Models of the motor system

Fall 2021 Opher Donchin

Part 1

Reminder reward learning

Teaching with errors and rewards

Izawa PLOS Computational Biology 2011 doi:10.1371/journal.pcbi.1002012

Learning from errors and rewards

Model the movements

Hand and cursor

$$h^{(k+1)} = u^{(k)} + n_h^{(k)}$$

$$c^{(k)} = h^{(k)} + p^{(k)}$$

$$y^{(k)} = c^{(k)} + n_v^{(k)}$$

h: hand

u: motor command

c: cursor

p: perturbation

y: sensed position

n: noise

Internal estimates

$$\hat{h}^{(k+1)} = \hat{p}^{(k)} + u^{(k)}$$
$$\hat{p}^{(k+1)} = a\hat{p}^{(k)} + n_p^{(k)}$$

a: forgetting factor

Vectorization

$$\mathbf{x}^{(k+1)} = A\mathbf{x}^{(k)} + \mathbf{b}u^{(k)} + \mathbf{n}_x^{(k)}$$
$$y^{(k)} = C\mathbf{x}^{(k)} + n_y^{(k)}$$

$$\mathbf{x}^{(k)} = \begin{pmatrix} p^{(k)} \\ h^{(k)} \end{pmatrix} \text{: state vector}$$

$$\mathbf{n}_{x}^{(k)} = \begin{pmatrix} n_{p}^{(k)} \\ n_{h}^{(k)} \end{pmatrix}$$

$$A = \begin{pmatrix} a & 0 \\ 1 & 0 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad C = \begin{pmatrix} 0 & 1 \end{pmatrix}$$

Izawa PLOS Computational Biology 2011 doi:10.1371/journal.pcbi.1002012

Kalman filter as error based learning

State equations

$$\mathbf{x}^{(k+1)} = A\mathbf{x}^{(k)} + \mathbf{b}u^{(k)} + \mathbf{n}_x^{(k)}$$
$$y^{(k)} = C\mathbf{x}^{(k)} + n_y^{(k)}$$

$$\mathbf{x}^{(k)} = \begin{pmatrix} p^{(k)} \\ h^{(k)} \end{pmatrix} \quad \mathbf{n}_{x}^{(k)} = \begin{pmatrix} n_{p}^{(k)} \\ n_{h}^{(k)} \end{pmatrix}$$
$$A = \begin{pmatrix} a & 0 \\ 1 & 0 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad C = \begin{pmatrix} 0 & 1 \end{pmatrix}$$

Kalman filter

$$\hat{\mathbf{x}}^{(k|k-1)} = A\hat{\mathbf{x}}^{(k-1|k-1)} + \mathbf{b}u^{(k)}$$

$$\hat{\mathbf{x}}^{(k|k)} = \hat{\mathbf{x}}^{(k|k-1)} + K^{(k)} \left(y^{(k)} - C\hat{\mathbf{x}}^{(k|k-1)} \right)$$

$$y^{(k)} - C\hat{\mathbf{x}}^{(k|k-1)}$$
: sensory prediction error
$$K^{(k)}$$
: Kalman gain

Kalman gain

$$K^{(k)} = P^{(k|k-1)}C^{T} \left(CP^{(k|k-1)}C^{T} + \sigma_{y}^{2} \right)^{-1}$$

 $P^{(k|k-1)}$: Variance of state estimate

State variance

State equations

$$\mathbf{x}^{(k+1)} = A\mathbf{x}^{(k)} + \mathbf{b}u^{(k)} + \mathbf{n}_x^{(k)}$$
$$y^{(k)} = C\mathbf{x}^{(k)} + n_y^{(k)}$$

Kalman filter

$$\hat{\mathbf{x}}^{(k|k-1)} = A\hat{\mathbf{x}}^{(k-1|k-1)} + \mathbf{b}u^{(k)}$$

$$\hat{\mathbf{x}}^{(k|k)} = \hat{\mathbf{x}}^{(k|k-1)} + K^{(k)} \left(y^{(k)} - C\hat{\mathbf{x}}^{(k|k-1)} \right)$$

$$K^{(k)} = P^{(k|k-1)}C^T \left(CP^{(k|k-1)}C^T + \sigma_y^2 \right)^{-1}$$

Variance propagation

$$P^{(k|k-1)} = AP^{(k-1|k-1)}A^{T} + Q^{(k)}$$
$$P^{(k|k)} = (I - K^{(k)}C)P^{(k|k-1)}$$

$$Q^{(k)} = \begin{pmatrix} \sigma_h^2 & 0 \\ 0 & \sigma_p^2 \end{pmatrix}$$
: variance of state variables

Izawa PLOS Computational Biology 2011 doi:10.1371/journal.pcbi.1002012

Credit assignment problem

Deciding on the movement

Control policy

State equations

$$\mathbf{x}^{(k+1)} = A\mathbf{x}^{(k)} + \mathbf{b}u^{(k)} + \mathbf{n}_{x}^{(k)}$$
$$y^{(k)} = C\mathbf{x}^{(k)} + n_{y}^{(k)}$$

Kalman filter

$$\hat{\mathbf{x}}^{(k|k-1)} = A\hat{\mathbf{x}}^{(k-1|k-1)} + \mathbf{b}u^{(k)}$$

$$\hat{\mathbf{x}}^{(k|k)} = \hat{\mathbf{x}}^{(k|k-1)} + K^{(k)} \left(y^{(k)} - C\hat{\mathbf{x}}^{(k|k-1)} \right)$$

$$K^{(k)} = P^{(k|k-1)}C^T \left(CP^{(k|k-1)}C^T + \sigma_y^2 \right)^{-1}$$

Variance propagation

$$P^{(k|k-1)} = AP^{(k-1|k-1)}A^{T} + Q^{(k)}$$
$$P^{(k|k)} = (I - K^{(k)}C)P^{(k|k-1)}$$

$$u^{(k)} = -\hat{p}^{(k)} + w_r^{(k)} + n_u^{(k)}$$

 $w_r^{(k)}$: reward-maximizing policy

Izawa PLOS Computational Biology 2011 doi:10.1371/journal.pcbi.1002012

Reward based learning

State equations

$$\mathbf{x}^{(k+1)} = A\mathbf{x}^{(k)} + \mathbf{b}u^{(k)} + \mathbf{n}_x^{(k)}$$
$$y^{(k)} = C\mathbf{x}^{(k)} + n_y^{(k)}$$

Kalman filter

$$\hat{\mathbf{x}}^{(k|k-1)} = A\hat{\mathbf{x}}^{(k-1|k-1)} + \mathbf{b}u^{(k)}$$

$$\hat{\mathbf{x}}^{(k|k)} = \hat{\mathbf{x}}^{(k|k-1)} + K^{(k)} \left(y^{(k)} - C\hat{\mathbf{x}}^{(k|k-1)} \right)$$

Control policy

$$u^{(k)} = -\hat{p}^{(k)} + w_r^{(k)} + n_u^{(k)}$$

Policy learning

$$w_r^{(k+1)} = w_r^{(k)} + \alpha_r \delta^{(k)}$$
$$\delta^{(k)} = r^{(k)} + \gamma \hat{V}^{(k+1)} - \hat{V}^{(k)}$$

 $\delta^{(k)}$: reward prediction error

 $V^{(k)}$: Discounted accumulated reward

 $\hat{V}^{(k)}$: Estimate of accumulated reward

 γ : Discounting factor

Reward learning

$$V^{(k)} = E \left[r^{(k)} + \gamma r^{(k+1)} + \gamma^2 r^{(k+2)} + \cdots \right]$$

$$\hat{V}^{(k+1)} = \hat{V}^{(k)} + \alpha_{V} \delta^{(k)}$$

Izawa PLOS Computational Biology 2011 doi:10.1371/journal.pcbi.1002012

Box and arrow diagram of the model

Model successfully learns from error or reward

Izawa PLOS Computational Biology 2011 doi:10.1371/journal.pcbi.1002012

Part 2

Reinforcement and explicit learning

Reinforcement learning can be "turned off"

Dual task wipes out reinforcement learning

Different EEG for reward and error based learning

Palidis J Neurophysiol 2019 doi:10.1152/jn.00792.2018

But cerebellar patients have poor explicit AND implicit

Butcher J Neurophysiol 2017 doi:10.1152/jn.00451.2017

Can be rescued by "providing" explicit strategy

Part 3

Exploration and noise

Variability is correlated to learning

But not in all experiments

He et al, PLOS Computational Biology, 2016

Explanation: different types of noise

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_k y_k$$
 Learning $K_k = P_{k|k-1} H^T S_k^{-1}$ Learning rate $\hat{x}_{k|k-1} = A \hat{x}_{k-1|k-1}$ Forgetting $P_{k|k-1} = A P_{k-1|k-1} A^T + Q$ Planning noise $y_k = Z_k - H \hat{x}_{k|k-1}$ Behavior $S_k = H P_{k|k-1} H^T + R$ Execution noise

Kalman filter models predict learning will be:

- Correlated with planning noise
- Inversely correlated with execution nosie

Planning noise correlated with learning

Van Der Vliet eNeuro 2018 doi:10.1523/ENEURO.0170-18.2018

Execution noise inversely correlated

Van Der Vliet eNeuro 2018 doi:10.1523/ENEURO.0170-18.2018

Optimal Kalman gain predicts learning

Van Der Vliet eNeuro 2018 doi:10.1523/ENEURO.0170-18.2018

Error related negativity 400 ms latency

Noisier subjects learn slower

Jonker bioRxiv 2020 doi:10.1101/2020.07.12.188581

Less noisy subject has sensitivity to error

Noisy, slow learning subject

Non-noisy, fast learning subject EEG highly sensitive to error

Jonker bioRxiv 2020 doi:10.1101/2020.07.12.188581

Noisier subject has no error sensitivity

Jonker bioRxiv 2020 doi:10.1101/2020.07.12.188581

Part 3

Noise, exploration and reinforcement learning

Cerebellar subjects forget error based learning

Therrien Brain 2016 doi:10.1093/brain/awv329

Cerebellar subjects: noise and reinforcement

Therrien Brain 2016 doi:10.1093/brain/awv329

Reinforcement and variability

Link to video

Dhawale *Curr Biol* 2019 doi:10.1016/j.cub.2019.08.052

Reward drives changes in variability

Reward rate reduces changes in variability

Making a model

Dhawale *Curr Biol* 2019 doi:10.1016/j.cub.2019.08.052