# Progress Report

Thanawat Tejapijaya

# **Content**

- Background
- Dataset Analysis
- Data Visualization

# Background

# What is Cybersecurity? How it's important?

- Cybersecurity is an protection of an hardware, network and program from digital attack
- Cybersecurity divide into 2 main categories
  - Red team Attacker such as hacker, pentester etc.
  - Blue team Protector such as security operation center, incident response etc.
- Cybersecurity is one of the top priorities in most of the organization
  - It will help protect those organization data and secret
  - without it your sensitive information may be leak anytime

# Security Operation Center (SOC)

- is an security team that help monitor an entire organization IT infrastructure
- Purpose of soc
  - Prepare for the cyber threat
  - Planning on how to handle each threat (Incident response)
  - Prevent Cyber threat
  - Protect sensitive data in that organization
  - Reduced Cybersecurity cost

# Where do we implement the model?

- Security Information and Event
   Management(SIEM) is system that
   help soc team organize, detect and
   responds to security threat
- Model is Machine Learning model (ML)
- Purpose of using ML in soc
  - SIEM contain too much noise
  - data from SIEM is HUGE
  - shortage on expert



# **Dataset Analysis**

pictures are from "An empirical comparison of botnet detection methods" Sebastian Garcia, Martin Grill, Jan Stiborek and Alejandro Zunino. Computers and Security Journal, Elsevier. 2014. Vol 45, pp 100-123. http://dx.doi.org/10.1016/j.cose.2014.05.011

#### CTU 13 Dataset

- Dataset that capture the network traffic of Botnet\*
- have 13 files in total
  - Each files contain different attacks

| Id | IRC          | SPAM         | CF           | PS | DDoS         | FF | P2P | US | HTTP         | Note                            |
|----|--------------|--------------|--------------|----|--------------|----|-----|----|--------------|---------------------------------|
| 1  | √            | √            | √            |    |              |    |     |    |              |                                 |
| 2  | $\checkmark$ | $\checkmark$ | $\checkmark$ |    |              |    |     |    |              |                                 |
| 3  | V            |              |              |    |              |    |     | V  |              |                                 |
| 4  | V            |              |              |    | $\checkmark$ |    |     | V  |              | UDP and ICMP DDoS.              |
| 5  |              | √            |              | V  |              |    |     |    | $\checkmark$ | Scan web proxies.               |
| 6  |              |              |              | V  |              |    |     |    | •            | Proprietary C&C. RDP.           |
| 7  |              |              |              | •  |              |    |     |    | √            | Chinese hosts.                  |
| 8  |              |              |              | V  |              |    |     |    | •            | Proprietary C&C. Net-BIOS, STUN |
| 9  | <b>√</b>     | √            | V            | V  |              |    |     |    |              | • •                             |
| 10 | V            |              | - 751        |    | √            |    |     | √  |              | UDP DDoS.                       |
| 11 | V            |              |              |    | V            |    |     | V  |              | ICMP DDoS.                      |
| 12 |              |              |              |    |              |    | V   | •  |              | Synchronization.                |
| 13 |              | V            |              | V  |              |    | •   |    | V            | Captcha. Web mail.              |

| Scen. | Total<br>Flows | Botnet Flows   | Normal<br>Flows | C&C Flows    | Background<br>Flows |
|-------|----------------|----------------|-----------------|--------------|---------------------|
| 1     | 2,824,636      | 39,933(1.41%)  | 30,387(1.07%)   | 1,026(0.03%) | 2,753,290(97.47%)   |
| 2     | 1,808,122      | 18,839(1.04%)  | 9,120(0.5%)     | 2,102(0.11%) | 1,778,061(98.33%)   |
| 3     | 4,710,638      | 26,759(0.56%)  | 116,887(2.48%)  | 63(0.001%)   | 4,566,929(96.94%)   |
| 4     | 1,121,076      | 1,719(0.15%)   | 25,268(2.25%)   | 49(0.004%)   | 1,094,040(97.58%)   |
| 5     | 129,832        | 695(0.53%)     | 4,679(3.6%)     | 206(1.15%)   | 124,252(95.7%)      |
| 6     | 558,919        | 4,431(0.79%)   | 7,494(1.34%)    | 199(0.03%)   | 546,795(97.83%)     |
| 7     | 114,077        | 37(0.03%)      | 1,677(1.47%)    | 26(0.02%)    | 112,337(98.47%)     |
| 8     | 2,954,230      | 5,052(0.17%)   | 72,822(2.46%)   | 1,074(2.4%)  | 2,875,282(97.32%)   |
| 9     | 2,753,884      | 179,880(6.5%)  | 43,340(1.57%)   | 5,099(0.18%) | 2,525,565(91.7%)    |
| 10    | 1,309,791      | 106,315(8.11%) | 15,847(1.2%)    | 37(0.002%)   | 1,187,592(90.67%)   |
| 11    | 107,251        | 8,161(7.6%)    | 2,718(2.53%)    | 3(0.002%)    | 96,369(89.85%)      |
| 12    | 325,471        | 2,143(0.65%)   | 7,628(2.34%)    | 25(0.007%)   | 315,675(96.99%)     |
| 13    | 1,925,149      | 38,791(2.01%)  | 31,939(1.65%)   | 1,202(0.06%) | 1,853,217(96.26%)   |

<sup>\*</sup>botnet is a network of computer that get infected by malware and under control of a single attack party without owner's knowledge

## Why this dataset was made?

- lack of good dataset of botnet
- lack of general public dataset that can be use as an standard for comparing each botnet anomaly detection
- lack of dataset that contain real botnet action and behavior
- lack of Background, Normal and botnet labeled dataset
- lack of dataset that was captured in the real world scenarios

#### How was the dataset created?



- Infected Network consist of Virtual Machine(VM) that running Window XP SP2 operation System
- Capture Network Traffic from both Infected Host and Router

picture are from "An empirical comparison of botnet detection methods" Sebastian Garcia, Martin Grill, Jan Stiborek and Alejandro Zunino. Computers and Security Journal, Elsevier. 2014. Vol 45, pp 100-123. http://dx.doi.org/10.1016/j.cose.2014.05.011

#### How it's labeled?

- Final dataset is from Router
- Captured by tcpdump tool
- Use data that was captured from Infected Hosts for labeling purpose
- Step of Labeling
  - Assign all traffic to be Background
  - Assign it Normal if they match certain filter
  - Assign Botnet if they are known or from infected host by looking at the ip address

## Output and Evaluation

- To Find best anomaly detection method for botnet
- Result will be either 1 or 0 (1 if it is botnet else 0)
- Evaluate by using error metrics score
  - Accuracy
  - Precision
  - F1 Score
  - Error rate
  - False positive rate
- \* True Positive is when it is an botnet and get detect as botnet
- \* True Negative is when it is normal and get detect as non-botnet

#### Which files do I use to train

- Using capture20110812.binetflow to do data analyze (Longest Captured Duration)
  - Contain 4710637 rows -> 4165814 rows (after drop null and duplicates row)
  - How dataset looklike

| label                                          | src_bytes | tot_bytes | tot_pkts | dtos | stos | state     | dport | dstaddr       | dir | sport | srcaddr         | proto | dur        | starttime                  |     |
|------------------------------------------------|-----------|-----------|----------|------|------|-----------|-------|---------------|-----|-------|-----------------|-------|------------|----------------------------|-----|
| flow=Background-<br>TCP-Established            | 606       | 824       | 11       | 0.0  | 0.0  | SR_SA     | 12114 | 147.32.86.165 | .>  | 52475 | 195.68.34.68    | tcp   | 11.337043  | 2011-08-<br>12<br>15:25:00 | 0   |
| flow=Background-<br>TCP-Attempt                | 122       | 182       | 3        | 0.0  | 0.0  | SR_A      | 80    | 77.75.73.156  | ٠.> | 1393  | 147.32.86.58    | tcp   | 2.962470   | 2011-08-<br>12<br>15:29:00 | 1   |
| flow=Background-<br>TCP-Attempt                | 120       | 240       | 4        | 0.0  | 0.0  | S_RA      | 443   | 147.32.86.110 | ->  | 2550  | 201.54.33.206   | tcp   | 2.962828   | 2011-08-<br>12<br>15:30:00 | 2   |
| flow=Background-<br>TCP-Attempt                | 132       | 252       | 4        | 0.0  | 0.0  | S_RA      | 51413 | 147.32.84.189 | ٠.> | 8204  | 221.134.221.114 | tcp   | 1.986249   | 2011-08-<br>12<br>15:37:00 | 3   |
| flow=Background-<br>Established-<br>cmpgw-CVUT | 774       | 3710      | 14       | 0.0  | 0.0  | SRPA_FSPA | 80    | 147.32.80.7   | .>  | 49156 | 147.32.84.59    | tcp   | 767.978638 | 2011-08-<br>12<br>15:33:00 | 4   |
| 555                                            | 466       | 1440      | (112)    | 523  | (22) |           |       | 12.           |     |       |                 | 222   | 222        | 42                         | 944 |

# **Data Visualization**

15 Features

### **Start Time**

#### Summation of count



# Dur (Duration) - connection duration of each packet



Maximum: 3600.0 Minimum: 0.0

Standard Deviation: 670.5881958007812

Mean: 175.3076171875

Median: 0.0003589999978430569 Mode: 0.00023499999952036887

#### Protocol



- Protocol of Each packet use
- 17 Protocols in total
- Piechart shows only top 3 protocol were use on this dataset

#### SrcAddr



- Source IP address
- 359,987 of different IP address
- 69.8% has ip address in form of 147.32.X.X



## sport



- Source ports
- 64666 of different port
- Port 13,363 is the port that computer inside network use to communicate with each other

#### Dir - Direction of the network flow



| <->             | 3092392 |
|-----------------|---------|
| ->              | 1066998 |
|                 | 6380    |
| <-              | 42      |
| ?>              | 1       |
| </td <td>1</td> | 1       |
| who             | 0       |
|                 |         |

74.2% is bidirectional

25.6% is from source to destination

#### dstaddr



IP Address

147.32.80.9 Others

147.32.84.229

147.32.85.100

147.32.84.2

147.32.87.36

Count Percentage

20.406504

16.387962

5.093818

1.256633

0.578998

850097

682692

212199

52349

24120

- destination address
- 125482 of different IP
- 85% has ip address in form of 147.32.X.X



# dport



- destination port
- 84591 of different port
- port 13363 is same as sport
- port 53 is Domain Name System (DNS)
- port 80 is Hyper transfer Text
   Protocol (HTTP)
- port 443 is Hyper transfer Text
   Protocol over TSL/SSL (HTTPS)
- port 6881 is Bittorrent (unofficial)

#### State



- The state is protocol dependent and \_ is a separator for one end of the connection
  - CON mean connected (UDP)
  - S mean Synchronized (TCP)
  - F mean FIN (TCP)
  - A mean Acknowledge (TCP)
  - P mean push (TCP)
  - R mean reset (TCP)

#### stos & dtos

| stos |           | dtos |           |  |  |  |  |
|------|-----------|------|-----------|--|--|--|--|
| 0.0  | 99.950070 | 0.0  | 99.988358 |  |  |  |  |
| 3.0  | 0.026717  | 2.0  | 0.005977  |  |  |  |  |
| 2.0  | 0.012170  | 3.0  | 0.005161  |  |  |  |  |
| 1.0  | 0.011042  | 1.0  | 0.000504  |  |  |  |  |

- Number that tell priority of the packet
  - 0 mean routine
  - 1 mean priority
  - o 2 mean immediate
  - o 3 mean flash
- 99.9% is 0

# tot\_pkts - Total numbers of transaction of each Packet



# tot\_bytes - total numbers of transaction Bytes



## src\_bytes - total numbers of transaction Bytes from Source



#### Label

#### Case 1

"Flow=From-Botnet" -> 1 contain 26822

Others -> 0 contain 4683816

#### Case 2

flow=Background -> 0 contain 2340042 flow=To-Backgro -> 1 contain 2225846 flow=From-Norma -> 2 contain 116303 flow=From-Botne -> 3 contain 26822 flow=From-Backg -> 4 contain 1041 flow=To-Normal- -> 5 contain 562 flow=Normal-V44 -> 6 contain 22

"->" Refer to "change to"