Sammanfattning av SG1218 Strömningsmekanik

Yashar Honarmandi yasharh@kth.se

29 oktober 2019

Sammanfattning

Innehåll

1	Vektoranalys	1
2	Grundläggande koncept	1

1 Vektoranalys

2 Grundläggande koncept

Fluider Stela kroppar ger typiskt motstånd om de utsätts för skjuvning. Vi definierar fluider som ämnen som inte gör detta utan deformeras snabbare ju mer skjuvspänning de utsätts för.

Kontinua Ett kontinuum är ett medium så att egenskaper som temperatur och tryck är definierade i varje punkt i mediet som ett fält. När vi nu vet att all materia består av atomer, kan vi förstå kontinuumsbaserad teori som en approximation där fält tas som medelvärden över regioner av rummet. Detta är typiskt en bra approximation så länge alla relevanta storleksskalor är mycket större än atomära storheter.

Hastighetsfältet Hastighetsfältet **u** är ett vektorfält som anger i vilken riktning och hur snabbt ett fluid flödar. Vi betecknar typiskt dets komponenter som u, v, w.

Strömlinjer Strömlinjer är linjer som är så att hastigheten är tangentiell till linjen.

Ekvation för strömlinjen För en strömlinje ger formlikhet att

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{v}{u}.$$

Tidsändring och materiell derivata Betrakta ett fluidelement. Om det vid en given tid befinner sig i \mathbf{r} , kommer det under en tid δt förflytta sig en sträcka $\delta \mathbf{r}$. Värdet av något fält ϕ i det fluidelementet kommer då vara

$$\phi(\mathbf{r} + \delta \mathbf{r}, t + \delta t) = \phi(\mathbf{r}, t) + \partial_t \phi \delta t + \partial_i \phi \delta x_i.$$

Den totala tidsderivatan av ϕ för det givna elementet fås genom att beräkna ändringen av fältet och dela på den lilla tidsskillnaden. Vi får då

$$\frac{\mathrm{d}\phi}{\mathrm{d}t} = \partial_t \phi + \partial_i \phi \frac{\delta x_i}{\delta t} = \partial_t \phi + \partial_i \phi u_i = \partial_t \phi + (\mathbf{u} \cdot \vec{\nabla})\phi.$$

Detta kallar vi för den materiella derivatan av ϕ .

Acceleration Accelerationen är materiella derivatan av hastighetsfältet.

Kontrollvolymer I strömningsmekanik kommer vi betrakta fixa kontrollvolymer, som kommer betecknas V, och materiella kontrollvolymer, som betecknas V. En materiell kontrollvolym rör sig med fluidet, så att dens gränsyta ändras.

Tidsderivator av integraler Det gäller att

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V} \mathrm{d}V \, \phi = \int_{V} \mathrm{d}V \, \partial_{t} \phi,$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V} \mathrm{d}V \, \phi = \int_{V} \mathrm{d}V \, \partial_{t} \phi + \int_{S} \mathrm{d}S \cdot \phi \mathbf{u} = \int_{V} \mathrm{d}V \, \partial_{t} \phi + \vec{\nabla} \cdot (\phi \mathbf{u}).$$

Inkompressibla fluider En fluid är inkompresibel om volymsmåttet av en godtycklig materiell kontrollvolym ej ändras med tiden. Genom att använda tidsderivatorna ovan kan man visa att detta ger

$$\vec{\nabla} \cdot \mathbf{u} = 0.$$

Massa Massan av en fluid inom en volym V ges av

$$\int_{V} dV \rho$$

där ρ är tätheten.

Kontinuitetsekvationen Eftersom randen för en materiell kontrollvolym följer med den strömmande vätskan måste massan av volymen vara konstant. Detta ger

$$\int_{\mathcal{V}} d\mathcal{V} \, \partial_t \rho + \vec{\nabla} \cdot (\rho \mathbf{u}) = 0.$$

Om detta gäller överallt, måste integranden vara noll överallt. Detta kan skrivas som

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} + \rho \vec{\nabla} \cdot \mathbf{u} = 0.$$

Kontinuitetsekvationen för en inkompressibel fluid För en inkompressibel fluid är då

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = 0.$$

I praktiken antar vi att en inkompressibel fluid har ungefär konstant täthet överallt. Om alla relevanta hastigheter är mycket mindre än ljudhastigheten i mediet, kan fluidet approximeras som inkompressibelt.

Kontinuitetsekvationen kan även härledas ur betraktningar av produktion och förlust av fluid i en fix kontrollvolym, alla Vektoranalys.

Hjälpsats för fältintegraler i inkompressibla fluider Det gäller att

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathcal{V}} \mathrm{d}\mathcal{V} \, \rho \phi = \int_{\mathcal{V}} \mathrm{d}\mathcal{V} \, \partial_t \rho \phi + \vec{\nabla} \cdot (\rho \phi \mathbf{u})$$

$$= \int_{\mathcal{V}} \mathrm{d}\mathcal{V} \, \rho \partial_t \phi + \phi \partial_t \rho + \phi \vec{\nabla} \cdot (\rho \mathbf{u}) + (\rho \mathbf{u} \cdot \vec{\nabla}) \phi$$

$$= \int_{\mathcal{V}} \mathrm{d}\mathcal{V} \, \rho \frac{\mathrm{d}\phi}{\mathrm{d}t} + \phi \partial_t \rho + \phi \vec{\nabla} \cdot (\rho \mathbf{u}).$$

Kontinuitetsekvationen ger att de två andra termerna försvinner och

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathcal{V}} \mathrm{d}\mathcal{V} \, \rho \phi = \int_{\mathcal{V}} \mathrm{d}\mathcal{V} \, \rho \frac{\mathrm{d}\phi}{\mathrm{d}t}.$$

Strömfunktionen Definiera strömfunktionen Ψ så att

$$\partial_x \Psi = u, \ \partial_y \Psi = -v.$$

Man kan visa att denna är konstant längsmed en strömlinje.

Rörelsemängd Rörelsemängden av en fluid inom en volym V ges av

$$\int_{V} dV \rho \mathbf{u}.$$

2

Spänningstensorn För en (liten) volym med ytnormal n gäller

$$f_i = \tau_{ji} n_j$$

där τ är spänningstensorn. Spänningstensorn är ett tensorfält då den ger ett kraftfält i fluiden som måste integreras för att få totala kraften. Den totala kraften ges av

$$F_i = \int\limits_{S} dS_j \, \tau_{ji} = \int\limits_{V} dV \, \partial_j \tau_{ji}.$$

Newtons andra lag Newtons andra lag för en fluid ger

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathcal{V}} \mathrm{d}\mathcal{V} \, \rho u_i = \int_{\mathcal{V}} \mathrm{d}\mathcal{V} \, \rho g_i + \partial_j \tau_{ji},$$

där g är volymkraften. Med hjälp av hjälpsatsen från innan fås

$$\int_{\mathcal{V}} d\mathcal{V} \, \rho \frac{\mathrm{d}u_i}{\mathrm{d}t} = \int_{\mathcal{V}} d\mathcal{V} \, \rho g_i + \partial_j \tau_{ji}.$$

Detta gäller för en godtycklig materiell kontrollvolym, vilket ger

$$\frac{\mathrm{d}u_i}{\mathrm{d}t} = g_i + \frac{1}{\rho}\partial_j \tau_{ji}.$$

Kontinuitetsekvationen och Newtons andra lag är de fundamentala lagarna hastighetsfältet och spänningstensorns måste uppfylla. Tyvärr ger detta bara fyra ekvationer för att bestämma de tolv okända som ingår. Genom att betrakta bevarande av rörelsemängdsmoment får man att spänningstensorn är symmetrisk, men problemet återstår. Därför behöver vi göra approximationer och dylikt.

Eulers ekvationer Betrakta en fluid där det inte finns friktionskrafter internt i vätskan, en så kallad inviskös fluid. För denna är spänningstensorn $\tau_{ij} = -p\delta_{ij}$. Då förenklas Newtons andra lag till

$$\frac{\mathrm{d}u_i}{\mathrm{d}t} = g_i - \frac{1}{\rho}\partial_i p.$$

Detta är Eulers ekvationer. De har randvillkoret att $\mathbf{u} \cdot \mathbf{n} = 0$ på randytan.

Bernoullis ekvation Bernoullis ekvation är en ekvation som ger en förenklad beskrivning av en inviskös vätska. Det gäller att

$$(\mathbf{u} \cdot \vec{\nabla})\mathbf{u} = \frac{1}{2}\vec{\nabla}u^2 - \mathbf{u} \times \boldsymbol{\omega}$$

där $\boldsymbol{\omega} = \vec{\nabla} \times \mathbf{u}$ är vorticiteten. Genom att betrakta konstanta kraftfält i z-riktning och definiera $B = \frac{1}{2}u^2 + \frac{p}{\rho} + gz$ blir Newtons andra lag

$$\partial_t \mathbf{u} + \vec{\nabla} B = \mathbf{u} \times \boldsymbol{\omega}.$$

Betrakta nu en stationär vätska. Genom att integrera ekvationen ovan längsmed en strömlinje försvinner högersidan, vilket ger att B är konstant längsmed strömlinjen.

Newtons andra lag på integralform För en fix **g** kan vi integrera Newtons andra lag över en fix kontrollvolym för att ge

$$\int\limits_{V} \mathrm{d}V \, \rho \partial_t u_i + \rho u_j \partial_j u_i = M g_i + \int\limits_{V} \mathrm{d}V \, \partial_j \tau_{ij}.$$

För en inkompressibel fluid är $\rho u_j \partial_j u_i = \rho \partial_j (u_j u_i).$ I stationära fall fås då

$$\int_{S} dS_{j} \rho u_{j} u_{i} = Mg_{i} + \int_{S} dS_{j} \tau_{ij},$$

vilket på vektorform (möjligtvis bara i inviskösa fall) blir

$$\int_{S} (d\mathbf{S} \cdot \mathbf{u}) \mathbf{u} = Mg_i - \int_{S} d\mathbf{S} \, p.$$