Algorithms

3.3 BALANCED SEARCH TREES

- 2-3 search trees
- red-black BSTs
- ▶ B-trees

Symbol table review

implementation	guarantee			average case			ordered	key
	search	insert	delete	search hit	insert	delete	ops?	interface
sequential search (unordered list)	N	N	N	½ N	N	½ N		equals()
binary search (ordered array)	lg N	N	N	lg N	½ N	½ N	•	compareTo()
BST	N	N	N	1.39 lg <i>N</i>	1.39 lg <i>N</i>	\sqrt{N}	✓	compareTo()
goal	log N	log N	log N	log N	log N	log N	~	compareTo()

Challenge. Guarantee performance.

This lecture. 2-3 trees, left-leaning red-black BSTs, B-trees.

Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

3.3 BALANCED SEARCH TREES

- ▶ 2-3 search trees
- red-black BSTs
 - B-trees

2-3 tree

Allow 1 or 2 keys per node.

- 2-node: one key, two children.
- 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order. Perfect balance. Every path from root to null link has same length.

2-3 tree demo

Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for H

Insertion into a 2-3 tree

Insertion into a 2-node at bottom.

• Add new key to 2-node to create a 3-node.

insert G

Insertion into a 2-3 tree

Insertion into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert Z

2-3 tree construction demo

insert S

2-3 tree

Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant number of operations.

Global properties in a 2-3 tree

Invariants. Maintains symmetric order and perfect balance.

Pf. Each transformation maintains symmetric order and perfect balance.

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

- Worst case:
- Best case:

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

- Worst case: $\lg N$. [all 2-nodes]
- Best case: $\log_3 N \approx .631 \lg N$. [all 3-nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Bottom line. Guaranteed logarithmic performance for search and insert.

ST implementations: summary

implementation	guarantee			average case			ordered	key
	search	insert	delete	search hit	insert	delete	ops?	interface
sequential search (unordered list)	N	N	N	½ N	N	½ N		equals()
binary search (ordered array)	lg N	N	N	lg N	½ N	½ N	~	compareTo()
BST	N	N	N	1.39 lg <i>N</i>	1.39 lg <i>N</i>	\sqrt{N}	~	compareTo()
2-3 tree	$c \lg N$	c lg N	$c \lg N$	c lg N	$c \lg N$	$c \lg N$	~	compareTo()

2-3 tree: implementation?

Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Need multiple compares to move down tree.
- Need to move back up the tree to split 4-nodes.
- Large number of cases for splitting.

fantasy code

```
public void put(Key key, Value val)
{
   Node x = root;
   while (x.getTheCorrectChild(key) != null)
   {
      x = x.getTheCorrectChildKey();
      if (x.is4Node()) x.split();
   }
   if (x.is2Node()) x.make3Node(key, val);
   else if (x.is3Node()) x.make4Node(key, val);
}
```

Bottom line. Could do it, but there's a better way.