PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA APLICADA E ESTATÍSTICA DISCIPLINA: INFERÊNCIA

PROFESSORA: DIONE MARIA VALENÇA

3^A LISTA DE EXERCÍCIOS

1. Verifique por simulação que, a densidade da amostra sob o verdadeiro valor do parâmetro θ_0 , excede qualquer outra sob um valor de $\theta \neq \theta_0$ com alta probabilidade quando o tamanho da amostra é grande (exercício computacional dado em sala) ou prove o teorema abaixo:

"Teo. Sejam X_1 , ..., X_n amostra aleatória de de $X \sim f(x; \theta)$ com $\theta \in \Theta$. Seja θ_0 o verdadeiro valor de θ . Então (sob condições de regularidade) temos que:

$$\lim_{n\to\infty} P_{\theta_0}[L(\theta_0;X) > L(\theta;X)] = 1 \text{ para todo } \theta \in \Theta - \{\theta_0\}^m$$

- 2. Sejam X_1 , ..., X_n amostra aleatória de $X \sim f(x,\theta)$. Considerando válidas a condições de regularidade, prove o teorema dado em sala, ou seja se $g(\theta)$ é uma função contínua e diferenciável de θ , então o estimador de máxima verossimilhança $g(\hat{\theta})$ é assintoticamente eficiente.
- 3. Sejam X_1 , ..., X_n amostra aleatória de X com distribuição dada abaixo, com $\beta > 0$ e α conhecido. Obtenha o estimador de máxima verossimilhança de β

$$P(X \le x) = \begin{cases} 0 & \text{se } x \le 0 \\ \left(\frac{x}{\beta}\right)^{\alpha} & \text{se } x \in (0,\beta) \\ 1 & \text{se } x \ge \beta \end{cases}$$

- 4. Sejam X_1 , X_2 , X_3 uma amostra aleatória de $X \sim \text{Bernoulli}(\theta)$ para $\theta \in \Theta = \{0.5, 0.7\}$.
 - a) Obtenha o EMV de θ
 - b) Considerando a amostra o observada $x=\{1,0,0\}$, obtenha a estimativa de MV de θ .
- 5. Sejam X_1 , ..., X_n a. a. de $X \sim f(x \mid \theta) = \theta (1+x)^{-(1+\theta)} I_{(0,\infty)}(x)$, com $\theta \in (0,\infty)$. Obtenha a) O EMV de $1/\theta$; b) A distribuição assintótica do *EMV de* $1/\theta$;
- 6. Sejam $X_1,...,X_n$ amostra aleatória de X. Obtenha o EMV de θ em cada caso: a) $X \sim \text{Geometrica}(\theta)$ b) $X \sim N(0,\theta)$ c) $X \sim \exp(\theta)$
- 7. Sejam X_1 , ..., X_n amostra aleatória de $X \sim U(a,b)$ a < b. Obtenha o EMV de θ para: a) $a = \theta - 2$ e $b = \theta + 2$, $\theta > 0$ b) $a = \theta_1$ e $b = \theta_2$
- 8. Sejam X_1 , ..., X_n amostra aleatória de $X \sim N(\mu, \sigma^2)$, $\theta = (\mu, \sigma^2)$ Obtenha o Estimador de Máxima Verossimilhança de θ e verifique se de fato este representa um máximo de $\log L(\theta, \mathbf{x})$.
- 9. Sejam X_1 , ..., X_n amostra aleatória de $X \sim f(x \mid \theta)$. Obtenha o EMV de $g(\theta)$ nas seguintes situações: a) $X \sim Poisson(\theta)$ com $g(\theta) = P(X = 1)$; b) $X \sim N(\theta, 1)$ com $g(\theta) = P(X < 0)$; c) $X \sim \exp(\theta)$ com $g(\theta) = P(X > 1)$
- 10. Sejam X_1 , ..., X_n amostra aleatória de $X \sim N(\mu, \sigma^2)$, $\theta = (\mu, \sigma^2)$. Obtenha o Estimador de Máxima Verossimilhança de $g(\theta) = x_p$, em que x_p é tal que $P(X < x_p) = p$
- 11. Sejam $X_1,..., X_n$ amostra aleatória de $X \sim f(x;\theta) = \frac{1+\theta x}{2} I_{(-1,1)}(x)$, com $\theta \in (-1,1)$. Reproduza no exemplo 3.1.6 de BS(2001) pág 40, os procedimentos iterativo dos métodos de Newton-Raphson e Escore, usando uma amostra de tamanho 10 (gerada ou retirada da Tabela 3.1). Considere como valor inicial a estimativa de θ obtido pelo método dos momentos e use como critério de parada o valor $\varepsilon = 10^{-8}$.

Obs.: BS(2001) denota a referência do livro texto : Bolfarine e Sandoval (2001).