Handwriting Recognition: Architectural Impact Analysis

Optimizing CNN-RNN Models with CTC Loss

Authors:

Kamil Sobociński Jakub Boduch

Project Overview

- Objective: Develop an optimal CNN-RNN architecture for handwritten text recognition using CTC (Connectionist Temporal Classification) loss
- Key Focus: Understanding how specific architectural modifications impact model performance and accuracy
- Methodology: Individual components testing followed by strategic combinations of best-performing elements

Dataset Description

- Kaggle iam_handwriting_word_database
- Dataset Structure:
 - Total samples: 38,305 test samples (based on evaluation data)
 - Image dimensions: 128 × 32 pixels (grayscale)
 - Training/Validation/Test Split: 27,579 / 3,065 / 7,661

Challenges:

- Variable text lengths requiring CTC alignment
- Diverse handwriting styles and quality variations
- Computational constraints affecting architecture choices

Used Libraries:

- Cv2
- Numpy
- Tensorflow -> Keras, Layers
- Sklearn -> train_test_split
- Random

Base Architecture Overview

Key Components:

- CNN Feature Extraction:
 Hierarchical feature learning
 from raw pixels
- RNN Sequence Modeling: Bidirectional LSTM for temporal dependencies
- CTC Loss: Handles variablelength sequences without explicit alignment

Layer (type)	Output Shape	Param #	Connected to	
image (InputLayer)	(None, 32, 128, 1)	0	-	
conv2d (Conv2D)	(None, 32, 128, 32)	320	image[0][0]	
max_pooling2d (MaxPooling2D)	(None, 16, 64, 32)	0	conv2d[0][0]	
conv2d_1 (Conv2D)	(None, 16, 64, 64)	18,496	max_pooling2d[0][0]	
max_pooling2d_1 (MaxPooling2D)	(None, 8, 32, 64)	0	conv2d_1[0][0]	
conv2d_2 (Conv2D)	(None, 8, 32, 128)	73,856	max_pooling2d_1[0][0]	
batch_normalization (BatchNormalization)	(None, 8, 32, 128)	512	conv2d_2[0][0]	
max_pooling2d_2 (MaxPooling2D)	(None, 4, 32, 128)	0	batch_normalization[0][0]	
conv2d_3 (Conv2D)	(None, 4, 32, 128)	147,584	max_pooling2d_2[0][0]	
batch_normalization_1 (BatchNormalization)	(None, 4, 32, 128)	512	conv2d_3[0][0]	
max_pooling2d_3 (MaxPooling2D)	(None, 2, 32, 128)	0	batch_normalization_1[0][
reshape (Reshape)	(None, 32, 256)	0	max_pooling2d_3[0][0]	
dense (Dense)	(None, 32, 128)	32,896	reshape[0][0]	
bidirectional (Bidirectional)	(None, 32, 256)	263,168	dense[0][0]	
bidirectional_1 (Bidirectional)	(None, 32, 128)	164,352	bidirectional[0][0]	
label (InputLayer)	(None, None)	0	-	
dense2 (Dense)	(None, 32, 79)	10,191	bidirectional_1[0][0]	
ctc_loss (CTCLayer)	(None, 32, 79)	0	label[0][0], dense2[0][0]	

Individual Component Analysis

- 1. Baseline Architecture (Test 1)
- Configuration: CNN($32\rightarrow64\rightarrow128\rightarrow128$) filters, LSTM(128,64), Dense(128)
- Results: 52.47% → 65.94% accuracy (epochs 5→30)
- Analysis: Solid foundation but limited by smaller network capacity
- 2. LSTM Scaling Impact (Test 2)
- Modification: LSTM layers: 128,64 → 256,128
- Results: 57.66% → 71.38% accuracy (significant +5.44% improvement)
- Why it worked:
 - Increased memory capacity for longer sequences
 - Better gradient flow in bidirectional processing
 - Enhanced feature representation in temporal domain

- 3. CNN Filter Scaling (Test 3)
- Modification: Filters: $32\rightarrow64\rightarrow128\rightarrow128$ to $64\rightarrow128\rightarrow256\rightarrow256$
- Results: 56.16% → 65.91% accuracy (minimal improvement)
- Analysis: Diminishing returns computational cost increase without proportional accuracy gain suggests bottleneck was in sequence modeling, not feature extraction

- 4. Learning Rate Reduction (Test 4)
- Modification: LR: 0.001 → 0.0005
- Results: Slower initial learning, final accuracy: 63.05%
- Analysis: Lower learning rate improved stability but reduced convergence speed, indicating the original rate was near-optimal for this architecture

- 5. Kernel Size Impact (Test 5)
- Modification: 3×3 → 5×5 kernels in first two layers
- Results: 54.25% → 67.32% accuracy
- Why larger kernels helped:
 - Increased receptive field captures more context per character
 - Better handling of character variations and spacing
 - Reduced sensitivity to small positional shifts

6. Dropout Optimization (Test 6)

- Modifications:
 - CNN dropout: 0.2, 0.3 in 2 last layers
 - LSTM dropout: 0.25 → 0.4
- Results: 43.65% → 67.08% accuracy + reduced val_loss
- Key Finding: Aggressive regularization reduced overfitting significantly but hurt initial learning capacity

- 7. Dense Layer Scaling (Test 7)
- Modification: Dense: 128 → 256 neurons
- Results: Marginal improvement (65.79% final)
- Interpretation: Dense layer wasn't the limiting factor; confirms RNN capacity was the primary bottleneck
- 8. Average vs Max Pooling (Test 8)
- Modification: MaxPool → AvgPool in first two layers
- Results: 52.28% → 67.02% accuracy
- Mechanism: Average pooling preserves more spatial information, beneficial for fine-grained character features that max pooling might discard

Strategic Combinations

Combination 1: Balanced Enhancement

- Strategy: LSTM scaling + larger kernels + controlled dropout + dense scaling
- Result: 74.24% accuracy
- Design Logic:
 - Address sequence modeling bottleneck (larger LSTM)
 - Improve feature quality (5×5 kernels)
 - Prevent overfitting without hampering learning
 - Comprehensive capacity increase

Layer (type)	Output Shape	Param #	Connected to	
image (InputLayer)	(None, 32, 128, 1)	0	-	
conv2d (Conv2D)	(None, 32, 128, 32)	832	image[0][0]	
max_pooling2d (MaxPooling2D)	(None, 16, 64, 32)	0	conv2d[0][0]	
conv2d_1 (Conv2D)	(None, 16, 64, 64)	51,264	max_pooling2d[0][0]	
max_pooling2d_1 (MaxPooling2D)	(None, 8, 32, 64)	0	conv2d_1[0][0]	
conv2d_2 (Conv2D)	(None, 8, 32, 128)	73,856	max_pooling2d_1[0][0]	
batch_normalization (BatchNormalization)	(None, 8, 32, 128)	512	conv2d_2[θ][θ]	
dropout (Dropout)	(None, 8, 32, 128)	0	batch_normalization[0][0]	
max_pooling2d_2 (MaxPooling2D)	(None, 4, 32, 128)	0	dropout[0][0]	
conv2d_3 (Conv2D)	(None, 4, 32, 128)	147,584	max_pooling2d_2[0][0]	
batch_normalization_1 (BatchNormalization)	(None, 4, 32, 128)	512	conv2d_3[0][0]	
dropout_1 (Dropout)	(None, 4, 32, 128)	0	batch_normalization_1[0][
max_pooling2d_3 (MaxPooling2D)	(None, 2, 32, 128)	0	dropout_1[0][0]	
reshape (Reshape)	(None, 32, 256)	0	max_pooling2d_3[0][0]	
dense (Dense)	(None, 32, 256)	65,792	reshape[0][0]	
dropout_2 (Dropout)	(None, 32, 256)	0	dense[0][0]	
bidirectional (Bidirectional)	(None, 32, 512)	1,050,624	dropout_2[0][0]	
bidirectional_1 (Bidirectional)	(None, 32, 256)	656,384	bidirectional[0][0]	
label (InputLayer)	(None, None)	0	-	
dense2 (Dense)	(None, 32, 79)	20,303	bidirectional_1[0][0]	
ctc_loss (CTCLayer)	(None, 32, 79)	0	label[0][0], dense2[0][0]	

 Combination 2: Maximum Capacity (Best combination)

- Strategy: CNN scaling + LSTM enhancement + optimized regularization
- Result: 78.27% accuracy (best performance)
- Why this worked best:
 - Feature Extraction: 64→128→256→256 filters capture complex character variations
 - Sequence Processing: Enhanced LSTM capacity handles longer text sequences
 - Balanced Regularization: Prevents overfitting while maintaining learning capacity
 - Synergistic Effect: Each component addresses different bottlenecks

Layer (type)	Output Shape	Param #	Connected to	
image (InputLayer)	(None, 32, 128, 1)	0	-	
conv2d (Conv2D)	(None, 32, 128, 64)	640	image[0][0]	
max_pooling2d (MaxPooling2D)	(None, 16, 64, 64)	0	conv2d[0][0]	
conv2d_1 (Conv2D)	(None, 16, 64, 128)	73,856	max_pooling2d[0][0]	
max_pooling2d_1 (MaxPooling2D)	(None, 8, 32, 128)	0	conv2d_1[ဨ][ဨ]	
conv2d_2 (Conv2D)	(None, 8, 32, 256)	295,168	max_pooling2d_1[0][0]	
batch_normalization (BatchNormalization)	(None, 8, 32, 256)	1,024	conv2d_2[0][0]	
dropout (Dropout)	(None, 8, 32, 256)	0	batch_normalization[0][0]	
max_pooling2d_2 (MaxPooling2D)	(None, 4, 32, 256)	0	dropout[0][0]	
conv2d_3 (Conv2D)	(None, 4, 32, 256)	590,080	max_pooling2d_2[0][0]	
batch_normalization_1 (BatchNormalization)	(None, 4, 32, 256)	1,024	conv2d_3[0][0]	
dropout_1 (Dropout)	(None, 4, 32, 256)	0	batch_normalization_1[0][
max_pooling2d_3 (MaxPooling2D)	(None, 2, 32, 256)	0	dropout_1[0][0]	
reshape (Reshape)	(None, 32, 512)	0	max_pooling2d_3[0][0]	
dense (Dense)	(None, 32, 256)	131,328	reshape[0][0]	
dropout_2 (Dropout)	(None, 32, 256)	0	dense[0][0]	
bidirectional (Bidirectional)	(None, 32, 512)	1,050,624	dropout_2[0][0]	
bidirectional_1 (Bidirectional)	(None, 32, 256)	656,384	bidirectional[0][0]	
label (InputLayer)	(None, None)	0	-	
dense2 (Dense)	(None, 32, 79)	20,303	bidirectional_1[0][0]	
ctc_loss (CTCLayer)	(None, 32, 79)	0	label[0][0], dense2[0][0]	

Combination 3: Experimental Approach

- Strategy: Mixed pooling + nonstandard filter sizes (48,96,192)
- Result: 76.33% accuracy
- Analysis: An approach attempting to optimize computational requirements, with good results but less systematic than Combination 2

Layer (type)	Output Shape	Param #	Connected to	
image (InputLayer)	(None, 32, 128, 1)	0	-	
conv2d (Conv2D)	(None, 32, 128, 48)	1,248	image[0][0]	
average_pooling2d (AveragePooling2D)	(None, 16, 64, 48)	0	conv2d[0][0]	
conv2d_1 (Conv2D)	(None, 16, 64, 96)	115,296	average_pooling2d[0][0]	
average_pooling2d_1 (AveragePooling2D)	(None, 8, 32, 96)	0	conv2d_1[0][0]	
conv2d_2 (Conv2D)	(None, 8, 32, 192)	166,080	average_pooling2d_1[0][0]	
batch_normalization (BatchNormalization)	(None, 8, 32, 192)	768	conv2d_2[0][0]	
dropout (Dropout)	(None, 8, 32, 192)	0	batch_normalization[0][0]	
max_pooling2d (MaxPooling2D)	(None, 4, 32, 192)	0	dropout[0][0]	
conv2d_3 (Conv2D)	(None, 4, 32, 192)	331,968	max_pooling2d[0][0]	
batch_normalization_1 (BatchNormalization)	(None, 4, 32, 192)	768	conv2d_3[0][0]	
dropout_1 (Dropout)	(None, 4, 32, 192)	0	batch_normalization_1[0][
max_pooling2d_1 (MaxPooling2D)	(None, 2, 32, 192)	0	dropout_1[0][0]	
reshape (Reshape)	(None, 32, 384)	0	max_pooling2d_1[0][0]	
dense (Dense)	(None, 32, 256)	98,560	reshape[0][0]	
dropout_2 (Dropout)	(None, 32, 256)	0	dense[0][0]	
bidirectional (Bidirectional)	(None, 32, 512)	1,050,624	dropout_2[0][0]	
bidirectional_1 (Bidirectional)	(None, 32, 256)	656,384	bidirectional[0][0]	
label (InputLayer)	(None, None)	0	-	
dense2 (Dense)	(None, 32, 79)	20,303	bidirectional_1[0][0]	
ctc_loss (CTCLayer)	(None, 32, 79)	0	label[0][0], dense2[0][0]	

 Combination 4: Deep Architecture

- Strategy: Progressive scaling + additional dense layers + recurrent dropout
- Result: 77.76% accuracy
- Additional complexity helped but didn't surpass the more focused Combination 2

Layer (type)	Output Shape	Param #	Param # Connected to		
image (InputLayer)	(None, 32, 128, 1)	0	-		
conv2d (Conv2D)	(None, 32, 128, 32)	320	image[0][0]		
conv2d_1 (Conv2D)	(None, 32, 128, 32)	9,248	conv2d[0][0]		
max_pooling2d (MaxPooling2D)	(None, 16, 64, 32)	0	conv2d_1[0][0]		
dropout (Dropout)	(None, 16, 64, 32)	0	max_pooling2d[0][0]		
conv2d_2 (Conv2D)	(None, 16, 64, 64)	18,496	dropout[0][0]		
conv2d_3 (Conv2D)	(None, 16, 64, 64)	36,928	conv2d_2[0][0]		
max_pooling2d_1 (MaxPooling2D)	(None, 8, 32, 64)	0	conv2d_3[⊕][⊕]		
dropout_1 (Dropout)	(None, 8, 32, 64)	0	max_pooling2d_1[0][0]		
conv2d_4 (Conv2D)	(None, 8, 32, 128)	73,856	dropout_1[0][0]		
conv2d_5 (Conv2D)	(None, 8, 32, 128)	147,584	conv2d_4[0][0]		
batch_normalization (BatchNormalization)	(None, 8, 32, 128)	512	conv2d_5[∅][∅]		
max_pooling2d_2 (MaxPooling2D)	(None, 4, 32, 128)	0	batch_normalization[0][0]		
dropout_2 (Dropout)	(None, 4, 32, 128)	0	max_pooling2d_2[0][0]		
conv2d_6 (Conv2D)	(None, 4, 32, 256)	295,168	dropout_2[0][0]		
batch_normalization_1 (BatchNormalization)	(None, 4, 32, 256)	1,024	conv2d_6[0][0]		
max_pooling2d_3 (MaxPooling2D)	(None, 2, 32, 256)	0	batch_normalization_1[0][
dropout_3 (Dropout)	(None, 2, 32, 256)	0	max_pooling2d_3[0][0]		
reshape (Reshape)	(None, 32, 512)	0	dropout_3[0][0]		
dense (Dense)	(None, 32, 512)	262,656	reshape[0][0]		
dropout_4 (Dropout)	(None, 32, 512)	0	dense[0][0]		
dense_1 (Dense)	(None, 32, 256)	131,328	dropout_4[0][0]		
dropout_5 (Dropout)	(None, 32, 256)	0	dense_1[0][0]		
bidirectional (Bidirectional)	(None, 32, 512)	1,050,624	dropout_5[0][0]		
bidirectional_1 (Bidirectional)	(None, 32, 256)	656,384	bidirectional[0][0]		
label (InputLayer)	(None, None)	0	-		
dense2 (Dense)	(None, 32, 79)	20,303	bidirectional_1[0][0]		
ctc_loss (CTCLayer)	(None, 32, 79)	0	label[0][0], dense2[0][0]		

Performance Trajectory Analysis

Architecture	Epoch 5	Epoch 20	Epoch 30	Epoch 40	Learning Pattern
Baseline	52,47	62,98	65,94	-	Steady
LSTM enhanced	57,66	66,70	70,23	-	Strong initial improvement
Best Combination	56,98	72,55	74,53	78,27	Sustained improvement

Key Observation: The best architecture maintains consistent improvement across epochs, indicating better optimization landscape and reduced overfitting.

Conclusions

- The primary bottleneck was sequence modeling—expanding LSTM layers yielded the largest accuracy gains.
- Larger convolutional kernels (5×5) provided more spatial context than simply increasing filter counts.
- Moderate, well-placed dropout effectively reduced overfitting; excessive regularization hindered learning.
- The best performance (78.27 %) came from synergistically combining CNN scaling, LSTM enhancement, and balanced regularization.
- Integrated architectural changes produced a greater overall improvement than individual modifications alone.

Key Findings:

- Sequence modeling capacity was the primary bottleneck, not feature extraction
- Larger kernels (5×5) provided better spatial context than deeper networks
- Strategic combinations achieved 48.9% relative improvement over baseline
- Regularization placement matters more than amount

Thank you for your attention