Matematická kartografie

Úloha 2 Konstrukce polyedrických globů

František Macek, Josef Zátka

Univerzita Karlova

Přírodovědecká fakulta

Katedra aplikované geoinformatiky a kartografie

1 Zadání

Vybraná platonská tělesa (šestistěn, čtyřstěn a osmistěn nebo dvanáctistěn) použijte pro polyedrickou aproximaci sféry. Na plošky platonských těles znázorněte v gnomonické projekci

$$x = R \cdot \tan(90^{\circ} - \check{s}) \cos d, \quad y = R \cdot \tan(90^{\circ} - \check{s}) \sin d.$$

geografickou síť doplněnou zákresem kontinentů. Skript pro generování sítě poledníků, rovnoběžek a znázornění kontinentů realizujte v programu MATLAB bez použití externích funkcí. Soubory se zákresem kontinentů exportujte z vhodné datové sady.

Vytvořte prostorové modely polyedrických glóbů v měřítku 1:100 000 000 nebo 1:50 000 000 dle možnosti Vaší tiskárny a pošlete fotografii/video Vašeho glóbu. Součástí úlohy bude příloha s rozloženými modely glóbů.

Zjistěte následující vlastnosti gnomonické projekce v okrajovém bodě Q jedné ze stěn Platonského tělesa:

- \bullet Měřítko m_p v poledníku, měřítko m_r v rovnoběžce,
- Poloosy a, b Tissotovy indikatrix,
- Úhel ω' mezi obrazem poledníku a rovnoběžky,
- Maximální úhlové zkreslení $\Delta\omega$,
- Měřítko ploch P,
- \bullet Meridiánovou konvergenci c.

Vypočtené parametry v bodě Q použijte k zákresu Tissotovy indikatrix (doporučené měřítko 1:1 000 000), jako podklad využijte obraz geografické sítě na příslušné stěně Platonského tělesa v gnomonické projekci, volte $u = v = 10^{\circ}$ (formát A4, popř. odpovídající). Výpočty proveďte pro referenční kouli s poloměrem R = 6380 km, hodnoty měřítek a poloos Tissotovy indikatrix uvedte s přesností na 6 desetinných míst, úhlové hodnoty s přesností na vteřiny. Výsledky zkontrolujte s hodnotami získanými z programu Proj.4.

Doba zpracování: 4 týdny.

2 Popis a rozbor problému

2.1 Platonská tělesa

Platonská tělesa jsou souborem pěti pravidelných útvarů, jejichž stěny tvoří shodné pravidelné mnohoúhelníky. Každému platonskému tělesu lze opsat i vepsat povrch koule (sféru). Mezi platonská třírozměrná tělesa patří čtyřstěn, šestistěn, osmistěn, dvanáctistěn a dvacetistěn.

2.2 Dvanáctistěn

V této práci je zvolen dvanáctistěn, jehož stěny jsou pravidelné pětiúhelníky. Základní geometrické vlastnosti dvanáctistěnu jsou:

• Počet stěn: 12,

• Počet hran: 30,

• Počet vrcholů: 20.

Analýza geometrie pravidelného dvanáctistěnu, jehož stěny jsou tvořeny shodnými pětiúhelníky o délce hrany a, vyžaduje použití o něco složitějších metod oproti jednodušším platonským tělesům. Vnitřní úhel každého pravidelného pětiúhelníku určíme vztahem

$$\omega = \frac{3\pi}{5} = 108^{\circ},$$

což představuje úhel mezi dvěma sousedními stranami.

Pro stanovení rozměrů jednotlivých stěn se uvažuje rovnoramenný trojúhelník, ve kterém se určí délka stěnové úhlopříčky u_s . Využitím kosinové věty získáme vztah

$$u_s^2 = 2a^2 \Big(1 - \cos \omega \Big),$$

z čehož je možné vyjádřit

$$u_s = \frac{a}{\sqrt{2(1-\cos\omega)}}.$$

Vzhledem k tomu, že

$$\cos 108^\circ = -\frac{1}{1+\sqrt{5}},$$

se vztah dále zjednodušuje a umožňuje přesně určit délku úhlopříčky.

Obrázek 1: Vypočet délky stěnové úhlopříčky u_s , poloměr r_s kružnice opsané a poloměr ρ_s kružnice vepsané pravidelnému pětiúhelníku o délce strany a.

Dále je třeba určit poloměr kružnice opsaného pětiúhelníku, označovaný jako r_s . Pro tento účel se opět uplatní kosinová věta v rovnoramenném trojúhelníku, kde je úhel mezi stranami dán hodnotou

$$\omega' = 72^{\circ}$$
.

Pak platí:

$$a^2 = 2r_s^2 \Big(1 - \cos \omega' \Big),$$

od čehož vyplývá

$$r_s = \frac{a}{\sqrt{2(1-\cos\omega')}}.$$

Dosazením hodnoty pro cos 72° lze tento výraz upravit na

$$r_s = \frac{a}{10}\sqrt{10\left(5 + \sqrt{5}\right)}.$$

Tyto matematické vztahy slouží k přesnému stanovení rozměrů stěn dvanáctistěnu, což je klíčové pro následnou konstrukci polyedrického glóbu a aplikaci gnomonické projekce na každou plošku.

Výpočty uvedenými v Bayer 2025 lze následně dospět k souřadnicím vrcholů dvanáctistěnu na sféře. Zachyceny jsou v tabulce níže i s volbou vrcholů v rozložení dvanáctistěnu do roviny:

2.3 Gnomonická projekce

Gnomonická projekce patří mezi jednoduchá azimutální zobrazení, kdy se každý bod na sféře promítá do tečné roviny pomocí projekce ze středu sféry. Tato rovina se sféry dotýká v kartografickém pólu, který v normálním nastavení odpovídá severnímu zeměpisnému pólu. Projekční obraz daného bodu, označeného jako P', se tedy nachází na kružnici (rovnoběžce) s poloměrem ρ . Zobrazovací rovnice v polárním tvaru jsou dány vzorci

$$\rho = r \tan (90^{\circ} - u), \quad \varepsilon = v,$$

kde r představuje poloměr sféry a u, v jsou původní zeměpisné souřadnice bodu. Situaci zachycuje obrázek 2.

Obrázek 2: Gnomonická projekce v normální poloze.

V obecnějším případě, kdy jsou souřadnice vztaženy ke kartografickému pólu, se proměnné u a v nahrazují kartografickými souřadnicemi, například \check{s} a d. Rovnice poté přecházejí do podoby

$$\rho = r \tan (90^{\circ} - \check{s}), \quad \varepsilon = d.$$

Převodem těchto rovnic do pravoúhlého souřadnicového systému, tedy pro souřadnice x a y, získáme

$$x = R \cdot \tan(90^{\circ} - \check{s})\cos d, \quad y = R \cdot \tan(90^{\circ} - \check{s})\sin d.$$

V gnomonické projekci se hlavní kružnice (ortodroma) promítá jako polopřímka vycházející z pólu, stejně tak poledníky jsou vykreslovány jako polopřímky, zatímco rovnoběžky se zobrazují ve formě kružnic. Touto projekcí je možné zobrazení púouze jedné hemisféry bez rovníku.

2.4 Projekční parametry, Tissotovy indikatrix

Při analýze zkreslení mapových zobrazení se využívá Tissotovy indikatrix, která představuje deformaci kružnice na elipsu. Klíčové projekční parametry, které se vypočítávají, zahrnují:

- Měřítko v poledníku m_p (lokální změna délek ve směru poledníku),
- Měřítko v rovnoběžce m_r (lokální změna délek ve směru rovnoběžky),
- Poloosy elipsy a a b,

- Úhel ω' mezi obrazem poledníku a rovnoběžky,
- Maximální úhlové zkreslení $\Delta\omega$,
- Měřítko ploch P,
- Meridiánovou konvergenci c.

Nejprve je nutné spočítat parciální derivace zobrazovacích funkcí podle proměnných u a v. Označme tyto funkce jako f a g. Poté mají parciální derivace následující podobu:

$$\frac{\partial f}{\partial u} = f_u = -\frac{R}{\cos^2(90^\circ - u)} \cos v,$$

$$\frac{\partial f}{\partial v} = f_v = -R \tan(90^\circ - u) \sin v,$$

$$\frac{\partial g}{\partial u} = g_u = -\frac{R}{\cos^2(90^\circ - u)} \sin v,$$

$$\frac{\partial g}{\partial v} = g_v = R \tan(90^\circ - u) \cos v.$$

Od této chvíle budeme používat zkrácené označení $f_u,\,f_v,\,g_u$ a g_v pro snadnější zápis.

Lokální měřítko ve směru poledníku, označené jako m_p , se určí podle vztahu

$$m_p^2 = \frac{f_u^2 + g_u^2}{R^2}.$$

Po dosazení výše uvedených parciálních derivací pro gnomonickou projekci získáme finální tvar:

$$m_p = \frac{1}{\sin^2 u}.$$

Podobně se měřítko v rovnoběžce, označené m_r , stanoví výrazem

$$m_r = \frac{f_v^2 + g_v^2}{R^2 \cos^2 u}.$$

Po dosazení pro gnomonickou projekci:

$$m_r = \frac{1}{\sin u}.$$

V případě jednoduchých zobrazení platí rovnost poloos Tissotovy elipsy s těmito měřítky, tj. máme

$$a = m_p, \quad b = m_r.$$

Úhel mezi obrazem poledníku a rovnoběžkou, označovaný jako ω' , se dá vyjádřit pomocí vzorce:

$$\tan \omega' = \frac{g_u f_v - f_u g_v}{f_u f_v + g_u g_v}.$$

 $\label{eq:coz} \mbox{Jelikož jmenovatel vyjde na nulu} - \mbox{což odpovídá ortogonálnímu zobrazení} - \mbox{získáváme}$

$$\tan \omega' = \pm \infty \implies \omega' = \pm \frac{\pi}{2} = 90^{\circ}.$$

Maximální úhlové zkreslení, označené jako $\Delta\omega$, se vyčíslí podle vztahu:

$$\sin\frac{\Delta\omega}{2} = \frac{|b-a|}{b+a} = \frac{|m_r - m_p|}{m_r + m_p}.$$

Po dosazení a následné úpravě je možné tento výraz zapsat ve tvaru

$$\Delta\omega = \frac{\sin(u-1)}{\sin(u+1)}.$$

Měřítko ploch, označené P, se pak vypočítá jako

$$P = \frac{g_u f_v - f_u g_v}{R^2 \cos u}.$$

Pro jednoduchá zobrazení platí, že $P=m_p\,m_r,$ což po dosazení dává pro gnomonickou projekci

$$P = \frac{1}{\sin^3 u}.$$

Posledním důležitým parametrem je meridiánová konvergence c, která představuje rozdíl mezi směrem základního poledníku a místním poledníkem v daném bodě. Nejprve určíme směrnici poledníku σ_p pomocí vztahu

$$\tan \sigma_p = \frac{g_u}{f_u}.$$

Po potřebném dosazení a úpravách dostaneme

$$\sigma_p = v$$
.

Meridiánová konvergence se následně vyčíslí jako

$$c = |\sigma_p - \sigma_0| = \left|\sigma_p - \frac{\pi}{2}\right|,\,$$

kde σ_0 je směrnice základního poledníku.

2.5 Konstrukce polyedrických glóbů

Při sestavování polyedrických glóbů se vychází z předem definovaného měřítkového čísla M, které udává poměr mezi poloměrem sféry R a poloměrem vepsané sféry r daného tělesa:

$$M = \frac{R}{r}.$$

Z této rovnice lze snadno vyjádřit hodnotu r jako

$$r = \frac{R}{M}.$$

Při konstrukci jsou nejprve pro každou stěnu tělesa (plošku) určeny souřadnice jejích vrcholů. Následně je na každou plošku zakreslena síť poledníků a rovnoběžek – tzn. geografická síť. Do vykreslení se také promítají kontury kontinentů, jejichž lomové body jsou uloženy v externích souborech. Každá ploška má svůj vlastní kartografický pól, který je umístěn do jejího těžiště. V závěru jsou mezi sousedními stěnami určeny ořezové linie, podle kterých se jednotlivé části modelu ostřihnou. Takto připravené plošky se následně poskládají do pláště tělesa, který lze exportovat do vektorového editoru.

2.5.1 Tvorba geografické sítě

Na každé plošce se geografická síť vytváří v obdélníkové oblasti definované intervaly $\langle \min u, \max u \rangle \times \langle \min v, \max v \rangle$. Při generování sítě je nutné stanovit parametry určující vzdálenosti mezi poledníky a rovnoběžkami, tedy Δu a Δv , a také jemnost vzorkování, danou hodnotami δu a δv . Pro účely této práce byly použity hodnoty:

$$\Delta u = \Delta v = 10^{\circ}, \quad \delta u = \delta v = 1^{\circ},$$

které byly aplikovány na všechny plošky.

Rozsah $\langle u,u\rangle \times \langle v,v\rangle$ je určen podle vrcholů příslušné plošky. Dolní mez jsme volili o několik stupňů menší než nejjižnější (resp. nejzápadnější) vrchol, horní mez pak o několik stupňů vyšší než nejsevernější (resp. nejvýchodnější). Použitý posun vůči těmto hranicím se pohyboval obvykle mezi 5° a 20°.

2.5.2 Lomové body kontinentů

Souřadnice bodů tvořících obrysy kontinentů jsou uloženy v textových souborech. Každý kontinent (či významný ostrov) je reprezentován samostatným souborem. Souřadnice jsou uvedeny v zeměpisném systému (u,v) a jsou strukturovány tak, aby je bylo možné pohodlně načíst v prostředí MATLAB.

Při načítání byly z dat odstraněny body nacházející se příliš blízko kartogarfickému rovníku. Důvodem je skutečnost, že body nacházející se příliš blízko kartografickému rovníku by v gnomonické projekci vykazovaly extrémně velké hodnoty ρ , rovníkové body by vůbec nešlo zobrazit (\rightarrow).

2.5.3 Transformace do obecné polohy vzhledem ke kartografickému pólu

Před samotnou projekcí je třeba provést transformaci všech souřadnic na dané plošce z původního zeměpisného systému (u, v) do systému kartografických souřadnic (\check{s}, d) , vztaženého ke kartografickému pólu dané plošky [uk, vk] .

Kartografickou šířku \check{s} lze určit ze vztahu:

$$\sin \check{s} = \sin u \sin u_k + \cos u \cos u_k \cos(v_k - v).$$

Kartografická délka d potom z:

$$\tan d = \frac{\sin(v_k - v)\cos u}{\cos u \sin u_k \cos(v_k - v) - \sin u \cos u_k}.$$

Pro správné určení kvadrantu výsledné hodnoty je v MATLABu nutné použít funkci atan2().

2.5.4 Vlastní sestavení glóbu

Po provedení všech výše uvedených kroků lze pro každou plošku vytvořit kompletní grafický výstup obsahující geografickou síť, obrysy kontinentů i hraniční linie, podle nichž bude daná ploška oříznuta.

Z těchto pravidelných pětiúhelníků je následně možné sestavit plášť dvanáctistěnu.

3 Praktická realizace

3.1 Polyedrický glób - dvanáctistěn

Pro konstrukci dvanáctistěnu byl zvolen následující postup:

1. Definice kartografických pólů a orientace jednotlivých plošek

Na začátku byly ve skriptu define_boundary_points.m definovány souřadnice kartografických pólů pro všechny plošky dvanáctistěnu. Tyto póly určují orientaci jednotlivých projekčních rovin. Souřadnice byly zadány ve stupních a následně převedeny na radiány.

2. Transformace souřadnic vzhledem ke kartografickému pólu

Veškeré body (tj. body geografické sítě i lomové body kontinentů) byly převedeny ze zeměpisných souřadnic (u,v) do kartografických souřadnic (\check{s},d) vztažených ke kartografickému pólu každé plošky. Tento převod je realizován ve skriptu $uv_sd.m$ pomocí trigonometrických vztahů, přičemž pro správné určení kvadrantu se používá funkce atan2().

3. Generování geografické sítě

Samotné generování poledníků a rovnoběžek probíhá uvnitř skriptu globeFace.m. Síť je vytvářena s rozestupem $\Delta u = \Delta v = 10^{\circ}$ a s jemným krokem vzorkování $\delta u = \delta v = 1^{\circ}$. Tyto parametry jsou definovány přímo ve skriptu a aplikovány na všechny plošky.

4. Načtení a zobrazení kontinentů

Zobrazení kontinentálních tvarů je zajištěno skriptem continent.m, který načítá souřadnice lomových bodů z textových souborů pro jednotlivé kontinenty. Data jsou filtrována tak, aby body s kartografickou šířkou menší než 20° nebyly zobrazeny – ty by jinak v gnomonické projekci vykazovaly extrémní hodnoty nebo by nebyly zobrazitelné vůbec.

5. Aplikace gnomonické projekce

Samotná projekce souřadnic na rovinu se provádí ve skriptu **gnom.m**. Ten využívá projekční rovnice ve tvaru

$$x = R \cdot \tan(90^{\circ} - \check{s})\cos d$$
, $y = R \cdot \tan(90^{\circ} - \check{s})\sin d$,

které převádějí body sféry do rovinného prostoru s ohledem na příslušný kartografický pól.

6. Vykreslení ořezových linií plošek

Na základě předem definovaných vrcholů byly ve skriptu boundary.m vykresleny ořezové linie jednotlivých plošek, podle nichž je možné výsledný tvar vystřihnout a složit do trojrozměrného modelu.

3.2 Výpočet vlastností gnomonické projekce ve zvoleném bodě

Lokální metrické vlastnosti projekce (měřítka, zkreslení, Tissotova indikatrix) byly vypočítány ve skriptu gnom_distortions.m. Konkrétně byly určeny hodnoty měřítka v poledníku m_p , v rovnoběžce m_r , poloosy elipsy zkreslení a, b, úhel ω' , maximální úhlové zkreslení $\Delta \omega$, měřítko ploch P a meridiánová konvergence c. Výsledky jsou uvedeny v kapitole výsledky.

Zvolen byl bod [52,6226°, 0°], tedy vrchol A dvanáctistěnu. Budeme počítat s ploškou AB-CDE, využejeme té výhody, že její kartografický pól je shodným se severním zeměpisným pólem [90° s. š.].

V dalším kroku bylo v tomto bodě (A) vykresleno grafické znázornění délkového zkreslení ve formě Tissotovy indikatrix. Tato indikatrix má tvar elipsy a je zakreslena do vykreslené geografické sítě, která byla vytvořena pomocí funkce gnom_distortions.m.

Jelikož MATLAB neobsahuje funkci pro vykreslení elipsy, bylo třeba využít přibližný způsob založený na její parametrické rovnici:

$$x(t) = a\cos t, \quad y(t) = b\sin t,$$

kde a a b jsou délky hlavních poloos elipsy a parametr $t \in (0, 2\pi)$.

Parametrická rovnice byla implementována následovně:

```
t = 0:pi/10:2*pi;
xe = mpn * cos(t) * 1000;
ye = mrn * sin(t) * 1000;
E = [xe; ye];
```

Pro účely vizualizace byla elipsa uměle zvětšena pomocí násobení hodnot 1000, jinak by vzhledem k poměru měřítka nebyla v grafickém výstupu prakticky viditelná.

Tato elipsa má však výchozí střed v bodě [0,0], a je proto nutné ji jednak správně natočit, a jednak posunout do bodu odpovídajícího místu, kde má být indikatrix zobrazena.

Natočení elipsy bylo provedeno pomocí rotační matice R_E , kde úhel natočení odpovídá hodnotě σ_p , tedy směrnici místního poledníku v daném bodě. Rotační matice má tvar:

$$R_E = \begin{bmatrix} \cos \sigma_p & -\sin \sigma_p \\ \sin \sigma_p & \cos \sigma_p \end{bmatrix}.$$

Posunutí výstupu do cílové pozice (x_n, y_n) pak bylo realizováno podle následujícího vztahu:

$$\begin{pmatrix} x_e \\ y_e \end{pmatrix} = R_E \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} + \begin{pmatrix} x_n \\ y_n \end{pmatrix},$$

kde (x_0, y_0) jsou souřadnice bodů elipsy před rotací a posunem.

Tímto způsobem lze do libovolného bodu na plošce zobrazit Tissotovu indikatrix a na základě tvaru elipsy vizuálně posoudit míru zkreslení délkových měřítek v daném místě.

4 Výsledky

4.1 Tvorba polyedrického glóbu

Byl vytvořen model dvanáctistěnu, stěny tělesa rozloženého do roviny jsou dostupné jako příloha této zprávy. Vzniklý glóbus ve 3D bude prezentován na cvičení z předmětu Matematická kartografie.

Měřítko bylo zvoleno tak, aby bylo možné výsledné plošky nalepit na model dvanáctistěnu s protilehlými stěnami vzdálenými 7.5 cm. Tento model byl vytištěn na 3D tiskárně. Poloměr vepsané sféry je tedy 3.75 cm. Měřítko modelu poté vychází na 1 : 170 080 000.

4.2 Výpočet vlastností gnomonické projekce ve zvoleném bodě

V tabulce níže jsou uvedeny parametry gnomonické projekce v bodě A[52,6226°, 0°].

Parametr	Hodnota
Měřítko v poledníku m_p	1,5836
Měřítko v rovnoběžce m_r	1,2584
Poloosa a Tissotovy indikatrix	1,5836
Poloosa b Tissotovy indikatrix	1,2584
Úhel ω' mezi poledníkem a rovnoběžkou	$1,5708 = pi/2 = 90^{\circ}$
Maximální úhlové zkreslení $\Delta \omega$	$0,2293 = 13,14^{\circ}$
Měřítko ploch P	1,9928
Meridiánová konvergence c	0

Tabulka 1: Vypočtené projekční parametry v daném bodě

Vypočtené projekční parametry v bodě A byly využity pro kontrukci Tissotovy indikatrix, která je znázorněna na obrázku 3.

Obrázek 3: Tissotova indikatrix v bodě A.

5 Závěr

V této zprávě byl popsán postup konstrukce polyedrického glóbu - pravidelného dvanáctistěnu. Byly popsány teoretické základy, metodika převodu souřadnic a aplikace gnomonické projekce spolu s analýzou projekčních zkreslení. Všechny výpočty jsou realizovány prostřednictvím MATLAB skriptů přiložených k této zprávě. Vykreslení plošek glóbu je prezentováno v příloze. Vzniklý glóbus splňuje zadané parametry a bude prezentován na cvičení z předmětu Matematická kartografie.

6 Přílohy

A. MATLAB skripty

- uv_sd.m převádí zeměpisné souřadnice na kartografické vzhledem ke kartografickému pólu (kvadrantově korektně).
- gnom.m realizuje gnomonickou projekci v obecné poloze.
- continent.m načítá a promítá lomové body kontinentů z datových souborů.
- globeFace.m vykresluje jednotlivé plošky glóbu se sítí, kontinenty a ořezovými hranami.
- gnom_distortions.m vypočítává metrické parametry projekce včetně Tissotovy indikatrix.
- boundary.m definuje a vykresluje ořezové linie (hranice plošek) dvanáctistěnu.
- define_boundary_points.m nastavuje souřadnice všech vrcholů dvanáctistěnu ve stupních a převádí je na radiány.
- deg_to_rad.m pomocná funkce pro převod stupňů na radiány.
- graticule.m generuje síť poledníků a rovnoběžek v zadaném rozsahu a rozlišení.
- u2_main.m hlavní skript pro sestavení všech 12 plošek dvanáctistěnného glóbu.

B. Textové soubory se souřadnicemi lomových bodů kontinentů

- afr.txt
- afr_mad.txt
- amer.txt
- antar.txt
- austr.txt
- eur.txt
- greenl.txt
- newzel1.txt

- newzel2.txt
- tasm.txt

C. Grafické výstupy

• export.pdf – jednotlivé stěny dvanáctistěnu připravené k nalepení na 3D model.

Zdroje

Bayer, Tomáš (2025). Konstrukce glóbů na platónských tělesech - návod na cvičení. Dostupné online, navštíveno 12. dubna 2025. URL: https://web.natur.cuni.cz/~bayertom/images/courses/mmk/mmk_cv_2_navod.pdf.