Some Practical Tips And Feature Selection

Nipun Batra and teaching staff

July 26, 2025

IIT Gandhinagar

Ideas for Baselines

ullet Mean Model: $\hat{\emph{y}}=$ Mean of the training set

Ideas for Baselines

- ullet Mean Model: $\hat{y}=$ Mean of the training set
- Median or Mode of the training set

Ideas for Baselines

- Mean Model: \hat{y} = Mean of the training set
- Median or Mode of the training set
- Random (Min(training set), Max(training set))

Choosing Best features

To find the best set of features, one can do exhaustive enumeration (brute force) of features.

Choosing Best features

To find the best set of features, one can do exhaustive enumeration (brute force) of features.

$Feature_1$	Feature ₂		Feature _d	
True	False		False	
False	True		False	
True	True		False	
:	:	i		
True	True		True	

Choosing Best features

To find the best set of features, one can do exhaustive enumeration (brute force) of features.

$Feature_1$	Feature ₂		Feature _d	
True	False		False	
False	True		False	
True	True		False	
÷	:	:		
True	True		True	

The entries of the table denote if the feature is used for creating a model. In total we have 2^d models: training models using exhaustive enumeration is very expensive!

Stepwise Forward Selection

$$F = \{\}$$
 for $i = 1$ to K
$$F_i = \operatorname*{argmin}_{feature \notin F} \mathsf{Loss}(\mathsf{F} \cup \mathsf{feature})$$
 $F = F \cup F_i$

Loss(*features*) denotes the loss incurred by the model trained with *features*.

Stepwise Forward Selection for California Housing Data

Now we will be doing SFS on the California Housing Dataset. We will try to predict the median-selling price(in thousands of dollars) for households in the neighbourhood.

Stepwise Forward Selection for California Housing Data

Iteration	Added Feature	MSE
1	Median Income of block	0.97
2	Avg. number of rooms in the block	0.63
3	Latitude	0.65
4	Longitude	0.66

This shows except the first two features, everything else are unimportant features.

Stepwise Backward Selection

Same as SFS, but in opposite direction Remove feature, which reduces the accuracy the least(uninmportant).

Time Complexity Analysis

Both SFS and SBS are $O(d^2)$ algorithms, where d is the number of features.

$$\implies (d) + (d-1) + (d-2) + \dots + (1)$$

$$\implies \frac{d(d-1)}{2}$$

$$\implies d(d-1) \implies d^2$$