

Logic Synthesis Digitale Integrierte Schaltungen, 2018 WS

Axel Jantsch

November 6, 2018

Outline

- 1 Data Structures
- 2 Two-Level Minimization
- 3 Multi-Level Minimization
- 4 Technology Mapping

Logic Synthesis

- 1 Data Structures
 Boolean Formulas
 Representation
 Conversion
- 2 Two-Level Minimization
- 3 Multi-Level Minimization
- 4 Technology Mapping

Logic Synthesis

- 1 Data Structures
 Boolean Formulas
 Representation
- 2 Two-Level Minimization
- Multi-Level Minimization
- 4 Technology Mapping

$$((x_1 \vee (\neg x_2)) \vee ((\neg x_1) \wedge x_3)) \wedge (x_1 \wedge (\neg x_2))$$

$$((x_1 \vee (\neg x_2)) \vee ((\neg x_1) \wedge x_3)) \wedge (x_1 \wedge (\neg x_2))$$
$$((x_1 \vee \neg x_2) \vee (\neg x_1 \wedge x_3)) \wedge (x_1 \wedge \neg x_2)$$

$$((x_1 \lor (\neg x_2)) \lor ((\neg x_1) \land x_3)) \land (x_1 \land (\neg x_2))$$
$$((x_1 \lor \neg x_2) \lor (\neg x_1 \land x_3)) \land (x_1 \land \neg x_2)$$
$$(x_1 + \neg x_2 + \neg x_1 x_3)x_1 \neg x_2$$

$$((x_1 \lor (\neg x_2)) \lor ((\neg x_1) \land x_3)) \land (x_1 \land (\neg x_2))$$

$$((x_1 \lor \neg x_2) \lor (\neg x_1 \land x_3)) \land (x_1 \land \neg x_2)$$

$$(x_1 + \neg x_2 + \neg x_1 x_3) x_1 \neg x_2$$

$$(x_1 \lor \neg x_2 \lor \neg x_1 x_3) x_1 \neg x_2$$

Boolean literal: $\mathbb{B} = \{0, 1\}$, $\{false, true\}$

Boolean literal: $\mathbb{B} = \{0, 1\}$, $\{false, true\}$

Boolean Variable: x, y, a, \dots

Boolean literal: $\mathbb{B} = \{0, 1\}$, $\{false, true\}$

Boolean Variable: x, y, a, \dots

Boolean n-space \mathbb{B}^n : n-dimensional Boolean space

Boolean literal: $\mathbb{B} = \{0, 1\}$, {false,true}

Boolean Variable: x, y, a, \dots

Boolean n-space \mathbb{B}^n : n-dimensional Boolean space

cube $a \in \mathbb{B}^n$, "x,y,z", "xyz", "110"

Completely specified Boolean function $f: \mathbb{B}^n \to \mathbb{B} = \{0,1\}$

Completely specified Boolean function $f: \mathbb{B}^n \to \mathbb{B} = \{0, 1\}$ Incompletely specified Boolean function $f: \mathbb{B}^n \to \mathbb{B}_+ = \{0, 1, -\}$

Completely specified Boolean function $f: \mathbb{B}^n \to \mathbb{B} = \{0,1\}$ Incompletely specified Boolean function $f: \mathbb{B}^n \to \mathbb{B}_+ = \{0,1,-\}$ Don't care: "-", "X", "x", "2"

Completely specified Boolean function $f: \mathbb{B}^n \to \mathbb{B} = \{0,1\}$ Incompletely specified Boolean function $f: \mathbb{B}^n \to \mathbb{B}_+ = \{0,1,-\}$ Don't care: "-", "X", "x", "2"

$$f(x,y) = \begin{cases} 1 & \text{if } xy = 01 \\ 0 & \text{if } xy = 11 \\ - & \text{otherwise} \end{cases}$$

Onsets and Offsets

For a function $f: \mathbb{B}^n \to \mathbb{B}_+$

onset:
$$f^{\text{on}} = \{a \in \mathbb{B}^n | f(a) = 1\}$$

offset:
$$f^{\text{off}} = \{a \in \mathbb{B}^n | f(a) = 0\}$$

dcset:
$$f^{dc} = \{a \in \mathbb{B}^n | f(a) = -\}$$

Onsets and Offsets

X	У	z	f
0	0	0	1
0	0	1	0
0	1	0	_
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Onsets and Offsets

```
onset: f^{on} = \{000, 011, 100, 101, 110\}
offset: f^{off} = \{001, 111\}
```

dcset: $f^{dc} = \{010\}$

Logic Synthesis

1 Data Structures

Boolean Formulas

Representation Truth table

Sum of Products

Product of Sums

Binary Decision Diagram

Conversion

- 2 Two-Level Minimization
- 3 Multi-Level Minimization
- 4 Technology Mapping

Truth Tables

X	у	+
0	0	0
0	1	1
1	0	1
1	1	1

X	У	
0	0	0
0	1	0
1	0	0
1	1	1

X	y	\oplus , XOR
0	0	0
0	1	1
1	0	1
1	1	0

X	У	\leftrightarrow , XNOR
0	0	1
0	1	0
1	0	0
1	1	1

- Canonical
- Effective for few input variables
- Cubes are the product terms in the truth table; cubes of the onset of XOR = 01,10

Sum of Products

Sum of Products (SOP), Disjunctive Normal Form (DNF)

$$f=ab\overline{c}+a\overline{b}c+\overline{a}bc+\overline{a}\overline{b}\overline{c}$$

a	b	С	f
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

- Disjunction of cubes
- The set of cubes of the DNF is a cover
- Canonical representation

Sum of Products

Sum of Products (SOP), Disjunctive Normal Form (DNF)

$$f = ab\overline{c} + a\overline{b}c + \overline{a}bc + \overline{a}\overline{b}\overline{c}$$

a	Ь	С	f
0	0	0	1)
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
$\overline{1}$	0	1	1
1	1	0	1
1	1	1	0

- Disjunction of cubes
- The set of cubes of the DNF is a cover
- Canonical representation

Complexity of Operations

Given: m variables,

n terms,

How many terms have to be conjunction?

processed by:

disjunction?

negation?

SAT?

TAUTOLOGY?

Given:

$$f_1(a,b,c) = ab\overline{c} + a\overline{b}c$$

 $f_2(a,b,c) = \overline{a}bc + \overline{a}\overline{b}\overline{c}$

Given:

$$f_1(a, b, c) = ab\overline{c} + a\overline{b}c$$

 $f_2(a, b, c) = \overline{a}bc + \overline{a}\overline{b}\overline{c}$

Conjunction:

$$f_1 \cdot f_2 = (ab\overline{c} + a\overline{b}c)(\overline{a}bc + \overline{a}\overline{b}\overline{c})$$

$$= ab\overline{c}\,\overline{a}bc + ab\overline{c}\,\overline{a}\overline{b}\overline{c} + a\overline{b}c\overline{a}bc + a\overline{b}c\overline{a}\overline{b}\overline{c}$$

$$= 0 + 0 + 0 + 0$$

Given:

$$f_1(a, b, c) = ab\overline{c} + a\overline{b}c$$

 $f_2(a, b, c) = \overline{a}bc + \overline{a}\overline{b}\overline{c}$

Conjunction:

$$f_1 \cdot f_2 = (ab\overline{c} + a\overline{b}c)(\overline{a}bc + \overline{a}\overline{b}\overline{c})$$

$$= ab\overline{c} \,\overline{a}bc + ab\overline{c} \,\overline{a}\overline{b}\overline{c} + a\overline{b}c\overline{a}bc + a\overline{b}c\overline{a}\overline{b}\overline{c}$$

$$= 0 + 0 + 0 + 0$$

Conjunction is of quadratic complexity: n^2 , for n terms.

Given:

$$f_1(a,b,c) = ab\overline{c} + a\overline{b}c$$

 $f_2(a,b,c) = \overline{a}bc + \overline{a}\overline{b}\overline{c}$

Given:

$$f_1(a, b, c) = ab\overline{c} + a\overline{b}c$$

 $f_2(a, b, c) = \overline{a}bc + \overline{a}\overline{b}\overline{c}$

Disjunction:

$$f_1 + f_2 = ab\overline{c} + a\overline{b}c + \overline{a}bc + \overline{a}\overline{b}\overline{c}$$

Given:

$$f_1(a, b, c) = ab\overline{c} + a\overline{b}c$$

 $f_2(a, b, c) = \overline{a}bc + \overline{a}\overline{b}\overline{c}$

Disjunction:

$$f_1 + f_2 = ab\overline{c} + a\overline{b}c + \overline{a}bc + \overline{a}\overline{b}\overline{c}$$

Disjunction is of constant complexity.

Given: $f(a, b, c) = ab\overline{c} + a\overline{b}c$

Given: $f(a, b, c) = ab\overline{c} + a\overline{b}c$

Complement:

$$\overline{f} = \overline{(ab\overline{c} + a\overline{b}c)}
= \overline{(ab\overline{c})} \overline{(a\overline{b}c)}
= (\overline{a} + \overline{b} + c)(\overline{a} + b + \overline{c})
= \overline{a}\overline{a} + \overline{a}b + \overline{a}\overline{c} + \overline{b}\overline{a} + \overline{b}b + \overline{b}\overline{c} + c\overline{a} + cb + c\overline{c}$$

Given: $f(a, b, c) = ab\overline{c} + a\overline{b}c$

Complement:

$$\overline{f} = \overline{(ab\overline{c} + a\overline{b}c)}
= \overline{(ab\overline{c})} \overline{(a\overline{b}c)}
= (\overline{a} + \overline{b} + c)(\overline{a} + b + \overline{c})
= \overline{aa} + \overline{ab} + \overline{ac} + \overline{ba} + \overline{bb} + \overline{bc} + c\overline{a} + cb + c\overline{c}$$

Complementing function

$$f = x_{1,1}x_{1,2}\cdots x_{1,m} + \cdots + x_{n,1}x_{n,2}\cdots x_{n,m}$$

will result in m^n product terms in the SOP representation. Complement is of exponential complexity.

SAT - Satisfiability of a Function

A function $f(x_1, \dots, x_m)$ is satisfiable if there exists a consistent variable assignment, such that f = 1

SAT - Satisfiability of a Function

A function $f(x_1, \dots, x_m)$ is satisfiable if there exists a consistent variable assignment, such that f = 1

SAT - Satisfiability of a Function

A function $f(x_1, \dots, x_m)$ is satisfiable if there exists a consistent variable assignment, such that f = 1

$$f_1(x,y) = \overline{x}y \quad \cdots \quad \text{satisfiable since } f_1(0,1) = 1$$

SAT - Satisfiability of a Function

A function $f(x_1, \dots, x_m)$ is satisfiable if there exists a consistent variable assignment, such that f = 1

$$f_1(x,y) = \overline{x}y \quad \cdots$$
 satisfiable since $f_1(0,1) = 1$
 $f_2(x) = x\overline{x} \quad \cdots$ is not satisfiable.

SAT - Satisfiability of a Function

A function $f(x_1, \dots, x_m)$ is satisfiable if there exists a consistent variable assignment, such that f = 1

Examples:

$$f_1(x,y) = \overline{x}y$$
 ... satisfiable since $f_1(0,1) = 1$
 $f_2(x) = x\overline{x}$... is not satisfiable.

SAT is NP complete.

(Cook-Levin Theorem from 1971/73.)

SAT - Satisfiability of a Function

A function $f(x_1, \dots, x_m)$ is satisfiable if there exists a consistent variable assignment, such that f = 1

Examples:

$$f_1(x,y) = \overline{x}y \quad \cdots$$
 satisfiable since $f_1(0,1) = 1$
 $f_2(x) = x\overline{x} \quad \cdots$ is not satisfiable.

SAT is NP complete.

(Cook-Levin Theorem from 1971/73.)

For SOP formulas SAT can be determined in constant time.

A function $f(x_1, \dots, x_m)$ is a tautology if f = 1 for every consistent variable assignment.

A function $f(x_1, \dots, x_m)$ is a tautology if f = 1 for every consistent variable assignment.

A function $f(x_1, \dots, x_m)$ is a tautology if f = 1 for every consistent variable assignment.

$$f_1(x,y) = \overline{x}y \quad \cdots$$
 is no tautology since $f_1(1,1) = 0$

A function $f(x_1, \dots, x_m)$ is a tautology if f = 1 for every consistent variable assignment.

$$f_1(x,y) = \overline{x}y \quad \cdots$$
 is no tautology since $f_1(1,1) = 0$
 $f_2(x) = x + \overline{x} \quad \cdots$ is a tautology.

A function $f(x_1, \dots, x_m)$ is a tautology if f = 1 for every consistent variable assignment.

Examples:

$$f_1(x,y) = \overline{x}y \quad \cdots$$
 is no tautology since $f_1(1,1) = 0$
 $f_2(x) = x + \overline{x} \quad \cdots$ is a tautology.

Function f is a tautology iff \overline{f} is not satisfiable.

A function $f(x_1, \dots, x_m)$ is a tautology if f = 1 for every consistent variable assignment.

Examples:

$$f_1(x,y) = \overline{x}y \quad \cdots$$
 is no tautology since $f_1(1,1) = 0$
 $f_2(x) = x + \overline{x} \quad \cdots$ is a tautology.

Function f is a tautology iff \overline{f} is not satisfiable.

TAUTOLOGY is NP complete.

A function $f(x_1, \dots, x_m)$ is a tautology if f = 1 for every consistent variable assignment.

Examples:

$$f_1(x,y) = \overline{x}y \quad \cdots$$
 is no tautology since $f_1(1,1) = 0$
 $f_2(x) = x + \overline{x} \quad \cdots$ is a tautology.

Function f is a tautology iff \overline{f} is not satisfiable.

TAUTOLOGY is NP complete.

For SOP formulas we need to test 2^m assignments; hence, TAUTOLOGY is determined in exponential time.

Sum of Products - Complexity of Operations

Complexity
Quadratic: n ²
Constant
Exponential : m^n
Constant
Exponential : 2 ^m

Product of Sums

Product of Sums (POS), Conjunctive Normal Form (CNF, KNF)

$$f = (a + b + \overline{c})(a + \overline{b} + c)$$
$$(\overline{a} + b + c)(\overline{a} + \overline{b} + \overline{c})$$

а	b	С	f
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

- Conjunctions of disjunctions
- Canonical representation
- POS is the dual of SOP
- Less widely used than SOP

Product of Sums

Product of Sums (POS), Conjunctive Normal Form (CNF, KNF)

$$f = (a+b+\overline{c})(a+\overline{b}+c)$$
$$(\overline{a}+b+c)(\overline{a}+\overline{b}+\overline{c})$$

a	b	с	f
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
(1)	0	0	0
1	0	1	1
1	1	0	1
$\overline{1}$	1	1	0

- Conjunctions of disjunctions
- Canonical representation
- POS is the dual of SOP
- Less widely used than SOP

Given:

$$f_1(a,b,c) = (a+b+\overline{c})(a+\overline{b}+c)$$

 $f_2(a,b,c) = (\overline{a}+b+c)(\overline{a}+\overline{b}+\overline{c})$

Given:

$$f_1(a,b,c) = (a+b+\overline{c})(a+\overline{b}+c)$$

 $f_2(a,b,c) = (\overline{a}+b+c)(\overline{a}+\overline{b}+\overline{c})$

Conjunction:

$$f_1 \cdot f_2 = (a+b+\overline{c})(a+\overline{b}+c)(\overline{a}+b+c)(\overline{a}+\overline{b}+\overline{c})$$

Given:

$$f_1(a,b,c) = (a+b+\overline{c})(a+\overline{b}+c)$$

 $f_2(a,b,c) = (\overline{a}+b+c)(\overline{a}+\overline{b}+\overline{c})$

Conjunction:

$$f_1 \cdot f_2 = (a+b+\overline{c})(a+\overline{b}+c)(\overline{a}+b+c)(\overline{a}+\overline{b}+\overline{c})$$

Conjunction is of constant complexity.

Given:

$$f_1(a,b,c) = (a+b+\overline{c})(a+\overline{b}+c)$$

$$f_2(a,b,c) = (\overline{a} + b + c)(\overline{a} + \overline{b} + \overline{c})$$

Given:

$$f_1(a,b,c) = (a+b+\overline{c})(a+\overline{b}+c)$$

$$f_2(a,b,c) = (\overline{a}+b+c)(\overline{a}+\overline{b}+\overline{c})$$

Disjunction:

$$f_1 + f_2 = (a+b+\overline{c})(a+\overline{b}+c) + (\overline{a}+b+c)(\overline{a}+\overline{b}+\overline{c})$$

Given:

$$f_1(a,b,c) = (a+b+\overline{c})(a+\overline{b}+c)$$

$$f_2(a,b,c) = (\overline{a}+b+c)(\overline{a}+\overline{b}+\overline{c})$$

Disjunction:

$$f_1 + f_2 = (a + b + \overline{c})(a + \overline{b} + c) + (\overline{a} + b + c)(\overline{a} + \overline{b} + \overline{c})$$

$$= x_1x_2 + x_3x_4$$

$$= (x_1 + x_3)(x_2 + x_3)(x_1 + x_4)(x_2 + x_4)$$
 (distributive law)

Given: $f_1(a,b,c) = (a+b+\overline{c})(a+\overline{b}+c)$ $f_2(a,b,c) = (\overline{a}+b+c)(\overline{a}+\overline{b}+\overline{c})$

 $((a + \overline{b} + c) + (\overline{a} + \overline{b} + \overline{c})$

Disjunction:

$$f_{1} + f_{2} = (a + b + \overline{c})(a + \overline{b} + c) + (\overline{a} + b + c)(\overline{a} + \overline{b} + \overline{c})$$

$$= x_{1}x_{2} + x_{3}x_{4}$$

$$= (x_{1} + x_{3})(x_{2} + x_{3})(x_{1} + x_{4})(x_{2} + x_{4}) \qquad \text{(distributive law)}$$

$$= ((a + b + \overline{c}) + (\overline{a} + b + c))$$

$$((a + \overline{b} + c) + (\overline{a} + b + c))$$

$$((a + b + \overline{c}) + (\overline{a} + \overline{b} + \overline{c}))$$

Given:
$$f_1(a,b,c) = (a+b+\overline{c})(a+\overline{b}+c)$$
$$f_2(a,b,c) = (\overline{a}+b+c)(\overline{a}+\overline{b}+\overline{c})$$

Disjunction:

$$f_1 + f_2 = (a+b+\overline{c})(a+\overline{b}+c) + (\overline{a}+b+c)(\overline{a}+\overline{b}+\overline{c})$$

$$= x_1x_2 + x_3x_4$$

$$= (x_1 + x_3)(x_2 + x_3)(x_1 + x_4)(x_2 + x_4)$$
 (distributive law)
$$= ((a+b+\overline{c}) + (\overline{a}+b+c))$$

$$((a+\overline{b}+c) + (\overline{a}+b+c))$$

$$((a+b+\overline{c}) + (\overline{a}+\overline{b}+\overline{c}))$$

Disjunction is of quadratic complexity: n^2 for n terms.

 $((a + \overline{b} + c) + (\overline{a} + \overline{b} + \overline{c})$

Given: $f(a, b, c) = (a + b + \overline{c})(a + \overline{b} + c)$

Given: $f(a, b, c) = (a + b + \overline{c})(a + \overline{b} + c)$

Complement:

$$\overline{f} = \overline{(a+b+\overline{c})} + \overline{(a+\overline{b}+c)}$$

$$= (\overline{a}\overline{b}c) + (\overline{a}b\overline{c})$$

$$= (\overline{a} + \overline{a})(\overline{a} + b)(\overline{a} + \overline{c})(\overline{b} + \overline{a})(\overline{b} + b)(\overline{b} + \overline{c})$$

$$(c + \overline{a})(c + b)(c + \overline{c})$$

Given: $f(a, b, c) = (a + b + \overline{c})(a + \overline{b} + c)$

Complement:

$$\overline{f} = \overline{(a+b+\overline{c})} + \overline{(a+\overline{b}+c)}$$

$$= (\overline{a}\overline{b}c) + (\overline{a}b\overline{c})$$

$$= (\overline{a} + \overline{a})(\overline{a} + b)(\overline{a} + \overline{c})(\overline{b} + \overline{a})(\overline{b} + b)(\overline{b} + \overline{c})$$

$$(c + \overline{a})(c + b)(c + \overline{c})$$

Complementing function

$$f = (x_{1,1} + x_{1,2} + \cdots + x_{1,m}) \cdots (x_{n,1} + x_{n,2} + \cdots + x_{n,m})$$

will result in m^n sum terms in the POS representation.

Complement is of exponential complexity.

SOP	POS
Quadratic: n ²	Constant
Constant	Quadratic: n ²
Exponential : m^n	Exponential : m^n
Constant	Exponential: 2 ^m
Exponential : 2^m	Constant
	Quadratic: n^2 Constant Exponential: m^n Constant

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

x_1	<i>X</i> ₂	<i>X</i> 3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

• An *n*-level binary tree represents an *n*-variable Boolean function.

- An n-level binary tree represents an n-variable Boolean function.
- A terminal node v has attribute value(v) $\in \{0,1\}$.

- An n-level binary tree represents an n-variable Boolean function.
- A terminal node v has attribute value(v) ∈ {0,1}.
- A non-terminal node v has an index $(v) \in \{1..n\}$, and two children: the 0-child (else(v)) and the 1-child (then(v)).

- An n-level binary tree represents an n-variable Boolean function.
- A terminal node v has attribute value(v) ∈ {0,1}.
- A non-terminal node v has an index $(v) \in \{1..n\}$, and two children: the 0-child (else(v)) and the 1-child (then(v)).

• The variable $x_{index(v)}$ is the decision variable for node v.

- An n-level binary tree represents an n-variable Boolean function.
- A terminal node v has attribute value(v) ∈ {0,1}.
- A non-terminal node v has an index $(v) \in \{1..n\}$, and two children: the 0-child (else(v)) and the 1-child (then(v)).

- The variable $x_{index(v)}$ is the decision variable for node v.
- Every node v corresponds to a Boolean function f_v recursively defined:
 - 1 If v is a terminal node, $f_v = value(v)$;
 - 2 If *v* is not a terminal node:

$$f_{\nu}(x_1,\ldots,x_n) = \overline{x_{\mathsf{index}(\nu)}} f_{\mathsf{else}(\nu)}(x_1,\ldots,x_n) + x_{\mathsf{index}(\nu)} f_{\mathsf{then}(\nu)}(x_1,\ldots,x_n)$$

Ordered Binary Decision Diagram

Ordered Binary Decision Diagram

 A BDD is ordered (it is an OBDD) if the nodes on every path from the root to a terminal node follow the same variable ordering.

Ordered Binary Decision Diagram

- A BDD is ordered (it is an OBDD) if the nodes on every path from the root to a terminal node follow the same variable ordering.
- Each OBDD represents a Boolean function.

Ordered Binary Decision Diagram

- A BDD is ordered (it is an OBDD) if the nodes on every path from the root to a terminal node follow the same variable ordering.
- Each OBDD represents a Boolean function.
- Each Boolean function is represented by an OBDD.

Ordered Binary Decision Diagram

- A BDD is ordered (it is an OBDD) if the nodes on every path from the root to a terminal node follow the same variable ordering.
- Each OBDD represents a Boolean function.
- Each Boolean function is represented by an OBDD.
- Two OBDDs are isomorphic if they represent the same Boolean function.

Ordered Binary Decision Diagram

- A BDD is ordered (it is an OBDD) if the nodes on every path from the root to a terminal node follow the same variable ordering.
- Each OBDD represents a Boolean function.
- Each Boolean function is represented by an OBDD.
- Two OBDDs are isomorphic if they represent the same Boolean function.
- The isomorphism of two OBDDs can be checked in linear time with the size of the tree.

A **reduced OBDD (ROBDD)** is constructed from an OBDD as follows:

A reduced OBDD (ROBDD) is constructed from an OBDD as follows:

1 Two terminal nodes with the same value attribute are merged.

A **reduced OBDD (ROBDD)** is constructed from an OBDD as follows:

- 1 Two terminal nodes with the same value attribute are merged.
- 2 Two non-terminal nodes u and v with the same decision variable, the same 0-child (else(v) = else(u)) and he same 1-child (then(v) = then(u)) are merged.

A **reduced OBDD (ROBDD)** is constructed from an OBDD as follows:

- 1 Two terminal nodes with the same value attribute are merged.
- 2 Two non-terminal nodes u and v with the same decision variable, the same 0-child (else(v) = else(u)) and he same 1-child (then(v) = then(u)) are merged.
- 3 A non-terminal node v with then(v) = else(u) is removed and its incident edges are redirected to its child node.

- ROBBD has smallest number of nodes under a given variable ordering.
- ROBBD is a canonical representation of a Boolean function for a given variable ordering.

www.ict.tuwien.ac.

ROBDDs represent onsets and offsets: AND

x_1	<i>x</i> ₂	
0	0	0
0	1	0
1	0	0
1	1	1

onset: $\{x_1x_2\}$ offset: $\{\overline{x_1}, x_1\overline{x_2}\}$

ROBDDs represent onsets and offsets: OR

x_1	x_2	+
0	0	0
0	1	1
1	0	1
1	1	1

onset: $\{x_1, \overline{x_1}x_2\}$ offset: $\{\overline{x_1}\overline{x_2}\}$

ROBDD and Variable Ordering

Function: f = ab + cd

ROBDD and Variable Ordering

- Size of the ROBDD varies strongly with the ordering of variables.
- Finding the optimal variable ordering is of exponential complexity.
- There are good heuristics for finding a good ordering.
- There exist functions with ROBDD size growing exponential with the size of the Boolean formula for all orderings, e.g. multiplication.

<i>x</i> ₁	<i>x</i> ₂	NOR
0	0	1
0	1	0
1	0	0
1	1	0

<i>x</i> ₁	<i>x</i> ₂	NOR
0	0	1
0	1	0
1	0	0
1	1	0

Binary operations are done based on the Shannon Expansion.

$$f(x_1,...,x_i,...,x_n) = (x_i \cdot f_{x_i}) + (\overline{x_i} \cdot f_{\overline{x_i}})$$

$$= (x_i \cdot f(x_1,...,1,...,x_n))$$

$$+ (\overline{x_i} \cdot f(x_1,...,0,...,x_n))$$

Binary operations are done based on the Shannon Expansion.

$$f(x_1,...,x_i,...,x_n) = (x_i \cdot f_{x_i}) + (\overline{x_i} \cdot f_{\overline{x_i}})$$

$$= (x_i \cdot f(x_1,...,1,...,x_n))$$

$$+ (\overline{x_i} \cdot f(x_1,...,0,...,x_n))$$

$$f\langle \mathsf{op}\rangle g = (x_i \cdot (f_{x_i}\langle \mathsf{op}\rangle g_{x_i})) + (\overline{x_i} \cdot (f_{\overline{x_i}}\langle \mathsf{op}\rangle g_{\overline{x_i}}))$$

$$f_{x_1}=x_3$$

$$f_{\overline{x_1}} = x_2 x_3$$

Binary Operation by Way of Shannon Expansion

$$f(a,b) = a \cdot b$$

 $g(a,b) = a+b$

Binary Operation by Way of Shannon Expansion

$$f(a,b) = a \cdot b$$

 $g(a,b) = a + b$
 $f + g = (a \cdot b) + (a + b) = (a \cdot b) + a + b = a + b$

Binary Operation by Way of Shannon Expansion

$$f(a,b) = a \cdot b$$

 $g(a,b) = a + b$
 $f + g = (a \cdot b) + (a + b) = (a \cdot b) + a + b = a + b$
 $f + g = (a \cdot (f_a + g_a)) + (\overline{a} \cdot (f_{\overline{a}} + g_{\overline{a}}))$

$$\begin{array}{lll} f(a,b) & = & a \cdot b \\ g(a,b) & = & a+b \\ f+g & = & (a \cdot b) + (a+b) = (a \cdot b) + a+b = a+b \\ f+g & = & (a \cdot (f_a+g_a)) + (\overline{a} \cdot (f_{\overline{a}}+g_{\overline{a}})) \\ & = & (a \cdot ((b \cdot (f_{a,b}+g_{a,b})) + (\overline{b} \cdot (f_{a,\overline{b}}+g_{a,\overline{b}})))) \\ & + (\overline{a} \cdot ((b \cdot (f_{\overline{a},b}+g_{\overline{a},b})) + (\overline{b} \cdot (f_{\overline{a},\overline{b}}+g_{\overline{a},\overline{b}})))) \end{array}$$

$$\begin{array}{lll} f(a,b) & = & a \cdot b \\ g(a,b) & = & a+b \\ f+g & = & (a \cdot b) + (a+b) = (a \cdot b) + a+b = a+b \\ f+g & = & (a \cdot (f_a+g_a)) + (\overline{a} \cdot (f_{\overline{a}}+g_{\overline{a}})) \\ & = & (a \cdot ((b \cdot (f_{a,b}+g_{a,b})) + (\overline{b} \cdot (f_{a,\overline{b}}+g_{a,\overline{b}})))) \\ & + (\overline{a} \cdot ((b \cdot (f_{\overline{a},b}+g_{\overline{a},b})) + (\overline{b} \cdot (f_{\overline{a},\overline{b}}+g_{\overline{a},\overline{b}})))) \\ & = & (a \cdot ((b \cdot (1+1)) + (\overline{b} \cdot (0+1)))) \\ & + (\overline{a} \cdot ((b \cdot (0+1)) + (\overline{b} \cdot (0+0)))) \end{array}$$

$$\begin{split} f(a,b) &= a \cdot b \\ g(a,b) &= a+b \\ f+g &= (a \cdot b) + (a+b) = (a \cdot b) + a+b = a+b \\ f+g &= (a \cdot (f_a+g_a)) + (\overline{a} \cdot (f_{\overline{a}}+g_{\overline{a}})) \\ &= (a \cdot ((b \cdot (f_{a,b}+g_{a,b})) + (\overline{b} \cdot (f_{a,\overline{b}}+g_{a,\overline{b}})))) \\ &+ (\overline{a} \cdot ((b \cdot (f_{\overline{a},b}+g_{\overline{a},b})) + (\overline{b} \cdot (f_{\overline{a},\overline{b}}+g_{\overline{a},\overline{b}})))) \\ &= (a \cdot ((b \cdot (1+1)) + (\overline{b} \cdot (0+1)))) \\ &+ (\overline{a} \cdot ((b \cdot (0+1)) + (\overline{b} \cdot (0+0)))) \\ &= (a \cdot ((b \cdot 1) + (\overline{b} \cdot 1))) + (\overline{a} \cdot ((b \cdot 1) + (\overline{b} \cdot 0))) \end{split}$$

$$\begin{split} f(a,b) &= a \cdot b \\ g(a,b) &= a + b \\ f + g &= (a \cdot b) + (a + b) = (a \cdot b) + a + b = a + b \\ f + g &= (a \cdot (f_a + g_a)) + (\overline{a} \cdot (f_{\overline{a}} + g_{\overline{a}})) \\ &= (a \cdot ((b \cdot (f_{a,b} + g_{a,b})) + (\overline{b} \cdot (f_{a,\overline{b}} + g_{a,\overline{b}})))) \\ &+ (\overline{a} \cdot ((b \cdot (f_{\overline{a},b} + g_{\overline{a},b})) + (\overline{b} \cdot (f_{\overline{a},\overline{b}} + g_{\overline{a},\overline{b}})))) \\ &= (a \cdot ((b \cdot (1+1)) + (\overline{b} \cdot (0+1)))) \\ &+ (\overline{a} \cdot ((b \cdot (0+1)) + (\overline{b} \cdot (0+0)))) \\ &= (a \cdot ((b+\overline{b})) + (\overline{a} \cdot ((b+\overline{b}))) \end{split}$$

$$\begin{split} f(a,b) &= a \cdot b \\ g(a,b) &= a+b \\ f+g &= (a \cdot b) + (a+b) = (a \cdot b) + a+b = a+b \\ f+g &= (a \cdot (f_a+g_a)) + (\overline{a} \cdot (f_{\overline{a}}+g_{\overline{a}})) \\ &= (a \cdot ((b \cdot (f_{a,b}+g_{a,b})) + (\overline{b} \cdot (f_{\overline{a},\overline{b}}+g_{\overline{a},\overline{b}})))) \\ &+ (\overline{a} \cdot ((b \cdot (f_{\overline{a},b}+g_{\overline{a},b})) + (\overline{b} \cdot (f_{\overline{a},\overline{b}}+g_{\overline{a},\overline{b}})))) \\ &= (a \cdot ((b \cdot (1+1)) + (\overline{b} \cdot (0+1)))) \\ &+ (\overline{a} \cdot ((b \cdot (0+1)) + (\overline{b} \cdot (0+0)))) \\ &= (a \cdot ((b \cdot 1) + (\overline{b} \cdot 1))) + (\overline{a} \cdot ((b \cdot 1) + (\overline{b} \cdot 0))) \\ &= (a \cdot (b+\overline{b})) + (\overline{a} \cdot (b+0)) \\ &= (a \cdot 1) + (\overline{a} \cdot b) \end{split}$$

$$f(a,b) = a \cdot b$$

$$g(a,b) = a + b$$

$$f + g = (a \cdot b) + (a + b) = (a \cdot b) + a + b = a + b$$

$$f + g = (a \cdot (f_a + g_a)) + (\overline{a} \cdot (f_{\overline{a}} + g_{\overline{a}}))$$

$$= (a \cdot ((b \cdot (f_{a,b} + g_{a,b})) + (\overline{b} \cdot (f_{a,\overline{b}} + g_{a,\overline{b}}))))$$

$$+ (\overline{a} \cdot ((b \cdot (f_{\overline{a},b} + g_{\overline{a},b})) + (\overline{b} \cdot (f_{\overline{a},\overline{b}} + g_{\overline{a},\overline{b}}))))$$

$$= (a \cdot ((b \cdot (1+1)) + (\overline{b} \cdot (0+1))))$$

$$+ (\overline{a} \cdot ((b \cdot (0+1)) + (\overline{b} \cdot (0+0))))$$

$$= (a \cdot ((b+\overline{b})) + (\overline{a} \cdot ((b+\overline{b})))$$

$$= (a \cdot (b+\overline{b})) + (\overline{a} \cdot (b+0))$$

$$= (a \cdot 1) + (\overline{a} \cdot b)$$

$$= a + (\overline{a} \cdot b) = a + b$$

Shannon expansion by \overline{a} : 0 + b

Shannon expansion by \overline{a} : 0 + b

Shannon expansion by a: b+1

Binary operations are of quadratic complexity in the number of variables.

$$f = ab + c$$

 $g = \overline{a} + \overline{c}$
 $f \cdot g = (ab + c) \cdot (\overline{a} + \overline{c}) = \overline{a}c + ab\overline{c}$

 $f \cdot g = \overline{a}c + ab\overline{c}$

$$g = \overline{a} + \overline{c}$$

0

ROBDD - Complexity of Operations

SOP	POS	ROBDD
Quadratic: n ²	Constant	Quadratic: m ²
Constant	Quadratic: n^2	Quadratic: m ²
Exponential: m ⁿ	Exponential: m ⁿ	Constant
Constant	Exponential : 2 ^m	Constant
Exponential: 2 ^m	Constant	Constant
	Quadratic: n^2 Constant Exponential : m^n Constant	Quadratic: n^2 ConstantConstantQuadratic: n^2 Exponential: m^n Exponential: m^n ConstantExponential: 2^m

Logic Synthesis

- 1 Data Structures
 Boolean Formulas
 Representation
 Conversion
- 2 Two-Level Minimization
- 3 Multi-Level Minimization
- 4 Technology Mapping

 $f_{\mathsf{SoP}} \overset{\mathsf{Double}}{\Longrightarrow} \overset{\mathsf{Complement}}{\Longrightarrow} \overset{\mathsf{DeMorgan}}{\Longrightarrow} \overset{\mathsf{Distributive}}{\Longrightarrow} \mathsf{Law} \overset{\mathsf{DeMorgan}}{\Longrightarrow} f_{\mathsf{PoS}}$

$$f_{\mathsf{SoP}} \overset{\mathsf{Double}}{\Longrightarrow} \overset{\mathsf{Complement}}{\Longrightarrow} \overset{\mathsf{DeMorgan}}{\Longrightarrow} \overset{\mathsf{Distributive}}{\Longrightarrow} \mathsf{Law} \overset{\mathsf{DeMorgan}}{\Longrightarrow} f_{\mathsf{PoS}}$$

$$f(a,b,c,d) = (a \cdot b) + (c \cdot d)$$

$$f_{\mathsf{SoP}} \overset{\mathsf{Double}}{\Longrightarrow} \overset{\mathsf{Complement}}{\Longrightarrow} \overset{\mathsf{DeMorgan}}{\Longrightarrow} \overset{\mathsf{Distributive}\;\mathsf{Law}}{\Longrightarrow} \overset{\mathsf{DeMorgan}}{\Longrightarrow} f_{\mathsf{PoS}}$$

$$f(a,b,c,d) = (a\cdot b) + (c\cdot d)$$

 $= \overline{\overline{a \cdot b + c \cdot d}}$

$$f_{\mathsf{SoP}} \overset{\mathsf{Double}}{\Longrightarrow} \overset{\mathsf{Complement}}{\Longrightarrow} \overset{\mathsf{DeMorgan}}{\Longrightarrow} \overset{\mathsf{Distributive}}{\Longrightarrow} \mathsf{Law} \overset{\mathsf{DeMorgan}}{\Longrightarrow} f_{\mathsf{PoS}}$$

$$f(a,b,c,d) = \underbrace{(a\cdot b) + (c\cdot d)}_{= \underbrace{a\cdot b + c\cdot d}_{= \underbrace{a\cdot b} \cdot \overline{c\cdot d}}}$$

$$f_{\mathsf{SoP}} \overset{\mathsf{Double}}{\Longrightarrow} \overset{\mathsf{Complement}}{\Longrightarrow} \overset{\mathsf{DeMorgan}}{\Longrightarrow} \overset{\mathsf{Distributive}}{\Longrightarrow} \mathsf{Law} \overset{\mathsf{DeMorgan}}{\Longrightarrow} f_{\mathsf{PoS}}$$

$$f(a,b,c,d) = \underbrace{(a\cdot b) + (c\cdot d)}_{=\overline{a\cdot b} + \overline{c\cdot d}}_{=\overline{a\cdot b} \cdot \overline{c\cdot d}}$$

 $= \overline{(\overline{a} + \overline{b}) \cdot (\overline{c} + \overline{d})}$

$$f_{\mathsf{SoP}} \overset{\mathsf{Double}}{\Longrightarrow} \overset{\mathsf{Complement}}{\Longrightarrow} \overset{\mathsf{DeMorgan}}{\Longrightarrow} \overset{\mathsf{Distributive}}{\Longrightarrow} f_{\mathsf{P}}$$

$$f(a,b,c,d) = \underbrace{(a\cdot b) + (c\cdot d)}_{\overline{a\cdot b} + \overline{c\cdot d}}$$

$$= \underbrace{\overline{a\cdot b\cdot \overline{c\cdot d}}}_{\overline{(\overline{a}+\overline{b})\cdot (\overline{c}+\overline{d})}}$$

$$= \underbrace{(\overline{a}+\overline{b})\cdot (\overline{c}+\overline{d})}_{\overline{(\overline{a}\cdot \overline{c})} + (\overline{b}\cdot \overline{c}) + (\overline{b}\cdot \overline{d})}$$

$$f_{\mathsf{SoP}} \xrightarrow{\mathsf{Double}} \xrightarrow{\mathsf{Complement}} \xrightarrow{\mathsf{DeMorgan}} \xrightarrow{\mathsf{Distributive}} \xrightarrow{\mathsf{Law}} \xrightarrow{\mathsf{DeMorgan}} f_{\mathsf{PoS}}$$

$$f(a,b,c,d) = \underbrace{(a\cdot b) + (c\cdot d)}_{a\cdot b+c\cdot d}$$

$$= \underbrace{\overline{a\cdot b + c\cdot d}}_{a\cdot b\cdot \overline{c\cdot d}}$$

 $= (\overline{a} + \overline{b}) \cdot (\overline{c} + \overline{d})$

 $= (\overline{a} \cdot \overline{c}) + (\overline{a} \cdot \overline{d}) + (\overline{b} \cdot \overline{c}) + (\overline{b} \cdot \overline{d})$ $= (\overline{a} \cdot \overline{c}) \cdot (\overline{a} \cdot \overline{d}) \cdot (\overline{b} \cdot \overline{c}) \cdot (\overline{b} \cdot \overline{d})$

$$f_{\mathsf{SoP}} \overset{\mathsf{Double}}{\Longrightarrow} \overset{\mathsf{Domplement}}{\Longrightarrow} \overset{\mathsf{DeMorgan}}{\Longrightarrow} \overset{\mathsf{Distributive}}{\Longrightarrow} \mathsf{Law} \overset{\mathsf{DeMorgan}}{\Longrightarrow} f_{\mathsf{PoS}}$$

$$f(a,b,c,d) = \underbrace{(a \cdot b) + (c \cdot d)}_{a \cdot b + c \cdot d}$$

$$= \underbrace{\overline{a \cdot b + c \cdot d}}_{a \cdot \overline{b} \cdot \overline{c \cdot d}}$$

$$= \underbrace{(\overline{a} + \overline{b}) \cdot (\overline{c} + \overline{d})}_{a \cdot \overline{b} \cdot \overline{c} + (\overline{b} \cdot \overline{d})}$$

$$= \underbrace{(\overline{a} \cdot \overline{c}) + (\overline{a} \cdot \overline{d}) + (\overline{b} \cdot \overline{c}) + (\overline{b} \cdot \overline{d})}_{a \cdot \overline{b} \cdot \overline{c}}$$

$$= \underbrace{(\overline{a} \cdot \overline{c}) \cdot (\overline{a} \cdot \overline{d}) \cdot (\overline{b} \cdot \overline{c}) \cdot (\overline{b} \cdot \overline{d})}_{b \cdot \overline{c}}$$

 $= (a+c) \cdot (a+d) \cdot (b+c) \cdot (b+d)$

$$f_{\mathsf{SoP}} \overset{\mathsf{Double}}{\Longrightarrow} \overset{\mathsf{Domplement}}{\Longrightarrow} \overset{\mathsf{DeMorgan}}{\Longrightarrow} \overset{\mathsf{Distributive}}{\Longrightarrow} \mathsf{Law} \overset{\mathsf{DeMorgan}}{\Longrightarrow} f_{\mathsf{PoS}}$$

$$f(a,b,c,d) = \underbrace{(a\cdot b) + (c\cdot d)}_{= \overline{a\cdot b + c\cdot d}}$$

$$= \underbrace{\overline{a\cdot b\cdot c\cdot d}}_{= \overline{(\overline{a}+\overline{b})\cdot (\overline{c}+\overline{d})}}$$

 $= (\overline{a} \cdot \overline{c}) + (\overline{a} \cdot \overline{d}) + (\overline{b} \cdot \overline{c}) + (\overline{b} \cdot \overline{d})$

 $= \overline{(\overline{a} \cdot \overline{c})} \cdot \overline{(\overline{a} \cdot \overline{d})} \cdot \overline{(\overline{b} \cdot \overline{c})} \cdot (\overline{b} \cdot \overline{d})$

 $= (a+c)\cdot(a+d)\cdot(b+c)\cdot(b+d)$

SoP \leftrightarrow PoS Conversion is of exponential complexity: m^n .

Boolean formula \leftrightarrow **BDD Conversion**

A Boolean function is converted to a ROBDD by starting with a variable representation and recursively applying the Boolean operators.

Some Boolean functions have ROBDD of exponential size.

Boolean formula \leftrightarrow BDD Conversion is of exponential complexity.

Logic Synthesis

- 1 Data Structures
- 2 Two-Level Minimization
- 3 Multi-Level Minimization
- 4 Technology Mapping

Two-level Minimization

- Karnaugh-Veitch Diagrams: Limited to 4 variables;
- Quine-McCluskey

Logic Synthesis

- 1 Data Structures
- 2 Two-Level Minimization
- 3 Multi-Level Minimization
- 4 Technology Mapping

Multi-level Minimization

- Two-Level Minimization is limited to relatively small functions.
- Fan-in limitations of gates, depending on technology

Multi-level Minimization

- Two-Level Minimization is limited to relatively small functions.
- Fan-in limitations of gates, depending on technology

Multi-level minimization uses

- Factoring
- Decomposition
- Extraction
- Substitution
- Elimination

Factoring

- A factored form of a Boolean formula is a tree representation with the nodes being AND-operations, OR-operations or literals.
- Factoring reformulates a Boolean function in a form with minimum number of literals, because an implementation with complex CMOS gates in general requires 2n transistors for a factored form with n literals

$$F = ac + ad + bc + bd + e$$

can be factored into

$$F = (a+b)(c+d) + e$$

CMOS Gate of a Factored Form

Consider $f = x_1x_3\overline{x_6} + x_1x_4x_5\overline{x_6} + x_2x_3x_7 + x_2x_4x_5x_7$

(from interconnection wires) x_1 x_2 x_3 x_4 x_5 x_6 x_7 unused Part of a PAL-like block *********

Implementation in an FPGA with 2-input LUTs is not suitable. Transform f as follows:

$$f = x_1 x_3 \overline{x_6} + x_1 x_4 x_5 \overline{x_6} + x_2 x_3 x_7 + x_2 x_4 x_5 x_7$$

= $x_1 \overline{x_6} (x_3 + x_4 x_5) + x_2 x_7 (x_3 + x_4 x_5)$
= $(x_3 + x_4 x_5) (x_1 \overline{x_6} + x_2 x_7)$

$$f = (x_3 + x_4x_5)(x_1\overline{x_6} + x_2x_7)$$

Fan-in Constraints

In all implementation technologies:

- CPLDs
- FPGAs
- ASICs

Large gates can be implemented with smaller gates:

Consider

$$f = x_1 \overline{x_2} x_3 \overline{x_4} x_5 x_6 + x_1 x_2 \overline{x_3} \overline{x_4} \overline{x_5} x_6$$

Consider

$$f = x_1 \overline{x_2} x_3 \overline{x_4} x_5 x_6 + x_1 x_2 \overline{x_3} \overline{x_4} \overline{x_5} x_6$$

Can be implemented as

with cost=21.

Or by factoring as follows:

$$f = x_1 \overline{x_2} x_3 \overline{x_4} x_5 x_6 + x_1 x_2 \overline{x_3} \overline{x_4} \overline{x_5} x_6$$
$$= x_1 \overline{x_4} x_6 (\overline{x_2} x_3 x_5 + x_2 \overline{x_3} \overline{x_5})$$

Or by factoring as follows:

$$f = x_1 \overline{x_2} x_3 \overline{x_4} x_5 x_6 + x_1 x_2 \overline{x_3} \overline{x_4} \overline{x_5} x_6$$
$$= x_1 \overline{x_4} x_6 (\overline{x_2} x_3 x_5 + x_2 \overline{x_3} \overline{x_5})$$

which can be implemented as

with cost=16.

Decomposition

A function is decomposed into other, simpler functions.

$$F(a, b, c, d) = abc + abd + \overline{ac}\overline{d} + \overline{b}\overline{c}\overline{d}$$

$$F = X \cdot Y + \overline{X} \cdot \overline{Y}$$

$$X = ab$$

$$Y = c + d$$

$$f = \overline{x_1}x_2x_3 + x_1\overline{x_2}x_3 + x_1x_2x_4 + \overline{x_1}\overline{x_2}x_4$$

$$f = \overline{x_1}x_2x_3 + x_1\overline{x_2}x_3 + x_1x_2x_4 + \overline{x_1}\overline{x_2}x_4$$
$$= (\overline{x_1}x_2 + x_1\overline{x_2})x_3 + (x_1x_2 + \overline{x_1}\overline{x_2})x_4$$

$$f = \overline{x_1}x_2x_3 + x_1\overline{x_2}x_3 + x_1x_2x_4 + \overline{x_1}\overline{x_2}x_4$$

$$= (\overline{x_1}x_2 + x_1\overline{x_2})x_3 + (x_1x_2 + \overline{x_1}\overline{x_2})x_4$$

$$g = \overline{x_1}x_2 + x_1\overline{x_2}$$

$$f = \overline{x_1}x_2x_3 + x_1\overline{x_2}x_3 + x_1x_2x_4 + \overline{x_1}\overline{x_2}x_4$$

$$= (\overline{x_1}x_2 + x_1\overline{x_2})x_3 + (x_1x_2 + \overline{x_1}\overline{x_2})x_4$$

$$g = \overline{x_1}x_2 + x_1\overline{x_2}$$

$$\overline{g} = x_1x_2 + \overline{x_1}\overline{x_2}$$

$$f = \overline{x_1}x_2x_3 + x_1\overline{x_2}x_3 + x_1x_2x_4 + \overline{x_1}\overline{x_2}x_4$$

$$= (\overline{x_1}x_2 + x_1\overline{x_2})x_3 + (x_1x_2 + \overline{x_1}\overline{x_2})x_4$$

$$g = \overline{x_1}x_2 + x_1\overline{x_2}$$

$$\overline{g} = x_1x_2 + \overline{x_1}\overline{x_2}$$

$$f = gx_3 + \overline{g}x_4$$

Logic circuit for $f = gx_3 + \overline{g}x_4$.

 $f = gx_3 + \overline{g}x_4 = h(g(x_1, x_2), x_3, x_4).$

Logic Transformations

- Logic transformations change the structure of the Boolean network (restructuring).
- Heuristics and cost functions guide the restructuring process.

Logic Synthesis

- 1 Data Structures
- 2 Two-Level Minimization
- 3 Multi-Level Minimization
- 4 Technology Mapping

Technology Mapping

- Given a netlist of abstract gates, and a library of technology specific gates, technology mapping creates a technology specific netlist of gates.
- Technology mapping is different for standard cells, gate arrays and FPGAs
- Only after this step, technology specific information such as gate delay, area, and power consumption is available.

Technology Libraries

Gate	Cost	Symbol	Pattern Graph
INV	2	->>-	->-
NAND2	3		
NOR2	4	\rightarrow	
NAND3	4	<u> </u>	
NAND4	5	<u> </u>	
AIO21	4		
AOI22	5		
WOR	4	4	

Subject Graph

The **subject graph** is the standardized netlist representation (e.g. consisting only of NAND2 and INV) of the target design.

Graph Covering

Graph covering finds a cover of library elements (patterns DAG (Directed Acyclic Graph)) of the subject graph such that

- All gates of the subject graph are covered;
- No internal node of a Pattern DAG is the input of another pattern graph;
- The cost function (area, power, delay, ...) is minimized;
- All design constraints are met.

Graph Covering

Legal covering:

Atomic Pattern Set

Empirically the choice of NAND2 and INV as the only atomic patterns is a good solution.

Additional patterns (e.g. AND2, NOR2, NAND3, ...) lead rarely to better solutions, but make the graph covering problem harder.

- Convert the Boolean network into a NAND2-INV netlist to create the subject graph;
- 2 Partition the subject graph into a forest of trees;
- **3** Each tree is optimally covered separately:
 - Generate a complete set of matches for the tree;
 - **2** Select the best match with a dynamic programming algorithm.

