

Herzlich wilkommen zum 4. Azure Rosenheim Meetup

CONTAINER ON AZURE

AGENDA

18:30 Uhr: Ankunft und Begrüßung

19:00 Uhr: Überblick zu Container-Diensten auf Azure

- Basics (Was sind Container und wichtige Begriffe)
- Azure Container Registry (ACR)
- Azure Kubernetes Service (AKS)
- Azure Container Instances (ACI)

19.30 Uhr: Live-Demo

- Docker-Container erstellen und in AKS deployen
- Continuous Integration und Continuous Delivery (CI/CD Pipelines)
- Monitoring von Containern in Azure

20:00 Uhr: Azure DevOps

20:30 Uhr: Diskussion & Networking

21:00 Uhr: Ende der Veranstaltung

ÜBER UNS

- white duck
- Spezialisiert auf Cloud-Computing, Software-Engineering und Data Analytics / BI -Technologien
- Ganzheitliches Angebot als Cloud Solution Provider von der Entwicklung bis zum Betrieb von Cloud-Lösungen
- Gegründet 2012 mit Sitz in Rosenheim, derzeit 17 Mitarbeiter
- Erfahrung aus mehr als 15 Jahren Softwareentwicklung
- Technologie-Fokus: Microsoft Azure Cloud, .NET C#, .NET CORE, REST, Angular, ASP.NET
- Konzeption, Implementierung und Betrieb von SaaS-, Web-, Mobile- und IoT-Anwendungen

Entwicklung, Beratung und Coaching rund um Cloud-Computing

WAS TREIBT UNS AN?

- Aufbau und Etablierung einer Azure Community in der Region Südost-Bayern
- Azure KnowHow in der Region verteilen und vertiefen
- Azure Anwender zusammen bringen
- Neuigkeiten zu Azure besprechen und diskutieren
- Austausch zu Azure Projekten fördern

BUZZWORDS

Containerisierung

- "Virtualisierung der Virtualisierung" (Auf Betriebssystemebene)
- Abstrahiert von Anwendungen zur Laufzeit (Erstellen von Containern)
- Anwendungen nutzen selben Kernel wie das OS

Container Image

Anwendung + OS Abhängigkeiten

Container

- Software Anwendung und Abhängigkeiten in Filesystem gebündelt (code, runtime, system tools, libraries, OS dependencies)
- Isolierte Umgebung
- Hilft gegen "dependency hell"

Container Registry

- Container Images speichern und verwalten
- Bereitstellung

VERGLEICH ZWISCHEN VM CONTAINER

- VM: Workloads teilen sich Host Resourcen
- Container: Workloads teilen sich OS Resourcen

7

BEISPIEL: NUTZEN

WAS IST DOCKER?

- Open Source Software
- Erlaubt es Anwendungen in Container zu überführen (Containervirtualisierung)
- Erleichtert Container zu erstellen
- Isoliert Anwendungen/Prozesse von der Infrastruktur
- Vereinfachung z.B mit Dockerfiles

DOCKER-ENGINE

white duck

- Client-Server Anwendung
- Docker daemon: Engine auf dem Host Rechner
- REST API: Kommunikation mit dem docker-daemon
- Docker client: CLI um mit dem daemon zu interagieren

VORTEILE VON DOCKER

Skalierbarkeit

- Leichtgewichtig
- Schneller start/stop

Deployment

- Können fast überall eingesetzt werden
- Any App, any language, any stack
- Geringer overhead

Portierbarkeit

- Snapshot von Environment
- Upload zur Registry
- Neue Container erstellen

Density

- Mehre unterschiedliche Container können parallel auf einer Maschine laufen
- Reduziert Lizenz- und Ressourcenkosten

WAS MACHT EIN ORCHESTRATOR?

Automatisiert die Verwaltung von Containern

- Shutdown, Suspend, Clone, Spin
- Schnittstelle nach "außen"
- Steuer Zugriff auf Resourcen (Netzwerk, Speicher)
- Load Balancing
- Einfaches "bewegen" von Containern
- Health check

Cluster von VMs (Nodes)

- Orchestrator entscheidet welcher Container auf welchem Node läuft
- Verteilt mehrere Instanzen über den Cluster

Beispiele: AKS, Kubernetes, Docker Swarm, Mesosphere, DC/OS

MEHR BUZZWORDS

white duck

Kubernetes

- Orchestrator
- Platform f
 ür Containerverwaltung
- Automatisiert Management / Deployment
- Bietet
 - Skalierung
 - Load Balancing
 - Monitoring / Auto Recovery
 - Aufteilung in Service (Set aus Pods + Access policy)
 - Health check

MEHR BUZZWORDS

Pod

- Gruppe aus einem oder mehrerer Container
- Jeder Pod hat eine unique ID
- Container innerhalb teilen sich eine IP und Port range
- Container innerhalb über localhost erreichbar
- Inhalte haben shared content (namespaces, csgroups, ..)
- Shared volumes

AZURE CONTAINER REGISTRY (ACR)

- Image: Read only Container snapshot
- ACR erlaubt das managen und "aufbewahren" von Container images
- Aus diesen Images können neue Container erstellt werden (ACR build)
 - Automatischer rebuild und update von images
 - Für DC/OS, Docker Swarm, Kubernetes sowie Azure-Diensten wie Azure App Services, Batch, Service Fabric
- Pro Subscription mehrere ACR möglich
- Repository: Gruppe aus Container images
- Registry: 1-N Repositories

AZURE KUBERNETES SERVICE (AKS)

- Managed Kubernetes Service on Azure
 - Verwaltet gehostete Kubernetes Umgebung
 - Kubernetes API as a Service
 - Deployment und Management von Containeranwendungen
 - Übernimmt Health Monitoring
 - Automatische Updates und Patches
 - Leichte Skalierung des Clusters
 - Keine kosten für Master Nodes oder das Verwalten des Kubernetes Clusters nur für die Agents

Eigenschaften

- Nutzbar über CLI, Portal, Templates (ARM)
- Easy to use (In nur 3 Befehlen lauffähig)
- Zugriffssteuerung mit RBAC
- AAD integration möglich
- Netzwerk
 - Basic: Die Netzwerkkonfiguration wird von Azure verwaltet
 - Advaned: Pods in eigens Konfiguriertes VNET

```
$ az aks create -g myResourceGroup -n myCluster --generate-ssh-keys
\ Running ..
$ az aks install-cli
Downloading client to /usr/local/bin/kubectl ..
$ az aks get-credentials -g myResourceGroup -n myCluster
Merged "myCluster" as current context ..
$ kubectl get nodes
                           STATUS
                                     AGE
                                               VERSION
k8s-mycluster-36851231-0
                                               v1.8.1
                           Ready
k8s-mycluster-36851231-1
                                               v1.8.1
                           Ready
k8s-mycluster-36851231-2
                                               v1.8.1
                           Ready
```


WAS SIND AZURE CONTAINER INSTANCES (ACI)?

- Schneller Einstieg in Container
- Normalerweise: Container Hosting Infrastruktur zuerst
 - Container environment erstellen
 - VM provisionieren und managen
 - Image auswählen und richtig deployen
 - Wissen wie Orchestrierung/Verwalten/Skalieren funktioniert
- ACI: Container serverless betreiben.
 - Azure verwaltet die Host VMs
 - Es muss nur das Container Image spezifiziert werden
 - · Pay per second / only if running

EIGENSCHAFTEN VON ACI

- Starten von Containern in Sekunden
- Pricing
 - Pay per second
 - Günstig für "occasional workloads" (Ausprobieren, Load testing, batch jobs, load spikes)
 - Höhere Kosten für konstanten Betrieb / große Anwendungen
- Erlaubt genaue Spezifizierung von CPU und Speicher
- Jeder Container hat IP Adresse und FQDN (name.region.azurecontainer.io)
- Linux und Windows
- Integration von Azure CLI, PowerShell, c# fluent SDK, ARM templates
- Restart policies, Environment variables for containers, access logs, monitoring

CONTAINER GROUPS

white duck

- Container die sich auf der selben host Maschine befinden.
- Teilen sich ein lokales Netzwerk, Storage und Lebenszyklus
- Vergleichbar mit einem Kubernetes Pod
- Bestehen aus einem oder mehreren Containern
 - Teilen sich IP Adresse und Port namespace
- Erlauben das Nutzen des sidecar-patterns

Beispiel:

Application Container + Logging Container + Monitoring Container

- Application Container enthält die Anwendung
- Logging Container sammelt Logs/Metriken und schreibt in storage
- Monitoring Container prüft Anwendung und Alerted

https://docs.microsoft.com/en-us/azure/container-instances/container-instances-container-groups

ACI UND ORCHESTRATOR

white duck

- Kein Ersatz für einen Container Orchestrator
- Kann aber die Funktionalitäten erweitern
 - Testen von experimentellen Containern
 - Kann Lastspitzen ausgleichen
- ACI connector f
 ür Kubernetes
 - ACI kann als virtuelles Node in einem Kubernetes Cluster genutzt werden
 - Z.b Abfangen von "burst loads"

CONTAINER MONITORING WITH LOG ANALYTICS

- Container Health
 - Identifiziert Container und sammelt Daten über Auslastung und Speicher
 - Gut zum Identifizieren von Bottlenecks
 - Gibt Einblick wo der Container betrieben wird
 - Performance Berechnungen
 - Cluster Auslastung
 - · Zeigt ungewöhnliches Verhalten auf
- Container & Log Analytics

NÜTZLICHE LINKS

- Docker Dokumentation: https://docs.docker.com/engine/docker-overview/
- Azure Kubernetes Service: https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes
- Azure Container Instances: https://docs.microsoft.com/en-us/azure/container-instances/
- Azure Container Registry: https://docs.microsoft.com/en-us/azure/container-registry/
- Kubernetes: https://kubernetes.io/
- Monitoring AKS: https://docs.microsoft.com/en-us/azure/monitoring/monitoring-container-health
- Monitor Container in Log Analytics: https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-containers
- Preisrechner: https://azure.microsoft.com/de-de/pricing/calculator/
- White duck Repository: https://github.com/whiteducksoftware/azure-meetup-rosenheim
- White duck Website & Blog: https://whiteducksoftware.com/blog/

LIVE-DEMO