${\rm COMP9020}$ - Assignment 2

Jack Jiang (z5129432)

24 September 2017

Question 1

(a) For graph G = (E, V) as follows:

For every $e = (v, w) \in E$

$$c(v) \neq c(w)$$

The minimum number of colors to sufficient effect such a mapping, denoted:

$$\chi(G)$$

(b) The minimum number of colors is 2, as follows:

(c) The connection of the graph changes, as follows:

Because v2 connect to v3, so they must be different colours, $c(v2) \neq c(v3)$ v2 and v3 connect to all other vertex, so other vertex must use different colours other than c(v2) and c(v3)

$$c(v1) \neq c(v2) \neq c(v3)$$

also, v1 connect to v4, so $c(v1) \neq c(v4)$, at lease we should use 4 different colors Because I can use 4 different colors as shows in graph, therefore:

$$\chi(G) = 4$$

Question 2

- (a)
- (b)
- (c)

Question 3

(a) (R):

$$x \lor x = x \implies x \sqsubseteq x \text{ for all } x \in S$$

(AS):

$$x \sqsubseteq y \implies x \lor y = y$$

 $y \sqsubseteq x \implies y \lor x = x$

$$\because x \vee y = y \vee x$$

$$\therefore x = y$$

(T):

$$x \sqsubseteq y \implies x \lor y = y$$

$$y \sqsubseteq z \implies y \lor z = z$$

$$x \lor z = x \lor (y \lor z) = (x \ lory) \lor z = y \lor z = z$$

$$\therefore x \sqsubseteq z$$

(L): not satisfied

$$for x, y are \ not \ empty, \ if \ x \vee y = \emptyset \ then$$

$$neither \ x \sqsubseteq y \ nor \ y \sqsubseteq x$$

(b) $\sqsubseteq iscorresponse to \subseteq$

$$x \subseteq y \iff x \cup y = y$$

(c) Draw a trueth table:

X	У	$x \vee y$	$(x \lor y) \rightleftarrows y$
Τ	Т	Т	T
Τ	F	Т	F
F	Т	Т	Т
F	F	F	Т

Therefore, the logic equivilence is:

$$xy + \overline{x}y + \overline{x}\overline{y} = y + \overline{x}\overline{y}$$

Question 4

- (a)
- (b)
- (c)

Question 5

- (a)
- (b)
- (c)