

Requirements Management und Modellierung - VO

Einheit 1 – WS 2013/2014

Dipl.-Ing. Mag. Dr. Michael Tesar

michael.tesar@fhwn.ac.at

Terminplan und LV-Inhalte

	Datum	Uhrzeit	Ein- heiten	Inhalt
VO - 01	Mo., 14.10.2013	17:30 - 21:00	4	Einführung in die Lehrveranstaltung. Einführung in das Requirements Engineering Ziele und Modelle, Arten von Anforderungen
VO – 02	Mo., 21.10.2013	17:30 - 21:00	4	Anforderungen ermitteln Rollen, Faktoren, Techniken Anforderungen formulieren Vorbereitungen zur guten Dokumentation
VO - 03	Mo., 28.10.2013	17:30 - 21:00	4	Anforderungen validieren Prüftechniken Qualitätsmetriken
VO - 04	Mi., 13.11.2013	17:30 - 21:00	4	Versionsmanagement Change- und Releasemanagement Wiederverwendung von Anforderungen Arbeiten in verteilten Projektteams
PR	Mi., 27.11.2013	17:30 - 18:30	1	Schriftliche Prüfung über die Inhalte der Vorlesung
UE - 01	Mi., 27.11.2013	19:00 - 21:00	2	1. Übungseinheit

Benotung Vorlesung

- > Schriftliche Prüfung
- > Ohne Unterlagen
- > 60 Minuten
- > Lehrveranstaltungs-Stoff

Benotung:

ab 60% = Genügend

ab 70% = Befriedigend

ab 80% = Gut

ab 90% = Sehr gut

Anwesenheitspflicht

- > Es besteht keine Anwesenheitspflicht in der Vorlesung.
- > Es steht den Studierenden frei, bei den Lehrveranstaltungsterminen anwesend zu sein.

Literatur Vorlesung

- > Folien & Mitschrift
- > Buch: Chris Rupp; Requirements-Engineering und -Management: Professionelle, Iterative Anforderungsanalyse für die Praxis; Hanser Verlag; 2009; 5. Auflage
- > Moodle-Kurs mit weiterführenden Materialien

Literatur Übung

- > http://www.omg.org/spec/UML/2.4.1/
- > Folien & Mitschrift
- > Moodle-Kurs mit weiteren Materialien
- > Buch (nicht verpflichtend):
 UML 2 glaskar
 Chris Rupp & die Sohpisten
 Hanser

Einführung in die Thematik

Was ist Systemmodellierung?

Was ist Requirements-Engineering?

Wozu braucht man das?

Der Einstieg in die Systemmodellierung

Man muss die Dinge so tief sehen, dass sie einfach werden

- Konrad Adenauer

Begriffsdefinition "System"

Definiert nach Weilkiens bzw. INCOSE

Ein **System** ist ein von Menschen erstelltes Artefakt bestehend aus Systembausteinen, die gemeinsam ein Ziel verfolgen, das von den Einzelelementen nicht erreicht werden kann. Ein Baustein kann aus Software, Hardware, Personen oder beliebigen anderen Einheiten bestehen.

Begriffsdefinition "Systems Engineering"

Definiert nach Weilkiens bzw. INCOSE

Das **Systems Engineering** konzentriert sich auf die Definition und Dokumentation der Systemanforderungen in der frühen Entwicklungsphase, die Erarbeitung eines Systemdesigns und die Überprüfung des Systems auf Einhaltung der gestellten Anforderungen unter Berücksichtigung des Gesamtproblems: Betrieb, Zeit, Test, Erstellung, Kosten & Planung, Training & Support und Entsorgung

Systems vs. Software Engineering

Nach Weilkiens

Software Engineering, Hardware Engineering, Verfahrenstechnik usw. sind Disziplinen, die bestimmte Bausteine des Systems entwickeln. Das Systems Engineering betrachtet das System ganzheitlich! (Inkl. Entwicklung, Betrieb und Entsorgung)

Produkt:

...ist ein Wirtschaftsgut, das in einem Wertschöpfungsprozess geschaffen wird, in dem Produktionsfaktoren umgewandelt werden. vereinfachend darzustellen.

definierten Reihenfolge zu erreichen.

konkret <u>Werkzeuge</u> **Konzept Notation Produkt** z.B. DIA, Visio z.B. Objekt, z.B. UML, z.B. Release, **Prozess** Use Cases Klasse Dienst **Methode** z.B. OOA **Modell** 7.B. Anforderungsz.B. Analyse-**Prinzip** analyse abstrakt modell, z.B. Objektorientierung, Spezifikation iterative Entwicklung Vorgehensweise Ergebnis

Komplexität vs. Kompliziertheit

Nach Klaus, 1969

Viele Systeme sind komplex und kompliziert! Das ist die Herausforderung des Systems Engineering!

Die **Komplexität** bezieht sich auf die Anzahl und Art der Beziehungen zwischen Elementen in einem System.

Die **Kompliziertheit** bezieht sich auf die Anzahl der unterschiedlichen Elemente.

Begriffsdefinition "Anforderung" - 1

Definiert nach der IEEE (übersetzt von Christof Ebert)

Eine Eigenschaft oder Bedingung, die von einem Benutzer (Person oder System) zur Lösung eines Problems oder zur Erreichung eines Ziels benötigt wird.

Begriffsdefinition "Anforderung" - 2

Definiert nach der IEEE (übersetzt von Christof Ebert)

Eine Eigenschaft oder Bedingung, die ein System oder eine Systemkomponente erfüllen muss, um einen Vertrag, eine Norm, eine Spezifikation oder andere, formell vorgegebene Dokumente zu erfüllen.

Begriffsdefinition "Anforderung" - 3

Definiert nach der IEEE (übersetzt von Christof Ebert)

Eine dokumentierte Repräsentation einer Eigenschaft oder Bedingung wie in den ersten beiden Punkten beschrieben.

Sichten auf Anforderungen

Systemmodellierung

Vorgang zur Erstellung einer abstrakten Repräsentation eines beliebigen Systems, im speziellen informationstechnischer Systeme.

Requirements Engineering

ist ein **kooperativer**, **iterativer**, **inkrementeller** Prozess, dessen Ziel es ist zu gewährleisten, dass...

- > Anforderungen im erforderlichen Detailierungsgrad sind bekannt
- > Stakeholder eine Übereinstimmung über die Anforderungen erzielen
- > Anforderungen dokumentiert und spezifiziert sind

Fachhochschule Wiener Neustadt

Wirtschaft • Technik • Gesundheit • Sicherheit • Sport

Abbildung 2-2: Haupttätigkeiten im Anforderungsmanagement © 2013, M. Tesar

Wozu braucht man das?

- > Was soll ich entwickeln?
- > Absicherung zwischen Kunden und AuftragnehmerIn
- > Qualitätssteigerung
- > Erfolgsquote steigern
- > Vermeidung von Fehlern in der Entwicklung

Wozu braucht man das? II

Abb: Relative Kosten für die Beseitigung eines Softwarefehlers

Die Illusion der Kommunikation

"A whole year to build a house here? No problem."

"Good. Let's get started. I'm in a hurry."

Weiß der Kunde wirklich was er braucht? Oder **glaubt** er nur es zu wissen?

Haben wir **verstanden** was der Kunde braucht?

Haben wir alles gut genug spezifiziert? Und was bedeutet "alles":

Prozesse, Systemgrenzen, Technologie,...?

Reden wir über die gleiche **Vision**?

Reden wir über die gleiche **Mission**?

Eigenschaften einer/s RE's

- > Analytisches Denken
- > Empathie
- > Kommunikationsfähigkeit
- > Konfliktlösungsfähigkeit
- > Moderationsfähigkeit
- > Selbstbewusstsein
- > Überzeugungsfähigkeit

Entwicklung des Lösungsraums

438

Ś

Aus Balzert 2009,

Vorgehensmodelle

Wasserfall – brauch' ich mehr?

V-Modell - der Weisheit letzter Schluss?

Rational Unified Process – optimal für IT-Projekte?

Agile Methoden – sinnvoll oder nur "in"?

Wozu ein Vorgehensmodell?

- > Strukturierung des Projekts
- > Zeitlich und methodisch
- > Vorlage => Sicherheit
- > Positionsbestimmung
- > Transparenz
- > Basis für Analysen, Verbesserungen und Planungen

Wasserfallmodell

Quelle: i'X kompakt, 3/2009, S. 81

Wasserfallmodell

- > + Der Klassiker
- + Kontrollierbarer und leicht verständlicher Prozessablauf
- > Risiken nicht frühzeitig erkennbar!
- Feedback-Möglichkeiten fehlen

V-Modell

Quelle: i'X kompakt, 3/2009, S. 81

V-Modell

- > + Weiterentwicklung des Wasserfallmodells
- > + Qualitätssicherung hinzugefügt
- > + Verifikation (Arbeitsprodukt entspricht Anforderungen)
- > + Validierung (Arbeitsprodukt entspricht beabsichtigter Nutzung)
- > viele Derivate
- > oft komplexe Vorgehensweisen

Rational Unified Process

Quelle: Rupp, 2009, S. 38

Rational Unified Process

- > + Von Rational (aufgekauft von IBM) entwickelt
- > + Für UML entwickelt
- + Alle Phasen bestehen aus mehreren Iterationen
- > + Hohe Flexibilität
- > Hoher Managementaufwand
- > Hohe Komplexität

RUP: 9 Kern-Workflows

- 1. Business Modeling
- 2. Requirements
- 3. Analysis & Design
- 4. Implementation
- 5. Test
- 6. Deployment
- 7. Configuration & Change Management
- 8. Project Management
- 9. Environment

RUP: 6 "Best Practices"

- > Anforderungsmanagement
- > Iterative Entwicklung
- > Architekturorientierung
- > Visuelle Modellierung
- > Qualitätskontrolle
- > Change- und Konfigurationsmanagement

Agile Methoden / SCRUM

- > Ausgangslage: Entwicklungsprozesse von IT zu komplex => nicht abbildbar
- > Großen äußeren Rahmen vorgeben
- > Selbstorganisation des Teams
- > => Soll produktiver sein
- > => Gemeinsame Verantwortung zur Zielerreichung
- > Hoch konzentrierte Aktivitäten an Teilaspekten
- > Rasche, funktionierende Ergebnisse

Ziele und mehr...

Ziele im Requirements Engineering

Anforderungsarten

Anforderungsquellen

Begriffsdefinition "Ziel"

Definition nach Pohl

Ein Ziel ist die intentionale Beschreibung eines charakteristischen Merkmals des zu entwickelnden Systems bzw. des zugehörigen Entwicklungsprozesses.

Vorteile vom Ziel-Einsatz

- > Systemverständnis und Akzeptanz des Systems
- > Gewinnung von Anforderungen
- > Identifikation und Bewertung von Lösungsalternativen
- > Aufdeckung irrelevanter Anforderungen
- > Ziele begründen Anforderungen
- > Nachweis der Vollständigkeit
- > Identifikation und Auflösung von Konflikten
- > Stabilität von Zielen

Anforderungsartefakte nach Pohl

- > Ziele
 - Dokumentation der Intentionen der Stakeholder
 - Abstrahierung
- > Szenarien
 - Exemplarische konkrete Beispiele für Interaktionsfolgen
 - Unterschiedliche Abstraktionsebenen
- > Lösungsorientierte Anforderungen
 - Definieren Daten-, Struktur-, Funktions- und Verhaltenssicht des Systems
 - Qualitätsanforderungen

Und-Dekomposition eines Ziels

"Bei einer Und-Dekomposition eines Ziels Z wird dieses Ziel durch eine Menge von Teilzielen Z_1 bis Z_n verfeinert. Die Dekomposition eines Ziels Z in die Teilziele Z_1 , …, Z_n mit $n \ge 2$ ist genau dann eine Und-Dekomposition, wenn alle Teilziele Z_1 , …, Z_n erfüllt werden müssen, um das Ziel Z zu erfüllen."

Oder-Komposition eines Ziels

"Die Dekomposition eines Ziels Z in die Teilziele Z_1 , …, Z_n mit $n \ge 2$ ist genau dann eine Oder-Dekomposition, wenn die Erfüllung eines der Teilziele Z_1 , …, Z_n ausreicht, um das Ziel Z zu erfüllen. Im Unterschied zur Und-Dekomposition muss bei einer Oder-Dekomposition zur Erfüllung des Ziels Z daher nur mindestens ein Teilziel von Z erfüllt werden."

Beispiel Navigationssystem

"Komfortable und schnelle Navigation zum Ziel"

- > Und-Dekomposition
- > Z₁: Komfortable Eingabe des Zielorts
- > Z₂: Automatische Auswahl der Route gemäß nutzerspezifischen Parametern
- > Z₃: Anzeigen und Umfahren von Verkehrsbedingungen

Beispiel Navigationssystem

"Lokalisierbarkeit des Fahrzeugstandorts"

- > Oder-Dekomposition
- > Z₁: Ortung des Fahrzeugs über Mobilfunk
- > Z₂: Lokalisierung des Fahrzeugs über GPS

Weitere Aspekte

- > Zielunterstützung "Ein Ziel Z_1 unterstützt ein Ziel Z_2 , wenn die Erfüllung von Z_1 zur Erfüllung von Z_2 beiträgt."
- > Zielbehinderung "Ein Ziel Z_2 behindert ein Ziel Z_1 , wenn die Erfüllung von Z_2 die Erfüllung von Z_1 erschwert."

Weitere Aspekte

> Zielkonflikt

"Zwischen einem Ziel Z_1 und einem Ziel Z_2 besteht ein Zielkonflikt, wenn

- (1) die Erfüllung von Z_1 die Erfüllung des Ziels Z_2 ausschließt und
- (2) die Erfüllung von Z_2 die Erfüllung des Ziels Z_1 ausschließt."

Weitere Aspekte

- > Zieläquivalenz
 - "Zwischen zwei Zielen Z_1 und Z_2 besteht eine Zieläquivalenz, wenn
 - (1) die Erfüllung des Ziels Z_1 die Erfüllung des Ziels Z_2 bedingt und
 - (2) die Erfüllung des Ziels Z_2 die Erfüllung des Ziels Z_1 bedingt."

Qualitätskriterien für Ziele I

- > Vollständig
- > Korrekt
- > Konsistent gegenüber anderen Zielen und in sich
- > Testbar
- > Verständlich für alle
- > Umsetzbar realisierbar
- > Notwendig

Vgl. Rupp

Qualitätskriterien für Ziele II

- > Eindeutig und
- > Positiv formuliert
- > Gültig und
- > Aktuell sein

Vgl. Rupp

Essenzielle Bestandteile von Zielen

- > Gewinnen Sie möglichst alle relevanten Ziele
- > Vermeiden Sie zu Beginn eine vollständige Erfassung aller Attribute für ein Ziel
- > Definieren Sie für jedes Ziel zunächst die Basisattribute (Bezeichner, Name, Quelle, Verantwortliche Person, etc.)
- > Definieren Sie die Beziehungen zu anderen Zielen

Vgl. Pohl

Essenzielle Bestandteile von Zielen II

- > Analyse der Ziele auf Vollständigkeit und korrekte Beziehungen
- > Ergänzen Sie die fehlenden Teile
- > Füllen Sie die Zielschablone aus.

Zielschablone nach Rupp

Ziel:

Welches Ziel soll durch das neue System erreicht werden?

Stakeholder:

Wer profitiert von der Erreichung dieses Ziels, wer fördert die Erreichung dieses Ziels?

Auswirkung auf den/die Stakeholder:

Welche Arbeitsprozesse sind von der Zielerreichung betroffen?

Einschränkungen:

Welche Faktoren können eine Lösungsauswahl einschränken?

Sonstiges:

Gibt es weitere Anmerkungen, die für das Verständnis des Ziels wichtig sind?

Fachhochschule Wiener Neustadt

Wirtschaft · Technik · Gesundheit · Sicherheit · Sport

Zielschablone nach Pohl

Zielschablone				
Nr.	Abschnitt	Inhalt / Erläuterung		
1	Bezeichner	Eindeutiger Bezeichner des Ziels		
2	Name	Eindeutiger Name für das Ziel		
3	Autoren	Namen der Autoren, die an dieser Zielbeschreibung mitgearbeitet haben		
4	Version	Aktuelle Versionsnummer des Ziels		
5	Änderungshistorie	Liste der verschiedenen Änderungsstände inklusive Datum der Änderung, Versionsnummer, Autor und ggf. Grund und Gegenstand der Änderung		
6	Priorität	Angabe der Wichtigkeit des beschriebenen Ziels gemäß der verwendeten Priorisierungstechnik		
7	Kritikalität	Kritikalität des Ziels z. B. für den Erfolg des Systems		
8	Quelle	Bezeichnung der Quelle ([Stakeholder Dokument System]), von der das Ziel stammt		
9	Verantwortlicher	Der für dieses Ziel verantwortliche Stakeholder		
10	Nutzende Stakeholder	Stakeholder, die einen Nutzen aus der Erfüllung dieses Ziels ziehen		
11	Zielebene	Bezeichner der Detaillierungsebene des Ziels		
12	Zielbeschreibung	Detaillierte Beschreibung des Ziels		
13	Übergeordnete Ziele	Angabe der übergeordneten Ziele zusammen mit dem jeweiligen Typ der Verfeinerung (Und/Oder)		
14	Untergeordnete Ziele	Subziele dieses Ziels und die Art der Verfeinerung		
15	Weitere Zielbeziehungen	Weitere Beziehungen zu anderen Zielen (z. B. Konflikt, Unterstützung)		
16	Assoziierte Szenarien	Querbezüge zu Szenarien, die dem Ziel zugeordnet sind		
17	Ergänzende Informationen	Weitere Informationen zum Ziel		

Wann welche Zielschablone?

- > Für Kleinprojekte: => Rupp
- > Für Großprojekte: => Pohl
- > Für einen ersten Entwurf: => Rupp
- > Für Systemmodellierung: => Pohl
- > Je feiner und besser Ziele ermittelt wurden, desto einfacher kann man sie nachher modellieren!

2 Arten von Anforderungen

- > Funktionale Anforderungen
- > Nicht-Funktionale Anforderungen

Korrekt: 3 Arten von Anforderungen!

- > Funktionale Anforderung
- > Qualitätsanforderung
- > Randbedingung

Funktionale Anforderung:

"Eine funktionale Anforderung ist eine Anforderung bezüglich des Ergebnisses eines Verhaltens, das von einer Funktion des Systems bereitgestellt werden soll."

Qualitätsanforderung

"Eine Qualitätsanforderung ist eine Anforderung, die sich auf ein Qualitätsmerkmal bezieht, das nicht durch funktionale Anforderungen abgedeckt wird."

Qualitätsanforderungen

- > Qualität der Funktionalität (Angemessenheit, Sicherheit, Genauigkeit der Berechnung, Interoperabilität und Konformität)
- > Zuverlässigkeit der Funktionalität
- > Benutzbarkeit des Systems
- > Effizienz des Systems
- > Änderbarkeit des Systems
- > Übertragbarkeit des Systems

The ONLY VACID MEASUREMENT OF Code QUALITY: WTFs/minute

messen? Qualität

(c) 2008 Focus Shift/OSNews/Thom Holwerda - http://www.osnews.com/comics

59

Probleme bei nicht-funktionalen Anforderungen

- > Zur Nachvollziehbarkeit, ob eine nichtfunktionale A. erfüllt ist, muss diese auch messbar sein.
 - Metrik definieren: z.B. max. page-hits / sec.
 - akzeptierte Limits in der SRS angeben
 - nichtfunktionalen A. ohne messbare Bewertung sind wertlos und ein potentieller Auslöser für Diskussionen, da subjektiv (z.B.: "Das System muss schnell sein", "Die Website muss cool aussehen").

Randbedingung

"Eine Randbedingung ist eine Anforderung, die den Lösungsraum jenseits dessen einschränkt, was notwendig ist, um die funktionalen Anforderungen und die Qualitätsanforderungen zu erfüllen."

User Stories

- > Anforderungen aus Sicht des/r Anwenders_in
- > Bestehen aus
 - Name
 - Kurztext (Beschreibung)
 - Akzeptanzkriterien (erfüllbar!)
- > 3C-Kriterien
 - Card (Story muss auf eine Karte passen)
 - Conversation (Dokumentation des Ergebnisses der Anforderungserhebung)
 - Confirmation (überprüfbar und testbar)

Zusammenfassung I

- > Wichtige Begriffe
- > Anforderung
- > Ziel
- > Requirements Engineering
- > Systemmodellierung

Zusammenfassung II

- > Wasserfallmodell
- > V-Modell
- > Rational Unified Process
- > Agile Methoden

Zusammenfassung III

- > Ziele im RE
- > 3 Arten von Anforderungen

Fachhochschule Wiener Neustadt

Wirtschaft • Technik • Gesundheit • Sicherheit • Sport

Ausblick

VO - 02 Mo., 21.10.2013 17:30 - 21:00	Rollen, F Anforder	rungen ermitteln Faktoren, Techniken rungen formulieren itungen zur guten entation
--	-----------------------	--

Literatur

- > Klaus Pohl; Requirements-Engineering: Grundlagen, Prinzipien, Techniken; dpunkt.verlag; 2008; 2. Auflage
- > Christof Ebert; Systematisches Requirements Engineering: Anforderungen ermitteln, spezifizieren, analysieren und verwalten; dpunkt.verlag; 2010; 3. Auflage
- > Tim Weilkiens; Systems Engineering mit SysML/UML: Modellierung, Analyse, Desig; dpunkt.verlag; 2008; 2. Auflage
- > Chris Rupp; Requirements-Engineering und –Management: Professionelle, Iterative Anforderungsanalyse für die Praxis; Hanser Verlag; 2009; 5. Auflage
- > Jutta Eckstein; Agile Softwareentwicklung mit verteilten Teams; dpunkt.verlag; 2009
- > Uwe Vigenschow, Björn Schneider; Soft Skills für Softwareentwickler, Fragetechniken, Konfliktmanagement, Kommunikationstypen und -modelle; dpunkt.verlag; 2007
- > Uwe Vigenschow,...; Soft Skills für IT-Führungskräfte und Projektleiter Softwareentwickler führen und coachen, Hochleistungsteams aufbauen; dpunkt.verlag; 2009
- > Marcus Grande; 100 Minuten für Anforderungsmanagement; Vieweg & Teubner, Springer Fachmedien; 2011
- > McConnell S.; Aufwandschätzung bei Softwareprojekten; Microsoft Press Deutschland; 2006
- > Klaus Pohl & Chris Rupp; Basiswissen Requirements Engineering; dpunkt.verlag; 3. korrigierte Auflage; 2011
- > Helmut Balzert; Softwaretechnik: Basiskonzepte und Requirements Engineering; Spektrum Akademischer Verlag; 2009; 3. Auflage