

SEQUENCE LISTING

<110> Fesik, Stephen W.
Halbert, Donald N.
McDowell, Jeffrey A.
Schurdak, Mark E.
Morgan-Lappe, Susan E.
Sarthy, Aparna V.

<120> Method Of Killing Cancer Cells

<130> 7046.US.Z1

<160> 121

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 21
<212> RNA
<213> Artificial Sequence

<220>

<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N is deoxythymidine

<400> 1

ggugauuggu cgaggagcun n

21

<210> 2

<211> 21

<212> RNA

<213> Artificial Sequence

<220>

<223> siRNA

<221> misc_feature

<222> (20)...(21)

<223> N is deoxythymidine

<400> 2

agcuccucga ccaaucacccn n

21

<210> 3

<211> 21

<212> RNA

<213> Artificial Sequence

<220>

<223> siRNA

```

<221> misc_feature
<222> (20)...(21)
<223> N is deoxythymidine

<400> 3
aauucugaaa cgaugcccn n 21

<210> 4
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N is deoxythymidine

<400> 4
ggggcaucgu uucagaauun n 21

<210> 5
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N is deoxythymidine

<400> 5
caucgacuug gucaaagugn n 21

<210> 6
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N is deoxythymidine

<400> 6
cacuuugacc aagucgauhn n 21

<210> 7
<211> 21
<212> RNA
<213> Artificial Sequence

```

```

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N is deoxythymidine

<400> 7
aagcugacga gugaacuugn n 21

<210> 8
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N is deoxythymidine

<400> 8
caaguucacu cgucagcuun n 21

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense oligonucleotide

<400> 9
agctcctcga ccaatcacct 20

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense oligonucleotide

<400> 10
ggggcatcggt ttcagaattt 20

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense oligonucleotide

<400> 11
cactttgacc aagtgcgtgt 20

```

```

<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense oligonucleotide

<400> 12
caagttcact cgtcagcttt                                20

<210> 13
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 13
agccaagagg aaagaugggn n                                21

<210> 14
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 14
cccaucuuuc cucuuggcun n                                21

<210> 15
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 15
gcgaauuacc ucagaacagn n                                21

```

```

<210> 16
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N is deoxythymidine

<400> 16
cugucucugag guauuucgcn n 21

<210> 17
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 17
agguguuuucu gucucaugcn n 21

<210> 18
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 18
gcaugagagaca gaaacaccun n 21

<210> 19
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

```

```

<400> 19
uagaaggAAC uggaucuCN n 21

<210> 20
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 20
gagaaucccAG uuCCUUCUaN n 21

<210> 21
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 21
aacaaGGGUU ccuccAGUuN n 21

<210> 22
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 22
aacuggAGGA accCUUGUuN n 21

<210> 23
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature

```

<222> (20)...(21)		
<223> N = deoxythymidine		
<400> 23		
agucucgcau cagcuauagn n		21
<210> 24		
<211> 21		
<212> RNA		
<213> Artificial Sequence		
<220>		
<223> siRNA		
<221> misc_feature		
<222> (20)...(21)		
<223> N = deoxythymidine		
<400> 24		
cuauagcuga ugcgagacun n		21
<210> 25		
<211> 21		
<212> RNA		
<213> Artificial Sequence		
<220>		
<223> siRNA		
<221> misc_feature		
<222> (20)...(21)		
<223> N = deoxythymidine		
<400> 25		
guuacuugaa cgagaggugn n		21
<210> 26		
<211> 21		
<212> RNA		
<213> Artificial Sequence		
<220>		
<223> siRNA		
<221> misc_feature		
<222> (20)...(21)		
<223> N = deoxythymidine		
<400> 26		
caccucucgu ucaaguaacn n		21
<210> 27		
<211> 21		
<212> RNA		
<213> Artificial Sequence		
<220>		

```

<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 27
cgagagguga acaauucugan n                                21

<210> 28
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 28
ucagaauguu caccucucgn n                                21

<210> 29
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 29
aacauccuuc agcuggugan n                                21

<210> 30
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 30
ucaccagcug aaggauguun n                                21

<210> 31
<211> 21
<212> RNA

```

```

<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 31
ggcgaucuua uugaaguggn n 21

<210> 32
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 32
ccacuucaau aagaucgccn- n 21

<210> 33
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 33
gaagcaaugg uccaagaugn n 21

<210> 34
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 34
caucuuggac cauugcuucn n 21

```

```

<210> 35
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 35
auacccaaca auugcagcgn n 21

<210> 36
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 36
cgcugcaauu guuggguau n 21

<210> 37
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 37
cagaucgaac acacccugan n 21

<210> 38
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

```

<400> 38 ucagggugug uucgaucugh n	21
<210> 39 <211> 21 <212> RNA <213> Artificial Sequence	
<220> <223> siRNA	
<221> misc_feature <222> (20)...(21) <223> N = deoxythymidine	
<400> 39 gaagggcagc gagcaggagn n	21
<210> 40 <211> 21 <212> RNA <213> Artificial Sequence	
<220> <223> siRNA	
<221> misc_feature <222> (20)...(21) <223> N = deoxythymidine	
<400> 40 cuccugcucg cugcccuucn n	21
<210> 41 <211> 21 <212> RNA <213> Artificial Sequence	
<220> <223> siRNA	
<221> misc_feature <222> (20)...(21) <223> N = deoxythymidine	
<400> 41 gggcagcgag caggagagcn n	21
<210> 42 <211> 21 <212> RNA <213> Artificial Sequence	
<220> <223> siRNA	
<221> misc_feature	

```

<222> (20)...(21)
<223> N = deoxythymidine

<400> 42
gcucuccugc ucgcugcccn n                                21

<210> 43
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 43
ccuuccuuuc ggaguuaucn n                                21

<210> 44
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 44
gauuacuccg aaaggaaggn n                                21

<210> 45
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 45
cgauacaugg ccccugaagn n                                21

<210> 46
<211> 21
<212> RNA
<213> Artificial Sequence

<220>

```

```

<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 46
gacgugaaga ucuaacugcn n                                21

<210> 47
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 47
gaugaugcga gaguguuggn n                                21

<210> 48
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 48
cugcuccccuc ucuccacacn n                                21

<210> 49
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 49
cuucaggggc cauguaucgn n                                21

<210> 50
<211> 21
<212> RNA

```

```

<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 50
gcaguuagau cuucacgucn n                                21

<210> 51
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 51
ccaacacucu cgcaucaucn n                                21

<210> 52
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 52
guguggagag agggagcagn n                                21

<210> 53
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 53
cgccaaggac aagaaccugn n                                21

```

<210> 54
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 54
cagguucuug uccuuggcgn n 21

<210> 55
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 55
ugagaaccug aagaagucgn n 21

<210> 56
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 56
cgacuucuuc agguucucan n 21

<210> 57
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 57 gaagaacucc aagaaggugn n	21
<210> 58 <211> 21 <212> RNA <213> Artificial Sequence	
<220> <223> siRNA	
<221> misc_feature <222> (20)...(21) <223> N = deoxythymidine	
<400> 58 caccuucuug gaguucuucn n	21
<210> 59 <211> 21 <212> RNA <213> Artificial Sequence	
<220> <223> siRNA	
<221> misc_feature <222> (20)...(21) <223> N = deoxythymidine	
<400> 59 cagcagcuac cagaacaacn n	21
<210> 60 <211> 21 <212> RNA <213> Artificial Sequence	
<220> <223> siRNA	
<221> misc_feature <222> (20)...(21) <223> N = deoxythymidine	
<400> 60 guuguucugg uagcugcugn n	21
<210> 61 <211> 21 <212> RNA <213> Artificial Sequence	
<220> <223> siRNA	
<221> misc_feature	

```

<222> (20)...(21)
<223> N = deoxythymidine

<400> 61
gcgaaggacc ucauccagan n                                21

<210> 62
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 62
ucuggauggag guccuucgcn n                                21

<210> 63
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 63
gcuuacgaga ggaggauucn n                                21

<210> 64
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 64
gaauccuccu cucguaagcn n                                21

<210> 65
<211> 21
<212> RNA
<213> Artificial Sequence

<220>

```

```

<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 65
cucaaagaug cccaucagcn n 21

<210> 66
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 66
gcugaugggc aucuuugagn n 21

<210> 67
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 67
cuucgacgug gaugacgacn n 21

<210> 68
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 68
gucgucaucc acgucgaagn n 21

<210> 69
<211> 21
<212> RNA

```

```

<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 69
ggcucaugag aggcuagaan n                                21

<210> 70
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 70
uucuagccuc ucaugagccn n                                21

<210> 71
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 71
guuuguguca cgaucugagn n                                21

<210> 72
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 72
cucagaucgu gacacaaaacn n                                21

```

```

<210> 73
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 73
gaugaaaaag auggccaggn n                                21

<210> 74
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 74
ccuggcccauc uuuuuucaucn n                                21

<210> 75
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

<400> 75
auguggcaga auugguuggn n                                21

<210> 76
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> siRNA

<221> misc_feature
<222> (20)...(21)
<223> N = deoxythymidine

```

<400> 76		
ccaaccaauu cugccacaun n		21
<210> 77		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> antisense oligonucleotide		
<400> 77		
cccatcttcc ctcttggttt		20
<210> 78		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> antisense oligonucleotide		
<400> 78		
ctgttctgag gtaattcgct		20
<210> 79		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> antisense oligonucleotide		
<400> 79		
gcatgagaca gaaacacctt		20
<210> 80		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> antisense oligonucleotide		
<400> 80		
gagatccccag ttccttctat		20
<210> 81		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> antisense oligonucleotide		
<400> 81		
aactggagga acccttgttt		20

<210> 82	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> antisense oligonucleotide	
<400> 82	
ctatagctga tgcgagactt	20
<210> 83	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> antisense oligonucleotide	
<400> 83	
cacctctcgt tcaagtaact	20
<210> 84	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> antisense oligonucleotide	
<400> 84	
tcagaatgtt cacctctcgt	20
<210> 85	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> antisense oligonucleotide	
<400> 85	
tcaccagctg aaggatgttt	20
<210> 86	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> antisense oligonucleotide	
<400> 86	
ccacttcaat aagatcgccct	20
<210> 87	

<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> antisense oligonucleotide		
<400> 87		
catcttggac cattgcttct	20	
<210> 88		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> antisense oligonucleotide		
<400> 88		
cgctgcaatt gttgggtatt	20	
<210> 89		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> antisense oligonucleotide		
<400> 89		
tcaggggttg ttcgatctg	19	
<210> 90		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> antisense oligonucleotide		
<400> 90		
ctcctgctcg ctgcccttc	19	
<210> 91		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> antisense oligonucleotide		
<400> 91		
gctctcctgc tcgctgccc	19	
<210> 92		
<211> 19		
<212> DNA		

<213> Artificial Sequence	
<220>	
<223> antisense oligonucleotide	
<400> 92	
gattactccg aaaggaagg	19
<210> 93	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> antisense oligonucleotide	
<400> 93	
cttcagggc catgtatcg	19
<210> 94	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> antisense oligonucleotide	
<400> 94	
gcagttagat cttcacgtc	19
<210> 95	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> antisense oligonucleotide	
<400> 95	
ccaacactct cgcacatc	19
<210> 96	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> antisense oligonucleotide	
<400> 96	
gtgtggagag agggagcag	19
<210> 97	
<211> 19	
<212> DNA	
<213> Artificial Sequence	

<220>		
<223> antisense oligonucleotide		
<400> 97		
caggttcttg tccttggcg		19
<210> 98		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> antisense oligonucleotide		
<400> 98		
cgacttcttc aggttctca		19
<210> 99		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> antisense oligonucleotide		
<400> 99		
caccttcttg gagttcttc		19
<210> 100		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> antisense oligonucleotide		
<400> 100		
gttgttctgg tagctgctg		19
<210> 101		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> antisense oligonucleotide		
<400> 101		
tctggatgag gtccttcgct		20
<210> 102		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> antisense oligonucleotide		

<400> 102		
gaatccctcct ctcgtaagct		20
<210> 103		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> antisense oligonucleotide		
<400> 103		
gctgatgggc atctttgagt		20
<210> 104		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> antisense oligonucleotide		
<400> 104		
gtcgtcatcc acgtcgaagt		20
<210> 105		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> antisense oligonucleotide		
<400> 105		
ttcttagcctc tcatgagcct		20
<210> 106		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> antisense oligonucleotide		
<400> 106		
ctcagatcgt gacacaaaact		20
<210> 107		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> antisense oligonucleotide		
<400> 107		

cctggccatc ttttcatct	20
<210> 108	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> antisense oligonucleotide	
<400> 108	
ccaaccaatt ctgccacatt	20
<210> 109	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> antisense oligonucleotide	
<400> 109	
agtcctcgaa ccaatcacct	20
<210> 110	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> antisense oligonucleotide	
<400> 110	
ggggcatcggtt ttcagaattt	20
<210> 111	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> antisense oligonucleotide	
<400> 111	
cactttgacc aagtgcgtgt	20
<210> 112	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> antisense oligonucleotide	
<400> 112	
caagttcaact cgtcagcttt	20

<210> 113

<211> 1772

<212> DNA

<213> Homo sapiens

<400> 113

gggctccggc ctcagaggct gtgacaatgg actatgactt taaagtgaag ctgagcagcg 60
 agcgggagcg ggtcgaggac ctgttgaat acgagggctg caaagtggc cgaggcaactt 120
 atggtcacgt ctacaaagcc aagagaaaag atgggaagga tgataaagac tatgcttaa 180
 aacaaataga aggaactggg atctctatgt cggcatgtag agaaatagca ttacttcgag 240
 agcttaagca tccaaacgtc atttctcttc aaaaggtgtt tctgtctcat gctgataagga 300
 aggtgtggct tctgtttgac tatgctgaac atgacctctg gcatataatc aagtttcaca 360
 gagcttctaa agcaaacaag aagccagttc agttacctcg gggaatggtg aagtcaactat 420
 tatatcagat ccttagatggt attcactacc tgcatgctaa ctgggtgtg cacagagatt 480
 taaaaacctgc taatattttt gttatgggt aaggtcctga gcgaggaaga gtaaaaattt 540
 ctgacatggg ctgtccccga ttatttaatt caccttgaa gcctttagca gatttggatc 600
 cagtggttgt tacattctgg taccgagccc ctgaactact tcttggagca aggcaattata 660
 ccaaagctat tgatattttgg gctatagggt gtatatttgc agaactacta acgtcagaac 720
 caatatttca ctgtcgacaa gaggacatca aaactagtaa tccttatcac catgaccagc 780
 tggacagaat attcaatgtt atgggatttc ctgcagataa agattggaa gatataaaaa 840
 agatgcctga acattcaaca ttaatggaaag atttcagaag aaatacgtat accaactgca 900
 gccttatcaa gtatatggaa aaacataaaag ttaaaccaga tagtaaagca ttccacttgc 960
 ttcagaagct gcttaccatg gacccaataa agcgaattac ctcagaacag gctatgcagg 1020
 acccctattt cttagaagac ccacttccta catcagacgt ttttgcgggt tgtcaaattcc 1080
 cttacccaaa acgagaattt ttaacggaag aagaacctga tgacaaagga gacaaaaaaga 1140
 accagcagca gcagcaggcc aataaccaca ctaatggAAC tggccaccca gggaatcaag 1200
 acagcagtca cacacaggga ccccccgttga agaaaagttag agttgttctt cctaccacta 1260
 cctcagggtgg acttatcatg acctcagact atcagcgttc caatccacat gctgcctatc 1320
 ccaaccctgg accaaggcaca tcacagccgc agagcagcat gggatactca gctacccccc 1380
 agcagcctcc acagttactca catcagacac atcggtaactg agctgcacatcg gaatcttgc 1440
 catgcactgt tgcgaatgt gcagggctga ctgtgcagct ctctgcggga acctggatag 1500
 ggccatgaga atgtactgtt caaccacatc ttcaaaaatgt ccagtagcca agttccacca 1560
 cttttcacag attggggtag tggcttccaa gttgtacca ttttggagtt agacttggaa 1620
 agaaagtgtt agcacagttt gtgttgttga tttgtactt ccatagttta cttgacatgg 1680
 ttcagactga ccaatgcatt ttttcagtg acagtctgtt gcaatgttgaag ctgtgaatgt 1740
 gctagggca agcatttgc tttgtatgtt gt 1772

<210> 114

<211> 3064

<212> DNA

<213> Homo sapiens

<400> 114

atgtactccc aattacttctt ggaagtttctt caaagtactc ctttatatat actgcagagt 60
 gtattttctt tcctcctcaa ctgagatctt tccaacttgc caccatgcag ctgccaatgg 120
 tccttagttaa gtaaaaatgtt gccataccat ttttagactc agggaaaaat agcaccact 180
 catttttattt tttgctcaat ataaaaatgtt ggataacttat gaggataactt aaacttttag 240
 gatttagctttag ttttctaaaaa atcgaattat tcactccctt gtaaagtatg taataggaat 300
 ttgtctcaat aatcaataga ttaaggtttta aaatttggaa ccatagtttaat gtatgtttaa 360
 caccatattt ttaagccctt ttaaaaacca caaccacat taagaaatac atttcataact 420
 gtgatcaagt acacacgcac acacacactc tatacatata tgcgtgttca attaaaaatgtt 480
 tcacagaaat ttccaaggag gtatgtttaa tattatctt ttgattcttac ttttattttta 540
 aaaagtggta tcaacccaca aaatggattt cataaccac tacgcagttt gataagatgc 600
 tgggttagac catgccttttcc accagttttg tggcttccattt ttgtcctttt catgtctata 660
 caggatgtttt ctagtgcattt ttgttagctt ttctctgtt tccaggatgg taataggtt 720
 agaatttcttca taaatggtttta tttcttttttctt ttctgcagct ctcacgtgtg aatatgtgtc 780
 tagtgcatttcc ttaacctgag gacttcacca gttcgaaattt acagtttca ccatcaacta 840

ccttatacctt tttggcctgg ttttcctcctt caaacagtgg aaacatfffft aaagttgctt 900
 ttgttgccaga gtaaaacaaa tggctgatag tggcttagat aaaaaatcca caaaatgccc 960
 cgactgttca tctgcttcctc agaaagatgt actttgtgt tgcgtccagca aaacaagggt 1020
 tcctccagtt ttgggtgggg aatgtcaca gacatcaagc attggtagtg cagaatctt 1080
 aatttcactg gagagaaaaa aagaaaaaaa tatcaacaga gatataacct ccagggaaaga 1140
 tttggccctca agaacctcaa atgttagagag aaaagcatct cagcaacaat ggggtcgccc 1200
 caacttaca gaaggaaaaa ttcctcacat aaggatttag aatggagctg ctattgagga 1260
 aatcttacc ttggaaagaa tattggggaa aggagctt ggaatagtca ttgaagctac 1320
 agacaaggaa acagaaacga agtggcaat taaaaaagtga aacaagaaa aggctggaag 1380
 ctctgtgtg aagttacttg aacgagaggt gaacattctg aaaagtgtaa aacatgaaca 1440
 catcatacat ctggaacaaag tatttgaac gccaaagaaa atgtacccctg tgatggagct 1500
 ttgtgaggat ggagaactca aagaattctt ggtatggaa gggcatttct cagagaatga 1560
 gacaagggtgg atcattcaaa gtctcgcatc agctatacgca tatcttcaca ataatgatat 1620
 tgtacataga gatctgaaac tggaaaatat aatggttaaa agcagtcttta ttgatgataa 1680
 caatgaaata aacttaaaca taaaggtgac tgatttggc ttagcgggtga agaagcaaaag 1740
 taggagtgaa gccatgctgc aggccacatg tggacttct atctatatgg cccctgaagt 1800
 tatcagtgcc cacgactata gccagcagtg tgacatttg agcataggcg tcgtaatgt 1860
 catgttatta cgtggagaac caccctttt ggcaagctca gaagagaagc ttttgagtt 1920
 aataagaaaa ggagaactac attttgaaaa tgcagtcgtt aattccataa gtgactgtgc 1980
 taaaagtgtt ttgaaacaaac ttatgaaagt agatcctgtt cacaatca cagctaagga 2040
 actactagat aaccagtggt taacaggcaa taaactttct tcgttgagac caaccaatgt 2100
 attagagatg atgaaggaat ggaaaaataa cccagaaagt gttgaggaaa acacaacaga 2160
 agagaagaat aagccgtcca ctgaaagaaa gttgaaaagt taccacccctt gggaaatgt 2220
 ccctgtatgcc aattacactt cagatgaaga ggaggaaaaa cagtcactt cttatgaaaa 2280
 gcaatttcctt gcaaccagta aggacaactt tgatatgtc agtcaagtt tcacatctag 2340
 caaactccctt ccagctgaaa tcaagggaga aatggagaaa acccctgtga ctccaagcca 2400
 aggaacagca accaagtacc ctgctaaatc cggcccttgc tccagaacca aaaagaaaact 2460
 ctaaggttcc ctccagtgtt ggacagtaca aaaacaagc tgctttgtt agcactttga 2520
 tgaggggtta ggaggggaag aagacagccc tatgttgagc ttgttagctt ttagctccac 2580
 agagccccgc catgtgtttt caccagctt aaattgaagc tgcttatctc caaagcagca 2640
 taagctgcac atggcattaa aggacagcca ccagtagct tggcagtggg ctgcagtgg 2700
 aatcaactca agatgtacac gaaggaaaa tagggggca gatacctca attaaggct 2760
 gtgggcacac ttgtcttattt ttacttcaaa ttcttatgtt taggcacagc tatttataagg 2820
 ggaaaaacaag aggccaaata tagtaatggg ggtgccaat aattatgtc actttgcact 2880
 agaagacttt gttagaaaat tactaataaa ctgtccatac gtattacagc agaagtgc 2940
 cagtattca catgtgttcg tgagattttt ggtgctata gattgtttaa gacagcttat 3000
 tttaaatgtt gaaaaatagg agattttgtt actgttgc attaacttgc tgctaaattc 3060
 ccaa 3064

<210> 115
 <211> 3742
 <212> DNA
 <213> Homo sapiens

<400> 115

gaattcccttc ttcctccctc ctcgccccttc tcctcgccctt ctcctccctc ctcgcccctcc 60
 cctcccgatc ctcatccccctt tgccctccccc cagccccaggc actttccgg aaagttttta 120
 tttccgtctt gggctctcg agaaagaagc tcctggctca gcggctgcaaa aactttccgt 180
 ctgcccggcc gccagcccccc gcccctccgtt gcccggccctt gcccggccccc gagcgatgag 240
 cggccctcccg gtcctcgccg cggccctccgtt gctgctggcc gtcggccggc cagctgccgc 300
 agcggccgccc gcaactgggtcc cagggtccgg gcccggggccc gcccgggttct tggctccgt 360
 cgcggccccc gtcggggggca ttcgttccca ttcgttccca gtcgttccca gtcgttccca 420
 gtcgttccgtt caggacttgtt ccggggacta cagcctggcc cagcgttccgc agatggctt 480
 ctccatgttcc gaccagaagt tccctgaatg tggtttctac ggaatgtatg ataagatctt 540
 gcttttccgtt catgaccctta ctcctgaaaaa catccttcag ctgttgcggc cggccacttgc 600
 tatccaggaa ggcgttccca ttgttgcggc cttgttccgtt tccgttccgtt ttgttgcggc 660
 tcagatttcgtt cccacgctt ttcgttccca ttcatacaga gtcgttccgtt ttcgttccgtt 720

ctgtggagaa atgctgtggg ggctggtacg tcaaggctt aaatgtgaag ggtgtggct 780
gaattaccat aagagatgtg catttaaat acccaacaat tgacgcgtg tgagggcgag 840
aaggctctca aacgtttccc tcactgggt cagcaccatc cgacatcat ctgctgaact 900
ctctacaagt gccctgtat agcccttct gcaaaaatca ccatcagagt cgtttattgg 960
tcgagagaag agtcaaatt ctcaatcata cattggacga ccaattcacc ttgacaagat 1020
ttttagtgtct aaagttaaag tgccgcacac atttgtcatc cactcctaca cccggcccc 1080
agtgtgccag tactgcaaga agcttctgaa ggggctttc aggaggct tgcaagtgc 1140
agattgcaga ttcactgtcc ataaacgttg tgacccgaaa gtaccaaaca actgccttgg 1200
cgaagtgacc attaatggag atttgcttag ccctgggca gagtctgatg tggcatgg 1260
agaaggaggt gatgacaatg atagtgaaag gaacagtggg ctcatggatg atatggaa 1320
agcaatggtc caagatgcag agatggcaat ggcagatgc cagaacgaca gtggcgagat 1380
gcaagatcca gaccaggacc acgaggacgc caacagaacc atcagtcct catcaacagcaa 1440
caatatccca ctcatgaggg tagtgcagtc tgcacccatc acgaaacac acgaagagga 1500
agtcataaaa gaaggatgga tggccacta caccagcaag gacacgctgc gaaaacggca 1560
ctattggaga ttggatgea aatgtattac cctctttcag aatgacacag gaagcaggta 1620
ctacaaggaa atcccttat ctgaaattt gtctctgaa ccgtaaaaaa cttcagctt 1680
aattccataat ggggccaatc ctcatgttt cggaaatcact acggcaaat tagtgtatta 1740
tgtggagaa aatgtggtca atccctccag cccatcacca aataacagtg ttctcaccag 1800
tggcgttgg gcagatgtgg ccaggatgtg ggagatagcc atccagcatg cccttatgccc 1860
cgtcatccc aagggtccct ccgtgggtac aggaaccaac ttgcacagag atatctctgt 1920
gagttttca gatcaaatt gccagattca agaaatgtg gacatcagca cagtatatca 1980
gattttccct gatgaagtac tgggttctgg aatcatttgac aaattacgat ttccaacaaa 2100
tcgtaaaaaca ggaagagatg tagctattaa aattctacag aaccttcatc accctgggt 2160
acaagaaagc cagcttcgtat atgaggtgc tggaaagatg ttttgggtta tggaaaaact 2220
tgtaaatttg gagtgtatgt ttgagacgccc aagtggaaaag ggcaggttgc cagagcacat 2280
ccatggagac atgctggaaa tgatcttgc ggctttgcgg cacccattt taaaaatata 2340
aacgaagttt ttaattactc agatactcgt gttgctagcc tcagctgatc cttttccatc 2400
cgttcaactgt gacccaaac cagaaaaatgt gatcatttgc gagaagtttctt tccggagggtc 2460
ggtgaaactt tgtgattttt gtttgcgg gtaggtccat aggaacaagg gctacaatcg 2520
agtgggggt acccccgctt acctggctcc catctatgtc agcctaagcg gcacattccc 2580
ctctctagac atgtggtctg ttgggtcat aattcagaat gcaacttca tggatccacc 2640
attnaatgaa gatgaagaca tacacgacca cattgatctt atcaacaatt tgctgcaagt 2700
aaatccctgg aaggaaatat ctcatgaagc gacccttggc tacagacta 2760
aaaaatgaga aagcgctaca gtgtggataa atgcaaaatc ggggagcgct acatcacca 2820
tcagacctgg ttagatttgc gagagctgga tgcaggcgag cagccgtc agtacccac 2880
tgaaagtgt gacctgaggt gggagaagta acacactgatc aatccacttctt gagaactgaag 2940
acacactgatc aatccaaatgt cttagccacag gaaagccctc ggtgagcgtg tcagcatctt 3000
gaaagccctc ggtgagcgtg tcagcatctt cactgtggaa ctaataaata catacggtca 3060
tatttctgt cagatgagaa caaagctgtt tgcaagatc tgcaggccat ttgttgcata 3120
tgccaagaca aatcaacaga agcatttgc aaagttccct gaaacacgaa acttggattt 3180
aaagttccct gaaacacgaa acttggattt gtgaatgatt catgttatata ttaatgcatt 3240
aaacactgtct ccactgtgcc tttgcaaaatc agtggtttc ttactggagc ttcatattgg 3300
taagagacag aatgtatctg tgaagtagtt ctgtttggtg tgcaggccat tccagggttc 3360
tgtaaacaaa ctcttgaaga gtcgattatt tatgaacaac tccaaaaccc 3420
atgtggaaa aaaaatgaatg aggaggtag ggaataaaaat cctaagacac aatgcata 3480
acaagttta atgtatagtt ttgaatcctt tgcctgcctg gtgtgcctca gtatattaa 3540
actcaagaca atgcacactg ctgtgcaga cctagtgctc ttaagcctaa atgccttgc 3600
aatgtaaact gccatataata acagatacat ttcccttctt cttataatac tctgttgc 3660
tatggaaaat cagctgtca gcaaccttcc acctttgtgt attttcaat aataaaaaat 3720
attcttgtca aaaaaaaaaaa aa 3742

<210> 116
<211> 2549
<212> DNA
<213> *Homo sapiens*

```

<220>
<221> misc_feature
<222> (6)...(6)
<223> N is a, t, g, c, unknown, or other

<400> 116
cagtgnngctc cgggcccgcg gccgcagcca gcacccgcgc cgccgcagct ccgggaccgg 60
ccccggccgc cgccgcccgc atggcaacg ccgcgcgc caagaaggc agcgagcagg 120
agagcgtgaa agaattctta gccaaagcca aagaagattt tctaaaaaaa tggaaagtc 180
ccgctcagaa cacagcccac ttggatcagt ttgaacgaat caagaccctc ggcacgggct 240
ccttcggcgc ggtgatgctg gtgaaacaca aggagaccgg gaaccactat gccatgaaga 300
tcctcgacaa acagaagggtg gtgaaactga aacagatcga acacaccctg aatgaaaagc 360
gcattcctgca agctgtcaac ttccgttcc tcgtcaaact cgagttctcc ttcaaggaca 420
actcaaactt atacatggtc atggagatcgt tgcccgccgg ggagatgttc tcacacctac 480
ggcggatcgg aagggtcagt gagccccatg cccgttcta cgccgcccag atcgtcctga 540
ccttgagta tctgcactcg ctggatctca tctacagggc cctgaagccg gagaatctgc 600
tcattgacca gcagggtctac attcagggtga cagacttcgg ttccgccaag cgcgtgaagg 660
gccgcacttg gaccttgtgc ggcacccctg agtaccttgc ccctgagatt atcctgagca 720
aaggctacaa caaggccgtg gactggtggg ccctgggggt tcttatctat gaaatggccg 780
ctggctaccc gcccttcttc gcagaccagc ccattccagat ctatgagaag atcgtcctcg 840
ggaagggtcgc ctcccttcc cacttcagct ctgactttaga ggacctgtcg cggAACCTCC 900
tgcaggtaga ttcaccaag cgcttggga acctcaagaa tgggtcaac gatatacaga 960
accacaagtg gttgccaca actgacttga ttccatcta ccagagggaa gtgaaagctc 1020
ccttcataacc aaagttaaa ggccctgggg atacgatcaa cttgacgac tatgaggaag 1080
aagaaatccg ggtctccatc aatgagaagt gtggcaagga gtttcttag ttttagggc 1140
atgcctgtgc ccccatgggt ttctttttt cttttttctt tttttggc ggggggtgg 1200
gagggttggta ttgaacagcc agaggcccc agagttccct gcatctaaatt tcaccccccac 1260
cccaccctcc agggtaggg ggagcaggaa gcccagataa tcagagggac agaaacacca 1320
gctgtcccc ctcatcccc tcaccctctt gcccccttc ccacctttcc cttcctctt 1380
ccccacagcc ccccagcccc tcaccctcc cagcccaatt ctgcctgttt taaacgagtt 1440
tctcaactcc agtcagacca ggttgcgtg gtgtatccag ggacagggtt gggaaagagg 1500
ggctcacgct taactccagc ccccaaccac accccatcc caccacacca caggccccac 1560
ttgctaaggg caaatgaacg aagcacaac cttcccttcg gagaatcct gcctggaaag 1620
gagagattt tagtgacatg ttcaatgggt tgcttgctat aattttttta aaaaacaaac 1680
aattttaaaat ctatattaat ttccaccatg gcctccctcc ctccttcctc tactcccacc 1740
cctccatgt ccccccattc ctcaaatcca ttttaaagag aagcagactg actttggaaa 1800
gggaggcgct ggggttggaa cttcccccgt gctaattcc cctggggccc tccccgggaa 1860
atccctctcg ccaatccctgc gaggtctag gccccttag gaagcctccg ctctttttt 1920
ccccacaga cctgttccca cccttgggt ttgaagcca gacaaagcag ctgcccctct 1980
ccctgccaaa gaggagtcat ccccaaaaaa gacagagggg gagcccaag cccaaagtctt 2040
tcctccctcc agcgtttccc cccaaactcc taatttatt ctccgctaga tttaacgtc 2100
cagcctccctcc tcagctgagt ggggaggcga tccctgcaaa agggaaacaga agaggccaa 2160
tcccccaag ccacggcccc gggtcaagg cttagagtc tggggagggg ctgcctgttt 2220
tactcacca ccagcttccg cttcccccatt cctggggccc cttccctccag ctttagctgc 2280
agctgtccat caccctctcc ccaactttcc atttgtgtt tttctctcg taatagaaaa 2340
gtggggagcc gctggggagc cacccttcc atccccgtat ttcccccctct cataacttct 2400
ccccatccca ggaggagtcc tcaggcctgg ggtggggccc cgggtgggtg cgggggcgt 2460
tcaacctgtg tgctgcgaag gacgagactt cctttgaac agtgtgtgt tgtaaacata 2520
tttggaaaact attacaata aagttgtt 2549

<210> 117
<211> 2372
<212> DNA
<213> Homo sapiens

<400> 117
cgctgtggg ctgcggccgc ggcggccggc gtggttacta tggcggagtc ggccggagcc 60

```

tcctccttct tcccccttgc tgcgtccctg ctcgcccggca gcggcgggtc cggggccccgg 120
 ggggtccagg ctctgtgt tgctgtgcacc agctgcctcc agggcaacta cacgtgtgag 180
 acagatgggg cctgcattgt ttccattttc aatctggatg ggatggagca ccatgtgcgc 240
 acctgcattcc ccaaagtggc gctggccct gccgggaagc cttctactg cctgagctcg 300
 gaggacactgc gcaacaccca ctgctgtac actgactact gcaacaggat cgacttgagg 360
 gtgcccagtg gtcacaccaa ggagcctgag caccctgtcc tggggggccc ggtggagctg 420
 gtaggcattca tcgcccggccc ggtttccctc ctgttccctca tcattatcat tttttccctt 480
 gtcatttaact atcatcagcg tgcgttatcac aaccggcaga gactggacat ggaagatccc 540
 tcattgtgaga tttgtctctc caaagacaag acgctccagg atcttgcata cgatctctcc 600
 acctcagggt ctggctcagg gttacccctc tttgtccagg gcacagtggc ccgaaccatc 660
 gtttacaag agattattgg caagggtcgg tttggggaaat tatggcgggg ccgctggagg 720
 ggtggatg tggctgtgaa aatattctc ttcgttgaa aacggctttt gttcaggaa 780
 gcagagat accagacggt catgtgcgc catgaaaaca tccttggatt tattgtgtct 840
 gacaataaag ataatggcac ctggacacag ctgtggctt tttctgacta tcattgac 900
 gggtccctgt ttgattatct gaaccggat acagtgacaa ttgagggat gattaagctg 960
 gccttgcctg ctgctgtgg gctggcacac ctgcacatgg agatcggtgg caccgggggg 1020
 aaggctggaa ttgctcatcg agacttaaag tcaaagaaca ttctggtgaa gaaaaatggc 1080
 atgtgtgcca tagcagaccc gggctggct gtccgtcatg atgcagtcac tgacaccatt 1140
 gacattgccc cgaatcagag ggtggggacc aaacgatata tggccctgtc agtacttgat 1200
 gaaaccatta atatgaaaca ctttgactcc tttaaatgtg ctgatattt tggccctggg 1260
 cttgtatatt gggagattgc tcgaagatgc aattctggag gaggccatga agaatatcg 1320
 ctgccccattt acgacttagt gcccctgtc cttccattt agggaaatgcg aaaggttgta 1380
 tgtgatcaga agctgcgtcc caacatcccc aactgggtggc agagttatga ggcactgcgg 1440
 gtgatgggaa agatgtatgc agagttgtgg tatgccaacg ggcggccggc cttgtggcc 1500
 ctgcgcattca agaagaccct ctcccagctc agcgtgcagg aagacgtgaa gatctaactg 1560
 ctcccctctc ccacacggag ctccctggcag cgagaactac gcacagctgc cgcgttgagc 1620
 gtacgttgc ggccttccatc tcgtttctgc ccagccctct gtggccagga gcccctgggg 1680
 gcaagagggc cagagccccc gagagactcg ctcactccca tttttttt gagacagaca 1740
 cttttctat ttacccctta atggcatgga gactctgaga gcaattgtg tggagaactc 1800
 agtgcacac ctcgaactgg ttgttagtgg aagtcccgcc aacccgggt catctggcac 1860
 gtggccagga gccatgacag gggcgcttgg gagggggccgg aggaaccgag gtgttgccag 1920
 tgctaaactg ccctgagggt ttcccttggg gaccagccca cagcacacca aggtggccgg 1980
 gaagaaccag aagtgcagcc cctctcacag gcagctctga gcccgcctt cccctccctcc 2040
 ctggatgga cgtgcgggg agactgccc tggagacgga atctgcccgt ttgtctgtcc 2100
 agccgtgtgt gcatgtgcgg aggtgcgtcc cccgttgc ctgggtcgat ccatgccctt 2160
 acacgtgcgt gtgagtgtgt gtgtgtgtct taggtgcgc acttacctgc ttgagcttcc 2220
 tgtgatgtg caggcgccgg gtgtggctgt catgtgtcc gtgtgtgtc gtgcctcttt 2280
 tcagtagtga gcagcatcta gttccctgg tggcccttccc tggaggtctc tccctcccc 2340
 agagcccttc atgcccacagt ggtactctgt gt 2372

<210> 118
 <211> 1097
 <212> DNA
 <213> Homo sapiens

<400> 118
 aaactcagaa ttttcgcggg ctcgggtggc ggttttatcc ctccggccgg caggctgggc 60
 gcaggggggcg agccccccccc cggcgccgcag cagcaccatg ggcacgggtgc tggccctgtc 120
 tcccagctac cggaaaggcca cgctgttga ggtatggcgccg gccaccgtgg gccactatac 180
 gggcgatcag aacagcaaga acgccaagga caagaacctg aagcgccact ccatcatctc 240
 cgtgtgcct tggaaagagaa tcgtggccgt gtcggccaaag aagaagaact ccaagaagg 300
 gcagccataac agcagctacc agaacaacat caccgcaccc aacaatgaga acctgaagaa 360
 gtcgtgtcg tgcgtccacc tgcgtccatcg cggccagccc ccacccggccc agccgcctgc 420
 accccggcc agccagctt cgggttccca gaccggggcc tcctcctcact tcaagaaagc 480
 ccctcaccctt gccgtccatcc cccgcaggac gcccaaacgg gtcattgtcc aggcgtccac 540
 cagtggatgtc cttcgctgcc tgggtgagtt tctctgtcccg cgggtgtacc gcctgaagca 600
 cctgtcccccc acggacccccc tgctctggct ggcgcggcgtc gaccgcgtc tgcttctgca 660

gggctggcag gaccagggtc tcatacagcc ggccaacgtg gtcttcctct acatgctctg 720
 caggatgtt atctcctccg aggtgggctc ggatcacagag ctccaggccg tcctgctgac 780
 atgcctgtac ctctcctact cctacatggg caacgagatc tcctacccgc tcaagccctt 840
 cctggggag agctgcaagg aggcccggc ggaccgttgc ctctctgtca tcaacccat 900
 gagctcaaag atgctgcaga taaatgccga cccacactac ttcacacagg ttttctccga 960
 cctgaagaac gagagcggcc aggaggacaa gaagcggctc ctcttaggcc tggatcggtg 1020
 agcaactgttag cctgcgtcat ggctcaagga ttcaatgcat tttaagaat ttattattaa 1080
 atcagtttg tgtacag 1097

<210> 119
 <211> 6782
 <212> DNA
 <213> Homo sapiens

<400> 119
 gggcgggct gaggggcggcg ggggcgggcc gccc gagctg ggagggcggc ggcgccgagg 60
 ggaggagagc gccccatgga cccgcggggc cccggcccc agactctgcg ccgtcgggac 120
 ggagccaaag atgtcgccct aggccggggc gcgacgacgc ggacggggcg gcgaggaggc 180
 gcccgtctg cccgggctcg cagccgcca gccccccgagg gcgcgcctg acggactggc 240
 cgagccggcg gtgagaggcc ggcgcgtcgg gagcggccg cgccggcacca tgtcggccaa 300
 ggtgcgctc aagaagctgg agcagctgct cctggacggg ccctggcgca acgagagcgc 360
 cctgacgtg gaaacgctgc tcgacgtgct cgtctgcctg tacaccgagt gcagccactc 420
 ggcctgcgc cgcgacaagt acgtggccga ttccctcgag tggctaaac cattacaca 480
 gctggtaaaa gaaatgcagc ttcatcgaga agactttgaa ataattaaag taattgaaag 540
 aggtgccttt ggtgaggtt ctgttgtcaa aatgaagaat actgaacgaa tttatgcaat 600
 gaaaatccctc aacaagtggg agatgtgaa aagagcagag accgcgtgct tccgagagga 660
 ggcgcgtgt ctggtaacg ggcactgcca gtggatcacc gcgcgtcact acgccttca 720
 ggacgagaac cacctgtact tagtcatgga ttactatgtg ggtggtgatt tactgaccct 780
 gctcagcaaa tttaaagaca agcttccgga agatatggcg aggttctaca ttggtaaat 840
 ggtgctggcc attgactcca tccatcagct tcattacgtg cacagagaca ttaaacctga 900
 caatgtccctt ttggacgtga atggcataat ccgcctggct gactttggat catgttggaa 960
 gatgaatgat gatggcactg tgcagtcctc cgtggccgt ggcacaccc actacatctc 1020
 gcccggatc ctgcaggcgta tggaggacgg catggccaaa tacgggctg agtgtgactg 1080
 gtggctctg ggtgtctgca tggatgat gctctatgga gaaacgcccgt tttatgcgg 1140
 gtcactcgta gagacctatg ggaagatcat gaaccatgaa gagcgttcc agttccatc 1200
 ccatgtcactg gatgtatctg aagaagcgaa ggacccatc cagagactga tctgcagtag 1260
 agaacgcccgg ctggggcaga atgaaataga ggatttcaaa aagcatgcgt tttttaagg 1320
 tctaaattgg gaaaatatac gaaacctaga agcaccttat attcctgtat tgagcgtcc 1380
 ctctgacaca tccaaacttcg acgtggatgta cgacgtgtc agaaaacacgg aaatattacc 1440
 tcctggttct cacacaggct ttctggatt acatttgcctt ttcatgggtt ttacattcac 1500
 aacggaaagc tggggctcg atcgaggctc tctgaagagc ataatgcagt ccaacacatt 1560
 aaccaaaagat gaggatgtgc agcgggacct ggagcacagc ctgcagatgg aagcttacga 1620
 gaggaggatt cgagggtcg aacaggagaa gctggagctg agcaggaagc tgcaagagtc 1680
 cacccagacc gtgcagtccc tccacggctc atctcgccct ctcagcaatt caaaccgaga 1740
 taaaagaaatc aaaaagctaa atgaaagaaat cgaacgttgc aagaataaaa tagcagattc 1800
 aaacaggttc gagcgacagc ttgaggacac agtggcgtt cgccaagagc gtgaggactc 1860
 cacgcagcgg ctgcggggc tggagaagca gcaccgtc gtccggcagg agaaggagga 1920
 gctgcacaag caactgggtt aagccctcaga gcccggccca tcccaggcca aggaactcaa 1980
 agatgcccatt cagcagcgaa agctggccct gcaggagttc tcggagctga acgagcgcat 2040
 ggcagagctc ctgcggccaga agcagaaggt gtccggcag ctgcagatgg aagggaggg 2100
 gatggagggtg gccacgcaga aggtggacgc catgcggcag gaaatgcggg gagctgagaa 2160
 gctcagaaaa gagctggaaat ctcagcttgc tgatgctgtt gctgaggcct ccaagggcg 2220
 caagcttcgt gaggcagcgc agaacttctg caagcaatg gaaagcgagc tggaggccct 2280
 caaggtgaag caaggaggcc ggggagcggg tgccaccta gagcaccagc aagagattc 2340
 caaaatcaaa tccgagctgg agaagaaaat ttatggat gaaagaggaat tggcagacg 2400
 tgaggcctcc catgtcttag aagtaaaaa tggatggat gagggtgcattt attcagaaag 2460
 ccaccagctg gccctgcaga aagaatctt gatgttaaaa gataagttttag aaaagtcaaa 2520

gcgagaacgg cataaacgaga tggaggaggc
agaaaagagcg atgctgttt atgaaaacaa
ttccttgtg gataaactca cagctaaaa
ggcagccaag aaggagtca gggcccactg
ggtcagtgac gagaaaagatg cccggggtta
agagctcgag gcttgagga gttctagtct
ggtgcggcgc agccagaagc tggacatgtc
ggcggagatc cgggccaagc agcttgtcca
cctcacctg gaaagcaaac taaaggattc
aatggaaatt ttgaagaaaa agatggaaga
tccagattt caggattcca ttttgagta
gacatttaga accagctca ctagtgagca
cccgtcgatg tctgtggctg catcagagca
gccatccgct gtgccgtgc ccaccacgca
agtcaccag ttcaagcatca agtccttctc
cctgatggtt ggctgtatcc ggcagggtca
cgtgtcctgc aaagacgggt ccccccaggt
gcctctggc gtggacgtgc agcgaggcat
ccaaagccc acgggggtga agaagggtat
caagcttcc ctgtatgatc tgctgaagg
ccaagcttgc gatctcagag atgacgagtt
cattcatgct acacgcccgg atattccatg
tgcacccctt aagaccagct cgctgtcat
gtgggttggg attctagaag gactccagtc
ggtcgtcat gtcccttgg aagctacga
gacagctgcc atcgtggatg cagacaggat
catagaggcc acccgagatg tgatcgtccg
cgagctgtc cccaggagaa agatcgtaat
cctctatccg tggctgtccc ttgatggagc
aaccaaaggc tgccagctca tggccacggc
gttggccgtc gtggaaacggc tgatccttgc
cagaaagttc aatgagattt tggctccgg
caggctctgt gtgggctacc cttctgggtt
gcctctaaac ctggtaaattt ccaatgaccc
tgatgcctt tggctgtgg agctcgaaag
gggactgtac gtggaccggc aaggccggag
ggctctgtc gcctgttagtt gcagccccac
ggacgtcttt gatgtgcgc ccatggagtg
gccccctgaac tctgaaggca ccctcaacct
cttcaagagc aagtctcggt gaggcgttct
gaagcagatg ctgcgcacca ggagaaaaag
gagactgcag cagaggcggag agatgcttag
caacccaaacc aacttcaacc acgtggccca
catggacactg cctctgagtg ctgtggcccc
cacaacactg gctcgccagc ctccatccag
aggtggatcg gaggcttagcg tgactgtgcc
ctttgacaaa gagcctgatt cggactccac
ccccagccgc ccaccgagcc ccaactcccc
ggagcagccg gcctgtgaca cctgaagccg
gatggctcc agcgtcagtg ccaagactga
tagaatctact ttgttagatataa ggagatgaag
tttatgtccg cattgttgc ggcagtagac
gatgtgttc catctgcaca tgaaggaccc
ccgagagggc atatggggcc ctgccaacac
ggctgttgcg gaagcagaca tctggggaca
cctgaaactt tcctaggacc ttaagagaat
actagaattt tgaagacagg aaagtggagg

atggtagtaca ataaaagata aatacgaacg 2580
gaagctaact gctgaaaatg aaaagctctg 2640
tagacagctg gaggatgagc tgcagatct 2700
ggaagctcag attgcggaaa tcattcagtg 2760
ccttcaagct cttgcttcca agatgaccga 2820
ggggtcaaga acactggacc cgctgtggaa 2880
cgcgccgtg gagctgcagt cggccctgga 2940
ggaggagctc aggaaggctca aggacgccaa 3000
cgaagccaaa aacagagaat tattagaaga 3060
aaaattcaga gcagatactg ggctcaaact 3120
tttcaacact gctccttctt cacatgacct 3180
agaaacacaa gctccgaagc cagaagcgct 3240
gcaggaggac atggctcgcc ccccgagag 3300
ggccctggct ctggctggac cgaagccaaa 3360
cagccctact cagtgcagcc actgcacctc 3420
cgctgtcgag gtgtgttctt ttgctgtcca 3480
gtgccaataa cctcccgagc agtccaagag 3540
cggaacacgc tacaaggc atgtcaaggt 3600
gcagcgcga tatgcagtcg tctgtgagtg 3660
aaaatccacc cagcctgttgc tcattgcag 3720
ttccgtgagc tcaagtccctgg cctcagatgt 3780
tatatcagg gtgacggcct ctctctttagg 3840
tctgacagaa aatgagaatg aaaagaggaa 3900
cateccttcat aaaaaccggc tgaggaatca 3960
cagctcgctg cctctcatca aggccatct 4020
tgcagtccggc ctagaagaag ggctctatgt 4080
tgccgctgac tgtaagaagg tacaccagat 4140
cctcctctgt ggccggaacc accatgtgca 4200
ggaaggcagc tttgacatca agcttccgga 4260
cacactcaag aggaactctg gcacccgtct 4320
ctatgagatc cagagaacga agccattcca 4380
cagcgtgcag tgccctggcgg tgctcaggga 4440
ctgcctgctg agcatccagg gggacggcga 4500
ctcgcttgcg ttccctctcac aacagtcttt 4560
cgaggagtagt ctgctttgtct tcagccacat 4620
ggcacgcgcg caggagctca tggccctgc 4680
ccacgtcaacg gtgtacagcg agtatggcgt 4740
ggtgcagacc atcggcctgc ggaggataag 4800
cctcaactgc gagcctccac gcttgcata 4860
caacgtccgc gacacccctcc acaacagcaa 4920
gccccgtc ttcaggatcc cagagaaga 4980
agacccagaa ttgagatcca aaatgatatc 5040
catggccca ggcgcacggca tgcaggtgtc 5100
ctcccaggag gaaaggccgg gccccgtcc 5160
gaacaaggccc tacatctcg tggccctcatc 5220
tctgagaagt atgtctgatc cagaccaggaa 5280
caaacactca actccatcga atagctccaa 5340
ccacaggagc cagctcccc tcgaaggcct 5400
ccagctcgcc acaggggcca gggagctgga 5460
gcggggccctc cagttgtgtc caagggaaatg 5520
aagacaaatc ttattataa tattgtatcg 5580
cacatctgtt cgtctgcaca gctgtgaggc 5640
ccatacagcc tgcgtccctac ccctgacaac 5700
caacttcctca gcagaaaaccc gtcatgacgc 5760
cagcctcaagt acccagtctt ttcccttagtt 5820
agtagggatgt cctatagcat tcccagtgtc 5880
ttagtctgtg gcctttttt catttagcca 5940

ttgcacagtc agctgcagaa gtcctgctga ccacctagtc atggacaaaag gcccaggacc 6000
 agtgcacacc tgcgtccctg tgtgcattaa gttcattctg ggtcgagcc atgaagtgtc 6060
 accagtatct actactgtga agtcagctgt gctgtttcc attcgcttcc acggcttctg 6120
 cctcctgcca taaaaccagg gagtgtcgtg gtgcaggcag gcctgtggc ctgctggct 6180
 gagggaaagtc agagccccag ggcccacga acgagccact gggatacccc accccgcccc 6240
 gccctgcccc cccccccccc caccagtctt gcccccccat ggagcccccg tgatttagtag 6300
 cccgtatgtat cacgttagacc caccaaacac actcctgcac actggccccc gcccacggca 6360
 cagaatccc ctgcgcgtgg attcacctc accctttgtt ccagatgtt agtgaccaggc 6420
 tctgtggccc tgtgtcgtaa gaggcttgg attaactgtg gcgcagaca cagcttgcc 6480
 acagcttggg ccaggcttcc cctgtctcc caccggcgg ctgcttggca aggctgttca 6540
 ggacgtgcac ttcccaagt cggcaactgag tggccagca ccgcctagcc ctgccacccc 6600
 actgcctcc tggccttct gctggatggg cacctgggg gttctggttt ttacttttt 6660
 aatgtaaatc tcagtctttg taattaattt ttgaattgtg agaacatttt tgaacaattt 6720
 acctgtcaat aaagcagaag acggcagttt taaagttaaa aaaaaaaaaaaaaaaa 6780
 aa 6782

<210> 120
 <211> 2201
 <212> DNA
 <213> Homo sapiens

<400> 120
 caactacgag ccacgagttt gcagatgggg ctgctcgccg gcgcctgtgg ctgagggaga 60
 gcagcggcgg cggggagcga cggggagcgg cggcagcggc gcgcggagg cggctgaggt 120
 gcgagccga ctaaatcatt ttgctacttt aaaaaaatca cgaaagtaca ttatttgaag 180
 tttggagaag aaagggattt ggtaacaaag gacagccatt tccattttaa gcagctaaac 240
 agcaggagag atttctgtaa gaaggatcca gtcagattc cattgttcat cattttgcaa 300
 tgcagcaagt ctggaaaac cttacggagc tgcctctgtc tactggagca gaagaaatag 360
 acctaatttt cctcaaggaa attatggaga atcctattgt aaaatcaactt gctaaggctc 420
 atgagaggct agaagattcc aaactagaag ctgtcagtgca caataacttga gaatttagtca 480
 atgaaattct tgaagacatc actcctctaa taaatgttga tgaaaatgtg gcagaattgg 540
 ttggtataact caaagaacct cacttccagt cactgttga ggcccatgtat attgtggcat 600
 caaagtgttta tgattcacct ccatcaagcc cagaaatgaa taattcttct atcaataatc 660
 agttattacc agtagatgcc attcgattt ttgttattca caaaagagct gggaaaccac 720
 tgggtgtgac atttagggtt gaaaataatg atctgtttaat tgcccgaatc ctccatgggg 780
 gaatgtataga tcgacaaggt ctacttcatg tggagatata aattaaagaa gtcaatggcc 840
 atgagggttgg aaataatcca aaggaattac aagaattact gaaaatattt agtggaaatgt 900
 tcaccctaaa aatcttacca agttatagag ataccattac tcctcaacag gtatttgtga 960
 agtgtcattt tgattataat ccatacaatg acaacctaattt accttgcacaa gaagcaggat 1020
 tgaagtttc caaaggagaa attcttcaga ttgtaaatag agaagatcca aattgggtggc 1080
 aggctagcca tggaaaagag ggaggaagcg ctggctctat tccaaaggccag ttccctggaaag 1140
 agaagagaaa ggcatttgtt agaagagact gggacaattt aggacctttt tgtggacta 1200
 taagtagcaa aaaaaagaaa aagatgtatgtt atctcacaac cagaaatgca gaatttgatc 1260
 gtcataatccat ccagatatat gaggaggtt cccatccatg agaaaaacat 1320
 tagtattgtat agagactcaa ggtttaggccc gaagaagctt gaaaacagg ttcatatgtat 1380
 tgaatcccac tagatttggc actacggcgtc catttactt acgaaaccca aggaaatgt 1440
 aaaaagatgg ccaggcatat aagtttgtt cacgtatgtc gatggaaagca gatattaaag 1500
 ctggaaagta ttggaaacat gggaaatatg aagggaaatct ctatggaaacc aaaattgtatt 1560
 ctattcttgc ggttgccttactggacggc cttgcattt ggtgtcaac ccacaagcac 1620
 tggaaatggatt gggacatca gagtttatgc cctatgtggt attatttgcg gctccggagc 1680
 tagagacgtt acgtgccatg cacaaggctg tgggtggatgc aggaatcact accaagcttc 1740
 tgaccgactc tgacttgaag aaaacagtgg atgaaatgtc acggattcag agagcataca 1800
 accactattt tgatttgcattt atcataaaatg ataattctaga caaaggctttt gaaaaactgc 1860
 aaactgcccattt agagaaactg agaatggaaac cacagtgggt cccaaatcagc tgggtttact 1920
 gatgattcag taaggttaac aatgaaaattt aaactctttaa aaagtactg caacaaataa 1980

```
accttctact gagaaaaatac atcacagata gaagattatc tgctaaagtcc aggcattttt 2040  
atggtgtaga ttgaaaataat agtacacttc tgaattttta tataaaaatgt gggttggaaagg 2100  
tgtactaata tataattttat cttaatTTT ctaactttgt atggataátc tttctattca 2160  
tatcacataaa agaaaatgcgt tqaagcaaaa aaaaaaaaaa a 2201
```

<210> 121
<211> 4917

<212> DNA

<213> Home

215 HOMO SAPIENS

tttttgtaa aatctttac tactcctacc aagtgtcatc agtgtaccc cttgatggg 2820
 gtttaataa gacagggctg ttcatgtaa gtgtgtgat tctcatgcca tataactgt 2880
 gtaaacaaag ctccaaccac ttgtccagtt cctcctgaac agacaaaaagg tcccctggg 2940
 atagatcctc agaaaggaat aggaacagca tatgaaggtc atgtcaggat tcctaagcca 3000
 gctggagtga agaaagggtg gcagagagca ctggctatacg tggactt caaactctt 3060
 ctgtacgata ttgctgaagg aaaagcatct cagccccatg ttgtcattag tcaagtgatt 3120
 gacatgaggg atgaagaatt ttctgtgagt tcagtctgg cttctgatgt tatccatgca 3180
 agtcggaaag atataccctg tatatttagg gtcacagctt cccagctctc agcatctaat 3240
 aacaaatgtt caatcctgat gctagcagac actgagaatg agaagaataa gtgggtggg 3300
 gtgctgagtg aattgcacaa gatttgaag aaaaacaat tcaagagaccg ctcagtcatt 3360
 gttcccaaag aggcttatga cagcactcta cccctcatc aaacaacccca ggcagccgca 3420
 atcatagatc atgaaagaat tgcttggg aacgaagaag ggttatttgt tgtacatgtc 3480
 accaaagatg aaatttattag agttgggtgac aataagaaga ttcatcagat tgaactcatt 3540
 ccaaatgatc agcttgggtg tgcgtatctca ggacgaaatc gtcgttacg acttttcct 3600
 atgtcagcat tggtatggcg agagaccgat tttacaagc tgcagaaac taaagggtgt 3660
 caaacctgaa ctctggaaa ggtgcgccat ggagctctca catgcctgtg tgcgtatg 3720
 aaaaggcagg tcctctgtt tgaacttattt cagagcaaga cccgtcacag aaaatttaaa 3780
 gaaattcaag tcccatataa tgcgttgc tgcgtatctca ggacgaaatc tcaactgtgt 3840
 ggattccagt caggatttct aagatcccc ttgaatggag aagaaatcc atacagtatg 3900
 ctccattcaa atgaccatac actatcattt attgcacatc aaccaatggg tgcgtatctc 3960
 gcagttgaga tctccagtaa agaatatctg ctgtgtttt acagcattgg gatataact 4020
 gactgcccagg gccgaagatc tagacaacag gaattgtatgt ggcaggcaaa tccctccct 4080
 tgcgttaca atgcaccata tctctcggtg tacagtggaa atgcagttgatc tgcgtatgt 4140
 gtgaactcca tgaatggat tcaacttcc tctctcaaaa aggttcgacc cttaaacaat 4200
 gaaggatcat taaatctttt aggggtggag accatttagat taatatatattt caaaaataag 4260
 atggcagaag gggacgaact ggtgttacct gaaacatctg ataatagtcg gaaacaaatg 4320
 gttagaaaca ttaacaataa gcggcggtt tccctcagag tcccgagaag gggaaaggatg 4380
 cagcagagga gggaaatgtt acgagatcca gaaatgagaa ataaattat tctcaatcca 4440
 actaattttt atcacatagc acacatgggt cctggagatg gaatacagat cctgaaagat 4500
 ctgcccatttga accctcggtt tcaaggaaatg cgacatgtat tcaactgtgtc agtcagttt 4560
 ccatctatca ccaaattcccg ccctgagccca ggccgcttca tcaactgtgtc agtcagtt 4620
 tcagcaaggt catccgcaca gaatggcagc gcatggatg gggaaattctc tggagggaaagc 4680
 tacagtgcacca agccggcagcc catgcctcc ccgtcagagg gctctttgtc tcccgagggc 4740
 atggaccaag gaagtgtatgc cccagcgagg gactttgacg gagaggactc tgcgtatctcc 4800
 aggcatccaa cagttccaa cagttccaac ctaagcagcc ccccaagccc agtttcaccc 4860
 cggaaaaacca agagcctctc cctggagagc actgaccgcg ggagctgggaa cccgtga 4917