

Enzim

A. PENDAHULUAN

Enzim adalah biokatalisator yang mempercepat laju reaksi kimia dalam tubuh, dengan menurunkan energi aktivasi reaksi.

B. STRUKTUR ENZIM

♠ Enzim adalah protein tunggal atau gabungan dari protein dan senyawa non-protein yang hanya dapat dihasilkan makhluk hidup.

Struktur enzim:

1) Apoenzim

Adalah bagian enzim yang berupa senyawa **protein** yang mengandung *binding site*.

a. Sisi aktif

Adalah sisi yang berikatan dengan substrat. **Substrat** adalah zat yang akan dijadikan produk.

b. Sisi alosterik

Adalah sisi yang berikatan dengan **kofaktor** (aktivator) enzim.

Sisi alosterik dapat diganggu oleh **inhibitor non-kompetitif** yang berstruktur sama dengan kofaktor. Inhibitor akan mencegah enzim untuk mengubahubah bentuk sisi aktif (kaku).

2) Kofaktor/aktivator enzim

Adalah bagian enzim berupa **senyawa nonprotein**. Kofaktor dapat mengubah-ubah bentuk sisi aktif sehingga dapat ditempeli substrat tertentu.

Macam-macam kofaktor enzim:

a. Koenzim

Adalah kofaktor berupa senyawa **organik** (vitamin) yang berikatan secara non-kovalen dengan enzim.

Contoh: koenzim NAD+.

b. Gugus prostetik

Adalah kofaktor berupa senyawa **anorganik** (mineral) yang berikatan secara kovalen dengan enzim.

Contoh: Cl⁻ dan Ca²⁺ pada enzim amilase, Fe pada hemoglobin, dan Mg pada klorofil.

Enzim yang telah berikatan dengan kofaktor disebut **holoenzim**.

- Sisi aktif dapat diganggu oleh inhibitor kompetitif yang berstruktur sama dengan substrat. Inhibitor akan mencegah substrat untuk berikatan.
- Sisi alosterik dapat diganggu oleh inhibitor non-kompetitif yang ber-struktur sama dengan kofaktor. Inhibitor akan mencegah enzim untuk mengubah-ubah bentuk sisi aktif (kaku).

C. CARA KERJA ENZIM

- Nifat-sifat enzim sebagai katalis:
 - 1) Terlibat dalam jalannya reaksi, namun jumlahnya tidak berubah.
 - 2) Mempercepat laju reaksi, namun tidak mengubah komposisi produk.
 - 3) Menurunkan energi aktivasi.
 - 4) Hanya dapat mengkatalisis reaksi tertentu.
 - 5) Dibutuhkan dalam jumlah sedikit.
 - 6) Dapat dihambat zat tertentu.
 - 7) Dapat bekerja dalam reaksi bolak-balik.
- Cara kerja enzim dijelaskan dalam dua teori, yaitu teori gembok dan kunci (lock and key) dan teori kecocokan terinduksi (induced fit).

1) Teori gembok dan kunci

Menurut teori ini, enzim dan substrat dimisalkan sebagai gembok dan kunci.

Menurut teori ini, suatu enzim hanya bekerja untuk satu jenis substrat saja, dengan berikatan pada sisi aktif.

2) Teori kecocokan terinduksi

Menurut teori ini:

- a. **Kofaktor**/aktivator enzim akan berikatan dengan sisi alosterik.
- b. **Kofaktor** mengubah bentuk sisi aktif agar dapat mengikat substrat tertentu.
- c. **Substrat** kemudian diubah menjadi produk dan lepas dari enzim.
- d. **Enzim** dapat digunakan kembali untuk substrat berikutnya.

D. FAKTOR YANG MEMPENGARUHI KERJA ENZIM

- Faktor yang mempengaruhi kerja enzim antara lain adalah konsentrasi enzim dan kofaktor, konsentrasi substrat, konsentrasi inhibitor, suhu dan pH.
- Pengaruh konsentrasi zat-zat yang berhubungan dengan enzim:
 - 1) **Konsentrasi enzim** yang lebih besar dari substrat akan mempercepat laju reaksi (mempercepat pembentukan produk).
 - Konsentrasi substrat yang lebih besar dari enzim akan menimbulkan konsentrasi substrat jenuh (laju reaksi maksimum), yang menyebabkan ada substrat yang tidak dikatalisis.
 - 3) **Konsentrasi inhibitor** yang besar akan memperlambat laju reaksi (menghambat pembentukan produk).

Cara mencegah inhibitor menghambat pembentukan produk adalah dengan meningkatkan konsentrasi enzim, kofaktor dan substrat.

- 📏 **Suhu** berpengaruh terhadap kerja enzim, yaitu:
 - Semakin tinggi suhu, maka energi kinetik substrat dan enzim meningkat, sehingga mempermudah keduanya saling berikatan.
 - 2) **Aktivitas enzim meningkat** pada suhu optimum sampai suatu suhu maksimum (sekitar 40°C).
 - 3) **Suhu yang terlalu tinggi** (>40°C) menyebabkan enzim tidak bekerja karena struktur enzim rusak akibat mengalami **denaturasi protein**.

Enzim yang mengalami denaturasi tidak dapat digunakan kembali.

- Suhu yang terlalu rendah (<30°C) menyebabkan enzim tidak bekerja karena enzim mengalami inaktivasi.
 - Enzim yang mengalami inaktivasi masih dapat digunakan jika suhu kembali normal.
- **pH** dapat mempengaruhi struktur protein pada sisi aktif, sehingga substrat untuk berikatan.
- pH optimum enzim berbeda-beda, dan jika tidak pada pH optimum, enzim dapat mengalami denaturasi protein.

Contoh: enzim amilase bekerja pada pH netral agak basa, enzim pepsinogen bekerja pada pH sangat asam, dan maltase bekerja pada pH basa.

E. TATA NAMA ENZIM

- Sebelum ada tata nama, enzim diberi nama dengan:
 - Secara sembarangan saat ditemukan.
 Contoh: tripsin, pepsin, renin.
 - 2) Menambahkan –ase pada nama substratnya. Contoh: urease (urea), lipase (lipid/lemak), amilase (amilum), protease (protein), laktase (laktat).
 - Berdasarkan jenis reaksi yang dikatalisis.
 Contoh: dehidrogenase mengkatalisis reaksi pelepasan hidrogen.
- Tata nama enzim diatur oleh International Union of Biochemistry (IUB) mulai tahun 1961, dan enzim digolongkan menjadi 6 kelompok:

1) Oksidoreduktase

Adalah enzim yang mengkatalisis reaksi redoks biologis.

Contoh: berakhiran *oxidase, reductase* dan *dehydrogenase*, seperti sulfit oksidase, nitrat reduktase, alkohol dehidrogenase.

2) Transferase

Adalah enzim yang memindahkan gugus fungsi suatu substrat ke substrat lain.

Contoh: transglutaminase, alanin transminase, DNA metiltransferase.

3) Hidrolase

Adalah enzim yang mengkatalisis reaksi hidrolisis biologis.

Contoh: enzim-enzim pencernaan seperti amilase, sukrase, tripsin, renin, lisozim, dll.

4) Liase

Adalah enzim yang memutuskan ikatan rangkap kimia pada substrat.

Contoh: karbonik anhidrolase, ornitin dekarboksilase.

5) Isomerase

Adalah enzim yang mengkatalisis pembentukan isomer suatu senyawa tunggal. Contoh: protein disulfida isomerase.

6) Ligase/sintetase

Adalah enzim yang menggabungkan dua buah molekul secara kovalen.

Contoh: piruvat karboksilase, asetil KoA karboksilase.