PAGE 11/17 * RCVD AT 6/14/2004 11:45:13 AM [Eastern Daylight Time] * SVR:USPTO-EFXRF-3/25 * DVIS-2/70 * CSID:16/174262275 * DVIRATION (mm-ss):04-02

- first and second lateral regions, extending parallel to and on each side of said first
- 8 heightened region along the longitudinal axis, into which all higher order spatial modes extend
- 9 laterally and are suppressed, wherein the cross-sectional dimensions of the lowest order spatial
- mode are at least several times larger in both the transverse and lateral directions than the
- optical wavelength inside the dielectric medium of the waveguide.
 - 1 57. The device of claim 56 further comprising second and third heightened regions, which
 - 2 extend parallel to and are separated from said first heightened region along the longitudinal
 - 3 axis, and include absorptive regions to provide loss for higher order spatial modes.
 - 1 58. The device of claim 56, wherein loss in said first and second lateral regions is generated
 - by bombardment of all or certain layers with protons or other damage-inducing ions to provide
 - 3 additional loss for higher order spatial modes.
 - 1 59. The device of claim 56, wherein loss in said first and second lateral regions is generated
 - 2 by roughening the sidewalls of the device to further suppress higher order spatial modes.
 - 1 60. The device of claim 56, wherein loss in said first and second lateral regions is generated
 - 2 by doping said regions to provide large free-carrier absorption which adds additional loss for
 - 3 higher order spatial modes.
 - 1 61. The device of claim 56, wherein the cross-sectional dimensions of the lowest order spatial
 - 2 mode are at least an order of magnitude larger than the optical wavelength inside the dielectric
 - 3 medium of the waveguide.
 - 1 62. The device of claim 57, wherein the cross-sectional dimensions of the lowest order spatial

PAGE 12/17 * RCVD AT 6/14/2004 11:45:13 AM [Eastern Daylight Time] * SVR:USPTO-EFXRF-3/25 * DNIS:2732310 * CSID:16/174262275 * DURATION (mm-ss):04-02

- 2 mode are at least an order of magnitude larger than the optical wavelength inside the dielectric
- 3 medium of the waveguide.
- 1 63. The device of claim 56, wherein the contours of constant optical intensity for the lowest
- 2 order spatial mode supported within said waveguide are nearly circular.
- 1 64. The device of claim 56, wherein the contours of constant optical intensity for the lowest
- 2 order spatial mode supported within said waveguide have an approximately elliptical shape
- 3 with a small aspect ratio.
- 1 65. The device of claim 57, wherein the contours of constant optical intensity for the lowest
- 2 order spatial mode supported within said waveguide are nearly circular.
- 1 66. The device of claim 57, wherein the contours of constant optical intensity for the lowest
- 2 order spatial mode supported within said waveguide have an approximately elliptical shape
- 3 with a small aspect ratio.
- 1 67. The device of claim 57, wherein the first heightened region in the waveguide is defined by
- 2 a region between two parallel etched channels in said layers, and wherein said second and third
- 3 heightened regions are positioned outside the two parallel etched channels.
- 1 68. The device of claim 56, wherein a quantum well region provides gain.
- 1 69. The device of claim 56, wherein a quantum well region comprising one or more quantum
- wells, barrier layers and bounding layers provides gain.
- 1 70. The device of claim 56, wherein a strained-layer quantum well region provides gain.

PACE 1317 * RCVD AT 6/14/2004 11:45:13 PM [Eastern Daylight Time] * SVR:USPTO EFXRF-3/25 * DNIS:2732310 * CSID:16/174262275 * DURATION (mm-ss):04-02

- 1 71. The device of claim 56, wherein a strained-layer quantum well region comprising one or
- 2 more quantum wells, barrier layers and bounding layers provides gain.
- 1 72. The device of claim 56, wherein a region containing quantum dots or quantum wires
- 2 provides gain.
- 1 73. The device of claim 56 in which a region containing quantum dots or quantum wires
- 2 inside one or more quantum well layers provides gain.
- 1 74. The device of claim 56, wherein-gain is provided by a region containing one or more
- 2 semiconductor layers.
- 1 75. The device of claim 57, wherein the regions between the first and second heightened
- 2 regions and between the first and third heightened regions are filled with high resistivity
- 3 material.
- 1 76. The device of claim 56, wherein said waveguide is comprised of a plurality of layers of
- 2 semiconductor material with different optical indices.
- 1 77. The device of claim 76, wherein said plurality of layers of semiconductor material with
- 2 different optical indices are made of III-V compound semiconductors.
- 1 78. The device of claim 76, wherein said plurality of layers of semiconductor material with
- 2 different optical indices are made in the InxGa1-x AsyP1-y semiconductor system on an InP
- 3 substrate.
- 1 79. The device of claim 76, wherein said plurality of layers of semiconductor material with

4

PAGE 1417 * RCVD AT 6/14/2004 11:45:13 AM [Eastern Daylight Time] * SVR:USPTO-EFXRF-3/25 * DNIS:2732310 * CSID:16/174262275 * DURATION (mm-5s):04-02

- 2 different optical indices are made in the AlaGayIntaryAs semiconductor system on an InP
- 3 substrate.
- 1 80. The device of claim 76, wherein said plurality of layers of semiconductor material with
- 2 different optical indices are made in a combination of the Al₂GayIn_{1-x-y}As and In₂Ga_{1-x}As_yP_{1-y}
- 3 semiconductor systems on an InP substrate.
- 1 81. The device of claim 76, wherein said plurality of layers of semiconductor material with
- 2 different optical indices are made in the Al_xGa_{1-x}As semiconductor system on a GaAs substrate.
- 1 82. The device of claim 76, wherein said plurality of layers of semiconductor material with
- 2 different optical indices are made in the Al_xGa_yIn_{1-x-y}As semiconductor system on a GaAs
- 3 substrate.
- 1 83. The device of claim 76, wherein said plurality of layers of semiconductor material with
- different optical indices are made in a combination of the AlxGa1-x Asz and InxGa1-x Asz
- 3 semiconductor systems on a GaAs substrate.
- 1 84. The device of claim 76, wherein said plurality of layers of semiconductor material with
- 2 different optical indices are made in a the GayIni yAsiPi- semiconductor systems on a GaAs
- 3. substrate.
- 1 85. The device of claim 76, wherein said plurality of layers of semiconductor material with
- 2 different optical indices are made in a the Al_xGa_yIn_{1-x-y}As_zP_{1-x} semiconductor systems on a
- 3 GaAs substrate.
- 86. The device of claim 76, wherein said plurality of layers of semiconductor material with

- different optical indices are made in a combination of the AlaGayIni-x-yAszPi-z and
- 3 In Gai-x AsyPi-y semiconductor systems on a GaAs substrate.
- 1 87. The device of claim 76, wherein said plurality of layers of semiconductor material with
- 2 different optical indices are made in the Al_xGa_yIn_{1-x-y}As_zSb_{1-z} semiconductor system on an InP
- 3 substrate.
- 1 88. The device of claim 76, wherein said plurality of layers of semiconductor material with
- 2 different optical indices are made in a combination of the Al_xGayIn_{1-x-y}As_zSb_{1-z} and In_xGa_{1-x}
- 3 AsyP_{1-y} semiconductor systems on an InP substrate.
- 1 89. The device of claim 76, wherein said plurality of layers of semiconductor material with
- 2 different optical indices are made in the AlxGayIni-x-yAsxSbi-z semiconductor system on a GaSb
- 3 substrate.
- 1 90. The device of claim 76, wherein said plurality of layers of semiconductor material with
- different optical indices are made in the AlaGayInt-x-yAszSbt-z semiconductor system on an InAs
- 3 substrate.
- 1 91. The device of claim 76, wherein said plurality of layers of semiconductor material with
- 2 different optical indices are made in the Al_xGa_yIn_{1-x-y}N semiconductor system on a GaN
- 3 substrate.
- 1 92. The device of claim 76, wherein said plurality of layers of semiconductor material with
- 2 different optical indices are made in the AlaGayIni-x-yN semiconductor system on a sapphire
- 3 substrate.