

Course Title:	ELE302 Electric Networks	
Course Number:	ELE302	
Semester/Year (e.g.F2016)	F2024	

Instructor:	S. Jassav	
-------------	-----------	--

Assignment/Lab Number:	5
Assignment/Lab Title:	Mutual Inductance

Submission Date:		
Due Date:	NOV 22,	, 2024

Student LAST Name	Student FIRST Name	Student Number	Section	Signature*
Malik	ttam2a	501112545	26	Hamza Malik

[&]quot;By signing above you attest that you have contributed to this written lab report and confirm that all work you have contributed to this lab report is your own work. Any suspicion of copying or plagiarism in this work will result in an investigation of Academic Misconduct and may result in a "0" on the work, an "F" in the course, or possibly more severe penalties, as well as a Disciplinary Notice on your academic record under the Student Code of Academic Conduct, which can be found online at: http://www.ryerson.ca/senate/current/poi60.pdf

1.0 INTRODUCTION:

When a time-varying current flows in a coil, it generates a time-varying magnetic flux in the space surrounding it. The time-varying magnetic flux induces a voltage in any conductor linked by this flux. Thus, if a second coil exists in a close physical proximity, an induced voltage will be generated across its terminals; its value is related to the time-varying current in the first coil by a parameter known as mutual inductance. Although the coils are physically separate, their interaction is due to the magnetic coupling that exists between them. The practical application of magnetic-coupling is important, especially in electrical power systems and communication systems.

2.0 OBJECTIVES:

- To determine the dot-convention of a given magnetically-coupled set.
- To measure the resistive and inductive parameters of the set.
- To verify the measured-value of the mutual inductance of the set by using an alternative method: measurement of mutual inductance as a function of self-inductance.
- To examine the concept of impedance reflection between magnetically-coupled networks.

3.0 REQUIRED LAB EQUIPMENT & PARTS:

- Function Generator (FG) and Oscilloscope.
- ELE202 Lab Kit and ELE302 Lab Kit: various components, breadboard, wires and jumpers.
- Magnetically-Coupled Coils (from your TA).

4.0 PRE-LAB ASSIGNMENT (3 marks with 1.5 marks for each step):

Figure 1.0: Measuring Parameters of Magnetically-Coupled Coils

(a) Step 1: The circuit shown in Figure 1.0 consists of magnetically-coupled coils, where the primary coil is connected in series with a sinusoidal source and a current-sampling 20Ω -resistor, while the secondary coil is open-circuit; i.e., has no load (NL).

The primary coil has self-inductance L_p and inherent resistance R_p , and the secondary coil has self-inductance L_s and inherent resistance R_s ; the mutual inductance between the two coils is M.

i) Determine the expressions for V_i and V_s in terms of I_p and the coils parameters, where V_i , V_s and I_p are the phasors for $v_i(t)$, $v_s(t)$ and $i_p(t)$, respectively.

Suppose that the primary and secondary coils are interchanged; i.e., the primary terminals are now open circuited, and the current flow through L_s is $i_s(t)$. Find the expressions for V_i and V_p in terms of I_s and the coils parameters, where V_i , V_s and I_s are the phasors for $v_i(t)$, $v_s(t)$ and $i_s(t)$, respectively.

Figure 2.0: Measuring Mutual Inductance as Self-Inductance

(b) Step 2: The primary and secondary coils shown in Figure 2.0 are connected in series-aiding with the current i(t) entering each of the coils from its dotted terminal. Let the total inductance of this arrangement be L_A. Upon interchanging the secondary terminals connections, however, total inductance of the series-opposing arrangement becomes L_B.

Show that the mutual inductance M is:

$$M=\frac{[L_A-L_B]}{4}$$

Pre-Lab workspace (show your analysis here)

-Vi (t) +
$$\text{Li}\frac{di}{dt}$$
 + $\text{Li}\frac{di}{dt}$ + $\text{Li}\frac{di}{dt}$ + $\text{Mdi}\frac{1}{dt}$ + $\frac{1}{dt}$ - O

($\text{Li} + \text{Li} + 2\text{M}$) $\frac{di}{dt}$ = Vi(t) - Li(t) \\
\left(\text{Li} + \text{Li}) = \frac{\text{Vi(t)}}{\text{di}} \frac{2\text{Li(t)}}{\text{di}} \\
\text{Li + Li + 2M} = \frac{\text{Vi(t)}}{\text{di}} \\
\text{Li + Li - 2M} \\
\text{di} = \text{Vi(t)} - \text{Di}(t)
\\
\text{Li + Li - 2M} \\
\text{di} = \text{Vi(t)} - \text{Di}(t)
\\
\text{Li + Li - 2M} = \text{Li} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Li - \text{Di}(t)}
\\
\text{Li + Li - 2M} = \text{Li - \text{Li - \text{