

Ship borne tracking of AUV position from USBL and GPS measurements (2D)

 $p = (x, y)^T$

inertial position

Example 3

 p_m obtained from USBL and GPS data

 p_m

iı

there is no direct or indirect measurement of v!

assume v quasi-constant

 $v = (\dot{x}, \dot{y})^T$ inertial velocity

 K_2

$p = (x, y)^T$ inertial position

 $v = (\dot{x}, \dot{y})^T$

inertial velocity

there is no direct or indirect measurement of v!

Example 3

Underlying Design Model

$$\frac{d}{dt}p = v + \xi_1 \leftarrow \underbrace{\frac{d}{dt}v} = 0 + \xi_2 \leftarrow \underbrace{\phantom{\frac{d}{dt}v}}$$

state noise

$$\frac{d}{dt}v = 0 + \xi_2$$
 \longleftarrow

$$p_m = p + \eta$$
 — Measurement noise

 p_m obtained from USBL and GPS data

Ship borne tracking of AUV position from USBL and GPS measurements (2D)

$p = (x, y)^T$

inertial position

$$\psi - yaw \ angle$$

r-yaw rate

 $u-surge\ speed$

Example 4

Underlying Design Model (small sideslip angle) *

$$\frac{d}{dt}u = 0 + \xi_u \quad \longleftarrow$$

$$\frac{d}{dt}\psi = r + \xi_\psi \quad \longleftarrow$$

$$\frac{d}{dt}\psi = r + \xi_{\psi}$$
 state noise

$$\frac{d}{dt}r = 0 + \xi_r \longleftarrow$$

$$p_m = p + \eta$$

Measurement noise

 $^{^*}$ A rigorous interpretation is to view u as the absolute value of the total velocity vector and ψ as the course angle

AUV-borne position estimation from Doppler, AHRS, and measurements of ranges-only to known beacon (e.g. on docking station)

Doppler – velocity measurements

Yaw measurements (AHRS)

Range measuring device – measurements of range wrt fixed beacon Filtering Structure

Position and velocity estimates

$p = (x, y)^T$

inertial position

$$v = (\dot{x}, \dot{y})^T$$

inertial velocity

 $p_b - beacon position$

 r_m - range measurement

Example 5

Complementary Filter Structure

Underlying Design Model

current velocity

Doppler measurement
$$v_m = v_w = v - v_c$$

$$v = v_w + v_c$$

$$\frac{d}{dt}p = v_c + v_w + \xi_1 \leftarrow$$
 state noise
$$\frac{d}{dt}v_c = 0 + \xi_2 \leftarrow$$

$$r_m = ||p - p_b|| + \eta \leftarrow$$
 measurement noise

Complementary Filter Structure $v_m = v_w = v - v_c$ $v = v_w + v_c$

 $K_2(t)$