Some analysis problems.

Here is a fact we mentioned in class.

Theorem 1. Let (X, \mathcal{M}, μ) be a measure space. Then $L^1(X, \mu)$ is a complete metric space. (Where the distance between $f, g \in L^1(X, \mu)$ is $d(f, g) = ||f - g||_{L^1} = \int_X |f - g| d\mu$.)

The proof this will use the following metric space facts.

Problem 1. Let (X, d) be a metric space and $\langle x_k \rangle_{k=1}^{\infty}$ be a Cauchy sequence in X.

- (a) Show that if this has a subsequence $\langle x_{n_k} \rangle_{k=1}^{\infty}$ that converges, then the original sequence converges.
- (b) Show the sequence has a subsequence $\langle x_{n_k} \rangle_{k=1}^{\infty}$ with

$$d(x_{n_k}, x_{n_{k-1}}) < \frac{1}{2^k}$$

Problem 2. Prove Theorem 1. *Hint:* We need to show every Cauchy sequence $\langle f_n \rangle_{n=0}^{\infty}$ in $L^1(X,\mu)$ is convergent. By use of Problem we can replace this sequence with one of its subsequences and assume

$$||f_k - f_{k-1}||_{L^1} = \int_X |f_k - f_{k-1}| d\mu < \frac{1}{2^k}.$$

Note that

$$f_n = f_0 + \sum_{k=1}^{n} (f_k - f_{k-1}).$$

Now apply one (or more) of the convergence theorems we have discussed. \Box

Problem 3. Let $f \in L^n(X, \mu)$ and let f_n be

$$f_n(x) = \begin{cases} f(x), & |f(x)| \le n; \\ 0, & \text{otherwise.} \end{cases}$$

Show

$$\lim_{n\to\infty} \int_{Y} f_n \, d\mu = \int_{Y} f \, d\mu$$

and

$$\lim_{n \to \infty} ||f - f_n||_{L^1} = 0.$$

Here are some problems I got off of old exams.

Problem 4 (January 1984). Let $g:(0,\infty)\to\mathbb{R}$ be measurable and with

$$\int_0^\infty |g(t)|\,dt < \infty, \qquad \int_0^\infty t |g(t)|\,dt < \infty$$

and define

$$f(x) = \int_0^\infty g(t)\sin(xt) dt.$$

(a) Show that f(x) is defined for all x and is a bounded function.

(b) Prove that f is differentiable and

$$f'(x) = \int_0^\infty tg(t)\cos(xt) dt.$$

 $Hint: |\sin b - \sin a| \le |b - a|.$

Problem 5 (January 1987). Compute

$$\lim_{n \to \infty} \int_0^\infty \frac{x^2 - n^2}{x^2 + n^2} e^{-x} \, dx.$$

Justify all the steps in your calculations.

Problem 6 (Motivated by a Problem August 1987). Let $f \in L^1([0,\infty))$ show that for almost all $x \in [0,1]$ that

$$\lim_{n \to \infty} f(x+n) = 0.$$

Hint: Define $g_n: [0,1] \to \mathbb{R}$ by $g_n(x) = f(x+n)$ and show

$$\int_0^\infty |f(x)| \, dx = \sum_{n=0}^\infty \int_0^1 |g_n(x)| \, dx$$

Problem 7 (August 1988). Let $f \in L^1([0,1])$. Prove $\lim_{n \to \infty} \int_0^\infty x^n f(x) dx = 0$.

Problem 8 (January 1990). (a) Prove

$$\left(1 - \frac{x}{n}\right)^n < e^{-x} \quad \text{for } 0 < x < n$$

and

$$\lim_{n \to \infty} \left(1 - \frac{x}{n}\right)^n = e^{-x} \quad \text{for } 0 < x < \infty.$$

(b) For $\alpha > 0$ prove

$$\lim_{n \to \infty} \int_0^n \left(1 - \frac{x}{n} \right)^n x^{\alpha - 1} dx = \int_0^\infty e^{-x} x^{\alpha - 1} dx.$$