Полиномиальная формула

Определение. Мультииндекс — вектор $\alpha=(\alpha_1,\alpha_2\dots\alpha_n), \alpha_i\in\mathbb{Z}_+$

1.
$$|\alpha| \stackrel{\text{def}}{=} \alpha_1 + \alpha_2 + \ldots + \alpha_n$$

2.
$$x^{\alpha} \stackrel{\text{def}}{=} x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n} \quad (x \in \mathbb{R}^n)$$

3.
$$\alpha! \stackrel{\text{def}}{=} \alpha_1! \alpha_2! \dots \alpha_n!$$

4.
$$f_{(x)}^{(\alpha)} \stackrel{\text{def}}{=} \frac{\partial^{|\alpha|}}{\partial x^{\alpha}} f \stackrel{\text{def}}{=} \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} ... \partial x_m^{\alpha_m}}$$

$$(a_1 + a_2 + \dots + a_n)^r = \sum_{i_1=1}^n \sum_{i_2=1}^n \dots \sum_{i_r=1}^n a_{i_1} a_{i_2} \dots a_{i_r} = \sum_{\alpha: |\alpha|=r} \frac{r!}{\alpha!} a^{\alpha}$$

Это обобщение следующих формул:

1.
$$(a+b)^2 = a^2 + 2ab + b^2$$

2.
$$(a_1+a_2)^n=\sum\limits_{lpha_1+lpha_2=n}rac{n!}{lpha_1!lpha_2!}a_1^{lpha_1}a_2^{lpha_2}$$
 (биномиальная формула)

Лемма 1.

•
$$f: E \subset \mathbb{R}^m \to \mathbb{R}$$

•
$$f \in C^r(E)$$
 — это подразумевает, что E открыто

•
$$a \in E$$

•
$$h \in \mathbb{R}^m : \forall t \in [-1, 1] \quad a + th \in E$$

•
$$\varphi(t) = f(a+th)$$

Тогда при $1 \le k \le r$:

$$\varphi^{(k)}(0) = \sum_{j:|j|=k} \frac{k!}{j!} h^j \frac{\partial^k f}{\partial x^j}(a)$$

Доказательство.

$$\varphi'(t) = \sum_{i=1}^{m} \frac{\partial f}{\partial x_i}(a+th)h_i$$

$$\varphi''(t) = \sum_{i=1}^{m} \left(\frac{\partial f}{\partial x_i}(a+th)\right)' h_i = \sum_{i=1}^{m} \sum_{i_2=1}^{m} \frac{\partial^2 f}{\partial x_i \partial x_{i_2}}(a+th)h_i h_{i_2}$$

$$\varphi''(0) = \frac{\partial^2 f}{\partial x_1^2} h_1^2 + \frac{\partial^2 f}{\partial x_2^2} h_2^2 + \dots + \frac{\partial^2 f}{\partial x_2^2} h_m^2 + 2\left(\frac{\partial^2 f}{\partial x_1 \partial x_2} h_1 h_2 + \frac{\partial^2 f}{\partial x_1 \partial x_3} h_1 h_3 + \dots\right)$$

$$\varphi^{(k)}(0) = \sum_{i_1=1}^m \sum_{i_2=1}^m \dots \sum_{i_k=1}^m \frac{\partial^k f(a)}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}} h_{i_1} h_{i_2} \dots h_{i_k}$$

Теорема 0.1 (Формула Тейлора в терминах мультииндекса).

• $f \in C^{r+1}(E)$ — это подразумевает $E \subset \mathbb{R}^m, f: E \to \mathbb{R}$

•
$$x \in B(a,R) \subset E$$

Тогда $\exists t \in (0,1)$:

$$f(x) = \sum_{\alpha: 0 \leq |\alpha| \leq r} \frac{f^{(\alpha)}(a)}{\alpha!} (x-a)^{\alpha} + \underbrace{\sum_{\alpha: |\alpha| = r+1} \frac{f^{(\alpha)}(a+t(x-a))}{(\alpha+1)!} (x-a)^{\alpha}}_{\text{Остаток в форме Лагранжа}}$$

Раскроем мультииндексы:

$$f(x) = \sum_{k=0}^{r} \left(\sum_{\substack{(\alpha_1 \dots \alpha_m): \\ \alpha_i \ge 0 \\ \sum \alpha_i = k}} \frac{1}{\alpha_1! \alpha_2! \dots \alpha_m!} \frac{\partial^k f(a)}{(\partial x_1)^{\alpha_1} \dots (\partial x_m)^{\alpha_m}} (x_1 - a_1)^{\alpha_1} (x_2 - a_2)^{\alpha_2} \dots (x_m - a_m)^{\alpha_m} \right)$$

Ещё + аналогичный остаток.

$$f(a+h) = \sum_{k=0}^{r} \sum \dots \frac{1}{\alpha_1! \alpha_2! \dots \alpha_m!} \frac{\partial^k f(a)}{(\partial x_1)^{\alpha_1} \dots (\partial x_m)^{\alpha_m}} h_1^{\alpha_1} h_2^{\alpha_2} \dots h_m^{\alpha_m}$$

Тут тоже + аналогичный остаток.

Доказательство. Кажется, это теперь почти очевидно.

$$\varphi(t)=(a+th)$$
, где $h=x-a$. Тогда $\varphi(0)=f(a)$

$$\varphi(t) = \varphi(0) + \frac{\varphi'(0)}{1!} + \ldots + \frac{\varphi^{(r)}(0)}{r!} t^r + \frac{\varphi^{(r+1)}(\overline{t})}{(r+1)!} t^{r+1}$$

$$f(x) = \underbrace{\sum_{\alpha:0 \leq |\alpha| \leq r} \frac{f^{(\alpha)}(a)}{\alpha!} (x-a)^{\alpha}}_{\text{Многочлен Тейлора}} + \underbrace{\sum_{\alpha:|\alpha| = r+1} \frac{f^{(\alpha)}(a + \Theta(x-a))}{\alpha!} (x-a)^{\alpha}}_{\mathcal{O}(|x-1|^r)}$$

По лемме:

$$f(x) = f(a) + \sum_{k=1}^{r} \sum_{\alpha: |\alpha| = k} \frac{f^{(\alpha)}}{\alpha!} h^{\alpha} + \sum_{\alpha: |\alpha| = r+1} \frac{f^{(\alpha)}(a + \Theta(x - a))}{\alpha!} h^{\alpha}$$

Определение.

$$\sum_{\alpha: |\alpha|=k} k! \frac{f^{(\alpha)}}{\alpha!} h^{\alpha} \stackrel{\text{def}}{=} k$$
-й дифференциал функции f в точке $h \stackrel{\text{def}}{=} d^k f(a,h)$

Перепишем f(x) через дифференциал:

$$f(x) = \sum_{k=0}^{r} \frac{d^k f(a,h)}{k!} + \frac{1}{(k+1)!} d^{k+1} f(a + \Theta h, h)$$

f(a) это $d^k f(a,h)$ при k=0, поэтому он зашел под сумму.

Пример. $\triangleleft k = 2$

$$d^{2}f = f_{x_{1},x_{1}}''(a)h_{1}^{2} + f_{x_{2},x_{2}}''(a)h_{2}^{2} + \ldots + f_{x_{m},x_{m}}''(a)h_{m}^{2} + 2\sum_{i < j} f_{x_{i},x_{j}}''h_{i}h_{j}$$

Заметим, что $k!/\alpha!$ - число способов реализовать дифференцирование, т.е. в каком порядке брать частные производные.

В дифференциалах работает композиция: $d^{k+1}f=d(d^kf)$

Покажем это на примере:

$$df = f'_{x_1}h_1 + f'_{x_2}h_2 + \dots + f'_{x_m}h_m$$

$$d^2f = (f''_{x_1x_1}h_1 + f''_{x_1x_2}h_2 + \dots + f''_{x_1x_m}h_m)h_1 + (f''_{x_2x_1}h_1 + f''_{x_2x_2}h_2 + \dots + f''_{x_2x_m}h_m)h_2 + \dots =$$

$$= (f'_{x_1})'h_1 + (f'_{x_2})'h_2 + \dots = d(df)$$

Теорема 0.2 (Формула Тейлора с остатком в форме Пеано).

$$f(a+h) = \sum_{\alpha:0 \le |\alpha| \le r} \frac{f^{(\alpha)}(a)}{\alpha!} h^{\alpha} + o(|h|^r)$$

Доказательство. Отсутствует

 $\mathit{Упражнениe}.$ Если $f(a+h) = \underbrace{T_r(h)}_{\mathsf{Mhorou,neh\ CTennehu\ \le\ r}} + o(|h|^r),$ то $T_r(h)$ — многочлен Тейлора

Пример. $(0.97)^{1.02} = ?$

$$f(x,y) \stackrel{\text{def}}{=} x^y$$

$$f(0.97, 1.02) = ?$$

Здесь все производные в (1,1), это не указывается ради краткости.

$$f(x,y) = f(1,1) + f'_x(x-1) + f'_y(y-1) + \frac{f''_{xx}}{2!}(x-1)^2 + \frac{f''_{yy}}{2!}(y-1)^2 + f''_{xy}(x-1)(y-1) + o(\ldots)$$

- $f'_x = yx^{y-1} \to 1$
- $f_y' = x^y \ln x \to 0$
- $f''_{xx} = y(y-1)x^{y-2} \to 0$
- $f''_{yy} = x^y \ln^2 x \rightarrow 0$
- $f''_{xy} = x^{y-1} + yx^{y-1} \ln x \to 1$

$$f(0.97, 1.02) \approx 1 + 1(-0.03) + 1(-0.03)(0.02)$$

Определение. $\mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)$ — множество линейных отображений $\mathbb{R}^m \to \mathbb{R}^n$, также обозначается $\mathrm{Lin}(\mathbb{R}^m,\mathbb{R}^n)$, $L_{m,n}$

Это линейное пространство:

- 1. (F+G)(x) = F(x) + G(x)
- 2. $(\alpha F)x = \alpha(Fx)$

Обозначение (Норма линейного оператора).

$$A \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n) \quad ||A|| \stackrel{\text{def}}{=} \sup_{\substack{x \in \mathbb{R}^m: \\ |x|=1}} |Ax|$$

Примечание.

- 1. sup ⇔ max в силу компактности сферы
- 2. $A=(a_{ij})$ (оператор задается матрицей), тогда $||A|| \leq \sqrt{\sum_{i,j} a_{ij}^2}$ по лемме об оценке нормы линейного отображения.
- 3. $\forall x \in \mathbb{R}^m \quad |Ax| \le ||A|| \cdot |x|$

Доказательство. (a) x = 0 — тривиально, $0 \le 0$

(b)
$$x \neq 0$$
 $\tilde{x} = \frac{x}{|x|}$ $|Ax| = |A(|x|\tilde{x})| = ||x|A\tilde{x}| = |x| \cdot |A\tilde{x}| \le ||A|| \cdot |x|$

4. Если $\exists c>0: \forall x\in\mathbb{R}^m \ |Ax|\leq C|x|$, то $||A||\leq C$

Пример. 1. m=l=1 $A\leftrightarrow a_{11}$ $x\mapsto a_{11}x$ ||A||=a

2.
$$m=1, l-$$
любое. $A:\mathbb{R} \to \mathbb{R}^l \quad A \leftrightarrow \begin{pmatrix} a_1 \\ \vdots \\ a_l \end{pmatrix} = \vec{a} \quad t \mapsto t\vec{a} \quad ||A|| = |a|$

3.
$$m$$
 – любое, $l=1$ $A:\mathbb{R}^m \to \mathbb{R}$ $A \leftrightarrow \vec{a}$ $x \mapsto (\vec{a},x)$ $||A|| = \sup_{\substack{x \in \mathbb{R}^m: |\vec{a}| = 1}} |(\vec{a},x)| = |\vec{a}|$

4. m — любое, l — любое. $||A|| = \sup |Ax|$ — мы не знаем, как такое считать.

Лемма 2.

- X, Y линейные нормированные пространства
- $A \in \mathcal{L}(X,Y)$

Тогда эквивалентны следующие утверждения:

- 1. A ограниченный оператор, т.е. ||A|| конечно
- 2. A непрерывно в нуле
- 3. A непрерывно всюду в X
- 4. A равномерно непрерывно

Доказательство.

1.
$$4 \Rightarrow 3 \Rightarrow 2$$
 — очевидно.

 $2. 2 \Rightarrow 1$

Непрерывность в
$$0$$
: $\forall \varepsilon \;\; \exists \delta : \forall x : |x| \leq \delta \quad |Ax| < \varepsilon$ $\lessdot \varepsilon = 1, |x| = 1 : |Ax| = \left|A\frac{1}{\delta}\delta x\right| = \frac{1}{\delta}|A\delta x| \leq \frac{1}{\delta}$

3. $1 \Rightarrow 4$

$$\forall \varepsilon > 0 \ \exists \delta := \frac{\varepsilon}{||A||} \ \forall x_1, x_0 \ |x_1 - x_0| < \delta$$

M3137y2019 7.9.2020

Теорема 0.3 (о пространстве линейных отображений).

1. Отображение $A \to ||A||$ в $\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ — норма, т.е.:

(a)
$$||A|| \ge 0$$

(b)
$$||A|| = 0 \Rightarrow A = 0_{n \times m}$$

(c)
$$\forall \lambda \in \mathbb{R} \ ||\lambda A|| = |\lambda|||A||$$

(d)
$$||A + B|| \le ||A|| + ||B||$$

2.
$$A \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n), B \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^k) \Rightarrow ||BA|| \leq ||B|| \cdot ||A||$$

Доказательство.

1.
$$||A|| = \sup_{|x|=1} |Ax|$$

а, b, c — очевидно.

$$d: |(A+B)x| = |Ax+Bx| \le |Ax| + |Bx| \le (||A|| + ||B||)|x|$$

По замечанию 3 $||A + B|| \le ||A|| + ||B||$

2.
$$|BAx| = |B(Ax)| \le ||B|| \cdot |Ax| \le ||B|| \cdot ||A||$$

Примечание. В $\mathcal{L}(X,Y)$:

$$||A|| = \sup_{|x|=1} |Ax| = \sup_{|x| \le 1} |Ax| = \sup_{|x| < 1} |Ax| = \sup_{|x| \ne 0} \frac{|Ax|}{|x|} = \inf\{C \in \mathbb{R} : \forall x \ |Ax| \le C|x|\}$$