Cálculo Diferencial e Integral II

Resumo

Rafael Rodrigues

LEIC Instituto Superior Técnico 2023/2024

Contents

2	Limites e Continuidade	2
3		
4	Derivada da Função Composta4.1Cálculo da derivada	2
5	Derivadas de Ordem Superior e Extremos5.1 Pontos de estacionaridade (ou críticos)5.2 Matriz Hessiana5.3 Teorema de Weierstrass	2 3 3
6	Função Inversa e Função Implícita6.1Teorema da Função Inversa6.2Teorema da Função Implícita	3 00 00
7	Extremos Condicionados 7.1 Multiplicadores de Lagrange	4
8	Teorema de Fubini 8.1 Aplicações do Integral 8.1.1 Volume e Centróide 8.1.2 Massa de Sólido e Centro de massa 8.1.3 Momento de Inércia	4 <u>4</u> 4 4 4
9	Mudança de Variáveis de Integração9.1 Coordenadas Polares9.2 Coordenadas Cilíndricas9.3 Coordenadas Esféricas	4 5 5
10	Teorema Fundamental do Cálculo e Regra de Leibniz 10.1 Teorema Fundamental do Cálculo	15 ES ES
11	Integrais de Linha 11.1 Campos Escalares	
	Campos Fechados. Campos Gradientes. Teorema Fundamental do Cálculo 12.1 Teorema Fundamental do Cálculo para Integrais de Linha	5 6 6

2 Limites e Continuidade

TODO

3 Diferenciabilidade

Derivada de uma função f segundo um vetor v no ponto a:

$$\frac{\partial f}{\partial v}(a) = D_v f(a) = \lim_{t \to 0} \frac{f(a+tv) - f(a)}{t}$$

Uma função f diz-se **diferenciável** num ponto a se:

$$\lim_{x \to a} \frac{f(x) - f(a) - Df(a) \cdot (x - a)}{||x - a||} = 0$$

Se f é diferenciável em a então:

$$D_v f(a) = D f(a) \cdot v$$

3.1 Matriz Jacobiana

Para uma função $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$D_f(x_1, \dots, x_n) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

3.2 Gradiente

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

3.3 Classe C^1

Uma função $f: \mathbb{R}^n \to \mathbb{R}^m$ diz-se de classe C^1 se as suas derivadas parciais são contínuas. Se uma função f é de classe C^1 em a então f é **diferenciável** em a.

4 Derivada da Função Composta

4.1 Cálculo da derivada

$$D(g \circ f)(a) = Dg(f(a)) \cdot Df(a)$$

4.2 Regra da Cadeia

TODO

5 Derivadas de Ordem Superior e Extremos

5.1 Pontos de estacionaridade (ou críticos)

$$\nabla f(x,y) = (0,0) \Leftrightarrow \begin{cases} \frac{\partial f}{\partial x} = 0\\ \frac{\partial f}{\partial y} = 0 \end{cases}$$

5.2 Matriz Hessiana

$$H_f(x,y) = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial y \partial x} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix}$$

Classificação dos pontos críticos:

- det $H_f(x,y) < 0 \rightarrow \text{ponto em sela (indefinida)}$
- det $H_f(x,y) > 0 \rightarrow \text{extremo}$
 - $-\operatorname{tr} H_f(x,y) > 0 \to (x,y)$ é um ponto mínimo (definida positiva)
 - tr $H_f(x,y) < 0 \rightarrow (x,y)$ é um ponto máximo (definida negativa)
- det $H_f(x,y) > 0 \rightarrow \text{inconclusivo}$
 - $-\operatorname{tr} H_f(x,y) \geq 0 \to (x,y)$ é um ponto mínimo ou ponto de sela (semi-definida positiva)
 - tr $H_f(x,y) \leq 0 \rightarrow (x,y)$ é um ponto máximo ou ponto de sela (semi-definida negativa)

5.3 Teorema de Weierstrass

TODO Semana 6

Uma função f num conjunto compacto S tem máximo e mínimo.

6 Função Inversa e Função Implícita

Jacobiano

$$J_f(x,y) = \begin{vmatrix} a = \frac{\partial f_1}{\partial x} & b = \frac{\partial f_1}{\partial y} \\ c = \frac{\partial f_2}{\partial x} & d = \frac{\partial f_2}{\partial y} \end{vmatrix} = ad - cb$$

6.1 Teorema da Função Inversa

Mostrar que f é localmente invertível em torno dum ponto (a, b):

- 1. Calcular a matriz jacobiana Df
- 2. Calcular o determinante de Df(a, b)
- 3. Se det $Df(a,b) \neq 0$ então f tem inversa local C^1 em torno desse ponto

Calcular a derivada da função inversa num ponto (c, d):

- 1. Verificar que (c,d) = F(a,b)
- 2. Inverter a matriz jacobiana Df(a,b)

$$Df^{-1}(f(a,b)) = Df^{-1}(c,d) = [Df(a,b)]^{-1}$$

6.2 Teorema da Função Implícita

Mostrar que uma função $F(x_i, \ldots, x_j) = 0$ define x_i como função de x_j $[x_i = f(x_j)]$ num ponto (a, b)

- 1. Verificar que F(a,b)=0
- 2. Calcular DF
- 3. Se $D_{x_i}F(a,b) \neq 0$ então F determina $x_i = f(x_j)$ num ponto (a,b)

Calcular a derivada da função implícita num ponto b:

$$D_{x_i}f(b) = -[D_{x_i}F(a,b)]^{-1} \cdot D_{x_j}F(a,b)$$

3

7 Extremos Condicionados

7.1 Multiplicadores de Lagrange

TODO

$$\begin{cases} \nabla f = \sum_{i=1}^{n} \lambda_{i} \nabla F_{i} \\ F_{1} = 0 \\ \vdots \\ F_{n} = 0 \end{cases}$$

8 Teorema de Fubini

8.1 Aplicações do Integral

8.1.1 Volume e Centróide

O volume de um sólido é dado por:

$$V_S = \int_S 1$$

O seu **centróide** na coordenada x_i é dado por:

$$\overline{x_i} = \frac{1}{V_S} \cdot \int_S x_i$$

8.1.2 Massa de Sólido e Centro de massa

Para um sólido S e uma função de densidade de massa f:

$$M_S = \int_S f$$

O centro de massa na coordenada x_i é dado por:

$$\overline{x_i} = \frac{1}{M_S} \cdot \int_S x_i f$$

8.1.3 Momento de Inércia

O momento de inércia em relação a um eixo L é dado por:

$$I_L = \int_S f \cdot (\text{distância à lateral})^2$$

Por exemplo para o eixo xx teríamos:

$$I_x = \int_S f \cdot \left(y^2 + z^2 \right)$$

9 Mudança de Variáveis de Integração

9.1 Coordenadas Polares

$$\iint f(r\cos\theta, r\sin\theta) \cdot r \, dr \, d\theta$$

4

9.2 Coordenadas Cilíndricas

$$\iiint f(r\cos\theta, r\sin\theta, z) \cdot r \, dz \, dr \, d\theta$$

9.3 Coordenadas Esféricas

$$\iiint f(r\sin\varphi\cos\theta, r\sin\varphi\sin\theta, r\cos\varphi) \cdot r^2\sin\varphi\,dr\,d\varphi\,d\theta$$

- 10 Teorema Fundamental do Cálculo e Regra de Leibniz
- 10.1 Teorema Fundamental do Cálculo

$$F(x) = \int_{a(x)}^{b(x)} f(t) dt$$

$$F'(x) = f(b(x)) \cdot b'(x) - f(a(x)) \cdot a'(x)$$

10.2 Regra de Leibniz

$$F(x) = \int_{a}^{b} f(x, t) dt$$

$$F'(x) = \int_a^b \frac{\partial f}{\partial x}(x, t) dt$$

- 11 Integrais de Linha
 - 1. Parametrizar em função de t, ou seja, obter g(t)
 - 2. Obter a derivada de g, ou seja, $g'(t) = \langle x'(t), y'(t) \rangle$
 - 3. No caso do **campo escalar**, calcular $||g'(t)|| = \sqrt{(x'(t))^2 + (y'(t))^2}$
- 11.1 Campos Escalares

$$\int_{C} f \, ds = \int_{a}^{b} f\left(g(t)\right) \cdot \left\|g'(t)\right\| \, dt$$

11.2 Campos Vetoriais

$$W = \int_{C} F dg = \int_{a}^{b} F(g(t)) \cdot g'(t) dt$$

Trocar a orientação da curva troca o sinal do integral.

- 12 Campos Fechados. Campos Gradientes. Teorema Fundamental do Cálculo
- 12.1 Teorema Fundamental do Cálculo para Integrais de Linha

$$\int_{C} F dg = \int_{C} \nabla \varphi dg = \varphi (g(b)) - \varphi (g(a))$$

5

12.2 Campos Gradientes e Potenciais Escalares

Um campo vetorial diz-se gradiente se $F = \nabla \varphi$, neste caso a φ chama-se o **potencial escalar** de F.

$$\int_{C} \nabla \varphi \, dr = 0 \text{ , se a curva \'e fechada}$$

Para encontrar um potencial escalar:

$$\nabla \varphi = F \Leftrightarrow \begin{cases} \frac{\partial \varphi}{\partial x_1} = F_1 \\ \vdots \\ \frac{\partial \varphi}{\partial x_n} = F_n \end{cases} \Leftrightarrow \begin{cases} \varphi = \int F_1 \, dx_1 \\ \vdots \\ \varphi = \int F_n \, dx_n \end{cases}$$

12.3 Campos Fechados e Campos Gradientes

Um campo vetorial diz-se fechado se DF é simétrica:

$$\frac{\partial F_i}{\partial x_i} = \frac{\partial F_j}{\partial x_i} , \forall i \neq j$$

Se um campo vetorial é gradiente, então também é fechado.

12.4 Condição Necessária e Suficiente para ser Gradiente

13 Homotopia e Teorema de Green

TODO Semana 13

$$\int_{C} P dx + Q dy = \iint_{D} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dA$$