第六次作业——第七章随机变量的数字特征及中心极限定理

姓名:	_ 班级:	学号:	
一、填空题			
1. 设随机变量 $X \sim N($	$-2,1), Y \sim E(3), \mathbb{E} X \stackrel{!}{=}$	可 Y 是相互独立的,则 $D(X-$	·3 <i>Y</i>) =
2. 已知 X 服从二项分	布 $B(n,p)$,且 $E(X) = 2$	D(X) = 1.44 ,则二项	分布的参数
n = ; $p =$	=		
3.设随机变量 X 的概率	这分布为 $P(X=x) = \frac{e^{-2} \cdot x^2}{x^2}$	$\frac{2^x}{!}$, $(x = 0, 1, 2 \cdots)$, \emptyset $D(2X)$)=
4. 设随机变量 <i>X</i> , <i>Y</i> 相 <u>3</u>	i独立,且 $E(X) = E(Y)$	=1, D(X) = 2, D(Y) = 3,	
则 $D(XY) =$			
5. 设随机变量 X 服从参	*数为 2 的泊松分布,且 E	□ ≠ E[(X-1)(X-2)]=1,	
则 λ =			
6. 设随机变量 X 服从参	□数为 λ > 0 的泊松分布, 」	则 $D(2X) =$	
7. 设随机变量 <i>X</i> 在[1 二 、计算题	τ,π]上服从均匀分布,令]	$Y = \sin X$, $\bowtie E(Y) = $	·
车销售,且每天出售的]汽车数是相互独立的,	=2的泊松分布.若一年中有3 求一年中售出700辆以上》	
$(\sqrt{5} \approx 2.236, \Phi(0.74))$	15) = 0.7703)		

2.某餐厅每天接待 300 名顾客,设每位顾客的消费额(元)服从(20,100)上的均匀分布,且顾客的消费额是相互独立的.试求该餐厅每天的营业额超过 17000 元的概率. ($\Phi(2.5)=0.9938$)

3. 设一个车间里有 400 台同类型的机器,每台机器需要用电为 Q 瓦,由于工艺关系,每台机器不连续开动,开动的时间只占总工作时间的 $\frac{3}{4}$. 问应该供应多少瓦电力才能以 99%的概率保证该车间的机器正常工作?(设各机器的开、停是相互独立的)