

Helwan University - Faculty of Engineering (Helwan) Electronics and Communications Engineering Department

Lec-2 Diodes: Structure & Operation

Presented By:

Azza Mohamed Anis

If piece of intrinsic semiconductor is doped with acceptors on one side and with donors on the other side, a boundary called pn junction is formed between the resulting p region and n region and a diode is

created. Acceptors **Doners** Intrinsic Semiconductor (N_D) n region p region

- ☐ The **p region** has <u>many holes (majority carriers)</u> from acceptor atoms and only a <u>few</u> thermally generated <u>electrons (minority carriers)</u>.
- The **n region** has <u>many electrons (majority carriers)</u> from donor atoms and only a <u>few</u> thermally generated <u>holes (minority carriers)</u>.

□ Free electrons near the junction in n region diffuse into p region where they combine with holes near the junction.

The **p region**loses holes as the electrons and holes combine.

The **n region** loses free electrons as they diffuse across the junction.

- ☐ Layer of **positive charges** (donor ions) near the junction is created **in n region**.
- Layer of negative charges (acceptor ions) near the junction is created in p region.

 pregion

 pregion

The **p region** loses holes.

The **n region** loses free electrons.

The region near the junction is called a depletion region.

☐ The term **depletion refers** to the fact that the <u>region near the junction</u> is <u>depleted (empty) of mobile charges</u> (free electrons and holes).

☐ The positive and the negative charges in the depletion region create an electric field.

 \square If **electric field** (E) **is weak**, electrons in n region continue to diffuse across the junction, then more and more positive and negative charges are created near the junction.

☐ When electric field is large enough, the diffusion process stops.

☐ In other words, **diffusion process stops** when the layer of negative charges is strong enough to repel any further diffusion of electrons from n region into p region.

☐ This electric field represents a barrier or a wall that prevent the flow of the carriers across the junction.

- Electrons
- Holes

 \Box This electric field results in a difference of potential (V_B) called **barrier potential** across the depletion region.

☐ Barrier Potential (difference of potential) is expressed in volts and given by:

$$V_B = V_T \ln \left(\frac{N_A N_D}{n_i^2} \right)$$

 V_T is thermal voltage.

At room temp. (300°K): $V_T = 0.025 V$

Diode Symbol

The **p region** of diode is called the **anode (A)** and is connected to a conductive (metal) terminal. The **n region** is called the **cathode (K)** and is connected to a second conductive terminal.

The anode is represented by a triangle, or an arrow and the cathode is represented by a vertical line.

The anode terminal is the flat side of the triangle (tail of the arrow).

Diode Biasing

refers to applying an external voltage source across it to establish certain operating conditions.

There are two biasing conditions: forward and reverse.

> Forward Biasing

Is a condition in which the <u>positive side</u> of a voltage source <u>is connected</u> to <u>p region</u> (<u>anode</u>) of a diode and the <u>negative side</u> of a voltage source <u>is connected to n region</u> (<u>cathode</u>).

The <u>negative side</u> of a voltage source <u>pushes free electrons</u> in the n region <u>toward the pn junction</u>.

As <u>electrons</u> in n region <u>flow into depletion region</u>, the number of the <u>positive ions is reduced</u>.

The <u>reduction in the positive ions</u> results in the <u>depletion region to narrow</u>.

The voltage source imparts sufficient energy to free electrons to overcome the barrier potential of the depletion region and move into the p region.

Electron Current Depletion region p region This flow of free electrons results in **electron current**.

Similarly, the holes in the p region move toward the junction.

As holes in p region flow into the depletion region, <u>number</u> of negative ions is reduced, and the <u>width of the depletion</u> region is reduced.

The flow of holes results in the **hole current**.

Forward Current (I_f)

 $I_f = Electron\ Current + Hole\ Current$

$$I_f = I_s \exp\left(\frac{V_D}{\eta V_T}\right)$$

 V_D is the voltage across diode

 I_s is the saturation current

 η is a constant =1 for Ge , 2 for Si

$$V_T = 0.025 \ V$$
 at $300 \ ^{o}K$

Hole Current

> Reverse Biasing

Is a condition in which the <u>negative side</u> of a voltage source is <u>connected</u> to p region (anode) of diode and the <u>positive side</u> of a voltage source is <u>connected</u> to n region (cathode).

The positive side of the voltage source attracts electrons in the n region away from the junction.

Additional positive ions are created that result in a widening of the depletion region.

Similarly, <u>holes</u> in the p region are <u>pulled toward the negative side</u> of the voltage source.

Additional negative ions are created that result in a widening of the depletion region.

Reverse Current (I_r)

Minority electrons in the p region are pushed toward the junction by the negative side of voltage source and pass through the depletion region.

Similarly, minority holes in the n region move away from the positive side of voltage source.

The flow of the minority carriers results in an extremely small current.

 $I_r = Electron\ Current + Hole\ Current$

$$I_r = I_s$$

I_s is the saturation current

Diode Current (I_D)

The <u>arrow direction</u> in the diode symbol indicates the <u>direction of current</u> through the diode.

$$I_D = I_f - I_r$$

$$I_D = I_S \exp\left(\frac{V_D}{\eta V_T}\right) - I_S$$

$$I_D = I_S \left[\exp\left(\frac{V_D}{\eta V_T}\right) - 1 \right]$$

Voltage-Current Characteristic of Diode

Is a graphical relationship between the voltage and the current in a diode.

- ☐ With <u>zero volt</u> across the diode, there is <u>zero current</u>.
- zero volt and below the barrier potential, the current increases very little.
- ☐ When a <u>voltage</u> across a diode <u>reaches the</u> barrier potential, the current increases rapidly.

When a reverse voltage is applied across a diode, there is an extremely small reverse current through a diode.

$$I_D = I_S \left[\exp\left(\frac{V_D}{\eta V_T}\right) - 1 \right]$$

$$I_D = -I_S$$

- If the <u>reverse voltage is increased to</u> a value called the <u>breakdown</u> voltage (V_{BD})
- The <u>high reverse voltage</u> (V_{BD}) imparts energy to the <u>minority</u> electrons so that they <u>speed</u> through the p region, they <u>collide</u> with atoms and knock **valence electrons** out of orbit and into the conduction band. V_{BD}

Drift Velocity:
$$v_d = \mu_n E = \mu_n \frac{V}{L}$$

☐ The <u>newly created conduction electrons repeat the process</u>. As a result, the <u>numbers</u> of electrons <u>quickly multiply</u>, and the multiplication of conduction electrons is known as the avalanche effect. ☐ The resulting conduction electrons go through the n region and result in a very high reverse current. V_{BD} ☐ The <u>resulting heating</u> from the increased reverse current will damage the diode.

Complete Voltage-Current Characteristic of Diode

Forward Region V_{BD} Breakdown Reverse 0.3V Germanium Region 0.7V Silicon

The reverse voltage does not reach the breakdown voltage of the diode.

Piecewise Linear Characteristic of Practical Diode

Piecewise Linear Characteristic of Ideal Diode

and reverse current.