

Algoritmica grafurilor XIII. Drum critic, clică, măsuri în grafuri

Continut

- Drum critic
 - Arce ca si activitati
 - Varfuri ca si activitati
- Clica
- Masuri in grafuri

Drum critic - graful activităților

Graful activităților

un graf G = (V, E, W) conex aciclic orientat cu următoarele proprietăți:

- arcele grafului reprezintă activități, ponderea arcelor reprezintă timpul necesar execuției unei activități;
- există un vârf de start, v_1 , pentru care $N^{in}(v_1) = \emptyset$;
- există un vârf ce reprezintă finalul activităților, v_n , pentru care $N^{out}(v_n) = \emptyset$.

Drum critic - Introducere

Conexiuni între activități:

- activitatea A trebuie încheiată înainte ca activitățile B și C să înceapă;
- posibil să existe activități cu timp de execuție 0, folosite doar la forțarea ordinii execuției activităților.
- activitatea *E* poate începe doar după execuția activităților *D* și *F*, *G* poate începe după execuția activității *F*.

Drum critic

- Ne înteresează timpul maxim necesar pentru a termina proiectul;
- acest timp maxim este drumul de lungime maximă în graful activităților, drumul între vârfurile de start și finalizare;
- pentru a rezolva această problemă putem folosi algoritmi de drum minim înlocuind problema de minim cu una de maxim;
- mai există o opțiune.

Drum critic - descompunere în nivele

- Un graf orientat ponderat aciclic în care arcele reprezinta activitățile (numit graf de activități);
- vârfurile grafului de activități pot fi distribuite pe nivele;
- vârful ce reprezintă activitatea de start este pe nivelul 1;
- ullet dacă $(v_i,v_j)\in E$ atunci nivelul vârfului v_i este inferior nivelului lui v_j

Algoritmul pentru descompunere în nivele este (*I* este un atribut ce indică nivelul vârfului):

```
\begin{array}{c} \textit{DESCOMPUNERE\_NIVELE}(G) \\ \textbf{for } v \in V \textbf{ do} \\ v.l = 1 \\ \textbf{for } 1 \leq i \leq n \textbf{ do} \\ \text{NEXT}(i) \end{array}
```

Drum critic - descompunere în nivele (II)


```
NEXT(i)

for 1 \le j \le n do

if (a_{ij}) \ne 0 \land v_j.l \le v_i.l then

v_j.l = v_i.l + 1

if j < i then

NEXT(j)
```

Drum critic, descompunere în nivele - exemplu

Drum critic, descompunere în nivele - exemplu (II)

Drum critic - graful activităților

activitate	activitate precedenta	timp executie
A	-	1
В	_	2
С	_	3
D	A	2
Е	A	3
F	A	4
G	B, F	5
H	C, G	2
I	C, G	3
J	B, F, D	4
K	B, F	1
L	B, F	1
M	E, H, J, K, L	2
N	H, I, L	3
О	H, L	2

Drum critic - graful activităților (II)

Graful corespunzător activităților:

Drum critic - graful activităților (III)

- Fie vârfurile grafului de activități $v_1, ..., v_n$ distribuite pe nivele în această ordine;
- algoritmul CPM (Critical Path Method) da timpii t_i și t_i^* atașați fiecărui vârf v_i din graful de activități;
- vârfurile pot fi considerate ca evenimente în proiect;
- dacă 0 este momentul începerii proiectului atunci t_i reprezintă timpul cel mai devreme și t_i* reprezintă timpul cel mai târziu când activitățile de la evenimentul v_i pot începe.

Drum critic - graful activităților(IV)


```
\begin{aligned} \mathsf{CPM}(i) \\ t_1 &= 0 \\ \textbf{for } 2 \leq j \leq n \ \textbf{do} \\ t_j &= \mathsf{max}_{v_i \in N^{in}(v_j)} (t_i + d_{ij}) \\ t_n^* &= t_n \\ \textbf{for } n - 1 \geq i \geq 1 \ \textbf{do} \\ t_i^* &= \mathsf{min}_{v_j \in N^{out}(v_i)} (t_j^* - d_{ij}) \end{aligned}
```

Drum critic - graful activităților (V)

De exemplu putem avea timpii:

varf	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9
t_i	0	1	5	10	5	12	13	12	16
t_i^*	0	1	5	10	10	13	13	14	16

Drum critic - graful activităților (VI)

Putem defini următoarele resurse de timp pe perioada proiectului:

- $R_t(v_i, v_j) = t_j^* t_i d_{ij} =$ timp disponibil, activitatea (v_i, v_j) poate să înceapă cel târziu după $R_t(v_i, v_j)$ timp fără a influența **durata totală** a proiectului;
- $R_f(v_i, v_j) = t_j t_i d_{ij} =$ timpul liber, activitatea (v_i, v_j) poate să înceapă cel târziu după $R_f(v_i, v_j)$ timp fără a influența **următoarea** activitate;
- $R_s(v_i, v_j) = \max\{t_j t_i^* d_{ij}, 0\} = \underset{sign}{\mathsf{timp sigur}}$, activitatea (v_i, v_j) poate fi terminată cel târziu după R_s timp fără a influența durata totală a proiectului;
- vârfurile pentru care acești timpi sunt egali cu 0 sunt pe drumul critic, activitățile de pe acest drum trebuie terminate fără întârzieri.

Drum critic - graful activităților (VII)

activitate	timp executie	R_t	R_f	R_s
A	1	0	0	0
В	2	3	3	3
С	3	7	7	7
D	2	7	2	2
Е	3	10	8	8
F	4	0	0	0
G	5	0	0	0
H	2	1	0	0
I	3	0	0	0
J	4	5	3	0
K	1	8	6	6
L	1	7	6	6
M	2	2	2	0
N	3	0	0	0
O	2	2	2	1

Drum critic - graful activităților (VIII)

Putem modifica algoritmul lui Floyd-Warshall pentru a determina drumul de lungime maximă între două vârfuri, pentru exemplul de mai sus aceste drumuri sunt:

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9
v_1	0	1	5	10	5	12	13	12	16
v_2	$-\infty$	0	4	9	4	11	12	11	15
v_3	$-\infty$	$-\infty$	0	5	0	7	8	7	11
v_4	$-\infty$	$-\infty$	$-\infty$	0	$-\infty$	2	3	2	6
v_5	$-\infty$	$-\infty$	$-\infty$	$-\infty$	0	$-\infty$	$-\infty$	4	6
v_6	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	0	0	0	3
v_7	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	0	$-\infty$	3
v_8	$-\infty$	0	2						
v_9	$-\infty$	0							

Drum critic - graful activităților (IX)

Momentele de timp t_i și t_i^* :

varf	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9
t_i	0	1	5	10	5	12	13	12	16
t_i^*	0	1	5	10	10	13	13	14	16

Drum critic - vârfuri ca și activități

Acest model a fost discutat la seminar.

Problema clicii

Definiție

O clică este un subgraf complet al unui graf dat.

Problema presupune găsirea de mulțimi de vârfuri în graf care formează subgrafuri complete.

Problema este NP-completă.

Definiție

Clică maximă: un subgraf care nu poate fi extins.

Aplicații în grafuri ce reprezintă rețele sociale (găsirea de comunități), chimie, bioinformatică, etc.

Problema clicii - exemplu

Algoritmul lui Bron-Kerbosch

Algoritmul Bron-Kerbosch este utilizat pentru a găsi o clică maximă:

```
R = \{\}
P = \{V\}
X = \{\}
BronKerbosch(P,R,X)
if P = X = \emptyset
R \text{ este o clică maximă}
for <math>v \in P
BronKerbosch(P \cap N(v), R \cup \{v\}, X \cap N(v))
P = P \setminus \{v\}
X = X \cup \{v\}
```

Exemplu Bron-Kerbosch

Exemplu Bron-Kerbosch (II)

Exemplu - rețele sociale

Măsuri în grafuri

- O statistică a unui graf este o valoare numerică care caracterizează acel graf.
- Exemple de astfel de valori: ordinul, dimensiunea unui graf dar şi măsuri mai complexe cum ar fi diametrul şi coeficientul de grupare (clustering coefficient).
- Aceste statistici permit caracterizarea și analiza unui graf. Ele pot fi utilizate pentru a compara, clasifica grafuri, pentru a detecta anomalii în graf, etc.
- Statisticile pot fi utilizate pentru a mapa un graf într-un spațiu numeric simplu, în care pot fi aplicate mai multe metode statistice standard.

Măsuri în grafuri

Ca și măsuri în grafuri putem defini:

- ordinul, dimensiunea
- 2 gradul minim, mediu, maxim
- reciprocitatea (reciprocity)
- încărcarea (fill)
- negativitatea (negativity)
- LLC
- numărul de lanțuri de lungime 2 (wedge count), grafelor ghiară, K₃, grafelor pătrat, 4-tour,
- coeficientul power law, gini
- distribuția relativă a gradului unui vârf
- coeficientul de grupare (clustering coefficient)
- diametrul
- Preferential attachment

Diametrul unui graf

Putem defini excentricitatea unui vârf într-un graf ca și lungimea maximă a drumului minim

$$\epsilon(u) = \max_{v \in V} \delta(u, v)$$

unde δ este drumul minim între u și v.

Diametrul unui graf se poate defini:

$$d = \max_{u \in V} \epsilon(u) = \max_{u,v \in V} \delta(u,v)$$

Diametrul unui graf - exemplu

Care este diametrul acestui graf?

Diametrul unui graf - exemplu (II)

٧	1	2	3	4	5	6	7
1	0	1	1	2	2	1	3
2	1	0	2	1	3	2	4
3	1	2	0	3	1	2	2
4	2	1	3	0	2	1	3
5	2	3	1	2	0	1	1
6	1	2	2	1	1	0	2
7	3	4	2	3	1	2	0

Coeficientul de centralitate - Freeman

Măsură a importanței pe baza gradurilor vârfurilor din graf.

Freeman

$$C_D = \frac{\sum_{i=1,N} [C_D(n^*) - C_D(i)]}{(N-1)(N-2)},$$

unde $C_D(n^*)$ este gradul cel mai mare din graf.

Betweenness centrality

Cât de central este un vârf.

Betweenness centrality

$$C_B(i) = \sum_{j < k} g_{jk}(i)/g_{jk},$$

unde g_{jk} este numărul drumurilor cele mai scurte care leagă vârfurile j și k, $g_{jk}(i)$ este numărul drumurilor cele mai scurte care leagă vârfurile j și k și conțin vârful i.

Normalizare

$$C'_{R}(i) = C_{R}(i)/[(N-1)(N-2)/2].$$

• normalizarea se face împărțind la numărul tuturor drumurilor posibile dacă se scoate vârful *i*

Betweenness centrality - exemplu

Betweenness centrality - exemplu (II)

$$B: (A, C), (A, D), (A, E)$$

 $C: (A, D), (A, E), (B, D), (B, E)$

Betweenness centrality - exemplu (III)

Betweenness centrality - exemplu (IV)

Closeness centrality

"Distanța" unui vârf față de celelalte vârfuri.

Closeness centrality

$$C_c(i) = [\sum_{j=1,N} d(i,j)]^{-1}$$

unde d(i,j) este distanța între vârfurile i si j.

Normalizare

$$C'_{c}(i) = \left[\frac{\sum_{i=1,N} d(i,j)}{N-1}\right]^{-1}$$

Closeness centrality - exemplu

$$C'_{c}(A) = \left[\frac{\sum_{j=1}^{N} d(A,j)}{N-1}\right]^{-1} = \left[\frac{1+2+3+4}{4}\right]^{-1} = \left[\frac{10}{4}\right]^{-1} = 0.4$$

Closeness centrality - exemplu (II)

Eigencentrality (Eigenvector centrality)

O măsură a influenței unui vârf în graf.

O generalizare a măsurii de centralitate în care se ține seama și de vecini.

Eigencentrality - exemplu

Eigencentrality - exemplu (II)

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
$$\lambda \mathbf{C}_e = A\mathbf{C}_e$$
$$(A - \lambda I)\mathbf{C}_e = 0$$

$$\mathbf{C}_{e} = \begin{bmatrix} u_{1} \ u_{2} \ u_{3} \end{bmatrix}^{T},$$

$$\begin{bmatrix} 0 - \lambda & 1 & 0 \\ 1 & 0 - \lambda & 1 \\ 0 & 1 & 0 - \lambda \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

 $\mathbf{C}_e \neq [0\ 0\ 0]^T,$

$$det(A - \lambda I) = \begin{vmatrix} 0 - \lambda & 1 & 0 \\ 1 & 0 - \lambda & 1 \\ 0 & 1 & 0 - \lambda \end{vmatrix} = 0,$$

$$(-\lambda)(\lambda^2 - 1) - 1(-\lambda) = 2\lambda - \lambda^3 = \lambda(2 - \lambda^2) = 0.$$

$$(-\sqrt{2}, 0, +\sqrt{2}).$$

$$\begin{bmatrix} 0 - \sqrt{2} & 1 & 0 \\ 1 & 0 - \sqrt{2} & 1 \\ 0 & 1 & 0 - \sqrt{2} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Eigencentrality - exemplu (IV)

$$\mathbf{C}_e = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 1/2 \\ \sqrt{2}/2 \\ 1/2 \end{bmatrix}$$

vârful C este cel mai central (important).

Page rank

$$PR(v_i) = \frac{1-d}{N} + d \sum_{v_i \in M(v_i)} \frac{PR(v_j)}{L(v_j)},$$

unde $M(v_i)$ este vecinătatea vârfului v_i (arcele spre interior), $L(v_j)$ este gradul spre exterior pentru vârful v_j , d este un parametru.

Page rank - exemplu

$$PR(A) = (1 - d) \times (1 / N) + d \times (PR(C) / 1)$$

 $PR(B) = (1 - d) \times (1 / N) + d \times (PR(A) / 1)$
 $PR(C) = (1 - d) \times (1 / N) + d \times (PR(B) / 1)$

Page rank - exemplu (II)

$$PR(A) = (1 - d) \times (1 / N) + d \times (PR(C) / 2)$$

$$PR(B) = (1 - d) \times (1 / N) + d \times (PR(A) / 1 + PR(C) / 2)$$

$$PR(C) = (1 - d) \times (1 / N) + d \times (PR(B) / 1)$$