CE 388 – FUNDAMENTALS OF STEEL DESIGN

CHAPTER 7: WELDING

Introduction

 Welding is a process of connecting metallic pieces by heating their surfaces to a plastic or fluid state and allowing the parts to flow together and join

Welding

Advantages/Disadvantages

- Advantages:
 - Usually more economical than bolted connections
 - The need for a large percentage of gusset and splice plates (necessary for bolted structures) is eliminated
 - No reduction in the cross-section for tension members, resulting in smaller member sizes
 - Requires considerably less labor than does riveting
 - □ A wider range of application than bolting
 - □ Forming more rigid connections and structures
- Disadvantages:
 - Requires more costly inspection and control
 - It is more difficult to disassemble or alter a welded connection than a bolted connection

Types of welds

- Groove or Butt welds (Küt kaynak)
- Fillet welds (Köşe kaynağı)

Stresses in welded connections

- Welded connections might be subjected to the following state of loading:
 - □ Shear only
 - Shear and torsion
 - Shear and bending
 - □ The most general case

Welded connections subjected to shear only

- The resulting load remains in the plane of the weld
- It passes through the c.g. of the weld area

At every point on the weld:

Welded connections subjected to shear and torsion

- The resulting load remains in the plane of the weld
- It does not pass through the c.g. of the weld area

■ Shear stresses due to P: At every point on the weld,

$$\tau_x' = \frac{P_x}{A} \qquad \tau_y' = \frac{P_y}{A}$$

• Shear stresses due to T (M_z) : At a point on the weld,

 $\tau'' = \frac{M_z y}{T} \qquad \tau'' = \frac{M_z x}{T}$

$$\tau_x'' = \frac{M_z y}{J} \qquad \tau_y'' = \frac{M_z x}{J}$$

■ Total shear stresses due to P and T:

$$\tau_x = \tau_x' + \tau_x'' = \frac{P_x}{A} + \frac{M_z y}{J} \qquad \tau_y = \tau_y' + \tau_y'' = \frac{P_y}{A} + \frac{M_z x}{J}$$

Welded connections subjected to shear and bending

- The resulting load remains out of the plane of the weld
- It passes through the z-axis located at c.g. of the weld (no torsion)

Shear stresses due to P:

At every point on the weld,

$$\tau_x = \tau_x' = \frac{P_x}{A} \qquad \tau_y = \tau_y' = \frac{P_y}{A}$$

 $\,\blacksquare\,$ Normal stresses due to bending moments ${\rm M_x}$ and ${\rm M_y}$

Welded connections subjected to a general load case

A general load case: (shear+axial force+bending + torsion)

• Stresses due to P_{xy} , P_y and P_z :

$$\tau'_x = \frac{P_x}{A}$$
 $\tau'_y = \frac{P_y}{A}$ $\sigma'_z = \frac{P_z}{A}$

• Stresses due to M_{x} , M_{y} and M_{z} :

$$\tau_x'' = \frac{M_z y}{J} \qquad \tau_y'' = \frac{M_z x}{J} \qquad \sigma_z' = \frac{M_x y}{I_{xx}} + \frac{M_y x}{I_{yy}}$$

Resulting stresses:

$$\tau_x = \tau_x' + \tau_x'' = \frac{P_x}{A} + \frac{M_z y}{J} \qquad \tau_y = \tau_y' + \tau_y'' = \frac{P_y}{A} + \frac{M_z x}{J}$$

$$\sigma_z = \sigma_z' + \sigma_z'' = \frac{P_z}{A} + \frac{M_x y}{I_{xx}} + \frac{M_y x}{I_{yy}}$$

Design of Welded Connections

- Groove welds:
 - Normal and shear stresses are considered in a conventional manner

Type of stress	Type of steel					
	St37		St52			
	EY	EIY	EY	EIY		
Normal (σ_{all})	1400	1600	2400	2700		
Shear (τ_{all})	1100	1250	1700	1900		

Allowable stresses in groove welds (kgf/cm2)

Design of Welded Connections

- Fillet welds:
 - □ The throat of the weld is considered to be the critical section
 - □ A resultant stress on the throat is computed approximately as

Resultant stress on throat of weld

Type of stress	Type of steel				
	St37		St52		
	EY	EIY	EY	EIY	
Normal, Shear and Resultant	1100	1250	1700	1900	

Allowable stresses in fillet welds (kgf/cm²)

TS3357 Requirements

• Requirement 1 (minimum and maximum weld thickness for fillet welds):

• Requirement 2: minimum and maximum lengths for fillet welds:

Design and analysis of welded connections

Example Problems