Section 1

Sujin Park COGS 17 A04

01/17/25

Introductions

Sujin Park

Education:

first-year PhD Student in Cognitive Science MA Psychology BA Political Science and Diplomacy & Psychology

Research:

- Biomarkers of Neurodevelopmental disorders

Contact Info:

- Email: sup031@ucsd.edu (Pls include COGS17 in subject line) or Canvas Inbox
- Office Hours: Thu 2-3 pm in-person @ SSRB Room 239 better reach out before since the door is locked!

Feel free to reach out if you have any questions or problems!

Ground Rules

Use this section to boost your learning

- Discussion section is optional!
- The aim of this section is to review contents covered in class
- Attending section and actively engaging will improve your learning!
- Feel free to give feedback or comments on how to run this section
- It's okay to be wrong

Keep discussions on topic

- Everyone has different opinions about various things
- Let's keep the conversation about class and lecture subjects

Section slides are on github (scan QR code)

Let's all get As!

Opportunities that you might be interested

<u>PNI Summer Internship Program</u> (scan QR code): Hands-on summer research internship at the Princeton Neuroscience Institute

- for non-Princeton undergraduates who are interested in pursuing a graduate degree in neuroscience or a related field
- nine weeks across early June to early August. For 2025, SIP will take place June 2 August 1
- application for Non-Princeton Student Deadline (SIP) this year: February 3, 2025

<u>Innovators in Cognitive Neuroscience seminar videos</u>

- Dartmouth Center for Cognitive Neuroscience
- ~1h talk
- might use for extra credit essays?

Important Reminders

Homework Problem sets

- Homework problems are <u>Required</u>, they guide your learning and will inform us of how you are doing for the lectures
- Due every Wednesday at Midnight (EXCEPT Homework 3, Jan 27 Monday)
- IMPORTANT: NO LATE HOMEWORKS WILL BE ACCEPTED

Exams

- 4 Exams total: Online, Open book, "one shot" for consecutive 80 Minutes
- 3 Midterms are NON-cumulative
- 1 Final is Comprehensive (on the SAME DAY after 3rd Midterm)

Extra Credit

- SONA
- Essay
- Mnemonics
- Homeworks

Lecture 1

Anatomy of the Nervous System

Mid-Saggital Section

Planar Views of the Brain

Frontal or coronal plane

Coronal Plane -- From the FRONT

Sagittal plane

Sagittal Plane -- From the **SIDE**

Horizontal plane

Horizontal Plane -- From the ABOVE

Planar Views of the Brain - Surprise Quiz

Planar Views of the Brain - Surprise Quiz

Guess whose brain this is

Orientation and Views

Lateral & Medial

Lateral: Towards the sides (Outside)

Medial: Towards the middle (Center)

Dorsal & Ventral

- Dorsal: The "top" of the brain

- Ventral: The "underside" of the brain

Anterior & Posterior

- Anterior: Front

Posterior: Back

Bilateral Structure

- Ipsilateral: Same side

Contralateral: Opposite side

Support Structure

Meninges

- Dura Mater: Thick outer layer
- Arachnoid Mater: Spider-web like, spongy layer filled with Cerebrospinal fluid (CSF), shock absorber
- Pia Mater: flexible inner layer that conforms to the brain and spine surfaces, include blood vessels

Support Structure

Ventricles

- Hollow, interconnected cavities
- produce and circulate CSF
- Structure:
 - 2 Lateral Ventricles
 - Central Third Ventricle
 - Cerebral Aqueduct
 - Central Fourth Ventricle

Hydrocephalus

Swollen ventricles

- When CSF is not properly drained out through the cerebral aqueduct, the ventricles tend to swell up
- CSF swelling pushes the brain matter against the PAD, replacing cortical matter with CSF
- Typically Fatal
 - Interventions can redirect excess CSF into the abdominal cavity to reduce the swelling

Feeding the brain

Blood Vessels

- Web of incoming arteries and outgoing veins
- Helps clear out the brain of waste
- Carries out "used" CSF
- 2% of body weight but uses 20% of blood supply

Blood-Brain Barrier (BBB)

- Strict control over chemicals in the brain
- Protects the brain from infections
- Only small uncharged particles (O2, CO2) and some fat-soluble molecules can passively cross BBB
- Astrocyte helps to create barrier

Central Nervous System (CNS)

- Spinal cord and brain
- Encased in bone and meninges

Peripheral Nervous System (PNS)

- Nerves outside the CNS
- Somatic Nervous System: interaction with the external environment (Sensory/Motor)
- Autonomic Nervous System: interaction with the internal environment (internal organs)

Towards the center of the brain	A. Lateral
Bottom of the brain	B. Medial
Top of the brain	C. Dorsal
On both sides of the brain	D. Ventral
Same-side connections	E. Bilateral
Towards the outside of the brai	n F. Ipsilateral
Opposite side connections	G. Contralater
ither pertaining to the central nervous s	ystem (CNS) or peripheral nervous system (
omatic nervous system	Surrounded by bone and meninges
rain and spinal cord	Autonomic nervous system

Match definition to concept:

B	Towards the center of the brain	A. Lateral
D	Bottom of the brain	B. Medial
C	Top of the brain	C. Dorsal
E	On both sides of the brain	D. Ventral
F_	Same-side connections	E. Bilateral
Α	Towards the outside of the brain	F. Ipsilateral
G	Opposite side connections	G. Contralateral

Label as either pertaining to the central nervous system (CNS) or peripheral nervous system (PNS):

PNS Somatic nervous system CNS Surrounded by bone and meninges

CNS Brain and spinal cord PNS Autonomic nervous system

HindBrain

Medulla Oblongata

Control vital reflexes (e.g., breathing, heart rate)

Pons

- Latin for "Bridge"
- Relay between cortex & cerebellum and brain & spinal cord
- Includes reticular formation (arousal) and raphe system (sleep)

Cerebellum

- Motor programs with real-time sensory coordination
- Guide movements
- Critical in timing actions and also important for shifting attention
- NOT the brain stem

Hypothalamus

Midbrain

Entirely contained in the brain stem

Tectum

- Latin for "Roof"
- Part of **sensory** pathways to the brain
- Consists of superior and inferior colliculus
 - 1) Superior colliculus: visual motion
 - 2) Inferior colliculus: auditory motion

Tegmentum

- Latin for "Covering" or "Rug"
- Contains major motor pathways and some cranial nerves
- Includes Red Nucleus and Substantia Nigra
- Contains cranial nerves to control eye movements

tectum to detect 'em, tegmentum for momentum

Forebrain (Diencephalon)

Diencephalon consists of the thalamus and hypothalamus

Thalamus

- Primary source of input to cerebral cortex
- Nuclei of many sensory and motor systems
- Involved in cortical arousal

Hypothalamus

- Hypo = "below"
- Oversees "4Fs": Fighting, Fleeing, Feeding, F...
- Also regulates temperature and internal clock
- Controls the endocrine system via the Pituitary Gland

Embryo at 5 weeks

Forebrain (Diencephalon)

nuclei of Hypothalamus

In regards to the Brainstem, indicate whether the following are TRUE or FALSE.

- A) The brainstem includes hindbrain, midbrain, and forebrain structures. []
- B) The Raphe System, which runs along the medial face of the brainstem, plays a role in feeding behavior. []
- C) The Reticular Activating System, that runs up the brainstem, arouses the brain. []
 - D) The brainstem includes the Cerebellum. []
 - E) The brainstem includes the Thalamus and Hypothalamus. []

In regards to the Brainstem, indicate whether the following are TRUE or FALSE.

- A) The brainstem includes hindbrain, midbrain, and forebrain structures. [T]
- B) The Raphe System, which runs along the medial face of the brainstem, plays a role in feeding behavior. [F]
- C) The Reticular Activating System, that runs up the brainstem, arouses the brain. [T]
 - D) The brainstem includes the Cerebellum. [F]
 - E) The brainstem includes the Thalamus and Hypothalamus. [T]

Forebrain (Telencephalon)

Limbic System

- Motivational and emotional behavior
- Hippocampus: formation of new memories and spatial mapping
- Amygdala: emotional expression and interpreting others' emotions
- Cingulate Gyrus: assess valence +/-
- Olfactory Bulb: exchanges olfactory information with the rest of the limbic system

Basal Ganglion

- Includes caudate, putamen, and globus pallidus
- Control of movement, especially planned sequential behaviors (task setting)

Forebrain (Telencephalon)

Basal Forebrain

- attention and cortical arousal
- Main source of ACh (Acetylcholine, excitatory neural transmitter) and GABA (Gamma-Aminobutyric Acid, inhibitory neural transmitter)
- sleep/arousal cycles

Organized into 6 layers

- Information projected in at layer 4
- Bulges = gyri
- Folds = sulci
- Central Sulcus divides parietal from frontal lobe
- Lateral Sulcus divides temporal from frontal lobe

Breaking down the Lobes

Occipital Lobe

- Visual processing
- Contains V1 and receives projections from the thalamus & higher visual areas
- Separate pathways for details (e.g., color, depth) that project to other lobes

Temporal Lobe

- Contains auditory areas (including Wernicke's Area)
- Inferior Temporal: ventral "who/what" pathway, specializes for face detection
- Anterior Temporal: emotional expression and interpretation

Breaking down the Lobes

Parietal Lobe

- integrating visual and somatosensory info
- Spatial mapping
- Medial Temporal (MT): dorsal "where/how" pathway

Canonical cells

- Responds to "affordances" of objects
- Motor cortex also contains canonical cells

Mirror cells

- Respond to seeing self or other perform an action
- Promotes imitation

Frontal Lobe

- Important for motor movements, language production, and strategy
- Precentral gyrus: motor cortex
- Premotor areas contain mirror cells
- Contains Broca's Area (prepare to speak)
- Prefrontal cortex

Prefrontal Cortex

- Self-control
- Delayed gratification
- Culturally/socially appropriate behavior
- Cost/benefit analysis
- Orbital-Frontal Cortex
 - Plays an important role in social strategy

Corpus Callosum

- Large axonal fibers connecting the two hemispheres
- Part of the "white matter" of the brain
 - Consists of mainly myelinated axons

- The cerebral cortex is composed of _____ layers.
- Information is projected into the cortex at layer _____.
- The bulges in the cortex are called _____ while the folds are called _____.
- choose the right option
 - The inferior temporal (IT)/medial temporal (MT) contains face cells and is part of the dorsal/ventral pathway for information on "who" and "what," while the inferior temporal (IT)/medial temporal (MT) is part of the dorsal/ventral pathway and includes motion sensitive cells.
 - In the frontal lobe, there are canonical/mirror cells that respond to "affordances" of objects while the canonical/mirror system is said to react when you see yourself or others perform an action.

- The cerebral cortex is composed of __6__ layers.
- Information is projected into the cortex at layer _4___.
- The bulges in the cortex are called __gyri____ while the folds are called __sulci___.
- The inferior temporal (IT)/medial temporal (MT) contains face cells and is part of the dorsal/ventral pathway for information on "who" and "what," while the inferior temporal (IT)/medial temporal (MT) is part of the dorsal/ventral pathway and includes motion sensitive cells.
- In the frontal lobe, there are canonical/mirror cells that respond to "affordances" of objects while the canonical/mirror system is said to react when you see yourself or others perform an action.

Spinal Cord

Consists of 31 segments along the spine

Dorsal Root

- Afferent nerves
- Information from body to brain

Ventral Root

- Efferent nerves
- Motor information to muscles and glands

Bell-Magendie Law

Sensory information goes in via dorsal roots and exits ventral roots

Peripheral Nervous System

2 Subdivisions

Somatic

- 31 pairs of spinal nerves: sensory information from body, feedback from skeletal muscles, and motor output to muscles
- 12 cranial nerves: senses, feedback from some organs, motor control of eye movements, and control of facial expressions

Autonomic

- Regulates internal state
- Sympathetic "Fight or Flight"
- Parasympathetic "Rest & Digest"

Autonomic Nervous System

Labe	el as either a sympathetic response (S) or a parasympathetic response (P):
]	Pupils dilate
3	Increased heartrate
\$	Saliva production
]	Bronchi constrict
]	Halt digestion
]	Facilitate sexual arousal
]	Hold bladder
]	Blood vessels constrict
]	Pilo-erection

Label as either a sympathetic response (S) or a parasympathetic response (P):

- S Pupils dilate
- S Increased heartrate
- P Saliva production
- P Bronchi constrict
- S Halt digestion
- P Facilitate sexual arousal
- S Hold bladder
- S Blood vessels constrict
- s Pilo-erection

Enjoy the rest of the week!

