- имеющей пороговую функцию активации (T=0,8). Синаптические веса и обучающую выборку задать случайным образом (не нули).
- 18. Просчитать одну итерацию цикла обучения по Δ -правилу однослойной аналоговой однородной нейронной сети, состоящей из 3 нейронов и имеющей функцию активации гиперболический тангенс (k=1). Синаптические веса и обучающую выборку задать случайным образом (не нули).
- 19. Просчитать одну итерацию цикла обучения по Δ -правилу однослойной аналоговой неоднородной нейронной сети, состоящей из 3 нейронов и имеющей функции активации: сигмоидальную (k=1), линейную (k=0,8) и пороговую (T=0,5). Синаптические веса и обучающую выборку задать случайным образом (не нули).
- 20. Просчитать одну итерацию цикла обучения по Δ -правилу однослойной аналоговой неоднородной нейронной сети, состоящей из 3 нейронов и имеющей функции активации: гиперболический тангенс (k=1), сигмоидальную (k=0,8) и пороговую (T=0,6). Синаптические веса и обучающую выборку задать случайным образом (не нули).

Алгоритм обратного распространения ошибки

Многослойная искусственная нейронная сеть (рис. 6) может содержать произвольное количество слоев (K), каждый слой состоит из нескольких нейронов, число которых также может быть произвольно (H_k – количество нейронов в слое), количество входов n, количество выходов $H=H_K$ - числу нейронов в выходном (последнем) слое.

Рис. 6. Многослойная нейронная сеть прямого распространения

Слои между первым и последним называются промежуточными или скрытыми. Веса в такой сети имеют три индекса i- номер нейрона следующего слоя, для которого связь входная, j – номер входа или нейрона текущего слоя, для которого связь выходная, k – номер текущего слоя в нейронной сети (для входов, вектора X, k=0).