Sample problems

QUIZ 1

June 28, 2018

This document contains two sample problems (with solution). You can expect similar type question on the quiz. Note that there are several ways a problem can be solved, if you are consistent with the signs and units, you should get the right answer.

Projectile dropped from airplane

In Fig. 4-14, a rescue plane flies at 198 km/h (= 55.0 m/s) and constant height h = 500 m toward a point directly over a victim, where a rescue capsule is to land.

(a) What should be the angle ϕ of the pilot's line of sight to the victim when the capsule release is made?

KEY IDEAS

Once released, the capsule is a projectile, so its horizontal and vertical motions can be considered separately (we need not consider the actual curved path of the capsule).

Calculations: In Fig. 4-14, we see that ϕ is given by

$$\phi = \tan^{-1}\frac{x}{h},\tag{4-27}$$

where x is the horizontal coordinate of the victim (and of the capsule when it hits the water) and h = 500 m. We should be able to find x with Eq. 4-21:

$$x - x_0 = (v_0 \cos \theta_0)t.$$
 (4-28)

Here we know that $x_0 = 0$ because the origin is placed at the point of release. Because the capsule is *released* and not shot from the plane, its initial velocity \vec{v}_0 is equal to the plane's velocity. Thus, we know also that the initial velocity has magnitude $v_0 = 55.0$ m/s and angle $\theta_0 = 0^\circ$ (measured relative to the positive direction of the x axis). However, we do not know the time t the capsule takes to move from the plane to the victim.

Fig. 4-14 A plane drops a rescue capsule while moving at constant velocity in level flight. While falling, the capsule remains under the plane.

To find t, we next consider the vertical motion and specifically Eq. 4-22:

$$y - y_0 = (v_0 \sin \theta_0)t - \frac{1}{2}gt^2$$
. (4-29)

Here the vertical displacement $y - y_0$ of the capsule is -500 m (the negative value indicates that the capsule moves *downward*). So,

$$-500 \text{ m} = (55.0 \text{ m/s})(\sin 0^\circ)t - \frac{1}{2}(9.8 \text{ m/s}^2)t^2$$
. (4-30)

Solving for t, we find t = 10.1 s. Using that value in Eq. 4-28 yields

$$x - 0 = (55.0 \text{ m/s})(\cos 0^{\circ})(10.1 \text{ s}),$$
 (4-31)

or x = 555.5 m.

Then Eq. 4-27 gives us

$$\phi = \tan^{-1} \frac{555.5 \text{ m}}{500 \text{ m}} = 48.0^{\circ}.$$
 (Answer)

(b) As the capsule reaches the water, what is its velocity \vec{v} in unit-vector notation and in magnitude-angle notation?

KEY IDEAS

(1) The horizontal and vertical components of the capsule's velocity are independent. (2) Component v_x does not change from its initial value $v_{0x} = v_0 \cos \theta_0$ because there is no horizontal acceleration. (3) Component v_y changes from its initial value $v_{0y} = v_0 \sin \theta_0$ because there is a vertical acceleration.

Calculations: When the capsule reaches the water,

$$v_r = v_0 \cos \theta_0 = (55.0 \text{ m/s})(\cos 0^\circ) = 55.0 \text{ m/s}.$$

Using Eq. 4-23 and the capsule's time of fall t = 10.1 s, we also find that when the capsule reaches the water,

$$v_y = v_0 \sin \theta_0 - gt$$
 (4-32)
= $(55.0 \text{ m/s})(\sin 0^\circ) - (9.8 \text{ m/s}^2)(10.1 \text{ s})$
= -99.0 m/s .

Thus, at the water

$$\vec{v} = (55.0 \text{ m/s})\hat{i} - (99.0 \text{ m/s})\hat{j}$$
. (Answer)

Using Eq. 3-6 as a guide, we find that the magnitude and the angle of \vec{v} are

$$v = 113 \text{ m/s}$$
 and $\theta = -60.9^{\circ}$. (Answer)

You throw a ball from a window at a height h = 10.0 m above the ground, with an initial speed of 20 m/s at an angle 30° below the horizontal, see **Figure 6**. At what horizontal distance d will the ball hit the ground? Ignore air resistance.

- A) 12.7 m
- B) 34.6 m
- C) 22.4 m
- D) 10.0 m
- E) 20.0 m

$$y=V_0sin\theta_0t-\frac{1}{2}gt^2$$

$$-10 = -20 \cdot \frac{1}{2} \ t - \ 4.9 \ t^2$$

Find t

$$x = v_{0x}t = 20\cos(30) (0.73)$$

