Programmieraufgaben

Blatt 9

(1) (a) Berechnen Sie mithilfe des Algorithmus der dividierten Differenzen sowie des Horner-Schemas den Wert $\sin(62^{\circ})$ aus den Datenpunkten

$$(50^{\circ}, \sin 50^{\circ}), (55^{\circ}, \sin 55^{\circ}), (60^{\circ}, \sin 60^{\circ}), (70^{\circ}, \sin 70^{\circ}).$$

Speichern Sie hierbei neben der oberen Diagonale $[y_0, \delta y_0, \dots, \delta^n y_0]$ auch die untere Diagonale $[\delta^0 y_n = y_n, \delta^1 y_{n-1}, \dots, \delta^n y_0]$.

- (b) Um die Genauigkeit der Näherung zu erhöhen, ergänzen Sie nachträglich obige Datenpunkte um den Datenpunkt (65°, sin 65°). Implementieren Sie nun einen Algorithmus, welcher anhand der gespeicherten Diagonale $[\delta^0 y_n = y_n, \delta^1 y_{n-1}, \dots, \delta^n y_0]$, des Vektors $[x_0, \dots, x_{n+1}]$ und y_{n+1} der Wert $\delta^{n+1} y_0$ bestimmt und berechnen Sie damit nun eine neue Näherung von $\sin(62^\circ)$.
- (2) Berechnen Sie für verschiedene n die Lebesgue'schen Konstanten für äquidistante Stützstellen $x_k = -1 + \frac{2k}{n}$ und Chebyshev-Punkte. Verwenden Sie den Algorithmus aus Aufgabe 5, um das Maximum auf $[x_k, x_{k+1}]$ zu bestimmen.

Theorieaufgaben

(3) Seien $k, n \in \mathbb{N}_0$ und $m \in \mathbb{N}$ so, dass $k + m \leq n$. Für die (n + 1) gegebenen Stützpunkte $(x_0, y_0), \ldots, (x_n, y_n)$ bezeichne $P_{[k,m]}$ jenes Polynom vom Grad $\leq m$ mit der Eigenschaft

$$P_{[k,m]}(x_j) = y_j$$
 für $j = k, \dots, k+m$.

Zeigen Sie, dass für die Polynome $P_{[k,m]}$ folgende Rekursionsformel gilt

$$P_{[k,0]}(x) \equiv y_k$$

$$P_{[k,m]}(x) = \frac{(x-x_k)P_{[k+1,m-1]}(x) - (x-x_{k+m})P_{[k,m-1]}(x)}{x_{k+m} - x_k}$$

Überlegen Sie sich einen Algorithmus, mit welchem der Wert $P_{[0,n]}(x_s)$ des gesuchten Interpolationspolynoms $P_{[0,n]}$ an einer Stelle x_s über obige Rekursion berechnet werden, die Werte aber in nur einem Vektor gespeichert werden. Formulieren Sie diesen als Pseudo-Code.

(4) Sei $n \ge 2$ und $x_0 < x_1 < \ldots < x_n$. Zeigen Sie: Die Funktion

$$\Lambda(x) = \sum_{i=0}^{n} |l_i(x)| \quad \text{mit} \quad l_i(x) = \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}$$

besitzt genau ein lokales Maximum in jedem Intervall (x_k, x_{k+1}) .

Hinweis: Auf $[x_k, x_{k+1}]$ besitzt $\Lambda(x)$ die Darstellung $\sum \varepsilon_i l_i(x)$ mit $\varepsilon_i \in \{-1, 1\}$. Untersuchen Sie die Extremwerte dieser Funktion auf \mathbb{R} .

(5) Sei $f \in \mathcal{C}[a, b]$ mit genau einem lokalen Maximum in (a, b) (und keinem lokalen Minimum in (a, b)). Weiters sei $\gamma = \frac{\sqrt{5}-1}{2}$. Zur Bestimmung des Maximums von f in (a, b) kann folgender Algorithmus herangezogen werden:

Solange (b-a)>tol

$$A \leftarrow b - \gamma(b-a)$$

$$B \leftarrow a + \gamma(b-a)$$

Ist $f(A) \leq f(B)$ so wird $a \leftarrow A$ sonst $b \leftarrow B$.

Zeigen Sie, dass dieser Algorithmus gegen das Maximum von f auf (a, b) konvergiert.

Hinweis: Formulieren Sie obigen Algorithmus als Rekursionsvorschrift für zwei Folgen und zeigen Sie, dass beide Folgen gegen den gleichen Wert, das Maximmum von f, konvergieren.