THE SPARKS FOUNDATION

DATA SCIENCE AND BUSINESS ANALYTICS INTERNSHIP

AUTHOR: MEGHA

TASK 2- Prediction using Unsupervised ML

In this task we will predict the optimum number of clusters from given 'Iris' dataset using K means clustering algorithm and represent it visually.

1. Importing Libraries

```
import numpy as np
In [1]:
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
```

2. Reading Dataset

0 1

```
iris = pd.read_csv('Iris.csv')
In [2]:
         print('data imported')
        data imported
         #determining the shape of dataset
In [3]:
         iris.shape
Out[3]: (150, 6)
         #first 5 values in the datset
In [4]:
         iris.head()
           Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
Out[4]:
                                                                   Species
```

0.2 Iris-setosa

1.4

3.5

5.1

		ld Se	palLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm		Species			
	1	2	4.9	3.0	1.4	0.2	Iris	s-setosa			
	2	3	4.7	3.2	1.3	0.2	Iris	s-setosa			
	3	4	4.6	3.1	1.5	0.2	Iris	s-setosa			
	4	5	5.0	3.6	1.4	0.2	Iris	s-setosa			
[5]:		<i>ast 5</i> is.ta									
ut[5]:		ld	SepalLengthC	m SepalWidthC	m PetalLength(Cm PetalWidth	Cm	Species			
	145	146	6	.7 3	.0	5.2	2.3	Iris-virginica			
	146	147	6	.3 2	5	5.0	1.9	Iris-virginica			
	147	148	6	.5 3	.0	5.2	2.0	Iris-virginica			
	148	149	6	.2 3	3.4	5.4	2.3	Iris-virginica			
	149	150	5	.9 3	.0	5.1	1.8	Iris-virginica			
[6]:	<pre>iris.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 150 entries, 0 to 149 Data columns (total 6 columns): # Column</class></pre>										
[7]:	<pre>2 SepalWidthCm 150 non-null float64 3 PetalLengthCm 150 non-null float64 4 PetalWidthCm 150 non-null float64 5 Species 150 non-null object dtypes: float64(4), int64(1), object(1) memory usage: 7.2+ KB</pre> 7]: iris.describe()										
ut[7]:			ld Sepa	ılLengthCm Sep	oalWidthCm Pet	alLengthCm P	etal	WidthCm			

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

3. Finding the optimum number of clusters for K Means

```
#consists of attribute(inputs)
In [8]:
         iris.iloc[:, [0, 1, 2, 3]].values
Out[8]: array([[ 1. ,
                                  3.5,
                                         1.4],
                          5.1,
                   2.,
                          4.9,
                                  3.,
                                         1.4],
                          4.7,
                                 3.2,
                                         1.3],
                          4.6,
                                  3.1,
                                         1.5],
                          5.,
                                  3.6,
                                         1.4],
                          5.4,
                                  3.9,
                                         1.7],
                          4.6,
                                  3.4,
                                         1.4],
                                  3.4,
                                         1.5],
                                  2.9,
                   9.,
                          4.4,
                                         1.4],
                 10.,
                                  3.1,
                                         1.5],
                [ 11. ,
                          5.4,
                                  3.7,
                                         1.5],
                [ 12. ,
                          4.8,
                                  3.4,
                                         1.6],
                [ 13. ,
                          4.8,
                                         1.4],
                [ 14. ,
                          4.3,
                                         1.1],
                [ 15. ,
                          5.8,
                                         1.2],
                [ 16. ,
                          5.7,
                                  4.4,
                                         1.5],
                [ 17. ,
                          5.4,
                                  3.9,
                                         1.3],
                [ 18. ,
                          5.1,
                                  3.5,
                                         1.4],
                 19.,
                          5.7,
                                  3.8,
                                         1.7],
                          5.1,
                 20.,
                                  3.8,
                                         1.5],
                [ 21. ,
                          5.4,
                                 3.4,
                                         1.7],
                [ 22. ,
                          5.1,
                                  3.7,
                                         1.5],
```

```
[ 23. ,
                 3.6,
                         1.],
          4.6,
 24. ,
          5.1,
                 3.3,
                         1.7],
                 3.4,
 25. ,
          4.8,
                         1.9],
 26. ,
          5.,
                 3.,
                         1.6],
                 3.4,
 27.,
                         1.6],
          5.2,
 28.,
                 3.5,
                         1.5],
          5.2,
 29.,
                 3.4,
                         1.4],
  30.,
          4.7,
                 3.2,
                         1.6],
 31. ,
          4.8,
                 3.1,
                         1.6],
 32.,
          5.4,
                 3.4,
                         1.5],
 33.,
          5.2,
                 4.1,
                         1.5],
 34.,
          5.5,
                 4.2,
                         1.4],
 35.,
          4.9,
                 3.1,
                         1.5],
          5.,
  36.,
                 3.2,
                         1.2],
 37.,
          5.5,
                 3.5,
                         1.3],
 38. ,
          4.9,
                 3.1,
                         1.5],
 39. ,
          4.4,
                 3.,
                         1.3],
[ 40. ,
          5.1,
                 3.4,
                         1.5],
 41. ,
          5.,
                 3.5,
                         1.3],
 42.,
          4.5,
                 2.3,
                         1.3],
 43.,
          4.4,
                 3.2,
                         1.3],
 44.,
                 3.5,
                         1.6],
 45.,
          5.1,
                 3.8,
                         1.9],
 46.,
          4.8,
                 3.,
                         1.4],
[ 47. ,
          5.1,
                 3.8,
                         1.6],
 48.,
          4.6,
                 3.2,
                         1.4],
 49.,
          5.3,
                 3.7,
                         1.5],
          5.,
                 3.3,
 50.,
                         1.4],
 51.,
                 3.2,
                         4.7],
          6.4,
 52.,
                 3.2,
                         4.5],
[53.,
          6.9,
                 3.1,
                         4.9],
 54.,
          5.5,
                 2.3,
                         4.],
 55.,
          6.5,
                 2.8,
                         4.6],
 56.,
          5.7,
                 2.8,
                         4.5],
[ 57. ,
          6.3,
                 3.3,
                         4.7],
 58.,
                 2.4,
          4.9,
                         3.3],
                 2.9,
[ 59. ,
          6.6,
                         4.6],
          5.2,
 60.,
                 2.7,
                         3.9],
          5.,
                 2.,
 61.,
                         3.5],
 62.,
          5.9,
                 3.,
                         4.2],
 63. ,
          6. ,
                 2.2,
                         4.],
 64.,
          6.1,
                 2.9,
                         4.7],
          5.6,
 65.,
                 2.9,
                         3.6],
[ 66. ,
          6.7,
                 3.1,
                         4.4],
[ 67. ,
          5.6,
                 3.,
                         4.5],
```

```
[ 68. ,
          5.8,
                  2.7,
                         4.1],
[ 69. ,
          6.2,
                  2.2,
                         4.5],
          5.6,
[ 70. ,
                  2.5,
                         3.9],
[ 71. ,
          5.9,
                  3.2,
                         4.8],
[ 72. ,
          6.1,
                  2.8,
                         4.],
[ 73. ,
          6.3,
                  2.5,
                         4.9],
[ 74. ,
          6.1,
                  2.8,
                          4.7],
[ 75. ,
          6.4,
                  2.9,
                         4.3],
[ 76. ,
          6.6,
                  3.,
                         4.4],
[ 77. ,
          6.8,
                  2.8,
                         4.8],
[ 78. ,
          6.7,
                  3.,
                         5.],
[ 79. ,
          6.,
                  2.9,
                          4.5],
[ 80. ,
          5.7,
                  2.6,
                         3.5],
          5.5,
 81.,
                  2.4,
                         3.8],
 82.,
          5.5,
                  2.4,
                         3.7],
 83.,
          5.8,
                  2.7,
                         3.9],
 84.,
          6.,
                  2.7,
                         5.1],
 85.,
          5.4,
                  3.,
                         4.5],
 86.,
          6. ,
                  3.4,
                         4.5],
 87. ,
          6.7,
                  3.1,
                         4.7],
 88.,
          6.3,
                  2.3,
                         4.4],
 89.,
          5.6,
                  3.,
                         4.1],
 90.,
          5.5,
                  2.5,
                         4.],
 91.,
          5.5,
                  2.6,
                          4.4],
 92.,
                  3.,
          6.1,
                         4.6],
 93.,
          5.8,
                  2.6,
                         4.],
 94.,
          5.,
                  2.3,
                         3.3],
 95.
          5.6,
                  2.7,
                          4.2],
 96.,
          5.7,
                  3.,
                         4.2],
          5.7,
                  2.9,
 97.,
                         4.2],
[ 98. ,
          6.2,
                  2.9,
                          4.3],
[ 99. ,
          5.1,
                  2.5,
                         3.],
          5.7,
[100. ,
                  2.8,
                         4.1],
[101. ,
          6.3,
                  3.3,
                         6.],
          5.8,
                  2.7,
                         5.1],
[102.,
[103. ,
          7.1,
                  3.,
                         5.9],
          6.3,
                  2.9,
[104. ,
                         5.6],
          6.5,
                  3.,
[105.,
                          5.8],
[106.,
          7.6,
                  3.,
                         6.6],
                  2.5,
[107.,
          4.9,
                         4.5],
                  2.9,
[108. ,
          7.3,
                          6.3],
                  2.5,
[109. ,
          6.7,
                         5.8],
          7.2,
                  3.6,
[110. ,
                         6.1],
[111. ,
          6.5,
                  3.2,
                         5.1],
[112. ,
          6.4,
                  2.7,
                         5.3],
```

```
[116.,
                 6.4,
                         3.2,
                                5.3],
                 6.5,
                         3.,
                                5.5],
       [117. ,
                 7.7,
                         3.8,
                                6.7],
       [118. ,
       [119. ,
                 7.7,
                         2.6,
                                 6.9],
                 6.,
                         2.2,
                                5.],
       [120. ,
                 6.9,
                         3.2,
       [121. ,
                                 5.7],
       [122. ,
                 5.6,
                         2.8,
                                 4.9],
       [123. ,
                 7.7,
                         2.8,
                                6.7],
                 6.3,
                         2.7,
       [124. .
                                 4.9],
       [125. ,
                 6.7,
                         3.3,
                                 5.7],
       [126.,
                 7.2,
                         3.2,
                                 6.],
                 6.2,
       [127.,
                         2.8,
                                 4.8],
                 6.1,
                         3.,
       [128. ,
                                4.9],
       [129. ,
                 6.4,
                         2.8,
                                5.6],
                 7.2,
                         3.,
                                5.8],
       [130. ,
                         2.8,
       [131. ,
                 7.4,
                                 6.1],
       [132. ,
                 7.9,
                         3.8,
                                6.4],
                 6.4,
                         2.8,
                                5.6],
       [133. ,
                         2.8,
       [134. ,
                 6.3,
                                 5.1],
       [135.,
                 6.1,
                         2.6,
                                5.6],
                 7.7,
                         3.,
       [136. ,
                                 6.1],
                         3.4,
       [137. ,
                 6.3,
                                 5.6],
                         3.1,
                 6.4,
       [138. ,
                                 5.5],
       [139. ,
                         3.,
                 6.,
                                4.8],
                 6.9,
                         3.1,
       [140.,
                                 5.4],
                 6.7,
                         3.1,
                                5.6],
       [141. ,
       [142.,
                 6.9,
                         3.1,
                                5.1],
                 5.8,
       [143. ,
                         2.7,
                                 5.1],
                         3.2,
                 6.8,
                                5.9],
       [144. ,
       [145.,
                 6.7,
                         3.3,
                                5.7],
       [146.,
                 6.7,
                         3.,
                                 5.2],
                         2.5,
       [147.,
                 6.3,
                                5.],
                 6.5,
                                5.2],
       [148. ,
       [149. ,
                 6.2,
                         3.4,
                                5.4],
                 5.9,
                         3.,
       [150. ,
                                 5.1]])
# Finding the optimum number of clusters for k-means classification
x = iris.iloc[:, [0, 1, 2, 3]].values
from sklearn.cluster import KMeans
```

In [18]:

[113. ,

[114. ,

[115. ,

6.8,

5.7,

5.8,

3.,

2.5,

2.8,

5.5],

5.],

5.1],

This is a graph which will help us to findout number of clusters

You can clearly see why it is called 'The elbow method' from the above graph, the optimum clusters is where the elbow occurs. This is when the within cluster sum of squares (WCSS) doesn't decrease significantly with every iteration.

From this we choose the number of clusters as '3'.

Model Testing

```
# Applying kmeans to the dataset / Creating the kmeans classifier
In [19]:
       kmeans = KMeans(n clusters = 3, init = 'k-means++',
                  max iter = 300, n init = 10, random state = 0)
      y kmeans = kmeans.fit predict(x)
In [20]: y_kmeans
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
           Visualisation of Clusters
In [21]: # Visualising the clusters - On the first two columns
      plt.figure(figsize=(10,10))
      plt.scatter(x[y kmeans == 0, 0], x[y kmeans == 0, 1],
               s = 100, c = 'orange', label = 'Iris-setosa')
       plt.scatter(x[y kmeans == 1, 0], x[y kmeans == 1, 1],
               s = 100, c = 'pink', label = 'Iris-versicolour')
       plt.scatter(x[y kmeans == 2, 0], x[y kmeans == 2, 1],
               s = 100, c = 'red', label = 'Iris-virginica')
      # Plotting the centroids of the clusters
       plt.scatter(kmeans.cluster centers [:, 0], kmeans.cluster centers [:,1],
               s = 100, c = 'yellow', label = 'Centroids')
      plt.legend()
```

Out[21]: <matplotlib.legend.Legend at 0x2a507542250>

This is a graphic way to represent our distribution