Лабораторная работа №2

Задача представлена в 7 вариантах, каждому достанутся две задачи. Схема эксперимента везде одна и та же.

- 1. Методом моментов найти оценку параметра θ равномерного распределения на $[-\theta, \theta]$. Найти смещение оценки, дисперсию, среднеквадратическую ошибку. Эксперимент для $\theta = 10$.
- 2. Методом моментов найти оценку квадрата масштабирующего параметра θ распределения Лапласа (сдвиг считать нулевым). Найти смещение оценки, дисперсию, среднеквадратическую ошибку. Эксперимент для $\theta = 0.5$.
- 3. Методом максимального правдоподобия найти оценку параметра θ биномиального распределения $Bin(n,\theta)$, считая n известным. Найти смещение оценки, дисперсию, среднеквадратическую ошибку. Является ли найденная оценка эффективной? Эксперимент при $n=4, \theta=1/5$.
- 4. Можно ли оценить параметр сдвига θ распределения Коши с известным масштабирующим параметром с помощью метода моментов? С помощью какой оценки можно оценить параметр θ ? Показать её состоятельность (nodckaska: см. теорему об асимптотическом поведении среднего члена вариационного ряда). Эксперимент для Cauchy(2, 1).
- 5. Найти оценку максимального правдоподобия параметра θ для распределения с плотностью

$$f_{\theta}(x) = \frac{3x^2}{\sqrt{2\pi}} \exp\left(-\frac{(\theta - x^3)^2}{2}\right).$$

Найти её смещение, дисперсию и среднеквадратическую ошибку. Какими свойствами обладает данная оценка? Эксперимент при $\theta = 5$.

6. С помощью метода моментов найти оценку параметра θ распределения с плотностью

$$f_{\theta}(x) = \frac{1}{(k-1)!\theta^k} x^{k-1} e^{-x/\theta} \mathbb{1}(x > 0),$$

если $k \in \mathbb{N}$ – известный параметр. Какими свойствами обладает данная оценка? Эксперимент при $\theta=2,\,k=3.$

7. С помощью метода моментов найти оценку параметра θ геометрического распределения (указать вид используемой параметризации). Какими свойствами обладает оценка? Эксперимент при $\theta=0.3$.

Сгенерируйте 500 выборок объема 50 с указанным значением параметра θ . Сколько раз оценка отклонится от истинного значения параметра более чем на 0.01? То же самое сделать для объемов выборки 100, 500, 1000, 2500. Визуализируйте результат. Как объяснить полученный результат?

Ключевые понятия:

- Постановка задачи точечного оценивания параметров
- Состоятельность, несмещенность, асимптотическая нормальность
- Эффективность оценки, информация Фишера, неравенство Рао-Крамера
- Метод моментов
- Метод максимального правдоподобия