- 1 -

概述

TM1638是一种带键盘扫描接口的LED(发光二极管显示器)驱动控制专用IC,内部集成有MCU 数字接口、数据锁存器、LED驱动、键盘扫描等电路。本产品质量可靠、稳定性好、抗干扰能力强。 主要适用于家电设备(智能热水器、微波炉、洗衣机、空调、电磁炉)、机顶盒、电子称、智能电 表等数码管或LED显示设备。

二、 特性说明

- · 采用CMOS 工艺
- 显示模式 10段×8 位
- 键扫描 (8×3bit)
- 辉度调节电路(占空比8 级可调)
- 串行接口 (CLK, STB, DIO)
- 振荡方式: RC 振荡
- 内置上电复位电路
- 封装形式: SOP28

三、、 管脚定义:

K1	10		28	STB
K2	2		27	CLK
К3 🗀	3	()	26	DIO
VCC	4		25	GND
SEG1/KS1	5		24	GRID1
SEG2/KS2	6		23	GRID2
SEG3/KS3	7	TM1638	22	GRID3
SEG4/KS4	8	(TOP VIEW)	21	GRID4
SEG5/KS5	9		20	GRID5
SEG6/KS6	10		19	GRID6
SEG7/KS7	11		18	GND
SEG8/KS8	12		17	GRID7
SEG9	13		16	GRID8
SEG10	14		15	VDD

四、管脚功能说明:

符号	管脚名称	管脚号	说明
DIO	数据输出输入	26	在时钟上升沿输入串行数据,从低位 开始。在时钟下降沿输出串行数据,从 低位开始。输出时为N管开漏输出
CLK	时钟输入	27	在上升沿读取串行数据,下降沿输出数据。
STB	片选输入	28	在下降沿初始化串行接口,随后等待接收指令。STB为低后的第一个字节作为指令,当处理指令时,当前其它处理被终止。当STB为高时,CLK被忽略。
K1∼K3	键扫信号输入	1~3	输入该脚的数据在显示周期结束后被 锁存
SGE1/KS1~ SEG8/KS8	输出(段)	5~12	段输出(也用作键扫描输出), P管开 漏输出
GRID1∼GRID8	输出(位)	24~19 17~16	位输出,N管开漏输出
SEG9 ~SEG110	输出(段)	13~14	段输出,P管开漏输出
VDD	逻辑电源	4、15	接电源正
GND	逻辑地	18、25	接系统地

▲ 注意: DIO口输出数据时为N管开漏输出,在读键的时候需要外接1K-10K的上拉电阻。本公司推荐10K的上拉 电阻。DIO在时钟的下降沿控制N管的动作,此时读数时不稳定,在时钟的上升沿读数才时稳定。

- 2 -

五、指令说明:

在STB下降沿后由DIO输入的第一个字节作为一条指令。经过译码,取最高B7、B6两位比特位以区别不同的 指令。

В7	В6	指令
0	1	数据命令设置
1	0	显示控制命令设置
1	1	地址命令设置

如果在指令或数据传输时STB被置为高电平,串行通讯被初始化,并且正在传送的指令或数据无效(之前传 送的指令或数据保持有效。

5. 1 数据命令设置

该指令用来设置数据写和读,B1和B0位不允许设置01或11。

M2R						1	72R		
В7	В6	В5	B4	В3	В2	В1	ВО	功能	说明
0	1					0	0	数据读写模式	写数据到显示寄存器
0	1					1	0	设置	读键扫数据
0	1	无关	项,		0			地址增加模式	自动地址增加
0	1	填	0		1			设置	固定地址
0	1			0				测试模式设置	普通模式

(内部使用)

测试模式

5. 2 地址命令设设置

MSB				A		LSB	_
В7	В6	B5 B4	В3	B2	B1	В0	显示地址
1	1		0	0	0	0	00Н
1	1		0	0	0	1	01H
1	1		0	0	1	0	02H
1	1		0	0	1	1	03H
1	1		0	1	0	0	04H
1	1		0	1	0	1	05H
1	1	V	0	1	1	0	06H
1	1	无关项,	0	1	1	1	07H
1	1	填 0	1	0	0	0	08H
1	1		1	0	0	1	09Н
1	1		1	0	1	0	OAH
1	1		1	0	1	1	0BH
1	1		1	1	0	0	ОСН
1	1		1	1	0	1	ODH
1	1		1	1	1	0	0EH
1	1		1	1	1	1	0FH

该指令用来设置显示寄存器的地址。

如果地址设为10H 或更高,数据被忽略,直到有效地址被设定。上电时,地址默认设为00H。

- 3 -

5. 3 显示控制

MSB LSB В7 В6 В5 В4 В3 В2 В1 ВО 功能 说明 设置脉冲宽度为 1/16 1 0 0 0 0 0 0 0 1 设置脉冲宽度为 2/16 1 1 0 0 1 0 设置脉冲宽度为 4/16 1 0 1 1 设置脉冲宽度为 10/16 0 消光数量设置 0 1 0 无关项, 1 0 设置脉冲宽度为 11/16 填 0 0 设置脉冲宽度为 12/16 1 0 1 1 设置脉冲宽度为 13/16 1 0 1 1 0 1 0 1 1 1 设置脉冲宽度为 14/16 显示关 1 0 0 显示开关设置 1 0 1 显示开、

六、显示寄存器地址:

该寄存器存储通过串行接口从外部器件传送到TM1638的数据,地址从00H-0FH共16字节单元,分别与芯片SEG 和GRID管脚所接的LED灯对应,分配如下图:

写LED显示数据的时候,按照从显示地址从低位到高位,从数据字节的低位到高位操作。

SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7	SEG8	SEG9	SEG10	X	Х	X	X	X	X	
XX	xHL(们	氏四位	()	Х	xHU(清	哥四位)		xxHL (1	氏四位)	xxI	引)UH	哥四位	()	
В0	B1	B2	В3	B4	В5	В6	В7	В0	B1	B2	В3	B4	В5	В6	В7	_
	00	HL			00	HU			01	HL			01	HU		GRID1
	02	HL			02	HU			03	BHL			03	HU		GRID2
	04	HL.			04	HU			05	5HL			05	HU		GRID3
	06	HL			06	HU			07	'HL			07	HU		GRID4
	08	HL			08HU				06)HL		09 HU				GRID5
	0A	HL			0A	HU			OE	BHL			0B	HU		GRID6
	00	HL			00	HU			10)HL			0D	HU		GRID7
	0E	HL			0E	HU	·		OF	FHL			0F	HU		GRID8

图 (2)

▲注意: 芯片显示寄存器在上电瞬间其内部保存的值可能是随机不确定的,此时客户直接发送开屏命令, 将有可能出现显示乱码。所以我司建议客户对显示寄存器进行一次上电清零操作.即上电后向16位显存地址 (00H-0FH) 中全部写入数据0x00。

V1.4

- 4 -

七、显示

1、驱动共阴数码管:

图 (7)

图7给出共阴极数码管的连接示意图,如果让该数码管显示"0",只需要向00H(GRID1)地址中从低位开 始写入0x3F数据即可,此时00H对应每一个SEG1-SEG8的数据如下表格。

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	1	1	1	1	1	1	GRID1 (00H)
В7	В6	В5	B4	В3	B2	B1	В0	

2、驱动共阳数码管:

图 (8)

图8给出共阳极数码管的连接示意图,如果让该数码管显示"0",需要向地址单元00H(GRID1)、02H(GRID2)、 O4H(GRID3)、O6H(GRID4)、O8H(GRID5)、OAH(GRID6)里面分别写数据01H, 其余的地址OCH(GRID7)、 OEH(GRID8) 单元全部写数据00H。每一个SEG1-SEG8对应的数据如下表格。

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	0	0	0	0	0	1	GRID1 (00H)
0	0	0	0	0	0	0	1	GRID2 (02H)
0	0	0	0	0	0	0	1	GRID3 (04H)
0	0	0	0	0	0	0	1	GRID4 (06H)
0	0	0	0	0	0	0	1	GRID5 (08H)

TITAN	MICRO™ RONICS
FLFCT	RONICS

LED 驱动控制专用电路

TM1638

0	0	0	0	0	0	0	1	GRID6 (OAH)
0	0	0	0	0	0	0	0	GRID7 (OCH)
0	0	0	0	0	0	0	0	GRID8 (OEH)
В7	В6	В5	B4	В3	B2	B1	В0	

▲注意:无论是驱动共阴极数码管还是驱动共阳极数码管,SEG引脚只能接LED的阳极,GRID只能接LED的阴极,不可反接。

八、 键扫描和按键复用:

键扫矩阵为3×8bit,如图(3)所示:

图 (3)

键扫数据储存地址如图(4)所示,先发读键命令后,开始读取按键数据BYTE1—BYTE4字节,读数据从低位开始输出,芯片K和KS引脚对应的按键按下时,相对应的字节内的 BIT位为1。

В0	B1	В2	ВЗ	B4	В5	В6	В7	
К3	K2	K1	X	К3	K2	K1	X	
	KSI	1			KS	52		BYTE1
	KSS	3			KS	54		BYTE2
	KS	5			KS	BYTE3		
	KS7	7			KS	58		BYTE4

图 (4)

▲注意: 1、TM1638最多可以读4个字节,不允许多读。

2、读数据字节只能按顺序从BYTE1-BYTE4读取,不可跨字节读。例如:硬件上的K2与KS8对应按键按下时,此时想要读到此按键数据,必须需要读到第4个字节的第5BIT位,才可读出数据;当K1与KS8,K2与KS8两个按键同时按下时,此时BYTE4所读数据的B5,B6位均为1。

3、组合键只能是同一个KS,不同的K引脚才能做组合键;同一个K与不同的KS引脚不可以做成组合键使用。

按键扫描与组合按键:

(1) 按键扫描:按键扫描由TM1638自动完成,不受用户控制,用户只需要按照时序读键值。完成一次键扫 需要1个显示周期,一个显示周期大概需要T=4.7ms,在4.7ms内先后按下了2个不同的按键,2次读到的键值都是先 按下的那个按键的键值。

(2) 组合按键

复合按键的问题异常: SEG1/KS1-SEG8/KS8是显示和按键扫描复用的。以图(12)为例,显示需要D1亮,D2 灭, 需要让SEG1为"0", SEG2为"1"状态, 如果S1, S2同时被按下, 相当于SEG1, SEG2被短路, 这时D1, D2都被点亮。

解决方案:

1、在硬件上,可以将需要同时按下的键设置在不同的K线上面如图(13)所示,

2、串联二极管如图(14)所示。

▲注意:建议使用同一个KS不同的K键作为复合按键。

- 7 -

九、串行数据传输格式:

读取和接收1个BIT都在时钟的上升沿操作。

▲注意: 1、读取数据时,从串行时钟CLK的第8个上升沿开始设置指令到CLK下降沿读数据之间需要一个等 待时间Twait(最小2µS)。具体参数见时序特性表。

©Titan Micro Electronics www.titanmec.com V1.4

- 8 -

一、 应用时串行数据的传输:

(1) 地址增加模式

使用地址自动加1模式,设置地址实际上是设置传送的数据流存放的起始地址。起始地址命令字发送完毕, "STB"不需要置高紧跟着传数据, 最多16BYTE, 数据传送完毕才将"STB"置高。

CLK								
DIO _	Command1	Command2	Data1	Data2	******	Data n	Command3	
STB —] [7				ſ	1	

Command1: 设置数据命令 Command2: 设置显示地址

Data1~n: 传输显示数据至Command2地址和后面的地址内(最多16bytes)

Command3:显示控制命令

(2) 固定地址模式

使用固定地址模式,设置地址其实际上是设置需要传送的1BYTE数据存放的地址。地址发送完毕,"STB"不 需要置高, 紧跟着传1BYTE数据, 数据传送完毕才将"STB"置高。然后重新设置第2个数据需要存放的地址, 最多 16BYTE数据传送完毕, "STB" 置高。

	ДДТО	212 H.40						
CLK								_
DIO	Command1	Command2	Data1	Command3	Data2	*****	Command4	
	_							
STB] [Г

Command1: 设置数据命令 Command2: 设置显示地址1

Data1: 传输显示数据1至Command2地址内

Command3: 设置显示地址2

Data2: 传输显示数据2至Command3地址内

Command4:显示控制命令

(3) 读按键时序

Command1: 设置读按键命令 Data1~4:读取按键数据

(4) 采用地址自动加一和固定地址方式的程序设计流程图: 采用地址自动加一程序设计流程图:

V1.4

- 10

采用固定地址的程序设计流程图:

V1.4

- 11

- 12

十一. 应用电路:

V1.4

₹

- 13

TM1638驱动共阳数码屏硬件电路图 a b GRID2 GRID2 b GRID3 c d c d g g SEG1 SEG2 GRID4 GRID4 GRID5 GRID5 GRID6 GRID6 GRID7 GRID7 g g GRID8 GRID8 dp dp GRID1 GRID1 GRID1 a a b GRID2 GRID3 GRID2 GRID2 GRID2 b GRID3 GRID3 С c d g GRID3 g SEG3 SEG4 SEG5 SEG6 GRID4 GRID4 GRID4 GRID4 d d GRID5 GRID5 GRID5 GRID5 e f e f e f GRID6 GRID6 GRID6 GRID6 GRID7 GRID7 GRID7 GRID7 g g g g GRID8 GRID8 GRID8 GRID8 dp dp dp dp GRID1 GRID1 GRID1 GRID1 a GRID2 GRID2 GRID2 GRID2 b b b GRID3 GRID3 GRID3 GRID3 c c d c d c d SEG7 GRID4 d GRID4 SEG8 GRID4 SEG9 GRID4 SEG10 GRID5 GRID5 GRID5 GRID5 e e ' e e e d d GRID6 GRID6 GRID6 f GRID6 GRID7 GRID7 GRID7 GRID7 g g dp g g GRID8 GRID8 dp GRID8 GRID8 dp dp VCC RI R2 R3 1_{10K} 0 10K TIOK STB K1 1 2 3 STB CLK K2 CLK DIO K3 DIO 핡 VDD GND GRID1 GRID1 SEG1 SEG1/KS1 100P 100P 1100P GRID1 GRID2 GRID3 GRID3 SEG2 SEG2/KS2 SEG3 SEG4 SEG5 SEG3/KS3 GRID3 SEG1 SEG4/KS4 TM1638 GRID4 GRID4 GRID5 <u>ہ</u> 忥 0-0-SEG5/KS5 SEG2 SEG6 GRID6 GRID6 SEG6/KS6 VCC ラ SEG6/KS6 SEG7/KS7 SEG8 SEG8/KS8 ◡ <u>o</u>. GND GRID7 GRID7 SEG9 SEG10 SEG10 GND GRID8 GRID8 0-VDD <u>o</u>. ╦ 104 100uF <u>o</u>-

▲注意:

- 1、VDD、GND之间滤波电容在PCB板布线应尽量靠近TM1638芯片放置,加强滤波效果。
- 2、连接在DIO、CLK、STB通讯口上三个100P电容可以降低对通讯口的干扰。
- 3、因蓝光数码管的导通压降压约为3V,因此TM1638供电应选用5V。

SEG6

SEG7

SEG8

₹

ō

<u>~</u>

V1.4

十二、 电气参数:

极限参数 (Ta = 25℃, Vss = 0 V)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ∼+7.0	V
逻辑输入电压	VI1	$-0.5 \sim \text{VDD} + 0.5$	V
LED Seg 驱动输出电流	I01	-50	mA
LED Grid 驱动输出电流	102	+200	mA
功率损耗	PD	400	mW
工作温度	Topt	−40 ~ +80	°C
储存温度	Tstg	−65 ~+150	$^{\circ}$

正常工作范围 (Ta = -20 ~ +70℃, Vss = 0 V)

参数	符号	最小	典型	最大	单位	测试条件
逻辑电源电压	VDD	\bigcirc	5		V	_
高电平输入电压	VIH	0.7 VDD	_	VDD	V	-
低电平输入电压	VIL	0	ı	0.3 VDD	V	-

电气特性 (Ta = -20 \sim +70°C, VDD = 4.5 \sim 5.5 V, Vss = 0 V

参数	符号	最小	典型	最大	单位	测试条件
SEG驱动拉电流	Ioh1	20	25	40	mA	SGE1∼SEG10 Vo = VDD-2V
SEG地列亚电机	Ioh2	20	30	50	mA	SGE1∼SEG10 Vo = VDD−3V
GRID驱动灌电流	IOL1	80	140	I	mA	GRID1-GRID8 Vo=0. 3V

V1.4

- 14

- 15

输出下拉电阻	RL		10		КΩ	K1∼K3
输入电流	II	-	-	±1	μA	VI = VDD / VSS
高电平输入电压	VIH	0. 7 VDD	_		V	CLK, DIO, STB
低电平输入电压	VIL	ı	ı	0. 3 VDD	V	CLK, DIO, STB
滞后电压	VH	-	0.35	-	V	CLK, DIO, STB
动态电流损耗	IDDdyn	_	-	5	mA	无负载,显示关

开关特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件	
振荡频率	fosc	_	500	-	KHz	$R = 16.5 K\Omega$	
	tPLZ	_	_	300	ns	CLK → DIO	
传输延迟时间	tPZL	_	_	100	ns	CL = 15pF, RL = 10K Ω	
上升时间	TTZH 1	-		2	μs	CL = SEG1~SEG10	
下降时间	TTHZ	-	-	120	µ s	CL = 300pF, SEGN, GRIDN	
最大时钟频率	Fmax	-	-	1	MHz	占空比50%	
输入电容	CI	-	_	15	pF	-	

- 16

时序特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PWCLK	400	ı	ı	ns	-
选通脉冲宽度	PWSTB	1	-	-	μs	-
数据建立时间	tSETUP	100	-	-	ns	-
数据保持时间	tHOLD	100	-	-	ns	-
CLK →STB 时间	tCLK STB	1	-		μs	CLK↑→STB↑
等待时间	tWAIT	1	-		μs	$CLK \uparrow \rightarrow CLK \downarrow$

时序波形图:

十三、 封装尺寸

SOP28 的封装尺寸:

/s/s. II.	单位:	毫米	单位: 英寸		
符号	最小	最大	最小	最大	
A	2.350	2.65	0.093	0.104	
A1	0.10	0.3	0.004	0.012	
A2	2.290	2.5	0.090	0.098	
b	0.330	0.51	0.013	0.020	
c	0.204	0.33	0.008	0.013	
D	17.70	18.10	0.697	0.713	
Е	7.40	7.70	0.291	0.303	
E1	10.21	10.61	0.402	0.418	
e	1.2700	(BSC)	0.050(BS	C)	
L	0.4	1.27	0.016	0.050	
θ	0°	8°	0°	8°	

All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知)