SM II Abgabe 2

Fabio Votta

9.November 2018

Aufgabe 1

Wozu werden Standardisierungen durchgeführt und wie wird dabei vorgegangen? Erläutern Sie zudem exemplarisch wozu b* benutzt wird und wie man diesen interpretiert!

$$b^* = b * \frac{s_x}{s_y}$$

Aufgabe 2

Führen Sie eine z-Standardisierung für die Originalaltersvariable (alter_z) und die auf Null gesetzte Altersvariable (alter_0z) sowie für "unsere" Bildungsvariable (0 bis 4). [Daten: ALLBUS 2014]

```
allb_sub_z <- allb_sub %>%
  select(einkommen, alter, alter0, geschl_rec, bildung_rec) %>%
  mutate(alter_z = scale(alter),
        alter0_z = scale(alter0),
        bildung_z = scale(bildung_rec),
        einkommen_z = scale(einkommen))
```

Aufgabe 2a

Vergleichen Sie die Zahlenwerte, Mean und die Standardabweichung von alter_z und alter_{_}0z und erklären Sie Ihre "Beobachtung".

```
allb_sub_z %>%
select(alter_z, alter0_z) %>%
describe() %>%
select(-vars, -range, -trimmed, -mad, -skew, -kurtosis, -se) %>%
kable()
```

	n	mean	sd	median	min	max
alter_z	3468	0	1	0.0319708	-1.79595	2.373994
$alter 0_z$	3468	0	1	0.0319708	-1.79595	2.373994

Aufgabe 2b

Führen Sie eine Regression von Einkommen auf alter_0 und bildung (Modell 1) und eine Regression von einkommen_z auf alter_0z und bildung_z (Modell 2) durch und vergleichen Sie die b-Koeffizienten.

Model 1	Model 2
7.17***	0.00
(0.28)	(0.02)
0.04***	
(0.01)	
1.20***	
(0.07)	
	0.14^{***}
	(0.02)
	0.29***
	(0.02)
0.08	0.08
0.08	0.08
3039	3039
4.74	0.96
	7.17*** (0.28) 0.04*** (0.01) 1.20*** (0.07) 0.08 0.08 3039

 $^{***}p < 0.001, \, ^{**}p < 0.01, \, ^{*}p < 0.05$

Table 2: Statistical models

#ODER

tbl_std(mod1)

Table 3:

	Dependent variable: einkommen	
	b	std.b
	(1)	(2)
alter0	0.039***	0.135***
	(0.005)	(0.005)
bildung_rec	1.199***	0.291***
	(0.074)	(0.074)
Constant	7.165***	0.000
	(0.282)	(0.282)
Observations	3,039	3,039
\mathbb{R}^2	0.082	0.082
Adjusted R^2	0.081	0.081
Residual Std. Error ($df = 3036$)	4.741	4.741
F Statistic ($df = 2; 3036$)	135.439***	135.439***
Note:	*p<0.1; **p<	0.05; ***p<0.01

sjPlot::plot_models(mod1, mod2, std.est = "std", show.values = T, show.p = T)

${\bf Aufgabe~2c}$

Wie erklären Sie die Werte b und b* in Modell 2? TIPP: Verwenden Sie bei Modell 2 das z-transformierte Einkommen als abhängige Variable.

Aufgabe 3

Erstellen Sie ein multivariates Regressionsmodell mit Y=Einkommen. Versuchen Sie dabei den R2-Wert so groß wie nur irgendwie möglich zu bekommen. Jeder schmutzige Trick der Sozialforschung ist erlaubt (und in diesem Fall erwünscht).

- Einzige Einschränkung: Keine Regression von Y auf Y.

```
internet = V14,
         computer = V16,
         essen = V20,
         besuchfreunde = V21,
         besuchfamilie = V22,
         kunst = V25,
         theater = V30,
         museum = V31,
         haushaltseinkommen = V494,
         wirtschaftslage = V9,
         fernsehenmin = V71,
         dauerbildung = V711,
         demzufr = V216,
         linksrechts = V215,
         prokopfeink = V495,
         krankengeldhh = V513,
         elterngeldhh = V514,
         gebd = V377) %>%
  na.omit() %>%
  mutate(alter0 =alter -18,
          alter0quad =alter0*alter0,
          bildung_rec = ifelse(bildung ==6|bildung ==7,0, bildung -1),
          geschl_rec = ifelse(geschl ==2,0,1),
          ganztags = ifelse(beruf ==1,1,0),
         halbtags = ifelse(beruf ==2,1,0),
          west = ifelse(westost ==1,1,0),
          immigrant = ifelse(gebd ==2,1,0))
highr2 <- lm(einkommen~geschl_rec +alter0 +alter0quad +bildung_rec +
          keineberufsausbildung +arbeitsstd +halbtags +west +
          internet +computer +essen +besuchfreunde +besuchfamilie +kunst +
          theater +museum +fernsehenmin +
          haushaltseinkommen +wirtschaftslage +
          dauerbildung +demzufr +linksrechts +
          prokopfeink + krankengeldhh +
          elterngeldhh +immigrant,data =allb_r)
texreg(highr2, float.pos ="ht!")
```

	Model 1
(Intercept)	-0.84
((1.49)
geschl_rec	1.92***
0 =	(0.22)
alter0	0.30***
	(0.03)
alter0quad	-0.00***
	(0.00)
bildung_rec	0.25^{*}
	(0.12)
keineberufsausbildung	-2.71***
	(0.41)
arbeitsstd	0.06***
	(0.01)
halbtags	-2.74***
	(0.33)
west	1.53***
• , , ,	(0.23)
internet	-0.27**
	(0.09)
computer	0.13
aggan	(0.08) -0.32^*
essen	-0.32 (0.12)
besuchfreunde	-0.02
bestemreande	(0.12)
besuchfamilie	-0.22^*
Sosaomammo	(0.10)
kunst	0.14
	(0.10)
theater	$0.12^{'}$
	(0.18)
museum	0.10
	(0.19)
fernsehenmin	-0.00
	(0.00)
haushaltseinkommen	0.18***
1 6 1	(0.03) $-0.41**$
wirtschaftslage	-
dananhildan m	(0.15) $0.14***$
dauerbildung	(0.04)
demzufr	0.04)
COMMUNICATION	(0.09)
linksrechts	-0.02
	(0.06)
prokopfeink	0.00***
	(0.00)
krankengeldhh	-1.99
-	(1.82)
elterngeldhh	0.88
	(0.62)
immigrant	-0.24
- 9	(0.33)
\mathbb{R}^2	0.68
Adj. R^2 5	0.67
Num. obs.	764
RMSE	2.54