Transient spherical cap aquifer

Consider a confined aquifer with precipitation that adjusts to a sudden recharge due to be earl polar melting.

Integrated over the depth of the aquifer we have:

PDE:
$$bS_s \frac{\partial h}{\partial t} - \nabla \cdot [bK \nabla h] = q_p \quad \theta \in [\theta_p, \theta_b]$$

BC's:
$$q_i = - k \nabla h \Big|_{\theta_b}$$
 $h(\theta_b) = h_b$

10:
$$h = h_b + \frac{q_b R^2}{b K} \left[log \left(\frac{siu \theta}{siu \theta_p} \right) + cos \theta_p log \left(\frac{csc \theta + cot \theta}{csc \theta_b + cot \theta_b} \right) \right]$$

Note, the IC is the soln to steady problem with recharge.

Scaling:
$$h_c = \frac{q_p R^2}{bK}$$
 $h' = \frac{h - h_b}{h_c}$
 $\nabla' = R \nabla \rightarrow \nabla' = \frac{d}{d\theta}$
 $\nabla \cdot = R \nabla \cdot \rightarrow \nabla \cdot' = \frac{1}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \right)$
 $E' = E/E_c$ to undetermined for now

subshituk

$$\frac{bS_{s}h_{c}}{t_{c}}\frac{\partial h'}{\partial t'}-\frac{bKh_{c}}{R^{2}}\nabla'\cdot\nabla'h=q_{p}$$
 $\Theta\in[\Theta_{p},\Theta_{b}]$

scale to accumulation term

$$\frac{\partial h'}{\partial t'} - \frac{k t_c}{S_s R^2} \nabla' \cdot \nabla' h' = \frac{k t_c}{S_s R^2}$$

Both dimensionless groups are same and suggest

diffusive time scale:
$$t_c = \frac{R^2}{D_{hyd}}$$

$$D_{hyd} = \frac{K}{S_s} \left[\frac{L^2}{T} \right]$$
hydraulic diffusivity

$$BC: q_i = -K\nabla h|_{\theta_p} \qquad q_i = -\frac{Kh_c}{R}c \nabla' h'|_{\theta_p}$$

$$-\nabla' h'|_{\theta_p} = \frac{q_i R}{Kh_c} = \frac{q_i R}{K} \frac{bK}{q_p R^2} = \frac{q_i b}{q_p R} = \Pi$$

Dimension less transient problem

PDE:
$$\frac{\partial h'}{\partial E'} - \nabla'^2 h' = 1$$
 $\theta \in [\theta_P, \theta_b]$

$$\mathbb{BC}$$
: $-\nabla h'|_{\Theta_p} = \Pi$ $h'(\Theta_b) = 0$

BC:
$$-\nabla h'|_{\theta_p} = \Pi$$
 $h'(\theta_b) = 0$

$$|C: h'(\theta_i,0) = \log\left(\frac{\sin\theta}{\sin\theta_b}\right) + \cos\theta_p \log\left(\frac{\csc\theta + \cot\theta}{\csc\theta_b + \cot\theta_b}\right)$$