DIALOG(R) File 351: Derwent WPI

(c) 2005 Thomson Derwent. All rts. reserv.

012849647

WPI Acc No: 2000-021479/200002

XRAM Acc No: C00-004898

Biologically active substance for use in foods meddicinal and chemical

industry

Patent Assignee: ECOLOGICAL ALIMENTATION SCI PRODN (ECOL-R)

Inventor: CHERNYSHKOV E S; EKPENONG L A; TIKHONOV V P

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week RU 2114536 C1 19980710 RU 97117979 A 19971106 200002 B

Priority Applications (No Type Date): RU 97117979 A 19971106

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

RU 2114536 C1 A23L-001/30

Abstract (Basic): RU 2114536 C1

NOVELTY - Biologically active substance has carotinoids and chlorophyll or inulin or probiotics such as Lactobacillus, Bifidum and others as bioactive components taken at weight content c1, c2, c6 and c9 at the range 1.01. Food additions, pharmacological, and/or tonic, or inert, taste and dying substances, solvents (oils, water, alcohol and others), or detergents are used as filling agents.

 $\ensuremath{\mathsf{USE}}$ - The substance is used in food, medicinal and chemical industry.

ADVANTAGE - Enhanced effectiveness of substance, broadened functional possibility. 13 cld

pp; 0 DwgNo 0/0

Title Terms: BIOLOGICAL; ACTIVE; SUBSTANCE; FOOD; CHEMICAL; INDUSTRIAL

Derwent Class: B04; D13

International Patent Class (Main): A23L-001/30

International Patent Class (Additional): A23L-001/29; A61K-031/00;

A61K-047/00; C11D-003/00; C11D-007/00

File Segment: CPI

RU (11) 2 114 536 (13) C1

(51) M⊓K⁶ A 23 L 1/30, 1/29, A 61 K 47/00, 31/00//C 11 D 3/00, 7/00, 17/00

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

(21), (22) Заявка: 97117979/13, 06.11.1997

- (46) Дата публикации: 10.07.1998
- (56) Ссылки: RU, патент, 2034566, кл. А 61 К 38/21, 1992,
- (71) Заявитель: Закрытое акционерное общество Научно-производственное объединение "Экология питания"
- (72) Изобретатель: Экпеньонг Л.А., Тихонов В.П., Чернышков Э.С., Линник Л.Н.

9 3

S

(73) Патентообладатель: Закрытое акционерное общество Научно-производственное объединение "Экология питания"

(54) БИОЛОГИЧЕСКИ АКТИВНОЕ ВЕЩЕСТВО (ВАРИАНТЫ)

(57) Реферат:

Изобретение относится области медицинской Й пишевой. химической промышленности и может быть использовано, например, в качестве биологически активной добавки. Решаемой технической задачей в соответствии с изобретением является расширение функциональных возможностей использования биологически активных с достижением веществ технического результата в отношении повышения эффективности практического потребления этих веществ биологическим объектом. В биологически активном веществе в качестве биоактивных компонентов использованы

каротиноиды и хлорофилл или инулин или пробиотики типа Lactobacilus, Bifidum и др. , весовое содержание соответственно с1, с2, с6 и с9, которых выбрано в пределах $1,01 \le (c1 + c3)/c1 \le 10^4, 1,01 \le (c1 + c2 + c2)$ $c3)/c6 \le 10^4$; 1,01 $\le (c9 + c3)/c9 \le 10^4$. B качестве наполнителей используют пищевые добавки, и/или фармакологические, и/или тонизирующие средства, индифферентные, вкусовые и красящие вещества, или растворители (масла, вода, спирт и др.), или моющие вещества. Биологически активное вещество может быть в виде таблеток, порошков, конгломератов, драже, капсул. 3 с. и 10 з.п.ф-лы.

⁽¹⁹⁾ RU ⁽¹¹⁾ 2 114 536 ⁽¹³⁾ C1

(51) Int. Cl. 6 A 23 L 1/30, 1/29, A 61 K 47/00, 31/00//C 11 D 3/00, 7/00, 17/00

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 97117979/13, 06.11.1997

(46) Date of publication: 10.07.1998

- (71) Applicant:
 Zakrytoe aktsionernoe obshchestvo
 Nauchno-proizvodstvennoe ob"edinenie
 "Ehkologija pitanija"
- (72) Inventor: Ehkpen'ong L.A., Tikhonov V.P., Chernyshkov Eh.S., Linnik L.N.
- (73) Proprietor: Zakrytoe aktsionernoe obshchestvo Nauchno-proizvodstvennoe ob edinenie "Ehkologija pitanija"

(54) BIOLOGICALLY ACTIVE SUBSTANCE (VARIANTS)

(57) Abstract:

FIELD: food, medicinal and chemical industry. SUBSTANCE: biologically active substance has carotinoids and chlorophyll or inulin or probiotics of type Lactobacillus, Bifidum and others as bioactive components taken at weight content c1, c2, c6 and c9 at the range 1.01

C=(c1+o3)/o1(=10⁴,1,01(=(c1+o2+c3)/CB(=10⁴; 1,01(=(c9+c3)/c9(=10⁴).

Food additions, and/or pharmacological, and/or tonic, or inert, taste and dying substances, solvents (oils, water, alcohol and others), or detergents are used as filling agents. Biologically active substance can be made as tablet, powder, conglomerate, dragee, capsule. EFFECT: enhanced effectiveness of substance, broadened functional possibility. 13 cl

2114

6 () Изобретение относится к области пищевой промышленности и может быть использовано, например, в качестве биологически активного вещества.

Известны биологически активные вещества, содержащие активные составляющие на основе биоактивных компонентов и вспомогательные компоненты [1, 2].

Известно биологически активное вещество, содержащее натуральные и/или синтезированные активные составляющие на основе биоактивных компонентов, наполнители, вспомогательные и случайные или непроизвольные компоненты [3] прототип.

Недостатком известных биологически активных веществ является неоптимальный их состав и не использование всех возможностей при их изготовлении для наиболее полноценного применения веществ на практике.

Решаемой технической задачей в соответствии с изобретением является расширение функциональных возможностей использования биологически активных веществ с достижением технического результата в отношении повышения эффективности практического потребления этих веществ биологическим объектом.

качестве кратких сведений раскрывающих сущность изобретения отметить, что следует достигаемый технический результат обеспечивают с предложенного биологически помощью вещества, солержащего активного натуральные и/или синтезированные активные составляющие на основе биоактивных компонентов, наполнители, случайные вспомогательные и непроизвольные компоненты, тем, что в биоактивных компонентов качестве использованы каротиноиды и хлорофилл, весовое содержание соответственно с1 и с2 которых выбрано в пределах 1,01≤(с1 +с3)/ $c1 \le 10^4$, $1.01 \le (c1 + c2 + c3)/(c1 + c2) \le 10^4$. Здесь с3 это весовое содержание в веществе наполнителей, вспомогательных и случайных непроизвольных компонентов, гомогенизированное например по плотности вещества, до значения, определяемого соотношением весового содержания с4 негомогенизированного остатка к весовому содержанию с5 полностью гомогенизированных компонентов в пределах 1≤(с4 + с5)/с5≤10⁴. Это обеспечивает соотношение минимальных максимальных т2 значений твердости. распределенных по всей поверхности вещества в пределах 1≤(т1 + т2)/т2≤2, с возможностью однородного неоднородного пространственного распределения компонентов в веществе при соотношении объемов v1 каротиноидов, v2 v3 наполнителей и v4 хлорофилла, вспомогательных компонентов в пределах $1 \le (v1 + v3 + v4)/v1 \le 10^5$, $1 \le (v1 + v2 + v3 + v3)/v1 \le 10^5$ v4)/v1≤10⁵. В качестве кратких сведений, раскрывающих сущность изобретения следует также дополнительно отметить, что достигаемый технический результат обеспечивают с помощью варианта предложенного биологически активного вещества, содержащего натуральные и/или

S

ယ

ത

синтезированные активные составляющие на биоактивных компонентов, основе наполнители, вспомогательные и случайные или непроизвольные компоненты тем, что в качестве биоактивных компонентов использован инулин, весовое содержание соответственно с6 которого выбрано в пределах 1,01≤(с6 + с3)/с6≤10⁴. Инулин гомогенизирован, например, по его плотности до значения, определяемого соотношением содержания с7 весового негомогенизированного остатка к весовому содержанию с8 полностью гомогенизированного компонента в пределах 1≤(с7 + с8)/с8 ≤10⁴. Это осуществляют с обеспечением соотношения минимальных т1 и максимальных т2 значений твердости. распределенных по всей поверхности вещества в пределах 1≤(т1 + т2)/т2≤2, и возможностью однородного неоднородного пространственного распределения компонентов в веществе при соотношении объемов v5 инулина, наполнителей и v4 вспомогательных компонентов в пределах 1≤(v5 + v3 + v4)/v5 ≤10⁵.

B качестве кратких сведений. раскрывающих сущность изобретения следует также дополнительно отметить, что достигаемый технический результат обеспечивают С помощью варианта биологически предложенного активного вещества, содержащего натуральные и/или синтезированные активные составляющие на биоактивных компонентов. наполнители, вспомогательные и случайные или непроизвольные компоненты тем, что в качестве биоактивных компонентов использованы пробиотики типа Lactobacilus, Bifidum и др., весовое содержание соответственно с9 которых выбрано в пределах 1,01≤(c9 + c3)/c9≤10⁴. Пробиотики гомогенизированы, например по их плотности, до значения, определяемого соотношением весового содержания c10 негомогенизированного остатка к весовому содержанию c11 полностью гомогенизированного компонента в пределах 1≤(с10 + с11) / с11≤10⁴. Это осуществляют с обеспечением соотношения минимальных т1 и максимальных т2 значений твердости, распределенных по всей поверхности вещества в пределах 1≤(т1 + т2) / т2≤2, и возможностью однородного неоднородного пространственного распределения компонентов в веществе при соотношении объемов v7 бактериальных веществ. v3 наполнителей

1 ≤(v7 + v3 + v4) / v5≤10⁵.

Уточнением и конкретизацией признаков этих вариантов биологически активного вещества являются следующие их отличительные особенности, характеризующиеся тем, что

вспомогательных компонентов в пределах

 подбором весового содержания и параметров компонентов обеспечена твердая форма вещества в виде таблеток или порошков, или конгломератов твердых компонентов при соотношении минимальных т3 и максимальных т4 значений твердости, распределенных по всей поверхности вещества в пределах 1,1≤(т3 + т4) / т4≤2.

2) подбором весового содержания и

параметров компонентов обеспечена жидкая или. промежуточная между жидкой и твердой формами его твердость в виде гелей, кремов, мазей или паст и др. при соотношении минимальных т5 и максимальных т6 значений твердости, распределенных по всей поверхности вещества в пределах 1≤(т5 + т6) / т6≤1,1.

- 3) подбором весового и пространственного содержания и параметров компонентов обеспечена послойная форма вещества в виде, например, драже в количестве n1 слоев в пределах $2 \le n1 \le 10$ при соотношении объемного содержания соответственно V_1 , V_2 , ... V_{n1-1} каждого из слоев ко всему объему V_1 вещества в пределах $1,1 \le (V_1 + V_2 + ... + V_{n1-1} + v5) / v5 \le 2$.
- 4) подбором весового и пространственного содержания и параметров компонентов обеспечена форма вещества с оболочкой при соотношении объема v8 оболочки ко всему объему v5 вещества в пределах 1≤(v5 + v8) / v5≤1,5.
- 5) подбором весового и пространственного содержания и параметров компонентов обеспечено весовое содержание с12 случайных или непроизвольных компонентов в виде влаги, микробов, механических и биологических примесей и др. в веществе в пределах 1≤(с12 + c13) / c13≤1,1, где с13 весовое содержание биологически активных компонентов
- 6) в качестве наполнителей введены пищевые добавки, и/или фармакологические, и/или тонизирующие средства с их весовым содержанием соответственно с14, с15, и с16, выбранным по отношению к весу с17 всего вещества в пределах 1,01≤(с14 + с15 + с16 + с17) / с17≤10⁵.
- 7) в качестве наполнителей введены моющие средства с их весовым содержанием c18, выбранным по отношению к весу c17 всего вещества в пределах 1,01 \le (c18 + c17) / c17 \le 10 5 .
- 8) в качестве наполнителей введены растворители, в частности, масла, вода, спирт и другие с их весовым содержанием соответственно c19, c20, c21 и c22, выбранным по отношению к весу c17 всего вещества в пределах $1,01 \le (c19 + c20 + c21 + c22 + c17) / c17 \le 10^5$.
- 9) в качестве наполнителей введены индифферентные, вкусовые и красящие вещества с их весовым содержанием соответственно c23, c24 и c25, выбранным по отношению к весу c17 всего вещества в пределах $1,01 \le (c23 + c24 + c25 + c17)$ / $c17 \le 10^5$.

C

ယ

တ

10) подбором весового содержания и параметров компонентов обеспечено содержимое добавки в виде экстракта при соотношении объема v9 экстракта ко всему объему v5 вещества в пределах $1 \le (v5 + v9) / v5 \le 2$.

. При изложении сведений, подтверждающих возможность осуществления изобретения, целесообразно более детально описать предложенные варианты биологически активного вещества. При описании нецелесообразно детально останавливаться на известных из опубликованных данных особенностях веществ, в частности, описывать известные

натуральные и/или синтезированные активные составляющие на основе биоактивных наполнители. компонентов, вспомогательные И случайные непроизвольные компоненты. Детально целесообразно остановиться только на отличительных существенных особенностях предложенного биологически активного вещества, заключающихся в том, что в компонентов качестве биоактивных использованы каротиноиды и хлорофилл. весовое содержание соответственно с1 и с2 которых выбрано в пределах 1,01≤(с1 + с3) $1 \text{ c1} \le 10^4$, $1,01 \le (\text{c1} + \text{c2} + \text{c3}) / (\text{c1} + \text{c2}) \le 10^4$. Указанные биоактивные компоненты, в частности. каротиноиды, понижают риск заболевания всеми видами рака. Каротиноиды В организме частично превращаются в витамин А, который способствует росту, снижает преждевременного старения, регулирует обменные процессы в слизистых оболочках всех органов, стимулирует иммунитет и повышает устойчивость организма инфекциям, участвует в нормализации состояния и функций клеточных мембран, с большим услехом применяется аллергической терапии.

В приведенном выше аналитическом соотношении с3 это весовое содержание в веществе наполнителей, всломогательных и случайных или непроизвольных компонентов, гомогенизированное, например, по плотности вещества до значения, определяемого соотношением весового содержания с4 негомогенизированного остатка к весовому содержанию с5 полностью гомогенизированных компонентов в пределах 1≤(с4 + с5) / с5≤10⁴. Гомогенизация вещества в заявленных пределах характеризует степень его объемной однородности, что важно в ряде практических случаев для повышения усваиваемости организмом. Это в свою очередь обеспечивает соотношение минимальных т1 и максимальных т2 значений распределенных твердости. ПО поверхности вещества в пределах 1≤(т1 + т2) / т2≤2, с возможностью однородного или неоднородного пространственного распределения компонентов в веществе при соотношении объемов v1 каротиноидов, v2 хлорофилла, v3 наполнителей вспомогательных компонентов в пределах

Достигаемый технический результат, как отмечалось выше, обеспечивают также с варианта предложенного помощью биологически активного вещества тем, что в качестве биоактивных компонентов использован инулин, весовое содержание соответственно с6 которого выбрано в пределах 1,01≤(с6 + с3) / с6≤104. Инулин гомогенизирован, например, по его плотности до значения, определяемого соотношением с7 весового содержания негомогенизированного остатка к весовому содержанию с8 полностью

 $1 \le (v1 + v3 + v4) / v1 \le 10^5, 1 \le (v1 + v2 + v3 + v3)$

v4) / v1≤10⁵. Указанные параметры в

заявленных пределах характеризуют весь

особенностей, определяющих возможность

практического применения вещества, в

частности, в твердом или пастообразном

конструктивных

диапазон

необходимый

состоянии.

-4

гомогенизированного компонента в пределах 1≤(с7 + с8) / с8≤104. Это осуществляют с обеспечением соотношения минимальных т1 и максимальных т2 значений твердости, распределенных по всей поверхности вещества в пределах 1≤(т1 + т2) / т2≤2, и возможностью однородного неоднородного пространственного распределения компонентов в веществе при соотношении объемов v5 инvлина, v3 наполнителей и v4 вспомогательных компонентов в пределах 1≤(v5 + v3 + v4) / v5 < 10⁵. Биоактивные компоненты. частности инулин и пробиотики являются очень полезными для организма, а характеризующие ряд их свойств параметры в заявленных пределах, отраженные выше и определяют весь диапазон необходимых конструктивных особенностей веществ.

Достигаемый технический результат, как отмечалось выше, обеспечивают также с помощью варианта предложенного биологически активного вещества, содержащего натуральные и/ипи синтезированные активные составляющие на биоактивных компонентов, наполнители, вспомогательные и случайные или непроизвольные компоненты тем, что в качестве биоактивных компонентов использованы пробиотики типа Lactobacilus. Bifidum и др., весовое содержание соответственно с9 которых выбрано в пределах 1,01≤(c9 + c3) / с9≤10⁴. Пробиотики гомогенизированы, например, по их плотности до значения, определяемого соотношением весового содержания c10 негомогенизированного остатка к весовому c11 гомогенизированного компонента в пределах 1≤(с10 + с11) / с11≤104. Это осуществляют с обеспечением соотношения минимальных т1 и максимальных т2 значений твердости, распределенных по всей поверхности вещества в пределах 1≤(т1 + т2) / т2≤2, и возможностью однородного неоднородного пространственного распределения компонентов в веществе при соотношении объемов v7 бактериальных v3 наполнителей веществ. вспомогательных компонентов в пределах $1 \le (v7 + v3 + v4) / v5 \le 10^5$.

Уточнением и конкретизацией признаков этих вариантов биологически активного вещества, как отмечалось выше, являются следующие их отличительные особенности, характеризующиеся тем, что:

1) подбором весового содержания и параметров компонентов обеспечена твердая форма вещества в виде таблеток или порошков, или конгломератов твердых компонентов при соотношении минимальных т3 и максимальных т4 значений твердости, распределенных по всей поверхности вещества в пределах 1,1≤(т3 + т4) / т4≤2. Диапазон значений твердости, охватываемый этим соотношением, включает в себя выполнение предложенного вещества в виде таблеток или порошков, или конгломератов твердых компонентов

တ

2) подбором весового содержания и параметров компонентов обеспечена жидкая или промежуточная между жидкой и твердой формами его твердость в виде гелей, кремов, мазей или паст и др. при соотношении минимальных т5 и максимальных т6 значений твердости, распределенных по всей поверхности вещества в пределах $1 \le (\tau 5 + \tau 6) / \tau 6 \le 1,1$. Диапазон значений твердости, охватываемый этим соотношением, включает в себя выполнение предложенного вещества в виде жидкости или гелей, кремов, мазей, паст и др.

- 3) подбором весового и пространственного содержания и параметров компонентов обеспечена послойная форма вещества в виде, например, драже в количестве n1 слоев в пределах $2 \le n1 \le 10$ при соотношении объемного содержания соответственно V_1 , V_2 , ... V_{n1-1} каждого из слоев ко всему объему v5 вещества в пределах $1,1 \le (V_1 + V_2 + ... + V_{n1-1}) + v5$ / $v5 \le 2$. Указанные условия выполнения вещества обеспечивают возможность его изготовления, например, в виде драже.
- 4) подбором весового и пространственного содержания и параметров компонентов обеспечена форма вещества с оболочкой при соотношении объема v8 оболочки ко всему объему v5 вещества в пределах 1≤(v5 + v8) / v5≤1,5. Указанные условия выполнения вещества обеспечивают возможность его изготовления, например, с оболочкой в виде капсул.
- 5) подбором весового и пространственного содержания и параметров компонентов обеспечено весовое содержание с12 случайных или непроизвольных компонентов в виде влаги, микробов, механических и биологических примесей и др. в веществе в пределах 1≤(с12 + с13) / с13≤1,1, где с13 весовое содержание биологически активных компонентов. Указанные условия выполнения определяют условия необходимой чистоты изготовления вещества.
- 6) в качестве наполнителей введены пищевые добавки, и/или фармакологические, и/или тонизирующие средства с их весовым содержанием соответственно с14, с15, и с16, выбранным по отношению к весу с17 всего вещества в пределах 1.01≤(с14 + с15 + с16 + с17) / с17≤10⁵. Указанные условия выполнения определяют различные условия изготовления вещества для его внутреннего потребления.
- 7) в качестве наполнителей введены моющие средства с их весовым содержанием с18, выбранным по отношению к весу с17 всего вещества в пределах 1,01≤(с18 + с17) / с17≤10⁵. Указанные условия выполнения определяют различные условия изготовления вещества для его наружного потребления.
- 8) в качестве наполнителей введены растворители, в частности, масла, вода, спирт и другие с их весовым содержанием соответственно с19, с20, с21 и с22, выбранным по отношению к весу с17 всего вещества в пределах 1,01≤(с19 + с21 + с22 + с17) / с17≤10⁵. Указанные условия выполнения определяют различные условия изготовления вещества преимущественно в жидком виде.
 - 9) в качестве наполнителей введены индифферентные, вкусовые и красящие вещества с их весовым содержанием соответственно с23, с24, и с25, выбранным по отношению к весу с17 всего вещества в

пределах $1,01 \le (c23 + c24 + c25 + c17)$ / $c17 \le 10^5$. Указанные условия выполнения определяют различные условия изготовления вещества с учетом дополнительных требований потребителей.

10) подбором весового содержания и параметров компонентов обеспечено содержимое добавки в виде экстракта при соотношении объема v9 экстракта ко всему объему v5 вещества в пределах 1≤(v5 + v9) / v5≤2. Указанные условия выполнения определяют различные условия изготовления вещества, в частности, в виде экстракта.

Эти уточненные и конкретизированные параметры в вышеописанных примерах, а также диапазоны выбора их значений, охватывают все важнейшие случаи практического использования заявленного вещества.

Достигаемый технический результат, как показали данные экспериментов, может быть реализован только взаимосвязанной совокупностью всех существенных признаков заявленных объектов, отраженных в формуле изобретения Это, частности,-В обусловливается большими возможностями оптимальных выбора вариантов существенных признаков в заявленных достаточно широких пределах. Указанные в ней отличия дают основание сделать вывод о новизне данного технического решения, а совокупность испрашиваемых притязаний в связи с их неочевидностью - о его изобретательском уровне, что доказывается вышеприведенным детальным описанием предполагаемого изобретения. Соответствие критерию промышленная заявленных применимость объектов доказывается как широким получением и использованием различных биоактивных веществ в промышленных масштабах, так и отсутствием в заявленных притязаниях каких-либо практически трудно реализуемых признаков. Нижние и верхние значения заявленных пределов были получены на основе статистической обработки результатов экспериментальных исследований, анализа и обобщения их и известных из опубликованных источников данных, исходя из условия достижения указанного технического результата и с использованием фактора изобретательской интуиции.

Z

4

S

ယ

တ

റ

Из вышеизложенного также следует, что все предложенные технические решения взаимосвязаны единым изобретательским замыслом, охарактеризованным формулой изобретения, и что в заявке соблюден принцип единства изобретения, так как, в частности, заявленные объекты имеют одно и тоже назначение, служат одной цели и обеспечивают достижение одного и того же технического результата. При этом концепция правовой охраны предложенных объектов основана во многом на том, что неразрывность и взаимосвязанность их существенных признаков, а допускаемая вариантность осуществления отдельных существенных признаков или их совокупностей предопределяют нетрадиционный характер формулировок некоторых признаков, например, отражения особенностей вещества не характеристикой еходящих в него компонентов, а с помощью функциональных ипи **КОНСТОУКТИВНЫХ** параметров, однозначно характеризующих

материал, подходящий для практической реализации заявленного технического решения.

Для доказательства достижения технического результата в дополнение к вышеизложенному И В качестве дополнительных сведений, подтверждающих возможность осуществления изобретения, целесообразно привести следующие примеры практического выполнения предложенных биологически активных веществ, охватываемых формулой заявпенной изобретения. Пример выполнения предложенного биоактивного вещества, отражающий его наиболее общий состав, включает следующие компоненты (мас.%): белок 60, углеводы 19; жир 10; минеральные вещества - 8; влажность - 5, инулин - 1. В суточной дозе биологически активного вещества (для большинства практических случаев его потребления равной 3гр), как правило, содержатся:

1) минеральные составляющие, мг: железо 3,2; калий 45,6; кальций 12; магний 14,4; марганец 78; медь 3; натрий 21,9; фосфор 31,2; цинк 36; бор 30; молибден 3;

2) аминокислотные составляющие, в том числе заменимые аминокислоты мг: аланин 139,8; аргинин 142,8; аспарагиновая кислота 218,4; цистин 16,8; глутаминовая кислота 253,2; глицин 95,7; гистидин - 45; пролин 74,1; серин 79,5; тирозин 71,4; незаменимые аминокислоты мг: изолейцин 97,8; лейцин 146,7; лизин 78,6; метионин 39,9; фенилаланин 78,3; треонин 84,3; триптофан 25,5; валин 112,2, (всего 1800 мг);

3) витамины, мкг: бета-каротин 9000 (провитамин A - 15000 И.Е.); витамин E (токоферол) 45; витамин B_1 (тиамин) 102; витамин B_2 (рибофлавин) 99; витамин B_3 (ниацин) 621; витамин B_6 (пиридоксин) 13,2; витамин B_{12} 6,6; инозитол 2040; биотин 0,97; пантотеновая кислота 12; фолиевая кислота 0,9;

4) жирнокислотные составляющие, мг: гамма-линоленовая 30; линолевая 33; дигомагамма линоленовая 1,6; альфа-линоленовая 0,044; докозагексаеновая 0,44; пальмитоленовая 5,9; олеиновая 0,51; эруковая 0,072; пальмитиновая 60,0; миристиновая 3,24; стеариновая 0,204; арахиновая 0,144; бегеновая 0,144; лигноцериновая 0,072.

Кроме указанного выше технического результата практическое осуществление заявленных объектов позволяет существенно расширить возможности их использования применительно, например, к различным требованиям и вкусам потребителей, повысить безопасность использования и существенно усилить потребительский, например, лечебный и/или оздоровительный эффект.

Источники изобретения

- 1. Фармацевтическая композиция и способ ее получения. Патент РФ N 2079306, МПК A 61 K 33/42, 10.02.92.
- Пищевая добавка, снижающая поступление в организм катионных и анионных радиоактивных изотопов. Патент РФ N 2012340, МПК A 61 K 35/02, 01.03.91г.
 - 3. Биологически активный препарат для телят. Патент РФ N 2034566, МПК A 61 K 38/21, 13.02.92г. прототип.

Формула изобретения:

- Биологически активное вещество, натуральные содержащее синтезированные активные составляющие на биоактивных компонентов. основе наполнители, вспомогательные и случайные непроизвольные компоненты, отличающиеся тем, что в качестве компонентов использованы биоактивных каротиноиды и хлорофил, весовое содержание соответственно с1 и с2 которых выбрано в пределах 1,01≤(c1 + c3)/c1≤10⁴, $1,01 \le (c1 + c2 + c3)/(c1 + c2) \le 10^4$, где c3 весовое содержание в веществе наполнителей, вспомогательных и случайных или непроизвольных компонентов, причем вещество гомогенизировано, например, по его плотности, до значения, определяемого соотношением весового содержания с4 негомогенизированного остатка к весовому **c**5 содержанию полностью гомогенизированных компонентов в пределах 1≤(с4 + с5)/с5≤104, и обеспечивающие соотношение минимальных т1 т2 значений максимальных твердости, распределенных по всей поверхности вещества в пределах $1 \le (\tau 1 + \tau 2)/\tau 2 \le 2$, с возможностью однородного неоднородного пространственного распределения компонентов в веществе при соотношении объемов v1 каротиноидов, v2 хлорофилла, v3 наполнителей и v4 вспомогательных компонентов в пределах $1 \le (v1 + v3 + v4)/v1 \le 10^5$, $1 \le (v1 + v2 + v3 + v3)/v1 \le 10^5$ v4)/v1≤10⁵.
- 2. Биологически активное вещество, содержащее натуральные синтезированные активные составляющие на биоактивных компонентов, OCHORE наполнители, вспомогательные и случайные непроизвольные компоненты, отличающееся тем, что в качестве биоактивных компонентов использован инулин, весовое содержание соответственно с6 которого выбрано в пределах 1,01≤(с6 + c3)/c6≤10⁴, гомогенизированный, например, его плотности, до значения, определяемого соотношением весового содержания с7 негомогенизированного остатка к весовому содержанию с8 полностью гомогенизированного компонента в пределах 1≤(с7 + с8)/с8≤104, с обеспечением соотношения минимальных т1 и максимальных т2 значений твердости. распределенных по всей поверхности вещества в пределах 1≤(т1 + т2)/т2≤2, и возможностью однородного неоднородного пространственного распределения компонентов в веществе при соотношении объемов v5 инулина, v3 наполнителей и v4 вспомогательных компонентов в пределах 1≤(v5 + v3 + v4)/v5 ≤10⁵.
- 3. Биологически активное вещество, содержащее натуральные и/или синтезированные активные составляющие на основе биоактивных компонентов, наполнители, вспомогательные и случайные или непроизвольные компоненты, отличающееся тем, что в качестве биоактивных компонентов использованы пробиотики типа Lactobacilus, Bifidum и др., весовое содержание соответственно с9

တ

- которых выбрано в пределах 1,01≤(с9 + с3)/с9 ≤104, гомогенизированные, например, по его плотности, до значения, определяемого соотношением весового содержания с10 негомогенизированного остатка к весовому содержанию с11 полностью гомогенизированного компонента в пределах 1≤(с10 + с11)/с11≤10⁴ обеспечением соотношения минимальных т1 и максимальных т2 значений твердости, распределенных по всей поверхности вещества в пределах 1≤(т1 + т2)/т2≤2, и однородного возможностью неоднородного пространственного распределения компонентов в веществе при соотношении объемов v7 бактериальных v3 веществ, наполнителей вспомогательных компонентов в пределах $1 \le (v7 + v3 + v4)/v5 \le 10^5$.
- 4. Биологически активное вещество по п. 1, или 2, или 3, отличающееся тем, что подбором весового содержания и параметров компонентов обеспечена твердая форма вещества в виде таблеток или порошков, или конгломератов твердых компонентов при соотношении минимальных т3 и максимальных т4 значений твердости, распределенных по всей поверхности вещества в пределах 1,1≤(т3 + т4)/т4≤2.
- 5. Вещество по п. 1, или 2, или 3, отличающееся тем, что подбором весового содержания и параметров компонентов обеспечена жидкая или промежуточная между жидкой и твердой формами его твердость в виде гелей, кремов, мазей или паст и др при соотношении минимальных т5 и максимальных т6 значений твердости, распределенных по всей поверхности вещества в пределах 1≤(т5 + т6)/т6≤1,1.
- 6. Вещество по п. 1, или 2, или 3, отличающееся тем, что подбором весового и пространственного содержания и параметров компонентов обеспечена послойная форма вещества в виде, например, драже в количестве п1 слоев в пределах $2 \le n1 \le 10$ при соотношении объемного содержания соответственно V_1 , V_2 , ..., V_{n1-1} каждого из слоев ко всему объему v5 вещества в пределах $1,1 \le (V_1 + V_2 + ... + V_{n1-1} + v5)/v5 \le 2$.
- 7. Вещество по п. 1, или 2, или 3, отличающееся тем, что подбором весового и пространственного содержания и параметров компонентов обеспечена форма вещества с оболочкой при соотношении объема v8 оболочки ко всему объему v5 вещества в пределах $1 \le (v5 + v8)/v5 \le 1,5$.
- 8. Вещество по п. 1, или 2, или 3, отличающееся тем, что подбором весового и пространственного содержания и параметров компонентов обеспечено весовое содержание с12 случайных или непроизвольных компонентов в виде влаги, микробов, механических и биологических примесей и др. в веществе в пределах 1≤(с12 + c13)/c13 ≤1,1, где с13 весовое содержание биологически активных компонентов.
- 9. Вещество по п. 1, или 2, или 3, отличающееся тем, что в качестве наполнителей введены пищевые добавки, и/или фармакологические, и/или тонизирующие средства с их весовым содержанием соответственно с14, с15 и с16, выбранным по отношению к весу с17 всего вещества в пределах 1,01≤(с14 + с15 + с16

Z

+~1	7١	101	7≤1	Λ 5
τCI	1)	101	$I \leq I$	U.

- 10. Вещество по п. 1, или 2, или 3, отличающееся тем, что при производстве моющих средств в качестве наполнителей введены моющие вещества с их весовым содержанием c18, выбранным по отношению к весу c17 всего вещества в пределах $1,01 \le (c18 + c17)/c17 \le 10^5$.
- 11. Вещество по п. 1, или 2, или 3, отличающееся тем, что в качестве наполнителей введены растворители, в частности масла, вода, спирт и другие с их весовым содержанием соответственно с19, с20, с21 и с22, выбранным по отношению к весу с17 всего вещества в пределах

- $1,01 \le (c19 + c20 + c21 + c22 + c17)/c17 \le 10^5$.
- 12. Вещество по п. 1, или 2, или 3, отличающееся тем, что в качестве наполнителей введены индифферентные, вкусовые и красящие вещества с их весовым содержанием соответственно с23, с24, и с25, выбранным по отношению к весу с17 всего вещества в пределах 1,01≤(с23 + c24 + c25 + c17)/c17≤10⁵.
- 13. Вещество по п. 1, или 2, или 3, отличающееся тем, что подбором весового содержания и параметров компонентов обеспечено содержимое добавки в виде экстрата при соотношении объема v9 экстрата ко всему объему v5 вещества в пределах 1 ≤ (v5 + v9)/v5≤2.

ထ

20

25

30

35

45

40

50

55

60

-8-