MATH 51 FINAL EXAM (AUTUMN 2000)

1. Let

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} \qquad \mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} \qquad \mathbf{u}_3 = \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix}$$

- (a) (6 points) Find the dimension of span($\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$).
- (b) (8 points) Find all vectors \mathbf{v} which are simultaneously orthogonal (i.e. perpendicular) to all three vectors \mathbf{u}_1 , \mathbf{u}_2 and \mathbf{u}_3 .
- 2. (10 points) Suppose B = (x, y) is a point on the circle of radius 1 centered at the origin. That is, x and y satisfy $x^2 + y^2 = 1$. Let A = (-1, 0), C = (1, 0) and assume $y \neq 0$ (so that B is not equal to A or C).

Use dot products to show that angle ABC is a right angle.

3. Suppose A is a 5×5 matrix with

For each part below, give the answer when possible. Otherwise answer "not enough information".

- (a) (2 points) Find a basis for N(A).
- (b) (2 points) Find $\dim(N(A))$.
- (c) (2 points) Find a basis for C(A).
- (d) (2 points) Find $\dim(C(A))$.
- (e) (2 points) Find the rank of A.
- (f) (2 points) Find a vector $\mathbf{b} \in \mathbf{R}^5$ such that $A\mathbf{x} = \mathbf{b}$ has no solutions.
- (g) (2 points) Are there vectors $\mathbf{b} \in \mathbf{R}^5$ such that $A\mathbf{x} = \mathbf{b}$ has exactly one solution?

- (h) (2 points) Find the eigenvalues of A.
- 4. Let

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 2 \\ 2 & 0 & 3 \end{bmatrix}$$

- (a) (5 points) Compute det(A).
- (b) (7 points) Find A^{-1} .
- 5. (a) (6 points) Find the eigenvalues of A.

$$A = \begin{bmatrix} 2 & 4 & 6 \\ 0 & 7 & 8 \\ 0 & 0 & 3 \end{bmatrix}$$

(b) (8 points) Let

$$B = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 1 & -1 \\ 2 & -4 & 1 \end{bmatrix}$$

 $\lambda = 3$ is an eigenvalue of B (you do not need to verify this). Find a basis for the eigenspace $E_3 = \{ \mathbf{v} \in \mathbf{R}^3 \mid B\mathbf{v} = 3\mathbf{v} \}.$

6. (a) (5 points) Show that, for each choice of fixed vectors $\mathbf{b} \in \mathbf{R}^3$ and $\mathbf{c} \in \mathbf{R}^2$, the formula

$$T(\mathbf{x}) = (\mathbf{x} \cdot \mathbf{b})\mathbf{c}$$

defines a linear transformation $T: \mathbf{R}^3 \to \mathbf{R}^2$.

(b) (5 points) Let

$$\mathbf{b} = \begin{bmatrix} 2\\3\\5 \end{bmatrix} \qquad \mathbf{c} = \begin{bmatrix} -1\\4 \end{bmatrix}$$

Find the matrix A such that $T(\mathbf{x}) = A\mathbf{x}$, where T is the linear transformation defined in part (a).

7. Let $S = \{(x, y) \in \mathbf{R}^2 \mid 0 \le x \le 1, 0 \le y \le 1\}.$

Determine whether or not each figure below is the image of S under some linear transformation. For those which are, find the matrix for such a transformation.

2

(a) (3 points)

(b) (3 points)

(c) (3 points)

(d) (3 points)

8. Let $\beta = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a basis for \mathbf{R}^3 , and suppose that $T: \mathbf{R}^3 \to \mathbf{R}^3$ is a linear transformation satisfying

$$T(\mathbf{v}_1) = 2\mathbf{v}_3$$
 $T(\mathbf{v}_2) = 2\mathbf{v}_2$ $T(\mathbf{v}_3) = 2\mathbf{v}_1$

- (a) (6 points) Find the matrix B for T with respect to the basis β .
- (b) (6 points) Suppose

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Find the matrix A for T with respect to the standard basis for \mathbb{R}^3 .

3

- 9. (a) (5 points) Suppose A is an $n \times n$ matrix and that \mathbf{v} is an eigenvector of A with eigenvalue λ . Show that \mathbf{v} is an eigenvector of $A^2 + A$ with eigenvalue $\lambda^2 + \lambda$.
 - (b) (5 points) Suppose A is a 3×3 matrix with eigenvalues -3, -2 and 3. Suppose $f: \mathbf{R}^3 \to \mathbf{R}$ is a function whose second-order partial derivatives are continuous. Suppose further that f has a critical point at \mathbf{a} and that $Hf(\mathbf{a}) = A^2 + A$. Does f have a local maximum, a local minimum, or a saddle at \mathbf{a} ? Explain.
- 10. Let $D = \{(x, y) \in \mathbf{R}^2 \mid -2 \le x \le 2, x^2 \le y \le 4\}$

and let $f(x, y) = x^2y + y^2 - 4y$.

- (a) (5 points) Find all critical points of f in \mathbb{R}^2 , and identify which ones are in D.
- (b) (5 points) Find the maximum and minimum values of f the line segment given by $\{(x,y) \mid y=4, -2 \le x \le 2\}$.
- (c) (5 points) Find the maximum and minimum values of f on the parabolic arc given by $\{(x,y) \mid y=x^2, -2 \leq x \leq 2\}$.
- (d) (3 points) Find the maximum and minimum values of f on D.
- 11. (10 points) The function z(x,y) satisfies

$$x^2 + \frac{1}{2}y^4z + z^3 = 0,$$

and z(3,1) = -2. Use implicit differentiation to compute

$$\left. \frac{\partial z}{\partial x} \right|_{(x,y)=(3,1)}$$
.

12. (10 points) Define $f: \mathbb{R}^3 \to \mathbb{R}$ by

$$f(x, y, z) = x^2 + y^3 + z^4.$$

Consider the level surface in \mathbb{R}^3 ,

$$S = \{(x, y, z) \in \mathbf{R}^3 \mid f(x, y, z) = 18\}.$$

Find the equation for the tangent plane to S at the point (3, 2, 1).

13. (10 points) Define $\mathbf{f}: \mathbf{R} \to \mathbf{R}^3$ by $f(t) = (1, t, t^2)$. Suppose $g: \mathbf{R}^3 \to \mathbf{R}$ satisfies

$$\frac{\partial g}{\partial x}(1,2,4) = 5, \quad \frac{\partial g}{\partial y}(1,2,4) = 6, \quad \frac{\partial g}{\partial z}(1,2,4) = 7.$$

Calculate

$$\frac{d}{dt}g(\mathbf{f}(t))\Big|_{t=2}.$$

14. Let $f(x,y) = x^2 - 2x + y^2 - 6y$.

- (a) (5 points) Find all critical points of f.
- (b) (7 points) Use Lagrange multipliers to find the maximum and minimum of f on the circle $\{(x,y) \mid x^2 + y^2 = 40\}$.
- (c) (3 points) Find the maximum and minimum of f on the disk $\{(x,y) \mid x^2+y^2 \leq 40\}$.
- 15. (a) (5 points) Let $f(x,y) = \cos x + 5xe^y + 3y^2 + x^3$. Find the Hessian of f at (0,0).
 - (b) (5 points) Suppose that $f: \mathbf{R}^3 \to \mathbf{R}$ is a function whose second-order partial derivatives are continuous. Let \mathbf{p} be a critical point of f and suppose that the Hessian of f at \mathbf{p} is

$$Hf(\mathbf{p}) = \begin{bmatrix} -2 & 1 & 0\\ 1 & -2 & 0\\ 0 & 0 & -2 \end{bmatrix}$$

Does f have a local maximum, local minimum, or saddle at \mathbf{p} ?

(c) (5 points) Suppose that $g: \mathbf{R}^3 \to \mathbf{R}$ is a function whose second-order partial derivatives are continuous. Let \mathbf{q} be a critical point of g and suppose that the Hessian of g at \mathbf{q} is

$$Hg(\mathbf{q}) = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Does g have a local maximum, local minimum, or saddle at \mathbf{q} ?

16. Let $f: \mathbf{R}^2 \to \mathbf{R}$ be defined by $f(x,y) = xy^2 - x^3$.

- (a) (6 points) What is the direction of greatest decrease of f at (1,1)? Express your answer as a unit vector.
- (b) (6 points) What is the directional derivative of f at the point (1, 2) in the direction toward the point (4, 3)?

5