Question 1)

a) In a Decision Tree the induction algorithm at each node follows the greedy approach to split that particular portion of the data into subsets that are homogeneous as possible, hence the optimal ordering is contingent to the distribution of the data points.

b) MVE - 0.16089, **Best Parameter =** 9

The classifier works comparably good on the test set as it reports a Mean Absolute Error of **0.16089** which is close to how it was performing in the Cross- Validation on the test set.

Parameter	Mean Absolute Error
3	0.21208
6	0.17250
9	0.160034
12	0.162114
15	0.166038

c) MVE - 11.16098 Best Parameter : 15

Parameter	Mean Absolute Error
3	42.36554
6	25.69101
9	18.22498
12	12.36323
15	10.11299

The classifier works comparably good on the test set as it reports a Mean Absolute Error of **11.16098** which is close to how it was performing in the Cross- Validation on the test set.

Question 2) KNN

a) Best Parameter: 3, MAE: 0.53095

Parameter	Mean Absolute Error
3	0.541715
5	0.550275
10	0.579383
20	0.595314
25	0.598548

The classifier works comparably good on the test set as it reports a Mean Absolute Error of **0.53095** which is close to how it was performing in the Cross- Validation on the test set.

b) Indoor Localization Best Parameter n_neighbor = 3 MAE: 3.16736

Parameter	Mean Absolute Error
3	3.7628639851
5	4.1370138908
10	4.9786867405
20	5.9020269809
25	6.2183552425
25	6.2183552425

The classifier works good on the test set as it reports a Mean Absolute Error of **3.16736** which little better than how it was performing in the Cross- Validation on the test set.

Question 3

c) Larger (λ) means more regularization and w will be closer to 0 and towards each other L2= Ridge. As the value of λ increases the model complexity decreases. This is more profound in L1 as compared to L2 the contributions of features fall off faster in L1 as compared to L2 as λ increases

Question 4 Lasso and Ridge Regression

a) We can get large values for the weights if we have a large number of parameters or when the columns are correlated. Regularization prevents overfitting by restricting the model and reducing the models complexity. The regularization reduces the unstable high estimates of w to be closer to zero, introducing bias but reducing the variance of the estimates.

b) Ridge: Best Alpha = 10e-4 MAE: 0.19137

Parameter (alpha)	Mean Absolute Error
10e-6	0.190864851

30 Given Equation $G(\omega,\lambda) = (\omega-2)^2 + (\omega-4)^2 + \lambda \omega^2$ 15 2(W-2) + 2(W-4) + NW = 4W-12+XW $= (4+\lambda) W - 12$ Critical points $(4+\lambda)W-12=0$ W= 12, X>-4 $(4+\lambda)w = 12$ $\frac{\partial^2 G}{\partial x^2} = \frac{(4+\lambda)^2}{2}$ For G to be minimizes 36 >0 $\frac{(4+\lambda)>0}{\sqrt{1+\lambda}} > 0$ b) Given H(w,x) = (w-2)2 + (w-4)2 + x/w) Cau I W>0 dH 2(w-2) + 2(w-4) + 1 $= 4W - 12 + \lambda$ Critical point W- 12-2 70 hence 12-2 is minimum for all values

10e-4	0.190864852
10e-2	0.190864866
1	0.19086500
10	0.1908663594

The classifier works comparably good on the test set as it reports a Mean Absolute Error of **0.19137** which is close to how it was performing in the Cross- Validation on the test set.

Lasso:

Best Alpha = 10e-4 MAE : 0.19137

Parameter (alpha)	Mean Absolute Error
10e-6	0.1908649
10e-4	0.1908720
10e-2	0.194185
1	0.2627
10	0.627926

The classifier works comparably good on the test set as it reports a Mean Absolute Error of **0.19137** which is close to how it was performing in the Cross- Validation on the test set.

Best Model was Ridge: with an alpha of **10e-4** but on further analysis both Lasso and Ridge 10e-4 gave the same Mean Absolute Error.

(Indoor Localization)

Ridge: Best Alpha = 10 MAE :20.69706

Parameter (alpha)	Mean Absolute Error
10e-6	19.65125
10e-4	19.64871
10e-2	19.61162
1	19.60135
10	19.58408

The classifier works comparably not as good on the test set as it reports a Mean Absolute Error of **20.69706** which is a little off from the error on the test set validation.

Lasso:

Best Alpha = 0.001 **MAE** : 20.67810

Parameter (alpha)	Mean Absolute Error
-------------------	---------------------

10e-6	19.60657
10e-4	19.59844
10e-2	19.72880
1	21.45238
10	35.5881

The classifier works comparably not as good on the test set as it reports a Mean Absolute Error of **20.67810** which is a little off from the error on the test set validation.

Question 5 Kaggle

a) Best = DecisionTreeRegressor (max_depth=12, min_samples_leaf= 5)CV=5MAE = 0.15877

Other Parameters tried:

DecisionTreeRegressor (max_depth=15, min_samples_leaf= 5) cv= 5, 8

DecisionTreeRegressor (max_depth=[1,3,4,5,6,7,8,9], min_samples_leaf= 5) cv= 5,8

DecisionTreeRegressor (max_depth=[1,3,4,5,6,7,8,9], min_impurity_decrease= [1,2,0.1,0.11]) cv= 5,8

b) Best = KNeighborsRegressor(n_neighbors = 1, n_jobs=-1, weights= 'distance', p=1) Cross Validation = 5 MAE= 2.43565

Other parameters I have tried: KNN n_neighbors = 3,4,5,6,8,9,10 weight = 'uniform' p=2 in varying combinations.