# **Order Delivery Time Prediction**

## **Business Problem**

Porter delivery refers to the logistics services offered by Porter, a platform that provides on-demand goods transportation solutions in India.

In order to improve customer experience, optimize operations, and increase efficiency, Porter needs to accurately predict delivery times. Inaccurate delivery estimates lead to customer dissatisfaction and operational challenges.

The key goals are:

- Predict the delivery time for an order based on multiple input features
- Improve delivery time predictions to optimise operational efficiency
- Understand the key factors influencing delivery time to enhance the model's accuracy

# **Approach**

Created a data-driven prediction model through the use of linear regression, examining large number of delivery records that contained information about order details, restaurant location, delivery partner availability, and distance. EDA, feature engineering, data cleaning, and model optimisation were all part of our methodical approach.

The steps listed below are used to predict the delivery time.

#### 1. Loading the data

Porter data is provided in csv format and it is loaded in Dataframe. There are no missing or null values in the dataset, and the data is nearly clean.

## 2. Data Preprocessing and Feature Engineering

Data Type Conversion

- Timestamps (created at, actual delivery time) were converted to datetime format
- Categorical fields (market\_id , store\_primary\_category and order\_protocol) were converted to category

## Feature Engineering

- By computing the difference between the creation and delivery timings, **time\_taken** (in minu tes) was created as the target variable.
- Order timestamps were used to extract the hour and day\_of \_week.
- To record weekend versus weekday trends, the isWeekend binary feature was added.
- Mapped day names to numerical values (0-6)

#### 3. Exploratory Data Analysis on Training Data

**Distributions for numerical columns** in the training set to understand their spread and any skewness.



# **Distribution of categorical features**

## Countplot of Categorical Columns



## Distribution of the target variable to understand its spread and any skewness



## **Relationships Between Features**

Scatter plots for important numerical and categorical features to observe how they relate to **time\_taken** 





## Distribution of time\_taken for different hours



#### **Correlation Matrix**



#### Correlation Matrix after dropping columns with weak correlations with the target variable

#### Following columns are dropped

- min\_item\_price
- total\_onshift\_dashers
- total\_busy\_dashers



## **Handling the Outliers**

Visualisation of potential outliers for the target variable and other numerical features using boxplots.

## Box plot of target variable.



## **Removed outliers**

- Removed outliers only from train\_data
- test\_data should represent real-world data, including outliers.
- ➤ Used Interquartile Range (IQR) method to remove outliers from the numerical columns.

Here is the calculation.

- **Q1** = quantile(0.25) = 25%
- **Q3** = quantile(0.75) = 75%
- IQR = Q3 Q1 (Standard calculation)
- **Lower Bound** = Q1 1.5 × IQR (Standard calculation)
- **Upper Bound** =  $Q3 + 1.5 \times IQR$  (Standard calculation) Only data falling within these ranges is taken for the training set.

## Boxplot after remove outliers from train\_data using IQR method



Separated cleaned training features and target

```
y_train_cleaned = cleaned_train_data['time_taken']
X_train_cleaned = cleaned_train_data.drop(columns=['time_taken'])
```

## 4. Exploratory Data Analysis on Validation Data

• Dropped the columns with weak correlations with the target variable

## 5. Model Building

- Performed Feature scaling for numerical columns
- Created **Dummies for Categorical columns**
- Build a linear regression mode using 'statsmodels' api's.



## Linear Regression using using sklearn



## 5.3 Build the model and fit RFE to select the most important features

| OLS Regression Results                         |                   |                         |                  |                          |                  |                 |      |                            |            |
|------------------------------------------------|-------------------|-------------------------|------------------|--------------------------|------------------|-----------------|------|----------------------------|------------|
| Dep. Variable:                                 | time_taken        | n R-squared:            |                  | 0.656                    |                  |                 |      | Feature                    | VIF        |
| Model:                                         | OLS               | Adj. R-squared:         |                  | 0.656                    |                  |                 | 0    | const                      | 48.577033  |
|                                                | ast Squares       | F-statistic:            |                  | 5254.                    |                  |                 | _    |                            |            |
|                                                | 25 Jun 2025       | Prob (F-statistic):     |                  | 0.00                     |                  |                 | 1    | total_items                | 2.542091   |
| Time:                                          | 22:26:15          | Log-Likelihood:<br>AIC: |                  | -4.3846e+05<br>8.770e+05 |                  |                 | _    | 11                         |            |
| No. Observations:  Df Residuals:               | 140621<br>140569  | BIC:                    |                  | 8.775e+05                |                  |                 | 2    | subtotal                   | 3.613663   |
| Df Model:                                      | 51                | BIC:                    |                  | 0.77                     | 750+05           |                 | 3    | num_distinct_items         | 3.286115   |
| Covariance Type:                               | nonrobust         |                         |                  |                          |                  |                 | 4    | max_item_price             | 1.981981   |
| =======================================        | coef              | std err                 | <br>t            | P> t                     | [0.025           | 0.975]          |      | p                          |            |
|                                                |                   |                         |                  |                          |                  | 0.975]          | 5    | total_outstanding_orders   | 2.499078   |
| const                                          | 36.5656           | 0.105                   | 348.905          | 0.000                    | 36.360           | 36.771          | 6    | distance                   | 1.014770   |
| total_items                                    | -11.6815          | 3.508                   | -3.330           | 0.001                    | -18.557          | -4.806          | _    | 1 . 11 0                   |            |
| subtotal                                       | 32.2744           | 0.406                   | 79.478           | 0.000                    | 31.479           | 33.070          | 7    | market_id_2                | 2.299047   |
| num_distinct_items max item price              | 10.3601<br>8.4545 | 0.309<br>0.535          | 33.494<br>15.798 | 0.000<br>0.000           | 9.754<br>7.406   | 10.966<br>9.503 | 8    | market_id_3                | 1.405700   |
| total_outstanding_orders                       | 24.3538           | 0.127                   | 192.473          | 0.000                    | 24.106           | 24.602          | _    | market_ia_5                | 1.103700   |
| distance                                       | 40.3139           | 0.140                   | 287.484          | 0.000                    | 40.039           | 40.589          | 9    | market_id_4                | 2.219878   |
| market id 2                                    | -8.9678           | 0.048                   | -186.758         | 0.000                    | -9.062           | -8.874          |      |                            |            |
| market id 3                                    | -4.4371           | 0.053                   | -83.417          | 0.000                    | -4.541           | -4.333          | 10   | market_id_5                | 1.350673   |
| market id 4                                    | -7.1481           | 0.049                   | -144.842         | 0.000                    | -7.245           | -7.051          | 11   | market_id_6                | 1.017007   |
| market_id_5                                    | -4.0836           | 0.057                   | -71.461          | 0.000                    | -4.196           | -3.972          | - 11 | market_id_6                | 1.017007   |
| market_id_6                                    | -4.9870           | 0.245                   | -20.318          | 0.000                    | -5.468           | -4.506          | 12   | store_primary_category_13  | 1.582853   |
| store_primary_category_13                      | 0.1058            | 0.080                   | 1.331            | 0.183                    | -0.050           | 0.262           |      | 7 7- 3 7-                  |            |
| store_primary_category_20                      | 0.0350            | 0.082                   | 0.427            | 0.670                    | -0.126           | 0.196           | 13   | store_primary_category_20  | 1.466716   |
| store_primary_category_24                      | 0.4534            | 0.083                   | 5.460            | 0.000                    | 0.291            | 0.616           |      | -tdt 34                    | 4 44 44 74 |
| store_primary_category_28                      | 0.5820            | 0.103                   | 5.668            | 0.000                    | 0.381            | 0.783           | 14   | store_primary_category_24  | 1.414174   |
| store_primary_category_38                      | 0.6473            | 0.089                   | 7.315            | 0.000                    | 0.474            | 0.821           | 15   | store_primary_category_28  | 1.768798   |
| store_primary_category_39                      | 0.5703            | 0.083                   | 6.887            | 0.000                    | 0.408            | 0.733           |      | store_primary_category_25  | 00.50      |
| store_primary_category_46                      | 0.1300            | 0.068                   | 1.906            | 0.057                    | -0.004           | 0.264           | 16   | store_primary_category_38  | 1.356834   |
| store_primary_category_55                      | 0.5284<br>0.4858  | 0.068                   | 7.760<br>6.024   | 0.000                    | 0.395            | 0.662<br>0.644  |      |                            | 4 422227   |
| store_primary_category_58                      |                   | 0.081<br>0.052          | 7.429            | 0.000<br>0.000           | 0.328<br>0.287   | 0.493           | 17   | store_primary_category_39  | 1.438837   |
| store_primary_category_100<br>order protocol 2 | -0.8564           | 0.052                   | -16.338          | 0.000                    | -0.959           | -0.754          | 18   | store_primary_category_46  | 1.761599   |
| order protocol 3                               | -1.7587           | 0.042                   | -41.829          | 0.000                    | -1.841           | -1.676          |      | store_primary_category_ ro |            |
| order protocol 4                               | -2.2879           | 0.064                   | -35.598          | 0.000                    | -2.414           | -2.162          | 19   | store_primary_category_55  | 1.768300   |
| order_protocol_5                               | -3.3828           | 0.043                   | -78.966          | 0.000                    | -3.467           | -3.299          |      |                            |            |
| order_protocol_6                               | -1.4554           | 0.242                   | -6.022           | 0.000                    | -1.929           | -0.982          | 20   | store_primary_category_58  | 1.496240   |
| order_protocol_7                               | 1.0333            | 1.369                   | 0.755            | 0.450                    | -1.650           | 3.716           | 21   | store_primary_category_100 | 3.092024   |
| order_hour_1                                   | -2.1091           | 0.070                   | -29.947          | 0.000                    | -2.247           | -1.971          |      | store_primary_category_roo | 3.032021   |
| order_hour_2                                   | -1.2276           | 0.072                   | -16.936          | 0.000                    | -1.370           | -1.086          | 22   | order_protocol_2           | 1.357589   |
| order_hour_3                                   | -0.9371           | 0.076                   | -12.410          | 0.000                    | -1.085           | -0.789          |      |                            |            |
| order_hour_4                                   | -1.7865           | 0.079                   | -22.485          | 0.000                    | -1.942           | -1.631          | 23   | order_protocol_3           | 1.630440   |
| order_hour_5                                   | -0.1187           | 0.097                   | -1.223           | 0.221                    | -0.309           | 0.072           | 24   | order_protocol_4           | 1.708790   |
| order_hour_6                                   | 1.7439            | 0.185                   | 9.430            | 0.000                    | 1.381            | 2.106           |      | 01d01_p1010001_4           | 1.700750   |
| order_hour_7                                   | 2.5040            | 2.069                   | 1.210            | 0.226                    | -1.550           | 6.559           | 25   | order_protocol_5           | 1.554546   |
| order_hour_8                                   | 7.4392            | 3.869                   | 1.923            | 0.055                    | -0.144<br>-0.146 | 15.022          |      |                            |            |
| order_hour_14                                  | 1.8490<br>1.8765  | 1.018<br>0.283          | 1.816<br>6.619   | 0.069<br>0.000           | -0.146<br>1.321  | 3.844<br>2.432  | 26   | order_protocol_6           | 1.030586   |
| order_hour_15<br>order_hour_16                 | 1.9801            | 0.283                   | 13.064           | 0.000                    | 1.683            | 2.432           | 27   | order_protocol_7           | 1.001784   |
| or act_float_10                                | 1.5001            | 0.132                   | 15.004           | 0.000                    | 1.003            | 2.211           | 21   | order_protocol_7           | 1.001764   |

1. R-squared: 0.656 indicates 65.6% of the variance in the target variable (time\_taken) is explained by the model.

. . .

Decision for which variables has to be dropped can be taken based on

• Significance (p-value > 0.05 is higher) and VIF (VIF > 5 is not a good symbol)

One of the approach is to delete one-by-one variable and check Significance and VIF again











#### 1. Residuals vs Predicted Plot

#### Residual = Actual time taken - Predicted time taken

Positive residuals (points above the red dashed 0-line) mean the model under-predicted: the real delivery took longer than forecast.

Negative residuals (points below the 0-line) mean the model over-predicted: it thought the delivery would take longer than it did.

The plot shows data points randomly scattered around the horizontal zero line without any clear patterns or trends. This confirms the linearity assumption of the regression model - the relationship between predictors and target variable is appropriately captured by our linear model

#### 2. Q-Q Plot of Residuals

The data points follow the diagonal reference line fairly closely. The residuals approximate a normal distribution, satisfying another key regression assumption. This validates that our statistical inferences (p-values, confidence intervals) from the model are trustworthy

#### 3. Histogram of Residuals

The distribution is approximately bell-shaped and cantered at zero. Confirms the normal distribution of errors with a mean of zero. Indicates our model is well-balanced in its predictions, not systematically biased in either direction

Overall The model performs OK on both training data ( $R^2 \approx 0.658$ )

These diagnostics suggest the model provides reliable predictions and that the coefficients can be confidently interpreted for business insights.

Based on the combined analysis of OLS regression summary and VIF values, the top 3 most significant features influencing the prediction of time\_taken are:

- total\_items
- subtotal
- no\_of\_distinct\_items