Stochastic Calculus

Kellen Kanarios

University of Michigan

April 7, 2022

Definition

A real-valued random variable X is a mapping $X:\Omega\to\mathbb{R}$. Here, Ω is the **sample space** and \mathbb{P} is the measure of the **probability space**, such that $\mathbb{P}(\Omega)=1$.

Definition

A real-valued random variable X is a mapping $X:\Omega\to\mathbb{R}$. Here, Ω is the **sample space** and \mathbb{P} is the measure of the **probability space**, such that $\mathbb{P}(\Omega)=1$.

Note

Intuition for a measure:

Definition

A real-valued random variable X is a mapping $X:\Omega\to\mathbb{R}$. Here, Ω is the **sample space** and \mathbb{P} is the measure of the **probability space**, such that $\mathbb{P}(\Omega)=1$.

Note

Intuition for a measure:

1. In \mathbb{R} : length,

Definition

A real-valued random variable X is a mapping $X:\Omega\to\mathbb{R}$. Here, Ω is the **sample space** and \mathbb{P} is the measure of the **probability space**, such that $\mathbb{P}(\Omega)=1$.

Note

Intuition for a measure:

- 1. In \mathbb{R} : length,
- 2. In \mathbb{R}^2 : area,

Definition

A real-valued random variable X is a mapping $X:\Omega\to\mathbb{R}$. Here, Ω is the **sample space** and \mathbb{P} is the measure of the **probability space**, such that $\mathbb{P}(\Omega)=1$.

Note

Intuition for a measure:

- 1. In \mathbb{R} : length,
- 2. In \mathbb{R}^2 : area,
- 3. In \mathbb{R}^3 : volume.

Definition

A real-valued random variable X is a mapping $X:\Omega\to\mathbb{R}$. Here, Ω is the **sample space** and \mathbb{P} is the measure of the **probability space**, such that $\mathbb{P}(\Omega)=1$.

Definition translated into english

Definition

A real-valued random variable X is a mapping $X:\Omega\to\mathbb{R}$. Here, Ω is the **sample space** and \mathbb{P} is the measure of the **probability space**, such that $\mathbb{P}(\Omega)=1$.

Definition translated into english

1. Unbeknownst to us, someone chooses a random $\omega \in \Omega$. Then we see the $X(\omega) \in \mathbb{R}$.

Definition

A real-valued random variable X is a mapping $X:\Omega\to\mathbb{R}$. Here, Ω is the **sample space** and \mathbb{P} is the measure of the **probability space**, such that $\mathbb{P}(\Omega)=1$.

Definition translated into english

- 1. Unbeknownst to us, someone chooses a random $\omega \in \Omega$. Then we see the $X(\omega) \in \mathbb{R}$.
- 2. We cannot see the corresponding $\omega \in \Omega$, but the $X(\omega) \in \mathbb{R}$ gives us partial information about ω .

Definition

A real-valued random variable X is a mapping $X:\Omega\to\mathbb{R}$. Here, Ω is the **sample space** and \mathbb{P} is the measure of the **probability space**, such that $\mathbb{P}(\Omega)=1$.

Definition translated into english

- 1. Unbeknownst to us, someone chooses a random $\omega \in \Omega$. Then we see the $X(\omega) \in \mathbb{R}$.
- 2. We cannot see the corresponding $\omega \in \Omega$, but the $X(\omega) \in \mathbb{R}$ gives us partial information about ω .
- 3. \mathbb{P} tells us how likely subsets $A \subseteq \omega$ are to occur.

Example

Consider the case where you flip a coin. Using our previous definition, this could be described as $\Omega = \{\text{heads}, \text{tails}\}$ and

$$X(\omega) = egin{cases} 1, & ext{if } \omega = ext{heads} \ -1, & ext{if } \omega = ext{tails} \end{cases}$$
 where $\omega \in \Omega$.

This would yield the familiar notation of $\mathbb{P}(X=1)=.5$ and $\mathbb{P}(X=-1)=.5$ for a fair coin.

Definition

A **stochastic process** is a family of random variables indexed by a time parameter $t \ge 0$.

Definition

A **stochastic process** is a family of random variables indexed by a time parameter $t \ge 0$.

Example

A sequence of coin flips. At each time t your process corresponds to a random variable (aka coinflip) X_t .

Definition

A stochastic process W is called a **Wiener process** if the follow conditions hold

Definition

A stochastic process \boldsymbol{W} is called a **Wiener process** if the follow conditions hold

1.
$$W_0 = 0$$

Definition

A stochastic process \boldsymbol{W} is called a **Wiener process** if the follow conditions hold

- 1. $W_0 = 0$
- 2. The process W has independent increments

Definition

A stochastic process \boldsymbol{W} is called a **Wiener process** if the follow conditions hold

- 1. $W_0 = 0$
- 2. The process W has independent increments
- 3. For s < t the random variable $W_t W_s$ has the Gaussian distribution $\mathcal{N}(0,t-s)$

Definition

A stochastic process W is called a **Wiener process** if the follow conditions hold

- 1. $W_0 = 0$
- 2. The process W has independent increments
- 3. For s < t the random variable $W_t W_s$ has the Gaussian distribution $\mathcal{N}(0, t s)$
- 4. W has continuous trajectories

Theorem

A Wiener trajectory is with probability one, nowhere differentiable, and it has locally infinite total variation.

Figure: Wiener trajectory

Quadratic Variation

Definition

Let X be a stochastic process. Suppose P is a partition of [0, t] denoted t_k and let ||P|| be the mesh of the partition then the **quadratic variation** of X on P is defined to be:

$$[X]_t = \lim_{\|P\| \to 0} \sum_{k=1}^n (X_{t_k} - X_{t_{k-1}})^2$$

Quadratic Variation

Definition

Let X be a stochastic process. Suppose P is a partition of [0, t] denoted t_k and let ||P|| be the mesh of the partition then the **quadratic variation** of X on P is defined to be:

$$[X]_t = \lim_{\|P\| \to 0} \sum_{k=1}^n (X_{t_k} - X_{t_{k-1}})^2$$

Comments

Note that Quadratic Variation itself is a stochastic process. An intuitive way to think about quadratic variation is the internal clock of a process, describing how randomness accumulates over time.

Theorem

Quadratic variation of a Wiener Process on the interval [0,t] is t.

Theorem

Quadratic variation of a Wiener Process on the interval [0,t] is t.

Proof.

Let $P = \{0 = t_0 \le t_1 \le \cdots \le t_m = t\}$ be a partition of the interval [0, t]. Then the quadratic variation on P is

$$[W]^P = \sum_{k=1}^m (W_{t_k} - W_{t_{k-1}})^2$$

Theorem

Quadratic variation of a Wiener Process on the interval [0,t] is t.

Proof.

Let $P = \{0 = t_0 \le t_1 \le \cdots \le t_m = t\}$ be a partition of the interval [0, t]. Then the quadratic variation on P is

$$[W]^P = \sum_{k=1}^m (W_{t_k} - W_{t_{k-1}})^2$$

Therefore,

$$E[[W]^P] = \sum_{k=1}^m E[(W_{t_k} - W_{t_{k-1}})^2]$$

Stats break

Stats break

It is a well known fact that

$$Var(X) = E(X^2) - (E(X))^2$$

Stats break

It is a well known fact that

$$Var(X) = E(X^{2}) - (E(X))^{2}$$

$$= \mathcal{N}(0, t_{k+1} - t_{k}).$$

Since
$$W_{t_{k+1}} - W_{t_k} \in \mathcal{N}(0, t_{k+1} - t_k)$$
,

$$E(W_{t_{i+1}}-W_{t_i})=0$$

Stats break

It is a well known fact that

$$Var(X) = E(X^2) - (E(X))^2$$

Since
$$W_{t_{k+1}} - W_{t_k} \in \mathcal{N}(0, t_{k+1} - t_k)$$
,

$$E(W_{t_{i+1}}-W_{t_i})=0$$

It follows that

$$(E(W_{t_{k+1}}-W_{t_k})^2)=0$$

Stats break

It is a well known fact that

$$Var(X) = E(X^2) - (E(X))^2$$

Since
$$W_{t_{k+1}} - W_{t_k} \in \mathcal{N}(0, t_{k+1} - t_k)$$
,

$$E(W_{t_{i+1}}-W_{t_i})=0$$

It follows that

$$(E(W_{t_{k+1}}-W_{t_k})^2)=0$$

Thus,
$$Var(W_{t_{k+1}} - W_{t_k}) = E((W_{t_{k+1}} - W_{t_k})^2)$$
.

Proof.

Since $E[(W_{t_{i+1}} - W_{t_i})^2] = Var[W_{t_{i+1}} - W_{t_i}]$, we can write:

$$E\left[\left[W\right]^{P}\right] = \sum_{k=1}^{m} Var\left[W_{t_{k}} - W_{t_{k-1}}\right]$$

Proof.

Since $E[(W_{t_{i+1}}-W_{t_i})^2] = Var[W_{t_{i+1}}-W_{t_i}]$, we can write:

$$E\left[\left[W\right]^{P}\right] = \sum_{k=1}^{m} Var\left[W_{t_{k}} - W_{t_{k-1}}\right]$$

Using $W_{t_k} - W_{t_{k-1}} \in \mathcal{N}(0, t_k - t_{k-1})$:

$$E[[W]^P] = \sum_{k=1}^{m} (t_k - t_{k-1})$$
$$= t$$

Proof.

Since $E[(W_{t_{i+1}} - W_{t_i})^2] = Var[W_{t_{i+1}} - W_{t_i}]$, we can write:

$$E\left[\left[W\right]^{P}\right] = \sum_{k=1}^{m} Var\left[W_{t_{k}} - W_{t_{k-1}}\right]$$

Using $W_{t_k} - W_{t_{k-1}} \in \mathcal{N}(0, t_k - t_{k-1})$:

$$E[[W]^P] = \sum_{k=1}^{m} (t_k - t_{k-1})$$
$$= t$$

Finally, from the definition of discrete expectation we have that $E[[W]^P]:=\lim_{\|P\|\to 0}[W]^P:=t$

Implications

This motivates us to write

$$\int_{0}^{t} (dW_t)^2 = t$$

Or equivalently,

$$(dW_t)^2 = dt$$

The Problem Integrals of the form $\int_0^t g_s dW_s$.

The Problem

Integrals of the form $\int_0^t g_s dW_s$.

Possible Solution 1

Try to define like the Riemman Integral

1.
$$\sum_{k=1}^{n} g_{s}(W_{t_{k+1}} - W_{t_{k}})$$

The Problem

Integrals of the form $\int_0^t g_s dW_s$.

Possible Solution 1

Try to define like the Riemman Integral

1.
$$\sum_{k=1}^{n} g_{s}(W_{t_{k+1}} - W_{t_{k}})$$

2. Not possible due to locally unbounded variation of a Wiener Process.

Definition

A function is **simple** on [a, b] when there exists deterministic points in time $a = t_0 < t_1 < \cdots < t_n = b$ such that $g_s = g_{t_k}$ for all $s \in [t_k, t_{k+1}]$.

Definition

A function is **simple** on [a, b] when there exists deterministic points in time $a = t_0 < t_1 < \cdots < t_n = b$ such that $g_s = g_{t_k}$ for all $s \in [t_k, t_{k+1}]$.

Real Solution

Now we can define the stochastic integral by

$$\int_{a}^{b} g_{s} dW_{s} = \sum_{k=0}^{n-1} g_{t_{k}} [W_{t_{k+1}} - W_{t_{k}}]$$

For some simple function g_s .

Definition

Geometric Brownian Motion is a stochastic process whose dynamics follow the stochastic differential equation

$$dX_t = \alpha X_t dt + \sigma X_t dW_t$$
 for some $\alpha, \beta \in \mathbb{R}$

Where dW_t is the infinitesimal increment of the Wiener process.

Definition

Geometric Brownian Motion is a stochastic process whose dynamics follow the stochastic differential equation

$$dX_t = \alpha X_t dt + \sigma X_t dW_t$$
 for some $\alpha, \beta \in \mathbb{R}$

Where dW_t is the infinitesimal increment of the Wiener process.

Claim:

The closed form of Geometric Brownian Motion is:

$$X_t = X_0 e^{(\mu - \frac{\sigma^2}{2})dt + \sigma dW_t}$$

Proof.

Assume X_t follows a Geometric Brownian Motion. Using Ito's lemma,

$$d\ln(X_t) = \frac{1}{X_t} dX_t - \frac{1}{2X_t^2} (dX_t)^2$$

Proof.

Assume X_t follows a Geometric Brownian Motion. Using Ito's lemma,

$$d\ln(X_t) = \frac{1}{X_t} dX_t - \frac{1}{2X_t^2} (dX_t)^2$$

From our definition of Geometric Brownian Motion,

$$d\ln(X_t) = \frac{1}{X_t}(\mu X_t dt + \sigma X_t dW_t) - \frac{1}{2X_t^2}(\mu X_t dt + \sigma X_t dW_t)^2$$

Proof.

Assume X_t follows a Geometric Brownian Motion. Using Ito's lemma,

$$d\ln(X_t) = \frac{1}{X_t} dX_t - \frac{1}{2X_t^2} (dX_t)^2$$

From our definition of Geometric Brownian Motion,

$$d\ln(X_t) = \frac{1}{X_t}(\mu X_t dt + \sigma X_t dW_t) - \frac{1}{2X_t^2}(\mu X_t dt + \sigma X_t dW_t)^2$$

Note that:

$$(\mu X_t dt + \sigma X_t dW_t)^2 = X_t^2 (\mu^2 dt^2 + \sigma^2 dW_t^2 + 2\mu\sigma dt dW_t)$$

Proof.

Assume X_t follows a Geometric Brownian Motion. Using Ito's lemma,

$$d\ln(X_t) = \frac{1}{X_t} dX_t - \frac{1}{2X_t^2} (dX_t)^2$$

From our definition of Geometric Brownian Motion,

$$d\ln(X_t) = \frac{1}{X_t}(\mu X_t dt + \sigma X_t dW_t) - \frac{1}{2X_t^2}(\mu X_t dt + \sigma X_t dW_t)^2$$

Note that:

$$(\mu X_t dt + \sigma X_t dW_t)^2 = X_t^2 (\mu^2 dt^2 + \sigma^2 dW_t^2 + 2\mu\sigma dt dW_t)$$

From Ito's multiplication table, $(dt)^2 = 0 = (dt)(dW_t)$ and $(dW_t)^2 = dt$ such that

$$(\mu X_t dt + \sigma X_t dW_t)^2 = X_t^2 \sigma^2 dt$$

Proof.

Substituting back,

$$d \ln(X_t) = (\mu dt + \sigma dW_t) - \frac{1}{2X_t^2} (X_t^2 \sigma^2 dt)$$
$$= (\mu - \frac{\sigma^2}{2}) dt + \sigma dW_t.$$

Proof.

Substituting back,

$$d \ln(X_t) = (\mu dt + \sigma dW_t) - \frac{1}{2X_t^2} (X_t^2 \sigma^2 dt)$$
$$= (\mu - \frac{\sigma^2}{2}) dt + \sigma dW_t.$$

It follows that
$$X_t = e^{(\mu - rac{\sigma^2}{2})dt + \sigma dW_t}$$

