The Composition Effect of the Socially Optimal Green Transition

Michael B. Nattinger

UW Madison

Alexander H. von Hafften

UW Madison

SED

June 28, 2024

Introduction

Introduction

Prior lit derives carbon tax sequence that implements optimal green transition, in rep-firm economies

- Ex.: Nordhaus (2008), Golosov, Hassler, Krussell, & Tsyvinski (2014), Krusell & Smith (2022)

Firms vary: carbon dependence, TFP. Firm exits endogenous, composition effect in Planner allocation

- Utilized production technology change at extensive margin, in addition to intensive margin

This Paper: Quantify effect of het on optimal carbon tax sequence, and consequences of ignoring het

Theory: Tractible het-firm model, characterize Planner allocation & implement w/ carbon tax sequence

Quantify: Match empirical emission intensity distribution, solve for optimal transition & tax scheme

- Compare tax sequence after shutting down carbon dependence heterogeneity
- Compute welfare consequences of implementing no-het tax scheme in with-het world

Findings: Optimal tax path is much higher without heterogeneity ($\sim 150\%$ of with-heterogeneity)

- Implementing no-het taxes in w/-het economy results in $\sim 90\%$ of welfare gain relative to first-best

Quantitative Model

Model Overview

The model consists of four blocks:

- 1) Firm Block [Hopenhayn 1992, Clementi and Palazzo 2016]
 - Atomistic firms take as given aggregates and prices
 - Choose quantity and 'greenness' of investment: demand labor and produce goods: can exit
- 2) Environmental Block [Nordhaus (2008), GHKT (2014), Krusell and Smith 2022]
 - Emissions from production contribute to atmospheric carbon stock [not internalized!]
 - Carbon stock causes economic damages which ultimately reduce aggregate consumption
- 3) Consumer Block [standard representative]
 - Inelastically supply labor: own firms: price risk-free bond (net 0 supply)
- 4) Government Block [standard]
 - Government budget constraint clears through lump-sum tax/subsidy on consumer

Firm Problem

- Firms maximize stream of dividends discounted at risk-free rate R_t
- Firms heterogeneous in TFP z, carbon dependence a, brown capital k_b , and green capital k_g
- Cobb-Douglas production w/ labor L and CES aggregate of capital k_b, k_a $\pi_t(z, a, k_b, k_g) = \max[1 - D(S_t)] \exp(z) A_t^{1-\alpha} [a^{1-\rho} k_b^{\ \rho} + (1-a)^{1-\rho} k_g^{\ \rho}]^{\frac{\alpha}{\rho}} L^{\nu} - w_t L - w_t c_f - \tau_t k_b$

where climate damage $D(S_t)$ from stock of emissions S_t , fixed cost c_f , and brown capital tax τ_t

- Exogenous exit probability $\lambda \in [0,1]$, surviving firms can choose to exit or continue
- Capital adj. cost $\psi(x_i, k_i)$ for investment $x_i, \psi^X(k_i) \equiv \psi[-(1-\delta)k_i, k_i]$ from liquidating k_i
- New firms pay κ [of labor] to enter competitively; endogenous mass of entrants $B_t > 0$
 - Firms observe a and productivity signal q after entry cost paid, then choose initial capital investment

Firm Bellman

• Value of firm in state (z, a, k_b, k_g) prior to exit shock realization

$$V_t(z, a, k_b, k_g) = \pi_t(z, a, k_b, k_g) + \lambda V_t^X(k_b, k_g) + (1 - \lambda) \max\{V_t^C(z, a, k_b, k_g), V_t^X(k_b, k_g)\}$$

Exiting firm eats nondepreciated capital net of adjustments costs of driving capital to zero

$$V_t^X(k_b, k_g) = (1 - \delta)(k_b + k_g) - \psi^X(k_b) - \psi^X(k_g)$$

Continuing firm chooses investment in brown and green capital, subject to adjustment costs

$$V_{t}^{C}(z, a, k_{b}, k_{g}) = \max_{x_{b}, x_{g}} - x_{b} - x_{g} - \psi(x_{b}, k_{b}) - \psi(x_{g}, k_{g}) + \frac{1}{R_{t}} \mathbb{E}[V_{t+1}(z', a, k'_{b}, k'_{g})],$$
s.t. $k'_{i} = (1 - \delta)k_{i} + x_{i}$, for $i \in \{b, g\}$

• Productivity z follows an AR(1) process

$$\mathbf{z}' = \rho_{\mathbf{z}}\mathbf{z} + \varepsilon; \varepsilon \sim N(0, \sigma_{\mathbf{z}}^2)$$

Firm Entry

After paying entry cost, entrant observes a, q, decides to exit or make initial investments

$$V_{t}^{E}(a,q) = \max\{0, \max_{k_{b}, k_{g}} - k_{b} - k_{g} + \mathbb{E}_{z|q}[V_{t}(z, a, k_{b}, k_{g})]\}$$

Following Clementi and Palazzo (2016),

$$\mathbf{z} =
ho_q \log(\mathbf{q}) + \epsilon; \epsilon \sim N(0, \sigma_q^2)$$

• Competitive entry of large mass of potential entrants before observing a, q [independent]

$$w_t \kappa \geq \mathbb{E}_{\mathsf{a},q}[V_t^{\mathsf{E}}(\mathsf{a},q)]; q \sim Q_q; \mathsf{a} \sim Q_\mathsf{a}$$

Endogenous measure B_t of potential entrants pays the entrance cost $w_t \kappa$

Consumers and Government

- Consumers supply unit of labor, wage w_t , risk-free bond b_t , own shares $\Theta_{i,t}$ in firm i price $p_{i,t}$
- Choose consumption C_t , invest in future shares and bonds, receive transfer T_t & dividends $d_{i,t}$

$$\max_{\{b_{m+1}, \vec{\Theta}_{m+1}, C_m\}_{m=1}^{\infty}} \sum_{m=t}^{\infty} \beta^m U(C_m)$$
s.t. $C_m + \frac{1}{R_m} b_{m+1} + \int p_{i,m} \Theta_{i,m+1} di = w_m + T_m + b_m + \int (p_{i,m} + d_{i,m}) \Theta_{i,m} di$

- Consumer FOC for risk-free asset implies standard Euler condition $U'(C_t) = \beta U'(C_{t+1})R_t$
- T_r set to clear government budget constraint given any firm taxation scheme
 - Under brown capital tax τ_t , $T_t = \tau_t K_t^b$ where K_t^b is total brown capital in economy

- Aggregate brown capital utilized in production linearly creates emissions $\xi_t = \gamma K_t^b$
- Law of motion of carbon stocks (environmental state variables), given exo. emissions capturing χ_t :

- Environmental damage fraction $D(S_t)$ increasing function of total carbon stock $S_t = S_t^1 + S_t^2$
- Without carbon taxes, firms do not internalize their contribution to the carbon stocks S^1 , S^2

- Consider a Social Planner, constrained to the technologies available at the firm-level
- Given firm measure μ , carbon stocks S^1 , S^2 , max discounted utility stream of rep household

$$\mathcal{W}_t(\mu, S^1, S^2) = \max_{\substack{x_b(\cdot), x_g(\cdot), X(\cdot), x_g^E(\cdot), x_g^E(\cdot), X^E(\cdot), L^d(\cdot), B, K^b, S^{1\prime}, S^{2\prime}}} U(C_t) + \beta \mathcal{W}_{t+1}(\mu', S^{1\prime}, S^{2\prime})$$

- Subject to: Full Optimization Problem Implementation Intuition Unobserved k_b Extension
 - Resource & labor supply constraints, nonnegative entrant mass B, brown capital K^b adding-up
 - Law of motion of firm measure μ' & carbon stocks $S^{1\prime}$, $S^{2\prime}$ are consistent with chosen policies
- **Proposition**: Pigouvian tax on brown capital $au_t = rac{\lambda_t^b}{U'(C_t)}$ implements socially optimal allocation

$$\frac{\lambda_t^b}{\lambda_t^b} = \underbrace{(1-\chi_t)\gamma}_{\text{uncaptured emission rate}} \times \left[\sum_{s=t}^{\infty} \beta^{s-t} U'(C_s) D'(S_s^1 + S_s^2) Y_s [\varphi_1 + (1-\varphi_1)\varphi_2 \varphi_3^{s-t}]\right]$$

future marginal cost of uncaptured emissions

• Can also implement with carbon credit program - can implement through either price or quantity

Quantification

Emissions Data

Data: 5-year balanced panel of 389 public firms from 2016-2020 w/ annual frequency

Quantification 00000

- Bloomberg: Scope 1 (direct) & Scope 2 GHG emissions (from electricity use) in metric tons CO²
- Compustat: Gross property, plants, and equipment (PPEGT_{i,t}), GDP-deflated to \$ thousands (2015)
- Focus on emission intensity: (log) ratio of emission (Scope 1+2) to capital

$$y_{i,t} = \log\left(\frac{Emissions_{i,t}}{PPEGT_{i,t}}\right)$$

• We run regressions with firm fixed effects to estimate $\alpha_i = \mathbb{E}[y_{i,t}]$ ($R^2 = 0.956$)

$$y_{i,t} = \alpha_i + \varepsilon_{i,t}; \ \alpha_i \perp \varepsilon_{i,t}$$

- Empirical distribution of $\hat{\alpha}_i$ maps directly to distribution of a in model
 - Assuming a normalization that dirtiest firm in our dataset operates exclusively using dirty capital

Quantitative Climate Scenario

- Start economy on BGP ($au_t=0$, constant D(S)) in 1990, calibrate γ to match annual emissions
- Calibrate Q_a to match distribution of $\hat{\alpha}_i$, c_f to match firm exit rates (Decker et al. 2016)
- Assume exogenous improvement in emissions capturing from Krusell and Smith (2022)
- Compute transition dynamics to new BGP under laissez-faire (BAU) and optimal allocations

Consumption and Output

- Left: Higher consumption C_t throughout transition (CE = 0.309% of Planner path over BAU)
- ullet Right: Gross production Y_t is smaller under planner in short term, but higher in long term

Carbon Stocks

Composition Effect (Extensive Margin)

• Average carbon dependence ā drops under the Planner (composition effect)

Substitution Effect and Scale Effect (Intensive Margins)

- Left: Brown capital K_t^b drops relative to green capital K_t^g (substitution effect)
- Right: Total capital $K_t^b + K_t^g$ is lower in short-term (scale effect), then higher in long-term

Consequences of Heterogeneity

What Do We Miss Without Heterogeneous Carbon Dependence?

- We eliminate composition effect by collapsing set of carbon dependence a to singleton
 - Match average emissions intensity in data
- · Recalibrate the model, again targeting exit rate and initial emissions level to match data
- Compute optimal carbon taxes in this economy, which are larger
 - higher marginal damage of carbon w/o composition change
- What happens if no-het (higher) optimal carbon taxes are implemented in economy with het in a?

Optimal Brown Capital Taxes w/o Heterogeneity are Higher

- Planner loses composition effect without het. a, optimal carbon taxes are higher
- Optimal taxes are on average 52.8 percent higher in no-het relative to baseline

Welfare Impacts of No-Het Carbon Taxes in Economy with Het

- CE = 0.28% for no-heterogeneity tax path over BAU (90.7% of CE for Planner over BAU)
- Lower consumption in short-term, but higher in long-term

Comparison of Carbon Taxes to Literature

- Translate proportional brown taxes into USD per metric ton of CO2 emissions (MtE)
- Our estimate are on average \$15.07 per MtE in first 100 years (min = \$12.75; max = \$17.34)
- Similar to low end of estimates from literature

Paper	Carbon Tax Estimate (\$/MtE)	
Nordhaus (2008)	15	
Stern (2007)	127	
Golosov et al. (2014)	29-252	

- Model ingredients differ between papers (discount rate, moral concern for future generations, etc.)
- Most similar methodology to ours is [bottom of range of] Golosov et al. (2014)
- Without a heterogeneity, taxes average \$22.91 per MtE; same ballpark as Golosov et al. (2014)

Conclusion

Conclusion

- We develop a GE climate-macro model with heterogeneous firm carbon dependence
- We calibrate our model to match the distribution of carbon dependence in the data
- We compute the BAU and socially optimal green transitions & carbon tax sequence
- We demonstrate that optimal carbon taxes in economies that ignore het can be too large
- We find the welfare consequences of ignoring het are much lower than ignoring climate change

Appendix

Firm Distribution

ullet Given incumbent firm distribution μ , entrant mass, and firm policies, operating firm distribution is

$$\Phi(\mu, B, x_b^{\mathcal{E}}(\cdot), x_g^{\mathcal{E}}(\cdot), X_g^{\mathcal{E}}(\cdot), X^{\mathcal{E}}(\cdot))(s) \equiv \mu(s) + B \int Q_q(q)Q_s(a)[1 - X^{\mathcal{E}}(a, q)] \mathbb{1}_{k_b = x_{b,t}^{\mathcal{E}}(a, q)} \mathbb{1}_{k_g = x_{g,t}^{\mathcal{E}}(a, q)} p_q(z - \rho_q \log(q)) dq$$
and incumbent firm distribution tomorrow is

$$T^{*}(\mu, B, x_{b}(\cdot), x_{g}(\cdot), X(\cdot), k_{b}^{E}(\cdot), k_{g}^{E}(\cdot), X^{E}(\cdot))(s') = \int (1 - \lambda)[1 - X(s)] \mathbb{1}_{k_{b}' = (1 - \delta)k_{b} + x_{b}(s)} \mathbb{1}_{k_{g}' = (1 - \delta)k_{g} + x_{g}(s)} \times \mathbb{1}_{s' = s} Q_{z}(z'|z) d\Phi(\mu, B, x_{b}^{E}(\cdot), x_{g}^{E}(\cdot), X_{g}^{E}(\cdot), X^{E}(\cdot))(s)$$

Back to labor 📜 Back to full planner problem

Equilibrium Definition

A Carbon-Cycle Competitive Equilibrium is a set of allocations $\{k_{b,\iota}^{\mathcal{E}}(a,q),k_{g,\iota}^{\mathcal{E}}(a,q),x_{b,\iota}(s),x_{g,\iota}(s),L_{\iota}^{d}(s),S_{\iota}^{1},S_{\iota}^{2},K_{\iota}^{b},\mu_{\iota},\Theta_{i,\iota},b_{\iota}\}_{\iota=t}^{\infty}$, prices $\{w_{\iota},R_{\iota}\}_{\iota=t}^{\infty}$, taxes $\{T_{\iota},\tau_{\iota}\}_{\iota=t}^{\infty}$, continuation rules $\{X_{\iota}(s),X_{\iota}^{\mathcal{E}}(a,q)\}_{\iota=t}^{\infty}$, and mass of entrants $\{B_{\iota}\}_{\iota=t}^{\infty}$ such that

- Firm decisions solve their optimization problems
- Household decisions solve their problem
- Government budget constraint holds
- Free entry condition holds
- Markets clear in labor, risk-free asset, and stock market
- Adding-up holds for K_ι^b
- Carbon stocks evolve according to their law of motion

Planner Problem

The planner solves

$$\mathcal{W}_t(\mu, S^1, S^2) = \max_{\substack{x_b(\cdot), x_g(\cdot), x_b(\cdot), x_b^E(\cdot), x_c^E(\cdot), L^d(\cdot), B, K^b, S^{1\prime}, S^{2\prime}}} U(C_t) + \beta \mathcal{W}_{t+1}(\mu', S^{1\prime}, S^{2\prime})$$

subject to

$$\begin{split} C_t &= (1 - D(S^{1\prime} + S^{2\prime}))Y_t - I_t - \Psi_t \\ 1 &= \int (L^d(s) + c_f)\Phi(\mu, x_b^E(\cdot), x_g^E(\cdot), X^E(\cdot), B)(s)ds + B\kappa \\ \kappa^b &= \int k_b\Phi(\mu, x_b^E(\cdot), x_g^E(\cdot), X^E(\cdot), B)(s)ds \\ S^{1\prime} &= S^1 + (1 - \chi_t)\varphi_1\gamma\kappa^b \\ S^{2\prime} &= \varphi_3S^2 + (1 - \chi_t)(1 - \varphi_1)\varphi_2\gamma\kappa^b \\ B &\geq 0 \\ \mu' &= T^*(\mu, x_b(\cdot), x_g(\cdot), X(\cdot), x_b^E(\cdot), x_g^E(\cdot), X^E(\cdot), B) \end{split}$$

where

$$\begin{split} Y_t &= \int \exp(z) A_t^{1-\alpha} [a^{1-\rho} k_b^{\rho} + (1-a)^{1-\rho} k_g^{\rho}] \frac{\alpha}{\rho} \\ &\qquad \times (L^d(s))^{\mu} \Phi(\mu, x_b^E(\cdot), x_g^E(\cdot), X^E(\cdot), B)(s) ds \\ I_t &= \int (x_g(s) + x_b(s)) (1-\lambda) \Phi(\mu, x_b^E(\cdot), x_g^E(\cdot), X^E(\cdot), B)(s) ds \\ &+ \int (-(1-\delta)k_b - (1-\delta)k_g) \lambda \Phi(\mu, x_b^E(\cdot), x_g^E(\cdot), X^E(\cdot), B)(s) ds \\ &+ \int \int (x_g^E(a, q) + x_b^E(a, q)) [1-X^E(a)] BQ_a(a) Q_q(q) dadq \\ \Psi_t &= \int (\psi[x_g(s), k_g] + \psi[x_b(s), k_b]) (1-\lambda) \Phi(\mu, x_b^E(\cdot), x_g^E(\cdot), X^E(\cdot), B)(s) ds \\ &+ \int [\psi^X(k_g) + \psi^X(k_b)] \lambda \Phi(\mu, x_b^E(\cdot), x_g^E(\cdot), X^E(\cdot), B)(s) ds \end{split}$$

and measure of productive firms $\Phi(\cdot)$ and measure operator $\mathcal{T}^*(\cdot)$ are defined here

Implementation Intuition

- Only inefficiency in CE: firms do not internalize their contribution to carbon stocks
- Planner internalizes this damage
- Consider implementing a Pigouvian tax where firms internalize their contribution to carbon stocks
- When $w_t = \text{Planner's MPL}$. R_t equals that implied by Planner's SDF. B_t equals Planner's $B_t \forall t$:
 - Optimality conditions for firms align with those of the Planner for all firm-level choices
 - Optimality conditions hold for household problem RFA and stock market clearing hold
 - Planner FOC w.r.t. B implies free entry condition holds Labor supply constraint in Planner problem implies labor market clearing

 - Climate-related constraints for Planner implies they also hold
 - Lump-sum transfer to HH ensures GBC holds
- Therefore, definition of equilibrium is satisfied. See Appendix B for mathematical proof

Decentralization under Emissions Tax: Unobserved k_b

• Suppose k_b is unobserved by the taxation authority, but noisy emissions are observable:

$$\xi_{j,t} = \eta_{j,t} \gamma k_{b,j,t}; \ \eta_{j,t} \sim_{iid} F; \mathbb{E}[\eta_{j,t}] = 1 \ \eta_{j,t} \geq 0 \ a.s.$$

For example,
$$\log(\eta_{j,t}) \sim_{\textit{iid}} N\left(-\frac{\sigma_E^2}{2}, \sigma_E^2\right)$$

- From the Planner's perspective, mean preserving spread integrates out; first-best unchanged
- Consider new emissions tax, $-\tau_t^E \xi_{j,t}$ in firm's problem in place of tax on brown capital
 - Specifically, consider $au_t^{\it E}=rac{ au_t}{\gamma}$
- We show that both ex-ante value & ex-post policies match that of original decentralized problem
- Hence, the set of prices and taxes $\{ au_t^{\it E}, \hat{w}_t, frac{1}{\hat{R}_t}\}_{t=0}^{\infty}$ implements the Planner allocation in a CE

Functional Forms

- $D(S) = 1 \exp(-\Delta(S \bar{S}))$
 - Golosov et al. (2014)

- Krussell and Smith (2022)
- $\psi(x,k) = \hat{\psi}(x/k)^2 k$
 - Corbae and D'Erasmo (2021)
- $U(C) = \log(C)$
 - Golosov et al. (2014); Krusell and Smith (2022)
- Q_q : Pareto (\bar{q}, Ξ)

Calibration

Parameter	Value	Source	Description				
	Preferences						
β	0.971	$R^{BGP} = 1.04$	Time preference				
ι	0.01	Krusell and Smith (2022)	Economy growth rate				
	Production						
α	0.3	Standard parameter	Capital share				
ν	0.65	Standard parameter	Labor share				
λ	0.025	Decker et al. (2016)	Exogenous Exit Rate				
$\hat{\psi}$	0.297	Corbae and D'Erasmo (2021)	Capital adjustment cost				
δ	0.12	Standard parameter	Depreciation rate				
ρ	-0.058	Stern (2012)	Substitutability between capital types				
ρ_Z , ρ_q	0.659	Khan and Thomas (2013)	Idiosyncratic productivity persistence				
σ_Z, σ_q	0.118	Khan and Thomas (2013)	Idiosyncratic productivity volatility				
= '	2.69	Clementi and Palazzo (2016)	Pareto tail of entrant productivity signal				
κ	0.0071	Consistent with unit wage	Entry cost				
	Climate						
Δ	0.000053	Golosov et al. (2014)	Damage function parameter				
φ_1	0.2	Krusell and Smith (2022)	Fraction of permanent emissions				
φ_2	0.398	Krusell and Smith (2022)	Fraction of dissipated persistent emissions				
$\frac{\varphi_3}{\bar{S}}$	1.0	Krusell and Smith (2022) [0.998]	Persistence of persistent emission stock				
	581	Golosov et al. (2014)	Pre-industrial level of emissions				
$S_{9,1}$	684	Krusell and Smith (2022)	Stock of persistent emission in 1999				
$s_{9,2}$	118	Krusell and Smith (2022)	Stock of permanent emission in 1999				
E ₉	8.741	Krusell and Smith (2022)	Emissions in 1999				
$t_{\chi=0.01}$	10	Krusell and Smith (2022)	Years until one percent of emissions are captured				
$t_{\chi=0.5}$	125	Krusell and Smith (2022)	Years until half emissions are captured				
$t_{\chi=1}$	301	Krusell and Smith (2022)	Years until all emissions are captured				
γ	47.505	Consistent with total emissions in 1990	Emissions per unit of brown capital				

Planner Multiplier and Environmental Damage

(a) Shadow Cost of Brown Capital in Consumption Units

- (b) Environmental Damage
- Left: $au_t = rac{\lambda_t^k}{U'(C_t)}$ evaluated under the BAU and Planner scenarios
- Right: $D(S_t)$ evaluated under the BAU and Planner scenarios

Equilibrium Prices

- ullet Left: Planner avoids large drop in consumption in BAU \Longrightarrow flatter interest rate
- Right: Capital level $\downarrow \Rightarrow$ marginal product of labor \downarrow

Mass of Entrants

• Less entrants in short-term; more entrants in long-term

Climate Evolution

 \bullet Lower brown capital \implies fewer emissions \implies smaller stocks of carbon emissions

Recalibration

Parameter	Description	Target	Baseline	Counterfactual
κ	Entry Cost	Unit wage in initial BGP	0.0071	0.0071
γ	Emissions per unit of brown capital	Total emissions in 1990	47.5056	72.409
c_f	Fixed cost of production	Exit rate $= 9\%$	0.02118	0.02198

Planner Multiplier and Environmental Damage (Counterfactual)

(a) Shadow Cost of Brown Capital in Consumption Units

(b) Environmental Damage

Equilibrium Prices (Counterfactual)

Mass of Entrants (Counterfactual)

Climate Evolution (Counterfactual)

(a) Permanent Stock of Emissions

(b) "Persistent" Stock of Emissions

Composition Effect (Extensive Margin) (Counterfactual)

Substitution Effect and Scale Effect (Intensive Margins) (Counterfactual)

(a) Aggregate Capital Ratio (Brown over Green)

(b) Aggregate Total Capital (Brown plus Green)

