







Annette Hautli-Janisz, Prof. Dr.

5 December 2024

# IR & NLP: Course schedule winter 2024/25

|        | When?            | What?                                           |
|--------|------------------|-------------------------------------------------|
| Week 1 | 17 October 2024  | Introduction                                    |
| Week 2 | 24 October 2024  | Indexing, Boolean IR                            |
| Week 3 | 31 October 2024  |                                                 |
| Week 4 | 7 November 2024  |                                                 |
| Week 5 | 14 November 2024 | Scoring, term weighting, the vector space model |
| Week 6 | 21 November 2024 | Relevance and probabilistic IR                  |
| Week 7 | 28 November 2024 | Tolerant retrieval and index compression        |
| Week 8 | 5 December 2024  | Evaluation in IR                                |
| Week 9 | 12 December 2024 | Distributed word representations for IR         |

## IR & NLP: Course schedule winter 2024/25

|         | When?            | What?                         |
|---------|------------------|-------------------------------|
| Week 10 | 19 December 2024 | Natural Language Processing   |
| Week 11 | 9 January 2025   | NLP with Python               |
| Week 12 | 16 January 2025  | Personalization in IR systems |
| Week 13 | 23 January 2025  | Al & ethics                   |
| Week 14 | 30 January 2025  | Recap                         |
| Week 15 | 6 February 2025  | No class (conference trip)    |

(also on stud.IP)

Registration to exam now possible!

# **Information Retrieval (IR): Today**

(IIR): Manning, Raghavan and Schütze, Introduction to IR, 2008

Chapter 8: Evaluation in information retrieval

#### The classic search model



## How can you tell if users are happy?

Search returns products relevant to users. But how do you assess this at scale?

Search results get clicked a lot

- Misleading titles/summaries can cause users to click.
- Vaguely relevant documents, user browses.

Users buy after using the search engine (or spend a lot of money after using the search engine)

# Repeat visitors/buyers

- Do they leave soon after searching?
- Do they come back within a week/month/...?

## **Happiness: elusive to measure**

Most common proxy: relevance of search results.

Pioneer: Cyril Cleverdon in the Cranfield experiments.



How exactly do we measure relevance?

# **Measuring relevance**

#### Three elements:

- A benchmark document collection.
- A benchmark suite of queries.
- An assessment of either 'relevant' or 'non-relevant' for each query and each document.

## **Measuring relevance**

In the case of an online retailer:

- Benchmark documents: the retailer's products
- Benchmark query suite: more on this
- Judgements of document relevance for each query



## Relevance judgements

Binary (relevant versus non-relevant) in the simplest case. More nuanced relevance levels are also used.

What are some issues already?

The online retailer: 5 million product x 50k queries takes us into a range of a quarter trillion judgements.

- If each judgment took a human 2.5 seconds, we'd still need 10<sup>11</sup> seconds, or nearly \$300 million if you pay people \$10 per hour to assess
- 10K new products per day

## **Relevance judgements**

Crowdsource them?

Present query-document pairs to low-cost labor on online crowdsourcing platforms (Amazon Mechanical Turk, Prolific).

Let's hope that it is cheaper!

A lot of literature on using crowdsourcing for such tasks.

In general: fairly good signal, but the variance in the judgements is quite high.

#### What else?

## Still need test queries

- must be connected in a significant way to the available documents
- must be representative of actual user needs
- random query terms from the documents are not a good idea
- sample from query logs if available

# Classically (no-web IR systems):

- low query rates not enough query logs
- experts manually craft information needs and queries

#### Standard benchmark datasets

The Cranfield collection (pioneer): 1.398 journal articles, 225 queries (relevance judgements of all query-document pairs).

TREC (Text Retrieval Conference): 1,89 million documents, relevance judgement for 450 information needs ("topics") on the top k documents of some TREC evaluation.

GOV<sub>2</sub>:25-million web page collection

CLEF (Cross Language Evaluation Forum): cross-language information retrieval (query is in different language than the document)

## Standard benchmark datasets

The user need is translated into a query.

The relevance is assessed relative to the user need, NOT the query.

# Example:

- Information need: My swimming pool bottom is becoming black and needs to be cleaned.
- Query: pool cleaner
- Assess whether the docs address the underlying need, not whether they contain the query terms.

Binary assessment: relevant or non-relevant.

Precision: fraction of retrieved documents that are relevant

$$Precision = \frac{\#(relevant items retrieved)}{\#(retrieved items)} = P(relevant | retrieved)$$

Recall: fraction of relevant documents that are retrieved

$$Recall = \frac{\#(relevant \ items \ retrieved)}{\#(relevant \ items)} = P(retrieved | relevant)$$

|               | Relevant | Non-relevant |
|---------------|----------|--------------|
| Retrieved     | tp       | fp           |
| Not Retrieved | fn       | tn           |

Precision P =

Recall R =

F-measure: weighted harmonic mean F =

|               | Relevant | Nonrelevant |  |
|---------------|----------|-------------|--|
| Retrieved     | 5        | 10          |  |
| Not Retrieved | 3        | 7           |  |

Calculate P, R and F-measure.

|               | Relevant | Nonrelevant |  |
|---------------|----------|-------------|--|
| Retrieved     | tp       | fn          |  |
| Not Retrieved | fp       | tn          |  |

How is accuracy, i.e., the fraction of classifications that are correct, calculated? What is accuracy in the example before?

Is accuracy an appropriate measure for an IR system?

## **Rank-based measures**

Precision, recall and F-measure are computed using unordered sets of documents.

→ We need to extend those measures if we evaluate ranked retrieval results.

# Precision@k

Set a rank threshold at k.

Compute ratio of relevant docs in the top k (ignore documents ranked lower than k) with precision.

Example:



What is P@1 - P@10 here?

In a similar fashion we calculate R@3, R@4, R@5.

## Precision/recall and F1 versus the rank

As a function of rank: precision will go down, recall will go up.



The tendency is not particularly interesting. Let's plot one against the other.

# Sawtooth shape of the precision-recall curve.





# One curve per query/result set.



Detailed picture, but erratic behavior → need to "average" the curves across different queries.



Issue: What is precision at recall 0.5? We need to interpolate, aka. infer some value based on other precision values for query 1 and 2.

Standard averaging at fixed recall levels: 0, 0.1, 0.2, 0.3, ...



# Precision-recall curve: interpolation

On average, precision drops as recall increases. Define interpolation to preserve this monotonicity.

Interpolated precision: find the highest precision for any recall level r' ≥ r.

$$p_{interp}(r) = \max_{r' > r} p(r')$$

Optimistic interpolation: upper bound of the original precision-recall curve.

Standard way to interpolate in these IR settings.

# **Precision-recall curve: interpolation**

# Take the average of both curves



# **Precision-recall curve: interpolation**

Take the average of both curves over 11 points: 0, 0.1, 0.2, 0.3, ..., 1,0



## Averaged eleven-point precision-recall graph



Average across 50 queries for representative TREC system.

# Mean average precision (MAP)

Another way to measure binary relevance.

Consider the rank position of each relevant document.

Compute P@K for each K.

Average precision = average P@K

What's the average precision of Query 1 and Query 2?

MAP is average precision across multiple queries/rankings.

MAP across Query 1 and Query 2 =

# Mean average precision (MAP)

Now perhaps the most commonly used measure in research papers.

- If a relevant document never gets retrieved, we assume the precision corresponding to that relevant doc to be zero.
- MAP is macro-averaging: each query counts equally.

#### Good for web search?

- MAP assumes the user is interested in finding many relevant documents for each query.
- MAP requires many relevance judgements in text collections.

## **Beyond binary relevance**



## **Discounted cumulative gain**

Popular measure for evaluating web search and related tasks.

## Two assumptions:

- Highly relevant documents are more useful than marginally relevant documents.
- 2. The lower the ranked position of a relevant document, the less useful it is for the user, since it's less likely to be examined.

Used by some web search companies.

Focus on retrieving highly relevant documents.

## **Discounted cumulative gain**

Uses graded relevance as a measure of usefulness, or gain, from examining a document.

Gain is accumulated starting at the top of the ranking and may be reduced, or discounted, at lower ranks.

Like P@K, it is evaluated over some number of top K results.

Typical discount is  $1/\log(\text{rank}) \rightarrow \text{with base 2}$ , the discount at rank 4 is 1/2 and at rank 8 it is 1/3.

# Discounted cumulative gain

# Summarize a ranking:

- Imagine the relevance judgements are on a scale of [0, r], with r > 2.
- Cumulative gain (CG) at rank  $r_p = r_1 + r_2 + r_3 + ... + r_p$
- Discounted Cumulative Gain (DCG) at rank r<sub>p</sub>
  - DCG =  $r_1 + r_2/log_2 + r_3/log_2 + ... + r_n/log_2 p$
- → DCG<sub>p</sub> is the total gain accumulated at a particular rank (written differently):  $DCG_p = rel_1 + \sum_{i=2}^p \frac{rel_i}{\log_2 i}$

## Normalized discounted cumulative gain

NDCG<sub>n</sub> = Normalized DCG at rank n by the DCG value at rank n of the ideal, ground truth ranking.

The ideal ranking first returns the documents with the highest relevance level, then the next highest relevance level, etc.

# Normalized discounted cumulative gain

| i | Ground Truth             |                | Ranking Function <sub>1</sub> |                | Ranking Function <sub>2</sub> |                |
|---|--------------------------|----------------|-------------------------------|----------------|-------------------------------|----------------|
|   | Document<br>Order        | r <sub>i</sub> | Document<br>Order             | r <sub>i</sub> | Document<br>Order             | r <sub>i</sub> |
| 1 | d4                       | 2              | d3                            | 2              | d3                            | 2              |
| 2 | d3                       | 2              | d4                            | 2              | d2                            | 1              |
| 3 | d2                       | 1              | d2                            | 1              | d4                            | 2              |
| 4 | d1                       | 0              | d1                            | 0              | d1                            | 0              |
|   | NDCG <sub>GT</sub> =1.00 |                | NDCG <sub>RF1</sub> =1.00     |                | NDCG <sub>RF2</sub> =0.9203   |                |

$$DCG_{GT} = 2 + \left(\frac{2}{\log_2 2} + \frac{1}{\log_2 3} + \frac{0}{\log_2 4}\right) = 4.6309$$

$$DCG_{RF1} = 2 + \left(\frac{2}{\log_2 2} + \frac{1}{\log_2 3} + \frac{0}{\log_2 4}\right) = 4.6309$$

$$DCG_{RF2} = 2 + \left(\frac{1}{\log_2 2} + \frac{2}{\log_2 3} + \frac{0}{\log_2 4}\right) = 4.2619$$

$$MaxDCG = DCG_{GT} = 4.6309$$

Cluster of Excellence The Politics of Inequality







# Thank you. Questions? Comments?



Annette Hautli-Janisz, Prof. Dr. cornlp-teaching@uni-passau.de