Time Factors and Rates

April 7, 2016

When measuring change over time, lower-case variables reflect rates while the corresponding upper-case variable is the corresponding factor connecting adjacent discrete periods. (This convention rarely conflicts with the usage we endorse elsewhere of indicating individual-level variables by the lower and aggregate variables by the upper case).¹

So, for example, if the annual interest rate is r = 0.03 or three percent, then the annual interest factor is R = 1.03.

We predefine the following factors:

Code	Output	Description
\Rfree	R	Riskfree interest factor
\rfree	r	Riskfree interest return
\Risky	${f R}$	The return factor on a risky asset
\risky	${f r}$	The return rate on a risky asset
\Rport	\mathfrak{R}	The return factor on the entire portfolio
\rport	r	The return rate on the entire portfolio

 Table 1
 Factors

We depart from the upper-lower case scheme when the conventional when the natural letter to use has an even more natural or urgent use elsewhere in our scheme. A particularly common example occurs in the case of models like? in which individual agents are subject to a Poisson probability of death. Because death was common in the middle ages, we use the archaic Gothic font for the death rate; and the probability of survival is the cancellation of the probability of death:

Code	LaTeX	Description
\DieFac	D	Proportion who die
\LivFac	\mathscr{D}	Proportion who do not die = $(1 - \mathfrak{D})$

 Table 2
 Special Cases: Factors and Rates

¹If there is a need for the continuous-time representation, we endorse use of the discrete-time rate defined below. Any author who needs a continuous-time rate, a discrete-time rate, and a discrete-time factor is invited to invent their own notation.