L_p boundedness of operators in the Androulidakis-Mohsen-Yuncken calculus

Ed McDonald

Penn State University

October 21, 2024

Introduction

This talk is mostly based on my preprint

 L_p estimates in the Androulidakis-Mohsen-Yuncken calculus, arXiv:2410.13701.

In turn, this work was based on the paper by Androulidakis, Mohsen and Yuncken that can be found at arXiv:2201.12060.

Section 0: Asteroids

Part 1: Asteroids

Rules of Asteroids

In the classic game of asteroids, a player controls a spaceship moving on a two dimensional toroidal space, $\mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$. There are two controls available:

- The spaceship can be rotated,
- The spaceship can be moved forward.

The configuration space of the game is the three-dimensional torus $\mathbb{T}^3 = (\mathbb{R}/\mathbb{Z})^3$, with coordinates (x,y,θ) , where (x,y) is the position of the spaceship and θ is its angle.

The controls of the game allow us to move along the vector fields

$$X = \cos(\theta)\partial_x + \sin(\theta)\partial_y, \quad Y = \partial_\theta.$$

The configuration space of the game is the three-dimensional torus $\mathbb{T}^3 = (\mathbb{R}/\mathbb{Z})^3$, with coordinates (x,y,θ) , where (x,y) is the position of the spaceship and θ is its angle.

The controls of the game allow us to move along the vector fields

$$X = \cos(\theta)\partial_x + \sin(\theta)\partial_y, \quad Y = \partial_\theta.$$

The player moves the spaceship along a path which is parallel to the span of X and Y. That is, the path of the spaceship in configuration space is $\{\gamma(t)\}_{t\geq 0}$, where

$$\dot{\gamma}(t) \in \operatorname{span}\{X_{\gamma(t)}, Y_{\gamma(t)}\}, \quad t \ge 0.$$

The configuration space of the game is the three-dimensional torus $\mathbb{T}^3 = (\mathbb{R}/\mathbb{Z})^3$, with coordinates (x,y,θ) , where (x,y) is the position of the spaceship and θ is its angle.

The controls of the game allow us to move along the vector fields

$$X = \cos(\theta)\partial_x + \sin(\theta)\partial_y, \quad Y = \partial_\theta.$$

The player moves the spaceship along a path which is parallel to the span of X and Y. That is, the path of the spaceship in configuration space is $\{\gamma(t)\}_{t\geq 0}$, where

$$\dot{\gamma}(t) \in \operatorname{span}\{X_{\gamma(t)}, Y_{\gamma(t)}\}, \quad t \ge 0.$$

Despite there being only two available directions, we can reach any point (x, y, θ) from any other point by travelling on a piecewise-smooth path parallel to X and Y.

The configuration space of the game is the three-dimensional torus $\mathbb{T}^3 = (\mathbb{R}/\mathbb{Z})^3$, with coordinates (x,y,θ) , where (x,y) is the position of the spaceship and θ is its angle.

The controls of the game allow us to move along the vector fields

$$X = \cos(\theta)\partial_x + \sin(\theta)\partial_y, \quad Y = \partial_\theta.$$

The player moves the spaceship along a path which is parallel to the span of X and Y. That is, the path of the spaceship in configuration space is $\{\gamma(t)\}_{t\geq 0}$, where

$$\dot{\gamma}(t) \in \operatorname{span}\{X_{\gamma(t)}, Y_{\gamma(t)}\}, \quad t \ge 0.$$

Despite there being only two available directions, we can reach any point (x, y, θ) from any other point by travelling on a piecewise-smooth path parallel to X and Y. Physically, this is called a *non-holonomic constraint*.

In general, if we can travel parallel to X and Y then we can approximate paths along [X,Y], by the Lie-Kato-Trotter product formula

$$\exp(t[X,Y]) = \lim_{n \to \infty} (\exp(\frac{t}{n}X) \exp(\frac{t}{n}Y) \exp(-\frac{t}{n}(X+Y)) \exp(-\frac{t}{n}Y))^n.$$

But moving along [X, Y] is harder than moving along X and Y. In the asteroids example,

$$[X, Y] = \sin(\theta)\partial_x - \cos(\theta)\partial_y$$

so $\{X,Y,[X,Y]\}$ form a basis for the tangent space to \mathbb{T}^3 at every point.

Random walks

A random walk making independent increments in the X and Y directions looks a bit like this:

Random walks

Ten realisations of the same random walk look like this:

Random walks

The path through configuration space is in three dimensions, and looks like this:

Thinking about X and Y as derivations (not just as directions), we should think of X, Y as being order 1 and [X, Y] as being order 2. The operator

$$\Theta = X^2 + Y^2 = \partial_{\theta}^2 + (\cos(\theta)\partial_x + \sin(\theta)\partial_y)^2$$

is homogeneous of order 2.

Thinking about X and Y as derivations (not just as directions), we should think of X, Y as being order 1 and [X, Y] as being order 2. The operator

$$\Theta = X^2 + Y^2 = \partial_{\theta}^2 + (\cos(\theta)\partial_x + \sin(\theta)\partial_y)^2$$

is homogeneous of order 2.

 Θ is not elliptic, but $(1-\Theta)^{-1}$ does improve regularity somewhat. Why, and by how much?

Thinking about X and Y as derivations (not just as directions), we should think of X, Y as being order 1 and [X, Y] as being order 2. The operator

$$\Theta = X^2 + Y^2 = \partial_{\theta}^2 + (\cos(\theta)\partial_x + \sin(\theta)\partial_y)^2$$

is homogeneous of order 2.

 Θ is not elliptic, but $(1-\Theta)^{-1}$ does improve regularity somewhat. Why, and by how much?

In stochastic analysis, Θ is the generator of the random walks above.

Let $\|u\|_{W_2^s(\mathbb{T}^3)}$ denote the standard Hilbert-Sobolev norm of order $s \in \mathbb{R}$ of $u \in C^{\infty}(\mathbb{T}^3)$. That is,

$$\|u\|_{W^s_2(\mathbb{T}^3)}:=\|(1-\partial_x^2-\partial_y^2-\partial_\theta^2)^{\frac{s}{2}}u\|_{L_2(\mathbb{T}^3)}.$$

A highly non-trivial calculation gives us the *sub-elliptic estimates*:

$$||u||_{W_2^{s+\frac{1}{2}}(\mathbb{T}^3)} \lesssim_s ||\Theta u||_{W_2^s(\mathbb{T}^3)} + ||u||_{W_2^s(\mathbb{T}^3)}.$$

This implies hypoellipticity (i.e., $\Theta u \in C^{\infty} \Rightarrow u \in C^{\infty}$.)

More examples

A similar example can be performed on the Lie group SO(3). The Lie algebra $\mathfrak{so}(3)$ is spanned by three elements, $\{A, B, C\}$, and [A, B] = C, [C, A] = B, etc.

More examples

A similar example can be performed on the Lie group SO(3). The Lie algebra $\mathfrak{so}(3)$ is spanned by three elements, $\{A,B,C\}$, and [A,B]=C,[C,A]=B, etc. The operator

$$\Delta = A^2 + B^2 + C^2$$

is the quadratic casimir element. It is elliptic.

More examples

A similar example can be performed on the Lie group SO(3). The Lie algebra $\mathfrak{so}(3)$ is spanned by three elements, $\{A,B,C\}$, and [A,B]=C,[C,A]=B, etc. The operator

$$\Delta = A^2 + B^2 + C^2$$

is the quadratic casimir element. It is elliptic. The operator

$$\Theta = A^2 + B^2$$

is not elliptic, but it is hypoelliptic.

Section 2: Pseudodifferential calculus

One of the best ways of studying differential operators is to build a pseudodifferential calculus.

One of the best ways of studying differential operators is to build a pseudodifferential calculus. Let M be a closed manifold, and let $\mathrm{DO}^k(M)$ be the set of differential operators on M of order $m \geq 0$. That is, locally $P \in \mathrm{DO}^k(M)$ looks like

$$P = \sum_{|\alpha| < k} a_{\alpha}(x) \partial^{\alpha}.$$

Let $DO(M) = \bigcup_{k \ge 0} DO^m(M)$.

One of the best ways of studying differential operators is to build a pseudodifferential calculus. Let M be a closed manifold, and let $\mathrm{DO}^k(M)$ be the set of differential operators on M of order $m \geq 0$. That is, locally $P \in \mathrm{DO}^k(M)$ looks like

$$P = \sum_{|\alpha| \le k} a_{\alpha}(x) \partial^{\alpha}.$$

Let $DO(M) = \bigcup_{k \geq 0} DO^m(M)$. We could also count "orders" in a non-traditional way as in the asteroids example, where X and Y have order 1 and [X,Y] has order 2.

 $\mathrm{DO}(M)$ is a filtered algebra. That is, $\mathrm{DO}^k(M) \subset \mathrm{DO}^{k+1}(M)$ and

$$\mathrm{DO}^k(M) \cdot \mathrm{DO}^\ell(M) \subseteq \mathrm{DO}^{k+\ell}(M).$$

What we would like to do is embed $\mathrm{DO}(X)$ into a larger filtered algebra $\Psi(M) = \bigcup_{k \in \mathbb{Z}} \Psi^k(M)$, with

$$\mathrm{DO}^k(M) \subseteq \Psi^k(M).$$

Desirable properties include:

- $\Psi^k(M)$ should be closed under the adjoint
- $\Psi^0(M)$ should act as bounded operators on $L_2(M)$.
- $\Psi^{-\infty}(M)$ consists of smoothing operators.
- Negative order operators should be compact.

Desirable properties include:

- $\Psi^k(M)$ should be closed under the adjoint
- $\Psi^0(M)$ should act as bounded operators on $L_2(M)$.
- $\Psi^{-\infty}(M)$ consists of smoothing operators.
- Negative order operators should be compact.

The final three conditions can be included in:

• $\Psi^k(M)$ acts boundedly from $W_2^{s+k}(M)$ to $W_2^s(M)$ for all $s \in \mathbb{R}$.

The most important thing that we want is

• Elliptic operators $D \in \mathrm{DO}^k(M)$ should have a parametrix $Q \in \Psi^{-k}(M)$.

A parametrix is an inverse modulo smoothing, i.e.

$$DQ-1, QD-1 \in \Psi^{-\infty}(M).$$

The most important thing that we want is

• Elliptic operators $D \in \mathrm{DO}^k(M)$ should have a parametrix $Q \in \Psi^{-k}(M)$.

A parametrix is an inverse modulo smoothing, i.e.

$$DQ-1, QD-1 \in \Psi^{-\infty}(M).$$

In the standard calculus, $P = \sum_{|\alpha| \leq k} a_{\alpha}(x) \partial^{\alpha}$ is elliptic if its principal symbol is invertible, i.e.

$$\xi \neq 0 \Rightarrow \sum_{|\alpha|=k} a_{\alpha} \xi^{\alpha} \neq 0.$$

There are a lot of things to be done with a pseudodifferential calculus. One of the most important is in deriving *elliptic estimates*.

Lemma

Suppose that $\Psi(M) = \bigcup_{k \in \mathbb{Z}} \Psi^k(M)$ is a pseudodifferential calculus satisfying all of the desirable conditions above. If $D \in \mathrm{DO}^k(M)$ is elliptic, then for every $s \in \mathbb{R}$ there exists a constant $C_{s,D}$ such that

$$||u||_{W_2^{s+k}(M)} \le C_{s,D}(||Du||_{W_2^s(M)} + ||u||_{W_2^s(M)}).$$

Proof.

Let Q be a parametrix for D. For $u \in C^{\infty}(M)$, write

$$u = QDu + (1 - QD)u.$$

Since Q is bounded from $W_2^{s+k}(M)$ to $W_2^s(M)$, and 1-QP has order $-\infty$, it follows that

$$||u||_{W_2^{s+k}(M)} \le ||Q||_{W_2^{s+k}(M) \to W_2^s(M)} ||Du||_{W_2^s(M)} + ||1 - QD||_{W_2^{s+k}(M) \to W_2^s(M)} ||u||_{W_2^{s+k}(M)}$$

Elliptic estimates in L_p -spaces

 L_2 Sobolev spaces are the easiest to deal with since they are Hilbert spaces, but there are reasons to want L_p elliptic estimates, too. For an elliptic operator $D \in \mathrm{DO}^k(M)$, L_p elliptic estimates take the form

$$||u||_{W_p^{s+k}(M)} \le C_{s,D,p}(||Du||_{W_p^s(M)} + ||u||_{W_p^s(M)}).$$

Elliptic estimates in L_p -spaces

 L_2 Sobolev spaces are the easiest to deal with since they are Hilbert spaces, but there are reasons to want L_p elliptic estimates, too. For an elliptic operator $D \in \mathrm{DO}^k(M)$, L_p elliptic estimates take the form

$$||u||_{W_p^{s+k}(M)} \leq C_{s,D,p}(||Du||_{W_p^s(M)} + ||u||_{W_p^s(M)}).$$

From the above argument, the key to proving these estimates is to show that operators in $\Psi^k(M)$ act boundedly from $W^{s+k}_p(M)$ to $W^s_p(M)$.

Why elliptic estimates in L_p -spaces?

We need Sobolev spaces $W_p^s(M)$ for $p \neq 2$ for nonlinear PDE.

Why elliptic estimates in L_p -spaces?

We need Sobolev spaces $W_p^s(M)$ for $p \neq 2$ for nonlinear PDE. Consider $P \in \mathrm{DO}^2(M)$, where $P = -\sum_{j=1}^d X_j^2$, and the X_j are vector fields on M. Suppose that P is elliptic.

Why elliptic estimates in L_p -spaces?

We need Sobolev spaces $W_p^s(M)$ for $p \neq 2$ for nonlinear PDE. Consider $P \in \mathrm{DO}^2(M)$, where $P = -\sum_{j=1}^d X_j^2$, and the X_j are vector fields on M. Suppose that P is elliptic. Let $f \in C^\infty(M)$. Using variational methods, it is easy to show that the PDE

$$Pu + u^3 = f$$

has a weak solution u belonging to $L_4(M)$. In order to show that u is a classical solution, we need to show that it has two orders of differentiability.

Why elliptic estimates in L_p -spaces?

We need Sobolev spaces $W_p^s(M)$ for $p \neq 2$ for nonlinear PDE. Consider $P \in \mathrm{DO}^2(M)$, where $P = -\sum_{j=1}^d X_j^2$, and the X_j are vector fields on M. Suppose that P is elliptic. Let $f \in C^\infty(M)$. Using variational methods, it is easy to show that the PDE

$$Pu + u^3 = f$$

has a weak solution u belonging to $L_4(M)$. In order to show that u is a classical solution, we need to show that it has two orders of differentiability. If we know elliptic estimates in $p = \frac{4}{3}$, then

$$||u||_{W_{\frac{4}{3}}^2(M)} \lesssim ||Pu||_{L_{\frac{4}{3}}(M)} + ||u||_{L_{\frac{4}{3}}(M)}$$
$$\lesssim ||f||_{L_{\frac{4}{3}}} + ||u||_{L_{4}(M)}.$$

Specialise to $M = \mathbb{R}^d$. (* not compact, but close enough.) It is easy enough to build parametrices for *constant coefficient* differential operators. These can be realised as convolution operators

$$\operatorname{Op}(k)u(x) := \int_{\mathbb{R}^d} k(z)u(x+z) dz, \quad u \in C_c^{\infty}(\mathbb{R}^d).$$

Here, k is a distribution on \mathbb{R}^d and the integral should be interpreted as distributional pairing.

To build parametrices for non-translation-invariant operators, we need to consider operators of the form

$$\operatorname{Op}(K)u(x) = \int_{\mathbb{R}^d} K(x,z)u(x+z) dz, \quad u \in C_c^{\infty}(\mathbb{R}^d)$$

where K is smooth in the x-variable and potentially singular in the z variable.

In general, for operators on a manifold M we need to consider

$$\operatorname{Op}(K)u(x) = \int_{TM_x} K(x, z)u(\exp_x z) dz, \quad u \in C_c^{\infty}(M)$$

where K is a distribution on the tangent bundle TM, ad \exp_x is an exponential mapping.

This leads to the question: what are the right conditions on a kernel K which ensure that all the operators of the form $\mathrm{Op}(K)$ form a good pseudodifferential calculus?

This leads to the question: what are the right conditions on a kernel K which ensure that all the operators of the form $\mathrm{Op}(K)$ form a good pseudodifferential calculus? Following a suggestion from Androulidakis and Skandalis, it turns out that a good idea is to introduce another parameter.

Theorem (Van Erp-Yuncken (2019))

Consider the class of distributions $(x, z, \hbar) \mapsto K(x, z, \hbar)$ which are smooth in (x, \hbar) and compactly supported in z. If for all $\lambda > 0$ the difference

$$\lambda^{-k-d}K(x,\lambda^{-1}z,\lambda\hbar)-K(x,z,\hbar)$$

is smooth in (x, z, \hbar) , then $K(x, \cdot, 1)$ is the kernel of a classical pseudodifferential operator of order k.

Conversely, every classical pseudodifferential operator arises in this way.

Filtered pseudodifferential calculus

One of the advantages of the van Erp-Yuncken point of view is that it generalises neatly to non-traditional weightings.

Filtered pseudodifferential calculus

One of the advantages of the van Erp-Yuncken point of view is that it generalises neatly to non-traditional weightings.

Let $0 = H^0 < H^1 < \cdots < H^N = TM$ be a filtration of the tangent bundle of a manifold M. Let $\mathrm{DO}_H(M) = \bigcup_{k \geq 0} \mathrm{DO}_H^k(M)$ be the algebra of differential operators with orders counted so that vector fields in H^j have order j, for all $1 \leq j \leq N$. There is a natural notion of "elliptic" for $\mathrm{DO}_H(M)$ (the Rockland condition). There is also a natural scale of Sobolev spaces adapted to the filtration.

Theorem

There exists a pseudodifferential calculus $\Psi_H(M) = \bigcup_{k \in \mathbb{Z}} \Psi_H^k(M)$ extending $\mathrm{DO}_H(M)$, with all of the desirable properties described above.

Section 3: Operators defined by submersions

Limitations of the exponential map

Recall that pseudodifferential operators on a manifold M were defined by some choice of exponential map \exp_x by

$$\operatorname{Op}(K)u(x) = \int_{TM_x} K(x,z)u(\exp_x(z)) dz.$$

There are lots of circumstances where we need to integrate over a space of dimension larger than TM_x , so that operators are locally defined by integrals of the form

$$\operatorname{Op}(K)u(x) = \int_V K(x,z)u(\Lambda_x(z)) dz$$

where V is a linear space and $\dim(V) \ge \dim(M)$, K is a distribution on $M \times V$, and $\Lambda_x : V \to M$ is a submersion, smoothly depending on $x \in X$.

Example: the Grushin operator

The operator on \mathbb{R}^2 with coordinates (x, y) given by

$$G = \partial_x^2 + x^2 \partial_y^2$$

is called the *Grushin operator*. We can write it as a sum of squares of vector fields,

$$G = X_1^2 + X_2^2, \quad X_1 := \partial_x, \ X_2 := x \partial_y.$$

 X_1 and X_2 do not span the tangent space at points where x=0. Instead we need to include a third vector field

$$X_3:=[X_1,X_2]=\partial_y.$$

Example: the Grushin operator

The natural differential calculus associated to the Grushin operator is built in the following way: let K be a distribution on $\mathbb{R}^2 \times \mathbb{R}^3$, and let

$$\operatorname{Op}(K)u(x) = \int_{\mathbb{R}^3} K(x,z)u(\exp(z_1X_1 + z_2X_2 + x_3X_3)x) dz, \quad u \in C_c^{\infty}(\mathbb{R}^2).$$

where exp is the exponential of vector fields.

The AMY calculus for the Grushin operator

Theorem

Let $(x, z, \hbar) \mapsto K(x, z, \hbar)$ denote a distribution on $\mathbb{R}^2 \times \mathbb{R}^3 \times \mathbb{R}$ which is smooth in (x, \hbar) and compactly supported in z. Assume that for every $\lambda > 0$ the difference

$$\lambda^{-k-4} \mathcal{K} \big(x, \lambda^{-1} z_1, \lambda^{-1} z_2, \lambda^{-2} z_3, \lambda \hbar \big) - \mathcal{K} \big(x, z, \hbar \big)$$

is a smooth function of (x,z,\hbar) . Let Ψ^k denote the operators of the form

$$\operatorname{Op}(K)u(x) = \int_{\mathbb{R}^3} K(x,z)u(\exp(z_1X_1 + z_2X_2 + x_3X_3)x) dz, \quad u \in C_c^{\infty}(\mathbb{R}^2).$$

Then $\Psi = \bigcup_{k \in \mathbb{Z}} \Psi^k$ has all* of the desirable properties of a pseudodifferential calculus.

The AMY calculus for the Grushin operator

Theorem

Let $(x, z, \hbar) \mapsto K(x, z, \hbar)$ denote a distribution on $\mathbb{R}^2 \times \mathbb{R}^3 \times \mathbb{R}$ which is smooth in (x, \hbar) and compactly supported in z. Assume that for every $\lambda > 0$ the difference

$$\lambda^{-k-4} K\big(x, \lambda^{-1} z_1, \lambda^{-1} z_2, \lambda^{-2} z_3, \lambda \hbar\big) - K\big(x, z, \hbar\big)$$

is a smooth function of (x,z,\hbar) . Let Ψ^k denote the operators of the form

$$\operatorname{Op}(K)u(x) = \int_{\mathbb{R}^3} K(x,z)u(\exp(z_1X_1 + z_2X_2 + x_3X_3)x) dz, \quad u \in C_c^{\infty}(\mathbb{R}^2).$$

Then $\Psi = \bigcup_{k \in \mathbb{Z}} \Psi^k$ has all* of the desirable properties of a pseudodifferential calculus.

(* The definition of ellipticity is complicated in this example, and they did not prove that elliptic operators have parametrices in the calculus.)

The general case

In general, let $U \subset \mathbb{R}^d$ be an open subset. Let X_1, \ldots, X_N be smooth vector fields on U which span the tangent space at every point. Let $\{w_1, \ldots, w_N\}$ be positive integers. Say that X_j has weight w_j .

The general case

In general, let $U \subset \mathbb{R}^d$ be an open subset. Let X_1, \ldots, X_N be smooth vector fields on U which span the tangent space at every point. Let $\{w_1, \ldots, w_N\}$ be positive integers. Say that X_j has weight w_j . Similar to the Grushin example, we can build an algebra of operators of the form

$$\operatorname{Op}(K)u(x) = \int_{\mathbb{R}^N} K(x,z)u(\exp(z_1X_1 + \cdots + z_NX_N)x) dz.$$

An "approximate homogeneity" condition, taking into account the weights, gives a nice pseudodifferential calculus $\Psi(U)$.

L_p estimates

Finally, I can promote my own work:

Theorem (M. (2024))

Order zero operators in the AMY calculus are bounded on L_p spaces, for 1 .

This implies (although not obviously) the L_p elliptic regularity of certain differential operators like the Grushin operator, and also some nonlinear PDE.

Thank you for listening!