Lampiran B Blanco 1

Gambar B.1: Proyeksi dari distribusi *posterior* untuk profil EFF model simetris lingkaran Blanco 1.

 ${\bf Tabel~B.1:}~{\bf Matriks~kovarian~profil~EFF~dengan~model~simetris~lingkaran~Blanco~1}.$

	$\alpha_c[^{\circ}]$	$\delta_c[^{\circ}]$	$r_c[pc]$	γ
$\alpha_c[^{\circ}]$	0.014	0.001	0.005	0.009
$\delta_c [^{\circ}]$	0.001	0.010	0.005	0.002
$r_c[pc]$	0.005	0.005	0.414	0.403
γ	0.009	0.002	0.403	0.634

Gambar B.2: Proyeksi dari distribusi posterior untuk profil GDP model simetris lingkaran Blanco 1.

Tabel B.2: Matriks kovarian profil GDP dengan model simetris lingkaran Blanco 1.

	$\alpha_c[^{\circ}]$	$\delta_c [^{\circ}]$	$r_c[pc]$	α	β	γ
$\alpha_c[^{\circ}]$	0.011	0.000	0.001	-0.001	0.006	-0.003
$\delta_c [^{\circ}]$	0.000	0.008	0.003	0.000	0.004	-0.001
$r_c[pc]$	0.001	0.003	0.252	0.007	0.210	0.004
α	-0.001	0.000	0.007	0.036	0.013	-0.000
β	0.006	0.004	0.210	0.013	0.343	-0.031
γ	-0.003	-0.001	0.004	-0.000	-0.031	0.034

Gambar B.3: Proyeksi dari distribusi *posterior* untuk profil RGDP model simetris lingkaran Blanco 1.

Tabel B.3: Matriks kovarian profil RGDP dengan model simetris lingkaran Blanco 1.

	$\alpha_c[^{\circ}]$	$\delta_c[^{\circ}]$	$r_c[pc]$	α	β
$\alpha_c[^{\circ}]$	0.012	0.001	0.003	-0.001	0.004
$\delta_c [^{\circ}]$	0.001	0.008	0.003	-0.000	0.003
$r_c[pc]$	0.003	0.003	0.230	0.019	0.215
α	-0.001	-0.000	0.019	0.040	0.029
β	0.004	0.003	0.215	0.029	0.345

Gambar B.4: Proyeksi dari distribusi posterior untuk profil King model simetris lingkaran Blanco 1.

Tabel B.4: Matriks kovarian profil King dengan model simetris lingkaran Blanco 1.

	$\alpha_c[^{\circ}]$	$\delta_c[^{\circ}]$	$r_c[pc]$	$r_t[pc]$
$\alpha_c[^{\circ}]$	0.015	0.000	0.008	-0.003
$\delta_c [^{\circ}]$	0.000	0.010	-0.004	0.003
$r_c[pc]$	0.008	-0.004	0.225	-0.221
$r_t[pc]$	-0.003	0.003	-0.221	2.449

Gambar B.5: Proyeksi dari distribusi *posterior* untuk profil GKing model simetris lingkaran Blanco 1.

Tabel B.5: Matriks kovarian profil GKing dengan model simetris lingkaran Blanco 1.

	$\alpha_c[^{\circ}]$	$\delta_c [^{\circ}]$	$r_c[pc]$	$r_t[pc]$	α	β
$\alpha_c[^{\circ}]$	0.026	0.001	0.005	0.055	-0.012	0.008
$\delta_c [^{\circ}]$	0.001	0.017	-0.001	0.030	-0.001	0.000
$r_c[pc]$	0.005	-0.001	1.249	0.117	0.016	0.367
$r_t[pc]$	0.055	0.030	0.117	14.500	-0.323	0.805
α	-0.012	-0.001	0.016	-0.323	0.444	-0.055
β	0.008	0.000	0.367	0.805	-0.055	0.303

Gambar B.6: Proyeksi dari distribusi posterior untuk profil OGKing model simetris lingkaran Blanco 1.

Tabel B.6: Matriks kovarian profil OGKing dengan model simetris lingkaran Blanco 1.

	$\alpha_c[^{\circ}]$	$\delta_c[^{\circ}]$	$r_c[pc]$	$r_t[pc]$
$\alpha_c[^{\circ}]$	0.015	0.001	-0.002	0.014
$\delta_c [^{\circ}]$	0.001	0.011	0.001	0.003
$r_c[pc]$	-0.002	0.001	0.219	-0.236
$r_t[pc]$	0.014	0.003	-0.236	3.591

Gambar B.7: Proyeksi dari distribusi posterior untuk profil EFF model eliptis Blanco 1.

Tabel B.7: Matriks kovarian profil EFF dengan model eliptis Blanco 1.

	$\alpha_c[^{\circ}]$	$\delta_c[^{\circ}]$	$\Phi[radians]$	$r_{ca}[pc]$	$r_{cb}[pc]$	γ
$\alpha_c[^{\circ}]$	0.008	0.000	-0.003	-0.000	0.005	0.003
$\delta_c [^{\circ}]$	0.000	0.005	-0.001	0.004	0.004	0.004
$\Phi[radians]$	-0.003	-0.001	0.444	0.001	0.017	0.010
$r_{ca}[pc]$	-0.000	0.004	0.001	0.505	0.305	0.387
$r_{cb}[pc]$	0.005	0.004	0.017	0.305	0.472	0.470
γ	0.003	0.004	0.010	0.387	0.470	0.611

 ${\bf Gambar~B.8:}$ Proyeksi dari distribusi posterioruntuk profil GDP model eliptis Blanco 1.

 ${\bf Tabel~B.8:}~{\bf Matriks~kovarian~profil~GDP~dengan~model~eliptis~Blanco~1}.$

	$\alpha_c[^{\circ}]$	$\delta_c [^{\circ}]$	$\Phi[radians]$	$r_{ca}[pc]$	$r_{cb}[pc]$	α	β	γ
$\alpha_c[^{\circ}]$	0.008	0.001	-0.005	-0.001	0.006	-0.001	0.005	-0.002
$\delta_c [^{\circ}]$	0.001	0.005	0.000	0.002	0.005	-0.000	0.005	-0.001
$\Phi[radians]$	-0.005	0.000	0.456	-0.017	-0.001	-0.002	-0.010	0.004
$r_{ca}[pc]$	-0.001	0.002	-0.017	0.321	0.167	0.005	0.187	0.005
$r_{cb}[pc]$	0.006	0.005	-0.001	0.167	0.281	-0.008	0.250	-0.013
α	-0.001	-0.000	-0.002	0.005	-0.008	0.037	0.008	-0.000
β	0.005	0.005	-0.010	0.187	0.250	0.008	0.342	-0.032
γ	-0.002	-0.001	0.004	0.005	-0.013	-0.000	-0.032	0.029

Gambar B.9: Proyeksi dari distribusi posterior untuk profil RGDP model eliptis Blanco 1.

Tabel B.9: Matriks kovarian profil RGDP dengan model eliptis Blanco 1.

	$\alpha_c[^{\circ}]$	$\delta_c[^{\circ}]$	$\Phi[radians]$	$r_{ca}[pc]$	$r_{cb}[pc]$	α	β
$\alpha_c[^{\circ}]$	0.010	0.001	-0.002	0.000	0.003	-0.002	0.003
$\delta_c [^\circ]$	0.001	0.008	0.000	0.003	0.004	-0.000	0.003
$\Phi[radians]$	0.002	0.000	0.457	-0.014	0.010	-0.001	0.011
$r_{ca}[pc]$	0.000	0.003	-0.014	0.230	0.109	0.012	0.143
$r_{cb}[pc]$	0.003	0.004	0.010	0.109	0.188	0.004	0.177
α	0.002	-0.000	-0.001	0.012	0.004	0.032	0.018
β	0.003	0.003	0.011	0.143	0.177	0.018	0.284

Gambar B.10: Proyeksi dari distribusi posterior untuk profil King model eliptis Blanco 1.

Tabel B.10: Matriks kovarian profil King dengan model eliptis Blanco 1.

	$\alpha_c[^{\circ}]$	$\delta_c [^{\circ}]$	$\Phi[radians]$	$r_{ca}[pc]$	$r_{ta}[pc]$	$r_{cb}[pc]$	$r_{tb}[pc]$
$\alpha_c[^{\circ}]$	0.010	0.001	-0.003	-0.009	-0.025	0.001	0.013
$\delta_c [^\circ]$	0.001	0.008	0.002	0.005	-0.022	0.010	-0.002
$\Phi[radians]$	-0.003	0.002	0.419	-0.027	0.166	0.014	-0.047
$r_{ca}[pc]$	-0.009	0.005	-0.027	1.151	-0.539	0.049	-0.278
$r_{ta}[pc]$	-0.025	-0.022	0.166	-0.539	15.082	-0.577	1.458
$r_{cb}[pc]$	0.001	0.010	0.014	0.049	-0.577	0.213	-0.220
$r_{tb}[pc]$	0.013	-0.002	-0.047	-0.278	1.458	-0.220	3.023

Gambar B.11: Proyeksi dari distribusi posterior untuk profil GKing model eliptis Blanco 1.

 ${\bf Tabel~B.11:}~{\bf Matriks~kovarian~profil~GKing~dengan~model~eliptis~Blanco~1}.$

	$\alpha_c[^{\circ}]$	$\delta_c[^{\circ}]$	$\Phi[radians]$	$r_{ca}[pc]$	$r_{ta}[pc]$	$r_{cb}[pc]$	$r_{tb}[pc]$	α	β
$\alpha_c[^{\circ}]$	0.021	0.001	-0.006	-0.009	0.009	0.014	0.064	-0.012	0.008
$\delta_c [^\circ]$	0.001	0.015	-0.004	0.005	0.001	0.009	0.024	-0.006	0.007
$\Phi[radians]$	-0.006	-0.004	0.495	0.010	0.232	0.018	-0.189	0.009	0.007
$r_{ca}[pc]$	-0.009	0.005	0.010	2.665	-0.100	0.354	0.127	0.197	0.179
$r_{ta}[pc]$	0.009	0.001	0.232	-0.100	69.836	0.101	13.632	-0.018	0.946
$r_{cb}[pc]$	0.014	0.009	0.018	0.354	0.101	0.595	0.720	-0.104	0.296
$r_{tb}[pc]$	0.064	0.024	-0.189	0.127	13.632	0.720	16.669	-0.340	1.019
α	-0.012	-0.006	0.009	0.197	-0.018	-0.104	-0.340	0.383	-0.063
β	0.008	0.007	0.007	0.179	0.946	0.296	1.019	-0.063	0.268

Gambar B.12: Proyeksi dari distribusi posterioruntuk profil OGKing model eliptis Blanco $\ _{1}$

Tabel B.12: Matriks kovarian profil OGKing dengan model eliptis Blanco 1.

	$\alpha_c[^{\circ}]$	$\delta_c[^{\circ}]$	$\Phi[radians]$	$r_{ca}[pc]$	$r_{ta}[pc]$	$r_{cb}[pc]$	$r_{tb}[pc]$
$\alpha_c[^{\circ}]$	0.011	0.000	-0.003	-0.006	-0.022	0.003	0.010
$\delta_c [^\circ]$	0.000	0.007	0.001	-0.007	-0.011	0.001	0.005
$\Phi[radians]$	-0.003	0.001	0.454	-0.014	0.124	0.022	-0.194
$r_{ca}[pc]$	-0.006	-0.007	-0.014	0.904	-0.334	0.016	-0.198
$r_{ta}[pc]$	-0.022	-0.011	0.124	-0.334	20.922	-0.476	2.953
$r_{cb}[pc]$	0.003	0.001	0.022	0.016	-0.476	0.141	-0.225
$r_{tb}[pc]$	0.010	0.005	-0.194	-0.198	2.953	-0.225	5.110

Gambar B.13: Proyeksi dari distribusi posterioruntuk profil EFF model segregasi Blanco $\ _1$

Tabel B.13: Matriks kovarian profil EFF dengan model segregasi Blanco 1.

	$\alpha_c [^{\circ}]$	$\delta_c[^{\circ}]$	$\Phi[radians]$	$r_{ca}[pc]$	$r_{cb}[pc]$	γ	$\kappa[pc.mag^{-1}]$
$\alpha_c[^{\circ}]$	0.008	0.001	-0.004	0.001	0.007	0.004	0.001
$\delta_c [^\circ]$	0.001	0.006	-0.000	0.002	0.004	0.003	-0.000
$\Phi[radians]$	-0.004	-0.000	0.443	-0.007	0.010	0.004	-0.003
$r_{ca}[pc]$	0.001	0.002	-0.007	0.534	0.339	0.381	0.029
$r_{cb}[pc]$	0.007	0.004	0.010	0.339	0.535	0.480	0.045
γ	0.004	0.003	0.004	0.381	0.480	0.609	0.023
$\kappa[pc.mag^{-1}]$	0.001	-0.000	-0.003	0.029	0.045	0.023	0.021

Gambar B.14: Proyeksi dari distribusi posterioruntuk profil GDP model segregasi Blanco $\ _1$

Tabel B.14: Matriks kovarian profil GDP dengan model segregasi Blanco 1.

	$\alpha_c[^{\circ}]$	$\delta_c [^{\circ}]$	$\Phi[radians]$	$r_{ca}[pc]$	$r_{cb}[pc]$	α	β	γ	κ
$\alpha_c[^{\circ}]$	0.006	0.001	-0.006	-0.002	0.005	-0.001	0.002	-0.002	0.001
$\delta_c [^\circ]$	0.001	0.004	-0.000	0.002	0.005	-0.001	0.004	-0.001	0.001
$\Phi[radians]$	-0.006	-0.000	0.427	-0.001	0.009	0.002	-0.002	0.005	-0.001
$r_{ca}[pc]$	-0.002	0.002	-0.001	0.337	0.167	0.018	0.185	0.014	0.015
$r_{cb}[pc]$	0.005	0.005	0.009	0.167	0.268	0.006	0.215	-0.005	0.029
α	-0.001	-0.001	0.002	0.018	0.006	0.028	0.021	-0.001	-0.004
β	0.002	0.004	-0.002	0.185	0.215	0.021	0.309	-0.022	0.013
γ	-0.002	-0.001	0.005	0.014	-0.005	-0.001	-0.022	0.028	-0.004
κ	0.001	0.001	-0.001	0.015	0.029	-0.004	0.013	-0.004	0.019

Gambar B.15: Proyeksi dari distribusi posterior untuk profil RGDP model segregasi Blanco 1.

Tabel B.15: Matriks kovarian profil RGDP dengan model segregasi Blanco 1.

	$\alpha_c[^{\circ}]$	$\delta_c[^{\circ}]$	$\Phi[radians]$	$r_{ca}[pc]$	$r_{cb}[pc]$	α	β	$\kappa[pc.mag^{-1}]$
$\alpha_c[^{\circ}]$	0.008	0.001	-0.004	0.000	0.006	-0.002	0.003	0.002
$\delta_c [^\circ]$	0.001	0.005	0.000	0.003	0.004	-0.000	0.003	0.000
$\Phi[radians]$	-0.004	0.000	0.441	-0.010	0.005	-0.000	0.000	-0.001
$r_{ca}[pc]$	0.000	0.003	-0.010	0.293	0.146	0.018	0.173	0.016
$r_{cb}[pc]$	0.006	0.004	0.005	0.146	0.244	0.005	0.198	0.028
α	-0.002	-0.000	-0.000	0.018	0.005	0.033	0.024	-0.004
eta	0.003	0.003	0.000	0.173	0.198	0.024	0.281	0.009
$\kappa[pc.mag^{-1}]$	0.002	0.000	-0.001	0.016	0.028	-0.004	0.009	0.017

Gambar B.16: Proyeksi dari distribusi posterioruntuk profil King model segregasi Blanco $\ _1$

Tabel B.16: Matriks kovarian profil King dengan model segregasi Blanco 1.

	$\alpha_c[^{\circ}]$	$\delta_c[^{\circ}]$	$\Phi[radians]$	$r_{ca}[pc]$	$r_{ta}[pc]$	$r_{cb}[pc]$	$r_{tb}[pc]$	$\kappa[pc.mag^{-1}]$
$\alpha_c[^{\circ}]$	0.009	0.001	-0.000	-0.007	-0.026	0.006	0.006	0.000
$\delta_c [^{\circ}]$	0.001	0.006	-0.000	-0.004	-0.009	0.000	-0.002	-0.000
$\Phi[radians]$	-0.000	-0.000	0.410	-0.058	0.124	0.013	-0.112	-0.005
$r_{ca}[pc]$	-0.007	-0.004	-0.058	0.965	-0.383	0.090	-0.196	0.018
$r_{ta}[pc]$	-0.026	-0.009	0.124	-0.383	10.083	-0.390	1.286	-0.021
$r_{cb}[pc]$	0.006	0.000	0.013	0.090	-0.390	0.196	-0.184	0.018
$r_{tb}[pc]$	0.006	-0.002	-0.112	-0.196	1.286	-0.184	2.575	-0.006
$\kappa[pc.mag^{-1}]$	0.000	-0.000	-0.005	0.018	-0.021	0.018	-0.006	0.006

Gambar B.17: Proyeksi dari distribusi posterior untuk profil G
King model segregasi Blanco 1.

Tabel B.17: Matriks kovarian profil GKing dengan model segregasi Blanco 1.

	α_c	δ_c	Φ	r_{ca}	r_{ta}	r_{cb}	r_{tb}	α	β	κ
	[°]	[°]	[radians]	[pc]	[pc]	[pc]	[pc]			$[pc.mag^{-1}]$
$\alpha_c[^{\circ}]$	0.022	0.002	-0.011	-0.010	-0.028	0.011	0.068	-0.013	0.007	0.004
$\delta_c [^{\circ}]$	0.002	0.014	-0.002	-0.005	0.018	0.006	0.043	-0.003	0.004	0.001
$\Phi[radians]$	-0.011	-0.002	0.491	0.026	0.243	-0.009	-0.350	0.038	-0.014	-0.015
$r_{ca}[pc]$	-0.010	-0.005	0.026	3.335	-0.306	0.661	-0.001	0.265	0.249	-0.012
$r_{ta}[pc]$	-0.028	0.018	0.243	-0.306	66.932	0.359	14.351	-0.111	1.135	-0.006
$r_{cb}[pc]$	0.011	0.006	-0.009	0.661	0.359	0.813	0.742	-0.077	0.322	0.082
$r_{tb}[pc]$	0.068	0.043	-0.350	-0.001	14.351	0.742	17.627	-0.434	1.037	0.164
α	-0.013	-0.003	0.038	0.265	-0.111	-0.077	-0.434	0.383	-0.044	-0.051
β	0.007	0.004	-0.014	0.249	1.135	0.322	1.037	-0.044	0.280	0.032
$\kappa[pc.mag^{-1}]$	0.004	0.001	-0.015	-0.012	-0.006	0.082	0.164	-0.051	0.032	0.048

Gambar B.18: Proyeksi dari distribusi *posterior* untuk profil OGKing model segregasi Blanco 1.

Tabel B.18: Matriks kovarian profil OGKing dengan model segregasi Blanco 1.

	$\alpha_c[^{\circ}]$	$\delta_c[^{\circ}]$	$\Phi[radians]$	$r_{ca}[pc]$	$r_{ta}[pc]$	$r_{cb}[pc]$	$r_{tb}[pc]$	$\kappa[pc.mag^{-1}]$
$\alpha_c [^{\circ}]$	0.012	0.001	-0.007	-0.009	-0.015	0.004	0.017	0.004
$\delta_c [^\circ]$	0.001	0.008	-0.000	0.001	-0.020	0.003	0.002	0.000
$\Phi[radians]$	-0.007	-0.000	0.430	-0.011	0.266	0.012	-0.173	-0.006
$r_{ca}[pc]$	-0.009	0.001	-0.011	1.028	-0.457	0.059	-0.294	-0.010
$r_{ta}[pc]$	-0.015	-0.020	0.266	-0.457	25.368	-0.578	3.741	-0.118
$r_{cb}[pc]$	0.004	0.003	0.012	0.059	-0.578	0.196	-0.280	0.043
$r_{tb}[pc]$	0.017	0.002	-0.173	-0.294	3.741	-0.280	6.504	-0.028
$\kappa[pc.mag^{-1}]$	0.004	0.000	-0.006	-0.010	-0.118	0.043	-0.028	0.033