Security in Cyber Physical System Tutorial # 1

May 4, 2023

Roy, Akash | CS22M007

M.TECH CS | INDIAN INSTITUTE OF TECHNOLOGY, MADRAS

1. What are the mathematical properties that are used for the secure exchange of keys (hint: in terms of symmetry equivalence etc.)?

Ans: For symmetry equivalence during the key exchange we have the followings a generator number g, a large prime number n, the two exchanging parties have two private keys a, b.

The goal is to establish a secret key that's same for both the parties (symmetric key exchange).

Suppose Alice is a party that has private key a, Bob is another party who has private key b. Alice will compute $g^a \mod n$. Bob will compute $g^b \mod n$. These two can be exchanged via public non-encrypted channel because finding what is a from $g^a \mod n$ is computationally extremely hard.

Now Alice has $g^b \mod n$, multiplying with $g^a \mod n$, Alice will get $g^{ab} \mod n$. Similarly Bob will multiply $g^a \mod n$ with $g^b \mod n$, then Bob will get $g^{ab} \mod n$.

Now this number $g^{ab} \mod n$ is a secret value that is not in the public domain and can not be derived from all the variables available in the public domain. Thus giving us a symmetric key $q^{ab} \mod n$.

So the properties are following

- Given a function f, and two keys a, b, and some operation op, f(a) op f(b) = f(b) op f(a)
- f^{-1} is not easy to calculate.
- 2. Discuss how the above function can be used as your algorithm for the secure exchange of keys.

Ans: Suppose I've one function f and have the following properties

- Given a function f, and two keys a, b, and some operation op, f(a) op f(b) = f(b) op f(a)
- f^{-1} is not easy to calculate.

Now our key-exchange algorithm would be the following

Algorithm 1: Key-Exchange Algorithm

Input: Private variable a for Alice and variable b for Bob, and one suitable operation OP

- 1 Calculate f(a) from Alice's end.
- **2** Calculate f(b) from Bob's end.
- **3** Exchange f(a) and f(b) with each other
- 4 Use f(a) OP f(b) as the symmetric key for encryption.