

✓ Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

GRADE 100%

Sequence models & Attention mechanism

LATEST SUBMISSION GRADE

100%

1. Consider using this encoder-decoder model for machine translation.

1/1 point

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence $\boldsymbol{x}.$

- True
- False
 - Correct
- 2. In beam search, if you increase the beam width B, which of the following would you expect to be true? Check all that

- Beam search will run more slowly.
 - ✓ Correct
- Beam search will use up more memory.
 - ✓ Correct
- lacksquare Beam search will generally find better solutions (i.e. do a better job maximizing $P(y\mid x)$)
- ✓ Correct
- Beam search will converge after fewer steps.
- 3. In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.

- True
- False

Correct

4. Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes $P(y \mid x)$.

On a devisel example, given an input audio clip, your algorithm outputs the transcript $y=\min$ unitding an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.09 * 10^{-7}$$

$$P(y^* \mid x) = 7.21 * 10^-8$$

Would you expect increasing the beam width B to help correct this example?

- $igodesymbol{igodesize{0}}$ No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- \bigcirc No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN
- \bigcirc Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- \bigcirc Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.

5. Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggest you should focus your attention on improving the search algorithm.

1/1 point

- True.
- False.

✓ Correct

6. Consider the attention model for machine translation.

1/1 point

Further, here is the formula for $\alpha^{< t, t'>}$.

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_{\alpha}} \exp(e^{< t, t'>})}$$

Which of the following statements about $\alpha^{< t,t'>}$ are true? Check all that apply.

 \checkmark We expect $\alpha^{< t, t'>}$ to be generally larger for values of $a^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)

✓ Correct

- We expect $\alpha^{< t, t'>}$ to be generally larger for values of $a^{< t>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.)
- $\sum_{t} \alpha^{< t, t'>} = 1$ (Note the summation is over t.)

	$igsepsilon \sum_{t'} lpha^{< t, t'>} = 1$ (Note the summation is over t' .)	
	✓ Correct	
7.	The network learns where to "pay attention" by learning the values $e^{< t, t'>}$, which are computed using a small neural network: We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t, t'>}$ which in turn depends on $e^{< t, t'>}$; so at the time we need to evalute this network, we haven't computed $s^{< t>}$ yet. ① True ① False	1/1 point
	✓ Correct	
8.	Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:	1/1 point
	✓ Correct	
9.	Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to? _c_oo_o_kkb_ooooo_oo_kkk _ cokbok _ cookbook _ cook book _ coookkboooooookkk	1/1 point
	✓ Correct	
10.	 In trigger word detection, x^{<t></t>} is: Features of the audio (such as spectrogram features) at time t. The t-th input word, represented as either a one-hot vector or a word embedding. Whether the trigger word is being said at time t. Whether someone has just finished saying the trigger word at time t. 	1/1 point
	✓ Correct	