## **Mathematisches Institut**

# Modulhandbuch

Master of Science (M.Sc.) im Fach Mathematics in Data and Technology - Hauptfach (Prüfungsordnungsversion 2024)



## Inhaltsverzeichnis

| Prolog                                                                                            | 4   |
|---------------------------------------------------------------------------------------------------|-----|
| Pflichtmodule                                                                                     | 9   |
| Basics in Applied Mathematics                                                                     | 10  |
| Mathematical Seminar                                                                              |     |
| Graduate Student Speaker Series                                                                   | 18  |
| Advanced Lecture                                                                                  | 21  |
| Advanced Lecture in Numerics                                                                      | 22  |
| Advanced Lecture in Stochastics                                                                   | 35  |
| Praxismodule                                                                                      | 51  |
| Industrial Placement                                                                              | 52  |
| Programming Project                                                                               | 54  |
| Electives in Data                                                                                 | 56  |
| Electives in Data: Vorlesungen der Mathematik                                                     | 57  |
| Algorithmic Aspects of Data Analytics and Machine Learning                                        | 58  |
| Analysis III                                                                                      | 62  |
| Introduction to Theory and Numerics of Partial Differential Equations                             | 66  |
| Functional Analysis                                                                               | 71  |
| Lévy Processes and Financial Applications                                                         | 75  |
| Machine Learning for Stochastics                                                                  | 80  |
| Markov Chains                                                                                     | 84  |
| Mathematical Modelling                                                                            | 88  |
| Measure Theory                                                                                    | 92  |
| Numerical Approximation of Stochastic Differential Equations                                      | 96  |
| Numerics for Differential Equations                                                               | 101 |
| Probability Theory                                                                                | 107 |
| Mathematical Seminar                                                                              | 112 |
| Electives in Data: Veranstaltungen der Technischen Fakultät                                       | 115 |
| Computer Vision                                                                                   | 116 |
| Foundations of Artificial Intelligence                                                            | 120 |
| Foundations of Deep Learning                                                                      | 125 |
| Image Processing and Computer Graphics                                                            | 128 |
| Modelling and System Identification                                                               | 133 |
| Numerical Optimal Control                                                                         | 136 |
| Numerical Optimal Control                                                                         |     |
| Numerical Optimization                                                                            | 148 |
| Numerical Optimization                                                                            | 153 |
| Reinforcement Learning                                                                            |     |
| Electives in Data: Veranstaltungen der Biologie                                                   | 162 |
| Models of Neurons and Networks                                                                    |     |
| Electives in Data: Veranstaltungen der Wirtschaftswissenschaften                                  | 164 |
| Financial Time Series                                                                             | 165 |
| Futures and Options                                                                               |     |
| Intermediate Econometrics                                                                         |     |
| Electives                                                                                         |     |
| Electives: Praktische Übungen                                                                     | 179 |
| Introduction to Theory and Numerics of Partial Differential Equations (Einführung in Theorie und  |     |
| Numerik partieller Differentialgleichungen): Praktische Übung                                     |     |
| Theory and Numerics of Partial Differential Equations – Adaptivity and Iterative Solution Methods | 3:  |
| Praktische Übung                                                                                  |     |
| Theory and Numerics of Partial Differential Equations – Nonlinear Problems: Praktische Übung      | 186 |

| Electives: Mathematik-Vorlesungen               | 189 |
|-------------------------------------------------|-----|
| Algebra und Zahlentheorie                       |     |
| Algebraische Topologie                          | 195 |
| Allgemeine Relativitätstheorie                  |     |
| Differentialgeometrie                           |     |
| Einführung in partielle Differentialgleichungen |     |
| Funktionentheorie                               |     |
| Kurven und Flächen                              |     |
| Mathematische Logik                             |     |
| Modelltheorie                                   |     |
| Topologie                                       |     |
| Variationsrechnung                              | 232 |
| Electives: andere Veranstaltungen               |     |
| Seminar                                         |     |
| Lernen durch Lehren                             |     |
| Master Thesis                                   |     |
| Epilog                                          |     |

## Prolog

## 1. Kenndaten des Studiengangs

| Fach                      | Mathematics in Data and Technology                                     |
|---------------------------|------------------------------------------------------------------------|
| Abschluss                 | Master of Science                                                      |
| Prüfungsordnungsversion   | 2024                                                                   |
| Art des Studiengangs      | konsekutiv                                                             |
| Studienform               | Vollzeit                                                               |
| Regelstudienzeit          | vier Semester                                                          |
| Sprache                   | englisch, einzelne Wahlveranstaltungen deutsch                         |
| Studienbeginn             | Wintersemester                                                         |
| Hochschule                | Albert-Ludwigs-Universität Freiburg                                    |
| Fakultät                  | Fakultät für Mathematik und Physik                                     |
| Institut                  | Mathematisches Institut                                                |
| Homepage des Instituts    | https://www.math.uni-freiburg.de/                                      |
| Webseite des Studiengangs | https://www.math.uni-freiburg.de/nlehre/de/<br>studiengaenge/msc_data/ |

## 2. Profil und Ziele des Studiengangs

Der englischsprachige Masterstudiengang Mathematics in Data and Technology richtet sich an Absolventinnen/Absolventen von Bachelorstudiengängen der Fachrichtungen Mathematik und Informatik sowie aus dem ingenieur- oder naturwissenschaftlichen Bereich und vermittelt vertiefte Kenntnisse in Teilbereichen der Angewandten Mathematik und angrenzender wissenschaftlicher Disziplinen, die für die mathematische Datenanalyse in Anwendungsbereichen wie Künstliche Intelligenz, Maschinelles Lernen oder Simulation realer Vorgänge relevant sind. Aufbauend auf einem Einführungsmodul, das einen Überblick über die Gebiete Numerik, Stochastik und Optimierung vermittelt, sowie einem Vertiefungsmodul wahlweise aus der Numerik oder aus der Stochastik, bietet der Studiengang die Möglichkeit der individuellen Schwerpunktsetzung in Gebieten wie beispielsweise Deep Learning, Künstliche Intelligenz, Maschinelles Lernen, Optimierung, Statistik. Die Studierenden werden dazu befähigt, die mathematischen Methoden dieser Gebiete zu analysieren, zu beurteilen und weiterzuentwickeln. Der erfolgreiche Abschluss des Masterstudiums qualifiziert für Tätigkeiten in Berufsfeldern wie Datenanalyse, Digital Engineering, Anwendung und Methodenbildung im Bereich Deep Learning und Künstliche Intelligenz, Risikomodellierung oder Softwareentwicklung. Überdurchschnittlich qualifizierten Absol-ventinnen/Absolventen steht zudem der Einstieg in eine akademische Laufbahn offen.

#### Fachliche Qualifikationsziele:

Absolventinnen und Absolventen des Studiengangs verfügen über vertieftes Wissen der mathematischen Grundlagen in dem von ihnen gewählten Spezialisierungsbereich sowie Erfahrung der Umsetzung der Verfahren in Bereichen der Naturwissenschaft, Technik und Medizin. Sie sind in der Lage, die darauf basierenden Methoden auf konkrete Fragestellungen anzuwenden und zu analysieren. Insbesondere können sie Verfahren entwickeln, die technische Umsetzung planen und darauf basierende Ergebnisse beurteilen. Darüber hinaus können sie sich eigenständig in neue wissenschaftli-

che Entwicklungen ihres Spezialisierungsbereichs einarbeiten und entsprechende Konzepte anderen Fachleuten vermitteln.

## Überfachliche Qualifikationsziele:

Die Absolventinnen und Absolventen besitzen fortgeschrittene Analyse-, Problemlöse- und Entscheidungskompetenzen unter Berücksichtigung weitergehender fachlicher und gesellschaftlicher Aspekte und unter Bewertung und Reflexion der Grenzen mathematischer Modelle. Sie besitzen in vertieftem Maße die Fähigkeit, abstrakte Sachverhalte zu analysieren und damit verbundene komplexe Problemstellungen eigenständig, ausdauernd und umfassend zu lösen. Ihnen sind die besonderen Herausforderungen der Umsetzung mathematischer Methoden und Interpretation der Ergebnisse bei der Anwendung auf konkrete technische und gesellschaftliche Fragestellungen vertraut. Die Absolventinnen und Absolventen sind in der Lage, kritisch zu denken und wissenschaftlich zu reflektieren, und können ihre mündliche und schriftliche Kommunikation an ein Zielpublikum anpassen. Sie sind team- und kooperationserfahren und besitzen die Fähigkeit zum Zeitmanagement und zur Selbstorganisation.

## 3. Zulassungsbedingungen

Qualifizierter Bachelor-Abschluss in Mathematik oder Informatik oder einem natur- oder ingenieurwissenschaftlichem Studiengang mit

- mindestens 30 ECTS-Punkten an Fachwissenschaft Mathematik, darunter mindestens 12 ECTS-Punkte in Analysis und Linearer Algebra,
- Niveau B2 in Englisch.

## 4. Gliederung des Studiengangs

| Modul/<br>Lehrveranstal-<br>tung                             | Pflicht/Wahl-<br>pflicht/Wahl | ECTS/<br>Art der LV | empfohlenes Fachseme- ster/ SWS | Studien-/Prü-<br>fungs- lei-<br>stung |
|--------------------------------------------------------------|-------------------------------|---------------------|---------------------------------|---------------------------------------|
| Basics in App-<br>lied Mathema-<br>tics                      | P                             | 12                  | 1. FS                           | SL                                    |
| Basics in App-<br>lied Mathema-<br>tics: Vorlesung           | Р                             | V                   | 3                               |                                       |
| Basics in App-<br>lied Mathema-<br>tics: Übung               | Р                             | Ü                   | 2                               | SL: Übungen                           |
| Basics in App-<br>lied Mathema-<br>tics: Praktische<br>Übung | Р                             | PÜ                  | 1                               | SL: Computer-<br>übungen              |
| Advanced<br>Lecture in<br>Numerics                           | WP                            | 11                  | 1. oder 2. FS                   | PL: mündliche<br>Prüfung              |

| Weiterführende<br>Vorlesung aus<br>der Numerik                                                                     | Р  | V+Ü      | 4+2                    | SL: Übungen                                                            |  |
|--------------------------------------------------------------------------------------------------------------------|----|----------|------------------------|------------------------------------------------------------------------|--|
| Advanced<br>Lecture in Sto-<br>chastics                                                                            | WP | 11       | 1. oder 2. FS          | PL: mündliche<br>Prüfung                                               |  |
| Weiterführende<br>Vorlesung aus<br>der Stochastik                                                                  | Р  | V+Ü      | 4+2                    | SL: Übungen                                                            |  |
| Electives in<br>Data                                                                                               | WP | 30–48    | 1. bis 3. FS           | PL: Klausur,<br>mündliche<br>Prüfung oder<br>mündliche<br>Präsentation |  |
| Lehrveranstal-<br>tungen aus<br>dem Bereich<br>Data Science                                                        | WP | variabel | variabel               | SL                                                                     |  |
| Electives                                                                                                          | WP | 0–18     | 1. bis 3. FS           | SL                                                                     |  |
| Weitere Lehr- veranstaltun- gen inner- halb des M.Sc. Mathematics in Data and Technology oder des M.Sc. Mathematik | WP | variabel | variabel               | SL                                                                     |  |
| Mathematical<br>Seminar                                                                                            | Р  | 6        | 2.–3. FS               | PL: mündliche<br>Präsentation                                          |  |
| Seminar aus<br>der Mathematik                                                                                      | WP | S        | 2                      | SL: regelmä-<br>ßige Teilnahme                                         |  |
| Industrial Pla-<br>cement                                                                                          | WP | 9        | 2.–3. FS               | SL                                                                     |  |
| Firmen-/Indu-<br>striepraktikum                                                                                    | WP | Pr       | mind. sechswö-<br>chig | SL: Absol-<br>vierung des<br>Praktikums mit<br>Zeugnis                 |  |
| Programming<br>Project                                                                                             | WP | 9        | 2.–3. FS               | SL                                                                     |  |
| Programmier-<br>projekt                                                                                            | WP | Pr       |                        | SL: Erbringung<br>der verlangten<br>Mindestanfor-<br>derungen          |  |

| Graduate Stu-<br>dent Speaker<br>Series                                      | P | 4  | 2.–4. FS | SL                                            |
|------------------------------------------------------------------------------|---|----|----------|-----------------------------------------------|
| Seminar zur Präsentation von Masterar- beiten inner- halb des Stu- diengangs | P | S  | 2        | SL: regelmä-<br>ßige Teilnahme<br>und Vortrag |
| Master Thesis                                                                | Р | 30 | 4. FS    | PL: Masterar-<br>beit                         |

## 5. Studienverlaufsplan

Ein beispielhafter Studienverlaufsplan befindet sich auf der Webseite <a href="https://www.math.uni-freiburg.de/nlehre/de/studiengaenge/msc">https://www.math.uni-freiburg.de/nlehre/de/studiengaenge/msc</a> data/

#### 6. Lehr- und Lernformen

Die wesentlichen Veranstaltungsformen sind

- Vorlesungen mit begleitenden, in Tutoraten organisierten Übungen,
- Seminare.
- Computer- und Programmierübungen,
- sowie wahlweise ein Industriepraktikum oder größeres Programmierprojekt.

Für alle diese Lehrveranstaltungsarten gibt es in jedem Semester ein vielfältiges Angebot. Die Gruppengröße liegt für Vorlesungen je nach Niveau und Nachfrage zwischen 5 und 100, für Tutorate zu Übungen und Computerübungen bei maximal 25 und für Seminare bei maximal 15 im Winter- und 13 im Sommersemester. Master-Arbeiten und das Program-mierprojekt werden stets individuell betreut.

Die Veranstaltungsart im Bereich der Wahlmodule ist nicht festgelegt, besteht jedoch in der Regel auch aus einer der o. g. Formen.

## 7. Prüfungssystem

Das einführende Pflichtmodul "Basics in Applied Mathematics" hat einen Umfang von 12 ECTS-Punkten, wobei nur Studienleistungen zu erbringen sind. In den Wahlpflichtmodulen "Advanced Lecture in Numerics" und "Advanced Lecture in Stochastics" wird die jeweils gewählte Vorlesung durch ein mündliches Prüfungsgespräch geprüft. Im Mathematical Seminar (6 ECTS-Punkte) besteht die Prüfungsleistung aus der mündlichen Präsentation (Seminarvortrag), dazu kommt die Master-Arbeit (30 ECTS-Punkte) als Prüfungsleistung. Die Prüfungsleistungen innerhalb der Wahlpflichtmodule "Electives in Data" sind veranstaltungsabhängig, Prüfungen von Vorlesungen erfolgen je nach Vorlesung schriftlich oder in Form eines mündlichen Prüfungsgesprächs. Es stehen ausreichend viele mit Klausuren geprüfte Vorlesungen, mündliche geprüfte Vorlesungen und Seminare zur Wahl, so dass die Studierenden nicht auf eine Prüfungsart festgelegt sind. Zusätzlich zu den Prüfungsleistungen sind in den vorgenannten Modulen in der Regel auch Studienleistungen zu erbringen, etwa in Form der erfolgreichen Bearbeitung von Übungsaufgaben.

Der Umfang der Wahlmodule ("Electives") ist nicht näher spezifiziert; diese schließen ausschließlich mit Studienleistungen ab.

Es gibt keine Zulassungsbedingungen zu den Prüfungen außer zur Master-Arbeit. Anwesenheitspflicht herrscht in den Seminaren, in denen Präsentation und Austausch wesentliche Elemente des Lernerfolgs sind.

Informationen zur Anmeldung von Prüfungen finden sich auf den <u>Informationsseiten des Prüfungs</u>amts.

| Name des Kontos         | Nummer des Kontos |
|-------------------------|-------------------|
| Pflichtmodule           | 07LE23KT-MScD24-P |
| Fachbereich / Fakultät  |                   |
| Mathematisches Institut |                   |

| Pflicht/Wahlpflicht (P/WP) Pflicht |  |
|------------------------------------|--|
|------------------------------------|--|

#### Kommentar

Pflichtmodule im Studiengang M.Sc. Mathematics in Data and Technology sind laut Prüfungsordnung

- Basics in Applied Mathematics,
- Mathematical Seminar,
- Graduate Student Speaker Series

#### sowie

- der Bereich Electives in Data,
- die Master Thesis.

Im nachfolgenden Abschnitt werden lediglich die ersten drei Module genauer beschrieben, den beiden letztgenannten sind eigene Kapitel innerhalb dieses Modulhandbuches gewidmet.

Das Modul Basics in Applied Mathematics hat feste Bestandteile und festen Inhalt, als Mathematical Seminar kann dagegen eines der von den Abteilungen für Angewandte Mathematik und der für Mathematische Stochastik im jeweiligen Semester angebotenen (und im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern zu den Lehrveranstaltungen als Mathematical Seminar verwendbar angegebenen) frei gewählt werden.

1

| Name des Moduls                                         | Nummer des Moduls        |
|---------------------------------------------------------|--------------------------|
| Basics in Applied Mathematics                           | 07LE23MO-MScD24-P-Basics |
| Verantwortliche/r                                       |                          |
| Prof. Dr. Sören Bartels<br>Prof. Dr. Peter Pfaffelhuber |                          |
| Fachbereich / Fakultät                                  |                          |
| Mathematisches Institut                                 |                          |

| ECTS-Punkte                 | 12,0                                 |
|-----------------------------|--------------------------------------|
| Arbeitsaufwand              | ca. 360 Stunden                      |
| Semesterwochenstunden (SWS) | 8,0                                  |
| Präsenzstudium              | ca. 120 Stunden                      |
| Selbststudium               | ca. 240 Stunden                      |
| Mögliche Fachsemester       | 1                                    |
| Moduldauer                  | ein Semester                         |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht                              |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |

Keine formale Voraussetzung

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Grundkenntnisse im Rahmen der Zugangsvoraussetzungen des Studiengangs

| Zugehörige Veranstaltungen                                        |           |         |      |     |                     |
|-------------------------------------------------------------------|-----------|---------|------|-----|---------------------|
| Name                                                              | Art       | P/WP    | ECTS | SWS | Arbeits-<br>aufwand |
| Basics in Applied Mathematics: Vorlesung                          | Vorlesung | Pflicht |      | 4,0 |                     |
| Basics in Applied Mathematics: Übung                              | Übung     | Pflicht |      | 2,0 |                     |
| Basics in Applied Mathematics: Praktische Übung (Computerübungen) | Übung     | Pflicht |      | 2,0 |                     |

## Lern- und Qualifikationsziele des Moduls

- Die Studierenden kannen die inhalte der Vorlesung, insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die mathematische Fach- und Formelsprache und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische fragestellungen aus den Bereichen Numerik, Stochastik und Optimierung mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwickeln, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.

- Sie wiederholen und vertiefen ihre grundlegenden Kenntnisse in numerischer Analysis und Optimierung und lernen wichtige Verfahren und Algorithmen hierzu kennen. Ferner erweitern und vertiefen sie ihre Grundkenntnisse in Stochastik, auch auf maßtheoretischer Grundlage.
- Sie sind in der Lage, die in der Vorlesung erlernten Techniken und Algorithmen zu implementieren und an praxisrelevanten Beispielen zu erproben.

### Zu erbringende Prüfungsleistung

#### Keine

## Zu erbringende Studienleistung

- Bestehen der Übungen,
- Bestehen der zugehörigen Praktischen Übung
- sowie Bestehen einer 20-30-minütigen mündlichen Prüfung.

Die genauen Anforderungen für das Bestehen der Übungen und der Praktischen Übung werden jeweils im Wintersemester im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern Mathematik veröffentlicht.

#### Benotung

#### unbenotet

#### Lehrmethoden

- Tafel- oder Folienvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten,
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur.
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten,
- Bearbeitung und Besprechung von Programmieraufgaben innerhalb der Praktischen Übung.

#### Verwendbarkeit des Moduls

Pflichtmodul im M.Sc. Mathematics in Data and Technology (PO 2024)



| Name des Moduls Nummer des Moduls        |                          |  |  |
|------------------------------------------|--------------------------|--|--|
| Basics in Applied Mathematics            | 07LE23MO-MScD24-P-Basics |  |  |
| Veranstaltung                            |                          |  |  |
| Basics in Applied Mathematics: Vorlesung |                          |  |  |
| Veranstaltungsart                        | Nummer                   |  |  |
| Vorlesung                                | 07LE23V-0-Basics         |  |  |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                  |
| Mögliche Fachsemester       | 1                                    |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht                              |
| Lehrsprache                 | englisch                             |

#### Inhalte

In der Vorlesung werden grundlegende Konzepte und Verfahren der Numerik, stochastik und Optimierung vermittelt, die für Fragestellungen der Datenanalyse und Künstlichen Intelligenz von besonderer Relevanz sind. Diese sollen anhand theoretischer sowie praktischer Aufgaben und Beispiele vertieft werden. Damit soll insbesondere auch die Basis für weiterführende Vorlesungen in den drei oben genannten Bereichen gelegt werden. Mögliche Themenschwerpunkte dabei sind:

- Matrix-Faktorisierungen, Konditionierung und Stabilitätsbedingungen, Eliminationsverfahren, polynomielle Interpolation, diskrete Fouriertransformation, numerische Quadraturen, nichtlineare Probleme
- Konvexität und Optimierung, Abstiegsverfahren, (stochastische) Gradientenmethoden
- stochastische Grundlagen, Zufallsvariablen, Momente, Abhängigkeit, bedingte Erwartungen, stochastische Grenzwertsätze, Markov-Ketten, stochastische Algorithmen

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

Die Dozenten stellen oft Vorlesungsskripte für die jeweiligen Vorlesungsteile zur Verfügung. Daneben können für die einzelnen Teilbereiche auch folgende Lehrbücher hilfreich sein (die Auswahl ist exemplarisch, es gibt jeweils noch zahlreiche andere Lehrbücher, die ebenso geeignet sind):

### Numerik:

- S. Bartels: *Numerik 3x9 (2. Auflage)*, Springer Spektrum, 2023.
- A. Carteroni, R. Sacco, F. Saleri: Numerical Mathematics (Second Edition), Springer, 2007.

#### **Optimierung:**

S.J. Wright, B. Recht: Optimization for Data Analysis, Cambridge University Press, 2022.

#### Stochastik:

K. L. Chung, F. AitSahila: Elementary Probability Theory (Fourth Edition), Springer, 2003.,

- N. Henze: Stochastik. Eine Einführung mit Grundzügen der Maßtheorie, Springer Spektrum, 2019.
- A. N. Shiryaev: *Probability-1 (Third Edition)*, Springer, 2016.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung

## Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Mathematische Grundkenntnisse im Rahmen der Zugangsvoraussetzungen des M.Sc.-Studiengangs "Mathematics in Data and Technology".

7

| Name des Moduls  Nummer des Moduls   |                          |  |  |
|--------------------------------------|--------------------------|--|--|
| Basics in Applied Mathematics        | 07LE23MO-MScD24-P-Basics |  |  |
| Veranstaltung                        |                          |  |  |
| Basics in Applied Mathematics: Übung |                          |  |  |
| Veranstaltungsart                    | Nummer                   |  |  |
| Übung                                | 07LE23Ü-Basics           |  |  |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       | 1                                    |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht                              |
| Lehrsprache                 | englisch                             |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.



| Name des Moduls                                                   | Nummer des Moduls        |
|-------------------------------------------------------------------|--------------------------|
| Basics in Applied Mathematics                                     | 07LE23MO-MScD24-P-Basics |
| Veranstaltung                                                     |                          |
| Basics in Applied Mathematics: Praktische Übung (Computerübungen) |                          |
| Veranstaltungsart                                                 | Nummer                   |
| Übung                                                             | 07LE23PÜ-Basics          |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       | 1                                    |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht                              |
| Lehrsprache                 | englisch                             |

#### Inhalte

Innerhalb der Praktischen Übung werden konkrete Beispiele zu einzelnen Themen der Vorlesung programmiertechnisch am Computer umgesetzt und berechnet. Parallel dazu sollen auch die Kenntnisse der Studierenden in den dazu benutzten Programmen und Programmiersprachen erweitert und vertieft werden. Verwendet werden vornehmlich die Programmiersprachen Python und/oder C/C++, eventuell auch die Programme Matlab und R.

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

## Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Siehe beim Modul sowie ergänzend auch im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.

| Name des Moduls              | Nummer des Moduls              |
|------------------------------|--------------------------------|
| Mathematical Seminar         | 07LE23MO-MScD24-P-Semi-<br>nar |
| Verantwortliche/r            |                                |
| Prof. Dr. Peter Pfaffelhuber |                                |
| Fachbereich / Fakultät       |                                |
| Mathematisches Institut      |                                |

| ECTS-Punkte                 | 6,0                            |
|-----------------------------|--------------------------------|
| Arbeitsaufwand              | ca. 180 Stunden                |
| Semesterwochenstunden (SWS) | 2,0                            |
| Präsenzstudium              | ca. 40 Stunden                 |
| Selbststudium               | ca. 140 Stunden                |
| Mögliche Fachsemester       | 3                              |
| Moduldauer                  | ein Semester                   |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht                        |
| Angebotsfrequenz            | Findet in jedem Semester statt |

## Teilnahmevoraussetzung laut Prüfungsordnung

Vergabe eines Seminarplatzes bei den Vorbesprechungen am Ende des Vorsemesters.

### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> sind semesterweise die wählbaren Seminare und die jeweils vorausgesetzten Vorkenntnisse beschrieben.

Die Seminarplätze und einzelnen Vortragsthemen werden üblicherweise innerhalb der Vorbesprechungen am Ende des Vorsemesters vergeben. Die Vorbesprechungstermine werden jeweils rechtzeitig vorab im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern zu den Lehrveranstaltungen bekanntgegeben.

| Zugehörige Veranstaltungen |     |      |      |                     |
|----------------------------|-----|------|------|---------------------|
| Name                       | Art | P/WP | ECTS | Arbeits-<br>aufwand |

#### Inhalte

In einem Seminar wird ein vertieftes wissenschaftliches Thema der Mathematik durch Lektüre von Fachliteratur erarbeitet und dann in Vorträgen präsentiert.

Die konkreten Inhalte des Moduls hängen vom gewählten Seminar ab; die Inhalte der wählbaren Seminare sind semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern des Mathematischen Instituts beschrieben.

## Lern- und Qualifikationsziele des Moduls

■ Die Studierenden können sich in ein wissenschaftliches Thema der Mathematik durch Lektüre von Fachliteratur selbständig, aber unter fachlicher Begleitung einarbeiten.

- Die Studierenden können dieses Thema didaktisch aufbereiten und in freiem Vortrag anschaulich, verständlich und fachlich korrekt vortragen; sie können Fragen zum Vortragsthema beantworten und sich einer kritischen Diskussion stellen.
- Die Studierenden können fachliche Fragen zu Vorträgen formulieren und Vorträge konstruktiv-kritisch begleiten.

### Zu erbringende Prüfungsleistung

Gestaltung einer ca. 90-minütigen Seminarsitzung mit Vortrag und Diskussion.

#### Zu erbringende Studienleistung

Die zu erbringenden Studienleistungen hängen vom gewählten Seminar ab. Die genauen Anforderungen werden semesterweise im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> veröffentlicht.

#### Benotung

Die Note der Prüfung geht (proportional zur Anzahl der ECTS-Punkte des Moduls und abhängig vom Umfang der als "Electives in Data" gewählten Veranstaltungen) mit mindestens 6/95 und höchstens 6/77 in die Gesamtnote ein.

#### Lehrmethoden

- Gestaltung der Seminarsitzungen durch Studierende (mit Hilfe bei der Vorbereitung durch Dozent/in bzw. Assistent/in) sowie
- aktive Beteiligung aller Teilnehmenden durch Fragen und Diskussion.

#### Literatur

Literaturangaben für das gewählte Seminar finden Sie im <u>Kommentierten Vorlesungsverzeichnis mit den</u> <u>Ergänzungen zu den Modulhandbüchern</u> des Mathematischen Instituts, weitere werden ggf. in der Vorbesprechung des Seminars bekanntgegeben.

#### Verwendbarkeit des Moduls

Das Modul ist Pflichtmodul im M.Sc. Mathematics in Data and Technology.

Die für das Modul gewählten Seminare können auch als "Elective in Data" und in anderen Mathematik-Studiengängen verwendet werden.



| Name des Moduls                 | Nummer des Moduls      |
|---------------------------------|------------------------|
| Graduate Student Speaker Series | 07LE23MO-MScD24-P-GSSS |
| Verantwortliche/r               |                        |
| Prof. Dr. Sören Bartels         |                        |
| Fachbereich / Fakultät          |                        |
| Mathematisches Institut         |                        |

| ECTS-Punkte                 | 4,0                                                            |
|-----------------------------|----------------------------------------------------------------|
| Arbeitsaufwand              | ca. 120 stunden                                                |
| Semesterwochenstunden (SWS) | 2,0                                                            |
| Präsenzstudium              | ca. 20 Stunden                                                 |
| Selbststudium               | ca. 100 Stunden                                                |
| Mögliche Fachsemester       | 3;4                                                            |
| Moduldauer                  | ein Semester (oder länger, abhängig von der Erbringung der SL) |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht                                                        |
| Angebotsfrequenz            | Findet in jedem Semester statt                                 |

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung

#### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

In diesem Seminar stellen die fortgeschrittenen Studierenden des Master-Studiengangs das Konzept ihrer Master-Arbeit vor, ergänzend werden weitere Vorträge von Dozentinnen und Dozenten, Doktorandinnen und Doktoranden über aktuelle Forschungsprojekte stattfinden sowie Präsentationen von Studierenden über ihre Programmierprojekte und Industriepraktika. Auch einzelne Vorträge ehemaliger Absolventen über ihre derzeitige Arbeit in der Industrie zur Veranschaulichung der beruflichen Perspektiven des Studiengangs sind möglich.

Die Termine der Graduate Student Speaker Series innerhalb eines Semesters werden auch im <u>Wochenprogramm</u> des Mathematischen instituts bekanntgegeben.

| Zugehörige Veranstaltungen      |         |         |      |     |                     |
|---------------------------------|---------|---------|------|-----|---------------------|
| Name                            | Art     | P/WP    | ECTS | SWS | Arbeits-<br>aufwand |
| Graduate Student Speaker Series | Seminar | Pflicht |      | 2,0 |                     |

#### Lern- und Qualifikationsziele des Moduls

- Die Studierenden können selbst erarbeitete mathematische Ergebnisse didaktisch aufbereiten und in freiem Vortrag einem Fachpublikum verständlich und fachlich korrekt präsentieren.
- Die Studierenden können Fragen zu ihrer Master-Arbeit bzw. ihren Programmierprojekten oder Praktikumstätigkeit beantworten, sich einer kritischen Diskussion stellen und ggf. sinnvolle Fragen zu den Master-Arbeiten von Kommilitonen stellen und deren Präsentationen konstruktiv-kritisch begleiten.

## Zu erbringende Prüfungsleistung

Keine

## Zu erbringende Studienleistung

Teilnahme an mindestens 10 Terminen sowie Halten eines Vortrags in Form der Gestaltung einer 90-minütigen Seminarsitzung.

## Benotung

unbenotet

## Lehrmethoden

- Selbständige Gestaltung der Seminarsitzungen durch Studierende sowie
- aktive Beteiligung aller Teilnehmenden durch Fragen und Diskussion.

## Verwendbarkeit des Moduls

Das Modul ist Pflichtmodul des Studiengangs M.Sc. Mathematics in Data and Technology und kann nur in diesem verwendet werden.



| lame des Moduls Nummer des Modul                 |                |  |
|--------------------------------------------------|----------------|--|
| Graduate Student Speaker Series 07LE23MO-MScD24- |                |  |
| Veranstaltung                                    |                |  |
| Graduate Student Speaker Series                  |                |  |
| Veranstaltungsart                                | Nummer         |  |
| Seminar                                          | 07LE23S-0-GSSS |  |

| ECTS-Punkte                 |                                |
|-----------------------------|--------------------------------|
| Semesterwochenstunden (SWS) | 2,0                            |
| Mögliche Fachsemester       | 3;4                            |
| Angebotsfrequenz            | Findet in jedem Semester statt |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht                        |
| Lehrsprache                 | englisch                       |

#### Inhalte

Da in diesem Seminar Studierende über ihre Master-Arbeiten und Programmierprojekte berichten sollen sowie gelegentlich auch Promovierende und Dozentinnen und Dozenten über ihre Forschungsprojekte, werden die Vortragsthemen ein weites Spektrum aktueller Fragestellungen aus der Numerik, Stochastik und Optimierungstheorie abdecken. In einzelnen Vorträgen von Vertretern aus der Industrie werden zudem Anwendungsmöglichkeiten und deren Umsetzung in der Praxis sowie berufliche Perspektiven nach dem Studium beleuchtet.

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung



| Name des Kontos         | Nummer des Kontos  |
|-------------------------|--------------------|
| Advanced Lecture        | 07LE23KT-MScD24-AL |
| Fachbereich / Fakultät  |                    |
| Mathematisches Institut |                    |

| Pflicht/Wahlpflicht (P/WP) | Pflicht |
|----------------------------|---------|
| ECTS-Punkte                | 11,0    |

#### Kommentar

Innerhalb des Studiengangs ist eine vierstündige, fortgeschrittene Vorlesung aus den Bereichen Numerik oder Stochastik als "Advanced Lecture" zu belegen. Dazu kann, abhängig vom persönlichen Interesse und Wahl des thematischen Schwerpunkts innerhalb des Studiengangs,

- entweder eine weiterführende Numerik-Vorlesung ("Advanced Lecture in Numerics")
- oder eine weiterführende Stochastik-Vorlesung ("Advanced Lecture in Stochastics")

gewählt werden. Die dafür jeweils zur Auswahl stehenden Vorlesungen sowie weitere Informationen sind in den nachfolgenden Modulbeschreibungen zusammengefasst.

Sämtliche als "Advanced Lecture" wählbaren Vorlesungen sind alternativ auch im Modul "Electives in Data" verwendbar, jedoch *nicht* innerhalb des Moduls "Electives". Umgekehrt sind im Modul "Electives" anrechenbare Vorlesungen auch nicht als "Advanced Lecture" verwendbar.



| Name des Moduls              | Nummer des Moduls      |
|------------------------------|------------------------|
| Advanced Lecture in Numerics | 07LE23MO-MScD24-AL-Num |
| Verantwortliche/r            |                        |
| Prof. Dr. Sören Bartels      |                        |
| Fachbereich / Fakultät       |                        |
| Mathematisches Institut      |                        |

| ECTS-Punkte                 | 11,0                           |
|-----------------------------|--------------------------------|
| Arbeitsaufwand              | 330 Stunden                    |
| Semesterwochenstunden (SWS) | 6,0                            |
| Präsenzstudium              | ca. 90 Stunden                 |
| Selbststudium               | ca. 240 Stunden                |
| Mögliche Fachsemester       | 2;3                            |
| Moduldauer                  | in der Regel ein Semester      |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                    |
| Angebotsfrequenz            | Findet in jedem Semester statt |

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung

## Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Innerhalb dieses Moduls ist eine fortgeschrittene vierstündige Vorlesung mit zweistündigen Übungen aus der Theorie und Numerik partieller Differntialgleichungen zu belegen.

Die hierfür als Wahlmöglichkeiten vorgesehenen und regelmäßig von der Abteilung für Angewandte Mathematik angebotenen Vorlesungen sind unten aufgeführt und werden auf den folgenden Seiten genauer beschrieben.

Für die erste Vorlesung "Introduction to Theory and Numerics of Partial Differential Equations" werden Kenntnisse aus dem Modul "Basics in Applied Mathematics" (oder Vorkenntnisse aus anderen einführenden Numerik-Vorlesungen) erwartet, die übrigen drei Vorlesungen bauen jeweils auf der erstgenannten auf, können aber unabhängig voneinander gehört werden.

| Zugehörige Veranstaltungen                                                                                   |           |             |      |     |                     |
|--------------------------------------------------------------------------------------------------------------|-----------|-------------|------|-----|---------------------|
| Name                                                                                                         | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Introduction to Theory and Numerics of Partial Differential Equations: Vorlesung                             | Vorlesung | Wahlpflicht |      | 4,0 |                     |
| Introduction to Theory and Numerics of Partial Differential Equations: Übung                                 | Übung     | Wahlpflicht |      | 2,0 |                     |
| Functional Analysis: Vorlesung                                                                               | Vorlesung | Wahlpflicht |      | 4,0 |                     |
| Functional Analysis: Übung                                                                                   | Übung     | Wahlpflicht |      | 2,0 |                     |
| Nonlinear Functional Analysis: Vorlesung                                                                     | Vorlesung | Wahlpflicht |      | 4,0 |                     |
| Nonlinear Functional Analysis: Übung                                                                         | Übung     | Wahlpflicht |      | 2,0 |                     |
| Theory and Numerics of Partial Differential Equations – Adaptivity and Iterative Solution Methods: Vorlesung | Vorlesung | Wahlpflicht |      | 4,0 |                     |
| Theory and Numerics of Partial Differential Equations – Adaptivity and Iterative Solution Methods: Übung     | Übung     | Wahlpflicht |      | 2,0 |                     |
| Theory and Numerics of Partial Differential Equations – Nonlinear Problems: Vorlesung                        | Vorlesung | Wahlpflicht |      | 4,0 |                     |
| Theory and Numerics of Partial Differential Equations – Nonlinear Problems: Übung                            | Übung     | Wahlpflicht |      | 2,0 |                     |

## Lern- und Qualifikationsziele des Moduls

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die verwendete mathematische Fach- und Formelsprache und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der Vorlesung mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwickeln, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Mathematik wie z. B. zu Differentialgeometrie, Variationsrechnung und geometrischer Maßtheorie, partiellen Differentialgleichungen und Optimierungstheorie sowie zu den Grundlagen aus der Analysis.

Weitere Lern- und Qualifikationsziele in Abhängigkeit von der innerhalb des Moduls gewählten Vorlesung:

## Introduction to Theory and Numerics of Partial Differential Equations:

Die Studierenden sind in der Lage, prototypische partielle Differentialgleichungen zu diskretisieren, numerisch zu lösen und den Diskretisierungsfehler abzuschätzen. Sie beherrschen die Untersuchung der Interpolationseigenschaften von Finite-Elemente-Methoden. Kritische Aspekte wie die Konditionierung von Systemmatrizen können von ihnen eingeschätzt und für Modellbeispiele analysiert werden.

## **Functional Analysis:**

Die Studierenden sind mit dem Konzept unendlich-dimensionaler Banach- und Hilberträume räume sowie linearen Abbildungen zwischen diesen sowie den auf diesen Räumen definierten Konvergenzbegriffen (starke, schwache und Schwach-\*-Konvergenz) und zugehörigen Topologien vertraut. Ferner kennen sie die Lebesgue-Räume *p*-fach integrierbarer Funktionen sowie kompakte, beschränkte und selbstadjungierte Operatoren und sind in der Lage, die abstrakten theoretischen Resultate auf konkrete Fragestellungen anzuwenden.

### **Nonlinear Functional Analysis:**

Die Studierenden erweitern ihre Kenntnisse in Funktionalanalysis durch das Studium nicht-linearer Abbildungen zwischen unendlich-dimensionalen Banachräumen, kennen die grundlegenden Fixpunktsätze sowie die Konzepte der Differentiation und Integration in Banchräumen und die Theorie monotoner Operatoren. Sie sind in der Lage, die theoretischen Resultate auf praktische Fragestellungen wie beispielsweise partielle Differentialgleichungen zur Modellierung physikalischer Vorgänge anzuwenden.

#### Theory and Numerics of Partial Differential Equations – Adaptivity and Iterative Solution Methods:

Sie sind in der Lage, a-posteriori-Fehlerabschätzungen für bestimmte lineare partielle Differentialglei-chungen herzuleiten, deren Zuverlässigkeit und Effizienz zu untersuchen, darauf basierende adaptive Netzverfeinerungsverfahren zu konstruieren und die Konvergenz adaptiver Verfahren nachzuweisen; sie sind ferner in der Lage, Vorkonditionierungsmatrizen zu entwickeln und diese in iterative Lösungsverfahren zu integrieren und die Qualität von Vorkonditionierern zu untersuchen, sowie Gebietszerlegungsmethoden für Modellprobleme zu entwickeln, zu analysieren und zu implementieren.

## Theory and Numerics of Partial Differential Equations – Nonlinear Problems:

Sie sind in der Lage, Diskretisierungen für Variationsprobleme und nichtlineare partielle Differentialglei-chungen zu entwickeln, iterative Lösungsstrategien herzuleiten, die Konvergenz numerischer Approxima-tionen sicherzustellen sowie sinnvolle Regularitätsanforderungen an Lösungen zu formulieren; der geeignete Einsatz von Regularisierungskonzepten zur Auswahl einer eindeutigen Lösung wird für Modellprobleme verstanden.

#### Zu erbringende Prüfungsleistung

30-minütige mündliche Modulabschlussprüfung in Form eines Prüfungsgesprächs.

## Zu erbringende Studienleistung

Die zu erbingende Studienleistung hängt von der Wahl der Veranstaltung ab. Die genauen Anforderungen dafür werden jeweils semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern veröffentlicht.

Bei Verwendung der Vorlesungen Functional Analysis oder "Introduction to Theory and Numerics of Partial Differential Equations" als "Advanced Lecture in Numerics" ist jeweils auch das Bestehen der zugehörigen Abschlussklausur Teil der Studienleistung.

## Benotung

Die Note der Prüfung geht (proportional zur Anzahl der ECTS-Punkte des Moduls und abhängig vom Umfang der als "Electives in Data" gewählten Veranstaltungen) mit mindestens 11/95 und höchstens 11/77 in die Gesamtnote ein.

#### Lehrmethoden

Die Lehrmethoden hängen von der gewählten Veranstaltung ab. In der Regel sind dies

- Tafel- oder Folienvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten,
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur.
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.
- erneute Nachbereitung der Veranstaltung im Gesamtzusammenhang bei der Vorbereitung der mündlichen Prüfung (Selbststudium mit der Möglichkeit, sich mit Fragen an Dozent/in bzw. Assistent/in zu wenden).

#### Verwendbarkeit des Moduls

Wahlpflichtmodul im M.Sc. Mathematics in Data and Technology (PO 2024).

Die für das Modul gewählte Veranstaltung kann auch als "Elective in Data" und in Modulen anderer Mathematik-Studiengänge verwendet werden.



| Name des Moduls                                                                  | Nummer des Moduls      |  |
|----------------------------------------------------------------------------------|------------------------|--|
| Advanced Lecture in Numerics                                                     | 07LE23MO-MScD24-AL-Num |  |
| Veranstaltung                                                                    |                        |  |
| Introduction to Theory and Numerics of Partial Differential Equations: Vorlesung |                        |  |
| Veranstaltungsart                                                                | Nummer                 |  |
| Vorlesung                                                                        | 07LE23V-5-PDE0         |  |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

- Modellierung, Klassifizierung von Differentialgleichungen 2. Ordnung, klassische Lösungen der Poisson-Gleichung
- Sobolev-Räume, Sobolevsche Einbettungssätze, Existenz und Regularität schwacher Lösungen
- Finite Elemente, Ritz-Galerkin-Verfahren, Implementierung, Interpolation und Fehlerabschätzung, Rand-Approximation, Kondition der Steifigkeitsmatrix

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- S. Bartels: Numerical Approximation of Partial Differential Equations, Springer 2016.
- D. Braess: Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. Springer 1992.
- S. C. Brenner, L. R. Scott: The mathematical theory of finite element methods. Springer 1995.
- G. Dziuk: *Theorie und Numerik partieller Differentialgleichungen*. De Gruyter 2010.

#### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

## Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I, II, Analysis I, II sowie Analysis III oder Erweiterung der Analysis.

Nützliche Vorkenntnisse: Numerik für Differentialgleichungen, Funktionalanalysis.

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!</u>

| Name des Moduls                                                              | Nummer des Moduls |  |
|------------------------------------------------------------------------------|-------------------|--|
| Advanced Lecture in Numerics 07LE23MO-M3                                     |                   |  |
| Veranstaltung                                                                |                   |  |
| Introduction to Theory and Numerics of Partial Differential Equations: Übung |                   |  |
| Veranstaltungsart                                                            | Nummer            |  |
| Übung                                                                        | 07LE23Ü-5-PDE0    |  |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.

1

| Name des Moduls                | Nummer des Moduls      |  |
|--------------------------------|------------------------|--|
| Advanced Lecture in Numerics   | 07LE23MO-MScD24-AL-Num |  |
| Veranstaltung                  |                        |  |
| Functional Analysis: Vorlesung |                        |  |
| Veranstaltungsart              | Nummer                 |  |
| Vorlesung                      | 07LE23V-2-FunkAna      |  |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprachen                | deutsch, englisch                    |

#### Inhalte

- Hilbert-Raum: Projektionssatz, Riesz'scher Darstellungssatz, adjungierte Operatoren, Orthogonalsysteme, kompakte Operatoren, Spektraltheorie, Lemma von Lax-Milgram.
- Banach-Raum: Dualraum, Prinzip der gleichmäßigen Beschränktheit, Satz von Hahn-Banach, schwache Konvergenz, Reflexivität, adjungierte Operatoren, kompakte Operatoren, Fredholm'sche Alternative.
- Metrische Räume, Funktionenräume, Dualitätstheorie, Lebesgue- und Sobolev-Räume.

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- H.W. Alt: *Lineare Funktionalanalysis*. 6. Auflage, Springer 2012.
- H. Brézis: Functional analysis, Sobolev spaces and partial differential equations. Universitext, Springer, New York 2011 (Französisches Original: H. Brézis: Analyse Fonctionelle. Masson, 1987).
- D. Werner: Funktionalanalysis (8. Auflage), Springer Spektrum, 2018.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

## Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I+II, Analysis I-III

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!</u>



| Name des Moduls              | Nummer des Moduls      |
|------------------------------|------------------------|
| Advanced Lecture in Numerics | 07LE23MO-MScD24-AL-Num |
| Veranstaltung                |                        |
| Functional Analysis: Übung   |                        |
| Veranstaltungsart            | Nummer                 |
| Übung                        | 07LE23Ü-2-FunkAna      |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprachen                | deutsch, englisch                    |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.



| Name des Moduls                          | Nummer des Moduls      |
|------------------------------------------|------------------------|
| Advanced Lecture in Numerics             | 07LE23MO-MScD24-AL-Num |
| Veranstaltung                            |                        |
| Nonlinear Functional Analysis: Vorlesung |                        |
| Veranstaltungsart                        | Nummer                 |
| Vorlesung                                | 07LE23V-2-FunkAna2     |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprachen                | deutsch, englisch                       |

#### Inhalte

- Fixpunktsätze von Banach, Brouwer und Schauder
- Bochner-Integrale und Differentiation von banachraumwertigen Funktionen
- monotone, pseudomonotone und maximal monotone Operatoren
- Abbildungsgrade von Brouwer und Leray-Schauder

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- M. Ruzicka: Nichtlineare Funktionalanalysis (2. Auflage), Springer Masterclass, 2020.
- E. Zeidler: Nonlinear Functional Analysis and its Applications I-III, Springer, 1985–1990.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den</u> Ergänzungen zu den Modulhandbüchern beschriebenen notwendigen Vorkenntnisse!

## Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Funktionalanalysis

Nützliche Vorkenntnisse: Partielle Differentialgleichungen

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen Kommentierten Vorlesungsverzeich-

nis mit den Ergänzungen zu den Modulhandbüchern!



| Name des Moduls                      | Nummer des Moduls      |
|--------------------------------------|------------------------|
| Advanced Lecture in Numerics         | 07LE23MO-MScD24-AL-Num |
| Veranstaltung                        |                        |
| Nonlinear Functional Analysis: Übung |                        |
| Veranstaltungsart                    | Nummer                 |
| Übung                                | 07LE23Ü-2-FunkAna2     |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprachen                | deutsch, englisch                       |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.



| Name des Moduls                                                                                              | Nummer des Moduls      |
|--------------------------------------------------------------------------------------------------------------|------------------------|
| Advanced Lecture in Numerics                                                                                 | 07LE23MO-MScD24-AL-Num |
| Veranstaltung                                                                                                |                        |
| Theory and Numerics of Partial Differential Equations – Adaptivity and Iterative Solution Methods: Vorlesung |                        |
| Veranstaltungsart                                                                                            | Nummer                 |
| Vorlesung                                                                                                    | 07LE23V-5-PDE2         |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

#### Inhalte

- A-posteriori Fehlerabschätzungen, Adaptivität, Vorkonditionierung, Mehrgitterverfahren
- Effizienz und Zuverlässigkeit, Konvergenztheorien, Entwicklung adaptiver Verfeinerungsmethoden
- Konstruktion von Vorkonditionierern, Methode der konjugierten Gradienten, Konvergenz von Mehrgitterzyklen und überlappender sowie nicht-überlappender Gebietszerlegungsmethode

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- S. Bartels: Numerical Approximation of Partial Differential Equations, Springer, 2016
- H. Elman, D.J. Silvester, A.J. Wathen: Finite elements and fast iterative solvers, Oxford University Press, 2014.
- W. Hackbusch: Iterative solution of large sparse systems of equations, Springer, 1994.
- R. Verfürth: A posteriori error estimation techniques for finite element methods, Oxford University Press 2013.

#### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den</u> Ergänzungen zu den Modulhandbüchern beschriebenen notwendigen Vorkenntnisse!

#### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Einführung in Theorie und Numerik partieller Differentialgleichungen Nützliche Vorkenntnisse: Funktionalanalysis, partielle Differentialgleichungen Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!

| Name des Moduls                                                                                          | Nummer des Moduls      |
|----------------------------------------------------------------------------------------------------------|------------------------|
| Advanced Lecture in Numerics                                                                             | 07LE23MO-MScD24-AL-Num |
| Veranstaltung                                                                                            |                        |
| Theory and Numerics of Partial Differential Equations – Adaptivity and Iterative Solution Methods: Übung |                        |
| Veranstaltungsart                                                                                        | Nummer                 |
| Übung                                                                                                    | 07LE23Ü-5-PDE2         |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.



| Name des Moduls                                                                       | Nummer des Moduls      |
|---------------------------------------------------------------------------------------|------------------------|
| Advanced Lecture in Numerics                                                          | 07LE23MO-MScD24-AL-Num |
| Veranstaltung                                                                         |                        |
| Theory and Numerics of Partial Differential Equations – Nonlinear Problems: Vorlesung |                        |
| Veranstaltungsart                                                                     | Nummer                 |
| Vorlesung                                                                             | 07LE23V-5-PDE1         |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

#### Inhalte

- Variationsungleichungen, Phasenfeldmodelle, harmonische Abbildungen, Totalvariations-regularisierte Probleme
- Existenztheorien, Variationsrechnung, Eigenschaften von Lösungen
- Finite-Elemente-Diskretisierungen, iterative Lösungsverfahren, Fehlerabschätzungen

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- S. Bartels: Numerical Methods for Nonlinear Partial Differential Equations, Springer, 2015
- H. Attouch, G. Buttazzo, G. Michaille: Variational Analysis in Sobolev and BV Spaces, SIAM 2014.
- L.C. Evans: Partial Differential Equations (Second edition), AMS, 2022.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

## Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Einführung in Theorie und Numerik partieller Differentialgleichungen oder Einführung in partielle Differentialgleichungen

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!</u>



| Name des Moduls                                                                   | Nummer des Moduls      |  |  |
|-----------------------------------------------------------------------------------|------------------------|--|--|
| Advanced Lecture in Numerics                                                      | 07LE23MO-MScD24-AL-Num |  |  |
| Veranstaltung                                                                     |                        |  |  |
| Theory and Numerics of Partial Differential Equations – Nonlinear Problems: Übung |                        |  |  |
| Veranstaltungsart                                                                 | Nummer                 |  |  |
| Übung                                                                             | 07LE23Ü-5-PDE1         |  |  |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.



| Name des Moduls                 | Nummer des Moduls      |  |  |
|---------------------------------|------------------------|--|--|
| Advanced Lecture in Stochastics | 07LE23MO-MScD24-AL-Sto |  |  |
| Verantwortliche/r               |                        |  |  |
| Prof. Dr. Peter Pfaffelhuber    |                        |  |  |
| Fachbereich / Fakultät          |                        |  |  |
| Mathematisches Institut         |                        |  |  |

| ECTS-Punkte                 | 11,0                           |
|-----------------------------|--------------------------------|
| Arbeitsaufwand              | 330 Stunden                    |
| Semesterwochenstunden (SWS) | 6,0                            |
| Präsenzstudium              | ca. 90 Stunden                 |
| Selbststudium               | ca. 240 Stunden                |
| Mögliche Fachsemester       | 2;3                            |
| Moduldauer                  | in der Regel ein Semester      |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht                        |
| Angebotsfrequenz            | Findet in jedem Semester statt |

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung

## Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Innerhalb dieses Moduls ist eine fortgeschrittene vierstündige Vorlesung mit zweistündigen Übungen aus der Wahrscheinlichkeitstheorie oder Mathematischen Statistik zu belegen.

Die hierfür als Wahlmöglichkeiten vorgesehenen und regelmäßig von der Abteilung für Mathematische Stochastik angebotenen Vorlesungen werden auf den folgenden Seiten genauer beschrieben.

Für die Vorlesungen Probability Theory und Machine Learning from the Perspective of Probability Theory werden Grundkenntnisse in Stochastik und Maßtheorie erwartet, für die Mathematical Statistics sollte dar- über hinaus das allgemeine Konzept bedingter Wahrscheinlichkeiten und Erwartungen bekannt sein und für Probability Theory II zusätzlich noch stochastische Konvergenzarten. Nützlich hierfür ist der vorherige Besuch der Vorlesungen Probability Theory oder Measure Theory. Die Vorlesung Probability Theory III baut auf Probability Theory II auf.

| Zugehörige Veranstaltungen                |           |             |      |     |                     |  |
|-------------------------------------------|-----------|-------------|------|-----|---------------------|--|
| Name                                      | Art       | P/WP        | ECTS | sws | Arbeits-<br>aufwand |  |
| Probabilistic Machine Learning: Vorlesung | Vorlesung | Wahlpflicht |      | 4,0 |                     |  |
| Probabilistic Machine Learning: Übung     | Übung     | Wahlpflicht |      | 2,0 |                     |  |
| Mathematical Statistics: Vorlesung        | Vorlesung | Wahlpflicht |      | 4,0 |                     |  |
| Mathematical Statistics: Übung            | Übung     | Wahlpflicht |      | 2,0 |                     |  |
| Probability Theory: Vorlesung             | Vorlesung | Wahlpflicht |      | 4,0 |                     |  |
| Probability Theory: Übung                 | Übung     | Wahlpflicht |      | 2,0 |                     |  |
| Probability Theory II: Vorlesung          | Vorlesung | Wahlpflicht |      | 4,0 |                     |  |
| Probability Theory II: Übung              | Übung     | Wahlpflicht |      | 2,0 |                     |  |
| Probability Theory III: Vorlesung         | Vorlesung | Wahlpflicht |      | 4,0 |                     |  |
| Probability Theory III: Übung             | Übung     | Wahlpflicht |      | 2,0 |                     |  |

#### Lern- und Qualifikationsziele des Moduls

- Die Studierenden kennen die Inhalte einer weiterführenden Vorlesung aus dem Bereich der Wahrscheinlichkeitstheorie, der mathematischen Statistik oder dem maschinellen Lernen. Sie sind mit den darin vermittelten Konzepten und Begriffen, Problemstellungen und Beweistechniken vertraut.
- Sie können typische Fragestellungen aus dem Bereich der gewählten Vorlesung analysieren und typische Aufgaben selbständig lösen; sie können die in der Vorlesung vorkommenden Definitionen, Sätze Beweise und Methoden verstehen, nachvollziehen, erklären und anwenden; sie können eigenständig präzise Sachverhalte beweisen, vorgelegte Beweisideen auf Korrektheit prüfen und ihre Ergebnisse mündlich wie schriftlich korrekt und nachvollziehbar darlegen.
- Sie sind mit grundlegenden stochastischen Modellen und wahrscheinlichkeitstheoretischen Fragestellungen auf maßtheoretischer Grundlage vertraut, kennen Herleitungen der klassischen Grenzwertaussagen in der Wahrscheinlichkeitstheorie und können mit den Grundbegriffen der Wahrscheinlichkeitstheorie umgehen. Damit können sie auch verschiedene darauf basierende Anwendungen verstehen und deren Umsetzung darstellen.

Weitere Lern- und Qualifikationsziele in Abhängigkeit von der innerhalb des Moduls gewählten Vorlesung:

## **Machine Learning from the Perspective of Probability Theory:**

Die Studierenden sind mit grundlegenden Modellen des maschinellen Lernens und deren Eigenschaften sowohl von theoretischer Seite als auch von praktischer Seite her vertraut, kennen die wichtigsten Theoreme wie etwa die universellen Approximationssätze und deren Beweise. Mit Hilfe der erlenrten Konzepte können sie typische Fragestellungen aus dem Bereich des maschinellen Lernens analysieren, Vermutungen überprüfen, Lösungsstrategien entwicklen und implementieren.

#### **Mathematical Statistics:**

Die Studierenden sind mit der grundlegenden Formulierung statistischer Fragestellungen als Entscheidungsprobleme vertraut. Sie kennen deren wichtigste Eigenschaften und sind in der Lage, verschiedenen Entscheidungsverfahren wie Tests oder Schätzer anhand belannter Gütekriterien miteinander zu vergleichen. Sie kennen ferner wichtige Ordnungsprinzipien zur Reduktion der Komplexität der Modelle und können ihr Wissen zur Lösung realer, praktischer Probleme anwenden.

## **Probability Theory:**

Sie sind mit grundlegenden stochastischen Modellen und wahrscheinlichkeitstheoretischen Fragestellungen auf maßtheoretischer Grundlage vertraut, kennen Herleitungen der klassischen Grenzwert-aussagen in der Wahrscheinlichkeitstheorie und können mit den Grundbegriffen der Wahrschein-lichkeitstheorie umgehen.

## **Probability Theory II:**

Die Studierenden sind vertraut mit den wahrscheinlichkeitstheoretischen Konzepten zeitdiskreter sowie zeitstetiger stochastischer Prozesse sowie Stoppzeiten und kennen die zentralen Aussagen über diese. Sie sind insbesondere vertraut mit der Brownschen Bewegung und deren wichtigsten Eigenschaften und können reale Phänomene adäquat durch geeignete stochastische Prozesse modellieren.

### **Probability Theory III:**

Die Studierenden sind mit Konstruktion und Umgang stochastischer Integrale und Semimartingale sowie Lösungen stochastischer Differentialgleichungen vertraut und kennen deren wichtigste Eigenschaften. Sie sind in der Lage, ihre Kenntnisse auf Fragestellungen aus verschiedenen Anwendungsbereichen wie etwa der Finanzmathematik, chemischen Reaktionsnetzwerken und Populationsgenetik oder fortgeschrittene statistische Probleme anzuwenden.

### Zu erbringende Prüfungsleistung

30-minütige mündliche Modulabschlussprüfung in Form eines Prüfungsgesprächs.

### Zu erbringende Studienleistung

Die zu erbingende Studienleistung hängt von der Wahl der Veranstaltung ab. Die genauen Anforderungen dafür werden jeweils semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern veröffentlicht.

Bei Verwendung der Vorlesung Probability Theory als "Advanced Lecture in Stochastics" ist das Bestehen der zugehörigen Abschlussklausur Teil der Studienleistung.

#### Benotung

Die Note der Prüfung geht (proportional zur Anzahl der ECTS-Punkte des Moduls und abhängig vom Umfang der als "Electives in Data" gewählten Veranstaltungen) mit mindestens 11/95 und höchstens 11/77 in die Gesamtnote ein.

#### Lehrmethoden

Die Lehrmethoden hängen von der gewählten Veranstaltung ab. In der Regel sind dies

- Tafel- oder Folienvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten,
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur,
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.
- erneute Nachbereitung der Veranstaltung im Gesamtzusammenhang bei der Vorbereitung der mündlichen Prüfung (Selbststudium mit der Möglichkeit, sich mit Fragen an Dozent/in bzw. Assistent/in zu wenden).

### Verwendbarkeit des Moduls

Wahlpflichtmodul im M.Sc. Mathematics in Data and Technology (PO 2024).

Die für das Modul gewählte Veranstaltung kann auch als "Elective in Data" und in Modulen anderer Mathematik-Studiengänge verwendet werden.



| Name des Moduls  Nummer des Moduls                 |                   |  |
|----------------------------------------------------|-------------------|--|
| Advanced Lecture in Stochastics 07LE23MO-MScD24-AL |                   |  |
| Veranstaltung                                      |                   |  |
| Probabilistic Machine Learning: Vorlesung          |                   |  |
| Veranstaltungsart                                  | Nummer            |  |
| Vorlesung                                          | 07LE23V-6-MLStoch |  |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

Neuronale Netzwerke, Optimierungsverfahren, Universelle Approximationssätze, Statistisches Lernen, Random Forests, Markovketten und Reinforcement-Learning

#### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- F. Chollet: Deep Learning with Python (Second Edition), Manning Publications, 2021.
- T. Hastie, R. Tibshirani, J. Friedman: *The Elements of Statistical Learning*, Springer, 2009.
- K. P. Murphy. *Probabilistic Machine Learning*, MIT Press, 2022.
- M. V. Wüthrich, M. Merz. Statistical Foundations of Actuarial Learning and its Applications, Springer Cham, 2023.

# Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Grundkenntnisse in Stochastik, z.B. im Umfang der Vorlesungen Stochastik I oder Basics in Applied Mathematics

Grundkenntnisse in Python oder die Bereitschaft, diese zu erlernen.

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!</u>



| Name des Moduls Nummer des Moduls                  |                   |  |  |
|----------------------------------------------------|-------------------|--|--|
| Advanced Lecture in Stochastics 07LE23MO-MScD24-AL |                   |  |  |
| Veranstaltung                                      |                   |  |  |
| Probabilistic Machine Learning: Übung              |                   |  |  |
| Veranstaltungsart                                  | Nummer            |  |  |
| Übung                                              | 07LE23Ü-6-MLStoch |  |  |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.



| Name des Moduls  Nummer des Moduls                  |                     |  |  |
|-----------------------------------------------------|---------------------|--|--|
| Advanced Lecture in Stochastics 07LE23MO-MScD24-AL- |                     |  |  |
| Veranstaltung                                       |                     |  |  |
| Mathematical Statistics: Vorlesung                  |                     |  |  |
| Veranstaltungsart                                   | Nummer              |  |  |
| Vorlesung                                           | 07LE23V-6-Statistik |  |  |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

- Statistische Entscheidungstheorie: Formulierung statistische Fragestellungen als Entscheidungsprobleme, (randomisierte) Entscheidungsfunktionen, Optimalitätskriterien und deren Anwendung auf Schätz- und Testprobleme, Bayes-Schätzer und -Tests
- Suffizienz, Vollständigkeit und Verteilungsfreiheit sowie Anwendungen in nichtparametrischer Statistik und Schätztheorie (exponentielle Familien, UMVU-Schätzer, lineare Modelle, asymptotische Eigenschaften von Maximum-Likelihood-Schätzern)
- Grundlegende Begriffe der Testtheorie: Existenz und Konstruktion optimaler Tests, unverfälschte, ähnliche, bedingte und invariante Tests mit Anwendungsbeispielen

# Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- C. Czado, T. Schmidt: Mathematische Statistik, Springer, 2011.
- R.V. Hogg, J.W. McKean, A.T. Craig: Introduction to Mathematical Statistics (Eight Edition), Pearson, 2019.
- E.L. Lehmann, G. Casella: *Theory of Point Estimation (Second Edition)*, Springer, 1998.
- E.L. Lehmann, J.P. Romano: Testing Statistical Hypotheses (Fourth Edition), Springer, 2022.
- L. Rüschendorf: *Mathematische Statistik*, Springer, 2014.
- M.J. Shervish: Theory of Statistics, Springer, 1995.
- J. Shao: Mathematical Statistics, Springer, 2003.
- H. Witting: Mathematische Statistik. Teubner 1985.

#### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

## Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Probability Theory

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!</u>

 $\uparrow$ 

| Name des Moduls  Nummer des Moduls                  |                     |  |  |
|-----------------------------------------------------|---------------------|--|--|
| Advanced Lecture in Stochastics 07LE23MO-MScD24-AL- |                     |  |  |
| Veranstaltung                                       |                     |  |  |
| Mathematical Statistics: Übung                      |                     |  |  |
| Veranstaltungsart                                   | Nummer              |  |  |
| Übung                                               | 07LE23Ü-6-Statistik |  |  |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

# Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.



| Name des Moduls                                    | Nummer des Moduls |  |  |
|----------------------------------------------------|-------------------|--|--|
| Advanced Lecture in Stochastics 07LE23MO-MScD24-AL |                   |  |  |
| Veranstaltung                                      |                   |  |  |
| Probability Theory: Vorlesung                      |                   |  |  |
| Veranstaltungsart                                  | Nummer            |  |  |
| Vorlesung                                          | 07LE23V-6-WT      |  |  |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

Allgemeine Wahrscheinlichkeitsräume und -Maße, Produkträume, Zufallsvariable, 0-1-Gesetze, Gesetz der großen Zahlen, zentraler Grenzwertsatz, schwache Konvergenz, charakteristische Funktionen, bedingte Erwartungen, optional ferner Martingale in diskreter Zeit und Martingalkonvergenzsätze.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Literatur

- O. Kallenberg: Foundations of Modern Probability (Third Edition, Vol. 1), Springer, 2021.
- A. Klenke: Wahrscheinlichkeitstheorie (4. Auflage), Springer, 2020.
- L. Rüschendorf: Wahrscheinlichkeitstheorie, Springer Spektrum, 2016.
- A.N. Shiryaev: *Probability-1 (Third Edition)*, Springer, 2016.
- A.N. Shiryaev: *Probability-2 (Third Edition)*, Springer, 2019.
- D. Williams: Probability with Martingales, Cambridge University Press, 1991.

# Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

### Notwendige Vorkenntnisse:

- Grundvorlesungen in Analysis und Lineare Algebra
- Analysis III oder Measure Theory
- Stochastik I oder Basics in Applied Mathematics

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!</u>

| sion 2024) | <br>- |  | _ |
|------------|-------|--|---|
| $\uparrow$ |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |

| Name des Moduls                                    | Nummer des Moduls |  |  |
|----------------------------------------------------|-------------------|--|--|
| Advanced Lecture in Stochastics 07LE23MO-MScD24-AL |                   |  |  |
| Veranstaltung                                      |                   |  |  |
| Probability Theory: Übung                          |                   |  |  |
| Veranstaltungsart                                  | Nummer            |  |  |
| Übung                                              | 07LE23Ü-6-WT      |  |  |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

# Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.

1

| Name des Moduls                  | Nummer des Moduls      |
|----------------------------------|------------------------|
| Advanced Lecture in Stochastics  | 07LE23MO-MScD24-AL-Sto |
| Veranstaltung                    |                        |
| Probability Theory II: Vorlesung |                        |
| Veranstaltungsart                | Nummer                 |
| Vorlesung                        | 07LE23V-6-WT2          |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

Filtrationen und Stoppzeiten, Martingale und Martingalkonvergenzsätze in diskreter und stetiger Zeit, Markov-Prozesse, Ergodentheorie, Eigenschaften und Pfadeigenschaften der Brownschen Bewegung, Konvergenz stochastischer Prozesse, Sätze von Donsker und Skorokhod

#### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Literatur

- J. Jacod, A.N. Shiryaev: Limit Theorems for Stochastic Processes (Second Edition), Springer, 2003.
- O. Kallenberg: Foundations of Modern Probability (Third Edition, Vol. 1 und 2), Springer, 2021.
- A. Klenke: Wahrscheinlichkeitstheorie (4. Auflage), Springer, 2020.
- L. Rüschendorf: Wahrscheinlichkeitstheorie, Springer Spektrum, 2016.
- A.N. Shiryaev: *Probability-2 (Third Edition)*, Springer, 2019.
- D. Williams: *Probability with Martingales*, Cambridge University Press, 1991.

# Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Probability Theory

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!</u>



| Name des Moduls                 | Nummer des Moduls      |
|---------------------------------|------------------------|
| Advanced Lecture in Stochastics | 07LE23MO-MScD24-AL-Sto |
| Veranstaltung                   |                        |
| Probability Theory II: Übung    |                        |
| Veranstaltungsart               | Nummer                 |
| Übung                           | 07LE23Ü-6-WT2          |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

# Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.



| Name des Moduls                   | Nummer des Moduls      |
|-----------------------------------|------------------------|
| Advanced Lecture in Stochastics   | 07LE23MO-MScD24-AL-Sto |
| Veranstaltung                     |                        |
| Probability Theory III: Vorlesung |                        |
| Veranstaltungsart                 | Nummer                 |
| Vorlesung                         | 07LE23V-6-WT3          |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

Konstruktion des stochastischen Integrals bezüglich (lokaler) Martingale und Semimartingale und daraus abgeleitete Rechenregeln, quadratische Variation und Ito-Formel, Lokalzeiten, stochastische Differentialgleichungen und stochastische Exponentiale, Girsanov-Theoreme, Martingal-Probleme, Darstellungssätze lokaler Martingale.

Weitere möglichen Themen können, je nach Arbeitsgebiet und Schwerpunktsetzung der Dozentin/des Dozenten, sein: Diffusionen sowie Lösungskonzepte für starke und schwache Lösungen stochastischer Differentialgleichungen, Feller-Prozesse, allgemeine Semimartingale, Grundlagen der Finanzmathematik und Fundamentalsätze des Asset Pricing sowie (Super)Hedging, Anwendungen stochastischer Prozesse in der Biologie und Populationsgenetik.

#### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Literatur

- F. Delbaen, W. Schachermayer: *The Mathematics of Arbitrage*, Springer, 2006.
- E. Eberlein, J. Kallsen: *Mathematical Finance*, Springer, 2019.
- J. Jacod, A.N. Shiryaev: Limit Theorems for Stochastic Processes (Second Edition), Springer, 2003.
- O. Kallenberg: Foundations of Modern Probability (Third Edition, Vol. 1 und 2), Springer, 2021.
- I. Karatzas, S.E. Shreve: Brownian Motion and Stochastic Calculus (Second Edition), Springer, 1998.
- A. Klenke: Wahrscheinlichkeitstheorie (4. Auflage), Springer, 2020.
- P. Protter: Stochastic Integration and Differential Equations (Second Edition, Version 2.1), Springer, 2005.
- L. Rüschendorf: Stochastic Processes and Financial Mathematics, Springer, 2023.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den</u> Ergänzungen zu den Modulhandbüchern beschriebenen notwendigen Vorkenntnisse!

## Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Probability Theory II

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!</u>

1

| Name des Moduls                 | Nummer des Moduls      |
|---------------------------------|------------------------|
| Advanced Lecture in Stochastics | 07LE23MO-MScD24-AL-Sto |
| Veranstaltung                   |                        |
| Probability Theory III: Übung   |                        |
| Veranstaltungsart               | Nummer                 |
| Übung                           | 07LE23Ü-6-WT3          |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

# Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.

1

| Name des Kontos         | Nummer des Kontos  |
|-------------------------|--------------------|
| Praxismodule            | 07LE23KT-MScD24-Px |
| Fachbereich / Fakultät  |                    |
| Mathematisches Institut |                    |

| Pflicht/Wahlpflicht (P/WP) | Pflicht |
|----------------------------|---------|
| ECTS-Punkte                | 9,0     |

### Kommentar

Innerhalb des Studiengangs M.Sc. Mathematics in Data and Technology ist auch ein sog. Praxismodul zu absolvieren, mit dem die Anwendungsnähe betont und vertieft werden soll. Hierzu kann wahlweise entweder ein mehrwöchiges Industriepraktikum durchgeführt oder ein größeres Programmierprojekt bearbeitet werden.



| Name des Moduls         | Nummer des Moduls     |
|-------------------------|-----------------------|
| Industrial Placement    | 07LE23MO-MScD24-Px-IP |
| Verantwortliche/r       |                       |
| Prof. Dr. Sören Bartels |                       |
| Fachbereich / Fakultät  |                       |
| Mathematisches Institut |                       |

| ECTS-Punkte                 | 9,0                                       |
|-----------------------------|-------------------------------------------|
| Arbeitsaufwand              | ca. 270 Stunden                           |
| Semesterwochenstunden (SWS) |                                           |
| Mögliche Fachsemester       | 3                                         |
| Moduldauer                  | mindestens sechs Wochen (Praktikumsdauer) |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                               |
| Angebotsfrequenz            | Findet in jedem Semester statt            |

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung

#### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Innerhalb dieses Moduls absolvieren die Studierenden ein studiengangspezifisches Praktikum bei einem Industrie- oder Wirtschaftsunternehmen oder einer Forschungseinrichtung. Die Auswahl von letzteren erfolgt in Absprache mit dem Modulverantwortlichen.

Insofern ist eine rechtzeitige vorherige Abstimmung mit diesem sowie die Beachtung möglicher Bewerbungsfristen sowie sonstiger Anforderungen seitens der Praktikumsplätze vergebenden Unternehmen/Forschungseinrichtungen notwendig.

Das Mathematische Institut kann, sofern geeignete Unternehmenskontakte vorliegen, an einem Praktikum interessierte Studierende bei der Bewerbung auf einen Praktikumsplatz u. U. unterstützen, grundsätzlich liegen die Auswahl möglicher Praktikumsangebote sowie der Bewerbungsprozess für diese in der Eigenverantwortlichkeit der Studierenden.

| Zugehörige Veranstaltungen |     |      |      |                     |
|----------------------------|-----|------|------|---------------------|
| Name                       | Art | P/WP | ECTS | Arbeits-<br>aufwand |

### Lern- und Qualifikationsziele des Moduls

- Die Studierenden können sich selbständig auf eine ihren Fähigkeiten und Interessen entsprechende Praktikumsstelle bewerben und entwickeln ihre Teamfähigkeiten weiter.
- Sie gewinnen Einblicke in einen später möglichen Berufsalltag und lernen, ihr zuvor erworbenes theoretisches Wissens in der Praxis anzuwenden. Dabei erkennen sie auch, welche Themen und Methoden aktuell aus Anwendersicht bzw. für aktuelle Forschungsprojekte relevant sind, und erhalten Anregungen für die weitere Planung ihres Studiums sowie für ihre Abschlussarbeit.

### Zu erbringende Prüfungsleistung

Keine

### Zu erbringende Studienleistung

Erfolgreiche Absolvierung eines mindestens sechswöchigen Industriepraktikums sowie anschließende Vorlage des entsprechenden Praktikumszeugnisses der jeweiligen Einrichtung und Erstellung eines aussagekräftigen Praktikumsberichts.

### Benotung

unbenotet

#### Lehrmethoden

Firmenspezifisch, abhängig von dem für das Praktikum ausgewählten Unternehmen bzw. der Forschungseinrichtung.

### Verwendbarkeit des Moduls

Wahlpflichtmodul im M.Sc. Mathematics in Data and Technology (PO 2024)



| Name des Moduls              | Nummer des Moduls     |
|------------------------------|-----------------------|
| Programming Project          | 07LE23MO-MScD24-Px-PP |
| Verantwortliche/r            |                       |
| Prof. Dr. Peter Pfaffelhuber |                       |
| Fachbereich / Fakultät       |                       |
| Mathematisches Institut      |                       |

| ECTS-Punkte                 | 9,0                            |
|-----------------------------|--------------------------------|
| Arbeitsaufwand              | ca. 270 Stunden                |
| Semesterwochenstunden (SWS) |                                |
| Mögliche Fachsemester       | 3                              |
| Moduldauer                  | ein Semester                   |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                    |
| Angebotsfrequenz            | Findet in jedem Semester statt |

#### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung

#### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Innerhalb dieses Moduls führen die Studierenden ein Programmierprojekt anhand eines konkreten, mit der jeweiligen Betreuerin/dem jeweiligen Betreuer zuvor vereinbarten Fallbeispiels durch.

Dazu sind neben der vorherigen Abstimmung mit der Betreuerin/dem Betreuer entsprechend fundierte Kenntnisse einer Programmiersprache bzw. einer Programmierumgebung notwendig.

Als Betreuerinnen/Betreuer stehen potentiell alle Professorinnen und Professoren der Abteilungen für Angewandte Mathematik und für Mathematische Stochastik zur Verfügung, in Absprache mit dem Modulverantwortlichen können dazu jedoch auch weitere Professorinnen/Professoren oder Dozentinnen/Dozenten innerhalb des Mathematischen Instituts oder aus anderen Fakultäten fungieren.

Eine Zuweisung von Betreuenden und/oder Projektthemen seitens des Mathematischen Instituts findet nicht statt. Studierende, die ein Programmierprojekt bearbeiten möchten, sollten direkt in Kontakt mit möglichen Betreuerinnen/Betreuern treten und sich nach geeigneten Angeboten erkundigen.

| Zugehörige Veranstaltungen |     |      |      |     |                     |
|----------------------------|-----|------|------|-----|---------------------|
| Name                       | Art | P/WP | ECTS | sws | Arbeits-<br>aufwand |

#### Lern- und Qualifikationsziele des Moduls

- Die Studierenden lernen, ein umfangreicheres Projekt strukturiert anzugehen, die zur Erreichung des Gesamtzieles notwendigen Aufgaben und Teilschritte zu identifizieren, festzulegen und systematisch abzuarbeiten.
- Neben tieferen Einblicken in gängige Programmiertechniken lernen sie zudem, ihren Code gut wart- und erweiterbar zu gestalten, ihn zu optimieren sowie gut verständlich für andere zu dokumentieren.

# Zu erbringende Prüfungsleistung

Keine

## Zu erbringende Studienleistung

Erfolgreiche Absolvierung des Programmierprojekts. Dazu zählen neben der Abgabe des jeweiligen Codes auch eine ausführlichere Dokumentation desselben (Kommentarzeilen im Code sowie eine Auflistung der entwickelten Programme mit Funktionsbeschreibung sowie der Bedeutung ihrer jeweiligen Argumente).

### Benotung

unbenotet

#### Lehrmethoden

Begleitete Einarbeitung in ein größeres Projekt sowie eigenständige Programmierung und Codedokumentation

### Verwendbarkeit des Moduls

Wahlpflichtmodul im M.Sc. Mathematics in Data and Technology (PO 2024)



| Name des Kontos         | Nummer des Kontos  |
|-------------------------|--------------------|
| Electives in Data       | 07LE23KT-MScD24-ED |
| Fachbereich / Fakultät  |                    |
| Mathematisches Institut |                    |

| Pflicht/Wahlpflicht (P/WP) | Pflicht |
|----------------------------|---------|
| ECTS-Punkte                | 48,0    |

#### Kommentar

Innerhalb der Module "Electives in Data" sowie "Electives" sind Lehrveranstaltungen im Umfang von 48 ECTS zu belegen, wobei davon mindestens 30 ECTS innerhalb von "Electives in Data" erworben werden müssen. Es können auch sämtliche 48 ECTS in "Electives in Data" erworben und das Modul "Electives" leer gelassen werden.

Als "Electives in Data" wählbare Lehrveranstaltungen sind grundsätzlich *nicht* in Modul "Electives" verwendbar, genauso können im Modul "Electives" anrechenbare Lehrveranstaltungen *nicht* als "Electives in Data" verwendet werden.

Als "Electives in Data" verwendbare Lehrveranstaltungen können fortgeschrittenere zwei- oder vierstündige Vorlesungen mit Übungen und evtl. zusätzlichen Programmierprojekten sowie Seminare aus den Bereichen Angewandte Mathematik und Mathematische Stochastik sein, aber ebenso auch geeignete Lehrveranstaltungen anderer Institute (insbesondere Wirtschaftswissenschaften und Physik) bzw. Fakultäten (vornehmlich der Technischen Fakultät und der Fakultät für Biologie).

Nachfolgend werden, nach Fakultäten bzw. Instituten geodnet, lediglich die typischen, regelmäßiger angebotenen Lehrveranstaltungen beschrieben, die innerhalb dieses Moduls belegt werden können. In jedem Semester kann es darüber hinaus auch weitere geben, die als "Electives in Data" anrechenbar sind, daher sollte stets auch ein Blick in die <u>Veranstaltungsverzeichnis</u> jedes Semesters geworfen werden, in der die möglichen Verwendbarkeiten jeder Veranstaltung explizit angegeben sind. Durch Anklicken der Schaltflächen *Courses for M.Sc. Mathematics in Data and Technology* sowie *Elective in Data* oben auf den Webseiten lassen sich alle innerhalb eines Semesters angebotenen und als "Electives in Data" verwendbaren Lehrveranstaltungen anzeigen.



| Name des Kontos                               | Nummer des Kontos    |  |  |
|-----------------------------------------------|----------------------|--|--|
| Electives in Data: Vorlesungen der Mathematik | 07LE23KT-MScD24-ED-V |  |  |
| Fachbereich / Fakultät                        |                      |  |  |
| Mathematisches Institut                       |                      |  |  |

| Pflicht/Wahlpflicht (P/WP) Wahlpflicht |  |
|----------------------------------------|--|
|----------------------------------------|--|

#### Kommentar

Innerhalb dieses Bereiches werden Lehrveranstaltungen des Mathematischen Instituts aufgeführt, die als "Electives in Data" belegt werden können und typischerweise regelmäßiger angeboten werden.

Dabei gilt grundsätzlich, dass alle als "Advanced Lecture in Numerics" bzw. "Advanced Lecture in Stochastics" wählbaren Vorlesungen auch als "Electives in Data" belegt werden können. Da diese bereits zuvor ausführlicher beschrieben wurden, werden sie hier nicht erneut aufgelistet, mit Ausnahme der Vorlesungen Introduction to Theory and Numerics of Partial Differential Equations, Functional Analysis und Probability Theory, da für diese bei der Verwendung als "Electives in Data" andere Anforderungen an die Studien- und Prüfungsleistungen gelten und sich dadurch auch die Anzahl der zu erwerbenden ECTS-Punkte ändert.

Ebenso sind alle als "Mathematical Seminar" wählbaren Seminare alternativ auch als "Electives in Data" belegbar.



| Name des Moduls                                            | Nummer des Moduls                  |
|------------------------------------------------------------|------------------------------------|
| Algorithmic Aspects of Data Analytics and Machine Learning | 07LE23MO-MScD24-ED6-<br>AlgAspDAML |
| Verantwortliche/r                                          |                                    |
| Prof. Dr. Sören Bartels                                    |                                    |
| Fachbereich / Fakultät                                     |                                    |
| Mathematisches Institut                                    |                                    |

| ECTS-Punkte                 | 6,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 180 Stunden     |
| Semesterwochenstunden (SWS) | 4,0             |
| Präsenzstudium              | ca. 60 Stunden  |
| Selbststudium               | ca. 120 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht     |

#### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

| Zugehörige Veranstaltungen                                            |           |             |      |     |                     |
|-----------------------------------------------------------------------|-----------|-------------|------|-----|---------------------|
| Name                                                                  | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Algorithmic Aspects of Data Analytics and Machine Learning: Vorlesung | Vorlesung | Wahlpflicht |      | 2,0 |                     |
| Algorithmic Aspects of Data Analytics and Machine Learning: Übung     | Übung     | Wahlpflicht |      | 2,0 |                     |

#### Lern- und Qualifikationsziele des Moduls

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die verwendete mathematische Fach- und Formelsprache und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der Vorlesung mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Mathematik, insbesondere mit den Grundlagen, die sie dadurch vertiefen.

#### Zu erbringende Prüfungsleistung

Klausur (Dauer 90-180 Minuten)

#### Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern veröffentlicht.

### Benotung

Im B.Sc.-Studiengang Mathematik geht die Modulnote mit 9/N in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.

Im Studiengang M.Sc. Mathematics in Data and Technology (PO 2024) geht die Note der Prüfung (proportional zur Anzahl der ECTS-Punkte des Moduls und abhängig vom Umfang der als "Electives in Data" gewählten Veranstaltungen) mit mindestens 6/95 und höchstens 6/77 in die Gesamtnote ein.

#### Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur;
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

#### Verwendbarkeit des Moduls

- Wahlpflichtmodul im B.Sc. Mathematik
- wählbar für die Module "Reine/Angewandte Mathematik", "Mathematik", "Vertiefungsmodul" (jeweils mit mündlicher Prüfung) oder als Wahlmodul (nur mit Studienleistungen) im M.Sc. Mathematik – siehe Verwendbarkeitstabelle im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern
- wählbar als "Elective in Data" im M.Sc. Mathematics in Data and Technology (PO 2024)



| Name des Moduls                                                       | Nummer des Moduls                  |  |
|-----------------------------------------------------------------------|------------------------------------|--|
| Algorithmic Aspects of Data Analytics and Machine Learning            | 07LE23MO-MScD24-ED6-<br>AlgAspDAML |  |
| Veranstaltung                                                         |                                    |  |
| Algorithmic Aspects of Data Analytics and Machine Learning: Vorlesung |                                    |  |
| Veranstaltungsart                                                     | Nummer                             |  |
| Vorlesung                                                             | 07LE23V2-5-AlgAspDAML              |  |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

#### Inhalte

Die Vorlesung behandelt algorithmische Aspekte bei der praktischen Umsetzung mathematischer Methoden in den Bereichen Big Data Analytics und maschinellem Lernen. Sie gliedert sich in drei Teile, die jeweils die folgenden Themen behandeln:

- recommendation systems, clustering methods sowie sparse recovery techniques,
- Aufbau, Approximationseigenschaften und Training neuronaler Netze,
- Konvergenzresultate für schnelle Gradientenmethoden bei nicht glatten Problemen

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

S.-A. Wegner: Mathematische Einführung in Data Science, Springer Spektrum, 2023.

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

#### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Numerik I+II oder Basics in Applied Mathematics

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!</u>



| Name des Moduls                                                   | Nummer des Moduls                  |  |
|-------------------------------------------------------------------|------------------------------------|--|
| Algorithmic Aspects of Data Analytics and Machine Learning        | 07LE23MO-MScD24-ED6-<br>AlgAspDAML |  |
| Veranstaltung                                                     |                                    |  |
| Algorithmic Aspects of Data Analytics and Machine Learning: Übung |                                    |  |
| Veranstaltungsart                                                 | Nummer                             |  |
| Übung                                                             | 07LE23Ü-5-AlgAspDAML               |  |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

#### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

1

| Name des Moduls         | Nummer des Moduls            |
|-------------------------|------------------------------|
| Analysis III            | 07LE23MO-MScD24-ED9-<br>Ana3 |
| Verantwortliche/r       |                              |
| PD Dr. Markus Junker    |                              |
| Fachbereich / Fakultät  |                              |
| Mathematisches Institut |                              |

| ECTS-Punkte                 | 9,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 270 Stunden     |
| Semesterwochenstunden (SWS) | 6,0             |
| Präsenzstudium              | ca. 90 Stunden  |
| Selbststudium               | ca. 180 Stunden |
| Mögliche Fachsemester       | 3               |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht         |

#### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den</u> <u>Ergänzungen zu den Modulhandbüchern</u>

# Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Analysis I und II, Lineare Algebra I

Nützliche Vorkenntnisse: Lineare Algebra II

| Zugehörige Veranstaltungen |           |      |      |     |                     |
|----------------------------|-----------|------|------|-----|---------------------|
| Name                       | Art       | P/WP | ECTS |     | Arbeits-<br>aufwand |
| Analysis III: Vorlesung    | Vorlesung |      |      | 4,0 |                     |
| Analysis III: Übung        | Übung     |      |      | 2,0 |                     |

#### Lern- und Qualifikationsziele des Moduls

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren. Sie verstehen die Problematik des naiven Volumenbegriffs und deren Lösung im Rahmen der Maßtheorie und kennen den Zusammenhang zwischen Maß- und Integrationstheorie.
- Sie kennen und verstehen die verwendete mathematische Fach- und Formelsprache und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der höherdimensionalen integration mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen. Sie können insbesondere mittels der Transformationsformel und des Satzes von Fubini explizite Volumenberechnungen durchführen, auch für Untermannigfaltigkeiten.

- Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Mathematik, insbesondere die Verallgemeinerung und Anwendung bereits bekannter Konzepte aus der Analysis. Sie entdecken die höherdimensionale Integration als eine Verallgemeinerung des eindimensionalen Falls, vertiefen dadurch das Verständnis von Analysis I und II und erkennen den Sinn einer allgemeinen Heransgehensweise an eine Fragestellung.
- Sie nutzen im Laufe ihres Studiums Funktionen und analytische Methoden zur Bearbeitung von Problemen verschiedener mathematischer Gebiete, insbesondere zur Modellierung realer Phänomene.

### Zu erbringende Prüfungsleistung

Klausur (Dauer 90-180 Minuten)

### Zu erbringende Studienleistung

Bestehen der Übungen zu Analysis III: Die genauen Anforderungen dafür werden semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern veröffentlicht.

### Benotung

- Im B.Sc.-Studiengang Mathematik geht die Modulnote mit 9/(N-1) in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik ist das Modul unbenotet.
- Im Studiengang M.Sc. Mathematics in Data and Technology (PO 2024) geht die Note der Prüfung (proportional zur Anzahl der ECTS-Punkte des Moduls und abhängig vom Umfang der als "Electives in Data" gewählten Veranstaltungen) mit mindestens 9/95 und höchstens 9/77 in die Gesamtnote ein.

#### Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur:
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten;
- erneute Nachbereitung der Veranstaltung im Gesamtzusammenhang bei der Vorbereitung der mündlichen Prüfung (Selbststudium mit der Möglichkeit, sich mit Fragen an Dozent/in bzw. Assistent/in zu wenden)

#### Verwendbarkeit des Moduls

- Pflichtmodul im B.Sc. Mathematik (PO 2021)
- mit Klausur als Teil der Studienleistung: Wahlmodul im Optionsbereich des Zwei-Hauptfächer-Bachelor-Studiengangs Mathematik (PO 2021)
- mit mündlicher Prüfung statt Klausur: mögliche Wahl für das Modul "Mathematische Vertiefung" im M.Ed.-Studiengang Mathematik (PO 2018)
- mit mündlicher Prüfung statt Klausur: mögliche Wahl für das Modul "Mathematische Vertiefung" im M.E-d.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2018)
- mit Klausur als Prüfungsleistung wählbar als "Elective in Data" im M.Sc. Mathematics in Data and Technology (PO 2024)



| Name des Moduls         | Nummer des Moduls            |
|-------------------------|------------------------------|
| Analysis III            | 07LE23MO-MScD24-ED9-<br>Ana3 |
| Veranstaltung           |                              |
| Analysis III: Vorlesung |                              |
| Veranstaltungsart       | Nummer                       |
| Vorlesung               | 07LE23V-0-Ana3               |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                  |
| Mögliche Fachsemester       | 3                                    |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  |                                      |
| Lehrsprache                 | deutsch                              |

#### Inhalte

Grundlagen der Maßtheorie: Maße, Fortsetzungssatz, Lebesgue-Integral, Konvergenzsätze, Satz von Fubini;

Integration im **R**<sup>n</sup>: Lebesgue-Maß, Transformationssatz, Untermannigfaltigkeiten und Oberflächenintegrale, Satz von Gauß.

# Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Literatur

- H. Bauer: Maß- und Integrationstheorie (2. Auflage), de Gruyter, 1992.
- J. Elstrodt: Maß- und Integrationstheorie (8. Auflage). Springer Spektrum, 2018.
- O. Forster: Analysis 3 (8. Auflage), Springer Spektrum, 2017.
- H. Amann, J. Escher: Analysis III. Birkhäuser 2001.
- W. H. Fleming: Functions of several variables. Springer 1977.
- H.W. Alt: Lineare Funktionalanalysis. Springer 2002 (hierin die Kapitel über die Lebesgue-Räume).

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den</u> Ergänzungen zu den Modulhandbüchern beschriebenen notwendigen Vorkenntnisse!

### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse:

Analysis I und II, Lineare Algebra I

个

| Name des Moduls     | Nummer des Moduls            |
|---------------------|------------------------------|
| Analysis III        | 07LE23MO-MScD24-ED9-<br>Ana3 |
| Veranstaltung       |                              |
| Analysis III: Übung |                              |
| Veranstaltungsart   | Nummer                       |
| Übung               | 07LE23Ü-0-Ana3               |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       | 3                                    |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  |                                      |
| Lehrsprache                 | deutsch                              |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

#### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

1

| Name des Moduls                                                       | Nummer des Moduls            |
|-----------------------------------------------------------------------|------------------------------|
| Introduction to Theory and Numerics of Partial Differential Equations | 07LE23MO-MScD24-ED9-<br>PDE0 |
| Verantwortliche/r                                                     |                              |
| Prof. Dr. Sören Bartels                                               |                              |
| Fachbereich / Fakultät                                                |                              |
| Mathematisches Institut                                               |                              |

| ECTS-Punkte                 | 9,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 270 Stunden     |
| Semesterwochenstunden (SWS) | 6,0             |
| Präsenzstudium              | ca. 90 Stunden  |
| Selbststudium               | ca. 180 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht     |

#### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.

# Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I, II, Analysis I, II sowie Analysis III oder Erweiterung der Analysis

Nützliche Vorkenntnisse: Numerik für Differentialgleichungen, Funktionalanalysis

Siehe ergänzend hierzu auch das jeweils aktuelle <u>Kommentierte Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.</u>

| Zugehörige Veranstaltungen                                                       |           |             |      |     |                     |
|----------------------------------------------------------------------------------|-----------|-------------|------|-----|---------------------|
| Name                                                                             | Art       | P/WP        | ECTS |     | Arbeits-<br>aufwand |
| Introduction to Theory and Numerics of Partial Differential Equations: Vorlesung | Vorlesung | Wahlpflicht |      | 4,0 |                     |
| Introduction to Theory and Numerics of Partial Differential Equations: Übung     | Übung     | Wahlpflicht |      | 2,0 |                     |

# Lern- und Qualifikationsziele des Moduls

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die verwendete mathematische Fach- und Formelsprache und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.

- Sie können typische Fragestellungen aus dem Bereich der Vorlesung mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Sie sind in der Lage, prototypische partielle Differentialgleichungen zu diskretisieren, numerisch zu lösen und den Diskretisierungsfehler abzuschätzen. Sie beherrschen die Untersuchung der Interpolationseigenschaften von Finite-Elemente-Methoden. Kritische Aspekte wie die Konditionierung von Systemmatrizen können von ihnen eingeschätzt und für Modellbeispiele analysiert werden
- Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Mathematik, insbesondere mit den Grundlagen aus der Anaylsis, die sie dadurch vertiefen.

### Zu erbringende Prüfungsleistung

- Klausur (Dauer 90-180 Minuten)
- Bei Verwendung als Wahlmodul: keine

### Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> veröffentlicht.

Bei Verwendung als Wahlmodul: zusätzlich Bestehen der Klausur.

#### Benotung

- Im B.Sc.-Studiengang Mathematik (PO 2021) geht die Modulnote mit 9/(N-1) in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im B.Sc.-Studiengang Mathematik (PO 2012) geht die Modulnote mit 9/N in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Als Wahlmodul im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik und im M.Sc.-Studiengang Mathematik ist das Modul unbenotet.
- Im Studiengang M.Sc. Mathematics in Data and Technology (PO 2024) geht die Note der Prüfung (proportional zur Anzahl der ECTS-Punkte des Moduls und abhängig vom Umfang der als "Electives in Data" gewählten Veranstaltungen) mit mindestens 9/95 und höchstens 9/77 in die Gesamtnote ein.

#### Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur:
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

### Studiengangschwerpunkte

#### Numerik

#### Verwendbarkeit des Moduls

- Wahlpflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021); geeignet für "Vorlesung mit Übung A–D" bzw. "A–C".
- Mit Klausur als Teil der Studienleistung: Wahlmodul in der Option "Individuelle Studiengestaltung" des Zwei-Hauptfächer-Bachelor-Studiengangs Mathematik (PO 2021) und im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind verwendbar für die Module "Angewandte Mathematik", "Mathematik" und das Vertiefungsmodul im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind verwendbar für das Modul "Mathematische Vertiefung" im M.Ed.-Studiengang Mathematik (PO 2018) und im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2021).
- Vorlesung und Übung sind verwendbar als "Elective in Data" im M.Sc. Mathematics in Data and Technology (PO 2024).



| Name des Moduls                                                                  | Nummer des Moduls            |  |  |
|----------------------------------------------------------------------------------|------------------------------|--|--|
| Introduction to Theory and Numerics of Partial Differential Equations            | 07LE23MO-MScD24-ED9-<br>PDE0 |  |  |
| Veranstaltung                                                                    |                              |  |  |
| Introduction to Theory and Numerics of Partial Differential Equations: Vorlesung |                              |  |  |
| Veranstaltungsart                                                                | Nummer                       |  |  |
| Vorlesung                                                                        | 07LE23V-5-PDE0               |  |  |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

- Modellierung, Klassifizierung von Differentialgleichungen 2. Ordnung, klassische Lösungen der Poisson-Gleichung
- Sobolev-Räume, Sobolevsche Einbettungssätze, Existenz und Regularität schwacher Lösungen
- Finite Elemente, Ritz-Galerkin-Verfahren, Implementierung, Interpolation und Fehlerabschätzung, Rand-Approximation, Kondition der Steifigkeitsmatrix

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Literatur

- S. Bartels: Numerical Approximation of Partial Differential Equations, Springer 2016.
- D. Braess: Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. Springer 1992.
- S. C. Brenner, L. R. Scott: *The mathematical theory of finite element methods*. Springer 1995.
- G. Dziuk: Theorie und Numerik partieller Differentialgleichungen. De Gruyter 2010.

#### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I, II, Analysis I, II sowie Analysis III oder Erweiterung der Analysis

Nützliche Vorkenntnisse: Numerik für Differentialgleichungen, Funktionalanalysis.

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!</u>

| sion 2024) |  |  |  |
|------------|--|--|--|
| $\uparrow$ |  |  |  |
| ı          |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |

| Name des Moduls                                                              | Nummer des Moduls            |  |  |
|------------------------------------------------------------------------------|------------------------------|--|--|
| Introduction to Theory and Numerics of Partial Differential Equations        | 07LE23MO-MScD24-ED9-<br>PDE0 |  |  |
| Veranstaltung                                                                |                              |  |  |
| Introduction to Theory and Numerics of Partial Differential Equations: Übung |                              |  |  |
| Veranstaltungsart                                                            | Nummer                       |  |  |
| Übung                                                                        | 07LE23Ü-5-PDE0               |  |  |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

#### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

1

| Name des Moduls           | Nummer des Moduls               |
|---------------------------|---------------------------------|
| Functional Analysis       | 07LE23MO-MScD24-ED9-<br>FunkAna |
| Verantwortliche/r         |                                 |
| Prof. Dr. Michael Růžička |                                 |
| Fachbereich / Fakultät    |                                 |
| Mathematisches Institut   |                                 |

| ECTS-Punkte                 | 9,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 270 Stunden     |
| Semesterwochenstunden (SWS) | 6,0             |
| Präsenzstudium              | ca. 90 Stunden  |
| Selbststudium               | ca. 180 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht     |

#### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.

### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I, II, Analysis I-III

Siehe ergänzend hierzu auch das jeweils aktuelle <u>Kommentierte Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.</u>

| Zugehörige Veranstaltungen     |           |             |      |     |                     |
|--------------------------------|-----------|-------------|------|-----|---------------------|
| Name                           | Art       | P/WP        | ECTS | sws | Arbeits-<br>aufwand |
| Functional Analysis: Vorlesung | Vorlesung | Wahlpflicht |      | 4,0 |                     |
| Functional Analysis: Übung     | Übung     | Wahlpflicht |      | 2,0 |                     |

### Lern- und Qualifikationsziele des Moduls

- Die Studierenden kennen die Inhalte der Vorlesung die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren insbesondere unendlich-dimensionale Banach-Räume, Abbildungen dazwischen und Konvergenzbegriffe darauf.
- Sie kennen und verstehen die mathematische Fach- und Formelsprache der Funktionalanalysis und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der Funktionalanalysis mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.

■ Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Mathematik, insbesondere mit den Grundlagen aus der Analysis, die sie dadurch vertiefen.

### Zu erbringende Prüfungsleistung

- Klausur (Dauer 90-180 Minuten)
- Bei Verwendung als Wahlmodul: keine

### Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> veröffentlicht.

Bei Verwendung als Wahlmodul: zusätzlich Bestehen der Klausur.

#### Benotung

- Im B.Sc.-Studiengang Mathematik (PO 2021) geht die Modulnote mit 9/(N-1) in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im B.Sc.-Studiengang Mathematik (PO 2012) geht die Modulnote mit 9/N in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Als Wahlmodul im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik und im M.Sc.-Studiengang Mathematik ist das Modul unbenotet.
- Im M.Sc.-Studiengang Mathematics in Data and Technology (PO 2024) geht die Modulnote bei Verwendung als Teil des Moduls "Electives in Data" (proportional zur Anzahl der ECTS-Punkte des Moduls und abhängig vom Umfang der als "Electives in Data" gewählten Veranstaltungen) mit mindestens 9/95 und höchstens 9/77 in die Gesamtnote ein.

#### Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur;
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

#### Studiengangschwerpunkte

Analysis, Angewandte Analysis und Numerik

#### Verwendbarkeit des Moduls

- Wahlpflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021); geeignet für "Vorlesung mit Übung A–D" bzw. "A–C", zählt im Sinne der Prüfungsordnung zur Reinen Mathematik.
- Mit Klausur als Teil der Studienleistung: Wahlmodul in der Option "Individuelle Studiengestaltung" des Zwei-Hauptfächer-Bachelor-Studiengangs Mathematik (PO 2021) oder im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind verwendbar für die Module "Reine Mathematik" und "Angewandte Mathematik" im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind im M.Sc. Mathematics in Data and Technology (PO 2024) verwendbar als "E-lective in Data" (mit Klausur als Prüfungsleistung).

7

| Name des Moduls                | Nummer des Moduls               |
|--------------------------------|---------------------------------|
| Functional Analysis            | 07LE23MO-MScD24-ED9-<br>FunkAna |
| Veranstaltung                  |                                 |
| Functional Analysis: Vorlesung |                                 |
| Veranstaltungsart              | Nummer                          |
| Vorlesung                      | 07LE23V-2-FunkAna               |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprachen                | deutsch, englisch                    |

#### Inhalte

- Hilbert-Raum: Projektionssatz, Riesz'scher Darstellungssatz, adjungierte Operatoren, Orthogonalsysteme, kompakte Operatoren, Spektraltheorie, Lemma von Lax-Milgram.
- Banach-Raum: Dualraum, Prinzip der gleichmäßigen Beschränktheit, Satz von Hahn-Banach, schwache Konvergenz, Reflexivität, adjungierte Operatoren, kompakte Operatoren, Fredholm'sche Alternative.
- Metrische Räume, Funktionenräume, Dualitätstheorie, Lebesgue- und Sobolev-Räume.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- H.W. Alt: Lineare Funktionalanalysis. 6. Auflage, Springer 2012.
- H. Brézis: Functional analysis, Sobolev spaces and partial differential equations. Universitext, Springer, New York 2011 (Französisches Original: H. Brézis: Analyse Fonctionelle. Masson, 1987).
- D. Werner: Funktionalanalysis (8. Auflage), Springer Spektrum, 2018.

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

# Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I+II, Analysis I-III

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!</u>



| Name des Moduls            | Nummer des Moduls               |
|----------------------------|---------------------------------|
| Functional Analysis        | 07LE23MO-MScD24-ED9-<br>FunkAna |
| Veranstaltung              |                                 |
| Functional Analysis: Übung |                                 |
| Veranstaltungsart          | Nummer                          |
| Übung                      | 07LE23Ü-2-FunkAna               |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprachen                | deutsch, englisch                    |

### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

| Name des Moduls                           | Nummer des Moduls            |
|-------------------------------------------|------------------------------|
| Lévy Processes and Financial Applications | 07LE23MO-MScD24-ED6-<br>Levy |
| Verantwortliche/r                         |                              |
| Dr. Ernst August Freiherr von Hammerstein |                              |
| Fachbereich / Fakultät                    |                              |
| Mathematisches Institut                   |                              |

| ECTS-Punkte                 | 6,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 180 Stunden     |
| Semesterwochenstunden (SWS) | 4,0             |
| Präsenzstudium              | ca. 60 Stunden  |
| Selbststudium               | ca. 120 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht     |

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Probability Theory Nützliche Vorkenntnisse: Probability Theory II

| Zugehörige Veranstaltungen                              |           |             |      |     |                     |
|---------------------------------------------------------|-----------|-------------|------|-----|---------------------|
| Name                                                    | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Lévy Processes and Financial Applications:<br>Vorlesung | Vorlesung | Wahlpflicht |      | 2,0 |                     |
| Lévy Processes and Financial Applications: Übung        | Übung     | Wahlpflicht |      | 2,0 |                     |

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die verwendete mathematische Fach- und Formelsprache und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der Vorlesung mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.

- Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Stochastik, insbesondere den Vorlesungen Probability Theory I-III, und können die dort erlernten allgemeinen Sätze und Konzepte anhand der Aussagen und Beispiele dieser Vorlesung spezialisieren und vertiefen.
- Die Studierenden sind vertraut mit unendlich teilbaren Wahrscheinlichkeitsverteilungen, der speziellen Darstellung der zugehörigen charakteristischen Funktionen sowie den sich daraus ergebenden Pfadeigenschaften der von diesen Verteilungen erzeugten stochastischen Prozesse. Sie kennen auch die Struktur dieser Prozesse und können diese für praktische Anwendungen nutzen, insbesondere für die Modellierung von Preisprozessen in der Finanzmathematik. Ferner kennen sie Bewertungsmöglichkeiten für Optionen in diesem Modellrahmen und können diese aus reale Daten anwenden.

## Zu erbringende Prüfungsleistung

Mündliche Prüfung (Dauer ca. 30 Minuten)

## Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern veröffentlicht.

#### Benotung

Im B.Sc.-Studiengang Mathematik geht die Modulnote mit 9/N in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.

Im Studiengang M.Sc. Mathematics in Data and Technology (PO 2024) geht die Note der Prüfung (proportional zur Anzahl der ECTS-Punkte des Moduls und abhängig vom Umfang der als "Electives in Data" gewählten Veranstaltungen) mit mindestens 6/95 und höchstens 6/77 in die Gesamtnote ein.

#### Lehrmethoden

- Tafel- oder Folienvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur;
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

### Verwendbarkeit des Moduls

- Wahlpflichtmodul im B.Sc. Mathematik
- wählbar für die Module "Reine/Angewandte Mathematik", "Mathematik", "Vertiefungsmodul" (jeweils mit mündlicher Prüfung) oder als Wahlmodul (nur mit Studienleistungen) im M.Sc. Mathematik – siehe Verwendbarkeitstabelle im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern
- wählbar als "Elective in Data" im M.Sc. Mathematics in Data and Technology (PO 2024)



| Name des Moduls                                      | Nummer des Moduls            |  |
|------------------------------------------------------|------------------------------|--|
| Lévy Processes and Financial Applications            | 07LE23MO-MScD24-ED6-<br>Levy |  |
| Veranstaltung                                        |                              |  |
| Lévy Processes and Financial Applications: Vorlesung |                              |  |
| Veranstaltungsart                                    | Nummer                       |  |
| Vorlesung                                            | 07LE23V2-6-Levy              |  |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

#### Inhalte

Charakteristische Funktionen von Wahrscheinlichkeitsverteilungen, unbegrent teilbare Verteilungen, allgemeines Grenzwertproblem, Lévy-Khintchine-Formel, Lévy-Prozesse und deren Erzeugung mithilfe unbegrenzt teilbarer Verteilungen, Zusammenhang von Pfadeigenschaften und charakteristischem Tripel, Approximationstechniken für Pfadsimulationen, Subordination von Lévy-Prozessen sowie von diesen getriebene Modelle für Preisprozesse von Finanzinstrumenten, Bewertung von Derivaten in unvollständigen Modellen, Esscher-Transformation und risikoneutrale Maße

# Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- D. Applebaum: Lévy processes and Stochastic Calculus, Cambridge University Press, 2005.
- J. Bertoin: Lévy Processes, Cambridge University Press, 2005.
- R. Cont, P. Tankov: Financial Modelling with Jump Processes, Chapman & Hall/CRC, 2004.
- E. Eberlein, J. Kallsen: *Mathematical Finance*, Springer, 2019.
- P. E. Protter: Stochastic Integration and Differential Equations (Second Edition, Version 2.1), Springer, 2005.
- K.-I. Sato: Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den</u> Ergänzungen zu den Modulhandbüchern beschriebenen notwendigen Vorkenntnisse!

## Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Probability Theory Nützliche Vorkenntnisse: Probability Theory II

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!</u>



| Name des Moduls                                  | Nummer des Moduls            |  |  |
|--------------------------------------------------|------------------------------|--|--|
| Lévy Processes and Financial Applications        | 07LE23MO-MScD24-ED6-<br>Levy |  |  |
| Veranstaltung                                    |                              |  |  |
| Lévy Processes and Financial Applications: Übung |                              |  |  |
| Veranstaltungsart                                | Nummer                       |  |  |
| Übung                                            | 07LE23Ü-6-Levy               |  |  |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

| Name des Moduls                  | Nummer des Moduls              |
|----------------------------------|--------------------------------|
| Machine Learning for Stochastics | 07LE23MO-MScD24-ED6-<br>MLfSto |
| Verantwortliche/r                |                                |
| Prof. Dr. Thorsten Schmidt       |                                |
| Fachbereich / Fakultät           |                                |
| Mathematisches Institut          |                                |

| ECTS-Punkte                 | 6,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 180 Stunden     |
| Semesterwochenstunden (SWS) | 4,0             |
| Präsenzstudium              | ca. 60 Stunden  |
| Selbststudium               | ca. 120 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht     |

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Probability Theory Nützliche Vorkenntnisse: Probability Theory II

| Zugehörige Veranstaltungen                  |           |             |      |     |                     |
|---------------------------------------------|-----------|-------------|------|-----|---------------------|
| Name                                        | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Machine Learning for Stochastics: Vorlesung | Vorlesung | Wahlpflicht |      | 2,0 |                     |
| Machine Learning for Stochastics: Übung     | Übung     | Wahlpflicht |      | 2,0 |                     |

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die verwendete mathematische Fach- und Formelsprache und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der Vorlesung mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Stochastik, insbesondere den Vorlesungen Probability Theory I-II.

■ Die Studierenden sind vertaut mit reinforcement learning, Markovschen Entscheidungsprozessen, neuronalen SDEs auf neuronalen Netzen sowie neuronalen Semimartingalen, stochastischen Gradientenmethoden und universellen Approximationssätzen sowie Anwendungen in der Finanz- und Versicherungswirtschaft wie beispielsweise dem deep robust hedging und der Berechnung von Risikomaßen.

## Zu erbringende Prüfungsleistung

Mündliche Prüfung (Dauer ca. 30 Minuten)

### Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern veröffentlicht.

## Benotung

Im B.Sc.-Studiengang Mathematik geht die Modulnote mit 9/N in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.

Im Studiengang M.Sc. Mathematics in Data and Technology (PO 2024) geht die Note der Prüfung (proportional zur Anzahl der ECTS-Punkte des Moduls und abhängig vom Umfang der als "Electives in Data" gewählten Veranstaltungen) mit mindestens 6/95 und höchstens 6/77 in die Gesamtnote ein.

#### Lehrmethoden

- Tafel- oder Folienvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur;
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

## Verwendbarkeit des Moduls

- Wahlpflichtmodul im B.Sc. Mathematik
- wählbar für die Module "Reine/Angewandte Mathematik", "Mathematik", "Vertiefungsmodul" (jeweils mit mündlicher Prüfung) oder als Wahlmodul (nur mit Studienleistungen) im M.Sc. Mathematik – siehe Verwendbarkeitstabelle im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern
- wählbar als "Elective in Data" im M.Sc. Mathematics in Data and Technology (PO 2024)



| Name des Moduls                             | Nummer des Moduls              |
|---------------------------------------------|--------------------------------|
| Machine Learning for Stochastics            | 07LE23MO-MScD24-ED6-<br>MLfSto |
| Veranstaltung                               |                                |
| Machine Learning for Stochastics: Vorlesung |                                |
| Veranstaltungsart                           | Nummer                         |
| Vorlesung                                   | 07LE23V2-6-MLfSto              |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

#### Inhalte

Die Vorlesung gibt einen Überblick über aktuelle Techniken des Machine Learning, die gegenwärtig im Bereich der Stochastik zum Einsatz kommen. Darunter fallen eine grundlegende Neubetrachtung des reinforcement learning sowie moderne Lösungsmethoden, neuronale stochastische Differentialgleichungen auf neuronalen Netzen und neuronale Semimartingale als moderne Erweiterung der klassischen stochastischen Differentialgleichungen, generative adversarial networks (GANs) und Transformatoren zur Erzeugung von Zeitreihen sowie Anwendungen auf generative KI, Risikoanalyse und -Abschätzung sowie deep robust hedging im Finanz- und Versicherungsbereich.

# Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- N. Bäuerle, U. Rieder: Markov Decision Processes with Applications to Finance, Springer, 2011.
- I. Karatzas, S.E. Shreve: *Brownian Motion and Stochastic Calculus* (Second edition), Springer, 1998.
- C. Cuchiero, G. Gazzani, S. Svaluto-Ferro: Signature-Based Models: Theory and Calibration, SIAM Journal on Financial Mathematics 14(3), 910-957, 2023.
- B. Hambly, R. Xu, H. Yang: *Recent advances in reinforcement learning in finance*, Mathematical Finance 33(3), 437-503, 2023.
- B. Horvath, J. Plenk, M. Vuletic, R. Saqur: *Generative Models in Finance: Market Generators, a Paradigm Shift in Financial Modeling, 2025.* Available at SSRN: <a href="https://ssrn.com/abstract=5284313">https://ssrn.com/abstract=5284313</a>

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!



| Name des Moduls                         | Nummer des Moduls              |
|-----------------------------------------|--------------------------------|
| Machine Learning for Stochastics        | 07LE23MO-MScD24-ED6-<br>MLfSto |
| Veranstaltung                           |                                |
| Machine Learning for Stochastics: Übung |                                |
| Veranstaltungsart                       | Nummer                         |
| Übung                                   | 07LE23Ü-6-MLfSto               |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

| Name des Moduls              | Nummer des Moduls              |
|------------------------------|--------------------------------|
| Markov Chains                | 07LE23MO-MScD24-ED6-<br>Markov |
| Verantwortliche/r            |                                |
| Prof. Dr. Peter Pfaffelhuber |                                |
| Fachbereich / Fakultät       |                                |
| Mathematisches Institut      |                                |

| ECTS-Punkte                 | 6,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 180 Stunden     |
| Semesterwochenstunden (SWS) | 4,0             |
| Präsenzstudium              | ca. 60 Stunden  |
| Selbststudium               | ca. 120 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht     |

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

# Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendig: Stochastik I oder Basics in Applied Mathematics

Nützlich: Analysis III, Probability Theory

| Zugehörige Veranstaltungen |           |             |      |     |                     |
|----------------------------|-----------|-------------|------|-----|---------------------|
| Name                       | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Markov Chains: Vorlesung   | Vorlesung | Wahlpflicht |      | 2,0 |                     |
| Markov Chains: Übung       | Übung     | Wahlpflicht |      | 2,0 |                     |

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die verwendete mathematische Fach- und Formelsprache und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der Vorlesung mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Stochastik, insbesondere den Vorlesungen Stochastik I und Probability Theory, und können die dort erlernten allgemeinen Sätze und Konzepte anhand der Aussagen und Beispiele dieser Vorlesung spezialisieren und vertiefen.

■ Die Studierenden kennen die charakteristischen Eigenschaften und mathematischen Grundlagen von Markov-Ketten sowie deren wichtigsten Eigenschaften wie Rekurrenz, Transienz, Zustandsklassifikationen und Konvergenz zu einem Gleichgewicht. Sie können ihr theoretisches Wissen auf praktische Probleme anwenden, beispielsweise in der Biologie, bei Warteschlangensystemen und beim Ressourcenmanagement.

### Zu erbringende Prüfungsleistung

Mündliche Prüfung (Dauer ca. 30 Minuten)

#### Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern veröffentlicht.

### Benotung

Im B.Sc.-Studiengang Mathematik geht die Modulnote mit 9/N in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.

Im Studiengang M.Sc. Mathematics in Data and Technology (PO 2024) geht die Note der Prüfung (proportional zur Anzahl der ECTS-Punkte des Moduls und abhängig vom Umfang der als "Electives in Data" gewählten Veranstaltungen) mit mindestens 6/95 und höchstens 6/77 in die Gesamtnote ein.

#### Lehrmethoden

- Tafel- oder Folienvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur;
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

#### Verwendbarkeit des Moduls

- Wahlpflichtmodul im B.Sc. Mathematik
- wählbar für die Module "Reine/Angewandte Mathematik", "Mathematik", "Vertiefungsmodul" (jeweils mit mündlicher Prüfung) oder als Wahlmodul (nur mit Studienleistungen) im M.Sc. Mathematik – siehe Verwendbarkeitstabelle im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern
- wählbar als "Elective in Data" im M.Sc. Mathematics in Data and Technology (PO 2024)



| Name des Moduls          | Nummer des Moduls              |
|--------------------------|--------------------------------|
| Markov Chains            | 07LE23MO-MScD24-ED6-<br>Markov |
| Veranstaltung            |                                |
| Markov Chains: Vorlesung |                                |
| Veranstaltungsart        | Nummer                         |
| Vorlesung                | 07LE23V2-6-Markov              |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

#### Inhalte

Graphische Darstellung von Markov-Ketten, starke Markov-Eigenschaft, Dirichlet-Probleme für Treffwahrscheinlichkeiten, Charakterisierung von Rekurrenz und Transienz, Existenz und Eindeutigkeit invarianter Maße und Verteilungen, Darstellungssatz für invariante Verteilungen, Markov-Ketten-Konvergenzsatz, Ergodensatz für Markov-Ketten.

Anwendungen: Markovsche Entscheidungsprozesse, Markov-optimale Strategien, rekursive Algorithmen zur Berechnung erwarteter optimaler Kosten

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

R. Durrett: Probability. Theory and Examples (5th Edition), Cambridge University Press, 2019.

J. R. Norris: Markov Chains, Cambridge University Press, 1997.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

## Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Stochastik I oder Basics in Applied Mathematics

Nützliche Vorkenntnisse: Analysis III, Probability Theory

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!</u>

个

| Name des Moduls      | Nummer des Moduls              |
|----------------------|--------------------------------|
| Markov Chains        | 07LE23MO-MScD24-ED6-<br>Markov |
| Veranstaltung        |                                |
| Markov Chains: Übung |                                |
| Veranstaltungsart    | Nummer                         |
| Übung                | 07LE23Ü-6-Markov               |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

| Name des Moduls         | Nummer des Moduls               |
|-------------------------|---------------------------------|
| Mathematical Modelling  | 07LE23MO-MScD24-ED6-<br>MathMod |
| Verantwortliche/r       |                                 |
| Prof. Dr. Patrick Dondl |                                 |
| Fachbereich / Fakultät  |                                 |
| Mathematisches Institut |                                 |

| ECTS-Punkte                 | 6,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 180 Stunden     |
| Semesterwochenstunden (SWS) | 4,0             |
| Präsenzstudium              | ca. 60 Stunden  |
| Selbststudium               | ca. 120 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht     |

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

#### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Analysis I+II, Lineare Algebra I+II

Nützliche Vorkenntnisse: Introduction to Theory and Numerics of Partial Differential Equations und Functional Analysis

| Zugehörige Veranstaltungen        |           |             |      |     |                     |
|-----------------------------------|-----------|-------------|------|-----|---------------------|
| Name                              | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Mathematical Modelling: Vorlesung | Vorlesung | Wahlpflicht |      | 2,0 |                     |
| Mathematical Modelling: Übung     | Übung     | Wahlpflicht |      | 2,0 |                     |

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die verwendete mathematische Fach- und Formelsprache und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der Vorlesung mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der reinen und angewandten Mathematik, insbesondere den Grundvorlesungen in Analysis und Numerik und können die dort erlernten Konzepte anhand der Sätze und Beispiele dieser Vorlesung spezialisieren und vertiefen.

■ Die Studierenden können Fragestellungen und Probleme aus dem täglichen Leben systematisch in mathematische Formeln und Modelle übersetzen und diese mit den in der Vorlesung erlernten Methoden analysieren und simulieren sowie die erhaltenen Ergebnisse fundiert interpretieren. Sie können dar- über hinaus die aufgestellten Modelle anhand realer Daten validieren und ggf. weiter verbessern. Sie sind vertraut mit Anwendungsbeispielen aus der Physik, Biologie, Technik und Wirtschaftswissenschaften.

## Zu erbringende Prüfungsleistung

Mündliche Prüfung (Dauer ca. 30 Minuten)

### Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise in den <u>Kommentierten</u> Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern veröffentlicht.

#### Benotung

Im B.Sc.-Studiengang Mathematik geht die Modulnote mit 9/N in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.

Im Studiengang M.Sc. Mathematics in Data and Technology (PO 2024) geht die Note der Prüfung (proportional zur Anzahl der ECTS-Punkte des Moduls und abhängig vom Umfang der als "Electives in Data" gewählten Veranstaltungen) mit mindestens 6/95 und höchstens 6/77 in die Gesamtnote ein.

#### Lehrmethoden

- Tafel- oder Folienvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben sowie Programmieraufgaben durch die Studierenden und anschließende Korrektur;
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

### Verwendbarkeit des Moduls

- Wahlpflichtmodul im B.Sc. Mathematik
- wählbar für die Module "Reine/Angewandte Mathematik", "Mathematik", "Vertiefungsmodul" (jeweils mit mündlicher Prüfung) oder als Wahlmodul (nur mit Studienleistungen) im M.Sc. Mathematik – siehe Verwendbarkeitstabelle im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern
- wählbar als "Elective in Data" im M.Sc. Mathematics in Data and Technology (PO 2024)



| Name des Moduls                   | Nummer des Moduls               |
|-----------------------------------|---------------------------------|
| Mathematical Modelling            | 07LE23MO-MScD24-ED6-<br>MathMod |
| Veranstaltung                     |                                 |
| Mathematical Modelling: Vorlesung |                                 |
| Veranstaltungsart                 | Nummer                          |
| Vorlesung                         | 07LE23V2-5-MathMod              |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

Diskrete und zeitstetige Modellierungsansätze, insbesondere mittels Differentialgleichungen, Variationsproblemen und Optimierungstechniken mit Anwendungsbeispielen aus der Physik, Technik und Materialwissenschaft.

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- S. Bartels: *Numerical Mathematics* 3x9, Springer, 2025.
- C. Eck, H. Garke, P. Knabner: Mathematical Modelling, Springer, 2017.
- M.E. Gurtin: An Introduction to Continuum Mechanics, Academic Press, 1981.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern beschriebenen notwendigen Vorkenntnisse!

# Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Analysis I+II, Lineare Algebra I+II

Nützliche Vorkenntnisse: Introduction to Theory and Numerics of Partial Differential Equations und Functional Analysis

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!



| Name des Moduls               | Nummer des Moduls               |  |  |
|-------------------------------|---------------------------------|--|--|
| Mathematical Modelling        | 07LE23MO-MScD24-ED6-<br>MathMod |  |  |
| Veranstaltung                 |                                 |  |  |
| Mathematical Modelling: Übung |                                 |  |  |
| Veranstaltungsart             | Nummer                          |  |  |
| Übung                         | 07LE23Ü-5-MathMod               |  |  |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

| Name des Moduls              | Nummer des Moduls               |
|------------------------------|---------------------------------|
| Measure Theory               | 07LE23MO-MScD24-ED6-<br>Measure |
| Verantwortliche/r            |                                 |
| Prof. Dr. Peter Pfaffelhuber |                                 |
| Fachbereich / Fakultät       |                                 |
| Mathematisches Institut      |                                 |

| ECTS-Punkte                 | 6,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 180 Stunden     |
| Semesterwochenstunden (SWS) | 4,0             |
| Präsenzstudium              | ca. 30 Stunden  |
| Selbststudium               | ca. 150 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht     |

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Grundlagenvorlesung in Analysis und Verständnis mathematischer Beweise

| Zugehörige Veranstaltungen |           |             |      |     |                     |
|----------------------------|-----------|-------------|------|-----|---------------------|
| Name                       | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Measure Theory: Vorlesung  | Vorlesung | Wahlpflicht |      | 2,0 |                     |
| Measure Theory: Übung      | Übung     | Wahlpflicht |      | 2,0 |                     |

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die verwendete mathematische Fach- und Formelsprache und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der Vorlesung mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Sie erkennen die Beschränkungen des aus der Grundvorlesung Analysis bekannten Riemann-Integrals und die sich daraus ergebenden Anforderungen an einen allgemeineren Maß- unf Integralbegriff.
- Die Studierenden sind vertraut mit dem Umgang von Sigma-Algebren, der Konstruktion von Maßen auf diesen sowie deren grundlegenden Eigeschaften. Sie kennen ferner Produktmaße als Modell für Unab-

hängigkeit und das Lebesgue-Integral sowie die zugehörigen Konvergenzsätze und Räume p-fach integrierbarer Funktionen.

## Zu erbringende Prüfungsleistung

Mündliche Prüfung (Dauer ca. 30 Minuten)

### Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise in den <u>Kommentierten</u> <u>Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> veröffentlicht.

## Benotung

Im Studiengang M.Sc. Mathematics in Data and Technology (PO 2024) geht die Note der Prüfung (proportional zur Anzahl der ECTS-Punkte des Moduls und abhängig vom Umfang der als "Electives in Data" gewählten Veranstaltungen) mit mindestens 6/95 und höchstens 6/77 in die Gesamtnote ein.

#### Lehrmethoden

- Hybrider Kurs mit Vorlesungsvideos und zugrundeliegendem Skript sowie Präsenzübungen;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur;
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

#### Verwendbarkeit des Moduls

■ wählbar als "Elective in Data" im M.Sc. Mathematics in Data and Technology (PO 2024)

| Name des Moduls           | Nummer des Moduls               |
|---------------------------|---------------------------------|
| Measure Theory            | 07LE23MO-MScD24-ED6-<br>Measure |
| Veranstaltung             |                                 |
| Measure Theory: Vorlesung |                                 |
| Veranstaltungsart         | Nummer                          |
| Vorlesung                 | 07LE23V2-6-Measure              |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

### Inhalte

Mengensysteme, (Halb)Ringe und Sigma-Algebren und deren Erzeuger, Dynkin- und kompakte Systeme, Konstruktion von äußeren Maßen und Maßen, Maßerweiterungssatz und Bildmaße, messbare Funktionen, Konstruktion des Lebesgue-Integrals und dessen Eigenschaften, Konvergenzsätze, Räume p-fach integrierbarer Funktionen, Satz von Radon-Nikodym. Produkträume und Faltungsmaße, Konsistenzsatz von Kolmogorov

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- V. I. Bogachev: *Measure Theory*, Springer, 2007.
- P. Billingsley: *Probability and Measure (Third Edition)*, Wiley, 1995.
- O. Kallenberg: Foundations of Modern Probability (Third Edition), Vol. 1, Springer, 2021.
- A. Klenke: Probability Theory (Third Edition), Springer, 2020.

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

# Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Grundlagenvorlesung in Analysis und Verständnis mathematischer Beweise. Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!



| Name des Moduls                        | Nummer des Moduls |  |
|----------------------------------------|-------------------|--|
| Measure Theory 07LE23MO-MScD24-Measure |                   |  |
| Veranstaltung                          |                   |  |
| Measure Theory: Übung                  |                   |  |
| Veranstaltungsart                      | Nummer            |  |
| Übung                                  | 07LE23Ü-6-Measure |  |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

| Name des Moduls                                              | Nummer des Moduls                    |  |
|--------------------------------------------------------------|--------------------------------------|--|
| Numerical Approximation of Stochastic Differential Equations | 07LE23MO-MScD24-ED6-<br>NumApproxSDE |  |
| Verantwortliche/r                                            |                                      |  |
| Prof. Dr. Sören Bartels                                      |                                      |  |
| Fachbereich / Fakultät                                       |                                      |  |
| Mathematisches Institut                                      |                                      |  |

| ECTS-Punkte                 | 6,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 180 Stunden     |
| Semesterwochenstunden (SWS) | 4,0             |
| Präsenzstudium              | ca. 60 Stunden  |
| Selbststudium               | ca. 120 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht     |

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendig: Stochastik I und Measure Theory oder Probability Theory, Numerik sowie Programmierkenntnisse (Matlab/Python)

| Zugehörige Veranstaltungen                                                                             |           |             |      |         |                     |
|--------------------------------------------------------------------------------------------------------|-----------|-------------|------|---------|---------------------|
| Name                                                                                                   | Art       | P/WP        | ECTS | • • • • | Arbeits-<br>aufwand |
| Numerical Approximation of Stochastic Differential Equations: Vorlesung                                | Vorlesung | Wahlpflicht |      | 2,0     |                     |
| Numerical Approximation of Stochastic Differential Equations: Übung                                    | Übung     | Wahlpflicht |      | 1,0     |                     |
| Numerical Approximation of Stochastic<br>Differential Equations: Praktische Übung<br>(Computerübungen) | Übung     | Wahlpflicht |      | 1,0     |                     |

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die verwendete mathematische Fach- und Formelsprache und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.

- Sie können typische Fragestellungen aus dem Bereich der Vorlesung mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Die Studierenden k\u00f6nnen aus der Finanzmathematik oder der Physik stammende stochastische Modelle auf dem Computer simulieren sowie mathematisch analysieren. Sie sind vertraut mit stochastischen Differentialgleichungen und Methoden zu deren L\u00f6sung. Sie kennen verschiedene dazu einsetzbare numerische Methoden sowie deren Konvergenzeigenschaften und k\u00f6nnen diese innerhalb einer Programmierumgebung implementieren.

## Zu erbringende Prüfungsleistung

Mündliche Prüfung (Dauer ca. 30 Minuten)

## Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise in den <u>Kommentierten</u> Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern veröffentlicht.

## Benotung

Im B.Sc.-Studiengang Mathematik geht die Modulnote mit 9/N in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.

Im Studiengang M.Sc. Mathematics in Data and Technology (PO 2024) geht die Note der Prüfung (proportional zur Anzahl der ECTS-Punkte des Moduls und abhängig vom Umfang der als "Electives in Data" gewählten Veranstaltungen) mit mindestens 6/95 und höchstens 6/77 in die Gesamtnote ein.

#### Lehrmethoden

- Tafel- oder Folienvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben sowie zusätzlicher praktischer Programmieraufgaben durch die Studierenden und anschließende Korrektur;
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten sowie der Praktischen Übung.

### Verwendbarkeit des Moduls

- Wahlpflichtmodul im B.Sc. Mathematik
- wählbar für die Module "Reine/Angewandte Mathematik", "Mathematik", "Vertiefungsmodul" (jeweils mit mündlicher Prüfung) oder als Wahlmodul (nur mit Studienleistungen) im M.Sc. Mathematik – siehe Verwendbarkeitstabelle im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern
- Vorlesung, Übung und Praktische Übung sind zusammen wählbar als "Elective in Data" im M.Sc. Mathematics in Data and Technology (PO 2024).



| Name des Moduls                                                         | Nummer des Moduls                    |  |
|-------------------------------------------------------------------------|--------------------------------------|--|
| Numerical Approximation of Stochastic Differential Equations            | 07LE23MO-MScD24-ED6-<br>NumApproxSDE |  |
| Veranstaltung                                                           |                                      |  |
| Numerical Approximation of Stochastic Differential Equations: Vorlesung |                                      |  |
| Veranstaltungsart                                                       | Nummer                               |  |
| Vorlesung                                                               | 07LE23V2-5-NumApprSDE                |  |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

### Inhalte

Grundlagen der Maß- und Wahrscheinlichkeitstheorie, Erzeugung von Zufallszahlen, Monte Carlo-Integrationsmethoden, stochastische Prozesse und Ito-Kalkül, stochastische Differentialgleichungen, numerische Approximierung stochastischer Differentialgleichungen, Anwendungen in Bereich Computational Finance, Optionsbewertung

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- P. E. Kloeden, E. Platen: Numerical Solution of Stochastic Differential Equations, Springer, 1992.
- B. Oksendal: Stochastic Differential Equations (Sixth Edition), Springer, 2003.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

# Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendig: Stochastik I und Measure Theory oder Probability Theory, Numerik sowie Programmierkenntnisse (Matlab/Python)

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!</u>



| Name des Moduls                                                     | Nummer des Moduls                    |  |
|---------------------------------------------------------------------|--------------------------------------|--|
| Numerical Approximation of Stochastic Differential Equations        | 07LE23MO-MScD24-ED6-<br>NumApproxSDE |  |
| Veranstaltung                                                       |                                      |  |
| Numerical Approximation of Stochastic Differential Equations: Übung |                                      |  |
| Veranstaltungsart                                                   | Nummer                               |  |
| Übung                                                               | 07LE23Ü1-5-NumApprSDE                |  |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 1,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

| Name des Moduls                                                                                  | Nummer des Moduls                    |  |
|--------------------------------------------------------------------------------------------------|--------------------------------------|--|
| Numerical Approximation of Stochastic Differential Equations                                     | 07LE23MO-MScD24-ED6-<br>NumApproxSDE |  |
| Veranstaltung                                                                                    |                                      |  |
| Numerical Approximation of Stochastic Differential Equations: Praktische Übung (Computerübungen) |                                      |  |
| Veranstaltungsart                                                                                | Nummer                               |  |
| Übung                                                                                            | 07LE23PÜ-5-NumApprSDE                |  |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 1,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

### Inhalte

Die Praktische Übung begleitet die gleichnamige Vorlesung mit Programmieraufgaben zum Vorlesungsstoff.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

#### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Siehe bei der Vorlesung, zusätzlich Programmierkenntnisse (Matlab/Python)

### Bemerkung / Empfehlung

Diese Praktische Übung kann nur zusammen mit Vorlesung und Übung absolviert werden.



| Name des Moduls                     | Nummer des Moduls              |
|-------------------------------------|--------------------------------|
| Numerics for Differential Equations | 07LE23MO-MScD24-ED6-<br>NumDgl |
| Verantwortliche/r                   |                                |
| Prof. Dr. Sören Bartels             |                                |
| Fachbereich / Fakultät              |                                |
| Mathematisches Institut             |                                |

| ECTS-Punkte                 | 6,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 180 Stunden     |
| Semesterwochenstunden (SWS) | 4,0             |
| Präsenzstudium              | ca. 60 Stunden  |
| Selbststudium               | ca. 120 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht     |

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I+II, Analysis I+II, Numerik I

Nützliche Vorkenntnisse: Analysis III, Programmierkenntnisse

| Zugehörige Veranstaltungen                            |           |             |      |     |                     |
|-------------------------------------------------------|-----------|-------------|------|-----|---------------------|
| Name                                                  | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Numerics for Differential Equations: Vorlesung        | Vorlesung | Wahlpflicht |      | 2,0 |                     |
| Numerics for Differential Equations: Übung            | Übung     | Wahlpflicht |      | 1,0 |                     |
| Numerics for Differential Equations: Praktische Übung | Übung     | Wahlpflicht |      | 1,0 |                     |

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die verwendete mathematische Fach- und Formelsprache und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der Numerik von Differentialgleichungen mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathema-

- tisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen sowie
- Sie kennen klassische Verfahren zur Diskretisierung gewöhnlicher und partieller Differentialgleichungen und können diese in Beispielen anwenden und als Computerprogramm umsetzen.
- Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Mathematik, insbesondere die Anwendungen der theoretischen Grundlagen aus der Analysis.

## Zu erbringende Prüfungsleistung

- Klausur (Dauer 90-180 Minuten)
- Bei Verwendung als Wahlmodul: keine

### Zu erbringende Studienleistung

- Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise im <u>Kommentierten</u> Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern veröffentlicht.
- Falls mit Praktischer Übung: zusätzlich Bestehen der Praktischen Übung. Die genauen Anforderungen dafür werden semesterweise in den Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern veröffentlicht.
- Falls mit Projekt: zusätzlich Bestehen des Projekts.
- Bei Verwendung als Wahlmodul: zusätzlich Bestehen der Klausur.

#### Benotung

- Im B.Sc.-Studiengang Mathematik (PO 2021) geht die Modulnote mit 6/(N-1) in die Gesamtnote ein, ohne Praktische Übung mit 5/(N-1), mit zusätzlichem Projekt mit 9/(N-1), wobei N jeweils die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im B.Sc.-Studiengang Mathematik (PO 2012) geht die Modulnote mit 6/N in die Gesamtnote ein, ohne Praktische Übung mit 5/N, mit zusätzlichem Projekt mit 9/N, wobei N jeweils die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Als Wahlmodul im Zwei-Hauptfächer-Bachelor-Studiengang und im M.Sc.-Studiengang Mathematik ist das Modul unbenotet.
- Im Studiengang M.Sc. Mathematics in Data and Technology (PO 2024) geht die Note der Prüfung (proportional zur Anzahl der ECTS-Punkte des Moduls und abhängig vom Umfang der als "Electives in Data" gewählten Veranstaltungen) mit mindestens 6/95 und höchstens 6/77 in die Gesamtnote ein.

#### Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur:
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten;
- Computeraufgaben und deren anschließende Besprechung.

### Studiengangschwerpunkte

### Numerik

### Bemerkung / Empfehlung

- Das Modul kann auch ohne Praktische Übung mit 5 statt 6 ECTS-Punkten absolviert werden (diese Option besteht im M.Sc. Mathematics in Data and Technology (PO 2024) nicht!)
- Das Modul kann auch mit Praktischer Übung und zusätzlichem Projekt mit 9 statt 6 ECTS-Punkten absolviert werden und zählt dann im B.Sc.-Studiengang Mathematik wie eine 4-stündige Vorlesung mit Übungen. Für den M.Sc. Mathematics in Data and Technology besteht diese Option nicht.

### Verwendbarkeit des Moduls

- Wahlpflichtmodul im B.Sc. Mathematik (PO 2012, PO 2021)
- Mit Klausur als Teil der Studienleistung: Wahlmodul in der Option "Individuelle Studiengestaltung" des Zwei-Hauptfächer-Bachelor-Studiengangs Mathematik (PO 2021) oder im M.Sc.-Studiengang Mathematik (PO 2014)
- Vorlesung und Übung sind verwendbar als Teil des Moduls "Angewandte Mathematik".
- Vorlesung, Übung und Praktische Übung sind zusammen wählbar als "Elective in Data" im M.Sc. Mathematics in Data and Technology (PO 2024).

 $\overline{\uparrow}$ 

| Name des Moduls                                | Nummer des Moduls              |
|------------------------------------------------|--------------------------------|
| Numerics for Differential Equations            | 07LE23MO-MScD24-ED6-<br>NumDgl |
| Veranstaltung                                  |                                |
| Numerics for Differential Equations: Vorlesung |                                |
| Veranstaltungsart                              | Nummer                         |
| Vorlesung                                      | 07LE23V2-5-NumDgl              |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

#### Inhalte

- Modellierung mit gewöhnlichen Differentialgleichungen.
- Euler-Verfahren, Einschrittverfahren, Runge-Kutta-Verfahren, Mehrschrittverfahren, Konsistenz, Konvergenz, Stabilität.
- Hamilton'sche Systeme, symplektische Verfahren.

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- S. Bartels: *Numerik 3x9*, Springer-Spektrum 2016.
- M. Hanke-Bourgeois: *Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens* (3. Auflage), Vieweg+Teubner, 2009.
- J. Stoer, R. Burlisch: Numerische Mathematik I, II. Springer, 2007, 2005.
- W. Walter: Gewöhnliche Differentialgleichungen (7. Auflage), Springer 2000.

#### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

## Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I+II, Analysis I+II, erster Teil der Numerik-Vorlesung Nützliche Vorkenntnisse: Programmierkenntnisse, zweiter Teil der Numerik-Vorlesung (kann parallel gehört werden)

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!</u>

| Name des Moduls                            | Nummer des Moduls              |
|--------------------------------------------|--------------------------------|
| Numerics for Differential Equations        | 07LE23MO-MScD24-ED6-<br>NumDgl |
| Veranstaltung                              |                                |
| Numerics for Differential Equations: Übung |                                |
| Veranstaltungsart                          | Nummer                         |
| Übung                                      | 07LE23Ü1-5-NumDgl              |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 1,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

| Name des Moduls                                       | Nummer des Moduls              |
|-------------------------------------------------------|--------------------------------|
| Numerics for Differential Equations                   | 07LE23MO-MScD24-ED6-<br>NumDgl |
| Veranstaltung                                         |                                |
| Numerics for Differential Equations: Praktische Übung |                                |
| Veranstaltungsart                                     | Nummer                         |
| Übung                                                 | 07LE23PÜ1-5-NumDgl             |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 1,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

#### Inhalte

Die Praktische Übung begleitet die Vorlesung mit Programmieraufgaben zum Vorlesungsstoff.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

# Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

#### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Siehe bei der Vorlesung, zusätzlich Programmierkenntnisse.

### Bemerkung / Empfehlung

Diese Praktische Übung kann nur zusammen mit Vorlesung und Übung absolviert werden.



| Name des Moduls              | Nummer des Moduls      |
|------------------------------|------------------------|
| Probability Theory           | 07LE23MO-MScD24-ED9-WT |
| Verantwortliche/r            |                        |
| Prof. Dr. Peter Pfaffelhuber |                        |
| Fachbereich / Fakultät       |                        |
| Mathematisches Institut      |                        |

| ECTS-Punkte                 | 9,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 270 Stunden     |
| Semesterwochenstunden (SWS) | 6,0             |
| Präsenzstudium              | ca. 90 Stunden  |
| Selbststudium               | ca. 180 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht     |

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.</u>

# Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I, Analysis I-III, Stochastik I

Aus Analysis III werden Grundlagen der Maßtheorie benötigt, die in der Vorlesung kurz wiederholt werden und auch im Selbststudium angeeignet werden können. Im M.Sc. Mathematics in Data and Technology kann dazu auch alternativ vorab die Vorlesung Measure Theory gehört werden.

| Zugehörige Veranstaltungen    |           |             |      |     |                     |
|-------------------------------|-----------|-------------|------|-----|---------------------|
| Name                          | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Probability Theory: Vorlesung | Vorlesung | Wahlpflicht |      | 4,0 |                     |
| Probability Theory: Übung     | Übung     | Wahlpflicht |      | 2,0 |                     |

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die mathematische Fach- und Formelsprache der Wahrscheinlichkeitstheorie und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der Wahrscheinlichkeitstheorie mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.

- Sie sind mit grundlegenden stochastischen Modellen und wahrscheinlichkeitstheoretischen Fragestellungen auf maßtheoretischer Grundlage vertraut, kennen Herleitungen der klassischen Grenzwertaussagen in der Wahrscheinlichkeitstheorie und können mit den Grundbegriffen der Wahrscheinlichkeitstheorie umgehen.
- Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Mathematik, insbesondere mit den Grundlagen aus der Stochastik, die sie dadurch vertiefen.

## Zu erbringende Prüfungsleistung

Klausur (Dauer 90-180 Minuten)

### Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise in den <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> veröffentlicht.

#### Benotung

Im B.Sc.-Studiengang Mathematik geht die Modulnote mit 9/N in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.

Im Studiengang M.Sc. Mathematics in Data and Technology (PO 2024) geht die Note der Prüfung (proportional zur Anzahl der ECTS-Punkte des Moduls und abhängig vom Umfang der als "Electives in Data" gewählten Veranstaltungen) bei Verwendung der Veranstaltung als "Elective in Data" mit mindestens 9/95 und höchstens 9/77 in die Gesamtnote ein.

#### Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur;
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

# Studiengangschwerpunkte

## Stochastik

## Verwendbarkeit des Moduls

- Wahlpflichtmodul im B.Sc. Mathematik; geeignet für "Vorlesung mit Übung A–D"
- qeeignet als Modul "Mathematische Vertiefung" im M.Ed. (mit mündlicher Prüfung statt Klausur)
- verwendbar als Modul "Angewandte Mathematik" (mit Klausur als Studienleistung und zusätzlicher mündlicher Prüfung) oder als Wahlmodul (mit Klausur als Studienleistung) im M.Sc. Mathematik
- verwendbar im M.Sc. Mathematics in Data and Technology (PO 2024) als Modul "Advanced Lecture in Stochastics" (mit mündlicher Prüfung und Klausur als Teil der Studienleistung) oder als "Elective in Data" im M.Sc. Mathematics in Data and Technology (PO 2024) (mit Klausur als schriftlicher Prüfungsleistung)



| Name des Moduls               | Nummer des Moduls      |
|-------------------------------|------------------------|
| Probability Theory            | 07LE23MO-MScD24-ED9-WT |
| Veranstaltung                 |                        |
| Probability Theory: Vorlesung |                        |
| Veranstaltungsart             | Nummer                 |
| Vorlesung                     | 07LE23V-6-WT           |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

Allgemeine Wahrscheinlichkeitsräume und -Maße, Produkträume, Zufallsvariable, 0-1-Gesetze, Gesetz der großen Zahlen, zentraler Grenzwertsatz, schwache Konvergenz, charakteristische Funktionen, bedingte Erwartungen, optional ferner Martingale in diskreter Zeit und Martingalkonvergenzsätze.

#### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- O. Kallenberg: Foundations of Modern Probability (Third Edition, Vol. 1), Springer, 2021.
- A. Klenke: Wahrscheinlichkeitstheorie (4. Auflage), Springer, 2020.
- L. Rüschendorf: Wahrscheinlichkeitstheorie, Springer Spektrum, 2016.
- A.N. Shiryaev: *Probability-1 (Third Edition)*, Springer, 2016.
- A.N. Shiryaev: *Probability-2 (Third Edition)*, Springer, 2019.
- D. Williams: *Probability with Martingales*, Cambridge University Press, 1991.

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

#### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

#### Notwendige Vorkenntnisse:

- Grundvorlesungen in Analysis und Lineare Algebra
- Analysis III oder Measure Theory
- Stochastik I oder Basics in Applied Mathematics

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!</u>

| sion 2024) | <br>- |  | _ |
|------------|-------|--|---|
| $\uparrow$ |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |
|            |       |  |   |

| Name des Moduls           | Nummer des Moduls      |
|---------------------------|------------------------|
| Probability Theory        | 07LE23MO-MScD24-ED9-WT |
| Veranstaltung             |                        |
| Probability Theory: Übung |                        |
| Veranstaltungsart         | Nummer                 |
| Übung                     | 07LE23Ü-6-WT           |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.

| Name des Moduls         | Nummer des Moduls                |
|-------------------------|----------------------------------|
| Mathematical Seminar    | 07LE23MO-MScD24-ED6-<br>Seminar1 |
| Verantwortliche/r       |                                  |
| PD Dr. Markus Junker    |                                  |
| Fachbereich / Fakultät  |                                  |
| Mathematisches Institut |                                  |

| ECTS-Punkte                 | 6,0                            |
|-----------------------------|--------------------------------|
| Arbeitsaufwand              | 180 Stunden                    |
| Semesterwochenstunden (SWS) | 2,0                            |
| Präsenzstudium              | ca. 40 Stunden                 |
| Selbststudium               | ca. 140 Stunden                |
| Mögliche Fachsemester       | 3                              |
| Moduldauer                  | ein Semester                   |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht                        |
| Angebotsfrequenz            | Findet in jedem Semester statt |

#### Teilnahmevoraussetzung laut Prüfungsordnung

Vergabe eines Seminarplatzes bei den Vorbesprechungen am Ende des Vorsemesters.

#### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> sind semesterweise die wählbaren Seminare und die jeweils vorausgesetzten Vorkenntnisse beschrieben.

| Zugehörige Veranstaltungen |         |             |      |     |                     |
|----------------------------|---------|-------------|------|-----|---------------------|
| Name                       | Art     | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Mathematical Seminar       | Seminar | Wahlpflicht |      | 2,0 |                     |

#### Inhalte

In einem Seminar wird ein vertieftes wissenschaftliches Thema der Mathematik durch Lektüre von Fachliteratur erarbeitet und dann in Vorträgen präsentiert.

Die konkreten Inhalte des Moduls hängen vom gewählten Seminar ab; die Inhalte der wählbaren Seminare sind im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> des Mathematischen Instituts beschrieben.

#### Lern- und Qualifikationsziele des Moduls

- Die Studierenden können sich in ein wissenschaftliches Thema der Mathematik durch Lektüre von Fachliteratur selbständig, aber unter fachlicher Begleitung einarbeiten.
- Die Studierenden können dieses Thema didaktisch aufbereiten und in freiem Vortrag anschaulich, verständlich und fachlich korrekt vortragen; sie können Fragen zum Vortragsthema beantworten und sich einer kritischen Diskussion stellen.
- Die Studierenden können fachliche Fragen zu Vorträgen formulieren und Vorträge konstruktiv-kritisch begleiten.

### Zu erbringende Prüfungsleistung

Gestaltung einer ca. 90-minütigen Seminarsitzung mit Vortrag und Diskussion.

#### Zu erbringende Studienleistung

Die zu erbringenden Studienleistungen hängen vom gewählten Seminar ab. Die genauen Anforderungen werden semesterweise im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> veröffentlicht.

#### Lehrmethoden

- Gestaltung der Seminarsitzungen durch Studierende (mit Hilfe bei der Vorbereitung durch Dozent/in bzw. Assistent/in);
- aktive Beteiligung aller Teilnehmenden durch Fragen und Diskussion.

#### Literatur

Literaturangaben für das gewählte Seminar finden Sie im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> des Mathematischen Instituts oder werden bei der Vorbesprechung des Seminars bekanntgegeben.

 $\uparrow$ 

| Name des Moduls      | Nummer des Moduls                |
|----------------------|----------------------------------|
| Mathematical Seminar | 07LE23MO-MScD24-ED6-<br>Seminar1 |
| Veranstaltung        |                                  |
| Mathematical Seminar |                                  |
| Veranstaltungsart    | Nummer                           |
| Seminar              | 07LE23S-0-NN                     |

| ECTS-Punkte                 |                                |
|-----------------------------|--------------------------------|
| Semesterwochenstunden (SWS) | 2,0                            |
| Mögliche Fachsemester       | 3                              |
| Angebotsfrequenz            | Findet in jedem Semester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                    |
| Lehrsprache                 | englisch                       |

#### Inhalte

Die Themen hängen vom jeweils gewählten Seminar ab. Im <u>Kommentierten Vorlesungsverzeichnis mit</u> <u>den Ergänzungen zu den Modulhandbüchern</u> sind jeweils die innerhalb eines Semesters als Mathematical Seminar wählbaren Seminare genauer beschrieben.

# Zu erbringende Prüfungsleistung

[siehe beim Modul]

# Zu erbringende Studienleistung

[siehe beim Modul]

# Teilnahmevoraussetzung laut Prüfungsordnung

[siehe beim Modul]



| Name des Kontos                                             | Nummer des Kontos     |
|-------------------------------------------------------------|-----------------------|
| Electives in Data: Veranstaltungen der Technischen Fakultät | 07LE23KT-MScD24-ED-TF |
| Fachbereich / Fakultät                                      |                       |
| Mathematisches Institut                                     |                       |

| Pflicht/Wahlpflicht (P/WP) Wahlpflicht |  |
|----------------------------------------|--|
|----------------------------------------|--|

#### Kommentar

In diesem Abschnitt werden Lehrveranstaltungen der Technischen Fakultät beschrieben, die als "Electives in Data" belegt werden können und typischerweise regelmäßiger angeboten werden.

Auch hier gilt, dass es in jedem Semester vereinzelt zusätzliche Lehrangebote der Technischen Fakultät geben kann, die als "Electives in Data" anrechenbar sind. Diese werden dann jeweils im semesterweisen-<u>Veranstaltungsverzeichnis</u> des betreffenden Semesters unter Punkt 4b. *Fachfremde Veranstaltungen für den M.Sc. Mathematics in Data and Technology* aufgeführt.

Die Modulbeschreibungen werden größtenteils von der Technischen Fakultät importiert und können daher an manchen Stellen Angaben enthalten, die für den Studiengang M.Sc. Mathematics in Data and Technology nicht ganz zutreffend sind. Die jeweils genannten Anforderungen an Prüfungs- und ggf. Studienleistungen gelten jedoch generell unverändert auch für den Studiengang M.Sc. Mathematics in Data and Technology.

| Name des Moduls         | Nummer des Moduls                  |
|-------------------------|------------------------------------|
| Computer Vision         | 07LE23MO-MScD24-ED6-<br>CompVision |
| Verantwortliche/r       |                                    |
|                         |                                    |
| Fachbereich / Fakultät  |                                    |
| Mathematisches Institut |                                    |

| ECTS-Punkte                 | 6,0          |
|-----------------------------|--------------|
| Arbeitsaufwand              |              |
| Semesterwochenstunden (SWS) |              |
| Mögliche Fachsemester       |              |
| Moduldauer                  | ein Semester |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht      |

Teilnahmevoraussetzung laut Prüfungsordnung

| Zugehörige Veranstaltungen |           |             |      |     |                        |
|----------------------------|-----------|-------------|------|-----|------------------------|
| Name                       | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand    |
| Computer Vision Vorlesung  | Vorlesung | Wahlpflicht | 6,0  | 2,0 | 180 Stunden  <br>hours |
| Computer Vision Übung      | Übung     | Wahlpflicht |      | 2,0 |                        |

| Lern- und Qualifikationsziele des Moduls |  |
|------------------------------------------|--|
|                                          |  |

| Name des Moduls                                             | Nummer des Moduls                  |
|-------------------------------------------------------------|------------------------------------|
| Computer Vision                                             | 07LE23MO-MScD24-ED6-<br>CompVision |
| Veranstaltung                                               |                                    |
| Computer Vision Vorlesung                                   |                                    |
| Veranstaltungsart                                           | Nummer                             |
| Vorlesung                                                   | 11LE13V-1123                       |
| Veranstalter                                                |                                    |
| Institut für Informatik Mustererkennung u. Bildverarbeitung |                                    |

| ECTS-Punkte                 | 6,0                                  |
|-----------------------------|--------------------------------------|
| Arbeitsaufwand              | 180 Stunden   hours                  |
| Präsenzstudium              | 32 Stunden                           |
| Selbststudium               | 148 Stunden                          |
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

# Inhalte

The course presents the most relevant computer vision tasks and current solutions. It covers nonlinear diffusion, variational optimization, spectral clustering, image segmentation, optical flow, video segmentation, stereo reconstruction, camera calibration, structure from motion, recognition, and deep learning.

### Zu erbringende Prüfungsleistung

See module level

#### Zu erbringende Studienleistung

See module level

### Literatur

current literature, as announced directly in lecture

# Teilnahmevoraussetzung laut Prüfungsordnung

keine | none

### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Fundamental mathematical knowledge and programming skills (in C++ or Python) Basic knowledge in image processing and/or computer graphics concepts

# Bemerkung / Empfehlung

Usually the course is offered every winter semester; as there might be rare exceptions in some years, it's marked as "irregularly"

 $\uparrow$ 

| Name des Moduls                                             | Nummer des Moduls                  |
|-------------------------------------------------------------|------------------------------------|
| Computer Vision                                             | 07LE23MO-MScD24-ED6-<br>CompVision |
| Veranstaltung                                               |                                    |
| Computer Vision Übung                                       |                                    |
| Veranstaltungsart                                           | Nummer                             |
| Übung                                                       | 11LE13Ü-1123                       |
| Veranstalter                                                |                                    |
| Institut für Informatik Mustererkennung u. Bildverarbeitung |                                    |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Präsenzstudium              | 30 Stunden                           |
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

### Inhalte

The exercises consist of programming assignments (usually in C/C++), where students learn to implement the most important techniques presented in the lectures.

# Zu erbringende Prüfungsleistung

See module level

### Zu erbringende Studienleistung

See module level

Teilnahmevoraussetzung laut Prüfungsordnung



| Name des Moduls                        | Nummer des Moduls               |
|----------------------------------------|---------------------------------|
| Foundations of Artificial Intelligence | 07LE23MO-MScD24-ED6-<br>FoundAl |
| Verantwortliche/r                      |                                 |
|                                        |                                 |
| Fachbereich / Fakultät                 |                                 |
| Mathematisches Institut                |                                 |

| ECTS-Punkte                 | 6,0          |
|-----------------------------|--------------|
| Arbeitsaufwand              |              |
| Semesterwochenstunden (SWS) |              |
| Mögliche Fachsemester       |              |
| Moduldauer                  | ein Semester |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht      |

Teilnahmevoraussetzung laut Prüfungsordnung

| Zugehörige Veranstaltungen             |           |             |      |     |                             |
|----------------------------------------|-----------|-------------|------|-----|-----------------------------|
| Name                                   | Art       | P/WP        | ECTS |     | Arbeits-<br>aufwand         |
| Foundations of Artificial Intelligence | Vorlesung | Wahlpflicht | 6,0  | 3,0 | 180 Stun-<br>den  <br>hours |
| Foundations of Artificial Intelligence | Übung     | Wahlpflicht |      | 1,0 |                             |

| Lern- und Qualifikationsziele des Moduls |  |
|------------------------------------------|--|
|                                          |  |

| Name des Moduls                                                                                                                                                                            | Nummer des Moduls               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Foundations of Artificial Intelligence                                                                                                                                                     | 07LE23MO-MScD24-ED6-<br>FoundAl |
| Veranstaltung                                                                                                                                                                              |                                 |
| Foundations of Artificial Intelligence                                                                                                                                                     |                                 |
| Veranstaltungsart                                                                                                                                                                          | Nummer                          |
| Vorlesung                                                                                                                                                                                  | 11LE13V-2040                    |
| Veranstalter                                                                                                                                                                               |                                 |
| Institut für Informatik Grundl.d.künstl.Intelligenz Institut für Informatik Autonome intelligente Systeme Institut für Informatik Neurorobotik Institut für Informatik Maschinelles Lernen |                                 |

| ECTS-Punkte                 | 6,0                                  |
|-----------------------------|--------------------------------------|
| Arbeitsaufwand              | 180 Stunden   hours                  |
| Präsenzstudium              | 41 Stunden   hours                   |
| Selbststudium               | 126 Stunden   hours                  |
| Semesterwochenstunden (SWS) | 3,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

This course will introduce the basic concepts and techniques used within the field of Artificial Intelligence. The following topics will be covered:

- Introduction to Artificial Intelligence, including a short history of Artificial Intelligence
- agents
- problem solving and search
- logic and knowledge representation
- action planning
- representation of and reasoning with uncertainty
- machine learning

### Zu erbringende Prüfungsleistung

Siehe Modulebene | See module level

### Zu erbringende Studienleistung

Siehe Modulebene | See module level

#### Literatur

Artificial Intelligence: A modern approach, Stuart Russel and Peter Norvig, Prentice Hall, 2009

### Teilnahmevoraussetzung laut Prüfungsordnung

keine | none

# Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

keine I none

Grundlagenkenntnisse in mathematischer Logik können hilfreich sein | Basic knowledge about formal logic can be helpful

| Name des Moduls                                                                                                                                                                            | Nummer des Moduls               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Foundations of Artificial Intelligence                                                                                                                                                     | 07LE23MO-MScD24-ED6-<br>FoundAI |
| Veranstaltung                                                                                                                                                                              |                                 |
| Foundations of Artificial Intelligence                                                                                                                                                     |                                 |
| Veranstaltungsart                                                                                                                                                                          | Nummer                          |
| Übung                                                                                                                                                                                      | 11LE13Ü-2040                    |
| Veranstalter                                                                                                                                                                               |                                 |
| Institut für Informatik Grundl.d.künstl.Intelligenz Institut für Informatik Autonome intelligente Systeme Institut für Informatik Neurorobotik Institut für Informatik Maschinelles Lernen |                                 |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Präsenzstudium              | 13 Stunden   hours                   |
| Semesterwochenstunden (SWS) | 1,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

### Inhalte

The exercises are intended to give students a better understanding of the most important techniques they learn during lectures by applying the principles and formal methods to real life tasks.

# Zu erbringende Prüfungsleistung

Siehe Modulebene | See module level

### Zu erbringende Studienleistung

Siehe Modulebene | See module level

# Teilnahmevoraussetzung laut Prüfungsordnung

| Name des Moduls                        | Nummer des Moduls               |
|----------------------------------------|---------------------------------|
| Foundations of Artificial Intelligence | 07LE23MO-MScD24-ED6-<br>FoundAl |
| Name der Prüfungsleistung              |                                 |
|                                        |                                 |
| Leistungsart                           | Nummer                          |
|                                        |                                 |
| Verantwortliche/r                      |                                 |
|                                        |                                 |
| Fachbereich / Fakultät                 |                                 |
|                                        |                                 |

| Prüfungsform          |   |
|-----------------------|---|
| Benotung              |   |
| Mögliche Fachsemester | 5 |
| Teilnahmepflicht      |   |



| Name des Moduls              | Nummer des Moduls                  |
|------------------------------|------------------------------------|
| Foundations of Deep Learning | 07LE23MO-MScD24-ED6-<br>FDeepLearn |
| Verantwortliche/r            |                                    |
|                              |                                    |
| Fachbereich / Fakultät       |                                    |
| Mathematisches Institut      |                                    |

| ECTS-Punkte                 | 6,0          |
|-----------------------------|--------------|
| Arbeitsaufwand              |              |
| Semesterwochenstunden (SWS) |              |
| Mögliche Fachsemester       |              |
| Moduldauer                  | ein Semester |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht      |

Teilnahmevoraussetzung laut Prüfungsordnung

| Zugehörige Veranstaltungen   |           |             |      |     |                     |
|------------------------------|-----------|-------------|------|-----|---------------------|
| Name                         | Art       | P/WP        | ECTS |     | Arbeits-<br>aufwand |
| Foundations of Deep Learning | Vorlesung | Wahlpflicht | 6,0  | 3,0 | 180 Stun-<br>den    |
| Foundations of Deep Learning | Übung     | Wahlpflicht |      |     |                     |

| Lern- und Qualifikationsziele des Moduls |  |
|------------------------------------------|--|
|                                          |  |

| Name des Moduls                             | Nummer des Moduls                  |
|---------------------------------------------|------------------------------------|
| Foundations of Deep Learning                | 07LE23MO-MScD24-ED6-<br>FDeepLearn |
| Veranstaltung                               |                                    |
| Foundations of Deep Learning                |                                    |
| Veranstaltungsart                           | Nummer                             |
| Vorlesung                                   | 11LE13V-1145                       |
| Veranstalter                                |                                    |
| Institut für Informatik Maschinelles Lernen |                                    |

| ECTS-Punkte                 | 6,0                                     |
|-----------------------------|-----------------------------------------|
| Arbeitsaufwand              | 180 Stunden                             |
| Semesterwochenstunden (SWS) | 3,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

### Inhalte

In this course, we will cover the Foundations of Deep Learning, primarily using the book "Deep Learning" by Goodfellow, Bengio, and Courville.

### Zu erbringende Prüfungsleistung

Siehe Modulebene | See module level

# Zu erbringende Studienleistung

Siehe Modulebene | See module level

Teilnahmevoraussetzung laut Prüfungsordnung

### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Knowledge of linear algebra and machine learning



| Name des Moduls                             | Nummer des Moduls                  |
|---------------------------------------------|------------------------------------|
| Foundations of Deep Learning                | 07LE23MO-MScD24-ED6-<br>FDeepLearn |
| Veranstaltung                               |                                    |
| Foundations of Deep Learning                |                                    |
| Veranstaltungsart                           | Nummer                             |
| Übung                                       | 11LE13Ü-1145                       |
| Veranstalter                                |                                    |
| Institut für Informatik Maschinelles Lernen |                                    |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) |                                      |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

| Inhalte                                     |
|---------------------------------------------|
|                                             |
| Zu erbringende Prüfungsleistung             |
| Siehe Modulebene  <br>See module level      |
| Zu erbringende Studienleistung              |
| Siehe Modulebene  <br>See module level      |
| Teilnahmevoraussetzung laut Prüfungsordnung |
|                                             |

| Name des Moduls                        | Nummer des Moduls                 |
|----------------------------------------|-----------------------------------|
| Image Processing and Computer Graphics | 07LE23MO-MScD24-ED6-<br>ImageProc |
| Verantwortliche/r                      |                                   |
|                                        |                                   |
| Fachbereich / Fakultät                 |                                   |
| Mathematisches Institut                |                                   |

| ECTS-Punkte                 | 6,0                                  |
|-----------------------------|--------------------------------------|
| Arbeitsaufwand              |                                      |
| Semesterwochenstunden (SWS) |                                      |
| Mögliche Fachsemester       |                                      |
| Moduldauer                  | ein Semester                         |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht                              |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |

Teilnahmevoraussetzung laut Prüfungsordnung

| Zugehörige Veranstaltungen             |           |             |      |     |                        |
|----------------------------------------|-----------|-------------|------|-----|------------------------|
| Name                                   | Art       | P/WP        | ECTS | sws | Arbeits-<br>aufwand    |
| Image Processing and Computer Graphics | Übung     | Wahlpflicht |      | 1,0 |                        |
| Image Processing and Computer Graphics | Vorlesung | Wahlpflicht | 6,0  | 3,0 | 180 Stunden  <br>hours |

| Lern- und Qualifikationsziele des Moduls |  |
|------------------------------------------|--|
|                                          |  |

| Name des Moduls                                                                                                  | Nummer des Moduls                 |  |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|
| Image Processing and Computer Graphics                                                                           | 07LE23MO-MScD24-ED6-<br>ImageProc |  |
| Veranstaltung                                                                                                    |                                   |  |
| Image Processing and Computer Graphics                                                                           |                                   |  |
| Veranstaltungsart                                                                                                | Nummer                            |  |
| Übung                                                                                                            | 11LE13Ü-2050                      |  |
| Veranstalter                                                                                                     |                                   |  |
| Institut für Informatik Graphische Datenverarbeitung Institut für Informatik Mustererkennung u. Bildverarbeitung |                                   |  |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Präsenzstudium              | 13 Stunden   hours                   |
| Semesterwochenstunden (SWS) | 1,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

The exercises are intended to give students a better understanding of the most important techniques they learn during lectures. They are expected to implement some selected methods in C/C++ and develop an intuition of their usage.

# Zu erbringende Prüfungsleistung

Siehe Modulebene | See module level

### Zu erbringende Studienleistung

Siehe Modulebene | See module level

Teilnahmevoraussetzung laut Prüfungsordnung



| Name des Moduls                                                                                                  | Nummer des Moduls                 |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Image Processing and Computer Graphics                                                                           | 07LE23MO-MScD24-ED6-<br>ImageProc |
| Veranstaltung                                                                                                    |                                   |
| Image Processing and Computer Graphics                                                                           |                                   |
| Veranstaltungsart                                                                                                | Nummer                            |
| Vorlesung                                                                                                        | 11LE13V-2050                      |
| Veranstalter                                                                                                     |                                   |
| Institut für Informatik Graphische Datenverarbeitung Institut für Informatik Mustererkennung u. Bildverarbeitung |                                   |

| ECTS-Punkte                 | 6,0                                  |
|-----------------------------|--------------------------------------|
| Arbeitsaufwand              | 180 Stunden   hours                  |
| Präsenzstudium              | 41 Stunden   hours                   |
| Selbststudium               | 126 Stunden   hours                  |
| Semesterwochenstunden (SWS) | 3,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

# Inhalte

The lecture provides an introduction of basic approaches and illustrates the state-of-the-art in image processing and computer graphics. The curriculum covers image generation, point operations on images, linear and non-linear filters, image segmentation, optical flow and techniques such as calculus of variations and energy minimization. In the context of computer graphics, rasterization-based image generation, i.e. the rendering pipeline of modern graphics cards, is covered. Here, homogeneous coordinates, transforms, color spaces, rasterization, visibility, local illumination models and textures are addressed.

#### Zu erbringende Prüfungsleistung

Siehe Modulebene | See module level

#### Zu erbringende Studienleistung

Siehe Modulebene | See module level

#### Literatur

Will be announced in each lesson.

#### Teilnahmevoraussetzung laut Prüfungsordnung

keine | none

# Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Fundamental mathematical knowledge and programming skills in C/C++



| Name des Moduls                        | Nummer des Moduls                 |
|----------------------------------------|-----------------------------------|
| Image Processing and Computer Graphics | 07LE23MO-MScD24-ED6-<br>ImageProc |
| Name der Studienleistung               |                                   |
|                                        |                                   |
| Leistungsart                           | Nummer                            |
|                                        |                                   |
| Verantwortliche/r                      |                                   |
|                                        |                                   |
| Fachbereich / Fakultät                 |                                   |
|                                        |                                   |
|                                        |                                   |

| Prüfungsform     |  |
|------------------|--|
| Benotung         |  |
| Teilnahmepflicht |  |

 $\uparrow$ 

| Name des Moduls                        | Nummer des Moduls                 |
|----------------------------------------|-----------------------------------|
| Image Processing and Computer Graphics | 07LE23MO-MScD24-ED6-<br>ImageProc |
| Name der Prüfungsleistung              |                                   |
|                                        |                                   |
| Leistungsart                           | Nummer                            |
|                                        |                                   |
| Verantwortliche/r                      |                                   |
|                                        |                                   |
| Fachbereich / Fakultät                 |                                   |
|                                        |                                   |
|                                        |                                   |

| Prüfungsform     |  |
|------------------|--|
| Benotung         |  |
| Teilnahmepflicht |  |

 $\uparrow$ 

| Name des Moduls                     | Nummer des Moduls                |
|-------------------------------------|----------------------------------|
| Modelling and System Identification | 07LE23MO-MScD24-ED6-<br>ModSysId |
| Verantwortliche/r                   |                                  |
| Prof. Dr. Moritz Diehl              |                                  |
| Fachbereich / Fakultät              |                                  |
| Mathematisches Institut             |                                  |

| ECTS-Punkte                 | 6,0                                  |
|-----------------------------|--------------------------------------|
| Arbeitsaufwand              |                                      |
| Semesterwochenstunden (SWS) |                                      |
| Mögliche Fachsemester       |                                      |
| Moduldauer                  | ein Semester                         |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht                              |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |

Teilnahmevoraussetzung laut Prüfungsordnung

| Zugehörige Veranstaltungen                                                   |           |             |      |     |                     |
|------------------------------------------------------------------------------|-----------|-------------|------|-----|---------------------|
| Name                                                                         | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Modellbildung und Systemidentifikation / Modelling and System Identification | Vorlesung | Wahlpflicht | 6,0  | 2,0 | 180 hours           |
| Modellbildung und Systemidentifikation / Modelling and System Identification | Übung     | Wahlpflicht |      | 2,0 |                     |

| Lern- und Qualifikationsziele des Moduls |  |
|------------------------------------------|--|
|                                          |  |

| Name des Moduls                                                              | Nummer des Moduls                |  |
|------------------------------------------------------------------------------|----------------------------------|--|
| Modelling and System Identification                                          | 07LE23MO-MScD24-ED6-<br>ModSysId |  |
| Veranstaltung                                                                |                                  |  |
| Modellbildung und Systemidentifikation / Modelling and System Identification |                                  |  |
| Veranstaltungsart                                                            | Nummer                           |  |
| Vorlesung                                                                    | 11LE50V-2080                     |  |
| Veranstalter                                                                 |                                  |  |
| Institut für Mikrosystemtechnik Systemtheorie                                |                                  |  |

| ECTS-Punkte                 | 6,0                                  |
|-----------------------------|--------------------------------------|
| Arbeitsaufwand              | 180 hours                            |
| Präsenzstudium              | 60 hours                             |
| Selbststudium               | 120 hours                            |
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

# Inhalte

Linear and Nonlinear Least Squares, Maximum Likelihood and Bayesian Estimation, Cramer-Rao-Inequality,

Recursive Estimation, Dynamic System Model Classes (Linear and Nonlinear, Continuous and Discrete Time, State Space and Input Output, White Box and Black Box Models), Application of identification methods to several case studies. The lecture course will also review necessary concepts from the three fields Statistics, Optimization, and Systems Theory, where needed.

### Zu erbringende Prüfungsleistung

see module details

#### Zu erbringende Studienleistung

see module details

### Literatur

- 1. Lecture manuscript
- 2. Ljung, L. (1999). System Identification: Theory for the User. Prentice Hall
- 3. Lecture manuscript "System Identification" by J

### Teilnahmevoraussetzung laut Prüfungsordnung

None

#### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Undergraduate knowledge in analysis, algebra, differential equations as well as in systems theory and feedback control.



| Name des Moduls                                                              | Nummer des Moduls                |  |
|------------------------------------------------------------------------------|----------------------------------|--|
| Modelling and System Identification                                          | 07LE23MO-MScD24-ED6-<br>ModSysId |  |
| Veranstaltung                                                                |                                  |  |
| Modellbildung und Systemidentifikation / Modelling and System Identification |                                  |  |
| Veranstaltungsart                                                            | Nummer                           |  |
| Übung                                                                        | 11LE50Ü-2080                     |  |
| Veranstalter                                                                 |                                  |  |
| Institut für Mikrosystemtechnik Systemtheorie                                |                                  |  |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

The exercises accompany the lecture content and are mostly computer exercises and case studies.

# Zu erbringende Prüfungsleistung

see module details

# Zu erbringende Studienleistung

see module details

Teilnahmevoraussetzung laut Prüfungsordnung

none

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

none



| Name des Moduls           | Nummer des Moduls             |
|---------------------------|-------------------------------|
| Numerical Optimal Control | 07LE23MO-MScD24-ED6-<br>NumOC |
| Verantwortliche/r         |                               |
| Prof. Dr. Moritz Diehl    |                               |
| Fachbereich / Fakultät    |                               |
| Mathematisches Institut   |                               |

| ECTS-Punkte                 | 6,0          |
|-----------------------------|--------------|
| Arbeitsaufwand              | 180 Stunden  |
| Semesterwochenstunden (SWS) |              |
| Mögliche Fachsemester       |              |
| Moduldauer                  | ein Semester |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht      |

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Analysis I, II, Lineare Algebra I, II, Numerical Optimization

Das Modul wird auf Englisch angeboten!

| Zugehörige Veranstaltungen                           |           |             |      |     |                     |
|------------------------------------------------------|-----------|-------------|------|-----|---------------------|
| Name                                                 | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Numerical Optimal Control: Übung                     | Übung     |             |      | 2,0 |                     |
| Numerical Optimal Control in Science and Engineering | Vorlesung | Wahlpflicht | 6,0  | 6,0 | 180 hours           |
| Numerical Optimal Control in Science and Engineering | Übung     | Wahlpflicht |      | 2,0 |                     |

#### Lern- und Qualifikationsziele des Moduls

The students can formulate optimal control problems and implement and analyze several numerical methods for solving them.

#### Zu erbringende Prüfungsleistung

- Ca. dreistündige Klausur.
- Bei Verwendung als Wahlmodul: keine

#### Zu erbringende Studienleistung

Die genauen Anforderungen werden semesterweise in den <u>aktuellen Ergänzungen der Modulhandbücher</u> <u>Mathematik</u> beschrieben. Gefordert werden

- Bestehen der Übungen.
- Erfolgreiche Bearbeitung und Präsentation des Semesterabschlussprojekts

Bei Verwendung als Wahlmodul ist das Bestehen der Klausur zusätzlicher Teil der Studienleistung.

#### Benotung

- Im B.Sc.-Studiengang Mathematik (PO 2021) geht die Modulnote mit 9/(N-1), ohne Projekt mit 6/(N-1) in die Gesamtnote ein, wobei N jeweils die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im B.Sc.-Studiengang Mathematik (PO 2012) geht die Modulnote mit 9/N, ohne Projekt mit 6/N in die Gesamtnote ein, wobei N jeweils die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Als Wahlmodul im M.Sc.-Studiengang Mathematik ist das Modul unbenotet.

#### Studiengangschwerpunkte

#### Optimierung

### Verwendbarkeit des Moduls

- Wahlpflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021); geeignet für "Vorlesung mit Übung A–D" bzw. "A–C", falls das gesamt Modul inkl. Projekt absolviert wird.
- Mit Klausur als Teil der Studienleistung: Wahlmodul im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind verwendbar für die Module "Angewandte Mathematik", "Mathematik" und das Vertiefungsmodul im M.Sc.-Studiengang Mathematik (PO 2014).



| Name des Moduls                  | Nummer des Moduls             |
|----------------------------------|-------------------------------|
| Numerical Optimal Control        | 07LE23MO-MScD24-ED6-<br>NumOC |
| Veranstaltung                    |                               |
| Numerical Optimal Control: Übung |                               |
| Veranstaltungsart                | Nummer                        |
| Übung                            | 07LE23Ü-1871                  |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  |                                         |
| Lehrsprache                 | deutsch                                 |

### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

Zu erbringende Prüfungsleistung

Zu erbringende Studienleistung

# Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im <u>kommentierten Vorlesungsverzeichnis</u>.

| Name des Moduls                                      | Nummer des Moduls             |
|------------------------------------------------------|-------------------------------|
| Numerical Optimal Control                            | 07LE23MO-MScD24-ED6-<br>NumOC |
| Veranstaltung                                        |                               |
| Numerical Optimal Control in Science and Engineering |                               |
| Veranstaltungsart                                    | Nummer                        |
| Vorlesung                                            | 11LE50V-5249                  |
| Veranstalter                                         |                               |
| Institut für Mikrosystemtechnik Systemtheorie        |                               |

| ECTS-Punkte                 | 6,0                                  |
|-----------------------------|--------------------------------------|
| Arbeitsaufwand              | 180 hours                            |
| Präsenzstudium              | 78 hours                             |
| Selbststudium               | 102 hours                            |
| Semesterwochenstunden (SWS) | 6,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

# Inhalte

- Introduction: Dynamic Systems and Optimization
- Rehearsal of Numerical Optimization
- Rehearsal of Parameter Estimation
- Discrete Time Optimal Control
- Dynamic Programming
- Continuous Time Optimal Control
- Numerical Simulation Methods
- Hamilton-Jacobi-Bellmann Equation
- Pontryagin and the Indirect Approach
- Direct Optimal Control
- Differential Igebraic Equations
- Periodic Optimal Control
- Real-Time Optimization for Model Predictive Control

### Zu erbringende Prüfungsleistung

see module details

### Zu erbringende Studienleistung

see module details

#### Literatur

- 1. Manuscript "Numerical Optimal Control" by M. Diehl and S. Gros
- 2. Biegler, L.T., Nonlinear Programming, SIAM, 2010

#### Teilnahmevoraussetzung laut Prüfungsordnung

None

### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Mathematics 1 and 2 for Engineers or basic Linear Algebra and Calculus courses. Numerical Optimization (NUMOPT), Modelling and System Identification (MSI), Systems and Control Bachelor or Master lectures.

| Name des Moduls                                      | Nummer des Moduls             |
|------------------------------------------------------|-------------------------------|
| Numerical Optimal Control                            | 07LE23MO-MScD24-ED6-<br>NumOC |
| Veranstaltung                                        |                               |
| Numerical Optimal Control in Science and Engineering |                               |
| Veranstaltungsart                                    | Nummer                        |
| Übung                                                | 11LE50Ü-5249                  |
| Veranstalter                                         |                               |
| Institut für Mikrosystemtechnik Systemtheorie        |                               |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

In the tutorial, the contents of the lecture will be deepened by means of theoretical examples and computer exercises.

### Zu erbringende Prüfungsleistung

see moodule details

# Zu erbringende Studienleistung

see module details

#### Teilnahmevoraussetzung laut Prüfungsordnung

None

### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Mathematics 1 and 2 for Engineers or basic Linear Algebra and Calculus courses. Numerical Optimization (NUMOPT), Modelling and System Identification (MSI), Systems and Control Bachelor or Master lectures.

| Name des Moduls           | Nummer des Moduls             |
|---------------------------|-------------------------------|
| Numerical Optimal Control | 07LE23MO-MScD24-ED9-<br>NumOC |
| Verantwortliche/r         |                               |
| Prof. Dr. Moritz Diehl    |                               |
| Fachbereich / Fakultät    |                               |
| Mathematisches Institut   |                               |

| ECTS-Punkte                 | 9,0          |
|-----------------------------|--------------|
| Arbeitsaufwand              | 180 Stunden  |
| Semesterwochenstunden (SWS) |              |
| Mögliche Fachsemester       |              |
| Moduldauer                  | ein Semester |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht      |

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Analysis I, II, Lineare Algebra I, II, Numerical Optimization

Das Modul wird auf Englisch angeboten!

| Zugehörige Veranstaltungen                           |           |             |      |     |                     |
|------------------------------------------------------|-----------|-------------|------|-----|---------------------|
| Name                                                 | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Numerical Optimal Control: Übung                     | Übung     |             |      | 2,0 |                     |
| Numerical Optimal Control in Science and Engineering | Vorlesung | Wahlpflicht | 6,0  | 6,0 | 180 hours           |
| Numerical Optimal Control in Science and Engineering | Übung     | Wahlpflicht |      | 2,0 |                     |

#### Lern- und Qualifikationsziele des Moduls

The students can formulate optimal control problems and implement and analyze several numerical methods for solving them.

#### Zu erbringende Prüfungsleistung

- Ca. dreistündige Klausur.
- Bei Verwendung als Wahlmodul: keine

# Zu erbringende Studienleistung

Die genauen Anforderungen werden semesterweise in den <u>aktuellen Ergänzungen der Modulhandbücher</u> <u>Mathematik</u> beschrieben. Gefordert werden

- Bestehen der Übungen.
- Erfolgreiche Bearbeitung und Präsentation des Semesterabschlussprojekts

Bei Verwendung als Wahlmodul ist das Bestehen der Klausur zusätzlicher Teil der Studienleistung.

#### Benotung

- Im B.Sc.-Studiengang Mathematik (PO 2021) geht die Modulnote mit 9/(N-1), ohne Projekt mit 6/(N-1) in die Gesamtnote ein, wobei N jeweils die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im B.Sc.-Studiengang Mathematik (PO 2012) geht die Modulnote mit 9/N, ohne Projekt mit 6/N in die Gesamtnote ein, wobei N jeweils die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Als Wahlmodul im M.Sc.-Studiengang Mathematik ist das Modul unbenotet.

#### Studiengangschwerpunkte

#### Optimierung

#### Verwendbarkeit des Moduls

- Wahlpflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021); geeignet für "Vorlesung mit Übung A–D" bzw. "A–C", falls das gesamt Modul inkl. Projekt absolviert wird.
- Mit Klausur als Teil der Studienleistung: Wahlmodul im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind verwendbar für die Module "Angewandte Mathematik", "Mathematik" und das Vertiefungsmodul im M.Sc.-Studiengang Mathematik (PO 2014).

 $\uparrow$ 

| Name des Moduls                  | Nummer des Moduls             |
|----------------------------------|-------------------------------|
| Numerical Optimal Control        | 07LE23MO-MScD24-ED9-<br>NumOC |
| Veranstaltung                    |                               |
| Numerical Optimal Control: Übung |                               |
| Veranstaltungsart                | Nummer                        |
| Übung                            | 07LE23Ü-1871                  |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  |                                         |
| Lehrsprache                 | deutsch                                 |

### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

Zu erbringende Prüfungsleistung

Zu erbringende Studienleistung

# Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im <u>kommentierten Vorlesungsverzeichnis</u>.

| Name des Moduls                                      | Nummer des Moduls             |  |
|------------------------------------------------------|-------------------------------|--|
| Numerical Optimal Control                            | 07LE23MO-MScD24-ED9-<br>NumOC |  |
| Veranstaltung                                        |                               |  |
| Numerical Optimal Control in Science and Engineering |                               |  |
| Veranstaltungsart                                    | Nummer                        |  |
| Vorlesung                                            | 11LE50V-5249                  |  |
| Veranstalter                                         |                               |  |
| Institut für Mikrosystemtechnik Systemtheorie        |                               |  |

| ECTS-Punkte                 | 6,0                                  |
|-----------------------------|--------------------------------------|
| Arbeitsaufwand              | 180 hours                            |
| Präsenzstudium              | 78 hours                             |
| Selbststudium               | 102 hours                            |
| Semesterwochenstunden (SWS) | 6,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

# Inhalte

- Introduction: Dynamic Systems and Optimization
- Rehearsal of Numerical Optimization
- Rehearsal of Parameter Estimation
- Discrete Time Optimal Control
- Dynamic Programming
- Continuous Time Optimal Control
- Numerical Simulation Methods
- Hamilton-Jacobi-Bellmann Equation
- Pontryagin and the Indirect Approach
- Direct Optimal Control
- Differential Igebraic Equations
- Periodic Optimal Control
- Real-Time Optimization for Model Predictive Control

# Zu erbringende Prüfungsleistung

see module details

# Zu erbringende Studienleistung

see module details

#### Literatur

- 1. Manuscript "Numerical Optimal Control" by M. Diehl and S. Gros
- 2. Biegler, L.T., Nonlinear Programming, SIAM, 2010

### Teilnahmevoraussetzung laut Prüfungsordnung

None

# Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Mathematics 1 and 2 for Engineers or basic Linear Algebra and Calculus courses. Numerical Optimization (NUMOPT), Modelling and System Identification (MSI), Systems and Control Bachelor or Master lectures.

| Name des Moduls                                      | Nummer des Moduls             |  |
|------------------------------------------------------|-------------------------------|--|
| Numerical Optimal Control                            | 07LE23MO-MScD24-ED9-<br>NumOC |  |
| Veranstaltung                                        |                               |  |
| Numerical Optimal Control in Science and Engineering |                               |  |
| Veranstaltungsart                                    | Nummer                        |  |
| Übung                                                | 11LE50Ü-5249                  |  |
| Veranstalter                                         |                               |  |
| Institut für Mikrosystemtechnik Systemtheorie        |                               |  |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

### Inhalte

In the tutorial, the contents of the lecture will be deepened by means of theoretical examples and computer exercises.

# Zu erbringende Prüfungsleistung

see moodule details

# Zu erbringende Studienleistung

see module details

## Teilnahmevoraussetzung laut Prüfungsordnung

None

# Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Mathematics 1 and 2 for Engineers or basic Linear Algebra and Calculus courses. Numerical Optimization (NUMOPT), Modelling and System Identification (MSI), Systems and Control Bachelor or Master lectures.

| Name des Moduls         | Nummer des Moduls              |
|-------------------------|--------------------------------|
| Numerical Optimization  | 07LE23MO-MScD24-ED6-<br>NumOpt |
| Verantwortliche/r       |                                |
| Prof. Dr. Moritz Diehl  |                                |
| Fachbereich / Fakultät  |                                |
| Mathematisches Institut |                                |

| ECTS-Punkte                 | 6,0                                  |
|-----------------------------|--------------------------------------|
| Arbeitsaufwand              | 180 Stunden                          |
| Semesterwochenstunden (SWS) |                                      |
| Mögliche Fachsemester       |                                      |
| Moduldauer                  | ein Semester                         |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht                              |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |

# Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Analysis I, II, Lineare Algebra I, II

Das Modul wird auf Englisch angeboten!

| Zugehörige Veranstaltungen                      |           |             |      |     |                     |
|-------------------------------------------------|-----------|-------------|------|-----|---------------------|
| Name                                            | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Numerische Optimierung / Numerical Optimization | Vorlesung | Wahlpflicht | 6,0  | 4,0 | 180 hours           |
| Numerische Optimierung / Numerical Optimization | Übung     | Wahlpflicht |      | 2,0 |                     |

# Lern- und Qualifikationsziele des Moduls

The students know different types of optimization problems and can discuss their theoretical background and implement and analyze numerical methods for solving them.

# Zu erbringende Prüfungsleistung

- Ca. dreistündige Klausur.
- Bei Verwendung als Wahlmodul: keine

## Zu erbringende Studienleistung

Die genauen Anforderungen werden semesterweise in den <u>aktuellen Ergänzungen der Modulhandbücher</u> Mathematik beschrieben. Gefordert werden

- Bestehen der Übungen.
- Erfolgreiche Bearbeitung und Präsentation des Semesterabschlussprojekts

Bei Verwendung als Wahlmodul ist das Bestehen der Klausur zusätzlicher Teil der Studienleistung.

### Benotung

- Im B.Sc.-Studiengang Mathematik (PO 2021) geht die Modulnote mit 9/(N-1), ohne Projekt mit 6/(N-1) in die Gesamtnote ein, wobei N jeweils die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im B.Sc.-Studiengang Mathematik (PO 2012) geht die Modulnote mit 9/N, ohne Projekt mit 6/N in die Gesamtnote ein, wobei N jeweils die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Als Wahlmodul im M.Sc.-Studiengang Mathematik ist das Modul unbenotet.

### Studiengangschwerpunkte

## Optimierung

### Bemerkung / Empfehlung

Das Modul kann auch ohne Projekt mit 6 ECTS-Punkten absolviert werden.

### Verwendbarkeit des Moduls

- Wahlpflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021); geeignet für "Vorlesung mit Übung A–D" bzw. "A–C", falls das gesamt Modul inkl. Projekt absolviert wird.
- Mit Klausur als Teil der Studienleistung: Wahlmodul im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind verwendbar für die Module "Angewandte Mathematik", "Mathematik" und das Vertiefungsmodul im M.Sc.-Studiengang Mathematik (PO 2014).



| Name des Moduls                                 | Nummer des Moduls              |  |
|-------------------------------------------------|--------------------------------|--|
| Numerical Optimization                          | 07LE23MO-MScD24-ED6-<br>NumOpt |  |
| Veranstaltung                                   |                                |  |
| Numerische Optimierung / Numerical Optimization |                                |  |
| Veranstaltungsart                               | Nummer                         |  |
| Vorlesung                                       | 11LE50V-5243                   |  |
| Veranstalter                                    |                                |  |
| Institut für Mikrosystemtechnik Systemtheorie   |                                |  |

| ECTS-Punkte                 | 6,0                                  |
|-----------------------------|--------------------------------------|
| Arbeitsaufwand              | 180 hours                            |
| Präsenzstudium              | 90 hours                             |
| Selbststudium               | 90 hours                             |
| Semesterwochenstunden (SWS) | 4,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

## Inhalte

The course is divided into four major parts:

- 1. Fundamental Concepts of Optimization: Definitions, Types, Convexity, Duality
- 2. Unconstrained Optimization and Newton Type Algorithms: Stability of Solutions, Gradient and Conjugate Gradient, Exact Newton, Quasi-Newton, BFGS and Limi- ted Memory BFGS, and Gauss-Newton, Line Search and Trust Region Methods, Algorithmic Differentiation
- 3. Equality Constrained Optimization Algorithms: Newton Lagrange and Generalized Gauss-Newton, Range and Null Space Methods, Quasi-Newton and Adjoint Based Inexact Newton Methods
- 4. Inequality Constrained Optimization Algorithms: Karush-Kuhn-Tucker Conditions, Linear and Quadratic Programming, Active Set Methods, Interior Point Methods, Se- quential Quadratic and Convex Programming, Quadratic and Nonlinear Parametric Optimization

### Zu erbringende Prüfungsleistung

see module details

# Zu erbringende Studienleistung

see module details

#### Literatur

- 1. Jorge Nocedal and Stephen J. Wright, Numerical Optimization, Springer, 2006
- 2. Amir Beck, Introduction to Nonlinear Optimization, MOS-SIAM Optimization, 2014
- 3. Stephen Boyd and Lieven Vandenberghe, Convex Optimization, Cambridge Univ. Press, 2004

### Teilnahmevoraussetzung laut Prüfungsordnung

None

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Mathematics 1 and 2 for Engineers or basic Linear Algebra and Calculus courses

| Name des Moduls                                 | Nummer des Moduls              |  |
|-------------------------------------------------|--------------------------------|--|
| Numerical Optimization                          | 07LE23MO-MScD24-ED6-<br>NumOpt |  |
| Veranstaltung                                   |                                |  |
| Numerische Optimierung / Numerical Optimization |                                |  |
| Veranstaltungsart                               | Nummer                         |  |
| Übung                                           | 11LE50Ü-5243                   |  |
| Veranstalter                                    |                                |  |
| Institut für Mikrosystemtechnik Systemtheorie   |                                |  |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

### Inhalte

In der Übung werden die Inhalte der Vorlesung anhand theoretischer Beispielaufgaben sowie mit Rechnerübungen vertieft.

# Zu erbringende Prüfungsleistung

see module details

# Zu erbringende Studienleistung

see module details

Teilnahmevoraussetzung laut Prüfungsordnung

None

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Mathematics 1 and 2 for Engineers or basic Linear Algebra and Calculus courses

| Name des Moduls         | Nummer des Moduls              |
|-------------------------|--------------------------------|
| Numerical Optimization  | 07LE23MO-MScD24-ED9-<br>NumOpt |
| Verantwortliche/r       |                                |
| Prof. Dr. Moritz Diehl  |                                |
| Fachbereich / Fakultät  |                                |
| Mathematisches Institut |                                |

| ECTS-Punkte                 | 6,0                                  |
|-----------------------------|--------------------------------------|
| Arbeitsaufwand              | 180 Stunden                          |
| Semesterwochenstunden (SWS) |                                      |
| Mögliche Fachsemester       |                                      |
| Moduldauer                  | ein Semester                         |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht                              |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |

# Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Analysis I, II, Lineare Algebra I, II

Das Modul wird auf Englisch angeboten!

| Zugehörige Veranstaltungen                      |           |             |      |     |                     |
|-------------------------------------------------|-----------|-------------|------|-----|---------------------|
| Name                                            | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Numerische Optimierung / Numerical Optimization | Vorlesung | Wahlpflicht | 6,0  | 4,0 | 180 hours           |
| Numerische Optimierung / Numerical Optimization | Übung     | Wahlpflicht |      | 2,0 |                     |

# Lern- und Qualifikationsziele des Moduls

The students know different types of optimization problems and can discuss their theoretical background and implement and analyze numerical methods for solving them.

# Zu erbringende Prüfungsleistung

- Ca. dreistündige Klausur.
- Bei Verwendung als Wahlmodul: keine

## Zu erbringende Studienleistung

Die genauen Anforderungen werden semesterweise in den <u>aktuellen Ergänzungen der Modulhandbücher</u> Mathematik beschrieben. Gefordert werden

- Bestehen der Übungen.
- Erfolgreiche Bearbeitung und Präsentation des Semesterabschlussprojekts

Bei Verwendung als Wahlmodul ist das Bestehen der Klausur zusätzlicher Teil der Studienleistung.

### Benotung

- Im B.Sc.-Studiengang Mathematik (PO 2021) geht die Modulnote mit 9/(N-1), ohne Projekt mit 6/(N-1) in die Gesamtnote ein, wobei N jeweils die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im B.Sc.-Studiengang Mathematik (PO 2012) geht die Modulnote mit 9/N, ohne Projekt mit 6/N in die Gesamtnote ein, wobei N jeweils die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Als Wahlmodul im M.Sc.-Studiengang Mathematik ist das Modul unbenotet.

### Studiengangschwerpunkte

## Optimierung

### Bemerkung / Empfehlung

Das Modul kann auch ohne Projekt mit 6 ECTS-Punkten absolviert werden.

### Verwendbarkeit des Moduls

- Wahlpflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021); geeignet für "Vorlesung mit Übung A–D" bzw. "A–C", falls das gesamt Modul inkl. Projekt absolviert wird.
- Mit Klausur als Teil der Studienleistung: Wahlmodul im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind verwendbar für die Module "Angewandte Mathematik", "Mathematik" und das Vertiefungsmodul im M.Sc.-Studiengang Mathematik (PO 2014).



| Name des Moduls                                 | Nummer des Moduls              |
|-------------------------------------------------|--------------------------------|
| Numerical Optimization                          | 07LE23MO-MScD24-ED9-<br>NumOpt |
| Veranstaltung                                   |                                |
| Numerische Optimierung / Numerical Optimization |                                |
| Veranstaltungsart                               | Nummer                         |
| Vorlesung                                       | 11LE50V-5243                   |
| Veranstalter                                    |                                |
| Institut für Mikrosystemtechnik Systemtheorie   |                                |

| ECTS-Punkte                 | 6,0                                  |
|-----------------------------|--------------------------------------|
| Arbeitsaufwand              | 180 hours                            |
| Präsenzstudium              | 90 hours                             |
| Selbststudium               | 90 hours                             |
| Semesterwochenstunden (SWS) | 4,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

## Inhalte

The course is divided into four major parts:

- 1. Fundamental Concepts of Optimization: Definitions, Types, Convexity, Duality
- 2. Unconstrained Optimization and Newton Type Algorithms: Stability of Solutions, Gradient and Conjugate Gradient, Exact Newton, Quasi-Newton, BFGS and Limi- ted Memory BFGS, and Gauss-Newton, Line Search and Trust Region Methods, Algorithmic Differentiation
- 3. Equality Constrained Optimization Algorithms: Newton Lagrange and Generalized Gauss-Newton, Range and Null Space Methods, Quasi-Newton and Adjoint Based Inexact Newton Methods
- 4. Inequality Constrained Optimization Algorithms: Karush-Kuhn-Tucker Conditions, Linear and Quadratic Programming, Active Set Methods, Interior Point Methods, Se- quential Quadratic and Convex Programming, Quadratic and Nonlinear Parametric Optimization

### Zu erbringende Prüfungsleistung

see module details

# Zu erbringende Studienleistung

see module details

#### Literatur

- 1. Jorge Nocedal and Stephen J. Wright, Numerical Optimization, Springer, 2006
- 2. Amir Beck, Introduction to Nonlinear Optimization, MOS-SIAM Optimization, 2014
- 3. Stephen Boyd and Lieven Vandenberghe, Convex Optimization, Cambridge Univ. Press, 2004

### Teilnahmevoraussetzung laut Prüfungsordnung

None

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Mathematics 1 and 2 for Engineers or basic Linear Algebra and Calculus courses

| Name des Moduls                                 | Nummer des Moduls              |
|-------------------------------------------------|--------------------------------|
| Numerical Optimization                          | 07LE23MO-MScD24-ED9-<br>NumOpt |
| Veranstaltung                                   |                                |
| Numerische Optimierung / Numerical Optimization |                                |
| Veranstaltungsart                               | Nummer                         |
| Übung                                           | 11LE50Ü-5243                   |
| Veranstalter                                    |                                |
| Institut für Mikrosystemtechnik Systemtheorie   |                                |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

### Inhalte

In der Übung werden die Inhalte der Vorlesung anhand theoretischer Beispielaufgaben sowie mit Rechnerübungen vertieft.

# Zu erbringende Prüfungsleistung

see module details

# Zu erbringende Studienleistung

see module details

Teilnahmevoraussetzung laut Prüfungsordnung

None

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Mathematics 1 and 2 for Engineers or basic Linear Algebra and Calculus courses

| Name des Moduls         | Nummer des Moduls                  |
|-------------------------|------------------------------------|
| Reinforcement Learning  | 07LE23MO-MScD24-ED6-<br>ReinfLearn |
| Verantwortliche/r       |                                    |
|                         |                                    |
| Fachbereich / Fakultät  |                                    |
| Mathematisches Institut |                                    |

| ECTS-Punkte                 | 6,0          |
|-----------------------------|--------------|
| Arbeitsaufwand              |              |
| Semesterwochenstunden (SWS) |              |
| Mögliche Fachsemester       |              |
| Moduldauer                  | ein Semester |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht      |

Teilnahmevoraussetzung laut Prüfungsordnung

| Zugehörige Veranstaltungen |           |             |      |     |                             |
|----------------------------|-----------|-------------|------|-----|-----------------------------|
| Name                       | Art       | P/WP        | ECTS |     | Arbeits-<br>aufwand         |
| Reinforcement Learning     | Vorlesung | Wahlpflicht | 6,0  | 3,0 | 180 Stun-<br>den  <br>hours |
| Reinforcement Learning     | Übung     | Wahlpflicht |      | 1,0 |                             |

| Lern- und Qualifikationsziele des Moduls |  |
|------------------------------------------|--|
|                                          |  |

| Name des Moduls                      | Nummer des Moduls                  |
|--------------------------------------|------------------------------------|
| Reinforcement Learning               | 07LE23MO-MScD24-ED6-<br>ReinfLearn |
| Veranstaltung                        |                                    |
| Reinforcement Learning               |                                    |
| Veranstaltungsart                    | Nummer                             |
| Vorlesung                            | 11LE13V-1141                       |
| Veranstalter                         |                                    |
| Institut für Informatik Neurorobotik |                                    |

| ECTS-Punkte                 | 6,0                                  |
|-----------------------------|--------------------------------------|
| Arbeitsaufwand              | 180 Stunden   hours                  |
| Präsenzstudium              | 45 Stunden                           |
| Selbststudium               | 120 Stunden                          |
| Semesterwochenstunden (SWS) | 3,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

# Inhalte

The lecture deals with methods of Reinforcement Learning that constitute an important class of machine learning algorithms. Starting with the formalization of problems as Markov decision processes, a variety of Reinforcement Learning methods are introduced and discussed in-depth. The connection to practice-oriented problems is established by basing the lecture on many examples.

# Zu erbringende Prüfungsleistung

Siehe Modulebene | See module level

# Zu erbringende Studienleistung

Siehe Modulebene | See module level

### Literatur

Sutton, Barton: Reinforcement Learning – An Introduction.

Bertsimas: Neuron Dynamic Programming.

## Teilnahmevoraussetzung laut Prüfungsordnung

keine | none

### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Grundlagenkenntnisse in praktischer und angewandter Informatik, Algorithmen und Datenstrukturen, Programmierkenntnisse

Grundlagenwissen zu Künstlicher Intelligenz und Machine Learning

Basic knowledge of practical and applied computer science, algorithms and data structures, programming skills

Basic knowledge of artificial intelligence and machine learning

| Name des Moduls                      | Nummer des Moduls                  |
|--------------------------------------|------------------------------------|
| Reinforcement Learning               | 07LE23MO-MScD24-ED6-<br>ReinfLearn |
| Veranstaltung                        |                                    |
| Reinforcement Learning               |                                    |
| Veranstaltungsart                    | Nummer                             |
| Übung                                | 11LE13Ü-1141                       |
| Veranstalter                         |                                    |
| Institut für Informatik Neurorobotik |                                    |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Präsenzstudium              | 15 Stunden                           |
| Semesterwochenstunden (SWS) | 1,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

# Inhalte

In the exercises, students will learn through example scenarios to apply the principles and methods from the lectures.

# Zu erbringende Prüfungsleistung

Siehe Modulebene |

See module level

# Zu erbringende Studienleistung

Siehe Modulebene | See module level

Teilnahmevoraussetzung laut Prüfungsordnung



| Name des Kontos                                 | Nummer des Kontos    |
|-------------------------------------------------|----------------------|
| Electives in Data: Veranstaltungen der Biologie | 07LE23KT-MScD24-ED-B |
| Fachbereich / Fakultät                          |                      |
| Mathematisches Institut                         |                      |

| Pflicht/Wahlpflicht (P/WP) Wahlpflicht |  |
|----------------------------------------|--|
|----------------------------------------|--|

### Kommentar

Nachfolgend werden Lehrveranstaltungen der Fakultät für Biologie beschrieben, die als "Electives in Data" belegt werden können und typischerweise regelmäßiger angeboten werden.

Hier gilt ebenso, dass es in jedem Semester vereinzelt zusätzliche Lehrangebote der Fakultät für Biologie geben kann, die als "Electives in Data" anrechenbar sind. Diese werden dann jeweils im <u>Veranstaltungsverzeichnis</u> des betreffenden Semesters unter Punkt 4b. *Fachfremde Veranstaltungen für den M.Sc. Mathematics in Data and Technology* aufgeführt.

Die Modulbeschreibungen werden größtenteils von der Fakultät für Biologie importiert und können daher an manchen Stellen Angaben enthalten, die für den Studiengang M.Sc. Mathematics in Data and Technology nicht ganz zutreffend sind. Die jeweils genannten Anforderungen an Prüfungs- und ggf. Studienleistungen gelten jedoch generell unverändert auch für den Studiengang M.Sc. Mathematics in Data and Technology.



| Name des Moduls                       |        |         |                                   | Nummer d | es Mod | uls                 |
|---------------------------------------|--------|---------|-----------------------------------|----------|--------|---------------------|
| Models of Neurons and Networks        |        |         | 07LE23MO-MScD24-ED9-<br>ModNeuNet |          |        |                     |
| Verantwortliche/r                     |        |         |                                   |          |        |                     |
|                                       |        |         | ,                                 |          |        |                     |
| Fachbereich / Fakultät                |        |         |                                   |          |        |                     |
| Mathematisches Institut               |        |         | ,                                 |          |        |                     |
|                                       |        |         |                                   |          |        |                     |
| ECTS-Punkte                           | 9,0    |         |                                   |          |        |                     |
| Arbeitsaufwand                        |        |         |                                   |          |        |                     |
| Semesterwochenstunden (SWS)           |        |         |                                   |          |        |                     |
| Mögliche Fachsemester                 |        |         |                                   |          |        |                     |
| Moduldauer                            | ein S  | emester |                                   |          |        |                     |
| Pflicht/Wahlpflicht (P/WP)            | Pflich | t       |                                   |          |        |                     |
|                                       |        |         |                                   |          |        |                     |
| Teilnahmevoraussetzung laut Prüfun    | gsordn | ung     |                                   |          |        |                     |
|                                       |        |         |                                   |          |        |                     |
|                                       |        |         |                                   |          |        |                     |
| Zugehörige Veranstaltungen            |        | 1       |                                   |          |        | 1                   |
| Name                                  |        | Art     | P/WP                              | ECTS     | SWS    | Arbeits-<br>aufwand |
|                                       |        |         |                                   |          |        |                     |
| Lern- und Qualifikationsziele des Mod | duls   |         |                                   |          |        |                     |
|                                       |        |         |                                   |          |        |                     |
| $\uparrow$                            |        |         |                                   |          |        |                     |

| Name des Kontos                                                  | Nummer des Kontos    |
|------------------------------------------------------------------|----------------------|
| Electives in Data: Veranstaltungen der Wirtschaftswissenschaften | 07LE23KT-MScD24-ED-W |
| Fachbereich / Fakultät                                           |                      |
| Mathematisches Institut                                          |                      |

| Pflicht/Wahlpflicht (P/WP) Pflicht |  |
|------------------------------------|--|
|------------------------------------|--|

### Kommentar

Nachfolgend werden Lehrveranstaltungen des Instituts für Wirtschaftswissenschaften beschrieben, die als "Electives in Data" belegt werden können und typischerweise regelmäßiger angeboten werden.

Hier gilt wiederum, dass es in jedem Semester vereinzelt zusätzliche Lehrangebote des Instituts für Wirtschaftswissenschaften geben kann, die als "Electives in Data" anrechenbar sind. Diese werden dann jeweils im <u>Veranstaltungsverzeichnis</u> des betreffenden Semesters unter Punkt 4b. *Fachfremde Veranstaltungen für den M.Sc. Mathematics in Data and Technology* aufgeführt.

Die Modulbeschreibungen werden größtenteils von der Wirtschafts- und Verhaltenswissenschaftlichen Fakultät importiert und können daher an manchen Stellen Angaben enthalten, die für den Studiengang M.Sc. Mathematics in Data and Technology nicht ganz zutreffend sind. Die jeweils genannten Anforderungen an Prüfungs- und ggf. Studienleistungen gelten jedoch generell unverändert auch für den Studiengang M.Sc. Mathematics in Data and Technology.

Ί

| Name des Moduls         | Nummer des Moduls                   |
|-------------------------|-------------------------------------|
| Financial Time Series   | 07LE23MO-MScD24-ED6-Fin-<br>TimeSer |
| Verantwortliche/r       |                                     |
|                         |                                     |
| Fachbereich / Fakultät  |                                     |
| Mathematisches Institut |                                     |

| ECTS-Punkte                 | 6,0                            |
|-----------------------------|--------------------------------|
| Arbeitsaufwand              |                                |
| Semesterwochenstunden (SWS) |                                |
| Mögliche Fachsemester       |                                |
| Moduldauer                  | ein Semester                   |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht                        |
| Angebotsfrequenz            | Findet in jedem Semester statt |

Teilnahmevoraussetzung laut Prüfungsordnung

| Zugehörige Veranstaltungen |           |             |      |     |                     |
|----------------------------|-----------|-------------|------|-----|---------------------|
| Name                       | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
|                            | Vorlesung | Wahlpflicht | 6,0  | 2,0 |                     |
|                            | Übung     | Wahlpflicht |      | 2,0 |                     |

| Lern- und Qualifikationsziele des Moduls |  |
|------------------------------------------|--|
|                                          |  |

| Name des Moduls       | Nummer des Moduls                   |
|-----------------------|-------------------------------------|
| Financial Time Series | 07LE23MO-MScD24-ED6-Fin-<br>TimeSer |
| Veranstaltung         |                                     |
|                       |                                     |
| Veranstaltungsart     | Nummer                              |
| Vorlesung             | 03LE47V-M19FTSA133                  |

| ECTS-Punkte                 | 6,0                                     |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

#### Inhalte

The course covers the fundamentals of time series analysis and financial econometrics with emphasis on both theoretical foundations and empirical applications. The course aims at sharpening students' view on the limitations of the theoretical models and their empirical applications as well as at equipping students with a profound knowledge of financial data handling and programming skills in Python. The topics covered are:

- 1. Properties of financial data
- 2. Basic time series concepts
- 3. ARIMA models
- 4. Multivariate ARMA models
- 5. GARCH models
- 6. Stochastic volatility model
- 7. Realized Volatility
- 8. Tail risk modelling: Value-at-Risk and Expected Shortfall
- 9. Multivariate GARCH and Realized Covariance
- 10.Portfolio Application

### Lern- und Qualifikationsziele der Lehrveranstaltung

This course aims at endowing students with the necessary econometric knowledge and tools for undergoing empirical research on data observed and sampled regularly in time, i.e. time series data with applications in finance.

### Zu erbringende Prüfungsleistung

- Final exam (90 minutes)
- In the exam you may use a non-programmable calculator, a hard copy of a German-English dictionary book and a one-sided A4 hand-written cheat sheet.

# Zu erbringende Studienleistung

#### Literatur

- Tsay (2010): Analysis of Financial Time Series, Wiley, New York
- Andersen T., Davis R., Kreiß J. and Mikosch T. (2009): *Handbook of Financial Time Series*, Springer.
- Enders, W. (2014): Applied Econometric Time Series, 4th edition, Wiley.
- Hamilton (1994): Time Series Analysis, Princeton University Press, Princeton.
- Hayashi (2000): *Econometrics,* Princeton University Press, Princeton.

- Lütkepohl, H. & Krätzig, M. (2004): Applied Time Series Econometrics, Cambridge University Press.
- Lütkepohl (2005): New Introduction to Multiple Time Series, Springer, Heidelberg.
- Campbell, J. Y., A. W. Lo and A. C. MacKinlay (1997): *The Econometrics of Financial Markets*, Princeton University Press.
- Francq, C. and Zakoian J. M. (2011): *GARCH models: structure, statistical inference and financial applications*, Wiley.com.
- Franses & van Dijk (2000): *Nonlinear Time Series Models in Empirical Finance*, Cambridge University Press Cambridge.
- Gourieroux C. and J. Jasiak (2001): Financial Econometrics, Princeton University Press.
- McNeil, A. J., R. Frey and P. Embrechts (2015): Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press.

### Teilnahmevoraussetzung laut Prüfungsordnung

# Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Statistics, Mathematics, Econometrics, Principles of Finance

# Bemerkung / Empfehlung

Further information can be found on the website: www.econometrics.uni-freiburg.de/en/teaching

The course material, updates and all relevant information will be available on ILIAS.



| Name des Moduls       | Nummer des Moduls                   |  |
|-----------------------|-------------------------------------|--|
| Financial Time Series | 07LE23MO-MScD24-ED6-Fin-<br>TimeSer |  |
| Veranstaltung         |                                     |  |
|                       |                                     |  |
| Veranstaltungsart     | Nummer                              |  |
| Übung                 | 03LE47Ü-M19FTSA133                  |  |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

| Inhalte                                     |
|---------------------------------------------|
|                                             |
| Zu erbringende Prüfungsleistung             |
|                                             |
| Zu erbringende Studienleistung              |
|                                             |
| Teilnahmevoraussetzung laut Prüfungsordnung |
|                                             |

 $\uparrow$ 

| Name des Moduls                        | Nummer des Moduls       |  |
|----------------------------------------|-------------------------|--|
| Futures and Options                    | 07LE23MO-MScD24-ED6-FaO |  |
| Verantwortliche/r                      |                         |  |
| Prof. Dr. Eva-Maria Lütkebohmert-Holtz |                         |  |
| Fachbereich / Fakultät                 |                         |  |
| Mathematisches Institut                |                         |  |

| ECTS-Punkte                 | 6,0          |
|-----------------------------|--------------|
| Arbeitsaufwand              | 180 Stunden  |
| Semesterwochenstunden (SWS) |              |
| Mögliche Fachsemester       |              |
| Moduldauer                  | ein Semester |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht      |

# Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Stochastik I Das Modul wird auf Englisch angeboten!

| Zugehörige Veranstaltungen |           |             |      |     |                     |
|----------------------------|-----------|-------------|------|-----|---------------------|
| Name                       | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Futures and Options        | Vorlesung | Wahlpflicht | 6,0  | 2,0 |                     |
| Futures and Options        | Übung     | Wahlpflicht |      | 2,0 |                     |

## Inhalte

This course covers an introduction to financial markets and products. Besides futures and standard put and call options of European and American type we also discuss interest-rate sensitive instruments such as swaps.

For the valuation of financial derivatives we first introduce financial models in discrete time as the Cox-Ross-Rubinstein model and explain basic principles of risk-neutral valuation. Finally, we will discuss the famous Black-Scholes model which represents a continuous time model for option pricing.

## Lern- und Qualifikationsziele des Moduls

Students know the basic principles of risk-neutral valuation of futures, standard and exotic options as well as interest rate derivatives.

# Zu erbringende Prüfungsleistung

- Ca. zweistündige Klausur.
- Bei Verwendung als Wahlmodul: keine

### Zu erbringende Studienleistung

Bei Verwendung als Wahlmodul: Bestehen der Klausur (ca. zweistündig).

#### Benotung

- Im B.Sc.-Studiengang Mathematik (PO 2021) geht die Modulnote mit 6/(N-1) in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im B.Sc.-Studiengang Mathematik (PO 2012) geht die Modulnote mit 9/N in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Als Wahlmodul im M.Sc.-Studiengang Mathematik und im Optionsbereich des Zwei-Hauptfächer-Bachelor-Studiengangs ist das Modul unbenotet.

#### Lehrmethoden

Vorlesung mit Übung.

## Studiengangschwerpunkte

### Finanzmathematik

### Literatur

- Chance, D.M., Brooks, R.: An Introduction to Derivatives and Risk Management, 8. ed., South-Western, 2009.
- Hull, J.C.: Options, Futures, and other Derivatives, 7. ed., Prentice Hall, 2009.
- Shreve, S.E.: Stochastic Calculus for Finance I: The Binomial Asset Pricing Model, Springer Finance, 2005
- Strong, R.A.: Derivatives. An Introduction, 2. ed., South-Western, 2004.

## Bemerkung / Empfehlung

Kurssprache ist Englisch.

Weitere Informationen auf der Seite https://www.finance.uni-freiburg.de

### Verwendbarkeit des Moduls

- Wahlpflichtmodul im B.,Sc.-Studiengang Mathematik (PO 2012, PO 2021)
- Mit Klausur als Teil der Studienleistung: Wahlmodul in der Option "Individuelle Studiengestaltung" des Zwei-Hauptfächer-Bachelor-Studiengangs Mathematik (PO 2021)
- Mit Klausur als Teil der Studienleistung: Wahlmodul oder Wirtschaftswissenschaftliches Spezialisierungsmodul für die Profiilinie Finanzmathematik im M.Sc.-Studiengang Mathematik (PO 2014)
- Vorlesung und Übung sind verwendbar für die Module "Angewandte Mathematik", "Mathematik" und das Vertiefungsmodul im M.Sc.-Studiengang Mathematik (PO 2014).



| me des Moduls Nummer des Moduls |                         |
|---------------------------------|-------------------------|
| Futures and Options             | 07LE23MO-MScD24-ED6-FaO |
| Veranstaltung                   |                         |
| Futures and Options             |                         |
| Veranstaltungsart               | Nummer                  |
| Vorlesung                       | 03LE47V-ID128036        |

| ECTS-Punkte                 | 6,0                                  |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

| Inhalte                                     |  |
|---------------------------------------------|--|
|                                             |  |
| Zu erbringende Prüfungsleistung             |  |
|                                             |  |
| Zu erbringende Studienleistung              |  |
|                                             |  |
| Teilnahmevoraussetzung laut Prüfungsordnung |  |
|                                             |  |

| ame des Moduls Nummer des Moduls |                         |
|----------------------------------|-------------------------|
| Futures and Options              | 07LE23MO-MScD24-ED6-FaO |
| Veranstaltung                    |                         |
| Futures and Options              |                         |
| Veranstaltungsart                | Nummer                  |
| Übung                            | 03LE47Ü-ID128037        |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

| Inhalte                                     |
|---------------------------------------------|
|                                             |
| Zu erbringende Prüfungsleistung             |
|                                             |
| Zu erbringende Studienleistung              |
|                                             |
| Teilnahmevoraussetzung laut Prüfungsordnung |
|                                             |

| Name des Moduls                        | Nummer des Moduls                  |
|----------------------------------------|------------------------------------|
| Intermediate Econometrics              | 07LE23MO-MScD24-ED6-<br>InterEcono |
| Verantwortliche/r                      |                                    |
| Prof. Dr. Eva-Maria Lütkebohmert-Holtz |                                    |
| Fachbereich / Fakultät                 |                                    |
| Mathematisches Institut                |                                    |

| ECTS-Punkte                 | 6,0          |
|-----------------------------|--------------|
| Arbeitsaufwand              |              |
| Semesterwochenstunden (SWS) |              |
| Mögliche Fachsemester       |              |
| Moduldauer                  | ein Semester |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht      |

Teilnahmevoraussetzung laut Prüfungsordnung

| Zugehörige Veranstaltungen                      |                                  |         |      |     |                     |
|-------------------------------------------------|----------------------------------|---------|------|-----|---------------------|
| Name                                            | Art                              | P/WP    | ECTS |     | Arbeits-<br>aufwand |
| Intermediate Econometrics                       | Vorlesung                        | Pflicht | 6,0  | 4,0 |                     |
| Intermediate Econometrics Exercise Session      | Übung                            | Pflicht |      | 2,0 |                     |
| Intermediate Econometrics - Additional Tutorial | andere (z.B. Kurse,<br>Tutorien) |         |      | 2,0 |                     |

| Lern- und Qualifikationsziele des Moduls |  |
|------------------------------------------|--|
|                                          |  |

| Name des Moduls           | Nummer des Moduls                  |
|---------------------------|------------------------------------|
| Intermediate Econometrics | 07LE23MO-MScD24-ED6-<br>InterEcono |
| Veranstaltung             |                                    |
| Intermediate Econometrics |                                    |
| Veranstaltungsart         | Nummer                             |
| Vorlesung                 | 03LE47V-ID115130                   |

| ECTS-Punkte                 | 6,0                                  |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                  |
| Mögliche Fachsemester       | 1                                    |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht                              |
| Lehrsprache                 | englisch                             |

### Inhalte

#### **Contents:**

The course covers the fundamentals of multiple linear regression analysis applied to cross sectional and time series data with emphasis on both theoretical foundations and empirical applications. The course also covers some selected topics in advanced econometrics.

Besides lectures, the course entails exercise sessions, where both theoretical and computer exercises are solved. While the theoretical exercises aim at understanding and deepening the theoretical concepts, the computer exercises aim at providing students with practical skills in undergoing empirical work by using R.

The first part of the course including both lectures and exercise sessions (first 4 weeks) consists of a review of the methods taught in the statistics and econometrics courses in the Bachelor of Science in Volkswirtschafts-lehre (Economics) including the bivariate regression analysis. This part is mandatory for the 10 ECTS students, but not for the 6 ECTS students. In the second part (starting with week 5 until the end of the semester), advanced topics, such as: functional forms, heteroskedasticity, instrumental variables, asymptotic theory of OLS and quantal response models, will be covered. This part is compulsory for both students writing the exam for 10 ECTS points (Master in Economics) and students writing the 6 ECTS points (Master VWL).

The 6 ECTS students may visit the course also in the first 4 weeks in order to refresh their pre-requisite knowledge. However, it is required that they visit the first lecture, where organizational issues of the course throughout the semester are presented.

## Lern- und Qualifikationsziele der Lehrveranstaltung

This course aims at providing students with the basic tools in undergoing empirical research on their own. Upon successful completion of this course, students should be acquainted with the fundamentals of regression analysis and with its strengths and limitations. Moreover, they should be able to apply econometric tools and software to real economic problems and to thoroughly understand and critically interpret empirical findings.

### Zu erbringende Prüfungsleistung

- 100% final exam: 90 minutes for 6 ECTS, 120 minutes for 10 ECTS
- A separate registration is mandatory for the exam!
- The material discussed in the lectures and tutorials is relevant for the exam.
- In the exam you may use the "Formulas and Tables for Econometrics", which are handed out to you by us at the exam. You may also use a non-programmable calculator and a hardcopy of a German-English dictionary book.

### Zu erbringende Studienleistung

#### Literatur

#### **Introductory Literature:**

- Wooldridge, J. M. (2019): *Introductory Econometrics A Modern Approach,* 7th ed., South Western, Cengage Learning. Please note that old book editions are acceptable as well.
- Greene, W. H. (2020): *Econometric Analysis*, 7th ed., Pearson Prentice Hall. Other book editions are acceptable as well.

#### **Additional Literature:**

- Stock, J. H. and M. W. Watson (2019): *Introduction to Econometrics*, updated 3rd ed., global ed., Pearson. Old book editions are acceptable as well.
- Angrist, J. D., and J. S. Pischke (2009): *Mostly Harmless Econometrics An Empiricist's Companion*, Princeton University Press.
- Angrist, J. D. and J. S. Pischke (2014): Mastering Metrics: The Path from Cause to Effect, Princeton University Press.
- Heiss, Florian (2016): Using R for Introductory Econometrics.
- Kleiber C. and Zeileis A. (2008): *Applied Econometrics with R.* Springer.
- Hansen, B. (2022): Econometrics, Princeton University Press.
- Hansen, B. (2022): Probability and Statistics for Economists, Princeton University Press.
- Hanck C., Arnold M., Gerber A. and Schmelzer M. (2020), Introduction to Econometrics with R.

Further references will be given throughout the course.

# Teilnahmevoraussetzung laut Prüfungsordnung

- For 10 ECTS students: Knowledge of mathematics, statistics, probability theory, inference, and hypotheses testing (as taught in any standard bachelor program in economics).
- For 6 ECTS students: Knowledge of mathematics, statistics, probability theory, inference, hypotheses testing, and bivariate regression analysis (as taught in any standard bachelor program in economics).

### Bemerkung / Empfehlung

### **Important Information:**

- Students have to sign in for this course in HISinOne. The registration in ILIAS will be carried out automatically.
- Please note that the registration for the lecture does not automatically mean that you are registered for the exam! A separate registration for the exam is mandatory!
- All information about the online teaching will be available on ILIAS (https://ilias.uni-freiburg.de/login.php).
- You may also consult our website (https://www.econometrics.uni-freiburg.de/en/teaching).



| Name des Moduls                            | Nummer des Moduls                  |
|--------------------------------------------|------------------------------------|
| Intermediate Econometrics                  | 07LE23MO-MScD24-ED6-<br>InterEcono |
| Veranstaltung                              |                                    |
| Intermediate Econometrics Exercise Session |                                    |
| Veranstaltungsart                          | Nummer                             |
| Übung                                      | 03LE47Ü-ID113484                   |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       | 1                                    |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht                              |
| Lehrsprache                 | englisch                             |

| Inhalte                                     |
|---------------------------------------------|
|                                             |
| Zu erbringende Prüfungsleistung             |
|                                             |
| Zu erbringende Studienleistung              |
|                                             |
| Teilnahmevoraussetzung laut Prüfungsordnung |
|                                             |

 $\uparrow$ 

| Name des Moduls                                 | Nummer des Moduls                  |
|-------------------------------------------------|------------------------------------|
| Intermediate Econometrics                       | 07LE23MO-MScD24-ED6-<br>InterEcono |
| Veranstaltung                                   |                                    |
| Intermediate Econometrics - Additional Tutorial |                                    |
| Veranstaltungsart                               | Nummer                             |
| andere (z.B. Kurse, Tutorien)                   | 03LE47T-ID113485                   |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  |                                      |
| Lehrsprache                 | englisch                             |

| Inhalte                                     |
|---------------------------------------------|
|                                             |
| Zu erbringende Prüfungsleistung             |
|                                             |
| Zu erbringende Studienleistung              |
|                                             |
| Teilnahmevoraussetzung laut Prüfungsordnung |
|                                             |

 $\uparrow$ 

| Name des Kontos         | Nummer des Kontos |
|-------------------------|-------------------|
| Electives               | 07LE23KT-MScD24-E |
| Fachbereich / Fakultät  |                   |
| Mathematisches Institut |                   |

| Pflicht/Wahlpflicht (P/WP) | Wahlpflicht |
|----------------------------|-------------|
| ECTS-Punkte                | 18,0        |

### Kommentar

Innerhalb der Module "Electives in Data" sowie "Electives" sind Lehrveranstaltungen im Umfang von zusammen insgesamt 48 ECTS zu belegen, wobei davon mindestens 30 ECTS innerhalb von "Electives in Data" erworben werden müssen. Im Modul "Electives" können somit, abhängig vom innerhalb des Moduls "Electives in Data" erbrachten Leistungsumfangs, noch 0–18 ECTS-Punkte erworben werden. Sämtliche im Modul "Electives" zu erbringende Leistungen sind unbenotete Studienleistungen.

Als "Electives" sind sämtliche vom Mathematischen Institut angebotene Lehrveranstaltungen wählbar, die auch im M.Sc. Mathematik anrechenbar sind und *nicht* als "Advanced Lecture", "Mathematical Seminar" oder "Electives in Data" innerhalb des M.Sc. Mathematics in Data and Technology verwendbar sind; typischerweise sind dies Lehrveranstaltungen aus den Bereichen Reine Mathematik und Mathematische Logik.

Nachfolgend werden wiederum nur die typischen, regelmäßiger angebotenen Lehrveranstaltungen beschrieben, die innerhalb dieses Moduls belegt werden können.

In jedem Semester kann es darüber hinaus noch weitere geben, die im zugehörigen <u>Veranstaltungsverzeichnis</u> aufgeführt und als verwendbar im Modul "Electives" gekennzeichnet sind. Durch Anklicken der Schaltflächen *Courses for M.Sc. Mathematics in Data and Technology* sowie *Elective* oben auf den Webseiten lassen sich alle innerhalb eines Semesters angebotenen und als "Electives" verwendbaren Lehrveranstaltungen anzeigen.



| Name des Kontos               | Nummer des Kontos    |  |  |
|-------------------------------|----------------------|--|--|
| Electives: Praktische Übungen | 07LE23KT-MScD24-E-PÜ |  |  |
| Fachbereich / Fakultät        |                      |  |  |
| Mathematisches Institut       |                      |  |  |

| Pflicht/Wahlpflicht (P/WP) | Wahlpflicht |
|----------------------------|-------------|
|                            |             |



| Name des Moduls                                                                                                                                                | Nummer des Moduls               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Introduction to Theory and Numerics of Partial Differential Equations (Einführung in Theorie und Numerik partieller Differentialgleichungen): Praktische Übung | 07LE23MO-MSc14-WM3-5-<br>PÜPDE0 |
| Verantwortliche/r                                                                                                                                              |                                 |
| Prof. Dr. Sören Bartels                                                                                                                                        |                                 |
| Fachbereich / Fakultät                                                                                                                                         |                                 |
| Mathematisches Institut                                                                                                                                        |                                 |

| ECTS-Punkte                 | 3,0            |
|-----------------------------|----------------|
| Arbeitsaufwand              | 90 Stunden     |
| Semesterwochenstunden (SWS) | 2,0            |
| Präsenzstudium              | ca. 30 Stunden |
| Selbststudium               | ca. 60 Stunden |
| Mögliche Fachsemester       |                |
| Moduldauer                  | ein Semester   |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht    |

# Teilnahmevoraussetzung laut Prüfungsordnung

Teilnahme an der gleichnamigen Vorlesung.

Notwendige Vorkenntnisse: siehe dort oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

| Zugehörige Veranstaltungen                                                              |       |             |      |     |                     |
|-----------------------------------------------------------------------------------------|-------|-------------|------|-----|---------------------|
| Name                                                                                    | Art   | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Introduction to Theory and Numerics of Partial Differential Equations (Computerübungen) | Übung | Wahlpflicht |      | 2,0 |                     |

### Lern- und Qualifikationsziele des Moduls

Die Studierenden können die in der Vorlesung erlernten numerischen Verfahren praktisch umsetzen und deren Eigenschaften experimentell untersuchen.

# Zu erbringende Prüfungsleistung

keine

### Zu erbringende Studienleistung

Die Anforderungen an die Studienleistung werden semesterweise in den <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> veröffentlicht.

### Benotung

unbenotet

### Lehrmethoden

Computerübungen

Studiengangschwerpunkte

Numerik

- Wahlmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021)
- Wahlmodul im M.Sc.-Studiengang Mathematik (PO 2014)
- Verwendbar für das Modul "Mathematische Ergänzung" im M.Ed. -Studiengang Mathematik (PO 2018)
- Wählbar als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024)



| Name des Moduls                                                                                                                                                | Nummer des Moduls               |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|
| Introduction to Theory and Numerics of Partial Differential Equations (Einführung in Theorie und Numerik partieller Differentialgleichungen): Praktische Übung | 07LE23MO-MSc14-WM3-5-<br>PÜPDE0 |  |  |
| Veranstaltung                                                                                                                                                  |                                 |  |  |
| Introduction to Theory and Numerics of Partial Differential Equations (Computerübungen)                                                                        |                                 |  |  |
| Veranstaltungsart Nummer                                                                                                                                       |                                 |  |  |
| Übung                                                                                                                                                          | 07LE23PÜ-5-PDE0                 |  |  |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | englisch                             |

#### Inhalte

Die Praktische Übung begleitet die gleichnamige Vorlesung mit Programmieraufgaben zum Vorlesungsstoff.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Siehe bei der Vorlesung, zusätzlich Programmierkenntnisse.



| Name des Moduls                                                                                                     | Nummer des Moduls               |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Theory and Numerics of Partial Differential Equations – Adaptivity and Iterative Solution Methods: Praktische Übung | 07LE23MO-MSc14-WM3-5-<br>PÜPDE2 |
| Verantwortliche/r                                                                                                   |                                 |
| Prof. Dr. Sören Bartels                                                                                             |                                 |
| Fachbereich / Fakultät                                                                                              |                                 |
| Mathematisches Institut                                                                                             |                                 |

| ECTS-Punkte                 | 3,0            |
|-----------------------------|----------------|
| Arbeitsaufwand              | 90 Stunden     |
| Semesterwochenstunden (SWS) | 2,0            |
| Präsenzstudium              | ca. 30 Stunden |
| Selbststudium               | ca. 60 Stunden |
| Mögliche Fachsemester       |                |
| Moduldauer                  | ein Semester   |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht    |

### Teilnahmevoraussetzung laut Prüfungsordnung

Teilnahme an der gleichnamigen Vorlesung.

Notwendige Vorkenntnisse: siehe dort oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

| Zugehörige Veranstaltungen                                                                                          |       |             |      |     |                     |
|---------------------------------------------------------------------------------------------------------------------|-------|-------------|------|-----|---------------------|
| Name                                                                                                                | Art   | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Theory and Numerics of Partial Differential Equations – Adaptivity and Iterative Solution Methods: Praktische Übung | Übung | Wahlpflicht |      | 2,0 |                     |

## Lern- und Qualifikationsziele des Moduls

Die Studierenden können die in der Vorlesung erlernten numerischen Verfahren praktisch umsetzen und deren Eigenschaften experimentell untersuchen.

## Zu erbringende Prüfungsleistung

keine

# Zu erbringende Studienleistung

Die Anforderungen an die Studienleistung werden semesterweise in den <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> veröffentlicht.

## Benotung

unbenotet

### Lehrmethoden

Computerübungen

## Studiengangschwerpunkte

Numerik

## Verwendbarkeit des Moduls

- Wahlmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021)
- Wahlmodul im M.Sc.-Studiengang Mathematik (PO 2014)
- Verwendbar für das Modul "Mathematische Ergänzung" im M.Ed. -Studiengang Mathematik (PO 2018)
- Wählbar als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024)

1

| Name des Moduls                                                                                                     | Nummer des Moduls               |  |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------|--|
| Theory and Numerics of Partial Differential Equations – Adaptivity and Iterative Solution Methods: Praktische Übung | 07LE23MO-MSc14-WM3-5-<br>PÜPDE2 |  |
| Veranstaltung                                                                                                       |                                 |  |
| Theory and Numerics of Partial Differential Equations – Adaptivity and Iterative Solution Methods: Praktische Übung |                                 |  |
| Veranstaltungsart                                                                                                   | Nummer                          |  |
| Übung                                                                                                               | 07LE23PÜ-5-PDE2                 |  |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

#### Inhalte

Die Praktische Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Siehe bei der Vorlesung, zusätzlich Programmierkenntnisse.



| Name des Moduls                                                                              | Nummer des Moduls               |  |  |
|----------------------------------------------------------------------------------------------|---------------------------------|--|--|
| Theory and Numerics of Partial Differential Equations – Nonlinear Problems: Praktische Übung | 07LE23MO-MSc14-WM3-5-<br>PÜPDE1 |  |  |
| Verantwortliche/r                                                                            |                                 |  |  |
| Prof. Dr. Sören Bartels                                                                      |                                 |  |  |
| Fachbereich / Fakultät                                                                       |                                 |  |  |
| Mathematisches Institut                                                                      |                                 |  |  |

| ECTS-Punkte                 | 3,0            |
|-----------------------------|----------------|
| Arbeitsaufwand              | 90 Sunden      |
| Semesterwochenstunden (SWS) | 2,0            |
| Präsenzstudium              | ca. 30 Stunden |
| Selbststudium               | ca. 60 Stunden |
| Mögliche Fachsemester       |                |
| Moduldauer                  | ein Semester   |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht    |

### Teilnahmevoraussetzung laut Prüfungsordnung

Teilnahme an der gleichnamigen Vorlesung.

Notwendige Vorkenntnisse: siehe dort oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

| Zugehörige Veranstaltungen                                                                   |       |             |      | _   |                     |
|----------------------------------------------------------------------------------------------|-------|-------------|------|-----|---------------------|
| Name                                                                                         | Art   | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Theory and Numerics of Partial Differential Equations – Nonlinear Problems: Praktische Übung | Übung | Wahlpflicht |      | 2,0 |                     |

## Lern- und Qualifikationsziele des Moduls

Die Studierenden können die in der Vorlesung erlernten numerischen Verfahren praktisch umsetzen und deren Eigenschaften experimentell untersuchen.

## Zu erbringende Prüfungsleistung

keine

# Zu erbringende Studienleistung

Die Anforderungen an die Studienleistung werden semesterweise in den <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> veröffentlicht.

## Benotung

unbenotet

### Lehrmethoden

Computerübungen

## Studiengangschwerpunkte

Numerik

## Verwendbarkeit des Moduls

- Wahlmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021)
- Wahlmodul im M.Sc.-Studiengang Mathematik (PO 2014)
- Verwendbar für das Modul "Mathematische Ergänzung" im M.Ed. -Studiengang Mathematik (PO 2018)
- Wählbar als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024)

 $\overline{\uparrow}$ 

| Name des Moduls                                                                              | Nummer des Moduls               |  |  |
|----------------------------------------------------------------------------------------------|---------------------------------|--|--|
| Theory and Numerics of Partial Differential Equations – Nonlinear Problems: Praktische Übung | 07LE23MO-MSc14-WM3-5-<br>PÜPDE1 |  |  |
| Veranstaltung                                                                                |                                 |  |  |
| Theory and Numerics of Partial Differential Equations – Nonlinear Problems: Praktische Übung |                                 |  |  |
| Veranstaltungsart Nummer                                                                     |                                 |  |  |
| Übung                                                                                        | 07LE23PÜ-5-PDE1                 |  |  |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | englisch                                |

#### Inhalte

Die Praktische Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

#### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Siehe bei der Vorlesung, zusätzlich Programmierkenntnisse.



| Name des Kontos                   | Nummer des Kontos      |
|-----------------------------------|------------------------|
| Electives: Mathematik-Vorlesungen | 07LE23KT-MScD24-E-Vorl |
| Fachbereich / Fakultät            |                        |
| Mathematisches Institut           |                        |

| Pflicht/Wahlpflicht (P/WP) | Wahlpflicht |
|----------------------------|-------------|
|                            |             |



| Name des Moduls            | Nummer des Moduls            |
|----------------------------|------------------------------|
| Algebra und Zahlentheorie  | 07LE23MO-MSc14-WM9-1-<br>AuZ |
| Verantwortliche/r          |                              |
| Prof. Dr. Wolfgang Soergel |                              |
| Fachbereich / Fakultät     |                              |
| Mathematisches Institut    |                              |

| ECTS-Punkte                 | 9,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 270 Stunden     |
| Semesterwochenstunden (SWS) | 6,0             |
| Präsenzstudium              | ca. 90 Stunden  |
| Selbststudium               | ca. 180 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht         |

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I und II.

| Zugehörige Veranstaltungen           |           |      |      |     |                     |
|--------------------------------------|-----------|------|------|-----|---------------------|
| Name                                 | Art       | P/WP | ECTS |     | Arbeits-<br>aufwand |
| Algebra und Zahlentheorie: Vorlesung | Vorlesung |      |      | 4,0 |                     |
| Algebra und Zahlentheorie: Übung     | Übung     |      |      | 2,0 |                     |

# Lern- und Qualifikationsziele des Moduls

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die mathematische Fach- und Formelsprache der Algebra und der Zahlentheorie und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der elementaren Algebra und Zahlentheorie mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Sie können die Struktur und Eigenschaften von Zahlbereichen im Zusammenhang erklären, sie kennen wichtige klassische Probleme wie Winkeldreiteilung und Lösungsformeln für polynomiale Gleichungen und verstehen ihre algebraische Umformulierung und Lösung.

■ Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Mathematik, insbesondere mit den Grundlagen aus der linearen Algebra, die sie dadurch vertiefen, und können mathematische Situationen unter Verwendung algebraischer Strukturbegriffe analysieren.

## Zu erbringende Prüfungsleistung

- Klausur (Dauer 90-180 Minuten)
- Bei Verwendung als Wahlmodul/"Elective": keine

#### Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise in den <u>Kommentierten</u> Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern veröffentlicht.

### Benotung

- Im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik geht die Modulnote mit 9/75 in die Abschlussnote des Fachs Mathematik ein, die wiederum mit 4/9 in die Gesamtnote eingeht bei Fächerkombinationen mit einem künstlerischen Fach mit 6/17.
- Im B.Sc.-Studiengang Mathematik (PO 2021) geht die Modulnote mit 9/(N-1) in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im B.Sc.-Studiengang Mathematik (PO 2012) geht die Modulnote mit 9/N in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" geht die Modulnote mit 9/95 in die Abschlussnote des Fachs Mathematik ein, die wiederum mit 6/7 in die Gesamtnote eingeht.
- Als Wahlmodul im M.Sc.-Studiengang Mathematik sowie als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024) ist das Modul unbenotet.

#### Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur;
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

#### Studiengangschwerpunkte

### Algebra

## Bemerkung / Empfehlung

Das Modul kann in beiden Bachelor-Studiengängen ab dem 3. Fachsemester absolviert werden, sofern Lineare Algebra I und II gehört wurden.

- Pflichtmodul im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik (PO 2021 und )im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2021)
- Wahlpflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021)
- Mit Klausur als Teil der Studienleistung: Wahlmodul im M.Sc.-Studiengang Mathematik (PO 2014) und "Elective" im M.Sc.-Studiengang Mathematics in Data and Technology (PO 2024)
- Vorlesung und Übung sind verwendbar für das Modul "Reine Mathematik" im M.Sc.-Studiengang Mathematik (PO 2014).
- Der erste Teil der Veranstaltung (bis Weihnachten) mit 5 ECTS-Punkten bildet das Pflichtmodul "Einführung in die Algebra und Zahlentheorie" im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 90 ECTS-Punkten" (PO 2021)



| Name des Moduls                      | Nummer des Moduls            |
|--------------------------------------|------------------------------|
| Algebra und Zahlentheorie            | 07LE23MO-MSc14-WM9-1-<br>AuZ |
| Veranstaltung                        |                              |
| Algebra und Zahlentheorie: Vorlesung |                              |
| Veranstaltungsart                    | Nummer                       |
| Vorlesung                            | 07LE23V-1-AuZ                |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  |                                      |
| Lehrsprache                 | deutsch                              |

#### Inhalte

- Grundbegriffe der Gruppentheorie: Normalteiler, Homomorphiesatz, Gruppenwirkungen, Symmetriegruppen
- Grundbegriffe der Ringtheorie: Teilbarkeit, Ideale und Primfaktorzerlegung, vor allem die Beispiele **Z** und K[X], euklidischer Algorithmus, Restklassenringe, chinesischer Restsatz, kleiner Satz von Fermat
- Grundlagen der Körpertheorie: endliche und algebraische Erweiterungen, Konstruierbarkeit mit Zirkel und Lineal, endliche Körper
- Auflösbarkeit von Gleichungen durch Radikale, elementarsymmetrische Polynome, Galois-Theorie, quadratisches Reziprozitätsgesetz
- Zahlbereichserweiterungen
- optional: Sylow-Sätze, Strukturtheorie endlicher Gruppen, endliche Symmetriegruppen des Raumes und platonische Körper, Transzendenz von π
- Ideen- und mathematikgeschichtliche Hintergründe der mathematischen Inhalte werden erläutert.

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

# Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- M. Artin: Algebra. Birkhäuser 1998.
- S. Lang: *Algebra*. 3. Auflage, Springer 2005.
- S. Bosch: *Algebra*. Springer Spektrum 2013.
- R. Schulze-Pillot: Einführung in die Algebra und Zahlentheorie. Springer 2008.

#### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I und II

1

| Name des Moduls                  | Nummer des Moduls            |
|----------------------------------|------------------------------|
| Algebra und Zahlentheorie        | 07LE23MO-MSc14-WM9-1-<br>AuZ |
| Veranstaltung                    |                              |
| Algebra und Zahlentheorie: Übung |                              |
| Veranstaltungsart                | Nummer                       |
| Übung                            | 07LE23Ü-1-AuZ                |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  |                                      |
| Lehrsprache                 | deutsch                              |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

1

| Name des Moduls            | Nummer des Moduls               |
|----------------------------|---------------------------------|
| Algebraische Topologie     | 07LE23MO-MSc14-WM9-3-<br>AlgTop |
| Verantwortliche/r          |                                 |
| Prof. Dr. Sebastian Goette |                                 |
| Fachbereich / Fakultät     |                                 |
| Mathematisches Institut    |                                 |

| ECTS-Punkte                 | 9,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 270 Stunden     |
| Semesterwochenstunden (SWS) | 6,0             |
| Präsenzstudium              | ca. 90 Stunden  |
| Selbststudium               | ca. 180 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht     |

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Topologie

| Zugehörige Veranstaltungen        |           |             |      |     |                     |
|-----------------------------------|-----------|-------------|------|-----|---------------------|
| Name                              | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Algebraische Topologie: Vorlesung | Vorlesung | Wahlpflicht |      | 4,0 |                     |
| Algebraische Topologie: Übung     | Übung     | Wahlpflicht |      | 2,0 |                     |

## Lern- und Qualifikationsziele des Moduls

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die verwendete mathematische Fach- und Formelsprache und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der Vorlesung mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Reinen Mathematik, insbesondere zu Algebra und Topologie, und können die dort erlernten allgemeinen Sätze und Konzepte anhand der Aussagen und Beispiele dieser Vorlesung spezialisieren und vertiefen.
- Die Studierenden sind vertraut mit Homotopiegruppen sowie Homologie- und Koholomogiegruppen und deren axiomatischer Charakterisierung und beherrschen die zur Konstruktion weiterführender topologi-

scher Objekte notwendigen Grandlagen. Sie kennen Anwendungen der erlernten Methoden in anderen Bereichen der Mathematik, speziell der Geometrie.

## Zu erbringende Prüfungsleistung

- Mündliche Prüfung in Form eines ca. 30-minütigen Prüfungsgesprächs
- Bei Verwendung als Wahlmodul/"Elective": keine

## Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern veröffentlicht.

### Benotung

Die Modulnote geht in die Gesamtnote des B.Sc.-Studiengangs Mathematik mit 9/N ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.

Als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024) ist das Modul unbenotet.

#### Lehrmethoden

- Tafel- oder Folienvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur;
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

- Wahlpflichtmodul im B.Sc. Mathematik; geeignet für "Vorlesung mit Übung A–D", zählt zur Reinen Mathematik
- wählbar für die Module "Reine Mathematik", "Mathematik", "Vertiefungsmodul" (jeweils mit mündlicher Prüfung) oder als Wahlmodul (nur mit Studienleistungen) im M.Sc. Mathematik
- wählbar als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024)



| Name des Moduls                   | Nummer des Moduls               |
|-----------------------------------|---------------------------------|
| Algebraische Topologie            | 07LE23MO-MSc14-WM9-3-<br>AlgTop |
| Veranstaltung                     |                                 |
| Algebraische Topologie: Vorlesung |                                 |
| Veranstaltungsart                 | Nummer                          |
| Vorlesung                         | 07LE23V-3-AlgTop                |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | deutsch                                 |

#### Inhalte

- Homotopiegruppen und Anwendungen, Browerscher Fixpunktsatz, Satz von Brower und Hopf
- Kofaserungen und Quotienten, stabile Homotopiegruppen, gerahmter Bordismus
- Elementare Homotopietheorie, Exponentialgesetz, Satz von Whitehead, Faser- und Kofasersequenzen
- Homologie, Eilenberg-Steenrod-Axoime

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

# Literatur

- T. tom Dieck: *Algebraic Topology*. EMS textbooks in mathematics, European Mathematical Sociecty 2008
- K. Jänich: *Topologie*. 8. Auflage, Springer 2008.
- A. Hatcher: *Algebraic Topology*. 13th printing, Cambridge University Press 2010.
- E. H. Spanier: Algebraic Topology. Korrigierter Nachdruck, Springer 1995.
- R. Stöcker, H. Zieschang: Algebraische Topologie: Eine Einführung. 2. Auflage, Teubner 1994.

#### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

#### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I, Analysis I, II, Topologie

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!</u>



| Name des Moduls               | Nummer des Moduls               |
|-------------------------------|---------------------------------|
| Algebraische Topologie        | 07LE23MO-MSc14-WM9-3-<br>AlgTop |
| Veranstaltung                 |                                 |
| Algebraische Topologie: Übung |                                 |
| Veranstaltungsart             | Nummer                          |
| Übung                         | 07LE23Ü-3-AlgTop                |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | deutsch                                 |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

1

| Name des Moduls                | Nummer des Moduls                  |
|--------------------------------|------------------------------------|
| Allgemeine Relativitätstheorie | 07LE23MO-MSc14-WM9-3-<br>AllgReITh |
| Verantwortliche/r              |                                    |
| Prof. Dr. Nadine Große         |                                    |
| Fachbereich / Fakultät         |                                    |
| Mathematisches Institut        |                                    |

| ECTS-Punkte                 | 9,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 270 Stunden     |
| Semesterwochenstunden (SWS) | 6,0             |
| Präsenzstudium              | ca. 90 Stunden  |
| Selbststudium               | ca. 180 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht     |

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Analysis I+II, Mehrfachintegrale (z. B. aus Analysis II oder III oder Erweiterung der Analysis)

| Zugehörige Veranstaltungen                |           |             |      |     |                     |
|-------------------------------------------|-----------|-------------|------|-----|---------------------|
| Name                                      | Art       | P/WP        | ECTS | sws | Arbeits-<br>aufwand |
| Allgemeine Relativitätstheorie: Vorlesung | Vorlesung | Wahlpflicht |      | 4,0 |                     |
| Allgemeine Relativitätstheorie: Übung     | Übung     | Wahlpflicht |      | 2,0 |                     |

#### Lern- und Qualifikationsziele des Moduls

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die verwendete mathematische Fach- und Formelsprache und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der Vorlesung mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Sie kennen die Zusammenhänge mit physikalischen Modellen und Experimenten zu deren Verifizierung und können die entsprechenden Phänomene mathematisch beschreiben. Sie sind vertraut mit den dazu notwendigen Grundlagen der Differentialgeometrie zur Beschreibung wichtiger kosmologischer Modelle, anhand derer sie ihr diesbezügliches Wissen erweitern und vertiefen.

■ Die Studierenden sind vertraut mit der allgemeinen Relativitätstheorie und der zu ihrer Beschreibung notwendigen vierdimensionalen Raumzeit, kennen die Einsteingleichungen und spezielle Lösungen von diesen sowie deren analytische und geometrische Eigenschaften. Ferner kennen sie wichtige Tests der allgemeinen Relativitätstheorie und Lösungen analytischer Probleme für Lorentzmannigfaltigkeiten.

## Zu erbringende Prüfungsleistung

- Mündliche Prüfung in Form eines ca. 30-minütigen Prüfungsgesprächs
- Bei Verwendung als Wahlmodul/"Elective": keine

#### Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern veröffentlicht.

## Benotung

Als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024) ist das Modul unbenotet.

#### Lehrmethoden

- Tafel- oder Folienvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur:
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

- Wahlpflichtmodul im B.Sc. Mathematik; geeignet für "Vorlesung mit Übung A–D", zählt zur Reinen Mathematik
- wählbar für die Module "Reine Mathematik", "Mathematik", "Vertiefungsmodul" (jeweils mit mündlicher Prüfung) oder als Wahlmodul (nur mit Studienleistungen) im M.Sc. Mathematik
- wählbar als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024)



| Name des Moduls                           | Nummer des Moduls                  |  |
|-------------------------------------------|------------------------------------|--|
| Allgemeine Relativitätstheorie            | 07LE23MO-MSc14-WM9-3-<br>AllgReITh |  |
| Veranstaltung                             |                                    |  |
| Allgemeine Relativitätstheorie: Vorlesung |                                    |  |
| Veranstaltungsart                         | Nummer                             |  |
| Vorlesung                                 | 07LE23V-3-AllgRelTh                |  |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | deutsch                                 |

#### Inhalte

Newtonsche Gravitationstheorie und spezielle Relativitätstheorie,

Äquivalenzprinzip, Einsteinsche Feldgleichungen, Schwarzschildlösung, Kosmologie und Isometrien, Kausalität, Singularitäten, Linearisierte Gravitationstheorie,

Wellengleichungen auf Lorentzmannigfaltigkeiten, Cauchyproblem der Einsteingleichungen, Sternenmodelle und gravitativer Kollaps

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Literatur

- C.W. Misner, K.S. Thorne, J.A. Wheeler: *Gravitation*. W. H. Freeman and Co., 1973.
- B. O'Neill: Elementary Differential Geometry (Second Ed.), Elsevier/Academic Press, 2006.
- R.M. Wald: General relativity, University of Chicago Press, 1984.
- S. Weinberg: *Gravitation and cosmology: principles and applications of the general theory of relativity*, John Wiley & Sons, 1972.

#### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den</u> Ergänzungen zu den Modulhandbüchern beschriebenen notwendigen Vorkenntnisse!

#### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Analysis I+II, Mehrfahintegrale

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!</u>

| Name des Moduls                       | Nummer des Moduls                  |
|---------------------------------------|------------------------------------|
| Allgemeine Relativitätstheorie        | 07LE23MO-MSc14-WM9-3-<br>AllgReITh |
| Veranstaltung                         |                                    |
| Allgemeine Relativitätstheorie: Übung |                                    |
| Veranstaltungsart                     | Nummer                             |
| Übung                                 | 07LE23Ü-3-AllgRelTh                |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | deutsch                                 |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

1

| Name des Moduls         | Nummer des Moduls                |
|-------------------------|----------------------------------|
| Differentialgeometrie   | 07LE23MO-MSc14-WM9-3-<br>DiffGeo |
| Verantwortliche/r       |                                  |
| Prof. Dr. Nadine Große  |                                  |
| Fachbereich / Fakultät  |                                  |
| Mathematisches Institut |                                  |

| ECTS-Punkte                 | 9,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 270 Stunden     |
| Semesterwochenstunden (SWS) | 6,0             |
| Präsenzstudium              | ca. 90 Stunden  |
| Selbststudium               | ca. 180 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht     |

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

#### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I, II, Analysis I-III

Nützliche Vorkenntnisse: Kurven und Flächen, Topologie, Algebraische Topologie

| Zugehörige Veranstaltungen       |           |             |      |     |                     |
|----------------------------------|-----------|-------------|------|-----|---------------------|
| Name                             | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Differentialgeometrie: Vorlesung | Vorlesung | Wahlpflicht |      | 4,0 |                     |
| Differentialgeometrie: Übung     | Übung     | Wahlpflicht |      | 2,0 |                     |

#### Lern- und Qualifikationsziele des Moduls

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren. Sie sind mit den grundlegenden Begriffen der globalen Differentialgeometrie vertraut, insbesondere mit der Analysis auf Mannigfaltigkeiten, und erwerben Verständnis für die innere Krümmung höherdimensionaler Räume.
- Sie kennen und verstehen die mathematische Fach- und Formelsprache der Differentialgeometrie und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie k\u00f6nnen typische Fragestellungen aus dem Bereich der Differentialgeometrie mit Hilfe der erlernten Konzepte analysieren, L\u00f6sungsstrategien entwicklen, Vermutungen \u00fcberpr\u00fcfen, mathematisch exakte Beweise f\u00fchren, vorgelegte Beweisideen auf Korrektheit pr\u00fcfen und typische \u00dcbungsaufgaben selbst\u00e4ndig l\u00f6sen.

■ Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Mathematik, insbesondere mit den Grundlagen aus der Analysis, die sie dadurch vertiefen, und kennen Beziehungen zur allgemeinen Relativitätstheorie.

## Zu erbringende Prüfungsleistung

- Mündliche Prüfung in Form eines ca. 30-minütigen Prüfungsgesprächs.
- Bei Verwendung als Wahlmodul/"Elective": keine

## Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> veröffentlicht.

Bei Verwendung als Wahlmodul/"Elective": eventuell zusätzliche mündliche Prüfung.

#### Benotuna

- Im B.Sc.-Studiengang Mathematik (PO 2021) geht die Modulnote mit 9/(N-1) in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im B.Sc.-Studiengang Mathematik (PO 2012) geht die Modulnote mit 9/N in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Als Wahlmodul im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik und im M.Sc.-Studiengang Mathematik sowie als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024) ist das Modul unbenotet.

#### Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur:
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

### Studiengangschwerpunkte

# Geometrie und Topologie

- Wahlpflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021); geeignet für "Vorlesung mit Übung A–D" bzw. "A–C", zählt zur Reinen Mathematik.
- Wahlmodul in der Option "Individuelle Studiengestaltung" des Zwei-Hauptfächer-Bachelor-Studiengangs Mathematik (PO 2021) und im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind verwendbar für die Module "Reine Mathematik", "Mathematik" und das Vertiefungsmodul im M.Sc.-Studiengang Mathematik (PO 2014).
- Wählbar als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024).



| Name des Moduls                  | Nummer des Moduls                |
|----------------------------------|----------------------------------|
| Differentialgeometrie            | 07LE23MO-MSc14-WM9-3-<br>DiffGeo |
| Veranstaltung                    |                                  |
| Differentialgeometrie: Vorlesung |                                  |
| Veranstaltungsart                | Nummer                           |
| Vorlesung                        | 07LE23V-3-DiffGeo                |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | deutsch                              |

#### Inhalte

Differenzierbare Mannigfaltigkeiten, Tensorfelder, Riemann'sche Metriken, Levi-Cività-Zusammenhang, Riemann'scher Krümmungstensor, Parallelverschiebung, Geodätische, geometrische Bedeutung des Krümmungstensors.

## Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- J. Cheeger, D.G. Ebin: Comparison Theorems in Riemannian Geometry, North-Holland, 1975.
- M.P. do Carmo: *Riemannian Geometry*, Birkhäuser, 1992.
- S. Gallot, D. Hulin, J. Lafontaine: *Riemannian Geometry*, Springer, 1987.
- J.M. Lee: Introduction to Smooth Manifolds, Springer, 2003.
- Barrett O'Neill: Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983.
- P. Petersen: Riemannian Geometry, Grad. Texts Math. 171, Springer, 2006.

# Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

#### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I, II, Analysis I-III

Nützliche Vorkenntnisse: Nützliche Vorkenntnisse: Kurven und Flächen, Topologie

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!</u>



| Name des Moduls              | Nummer des Moduls                |
|------------------------------|----------------------------------|
| Differentialgeometrie        | 07LE23MO-MSc14-WM9-3-<br>DiffGeo |
| Veranstaltung                |                                  |
| Differentialgeometrie: Übung |                                  |
| Veranstaltungsart            | Nummer                           |
| Übung                        | 07LE23Ü-3-DiffGeo                |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | deutsch                              |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

1

| Name des Moduls                                 | Nummer des Moduls             |
|-------------------------------------------------|-------------------------------|
| Einführung in partielle Differentialgleichungen | 07LE23MO-MSc14-WM9-5-<br>PDE0 |
| Verantwortliche/r                               |                               |
| Prof. Guofang Wang                              |                               |
| Fachbereich / Fakultät                          |                               |
| Mathematisches Institut                         |                               |

| ECTS-Punkte                 | 9,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 270 Stunden     |
| Semesterwochenstunden (SWS) | 6,0             |
| Präsenzstudium              | ca. 90 Stunden  |
| Selbststudium               | ca. 180 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht     |

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

# Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I, II, Analysis I-III

Nützliche Vorkenntnisse: Funktionalanalysis

| Zugehörige Veranstaltungen                                 |           |             |      |     |                     |
|------------------------------------------------------------|-----------|-------------|------|-----|---------------------|
| Name                                                       | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Einführung in partielle Differentialgleichungen: Vorlesung | Vorlesung | Wahlpflicht |      | 4,0 |                     |
| Einführung in partielle Differentialgleichungen: Übung     | Übung     | Wahlpflicht |      | 2,0 |                     |

## Lern- und Qualifikationsziele des Moduls

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie können lineare elliptische und parabolische Randwertprobleme formulieren. Sie kennen die Hauptresultate zur Existenz und Eindeutigkeit von Lösungen, insbesondere Maximumprinzip, schwache Lösungsmethoden und a priori Abschätzungen in L₂ und Hölder-Räumen.
- Sie kennen und verstehen die verwendete mathematische Fach- und Formelsprache und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich partieller Differentialgleichungen mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch

- exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Mathematik, insbesondere mit den Grundlagen aus der Analysis, die sie dadurch vertiefen. Die Studierenden können Anwendungsbeispiele aus Geometrie und Physik nennen.

#### Zu erbringende Prüfungsleistung

- Mündliche Prüfung in Form eines ca. 30-minütigen Prüfungsgesprächs.
- Bei Verwendung als Wahlmodul/"Elective": keine

### Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> veröffentlicht.

Bei Verwendung als Wahlmodul/"Elective": eventuell zusätzliche mündliche Prüfung.

### Benotung

- Im B.Sc.-Studiengang Mathematik (PO 2021) geht die Modulnote mit 9/(N-1) in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im B.Sc.-Studiengang Mathematik (PO 2012) geht die Modulnote mit 9/N in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Als Wahlmodul im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik und im M.Sc.-Studiengang Mathematik sowie als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024) ist das Modul unbenotet.

#### Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur;
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

### Studiengangschwerpunkte

# **Analysis**

- Wahlpflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021); geeignet für "Vorlesung mit Übung A–D" bzw. "A–C", zählt zur Reinen Mathematik.
- Wahlmodul in der Option "Individuelle Studiengestaltung" des Zwei-Hauptfächer-Bachelor-Studiengangs Mathematik (PO 2021) und im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind verwendbar für die Module "Reine Mathematik", "Mathematik" und das Vertiefungsmodul im M.Sc.-Studiengang Mathematik (PO 2014).
- Wählbar als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024).



| Name des Moduls                                            | Nummer des Moduls             |  |  |
|------------------------------------------------------------|-------------------------------|--|--|
| Einführung in partielle Differentialgleichungen            | 07LE23MO-MSc14-WM9-5-<br>PDE0 |  |  |
| Veranstaltung                                              |                               |  |  |
| Einführung in partielle Differentialgleichungen: Vorlesung |                               |  |  |
| Veranstaltungsart                                          | Nummer                        |  |  |
| Vorlesung                                                  | 07LE23V-2-PDE0                |  |  |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | deutsch                                 |

### Inhalte

Grundlegende Eigenschaften linearer elliptischer und parabolischer Gleichungen, Existenz von Lösungen, Darstellungssätze, Maximumprinzip, schwache Formulierung elliptischer Gleichungen, Dirichlet-Prinzip, Regularitätstheorie.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- E. DiBenedetto: Partial Differential Equations (Second Edition), Springer, 2010.
- L. C. Evans: Partial Differential Equations (2. Auflage), American Mathematical Society 2010.
- D. Gilbarg, N. S. Trudinger: *Elliptic Partial Differential Equations of Second Order*. GTM 224, Nachdruck der 2. Auflage, Springer 2001.
- J. Jost: Partial Differential Equations (Third Edition), Springer, 2013.

# Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

## Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I, II, Analysis I-III

Nützliche Vorkenntnisse: Funktionalanalysis

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!</u>

不

| Name des Moduls                                        | Nummer des Moduls             |
|--------------------------------------------------------|-------------------------------|
| Einführung in partielle Differentialgleichungen        | 07LE23MO-MSc14-WM9-5-<br>PDE0 |
| Veranstaltung                                          |                               |
| Einführung in partielle Differentialgleichungen: Übung |                               |
| Veranstaltungsart                                      | Nummer                        |
| Übung                                                  | 07LE23Ü-2-PDE0                |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | deutsch                                 |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig.

Vorkenntnisse siehe bei der Vorlesung bzw. im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.



| Name des Moduls          | Nummer des Moduls               |
|--------------------------|---------------------------------|
| Funktionentheorie        | 07LE23MO-MSc14-WM9-3-<br>FunkTh |
| Verantwortliche/r        |                                 |
| Prof. Dr. Stefan Kebekus |                                 |
| Fachbereich / Fakultät   |                                 |
| Mathematisches Institut  |                                 |

| ECTS-Punkte                 | 9,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 270 Stunden     |
| Semesterwochenstunden (SWS) | 6,0             |
| Präsenzstudium              | ca. 90 Stunden  |
| Selbststudium               | ca. 180 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht     |

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I und Analysis I, II

| Zugehörige Veranstaltungen   |           |             |      |     |                     |
|------------------------------|-----------|-------------|------|-----|---------------------|
| Name                         | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Funktionentheorie: Vorlesung | Vorlesung | Wahlpflicht |      | 4,0 |                     |
| Funktionentheorie: Übung     | Übung     | Wahlpflicht |      | 2,0 |                     |

# Lern- und Qualifikationsziele des Moduls

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die mathematische Fach- und Formelsprache der Funktionentheorie und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie k\u00f6nnen typische Fragestellungen aus dem Bereich der Funktionentheorie mit Hilfe der erlernten Konzepte analysieren, L\u00f6sungsstrategien entwicklen, Vermutungen \u00fcberpr\u00fcfen, mathematisch exakte Beweise f\u00fchren, vorgelegte Beweisideen auf Korrektheit pr\u00fcfen und typische \u00dcbungsaufgaben selbst\u00e4ndig l\u00f6sen.
- Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Mathematik, insbesondere mit den Grundlagen aus der Analysis, die sie dadurch vertiefen. Sie verstehen, wie mit komplex-analytischen Methoden die Lösungen von Problemen der reellen Analysis ermöglicht werden und können dies in konkreten Situationen durchführen.

■ Sie kennen ausgewählte Anwendungen der Funktionentheorie, welche Verbindungen zu anderen Gebieten wie Algebra, Geometrie oder Zahlentheorie schlagen.

## Zu erbringende Prüfungsleistung

- Klausur (Dauer 90-180 Minuten)
- Bei Verwendung als Wahlmodul/"Elective": keine

## Zu erbringende Studienleistung

Bestehen der Übungen: Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern veröffentlicht. Bei Verwendung als Wahlmodul/"Elective": zusätzlich Bestehen der Klausur.

### Benotung

- Im B.Sc.-Studiengang Mathematik (PO 2021) geht die Modulnote mit 9/(N-1) in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im B.Sc.-Studiengang Mathematik (PO 2012) geht die Modulnote mit 9/N in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Als Wahlmodul im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik und im M.Sc.-Studiengang Mathematik sowie als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024) ist das Modul unbenotet.

#### Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur;
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

### Studiengangschwerpunkte

Algebra; Geometrie und Topologie.

- Wahlpflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021); geeignet für "Vorlesung mit Übung A–D" bzw. "A–C", zählt zur Reinen Mathematik.
- Mit Klausur als Teil der Studienleistung: Wahlmodul in der Option "Individuelle Studiengestaltung" des Zwei-Hauptfächer-Bachelor-Studiengangs Mathematik (PO 2021) oder im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind verwendbar für das Modul "Reine Mathematik" im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind verwendbar für das Modul "Mathematische Vertiefung" im M.Ed.-Studiengang Mathematik (PO 2018) und im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2021).
- Vorlesung und Übung sind verwendbar als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024).

| Name des Moduls  Nummer des Moduls |                                 |
|------------------------------------|---------------------------------|
| Funktionentheorie                  | 07LE23MO-MSc14-WM9-3-<br>FunkTh |
| Veranstaltung                      |                                 |
| Funktionentheorie: Vorlesung       |                                 |
| Veranstaltungsart                  | Nummer                          |
| Vorlesung                          | 07LE23V-3-FunkTh                |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | deutsch                              |

#### Inhalte

- reelle und komplexe Differenzierbarkeit, holomorphe Funktionen
- Cauchy'scher Integralsatz und Cauchy'sche Integralformel, Kurvenintegrale, Potenzreihenentwicklung, Identitätssatz, Gebietstreue, Maximumprinzip
- Isolierte Singularitäten, elementare holomorphe Funktionen, meromorphe Funktionen, Laurent-Reihen
- Residuensatz und Anwendungen, Fundamentalsatz der Algebra
- Weitere ausgewählte Kapitel der Funktionentheorie, z.B. Satz von Montel, Möbius-Transformationen, Riemann'scher Abbildungssatz

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- R. Remmert, G. Schumacher: Funktionentheorie 1, 5. Auflage, Springer 2002.
- R. Remmert, G. Schumacher: *Funktionentheorie* 2, 3. Auflage, Springer 2007.
- E. Freitag, R. Busam: *Funktionentheorie* 1, 4. Auflage, Springer 2006.
- E. Freitag: Funktionentheorie 2, 2. Auflage, Springer Spektrum 2014.

# Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den</u> Ergänzungen zu den Modulhandbüchern beschriebenen notwendigen Vorkenntnisse!

# Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I, Analysis I, II



| Name des Moduls Nummer des Modu |                                 |
|---------------------------------|---------------------------------|
| Funktionentheorie               | 07LE23MO-MSc14-WM9-3-<br>FunkTh |
| Veranstaltung                   |                                 |
| Funktionentheorie: Übung        |                                 |
| Veranstaltungsart               | Nummer                          |
| Übung                           | 07LE23Ü-3-FunkTh                |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | deutsch                              |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

## Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig. Vorkenntnisse siehe bei der Vorlesung bzw. im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

1

| Name des Moduls         | Nummer des Moduls            |
|-------------------------|------------------------------|
| Kurven und Flächen      | 07LE23MO-MSc14-WM9-3-<br>KuF |
| Verantwortliche/r       |                              |
| Prof. Dr. Ernst Kuwert  |                              |
| Fachbereich / Fakultät  |                              |
| Mathematisches Institut |                              |

| ECTS-Punkte                 | 9,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 270 Stunden     |
| Semesterwochenstunden (SWS) | 6,0             |
| Präsenzstudium              | ca. 90 Stunden  |
| Selbststudium               | ca. 180 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht     |

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

# Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I, II, Analysis I, II sowie Kenntnisse höherdimensionaler Integration aus Analysis III oder Erweiterung der Analysis

| Zugehörige Veranstaltungen    |           |             |      |     |                     |
|-------------------------------|-----------|-------------|------|-----|---------------------|
| Name                          | Art       | P/WP        | ECTS | sws | Arbeits-<br>aufwand |
| Kurven und Flächen: Vorlesung | Vorlesung | Wahlpflicht |      | 4,0 |                     |
| Kurven und Flächen: Übung     | Übung     | Wahlpflicht |      | 2,0 |                     |

#### Lern- und Qualifikationsziele des Moduls

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die mathematische Fach- und Formelsprache der elementaren Differentialgeometrie und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der elementaren Differentialgeometrie mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Sie können Krümmungen von Kurven und Flächen definieren, geometrisch veranschaulichen und in konkreten Fällen berechnen. Sie können zwischen lokalen und globalen Aussagen und zwischen Phänomenen der äußeren und der inneren Geometrie von Flächen unterscheiden.

■ Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Mathematik. Sie verstehen, wie Analysis und lineare Algebra zum Studium gekrümmter Kurven und Flächen eingesetzt werden und vertiefen so ihre Kenntnisse aus den Grundvorlesungen in geometrischer Richtung. Sie kennen Beziehungen der Differentialgeometrie zu anderen mathematischen Gebieten (Variationsrechnung, Differentialgleichungen, Funktionentheorie, Topologie) und Anwendungen der Differentialgeometrie außerhalb der Mathematik (Kartographie, Optik, CAGD).

## Zu erbringende Prüfungsleistung

- Klausur (Dauer 90-180 Minuten)
- Bei Verwendung als Wahlmodul/"Elective": keine

### Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern veröffentlicht.

Bei Verwendung als Wahlmodul/"Elective": zusätzlich Bestehen der Klausur.

## Benotung

- Im B.Sc.-Studiengang Mathematik (PO 2021) geht die Modulnote mit 9/(N-1) in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im B.Sc.-Studiengang Mathematik (PO 2012) geht die Modulnote mit 9/N in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Als Wahlmodul im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik und im M.Sc.-Studiengang Mathematik sowie als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024) ist das Modul unbenotet.

#### Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur;
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

## Studiengangschwerpunkte

Geometrie und Topologie; Analysis

### Bemerkung / Empfehlung

Das Modul hieß früher "Elementare Differentialgeometrie".

- Wahlpflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021); geeignet für "Vorlesung mit Übung A–D" bzw. "A–C", zählt zur Reinen Mathematik.
- Mit Klausur als Teil der Studienleistung: Wahlmodul in der Option "Individuelle Studiengestaltung" des Zwei-Hauptfächer-Bachelor-Studiengangs Mathematik (PO 2021) oder im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind verwendbar für das Modul "Reine Mathematik" im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind verwendbar für das Modul "Mathematische Vertiefung" im M.Ed.-Studiengang Mathematik (PO 2018) und im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2021).
- Vorlesung und Übung sind verwendbar als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024).



| Name des Moduls Nummer des Modul        |               |  |
|-----------------------------------------|---------------|--|
| Kurven und Flächen 07LE23MO-MSc14-\ KuF |               |  |
| Veranstaltung                           |               |  |
| Kurven und Flächen: Vorlesung           |               |  |
| Veranstaltungsart                       | Nummer        |  |
| Vorlesung                               | 07LE23V-3-KuF |  |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | deutsch                                 |

#### Inhalte

Kurventheorie in der Ebene und im Raum, globale Ergebnisse über Kurven, 1. und 2. Fundamentalform von Flächen, Theorema Egregium, innere Geometrie, Geodätische, Satz von Gauss-Bonnet

# Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Literatur

- M. P. do Carmo: Differential Geometry of Curves and Surfaces (Revised and Updated Second Edition), Dover Publications, 2016.
- C. Bär: Elementare Differentialgeometrie (2. Auflage), de Gruyter 2010.
- S. Montiel and A. Ros: Curves and Surfaces. American Mathematical Society 2005.

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

# Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I, II, Analysis I, II sowie Analysis III oder Erweiterung der Analysis

Nützliche Vorkenntnisse: Topologie



| nme des Moduls Nummer des Moduls |                              |  |
|----------------------------------|------------------------------|--|
| Kurven und Flächen               | 07LE23MO-MSc14-WM9-3-<br>KuF |  |
| Veranstaltung                    |                              |  |
| Kurven und Flächen: Übung        |                              |  |
| Veranstaltungsart                | Nummer                       |  |
| Übung                            | 07LE23Ü-3-KuF                |  |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | deutsch                                 |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

#### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

# Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig.

Vorkenntnisse siehe bei der Vorlesung bzw. im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.



| Name des Moduls         | Nummer des Moduls              |
|-------------------------|--------------------------------|
| Mathematische Logik     | 07LE23MO-MSc14-WM9-4-<br>Logik |
| Verantwortliche/r       |                                |
| PD Dr. Markus Junker    |                                |
| Fachbereich / Fakultät  |                                |
| Mathematisches Institut |                                |

| ECTS-Punkte                 | 9,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 270 Stunden     |
| Semesterwochenstunden (SWS) | 6,0             |
| Präsenzstudium              | ca. 90 Stunden  |
| Selbststudium               | ca. 180 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht     |

#### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: grundlegende mathematische Arbeitsweisen aus einer der Grundvorlesungen Analysis I oder Lineare Algebra I.

Nützliche Vorkenntnisse: Lineare Algebra I, Analysis I.

| Zugehörige Veranstaltungen     |           |             |      |     |                     |
|--------------------------------|-----------|-------------|------|-----|---------------------|
| Name                           | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Mathematische Logik: Vorlesung | Vorlesung | Wahlpflicht |      | 4,0 |                     |
| Mathematische Logik: Übung     | Übung     | Wahlpflicht |      | 2,0 |                     |

# Lern- und Qualifikationsziele des Moduls

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die mathematische Fach- und Formelsprache der Mathematischen Logik und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der Mathematischen Logik mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Sie können über die Grundlagen und die Methoden der Mathematik reflektieren.

#### Zu erbringende Prüfungsleistung

- Klausur (Dauer 90-180 Minuten)
- Bei Verwendung als Wahlmodul/"Elective": keine

# Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern veröffentlicht.

Bei Verwendung als Wahlmodul/"Elective": zusätzlich Bestehen der Klausur.

#### Benotung

- Im B.Sc.-Studiengang Mathematik (PO 2021) geht die Modulnote mit 9/(N-1) in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im B.Sc.-Studiengang Mathematik (PO 2012) geht die Modulnote mit 9/N in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Als Wahlmodul im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik und im M.Sc.-Studiengang Mathematik sowie als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024) ist das Modul unbenotet.

#### Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur;
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

#### Studiengangschwerpunkte

### Logik

#### Verwendbarkeit des Moduls

- Wahlpflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021); geeignet für "Vorlesung mit Übung A–D" bzw. "A–C", zählt zur Reinen Mathematik.
- Mit Klausur als Teil der Studienleistung: Wahlmodul in der Option "Individuelle Studiengestaltung" des Zwei-Hauptfächer-Bachelor-Studiengangs Mathematik (PO 2021) und im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind verwendbar für das Modul "Reine Mathematik" im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind verwendbar für das Modul "Mathematische Vertiefung" im M.Ed.-Studiengang Mathematik (PO 2018) und im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2021).
- Vorlesung und Übung sind verwendbar als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024).



| Name des Moduls                | Nummer des Moduls              |
|--------------------------------|--------------------------------|
| Mathematische Logik            | 07LE23MO-MSc14-WM9-4-<br>Logik |
| Veranstaltung                  |                                |
| Mathematische Logik: Vorlesung |                                |
| Veranstaltungsart              | Nummer                         |
| Vorlesung                      | 07LE23V-4-Logik                |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | deutsch                              |

#### Inhalte

Die Vorlesung führt über das Studium der Logik der ersten Stufe, des Prädikatenkalküls, zu einer Diskussion von Grundlagenfragen: Was ist ein mathematischer Beweis? Wie lassen sich Beweise rechtfertigen? Kann man jeden wahren Satz beweisen? Kann man das Beweisen Computern überlassen? Gegenstände der Vorlesung sind der Gödel'sche Vollständigkeitssatz und die Gödel'schen Unvollständigkeitssätze und die ersten Grundlagen der Rekursionstheorie, der Modelltheorie und der Mengenlehre.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

# Literatur

- R. Cori, D. Lascar: *Logique mathématique (tomes I,II)*, Masson, 1994. Englische Version: Mathematical Logic: A Course with Exercises Part I,II, Oxford University Press, 2000/2001.
- H.D. Ebbinghaus, J. Flum, W. Thomas: *Einführung in die mathematische Logik* (6. Auflage), Springer Spektrum, 2018.
- M. Hils, F. Loeser: A First Journey Through Logic, Student Mathematical Library vol. 89, AMS, 2019.
- M. Ziegler: Mathematische Logik (2. Auflage), Birkhäuser, 2017.

# Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den</u> Ergänzungen zu den Modulhandbüchern beschriebenen notwendigen Vorkenntnisse!

# Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: eine Grundvorlesung in Mathematik (Lineare Algebra I oder Analysis I) Nützliche Vorkenntnisse: Lineare Algebra I, Analysis I

Beachten Sie ergänzend hierzu auch die Angaben im jeweils aktuellen <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern!</u>

| Master of Science (M.Sc.) sion 2024) | im Fach Mathematics | in Data and Technolog | gy - Hauptfach (Prüfung | sordnungsver- |
|--------------------------------------|---------------------|-----------------------|-------------------------|---------------|
| $\uparrow$                           |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |
|                                      |                     |                       |                         |               |

| Name des Moduls            | Nummer des Moduls              |
|----------------------------|--------------------------------|
| Mathematische Logik        | 07LE23MO-MSc14-WM9-4-<br>Logik |
| Veranstaltung              |                                |
| Mathematische Logik: Übung |                                |
| Veranstaltungsart          | Nummer                         |
| Übung                      | 07LE23Ü-4-Logik                |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Sommersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | deutsch                              |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

#### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

# Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig.

Vorkenntnisse siehe bei der Vorlesung bzw. im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.



| Name des Moduls                 | Nummer des Moduls              |
|---------------------------------|--------------------------------|
| Modelltheorie                   | 07LE23MO-MSc14-WM9-4-<br>ModTh |
| Verantwortliche/r               |                                |
| Prof. Dr. Amador Martin Pizarro |                                |
| Fachbereich / Fakultät          |                                |
| Mathematisches Institut         |                                |

| ECTS-Punkte                 | 9,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 270 Stunden     |
| Semesterwochenstunden (SWS) | 6,0             |
| Präsenzstudium              | ca. 90 Stunden  |
| Selbststudium               | ca. 180 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht     |

#### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

# Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Mathematische Logik

Kenntnisse aus der Algebra (für das Verständnis von Beispielen) und topologische Grundbegriffe sind nützlich.

| Zugehörige Veranstaltungen |           |             |      |     |                     |
|----------------------------|-----------|-------------|------|-----|---------------------|
| Name                       | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Modelltheorie: Vorlesung   | Vorlesung | Wahlpflicht |      | 4,0 |                     |
| Modelltheorie: Übung       | Übung     | Wahlpflicht |      | 2,0 |                     |

#### Lern- und Qualifikationsziele des Moduls

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die mathematische Fach- und Formelsprache der Modelltheorie und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der Modelltheorie mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Mathematik, insbesondere mit den Grundlagen aus der Mathematischen Logik, die sie dadurch vertiefen.

### Zu erbringende Prüfungsleistung

- Mündliche Prüfung in Form eines ca. 30-minütigen Prüfungsgesprächs.
- Bei Verwendung als Wahlmodul/"Elective": keine

# Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> veröffentlicht.

Bei Verwendung als Wahlmodul/"Elective": eventuell zusätzliche mündliche Prüfung.

#### Benotung

- Im B.Sc.-Studiengang Mathematik (PO 2021) geht die Modulnote mit 9/(N-1) in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im B.Sc.-Studiengang Mathematik (PO 2012) geht die Modulnote mit 9/N in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Als Wahlmodul im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik und im M.Sc.-Studiengang Mathematik sowie als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024) ist das Modul unbenotet.

#### Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur;
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

#### Studiengangschwerpunkte

### Logik

#### Verwendbarkeit des Moduls

- Wahlpflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021); geeignet für "Vorlesung mit Übung A–D" bzw. "A–C", zählt zur Reinen Mathematik.
- Wahlmodul in der Option "Individuelle Studiengestaltung" des Zwei-Hauptfächer-Bachelor-Studiengangs Mathematik (PO 2021) und im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind verwendbar für die Module "Reine Mathematik", "Mathematik" und das Vertiefungsmodul im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind verwendbar für das Modul "Mathematische Vertiefung" im M.Ed.-Studiengang Mathematik (PO 2018) und im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2021).
- Vorlesung und Übung sind verwendbar als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024).

1

| Name des Moduls          | Nummer des Moduls              |
|--------------------------|--------------------------------|
| Modelltheorie            | 07LE23MO-MSc14-WM9-4-<br>ModTh |
| Veranstaltung            |                                |
| Modelltheorie: Vorlesung |                                |
| Veranstaltungsart        | Nummer                         |
| Vorlesung                | 07LE23V-4-ModTh                |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | deutsch                              |

#### Inhalte

Die Modelltheorie untersucht den Zusammenhang zwischen formalen Eigenschaften einer Theorie T erster Stufe und den algebraischen Eigenschaften ihrer Modelle. Themen sind u. a.: Quantorenelimination, Aleph<sub>0</sub>-Kategorizität und Satz von Ryll-Nardzewski, Aleph<sub>1</sub>- Kategorizität, Satz von Morley und Satz von Baldwin-Lachlan.

# Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- K. Tent, M. Ziegler: A course in model theory. Cambridge University Press 2012.
- D. Marker: *Model Theory: An introduction*. Springer 2002.
- W. Hodges: A shorter Model Theory. Cambridge University Press 1997.

# Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Mathematische Logik

Nützliche Vorkenntnisse: Algebra (zum Verständnis von Beispielen), topologische Grundbegriffe



| Name des Moduls      | Nummer des Moduls              |
|----------------------|--------------------------------|
| ModelItheorie        | 07LE23MO-MSc14-WM9-4-<br>ModTh |
| Veranstaltung        |                                |
| Modelltheorie: Übung |                                |
| Veranstaltungsart    | Nummer                         |
| Übung                | 07LE23Ü-4-ModTh                |

| ECTS-Punkte                 |                                      |
|-----------------------------|--------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                  |
| Mögliche Fachsemester       |                                      |
| Angebotsfrequenz            | Findet in jedem Wintersemester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                          |
| Lehrsprache                 | deutsch                              |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

#### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

# Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig.

Vorkenntnisse siehe bei der Vorlesung bzw. im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.



| Name des Moduls            | Nummer des Moduls            |
|----------------------------|------------------------------|
| Topologie                  | 07LE23MO-MSc14-WM9-3-<br>Top |
| Verantwortliche/r          |                              |
| Prof. Dr. Sebastian Goette |                              |
| Fachbereich / Fakultät     |                              |
| Mathematisches Institut    |                              |

| ECTS-Punkte                 | 9,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 270 Stunden     |
| Semesterwochenstunden (SWS) | 6,0             |
| Präsenzstudium              | ca. 90 Stunden  |
| Selbststudium               | ca. 180 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht     |

#### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I, Analysis I, II

| Zugehörige Veranstaltungen |           |             |      |     |                     |
|----------------------------|-----------|-------------|------|-----|---------------------|
| Name                       | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Topologie: Vorlesung       | Vorlesung | Wahlpflicht |      | 4,0 |                     |
| Topologie: Übung           | Übung     | Wahlpflicht |      | 2,0 |                     |

#### Lern- und Qualifikationsziele des Moduls

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die mathematische Fach- und Formelsprache der Topologie und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der allgemeinen und algebraischen Topologie mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Mathematik, insbesondere mit den Grundlagen aus der Analysis, die sie dadurch vertiefen, und können können topologische Methoden in anderen Gebieten der Mathematik wie zum Beispiel Algebra, Analysis oder Geometrie anwenden.

#### Zu erbringende Prüfungsleistung

- Klausur (Dauer 90-180 Minuten)
- Bei Verwendung als Wahlmodul/"Elective": keine

# Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> veröffentlicht.

Bei Verwendung als Wahlmodul/"Elective": zusätzlich Bestehen der Klausur.

#### Benotung

- Im B.Sc.-Studiengang Mathematik (PO 2021) geht die Modulnote mit 9/(N-1) in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im B.Sc.-Studiengang Mathematik (PO 2012) geht die Modulnote mit 9/N in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Als Wahlmodul im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik und im M.Sc.-Studiengang Mathematik sowie als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024) ist das Modul unbenotet.

#### Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur;
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

#### Studiengangschwerpunkte

### Geometrie und Topologie

#### Verwendbarkeit des Moduls

- Wahlpflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021); geeignet für "Vorlesung mit Übung A–D" bzw. "A–C", zählt zur Reinen Mathematik.
- Mit Klausur als Teil der Studienleistung: Wahlmodul in der Option "Individuelle Studiengestaltung" des Zwei-Hauptfächer-Bachelor-Studiengangs Mathematik (PO 2021) und im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind verwendbar für das Modul "Reine Mathematik" im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind verwendbar für das Modul "Mathematische Vertiefung" im M.Ed.-Studiengang Mathematik (PO 2018) und im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2021).
- Vorlesung und Übung sind verwendbar als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024).



| Name des Moduls      | Nummer des Moduls            |  |  |
|----------------------|------------------------------|--|--|
| Topologie            | 07LE23MO-MSc14-WM9-3-<br>Top |  |  |
| Veranstaltung        |                              |  |  |
| Topologie: Vorlesung |                              |  |  |
| Veranstaltungsart    | Nummer                       |  |  |
| Vorlesung            | 07LE23V-3-Top                |  |  |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | deutsch                                 |

#### Inhalte

- Topologische Grundbegriffe (Hausdorffräume, Lemmata von Urysohn und Tietze, Abzählbarkeitsaxiome, Kompaktheit, Zusammenhang)
- Konstruktion von Topologien (Unterräume, Produkte, Summen, Quotienten)
- Homotopien, Fundamentalgruppe, Satz von Seifert-van Kampen
- Überlagerungen, Liftungssätze, universelle Überlagerung
- Kategorien, Funktoren, universelle Eigenschaften

# Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- K. Jänich: *Topologie* (8. Auflage), Springer, 2005.
- B. v. Querenburg: *Mengentheoretische Topologie* (3. Auflage), Springer, 2001.
- L. A. Steen, J. A. Seebach: Counterexamples in Topology (Second Edition), Spinger, 1978

### Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

# Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendige Vorkenntnisse: Lineare Algebra I, Analysis I, II



| Name des Moduls   | Nummer des Moduls            |
|-------------------|------------------------------|
| Topologie         | 07LE23MO-MSc14-WM9-3-<br>Top |
| Veranstaltung     |                              |
| Topologie: Übung  |                              |
| Veranstaltungsart | Nummer                       |
| Übung             | 07LE23Ü-3-Top                |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | deutsch                                 |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

#### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

# Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig.

Vorkenntnisse siehe bei der Vorlesung bzw. im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.



| Name des Moduls                              | Nummer des Moduls                  |
|----------------------------------------------|------------------------------------|
| Variationsrechnung                           | 07LE23MO-MSc14-WM9-2-<br>Variation |
| Verantwortliche/r                            |                                    |
| Prof. Dr. Ernst Kuwert<br>Prof. Guofang Wang |                                    |
| Fachbereich / Fakultät                       |                                    |
| Mathematisches Institut                      |                                    |

| ECTS-Punkte                 | 9,0             |
|-----------------------------|-----------------|
| Arbeitsaufwand              | 270 Stunden     |
| Semesterwochenstunden (SWS) | 6,0             |
| Präsenzstudium              | ca. 90 Stunden  |
| Selbststudium               | ca. 180 Stunden |
| Mögliche Fachsemester       |                 |
| Moduldauer                  | ein Semester    |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht     |

# Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Siehe bei der Vorlesung oder im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendig: Funktionalanalysis

Nützlich: Partielle Differentialgleichungen, Numerik partieller Differentialgleichungen

| Zugehörige Veranstaltungen    |           |             |      |     |                     |
|-------------------------------|-----------|-------------|------|-----|---------------------|
| Name                          | Art       | P/WP        | ECTS | SWS | Arbeits-<br>aufwand |
| Variationsrechnung: Vorlesung | Vorlesung | Wahlpflicht |      | 4,0 |                     |
| Variationsrechnung: Übung     | Übung     | Wahlpflicht |      | 2,0 |                     |

#### Lern- und Qualifikationsziele des Moduls

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie k\u00f6nnen Variationsprobleme formulieren und kennen verschiedene Beispiele f\u00fcr Variationsintegrale. Sie kennen notwendige und hinreichende Bedingungen f\u00fcr die Existenz von Minimierern und beherrschen die dazu notwendigen funktionalanalytischen Hilfsmittel. Sie sind ferner mit Techniken vertraut, die erlauben, die Existent von Minimierern auch ohne vorliegende Kompaktheit zu zeigen.
- Sie kennen und verstehen die verwendete mathematische Fach- und Formelsprache und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der Variationsrechnung mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte

- Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Mathematik, insbesondere mit den Grundlagen aus der Analysis sowie partiellen Differentialgleichungen, die sie dadurch vertiefen. Die Studierenden können Anwendungsbeispiele aus der Physik nennen.

### Zu erbringende Prüfungsleistung

- Mündliche Prüfung in Form eines ca. 30-minütigen Prüfungsgesprächs.
- Bei Verwendung als Wahlmodul/"Elective": keine

### Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern veröffentlicht.

#### Benotung

- Im B.Sc.-Studiengang Mathematik (PO 2021) geht die Modulnote mit 9/(N-1) in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im B.Sc.-Studiengang Mathematik (PO 2012) geht die Modulnote mit 9/N in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Als Wahlmodul im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik und im M.Sc.-Studiengang Mathematik sowie als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024) ist das Modul unbenotet.

#### Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur;
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

#### Verwendbarkeit des Moduls

- Wahlpflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021); geeignet für "Vorlesung mit Übung A–D" bzw. "A–C", zählt zur Reinen Mathematik.
- Mit Klausur als Teil der Studienleistung: Wahlmodul in der Option "Individuelle Studiengestaltung" des Zwei-Hauptfächer-Bachelor-Studiengangs Mathematik (PO 2021) und im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind verwendbar für das Modul "Reine Mathematik" im M.Sc.-Studiengang Mathematik (PO 2014).
- Vorlesung und Übung sind verwendbar für das Modul "Mathematische Vertiefung" im M.Ed.-Studiengang Mathematik (PO 2018) und im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2021).
- Vorlesung und Übung sind verwendbar als "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024).



| Name des Moduls               | Nummer des Moduls                  |
|-------------------------------|------------------------------------|
| Variationsrechnung            | 07LE23MO-MSc14-WM9-2-<br>Variation |
| Veranstaltung                 |                                    |
| Variationsrechnung: Vorlesung |                                    |
| Veranstaltungsart             | Nummer                             |
| Vorlesung                     | 07LE23V-2-Variation                |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 4,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | deutsch                                 |

#### Inhalte

Eindimensionale Variationsrechung, Euler-Lagrange-Gleichungen, konvexe Funktionale und Unterhalbstetigkeit, Existenz von Minimierern, Variationsprobleme mit Nebenbedingungen, kompensierte Kompaktheit und konzentrierte Kompaktheit, Mountain-Pass-Lemma, Anwendungen: Existenz von Geodätischen, H-Flächen.

### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Literatur

- J. Jost, X. Li-Jost: Calculus of Variations, Cambridge University Press, 1999.
- M. Struwe: Variational Methods (Fourth Edition), Springer, 2008.

# Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung. Bitte beachten Sie die im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> beschriebenen notwendigen Vorkenntnisse!

# Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Notwendig: Funktionalanalysis

Nützlich: Partielle Differentialgleichungen, Numerik partieller Differentialgleichungen

1

| Name des Moduls           | Nummer des Moduls                  |
|---------------------------|------------------------------------|
| Variationsrechnung        | 07LE23MO-MSc14-WM9-2-<br>Variation |
| Veranstaltung             |                                    |
| Variationsrechnung: Übung |                                    |
| Veranstaltungsart         | Nummer                             |
| Übung                     | 07LE23Ü-2-Variation                |

| ECTS-Punkte                 |                                         |
|-----------------------------|-----------------------------------------|
| Semesterwochenstunden (SWS) | 2,0                                     |
| Mögliche Fachsemester       |                                         |
| Angebotsfrequenz            | Findet einmalig oder unregelmäßig statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                             |
| Lehrsprache                 | deutsch                                 |

#### Inhalte

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

#### Zu erbringende Prüfungsleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

#### Zu erbringende Studienleistung

Die zu erbringenden Studien- und Prüfungsleistungen hängen vom Studiengang und vom Modul ab, in dem die Veranstaltung verwendet wird. Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.

# Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, die Teilnahme an der gleichnamigen Vorlesung ist aber zum Verständnis der Übungen notwendig.

Vorkenntnisse siehe bei der Vorlesung bzw. im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u>.



| Name des Kontos                   | Nummer des Kontos       |
|-----------------------------------|-------------------------|
| Electives: andere Veranstaltungen | 07LE23KT-MScD24-E-sonst |
| Fachbereich / Fakultät            |                         |
| Mathematisches Institut           |                         |

| Pflicht/Wahlpflicht (P/WP) | Wahlpflicht |
|----------------------------|-------------|
|                            |             |



| Name des Moduls         | Nummer des Moduls       |
|-------------------------|-------------------------|
| Seminar                 | 07LE23MO-MScD24-E6-Sem1 |
| Verantwortliche/r       |                         |
| Prof. Dr. Sören Bartels |                         |
| Fachbereich / Fakultät  |                         |
| Mathematisches Institut |                         |

| ECTS-Punkte                 | 6,0                            |
|-----------------------------|--------------------------------|
| Arbeitsaufwand              | ca. 180 Stunden                |
| Semesterwochenstunden (SWS) | 2,0                            |
| Präsenzstudium              | ca, 40 Stunden                 |
| Selbststudium               | ca. 140 stunden                |
| Mögliche Fachsemester       |                                |
| Moduldauer                  | ein Semester                   |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                    |
| Angebotsfrequenz            | Findet in jedem Semester statt |

# Teilnahmevoraussetzung laut Prüfungsordnung

Vergabe eines Seminarplatzes bei den Vorbesprechungen am Ende des Vorsemesters.

### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern</u> sind semesterweise die wählbaren Seminare und die jeweils vorausgesetzten Vorkenntnisse beschrieben.

Die Seminarplätze und einzelnen Vortragsthemen werden üblicherweise innerhalb der Vorbesprechungen am Ende des Vorsemesters vergeben. Die Vorbesprechungstermine werden jeweils rechtzeitig vorab im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern zu den Lehrveranstaltungen bekanntgegeben.

| Zugehörige Veranstaltungen |         |             |      |     |                     |
|----------------------------|---------|-------------|------|-----|---------------------|
| Name                       | Art     | P/WP        | ECTS |     | Arbeits-<br>aufwand |
| Mathematical Seminar       | Seminar | Wahlpflicht |      | 2,0 |                     |

### Inhalte

In einem Seminar wird ein vertieftes wissenschaftliches Thema der Mathematik durch Lektüre von Fachliteratur erarbeitet und dann in Vorträgen präsentiert.

Die konkreten Inhalte des Moduls hängen vom gewählten Seminar ab; die Inhalte der wählbaren Seminare sind semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern des Mathematischen Instituts beschrieben.

### Lern- und Qualifikationsziele des Moduls

■ Die Studierenden können sich in ein wissenschaftliches Thema der Mathematik durch Lektüre von Fachliteratur selbständig, aber unter fachlicher Begleitung einarbeiten.

- Die Studierenden können dieses Thema didaktisch aufbereiten und in freiem Vortrag anschaulich, verständlich und fachlich korrekt vortragen; sie können Fragen zum Vortragsthema beantworten und sich einer kritischen Diskussion stellen.
- Die Studierenden können fachliche Fragen zu Vorträgen formulieren und Vorträge konstruktiv-kritisch begleiten.

## Zu erbringende Prüfungsleistung

keine

# Zu erbringende Studienleistung

Gestaltung einer ca. 90-minütigen Seminarsitzung mit Vortrag und Diskussion.

Weitere zu erbringende Studienleistungen hängen vom gewählten Seminar ab. Die genauen Anforderungen werden semesterweise im Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern veröffentlicht.

### Benotung

unbenotet

### Verwendbarkeit des Moduls

Seminare aus den Bereichen Reine Mathematik und Mathematische Logik sind als "Electives" wählbar.



| Name des Moduls      | Nummer des Moduls       |  |  |
|----------------------|-------------------------|--|--|
| Seminar              | 07LE23MO-MScD24-E6-Sem1 |  |  |
| Veranstaltung        |                         |  |  |
| Mathematical Seminar |                         |  |  |
| Veranstaltungsart    | Nummer                  |  |  |
| Seminar              | 07LE23S-0-NN            |  |  |

| ECTS-Punkte                 |                                |
|-----------------------------|--------------------------------|
| Semesterwochenstunden (SWS) | 2,0                            |
| Mögliche Fachsemester       | 3                              |
| Angebotsfrequenz            | Findet in jedem Semester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                    |
| Lehrsprache                 | englisch                       |

### Inhalte

Die Themen hängen vom jeweils gewählten Seminar ab. Im <u>Kommentierten Vorlesungsverzeichnis mit</u> <u>den Ergänzungen zu den Modulhandbüchern</u> sind jeweils die innerhalb eines Semesters als Mathematical Seminar wählbaren Seminare genauer beschrieben.

# Zu erbringende Prüfungsleistung

[siehe beim Modul]

# Zu erbringende Studienleistung

[siehe beim Modul]

# Teilnahmevoraussetzung laut Prüfungsordnung

[siehe beim Modul]



| Name des Moduls         | Nummer des Moduls      |
|-------------------------|------------------------|
| Lernen durch Lehren     | 07LE23MO-MScD24-E3-LdL |
| Verantwortliche/r       |                        |
| Dr. Susanne Knies       |                        |
| Fachbereich / Fakultät  |                        |
| Mathematisches Institut |                        |

| ECTS-Punkte                 | 3,0          |
|-----------------------------|--------------|
| Arbeitsaufwand              | 90 Stunden   |
| Semesterwochenstunden (SWS) | 2,0          |
| Mögliche Fachsemester       |              |
| Moduldauer                  | ein Semester |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht  |

# Teilnahmevoraussetzung laut Prüfungsordnung

Übernahme eines zweistündigen Tutorats oder zweier einstündiger Tutorate zu Mathematikvorlesungen des Mathematischen Instituts im gleichen Semester.

| Zugehörige Veranstaltungen |                                  |             |      |     |                     |
|----------------------------|----------------------------------|-------------|------|-----|---------------------|
| Name                       | Art                              | P/WP        | ECTS |     | Arbeits-<br>aufwand |
| Lernen durch Lehren        | andere (z.B. Kurse,<br>Tutorien) | Wahlpflicht |      | 2,0 |                     |

### Inhalte

Reflexion über Inhalt und Methoden der zu mathematischen Vorlesungen angebotenen Übungsgruppen im Zuge eines selbst gehaltenen Tutorats.

#### Lern- und Qualifikationsziele des Moduls

- Die Studierenden können ein Tutorat leiten und mathematische Inhalte darin präsentieren.
- Sie können die verwendeten Methoden reflektieren und sich darüber austauschen
- Sie intensivieren ihre im behandelten mathematischen Gebiet erworbenen Kompetenzen.

# Zu erbringende Prüfungsleistung

#### keine

### Zu erbringende Studienleistung

- Teilnahme am begleitenden Workshop
- regelmäßige Teilnahme an den Tutorenbesprechungen
- zwei gegenseitige Tutoratsbesuche mit anderen Modulteilnehmern, Reflexion und Austausch über die Tutorate

### Benotung

unbenotet

### Lehrmethoden

- Workshop mit Fallstudien und gegenseitigem Austausch
- gegenseitige Tutoratsbesuche mit anschließendem Austausch

# Verwendbarkeit des Moduls

- Wahlmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021)
- Wahlmodul der Option "Individuelle Studiengestaltung" des Zwei-Hauptfächer-Bachelor-Studiengangs Mathematik (PO 2021)
- Wahlmodul im M.Sc. Mathematik-Studiengang Mathematik (PO 2014)
- "Elective" im M.Sc. Mathematics in Data and Technology (PO 2024)

1

| Name des Moduls  Nummer des Moduls |                        |  |
|------------------------------------|------------------------|--|
| Lernen durch Lehren                | 07LE23MO-MScD24-E3-LdL |  |
| Veranstaltung                      |                        |  |
| Lernen durch Lehren                |                        |  |
| Veranstaltungsart                  | Nummer                 |  |
| andere (z.B. Kurse, Tutorien)      | 07LE23T-7-LdL          |  |

| ECTS-Punkte                 |                                |
|-----------------------------|--------------------------------|
| Semesterwochenstunden (SWS) | 2,0                            |
| Mögliche Fachsemester       |                                |
| Angebotsfrequenz            | Findet in jedem Semester statt |
| Pflicht/Wahlpflicht (P/WP)  | Wahlpflicht                    |
| Lehrsprachen                | deutsch, englisch              |

#### Inhalte

Was macht ein gutes Tutorat aus? Im ersten Workshop wird diese Frage diskutiert, und es werden Tipps und Anregungen mitgegeben. Im zweiten Workshop werden die Erfahrungen ausgetauscht.

#### Zu erbringende Prüfungsleistung

Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.</u>

### Zu erbringende Studienleistung

Siehe im Modulhandbuch des Studiengangs beim Modul bzw. semesterweise im <u>Kommentierten Vorlesungsverzeichnis mit den Ergänzungen zu den Modulhandbüchern.</u>

### Teilnahmevoraussetzung laut Prüfungsordnung

Übernahme eines zweistündigen Tutorats oder zweier einstündiger Tutorate zu Mathematikvorlesungen des Mathematischen Instituts im gleichen Semester.

### Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Für die Zuteilung eines Tutorates werden neben einer gewissen mathematischen Erfahrung gute Kenntnisse der Inhalte der jeweiligen Lehrveranstaltung erwartet, zu der das Tutorat gehört. Typischerweise sollte man daher die betreffende Lehrveranstaltung zuvor selbst mit Erfolg besucht haben.



| Name des Moduls                                         | Nummer des Moduls        |
|---------------------------------------------------------|--------------------------|
| Master Thesis                                           | 07LE23MO-MScD24-P-Thesis |
| Verantwortliche/r                                       |                          |
| Prof. Dr. Sören Bartels<br>Prof. Dr. Peter Pfaffelhuber |                          |
| Fachbereich / Fakultät                                  |                          |
| Mathematisches Institut                                 |                          |

| ECTS-Punkte                 | 30,0                           |
|-----------------------------|--------------------------------|
| Arbeitsaufwand              | 900 Stunden                    |
| Semesterwochenstunden (SWS) |                                |
| Mögliche Fachsemester       | 4                              |
| Moduldauer                  | sechs Monate                   |
| Pflicht/Wahlpflicht (P/WP)  | Pflicht                        |
| Angebotsfrequenz            | Findet in jedem Semester statt |

# Teilnahmevoraussetzung laut Prüfungsordnung

Erfolgreiche Absolvierung von mindestens 60 ECTS-Punkten im Studiengang M.Sc. Mathematics in Data and Technology.

| Zugehörige Veranstaltungen |     |      |      |     |                     |
|----------------------------|-----|------|------|-----|---------------------|
| Name                       | Art | P/WP | ECTS | sws | Arbeits-<br>aufwand |

#### Inhalte

In einer mathematischen Master-Arbeit werden – in der Regel aktuelle – forschungsnahe mathematische Erkenntnisse nachvollzogen und ausgearbeitet, ggf. auch algorithmisch umgesetzt. Die konkreten Inhalte des Moduls hängen vom jeweiligen Thema der Master-Arbeit ab.

Die verwendeten Methoden und Ergebnisse der Master-Arbeit können Grundlage für einen Vortrag der Studierenden innerhalb der Graduate Student Speaker Series sein.

#### Lern- und Qualifikationsziele des Moduls

- Die Studierenden lernen, selbständig wissenschaftlich zu arbeiten und neue mathematische Ergebnisse zu finden und zu formulieren. Sie sind dazu in der Lage, ein tiefergehendes mathematisches Thema im Selbststudium unter Anleitung zu erarbeiten und die dazu nötige Fachliteratur zu verstehen.
- Die Studierenden können komplexe mathematische Zusammenhänge mathematisch präzise und in Fachleuten verständlicher Form schriftlich darstellen.
- In manchen Schwerpunktgebieten: Die Studierenden können einen komplexen mathematischen Algorithmus entwerfen, implementieren und die Implementierung für Fachleute verständlich dokumentieren.
- Die Studierenden können selbst erarbeitete mathematische Ergebnisse didaktisch aufbereiten und in freiem Vortrag einem Fachpublikum verständlich und fachlich korrekt präsentieren.
- Die Studierenden können Fragen zu ihrer Master-Arbeit beantworten und sich einer kritischen Diskussion stellen und ggf. sinnvolle Fragen zu den Master-Arbeiten von Kommilitonen stellen und deren Präsentationen konstruktiv-kritisch begleiten.

# Zu erbringende Prüfungsleistung

Anfertigung einer Master-Arbeit.

### Benotung

Die Note der Prüfung geht (proportional zur Anzahl der ECTS-Punkte des Moduls und abhängig vom Umfang der als "Electives in Data" gewählten Veranstaltungen) mit mindestens 30/95 und höchstens 30/77 in die Gesamtnote ein.

#### Lehrmethoden

- Betreutes Selbststudium und ggf. Programmierung für die Anfertigung der Master-Arbeit
- Optional: Vortrag der Studierenden mit Fragen und Diskussion innerhalb der Graduate Student Speaker Series

#### Literatur

Literatur wird von dem jeweiligen Betreuer/der jeweiligen Betreuerin der Master-Arbeit angegeben.

### Verwendbarkeit des Moduls

Das Modul ist Pflichtmodul des Studiengangs und kann nur in diesem verwendet werden.

1

# Epilog

Die aktuelle Version des Modulhandbuches wurde von der Studienkommission Mathematik am 30.06.2025 verabschiedet.