Overview of Today's Lecture

- Administrative Stuff
 - Last Time: Course Website/Syllabus
 - * Please get a copy of the syllabus if you weren't here last time
 - * Note: my office hours are 3:30-4:15 Tuesdays & 12-1:15 Fridays.
 - ₩ #1 Assigned (see website). Due in 2 weeks (*via* Blackboard).
- Unit #1: Basic Underlying Concepts of Logic (Chapter 1 of Forbes)
 - Sentences, Propositions, and Arguments (the building blocks)
 - Actual, Possible, and Necessary Truth (key basic concepts)
 - Deductive Validity of Arguments (the central concept of Part I)
 - Validity, Soundness, and "Goodness" of Arguments
 - Absolute *vs* Sentential Validity and the notion of *logical form*
 - Glimpses beyond sentential validity

Background 2: Actual, Possible, and Necessary Truth

- Some propositions are actually true (Snow is white), and some are not (Al Gore is President of the United States in 2007).
- Other propositions are not *actually* true, but still *possibly* true. Al Gore is not *actually* our President in 2007, but he *might have been*. As such, it is *possibly* true that Al Gore is President in 2007.
- Some propositions are not even *possibly* true. For instance:
 - 1. My car has traveled faster than the speed of light.
 - 2. 2 + 2 = 5.
 - 3. Branden weighs 200 lbs and Branden does not weigh 200 lbs.
- (1) violates the laws of physics: it is *physically impossible*. (2) violates the laws of arithmetic: it is *arithmetically* impossible.
- (3) violates the laws of *logic*: it is *logically* impossible.

- This is the kind of impossibility that interests the logician. In slogan form, we might call this "the strongest possible kind of impossibility."
- Some propositions are not only *actually* true, but (logically) *necessarily* true. These *must* be true, on pain of *self-contradiction*:
 - Either Branden weighs 200lbs or he does not weigh 200lbs.
 - If Branden is a good man, then Branden is a man.
- Logical possibility and logical necessity are central concepts in this course. We will make extensive use of them.
- We will look at two precise, formal logical theories in which the notion of logical necessity will have a more precise meaning.
- But, before we get into our formal theorizing, we will look informally at the *following-from* relation between propositions.
- As we will see, understanding the following-from relation will require a grasp of the notions of logical necessity (and logical truth).

Bakckground 3: The "Logical Constants"

- If logical possibility does not depend on content (*i.e.*, on which objects are being talked about, or which properties are involved), then what does it depend on? The answer will be "logical form."
- We'll talk a lot about logical form in Part I of the course (in a way, that's *the* central concept of Part I). But, first, it's helpful to identify some "logical constants" in our language(s). [These determine logical forms.]
- The logical constants (see "Logical Constants", which is now linked from our course materials page) are *terms with meanings that do not depend on which objects the sentences in which they occur are about.*
- Prime examples: the *truth-functional* (*a.k.a.*, *Boolean*) *connectives*, which are expressed in English using, *e.g.*, "and", "or", "not", "if...then..."
- Their meanings/referents do not vary across sentences that are about different objects. The meanings of these connectives are *functions of the truth-values of the statements to which they are applied*.

- *E.g.*, *any* claim of the *form* "*P* and not *P*" is *impossible*. It doesn't matter which statement *P* we're talking about (or which objects *P* is about). If *P* is true, then "not *P*" is false and if "not *P*" is true, then *P* is false.
- Not all connectives are logical constants. Indeed, not all connectives are even *truth-functional*. For instance, consider the connective "because".
- "*P* because *Q*" is true *only* if both *P* and *Q* are true. But, some instances of "*P* because *Q*" are *false*, *even though* both *P* and *Q are* true.
- *E.g.*: let *P* be the (true) claim that George Bush was president in 2001, and let *Q* be the (true) claim that it snowed in Boston in February 2015.
- In this case, "*P* because *Q*" is *false*, even though both *P* and *Q* are true. Therefore, "because" is *not* truth-functional. "Because" depends on which objects (and on which times) the claims *P* and *Q* are about.
- [The formal part of] Part I of the course will be all about the truth-functional connectives, and truth-functional logical forms (*a.k.a.*, the *sentential* logical forms). But, let's not get ahead of ourselves...

Bakckground 4: Arguments, Following-From, and Validity

• An *argument* is a collection of propositions, one of which (the *conclusion*) is supposed to *follow from* the rest (the *premises*).

If John is a bachelor, then John is unmarried.

John is a bachelor.

- ∴ John is unmarried.
- If the conclusion of an argument *follows from* its premises, then the argument is said to be *valid* (otherwise, it's *in*valid).
- **Definition**. An argument \mathscr{A} is *valid* if and only if:

Rendition #1. It is (logically!) *necessary* that *if* all of the premises of \mathscr{A} are true, *then* the conclusion of \mathscr{A} is also true.

Rendition #2. It is (logically!) *impossible* for both of the following to be true simultaneously: (1) all of the premises of \mathscr{A} are true, *and* (2) the conclusion of \mathscr{A} is false. [For us, this will be *equivalent* to #1.]

Background 5: Validity, Soundness, and "Good" Arguments

- A "good" argument is one in which the conclusion follows from the premises. But, intuitively, there is more to a "good" argument (all things considered) than mere validity.
- Ideally, arguments should also have (actually) *true premises*. If the premises of an argument are (actually) false, then (intuitively) the argument isn't very "good" even if it is valid. *Why not*?
- **Definition**. An argument \mathscr{A} is *sound* if and only if *both*: (i) \mathscr{A} is valid, *and* (ii) all of \mathscr{A} 's premises are (actually) true.
 - So, there are two components or aspects of "good" arguments:
 - Logical Component: Is the argument valid?
 - Non-Logical Component: Are the premises (actually) true?
 - This course is only concerned with the *logical* component.

Why study logic formally or symbolically?

- Ultimately, we want to decide whether arguments expressible in *natural* languages are valid. But, in this course, we will only study arguments expressible in *formal* languages. And, we will use *formal* tools. *Why?*
- Analogous question: What we want from natural science is explanations and predictions about *natural* systems. But, our theories (strictly) apply only to systems faithfully describable in *formal*, *mathematical* terms.
- Although formal models are *idealizations* which abstract away some aspects of natural systems, they are *useful idealizations* that help us understand *many* natural relationships and regularities.
- Similarly, studying arguments expressible in formal languages allows us to develop powerful tools for testing validity. We won't be able to capture *all* valid arguments this way. But, we can grasp many.

A Subtle Argument, and the Notion of Logical Form

- John is a bachelor.
- (i) ∴ John is unmarried.
- Is (i) valid? Well, this is tricky. Intuitively, being unmarried is part of the *meaning* of "bachelor". So, it *seems* like it is (intuitively) logically impossible for the premise of (i) to be true while its conclusion is false
- This suggests that (i) is (intuitively/absolutely) valid.
- On the other hand, consider the following argument: If John is a bachelor, then John is unmarried.
- (ii) John is a bachelor.
 - ∴ John is unmarried.
 - The correct judgment about (ii) seems *clearly* to be that it is valid *even if we don't know the meaning of "bachelor" (or "unmarried").*
 - This is clear because the logical form of (ii) is *obvious* [(i)'s form is not].

Logical Form II

- This suggests the following additional "conservative" heuristic:
 - We should conclude that an argument \mathscr{A} is valid only if we can see that \mathscr{A} 's conclusion follows from \mathscr{A} 's premises *without appealing to the meanings of the predicates involved in* \mathscr{A} .
- But, if validity does not depend on the meanings of predicates, then what *does* it depend on? This is a deep question about logic. We will not answer it here. That's for more advanced philosophical logic courses.
- What we will do instead is adopt a conservative methodology that only classifies *some* "intuitively/absolutely valid" arguments as valid.
- The strategy will be to develop some *formal* methods for *modeling* intuitive/abolsute validity of arguments expressed in English.
- We won't be able to capture *all* intuitively/absolutely valid arguments with our methods, but this is OK. [Analogy: mathematical physics.]

Logical Form III

• We will begin with *sentential logic*. This will involve providing a characterization of valid *sentential forms*. Here's a paradigm example:

Dr. Ruth is a man.

- (1) If Dr. Ruth is a man, then Dr. Ruth is 10 feet tall.
 - ... Dr. Ruth is 10 feet tall.
- (1) is a set of sentences with a valid sentential form. So, whatever argument it expresses is a valid argument. What's its *form*?

p.

 (1_f) If p, then q.

:. q.

• (1)'s valid *sentential form* (1_f) is so famous it has a name: *Modus Ponens*. [Usually, latin names are used for the *valid* forms.]

- **Definition**. The *sentential form* of an argument (or, the sentences faithfully expressing an argument) is obtained by replacing each basic (or, atomic) sentence in the argument with a single (lower-case) letter.
 - What's a "basic" sentence? A basic sentence is a sentence that doesn't contain any sentence as a proper part. How about these?
 - (a) Branden is a philosopher and Branden is a man.
 - (b) It is not the case that Branden is 6 feet tall.
 - (c) Snow is white.
 - (d) Either it will rain today or it will be sunny today.
 - Sentences (a), (b), and (d) are *not* basic (we'll call them "complex" or "compound"). Only (c) is basic. We'll also use "atomic" for basic.
 - What's the sentential form of the following argument (is it valid?):

If Tom is at his Fremont home, then he's in California.

Tom is in California.

... Tom is at his Fremont home.

Two "Strange" Valid Sentential Forms

- (†) p. Therefore, either q or not q.
 - (†) is valid because it is (logically) *impossible* that *both*:
 - (i) p is true, and
 - (ii) "either q or not q" is false.

This is impossible because (ii) alone is impossible.

- (\ddagger) p and not p. Therefore, q.
 - (‡) is valid because it is (logically) *impossible* that *both*:
 - (iii) "p and not p" is true, and
 - (iv) *q* is false.

This is impossible because (iii) alone is impossible.

• We'll soon see why we have these "oddities". They stem from our semantics for "If ... then" statements (and our first def. of validity).

Some Valid and Invalid Sentential Forms

Sentential Argument Form	Name	Valid/Invalid
$\frac{p}{\text{If } p, \text{ then } q}$ $\therefore q$	Modus Ponens	Valid
$\frac{q}{\text{If } p, \text{ then } q}$ $\therefore p$	Affirming the Consequent	Invalid
It is not the case that q If p , then q \therefore It is not the case that p	Modus Tollens	Valid
It is not the case that p If p , then q \therefore It is not the case that q	Denying the Antecedent	Invalid
If p , then q If q , then r \therefore If p , then r	Hypothetical Syllogism	Valid
It is not the case that p Either p or q $\therefore q$	Disjunctive Syllogism	Valid

Logical Form IV — Beyond Sentential Form

- The first half of the course involves developing a precise *theory* of *sentential* validity, and several rigorous techniques for *deciding* whether a sentential form is (or is not) valid. This only takes us so far.
- Not all (absolutely) valid arguments have valid *sentential* forms, *e.g.*:

 All men are mortal.
 - (2) Socrates is a man.
 - ∴ Socrates is mortal.
- The argument expressed by (2) seems clearly valid. But, the sentential form of (2) is not a valid form. Its sentential form is:

p.

 (2_f) q

.. γ.

- In this first course, we will not be studying predicate/quantifier logic, which gives a formal theory of validity that covers such forms.
- In that more general theory, one can recognize that (2) has something like the following (non-sentential!) logical form:

All Xs are Ys.

 (2_f*) a is an X.

 \therefore a is a Y.

- We will leave such arguments (called *syllogisms*) for a future, more sophisticated theory of logical validity.
- In Part I of the course, we'll learn a (simple) purely formal language for talking about *sentential* forms, and then we'll develop some rigorous methods for determining whether sentential forms are valid.
- As we will see, the fit between our simple formal sentential language and English (or other natural languages) will not be perfect.

Validity and Soundness of Arguments — Some Non-Sentential Examples

• Can we classify the following according to validity/soundness?

1)	All wines are beverages. Chardonnay is a wine. Therefore, chardonnay is a beverage.	5)	All wines are beverages. Chardonnay is a beverage. Therefore, chardonnay is a wine.
2)	All wines are whiskeys. Chardonnay is a wine. Therefore, chardonnay is a whiskey.	6)	All wines are beverages. Ginger ale is a beverage. Therefore, ginger ale is a wine.
3)	All wines are soft drinks. Ginger ale is a wine. Therefore, ginger ale is a soft drink.	7)	All wines are whiskeys. Chardonnay is a whiskey. Therefore, chardonnay is a wine.
4)	All wines are whiskeys. Ginger ale is a wine. Therefore, ginger ale is a whiskey.	8)	All wines are whiskeys. Ginger ale is a whiskey. Therefore, ginger ale is a wine.

	Valid	Invalid
True premises True conclusion	All wines are beverages. Chardonnay is a wine. Therefore, chardonnay is a beverage. [sound]	All wines are beverages. Chardonnay is a beverage. Therefore, chardonnay is a wine. [unsound]
True premises False conclusion	Impossible None exist	All wines are beverages. Ginger ale is a beverage. Therefore, ginger ale is a wine. [unsound]
False premises True conclusion	All wines are soft drinks. Ginger ale is a wine. Therefore, ginger ale is a soft drink. [unsound]	All wines are whiskeys. Chardonnay is a whiskey. Therefore, chardonnay is a wine. [unsound]
False premises False conclusion	All wines are whiskeys. Ginger ale is a wine. Therefore, ginger ale is a whiskey. [unsound]	All wines are whiskeys. Ginger ale is a whiskey. Therefore, ginger ale is a wine. [unsound]

• See, also, our validity and soundness handout ...

Some Brain Teasers Involving Validity and Soundness

• Here are two very puzzling arguments:

Either \mathscr{A}_1 is valid or \mathscr{A}_1 is invalid. $\therefore \mathscr{A}_1$ is invalid.

 (\mathscr{A}_2) \mathscr{A}_2 is valid. $\therefore \mathscr{A}_2$ is invalid.

- I'll discuss \mathcal{A}_2 (\mathcal{A}_1 is left as an exercise).
 - If \mathscr{A}_2 is valid, then it has a true premise and a false conclusion. But, this means that if \mathscr{A}_2 is valid, then \mathscr{A}_2 invalid!
 - If \mathscr{A}_2 is invalid, then its conclusion must be true (as a matter of logic). But, this means that if \mathscr{A}_2 is invalid then \mathscr{A}_2 is valid!
 - This *seems* to imply that \mathscr{A}_2 is *both valid and invalid*. But, remember our conservative validity-principle. What is the *logical form* of \mathscr{A}_2 ?

Absolute Validity *vs* Formal Validity

- Forbes calls the general, informal notion of validity "absolute validity".
- Our notion is a bit more conservative than his, since we'll only call an argument valid if one of our *formal theories* captures it as falling under a valid *form*. Our first formal theory (LSL) is about *sentential* validity.
- An argument is *sententially* valid if it has a valid *sentential form*.
- Sentential form is obtained by replacing each basic or atomic sentence in an argument with a corresponding lower-case letter.
- Once we know the sentential form of an argument (chapter 2), we will be able to apply purely formal, mechanical methods (chapters 3 and 4) for determining whether that sentential form is valid.
- Even if an argument fails to be *sententially* valid, it could still be valid according to a richer logical theory than LSL. I'll mention some other, more sophisticated theories of logical form later in the course.

