

For examiners' use only

2

3

4

Total

EBU5303 A

Joint Programme Examinations 2019/20

EBU5303 Multimedia Fundamentals

Paper A

Time allowed 2 hours

Answer ALL questions

Complete the information below about yourself very carefully.

QM student number					
BUPT student number					
Class number					

Allowed: electronic calculators

INSTRUCTIONS

- 1. You must NOT take answer books, used or unused, from the examination room.
- 2. Write only with a black or blue pen and in English.
- 3. Do all rough work in the answer book **do not tear out any pages**.
- 4. If you use Supplementary Answer Books, tie them to the end of this book.
- 5. Write clearly and legibly.
- 6. Read the instructions on the inside cover.

Examiners

Dr Marie-Luce Bourguet, Dr Atm Shafiul Alam

Copyright © Beijing University of Posts and Telecommunications & © Queen Mary University of London 2019

Filename: 1920_EBU5303_A No answer book required

Instructions

Before the start of the examination

- 1) Place your BUPT and QM student cards on the corner of your desk so that your picture is visible.
- 2) Put all bags, coats and other belongings at the back/front of the room. All small items in your pockets, including wallets, mobile phones and other electronic devices must be placed in your bag in advance. Possession of mobile phones, electronic devices and unauthorised materials is an offence.
- 3) Please ensure your mobile phone is switched off and that no alarm will sound during the exam. A mobile phone causing a disruption is also an assessment offence.
- 4) Do not turn over your question paper or begin writing until told to do.

During the examination

- 1) You must not communicate with or copy from another student.
- 2) If you require any assistance or wish to leave the examination room for any reason, please raise your hand to attract the attention of the invigilator.
- 3) If you finish the examination early you may leave, but not in the first 30 minutes or the last 10 minutes.
- 4) For 2 hour examinations you may **not** leave temporarily.
- 5) For examinations longer than 2 hours you **may** leave temporarily but not in the first 2 hours or the last 30 minutes.

At the end of the examination

- 1) You must stop writing immediately if you continue writing after being told to stop, that is an assessment offence.
- 2) Remain in your seat until you are told you may leave

Question 1

a) This question is about digitisation. Consider a sound wave W with a frequency f = 440 Hz.

[8 marks]

i) What is the sine function representing W?

(1 mark)

ii) What kind of sound is represented by a completely regular sine wave such as W?

(1 mark)

iii) What does the amplitude of W tell us about the sound it represents?

(1 mark)

iv) What is the minimum sampling rate you should use to ensure that you can digitise W without audio aliasing? Justify your answer.

(2 marks)

v) You decide to use 5 bits per sample. How many different values can W take?

(1 mark)

vi) Calculate an approximation of the Signal-to-Quantisation Noise Ratio (SQNR) of W. Explain your calculation.

	Do not write in this column
Solution:	
(1) W = STU (2TTft), f = 440 HZ	
1000) = SIN (880 TOC)	
(2) pure tone	
(3) The amplitude of W tell us the loudners of the	
sound. (How loud the sould is)	
4) To avoid audio aliesing, according to the	
Myquist theorem, the sampling rate should larger	
than texter of the sound are frequency for.	
which is fs = 2 fm = 880 Hz.	
Hence, the minauum samplany rate is \$20 Hz	
(5) $M = 2^n = 2^5 = 32$,	
W can take 32 different values	
(6) SONR a the ratio of maximum puantization	
level versus maximum quantisation votes. In this	
case SBNR-dB = 20log 10 (2 ⁿ⁻¹) = 20log 10 (2 ⁿ) = 6n	
30 SONR _ dB ≈ 6n = 30. ±	
	8 marks

b) This question is about colour encoding.

[12 marks]

i) <u>In a true colour image</u>, what is the number of different colours that can be represented? Justify your answer.

(2 marks)

ii) Describe the properties of a fully saturated colour. C breaktivess)

(2 marks)

iii) In the HSV colour model, how is the grayscale represented?

(2 marks)

iv) What (R, G, B) values would you use to encode an unsaturated dark blue colour?

(2 marks)

v) What (C, M, Y) values would you use to encode a fully saturated bright green colour?

(2 marks)

vi) Yellow ink is spread onto a white sheet of paper. What colour will you see if the paper is illuminated with a blue light? Justify your answer.

		write in column
(1) In a true colour image, a 24-bit pixel pallete		
will be used, as which 8-bit for each R.G.B value	<u>. </u>	
Hence 2 ²⁴ % 16. 8 million colours can be represented		
(2) A fully saturated colour to a colour without		
mixture of white		
(3) Assume the largest number for S. V is 100,		
groupscale can be represented as (*, 0, a), a & [0,100]		
intuitably it is the vertical axis of HSV model.		
(4) (20,20,100)		
(5) (255, 0, 255)		
(6) Stuce the yellow tulk can absorb its subtractive		
color whou is blue, when chaminating with blue		
eright. it was absorb all the blue light and		
reflect nothing, so only black can be seen.		
J		
		12
		marks

c) Consider a video with the following properties: frame size is 1280-by-720-pixels; colour depth is 24-bits; frame rate is 30 fps; duration is 1 minute.

[5 marks]

i) How much <u>data rate reduction</u> can be achieved by reducing the width and height of this video to half? Prove your answer by calculating the data rates.

(3 marks)

ii) Give two possible strategies for reducing the colour depth of the video to just a third of its original depth.

(2 marks)

	Do not write in this column
(1) Original data rate:	
colour depth: 24 - btts/pixel	
bits per frame: 24 x 1280 x 720 = 22118400 bits/frame	
data rate: 22118400 x 30 = 663552000 bps	
= 663.552 Mbp5	
Date rate after reduction	
bits per frame: 24 × 640 × 360 = 5529600 bits/frame	
data rata: 5529600 x 30 = 165888000 6PS	
= 165.888 Mbps	
Data rate reduction = 497.664 Mbps	
(2) 10 converting the violes to its growscarle version,	
some the colone depth will be & which is a third	
24 - břt.	
a natitions early frame of the voided to ar	
indexed-based frame with 256-colour CLUT.	
since $2^8 = 256$, whom depth will be 8 as well.	
	5
	marks

Question marking: $\frac{}{8} + \frac{}{12} + \frac{}{5} = \frac{}{25}$

Question 2

a) This question is about audio.

[5 marks]

i) Briefly explain what is shown in an audio histogram such as the one in Figure 1. In particular, comment the units used on the X and Y axes.

(3 marks)

ii) Do audio histograms and audio spectrograms represent signals in the same domain? Justify your answer.

Figure 1: Audio histogram

	Do not write in this column
(1) Somce audio litetogram sleaves how many sumples	
at a certain amplitude, X-axis should be amplitude	
Y-axis should be numbers of samples This histogram	
shows that the ampertude of this audio concentrated	
at -18 to -16 dB which nears the audio loudness	
don2t lave too much changes.	
(2) They are not in the same donaty.	
Audo listograms describe relationship between ampirude	
and number of samples in time domain.	
Audio spectrograms desurbe how the frequency	
spectrum varies with time. 30 Ft is in both	
time and frequency domain.	
, , ,	5 marks

b) Image lossless compression.

[10 marks]

i) What image property is used in Huffman encoding to achieve compression? Justify your answer.

(3 marks)

- iii) Assuming that each symbol of Table 1 would normally be encoded using 3 bits (which is enough to encode 5 different symbols), how much compression is achieved in the binary message of question ii) above?

(3 marks)

iv) Consider the following statement: "For compression to remain lossless, an image should be encoded/decoded only once". Is it correct? Justify your answer.

symbol	probability	code
А	0.40	00
В	0.20	01
С	0.20	10
D	0.10	110
Е	0.10	111

Table 1: Huffman encoding table

	Do not write in this column
(1) Statistical distribution, some colours	
appear more often than other colours. According	
to this property, we can encode frequent	
symbols with shorter code, not frequent	
to this property, we can encode frequent symbols with shorter code, not frequent symbols with longer code to delivere	
compression.	
'	
(2) EDECCBCECCDDBCEDCCPBCBAEE	
(3) Organalsize: 25x3 = 75 bits	
(3) Original size: $25 \times 3 = 75$ bits Huffman encoding: $11 \times 3 + 14 \times 2 = 61$ bits	

c) Consider the block diagram shown in Figure 2 and answer the questions below.

[10 marks]

i) Describe what is contained inside the block marked with the label "A".

(2 marks)

ii) What step of the JPEG compression process is marked with the label "B"? Explain this step.

(3 marks)

iii) Explain the use of quantisation tables in the JPEG compression process.

(3 marks)

iv) Which phenomenon of human vision is exploited in chroma sub-sampling?

Figure 2: JPEG block diagram

20 20 Tapel A	13/20	
		t write in column
(1) In label A, picture is converted from RGB model		
to a YCbCr model. Then usag cluma subsampling		
to throw away some claroma tuformation. At last		
for each 16 x16 macroblock outputs 4 8x8 T block		
1 Cb aud 1 Cr block.		
(2) The Label B = DCT transform. In three step. first		
surft the pixel calle by -128. Then applying but		
transform to the 8x8 pixel value matrix, obtain		
the coeffairent for frequency components. The purpose		
of this step to to seperate out the ligh frequency		
components that liman eyes are not sometime to		
auch remove them		
(3) The quantisation table is used as quantisotion step.		
It is used to store the quantitize value. In quantisonion	<u> </u>	
table, small values are applied to low frequency		
components what contains fundamental auformation		
we don't want to loss, large values are appeted		
to ligh frequeury components whethe contain four		
détails luman eyes one hard to captured with		
(4) Human eye is more songetive to clianges in		
brigheness (luntualle) than ollaryon th		
chrominame.		
	 	10
		marks

Question marking: $\frac{1}{5} + \frac{1}{10} + \frac{1}{10} = \frac{1}{25}$

Question 3

a) This question is about MPEG.

[14 marks]

i) What type of MPEG frame makes no prediction?

(1 mark)

- ii) What type of MPEG frame is never used as a reference frame during decompression? Why?

 (3 marks
- iii) Suppose an MPEG encoder uses the nine-frame sequence IBBPBBPBB. Draw a diagram showing the dependencies between the <u>first 12 frames</u> of a compressed clip produced by this encoder.

(3 marks)

Briefly explain the Block Matching Algorithm (BMA) for motion estimation when a maximum motion displacement of x pixels is used.

(4 marks)

Given a maximum motion displacement of 8 pixels, how many evaluations of the matching criterion are required in the BMA?

(1 mark)

Briefly explain the basic principle of fast motion estimation techniques.

	Do not write in this column
(1) I - frame (Intra - coded frame)	
(2) B- frames Durtug decompression, I- frame	
decompressed without any reference frames.	
p-france decompressed with reference frames	
of previous I - frame or p- frame. B framer	
decompressed with refrence frames of prentions	
and feture I-auch P- frames. No frame	
regard B- frames as reference	
(3)	
IBBPBBBIBB	

		14
		marks
•		
b) This question is about perceptual encoding.	[11 1	narks]
 i) With A-law coding, larger signals are represented with greater precision – more dasmaller signals. Is this statement true or false? Justify your answer. 		
	(4 r	narks)
ii) There are 24 critical bands in the human hearing range, but critical bands for low f narrower than those for high frequencies. What is this statement telling us about the	-	
to distinguish between frequencies?	human	
to distinguish between frequencies?		
to distinguish between frequencies? iii)What is the threshold of hearing and how does frequency masking affect the threshold	(3 r	ability narks)
	(3 rold of he (4 r	ability narks) earing?
iii)What is the threshold of hearing and how does frequency masking affect the threshold	(3 rold of he (4 r	ability narks) earing? narks)
iii)What is the threshold of hearing and how does frequency masking affect the hearing and how does frequency masking affect the hearing and hearing affect the hearing and hearing affect the he	(3 rold of he (4 r	ability narks) earing? narks)
iii)What is the threshold of hearing and how does frequency masking affect the threshold. Thus is false. Since became ear is none sewitive to quantization worse in small signal those in large.	(3 rold of he (4 r	ability narks) earing? narks)
iii)What is the threshold of hearing and how does frequency masking affect the threshold. That is false. Since became ear it more sewitive to quantization notse in small signal those in large signals, to presume the degrante rawge. Small	(3 rold of he (4 r	ability narks) earing? narks)
iii)What is the threshold of hearing and how does frequency masking affect the threshold. This is false. Since became ear is none sewitive to quantisation noise in small signal those in large.	(3 rold of he (4 r	ability narks) earing? narks)

EBU5303 Paper A

2019/20

Question marking: $\frac{1}{14} + \frac{1}{11} = \frac{1}{25}$

11 marks

Question 4

a) This question is about MP3.

[15 marks]

i) In MP3, one way to reduce the amount of data in the compressed signal is to use scaling factors that increase the quantisation error where it doesn't matter. Briefly explain how the parts of the signal that will be multiplied by a large scaling factor can be found.

(5 marks)

ii) Say that an uncompressed band value is 10,000 and values from all bands are quantised by dividing by 128 and rounding down. What is the quantisation error? Show your calculations.

(3 marks)

iii) Now suppose that this band requires less precision because of a strong masking tone, and that it should be scaled by a factor of 0.1. Recalculate the quantisation error.

(3 marks)

iv) With an MP3 bitrate of 128 kbit/s, calculate the compression ratio that is achieved on a CD quality digital audio signal (CD quality = 44100 samples per second, stereo and 16 bits per channel).

(2 marks)

v) What is meant by "Average Bit Rate" (ABR)?

	Do not write in this column
(1) Before the quantisation and scaling step in mp3, at	
the psychoalouste audysis, it will tolentify the	
masking and masked tower and occipies a set	
of sur values. With the lower shap, it can	
be multiplied by a large scaling foretors, some	
for these points, the quantisation error will	
be lower than the masking threshold, i.e.	
quantization errors imparet less to this parts	
error:	
$\frac{(2)}{(128)} = 78, 10000 - 78 \times 128 = 16$	
error rate: 15000 = 0.0016	
(3) $\frac{1 - 8}{1 - 8} \int = 1$. error: $\frac{1 - 8}{1 - 8} = 1040$	
enor race: (ofo = 0.104	

b) This question is about DVB-S.

[10 marks]

i) What compression standard is used for source coding in DVB-S?

(2 marks)

ii) What is the purpose of energy dispersal?

(2 marks)

iii) How does the Reed-Solomon Error Protection scheme work?

(2 marks)

iv) Assuming a symbol rate of 27.5 MS/s, QPSK modulation, Reed-Solomon code with rate (204, 188), and a code rate of ³/₄ are used, calculate the bit stream net data rate. Show your calculations.

(4 marks)

	Do not write in this column
(1) WPE&-2	
(2) The purpose is to achieve a power-density	
spectrum of a modulated stynd as even as posstable	
Posschoo	

EBU5303 Paper A	2019/20
(3) Roed-Solomon Protection schewes correct	
boxs of classer by adding some redundant bot	٦٠, - ,
specofficeally, assume there are k date an	
a pallet. We add some bit to obtain a dater	
Then the decoder can correct t symbols that	
contail errors $(2t = n - k)$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(4) opsk modulation means 2 bits/symbol.	
symbol reve = 27.5 MIS/s	
gross_datarate = 55 Nhb/s net_datarate (NS) = 55 x $\frac{188}{299}$ % 50.69 Nbls	
net _ data rate (N3) = $55 \times \frac{1}{29} \approx 50.69 \text{ Mbls}$	
net_daterrace = rot_dotarate (ps) x code rot	<u>ئە</u>
$= \frac{2}{4} \times 50.69$	
≈ 38.01 Mb/s	
	10000000
	10
	marks

Question marking: $\frac{1}{15} + \frac{1}{10} = \frac{1}{25}$

EBU5303 Paper A	Use this section for rough work	2019/20
		Do not write in this
		column
	2019-2020	
Kol	ugh Working	
	40-540	
Pa	ge 16 of 18	
	EBU5303	

EBU5303 Paper A	Use this section for rough work	2019/20
		Do not write in this
		column
	2019-2020	
Rot	ugh Working	
	47-640	
Pa	ge 17 of 18	
	EBU5303	