Lenguajes Formales y Computabilidad Teoremas: Combo 3

Nicolás Cagliero

June 25, 2025

Teorema (Godel vence a Neumann). Si $f:D_f\subseteq\omega^n\times\Sigma^{*m}\to\Sigma^*$ es Σ -computable, entonces f es Σ -recursiva.

Proof. Sea \mathcal{P}_0 un programa que compute a f. Primero veremos que f es $(\Sigma \cup \Sigma_p)$ -recursiva. Note que

$$f = E_{*1}^{n,m} \circ [T^{n,m} \circ [p_1^{n,m}, \dots, p_{n+m}^{n,m}, C_{\mathcal{P}_0}^{n,m}], p_1^{n,m}, \dots, p_{n+m}^{n,m}, C_{\mathcal{P}_0}^{n,m}]$$

donde cabe destacar que $p_1^{n,m},\ldots,p_{n+m}^{n,m}$ son las proyecciones respecto del alfabeto $\Sigma \cup \Sigma_p$, es decir que tienen dominio $\omega^n \times (\Sigma \cup \Sigma_p)^{*m}$. Esto nos dice que f es $(\Sigma \cup \Sigma_p)$ -recursiva. O sea que el Teorema de Independencia del Alfabeto nos dice que f es Σ -recursiva.

Teorema Sea $S \subseteq \omega^n \times \Sigma^{*m}$. Son equivalentes

- (a) S es Σ -efectivamente computable
- (b) $S y (\omega^n \times \Sigma^{*m}) S \text{ son } \Sigma\text{-efectivamente enumerables}$

Proof. (b) \Rightarrow (a). Si $S=\emptyset$ o $S=\omega^n\times\Sigma^{*m}$ es claro que se cumple (a). O sea que podemos suponer que ni S ni $(\omega^n\times\Sigma^{*m})-S$ son igual al conjunto vacío. Sea \mathbb{P}_1 un procedimiento efectivo que enumere a S y sea \mathbb{P}_2 un procedimiento efectivo que enumere a $(\omega^n\times\Sigma^{*m})-S$. Es fácil ver que el siguiente procedimiento computa el predicado $\chi_S^{\omega^n\times\Sigma^{*m}}$:

Etapa 1: Darle a la variable T el valor 0.

Etapa 2: Realizar \mathbb{P}_1 con el valor de T como entrada para obtener de salida la tupla $(\vec{y}, \vec{\beta})$.

Etapa 3: Realizar \mathbb{P}_2 con el valor de T como entrada para obtener de salida la tupla $(\vec{z}, \vec{\gamma})$.

Etapa 4: Si $(\vec{y}, \vec{\beta}) = (\vec{x}, \vec{\sigma})$, entonces detenerse y dar como dato de salida el valor 1. Si $(\vec{z}, \vec{\gamma}) = (\vec{x}, \vec{\sigma})$, entonces detenerse y dar como dato de salida el valor 0. Si no suceden ninguna de las dos posibilidades antes mencionadas, aumentar en 1 el valor de la variable T y dirigirse a la Etapa 2.