## Reg. No.:

## Name:



## Continuous Assessment Test I – September 2022

| Programme | : B. Tech (ECE)              | Semester   | : | FS 2022-23      |  |
|-----------|------------------------------|------------|---|-----------------|--|
| Course    | Engineering Electromagnetics | Code       | : | BECE205L        |  |
|           |                              | Slot       | : | B1+TB1          |  |
| Faculty   | : Dr. Niraj Kumar            | Class Nbr  | : | CH2022231001168 |  |
|           | Dr. Saranya Nair M           |            |   | СН2022231001169 |  |
|           | Dr. Chandrasekar N           |            |   | CH2022231001171 |  |
|           | Dr. Ravi Prakash Dwivedi     |            |   | CH2022231001173 |  |
|           | Dr. D. Thiripurasundari      |            |   | CH2022231001175 |  |
| Time .    | : 90 Minutes                 | Max. Marks | : | 50              |  |

## Answer $\underline{ALL}$ the questions

| Q.<br>No. | Sub.<br>Sec. | Questions                                                                                                                                                                                                                                                               |      |
|-----------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.        | a.           |                                                                                                                                                                                                                                                                         |      |
|           | b.           | Determine the divergence of the vector fields: $\hat{P} = x^2yz\hat{a}_x + xz\hat{a}_z$                                                                                                                                                                                 | [3]  |
| 2.        |              | Find E at the origin if the following charge distributions are present in free space: point charge, 12 nC at P (2, 0, 6), uniform line charge density, 3 nC/m, at $x = -2$ , $y = 3$ ; uniform surface charge density, $0.2 \text{ nC/m}^2$ at $x = 3$ .                | [10] |
|           |              | A cube is defined by $1 < x < 1.2$ , $1 < y < 1.2$ , $1 < z < 1.2$ . If $\mathbf{D} = 2x^2y\hat{a}_x + 3x^2y^2\hat{a}_z \frac{c}{m^2}$                                                                                                                                  |      |
| 3.        |              | (i) Apply Gauss's law to find the total flux leaving the closed surface of the cube. (ii) Evaluate $\nabla \cdot \mathbf{D}$ at the center of the cube (iii) Estimate the total charge enclosed within the cube                                                         | [10] |
|           |              | Given the potential $V = \frac{10}{r^2} sin\theta cos\varphi$                                                                                                                                                                                                           |      |
| 4.        |              | <ul> <li>(i) Find the electric flux density D at (2, π/2, 0)</li> <li>(ii) Calculate the work done in moving a 10μC charge from point A(1, 30°, 120 to B(4, 90°, 60°)</li> </ul>                                                                                        |      |
|           |              | Find H:                                                                                                                                                                                                                                                                 |      |
| 5.        |              | <ul> <li>(i) in rectangular components at P (2, 3, 4) if there is a current filament on the z axis carrying 8 mA in the âz direction.</li> <li>(ii) Repeat if the filament is located at x = -1, y = 2.</li> <li>(iii) Find H if both filaments are present.</li> </ul> | [10] |