Structures

Algebriques

David Wiedemann

Table des matières

1	Pre	ives 4
		1.0.1 Proprietes de preuves formelles
	1.1	Ensembles
2	App	dications entre ensembles 7
	2.1	Relations d'equivalence
	2.2	Cardinal d'un ensemble
3	The	orie des nombres
	3.1	Algorithme d'Euclide
	3.2	Theoreme fondamental de l'arithmetique
4	Thé	orie des Groupes 16
	4.1	Groupe symmétrique de n
	4.2	Construction de Groupes avec des quotients
		4.2.1 Recette générale
	4.3	Produits de Groupes
	4.4	Produits de Groupes
	4.5	Propriété universelle des Produits
	4.6	Sous-groupes
	4.7	L'homomorphisme sgn $\dots \dots \dots$
	4.8	Theoreme de Lagrange
	4.9	Groupes diedraux
	4.10	Sous-groupes engendres par plusieurs elements
	4.11	Groupes Lineaires
	4.12	Sous-groupes de $G = GL(n,k)$
${f L}$	ist o	of Theorems
	1	Definition (division d'entiers)

1	Proposition (Division avec reste)	5
2	Proposition (Paradoxe de Russel)	6
2	Definition (Formalisation des applications)	7
4	Proposition (Surjectivite de la composition)	8
3	Definition (Relations d'equivalence)	9
4	Definition (Classes d'equivalence)	10
5	Definition (L'ensemble quotient)	10
6	Definition (Cardinal d'un ensemble)	10
8	Theorème (Cantor-Schroeder-Bernstein)	11
9	Lemme	11
7	Definition	13
10	Lemme	13
8	Definition (Algorithme d'Euclide)	13
11	Lemme	14
12	Lemme	14
9	Definition (Entier)	14
13	Lemme	15
14	Proposition	15
15	Theorème	15
16	Proposition	17
10	Definition (Homomorphismes de groupes)	20
21	Lemme	20
11	Definition	21
23	Lemme	22
24	Proposition	22
12	Definition (Sous-Groupe)	24
25	Proposition	24
13	Definition	25
27	Proposition	25
28	Proposition	26
29	Proposition	26
30	Proposition	27
14	Definition (sgn) \dots	27
31	Lemme	27
32	Corollaire	28
15	Definition	28
34	Lemme	28
35	Proposition	29
36	Theorème (Lagrange)	30
37	Corollaire	30
16	Definition	30

38	Corollaire	30
39	Theorème (Petit theoreme de Fermat)	30
17	Definition	31
18	Definition (Groupe simple)	31
40	Proposition	32
41	Theorème	32
42	Theorème	32
44	Theorème	33
45	Corollaire	34
46	Corollaire	34
47	Corollaire	34
48	Corollaire	34
49	Corollaire	35
19	Definition (Graphe nonoriente)	35
20	Definition (Isomorphismes des graphes)	35
21	Definition (Groupe diedral)	35
51	Lemme	36
22	Definition	36
52	Corollaire	36
23	Definition	37
54	Proposition	37
55	Proposition	37
24	Definition	37
56	Lemme	38
58	Lemme	38
59	Proposition	39
60	Lemme	39
25	Definition	39
61	Theorème	39
62	Lemme	39
63	Theorème	39
67	Proposition	40
68	Theorème	40
60	Corollairo	11

Lecture 1: Introduction

Tue 15 Sep

Parties

- preuves et ensembles
- Theorie des nombres
- Theorie des groupes

1 Preuves

— etc

Une grande partie du bachelor est de faire des preuves, il est donc important de comprendre quand une preuve est correcte.

Il y a deux types de preuves :

- Preuves formelles
 Tres precise, mais difficile a lire.
- Preuves d'habitude
 Approximation des preuves formelles, en remplacant que parties par du texte "humain". Il faut s'assurer qu'on peut traduire cette preuve en preuve formelle.

1.0.1 Proprietes de preuves formelles

 Elles utilisent seulement des signes/symboles mathematiques. — \exists (<code>existe</code>)
— \forall (pour tout)
- ∃! (existe unique)
— ∧ (et)
— V (ou)
¬ (non)
$ \Rightarrow (implique)$

- Elle consiste de lignes, et il y a des regles strictes que ces lignes doivent suivre.
- Regles
 - Axiomes
 - Propositions qu'on a deja montrees.
 - TautologiesExemples

$$\neg (A \lor B) \iff ((\neg A) \lor (\neg B))$$

— Modus Ponens : Si on a que

$$\begin{cases} A \Rightarrow B \\ A \end{cases}$$

Alors B est vrai 1

Dans ce cours 0 n'est ni positif, ni negatif.

Definition 1 (division d'entiers)

q divise a (q|a) si il existe un entier r tel que $a = q \cdot r$.

Proposition 1 (Division avec reste)

 $a, q \neq 0$ entiers non-negatifs,

 $\Rightarrow \exists entiers non-negatifs$

b et r t.q.

$$a = b \cdot q + r$$

et

Preuve

Unicite Supposons que $\exists b, r, b', r'$ entiers non-negatifs et r < q et r' < q.

$$a = bq + r$$

$$a = b'q + r'$$

Alors

$$\underbrace{(b-b')}_{-q,0,q}q = \underbrace{r'-r}_{-q < r'-r < q}$$

 $^{1.\ {\}rm Pour\ lire\ plus,\ regarder\ "Calcul\ des\ predicats"\ sur\ wikipedia}$

$$\Rightarrow r' - r = 0$$

$$(b-b')q=0 \Rightarrow b=b'$$

Existence

Par induction sur a.

 \bullet $a = 0 \Rightarrow b = 0$ et r = 0

0 supposons que on connait l'existence pour a remplace par a-1. Alors, $\exists c, s \ tq$

$$a-1=cq+s$$

Alors, soit s < q - 1

$$a = (a-1)+1$$

$$= cq + s + 1$$

Alors on peut dire que s + 1 = r. Sinon s = q - 1

$$a = (a-1)+1$$

$$= cq + \underbrace{s+1}_{=q}$$

$$= (c+1) \cdot q + 0$$

1.1 Ensembles

Premiere approche :

 $ensemble = \{ collection de choses \}$

Exemple:

$$\underbrace{\{\{\{\emptyset\},\emptyset\}\emptyset\}}_A$$

 $\Rightarrow A \in A$

Proposition 2 (Paradoxe de Russel)

$$B = \{Aest\ un\ ensemble | A \in A\}$$

peut pas etre un ensemble.

Preuve

Supposons que B est un ensemble et $B \subset B \iff B \not\subset B \iff B \subset B \dots$

Question:

Alors, qui sont les ensembles? Reponse :

Quelques exemples de Zermelo-Fraenkel

- 1) et 2) impliquent que \emptyset est un ensemble.
- 2) A ensemble, E(x) expression $\rightarrow \{a \in A | E(a) \text{vrai}\}\ 3)$ A_i ensembles $(i \in I)$

$$\rightarrow \bigcup_{i \in I} A_i$$

est un ens. 4)...

5) axiome de l'ensemble puissance

A ensemble

$$\rightarrow 2^A = \{B \subseteq A | B \text{sous-ens.} deA\}$$

Exemple : $\{0, 1\} = A$

$$2^A = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}\$$

- 6) A_i ensembles $(i \in I) \to \text{on peut choisir } a_i \in A_i \text{ a la meme fois}$
- 7) etc...

Consequences 1) Les ensembles finis existent.

- (i) ∅
- (ii) {∅}

...

2)
$$\mathbb{N}=\{0,1,2,\ldots\}$$
 est un ensemble 3) $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$

4) $2 \cdot \mathbb{N} = \{x \in \mathbb{N} | 2|x\}$ 5) $A \subseteq B$

Alors on peut definir la difference

$$B \setminus A = \{x \in B | x \notin A\}$$

6)
$$A, B \subseteq C$$

$$A\cap B=\{x\in C|x\in A, x\in B\}$$

Lecture 2: Applications entre ensembles

Tue 22 Sep

2 Applications entre ensembles

Plus complet dans les notes de cours.

Definition 2 (Formalisation des applications)

Soit A, B deux ensembles, alors

$$\phi: A \to B$$

 $On\ la\ definit\ comme\ un\ sous-ensemble\ du\ produit\ cartesien\ :$

$$\Gamma_{\phi} \subseteq A \times B$$

$$\forall a \exists ! b : (a, b) \in \Gamma_{\phi}$$

Une maniere de penser d'une application est comme une machine qui prend a et qui sort b, la machine aura un fonctionnement deterministe.

Propriete 3 (Propriete des applications)

Soit $\phi: A \to B$

1. injective:

$$\phi(a) = \phi(b) \iff a = b$$

2. surjective

$$\forall b \in B \exists a : \phi(a) = b$$

3. bijective \iff injective et bijective L'inverse

$$\phi^{-1}: B \to A \iff \phi(a) = b$$

4. Image

$$\phi(A) = \{\phi(a)|a \in A\} \subseteq B$$

5. $\phi: A \to B, \xi: B \to C$, alors

$$(\xi \circ \phi)(a) = \xi(\phi(a))$$

L'ordre est etrange.

Proposition 4 (Surjectivite de la composition)

- (i) ξ surjectif
- (ii) ϕ pas necessairement \iff il existe un contre exemple.

Preuve

(i)
$$\forall c \in C : \exists a : \xi(\phi(a)) = c$$

$$Donc \ \exists b := \phi(a) \Rightarrow \xi(b) = c$$

2.1 Relations d'equivalence

$$A = \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle, \begin{array}{c} \\ \\ \\ \end{array} \right\rangle, \left(\begin{array}{c} \\ \\ \\ \end{array} \right), \left(\begin{array}{c} \\ \\ \\ \end{array} \right) \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle$$

FIGURE 1 – schema relation d equivalence

Definition 3 (Relations d'equivalence)

Une relation d'equivalence de A est un sous ensemble du produit $R \subseteq A \times A$ tq.

- 1. (identite) $\forall a \in A : (a, a) \in R$
- 2. $(reflexivite): (a,b) \in R \iff (b,a) \in R$
- 3. (transitivite): $(a,b) \in R, (b,c) \in R \Rightarrow (a,c) \in R$.

Exemple (Exemple de transitivite)

 $A = \mathbb{Z}$, alors:

$$R \subseteq \mathbb{Z} \times \mathbb{Z} : (a, b) \in R \iff m|a - b|$$

- 1. $(a,a) \in R : m|a-a$.
- $2. (a,b) \in R \Rightarrow (b,a) \in R$

$$\Rightarrow m|a-b \ m|b-a=-(a-b)$$

 $Ce\ qui\ est\ equivalent.$

3. $(a,b) \in R, (b,c) \in R \Rightarrow (a,c) \in R$

$$m|a-b, m|b-c \Rightarrow m|(a-b) + (b-c) = a-c$$

Definition 4 (Classes d'equivalence)

Soir $R \subseteq A \times A$ rel. d'equivalence. et $a \in A$.

La classe d'equivalence de a est

$$R_a = \{ b \in A | (a, b) \in R \}$$

Definition 5 (L'ensemble quotient)

L'ensemble quotient de R:

$$A/R = \{R_a | a \in A\} \subseteq 2^A$$

Exemple (Cas de relation d'equivalence)

m=3 et R la relation d'equivalence precedente.

$$A = \mathbb{Z} = \{-2, -1, 0, 1, 2\}$$

Alors:

$$R \supseteq (0.3)$$

 $R_a = \{b \in A | (a, b) \in R\} = \{b \in \mathbb{Z} | 3|a - b\} \text{ Pour le cas } a = 1, \text{ on } a:$

$$R_1 = \{\ldots, -5, -2, 1, 4, 7, \ldots\} = 1 + 3\mathbb{Z}$$

$$R_0 = 3\mathbb{Z}$$

$$R_2 = \{\ldots, -4, -1, 2, 5, \ldots\}$$

$$A/R = \{3\mathbb{Z}, 3\mathbb{Z} + 1, 3\mathbb{Z} + 2\}$$

En general, pour m arbitraire

$$A/R = \{m\mathbb{Z}, m\mathbb{Z} + 1, \dots, m\mathbb{Z} + (m-1)\}\$$

2.2 Cardinal d'un ensemble

La question generale est : comment mesure-t'on la taille d'un ensemble (meme pour des ensembles infinis)?

Definition 6 (Cardinal d'un ensemble)

1. A et B ont le meme cardinal si il existe $\phi:A\to B$ bijection, on note |A|=|B|

2. A a un cardinal plus petit que B si \exists une injection

$$\psi: A \hookrightarrow B$$

On note $|A| \leq |B|$.

Par exemple, il n'existe pas de bijection de \mathbb{Z} a \mathbb{R} , par contre il existe une injection $\mathbb{Z} \hookrightarrow \mathbb{R}$ donc $|\mathbb{Z}| < |\mathbb{R}|$. On dit quue $|\mathbb{Z}| = \omega_0 = \aleph_0$ et on note $|R| = \kappa$

Exemple

On veut montrer que $|\mathbb{N}| = |\mathbb{Z}|$ et

$$\phi: \mathbb{Z} \to \mathbb{N}$$

$$\phi: \begin{matrix} 0 \leq x \mapsto 2x \\ 0 > x \mapsto -2x - 1 \end{matrix}$$

Devoir : montrer que ϕ est une bijection.

Theorème 8 (Cantor-Schroeder-Bernstein)

 $|A| \leq |B|, |B| \leq |A|$ alors |A| = |B|. Autrement dit:

$$f:A\hookrightarrow B, B\hookrightarrow A\Rightarrow \exists bijA\mapsto B$$

Lemme 9

Si il existe

$$X \subseteq A$$

$$X = A \setminus g(B \setminus f(X))$$

Ou g et f sont des injections.

Alors il existe une bijection $A \mapsto B$

Preuve

$$Y_A := A \setminus X = g(Y)$$

$$X_B = f(X)$$

$$Y = B \setminus f(x)$$

Union disjointe $B = Y \perp X_B$

Preuve

 $f:A\hookrightarrow B\ et\ g:B\hookrightarrow A.$

Il faut: X tq:

$$X = A \setminus g(B \setminus f(x)) = H(X)$$

FIGURE 2 – preuve fonction bizarre

$$X \subseteq Z \Rightarrow f(X) \subseteq f(Z)$$

$$\Rightarrow B \setminus f(x) \supseteq B \setminus f(Z)$$

$$\Rightarrow g(B \setminus f(x)) \supseteq g(B \setminus f(Z))$$

$$\Rightarrow A \setminus g(B \setminus f(x)) \supseteq g(B \setminus f(Z))$$

$$\Rightarrow A \setminus g(B \setminus f(Z)) \subseteq A \setminus g(B \setminus f(x))$$

$$\Rightarrow H(X) \subseteq H(Z)$$

Soit $W = \bigcap_{X \subseteq A, \ H(X) \subseteq X} X$ Lire les notes pour voir que W = H(W)

Lecture 3: mardi

Preuve

C'est suffisant de montrer que

$$H(W) = W$$

On montre la double inclusion \subset :

 $W \subseteq \bigcap_{x \subseteq A, H(X) \subseteq X} X$, alors

$$H(W) \subseteq \bigcap_{x \subseteq A, H(X) \subseteq X} H(X)$$
$$\subseteq \bigcap_{x \subseteq A, H(X) \subseteq X} X = W$$

⊇:

H(W) est un X comme dans la definition de W.

$$\Rightarrow W \subseteq H(W)$$

Tue 29 Sep

Question:

$$|\mathbb{R}| = \omega_1$$
?

Hypothese du continu

On peut montrer qu'on ne peut pas demontrer ca.

3 Theorie des nombres

3.1 Algorithme d'Euclide

Definition 7

 $a \in \mathbb{Z}, b \in \mathbb{Z}, b \neq 0, \ alors$

$$\underbrace{(a,b)}_{plus\ grand\ commun\ diviseur} = \left\{c \in \mathbb{Z}^{>0} |\ c|a,c|b\right\}$$

Cette valeur existe car il y a une borne superieure donnee par |b|.

Lemme 10

$$a_1, b \in \mathbb{Z}, a \neq 0, r \in \mathbb{Z}$$

$$(a,b) = (a,b+ra)$$

Preuve

 $Si\ qqchose\ divise\ a\ et\ b,\ il\ divse\ aussi\ a.\ Il\ divise\ aussi\ b\ +\ a$

$$(b+ra)-ra=b$$

 $Detail\ dans\ les\ notes\ moodle$

Definition 8 (Algorithme d'Euclide)

 $a,b \in \mathbb{Z}^0$, soit

$$a_1 := \max \{a, b\}$$

 $a_2 := \min \{a, b\} i := 2$

Pas recursif:

 $Si \ qi|q_{i-1} \rightarrow on \ arrete \ et \ on \ pose \ t := i.$

$$Sinon \ q_{i-1} = s_i q_i + q_{i+1}$$

$$q_i \not| q_{i-1} \Rightarrow q_{i+1 \neq 0}$$

$$et q_{i+1} < q_i$$

$$q_1 > q_2 > q_3 > \dots q_t > 0$$
, avec q_i entier

Lemme 11

 $\exists m, n \in \mathbb{Z} \ tel \ que$

$$am + bn = q_t$$

Preuve

On demontre que q_i

$$m_i q_i + n_i q_{i+1} = q_t$$

On utilise l'induction descendante sur i. $\exists m_i, n_i \in \mathbb{Z}$ i = t - 1

$$1q_t + 0q_{t-1} = q_t$$

Pas d'induction

$$q_i = s_o q_{i+1} + q_{i+2}$$

 $Par\ hypothese\ d'induction$

$$\underbrace{m_{i+1}q_{i+1} + n_{i+1}q_{i+2}}_{=m_{i+1}q_{i+1} + n_{i+1}(q_i - s_{i+1}q_{i+1})} = q_t$$

$$= \underbrace{n_{i+1}}_{m_i} q_i + \underbrace{(m_{i+1} - n_{i+1}s_{i+1})}_{n_i} q_{i+1}$$

Lemme 12

 $q_t|q_i$ pour chaque i.

Preuve

On demontre de la meme facon que le lemme d'avant avec induction descendante. $\hfill\Box$

On peut combiner les deux lemmes : donc

$$(a,b)|q_t$$

$$q_t|(a,b)$$

Donc l'algorithme d'Euclide donne le pgcd.

3.2 Theoreme fondamental de l'arithmetique

Definition 9 (Entier)

Soit $p \geq 2$ un entier

1. p irreductible si pour chaque $a|p \Rightarrow a = 1$ ou a = p, $a \in \mathbb{N}$

2. $p \ premier : \forall a, b \in \mathbb{Z}^{>0}$

$$p|a.b \Rightarrow p|a \ ou \ p|b$$

Lemme 13

$$q, a, b \in \mathbb{Z}^{>0}$$

$$q|a.b \ et \ (q,a) = 1$$

 $\Rightarrow q|b$

Preuve

$$(q, a) = 1$$

$$1=mq+na$$
 ,
avec $m,n\in\mathbb{Z}$
$$b=mqb+nab$$

$$\Rightarrow q|b$$
 \qed

Proposition 14

 $Soit \; p \geq 2 \; entier$

 $p\ irreductible \iff p\ premier$

Preuve

 \Leftarrow

On veut montrer que $a.b=p, \Rightarrow a=1$ ou b=1 On sait que p premier

$$p|a.b \Rightarrow p|a \ ou \ p|b$$

$$\underset{a,b \geq p}{\Longrightarrow} p|a \ ou \ p|b$$

 \Rightarrow :

p irreductible

 $Deux\ possibilites:$

- 1. p|a on a fini
- 2. $p \nmid a \Rightarrow (p, a) \neq p$ p irreductible ((p, a)|p), donc

$$(p, a) = 1$$

 $Donc \Rightarrow p|b$

Theorème 15

$$n \in \mathbb{Z}^{>0}$$
,

$$n = \prod_{i=1}^{r} p_i, \text{ avec } p \text{ premiers}$$

Preuve

Existence

Induction sur n

n=2 premier donc verifie.

Pas d'induction : 2 possibilites :

- $-n premier \Rightarrow p_1 = n, r = 1$
- n n'est pas premier \Rightarrow pas irreductible

$$\Rightarrow a.b = n$$

 $tel \ que \ a, b < n$

 $\Rightarrow a = \prod p_i \ et \ b = \prod p_i, \ donne \ la \ decomposition \ pour \ n.$

Unicite

$$n = \prod_{i=1}^{r} p_i = \prod_{j=1}^{s} q_j, \text{ avec } r \le s$$

- $-s=1 \Rightarrow r=1$ verifie
- s > 1, alors

$$q_1 | \prod_{i=1}^r p_i$$

 $\Rightarrow q_1 \ premier$

$$\Rightarrow \forall l: q_1|p_l$$

donc

$$\frac{n}{q_1} = \prod_{i=1, i \neq l}^r p_i = \prod_{j=2}^s a_j$$

Lecture 4: mardi moitie

Tue 06 Oct

4 Théorie des Groupes

4.1 Groupe symmétrique de n

Le groupe Bij(X) pour $X = \{1, ..., n\} \rightarrow S_n$

$$\sigma \in S_n \to \begin{pmatrix} 1 & 2 & \dots n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

La multiplication (loi de composition) est simplement la composition des applications, attention le groupe n'est pas abélien.

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

Dans l'autre sens :

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

Les autres exemples seront contruit par une relation d'équivalence, on note

Question:

Quand est-ce que G/R est-il un groupe?

Construction:

$$[g] = R_g = \{ h \in G | (g, l) \in R \}$$

la classe de G.

Multiplication sur $\frac{G}{R}$

Soit $x, y \in G/R$, alors

$$x = [g], y \in [f]$$

On définit

$$x \cdot y := [g \cdot f]$$

Problème on peut choisir différents représentatifs.

Donc Pour que la définition sooit sensée, iil faut que

$$[g \cdot f] = [g' \cdot f'](\forall (g, g') \in R(f, f') \in R)$$

Pour l'inverse

$$x \in G/R$$
$$x = [g]$$
$$x^{-1} = [g^{-1}]$$

Elément neutre de G/R :

$$[e] \in G/R$$

Proposition 16

La définition précédente nous donne une structure de groupe sur G/R.

Les opérations sont bien définies.

$$(g,g') \in R(h,h') \in R \Rightarrow (g.h,g'.h') \in R$$

$$(g, g') \in R \Rightarrow (g^{-1}, (g')^{-1}) \in R$$

Preuve

Il faut vérifier les 3 conditions de groupe.

— (associativité)

$$x \cdot (y \cdot z) = [g] \cdot [f \cdot h] = [g \cdot f] \cdot [h] = (x \cdot y) \cdot z$$

Les deux autres propriétés sont laissées en exercice.

Exemple $(G = \mathbb{Z}, +)$

Soit

$$R = \{(x, y) \in \mathbb{Z} | m|x - y\}$$

$$G/R = \{m \cdot \mathbb{Z}, m\mathbb{Z} + 1, \dots, m\mathbb{Z} + (m-1)\}\$$

Les éléments sont de G/R sont des éléments et des groupes.

Il faut vérifier que + et - sont bien définis par rapport à R et ainsi on obtien le groupe

$$(\mathbb{Z}/m\mathbb{Z},+)$$

Lecture 5: mardi

Tue 13 Oct

4.2 Construction de Groupes avec des quotients Exemple

$$G = (\mathbb{Z}, +)$$

 $On\ d\'enote$

$$G_R = \{R_x | x \in G\} = \{[x] | x \in G\}$$

Dans ce cas

$$\mathbb{Z}_{m\mathbb{Z}} = \{m\mathbb{Z}, m\mathbb{Z} + 1, \dots, m\mathbb{Z} + m - 1\}$$

4.2.1 Recette générale

Construction de la structure de groupes sur G_R

— Représentant

$$x \in G_{R}$$

g est un représentant de x si x = [g].

$$--e_{G_{\!/\!R}}=[e]$$

Il faut que ce soit bien défini, donc si

$$(g,g') \in R, (f,f') \in R$$

Alors

$$(g.f, g'.f') \in R$$

De même, si $(g,g') \in R$

$$\Rightarrow (g^{-1}, g'^{-1}) \in R$$

Exemple

$$(\mathbb{Z}/m\mathbb{Z},+)$$

Il faut vérifier la condition la condition.

$$-(g,g') \in R, (f,f') \in R \implies (g.f,g'.f') \in R, \ alors$$

$$m|g-g' \ et \ m|f-f' \ et \ m|g+f-(g'+f')$$

$$-(g,g') \in R, \ alors \ (g^{-1},g'^{-1}) \in R, \ en \ effet$$

$$m|g-g' \ et \ m|-g-g'$$

Donc on a vérifié que c'est un groupe.

Exemple

$$\mathbb{Z}_{m\mathbb{Z}}$$

pas stable avec la multiplication.

Par contre ($\mathbb{Z}_{m\mathbb{Z}}$, ullet) monoide avec [1] l'élément neutre. Mais [0] $^{-1}$ n'existe pas Donc il faut jeter les classes qui n'ont pas d'inverses, i.e. tous les éléments sauf [p], p premiers.

Donc

$$\left\{[g] \in \mathbb{Z}/_{m\mathbb{Z}} | (g,m) = 1\right\} = (\mathbb{Z}/_{m\mathbb{Z}})^{\times} \subseteq \mathbb{Z}/_{m\mathbb{Z}}$$

Pour le moment, il s'agit que d' un sous-ensemble

On veut voir que la structure de monoide induit une structure de groupe sur $\mathbb{Z}_{m\mathbb{Z}}$

$$[g], [f] \in (\mathbb{Z}/_{m\mathbb{Z}})^{\times} \Rightarrow [g.f] \in (\mathbb{Z}/_{m\mathbb{Z}})^{\times}$$

Autrement dit $(g, m) = 1(f, m) = 1 \Rightarrow (g.f, m) = 1$

Clairement, $\{1\} \in (\mathbb{Z}/_{m\mathbb{Z}})^{\times}$ De plus, soit $[g] \in (\mathbb{Z}/_{m\mathbb{Z}})^{\times}$, on veut montrer que

$$\Rightarrow [g^{-1}] \in (\mathbb{Z}/m\mathbb{Z})^{\times}$$

autrement dit,

$$(g,m) = 1 \implies \exists f \in \mathbb{Z}, \exists x \in \mathbb{Z} \text{ tel que } g.f = 1 + mx$$

Ce qui est immédiat, par Bézout.

Donc $(\mathbb{Z}/_{m\mathbb{Z}})^{\times}$ est un groupe!

Definition 10 (Homomorphismes de groupes)

Soient G, H deux groupes.

 $Une\ application$

$$\phi: G \to H$$

 $est\ un\ homomorphisme\ si$

$$\forall g,f \in G: \phi(g.f) = \phi(g).\phi(f)$$

 ϕ est un endomorphisme si ϕ est un homomorphisme

$$\phi:G\to G$$

 ϕ est un isomorphisme si

$$\phi: G \to H$$

est un homomorphisme bijectif.

G et H sont isomorphes si il existe

$$\phi:G\to H$$

un isomorphisme. On note

$$G \simeq H$$

Lemme 21

$$\phi:G\to H$$

un homomorphisme, alors

$$\phi(g^n) = \phi(g)^n$$

Preuve

 $pour \ n=0$:

à montrer :
$$\phi(e_G) = e_H$$

$$e_H \cdot \phi(g) = \phi(g) = \phi(e_G.g) = \phi(e_G)\phi(g)$$

Donc $e_H = \phi(e_G)$.

Pour n > 0:

$$\phi(g^n) = \phi(g...g) = \phi(g)...\phi(g) = \phi(g)^n$$

 $Pour \ n < 0$:

On a démontré la semaine passée

$$\phi(g)^n \cdot \phi(g)^{-n} = phi(g)^0 = e_H$$

Il suffit de montrer que

 $\phi(g^n)$ est aussi un inverse de $\phi(g)^{-n}$

$$\phi(g^n)\phi(g^{-n}) = \phi(g^ng^{-n}) = \phi(e_G) = e_H \qquad \Box$$

Exemple

—
$$(G,+)$$
 abélien, $n \in \mathbb{N}$

$$G\ni x\mapsto n.x$$

C'est un homomorphisme car

$$n(x+y) = nx + ny$$

 $\phi: \mathbb{Z} \mapsto G$

quelconque, alors

$$\phi(n\cdot 1) = \phi(1)^n \forall n \in \mathbb{Z}$$

Autre direction:

Est-ce qu'il existe

$$\phi: \mathbb{Z} \to G$$

tel que

$$\phi(1) = g$$

Il y a une seule possibilité que ce soit le cas, quand

$$\phi(n) = g^n$$

 ${\bf C}$ 'est un homomorphisme :

$$g^n g^m = g^{n+m}$$

Cet homomorphisme existe donc, et il est uniquemenent determinem on l'appelle

$$dexp_g$$

pour "exponentielle discrete"

Lecture 6: Th. des Groupes

Tue 20 Oct

4.3 Produits de Groupes

4.4 Produits de Groupes

Definition 11

 $Soit\ G, H\ deux\ groupes$

$$G \times H = \{(g,h)|g \in G, h \in H\}$$

si $|G|, |H| < \infty$, alors $|G \times H| = |G| \cdot |H|$, on munit $G \times H$ d'une structure de groupe avec la loi

$$(g,h)\cdot(g',h')=(g',h')$$

Lemme 23

C'est un groupe avec

$$- e_{G \times H} = (e_G, e_H)$$

$$- (g, h)^{-1} = (g^{-1}, h^{-1})$$

Preuve

 \Box En exo

4.5 Propriété universelle des Produits

Si on a $G \times H$, on a deux projections (homomorphismes) naturels

$$F \times H \underbrace{\longrightarrow}_{pr_H} H$$

$$pr_F((f,h)) = f$$

$$pr_H((f,h)) = h$$

Ce sont trivialement des homomorphismes.

Proposition 24

 $Soit\ G, F, H\ des\ groupes$

$$F \times H \underset{pr_H}{\longrightarrow} H$$

$$et$$

$$F \times H \underset{pr_F}{\longrightarrow} F$$

$$de \ plus \ soit \ \beta: G \rightarrow H$$

$$\alpha: G \rightarrow F$$

Il existe un homomorphisme unique

$$\gamma:G\to F\times H$$

 $tel\ que\ les\ compositions\ ci-dessus\ commutent.$

FIGURE 3 – diagrammes produits

Donc que

$$\alpha = pr_F \circ \gamma \ et \ \beta = pr_H \circ \gamma$$

Donc

$$\alpha(g) = pr_F(\gamma(g)) = pr_F(f, h) = f$$

 $De\ plus$

$$\beta(g) = pr_H(\gamma(g)) = pr_H(f, h) = h$$

Donc

$$\gamma(g) = (\alpha(g), \beta(g))$$

Preuve

Il faut montrer que γ est un homomorphisme.

$$\gamma(g)\gamma(g') = (\alpha(g), \beta(g)) \cdot (\alpha(g'), \beta(g'))$$
$$= (\alpha(g)\alpha(g'), \beta(g)\beta(g'))$$
$$= (\alpha(gg'), \beta(gg')) = \gamma(gg')$$

On a utilisé que la composition d'homomorphismes est un homomorphisme. \Box

Utilisation

Regardons les homomorphismes de

$$\mathbb{Z} \to \mathbb{Z}/_{2\mathbb{Z}} \times \mathbb{Z}/_{3\mathbb{Z}}$$

est la meme chose que considérer les morphismes de

$$\mathbb{Z} \to \mathbb{Z}_{2\mathbb{Z}}$$

$$\mathbb{Z} \to \mathbb{Z}/_{3\mathbb{Z}}$$

On peut par exemple prendre l'exponentielle discrete de $\mathbb{Z} \to \mathbb{Z}/_{2\mathbb{Z}}$ et $\mathbb{Z} \to \mathbb{Z}/_{2\mathbb{Z}}$ et les combiner.

On ne doit pas vérifier que la "composition" est un morphisme car on l'a montré dans la propriété universelle.

4.6 Sous-groupes

Definition 12 (Sous-Groupe)

Soit (G, \cdot) un groupe et $H \subseteq G$ un sous-ensemble.

 $H\ est\ un\ sous-groupe\ si$

1.
$$\{h \cdot h' | h, h' \in H\} = H \cdot H \subseteq H$$

2. $\cdot|_H: H \times H \to H$ nous donne un groupe sur H.

Proposition 25

Soit $H \subseteq (G, \cdot)$ un sous-ensemble.

 $C\'est\ un\ sous-groupe\ si\ et\ seulement\ si$

1.
$$H \neq \emptyset$$

$$2.\ h,g\in H \implies h.g\in H$$

3.
$$h \in H \implies h^{-1} \in H$$

De plus, les éléments neutres de G et de H sont les mêmes, inverses aussi

Preuve

 \Rightarrow

1.
$$e_H \in H \Rightarrow H \neq \emptyset$$

- 2. Vrai
- 3. Il faut démontrer que

$$e_H = e_G$$

En effet

$$e_H \cdot e_H = e_H = e_G \cdot e_H$$

Or on peut simplifier, donc

$$e_H = e_G$$

 \Leftarrow

Il faut démontrer que $e_G \in H$. En effet

$$H \neq \emptyset \Rightarrow \exists g \in H \Rightarrow g^{-1}g = e_G \in H$$

Exemple

1. Sous-groupes triviaux

$$\{e\} \subseteq G$$
$$G \subseteq G$$

2.
$$\{1, -1\} \subseteq (\mathbb{Q} \setminus \{0\}, \cdot)$$

3.
$$m\mathbb{Z} = \{mx | x \in \mathbb{Z}\} \subseteq (\mathbb{Z}, +)$$

4. $\mathbb{Z}/_{n\mathbb{Z}}$, m|n être divisible par m est bien définit sur les classes d'équivalences, autrement dit

$$x, y \in \mathbb{Z}, n|x-y \text{ alors } m|x \iff m|y$$

Donc

$$\left\{[x]\in\mathbb{Z}/_{n\mathbb{Z}}|m|[x]\right\}\subseteq\mathbb{Z}/_{n\mathbb{Z}}$$

est un sous-groupe.

Definition 13

Soit

$$\phi:G\to H$$

un morphisme.

1. noyau:

$$\ker \phi = \{ g \in G | \phi g = e_H \} \subset G$$

2. image:

$$Im\phi = \{\phi(g)|g \in G\} \subset H$$

Proposition 27

L'image et le noyau sonnt des sous-groupes.

Preuve

La preuve pour l'image est dans le cours.

$$\ker \phi \neq \emptyset$$
, $\operatorname{car} \phi(e_G) = e_H$

On démontre que c'est stable par composition

$$g, f \in \ker \phi$$

, alors

$$\phi(g.f) = \phi(g).\phi(f) = e_H \cdot e_H e_H$$

On vérifie que c'est stable par inversion.

$$g \in \ker \phi$$

$$\phi(g)^{-1} = \phi(g^{-1})$$

donc c'est fini.

Lecture 7: theorie des groupes

Tue 27 Oct

Supposons $o(g) \neq \infty$, alors on note

$$|\langle g \rangle| = 0(g)$$

On remarque que

$$g^n = (g^{0(g)})^r \cdot g^s$$

Proposition 28

 $\phi: G \to H \ avec$

$$\ker \phi = \{e\}$$

Alors ϕ injectif.

Preuve

Soient $g, h \in G$.

Supposons $\phi(g) = \phi(h)$. On a

$$\phi(g^{-1}h) = \phi(g^{-1})\phi(h) = \phi(g)^{-1}\phi(h) = e$$

 $Donc\ g^{-1}h \in \ker \phi\ Donc$

$$g^{-1}h = e$$
$$g = h$$

4.7 L'homomorphisme sgn

Rappelons que un cycle $\sigma \in S_n$ tel que $\exists a_1, \dots, a_r$ éléments différents de

$$\{1,\ldots,n\}$$

$$\sigma(a_1) = a_2$$

:

$$\sigma(a_{r-1}) = a_r$$

$$\sigma(a_r) = a_1$$

$$\sigma(i) = i \text{ sinon}$$

Proposition 29

Soit $\sigma \in S_n$, avec σ un produit de cycles disjoints de taille ≥ 2 . Cette décomposition est unique modulo l'ordre des cycles

Proposition 30

 $\sigma \in S_n$, alors on peut ecrire σ comme un produit de transpositions.

Preuve

Il suffit de poser

$$\sigma = (a_1 \dots a_r)$$

On peut écrire σ comme produit de transpositions.

 $Induction \ sur \ r$

$$-r=2$$

On peut simplement envoyer chaque élément sur son prochain.

Definition 14 (sgn)

$$sgn: S_n \to \{-1, 1\}$$

On dénote

$$\operatorname{sgn} \sigma = (-1)^{|\left\{(i,j) \in \mathbb{N}^2 \mid 1 \leq j < i \leq n, \sigma(j) < \sigma(i)\right\}|}$$

Lemme 31

 $\sigma \in S_n$ et

$$1 \le r < s \le n$$

On définit

$$\tau = \sigma(rs)$$

Alors

$$sgn(\tau) = -sgn(\sigma)$$

Preuve

 $Si\ on\ applique\ (rs)\ les\ autres\ éléments\ restent\ les\ mêmes.$

 $On\ a\ donc\ que$

$$\tau(r) = \sigma(s) \ et \ \tau(s) = \sigma(r)$$

 $-i \neq j \notin \{r,s\}$ implique

$$\sigma(i) = \tau(i)$$

$$\sigma(j) = \tau(j)$$

Pas de changement.

— Soit j < r ou j > s, alors Donc j et r sont en inversion pour σ si et seulement si j et s sont en inversions pour τ Donc il n'y a pas de contribution au nombre de paires d'inversions.

— Si r < j < s, alors r et j pour τ est le même que s et j pour σ . (car $\tau(r) = \sigma(s)$ et $\tau(j) = \sigma(j)$)

et s et j sont en inversion pour τ si et seulement si r et j ne sont pas en inversion pour τ

Si r et s sont en inversion pour τ si et seulement si r et s ne sont pas en inverson pour σ

Corollaire 32

 ${\rm sgn}\ est\ un\ homomorphisme$

Preuve

 $\sigma, \tau \in S_n$, alors

$$\operatorname{sgn}(\sigma\tau) = (-1)^{r+s} = \operatorname{sgn}\sigma\operatorname{sgn}\tau$$

Lecture 8: 3 Novembre

Tue 03 Nov

4.8 Theoreme de Lagrange

Definition 15

Soit $H \leq G$, une classe à gauche (resp. à droite) est un sous-ensemble

$$g.H = \{g.h | h \in H\}$$

Ce n'est pas forcément un sous-groupe.

Exemple

Soit $G = S_3$,

$$H = \{\langle (12) \rangle\} = \{id, (12)\}$$

Regardons les classe à gauche

1.
$$g = Id$$

$$Id.H = \{Id, (12)\} = (12).H$$

2.
$$g = (13)$$

$$(13).H = \{(13), (123)\}$$

3.

$$(23).H = \{(23), (132)\}$$

Lemme 34

$$|gH| = |H| \forall g \in G$$

Preuve

$$\beta: x \mapsto g^{-1}x$$

et

$$gy \leftarrow y : \alpha$$

Ces deux applications sont inverses \Rightarrow ils sont en bijection.

Proposition 35

Soit $H \leq G$.

 $On\ d\acute{e}finit$

$$R = \left\{ (g, f) \in G \times G | g^{-1} f \in H \right\} \subseteq G \times G$$

Alors

- 1. R est une relation d'équivalence
- 2. les classes d'équivalence de R sont les classes à gauche

Preuve

- 1. reflexivite $g^{-1}g = e \in H$ donc $(g,g) \in R$
- 2. Symétrie $(g, f) \in R$ donc $g^{-1}f \in H$

$$f^{-1}g = f^{-1}(g^{-1})^{-1} = (g^{-1}f)^{-1} \in H$$

3. Transitivité $(g, f) \in R$, $(f, h) \in R$, alors $g^{-1}f, f^{-1}h \in H$,

$$g^{-1}h = g^{-1}ff^{-1}h \in H$$

 $Donc(g,h) \in R$

On veut $R_g = gH$

$$R_g = \{ f \in G | (g, f) \in R \} = \{ f \in G | g^{-1}f \in H \} = \{ f \in G | \exists x \in H : f = gx \} = gH \}$$

En somme :

 $H \leq G$

Les classes à gauche

- Ont les même tailles
- H_1, \ldots, H_r sont les classes à gauche

$$G = \coprod_i H_i$$

La notation \coprod_i signifie que l'intersection deux-à-duex est vide.

Donc, si G est fini

$$|G| = \sum |H_i| = r|H|$$

Theorème 36 (Lagrange)

G est fini et $H \leq G$, alors

$$|H|\big||G|$$

 $De \ plus \ \frac{|G|}{|H|} = \ nombre \ de \ classes \ \grave{a} \ gauche \ = [G:H]$

Corollaire 37

 $g \in G$, alors

$$\Rightarrow o(g)||G|$$

Preuve

 $H = \langle g \rangle$ et ensuite on utilise Lagrange.

Definition 16

 $G \ \textit{groupe est cyclique si il existe } g \in G \ \textit{tel que}$

$$\langle g \rangle = G$$

Corollaire 38

|G| = p > 0 avec p premier, alors G cyclique

Preuve

 $g\in G\setminus\{e\},\ donc$

 $par\ Lagrange.$

 $Donc\ o(g)=p\ et\ donc\ \langle g\rangle=G.$

Theorème 39 (Petit theoreme de Fermat)

Soit m > 0 et a entier, avec

$$(a, m) = 1$$

Alors

$$a^{\phi(m)} \equiv 1(m)$$

Preuve

 $On\ sait\ que$

$$[a] \in \left(\mathbb{Z}_{m\mathbb{Z}}\right)^{\times}$$

 $Donc\ par\ lagrange$

$$o([a])|\phi(m)$$

 $et\ donc$

$$[a]^{\phi(m)} = [1] = [a^{\phi(m)}]$$

Prenons un groupe G

et une relation d'équivalence R sur G.

On a vu que

$$G_R$$

est un groupe si la multiplication et l'inverse sont bien définis.

Dans ce cas

$$[g] \cdot [h] = [gh]$$

Il est équivalent de demander que

$$\xi:G\to G/R$$

$$g\to Rg$$

est un homomorphisme de groupe et donc

$$R_g \cdot R_h = R_{gh}$$

On applique çà aux classes à gauche

$$R = \{(g, f)|g^{-1}f \in H\}$$

On essaie de tourner

$$G/R = \{ \text{ classes à gauche } \}$$

C'est nécessaire que

$$\xi_h: G \to G/H$$

 $g \to gH$

est un homomorphisme.

$$\ker \xi_h = H$$

Quelles conditions est-ce que ca pose?

Definition 17

 $H \leq G \ est \ \underline{normal} \ si \ \forall g \in G$

$$\forall h \in H$$

on a

$$g^{-1}hg \in H$$

On appelle ceci le conjugué de h par g.

Definition 18 (Groupe simple)

 $Si H \leq G normal \Rightarrow H trivial.$

Proposition 40

Soit $\phi: G \to H$ un homomorphisme, alors le noyau de cet homomorphisme est normal ker ϕ est normal.

Preuve

Soit $g \in G$, $h \in \ker \phi$

$$\phi(g^{-1}hg) = \phi(g^{-1})\phi(h)\phi(g) = \phi(g^{-1})e\phi(g) = e$$

Theorème 41

 $H \unlhd G$ et R relation d'équivalence des classes à gauche de H G/R un groupe et

$$\xi_H: G \to G/R$$

 $g \mapsto gH$

un homomorphisme.

Lecture 9: 10 mardi

Tue 10 Nov

Theorème 42

Soit H un sous-groupe normal de G.

 $Les\ deux\ propositions\ suivantes\ sont\ equivalentes\ :$

- 1. G/R_h est un groupe
- 2. ξ_H est un homomorphisme

Preuve

Automatique si la multiplication est bien definie par rapport a R_h (deja fait).

1. Soient $(g,g') \in R_H$ et $(h,h') \in R_H$ Il faut montrer que $(gh,g'h') \in R_H$

$$(gh)^{-1}g'h' = h^{-1}g^{-1}g'h' = h^{-1}h'h'^{-1}g^{-1}g'h' \in H$$

2. Soient $(g, g') \in R_H$ Il faut montrer

$$(g^{-1}g'^{-1}) \in R_H$$

 $On\ verifie$

$$(g^{-1})^{-1}(g')^{-1} = gg'^{-1} = gg'^{-1}gg^{-1} \in H$$

Remarque

 $Notons \ que$

$$|G/H| = |G:H| = \frac{|G|}{|H|}$$

Theorème 44

— H sous-groupe normal de G

$$-\xi_H:G\to G/H$$

$$-\phi:G\to F$$

 $tel \ que \ H \subseteq \ker \phi.$

Alors, il existe un unique $\eta: G/H \to F$ tel que

$$\phi=\eta\circ\xi_H$$

Preuve

Il y a une possibilite pour η , si

$$\eta(gH) = \eta(\xi_H(g)) = \phi(g)$$

Il faut encore verifier que η est un homomorphisme.

Montrons que η est bien defini. Supposons que gH = g'H, alors $(g, g') \in R_H$, donc $g^{-1}g' \in H$

Donc

$$\eta(gH) = \phi(g) \text{ et } \eta(g'H) = \phi(g')$$

 $Or H \subseteq \ker \phi, donc$

$$\phi(g^{-1}g') = e$$

Or car ϕ est un homomorphisme, on a

$$\phi(g) = \phi(g')$$

Donc η est bien definit.

Montrons que η est un homomorphisme.

$$\eta(gH.g'H) = \eta(gg'H) = \phi(gg') = \phi(g)\phi(g') = \eta(g)\eta(g')$$

Montrons que si $H = \ker \phi \Rightarrow \eta$ injectif

$$gH \in \ker \eta$$

, donc

$$e = \eta(gH) = \phi(g)$$

 $Donc \ g \in \ker \phi, \ donc \ g \in H, \ donc \ gH = H, \ donc$

$$gH = e_{G/H}$$

Donc η est injectif.

On peut donc considerer G/H comme un sous-groupe de F. Donc

$$G/H \simeq Im(\eta)$$

Corollaire 45

Donc

$$G/\ker\phi \simeq Im\phi$$

Pour n'importe quel homomorphisme ϕ .

Corollaire 46

$$\frac{|G|}{|\ker\phi|}=|Im\phi|$$

Corollaire 47

$$-\phi:G\to H$$

$$- \ |G|=n, \, |H|=m$$

$$-(n,m) = 1$$

Alors
$$\phi = e_H$$

Preuve

 $Im\phi \leq H$, $donc\ par\ Lagrange$

$$|Im\phi||m$$

 $De\ meme$

$$|\ker \phi||n$$

Donc

$$|G/\ker\phi| = \frac{n}{|\ker\phi|} |n$$

 $Donc |Im\phi| = |G/\ker\phi| = 1, donc$

$$Im\phi = \{e_H\} \ et \ \ker \phi = G$$

Et donc $\phi = e_H$.

Corollaire 48

$$\langle g \rangle \simeq \mathbb{Z}/o(g)\mathbb{Z}$$

Preuve

$$dexp_g: \mathbb{Z} \to G$$

On a vu que

$$Imdexp_g = \langle g \rangle$$

et que

$$\ker dexp_g = o(g)\mathbb{Z}$$

Donc

$$\langle g \rangle = \mathbb{Z}/o(g)\mathbb{Z}$$

Corollaire 49

Soit |G| = p avec p premier, alors

$$G \simeq \mathbb{Z}/p\mathbb{Z}$$

Preuve

 $On\ a\ vu\ que$

$$g\in G\setminus\{0\}$$

, alors
$$\langle g \rangle = G$$
.
Et $o(g) = p$.

4.9 Groupes diedraux

Graphe simple non oriente

Definition 19 (Graphe nonoriente)

 $C'\!est\ un\ ensemble\ V\ de\ sommets\ et$

$$E \subseteq \{S \subseteq V | |S| = 2\}$$

(l'ensemble des arretes)

Definition 20 (Isomorphismes des graphes)

Soit G = (V, E) et G' = (V', E') deux graphes.

$$\phi: V \to V'$$

 $est\ un\ isomorphisme\ si$

$$-\phi$$
 bijection

$$- \{v, w\} \in E \iff \{\phi(v), \phi(w)\} \in E'$$

Definition 21 (Groupe diedral)

Le groupe diedral est l'ensemble des automorphismes d'un graphe.

Lecture 10: mardi Exemple

Tue 17 Nov

$$\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$$

$$n \mapsto [n]$$

 $\{ homoms \mathbb{Z}/n\mathbb{Z} \to G \} \leftrightarrow \{ hohoms \mathbb{Z} \to G | n\mathbb{Z} \le \ker \phi \}$

4.10 Sous-groupes engendres par plusieurs elements

Lemme 51

 $H_i \leq G \ \forall i \in I, \ alors \bigcap_i H_i \leq G$

Preuve

1. $\bigcap_i \neq \emptyset$ parce que $e \in H_i$

2.
$$g, h \in \bigcap_i H_i \Rightarrow \forall ig.h, g^{-1} \in H_i$$
.

Definition 22

 $S \subseteq G$ des sous-ensembles, alors

 $\langle S \rangle = plus petit sous-groupe contenant S$

Il existe parce que

$$\langle S \rangle = \bigcap_{S \subseteq H \le G} H$$

Lecture 11: Groupe des Quaternions

Tue 24 Nov

Corollaire 52

Soit $\phi: G \to H$ homomorphisme et $S \subseteq G$, alors

$$\phi(\langle S \rangle) = \langle \phi(S) \rangle$$

Preuve

$$\langle \phi(S) \rangle = \{ y_1 \dots y_r | y_i \in \phi(S) \text{ ou } y_i^{-1} \in \phi(S) \}$$
$$= \langle \phi(z_1) \dots \phi(z_r) \in H | z_i \in S \text{ ou } z_i^{-1} \in S \rangle$$
$$= \langle \phi(z_1 \dots z_r) \in H | z_i \in S \text{ ou } z_i^{-1} \in S \rangle$$

Prochain But

Description de $\langle H,F\rangle$ pour $H,F\leq G$ quand c'est plus facile

Definition 23

 $H \leq G$, le normalisateur :

$$N_G(H) = \left\{ g \in G | gHg^{-1} = H \right\}$$

Remarque

 $Si |G| < \infty \ alors$

$$N_G(H) = G \iff H \trianglelefteq G$$

Proposition 54

$$N_G(H) \leq G$$
.

Preuve

 $N_G(H) \neq \emptyset$, car l'element neutre est dans le normalisateur.

$$g, f \in N_G(H) \Rightarrow gf \in N_G(H), car$$

$$gfH(gf)^{-1} = gfHf^{-1}g^{-1} = gHg^{-1} = H$$

 $g \in N_G(H) \Rightarrow g^{-1} \in N_G(H), donc$

$$g^{-1}H(g^{-1})^{-1}=g^{-1}gHg^{-1}g=H$$

Proposition 55

 $H, F \leq G, F \subseteq N_G(H)$

$$\langle H, F \rangle = HF = FH$$

ou

$$HF = \{ hf \in G | h \in H, f \in F \}$$

$$FH = \{ fh \in G | h \in H, f \in F \}$$

Preuve

$$HF \subseteq \langle H, F \rangle$$

Pour l'autre direction, il suffit de montrer que HF est un sous-groupe. HF $\neq \emptyset$, car l'element neutre est dedans.

 $hf, h'f' \in HF$, alors

$$hfh'f' = hfh'f^{-1}ff' \in HF$$

4.11 Groupes Lineaires

Definition 24

GL(n, K) sont les matrices inversibles de la taille $n \times n$ sur un corps K.

Lecture 12: Groupe des Quaternions

Tue 01 Dec

Lemme 56

 $H \leq G$, et G fini.

Avec [G:H]=2, alors H extleq G.

Preuve

L'hhypothese implique

$$|G \setminus H| = |H|$$

Donc

$$gH$$
 ou $Hg \subseteq G \setminus H$

$$Donc\ gH = Hg = G \setminus H$$

Remarque

 Q_8 est presque abelien, car il contient un sous-groupe normal abelien.

En effet, $\langle i \rangle = H$ est un sous-groupe est $[Q_8: H] = 2$.

$$H ext{ } ext{ } ext{ } ext{ } Q_8 \Rightarrow Q_8/H \simeq rac{\mathbb{Z}}{2\mathbb{Z}}$$

4.12 Sous-groupes de G = GL(n, k)

- 1. Le centre forme un sous-groupe de G, on montre que les matrices sont les matrices diagonales.
- 2. Le groupe PGL(n, K) = GL(n, K)/Z(GL(n, K))
- 3. B(n, K) sous-groupe standard de Borel $\leq GL(n, K)$, l'ensemble des matrices triangulaire superieures.
- 4. $U(n,K) \subseteq B(n,K)$, est le sous-groupe unipotent standard, avec 1 dans la diagonale.
- 5. $N_{GL(2,K)}T(2,K) = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \right\}$
- 6. $Z(GL(n,K)) \leq GL(n,K)$ et considerons

$$Z(GL(n,K)) \cap SL(n,K) \le SL(n,K)$$

Lemme 58

 $F, H \leq G$ et $F \leq G$, alors

$$F \cap H \leq G$$

Lecture 13: Produit Semi-Direct

Tue 08 Dec

Proposition 59

Soit $F, H \leq G$ et $F \leq N_G(H)$ et $F \cap H = \{e\}$, alors il existe une application bijective

$$H\times F\to HF$$

Ceci permet de comprendre le sous-groupe engendre par $\langle H, F \rangle$. En general, l'application n'est pas un homomorphisme.

Lemme 60

- $-A_q^H$ est un automorphisme
- Ad_F^H est un homomorphisme.

Preuve

Il faut montrer que $f, f' \in F$

$$Ad_{ff'}^H = Ad_f^H \circ Ad_{f'}^H$$

Immediat, en developpant.

Definition 25

Soit H, F deux groupes et $\phi: F \to Aut(H)$ un homomorphisme. On definit le produit semi-direct $H \rtimes_{\phi} F$ tel que les element sont $H \times F$ mais avec la loi de multiplication

$$(h, f)(h, f') = (h\phi_f(h'), f, f')$$

Theorème 61

 $\langle F, H \rangle \simeq H \rtimes_{Ad_F^H} F$

Lemme 62

 $H \rtimes_{\phi} F$ est un groupe, (e_H, e_F) est l'element neutre et $((\phi_{f^{-1}}(h)), f) = (h, f)^{-1}$.

Lecture 14: Fin Produit-Semidirect

Tue 15 Dec

Theorème 63

Soit $H, F \leq G$, $F \leq N_G(H)$ et $H \cap F = \{e\}$, dans ce cas, on peut definir Ad_F^H et alors

$$\langle H, F \rangle = HF \simeq H \rtimes_{Ad_n^H F}$$

De plus, si $H \leq N_G(F)$

$$\langle H, F \rangle \simeq H \times F$$

Preuve

On a deja demontre la partie 1.

Il faut demontrer que $Ad_F^H \simeq \mathrm{Id}$, ie que $Ad_f^H(h) = h$.

 $Donc \ \forall f \in F, \forall h \in H$

$$fhf^{-1} = h$$

Or, $\forall f \in F, h \in H$, $fhf^{-1}h^{-1} = e$ car on a deux conjugaisons differentes. \square

Remarque

 $H \times F$ est abelien si et seulement si H, F sont abeliens et ϕ est trivial.

Exemple

Soit $S_3 = G$ et

$$H=\langle (123)\rangle \trianglelefteq G \ et \ F=\langle (12)\rangle$$

On voit clairement que $H \cap F = \{ Id \}.$

On trouve donc que $S_3 = H \rtimes F \simeq \mathbb{Z}/3\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$

Exemple

Si on considere $G = D_{2n}$, on trouve que

$$G \simeq \mathbb{Z}/n\mathbb{Z} \rtimes_{\phi} \mathbb{Z}/2\mathbb{Z}$$

Proposition 67

Il existe seulement deux groupes d'ordre 4.

Preuve

Premier cas:

 $\exists g \in G : o(g) = 4$. Dans ce cas, on a fini.

Sinon, $\forall g \in G \setminus \{e\} : o(g) = 2$.

 $Montrons\ que\ ceci\ implique\ G\ abelien.$

$$ab = aababb = ba$$

Donc G abelien.

Soit $a \neq b \in G \setminus \{e\}$, donc

$$H = \langle a \rangle = \{e, a\} \ \ et \ F = \langle b \rangle = \{e, b\}$$

On a alors que

$$G \simeq H \times F \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$

Theorème 68

Soit |G| = 2p, p premier.

Alors

1. $\exists h \in G : o(h) = p$

2. $\exists f \in G : o(f) = 2$

3.
$$\langle h \rangle = H, \langle f \rangle = F \Rightarrow \langle H, F \rangle = G \text{ et } G \simeq \mathbb{Z}/p\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$$

Preuve

 $si \exists g \in G \ tel \ que$

$$o(g) = 2p$$

Alors

$$G \simeq \mathbb{Z}/2p\mathbb{Z}$$

Sinon, $\forall g \in G \setminus \{e\}, o(g) = 2 \text{ ou } p$.

Supposons l'oppose, que $\not\exists h \in G : o(h) = p$, alors

$$\langle a, b \rangle = \mathbb{Z}/2\mathbb{Z}^2$$

Or 4 \2p, on a donc une contradiciton.

Supposons maintenant que $\forall g \in G \setminus \{e\} : o(g) = p$

Prenons $a, b \in G \setminus \{e\}$ tel que $b \notin \langle a \rangle$ Posons que $H = \langle a \rangle, F = \langle b \rangle$, alors on a

$$|H \cap F| ||H|, |F||$$

Parce que $b \notin \langle a \rangle$. On a donc $|H \cap F| = 1$, on a donc que les sous-groupes engendre par les elements de $G \setminus \{e\}$, alors G_i couvre G. On trouve donc que 2p = 1 + r(p-1), ce qui est une contradiction.

On a un element d'ordre p et un element d'ordre 2 dans le groupe Donc $H \subseteq G$ est normal car son index est 2, il suit

$$G \simeq \mathbb{Z}/p\mathbb{Z} \rtimes_{\phi} \mathbb{Z}/2\mathbb{Z}$$

Corollaire 69

 $(\mathbb{Z}/p\mathbb{Z})^{\times}$ cyclique pour p > 2