

Certification Test Report

FCC ID: VRA-SG9011098

FCC Rule Part: 15.247

IC Radio Standards Specification: RSS-210

ACS Report Number: 11-2058.W03.12.C

Manufacturer: Sagrad Model: SG901-1098

Test Begin Date: June 29, 2011
Test End Date: October 21, 2011

Report Issue Date: October 28, 2011

FOR THE SCOPE OF ACCREDITATION UNDER CERTIFICATE NUMBER AT-1533

This report must not be used by the client to claim product certification, approval, or endorsement by ACLASS, ANSI, or any agency of the Federal Government.

Project Manager:

Thierry Jean-Charles EMC Engineer

Advanced Compliance Solutions, Inc.

Taw Charles for the

Reviewed by:

Kirby Munroe

Director, Wireless Certifications Advanced Compliance Solutions, Inc.

This test report shall not be reproduced except in full. This report may be reproduced in part with prior written consent of ACS, Inc. The results contained in this report are representative of the sample(s) submitted for evaluation.

This report contains 53 pages

TABLE OF CONTENTS

1	GENERAL	3
1.1	Purpose	3
1.2	Product description	3
1.3	Test Methodology and Considerations	4
2	TEST FACILITIES	5
2.1	Location	5
2.2	Laboratory Accreditations/Recognitions/Certifications	5
2.3	Radiated & Conducted Emissions Test Site Description	6
3	APPLICABLE STANDARD REFERENCES	8
4	LIST OF TEST EQUIPMENT	9
5	SUPPORT EQUIPMENT	10
6	EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM	10
7	SUMMARY OF TESTS	11
7.1	Antenna Requirement – FCC: Section 15.203	11
7.2	6 dB Bandwidth - FCC: Section 15.247(a)(2) IC: RSS-210 A8.2(a)	12
7.3	Peak Output Power - FCC Section 15.247(b)(3) IC: RSS-210 A8.4(4)	18
7.4	Band-Edge Compliance and Spurious Emissions-FCC 15.247(d) IC: RSS-210 A8.5	24
7.5	Power Spectral Density - FCC Section 15.247(e) IC: RSS-210 A8.2(b)	43
7.6	Power Line Conducted Emissions – FCC: Section 15.207 IC: RSS-Gen 7.2.4	49
8	CONCI USION	52

1 GENERAL

1.1 Purpose

The purpose of this report is to demonstrate compliance with Part 15 Subpart C of the FCC's Code of Federal Regulations and Industry Canada's Radio Standards Specification for modular approval.

1.2 Product description

The Sagrad SG901-1098 is a 802.11b/g/n module which is designed to be used with different types of processors and in different types of applications. The module is a fully integrated wireless radio including a RF synthesizer/VCO, high speed data converters, digital baseband processors, power management and power amplifier.

Technical Details:

Operating Range: 2412GHz – 2462MHz

Number of Channels: 11

Modulation: 802.11b: DSSS (BPSK / QPSK / CCK);

802.11g: OFDM (BPSK / QPSK / 16QAM / 64QAM) 802.11n: OFDM (BPSK / QPSK / 16QAM / 64QAM)

Data Rate: 802.11b: 11, 5.5, 2, 1 Mbps;

802.11g: 54, 48, 36, 24, 18, 12, 9, 6 Mbps;

802.11n: 65, 58.5, 52, 39, 26, 19.5, 13, 6.5 Mbps

RF Connector: U-FL.

Antenna / Gain: Sagrad 3.8 dBi SG901-1066 PCB antenna, 2.4 - 2.5 GHz

Pulse 3.2 dBi W1037 1/4 dipole antenna, 2.4 - 2.5 GHz Pulse 4.9 dBi W1038 1/4 dipole antenna. 2.4 - 2.5 GHz

Input Voltage: 3.5 VDC

Manufacturer Information:

Sagrad, Inc.

751 North Drive, Suite 10 Melbourne, FL 32934-9289 Phone: (321) 255-0513

Test Sample Serial Number(s): N/A

Test Sample Condition: The sample provided was in good operating condition with no noticeable physical damage.

1.3 Test Methodology and Considerations

The Sagrad SG901-1098 was evaluated for compliance to the radiated and RF conducted emissions requirements at three channels corresponding to the lower, middle and higher channels operating in the 2.4 GHz ISM band for all three available modes of operation. The unit was connected to an evaluation board through a SDIO board.

Additionally, the radiated spurious emissions evaluation was performed with the SG901-1098 in two antenna configurations: W1038 Pulse external antenna and an SG901-1066 Sagrad PCB antenna. The EUT was setup in the orientation of typical installation. The table below reports the EUT configurations leading to the highest emissions.

Table 1.3-1: EUT Evaluation Configuration

Mode of Operation	Channel	Frequency (MHz)	Test Utility Power Setting (dBm)	Data Rates
	1	2412	10	
802.11b	6	2437	10	1 Mbps
	11	2462	10	
	1	2412	13	
802.11g	6	2437	18	6 Mbps
	11	2462	12	
	1	2412	13	
802.11n	6	2437	18	6.5 Mbps
	11	2462	12	

The unintentional emissions data for the evaluation of the SG902-1098 are reported separately in a verification report.

2 TEST FACILITIES

2.1 Location

The radiated and conducted emissions test sites are located at the following address:

Advanced Compliance Solutions, Inc. 3998 FAU Blvd, Suite 310
Boca Raton, Florida 33431
Phone: (561) 961-5585
Fax: (561) 961-5587
www.acstestlab.com

FCC Test Firm Registration #: 587595 Industry Canada Lab Code: 4175C

2.2 Laboratory Accreditations/Recognitions/Certifications

ACS is accredited to ISO/IEC 17025 by ANSI-ASQ National Accreditation Board under their ACLASS program and has been issued certificate number AT-1533 in recognition of this accreditation. Unless otherwise specified, all test methods described within this report are covered under the ISO/IEC 17025 scope of accreditation.

2.3 Radiated & Conducted Emissions Test Site Description

2.3.1 Semi-Anechoic Chamber Test Site

The EMC radiated test facility consists of an RF-shielded enclosure. The interior dimensions of the indoor semi-anechoic chamber are approximately 48 feet (14.6 m) long by 36 feet (10.8 m) wide by 24 feet (7.3 m) high and consist of rigid, 1/8 inch (0.32 cm) steel-clad, wood core modular panels with steel framing. In the shielded enclosure, the faces of the panels are galvanized and the chamber is self-supporting. 8-foot RF absorbing cones are installed on 4 walls and the ceiling. The steel-clad ground plane is covered with vinyl floor.

The turntable is driven by pneumatic motor, which is capable of supporting a 2000 lb. load. The turntable is flushed with the chamber floor which it is connected to, around its circumference, with a continuous metallic loaded spring. An EMCO Model 1050 Multi-device Controller controls the turntable position.

A pneumatic motor is used to control antenna polarizations and height relative to the ground. The height information is displayed on the control unit EMCO Model 1050.

The control room is an RF shielded enclosure attached to the semi-anechoic chamber with two bulkhead panels for connecting RF, and control cables. The dimension of the room is $7.3 \text{ m} \times 4.9 \text{ m} \times 3 \text{ m}$ high and the entrance doors of both control and conducted rooms are 3 feet (0.91 m) by 7 feet (2.13 m).

A diagram of the Semi-Anechoic Chamber Test Site is shown in Figure 2.3.1-1 below:

Figure 2.3.1-1: Semi-Anechoic Chamber Test Site

2.3.2 Conducted Emissions Test Site Description

The dimensions of the shielded conducted room are 7.3 x 4.9 x 3 m 3 . As per ANSI C63.4 2003 requirements, the data were taken using two LISNs; a Solar Model 8028-50 50 Ω /50 μ H and an EMCO Model 3825, which are installed as shown in Photograph 3. For 220 V, 50 Hz, a Polarad LISN (S/N 879341/048) is used in conjunction with a 1 kVA, 50 Hz/220 V EDGAR variable frequency generator, Model 1001B, to filter conducted noise from the generator.

A diagram of the room is shown below in figure 2.3.2-1:

Figure 2.3.2-1: AC Mains Conducted EMI Site

3 APPLICABLE STANDARD REFERENCES

The following standards were used:

- ❖ ANSI C63.4-2003: Method of Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the 9KHz to 40GHz
- ❖ US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures, 2011
- US Code of Federal Regulations (CFR): Title 47, Part 15, Subpart C: Radio Frequency Devices, Intentional Radiators, 2011
- KDB Publication No. 558074 Measurement of Digital Transmission Systems Operating under Section 15.247, March 23, 2005
- Industry Canada Radio Standards Specification: RSS-210 Low-power License-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment, Issue 8, December 2010.
- Industry Canada Radio Standards Specification: RSS-GEN General Requirements and Information for the Certification of Radiocommunication Equipment, Issue 3, December 2010.

4 LIST OF TEST EQUIPMENT

The calibration interval of test equipment is annually or the manufacturer's recommendations. Where the calibration interval deviates from the annual cycle based on the instrument manufacturer's recommendations, it shall be stated below.

Table 4-1: Test Equipment

					Last Calibration	Calibration
AssetID	Manufacturer	Model #	Equipment Type	Serial#	Date	Due Date
523	Agilent	E7405	Spectrum Analyzers	MY45103293	1/5/2011	1/5/2013
524	Chase	CBL6111	Antennas	1138	1/7/2011	1/7/2013
2006	EMCO	3115	Antennas	2573	3/2/2011	3/2/2013
2011	Hewlett-Packard	HP 8447D	Amplifiers	2443A03952	1/3/2011	1/3/2012
2012	Hewlett-Packard	HP83017A	Amplifiers	3123A00324	2/25/2011	2/25/2012
RE586	Agilent Technologies, Inc.	83017A	Amplifiers	3123A00168	9/23/2011	9/23/2012
2013	Hewlett Packard	HP8566B	Spectrum Analyzers	2407A03233	8/5/2010	8/5/2012
2014	Hewlett Packard	HP 85650A	Quasi Peak Adapter	2430A00559	8/5/2010	8/5/2012
2037	ACS Boca	Chamber EMI Cable Set	Cable Set	2037	1/7/2011	1/7/2012
2044	QMI	N/A	Cables	2044	1/7/2011	1/7/2012
2070	Mini Circuits	VHF-8400+	Filter	2070	2/3/2011	2/3/2012
2072	Mini Circuits	VHF-3100+	Filter	30737	2/3/2011	2/3/2012
2075	Hewlett Packard	8495B	Attenuators	2626A11012	12/10/2010	12/10/2011
2082	Teledyne Storm Products	90-010-048	Cables	2082	6/6/2011	6/6/2012
2022	EMCO	LISN3825/2R	LISN	1095	8/10/2009	8/10/2011
2022	EMCO	LISN3825/2R	LISN	1095	8/19/2011	8/19/2013
2045	ACS Boca	Conducted Cable Set	Cable Set	2045	1/6/2011	1/6/2012
2064	CIR Q-TEL	FHT/22-10K-13/50-3A/3A	Filter	9	1/15/2011	1/15/2012
2008	COM-Power	AH-826	Antennas	81009	NCR	NCR

NCR=No Calibration Required

The asset 2008 is a standard gain horn antenna. Hence, recurring calibration beyond initial calibration per the manufacturer is not required only in case of damage, suspected deterioration or use at distance closer than $2xa^2/\lambda$, as per ANSI C63.4 requirements.

ACS Report: 11-2058.W06.12.C Advanced Compliance Solutions Page 14-2058.W06.12.C Advanced Compliance Solutions

5 SUPPORT EQUIPMENT

Table 5-1: Support Equipment – (EUT with Dipole Antenna)

			(
Item	Equipment Type	Manufacturer	Model Number	Serial Number	
1	EUT	Sagrad	SG901-1098	N/A	
2	Antenna	Pulse	W1038	N/A	
3	SDIO Insertion PCB	Sagrad	SG911-0072	N/A	
4	SDIO Translator PCB	Sagrad	SG909-0032	N/A	
5	Evaluation Board	Sagrad	MX515	700-26203 rev B	
6	5 VDC Power Supply	V-Infinity	3A-061WP05	N/A	
7	DC Power Supply	MPJA	HY5003	003700278	

Table 5-2: Support Equipment – (EUT with PCB Antenna)

Item	Equipment Type	Manufacturer	Model Number	Serial Number
1	EUT	Sagrad	SG901-1098	N/A
2	Antenna	Sagrad	SG901-1066	N/A
3	SDIO Insertion PCB	Sagrad	SG911-0072	N/A
4	SDIO Translator PCB	Sagrad	SG909-0032	N/A
5	Evaluation Board	Sagrad	MX515	700-26203 rev B
6	5 VDC Power Supply	V-Infinity	3A-061WP05	N/A
7	DC Power Supply	MPJA	HY5003	003700278

6 EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM

^{*} Note: Item 7 was not used for the power line conducted emissions evaluation. The EUT was powered through the evaluation board.

7 SUMMARY OF TESTS

Along with the tabular data shown below, plots were taken of all signals deemed important enough to document.

7.1 Antenna Requirement – FCC: Section 15.203

The SG901-1098 provides a U-FL. connector at the antenna port. The module is marketed with three antennas:

Sagrad 3.8 dBi SG901-1066 PCB antenna, 2.4 - 2.5 GHz

Pulse 3.2 dBi W1037 1/4 dipole antenna, 2.4 - 2.5 GHz

Pulse 4.9 dBi W1038 1/4 dipole antenna, 2.4 - 2.5 GHz

7.2 6 dB Bandwidth - FCC: Section 15.247(a)(2) IC: RSS-210 A8.2(a)

7.2.1 Measurement Procedure

The 6dB bandwidth was measured in accordance with the FCC KDB Publication No. 558074 "Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)". The RBW of the spectrum analyzer was set to 100 kHz and VBW 300 kHz. Span was set large enough to capture the entire emissions and >> RBW.

7.2.2 Measurement Results

Results are shown below in Tables 7.2.2-1 to 7.2.2-3 and Figures 7.2.2-1 to 7.2.2-9.

Table 7.2.2-1: 6 dB Bandwidth (802.11b)

Frequency [MHz]	6dB Bandwidth [kHz]
2412	10150
2437	10150
2462	10200

Figure 7.2.2-1: 6dB BW - Low Channel (802.11b)

Figure 7.2.2-2: 6dB BW - Middle Channel (802.11b)

Figure 7.2.2-3: 6dB BW - High Channel (802.11 b)

Table 7.2.2-2: 6 dB Bandwidth (802.11g)

rabio riziz zi o ab banaman (cozir ig)			
Frequency	6dB Bandwidth		
[MHz]	[kHz]		
2412	16450		
2437	16450		
2462	16450		

Figure 7.2.2-4: 6dB BW - Low Channel (802.11g)

Figure 7.2.2-5: 6dB BW - Middle Channel (802.11g)

Figure 7.2.2-6: 6dB BW - High Channel (802.11g)

Table 7.2.2-3: 6 dB Bandwidth (802.11n)

Frequency [MHz]	6dB Bandwidth [kHz]		
2412	17650		
2437	17600		
2462	17600		

Figure 7.2.2-7: 6dB BW - Low Channel (802.11n)

Figure 7.2.2-8: 6dB BW - Middle Channel (802.11n)

Figure 7.2.2-9: 6dB BW - High Channel (802.11n)

7.3 Peak Output Power - FCC Section 15.247(b)(3) IC: RSS-210 A8.4(4)

7.3.1 Measurement Procedure (Conducted Method)

The Peak Output Power was measured in accordance with the FCC KDB Publication No. 558074 "Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)" Power Option 2, Method 1. The RF output of the equipment under test was directly connected to the input of the Spectrum Analyzer. Offset values were input for cable and attenuation. Data was collected with the EUT operating at maximum power per channelization.

7.3.2 Measurement Results

Results are shown below in Tables 7.3.2-1 to 7.3.2-3 and Figures 7.3.2-1 to 7.3.2-9:

bie 7:0:2 1: Ki Gatpat i Gwei (602:11			
Frequency (MHz)	Power (dBm)		
2412	13.76		
2437	14.88		
2462	16.07		

Table 7.3.2-1: RF Output Power (802.11b)

Figure 7.3.2-1: RF Output Power - Low Channel

Figure 7.3.2-2: RF Output Power - Middle Channel

Figure 7.3.2-3: RF Output Power - High Channel

Table 7.3.2-2: RF Output Power (802.11g)

Frequency (MHz)	Power (dBm)
2412	17.94
2437	23.12
2462	19.67

Figure 7.3.2-4: RF Output Power - Low Channel (802.11g)

Figure 7.3.2-5: RF Output Power - Middle Channel (80.211g)

Figure 7.3.2-6: RF Output Power - High Channel (802.11g)

Table 7.3.2-3: RF Output Power (802.11n)

Frequency (MHz)	Power (dBm)
2412	17.19
2437	23.27
2462	19.50

Figure 7.3.2-7: RF Output Power - Low Channel (802.11n)

Figure 7.3.2-8: RF Output Power - Middle Channel (80.211n)

Figure 7.3.2-9: RF Output Power - High Channel (802.11n)

7.4 Band-Edge Compliance and Spurious Emissions-FCC 15.247(d) IC: RSS-210 A8.5

7.4.1 Band-Edge Compliance of RF Conducted Emissions

7.4.1.1 Measurement Procedure

The RF output port of the EUT was directly connected to the input of the spectrum analyzer. The EUT was investigated at the lowest and highest channel available to determine band-edge compliance. For each measurement the spectrum analyzer's RBW was set to 100 kHz, and the VBW was set to 3000 kHz.

7.4.1.2 Measurement Results

Results are shown below in Tables 7.4.1.2-1 to 7.4.1.2-3 and Figures 7.4.1.2-1 to 7.4.1.2-6:

Table 7.4.1.2-1: Conducted Band Edge – (802.11b)

Frequency (MHz)	Measured Level (dBc)	Limit (dBc)	Margin (dB)
2400.0	44.97	20	24.97
2483.5	55.66	20	35.66

Figure 7.4.1.2-1: Lower Band-edge (802.11b)

Model: SG901-1098

Figure 7.4.1.2-2: Upper Band-edge (802.11b)

Table 7.4.1.2-2: Conducted Band Edge – (802.11g)

Frequency (MHz)	Measured Level (dBc)	Limit (dBc)	Margin (dB)
2400.0	31.6	20	11.6
2483.5	41.82	20	21.82

Figure 7.4.1.2-3: Lower Band-edge (802.11g)

Figure 7.4.1.2-4: Upper Band-edge (802.11g)

Table 7.4.1.2-3: Conducted Band Edge – (802.11n)

Frequency (MHz)	Measured Level (dBc)	Limit (dBc)	Margin (dB)
2400.0	33.24	20	13.24
2483.5	39.71	20	19.71

Figure 7.4.1.2-5: Lower Band-edge (802.11n)

Figure 7.4.1.2-6: Upper Band-edge (802.11n)

7.4.2 RF Conducted Spurious Emissions

7.4.2.1 Measurement Procedure

The RF Conducted Spurious Emissions were measured in accordance with the FCC KDB Publication No. 558074 "Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)". The RF output port of the equipment under test was directly connected to the input of the spectrum analyzer. The EUT was investigated for conducted spurious emissions from 30MHz to 26 GHz, 10 times the highest fundamental frequency. Measurements were made at the low, center and high channels of the EUT. For each measurement, the spectrum analyzer's RBW was set to 100 kHz and the VBW was set to 300 kHz. The peak Max Hold function of the analyzer was utilized.

7.4.2.2 Measurement Results

Results are shown below in Figures 7.4.2.2-1 to 7.4.2.2-18:

Figure 7.4.2.2-1: 30 MHz – 1 GHz – Low Channel (802.11b)

Stop 26.5 GHz Sweep 2.642 s (401 pts)

Start 1 GHz #Res BW 100 kHz

Figure 7.4.2.2-2: 1 GHz – 26 GHz – Low Channel (802.11b)

Figure 7.4.2.2-3: 30 MHz - 1 GHz - Middle Channel (802.11b)

Figure 7.4.2.2-4: 1 GHz - 26 GHz - Middle Channel (802.11b)

Figure 7.4.2.2-5: 30 MHz - 1 GHz - High Channel (802.11b)

Model: SG901-1098

Figure 7.4.2.2-6: 1 GHz – 26 GHz –High Channel (802.11b)

Figure 7.4.2.2-7: 30 MHz – 1 GHz – Low Channel (802.11g)

Figure 7.4.2.2-8: 1 GHz – 26 GHz – Low Channel (802.11g)

Figure 7.4.2.2-9: 30 MHz - 1 GHz - Middle Channel (802.11g)

Figure 7.4.2.2-10: 1 GHz - 26 GHz - Middle Channel (802.11g)

Model: SG901-1098

#Res BW 100 kHz

Figure 7.4.2.2-11: 30 MHz - 1 GHz - High Channel (802.11g)

Figure 7.4.2.2-12: 1 GHz – 26 GHz – High Channel (802.11g)

Stop 1 GHz Sweep 100.5 ms (401 pts)

Model: SG901-1098

Start 30 MHz #Res BW 100 kHz

Figure 7.4.2.2-13: 30 MHz - 1 GHz - Low Channel (802.11n)

Figure 7.4.2.2-14: 1 GHz – 26 GHz – Low Channel (802.11n)

Sweep 100.5 ms (401 pts)

Model: SG901-1098

#Res BW 100 kHz

Figure 7.4.2.2-15: 30 MHz - 1 GHz - Middle Channel (802.11n)

Figure 7.4.2.2-16: 1 GHz - 26 GHz - Middle Channel (802.11n)

Figure 7.4.2.2-17: 30 MHz - 1 GHz - High Channel (802.11n)

Figure 7.4.2.2-18: 1 GHz – 26 GHz – High Channel (802.11n)

7.4.3 Radiated Spurious Emissions - FCC Section 15.205 IC: RSS-210 2.2, RSS-GEN 7.2.5

7.4.3.1 Measurement Procedure

Radiated emissions tests were made over the frequency range of 30MHz to 26GHz, 10 times the highest fundamental frequency.

The EUT was rotated through 360° and the receive antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. For frequencies below 1000MHz, quasi-peak measurements were made using a resolution bandwidth RBW of 120 kHz and a video bandwidth VBW of 300 kHz. For frequencies above 1000MHz, peak and average measurements made with RBW of 1 MHz and VBW of 3 MHz and 10 Hz respectively.

Duty Cycle Correction Factor

For average radiated measurements, using a 39.17% duty cycle, the measured level was reduced by a factor 8.14dB. The duty cycle correction factor is determined using the formula: 20log (39.17/100) = -8.14dB.

A detailed analysis of the duty cycle timing is provided in the Theory of Operation accompanying this report.

ACS Report: 11-2058.W06.12.C Advanced Compliance Solutions

Measurement Results

Radiated spurious emissions found in the band of 30MHz to 26GHz are reported in the Table 7.4.3.2-1 to 7.4.3.2-6 below.

Table 7.4.3.2-1: Radiated Spurious Emissions Tabulated Data - 802.11b Dipole Antenna

Frequency (MHz)	Level (dBuV)		Antenna Polarity	Correction Factors	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)		
	pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg	
Low Channel 2412 MHz											
2390	49.59	36.60	Н	-3.73	45.86	24.73	74.0	54.0	28.10	29.30	
2390	49.30	36.50	V	-3.73	45.57	24.63	74.0	54.0	28.40	29.40	
4824	45.90	40.39	Н	4.41	50.31	36.66	74.0	54.0	23.70	17.30	
	Middle Channel 2437 MHz										
4874	47.89	42.51	Н	4.58	52.47	38.95	74.0	54.0	21.50	15.00	
4874	47.88	43.06	V	4.58	52.46	39.50	74.0	54.0	21.50	14.50	
			High	Channel 2462	MHz						
2483.5	50.61	38.22	Н	-3.38	47.23	26.70	74.0	54.0	26.80	27.30	
2483.5	49.20	36.40	V	-3.38	45.82	24.88	74.0	54.0	28.20	29.10	
4924	47.87	44.10	Н	4.76	52.63	40.72	74.0	54.0	21.40	13.30	
4924	50.25	47.50	V	4.76	55.01	44.12	74.0	54.0	19.00	9.90	

*Note:

- All emissions above 4924 MHz were attenuated below the permissible limit.
- A Duty Cycle Correction of 39.17% was applied to the average measurements.

Table 7.4.3.2-2: Radiated Spurious Emissions Tabulated Data - 802.11g Dipole Antenna

Frequency (MHz)	Level (dBuV)		Antenna Polarity	Correction Factors	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
(141112)	pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
Low Channel 2412 MHz										
2390	59.32	43.39	Н	-3.73	55.59	31.52	74.0	54.0	18.4	22.5
2390	56.66	40.94	V	-3.73	52.93	29.07	74.0	54.0	21.1	24.9
			Middl	e Channel 243	7 MHz					
				Noise Flo	or					
			High	Channel 2462	MHz					
2483.5	63.90	44.69	Н	-3.38	60.52	33.17	74.0	54.0	13.5	20.8
2483.5	55.41	38.20	V	-3.38	52.03	26.68	74.0	54.0	22.0	27.3

*Note:

- All emissions above 2483.5 MHz were attenuated below the permissible limit.
- A Duty Cycle Correction of 39.17% was applied to the average measurements.

ACS Report: 11-2058.W06.12.C Advanced Compliance Solutions Page 39 of 53

Table 7.4.3.2-3: Radiated Spurious Emissions Tabulated Data - 802.11n Dipole Antenna

Frequency (MHz)	Level (dBuV)		Antenna Polarity	Correction Factors	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
(141112)	pk Qpk/Avg		(H/V)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
Low Channel 2412 MHz										
2390	61.69	44.29	Н	-3.73	57.96	32.42	74.0	54.0	16.0	21.6
2390	61.50	43.71	V	-3.73	57.77	31.84	74.0	54.0	16.2	22.2
			Middl	e Channel 243	7 MHz					
				Noise Flo	or					
			High	Channel 2462	MHz					
2483.5	64.64	47.39	Н	-3.38	61.26	35.87	74.0	54.0	12.7	18.1
2483.5	58.26	40.45	V	-3.38	54.88	28.93	74.0	54.0	19.1	25.1

*Note:

- All emissions above 2483.5 MHz were attenuated below the permissible limit.
- A Duty Cycle Correction of 39.17% was applied to the average measurements.

Table 7.4.3.2-4: Radiated Spurious Emissions Tabulated Data - 802.11b PCB Antenna

Frequency (MHz)	Level (dBuV)		Antenna Polarity	Correction Factors	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
(12)	pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
Low Channel 2412 MHz										
2390	66.51	59.01	Н	-10.31	56.20	40.56	74.0	54.0	17.80	13.40
2390	59.49	51.83	V	-10.31	49.18	33.38	74.0	54.0	24.80	20.60
4824	58.68	55.64	Н	-2.18	56.50	45.32	74.0	54.0	17.50	8.70
4824	57.66	54.05	V	-2.18	55.48	43.73	74.0	54.0	18.50	10.30
			Middl	e Channel 243	7 MHz					
4874	53.85	50.11	Н	-2.01	51.84	39.96	74.0	54.0	22.20	14.00
4874	59.22	56.83	V	-2.01	57.21	46.68	74.0	54.0	16.80	7.30
			High	Channel 2462	MHz					
2483.5	67.44	59.46	Н	-9.92	57.52	41.39	74.0	54.0	16.50	12.60
2483.5	63.38	53.91	V	-9.92	53.46	35.84	74.0	54.0	20.50	18.20
4924	60.46	58.62	Н	-1.84	58.62	48.64	74.0	54.0	15.40	5.40
4924	58.10	55.94	V	-1.84	56.26	45.96	74.0	54.0	17.70	8.00

*Note:

- All emissions above 4924 MHz were attenuated below the permissible limit.
- A Duty Cycle Correction of 39.17% was applied to the average measurements.

ACS Report: 11-2058.W06.12.C Advanced Compliance Solutions

Table 7.4.3.2-5: Radiated Spurious Emissions Tabulated Data - 802.11g PCB Antenna

Frequency (MHz)	Level (dBuV)		Antenna Polarity	Correction Factors	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)		
(141112)	pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg	
Low Channel 2412 MHz											
2390	78.63	54.41	Н	-10.31	68.32	35.96	74.0	54.0	5.7	18.0	
2390	70.83	47.26	V	-10.31	60.52	28.81	74.0	54.0	13.5	25.2	
			Middl	e Channel 243	7 MHz						
4874	53.62	36.06	Н	-2.01	51.61	25.91	74.0	54.0	22.40	28.10	
4874	51.02	35.78	V	-2.01	49.01	25.63	74.0	54.0	25.00	28.40	
	High Channel 2462 MHz										
2483.5	82.61	61.82	Н	-9.92	72.69	43.75	74.0	54.0	1.30	10.20	
2483.5	78.68	57.52	V	-9.92	68.76	39.45	74.0	54.0	5.20	14.50	

*Note:

- All emissions above 4874 MHz were attenuated below the permissible limit.
- A Duty Cycle Correction of 39.17% was applied to the average measurements.

Table 7.4.3.2-6: Radiated Spurious Emissions Tabulated Data - 802.11n PCB Antenna

Frequency (MHz)	Level (dBuV)		Antenna Polarity	Correction Factors	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)		
(141112)	pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg	
Low Channel 2412 MHz											
2390	74.86	56.13	Н	-10.31	64.55	37.68	74.0	54.0	9.5	16.3	
2390	66.95	48.53	V	-10.31	56.64	30.08	74.0	54.0	17.4	23.9	
	Middle Channel 2437 MHz										
4874	53.60	38.95	Н	-2.01	51.59	28.80	74.0	54.0	22.40	25.20	
4874	50.35	35.68	V	-2.01	48.34	25.53	74.0	54.0	25.70	28.50	
	High Channel 2462 MHz										
2483.5	82.53	63.10	Н	-9.92	72.61	45.03	74.0	54.0	1.4	9.0	
2483.5	78.77	58.95	V	-9.92	68.85	40.88	74.0	54.0	5.2	13.1	

*Note:

- All emissions above 4874 MHz were attenuated below the permissible limit.
- A Duty Cycle Correction of 39.17% was applied to the average measurements.

ACS Report: 11-2058.W06.12.C Advanced Compliance Solutions Page 41 of 53

7.4.3.2 Sample Calculation:

 $R_C = R_U + CF_T$

Where:

 CF_T = Total Correction Factor (AF+CA+AG)-DC (Average Measurements Only)

R_U = Uncorrected Reading
R_C = Corrected Level
AF = Antenna Factor
CA = Cable Attenuation
AG = Amplifier Gain

DC = Duty Cycle Correction Factor

Duty Cycle Correction Factor

 $20\log (39.17/100) = -9.14dB$

Example Calculation: Peak

Corrected Level: $49.59 + (-3.73) = 45.86 dB\mu V/m$ Margin: $74 dB\mu V/m - 45.86 dB\mu V/m = 28.1 dB$

Example Calculation: Average

Corrected Level: $36.6 + (-3.73) - 8.14 = 24.73 dB \mu V/m$

Margin: $54dB\mu V/m - 24.73dB\mu V/m = 29.3dB$

7.5 Power Spectral Density - FCC Section 15.247(e) IC: RSS-210 A8.2(b)

7.5.1 PSD Measurement Procedure (Conducted Method)

The power spectral density was measured in accordance with the FCC KDB Publication No. 558074 "Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)" PSD Option 2. The RF output port of the EUT was directly connected to the input of the spectrum analyzer. Offset values were input for cable and attenuation. The spectrum analyzer RBW was set to 3 kHz and VBW >= 10 kHz. The detector was set to peak and the trace was averaged over 100 sweeps.

7.5.2 Measurement Results

Results are shown below in Table 7.5.2-1 to 7.5.2-3 and Figures 7.5.2-1 to 7.5.2-9 below:

Table 7.5.2-1:	Power S	<u>oectral</u>	Density	(802.11b)

Frequency [MHz]	Level [dBm]
2412	-16.98
2437	-20.06
2462	-15.61

Figure 7.5.2-1: Power Spectral Density - Low Channel (802.11b)

Figure 7.5.2-2: Power Spectral Density - Middle Channel (802.11b)

Figure 7.5.2-3: Power Spectral Density – High Channel (802.11b)

Table 7.5.2-2: Power Spectral Density (802.11a)

TABLE FIGURE 2: 1 OWO! OF	Journal Bollotty (Joziff 19)
Frequency	Level
[MHz]	[dBm]
2412	-14.02
2437	-9.782
2462	-14.03

Figure 7.5.2-4: Power Spectral Density - Low Channel (802.11g)

Figure 7.5.2-5: Power Spectral Density - Middle Channel (802.11g)

Figure 7.5.2-6: Power Spectral Density – High Channel (802.11g)

Table 7.5.2-3: Power Spectral Density (802.11n)

10010 11012 01 1 01101 0	
Frequency	Level
[MHz]	[dBm]
2412	-12.4
2437	-8.67
2462	-14.3

Figure 7.5.2-7: Power Spectral Density - Low Channel (802.11n)

Figure 7.5.2-8: Power Spectral Density - Middle Channel (802.11n)

Figure 7.5.2-9: Power Spectral Density – High Channel (802.11n)

7.6 Power Line Conducted Emissions – FCC: Section 15.207 IC: RSS-Gen 7.2.4

7.6.1 Measurement Procedure

ANSI C63.4 sections 6 and 7 were the guiding documents for this evaluation. Conducted emissions were performed from 150 kHz to 30 MHz with the spectrum analyzer's resolution bandwidth set to 9 kHz and the video bandwidth set to 30 kHz. The calculation for the conducted emissions is as follows:

Corrected Reading = Analyzer Reading + LISN Loss + Cable Loss Margin = Applicable Limit - Corrected Reading

7.6.2 Measurement Results

Results of the test are shown below in Tables 7.6.2-1 to .7.6.2-2 and Figures 7.6.2-1 to 7.6.2-2.

Table 7.6.2-1: Line 1 Conducted EMI Results

☑ Line 1☐ To Ground ☑ Floating☐ Telecom Port☑ dBμV ☐ dBμA
Plot Number: <u>11-2058CE04</u> Power Supply Description: <u>5 VDC</u>

Frequency (MHz)	Uncorrected Reading		Total Correction Factor	Corrected Level		Limit		Margin (dB)	
	Quasi- Peak	Average	(dB)	Quasi-Peak	Average	Quasi-Peak	Average	Quasi-Peak	Average
				Lin	e 1				
0.456613	45.643	41.077	0.60	46.24	41.67	56.75	46.75	10.5	5.1
0.50985	42.407	36.706	0.53	42.94	37.24	55.84	45.84	12.9	8.6
0.511312	43.24	38.296	0.53	43.77	38.83	56.00	46.00	12.2	7.2
0.57045	47.397	42.767	0.53	47.93	43.30	56.00	46.00	8.1	2.7
0.6272	45.627	40.663	0.52	46.14	41.18	56.00	46.00	9.9	4.8
0.6798	40.684	34.936	0.51	41.20	35.45	56.00	46.00	14.8	10.5
1.2539	44.178	39.798	0.50	44.68	40.30	56.00	46.00	11.3	5.7
1.42359	43.126	38.351	0.50	43.63	38.86	56.00	46.00	12.4	7.1
1.8243	41.431	36.313	0.50	41.94	36.82	56.00	46.00	14.1	9.2
2.62119	41.48	37.03	0.51	41.99	37.54	56.00	46.00	14.0	8.5

ACS Report: 11-2058.W06.12.C Advanced Compliance Solutions Page 49 of 53

Figure 7.6.2-1: Line 1 Conducted EMI Results

Table 7.6.2-2: Line 2 Conducted EMI Results

 □ Line 2 □ To Ground □ Floating □ Telecom Port □ dBµV □ dBµA 							
Plot Number: <u>11-2058CE04</u> Power Supply Description: <u>5 VDC</u>							

Frequency (MHz)	Uncorrected Reading		Total Correction Factor	Corrected Level		Limit		Margin (dB)	
	Quasi- Peak	Average	(dB)	Quasi-Peak	Average	Quasi-Peak	Average	Quasi-Peak	Average
Line 2									
0.513062	41.687	36.849	0.59	42.28	37.44	56.00	46.00	13.7	8.6
0.5135	41.596	36.708	0.59	42.19	37.30	56.00	46.00	13.8	8.7
0.56915	42.435	38.812	0.59	43.02	39.40	56.00	46.00	13.0	6.6
0.627012	44.056	39.667	0.56	44.62	40.23	56.00	46.00	11.4	5.8
0.68405	40.704	36.886	0.56	41.27	37.45	56.00	46.00	14.7	8.6
0.741088	42.447	38.014	0.54	42.99	38.55	56.00	46.00	13.0	7.4
1.25365	38.708	32.673	0.56	39.27	33.23	56.00	46.00	16.7	12.8
1.31079	40.196	34.595	0.56	40.76	35.15	56.00	46.00	15.2	10.8
2.05384	37.288	31.537	0.59	37.87	32.12	56.00	46.00	18.1	13.9
2.10752	37.373	31.772	0.59	37.96	32.36	56.00	46.00	18.0	13.6

Figure 7.6.2-2: Line 2 Conducted EMI Results

ACS Report: 11-2058.W06.12.C Advanced Compliance Solutions Page 51 of 53

8 CONCLUSION

In the opinion of ACS, Inc. the SG901-1098, manufactured by Sagrad meets the requirements of FCC Part 15 subpart C and Industry Canada's Radio Standards Specification RSS-210.

ACS Report: 11-2058.W06.12.C Advanced Compliance Solutions P

END REPORT