Recall:
$$\Psi_{x}(y) = \frac{f(y) - f(x)}{y - x}$$

lim
$$\Psi_{x}(y) = f'(x)$$

 $y \to x$ devivative of f at x
(if this limit exists).

$$f(x) = x^2.$$
 $f'(x) = 2x.$

•
$$E_x$$
 $f(x) = x^n$
 $f(x) = f(x)$

$$\frac{1}{1} = \lim_{y \to x} \frac{(y - x)(y^{-1} + y^{-2}x + y^{-3}x^{2} + ... + yx^{-2} + x^{-1})}{y - x}$$

$$= n \times n - 1$$

$$slope = \Psi_{x}(y)$$

$$\lim_{y \to x} \frac{f(x) = x}{y - x} = \lim_{y \to x} \frac{(y - x^n)(y^{n-1} + y^{n-2}x + y^{n-3}x^2 + ... + yx^{n-2} + x^{n-1})}{y \to x}$$

 $31+a+a^2+...+a^{n-1}=\frac{1-a^n}{1-a}$

Theorem: If f is differentiable at x, then f is continuous at x.

Proof: (Good: Show Jim f(y) = f(x).)

Observe

$$f(y) = (y-x) \frac{f(y)-f(x)}{y-x} + f(x).$$

If f is differentiable at x, then Jim Px(y) exists, finite.

$$\Rightarrow \lim_{y \to x} (y - x) \Psi_{x}(y) = 0.$$

$$\Rightarrow \lim_{y\to x} f(y) = f(x).$$

Theorem: Suppose f,g are differentiable at χ . Then cf, f+g, fg, fg ($\#g(x)\neq 0$) are differentiable at χ and

(i)
$$(cf)'(x) = c \cdot f'(x)$$

(iii)
$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

(iv)
$$(\frac{f}{g})'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2}$$

Proof: See text (algebraic manipulations, then take limits).

Math 104 Worksheet 16 UC Berkeley, Summer 2021 Tuesday, August 3

Lemma. Let f be defined on an open interval I containing x. If f attains its maximum (or minimum) at x and f is differentiable at x, then f'(x) = 0.

Prove the preceding lemma.

(Hint: Suppose that f attains its maximum at x. Argue by contradiction: show that if f'(x) > 0, then there exists $y \in I$ such that f(y) > f(x), and analogously for f'(x) < 0.)

Suppose
$$f'(x) > 0$$
. $\lim_{y \to x} \frac{f(y) - f(x)}{y - x} > 0$.

There exists $\delta > 0$ s.t. $\frac{f(y) - f(x)}{y - x} > 0$.

 $0 < |y - x| < \delta \Rightarrow P_{k}(y) > 0$.

 $\frac{f(y) - f(x)}{y - x} > 0$

There exists $y \in I$, $0 < |y - x| < \delta$, $y > x$:

 $\frac{f(y) - f(x)}{y - x} > 0 \Rightarrow f(y) - f(x) > 0$ i.e. $f(y) > f(x)$.

Rolle's Theorem. Suppose f is continuous on $[a, b]$ and differentiable on (a, b) , and that Contradiction

X

X

0

f(a) = f(b). Then there exists $x \in (a, b)$ such that f'(x) = 0.

2. Prove Rolle's Theorem.

(Hint: f is a continuous function on the compact set [a, b], so it attains its maximum and minimum in the closed interval. Consider cases depending on whether or not the max/min occurs at the endpoints of the interval.)

f attains its max and min on
$$[a,b]$$
.
Case 1: max and min = $f(a) = f(b)$. f is constant,
 $f'(x) = 0$ at every $x \in (a,b)$.
Case 2: WLOG max > $f(a) = f(b)$. There exists $x \in (a,b)$
 $s.t$. $f(x) = \max_{y \in [a,b]} f(y)$. By $|emma$, $f'(x) = 0$.

Chain rule: If g is differentiable at x and f is differentiable at 900), fog is differentiable at x and $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$. then $f \circ g(y) - f \circ g(x) = \frac{f(g(y)) - f(g(x))}{g(y) - g(x)}$ Proof: g(y) - g(x)as $y \rightarrow \chi$, $g(y) \rightarrow g(x)$. $\longrightarrow g'(x)$ at $y \rightarrow \chi$. Issue: What if g(y) = g(x) for y close to x? Let $y_n \rightarrow x$ $(y_n \neq x)$. Case 1: There is an open interval I around x such that for all yEILEX3, $g(y) \neq g(x)$ for sufficiently n, g(yn) ≠ g(x), tog(yn) - fog(x) 9(yn) - 9(x) -> f'(g(x))

 $= f'(q(x)) \cdot q'(x).$

Case d: In every open interval around x, there exists y x in the interval such that g(y) = g(x). There exists a sequence $Z_n \rightarrow \chi$, $Z_n \neq \chi$ such that $g(Z_n) = g(\chi)$ Then $g'(x) = \lim_{n \to \infty} \frac{g(\pi_n) - g(x)}{\pi_n - x} = 0$ for all n. $f'(q(x)) \cdot g'(x) = 0$ Just need to show $(f \circ q)'(x) = 0$. Since f is differentiable at g(x), so 1 im fog(y) - f-g(x) exists, finite 9x (y) is bounded in some interval I around q(x), i.e

there exists $\left| \frac{f(z) - f(g(x))}{z - g(x)} \right| \le M$ for all $z \in J \setminus g(x)$?

Then for sufficiently large n, y_n can be made close arough to x so that $g(y_n) \in J$.

If $g(y_n) = g(x)$: $\left| \frac{f \circ g(y_n) - f \circ g(x)}{y_n - x} \right| \le M \cdot \left| \frac{g(y_n) - g(x)}{y_n - x} \right| \le M \cdot \left| \frac{g(y_n) - g(x)}{y_n - x} \right| \le M \cdot \left| \frac{g(y_n) - g(x)}{y_n - x} \right| \le M \cdot \left| \frac{g(y_n) - g(x)}{y_n - x} \right|$

In any case,
$$\left| \frac{f \circ g(y_n) - f \circ g(x)}{y_n - x} \right| \leq M \left| \frac{g(y_n) - g(x)}{y_n - x} \right|$$

$$\lim_{n \to \infty} \frac{f \circ g(y_n) - f \circ g(x)}{y_n - x} = 0, \quad \text{so} \quad (f \circ g)'(x) = 0 = g'(x).$$

$$= f'(g(x)) \cdot g'(x).$$

Mean value theorem: Let f be a continuous function on [a,b] which is differentiable on (a,b). Then there exists $\chi \in (a,b)$ such that $f'(\chi) = \frac{f(b)-f(a)}{b-a}$.

Proof: Let $g(\chi) = (f(b)-f(a))\chi - (b-a)f(\chi)$.

Proof: Let g(x) = (f(b) - f(a))x - (b-a)f(x).

g cont on [a,b], differentiable on (a,b), g(a) = g(b).

Apply Rolle's theorem. There exists $\chi \in (a,b)$, g'(x) = 0.

$$g'(x) = f(b) - f(a) - (b-a) f'(x) = 0$$
.
 $\Rightarrow f'(x) = \frac{f(b) - f(a)}{b-a}$.

