Semidefinite Optimization and Relaxation

Heng Yang

2024-01-19

Contents

P	reface	5
N	otation	7
1	Mathematical Background	11
2	Semidefinite Optimization	13

Preface

This is the textbook for Harvard ENG-SCI 257: Semidefinite Optimization and Relaxation. Information about the offerings of the class is listed below.

2024 Spring

 $\mathbf{Time} \colon \operatorname{Mon/Wed} \ 2:15 \ \text{-} \ 3:30 \mathrm{pm}$

Location: Science and Engineering Complex, 1.413

Instructor: Heng Yang

Teaching Fellow: Safwan Hossain

Syllabus

Acknowledgment

Notation

We will use the following standard notation throughout this book.

Basics

\mathbb{R}	real numbers
\mathbb{R}_{+}	nonnegative real
\mathbb{R}_{++}	positive real
\mathbb{Z}	integers
\mathbb{N}	nonnegative integers
\mathbb{R}^n	n-D column vector
\mathbb{R}^n_+	nonnegative orthant
\mathbb{R}^n_+ \mathbb{R}^n_{++}	positive orthant
e_i	standard basic vector
$\Delta_n := \{x \in \mathbb{R}^n_+ \mid \sum x_i = 1\}$	standard simplex

Matrices

$\mathbb{R}^{m \times n}$	$m \times n$ real matrices
\mathbb{S}^n	$n \times n$ symmetric
	matrices
\mathbb{S}^n_+	$n \times n$ positive
	semidefinite matrices
\mathbb{S}^n_{++}	$n \times n$ positive definite
	matrices
$\langle A, B \rangle$ or \bullet	inner product in
	$\mathbb{R}^{m imes n}$
$\operatorname{tr}(A) \\ A^{ op}$	trace of $A \in \mathbb{R}^{n \times n}$
$A^{ op}$	matrix transpose
$\det(A)$	matrix determinant
$\operatorname{rank}(A)$	rank of a matrix
$\operatorname{diag}(A)$	diagonal of a matrix
	A as a vector

$\overline{\mathrm{Diag}(a)}$	turning a vector into
$BlkDiag(A,B,\dots)$	a diagonal matrix block diagonal matrix with blocks $A, B,$
$\succeq 0$ and $\preceq 0$	positive / negative semidefinite
$\succ 0$ and $\prec 0$	positive / negative definite
$\lambda_{\rm max}$ and $\lambda_{\rm min}$	maximum / minimum eigenvalue
$\sigma_{\rm max}$ and $\sigma_{\rm min}$	maximum / minimum singular value
$\operatorname{vec}(A)$	vectorization of $A \in \mathbb{R}^{m \times n}$
$\operatorname{svec}(A)$	$\operatorname{symmetric}$
	vectorization of $A \in \mathbb{S}^n$
$\ A\ _{\mathrm{F}}$	Frobenius norm

Geometry

$\ a\ _p$	p-norm
$ a ^r$	2-norm
B(o,r)	ball with center o and radius r
$\operatorname{conv}(S)$	convex hull of set S
cone(S)	conical hull of set S
int(S)	interior of set S
∂S	boundary of set S
P°	polar dual of convex body
SO(d)	special orthogonal group of dimension d
\mathcal{S}^{d-1}	unit sphere in \mathbb{R}^d

Optimization

KKT	Karush–Kuhn–Tucker
LP	linear program
QP	quadratic program
SOCP	second-order cone program
SDP	semidefinite program

Algebra

$\mathbb{R}[x]$	polynomial ring in x with real coefficients
\deg	degree of a monomial / polynomial
$\mathbb{R}[x]_d$	polynomials in x of degree up to d
$[x]_d$	vector of monomials of degree up to d
$[\![x]\!]_d$	vector of monomials of degree d

Chapter 1

Mathematical Background

Chapter 2

Semidefinite Optimization