

Prowadzacy: Jerzy Szempliński

Autor: Jerzy Szempliński

Arytmetyka modularna

Teoria

• Reszty z dzielenia

Jeśli a jest dzielnikiem b, to piszemy $a \mid b$. Zatem:

 $a \mid b$ wtedy i tylko wtedy, gdy istnieje liczba c taka, że b = ac.

Jeśli a nie jest dzielnikiem b, to piszemy $a \nmid b$.

Załóżmy, ze dane są liczby całkowite a i b, przy czym b>0. Mówimy, że liczba a daje iloraz q i resztę r przy dzieleniu przez b, jeśli

$$a = b \cdot q + r$$
 oraz $0 \le r < b$.

• Kongruencje

Załóżmy, że dana jest liczba całkowita dodatnia m. Mówimy, że dwie liczby całkowite a i b przystają modulo m wtedy i tylko wtedy, gdy liczby a i b dają takie same reszty przy dzieleniu przez m. Piszemy wówczas $a \equiv b \pmod{n}$. Inaczej mówiąc

 $a \equiv b \pmod{n}$ wtedy i tylko wtedy, gdy $m \mid a - b$.

• Małe twierdzenie Fermata

Dla dowolnej liczby naturalnej n oraz dowolnej liczby pierwszej p zachodzi

$$p \mid n^p - n$$
,

czyli w języku kongruencji

$$n^p \equiv n \pmod{p}$$
.

• Sztuczka z przedstawianiem liczb w innej formie

Jak przedstawić inaczej liczbę o n takich samych cyfrach? Zauważmy, że 10^n-1 to liczba składająca się z n dziewiątek, więc zachodzi

$$\underbrace{kkk\dots k}_{n \text{ cyfr } k} = \frac{10^n - 1}{9} \cdot k.$$

Na rozgrzewkę

- 1. Wykaż poniższe własności kongruencji.
 - Jeśli $a \equiv b \pmod{m}$, to $b \equiv a \pmod{m}$.
 - Jeśli $a \equiv b \pmod{m}$ oraz $b \equiv c \pmod{m}$, to $b \equiv a \pmod{m}$.
 - $a \equiv b \pmod{m}$ wtedy i tylko wtedy, gdy $ac \equiv bc \pmod{mc}$.
 - Jeśli $a \equiv b \pmod{m}$ oraz $c \equiv d \pmod{m}$, to $a + c \equiv b + d \pmod{m}$, $a c \equiv b d \pmod{m}$, $ac \equiv bd \pmod{m}$.
- 2. Pokaż, że jeśli $p \nmid n$, to $n^{p-1} \equiv 1 \pmod{p}$.
- 3. Przedstaw $\underbrace{222\dots2}_{2024}\underbrace{444\dots4}_{2024}$ jako sumę dwóch wyrażeń (jak w sztuczce).

Poręba Wielka 26.09.2024

Autor: Jerzy Szempliński Prowadzący: Jerzy Szempliński

Zadania

- 1. $II\ OM\$ Dowieść, że jeśli n jest liczbą naturalną parzystą, to liczba 13^n+6 jest podzielna przez 7.
- 2. $IV\ OM$ Dowieść, że liczba $2^{55}+1$ jest podzielna przez 11.
- 3. Wyznacz resztę z dzielenia liczby $3^{81} + 7^{72}$ przez 11.
- 4. Udowodnij, że ostatnią cyfrą liczby 7^{256} jest 1.
- 5. Udowodnij, że 7 | $2222^{5555} + 5555^{2222}$.
- 6. Znajdź dwie ostatnie cyfry liczby 2⁹⁹⁹.
- 7. Udowodnij, że 29 | $2^{5n+1} + 3^{n+3}$ dla dowolnej liczby naturalnej n.
- 8. $\it VI~OM$ Znajdź ostatnią cyfrę liczby $53^{53}-33^{33}.$
- 9. Pokaż, że liczba 1 $\underbrace{000\ldots 0}_{2013}1$ jest złożona.
- 10. Znaleźć ostatnią cyfrę liczby 2023^{2024²⁰²⁵.}
- 11. $V\!H$ $O\!M$ Dowieść, że równanie $2x^2-215y^2=1$ nie ma rozwiązań w liczbach całkowitych.