Generative Al Project—Part 2

Muthu Arumugam

To understand how Al projects work, see Part 1.

This part covers a sample project using Python. The source code is published in GitHub and you can download or clone or contribute more examples if you are interested. Link: <u>Source Code</u>

Let's start with an example where we see 2 people talking and we wanted the model to summarize by going through a few dialogues.

Use case: Summarize

Model: Google FLAN-T5 (<u>Model Card</u>)

Dataset: <u>A Real-Life Scenario Dialogue Summarization Dataset</u>

• Fine-tuning: Not needed

We are getting into writing a Python code to experiment with how a model responds to summarizing some of it from sample data. Several steps are involved.

Step 1: Install pre-requisites

- Mac or Windows
- Python 3.x
- Download source code https://github.com/muthuka/llm-summarize-demo
- Python libs torch, torchdata, transformers, datasets

Step 2: Load data set

```
from datasets import load_dataset
from transformers import AutoModelForSeq2SeqLM
from transformers import AutoTokenizer
```

```
from transformers import GenerationConfig
huggingface_dataset_name = "knkarthick/dialogsum"
dataset = load dataset(huggingface dataset name)
example indices = [50, 500]
dash line = '-'.join('' for x in range(100))
for i, index in enumerate(example indices):
    print(dash_line)
    print('Example ', i + 1)
    print(dash_line)
    print('INPUT DIALOGUE:')
    print(dataset['test'][index]['dialogue'])
    print(dash line)
    print('BASELINE HUMAN SUMMARY:')
    print(dataset['test'][index]['summary'])
    print(dash line)
    print()
Step 3: Load the mode and tokenize. Check if encode/decode works.
from datasets import load dataset
from transformers import AutoModelForSeq2SeqLM
from transformers import AutoTokenizer
from transformers import GenerationConfig
```

huggingface_dataset_name = "knkarthick/dialogsum"
dataset = load dataset(huggingface dataset name)

 $dash_line = '-'.join('' for x in range(100))$

for i, index in enumerate(example_indices):

example indices = [50, 500]

print(dash line)

print('Example ', i + 1)

```
print(dash line)
    print('INPUT DIALOGUE:')
    print(dataset['test'][index]['dialogue'])
    print(dash line)
    print('BASELINE HUMAN SUMMARY:')
    print(dataset['test'][index]['summary'])
    print(dash line)
    print()
model_name = 'google/flan-t5-base'
model = AutoModelForSeg2SegLM.from pretrained(model name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=Tr
sentence = "What time is it, Tom?"
sentence encoded = tokenizer(sentence, return tensors='pt')
sentence_decoded = tokenizer.decode(
    sentence_encoded["input_ids"][0],
    skip_special_tokens=True
)
print('ENCODED SENTENCE:')
print(sentence encoded["input ids"][0])
print('\nDECODED SENTENCE:')
print(sentence decoded)
Step 4a: Try zero-shot learning by making your prompt say:
Summarize the following conversation.
{dialog}
Summary:
```

Since this is a zero-shot, we wanted the model to predict the summary for us.

```
from datasets import load_dataset
from transformers import AutoModelForSeg2SegLM
from transformers import AutoTokenizer
from transformers import GenerationConfig
huggingface dataset name = "knkarthick/dialogsum"
dataset = load dataset(huggingface dataset name)
example indices = [50, 500]
dash_line = '-'.join('' for x in range(100))
model name = 'google/flan-t5-base'
model = AutoModelForSeg2SegLM.from pretrained(model name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=Tr
for i, index in enumerate(example indices):
    dialogue = dataset['test'][index]['dialogue']
    summary = dataset['test'][index]['summary']
    prompt = f"""
Summarize the following conversation.
{dialogue}
Summary:
    111111
   # Input constructed prompt instead of the dialogue.
    inputs = tokenizer(prompt, return tensors='pt')
    output = tokenizer.decode(
        model.generate(
            inputs["input ids"],
            max_new_tokens=50,
        )[0],
        skip_special_tokens=True
    )
```

```
print(dash_line)
print('Example ', i + 1)
print(dash_line)
print(f'INPUT PROMPT:\n{prompt}')
print(dash_line)
print(f'BASELINE HUMAN SUMMARY:\n{summary}')
print(dash_line)
print(f'MODEL GENERATION - ZERO SHOT:\n{output}\n')
```

You should see the following output

Step 4b: Try zero-shot learning by making your prompt say:

```
Dialogue:
{dialogue}
```

Let's see what the results are:

```
from datasets import load dataset
from transformers import AutoModelForSeq2SeqLM
from transformers import AutoTokenizer
from transformers import GenerationConfig
huggingface_dataset_name = "knkarthick/dialogsum"
dataset = load_dataset(huggingface_dataset_name)
example_indices = [50, 500]
dash_line = '-'.join('' for x in range(100))
model_name = 'google/flan-t5-base'
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=Tr
for i, index in enumerate(example indices):
    dialogue = dataset['test'][index]['dialogue']
    summary = dataset['test'][index]['summary']
    prompt = f"""
Dialogue:
{dialogue}
What was going on?
.....
    inputs = tokenizer(prompt, return tensors='pt')
    output = tokenizer.decode(
        model.generate(
            inputs["input ids"],
```

```
max_new_tokens=50,
)[0],
skip_special_tokens=True
)

print(dash_line)
print('Example ', i + 1)
print(dash_line)
print(f'INPUT PROMPT:\n{prompt}')
print(dash_line)
print(f'BASELINE HUMAN SUMMARY:\n{summary}\n')
print(dash_line)
print(f'MODEL GENERATION - ZERO SHOT:\n{output}\n')
```

The model got a little better.

Step 4c: Let's try one shot with a similar dialog question.

```
from datasets import load_dataset
from transformers import AutoModelForSeg2SegLM
from transformers import AutoTokenizer
from transformers import GenerationConfig
huggingface_dataset_name = "knkarthick/dialogsum"
dataset = load dataset(huggingface dataset name)
example indices = [50, 500]
dash_line = '-'.join('' for x in range(100))
model name = 'google/flan-t5-base'
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from pretrained(model name, use fast=Tr
def make prompt(example indices full, example index to summarize)
    prompt = ''
    for index in example indices full:
        dialogue = dataset['test'][index]['dialogue']
        summary = dataset['test'][index]['summary']
        # The stop sequence '{summary}\n\n' is important for FL
        prompt += f"""
Dialogue:
{dialogue}
What was going on?
{summary}
11 11 11
    dialogue = dataset['test'][example index to summarize]['dialo
```

```
prompt += f"""
Dialogue:
{dialogue}
What was going on?
    return prompt
example indices full = [50]
example_index_to_summarize = 500
one_shot_prompt = make_prompt(example_indices_full, example_index
print(one_shot_prompt)
summary = dataset['test'][example_index_to_summarize]['summary']
inputs = tokenizer(one_shot_prompt, return_tensors='pt')
output = tokenizer.decode(
    model.generate(
        inputs["input ids"],
        max new tokens=50,
    )[0],
    skip_special_tokens=True
)
print(dash line)
print(f'BASELINE HUMAN SUMMARY:\n{summary}\n')
print(dash line)
print(f'MODEL GENERATION - ONE SHOT:\n{output}')
```

Litle better than zero-shot

Step 4d: We can try to pass few shots and see the output

```
from datasets import load_dataset
from transformers import AutoModelForSeq2SeqLM
from transformers import AutoTokenizer
from transformers import GenerationConfig
huggingface_dataset_name = "knkarthick/dialogsum"
dataset = load_dataset(huggingface_dataset_name)
example_indices = [50, 500]
dash_line = '-'.join('' for x in range(100))
model_name = 'google/flan-t5-base'
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=Tr

def make_prompt(example_indices_full, example_index_to_summarize)
    prompt = ''
    for index in example_indices_full:
```

```
dialogue = dataset['test'][index]['dialogue']
        summary = dataset['test'][index]['summary']
        # The stop sequence '{summary}\n\n' is important for FL
        prompt += f"""
Dialogue:
{dialogue}
What was going on?
{summary}
11 11 11
    dialogue = dataset['test'][example_index_to_summarize]['dialo
    prompt += f"""
Dialogue:
{dialogue}
What was going on?
.....
    return prompt
# Let's start few start config
example_indices_full = [50, 100]
example index to summarize = 500
few_shot_prompt = make_prompt(example_indices_full, example_index
print(few shot prompt)
summary = dataset['test'][example index to summarize]['summary']
inputs = tokenizer(few_shot_prompt, return_tensors='pt')
output = tokenizer.decode(
```

Pretty much we got the same as a one-shot.

Step 4e: We can try to adjust a few parameters and see what happens. We have adjusted the temperature to 1.0 and also told the model to give up to ONLY 6 tokens.

```
from datasets import load_dataset
from transformers import AutoModelForSeq2SeqLM
from transformers import AutoTokenizer
```

```
from transformers import GenerationConfig
huggingface_dataset_name = "knkarthick/dialogsum"
dataset = load dataset(huggingface dataset name)
example_indices = [50, 500]
dash line = '-'.join('' for x in range(100))
model name = 'google/flan-t5-base'
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from pretrained(model name, use fast=Tr
def make prompt(example indices full, example index to summarize)
    prompt = ''
    for index in example_indices_full:
        dialogue = dataset['test'][index]['dialogue']
        summary = dataset['test'][index]['summary']
        # The stop sequence '{summary}\n\n' is important for FL
        prompt += f"""
Dialogue:
{dialogue}
What was going on?
{summary}
11 11 11
    dialogue = dataset['test'][example_index_to_summarize]['dialo
    prompt += f"""
Dialogue:
{dialogue}
```

```
What was going on?
    return prompt
# Let's start few start config
example_indices_full = [50, 100]
example index to summarize = 500
few_shot_prompt = make_prompt(example_indices_full, example_index
print(few shot prompt)
summary = dataset['test'][example index to summarize]['summary']
# generation config = GenerationConfig(max new tokens=50)
# generation_config = GenerationConfig(max_new_tokens=10)
# generation_config = GenerationConfig(max_new_tokens=50, do_samp
# generation config = GenerationConfig(max new tokens=50, do samp
# generation_config = GenerationConfig(max_new_tokens=100, do_sam
generation config = GenerationConfig(
    max_new_tokens=6, do_sample=False, temperature=1.0)
inputs = tokenizer(few shot prompt, return tensors='pt')
output = tokenizer.decode(
    model.generate(
        inputs["input ids"],
        generation config=generation config,
    )[0],
    skip special tokens=True
)
print(dash line)
print(f'MODEL GENERATION - FEW SHOT:\n{output}')
print(dash line)
print(f'BASELINE HUMAN SUMMARY:\n{summary}\n')
```

The model couldn't come up with 6-word summary for the same sample. The sentence prematurely ended. See below:
Summary: We see examples of finding a problem, model, dataset, and app for summarization. The model output didn't get better with a few shots but it got better when we wanted the answer to be creative instead of realistic. There are many ways you can determine what suits your needs.
Hope this example is simple and useful.
Disclaimer: This is not generated by an Al bot. Also, a lot of these were learned through the DeepLearning.ai course at Coursera.