DIGITS_DevBox 深度学习服务器

Dai Jialun August 26, 2015

1. 硬件配置

显卡 4 个 ASUS(华硕)GTX 980Ti-6GD5

CPU 1 个 Intel (英特尔) Core i7-5960X

主板 1 个 ASUS (华硕) X99-E WS

内存 2 个 CORSAIR (海盗船) VENGERNCE (复仇者)LPX 32GB (4 × 8GB) DDR4 2400MHz CMK32GX4M4A2400C14R

硬盘 3 个 WesternDigital (西部数码) 4TB 7200 转

固态硬盘 1 个 Samsung(三星)SSD 850pro 512GB

■ **固态硬盘** 1 个 Samsung SSD 512GB SM951 cache for RAID

机箱 1 个 CORSAIR (海盗船) 900D

电源 1 个 CORSAIR (海盗船) AX1500i 1500W

散热器 1 个 CORSAIR (海盗船) H110 水冷 CPU 散热器

风扇 6 个 CORSAIR (海盗船) AF120 静音版双包装

光驱 1 个 AUSU (华硕) DRW-24D1ST

配件 1 个 Thermaltake Commander FT 触控式面板风扇控制器, Deepcool FAN HUB(九州风神风扇集线器)

显示器

键盘鼠标

.1.

2. 名词解释

DVI Digital Visual Interface,数字视频接口

DislayPort 高清数字显示借口标准

PCI-E PCI Express, 新的总线接口

SATA Revision 3.0 Serial Advanced Technology Attachment, 串行 ATA 规格第三版,6Gbps

SATA EXpress SATA 3.0 下一代的 SATA 接口, 10Gbps

M.2 一种替代 MSATA 新的接口规范, 优势体现在速度和体积。支持 Socket2 和 Socket3 两种接口类型

CVBIOUC

· 2 ·

Figure 1:

RAID Redundant Arrays of Independent Disks,磁盘阵列。磁盘阵列是由很多价格较便宜的磁盘,组合成一个容量巨大的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能。利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。

Figure 2:

RAID5 一种存储性能、数据安全和存储成本兼顾的存储解决方案。为系统提供数据安全保障,但保障程度要比 Mirror 低而磁盘空间利用率要比 Mirror 高。数据以块为单位分布到各个硬盘上。RAID 5 不对数据进行备份,而是把数据和与其相对应的奇偶校验信息存储到组成 RAID5 的各个磁盘上,并且奇偶校验信息和相对应的数据分别存储于不同的磁盘上。当 RAID5 的一个磁盘数据损坏后,利用剩下的数据和相应的奇偶校验信息去恢复被损坏的数据。

SLI Scalable Link Interface, 可灵活伸缩的连接接口(支持多显卡技术)。这是一种可把两张或以上的显卡连在一起,作单一输出使用的技术,从而达至绘图处理效能加强的效果。

- DDR4 Dual Data Rate SDRAM, 是一种高速 CMOS 动态随即访问的内存。DDR4 支持 2133MHz, 32GB DDR4-2133 达到 48.4GB/s。
- GDDR5 Graphics Double Data Rate SDRAM version5, 是一种高性能显卡用内存, 需搭配支持 PCI-E 以上规格的显卡, 高频率达 4GHZ, 低功耗。

3. 软件配置名词

- UEFI Unified Extensible Firmware Interface, 统一的可扩展固件接口, 是一种详细描述类型接口的标准。这种接口用于操作系统自动从预启动的操作环境, 加载到一种操作系统上。
- BIOS Basic Input/Output System,基本输入/输出系统。
- **固件** Firmware, 固定软件(自己理解), 写入 EROM 或 EEPROM 中的程序。固件担任着一个系统最基础最底层工作的软件。初期, 这些硬件内所保存的程序是无法被用户直接读出或修改的, 如今这些是可以重复刷写的, 让固件得以修改和升级。

4. 环境配置

4.1 显卡驱动安装

4.1.1 驱动来源

- 开源驱动 nouveau (livecd 安装时用的驱动)
- 源 (受限制驱动列表)
- PPA 源(一般是私人建的,方便群众用)
- 自己下载编译的驱动(我们使用的方法)

4.2 安装 NVIDIA 显卡驱动

- 1. 受限制驱动列表(源) sudo apt-get install nvidia-current nvidia-settings
- 2. 编译驱动
 - (a) 下载驱动 Nvidia 中文官网是 http://www.nvidia.cn/page/home.html
 - (b) 将下载的 NVIDIA-Linux-x86-185.18.14-pkg1.run 驱动文件, 放到 /home/用户名/ 目录下面。
 - (c) 编译依赖, sudo apt-get install build-essential pkg-config xserver-xorg-dev linux-headers-'uname -r'
- 3. 屏蔽开源驱动 nouveau
 - blacklist (推荐)
 - (a) 打开终端, 输入 sudo vim /etc/modprobe.d/blacklist.conf
 - (b) 添加 blacklist nouveau
 - grub2
 - (a) 打开终端, 输入 sudo vim /etc/modprobe.d/blacklist.conf
 - (b) 修改 GRUB_CMDLINE_LINUX=""为 GRUB_CMDLINE_LINUX="nomodeset"
 - (c) 输入 sudo update-grub

4. 安装装备

- (a) 清除之前与 nvidia 相关的驱动程序, sudo apt-get -purge remove nvidia-*
- (b) 编译依赖, sudo apt-get install build-essential pkg-config xserver-xorg-dev linux-headers-'uname -r'
- (c) 切换到虚拟终端 tty1, ctl+alt+F1 (如果不屏蔽 nouveau, 可能会出现黑屏现象); 黑屏则 sudo reboot, 然后重启后, 按下 Ese 或者选择 low-quality, 进入 tty1, 进行驱动的安装
- 5. 注销系统, 关闭图形环境 sudo stop lightdm (Ubuntu15.04 下, 运行 sudo systemtctl stop lightdm)
- 6. 安装过程
 - (a) 在驱动文件目录下, sudo ./NVIDIA*.run
- 7. 启动图形环境, sudo start lightdm

4.3 创建 RAID5

4.3.1 RAID 的优点

- 可高效恢复磁盘
- 增强了速度
- 扩容了存储能力

4.3.2 RAID 的分类

- **硬 RAID** hardware raid。通过用硬件来实现 RAID 功能的就是硬 RAID, 比如:各种 RAID卡,还有主板集成能够做的 RAID 都是硬 RAID。全硬的 RAID 则全面具备了自己的 RAID 控制/处理与 I/O 处理芯片,甚至还有阵列缓冲(Array Buffer),对 CPU 的占用率以及整体性能是这三种类型中最优势的,但设备成本也是三种类型中最高的。hardRAID 自成一个单元,由自己的firmware 硬件和软件,与主板和操作系统无关,即 Ubuntu 不需要额外的程序来管理。
- **软 RAID** software raid。通过用操作系统来完成 RAID 功能的就是软 RAID, 比如:在 Linux 操作系统下,用 3 块硬盘做的 RAID5。,全软 RAID 就是指 RAID 的所有功能都是操作系统(OS)与 CPU 来完成,没有第三方的控制/处理(业界称其为 RAID 协处理器——RAID Co-Processor)与 I/O 芯片。这样,有关 RAID 的所有任务的处理都由 CPU 来完成,可想而知这是效率最低的一种 RAID。
- 主板 RAID 通过主板內建 raid 控制器创建阵列,由操作系统驱动识别。这个在 Intel Desktop 的主板上表现的比较明显。主要缺乏自己的 I/O 处理芯片,所以这方面的工作仍要由 CPU 与驱动程序来完成。而且,半软半硬 RAID 所采用的 RAID 控制/处理芯片的能力一般都比较弱,不能支持高的 RAID 等级。FakeRaid 又称 BiosRaid,是由主板的 Bios 程序组成,与 Ubuntu 系统无关。但是 Ubuntu 提供 dmraid 命令与 BIOS 进行沟通,由 FakeRAID 帮助管理。基本上,ubuntu 也把 FakeRAID 当成单一硬盘使用。

4.3.3 主板集成 RAID 与外插 RAID 卡区别

性能 主板集成的 RAID, 它的性能以及它的速度是通过主板的 CPU 与内存来实现的, 它会占有主板一定的带宽, 会影响整机的性能; 外插 RAID 卡, 它本身由自己的 CPU 和内存, 所以它的数据处理大部分都会由自己处理, 不会影响主板上的 CPU 与内存速度, 总体看来, 外插的 RAID 卡的 RAID 要比主板集成的 RAID 快得多。格式化、挂载、写入与重建全部由 mdadm 负责。

安全性 主板集成的 RAID 它的安全性不能够得到保证,比如:我们用 P8SCT 主板做一个 SATA RAID,不论你做 RAID 几,它是通过更改主板的 BIOS 选项做成的,所以一旦主板损坏、主板的 CMOS 电池掉电、无意更改了主板 BIOS 的设置都会带来 RAID 的丢失,通过主板做成的 RAID,一旦丢失,将会不能恢复,后果是非常严重;而外插的 RAID 卡做成的 RAID 就不会因为主板损坏、主板的 CMOS 电池掉电等现象对数据造成影响,所以外插的 RAID 卡,它的安全性远远大于主板集成的。SoftRaid 与主板 BIOS 程序无关,完全由 Ubuntu 的 mdadm 命令管理。

4.3.4 创建 RAID5 步骤 (主板 BISO)

- 1. 对各个磁盘删除分区, 且进行格式化。大分区硬盘使用 GPT 分区, MRB 分区最大只支持 2TB
- 2. 创建, create
- 3. 分配,
- 4. 格式化 sudo mkfs.ext4 /dev/sdb
- 5. 挂载 sudo /dev/mapper/isw dfafd Volume1 /deep
- 6. 自动挂载 sudo vim /etc/fstab

可能出现问题

- 在装系统过程中,在选择系统分区时, ctrl+alt+F1, 输入 dmraid -ay 激活 RAID (Ubuntu server) 这种方式其实还是属于介于软 raid 与硬 raid 之间。在启动时候, 由硬件 raid 驱动, 当载入 linux 内核之后, 由 linux 接手管理, 还是会消耗 cpu 等资源。与更传统的软件 raid 比较, 就是启动的时候 (linux 内核未介入之前) 系统看到的仍然是一个 raid 的虚拟硬盘, 所以两快硬盘完全一样, 要恢复重建之类的更加简单。另外的话, dmraid 映射了底层的硬件 raid 驱硬件控制器, raid 控制可能也能帮助处理一些操作, 可能对性能也会有一定提高。
- dmraid 将硬件的 raid 映射成/dev/mapper/下面的设备,例如/dev/mapper/isw_dfadcda_Volume1, 其中 isw 为 intel 的硬件名字, Volume1 为 RAID 名称。Ubuntu 在安装过程中,已经将 RAID 显示为/dev/mapper/isw_dfadcda_Volume1,已经显示正确了,只不过容量出现问题,理论上的容量应该为 7.2TB,但是实际情况只有 3.6TB(至今未解开)
- dmraid 可参考 http://www.cnblogs.com/linuxer/archive/2012/03/07/2441224.html http://book. 51cto.com/art/200902/110754.htm

- Ubuntu 的软 RAID 相关命令为 mdadm, 其配置、测试、删除参考 http://blog.itpub.net/27771627/viewspace-1246416/
- 目前使用的 RAID 为主板的 Intel Rapid Storage Technology, 目前驱动只支持 Window, 对 Windows 的兼容性不好, 为 fakeraid
- fake raid 仅提供廉价的控制器, raid 处理开销仍由 CPU 负责, 因此性能与 CPU 占用基本与 software raid 持平。如果只有单个 linux 系统, 使用 software raid 一般比 fake raid 更健壮, 但是, 在多启动环境中 (例如 windows 与 linux 双系统), 为了使各个系统都能正确操作相同的 raid 分 区, 就必须使用 fake raid 了。