私のための統計学入門

阿部 興*

2020年2月6日

1 確率の話

ここでは主に大数の法則,中心極限定理,カルバック・ライブラ情報量について勉強する.

1.1 カルバック・ライブラ情報量

状態 $i=1,\ldots,M$ がそれぞれ q_i の確率で生起する分布と、状態 $i=1,\ldots,M$ がそれぞれ $tex:p_i$ の確率で生起する分布を考える.

この2つの分布間のカルバック・ライブラ情報量は、

$$\sum_{i=1}^{M} p_i \log \frac{p_i}{q_i}$$

と定義されます。

この量は「母集団分布が $tex:q_i$ のとき経験分布がほぼ p_i となる確率の対数のサンプルサイズ分の 1 の符号反転」と解釈できる.この一文の意味がわかるようになることがこの節の目標である.さて、状態 $tex:i=1,\ldots,M$ がそれぞれ q_i の確率で生起する分布を考える.

この分布からのサンプルを N 個観測して、状態 $i=1,\ldots,M$ が生起した回数をそれぞれ N_1,\ldots,N_M とします。 $N=\sum_{i=1}^M N_i$ です。 N_1,\ldots,N_M のような観測が得られる確率は

$$W = \frac{N!}{N_1! \cdots N_M!} q_1^{N_1} \cdots q_M^{N_M}$$

です。(要は多項分布です。)

ここでスターリングの公式

$$\log N! \approx N \log N - N$$

^{*「}あべ こう」と読む

を使って $tex: \log W$ を近似すると

$$\log W \approx (N \log N) - \sum_{i=1}^{M} (N_i \log N_i - N_i) + \sum_{i=1}^{M} \log q_i$$
 (1)

$$= N \log N - \sum_{i=1}^{M} N_i (\log N_i - q_i)$$
 (2)

$$= -\sum_{i=1}^{M} N_i (\log N_i - q_i - \log N)$$
 (3)

$$= -\sum_{i=1}^{M} N_i \left(\log \frac{N_i}{N} - q_i\right) \tag{4}$$

$$= -N\sum_{i=1}^{M} \frac{N_i}{N} (\log \frac{N_i}{N} - q_i) \tag{5}$$

と整理できる。 $p_i = N_i/N$ とおくと

$$\log W \approx -N \sum_{i=1}^{M} p_i \log \frac{p_i}{q_i}$$

という結果を得る.

あらためて考えると $tex: p_i = N_i/N$ は経験的に推定された確率と解釈できます。 $tex: q_i$ は真の確率であったことを思い出すと、W は真の分布が q_i のときに p_i のように振る舞う確率と解釈できます。 $\log W$] を N で割って、符号を反転させると、 $\sum_{i=1}^M p_i \log \frac{p_i}{q_i}$ となります。この量は「母集団分布が q_i のとき経験分布がほぼ p_i となる確率の対数のサンプルサイズ分の 1 の符号 反転」と解釈できます。

以上の考察からカルバック・ライブラ情報量を次のように定義する.

$$D(p||q) \tag{6}$$

2 最尤法

本節では最尤法と呼ばれる方法の性質について述べる. これについて理解するために,フィッシャー情報量と呼ばれる量が重要になるため, 先にフィッシャー情報量についての性質を述べる.

2.1 パラメータが1つの場合

2.1.1 スコア関数とフィッシャー情報量

パラメータ θ を持つ確率(密度)関数 $p(x|\theta_0)$ について、スコア関数 $S(\theta)$ を次のように定義する.

$$S(\theta) = \frac{d}{\theta} \log p(x|\theta). \tag{7}$$

スコア関数の $p(x|\theta)$ による平均は 0 である.

$$\int_{-\infty}^{\infty} \frac{d}{d\theta} \log p(x|\theta) p(x|\theta) dx \tag{8}$$

$$= \int_{-\infty}^{\infty} \frac{\frac{d}{d\theta} p(x|\theta)}{p(x|\theta)} p(x|\theta) dx$$
 (9)

$$= \int_{-\infty}^{\infty} \frac{d}{d\theta} p(x|\theta) \, dx \tag{10}$$

$$= \frac{d}{d\theta} \int_{-\infty}^{\infty} p(x|\theta) \, dx \tag{11}$$

$$=0. (12)$$

従い、スコア関数の分散はスコア関数の2乗の平均に等しい.

フィッシャー情報量を

$$I(\theta) = -\int_{-\infty}^{\infty} \left(\frac{d^2}{d\theta^2} \log p(x_i|\theta) \right) p(x|\theta) dx$$
 (13)

と定義すると,

$$I(\theta) = -\int_{-\infty}^{\infty} \frac{d}{d\theta} \left(\left(\frac{\frac{d}{d\theta} p(x_i | \theta)}{p(x | \theta)} \right) p(x | \theta) \right) dx$$
 (14)

$$= -\int_{-\infty}^{\infty} \left(\left(\frac{\frac{d^2}{d\theta^2} p(x_i|\theta)}{p(x|\theta)} - \frac{\left(\frac{d}{d\theta} p(x_i|\theta)\right)^2}{p(x|\theta)^2} \right) p(x|\theta) \right) dx \tag{15}$$

$$= -\int_{-\infty}^{\infty} \left(\frac{\frac{d^2}{d\theta^2} p(x_i|\theta)}{p(x|\theta)} \right) p(x|\theta) dx + \int_{-\infty}^{\infty} \left(\frac{\left(\frac{d}{d\theta} p(x_i|\theta) \right)^2}{p(x|\theta)^2} \right) p(x|\theta) dx$$
(16)

スコア関数のときと同様、第1項は消える. 第2項は

$$\int_{-\infty}^{\infty} \left(\frac{d}{d\theta} \log p(x|\theta) \right)^2 p(x|\theta) dx \tag{17}$$

と等しい. これはスコア関数の2乗の平均になっている. すなわち, スコア関数の分散はフィッシャー情報行列と等しいことがわかった.

2.1.2 最尤推定量の性質

サンプル x_i $(i=1,\ldots n)$ が、独立に同一の確率(密度)関数 $p(x|\theta_0)$ を持つ分布から得られたとする¹. ここで θ は確率(密度)関数のパラメータである². このようなデータに対し、統計モデル $p(x|\theta)$ を考え、未知パラメータの θ を推定したい.

まず、次のような関数 $l_n(\theta)$ を考える.

$$l_n(\theta) = \log\left(\frac{\prod_{i=1}^n p(x_i|\theta)}{\prod_{i=1}^n p(x_i|\theta_0)}\right) = \sum_{i=1}^n \log\left(\frac{\log p(x_i|\theta)}{\log p(x_i|\theta_0)}\right). \tag{18}$$

これをサンプルサイズ(標本の大きさ)で割ると大数の法則により,

$$\lim_{n \to \infty} l_n(\theta)/n = \int_{-\infty}^{\infty} p(x|\theta_0) \log \left(\frac{p(x|\theta)}{p(x_i|\theta)}\right) dx \tag{19}$$

となる. 右辺はサンプルを生成した分布と, 統計モデルのカルバック・ライブラ情報量の-1倍となっている. そのため, サンプルを生成した分布と統計モデルのカルバック・ライブラ情報量を最小にするためには $l_n(\theta)$ を最大にすればよいことが予想される. $l_n(\theta)$ の式を少し変形する.

$$l_n(\theta) = \sum_{i=1}^n \log p(x|\theta) \, dx - \sum_{i=1}^n \log p(x_i|\theta_0) \, dx.$$
 (20)

右辺第 2 項は、サンプルを生成した分布のみによって定まる量であり、統計モデルのパラメータ θ の選び方に依存しない. よって、 $l_n(\theta)$ を最大にするためには、第 1 項を最大にする θ を探せばよい. これが最尤法と呼ばれる推定方法のアイデアである.

 $l_n(\theta)$ を最大化する θ は、確率変数としてどのような振る舞いをするだろうか、そのことを調べるために、テイラー展開を使う、関数 f(x) の x_0 のまわりでのテイラー展開は、

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \cdots$$
 (21)

であった。テイラー展開についてよく知らない場合は(なにかいい本)を参考にするとよい。 $l_n(\theta)$ の θ_0 の周りでのテイラー展開は、

$$l_n(\theta) = l_n(\theta_0) + l'_n(\theta_0)(\theta - \theta_0) + \frac{1}{2}l''_n(\theta_0)(\theta - \theta_0)^2 + \cdots$$
 (22)

である. $h/\sqrt{n} = \theta - \theta_0$ と置くと,

$$l_n(\theta_0 + h/\sqrt{n}) = l_n(\theta_0) + \frac{l'_n(\theta_0)}{\sqrt{n}}h + \frac{1}{2n}l''_n(\theta_0)h^2 + \cdots$$
 (23)

¹「独立に同一の確率分布に従う」ことを i.i.d. (independent and identically distributed) と略すことがある。

²このパラメータのことを母数と呼ぶことがあるが、母数という語は誤解を招くことが多いので、本稿ではあまりつかわない.

となる. h を \sqrt{n} で割ったのは後の計算の便宜のためである. $l_n(\theta_0) = \log 1 = 0$ であるから、

$$l_n(\theta_0 + h/\sqrt{n}) = \frac{l'_n(\theta_0)}{\sqrt{n}}h + \frac{1}{2n}l''_n(\theta_0)h^2 + O(1/\sqrt{n})$$
 (24)

と書ける. ここで O はランダウの記号である. ランダウの記号については (なにかいい本) を参考にするとよい. $l_n(\theta)$ の定義に戻ると,

 $l_n(\theta_0 + h/\sqrt{n})$

$$\approx \frac{1}{\sqrt{n}} \left[\sum_{i=1}^{n} \left(\frac{d}{d\theta} \log p(x_i|\theta)|_{\theta=\theta_0} \right) \right] h + \frac{1}{2n} \left[\sum_{i=1}^{n} \left(\frac{d^2}{d\theta^2} \log p(x_i|\theta)|_{\theta=\theta_0} \right) \right] h^2.$$
(25)

スコア関数とフィッシャー情報行列についての性質を思い出すと、大数の法則と中心極限定理より n が十分大きいとき、標準正規分布に従う確率変数 Z を用いて、

$$l_n(\theta_0 + h/\sqrt{n}) \approx Z\sqrt{I(\theta_0)}h - \frac{I(\theta_0)h^2}{2}$$
(26)

$$= -\frac{I(\theta_0)}{2} \left(h - \frac{Z}{\sqrt{I(\theta_0)}} \right)^2 + \frac{Z^2}{2}$$
 (27)

という近似が成り立つ. $\theta = \theta_0 + h/\sqrt{n}$ であったので,

$$l_n(\theta) = -\frac{I(\theta_0)}{2} \left(\sqrt{n}(\theta - \theta_0) - \frac{Z}{\sqrt{I(\theta_0)}} \right)^2 + \frac{Z^2}{2}$$
 (28)

右辺は 2次関数であり、 $\sqrt{n}(\theta-\theta_0)=Z/\sqrt{I(\theta_0)}$ のとき最大になる。よって $l_n(\theta)$ を最大にするよう θ を決めると、 $\sqrt{n}(\theta-\theta_0)$ は平均 0、分散 $I(\theta_0)^{-1}$ の 正規分布に従う。これが最尤法の基礎である。最尤法により推定された θ を 最尤推定量と呼ぶ。最尤推定量は確率変数であるから、サンプルを生成した分布のパラメータそのものではない。そこで最尤推定量は $\hat{\theta}$ などの記号を用いて、パラメータと区別する。

より直感的に述べると, 最尤推定量 $\hat{\theta}$ はサンプルサイズが十分大きいとき, 平均 θ_0 , 分散 $I(\theta_0)^{-1}/\sqrt{n}$ の正規分布に従うということである.

2.2 パラメータが複数の場合

対象とする確率分布がパラメータを複数持つ場合,多変数のテーラー展開を用いることで,パラメータが1つの場合と同様の議論を展開することができる.

2.3 間違ったモデルで最尤推定すること

上記ではサンプルを生成した分布と統計モデルが、パラメータのとり方によっては厳密に一致する場合を論じた.しかし、現実にはサンプルを生成した分布は未知であり、統計モデルは分析者が設定する.そのため、統計モデルによって、サンプルを生成した分布が実現可能かどうかはわからない.

3 カイ2乗検定