

HISTOGRAMS PRE-12c AND NOW

ANJU GARG

About me

- More than 11 years of experience in IT Industry
- Sr. Corporate Trainer (Oracle DBA) with Koenig Solutions Pvt. Ltd.
- Oracle blog : http://oracleinaction.com/
- Email: anjugarg66@gmail.com
- Oracle Certified

Certified Associate

ORACLE®

Certified Professional

ORACLE

Certified Professional

Oracle Database 11*g* Administrator **ORACLE**

Certified Professional

Oracle Database 12*c* Administrator

ORACLE[®]

Certified Expert

Oracle Real Application Clusters 11g and Grid Infrastructure Administrator **ORACLE**

Certified Expert

Oracle Database 11*g* Performance Tuning

ORACLE®

Certified Expert

Oracle Database 11g Release 2 SQL Tuning

Agenda

- Need For Histograms
- Pre-12c Histograms
 - Frequency Histograms
 - Height Balanced Histograms
- Issues With Histograms In 11g
- Histograms in 12c
 - Top Frequency Histograms
 - Hybrid Histograms
 - Hybrid Histograms Corollary
- Conclusion
- References
- Q & A

Need For Histograms

Skewed Data Distribution

- 26 distinct values in the column ID
- More than 40% rows have ID = 8
- Optimizer assumes uniform distribution and misestimates cardinality
- Results in a bad execution path

Pre-12c Histograms

- Frequency histograms
- Height balanced histograms

Nb – Number of buckets NDV – No. of Distinct Values

Frequency Histogram

- NDV <= 254 and Nb >= NDV
- Records each different value and its exact cardinality.
- One bucket contains exactly one value.
- One value resides entirely in one bucket.
- Bucket size = cardinality of the value
- Precise

```
SQL>exec dbms_stats.gather_table_stats -
             (ownname => 'HR', -
                        tabname => 'HIST', -
                        method_opt => 'FOR COLUMNS ID', -
                        cascade => true);
SQL>select table name, column name, histogram, num_distinct, num_buckets
    Where table name = 'HIST'
           column name = 'ID';
   And
  TABLE NAME COLUMN NAME
                              HISTOGRAM
                                               NUM_DISTINCT NUM_BUCKETS
  HIST
              ID
                              FREQUENCY
                                                         26
                                                                      26
```

Frequency Histogram

```
SQL>select ENDPOINT_VALUE, ENDPOINT_NUMBER
```

from	dba_histograms
where	table_name = 'HIST'
and	column_name = 'ID';

ENDPOINT_VALUE ENDPOINT_NUMBER

DINT_VALUE	ENDPOINT_NOMBE
1	4
2	6
3	7
4	9
5	10
6	12
7	15
8	65
9	68
10	70
11	76
12	82
13	88
14	91
15	96
16	99
17	102
18	103
19	104
20	109
21	111
22	112
23	113
24	115
25	118
26	120

ENDPOINT_VALUE - The value in a bucket. ENDPOINT_NUMBER - Cumulative frequency

Fig 2.2

Frequency Histogram

- Optimizer uses frequency histogram to estimate cardinality accurately
- Uses FTS access path as desired even though column ID is indexed

```
SQL>explain plan for select * from hr.hist where id = 8;
    select * from table(dbms_xplan.display);
    PLAN_TABLE_OUTPUT
    Plan hash value: 538080257
     Id | Operation | Name | Rows | Bytes | Cost (%CPU) | Time
    | 0 | SELECT STATEMENT | 50 | 50200 | 7 (0) | 00:00:01 |
|* 1 | TABLE ACCESS FULL | HIST | 50 | 50200 | 7 (0) | 00:00:01 |
```

Height-Balanced Histogram

- NDV > 254 or Nb < NDV
- Distributes the count of all rows evenly across all histogram buckets
- All buckets have almost the same number of rows
- Less precise
- No. of buckets = 20 (< NDV (=26))

```
Nb – Number of buckets
NDV – No. of Distinct Values
```

Height-Balanced Histogram

ENDPOINT_VALUE	ENDPOINT_NUMBER
1	0
2	1
6	2
8	10
9	11
11	12
12	13
13	14
14	15
15	16
17	17
20	18
24	19
26	20

14 rows selected.

Table 2.5

Bucket size = Total no. of rows / Nb = 120 / 20 = 6 ENDPOINT_NUMBER - unique identifier of a bucket ENDPOINT_VALUE - largest value stored in a bucket

ENDPOINT							ENDPOINT
_ NUMBER	VALUES						_ VALUE
1	1	1	1	1	2	2	2
2	3	4	4	5	6	6	6
3	7	7	7	8	8	8	8
4	8	8	8	8	8	8	8
5	8	8	8	8	8	8	8
6	8	8	8	8	8	8	8
7	8	8	8	8	8	8	8
8	8	8	8	8	8	8	8
9	8	8	8	8	8	8	8
10	8	8	8	8	8	8	8
11	8	8	8	8	8	9	9
12	9	9	10	10	11	11	11
13	11	11	11	11	12	12	12
14	12	12	12	12	13	13	13
15	13	13	13	13	14	14	14
16	14	15	15	15	15	15	15
17	16	16	16	17	17	17	17
18	18	19	20	20	20	20	20
19	20	21	21	22	23	24	24
20	24	25	25	25	26	26	26
HEIGHT- BALANCED HISTOGRAM							

Fig 2.3

Height-Balanced Histogram

- One bucket can have multiple values.
- One value can span multiple buckets.
- Multiple buckets (3 10) with same ENDPOINT_VALUE (8) compressed into a single bucket with the highest endpoint number (bucket 10).
- A **popular value** (8) occurs as an endpoint value of multiple buckets.
- Any value that is not popular is a non-popular value.

Height-Balanced Histogram Popular values

- Cardinality of popular value = (Bucket size)*(no. of buckets with value as endpoint)
- ID = 8 is an end point of 8 buckets
- Estimated cardinality = (6 * 8) = 48 (Actual = 50)

```
DB11g> explain plan for select * from hr.hist where id =8;
       select * from table(dbms_xplan.display);
PLAN TABLE OUTPUT
Plan hash value: 538080257
  Id | Operation | Name | Rows | Bytes | Cost (%CPU) | Time
    0 | SELECT STATEMENT |
      | SELECT STATEMENT | 48 | 48192 | 7 (0) | 00:00:01 | TABLE ACCESS FULL | HIST | 48 | 48192 | 7 (0) | 00:00:01
Predicate Information (identified by operation id):
   2 - access("ID"=8)
```

Height-Balanced Histogram Non-Popular values (Endpoint)

- Cardinality of non-popular value = (number of rows in table) * density
- ID = 15 is an end point of one bucket
- Estimated cardinality = 3 (Actual = 5)

Height-Balanced Histogram Non-Popular values (Non-endpoint)

- Cardinality of non-popular value = (num of rows in table) * density
- ID = 3 is not an endpoint
- Estimated cardinality = 3 (Actual = 1)

Drawbacks Of Pre-12c Histograms

Frequency histograms

Accurate but can be created only for NDV <= 254.

Height balanced histograms

- May misestimate cardinality for both popular and non-popular values.
- Produces inaccurate estimates for values that are almost popular.
- A value which is endpoint of one bucket and almost fills up another bucket value might be considered unpopular.
- Could result in a sub-optimal execution plan being chosen.

Histograms in 12c

- Frequency histograms can be created for up to 2048 distinct values.
- Introduces two new types of histograms
 - Top-n-frequency histograms
 - Hybrid histograms

Top Frequency Histograms

- Useful when a small number of distinct values dominate the data set.
- Capture highly popular values by ignoring statistically insignificant unpopular values.

Prerequisites

- NDV > Nb
- The percentage of rows occupied by the top Nb frequent values is equal to or greater than threshold p, where p is (1-(1/Nb))*100.
- The ESTIMATE_PERCENT is set to AUTO_SAMPLE_SIZE in the DBMS_STATS statistics gathering procedure.

Features

- One value per bucket
- One value contained entirely in one bucket
- Cardinality of the value = Bucket size
- Variable bucket size
- Precise for all the endpoints captured

Top Frequency Histogram

- NDV (26) > Nb (20)
- Threshold p for 20 buckets = (1 (1/Nb))*100 = (1 (1/20))*100 = 95.0
- Top 20 most popular values occupy more than 95% of rows
- **ESTIMATE_PERCENT = AUTO_SAMPLE_SIZE** (default)
- Precisely captures cardinality of values occurring top Nb (20) times.
- 6 (= NDV –Nb) Values occurring least no. of times are not captured.

```
Nb – Number of buckets
NDV – No. of Distinct Values
```

Top Frequency Histogram

Table 3.3

ENDPOINT_VALUE - Key value (ID) ENDPOINT_NUMBER - Cumulative Frequency

Top Frequency Histogram Non-Popular values (Endpoint)

- Top Frequency histogram makes accurate cardinality estimate for unpopular value ID = 15
 - is one of the top 20 most frequently occurring values
 - Is an endpoint
 - Occurs 5 times

Top Frequency Histogram Non-Popular values (Non-endpoint)

- Top Frequency histogram makes accurate cardinality estimate for unpopular value ID = 3
 - is not one of the top 20 most frequently occurring values
 - Is not an endpoint
 - Occurs once

Top Frequency Histograms Conclusion

- The occurrences of popular values are accurately captured at the expense of not capturing the data for least occurring values.
- Accurately estimates cardinality of top Nb popular values.
- Does not capture (NDV Nb) values occurring least no. of times.
- Useful for cases when data set is dominate by a small no. of values.

Nb – Number of buckets NDV – No. of Distinct Values

Hybrid Histograms

- Combines characteristics of both height-based histograms and frequency histograms.
- Correctly estimates the frequency of endpoints
 - stores the ENDPOINT_REPEAT_ COUNT number of times the endpoint value is repeated.
- Captures more endpoints
 - stores all occurrences of every value in the same bucket makes available buckets to store more endpoints.
- Pre-requisites
 - Nb < NDV</p>
 - The criteria for top frequency histograms do not apply i.e.
 Percentage of rows occupied by the top Nb most popular values is less than p where p = (1-(1/Nb))*100.
 - The sampling percentage is AUTO_SAMPLE_SIZE.

Hybrid Histogram

- On deleting 20 rows with ID = 8 from table HR.HIST, it qualifies for hybrid histogram creation.
- Nb (20) < NDV (26)
- Threshold p for 20 buckets = p = (1 (1/nb))*100 = (1 (1/20))*100 = 95.0
- Top 20 most popular ID's occupy less than 95% of total rows.

Hybrid Histogram

DB12c>select ENDPOINT_VAL ENDPOINT_REPE from dba_histograms where table name =	AT_COUNT RPT_CNT	R, BUCKET NUMBER	VALUES	ENDPOINT _VALUE 1
and column_name =		2	2 2 3	3
ENDPOINT_VALUE ENDPOINT_N	UMBER RPT_CNT	3	4 4 5 6 6 7 7 7	5 7
1	4 4	5	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8
3	7 1	6	9 9 9 10 10	10
5 7	10 1 15 3			
8	15 3 45 30	7	11 11 11 11 11 11	11
10	50 2	8	12 12 12 12 12 12	12
11	56 6	9	13 13 13 13 13 13	13
12	62 6			
13	68 6	10	14 14 14	14
14	71 3	11	15 15 15 15 15	15
15	76 5	12	16 16 16	16
16	79 3	12		10
17	82 3	13	17 17 17	17
19	84 1	14	18 19	19
20	89 5			
21 22	91 2 92 1	15	20 20 20 20 20	20
22	93 1	16	21 21	21
24	95 2	17	22	22
26	100 2			
		18	23	23
20 rows selected.		19	24 24	24
EN DPO INT_VALUE: The largest value	ie in a bucket	20	25 25 25 26 26	26
EN DPOINT_NUMBER: Cumulative fre				
ENDPOINT_REPEAT_COUNT: No. of t	imes the endpoint value or	curs	HYBRID HISTOGRAM	

Hybrid Histograms Conclusion

- Hybrid histograms have features of both frequency and height balanced histograms
- Features similar to frequency histograms
 - All occurrences of a value are placed in one bucket
 - ENDPOINT_NUMBER stores cumulative frequency
 - Variable bucket size
- Features similar to Height Balanced histograms
 - One bucket can have multiple values.
- Captures more endpoints
- Now we have a better estimate of the data distribution of "non-popular" values.
- Hybrid histograms are an improvement over height balanced histograms when top frequency histograms cannot be used

• If no more than two values are stored in one bucket, frequency of all the values captured in buckets can be accurately estimated.

- Frequency of values up to twice the number of buckets should be estimated accurately using hybrid histogram.
- Create a histogram with No. of buckets = NDV/2 = 26/2 = 13

```
Nb – Number of buckets
NDV – No. of Distinct Values
```

```
DB12c>select ENDPOINT_VALUE
              ENDPOINT,
              ENDPOINT NUMBER
              ENDPOINT NO,
           endpoint repeat count
             rpt_cnt
      from dba histograms
      where table name = 'HIST'
      and column_name = 'ID';
ENDPOINT ENDPOINT_NO RPT_CNT
               10
       5
                   45
                            30
      11
                   56
      12
                   62
      13
                   68
      15
                   76
                   82
      17
      2.0
                   89
      2.2
                   92
      2.3
                   93
      2.4
                   95
      2.6
                  100
13 rows selected.
ENDPOINT VALUE: Largest value in a bucket
ENDPOINT NUMBER: Cumulative frequency
ENDPOINT REPEAT COUNT: Frequency of endpoint
```

BUCKET NUMBER	VALUES	ENDPOINT _ VALUE
1	1 1 1 1	1
2	2 2 3 4 4 5	5
3	6 6 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8
4	9 9 9 10 10 11 11 11 11 11 11	11
5	12 12 12 12 12 12	12
6	13 13 13 13 13 13	13
7	14 14 14 15 15 15 15 15	15
8	16 16 16 17 17 17	17
9	18 19 20 20 20 20 20 20	20
10	21 21 22	22
11	23	23
12	24 24	24
13	25 25 25 26 26	26
	ACTUAL HYBRID HISTOGRAM (Nb = NDV/2)	

BUCKET NUMBER	VALUES	ENDPOINT VALUE			
1	1 1 1 1 2 2	2			
2	3 4 4	4			
3	5 6 6	6			
4	7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8			
5	9 9 9 10 10	10			
6	11 11 11 11 11 11 12 12 12 12 12 12	12			
7	13 13 13 13 13 14 14 14	14			
8	15 15 15 15 16 16 16 16	16			
9	17 17 17 18	18			
10	19 20 20 20 20 20	20			
11	21 21 22	22			
12	23 24 24	24			
13	25 25 25 26 26	26			
HYPOTHETICAL HYBRID HISTOGRAM (Nb = NDV/2)					

Actual histogram

- some of the buckets have more than two values
- cardinality of some of the non endpoint values cannot be accurately determined.

Hypothetical histogram

- All the buckets have two values each.
- cardinality of all (2*Nb) values can be accurately determined.

Further enhancement?

- Nb >= NDV / 2
 - Hybrid histogram with no more than two values per bucket
 - Accurately estimates frequency of all the distinct values
- Nb < NDV / 2
 - Top Frequency Hybrid histogram with no more than two values per bucket
 - Captures (2*Nb) most popular values
 - Accurately estimates frequency of all the captured values

```
Nb – Number of buckets
NDV – No. of Distinct Values
```

Conclusion

- In 12c, frequency histogram can be created for NDV <= 2048 .
- Top Frequency and Hybrid histograms are designed to overcome flaws of Height-Balanced histograms.
- Top frequency and Hybrid histograms are created only if ESTIMATE_PERCENT = AUTO SAMPLE SIZE.
- Top frequency histogram accurately estimates the frequencies for only top occurring values if a small number of values dominate the data set.
- Hybrid histogram has features of both frequency and height balanced histograms
- Hybrid histogram captures more endpoints and estimates their frequency accurately.

Nb – Number of buckets NDV – No. of Distinct Values

References

- http://docs.oracle.com/database/121/TGSQL/tgsql histo.htm#TGSQL366
- http://jimczuprynski.files.wordpress.com/2014/04/czuprynski-select-q2-2014.pdf
- http://jonathanlewis.wordpress.com/2013/09/01/histograms/

Thank You!

ANJU GARG

Email: anjugarg66@gmail.com Blog: http://oracleinaction.com