Computing Geodesics in Parallel

ME570X

4/24/2018

Nathan Scheirer

Background

- A geodesic is a generalization of the notion of a "straight line" to "curved spaces." [1]
 - Defined as a curve whose tangent vectors remain parallel as it progresses along a surface.
- Existing computational methods:
 - Gradient descent/Midpoint method for single geodesic lines [2]
 - Fast Marching Method [3]
 - Fast Iterative Method [4]
 - Fast Sweeping Method [5]

Problem Statement

- When creating a parameterization of a surface based on geodesics, especially on large meshes, the required number of geodesics to be computed can be quite large.
- Therefore, the use of a geodesic kernel executed on the GPU could speed up the calculation of the geodesics required for parameterization.

Proposed Solution

- A sequential process has already been developed in Python
 - Can compute approximately 700 geodesics in about 1.5 minutes

• Method:

- For each geodesic, dedicate one thread to perform the sequential algorithm
- · All geodesics will be calculated at the same time

• Implementation:

- Use Numba to accelerate the sequential python code
- Algorithm on the following slides

General Algorithm

- Given a starting point, fiber direction, surface normal, fiber interval, and the fiber material properties
- All fiber start points are calculated using geodesics running in each valid principle direction (i.e. x, y, z, -x, -y, -z)
- For each start point find initial facet and the rotated fiber direction for that element (this saves computation time in the kernel)
- Send start points, elements, and fiber directions to the geodesic kernel
- Store the points of intersection between the geodesic and each element edge
- Cleanup and interpolate any missed vertices

Geodesic Kernel

- For each start point:
 - Check current element
 - If not in list of traveled faces, add it
 - Traverse element:
 - Find neighboring elements
 - Convert current element vertices and fiber direction to barycentric coordinates
 - Determine the next edge to be crossed given the current intersection point and fiber direction
 - Find which element shares the crossed edge
 - Convert the intersection point back into 3d coordinates
 - Set current point to new intersection point
 - · Rotate current fiber direction into plane with the next element
 - · Repeat until a model edge is found

Results

GPU: GTX 970 CPU: i7-6700K

4 GB Memory 4 Cores

1664 CUDA Cores 4.0 GHz

1329 MHz (1.33 GHz)

Model: Cylinder (204 vertices)

	CPU (s)	GPU (s)*	
Number of geodesics	1 Thread	[B]/[T per B]/[T]	
37	0.257	[3]/[16]/[48]	2.53
74	0.508	[5]/[16]/[80]	2.516
371	2.524	[24]/[16]/[384]	2.531
743	5.083	[47]/[16]/[752]	2.562
3715	25.526	[233]/[16]/[3728]	2.685
7431	50.971	[465]/[16]/[7440]	2.689
37154	254.942	[2323]/[16]/[37168]	3.793
* [Blocks]/[Threads per			

Calculating Geodesics (CPU vs GPU)

Results Comparison

• Iterative Method [6]:

• Presented solution:

	Number of	Original method	Original method		Using a heap	
	vertices	Changes	Time	Changes	Time	
1	49	60649	0.60	38089	0.65	
2	29	37021	0.37	20469	0.35	
3	46	126303	1.22	48478	0.82	
4	103	1291478	12.58	549298	9.37	
5	126	481039	4.85	80585	1.40	
6	75	161026	1.60	51123	0.88	

	CPU (s)	GPU (s)*	
Number of geodesics	1 Thread	[B]/[T per B]/[T]	
37	0.257	[3]/[16]/[48]	2.53
74	0.508	[5]/[16]/[80]	2.516
371	2.524	[24]/[16]/[384]	2.531
743	5.083	[47]/[16]/[752]	2.562
3715	25.526	[233]/[16]/[3728]	2.685
7431	50.971	[465]/[16]/[7440]	2.689
37154	254.942	[2323]/[16]/[37168]	3.793
* [Blocks]/[Threads pe	r block]/[Threads]		

Thank you, Questions?

References

- [1] https://en.wikipedia.org/wiki/Geodesic
- [2] https://cs.stanford.edu/~jbaek/18.821.paper2.pdf
- [3] http://www.pnas.org/content/pnas/95/15/8431.full.pdf
- [4] $\frac{\text{https://ac.els-cdn.com/S1877050914003470/1-s2.0-S1877050914003470-main.pdf?_tid=f42aa592-bbef-46ac-adfd420e1f461a91&acdnat=1520357194_81c8eb277732e9cd13dd8a0ea576b095}$
- [5] $\frac{\text{https://ac.els-cdn.com/S002199911200722X/1-s2.0-S002199911200722X-main.pdf? tid=caae28d8-c7f6-4513-99de840c0256c6b3&acdnat=1520358269_196d67c46972d33edec65f8524634f}{7f}$
- [6] https://www.sciencedirect.com/science/article/pii/S0097849305001299