

# **Chapter 3: Introduction to SQL**

**Database System Concepts, 7th Ed.** 

©Silberschatz, Korth and Sudarshan See <a href="https://www.db-book.com">www.db-book.com</a> for conditions on re-use



#### **Outline**

- Overview of The SQL Query Language
- SQL Data Definition
- Basic Query Structure of SQL Queries
- Additional Basic Operations
- Set Operations
- Null Values
- Aggregate Functions
- Nested Subqueries
- Modification of the Database



### **Modification of the Database**

- Deletion of tuples from a given relation.
- Insertion of new tuples into a given relation
- Updating of values in some tuples in a given relation



#### **Deletion**

- Delete all instructorsdelete from instructor
- Delete all instructors from the Finance department delete from instructor where dept\_name= 'Finance';
- Delete all tuples in the instructor relation for those instructors associated with a department located in the Watson building.



### **Deletion (Cont.)**

Delete all instructors whose salary is less than the average salary of instructors

- Problem: as we delete tuples from instructor, the average salary changes
- Solution used in SQL:
  - 1. First, compute avg (salary) and find all tuples to delete
  - Next, delete all tuples found above (without recomputing avg or retesting the tuples)



#### Insertion

Add a new tuple to course

insert into course
 values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

or equivalently

```
insert into course (course_id, title, dept_name, credits)
  values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);
```

Add a new tuple to student with tot\_creds set to null

```
insert into student
    values ('3003', 'Green', 'Finance', null);
```



# **Insertion (Cont.)**

Make each student in the Music department who has earned more than 144 credit hours an instructor in the Music department with a salary of \$18,000.

```
insert into instructor
  select ID, name, dept_name, 18000
  from student
  where dept name = 'Music' and total cred > 144;
```

The **select from where** statement is evaluated fully before any of its results are inserted into the relation.

Otherwise queries like

insert into table1 select \* from table1

would cause problem



### **Updates**

- Give a 5% salary raise to all instructors

  update instructor
  - **set** salary = salary \* 1.05
- Give a 5% salary raise to those instructors who earn less than 70000 update instructor

  set salary = salary \* 1.05

  where salary < 70000;
- Give a 5% salary raise to instructors whose salary is less than average

```
update instructor
set salary = salary * 1.05
where salary < (select avg (salary)
from instructor);</pre>
```



## **Updates (Cont.)**

- Increase salaries of instructors whose salary is over \$100,000 by 3%, and all others by a 5%
  - Write two update statements:

```
update instructor
  set salary = salary * 1.03
  where salary > 100000;
update instructor
  set salary = salary * 1.05
  where salary <= 100000;</pre>
```

- The order is important
- Can be done better using the case statement (next slide)



# **Case Statement for Conditional Updates**

Same query as before but with case statement



### **Updates with Scalar Subqueries**

Recompute and update tot\_creds value for all students

- Sets tot\_creds to null for students who have not taken any course
- Instead of sum(credits), use:

```
case
    when sum(credits) is not null then sum(credits)
    else 0
end
```



# **End of Chapter 3**