## Topic 1.

## REVIEW ON FUNCTIONAL EQUATION

the angle of the company of the first term of th

- · Substitute variables.
- · Injectivity and surjectivity.
- Case works for  $(f(x)-x)(f(x)+x)=0, \forall x \in \mathbb{R}$  and new approach.

### Problem 1. (L)

- a) Let  $f: \mathbb{R} \to \mathbb{R}$  be a function such that  $f(x-f(x)) = x-f(x), \forall x$ . Prove that the equation f(x) = 0 has unique root.
- b) Let  $f: \mathbb{R} \to \mathbb{R}$  be a function such that  $f(x^2) = f(f(f(x)))$  and f(xy) = xf(y) + yf(x) for all x, y. Prove that  $f(x) \equiv 0, \forall x$ .

**Problem 2.** (L) Let  $f: \mathbb{R} \to \mathbb{R}$  be a function such that f(x+y) = f(x) + f(y) for all  $x \in \mathbb{R}$ . Find f(x) in the following cases:

- a)  $f(x^2) = xf(x)$  and f(1) = 2022.
- b)  $2f(x)^2 = f(x^2) + xf(x), \forall x$ .

**Problem 3.** (0) Find all function  $f: \mathbb{R} \to \mathbb{R}$  such that:

- a)  $f(x^2 + xy + f(y)) = f(x)^2 + xf(y) + y$  for all x, y.
- b) f(f(x-y)) = f(x) f(y) + f(x)f(y) xy for all x, y.

**Problem 4.** (0) Find all functions  $f: \mathbb{R} \to \mathbb{R}$  such that:

- a)  $f((x+y)^2) = f(x)f(x+2y) + yf(y)$  for all x, y.
- b)  $f(x)f(yf(x)-1) = x^2f(y)-f(x)$  for all x, y.

**Problem 5.** (L) Find all functions  $f: \mathbb{R} \to \mathbb{R}$  such that f is injective at 0 and

$$f(f(x+y)f(x-y)+21xy+y^2)=20yf(x)+xf(x+y)$$
 for all x, y.

Additional problems.

**Problem 6.** (V) Find all functions  $f: \mathbb{R} \to \mathbb{R}$  such that:

- a)  $f(y^2) = f(y-x)f(x+y) + x^2$  for all x, y.
- b) f(f(x+y)) = f(x+y) + f(x)f(y) xy for all x, y.

**Problem 7.** (0) Find all functions  $f: \mathbb{R} \to \mathbb{R}$  such that:

- a)  $f(f(x)+y) = f(x^2-y)+4yf(x)$  for all x, y.
- b)  $f(x^2 + xy) = f(x)f(y) + yf(x) + xf(x+y)$  for all x, y.

**Problem 8.** (0) Find all functions  $f: \mathbb{R} \to \mathbb{R}$  such that

- a) f(f(x)+y) = f(x+y)+xf(y)-xy-x+1 for all  $x, y \in \mathbb{R}$ .
- b)  $xf(x+xy) = xf(x) + f(x^2)f(y)$  for all  $x, y \in \mathbb{R}$ .

## Topic 2.

## FUNCTION EQUATION WITH POLYNOMIAL

- · Focus on the degree, the leading coefficient.
- Some situations:  $P(P(x)), P(x)^m, P(x^n),...$
- Working on P(x+a)-P(x).

**Problem 9.** (L) Find all polynomials  $P(x) \in \mathbb{R}[x]$  such that:

- a) P(2x+3) = P(2x) + x for all x.
- b)  $P(P(x)) = (x^2 + x + 1)P(x)$  for all x.

**Problem 10.** (L) Find all polynomials  $P(x) \in \mathbb{R}[x]$  such that:

- a) (x+10)P(2x) = (8x-32)P(x+6),  $\forall x \text{ and } P(1) = 210$ .
- b)  $(x^2 + 2x)P(x+1) = (x^2 + 4x + 3)P(x) + 2x^2 + 2x, \forall x \in \mathbb{R}$ .

Problem 11. (L)

- a) Suppose that  $a,b \in \mathbb{R} \setminus \{0\}$  and  $\frac{b}{a} \notin \mathbb{Z}$ , prove that there does not exist P(x) non-constant such that xP(x-a) = (x-b)P(x) for all x.
- b) For  $c \in \mathbb{R}$ , suppose that there exists polynomial P(x) such that  $P(x)^2 P(x^2) = cx^{2022}$ ,  $\forall x$ . Prove that  $c \ge -\frac{1}{4}$ .

**Problem 12.** (0) Find all polynomials  $P(x) \in \mathbb{R}[x]$  such that:

- a)  $(x-2)Q(3x+2) = 3^{22}xQ(x), \forall x \in \mathbb{R}.$
- b)  $P((x+1)^{2022}) = (P(x) + 3x + 1)^{2022} (x+1)^{2022}$  for all x.

**Problem 13.** (0) Find all polynomials  $P(x) \in \mathbb{R}[x]$  such that

- a)  $P(x^3 + x^2 + 1) = P(x+2)P(x^2 + 1), \forall x$ .
- b)  $P(x^2) = P(x)P(x-1), \forall x \in \mathbb{R}$ .
- c)  $P(2x^3 + x) = P(x)P(2x^2)$  for all x.

**Problem 14.** (V) Find all polynomials  $P(x) \in \mathbb{R}[x]$  satisfy

- a) P(x-y) + P(y-z) + P(z-x) = 3(P(x) + P(y) + P(z)) for all x, y, z such that x + y + z = 0.
- b) (x-y)P(z)+(y-z)P(x)+(z-x)P(y)=0 for all x, y, z such that x+y+z=0.



c)  $P(x)^2 + P(y)^2 + P(z)^2 = P(x+y+z)^2 + 2$  for all x, y, z such that xy + yz + zx = -1.

Additional problems.

**Problem 15.** Find all polynomials  $P(x) \in \mathbb{R}[x]$  satisfy

- a) (x+4y)P(z)+(y+4z)P(x)+(z+4x)P(y)=xP(2y-z)+yP(2z-x)+zP(2x-y) for all x,y,z such that 3(x+y+z)=xyz.
- b)  $P(x)P(x^2)...P(x^n) = P(x^{\frac{n(n+1)}{2}})$  for all x, given that  $n \in \mathbb{Z}^+$  and n > 1.

**Problem 16.** Let P(x), Q(x), R(x) be non-constant real coefficient polynomials such that

$$P(x^2-x)+xQ(x^2-x)=(x^2-4)R(x)$$
 for all x.

- a) Prove that equation Q(x) = R(x-3) has at least two distinct real roots.
- b) Suppose that the sum of degree of P(x), Q(x), R(x) is 5 and R(x) monic. Find the minimum value of  $M = P^2(0) + 8Q^2(3)$ .

### Topic 3.

#### POWER OF POINT TO CIRCLE. RADICAL AXIS

- Some situations for radical axis of 2 circles, radical center of 3 circles.
- · Point-circle.
- Coaxial circles.

**Problem 17.** (L) Let ABC be a triangle with H,O are orthocenter and circumcenter. Denote M,N as midpoints of AB,AC and BD,CE are altitudes of ABC. MN cuts DE at K.

- a) Prove that  $AK \perp HO$ .
- b) Line DE cuts BC at T and the tangent line from A of (O) cuts MN at S. Prove that ASTK is a parallelogram.

**Problem 18.** (V) Let ABC be a triangle with incircle (I) tangent to BC, CA, AB at D, E, F. Denote K as the projection of D onto EF.

- a) Prove that the power from K to the circles (BE), (CF) are equal.
- b) Denote H as orthocenter of ABC, prove that KD is angle bisector of HKI.

**Problem 19.** (0) Let ABC be a triangle inscribed in a circle (0) with BC is fixed and A moving around (0). Denote H as its orthocenter and BE, CF are its altitudes. Let M, N, I be the midpoints of BC, AH, EF. Line AM cuts (0) agains at T. Prove that  $\mathcal{P}_{I/(ANT)} = const$ .

**Problem 20.** (0) Let A be a point lying outside circle (O) and AB, AC are tangent line of (O). Take D, E, M on (O) such that MD = ME. Suppose that MB, MC cut DE at R, E respectively and take E0, E1 constants are tangent line of (E2). Prove that E3 curve that E4 cut E5 cut E6 cut E6 cut E7 cut E8 cut E9 cut

**Problem 21.** (L) Let AB be a chord of circle (O) and M be midpoint of the arc AB. A circle (I) lying on the different side with M, respect to AB that tangent to AB and internally tangent to (O), given that. The lines pass through M and perpendicular to AI, BI intersect AB at C, D respectively. Prove that AB = 2CD.

**Problem 22.** (L) Let ABC be a triangle with circumcenter O, orthocenter H and M is midpoint of AH. Denote  $(O_1),(O_2)$  as circles that both pass through H and tangent to BC at B,C respectively.

- a) Prove that  $O_1, O_2, M$  are collinear.
- b) Line  $O_1O_2$  cuts BC at T. The circle (MOT) cuts line HO again at K. Prove that the center of (AOK) belongs to a midline of triangle ABC.

Additional problems.

**Problem 23.** (0) Let ABC be a triangle and M, N, P are midpoints of BC, CA, AB. Denote I as incenter of MNP. Prove that I is the radical center of 3 excircles of ABC.

Problem 24. (0) Prove that in a triangle, three Appolonius circles are coaxial.

# Topic 4.

# VIETA & BEZOUT THEOREM

- · Vieta formula.
- · Bezout theorem.
- About divisibility of polynomial.

# Problem 25. (V)

- a) Given P(x) is a polynomial of degree 6 and P(1) = P(-1), P(2) = P(-2), P(3) = P(-3). Prove that P(2022) = P(-2022).
- b) Let P(x) is a monic polynomial of degree 4 and P(1) = 2, P(2) = 5, P(3) = 10. Prove that P(0) + P(4) is constant.

# Problem 26. (0)

a) Find all monic polynomials of degree 3 such that

$$|P(1)| = |P(2)| = |P(3)| = |P(5)| = |P(6)| = |P(7)|$$
.

b) Find all quadratic polynomials P(x) such that P(13) = 2017 and

$$x^2 - 2x + 2 \le P(x) \le 15x^2 - 30x + 16, \forall x$$
.

**Problem 27.** (0) Let P(x) be monic polynomial of degree 3 with 3 distinct roots. Consider polynomial  $Q(x) = x^2 + 2x + 2022$  such that P(Q(x)) has no real root. Prove that P(2022) > 1.

**Problem 28.** (L) Let  $P(x) = x(x^2 - 1)(x^2 - a) - 1$  with  $a \ge 5$ .

- a) Prove that P(x) has 5 distinct real roots  $x_1, x_2, x_3, x_4, x_5$ .
- b) Calculate  $f(x_1)f(x_2)f(x_3)f(x_4)f(x_5)$  in two cases:  $f(x)=x^2-2022$  and  $f(x)=x^2+1$ . Additional problems.

**Problem 29.** (0) Let 
$$a,b,c,d$$
 be real numbers such that 
$$\begin{cases} a+b+c+d>0\\ ab+bc+cd+da+ac+bd>0\\ abc+bcd+cda+dab>0\\ abcd>0 \end{cases}$$

Prove that a,b,c,d are all positive.

Problem 30. (0)

- a) Let P(x) be monic polynomial of degree 2021 and has roots  $\frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{2022}$ . Find the sum of coefficient of all odd-degree terms of P(x).
- b) Find all positive integers n such that in the monic polynomial  $f_n(x)$  of degree n and has real roots  $-n, -\frac{n}{2}, \dots, -1$ , the sum of coefficient of all odd-degree terms of  $f_n(x)$  is also odd.

**Problem 31.** (L) Let  $P(x) = x^4 + ax^3 + bx^2 + cx + 1$  for  $a, b, c \in \mathbb{R}$  such that it has four roots equal to the side length of some parallelogram. Find the minimum value of T = a + b + c.

**Problem 32.** (0) Find all polynomials P(x) of degree 3 such that

$$(x^3 - 2x + 1 - P(x))(2x^3 - 5x^2 + 4 - P(x)) \le 0, \forall x \in \mathbb{R}.$$

### Topic 4.

# ISOGONAL CONJUGATE

- Conditions for isogonal conjugate lines, the anti-parallel figure.
- · About symmedian and its properties.
- About Humpty-Dumpty point and the properties.
- · About the completed quadrilateral and Gauss, Steiner line, Miquel point.
- · Isogonal conjugate pair of points and the properties.

**Problem 33.** (L) Let ABC be a triangle and point D is on BC. Denote DE, DF, AK as the symmedians of triangle ADB, ADC, ABC. Prove that:

- a) If D is the midpoint of BC then DFEK is isosceles trapezoid.
- b) If AD is the angle bisector of ABC then AK, BF, CE are concurrent.

**Problem 34.** (0) Let ABCD be a cyclic quadrilateral. The lines AB,CD meet at E, and lines AD,BC meet at F. Prove that the angle bisector of  $\angle E, \angle F$  and the Gauss line of the complete quadrilateral ABCD.EF are concurrent.

**Problem 35.** (L) Let ABC be a triangle with M,N are midpoints of AB,AC, centroid G. Circles (BMG),(CNG) meet again at K.





- a) Prove that AK is the symmedian of triangle ABC.
- b) The line AK cuts  $BC_1(O)$  at  $T_1D'$  respectively.  $DB_1DC$  cut  $(ABT)_1(ACT)$  again at  $R_1S_2$ . Prove that  $OD \perp RS$  and T is the midpoint of RS.

**Problem 36.** (V) Let ABC be a triangle with AB = AC. Take P inside triangle ABC such that  $\angle BPC = 180^{\circ} - \angle A$ . Line PB, PC cut AC, AB at D, E respectively. Denote I, J as the excenters of triangle ABD and ACE. The circles (ADE) cuts IJ again at T.

- a) Prove that TP passes through a fixed point when P is moving.
- b) Denote O as center of (ADE), prove that OI = OJ.

Problem 37. (0) Let ABC be a triangle with circumcircle (0) and the tangent line at B, C of (0) meet at T. Take  $A' \in (O)$  such that  $AA' \parallel BC$ . Denote H, K as projections of T onto AB, AC and M as mipoint of BC. Circle (HKM) cuts BC again at L. Prove that  $\angle AA'L = 90^{\circ}$ .

**Problem 38.** (0) Let ABCD be a parallelogram with  $\angle CAD = 90^{\circ}$ . Denote H as the projection of A onto CD and the tangent line of (ABD) at D cuts AC at K. Prove that  $\angle KBA = \angle HBD$ .

**Problem 39.** (0) Let ABC be a triangle with circumcircle (0). A circle (0') tangent to BC and internally tangent to (O). The angle bisector of  $\angle BAC$  cuts (O') at D, E. Prove that D, E are isogonal conjugate.

Additional problems.

**Problem 40.** (0) Let ABC be a triangle with  $\angle B = 2\angle C$ . The perpendicular bisector of BC cuts AC at D. Denote E as reflection of D over A. Prove that BE is parallel to the symmedian of vertex A in triangle ABC.

Problem 41. (L) Let ABC be a triangle with circumcircle (O). Denote AD as its angle bisector and I as the incenter. The circle (BID) cuts AB again at M and the circle (CID) cuts AC again at N. Denote  $IB \cap DM = X$ ,  $IC \cap DN = Y$ . Prove that the altitude, the median of triangle IXY pass through the midpoint of the arc BC of (O).

**Problem 42.** (L) Let ABC be a triangle with a circle passes through B, C cuts AB, AC at F, Erespectively. Denote  $BE \cap CF = T$  and  $AT \cap BC = D$ . Suppose that T is the Lemoine point of triangle DEF, prove that ABC must be isoceles triangle and (DEF) is its incircle.

# Topic 5.

# **INEQUALITY ON SEQUENCE**

- The increasing sequence with upper bound will have the limit.
- The sequence  $\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}$  is divergent.
- In the strictly increasing sequence of integers,  $u_{n+m} \ge u_n + m$  for  $m, n \in \mathbb{Z}^+$ .

## Problem 43. (0)

a) Let  $(a_n)$  be a sequence with  $a_0 > 0$  and  $a_n = \frac{a_{n-1}}{\sqrt{1 + 2021a_n^2}}$ ,  $\forall n$ . Prove that  $a_{2021} < \frac{1}{2021}$ .

b) Let  $(a_n)$  be a sequence with  $a_1 = 1$  and  $a_{n+1}^2 + a_{n+1} = a_n$ ,  $\forall n \ge 1$ . Prove that  $a_{2021} > \frac{1}{2021}$ .

## Problem 44. (L)

a) Prove that there does not exist the sequence  $(x_n)$  of real numbers such that

$$x_1 = 2$$
 and  $\frac{2x_n^2 + 2}{x_n + 3} < x_{n+1} \le \frac{2x_n + 2}{x_n + 3} + 2022$  for all  $n = 1, 2, 3, ...$ 

b) Similar question with  $x_{n+2} = \ln\left(\frac{x_{n+1}^2 + 2022}{x^2 + 2022}\right)$  for all n = 1, 2, 3, ...

## Problem 45. (L)

a) Consider the strictly increasing sequence  $(u_n)$  of positive integers such that for any 2022 consecutive positive integers, there are at least one number belongs to  $u_n$ . Prove that the following sequence is unbounded

$$v_n = \frac{1}{u_2^2 - u_1^2} + \frac{1}{u_3^2 - u_2^2} + \dots + \frac{1}{u_{n+1}^2 - u_n^2}.$$

b) Consider the strictly increasing sequence  $(u_n)$  of positive integers such that:

i)  $u_1 > 1$  and all of terms of  $u_n$  are pairwise coprime.

ii) The sum 
$$\frac{1}{\sqrt{u_1u_2}} + \frac{1}{\sqrt{u_3u_4}} + \dots + \frac{1}{\sqrt{u_{2n-1}u_{2n}}}$$
 is unbound when  $n \to +\infty$ .

Prove that this sequence contains infinitely many prime numbers.

**Problem 46.** (0) Given  $(u_n)$  be a sequence of positive integer such that there exist constant csuch that

$$u_{2n} + u_{2n-1} = c \cdot u_n$$
 for all  $n \in \mathbb{Z}^+$ .

- a) Prove that c is an integer.
- b) Suppose that  $(u_n)$  is strictly increasing, find the minimum value of c.

**Problem 47.** (0) Does there exist infinite sequence  $(x_n)$  such that  $0 < x_i < 1 + \frac{2021}{2022}$ ,  $\forall i$  and

$$\left| x_i - x_j \right| \ge \frac{2}{i+j}$$
 for all  $1 \le i < j$ ?

Additional problems.

**Problem 48.** (0) For  $k \in (0;1/2)$  and  $a,b \in (0;1)$ , consider sequences  $(a_n),(b_n)$  such that

$$a_0 = a$$
,  $a_{n+1} = \frac{1+a_n}{2}$  and  $b_0 = b$ ,  $b_{n+1} = (b_n)^k$ .

Prove that there exists n such that  $a_n < b_n$ .

**Problem 49.** (L) Consider sequence  $(a_n)$  with  $a_1, a_2 > 0$  and  $a_{n+2} = |a_{n+1} - a_n|, \forall n \ge 1$ . Find the conditions of  $a_1, a_2$  such that this sequence contains 0.

**Problem 50.** (0) Suppose that the equation  $x^3 + 2x = 1$  has the unique real root r. Find all strictly increasing sequences  $(a_n)$  such that

$$\frac{1}{2} = r^{a_1} + r^{a_2} + r^{a_3} + \cdots$$