Talk 4: A funny field C. Goal: define subset  $C \subseteq \widehat{C}$  of  $\widehat{C} \cap X$  and show that they are Op -aly.

difficulty: define multiplication on E.

Recall notation: C = alg. closed complete Non-archi ext of ag,  $||p|| = p^{-1}$   $F \supseteq \overline{cfx} \subseteq \widehat{cfx}$   $| \qquad \qquad || \qquad || \qquad || \qquad \qquad || \qquad$ 

81. Correspondences on C abun notion

Def (1) A comp  $f: C \rightarrow C$  is multiplevalued function i.e  $\forall x \in C$ . associate  $ff(x) \notin C$  image of x

 $|\tilde{br}| \in C$ , define  $\tilde{f}(\tilde{E}) = U(\tilde{f}(x))$ .  $x \in E$ If  $|\tilde{f}(x)| = \emptyset$ , say f is define at x

(2) For a converge  $\hat{f}: C \rightarrow C$ , the graph of  $\hat{f}$ .  $[\hat{f}:=f(x,y)\in C\times C|g\in \{\hat{f}(x)\}\}$ 

(3) composition given  $f: C \rightarrow C$  and  $g: C \rightarrow C$ 

composition  $fog: C \longrightarrow C$  $x \longmapsto f(f(x))$  composition is associative (fog)oh = fogoh)

(4). Say F: C → C is additive if Ip ⊆ C×C is an additive subgp. In partialr,  $\{f(0)\} \subseteq C$  is a subgp. Rmk. f: c -> c additive. x, y & c, when f is dfd (1) {f(x)} = {f(0)} + a, \tag{4 a \( \) off(x)} (1)  $\{f(x+y)\}=\{f(x)\}+\{f(y)\}$ 

82. Additive functions

Reall in Shizhany's talk. Sc: (sx) --->

$$1 \longrightarrow \widetilde{H}_{CRXI} \longrightarrow \widetilde{T}_{C} \longrightarrow \mathcal{O}_{C} \longrightarrow 1$$

$$|| \qquad \qquad ||$$

$$\operatorname{Gal}_{F} \qquad \left\{ \operatorname{Te} \operatorname{Aut}(\overline{F}_{C}) \middle| \pi(x) := X^{c} \cdot X \in \mathcal{O}_{C} \right\}$$

Notation:  $f \in \overline{CfxJ}$   $f^z = zG$ 

 $S_{c}^{\tau} := (\widehat{C_{1}} \times \widehat{S} \xrightarrow{\tau} \widehat{C_{1}} \times \widehat{S} \xrightarrow{c} C)$   $f^{\sharp} : \widehat{B}(0,1) = \operatorname{Spu}\widehat{C_{1}} \times \widehat{S} \xrightarrow{c} C$   $\int_{0}^{t} \widehat{B}(0,1) = \operatorname{Spu}\widehat{C_{1}} \times \widehat{S} \xrightarrow{c} C$ 

 $f^{\dagger}: \stackrel{\sim}{T_c} \longrightarrow C$  $\tau \longmapsto f^{\sharp}(S_{c}^{\sharp}) = S_{c}(f^{e}) \subset Colmez's f(z)$ 

$$f(0) = f^{\#}(id_{\mathcal{T}_{c}}) = S_{c}cf)$$
Define a corresp.  $f(0) : B(0,1) \longrightarrow C$ 

$$\chi : \longrightarrow f^{\#}(\bar{\eta}^{1}(x)) = f^{\#}(\bar{\eta}^{1}(x))$$
(all  $f \in C_{f}^{\wedge}X$ ) an analytic function and  $f(0)$  an ana. corresp.

$$|f(0) = f^{\#}(id_{\mathcal{T}_{c}}) = S_{c}cf)$$

$$|f(0) = f^{\#}(id_{\mathcal{T}_{c}}) = f^{\#}(id_{\mathcal{T}_{c}})$$

$$|f$$

Recall 
$$\|f\|_{q} = \sup_{t \in T_{c}} \|f^{t}(ct)\|$$
  
Hence  $f_{co}: B(0,2) \longrightarrow C$   
 $B(0,1)$   $B(0,1)$ 

A basic projects of ana. correspondente.

Lemma. foo sends yot to cpt.

Pf.  $f_a = f^{\sharp} \circ \pi^{-1}$ ,  $\pi$  is q. cpt. and  $f^{\sharp}$  is cts.

An ana. fun. f is addition if  $f^{\sharp}: \overline{C} \longrightarrow C$  is apphosme.

In this case If = If \( \int \cap \) is a subop.

Home for is add, corners.

Define  $\hat{\ell} \in \widehat{C[x]}$  the subset of add. fun.

 $f \in \hat{\mathcal{C}}$ ,  $\{f_{co}\}\} \in C$  opt subsp, have a  $\mathbb{Z}_q$ -model. Say f is of finite rank if  $\{f_{co}(o)\}$  is a finite rank  $\mathbb{Z}_q$ -model.  $\text{Define } \ell \subseteq \hat{\ell}$  the subset of finite rank add, for

Will focus on É. How to characteria add. fra.?

lemon. focix, the TFAE

- (1) f is additive
- (2) f(0) =0 & fco is add. corresp.
- (3)  $f(\omega) = 0$ , and  $\exists M \subseteq C \ \text{opt} \ \text{s.t}$   $f_{(\omega)}(x+y) f_{(\omega)}(x) f_{(\omega)}(y) \subseteq M, \ \forall x,y \in \beta(\omega,1)$
- (4)  $f^{\tau} f$  is const fur. of value  $f^{\tau}(0) = f^{\#}(2)$

2f. (1) (=) (2) exercise

(2) 
$$\Longrightarrow$$
 (3).  $f_{co}(x+y) - f_{co}(x) - f_{co}(y)$ 

$$= \frac{f_{co}(x) + f_{co}(y)}{f_{co}(x) + f_{co}(y)} - f_{co}(x) - f_{co}(y)$$

$$= f_{co}(x) + f_{co}(x) + f_{co}(x) - f_{co}(y)$$

interesting

(3) => (1) Recall a useful lemma

lemma ("cpt in =) const lem")
If f ∈ (ÎX), and ∃M ⊆ C cpt. st. f#(Tc) ⊆ M, then f is const.

For 
$$\zeta \in \widehat{\mathcal{T}}_{c}$$
, define  $g_{\zeta} := f^{\zeta} - f - f^{\sharp}(\zeta)$ .

Then  $\forall \delta \in \widehat{\mathcal{T}}_{c}$ .  $g_{\zeta}^{\sharp}(\delta) = f^{\sharp}(\tau \delta) - f^{\sharp}(\sigma) - f^{\sharp}(\tau \delta) - f^{\sharp}(\tau \delta)$ 

$$= \int_{\chi(\tau \delta) + \chi(\delta)} f^{\sharp}(\chi(\tau \delta)) - f^{\sharp}(\chi(\tau \delta)) - f^{\sharp}(\chi(\tau \delta))$$

$$= M$$
 $(pt \text{ in } \Rightarrow c \text{ on } t \text{ lemm} \implies g_{\zeta} \text{ unst of value } g_{\zeta}(0) = 0.$ 

(1)  $\Rightarrow$  (4) is prove above as 97 is constant. of value 0.  $f^{\tau} - f \text{ is const of value } f^{\#(\tau)}$ (4)  $\Rightarrow$  (1) exercise

Example 
$$\forall c \in C$$
,  $f = cX$  is add.  
 $f = X^n$ , is Not add. if  $n \geqslant z$ .

8.3. An approximation new ubt.

Technical goul: 
$$\hat{\mathcal{C}} \subseteq \widehat{C7X3} := \widehat{C7X3}^{con}$$

$$p-closur of C7X3$$

Fix 
$$f \in \widehat{\mathcal{C}}$$
, consider the  $q_p$  homo  $C$   $C$   $C$   $C$ 

open 
$$^{\varsigma}$$
 Galf

 $K_{f.\, \epsilon} := F^{H_{f.\, \epsilon}}$ .  $B_{f.\, \epsilon} := K_{f.\, \epsilon} \, \Omega \, \widehat{Cix} = into \, clase. 

Cix) in  $K_{f.\, \epsilon}$$ 

$$\overline{F} \supseteq \overline{CFX} \supseteq \overline{CFX} \supseteq \widehat{C}$$

$$| \qquad \qquad | \qquad \qquad | \qquad \qquad |$$

$$| \qquad \qquad |$$

$$| \qquad \qquad |$$

$$| \qquad \qquad |$$

$$| \qquad |$$

$$|$$

$$|$$

$$| \qquad |$$

$$|$$

$$|$$

$$|$$

$$| \qquad |$$

$$|$$

$$|$$

$$|$$

$$|$$

$$|$$

$$|$$

$$|$$

$$|$$

$$|$$

Fact: Y TE To, T(Kf.E) = Kf.E.

( True, for any  $K\subseteq Kf$ . Hint: show that  $T^{-1}H_{f}$ .  $ET=H_{f,\epsilon}$  using additing)

Pmp.  $f \in \hat{\mathcal{C}}$ ,  $\exists f_2 \in \mathcal{B}_{f, \Sigma}$ .  $st. \|f - f_{\Sigma}\|_{Sp} \leq p^2 \xi$ .

Pf. Fact ( var: at of Ax - Sen- Tate by Colmez)

4 f' E CTX) = F, = fe = Kf.E. 1.+

 $\|f'-f_{\varepsilon}\|_{sp} \leq p^{2} \Delta_{K_{f,\varepsilon}} cf'$ ). Here  $\Delta_{K_{f,\varepsilon}} cf' = \sup_{\sigma \in H_{f,\varepsilon}} \|\sigma(f') - f\|_{sp}$ 

Choose f' such that  $\|f - f'\|_{\mathfrak{P}} \leqslant \varepsilon$ .

(Note  $\Delta K_{f, \Sigma}(f) \leq \varepsilon$ .) Then have

 $||f - f_{\epsilon}||_{sp} \le p^2 \epsilon$  (exercise)

Need to modify f into Bf. s.

Write  $f = \frac{b\epsilon}{g}$ , be e. Bfie.  $g \in Ocix)$  of norm 1.

To proceed, need a lomma that we admit

lemm. g G Ocix). norm 1. Then I Z G To. s.t (g, rug)) = Oc [X].

lemma => = u. v G Oc(x). st. ug + v r(g) = 1

Writ  $f_{\epsilon} = f + \tau (f - f_{\epsilon}) = \tau (f_{\epsilon}) + f^{\sharp}(\tau)$ 

Write  $f_{\epsilon} = ugf_{\epsilon} + v\tau(g)y_{\epsilon}$ .

By: Somewhere your need  $\tau(B_{f,\epsilon}) = B_{f,\epsilon}$ as  $\tau(K_{f,\epsilon}) = K_{f,\epsilon}$ .

Can check ||f-f∈||sp ≤pt∈.

84. Technical goal & & C[x].

prop. ê e cíx).

Pf. By approx. result. f is a limit of elects in UBf. E.

So enoth to show  $\bigcup B_{f,\xi} \subseteq C_{f,\chi}^{(\infty)}$ .

As CFXICO) is into closed, one of to show conflict from,

term Y E>O, Kf. E = Fran ((fx)co)

Write K=Kec

Pf. Lough to show  $K = F(N_f)$  for some  $f \in O_{CIX}^{**}:= f \in O_{CIX}^{*}$ 

If -4(sp < 1) Small gap here:

Step 1. Write K = F(N) = 1. for some  $f \in F^{\times}$ .  $K_{f} : S = C$  and  $K_{f} : S = C$ . Note Grack is finite quotient of Grack f : S = C. The finite ext of f : S = C. Which is auto.

By Kumur that,  $\Delta := (K^{\times})^{pn} \land F^{\times}$  where f : S = C is f : S = C. K = F(f) = C for any f : C = C where f : C = C is f : S = C is f : S = C.

Is a generator. Character such an f : C.

Now wish to modify f into Octo).

Fact: each element  $f \in \mathbb{P}^{\times}$  is of the following form  $f = \left(\prod_{i} (x - d_{i})^{?}\right) \cdot f_{o} \cdot c, \text{ where } d_{i} \in O_{c}, \text{ distinct.}$ 

?  $\in \mathbb{Z}$ ,  $f_0 \in \mathcal{O}_C^{\times} + \times M_C \in \mathbb{X}$ , and  $C \in \mathbb{C}^{\times}$  (of norm II fllsp). (See Appendix for the proof of claim).

We call  $T(X-x_i)^{?}$  the divisor part of f. It is uniquely determined by f (see Appendix).

Step 3. replace of by some other gener of s.

 $K \subseteq Kf$ .  $\forall z \in \mathcal{T}$ , G(K) = K.  $\Longrightarrow \Delta \xrightarrow{\tau} \Delta$  isom of  $g_{F}$ s  $f \xrightarrow{\tau} \tau f$ ). Hence image of  $\tau(f) \in (K^{\times})^{p^n} \cap F^{\times}$  is another gonerator of  $\Delta$ . So we

have  $K = F(\mathcal{Y} + ) = F(\mathcal{Y} \mathcal{C} + )$ .

Claim. We can choose  $T \in T_C$  s.t T(f) is of the form  $T(f) = h^{p^n}, f_o', \text{ where } h \in F^{\times} \text{ and } f_o' \in O_C^{\times} + \times M_C(\times).$ 

If so, we are done: h is removable and can heplace for by  $f'_{o}(\omega) \in 1 + \times M_{c}(x) \subseteq \mathcal{O}_{c,x,y}^{**}$ .

Proof of claim: On the one hand,

 $\tau \cdot f_{0} = \prod_{i} (x - x_{i} + x_{i}(z_{i}))^{?} \cdot f_{0}', \quad f_{0}' \in \mathcal{O}_{C}^{X} + x_{m_{i}}(x_{i}).$ 

on the other hand,  $\tau(f) = f^{iz} \cdot g^{p^n}$  for some  $| \leq i \leq p^n$   $g \in \mathbb{R}^{\times}$ 

as f is a generator of  $\Delta$ .

Choose  $T \in T_0$ . set  $\{di\} \cap \{di-x(o)\} = \emptyset$ . It means that. divisor part of f does not involve terms like  $(X-di)^2$ .

NOW comparing the divisor parts of two expressions of Ccf.

One finds that  $Ccf = h^{or} \cdot f_0'$ , when h is of the form  $T(X-\beta_i)^2$  (in particular, belongs to  $F^{\times}$ ).

8.5. Multipliater 6th. on  $\hat{\mathcal{E}}^! := \hat{\mathcal{E}}^{\|\cdot\| \leq 1}$ .

Thm. (1) For any  $f. g \in \hat{\mathcal{C}}^{\circ}$ .  $\exists$  unique  $h = f \cdot g \in \hat{\mathcal{C}}^{\circ}$ . S.t.  $h_{co} \subseteq f_{a} \circ g_{a}$ .

(2) With multip. given by "." as in (1),  $\hat{C}^{\circ}$  is a Zp-edy. Construction of  $h=f\cdot g$ .

Recall ê = ê = c [x].

write  $\Lambda = \widehat{C1\times 3}$ , sympathetic, can fin p-clusur  $\Lambda \widehat{1}\widehat{1}\widehat{1}\widehat{1}$  and  $\widehat{\Lambda SYI}$ . Choose  $S_A: \widehat{\Lambda SYI} \longrightarrow \Lambda$ .

 $1 \rightarrow H_{\Lambda} \rightarrow T_{\Lambda} \rightarrow \mathcal{O}_{\Lambda} \rightarrow 1$   $\begin{cases} r \in Aut(\Lambda^{fY}/_{\Lambda}) \mid Y^{7} - Y \in \mathcal{O}_{\Lambda} \end{cases}$   $\uparrow \qquad \qquad \qquad \uparrow^{7} - Y.$ 

Our g has norm  $\leq 1$ ,  $g \in O_{\Lambda}$ . Here can chook  $Z \in T_{\Lambda}$ ., St  $Y^{\tau} - Y = g$ . Consider ring home

$$\frac{\partial^{0} \subseteq \widehat{\Lambda_{1}} \cong \widehat{\Lambda_{1}}$$

$$h:=\beta(h)\in\widehat{\mathcal{C}(x)}$$
.

Q. What are we doing here?

If f & C[x], a gody. Alm.

$$f = f(x) \longrightarrow f(y).$$

In spirit. We are doing composition.

Warning: night be dangurus to think in this way Since even  $f = \chi^n$  is mot additive as we have seen.

Finally, multiplication on ê

¥f.g∈ê. chus m&n. stpmf∈€° and

$$f \cdot g := p^{-m-n} (p^m f) \cdot (p^n g)$$

Thm. E and ê are Op-algebra and have embeddy

of On-algo

C -> C -> ê.

$$C \longrightarrow C \longrightarrow C \setminus C$$

Will see examples of deuts in e/cin later talks

## Appendix

(laim (1) each  $f \in F^{\times}$  admits un expression  $f = \prod (X-di)^{?} \cdot f \cdot c, \text{ where } di \in CR, \text{ pairwise distinct, } f_{o} \in CL^{\times}(XM_{o}(X))^{?} \cdot f_{o} \in CL^{\times}(XM_{o}(X))^{?} \cdot f_{o} \in F^{\times}(XM_{o}(X))^{?} \cdot f_$ 

Pf. First write  $f = \frac{3}{4} \cdot c$ , s.t.  $\|g\|_{SP} = \|fh\|_{SP} = 1$  &  $c \in C^{\times}$  of norm  $\|f\|_{SP}$ . Then by waistrass preparation,  $g = \pi(x - \lambda i)^{?} \cdot 30$ .  $g \in U_{c}^{\times} + \times McI^{\times}$ ?  $f \in U_{c}^{\times} + \times McI^{\times}$ ?

where the decompositions are unique. Hence we can write  $f = \frac{1}{11} \left( \times - \times : \right)^{?} \cdot f_{0} \cdot c , \text{ w/ } \text{ $k$ i $COc$, $f_{0} \in O^{\times}_{c} + \times M_{c} / \times $}$   $c \in C^{\times}.$ 

Hoe we require that these dissorraise distinct. Or, better, as a first step, we may write

$$f = \frac{9}{h} \cdot c, \quad \omega | \int |\theta|_{sp} = |\theta|_{sp} = 1,$$

$$c \in C^{\times} (\omega) ||c|| = ||f|_{sp}) \qquad (*)$$

$$(9, h) = 1.$$

## The uniquess follows from

Weitstus quefaration (the version we are using above)

f∈Oc[x], novn 1, then ∃ unique g∈Oc[x].

monic. and unique.  $h \in OC + \times mc[x]$ . Sit.

f = g, h.