Page 1 of 60

SEQUENCE LISTING

<110> CHOO, Qui-Lim

```
HOUGHTON, Michael
       SCOTT, Elizabeth
       WEINER, Amy
      METHODS AND REAGENTS FOR TREATING, PREVENTING AND DIAGNOSING
<120>
       BUNYAVIRUS INFECTION
<130>
      21454
      US 10/580,050
<140>
       2006-05-19
<141>
<150>
      PCT/US04/039333
<151>
       2004-11-19
<160>
      191
<170> PatentIn version 3.3
<210> 1
<211> 4527
<212> DNA
<213> La Crosse virus
<400> 1
agtagtgtac taccaagtat agataacgtt tgaatattaa agttttgaat caaagccaaa
                                                                      60
gatgatttgt atattggtgc taattacagt tgcagctgca agcccagtgt atcaaaggtg
                                                                      120
tttccaagat ggggctatag tgaagcaaaa cccatccaaa gaagcagtta cagaggtgtg
                                                                      180
cctgaaagat gatgttagca tgatcaaaac agaggccagg tatgtaagaa atgcaacagg
                                                                      240
agttttttca aataatgtcg caataaggaa atggctagtc tctgattggc atgattgcag
                                                                      300
qcctaaqaaq atcqttqqqq qacacatcaa tqtaataqaa qttqqtqatq acctqtcact
                                                                      360
ccatactgaa tcatatgttt gcagcgcaga ttgtaccata ggtgtagaca aagagactgc
                                                                      420
acaggtcagg cttcagacag ataccacaaa tcattttgaa attgcaggca ctactgtgaa
                                                                      480
qtcagqatqq ttcaaqaqca cgacatatat aactcttqat caaacttqcq aacaccttaa
                                                                      540
agtttcctgc qqcccaaaat ctgtacagtt ccatqcctqc ttcaatcaqc atatqtcttq
                                                                      600
cgtcagattt ttacacagga caatattgcc tggctctata gccaattcca tatgtcagaa
                                                                      660
tatcgaaatc ataattttag ttacacttac tctattaatc tttatattgt taagcatttt
                                                                     720
aagtaagact tatatatgtt atttattaat gcctatattc atccccatag catatatata
                                                                     780
cggtataatt tacaataagt cgtgcaaaaa atgcaaatta tgtggcttag tgtatcatcc
                                                                      840
attcacagag tgtggcacac attgtgtctg tggtgcccgc tatgatactt cagatagaat
                                                                      900
gaaactgcat agagcttctg gattgtgccc tggttataaa agcctaagag ctgccagagt
                                                                     960
catgtgcaag tcgaaagggc ctgcatcaat attgtctata attactgcgg tactggtctt
                                                                     1020
aacctttgtg acaccaatca actccatggt tttaggagag agtaaagaaa cctttgaact
                                                                     1080
tgaagatctt ccagacgaca tgttggaaat ggcatcgaga ataaattctt attatctcac
                                                                     1140
ctgtatcttg aattatgctg taagctgggg tcttgttatc attggattgt tgatcgggct
                                                                     1200
gctttttaag aaataccagc acagattctt aaatgtttac gcaatgtact gtgaagaatg
                                                                     1260
tgacatgtat catgacaagt ctgggttgaa aagacatggt gatttcacca acaaatgcag
                                                                     1320
acagtgcaca tgtggtcaat atgaagatgc tgcaggtttg atggctcaca ggaaaaccta
                                                                    1380
taactgctta gtgcagtaca aagcaaagtg gatgatgaac ttcctgataa tttacatatt
                                                                     1440
cttaattttg atcaaagatt ctgctatagt tgtacaagct gctggaactg acttcaccac
                                                                     1500
ctgcctagag actgagagta taaattggaa ctgcactggg ccatttttga acctcgqqaa
                                                                     1560
ttgccaaaag caacaaaaga aagaacctta caccaacatt gcaactcagt taaaqqqact
```

```
aaaggcaatt tccgtactag atgtccctat aataacaggg ataccagatg atattgcggg
                                                                     1680
tgctttaaga tatatagaag agaaggaaga tttccatgtc cagctaacta tagaatatqc
                                                                     1740
qatqttaaqc aaatactqtg actattatac ccaattctca qataactcaq qatacaqtca
                                                                     1800
gacaacatgg agagtgtact taaggtctca tgattttgaa gcctgtatac tatatccaaa
                                                                     1860
tcagcacttt tgcagatgtg taaaaaatgg tgagaagtgc agcagctcca attgggactt
                                                                     1920
tgccaatgaa atgaaagatt attactctgg gaaacaaaca aagtttgaca aggacttaaa
                                                                     1980
tctagcccta acagctttgc atcatgcctt cagggggacc tcatctgcat atatagcaac
                                                                     2040
aatgctctca aaaaagtcca atgatgactt gattgcatac acaaataaga taaaaacaaa
                                                                     2100
attcccaggt aatgcattgt tgaaggctat aatagattat atagcatata tgaaaagttt
                                                                     2160
gccaggtatg gcaaatttca aatatgatga attctgggat gaattactgt acaaacccaa
                                                                     2220
cccagcaaag gcctcaaacc ttgctagagg aaaggagtca tcttacaact tcaaactagc
                                                                     2280
aatttcatca aagtctataa aaacctgcaa gaatgttaag gatgttgcct gcttatcgcc
                                                                     2340
aaggtcaggt gctatatatg cttcaataat tgcgtgtggt gaacccaatg ggccaagtgt
                                                                     2400
gtataggaaa ccatcaggtg gtgtattcca atctagcact gatcggtcta tatactgctt
                                                                     2460
gctggatagc cattgtctag aagaatttga ggccatcggc caggaggagc tggatgcggt
                                                                     2520
aaagaaatcc aaatgttggg aaattgaata tcctgacgta aagctcatcc aagaaggcga
                                                                     2580
tgggactaaa agctgtagaa tgaaagattc tgggaactgc aatgttgcaa ctaacagatg
                                                                     2640
gccagtgata caatgtgaga atgacaaatt ttactactca gagcttcaaa aagattatga
                                                                     2700
caaagctcaa gatattggtc actattgctt aagccctgga tgtactactg tccggtaccc
                                                                     2760
tattaatcca aagcacatct ctaactgtaa ttggcaagta agcagatcta gcatagcgaa
                                                                    2820
gatagatgtg cacaatattg aggatattga gcaatataag aaagctataa ctcagaaact
                                                                     2880
tcaaacgagc ctatctctat tcaagtatgc aaaaacaaaa aacttgccgc acatcaaacc
                                                                     2940
aatttataaa tatataacta tagaaggaac agaaactgca gaaggtatag agagtgcata
                                                                     3000
cattgaatca gaagtacctg cattggctgg gacatctatc ggattcaaaa tcaattctaa
                                                                     3060
agagggcaag cacttgctag atgttatagc atatgtaaaa agtgcctcat actcttcagt
                                                                     3120
gtatacaaaa ttgtactcaa ctggcccaac atcagggata aatactaaac atgatgaatt
                                                                     3180
gtgtactggc ccatgcccag caaatatcaa tcatcaggtt gggtggctga catttgcaag
                                                                     3240
agagaggaca agctcatggg gatgcgaaga gtttggttgc ctggctgtaa gtgatgggtg
                                                                     3300
tgtatttgga tcatgccaag atataataaa agaagaacta tctgtctata ggaaggagac
                                                                     3360
cgaggaagtg actgatgtag aactgtgttt gacattttca gacaaaacat actgtacaaa
                                                                     3420
cttaaaccct gttaccccta ttataacaga tctatttgag gtacagttca aaactgtaga
                                                                     3480
gacctacagc ttgcctagaa ttgttgctgt gcaaaaccat gagattaaaa ttgggcaaat
                                                                     3540
aaatgattta ggagtttact ctaagggttg tgggaatgtt caaaaggtca atggaactat
                                                                     3600
ttatggcaat ggagttccca gatttgacta cttatgccat ttagctagca ggaaggaagt
                                                                     3660
cattgttaga aaatgcttcg acaatgatta ccaagcatgc aaatttcttc aaagccctgc
                                                                     3720
tagttacaga cttgaagaag acagtggcac tgtgaccata attgactaca aaaaqatttt
                                                                     3780
aggaacaatc aagatgaagg caattttagg agatgtcaaa tataaaacat ttgctgatag
                                                                     3840
tgtcgatata accgcagaag ggtcatgcac cggctgtatt aactgcttcg aaaatatcca
                                                                     3900
ttgcgaatta acgttgcaca ccacaattga agccagctgc ccaattaaaa gctcgtgcac
                                                                     3960
agtatttcat gacaggattc ttgtgactcc aaatgaacac aaatatgcat tgaaaatggt
                                                                     4020
gtgcacagaa aagccaggga acacactcac aattaaagtc tgcaatacta aagttgaagc
                                                                     4080
atctatggcc cttgtagacg caaagcctat catagaacta gcaccagttg atcagacagc
                                                                     4140
atatataaga gaaaaagatg aaaggtgtaa aacttggatg tgtagggtaa gagatgaagg
                                                                     4200
actgcaggtc atcttggagc catttaaaaaa tttatttgga tcttatattg ggatatttta
                                                                     4260
cacatttatt atatctatag tagtattatt ggttattatc tatgtactac tacctatatg
                                                                     4320
ctttaagtta agggataccc ttagaaagca tgaagatgca tataagagag agatgaaaat
                                                                     4380
tagatagggg atctatgcag aacaaaattg agtcctgtat tatatacttc tatttqtagt
                                                                     4440
atagctgttg ttaagtgggg ggtggggaac taacaacagc gtaaatttat tttgcaaaca
                                                                     4500
ttattttata cttggtagca cactact
                                                                     4527
```

<210> 2 <211> 299

<212> PRT

<213> La Crosse virus

<400		2	_,	_		_		_,					<u>.</u> .	_	
Met 1	lle	Cys	lie	Leu 5	Val	Leu	lle	Thr	Val 10	Ala	Ala	Ala	Ser	Pro 15	Val
Tyr	Gln	Arg	Cys 20	Phe	Gln	Asp	Gly	Ala 25	Ile	Val	Lys	Gln	Asn 30	Pro	Ser
Lys	Glu	Ala 35	Val	Thr	Glu	Val	Cys 40	Leu	Lys	Asp	Asp	Val 45	Ser	Met	Ile
Ļys	Thr 50	Glu	Ala	Arg	Tyr	Val 55	Arg	Asn	Ala	Thr	Gly 60	Val	Pḥe	Ser	Asn
Asn 65	Val	Ala	Ile	Arg	Lys 70	Trp	Leu	Val	Ser	Asp 75	Trp	His	Asp	Cys	Arg 80
Pro	Lys	Lys	Ile	Val 85	Gly	Gly	His	Ile	Asn 90	Val	Ile	Glu	Val	Gly 95	Asp
Asp	Leu	Ser	Leu 100	His	Thr	Glu	Ser	Tyr 105	Val	Cys	Ser	Ala	Asp 110	Cys	Thr
Ile	Gly	Val 115	Asp	Lys	Glu	Thr	Ala 120	Gln	Val	Arg	Leu	Gln 125	Thr	Asp	Thr
Thr	Asn 130	His	Phe	Glu	Ile	Ala 135	Gly	Thr	Thr	Val	Lys 140	Ser	Gly	Trp	Phe
Lys 145	Ser	Thr	Thr	Tyr	Ile 150	Thr	Leu	Asp	Gln	Thr 155	Cys	Glu	His	Leu	Lys 160
Val	Ser	Cys	Gly	Pro 165	Lys	Ser	Val	Gln	Phe 170	His	Ala	Cys	Phe	Asn 175	Gln
His	Met	Ser	Cys 180	Val	Arg	Phe	Leu	His 185	Arg	Thr	Ile	Leu	Pro 190	Gly	Ser
Ile	Ala	Asn 195	Ser	Ile	Cys	Gln	Asn 200	Ile	Glu	Ile	Ile	Ile 205	Leu	Val	Thr
Leu	Thr 210	Leu	Leu	Ile	Phe	Ile 215	Leu	Leu	Ser	Ile	Leu 220	Ser	Lys	Thr	Tyr
Ile 225	Cys	Tyr	Leu	Leu	Met 230	Pro	Ile	Phe	Ile	Pro 235	Ile	Ala	Tyr	Ile	Tyr 240
Gly	Ile	Ile	Tyr	Asn 245	Lys	Ser	Cys	Lys	Lys 250	Cys	Lys	Leu	Cys	Gly 255	Leu
Val	Tyr	His	Pro 260	Phe	Thr	Glu	Cys	Gly 265	Thr	His	Cys	Val	Cys 270	Gly	Ala
Arg	Tyr	Asp 275	Thr	Ser	Asp	Arg	Met 280	Lys	Leu	His	Arg	Ala 285	Ser	Gly	Leu

Cys Pro Gly Tyr Lys Ser Leu Arg Ala Ala Arg

```
<210> 3
<211> 984
<212> DNA
<213> La Crosse virus
<400> 3
agtagtgtac cccacttgaa tactttgaaa ataaattgtt gttgactgtt ttttacctaa
                                                                   60
ggggaaatta tcaagagtgt gatgtcggat ttggtgtttt atgatgtcgc atcaacaggt
                                                                   120
gcaaatggat ttgatcctga tgcagggtat atggacttct gtgttaaaaa tgcagaatta
                                                                   180
ctcaaccttg ctgcagttag gatcttcttc ctcaatgccg caaaggccaa ggctgctctc
                                                                   240
tcgcgtaagc cagagaggaa ggctaaccct aaatttggag agtggcaggt ggaggttatc
                                                                   300
aataatcatt ttcctggaaa caggaacaac ccaattggta acaacgatct taccatccac
                                                                   360
agattatctg ggtatttagc cagatgggtc cttgatcagt ataacgagaa tgatgatgag
                                                                   420
tctcagcacg agttgatcag aacaactatt atcaacccaa ttgctgagtc taatggtgta
                                                                   480
ggatgggaca gtgggccaga gatctatcta tcattctttc caggaacaga aatgtttttg
                                                                   540
gaaactttca aattctaccc gctgaccatt ggaattcaca gagtcaagca aggcatgatg
                                                                   600
gacceteaat acetgaagaa ggeettaagg caacgetatg geacteteac ageagataag
                                                                   660
tggatgtcac agaaggttgc agcaattgct aagagcctga aggatgtaga gcagcttaaa
                                                                   720
tggggaaaag gaggcctgag cgatactgct aaaacattcc tgcagaaatt tggcatcagg
                                                                   780
cttccataaa tatggcatga ggcattcaaa ttaggttcta aattctaaat ttatatatgt
                                                                   840
caatttgatt aattggttat ccaaaagggt tttcttaagg gaacccacaa aaatagcagc
                                                                   900
960
atgtattcag tggggcacac tact
<210> 4
<211> 235
<212> PRT
<213> La Crosse virus
<400> 4
Met Ser Asp Leu Val Phe Tyr Asp Val Ala Ser Thr Gly Ala Asn Gly
                                  10
                                                      15
Phe Asp Pro Asp Ala Gly Tyr Met Asp Phe Cys Val Lys Asn Ala Glu
Leu Leu Asn Leu Ala Ala Val Arg Ile Phe Phe Leu Asn Ala Ala Lys
                           40
Ala Lys Ala Ala Leu Ser Arg Lys Pro Glu Arg Lys Ala Asn Pro Lys
Phe Gly Glu Trp Gln Val Glu Val Ile Asn Asn His Phe Pro Gly Asn
                   70
Arg Asn Asn Pro Ile Gly Asn Asn Asp Leu Thr Ile His Arg Leu Ser
```

Gly Tyr Leu Ala Arg Trp Val Leu Asp Gln Tyr Asn Glu Asn Asp Asp

100 105 110 Glu Ser Gln His Glu Leu Ile Arg Thr Thr Ile Ile Asn Pro Ile Ala 115 120 Glu Ser Asn Gly Val Gly Trp Asp Ser Gly Pro Glu Ile Tyr Leu Ser 135 Phe Phe Pro Gly Thr Glu Met Phe Leu Glu Thr Phe Lys Phe Tyr Pro 145 Leu Thr Ile Gly Ile His Arg Val Lys Gln Gly Met Met Asp Pro Gln 170 Tyr Leu Lys Lys Ala Leu Arg Gln Arg Tyr Gly Thr Leu Thr Ala Asp Lys Trp Met Ser Gln Lys Val Ala Ile Ala Lys Ser Leu Lys Asp 200 Val Glu Gln Leu Lys Trp Gly Lys Gly Gly Leu Ser Asp Thr Ala Lys 215 Thr Phe Leu Gln Lys Phe Gly Ile Arg Leu Pro 230 <210> 5 <211> 6980 <212> DNA <213> La Crosse virus agtagtgtac ccctatctac aaaacttaca gaaaattcag tcatatcaca atatatgcat 60 aatggactat caagagtatc aacaattctt ggctaggatt aatactgcaa gggatgcatg 120 tgtagccaag gatatcgatg ttgacctatt aatggccaga catgattatt ttggtagaga 180 gctgtgcaag tccttaaata tagaatatag gaatgatgta ccatttgtag atataatttt 240 ggatataagg cccgaagtag acccattaac catagatgca ccacatatta ccccagacaa 300 ttatctatat ataaataatg tgttatatat catagattat aaggtctctg tatcgaatga 360 aagcagtgtt ataacatatg acaaatatta tgagttaact agggacatat ccgatagatt 420 aagtattcca atagaaatag ttatcgtccg tatagaccct gtaagtaagg atttgcatat 480 taactctgat agatttaaag aactttaccc tacaatagtg gtggatataa acttcaatca 540 atttttcgac ttaaaacaat tactctatga aaaattcggt gatgatgaag aattcctatt 600 gaaagttgca catggtgact tcactcttac agcaccctgg tgcaagactg ggtgccctga 660 attttggaaa caccccattt ataaagaatt taaaatgagt atgccagtac ctgagcggag 720 gctctttgaa gaatctgtca agttcaatgc ttatgaatct gagagatgga atactaactt 780 ggttaaaatc agagaatata caaagaaaga ctattcagag catatttcaa aatctgcaaa 840 aaatattttc ctggctagtg gattttataa gcagccaaat aagaatgaga ttagtgaggg 900 gtggacatta atggttgaga gggttcaaga tcagagagaa atctcaaaaat ctctccatga 960 ccagaaacct agcatacatt ttatatgggg agcccataac ccaggaaata gtaataatgc 1020 aaccttcaaa ctcatattgc tttcaaagtc cttacaaagc ataaaaggta tatcaactta 1080 cacagaagcg ttcaaatctt taggaaaaat gatggatatt ggagataagg ctattgagta 1140 tgaagaattc tgcatgtccc taaaaagcaa agcaagatca tcatggaagc aaataatgaa 1200 caaaaaatta gagcctaaac aaataaacaa tgcccttgtt ttatgggaac agcagtttat 1260

ggtaaataat gacctgatag acaaaagtga gaagttgaaa ttattcaaaa atttctgcgg

1320

```
tataggcaaa cacaagcaat tcaagaataa aatgctagag gatctagaag tgtcaaagcc
                                                                     1380
caaaatatta gactttgatg acgcaaatat gtatctagct agcctaacca tgatggaaca
                                                                     1440
gagtaagaag atattgtcca aaagcaatgg gttgaagcca gataatttta tactgaatga
                                                                     1500
atttggatcc aaaatcaaag atgctaataa agaaacatat gacaatatgc acaaaatatt
                                                                     1560
tqagacaaga tattggcaat gtatatccga cttctctact ctgatgaaaa atatcttatc
                                                                     1620
tgtgtcccaa tataacaggc acaacacatt taggatagct atgtgtgcta ataacaatgt
                                                                     1680
ctttgctata gtatttcctt cggctgacat aaaaactaag aaagcaactg tagtttatag
                                                                     1740
cattatagtg ctgcataaag aggaagaaaa catattcaac ccaggatgtt tgcacggcac
                                                                     1800
atttaagtgt atgaatgggt atatttccat atctagagct ataaggctag ataaagagag
                                                                     1860
gtgccagaga attgtttcct cacctggact gtttttaaca acttgcctac tattcaaaca
                                                                     1920
tgataatcca actctagtga tgagcgatat tatgaatttt tctatataca ctagcctgtc
                                                                     1980
tatcacaaag agtgttctat ctttaacaga gccagcacgc tacatgatta tgaactcatt
                                                                     2040
agctatctcc agcaatgtta aggactatat agcagagaaa ttttcccctt acacaaagac
                                                                     2100
actgttcagt gtctatatga ctagactaat taaaaatgct tgctttgatg cttatgacca
                                                                     2160
gagacagcgt gtccaactta gagatatata tttatctgat tatgacataa cccaaaaagg
                                                                     2220
tattaaagac aatagagagc taacaagtat atggttccct ggtagtgtaa cattaaagga
                                                                     2280
gtatttaaca caaatatact taccatttta ttttaatgct aaaggactac atgagaagca
                                                                     2340
ccatgtcatg gtggatctag caaagactat attagaaata gagtgcgaac agagggaaaa
                                                                     2400
cataaaggag atatggtcta caaattgtac caaacagaca gtgaacctta aaattttgat
                                                                     2460
ccattccttg tgcaagaatt tactagcaga cacttcaaga cacaaccact tgcggaacag
                                                                     2520
aatagaaaat aggaacaatt ttagaaggtc tataacaact atttcaacat ttacaagttc
                                                                     2580
aaagtettge etcaaaatag gggaetttag aaaagagaaa gagetgeagt cagttaaaca
                                                                     2640
gaagaaaatc ttagaggtgc agagtcgcaa aatgagatta gcaaacccaa tgttcgtgac
                                                                     2700
agatgaacaa gtatgccttg aagttgggca ctgcaattat gagatgctga ggaatgctat
                                                                     2760
gccgaattat acagattata tatcaactaa agtatttgat aggttatatg agttattaga
                                                                     2820
taaaggagtt ttqacagaca agcctgttat agaqcaaata atggatatqa tggtcqacca
                                                                     2880
caaaaaqttc tatttcacat ttttcaataa aqqccaqaaa acqtcaaaqq ataqaqaqat
                                                                     2940
attcgttgga gaatatgaag ctaaaatgtg tatgtacgca gttgagagaa tagcaaaaga
                                                                     3000
aagatgtaaa ttaaatcctg atgaaatgat atctgagccg ggtgatggca agttgaaggt
                                                                     3060
gttggagcaa aaatcagaac aagaaattcg attcttggtc gagactacaa ggcaaaagaa
                                                                     3120
tcgtgaaatc gatgaggcaa ttgaagcatt agctgcagaa ggatatgaga gtaatctaga
                                                                     3180
aaaaattgaa aagctttcac ttggcaaagc aaagggccta aagatggaaa taaatgcaga
                                                                     3240
tatgtctaaa tggagtgctc aggatgtttt ttataaatat ttctggctca tagccttaga
                                                                     3300
ccctatcctc tacccacagg aaaaagagag aatattatac tttatgtgca actacatgga
                                                                     3360
taaagaattg atactgccag atgaattatt attcaatttg ctggaccaaa aagttgcata
                                                                     3420
ccagaatgat ataatagcta ctatgactaa tcaattaaat tcaaatacag ttctgataaa
                                                                     3480
gagaaattgg ctccaaggga atttcaacta cacctcaagt tacgtccata gctgcgcaat
                                                                     3540
gtctgtgtat aaagaaatat taaaagaggc cataacatta ctagacgggt ctatattagt
                                                                     3600
caactcatta gtccattcgg atgataacca aacatcgata acaatagttc aggataagat
                                                                     3660
ggaaaatgat aaaattatag attttgcaat gaaagaattt gagagagcct gtttgacatt
                                                                     3720
tggatgccaa gcaaatatga aaaagacata tgtaacaaat tgcataaaag agtttgtttc
                                                                     3780
attatttaac ttgtacggcg aacccttttc aatatatggc agattcctat taacatctgt
                                                                     3840
gggtgattgt gcctatatag ggccttatga agatttagct agtcgaatat catcagccca
                                                                     3900
gacagecata aageatggtt gtecacecag tetageatgg gtgtecatag caataagtea
                                                                     3960
ttggatgacc tctctgacat acaacatgct accagggcag tcaaatgacc caattgatta
                                                                     4020
tttccctgca gaaaatagga aggatatccc tatagaattg aatggtgtat tagatgctcc
                                                                     4080
attgtcaatg attagtacag ttggattgga atctgggaat ttatacttct tgataaagtt
                                                                     4140
gttgagcaaa tataccccgg tcatgcagaa aagagagtca gtagtcaacc aaatagctga
                                                                     4200
agttaagaac tggaaggtcg aggatctaac agacaatgaa atatttagac ttaaaatact
                                                                     4260
cagatattta gttctagatg cagagatgga ccctagtgat attatgggtg agacaagcga
                                                                     4320
catgagaggg aggtctattt tgacacctag aaaattcaca acagcaggca gtttaaggaa
                                                                     4380
attatattct ttcagtaagt accaggatag actgtcttcc cctggaggca tggttgaatt
                                                                     4440
gttcacttat ttgcttgaga aacctgagtt gttagtgact aaaggggaag atatgaaaga
                                                                     4500
ttatatggaa tctgtgatat tccgatataa ttccaaaagg ttcaaagaaa gtttgtcaat
                                                                     4560
acagaaccca gcacaattat ttatagaaca gatattgttc tcacataagc ccataataga
                                                                     4620
```

```
cttttctggt atcagggaca aatatataaa cctacatgat agtagagctc tagagaagga
                                                                     4680
acctgacata ttaggaaaag taacatttac agaggcttat agattattaa tgagggacct
gtctagccta gaactaacca atgatgacat tcaagtaatt tattcttaca taatacttaa
                                                                     4800
tgaccctatg atgataacta ttgcaaacac acatatattg tcaatatacg ggagtcctca
                                                                     4860
acggaggatg ggcatgtcct gttcaacgat gccagaattt agaaatttaa aattaataca
                                                                     4920
tcattcccca gccttagttt tgagagcata tagtaaaaat aatcctgaca tccagggtgc
                                                                     4980
tgatcccacg gaaatggcta gagatttagt tcatctgaaa gagtttgttg agaacacaaa
                                                                     5040
tttagaagaa aaaatgaaag ttaggattgc tataaatgaa gcagagaaag gacaacggga
                                                                     5100
tatagtettt gaactaaaag agatgaetag attttateag gtttgetatg agtatgteaa
                                                                     5160
atctacagaa cacaagataa aagtetteat teteeegaca aaateataca caacaacaga
                                                                     5220
tttctgttca ctcatgcagg ggaatttaat aaaagataaa gagtggtaca cagttcacta
                                                                     5280
cctaaaacag atattgtctg gtggccataa agccataatg cagcataatg ccactagtga
                                                                     5340
gcaaaatatt gcttttgagt gtttcaaatt aattacccat tttgcagact cattcataga
                                                                     5400
ttcattatct aggtcagctt ttttgcagtt gataatagat gaattcagtt ataaagatgt
                                                                     5460
qaaqqttaqc aaactttatg acataataaa gaatgggtat aatcgaactg acttcatacc
                                                                     5520
attgcttttt agaactggcg atttaagaca agctgactta gacaagtatg atgctatgaa
                                                                     5580
aagtcatgag agggttacat ggaatgattg gcaaacatct cgtcacttgg acatgggctc
                                                                     5640
aattaatcta acaataaccg gttacaatag atcaataaca ataatcggag aagataacaa
                                                                     5700
attgacatat gcagaattat gtctgactag gaaaactcct gagaatataa ctataagtgg
                                                                     5760
cagaaaattg ctaggtgcaa ggcatggact taaatttgaa aatatgtcca aaatccaaac
                                                                     5820
atacccagge aattattata taacatatag aaagaaagat cgccaccagt ttgtatacca
                                                                     5880
gatacattct catgaatcaa taacaaggag gaatgaagag catatggcta tcaggaccag
                                                                     5940
aatatacaat gaaataactc cagtatgtgt agttaacgtt gcagaggtgg atggggacca
                                                                     6000
acgtatattg ataagatett tagaetatet aaataatgat atattttete ttteaaggat
                                                                     6060
taaagtcggg cttgacgaat ttgcaacaat aaaaaaagca cactttagta aaatggtctc
                                                                     6120
atttgaagga cccccaatta agacagggct cctcgacctt actgaattga tgaaatctca
                                                                     6180
                                                                     6240
agatttgctt aaccttaatt atgataatat aaggaatagc aacttgatat ctttttcaaa
attgatttgc tgtgaggggt cagataatat aaatgatggg ttagagtttc tgtccgatga
                                                                     6300
ccctatgaac tttacagagg gtgaagcaat acattcaaca ccgatcttta atatatata
                                                                     6360
ctcaaaaaga ggagaaagac atatgacata caggaatgca attaaattac tgatagaaag
                                                                     6420
agaaactaag atttttgaag aagctttcac attcagtgag aatggcttca tatcgccaga
                                                                     6480
                                                                     6540
gaatcttggt tgcttagaag cagtagtatc attaataaaa ttgttgaaaa ctaatgagtg
gtccacagtt atagataaat gtattcatat atgtttaata aagaatggta tggatcacat
                                                                     6600
gtaccattca tttgatgtcc ctaaatgttt tatggggaat cctatcacta gagacatgaa
                                                                     6660
ttggatgatg tttagagaat tcatcaatag tttaccaggg acagatatac caccatggaa
                                                                     6720
tgtcatgaca gagaacttca aaaagaaatg tattgctctg ataaactcta agttagaaac
                                                                     6780
acaqaqaqat ttctcaqaat tcactaaact gatgaaaaag gaaggtqgga ggagtaatat
                                                                     6840
agaatttgat tagtagttat gagtttacag agaacctaca attaggctat aaatttggga
                                                                     6900
                                                                     6960
gggttttgga aattggctaa aattcaaaaa gagggggatt aacagcaact gtataaattt
                                                                     6980
gtagataggg gcacactact
```

Arg His Asp Tyr Phe Gly Arg Glu Leu Cys Lys Ser Leu Asn Ile Glu

		33					40					45			
Tyr	Arg 50	Asn	Asp	Val	Pro	Phe 55	Val	Asp	Ile	Ile	Leu 60	Asp	Ile	Arg	Pro
Glu 65	Val	Asp	Pro	Leu	Thr 70	Ile	Asp	Ala	Pro	His 75	Ile	Thr	Pro	Asp	Asn 80
Tyr	Leu	Tyr	Ile	Asn 85	Asn	Val	Leu	Tyr	Ile 90	Ile	Asp	Tyr	Lys	Val 95	Ser
Val	Ser	Asn	Glu 100	Ser	Ser	Val	Ile	Thr 105	Tyr	Asp	Lys	Tyr	Tyr 110	Glu	Leu
Thr	Arg	Asp 115	Ile	Ser	Asp	Arg	Leu 120	Ser	Ile	Pro	Ile	Glu 125	Iļe	Val	Ile
Val	Arg 130	Ile	Asp	Pro	Val	Ser 135	Lys	Asp	Leu	His	Ile 140	Asn	Ser	Asp	Arg
Phe 145	Lys	Glu	Leu	Tyr	Pro 150	Thr	Ile	Val	Val	Asp 155	Ile	Asn	Phe	Asn	Gln 160
Phe	Phe	Asp	Leu	Lys 165	Gln	Leu	Leu	Tyr	Glu 170	Lys	Phe	Gly	Asp ·	Asp 175	Glu
Glu	Phe	Leu	Leu 180	Lys	Val	Ala	His	Gly 185	Asp	Phe	Thr	Leu	Thr 190	Ala	Pro
Trp	Cys	Lys 195	Thr	Gly	Cys	Pro	Glu 200	Phe	Trp	Lys	His	Pro 205	Ile	Tyr	Lys
Glu	Phe 210	Lys	Met	Ser	Met	Pro 215	Val	Pro	Glu	Arg	Arg 220.		Phe	Glu	Glu
Ser 225	Val	Lys	Phe	Asn	Ala 230	Tyr	Glu	Ser	Glu	Arg 235	Trp	Asn	Thr	Asn	Leu 240
Val	Lys	Ile	Arg	Glu 245	Tyr	Thr	Lys	Lys	Asp 250	Tyr	Ser	Glu	His	Ile 255	Ser
Lys	Ser		Lys 260		Ile	Phe		Ala 265		Gly	Phe	Tyr	Lys 270	Gln	Pro
Asn	Lys	Asn 275	Glu [·]	Ile	Ser	Glu	Gly 280	Trp	Thr	Leu	Met	Val 285	Glu	Arg	Val
Gln	Asp 290	Gln	Arg	Glu	Ile	Ser 295	Lys	Ser	Leu	His	Asp 300	Gln	Lys	Pro	Ser
Ile 305	His	Phe	Ile	Trp	Gly 310	Ala	His	Asn	Pro	Gly 315	Asn	Ser	Asn	Asn	Ala 320
Thr	Phe	Lys	Leu	Ile	Leu	Leu	Ser	Lys	Ser	Leu	Gln	Ser	Ile	Lys	Gly

Page 9 of 60

Ile	Ser	Thr	Tyr 340	Thr	Glu	Ala	Phe	Lys 345	Ser	Leu	Gly	Lys	Met 350	Met	Asp
Ile	Gly	Asp 355	Lys	Ala	Ile	Glu	Tyr 360	Glu	Glu	Phe	Cys	Met 365	Ser	Leu	Lys
Ser	Lys 370	Ala	Arg	Ser	Ser	Trp 375	Lys	Gln	Ile	Met	Asn 380	Lys	Lys ·	Leu	Glu
Pro 385	ŗ	Gln	Ile	Asn	Asn 390	Ala	Leu	Val	Leu	Trp 395	Glu	Gln	Gln	Phe	Met 400
Val	Asn	Asn	Asp	Leu 405	Ile	Asp	Lys	Ser	Glu 410	Lys	Leu	Lys	Leu	Phe 415	Lys
Asn	Phe	Cys	Gly 420	Ile	Gly	Lys	His	Lys 425	Gln	Phe	Lys	Asn	Lys 430	Met	Leu
Glu	Asp	Leu 435	Glu	Val	Ser	Lys	Pro 440	Lys	Ile	Leu	Asp	Phe 445	Asp	Asp	Ala
Asn	Met 450	Tyr	Leu	Ala	Ser	Leu 455	Thr	Met	Met	Glu	Gln 460	Ser	Lys	Lys	Ile
Leu 465	Ser	Lys	Ser	Asn	Gly 470	Leu	Lys	Pro	Asp	Asn 475	Phe	Ile	Leu	Asn	Glu 480
Phe	Gly	Ser	Lys	Ile 485	Lys	Asp	Ala	Asn	Lys 490	Glu	Thr	Tyr	Asp	Asn 495	Met
His	Lys	Ile	Phe 500	Glu	Thr	Arg	Tyr	Trp 505	Gln	Cys	Ile	Ser	Asp 510	Phe	Ser
Thr	Leu	Met 515	Lys	Asn	Ile	Leu	Ser 520	Val	Ser	Gln	Tyr	Asn 525	Arg	His	Asn
Thr	Phe 530	Arg	Ile	Ala	Met	Cys 535	Ala	Asn	Asn	Asn	Val 540	Phe	Ala	Ile	Val
Phe 545	Pro	Ser	Ala	Asp	Ile 550	Lys	Thr	Lys	Lys	Ala 555	Thr	Val	Val	Tyr	Ser 560
Ile	Ile	Val	Leu	His 565	Lys	Glu	Glu	Glu	Asn 570	Ile	Phe	Asn	Pro	Gly 575	Cys
Leu	His	Gly	Thr 580	Phe	Lys	Cys	Met	Asn 585	Glý	Tyr	Ile	Ser	Ile 590	Ser	Arg
Ala	Ile	Arg 595	Leu	Asp	Lys	Glu	Arg 600	Cys	Gln	Arg	Ile	Val 605	Ser	Ser	Pro
Gly	Leu 610	Phe	Leu	Thr	Thr	Cys 615	Leu	Leu	Phe	Lys	His 620	Asp	Asn	Pro	Thr

Page 10 of 60

Leu 625	Val	Met	Ser	Asp	Ile 630	Met	Asn	Phe	Ser	Ile 635	Tyr	Thr	Ser	Leu	Ser 640
Ile	Thr	Lys	Ser	Val 645	Leu	Ser	Leu	Thr	Glu 650	Pro	Ala	Arg	Tyr	Met 655	Ile
Met	Asn	Ser	Leu 660	Ala	Ile	Ser	Ser	Asn 665	Val	Lys	Asp	Tyr	Ile 670	Ala	Glu
Lys	Phe	Ser 675	Pro	Tyr	Thr	Lys	Thr 680	Leu	Phe	Ser		Tyr 685	Met	Thr	Arg
Leu	Ile 690	Lys	Asn	Ala	Cys	Phe 695	Asp	Ala	Tyr	Asp	Gln 700	Arg	Gln	Arg	Val
Gln 705	Leu	Arg	Asp	Ile	Tyr 710	Leu	Ser	Asp	Tyr	Asp 715	Ile	Thr	Gln	Lys	Gly 720
Ile	Lys	Asp	Asn	Arg 725	Glu	Leu	Thr	Ser	Ile 730	Trp	Phe	Pro	Gly	Ser 735	Val
Thr	Leu	Lys	Glu 740	Tyr	Leu	Thr	Gln	Ile 745	Tyr	Leu	Pro	Phe	Tyr 750	Phe	Asn
Ala	Lys	Gly 755	Leu	His	Glu	Lys	His 760	His	Val	Met	Val	Asp 765	Leu	Ala	Lys
Thr	Ile 770	Leu	Glu	Ile	Glu	Cys 775	Glu	Gln	Arg	Glu	Asn 780	Ile	Lys	Glu	Ile
Trp 785	Ser	Thr	Asn	Cys	Thr 790	Lys	Gln	Thr	Val	Asn 795	Leu	Lys	Ile	Leu	Ile 800
His	Ser	Leu	Cys	Lys 805	Asn	Leu	Leu	Ala	Asp 810	Thr	Ser	Arg	His	Asn 815	His
Leu	Arg	Asn	Arg 820	Ile	Glu	Asn	Arg	Asn 825	Asn	Phe	Arg	Arg	Ser 830	Ile _.	Thr
Thr	Ile	Ser 835	Thr,	Phe	Thr	Ser	Ser 840	Lys	Ser	Cys	Leu	Lys 845	Ile	Gly	Asp
Phe	Arg 850	Lys	Glu	Lys	Glu	Leu 855	Gln	Ser	Val	Lys	Gln 860	Lys	Lys	Ile	Leu
Glu 865	Val	Gln	Ser	Arg	Lys 870	Met	Arg	Leu	Ala	Asn 875	Pro	Met	Phe	Val	Thr 880
Asp	Glu	Gln	Val	Cys 885	Leu	Glu	Val	Gly	His 890	Cys	Asn	Tyr	Glu	Met 895	Leu
Arg	Asn	Ala	Met 900	Pro	Asn	Tyr	Thr	Asp 905	Tyr	Ile	Ser	Thr	Lys 910	Val	Phe
Asp	Arg	Leu	Tyr	Glu	Leu	Leu	Asp	Lys	Gly	Val	Leu	Thr	Asp	Lys	Pro

925 . Val Ile Glu Gln Ile Met Asp Met Met Val Asp His Lys Lys Phe Tyr Phe Thr Phe Phe Asn Lys Gly Gln Lys Thr Ser Lys Asp Arg Glu Ile Phe Val Gly Glu Tyr Glu Ala Lys Met Cys Met Tyr Ala Val Glu Arg Ile Ala Lys Glu Arg Cys Lys Leu Asn Pro Asp Glu Met Ile Ser Glu Pro Gly Asp Gly Lys Leu Lys Val Leu Glu Gln Lys Ser Glu Gln Glu Ile Arg Phe Leu Val Glu Thr Thr Arg Gln Lys Asn Arg Glu Ile Asp Glu Ala Ile Glu Ala Leu Ala Ala Glu Gly Tyr Glu Ser Asn Leu Glu Lys Ile Glu Lys Leu Ser Leu Gly Lys Ala Lys Gly Leu Lys Met Glu Ile Asn Ala Asp Met Ser Lys Trp Ser Ala Gln Asp Val Phe Tyr Lys Tyr Phe Trp Leu Ile Ala Leu Asp Pro Ile Leu Tyr Pro Gln Glu Lys Glu Arg Ile Leu Tyr Phe Met Cys Asn Tyr Met Asp Lys Glu Leu Ile Leu Pro Asp Glu Leu Leu Phe Asn Leu Leu Asp Gln Lys Val Ala Tyr Gln Asn Asp Ile Ile Ala Thr Met Thr Asn Gln Leu Asn Ser Asn Thr Val Leu Ile Lys Arg Asn Trp Leu Gln Gly Asn Phe Asn Tyr Thr Ser Ser Tyr Val His Ser Cys Ala Met Ser Val Tyr Lys Glu Ile Leu Lys Glu Ala Ile Thr Leu Leu Asp Gly Ser Ile Leu Val Asn Ser Leu Val His Ser Asp Asp Asn Gln Thr Ser Ile Thr Ile Val Gln Asp Lys Met Glu Asn Asp

Lys	Ile 1205	Ile	Asp	Phe	Ala	Met 1210	Lys	Glu	Phe	Glu	Arg 1215	Ala	Cys	Leu
Thr	Phe 1220	Gly	Cys	Gln	Ala	Asn 1225	Met	Lys	Lys	Thr	Tyr 1230	Val	Thr	Asn
Cys	Ile 1235	Lys	Glu	Phe	Val	Ser 1240	Leu	Phe	Asn	Leu	Tyr 1245	Gly	Glu	Pro
Phe	Ser 1250	Ile	Tyr	Gly	Arg	Phe 1255	Leu	Leu	Thr	Ser	Val 1260	Gly	Asp	Cys
Ala	Tyr 1265	Ile	Gly	Pro	Tyr	Glu 1270	Asp	Leu	Ala	Ser	Arg 1275	Ile	Ser	Ser
Ala	Gln 1280	Thr	Ala	Ile	Lys	His 1285	Gly	Cys	Pro	Pro	Ser 1290	Leu	Ala	Trp
Val	Ser 1295	Ile	Ala	Ile	Ser	His 1300	Trp	Met	Thr	Ser	Leu 1305	Thr	Tyr	Asn
Met	Leu 1310	Pro	Gly	Gln	Ser	Asn 1315	Asp	Pro	Ile	Asp	Tyr 1320	Phe	Pro	Ala
Glu	Asn 1325	Arg	Lys	Asp	Ile	Pro 1330	Ile	Glu	Leu	Asn	Gly 1335	Val	Leu	Asp
Ala	Pro 1340	Leu	Ser	Met	Ile	Ser 1345	Thr	Val	Gly	Leu	Glu 1350	Ser	Gly	Asn
Leu	Tyr 1355	Phe	Leu	Ile	Lys	Leu 1360	Leu	Ser	Lys	Tyr	Thr 1365	Pro	Val	Met
Gln	Lys 1370	Arg	Glu	Ser	Val	Val 1375	Asn	Gln	Ile	Ala	Glu 1380	Val	Lys	Asn
Trp	Lys 1385	Val	Glu	Asp	Leu	Thr 1390	Asp	Asn	Glu	Ile	Phe 1395	Arg	Leu	Lys
Ile	Leu 1400	Arg	Tyr	Leu	Val	Leu 1405	Asp	Ala	Glu	Met	Asp 1410	Pro	Ser	Asp
Ile	Met 1415	Gly	Glu	Thr	Ser	Asp 1420	Met	Arg	Gly	Arg	Ser 1425	Ile	Leu	Thr
Pro	Arg 1430	Lys	Phe	Thr	Thr	Ala 1435	Gly	Ser	Leu	Arg	Lys 1440	Leu	Tyr	Ser
Phe	Ser 1445	Lys	Tyr	Gln	Asp	Arg 1450	Leu	Ser	Ser	Pro	Gly 1455	Gly	Met	Val
Glu	Leu 1460	Phe	Thr	Tyr	Leu	Leu 1465	Glu	Lys	Pro	Glu	Leu 1470	Leu	Val	Thr

Lys	Gly 1475	Glu	Asp	Met	Lys	Asp 1480	Tyr	Met	Glu [,]	Ser	Val 1485	Ile	Phe	Arg
Tyr	Asn 1490	Ser	Lys	Arg	Phe	Lys 1495	Glu	Ser	Leu	Ser	Ile 1500	Gln	Asn	Pro
Ala	Gln 1505	Leu	Phe	Ile	Glu	Gln 1510		Leu	Phe	Ser	His 1515	Lys	Pro	Ile
Ile	Asp 1520	Phe	Ser	Gly	Ile	Arg 1525	Asp	Lys	Tyr	Ile	Asn 1530	Leu	His	Asp
Ser	Arg 1535	Ala	Leu	Glu	Lys	Glu 1540	Pro	Asp	Ile	Leu	Gly 1545	Lys	Val	Thr
Phe	Thr 1550	Glu	Ala	Tyr ·	Arg	Leu 1555	Leu	Met	Arg	Asp	Leu 1560	Ser	Ser	Leu
Glu	Leu 1565	Thr	Asn	Asp	Asp	Ile 1570	Gln	Val	Ile	Tyr	Ser 1575	Tyr	Ile	Ile
Leu	Asn 1580	Asp	Pro	Met	Met	Ile 1585	Thr	Ile	Ala	Asn	Thr 1590	His	Ile	Leu
Ser	Ile 1595	Tyr	Gly	Ser	Pro	Gln 1600	Arg	Arg	Met	Gly	Met 1605	Ser	Cys	Ser
Thr	Met 1610	Pro	Glu	Phe	Arg	Asn 1615	Leu	Lys	Leu	Ile	His 1620	His	Ser	Pro
Ala	Leu 1625	Val	Leu	Arg	Ala	Tyr 1630	Ser	Lys	Asn	Asn	Pro 1635	Asp	Ile	Gln
Gly	Ala 1640	Asp	Pro	Thr	Glu	Met 1645	Ala	Arg	Asp	Leu	Val 1650		Leu	Lys
Glu	Phe 1655	Val	Glu	Asn	Thr	Asn 1660	Leu	Glu	Glu	Lys	Met 1665	Lys	Val	Arg
Ile	Ala 1670	Ile	Asn	Glu	Ala	Glu 1675	Lys	Gly	Gln	Arg	Asp 1680	Ile	Val	Phe
Glu	Leu 1685	Lys	Glu	Met	Thr	Arg 1690	Phe	Tyr	Gln	Val	Cys 1695	Tyr	Glu	Tyr
Val	Lys 1700	Ser	Thr	Glu	His	Lys 1705	Ile	Lys	Val	Phe	Ile 1710	Leu	Pro	Thr
Lys	Ser 1715	Tyr	Thr	Thr	Thr	Asp 1720	Phe	Cys	Ser	Leu	Met 1725	Gln	Gly	Asn
Leu	Ile 1730	Lys	Asp	Lys	Glu	Trp 1735	Tyr	Thr	Val	His	Tyr 1740	Leu	Lys	Gln
Ile	Leu	Ser	Gly	Gly	His	Lys	Ala	Ile	Met	Gln	His	Asn	Ala	Thr

	1745					1750					1755			•
Ser	Glu 1760	Gln	Asn	Ile	Ala	Phe 1765	Glu	Cys	Phe	Lys	Leu 1770	Ile	Thr	His
Phe	Ala 1775	Asp	Ser	Phe	Ile	Asp 1780		Leu	Ser	Arg	Ser 1785		Phe	Leu
Gln	Leu 1790	Ile	Ile	Asp	Glu	Phe 1795		Tyr	Lys	Asp	Val 1800		Val	Ser
Lys	Leu 1805	Tyr	Asp	Ile	Ile	Lys. 1810	Asn	Gly	Tyr	Asn	Arg 1815	Thr	Asp	Phe
Ile	Pro 1820	Leu	Leu	Phe	Arg	Thr 1825	Gly	Asp	Leu	Arg	Gln 1830	Ala	Asp	Leu
Asp	Lys 1835	Tyr	Asp	Ala	Met	Lys 1840		His	Glu	Arg	Val 1845		Trp	Asn
Asp	Trp 1850	Ġln	Thr	Ser	Arg	His 1855	Leu	Asp	Met	Gly	Ser 1860	Ile	Asn	Leu
Thr	Ile 1865	Thr	Gly	Tyr	Asn	Arg 1870		Ile	Thr	Ile	Ile 1875	Gly	Glu	Asp
Asn	Lys 1880	Leu	Thr	Tyr	Ala	Glu 1885		Cys	Leu	Thr	Arg 1890	Lys	Thr	Pro
Glu	Asn 1895	Ile	Thr	Ile	Ser	Gly 1900	Arg	Lys	Leu	Leu	Gly 1905	Ala	Arg	His
Gly	Leu 1910	Lys	Phe	Glu	Asn	Met 1915	Ser	Lys	Ile	Gln	Thr 1920	Tyr	Pro	Gly
Asn	Tyr 1925		Ile	Thr	Tyr	Arg 1930	_	Lys	Asp	Arg	His 1935		Phe	Val
Tyr	Gln 1940	Ile	His	Ser	His	Glu 1945	Ser	Ile	Thr	Arg	Arg 1950	Asn	Glu	Glu
His	Met 1955	Ala	Ile	Arg	Thr	Arg 1960	Ile	Tyr	Asn	Glu	Ile 1965	Thr	Pro	Val
Cys	Val 1970	Val	Asn	Val	Ala	Glu 1975	Val	Asp	Gly	Asp	Gln 1980	Arg	Ile	Leu
Ile	Arg 1985	Ser	Leu	Asp	Tyr	Leu 1990	Asn	Asn	Asp	Ile	Phe 1995	Ser	Leu	Ser
Arg	Ile 2000	Lys	Val	Gly	Leu	Asp 2005	Glu	Phe	Ala	Thr	Ile 2010	Lys	Lys	Ala
His	Phe 2015	Ser	Lys	Met	Val	Ser 2020	Phe	Glu	Gly	Pro	Pro 2025	Ile	Lys	Thr

Page 15 of 60

Gly	Leu 2030		Asp	Leu	Thr	Glu 2035	Leu	Met	Lys	Ser	Gln 2040	Asp	Leu	Leu
Asn	Leu 2045	Asn	Tyr	Asp	Asn	Ile 2050		Asn	Ser	Asn	Leu 2055	Ile	Ser	Phe
Ser	Lys 2060	Leu	Ile	Cys	Cys	Glu 2065		Ser	Asp	Asn	Ile 2070	Asn	Asp	Gly
Leu	Glu 2075	Phe	Leu	Ser	Asp	Asp 2080		Met	Asn	Phe	Thr 2085	Glu	Gly	Glu
Ala	Ile 2090	His	Ser	Thr	Pro	Ile 2095	Phe	Asn	Ile	Tyr	Tyr 2100	Ser	Lys	Arg
Gly	Glu 2105	Arg	His	Met	Thr	Tyr 2110	Arg	Asn	Ala	Ile	Lys 2115	Leu	Leu	Ile
Glu	Arg 2120	Glu	Thr	Lys	Ile	Phe 2125	Glu	Glu	Ala	Phe	Thr 2130		Ser	Glu
Asn	Gly 2135	Phe	Ile	Ser	Pro	Glu 2140	Asn	Leu	Gly	Cys	Leu 2145	Glu	Ala	Val
Val	Ser 2150	Leu	Ile	Lys	Leu	Leu 2155	Lys	Thr	Asn	Glu	Trp 2160	Ser	Thr	Val
Ile	Asp 2165	Lys	Cys	Ile	His	Ile 2170	_	Leu	Ile	Lys	Asn 2175	Gly	Met	Asp
His	Met 2180	Tyr	His	Ser	Phe	Asp 2185	Val	Pro	Lys	Cys	Phe 2190		Gly	Asn
Pro	Ile 2195	Thr	Arg	Asp	Met	Asn 2200	Trp	Met	Met	Phe	Arg 2205	Glu	Phe	Ile
Asn	Ser 2210	Leu	Pro	Gly	Thr	Asp 2215	Ile	Pro	Pro	Trp	Asn 2220	Val	Met	Thr
Glu	Asn 2225	Phe	Lys	Lys	Lys	Cys 2230	Ile	Ala	Leu	Ile	Asn 2235	Ser	Lyś	Leu
Glu	Thr 2240	Gln	Arg	Asp	Phe	Ser 2245	Glu	Phe	Thr	Lys	Leu 2250	Met	Lys	Lys
Glu	Gly 2255	Gly	Arg	Ser	Asn	Ile 2260	Glu	Phe	Asp					

<210> 7

<211> 25

<212> DNA

<213> Artificial Sequence

Page 16 of 60

<220> <223>	Antisense primer derived from M segment of LACV genome	
<400>	7	
cgatca	acaa tccaatgata acaag	25
<210>	8	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Sense primer derived from M segment of LACV genome	
<400>	8	
tggaaa	tggc atcgagaata aa	22
	·	
<210>	9	
<211>	39	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of LACV genome	
<400>	9	
attatc	tcac ctgtatcttg aattatgctg taagctggg	39
<210>	10	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Sense primer derived from S segment of LACV genome	
<400>	10	
	gcac gagttgatca gaa	23
J		
<210>	11	
<211>	22	
	DNA .	
	Artificial Sequence	
	·	
<220>		
<223>	Antisense primer derived from S segment of LACV genome	
<400>	11	
aatggt	cage gggtagaatt tg	22

Page 17 of 60

```
<210> 12
<211>
      25
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from S segment of LACV genome
<400> 12
                                                                     25
tggtgtagga tgggacagtg ggcca
<210> 13
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223>
      Sense primer derived from L segment of LACV genome
<400> 13
aaagtcgggc ttgacgaatt t
                                                                     21
<210> 14
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense primer derived from L segment of LACV genome
<400> 14
cggacagaaa ctctaaccca tca
                                                                     23
<210> 15
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from L segment of LACV genome
ccccaatta agacagggct cctcg
                                                                     25
<210> 16
<211>
      25
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide specific for LACV sequence
```

25

<400> 16

catgaggcat tcaaattagg ttcta <210> 17 <211> 174 <212> PRT <213> La Crosse virus <400> 17 Val Met Cys Lys Ser Lys Gly Pro Ala Ser Ile Leu Ser Ile Ile Thr Ala Val Leu Val Leu Thr Phe Val Thr Pro Ile Asn Ser Met Val Leu Gly Glu Ser Lys Glu Thr Phe Glu Leu Glu Asp Leu Pro Asp Asp Met Leu Glu Met Ala Ser Arg Ile Asn Ser Tyr Tyr Leu Thr Cys Ile Leu Asn Tyr Ala Val Ser Trp Gly Leu Val Ile Ile Gly Leu Leu Ile Gly Leu Leu Phe Lys Lys Tyr Gln His Arg Phe Leu Asn Val Tyr Ala Met 85 90 Tyr Cys Glu Glu Cys Asp Met Tyr His Asp Lys Ser Gly Leu Lys Arg 105 His Gly Asp Phe Thr Asn Lys Cys Arg Gln Cys Thr Cys Gly Gln Tyr 115 120 Glu Asp Ala Ala Gly Leu Met Ala His Arg Lys Thr Tyr Asn Cys Leu 135 Val Gln Tyr Lys Ala Lys Trp Met Met Asn Phe Leu Ile Ile Tyr Ile Phe Leu Ile Leu Ile Lys Asp Ser Ala Ile Val Val Gln Ala 165 <210> 18 <211> 968 <212> PRT <213> La Crosse virus <400> 18 Ala Gly Thr Asp Phe Thr Thr Cys Leu Glu Thr Glu Ser Ile Asn Trp Asn Cys Thr Gly Pro Phe Leu Asn Leu Gly Asn Cys Gln Lys Gln Gln

			20					25					30		
Lys	Lys	Glu 35	Pro	Tyr	Thr	Asn	Ile 40	Ala	Thr	Gln	Leu	Lys 45	Gly	Leu	Lys
Ala	Ile 50	Ser	Val	Leu	Asp	Val 55	Pro	Ile	Ile	Thr	Gly 60	Ile	Pro	Asp	Asp
Ile 65	Ala	Gly	Ala	Leu	Arg 70	Tyr	Ile	Glu	Glu	Lys 75	Glu	Asp	Phe	His	Val 80
Gln	Leu	Thr	Ile	Glu 85	Tyr	Ala	Met	Leu	Ser 90	Lys	Tyr	Cys	Asp	Tyr 95	Tyr
Thr	Gln	Phe	Ser 100	Asp	Asn	Ser	Gly	Tyr 105	Ser	Gln	Thr	Thr	Trp 110	Arg	Val
Tyr	Leu	Arg 115	Ser	His	Asp	Phe	Glu 120	Ala	Cys	Ile	Leu	Tyr 125	Pro	Asn	Gln
His	Phe 130	Cys	Arg	Cys	Val	Lys 135	Asn	Gly	Glu	Lys	Cys 140	Ser	Ser	Ser	Asn
Trp 145	Asp	Phe	Ala	Asn	Glu 150	Met	Lys	Asp	Tyr	Tyr 155	Ser	Gly	Lys	Gln	Thr 160
Lys	Phe	Asp	Lys	Asp 165	Leu	Asn	Leu	Ala	Leu 170	Thr	Ala	Leu	His	His 175	Ala
Phe	Arg	Gly	Thr 180	Ser	Ser	Ala	Tyr	Ile 185	Ala	Thr	Met	Leu	Ser 190	Lys	Lys
Ser	Asn	Asp 195	Asp	Leu	Ile	Ala	Tyr 200	Thr	Asn	Lys	Ile	Lys 205	Thr	Lys	Phe
Pro	Gly 210	Asn	Ala	Leu	Leu	Lys 215	Ala	Ile	Ile	Asp	Tyr 220	Ile	Ala	Tyr	Met
Lys 225	Ser	Leu	Pro	Gly	Met 230	Ala	Asn	Phe	Lys	Tyr 235	Asp	Glu	Phe	Trp	Asp 240
Glu	Leu	Leu	Tyr	Lys 245	Pro	Asn	Pro	Ala	Lys 250		Ser	Asn	Leu	Ala 255	Arg
Gly	Lys	Glu	Ser 260	Ser	Tyr	Asn	Phe	Lys 265	Leu	Ala	Ile	Ser	Ser 270	Lys	Ser
Ile	Lys	Thr 275	Cys	Lys	Asn	Val	Lys 280	Asp	Val	Ala	Cys	Leu 285	Ser	Pro	Arg
Ser	Gly 290	Ala	Ile	Tyr	Ala	Ser 295	Ile	Ile	Ala	Cys	Gly 300	Glu	Pro	Asn	Gly
Pro	Ser	Val	Tyr	Arg	Lys	Pro	Ser	Gly	Gly	Val	Phe	Gln	Ser	Ser	Thr

Page 20 of 60

Asp	Arg	Ser	Ile	Tyr 325	Суѕ	Leu	Leu	Asp	Ser 330	His	Cys	Leu	Glu	Glu 335	Phe
Glu	Ala	Ile	Gly 340	Gln	Glu	Glu	Leu	Asp 345	Ala	Val	Lys	Lys	Ser 350	Lys	Cys
Trp	Glu	Ile 355	Glu	Tyr	Pro	Asp	Val 360	Lys	Leu	Ile	Gln	Glu 365	Gly	Asp	Gly
Thr	Lys 370	Ser	Cys	Arg	Met	Lys 375	Asp	Ser	Gly	Asn	Cys 380	Asn	Val	Ala	Thr
Asn 385	Arg	Trp	Pro	Val	Ile 390	Gln	Cys	Glu	Asn	Asp 395	Lys	Phe	Tyr	Tyr	Ser 400
Glu	Leu	Gln	Lys	Asp 405	Tyr	Asp	Lys	Ala	Gln 410	Asp	Ile	Gly	His	Tyr 415	Cys
Leu	Ser	Pro	Gly 420	Cys	Thr	Thr	Val	Arg 425	Tyr	Pro	Ile	Asn	Pro 430	Lys	His
Ile	Ser	Asn 435	Cys	Asn	Trp	Gln	Val 440	Ser	Arg	Ser	Ser	Ile 445	Ala	Lys	Ile
Asp	Val 450	His	Asn	Ile	Glu	Asp 455	Ile	Glu	Gln	Tyr	Lys 460	Lys	Ala	Ile	Thr
Gln 465	Lys	Leu	Gln	Thr	Ser 470	Leu	Ser	Leu	Phe	Lys 475	Tyr	Ala	Lys	Thr	Lys 480
Asn	Leu	Pro	His	Ile 485	Lys	Pro	Ile	Tyr	Lys 490	Tyr	Ile	Thr	Ile	Glu 495	Gly
Thr	Glu	Thr	Ala 500	Glu	Gly	Ile	Glu	Ser 505	Ala	Tyr	Ile	Glu	Ser 510	Glu	Val
Pro	Ala	Leu 515	Ala	Gly	Thr	Ser	Ile 520	Gly	Phe	Lys	Ile		Ser ·	Lys	Glu
Gly	Lys 530	His	Leu	Leu	Asp	Val 535	Ile	Ala	Tyr	Val	Lys 540	Ser	Ala	Ser	Tyr
Ser 545	Ser	Val	Tyr	Thr	Lys 550	Leu	Tyr	Ser	Thr	Gly 555	Pro	Thr	Ser	Gly	Ile 560
Asn	Thr	Lys	His	Asp 565	Glu	Leu	Cys	Thr	Gly 570	Pro	Cys	Pro	Ala	Asn 575	Ile
Asn	His	Gln	Val 580	Gly	Trp	Leu	Thr	Phe 585	Ala	Arg	Glu	Arg	Thr 590	Ser	Ser
Trp							_			7	a	_	~ 3	_	

Page 21 of 60

Phe	Gly 610	Ser	Cys	Gln	Asp	Ile 615	Ile	Lys	Glu	Glu	Leu 620	Ser	Val	Tyr	Arg
Lys 625	Glu	Thr	Glu	Glu	Val 630	Thr	Asp	Val	Glu	Leu 635	Cys	Leu	Thr	Phe	Ser 640
Asp	Lys	Thr	Tyr	Cys 645	Thr	Asn	Leu	Asn	Pro 650	Val	Thr	Pro	Ile	11e 655	Thr
Asp	Leu	Phe	Glu 660	Val	Gln	Phe	Lys	Thr 665	Val	Glu	Thr	Tyr	Ser 670	Leu	Pro
Arg	Ile	Val 675	Ala	Vаl	Gln	Asn	His 680	Glu	Ile	Lys	Ile	Gly 685	Gln	Ile	Asn
Asp	Leu 690	Gly	Vаl	Tyr	Ser	Lys 695	Gly	Cys	Gly	Asn	Val 700	Gln	Lys	Val	Asn
Gly 705	Thr	Ile	Tyr	Gľy	Asn 710	Gly	Val	Pro	Arg	Phe 715	Asp	Tyŗ	Leu	Cys	His 720
Leu	Ala	Ser	Arg	Lys 725	Glu	Val	Ile	Val	Arg 730	Lys	Cys	Phe	Asp	Asn 735	Asp
Tyr	Gln	Ala	Cys 740	Lys	Phe	Leu	Gln	Ser 745	Pro	Ala	Ser	Tyr	Arg 750	Leu	Glu
Glu	Asp	Ser 755	Gly	Thr	Val	Thr	Ile 760	Ile	Asp	Tyr	Lys	Lys 765	Ile	Leu	Gly
Thr	Ile 770	Lys	Met	Lys	Ala	Ile 775	Leu	Gly	Asp	Val	Lys 780	Tyr	Lys ·	Thr	Phe
Ala 785	Asp	Ser	Val	Asp	Ile 790	Thr	Ala	Glu	Gly	Ser 795	Cys	Thr	Gly	Cys	Ile 800
Asn	Cys	Phe	Glu	Asn 805	Ile	His	Cys	Glu	Leu 810	Thr	Leu	His	Thr	Thr 815	Ile
Glu	Ala	Ser	Cys 820	Pro	Ile	Lys	Ser	Ser 825	Cys	Thr	Val	Phe	His 830	Asp	Arg
Ile	Leu	Val 835	Thr	Pro	Asn	Glu	His 840	Lys	Tyr	Ala	Leu	Lys 845	Met	Val	Cys
Thr	Glu 850	Lys	Pro	Gly	Asn	Thr 855	Leu	Thr	Ile	Lys	Val 860	Cys	Asn	Thr	Lys
Val 865	Glu	Ala	Ser	Met	Ala 870	Leu	Val	Asp	Ala	Lys 875	Pro	Ile	Ile	Glu	Leu 880
Ala	Pro	Val	Asp	Gln 885	Thr	Ala	Tyr	Ile	Arg 890	Glu	Lys	Asp	Glu	Arg 895	Cys
Lys	Thr	Trp	Met	Cys	Arg	Val	Arg	Asp	Glu	Gly	Leu	Gln	Val	Ile	Leu

900	905 ·	910						
Glu Pro Phe Lys Asn Leu 915	Phe Gly Ser Tyr 3	Ile Gly Ile Phe 925	Tyr Thr					
Phe Ile Ile Ser Ile Val 930	Val Leu Leu Val 3 935	Ile Ile Tyr Val 940	Leu Leu					
Pro Ile Cys Phe Lys Leu 945 950		Arg Lys His Glu 955	Asp Ala 960					
Tyr Lys Arg Glu Met Lys 965	Ile Arg							
<210> 19 <211> 92 <212> PRT <213> La Crosse virus								
<400> 19 Met Met Ser His Gln Gln 1 5	. Val Gln Met Asp I	Leu Ile Leu Met	Gln Gly 15					
Ile Trp Thr Ser Val Leu 20	Lys Met Gln Asn 5	Tyr Ser Thr Leu 30	Leu Gln					
Leu Gly Ser Ser Ser Ser 35	Met Pro Gln Arg I	Pro Arg Leu Leu 45	Ser Arg					
Val Ser Gln Arg Gly Arg	Leu Thr Leu Asn I 55	Leu Glu Ser Gly 60	Arg Trp					
Arg Leu Ser Ile Ile Ile 65 70		Gly Thr Thr Gln 75	Leu Val 80					
Thr Thr Ile Leu Pro Ser	Thr Asp Tyr Leu (Gly Ile						
<210> 20 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Forward primer derived from M segment of the LACV genome <400> 20 ttgtacaagc tgctggaact gactt								

<210> 21 <211> 22 <212> DNA 25

Page 23 of 60

<213>	Artificial Sequence	
<220> <223>	Forward primer derived from M segment of the LACV genome	
<400>	21	
tgtggtg	gece getatgatae tt	22
<210>	22	
<211>	20	
<212>	DNA	
<213 >	Artificial Sequence	
<220>		
<223>	Forward primer derived from M segment of the LACV genome	
<400>	22	20
cgcggcg	gece getatgatae	20
<210>	23	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Forward primer derived from M segment of the LACV genome	
<400>	23	
	gcc cgctatgata c	21
<210>	24	
<211>	20	
<212> <213>	DNA Artificial Sequence	
(213)	Attiticial bequence	
<220>		
<223>	Forward primer derived from M segment of the LACV genome	
<400>	24	
	gcc cgctatgata	20
3 33		
010		
<210>	25	
<211> <212>	21 DNA	
<213>	Artificial Sequence	
<220>		
<223>	Forward primer derived from M segment of the LACV genome	
<400>	25	
	rtgc ccgctatgat a	21

Page 24 of 60

<210><211><211><212><213>	26 20 DNA Artificial Sequence	
<220> <223>	Forward primer derived from M segment of the LACV genome	
<400>	26 gtgc ccgctatgat	20
cccgcgg	gege eegecaegae	20
<210>	27	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Forward primer derived from M segment of the LACV genome	
<400>	27	
gtgtctg	gtgg tgcccgctat	20
·		
<210>	28	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Forward primer derived from M segment of the LACV genome	
<400>	28	
agacagt	tggc actgtgacca taa	23
010		
<210> <211>	29 24	
<211> <212>	DNA	
	Artificial Sequence	
<213>	Artificial bequeince	
<220>		
<223>	Forward primer derived from M segment of the LACV genome	
<400>	29	
agacagt	tggc actgtgacca taat	24
<210>	30	
<211>	23	
<212>	DNA	
ノフコス 〜	Artificial Sequence	

Page 25 of 60

<220>											
<223>	Forward	primer	derived	from	M	segment	of	the	LACV	genome	
<400>	30										
aaσacac	gtgg cact	gtgacc	ata								23
	,-55	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
-210-	2.1										
<210>	31		•								
<211>	24										
<212>	DNA	-1 0									
<213>	Artifici	ar sequ	ience								
<220>											
<223>	Forward	primer	derived	from	M	segment	of	the	LACV	genome	
<400>	31										
	jtgg cact	gtgacc	ataa								24
uugu 0 u 5	,cjg cacc	,505400									
<210>	32										
<211>	25										
	DNA							,			
<213>	Artifici	al Sequ	lence								
<220>											
	Forward	primer	derived	from	M	segment	of	the	LACV	genome	
<400>	32										
aagacag	stgg cact	gugade	ataat						•		25
<210>	33	•									
<211>	24										
<212>	DNA										
<213>	Artifici	al Sequ	lence							•	
-220-											
<220> <223>	Forward	nrimer	derived	from	M	seament	٥f	the	T.7\C\7	cenome	
<223>	roiwaid	brimer	delived	LIOIII	141	segment	OL	CHE	. HACV	genome	
<400>	33										
gaagaca	gtg gcac	tgtgac	cata								24
<210>	34										
<211>	25										
	DNA										
	Artifici	al Sem	ience								
		Jugu									
<220>									•		
<223>	Forward	primer	derived	from	M	segment	of	the	LACV	genome	
-400:	2.4										
<400>	34 agt ggca	ctatas	ccata								25
~g~~g~~	.~gc ggca		u								~ ~

Page 26 of 60

<210><211>	35 25	
<212> <213>	DNA Artificial Sequence	
<220>	Probe derived from M segment of the LACV genome	
	, and the second	
<400>	35	2.0
ciggge	catt tttgaacctc gggaa	25
	36	
	24	
<212> <213>		
<220> <223>	Probe derived from M segment of the LACV genome	
	,	
<400>	36	
ctgggc	catt tttgaacctc ggga	24
<210>	37	
<211>	24	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome .	
<400>	37	_
cactgg	gcca tttttgaacc tcgg	24
<210>	38	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	38	23
cragge	catt tttgaacctc ggg	23
0.1.0		
	39	
<211> <212>		
	Artificial Sequence	
<220>	•	
<223>	Probe derived from M segment of the LACV genome	

Page 27 of 60

	·	
<400>	39	
tgaacc	tcgg gaattgccaa aagca	25
<210>	40	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Probe derived from M segment of the LACV genome	
	3	
<400>	40	
tgcact	gggc catttttgaa cctcg	25
<210>	41	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Probe derived from M segment of the LACV genome	
<400>	41	0.5
accygy	ccat ttttgaacct cggga	25
	•	
<210>	42	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	42	
	ccat ttttgaacct cggg	24
<210>	43	
<211>		
<212>		
•	Artificial Sequence	
<220>	Public Andrew Manager Co. 12 Property	
<223>	Probe derived from M segment of the LACV genome	
<400>	43	
	attt ttgaacctcg gga	23
<210>	44	

Page 28 of 60

<212>	DNA Artificial Sequence	
12137	Inditional sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	44	
tgggcca	attt ttgaacctcg ggaat	25
<210>	45	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	45	
cactggg	gcca tttttgaacc tcggg	25
	46	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	46	24
tgggcca	attt ttgaacctcg ggaa	24
<210>	47	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	47	
	agtc gaaagggcct gca	23
0909040		
-210-		
<210>	48	
<211>	24	
<212> <213>	DNA Artificial Sequence	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	48	

Page 29 of 60

catgtg	catgtgcaag tcgaaagggc ctgc					
	49 24 DNA Artificial Sequence					
<220> <223>	Probe derived from M segment of the LACV genome					
<400> tcatgt	49 gcaa gtcgaaaggg cctg	24				
<210>,<211><211><212><213>	24					
<220> <223>	Probe derived from M segment of the LACV genome					
<400> atgtgc	50 aagt cgaaagggcc tgca	24				
<210><211><211><212><213>	51 25 DNA Artificial Sequence					
<220> <223>	Probe derived from M segment of the LACV genome					
<400> tcatgt	51 gcaa gtcgaaaggg cctgc	25				
<210><211><211><212><213>	52 24 DNA Artificial Sequence					
<220> <223>	Probe derived from M segment of the LACV genome					
<400> taaccg	52 caga agggtcatgc accg	24				
<210><211><211><212>	53 ' 21 DNA Antificial Sequence					

Page 30 of 60

<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	53	
ccacaaa	aagg gtcatgcacc g	21
005045		2-
<210>	54	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	54	
aaccgca	agaa gggtcatgca ccg	23
<210>	55	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	55	
ataacco	gcag aagggtcatg caccg	25
<210>	56	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	56	
accgcag	gaag ggtcatgcac cg	22
<210>	57	
<211>	23	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	57	
	ggtc atgcaccggc tgt	23

Page 31 of 60

<210><211><211>	58 21 DNA	
	Artificial Sequence	
<220> <223>	Probe derived from M segment of the LACV genome	
<400>	58	0.1
cgcagaa	aggg tcatgcaccg g	21
<210>	59	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220> <223>	Reverse primer derived from M segment of the LACV genome	
< 400 >	59	۰.
agtecet	tta actgagttgc aatgt	25
<210>	60	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Reverse primer derived from M segment of the LACV genome	
<400>	60	
aaggtta	aga ccagtaccgc agtaa	25
<210>	61	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Reverse primer derived from M segment of the LACV genome	
<400>	61	
gtgtgca	acg ttaattcgca at	22
<210>	62	
<211>	22	
	DNA .	
<213>	Artificial Sequence	
<220>		

Page 32 of 60

<223>	Reverse primer	derived	from	M	segment	of	the	LACV	genome	
<400>	62									•
tgtggtg	gtgc aacgttaatt	cg								. 22
<210>	63		ř							
<211>	22									
	DNA							•		
<213>	Artificial Sequ	uence								
<220>										
<223>	Reverse primer	derived	from	М	segment	of	the	LACV	genome	
					5				30	
<400>	63									
tcaatt	gtgg tgtgcaacgt	ta								22
<210>	64							•		•
<211>	23									
<212>	DNA									
<213>	Artificial Sequ	lence								
<220>	•									
<223>	Reverse primer	derived	from	М	segment	of	the	LACV	genome	
<400>	64 .					•				
tcaatt	gtgg tgtgcaacgt	taa								23
-210-	65									
<210>	65 21									
<211> <212>	DNA									
<213>	Artificial Sequ	lence								
12137	Arciliciai beq	acirce					•			
<220>										
	Reverse primer	derived	from	М	segment	of	the	LACV	genome	
	-				J				J	
<400>	65									
tcaatt	gtgg tgtgcaacgt	t								21
<210>	66									
<211>	24									
<212>	DNA									
<213>	Artificial Sequ	lence								
<220>										
<223>	Reverse primer	derived	from	M	segment	of	the	LACV	genome	
	THE PLANE		•	•					J	
<400>	66									
	gtgg tgtgcaacgt	taat								24

<210> 67

Page 33 of 60

<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Forward primer derived from the S segment of the LACV genome	
~2237	Totala primor acrived from one o beginning of one met genome	
<400>	67	
tctcago	cacg agttgatcag aac	23
<210>	68	
<211>	23	
<212>	DNA Antificial Company	
<213>	Artificial Sequence	
<220>		
<223>	Forward primer derived from the S segment of the LACV genome	
<400>	· · · · · · · · · · · · · · · · · · ·	
ctcagca	acga gttgatcaga aca	23
<210>	69	
<211> <212>	23 DNA	
	Artificial Sequence	
12137	merrorar bedaence	
<220>		
<223>	Forward primer derived from the S segment of the LACV genome	
<400>	69	
tcagcac	cgag ttgatcagaa caa	23
<210>	70	
<211>	22	
<212>	DNA ·	
<213>	Artificial Sequence	
<220>		
<223>	Forward primer derived from the S segment of the LACV genome	
400	70	
<400>	70 .	22
LCLACCE	cgct gaccattgga at	44
	•	
<210>	71.	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Forward primer derived from the S segment of the LACV genome	

Page 34 of 60

<400> gagtgtg	71 gatg tcggatttgg tgtt	24						
<210><211><211><212><213>	72 24 DNA Artificial Sequence							
<220> <223>	Forward primer derived from the S segment of the LACV genome							
<400> agtctca	72 agca cgagttgatc agaa	24						
<210 > <211 > <212 >	73 24 DNA							
<213> <220>	Artificial Sequence							
<223>	Forward primer derived from the S segment of the LACV genome							
<400> gtctcag	73 gcac gagttgatca gaac	24						
<210><211><212><212><213>	74 24 DNA Artificial Sequence							
<220> <223>	Forward primer derived from the S segment of the LACV genome							
<400>	74 cacg agttgatcag aaca	24						
<210><211><212><212><213>	75 24 DNA Artificial Sequence							
<220>								
<223>	Forward primer derived from the S segment of the LACV genome							
<400> 75 ctcagcacga gttgatcaga acaa								
<210>	76 22							
.010-	AD .							

Page 35 of 60

<213>	Artifici	al Sequ	ience									
<220>									•			
	Forward	primer	derived	from	the	S	segment	of	the	LACV	genome	
<400> 76 .												
tcagcac	gag ttga	tcagaa	ca				•		•			22
			,									
<210>	77											
<211>	21											
<212>	DNA											
	Artifici	al Seco	ience									
<220>												
<223>	Forward	primer	derived	from	the	S	segment	of	the	LACV	genome	
<400>	77 ·											
		12++002	2									21
LCLacco	gct gacc	actyga	a									21
<210>	78								•			
<211>	22						•					
	DNA											
<213>	Artifici	.al Sequ	ience									
<220>												
<223>	Forward	primer	derived	from	the	s	segment	of	the	LACV	genome	
<400>	78											
tacccgc	tga ccat	tggaat	tc									22
<210>	79											
<211>	24											
<212>	DNA											
<213>	Artifici	al Sequ	lence		,							
<220>												
	Forward	primer	derived	from	the	s	segment	of	the	LACV	genome	
	101 "414	PIICI	ucriveu	110	0110		005	-	0110	21101	901101110	
<400>	79								•			
caagagt	gtg atgt	cggatt	tggt									24
<210>	80											
<211>	23											
	DNA											
	Artifici	al Seco	ience									
		1										
<220>												
<223>	Forward	primer	derived	from	the	s	segment	of	the	LACV	genome	
-400-	80											
<400> 80 aagagtgtga tgtcggattt ggt											23	

```
<210> 81
<211>
      23
<212> DNA
<213> Artificial Sequence
<223> Forward primer derived from the S segment of the LACV genome
<400> 81
cctgatgcag ggtatatgga ctt
                                                                     23
<210> 82
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from the S segment of the LACV genome
<400> 82
tgcagggtat atggacttct gtgt
                                                                     24
<210> 83
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from the S segment of the LACV genome
<400> 83
gatgagtctc agcacgagtt gatc
                                                                     24
<210> 84.
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from the S segment of the LACV genome
<400> 84
gagtctcagc acgagttgat cagaa
                                                                     25
<210> 85
<211>
      25
<212> DNA
<213> Artificial Sequence
```

Page 37 of 60

<220>				_			•	_				
<223>	Forward	primer	derived	from	the	S	segment	of	the	LACV	genome	
<400>	85											
agtctca	agca cgag	gttgatc	agaac									25
<210>	86											
<211>	20											
<212>	DNA											
<213>	Artifici	al Sequ	ience									
<220>												
<223>	Forward	primer	derived	from	the	s	segment	of	the	LACV	genome	
.100.	0.0											
<400>	86 300t 0300	attaa										20
ccaccc	eget gace	accyga										20
-210-	0.7											
<210> <211>	87 21											
<211>	DNA								.*			
<213>	Artifici	al Seon	ience				,					
10202		ar beg	201100									
<220>				_								
<223>	Forward	primer	derived	from	the	S	segment	of	the	LACV	genome	
<400>	87											
ctacccg	gctg acca	ttggaa	t									21
<210>	88								•			
<211>	21											
<212>	DNA											
<213>	Artifici	al Sequ	ience									
<220>												
<223>	Forward	primer	derived	from	the	S	segment	of	the	LACV	genome	
-400-	0.0											
<400>	88 3035 5003	attasa	2									21
cyccyac	cat tgga	iacccac	a						•			21
-210-	0.0											
<210> <211>	89 24											
<211> <212>	24 DNA											
	Artifici	al Sem	ience									
~4.1.7	*** (****	ar sede	201100									
<220>												
<223>	Forward	primer	derived	from	the	S	segment	of	the	LACV	genome	
<400>	89								•			
	gcag ggta	tatgga	cttc									24

Page 38 of 60

<210>	90	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>	· · · · · · · · · · · · · · · · · · ·	
	Forward primer derived from the S segment of the LACV genome	
<400>	90	
	ggta tatggacttc tgtgt	25
, ,		
<210>	91	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
	·	
<400>	91	
caagca	aggc atgatggacc ctcaa	25
_		
-		
<210>	92	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>	•	
<223>	Probe derived from S segment of LACV genome	
<400>	92	
tcaagc	aagg catgatggac cctca	25
	·	
<210>	93	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	93	
tgtcgc	atca acaggtgcaa atgga	25
010	0.4	
<210>	94	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	

Page 39 of 60

<400>	94	
caatgco	gca aaggccaagg c	21
_		
<210>	95	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
	- ·	
<220>		
<223>	Probe derived from S segment of LACV genome	
	J J	
<400>	95	
	caaa ggccaaggct gct	23
55		
	'	
<210>	96	
	22	
<212>		
	Artificial Sequence	
\21J/	Altilitial bequence	
<220>	•	
	Probe derived from S segment of IACV genome	
<223>	Probe derived from S segment of LACV genome	
<400>	96	
		~~
ccgcaaa	aggc caaggctgct ct	22
010	0.7	
	97	
<211>	24	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	97	
ccgcaaa	ggc caaggctgct ctct	24
	·	
<210>	98	
<211>	21	
<212>	DNA	
<213> ·	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	98	
atgccgc	aaa ggccaaggct g	21
<210>	99	
<211>	21	

Page 40 of 60

<212> <213>	DNA Artificial Sequence	
<220> <223>	Probe derived from S segment of LACV genome	
<400>	99	21
egeege	aaag gccaaggctg c	21
<210>	100	
<211> <212>	DNA	
<213>	Artificial Sequence	
	Artificial bequence	
<220>	Puchs deviced from G servert of 1200 server	
<223>	Probe derived from S segment of LACV genome	
<400>	100	
caatgc	cgca aaggccaagg ctg	23
<210>	101	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>	Ducks deviced from C company of TACV course	
<223>	Probe derived from S segment of LACV genome	
<400>	101	
aggcca	aggc tgctctctcg cgta	24
<210>	102	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	102	
cgcaaa	ggcc aaggctgctc tct	23
<210>	103	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	103	

Page 41 of 60

ccaagg	ctgc tctctcgcgt aagc	24
<210>	104	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
\21J/	Arctriciar bequence	
<220>		
	Probe derived from S segment of LACV genome	
<400>	104	
caaagg	ccaa ggctgctctc tcgc	24
<210>	105	
<211>	22	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
400	100	
<400>	105	
aggcca	aggc tgctctctcg cg	22
	•	
<210>	106	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	106	
aaaggc	caag gctgctctct cgcgt	25
0.1.0	100	
<210>	107	
<211>	23	
<212>	DNA Antificial Company	
<213>	Artificial Sequence	
<220>		
	Probe derived from S segment of LACV genome	
	delication of microgand	
<400>	107	
	caat gccgcaaagg cca	23
		
<210>	108	
<211>		
<212>		
-212-	Artificial Comence	

Page 42 of 60

<220>

<223>	Probe derived from S segment of LACV genome	
<400>	108	
tcttcct	tcaa tgccgcaaag gcc	23
<210>	109	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	109	
	aagg ctgctctctc gcgt	24
33		
<210>	110	
<210>	110 24	
<211 <i>></i>		
	Artificial Sequence	
~2137	Arctificat bequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	110	
tcttcct	ccaa tgccgcaaag gcca	24
<210>	111	
	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Probe derived from S segment of LACV genome	
<400>	111	
		2 5
	cct caatgccgca aaggc	25
<210>	112	
<211>	22	
<212>	DNA Artificial Seguence	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	112	
	ccgc aaaggccaag gc	22

Page 43 of 60

<210><211><211><212><213>	113 25 DNA Artificial Sequence	
<220> <223>	Probe derived from S segment of LACV genome	
<400>	113 ctca atgccgcaaa ggcca	25
<210>	114	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>	•	
<223>	Probe derived from S segment of LACV genome	
<400>	114	
cctcaat	cgcc gcaaaggcca agg	23
<210>	115	
<211>	25	
<212>	DNA Artificial Seguence	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	115	
cttcct	caat gccgcaaagg ccaag	25
<210>	116	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	116	
	ctca atgccgcaaa ggcc	24
<210>	117	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>	•	

Page 44 of 60

<223>	Probe derived from S segment of LACV genome	
<400>	117	
ctcaato	geeg caaaggeeaa gge	23
••		
	118	
<211>	· ·	
<212>		
<213>	Artificial Sequence	
<220>		
	Probe derived from S segment of LACV genome	
12237	Trope derived from 5 beginning of they genome	
<400>	118	
	natg ccgcaaaggc caa	23
		•
<210>	119	
<211>	23	
<212>		
<213>	Artificial Sequence	
<220>		
	Probe derived from S segment of LACV genome	
~2237	Flobe delived flom 5 segment of back genome	
<400>	119	
	tgc cgcaaaggcc aag	23
	120	
<211> <212>	21	
	Artificial Sequence	
\2137	Attititud bequence	
<220>		
	Probe derived from S segment of LACV genome	
	J J	
<400>	120 .	
tcctcaa	tgc cgcaaaggcc a	21
-010:	101	
<210>	121	
<211> <212>	DNA	
	Artificial Sequence	
~~/		
<220>		
<223>	Probe derived from S segment of LACV genome	
	·	
<400>	121	
tcaatgo	cgc aaaggccaag gct	23

<210> 122

Page 45 of 60

<211>	22	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	122	
caatgc	egca aaggecaagg et	22
<210>	123	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
	·	
<220>	· ·	
<223>	Probe derived from S segment of LACV genome	
<400>	123	
	cctc aatgccgcaa aggcc	25
•		
<210>	124	
<211>		
<212>		
	Artificial Sequence	
\21J/	Altilitat bequence	
<220>	,	
	Probe derived from S segment of LACV genome	
\223 /	Flobe delived from 5 segment of hack genome	
<400>	124	
	gccg caaaggccaa gg	22
CCCaac	geeg caaayyeeaa yy	22
-210-	125	
	125	
<211>		
<212>		
<213>	Artificial Sequence	
000		
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	125	
aatgcc	gcaa aggccaaggc tg ·	22
	·	
<210>	126	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	

Page 46 of 60

<400>	126	
atgccg	caaa ggccaaggct gc	22
<210>	127	
<211>	20	
<212>	DNA	
	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
12237	Tibbe delived from a beginning of mich genome	
-100-	127	
<400>	127	20
tgccgca	aaag gccaaggctg	20
<210>	128	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>	•	
<223>	Probe derived from S segment of LACV genome	
12237	Trope derived from a beginning of larger genome	
<400>	120	
	128	2.4
ctcaatg	gccg caaaggccaa ggct	24
<210>	129	
<211>	22 .	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
<223>	Probe derived from S segment of LACV genome	
	J	
<400>	129	
	gcc gcaaaggcca ag	22
ccccaa	gee geaaayyeea ay	22
.010	120	
<210>	130	
<211>	24	
<212>	DNA .	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	130	
		24
<210>	131	
<211>	25	
<212>	DNA	

Page 47 of 60

<213>	Artificial Sequence	
<220>	\cdot	
<223>	Probe derived from S segment of LACV genome	
<400>	131	
tcttcct	caa tgccgcaaag gccaa	25
<210>	132	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	132	
	atgo ogcaaaggoo aa	22
ccccaa	acgo ogcadaggoo aa	22
-210-	122	
<210> <211>	133 22	
<211>		
	Artificial Sequence	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	133	
	aatg ccgcaaaggc ca	22
	and degenerage on	
<210>	134	
<211>	24	
	Artificial Sequence	
<220>	D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
<223>	Probe derived from S segment of LACV genome	
<400>	134	
ttcctca	aatg ccgcaaaggc caag	24
<210>	135	
<211>	23	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	135	
	agge tgeteteteg egt	23

Page 48 of 60

<210>	136	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Probe derived from S segment of LACV genome	
	Trope delived from 5 beginning of mich general	
<400>	136	
caaggc	eget etetegegta ageca	25
<210>	137	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
000		
<220>	Ducho denised from C company of INCV company	
<223>	Probe derived from S segment of LACV genome	
<400>	137	
ccaagg	ctgc tctctcgcgt aagcc	25
<210>	138	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>	Duelle deviced from C receipt of I DOW servers	
<223>	Probe derived from S segment of LACV genome	
<400>	138	
aggccaa	aggo tgotototog ogtaa	25
<210>	139	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	139	
ccgcaa	aggc caaggctgct c	21
-		
<210>	140	
<210 <i>></i>	25	
<212>	DNA	
	Artificial Sequence	

Page 49 of 60

<220>	·	
<223>	Probe derived from S segment of LACV genome	
<400>	140	
	gete tetegegtaa gecag	25
auggee	good cooglegoud goodg	23
<210>	141	
<211>	24	
<212>	DNA Antificial Company	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	141	2.4
aaggct	gete tetegegtaa geea	24
<210>	142	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	142	
caaggct	eget etetegegta agee	24
<210>	143	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
10207	12000 dollared 120m b bogment of micr genome	
<400>	143	
cgcaaag	ggcc aaggctgctc tc	22
<210>	144	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
-220-		
<220>	Duche denisted from C comment of TAGV	
<223>	Probe derived from S segment of LACV genome	
<400>	144	
ccgcaaa	agge caaggetget ete	23

Page 50 of 60

<210>	145 25	
<212>	DNA	
<213>	Artificial Sequence	
	·	
<220>	•	
<223>	Probe derived from S segment of LACV genome	
<400>	145	
aaggcca	agg ctgctctctc gcgta	25
33	33 4 3 4 4 4 4 5 3 4 5 4	_
<210>	146	
<211>	23	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
	·	
<400>	146	
	agg ctgctctctc gcg	23
<210>	147	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	147	
cgcaaag	gcc aaggetgete tete	24
	,	
	, , , , , , , , , , , , , , , , , , ,	
<210>	148	
<211>	24	
<212>	DNA .	
	Artificial Sequence	
10101		
<220>		
	Probe derived from S segment of LACV genome	
<423 >	Probe derived from a segment of LACV genome	
400	140	
<400>	148	
aaaggco	aag gctgctctct cgcg	24
<210>	149	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
	Reverse primer derived from S segment of LACV genome	

Page 51 of 60

<400> caatgg	149 tcag cgggtagaat tt	22
	150 22 DNA Artificial Sequence	
<220> <223>	Reverse primer derived from S segment of LACV genome	
<400> ccaatg	150 gtca gcgggtagaa tt	22
<211> <212>	151 22 DNA Artificial Sequence	
<220> <223>	Reverse primer derived from S segment of LACV genome	
<400> tccaato	151 ggtc agcgggtaga at	22
<211> <212>	152 23 DNA Artificial Sequence	
<220> <223>	Reverse primer derived from S segment of LACV genome	
<400> tccttca	152 aggc tcttagcaat tgc	23
<210><211><211><212><213>	153 22 DNA Artificial Sequence	
<220> <223>	Reverse primer derived from S segment of LACV genome	
<400> ctttgcg	153 ggca ttgaggaaga ag	22
<210> <211>	154 22	

Page 52 of 60

<212>	DNA	•	
<213>	Artificial Sequence		
<220>			
<223>	Reverse primer derived from S segment of	LACV genome	
<400>	1'54		
	agcg ggtagaattt ga		22
acggcce	ageg ggeagaacee ga		22
<210>	155	·	
<211>	21		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Reverse primer derived from S segment of	LACV genome	
<400>	155 .	4	
	gtca gcgggtagaa t		21
ccaacg	geed gegggedgdd e	•	2.1
<210>	156		
<211>	21		
<212>	DNA		
<213>	Artificial Sequence		
<220>	Parameter designed from 0 accounts of	T 3 CT7	
<223>	Reverse primer derived from S segment of	LACV genome	
<400>	156	•	
	ggtc agcgggtaga a		21
	20 2 - - 2		
<210>	157 ⁻		
<211>	20		
<212>			
<213>	Artificial Sequence		
-220-			
<220>	Reverse primer derived from S segment of	LACV genome	
\22 37	Reverse primer derived from 5 segment or	nacv genome	
<400>	157 .	•	
	ggtc agcgggtaga		20
_			
<210>	158	•	
<211>	24		
<212>	DNA		
<213>	Artificial Sequence	,	
-220-			
<220> <223>	Reverse primer derived from S segment of	I.ACV genome	
~~~>	Reverse primer defived from a segment of	TWC A BETTOME	
<400>	158		

#### Page 53 of 60

catcct	tcag gctcttagca attg	24
<210><211><211><212><213>	159 21 DNA Artificial Sequence	
<220>		
<223>	Reverse primer derived from S segment of LACV genome	
<400> tgcggc	159 attg aggaagaaga t	21
<210> <211>	160 20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Reverse primer derived from S segment of LACV genome	
<400>	160 catt gaggaagaag	20
<210>	161	
<211>		
<212> <213>	Artificial Sequence	
<220> <223>	Reverse primer derived from S segment of LACV genome	
12237	Reverse primer derived from b beginere of brev genome	
<400>	161	21
ettige	ggca ttgaggaaga a	21
<210>	162	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Reverse primer derived from S segment of LACV genome	
<400>	162	
gccacto	ctcc aaatttaggg ttag	24
<210>	163	
<211><212>	DNA	
	Artificial Sequence	

# Page 54 of 60

<220>											
<223>	Reverse	primer	derived	from	S	segment	of	LACV	genome	•	
<400>	163										
cacctgo	cac tctc	caaatt	tag								23
	•										
<210>	164										
<211>	23										
<212>											
<213>	Artifici	al Sequ	ience								
<220>											
<223>	Reverse	primer	derived	from	S	segment	of	LACV	genome	•	
<400>	164									•	
tcagcgg	gta gaat	ttgaaa	gtt								23
<210>	165										
<211>	22	•									
<212>			•								
<213>	Artifici	al Sequ	lence								
<220>											
<223>	Reverse	primer	derived	from	s	segment	of	LACV	genome		
<400>	165								•		
tggtcag	cgg gtag	aatttg	aa								22
	166										
<211>	23										
	DNA	- 1 . 0									
<213>	Artifici	aı sequ	lence								
<220>	_			_	_		_				
<223>	Reverse	primer	derived	from	S	segment	of	LACV	genome		
<400>	166										
atggtca	gcg ggta	gaattt	gaa								23
						•					
<210>	167										
<211>	23 DNA										
<212>	DNA Artifici	al Cam	ience								
<b>~413</b> >	ALCILICI	ar sedo	CIICE						-		
<220>											
<223>	Reverse	primer	derived	from	S	segment	of	LACV	genome		
<400>	167										
aatggtc	age gagt	agaatt	tga								23

# Page 55 of 60

<210><211><211><212><213>	168 23 DNA Artificial Sequence		
<220> <223>	Reverse primer derived from S segment of LAC	V genome	
<400>	168		
caatggt	cag cgggtagaat ttg		23
<210>	169	,	
<211> <212>	20		
	DNA Artificial Sequence		
<213>	Artificial sequence		
<220>			
<223>	Reverse primer derived from S segment of LAC	V genome	
<400>	169		
ccaatgo	rtca gcgggtagaa		20
		•	
<210>	170		
<211>	24		
<212>	DNA		
<213>	Artificial Sequence	•	
<220>			
<223>	Reverse primer derived from S segment of LAC	V genome	
<400>	170	•	
atccttc	agg ctcttagcaa ttgc		24
<210>	171		
<211>	24		
	DNA		
<213>	Artificial Sequence	•	
<220>			
<223>	Reverse primer derived from S segment of LAC	V genome	
<400>	17.1		
	cct tcaggctctt agca		24
cciacal	agea		24
<210>	172		
<211>	23		
	DNA		
	Artificial Sequence		
<220>			

### Page 56 of 60

<223>	Reverse primer derived	from S	segment	of	LACV	genome	
<400>	172						
	cact ctccaaattt agg						23
•	. 33						
<210>	173						
<211>	22						
	DNA						
<213>	Artificial Sequence						
<220>							
	Forward primer derived	from L	segment	of	LACV	genome	
	-		J			•	
<400>	173						
taaagto	eggg cttgacgaat tt						22
						•	
<210>	174						
<211>	22						
<212>	DNA						
	Artificial Sequence					•	
<220>		•					
<223>	Forward primer derived	from L	segment	of	LACV	genome	
<400>	174					•	2.2
ccaaag	egg gettgaegaa tt						22
•							
<210>	175						
<211>	23						
<212>	DNA						
<213>	Artificial Sequence						
000							
<220>	Danisand miliman danisand	£ T			T 7 CT7		
<223>	Forward primer derived	TIOM P	segment	OI	LACV	genome	
<400>	175						
	cgg gcttgacgaa ttt						23
J .							
<210>	176						
<211>	23						
<212>	DNA						
<213>	Artificial Sequence	•					
<220>							
	Forward primer derived	from L	segment	of	LACV	genome	
			3	_		<b>J</b>	
<400>	176						
attaaag	tcg ggcttgacga att						23
	•						

<210> 177

# Page 57 of 60

<211>	24					٠				
<212>	DNA									•
<213>	Artificial Seque	nce						•		
<220>										
<223>	Forward primer de	erived	from	L	segment	of	LACV	genome		
	4.55									
<400>	177									_
attaaag	tcg ggcttgacga at	כככ								24
<210>	178									
<211>	22								•	
<212>										
	Artificial Seque	nce								
12137	micriciai beque							•		
<220>										
	Forward primer de	erived	from	L	segment	of	LACV	genome		
								3		
<400>	178									
qattaaa	gtc gggcttgacg aa	a						•		22
-										
								•		
<210>	179									
<211>	23									
<212>	DNA									
<213>	Artificial Sequer	nce								
<220>	•									
<223>	Forward primer de	erived	from :	L	segment	of	LACV	genome		
	179							•		
gattaaa	gtc gggcttgacg aa	at								23
<210>	180									
<211>	24									
	DNA									
	Artificial Sequer	nce								
	orrrorar bodao.									
<220>					•					
	Forward primer de	erived	from 1	L	segment	of	LACV	genome		
<400>	180									
gattaaa	gtc gggcttgacg aa	att								24
<210>	181									
	25									
	DNA									
<213>	Artificial Sequer	nce	•							
								•		
<220>			_							
<223>	Forward primer de	erived :	from 1	L	segment	of	LACV	genome		

### Page 58 of 60

<400> gattaaa	181 agtc gggcttgacg aattt	25
-210-		
<210>	182	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Forward primer derived from L segment of LACV genome	
. 4.0.0		
<400>	182	
caaggat	taa agtcgggctt ga	22
010	400	
<210>	183	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Forward primer derived from L segment of LACV genome	
	<u>.</u>	
<400>	183	
caaqqat	taa agtcgggctt gac	23
33		
<210>	184	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
	·	
<220>	,	
<223>	Forward primer derived from L segment of LACV genome	
<400>	184	
tcaagga	atta aagteggget tga	23
<210>	185	
<211>	24	
<212>		
<213>	Artificial Sequence	
<220>	•	
	Forward primer derived from L segment of LACV genome	
-		
<400>	185	
tcaagga	atta aagtogggot tgao	24
<210>	186	
<210>	24	
<211>		
	DING.	

#### Page 59 of 60

<213>	Artificial Sequence	
<220>		
<223>	Forward primer derived from L segment of LACV genome	
<400>	186	
ttcaagg	gatt aaagtcgggc ttga	24
<210>	187	
<211>	24	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Reverse primer derived from L segment of LACV genome	
<400>	187	
		24
<210>	188	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Reverse primer derived from L segment of LACV genome	
400	100	
<400>	188 gaaa ctctaaccca tcatt	25
cggacas	in the state of th	د د
<210>	100	
<211>		
<212>	DNA	
	Artificial Sequence	
222		
<220> <223>	Reverse primer derived from L segment of LACV genome	
10007	neverse primer derived from 1 beginning or larger genome	
<400>	189	
tcggaca	agaa actctaaccc atca	24
<210>	190	
<211>	25	
	DNA Artificial Sequence	
<b>~413</b> 2	VICITIOINI DEGINCE	
<220>		
<223>	Reverse primer derived from L segment of LACV genome	
<400>	190	
		25

#### Page 60 of 60

<210>	191	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>	•	
<223>	Reverse primer derived from L segment of LACV genome	
< 4.00>	191	
atcggad	caga aactctaacc catca	25