MATH 308 D200, Fall 2019

9. Simplex algorithm for maximum tableau (based on notes from Dr. J. Hales, Dr. L. Stacho, and Dr. L. Godyyn)

Dr. Masood Masjoody

SFU Burnaby

SFU department of mathematics

Max Tableau

LP is infeasible

Phase 2 is "SA for MBFT" (Section 8)

SFU department of mathematics

SA for Maximum Tableaux

Algorithm (SA for Max Tableau (Phase 1))

	(ind	var's)		-1	
a ₁₁	a 12		a_{1n}	b_1	
a 21	a 22		a_{2n}	<i>b</i> ₂	
:	:	1.	:	:	$=-(dep \ var's)$
a_{m1}	a_{m2}		a_{mn}	b_m	
<i>c</i> ₁	c ₂		Cn	d	= f

- 1. We have maximum Tucker tableau.
- **2.** If $b_1, b_2, ..., b_m \ge 0$, then go to **Step 6**.
- **3.** Choose $b_{\ell} < 0$ such that ℓ is maximal.
- **4.** If $a_{\ell 1}, a_{\ell 2}, \ldots, a_{\ell n} \geqslant 0 \Longrightarrow \mathsf{STOP}$; the problem is infeasible.
- **5.** If $\ell = m$, choose $a_{mj} < 0$, pivot on a_{mj} , and go to **Step 1**. If $\ell < m$, choose $a_{\ell j} < 0$, compute

$$\alpha = \min(\{b_{\ell}/a_{\ell j}\} \cup \{b_{k}/a_{k j} : k > \ell, a_{k j} > 0\}),$$

and choose any p with $b_p/a_{pj}=\alpha$. Pivot on a_{pj} and go to Step 1.

6. The tableau is a MBFT. Apply the SA for MBFT (Phase 2).

SFU department of mathematics

- Initially:
 - The BS is $(x_1, x_2) = (0, 0)$.
 - · Inequalities $x_3 \ge 0$, $x_4 \ge 0$ are violated

- ▶ Initially:
 - The BS is $(x_1, x_2) = (0, 0)$.
 - · Inequalities $x_3 \ge 0$, $x_4 \ge 0$ are violated
- $\, \triangleright \, \, \ell = 2$

Notes:

- Initially:
 - The BS is $(x_1, x_2) = (0, 0)$.
 - · Inequalities $x_3 \ge 0$, $x_4 \ge 0$ are violated
- \triangleright $\ell = 2$

Goal:

- · Move toward the x_4 -line
- · Keep x_5 , x_6 and x_7 feasible

- Interpretation:
 - -: increasing x_1 moves toward x_4 feasibility
 - +: increasing x_2 moves away from x_4 -feasibility.

- Interpretation:
 - -: increasing x_1 moves toward x_4 feasibility
 - +: increasing x₂ moves away from x₄-feasibility.
- $\triangleright x_1$ will leave the basis (j=2)
- \triangleright BS moves toward lines x_4 , x_6 , x_7 , and away from line x_5 .

- Interpretation:
 - -: increasing x_1 moves toward x_4 feasibility
 - +: increasing x₂ moves away from x₄-feasibility.
- $\triangleright x_1$ will leave the basis (j=2)
- \triangleright BS moves toward lines x_4 , x_6 , x_7 , and away from line x_5 .
- ▶ Compare ratios

- ▶ Interpretation:
 - -: increasing x₁ moves toward x₄-feasibility
 - +: increasing x₂ moves away from x₄-feasibility.
- $\triangleright x_1$ will leave the basis (j=2)
- \triangleright BS moves toward lines x_4 , x_6 , x_7 , and away from line x_5 .
- ▶ Compare ratios

Notes:

Lemma

If the algorithm stops at Step 4., then LP is infeasible.

	-1		var's)	(ind	
	b_1	a_{1n}		a 12	a ₁₁
	<i>b</i> ₂	a_{2n}		a 22	a 21
= -(dep var's)	:	:	1.	:	:
	b_m	a_{mn}		a_{m2}	a _{m1}
] = f	d	Cn		c 2	<i>c</i> ₁

Lemma

If the algorithm stops at Step 4., then LP is infeasible.

Proof.

Assume $a_{i1}, a_{i2}, \ldots, a_{in} \geqslant 0$ and $b_i < 0$. Suppose that $\mathbf{x} = (x_1, x_2, \ldots, x_n)$ is feasible. Then each x_i is nonnegative so we have

$$0 \leqslant a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n \leqslant b_i,$$

This contradicts $b_1 < 0$ Therefore there is not feasible vector x.

Lemma

Suppose Step 5 of Phase 1 changes $\mathbf{b} = (b_1, \dots b_m)$ into $\tilde{\mathbf{b}} = (\tilde{b}_1, \dots \tilde{b}_m)$. Let

$$\ell = \max\{i : b_i < 0\}$$
 and $\tilde{\ell} = \max\{i : \tilde{b}_i < 0\}.$

Then

- 1. $b_{\ell} < \tilde{b}_{\ell} < 0$,
- 2. $\tilde{\ell} \leq \ell$.

Lemma

Suppose Step 5 of Phase 1 changes $\mathbf{b} = (b_1, \dots b_m)$ into $\tilde{\mathbf{b}} = (\tilde{b}_1, \dots \tilde{b}_m)$. Let

$$\ell = \max\{i : b_i < 0\}$$
 and $\tilde{\ell} = \max\{i : \tilde{b}_i < 0\}$.

Then

- 1. $b_{\ell} < \tilde{b}_{\ell} < 0$.
- 2. $\tilde{\ell} \leq \ell$.

Corollary

If Phase 1 does not terminate, then Step 5 is never changing the value of b_{ℓ} .

Phase 1:

- a) If all rows are feasible, then go to Phase 2
- b) Find the last infeasible row, ℓ
- c) If row ℓ has no other -, then LP infeasible
- d) Choose a pivot column j with in row
- e) Choose a pivot row i, with $\ell \le i \le m$, and having the least non-negative ratio*.
- f) Pivot at (i, j) and go to step a

- g) If last row is all ≤ 0 , then optimal solution
- h) Choose a positive entry as pivot column
- i) If col. j has no other +, LP is unbounded
- j) Choose a pivot row i with the least non-negative ratio*.
- k) Pivot at (i, j) and go to step g)

x_1	 Xn	-1	
			$=-t_1$
			=
			=
			=
			=
			$=-t_m$
			= f

^{*}Treat $\frac{0}{a}$ as a "negative ratio" if a < 0.

Phase 1:

- a) If all rows are feasible, then go to Phase 2
- b) Find the last infeasible row, ℓ
- c) If row ℓ has no other -, then LP infeasible
- d) Choose a pivot column j with in row
- e) Choose a pivot row i, with $\ell \le i \le m$, an having the least non-negative ratio*.
- f) Pivot at (i, j) and go to step a)

- g) If last row is all \leq 0, then optimal solution
- h) Choose a positive entry as pivot column j
- i) If col. j has no other +, LP is unbounded
- j) Choose a pivot row i with the least nonnegative ratio*.
- k) Pivot at (i, j) and go to step g).

	-1	Xn	 <i>x</i> ₁
$=-t_1$	\oplus		
=	\oplus		
$=-t_m$	\oplus		

^{*}Treat $\frac{0}{2}$ as a "negative ratio" if a < 0.

Phase 1:

- a) If all rows are feasible, then go to Phase 2
- b) Find the last infeasible row, ℓ
- c) If row ℓ has no other -, then LP infeasible.
- d) Choose a pivot column j with in row
- e) Choose a pivot row i, with $\ell \le i \le m$, an having the least non-negative ratio*.
- f) Pivot at (i, j) and go to step a)

- g) If last row is all \leq 0, then optimal solution
- h) Choose a positive entry as pivot column j
- i) If col. j has no other +, LP is unbounded
- j) Choose a pivot row i with the least nonnegative ratio*.
- k) Pivot at (i,j) and go to step g).

	-1	Xn	 x_1
$=-t_1$			
=			
$=-t_{\ell}$	_		
=	\oplus		
=	\oplus		
$=-t_n$	\oplus		
]			

^{*}Treat $\frac{0}{a}$ as a "negative ratio" if a < 0.

Phase 1:

- a) If all rows are feasible, then go to Phase 2
- b) Find the last infeasible row, ℓ
- c) If row ℓ has no other –, then LP infeasible.
- d) Choose a pivot column j with in row l
- e) Choose a pivot row i, with $\ell \le i \le m$, and having the least non-negative ratio*.
- f) Pivot at (i, j) and go to step a)

- g) If last row is all \leq 0, then optimal solution
- h) Choose a positive entry as pivot column j
- i) If col. *j* has no other +, LP is unbounded.
- j) Choose a pivot row i with the least nonnegative ratio*.
- k) Pivot at (i, j) and go to step g)
- *Treat $\frac{0}{3}$ as a "negative ratio" if a < 0.

Phase 1:

- a) If all rows are feasible, then go to Phase 2
- b) Find the last infeasible row, ℓ
- c) If row ℓ has no other -, then LP infeasible.
- d) Choose a pivot column j with in row ℓ
- e) Choose a pivot row i, with $\ell \leq i \leq m$, and having the least non-negative ratio*.
- f) Pivot at (i, j) and go to step a)

- g) If last row is all \leq 0, then optimal solution
- h) Choose a positive entry as pivot column j
- i) If col. j has no other +, LP is unbounded.
- j) Choose a pivot row i with the least non-negative ratio*.
- k) Pivot at (i, j) and go to step g).

<i>x</i> ₁	x_j	Xn	-1	
] =
				=
	_		_	$=-t_{\ell}$
			\oplus	=
			\oplus	=
			\oplus	$=-t_m$
]

^{*}Treat $\frac{0}{a}$ as a "negative ratio" if a < 0.

Phase 1:

- a) If all rows are feasible, then go to Phase 2
- b) Find the last infeasible row, ℓ
- c) If row ℓ has no other -, then LP infeasible.
- d) Choose a pivot column j with in row ℓ
- e) Choose a pivot row i, with $\ell \le i \le m$, and having the least non-negative ratio*.
- f) Pivot at (i, j) and go to step a)

- g) If last row is all \leq 0, then optimal solution
- h) Choose a positive entry as pivot column *j*
- i) If col. j has no other +, LP is unbounded
- j) Choose a pivot row i with the least nonnegative ratio*.
- k) Pivot at (i, j) and go to step g).

$- \mid = -1$	$\begin{array}{cc} \frac{-3}{2} \\ \frac{1}{3} \end{array}$
⊕ =	$\frac{1}{3}^{-}$
$\oplus \mid =$	N/A
$\oplus \mid = -1$	$\frac{7}{2}$
= f	_
	$ \begin{array}{c c} \oplus & = \\ \oplus & = \\ \hline \oplus & = -1 \end{array} $

^{*}Treat $\frac{0}{a}$ as a "negative ratio" if a < 0.

Phase 1:

- a) If all rows are feasible, then go to Phase 2
- b) Find the last infeasible row, ℓ
- c) If row ℓ has no other -, then LP infeasible.
- d) Choose a pivot column j with in row ℓ
- e) Choose a pivot row i, with $\ell \le i \le m$, and having the least non-negative ratio*.
- f) Pivot at (i, j) and go to step a)

- g) If last row is all \leq 0, then optimal solution
- h) Choose a positive entry as pivot column j
- i) If col. j has no other +, LP is unbounded
- j) Choose a pivot row i with the least nonnegative ratio*.
- k) Pivot at (i, j) and go to step g).

	=
	=
_	$=-t_{\ell}$ $\frac{-3}{-2}$
\oplus	$= -t_{\ell} \frac{-3}{-2}$ $= -t_{i} \frac{1}{3}$
\oplus	= N/A
\oplus	$=-t_m$ $\frac{7}{2}$
	= f
	_

^{*}Treat $\frac{0}{a}$ as a "negative ratio" if a < 0.

Phase 1:

- a) If all rows are feasible, then go to Phase 2
- b) Find the last infeasible row, ℓ
- c) If row ℓ has no other –, then LP infeasible.
- d) Choose a pivot column j with in row ℓ
- e) Choose a pivot row i, with $\ell \le i \le m$, and having the least non-negative ratio*.
- f) Pivot at (i, j) and go to step a)

- g) If last row is all ≤ 0 , then optimal solution
- h) Choose a positive entry as pivot column j
- i) If col. j has no other +, LP is unbounded.
- j) Choose a pivot row i with the least nonnegative ratio*.
- k) Pivot at (i, j) and go to step g).
- *Treat $\frac{0}{a}$ as a "negative ratio" if a < 0.

<i>x</i> ₁	x_j	Xn	-1	
] =
				=
			_	$=-t_{\ell}$
	p*		\oplus	$\begin{vmatrix} =-t_{\ell} \\ =-t_{i} \end{vmatrix}$
			\oplus	=
			\oplus	$=-t_m$
				= f

Phase 1:

- a) If all rows are feasible, then go to Phase 2
- b) Find the last infeasible row, ℓ
- c) If row ℓ has no other —, then LP infeasible.
- d) Choose a pivot column j with in row ℓ
- e) Choose a pivot row i, with $\ell \le i \le m$, and having the least non-negative ratio*.
- f) Pivot at (i, j) and go to step a)

- g) If last row is all \leq 0, then optimal solution
- h) Choose a positive entry as pivot column j
- i) If col. j has no other +, LP is unbounded.
- j) Choose a pivot row *i* with the least non-negative ratio*.
- k) Pivot at (i,j) and go to step g).

 x_n	-1	
	\oplus	$=-t_1$
	\oplus	=
	\oplus	=
	\oplus	=
	\oplus	$=-t_m$
		= f
	X _n	

^{*}Treat $\frac{0}{3}$ as a "negative ratio" if a < 0.

Phase 1:

- a) If all rows are feasible, then go to Phase 2
- b) Find the last infeasible row, ℓ
- c) If row ℓ has no other –, then LP infeasible.
- d) Choose a pivot column j with in row ℓ
- e) Choose a pivot row i, with $\ell \le i \le m$, and having the least non-negative ratio*.
- f) Pivot at (i, j) and go to step a)

Phase 2:

- g) If last row is all \leq 0, then optimal solution
- h) Choose a positive entry as pivot column j
- i) If col. j has no other +, LP is unbounded.
- j) Choose a pivot row *i* with the least non-negative ratio*.
- k) Pivot at (i,j) and go to step g).

*Treat $\frac{0}{2}$ as a "negative ratio" if a < 0.

Phase 1:

- a) If all rows are feasible, then go to Phase 2
- b) Find the last infeasible row, ℓ
- c) If row ℓ has no other –, then LP infeasible.
- d) Choose a pivot column j with in row ℓ
- e) Choose a pivot row i, with $\ell \le i \le m$, and having the least non-negative ratio*.
- f) Pivot at (i, j) and go to step a)

Phase 2:

- g) If last row is all \leq 0, then optimal solution
- h) Choose a positive entry as pivot column j
- i) If col. j has no other +, LP is unbounded
- j) Choose a pivot row i with the least nonnegative ratio*.
- k) Pivot at (i, j) and go to step g).

*Treat $\frac{0}{a}$ as a "negative ratio" if a < 0.

Phase 1:

- a) If all rows are feasible, then go to Phase 2
- b) Find the last infeasible row, ℓ
- c) If row ℓ has no other –, then LP infeasible.
- d) Choose a pivot column j with in row ℓ
- e) Choose a pivot row i, with $\ell \le i \le m$, and having the least non-negative ratio*.
- f) Pivot at (i, j) and go to step a)

Phase 2:

- g) If last row is all \leq 0, then optimal solution
- h) Choose a positive entry as pivot column j
- i) If col. j has no other +, LP is unbounded
- j) Choose a pivot row *i* with the least non-negative ratio*.
- k) Pivot at (i, j) and go to step g).

*Treat $\frac{0}{3}$ as a "negative ratio" if a < 0.

<i>x</i> ₁	x_j	Xn	-1	
			\oplus	$=-t_1$
			\oplus	=
			\oplus	=
			\oplus	=
			\oplus	$=-t_m$
	+			= f

Phase 1:

- a) If all rows are feasible, then go to Phase 2
- b) Find the last infeasible row, ℓ
- c) If row ℓ has no other –, then LP infeasible.
- d) Choose a pivot column j with in row ℓ
- e) Choose a pivot row i, with $\ell \le i \le m$, and having the least non-negative ratio*.
- f) Pivot at (i,j) and go to step a)

- g) If last row is all \leq 0, then optimal solution
- h) Choose a positive entry as pivot column j
- i) If col. j has no other +, LP is unbounded.
- j) Choose a pivot row i with the least nonnegative ratio*.
- k) Pivot at (i,j) and go to step g).

<i>x</i> ₁	x_j	Xn	-1	
	\ominus		\oplus	$=-t_1$
	\ominus		\oplus	=
	\ominus		\oplus	=
	\ominus		\oplus	=
	\ominus		\oplus	$=-t_m$
	+			= f

^{*}Treat $\frac{0}{a}$ as a "negative ratio" if a < 0.

Phase 1:

- a) If all rows are feasible, then go to Phase 2
- b) Find the last infeasible row, ℓ
- c) If row ℓ has no other –, then LP infeasible.
- d) Choose a pivot column j with in row ℓ
- e) Choose a pivot row i, with $\ell \le i \le m$, and having the least non-negative ratio*.
- f) Pivot at (i, j) and go to step a)

- g) If last row is all \leq 0, then optimal solution
- h) Choose a positive entry as pivot column j
- i) If col. j has no other +, LP is unbounded.
- j) Choose a pivot row *i* with the least non-negative ratio*.
- k) Pivot at (i, j) and go to step g).

x_1 x_j x_n	-1	ratios
+	\oplus	$=-t_1$ $\frac{8}{3}$
+	\oplus	-
+	\oplus	$=$ $\frac{1}{3}$
\ominus	\oplus	= N/A
+	\oplus	$=-t_m \frac{6}{5}$
+] = f

^{*}Treat $\frac{0}{a}$ as a "negative ratio" if a < 0.

Phase 1:

- a) If all rows are feasible, then go to Phase 2
- b) Find the last infeasible row, ℓ
- c) If row ℓ has no other –, then LP infeasible.
- d) Choose a pivot column j with in row ℓ
- e) Choose a pivot row i, with $\ell \le i \le m$, and having the least non-negative ratio*.
- f) Pivot at (i, j) and go to step a)

- g) If last row is all \leq 0, then optimal solution
- h) Choose a positive entry as pivot column j
- i) If col. j has no other +, LP is unbounded.
- j) Choose a pivot row *i* with the least non-negative ratio*.
- k) Pivot at (i, j) and go to step g).

x_1 x_j x_n	-1	ratios
+	\oplus	$\begin{bmatrix} = -t_1 & \frac{8}{3} \\ - & \frac{4}{3} \end{bmatrix}$
+	\oplus	_ 5
+*	\oplus	$=-t_i$ $\frac{1}{3}$
\ominus	\oplus	= N/A
+	\oplus	$=-t_m \frac{6}{5}$
+		= f

^{*}Treat $\frac{0}{a}$ as a "negative ratio" if a < 0.

Phase 1:

- a) If all rows are feasible, then go to Phase 2
- b) Find the last infeasible row, ℓ
- c) If row ℓ has no other –, then LP infeasible.
- d) Choose a pivot column j with in row ℓ
- e) Choose a pivot row i, with $\ell \le i \le m$, and having the least non-negative ratio*.
- f) Pivot at (i, j) and go to step a)

- g) If last row is all \leq 0, then optimal solution
- h) Choose a positive entry as pivot column j
- i) If col. *j* has no other +, LP is unbounded.
- j) Choose a pivot row *i* with the least non-negative ratio*.
- k) Pivot at (i,j) and go to step g).

^{*}Treat $\frac{0}{a}$ as a "negative ratio" if a < 0.

SA for MT - used to illustrate next example

Algorithm (SA for MT)

- 1. We have maximum Tucker tableau.
- **2.** If $b_1, b_2, ..., b_m \ge 0$, go to **Step 6.**
- **3.** Choose $b_i < 0$ such that i is maximal.
- **4.** If $a_{i1}, a_{i2}, \ldots, a_{in} \ge 0 \Longrightarrow STOP$; the problem is infeasible.
- **5.** If i = m, choose $a_{mj} < 0$, pivot on a_{mj} , and go to **Step 1**. If i < m, choose $a_{ij} < 0$, compute

$$\alpha = \min(\{b_i/a_{ij}\} \cup \{b_k/a_{kj} : k > i, a_{kj} > 0\}),$$

and choose any p with $b_p/a_{pj} = \alpha$. Pivot on a_{pj} and go to **Step 1**.

6. Apply the SA for MBFT.

First examples on SA for MT:

SA for MT - used to illustrate next example

Algorithm (SA for MT)

	-1		var's)	(ind	
	b_1	a _{1n}		a 12	a ₁₁
	b ₂	a_{2n}		a 22	a 21
= -(dep var's)	:	:	٠	:	:
	b _m	a_{mn}		a_{m2}	a_{m1}
= f	d	Cn		c ₂	<i>c</i> ₁

- 1. We have maximum Tucker tableau.
- **2.** If $b_1, b_2, ..., b_m \ge 0$, go to **Step 6.**
- **3.** Choose $b_i < 0$ such that i is maximal.
- **4.** If $a_{i1}, a_{i2}, \ldots, a_{in} \ge 0 \Longrightarrow STOP$; the problem is infeasible.
- **5.** If i = m, choose $a_{mj} < 0$, pivot on a_{mj} , and go to **Step 1**. If i < m, choose $a_{ij} < 0$, compute

$$\alpha = \min(\{b_i/a_{ij}\} \cup \{b_k/a_{kj} : k > i, a_{kj} > 0\}),$$

and choose any p with $b_p/a_{pj}=\alpha$. Pivot on a_{pj} and go to Step 1.

6. Apply the SA for MBFT.

SFU department of mathematics

Apply the simplex algorithm to the maximum tableau:

<i>x</i> ₁	<i>X</i> ₂	-1	
-1	-2	-3	$= -t_1$
1	1	3	$= -t_2$
1	1	2	$=-t_{3}$
-2	4	0	= f

-1	
	=
	=
	=
	=

-1	
	=
	=
	=
	= f

Max Tableau

Max Tableau

