Méthodologie Sélection de modèle Évaluation Séléction de caractéristique

REsearch and methodology in Data Science Cours 1 – Méthodologie du traitement de données

Olivier Schwander <olivier.schwander@lip6.fr>

Master DAC Data Science UPMC - LIP6

2020-2021

Méthodologie Sélection de modèle Évaluation iéléction de caractéristique

Méthodologie

Méthodologie Sélection de modèle Évaluation Séléction de caractéristique

Les différentes étapes

Quelles sont les différentes étapes effectuées par un système de traitement de données ?

Conception d'un système

Les questions à se poser en premier

- Quel type de données ?
- Quel type de tâche ? Quelle quantité de données ?
- Quelle qualité des données ?
- Quels objectifs ?

Ensuite

- Quel prétraitement des données ?
- Quelles méthodes ?
- Comment choisir les paramètres ?
- Comment les évaluer ?
- Comment présenter les résultats ?
- Comment les interpréter ?

Données et tâches

Types de données

- Vectorielles
- Temporelles
- Graphes
- Texte

Différentes tâches

- Classification
- Régression
- Détection d'évènements
- Segmentation
- Recherche d'information
- Recommandation

Chaîne de traitement des données

1. Données

- Charger
- Analyser
- Transformer

2. Méthodes

- Choisir
- Paramétrer
- Apprendre

3. Évaluation

- Mesurer
- Présenter
- Interpréter

Concevoir un modèle

Acquisition des données

Capteurs

- Données physiques (erreurs intrinsèques, position du capteur)
- Températures, humidité, pression, etc

Indicateurs

- Calculés d'une façon ou d'un autre
- Rentrés à la mainn

Extract / Transform / Load Voir cours Business Intelligence

Systèmes d'apprentissage

- Vision, Texte, Voix
- pour guider un autre système d'IA

Pré-traitement

- Renommage
- Normalisation
- Discrétisation
- Abstraction
- Aggrégation
- Sélection d'attributs Features sélection
- Création d'attributs

Biais dans les données

- Comprendre la source des données
- Éviter des choix a priori basé sur l'intuition
- Connaissance experte souvent utile

Malédiction de la dimension

- Dimension du problème trop élevée
- Trop de variables
- Trop de paramètres

Intuition

- Plus la dimension est grande, plus les points sont isolés
- $\frac{\text{Volume hypersphere}}{\text{Volume hypercube}} \to 0$

Solutions

- Réduire la dimension
- Transformation manuelle (expert)
- ► Apprendre la transformation

Outliers

- Il faut supprimer les outliers...
- ...mais ça n'est pas simple

Concevoir un modèle

Méthodologie **Sélection de modèle** Évaluation Séléction de caractéristique

Sélection de modèle

Quel est le meilleur modèle ?

Conclusion: On ne doit pas choisir le modèle qui correspond le mieux aux données, mais celui qui **généralise** le mieux

On cherche des moyens de sélectionner le "meilleur" modèle parmi un ensemble de modèles possibles

Bruit et Régularités **Données** = **Bruit** + **Régularités**

- Bruit: Erreurs dans l'acquisition
- Régularités: Processus de génération sous jacent

Objectif: Modèle final = Capture du bruit + Modèle des régularités

Meilleur modèle:

- Meilleur modèle des régularité
- ► Meilleure capture du bruit

Généraliser: éviter le sur-apprentissage

Sur-apprentissage

Quand est-ce qu'un modèle sur-apprend ?

Simple Model

Complex Model

La complexité d'un modèle est liée au nombre de ses paramètres, et à la complexité sous-jacente de la classe de fonction choisie.

Sur-apprentissage

Quand est-ce qu'un modèle sur-apprend ?

Simple Model

Complex Model

La complexité d'un modèle est liée au nombre de ses paramètres, et à la complexité sous-jacente de la classe de fonction choisie.

Critère d'information d'Akaike - 1973

$$AIC = -2\ln\hat{L} + 2k$$

- $m{\hat{L}}$ est la vraisemblance du modèle sur les données $=P(x|\theta^*,f)$
- ightharpoonup k est le nombre de paramètres du modèle

Méthodologie

- Entraîner plusieurs modèles
- Calculer leur AIC
- Prendre le modèle avec le meilleur AIC (le plus faible)

Critère d'information d'Akaike - 1973

Divergence de Kullback-Leibler (KL)

- lacktriangle On suppose que les données sont générées par un processus p
- \triangleright Soit des modèles f_i
- $ightharpoonup KL(p||f_i)$ mesure l'information perdue en approchant p par f_i
- Le meilleur modèle est celui qui minimise cette divergence
- **Problème:** on ne connait pas p

Estimateur asymptotique

▶ l'AIC permet de comparer des modèles

Variante pour petits jeux de données:

$$ightharpoonup AICc = AIC + \frac{2k(k+1)}{n-k-1}$$

Autres critères

- lacktriangle Critère d'information Bayésien 1978: $BIC = -2 \ln \hat{L} + k \ln n$
- ▶ Minumum Description Length 1978: learning as data compression

Principe général à retenir: rasoir d'Occam

- Pluralitas non est ponenda sine necessitate
- Les multiples ne doivent pas être utilisés sans nécessité
- Sélectionner le modèle le plus simple qui modélise les données suffisamment bien

Sélection de modèles par échantillonage

Deux grandes familles de méthodes pour se faire une idée de l'erreur de généralisation.

➤ La loi des grands nombres: l'utilisation de bornes statistiques permettant de borner la différence entre l'erreur empirique et l'erreur théorique (sous certaines hypothèses)

$$\forall f \in \mathcal{F}, \quad \mathcal{R}_{P}(f) \leqslant \widehat{\mathcal{R}}_{n}(f) + \frac{1}{\sqrt{2n}} \sqrt{\ln(2) \underbrace{|f|_{\pi}}_{\text{complexite}} + \ln \frac{1}{\delta}}.$$

L'utilisation d'échantillons différents pour l'évaluation de l'erreur

Méthodologie Sélection de modèle **Évaluation** Séléction de caractéristique

Évaluation

Evaluation en Machine Learning

Sélection de modèles par échantillonage

Problèmes

- A-t-on assez de données pour consituter ces différents ensembles ?
- L'utilisation d'un unique ensemble d'apprentissage ne nous permet pas de savoir si le modèle est sensibles aux données d'apprentissage

Plusieurs solutions:

- Rééchantillonage aléatoire
- Cross-Validation

Rééchantillonage aléatoire

- L'estimation de l'erreur du modèle est obtenue en moyennant les erreurs obtenus sur les différentes expériences
- Cette estimation est significativement meilleure que celle obtenue précédemment, si le nombre d'expériences est suffisant

Cross-Validation

- L'estimation de l'erreur du modèle est obtenue en moyennant les erreurs obtenus sur les différentes expériences
- Tous les exemples sont utilisés pour apprendre au moins un modèle

Leave-one-out

- L'estimation de l'erreur du modèle est obtenue en moyennant les erreurs obtenus sur les différentes expériences
- Cas dégénéré de CV -> plus robuste, meilleurs pour les petits jeux

Bootstrap

Train/Test/Validation

On considère le cas particulier où l'on veut à la fois trouver le meilleur modèle mais aussi estimer sa performance.

Il faut découper en trois:

- ► Train set
- Validation set : pour découvrir le meilleur modèle
- Test set : pour évaluer la performance

Méthodologie Sélection de modèle **Évaluation** Séléction de caractéristique

Courbes d'apprentissage

(dessin au tableau)

Méthodologie Sélection de modèle Évaluation Séléction de caractéristique

Séléction de caractéristique

Séléction de caractéristique

Sélection de caractéristiques sélectionner un sous-ensemble des caractéristiques existantes:

- Approches de type Filtering
- Approches de type Wrappers

Extraction de caractéristiques combiner des caractéristiques existantes pour obtenir un (petit nombre) de caractéristiques pertinentes:

- Approches de type PCA
- Approches de type Auto-Encodage
- Approches de type Representation Learning (Deep Learning)

Séléction de caratéristiques

- lacksquare Soit un ensemble d'entrée $\mathcal{X}=\mathbb{R}^n$ tel que $x=(x_1,x_2,...,x_n)$
- On cherche à trouver un sous-ensemble de dimensions caractérisé par un ensemble $\mathcal I$ d'index dans [1;n]
- Etant donné $\mathcal{I}=(i_1,...i_M)$, le nouvel espace d'entrée sera caractérisé par $x=(x_{i_1},x_{i_2},...,x_{i_M})$

Sélection de caratéristiques

- Très grand espace de recherche
- Besoin de méthodes approchées

Deux approches

Méthodes de filtrage: sélection a priori

- Estimation du pouvoir prédictif de chaque caractéristique
- Étude mono-dimensionnelle de chaque caractéristique
- Sélection de celles avec le pouvoir prédictif le plus élevé

Méthodes de wrappers: sélection a posteriori

Choix basé sur la qualité du modèle obtenu

Corrélation

Mesure de l'intensité de la liaison entre deux variables

Corrélation linéaire Soit la variable X_i (caractéristique) et la variable Y (étiquette):

$$Corr(X_i,Y) = \frac{Cov(X_i,Y)}{\sqrt{Var(X_i)Var(Y)}}$$

- $ightharpoonup Cov(X_i, Y) = 0$ ssi X_i et Y sont indépendantes

Corrélation empirique

Comme d'habitude lois inconnues pour X_i et Y

Estimateur

$$R(i) = \frac{\sum\limits_{k=1}^{N} (x_i^k - \bar{x_i})(y^k - \bar{y})}{\sqrt{\sum\limits_{k=1}^{N} (x_i^k - \bar{x_i})^2 \sum\limits_{k=1}^{N} (y^k - \bar{y})^2}}$$

- Dépendance linéaire
- Versions non-linéaires
- Corrélation n'est pas causalité

Méthodes de Filtrage

- Tri des variable par ordre de pertinence
- Conservation des caractéristiques les plus pertinentes

Avantage

- Chaque caractéristique est analysée indépendamment des autres.
- Rapide

Limite

- Chaque caractéristique est analysée indépendamment des autres.
- Une variable pourrait être utile en combinaison avec une autre

Méthodes de Wrappers

- Choisir un sous-ensemble de caractéristiques
- Entraîner un modèle et l'évaluer
- Choisir le sous-ensemble qui donne les meilleurs performances

Coûteux:

- Nombre exponentiel de sous-ensembles
- Entraînement des modèles

Recherche gloutonne: ajout graduel de caractéristiques basé sur un score à chaque pas de l'algorithme

Attention: le score doit refléter la performance du système (en généralisation)

Méthodes embarquées

De moins en moins de caractéristiques

Recursive Feature Elimination (RFE) SVM. Guyon-Weston, 2000. US patent 7,117,188

Conclusion

Protocole expérimental classique:

- Étudier les données
- Diviser les données en trois ensembles
- Entrainer un modèle sur l'ensemble de train
- Evaluer le modèle sur l'ensemble de validation
- Recommencer jusqu'à obtenir le meilleur modèle et les meilleurs hyper-paramètres
- Évaluer la qualité finale du modèle sur l'ensemble de test