PRACTICE SESSION 3

EXERCISE 6

given
$$g(t) = \frac{2^{-1} + \frac{1}{5} e^{-2}}{1 + \frac{1}{2} 2^{-1}}$$
 (4)

(2) Ideatify the system order using the impulse response

$$W(2) = \left(2^{-1} + \frac{1}{5}z^{-2}\right) \left(\frac{1}{2} + \frac{1}{2}z^{-1}\right) = \left(2^{-1} + \frac{1}{5}z^{-2}\right) \left(\frac{2}{2}z^{-1}\right)^{\frac{1}{2}} = \left(2^{-1} + \frac{1}{5}z^{-2}\right) \left(\frac{2}{2}z^{-1}\right)^{\frac{1}{2}} = \left(2^{-1} + \frac{1}{5}z^{-2}\right) \left(1 - \frac{1}{2}z^{-1} + \frac{1}{5}z^{-2} - \frac{1}{8}z^{-3} + \frac{1}{16}z^{-3} + \frac{1}{16}z^{-4} - \frac{1}{32}z^{-5} + \cdots\right) =$$

$$= 2^{-1} + \frac{1}{5}z^{-2} - \frac{1}{2}z^{-2} - \frac{1}{10}z^{-3} + \frac{1}{5}z^{-3} + \frac{1}{20}z^{-4} - \frac{1}{8}z^{-4} - \frac{1}{5}z^{-5} + \cdots$$

$$= 2^{-1} + \left(\frac{1}{5} - \frac{1}{2}\right)z^{-7} + \left(\frac{1}{5} - \frac{1}{10}\right)z^{-3} + \left(\frac{1}{20} - \frac{1}{8}\right)z^{-4} + \left(\frac{1}{16} - \frac{1}{40}\right)z^{-5} + \cdots$$

$$= 2^{-1} + \left(\frac{1}{5} - \frac{1}{2}\right)z^{-7} + \left(\frac{1}{5} - \frac{1}{10}\right)z^{-3} + \left(\frac{1}{20} - \frac{1}{8}\right)z^{-4} + \left(\frac{1}{16} - \frac{1}{40}\right)z^{-5} + \cdots$$

$$= 2^{-1} + \left(\frac{1}{5} - \frac{1}{2}\right)z^{-7} + \left(\frac{1}{5} - \frac{1}{10}\right)z^{-3} + \left(\frac{1}{20} - \frac{1}{8}\right)z^{-4} + \left(\frac{1}{16} - \frac{1}{40}\right)z^{-5} + \cdots$$

 $\omega(0) = 0$ $\omega(1) = 1$ $\omega(2) = -3/10$ $\omega(3) = 3/20$ $\omega(4) = -3/40$ $\omega(5) = 3/80$

$$H_2 = \begin{bmatrix} 1 & -3/10 \\ -3/0 & 3/20 \end{bmatrix}$$
 $\pi aux(H_2) = 2$

 $H_{3} = \begin{bmatrix} 1 & -3/10 & 3/20 \\ -3/10 & 3/20 & -3/40 \end{bmatrix}$ $H_{3}(3,:) = -\frac{1}{2}H_{3}(2,:) \rightarrow \text{Trank}(H_{2}) = 2$

$$man \times (H_2) = 2$$

$$m = 2$$

$$man \times (H_3) = 2$$

(b) Find the state space representation

In this case it is possible to use the

$$H_{m+1} = H_3 = \begin{bmatrix} 1 & -3/6 & 3/20 \\ -3/6 & 3/20 & -3/60 \\ 3/20 & -3/6 & 3/20 \end{bmatrix}$$

																						_													
+											Γ	1	O	7	,-	\perp	+	_	2	_	r	T	17		-3	10		3/2	20	7					
		fo	ات ا	100	يز	₹á	+10	m				0	1			1	-	3/10	3	20°			_ =	3_	3,	_	_	3	_						
1		_									Ш	\sim	_!	_	Ľ	16	3,	zo		340		-	<u> </u>	10		20	+-	~a	0						
-		_	_								L		^ Z	:]	-	-	١,	\mathcal{Q}_3		_		Ļ	2	20	_	3/40	>	3/8	0	٦					
+		-	-		-		-					Ċ	93			+	C	~ 3						-						+					
+		+	\dashv	,-			7	-1	Г				7		\sim	+	,	7						+			+			+			+		
+	Ĥ		_		1		1		†	0	-	_	Ħ,	= [Ϊ.																		
				L	9	1	7			0	-	2]	L	O		Z																		
						<u> </u>																													
1		1		1																				_											
+	(<u>.</u>	=	_ 3	/2		_						-			+		-						_						-			-		
+		+	L	•	10	۲_							+			+							+	+			+			+			+		
+	Ĺ	\ _	- [-	1	C	ر د د						+			+														+					
1																																			
	Ì	<u>;</u>	- (2				st,	ric	ct	ly		זכך	ı cr	برهو		54	ړ	cu		(u	عرد	ء (د	= 0)										
			\prod			I		Ţ			0		'	,			- 1																	Щ	
-			- 1		_				7						-	-	,	\neg			_			_			-			_		-	-		
+	ŕ	1			O			1 - 2						ر ح ح		-	_				-			-		-	-			+		+	-	\vdash	
+		-	=	(\circ			_ !_						(ت	-	-:	3/1				\dashv		+	+			+			\dashv			+	\vdash	
+			(_				Z	١							-	//	J																	
		1												~																					
	}	1.	= [1		C	>]						Ď	=		0]																	
-																			_																
+		-	-													+							-	+			+				-		+		
+		+	+																					-											
+																																			
1		_	_										_			-														4					
+		-	-								_					+							-	+			+			-			+		
+		+	+																					-											
+																																			
j																																			
-	_		_			_	_	_					_	_		+	-				_						_			4		-			
+																+	+	-			-		_	+	-	-	-					+	-		
+		+	+													+							+	+			+			+					
+							\dashv									\dagger					\dashv									\dashv					
Ť																																			
1																					J														
-		_														-	-				_			_		_	_			_				Ш	
+	-	+			_	+	_	+		-			-			+	+				-			+		-	-			+		-	+		
+	+	+	+			+	-	+					+	+		+					+		+	+			+			+				\vdash	
+																\dagger																		H	
1																																			
-																+	+							-		_	-					+	-		
+		-	_		-	-	-	-								+	-				-		_	-			-			+			-	H	
+	+	+	+		-	+	-	+					+			+	+				\dashv			+						+				H	
+		+	+																				+	+											_

```
EXERCISE 7
```

(a) Find the first 7 samples of the IR

$$W(2) = \frac{1}{1-a2^{-1}} = \sum_{k=0}^{\infty} (a2^{-1})^{k} = 1 + a2^{-1} + a^{2}2^{-2} + a^{3}2^{-3} + \cdots$$

$$w(0) = 1$$
 $w(1) = a$ $w(2) = a^{2}$ $w(3) = a^{3}$

$$\omega(4) = a^{4} \quad \omega(5) = a^{5} \quad \omega(6) = a^{6} \quad \omega(7) = a^{2}$$

W(0) = The system is not strictly proper

(b) I dentify the system order starting from the impulse response

$$H_2 = \begin{bmatrix} a & a^2 \\ a^2 & a^3 \end{bmatrix}$$
 $H_2(2,:) = a H_2(1,:)$

(Find a state space representation

$$H_2 = \begin{bmatrix} a & a^2 \\ a^2 & a^3 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ \alpha \end{bmatrix} \begin{bmatrix} \alpha & \alpha^2 \end{bmatrix} = \begin{bmatrix} \alpha & \alpha^2 \\ \alpha^2 & \alpha^3 \end{bmatrix}$$

$$\frac{1}{2} \begin{bmatrix} \alpha & \alpha^2 \end{bmatrix} = \begin{bmatrix} \alpha & \alpha^2 \\ \alpha^2 & \alpha^3 \end{bmatrix}$$

$$\frac{1}{2} \begin{bmatrix} \alpha & \alpha^2 \end{bmatrix} = \begin{bmatrix} \alpha & \alpha^2 \\ \alpha^2 & \alpha^3 \end{bmatrix}$$

$$\frac{1}{2} \begin{bmatrix} \alpha & \alpha^2 \end{bmatrix} = \begin{bmatrix} \alpha & \alpha^2 \\ \alpha^2 & \alpha^3 \end{bmatrix}$$

$$\frac{1}{2} \begin{bmatrix} \alpha & \alpha^2 \\ \alpha^2 & \alpha^3 \end{bmatrix}$$

$$\frac{1}{2} \begin{bmatrix} \alpha & \alpha^2 \\ \alpha^2 & \alpha^3 \end{bmatrix}$$

$$\frac{1}{2} \begin{bmatrix} \alpha & \alpha^2 \\ \alpha^2 & \alpha^3 \end{bmatrix}$$

$$\frac{1}{2} \begin{bmatrix} \alpha & \alpha^2 \\ \alpha^2 & \alpha^3 \end{bmatrix}$$

$$\frac{1}{2} \begin{bmatrix} \alpha & \alpha^2 \\ \alpha^2 & \alpha^3 \end{bmatrix}$$

$$\frac{1}{2} \begin{bmatrix} \alpha & \alpha^2 \\ \alpha^2 & \alpha^3 \end{bmatrix}$$

$$\frac{1}{2} \begin{bmatrix} \alpha & \alpha^2 \\ \alpha^2 & \alpha^3 \end{bmatrix}$$

$$\frac{1}{2} \begin{bmatrix} \alpha & \alpha^2 \\ \alpha^2 & \alpha^3 \end{bmatrix}$$

Matrix D identification

$$\begin{cases} \times (t+1) = F \times (t) + G u(t) \\ y(t) = H \times (t) + D u(t) \end{cases}$$

Consider
$$x(0)=0$$
 and $u(t)=\begin{cases} 1 & t=0 \\ 0 & t\neq 0 \end{cases}$
 $t=0$ $y(0)=H(0)+Du(0)=D$

D is the first sample of the impulse response

 $D=u(0)$
 $D=u(0)$
 $D=1$
 $f=a$
 $f=a$