

COURSEWORK 1

G. Hilbert

Deadline: 4/4/2018

INSTRUCTIONS

- Write your name and student ID clearly on the papers;
- Submit your coursework to the assistant before the deadline;
- Copy is forbidden, otherwise the score for the coursework would be 0 this time;
- Typewriting with LaTeX is encouraged that 1 more score will be awarded this time.

Warm-up

Exercise 1.1. The same thing is f(x) = g(x) = S = Ox.

Exercise 1.2. The same thing is

$$\prod_{x=y=0}^{6,9} f(x,y) = g(x,y) = 2x^2 + y + 2018.$$

Medium

Definition 1.3. Suppose M is a non-empty set and $P \subseteq M$.

(1) X is definable over (M, \in) from parameters in P if there is an \mathcal{L}_{\in} formula $\varphi(x, \vec{y})$ and some \vec{b} from P such that

$$X = \{ a \in M \mid (M, \in) \models \varphi(x, \vec{y})[a, \vec{b}] \}.$$

(2) $D(M) = \{X \subseteq M \mid X \text{ is definable over } (M, \in) \text{ from parameters in } M\}.$

(3) In particular, $D(\emptyset) = {\emptyset}$.

Definition 1.4 (ZF-P, Gödel). By transfinite recursion on $\alpha \in ON$, define L_{α} by

$$L_{\alpha} = \emptyset,$$
 $\alpha = 0,$ $L_{\alpha} = D(L_{\delta}),$ $\alpha = \delta + 1,$ $L_{\alpha} = \bigcup_{\delta < \alpha} L_{\delta},$ α is a limit.

And set $L = \bigcup_{\alpha \in ON} L_{\alpha}$, and we call L the constructible universe.

Advanced

Definition 1.5. X is transitive if any element of X is a subset (or subclass) of X.

Lemma 1.6. For any ordinals ζ, ξ ,

- (1) $L_{\zeta} \subseteq V_{\zeta}$.
- (2) L_{ζ} is transitive.
- (3) if $\zeta < \xi$, then $L_{\zeta} \subseteq L_{\xi}$.
- (4) if $\zeta < \xi$, then $L_{\zeta} \in L_{\xi}$.
- (5) $L_{\zeta} \cap \mathsf{ON} = \zeta$.
- (6) L is transitive.
- (7) L is a proper class.

 $A,B,C,D,S,O,P,\mathfrak{u},\mathfrak{v},\mathfrak{w},x,y,z$

EA, the theory of so-called elementary arithmetic, which is what you get by taking Q and adding Δ_0 -induction plus the axiom which says that 2^n is a total function.