MASSACHUSETTS MATHEMATICS LEAGUE **CONTEST 2 – NOVEMBER 2014 SOLUTION KEY**

Round 6

A) Drop a perpendicular from A to
$$\overline{CD}$$
.
 $m \angle EAM = m \angle BAM = 57^{\circ}$.
 $m \angle BAF = \frac{1}{2} \cdot 114 = 38^{\circ} \implies m \angle CAM = 1$

$$m \angle EAM = m \angle BAM = 57^{\circ}$$
.
 $m \angle BAF = \frac{1}{3} \cdot 114 = 38^{\circ} \implies m \angle CAM = 19^{\circ}$
 $\implies m \angle ACD = m \angle ACM = 90 - 19 = 71^{\circ}$

B) Since the measure of the exterior angle equals the sum of the measures of the two remote interior angles, we have $(6x+7)+(8x-9)=x^2+46 \Leftrightarrow x^2-14x+48=(x-6)(x-8)=0$.

For x = 8, $m \angle A = m \angle B = 55^{\circ}$ and ABC is isosceles. This solution is rejected. For x = 6, $m \angle A = 43$, $m \angle B = 39^{\circ}$, and $m \angle C = 180 - (43 + 39) = 98$ and ABC is scalene. Thus, x = 6 only.

Thus, $13 \le x \le 25$ generates all possible

values of $m \angle PTR$, a total of <u>13</u> different values.

Check: For x = 13,...,25,

 $m\angle PTR = 180 - y = 7x - 86^{\circ} \Rightarrow 5^{\circ}, 12^{\circ} (5 + 7 \cdot 1), ..., 89^{\circ} (5 + 7 \cdot 12) - 13$ distinct values.

