Graph Traversal Page 1

Algorithms and Data Structures

Graph Traversal

Dr. Bernhard Anrig
HS 2012/13

Graph Traversal Page 2

Outline

Definitions

DFS Depth First Search

Applications of DFS

BFS Breath First Search

Applications of BFS

DFS vs. BFS

Outline

Definitions

DFS Depth First Search

Applications of DFS

BFS Breath First Search

Applications of BFS

DFS vs. BFS

Subgraphs

- A subgraph S of a graph G is a graph such that
 - The vertices of S are a subset of the vertices of G
 - The edges of S are a subset of the edges of G
- A spanning subgraph of G is a subgraph that contains all the vertices of G

Subgraph

Spanning subgraph

Connectivity

- A graph is connected if there is a path between every pair of vertices
- A connected component of a graph G is a maximal connected subgraph of G

Connected graph

Non connected graph with two connected components

Trees and Forests

- A (free) tree is an undirected graph T such that
 - T is connected
 - T has no cycles

This definition of tree is different from the one of a rooted tree

- A forest is an undirected graph without cycles
- The connected components of a forest are trees

Tree

Forest

Spanning Trees and Forests

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest

Graph

Spanning tree

Outline

Definitions

DFS Depth First Search

Applications of DFS

BFS Breath First Search

Applications of BFS

DFS vs. BFS

Graph Traversal DFS Depth First Search Page 9

Depth-First Search

- Depth-first search (DFS) is a general technique for traversing a graph
 A DFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- DFS on a graph with n vertices and m edges takes O(n+m) time
- DFS can be further extended to solve other graph problems
- Find and report a path between two given vertices
- Find a cycle in the graph
- Depth-first search is to graphs what Euler tour is to binary trees

DFS Algorithm

The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm DFS(G)

 $\mathbf{Input} \; \mathsf{graph} \; \boldsymbol{G}$

Output labeling of the edges of *G* as discovery edges and back edges

for all $u \in G.vertices()$ setLabel(u, UNEXPLORED)

for all $e \in G.edges()$ setLabel(e, UNEXPLORED)

for all $v \in G.vertices()$ if getLabel(v) = UNEXPLORED

DFS(G, v)

Algorithm DFS(G, v)

Input graph G and a start vertex v of G

Output labeling of the edges of *G*in the connected component of *v*as discovery edges and back edges
setLabel(*v*, VISITED)

for all $e \in G.incidentEdges(v)$

 $if \ \textit{getLabel}(e) = \textit{UNEXPLORED}$

DFS(G, w)

 $w \leftarrow G.opposite(v,e)$ **if** getLabel(w) = UNEXPLOREDsetLabel(e, DISCOVERY)

else

setLabel(e, BACK)

Example

Example (cont.)

Graph Traversal DFS Depth First Search Page 13

DFS and Maze Travers

- The DFS algorithm is similar to a classic strategy for exploring a maze
 - We mark each intersection, corner and dead end (vertex) visited
 - We mark each corridor (edge) traversed
 - We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)

Properties of DFS

Property 1

DFS(G, v) visits all the vertices and edges in the connected component of v

Property 2

The discovery edges labeled by DFS(G, v) form a spanning tree of the connected component of v

Graph Traversal DFS Depth First Search Page 15

Analysis of DFS

- \bullet Setting/getting a vertex/edge label takes o(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or BACK
- Method incidentEdges is called once for each vertex
- \bigcirc DFS runs in O(n+m) time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$

Outline

Definitions

DFS Depth First Search

Applications of DFS

BFS Breath First Search

Applications of BFS

DFS vs. BFS

Graph Traversal Applications of DFS Page 17

Path Finding

- We can specialize the DFS algorithm to find a path between two given vertices u and z using the template method pattern
- We call DFS(G, u) with u as the start vertex
- •We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex z is encountered, we return the path as the contents of the stack

```
Algorithm pathDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
if v = z
return S.elements()
```

```
setLabel(v, VISITED)
S.push(v)
if v = 7
  return S. elements()
for all e \in G.incidentEdges(v)
  if getLabel(e) = UNEXPLORED
       w \leftarrow opposite(v, e)
       if getLabel(w) = UNEXPLORED
            setLabel(e, DISCOVERY)
           S.push(e)
           pathDFS(G, w, z)
           S.pop()
                         { e gets popped }
       else
            setLabel(e, BACK)
S.pop()
                          { v gets popped }
```


Graph Traversal Applications of DFS Page 18

Cycle Finding

- We can specialize the DFS algorithm to find a simple cycle using the template method pattern
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as a back edge (v, w) is encountered, we return the cycle as the portion of the stack from the top to vertex w

```
Algorithm cycleDFS(G, v, z)
  setLabel(v, VISITED)
  S.push(v)
  for all e \in G.incidentEdges(v)
     if getLabel(e) = UNEXPLORED
           w \leftarrow opposite(v,e)
           S.push(e)
           if getLabel(w) = UNEXPLORED
                 setLabel(e, DISCOVERY)
                pathDFS(G, w, z)
                S.pop()
           else
                C \leftarrow new empty stack
                repeat
                      o \leftarrow S.pop()
                      C.push(o)
                until o = w
                return C.elements()
  S.pop()
```


Outline

Definitions

DFS Depth First Search

Applications of DFS

BFS Breath First Search

Applications of BFS

DFS vs. BFS

Graph Traversal BFS Breath First Search Page 20

Breadth-First Search

- Breadth-first search (BFS) is a general technique for traversing a graph
- A BFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- BFS on a graph with n vertices and m edges takes O(n + m) time
- BFS can be further extended to solve other graph problems
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one

BFS Algorithm

Algorithm BFS(G)Input graph G

Output labeling of the edges and partition of the vertices of *G*

for all $u \in G.vertices()$ setLabel(u, UNEXPLORED)

for all $e \in G.edges()$ setLabel(e, UNEXPLORED)

 $\textbf{for all} \ \ v \in \textit{G.vertices}()$

if getLabel(v) = UNEXPLOREDBFS(G, v)

```
Algorithm BFS(G, s)
  L_0 \leftarrow new empty sequence
  L_0.insertLast(s)
  setLabel(s, VISITED)
  i \leftarrow 0
  while \neg L_r is Empty()
     L_{i+1} \leftarrow new empty sequence
     for all v \in L_r elements()
        for all e \in G.incidentEdges(v)
           if getLabel(e) = UNEXPLORED
             w \leftarrow opposite(v,e)
             if getLabel(w) = UNEXPLORED
                 setLabel(e, DISCOVERY)
                setLabel(w, VISITED)
                L_{i} insertLast(w)
             else
                setLabel(e, CROSS)
      i \leftarrow i + 1
```


Example

Example (cont.)

Example (cont.)

Properties

Notation

 G_s : connected component of s

Property 1

BFS(G, s) visits all the vertices and edges of G_s

Property 2

The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s

Property 3

For each vertex v in L_i

- The path of T_s from s to v has i edges
- Every path from s to v in G_s has at least i edges

Analysis

- \bullet Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- \bullet Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- \blacksquare BFS runs in O(n+m) time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$

Outline

Definitions

DFS Depth First Search

Applications of DFS

BFS Breath First Search

Applications of BFS

DFS vs. BFS

Graph Traversal Applications of BFS Page 28

Applications

- Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in O(n + m) time
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

Outline

Definitions

DFS Depth First Search

Applications of DFS

BFS Breath First Search

Applications of BFS

DFS vs. BFS

DFS vs. BFS

Applications	DFS	BFS
Spanning forest, connected components, paths, cycles	4	1
Shortest paths		4
Biconnected components	√	

DFS vs. BFS (cont.)

Back edge (v,w)

w is an ancestor of v in the tree of discovery edges

Cross edge (v,w)

 w is in the same level as v or in the next level in the tree of discovery edges

Outline

Applications of DFS

Applications of BFS

Decorations

What are decorations of vertices and edges??

- We want to "Mark" visited vertices.
- We want to save the number of unvisited in-incident edges.
- We want to mark in any way vertices or edges.

```
see also Chapter 12, page 602 (3<sup>rd</sup> edition)
Chapter 13, page 597 (4<sup>th</sup> edition)
```


Decorations

How to do this?

- ▶ Add "attributes" or decorations to existing objects
- Each attribute is identified by a specific key (its name for instance).
- We allow this attribute to take different values for different objects
- One object may have more than one attribute

Note: the way explained below does not exactly match the notion of the "Decorator Pattern" you (will) see in Software Engineering!

Decorable Position ADT

- ▶ element() Returns the element stored at this position
- put(k,x) Sets to x the value of attribute k.
 Returns the old value or null if this is a new attribute
- get(k) Returns the value of attribute k or null is this attribute has no value.
- remove(k) Remove the attribute k Returns the old value of k or null if there is no value
- keySet() Returns all keys for this position
- values() Returns all values for this position

A DecorablePosition interface

```
public interface DecorablePosition<E>
    extends Position<E>, Map<Object,Object> {
}
```

No new methods added!

Map allows for any Object to be used as keys and values, but not known in advance.

Page 36

A GraphPosition abstract class

```
public abstract class GraphPosition<E>
  implements DecorablePosition<E>{
   private Map<Object,Object> map;
   private E element;
   public GraphPosition(E e){
       map = new HashMap<Object,Object>();
       element = e:
   }
   public E element(){
       return element;
   }
```

```
public Object get(Object attribute){
   return map.get(attribute);
}
public Object put(Object attribute, Object value){
   return map.put(attribute, value);
}
public Object remove(Object attribute){
   return map.remove(attribute);
}
public Collection<Object> values(){
   return map.values();
}
public Set<Objects> keySet(){
   return map.keys();
}
```