Table 1
 Microeconomic Model Calibration

Calibrated Parameters				
Description	Parameter	Value	Source	
Permanent Income Growth Factor	Γ	1.03	PSID: Carroll (1992)	
Interest Factor	R	1.04	Conventional	
Time Preference Factor	β	0.96	Conventional	
Coefficient of Relative Risk Aversion	ρ	2	Conventional	
Probability of Zero Income	80	0.005	PSID: Carroll (1992)	
Std Dev of Log Permanent Shock	σ_{ψ}	0.1	PSID: Carroll (1992)	
Std Dev of Log Transitory Shock	$\sigma_{ heta}$	0.1	PSID: Carroll (1992)	

 ${\bf Table~2} \quad {\bf Model~Characteristics~Calculated~from~Parameters}$

				Approximate
				Calculated
Description	Sy	mbo	l and Formula	Value
Finite Human Wealth Measure	\mathcal{R}^{-1}	=	Γ/R	0.990
PF Finite Value of Autarky Measure	コ	=	$eta\Gamma^{1- ho}$	0.932
Growth Compensated Permanent Shock	$\underline{\psi}$	=	$(\mathbb{E}[\psi^{-1}])^{-1}$	0.990
Uncertainty-Adjusted Growth	$\underline{\Gamma}$	=	$\Gamma \underline{\psi}$	1.020
Utility Compensated Permanent Shock	$\underline{\underline{\psi}}$	=	$(\mathbb{E}_t[\psi^{1-\rho}])^{1/(1-\rho)}$	0.990
Utility Compensated Growth	$\underline{\underline{\Gamma}}$	≡	$\Gamma \underline{\underline{\psi}}$	1.020
Absolute Patience Factor	Þ	=	$(Reta)^{1/ ho}$	0.999
Return Patience Factor	\mathbf{p}_{R}	=	\mathbf{P}/R	0.961
PF Growth Patience Factor	\mathbf{p}_{Γ}	=	\mathbf{P}/Γ	0.970
Growth Patience Factor	$\mathbf{b}_{\underline{\Gamma}}$	≡	$\mathbf{P}/\underline{\Gamma}$	0.980
Finite Value of Autarky Measure	⊒	≡	$\beta\Gamma^{1-\rho}\underline{\underline{\psi}}^{1-\rho}$	0.941

 ${\bf Table~3}~~{\bf Definitions~and~Comparisons~of~Conditions}$

D C + D + 1 + 37 +	TT , . , TT .			
Perfect Foresight Versions	Uncertainty Versions			
Finite Human Wealth Condition (FHWC)				
$\Gamma/R < 1$	$\Gamma/R < 1$			
The growth factor for permanent income	The model's risks are mean-preserving			
Γ must be smaller than the discounting	spreads, so the PDV of future income is			
factor R for human wealth to be finite.	unchanged by their introduction.			
Absolute Impatien	ce Condition (AIC)			
Þ < 1	Þ < 1			
The unconstrained consumer is	If wealth is large array at the appropriation			
The unconstrained consumer is sufficiently impatient that the level of	If wealth is large enough, the expectation of consumption next period will be			
consumption will be declining over time:	smaller than this period's consumption:			
consumption will be deciming over time.	smaller than this period's consumption.			
$c_{t+1} < c_t$	$\lim_{m_t \to \infty} \mathbb{E}_t[c_{t+1}] < c_t$			
Return Impatience Conditions				
Return Impatience Condition (RIC)	Weak RIC (WRIC)			
Þ /R < 1	$\wp^{1/\rho}\mathbf{P}/R < 1$			
The growth factor for consumption b	If the probability of the zero-income			
must be smaller than the discounting	event is $\wp = 1$ then income is always zero			
factor R, so that the PDV of current and	and the condition becomes identical to			
future consumption will be finite:	the RIC. Otherwise, weaker.			
$c'(m) = 1 - \mathbf{P}/R < 1$	$a'(m) < 1$ $a^{1/\rho}\mathbf{h}/\mathbf{p} < 1$			
$C(m) \equiv 1 - \mathbf{P}/K < 1$	$c'(m) < 1 - \wp^{1/\rho} \mathbf{P}/R < 1$			
Growth Impati	l ence Conditions			
PF-GIC	GIC			
$\mathbf{p}/\Gamma < 1$	$\mathbf{p}\mathbb{E}[\psi^{-1}]/\Gamma < 1$			
Guarantees that for an unconstrained				
consumer, the ratio of consumption to	By Jensen's inequality, stronger than			
permanent income will fall over time. For	the PF-GIC. Ensures consumers will not			
a constrained consumer, guarantees the	expect to accumulate m unboundedly.			
constraint will eventually be binding.				
	$\lim_{m_t \to \infty} \mathbb{E}_t[m_{t+1}/m_t] = \mathbf{P}_{\underline{\Gamma}}$			
Finite Value of A	utarky Conditions			
Finite Value of Autarky Conditions PF-FVAC FVAC				
$\beta\Gamma^{1-\rho} < 1$				
/	$\beta \Gamma^{1-\rho} \mathbb{E}[\psi^{1-\rho}] < 1$			
equivalently $\mathbf{P}/\Gamma < (R/\Gamma)^{1/\rho}$				
The discounted utility of constrained	By Jensen's inequality, stronger than the			
consumers who spend their permanent	PF-FVAC because for $\rho > 1$ and			
income each period should be finite.	nondegenerate ψ , $\mathbb{E}[\psi^{1-\rho}] > 1$.			

 Table 4
 Sufficient Conditions for Nondegenerate[‡] Solution

Model	Conditions	Comments
PF Unconstrained	RIC, FHWC°	$ RIC \Rightarrow v(m) < \infty; FHWC \Rightarrow 0 < v(m) $
		RIC prevents $\bar{\mathbf{c}}(m) = 0$
		FHWC prevents $\bar{\mathbf{c}}(m) = \infty$
PF Constrained	PF-GIC*	If RIC, $\lim_{m\to\infty} \mathring{c}(m) = \bar{c}(m)$, $\lim_{m\to\infty} \mathring{\kappa}(m) = \underline{\kappa}$
		If RHC, $\lim_{m\to\infty} \mathring{\boldsymbol{\kappa}}(m) = 0$
Buffer Stock Model	FVAC, WRIC	FHWC $\Rightarrow \lim_{m\to\infty} \mathring{c}(m) = \bar{c}(m), \lim_{m\to\infty} \mathring{\kappa}(m) = \underline{\kappa}$
		$\text{EHWC+RIC} \Rightarrow \lim_{m \to \infty} \mathring{\kappa}(m) = \underline{\kappa}$
		EHWC+RIC $\Rightarrow \lim_{m\to\infty} \mathring{\mathbf{k}}(m) = 0$
		GIC guarantees finite target wealth ratio
		FVAC is stronger than PF-FVAC
		WRIC is weaker than RIC

[‡]For feasible m, the limiting consumption function defines the unique value of c satisfying $0 < c < \infty$. °RIC, FHWC are necessary as well as sufficient. *Solution also exists for PF-GTC and RIC, but is identical to the unconstrained model's solution for feasible $m \ge 1$.

 Table 5
 Taxonomy of Perfect Foresight Liquidity Constrained Model Outcomes

 For constrained \grave{c} and unconstrained \bar{c} consumption functions

Main Condition				
Subcondition		Math		Outcome, Comments or Results
PF-GIC		1 <	\mathbf{b}/Γ	Constraint never binds for $m \geq 1$
and RIC	\mathbf{P}/R	< 1		FHWC holds $(R > \Gamma)$; $\dot{c}(m) = \bar{c}(m)$ for $m \ge 1$
and RIC		1 <	\mathbf{P}/R	$\grave{\mathbf{c}}(m)$ is degenerate: $\grave{\mathbf{c}}(m) = 0$
PF-GIC	\mathbf{p}/Γ	< 1		Constraint binds in finite time for any m
and RIC	Þ /R	< 1		FHWC may or may not hold
				$\lim_{m\uparrow\infty} \bar{\mathbf{c}}(m) - \grave{\mathbf{c}}(m) = 0$
				$\lim_{m\uparrow\infty} \grave{\boldsymbol{\kappa}}(m) = \underline{\kappa}$
and RIC		1 <	\mathbf{P}/R	EHWC
				$\lim_{m\uparrow\infty} \hat{\boldsymbol{k}}(m) = 0$

Conditions are applied from left to right; for example, the second row indicates conclusions in the case where PF-GIC and RIC both hold, while the third row indicates that when the PF-GIC and the RIC both fail, the consumption function is degenerate; the next row indicates that whenever the PF-GIC holds, the constraint will bind in finite time.