Concours commun Centrale

MATHÉMATIQUES 1. FILIERE MP

Partie I - Préliminaires

On note (u|v) le produit scalaire de deux vecteurs u et v de E.

I.A - Projection sur un convexe fermé

Q1. Soit $(a, b) \in E^2$.

$$\|a+b\|^2 + \|a-b\|^2 = \|a\|^2 + 2(a|b) + \|b\|^2 + \|a\|^2 - 2(a|b) + \|b\|^2 = 2(\|a\|^2 + \|b\|^2).$$

Cette identité est l'identité du parallélogramme. Elle signifie que la somme des carrés des longueurs des quatre côtés d'un parallélogramme est égale à la somme des carrés des longueurs de ses diagonales.

Q2. On applique l'identité de la question précédente à $a = \frac{u - v}{2}$ et $b = \frac{u - v'}{2}$. On obtient

$$\left\| u - \frac{v + v'}{2} \right\|^{2} = 2 \left(\left\| \frac{u - v}{2} \right\|^{2} + \left\| \frac{u - v'}{2} \right\|^{2} \right) - \left\| \frac{v' - v}{2} \right\|^{2}$$

$$= 2 \left(\frac{2}{4} \|u - v\|^{2} \right) - \left\| \frac{v' - v}{2} \right\|^{2} = \|u - v\|^{2} - \left\| \frac{v' - v}{2} \right\|^{2}$$

$$< \|u - v\|^{2} \left(\operatorname{car} v \neq v' \right),$$

et donc $\left\|\mathbf{u} - \frac{\mathbf{v} + \mathbf{v}'}{2}\right\| < \|\mathbf{u} - \mathbf{v}\|.$

Q3. $\mathscr{E} = \{\|\mathbf{u} - \mathbf{w}\|, \ \mathbf{w} \in \mathsf{F}\}$ est une partie non vide et minorée de \mathbb{R} et même de \mathbb{R}^+ . On en déduit que \mathscr{E} admet une borne inférieure d qui est un réel positif.

Pour tout $n \in \mathbb{N}$, il existe $w_n \in \mathbb{F}$ tel que $d \le \|u - w_n\| \le d + \frac{1}{n+1}$. Ceci entraine en particulier que pour tout $n \in \mathbb{N}$,

$$||w_n|| \le ||u|| + ||w_n - u|| \le ||u|| + d + \frac{1}{n+1} \le ||u|| + d + 1.$$

Donc, la suite w est bornée. Puisque E est de dimension finie, le théorème de BOLZANO-WEIERSTRASS permet d'affirmer que l'on peut extraire de la suite w une suite $(w_{\varphi(n)})_{n\in\mathbb{N}}$, convergeant vers un certain élément v de E. Puisque F est fermé et que $(w_{\varphi(n)})_{n\in\mathbb{N}} \in F^{\mathbb{N}}$, on sait que v est un élément de F.

Pour tout $n \in \mathbb{N}$, on a $d \leq \|u - w_{\varphi(n)}\| \leq d + \frac{1}{\varphi(n) + 1}$. Quand n tend vers $+\infty$, par continuité de l'application $x \mapsto \|x\|$, on obtient

$$d \leqslant \lim_{n \to +\infty} \left\| u - w_{\varphi(n)} \right\| = \left\| u - \lim_{n \to +\infty} w_{\varphi(n)} \right\| = \left\| u - v \right\| \leqslant d.$$

 ν est un élément de F tel que pour tout $w \in F$, $\|u - v\| = d \le \|u - w\|$.

Q4. On suppose de plus que F est convexe. Montrons que ν est unique. Soit $\nu' \in F$ tel que pour tout $w \in F$, $\|u - \nu'\| \le \|u - v\|$. On a alors $\|u - v\| \le \|u - v'\|$ et $\|u - v'\|$ et $\|u - v'\|$ et donc $\|u - v\| = \|u - v'\|$.

Puisque F est convexe et que ν et ν' sont dans F, $w = \frac{\nu + \nu'}{2}$ est dans F et vérifie

$$\left\| u - \frac{v + v'}{2} \right\| = \|u - w\| \geqslant \|u - v\|.$$

La question Q2 montre qu'on ne peut avoir $\nu \neq \nu'$ et donc $\nu = \nu'$. Ceci montre l'unicité de ν .

I.B - Inégalité de Hölder pour l'espérance

Q5. Soient a et b deux réels positifs. L'inégalité à démontrer est claire quand a=0 ou b=0. On suppose dorénavant a>0 et b>0

La fonction $x \mapsto \ln x$ est concave sur $]0,+\infty[$ car deux fois dérivable sur $]0,+\infty[$, de dérivée seconde $x \mapsto -\frac{1}{x^2}$ négative sur $]0,+\infty[$. Puisque $\frac{1}{p}$ et $\frac{1}{q}$ sont deux réels strictement positifs de somme 1, on a

$$\ln\left(\frac{1}{p}\alpha^p + \frac{1}{q}b^q\right) \geqslant \frac{1}{p}\ln\left(\alpha^p\right) + \frac{1}{q}\ln\left(b^q\right) = \ln(\alpha b)$$

et donc $ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$ par croissance de la fonction exponentielle sur \mathbb{R} .

On a montré que pour tout $(a,b) \in [0,+\infty[^2,\,ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}.$

 $\textbf{Q6.} \ \operatorname{Posons} X(\Omega) = \{x_1, \dots, x_n\} \ \operatorname{et} \ Y(\Omega) = \{y_1, \dots, y_m\} \ \operatorname{où} \ x_1, \dots x_n \ \operatorname{sont} \ \operatorname{deux} \ \operatorname{\grave{a}} \ \operatorname{deux} \ \operatorname{\grave{distincts}} \ \operatorname{et} \ y_1, \dots, y_m, \ \operatorname{sont} \ \operatorname{deux} \ \operatorname{\grave{a}} \ \operatorname{deux} \ \operatorname{\grave{distincts}} \ \operatorname{E} (|X|^p) = \mathbb{E} \left(|X|^p\right) = 1.$

D'après la formule de transfert et la question Q5,

$$\begin{split} \mathbb{E}\left(|XY|\right) &= \sum_{(\mathfrak{i},\mathfrak{j}) \in [\![1,n]\!] \times [\![1,m]\!]} |x_{\mathfrak{i}}y_{\mathfrak{j}}| \, P\left((X=x_{\mathfrak{i}}) \cap (Y=y_{\mathfrak{j}})\right) \\ &\leqslant \sum_{(\mathfrak{i},\mathfrak{j}) \in [\![1,n]\!] \times [\![1,m]\!]} \left(\frac{1}{p} \, |x_{\mathfrak{i}}|^p + \frac{1}{q} \, |y_{\mathfrak{j}}|^q\right) \, P\left((X=x_{\mathfrak{i}}) \cap (Y=y_{\mathfrak{j}})\right) \\ &= \frac{1}{p} \left(\sum_{\mathfrak{i}=1}^n |x_{\mathfrak{i}}|^p \left(\sum_{\mathfrak{j}=1}^m P\left((X=x_{\mathfrak{i}}) \cap (Y=y_{\mathfrak{j}})\right)\right)\right) + \frac{1}{q} \left(\sum_{\mathfrak{j}=1}^m |y_{\mathfrak{j}}|^q \left(\sum_{\mathfrak{i}=1}^n P\left((X=x_{\mathfrak{i}}) \cap (Y=y_{\mathfrak{j}})\right)\right)\right) \\ &= \frac{1}{p} \sum_{\mathfrak{i}=1}^n |x_{\mathfrak{i}}|^p \, P\left(X=x_{\mathfrak{i}}\right) + \frac{1}{q} \sum_{\mathfrak{j}=1}^m |y_{\mathfrak{j}}|^q \, P\left(Y=y_{\mathfrak{j}}\right) \\ &= \frac{1}{p} \mathbb{E}\left(|X|^p\right) + \frac{1}{q} \mathbb{E}\left(|Y|^q\right) = \frac{1}{p} + \frac{1}{q} = 1 \\ &= (\mathbb{E}\left(|X|^p\right))^{\frac{1}{p}} \left(\mathbb{E}\left(|Y|^q\right)\right)^{\frac{1}{q}}. \end{split}$$

L'inégalité de HÖLDER est donc démontrée dans le cas où $\mathbb{E}\left(|X|^p\right) = \mathbb{E}\left(|Y|^q\right) = 1$. Supposons maintenant $\mathbb{E}\left(|X|^p\right) > 0$ et $\mathbb{E}\left(|Y|^q\right) > 0$. Soient $X' = \frac{X}{\left(\mathbb{E}\left(X^p\right)\right)^{\frac{1}{p}}}$ et $Y' = \frac{Y}{\left(\mathbb{E}\left(Y^q\right)\right)^{\frac{1}{q}}}$. Alors,

$$\mathbb{E}(X'^{p}) = \mathbb{E}\left(\frac{X^{p}}{\mathbb{E}(X^{p})}\right) = 1$$

 $\mathrm{et}\ \mathrm{de}\ \mathrm{m\^{e}me},\ \mathbb{E}\left(Y'^{q}\right)=1.\ \mathrm{Mais}\ \mathrm{alors}\ \mathbb{E}\left(\left|\frac{XY}{\left(\mathbb{E}\left(X^{p}\right)\right)^{\frac{1}{p}}\left(\mathbb{E}\left(Y^{q}\right)\right)^{\frac{1}{q}}}\right|\right)\leqslant1\ \mathrm{puis}\ \mathbb{E}(|XY|)\leqslant\left(\mathbb{E}\left(X^{p}\right)\right)^{\frac{1}{p}}\left(\mathbb{E}\left(Y^{q}\right)\right)^{\frac{1}{q}}.$

Il reste à étudier le cas où l'un des deux nombres $\mathbb{E}\left(X^{p}\right)$ ou $\mathbb{E}\left(Y^{q}\right)$ est nul. Supposons par exemple que $\mathbb{E}\left(X^{p}\right)=0$. Donc,

$$\sum_{i=1}^{n} |x_{i}|^{p} P(X = x_{i}) = 0$$

puis pour tout $i \in [1, n]$, $|x_i|^p P(X = x_i) = 0$. Si $x_i \neq 0$, on a nécessairement $P(X = x_i) = 0$. Ceci montre que nécessairement, X^p prend la valeur 0 avec une probabilité 1 et toute autre valeur éventuelle de X^p est prise avec une probabilité égale à 0. Mais alors, il en est de même de X et finalement $\mathbb{E}(|X|) = 0$. Maintenant, la variable Y prend un nombre fini de valeurs et est donc bornée. Soit M un majorant de |Y|. Alors, par croissance de l'espérance,

$$0 \leq \mathbb{E}(|XY|) \leq M\mathbb{E}(|X|) = 0$$

puis $\mathbb{E}(|XY|) = 0 = (\mathbb{E}(X^p))^{\frac{1}{p}} (\mathbb{E}(Y^q))^{\frac{1}{q}}$.

Dans tous les cas, on a montré que $\mathbb{E}(|XY|) \leqslant (\mathbb{E}(X^p))^{\frac{1}{p}} (\mathbb{E}(Y^q))^{\frac{1}{q}}$.

I.C - Espérance conditionnelle

 $\mathbf{Q7.} \ \mathbb{E}(X) = \sum_{\mathbf{x} \in X(\Omega)} \mathbf{x} P(X = \mathbf{x}). \ \mathrm{Maintenant}, \ (A_i)_{1 \leqslant i \leqslant m} \ \mathrm{est} \ \mathrm{un} \ \mathrm{syst\`eme} \ \mathrm{complet} \ \mathrm{d'\acute{e}v\acute{e}nements}. \ \mathrm{Donc}, \ \mathrm{pour} \ \mathrm{tout} \ \mathbf{x} \in X(\Omega),$

d'après la formule des probabilités totales

$$P(X = x) = \sum_{i=1}^{m} P(A_i) \times P_{A_i}(X = x)$$

puis, les sommes étant finies.

$$\begin{split} \mathbb{E}(X) &= \sum_{x \in X(\Omega)} x \left(\sum_{i=1}^m P\left(A_i\right) \times P_{A_i}(X=x) \right) = \sum_{i=1}^m P\left(A_i\right) \left(\sum_{x \in X(\Omega)}^m x P_{A_i}(X=x) \right) \\ &= \sum_{i=1}^m P\left(A_i\right) \mathbb{E}\left(X|A_i\right). \end{split}$$

I.D - Variables aléatoires à queue sous-gaussienne

Q8. Posons $X^2(\Omega) = \{y_1, \dots, y_n\}$ où $0 \le y_1 < y_2 < \dots < y_n$. La fonction $t \mapsto tP(|X| \ge t)$ est continue par morceaux et positive sur $[0, +\infty[$ car,

$$\begin{array}{l} \bullet \ \mathrm{si} \ t \in \left[0,\sqrt{y_1}\right], \ P(|X|\geqslant t) = P\left(X^2\geqslant t^2\right) = P\left(X^2\geqslant y_1\right) = P\left(|X|\geqslant \sqrt{y_1}\right) = 1 \\ \bullet \ \mathrm{si} \ t \in \left]\sqrt{y_k},\sqrt{y_{k+1}}\right], \ 1\leqslant k\leqslant n-1, \ P(|X|\geqslant t) = P\left(|X|\geqslant \sqrt{y_{k+1}}\right) \\ \bullet \ \mathrm{si} \ t \in \left]\sqrt{y_n},+\infty\right[, \ P(|X|\geqslant t) = 0. \end{array}$$

• si
$$t \in [\sqrt{y_k}, \sqrt{y_{k+1}}], 1 \le k \le n-1, P(|X| \ge t) = P(|X| \ge \sqrt{y_{k+1}})$$

• si
$$t \in \sqrt{y_n}, +\infty[$$
, $P(|X| \ge t) = 0$.

Mais alors,

$$\begin{split} 2\int_{0}^{+\infty} t P(|X|\geqslant t) \ dt &= 2\int_{0}^{\sqrt{y_{1}}} t P\left(|X|\geqslant \sqrt{y_{1}}\right) \ dt + 2\sum_{k=1}^{n-1} \int_{\sqrt{y_{k}}}^{\sqrt{y_{k+1}}} t P\left(|X|\geqslant \sqrt{y_{k+1}}\right) \ dt + 2\int_{y_{n}}^{+\infty} 0 \ dt \\ &= \int_{0}^{y_{1}} P\left(|X|\geqslant \sqrt{y_{1}}\right) \ du + \sum_{k=1}^{n-1} \int_{y_{k}}^{y_{k+1}} P\left(|X|\geqslant \sqrt{y_{k+1}}\right) \ du \ (\mathrm{en \ posant} \ u = t^{2} \ \mathrm{dans \ chaque \ intégrale}) \\ &= y_{1} P\left(|X|\geqslant \sqrt{y_{1}}\right) + \sum_{k=1}^{n-1} \left(y_{k+1} - y_{k}\right) P\left(|X|\geqslant \sqrt{y_{k+1}}\right) \\ &= y_{1} P\left(|X|\geqslant \sqrt{y_{1}}\right) + \sum_{k=1}^{n-1} y_{k+1} P\left(|X|\geqslant \sqrt{y_{k+1}}\right) - \sum_{k=1}^{n-1} y_{k} P\left(|X|\geqslant \sqrt{y_{k+1}}\right) \\ &= \sum_{k=1}^{n} y_{k} P\left(|X|\geqslant \sqrt{y_{k}}\right) - \sum_{k=1}^{n-1} y_{k} P\left(|X|\geqslant \sqrt{y_{k+1}}\right) \\ &= \sum_{k=1}^{n-1} y_{k} \left(P\left(|X|\geqslant \sqrt{y_{k}}\right) - P\left(|X|\geqslant \sqrt{y_{k+1}}\right)\right) + y_{n} P\left(|X|\geqslant \sqrt{y_{n}}\right) \\ &= \sum_{k=1}^{n-1} y_{k} P\left(\sqrt{y_{k}}\leqslant |X|<\sqrt{y_{k+1}}\right) + y_{n} P\left(|X|\geqslant \sqrt{y_{n}}\right) = \sum_{k=1}^{n-1} y_{k} P\left(|X|=\sqrt{y_{k}}\right) + y_{n} P\left(|X|=\sqrt{y_{n}}\right) \\ &= \sum_{k=1}^{n} y_{k} P\left(|X|=\sqrt{y_{k}}\right) = \sum_{k=1}^{n} y_{k} P\left(X^{2}=y_{k}\right) = \mathbb{E}\left(X^{2}\right). \end{split}$$

Q9. Par suite, a et b étant strictement positifs.

$$\mathbb{E}\left(X^2\right) \leqslant 2\alpha \int_0^{+\infty} t e^{-bt^2} \ dt = 2\alpha \left\lceil \frac{e^{-bt^2}}{-2b} \right\rceil^{+\infty}_{\alpha} = \frac{\alpha}{b}.$$

Q10. Soit t un réel. On a $|X + \delta| \le |X| + |\delta|$ et donc si ω est un élément de Ω tel que $|X(\omega) + \delta| \ge t$, alors $|X(\omega)| + |\delta| \ge t$ $\mathrm{puis}\; |X(\Omega)|\geqslant t-|\delta|.\; \mathrm{Ceci\; montre\; que}\; \{\omega\in\Omega/\; |X(\omega)+\delta|\geqslant t\}\subset \{\omega\in\Omega/\; |X(\omega)|\geqslant t-|\delta|\}\; \mathrm{puis\; que}\; \mathrm{puis\; que}\; \{\omega\in\Omega/\; |X(\omega)|\geqslant t-|\delta|\}\; \mathrm{puis\; que}\; \mathrm{puis\; que}\;$

$$P(|X + \delta| \ge t) \le P(|X| \ge t - |\delta|).$$

Q11. Soit t un réel.

$$\left(\alpha-\frac{1}{2}bt^2\right)+b(t-|\delta|)^2=\frac{b}{2}t^2-2b|\delta|t+b\delta^2+\alpha=\frac{b}{2}\left(t-2|\delta|\right)^2-2b\delta^2+b\delta^2+\alpha=\frac{b}{2}\left(t-2|\delta|\right)^2+\alpha-b\delta^2\geqslant0 \text{ car } |\delta|\leqslant\sqrt{\frac{\alpha}{b}}\Rightarrow\alpha-b\delta^2\geqslant0.$$

Par suite, pour tout réel t, $-b(t-|\delta|)^2 \le a - \frac{1}{2}bt^2$.

Q12. Soit t un réel tel que $t \ge |\delta|$

$$\begin{split} P(|X+\delta|\geqslant t) \leqslant P(|X|\geqslant t-|\delta|) \\ \leqslant \alpha \, \exp\left(-b \, (t-|\delta|)^2\right) \, \left(\operatorname{car} \, t-|\delta|\geqslant 0\right) \\ \leqslant \alpha \, \exp\left(\alpha - \frac{1}{2}bt^2\right) = \alpha \, \exp(\alpha) \, \exp\left(-\frac{1}{2}bt^2\right). \end{split}$$

 $\begin{array}{l} \mathbf{Q13.} \ \mathrm{Soit} \ t \in] - |\delta|, |\delta|[. \ \mathrm{Alors}, \ t - |\delta| < 0 \ \mathrm{puis} \ P(|X| \geqslant t - |\delta|) = P(|X| \geqslant 0) \leqslant \alpha \ \mathrm{(et \ donc \ 1} \leqslant \alpha). \ \mathrm{D'autre \ part}, \\ \alpha - \frac{1}{2}bt^2 > \alpha - \frac{1}{2}b\delta^2 \geqslant \alpha - b\delta^2 \geqslant 0 \ \mathrm{et \ donc \ exp} \left(\alpha - \frac{1}{2}bt^2\right) \geqslant 1. \ \mathrm{Donc}, \end{array}$

$$P(|X+\delta|\geqslant t)\leqslant P(|X|\geqslant t-|\delta|)\leqslant \alpha\leqslant \alpha\exp(\alpha)\exp\left(-\frac{1}{2}bt^2\right).$$

Partie II - L'inégalité de concentration de Talagrand

II.A - Etude de deux cas particuliers

Q14. Si C ne rencontre pas $X(\Omega)$, l'événement $\{X \in C\}$ est vide puis $P(X \in C) = \emptyset$. L'inégalité est donc vraie quand C ne rencontre pas $X(\Omega)$.

 $\mathbf{Q15.} \text{ Posons } u = \sum_{i=1}^n \alpha_i e_i \text{ où } (\alpha_i)_{1\leqslant i\leqslant n} \in \{-1,1\}^n. \text{ Posons encore } Y = \frac{1}{4}d(X,u)^2 = \sum_{i=1}^n \frac{1}{4}\left(\epsilon_i - \alpha_i\right)^2. \text{ Pour } i \in [\![1,n]\!],$ posons encore $Y_i = \frac{1}{4}\left(\epsilon_i - \alpha_i\right)^2$ (Y_i est une variable aléatoire car ϵ_i l'est) de sorte que

$$Y = \sum_{i=1}^{n} Y_i.$$

Chaque Y_i prend les valeurs 0 ou 1 (suivant que $\varepsilon_i \neq \alpha_i$ ou $\varepsilon_i = \alpha_i$) avec probabilités respectives $\frac{1}{2}$ et $\frac{1}{2}$. Donc, $\forall i \in [\![1,n]\!]$, $Y_i \sim \mathscr{B}\left(\frac{1}{2}\right)$. Puisque les Y_i sont des variables indépendantes (car les ε_i le sont), on sait que

$$Y = \sum_{i=1}^{n} Y_i \sim \mathscr{B}\left(n, \frac{1}{2}\right).$$

Q16. D'après le théorème de transfert,

$$\begin{split} \mathbb{E}\left(\exp\left(\frac{1}{8}d(X,u)^2\right)\right) &= \mathbb{E}\left(\exp\left(\frac{1}{2}Y\right)\right) = \sum_{k=0}^n e^{\frac{k}{2}} P\left(\frac{1}{4}d(X,u)^2 = k\right) \\ &= \sum_{k=0}^n \binom{n}{k} e^{\frac{k}{2}} \left(\frac{1}{2}\right)^n = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \left(\sqrt{e}\right)^k \\ &= \left(\frac{1+\sqrt{e}}{2}\right)^n. \end{split}$$

En particulier,

$$\mathbb{E}\left(\exp\left(\frac{1}{8}d(X,u)^2\right)\right)\leqslant \left(\frac{1+3}{2}\right)^n=2^n.$$

 $\mathbf{Q17.} \text{ Puisque } u \in C, \ d(X,C) \leqslant \|X-u\| = d(X,u) \text{ puis } \mathbb{E}\left(\exp\left(\frac{1}{8}d(X,C)^2\right)\right) \leqslant \mathbb{E}\left(\exp\left(\frac{1}{8}d(X,u)^2\right)\right) \leqslant 2^n. \text{ D'autre part, par indépendance des variables } \epsilon_i, \ 1 \leqslant i \leqslant n,$

$$P(X \in C) = P(X = u) = P\left(\epsilon_1 = \alpha_1, \dots, \epsilon_n = \alpha_n\right) = \prod_{i=1}^n P\left(\epsilon_i = \alpha_i\right) = \frac{1}{2^n}$$

et finalement, $P(X \in C)\mathbb{E}\left(\exp\left(\frac{1}{8}d(X,C)^2\right)\right) \leqslant \frac{1}{2^n} \times 2^n = 1.$

II.B - Initialisation

Q18. Si n=1, X prend les deux valeurs e_1 et $-e_1$ avec équiprobabilité. Puisque $C\cap X(\Omega)$ contient au moins deux éléments, on a donc $C\cap X(\Omega)=\{-e_1,e_1\}=X(\Omega)$ ou encore $X(\Omega)\subset C$. Par suite, $P(X\in C)=1$ et $\frac{1}{d}(X,C)^2(\Omega)=\{0\}$ de sorte que $\mathbb{E}\left(\exp\left(\frac{1}{8}d(X,C)^2\right)\right)=1$. Finalement,

$$P(X \in C) \times \mathbb{E}\left(\exp\left(\frac{1}{8}d(X,C)^2\right)\right) = 1 \leqslant 1.$$

II.C - Propriétés de C_{+1} et C_{-1}

Q19. Soit $x' \in E'$.

- $x' + te_n \in H_t$ puis $x' = \pi(x' + te_n)$. Si de plus $x' + te_n \in C$, alors $x' = \pi(x' + te_n) \in \pi(C \cap H_t) = C_t$.
- Si $x' \in C_t$, il existe $y \in C \cap H_t$ tel que $x' = \pi(y)$. Puisque $y \in H_t$, on peut poser $y = \sum_{i=1}^{n-1} y_i e_i + t e_n$ de sorte que

$$\pi(y) = \sum_{i=1}^{n-1} y_i e_i = y - t e_n. \text{ Mais alors, } x' + t e_n = y \in C.$$

Q20. Soit $\varepsilon \in \{-1, 1\}$. Soient $(x', y') \in (C_{\varepsilon})^2$ et $\lambda \in [0, 1]$. Alors, d'après la question précédente, $(x' + \varepsilon e_n, y' + \varepsilon e_n) \in C^2$ et donc $(1 - \lambda)(x' + \varepsilon e_n) + \lambda(y' + \varepsilon e_n) = (1 - \lambda)x' + \lambda y' + \varepsilon e_n \in C$. Mais alors, toujours d'après la question précédente, $(1 - \lambda)x' + \lambda y' \in C_{\varepsilon}$. Ceci montre que C_{ε} est un convexe de E'.

 $\mathrm{Soit}\ (u_p)_{p\in\mathbb{N}}\ \mathrm{une}\ \mathrm{suite}\ \mathrm{convergente}\ \mathrm{d}\text{\'e}\mathrm{l\'ements}\ \mathrm{de}\ C_\epsilon.\ \mathrm{Soit}\ u=\lim_{p\to+\infty}u_p.$

Pour tout $p \in \mathbb{N}$, $u_p + \epsilon e_n$ est dans C. La suite $(u_p + \epsilon e_n)_{p \in \mathbb{N}}$ converge vers $u + \epsilon e_n$ qui est donc un élément de C, puisque C est fermé. Donc, $u \in C_{\epsilon}$.

Ainsi, toute suite convergente d'éléments de C_{ε} , converge dans C_{ε} et donc C_{ε} est un fermé de E'.

En résumé, pour $\varepsilon \in \{-1,1\}$, C_ε est un convexe fermé de E'.

Q21. $(\varepsilon_n = 1, \varepsilon_n = -1)$ est un système complet d'événements. D'après la formule des probabilités totales,

$$\begin{split} P(X \in C) &= P\left(\epsilon_n = 1\right) \times P_{\epsilon_n = 1}(X \in C) + P\left(\epsilon_n = -1\right) \times P_{\epsilon_n = -1}(X \in C) \\ &= \frac{1}{2}P\left(X' + e_n \in C\right) + \frac{1}{2}P\left(X' - e_n \in C\right) \\ &= \frac{1}{2}P\left(X' \in C_{+1}\right) + \frac{1}{2}P\left(X' \in C_{-1}\right). \end{split}$$

II.D - Une inégalité cruciale

Q22. Par définition, $Y_{\varepsilon_n} \in C_{\varepsilon_n}$ et donc $Y_{\varepsilon} + \varepsilon_n e_n \in C$. De même, $Y_{-\varepsilon} - \varepsilon_n e_n \in C$. Puisque C est convexe, le vecteur $w = (1 - \lambda) (Y_{\varepsilon} + \varepsilon_n e_n) + \lambda (Y_{-\varepsilon} - \varepsilon_n e_n)$ est dans C.

Par définition de d(X, C), on en déduit que $d(X, C) \le ||X - w|| = ||(1 - \lambda)(Y_{\varepsilon} + \varepsilon_n e_n) + \lambda(Y_{-\varepsilon} - \varepsilon_n e_n) - X||$.

Q23.

$$\|(1-\lambda)(Y_{\varepsilon}+\varepsilon_{n}e_{n})+\lambda(Y_{-\varepsilon}-\varepsilon_{n}e_{n})-X\|^{2} = \|(1-\lambda)(Y_{\varepsilon}+\varepsilon_{n}e_{n})+\lambda(Y_{-\varepsilon}-\varepsilon_{n}e_{n})-(1-\lambda)(X'+\varepsilon_{n}e_{n})-\lambda(X'+\varepsilon_{n}e_{n})\|^{2}$$

$$= \|(1-\lambda)(Y_{\varepsilon_{n}}-X')+\lambda(Y_{-\varepsilon_{n}}-X')-2\lambda\varepsilon_{n}e_{n}\|^{2}.$$

Maintenant, $Y_{\varepsilon_n} - X'$ et $Y_{-\varepsilon_n} - X'$ sont dans $E' = \text{Vect}(e_1, \dots, e_{n-1})$ et $-2\lambda \varepsilon e_n$ est dans $\text{Vect}(e_n) = E'^{\perp}$. D'après le théorème de Pythagore,

$$\begin{split} d(X,C)^2 \leqslant \left\| (1-\lambda) \left(Y_{\epsilon_n} - X' \right) + \lambda \left(Y_{-\epsilon_n} - X' \right) - 2\lambda \epsilon_n e_n \right\|^2 = \left\| -2\lambda \epsilon_n e_n \right\|^2 + \left\| (1-\lambda) \left(Y_{\epsilon_n} - X' \right) + \lambda \left(Y_{-\epsilon_n} - X' \right) \right\|^2 \\ = 4\lambda^2 + \left\| (1-\lambda) \left(Y_{\epsilon_n} - X' \right) + \lambda \left(Y_{-\epsilon_n} - X' \right) \right\|^2. \end{split}$$

 $\mathrm{Soit}\ (x,y)\in E^2\ \mathrm{et}\ \lambda\in [0,1].\ \mathrm{Montrons}\ \mathrm{que}\ \|(1-\lambda)x+\lambda y\|^2\leqslant (1-\lambda)\|x\|^2+\lambda\|y\|^2.$

$$(1 - \lambda)\|x\|^2 + \lambda\|y\|^2 - \|(1 - \lambda)x + \lambda y\|^2 = \lambda(1 - \lambda)\left(\|x\|^2 - 2(x|y) + \|y\|^2\right)$$
$$= \lambda(1 - \lambda)\|x - y\|^2 \geqslant 0$$

et donc $\|(1-\lambda)x + \lambda y\|^2 \le (1-\lambda)\|x\|^2 + \lambda\|y\|^2$. Ainsi,

$$\begin{split} d(X,C)^2 &\leqslant 4\lambda^2 + \left\| (1-\lambda) \left(Y_{\epsilon_n} - X' \right) + \lambda \left(Y_{-\epsilon_n} - X' \right) \right\|^2 \\ &\leqslant 4\lambda^2 + (1-\lambda) \left\| Y_{\epsilon_n} - X' \right\|^2 + \lambda \left\| Y_{-\epsilon_n} - X' \right\|^2 \\ &= 4\lambda^2 + (1-\lambda) d \left(X', C_{\epsilon_n} \right)^2 + \lambda \left(X', C_{-\epsilon_n} \right)^2 \text{ (par définition de } Y_{\pm \epsilon_n} \text{)}. \end{split}$$

II.E - Espérances conditionnelles

Q24. D'après l'hypothèse faite sur X, $C \cap X(\omega)$ contient au moins un vecteur de dernière coordonnée 1 et au moins un vecteur de dernière coordonnée -1 que l'on note $u = \sum_{i=1}^{n-1} \beta_i e_i - e_n = u' - e_n$ où les β_i sont dans $\{-1,1\}$. Le vecteur $u' - e_n$ est dans C et donc le vecteur u' est dans C_{-1} puis

$$p_- \geqslant P(X' = u') > 0.$$

Q25. Soit $\omega \in \Omega$ tel que $\varepsilon_n(\omega) = -1$. D'après la question Q23,

$$\begin{split} d(X(\omega,C)^2 &\leqslant 4\lambda^2 + (1-\lambda)d\left(X'(\omega),C_{\epsilon_{\mathfrak{n}}(\omega)}\right)^2 + \lambda d\left(X'(\omega),C_{-\epsilon_{\mathfrak{n}}(\omega)}\right)^2 \\ &= 4\lambda^2 + (1-\lambda)d\left(X'(\omega),C_{-1}\right)^2 + \lambda d\left(X'(\omega),C_{+1}\right)^2 \end{split}$$

$$\mathrm{puis}\,\exp\left(\frac{1}{8}d(X(\omega),C)^2\right)\leqslant \exp\left(\frac{\lambda^2}{2}\right)\left(\exp\left(\frac{1}{8}d\left(X'(\omega),C_{-1}\right)^2\right)\right)^{1-\lambda}\left(\exp\left(\frac{1}{8}d\left(X'(\omega),C_{+1}\right)^2\right)\right)^{\lambda}.$$

Par croissance de l'espérance conditionnelle, on en déduit que,

$$\begin{split} \mathbb{E}\left(\exp\left(\frac{1}{8}d(X,C)^2\right)|\epsilon_n &= -1\right) \leqslant \exp\left(\frac{\lambda^2}{2}\right) \mathbb{E}\left(\left(\exp\left(\frac{1}{8}d\left(X',C_{-1}\right)^2\right)\right)^{1-\lambda} \left(\exp\left(\frac{1}{8}d\left(X',C_{+1}\right)^2\right)\right)^{\lambda} |\epsilon_n &= -1\right) \\ &= \exp\left(\frac{\lambda^2}{2}\right) \mathbb{E}\left(\left(\exp\left(\frac{1}{8}d\left(X',C_{-1}\right)^2\right)\right)^{1-\lambda} \left(\exp\left(\frac{1}{8}d\left(X',C_{+1}\right)^2\right)\right)^{\lambda}\right). \end{split}$$

Q26. Soit $\lambda \in]0,1[$. On applique l'inégalité de HÖLDER avec $p=\frac{1}{1-\lambda}$ et $q=\frac{1}{\lambda}$ de sorte que p et q sont deux réels strictement positifs tels que $\frac{1}{p}+\frac{1}{q}=1$. On obtient

$$\mathbb{E}\left(\left(\exp\left(\frac{1}{8}d\left(X',C_{-1}\right)^{2}\right)\right)^{1-\lambda}\left(\exp\left(\frac{1}{8}d\left(X',C_{+1}\right)^{2}\right)\right)^{\lambda}\right)\leqslant \left(\mathbb{E}\left(\exp\left(\frac{1}{8}d\left(X',C_{-1}\right)^{2}\right)\right)\right)^{1-\lambda}\left(\mathbb{E}\left(\exp\left(\frac{1}{8}d\left(X',C_{+1}\right)^{2}\right)\right)\right)^{\lambda}$$
 et donc,

$$\mathbb{E}\left(\exp\left(\frac{1}{8}d(X,C)^2\right)|\epsilon_n=-1\right)\leqslant \exp\left(\frac{\lambda^2}{2}\right)\left(\mathbb{E}\left(\exp\left(\frac{1}{8}d\left(X',C_{-1}\right)^2\right)\right)\right)^{1-\lambda}\left(\mathbb{E}\left(\exp\left(\frac{1}{8}d\left(X',C_{+1}\right)^2\right)\right)\right)^{\lambda}.$$

Enfin, $\lambda = 0$ ou $\lambda = 1$, l'inégalité à établir est l'inégalité de la question Q25. L'inégalité de cette question est donc démontrée pour tout $\lambda \in [0,1]$.

Q27. En remplaçant dans tout ce qui précède, -1 par +1 et +1 par -1 (l'inégalité $\mathfrak{p}_+ \geqslant \mathfrak{p}_-$ n'ayant pas encore servi), on a aussi pour tout $\lambda \in [0,1]$,

$$\mathbb{E}\left(\exp\left(\frac{1}{8}d(X,C)^2\right)|\epsilon_n=1\right)\leqslant \exp\left(\frac{\lambda^2}{2}\right)\left(\mathbb{E}\left(\exp\left(\frac{1}{8}d\left(X',C_{+1}\right)^2\right)\right)\right)^{1-\lambda}\left(\mathbb{E}\left(\exp\left(\frac{1}{8}d\left(X',C_{-1}\right)^2\right)\right)\right)^{\lambda}.$$

Quand $\lambda = 0$ et en multipliant par le réel positif p_+ , on obtient en particulier

$$\begin{split} p_{+} \times \mathbb{E}\left(\exp\left(\frac{1}{8}d(X,C)^{2}\right)|\epsilon_{n} &= 1\right) \leqslant p_{+}\mathbb{E}\left(\exp\left(\frac{1}{8}d\left(X',C_{+1}\right)^{2}\right)\right) \\ &= P\left(X' \in C_{+1}\right)\mathbb{E}\left(\exp\left(\frac{1}{8}d\left(X',C_{+1}\right)^{2}\right)\right). \end{split}$$

Maintenant, d'après la question Q20, C_{+1} est un convexe fermé et non vide de E' qui est de dimension n-1. Par hypothèse de récurrence,

$$p_{+}\times\mathbb{E}\left(\exp\left(\frac{1}{8}d(X,C)^{2}\right)|\epsilon_{n}=1\right)\leqslant P\left(X'\in C_{+1}\right)\mathbb{E}\left(\exp\left(\frac{1}{8}d\left(X',C_{+1}\right)^{2}\right)\right)\leqslant 1,$$

et donc, puisque $p_+ \geqslant p_- > 0$,

$$\mathbb{E}\left(\exp\left(\frac{1}{8}d(X,C)^2\right)|\epsilon_n=1\right)\leqslant\frac{1}{p_+}.$$

Q28. Soit $\lambda \in [0, 1]$. D'après la formule de l'espérance totale établie à la question Q7,

$$\begin{split} \mathbb{E}\left(\exp\left(\frac{1}{8}d(X,C)^2\right)\right) &= P\left(\epsilon_n = 1\right)\mathbb{E}\left(\exp\left(\frac{1}{8}d(X,C)^2\right)|\epsilon_n = 1\right) + P\left(\epsilon_n = -1\right)\mathbb{E}\left(\exp\left(\frac{1}{8}d(X,C)^2\right)|\epsilon_n = -1\right) \\ &= \frac{1}{2}\left(\mathbb{E}\left(\exp\left(\frac{1}{8}d(X,C)^2\right)|\epsilon_n = 1\right) + \mathbb{E}\left(\exp\left(\frac{1}{8}d(X,C)^2\right)|\epsilon_n = -1\right)\right) \\ &\leqslant \frac{1}{2}\left(\frac{1}{p_+} + \exp\left(\frac{\lambda^2}{2}\right)\left(\mathbb{E}\left(\exp\left(\frac{1}{8}d\left(X',C_{-1}\right)^2\right)\right)\right)^{1-\lambda}\left(\mathbb{E}\left(\exp\left(\frac{1}{8}d\left(X',C_{+1}\right)^2\right)\right)\right)^{\lambda}\right). \end{split}$$

Ensuite, C_{+1} est C_{-1} sont des convexes fermés non vides de E' qui est de dimension n-1 et donc, par hypothèse de récurrence, $\mathbb{E}\left(\exp\left(\frac{1}{8}d\left(X',C_{-1}\right)^2\right)\right)\leqslant \frac{1}{p_-}$ et $\mathbb{E}\left(\exp\left(\frac{1}{8}d\left(X',C_{+1}\right)^2\right)\right)\leqslant \frac{1}{p_+}$. On a donc montré que pour tout $\lambda\in[0,1],$

$$\mathbb{E}\left(\exp\left(\frac{1}{8}d(X,C)^2\right)\right)\leqslant \frac{1}{2}\left(\frac{1}{\mathfrak{p}_+}+\exp\left(\frac{\lambda^2}{2}\right)\frac{1}{\left(\mathfrak{p}_+\right)^{1-\lambda}}\frac{1}{\left(\mathfrak{p}_+\right)^{\lambda}}\right).$$

II.F - Optimisation

Q29. Puisque $p_+\geqslant p_->0,\,\lambda=1-\frac{p_-}{p_+}$ est dans [0,1[puis

$$\begin{split} \mathbb{E}\left(\exp\left(\frac{1}{8}d(X,C)^2\right)\right) &\leqslant \frac{1}{2}\left(\frac{1}{p_+} + \exp\left(\frac{\lambda^2}{2}\right) \frac{1}{(p_-)^{1-\lambda}} \frac{1}{(p_+)^{\lambda}}\right) \\ &= \frac{1}{2p_+}\left(1 + \exp\left(\frac{\lambda^2}{2}\right) \left(\frac{p_-}{p_+}\right)^{\lambda-1}\right) \\ &= \frac{1}{2p_+}\left(1 + \exp\left(\frac{\lambda^2}{2}\right) (1-\lambda)^{\lambda-1}\right). \end{split}$$

Q30. Pour $x \in [0, 1[$, posons $f(x) = \ln(2+x) - \ln(2-x) - (x-1)\ln(1-x) - \frac{x^2}{2}$. f est deux fois dérivable sur [0, 1[et pour $x \in [0, 1[$,

$$f'(x) = \frac{1}{2+x} + \frac{1}{2-x} - \ln(1-x) - 1 - x$$

puis

$$f''(x) = -\frac{1}{(2+x)^2} + \frac{1}{(2-x)^2} + \frac{1}{1-x} - 1 = \frac{8x}{(x^2-4)^2} + \frac{x}{1-x} \geqslant 0.$$

f' est donc une fonction croissante sur [0,1[. Puisque f'(0)=0, f' est positive sur [0,1[puis f est croissante sur [0,1[. Puisque f(0)=0, f est positive sur [0,1[et donc

$$\forall x \in [0,1[, \frac{x^2}{2} + (x-1)\ln(1-x) \leqslant \ln(2+x) - \ln(2-x).$$

Q31. Par croissance de l'exponentielle sur \mathbb{R} , on en déduit encore que, pour $x \in [0, 1[$,

$$e^{\frac{x^2}{2}}(x-1)^{1-x} \leqslant \frac{2+x}{2-x}$$

puis que

$$1 + e^{\frac{x^2}{2}}(x-1)^{1-x} \leqslant 1 + \frac{2+x}{2-x} = \frac{4}{2-x}.$$

Q32. Ainsi, pour $\lambda = 1 - \frac{p_{-}}{p_{+}} \in [0, 1[$

$$\mathbb{E}\left(\exp\left(\frac{1}{8}d(X,C)^2\right)\right)\leqslant \frac{1}{2p_+}\times \frac{4}{2-\lambda},$$

puis,

$$\begin{split} P(X \in C) \mathbb{E}\left(\exp\left(\frac{1}{8}d(X,C)^2\right)\right) &= \frac{1}{2}\left(p_+ + p_-\right) \mathbb{E}\left(\exp\left(\frac{1}{8}d(X,C)^2\right)\right) \text{ (d'après Q21)} \\ &\leqslant \frac{1}{2}\left(p_+ + p_-\right) \frac{1}{2p_+} \frac{4}{2-\lambda} = \frac{1}{4}\left(1 + \frac{p_-}{p_+}\right) \frac{4}{2-\lambda} \\ &= \frac{1}{4}(1+1-\lambda) \frac{4}{2-\lambda} = 1. \end{split}$$

L'inégalité est démontrée par récurrence.

II.G - Inégalité de Talagrand

Q33. Soit t un réel strictement positif.

$$\begin{split} P(X \in C) \times P(d(X,C) \geqslant t) &= P(X \in C) \times P\left(\exp\left(\frac{1}{8}d(X,C)^2\right) \geqslant \exp\left(\frac{t^2}{8}\right)\right) \\ &\leqslant P(X \in C) \times \frac{\mathbb{E}\left(\exp\left(\frac{1}{8}d(X,C)^2\right)\right)}{\exp\left(\frac{t^2}{8}\right)} \; (\text{d'après l'inégalité de Markov}) \\ &\leqslant \frac{1}{\exp\left(\frac{t^2}{8}\right)} = \exp\left(-\frac{t^2}{8}\right). \end{split}$$

Partie III - Démonstration du théorème de Johnson-Lindentstrauss

III.A - Une inégalité de concentration

Q34. Si r < 0, C est vide et en particulier, C est une partie convexe et fermée de $\mathcal{M}_{k,d}(\mathbb{R})$. Dorénavant, $r \geqslant 0$. Dans ce cas, C contient la matrice nulle et n'est donc pas vide.

• Soient $(M, N) \in C^2$ et $\lambda \in [0, 1]$.

$$\|((1-\lambda)M+\lambda N)u\|=\|(1-\lambda)Mu+\lambda Nu\|\leqslant (1-\lambda)\|Mu\|+\lambda\|Nu\|\leqslant (1-\lambda)r+\lambda r=r.$$

Donc, $(1-\lambda)M + \lambda N \in C$. Ceci montre que C est convexe.

• L'application $h_1: M \mapsto M\mathfrak{u}$ est une application linéaire sur $\mathcal{M}_{k,d}(\mathbb{R})$ à valeurs dans $\mathcal{M}_{k,1}(\mathbb{R})$ et donc h_1 est continue sur $\mathcal{M}_{k,d}(\mathbb{R})$. D'autre part, l'application $h_2: \nu \mapsto \|\nu\|$ est continue sur $\mathcal{M}_{k,1}(\mathbb{R})$. On en déduit que $g = h_2 \circ h_1$ est

continue sur $\mathcal{M}_{k,d}(\mathbb{R})$. Par suite, $C = g^{-1}([0,r])$ est un fermé de $\mathcal{M}_{k,d}(\mathbb{R})$ en tant qu'image réciproque d'un fermé de \mathbb{R} par l'application continue g.

Finalement, C est une partie convexe et fermée de $\mathcal{M}_{k,d}(\mathbb{R})$.

Q35. Posons $M = (m_{i,j})_{1 \leqslant i \leqslant k, \ 1 \leqslant j \leqslant d}$.

$$\begin{split} \|Mu\|^2 &= \sum_{i=1}^k \left(\sum_{j=1}^d m_{i,j} u_j\right)^2 \\ &\leqslant \sum_{i=1}^k \left(\sum_{j=1}^d m_{i,j}^2\right) \left(\sum_{j=1}^d u_j^2\right) \text{ (d'après l'inégalité de Cauchy-Schwarz)} \\ &= \sum_{i=1}^k \left(\sum_{j=1}^d m_{i,j}^2\right) \text{ (car } \|u\| = 1) \\ &= \operatorname{Tr} \left(M^T M\right) = \|M\|_F^2, \end{split}$$

et donc $||Mu|| \le ||M||_F$.

Q36. Supposons d(M, C) < t. Si $r \ge 0$, C est non vide.

Puisque C est un convexe fermé non vide de $\mathcal{M}_{k,d}(\mathbb{R})$, il existe $N \in C$ telle que $d(M,C) = \|M - N\|_F$ d'après la question Q4. D'après la question précédente,

$$\|Mu\|-\|Nu\|\leqslant \|(M-N)u\|\leqslant \|M-N\|_F=d(M,C)< t$$

puis

$$g(M) = \|Mu\| \leqslant \|Nu\| + t \leqslant r + t \text{ (car } N \in C).$$

Si r < 0, C est vide et d(X, C) n'est pas défini.

Q37. Soit $r \ge 0$. D'après la question précédente, l'événement $\{d(X,C) < t\}$ est contenu dans l'événement $\{g(X) < r + t\}$. Par passage au complémentaire, on obtient $\{g(X) \ge r + t\} \subset \{d(X,C) \ge t\}$ puis, d'après la question Q33,

$$\begin{split} P(g(X)\leqslant r)P(g(X)\geqslant r+t) &= P(X\in C)P(g(X)\geqslant r+t)\\ &\leqslant P(X\in C)P(d(X,C)\geqslant t)\leqslant \exp\left(-\frac{t^2}{8}\right). \end{split}$$

Si r < 0, $P(g(X) \le r) = 0$ et l'inégalité est immédiate.

III.B - Médianes

Q38. X prend un nombre fini de valeurs dans $\mathcal{M}_{k,d}(\mathbb{R})$ puis g(X) prend un nombre fini de valeurs positives : $0 \le y_1 < y_2 < \ldots < y_p$.

 $\text{La fonction } G : t \mapsto P(g(X) \leqslant t) \text{ est croissante sur } \mathbb{R} \text{ (car si } t \leqslant t', \text{ alors } \{g(X) \leqslant t\} \subset \{g(X) \leqslant t'\}). \ G(y_p) = P(g(X) \leqslant y_p) = 1. \ \text{On peut poser } i = \min \left\{ j \in [\![1,p]\!] / \ G(y_j) \geqslant \frac{1}{2} \right\} \text{ puis on pose } m = y_i.$

 $\mathrm{Par} \ \mathrm{construction}, \ P\left(g(X) \leqslant m\right) \geqslant \frac{1}{2}. \ \mathrm{Si} \ \mathfrak{i} \geqslant 2, \ \mathrm{par} \ \mathrm{construction} \ P\left(g(X) \leqslant y_{\mathfrak{i}-1}\right) < \frac{1}{2} \ \mathrm{puis}$

$$P(g(X) \geqslant m) = P(g(X) \geqslant y_i) = 1 - P(g(X) < y_i) = 1 - P(g(X) \leqslant y_{i-1}) > 1 - \frac{1}{2} = \frac{1}{2}.$$

Si $\mathfrak{i}=1$, $P(g(X)=y_1)=P(g(X)\leqslant y_1)\geqslant \frac{1}{2}$ et donc $P(g(X)\geqslant y_1)\geqslant P(g(X)=y_1)\geqslant \frac{1}{2}$. Dans tous les cas, $\mathfrak{m}=y_\mathfrak{i}$ convient.

Q39. Soit t > 0.

$$\begin{split} P(|g(X)-m|\geqslant t) &= P((g(X)\geqslant m+t)\cup (g(X)\leqslant m-t))\\ &\leqslant P(g(X)\geqslant m+t) + P(g(X)\leqslant m-t) = 2\times \left(\frac{1}{2}P(g(X)\geqslant m+t) + \frac{1}{2}P(g(X)\leqslant m-t)\right)\\ &\leqslant 2\left(P(g(x)\leqslant m)P(g(X)\geqslant m+t) + P(g(X)\leqslant m-t)P(g(X)\geqslant m)\right)\\ &\leqslant 2\left(\exp\left(-\frac{1}{8}((m+t)-m)^2\right) + \exp\left(-\frac{1}{8}(m-(m-t))^2\right)\right) \text{ (d'après Q37)}\\ &= 4\exp\left(-\frac{1}{8}t^2\right). \end{split}$$

Q40. On en déduit que

$$\mathbb{E}\left(\left(g(X)-\mathfrak{m}\right)^{2}\right) = 2\int_{0}^{+\infty} t P(|g(X)-\mathfrak{m}|\geqslant t) \ dt \ (\text{d'après la question Q8})$$

$$\leqslant 8\int_{0}^{+\infty} t \exp\left(-\frac{1}{8}t^{2}\right) \ dt = 8\left[-4 \exp\left(-\frac{1}{8}t^{2}\right)\right]_{0}^{+\infty}$$

$$= 32.$$

$$\begin{aligned} \mathbf{Q41.} \ (g(X))^2 &= \|Xu\|^2 = \sum_{i=1}^k (Xu)_i^2 \ (\text{où pour } i \in [\![1,k]\!], \ (Xu)_i = \sum_{j=1}^d \epsilon_{i,j} u_j). \ \text{Par linéarité de l'espérance}, \\ & \quad E\left((g(X))^2\right) = \sum_{i=1}^k \mathbb{E}\left((Xu)_i^2\right). \end{aligned}$$

Ensuite, pour $1 \leqslant i \leqslant k$

$$\begin{split} \mathbb{E}\left((Xu)_{i}^{2}\right) &= \mathbb{E}\left(\left(\sum_{j=1}^{d} \epsilon_{i,j} u_{j}\right)^{2}\right) \\ &= \sum_{j=1}^{d} u_{j}^{2} \mathbb{E}\left(\epsilon_{i,j}^{2}\right) + 2 \sum_{1 \leq j < j' \leq d} u_{j} u_{j'} \mathbb{E}\left(\epsilon_{i,j} \epsilon_{i,j'}\right). \end{split}$$

Ensuite, $\mathbb{E}\left(\epsilon_{i,j}^2\right) = \mathbb{E}(1) = 1$ puis pour $j \neq j'$, les variables $\epsilon_{i,j}$ et $\epsilon_{i,j'}$ étant indépendantes,

$$\mathbb{E}\left(\varepsilon_{i,j}\varepsilon_{i,j'}\right) = \mathbb{E}\left(\varepsilon_{i,j}\right)\mathbb{E}\left(\varepsilon_{i,j'}\right) = \left(1 \times \frac{1}{2} + (-1) \times \frac{1}{2}\right)^2 = 0.$$

Il reste $\mathbb{E}\left((Xu)_{\mathfrak{i}}^2\right)=\sum_{j=1}^d u_j^2=\|u\|^2=1$ puis

$$E((g(X))^2) = \sum_{i=1}^{k} 1 = k.$$

On a montré que $\mathbb{E}\left((g(X))^2\right) = k$.

D'après l'inégalité de Cauchy-Schwarz, $(\mathbb{E}(g(X)))^2 = (\mathbb{E}(g(X) \times 1))^2 \leqslant \mathbb{E}\left((g(X))^2\right)\mathbb{E}\left(1^2\right) = k$ et donc, puisque g(X) est une variable positive, $0 \leqslant \mathbb{E}(g(X)) \leqslant \sqrt{k}$.

Q42. On en déduit que

$$\mathbb{E}\left((g(X)-m)^2\right) = \mathbb{E}\left((g(X))^2\right) - 2m\mathbb{E}(g(X)) + m^2 = k - 2m\mathbb{E}(g(X)) + m^2 \geqslant k - 2m\sqrt{k} + m^2 = \left(\sqrt{k} - m\right)^2.$$

III.C - Un lemme clé

Q43. D'après la question Q39, la variable aléatoire Y = g(X) - m vérifie l'inégalité de la question Q4 avec a = 4 et $b = \frac{1}{8}$. D'après les questions Q12 et Q13, si $0 \le |\delta| \le \sqrt{\frac{a}{b}} = \sqrt{32}$, alors pour $t \ge 0$,

$$P(|g(X)-m+\delta|\geqslant t)=P(|Y+\delta|\geqslant t)\leqslant 4\varepsilon^4 \mathrm{exp}\left(-\frac{1}{16}t^2\right)\quad (*).$$

D'après les questions Q40 et Q42, $\left(\sqrt{k}-m\right)^2 \leqslant \mathbb{E}\left((g(X)-m)^2\right) \leqslant 32$ puis $\left|\sqrt{k}-m\right| \leqslant \sqrt{32}$. On peut donc appliquer (*) avec $\delta=m-\sqrt{k}$ et on obtient pour $t\geqslant 0$,

$$P\left(\left|g(X)-\sqrt{k}\right|\geqslant t\right)\leqslant 4\varepsilon^4 \mathrm{exp}\left(-\frac{1}{16}t^2\right).$$

 $\mathbf{Q44.} \left| \left\| A_k u \right\| - 1 \right| > \epsilon \Leftrightarrow \left| \left\| \frac{X}{\sqrt{k}} u \right\| - 1 \right| > \epsilon \Leftrightarrow \left| \left\| X u \right\| - \sqrt{k} \right| > \epsilon \sqrt{k} \Leftrightarrow \left| g(X) - \sqrt{k} \right| > \epsilon \sqrt{k}. \text{ D'après la question précédente,}$

$$\begin{split} P\left(|\|A_k u\|-1|>\epsilon\right) &\leqslant 4e^4 \mathrm{exp}\left(-\frac{1}{16}k\epsilon^2\right) \leqslant 4e^4 \mathrm{exp}\left(-\frac{1}{16}160\ln\left(\frac{1}{\delta}\right)\right) = 4e^4\delta^{10}\\ &< 4e^4\left(\frac{1}{2}\right)^9\delta = \frac{e^4}{2^7}\delta < \frac{3^4}{2^7}\delta = \frac{81}{128}\delta\\ &< \delta. \end{split}$$

III.D - Conclusion

Q45. En posant $u = \frac{1}{\|\nu_i - \nu_j\|} (\nu_i - \nu_j),$

$$(1-\epsilon)\left\|\nu_i-\nu_j\right\|\leqslant \left\|A_k\nu_i-A_k\nu_j\right\|\leqslant (1+\epsilon)\left\|\nu_i-\nu_j\right\|\Leftrightarrow 1-\epsilon\leqslant \left\|A_ku\right\|\leqslant 1+\epsilon\Leftrightarrow \left|\left\|A_ku\right\|-1\right|\leqslant \epsilon.$$

 $\mathrm{Donc}, \ \overline{E_{i,j}} \ \mathrm{est} \ \mathrm{l'\acute{e}v\acute{e}nement} \ \{|\|A_ku\|-1|>\epsilon\}. \ \mathrm{D'apr\grave{e}s} \ \mathrm{la} \ \mathrm{question} \ 44, \ P\left(\overline{E_{i,j}}\right)<\delta.$

Q46.

$$\begin{split} 1 - P\left(\bigcap_{1\leqslant i < j \leqslant N} E_{i,j}\right) &= P\left(\overline{\bigcap_{1\leqslant i < j \leqslant N} E_{i,j}}\right) = P\left(\bigcup_{1\leqslant i < j \leqslant N} \overline{E_{i,j}}\right) \leqslant \sum_{1\leqslant i < j \leqslant N}^{P} \left(\overline{E_{i,j}}\right) \\ &< \sum_{1\leqslant i < j \leqslant N} \delta = \delta \sum_{j=2}^{N} \left(\sum_{i=1}^{j-1} 1\right) = \delta \sum_{j=2}^{N} (j-1) \\ &= \frac{N(N-1)}{2} \delta. \end{split}$$

 $\mathrm{et}\;\mathrm{donc}\;P\left(\bigcap_{1\leqslant i< j\leqslant N}E_{i,j}\right)>1-\frac{N(N-1)}{2}\delta.$

Q47. On prend δ de la forme $\frac{1}{N^{\alpha}}$ avec $\alpha \geqslant 2$. On a bien $0 < \delta \leqslant \frac{1}{2^2} < \frac{1}{2}$. La condition $k \geqslant 160 \frac{\ln(1/\delta)}{\epsilon^2}$ s'écrit encore $k \geqslant c \frac{\ln(N)}{\epsilon^2}$ où $c = 160\alpha$ est une constante strictement positive indépendante de N, d, k et ϵ .

Toute réalisation de l'événement $\bigcap_{1 \leq i < j \leq n} E_{i,j}$ fournit une application linéaire A_k de \mathbb{R}^k dans \mathbb{R}^d qui est une ϵ -isométrie. La probabilité de cet événement vérifie

$$P\left(\bigcap_{1\leqslant i< j\leqslant N} E_{i,j}\right) > 1 - \frac{N(N-1)}{2N^{\alpha}}.$$

En choisissant $\alpha=2$, on voit que sous la condition $k\geqslant c\frac{\ln(N)}{\epsilon^2}$, on a plus d'une chance sur deux qu'il existe une ϵ -isométrie de \mathbb{R}^k dans \mathbb{R}^d . En choisissant $\alpha=100$, on voit que l'existence d'une telle ϵ -isométrie est quasiment certaine.