Two (possibly dependent) variables

Consider the following data from 1974 Motor Trend US magazine:

weight (1000s lb)	efficiency (mpg)	
3.215	21.4	
1.835	33.9	
1.615	30.4	
2.77	19.7	
3.845	19.2	
2.2	32.4	
2.62	21	
3.46	18.1	
5.424	10.4	
4.07	16.4	

Make a scatterplot

Find the (Pearson's) correlation coefficient

The correlation coefficient has many equivalent formulas.

The correlation coefficient can be thought of as the mean of products of standard scores.

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right)$$

The following is probably easier to use for calculations.

$$r = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

Calculate the correlation coefficient

X	У	xy
3.215	21.4	68.801
1.835	33.9	62.2065
1.615	30.4	49.096
2.77	19.7	54.569
3.845	19.2	73.824
2.2	32.4	71.28
2.62	21	55.02
3.46	18.1	62.626
5.424	10.4	56.4096
4.07	16.4	66.748
$\sum x = 31.054$	$\sum y = 222.9$	$\sum x_i y_i = 620.5801$
$\bar{x} = 3.1054$	$\bar{y} = 22.29$	
$s_{x}=1.15$	$s_y = 7.57$	

$$r = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{(n-1)s_x s_y} = \frac{620.5801 - 10 \cdot 3.1054 \cdot 22.29}{(10-1) \cdot 1.15 \cdot 7.57} = -0.911$$

Determine the best-fit line

The regression line has the form

$$y = a + bx$$

So, a is the y-intercept and b is the slope. We have formulas to determine them:

$$b = r \frac{s_y}{s_x} = -0.911 \cdot \frac{7.57}{1.15} = -6$$
$$a = \bar{y} - b\bar{x} = 22.29 - (-6) \cdot 3.1054 = 40.9$$

Our regression line:

$$y = 40.9 + (-6)x$$

Graph the regression line

Calculate and interpret the coefficient of determination

The coefficient of determination is the square of the correlation coefficient.

coefficient of determination =
$$r^2 = (-0.911)^2 = 0.83$$

We say that 83% of the variance in y (fuel efficiency) is explained by x (weight).

Determine the residuals (differences between actual and predicted)

Determine the residuals and standard error of regression

Let y' be the predicted value from y = a + bx linear model.

X	у	y'	y-y'	$(y - y')^2$
3.215	21.4	21.6	-0.2	0.04
1.835	33.9	29.9	4	16
1.615	30.4	31.2	-0.8	0.64
2.77	19.7	24.3	-4.6	21.2
3.845	19.2	17.8	1.4	1.96
2.2	32.4	27.7	4.7	22.1
2.62	21	25.2	-4.2	17.6
3.46	18.1	20.1	-2	4
5.424	10.4	8.36	2.04	4.16
4.07	16.4	16.5	-0.1	0.01

$$s_{y-y'} = \sqrt{\frac{\sum (y-y')^2}{n-2}} = \sqrt{\frac{87.71}{10-2}} = 3.31$$

We think predictions tend to be off by 3.31 mpg.

Draw the \pm standard error of regression

Make a point estimate using the linear model

Predict the fuel efficiency of a car with a mass of 200 lbs (x = 0.2).

$$y = 40.9 + (-6)(0.2) = 39.7$$

... notice this model does not do a good job predicting the fuel efficiency of a bicycle. A bicycle is much more efficient that that (approximately 700 mpg on an energy basis).