First and second order nonlinear Poincaré type inequalities

Around Hardy and Poincaré inequalities

Katarzyna Mazowiecka joint work with Agnieszka Kałamajska

University of Warsaw

May 14, 2014

First order nonlinear Poincaré inequality

$$\int_{\{f>0\}} |f(x)|^p |f(x)|^{\theta p} dx \le C \int_{\{f>0\}} |f'(x)|^p |f(x)|^{\theta p} dx$$

Second order nonlinear Poincaré inequalities

$$\int_{\{f>0\}} |f(x)|^p |f(x)|^{\theta p} dx \le C \int_{\{f>0\}} |f''(x)|^p |f(x)|^{\theta p} dx,$$
$$\int_{\{f>0\}} |f'(x)|^p |f(x)|^{\theta p} dx \le C \int_{\{f>0\}} |f''(x)|^p |f(x)|^{\theta p} dx.$$

Poincaré inequality for functions vanishing at one of the endpoints

lf

- p > 1
- $f \in W^{1,p}((a,b))$
- f(a) = 0 or f(b) = 0

then

$$\int_{a}^{b} |f(x)|^{p} dx \leq C_{p}(a,b) \int_{a}^{b} |f'(x)|^{p} dx$$

holds with best constant $C_p(a,b) = \frac{\left(p(b-a)\sin\left(\frac{\pi}{p}\right)\right)^p}{(p-1)\pi^p}$.

If $f \in W_0^{1,p}((a,b))$ then the best constant is

$$C_p(a,b) = rac{\left(p(b-a)\sin\left(rac{\pi}{p}
ight)
ight)^p}{2^p(p-1)\pi^p}.$$

Nonlinear Beppo-Levi set

Let $\theta \in \mathbb{R}$, $p \geq 1$

$$L^{1,p,\theta}((a,b)) := \left\{ f \in W^{1,1}_{loc}((a,b)) : \\ \int_a^b |f'(x)|^p |f(x)|^{p\theta} dx < \infty \right\}.$$

Let $p \ge 1$, $\theta \in \mathbb{R}$, $f \in C((a,b))$, $f \ge 0$ and let either

- $\theta > -1$;
- $f \in L^{1,p,\theta}(I_f)$ where $I_f = \{x \in (a,b) : f(x) > 0\};$
- $f \in C([a, b])$ and f(a) = 0 or f(b) = 0.

or

- $\theta < -1$;
- f > 0;
- $f \in L^{1,p,\theta}((a,b));$
- There exist $\lim_{x\to a} f(x)$, $\lim_{x\to b} f(x) \in (0,\infty]$ and one of the limits is infinite.

Then the first order nonlinear Poincaré type inequality holds with (optimal) constant $C = C_p(a, b)|1 + \theta|$.

Proof

We show that $f^{1+\theta} \in W^{1,p}_{loc}((a,b))$ and $(f^{1+\theta})' = (1+\theta)f^{\theta}f'\chi_{f>0}$ and apply the classical Poincaré inequality.

Remark

The set $X = L^{1,p,\theta}(I_f) \cap C_{\geq}([a,b])$ is the optimal set for which the property

$$X\ni f\mapsto f^{1+\theta}\in W^{1,p}((a,b))\cap C_{\geq}([a,b]),$$

holds.

Multiplicative inequality

$$\int_{a}^{b} |f'(x)|^{p} (f(x))^{\theta p} dx \le$$

$$\left(\frac{p-1}{|1+\theta p|}\right)^{\frac{p}{2}} \int_{a}^{b} \left(\sqrt{|f(x)f''(x)|}\right)^{p} (f(x))^{\theta p} dx.$$

- $p \ge 2$;
- $\theta \neq -\frac{1}{p}$;
- $f \ge 0$;
- $f \in \mathcal{R}$ and $C_0^{\infty}((a,b)) \subseteq \mathcal{R} \subseteq W_{loc}^{2,1}((a,b))$.

Let $p \ge 2$, $\theta \notin \{-1, -\frac{1}{p}\}$, $f \in C((a, b))$, $f \ge 0$. Moreover let either

- $\theta > -1$;
- $f \in W_{loc}^{2,1}(I_f)$, where $I_f = \{f > 0\}$ and $f \in \mathcal{R}$;
- f continuous at a $z \in \{a, b\}$ and f(z) = 0;
- if $\theta < -\frac{1}{p}$ then f > 0

or

- $\theta < -1$, f > 0;
- $f \in W^{2,1}_{loc}((a,b))$ and $f \in \mathcal{R}$;
- $\lim_{x\to z} f(x) = \infty$ for at least one of the endpoints $z \in \{a, b\}$.

Then the second order nonlinear Poincaré type inequality holds

The inequality

$$\int_{(a,b)\cap\{x:f(x)>0\}} (f(x))^{p} (f(x))^{\theta p} dx \le \widetilde{A} \int_{(a,b)\cap\{x:f(x)>0\}} |f''(x)|^{p} (f(x))^{\theta p} dx$$

holds with constant $\widetilde{A} = \left(C_p^2(a,b)(1+\theta)^2 \cdot \frac{p-1}{|1+\theta p|}\right)^p$ and

$$\int_{(a,b)\cap\{x:f(x)>0\}} |f'(x)|^{p} (f(x))^{\theta p} dx \le$$

$$\widetilde{B} \int_{(a,b)\cap\{x:f(x)>0\}} |f''(x)|^{p} (f(x))^{\theta p} dx$$

holds with constant $\widetilde{B} = \left(\mathit{C}_p(\mathit{a},\mathit{b}) | 1 + \theta | \cdot \frac{p-1}{|1+\theta p|} \right)^p$.

Applications: Emden-Fowler equation with irregular data

Consider

$$f''(x) + g(x)f^{-\theta}(x) = 0,$$

 $g \in L^p$.

• Nonlinear Poincaré type inequalities ⇒ a priori estimates.

Thank you for your attention!