Trabajo Práctico N°1 Análisis Matemático 1-Facultad de Ingeniería

FUNCIONES, LÍMITES Y CONTINUIDAD¹

1-FUNCIONES

1. En el siguiente gráfico se muestra la temperatura global media (en grados Celsius) en función de la cantidad de años transcurridos desde 1950. Las mediciones correspondientes se visualizan como puntos. Además se ha ajustado una curva que mejor aproxima (en cierto sentido) a las mediciones. Esta curva constituye el modelo matemático para la temperatura global media.

Utilizando el modelo, responda lo siguiente.

- a) Diga cuáles son las unidades de la variable de entrada (o variable independiente) y de salida (o variable dependiente).
- b) Mencione en qué año inicia el registro de los datos del modelo y aproximadamente en qué año termina.
- c) Encuentre la temperatura global media en 1998.
- d) Determine el año en el que la temperatura global media es de 15.25 grados Celsius.
- 2. Determine el dominio de cada una de las siguientes funciones.

a)
$$f(x) = 1 + x^2$$

b)
$$f(x) = 1 - \sqrt{x}$$

c)
$$f(x) = \sqrt{5x + 10}$$

d)
$$q(x) = \sqrt{x^2 - 3x}$$

¹En ocasiones, prescindiremos del rigor con fines didácticos. Por ejemplo, a veces se darán funciones sin especificar el dominio o el conjunto de llegada.

$$e) \ f(t) = \frac{4}{3-t}$$

$$f) \ g(t) = \frac{2}{t^2 - 16}$$

g)
$$f(x) = \frac{x+3}{4-\sqrt{x^2-9}}$$

3. Explique por qué los siguientes gráficos no representan funciones de la forma y = f(x).

- 4. Exprese la longitud del lado, el área de la superficie y el volumen de un cubo como función de la diagonal d del mismo.
- 5. Escriba símbolicamente la siguiente relación: la magnitud F de una fuerza es directamente proporcional al desplazamiento Δx .
- 6. Exprese la siguiente relación como una igualdad: la magnitud de la fuerza eléctrica F_e que ejerce la carga eléctrica q_1 sobre q_2 es directamente proporcional al producto de $|q_1|$ y $|q_2|$, e inversamente proporcional al cuadrado de la distancia r que las separa. (Puede utilizar la misma constante k para todas las relaciones de proporcionalidad mencionadas).
- 7. Grafique las siguientes funciones:

a)
$$f(x) = \begin{cases} x, & \text{si } 0 \le x \le 1, \\ 2 - x, & \text{si } 1 < x \le 2. \end{cases}$$

c)
$$g(x) = \begin{cases} 1 - x, & \text{si } 0 \le x \le 1, \\ 2 - x, & \text{si } 1 < x \le 2. \end{cases}$$

b)
$$f(x) = \begin{cases} 4 - x^2, & \text{si } x \le 1, \\ x^2 + 2x, & \text{si } x > 1. \end{cases}$$

8. Determine una fórmula para cada función graficada.

- 9. Para las siguientes funciones:
 - determine el dominio;
 - grafique la función;
 - a partir de la gráfica, indique si la función es par, impar o ninguna, y además dé los intervalos de crecimiento y de decrecimiento.
 - a) $f(x) = \sqrt{|x|}$
 - b) $h(x) = x^3 + x$
 - c) g(x) = 2|x| 1
- 10. Una caja sin tapa se construye a partir de una pieza rectangular de cartón, cuyas dimensiones son 14×22 cm. A la pieza de cartón se le cortan cuadrados de lado x en cada esquina y luego se doblan hacia arriba los lados. Exprese el volumen de la caja en función de x y determine el dominio de dicha función.

11. Una central eléctrica se encuentra cerca de un río, donde éste tiene un ancho de 800 m. Tender un cable de la central a un lugar en la ciudad, 10560 m río abajo en el lado opuesto, tiene un costo de pesos 180 por metro que cruce el río y pesos 100 por metro en tierra a lo largo de la orilla del río.

Suponga que el cable va de la central al punto Q, en el lado opuesto, lugar que se encuentre a x metros del punto P, directamente opuesto a la central. Escriba una función C(x) que indique el costo de tender el cable en términos de la distancia x.

12. Un agrimensor se encuentra a 9 metros de la base de un edificio (ver la figura siguiente). Mide el ángulo de elevación a la parte superior del edificio y éste resulta entre 74,40° y 75,55°, debido a imprecisiones en la medición. ¿Dentro de qué rango se encontrará el valor real de la altura del edificio? Justifique por qué puede conocerse este rango con sólo dos cálculos.

13. Evalúe cada expresión siendo

$$f(x) = 2 - x,$$

$$g(x) = \begin{cases} -x, & \text{si } -2 \le x < 0, \\ x - 1, & \text{si } 0 \le x \le 2. \end{cases}$$

- a) f(g(0))
- b) f(f(2))
- c) g(f(3))
- d) g(f(0))
- e) g(g(-1))
- $f) f\left(g\left(\frac{1}{2}\right)\right)$

14. Escriba la expresión de $(f \circ g)(x)$ y de $(g \circ f)(x)$

a)
$$f(x) = x^4$$
, $g(x) = \sqrt{x}$

$$g(x) = \sqrt{x}$$

$$b) \ f(x) = \sqrt{x^2 + 1},$$

b)
$$f(x) = \sqrt{x^2 + 1}$$
, $g(x) = \frac{1}{\sqrt{x+4}}$,

c)
$$f(x) = \frac{1}{x+4}$$
, $g(x) = \frac{1}{x}$.

$$g(x) = \frac{1}{x}.$$

15. Encuentre dos funciones f y g tales que la expresión de h se corresponda con $f \circ g$:

- a) $h(x) = \sqrt{1 + x^2}$,
- $b) h(x) = sen(x^2),$
- $c)\ h(x)=sen^2(x),$
- $d) \ h(x) = \frac{2}{1 \tan^3(x)}.$

2-LÍMITES

1. Para la función g, cuya gráfica se ve a continuación, determine los límites siguientes o explique por qué no existen. Justifique su respuesta explicando con palabras.

$$a) \lim_{x \to 1} g(x) =$$

b)
$$\lim_{x \to 2} g(x) =$$

c)
$$\lim_{x \to 3} g(x) =$$

$$a) \ \lim_{x\to 1}g(x)= \qquad \qquad \text{b)} \ \lim_{x\to 2}g(x)= \qquad \qquad \text{c)} \ \lim_{x\to 3}g(x)= \qquad \qquad \text{d)} \ \lim_{x\to 2,5}g(x)=$$

2. ¿Cuáles de los siguientes enunciados, con respecto a la función y=f(x) graficada aquí, son verdaderos y cuáles son falsos?

 $a) \lim_{x \to 0} f(x) \ existe$

 $e)\lim_{x\to 0} f(x) = 0$

 $b) \lim_{x \to 0} f(x) = 1$

 $f)\lim_{x\to 1} f(x) = 1$

 $c) \lim_{x \to 1} f(x) = 0$

- $g)\lim_{x\to x_0} f(x)$ existe para todo x_0 en (-1;1)
- d) $\lim_{x \to 1} f(x)$ no existe
- 3. Calcule los siguientes límites. Si aplica propiedades de límites, haga referencia a ellas:
 - $a) \lim_{x \to 2} \left(-x^2 + 5x 2 \right)$
 - $b) \lim_{x\to 0} \left(\frac{1+x+\sin x}{3\cos x} \right)$
 - $c) \lim_{y \to 2} \left(\frac{y+2}{y^2 + 5y + 6} \right)$
 - $d) \lim_{h \to 0} \left(\frac{3h}{\sqrt{3h+1}-1} \right)$
 - $e) \lim_{h \to 0} \left(\frac{\sqrt{5h+4}-2}{h} \right)$
 - $f) \lim_{x \to 5} \left(\frac{x-5}{x^2 25} \right)$
 - g) $\lim_{x\to 0} \left[(x^2 1)(2 \cos x) \right]$
- 4. Debido a su relación con las rectas secantes, tangentes y tasas instantáneas, los límites de la forma

$$\lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} \right]$$

aparecen con mucha frecuencia en cálculo. Evalúe este límite para el valor de x y la función f indicados.

 $a) \quad f(x) = x^2 \qquad x = 1$

- b) $f(x) = \sqrt{3x+1}$ x = 0
- 5. Si $\sqrt{5-2x^2} \le f(x) \le \sqrt{5-x^2}$ para toda $-1 \le x \le 1$, determine $\lim_{x\to 0} f(x)$.
- 6. Puede demostrarse que las desigualdades

$$1 - \frac{x^2}{6} < \frac{x \sin x}{2 - 2\cos x} < 1$$

se cumplen para todos los valores de x cercanos a 0, $x \neq 0$. ¿Nos indica algo acerca de

$$\lim_{x \to 0} \left(\frac{x \sin x}{2 - 2 \cos x} \right) ?$$

Justifique su respuesta.

7. Utilice el teorema de la compresión para calcular los siguientes límites

a)

$$\lim_{x \to 0^+} x.sen\left(\frac{1}{x}\right) =$$

b)

$$\lim_{x\to 0^-} x.sen\left(\frac{1}{x}\right) =$$

En base a lo anterior, calcule:

$$\lim_{x\to 0} x.sen\left(\frac{1}{x}\right) = .$$

- 8. Calcule los siguientes límites laterales e interprete gráficamente realizando un gráfico de la función, indicando también en el dibujo los límites pedidos:
 - $a) \lim_{x \to 0^+} \frac{x}{|x|} =$
 - $b) \lim_{x \to 0^-} \frac{x}{|x|} =$
 - c) $\lim_{x \to 2^+} \frac{x-2}{|x-2|} =$
 - $d) \lim_{x \to 2^{-}} \frac{x-2}{|x-2|} =$
 - $e) \lim_{x \to 1^+} f(x) =, \quad \text{siendo } f(x) = \begin{cases} 4 2x, & x \le 1 \\ 6x 4, & x > 1 \end{cases}$

$$\begin{array}{ll} f) & \lim\limits_{x\to 1^{-}} \frac{\sqrt{2x}(x-1)}{|x-1|} = \\ g) & \lim\limits_{x\to 0^{+}} \frac{\sqrt{x^2+4x+5}-\sqrt{5}}{x} = \end{array}$$

9. Grafique la siguiente función y responda

$$f(x) = \begin{cases} \sqrt{1 - x^2}, & 0 \le x < 1 \\ 1, & 1 \le x < 2 \\ 2, & x = 2 \end{cases}$$

- a) Determine el dominio de f;
- b) ¿En qué puntos c, si los hubiera, existe el límite lím $_{x\to c} f(x)$?
- c) ¿En qué puntos c, si los hubiera, sólo existe el límite lím $_{x\to c^-} f(x)$?
- d) ¿En qué puntos c, si los hubiera, sólo existe el límite lím $_{x\to c^+}f(x)$?
- 10. Determine los siguientes límites trigonométricos:

$$a) \lim_{\theta \to 0} \left(\frac{\sin\sqrt{2}\theta}{\sqrt{2}\theta} \right)$$

b)
$$\lim_{h \to 0^-} \left(\frac{h}{\sin 3h} \right)$$

$$c) \lim_{h \to 0} \left(\frac{\operatorname{sen}(\operatorname{sen}h)}{\operatorname{sen}h} \right)$$

$$d) \lim_{x \to 0} \left(\frac{\tan 3x}{\sin 8x} \right)$$

- 11. Si usted sabe que en un punto interior a del dominio de f, existen $\lim_{x \to a^+} f(x)$ y $\lim_{x \to a^-} f(x)$ entonces ¿se cumplirá necesariamente que existe $\lim_{x \to a} f(x)$? Justifique su respuesta (es decir, si la respuesta es afirmativa argumente por qué y si es falso, dé un contraejemplo).
- 12. Si sabe que existe $\lim_{x\to c} f(x)$ ¿puede encontrar su valor calculando $\lim_{x\to c^+} f(x)$? Justifique su respuesta (es decir, si la respuesta es afirmativa argumente por qué y si es falso, dé un contraejemplo).
- 13. El flujo de calor a través de una pared de espesor L puede calcularse como:

$$Q = -kA\frac{T_2 - T_1}{L},$$

donde k es la conductividad térmica, A es el área de tranferencia y T_2 y T_1 las temperaturas a cada lado de la pared. Usando límites, determine el comportamiento de Q bajo las siguientes posibilidades:

- El espesor de la pared es muy grande.
- La temperatura T_1 es muy cercana a T_2 .
- El espesor de la pared es muy delgado.

¿Los resultados tienen sentido físico? ¿En qué casos no habrá transferencia de calor?.

3-CONTINUIDAD, LÍMITES INFINITOS Y LÍMITES EN EL INFINITO

1. Indique dónde son continuas las siguientes funciones:

2. Grafique la siguiente función $f(x) = \begin{cases} x^2 - 1, & \text{si } -1 \le x < 0, \\ 2x, & \text{si } 0 \le x < 1, \\ 1, & \text{si } x = 1, & \text{y responda:} \\ -2x + 4, & \text{si } 1 < x < 2, \\ 0, & \text{si } 2 < x < 3. \end{cases}$

a) ¿Existe
$$f(-1)$$
?

e) ¿Existe
$$f(1)$$
?

b) ¿Existe
$$\lim_{x \to -1^+} f(x)$$
?

f) ¿Existe
$$\lim_{x\to 1} f(x)$$
?

c)
$$\lim_{x \to -1^+} f(x) = f(-1)$$
?

d) ¿La función es continua en x=0? ¿Y en x=1? Si no lo es, clasifique la discontinuidad.

3. ¿En qué puntos son continuas las siguientes funciones? También, clasifique las discontinuidades.

a)
$$y = \frac{1}{(x+2)^2} + 4$$

c)
$$y = \frac{x+1}{x^2 - 4x + 3}$$

$$b) \ \ y = \frac{x+2}{\cos x}$$

4. Defina h(2) de manera que $h(t)=\frac{t^2+3t-10}{t-2}$ sea continua en t=2.

5. ¿Para qué valores de a, la función f es continua para todo $x \in \mathbb{R}$?

$$f(x) = \begin{cases} x^2 - 1, & \text{si } x < 3, \\ 2ax, & \text{si } x \ge 3. \end{cases}$$

6. ¿Para qué valores de b, la función g es continua para todo $x \in \mathbb{R}$?

$$g(x) = \begin{cases} \frac{x-b}{b+1}, & \text{si } x \le 0, \\ x^2 + b, & \text{si } x > 0. \end{cases}$$

- 7. Utilizando el teorema del valor intermedio para funciones continuas, demuestre que la ecuación $x^3 15x + 1 = 0$ tiene al menos 3 soluciones en el intervalo [-4;4].
- 8. Para un gas (ideal) la presión es inversamente proporcional al volumen ocupado por el gas como se muestra en el gráfico:

- ¿Qué sucede con la presión cuando el volumen tiende a 0? ¿Qué sucede con la presión cuando el volumen tiende a infinito? Interprete sus respuestas.
- 9. Suponga que U=U(t) representa la concentración de cierta sustancia en función del tiempo t. ¿Cuál de los siguientes límites debe utilizarse para estudiar el comportamiento de U a largo plazo?
 - $a) \lim_{t\to 0^+} U(t)$
 - $b) \lim_{t\to+\infty} U(t)$
 - c) $\lim_{t\to 0^-} U(t)$
- 10. Para la función f, cuya gráfica se muestra, determine los siguientes límites (si existen):

$$a) \lim_{x \to 4} f(x)$$

$$e) \lim_{x \to 2^+} f(x)$$

$$i) \lim_{x \to 2^{-}} f(x)$$

$$b) \lim_{x\to 2} f(x)$$

$$f) \lim_{x \to -3^+} f(x)$$

$$j$$
 $\lim_{x \to -3^-} f(x)$

c)
$$\lim_{x \to -3} f(x)$$

$$g)\lim_{x\to 0^+} f(x)$$

$$k) \lim_{x \to 0^{-}} f(x)$$

$$d) \lim_{x \to 0} f(x)$$

$$h)\lim_{x\to+\infty}f(x)$$

$$l) \lim_{x \to -\infty} f(x)$$

11. Determine los límites para $x \to \infty$ y para $x \to -\infty$ de las siguientes funciones:

a)
$$f(x) = \frac{2x+3}{5x+7}$$

c)
$$f(x) = \frac{x+1}{x^2+3}$$

$$f(x) = \frac{10x^5 + x^4 + 31}{x^6}$$

d)
$$f(x) = \frac{-2x^3 - 2x + 3}{3x^3 + 3x^2 - 5x}$$

Explique qué significan los resultados encontrados.

12. Determine los siguientes límites:

$$a) \lim_{x \to \infty} \sqrt{\frac{8x^2 - 3}{2x^2 + x}}$$

b)
$$\lim_{x \to -\infty} \left(\frac{x^2 + x - 1}{8x^2 - 3} \right)^{\frac{1}{3}}$$

13. Indique las ecuaciones de las asíntotas (verticales, horizontales y oblicuas) de las siguientes funciones. Además, grafique las funciones y las asíntotas encontradas.

$$a) \ \ y = \frac{1}{2x+4}$$

$$b) \ y = \frac{x+3}{x+2}$$

c)
$$y = \frac{x^2 + 4}{x - 1}$$

$$d) \ \ y = \frac{x^2 - 1}{2x + 4}$$

14. Determine los siguientes límites:

a)
$$\lim_{x \to \infty} \left(\sqrt{x+9} - \sqrt{x+4} \right)$$

$$b) \lim_{x \to \infty} \left(\sqrt{x^2 + 25} - \sqrt{x^2 - 1} \right)$$

Interprete los resultados obtenidos.

Ejercicios con asistencia de Inteligencia Artificial

Considere la función

$$f(x) = \frac{x^2 + 1}{x - 1}.$$

A continuación, observará la búsqueda de asíntotas de f que realiza la herramienta de IA Chat GPT. Su misión es descubrir errores u omisiones en dicho desarrollo.

Para determinar todas las asíntotas de la función:

$$f(x)=\frac{x^2+1}{x-1}$$

1. Asíntotas verticales

Las asíntotas verticales ocurren en los valores de x que anulan el denominador y no son cancelados por el numerador.

El denominador es:

$$x - 1 = 0 \Rightarrow x = 1$$

Como x=1 no anula el numerador x^2+1 (ya que $1^2+1=2\neq 0$), hay una asíntota vertical en:

$$x = 1$$

2. Asíntotas horizontales o oblicuas

Para determinar una posible asíntota horizontal, observamos los grados de los polinomios:

- El numerador x^2+1 es de grado 2.
- El denominador x-1 es de grado 1.

Cuando el grado del numerador es mayor que el del denominador en más de 1 unidad, no hay asíntota horizontal, pero sí puede haber una **asíntota oblicua**, la cual se encuentra dividiendo x^2+1 entre x-1.

División de $x^2 + 1$ entre x - 1:

Usamos la división de polinomios:

- 1. Dividimos x^2 entre x, lo que da x.
- 2. Multiplicamos x por x-1, obteniendo x^2-x .
- 3. Restamos: $(x^2 + 1) (x^2 x) = x + 1$.
- 4. Dividimos x entre x, lo que da +1.
- 5. Multiplicamos 1 por x-1, obteniendo x-1.
- 6. Restamos: (x+1) (x-1) = 2.

El cociente es x+1 con un residuo de 2/(x-1), lo que indica que para valores grandes de x, la función se aproxima a:

$$y = x + 1$$

Conclusión

- Asíntota vertical: x = 1.
- Asíntota oblicua: y = x + 1.

Trabajo Práctico N°2 Análisis Matemático 1-Facultad de Ingeniería

DERIVADAS, REGLAS DE CÁLCULO Y APLICACIONES A CINEMÁTICA Y AL ANÁLISIS DE FUNCIONES

Aclaraciones:

- Tenga en cuenta que en algunos ejercicios de aplicaciones, aunque no se indique explícitmante, los números no son adimensionales sino que tienen las unidades correspondientes para establecer la distancia en metros (m), el tiempo en segundos (s), la velocidad en metros por segundo (m/s) y la aceleración en metros por segundo al cuadrado (m/s²).
- Cuando se pida analizar la existencia de la derivada f' de una función f en un intervalo cerrado, se debe analizar también la existencia de las derivadas laterales en los extremos del intervalo.
- 1. En el siguiente gráfico se muestra la temperatura global media (en grados Celsius) en función de la cantidad de años transcurridos desde 1950. Las mediciones correspondientes se visualizan como puntos. Además se ha ajustado una curva que mejor aproxima (en cierto sentido) a las mediciones.

- a) Calcule, aproximadamente, la tasa de cambio promedio de la temperatura global media en el intervalo [0, 20] utilizando la curva roja. Interprete el resultado.
- b) Realice nuevamente lo indicado en el ítem anterior pero ahora en el intervalo [40, 60].
- 2. El ingreso por vender x gramos de un producto es $I(x) = 50x 2x^2$. Calcule la pendiente de la recta secante desde x = 2 hasta x = 8 e interprete el resultado. Grafique I y la recta secante.
- 3. Estime f'(4)

4. Estime f'(3)

5. Determine la pendiente de la gráfica de la función en el punto dado utilizando la definición de pendiente como límite. Determine también una ecuación para la recta tangente a la gráfica en ese punto. Finalmente, grafique f y la recta tangente.

a)
$$f(x) = x^2 + 1$$

c)
$$f(x) = \frac{x}{x-2}$$
 (3;3)

b)
$$f(x) = \sqrt{x+1}$$
 (8;3)

6. ¿En qué puntos las gráficas de las funciones indicadas tienen tangentes horizontales? Grafique la función y las rectas tangentes horizontales.

a)
$$f(x) = x^2 + 4x - 1$$

b)
$$f(x) = x^3 - 3x$$

7. Calcule la derivada de las siguientes funciones y determine el valor de las derivadas indicadas en cada caso.

a)
$$f(x) = (x-1)^2 - 1$$
 $f'(-1); f'(0)$

$$f'(-1); f'(0)$$

b)
$$g(x) = \frac{1-x}{2x}$$
 $g'(-1); g'(\sqrt{2})$

$$g'(-1); g'(\sqrt{2})$$

8. En los gráficos de abajo, el de arriba representa a una función f y el de abajo su derivada f'. Utilizando solo los gráficos, responda:

- a) Calcule f(0) y f(10).
- b) Determine la pendiente de la recta tangente a f cuando x = -5.
- c) Encuentre el valor de x en el que la pendiente de la curva y = f(x) es 80.
- d) Encuentre la tasa de cambio instantánea de f en x = 10.

9. En los gráficos de abajo, el de arriba representa a una función f y el de abajo su derivada f'. Utilizando solo los gráficos, responda:

- a) Calcule f(4) y f(6).
- b) Determine la pendiente de la recta tangente a f cuando x = 6.
- c) Encuentre el valor de x en el que la pendiente de la curva y=f(x) es 20.
- d) Encuentre la tasa de cambio instantánea de f en x=2.
- 10. Relacione las gráficas de las funciones con las gráficas de sus derivadas.

- 11. La gráfica de la siguiente figura está formada por segmentos de recta unidos
 - a) ¿En qué puntos del intervalo [-4;6] f' no está definida? Observe que como se considera el intervalo cerrado, en los extremos del mismo debe analizar también las derivadas laterales correspondientes. Justifique su respuesta.

- b) Grafíque la derivada de f en el intervalo [-4, 6] (en los extremos del intervalo, debe graficar los valores de las derivadas laterales correspondientes).
- 12. El siguiente gráfico muestra la evolución del Producto Interno Bruto (PBI) de Estados Unidos en un lapso reciente de tiempo. Identifique los intervalos (cerrados) donde la derivada es positiva o negativa y relacione estos signos con el crecimiento o decrecimiento del PBI. Tenga en cuenta que en los extremos de los intervalos se toman derivadas laterales.

13. El siguiente gráfico muestra una comparación de tiempos de ejecución de distintos algoritmos en función de la cantidad de componentes de la entrada o size:

José M. Medrano:elDinero

Fuente: Oficina del Censo de Estados Unidos

a) A partir de un análisis gráfico, determine el algoritmo que para size = 1600000, presenta la mayor tasa de cambio instantánea. Explique cómo se relaciona esto con

el crecimiento del tiempo de ejecución del algoritmo en dicha entrada.

- b) Ídem al inciso anterior pero para size = 1400000.
- c) Estime la tasa de cambio instantánea de cada algoritmo en size = 1200000. Interprete los resultados obtenidos.
- 14. Calcule las derivadas por la derecha y por la izquierda como límites laterales para mostrar que las funciones dibujadas no son derivables en el punto P.

- 15. Cada figura (ver página 4) presenta la gráfica de una función en el intervalo cerrado D. ¿En qué puntos del dominio la función parece ser:
 - derivable (observe que las funciones están definidas en intervalos cerrados, por lo que deberá analizar las derivadas laterales en los extremos de dichos intervalos)?
 - continua, pero no derivable?
 - ni continua ni derivable?

Justifique sus respuestas.

a. y = f(x) $D: -3 \le x \le 2$

y = f(x) $D: -2 \le x \le 3$

d.

e.

f.

16. Determine $\frac{dy}{dx}$ para cada caso:

$$a) \ y = x^2 \cos(x)$$

c)
$$y = \csc(x) - 4\sqrt{x} + 7$$

$$b) \ f(x) = \operatorname{sen}(x) \ \tan(x)$$

$$d) y = \frac{\cos(x)}{1 + \sin(x)}$$

17. Utilizando reglas de derivación, determine la derivada primera y segunda de:

a)
$$y(x) = \frac{x^3 + 7}{\sqrt{1 + 2x}}$$

$$b) \ s(t) = \frac{t^2 + 5t - 1}{t^2}$$

$$c) \ y(x) = sen(x^2)$$

$$d) \ h(s) = \cos\sqrt{1+s^2}$$

18. Determine $\frac{dy}{dx}$ utilizando la regla de la cadena.

$$a) \ y = \left(1 - \frac{x}{7}\right)^{-7}$$

c)
$$y = \cot\left(\pi - \frac{1}{x}\right)$$

$$b) \ y = \sec\left(\tan(x)\right)$$

d)
$$y = \operatorname{sen}^3 x$$

19. La curva $y = ax^2 + bx + c$ pasa por el punto (1;2) y es tangente a la recta y = x en el origen. Determine a, b y c.

- 20. Determine todos los puntos (x;y) en la gráfica de $f(x) = 3x^2 4x$ con rectas tangentes paralelas a la recta y = 8x + 5. Grafique f y las rectas tangentes paralelas a y = 8x + 5.
- 21. Determine la ecuación de la recta tangente a $y = \left[\frac{x-1}{x+1}\right]^2$ en el punto (0,1).
- 22. Determine el valor de a que hace que la siguiente función sea derivable para todo valor de x.

$$g(x) = \begin{cases} ax, & \text{si } x < 0, \\ x^2 - 3x, & \text{si } x \ge 0. \end{cases}$$

23. Determine los valores de a y b que hacen que la siguiente función sea derivable para todo valor de x.

$$f(x) = \begin{cases} ax + b, & \text{si } x > -1, \\ bx^2 - 3, & \text{si } x \le -1. \end{cases}$$

24. **Presión en un cilindro.** Si en un cilindro se mantiene un gas a una temperatura constante T (véase la siguiente figura), la presión P está relacionada con el volumen V mediante la siguiente fórmula:

$$P = \frac{nRT}{V - nb} - \frac{an^2}{V^2}$$

en la que a, b, n y R son constantes.

- Determine $\frac{dP}{dV}$.
- \blacksquare Interprete qué significa que $\frac{dP}{dV}>0$ y que $\frac{dP}{dV}<0.$
- Las condiciones del inciso anterior, ¿son físicamente posibles?

25. Dadas las posiciones s = f(t) de un cuerpo que se mueve en linea recta:

a)
$$s = t^2 - 3t + 2$$
, $0 \le t \le 6$

2)
$$s = \frac{t^4}{4} - t^3 + t^2$$
, $0 \le t \le 3$,

determine:

- a) El desplazamiento del cuerpo y la velocidad promedio para el intervalo indicado.
- b) ¿Cuándo, si es que sucede, el cuerpo cambia de dirección?
- 26. La siguiente figura muestra la velocidad $v=\frac{ds}{dt}=f(t)$ de un cuerpo que se mueve a lo largo de una recta. Analizando la figura responda:

- a) ¿En qué intervalo(s) de tiempo retrocede el objeto?
- b) ¿En qué intervalo(s) de tiempo el objeto se mueve con rapidez constante?
- c) Grafique la rapidez del objeto para $0 \le t \le 10$.
- d) Grafique la aceleración donde esté definida.
- 27. La siguiente figura representa la velocidad v = f(t) de una partícula que se mueve en una recta horizontal. Analizando la figura responda:

- a) ¿Cuándo se mueve la partícula hacia delante?¿Cuándo hacia atrás? ¿Cuándo aumenta su rapidez? ¿Cuándo se detiene?
- b) ¿Cuándo es positiva la aceleración de la partícula? ¿Cuándo es negativa? ¿Cuándo es cero?
- c) ¿Cuándo alcanza la partícula su máxima rapidez?

- d) ¿Cuándo permanece inmóvil la partícula durante más de un instante?
- 28. Un objeto que está sujeto a un resorte (véase la siguiente figura) estaba inicialmente en su posición de equilibrio (x=0). Sin embargo, un estudiante le aplicó una fuerza poniéndolo en movimiento y dando por resultado un desplazamiento de $x=10\cos(t)$.

- a) ¿Cuál es la amplitud A del movimiento?
- b) ¿Cuál es el periodo de la oscilación T, es decir, cuánto tiempo demora en realizar una oscilación completa? Luego calcule la frecuencia f = 1/T.
- c) Determine el desplazamiento del objeto cuando $t=0,\,t=\frac{\pi}{3}$ y $t=\frac{3\pi}{4}$.
- d) Determine la velocidad del objeto cuando $t=0,\,t=\frac{\pi}{3}$ y $t=\frac{3\pi}{4}.$
- 29. Suponga que un pistón describe un movimiento recto hacia arriba y hacia abajo, y que su posición en el instante t (en segundos) es

$$s = A\cos\left(2\pi bt\right),\,$$

con A y b positivos. El valor de A es la amplitud del movimiento y b es la frecuencia (número de veces que el pistón se mueve hacia arriba y hacia abajo cada segundo).¿Qué efecto tiene la duplicación de la frecuencia en la velocidad y la aceleración del pistón? (Una vez que lo determine, sabrá por qué algunas máquinas se descomponen cuando las hacen funcionar demasiado rápido).

APLICACIONES DE LA DERIVADA AL ANÁLISIS DE FUNCIONES

30. Determine si las siguientes funciones tienen valores extremos relativos en [a;b].

a) y y = h(x) y = f(x) y

- 31. En base a las gráficas,
 - a) determine los intervalos abiertos en los que la función es creciente y en los que es decreciente;.
 - b) identifique los valores extremos locales de la función, si los hay; además, indique en dónde se alcanzan.

32. Grafique cada función y determine si la función tiene valores extremos locales en su dominio.

a)
$$f(x) = \frac{6}{x^2 + 2}$$
, $-1 < x < 1$

b)
$$g(x) = \begin{cases} \frac{1}{x}, & \text{si } -1 \le x < 0, \\ \sqrt{x}, & \text{si } 0 \le x \le 4. \end{cases}$$

c)
$$f(x) = \begin{cases} 3 - x, & \text{si } x < 0, \\ 3 + 2x - x^2, & \text{si } x \ge 0. \end{cases}$$

33. Para la función

$$y = \frac{x^2 - 4}{x - 3}$$

aplique la derivada primera para encontrar los intervalos de crecimiento y decrecimiento así como los extremos locales.

- 34. Sea $f(x) = |x^3 9x|$.
 - a) ¿Existe f'(0)? En caso de que no exista, justifique empleando la definición de derivadas laterales
 - b) ¿Existe f'(3)? En caso de que no exista, justifique empleando la definición de derivadas laterales.
 - c) ¿Existe f'(-3)? En caso de que no exista, justifique empleando la definición de derivadas laterales.
 - d) Determine todos los valores extremos locales de f.
- 35. La siguiente figura muestra una parte de la gráfica de una función derivable y = f(x). En cada uno de los cinco puntos indicados, clasifique y' e y'' como positiva, negativa o cero.

36. Para las siguientes funciones, aplique el procedimiento de la derivada primera para localizar los intervalos de crecimiento y decrecimiento de las funciones, así como los extramos locales. Luego, aplique la derivada segunda para encontrar los intervalos de concavidad y puntos de inflexión. Finalmente, verifique sus respuestas con los gráficos dados.

a) $y = \frac{x^3}{3} - \frac{x^2}{2} - 2x + \frac{1}{3}$

b)
$$y = \frac{x^4}{4} - 2x^2$$

37. Para las siguientes funciones, determine:

- Dominio, intersecciones con los ejes y simetría (si la función es par o impar).
- Intervalos donde la función es continua.
- Discontinuidades de la función y tipos de discontinuidades.
- Asíntotas de la función (verticales, horizontales y oblicuas).
- Intervalos de crecimiento y/o decrecimiento.
- Máximos y/o mínimos locales.
- Intervalos de concavidad hacia arriba y/o hacia abajo.
- Puntos de inflexión.

Finalmente, realice un esbozo de la gráfica de la función.

a)
$$f(x) = x^3 - 3x + 3$$

b)
$$f(x) = \frac{(x+1)^2}{1+x^2}$$

c)
$$y = \frac{8x}{x^2 + 4}$$

38. Grafique una función continua y = g(x) tal que:

- a) g(2)=2; 0< g'<1 para $x<2; g'(x)\to 1^-$ cuando $x\to 2^-; -1< g'<0$ para x>2 y $g'(x)\to -1^+$ cuando $x\to 2^+.$
- b) g(2)=2; g'<0 para x<2; $g'(x)\to -\infty$ cuando $x\to 2^-;$ g'>0 para x>2 y $g'(x)\to \infty$ cuando $x\to 2^+.$

39. Trace una curva y = f(x) que cumpla:

$$f'(-2) = 8 f'(2) = f'(-2) = 0,$$

•
$$f(0) = 4$$
 $f'(x) < 0 \text{ para } |x| < 2$

•
$$f(2) = 0$$
 $f''(x) < 0 \text{ para } x < 0,$

•
$$f'(x) > 0$$
 para $|x| > 2$ $f''(x) > 0$ para $x > 0$

Ejercicios con asistencia de Inteligencia Artificial

A) Considere la siguiente función:

$$f(x) = \frac{x^2 - 49}{x^2 + 5x - 14}.$$

A continuación, observará el resultado del análisis del comportamiento de f utilizando la herramienta de IA Chat GPT. Su misión es descubrir errores u omisiones en dicho análisis.

- 1. Respuesta de chat GPT a intersecciones con los ejes coordenados:
- Intersección con el eje y (cuando x=0): Sustituimos x=0 en la función:

$$f(0) = \frac{0^2 - 49}{0^2 + 5(0) - 14} = \frac{-49}{-14} = \frac{49}{14} = 3.5$$

Entonces, la intersección con el eje y es el punto (0, 3.5).

• Intersección con el eje x (cuando f(x)=0): La función se anula cuando el numerador es cero, es decir, cuando $x^2-49=0$:

$$x^2 = 49 \quad \Rightarrow \quad x = \pm 7$$

Entonces, las intersecciones con el eje x son los puntos (7,0) y (-7,0).

2. Respuesta de chat GPT a discontinuidades y tipos de discontinuidades:

Ya sabemos que hay discontinuidades en x=-7 y x=2. Para determinar el tipo de discontinuidad, debemos analizar el comportamiento de la función cerca de estos puntos:

- Discontinuidad en x=-7: El numerador es $x^2-49=(x-7)(x+7)$, y el denominador es $x^2+5x-14=(x-2)(x+7)$. Entonces, la discontinuidad en x=-7 es una discontinuidad removible (porque el factor x+7 se cancela).
- **Discontinuidad en** x=2: El numerador no tiene factor común con el denominador, por lo que la discontinuidad en x=2 es una **discontinuidad no removible** (posiblemente una asintótica).

- 3. Respuesta de chat GPT a la **Búsqueda de asíntotas:**
- Asíntotas verticales: Se dan en los puntos donde el denominador se hace cero, pero el numerador no se anula en esos puntos. Entonces, tenemos una asíntota vertical en x=2.

Asíntota vertical en x=2.

• Asíntotas horizontales: Para determinar si hay una asíntota horizontal, analizamos el comportamiento de la función cuando $x \to \infty$ o $x \to -\infty$. Dado que el grado del numerador y el denominador es el mismo (ambos son de grado 2), la asíntota horizontal es:

$$y = \frac{\text{coeficiente principal del numerador}}{\text{coeficiente principal del denominador}} = \frac{1}{1} = 1.$$

Entonces, hay una asíntota horizontal en y=1.

- Asíntotas oblicuas: No hay asíntotas oblicuas porque los grados del numerador y denominador son iguales.
- 4. Respuesta de chat GPT a la búsqueda de intervalos de crecimiento y decrecimiento

Para estudiar los intervalos de crecimiento y decrecimiento, debemos derivar la función:

$$f'(x) = \frac{(2x)(x^2 + 5x - 14) - (x^2 - 49)(2x + 5)}{(x^2 + 5x - 14)^2}$$

De aquí, se analiza el signo de f'(x) para determinar los intervalos donde la función es creciente o decreciente. Sin embargo, como la derivación es compleja, la recomendación es realizar el análisis en una calculadora o software.

A continuación se le pidió que diera más detalles:

Analizamos el signo de f'(x) en los intervalos determinados por las discontinuidades en x=-7 y x=2:

- 1. Intervalo $(-\infty, -7)$
 - Elegimos x = −8.
 - Evaluamos el signo de f'(x).
 - Obtendremos f'(x) > 0, por lo que la función es creciente.
- Intervalo (−7, 2)
 - Elegimos x = 0.
 - Evaluamos el signo de f'(x).
 - Obtendremos f'(x) < 0, por lo que la función es decreciente.
- 3. Intervalo $(2, \infty)$
 - Elegimos x = 3.
 - Evaluamos el signo de f'(x).
 - Obtendremos f'(x) > 0, por lo que la función es creciente.

- La función es **creciente** en $(-\infty, -7) \cup (2, \infty)$.
- La función es decreciente en (-7, 2).
- · No hay máximos ni mínimos locales, ya que la derivada nunca se anula en el dominio de la función.
- B) En el siguiente ejercicio, se le consultó a Chat GPT sobre puntos críticos. Su misión es leer las respuestas y analizar cada párrafo, a fin de encontrar posibles errores u omisiones.

Usuario

Definición formal de punto crítico en Análisis Matemático I

ChatGPT

En análisis matemático, un **punto crítico** de una función es un valor de la variable independiente donde la derivada de la función es igual a cero o no está definida.

Formalmente, supongamos que $f:D\subseteq\mathbb{R}\to\mathbb{R}$ es una función diferenciable en un intervalo D, y $c\in D$ es un punto. Decimos que c es un **punto crítico** de f si:

- 1. f'(c) = 0, o
- 2. f'(c) no está definida.

Los puntos críticos son importantes porque en ellos pueden ocurrir extremos locales (máximos, mínimos) o puntos de inflexión de la función.

Usuario

En la función $y = \frac{1}{x}$, x = 0 es un punto crítico?

ChatGPT

Para la función $y = \frac{1}{x}$, en el punto x = 0 no es un **punto crítico**. Razón:

- 1. **Derivada de la función**: La derivada de $y = \frac{1}{x}$ es $y' = -\frac{1}{x^2}$. Esta derivada está definida para todos los valores de x excepto en x = 0, donde la función tiene una discontinuidad (la derivada no está definida en x = 0).
- 2. Condición para ser punto crítico: Un punto crítico requiere que la derivada sea igual a cero o que no esté definida. Como la derivada no está definida en x = 0, no se considera un punto crítico en el sentido clásico, ya que no es un punto dentro del dominio de la función.

De hecho, x = 0 es una **singularidad** de la función, ya que la misma tiene una discontinuidad infinita en ese punto. Por lo tanto, x = 0 no es un punto crítico.

Trabajo Práctico N°3 Análisis Matemático 1-Facultad de Ingeniería

APLICACIONES DE LAS DERIVADAS A TASAS RELACIONADAS, LINEALIZACIÓN, DIFERENCIALES Y PROBLEMAS DE OPTIMIZACIÓN

TASAS RELACIONADAS

- 1. Suponga que el radio r y el área de la superficie $S=4\pi r^2$ de una esfera son funciones derivables de t. Escriba una ecuación que relacione $\frac{dS}{dt}$ con $\frac{dr}{dt}$.
- 2. Si la longitud x del lado de un cubo disminuye a razón de 5 m/min, ¿a qué razón cambia:
 - a) el área de la superficie del cubo cuando x = 3 m?
 - b) el volumen cuando x = 3 m?
- 3. El área de la superficie de un cubo aumenta a razón de 72 pulg 2 /seg.; A qué tasa cambia el volumen del cubo cuando la longitud del lado es x=3 pulg.?
- 4. El radio r y la altura h de un cono circular recto están relacionados con el volumen V del cilindro mediante la fórmula $V = \frac{1}{3}\pi r^2 h$.
 - a) ¿Cómo está relacionada $\frac{dV}{dt}$ con $\frac{dh}{dt}$ si r es constante?
 - b)¿Cómo está relacionada $\frac{dV}{dt} \mathrm{con} \ \frac{dr}{dt}$ si h es constante?
 - c) ¿Cómo está relacionada $\frac{dV}{dt}$ con $\frac{dr}{dt}$ y $\frac{dh}{dt}$ si ni r ni h son constante?
- 5. Cuando un plato circular de metal se calienta en un horno, su radio aumenta a razón de 0,01 cm/min. ¿A qué razón aumenta el área del plato cuando el radio es de 50 cm?
- 6. Una escalera de 13 pies está recargada sobre el muro exterior de una casa cuando su base empieza a deslizarse y alejarse (véase la figura). En el instante en el que la base está a 12 pies de la casa, la base se mueve a una tasa de 5 pies/seg.

- a) ¿Qué tan rápido resbala hacia abajo la parte superior de la escalera?
- b) En ese instante, ¿con qué tasa cambia el área del triángulo formado por la escalera, la pared y el suelo?
- c) En ese instante, ¿A qué tasa cambia el ángulo θ entre la escalera y el suelo?
- 7. Dos aviones comerciales vuelan a una altura de 5 000 metros a lo largo de recorridos en línea recta que se interesectan en ángulos rectos. El avión A se aproxima al punto de intersección con una rapidez de 900 m\s. El avión B se aproxima a la intersección a 700 m\s. ¿A qué tasa cambia la distancia entre ellos cuando A está a 1000 metros del punto de intersección y B a 1200 metros del punto de intersección?
- 8. Desde un depósito cónico de concreto (con el vértice hacia abajo), con altura de 6 m y cuyo radio de la base mide 45 m, fluye agua a razón 50 m 3 /min.
 - a) ¿Con qué rapidez disminuye el nivel del agua cuando la profundidad es de 5 m?
 - b) En ese momento, ¿qué tan rápido cambia el radio de la superficie del agua?. Dé su respuesta en centímetros por minuto.
- 9. Un bote se arrastra hacia el muelle mediante una cuerda que está atada a la proa. Se tira de la cuerda a razón de 2 pie/seg.
 - a) ¿Qué tan rápido se aproxima el bote al muelle cuando la longitud de la cuerda es de 10 pies?
 - b) ¿A qué velocidad cambia el ángulo θ en ese instante? (Véase la figura)

10. Un globo se eleva verticalmente desde una superficie plana a una tasa de 1 pie/seg. Justo cuando el globo está a 65 pies sobre el nivel del suelo, una bicicleta que se desplaza a una velocidad constante de 17 pie/seg pasa debajo de él. ¿Qué tan rápido cambia la distancia, s(t), entre la bicicleta y el globo 3 segundos después?

LINEALIZACIÓN Y DIFERENCIALES

11. A partir de la información del gráfico, estime f(4).

12. A partir de la información del gráfico, estime f(-1,5).

13. Determine una linealización en un entero cercano a x_0 , elegido de manera adecuada, en la que la función dada y sus derivadas sean fáciles de evaluar.

a)
$$f(x) = 2x^2 + 4x - 3$$
, $x_0 = -0.9$

c)
$$f(x) = x^{\frac{1}{3}}, x_0 = 8, 5$$

14. Demuestre que la linealización de $f(x) = (1+x)^k$ en x=0 es L(x)=1+kx. Utilice esta información para estimar lo siguiente.

$$a) (1,0002)^{50}$$

b)
$$(1,009)^{\frac{1}{3}}$$

15. Determine el diferencial dy y explique el significado del mismo:

$$a) \ y = \frac{2\sqrt{x}}{3(1+\sqrt{x})}$$

$$b) \ y = 4 \tan \left(\frac{1}{3}x^3\right)$$

16. Cada función f cambia de valor cuando x pasa de x_0 a $x_0 + dx$. Determine:

- el cambio $\triangle f = f(x_0 + dx) f(x_0);$
- el valor de la estimación $df = f'(x_0)dx$, y
- \bullet el error de aproximación | $\triangle \, f d f |.$

a)
$$f(x) = x^2 + 2x$$
, $x_0 = 1$, $dx = 0, 1$

b)
$$f(x) = 2x^2 + 4x - 3$$
, $x_0 = -1$, $dx = 0, 1$

17. Utilizando diferrenciales, estime el volumen del material en un cascarón cilíndrico con longitud de 30 pulg.(in), radio de 6 pulg.(in) y grosor de 0,5 pulg.(in). Compare el valor obtenido con el volumen real. La aproximación obtenida, ¿es por exceso o por defecto?

18. Un ingeniero civil se encuentra a 9 metros de la base de un edificio, mide el ángulo de elevación a la parte superior del edificio y éste es de 75°. ¿Con qué precisión se debe medir el ángulo para que el porcentaje de error en la estimación de la altura del edificio sea menor del 4 por ciento? Ayuda: utilice la fórmula de cambio relativo porcentual para la altura h.

PROBLEMAS DE OPTIMIZACIÓN

- 19. Demuestre que de todos los rectángulos de perímetro 8 m, el de mayor área es un cuadrado.
- 20. Un rectángulo tiene su base en el eje x y sus dos vértices superiores sobre la parábola $y=12-x^2$. ¿Cuál es el mayor área posible del rectángulo y cuáles son sus dimensiones?
- 21. Una pieza de cartón mide 10 por 15 pulgadas. Como se ilustra en la figura, se le han quitado dos cuadrados en las esquinas del lado que mide 10 pulgadas, Además, se han eliminado dos rectángulos de las otras dos esquinas, de manera que las cejas puedan doblarse para formar una caja rectangular con tapa.
 - a) Escriba una fórmula para el volumen, V(x), de la caja.
 - b) Encuentre el dominio de V para la situación del problema y grafique V en su dominio.

- c) Use un método gráfico para determinar el volumen máximo y el valor de x que lo da.
- d) Confirme analíticamente el resultado obtenido en el inciso (c).

- 22. Determine las dimensiones de un cilindro circular recto de volumen máximo que se pueda inscribir en una esfera de de 10 cm de radio. ¿Cuál es el volumen máximo?
- 23. Resistencia de una viga. La resistencia S de una viga de madera rectangular es proporcional a su ancho (w) por el cuadrado de su espesor (d). Observe el dibujo.
 - a) Asumiendo que la constante de proporcionalidad es k=1, determine las dimensiones de la viga más resistente que se puede extraer de un tronco cilíndrico de 12 pulgadas de diámetro.
 - b) Asumiendo que k=1, grafique la resistencia S como función del ancho w y compare con el resultado del inciso anterior.

24. Una ventana tiene forma de rectángulo y está coronada con un semicírculo. El rectángulo es de vidrio claro, mientras que el semicírculo es de vidrio de color y transmite sólo la mitad de la luz por unidad de área en comparación con el vidrio claro. El perímetro total es fijo. Encuentre las proporciones de la ventana que admitan la mayor cantidad de luz. Desprecie el espesor del marco.

25. El abrevadero de la figura se debe construir con las dimensiones que se indican. Sólo se puede variar el ángulo θ . ¿Qué valor de θ maximizará el volumen del abrevadero?

- 26. Compare las respuestas de los siguientes dos problemas de construcción:
 - a) Una hoja rectangular de 36 cm de perímetro y dimensiones x por y cm se enrolla a manera de cilindro, como se ilustra en el inciso (a) de la figura. ¿Qué valores de x y de y dan el mayor volumen?
 - b) La misma hoja se hace girar alrededor de uno de los lados de longitud y para generar el cilindro que se ilustra en el inciso (b) de la figura.; Qué valores de x y de y dan el mayor volumen?

27. La altura con respecto al suelo de un objeto que se desplaza verticalmente está dada por

$$s = -5 \text{ ms}^{-2} \text{t}^2 + 30 \text{ ms}^{-1} \text{t} + 34 \text{ m},$$

con s en metros y t en segundos. Determine:

- a) la velocidad del objeto cuando t=0
- b) su altura máxima y cuando la alcanza.
- c) su velocidad cuando s=0.
- 28. La pared de 8 pies que se ilustra aquí está a 27 pies del edificio. Determine la viga recta de longitud más corta que alcance el lado del edificio desde el suelo que está al otro lado de la pared.

ANTIDERIVADAS

29. Determine una antiderivada para cada función. Realice todo cuanto pueda mentalmente. Verifique sus respuestas mediante la derivación.

a)
$$f(x) = x^7 - 6x + 8$$

$$f(x) = \pi \cos(\pi x)$$

c)
$$f(x) = x^{-4} + 2x + 3$$

d)
$$f(x) = 2 - \frac{5}{x^2}$$

$$e) \ f(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$$

30. Determine la antiderivada más general o integral indefinida. Compruebe sus respuestas mediante derivación.

$$a) \int \left(\frac{1}{5} - \frac{2}{x^3} + 2x\right) dx$$

e)
$$\int \frac{2}{5} \sec \theta \tan \theta d\theta$$

$$b) \int \left(\frac{\sqrt{x}}{2} + \frac{2}{\sqrt{x}}\right) dx$$

f)
$$\int (\sin(2x) - \csc^2 x) dx$$

$$c) \int \frac{t\sqrt{t} + \sqrt{t}}{t^2} dt$$

$$g) \int \frac{1 - \cos(6t)}{2} dt$$

$$d$$
) $\int 3 \cos(5\theta) d\theta$

h)
$$\int (1 + \tan^2 \theta) d\theta$$

Ejercicios con asistencia de Inteligencia Artificial

Considere el siguiente problema de optimización:

Un sembradío rectangular de plantas de guisantes tiene un área de 216 m²; se quiere encerrar con una cerca y dividirlo en dos partes iguales mediante otra cerca paralela a uno de los lados. ¿Qué dimensiones del rectángulo exterior requieren la menor longitud total de la cerca? ¿Cuánta cerca se requiere?

A continuación, observará la resolución del problema utilizando la herramienta de IA Chat GPT. La misma está dividida en 8 pasos y una respuesta final. Su misión es descubrir errores u omisiones en dicho desarrollo.

1. Definición de Variables

Supongamos que el sembradío rectangular tiene las siguientes dimensiones:

- x es la longitud de uno de los lados del rectángulo (en metros).
- y es la longitud del otro lado del rectángulo (en metros).

El área total del sembradío es 216 m², por lo que tenemos la ecuación:

$$x \cdot y = 216$$

Además, queremos dividir el sembradío en dos partes iguales mediante una cerca paralela a uno de los lados. Supongamos que la cerca se coloca a lo largo del lado y, por lo que dividimos el área en dos partes iguales a lo largo de x.

2. Longitud Total de la Cerca

La cerca total incluye:

- El perímetro del rectángulo exterior (4 lados), que es 2x + 2y.
- La cerca interna que divide el sembradío en dos partes iguales, que tiene longitud x.

Entonces, la longitud total de la cerca, L, es la suma de estas dos partes:

$$L = 2x + 2y + x = 3x + 2y$$

3. Expresión para y

Utilizando la restricción $x \cdot y = 216$, podemos resolver para y en términos de x:

$$y = \frac{216}{x}$$

4. Función a Minimizar

Sustituyendo la expresión para y en la fórmula de L, obtenemos la función que queremos minimizar:

$$L(x) = 3x + 2 \cdot \frac{216}{x} = 3x + \frac{432}{x}$$

5. Derivada de L(x)

Para encontrar el valor de x que minimiza L(x), calculamos la derivada de L(x) con respecto a x:

$$L'(x) = 3 - rac{432}{x^2}$$

6. Encontrar el Valor de x que Minimiza L(x)

Igualamos la derivada a cero para encontrar los puntos críticos:

$$3-rac{432}{x^2}=0$$

$$\frac{432}{x^2} = 3$$

Multiplicamos ambos lados por x^2 :

$$432 = 3x^2$$

Dividimos entre 3:

$$x^2 = 144$$

Finalmente, tomando la raíz cuadrada de ambos lados:

$$x = 12$$

7. Determinar y

Ahora que tenemos x=12, sustituimos este valor en la ecuación $y=\frac{216}{x}$:

$$y = \frac{216}{12} = 18$$

8. Longitud Total de la Cerca

Sustituimos x=12 y y=18 en la expresión para L:

$$L = 3x + 2y = 3(12) + 2(18) = 36 + 36 = 72$$
 metros

Respuesta Final

- Las dimensiones del rectángulo exterior que minimizan la longitud total de la cerca son 12 metros por 18 metros.
- La longitud total de la cerca necesaria es 72 metros.

Trabajo Práctico N°4 Análisis Matemático 1-Facultad de Ingeniería

INTEGRACIÓN Y APLICACIONES

1-NOTACIÓN SIGMA. SUMAS DE RIEMANN. INTEGRAL DEFINIDA.

- 1. Escriba la suma sin la notación sigma. Luego evalúela: $\sum_{k=1}^4 \cos k\pi$.
- 2. Exprese la suma en notación sigma: $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}$.
- 3. Si $f(x) = x^2 + 3$, evalúe $\sum_{i=1}^{5} f(i)$.
- 4. Dados los siguientes gráficos, explicite: el intervalo de interés, la partición que se ha tomado en dicho intervalo y la longitud Δx de cada subintervalo. Finalmente, utilizando la suma de Riemann correspondiente, dé la aproximación al área buscada.

5. Grafique los integrandos y utilice las áreas para evaluar las integrales:

a)
$$\int_{-1}^{1} (1 - |x|) dx$$
.

b)
$$\int_{a}^{b} 2s \, ds$$
, $0 < a < b$.

6. Para las siguientes funciones, calcule la integral definida en el intervalo indicado utilizando la definición de integral definida. Para ello, tome particiones que den origen a n subintervalos de igual longitud, elija como puntos muestra los extremos derechos de cada subintervalo y obtenga las sumas de Riemann correspondientes. Finalmente tome el límite de las sumas de Riemann cuando $n \to \infty$. ¿Por qué es suficiente tomar solamente particiones de la forma especificada para calcular la integral?

a)
$$f(x) = 3x + 2$$
, en $[0,1]$.

Ayuda: utilice la fórmula

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

b)
$$g(x) = x + 4$$
, en [0,1]

c)
$$f(x) = 1 - x^2$$
, $x \in [0, 1]$. Ayuda: utilice la fórmula

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

2-TEOREMA FUNDAMENTAL DEL CÁLCULO.

- 1. Utilice el teorema fundamental del Cálculo para calcular el área encerrada por la gráfica de $y = x^2 + 5$ en el intervalo [0, 8]. Compare su resultado con las aproximaciones obtenidas en el ejercicio 4 de la sección anterior.
- 2. Evalúe las siguientes integrales:

a)
$$\int_{-3}^{4} \left(5 - \frac{x}{2}\right) dx$$

b)
$$\int_{-\sqrt{3}}^{\sqrt{3}} (t+1)(t^2+4) dt$$

$$c) \int_0^{\pi/6} (\sec x + \tan x)^2 \, dx$$

- 3. Mediante el teorema fundamental del Cálculo, determine dy/dx: $y = \int_0^x \sqrt{1+t^2} dt$
- 4. Determine la derivada: $\frac{d}{dx} \int_0^{\sqrt{x}} \cos t \, dt$
 - a) evaluando la integral y derivando el resultado.
 - b) derivando directamente la integral (usando el teorema fundamental del Cálculo).
- 5. Determine el área total entre el gráfico de la función y el eje x en el intervalo dado:

a)
$$y = -x^2 - x$$
, $-1 < x < 2$

b)
$$y = x^3 - 3x^2 + 2x$$
, $0 \le x \le 2$

6. Determine las áreas de las regiones sombreadas:

7. Suponga que el ingreso marginal de una compañia por la fabricación y venta de batidoras es:

$$\frac{dr}{dx} = 2 - \frac{2}{(x+1)^2}$$

donde r se mide en miles de pesos y x en miles de unidades. ¿Cuánto dinero recibirá aproximadamente la compañía por una venta de 3 mil unidades?

3-INTEGRALES INDEFINIDAS Y EL MÉTODO DE SUSTITUCIÓN.

8. Evalúe las integrales indefinidas usando las sustituciones dadas para reducir las integrales a una forma estándar:

a)
$$\int 2x(x^2+5)^{-4} dx$$
; $u = x^2 + 5$

b)
$$\int \left(1 - \cos\frac{t}{2}\right)^2 \operatorname{sen}\left(\frac{t}{2}\right) dt; \ u = 1 - \cos\frac{t}{2}$$

c)
$$\int \csc^2 2\theta \cot 2\theta d\theta$$
. Usando:

1)
$$u = \cot 2\theta$$

2)
$$u = \csc 2\theta$$

9. Evalúe las integrales:

b)

a)
$$\int \theta (1-\theta^2)^{1/4} d\theta$$

b)
$$\int x^{1/2} \operatorname{sen}(x^{3/2} + 1) \, dx$$

$$c) \int \frac{\cos\sqrt{t}}{\sqrt{t}\sin^2\sqrt{t}} dt$$

$$d) \int x^3 \sqrt{x^2 + 1} \, dx$$

- 10. La aceleración de una partícula que se mueve hacia atrás y hacia adelante en una recta es $a=\frac{d^2s(t)}{dt^2}=\pi^2\cos(\pi t)m/s^2$ para toda t (recuerde que s=s(t) es la posición de la partícula). Si s=0 y v=8m/s cuando t=0 s, determine s cuando t=1s.
- 11. Calcule el valor promedio de la función temperatura en Fairbanks, Alaska:

$$f(x) = 37 \operatorname{sen}\left(\frac{2\pi}{365}(x - 101)\right) + 25,$$

para un periodo de 365 días. Esta es una manera de estimar la temperatura promedio. Compare su resultado con el del servicio meteorológico que es de $25,7^0F$.

4-SUSTITUCIÓN Y ÁREA ENTRE CURVAS.

1. Evalúe las siguientes integrales definidas:

a) a1)
$$\int_0^{\pi/4} \tan x \sec^2 x \, dx$$

$$a2) \int_{-\pi/4}^{0} \tan x \sec^2 x \, dx$$

$$b) b1) \int_0^1 \frac{x^3}{\sqrt{x^4 + 9}} \, dx$$

$$b2) \int_{-1}^{0} \frac{x^3}{\sqrt{x^4 + 9}} \, dx$$

c)
$$\int_0^1 (4y - y^2 + 4y^3 + 1)^{-2/3} (12y^2 - 2y + 4) \, dy$$

2. Determine las áreas totales de las regiones sombreadas.

a)

b)

(

3. Determine el área de la región encerrada por las curvas. Gráfique la región de interés:

a)
$$y = x^4 - 4x^2 + 4$$
 y $y = x^2$

- b) $y = 2 \operatorname{sen} x y y = \operatorname{sen} 2x 0 \le x \le \pi$
- c) $y = \operatorname{sen}(\pi x/2)$ y y = x

5-CÁLCULO DE VOLÚMENES POR SECCIONES TRANSVERSALES.

1. Determine el volumen del tetraedro dado. (Sugerencia: considere rebanadas perpendiculares a uno de los lados marcados)

- 2. Determine el volumen del sólido generado al hacer girar la región sombreada:
 - a) Alrededor del eje x:

b) Alrededor del eje y:

3. Determine el volumen del sólido generado al hacer girar la región acotada por $y=\sqrt{9-x^2},\,y=0$ alrededor del eje x. Gráfique el sólido de interés.

- 4. Determine el volumen del sólido generado al hacer girar la región acotada por $y=4-x^2$, y=2-x alrededor del eje x.
- 5. Determine el volumen de cada uno de los sólidos generados al hacer girar las regiones sombreadas alrededor del eje indicado:

- 6. Determine el volumen del sólido generado al hacer girar la región en el primer cuadrante, acotada por arriba por la parábola $y = x^2$, abajo por el eje x, y a la derecha por la recta x = 2 alrededor del eje y.
- 7. Un tazón tiene una forma que puede generarse al hacer girar la gráfica de $y=x^2/2$ entre y=0 y y=5 alrededor del eje y.
 - a) Determine el volumen del tazón.
 - b) Si llenamos el tazón con agua a una velocidad constante de 3 unidades cúbicas por segundo, ¿qué tan rápido sube el nivel del agua en el tazón cuando el agua tiene una profundidad de 4 unidades?
- 8. Se le ha pedido que diseñe una plomada de 190 g. La forma debe ser similar al sólido de revolución que se ilustra en la figura. Si se elige Latón, que tiene una densidad de 8.5 g por cm cúbico, ¿cuánto pesará la plomada?

7-LONGITUD DE ARCO

1. Determine la longitud de cada curva:

a)
$$y = (1/3)(x^2 + 2)^{3/2}$$
 de $x = 0$ a $x = 3$

b)
$$x = \frac{y^3}{3} + \frac{1}{4y} \text{ de } y = 1 \text{ a } y = 3$$

c) $x = \int_0^y \sqrt{\sec^4 t - 1} \, dt - \pi/4 \le y \le \pi/4$

2. El cable de un puente suspendido tiene la forma de una parábola de ecuación $y=kx^2$. Supongamos que h representa la altura del cable desde su punto más bajo al más alto, y sea 2w la longitud del puente como se ilustra en la figura. Mostrar que la longitud del cable está dada por:

$$L = 2 \int_0^w \sqrt{1 + (4h^2/w^4)x^2} dx.$$

3. La gráfica de la ecuación $x^{2/3}+y^{2/3}=1$ es una familia de curvas denominada astroides, en virtud de su apariencia de estrella. Determine la longitud de esta astroide particular, para ello, calcule la longitud de la mitad de la parte que está en el primer cuadrante, $y=(1-x^{2/3})^{3/2},\, \frac{\sqrt{2}}{4}\leq x\leq 1$ y multiplique por 8.

Ejercicios con asistencia de Inteligencia Artificial

A continuación, se plantea un ejercicio de cálculo de áreas entre curvas y se muestra la resolución del mismo utilizando chat GPT. Su misión es encontrar errores u omisiones en el desarrollo:

Usuario

Determine el área de la región encerrada por las curvas:

$$y = x^4 - 4x^2 + 4$$

$$y = x^2$$

ChatGPT

Encontrar los puntos de intersección

Igualamos las ecuaciones de las curvas:

$$x^4 - 4x^2 + 4 = x^2$$

Reordenamos:

$$x^4 - 5x^2 + 4 = 0$$

Hacemos el cambio de variable $u=x^2$, obteniendo:

$$u^2 - 5u + 4 = 0$$

Factorizamos:

$$(u-4)(u-1) = 0$$

Por lo tanto, u = 4 o u = 1, lo que implica:

$$x^2 = 4 \Rightarrow x = \pm 2$$

$$x^2 = 1 \Rightarrow x = \pm 1$$

Los puntos de intersección son $x = \pm 1$ y $x = \pm 2$.

Cálculo del área encerrada

El área entre dos curvas y_1 y y_2 en un intervalo [a,b] está dada por:

$$A = \int_{a}^{b} (y_{\text{superior}} - y_{\text{inferior}}) dx$$

Para $x \in [-2, -1]$ y $x \in [1, 2]$, la curva superior es $y = x^4 - 4x^2 + 4$ y la inferior $y = x^2$. Por lo tanto:

$$A = 2\int_{1}^{2} [(x^{4} - 4x^{2} + 4) - x^{2}] dx$$

$$=2\int_{1}^{2} (x^{4} - 5x^{2} + 4) dx$$

Calculamos la integral:

$$\int (x^4 - 5x^2 + 4) \, dx = \frac{x^5}{5} - \frac{5x^3}{3} + 4x$$

Evaluamos de x = 1 a x = 2:

$$\left[\frac{x^5}{5} - \frac{5x^3}{3} + 4x\right]_1^2$$

Calculamos en x = 2:

$$\frac{32}{5} - \frac{40}{3} + 8 = \frac{96}{15} - \frac{200}{15} + \frac{120}{15} = \frac{16}{15}$$

Ahora en x = 1:

$$\frac{1}{5} - \frac{5}{3} + 4 = \frac{3}{15} - \frac{25}{15} + \frac{60}{15} = \frac{38}{15}$$

La diferencia:

$$\frac{16}{15} - \frac{38}{15} = -\frac{22}{15}$$

Tomamos el valor absoluto:

$$\frac{22}{15}$$

Multiplicamos por 2:

$$A = 2 \times \frac{22}{15} = \frac{44}{15}$$

Conclusión

El área encerrada entre las curvas es:

$$\frac{44}{15}$$

Trabajo Práctico N°5 Análisis Matemático 1-Facultad de Ingeniería

FUNCIONES INVERSAS Y SUS DERIVADAS. REGLA DE L'HOPITAL.

1-FUNCIONES INVERSAS.

1. ¿Cuales de las funciones cuyas gráficas se muestran son inyectivas?

2. Determine, a partir de las gráficas, si la función es inyectiva:

a)
$$f(x) = \begin{cases} 1 - \frac{x}{2} & x \le 0\\ \frac{x}{x+2} & x > 0 \end{cases}$$

b)
$$f(x) = \begin{cases} 2 - x^2 & \text{si } x \le 1\\ x^2 & x > 1 \end{cases}$$

3. Dada la función $f(x) = x^2 - 2x + 1$, para $x \ge 1$, determine una fórmula para f^{-1} y grafique ambas funciones.

4. Dada la función y = f(x), determine f^{-1} e identifique el dominio y el rango de f^{-1} . Para comprobar demuestre que $f \circ f^{-1} = f^{-1} \circ f = x$:

$$a) f(x) = \frac{x+3}{x-2}$$

b)
$$f(x) = x^2 - 2x$$
, $x \le 1$ (Sugerencia: complete el cuadrado)

5. Calcule las derivadas de las siguientes funciones inversas:

a)
$$y = \operatorname{sen}^{-1} x, x \in (-1, 1)$$

b)
$$y = \cos^{-1} x, x \in (-1, 1)$$

2-LOGARITMOS NATURALES

1. Determine la derivada de y con respecto a x:

$$a) \ \ y = \frac{\ln x}{1 + \ln x}$$

b)
$$y = \ln \frac{(x^2 + 1)^5}{\sqrt{1 - x}}$$

$$c) \ y = \int_{\frac{x^2}{2}}^{x^2} \ln \sqrt{t} \, dt$$

2. Evalúe las siguientes integrales:

a)
$$\int_0^{\pi} \frac{\sin t \, dt}{2 - \cos t}$$
b)
$$\int_2^4 \frac{dx}{x(\ln x)^2}$$
c)
$$\int_0^{\pi/2} \tan\left(\frac{x}{2}\right) \, dx$$

- 3. La región entre la curva $y = \sqrt{\cot x}$ y el eje x desde $x = \pi/6$ hasta $x = \pi/2$ se hace girar alrededor del eje x para generar un sólido. Determine el volumen del sólido.
- 4. Determine la longitud de:

$$x = \left(\frac{y}{4}\right)^2 - 2\ln\left(\frac{y}{4}\right), \ 4 \le y \le 12$$

3-FUNCIONES EXPONENCIALES

1. Ley de enfriamiento de Newton. Esta ley nos dice que la rapidez con que la temperatura de un objeto cambia en cualquier instante t es proporcional a la diferencia entre la temperatura del objeto en t y la temperatura del medio. Esta ecuación se puede escribir, de forma aproximada, de la siguiente manera:

$$T(t) - T_e = (T_0 - T_e)e^{-kt}$$

donde T(t) es la temperatura del objeto en el instante t, T_e la temperatura del medio, T_0 la temperatura inicial del objeto y k es la constante de proporcionalidad de la ley de Newton.

Ahora bien, supongamos que una viga de aluminio expuesta al frío exterior, entra en un taller de troquelado donde la temperatura se mantiene a 65°F. A los 10 minutos, la viga tiene una temperatura de 35°F, y en otros 10 minutos llega a 50°F. Estime la temperatura inicial de la viga.

2. Determine la derivada de y con respecto a la variable independiente que corresponda:

$$a) \ y = \ln(2e^{-x}\sin x)$$

$$b) \ y = e^{\cos t + \ln t}$$

$$c) \ y = \int_{e^{4\sqrt{x}}}^{e^{2x}} \ln t \, dt$$

3. Evalúe las siguientes integrales:

a)
$$\int_0^{\pi/4} (1 + e^{\tan \theta}) \sec^2 \theta \, d\theta$$
b)
$$\int \frac{e^y}{1 + e^y} \, dy$$

4. Determine la derivada de y con respecto a la variable independiente dada.

$$a) \ y = (\ln 7)7^{\sec t}$$

$$b) \ y = \log_2(5\theta)$$

c)
$$y = \log_3 \left[\left(\frac{x+1}{x-1} \right)^{\ln 3} \right]$$

$$d) y = \log_2(8t^{\ln 2})$$

5. Evalúe las siguientes integrales:

a)
$$\int_{1}^{\sqrt{2}} x 2^{x^{2}} dx$$
b)
$$\int_{0}^{9} \frac{2 \log_{10}(x+1)}{x+1} dx$$

6. Determine los valores máximos y mínimos locales de:

$$f(x) = e^x - 2x \, \text{en} \, [0, 1]$$

- 7. Determine los valores extremos locales y puntos de inflexión para: $f(x) = xe^{-x}$
- 8. Determine el área de la región en el primer cuadrante que está acotada arriba por la curva $y=e^{2x}$, abajo por la curva $y=e^x$ y a la derecha por la recta $x=\ln 3$

4-FUNCIONES TRIGONOMÉTRICAS INVERSAS.

- 1. Determine el valor de sen $\left(\cos^{-1}\left(\frac{\sqrt{2}}{2}\right)\right)$
- 2. Determine la derivada de y con respecto a la variable apropiada. Indique el dominio en donde y sea derivable.

a)
$$y = \cos^{-1}(1/x)$$

b)
$$y = \sin^{-1}(\sqrt{2}t)$$

3. Evalúe las siguientes integrales utilizando una sustitución si es necesario y las funciones trigonométricas inversas:

$$a) \int_0^{3\sqrt{2}/4} \frac{ds}{\sqrt{9-4s^2}}$$

$$b) \int_{-2}^{2} \frac{dt}{4+3t^2}$$

$$c) \int \frac{dx}{\sqrt{9-x^2}}$$

$$d) \int \frac{dx}{2 + (x-1)^2}$$

5-FUNCIONES HIPERBÓLICAS.

1. Determine la derivada de y con respecto a la variable apropiada.

$$a) \ y = 2\sqrt{t}\tanh(\sqrt{t})$$

b)
$$y = \ln(\sinh z)$$

- 2. Una región del primer cuadrante está acotada por arriba por la curva $y = \cosh x$, abajo por la curva $y = \sinh x$, y por la izquierda y la derecha por el eje y y la recta x = 2, respectivamente. Determine el volumen que esa región genera al girar sobre el eje x.
- 3. Determine la longitud del segmento de la curva $y = \frac{1}{2} \cosh 2x$ desde x = 0 hasta $x = \ln \sqrt{5}$.

6-FORMAS INDETERMINADAS Y REGLA DE L'HOPITAL

1. Utilice la regla de L'Hôpital para evaluar el límite. Luego evalúe el límite usando algún otro método estudiado anteriormente.

$$a) \lim_{x \to 0} \frac{\sin 5x}{x}$$

$$b) \lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

c)
$$\lim_{x \to \infty} \frac{2x^2 + 3x}{x^3 + x + 1}$$

2. Utilice la regla de L'Hôpital para determinar los siguientes límites:

a)
$$\lim_{t \to -3} \frac{t^3 - 4t + 15}{t^2 - t - 12}$$

$$b) \lim_{x \to \infty} \frac{x - 8x^2}{12x^2 + 5x}$$

c)
$$\lim_{\theta \to \pi/2} \frac{2\theta - \pi}{\cos(2\pi - \theta)}$$

$$d) \lim_{x \to 1} \frac{x - 1}{\ln x - \sin \pi x}$$

$$e) \lim_{\theta \to 0} \frac{3^{\sin \theta} - 1}{\theta}$$

$$f) \lim_{x \to (\pi/2)^{-}} (x - \frac{\pi}{2}) \sec x$$

$$g) \lim_{x \to 0^+} (\ln x - \ln \sec x)$$

$$h) \lim_{x \to 1^+} (\frac{1}{x-1} - \frac{1}{\ln x})$$

$$i) \lim_{x \to 0^+} x \tan(\frac{\pi}{2} - x)$$

$$j) \lim_{x \to \infty} x.tan^{-1} \left(\frac{2}{x}\right).$$

Trabajo Práctico N°6 Análisis Matemático 1-Facultad de Ingeniería

INTEGRACIÓN POR PARTES, MÉTODO DE FRACCIONAES SIMPLES, INTEGRALES IMPROPIAS Y APLICACIONES.

1-INTEGRACIÓN POR PARTES

1. Evalúe las siguientes integrales mediante integración por partes:

a)
$$\int x \cdot \operatorname{sen}\left(\frac{x}{2}\right) dx$$

b)
$$\int_{1}^{2} x \cdot \ln(x) dx$$

c)
$$\int x \cdot \sec^2(x) dx$$

$$d$$
) $\int x^2 \operatorname{sen}(x) dx$

$$e) \int xe^{3x}dx$$

$$f) \int x^5 e^x dx$$

$$g) \int e^{2x} \cos(3x) dx$$

h)
$$\int \sec^3(x)dx$$
 (ayuda: utilice $u = \sec(x)$, $dv = \sec^2(x)dx$).

2. En las siguientes integrales, utilice primero una sustitución apropiada y luego aplique integración por partes:

$$a) \int e^{\sqrt{3x+9}} dx$$

$$b) \int_0^1 x\sqrt{1-x}dx$$

$$c) \int \operatorname{sen}(\ln(x)) dx$$

- La fórmula de integración por partes puede usarse para calcular integrales de funciones inversas. Vamos a asumir que todas las funciones que aparecen en este ejercicio son integrables.
 - a) Supongamos que queremos calcular

$$\int f^{-1}(x)dx.$$

Realice la sustitución

$$y = f^{-1}(x)$$

para escribir la integral anterior en términos de y y dy. Observe que x = f(y).

b) A continuación, realice integración por partes, elegiendo

$$u = y, \quad dv = f'(y)dy,$$

para obtener la expresión:

$$\int f^{-1}(x)dx = yf(y) - \int f(y)dy.$$

El último paso, que hará en los ejercicios siguientes, es regresar a la variable x, sabiendo que x = f(y).

c) Resuelva las siguientes integrales:

$$i)\int ln(x)dx$$
, $ii)\int sen^{-1}(x)dx$, $iii)\int cos^{-1}(x)dx$, $iv)\int senh^{-1}(x)dx$.

d) Derive los resultados que obtuvo en las integrales para comprobar sus respuestas.

2-MÉTODO DE DESCOMPOSICIÓN POR FRACCIONES SIMPLES

Objetivo: calcular integrales de funciones racionales de la forma

$$\int \frac{P(x)}{Q(x)} dx$$

donde P y Q no tiene raíces en común y donde Q sólo tiene raíces reales distintas (los casos de raíces múltiples o complejas no se verán pero se pueden trabajar en forma similar). Además se asume que el grado de P es menor al de Q. Si esto no fuera así, se divide P entre Q y se aplica la descomposición:

$$\frac{P(x)}{Q(x)} = C(x) + \frac{R(x)}{Q(x)},$$

donde C es el cociente y R el resto. Entonces se aplica el método a R(x)/Q(x).

Generalmente, en estas integrales no funciona hacer sustitución o integración por partes.

Ejemplo: calcular:

$$\int \frac{x^2 + 4x + 1}{(x - 1)(x + 1)(x + 3)} dx.$$

Solución: observar que el grado del numerador es menor al del denominador. No es necesario dividir los polinomios.

El primer paso es factorizar el denominador. En este caso, el denominador ya está factorizado. Ahora vamos a descomponer la función racional en fracciones simples. Como los factores del denominador son todos distintos (el denominador tiene todas raíces distintas), planteamos la siguiente descomposición:

$$\frac{x^2 + 4x + 1}{(x - 1)(x + 1)(x + 3)} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{C}{x + 3}.$$
 (1)

Buscamos los valores de A, B y C. Si sumamos las fracciones anteriores obtenemos:

$$\frac{x^2 + 4x + 1}{(x - 1)(x + 1)(x + 3)} = \frac{A(x + 1)(x + 3) + B(x - 1)(x + 3) + C(x - 1)(x + 1)}{(x - 1)(x + 1)(x + 3)}$$

Eliminando denominadores, se llega a:

$$x^{2} + 4x + 1 = A(x+1)(x+3) + B(x-1)(x+3) + C(x-1)(x+1).$$

• Si x = 1 en la igualdad anterior, se obtiene:

$$6 = A, 2, 4$$

Así:

$$A = \frac{3}{4}.$$

• Si hacemos x = -1:

$$-2 = B.(-2),2$$

y entonces:

$$B = \frac{1}{2}.$$

• Finalmente, si hacemos x = -3:

$$-2 = C.(-4)(-2)$$

y:

$$C = -\frac{1}{4}.$$

Por lo tanto, (1) implica:

$$\int \frac{x^2 + 4x + 1}{(x - 1)(x + 1)(x + 3)} dx = \frac{3}{4} \int \frac{1}{x - 1} dx + \frac{1}{2} \int \frac{1}{x + 1} dx - \frac{1}{4} \int \frac{1}{x + 3} dx$$
$$= \frac{3}{4} \ln|x - 1| + \frac{1}{2} \ln|x + 1| - \frac{1}{4} \ln|x + 3| + C.$$

Las integrales resultantes se obtiene fácilmente.

Aplicar el método de descomposición por fracciones simples para calcular las siguientes integrales:

1.

$$\int \frac{z+1}{z(z-1)} \, dz$$

2.

$$\int \frac{1}{1-x^2} \, dx$$

3.

$$\int_1^2 \frac{1}{x^2 + 2x} \, dx$$

4.

$$\int \frac{2x^3 - 2x^2 + 1}{x^2 - x} \, dx$$

5.

$$\int \frac{x^4}{x^2 - 1} \, dx.$$

3-APLICACIONES GEOMÉTRICAS

- 1. Determine el área de la región encerrada por la curva $y = x \operatorname{sen}(x)$ y el eje x para:
 - $a) 0 \le x \le \pi$
 - b) $\pi \le x \le 2\pi$

c) $2\pi \le x \le 3\pi$.

En todos los casos, grafique la región considerada.

- 2. Determine el área de la región encerrada por la curva $y = x \cos(x)$ y el eje x para:
 - a) $\pi/2 \le x \le 3\pi/2$
 - b) $3\pi/2 \le x \le 5\pi/2$
 - c) $5\pi/2 < x < 7\pi/2$.

En todos los casos, grafique la región considerada.

- 3. Determine el volumen del sólido que se obtiene al hacer girar la región acotada por el gráfico de $y = \frac{\sqrt{x}}{(x+1)}$ y $1 \le x \le 10$ alrededor del eje x.
- 4. Determine el volumen del sólido obtenido al hacer girar alrededor de la recta $x = \ln(2)$, la región en el primer cuadrante acotada por los ejes coordenados, la curva $y = e^x$ y la recta $x = \ln(2)$.
- 5. Considere la región acotada por $y = \ln(x)$, y = 0 y x = e. Determine:
 - a) el área de la región.
 - b) el volumen del sólido que se obtiene al hacer girar la región alrededor del eje x.
 - c) Determine el volumen del sólido que se obtiene al hacer girar la región alrededor de la recta x=-2.
- 6. Determine el volumen del sólido generado al hacer girar la región sombreada alrededor del eje x:

5-INTEGRALES IMPROPIAS

- 1. Evalúe las siguientes integrales y diga si convergen o divergen:
 - $a) \int_0^\infty \frac{dx}{x^2 + 1}$
 - $b) \int_0^4 \frac{dx}{\sqrt{4-x}}$
 - $c) \int_0^1 x \ln(x) dx$
 - $d) \int_{-\infty}^{\infty} 2x e^{-x^2} dx$
 - $e) \int_0^1 \frac{4r}{\sqrt{1-r^4}} dr$

$$f) \int_0^1 \frac{2}{t^2 - 1} dt$$

2. Utilice el método que prefiera para determinar la convergencia de las siguientes integrales:

$$a) \int_0^1 \frac{e^{-\sqrt{x}}}{\sqrt{x}} \, dx$$

$$b) \int_{-\infty}^{\infty} \frac{1}{e^x + e^{-x}} \, dx$$

- 3. Determine el área de la región que está entre las curvas $y = \sec(x)$ y $y = \tan(x)$ desde x = 0 hasta $x = \pi/2$.
- 4. Determine el volumen del sólido que se obtiene al hacer girar la región acotada por el gráfico de $y=\frac{\sqrt{x}}{(x+1)}$ y $1\leq x$ alrededor del eje x.

Trabajo Práctico N°7 Análisis Matemático 1-Facultad de Ingeniería

SUCESIONES, SERIES NUMÉRICAS Y SERIES DE TAYLOR.

1-SUCESIONES

- 1. Halle una fórmula para el n-ésimo término de la sucesión. Grafique los primeros 10 términos de la sucesión encontrada.
 - a) $1, -1, 1, -1, \dots$
 - b) 1, -4, 9, -16, 25, ...
 - $c) -3, -2, -1, 0, 1, 2, 3, \dots$
 - $d) \ \ \frac{5}{1}, \frac{8}{2}, \frac{11}{6}, \frac{14}{24}, \frac{17}{120}, \dots$
- 2. ¿Cuáles de las siguientes sucesiones convergen? Determine sus límites:
 - $a) \ a_n = \frac{1 2n}{1 + 2n}$
 - b) $a_n = 1 + (-1)^n$
 - $c) \ a_n = \frac{sen(n)}{n}$
 - $d) \ a_n = \frac{(-1)^{n+1}}{2n-1}$
 - $e) \ a_n = \frac{\ln(n+1)}{\sqrt{n}}$
 - $f) \ a_n = \ln(n) \ln(n+1)$
 - $a_n = n \sqrt{n^2 n}$

2-SERIES NUMÉRICAS

1. Considere el siguiente cuadrado de lado unidad subdivido en sub rectángulos más chicos:

Construya una sucesión de sumas parciales de áreas de rectángulos como sigue: el primer término de la sucesión s_1 será el área del mayor subrectángulo; el segundo término s_2 será la suma de las áreas del mayor subrectángulo y del que le sigue en tamaño; el tercer término será la suma de las áreas de los dos subrectángulos más grandes más el área del subrectángulo que le sigue en tamaño. Continuando de esta manera, generará una sucesión s_n que consiste de sumar más y más términos cada vez. Su tarea es descubrir si dicha sucesión converge o diverge. En caso de que converja, diga a qué valor.

 Para las siguientes series, encuentre la sucesión de sumas parciales y luego decida si la serie converge o diverge. En caso de convergencia, indique a qué valor converge la serie.

$$\sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+2} \right).$$

$$\sum_{n=1}^{\infty} \left(\frac{1}{n+2} - \frac{1}{n+3} \right).$$

3. Encuentre la sucesión de sumas parciales y úsela para determinar si la serie converge:

a)
$$2 + \frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \dots + \frac{2}{3^{n-1}} + \dots$$

b)
$$\frac{9}{100} + \frac{9}{100^2} + \frac{9}{100^3} + \dots + \frac{9}{100^n} + \dots$$

4. Determine si la serie geométrica converge, de ser así encuentre su suma:

a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{4^n}$$

$$b) \sum_{n=0}^{\infty} \left(\frac{5}{2^n} - \frac{1}{3^n} \right)$$

$$c) \ \left(\frac{-2}{3}\right)^2 + \left(\frac{-2}{3}\right)^3 + \left(\frac{-2}{3}\right)^4 + \dots$$

$$d) \sum_{n=0}^{\infty} \left(\frac{1}{\sqrt{2}}\right)^n$$

$$e) \sum_{n=0}^{\infty} (\sqrt{2})^n$$

5. Utilice el criterio del n-ésimo término con la finalidad de demostrar la divergencia de las series:

$$a) \sum_{n=1}^{\infty} \frac{n}{n+10}$$

$$b) \sum_{n=1}^{\infty} \ln\left(\frac{1}{n}\right)$$

$$c) \sum_{n=1}^{\infty} \cos(n\pi)$$

6. Escriba algunos términos de las siguientes series geométricas. Determine \mathbf{a} y \mathbf{r} . Calcule la suma de la serie y determine los valores de \mathbf{x} para los cuales la serie converge:

$$a) \sum_{n=0}^{\infty} (-1)^n x^n$$

b)
$$\sum_{n=0}^{\infty} (-1)^n (x+1)^n$$

7. Utilice el **criterio de la integral** para determinar si las siguientes series convergen. Asegúrese de verificar que se cumplen las condiciones del criterio mencionado.

$$a) \sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$b) \sum_{n=1}^{\infty} \frac{n}{n^2 + 4}$$

$$c) \sum_{n=1}^{\infty} \frac{e^n}{1 + e^{2n}}$$

8. ¿Cuál serie converge y cuál diverge? Justifique.

$$a) \sum_{n=1}^{\infty} \frac{-1}{8^n}$$

$$b) \sum_{n=1}^{\infty} \frac{n}{n+1}$$

c)
$$\sum_{n=0}^{\infty} \left(\frac{1}{2^n} + \frac{(-1)^n}{5^n} \right)$$

d)
$$\sum_{n=1}^{\infty} \frac{2^{n+1}}{5^n}$$

$$e) \sum_{n=1}^{\infty} n \operatorname{sen}\left(\frac{1}{n}\right)$$

9. Utilice el criterio de la razón para determinar si cada serie converge o diverge.

a)
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^2}$$

$$b) \sum_{n=2}^{\infty} \frac{3^{n+2}}{\ln(n)}$$

10. Utilice algún criterio para determinar si la serie converge o diverge.

$$a) \sum_{n=1}^{\infty} n! e^{-n}$$

$$b) \sum_{n=1}^{\infty} \frac{n!}{10^n}$$

$$c) \sum_{n=1}^{\infty} \frac{\ln(n)}{n}$$

11. ¿Cuál de las siguientes series alternantes converge? ¿Y cuál diverge?

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{10^n}{(n+1)!}$$

b)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}}$$

12. El criterio de la razón no ayuda con las series p, con p > 0. Intente aplicarlo a:

$$\sum_{n=1}^{\infty} \frac{1}{n^p}, \quad p > 0$$

y pruebe que el criterio no brinda información sobre la convergencia o divergencia de la serie. Finalmente, utilice un criterio apropiado para decidir para qué valores de p la serie converge y para cuáles diverge.

3- SERIES DE TAYLOR

- 1. Determine los polinomios de Taylor de orden 0, 1, 2 y 3 generados por $f(x) = \ln(1+x)$ en a=0. Grafique f y los polinomios encontrados en un mismo gráfico.
- 2. Determine la linealización (polinomio de Taylor de orden 1) y la aproximación cúbica de f(x) = sen(x) en x = 0. Grafique la función f y los polinomios encontrados. ¿Cuál de ellos es una mejor aproximación de f cerca de x = 0?

- 3. Determine la serie de Taylor generada por $f(x) = 2^x$ centrada en a = 0. Utilice el teorema de Taylor para aproximar el valor de $2^{0,1}$ con el polinomio de Taylor de grado 3 y escriba el residuo correspondiente de forma explícita. Indique el orden del residuo.
- 4. Genere la serie de Taylor de y = sen(x) y y = cos(x) en a = 0. No pruebe la convergencia. Verifique las series encontradas con las diapositivas vistas en clases.
- 5. Desarrolle en serie de Taylor centrada en 0 las siguientes funciones. Indique intervalo de convergencia y analice, en caso de que sea posible, si la serie obtenida converge en los extremos de dicho intervalo.
 - $a) \ y = \ln(1+2x)$
 - $b) \ y = \ln(1 x)$
 - $c) y = \arctan(x)$
 - d) $y = \frac{2}{1 x^2}$
 - $e) \ \ y = \frac{1}{1+x}$
- 6. Mediante el desarrollo en serie de la función exponencial visto en clases, determine la serie de Taylor de y = senh(x) centrada en a = 0. Luego, utilice el polinomio de Taylor de grado 5 para aproximar el valor

Indique la expresión del residuo correspondiente y diga de qué orden es.

7. Suponga que f es una función derivable en un intervalo que contiene al cero. También, suponga que los primeros coeficientes de su serie de Taylor alrededor de cero son:

$$a_0 = 2$$
, $a_1 = 0$, $a_2 = -1$, $a_3 = 1$, ...

¿Tiene f un extremo local en x=0? Si es así, diga de qué tipo. Justifique su respuesta.

8. Utilice polinomios de Taylor de grado 6 para aproximar el valor de las integrales:

a)
$$\int_0^1 sen(x^2) dx$$

$$\int_0^{1/2} tan^{-1}(x)dx$$

9. A partir de series de Taylor conocidas, se pueden obtener nuevos desarrollos de funciones en series. Por ejemplo, tome la serie de $\ln(1+x)$, para |x| < 1, y reemplace x por -x para obtener el desarrollo en serie de Taylor de $\ln(1-x)$. Finalmente, reste ambos desarrollos para obtener la serie de Taylor centrada en 0 de

$$\ln\left(\frac{1+x}{1-x}\right)$$

en |x| < 1.

Ejercicio con asistencia de Inteligencia Artificial

A continuación, se plantea el análisis de la convergencia de la serie

$$\sum_{n=1}^{\infty} n.tan\left(\frac{1}{n}\right)$$

suministrado por chat GPT. Su misión es encontrar errores u omisiones en el desarrollo. Resolución por chat GPT:

Para valores pequeños de x, se tiene la aproximación:

$$\tan(x) \approx x$$

Por lo que:

$$n an\left(rac{1}{n}
ight)pprox n\cdotrac{1}{n}=1$$

Esto significa que el término general se comporta como 1 para valores grandes de n, lo que implica que la serie se comporta como:

$$\sum 1$$

Esta es la serie armónica, que es conocida por divergir. Por lo tanto, la serie también diverge.