

# 九坤 Kaggle 量化大赛有哪些启示?

#### 华泰研究

2023年1月30日 | 中国内地

深度研究

#### 人工智能系列之 64: 从九坤 Kaggle 量化大赛高分方案中寻找借鉴

本文梳理 2022 年九坤 Kaggle 量化大赛高分队伍解决方案,提炼出特征工程、损失函数、交叉验证、模型集成四个主要方向,并应用于华泰人工智能中证 500 指数增强策略改进。结果表明: (1)特征工程引入均值因子对神经网络有效; (2)CCC 损失优于 MSE 损失和 IC 损失; (3)时序交叉验证作用不明显; (4) 集成神经网络和决策树类模型提升较稳定。对比整合多项改进的模型与基线模型,回测期 2011 年至 2022 年内,年化超额收益从 14.2%提升至 17.0%,信息比率从 2.3/2.4 提升至 2.7。

#### 多家头部量化机构在 Kaggle 发布竞赛, 九坤竞赛贴近实际量化选股场景

随着数据科学在线社区日益成熟,越来越多的爱好者投身于网络编程竞赛之中。Kaggle 是全球知名的数据科学在线平台之一,Two Sigma、Optiver等头部量化机构曾在 Kaggle 发布挑战竞赛。国内量化私募九坤投资于 2022年1月启动 Kaggle 竞赛,吸引两千多只队伍参赛。比赛具体任务为基于给定的 A 股匿名特征,预测股票未来短期收益,最终评价指标为预测收益和真实收益的 IC值,属于典型的监督学习问题,和实际量化选股场景较贴近。

四个改进方向:引入均值因子,引入 CCC 损失,时序交叉验证,模型集成 我们梳理九坤 Kaggle 量化大赛高分队伍解决方案,提炼出四个改进方向。(1) 特征工程引入截面上全部股票因子的均值,均值因子可能反映原始因子整体分布的时变特性,是市场环境的一种简单表达。(2)损失函数引入一致性相关系数 CCC,可视作 IC 和 MSE 的融合,兼顾相关性和距离。(3)采用时序交叉验证选取最优超参数。(4)集成不同类型机器学习模型。以神经网络和 XGBoost 构建中证 500 指数增强策略作为基线,测试上述技巧的改进效果。

均值因子对神经网络有效,加权 CCC 损失回测表现好,模型集成提升稳定 四项改进技巧效果各异。特征工程引入的均值因子对神经网络有提升,但削弱了 XGBoost 模型。损失函数中,MSE 表现不突出;IC 损失单因子测试表现好,但指增组合回测表现差;CCC 损失在单因子测试表现一般,但指增组合回测表现较好;加权均优于等权。交叉验证调参改进不显著,考虑到时间开销大,性价比不高,算力有限前提下,使用经验超参数即可。模型集成提升较稳定、神经网络类和决策树类模型有互补效果。

#### 讨论: (1)如何使用弱因子; (2)因子合成和组合优化的目标错配问题

研究发现均值因子对神经网络有效但对 XGBoost 无效。均值因子属于弱因子,有用但比重不宜过大。XGBoost 引入弱因子后,特征采样使原始因子可能被排除在外,从而削弱模型。神经网络可通过预处理缩小取值,有限度地使用弱因子。研究还发现 IC 损失单因子测试优于 MSE 损失,但指增组合表现差,本质是因子合成和组合优化的目标错配。IC 属于全局统计量,不会侧重于个别头部样本,但这些样本可能对组合优化影响较大。MSE 的特点之一是给予极端误差较大惩罚,恰好弥补 IC 弱点。CCC融合 IC和 MSE,兼顾共性和个性,是一类理想的损失函数。

风险提示:人工智能挖掘市场规律是对历史的总结,市场规律在未来可能失效。人工智能技术存在过拟合风险。深度学习模型受随机数影响较大,本文未进行随机数敏感性测试。本文测试的选股模型调仓频率较高,假定以 vwap价格成交,忽略其他交易层面因素影响。

# 研究员 **林晓明**SAC No. S0570516010001 linxiaoming@htsc.com SFC No. BPY421 +(86) 755 8208 0134

研究員 **李子钰** SAC No. S0570519110003 liziyu@htsc.com SFC No. BRV743 +(86) 755 2398 7436

研究员 **何康,PhD** SAC No. S0570520080004 hekang@htsc.com SFC No. BRB318 +(86) 21 2897 2039

#### 基于九坤大赛改进策略超额收益表现



注: 回测期 2011-01-04 至 2022-12-30,基准为中证 500 资料来源: 朝阳永续,Wind,华泰研究

# 下载完整报告

第一步: 打开微信扫一扫,

第二步: 关注右侧微信公众号:量化 studio

第三步: 微信后台输入关键字(中间无空格):

## 九坤 20230203

第四步:按照给出的下载地址进行下载





## 正文目录

| 研究导读                                | 3  |
|-------------------------------------|----|
| 九坤 Kaggle 量化大赛高分方案解析                | 5  |
| <b>特征工程</b>                         |    |
| 损失函数                                | 6  |
| 交叉验证                                |    |
| 模型集成                                |    |
| 方法                                  | 8  |
| 结果                                  | 12 |
| 特征工程                                | 13 |
| 损失函数                                | 14 |
| 交叉验证                                | 15 |
| 模型集成                                | 16 |
| 讨论                                  | 17 |
| 均值因子在神经网络和 XGBoost 间的差异,兼谈如何使用弱因子   | 17 |
| MSE 和 IC 损失函数的差异,兼谈因子合成和组合优化的目标错配问题 | 18 |
| 总结                                  | 20 |
| 参考文献                                |    |
| 风险提示                                |    |



#### 研究导读

得益于数据科学在线社区日益成熟,机器学习和大数据的学习门槛逐渐降低,全球的爱好者都可以通过在线平台参与编程训练和竞赛项目,和顶尖团队进行较量和探讨。Kaggle 正是影响力较大的平台之一,囊括了超过500项竞赛、5万个数据库和40万组代码。美国白宫、斯坦福大学、北京大学、微软、谷歌等机构和企业都曾在Kaggle发布竞赛,征集解决方案。

量化投资和机器学习、大数据关系紧密,多家量化投资机构也在 Kaggle 平台发起挑战竞赛,发布方不乏 Winton、Two Sigma 等知名对冲基金,也包含 Jane Street、Optiver 等头部做市商。项目内容大多是基于资产历史行情、新闻数据或匿名特征,预测未来收益率或波动率。下表整理了 Kaggle 平台量化投资相关竞赛。2022 年 1 月,国内量化私募九坤投资也上线 Kaggle 竞赛,受到市场关注,2893 支队伍参赛,最终前 10 名队伍获得 10 万美元奖金。

图表1: Kaggle 平台量化投资相关竞赛

| 发布时间     | 发布机构        | 竞賽描述                  | 网址                                                       |
|----------|-------------|-----------------------|----------------------------------------------------------|
| 2015年10月 | Winton      | 利用股票 T-2 至 T 日中行情等数据, | https://www.kaggle.com/competitions/the-winton-stock-m   |
|          |             | 预测 T 日中至 T+2 日收益率     | arket-challenge                                          |
| 2016年12月 | Two Sigma   | 利用资产匿名特征,预测价格         | https://www.kaggle.com/competitions/two-sigma-financia   |
|          |             |                       | I-modeling/                                              |
| 2018年9月  | Two Sigma   | 利用新闻数据, 预测股票价格        | https://www.kaggle.com/competitions/two-sigma-financia   |
|          |             |                       | I-news                                                   |
| 2020年11月 | Jane Street | 利用股票匿名特征,制定交易策略       | https://www.kaggle.com/competitions/jane-street-market-  |
|          |             |                       | prediction                                               |
| 2021年6月  | Optiver     | 利用股票订单簿数据, 预测未来 10    | https://www.kaggle.com/competitions/optiver-realized-vol |
|          |             | 分钟波动率                 | atility-prediction/                                      |
| 2021年11月 | G-research  | 利用数字货币行情数据。预测未来       | https://www.kaggle.com/competitions/g-research-crypto-f  |
|          |             | 15 分钟的残差收益率           | orecasting/                                              |
| 2022年1月  | 九坤投资        | 利用股票匿名特征, 预测收益率,      | https://www.kaggle.com/competitions/ubiquant-market-pr   |
|          |             | 最大化 IC 值              | ediction/                                                |
| 2022年4月  | 日本交易所集团     | 利用股票行情、财报等数据, 预测      | https://www.kaggle.com/competitions/jpx-tokyo-stock-ex   |
|          |             | 未来收益率排序,最大化多空组合       | change-prediction                                        |
|          |             | 夏普比率                  |                                                          |

资料来源: Kaggle, 华泰研究

本文的主题是"抄作业",九坤 Kaggle 量化大赛高手云集,高分队伍是否有经验值得借鉴?我们梳理了部分高分队伍公布的解决方案,提炼出有共性的四个方向——特征工程、损失函数、交叉验证和模型集成,并应用于中证 500 指数增强策略的改进。结果显示,改进策略相比基线策略有稳定提升,回测期 2011 年至 2022 年内,年化超额收益从 14.2%提升至17.0%,信息比率从 2.3/2.4 提升至 2.7。测试的改进技巧中,神经网络引入均值因子、CCC损失、模型集成提升作用较显著。

图表2: 部分测试模型回测绩效

|                      | 年化收益   | 年化波动   | 夏普比  | 最大回(   | Calmar 比 | 年化超额收  | 年化跟踪  | 信息比  | 超额收益最大 | 超额收益 Calmar | 相对基准月  | 年化双边换 |
|----------------------|--------|--------|------|--------|----------|--------|-------|------|--------|-------------|--------|-------|
|                      | 率      | 傘      | 率    | 撤      | 傘        | 益率     | 误差    | 率    | 回撤     | 比率          | 胜率     | 手率    |
|                      |        |        |      |        |          |        | 基线策略  | -    |        |             |        |       |
| nn                   | 15.94% | 25.69% | 0.62 | 50.25% | 0.32     | 14.24% | 5.99% | 2.38 | 13.36% | 1.07        | 77.08% | 16.18 |
| xgb                  | 15.82% | 26.07% | 0.61 | 46.94% | 0.34     | 14.22% | 6.28% | 2.26 | 9.70%  | 1.47        | 68.75% | 16.26 |
|                      | 改进策略   |        |      |        |          |        |       |      |        |             |        |       |
| nn_fe+nn_wccc+xgb    | 18.56% | 26.33% | 0.70 | 48.96% | 0.38     | 17.00% | 6.24% | 2.73 | 9.32%  | 1.82        | 76.39% | 16.31 |
| nn_fe+nn_wccc+xgb_cv | 18.57% | 26.38% | 0.70 | 49.46% | 0.38     | 17.03% | 6.36% | 2.68 | 9.54%  | 1.79        | 73.61% | 16.31 |

注: 回测期 2011-01-04 至 2022-12-30, 基准为中证 500 指数

资料来源:朝阳永续, Wind, 华泰研究