

Algorithm Design and Analysis YUN-NUNG (VIVIAN) CHEN HTTP://ADA.MIULAB.TW

Announcement

- Midterm announced
 - Check the scores / answers
 - Find TAs (office hour / email) if you have questions by 12/06 (Thur)
- Homework 3 released
 - Due on 12/13 (Thur) 14:20 (two weeks)
- Mini-HW 8 released
 - Due on 12/06 (Thur) 14:20

Frequently check the website for the updated information!

Mini-HW 8

Consider the following graph:

- (1) Please use Kruskal's algorithm to find the minimum spanning tree "step-by-step".
- (2) Please use Prim algorithm to find the minimum spanning tree "step-by-step".

Note:

- pseudo-code is not needed, but please DO show the process step by step.
- You just need to draw how edges are added iteratively.

Outline

- DFS Applications
 - Strongly Connected Components
 - Topological Sorting
- Minimal Spanning Trees (MST)
 - Boruvka's Algorithm
 - Kruskal's Algorithm
 - Prim's Algorithm

(B) Depth-First Search

Textbook Chapter 22.3 – Depth-first search

Depth-First Search (DFS)

DFS Algorithm

```
// Explore full graph and builds up
a collection of DFS trees
DFS(G)
  for each vertex u in G.V
    u.color = WHITE
    u.pi = NIL
    time = 0 // global timestamp
  for each vertex u in G.V
    if u.color == WHITE
        DFS-VISIT(G, u)
```

```
DFS-Visit(G, u)
  time = time + 1
  u.d = time // discover time
  u.color = GRAY
  for each v in G.Adj[u]
   if v.color == WHITE
      v.pi = u
      DFS-VISIT(G, v)
  u.color = BLACK
  time = time + 1
  u.f = time // finish time
```

- Implemented via recursion (stack)
- Color the vertices to keep track of progress:
 - GRAY: discovered (first time encountered)
 - BLACK: finished (all adjacent vertices discovered)
 - WHITE: undiscovered

DFS Properties

Parenthesis Theorem

• Parenthesis structure: represent the discovery of vertex u with a left parenthesis "(u)" and represent its finishing by a right parenthesis "u". In DFS, the parentheses are properly nested.

White Path Theorem

- In a DFS forest of a directed or undirected graph G = (V, E),
 - vertex v is a descendant of vertex u in the forest \Leftrightarrow at the time u. d that the search discovers u, there is a path from u to v in G consisting entirely of WHITE vertices
- Classification of Edges in G
 - Tree Edge
 - Back Edge
 - Forward Edge
 - Cross Edge

Strongly Connected Components

Textbook Chapter 22.5 – Strongly connected components

Strongly Connected Components

- Input: a directed graph G = (V, E)
- Output: a connected component of G
 - a **maximal** subset U of V s.t. any two nodes in U are reachable in G

Algorithm

- Step 1: Run DFS on G to obtain the finish time $v \cdot f$ for $v \in V$.
- Step 2: Run DFS on the transpose of G where the vertices V are processed in the decreasing order of their finish time.
- Step 3: output the vertex partition by the second DFS

Transpose of A Graph

Example Illustration

Algorithm Correctness

Lemma

Let C be the strongly connected component of G (and G^T) that contains the node u with the largest finish time u. f. Then C cannot have any incoming edge from any node of G not in C.

Proof by contradiction

- Assume that (v, w) is an incoming edge to C.
- Since C is a strongly connected component of G, there cannot be any path from any node of C to v in G.
- Therefore, the finish time of v has to be larger than any node in C, including u o v o f > u o f, contradiction

Algorithm Correctness

Theorem

By continuing the process from the vertex u^* whose finish time u^* . f is the largest excluding those in C, the algorithm returns the strongly connected components.

Practice to prove using induction

Example

Example

Time Complexity

- Step 1: Run DFS on G to obtain the finish time $v \cdot f$ for $v \in V$.
- Step 2: Run DFS on the transpose of G where the vertices V are processed in the decreasing order of their finish time.
- Step 3: output the vertex partition by the second DFS

Time Complexity: $\Theta(n+m)$

Problem Complexity

Upper bound = O(m+n)

Lower bound = $\Omega(m+n)$

Topological Sort

Textbook Chapter 22.4 – Topological sort

Directed Graph

Directed Acyclic Graph (DAG)

- Definition
 - a directed graph without any directed cycle

Topological Sort Problem

- Taking courses should follow the specific order
- How to find a course taking order?

Topological Sort Problem

- Input: a directed acyclic graph G = (V, E)
- Output: a linear order of V s.t. all edges of G going from lower-indexed nodes to higher-indexed nodes (左 \rightarrow 右)

Algorithm

- Run DFS on the input DAG G.
- Output the nodes in decreasing order of their finish time.

```
DFS(G)
  for each vertex u in G.V
    u.color = WHITE
    u.pi = NIL
  time = 0
  for each vertex u in G.V
    if u.color == WHITE
        DFS-VISIT(G, u)
```

```
DFS-Visit(G, u)
  time = time + 1
  u.d = time
  u.color = GRAY
  for each v in G.Adj[u] (outgoing)
   if v.color == WHITE
     v.pi = u
     DFS-VISIT(G, v)
  u.color = BLACK
  time = time + 1
  u.f = time // finish time
```

Example Illustration

Example Illustration

Time Complexity

- Run DFS on the input DAG G. $\Theta(n+m)$
- Output the nodes in decreasing order of their finish time.
 - As each vertex is finished, insert it onto the front of a linked list $\Theta(n)$
 - Return the linked list of vertices

Time Complexity: $\Theta(n+m)$

```
DFS(G)
  for each vertex u in G.V
    u.color = WHITE
    u.pi = NIL
  time = 0
  for each vertex u in G.V
    if u.color == WHITE
        DFS-VISIT(G, u)
```

```
DFS-Visit(G, u)
  time = time + 1
  u.d = time
  u.color = GRAY
  for each v in G.Adj[u]
   if v.color == WHITE
     v.pi = u
     DFS-VISIT(G, v)
  u.color = BLACK
  time = time + 1
  u.f = time // finish time
```

Algorithm Correctness

Lemma 22.11

A directed graph is acyclic \Leftrightarrow a DFS yields no back edges.

- Proof
 - \rightarrow : suppose there is a back edge (u, v)
 - v is an ancestor of u in DFS forest
 - There is a path from v to u in G and (u, v) completes the cycle
 - \leftarrow : suppose there is a cycle c
 - Let v be the first vertex in c to be discovered and u is a predecessor of v in c
 - Upon discovering v the whole cycle from v to u is WHITE
 - At time v. d, the vertices of c form a path of white vertices from v to u
 - By the white-path theorem, vertex u becomes a descendant of v in the DFS forest
 - Therefore, (u, v) is a back edge ____

Algorithm Correctness

Theorem 22.12

The algorithm produces a topological sort of the input DAG. That is, if (u, v) is a directed edge (from u to v) of G, then $u \cdot f > v \cdot f$.

Proof

- When (u, v) is being explored, u is GRAY and there are three cases for v:
 - Case 1 GRAY
 - (u, v) is a back edge (contradicting Lemma 22.11), so v cannot be GRAY
 - Case 2 WHITE
 - v becomes descendant of u
 - v will be finished before u

$$\rightarrow v.f < u.f$$

- Case 3 BLACK
 - v is already finished

$$\rightarrow v.f < u.f$$

Problem Complexity

Upper bound = O(m+n)

Lower bound = $\Omega(m+n)$

Discussion

- Since cycle detection becomes back edge detection (Lemma 22.11), DFS can be used to test whether a graph is a DAG
- Is there a topological order for cyclic graphs?
- Given a topological order, is there always a DFS traversal that produces such an order?

Minimal Spanning Tree (MST)

Textbook Chapter 23 – Minimal Spanning Trees

Spanning Tree

- Definition
 - a subgraph that is a tree and connects all vertices
 - Exactly n-1 edges
 - Acyclic
 - There can be many spanning trees of a graph
- BFS and DFS also generate spanning trees
 - BFS tree is typically "short and bushy"
 - DFS tree is typically "long and stringy"

Minimal Spanning Tree Problem

- Input: a connected n-node m-edge graph G with edge weights w
- Output: a spanning tree T of G with minimum w(T)

WLOG: we may assume that all edge weights are distinct

Minimal Spanning Tree Problem

• Q: What if the graph is unweighted?

Trivial

• Q: What if the graph contains edges with negative weights?

Add a large constant to every edge; a MST remains the same

Uniqueness of MST

Theorem: MST is unique if all edge weights are distinct

- Proof by contradiction
 - Suppose there are two MSTs A and B
 - Let e be the least-weight edge in $A \cup B$ and e is not in both
 - WLOG, assume e is in A
 - Add e to B; $\{e\} \cup B$ contains a cycle C
 - ullet B includes at least one edge e' that is not in A but on C
 - ullet Replacing e' with e yields a MST with less cost

If edge weights are not all distinct, then the (multi-)set of weights in MST is unique

Borůvka's Algorithm

Inventor of MST

- Otakar Borůvka
 - Czech scientist
 - Introduced the problem
 - Gave an $O(m \log n)$ time algorithm
 - The original paper was written in Czech in 1926
 - The purpose was to efficiently provide electric coverage of Bohemia

Borůvka's Algorithm

- Repeat the following procedure until the resulting graph becomes a single node
 - For each node u, mark its lightest incident edge
 - From the marked edges form a forest F, add the edges of F into the set of edges to be reported
 - Contract each maximal subtree of F into a single node

Borůvka's Algorithm Illustration

Algorithm Correctness

Claim: If (u, v) is the lightest edge incident to u in G, (u, v) must belong to any MST of G

- Proof via contradiction
 - An MST T of G that does not contain (u, v)
 - A cycle $C = T \cup (u, v)$ contains an edge (u, w) in C that has larger weight than (u, v)

• $T' = T \cup (u, v) \setminus (u, w)$ must be a spanning tree of G lighter than T

Time Complexity

The recurrence relation

$$T(m,n) \le T(m,n/2) + O(m)$$

- We check all edges in each phase $\Rightarrow O(m)$
- After each contraction phase, the number of nodes is reduced by at least one half
- Time complexity: $O(m \log n)$

Cycle Property

Let C be any cycle in the graph G, and let e be an edge with the maximum weight on C. Then the MST does not contain e.

- For simplicity, assume all edge weights are distinct
- Proof by contradiction
 - Suppose e is in the MST
 - Removing e disconnects the MST into two components T1 and T2
 - There exists another edge e' in C that can reconnect T1 and T2
 - Since w(e') < w(e), the new tree has a lower weight
 - Contradiction!

Cut Property

Let C be a cut in the graph, and let e be the edge with the minimum cost in C. Then the MST contains e.

- Cut = a partition of the vertices
- For simplicity, assume all edge weights are distinct
- Proof by contradiction
 - Suppose e is not in the current MST
 - Adding e creates a cycle in the MST
 - There exists another edge e' in C that can break the cycle
 - Since w(e') > w(e), the new tree has a lower weight
 - Contradiction!

Kruskal's Algorithm

Textbook Chapter 23.2 – The algorithms of Kruskal and Prim

Kruskal's Algorithm

- For each node u
 - Make-set(u): create a set consisting of u
- For each edge (u, v), taken in non-decreasing order by weights
 - if Find-set(u) ≠Find-set(v) (i.e., u and v are not in the same set) then
 - Output edge (u, v)
 - Union(u, v): union the sets containing u and v into a single set

Kruskal's Algorithm Illustration

Kruskal's Algorithm Correctness

The lightest edge incident to a vertex must be in the MST

Kruskal's Algorithm Correctness

- Consider whether adding e creates a cycle:
 - If adding e to T creates a cycle C
 - Then e is the max weight edge in C
 - The cycle property ensures that e is not in the MST
 - If adding e = (u, v) to T does not create a cycle
 - Before adding e, the current MST can be divided into two trees T1 and T2 such that u in T1 and V in T2
 - e is the minimum-cost edge on the cut of T1 and T2
 - The cut property ensures that e is in the MST

Kruskal's Time Complexity

```
MST-KRUSKAL(G, w) // w = weights
A = empty // edge set of MST
for v in G.V
   MAKE-SET(v)
sort edges of G.E into non-decreasing order by weight w O(m log m)
for (u, v) in G.E, taken in non-decreasing order by weight m times
   if FIND-SET(u) ≠ FIND-SET(v)
        A = A U {u, v}
        UNION(u, v)
return A
```

- Disjoint-set data structure with union-by-rank (Textbook Ch. 21)
 - MAKE-SET: O(1)
 - FIND-SET: $O(\log n)$
 - UNION: $O(\log n)$
 - The amortized cost of m operations on n elements (Exercise 21.4-4): $O(m \log n)$
- Total complexity: $O(m \log m) = O(m \log n)$

Prim's Algorithm

Textbook Chapter 23.2 – The algorithms of Kruskal and Prim

Prim's Algorithm

- Let T consist of an arbitrary node
- For i = 1 to n 1
 - add the least-weighted edge incident to the current subtree
 T that does not incur a cycle

Prim's Algorithm Correctness

The lightest edge incident to a vertex must be in the MST

Prim's Time Complexity

```
MST-PRIM(G, w, r) // w = weights, r = root
  for u in G.V
    u.key = \infty
    u.\pi = NIL
  r.key = 0
  Q = G.V
                                                  n times
  while Q \neq empty
                                                  O(\log n)
    u = EXTRACT-MIN(Q)
    for v in G.adj[u]
                                                  m times
      if v \in Q and w(u, v) < v.key
        v.\pi = u
                                                  O(\log n)
        v.key = w(u, v) // DECREASE-KEY
```

- Binary min-heap (Textbook Ch. 6)
 - BUILD-MIN-HEAP: O(n)
 - EXTRACT-MIN: $O(\log n)$
 - DECREASE-KEY: $O(\log n)$
- Total complexity: $O(n \log n + m \log n) = O(m \log n)$

Prim's Time Complexity

```
MST-PRIM(G, w, r) // w = weights, r = root
  for u in G.V
    u.key = \infty
    u.\pi = NIL
  r.key = 0
  Q = G.V
                                                  n times
  while Q \neq empty
                                                  O(\log n)
    u = EXTRACT-MIN(Q)
    for v in G.adj[u]
                                                  m times
      if v \in Q and w(u, v) < v.key
        v.\pi = u
                                                  O(1)
        v.key = w(u, v) // DECREASE-KEY
```

- Fibonacci heap (Textbook Ch. 19)
 - BUILD-MIN-HEAP: O(n)
 - EXTRACT-MIN: $O(\log n)$ (amortized)
 - DECREASE-KEY:O(1) (amortized)
- Total complexity: $O(m + n \log n)$

Concluding Remarks

- Minimal Spanning Trees (MST)
 - Boruvka's Algorithm: $O(m \log n)$
 - Kruskal's Algorithm: $O(m \log n)$
 - Prim's Algorithm: $O(m \log n)$ with binary min-heap
 - Prim's Algorithm: $O(m + n \log n)$ with Fabonacci heap

To Be Continued...

Question?

Important announcement will be sent to @ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw