols wlood D= [2. 2.7 pivets rank(A) = din (row space(A)) determinant of upper triangular # LI cols = # LI rows. 3x3 matrix is product of diagonal Orthogonality entrios. (A=0) 1 if: Matux Props. (c+d)A = cA+dAc(A+B)=cA+cB AB(C) = A(BC) . Wull space I row space A(B+C)=AB+AC - nullspace vector is will not (13+C)A = BA+CA affect result of multiplying A times 6 when at + 5, Page Rank : Normalize A3 = A(1+x). importance siones trace is on of diagonal elements of A.

[0 0 0] x2 = 0 : [x1] span { [0]] 16A $-800 \ \ \sqrt{x_1=0} \ \ \left[\begin{array}{c} 0 \\ x_1 \end{array}\right] \ \, \text{Span} \left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ Az = [a] az az] [x] = x, [a] +x, [a] + ... + x, [a] trace (A) = sun of neigrals of A. product of a eigrals is same as determinant of A de+(A-XI) = de+((A-XI)T) = de+(AT-XI) IF I is eignal of matrix A, eignal of matrix A! conservative state transition matrices have Columns that sun to 1. a matrix B st set of valid net traffic flows is nullspace of B -> incidence matrix of traffic network row represents intersection col represents road between two intersections -> null space of traffic flow Inverse [MII] -> [IN | M-1] If you have symmetric transition matrix, ATEA, both rows and cols sum to one All uniform vectors are equilibrium state Imagin: 3=HZ+2 If A > 2, A > + : large eigral of H => lower noise Small eignal of It => higher noise S: sensor reading H: matrix of image masks . Timaje Col Space - reduce mutnix to echelon form - columns u/ pivots are columns of original matrix that make up colspan - Use null space to preve distinct vectors operated onlymxn, men, matrix can gite same measurements -) non trivial nullspace -> let i be ENU, je col Mj=b, Mi=0 Mj+Mi = M(j+i) = b +0 = b

Determinant of matrix and that of its transpose are egval.

Distinct eigral (All LI agrec diagonalizable

$$\vec{\nabla} = \begin{bmatrix} 2n \\ n+3 \end{bmatrix} \in \text{Span}(S) \left\{ \begin{bmatrix} i \\ i \end{bmatrix}, \begin{bmatrix} i \\ i \end{bmatrix} \right\}$$

$$if \quad d, \begin{bmatrix} i \\ i \end{bmatrix} + d_2 \begin{bmatrix} i \\ i \end{bmatrix} = \begin{bmatrix} 2m \\ m+3 \end{bmatrix}$$

$$= m \begin{bmatrix} i \\ i \end{bmatrix} + \begin{bmatrix} i \\ i \end{bmatrix}$$

Find eigen
$$\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

$$det(\begin{bmatrix} 2 & 2 \\ 2 & 2 - \lambda \end{bmatrix})$$

$$= det(\begin{bmatrix} 1 - \lambda & 2 \\ 2 & 2 - \lambda \end{bmatrix}) = 0.$$

$$(1 - \lambda)(2 - \lambda) - 2 = \lambda^2 - 3\lambda = \lambda(\lambda - 3) = 0.$$

$$\lambda = 0.$$

$$\begin{bmatrix} 220 \\ 21$$

$$\begin{cases} -2 & 1 & 0 \\ 2 & -1 & 0 \end{cases}$$

$$-2 \times 1 + \times 2 = 0$$

$$\times_{2} = 2 \times 1$$

$$\times_{2} = 2 \times 1$$

$$\times_{3} = 2 \times 1$$

$$\times_{4} = 2 \times 1$$

$$\times_{5} = 2 \times 1$$

$$\times_{6} = 2 \times 1$$

$$\times_{7} = 2 \times 1$$

$$\times_{7} = 2 \times 1$$

$$\times_{7} = 2 \times 1$$

$$\times_{8} = 2 \times 1$$

- increase Vin, dependent current src V

Inner Product マスタッンママンデ となり 〈花,ガフニ〈ず,え〉 <(元,リン・cくヹ,リン・くだ,cy) scalar くだけ、えりこくえ、えッナイダ、えっ コマス,サイマ, Inner Product is 0 (orthypna) Evelidean Norm! 11 x112 = \(\int x_1^2 + \int x_3^2 = \(\siz_1 \, \int x_3^2 \) => 11x112= < x, x> may whole, length from to ildx11=1a111x11 Ilxtyll = llx11 + lly11 1121120 IlxII =0 only if x=0 < x, y, · llx11 lly11 cos 0 lengths multiplied by anyle between them Cauchy-Schwartz' 1 < 2, 7 > = 11211 11711 Projay= 11 yil coso. =

Circulant Matux

Cross Conolation - measurement of simlarry Setuces too rector, Fand ?

-layest CHSS -correlations deemed to correspond to time -shifts of to

Autocomelotion - cross correlation of signal whitelf -use delays to get distances of beacons

Ceast Squares overdetermined set of agas n points, (a,, b,) .. (a, b,) in R2 satisfy bi= x,aitx2 Werror bite = x,ait x2 - vertical distance be them cert fit line and points

-hymimize this squared vertical distance.

$$\vec{e} = A\vec{x} - \vec{b} = \begin{bmatrix} a_1 \\ a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} b_1 \\ b_n \end{bmatrix}$$

min $||e||^2 > w_1/2 (||A\vec{x} - \vec{b}||^2)$

Z = (ATA) -(AT B

Minimum Norm when egn is underdeterminent

Boacon receiver r = a. S. (No) + ... + an S. (Nn)

a i i's a message that scales each song

- subscript is index of sony - Superscript is principles of Lite cross conclution of received signal and Si will have a peak at Ni Codelay)

Problem: users transmitting wi different messages (any) ilvdos) may be overshadough by users of bigger mestages !

Given :- received signal Apr, R" - set of m sows, each

of length n: 5- [50, -, 5m] - thresh hold th

Intralize: 7=7, j=1, K=10, A=[] F = {0}

while jsk and Ilr11 z th:

1 cross conelate y w/ shifted versions of all sorgs. Find sorg inder i, and the shifted version of song, 5: M which received signal has highest correlation

2) Add i to set of sony Adices, F.

3) A = [AISi (Ni)] column

4) = (ATA)-1ATT

5) 7= V-AZ

6) j=j+1

each colop A represents effect of somy

1/x-a,1/2=d,1 =xtx-2a,x+1/a,1/2=d,1 1/2 - a31/2 = d32

If columns of A; are nutually orthogonal 16th projection of i on span (Aj) is sun of projection of i on each of columns

othonormal-metually otheral, of unit length

Gran-Schmidt -takes set of LI vectors {5, , ..., 5.}

and generates set of orthonormal vectors $\{g_1, -, g_2\}$

~ projection of 12 on 8,

3)
$$\vec{e}_3 = \vec{5}_3 - (\vec{5}_3 + \vec{6}_2) \vec{6}_2 - (\vec{5}_3 + \vec{6}_1) \vec{6}_1$$
 $\vec{e}_3 = \vec{5}_3 - (\vec{5}_3 + \vec{6}_2) \vec{6}_2 - (\vec{5}_3 + \vec{6}_1) \vec{6}_1$
 $\vec{e}_3 = \vec{5}_3 - (\vec{5}_3 + \vec{6}_2) \vec{6}_2 - (\vec{5}_3 + \vec{6}_1) \vec{6}_1$

Gran-Schmidt on OMP ; initialize G-EJ; 6, =0 After step 2: nn Gram Schmodton Q , V; = S; Ni

row space and not space of matrix are orthogonal

Projection onto subspace = closest vector to that subspace Cleart squares)

For matrix w/ orthonormal cols, Q, QTQ=I

Digonalizable on distinct eigval in R" = eigvers form