IT융합공학부 권혁동

Contents

CHAM

- CHAM은 ICISC'17에서 발표한 국산 초경량 블록암호
- ARX 연산
 - Addition
 - Rotation
 - XOR
- Feistel 구조
- 8비트 등의 초소형 마이크로컨트롤러를 지원하기 위해 개발

cipher	n	k	r	w	k/w
CHAM- $64/128$	64	128	80	16	8
CHAM- $128/128$	128	128	80	32	4
CHAM- $128/256$	128	256	96	32	8

- CHAM은 세 가지 규격을 제공
- n: 블록 크기
- k: 키 크기
- r: 라운드
- w: 워드 크기

$$RK[i] \leftarrow K[i] \oplus \mathrm{ROL}_1(K[i]) \oplus \mathrm{ROL}_8(K[i]),$$

 $RK[(i+k/w) \oplus 1] \leftarrow K[i] \oplus \mathrm{ROL}_1(K[i]) \oplus \mathrm{ROL}_{11}(K[i]),$

- 라운드 함수를 거치면서 암호화 진행
 - Feistel 구조를 사용하지만 짝수, 홀수 라운드마다 다른 연산 수행

$$X_{i+1}[3] \leftarrow \text{ROL}_8((X_i[0] \oplus i) \boxplus (\text{ROL}_1(X_i[1]) \oplus RK[i \mod 2k/w])),$$

 $X_{i+1}[j] \leftarrow X_i[j+1] \text{ for } 0 \leq j \leq 2,$
 $X_{i+1}[3] \leftarrow \text{ROL}_1((X_i[0] \oplus i) \boxplus (\text{ROL}_8(X_i[1]) \oplus RK[i \mod 2k/w])),$
 $X_{i+1}[j] \leftarrow X_i[j+1] \text{ for } 0 \leq j \leq 2,$

• ICISC'19에서 발표된 CHAM의 개량형

- 라운드 수를 바꾼 것으로 보안성을 향상
 - 충족 가능성 문제
- 구현에 있어서 추가적인 자원 소모 없음

Cipher	n	k	w	$r_{ m old}$	r
CHAM-64/128	64	$128 \\ 128 \\ 256$	16	80	88
CHAM-128/128	128		32	80	112
CHAM-128/256	128		32	96	120

- 기존 CHAM에서 라운드 수를 약간 증가
 - 64/128: 80라운드 -> 88라운드
 - 128/128: 80라운드 -> 112라운드
 - 128/265: 96라운드 -> 120라운드

$$(x_{i+1}, y_{i+1}, z_{i+1}, w_{i+1})$$
 $\longleftarrow (y_i, z_i, w_i, ((x_i \oplus i) \boxplus ((y_i \ll \alpha_i) \oplus rk_{i \bmod 2k/w})) \ll \beta_i)$
where $\alpha_i = 1$ and $\beta_i = 8$ when i is even and $\alpha_i = 8$ and $\beta_i = 1$

• 표현 형식은 다르지만 기존 CHAM과 동일

```
for(int i = 0; i < 88; i++)
for(int i = 0; i < 80; i++)
    if(i % 2)
                                     if(i % 2)
        a = 8;
                                         a = 8;
        b = 1;
                                         b = 1;
    else
                                     else
        a = 1;
                                         a = 1;
        b = 8;
                                         b = 8;
    temp0 = ROL(X1, a);
                                     temp0 = ROL(X1, a);
    temp1 = temp0 ^ RK[i % 16];
                                     temp1 = temp0 ^ RK[i % 16];
    temp2 = X0 ^ i;
                                     temp2 = X0 ^ i;
    temp3 = temp1 + temp2;
                                     temp3 = temp1 + temp2;
    temp4 = ROL(temp3, b);
                                     temp4 = ROL(temp3, b);
   X0 = X1;
                                     X0 = X1;
   X1 = X2;
                                     X1 = X2;
   X2 = X3;
                                     X2 = X3;
   X3 = temp4;
                                     X3 = temp4;
```

• 기존 CHAM과 동일하게 구현

• 64/128 규격

• 기존 64/128: 80라운드

• 개량 64/128: 88라운드

Original CHAM

n/k	Cipher	Bit-s Area ¹	serial Tput. ²	Round Area ¹	-based Tput. ²	Tech.	Ref.
64/128	Revised CHAM	665	4.5	852	72.7	IBM130	This paper
	Original CHAM	665	5.0	852	80.0	IBM130	[22]
	Revised CHAM	728	4.5	985	72.7	UMC90	This paper
	Revised CHAM	859	4.5	1,110	72.7	UMC180	This paper
	SIMON	944	4.2	1,403	133.3	$IBM130^3$	[34]
	SIMON	958	4.2	1,417	133.3	IBM130	[4]
	SPECK	996	3.4	1,658	206.5	IBM130	[4]
128/128	Revised CHAM	1,057	3.6	1,499	114.3	IBM130	This paper
	Original CHAM	1,057	5.0	1,499	160.0	IBM130	[22]
	Revised CHAM	1,086	3.6	1,691	114.3	UMC90	This paper
	SIMON	1,234	2.9	2,090	182.9	IBM130	[4]
	SPECK	1,280	3.0	2,727	376.5	IBM130	[4]
	Revised CHAM	1,295	3.6	1,899	114.3	UMC180	This paper
	LEA	2,302	4.2	3,826	76.2	UMC130	[20]
	AES	-	-	2,400	57.0	UMC180	[26]
128/256	Revised CHAM	1,179	3.3	1,622	106.7	IBM130	This paper
	Original CHAM	1,180	4.2	1,622	133.3	IBM130	[22]
	Revised CHAM	1,260	3.3	1,864	106.7	UMC90	This paper
	Revised CHAM	1,481	3.3	2,086	106.7	UMC180	This paper
	SIMON	1,782	2.6	2,776	168.4	IBM130	[4]
	SPECK	1,840	2.8	3,284	336.8	IBM130	[4]

- 기존과 GE가 같음
- 라운드 빼고 모두 같음을 명시
- 구현의 잘못된 부분??

We compare the software performance of the revised CHAM and other ciphers via the same method used in the aforementioned study [22]. The implementation method is also identical to that in the earlier work [22] except for the numbers of rounds.

