

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	«Информатика и системы управления»						
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»						

ОТЧЕТ

по лабораторной работе №6

по курсу «Моделирование»

на тему: «Обслуживающий аппарат (GPSS)»

Студент	ИУ7-73Б	7-73Б				
	(Группа)		(Подпись, дата)	(Фамилия И. О.)		
Преподаватель				Рудаков И. В.		
			(Подпись, дата)	(Фамилия И. О.)		

Цель работы

Целью работы является моделирование системы, состоящей из генератора, буфера и обслуживающего аппарата. Генератор выдает сообщения, распределенные по равномерному закону, они приходят в память, обслуживающий аппарат обрабатывает каждое из них согласно нормальному распределению. Необходимо определить оптимальную длину очереди, при которой не будет потерянных сообщений. Использовать принципы Δt и событийный. Задаваемая часть сообщений попадает в очередь повторно. Для реализации импользовать язык GPSS.

Принципы организации управляющей программы

Принцип Δt

Данный принцип заключается в последовательном анализе состояний всех блоков в момент $t+\Delta t$ по заданному состоянию блоков в момент t. При этом новое состояние блоков определяется в соответствии с их алгоритмическим описанием с учетом действующих случайных факторов, задаваемых распределениями вероятности. В результате такого анализа принимается решение о том, какие общесистемные события должны имитироваться программной моделью на данный момент времени.

Основной недостаток этого принципа: значительные затраты машинного времени на реализацию моделирования системы. А при недостаточно малом Δt появляется опасность пропуска отдельных событий в системе, что исключает возможность получения адекватных результатов при моделировании.

Событийный принцип

Характерное свойство систем обработки информации заключается в том, что состояния отдельных устройств изменяются в дискретные моменты времени, совпадающие с моментами времени поступления сообщений в систему, времени поступления окончания задачи, времени поступления аварийных сигналов и т.д. Поэтому моделирование и продвижение времени в системе удобно проводить, используя событийный принцип, при котором состояние всех блоков имитационной модели анализируется лишь в момент появления какого-либо события. Момент поступления следующего события определяется минимальным значением из списка будущих событий, представляющего собой совокупность моментов ближайшего изменения состояния каждого из блоков системы.

Моделируемая система

Рисунок 1 – Схема моделируемой системы

Текст программы

Листинг 1 – Реализация системы

```
23
  gen_min
           EQU 1
  gen_max
           EQU 5
  proc_mean EQU 5
5
  proc_sdev EQU 1
  probability EQU 0.5
  gen_mean EQU (gen_min + gen_max) / 2
  gen_rng EQU (gen_max - gen_min) / 2
10
  11
           GENERATE gen_mean,gen_rng
|12| label_begin QUEUE bufferp
13
          SEIZE processor
14
           DEPART bufferp
15
           ADVANCE (NORMAL(1,proc_mean,proc_sdev))
16
           RELEASE processor
17
           TEST G (UNIFORM(1,0,1)),probability,label_begin
18
           TERMINATE 1
19|; -----
20 START 200
```

Результаты работы

Листинг 2 – Отчет о работе системы

```
1 2 3 4 5 6 7 8 9
                  GPSS World Simulation Report - model.39.1
                       Thursday, December 13, 2023 22:18:07
               START TIME
                                     END TIME BLOCKS FACILITIES STORAGES
                   0.000
                                     1955.360
                                                 8
                                                            1
10
                  NAME
                                               VALUE
11
              BUFFERP
                                            10007.000
12
              GEN_MAX
                                               5.000
13
             GEN_MEAN
                                                3.000
14
             GEN_MIN
                                                1.000
15
             GEN_RNG
                                                2.000
16
             LABEL_BEGIN
                                                2.000
17
             PROBABILITY
                                                0.500
18
             PROCESSOR
                                            10008.000
19
              PROC_MEAN
                                                5.000
```

20 21		PROC_SDE	V			1.	000					
22 23	LABEL		LOC	BLOCK	TYPE	ENTR	Y COUNT	CURRENT	COUNT	RETRY		
24			1	GENER	ATE		654		0	0		
25	LABEL_BEG	IN	2	QUEUE			841	4	53	0		
26			3	SEIZE			388		1	0		
27			4	DEPAR	Т		387		0	0		
28			5	ADVAN	CE		387		0	0		
29			6	RELEA	SE		387		0	0		
30			7	TEST			387		0	0		
31			8	TERMI	NATE		200		0	0		
32												
33												
34	FACILITY	E	NTRIES	UTIL	. AV	E. TIME	AVAIL.	OWNER PE	ND INT	TER RETRY	DELAY	
35	PROCESSO	R	388	0.9	98	5.028	1	302	0	0 0	453	
36												
37												
38	QUEUE		MAX C	ONT. E	NTRY E	ENTRY(O)	AVE.CON	T. AVE.T	IME	AVE.(-0)	RETRY	
39	BUFFERP		454	454	841	1	228.778	531.	919	532.553	0	ĺ
40												
41												
42	CEC XN	PRI	M1		ASSEM	CURRENT	NEXT	PARAMET	ER	VALUE		
43	302	0	904.	760	302	3	4					
44												
45												
46	FEC XN	PRI	BDT		ASSEM	CURRENT	NEXT	PARAMET	ER	VALUE		
47	655	0	1955.4	460	655	0	1					

Таблица 1 – Сравнение результатов моделирования для программ, написанных на языке общего назначения и языке GPSS

Вероятность	C++		GPSS						
перенаправления	Размер очереди	Время	Размер очереди	Время					
	т азмер очереди	моделирования	т измер очереди	моделирования					
$n = 200, a = 1, b = 5, \mu = 5, \sigma = 1$									
0.00	143.00	1025.60	141	1008.830					
0.25	251.60	1351.36	251	1328.438					
0.50	484.00	2085.30	454	1955.360					
0.75	1207.70	4218.83	1003	3519.263					
$n = 200, a = 6, b = 10, \mu = 5, \sigma = 1$									
0.00	1.00	1617.12	1	1596.253					
0.25	3.00	1610.80	4	1602.293					
0.50	50.00	2010.32	56	2037.255					
0.75	337.90	4300.34	269	3736.664					

Вывод

В ходе выполнения работы была промоделирована системы, состоящей из генератора, буфера и обслуживающего аппарата с использованием методов протягивания модельного времени (Δt и событийный). Была рассмотрена зависимость длины очереди от параметров системы.