310 Quals Strategy Compendium

July 5, 2025

1 Permutation and counting facts

Fact 1 (Number derangements of *k*-element set)

Derangements: D_n is the number of permutations with no fixed points.

Via inclusion exclusion.

$$D_k = k! \sum_{j=0}^k \frac{(-1)^j}{j!}.$$

Eg, if *T* is number of fixed points:

$$P(T=k)=\frac{1}{n!}\binom{n}{k}D_{n-k},$$

since the remaining n - k must **not** be fixed.

Apply the above to "Distribution of number of fixed points"- type questions.

Fact 2 (Catalan Numbers)

Catalan Numbers:

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)! n!} \quad n \geqslant 0$$

Dyck Paths

Definition 3 (Cycles)

Cycle of a permutations

Definition 4 (Descents)

Reference: check Persi and Susan's paper

2 Distribution Facts

2.1 Gaussian Facts

Fact 5 (Max of Gaussians and fluctuations)

Max of Gaussians $\sqrt{2 \log n}$ with fluctuations $1/\sqrt{\log n}$

Fact 6 (Max of sub-gaussian)

Expectation upper bound applies to correlated sub-gaussian reandom variables – see Vershynin.

Fact 7 (Mill's Ratio)

Fact 8 (Normal Conditional Distributions)

$$(X, Y) \sim MVN(\mu, \Sigma \implies X|Y \sim ...$$

2.2 Poisson, Exponential Distribution

Superposition and thinning.

Fact 9 (Superposition)

See Poisson with integer mean? Try superposition:

$$Pois(n) = \sum_{i=1}^{n} Pois(1)$$

Fact 10 (Renyi Representation of Exponential)

Fact 11 (Maximum, minimum of Exponential)

3 Basic set theory and measure theory

Definition 12 (Sigma Algebra)

Definition 13 (Algebra/Field)

Definition 14 (Outer measure)

Defined by

- 1. A non-negative set function
- 2.

The typical outer measure is WRite this out

Definition 15 (Measurable sets)

E is μ^* measurable if for all $B \subset \Omega$:

$$\mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c).$$

Write about littlewood's principles here

Example 16 (Non-measurable sets)

Todo

4 Pi-Lambda and Good Sets

Definition 17 (π -system)

Collection of sets that is closed under **finite intersections**

Definition 18 (λ -system)

 ${\cal L}$ lambda system if

- 1. $\Omega \in L$
- 2. closed under complements
- 3. closed under countable disjoint unions

Alternative definition:

- 1. $\Omega \in L$
- 2. $A, B \in L$ and $A \subseteq B$ then $B \setminus A \in L$
- 3. $A_1, A_2, ..., \in L$ an increasing sequence of sets, then $\bigcup_i A_i \in L$

Note that a collection is a σ -algebra \iff it is both a pi system and a lambda system.

Theorem 19 (π – λ Theorem)

If *P* is a π system and *L* is a λ -system with $P \subset L$, then $\sigma(P) \subset L$.

Use to proof uniqueness of extension from an algebra to the sigma field.

Example 20 (Quals 2017, Question 2)

Theorem 21 (Monotone Class Theorem)

Use def:

Definition 22 (Monotone Class)

M is a monotone class if

- 1. Closed under increasing unions
- 2. Closed under decreasing intersections

If an algebra *A* is contained in a monotone class *M*, then $\sigma(A) \subset M$.

Theorem 23 (Monotone Class for functions)

Double check this

M be a vector space of $\mathbb R\text{-valued}$ functions on Ω such that

- 1. $1 \in M$
- 2. M is a vector space over \mathbb{R} . Ie closed under addition and scalar mult
- 3. If $h_n \ge 0 \in M$ and $h_n \uparrow h$, then $h \in M$.

Then if *P* is a pi system such that $\mathbf{1}_A \in M$ for all $M \in P$, then *M* contains all functions that are measurable with respect to $\sigma(P)$.

Ie want to prove something about some functions measurable on $\sigma(P)$...

Theorem 24 (Independent π systems generate independent sigma algebras)

 $\{C_i\}_{i\in I}$ independent \Longrightarrow $\{\sigma(C_i)\}$ independent

Example 25 (Prove two random variables independent)

Check that generating pi systems are independent, ie $P(X \le b, Y \le a) = \prod P(X \le b)P(Y \le a)$.

Definition 26 (Independence of (uncountable) collections of sets)

 $\{A_{\alpha}\}_{\alpha\in I}$ each be a collection of sets. Independent if any **finite subcollection** are mutually independent.

5 Extension theorems

Theorem 27 (Caratheodory)

Extend a measure on an algebra to a σ algebra, uniquely if finite.

The important idea is make an outer measure, then prove the lemma is that the μ^* measurable sets in \mathcal{F} for a sigma algebra on which μ^* is countably additive, ie a bonafide measure.

6 Random variables

Definition 28 (Random variable)

 $X: \Omega \to \mathbb{S}$ is measurable if:

$$X^{-1}(B) := \{ \omega : X(\omega) \in B \} \in \mathcal{F} \quad \forall B \in \mathcal{S}$$

Fix an arbitrary set in the co-sigma algebra and check that its preimage is measurable- \mathcal{F} .

Recipe 29 (Measurability)

If $S = \sigma(A)$ and $X^{-1}(A) \in \mathcal{F}$ for all $A \in A$, then X is measurable.

Note- nothing necessary about it being a pi system, just pick any convenient generators.

Proof. Such sets form a sigma algebra and $S = \sigma(A)$.

Definition 30 (Characterize distribution functions of real-valued random variable)

Dembo Theorem 1.2.37.

- 1. Non decreasing
- 2. $\lim_{x\to\infty} F(x) = 1$ and $\to -\infty$ gives 0
- 3. *F* right continuous

7 0-1 Laws

Definition 31 (Tail field)

Defining $\mathcal{T}_n = \sigma(X_r, r > n)$ and the tail sigma algebra of the process is $\mathcal{T} = \cap_n \mathcal{T}_n$.

Theorem 32 (Kolmogorov 0-1)

The tail sigma field is P-trivial. Dembo 1.4.10

8 Borel Cantelli

Example 33 (Longest head runs)

See Durrett.

A helpful idea is splitting into blocks.

Truncation arguments. Want to show something about $\{X_n\}$. Consider:

$$Y_n = X_n \mathbf{1}[|X_n| \leqslant c_n],$$

which will then be integrable. Then prove something about Y_n , you can transfer this knowledge to knowledge about X_n by the following idea:

$$P(X_n \neq Y_n \text{ io}) = 0 \text{ if } \sum_{i=1}^n P(|X_n| > c_n) < \infty$$

So if the above is zero, eventually $X_n = Y_n$, so the limiting behavior of Y_n is the same as that of X_n . The difficulty is picking a c_n such that the above holds.

Theorem 34 (Borel Cantelli 3)

Not as useful but still check these

If you have a filtration $\{F_n\}$ and $A_n \in \mathcal{F}_n$, then:

1. (analog of Borel Cantelli 1)

$$\sum_{k=1}^{\infty} P(A_k | \mathcal{F}_{k-1})(\omega) < \infty \implies \sum \mathbf{1}[\omega \in A_k] < \infty$$

2. Analog of BC 2

$$\sum_k P(A_k|\mathcal{F}_{k-1})(\omega) = \infty \implies \frac{\sum \mathbf{1}[A_k(\omega)]}{\sum P(A_k|\mathcal{F}_{k-1})(\omega)|} \to 1$$

9 Modes of Convergence

Recipe 35 (Proving as convergence)

Some ideas:

- 1. BC 1: check that $P(|X_n X| > \epsilon \text{ i.o}) = 0$. Consider *subsequence trick* below.
- 2. If $X_n \xrightarrow{p} X$, then $X_{n_k} \xrightarrow{\text{a.s.}} X$ for a subsequence. (Good for counter examples)
- 3. $X_n \xrightarrow{p} X$ and X_n is monotone (ie for all ω , $X_n(\omega)$ is increasing in n), then $X_n \xrightarrow{a.s.} X$.
- 4. Continuous mapping theorem
- 5. Skorohod's Representation. If $X_n \implies X$ weakly, then there exists a probability space and random variables $Z_n = {}^d X_n$ and $Z = {}^d X$ such that $Z_n \xrightarrow{\text{a.s.}} Z$. (Good for counter examples)

6

Theorem 36 (BC Subsequence trick)

Sometimes $\sum P(A_n) = \infty$.

- 1. Pick a subsequence such that it's finite.
- 2. Shows that A_{n_k} infinitely often occurs with probability 0.
- 3. Apply interpolation or some other argument for everything in between, ie to conclude that A_n infinitely often wp 0 also.

Eg for monotone X_n :

$$\frac{X_n}{\mathbf{E}X_n} \leqslant \frac{X_{n_{k+1}-1}}{\mathbf{E}X_{n_k}}$$

So $\limsup_k \frac{X_{n_{k+1}-1}}{\mathbb{E} X_{n_k}} \le 1 \implies \limsup_n \frac{X_n}{\mathbb{E} X_n} \le 1$. We can control the left hand side by controlling the right hand side along our choice of subsequence.

See Dembo notes subsequence section Examples - SLLN, Brownian LLN, LIL.

SLLN in Persi notes and Renewal theorem in Dembo

Recipe 37 (Proving conv in prob)

Some ideas:

- 1. Show almost sure convergence
- 2. Show convergence in L^p for $p \ge 1$ (in L^2 in particular useful):
 - Show that $EX_n \to \mu$, $VarX_n \to 0$, then $X_n \to \mu$ in L^2
- 3. CMT
- 4. $X_n \xrightarrow{d} c$ constant
- 5. Truncation tool: Weak law for Triangular Array. For when we don't have second moments.

Theorem 38 (Weak law triangular array - 2.1.11 Dembo)

Check this Suppose triangular array $\{X_{n,k}\}_{n\in\mathbb{N},k\leqslant n}$ of pairwise independent rv. Define a truncated array with the same *within-row* truncation:

$$\overline{X}_{n,k} = X_{n,k} \mathbf{1}[|X_{n,k}| < b_n]$$

. If we have two conditions:

$$\sum_{k=1}^{n} P(|X_{n,k}| > b_n) \longrightarrow^{n} 0,$$

and,

$$b_n^{-2} \sum_{k=1}^n \operatorname{Var}(\overline{X}_{n,k}) \to 0,$$

Then:

$$b_n^{-1}(\sum_{k=1}^n X_{n,k} - a_n) \xrightarrow{p} 0$$
 where $a_n = \sum_{k=1}^n \mathbf{E} \overline{X}_{n,k}$.

In case of St Petersburg paradox, then show that $a_n/b_n \to 1/2$ so that we get $b_n^{-1} \sum_{k=1}^n X_k = (b_n^{-1} \sum_{k=1}^n X_{n,k}) \xrightarrow{p} 1/2$.

Recipe 39 (Prove L^p convergence)

Ideas - see session notes

- 1. $X_n \xrightarrow{\text{a.s.}} X$ and X_n uniformly bounded then $X_n \to^{L1} X$.
- 2. If X_n uniformly bounded then $X_n \xrightarrow{d} 0 \implies X_n \to^{L1} 0$.
- 3. If $|X_n|^p$ is UI then $X_n \xrightarrow{d} X \implies E|X_n|^p \to E|X|^p$
- 4. Scheffe's Lemma

Recipe 40 (Proving UI)

Try

- 1. Sums of UI sequence of rvs are UI
- 2. Domination: If $E \sup |X_i| < \infty$ then $\{X_i\}$ is UI
- 3. If $\{X_i\}$ is UI, then $\sup E|X_i| < \infty$ but not the converse.
- 4. Prop 8.3.3: X_n UI \iff sup $E|X_i| < \infty$ and for all ε , there exists δ for all A such that P(A) < delta then $E[|X_n|\mathbf{1}[A]] < \varepsilon$
- 5. If $\sup \mathbf{E}|X_i|^r < \infty$ if r > 1, then UI
- 6. $X \in L^1$, then $\{E[X|\mathcal{G}] : \mathcal{G} \subset \mathcal{F}\}$ is UI
- 7. L^1 convergence implies UI

10 Integration

Definition 41 (Lebesgue Integral)

$$\int_{\Omega} f(\omega) d\mu(\omega) = \sup \left(\sum_{i=1}^{n} v_i \mu(A_i) \right)$$

where $v_i = \inf_{\omega \in A_i} f(\omega)$ and the sup is over all partitions of Ω.

Theorem 42 (MCT)

Note that can also do for general functions (not necessarily non negative) so long as $f_n \ge g \in L^1$.

Theorem 43 (Fatou's Lemma)

$$\int \lim \inf_{n} f_n d\mu \leqslant \lim \inf_{n} \int f_n d\mu$$

Theorem 44 (DCT)

If $f_n \to f$ a.e ω , and there exists g such that $|f_n(\omega)| \leq g(\omega)$ a.e ω and $\int g d\mu < \infty$ then exchange integral and limit. Must dominate the sequence.

Theorem 45 (Scheffe's Lemma)

Is a statement about combining L^1 and as convergence. If $f_n \xrightarrow{\text{a.s.}} f \in L^1$, then:

$$||f_n - f||_{L^1} \to 0 \iff \int |f_n| d\mu \to \int |f| d\mu$$

We always have that convergence in L^1 implies convergence of the expectations (without any a.s. convergence assumption), but the other direction is Scheffe's contribution.

Theorem 46 (Reverse Fatou)

If $f_n \leq g \in L^1$ then :

$$\limsup_{n} \int f_n d\mu \leqslant \int \limsup_{n} f_n d\mu$$

Fact 47 (L^p spaces nested)

$$\|Y\|_r \leqslant \|Y\|_q$$

Fact 48 (L^q convergence fact - Dembo 1.3.28)

$$X_n \to^{L^q} X \implies E|X_n|^q \to E|X_\infty|^q$$
 for any q. (Minkowski)

Also for only $q \in \mathbb{N}$, $\mathrm{E} X_n^q \to \mathrm{E} X_\infty^q$. (some wild algebraic shit for odd q).

Theorem 49 (Holder's)

If
$$p, q > 1$$
 with $1/p + 1/q = 1$ then

$$E|XY| \leqslant \|X\|_p \|Y\|_q$$

Cauchy Schwarz is special case.

Theorem 50 (Minkowski)

Triangle inequality for the $\|\cdot\|_p$ norm

Definition 51 (Uniform integrability (UI))

Possibly uncountable collection $\{X_\alpha\,:\,\alpha\in I\}$ is called UI if

$$\lim_{M \to \infty} \sup_{\alpha \in I} \mathbf{E}[|X_{\alpha}| \mathbf{1}[|X_{\alpha}| > M] = 0$$

Fact 52 (Dominated implies UI)

If $|X_{\alpha}| \leq Y$ for integrable Y, then collection is UI.

As a corollary, any finite collection of integrable rv is UI.

Theorem 53 (Vitali Convergence Theorem)

Supposing that $X_n \xrightarrow{p} X$, then:

 $\{X_n\}$ is UI $\iff X_n \to^{L1} X \iff X_n$ is integrable for all $n \leqslant \infty$ and $E|X_n| \to E|X_\infty|$.

11 Product σ -algebras

Existence of unique product measure of n $\sigma-$ finite measures.

Theorem 54 (Kolmogorov Extension)

Unique probability measure on $(\mathbb{R}^{\mathbb{N}}, \mathcal{B}_c)$ with correct FDDs.

Theorem 55 (Fubini's)

Conditions: $h \ge 0$ or $\int |h| d\mu < \infty$ where $\mu = \mu_1 \times \mu_2$.

12 Weak Convergence

12.1 Methods

1. **Direct**. Show that $F_n(x) \to F(x)$ for all continuity points.

- 2. If there's a density, try to show that $f_n(x) \to f_\infty$ and check that f_∞ a valid pdf.
- 3. If $X_n \ge 0$, show that $\int_0^\infty \exp(-\lambda x) d\mu_n(x) \to L(\lambda) = \int_0^\infty \exp(-\lambda x) d\mu_\infty(x)$. Note that $L(\lambda)$ is a Laplace transform of some μ if $L(\lambda) \downarrow 1$ as $\lambda \downarrow 0$. (Just need for positive λ .
- 4. MGFs
- 5. Characteristic functions- show that $\phi_n(t) \to \phi(t)$ for all $t \in \mathbb{R}$. (ϕ is a characteristic function of a probability measure if $\psi(t) \to 1$ as $t \downarrow 0$.
- 6. CLT

Example 56 (Cycling of Random Number Generators (2007 Q2))

Similar to birthday problem.

$$P(T > k) = \prod_{i=1}^{k} (1 - \frac{i}{n}) \tag{1}$$

$$\approx \prod \exp(-1/n) \tag{2}$$

$$\approx \exp(-k^2/n). \tag{3}$$

So $P(T > x\sqrt{n}) \approx \exp(-x^2/2)$ should work.

Need to justify this rigorously. To do so, use $|\log(1+x) - x| < Cx^2$ when |x| < 1/2. Ie, $\log(1+x) = x + O(x^2)$.

See lecture 1 in 310a.

13 CLT

Heuristic: "not too dependent", "no few terms dominate".

Theorem 57 (Lindeberg CLT)

Suppose we have a triangular array such that:

- 1. for fixed n, $\{X_{ni}\}_{i=1}^{k_n}$ are independent (ie independence within row).
- 2. Suppose also $E(X_{ni})=0$ for all, and $Var X_{ni}=\sigma_{ni}^2<\infty$.
- 3. Define $S_n = \sum_{i=1}^{k_n} X_{ni}$ and $s_n^2 = \sum_{i=1}^{k_n} \sigma_{ni}^2$ (sum of rows)
- 4. **Lindeberg condition** holds ie for all $\varepsilon > 0$:

$$\lim_{n\to\infty}\frac{1}{s_n^2}\sum_{i=1}^{k_n}\int X_{ni}^2\mathbf{1}[|X_{ni}|>\epsilon s_n]dP=0$$

Then:

$$\frac{S_n}{S_n} \xrightarrow{d} \mathcal{N}(0,1).$$

Note that if not mean zero, subtract off the means:

$$\frac{S_n - \sum_{i=1}^{k_n} \mu_{kn}}{s_n} \xrightarrow{d} N(0, 1)$$

Example 58 (CLT failures: too wild)

$$X_i = \begin{cases} 0 \text{ wp } 1 - 1/i \\ 1 \text{ wp } 1/i \end{cases}$$

The issue is that some X_i 's dominate— ie the big ones.

Example 59 (CLT Failures: too dependent)

Recipe 60 (CLT for non-square integrable)

Session 4 notes. Similar to convergence in probability strategy.

Assume $X_{n,k}$ in L^1 and exist c_n such that

- 1. $\sum_{k=1}^{\ell_n} P(|X_{n,k}| > c_n) = o(1)$
- 2. Lindeberg condition satisfied for truncated $Y_{n,k} = X_{n,k} \mathbf{1}[X_{n,k} \leq c_n]$
- 3. $\sum_{k=1}^{\ell_n} (\mathbf{E} X_{n,k} \mathbf{E} Y_{n,k}) = o(s_n)$ where s_n^2 sum of variances of truncated in the *n*-th row.

Then

$$\frac{\sum_{k=1}^{\ell_n} X_{n,k} - \mathbf{E} X_{n,k}}{s_n} \xrightarrow{d} N(0,1)$$

Theorem 61 (Lyapunov CLT)

Lyapunov condition is sufficient for Lindeberg's condition. Same setup, check that:

$$s_n^{-2-\delta} \sum_{i=1}^{k_n} \mathbf{E} |X_{n,k} - \mathbf{E}(X_{n,k})|^{2+\delta} \longrightarrow 0$$
 for some $\delta > 0$

14 Characteristic Functions

Definition 62 (Characteristic Function)

Characteristic function is fourier transform of μ .

$$\phi(t) = \mathbf{E}[\exp(itX)].$$

Recipe 63 (Characteristic Function Chaos)

Try to get $\phi(t) \approx (1 + \frac{f(t)}{n})^n$ form so that we can use exp limit.

- 15 Stein's Method (Poisson)
- 15.1 Method 1 Dependency Graphs
- 15.2 Method 2 when dependency graph doesn't work (ie complete)

Example 64 (Fixed Points - 310a HW8)

Let σ be a uniformly chosen permutation in the symmetric group S_n . Let $W = \#\{i : \sigma(i) = i\}$ (the number of fixed points in σ). Show that W has an approximate Poisson(1) distribution by using Stein's method to get an upper bound on $\|P_W - \text{Poisson}(1)\|$. (Hint: see section 4.5 of Arratia-Goldstein-Gordon.) Give details for this specific case.

Let I = [n]. We choose $B_{\alpha} = \{\alpha\}$ and use Theorem 1 from Arratia-Goldstein-Gordon. For each $i \in I$, let

$$X_i = \begin{cases} 1 \text{ if } \sigma(i) = i \\ 0 \text{ otherwise} \end{cases}$$

Naturally, $P(X_i = 1) = \frac{1}{n}$. We let $W = \sum_{i \in I} X_i$ and $\lambda = E[W] = 1$. We now use Stein's method as given in Arratia-Goldstein-Gordon Theorem 1 to get an upper bound on $\|P_W - Pois(1)\|$.

$$b_1 = \sum_{\alpha \in I} \sum_{\beta \in B_{\alpha}} p_{\alpha} p_{\beta} = \sum_{\alpha \in I} p_{\alpha}^2 = \frac{1}{n}.$$

Next, because we let $B_{\alpha} = \{\alpha\}$,

$$b_2 = 0.$$

Finally, for the third term, by Lemma 2 (p 418) in Arratia et al,

$$b_3 \leqslant \min_{1 < k < n} (\frac{2k}{n-k} + 2n2^{-k}e^e) \sim 2\frac{(2\log_2 n + e/\ln 2)}{n},$$

due to the fact that $\lambda = 1$ in our problem, so $\lambda = o(n)$

Now note that as $n \to \infty$, $b_1 \to 0$ and $b_3 \to 0$, so, noting that the Arratia paper's definition of TV distance is twice our definition of TV distance:

$$||P_W - Pois(1)|| \le b_1 + b_2 + b_3 = \frac{1}{n} + \frac{4\log_2 n + 2\epsilon/\ln 2}{n} + o(1)$$

Now as $n \to \infty$, $b_1 \to 0$ and $b_3 \to 0$, so $||P_W - Pois(1)|| \to 0$.

Example 65 (Near Fixed Points- 2004 Q2)

16 Approximations

$$1 - x \le e^{-x}$$
 $1 - x \ge e^{-2x}$ both for small x?
 $\log(1 + x) = x + O(x^2)$ for small x

16.1 Binomial Coeffs and Stirlings

$$\left(\frac{n}{k}\right)^k \leqslant \binom{n}{k} \leqslant \left(\frac{ne}{k}\right)^k$$

Stirlings

17 Misc

Definition 66 (Metric)