Inter-generational conflict and the declining labor share

Fabien Petit¹

¹Aix-Marseille Univ., CNRS, EHESS, Centrale Marseille, AMSE

October 21, 2020

- Main determinants:
 - ► Globalization: Autor et al. (2020); Jayadev (2007); Pica (2010); Young and Tackett (2018)
 - ▶ Biased technical change: Acemoglu (2002); Acemoglu (2003); Karabarbounis and Neiman (2014)
 - ▶ Institutions: Bentolila and Saint-Paul (2003); Blanchard (1997); Caballero and Hammour (1998)
- Literature on the labor share has paid hardly any attention to demography!
 - ▶ only Schmidt and Vosen (2013)
- \Rightarrow Why would this matter ?

- Main determinants:
 - ► Globalization: Autor et al. (2020); Jayadev (2007); Pica (2010); Young and Tackett (2018)
 - ▶ Biased technical change: Acemoglu (2002); Acemoglu (2003); Karabarbounis and Neiman (2014)
 - ▶ Institutions: Bentolila and Saint-Paul (2003); Blanchard (1997); Caballero and Hammour (1998)
- Literature on the labor share has paid hardly any attention to demography!
 - ▶ only Schmidt and Vosen (2013)
- \Rightarrow Why would this matter ?

- Main determinants:
 - ► Globalization: Autor et al. (2020); Jayadev (2007); Pica (2010); Young and Tackett (2018)
 - ▶ Biased technical change: Acemoglu (2002); Acemoglu (2003); Karabarbounis and Neiman (2014)
 - ► Institutions: Bentolila and Saint-Paul (2003); Blanchard (1997); Caballero and Hammour (1998)
- Literature on the labor share has paid hardly any attention to demography!
 - ▶ only Schmidt and Vosen (2013)
- ⇒ Why would this matter?

The impacts of an aging population

 Aging directly affects the economy: Dedry et al. (2017); Futagami and Nakajima (2001); Schmidt and Vosen (2013); Razin et al. (2002)

Figure: Chloe Swarbrick in New Zealand Parliament on October 5, 2019

- But also indirectly through institutional changes: Busemeyer et al. (2009); Gonzalez-Eiras and Niepelt (2012); Jäger and Schmidt (2016); Sørensen (2013)
 - ▶ Due to the existence of age-related conflict within the public policy

The impacts of an aging population

 Aging directly affects the economy: Dedry et al. (2017); Futagami and Nakajima (2001); Schmidt and Vosen (2013); Razin et al. (2002)

Figure: Chloe Swarbrick in New Zealand Parliament on October 5, 2019

- But also indirectly through institutional changes: Busemeyer et al. (2009); Gonzalez-Eiras and Niepelt (2012); Jäger and Schmidt (2016); Sørensen (2013)
 - Due to the existence of age-related conflict within the public policy

The impacts of an aging population

 Aging directly affects the economy: Dedry et al. (2017); Futagami and Nakajima (2001); Schmidt and Vosen (2013); Razin et al. (2002)

Figure: Chloe Swarbrick in New Zealand Parliament on October 5, 2019

- But also indirectly through institutional changes: Busemeyer et al. (2009); Gonzalez-Eiras and Niepelt (2012); Jäger and Schmidt (2016); Sørensen (2013)
 - ▶ Due to the existence of **age-related conflict within the public policy**

Aging population in these countries

From the baby-boomers' coming...

... to their retirement

Research questions

1. How does age structure affect the income allocation between capital and labor in high-income countries?

2. To what extent the age structure can influence the institutions that play a role in the income allocation ?

Research questions

1. How does age structure affect the income allocation between capital and labor in high-income countries?

2. To what extent the age structure can influence the institutions that play a role in the income allocation ?

What I do

- Build an OLG model with (indirect) policy mechanism
 - ► The youth face an unemployment risk and use their political power to raise the unemployment benefits
 - ⇒ Consequences for wage bargaining and labor share
- Calibrate the model to analyze the co-movement between labor share and age structure
- Counterfactual analysis to quantify the role of the indirect policy mechanism

What I do

- Build an OLG model with (indirect) policy mechanism
 - ► The youth face an unemployment risk and use their political power to raise the unemployment benefits
 - ⇒ Consequences for wage bargaining and labor share
- Calibrate the model to analyze the co-movement between labor share and age structure
- Counterfactual analysis to quantify the role of the indirect policy mechanism

What I do

- Build an OLG model with (indirect) policy mechanism
 - ► The youth face an unemployment risk and use their political power to raise the unemployment benefits
 - ⇒ Consequences for wage bargaining and labor share
- Calibrate the model to analyze the co-movement between labor share and age structure
- Counterfactual analysis to quantify the role of the indirect policy mechanism

Contributions

- 1. Build a theoretical framework with a **new policy mechanism** to explain the declining labor share
 - ► Changes in labor market institutions are endogenously determined by the age structure of the population through voting
- Identify the boomers' cohort as
 - the winner of the inter-generational conflict;
 - and the driver of the labor share decline

Contributions

- 1. Build a theoretical framework with a **new policy mechanism** to explain the declining labor share
 - ► Changes in labor market institutions are endogenously determined by the age structure of the population through voting
- 2. Identify the **boomers' cohort** as
 - the winner of the inter-generational conflict;
 - and the driver of the labor share decline

Overview

- Introduction
- Theoretical framework
- Quantitative analysis
- 4 Discussion
- Conclusion

Overview

- Introduction
- Theoretical framework
- Quantitative analysis
- 4 Discussion
- Conclusion

Overlapping generations model

- Standard 2-period OLG model with logarithmic utility function and CES production function
 - Key parameter: capital-labor elasticity of substitution (σ)
- Closed economy and capital fully depreciates between two periods: $R_t = r_t$ and $K_t = S_{t-1}$
- Two cohorts: continuum of homogeneous agents
 - Young: supply labor inelastically, earn income, pay taxes, consume and save for retirement
 - ▶ Old: earn the return of their savings, pay taxes, consume and derive utility from the government health spending

Overlapping generations model

- Standard 2-period OLG model with logarithmic utility function and CES production function
 - Key parameter: capital-labor elasticity of substitution (σ)
- Closed economy and capital fully depreciates between two periods: $R_t = r_t$ and $K_t = S_{t-1}$
- Two cohorts: continuum of homogeneous agents
 - Young: supply labor inelastically, earn income, pay taxes, consume and save for retirement
 - ▶ Old: earn the return of their savings, pay taxes, consume and derive utility from the government health spending

Overlapping generations model

- Standard 2-period OLG model with logarithmic utility function and CES production function
 - Key parameter: capital-labor elasticity of substitution (σ)
- Closed economy and capital fully depreciates between two periods: $R_t = r_t$ and $K_t = S_{t-1}$
- Two cohorts: continuum of homogeneous agents
 - ► **Young**: supply labor inelastically, earn income, pay taxes, consume and save for retirement
 - ▶ **Old**: earn the return of their savings, pay taxes, consume and derive utility from the government health spending

Demography and labor share

• Demographic dynamics: $\begin{cases} N_t^y = n_t N_{t-1}^y & \text{with} \quad n_t > 0 \\ N_t^o = p_t N_{t-1}^y & \text{with} \quad p_t \in (0,1] \end{cases}$

⇒ Old-age-dependency ratio:

$$\frac{N_t^o}{N_t^y} = \frac{p_t}{n_t}$$

• CES production function, so the labor share:

$$heta_t = rac{w_t L_t}{Y_t} = \left(1 + rac{\phi}{1 - \phi} k_t^{rac{\sigma - 1}{\sigma}}
ight)^{-1}$$

with $\sigma \in \mathbb{R}_+^* \setminus \{1\}$ the capital-labor elasticity of substitution

Demography and labor share

- $\bullet \ \, \text{Demographic dynamics:} \ \begin{cases} N_t^y = n_t N_{t-1}^y \quad \text{with} \quad n_t > 0 \\ N_t^o = p_t N_{t-1}^y \quad \text{with} \quad p_t \in (0,1] \end{cases}$
- ⇒ Old-age-dependency ratio:

$$\frac{N_t^o}{N_t^y} = \frac{p_t}{n_t}$$

• CES production function, so the labor share:

$$heta_t = rac{w_t L_t}{Y_t} = \left(1 + rac{\phi}{1 - \phi} k_t^{rac{\sigma - 1}{\sigma}}
ight)^{-1}$$

with $\sigma \in \mathbb{R}_+^* \setminus \{1\}$ the capital-labor elasticity of substitution

Demography and labor share

- Demographic dynamics: $\begin{cases} N_t^y = n_t N_{t-1}^y & \text{with} \quad n_t > 0 \\ N_t^o = p_t N_{t-1}^y & \text{with} \quad p_t \in (0,1] \end{cases}$
- ⇒ Old-age-dependency ratio:

$$\frac{N_t^o}{N_t^y} = \frac{p_t}{n_t}$$

• CES production function, so the labor share:

$$\theta_t = \frac{w_t L_t}{Y_t} = \left(1 + \frac{\phi}{1 - \phi} k_t^{\frac{\sigma - 1}{\sigma}}\right)^{-1}$$

with $\sigma \in \mathbb{R}_+^{\star} \backslash \{1\}$ the capital-labor elasticity of substitution

Labor union

Firm

Labor union

Firm

Public policy preferences

- Age-related conflict within the public policy
 - Young desire more unemployment benefit (b)
 - ▶ Old desire more **health spending** (h)
 - ▶ Both desire less **taxes** (τ)
- Maximization program characterizing the equilibrium policy choices with probabilistic voting:

$$\max_{\tau_{t}, b_{t}, h_{t}} W(\tau_{t}, b_{t}, h_{t}; \eta_{t}, u_{t}, w_{t}, Y_{t}, N_{t}^{y}, N_{t}^{o})$$
s.t. $\tau_{t} Y_{t} = b_{t} u_{t} N_{t}^{y} + h_{t} N_{t}^{o}$

where η_t is the political weight of the youth

Public policy preferences

- Age-related conflict within the public policy
 - ▶ Young desire more **unemployment benefit** (b)
 - ▶ Old desire more **health spending** (h)
 - ▶ Both desire less **taxes** (τ)
- Maximization program characterizing the equilibrium policy choices with probabilistic voting:

$$\max_{\tau_t, b_t, h_t} W(\tau_t, b_t, h_t; \frac{\eta_t}{\eta_t}, u_t, w_t, Y_t, N_t^y, N_t^o)$$
s.t.
$$\tau_t Y_t = b_t u_t N_t^y + h_t N_t^o$$

where η_t is the political weight of the youth

Political weight of the youth (η)

• Political weight of the youth:

$$\eta_t = \frac{n_t}{p_t} \frac{1 + \alpha p_{t+1}}{\omega}$$

- The political weight of the youth depends on
 - the old-age-dependency ratio p_t/n_t ;
 - ▶ their life expectancy p_{t+1} and the discount rate α ;
 - the relative sensitivity to policy changes α

Political weight of the youth (η)

Political weight of the youth:

$$\eta_t = \frac{n_t}{p_t} \frac{1 + \alpha p_{t+1}}{\omega}$$

- The political weight of the youth depends on
 - the old-age-dependency ratio p_t/n_t ;
 - their life expectancy p_{t+1} and the discount rate α ;
 - ightharpoonup the relative sensitivity to policy changes ω

Wage bargaining

- Right-to-manage model à la Nickell and Andrews (1983)
 - Single union that represents workers and bargains with the representative firm over wages
 - ▶ Employer retains the prerogative to hire and fire
- Maximization program characterizing the equilibrium wage:

$$\max_{w_t} \left(L_t \left[U_t^{y,e} - U_t^{y,u} \right] \right)^{\gamma} \left(Y_t - w_t L_t \right)^{1-\gamma}$$
s.t.
$$U_t^{y,e} - U_t^{y,u} = \log \left[\frac{(1-\tau_t)w_t}{b_t} \right]$$

- $ho \gamma \in (0,1)$ the relative bargaining power of the union
- $\frac{b_t}{(1-\tau_t)_{W_t}} \in (0,1)$ the net replacement rate in unemployment

Wage bargaining

- Right-to-manage model à la Nickell and Andrews (1983)
 - Single union that represents workers and bargains with the representative firm over wages
 - ▶ Employer retains the prerogative to hire and fire
- Maximization program characterizing the equilibrium wage:

$$\max_{w_t} \left(L_t \left[U_t^{y,e} - U_t^{y,u} \right] \right)^{\gamma} \left(Y_t - w_t L_t \right)^{1-\gamma}$$
s.t.
$$U_t^{y,e} - U_t^{y,u} = \log \left[\frac{(1-\tau_t)w_t}{b_t} \right]$$

- ho $\gamma \in (0,1)$ the relative bargaining power of the union
- lacksquare $\frac{b_t}{(1- au_t)w_t}\in(0,1)$ the net replacement rate in unemployment

- Labor market equilibrium, the wage and employment are functions of the net replacement rate in unemployment
- Public policy equilibrium, the net replacement rate in unemployment is a function of the labor income, the unemployment rate and the youth political power η_t
- ullet Comparative statics depend on the **capital-labor elasticity** (σ)
- ⇒ Turn to quantitative analysis

- Labor market equilibrium, the wage and employment are functions of the net replacement rate in unemployment
- Public policy equilibrium, the net replacement rate in unemployment is a function of the labor income, the unemployment rate and the youth political power η_t
- ullet Comparative statics depend on the **capital-labor elasticity** (σ)
- ⇒ Turn to quantitative analysis

- Labor market equilibrium, the wage and employment are functions of the net replacement rate in unemployment
- Public policy equilibrium, the net replacement rate in unemployment is a function of the labor income, the unemployment rate and the youth political power η_t
- ullet Comparative statics depend on the **capital-labor elasticity** (σ)
- ⇒ Turn to quantitative analysis

- Labor market equilibrium, the wage and employment are functions of the net replacement rate in unemployment
- Public policy equilibrium, the net replacement rate in unemployment is a function of the labor income, the unemployment rate and the youth political power η_t
- ullet Comparative statics depend on the **capital-labor elasticity** (σ)
- ⇒ Turn to quantitative analysis

Overview

- Introduction
- 2 Theoretical framework
- Quantitative analysis
- 4 Discussion
- Conclusion

OLG model calibration and predictions

- Objectives:
 - 1. **Match the dynamics** of the labor share over the period 1970-2010
 - 2. Model predictions of the labor share over the period 2010-2080
- Following the methodology of Gonzalez-Eiras and Niepelt (2012)

OLG model calibration and predictions

- Objectives:
 - 1. **Match the dynamics** of the labor share over the period 1970-2010
 - 2. Model predictions of the labor share over the period 2010-2080
- Following the methodology of Gonzalez-Eiras and Niepelt (2012)

Data

	Variable	Source
K	Capital stock at constant 2011 national prices	PWT 9.1
Y	Real GDP at constant 2011 national prices	PWT 9.1
emp	Number of persons engaged	PWT 9.1
θ	Share of labor compensation in GDP	PWT 9.1
au	Government revenue as a share of GDP	OECD
N^y, N^o	Demographic data	UN WPP 2017

Notes: Adjustment method of the labor share: self-employed income as a compensation. The demographic data correspond to the "medium variant" estimates from the United Nations.

Parameters

	Parameter	France	United States
ϕ	Capital share in 1970	0.270	0.325
γ	Relative bargaining power of the union	0.500	0.500
α	Discount rate	0.669	0.669
σ	Capital-labor elasticity of substitution	1.321	1.234
ω	Relative ideological spread-out	0.983	1.533
β	Preference for government health expenditure	0.739	0.138
Α	Scale parameter of the production function	23.891	22.840

Notes: Single-equation estimation of σ from the two first-order conditions of the profit maximization with normalized CES production function. σ estimates are significant at p<0.1 for France and p<0.05 for the United-States.

Model predictions of the labor share

- Data --- Model prediction

The young boomers (1970-2010)

Deviation from the 1970's value of determinant variables (in %)

The retired boomers (2010-2050) and afterwards (2050-80)

Deviation from the 2010's value of determinant variables (in %)

Counterfactual and aging effect decomposition

- Objectives: quantify the role of the aging population
 - ▶ **due to** population growth (n) vs survival rate (p);
 - ▶ **through** factor accumulation (n, p, N^y, N^o) vs policy mechanism (η)
- Intuition: what would have happened in terms of model predictions if this effect/channel was neutralized?
 - Suppose that the concerned variables remain at their 1970's level

	Variable	France	United-States
p ₁₉₇₀	Survival rate in 1970	0.417	0.476
n ₁₉₇₀	Population growth in 1970	1.134	1.597
	Old-age-dependency ratio in 1970		0.298
	Youth political power in 1970	3.846	3.008

Counterfactual and aging effect decomposition

- Objectives: quantify the role of the aging population
 - ▶ due to population growth (n) vs survival rate (p);
 - **through** factor accumulation (n, p, N^y, N^o) vs policy mechanism (η)
- Intuition: what would have happened in terms of model predictions if this effect/channel was neutralized ?
 - ▶ Suppose that the concerned variables remain at their 1970's level

	Variable	France	United-States
P ₁₉₇₀	Survival rate in 1970	0.417	0.476
n ₁₉₇₀	Population growth in 1970	1.134	1.597
	Old-age-dependency ratio in 1970		0.298
	Youth political power in 1970	3.846	3.008

Counterfactual and aging effect decomposition

- Objectives: quantify the role of the aging population
 - ▶ due to population growth (n) vs survival rate (p);
 - ▶ **through** factor accumulation (n, p, N^y, N^o) vs policy mechanism (η)
- Intuition: what would have happened in terms of model predictions if this effect/channel was neutralized ?
 - ▶ Suppose that the concerned variables remain at their 1970's level

	Variable	France	United-States
p ₁₉₇₀	Survival rate in 1970	0.417	0.476
n_{1970}	Population growth in 1970	1.134	1.597
$\frac{p_{1970}}{n_{1970}}$	Old-age-dependency ratio in 1970	0.368	0.298
η_{1970}	Youth political power in 1970	3.846	3.008

Counterfactual predictions: pop. growth vs survival rate

Labor share

Decomposition: population growth vs survival rate

Difference with counterfactual (in pp.)

Decomposition: factor accumulation vs policy mechanism

Difference with counterfactual (in pp.)

Decomposition: summary

Aging-effect decomposition by period and country

Overview

- Introduction
- 2 Theoretical framework
- Quantitative analysis
- 4 Discussion
- Conclusion

Who are the winners of the inter-generational conflict?

Income (per-cohort-member) ratios in deviation from the 1970's value (in %)

Overview

- Introduction
- 2 Theoretical framework
- Quantitative analysis
- 4 Discussion
- Conclusion

- Age structure affects the income allocation in aging countries
 - ▶ The predominant cohort shapes the institutions in its favor
- The boomers are the winner of the inter-generational conflict
 - Always have a relatively greater political weight w.r.t. to the previous and next generations
 - Extract income through redistribution
- Biased technical change is a response of firms to income share grability of workers (Caballero and Hammour 1998)
- ⇒ Demographic dynamics may be a determinant of this grability and thus be the source of the bias

- Age structure affects the income allocation in aging countries
 - ▶ The predominant cohort shapes the institutions in its favor
- The boomers are the winner of the inter-generational conflict
 - ► Always have a relatively **greater political weight** w.r.t. to the previous and next generations
 - Extract income through redistribution
- Biased technical change is a response of firms to income share grability of workers (Caballero and Hammour 1998)
- ⇒ Demographic dynamics may be a determinant of this grability and thus be the source of the bias

- Age structure affects the income allocation in aging countries
 - ▶ The predominant cohort shapes the institutions in its favor
- The boomers are the winner of the inter-generational conflict
 - Always have a relatively greater political weight w.r.t. to the previous and next generations
 - Extract income through redistribution
- Biased technical change is a response of firms to income share grability of workers (Caballero and Hammour 1998)
- Demographic dynamics may be a determinant of this grability and thus be the source of the bias

- Age structure affects the income allocation in aging countries
 - ▶ The predominant cohort shapes the institutions in its favor
- The boomers are the winner of the inter-generational conflict
 - Always have a relatively greater political weight w.r.t. to the previous and next generations
 - Extract income through redistribution
- Biased technical change is a response of firms to income share grability of workers (Caballero and Hammour 1998)
- ⇒ Demographic dynamics may be a determinant of this *grability* and thus be the source of the bias

- Opportunist candidates: try to maximize their probability of winning the election
 - Candidates are different in terms of popularity
 - ▶ Idiosyncratic bias among voters for one candidate
- \Rightarrow All candidates **choose the same policy platform** g_t^{\star} that maximize the political objective function $W(g_t)$
 - The political objective function $W(g_t)$ depends on:
 - 1. Population share of voters' groups: $N_t^j/N_t \ \forall j \in \{y, o\}$;
 - 2. Sensitivity to policy changes: $\omega^j \ \forall j \in \{y, o\}$

- Opportunist candidates: try to maximize their probability of winning the election
 - Candidates are different in terms of popularity
 - ▶ Idiosyncratic bias among voters for one candidate
- \Rightarrow All candidates **choose the same policy platform** g_t^{\star} that maximize the political objective function $W(g_t)$
 - The political objective function $W(g_t)$ depends on:
 - 1. Population share of voters' groups: $N_t^j/N_t \ \forall j \in \{y, o\};$
 - 2. Sensitivity to policy changes: $\omega^j \ \forall j \in \{y, o\}$

- Opportunist candidates: try to maximize their probability of winning the election
 - Candidates are different in terms of popularity
 - Idiosyncratic bias among voters for one candidate
- \Rightarrow All candidates **choose the same policy platform** g_t^{\star} that maximize the political objective function $W(g_t)$
 - The political objective function $W(g_t)$ depends on:
 - 1. Population share of voters' groups: $N_t^j/N_t \ \forall j \in \{y, o\}$;
 - 2. Sensitivity to policy changes: $\omega^j \ \forall j \in \{y, o\}$

Equilibrium public policy characterized by:

$$\max_{g_t} W(g_t) = \frac{N_t^y}{N_t} \omega^y \tilde{U}_t^y(g_t) + \frac{N_t^o}{N_t} \omega^o \tilde{U}_t^o(g_t) + other \ terms$$

- where other terms encompasses all the terms that are not directly affected by the public policy
- Equivalent to:

$$\max_{g_t} W(g_t) = rac{n_t}{
ho_t} rac{1}{\omega} ilde{U}_t^{y}(g_t) + ilde{U}_t^{o}(g_t) + other \ terms$$

- where $\omega \equiv w^o/w^y$ the relative sensitivity to policy changes of the elderly:
- ▶ and the $1 + \alpha p_{t+1}$ component in η_t comes from \tilde{U}_t^y

Equilibrium public policy characterized by:

$$\max_{g_t} W(g_t) = \frac{N_t^y}{N_t} \omega^y \tilde{U}_t^y(g_t) + \frac{N_t^o}{N_t} \omega^o \tilde{U}_t^o(g_t) + other \ terms$$

- where other terms encompasses all the terms that are not directly affected by the public policy
- Equivalent to:

$$\max_{g_t} W(g_t) = \frac{n_t}{p_t} \frac{1}{\omega} \tilde{U}_t^y(g_t) + \tilde{U}_t^o(g_t) + other \ terms$$

- where $\omega \equiv w^{o}/w^{y}$ the relative sensitivity to policy changes of the elderly:
- and the $1 + \alpha p_{t+1}$ component in η_t comes from \tilde{U}_t^y

October 21, 2020

- In public debate, it is often argued that the legal retirement age should change (upward) in the future
- Increasing retirement age equivalent to a decline of the survival rate (in terms of the model)
- ⇒ Counterfactual analysis after 2020, with three *scenarii* compared to the benchmark one

- In public debate, it is often argued that the legal retirement age should change (upward) in the future
- Increasing retirement age equivalent to a decline of the survival rate (in terms of the model)
- ⇒ Counterfactual analysis after 2020, with three *scenarii* compared to the benchmark one

- In public debate, it is often argued that the legal retirement age should change (upward) in the future
- Increasing retirement age equivalent to a decline of the survival rate (in terms of the model)
- ⇒ Counterfactual analysis after 2020, with three *scenarii* compared to the benchmark one

Survival rates France **United States** 0.9 -Variable 0.8 Scenario Benchmark 0.7 -Shift -10% Constant Half growth 0.6 2020 2040 2060 2080 2020 2040 2060 2080

Labor share

Scenario — Benchmark -- Shift -10% -- Constant -- Half growth