

Hierarchical Clustering

CPS 563 – Data Visualization

Dr. Tam Nguyen

tamnguyen@udayton.edu

Paper "The History of the Cluster Heat Map"

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequence of merges or splits

Strengths of Hierarchical Clustering

- Do not have to <u>assume</u> any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Agglomerative Clustering Algorithm

- Basic algorithm is straightforward
 - 1. Compute the proximity/distance matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity/distance matrix
 - **6. Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

Start with clusters of individual points and a proximity matrix

Intermediate Situation

After some merging steps, we have some clusters

Intermediate Situation

• We want to merge the two closest clusters (C2 and C5) and update the proximity

matrix.

Proximity Matrix

After Merging

The question is "How do we update the proximity matrix?"

	p1	p2	рЗ	p4	p5	<u> </u>
p1						
p2						
<u>p2</u> p3						
<u>p4</u> <u>p5</u>						

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	р3	p4	p5	<u>.</u>
p1						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						
•						

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	р3	p4	р5	<u>.</u>
<u>p1</u>						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						
•						

- MIN
- MAX
- Group Average
- Distance Between Centroids

p1			
<u>p2</u>			
<u>p2</u> p3			
<u>p4</u> <u>p5</u>			

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	р3	p4	p5	<u> </u>
p1						
<u>p2</u>						
<u>p2</u> p3						
<u>p4</u> <u>p5</u>						

- MIN
- MAX
- Group Average
- Distance Between Centroids

Cluster Similarity: MIN or Single Link

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

	I 1	12	I 3	1 4	I 5
11	1.00	0.90	0.10	0.65	0.20 0.50 0.30 0.80 1.00
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

Strength of MIN

• Can handle non-elliptical shapes

Limitations of MIN

Two Clusters

• Sensitive to noise and outliers

Original Points

Cluster Similarity: MAX or Complete Linkage

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by all pairs of points in the two clusters

	I 1	l 2	I 3	1 4	I 5
11	1.00 0.90 0.10 0.65 0.20	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
I 3	0.10	0.70	1.00	0.40	0.30
I 4	0.65	0.60	0.40	1.00	0.80
I 5	0.20	0.50	0.30	0.80	1.00

Hierarchical Clustering: MAX

Strength of MAX

• Less sensitive to noise and outliers

Limitations of MAX

- •Tends to break large clusters
- •Biased towards **equal** globular clusters

Cluster Similarity: Group Average

• Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} \sum_{\substack{p_{i} \in Cluster_{j} \\ p_{j} \in Cluster_{j}}} \frac{\sum_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{i}}} |Cluster_{i}| * |Cluster_{i}|}{|Cluster_{i}|}$$

 Need to use average connectivity for scalability since total proximity favors large clusters

_	I 1	l 2	I 3	I 4	I 5
11	1.00	0.90	0.10	0.65	0.20 0.50 0.30 0.80 1.00
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram

Hierarchical Clustering: Group Average

- Strengths
 - Less sensitive to noise and outliers

- Limitations
 - Biased towards globular clusters

Hierarchical Clustering: Comparison

(•31•6)

Hierarchical Clustering: Problems and Limitations

- No objective function is directly minimized
- What is the objective function of K-means clustering?
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters
 - Breaking large clusters

Q&A