

<u>Gameboard</u>

Maths

Exponentials and Logs

Exponentials and Logs

Part A Sketching

Sketch the curve $y=6\times 5^x$.

What is the value of the y-intercept of the curve?

The following symbols may be useful: y

Part B Find x-coordinate

The point P on the curve $y=9^x$ has y-coordinate equal to 150. Use logarithms to find the x-coordinate of P.

Give the x-coordinate of P to 3 significant figures.

Part C New x-coordinate

The curves $y=6\times 5^x$ and $y=9^x$ intersect at the point Q.

Find the exact value of the x-coordinate at point Q, giving any logarithms in base three (\log_3) .

When you are entering your answer, note that $\log_a b$ can be written using $\log(b,a)$.

The following symbols may be useful: log(), x

Used with permission from UCLES, A Level, January 2010, Paper 4722, Question 9.

<u>Gameboard</u>

Maths

Solving Equations & Logs 2i

Solving Equations & Logs 2i

Part A	Solve	equation
1 GIC/1	2017	. cquution

Use logarithms to solve the equation $2^{n-3} = 18000$, giving your answer to 3 significant figures.

Part B Simultaneous equations

Solve the simultaneous equations $\log_2 x + \log_2 y = 8$ and $\log_2(\frac{x^2}{y}) = 7$

Used with permission from UCLES, A Level Maths, June 2015, OCR C2, Question 8

Gameboard:

STEM SMART Double Maths 14 - Logarithms, Lines,

Matrices & Roots of Polynomials Revision

Home Gameboard

Maths

Functions General Functions

Logarithmic Plots 4

Logarithmic Plots 4

A student used a graph of $\ln y$ against x to discover that $y=e^{2x+5}$.

What were the gradient and intercept of the graph?

Part A Find the gradient

What was the gradient of the graph?

Part B Find the intercept

What was the intercept of the graph?

Adapted for Isaac Physics from NST IA Biology preparation work

Gameboard:

STEM SMART Double Maths 14 - Logarithms, Lines, Matrices & Roots of Polynomials Revision

<u>Gameboard</u>

Maths

Straight lines: gradients and normals 1i

Straight lines: gradients and normals 1i

Part	Δ	Gra	رمناه	nt i	of I	lino
Part	A	ura	ше		oı ı	IIII

Find the gradient of the line l_1 which has equation 4x - 3y + 5 = 0.

Part B Perpendicular line

Find the equation of the line l_2 , which passes through the point (1,2) and is perpendicular to the line l_1 , giving your answer in the form ax + by + c = 0 where a, b and c are integers.

The following symbols may be useful: x, y

Part C Midpoint

The line l_1 crosses the x-axis at P and the line l_2 crosses the y-axis at Q. Find the coordinates of the midpoint of PQ. State your answer using exact decimals.

(, ()

Find the length of PQ.

Used with permission from UCLES, A level, June 2005, Paper 4721, Question 9

Gameboard:

STEM SMART Double Maths 14 - Logarithms, Lines,

Matrices & Roots of Polynomials Revision

Gameboard

Maths

Algebra and Roots: Cubics with Substitution 1ii

Algebra and Roots: Cubics with Substitution 1ii

The cubic equation $3x^3 - 9x^2 + 6x + 2 = 0$ has roots α , β and γ .

Part A Roots

Give the value of $\alpha + \beta + \gamma$.

$$\alpha + \beta + \gamma =$$

Give the value of $\alpha\beta + \beta\gamma + \gamma\alpha$.

$$\alpha\beta + \beta\gamma + \gamma\alpha =$$

Part B
$$\alpha^2 + \beta^2 + \gamma^2$$

Hence, find the value of $\alpha^2 + \beta^2 + \gamma^2$.

Part C Substitution

Use the substitution $x=\frac{1}{u}$ to find a cubic equation in u in the form $au^3+bu^2+cu+d=0$ where a, b, c and d are integers.

The following symbols may be useful: u

Part D
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$

Find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.

Adapted with permission from UCLES, A Level, June 2007, Paper 4725, Question 6.

Gameboard:

STEM SMART Double Maths 14 - Logarithms, Lines,

Matrices & Roots of Polynomials Revision

<u>Gameboard</u>

Maths

Roots of Polynomials

Roots of Polynomials

This question is about manipulation of the roots of two polynomials.

$$x^2 + kx + 2k = 0$$

has the roots α and β , while

$$x^3 + 4x + 3 = 0$$

has the roots α' , β' and γ' . Take $k \neq 0$.

Part A Roots of the quadratic

Find a quadratic equation with roots $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$.

The following symbols may be useful: k, x

Part B Substitution

Starting from the cubic equation above, use the substitution $x=\sqrt{u}$ to obtain a cubic equation in u.

The following symbols may be useful: u

Part C Roots of the cubic

Find an expression for ${\alpha'}^4 + {\beta'}^4 + {\gamma'}^4 + {\alpha'}{\beta'}{\gamma'}$.

Adapted with permission from UCLES, A Level, June 2008, Paper 4725, Question 8 and June 2015, Paper 4725, Question 10.

Gameboard:

STEM SMART Double Maths 14 - Logarithms, Lines, Matrices & Roots of Polynomials Revision

<u>Gameboard</u>

Maths

Matrices: nxm Rules 1i

Matrices: nxm Rules 1i

The matrices
$${f A}$$
, ${f B}$ and ${f C}$ are given by ${f A}=egin{pmatrix} 3\\1\\2 \end{pmatrix}$, ${f B}=egin{pmatrix} 4\\0\\3 \end{pmatrix}$ and ${f C}=egin{pmatrix} 2&4&-1 \end{pmatrix}$

Part A $\mathbf{A} - 4\mathbf{B}$

Find $\mathbf{A} - 4\mathbf{B}$.

Part B BC

Find **BC**.

Part C CA		
Find the matrix $\mathbf{C}\mathbf{A}$.		

Adapted with permission from UCLES, A Level, June 2008, Paper 4725, Question 5.

Gameboard:

STEM SMART Double Maths 14 - Logarithms, Lines,

Matrices & Roots of Polynomials Revision

<u>Gameboard</u>

Maths

Matrices

Matrices

This question will look at 4 matrices **A**, **B**, **C** and **D** given by

$$\mathbf{A} = egin{pmatrix} 3 & 4 \ 2 & -3 \end{pmatrix}$$

$$\mathbf{B} = egin{pmatrix} 4 & 6 \ 3 & -5 \end{pmatrix}$$

$$\mathbf{C} = \begin{pmatrix} a & 3 \\ -2 & 1 \end{pmatrix}$$

$$\mathbf{D}=egin{pmatrix}2&-1&1\0&3&1\1&1&b\end{pmatrix}$$

where $b \neq 1$.

Part A Matrix equation

p and q satisfy the equation $p\mathbf{A}+q\mathbf{B}=\mathbf{I}$ where \mathbf{I} is the identity matrix.

Find the constants p and q. If a value is not a whole number, enter the value as a decimal.

$$p =$$

$$q = \bigcap$$

Part B A singularity!

Given that ${\bf C}$ is singular, find the value of a.

The following symbols may be useful: a

Part C \mathbf{C}^{-1}

Given that C is non-singular, find C^{-1} .

$$\mathbf{C}^{-1} = \frac{1}{\Box} \begin{pmatrix} \Box & \Box \\ \Box & \Box \end{pmatrix}$$

Items:

Part D Simultaneous equations

Using the previous part, solve the following simultaneous equations

$$ax + 3y = 1$$

$$-2x + y = -1$$

Items:

 $egin{bmatrix} egin{pmatrix} -6 \end{bmatrix} & egin{pmatrix} -4 \end{bmatrix} & egin{pmatrix} 0 \end{bmatrix} & egin{pmatrix} 2 \end{bmatrix} & egin{pmatrix} 4 \end{bmatrix} & egin{pmatrix} a \end{bmatrix} & egin{pmatrix} a + 2 \end{bmatrix} & egin{pmatrix} a + 4 \end{bmatrix} & egin{pmatrix} a + 6 \end{bmatrix} & egin{pmatrix} 2 - a \end{bmatrix} & egin{pmatrix} 4 - a \end{bmatrix} & egin{pmatrix} 6 - a \end{bmatrix}$

Part E $|\mathbf{D}|$

Find the determinant of \mathbf{D} in terms of b.

The following symbols may be useful: b

Part F \mathbf{D}^{-1}

Find \mathbf{D}^{-1} .

$$\mathbf{D}^{-1} = \frac{1}{\Box} \left(\begin{array}{cccc} & \Box & \Box \\ & \Box & \Box \\ & & \Box \end{array} \right)$$

Items:

$$oxed{6b-6} oxed{ \left[6b-1
ight]} oxed{ \left[6b+1
ight]} oxed{ \left[6b+6
ight]}$$

Part G More simultaneous equations

Using the answer to the previous part, or otherwise, solve the following set of simultaneous equations

$$2x - y + z = 1$$

$$3y + z = 2$$

$$x + y + bz = 2$$

Items:

Adapted with permission from UCLES, A Level, June 2012, Paper 4725, Question 2, UCLES, A Level, June 2008, Paper 4725, Question 7 and UCLES, A Level, June 2010, Paper 4725, Question 9