Bayesian Compressive Sensing with Belief Propagation

Based on the work of: Richard G. Baraniuk et. al. (Rice Univ.)

April 30, 2012

Compressed Sensing

Noiseless Measurements

Consider an under-determined measurement equation

$$\underline{Y}_{m\times 1} = \Psi_{m\times n} \cdot \underline{X}_{n\times 1},\tag{1}$$

where m < n, and $||\underline{X}||_{\ell_0} = k$ (called k-sparse).

Compressed Sensing

Noiseless Measurements

Consider an under-determined measurement equation

$$\underline{Y}_{m\times 1} = \Psi_{m\times n} \cdot \underline{X}_{n\times 1},\tag{1}$$

where m < n, and $||\underline{X}||_{\ell_0} = k$ (called k-sparse).

CS theory guarantees:

If Ψ is appropriately chosen (e.g. sub-Gaussian), \underline{x} (realization of \underline{X}) can be uniquely recovered from \underline{y} , without any distortion:

$$\ell_0$$
-min decoding: $\hat{\underline{x}} = \arg\min_{x'} \left| \left| \underline{x'} \right| \right|_{\ell_0}, \quad s.t. \ \Psi \cdot \underline{x'} = \underline{y}$ (2)

$$\ell_1$$
-min decoding: $\hat{\underline{x}} = \arg\min_{\underline{x}'} \left| \left| \underline{x}' \right| \right|_{\ell_1}, \quad s.t. \ \Psi \cdot \underline{x}' = \underline{y}$ (3)

Noisy Compressed Sensing

Noisy Measurements

Associates an additive noise in the measurements:

$$\underline{Y}_{m\times 1} = \Psi_{m\times n} \cdot \underline{X}_{n\times 1} + \underline{N}_{m\times 1}, \tag{4}$$

Noisy Compressed Sensing

Noisy Measurements

Associates an additive noise in the measurements:

$$\underline{Y}_{m\times 1} = \Psi_{m\times n} \cdot \underline{X}_{n\times 1} + \underline{N}_{m\times 1}, \tag{4}$$

Noisy CS Recovery:

- Convex Optimization: ℓ_1 -regularization,
- Greedy Algorithms: MP, OMP, StOMP, etc,
- Combinational Algorithms,
- Bayesian.

Bayesian Compressed Sensing (BCS)

Consider when $\mathbf{p}_X(.)$ is known:

$$\underline{Y}_{m\times 1} = \Psi_{m\times n} \cdot \underline{X}_{n\times 1} + \underline{N}_{m\times 1}$$

Optimal Decoding

$$\hat{\underline{x}}_i = \mathbf{E} \left[\underline{X}_i \middle| \underline{Y} = \underline{y} \right], \ 1 \le i \le n \tag{5}$$

Bayesian Compressed Sensing (BCS)

Consider when $\mathbf{p}_X(.)$ is known:

$$\underline{Y}_{m\times 1} = \Psi_{m\times n} \cdot \underline{X}_{n\times 1} + \underline{N}_{m\times 1}$$

Optimal Decoding

$$\hat{\underline{x}}_i = \mathbf{E} \Big[\underline{X}_i \Big| \underline{Y} = \underline{y} \Big], \ 1 \le i \le n$$
 (5)

This requires the decoder to calculate $\mathbf{p}_X(\underline{x}|\underline{Y}=y)$.

Bayesian Compressed Sensing (BCS)

Consider when $\mathbf{p}_X(.)$ is known:

$$\underline{Y}_{m\times 1} = \Psi_{m\times n} \cdot \underline{X}_{n\times 1} + \underline{N}_{m\times 1}$$

Optimal Decoding

$$\hat{\underline{x}}_i = \mathbf{E} \left[\underline{X}_i \middle| \underline{Y} = \underline{y} \right], \ 1 \le i \le n \tag{5}$$

This requires the decoder to calculate $\mathbf{p}_X(\underline{x}|\underline{Y}=y)$.

Motivated by LDPC coding:

However, if Ψ has a lot of zeros, then computationally simple decoding may be possible.

Encoding by Sparse Matrix

$$\underline{Y}_{m\times 1} = \Psi_{m\times n} \cdot \underline{X}_{n\times 1} + \underline{N}_{m\times 1}$$

Opposed to the conventional *dense* CS measurement matrices (*e.g.* sub-Gaussian), BCS measurement matrices have **low density**, which is the key to **fast** encoding and decoding.

Encoding by Sparse Matrix

$$\underline{Y}_{m\times 1} = \Psi_{m\times n} \cdot \underline{X}_{n\times 1} + \underline{N}_{m\times 1}$$

Opposed to the conventional *dense* CS measurement matrices (*e.g.* sub-Gaussian), BCS measurement matrices have **low density**, which is the key to **fast** encoding and decoding.

Rice university CS group work:

- they adopt CS-LDPC Ψ with -1,1 non-zero entries,
- they *prove* possibility of robust decoding for tw-state Gaussian \underline{X} 's, under some conditions. $m = O(k \log(n))$ measurements are sufficient.

Belief Propagation (BP) based Decoding

They consider a two-state mixture Gaussian prior:

- For each $1 \le i \le n$, $Q_i \sim \mathbf{Bernouli}(\frac{k}{n})$
- if $Q_i = 1$: $X_i \sim \mathcal{N}(0, \sigma_1^2)$,
- if $Q_i = 0$: $X_i \sim \mathcal{N}(0, \sigma_0^2)$, where $\sigma_1^2 \gg \sigma_0^2$.

Belief Propagation (BP) based Decoding

They consider a two-state mixture Gaussian prior:

- For each $1 \le i \le n$, $Q_i \sim \mathbf{Bernouli}(\frac{k}{n})$
- if $Q_i = 1 : X_i \sim \mathcal{N}(0, \sigma_1^2)$,
- if $Q_i = 0$: $X_i \sim \mathcal{N}(0, \sigma_0^2)$, where $\sigma_1^2 \gg \sigma_0^2$.

Factor Graph for CS-BP

O Constraint Node

Variable Node

A Practical Case

\underline{X} is sparse in ϕ domain:

$$\underline{Y} = \underline{Y}_0 + \underline{N} = \Psi \cdot \underline{X} + \underline{N} = \Psi \phi \cdot \underline{S} + \underline{N}$$

 $\mathbf{E}[||\underline{S}||_{\ell_0}] \simeq k$

Message Passing in CS-BP

Message Passing:

Types of messages:

- $\mu_{v \to c}(v)$
- $\mu_{c \to v}(v)$

Updating Messages: Multiplication and Convolution of Beliefs

$$\mu_{v o c}(v) = \prod_{u \in neib(v) - \{c\}} \mu_{u o v}(v)$$

$$\mu_{c o v}(v) = \sum_{\sim \{v\}} \left(cons(neib(c)) \prod_{w \in neib(c) - \{v\}} \mu_{w o c}(w) \right)$$

Message Passing in CS-BP

$$f(v) = \prod_{u \in neib(v)} \mu_{u \to v}(v)$$

CS-BP is numerically shown to converge, if appropriate Ψ and messages are used.