REPASANDO: "POTENCIAS"

► Inecuaciones básicas

(1) Resuelve las siguientes inecuaciones. Escribe la solución como intervalo, como conjunto y representala:

a) $2 - 3x \ge 6$

b) 2(x-1)+3 < 3(x-2)-5

▶ Potencias y raíces

(2) Calcula:

a) 2^{-1} b) 8^0

c) |-8|

 $e) \frac{\sqrt[3]{81}}{\sqrt[3]{3}}$

 $f) \ \sqrt{2} \cdot \sqrt{32}$

(3) Calcula:

 $a) (-1)^0$

 $(-1)^2$

 $e) (-1)^4$

 $g) (-1)^6$

b) $(-1)^1$

 $(-1)^3$

 $f) (-1)^5$

(4) Calcula:

 $a) -2^2$

 $b) -2^{-2}$

c) $(-2)^2$

 $d) (-2)^{-2}$

(5) Simplifica al máximo:

 $a) x^4 \cdot x^2$

 $b) \ \frac{x^5}{x^3}$

c) $(x^2)^3$ d) $(x^2 \cdot x^4)^3$

 $e) \left(\frac{x^5 \cdot x^2}{x^3}\right)^3$

(6) Escribe como potencia de x:

 $a) \frac{1}{x^2}$

 $b) \frac{-2}{x^3}$

 $c) \ \frac{1}{3x^5}$

 $d) \ \frac{2}{5x^6}$

(7) Escribe como potencia:

a) $\sqrt{2}$ b) $\sqrt[3]{5}$

 $d) \ \frac{2}{\sqrt[3]{5}}$

 $g) \frac{2}{\sqrt[5]{x^2}}$

 $i) \frac{-2}{5\sqrt[3]{x^4}}$

 $c) \frac{1}{\sqrt{2}}$

f) $\sqrt[5]{x}$

 $h) \ \frac{1}{3\sqrt{x}}$

► <u>Raíces</u>

(8) Calcula:

- a) $\sqrt{0}$
- c) $\sqrt{-1}$
- e) $\sqrt[4]{-1}$

- b) $\sqrt{1}$
- d) $\sqrt[3]{-1}$
- $f) \sqrt[5]{-1}$

- (9) Resuelve:
 - a) $x^2 = 1$
- c) $x^4 = 1$
- e) $x^2 = -1$ g) $x^4 = -1$

- b) $x^3 = 1$
- d) $x^5 = 1$
- f) $x^3 = -1$ h) $x^5 = -1$

- (10) Resuelve:
 - a) $x^3 = 8$
- b) $x^3 = 10$
- c) $x^4 = 16$ d) $x^4 = 3$

- (11) Simplifica:
 - a) $\sqrt{75} \sqrt{27}$

b) $\sqrt[3]{16} + \sqrt[3]{50}$

- (12) Racionaliza:
 - a) $\frac{1}{\sqrt{2}}$
- b) $\frac{2}{\sqrt{3}}$
- c) $\frac{1}{3\sqrt{5}}$
- d) $\frac{3}{2\sqrt{7}}$

- (13) Simplifica:
 - a) $(1+\sqrt{3})\cdot(1-\sqrt{3})$

c) $(\sqrt{7} + \sqrt{2}) \cdot (\sqrt{7} - \sqrt{2})$

b) $(2\sqrt{5}-1)\cdot(2\sqrt{5}+1)$

d) $(\sqrt{3} + 3\sqrt{2}) \cdot (\sqrt{3} - 3\sqrt{2})$

(14) Racionaliza:

$$a) \ \frac{1}{3+\sqrt{2}}$$

$$c) \ \frac{3}{2\sqrt{3}+1}$$

$$e) \ \frac{3}{2\sqrt{5} + 3\sqrt{2}}$$

$$b) \ \frac{1}{\sqrt{3}-5}$$

$$d) \ \frac{-2}{\sqrt{5} - \sqrt{2}}$$

(15) Simplifica al máximo:

$$a) \sqrt{3} - \frac{2}{\sqrt{3}}$$

$$d) \ \frac{2}{\sqrt{2} + \sqrt{5}} - \frac{3}{\sqrt{2} - \sqrt{5}}$$

$$b) \ \frac{1}{1+\sqrt{2}} - \frac{3}{1+\sqrt{2}}$$

$$e) \frac{1}{2\sqrt{3}-1} + \frac{2}{2\sqrt{3}+1}$$

c)
$$\frac{1}{\sqrt{3}-2} + \frac{1}{\sqrt{3}+2}$$

$$f) \frac{18}{3\sqrt{4}+\sqrt{9}} - \frac{6}{3\sqrt{4}-\sqrt{9}}$$

▶ Logaritmos

(16) Calcula:

- $a) \log_3 9$
- b) $\log_7 49$
- $c) \log 0'1$
- $d) \log_{25} \frac{1}{5}$

(17) Resuelve:

a)
$$2^x = 4$$

b)
$$3^x = 5$$

b)
$$3^x = 5$$
 c) $7^x = 0$

$$d) \ 4^x = 1$$

(18) Resuelve:

a)
$$2^{x+1} = \frac{1}{2}$$
 b) $3^{x-1} = 9$

b)
$$3^{x-1} = 9$$

c)
$$5^{2x} = \frac{1}{25}$$
 d) $49^x = \frac{1}{7}$

$$d) 49^x = \frac{1}{7}$$

(19) Resuelve:

a)
$$2^x = \frac{8}{2^{-2}}$$

b)
$$3 \cdot 9^{2x} = 27$$
 c) $5 \cdot 5^x = 0'2$ d) $\sqrt{2^x} = 4$

$$c) \ 5 \cdot 5^x = 0'2$$

$$d) \ \sqrt{2^x} = 4$$

(20) Resuelve:

a)
$$\log_x 16 = 4$$

$$b) \log x = 2$$

c)
$$2\log x = 6$$

$$d) \log x = \log 3$$

(21) Resuelve:

$$a) \log 3 + \log x = \log 20$$

$$d) \log_x 49 = 2$$

$$b) \ 2\log x + \log 5 = \log 25$$

c)
$$\log(x+1) - \log 3 = \log 2$$

$$e) \log_3(-3) = x$$

► Ejercicios claves del curso

(22) Quita paréntesis simplificando al máximo:

a)
$$(2\sqrt{3})^2$$

b)
$$(\sqrt{4}+2)^2$$

c)
$$\left(\frac{\sqrt{5}}{3}\right)^2$$

c)
$$\left(\frac{\sqrt{5}}{3}\right)^2$$
 d) $(4-2\sqrt{3})^2$

(23) Representa las siguientes funciones:

$$a) \ y = 3x$$

$$b) \ y = -2x + 1$$

a)
$$y = 3x$$
 b) $y = -2x + 1$ c) $y = \frac{x-2}{3}$ d) $3x - 2y = 6$

$$d) \ 3x - 2y = 6$$

(24) Calcula la diagonal de un cuadrado de lado 4. Usa 2 métodos diferentes.

(25) Calcula la altura de un triángulo equilátero de lado 4. Usa 2 métodos diferentes.

(26)a) Si triplicamos el lado de un cuadrado, ¿cuántas veces aumenta?

b) Si duplicamos el lado de un cubo, ¿cuántas veces aumenta?