Cálculo Integral

Matemática I

2018-2019

Primitivas

Definição de primitiva. Propriedades das primitivas. Primitivas imediatas.

Métodos de primitivação: primitivação por partes, por substituição e por decomposição.

A primitivação é a operação inversa da derivação.

Definição

Seja f uma função definida num intervalo I e seja F uma função definida e diferenciável em I tal que

$$F'(x) = f(x)$$
, para todo o $x \in I$.

Então

- F diz-se uma **primitiva** de f em I.
- ullet f diz-se **primitivável** em I pois admite uma primitiva em I.

Notação

Representa-se o conjunto de todas as primitivas de f por

$$P_{x}f\left(x\right), \qquad Pf\left(x\right) \qquad \mathsf{e} \qquad \int f\left(x\right)dx.$$

Observação

Se F for uma primitiva de f, também F+C (em que C é uma constante) é uma primitiva de f.

Proposição

Sejam F e G duas primitivas de f $\underline{\text{num intervalo}}$ I. Então, F e G diferem de uma constante.

Propriedades das Primitivas

Proposição

Sejam f e g funções primitiváveis no intervalo I e $\alpha \in \mathbb{R}$. Então, nesse intervalo, tem-se que:

- P(f(x) + g(x)) = Pf(x) + Pg(x);
- $P(\alpha f(x)) = \alpha Pf(x).$

(Atenção: a primitiva do produto não é o produto das primitivas)

Proposição

Seja f uma função diferenciável no intervalo I. Então, nesse intervalo, tem-se

$$P\left[f'\left(x\right)\right] = f\left(x\right) + C.$$

(Observação: [Pf(x)]' = f(x).)

Proposição

Se f é uma função $\underline{\text{contínua}}$ num intervalo, então f é primitivável nesse intervalo.

Proposição

Se f é uma função <u>contínua no intervalo I</u>, para cada $x_0 \in I$ e $y_0 \in \mathbb{R}$, <u>existe uma e uma só primitiva F de f em I tal que</u>

$$F\left(x_{0}\right) =y_{0}.$$

 $F\left(x_{0}
ight)=y_{0}
ightarrow\mathbf{condição}$ inicial do problema

A esta questão, de determinar a única primitiva que verifica uma certa condição inicial, chama-se **Problema de valores iniciais** ou **Problema de Cauchy.**

Primitivas Imediatas

Algumas Primitivas Imediatas

•
$$P(k) = kx + C$$

•
$$P(x^{\alpha}) = \frac{x^{\alpha+1}}{\alpha+1} + C, \quad \alpha \neq -1$$

$$P(e^x) = e^x + C$$

$$P\left(\frac{1}{x}\right) = \ln|x| + C$$

•
$$P(\cos x) = \sin x + C$$

$$P(\sin x) = -\cos x + C$$

•
$$P\left(\frac{1}{1+x^2}\right) = \operatorname{arctg} x + C$$

•
$$P\left(\frac{1}{\sqrt{1-x^2}}\right) = \arcsin x + C$$

Uma tabela de primitivas, é uma tabela de derivadas apresentada ao contrário.

Observação

Pela regra de derivação da função composta tem-se

$$(F(\varphi(x)))' = \varphi'(x) F'(\varphi(x)).$$

Assim, se F é uma primitiva de f, então

$$P(\varphi'(x) f(\varphi(x))) = F(\varphi(x)) + C.$$

Considere $\varphi\left(x\right)=u$ e $\varphi'\left(x\right)=u'$, então a versão mais geral da tabela anterior é:

•
$$P(k) = kx + C$$

$$P(u'\cos u) = \sin u + C$$

•
$$P(u'u^{\alpha}) = \frac{u^{\alpha+1}}{\alpha+1} + C, \quad \alpha \neq -1$$

$$P(u' \operatorname{sen} u) = -\cos u + C$$

$$P(u'e^u) = e^u + C$$

•
$$P\left(\frac{u'}{1+u^2}\right) = \operatorname{arctg} u + C$$

$$P\left(\frac{u'}{u}\right) = \ln|u| + C$$

•
$$P\left(\frac{u'}{\sqrt{1-u^2}}\right) = \arcsin u + C$$

Tabela de Primitivas Imediatas

Sendo u uma função diferenciável, k e a constantes reais,

$$P(k) = kx + C$$

$$P(x^{\alpha}) = \frac{x^{\alpha+1}}{\alpha+1} + C, \quad \alpha \neq -1$$

$$P\left(u'u^{\alpha}\right) = \frac{u^{\alpha+1}}{\alpha+1} + C, \quad \alpha \neq -1$$

$$P(u'e^u) = e^u + C$$

$$P\left(u'a^u\right) = \frac{a^u}{\ln a} + C, \quad a > 0$$

$$P\left(\frac{u'}{u}\right) = \ln|u| + C$$

$$P(u' \operatorname{sen} u) = -\cos u + C$$

$$P (u' \cos u) = \sin u + C$$

$$P(u' \operatorname{tg} u) = -\ln|\cos u| + C$$

$$P(u' \cot y) = \ln|\sin u| + C$$

$$P\left(u'\sec^2 u\right) = \operatorname{tg} u + C$$

$$P\left(u' \operatorname{cosec}^2 u\right) = -\operatorname{cotg} u + C$$

$$P(u' \sec u \, \operatorname{tg} u) = \sec u + C$$

$$P(u' \csc u \cot u) = -\csc u + C$$

$$P\left(\frac{u'}{\sqrt{1-u^2}}\right) = \arcsin u + C$$

$$P\left(-\frac{u'}{\sqrt{1-u^2}}\right) = \arccos u + C$$

$$P\left(\frac{u'}{1+u^2}\right) = \operatorname{arctg} u + C$$

$$P\left(-\frac{u'}{1+u^2}\right) = \operatorname{arccotg} u + C.$$

◆□ > ◆□ > ◆□ > ◆□ > ◆□

Técnicas de Primitivação

Primitivação por Partes

Proposição

Sejam f e g funções com derivada contínua no intervalo $\left[a,b\right]$. Então, neste mesmo intervalo,

$$P\left[f'\left(x\right)g\left(x\right)\right] = f\left(x\right)g\left(x\right) - P\left[f\left(x\right)g'\left(x\right)\right].$$

Técnicas de Primitivação

Primitivação por Substituição (ou mudança de variável)

Proposição

Seja f uma função contínua no intervalo I e $\varphi: J \to I$ uma função cuja derivada é contínua e não se anula em J. Então,

$$P_{x}f(x) = P_{t}\left[f(\varphi(t))\varphi'(t)\right]\Big|_{t=\varphi^{-1}(x)}.$$

Observações

- Prova-se que uma função definida num intervalo com derivada não nula é invertível.
- Uma das principais dificuldades na primitivação por substituição reside na escolha da mudança de variável adequada.

Algumas substituições aconselhadas

Seja f uma função racional,

Primitiva	Substituição
$Pf(e^x)$	$e^x = t \Leftrightarrow x = \ln t$
$Pf(\ln x)$	$\ln x = t \Leftrightarrow x = e^t$
$Pf\left(x^{\frac{p}{q}}, x^{\frac{r}{s}},\right)$	$x = t^m$, $m = m.m.c.(q, s,)$
$Pf\left(\left(ax+b\right)^{\frac{p}{q}},\left(ax+b\right)^{\frac{r}{s}},\ldots\right)$	$ax + b = t^m, m = m.m.c. (q, s,)$
$Pf\left(\sqrt{a^2 - b^2 x^2}\right)$	$x = \frac{a}{b} \operatorname{sen} t$

Técnicas de Primitivação

Primitivação por Decomposição

É uma técnica de primitivação de funções racionais.

Definição

Chama-se **função racional** a qualquer função que se possa escrever na forma $\frac{P(x)}{O(x)}$, com P e Q polinómios de coeficientes reais.

A função racional diz-se própria se

$$grau\left(P\left(x\right)\right) < grau\left(Q\left(x\right)\right)$$

e imprópria caso contrário.

Para primitivar devemos sempre trabalhar com funções racionais próprias. Qualquer função racional imprópria $\frac{P(x)}{Q(x)}$ pode escrever-se na forma polinómio + função racional própria

Basta fazer a divisão de P(x) por Q(x).

Proposição (Regra da divisão)

Sendo $P\left(x\right)$ um polinómio e $Q\left(x\right)$ um polinómio de grau ≥ 1 , existem sempre polinómios $C\left(x\right)$ e $R\left(x\right)$, univocamente determinados, tais que:

$$\frac{P(x)}{Q(x)} = \underbrace{C\left(x\right)}_{\text{polinómio}} + \underbrace{\frac{R\left(x\right)}{Q\left(x\right)}}_{\text{função racional própria}}$$

com $grau\left(R\left(x\right)\right) < grau\left(Q\left(x\right)\right)$, onde $C\left(x\right)$ é o quociente da divisão de $P\left(x\right)$ por $Q\left(x\right)$ e $R\left(x\right)$ é o resto dessa divisão.

Seja $\frac{P(x)}{Q(x)}$ uma função racional própria. Decompõe-se $Q\left(x\right)$ como o produto de parcelas mais simples:

- constantes;
- \bullet parcelas da forma $\underbrace{(x-r)^s}_{\text{com raízes reais}} \text{ , com } s \in \mathbb{N} \to \text{multiplicidade } s$
- parcelas da forma $\underbrace{\left(x^2+bx+c\right)^k}_{\text{sem raízes reais}}$, com $k\in\mathbb{N}\to\text{multiplicidade }k$

Então Q(x) fica escrito na forma:

$$Q\left(x\right) = \underbrace{a}_{\text{constante}} \times \underbrace{\left(x-r\right)^{s} \times \cdots}_{\text{parcelas das}} \times \underbrace{\left(x^{2} + bx + c\right)^{k} \times \cdots}_{\text{parcelas das raízes}}$$

Fracções Elementares

Chamam-se frações elementares (ou frações simples) às funções racionais da forma

$$\frac{A}{\underbrace{(x-r)^s}_{\text{com raízes reais}}} \quad \text{ou} \quad \underbrace{\frac{D+Ex}{\left(x^2+bx+c\right)^k}_{\text{sem raízes reais}}}$$

Proposição

Toda a função racional própria pode ser decomposta numa soma de frações elementares:

$$\frac{A_1}{x-r} + \frac{A_2}{(x-r)^2} + \dots + \frac{A_s}{(x-r)^s} \quad \text{ou} \quad \underbrace{\frac{D_1 + E_1 x}{x^2 + b x + c} + \frac{D_2 + E_2 x}{(x^2 + b x + c)^2} + \dots + \frac{D_k + E_k x}{(x^2 + b x + c)^k}}_{k \text{ parcelas}}$$

$$s \text{ parcelas} = \text{multiplicidade das raízes complexas}$$

A decomposição pode ser feita pelo método dos coeficientes indeterminados.

Determinar as primitivas das frações simples:

$$\bullet \ P\left[\frac{A}{(x-r)^s}\right] = \left\{ \begin{array}{l} A \ln|x-r| + C & \text{, se } s = 1 \\ \\ P\left[A\left(x-r\right)^{-s}\right] = A \times \frac{(x-r)^{-s+1}}{-s+1} + C & \text{, se } s > 1 \end{array} \right.$$

Nota:

- $s = 1 \rightarrow \text{obt\'em-se}$ um logaritmo
- $s > 1 \rightarrow \text{obt\'em-se}$ uma potência

$$P \left[\frac{D + Ex}{x^2 + bx + c} \right]$$

Não tendo raízes reais, o polinómio $x^2 + bx + c$ pode escrever-se na forma

$$(x+\alpha)^2 + \beta^2.$$

Fazendo diretamente as contas ou com a mudança de variável $x+\alpha=\beta t$, conclui-se que:

$$P\left[\frac{D+Ex}{(x+\alpha)^2+\beta^2}\right] = \frac{E}{2}\ln\left((x+\alpha)^2+\beta^2\right) + \frac{D-E\alpha}{\beta}\arctan\left(\frac{x+\alpha}{\beta}\right) + C$$

Nota:

- $\bullet \ E = 0 \to {\rm obt\acute{e}m\text{-}se\ um\ arco\text{-}tangente}$
- $\bullet \ E \neq 0 \to \left\{ \begin{array}{l} \mbox{um logaritmo} \\ \mbox{ou} \\ \mbox{a soma de um logaritmo com um arco-tangente} \end{array} \right.$

$$\bullet \ P\left[\frac{D+Ex}{(x^2+bx+c)^k}\right], \ \mathsf{com} \ k>1$$

Decompondo o polinómio como no caso anterior

$$x^{2} + bx + c = (x + \alpha)^{2} + \beta^{2}$$

e com a mesma mudança de variável

$$x + \alpha = \beta t$$

reduz-se esta situação ao cálculo de uma primitiva imediata e da primitiva:

$$P\left[\frac{1}{(1+t^2)^k}\right].$$

Esta primitiva (com k > 1) determina-se por partes, fazendo:

$$\frac{1}{(1+t^2)^k} = \frac{1+t^2-t^2}{(1+t^2)^k} = \frac{1}{(1+t^2)^{k-1}} - \frac{t^2}{(1+t^2)^k} = \frac{1}{(1+t^2)^{k-1}} - \frac{1}{2} \times \underbrace{\frac{t}{g}}_{f'} \times \underbrace{\frac{2t}{(1+t^2)^k}}_{f'}$$

e baixando sucessivamente o grau do denominador.

Algumas Fórmulas Trigonométricas

•
$$\sin^2 \alpha = \frac{1}{2} \left(1 - \cos(2\alpha) \right)$$

$$\bullet \cos^2 \alpha = \frac{1}{2} \left(1 + \cos(2\alpha) \right)$$

•
$$sen(2\alpha) = 2 sen \alpha cos \alpha$$

•
$$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha$$

•
$$\operatorname{tg} \alpha = \frac{\operatorname{sen} \alpha}{\operatorname{cos} \alpha}$$

•
$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

•
$$\sec \alpha = \frac{1}{\cos \alpha}$$

•
$$\csc \alpha = \frac{1}{\sec \alpha}$$

Integral de Riemann

Definição de integral de Riemann e sua interpretação geométrica; propriedades.

Integral indefinido e suas propriedades.

Teorema fundamental do cálculo integral e fórmula de Barrow.

Integração por partes e por substituição.

Aplicações do cálculo integral ao cálculo de áreas e do volume de sólidos de revolução.

Partições de intervalos

Definições

Seja [a, b] um intervalo, com b > a.

• Chama-se **partição** (ou **decomposição**) de [a,b] a qualquer conjunto $P=\{x_0,x_1,\ldots,x_n\}$, de números reais, tal que

$$a = x_0 < x_1 < x_2 < \ldots < x_n = b.$$

ullet Chama-se **norma** (ou **diâmetro**) da partição P a

$$||P|| = \max_{1 \le j \le n} (x_j - x_{j-1})$$

(é um número sempre maior ou igual a zero).

 \bullet Chama-se **refinamento da partição** P a uma partição Q de [a,b] tal que

$$P \subseteq Q$$
.

Nesta situação diz-se que Q é uma partição mais fina do que P.

Proposição

Sejam P e Q partições de [a,b] tais que $P\subseteq Q$, então

$$||P|| \ge ||Q||.$$

Isto é, quanto mais refinada for uma partição, menor será a sua norma.

Observação

Considerando, convenientemente, partições sucessivamente mais finas, podemos fazer a norma das partições com que trabalhamos tender para zero.

Soma de Riemann

O integral de Riemann em [a,b] de uma função positiva pode interpretar-se geometricamente como a área da região do plano limitada pelo gráfico de f, pelo eixo dos xx e pelas retas x=a e x=b.

Definição

Sejam [a,b] um intervalo fechado limitado, $f:[a,b] \to \mathbb{R}$ uma $\underline{\underline{\mathrm{função}}}$ $\underline{\underline{\mathrm{limitada}}}$, $P=\{x_0,x_1,\ldots,x_n\}$ uma partição de [a,b] e t_1,\ldots,t_n uma sequência de números reais tais que $t_j\in[x_{j-1},x_j]$, para $1\leq j\leq n$.

Chama-se soma de Riemann de f relativamente à partição P ao número

$$S(f, P) = \sum_{j=1}^{n} f(t_j) (x_j - x_{j-1}).$$

◆ロト ◆団ト ◆巨ト ◆巨ト = りへ○

Observação

Sejam $t_j \in [x_{j-1}, x_j]$, com $1 \le j \le n$, da definição de soma de Riemann, então

- se $t_j = x_{j-1}$ (o menor valor do intervalo $[x_{j-1}, x_j]$), então a soma de Riemann diz-se a **soma de Riemann à esquerda**;
- se $t_j = x_j$ (o maior valor do intervalo $[x_{j-1}, x_j]$), então a soma de Riemann diz-se a **soma de Riemann à direita**;
- se $t_j = \frac{x_{j-1} + x_j}{2}$ (o valor do meio do intervalo $[x_{j-1}, x_j]$), então a soma de Riemann média;
- se t_j é o maior valor da função f em $[x_{j-1},x_j]$, então a soma de Riemann diz-se a **soma de Riemann superior**;
- se t_j é o menor valor da função f em $[x_{j-1}, x_j]$, então a soma de Riemann diz-se a **soma de Riemann inferior**.

Qualquer soma de Riemann sobre uma dada partição está entre as somas de Riemann inferior e superior.

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 夕へで

Integral de Riemann

Definição

Seja [a, b] um intervalo com b > a.

Uma função $f:[a,b] \to \mathbb{R}$, $\varliminf[a,b]$, é integrável à Riemann em [a,b], se existe $I \in \mathbb{R}$ tal que

$$\lim_{\|P\| \to 0} S(f, P) = I.$$

Designa-se este limite por integral de Riemann e escreve-se

$$I = \int_{a}^{b} f(x) \, dx$$

e diz-se que $\int_a^b f(x) dx$ é o integral definido de f entre a e b.

4 D > 4 A > 4 B > 4 B > B 9 Q P

Terminologia

f o função integranda

 $[a,b] o ext{intervalo de integração}$

 $a \in b \rightarrow \text{limites de integração}$

x o variável de integração

 $dx \rightarrow acréscimo infinitésimal$

 $\int
ightarrow$ símbolo de integral

Nota

Se nada for dito em contrário, por "função integrável" deverá entenderse "função integrável à **Riemann**". No entanto, há outras noções (não necessariamente equivalentes a esta) de integrabilidade.

Observação

Por definição, se f é integrável à Riemann em [a,b], então f é limitada em [a,b].

Mas o recíproco não é verdadeiro.

Proposição

As funções contínuas em intervalos fechados e limitados $\left[a,b\right]$ são integráveis à Riemann.

Observação

Há funções que são integráveis à Riemann num intervalo e não são contínuas nesse intervalo.

Pode provar-se que:

• Qualquer função seccionalmente contínua em [a,b] (fechado e limitado) é integrável à Riemann.

Observação:

Uma função f definida em [a,b] diz-se **seccionalmente contínua em** [a,b] se é contínua em [a,b] exceto num número finito de pontos e nesses pontos de descontinuidade existem e são finitos os limites laterais de f.

• Qualquer função monótona em [a,b] (fechado e limitado) é integrável à Riemann.

Propriedades elementares do Integral de Riemann

Proposição

Se $f\left(x\right)=k$ para todo $x\in\left[a,b\right]$ e $k\in\mathbb{R}$, então f é integrável em $\left[a,b\right]$ e

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} k dx = k (b - a).$$

Proposição

Sejam f e g funções integráveis em [a,b] e $k\in\mathbb{R}$. Então:

 $\ \, \textbf{1} \ \, f+g \,\, \text{\'e} \,\, \text{integrável em} \,\, [a,b] \,\, \text{e}$

$$\int_{a}^{b} \left(f\left(x\right) + g\left(x\right) \right) dx = \int_{a}^{b} f\left(x\right) dx + \int_{a}^{b} g\left(x\right) dx;$$

Proposição

 $\mathbf{2} \ kf$ é integrável em [a,b] e

$$\int_{a}^{b} (kf(x)) dx = k \int_{a}^{b} f(x) dx;$$

 $\ \, \textbf{0} \ \, f \times g \,\, \text{\'e} \,\, \text{integrável em} \,\, [a,b].$

Advertência: Mas $\underline{\tilde{nao}}$ é verdade que o integral do produto seja o produto dos integrais.

 $oldsymbol{0}$ se $f\left(x
ight)\geq0$ para todo $x\in[a,b]$, então

$$\int_{a}^{b} f(x) \, dx \ge 0;$$

Proposição

 $oldsymbol{3}$ se $f\left(x
ight)\leq g\left(x
ight)$ para todo $x\in\left[a,b\right]$, ent $oldsymbol{3}$

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx;$$

Observação: se $m \leq f(x) \leq M$, para todo o $x \in [a,b]$, então

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a).$$

 $oldsymbol{0}$ |f(x)| é integrável em [a,b] e

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx;$$

Advertência: Mas não é verdade que

|f(x)| integrável em $[a,b] \Rightarrow f(x)$ integrável em [a,b].

Proposição (Decomposição do integral)

Se f é integrável em [a,b] então f é integrável em todo o subintervalo (não degenerado) de [a,b].

Mais, sendo a < c < b, se f é integrável em [a,c] e em [c,b], então f é integrável em [a,b] e

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$

Definição

Se f é integrável em $\left[a,b\right]$, com a < b, então

- $\int_{c}^{c} f(x) dx = 0$, para todo o $c \in [a, b]$;

4 D > 4 B > 4 B > 4 B > 9 Q Q

Observação

Se f é integrável num intervalo I que contenha a, b e c, então

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$

Advertência

As propriedades do integral da soma e do produto por um escalar são válidas se $b \leq a$. É preciso ter atenção com as propriedades que envolvem desigualdades, para b < a a desigualdade é trocada.

Proposição

Seja f uma função integrável em [-a,a], com a>0, então

- se f é uma função ímpar, então $\int_{-a}^{a} f(x) dx = 0$;
- se f é uma função par, então $\int_{-a}^{a} f\left(x\right) dx = 2 \int_{0}^{a} f\left(x\right) dx$.

Teorema da Média

Definição

Seja f uma função integrável no intervalo [a,b] (com a < b). O valor médio da função f no intervalo [a,b] é dado por

$$f_{_{VM}[a,b]} = \frac{\int_{a}^{b} f(x) dx}{b - a}.$$

Proposição (Teorema da Média para funções contínuas)

Seja f uma função contínua em [a,b]. Então existe $c \in [a,b]$ tal que

$$\int_{a}^{b} f(x) dx = f(c) (b - a).$$

Ou seja, se f é contínua em [a,b], existe $c\in [a,b]$ tal que

$$f\left(c\right) = f_{VM}^{}_{\left[a,b\right]}.$$

Teorema Fundamental do Cálculo Integral

Definição

Seja f uma função integrável em [a,b]. À função definida em [a,b] por

$$F(x) = \int_{a}^{x} f(t) dt,$$

chama-se integral indefinido de f com origem no ponto a.

Observação

 ${\cal F}$ é crescente, se f é não negativa.

Proposição

Seja f uma função integrável no intervalo [a,b]. Então a função integral indefinido de f, $F(x) = \int_a^x f(t) dt$, é contínua em [a,b].

◆ロト ◆部ト ◆差ト ◆差ト 差 めのの

Observação

A função integral indefinido, $F\left(x\right)=\int_{a}^{x}f\left(t\right)dt$, de uma função integrável f é sempre "um pouco mais bem comportada" do que a função f:

- ullet se f é integrável, então F é contínua;
- ullet se f é contínua, então F é diferenciável;
- ullet se f é diferenciável, então F tem derivadas contínuas;
- ...

Proposição (Teorema Fundamental do Cálculo Integral)

Seja f uma função contínua no intervalo [a,b]. Então a função integral indefinido de f, $F\left(x\right)=\int_{a}^{x}f\left(t\right)dt$, tem derivada em [a,b] e

$$\frac{d}{dx}\left(\int_{a}^{x} f(t) dt\right) = F'(x) = f(x).$$

Corolário (Fórmula de Barrow)

Sejam f uma função contínua em $\left[a,b\right]$ e G uma primitiva de f em $\left[a,b\right]$. Então

$$\int_{a}^{b} f(x) dx = [G(x)]_{a}^{b} = G(b) - G(a).$$

Observação

É possível enfraquecer ligeiramente as hipóteses da Fórmula de Barrow, basta considerar: "f uma função **integrável** em [a,b]..."

Corolário (do Teorema Fundamental do Cálculo Integral)

Qualquer função contínua num intervalo I é primitivável nesse intervalo.

Seja $a \in I$, $\int_a^x f(t) dt$ é a primitiva que se anula para x = a.

Observação

Sejam f uma função contínua em [a,b] e g e h funções diferenciáveis em]a,b[:

a derivada de

$$L(x) = \int_{a}^{g(x)} f(t) dt$$

é calculada pela regra de derivação da função composta, obtendo-se

$$L'(x) = f(g(x))g'(x);$$

◆ロト ◆部ト ◆注 > ◆注 > 注 り へ

Observação

a derivada de

$$B(x) = \int_{g(x)}^{a} f(t) dt$$

resulta do caso anterior

$$B'(x) = \left(\int_{g(x)}^{a} f(t) dt\right)' = \left(-\int_{a}^{g(x)} f(t) dt\right)' = -f(g(x)) g'(x);$$

a derivada de

$$T(x) = \int_{g(x)}^{h(x)} f(t) dt$$

resulta dos casos anteriores

$$T'(x) = \left(\int_{g(x)}^{h(x)} f(t) dt\right)' = \left(\int_{g(x)}^{a} f(t) dt + \int_{a}^{h(x)} f(t) dt\right)' =$$

$$= f(h(x)) h'(x) - f(g(x)) g'(x).$$

Métodos de Integração

Integração por Partes

Proposição

Sejam f e g funções com derivada contínua em $\left[a,b\right]$. Então

$$\int_{a}^{b} f'(x) g(x) dx = [f(x) g(x)]_{a}^{b} - \int_{a}^{b} f(x) g'(x) dx.$$

Métodos de Integração

Integração por mudança de variável (ou substituição)

Proposição

Sejam I e J intervalos, f uma função contínua em I e φ uma função com derivada contínua em J, tal que $\varphi(J)\subseteq I$. Sejam α e β elementos de J tais que $\varphi(\alpha)=a$ e $\varphi(\beta)=b$. Então

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt.$$

Observações

- Estamos a fazer a mudança de variável $x = \varphi(t)$.
- Existem versões da integração por substituição com hipóteses diferentes.

Algumas aplicações do integral definido

Cálculo de áreas

Sejam f e g funções integráveis em [a,b] e A a área da região plana limitada pelos gráficos de f e g e pelas retas verticais x=a e x=b. Então

$$A = \int_{a}^{b} |f(x) - g(x)| dx.$$

Cálculo de volumes de sólidos de revolução

Sejam f e g funções integráveis em [a,b] e V o volume do sólido de revolução gerado pela rotação em torno do eixo dos xx da região limitada pelos gráficos de f e g e pelas retas verticais x=a e x=b. Então

$$V = \int_{a}^{b} \pi \left| f^{2}(x) - g^{2}(x) \right| dx.$$

- ◆ロ ▶ ◆御 ▶ ◆ 恵 ▶ ◆ 恵 → りゅ

Algumas aplicações do integral definido

Cálculo do comprimento de linha

Seja f uma função com derivada contínua em [a,b] e L o comprimento da linha associada ao gráfico da função f entre x=a e x=b (isto é, entre os pontos $(a,f\left(a\right))$ e $(b,f\left(b\right))$). Então

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx.$$

Integrais Impróprios

Integrais impróprios de 1^a espécie e de 2^a espécie.

Integrais Impróprios

Extendem a noção de integral a intervalos não limitados e/ou funções não limitadas.

Os integrais impróprios podem ser dos seguintes tipos:

- integrais impróprios de 1ª espécie → quando o intervalo de integração não é limitado (isto é, pelo menos um dos extremos de integração é infinito) mas a função é limitada em qualquer seu subintervalo limitado;
- integrais impróprios de 2^a espécie → quando o intervalo de integração é limitado, mas a função integranda não é limitada no intervalo de integração;
- integrais impróprios mistos → são os integrais que têm situações dos dois tipos anteriores (ou seja, o intervalo de integração é ilimitado e existe um seu subintervalo limitado no qual a função é ilimitada).

Definição

Seja f uma função integrável em todo o subintervalo fechado e limitado de $[a,+\infty[$ (isto é, todo $[a,\beta]$, com $\beta\geq a$).

Chama-se integral impróprio da função f em $[a,+\infty[$ a

$$\int_{a}^{+\infty} f(x) dx = \lim_{\beta \to +\infty} \int_{a}^{\beta} f(x) dx.$$

Caso o limite exista e seja finito, diz-se que o **integral impróprio** $\int_a^{+\infty} f(x) \, dx$ **é convergente**, sendo esse o seu valor. Caso contrário, se o limite não existir ou não for finito, diz-se que o **integral impróprio é divergente**.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Exemplo importante

$$\int_1^{+\infty} \frac{1}{x^k} dx \quad \to \text{Integral de Dirichlet de } 1^a \text{ espécie}$$

$$\int_1^{+\infty} \frac{1}{x^k} dx \quad \text{\'e} \quad \left\{ \begin{array}{ll} \text{divergente, se } k \leq 1 \\ \\ \text{convergente, se } k > 1 \end{array} \right.$$

◆ロト ◆団 ▶ ◆ 重 ト ◆ 重 ・ か Q (*)

Definição

Seja f uma função integrável em todo o subintervalo fechado e limitado de $]-\infty,b]$ (isto é, todo $[\alpha,b]$, com $\alpha\leq b$).

Chama-se integral impróprio da função f em $]-\infty,b]$ a

$$\int_{-\infty}^{b} f(x) dx = \lim_{\alpha \to -\infty} \int_{\alpha}^{b} f(x) dx.$$

Caso o limite exista e seja finito, diz-se que o **integral impróprio** $\int_{-\infty}^b f(x) \, dx$ **é convergent**e. Caso contrário, se o limite não existir ou não for finito, diz-se que o **integral impróprio é divergente**.

Definição

Seja f uma função integrável em todo o intervalo fechado e limitado de $\mathbb{R}.$ Diz-se que o **integral impróprio**

$$\int_{-\infty}^{+\infty} f(x) \, dx$$

é convergente se, para algum $c \in \mathbb{R}$, forem convergentes ambos os integrais impróprios

$$\int_{-\infty}^{c} f(x) dx \quad e \quad \int_{c}^{+\infty} f(x) dx$$

e nesse caso vem

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{+\infty} f(x) dx.$$

Se algum dos integrais impróprios $\int_{-\infty}^{c} f(x) dx$ ou $\int_{c}^{+\infty} f(x) dx$ for divergente, então $\int_{-\infty}^{+\infty} f(x) dx$ **é divergente**.

Definição

Seja f uma função integrável em todo o subintervalo fechado e limitado de [a,b[(isto é, em todo $[a,\beta]\subset [a,b[)$ e não limitada em [a,b[.

Chama-se integral impróprio da função f em $\left[a,b\right[$ a

$$\int_{a}^{b} f(x) dx = \lim_{\beta \to b^{-}} \int_{a}^{\beta} f(x) dx.$$

Caso o limite exista e seja finito, diz-se que o **integral impróprio** $\int_a^b f(x) \, dx$ **é convergente**. Caso contrário, se o limite não existir ou não for finito, diz-se que o **integral impróprio é divergente**.

Definição

Seja f uma função integrável em todo o subintervalo fechado e limitado de]a,b] (isto é, em todo $[\alpha,b]\subset]a,b]$) e não limitada em]a,b].

Chama-se integral impróprio da função f em $\left]a,b\right]$ a

$$\int_{a}^{b} f(x) dx = \lim_{\alpha \to a^{+}} \int_{\alpha}^{b} f(x) dx.$$

Caso o limite exista e seja finito, diz-se que o **integral impróprio** $\int_a^b f(x) \, dx$ **é convergente**. Caso contrário, se o limite não existir ou não for finito, diz-se que o **integral impróprio é divergente**.

Exemplo importante

$$\int_0^1 \frac{1}{x^k} dx \rightarrow$$
Integral de Dirichlet de 2^a espécie

$$\int_0^1 \frac{1}{x^k} dx \quad \text{\'e} \quad \left\{ \begin{array}{ll} \text{divergente,} & \text{se } k \geq 1 \\ \\ \text{convergente,} & \text{se } k < 1 \end{array} \right.$$

Observações

 \bullet Se o problema é em c pertencente ao interior do intervalo $\left[a,b\right]$

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

sendo convergente sse ambos o forem (sendo o seu valor a soma) e divergente se pelo menos um deles for divergente.

Se o problema é em ambos os extremos

$$\int_{a}^{b} f(x) dx = \int_{a}^{d} f(x) dx + \int_{d}^{b} f(x) dx,$$

com $d \in]a, b[$, sendo convergente sse ambos o forem (sendo o seu valor a soma) e divergente se pelo menos um deles for divergente.

◆ロ > ◆昼 > ◆ き > ・ き ・ り < ○

Integrais Impróprios Mistos

- Se o **integral impróprio for misto**, ou seja, se o intervalo for ilimitado e a função for ilimitada nesse intervalo, aplica-se o raciocínio anterior de modo a termos sempre <u>um problema por integral</u> e sempre num extremo.
- O integral impróprio misto é convergente sse todos os integrais impróprios em que foi decomposto o forem (e o seu valor será a soma do valor desses integrais).
- Se algum dos integrais impróprios em que foi decomposto for divergente, o **integral impróprio misto é divergente**.