Работа 4.3.1

Изучение дифракции света

Московский физико-технический институт Физтех-школа Радиотехники и Компьютерных Технологий

19 февраля 2024 г.

Содержание работы

- Цели работы
- Оборудование
- Дифракция Френеля
- Дифракция Фраунгофера на щели
- Дифракция Фраунгофера на двух щелях
- Влияние на разрешающую способность оптического инструмента
- Заключение. Выводы

Цели работы

- исследовать явления дифракции Френеля и Фраунгофера на щели
- изучить влияние дифракции на разрешающую способность оптических инструментов

Оборудование

- оптическая скамья
- ртутная лампа
- светофильтр
- щели с регулируемой шириной
- рамка с вертикальной нитью
- экран с двойной щелью
- микроскоп на поперечных салазках с микрометрическим винтом
- зрительная труба

Теория. Основные понятия

Дифракция – отклонения в распространении волн от законов геометрической оптики.

Основные параметры дифракции: λ – длина волны, b – размер отверстия, z – расстояние до плоскости наблюдения.

Характер дифракционных явлений определяется значением **волнового параметра**

$$p = \frac{\sqrt{\lambda z}}{b}. (1)$$

- если $p\gg 1$ область дифракции Фраунгофера (дальняя волновая зона)
- ullet если $p \sim 1$ область дифракции Френеля (ближняя волновая зона)

Теория. Граничное поле

Рисунок: Произвольный тонкий экран

Для произвольного тонкого экрана определим комплексную амплитуду волны как

$$f_0(x,y) = f_s(x,y)t(x,y),$$
 (2)

где $f_s(x,y)$ — падающее поле, t(x,y) — комплексная пропускаемость:

$$t(x,y) = a(x,y)e^{i\varphi(x,y)}, \quad (3)$$

где a(x,y) — функция изменения амплитуды колебаний, $\varphi(x,y)$ — набег фазы.

Теория. Принцип Гюйгенса-Френеля

Комплексная амплитуда в плоскости z=0 есть

$$f_0(x,y) = a_0(x,y)e^{i\varphi_0(x,y)},$$
 (4)

где $a_0(x,y)$ и $\varphi_0(x,y)$ – распределение амплитуд и фаз колебаний в плоскости z=0.

Принцип Гюйгенса-Френеля:

- ullet каждая точка волнового фронта pprox вторичный источник волн
- световое колебание в любой точке в области $z \ge 0$ результат интерференции вторичных волн

Теория. Принцип Гюйгенса-Френеля

Рисунок: Полное световое колебание в точке Р

Теория. Принцип Гюйгенса-Френеля

Полное световое колебание g(x, y) в некоторой точке P:

$$g(x,y) = \frac{1}{i\lambda} \iint_{S} f_0(\xi,\eta) \frac{e^{ikR}}{R} cos(\alpha) d\xi d\eta$$
 (5)

- амплитуда и фаза излучения вторичного источника \sim амплитуде и фазе $a_0(\xi,\eta)$ и $\varphi_0(\xi,\eta)$ реальной волны
- затенённые участки не переизлучают
- в области отверстия волна не искажается
- площадка ds переизлучает сферическую волну $\Rightarrow t(x,y) = \frac{1}{R}e^{ikR}$
- ullet амплитуда колебания \sim видимой площади ds, т.е. $ds \cdot cos lpha$
- $\frac{1}{i\lambda}$ нормировочный коэффициент

Теория. Френелевское приближение

Если предположить, что

- $b \ll R_0$, где R_0 расстояние до точки наблюдения
- $cos\alpha \approx 1$

принцип Гюйгенса-Френеля запишется в виде:

$$g(x,y) = \frac{1}{i\lambda R_0} \iint_S f_0(\xi,\eta) e^{ikR} d\xi d\eta \tag{6}$$

Точное значение $R=z\sqrt{1+rac{(x-\xi)^2}{z}+rac{(y-\eta)^2}{z}}$. Во френелевском приближении ошибка при вычислении фазы колебаний $\Delta(kR)\ll\pi\Rightarrow\Delta R\llrac{\lambda}{2}$. Значит

$$R \approx z + \frac{(x-\xi)^2}{2z} + \frac{(y-\eta)^2}{2z}$$
 (7)

Теория. Френелевское приближение

Таким образом, получим

$$g(x,y) = \frac{e^{ikz}}{i\lambda z} \iint f_0(\xi,\eta) e^{i\frac{k}{2z} \left[(x-\xi)^2 + (y-\eta)^2 \right]} d\xi d\eta \tag{8}$$

Если отверстие освещается плоской волной амплитуды A_0 : $f_0(\xi,\eta)\equiv A_0$, а точка наблюдения лежит на оси z(x=0,y=0), то

$$g(x,y) = A_0 \frac{e^{ikz}}{i\lambda z} \iint e^{i\frac{k}{2z}(\xi^2 + \eta^2)} d\xi d\eta$$
 (9)

Теория. Дифракция Френеля на щели

Рисунок: К расчёту дифракции на щели

Световое колебание плоской волны амплитуды A_0 равно

$$g = A_0 \int_{b_1}^{b_2} e^{\frac{ik}{2z}\xi^2} d\xi \tag{10}$$

Воспользуемся методом векторных диаграмм для расчёта светового поля. Вклад полоски шириной $d\xi$ в колебание в точке Р обозначим вектором длины $d\xi$ с углом наклона $\varphi=\frac{k}{2z}\xi^2$. Разность фаз между полосками на расстоянии ξ и $\xi+d\xi$ равен

$$d\varphi = -\frac{k}{z}\xi d\xi \tag{11}$$

12/28

Теория. Дифракция Френеля на щели

Рисунок: Две зоны Шустера

Зона Френеля - зона кольцевой формы **Зона Шустера** - зона в виде полос

- ullet первый вектор $ec{a_0}$ горизонтален
- вектор, отстоящий на π , противоположен $\vec{a_0}$. А значит фаза $\frac{k}{2z}\xi_1^2=\pi\Rightarrow \xi_1=\sqrt{\lambda z}$
- вектор, отстоящий на 2π , сонаправлен с a_0 , аналогично $\xi_2 = \sqrt{2\lambda z}$
- внешний край m-й зоны Шустера отстоит от оси η на расстояние $\xi_{\mathbf{m}} = \sqrt{\mathbf{m}\lambda\mathbf{z}}$
- $|A_2|$ вклад в амплитуду колебаний 2-й зоны шустера.

Тихонов Д.Р., Казачков А.Н.

Теория. Дифракция Френеля на щели

Вид наблюдаемой дифракционной картины на щели b определяется волновым парметром:

$$p = \frac{\sqrt{z\lambda}}{b} \tag{12}$$

Также используют **чило Френеля**: $C = \frac{b^2}{z\lambda} = \frac{1}{p^2}$, равное полному числу открытых зон Френеля на всей ширине щели.

- если $p \sim 1$ область дифракции Френеля (ближняя волновая зона)
- если число зон Френеля, укладывающихся на полуширине щели b/2, равно m, то наблюдается n=m-1 тёмных полос.

Рисунок: Зоны Шустера в плоскости шели

Экспериментальная установка

Рисунок: Схема установки для наблюдения дифракции Френеля

Измерения и обработка результатов

Рисунок: Зависимость расстояния до щели z от 1/m

- $2\xi = \frac{\sqrt{z}}{\sqrt{\frac{1}{n}}} \cdot \sqrt{\lambda} =$ $(0.326 \pm 0.003) \,$ мм ширина щели, полученная из графика
- $b = (0.321 \pm 0.001)$ мм ширина щели, измеренная с помощью микрометрического винта

Теория. Дифракция Фраунгофера на щели

Рассмотрим дифракцию на отверстии, находящемся в плоскости z=0.

•
$$R = \sqrt{z^2 + (x - \xi)^2 + (y - \eta)^2} = \sqrt{R_0 - (2x\xi + 2y\eta) + (\xi^2 + \eta^2)}$$

- $R \approx R_0 \frac{x\xi + y\eta}{R_0} + \frac{\xi^2 + \eta^2}{2R_0}$
- пусть максимальный размер отверстия $b^2 \geq \eta^2 + \xi^2$
- ullet точка P удалена настолько, что выполняется $rac{b^2}{R_0} \ll \lambda$

Тогда $R \approx R_0 - \frac{x\xi}{R_0} - \frac{y\eta}{R_0}$ и введём $u = \frac{kx}{R_0}, v = \frac{ky}{R_0}$. В этом приближении принцип Гюйгенса-Френеля имеет вид

$$g(u,v) = \frac{e^{i}kR_0}{i\lambda R_0} \iint f_0(\xi,\eta)e^{-i(u\xi+v\eta)}d\xi d\eta$$
 (13)

g(u,v) - двумерное преобразование Фурье граничного поля $f_0(x,y)$ в плоскости наблюдения.

Теория. Дифракция Фраунгофера на щели

В одномерном случае (щель)

$$g(u) \sim \int_{-\infty}^{+\infty} f_0(\xi) e^{-ik\xi sin\theta} d\xi \sim \frac{sin(\frac{kb}{2}sin\theta)}{\frac{kb}{2}sin\theta},$$
 (14)

где $sin\theta=\frac{x}{R_0}.$ Вторичные волны, приходящие в точку наблюдения, можно считать параллельными.

Интенсивность $I(\theta)=|g(\theta)|^2$ обращается в 0 (тёмные полосы) при $\frac{kb}{2}sin\theta=m\pi$ откуда

$$sin\theta = m\frac{\lambda}{b} \tag{15}$$

Расстояние от тёмной полосы до оптической оси объектива $x_m=m\frac{\lambda}{b}f_2$, где f_2 - фокусное расстояние объектива O_2

Экспериментальная установка

Рисунок: Схема установки для наблюдения дифракции Фраунгофера на щели

Измерения и обработка результатов

Рисунок: Зависимость положений экстремумов дифракционной картины от их номера

- $\Delta X = (0.17 \pm 0.01)$ мм расстояние между полосами (угол наклона);
- $b = \frac{\lambda}{\Delta X} f_2 = (0.34 \pm 0.01)$ мм измерение ширины щели по наклону прямой;
- $b = (0.363 \pm 0.001)$ мм измерение ширины щели с помощью микрометрического винта.

Теория. Дифракция Фраунгофера на двух щелях

Рисунок: Разность хода при двух щелях

Рисунок: Разность хода при двух щелях

- $\Delta = dsin\theta$
- фаза отличается на величину $\alpha = -k\Delta = -kdsin\theta$
- функция колебательного процесса от второй щели $g(\theta)e^{i\alpha}$
 - амлитуда суммарного колебательного процесса $g(\theta)+g(\theta)e^{i\alpha}$
- угловая координата интерфернционного максимума m-ого порядка $\theta_m=m\frac{\lambda}{d}$
- линейное расстояние между соседними интерференционными полосами $\delta x = f_2 \frac{\lambda}{d}$
- число интерференционных полос в центральной области $n = \frac{2\lambda f_2}{b} \frac{1}{\delta x} = \frac{2d}{b}$

Экспериментальная установка

Рисунок: Схема для наблюдения дифракции Фраунгофера на двух щелях

Измерения и обработка результатов

Рисунок: Дифракционная картина на двух щелях

- $\delta x = \frac{(0.38\pm0.02)\ \text{мм}}{6} = (0.063\pm0.003)\ \text{мм}$ измеренное расстояние между дифракционными минимумами
- $d = f_2 \frac{\lambda}{\delta x} = (0.94 \pm 0.04)$ мм расстояние между щелями
- ullet $b = rac{2d}{n} = (0.31 \pm 0.01)\,$ мм ширина входной шели

Измерение размеров двойной щели

Рисунок: Изображение щелей в микроскопе

- $d = (0.94 \pm 0.02)$ мм расстояние между щелями
- $D_1 = (0.18 \pm 0.02)\,$ мм длина первой щели
- $D_2 = (0.20 \pm 0.02)\,$ мм длина первой щели

Теория. Влияние дифракции на оптические приборы

- расстояние между изображениями щелей в плоскости Π равно $l = \varphi f_2 = d \frac{f_2}{f_1}$
- ширина каждого изображения $\delta x \approx \frac{\lambda}{b} f_2$ определяется дифракцией света на щели S_2 .
- ullet когда $rac{\delta x}{2} \geq l$, то по виду двойная pprox одиночная щель
- ullet критерий Рэлея: когда $\delta x \sim l$ или $rac{\lambda}{b} \sim rac{d}{f_1}$, то изображения различны

Экспериментальная установка

Рисунок: Схема для исследования разрешающей способности оптического инструмента

Измерения и обработка результатов

Для проверки справедливости критерия Рэлея сравнили измеренную ширину b_0 щели S_2 , при которой изображение двух щелей сливается, но все ещё различимо, с расчётом по формуле, приведённой на предыдущем слайде.

- $b_0^{theor} > 0.077$ мм критическая ширина щели, при которой пятна от двух щелей сольются в одно

Заключение

- при рассмотрении дифракции Френеля было измерено значение ширины щели двумя способами. Результаты измерений различаются на 1.5%
- при исследовании *дифракции Френеля* на тонкой вертикальной нити, при удалении микроскопа от нити, на её фоне всегда наблюдается чётное число тёмных дифракционных полос
- при рассмотрении дифракции Фраунгофера на щели значения ширины щели, измеренные по формуле и по микроскопическому винту, различаются не более, чем на 5%
- при рассмотрении *дифракции Фраунгофера на двух щелях* непосредственное расстояние между щелями d совпадают с вычислениями
- при изучении влияния дифракции на разрешающую способность оптического инструмента получили, что $b_0 > \lambda f_1/d$, что означает разрешимость изображений по Рэлею

28/28