Ken Stiller

13th January 2024

# Syllabus: Data Analysis in R

- 1. Introduction
- 2. Causality & Basics of Statistics
- 3. Sampling & Measurement
- 4. Prediction
- 5. Multivariate Regression
- 6. Probability & Uncertainty
- 7. Hypothesis Testing
- 8. Assumptions & Limits of OLS
- 9. Interactions & Non-Linear Effects

# Plan for Today

- ► Accuracy
  - ► Standard Errors
  - ► Confidence Intervals
- ► Hypothesis Testing
  - ▶ What is a hypothesis?
  - ▶ p-values
  - ► Type I and Type II errors
  - ▶ One and two-sided tests

Wrap Up

Overview

Statistical Inference

Hypothesis Testing

Wrap Up

# Recap: Statistical Inference

- ▶ What we want to know: parameter  $\theta \leadsto$  unobservable
- ► What you do observe: data
- ▶ We use data to compute an estimate of the parameter  $(\hat{\theta})$
- ▶ But how good is  $\hat{\theta}$  an estimate of  $\theta$ ?
- ► Ideally, we want to know the estimation error =  $\hat{\theta} \theta$
- ▶ The problem remains unchanged:  $\theta$  is unknown

#### Confidence Intervals

Overview

- ► We know the standard error and are aware of the Central Limit Theorem
- ▶ Thus, we can calculate specific ranges around the sample mean of which, if repeated over and over again, a certain share will contain the population mean. In other words, we can quantify how confident we are in our estimate.
- ► This is called a confidence interval

#### Confidence Intervals II

- ▶ An m-percent confidence interval establishes a boundary around the sample mean in which the true mean will lie m out of 100 times under repeated sampling
- ightharpoonup Common values for m are 95 and 99 (sometimes 90)
- ▶ m is specified by choosing a significance level  $\alpha: m = (1 \alpha) * 100$
- ► Common significance levels are therefore 0.05 and 0.01 (sometimes 0.1)

#### Confidence Intervals: Defining Boundaries

- ▶ In order to provide an interval estimate of the population mean  $\mu$  we need to identify a lower bound (LB) and an upper bound (UB) such that  $P(LB \le \mu \le UB)$
- ▶ Recall last week on probability: We can use our knowledge of the normal distribution to find this boundary
- ▶ After z-transformation of any normal distribution

$$z = \frac{x_i - \overline{x}}{s_x}$$

- ▶ Probability between -1 and 1 is 0.68
- ▶ Probability between -1.96 and 1.96 is 0.95
- ▶ Probability between -3 and 3 is 0.997
- ▶  $z_{\alpha/2}$  is the value associated with  $(1 \alpha) * 100\%$  coverage in the standard normal distribution

Hypothesis Testing

### Example: Critical Values of Normal Distribution



- ▶ The lower and upper critical values,  $-z_{\alpha/2}$  and  $z_{\alpha/2}$ , shown on horizontal axis
- ▶ Area under the density curve between these critical values (in blue) equals  $1-\alpha$

#### Confidence Intervals: Overview

- $\triangleright$  CI: boundaries in which  $\mu$  will lie m-times out of a 100
- $\blacktriangleright$   $(1-\alpha)*100\%$  confidence intervals:

$$CI_{\alpha} = [\overline{X} - z_{\alpha/2} * SE, \overline{X} + z_{\alpha/2} * SE]$$

where  $z_{\alpha/2}$  is the critical value and  $\alpha$  reflects our chosen significance level

- $ightharpoonup P(Z > z_{\alpha/2}) = \alpha/2 \text{ and } Z \sim \mathcal{N}(0,1)$ 
  - 1.  $\alpha = 0.01$  gives  $z_{\alpha/2} = 2.58$
  - 2.  $\alpha = 0.05$  gives  $z_{\alpha/2} = 1.96$
  - 3.  $\alpha = 0.10$  gives  $z_{\alpha/2} = 1.64$

# Example: Confidence Intervals & Standard Error for Sample Mean



Wrap Up

# Example: Confidence Intervals & Standard Error for Sample Mean II



# Example: Confidence Intervals & Standard Error for Sample Mean VII

- ▶ Of the 7 samples, all the confidence intervals around the sample mean enclosed the actual true population mean apart from one
- ▶ If we repeated this lots of times, we would expect 95% of the confidence intervals to enclose the actual population mean
  - ▶ 95% because that's the level we set
  - ▶ If we had set 99%, the confidence intervals would be larger

Wrap Up

# Statistical Hypothesis Testing: Overview

- 1. Construct a null hypothesis  $(H_0)$  and its alternative  $(H_1)$
- 2. Pick a test statistic T
- 3. Figure out the sampling distribution of T under  $H_0$  (reference distribution)
  - For hypothesis tests regarding the mean, if sample size large, use the normal distribution

Hypothesis Testing

- For other test statistics, you need to use other distributions
- 4. Is the observed value of T likely to occur under  $H_0$ ?
  - ightharpoonup Yes Retain  $H_0$
  - ightharpoonup No Reject  $H_0$

Hypothesis Testing

# What is a Hypothesis?

- ► Hypotheses = testable statements about the world
- ightharpoonup Hypotheses = falsifiable
  - ► We test hypotheses by attempting to see if they could be false, rather than 'proving' them to be true
- ► Hypotheses come from:
  - ► Theory
  - ► Past empirical work
  - ► Common sense (?)
  - ► Anecdotal observations

#### Null and Alternative Hypotheses

- ▶ We choose between two conflicting statements, doing the following:
  - 1. The null hypothesis  $(H_0)$  is directly tested
    - ► This is a statement that the parameter we are interested in has a value similar to no effect (i.e., usually 0 for coefficients)

Hypothesis Testing

- e.g. regarding ideology, old people are the same as young people
- 2. Alternative  $(H_1)$  contradicts the null hypothesis
  - ► This is a statement that the parameter falls into a different set of values than those predicted by  $(H_0)$
  - e.g. regarding ideology, old people are more right-wing than young people
- ▶ Note that we actually 'test' the null hypothesis!

# Hypothesis Testing: Test Statistic

▶ In any statistical hypothesis test, a test statistic is computed from the data in order to test the null hypothesis.

$$T = \frac{\text{sample estimate - parameter value } under H_0}{\text{standard error}}$$

- ightharpoonup The larger T, the more the data contradict the null hypothesis
- ightharpoonup For a given estimate, T becomes larger as the standard error decrease

- ▶ Hypotheses  $H_0$ :  $\mu = \mu_0$  and  $H_1$ :  $\mu \neq \mu_0$
- ► Test statistic:

z-score = 
$$\frac{\bar{X} - \mu_0}{\text{standard error}} = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

Hypothesis Testing

▶ Under the null, by the central limit theorem

z-score 
$$\stackrel{\text{approx.}}{\sim} \mathcal{N}(0,1)$$

- ▶ Is  $Z_{obs}$  unusual under the null?
  - ▶ Reject the null when  $|Z_{obs}| > z_{\alpha/2}$
  - ► Retain the null when  $|Z_{obs}| \le z_{\alpha/2}$

Hypothesis Testing

# Example: Exam Scores

Overview

- ► Suppose there's a standardised exam with marks ranging from 0 - 100
- ► Suppose further we know test scores are normally distributed with mean  $\mu = 88$  and standard deviation  $\sigma = 5$
- Now, in five tests cohorts receive test scores of  $\overline{X} = 95$  $H_0: \mu = 88 \ H_1: \mu \neq 88$

# Example: Exam Scores II

▶ We know that the standard deviation of test in the population is5. The sample size is 5 so we calculate the standard error as:

$$SE = \frac{5}{\sqrt{5}}$$

Hypothesis Testing

 $\blacktriangleright$  Assuming  $H_0$  was true, we know that the sampling distribution is

$$\mathcal{N}(88, (\frac{5}{\sqrt{5}})^2)$$

▶ Based on sampling distribution, how many standard deviations away is the observed mean from the hypothesized mean?

$$z = \frac{X - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{95 - 88}{\frac{5}{\sqrt{5}}} = 5.82$$

▶ What is the probability of observing a z-value of more than 5.82 or below -5.82?

#### p-Value

- ▶ Ok, so what's a p-value then?
- ▶ A p-value indicates the probability, under  $H_0$ , of observing a value of the test statistic at least as extreme as its observed value
- ightharpoonup A smaller p-value presents stronger evidence against  $H_0$
- ► The level of the test:  $Pr(rejection|H_0) = \alpha$
- ightharpoonup A p-value less than  $\alpha$  conventionally indicates statistical significance
  - $\triangleright$  Conventional values of  $\alpha$ : 0.05 & 0.01

#### p-Value II

- ► A p-value is an arbitrary that our test must meet
  - ▶ we might want to be 99% confident that we are correctly rejecting the null hypothesis

Hypothesis Testing

- ▶ or we might make the judgement that p-values of e.g. 0.05 and below are **probably** good evidence the null hypothesis can be rejected
- ▶ Keep in mind: the p-value is **not** the probability that  $H_0$  ( $H_1$ ) is true (false)

# Type I and Type II Errors

- ► Concern false rejection if the null is true (type I error)
- ► Two types of errors:

Reject 
$$H_0$$
 Retain  $H_0$   
 $H_0$  is true Type I error Correct  
 $H_0$  is false Correct Type II error

- ▶ Type I error occurs when we reject  $H_0$  even though it is true
  - ▶ Happens 5% of the time if we choose  $\alpha = 0.05$
- ▶ Type II error occurs when we do not reject  $H_0$  even though it is false
  - ▶ If  $\alpha = 0.05$ , sometimes a real difference won't be detected

# Type I and Type II Errors

- ► There's a trade-off between the two types of error
  - ▶ What probability do you want to minimize? False positive or false negative?

# Significance Tests and CIs II

- ▶ Note that our significance test looks similar to the CIs
- ▶ We could use a CI around the difference between the two sample means to 'test' the hypothesis that they are the same
- ▶ A 95% CI would just be 1.96 \* SE
- ▶ You can ee this on first view if the 95% CI encloses zero
- ► CIs and significance tests are doing the same job, just presenting the information in a slightly different way

# Binary Variables and Proportions

- ▶ We have been working with continuous variables and means
- ► This works for binary variables too, where the mean is just the proportion:
  - Population mean =  $\mu$  = population proportion =  $\pi$
  - ▶ Population standard deviation =  $\sigma = \sqrt{\pi(1-\pi)}$
  - ightharpoonup Sample proportion = P
  - ► Standard deviation  $(P) = \frac{\sqrt{\pi(1-\pi)}}{\sqrt{n}}$
  - ► Standard error  $(P) = \frac{\sqrt{P(1-P)}}{\sqrt{n}} = \sqrt{\frac{P(1-P)}{n}}$

# Key Take Aways

- ► Knowing the shape of the sampling distribution, we can work out:
  - ightharpoonup ranges around a sample mean that will enclose the population mean X% of the time
  - ▶ the probability that a hypothesis about the population mean is true, given a particular sample mean
  - ▶ the probability that population means for different groups are different, given two sample means
  - ▶ all of the above for proportions
- ▶ Note that this allows us to make a **probabilistic** statement. Not more, not less.
- ▶ In expectation a (non-negligible) share will be false positives!