



# Reducing Risk and Uncertainty of Deep Neural Networks on Diagnosing COVID-19 Infection

Krishanu Sarker, Sharbani Pandit, Anupam Sarker, Saeid Belkasim, Shihao Ji

Scan to view my LinkedIn profile

#### 1. MOTIVATION

- CAD can play a crucial part in the battle against COVID-19.
- DNN based CAD systems are widely studied.
- Yet CAD systems are still unreliable.
- CAD systems are not being widely deployed in clinical practice.
- The predictive Uncertainty of DNNs received a lot of attention.
- Most of these works experimented on Benchmark Datasets.

More **rigorous and comprehensive** comparative study is required on uncertainty estimation of CAD systems in COVID-19 detection.

#### 6. Experimental Results

## Comparative Accuracy results on COVIDx Dataset

| Abstention |        | Model        |        |
|------------|--------|--------------|--------|
| Rate       | TTAUG  | SelectiveNet | DbFF   |
| 5%         | 93.07% | 93.58%       | 94.13% |
| 10%        | 94.51% | 94.55%       | 95.29% |
| 15%        | 95.75% | 95.18%       | 96.13% |
| 20%        | 96.75% | 96.04%       | 96.70% |
| 25%        | 97.21% | 96.75%       | 97.38% |
| 30%        | 97.73% | 97.14%       | 98.10% |

#### Effects of DbFF framework on COVIDNet

| Abstention | Accuracy | Sensitivity |           | Positive Predictive Value |        |           |        |
|------------|----------|-------------|-----------|---------------------------|--------|-----------|--------|
| Rate       | Accuracy | Normal      | Pneumonia | COVID                     | Normal | Pneumonia | COVID  |
| 0%         | 94.82%   | 94.80%      | 94.90%    | 94.00%                    | 96.30% | 92.80%    | 94.00% |
| 10%        | 97.16%   | 97.80%      | 96.60%    | 94.80%                    | 97.30% | 97.10%    | 95.70% |
| 20%        | 98.81%   | 99.60%      | 98.30%    | 95.60%                    | 98.60% | 99.60%    | 96.60% |
| 30%        | 99.18%   | 99.70%      | 99.00%    | 96.60%                    | 99.00% | 99.70%    | 97.70% |

## Visualization of Feature space distribution with varying abstention rate



### 2. Goal of the Research

- Comprehensively study the uncertainty of CAD systems on COVID diagnosis.
- Identify the best performing uncertainty estimation framework on COVID diagnosis.
- Validate the results from the best performing framework by Medical Professionals.

#### **How Good is DbFF?**

Samples Correctly identified and not abstained







(a) COVID(COVID) (b) Normal(Normal)

Samples Wrongly identified but abstained



(d) Normal(Pneumonia) (e) Normal(Pneumonia) (f) Pneumonia(COVID)

#### Samples Wrongly identified yet not abstained



(g) Pneumonia(Normal) (h) COVID(Normal)

#### 3. Compared methods

- Test Time Augmentation (TTAUG)<sup>1</sup>
- SelectiveNet<sup>2</sup>
- Density based Filtering Framework (DbFF)<sup>3</sup>

#### 4. Unique Properties of DbFF

- Simple and Intuitive: Distant samples in feature-space are different from each other.
- Plug-and-Play: Easy to incorporate with off-the-shelf DNN, requires no modification.
- Performs Comparatively with State-of-the-art Uncertainty Estimation methods.

#### 5. Workflow of DbFF

Identify Core Data Distributions

Calculate Centroid of all Distributions

Calculate Distance between a sample, s and centroids  $(d^a_{s,} d^b_{s})$ Abstain if,  $|d^a_s - d^b_s| < \eta$ 

#### 7. REFERENCES

- Ayhan, M. S.; Kuehlewein, L.; Aliyeva, G.; Inhoffen, W.; Ziemssen, F.; and Berens, P. 2020. Expert-validated estimation of diagnostic uncertainty for deep neural networks in diabetic retinopathy detection. Medical Image Analysis 101724.
- Geifman, Y.; and El-Yaniv, R. 2019. Selectivenet: A deep neural network with an integrated reject option. arXiv preprint arXiv:1901.09192.
- 3. Sarker, K.; Yang, X.; Li, Y.; Belkasim, S.; and Ji, S. 2020. A Unified Plug-and-Play Framework for Effective Data Denoising and Robust Abstention. arXiv preprint arXiv:2009.12027.