¿Qué es una Red Virtual Privada (VPC)?

Una **Red Virtual Privada (VPC)** es un servicio de red en la nube que permite crear una **red privada** dentro de un entorno de computación en la nube, como AWS, Google Cloud o Azure. Esta red funciona de manera similar a una red tradicional de una infraestructura física, pero completamente virtualizada y gestionada a través de la plataforma en la nube.

Dentro de una VPC, los usuarios pueden definir su propio rango de direcciones IP, configurar subredes, establecer reglas de seguridad y controlar la comunicación entre los recursos dentro de la red y con el mundo exterior.

¿Para qué se utiliza una VPC?

Una VPC se utiliza principalmente para proporcionar **aislamiento** y **control total** sobre la red de recursos en la nube. Permite a los usuarios configurar entornos privados seguros donde pueden lanzar y administrar sus instancias (máquinas virtuales, bases de datos, servicios) de manera flexible.

Las principales funcionalidades y usos de una VPC incluyen:

- Aislamiento de red: Proporciona una red completamente aislada, donde solo los recursos con permisos explícitos pueden comunicarse entre sí.
- Seguridad: Control total sobre el tráfico de red a través de grupos de seguridad y listas de control de acceso (ACLs).
- Conectividad: Conexión de los recursos dentro de la VPC a Internet, redes privadas en on-premise (usando VPN o Direct Connect) o incluso con otras VPCs (mediante peering).
- Escalabilidad: Se puede redimensionar fácilmente para adaptarse a las necesidades de crecimiento del negocio, agregando subredes, configurando nuevas rutas, etc.

Ventajas de usar una VPC en entornos de computación en la nube:

1. Seguridad mejorada:

- Control de acceso: Puedes aplicar reglas estrictas de acceso a nivel de red (grupos de seguridad y listas de control de acceso).
- Cifrado: Muchos proveedores de nube permiten cifrar el tráfico entre recursos dentro de la VPC y también los datos almacenados.

2. Aislamiento de red:

- Al crear subredes dentro de la VPC, puedes aislar diferentes partes de tu infraestructura (por ejemplo, tener bases de datos en una subred privada y servidores web en una subred pública).
- La comunicación entre recursos se puede controlar mediante listas de control de acceso (ACLs) y reglas de enrutamiento específicas.

3. Flexibilidad:

- Dirección IP personalizada: Puedes definir el rango de direcciones IP que deseas utilizar, lo que permite una mayor flexibilidad en la configuración de la red.
- Conexión a redes locales: Puedes conectar tu VPC a tu red corporativa local a través de una VPN o conexión privada (Direct Connect en AWS).

4. Escalabilidad:

 Las VPCs permiten crear y gestionar nuevas instancias o servicios sin preocuparte por las limitaciones físicas. Puedes crear subredes, añadir nuevas instancias y aumentar la capacidad de forma dinámica.

5. Alta disponibilidad y fiabilidad:

 Las VPCs en la nube permiten distribuir recursos a través de diferentes zonas de disponibilidad (en el caso de AWS) o regiones para garantizar la alta disponibilidad de los servicios.

6. Control total sobre el tráfico de red:

 Los usuarios pueden gestionar rutas de tráfico, especificar qué subredes tienen acceso a Internet, y gestionar los firewalls y reglas de seguridad para permitir o bloquear tráfico según sea necesario.

Configuración de VPC utilizando LocalStack

LocalStack es una herramienta que simula los servicios de AWS de manera local. Es especialmente útil cuando se utiliza AWS CLI como veremos a continuación, ya que se pueden ejecutar comandos de AWS directamente desde la terminal, sin consumir recursos de AWS ni preocuparse por los costos.

En primer lugar, para poder realizar la configuración vamos a desplegar un contenedor de LocalStack utilizando el siguiente docker-compose.yml

Luego iniciamos la aplicación utilizando el parámetro -d para poder correr LocalStack en segundo plano

```
rootgaaniel-MG-TEZB:/home/daniel/LocalStackw docker-compose up -d
rootgaaniel-MG-TEZB:/home/daniel/LocalStackw docker-compose up -d
rootgaaniel-MG-TEZB:/home/daniel/LocalStackw docker-compose up -d
rootgaaniel-MG-TEZB:/home/daniel/LocalStackw docker ps
rootgaaniel-MG-TEZB:/home/daniel-MG-TEZB:/home/daniel-MG-TEZB:/home/daniel-MG-TEZB:/home/daniel-MG-TEZB:/home/daniel-MG-TEZB:/home/daniel-MG-TEZB:/home/daniel-MG-TEZB:/home/daniel-MG-TEZB:/home/daniel-MG-TEZB:/home/daniel-MG-TEZB:/home/daniel-MG-TEZB:/home/daniel-MG-TEZB:/home/daniel-MG-TEZB:/home/daniel-MG-TEZB:/home/daniel-MG-TEZB:/home/daniel-MG-TEZB:/home/daniel-MG-TEZB:/home/daniel-MG-TEZB:/home/daniel-MG-TEZB
```

Ahora ya podríamos utilizar los comandos de aws cli para crear nuestra VPC. Utilizaremos el comando que viene a continuación para crear la VPC y especificamos que el endpoint sea el lugar en el que está desplegado nuestro contenedor de Localstack (http://localhost:4566)