Lecture 28: Estimation - Part I

Satyajit Thakor IIT Mandi

Recall

- ► A population is the set of all possible observations available from a particular probability distribution.
- ▶ A sample is a particular subset of the population.

- A parameter is a property of a population or a probability distribution.
- ▶ A statistic is a property of a sample from the population.

- Estimation is a procedure by which the information contained within a sample is used to investigate properties of the population (parameters) from which the sample is drawn.
- \triangleright A point estimate of an unknown parameter θ is a statistic $\hat{\theta}$ that represents a "best guess" at the value of θ .
- There may be more than one sensible point estimate of a parameter.
- \triangleright Example: point estimate of the mean μ_X of a probability distribution $f_X(x)$ is the sample mean \bar{x} of data observations obtained from the probability distribution. In this case, $\hat{\mu}_X = \bar{x}$.
- \triangleright Similarly, two point estimates of the variance σ_X^2 are

PDFfx(2) & unknown parameter 0	
	Probability theory
Experimentation	
Data Set	24,, xn
Data analysis	Statistical inference
Point estimate ((statistics ())	

- Recall that $\hat{\theta}$ is a point estimate of a parameter θ which is a function $g(x_1, \ldots, x_n)$. Similarly, $\hat{\Theta}$ is a point estimate which is a function $g(X_1, \ldots, X_n)$. Note that $\hat{\theta}$ is a number and $\hat{\Theta}$ is an r.v.
- ▶ In general, when there is more than one obvious point estimate for a parameter (e.g., estimates of variance in Slide 3), the following criteria can be used to find desirable point estimate:
- \triangleright A point estimate $\hat{\Theta}$ for a parameter θ is called unbiased if

$$E(\hat{\Theta}) = \theta$$

▶ Unbiasedness is a nice property for a point estimate to possess. If a point estimate is not unbiased, then its bias can be defined as

bias =
$$E(\hat{\Theta}) - \theta$$
.

- ▶ Unbiased estimator: $E(\hat{\Theta}) = \theta$
- ▶ Biased estimator: $E(\hat{\Theta}) \neq \theta$, bias = $E(\hat{\Theta}) \theta$

Example: If X_1, \ldots, X_n is a sample of observations from a probability distribution with a mean μ_X , then show that the sample mean $\hat{\Theta} = \hat{\mu}_X = \bar{X}$ is an unbiased point estimate of the population mean $\theta = \mu_X$.

Proof: Note that
$$E(X_i) = M_X$$
 for all $i = 1, ..., n$.
Hence, $E(\hat{M}_X) = E(X)$

$$= E(\frac{X_1 + ... + X_n}{n})$$

$$= \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{nM_X}{n} = M_X$$

 $F(\hat{\mu}_{x}) = \mu \Rightarrow \hat{\mu}_{x}$ is unbiased p.e. of M_{x} .

Example: If X_1, \ldots, X_n is a sample of observations from a probability distribution with a variance σ_X^2 , then show that the sample variance

sample variance
$$\hat{\Theta} = \hat{\sigma}_X^2 = S^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}$$

is an unbiased point estimate of the population variance
$$\theta = \sigma_X^2$$
.

Proof: $E(S^2) = \frac{1}{N-1} E\left(\sum_{i=1}^{n} (x_i - \overline{x})^2\right)$

You may Skip
$$= \frac{1}{N-1} E\left(\sum_{i=1}^{n} (x_i - M_X) - (\overline{x} - M_X)^2\right)$$
the proof.

Won't be asked
$$= \frac{1}{N-1} E\left(\sum_{i=1}^{n} (x_i - M_X)^2 - 2(x_i - M_X)(\overline{x} - M_X)\right)$$
in the exams

Point estimation
$$= \frac{1}{N-1} E\left(\sum_{i=1}^{n} (X_i - M_X)^2 - 2(\overline{X} - M_X) \sum_{i=1}^{n} (X_i - M_X) + n(\overline{X} - M_X)^2\right)$$

 $= \frac{1}{N-1} E \left(\sum_{i=1}^{N} (X_i - M_X)^2 - N(\overline{X} - M_X)^2 \right)$

 $=\frac{1}{N-1}\left(N6\chi^2-N6\chi^2\right)=6\chi^2$

 $= \frac{1}{N-1} \left(\sum_{i=1}^{n} E[(x_i - Mx)^2] - n E[(x - Mx)^2] \right)$ $Var(x_i) = 6x$ $Var(x_i) = 6x$ $Var(x_i) = 6x$

=> s2 is an unbiased estimator of 6x.

Homework (Assignment 9 problem): If X_1, \ldots, X_n is a sample of observations from a probability distribution with a variance σ_X^2 , then show that the sample variance Hint: use the fact that

$$\hat{\Theta} = \hat{\sigma}_X^2 = S^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n} \qquad \sum_{i=1}^n (X_i - \bar{X})^2$$

has the bias of

$$-\frac{\sigma_X^2}{n}$$

is an unbiased estimator.

for point estimate of the population variance $\theta = \sigma_X^2$.

▶ Hence, we choose the denominator n-1 to make sure that the estimator is unbiased.