

Towards the Speech Features of Mild Cognitive Impairment: Universal Evidence from Structured and Unstructured Connected Speech of Chinese

Tianqi Wang, Chongyuan Lian, Jingshen Pan, Quanlei Yan, Feiqi Zhu, Manwa L. Ng, Lan Wang* and Nan Yan*

Introduction

- ☐ Mild cognitive impairment (MCI)
 - A preclinical stage of Alzheimer's disease
 - Total number of people suffering from dementia will reach 82 million in 2030
- Subtle changes in language ability Apparent years or even decades before cognitive deterioration
- Conventional test batteries Not effective in detecting very early stage of cognitive decline
- □ Connected speech production Easy to obtain, multiple dimensions to analyze, sensitive index of cognitive function

- □ Lack of universal evidence Limit the generalization of salient linguistic features associated with MCI
- ☐ Reports on Chinese Remain scarce
- □ Speech samples from MCI Very limited

Comparison of DementiaBank and our database

	DementiaBank	The Present Study
Institution	University of Pittsburgh	中国科学院深圳先进技术研究院 SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY CHINESE ACADEMY OF SCIENCES
Subjects	Probable and Possible AD	Patients with MCI
Data Quality	Varied	High
Tasks	Picture description Speech fluency	Multiple tasks, including: Structured and Unstructured Task

Aim of the Study

- ☐ Find universal features among different tasks
 - Structured: situational picture description
 - **Unstructured:** spontaneous self-introduction
- ☐ Generalize of features to different languages Chinese
- ☐ Render salient features applicable to the preclinical stages MCI

2.1 | Participants

□ MCI

- History of cognitive decline
- Results of mental status examination (i.e. MoCA and MMSE)

☐ Healthy control

- No complaint of cognitive decline
- No history of psychiatric issues or neurological disorders

Demographic information (mean and SD)

	MCI	Normal	Statistics
	N = 19	N = 56	Statistics
Age (years)	65.6 (5.7)	67.9 (5.9)	t = -1.47
Gender (F/M)	11/8	29/27	$\chi^2 = 0.213$
MoCA (30)	23.7 (2.4)	27.8 (1.3)	t = -7.22***
MMSE (30)	25.2 (2.7)	29.2 (1.0)	t = -6.15***
Education (years)	10.4 (2.7)	13.3 (2.5)	t = -4.17***

^{*}p < 0.05, **p < 0.01, ***p < 0.001

2.1 | Participants

■ The two groups were not matched for education level, which is one limitation of the study.

Correlation between Word/Vocabulary Frequency and Education Level

2.2 Tasks

☐ Structured connected speech

 "Cookie Theft" picture description task - Describe everything they see in the picture

□ Unstructured connected speech

- Predefined open-ended questions: family, career, hobbies, etc.
- ☐ Both tasks were constrained to **one minute** for comparison

2.3 | Hypothesis

- ☐ Lexico-semantic anterior temporal lobes
- ☐ Fluency reductions and simplified syntax left temporoparietal junction
- □ **Deficits in informative content** semantic memory impairment
- ☐ Acoustic abnormalities frontal premotor circuits involved in speech

Kathleen C. Fraser, Jed A. Melter, Frank Rudzicz. Linguistic features identify Alzheimer's disease in narrative speech. Journal of Alzheimer's disease. 2016, pp407-422.

2.4 | Features

Feature	Description		
Lexical features			
Total words/characters	Total number of words/characters		
POS rate			
Open-class words	Open-class words are noun, verb, adjective, adverb		
Closed-class words	The rest are closed-class words		
Content density	Open-class words / closed-class words		
Lexical richness			
Type-token ratio	Number of vocabulary / number of words		
Brunét's index	Number of words * number of vocabulary-0.165		
Honoré's statistic	100 * log [number of words / (1 - once / vocabulary)]		
Word/vocabulary frequency	Frequency of words/vocabulary		

2.4 | Features

Feature	Description		
Semantics features			
Semantic units	Number of human-supplied information content unit		
Idea density	Number of content unit / number of words		
Idea efficiency	Number of content unit / speech segment duration		
Syntactic features			
Utterance length	Average number of words for utterance		
Dependent elements linked to	Number of dependent elements linked to the head		
the noun	(e.g., adjectives, relative clauses)		
Syntactic complexity	Grammatical subordinates and embeddedness		

2.4 | Features

Feature	Description
Speech fluency features	
Filled pause count	Number of filled pause
Filled pause rate	Number of filled pause / total number of words
Disfluency count	Number of disfluency
Disfluency rate	Number of disfluency / total number of words
Acoustic features	
Silence duration	Duration without speech
Speech duration	Duration with speech
Voice-silence ratio	Speech duration / silence duration
Verbal rate	Number of words / total locution time (incl. pause)
Std. phonation rate	Number of words / total phonation time (excl. pause)

2.4 | Speech Analysis

- **□** Feature extraction
 - Language Technology Platform (LTP)
 - Double checked by two raters

2.5 | Statistical Analysis

☐ Linear mix-effect regression model

```
feature ~ group + age + (1|participant) + (1|task) + \epsilon full model vs. feature ~ age + (1|participant) + (1|task) + \epsilon reduced model
```

Wanxiang Che, Zhenghua Li, Ting Liu. LTP: A Chinese Language Technology Platform. In Proceedings of the Coling 2010:Demonstrations. 2010.08, pp13-16, Beijing, China.

3.1 | Comparison of Speech Features

	Picture Description		Self-Introduction		Group		Likelihood Ratio Test	
	MCI	Normal	MCI	Normal	β	SE	χ^2	p-value
(A) Lexical								
Total words	93.89 (24.3)	118.07 (30.5)	96.42 (26.4)	106.93 (25.6)	-17.63	6.066	8.003	0.005**
Total characters	129.79 (34.7)	167.05 (42.0)	146.37 (38.6)	163.36 (38.7)	-27.93	8.755	9.545	0.002**
POS rate								
Open-class words	0.55 (0.05)	0.57 (0.05)	0.60 (0.09)	0.59 (0.06)	-0.014	0.012	1.229	0.268
Closed-class words	0.45 (0.05)	0.42 (0.05)	0.40 (0.09)	0.41 (0.06)	0.014	0.012	1.229	0.268
Content density	1.39 (0.27)	1.55 (0.35)	1.70 (0.65)	1.56 (0.50)	-0.052	0.092	0.319	0.572
Lexical richness								
Type-token ratio	0.63 (0.1)	0.63 (0.1)	0.67 (0.1)	0.67 (0.1)	-0.007	0.017	0.154	0.695
Brunét's index	47.95 (11.1)	57.92 (13.4)	48.57 (12.2)	52.79 (11.3)	-7.168	2.705	6.713	0.010**
Honoré's index	567.84 (28.7)	589.44 (26.1)	588.51 (21.6)	604.13 (23.4)	-21.33	4.735	17.930	0.000***
Word frequency	0.45 (0.14)	0.50 (0.16)	0.45 (0.13)	0.48 (0.18)	-0.043	0.035	1.492	0.222
Vocabulary frequency	0.29 (0.07)	0.26 (0.04)	0.27 (0.03)	0.23 (0.04)	0.036	0.008	16.424	0.000***
(B) Semantic								
Semantic units	11.00 (4.16)	15.57 (3.95)	11.95 (2.84)	13.63 (2.60)	-3.455	0.651	23.906	0.000***
Idea density	0.12 (0.05)	0.14 (0.04)	0.13 (0.05)	0.13 (0.02)	-0.009	0.008	1.354	0.245
Idea efficiency	0.18 (0.07)	0.26 (0.07)	0.20 (0.05)	0.22 (0.04)	-0.055	0.011	20.818	0.000***

^{*}p < 0.05, **p < 0.01, ***p < 0.001

3.1 | Comparison of Speech Features

(Continued)

	Picture Description		Self-Introduction		Group		Likelihood Ratio Test	
	MCI	Normal	MCI	Normal	β	SE	χ^2	p-value
(C) Syntactic								
Utterance length	7.99 (2.03)	8.65 (2.03)	6.27 (1.18)	7.51 (1.52)	-1.072	0.356	8.567	0.003**
Dependent element	1.50 (0.54)	1.62 (0.61)	1.26 (0.60)	1.59 (0.54)	-0.244	0.113	4.484	0.034*
linked to the noun								
Syntactic complexity	0.74 (0.09)	0.71 (0.10)	0.75 (0.09)	0.75 (0.08)	0.017	0.017	1.000	0.317
(D) Speech fluency								
Filled pause count	2.21 (1.65)	2.85 (3.00)	5.16 (3.82)	4.89 (2.93)	-0.308	0.613	0.252	0.616
Filled pause rate	0.03 (0.02)	0.02 (0.02)	0.05 (0.03)	0.05 (0.03)	0.002	0.006	0.118	0.731
Disfluency	3.37 (2.67)	2.05 (1.61)	1.68 (1.92)	1.34 (1.42)	0.917	0.35	6.581	0.010*
Disfluency rate	0.03 (0.02)	0.02 (0.01)	0.02 (0.02)	0.01 (0.01)	0.011	0.003	12.418	0.000***
(E) Acoustic								
Silence duration	13.55 (5.53)	7.71 (5.03)	12.26 (8.92)	8.24 (4.69)	4.811	1.24	13.724	0.000***
Speech duration	46.64 (5.79)	53.63 (7.82)	48.50 (9.00)	52.68 (5.27)	-5.6	1.494	12.866	0.000***
Voice-silence ratio	4.43 (2.78)	10.11 (6.05)	8.32 (8.47)	9.01 (5.60)	-2.956	1.198	5.857	0.016*
Verbal rate	1.56 (0.40)	1.91 (0.43)	1.59 (0.44)	1.75 (0.40)	-0.259	0.093	7.373	0.007**
Std. phonation rate	2.00 (0.40)	2.18 (0.43)	1.98 (0.37)	2.02 (0.42)	-0.118	0.091	1.677	0.195

^{*}p < 0.05, **p < 0.01, ***p < 0.001

3.2 | Summary of Results

Semantic	 Semantic units (↓ p < 0.001) Idea efficiency (↓ p < 0.001) 	 Semantic memory impairment Reduced ability to retrieve semantic information
Syntactic	 Utterance length (↓ p < 0.01) Dependent elements linked to the noun (↓ p < 0.05) 	Reduced structural complexity
Speech Fluency	 Number of repetition, false start, and repairs (↑ p < 0.001) 	Significant signs of dysfluency
Acoustic	 Duration of silence (↑ p < 0.001) Duration of speech (↓ p < 0.001) Verbal rate (↓ p < 0.01) 	Temporal alterations in speech signal
X		
Lexical	 Open-class rate (↓ ns) Closed-class rate (↑ ns) Content density (↓ ns) Lexical richness parameters (↓ ns) 	 Lexical features poorly modified Unreliable predictor of cognitive decline, at least for Chinese

- 3.3 | Back to our hypothesis
- ☐ Lexico-semantic anterior temporal lobes
- ☐ Fluency reductions and simplified syntax left temporoparietal junction
- □ Deficits in informative content semantic memory impairment
- ☐ Acoustic abnormalities frontal premotor circuits involved in speech

Kathleen C. Fraser, Jed A. Melter, Frank Rudzicz. Linguistic features identify Alzheimer's disease in narrative speech. Journal of Alzheimer's disease. 2016, pp407-422.

Future Direction

☐ Test the relationship between language alterations and brain atrophy

- Collection of Magnetic Resonance Imaging (MRI) data
- Collection of EEG data for time-course analysis of lexical retrieval and source reconstruction
- Language samples

■ Realize automatic screening

- Translate the observations into simple and specific biomarkers
- Application of automatic speech recognition system

Concluding Remarks and Take-home Messages

- □ Validate the salience of features among different tasks and languages
 - Structured and unstructured connected speech
 - Chinese
- **□** Far-reaching clinical implications
 - Guide development of methods for screening and diagnosis

- ☐ CAS Key Laboratory of Human-Machine Intelligence-Synergy System☐ Speech Science Laboratory, The University of Hong Kong

Dr. Lan Wang lan.wang@siat.ac.cn

Dr. Nan Yan nan.yan@siat.ac.cn

Dr. Manwa L. Ng manwa@hku.hk

Tianqi Wang tq.wang@siat.ac.cn

□ Funding

- National Natural Science Foundation of China (61771461 and U1736202)
- Shenzhen Fundamental Research Program (JCYJ20170413161611534 and JCYJ20150330102401089)

THANK YOU!

