

Scraping and Regression

Presented by:

Ghadah Alharbi and Rahaf Alyousef

Business Objective

Most people have the problem of not knowing the price of a car when selling it. So, we will use data from cars.com to help them determine the expected price of their car based on their car specifications and build a regression algorithms to predict car prices.

Data

Using Python library Beautiful Soup to scrape the cars information. Using cars.com dataset. The focus is on Audi cars.

CAR_NAME	MODEL	PRICE	NO_OF_REVIEWS	RATE	MILES_DRIVEN	DEALER	DESCRIPTION	
Audi A4 2.0T Premium Plus	2018	29587.0	654	4.9	43152.0	The Audi Exchange	[2018, Audi A4 2.0T Premium Plus]	0
Audi Q5 3.0T Premium Plus	2016	31881.0	1048	4.8	32666.0	Fletcher Jones Audi	[2016, Audi Q5 3.0T Premium Plus]	1
Audi S5 3.0 Prestige quattro	2012	29000.0	1442	4.6	28552.0	Volkswagen of Downtown Chicago	[2012, Audi S5 3.0 Prestige quattro]	2
Audi Q3 45 S line Premium	2021	39000.0	1442	4.6	16027.0	Volkswagen of Downtown Chicago	[2021, Audi Q3 45 S line Premium]	3
Audi Q5 2.0T Premium Plus	2014	20900.0	216	4.2	64698.0	Toyota of Lincoln Park	[2014, Audi Q5 2.0T Premium Plus]	4
109	1946		See	***	***	100	***	
Audi S4 3.0T Premium Plus	2014	20885.0	1074	4.6	124582.0	Adam Auto Group	[2014, Audi S4 3.0T Premium Plus]	91
Audi A5 2.0T Premium Plus	2013	24900.0	3942	4.7	74437.0	Guaranteed Motor Cars	[2013, Audi A5 2.0T Premium Plus]	92
Audi S5 4.2 Premium Plus quattro	2011	16990.0	55	4.2	122279.0	Coda Motors	[2011, Audi S5 4.2 Premium Plus quattro]	93
Audi Q7 55 Prestige	2019	52999.0	630	4.8	48335.0	Audi Morton Grove	[2019, Audi Q7 55 Prestige]	94
Audi Q7 3.6 Prestige	2010	14995.0	634	4.6	119432.0	ACL Sales & Leasing	[2010, Audi Q7 3.6 Prestige]	95

Preprocessing

1

Check if there are any missing values.

2

Convert the datatype of MILES_DRIVEN, MODEL, and PRICE.

3

Check if there are any duplicate values.

4

Check if there are any outlier values then remove it.

Visualizations

Heatmap Plot the correlations between the variables

- 0.50

- 0.25

- 0.00

- -0.25

--0.50

--0.75

Visualizations

Plot all the variable-to-variable relations as scatterplots

Feature Engineering

1

Creating Dummy Variables of CAR_NAME.

2

Create a new column (NO_OF_YEARS) from column MODEL.

Split Data

Regression Algorithms

NO.	Regression Algorithms	Training Score	Validation Score
1	Simple Linear Regression	0.76114	0.74205
2	Polynomial	0.77348	0.73379
3	Ridge Regression	0.75584	0.75785
4	Lasso Regression	0.75584	0.75771
5	Cross Linear Regression	0.75584	0.75770

Best Model

Ridge Regression

Training Score	Validation Score	Testing Score
0.75584	0.75785	0.77345

Evaluating Ridge Regression Model

Fitted vs. Actual

Conclusion

Evaluation

Training Score = 75.5%

Validation Score = 75.7%

Testing Score = 77.3%

Thank you for listening

