Electrónica de Comunicaciones

CONTENIDO RESUMIDO:

1- Introducción

2- Osciladores

- 3- Mezcladores.
- 4- Lazos enganchados en fase (PLL).
- 5- Amplificadores de pequeña señal para RF.
- 6- Filtros pasa-banda basados en resonadores piezoeléctricos.
- 7- Amplificadores de potencia para RF.
- 8- Demoduladores de amplitud (AM, DSB, SSB y ASK).
- 9- Demoduladores de ángulo (FM, FSK y PM).
- 10- Moduladores de amplitud (AM, DSB, SSB y ASK).
- 11- Moduladores de ángulo (PM, FM, FSK y PSK).
- 12- Tipos y estructuras de receptores de RF.
- 13- Tipos y estructuras de transmisores de RF.
- 14- Transceptores para radiocomunicaciones

2. Osciladores

Osciladores con elementos discretos

• de Baja Frecuencia (RC)

• de Alta Frecuencia y
Frecuencia Variable (LC)
• de Alta Frecuencia y
• otros (Clapp, ...)
• de Alta Frecuencia y
Frecuencia Fija (a cristal)
• Hartley
• Pierce
• Otros (Clapp, ...)

Teoría básica de sistemas realimentados

- Se linealiza el sistema
- Se toman transformadas de Laplace

x_r: magnitud realimentada

x_s: señal de salida

x_x: magnitudes que pueden ser de distinto tipo

G(s): función de transferencia de la planta

H(s): función de transferencia de la red de realimentación

Cálculo de funciones de transferencia

Lazo abierto

$$G(s) = \frac{x_s(s)}{x_{er}(s)}$$

Lazo cerrado

$$\frac{x_s(s)}{x_e(s)} = \frac{G(s)}{1 + G(s) \cdot H(s)}$$

Casos particulares

Realimentación negativa → 1 + G(s)-H(s) > 1

Alta ganancia de lazo $\rightarrow x_s(s)/x_e(s) = 1/H(s)$

Realimentación positiva → 1 + G(s)-H(s) < 1

Oscilación
$$\rightarrow$$
 1 + G(s)-H(s) = 0

Situación indeseada en servosistemas Situación deseada en osciladores

Caso de oscilación

$$\frac{x_s(s)}{x_e(s)} = \frac{G(s)}{1 + G(s) \cdot H(s)}$$

$$|1 + G(s) \cdot H(s)| = 0 \rightarrow x_s(s)/x_e(s) \rightarrow \infty$$

Se genera X_s aunque no haya X_e

Cuando está oscilando:

$$|G(s) - H(s)| = 1$$

$$G(s) \cdot H(s) = 180^{\circ}$$

Por tanto:

$$| G(j\omega_{\rm osc}) \cdot H(j\omega_{\rm osc}) | = 1$$

$$|G(j\omega_{osc})\cdot H(j\omega_{osc})| = 180^{\circ}$$

Condición de oscilación (I)

En oscilación:

$$|G(j\omega_{\rm osc}) \cdot H(j\omega_{\rm osc})| = 1$$

 $|G(j\omega_{\rm osc}) \cdot H(j\omega_{\rm osc})| = 180^{\circ}$

¿Qué tiene que suceder para que comience la oscilación?

Condición de oscilación (II)

Si $|x_e(j\omega_{osc})\cdot G(j\omega_{osc})\cdot H(j\omega_{osc})| > |x_e(j\omega_{osc})|$ (es decir, $|G(j\omega_{osc})\cdot H(j\omega_{osc})| > 1$) cuando el desfase es 180°, entonces podemos hacer que la salida del lazo de realimentación haga las funciones de la magnitud de entrada.

ATE-UO EC osc 07

Condición de oscilación (III)

En realidad si $|G(j\omega_{osc})-H(j\omega_{osc})| > 1$ cuando el desfase es 180°, las magnitudes empezarán a crecer constantemente

¿Existe un límite a este crecimiento?

Evidentemente sí, por razones energéticas hay límites. Incluso el sistema podría destruirse al crecer la magnitud de salida.

Condición de oscilación (IV)

Observaciones:

G_{pm}(s): función de transferencia de pequeña magnitud

G_{am}(s): función de transferencia de gran magnitud

Condición de oscilación (V)

Si $|G(j\omega_{osc})-H(j\omega_{osc})| < 1$ cuando el desfase es 180°, entonces la oscilación se extinguirá

Condición de oscilación (VI)

Formulación formal: Criterio de Nyquist

- > Para que empiece la oscilación:
- Tiene que existir una $\omega_{\rm osc}$ a la que se se cumpla $G(j\omega_{\rm osc})$ · $H(j\omega_{\rm osc}) = 180^{\circ}$
- A esa ω_{osc} tiene que cumplirse $|G(j\omega_{osc})-H(j\omega_{osc})| > 1$
- > Cuando se estabiliza la oscilación:
- Disminuye la $G(j\omega_{\rm osc})$ hasta que $|G(j\omega_{\rm osc})\cdot H(j\omega_{\rm osc})| = 1$ cuando $|G(j\omega_{\rm osc})\cdot H(j\omega_{\rm osc})| = 180^\circ$

Condición de oscilación (VII)

Interpretación con Diagramas de Bode

> Para que empiece la oscilación.

Condición de oscilación (VIII)

> Cuando ya oscila.

 $|G(j\omega)-H(j\omega)|$ [dB] 80 40 0 -40 $G(j\omega)-H(j\omega)$ [°] -60 -120 -180 ω_{osc} -240 10² **1**0⁴ 10⁶ > Para que no oscile.

Condición de oscilación en osciladores

Caso general

> Oscilador

Para que empiece la oscilación:

Existencia de ω_{osc} tal que

$$G(j\omega_{osc})-H(j\omega_{osc}) = 180^{\circ}$$

• A ω_{osc} se cumple

$$|G(j\omega_{osc})-H(j\omega_{osc})| > 1$$

• Existencia de ω_{osc} tal que

$$A(j\omega_{\rm osc})\cdot\beta(j\omega_{\rm osc}) = 0^{\circ}$$

• A ω_{osc} se cumple

$$|A(j\omega_{osc})\cdot\beta(j\omega_{osc})| > 1$$

Cuando ya oscila:

$$|G(j\omega_{osc})\cdot H(j\omega_{osc})| = 1$$

$$|A(j\omega_{osc})\cdot\beta(j\omega_{osc})| = 1$$

Tipos de Osciladores

BJT, JFET, MOSFET, Amp. Integrados, etc

- RC en baja frecuencia.
- LC en alta frecuencia (y variable).
- Dispositivo piezoeléctrico en alta frecuencia (y constante).
 - Líneas de transmisión en muy alta frecuencia.

Osciladores LC con tres elementos reactivos (I)

Osciladores LC con tres elementos reactivos (II)

Osciladores LC con tres elementos reactivos (III)

$$V_{s} = -g \cdot \frac{Z_{1} \cdot (Z_{2} + Z_{3})}{Z_{1} + Z_{2} + Z_{3}} \cdot V_{e}$$

$$R_{s} + \frac{Z_{1} \cdot (Z_{2} + Z_{3})}{Z_{1} + Z_{2} + Z_{3}}$$

$$\mathbf{v}_{\mathsf{sr}} = \frac{Z_3}{Z_2 + Z_3} \cdot \mathbf{v}_{\mathsf{er}}$$

$$V_{er} = V_{s}$$

Por tanto:
$$R_s \cdot \frac{Z_1 \cdot Z_3}{Z_1 + Z_2 + Z_3}$$
 $V_{sr} = -g \cdot \frac{Z_1 \cdot (Z_2 + Z_3)}{R_s + \frac{Z_1 \cdot (Z_2 + Z_3)}{Z_1 - Z_2 - Z_2}} \cdot V_{sr}$

Osciladores LC con tres elementos reactivos (IV)

$$v_{sr} = -g \cdot \frac{R_s \cdot Z_1 \cdot Z_3}{R_s \cdot (Z_1 + Z_2 + Z_3) + Z_1 \cdot (Z_2 + Z_3)} \cdot v_e$$

$$A \cdot \beta = v_{sr}/v_{e} = -g \cdot \frac{R_{s} \cdot Z_{1} \cdot Z_{3}}{R_{s} \cdot (Z_{1} + Z_{2} + Z_{3}) + Z_{1} \cdot (Z_{2} + Z_{3})}$$

Puesto que usamos sólo bobinas y condensadores:

$$Z_1 = \mathbf{j} \cdot \mathbf{X}_1$$

$$Z_2 = \mathbf{j} \cdot \mathbf{X}_2$$

$$Z_3 = \mathbf{j} \cdot \mathbf{X}_3$$

Por tanto:

$$A \cdot \beta = -g \cdot \frac{-R_s \cdot X_1 \cdot X_3}{j \cdot R_s \cdot (X_1 + X_2 + X_3) - X_1 \cdot (X_2 + X_3)}$$

Osciladores LC con tres elementos reactivos (V)

Si el circuito debe oscilar al cerrar el interruptor, debe cumplirse que:

- Existe ω_{osc} tal que $A(j\omega_{osc}) \cdot \beta(j\omega_{osc}) = 0^{\circ}$ (es decir, **REAL**)
- A ω_{osc} se cumple $|A(j\omega_{osc})-\beta(j\omega_{osc})| > 1$

Por tanto:
$$A(j\omega_{osc}) \cdot \beta(j\omega_{osc}) = -g \cdot \frac{-R_s \cdot X_1 \cdot X_3}{j \cdot R_s \cdot (X_1 + X_2 + X_3) \cdot X_1 \cdot (X_2 + X_3)} = 0$$

Como: $X_1(\omega_{osc}) + X_2(\omega_{osc}) + X_3(\omega_{osc}) = 0$, los tres elementos reactivos no pueden ser iguales. Tiene que haber dos bobinas y un condensador o dos condensadores y una bobina.

Queda:
$$A(j\omega_{osc}) \cdot \beta(j\omega_{osc}) = -g \cdot \frac{R_s \cdot X_3(\omega_{osc})}{X_2(\omega_{osc}) + X_3(\omega_{osc})}$$

Y como:
$$X_2(\omega_{osc}) + X_3(\omega_{osc}) = -X_1(\omega_{osc}),$$

Osciladores LC con tres elementos reactivos (VI)

queda:
$$A(j\omega_{osc}) \cdot \beta(j\omega_{osc}) = g \cdot \frac{R_s \cdot X_3(\omega_{osc})}{X_1(\omega_{osc})}$$

Como: $A(j\omega_{osc}) \cdot \beta(j\omega_{osc}) = 0^{\circ}$ (es decir, *POSITIVO*), X_3 y X_1 deben ser del mismo tipo (los dos elementos bobinas o los dos condensadores)

Osciladores LC con tres elementos reactivos (VII)

Como para que el circuito oscile al cerrar el interruptor debe cumplirse que $|A(j\omega_{osc})\cdot\beta(j\omega_{osc})| > 1$, entonces queda:

Osciladores LC con tres elementos reactivos (VIII)

La frecuencia de oscilación se calcula a partir de la condición:

$$X_1(\omega_{osc}) + X_2(\omega_{osc}) + X_3(\omega_{osc}) = 0$$

Resumen

Realización práctica de un Colpitts en "fuente común"

Realización práctica de un Colpitts en "puerta común"

Realización práctica de un Colpitts en "drenador común"

Realización práctica de un Hartley en "fuente común"

Realización práctica de un Hartley en "puerta común"

Realización práctica de un Hartley en "drenador común"

Osciladores LC con más de tres elementos reactivos: El oscilador de Clapp (I)

Condiciones de oscilación:

$$g \cdot \frac{R_{s} \cdot C_{1}}{C_{3}} > 1$$

$$f_{osc} = \frac{1}{2\pi \sqrt{\frac{C_{1} \cdot C_{2} \cdot C_{3}}{C_{1} \cdot C_{2} + C_{1} \cdot C_{3} + C_{2} \cdot C_{3}}} \cdot L_{2}}$$

• C₂ no influye en la condición

$$|A(j\omega_{osc})\cdot\beta(j\omega_{osc})| > 1$$

- C_2 influye en la frecuencia de oscilación, especialmente si $C_2 \ll C_1, C_3$
- Especialmente útil para osciladores de frecuencia variable.

Osciladores LC con más de tres elementos reactivos: El oscilador de Clapp (II)

Realización práctica en "drenador común"

Osciladores de frecuencia variable (I)

Hay que hacer variar uno de los elementos reactivos de la red de realimentación.

Tipos:

- Con control manual
- Controlado por tensión (Voltage Cotrolled Oscillator, VCO)

Con control manual de la frecuencia

Usando un condensador variable

Osciladores de frecuencia variable (II)

Clapp (Colpitts sintonizado en serie) en "drenador común"

Colpitts sintonizado en paralelo en "drenador común"

Condiciones de oscilación:

$$g \cdot \frac{R_s \cdot C_1}{C_3} > 1 \quad \text{(común)}$$

$$f_{osc} = \frac{1}{2\pi \sqrt{\frac{C_1 \cdot C_2 \cdot C_3}{C_1 \cdot C_2 + C_1 \cdot C_3 + C_2 \cdot C_3} \cdot L_2}}$$

$$f_{osc} = \frac{1}{2\pi \sqrt{(\frac{C_1 \cdot C_3}{C_1 + C_3} + C_2) \cdot L_2}}$$

Osciladores de frecuencia variable (III) Osciladores Controlado por Tensión (VCOs)

Se basan en el uso de diodos varicap (también llamados "varactores")

Hojas de características de un diodo varicap (BB131) (I)

DISCRETE SEMICONDUCTORS DATA SHEET BB131 VHF variable capacitance diode Product specification 1998 Sep 15 Supersedes data of 1996 May 03 PHILIPS

- Excellent linearity
- Very small plastic SMD package
- C2R: 1 pF; ratio: 14.

APPLICATIONS

- · Electronic tuning in satellite tuners
- Tunable coupling
- VCO.

Marking code: P1. Calloch sub-indicated by wher. Fig. 1. Simplified outline (SC0323) and symbol.

DESCRIPTION

The BB131 is a variable capacitance clode, fabricated in planar technology, and encapsulated in the SODS23 very small plastic SMD package.

LIMITING VALUES

in accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIH.	MAX	UNIT
V _R	continuous reverse voltage	ı	30	٧
l _F	continuous forward current	-	20	mA.
T _{stg}	storage temperature	-55	+150	°C
Tj	operating junction temperature	-55	+125	°C

ELECTRICAL CHARACTERISTICS

T_i = 25 °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	HIN.	MAX	UNIT
liz	reverse current	V _R = 30 V; see Fig.3	-	10	пА
		V _R = 30 V; T _j = 85 °C; see Fig.3	-	200	пА
r _a	diode series resistance	1 = 470 MHz; nota 1	-	3	Ω
Cd	diode capacitance	V _R = 0.5 V; f = 1 MHz; see Figs 2 and 4	8	17	pF
		V _R = 28 V; f = 1 MHz; see Figs 2 and 4	0.7	1.055	pF
C _{d(DSV)}	especitanes ratio	f= 1 MHz	12	16	

Hote

1. V_R is the value at which C_d = 9 pF.

1998 Sep 15

Hojas de características de un diodo varicap (BB131) (II)

Osciladores de frecuencia muy constante

• Se basan en el uso de cristales de cuarzo (u otro material piezoeléctrico)

• Símbolo:

• Interior del dispositivo:

Cristales piezoeléctricos (I)

• Circuito equivalente de un cristal de cuarzo:

Cristales piezoeléctricos (II)

Cristales piezoeléctricos (III)

Modelo simplificado (alrededor de una de las frecuencias en las que se produce comportamiento inductivo)

Cristales piezoeléctricos (IV)

En otra escala

Ejemplo: cristal de μP de 10 MHz

Cristales piezoeléctricos (V)

$$Z(s) = \frac{\frac{1}{C_{O} \cdot s} (L \cdot s + \frac{1}{C \cdot s})}{\frac{1}{C_{O} \cdot s} + L \cdot s + \frac{1}{C \cdot s}} = \frac{1}{C_{P} \cdot s} \cdot \frac{(L \cdot C \cdot s^{2} + 1)}{(L \cdot C_{S} \cdot s^{2} + 1)}$$
siendo: $C_{S} = \frac{C \cdot C_{O}}{C + C_{O}}$ $C_{P} = C + C_{O}$

$$C_P = C + C_O$$

Análisis senoidal: $s = j\omega$

$$Z(j\omega) = \frac{-j}{C_P \cdot \omega} \cdot \frac{(1 - L \cdot C \cdot \omega^2)}{(1 - L \cdot C_S \cdot \omega^2)} = \frac{-j(\omega_1/\omega_2)^2}{C_O \cdot \omega} \cdot \frac{(1 - (\omega/\omega_1)^2)}{(1 - (\omega/\omega_2)^2)}$$

$$\omega_1 = \frac{1}{\sqrt{L \cdot C}}$$

siendo:
$$\omega_1 = \frac{1}{\sqrt{L \cdot C}}$$
 $\omega_2 = \frac{1}{\sqrt{L \cdot C_S}}$

Cristales piezoeléctricos (VI)

$$Z(j\omega) = \frac{-j(\omega_1/\omega_2)^2}{C_O \cdot \omega} \cdot \frac{(1 - (\omega/\omega_1)^2)}{(1 - (\omega/\omega_2)^2)} \quad \omega_1 = \frac{1}{\sqrt{L \cdot C}} \qquad \omega_2 = \frac{1}{\sqrt{L \cdot C_S}}$$

$$Como C_S < C, entonces: \omega_2 > \omega_1$$

• Si $\omega < \omega_1$, entonces también $\omega < \omega_2$ y entonces:

 $Z(j_0) = -j$ -(cantidad positiva) < 0, es decir, comportamiento capacitivo.

• Si $\omega_1 < \omega < \omega_2$, entonces:

 $Z(j\omega) = -j$ -(cantidad negativa) > 0, es decir, comportamiento inductivo.

• Si $\omega_2 < \omega$, entonces también $\omega_1 < \omega$ y entonces:

 $Z(j_{\omega}) = -j$ -(cantidad positiva) < 0, es decir, comportamiento capacitivo.

Solo se comporta de modo inductivo si $\omega_1 < \omega < \omega_2$

Cristales piezoeléctricos (VII)

esumen:
$$\omega_1 = \frac{1}{\sqrt{L \cdot C}}$$

$$C_{S} = \frac{C \cdot C_{O}}{C + C_{O}}$$

$$\omega_2 = \frac{1}{\sqrt{L \cdot C_S}}$$

$$Z(j\omega) = jX(\omega)$$

Resumen:
$$\omega_1 = \frac{1}{\sqrt{L \cdot C}}$$
 $C_S = \frac{C \cdot C_O}{C + C_O}$ $\omega_2 = \frac{1}{\sqrt{L \cdot C_S}}$
$$Z(j\omega) = jX(\omega) \qquad X(\omega) = \frac{-(\omega_1/\omega_2)^2}{C_O \cdot \omega} \cdot \frac{(1 - (\omega/\omega_1)^2)}{(1 - (\omega/\omega_2)^2)}$$

Hojas de características de cristales de cuarzo

HC-49/U HC-50/U Crystal

Specifications:

•	*
Frequency Range	2.000 - 150.000 MHz
Frequency Tol. at 25°C.	30PPM - Standard 10PPM to 100PPM
Temperature Range (Operating)	-20 to + 70 CStandard
Frequency Stability	10PPM to 100PPM
Load Capacitance	10pF to 100pF or Series Resonant
Shunt Capacitance	7pF Max.
Resistance	See Below
Aging	+-5PPM/year Max.
Drive Level	1.0mW Max.

To Order ~ Phone: 1-800-526-3935 ~ Fax: 1-800-777-2197 www.bomarcrystal.com ~ e-mail: sales@bomarcrystal.com

HC-51/U Crystal

Specifications:

Frequency Range	1.000 - 10.000 MHz		
Freq. Tolerance	30PPM - Standard		
@ 25 C.	10PPM to 100PPM	0PPM to 100PPM	
Temperature Range (Operating)	-20 to +70 C Standard		
Frequency Stability	10PPM to 100PPM		
Load Capacitance	10pF to 100pF or Series Resonant		
Shunt Capacitance	7pF Max.		
Resistance	See Below		
Aging	+-5PPM/year Max.		
Drive Level	Level 1.0mW Max.		

Equivalent :	Series Resi	stance(ESR
Frequency	Mode	HC-51/U
1.000 - 1.499	Fundamental	500 ohms
1.500 - 1.999	Fundamental	400
2.000 - 2.999	Fundamental	300
3.000 - 3.999	Fundamental	150
4.000 - 5.999	Fundamental	75
6.000 - 10.000	Fundamental	60

To Order ~ Phone: 1-800-526-3935 ~ Fax: 1-800-777-2197 www.bomarcrystal.com ~ e-mail: sales@bomarcrystal.com

Osciladores a cristal

Se basan en el uso de una red de realimentación que incluye un dispositivo piezoeléctrico (típicamente un cristal de cuarzo). Tipos:

- Basados en la sustitución de una bobina por un cristal de cuarzo en un oscilador clásico (Colpitts, Clapp, Hartley, etc.) ⇒ El cristal de cuarzo trabaja el su zona inductiva.
- Basados en el uso del cristal de cuarzo en resonancia serie.

Basados en la sustitución de una bobina por un cristal (I)

Osciladores basados en la sustitución de una bobina por un cristal (II)

L = 15 mH $R = 20 \Omega$

C = 0.017 pF $C_O = 3.5 pF$

Condiciones de oscilación:

$$g \cdot \frac{R_s \cdot C_1}{C_3} > 1$$
 (no depende del cristal)

Cálculo de la frecuencia de oscilación :

$$X_{C1}(\omega_{osc}) + X_{C3}(\omega_{osc}) + X_{Xtal}(\omega_{osc}) = 0$$

Gráficamente:

Osciladores basados en la sustitución de una bobina por un cristal (III)

Analiticamente:

$$\begin{split} X_{\text{C1}}(\omega_{\text{osc}}) + X_{\text{C3}}(\omega_{\text{osc}}) + X_{\text{Xtal}}(\omega_{\text{osc}}) &= 0 \\ X_{\text{Xtal}}(\omega_{\text{osc}}) &= \frac{-(\omega_1/\omega_2)^2}{C_0 \cdot \omega_{\text{osc}}} \cdot \frac{(1 - (\omega_{\text{osc}}/\omega_1)^2)}{(1 - (\omega_{\text{osc}}/\omega_2)^2)} \\ X_{\text{C1}}(\omega_{\text{osc}}) + X_{\text{C3}}(\omega_{\text{osc}}) &= \frac{-1}{C_1 \cdot \omega_{\text{osc}}} + \frac{-1}{C_3 \cdot \omega_{\text{osc}}} \end{split}$$

Despejando ω_{osc} se obtiene:

$$\omega_{\text{osc}} = \omega_1 \sqrt{1 + \frac{C}{\frac{C_1 \cdot C_3}{C_1 + C_3} + C_0}}$$

Nótese que $\omega_1 < \omega_{\rm osc} < \omega_2$ ya que:

$$\omega_2 = \omega_1 \sqrt{1 + \frac{C}{C_O}}$$

Osciladores basados en la sustitución de una bobina por un cristal (IV)

Ajuste de la frecuencia de oscilación: modificar el valor de C_o externamente poniendo un condensador C_{ext} en paralelo con el cristal

$$f_{osc}(C_{ext} = 0pF) = 10.002,9622 \text{ kHz}$$

 $f_{osc}(C_{ext} = 5pF) = 10.002,5201 \text{ kHz}$
 $f_{osc}(C_{ext} = 10pF) = 10.002,1929 \text{ kHz}$
 $f_{osc}(C_{ext} = 15pF) = 10.001,9408 \text{ kHz}$

Osciladores basados en el uso del cristal de cuarzo en resonancia serie (I)

En este caso:
$$A(j\omega) \cdot \beta(j\omega) = -g \cdot \frac{R_s \cdot R_1}{jX_{Xtal} + R_1 + R_S}$$

Osciladores basados en el uso del cristal de cuarzo en resonancia serie (II)

En oscilación:

•
$$X_{Xta} = 0$$
 ya que $A(j\omega_{osc}) - \beta(j\omega_{osc}) = 0^{\circ}$

• 0 > -(R₁+R_S)/(R₁-R_S) > g ya que
$$|A(j\omega_{osc})\cdot\beta(j\omega_{osc})| > 1$$

Conexión de la carga a un oscilador (I)

- C_L influye en la frecuencia de oscilación y R_L influye en la ganancia del transistor.
- Hay que conectar etapas que aíslen al oscilador de la carga.

Conexión de la carga a un oscilador (II)

Etapa en "colector común" para minimizar la influencia de la carga en el oscilador.

Osciladores con transistores bipolares (I)

Estudio y resultados prácticamente idénticos al caso de transistores de efecto de campo.

$$Z_1 = j \cdot X_1$$

$$Z_2 = j \cdot X_2$$

$$Z_3 = j \cdot X_3$$

En este caso:
$$A(j\omega_{osc}) \cdot \beta(j\omega_{osc}) = -\beta \cdot \frac{-X_3 \cdot X_1}{j \cdot R_e \cdot (X_1 \cdot X_2 \cdot X_3) - X_3 \cdot (X_1 + X_2)} = 0$$

$$X_4(\omega_{osc})$$

queda:
$$A(j\omega_{osc}) \cdot \beta(j\omega_{osc}) = \beta \cdot \frac{X_1(\omega_{osc})}{X_3(\omega_{osc})}$$

Osciladores con transistores bipolares (II)

- Como: $A(j\omega_{osc}) \cdot \beta(j\omega_{osc}) = 0^{\circ}$ (es decir, *POSITIVO*), X_1 y X_3 deben ser del mismo tipo (dos bobinas o dos condensadores).
- Como para que el circuito oscile debe cumplirse que $|A(j\omega_{osc})\cdot\beta(j\omega_{osc})| > 1$, entonces queda: $\beta \cdot \frac{X_1(\omega_{osc})}{X_2(\omega_{osc})} > 1$

Circuitos para limitar automáticamente la ganancia en el transistor (ejemplo con JFET) (I)

Circuitos para limitar automáticamente la ganancia en el transistor (ejemplo con JFET) (II)

Circuitos para limitar automáticamente la ganancia en el transistor (ejemplo con JFET) (III)

Circuitos para limitar automáticamente la ganancia en el transistor (ejemplo con JFET) (IV)

Circuitos para limitar automáticamente la ganancia en el transistor (ejemplo con JFET) (V)

Condensadores adecuados para osciladores de alta frecuencia

Deben ser condensadores cuya capacidad varíe muy poco con la frecuencia. Ejemplos:

- Condensadores cerámicos NPO.
- Condensadores de aire (los variables)
- Condensadores de mica.
- Condensadores de plásticos de tipo Styroflex.

Cerámicos NP0

Mica

Styroflex.

Ejemplos de esquemas reales de osciladores (I)

(obtenidos del ARRL Handbook 2001)

Fig 14.12 — The Colpitts (A), series-tuned Colpitts (B) and Hartley (C) oscillator circuits. Rules of thumb: C3 and C4 at A and B should be equal and valued such that their $X_C=45~\Omega$ at the operating frequency; for C2 at A, $X_C=100~\Omega$. For best stability, use C0G or NPO units for all capacitors associated with the FETs' gates and sources. Depending on the FET chosen, the 1-k Ω source-bias-resistor value shown may require adjustment for reliable starting.

7.0-7.3 MHz VR150 (903) or 6A2 T220 pF (A) (B) 1000 好 未 **六1000 p**F (C) 22 pF

Fig 14.13 — Three more oscillator examples: at A, a triode-tube Hartley; at B, a bipolar junction transistor in a series-tuned Colpitts; at C, a dual-gate MOSFET Hartley.

Ejemplos de esquemas reales de osciladores (II)

(obtenidos del ARRL Handbook 2001)

Ejemplos de esquemas reales de osciladores (III)

(obtenidos en http://www.qrp.pops.net/VFO.htm)

Colpitts

Ejemplos de esquemas reales de osciladores (IV)

(obtenidos del ARRL Handbook 2001 y de notas de aplicación de National Semiconductor)

TL/H/6791-6

JFET Pierce Crystal Oscillator

The JFET Pierce crystal oscillator allows a wide frequency range of crystals to be used without circuit modification. Since the JFET gate does not load the crystal, good Q is maintained thus insuring good frequency stability.

Parámetros características de los osciladores

- Margen de frecuencia.
- Estabilidad ⇒ Mayor cuanto mayor es el factor de calidad "Q" de la red de realimentación.
- Potencias (absoluta de salida sobre 50Ω) y rendimientos (Potencia de señal / potencia de alimentación).
- Nivel de armónicos y espurias ⇒ potencias relativas de uno o varios armónicos con relación al fundamental.
- "Pulling" o estabilidad frente a la carga ⇒ uso de separadores.
- "Pushing" o estabilidad frente a la alimentación ⇒ uso de estabilizadores de tensión (zeners, 78LXX, etc.).
- •Deriva con la temperatura ⇒ Condensadores NP0, de mica, etc.
- •Espectro de ruido ⇒ Se debe fundamentalmente a ruido de fase.