

IDENTIFICATION DU COMPORTEMENT D'UN SYSTÈME PRÉDICTION DE LA STABILITÉ

NACELLE DE DRONE

1 Présentation

1.1 Objectifs

Les objectifs de ces deux séances de TP sont :

- analyser le système;
- ☐ identifier le comportement fréquentiel et temporel du système
- prédire les limites de la stabilité

1.2 Contexte pédagogique

Modéliser:

- Mod 2 : Proposer un modèle de connaissance et de comportement
- Mod 3 : Valider un modèle.

1.3 Évaluation des écarts

Au cours de ce TP on se préoccupera d'analyser les écarts entre les performances mesurées et les performances simulées.

Problématique : comment identifier le comportement d'un SLCI ?

Le compte rendu sera à faire sous forme d'une feuille A4 Recto-Verso à remettre à la fin de la seconde séance. Selon votre choix, il pourra contenir ou non, un poster.

2 MODÈLE DE COMPORTEMENT – IDENTIFICATION FRÉQUENTIELLE

Activité 1 : Coordinateur, Modélisateur, Expérimentateur Découvrir le fonctionnement du système. Valider un critère du cahier des charges. Réaliser la chaîne fonctionnelle. Pour prendre en main le système, régler les correcteurs aux valeurs suivantes Kp = 800 ; Ki = 800, Kd = 1500 et observer le comportement de la nacelle pour une consigne de 10°.

Synthèse Le coordinateur réalise la chaîne fonctionnelle du système. Indiquer l'erreur statique et le temps de réponse à 5%.

Expérimentateur	Modélisateur	Coordinateur		
Réaliser les relevés expérimentaux	Dans la feuille Excel, déterminer les	Dans le compte-rendu, donner le		
permettant de tracer le diagramme	formules permettant le tracé du	protocole expérimental permettant		
de Bode en boucle ouverte.	diagramme de Bode.	de tracer un diagramme de Bode.		
Remarque: Les mesures se feront en boucle ouverte. Les coefficients du correcteur seront fixés à Kp=1, Ki=0, Kd=0. Au moins 8 relevés avec des sinusoïdes de périodes comprises entre 0,04s et 2s et une amplitude de 5°. Il faudra observer approximativement 5 à 10 périodes.				

Synthèse

Le modélisateur et l'expérimentateur ajoutent le diagramme de Bode au compte-rendu.

Activité 3 : Coordinateur, Modélisateur, Expérimentateur

En utilisant le diagramme de Bode, proposer une fonction de transfert en Boucle Ouverte du système.

Synthèse

Indiquer la FTBO retenue.

Activité 4 : Coordinateur, Modélisateur, Expérimentateur

- ☐ En utilisant le diagramme de Bode expérimental, déterminer à partir de quel gain dans le Boucle ouverte le système devient instable (marge de gain nulle).
- ☐ Déterminer le gain Kp maxi permettant d'obtenir une marge de gain de 6dB.
- Renseigner ce gain dans le correcteur et vérifier l'instabilité en boucle fermée.

Synthèse

Donner le gain proportionnel à la limite de la stabilité.

3 MODÈLE DE COMPORTEMENT — IDENTIFICATION TEMPORELLE

Activité 5 :					
	Expérimentateur	Modélisateur	Coordinateur		
	Réaliser une réponse à un échelon en	Dans la feuille Excel, déterminer les	Dans le compte-rendu, donner le		
	boucle fermée et relever les	formules permettant la détermination	protocole expérimental permettant		
	grandeurs caractéristiques	des paramètres canoniques.	déterminer les paramètres		
	nécessaires à une identification		canoniques.		

temporelle.					
Remarque					
Afin de ne pas saturer la comn	☐ Afin de ne pas saturer la commande du moteur, il sera nécessaire d'avoir un mouvement de faible amplitude				
(échelon de 10°).					
Les coefficients du correcteur	☐ Les coefficients du correcteur seront fixés à Ki=0, Kd=0 .				

Synthèse

Donner la fonction de transfert en boucle fermée identifié grâce à la réponse temporelle.

4 COMPARAISON DES MODÈLES

Activité 6 : Coordinateur, Modélisateur, Expérimentateur

- ☐ En utilisant Matlab-Simulink :
 - implémenter la FTBO issue de la réponse fréquentielle et réaliser le bouclage ;
 - implémenter en parallèle al FTBF issue de la réponse temporelle.
- ☐ Réaliser la comparaison des deux modèles et commenter.

Synthèse

Réaliser une comparaison qualitative des 2 modèles et d'un essai sur une réponse indicielle.

5 INFLUENCE DES CORRECTEURS

5.1 Influence du correcteur proportionnel

Activité 7 : Coordinateur, Modélisateur, Expérimentateur

☐ En utilisant uniquement un correcteur proportionnel et en l'augmentant progressivement, analyser l'influence du gain proportionnel sur la réponse indicielle.

5.2 Influence du correcteur intégral

Activité 8 : Coordinateur, Modélisateur, Expérimentateur

- ☐ En utilisant uniquement un gain proportionnel faible et en augmentant progressivement, le coefficient Ki, analyser l'influence sur la réponse indicielle.
- □ Pour cette activité on prendre **Kp=100**, **Kd=0**, **Ki=20** à **2000**.

5.3 Influence du correcteur dérivé

Activité 9 : Coordinateur, Modélisateur, Expérimentateur

- ☐ En utilisant uniquement un gain dérivateur en boucle ouverte, analyser l'effet du correcteur sur la phase.
- □ Pour cette activité on prendre **Kp=0**, **Kd=20**, **Ki=0**.

6 CONCLURE

Synthèse

- ☐ Comparer les 2 modèles avec un essai et analyser les écarts.
- ☐ Analyser l'influence des différents correcteurs.