Introducción a la Lógica y la Computación

Mariana Badano Héctor Gramaglia Pedro Sánchez Terraf M. Clara Gorín Matías Steinberg

FaMAF, segundo cuatrimestre 2020

Aula virtual

Aquí pondremos toda la información actualizada:

https://www.famaf.proed.unc.edu.ar/course/view.php?id=604

Aula virtual

Aquí pondremos toda la información actualizada:

https://www.famaf.proed.unc.edu.ar/course/view.php?id=604

Ediciones anteriores de la materia

En la Wiki de Ciencias de la Computación.

Regularidad

Deberán entregar 6 ejercicios durante el cuatrimestre.

Regularidad

Deberán entregar 6 ejercicios durante el cuatrimestre.

Finales

Todavía la situación no está definida en cuanto a la toma de exámenes, tendremos más información cerca del final del cuatrimestre.

Regularidad

Deberán entregar 6 ejercicios durante el cuatrimestre.

Finales

Todavía la situación no está definida en cuanto a la toma de exámenes, tendremos más información cerca del final del cuatrimestre.

Los exámenes tendrán un ejercicio extra muy fácil pero obligatorio para libres, y las personas que hayan entregado **5 ejercicios** (de los 6 anteriores) **bien resueltos**, tendrán **1 punto extra** para su examen final.

Clases virtuales (puaj)

La interacción es súmamente difícil.

Clases virtuales (puaj)

- La interacción es súmamente difícil.
- Clara y Matías serán moderadores del chat para facilitarla.

Clases virtuales (puaj)

- La interacción es súmamente difícil.
- Clara y Matías serán moderadores del chat para facilitarla.
- Hagan consultas ahí, y en caso de ser necesario, me la comunicarán a mí.

Clases virtuales (puaj)

- La interacción es súmamente difícil.
- Clara y Matías serán moderadores del chat para facilitarla.
- Hagan consultas ahí, y en caso de ser necesario, me la comunicarán a mí.
- Trataré de hacer pausas regulares para ver cómo estamos avanzando

Clases virtuales (puaj)

- La interacción es súmamente difícil.
- Clara y Matías serán moderadores del chat para facilitarla.
- Hagan consultas ahí, y en caso de ser necesario, me la comunicarán a mí.
- Trataré de hacer pausas regulares para ver cómo estamos avanzando

¿Sólo ver el teórico?

Clases virtuales (puaj)

- La interacción es súmamente difícil.
- Clara y Matías serán moderadores del chat para facilitarla.
- Hagan consultas ahí, y en caso de ser necesario, me la comunicarán a mí.
- Trataré de hacer pausas regulares para ver cómo estamos avanzando

¿Sólo ver el teórico?

Al 85% del alumnado no le sirve eso.

Clases virtuales (puaj)

- La interacción es súmamente difícil.
- Clara y Matías serán moderadores del chat para facilitarla.
- Hagan consultas ahí, y en caso de ser necesario, me la comunicarán a mí.
- Trataré de hacer pausas regulares para ver cómo estamos avanzando

¿Sólo ver el teórico?

Al 85% del alumnado no le sirve eso.

■ Cada clase (aproximadamente) tendrá indicada una lectura previa.

Clases virtuales (puaj)

- La interacción es súmamente difícil.
- Clara y Matías serán moderadores del chat para facilitarla.
- Hagan consultas ahí, y en caso de ser necesario, me la comunicarán a mí.
- Trataré de hacer pausas regulares para ver cómo estamos avanzando

¿Sólo ver el teórico?

Al 85% del alumnado no le sirve eso.

- Cada clase (aproximadamente) tendrá indicada una lectura previa.
- De esta manera podrán sacarse más dudas en vivo.

Una materia con tres partes

Ejes de Contenidos

Estructuras Ordenadas

Lógica Proposicional

$$\frac{[\varphi \wedge \psi]_1}{\frac{\psi}{\varphi \wedge \varphi} \wedge E} \wedge \frac{[\varphi \wedge \psi]_1}{\varphi} \wedge I$$

$$\frac{\psi \wedge \varphi}{\varphi \wedge \psi \rightarrow \psi \wedge \varphi} \rightarrow I_1$$

Lenguajes y Autómatas

Parte 1: Estructuras Ordenadas

Bibliografía

- A. Tiraboschi y H. Gramaglia, *Apunte sobre estructuras ordenadas* (en la web de la materia).
- B.A. Davey y H.A. Priestley *Introduction to lattices and order*. Cambridge University Press.

Contenidos estimados para esta semana

- Relaciones
 - Propiedades de relaciones sobre un mismo conjunto
 - Relaciones de equivalencia
 - Particiones de un conjunto
- 2 Conjuntos parcialmente ordenados
 - Diagramas de Hasse y Ejemplos
 - Máximos, mínimos, maximales y minimales
 - Supremos e ínfimos
 - Isomorfismo de posets

Definición intuitiva

Una *relación* viene dada por una propiedad que pueden tener (o no) dos objetos.

Definición intuitiva

Una *relación* viene dada por una propiedad que pueden tener (o no) dos objetos.

Nos van a interesar relaciones entre objetos formales (matemáticos), y es más fácil entender en términos de ejemplos.

Definición intuitiva

Una *relación* viene dada por una propiedad que pueden tener (o no) dos objetos.

Nos van a interesar relaciones entre objetos formales (matemáticos), y es más fácil entender en términos de ejemplos.

Ejemplo

Las siguientes son relaciones:

■ "es múltiplo de".

Definición intuitiva

Una *relación* viene dada por una propiedad que pueden tener (o no) dos objetos.

Nos van a interesar relaciones entre objetos formales (matemáticos), y es más fácil entender en términos de ejemplos.

Ejemplo

- "es múltiplo de".
- "divide a".

Definición intuitiva

Una *relación* viene dada por una propiedad que pueden tener (o no) dos objetos.

Nos van a interesar relaciones entre objetos formales (matemáticos), y es más fácil entender en términos de ejemplos.

Ejemplo

- "es múltiplo de".
- "divide a".
- "es menor que".

Definición intuitiva

Una *relación* viene dada por una propiedad que pueden tener (o no) dos objetos.

Nos van a interesar relaciones entre objetos formales (matemáticos), y es más fácil entender en términos de ejemplos.

Ejemplo

- "es múltiplo de".
- "divide a".
- "es menor que".
- "es la longitud de".

Definición intuitiva

Una *relación* viene dada por una propiedad que pueden tener (o no) dos objetos.

Nos van a interesar relaciones entre objetos formales (matemáticos), y es más fácil entender en términos de ejemplos.

Ejemplo

Las siguientes son relaciones:

■ "es múltiplo de".

"es igual a".

- "divide a".
- "es menor que".
- "es la longitud de".

Definición intuitiva

Una *relación* viene dada por una propiedad que pueden tener (o no) dos objetos.

Nos van a interesar relaciones entre objetos formales (matemáticos), y es más fácil entender en términos de ejemplos.

Ejemplo

- "es múltiplo de".
- "divide a".
- "es menor que".
- "es la longitud de".

- "es igual a".
- "es elemento de".

Definición intuitiva

Una *relación* viene dada por una propiedad que pueden tener (o no) dos objetos.

Nos van a interesar relaciones entre objetos formales (matemáticos), y es más fácil entender en términos de ejemplos.

Ejemplo

- "es múltiplo de".
- "divide a".
- "es menor que".
- "es la longitud de".

- "es igual a".
- "es elemento de".
- "es segmento inicial de".

Definición intuitiva

Una *relación* viene dada por una propiedad que pueden tener (o no) dos objetos.

Nos van a interesar relaciones entre objetos formales (matemáticos), y es más fácil entender en términos de ejemplos.

Ejemplo

- "es múltiplo de".
- "divide a".
- "es menor que".
- "es la longitud de".

- "es igual a".
- "es elemento de".
- "es segmento inicial de".
- "esta incluido en".

Formalizamos este concepto intuitivo: esencialmente, *especificamos* lo que que queremos decir.

Formalizamos este concepto intuitivo: esencialmente, especificamos lo que que queremos decir.

Definición

Dados dos conjuntos A y B, una **relación** (binaria) entre A y B es un subconjunto de $A \times B$.

Formalizamos este concepto intuitivo: esencialmente, *especificamos* lo que que queremos decir.

Definición

- Dados dos conjuntos A y B, una **relación** (binaria) entre A y B es un subconjunto de $A \times B$.
- Sea $R \subseteq A \times B$ una relación y sean $a \in A$ y $b \in B$. Escribiremos a R b para denotar $(a,b) \in R$ y a R b en lugar de $(a,b) \notin R$.

Formalizamos este concepto intuitivo: esencialmente, *especificamos* lo que que queremos decir.

Definición

- Dados dos conjuntos A y B, una **relación** (binaria) entre A y B es un subconjunto de $A \times B$.
- Sea $R \subseteq A \times B$ una relación y sean $a \in A$ y $b \in B$. Escribiremos a R b para denotar $(a,b) \in R$ y a R b en lugar de $(a,b) \notin R$.

Ejemplo

Si $A := \{2,4,8,10\}$ y $B := \{1,3,9\}$, entonces la relación "es menor que" (restringida a $A \times B$) corresponde al conjunto de pares

$$R = \{(2,3), (2,9), (4,9), (8,9)\}$$

Formalizamos este concepto intuitivo: esencialmente, *especificamos* lo que que queremos decir.

Definición

- Dados dos conjuntos A y B, una **relación** (binaria) entre A y B es un subconjunto de $A \times B$.
- Sea $R \subseteq A \times B$ una relación y sean $a \in A$ y $b \in B$. Escribiremos a R b para denotar $(a,b) \in R$ y a R b en lugar de $(a,b) \notin R$.

Ejemplo

Si $A := \{2, 4, 8, 10\}$ y $B := \{1, 3, 9\}$, entonces la relación "es menor que" (restringida a $A \times B$) corresponde al conjunto de pares

$$R = \{(2,3), (2,9), (4,9), (8,9)\}$$

Luego, tenemos que 2 R 9 y 8 R 3.

Formalizamos este concepto intuitivo: esencialmente, *especificamos* lo que que queremos decir.

Definición

- Dados dos conjuntos A y B, una **relación** (binaria) entre A y B es un subconjunto de $A \times B$.
- Sea $R \subseteq A \times B$ una relación y sean $a \in A$ y $b \in B$. Escribiremos $a \not\in B$ para denotar $(a,b) \in R$ y $a \not\in B$ en lugar de $(a,b) \notin B$.

Ejemplo

Si $A:=\{2,4,8,10\}$ y $B:=\{1,3,9\}$, entonces la relación "es menor que" (restringida a $A\times B$) corresponde al conjunto de pares

$$R = \{(2,3), (2,9), (4,9), (8,9)\}$$

Luego, tenemos que 2 R 9 y 8 R 3. $\stackrel{?}{\cancel{6}} 9 R 10 ?$

Dos tipos de relaciones

- "es múltiplo de".
- "divide a".
- "es menor que".
- "es la longitud de".

- "es igual a".
- "es elemento de".
- "es segmento inicial de".
- "esta incluido en".

Dos tipos de relaciones

- "es múltiplo de".
- "divide a".
- "es menor que".
- "es la longitud de".

- "es igual a".
- "es elemento de".
- "es segmento inicial de".
- "esta incluido en".

Estas relaciones se dan entre conjuntos A y B distintos.

Dos tipos de relaciones

- "es múltiplo de".
- "divide a".
- "es menor que".
- "es la longitud de".

- "es igual a".
- "es elemento de".
- "es segmento inicial de".
- "esta incluido en".

Estas relaciones se dan entre conjuntos *A* y *B* distintos.

Nuestro interés estará en las relaciones R entre un conjunto A y él mismo, relaciones **sobre** A (es decir, tales que $R \subseteq A \times A$).

Sea *R* una relación sobre un conjunto *A*. Decimos que *R* es:

■ reflexiva si y sólo si para todo $a \in A$, a R a

Sea *R* una relación sobre un conjunto *A*. Decimos que *R* es:

- reflexiva si y sólo si para todo $a \in A$, a R a
- **simétrica** si y sólo si para todos $a, b \in A$, $a R b \implies b R a$

Sea *R* una relación sobre un conjunto *A*. Decimos que *R* es:

- reflexiva si y sólo si para todo $a \in A$, a R a
- **simétrica** si y sólo si para todos $a, b \in A$, $a R b \implies b R a$
- antisimétrica si y sólo si para todos $a, b \in A$, $a R b \& b R a \implies a = b$

Sea *R* una relación sobre un conjunto *A*. Decimos que *R* es:

- reflexiva si y sólo si para todo $a \in A$, a R a
- **simétrica** si y sólo si para todos $a, b \in A$, $a R b \implies b R a$
- **antisimétrica** si y sólo si para todos $a, b \in A$, $a R b \& b R a \implies a = b$
- transitiva si y sólo si para todos $a, b, c \in A$, $a R b \& b R c \implies a R c$

- **reflexiva**: $\forall a \in A$, a R a.
- **simétrica**: $\forall a, b \in A$, $a R b \implies b R a$.
- antisimétrica: $\forall a, b \in A$, $a R b \& b R a \implies a = b$.
- transitiva: $\forall a, b, c \in A$, $a R b \& b R c \implies a R c$.

- **reflexiva**: $\forall a \in A$, a R a.
- **simétrica**: $\forall a, b \in A$, $a R b \implies b R a$.
- **antisimétrica**: $\forall a, b \in A$, $a R b \& b R a \implies a = b$.
- transitiva: $\forall a, b, c \in A$, $a R b \& b R c \implies a R c$.

"es menor que" $\subseteq \mathbb{N} \times \mathbb{N}$

Es la relación "<" definida entre números naturales:

1 < 2, 2012 < 2020, etcétera.

- **reflexiva**: $\forall a \in A$, a R a.
- **simétrica**: $\forall a, b \in A$, $a R b \implies b R a$.
- **antisimétrica**: $\forall a, b \in A$, $a R b \& b R a \implies a = b$.
- transitiva: $\forall a, b, c \in A$, $a R b \& b R c \implies a R c$.

"es menor que" $\subseteq \mathbb{N} \times \mathbb{N}$

Es la relación "<" definida entre números naturales:

1 < 2, 2012 < 2020, etcétera.

¿Qué propiedades cumple?

- **reflexiva**: $\forall a \in A$, a R a.
- simétrica: $\forall a, b \in A$, $a R b \implies b R a$.
- antisimétrica: $\forall a, b \in A$, $a R b \& b R a \implies a = b$.
- transitiva: $\forall a, b, c \in A$, $a R b \& b R c \implies a R c$.

"es menor que" $\subseteq \mathbb{N} \times \mathbb{N}$

Es la relación "<" definida entre números naturales:

1 < 2, 2012 < 2020, etcétera.

¿Qué propiedades cumple?

- **reflexiva**: $\forall a \in A$, a R a.
- **simétrica**: $\forall a, b \in A$, $a R b \implies b R a$.
- **antisimétrica**: $\forall a, b \in A$, $a R b \& b R a \implies a = b$.
- transitiva: $\forall a, b, c \in A$, $a R b \& b R c \implies a R c$.

"divide a" $\subseteq \mathbb{N} \times \mathbb{N}$

 $a \mid b$ si existe $q \in \mathbb{N}$ tal que $a \cdot q = b$.

¿Qué propiedades cumple?

- **reflexiva**: $\forall a \in A$, a R a.
- **simétrica**: $\forall a, b \in A$, $a R b \implies b R a$.
- antisimétrica: $\forall a, b \in A$, $a R b \& b R a \implies a = b$.
- transitiva: $\forall a, b, c \in A$, $a R b \& b R c \implies a R c$.

"divide a" $\subseteq \mathbb{N} \times \mathbb{N}$

 $a \mid b$ si existe $q \in \mathbb{N}$ tal que $a \cdot q = b$.

¿Qué propiedades cumple? ¿Y si estuviera definida sobre \mathbb{Z} ?

- **reflexiva**: $\forall a \in A$, a R a.
- **simétrica**: $\forall a, b \in A$, $a R b \implies b R a$.
- **antisimétrica**: $\forall a, b \in A$, $a R b \& b R a \implies a = b$.
- transitiva: $\forall a, b, c \in A$, $a R b \& b R c \implies a R c$.

"es congruente módulo k a" $\subseteq \mathbb{Z} \times \mathbb{Z}$

 $(k \neq 0, fijo)$

 $a \equiv_k b$ si y sólo si k es divide a b - a

¿Qué propiedades cumple?

Relaciones de equivalencia

Definición

Una relación es de **equivalencia** si satisface las propiedades de reflexividad, simetría y transitividad.

Relaciones de equivalencia

Definición

Una relación es de **equivalencia** si satisface las propiedades de reflexividad, simetría y transitividad.

Por ejemplo, la relación "congruente módulo k" es una relación de equivalencia para todo $k\in\mathbb{Z}\smallsetminus\{0\}.$

Sea \sim una relación de equivalencia sobre un conjunto A y sea x un elemento de A.

La clase de equivalencia de x es el conjunto

$$[x] = \{ y \in A : x \sim y \}$$

Sea \sim una relación de equivalencia sobre un conjunto A y sea x un elemento de A.

La clase de equivalencia de x es el conjunto

$$[x] = \{ y \in A : x \sim y \}$$

Por ejemplo, la relación "congruente módulo 3" tiene sólo tres clases de equivalencia

Sea \sim una relación de equivalencia sobre un conjunto A y sea x un elemento de A.

La clase de equivalencia de x es el conjunto

$$[x] = \{ y \in A : x \sim y \}$$

Por ejemplo, la relación "congruente módulo 3" tiene sólo tres clases de equivalencia

$$[0] = \{0, 3, -3, 6, -6, 9, -9, \dots\}$$
$$[1] = \{1, 4, -2, 7, -5, 10, -8, \dots\}$$
$$[2] = \{2, 5, -1, 8, -4, 11, -7, \dots\}$$

Sea \sim una relación de equivalencia sobre un conjunto A y sea x un elemento de A.

La clase de equivalencia de x es el conjunto

$$[x] = \{ y \in A : x \sim y \}$$

Por ejemplo, la relación "congruente módulo 3" tiene sólo tres clases de equivalencia

$$[0] = \{0, 3, -3, 6, -6, 9, -9, \dots\}$$
$$[1] = \{1, 4, -2, 7, -5, 10, -8, \dots\}$$
$$[2] = \{2, 5, -1, 8, -4, 11, -7, \dots\}$$

Se dan las siguientes igualdades:

$$[3] = [0], \quad [4] = [1], \quad [5] = [2], \dots$$

Definición

Una **partición** de un conjunto A es una familia de subconjuntos no vacíos de A, que son disjuntos entre sí, y cuya unión es todo A.

Definición

Una **partición** de un conjunto A es una familia de subconjuntos no vacíos de A, que son disjuntos entre sí, y cuya unión es todo A.

Ejemplo

Las siguientes son particiones de $A = \{a, b, c\}$:

Definición

Una **partición** de un conjunto A es una familia de subconjuntos no vacíos de A, que son disjuntos entre sí, y cuya unión es todo A.

Ejemplo

Las siguientes son particiones de $A = \{a, b, c\}$:

1 $P_1 := \{\{a\}, \{b, c\}\};$ Los *elementos* de la partición $A_1 := \{a\}$ y $A_2 := \{b, c\}$ son *subconjuntos* de A.

Definición

Una **partición** de un conjunto A es una familia de subconjuntos no vacíos de A, que son disjuntos entre sí, y cuya unión es todo A.

Ejemplo

Las siguientes son particiones de $A = \{a, b, c\}$:

- $\textbf{1} \ P_1 := \{\{a\}, \{b,c\}\}; \\ \text{Los } \textit{elementos} \ \text{de la partición} \ A_1 := \{a\} \ \text{y} \ A_2 := \{b,c\} \ \text{son} \\ \textit{subconjuntos} \ \text{de} \ A.$
- $P_2 := \{\{a\}, \{b\}, \{c\}\};$

Definición

Una **partición** de un conjunto A es una familia de subconjuntos no vacíos de A, que son disjuntos entre sí, y cuya unión es todo A.

Ejemplo

Las siguientes son particiones de $A = \{a, b, c\}$:

- $\textbf{1} \ P_1 := \{\{a\}, \{b,c\}\}; \\ \text{Los } \textit{elementos} \ \text{de la partición} \ A_1 := \{a\} \ \text{y} \ A_2 := \{b,c\} \ \text{son} \\ \textit{subconjuntos} \ \text{de} \ A.$
- $2 P_2 := \{\{a\}, \{b\}, \{c\}\};$
- $P_3 := \{\{a, b, c\}\}.$

Las equivalencias dan particiones

Lema

Sea \sim una relación de equivalencia sobre A y sean $x, y \in A$. Entonces

- [x] = [y] si y sólo si $x \sim y$.
- **2** $si x \nsim y$, entonces [x] e [y] son disjuntas.

Las equivalencias dan particiones

Lema

Sea \sim una relación de equivalencia sobre A y sean $x, y \in A$. Entonces

- [x] = [y] si y sólo si $x \sim y$.
- **2** si $x \not\sim y$, entonces [x] e [y] son disjuntas.

Corolario

El conjunto A/\sim de las clases de equivalencia de \sim es una partición de A.

Una equivalencia (valga la redundancia)

Lema

Sea $P=\{A_j: j\in J\}$ una partición de A. Definamos, para $a,b\in A$, $a\sim_P b\iff a$ y b están en la misma parte de la partición.

Entonces \sim_P es una relación de equivalencia.

Una equivalencia (valga la redundancia)

Lema

Sea
$$P=\{A_j:j\in J\}$$
 una partición de A . Definamos, para $a,b\in A$,
$$a\sim_P b\iff a\ y\ b\ \text{ están en la misma parte de la partición}.$$
 $\iff \text{ existe } j\in J.\ a,b\in A_j$

Entonces \sim_P es una relación de equivalencia.

Una equivalencia (valga la redundancia)

Lema

Sea
$$P=\{A_j:j\in J\}$$
 una partición de A . Definamos, para $a,b\in A$,
$$a\sim_P b\iff a\ y\ b\ \text{están en la misma parte de la partición}.$$
 $\iff \text{existe } j\in J.\ a,b\in A_j$

Entonces \sim_P es una relación de equivalencia.

En consecuencia, es exactamente lo mismo tener una partición que una relación de equivalencia.

Definición

Una **relación de orden parcial** R sobre un conjunto A es una relación que satisface las propiedades de reflexividad, antisimetría y transitividad.

Definición

Una **relación de orden parcial** R sobre un conjunto A es una relación que satisface las propiedades de reflexividad, antisimetría y transitividad.

Ejemplo

1 La relación de **orden usual** \leq sobre \mathbb{R} , \mathbb{Z} , \mathbb{N} .

Definición

Una **relación de orden parcial** R sobre un conjunto A es una relación que satisface las propiedades de reflexividad, antisimetría y transitividad.

Ejemplo

- **1** La relación de **orden usual** \leq sobre \mathbb{R} , \mathbb{Z} , \mathbb{N} .
- 2 La relación "divide" sobre \mathbb{N} .

Definición

Una **relación de orden parcial** R sobre un conjunto A es una relación que satisface las propiedades de reflexividad, antisimetría y transitividad.

Ejemplo

- **1** La relación de **orden usual** \leq sobre \mathbb{R} , \mathbb{Z} , \mathbb{N} .
- 2 La relación "divide" sobre N.
- **3** La relación de **inclusión** \subseteq sobre las partes $\mathcal{P}(A)$ de un conjunto A.

Definición

Una **relación de orden parcial** R sobre un conjunto A es una relación que satisface las propiedades de reflexividad, antisimetría y transitividad.

Ejemplo

- **1** La relación de **orden usual** \leq sobre \mathbb{R} , \mathbb{Z} , \mathbb{N} .
- 2 La relación "divide" sobre N.
- **3** La relación de **inclusión** \subseteq sobre las partes $\mathcal{P}(A)$ de un conjunto A.

Definición

Un **conjunto parcial ordenado** (**cpo** ó **poset**) es un par (A, R) donde A es un conjunto y R es un orden parcial sobre A.

Definición

Una **relación de orden parcial** R sobre un conjunto A es una relación que satisface las propiedades de reflexividad, antisimetría y transitividad.

Ejemplo

- **1** La relación de **orden usual** \leq sobre \mathbb{R} , \mathbb{Z} , \mathbb{N} .
- 2 La relación "divide" sobre N.
- **3** La relación de **inclusión** \subseteq sobre las partes $\mathcal{P}(A)$ de un conjunto A.

Definición

Un **conjunto parcial ordenado** (**cpo** ó **poset**) es un par (A, R) donde A es un conjunto y R es un orden parcial sobre A.

Luego (\mathbb{R}, \leq) , $(\mathbb{N}, |)$ y $(\mathcal{P}(A), \subseteq)$ son posets.

Diagramas de Hasse

Definición

Sea \leq un orden parcial sobre un conjunto A, y $a, b \in A$ distintos.

Decimos que b cubre a a si

Definición

Sea \leq un orden parcial sobre un conjunto A, y $a, b \in A$ distintos.

Decimos que b cubre a a si

- $a \le b$ y
- **no** existe $c \neq a, b$ tal que $a \leq c$ y $c \leq b$.

Definición

Sea \leq un orden parcial sobre un conjunto A, y $a,b\in A$ distintos.

Decimos que b cubre a a si

- $a \le b$ y
- **no** existe $c \neq a, b$ tal que $a \leq c$ y $c \leq b$.

Diagramas de Hasse

Nos sirven para representar a los órdenes parciales sobre conjuntos finitos.

Definición

Sea \leq un orden parcial sobre un conjunto A, y $a,b \in A$ distintos.

Decimos que b cubre a a si

- $a \le b$ y
- **no** existe $c \neq a, b$ tal que $a \leq c$ y $c \leq b$.

Diagramas de Hasse

Nos sirven para representar a los órdenes parciales sobre conjuntos finitos. Ponemos un punto por cada elemento de $\cal A$ y unimos mediante segmentos rectos los puntos que se cubren.

Definición

Sea \leq un orden parcial sobre un conjunto A, y $a,b \in A$ distintos.

Decimos que b cubre a a si

- $a \le b$ y
- **no** existe $c \neq a, b$ tal que $a \leq c$ y $c \leq b$.

Diagramas de Hasse

Nos sirven para representar a los órdenes parciales sobre conjuntos finitos. Ponemos un punto por cada elemento de $\cal A$ y unimos mediante segmentos rectos los puntos que se cubren.

Si b cubre a a, entonces b debe ser dibujado más arriba que a.

Órdenes totales

Un **orden total** o **cadena** sobre un conjunto P es un orden parcial \leq sobre P que satisface la **ley de dicotomía**:

para todo $a, b \in P$, $a \le b$ ó $b \le a$.

Órdenes totales

Un **orden total** o **cadena** sobre un conjunto P es un orden parcial \leq sobre P que satisface la **ley de dicotomía**:

para todo
$$a, b \in P$$
, $a \le b$ ó $b \le a$.

Ejemplo

- **1** El orden ≤ sobre ℝ
- El orden lexicográfico en un diccionario.

Subposets

Si (A, R) es un poset y $B \subseteq A$, entonces (B, R) también es un poset.

Subposets

Si (A,R) es un poset y $B\subseteq A$, entonces (B,R) también es un poset.

¡Ojo! Esto de arriba está mal así tal cual

Subposets

Si (A, R) es un poset y $B \subseteq A$, entonces (B, R) también es un poset.

¡Ojo! Esto de arriba está mal así tal cual: para que ande hay que poner la restricción de R a B — $R \cap (B \times B)$ — junto a B para tener un poset.

Subposets

Si (A, R) es un poset y $B \subseteq A$, entonces (B, R) también es un poset.

¡Ojo! Esto de arriba está mal así tal cual: para que ande hay que poner la restricción de R a B — $R \cap (B \times B)$ — junto a B para tener un poset.

Nos haremos las y los giles de ahora en más con esto (i.e., omitiremos la restricción).

Subposets

Si (A,R) es un poset y $B\subseteq A$, entonces (B,R) también es un poset.

¡Ojo! Esto de arriba está mal así tal cual: para que ande hay que poner la restricción de R a B — $R \cap (B \times B)$ — junto a B para tener un poset.

Nos haremos las y los giles de ahora en más con esto (i.e., omitiremos la restricción).

Ejemplo (Conjunto de divisores de *n*)

$$D_n := \{k \in \mathbb{N} : k \mid n\}.$$

Subposets

Si (A,R) es un poset y $B\subseteq A$, entonces (B,R) también es un poset.

¡Ojo! Esto de arriba está mal así tal cual: para que ande hay que poner la restricción de R a B — $R \cap (B \times B)$ — junto a B para tener un poset.

Nos haremos las y los giles de ahora en más con esto (i.e., omitiremos la restricción).

Ejemplo (Conjunto de divisores de *n*)

 $D_n := \{k \in \mathbb{N} : k \mid n\}. (D_n, |) \text{ es un poset.}$

Subposets

Si (A,R) es un poset y $B\subseteq A$, entonces (B,R) también es un poset.

¡Ojo! Esto de arriba está mal así tal cual: para que ande hay que poner la restricción de R a B — $R \cap (B \times B)$ — junto a B para tener un poset.

Nos haremos las y los giles de ahora en más con esto (i.e., omitiremos la restricción).

Ejemplo (Conjunto de divisores de *n*)

 $D_n := \{k \in \mathbb{N} : k \mid n\}. (D_n, |)$ es un poset.

■
$$D_4 =$$

Subposets

Si (A, R) es un poset y $B \subseteq A$, entonces (B, R) también es un poset.

¡Ojo! Esto de arriba está mal así tal cual: para que ande hay que poner la restricción de R a B — $R \cap (B \times B)$ — junto a B para tener un poset.

Nos haremos las y los giles de ahora en más con esto (i.e., omitiremos la restricción).

Ejemplo (Conjunto de divisores de *n*)

 $D_n := \{k \in \mathbb{N} : k \mid n\}. (D_n, |)$ es un poset.

$$D_4 = \{1, 2, 4\}.$$

Subposets

Si (A, R) es un poset y $B \subseteq A$, entonces (B, R) también es un poset.

¡Ojo! Esto de arriba está mal así tal cual: para que ande hay que poner la restricción de R a $B - R \cap (B \times B)$ — junto a B para tener un poset.

Nos haremos las y los giles de ahora en más con esto (i.e., omitiremos la restricción).

Ejemplo (Conjunto de divisores de *n*)

 $D_n := \{k \in \mathbb{N} : k \mid n\}. (D_n, |)$ es un poset.

- $D_4 = \{1, 2, 4\}.$
- $D_8 = \{1, 2, 4, 8\}.$

Subposets

Si (A,R) es un poset y $B\subseteq A$, entonces (B,R) también es un poset.

¡Ojo! Esto de arriba está mal así tal cual: para que ande hay que poner la restricción de R a $B \longrightarrow R \cap (B \times B)$ — junto a B para tener un poset.

Nos haremos las y los giles de ahora en más con esto (i.e., omitiremos la restricción).

Ejemplo (Conjunto de divisores de *n*)

 $D_n := \{k \in \mathbb{N} : k \mid n\}. (D_n, |) \text{ es un poset.}$

- $D_4 = \{1, 2, 4\}.$
- $D_8 = \{1, 2, 4, 8\}.$
- $D_9 = \{1, 3, 9\}.$
- $D_{12} = \{1, 2, 3, 4, 6, 12\}.$

Sea (P, \leq) un poset y $b, t \in P$

■ b es mínimo de $P \iff \forall x \in P, b \leq x$.

Sea (P, \leq) un poset y $b, t \in P$

■ b es mínimo de $P \iff \forall x \in P, b \leq x$.

b está debajo de todo.

Sea (P, \leq) un poset y $b, t \in P$

- b es mínimo de $P \iff \forall x \in P, b \leq x$.
- t es máximo de $P \iff \forall x \in P, x \leq t$.

b está debajo de todo.

Sea (P, \leq) un poset y $b, t \in P$

- b es mínimo de $P \iff \forall x \in P, b \leq x$.
- t es máximo de $P \iff \forall x \in P, x \leq t$.

b está debajo de todo.

t está encima de todo.

Sea (P, \leq) un poset y $b, t \in P$

- b es mínimo de $P \iff \forall x \in P, b \leq x$.
- t es máximo de $P \iff \forall x \in P, x \leq t$.

b está debajo de todo.

t está encima de todo.

¿Cuáles de los siguientes tienen máximo y/o mínimo?

1 (\mathbb{N}, \leqslant) .

Sea (P, \leq) un poset y $b, t \in P$

- b es mínimo de $P \iff \forall x \in P, b \leq x$.
- t es máximo de $P \iff \forall x \in P, x \leq t$.

b está debajo de todo.

t está encima de todo.

- $\mathbb{1}$ $(\mathbb{N}, \leqslant).$
- $[0,1), \leqslant)$

Sea (P, \leq) un poset y $b, t \in P$

- b es mínimo de $P \iff \forall x \in P, b \leq x$.
- t es máximo de $P \iff \forall x \in P, x < t$.

b está debajo de todo.

t está encima de todo.

- $[0,1), \leq)$
- **3** ({2, 4, 6, 12, 16}, |)

Sea (P, \leq) un poset y $b, t \in P$

- b es mínimo de $P \iff \forall x \in P, b \leq x$.
- t es máximo de $P \iff \forall x \in P, x \leq t$.

b está debajo de todo.

t está encima de todo.

- 1 (\mathbb{N}, \leqslant) .
- $[0,1), \leq)$
- $({2,4,6,12,16},|)$
- $({2,4,6,12},|)$

Sea (P, \leq) un poset y $b, t \in P$

- b es mínimo de $P \iff \forall x \in P, b \leq x$.
- t es máximo de $P \iff \forall x \in P, x < t$.

b está debajo de todo.

t está encima de todo.

- $[0,1), \leq)$
- $({2,4,6,12,16},|)$
- $(\{2,4,6,12\},|)$
- **5** $(\{\{c\},\{a,b\},\{a,b,c\}\},\subseteq)$

Sea (P, \leq) un poset y $b, t \in P$.

■ b es minimal en $P \iff \forall x \in P, x \leq a$ implica x = b.

Sea (P, \leq) un poset y $b, t \in P$.

■ b es minimal en $P \iff \forall x \in P, x \leq a$ implica x = b.

No hay nadie bajo b.

Sea (P, \leq) un poset y $b, t \in P$.

- b es minimal en $P \iff \forall x \in P, \quad x \le a$ implica x = b.
 - No hay nadie bajo b.
- t es **maximal** en $P \iff \forall x \in P$, $t \le x$ implica a = x.

Sea (P, \leq) un poset y $b, t \in P$.

- b es **minimal** en $P \iff \forall x \in P, \quad x \leq a$ implica x = b.
 - No hay nadie bajo b.
- **t** es **maximal** en $P \iff \forall x \in P, \quad t \leq x$ implica a = x.
 - No hay nadie encima de t.

Sea (P, \leq) un poset y $b, t \in P$.

- b es minimal en $P \iff \forall x \in P, \quad x \leq a$ implica x = b.
 - No hay nadie bajo b.
- t es **maximal** en $P \iff \forall x \in P$, $t \le x$ implica a = x.
 - No hay nadie encima de t.

¿Cuáles de los siguientes tienen maximales y/o minimales?

- $\mathbb{1}$ (\mathbb{N}, \leqslant)
- $[0,1), \leq)$
- $({2,4,6,12,16},|)$
- $(\{2,4,6,12\},|)$
- **5** $(\{\{c\},\{a,b\},\{a,b,c\}\},\subseteq)$

Sea (P, \leq) un poset y $b, t \in P$.

- b es minimal en $P \iff \forall x \in P, \quad x \leq a$ implica x = b.
 - No hay nadie bajo b.
- t es **maximal** en $P \iff \forall x \in P$, $t \le x$ implica a = x.
 - No hay nadie encima de *t*.

¿Cuáles de los siguientes tienen maximales y/o minimales?

- $\mathbb{1}$ (\mathbb{N}, \leqslant)
- $[0,1), \leq)$
- $({2,4,6,12,16},|)$
- $(\{2,4,6,12\},|)$
- **5** $(\{\{c\},\{a,b\},\{a,b,c\}\},\subseteq)$

---- Actividad en Aula virtual!

Sea (P, \leq) un poset, sea $S \subseteq P$ y sean $u, l, s, i \in P$.

Definición

11 $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, x \leq u$.

Sea (P, \leq) un poset, sea $S \subseteq P$ y sean $u, l, s, i \in P$.

Definición

11 $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, \quad x \leq u.$ l está "encima" de S.

Sea (P, \leq) un poset, sea $S \subseteq P$ y sean $u, l, s, i \in P$.

- **1** $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, \quad x \leq u.$ l está "encima" de S.
- 2 $l \in P$ se dice cota inferior de $S \iff \forall x \in S, l \leq x$.

Sea (P, \leq) un poset, sea $S \subseteq P$ y sean $u, l, s, i \in P$.

- **1** $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, \quad x \leq u.$ l está "encima" de S.
- 2 $l \in P$ se dice cota inferior de $S \iff \forall x \in S, \quad l \leq x.$ l está "debajo" de S.

Sea (P, \leq) un poset, sea $S \subseteq P$ y sean $u, l, s, i \in P$.

- **1** $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, \quad x \leq u.$ l está "encima" de S.
- $2 \quad l \in P \text{ se dice cota inferior de } S \iff \forall x \in S, \quad l \leq x.$ l está "debajo" de S.
- 3 $s \in P$ se dice **supremo** de S si s es una cota superior de S y $\forall b \in P, b$ es cota superior b de $S \implies s \leq b$. Escribimos " $s = \sup S$ ".

Sea (P, \leq) un poset, sea $S \subseteq P$ y sean $u, l, s, i \in P$.

- **1** $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, \quad x \leq u.$ l está "encima" de S.
- 2 $l \in P$ se dice cota inferior de $S \iff \forall x \in S, \quad l \leq x.$ l está "debajo" de S.
- 3 $s \in P$ se dice **supremo** de S si s es una cota superior de S y $\forall b \in P, b$ es cota superior b de $S \implies s \le b$. Escribimos " $s = \sup S$ ". Es la menor cota superior.

Sea (P, \leq) un poset, sea $S \subseteq P$ y sean $u, l, s, i \in P$.

- **1** $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, \quad x \leq u.$ l está "encima" de S.
- $2 \quad l \in P \text{ se dice cota inferior de } S \iff \forall x \in S, \quad l \leq x.$ l está "debajo" de S.
- $s \in P$ se dice **supremo** de S si s es una cota superior de S y $\forall b \in P, b$ es cota superior b de $S \implies s \le b$. Escribimos " $s = \sup S$ ". Es la menor cota superior.
- 4 $i \in P$ se dice **ínfimo** de S si i es una cota inferior de S y $\forall b \in P, b$ es cota inferior b de $S \implies b \le i$. Escribimos " $i = \inf S$ ".

Sea (P, \leq) un poset, sea $S \subseteq P$ y sean $u, l, s, i \in P$.

Definición

- 11 $u \in P$ se dice cota superior de $S \iff \forall x \in S, x < u$. l está "encima" de S.
- 2 $l \in P$ se dice cota inferior de $S \iff \forall x \in S, l < x$. l está "debajo" de S.
- $s \in P$ se dice **supremo** de S si s es una cota superior de S y $\forall b \in P, b \text{ es cota superior } b \text{ de } S \implies s < b.$ Escribimos " $s = \sup S$ ". Es la menor cota superior.
- $\forall b \in P, b \text{ es cota inferior } b \text{ de } S \implies b \leq i.$ Escribimos " $i = \inf S$ ".

4 $i \in P$ se dice **infimo** de S si i es una cota inferior de S y

Es la mayor cota inferior.

Isomorfismo de posets

Sean (P, \leq) , (Q, \leq') dos posets, y sea $f: P \to Q$ una función.

Isomorfismo de posets

Sean (P, \leq) , (Q, \leq') dos posets, y sea $f: P \to Q$ una función.

Definición

f es un **isomorfismo** si

- $\blacksquare f$ es biyectiva y
- \blacksquare para todo $x, y \in P$, se cumple que

$$x \le y \iff f(x) \le' f(y).$$

Isomorfismo de posets

Sean (P, \leq) , (Q, \leq') dos posets, y sea $f: P \to Q$ una función.

Definición

f es un **isomorfismo** si

- $\blacksquare f$ es biyectiva y
- \blacksquare para todo $x, y \in P$, se cumple que

$$x \le y \iff f(x) \le' f(y).$$

Decimos entonces que (P,\leq) y (Q,\leq') son **isomorfos** y escribimos $(P,\leq)\cong (Q,\leq').$

Isomorfismo de posets preservan sup e ínf

Lema

Sean (P, \leq) y (Q, \leq') posets. Sea $f: P \to Q$ un isomorfismo y supongamos que $S \subseteq P$.

Isomorfismo de posets preservan sup e ínf

Lema

Sean (P, \leq) y (Q, \leq') posets. Sea $f: P \to Q$ un isomorfismo y supongamos que $S \subseteq P$.

Se tiene que

existe
$$\sup S \iff \text{existe } \sup f(S)$$

y en el caso de que existan, se tiene que

$$f(\sup S) = \sup f(S).$$

Isomorfismo de posets preservan sup e ínf

Lema

Sean (P, \leq) y (Q, \leq') posets. Sea $f: P \to Q$ un isomorfismo y supongamos que $S \subseteq P$.

Se tiene que

existe
$$\sup S \iff$$
 existe $\sup f(S)$

y en el caso de que existan, se tiene que

$$f(\sup S) = \sup f(S).$$

Se tiene que

existe inf
$$S \iff$$
 existe inf $f(S)$

y en el caso de que existan, se tiene que

$$f(\inf S) = \inf f(S).$$