計算機構成論 第2回 一計算機における数値表現(1)—

大連理工大学・立命館大学 国際情報ソフトウェア学部 大森 隆行

講義内容

- ■プロセッサ・メモリを構成するもの
- レ■トランジスタ、論理素子、IC
- 2進数
 - ■2進数、16進数とは
 - ■2進数と10進数の変換
 - ■負数の表現、2の補数

▶トランジスタ

- ■電気的なON/OFF切り替えができる
- ■N型半導体とP型半導体を組み合わせて 作られる

■論理ゲート(論理素子)

- ■基本的な論理演算に対応する電子回路
- AND, OR, NOT, NAND, NOR, XORなど

- ■集積回路 (integrated circuit)
 - ■数十個から数百万個のトランジスタを 集積した電子素子

■チップ (chip) とも呼ばれる

(例) NANDゲート4つで構成されたIC

■記憶回路で情報を記憶 (例:レジスタ)

- LSI (large scale integration)
 - ■大規模集積回路 特に大規模なICのこと
 - ■千~数十万個のトランジスタを集積
- VLSI (very -)
 - ■数十万~数百万個のトランジスタを集積
- ULSI (ultra -)
 - ■1000万個以上のトランジスタを集積

ソースコードから機械語へ

C言語

```
int a,b,c,d;
a = b + c;
d = a * b;
...
```

アセンブリ言語

```
lw $9, 4($1)
lw $10, 8($1)
add $8,$9,$10
```

機械語

01001101 00100100 01001000 00100000

そのままでは 実行できない コンパイラ により変換 アセンブラ により変換 そのまま回路上で実行可能

- 高級言語のプログラムは、コンパイラ、 アセンブラ等により機械語のコードに変換される
- アセンブリ言語と機械語の命令は 1対1対応

確認問題

- AND、OR、NOTなどの論理を実現する ための素子を(1)と呼ぶ。
- ■次の用語を英語に直せ。
 - ■(2) 集積回路
 - ■(3) 大規模集積回路
- ■高級プログラミング言語からアセンブリ言語のコードへの変換は、(4)が行う。
- アセンブリ言語から機械語への変換は、 (5)が行う。

講義内容

- ■プロセッサ・メモリを構成するもの
 - ■トランジスタ、論理素子、IC
- ▶2進数
 - ■2進数、16進数とは
 - ■2進数と10進数の変換
 - ■負数の表現、2の補数

2進数、10進数、16進数

10進数	2進数	16進数
0	00000	00
1	00001	01
2	00010	02
3	00011	03
4	00100	04
5	00101	05
6	00110	06
7	00111	07
8	01000	08
9	01001	09
10	01010	0a
11	01011	0b
12	01100	0c
13	01101	0d
14	01110	0e
15	01111	Of
16	10000	10

2進数:

0~1で表現した数値

10進数:

0~9で表現した数値

16進数:

0~9,a~fで表現した数値

※大文字(A~F)でも良い

2進数とコンピュータ

■コンピュータ内部では、 電位(電圧: voltage)が高いか低いかを 1、0に割り当て

■コンピュータ内部のデータや命令は すべて2進数で表現

123 (整数)	01111011	
A (文字)	01000001	
load word命令	00100011	
35 (整数)	00100011	→ 同じ?

同じ2進数でも、 いろいろな解釈がありうる →解釈のルールが重要

2進数

- 2進数:0と1のみで表現された数値
- ■基数は右下に小さく書く
 - ■10進数の1111 → 1111110
 - ■2進数の1111 → 11112

最上位ビット

(MSB: most significant bit)

最下位ビット

(LSB: least significant bit)

2進数と10進数の変換

- 2進数 → 10進数
 - $1111_{10} = 1*1000 + 1*100 + 1*10 + 1*1$ $= 1*10^{3} + 1*10^{2} + 1*10^{1} + 1*10^{0}$
 - $11111_2 = 1*2^3 + 1*2^2 + 1*2^1 + 1*2^0$ = 1*8 + 1*4 + 1*2 + 1*1 $= 15_{10}$
- ■10進数 → 2進数

$$11/2 = 5 余り 1$$

 $11_{10} \rightarrow 1011_2$ $5/2 = 2 余り 1$
 $2/2 = 1 余り 0$
 $1/2 = 0 余り 1$

1011

14

2進数と16進数の変換

- 2進数 → 16進数
 - 4ビットずつ 区切って 右の表に 従って変換

例) 01011110₂ → 5E₁₆

- 16進数 → 2進数
 - 右の表に従って 4ビットずつ変換

16進数	2進数
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

16進数	2進数
8	1000
9	1001
Α	1010
В	1011
C	1100
D	1101
Ш	1110
F	1111

2進数の負数表現 -絶対値表現-

10進数	2進数
-8	-
-7	1111
-6	1110
-5	1101
-4	1100
-3	1011
-2	1010
-1	1001
-0	1000

10進数	2進数
8	- 4
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000

4ビットでは 表現不可能

符号(1:負数, 0:正数) + 絶対値

2進数の負数表現 -1の補数-

10進数	2進数
-8	-
-7	1000
-6	1001
-5	1010
-4	1011
-3	1100
-2	1101
-1	1110
-0	1111

10進数	2進数
8	- 4
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000

4ビットでは 表現不可能

2進数の負数表現 -2の補数-

10進数	2進数
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111
-0	0000

10進数	2進数
8	- 4
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000

4ビットでは 表現不可能

負数の2の補数を取ると?

10進数	2進数
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111
-0	0000

10進数	2進数
8	_
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000

2の補数の利点

- ■最上位ビットを見ると、符号がわかる
 - ■1→マイナス、0→プラス
- ■-0 がない
- ■加算が簡単にできる
- ■符号拡張も簡単にできる
 - ■符号拡張:より多くのビットを 使った値に変換すること(8bit->16bit)

2進数と10進数の変換

- ■2進数 → 10進数 (符号なし) 再掲
 - $1111_{2} = 1*2^{3}+1*2^{2}+1*2^{1}+1*2^{0}$ = 1*8+1*4+1*2+1*1 $= 15_{10}$
- ■2進数 → 10進数 (符号あり)
 - $11111_2 = -1*2^3 + 1*2^2 + 1*2^1 + 1*2^0$ = -1*8 + 1*4 + 1*2 + 1*1= -1_{10}

2の補数変換の正当性

■なぜビット反転して1足せば良いのか?

$$a_3a_2a_1a_0+^a_3^a_2^a_1^a_0=1111_2$$

 $a_3a_2a_1a_0+(^a_3^a_2^a_1^a_0+1)=\pm0000_2=0$
 $(a_3a_2a_1a_0+1)+^a_3^a_2^a_1^a_0=\pm0000_2=0$

 $a_3a_2a_1a_0 = -2^3a_3 + 2^2a_2 + 2^1a_1 + 2^0a_0$ $a_3^2a_2^2a_1^2a_0 = -2^3^2a_3 + 2^2^2a_2 + 2^1^2a_1 + 2^0^2a_0$ $a_3a_2a_1a_0 + a_3^2a_2^2a_1^2a_0$ $a_3a_2a_1a_0 + a_3^2a_2^2a_1^2a_0$ $a_3a_2a_1a_0 + a_3^2a_2^2a_1^2a_0$

確認問題

- (1) 符号なし整数 101010102 を 10進数に変換せよ。
- (2) 符号なし整数 111100102 を 16進数に変換せよ。
- (3) 2310 を8ビットの2進数に変換せよ。
- (4) 2310 を16進数に変換せよ。
- (5) -2110 を絶対値表現で8ビットの2進数に変換せよ。
- (6) -2110 を1の補数表現で8ビットの2進数に変換せよ。
- (7) -2110 を2の補数表現で8ビットの2進数に変換せよ。
- (8) 2の補数表現で、8ビットで表現できる 数値の範囲を答えよ。

参考文献

- ■コンピュータの構成と設計 上 第5版 David A.Patterson, John L. Hennessy 著、 成田光彰 訳、日経BP社
- ■山下茂 「計算機構成論1」講義資料

■ 画像は著作権で保護されている可能性がありますので、 公開・頒布を禁止します。