STOR 614 - Linear Programming, Spring 2019

Homework No. 8

Zhenghan Fang

May 22, 2019

Problem 1.

(1)

$$Ad^* = -A_B A_B^{-1} A_j + A_j = 0.$$

(2)

$$c^{T}d^{*} = -c_{B}^{T}A_{B}^{-1}A_{j} + c_{j} = -(c_{B}^{T}A_{B}^{-1}A_{j} - c_{j}) > 0$$

because the reduced cost of x_j is $c_B^T A_B^{-1} A_j - c_j$ and is negative.

(3) The matrix

$$\begin{bmatrix} A_B & D \\ 0 & I_{n-m-1} \end{bmatrix} \in \mathbb{R}^{(n-1)\times(n-1)}$$

is nonsingular because A_B is nonsingular. Thus, the matrix with the active constraints of d^* as row vectors has n-1 linearly independent columns. Thus, d^* has n-1 linearly independent active constraints.

Problem 2.

For any $x, y \in \mathbb{R}^n$ and $0 \le t \le 1$,

$$F[(1-t)x + ty] = g\{f[(1-t)x + ty]\}$$

$$\leqslant g[(1-t)f(x) + tf(y)] \quad (f \text{ is convex and } g \text{ is nondecreasing})$$

$$\leqslant (1-t)g(f(x)) + tg(f(y)) \quad (g \text{ is convex})$$

$$= (1-t)F(x) + tF(y)$$

Thus, F is convex.

Problem 3.

(a)

First, we have

$$M = \begin{bmatrix} 2 & 0 \\ 0 & 8 \end{bmatrix}, c = \begin{bmatrix} -8 \\ -16 \end{bmatrix}, A = \begin{bmatrix} -1 & -1 \\ -1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}, b = \begin{bmatrix} -5 \\ -3 \\ 0 \\ 0 \end{bmatrix}.$$

The matrix M is positive definite.

The point (3,2) satisfies the first two constraints as equalities and the last two strictly. So the multipliers would need to satisfy $u_1 \ge 0, u_2 \ge 0, u_3 = 0, u_4 = 0$. The equation $Mx + c = A^T u$ becomes

$$\begin{bmatrix} -2 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ 0 \\ 0 \end{bmatrix}$$

which gives $u_1 = 0$ and $u_2 = 2$. Therefore there exists $u \in \mathbb{R}^4$ such that (x, u) satisfies all the KKT conditions. x = (3, 2) is a global solution.

M is positive definite, thus z is strictly convex, thus the QP has a unique global solution. (b)

First, we have

$$M = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}, c = \begin{bmatrix} -2 \\ -6 \end{bmatrix}, A = \begin{bmatrix} -1 & -1 \\ 1 & -2 \\ -2 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}, b = \begin{bmatrix} -2 \\ -2 \\ -3 \\ 0 \\ 0 \end{bmatrix}.$$

The matrix M is positive definite. The point (2/3, 4/3) satisfies the first two constraints as equalities and the last three strictly. So the multipliers would need to satisfy $u_1 \ge 0, u_2 \ge$

 $0, u_3 = 0, u_4 = 0, u_5 = 0$. The equation $Mx + c = A^Tu$ becomes

$$\begin{bmatrix} -8/3 \\ -4 \end{bmatrix} = \begin{bmatrix} -1 & 1 & -2 & 1 & 0 \\ -1 & -2 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

which gives $u_1 = 28/9$, $u_2 = 4/9$. Therefore there exists $u \in \mathbb{R}^5$ such that (x, u) satisfies all the KKT conditions. x = (2/3, 4/3) is a global solution.

M is positive definite, thus z is strictly convex, thus the QP has a unique global solution. **Problem 4.**

$$\min \quad \frac{1}{2}x^T x$$
s.t. $a^T x + \alpha \ge 0$

We have

$$M = I_n, c = 0, A = a^T, b = -\alpha$$

. The KKT conditions state that

$$\begin{cases}
I_n x = au \\
a^T x + \alpha \ge 0 \\
u \ge 0 \\
(a^T x + \alpha)u = 0
\end{cases}$$

If $\alpha \ge 0$, then u = 0, x = 0. The optimal solution is x = 0, and the optimal value is 0.

If $\alpha < 0$, then $a^T x + \alpha = a^T a u + \alpha = 0 \implies u = -\alpha/(a^T a)$ (assume $a \neq 0$). The optimal solution is

$$x = au = -\frac{\alpha}{a^T a}a,$$

and the optimal value is

$$\frac{1}{2}x^Tx = \frac{1}{2}\alpha^2/(a^Ta).$$