Algebra - Lista 16

Zadanie 1 Udowodnij uogólnienia twierdzenia z wykładu:

Niech f będzie wielomianem nierozkładalnym a $p_1p_2\dots p_\ell$ wielomianami w F[X] oraz $f^k|p_1p_2\dots p_\ell$. Wtedy istnieją liczby n_1, n_2, \ldots, n_ℓ , takie że $\sum_i n_i \geq k$ oraz dla każdego i zachodzi $f^{n_i}|p_i$.

Zadanie 2 Niech krotność pierwiastka $c \le f$ to największa liczba naturalna k, taka że $(x-c)^k | f$.

Udowodnij uogólnienia twierdzenia z wykładu:

Niech liczby c_1, c_2, \ldots, c_ℓ z ciała F będą pierwiastkami stopnia k_i wielomianu $f \in F[X]$. Wtedy $\sum_i k_i \leq \deg(f)$.

Zadanie 3 Wylicz resztę z dzielenia następujących wielomianów przez x-c dla podanych wartości c (jeśli nie jest powiedziane inaczej: wielomiany są z $\mathbb{R}[X]$).

- $x^3 5x^2 + 3x + 1$, $c \in \{0, 1, 2\}$;

- $2x^3 + 2x^2 + x + 1 \in \mathbb{Z}_5[X], c \in \{1, 2, 3\};$ $4x^2 + 3x 2, c \in \{-1, 0, 1\};$ $x^3 + 2x^2 + 2x + 2 \in \mathbb{Z}_3[X], c \in \{-1, 0, 1\};$

Zadanie 4 Korzystając z tw. Bezout rozłóż poniższe wielomiany z $\mathbb{Z}_2[X]$ na czynniki nierozkładalne

$$x^5 + x^3 + x + 1$$
, $x^4 + x^3 + x^2 + 1$, $x^5 + x^2 + x$, $x^4 + x^2 + 1$, $x^4 + x^2 + x$.

Potraktuj powyższe wielomiany jako wielomiany z $\mathbb{Z}_3[X]$ i również rozłóż je na czynniki nierozkładalne.

Zadanie 5 Wielomian f ma resztę z dzielenia przez $x-c_1$ równą r_1 oraz resztę z dzielenia przez $x-c_2$ równą r_2 . Ile wynosi reszta z dzielenia f przez $(x-c_1)(x-c_2)$?

Wystarczy, że zapiszesz zależność na r_1, r_2 , nie musisz jej rozwiązywać.

Wskazówka: Skorzystaj z tw. Bezout.

Zadanie 6 Niech F będzie ciałem skończonym o n elementach. Pokaż, że w F[X] prawdziwa jest zależność:

$$x^n - x = \prod_{a \in F} (x - a)$$

Wskazówka: Porównaj pierwiastki obydwu wielomianów oraz ich wiodące współczynniki.

Zadanie 7 Policz, ile jest różnych wielomianów stopnia 2 w $\mathbb{Z}_p[X]$ o wiodącym współczynniku równym 1. Ile z nich jest rozkładalnych? Udowodnij, że istnieje wielomian nierozkładalny w $\mathbb{Z}_p[X]$ stopnia 2.

Wskazówka: Wielomian rozkładalny ma 2 różne pierwiastki lub jeden dwukrotny.