Changing Frames

Reading: Modern Robotics 3.3.1

This Lecture

- How do we use transformation matrices?
- Which matrices should we multiply to get a desired transformation?

What is the **orientation** of $\{p\}$ with respect to the earth $\{e\}$?

What is the **position** of $\{p\}$ relative to the earth $\{e\}$?

What is the **orientation** of $\{p\}$ with respect to the earth $\{e\}$?

$$R_{ep} = R_{es}R_{sp}$$

What is the **position** of $\{p\}$ relative to the earth $\{e\}$?

$$p_{ep} = R_{es}p_{sp} + p_{es}$$

What is the **pose** of $\{p\}$ with respect to the earth $\{e\}$?

Notation: T_{ab} is the position and orientation of frame $\{b\}$ expressed in frame $\{a\}$

What is the **pose** of $\{p\}$ with respect to the earth $\{e\}$?

$$T_{ep} = T_{es}T_{sp}$$

What is the **pose** of $\{p\}$ with respect to the earth $\{e\}$?

$$T_{ep} = T_{es}T_{sp}$$

$$= \begin{bmatrix} R_{es} & p_{es} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_{sp} & p_{sp} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} R_{es}R_{sp} & R_{es}p_{sp} + p_{es} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} R_{ep} & p_{ep} \\ 0 & 1 \end{bmatrix}$$

Changing Frames

When we multiply transformation matrices, if the subscripts *cancel* then we **change** the frame of reference

$$T_{ep} = T_{es}T_{sp}$$

$$T_{ad} = T_{ab}T_{bc}T_{cd}$$

$$p_{ac} = T_{ab}p_{bc}$$

$$\boldsymbol{T_{sb}} = \begin{bmatrix} R_{sb} & p_{sb} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 & -3 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\boldsymbol{T_{bc}} = \begin{bmatrix} R_{bc} & p_{bc} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 & -5 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad \boldsymbol{p_{cd}} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}$$

We want to find the position of *d* relative to frame {s} given:

$$p_{sd} = T_{sb}T_{bc}p_{cd}$$

$$p_{sd} = \begin{bmatrix} R_{sb} & p_{sb} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_{bc} & p_{bc} \\ 0 & 1 \end{bmatrix} p_{cd}$$

 4×4 matrix times a 3×1 vector?

We want to find the position of *d* relative to frame {s} given:

$$p_{sd} = T_{sb}T_{bc}p_{cd}$$

$$p_{sd} = \begin{bmatrix} R_{sb} & p_{sb} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_{bc} & p_{bc} \\ 0 & 1 \end{bmatrix} p_{cd}$$

When we multiply a position vector by a transformation, we append a '1' to make it a 4-dimensional vector.

$$p_{sd} = T_{sb}T_{bc}p_{cd}$$

$$p_{sd} = \begin{bmatrix} R_{sb} & p_{sb} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_{bc} & p_{bc} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_{cd} \\ 1 \end{bmatrix}$$

$$p_{sb} = T_{sb}T_{bc}p_{cd}$$

$$p_{sd} = \begin{bmatrix} R_{sb}R_{bc}p_{cd} + R_{sb}p_{bc} + p_{sb} \\ 1 \end{bmatrix}$$
{s} to {b} in frame {s}
{c} to d in frame {s}

$$p_{sb} = T_{sb}T_{bc}p_{cd}$$

$$p_{sd} = \begin{bmatrix} \begin{bmatrix} -5\\0\\0\\1 \end{bmatrix} + \begin{bmatrix} 0\\-5\\0\\1 \end{bmatrix} + \begin{bmatrix} -3\\0\\0\\1 \end{bmatrix} = \begin{bmatrix} -8\\-5\\0\\1 \end{bmatrix}$$

We are given:

- Base to end-effector (T_{ab})
- Base to base (T_{ac})
- Base to box (T_{cd})

Draw a **path** from {*b*} to {*d*} using the transformations.

$$T_{bd} = T_{ba}T_{ac}T_{cd}$$

Draw a **path** from {*b*} to {*d*} using the transformations.

$$T_{bd} = T_{ba}T_{ac}T_{cd}$$

Use the **inverse** property: $T_{ba} = T_{ab}^{-1}$

We are given:

- Base to end-effector (T_{ab})
- Base to base (T_{ac})
- Base to box (T_{cd})

$$T_{bd} = T_{ab}^{-1} T_{ac} T_{cd}$$

This Lecture

- How do we use transformation matrices?
- Which matrices should we multiply to get a desired transformation?

Next Lecture

• How can we use transformation matrices to move objects?