Part. 1.1. Bases et intuition de la théorie des probabilités

K. Meziani, IASD

Table des matières

Plan

- Variable aléatoire
- Vecteur aléatoire discret
- Indépendance
- 4 Loi conditionnelle
- 5 Covariance et coefficient de corrélation linéaire
- Théorèmes de convergence
- Parlons R
- Petites simulations sous R à Faire à la maison

Supports complémentaires

https://sites.google.com/site/katiameziani00/home/enseignements

- Polycopié de probabilités (Partie 1)
- Polycopié de statistiques descriptives (Partie 2)

1. Variable aléatoire

Variable aléatoire discrète X

- Le support $Supp_X$ de X est l'ensemble des valeurs possibles x prises par X.
- Le cardinal du support de X est fini ou au plus dénombrable.

Exemple: résultat du lancé d'un dé, nombre d'accidents dans l'année, nombre de personnes dans une file d'attente...

Variable aléatoire continue X

- Le support $Supp_X$ de X est inclus dans \mathbb{R} .
- Le cardinal du support de *X* est infini.

Exemple: taille d'une personne, position d'une particule....

Probabilités

Probabilité:

mesure de valeurs possibles x, prises par la variable aléatoire X.

Exemples:

- P(X = 2), $P(X \le 2)$, $P(1 < X \le 5)$...
- Pour les variables aléatoires continues les probabilités ponctuelles nulles : $\forall x \in Supp_X$, P(X = x) = 0.

Comment décrire la Loi de probabilité de X

Distribution de probabilité

$${P(X = x)}_{x \in Supp_x}$$

• Pour tout $x \in Supp_X$

$$0 < P(X = x) \le 1$$

• Somme des probabilités sur le support vaut 1:

$$\sum_{x \in Supp_X} P(X = x) = 1.$$

• Uniquement pour les v.a. discrètes

Densité de probabilité

• Pour tout $x \in \mathbb{R}$,

$$f(x) \geq 0$$

• Équivalent de la somme des probabiliés cas continue

$$\int_{-\infty}^{+\infty} f(t)dt = 1.$$

• *f* est continue presque partout,

$$Supp_X = \{x \in \mathbb{R}, f(x) > 0\}$$

Espérance, variance, écart type

V.a. discrète

$$\{P(X=x)\}_{x\in Supp_X}$$

• Espérance/moyenne

$$E[X] = \sum_{supp_X} x P(X = x)$$

• Variance, si $E[X] < \infty$

$$V[X] = \sum_{supp_X} (x - E[X])^2 P(X = x).$$

Écart type

Écart type =
$$\sqrt{V[X]}$$

V.a. continue

• Espérance/moyenne

$$E[X] = \int_{-\infty}^{+\infty} x f(x) dx$$

• Variance, si $E[X] < \infty$

$$V[X] = \int_{-\infty}^{+\infty} (x - E[X])^2 f(x) dx.$$

Écart type

Écart type =
$$\sqrt{V[X]}$$

Lois usuelles discrètes

Loi	Support	P(X=k)	Espérance	Variance
Uniforme $\mathcal{U}(\{1,\cdots,n\})$	$\{1,\cdots,n\}$	1/n	(n+1) 2	(n+1)(n-1) 12
Bernoulli $\mathcal{B}(p)$ $p \in]0,1[$	{0, 1}	P(X = 1) = p P(X = 0) = 1 - p	p	p(1-p)
Binomiale $\mathcal{B}in(n,p)$ $n \in \mathbb{N}^*$ $p \in]0,1[$	$\{0,\cdots,n\}$	$C_n^k p^k (1-p)^{n-k}$	пр	np(1-p)
Poisson $\mathcal{P}(\lambda)$ $\lambda > 0$	N	$\lambda^k e^{-\lambda}/k!$	λ	λ
Géométrique $\mathcal{G}(p)$ $p\in]0,1[$	N*	$p(1-p)^{k-1}$	1 p	$\frac{1-p}{p^2}$

Lois usuelles continues

Loi	Supp.	Densité	Espér.	Var.
Uniforme $\mathcal{U}([a,b])$ $(a,b) \in \mathbb{R}^2$, $a < b$	[a, b]	$f(x) = \frac{1}{b-a} \text{ si } x \in [a, b]$ $= 0 \text{ sinon}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponentielle $\mathcal{E}(\lambda)$ $\lambda > 0$	R* ₊	$f(x) = \lambda e^{-\lambda x} \text{ si } x > 0$ $= 0 \text{ sinon}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Normale $\mathcal{N}(0,1)$	\mathbb{R}	$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{x^2}{2}\right]$	0	1
Normale $\mathcal{N}(\mu,\sigma)$ $(\mu,\sigma) \in \mathbb{R} imes \mathbb{R}_+^*$	\mathbb{R}	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$	μ	σ^2
Gamma $\mathcal{G}(k, \theta)$ $(k, \theta) \in \mathbb{R}_+^* \times \mathbb{R}_+^*$	\mathbb{R}_+^*	$f(x) = \frac{\theta^k}{\Gamma(k)} x^{k-1} e^{-\theta x} \text{ si } x > 0$ = 0 sinon	k/θ	k/θ^2

Loi uniforme continue sur [a, b]

Figure 1: Densité de loi uniforme

Lois Exponentielles

Figure 2: Densités de lois exponentielles pour différents paramètres

Lois Gaussiennes/Normales

Figure 3: Densités de lois gaussiennes pour différents paramètres

Loi Gamma

Figure 4: Densité de lois gamma pour différents paramètres

Fonction de répartition

Autre façon de décrire la loi de X est par sa fonction de répartition.

Fonction de répartition de la variable aléatoire X la fonction F définie sur $\mathbb R$

$$F(t) = P(X \leq t).$$

- F est une fonction croissante et définie sur R à valeurs dans [0,1].
- Si X v.a. dicrète: F est une fonction en escalier.
- Si X v.a. continue: F est une fonction continue et la dérivée de F est f la densité de probabilité.

2. Vecteurs aléatoires discrets

Couple de variables/vecteur aléatoire (X, Y)

• Loi de probabilité jointe de (X, Y)

$${P(X = x, Y = y)}_{(x,y) \in Supp_X \times Supp_Y}$$
.

- $P(X = x, Y = y) \in [0, 1].$
- $\sum_{x \in supp_X} \sum_{y \in supp_Y} P(X = x, Y = y) = 1$.

Exemple: On lance 2 dés non truqués.

- Y = "le nombre de chiffres impairs apparus", $Supp_Y = \{0, 1, 2\}.$
- X = "la somme des 2 chiffres", $Supp_X = \{2, \dots, 12\}.$

Lois marginales

Pour trouver la loi de X (et réciproquement de Y) à partir de la loi du couple (X, Y) il suffit de sommer sur toutes les valeurs de Y (et réciproquement de X)!!

Lois marginales

• Pour tout $x \in Suup_X$,

$$P(X = x) = \sum_{y \in Supp_Y} P(X = x, Y = y)$$

• Pour tout $y \in Suup_Y$,

$$P(Y = y) = \sum_{x \in Supp_X} P(X = x, Y = y)$$

Exemple de loi jointe: cas discret

Prenons un exemple, soit (X, Y) un couple de variables aléatoires discrètes dont la loi est résumée dans le tableau suivant :

$Y \mid X \mid$	0	1	2
-1	0.2	0.1	0.1
1	0.1	0	0.5

$$Y = y$$
 -1 1 $P(Y = y)$ 0.4 0.6

X = x	0	1	2
P(X=x)	0.3	0.1	0.6

3. Indépendance

X et Y sont indépendantes si et seulement si

Pour tout $x \in Supp_X$ et pour tout $y \in Supp_Y$

$$P(X = x, Y = y) = P(X = x)P(Y = y).$$

4. Loi conditionnelle

Loi conditionnelle de Y sachant $\{X = x\}$:

$$\{P(Y=y|X=x)\}_{y\in Supp_Y}$$

• Pour tout $y \in Supp_Y$ et pour tout $X \in Supp_X$

$$P(Y = y | X = x) = \frac{P(Y = y, X = x)}{P(X = x)}$$
 et $P(Y = y | X = x) \in [0, 1]$

• $\sum_{y \in supp_Y} P(Y = y | X = x) = 1$.

Loi conditionnelle: Exemple

Loi jointe de (X, Y)

Loi (marginale) de X

$Y \mid X$	0	1	2
-1	0.2	0.1	0.1
1	0.1	0	0.5

X = x	0	1	2
P(X=x)	0.3	0.1	0.6

Loi conditionnelle de Y sachant X=0:

•
$$P(Y = 1|X = 0) = \frac{P(Y=1,X=0)}{P(X=0)} = \frac{0.1}{0.3} = \frac{1}{3}$$
.
• $P(Y = -1|X = 0) = \frac{P(Y=-1,X=0)}{P(X=0)} = \frac{0.2}{0.3} = \frac{2}{3}$.

•
$$P(Y = -1|X = 0) = \frac{P(Y = -1, X = 0)}{P(X = 0)} = \frac{0.2}{0.3} = \frac{2}{3}$$

5. Covariance et coefficient de corrélation linéaire

Covariance de X et de Y

Soient X et Y deux v.a. de variance finie non nulle et d'espérance finie.

$$Cov(X,Y) = \sum_{x \in Supp_X} \sum_{y \in Supp_Y} (x - E[X])(y - E[Y])P(X = x, Y = y).$$

- Symétrie: Cov(X, Y) = Cov(Y, X)
- Cov(X,X) = V(X)
- Si X et Y deux v.a. indépendantes $\Rightarrow Cov(X, Y) = 0$ (Réciproque fausse sauf pour vecteur gaussien)

Covariance et coefficient de corrélation linéaire

Coefficient de corrélation linéaire de X et de Y

Soient X et Y deux v.a. de variance finie non nulle et d'espérance finie.

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{V(X)}\sqrt{V(Y)}}.$$

- $|\rho(X, Y)| \leq 1$.
- Renseigne sur l'existence d'une éventuelle relation affine entre X et Y. $(|\rho(X,Y)|=1 \Rightarrow$ lien linéaire)

6. Théorèmes de convergence

Loi des grands nombres

Soit une suite de v.a. X_1, X_2, \cdots i.i.d. telles que $E[X_i] = m < \infty$ alors

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}=\overline{X}\underset{n\to+\infty}{\longrightarrow}m.$$

Théorème central limite (TCL)

Soit une suite de v.a. X_1, X_2, \cdots i.i.d. telles que $E[X_i] = m < \infty$ et $V(X_i) = \sigma^2 < \infty$ alors

$$\sqrt{n} \frac{\overline{X} - m}{\sigma} \xrightarrow[n \to +\infty]{Loi} \mathcal{N}(0, 1).$$

7. Parlons R

Avantages de R/Rstudio

- Méthodes récentes
- Multi-plateforme
- Gratuit
- Installation : http ://www.r-project.org
- install.packages("tidyverse")

Quelques commandes élémentaires à connaître

Commandes élém	entaires		
	max()	maximum	
	min()	minimum	
	sum()	somme	
	cumsum()	sommes cumulées	
	mean()	moyenne	
	median()	médiane	
	sort()	tri par ordre croissant	
	sd()	écart-type	
	cor()	corrélation	
	which.max()	qui atteint le max	

Quelques lois élémentaires

Quelques lois usuelles unif(.,.) Uniforme (min, max) Géométrique (proba) geom(.) norm(.,.) Normale (moyenne, écart type) binom(.,.) Binomiale (taille, proba) exp(.) Exponentielle (taux) pois(.) Poisson (λ) beta(.,.) Beta (forme1, forme2) t(.) Student (degré de liberté) chisq(.) Chi2 (degré de liberté) Fisher (degré de liberté, degré de liberté) f(.,.) gamma(.,.) Gamma (forme/shape, echelle/rate)

8. Petites simulations sous R

Ouvrir Rstudio et ouvrir le fichier Participant1.Rmd

Fixer la seed

Question 1: Fixer la "graine" aléatoire (random number generator) ce qui de fixer les résultats.

set.seed(1234)

Question 2: **Tirage selon la loi "*":** r*. Tirer, par exemple, au hasard n=5 valeurs selon une loi normale $\mathcal{N}(m,\sigma)$ de moyenne mean=10 et d'écart type sd=2. (commande rnorm(n,mean,sd)).

Question 2: **Tirage selon la loi "*":** r*. Tirer, par exemple, au hasard n=5 valeurs selon une loi normale $\mathcal{N}(m,\sigma)$ de moyenne mean=10 et d'écart type sd=2. (commande rnorm(n,mean,sd)).

```
rnorm(5,10,2)
```

[1] 7.585869 10.554858 12.168882 5.308605 10.858249

Question 3: **Quartiles de la loi** "*": q*. Afficher le premier quartile (ordre 0.25) de la loi $\mathcal{N}(mean, sd)$ de moyenne mean=10 et d'écart type sd=2. (commande qnorm(ordre,mean,sd)).

Question 3: **Quartiles de la loi** "*": q*. Afficher le premier quartile (ordre 0.25) de la loi $\mathcal{N}(mean, sd)$ de moyenne mean=10 et d'écart type sd=2. (commande qnorm(ordre,mean,sd)).

```
qnorm(0.25, 10, 2)
```

```
## [1] 8.65102
```

Question 4: **Probabilité ponctuelle de la loi "*":** d*. Afficher les probablités qu'une v.a. X de loi Poisson de paramètre $\lambda = 4$; $\mathcal{P}(\lambda)$)a de prendre les valeurs 0, 1 et 2. (commande dpois (0:2,lambda).

Question 4: **Probabilité ponctuelle de la loi "*":** d*. Afficher les probablités qu'une v.a. X de loi Poisson de paramètre $\lambda = 4$ ($\mathcal{P}(\lambda)$) a de prendre les valeurs 0, 1 et 2. (commande dpois(0:2,lambda).

```
dpois(0:2, 4)
```

```
## [1] 0.01831564 0.07326256 0.14652511
```

Question 5: **Evaluer plusieurs probabilité d'un coup :** Afficher les proba. d'une v.a. binomiale $\mathcal{B}(n,p)$, n=10 et p=1/4. (commande dbinom(0:n, n,p)). Vérifier que la somme fait 1.

Question 5: **Evaluer plusieurs probabilité d'un coup :** Afficher les proba. d'une v.a. binomiale $\mathcal{B}(n,p)$, n=10 et p=1/4. (commande dbinom(0:n, n,p)). Vérifier que la somme fait 1.

```
V=dbinom(0:10, 10, 0.25); V

## [1] 5.631351e-02 1.877117e-01 2.815676e-01 2.502823e-01 1.459980e-01
## [6] 5.839920e-02 1.622200e-02 3.089905e-03 3.862381e-04 2.861023e-05
## [11] 9.536743e-07

sum(V)

## [1] 1
```

Question 6: Valeur de la fonction de répartition de la loi"*": d*. Afficher la probablité qu'une v.a. X de loi Normale $\mathcal{N}(mean, sd)$ de moyenne mean=10 et d'écart type sd=2 soit inférieure à 12. (commande pnorm(12,mean,sd)).

Question 6: Valeur de la fonction de répartition de la loi"*": d*. Afficher la probablité qu'une v.a. X de loi Normale $\mathcal{N}(mean, sd)$ de moyenne mean=10 et d'écart type sd=2 soit inférieure à 12. (commande pnorm(12,mean,sd)).

```
pnorm(12,10,2)
```

[1] 0.8413447