Departamento de Matemática e IMAS, FCEyN, UBA - CONICET

## Teorema (Cantor)

Los números reales no son numerables.

Demostración: Consideremos el siguiente juego de dos jugadores:

Se fija un conjunto  $S \subset [0,1]$ . Comienza I eligiendo un número  $x_1 \in [0,1]$ ; y luego II elige un número  $y_1 \in (x_1,1]$ .



Luego se alternan para elegir números, I elige  $x_{j+1} \in (x_j, y_j)$ , II elige  $y_{j+1} \in (x_{j+1}, y_j)$ .



La sucesión  $\{x_j\}_{j\geq 1}$  es monótona creciente y acotada, con lo cual tiene límite  $x\in [0,1]$ . De hecho,  $x\in (x_j,y_j)$  para todo j.



El jugador I gana si  $x \in S$ , de lo contrario pierde.

Supongamos que  $[0,1] = \{q_k\}_{k \ge 1}$  es numerable, y que S = [0,1].

Como la sucesión  $\{x_j\}_{j\geq 1}$  es monótona creciente y acotada, tenía límite  $x\in [0,1]=S$ , y el jugador I gana.

Pero el jugador II tiene una estrategia ganadora: en el turno j + 1, va a elegir

$$y_{j+1}=q_n$$
 tal que  $n=\min\{k\in\mathbb{N},q_k\in(x_{j+1},y_j)\}$ 



Pel indice más chico tal que  $q_k \leq e^{-\alpha}$  el más pega do " a  $\chi_{j+1}$  que existe pues supusimos que todos los números reales entre 0 y 1 podían ser indexados en una sucesión  $\{q_k\}_{1...}$ 

El límite es  $x=q_i$  para algún i, pero en el turno i, II lo hubiese elegido si estaba disponible, así que no puede ser un elemento de S.

Conclusión: llegamos a un absurdo, [0, 1] no puede ser numerable.