Acid-Base Properties:

(1) Salts and Solutions

-2006 I(2)

Which of the following is an acid salt where its aqueous solution shows alkaline?

NaHSO₄

Na₂SO₄
NaHCO₃

4) Na₂C O₃

5) Mg(0H)₂ 6) MgCl(0H)

-2009 I(6)

(6) Which of the aqueous solutions of the compounds 1) to 5) is acid?

1) K₂CO₃

2) KCl

3) Na₂SO₄

4) NH₄Cl

5) NaHCO₃

(2) Acids and Alkalis

-2006 I(3)

When 100ml of 0.1mol/l hydrochloric acid is added into 200ml of 0.1mol/l sodium hydroxide, arrange the concentrations of H^+ , OH^- , Na^+

ions in the resulting solution in a descending order.

1) $H^{+} > 0 H^{-} > Na^{+}$ 2) $H^{+} > Na^{+} > 0 H^{-}$ 3) $0 H^{-} > H^{+} > Na^{+}$

4) $0 H^{-} > Na^{+} > H^{+}$ 5) $Na^{+} > H^{+} > 0 H^{-}$ 6) $Na^{+} > 0 H^{-} > H^{+}$

-2007 I(4)

(4) Heating a mixture of sodium chloride and concentrated sulfuric acid evolves

1) HCl

2) Cl₂

3) H₂

4) H₂S

5) SO₂

-2014 II

II Give the appropriate values for (a) and (b) in the sentences below to two significant figures. Use the following values for atomic weights: H=1.0, O=16.0, Na=23.0, S=32.0.

100 mL of 1.0 mol L⁻¹ NaOH aq contains (a) g of NaOH. After mixing 100 mL of 1.0 mol L⁻¹ H₂SO₄ aq with the first solution, the concentration of proton becomes (b) mol L⁻¹.

-2015 I(2)

(2) Which of acid aqueous solution 1) to 4) is non-volatile one?

CH₃COOH

H₂SO₄

HCl

4) HF

(6)	Which combination of the substances 1) to 4) will not produce ammonia under appropriate
	temperature and pressure conditions?
	1) copper and concentrated nitric acid
	2) nitrogen and hydrogen
	3) urea and water
	4) calcium hydroxide and ammonium chloride
-2016	: 1/2)
-2010	11(2)
(2)	Which of aqueous solutions 1) to 4) is a weak base?
(-)	· · · · · · · · · · · · · · · · · · ·
	1) CH ₃ COONa 2) C ₆ H ₅ OH (phenol) 3) NH ₄ Cl 4) KOH
	1) C113COONa 2) C6113O11 (phenor) 3) W14C1 4) KO11
-2016	5 II(1)
(1)	When ammonia is dissolved in water, the reaction occurs as below. Here, ammonia works
	as (a) and water does as (b).
	$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$

(3) pH Value

-2007 I(8)

- (8) Which of the following descriptions 1) to 4) is correct?
 - 1) The pH of the solution that results when 10ml of $1.0 \times 10^{-5} \text{mol/} l$ HCl is diluted to 10l with distilled water is 8.
 - 2) The pH of the solution that results when 10ml of 1.0×10⁻³mol/l NaOH is diluted to 1. 01 with distilled water is 9.
 - 3) The pH of the solution that results when 10ml of $1.0\times10^{-2}\text{mol}/l$ CH₃COOH is diluted to 1.01 with distilled water is 4.
 - 4) The pH of the solution that results when 10ml of 1.0×10-3mol/l H₂SO₄ is diluted to 1.01 with distilled water is 5.

-2008 I(5)

- (5) Arrange the following mixed solutions A, B, and C in order of decreasing value of pH.
 - A: 15ml of 0. 1mol/l H₂SO₄ and 10ml of 0. 1mol/l NaOH
 - B: 15ml of 0, 1mol/l HCl and 10ml of 0, 1mol/l Na₂CO₃
 - C: 15ml of 0. 1mol/l HCl and 10ml of 0. 1mol/l NaOH
- 1) A > B > C 2) A > C > B 3) A > B = C 4) B = C > A

- 5) B > A > C 6) B > C > A 7) B > A = C 8) A = C > B

- 9) C > A > B 10) C > B > A 11) C > A = B 12) A = B > C

	rulate the pH of the solution that results upon mixing 10 ml of HCl solution
Witi	a pH of 1.0 with 40 ml of
(a	0.15 mol/l HCl solution.
(Ь	0. 15 mol/l AgNO₃ solution.
$(\mathbf{c}$	0.15 mol/l NaOH solution.
If	necessary, use $\log 2 = 0.30$, $\log 3 = 0.48$, and $\log 7 = 0.85$.
2012 I(5)	
(5) V	Which of the solutions 1) to 4) exhibits a pH value of 2?
	0.01 mol/L aqueous solution of acetic acid
	2) 0.05 mol/L sulfuric acid
	3) 0.01 mol/L hydrochloric acid
-	4) 1x10 ⁻¹² mol/L aqueous solution of sodium hydroxide
	a dissolved in water at the concentration of 1 mol L^{-1} , which of the substances 1) to 4) is the lowest pH?
(2) When	
(2) When	s the lowest pH?

- IV Fill in (a) \sim (d) in the sentences below with the most appropriate values. Use the following values if necessary; the atomic weights of K, O, and H are 39, 16, and 1.0, respectively, and log 3 = 0.48. Calculate the values to two significant figures for (a) and (b), and one to three significant figures for (d).
 - (1) Heat of 11.6 kJ was released when 11.2 g of KOH was completely dissolved in water. The heat of solution is ($\,$ a $\,$) kJ mol $^{-1}$. Water was more added to adjust 2.0 L of KOH solution. Next, 5.0 mL of this KOH solution was added to 10.0 mL of 0.10 mol L $^{-1}$ hydrochloric acid. The pH of the resultant solution is ($\,$ b $\,$).