〈习题五〉作业参考答案

5.5 给出逻辑电路图如图 5.24 所示,试分析该电路的逻辑功能,并给出逻辑功能的真值表。

图 5.24 题 5.5 的逻辑电路图

答:逻辑功能的真值表

24771111777日代				
R	S	Q ⁿ	Q ⁿ⁺¹	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	×	
1	1	1	×	

$$\begin{cases} Q^{n+1} = S + \overline{R}Q^n \\ S \bullet R = 0 \end{cases}$$

这是一个与由或非门构成的基本 R-S 触发器功能一样的触发器。

@巷弄里的小店

5.7 假设给出的主从 J-K 触发器的输入波形如图所示,并假设初始状态为 0, 试画出 Q 及 \overline{Q} 端的波形。

5.8 写出图 5.27 所示的各触发器的次态方程。

答: 1、
$$Q^{n+1} = D = \overline{Q^n}$$

$$Q_n = Q_n = Q_n$$

3.
$$Q^{n+1} = T\overline{Q^n} + \overline{T}Q^n = \overline{Q^n}\overline{Q^n} + Q^nQ^n = \overline{Q^n} + Q^n = 1$$

4.
$$Q^{n+1} = T\overline{Q^n} + \overline{T}Q^n = Q^n\overline{Q^n} + \overline{Q^n}Q^n = 0 + 0 = 0$$

5,
$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n = \overline{Q^n}\overline{Q^n} + 0Q^n = \overline{Q^n} + 0 = \overline{Q^n}$$

6,
$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n = Q^n\overline{Q^n} + 0Q^n = 0 + 0 = 0$$

5.9 有一触发器的电路结构如图 5.28 所示, 试给出该触发器的状态转移真值表, 写出其特征方程。

@巷弄里的小店

复制

答: 当 CP=1 时, 电路不接受输入信号 X, $Q^{n+1} = Q^n$ 。

当 CP=0 时, 电路接收输入信号 X, $Q^{n+1} = X$ 。

其状态转移真值表如下:

CP	X	Qn	Q ⁿ⁺¹
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

画出卡诺图,进行化简。

由此可得其特征方程为: $Q^{n+1} = \overline{CP} \bullet X + CP \bullet Q^n$.

5. 13 如何用 T 触发器实现 D 和 J-K 触发器的逻辑功能, 画出相应的逻辑电路图。解:

(1)作出 D 触发器的状态转移真值表,再根据次态求出在实现 D 触发器的前提下 T 的输入,

如下:

Τ	D	Qn	T	Q ⁿ⁺¹
	0	0	0	0

@巷弄里的小店 Bai d 文庫

复制

作卡诺图化简出 T 关于 Qn和 D 的方程:

可得: T=D⊕Qⁿ

画逻辑电路图如下:

(2)作出 J-K 触发器的状态转移真值表,再根据次态求出在实现 J-K 触发器的前提下 T 的 输入,如下:

J	K	Q ⁿ	T	Q ⁿ⁺¹
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	1	0
1	0	0	1	1
1	0	1	0	1
1	1	0	1	1
1	1	1	1	0

画出 T 关于 J, K, Q 的卡诺图, 如下:

JK Q ⁿ	0	1
00		
01		1
11	1	1
10	1	

化简得到:

$$T = J \overline{Q^n} + KQ^n$$

逻辑电路图如下:

@巷弄里的小店 Bai d 文库