Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2115 - Programación como herramienta para la ingeniería

Análisis de datos - Exploración, limpieza y depuración

Profesor: Hans Löbel

¿Qué es el análisis de datos (en Python)?

- Desde un punto de vista práctico, consiste principalmente en utilizar herramientas para:
 - Limpiar y transformar los datos
 - Explorar distintas dimensiones de los datos
 - Calcular estadísticas de los datos
 - Visualizar los datos
 - Construir modelos predictivos

¿Qué es el análisis de datos (en Python)?

- Desde un punto de vista práctico, consiste principalmente en utilizar herramientas para:
 - Limpiar y transformar los datos
 - Explorar distintas dimensiones de los datos
 - Calcular estadísticas de los datos
 - Visualizar los datos
 - Construir modelos predictivos
- Para todo esto (y más), está Pandas y scikit-learn

En esta primera parte nos centraremos en Pandas

- Permite manipular, analizar y visualizar datos.
- Puede ser vista como una herramienta para trabajar datos almacenados en una estructura de tabla o de serie de tiempo.
- Se basa en, y generaliza a, la librería Numpy.
- 2 Estructuras principales
 - Series
 - DataFrame

DataFrame está formado por Series

	Comuna	Manzana	Predial	Línea de construcción	Material estructural	Calidad construcción	Año construcción
0	9201	1	1	1	E	4	1940
1	9201	1	1	2	E	4	1960
2	9201	1	2	1	E	4	1930
3	9201	1	3	1	E	4	1960
4	9201	1	4	1	E	3	1925

```
import pandas as pd
import numpy as np

df = pd.read_csv("data.csv")
```

1 display(df.describe())

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	
count	614.000000	614.000000	592.000000	600.00000	564.000000	
mean	5403.459283	1621.245798	146.412162	342.00000	0.842199	
std	6109.041673	6109.041673 2926.248369	85.587325	65.12041	0.364878	
min	150.000000	0.000000	9.000000	12.00000	0.000000	
25%	2877.500000	0.000000	100.000000	360.00000	1.000000	
50%	3812.500000	1188.500000	128.000000	360.00000	1.000000	
75%	5795.000000	2297.250000	168.000000	360.00000	1.000000	
max	81000.000000	41667.000000	700.000000	480.00000	1.000000	

1 df['Property_Area'].value_counts()

Semiurban 233 Urban 202 Rural 179

Name: Property_Area, dtype: int64

```
1 def conteo_nulo(x):
 2
        return sum(x.isnull())
 4 df.apply(conteo_nulo, axis = 0)
Loan_ID
                     0
Gender
                    13
Married
                     3
Dependents
                    15
Education
                     0
Self Employed
                    32
ApplicantIncome
                     0
CoapplicantIncome
                     0
LoanAmount
                    22
Loan_Amount_Term
                    14
Credit_History
                    50
Property_Area
                     0
Loan_Status
                     0
dtype: int64
 1 df['LoanAmount'].fillna(df['LoanAmount'].mean(), inplace=True)
 1 df.apply(conteo_nulo, axis = 0)
Loan_ID
                     0
Gender
                    13
Married
                     3
Dependents
                    15
Education
                     0
Self_Employed
                    32
ApplicantIncome
                     0
CoapplicantIncome
                     0
LoanAmount
                     0
Loan_Amount_Term
                    14
Credit_History
                    50
Property_Area
                     0
Loan_Status
                     0
dtype: int64
```

Otro problema típico al explorar son las múltiples fuentes

- Cuando todo está en un DataFrame, la cosa fluye...
- Pero la mayoría de las veces, tenemos más de uno
- Pandas entrega varios mecanismos para enfrentar esto

```
def make_df(cols, ind):
    data = {c: [str(c) + str(i) for i in ind] for c in cols}
    return pd.DataFrame(data, ind)

make_df('ABC', range(3))

A B C
O AO BO CO
```

1 A1 B1 C1 2 A2 B2 C2


```
1  df1 = make_df('AB', [1, 2])
2  df2 = make_df('AB', [3, 4])
3  dfc = pd.concat([df1, df2], axis=1,)
4  display(df1, df2, dfc)
```

```
1 A1 B1
```

2 A2 B2

A B3 A3 B34 A4 B4

 A
 B
 A
 B

 1
 A1
 B1
 NaN
 NaN

 2
 A2
 B2
 NaN
 NaN

 3
 NaN
 NaN
 A3
 B3

 4
 NaN
 NaN
 A4
 B4

Otro problema típico al explorar son las múltiples fuentes

group	employee	
Accounting	Bob	0
Engineering	Jake	1
Engineering	Lisa	2
HR	Sue	3

	employee	hire_date
0	Lisa	2004
1	Bob	2008
2	Jake	2012
3	Sue	2014

```
1  df3 = pd.merge(df1, df2)
2  df3
```

	employee	group	hire_date
0	Bob	Accounting	2008
1	Jake	Engineering	2012
2	Lisa	Engineering	2004
3	Sue	HR	2014

Agregación es la más común de las tareas exploratorias

- Analizar tendencias o buscar patrones se hace difícil si el análisis es individual
- Para evitar esto, datos generalmente se analizan de manera agregada
- Además de esto, la agregación suele ser a nivel grupal y no global
- Pandas permite enfrentar estos problemas con una serie de mecanismos que facilitan la exploración

Agregación es la más común de las tareas exploratorias

Aggregation	Description
count()	Total number of items
first(),last()	First and last item
<pre>mean(), median()</pre>	Mean and median
<pre>min(), max()</pre>	Minimum and maximum
std(),var()	Standard deviation and variance
mad()	Mean absolute deviation
prod()	Product of all items
sum()	Sum of all items

Función groupby permite combinar todo


```
1 import seaborn as sns
2 planets = sns.load_dataset('planets')
3 planets.head()
```

₽		method	number	orbital_period	mass	distance	year
	0	Radial Velocity	1	269.300	7.10	77.40	2006
	1	Radial Velocity	1	874.774	2.21	56.95	2008
	2	Radial Velocity	1	763.000	2.60	19.84	2011
	3	Radial Velocity	1	326.030	19.40	110.62	2007
	4	Radial Velocity	1	516.220	10.50	119.47	2009

1 planets.dropna().describe()

9		number	orbital_period	mass	distance	year
	count	498.00000	498.000000	498.000000	498.000000	498.000000
	mean	1.73494	835.778671	2.509320	52.068213	2007.377510
	std	1.17572	1469.128259	3.636274	46.596041	4.167284
	min	1.00000	1.328300	0.003600	1.350000	1989.000000
	25%	1.00000	38.272250	0.212500	24.497500	2005.000000
	50%	1.00000	357.000000	1.245000	39.940000	2009.000000
	75%	2.00000	999.600000	2.867500	59.332500	2011.000000
	max	6.00000	17337.500000	25.000000	354.000000	2014.000000

1 planets.groupby('method')['orbital_period'].median()

method Astrometry 631.180000 Eclipse Timing Variations 4343.500000 Imaging 27500.000000 Microlensing 3300.000000 Orbital Brightness Modulation 0.342887 Pulsar Timing 66.541900 Pulsation Timing Variations 1170.000000 360.200000 Radial Velocity Transit 5.714932 Transit Timing Variations 57.011000 Name: orbital_period, dtype: float64

1 planets.groupby('method')['year'].describe()

₽	 		mean	std	min	25%	50%	75%	max
	method								
	Astrometry	2.0	2011.500000	2.121320	2010.0	2010.75	2011.5	2012.25	2013.0
	Eclipse Timing Variations	9.0	2010.000000	1.414214	2008.0	2009.00	2010.0	2011.00	2012.0
	Imaging	38.0	2009.131579	2.781901	2004.0	2008.00	2009.0	2011.00	2013.0
	Microlensing	23.0	2009.782609	2.859697	2004.0	2008.00	2010.0	2012.00	2013.0
	Orbital Brightness Modulation	3.0	2011.666667	1.154701	2011.0	2011.00	2011.0	2012.00	2013.0
	Pulsar Timing	5.0	1998.400000	8.384510	1992.0	1992.00	1994.0	2003.00	2011.0
	Pulsation Timing Variations	1.0	2007.000000	NaN	2007.0	2007.00	2007.0	2007.00	2007.0
	Radial Velocity	553.0	2007.518987	4.249052	1989.0	2005.00	2009.0	2011.00	2014.0
	Transit	397.0	2011.236776	2.077867	2002.0	2010.00	2012.0	2013.00	2014.0
	Transit Timing Variations	4.0	2012.500000	1.290994	2011.0	2011.75	2012.5	2013.25	2014.0

```
1 import numpy as np
2 import pandas as pd
3 import seaborn as sns
4 titanic = sns.load_dataset('titanic')
5 titanic.head()

Survived pclass sex age sibsp parch fare embarked class who adult_male deck embark_town alive alone
```

₽		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
	0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
	1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
	2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
	3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False
	4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True

```
1 titanic.groupby('sex')[['survived']].mean()
₽
           survived
       sex
    female 0.742038
           0.188908
     male
     1 titanic.groupby(['sex', 'class'])['survived'].aggregate('mean')
          class
   female First
                   0.968085
          Second
                  0.921053
                   0.500000
          Third
   male
          First
                   0.368852
                   0.157407
          Second
          Third
                   0.135447
   Name: survived, dtype: float64
```

```
1 titanic.pivot_table('survived', index='sex', columns='class')
    class
            First Second
                            Third
      sex
   female 0.968085 0.921053 0.500000
         0.368852 0.157407 0.135447
     1 age = pd.cut(titanic['age'], [0, 18, 80])
     2 titanic.pivot_table('survived', ['sex', age], 'class')
\Box
            class
                    First Second
                                     Third
      sex
              age
           (0, 18] 0.909091 1.000000 0.511628
    female
          (18, 80) 0.972973 0.900000 0.423729
           (0, 18] 0.800000 0.600000 0.215686
     male
          (18, 80) 0.375000 0.071429 0.133663
```

```
1 fare = pd.qcut(titanic['fare'], 2)
     2 titanic.pivot_table('survived', ['sex', age], [fare, 'class'])
\Box
                  (-0.001, 14.454]
                                         (14.454, 512.329]
                  First Second Third
                                         First
                                                  Second
                                                          Third
           (0, 18]
                    NaN 1.000000 0.714286 0.909091 1.000000 0.318182
                   NaN 0.880000 0.444444 0.972973 0.914286 0.391304
           (18, 80]
           (0, 18]
                    NaN 0.000000 0.260870 0.800000 0.818182 0.178571
           (18, 80]
                    0.0 0.098039 0.125000 0.391304 0.030303 0.192308
```

```
1 titanic.pivot_table(index='sex', columns='class',
                               aggfunc={'survived':sum, 'fare':'mean'})
     2
₽
          fare
                                      survived
    class First
                             Third
                                      First Second Third
                    Second
      sex
    female 106.125798 21.970121 16.118810
                                                     72
                                                     47
     male
           67.226127 19.741782 12.661633
                                               17
```

Cómo podemos presentar todo esto en Python

- Existen varias maneras en Python de presentar resultado gráficamente. Todas comparten la facilidad de uso y gran calidad de la presentación
- Con el fin de facilitar su uso, Pandas incorpora varias visualizaciones adecuadas a Series y DataFrame


```
df['ApplicantIncome_log'] = np.log(df['ApplicantIncome'])
df['ApplicantIncome_log'].hist(bins=50)
plt.show()
```


Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2115 - Programación como herramienta para la ingeniería

Análisis de datos - Exploración, limpieza y depuración

Profesor: Hans Löbel