PERTEMUAN 9-MPC 2 PRAKTIK

TWO STAGE SAMPLING (PPS-PPS)

Oleh: Adhi Kurniawan

Two Stage Sampling (PPS WR-PPS WR)

π

- › Misalkan suatu survei dilakukan dengan penarikan sampel dua tahap (two stage sampling), dengan tahapan sebagai berikut:
 - Tahap pertama, dari N unit penarikan sampel tahap pertama dipilih n unit dengan menerapkan metode penarikan sampel sebanding terhadap ukuran unit X_i dengan pemulihan ($PPS\ WR$). Nilai-nilai X_i untuk seluruh unit untuk penarikan sampel tahap pertama harus tesedia sehingga dapat dihitung
 - Tahap kedua, misalkan pada setiap unit psu yang terpilih memuat M_i unit ssu, selanjutnya dipilih m_i unit dengan menerapkan metode PPS WR dengan size Z_{ij} .

Two Stage Sampling (PPS WR-PPS WR)

 π

> Skema Sampling (Sampling Scheme)

Tahap	Indeks	Unit	Populasi	Sampel	Metode	Peluang	Fraksi sampling
1	i	psu	N	n	PPS WR	$\frac{X_i}{X}$	$n\frac{X_i}{X}$
2	j	ssu	M_i	m_i	PPS WR	$rac{Z_{ij}}{Z_i}$	$m_i rac{Z_{ij}}{Z_i}$

> Overall sampling fraction merupakan perkalian fraksi sampling antartahap penarikan sampel, yaitu:

$$f_{ij} = f_i \times f_{j|i} = \frac{nm_i X_i Z_{ij}}{XZ_i}$$

> Design weight merupakan kebalikan dari overall sampling fraction, yaitu:

$$w_{ij} = \frac{XZ_i}{nm_i X_i Z_{ij}}$$

> Jika y_{ij} merupakan nilai karakteristik yang diteliti pada psu ke-i ssu ke-j maka :

Unbiased estimator untuk total karakteristik yang hanya didasarkan pada psu ke-i adalah:

$$\widehat{Y}_i = \frac{XZ_i}{m_i X_i} \sum_{j=1}^{m_i} \frac{y_{ij}}{Z_{ij}}$$

Unbiased estimator untuk total karakteristik berdasarkan seluruh sampel psu adalah:

$$\hat{Y} = \sum_{i=1}^{n} \sum_{j=1}^{m_i} w_{ij} y_{ij} = \frac{X}{n} \sum_{i=1}^{n} \frac{Z_i}{m_i X_i} \sum_{j=1}^{m_i} \frac{y_{ij}}{Z_{ij}}$$

> *Unbiased estimator* untuk sampling varians adalah:

$$v(\hat{Y}) = \frac{1}{n(n-1)} \sum_{i=1}^{n} (\hat{Y}_i - \hat{Y})^2$$

Two Stage Sampling (PPS WR-PPS WR)

> Contoh:

Misalkan, kita mempunyai populasi jumlah peternak sebanyak 6 peternak. Pada tahap pertama dilakukan pengambilan sampel sebanyak 2 peternak secara PPS WR dengan size jumlah kandang, selanjutnya dari tiap peternak terpilih dilakukan pengambilan sampel sebanyak 2 kandang secara PPS WR dengan size jumlah sapi. Kemudian dilakukan observasi untuk memperkirakan jumlah sapi betina.

Tahap 1: Pilih peternak PPS

size jumlah

Tahap 2: pilih kandang PPS WR size jumlah sapi

> Keterangan:

→ Sapi betina

→ Sapi jantan

Two Stage Sampling (PPS WR-SRS/Systematik)

- > Misalkan suatu survei dilakukan dengan penarikan sampel dua tahap (*two stage sampling*), dengan tahapan sebagai berikut:
 - Tahap pertama, dari N unit penarikan sampel tahap pertama dipilih n unit dengan menerapkan metode penarikan sampel sebanding terhadap ukuran unit X_i dengan pemulihan ($PPS\ WR$). Nilai-nilai X_i untuk seluruh unit untuk penarikan sampel tahap pertama harus tesedia sehingga dapat dihitung
 - Tahap kedua, misalkan pada setiap unit psu yang terpilih memuat M_i unit ssu, selanjutnya dipilih m_i unit dengan menerapkan metode acak sederhana dengan pemulihan/sistematik (SRS/sistematik).

> Skema Sampling (Sampling Scheme)

Tahap	Indeks	Unit	Populasi	Sampel	Metode	Peluang	Fraksi sampling
1	i	psu	N	n	PPS WR	$\frac{X_i}{X}$	$n\frac{X_i}{X}$
2	j	ssu	M_i	m_i	SRS/Sistematik	$\frac{1}{M_i}$	$rac{m_i}{M_i}$

> Overall sampling fraction merupakan perkalian fraksi sampling antartahap penarikan sampel, yaitu:

$$f_{ij} = f_i \times f_{j|i} = \frac{nX_i m_i}{XM_i}$$

> Design weight merupakan kebalikan dari overall sampling fraction, yaitu:

$$w_{ij} = \frac{XM_i}{nX_i m_i}$$

Two Stage Sampling (PPS WR-SRS WR)

 \rightarrow Jika y_{ij} merupakan nilai karakteristik yang diteliti pada psu ke-i ssu ke-j maka :

Unbiased estimator untuk total karakteristik yang hanya didasarkan pada psu ke-i adalah:

$$\widehat{Y}_i = \frac{XM_i}{X_i m_i} \sum_{j=1}^{m_i} y_{ij}$$

Unbiased estimator untuk total karakteristik berdasarkan seluruh sampel psu adalah:

$$\hat{Y} = \sum_{i=1}^{n} \sum_{j=1}^{m_i} w_{ij} y_{ij} = \frac{X}{n} \sum_{i=1}^{n} \frac{M_i}{X_i m_i} \sum_{j=1}^{m_i} y_{ij}$$

> *Unbiased estimator* untuk sampling varians adalah:

$$v(\widehat{Y}) = \frac{1}{n(n-1)} \sum_{i=1}^{n} (\widehat{Y}_i - \widehat{Y})^2$$

Estimasi Rasio pada Two Stage Sampling

- > Misalkan selain variabel Y, juga diteliti variabel X sehingga y_{ij} dan x_{ij} masing-masing menyatakan nilai karakteristik Y dan X yang diteliti pada psu ke-i ssu ke-j.
- > Dengan demikian, dapat dihitung rasio dari dua variabel tersebut beserta estimasi variansnya:

$$\widehat{R} = \frac{Y}{\widehat{X}}$$

$$v(\widehat{R}) = \frac{1}{\widehat{X}^2} \left(v(\widehat{Y}) - 2\widehat{R}cov(\widehat{Y}, \widehat{X}) + \widehat{R}^2 v(\widehat{X}) \right)$$

Keterangan:

$$cov(\hat{Y}, \hat{X}) = \frac{1}{n(n-1)} \sum_{i=1}^{n} (\hat{Y}_i - \hat{Y})(\hat{X}_i - \hat{X})$$

TERIMA KASIH

Have A Nice Sampling