Chapitre 6

Suites arithmétiques et géométriques

1 Deux exemples d'étude de suites

Exercice 1

En 2020, un village U comptait 800 habitants mais chaque année il perd 5 habitants au profit d'un village V qui comptait 580 habitants en 2020.

En quelle année, la population du village V dépassera-telle celle du village U?

Modélisation de la situation avec des suites

Définition

Une suite (u_n) est dite **arithmétique** s'il existe un nombre réel r tel que pour tout entier n on a $u_{n+1}=u_n+r$.

Le nombre r est appelé **raison** de la suite (u_n) .

Schéma général:

Procédure 1: Utilisation des formes explicites des deux suites

Propriété

Si (u_n) est une suite **arithmétique** de raison r, alors pour tous entiers naturels n et m:

- $u_n = u_0 + n \times r$ (forme explicite)
- $u_n = u_m + (n-m)r$

Procédure 2 : Utilisation des représentations graphiques des deux suites

Propriété

Si (u_n) est une suite **arithmétique** de raison r, alors, dans un repère, les points de coordonnées $(n;u_n)$ sont alignés.

Procédure 3 : Utilisation d'un tableur

	Α	В	С
1	n	U	V
2	0	800	580
3	1		
4	2		
5	3		
6	4		

Procédure 4: Utilisation d'un algorithme

Python

```
v = ...
v = ...
m = ...
while u ... v :
    u = ...
    v = ...
    n = ...
print(...)
```


Exercice 2

Mathieu a placé 4000 € sur un compte qui rapporte 2 % d'intérêts chaque année. Julie a placé 3500 € sur un compte qui rapporte 3 % d'intérêts chaque année.

Au bout de combien d'années, Julie disposera-telle de plus d'argent que Mathieu?

Modélisation de la situation avec des suites

Définition

Une suite (u_n) est dite **géométrique** s'il existe un nombre réel q tel que pour tout entier n on a $u_{n+1}=q\times u_n$.

Le nombre q est appelé **raison** de la suite (u_n) .

Schéma général:

Procédure 1: Utilisation des formes explicites des deux suites

Propriété

Si (u_n) est une suite **géométrique** de raison $q \neq 0$, alors pour tous entiers naturels n et m:

- $u_n = u_0 \times q^n$ (forme explicite)
- $u_n = u_m \times q^{n-m}$

Procédure 2 : Utilisation d'un tableur

	Α	В	С
1	n	U	V
2	0	4000	3500
3	1		
4	2		
5	3		
6	4		

Procédure 3 : Utilisation d'un algorithme

2 Sens de variation d'une suite arithmétique ou géométrique

Propriété

Soit u une suite arithmétique de raison r.

- · si r > 0 alors u est croissante.
- \cdot si r < 0 alors u est décroissante.
- · si r=0 alors u est constante.

Preuve

Exemple

Soit la suite α définie par

$$\left\{ \begin{array}{lcl} \alpha_0 & = & 4 \\[1mm] \alpha_{n+1} & = & \alpha_n - \frac{1}{2} & \text{pour tout } n \in \mathbf{N} \end{array} \right.$$

C'est une suite arithmétique de raison $-\frac{1}{2}$, c'est donc une suite décroissante.

Propriété

Soit u une suite géométrique de raison q.

- $\cdot\,$ Si q<0 la suite n'est ni croissante ni décroissante.
- Si q=0 la suite est nulle à partir de u_1 .
- Si q=1 la suite est constante.

- Si $u_0 > 0$ alors
- Si q>1 la suite est croissante. Si 0< q<1 la suite est décroissante. Si 0< q<1 la suite est croissante.
- Si $u_0 < 0$ alors

Preuve

Exemples

La suite u définie par

$$\left\{ \begin{array}{lcl} u_0 & = & 6 \\[1mm] u_{n+1} & = & \frac{2}{3}u_n \quad \text{pour tout } n \in \mathbf{N} \end{array} \right.$$

est une suite géométrique de raison $q = \frac{2}{3}$. Comme $u_0 > 0$ et que 0 < q < 1, elle est décroissante.

La suite v définie par

$$\left\{ \begin{array}{lcl} v_0 & = & 1 \\ v_{n+1} & = & 1,34 \; v_n & \mbox{pour tout} \; n \in \mathbf{N} \end{array} \right.$$

est une suite géométrique de raison q = 1, 34.

Comme $u_0 > 0$ et que q < 1, elle est croissante.

3 Somme de termes consécutifs d'une suite arithmétique ou géométrique

Sommes des termes d'une suite arithmétique

Propriété

Pour tout entier $n\geqslant 1,\quad 0+1+2+3+\ldots+n=\frac{n(n+1)}{2}$ On note : $\sum_{k=0}^n k=\frac{n(n+1)}{2}.$

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$$

Preuve

Démonstration en vidéo : https://youtu.be/hHySWepnHwY

Histoire

Une anecdote raconte que le jeune Carl Friedrich Gauss (1777 - 1855), alors âgé de 10 ans a utilisé cette astuce pour effectuer très rapidement et avant tous ses camarades un calcul donné par son instituteur. Il s'agissait de calculer la somme 1 + 2 + 3 + ... + 100.

Pour en savoir plus : https://youtu.be/pvKLXuueQTI

Propriété: Somme des termes d'une suite arithmétique

Soit (u_n) une suite arithmétique de raison r et de premier terme u_0 . Soient n et p deux entiers naturels, avec n < p.

 \cdot La somme des n+1 premiers termes de la suite u_n est égale à :

$$u_0 + u_1 + u_2 + \dots + u_{n-1} + u_n = (n+1)\frac{u_0 + u_n}{2}$$

• La somme des termes d'indice p à n est égale à :

$$u_p + u_{p+1} + \dots + u_n = (n - p + 1) \frac{u_p + u_n}{2}$$

Preuve

Somme des termes d'une suite géométrique

Propriété

Pour tout réel $q \neq 1$ et pour tout entier $n \geqslant 1$, on a : $1 + q + q^2 + \ldots + q^n = \frac{1 - q^{n+1}}{1 - q}$.

On note :
$$\sum_{k=0}^n q^k = \frac{1-q^{n+1}}{1-q}.$$

Preuve

Soient
$$n \in \mathbf{N}^*$$
 et $q \in \mathbf{R} \setminus \{1\}$.
On note : $S_n = 1 + q + q^2 + ... + q^{n-2} + q^{n-1} + q^n$.
On a : $q \times S_n = q + q^2 + q^3 + ... + q^{n-1} + q^n + q^{n+1}$
D'où $S_n - qS_n = 1 + q - q + q^2 - q^2 + ... + q^n - q^n - q^{n+1}$
 $1 \times S_n - qS_n = 1 - q^{n+1}$
 $(1 - q)S_n = 1 - q^{n+1}$
Ainsi $S_n = \frac{1 - q^{n+1}}{1 - q}$ en divisant par $1 - q$ car $q \neq 1$

Propriété: Somme des termes d'une suite géométrique

Soit (u_n) une suite géométrique de raison $q \neq 1$ et de premier terme u_0 . Soient n et p deux entiers naturels, avec n < p.

· La somme des n+1 premiers termes de la suite u_n est égale à :

$$u_0 + u_1 + u_2 + \dots + u_{n-1} + u_n = u_0 \times \frac{1 - q^{n+1}}{1 - q}$$

• La somme des termes d'indice p à n est égale à :

$$u_p + u_{p+1} + \dots + u_n = u_p \times \frac{1 - q^{n-p+1}}{1 - q}$$

Preuve

Exemples

- 1. Calculer $S_1 = 1 + 2 + 3 + ... + 75$.
- **2.** Calculer $S_2 = 1 + \frac{1}{3} + \left(\frac{1}{3}\right)^2 + \dots + \left(\frac{1}{3}\right)^9$.
- 3. La suite (u_n) est arithmétique avec $u_3=3$ et $u_9=15$. Calculer $u_3+u_4+\ldots+u_9$
- **4.** La suite (v_n) est géométrique de raison q=-2 et de premier terme $v_0=3$. Calculer la somme des dix premiers termes de la suite (v_n) .

Exercice 3

Alice a deux propositions de salaires lors de son arrivée dans une entreprise le 1^{er} janvier 2023 :

- Proposition 1 : Elle commence avec un salaire de 2000 € mensuel la première année et son salaire mensuel augmente chaque année de 115 €.
- **Proposition 2 :** Elle commence avec un salaire de 2000 € mensuel la première année et son salaire mensuel augmente chaque année de 5%.

Afin de se constituer un pécule pour faire le tour du monde en 2033, Alice souhaite mettre de côté **UN** salaire mensuel par an jusqu'à son départ.

Quelle proposition lui conseillez-vous de choisir?