Theorem and Proof

Saki Kuzushima 2019-05-01

Sum of exponential random variables are distributed as gamma distribution

Theorem: If $X_i \overset{i.i.d}{\sim} Expo(\lambda)$, i = 1...n, then $Y = \sum_{i=1}^n X_i \sim Gamma(n, \lambda)$.

Proof:

First, recall that if $X \sim Expo(\lambda)$,

$$M_X(t) = \frac{\lambda}{\lambda - t}, \quad (t < \lambda)$$

if $Z \sim Gamma(\alpha, \beta)$,

$$M_Z(t) = (\frac{1}{1 - \beta t})^{-\alpha}$$

Observe that

$$M_Y(t) = \mathbb{E}[e^{tY}]$$

$$= \mathbb{E}[e^{t\sum_{i=1}^n X_i}]$$

$$= \mathbb{E}[\prod_{i=1}^n e^{tX_i}]$$

$$= \prod_{i=1}^n \mathbb{E}[e^{tX_i}]$$

$$= \prod_{i=1}^n \frac{\lambda}{\lambda - t}$$

$$= (\frac{\lambda}{\lambda - t})^n$$

$$= (\frac{\lambda - t}{\lambda})^{-n}$$

$$= (1 - \frac{t}{\lambda})^{-n}$$

This is an mgf of Gamma distribution. So, $Y \sim Gamma(n, \lambda)$. Q.E.D.

Linear combination of Gaussian is also Gaussian

Theorem: if $X \sim N(\mu, \sigma^2)$, and Y = aX + b, $(a \neq 0)$, then $Y \sim N(a\mu + b, a^2\sigma^2)$.

Proof: Recall that if $X \sim N(\mu, \sigma^2)$

$$M_X(t) = e^{\mu t + \frac{\sigma^2}{2}t^2}$$

Then,

$$M_Y(t) = \mathbb{E}[e^{t(aX+b)}]$$

$$= \mathbb{E}[e^{taX+tb}]$$

$$= e^{tb}\mathbb{E}[e^{taX}]$$

$$= e^{tb}M_X(ta)$$

$$= e^{tb}e^{\mu t + \frac{\sigma^2}{2}t^2}$$

$$= exp(tb + t\mu a + \frac{\sigma^2}{2}t^2)$$

$$= exp((a\mu + b)t + \frac{a^2\sigma^2}{2}t^2)$$

This is also an mgf of Gaussian. $Y \sim N(a\mu + b, a^2\sigma^2)$. Q.E.D.

pdf of the maximum value

Theorem: If $X_1...X_n \stackrel{i.i.d}{\sim} f_X(x)$, and $Y \equiv \max\{X_1...X_n\}$, then $f_Y(y) = nF_X^{n-1}(y)f_X(y)$. Proof:

$$F_Y(y) = P(Y \le y)$$
= $P(\max\{X_1...X_n\} \le y)$
= $P(X_1 \le y)...P(X_n \le y)$
= $F_X(y)...F_X(y)$
= $F_X^n(y)$

Then, because $f_Y(y) = \frac{\partial}{\partial y} F_Y(y)$,

$$f_Y(y) = nF_X^{n-1}(y)f_X(y)$$

Q.E.D.