VIŠESTRUKA LINEARNA REGRESIJA

Definicija višestruke linearne regresije

• Alat za modelovanje veze zavisne promenljive Y sa više nezavisnih promenljivih $X_1, ..., X_n$.

 Veza se modeluje kao linearna kombinacija zavisnih promenljivih i parametara (težina).

Parametri se određuju iz podataka.

Višestruka linearna regresija - primer

- Koristimo primer sa prošlog predavanja da objasnimo razliku između jednostruke i višestruke regresije.
- Sada koristimo sve nezavisne promenljive.
- Skup podataka o 280 kuća iz kanadskog grada Windsor (1987):
- 1. price: sale price of a house
- 2. lotsize: the lot size of a property in square feet;
- 3. bedrooms: number of bedrooms
- 4. bathrms: number of full bathrooms
- 5. **stories**: number of stories excluding basement
- 6. driveway: dummy, 1 if the house has a driveway
- 7. recroom: dummy, 1 if the house has a recreational room
- 8. fullbase: dummy, 1 if the house has a full finished basement
- 9. gashw: dummy, 1 if the house uses gas for hot water heating
- 10. airco: dummy, 1 if there is central air conditioning
- 11. garagepl: number of garage places
- 12. prefarea: dummy, 1 if located in the preferred neighbourhood of the city

Primer – deo skupa podataka

orice	lotsize(m^2)	bedrooms			driveway	recroom	fullbase	gashw	airco	garagepl	prefarea
74700.0	658.5				1.0). (0. 0		2.0 1
85000.0	652.4	3.0	1.0		1.0	.0	1.0). (1.0	2	2.0 1
68500.0	650.6	3.0	1.0		1.0). (.0
82900.0	650.6	3.0	1.0	1.0	1.0	.0	1.0). (0. 0	2	2.0 1
86000.0	641.3	3.0	2.0	1.0	1.0	1.0	1.0). (0. 0		.0 1
78900.0	641.3	3.0	1.0	1.0	1.0	1.0	1.0). (0. 0)	.0 1
69000.0	637.8	3.0	1.0	2.0	1.0	.0).). (1.0	2	2.0 1
77500.0	634.3	3.0	1.0	1.0	1.0	1.0	1.0). (1.0		.0 1
86000.0	632.0	2.0	1.0	1.0	1.0	1.0	1.0). (0.	2	2.0
91700.0	627.3	2.0	1.0	1.0	1.0	1.0	1.0). (0. 0	2	2.0 1
70000.0	624.6	3.0	1.0	1.0	1.0	.0).). (0. 0		.0
77000.0	623.6	3.0	2.0	2.0	1.0	1.0	1.0). (0. 0	1	1.0 1
93000.0	619.9	3.0	1.0	3.0	1.0	.0	1.0). (0. 0)	.0 1
80750.0	619.0	4.0	2.0	2.0	1.0	1.0	1.0). (0. 0	1	1.0 1
87000.0	614.8		2.0	2.0	1.0	1.0).	1.0	0. 0	1	1.0
89900.0	613.4		2.0		1.0	.0).). (1.0		.0 1
89000.0	613.4	3.0	2.0	1.0	1.0	.0	1.0). (1.0		.0 1
87000.0	613.4	3.0	1.0	1.0	1.0	1.0	1.0). (0. 0	2	2.0 1
72000.0	613.4	3.0	1.0	1.0	1.0	1.0	1.0). (.0 1
80000.0	613.4	4.0	2.0	1.0	1.0	.0	1.0). (0. 0		.0 1
78000.0	613.4				1.0				0. 0		.0 1
85000.0	607.8	3.0	1.0	1.0	1.0	1.0	1.0). (0. 0	2	2.0 1
75000.0	607.8	4.0	2.0	2.0	.0	.0).). (1.0		.0
85000.0	606.4	3.0	2.0	4.0	1.0	.0).). (0. 0	1	1.0
84000.0	604.1	3.0	2.0	3.0	1.0	.0).). (1.0		.0
62000.0	599.5		1.0		1.0	.0).). (0. 0		.0
76900.0	599.5	3.0	2.0	1.0	1.0	1.0	1.0	1.0	0. 0		.0
67900.0	598.5	2.0	1.0	1.0	1.0	.0).). (1.0	3	3.0
87500.0	596.7	3.0	1.0	3.0	1.0				0.		.0 1
85000.0	596.7	3.0	1.0	1.0	1.0	.0	1.0). (1.0		.0 1
90000.0	594.8	3.0	1.0	1.0	1.0	1.0	1.0). (1.0	1	1.0 1
63900.0	591.1	2.0	1.0	1.0	1.0	.0	1.0). (1.0	1	1.0
82000.0	591.1	3.0	1.0	1.0	1.0	1.0	1.0). (1.0	2	2.0 1
80000.0	591.1	3.0	1.0	3.0	1.0	.0).). (0. 0		.0 1
88500.0	590.2	3.0	2.0	3.0	1.0	1.0).). (1.0		.0
68000.0	587.5	3.0	1.0	2.0	1.0	.0	1.0). (1.0	1	1.0
70000.0	585.5	3.0	1.0	1.0	1.0	.0).). (1.0	2	2.0
85000.0	581.2		2.0	1.0	1.0	.0	1.0). (0. 0		1.0 1
78000.0	577.2		1.0	4.0	1.0	1.0).). (1.0		.0
79000.0	566.9				1.0		1.0). (2.0 1
78000.0	566.9	3.0	1.0	3.0	1.0	1.0).). (1.0		.0 1
73000.0	566.9	3.0	1.0	1.0	1.0). (1.0		.0 1
74900.0	562.3				1.0				0. 0		.0 1
69000.0	561.4				1.0				0. 0		2.0 1
82500.0	557.6				1.0				1.0		.0
67000.0	557.6				1.0						1.0
59000.0	556.2				1.0				0. 0		.0

Komponenta slučajne greške

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \cdots + \beta_n X_{ni} + \varepsilon_i$$
 Prva nezavisna promenjljiva koju koristimo N-ta nezavisna promenjljiva koju koristimo l-ti primer prve nezavisne promenjljive l-ti primer prve nezavisne promenjljive

Na primer, X_{13} je površina placa treće kuće u skup podataka, dok je X_{43} broj kupatila treće kuće.

- Podsetimo se:
- Prikazani model je statistički model koji modeluje populaciju (populacioni model).
- Populacija je skup svih mogućih primera predmeta (pojave) koji se analizira.
- Na primer, ako predviđamo cenu stana na osnovu kvadrature u Srbiji, populacioni model obuhvatio bi sve stanove koji postoje u Srbiji.
- Podaci koje koristimo za regresionu analizu su jedan uzorak (sempl) populacije.

Model – procene parametara iz uzorka podataka

Jednačina višestruke linearne regresije je procena parametara populacionog modela dobijena iz uzorka podataka.

Metod Najmanjih Kvadrata

• Parametri $b_{0,}b_{1},...,b_{n su}$ dobijeni iz podataka (uzorka populacije) optimizacijom sume kvadrata grešaka, odnosno razlika između Y i \hat{Y} :

$$\min \sum (Y_i - \hat{Y}_i)^2 = \min \sum (Y_i - b_0 + b_1 X_{1i} + b_2 X_{2i} + \dots + b_n X_{ni})^2$$

- b_0 je procenjena (iz podataka) srednja vrednost Y kada je $X_i=0$ za i=1,...,n.
- b_i je procenjena promena srednje vrednosti Y za povećanje X_i za jednu jedinicu kada su vrednosti svih ostalih X_i za i ≠ j konstantne (fiksirane).
- Pogledajmo primer na sledećem slajdu

- Procenjujemo cenu kuće na osnovu površine placa i broja kupatila.
- Pomoću Python biblioteke statsmodels:

```
\widehat{cena_kuce_i} = 22840 + 78.01 \cdot povrsrina_{placa_i} + 2546.38 \cdot br\_spavacih\_soba_i
```

```
coef
-----
const 2.284e+04
lotsize(m^2) 78.0178
bedrooms 2546.3854
```

- b₂ je procenjena promena srednje vrednosti cene kuća za povećanje broja spavaćih soba za jednu, pod uslovom da je površina placa fiksirna.
 - Na primer, ako fiksiramo površinu placa na 100m² imamo:

```
cena_kuce_i = 22840 + 78.01 \cdot povrsrina_placa_i + 2546.38 \cdot br\_spavacih\_soba_i cena_kuce = 22840 + 78.01 \cdot 100 + 2546.38 \cdot 1 = 33187.38 cena_kuce = 22840 + 78.01 \cdot 100 + 2546.38 \cdot 2 = 35733.76 35733.76 - 33187.38 = 2546.38
```

 Cena kuće površine placa 100m² poveća se za 2546.38 dolara ako se doda još jedna spavaća soba.

- Zašto naglašavamo konstantnost (fiksiranost) svih nezavisnih promenljivih osim one čiji koeficijent interpretiramo?
- Na koji način bi interpretirali negativan b2 kao u primeru ispod?

```
cen\widehat{a\_kuce_i} = 22840 + 78.01 \cdot povrsrina\_placa_i - 2546.38 \cdot br\_spavacih\_soba_i
```

- Interpretracija da povećanje broja spavaćih soba utiče negativno na cenu bi bilo pogrešno.
 - Ova interpretacija takođe i nema puno smisla jer znamo da su kuće sa više soba obično veće i samim tim skuplje.
- Ispravna interpretacija: povećanje broja spavaćih soba u kući, a da površina placa ostane ista, negativno utiče na cenu.
 - Što može da ima smisla jer ljudi mogu više da vole kuću sa malo velikih soba, u odnosu na onu sa puno malih soba.

r² podsećenje

 Podsetimo se prvo koeficijenta determinacije r² – odnos varijabilnosti zavisne promenjljive (SST) koja je objašnjenja pomoću nezavisnih promenjljivih (SSR).

$$r^2 = \frac{SSR}{SST}$$

Evaluacija modela – prilagođeni r²

- Pored koeficijenta determinacije (r²) alati za linearnu regresiju kao rezultat vraćaju i prilagođeni koeficijent determiniacije (adjusted r²).
- Uporedićemo vrednosti r² i prilagođenog r² za slučaj jednostruke i višestruke regresije na primeru cena kuća.

```
R-squared:
  R-squared:
                                    0.608
                                              Adj. R-squared:
  Adj. R-squared:
                                    0.607
                                                                            coef
                          coef
                                                        const
                                                                      1.912e+04
      const 2.942e+04
                                                        lotsize(m^2)
                                                                        63,1780
      lotsize(m^2)
                      80.0664
                                                        bedrooms
                                                                        41.8319

    Vidimo da se vrednosti r² i prilagođenog r²

                                                        bathrms
                                                                      4348.5315
  značajno razlikuju u slučaju višestruke regresije.
                                                        stories
                                                                      3903.9671
                                                        driveway
                                                                      1371.5360
                                                        recroom
                                                                      3985.9209
 To nam je indikator da je vrednost prilagođenog
                                                        fullbase
                                                                      2492,1516
  r<sup>2</sup> informativna u slučaju višestruke regresije.
                                                        gashw
                                                                       148.2952
                                                        airco
                                                                      3045.3796
                                                        garagepl
                                                                       671.0931
```

prefarea

4289.9797

U nastavku ćemo objasniti zašto.

- r² nije adekvatna mera kod višestruke regresije jer dodavanjem <u>svake</u> nove nezavisne promenljive vrednost r² ili raste ili ostaje ista, odnosno nikada se ne smanjuje.
- Nezavisna promenljiva koju dodajemo može biti totalno neinformativna (nepovezana) sa problemom koji rešavamo.
- Lako je ručno utvrditi da boja očiju vlasnika nema veze sa cenom kuće (ili ima...), ali je teško proceniti doprinos nove informativne promenljive u kombinaciji sa postojećim.
 - Na primer, za naš slučaj cena kuća promenljiva gashw (gas za grejanje vode) ne doprinosi kvalitetu modela koji koristi samo lotsize (površinu placa).

- Problem sa konstantnim povećanjem r² dodavanjem svake nove nezavisne promenljive u model ukazuje na to da je potrebno:
- 1. Definisati alternativni način merenja kvaliteta modela.
- 2. Odlučiti kako postupiti u slučaju da smo utvrdili da nova nezavisna promenljiva ne doprinosi kvalitetu modela.
- Slučaj 1. rešavamo uvođenjem prilagođenog r² koji definišemo u nastavku.
- Slučaj 2. je komplikovaniji i njega takođe obrađujemo u nastavku iz dva aspekta.

Nova nezavisna promenljiva ne doprinosi kvalitetu modela

- Iskoristićemo primer promenjljive gashw koja ne doprinosi kvalitetu modela koji koristi samo lotsize. Naravno imamo dve mogućnosti da (1) izbacimo promenljivu gashw iz modela ili (2) da je zadržimo u modelu.
- Odluka zavisi od cilja našeg istraživanja (modelovanja pomoću višestruke linearne regresije).
- Ako nam je cilj isključivo predikcija onda možemo izbaciti promenljivu i time dobiti jednostavniji model istog kvaliteta – o tome diskutujemo u narednim slajdovima.
- Ako nam je cilj analiza uticaja različitih faktora na nezavisnu promenljivu, onda bi trebalo da zadržimo promenljivu u modelu – o tome diskutujemo kasnije u prezentaciji kada se bavimo korelacijama između nezavisnih promenljivih.

- Zašto nam je uopšte važno koliko nezavisnih promenljivih imamo i da su sve stvarno korisne?
- Recimo da modelujemo prodaju zimske odeće tokom jedne godine.
- Modeli su polinomi, redom sa leva na desno: prvog (P1), drugog (P2) i desetog stepena (P10).

- Modeli su polinomi, redom sa leva na desno: prvog (P1), drugog (P2) i desetog stepena (P10).
- Tehnički mi nismo dodali novu nezavisnu promenljivu, već smo transformisali postojeću (*Vreme*) stepenovanjem i tako dodali nove sabirke u model: b₂x², b₃x³,...
- Za problem koji želimo da ilustrujemo potpuno je isto da li koristimo polinome ili kompletno nove nezavisne promenljive.

- P10 se očigledno najbolje uklapa u podatke (ima tačne predikcije za većinu tačaka). To je posledica kompleksnosti (fleksibilnosti) P10 u odnosu na P1 i P2.
- Međutim, posledica kompleksnosti su i velike oscilacije P10. Za male promene X imamo velike promene Y.
- Tako nagle promene ne modeluju dobro naš problem (prodaju odeće).

Preprilagođavanje (Overfitting)

- Tako nagle promene ne modeluju dobro naš problem (prodaju odeće).
- Dakle P10 skoro savršeno modeluje date podatke, ali ne modeluje dobro generalni trend koji podaci prate pa zato ne očekujemo da će dobro raditi na novim nepoznatim podacima.
- Takva situacija naziva se preprilagođavanje modela ili overfitting.

Nedovoljno prilagođavanje (*Underfitting*)

- Overfitting je karakteristika kompleksnih modela, a to su modeli sa velikim brojem nezavisnih promenljivih.
- Suprotna situacija kod koje model nije dovoljno kompleksan da modeluje generalni trend u podacima zove se nedovoljno prilagođavanje ili *underfitting*.

Kako postići balans između *over*- i *underfittinga*?

- Ozbiljan i otvoren problem u prediktivnom modelovanju.
- U našem primeru je P2 balans, ali dodavanjem novih nezavisnih promenljivih (pored vremena) povećali bi dimenzionalnost prostora i posle 3D ne bismo vizualno mogli da uočimo trend.
- Iz tog razloga koristimo mere performansi koje mogu da ukažu na over- ili underfitting. Jedna od tih mera je Prilagođeni r².

- Rekli smo da r² nije adekvatna mera kod višestruke regresije jer dodavanjem <u>svake</u> nove nezavisne promenljive vrednost r² ili raste ili ostaje ista, odnosno, nikada se ne smanjuje*.
- Pokazali smo u širem smislu zašto je to problem.
- Sada ostaje da pokažemo kako prilagođavamo r² sa obzirom na broj nezavisnih promenljivih.

^{*}Na sledećem slajdu data je šira ideja dokaza ove tvrdnje

Recimo da imamo jednačinu modela jednostruke regresije:

$$\hat{Y}_i = b_0 + b_1 X_{1i}$$

- Parametre smo odredili minimizacijom SSE.
- Dakle, u prostoru svih modela (pravih linija) našli smo onaj koji ima minimalnu SSE.
- Ako dodamo još jednu nezavisnu promenjljivu u model imamo:

$$\hat{Y}_i = b_0 + b_1 X_{1i} + b_2 X_{2i}$$

- Sada pretražujemo prostor modela koji kao podskup ima modele jednostruke regresije jer su to modeli za koje je b₂=0.
- Nadskup modela može sadržati samo bolji ili u najgorem slučaju isti model kao podskup, odnosno ne možemo povećati SSE (pa ni r²) već samo smanjiti ili ostati pri istom.

Prilagođeni r²

Formula za prilagođeni (adjusted) r² je:

$$\bar{r}^2 = 1 - (1 - r^2) \frac{n - 1}{n - p - 1}$$

- Vrednost prilagođenog r² zavisi od:
 - samog r²,
 - broj primera u uzorku podataka n,
 - broj nezavisnih promenjljivih p,

Tumačenje vrednosti prilagođenog r²

$$\bar{r}^2 = 1 - (1 - r^2) \frac{n - 1}{n - p - 1}$$

- Povećanjem broja nezavisnih promenljivih p, vrednost opada, odnosno velika vrednost originalnog r² je "kažnjena" sa porastom kompleksnosti modela.
- Sa porastom broja primera vrednost raste.
- Za kompleksne modele generalno važi da: što je veći uzorak podataka iz koje model uči to je mogućnost za overfitting manja, a moć generalizacije postaje veća.
- Generalno u Al disciplinama: što više podataka to bolje.

Prilagođeni r² – Primer

 Poredimo dva modela za predikciju cene kuća, model sa svih 11 nezavisnih promenjljivih i model bez promenljive gashw (grejanje vode na gas).

R-squared: Adj. R-squared	d: coe t		0.742 R-squared: 0.731 Adj. R-square	d:	0.742 0.732 coef
const lotsize(m^2) bedrooms bathrms stories driveway recroom fullbase gashw airco garagepl prefarea	1.912e+04 63.1780 41.8319 4348.5315 3903.9671 1371.5360 3985.9209 2492.1516 148.2952 3045.3796 671.0931 4289.9797	•	Vidimo da je vrednost prilagođenog r² veća za model bez promenljive <i>gashw</i> To znači da nam ta promenljiva ne donosi nove informacije o ceni, ako već imamo ostalih 10 promenljivih. Dodavanjem bi samo nepotrebno povećali kompleksnost.	const lotsize(m^2) bedrooms bathrms stories driveway recroom fullbase airco garagepl prefarea	1.912e+04 63.1767 41.4861 4356.4592 3905.6483 1366.8607 3991.1393 2486.9367 3038.5901 673.0433 4285.3678

Pretpostavke MNK linearne regresije -Podsećanje

- <u>Linearity</u> Linearnost
 - Odnos između X i Y je linearan
- Independence of Errors Nezavisnost grešaka ε_i
 - Greške ε_i su statistički nezavisne
 - Greška za neko X_i ne zavisi od greške za neko X_j
 - Naročito značajno za podatke koji se prikupljaju kroz vreme
- Normality of Error Normalnost grešaka
 - Greške ε_i su normalno distribuirane oko srednje vrednosti 0 za svako dato X
- <u>E</u>qual Variance Jednaka varijansa
 - Distribucija grešaka ε_i oko srednje vrednosti 0 ima ima jednaku varijansu za svako dato X

Dodatna pretpostavka za višestruku regresiju

- Za višestruku linearnu regresiju postoji dodatna pretpostavaka.
- Ne postoji savršena kolinearnost između bilo koje dve ili više nezavisnih promenljivih.
- Savršena kolinearnost između dve promenljive X₁ i X₂ postoji kada su povezane linearnom funkcijom:

$$X_2 = aX_1 + b$$

Na sledećem slajdu dat je realan primer savršene kolinearnosti.

Savršena kolinearnost - Primer

- Recimo da modelujemo mušterije telefonske kompanije i da imamo sledeće dve nezavisne promenljive: cenu poziva u toku dana (cena) i broj minuta poziva u toku dana (minuti).
- Cena se naravno obračunava po nekoj formuli, recimo da je ta formula:

$$cena = 5 \cdot minuti + 100$$

 Onda možemo da konstatujemo da postoji savršena kolinearnost između cenu poziva u toku dana i broj minuta poziva u toku dana.

Savršena kolinearnost i MNK

- Ozbiljan problem za linearnu regresiju jer ne možemo odrediti vrednosti parametara (koeficijenata) regresionog modela.
- Ne postoji analitičko rešenje pomoću MKN jer matrica ATA nema inverznu.

$$(A^TA)a = A^Ty$$
 $A = egin{bmatrix} 1 & X_{11} & \cdots & X_{k1} \ dots & dots & dots \ 1 & X_{1N} & \cdots & X_{kN} \end{bmatrix}$

- To je zato što je broj linearno nezavisnih kolona manji od broja kolona matrice.
 - Jedna kolona (nezavisna promenljiva) može se dobiti kao linearna kombinacija druge.

Savršena kolinearnost - detekcija

- Ako postoji savršena kolinearnost onda moramo da uklonimo po jednu promenljivu iz svakog para nezavisnih promenljvih koje su povezane na taj način.
- U primeru sa telefonskom kompanijom mogli smo, na primer, da uklonimo cenu dnevnih poziva iz modela.
- U nastavku ćemo pokazati
 - na koji način još možemo da detektujemo savršenu kolinearnost osim vizualno
 - da li je velika ali ne savršena kolinearnost problematična?

Kolinearnost i Korelacija

- Korelacija je termin koji se odnosi na linearnu vezu dve promenljive.
- Koeficijent korelacije je vrednost kojim se meri jačina linearne veze (korelacije).
- Kolinearnost je takođe termin koji se odnosi na linearnu vezu dve promenljive, ali se koristi u linearnoj regresiji i odnosi se na vezu između <u>nezavisnih promenlivih</u>.
 - Naravno, kolinearnost između zavisne i nezavisne promenljive je poželjna u modelu.

Koeficijent korelacije - Kovarijansa

- Vrednost kovarijanse je osnova za dobijanje vrednosti koeficijenta korelacije.
- Recimo da imamo dve promenljive X i Y i n vrednosti x(1), ..., x(n) i y(1), ..., y(n).
 Kovarijansa za X i Y je:

$$Cov(X,Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x(i) - \bar{x})(y(i) - \bar{y})$$

- Kovarijansa meri kako X i Y variraju zajedno:
 - ima pozitivnu vrednosti ako velike vrednosti X odgovaraju velikim vrednostima Y i ako male vrednosti X odgovaraju malim vrednostima Y.
 - ima negativnu vrednosti ako velike vrednosti X odgovaraju malim vrednostima Y i ako male vrednosti X odgovaraju velikim vrednostima Y.

- Kovarijansa meri kako X i Y variraju zajedno:
 - ima pozitivnu vrednosti ako velike vrednosti X odgovaraju velikim vrednostima Y i ako male vrednosti X odgovaraju malim vrednostima Y.

- Kovarijansa meri kako X i Y variraju zajedno:
 - ima negativnu vrednosti ako velike vrednosti X odgovaraju malim vrednostima Y i ako male vrednosti X odgovaraju velikim vrednostima Y.

- Kovarijansa meri kako X i Y variraju zajedno:
 - Kovarijansa meri linearan odnos

Vrednost kovarijanse zavisi od raspona vrednosti X i Y.

Koeficijent korelacije

- Vrednost kovarijanse zavisi od raspona vrednosti X i Y.
 - Normalizujemo je deljenjem sa standardnom devijacijom
 - Tako dobijamo koeficijent korelacije
 - Kofeicijent korelacije definisan je sa:

$$\rho(X,Y) = \frac{\sum_{i=1}^{n} (x(i) - \overline{x})(y(i) - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x(i) - \overline{x})^{2}} \sqrt{\sum_{i=1}^{n} (y(i) - \overline{y})^{2}}}$$

Koeficijent korelacije

- Koeficijent korelacije meri linearan odnos
- Raspon vrednosti je [-1,1]
- Vrednost 1 je indikator savršene pozitivne kolinearnosti
- Vrednost -1 je indikator savršene negativne kolinearnosti

Koeficijent korelacije - napomena

Napomena da koeficijent korelacije meri linearan odnos

Koeficijent korelacije – primeri dijagrama rasipanja

Koeficijent korelacije – velika ali ne savršena kolinearnost

- Vrednosti koeficijenta korelacije imaju mnogo tumačenja i zavise od toga šta je predmet proučavanja. Za prirodne nauke tipično važi:
 - [0.8, 1] jaka korelacija
 - [0.6, 0.8) srednja korelacija
- U nastavku se kratko bavimo jakom ali ne savršenom korelacijom u linearnoj regresiji.

Velika ali ne savršena kolinearnost – Matrica korelacija

- Kod višestruke regresije jaku korelaciju tipično detektujemo pomoću matrice korelacije.
- Matrica korelacija
 pokazuje vrednosti
 koeficijenata korelacije
 za sve parove
 promenljivih.

price	1.00	0.78	0.25	0.27	0.25	0.29	0.41	0.23	-0.02	0.30	0.15	0.33
lotsize(m^2)	0.78	1.00	0.14	0.14	0.04	0.32	0.35	0.14	-0.03	0.26	0.19	0.22
bedrooms	0.25	0.14	1.00	0.35	0.38	-0.04	0.02	0.10	0.03	0.10	0.02	0.05
bathrms	0.27	0.14	0.35	1.00	0.12	-0.08	-0.00	0.13	0.11	0.01	0.06	-0.00
stories	0.25	0.04	0.38	0.12	1.00	0.08	-0.02	-0.17	0.04	0.12	-0.16	-0.02
driveway	0.29	0.32	-0.04	-0.08	0.08	1.00	0.10	-0.02	-0.06	0.01	0.20	0.22
recroom	0.41	0.35	0.02	-0.00	-0.02	0.10	1.00	0.37	0.00	0.06	0.01	0.22
fullbase	0.23	0.14	0.10	0.13	-0.17	-0.02	0.37	1.00	-0.07	0.00	-0.00	0.20
gashw	-0.02	-0.03	0.03	0.11	0.04	-0.06	0.00	-0.07	1.00	-0.09	0.04	-0.08
airco	0.30	0.26	0.10	0.01	0.12	0.01	0.06	0.00	-0.09	1.00	0.04	-0.03
garagepl	0.15	0.19	0.02	0.06	-0.16	0.20	0.01	-0.00	0.04	0.04	1.00	0.01
prefarea	0.33	0.22	0.05	-0.00	-0.02	0.22	0.22	0.20	-0.08	-0.03	0.01	1.00
	price	lotsize(m^2)	bedrooms	bathrms	stories	driveway	recroom	fullbase	gashw	airco	garagepl	prefarea

Velika ali ne savršena kolinearnost – napomena

- Ako uočimo jaku korelaciju važno je pogledati dijagram rasipanja uočenih promenjljivih.
- Sama vrednost koeficijenata korelacije nije dovoljna. Na četiri grafika ispod prikazana su četiri skupa podataka* koji svi imaju isti koeficijent korelacije.

Velika ali ne savršena kolinearnost – posledice po rezultate regresije

- Velika kolinearnost nije problematična za MNK.
- Parametri koji su određeni pomoću MNK biće tačni i najbolji mogući u smislu sume kvadrata grešaka.
- Intuicija nam kaže da će možda uticaj jedne informacije sadržane u više promenljivih biti preveliki na model.
- U takvim slučajevima obično mislimo da je ispravno da izbacimo jednu od poromenljivih.
- Međutim to može imate ozbiljne posledice na model i samo istraživanje iz koga je model proistekao.
- Na sledećem slajdu ćemo to pokazati kroz primer.

Velika ali ne savršena kolinearnost – posledice po rezultate regresije

 Recimo da modelujemo potrošnju jedne porodice na nivou godine i da model ima sledeći oblik:

$$potrosnja = \beta_2 \cdot prihodi + \beta_1 \cdot ustedjevina + \beta_0$$

- Recimo da imamo uzorak kod koga su prihodi i ušteđevina u jakoj korelaciji.
 - Jer tipično porodice koje imaju veliku ušteđevinu imaju i velike prihode.
- Ako bi iz modela izbacili prihode ili ušteđevinu napravili bi grešku u modelovanju.
- Model koji uključuje oba faktora je korektan jer potrošnja zavisi od oba ova faktora, moguće je samo da naš uzorak podataka ne sadrži dovoljno porodica koje imaju veliku ušteđevinu i male prihode i obrnuto.
- Ako želimo da naše istraživanje bude ispravno i da ne odbacujemo faktore iz modela bolje je da ne radimo ništa ili ako je moguće pribavimo dodatne podatke.

t-test kod višestruke regresije

- Podsetimo se t-test nam je kod jednostruke regresije služio da statističkim testom proverimo da li je β₁=0 odnosno da li postoji linearna veza između X i Y.
- Na isti način koristimo t-test u višestrukoj regresiji, samo što se radi za svaku nezavisnu promenljivu posebno.
- Takođe, ako je p-vrednost ≤ 0.05 smatra se da postoji linearna veza između te nezavisne promenljive i Y.
- Međutim, interpretacija t-testa je sada malo drugačija.

t-test kod višestruke regresije – interpretacija

- Kod višestruke regresije t-testom testiramo da li postoji statistički značajna linearna veza date nezavisne promenljive sa zavisnom, ali u prisustvu svih drugih promenljivih u modelu.
- Dakle, moguće je da neka promenljiva u prisustuvu drugih više nema značaj, iako bi u slučaju jednostruke regresije (sa samo tom promenljivom) imala značaj.
- Pogledajmo primer na sledećem slajdu.

t-test kod višestruke regresije – Primer 1/2

 Vidimo da broj spavaćih soba (bedrooms) nije prošao t-test u višestrukoj regresiji, dok u jednostrukoj jeste.

		coef	std err	t	P> t	[0.0]	25 0.975]
const bedrooms	4.853 4399.		3069.052 1024.645	15.813 4.293			
		coef	std err		t P> t	[0.02	0.975]
const lotsize(m		.912e+04 63.1780		8.67 16.35			
bedrooms	,	41.8319		0.06	0.948	-1216.82	
bathrms stories		348.5315 903.9671		4.20 6.19			
driveway		371.5360		1.11			
recroom fullbase		985.9209 192.1516		3.20 2.73			
gashw		148.2952		0.07			
airco	36	945.3796	938.757	3.24	14 0.001	1197.10	4893.655
garagepl		571.0931		1.27			
prefarea	42	289.9797	982.849	4.36	0.000	2354.89	6225.068

t-test kod višestruke regresije – Primer 2/2

 Razlog za veliku p-vrednost za bedrooms je najverovatnije u tome što je u korelaciji sa bathrms i stories.

	coef	std err	t	P> t	[0.025	0.975]
const	4.255e+04	3232.381	13.164	0.000	3.62e+04	4.89e+04
bedrooms	1848.2657	1129.879	1.636	0.103	-376.009	4072.541
bathrms	6511.4425	1809.861	3.598	0.000	2948.557	1.01e+04
stories	3283.0483	1068.564	3.072	0.002	1179.477	5386.620

- Ako su pretpostavke regresije zadovoljene onda rezultate ovog t-testa kao istraživač koga zanima šta utiče na cenu kuće možemo da interpretiramo na sledeći način:
 - Informacija o broju spavaćih soba kuće nema statistički značajan linearni uticaj na cenu kuće ako nam je poznat broj spratova i kupatila.

F-test

- Dok t-test služi za testiranje značaja pojedinačnih promenljivih,
 F-test se koristi za testiranje značaja celog modela.
- F-test daje odgovor na pitanje "Da li bar jedna nezavisna promenljiva u modelu ima statistički značajnu linearnu vezu sa zavisnom promenljivom?".
- Hipoteza koje se testira pomoću F-testa je:

$$\beta_1 = \beta_2 = \dots = \beta_k = 0,$$

- gde je *k* broj nezavisnih promenljivih u modelu.
- Testiramo da li je bar jedna vrednost β_i različita od nule.

F-test

F-test je takođe razlomak dve komponente signala i buke (noise):

$$\frac{MSR}{MSE} = \frac{\frac{SSR}{k}}{\frac{SSE}{n-k-1}}$$

- gde je k broj nezavisnih promenljivih u modelu, a n broj primera u podacima.
- Signal je MSR odnosno varijablinost podataka koja je objašnjena pomoću modela.
- Buka je MSE odnosno varijablinost podataka koju model nije mogao da objasni.

F-test, MSR i MSE – Komentar

F-test je takođe razlomak dve komponente signala i buke (noise):

$$\frac{MSR}{MSE} = \frac{\frac{SSR}{k}}{\frac{SSE}{n-k-1}}$$

- Imenioci u formulama za MSR i MSE su stepeni slobode.
- Kompletno teorijsko objašenje stepena slobode je van opsega ovog kursa, ali će u nastavku biti dato intuitivno objašnjenje.

F-vrednosti i F-distribucija

Odnos signala i buke u F-testu je F-vrednost:

$$F - vrednost = \frac{MSR}{MSE}$$

Istraživači su simulirali veliki broj uzoraka podataka kod kojih važi:

$$\beta_1 = \beta_2 = \dots = \beta_k = 0$$

- i na taj način shvatili kako su distribuirane F-vrednosti kad hipoteza $\beta_1 = \beta_2 = \cdots = \beta_k = 0$ važi.
- Ta distribucija zove se F-distribucija.

F-distribucija, p-vrednost

- Kada imamo F-vrednost i F-distribuciju onda određujemo p-vrednost (p-value).
- P-vrednost je ukupna verovatnoća da ćemo iz F-distribucije izvući našu F-vrednost ili neku još manje verovatnu (obojen deo distribucije na slici).

F-distribucija, p-vrednost - Primer

- Želimo što manju p-vrednost. Prag koji se koristi u praksi je 0.05.
 - Ako je p-vrednost ≤ 0.05 onda zaključujemo da signal postoji, odnosno da je bar jedno β_i≠0, i=1...k.
- Veći deo distribucije zauzimaju F-vrednosti koje bi dobili da važi $\beta_1 = \beta_2 = \cdots = \beta_k = 0$ jer je tako F-distrbucija formirana.
- Ako je p-vrednost ≤ 0.05 to znači da postoji $\leq 5\%$ verovatnoće da ćemo dobiti našu F-vrednost ako važi $\beta_1 = \beta_2 = \cdots = \beta_k = 0$.
 - Odnosno možemo sa 95% sigurnosti da zaključimo da je β_i≠0, i=1...k.

F-distribucija, p-vrednost

- Pomoću Python biblioteke statsmodels dobijamo tabelu ispod.
- Takva tabela naziva se ANOVA (Analsys of Variance) tabela.

F-distribucija, p-vrednost

Broj stepeni slobode SSR n-1-(n-k-1)=280-1-(280-11-1)=11

- Iz tabele se vidi da je p-vrednost reda veličine 10⁻⁷² što je značajno manje od 0.05.
- Dakle, odbacujemo hipotezu $\beta_1 = \beta_2 = \cdots = \beta_k = 0$ i zaključujemo da bar jedna nezavisna promenjljiva ima statistički značajnu linearnu vezu sa cenom kuća (zavisnom promenljivom).

```
Dep. Variable:
                                                 R-squared:
                                        price
                                                                                  0.742
        Model:
                                           OLS
                                                Adj. R-squared:
                                                                                  0.731
        Method:
                                Least Squares
                                                 F-statistic:
                                                                                  70.01
                             Thu, 21 Sep 2023
                                                                                 21e-72
        Date:
                                                 Prob (F-statistic):
                                                 Log-Likelihood:
                                                                                 -2854.0
                                     14:35:08
        Time:
        No. Observations:
                                           280
                                                 AIC:
                                                                                  5732.
                                                                   F-vrednost
                                                                                            p-vrednost
        Df Residuals:
                                           268
                                                 BIC:
                                                                                  5776.
        Df Model:
                                            11
                                                     Broj primera podataka n
Broj stepeni slobode SSE n-k-1=280-11-1=268
```