Finding a Minimum Edge Dominating Set for a graph

João Carvalho, 89059

Resumo — Neste relatório é abordado e analisado o problema do Edge Dominating Set de um determinado grafo. O objetivo deste problema é encontrar o Edge Dominating Set de menor tamanho possível. Para isso foram desenhados e testados dois algoritmos: Exhaustive search e algoritmo com greedy heuristics. Como conclusão são analisados e comparados os resultados obtidos.

Abstract - This report analyzes the Minimum Edge Dominating Set problem for a graph, which means, finding an Edge Dominating Set of smallest possible size using two algorithms: Exhaustive search and Greedy search.

I INTRODUCTION

Os dominating sets dos grafos é um dos conceitos da teoria dos grafos que atraiu muitos pesquisadores a trabalhar nele por causa de suas muitas e variadas aplicações em campos como álgebra linear e otimização.

Neste trabalho foi tratado o *dominating set* de arestas, especificamente, o problema do *edge dominating set* de menor tamanho, um problema, quanto à complexidade computacional, NP-completo.

II. PROBLEM ANALYSIS

Um Edge dominating set de um grafo G = (V, E) é um subconjunto $D \subseteq E$, tal que qualquer aresta que não está em D é adjacente a pelo menos uma aresta em D. O minimum edge dominating set (MEDS) é o subconjunto D de menor tamanho, isto é, com o menor número de arestas possível.

Acima podemos observar dois exemplos de um *minimum edge dominating set* de um grafo com oito vértices e nove arestas. Nestes casos o *MEDS* possui uma tamanho de 3.

Para grafos com dimensões muito reduzidas é relativamente fácil descobrir uma solução apenas analisando a sua estrutura, contudo, no caso de grafos continuamente maiores em número de vértices e arestas a resolução do problema apenas analisando a estrutura diretamente torna-se impossível. Assim, iremos analisar a resolução do problema com base nos algoritmos já mencionados.

III. SOLUTION ANALYSIS

Primeiramente o programa, desenvolvido em python3, implementa um grafo com n vértices (número dado pelo utilizador) e com um número aleatório de arestas.

Os vértices do grafo são pontos 2D com coordenadas *random* entre 1 e 9. O número de arestas por vértice é determinado aleatoriamente também.

Abaixo estão alguns exemplos de grafos gerados com três, cinco e sete vértices respectivamente.

O grafo está representado por uma matriz de incidência uma vez que, como a análise é sobre as arestas, a matriz de incidência dá-nos a relação direta dos vértices e suas arestas incidentes.

Grafo 3

Para essa representação e implementação da resolução é usada uma classe "Graph" que contém os métodos para esses efeitos. O método "add_edge(v1,v2)" é usado para criar a matriz recebendo os dois vértices e adicionando o valor 1 às rows dos vértices v1 e v2 e 0 às restantes formando, assim, uma nova aresta como column.

Acima está representado um exemplo de um grafo criado com quatro vértices. Abaixo encontra-se a sua matriz de incidência.

O método getEdgesAdjacency() cria, com base na matriz de incidência, um dicionário com as arestas como keys e uma lista de arestas adjacentes à key como value. Dicionário este que posteriormente irá ser usado para

encontrar a solução do problema. Abaixo encontra-se o dicionário de adjacência do grafo exemplo.

Neste ponto analisamos a implementação dos algoritmos usados para a resolução do problema.

- 1. Exhaustive search
- 2. Greedy search

Exhaustive search

Para a implementação da pesquisa exaustiva é usado o método *findExhaustiveSolution()* da classe *Graph*. O algoritmo consiste em iterar o range do número de arestas do grafo para calcular todas as combinações possíveis (com tamanho entre 1 e o número de arestas) de conjuntos de arestas que constituem, assim, possíveis soluções. Iterando os conjuntos de arestas calculados verificamos as arestas adjacentes a cada uma pertencente ao conjunto, se as arestas do conjunto juntamente com as adjacentes formarem todo o domínio de arestas do grafo então encontramos a combinação que reflete o *dominating set* de arestas. O *MEDS* é o/um conjunto solução de arestas com menor tamanho.

Search with Greedy Heuristics

Para a implementação da pesquisa com *greedy heuristics* é usado o método *findGreedySolution()* da classe *Graph*. O algoritmo consiste, numa primeira fase, em ordenar o dicionário de adjacência por tamanho da lista de arestas adjacentes, isto é, ficará ordenado por ordem decrescente das arestas com maior número de arestas adjacentes. Com o dicionário ordenado adiciona-se à solução final a primeira aresta do dicionário e seguidamente elimina-se do próprio dicionário a aresta e suas arestas adjacentes. Repetindo estes passos anteriores tem-se uma solução final (*MEDS*) assim que o dicionário ficar vazio.

IV. RESULTS AND DISCUSSION

Neste ponto irá analisar-se e discutir-se os resultados obtidos das experiências realizadas na resolução do problema. Numa primeira instância, encontra-se abaixo a solução, isto é, o *MEDS* dos três grafos apresentados anteriormente(Grafo 1 <3 vértices>, Grafo 2 <5 vértices>, Grafo 3 <7 vértices>) com os dois algoritmos bem como o tempo gasto e o número de *basic operations* usadas em cada.

-\$ python3 src/main.py 3

```
carvalho@LAPTOP-S01N1QNU:/mnt/c/Users/joaoc/OneDrive/Ambiente de Trab
Graph created with 3 vertices and 3 edges! Time elapsed: 0.0665 (ms)
Minimum edge dominating set (exhaustive algorithm): (0,)
Time elapsed: 0.0815 (ms) | Num basic ops 12
Minimum edge dominating set (greedy algorithm): [0]
Time elapsed: 0.0219 (ms) | Num basic ops 2
```

-\$ python3 src/main.py 5

```
carvalho@LAPTOP-501N1QNU:/mnt/c/Users/joaoc/OneDrive/Ambiente de Tra
Graph created with 5 vertices and 6 edges! Time elapsed: 3.6511 (ms)
Minimum edge dominating set (exhaustive algorithm): (1,)
Time elapsed: 0.1614 (ms) | Num basic ops 192
Minimum edge dominating set (greedy algorithm): [1]
Time elapsed: 0.011 (ms) | Num basic ops 5
```

-\$ python3 src/main.py 7

```
carvalho@LAPTOP-S01N1QNU:/mnt/c/Users/joaoc/OneDrive/Ambiente de Trabe
Graph created with 7 vertices and 15 edges! Time elapsed: 1.7316 (ms)
Minimum edge dominating set (exhaustive algorithm): (2, 7)
Time elapsed: 400.701 (ms) | Num basic ops 245760
Minimum edge dominating set (greedy algorithm): [8, 3]
Time elapsed: 0.0584 (ms) | Num basic ops 17
```

Para uma melhor visualização dos resultados obtidos os dados estão dispostos numa tabela que se pode consultar abaixo.

	#Vertices	#Edges	#Basic operations	Time (ms)
Exhaustive	2	1	1	0.1726
Greedy	2	1	1	0.0303
Exhaustive	3	2	12	0.1264
Greedy	3	2	2	0.0174
Exhaustive	5	8	1024	2.1849
Greedy	5	8	10	0.0999
Exhaustive	8	12	24576	19.552
Greedy	8	12	14	0.0966
Exhaustive	11	23	96468992	106681.5076
Greedy	11	23	25	0.536
Exhaustive	25	151		Ψ.
Greedy	25	151	237	0.5145
Exhaustive	200	10131	120	ω.
Greedy	200	10131	19714	14.3182
Exhaustive	200	63205	120	ω.
Greedy	500	63205	124095	2676.0232

Como podemos verificar os testes foram realizados iterativamente com um número crescente de vértices e consequentemente de arestas.

No caso da *Exhaustive search*, como previsível, o tempo gasto assim como o número de *basic operations* cresce de forma exponencial(complexidade O(2^n)) à medida que os grafos vão ficando mais complexos pois o número de possibilidades combinadas aumenta da mesma forma. Neste caso para grafos com mais de 12/13 vértices e,

principalmente com mais de 25/27 arestas, este tipo de pesquisa já se torna bastante demorosa e ineficiente.

Usando a expressão exponencial "2^num_vertices" podemos, mesmo que pouco precisamente, prever um possível valor de tempo gasto para encontrar uma solução. É pouco preciso pois o número de arestas é determinado aleatoriamente. Por exemplo um grafo com 20 vértices demoraria à volta de 1048576 ms para resolver o problema, cerca de 20 min. Para a previsão do número de basic operations podemos usar a expressão "5^num_vertices" como aproximação. No exemplo de 20 vértices o processo usaria 95367431640625 operações.

Pelo contrário, no algoritmo usando *Greedy heuristics*, o tempo gasto e o número de *basic operations usadas* para a resolução parece crescer linearmente, pois apenas depende do dicionário de adjacência das arestas.

V. Conclusion

Por fim pode-se concluir que os resultados obtidos foram ao encontro das expectativas prévias. Algoritmos usando *Greedy heuristics* aumentam, de facto, consideravelmente, a eficiência de um algoritmo que realiza uma pesquisa apenas por *brute force*.

A implementação e posteriores testes refletem com alguma precisão essa diferença de complexidade e apresentam valores de tempo e *basic operations* razoáveis para o problema em questão.

REFERENCES

- [1] https://www.hindawi.com/journals/isrn/2014/975812/
- [2] https://core.ac.uk/download/pdf/82784436.pdf