线性代数	(内招)		
2019-202	0 学年	(F)

姓名: 专业: 学号:

第 10 周作业

练习 1. 用基础解系表示齐次线性方程组
$$\begin{cases} x_1 + & x_2 + & x_3 + & 4x_4 - & 3x_5 = 0 \\ 2x_1 + & x_2 + & 3x_3 + & 5x_4 - & 5x_5 = 0 \\ x_1 - & x_2 + & 3x_3 - & 2x_4 - & x_5 = 0 \\ 3x_1 + & x_2 + & 5x_3 + & 6x_4 - & 7x_5 = 0 \end{cases}$$
的通解。

练习 2. 设 A, B 均为 $m \times n$ 矩阵, 证明: $r(A+B) \le r(A) + r(B)$.

练习 3. 设 $A=(a_{ij})_{m\times n},\ B=(b_{ij})_{n\times s},\$ 假设 $AB=O_{m\times s}$ 。证明: $r(A)+r(B)\leq n$ 。

下一题是附加题, 做出来的同学下周交上来, 可以加分

练习 4. 设 A 是 n 阶方阵,证明:存在不全为零的数 c_0,c_1,\cdots,c_n 使得 $c_0I_n+c_1A+\cdots+c_nA^n$ 为奇异矩阵。(事实上,可以证明 $c_0I_n+c_1A+\cdots+c_nA^n=0$,但我们不证明这个。)(提示:任取一个非零的列向量 $v\in\mathbb{R}^n$,说明 v,Av,\cdots,A^nv 是线性相关。)

练习 5. 用 "特解 + 基础解系的线性组合" 的形式,表示线性方程组 $\begin{cases} x_1 + 2x_2 + x_3 + x_4 - x_5 = 1 \\ x_2 + x_3 + x_4 = 1 \\ 2x_1 + 3x_2 + x_3 + 2x_4 - x_5 = 3 \end{cases}$ 的通解。

练习 6. 求矩阵
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a & -b & -c \end{pmatrix}$$
 的特征多项式。

练习 7. 设矩阵 $A=\left(\begin{array}{cc} -1 & k \\ 4 & 3 \end{array} \right)$ 的一个特征值是 $5,\ \ x \ k$ 的值。

练习 8. 求矩阵 $A = \begin{pmatrix} 3 & -2 \\ -2 & 3 \end{pmatrix}$ 的特征值和特征向量。

练习 9. 设 λ_1 , λ_2 是方阵 A 的特征值, α_1 , α_2 分别为 λ_1 , λ_2 的特征向量。证明:如果 $\lambda_1 \neq \lambda_2$,则 $\alpha_1 + \alpha_2$ 一定不是 A 的特征向量。