Section 14.6 Directional derivatives and the gradient vector.

Let z = f(x, y). We wish to find the rate of change of z at (x_0, y_0) in the direction of an arbitrary unit vector =< a, b >. (u b_0 in the xy-phone)

- \bullet Consider the surface S with equation z=f(x,y) and we let $z_0=f(x_0,y_0)$
- The point $P(x_0, y_0, z_0)$ lies on S.
- \bullet The vertical plane that passes through P in the direction ${\bf u}$ intersects S in a curve C.
- The slope of the tangent line T to C at P is the rate of change of z in the direction of u.
- Let Q(x,y,z) be another point on C. If $P'(x_0,y_0,0)$ and Q'(x,y,0) are projections of P and Q on the xy-plane
- The vector P'Q' =< x − x₀, y − y₀, 0 > is parallel to u and so

$$\overrightarrow{P'O'} = h\mathbf{u} = \langle ha, hb \rangle$$

for some scalar h

- Therefore $x-x_0=ha$ $y-y_0=hb$ and $\frac{\Delta z}{h}=\frac{z-z_0}{h}=\frac{f(x_0+ha,y_0+hb)-f(x_0,y_0)}{h}$
- If we take the limit as $h \to 0$, we obtain the rate of change of z in the direction of \mathbf{u} , which is called the directional derivative of f in the direction of \mathbf{u}

$$P'(x_0,y_0,D), Q'(x_1y_1O)$$

$$\overline{PQ'} \parallel \overrightarrow{u}$$

$$\overline{P'Q'} = \langle x-x_0, y-y_0, 0 \rangle$$

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{z - z_0}{h} = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if this limit exists. Theorem. If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b \rangle$ and

$$D_{\mathbf{u}}f(x,y) = \frac{\partial f}{\partial x}(x,y)a + \frac{\partial f}{\partial y}(x,y)b$$

If the unit vector \mathbf{u} makes an angle θ with the positive x-axis, then

$$D_{\mathbf{u}}f(x,y) = \frac{\partial f}{\partial x}(x,y)\cos\theta + \frac{\partial f}{\partial y}(x,y)\sin\theta$$

Example 1. Find the directional derivative of the function $f(x,y) = y^x$ at the point (1,2) in the direction of the

Definition. If f is a function of two variables x and y, then the gradient of f is defined by

$$grad(f) = \nabla f(x, y) = \left\langle \frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y) \right\rangle$$

Then

$$D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u}$$

Example 2. Find the directional derivative of the function $f(x,y) = xe^{xy}$ at the point (-3,0) in the direction of the vector $\mathbf{v} = 2\mathbf{i} + 3\mathbf{j}$. = <2,3>

$$|\vec{v}| = |\vec{4} + \vec{9}| = |\vec{13}|, \quad \vec{u} = |\vec{V}| = \langle \frac{2}{1/3} | \frac{3}{1/3} \rangle$$

$$|\vec{y}| = |\vec{4} + \vec{9}| = |\vec{13}|, \quad \vec{u} = |\vec{V}| = \langle \frac{2}{1/3} | \frac{3}{1/3} \rangle$$

$$|\vec{y}| = |\vec{4} + \vec{9}| = |\vec{4}|, \quad \vec{4}| = \langle \frac{2}{1/3} | \frac{3}{1/3} \rangle = \langle e^{xy} + x e^{xy}(y), \quad x e^{xy}(x) \rangle$$

$$|\vec{y}| = |\vec{4} + \vec{9}| = |\vec{13}|, \quad \vec{4}| = \langle e^{xy} + x e^{xy}(y), \quad x e^{xy}(x) \rangle$$

$$|\vec{y}| = |\vec{4} + \vec{9}| = |\vec{13}|, \quad \vec{4}| = |\vec{4}| = |\vec{4}|$$

$$|\vec{y}| = |\vec{4} + \vec{9}| = |\vec{13}|, \quad \vec{4}| = |\vec{4}| = |\vec{4}|$$

$$|\vec{y}| = |\vec{4}| = |\vec{4}| = |\vec{4}| = |\vec{4}|$$

$$|\vec{y}| = |\vec{4}| = |\vec{4}| = |\vec{4}| = |\vec{4}|$$

$$|\vec{y}| = |\vec{4}| = |\vec{4}| = |\vec{4}|$$

$$|\vec{4}| = |\vec{4}| = |\vec{4}| = |\vec{4}|$$

$$|\vec{4}| = |\vec{4}|$$

$$|\vec{4}| = |\vec{4}| = |\vec{4}|$$

$$|\vec{4}| = |\vec{4}| = |\vec{4}|$$

$$|\vec{4}| = |\vec{4$$

For a function of three variables w=f(x,y,z) the **gradient vector** is

$$\operatorname{grad}(f) = \nabla f(x, y, z) = \left\langle \frac{\partial f}{\partial x}(x, y, z), \frac{\partial f}{\partial y}(x, y, z), \frac{\partial f}{\partial z}(x, y, z) \right\rangle$$

and

$$D_{\mathbf{u}}f(x, y, z) = \nabla f(x, y, z) \cdot \mathbf{u}$$

Theorem. Suppose f is a differentiable function of two or three variables and $\mathbf{v} = \langle x, y \rangle$ if f is a function of two variables $\mathbf{v} = \langle x, y, z \rangle$ if f is a function of three variables. The maximum value of the directional derivative $D_{\mathbf{u}}f(\mathbf{v})$ is $|\nabla f(\mathbf{v})|$ and it occurs when \mathbf{u} has the same direction as the gradient vector $\nabla f(\mathbf{v})$.

Example 3. Suppose that over a certain region of space the electrical potential V is given by $V(x, y, z) = 5x^2 - 3xy + xyz$.

1. Find the rate of change of the potential at P(3,4,5) in the direction of the vector $\mathbf{v} = \langle 1,1,-1 \rangle$. $|\overrightarrow{V}| = \sqrt{5}$

grad
$$V = \langle \frac{\partial V}{\partial x}, \frac{\partial V}{\partial y}, \frac{\partial V}{\partial z} \rangle = \langle 10x - 3y + yz, -3x + xz, xy \rangle$$

grad $V(3, 4.5) = \langle 10(3) - 3(4) + 4(5), -3(3) + 3(5), 3(4) \rangle = \langle 38, 6, 12 \rangle$

$$\mathbb{D}_{u}f = \langle 38, 6, 12 \rangle \cdot \langle \frac{1}{13}, \frac{1}{13}, -\frac{1}{13} \rangle = \frac{38 + 6 - 12}{13} = \boxed{\frac{32}{13}}$$

2. In which direction does V change most rapidly at P?

3. What is the maximum rate of change at P?

$$|\operatorname{grad} V(3,4,5)| = \sqrt{38^2 + 6^2 + 12^2} = \sqrt{1624}$$

Tangent planes to level surfaces. Suppose S is a surface with equation $F(x,y,z)=k_0$ that is, it is a level surface of the function w=F(x,y,z), and let $P(x_0,y_0,z_0)$ be a point on S.

We define the tangent-plane-to-the-level surface F(x,y,z)=k at $P(x_0,y_0,z_0)$ as the plane that passes through P and has normal vector $\nabla F(x_0,y_0,z_0)$ and its equation is $F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$ The normal line to S at P is the line passing through P and perpendicular to the tangent plane (its direction is given by the gradient vector $\nabla F(x_0, y_0, z_0)$). Its symmetric equations are $\boxed{\frac{x-x_0}{F_x(x_0,y_0,z_0)} = \frac{y-y_0}{F_y(x_0,y_0,z_0)} = \frac{z-z_0}{F_z(x_0,y_0,z_0)}}$ If the equation of a surface S is of the form $\alpha = f(x, y)$, we can rewrite F(x, y, z) = f(x, y) - z = 0and regard S as a level surface of F with k = 0. Then $F_x(x_0, y_0, z_0) = f_x(x_0, y_0), \quad F_y(x_0, y_0, z_0) = f_y(x_0, y_0), \quad F_z(x_0, y_0, z_0) = -1$ S: 2= f(x,y) $f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) - (z - z_0) = 0$ and the equation of the nor S at (x_0, y_0) is $\frac{x - x_0}{f_x(x_0, y_0)} = \frac{y - y_0}{f_y(x_0, y_0)} = \frac{z - z_0}{-1}$ Example 4. Find equations of the tangent plane and the normal line to the surface $x^2 - 2y^2 - 3z^2 + xyz = 4$ at the point (3, -2, -1). $F(x, y, z) = x^2 - 3y^2 - 3z^2 + xyz - 4$ grad F= VF = < 2F, 2F, 2F > = < 2x + y2, -4y + x2, -62 + xy> $\nabla F \big(3, -2, -1 \big) = < 2 (3) + \big(-2 \big) (-1), \ -4 \big(-2 \big) + 3 (-1), \ -6 (-1) + 3 (-2) > 0$ = 28,5,07 8(x-3)+5(y+2)+0(e+1)=0 Tangent plane: Normal line:

