RPiS

Generator liczb losowych z rozkładu N(0,1)

Przykład:

Załóżmy, że mamy do dyspozycji generator liczb losowych z rozkładu U[0,1] i wylosowaliśmy dwie wartości u_1, u_2 . Dwuwymiarowa zmienna losowa (U_1, U_2) ma zatem rozkład o gęstości $f_{U_1,U_2}(u_1,u_2)=1$ dla $((u_1,u_2)\in[0,1]\times[0,1]$. Rozważmy nowe zmienne $Y_1=-2\ln U_1,\ Y_2=2\pi U_2$. Oczywiście $Y_1\in[0,\infty)$ oraz $Y_2\in[0,2\pi)$. Interpretując Y_1,Y_2 jako współrzędne biegunowe punktu na płaszczyźnie można powiedzieć iż losujemy kwadrat promienia i argument punktu. Wyznaczmy gęstość $f_{Y_1,Y_2}(y_1,y_2)$ zmiennej (Y_1,Y_2) .

$$\begin{cases}
U_1 = \exp\left(-\frac{Y_1}{2}\right) \\
U_2 = \frac{Y_2}{2\pi}
\end{cases}, \text{ skąd abs}(J) = \text{abs} \begin{vmatrix}
-\frac{1}{2}\exp\left(-\frac{Y_1}{2}\right) & 0 \\
0 & \frac{1}{2\pi}
\end{vmatrix} = \frac{1}{4 \cdot \pi}\exp\left(-\frac{Y_1}{2}\right). \tag{1}$$

W powyższym wzorze chcemy policzyć wartość bezwzględną z wyznacznika Jacobianu. Niestety, obydwie operacje (wartość bezwzględna i wyznacznik) oznaczane są często tym samym znakiem | |. Wskutek tego: abs $(\det(A)) \equiv ||A|| - \cos z$ kolei mogłoby sugerować, że mówimy o **normie** macierzy A.

Dla gęstości $f_{Y_1,Y_2}(y_1,y_2)$ mamy zatem wzór

$$f_{Y_1,Y_2}(y_1,y_2) = \frac{1}{4 \cdot \pi} \exp\left(-\frac{Y_1}{2}\right).$$
 (2)

Od współrzędnych biegunowych (Y_1, Y_2) przejdźmy teraz do współrzędnych kartezjańskich (X_1, X_2) , to znaczy

$$\begin{cases} X_1 = \sqrt{Y_1} \cos Y_2 \\ X_2 = \sqrt{Y_1} \sin Y_2 \end{cases}, \text{ i stad } J = \begin{vmatrix} \frac{\cos Y_2}{2\sqrt{Y_1}} & -\sqrt{Y_1} \sin Y_2 \\ \frac{\sin Y_2}{2\sqrt{Y_1}} & \sqrt{Y_1} \cos Y_2 \end{vmatrix} = \frac{1}{2}.$$
 (3)

Kończymy przekształcenia dwiema uwagami:

- 1. Wyznaczony powyżej Jacobian należy ODWRÓCIĆ. Zwyczajowo liczymy Jacobian "starych" zmiennych względem "nowych". Tutaj: wygodniej jest wyznaczyć odwrotność Jacobianu "nowych" zmiennych względem "starych" zmiennych.
- 2. Korzystamy również z zależności: $Y_1 = X_1^2 + X_2^2$ a.

Wynik końcowy \equiv gęstość $f_{X_1,X_2}(x_1,x_2)$ ma postać:

$$f_{X_1,X_2}(x_1,x_2) = \frac{1}{2\pi} \exp\left(-\frac{x_1^2 + x_2^2}{2}\right) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x_1^2}{2}\right) \times \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x_2^2}{2}\right),\tag{4}$$

co oznacza, że zmienne X_1, X_2 są niezależne i mają rozkład N(0,1) każda.

a(wzór(3))

Różne przybliżenia wariancji

Zakładamy, że dane są niezależne obserwacje pochodzące z tego samego rozkładu $N(\mu, \sigma^2)$. Wiadomo,¹ że zmienna $\frac{nS_{\mu}^2}{\sigma^2}$ ma rozkład $\chi^2(n)$ a także² $\frac{nS_n^2}{\sigma^2} \sim \chi^2(n-1)$.

Wspomnijmy również, że $\chi^2(k) \equiv \text{Gamma}(1/2, k/2)$. Stąd, dla rozkładu $\chi^2(k)$: $M_{\chi^2(k)}(t) = (1 - 2t)^{-k/2}$. To umożliwia sformułowanie – w miarę prostego do dowodu – twierdzenia

Twierdzenie 1. Jeżeli zmienna losowa $X \sim \chi^2(k)$, to E(X) = k oraz V(X) = 2k.

Rozpatrzmy trzy estymatory wariancji σ^2 , mianowicie $S_{n-1}^2 = \frac{1}{n-1} \sum_{k=1}^n \left(X_k - \bar{X} \right)^2$, $S_n^2 = \frac{1}{n} \sum_{k=1}^n \left(X_k - \bar{X} \right)^2$ oraz $S_{n+1}^2 = \frac{1}{n+1} \sum_{k=1}^n \left(X_k - \bar{X} \right)^2$. Z początkowej uwagi wynika, że zmienne $\frac{(n-1)S_{n-1}^2}{\sigma^2}$, $\frac{nS_n^2}{\sigma^2}$, $\frac{(n+1)S_{n+1}^2}{\sigma^2}$ mają rozkład $\chi^2(n-1)$ każda.

Wartość oczekiwana $\operatorname{E}\left(\frac{nS_n^2}{\sigma^2}\right) = n-1$. Stąd, $\operatorname{E}(S_n^2) = \frac{n-1}{n}\sigma^2$. Wartość oczekiwana przybliżenia S_n^2 jest zatem różna od wartości przybliżanego parametru σ^2 . O takim estymatorze mówimy, że jest **estymatorem obciążonym**. Jeżeli $n \to \infty$, to $\operatorname{E}(S_n^2) \to \sigma^2$. Mówimy wówczas, że S_n^2 jest estymatorem **asymptotycznie nieobciążonym** parametru σ^2 .

Ponieważ $S_{n-1}^2 = \frac{n}{n-1} S_n^2$, więc $\mathrm{E}(S_{n-1}^2) = \sigma^2$. Mówimy, że S_{n-1}^2 jest **nieobciążonym estymatorem** parametru σ^2 . Podobnie $S_{n+1}^2 = \frac{n}{n+1} S^2$ czyli $\mathrm{E}(S_{n+1}^2) = \frac{n-1}{n+1} \sigma^2$ (S_{n+1}^2 jest estymatorem obciążonym dla σ^2). Najlepszym estymaterem (uwzględniając wartość oczekiwaną) jest zatem S_{n-1}^2 , najgorszym S_{n+1}^2 .

Porównajmy teraz wariancje rozpatrywanych estymatorów. Wiemy, że $\frac{n S_n^2}{\sigma^2} \sim \chi^2(n-1)$. Stąd wynika, że $V(S_n^2) = \frac{2(n-1)}{n^2} \sigma^4$, $V(S_{n-1}^2) = \frac{2(n-1)}{(n-1)^2} \sigma^4$ oraz $V(S_{n+1}^2) = \frac{2(n-1)}{(n+1)^2} \sigma^4$. Im mniejsza wariancja, tym bardziej zmienna losowa jest "stabilna". Najlepszym estymatorem (kierując się wariancją) jest S_{n+1}^2 , najgorszym S_{n-1}^2 .

[Popularne|Ulubione] wzory i rozkłady

- 1. Załóżmy, że zmienne losowe X,Y są niezależne i podlegają rozkładom $X \sim \chi^2(n), \ Y \sim \chi^2(k)$. Wówczas zmienna losowa Z = X + Y podlega rozkładowi $Z \sim \chi^2(n+k)$.
- 2. Załóżmy, że zmienna X podlega rozkładowi $N(\mu, \sigma^2)$. Niech dodatkowo $Y = \frac{X \mu}{\sigma}$. Zachodzi FAKT: $X \sim N(\mu, \sigma^2) \iff Y \sim N(0, 1)$.
- 3. Gamma $(1/2, n/2) \equiv \chi^2(n)$.
- 4. Załóżmy, że zmienne X_1, \ldots, X_n są niezależne i podlegają rozkładowi $N(\mu, \sigma^2)$ każda. Wówczas zmienna $Z = \sum_{k=1}^n \left(\frac{X_k \mu}{\sigma}\right)^2$ ma rozkład $\chi^2(n)$.
- 5. Niezależne zmienne X,Y mają rozkłady $X \sim \chi^2(k), Y \sim \chi^2(l)$ odpowiednio. Mówimy, że zmienna $F(k,l) = \frac{X}{Y} \cdot \frac{l}{k}$ ma rozkład F-Fishera z (k,l) stopniami swobody.
- 6. Niezależne zmienne X, Y mają rozkłady $X \sim N(0,1), Y \sim \chi^2(k)$ odpowiednio. Mówimy, że zmienna $t(k) = \frac{X}{\sqrt{Y/k}}$ ma rozkład t-Studenta z k stopniami swobody.

¹Notatka 6, wzór (3).

²Notatka 6, tw. 4.

- 7. Intuicja: iloraz niezależnych i normalizowanych rozkładów χ^2 to rozkład F-Fishera zaś iloraz standardowego rozkładu normalnego i pierwiastka normalizowanego rozkładu χ^2 to rozkład t-Studenta.
- 8. Załóżmy, że zmienne X_1, \ldots, X_n są niezależne i podlegają rozkładowi $N(\mu, \sigma^2)$ każda. Niech dodatkowo $S_{\mu}^2 = \frac{1}{n} \sum_{k=1}^n (X_k \mu)^2$. Wówczas $\frac{nS_{\mu}^2}{\sigma^2} \sim \chi^2(n)$.
- 9. Załóżmy, że zmienne X_1, \ldots, X_n są niezależne i podlegają rozkładowi $N(\mu, \sigma^2)$ każda. Niech dodatkowo $S^2 = \frac{1}{n} \sum_{k=1}^n \left(X_k \bar{X} \right)^2$. Wówczas $\frac{nS^2}{\sigma^2} \sim \chi^2(n-1)$.
- 10. ...tysiąc i jeden wzór (jak w orientalnych baśniach).

Witold Karczewski