Математический анализ

Михайлов Максим

22 октября 2022 г.

Оглавление стр. 2 из 104

Оглавление

Лекция 1 8 февраля	4
1 Интеграл	6
1.1 Измеримые функции	6
1.2 Меры Лебега-Стилтьеса	10
Лекция 2 15 февраля	11
1.3 Сходимость почти везде и по мере	14
2 Интеграл	19
Лекция 3 22 февраля	22
2.1 Предельный переход под знаком интеграла	26
Лекция 4 1 марта	30
3 Плотность одной меры по отношению к другой. Замена переменных в инте-	
грале	35
Лекция 5 15 марта	38
4 Возвращаемся в \mathbb{R}^m	40
Лекция 6 22 марта	45
4.1 Сферические координаты в \mathbb{R}^m	45
5 Произведение мер	46
Лекция 7 29 марта	52
6 Поверхностный интеграл	58
6.1 Поверхностный интеграл I рода	58
Лекция 8 5 апреля	60
6.2 Поверхностный интеграл II рода	60
7 Ряды Фурье	63
7.1 Пространства L^p	63
Лекция 9 12 апреля	66
8 Формула Грина	66
9 Ряды Фурье (возвращение)	69
9.1 Напоминание	71
Лекция 10 19 апреля	74
10 Формула Остроградского	74
Лекция 11 26 апреля	80
11 Гильбертово пространство	82
Лекция 12 3 мая	87
12 Тригонометрические ряды Фурье	89

Оглавление	стр. 3 из 104

Лекция 13	10 мая	94
13 Свертк	и и аппроксимационные единицы	. 98
Лекция 14	17 мая	100
14 Сумми	грование рядов Фурье	. 103
14.1 M	етод средних арифметических (<i>Чезаро</i>)	. 103

Лекция 1

8 февраля

Лемма 1 (о структуре компактного оператора).

- $V: \mathbb{R}^m \to \mathbb{R}^m$ линейный оператор
- $\det V \neq 0$

Тогда \exists ортонормированные базисы $g_1 \dots g_m$ и $h_1 \dots h_m$, а также $\exists s_1 \dots s_m > 0$, такие что:

$$\forall x \in \mathbb{R}^m \quad V(x) = \sum_{i=1}^m s_i \langle x, g_i \rangle h_i$$

$$\mathsf{M} \mid \det V \mid = s_1 s_2 \dots s_m.$$

Примечание. Эта лемма из функционального анализа, что такое компактный оператор — мы не знаем.

Доказательство. $W:=V^*V-$ самосопряженный оператор (матрица симметрична относительно диагонали).

Из линейной алгебры мы знаем, что такой оператор имеет:

- Собственные числа: $c_1 \dots c_m$ вещественные (возможно с повторениями)
- Собственные векторы: $g_1 \dots g_m$ ортонормированные

Примечание. Пока мы в \mathbb{R}^m (а не в \mathbb{C}^m), * есть транспонирование. В комплексном случае ещё берется сопряжение.

$$c_i \langle g_i, g_i \rangle \stackrel{\text{(??)}}{=} \langle Wg_i, g_i \rangle \stackrel{\text{(??)}}{=} \langle Vg_i, Vg_i \rangle > 0$$

^{(??):} т.к. g_i — собственный вектор для W с собственным значением c_i .

• (??): из линейной алгебры:

$$W_{kl} = \sum_{i=1}^{m} V_{ik} V_{il}$$
$$\langle Wg_i, g_i \rangle = \sum_{k,l,j} V_{jk} V_{jl} g_k^{(i)} g_l^{(i)} = \langle Vg_i, Vg_i \rangle$$

Таким образом, $c_i > 0$.

$$\begin{split} s_i &:= \sqrt{c_i} \\ h_i &:= \frac{1}{s_i} V g_i \\ \langle h_i, h_j \rangle &\stackrel{\text{def } h_i}{=} \frac{1}{s_i s_j} \left\langle V g_i, V g_j \right\rangle \stackrel{\text{(??)}}{=} \frac{1}{s_i s_j} \left\langle W g_i, g_j \right\rangle \stackrel{\text{(??)}}{=} \frac{c_i}{s_i s_j} \left\langle g_i, g_j \right\rangle \stackrel{\text{(??)}}{=} \delta_{ij} \end{split}$$

Примечание. $\delta_{ij} = egin{cases} 1, & i=j \\ 0, & i
eq j \end{cases}$ — символ Кронекера.

Таким образом, $\{h_i\}$ ортонормирован.

$$V(x) \stackrel{\text{def } x}{=} V \left(\sum_{i=1}^{m} \langle x, g_i \rangle g_i \right) \stackrel{\text{(??)}}{=} \sum_{i=1}^{m} \langle x, g_i \rangle V(g_i) \stackrel{\text{def } h_i}{=} \sum s_i \langle x, g_i \rangle h_i$$
$$(\det V)^2 \stackrel{\text{(??)}}{=} \det(V^*V) \stackrel{\text{def } W}{=} \det W \stackrel{\text{(??)}}{=} c_1 \dots c_m$$
$$|\det V| = \sqrt{c_1} \dots \sqrt{c_m} = s_1 \dots s_m$$

Теорема 1 (о преобразовании меры Лебега под действием линейного отображения).

• $V: \mathbb{R}^m \to \mathbb{R}^m$ — линейное отображение

Тогда
$$\forall E \in \mathfrak{M}^m \ V(E) \in \mathfrak{M}^m$$
 и $\lambda(V(E)) = |\det V| \cdot \lambda E$

^{(??):} из линейной алгебры, аналогично предыдущему.

^{(??):} т.к. g_i — собственный вектор для W с собственным значением c_i .

^{(??):} при $i \neq j$ $\langle g_i,g_j \rangle=0$ в силу ортогональности, а при i=j $\langle g_i,g_j \rangle=1$ в силу ортонормированности и $\frac{c_i}{s_is_j}=\frac{c_i}{\sqrt{c_i}\sqrt{c_i}}=1$

^(??): в силу линейности V

^{(??):} в силу мультипликативности det и инвариантности относительно транспонирования.

^{(??):} т.к. \det инвариантен по базису и в базисе собственных векторов $\det W = c_1 \dots c_m$.

Доказательство.

- 1. Если $\det V=0$ $\operatorname{Im}(V)$ подпространство в $\mathbb{R}^m\Rightarrow \lambda(\operatorname{Im}(V))=0$ по следствию 6 лекции 15 третьего семестра. Тогда $\forall E\;V(E)\subset\operatorname{Im}(V)\Rightarrow \lambda(V(E))=0$
- 2. Если $\det V \neq 0$ $\mu E := \lambda(V(E))$ мера, инвариантная относительно сдвигов. Это было доказано в конце прошлого семестра:

$$\mu(E+a) = \lambda(V(E+a)) = \lambda(V(E) + V(a)) = \lambda(V(E)) = \mu E$$

 $\Rightarrow \exists k: \mu = k\lambda$ по недоказанной теореме из прошлого семестра.

Мы хотим найти k, для этого нужно что-нибудь померять. Померяем что-то очень простое, например $Q = \{ \sum \alpha_i g_i \mid \alpha_i \in [0,1] \}$ — единичный куб на векторах g_i .

По 1
$$V(g_i) = s_i h_i$$
. Таким образом, $V(Q) = \{ \sum \alpha_i s_i h_i \mid \alpha_i \in [0,1] \}$.

$$\mu Q = \lambda(V(Q)) = s_1 \dots s_m = |\det V| = |\det V| \underbrace{\lambda Q}_{=1}$$

Таким образом, $k = |\det V|$

1 Интеграл

1.1 Измеримые функции

Определение.

- 1. E множество, $E = \bigsqcup_{\text{кон.}} e_i$ разбиение множества.
- 2. $f: X \to \mathbb{R}$ ступенчатая, если:

$$\exists$$
 разбиение $X = \bigsqcup_{\scriptscriptstyle{ ext{KOH.}}} e_i : \forall i \ f \Big|_{e_i} = ext{const}_i = c_i$

При этом разбиение называется допустимым для этой функции.

Пример.

1. Характеристическая функция множества $E\subset X: \chi_E(x)= egin{cases} 1, & x\in E \\ 0, & x\in X\setminus E \end{cases}$

2.
$$f = \sum_{\mathrm{KOH}} c_i \chi_{e_i}$$
, где $X = \bigsqcup e_i$

Рис. 1.1: Ступенчатая функция

Свойства.

1. $\forall f, g$ — ступенчатые:

 \exists разбиение X, допустимое и для f, и для g:

$$f = \sum_{\text{koh.}} c_i \chi_{e_i} \quad g = \sum_{\text{koh.}} b_k \chi_{a_k}$$

$$f = \sum_{i,k} c_i \chi_{e_i \cap a_k} \quad g = \sum_{i,k} b_k \chi_{e_i \cap a_k}$$

2. f, g — ступенчатые, $\alpha \in \mathbb{R}$

Тогда $f+g, \alpha f, fg, \max(f,g), \min(f,g), |f|$ — ступенчатые.

Определение. $f:E\subset X \to \overline{\mathbb{R}}, a\in \mathbb{R}$

 $E(f < a) = \{x \in E : f(x) < a\}$ — лебегово множество функции f

Аналогично можно использовать $E(f \leq a), E(f > a), E(f \geq a)$

Примечание.

$$E(f \ge a) = E(f < a)^c$$
 $E(f < a) = E(f \ge a)^c$

$$E(f \le a) = \bigcap_{b>a} E(f < b) = \bigcap_{n \in \mathbb{N}} E\left(f < a + \frac{1}{n}\right)$$

Определение.

- (X, \mathfrak{A}, μ) пространство с мерой
- $f: X \to \overline{\mathbb{R}}$
- $E \in \mathfrak{A}$

f измерима на множестве E, если $\forall a \in \mathbb{R} \;\; E(f < a)$ измеримо, т.е. $\in \mathfrak{A}$

Вместо "f измерима на X" говорят просто "измерима".

Если $X = \mathbb{R}^m$, мера — мера Лебега, тогда f — измеримо по Лебегу.

Примечание. Эквивалентны:

- 1. $\forall a \ E(f < a)$ измеримо
- 2. $\forall a \ E(f \leq a)$ измеримо
- 3. $\forall a \ E(f > a)$ измеримо
- 4. $\forall a \ E(f \geq a)$ измеримо

Доказательство. Тривиально по соображениям выше.

Пример.

1. $E \subset X, E$ — измеримо $\Rightarrow \chi_E$ — измеримо.

$$E(\chi_E < a) = \begin{cases} \varnothing, & a \le 0 \\ X \setminus E, & 0 < a \le 1 \\ X, & a > 1 \end{cases}$$

2. $f:\mathbb{R}^m o \mathbb{R}$ — непрерывно. Тогда f — измеримо по Лебегу.

Доказательство. $f^{-1}((-\infty,a))$ открыто по топологическому определению непрерывности, а любое открытое множество измеримо по Лебегу.

Свойства.

- 1. f измеримо на $E\Rightarrow \forall a\in\mathbb{R}\;\; E(f=a)$ измеримо. В обратную сторону неверно, пример — $f(x)=x+\chi_{\text{неизм.}}$
- 2. f измеримо $\Rightarrow \forall \alpha \in \mathbb{R} \ \alpha f$ измеримо.

Доказательство.
$$E(\alpha f < a) = \begin{cases} E(f < \frac{a}{\alpha}), & \alpha > 0 \\ E(f > \frac{a}{\alpha}), & \alpha < 0 \\ E, & \alpha = 0, a \geq 0 \\ \varnothing, & \alpha = 0, a < 0 \end{cases}$$

- 3. f измеримо на $E_1, E_2, \cdots \Rightarrow f$ измеримо на $E = \bigcup E_k$
- 4. f измеримо на $E, E'_{\mbox{\tiny H3M.}} \subset E \Rightarrow f$ измеримо на E'

Доказательство.
$$E'(f < a) = E(f < a) \cap E'$$

- 5. $f \neq 0$, измеримо на $E \Rightarrow \frac{1}{f}$ измеримо на E.
- 6. $f \geq 0$, измеримо на $E, \alpha \in \mathbb{R} \Rightarrow f^{\alpha}$ измеримо на E.

Это неверно, т.к. при $f\equiv 0, \alpha=-1$ $\nexists f^{\alpha}$

Теорема 2. f_n — измеримо на X. Тогда:

- 1. $\sup f_n$, $\inf f_n$ измеримо.
- 2. $\overline{\lim} f_n, \underline{\lim} f_n$ измеримо.
- 3. Если $\forall x \; \exists \lim_{n \to +\infty} f_n(x) = h(x)$, то h(x) измеримо.

Доказательство.

1. $g=\sup f_n \quad X(g>a)\stackrel{(\ref{eq:continuous})}{=}\bigcup_n X(f_n>a)$ и счётное объединение измеримых множеств измеримо.

(??):

•
$$X(g>a)\subset\bigcup_n X(f_n>a)$$
, т.к. если $x\in X(g>a)$, то $g(x)>a$.

$$\sup_{n} f_n(x) = g(x) \neq a \Rightarrow \exists n : f_n(x) > a$$

- $X(g>a)\supset \bigcup_n X(f_n>a)$, т.к. если $x\in X(f_n>a)$, то $f_n(x)>a$, следовательно g(x)>a.
- 2. $(\overline{\lim} f_n)(x) = \inf_n (s_n = \sup(f_n(x), f_{n+1}(x), \dots))$. Т.к. \sup и \inf измерим, $\overline{\lim} f_n$ тоже измерим.
- 3. Очевидно, т.к. если $\exists \lim$, то $\lim = \overline{\lim} = \underline{\lim}$

1.2 Меры Лебега-Стилтьеса

 $\mathbb{R}, \mathcal{P}^1, g: \mathbb{R} \to \mathbb{R}$ возрастает, непрерывно.

 $\mu[a,b):=g(b)-g(a)-\sigma$ -конечный объем (и даже σ -конечная мера на \mathcal{P}^1)

Также можно определить для монотонной, но не непрерывной g. Тогда в точках разрыва $\exists g(a+0), g(a-0)$. Пусть $\mu[a,b)=g(b-0)-g(a-0)$. Такое изменение нужно, потому что исходное μ не является объемом для разрывных функций.

Применим теорему о лебеговском продолжении меры. Получим меру μ_g на некоторой σ —алгебре. Это мера **Лебега-Стилтьеса**.

 Π ример. g(x)=[x], тогда мера ячейки — количество целых точек в этой ячейке.

Если μ_q определена на борелевской σ -алгебре, то она называется мерой **Бореля-Стилтьеса**.

Лекция 2

15 февраля

Теорема 3 (о характеризации измеримых функций с помощью ступенчатых).

- $f: X \to \mathbb{R}$
- $f \ge 0$
- f измеримо

Тогда $\exists f_n$ — ступенчатые:

1.
$$0 \le f_1 \le f_2 \le f_3 \le \dots$$

2.
$$\forall x \ f(x) = \lim_{n \to +\infty} f_n(x)$$

Доказательство.

$$e_k^{(n)} = X\left(\frac{k-1}{n} \le f < \frac{k}{n}\right) \quad k = 1 \dots n^2$$

$$e_{n^2+1}^{(n)} := X(n \le f)$$

$$g_n := \sum_{k=1}^{n^2+1} \frac{k-1}{n} \chi_{e_k^{(n)}}$$

$$g_n \ge 0$$

$$\lim_{n \to +\infty} g_n(x) = f(x) : g_n(x) \le f(x)$$

$$\int_{n \to +\infty} g_n(x) = f(x) : \begin{cases} g_n(x) \le f(x) \\ f(x) = +\infty : \forall n \ x \in e_{n^2+1}^{(n)} \Rightarrow g_n(x) = n \\ f(x) < +\infty : |g_n(x) - f(x)| \le \frac{1}{n} \end{cases}$$

$$f_n = \max(g_1, ..., g_n)$$

 $g_n(x) \le f_n(x) \le f(x)$
 $f_n(x) \xrightarrow[n \to +\infty]{} f(x)$

Следствие 3.1.

• f — измеримо

Тогда $\exists f_n -$ ступенчатые : $f_n \xrightarrow[n \to +\infty]{} f$ всюду и $|f_n| \leq |f|$

Доказательство. Рассмотрим срезки f^+, f^- , дальше очевидно.

Следствие 3.2.

• f, g — измеримо

Тогда fg — измеримо (пусть $0\cdot\infty=0$).

Доказательство.

$$\underbrace{f_n}_{\text{ступ.}} \to f, \underbrace{g_n}_{\text{ступ.}} \to g$$
 $f_n g_n - \text{ступ.} \quad f_n g_n \to fg$

Измеримость выполняется в силу измеримости предела.

Следствие 3.3.

• f, g — измеримо

Тогда f + g измеримо.

Примечание. Считаем, что $\forall x$ не может быть одновременно $f(x)=\pm\infty, g(x)=\pm\infty.$

Доказательство.

$$f_n + g_n \to f + g$$

Теорема 4 (об измеримости функций, непрерывных на множестве полной меры).

Примечание. $A \subset X$ — полной меры, если $\mu(X \setminus A) = 0$.

- $f: E \to \mathbb{R}, E \subset \mathbb{R}^m$
- $e \subset E$
- $\lambda_m e = 0$
- f непрерывно на $E' = E \setminus e$

Тогда f — измеримо.

Доказательство. f — измеримо на E', т.к. E'(f < a) открыто в E' по топологическому определению непрерывности.

 $e(f < a) \subset e, \lambda_m$ — полная в $\mathbb{R}^{m1} \Rightarrow e(f < a)$ — измеримо в E.

$$E(f < a) = E'(f < a) \cup e(f < a)$$
, объединение измеримых множеств измеримо. \square

 Π ример. $E=\mathbb{R}, f=\chi_{\operatorname{Irr}}$, где Irr — множество иррациональных чисел. f непр. на Irr и разрывно на $\mathbb{R}.$

Следствие 4.1.

- $f: E \to \mathbb{R}$
- $e \subset E \subset X$

 $^{^{1}}$ Любое подмножество множества нулевой меры измеримо.

- $\mu e = 0$
- $E' = E \setminus e$
- f измеримо на E'

Тогда можно так переопределить f на e, что полученная функция \tilde{f} будет измерима.

Доказательство. Пусть
$$\tilde{f}(x) = \begin{cases} f(x), x \in E' \\ \mathrm{const}, x \in e \end{cases}$$

$$E(\tilde{f} < a) = \underbrace{E'(\tilde{f} < a)}_{E'(f < a)} \cup \underbrace{e(\tilde{f} < a)}_{\varnothing \text{ или } e}$$

Следствие 4.2. $f:\langle a,b\rangle \to \mathbb{R}$ — монотонна.

Тогда f измерима.

Доказательство. f — непрерывно на $\langle a,b \rangle$ за исключением, возможно, счётного множества точек.

Упражнение 1. $f, g : \mathbb{R} \to \mathbb{R}$ — измеримо.

 $\varphi:\mathbb{R}^2 o \mathbb{R}$ — непрерывна.

Доказать: $x \mapsto \varphi(f(x), g(x))$ — измеримо.

Упражнение 2. $f:\mathbb{R} \to \mathbb{R}$ — измеримо.

Доказать: $\mathbb{R}^2 \to \mathbb{R}: (x,y) \mapsto f(x-y)$ — измеримо.

Упражнение 3. Доказать, что \exists измеримая функция $f:\mathbb{R} \to \mathbb{R}$

 $\forall e \subset \mathbb{R}: \lambda e = 0$, если f непрерывно на e, то полученная \tilde{f} разрывна всюду.

1.3 Сходимость почти везде и по мере

Определение.

- (X,\mathfrak{A},μ)
- $E \in \mathfrak{A}$
- W(x) высказывание $(x \in X)$

W(x) — верно при почти всех x из E = почти всюду на E = почти везде на E = п.в. E, если:

 $\exists e \in E : \mu e = 0$ и W(x) истинно при $\forall x \in E \setminus e$

Пример. $X = \mathbb{R}, W$ = иррационально.

Определение. Если $f_n(x) \xrightarrow[n \to +\infty]{} f(x)$ при п.в. $x \in E$, тогда говорят, что f_n сходится на E почти везде.

Свойства.

- μ полная
 - $f_n, f: X \to \overline{R}$
 - $f_n \to f$ п.в. X
 - f_n измеримо

Тогда f измеримо.

Доказательство. $f_n \to f$ на X', где $e = X \setminus X'$, $\mu e = 0$

f — измеримо на X'

$$\mu$$
 — полная $\Rightarrow f$ измеримо на X , т.к. $X(f < a) = \underbrace{X'(f < a)}_{\text{мах}} \cup \underbrace{e(f < a)}_{\text{сe}}$

- 2. В условии пункта один можно переопределить f на множестве e. Тогда получится \tilde{f} и $f_n(x) \to \tilde{f}(x)$ почти везде и \tilde{f} измеримо.
- 3. Пусть $\forall n \ W_n(x)$ истинно при почти всех x.

Тогда утверждение " $\forall n \ W_n(x)$ истинно" — верно при почти всех x

Доказательство.
$$\lessdot e_n: \mu(e_n)=0.$$
 Искомое высказывание верно при $x\in X\setminus \begin{pmatrix} +\infty \\ \bigcup_{i=1}^+ e_i \end{pmatrix}, \mu(\bigcup e_i)=0$

Определение. Будем говорить, что f эквивалентна g если f = g почти всюду.

Определение. $f_n, f: X \to \overline{\mathbb{R}}$ — почти везде конечны.

$$f_n$$
 сходится к f по мере μ , обозначается $f_n \Longrightarrow f: \forall \varepsilon > 0 \ \mu X(|f_n - f| \ge \varepsilon) \xrightarrow[n \to +\infty]{} 0$

Примечание. f_n и f можно изменить на множестве меры 0, т.е. предел не задан однозначно.

 $Упражнение 4. \ f_n \xrightarrow{\mu} f; f_n \xrightarrow{\mu} g.$ Тогда f и g эквивалентны.

Доказательство. Пусть существует множество $X(|f-g|>\varepsilon)$ положительной меры.

$$X(|f-g|>\varepsilon)\subset X(|f-f_n|>\varepsilon)\cup X(|g-f_n|>\varepsilon)$$

$$\mu X(|f-g| > \varepsilon) \le \underbrace{\mu X(|f-f_n| > \varepsilon) + \mu X(|g-f_n| > \varepsilon)}_{\to 0}$$

Следовательно предположение неверно. Но тогда $\mu(\bigcup X(|f-g|>\varepsilon))=0$, а следовательно $f\sim g$.

Аналогичное доказательство есть в более подробном виде по следующей ссылке

Пример.

1.
$$f_n(x) = \frac{1}{nx}, x > 0, X = \mathbb{R}_+, f \equiv 0$$
 $f_n \to f$ всюду на $(0, +\infty)$ $f_n \xrightarrow[\mu]{} f$

$$X(|f_n - f| \ge \varepsilon) = X\left(\frac{1}{nx} \ge \varepsilon\right) = X\left(x \le \frac{1}{\varepsilon n}\right)$$

$$\lambda(\dots) = \frac{1}{\varepsilon n} \to 0$$

2.
$$f_n(x):=e^{-(n-x)^2}, x\in\mathbb{R}$$

$$f_n(x)\to 0 \text{ при всех } x$$

$$f_n(x)\not\Rightarrow 0$$

$$\mu(\mathbb{R}(e^{-(n-x)^2} \ge \varepsilon)) = \text{const} \not\to 0$$

3.
$$n = 2^k + l, 0 \le l < 2^k, X = [0, 1], \lambda$$

$$f_n(x) := \chi_{\left[\frac{l}{2^k}, \frac{l+1}{2^k}\right]}$$

 $\lim f_n(x)$ не существует ни при каком $x!^2$

$$X(f_n \ge \varepsilon) = \frac{1}{2^k} \to 0 \Rightarrow f_n \xrightarrow{\lambda} 0$$

Теорема 5 (Лебега).

- (X,\mathfrak{A},μ)
- μX конечно
- f_n, f измеримо, п.в. конечно

² Это восклицательный знак, а не факториал.

•
$$f_n \to f$$
 п.в.

Тогда
$$f_n \Longrightarrow f$$

Доказательство. Переопределим f_n , f на множестве меры 0, чтобы сходимость была всюду.

Рассмотрим частный случай: $\forall x$ последовательность $f_n(x)$ монотонно убывает к 0, то есть $f\equiv 0$

$$X(|f_n| \ge \varepsilon) = X(f_n \ge \varepsilon) \supset X(f_{n+1} \ge \varepsilon)$$

$$\bigcap X(f_n \ge \varepsilon) = \emptyset$$

Таким образом, по теореме о непрерывности меры сверху, $\mu X(f_n \geq \varepsilon) \to 0$

Рассмотрим общий случай:
$$f_n \to f$$
, $\varphi_n(x) := \sup_{k \ge n} |f_k(x) - f(x)|$

Тогда $\varphi_n \to 0, \varphi_n \geq 0$ и монотонно, таким образом мы попали в частный случай.

$$X(|f_n - f| \ge \varepsilon) \subset X(\varphi_n \ge \varepsilon)$$
$$\mu X(|f_n - f| \ge \varepsilon) \le \mu X(\varphi_n \ge \varepsilon) \to 0$$

Теорема 6 (Рисс).

- (X, \mathfrak{A}, μ) пространство с мерой
- f_n, f измеримо, п.в. конечно
- $f_n \Longrightarrow f$.

Тогда $\exists n_k: f_{n_k} \to f$ почти везде.

Доказательство.

$$orall k \;\; \mu X\left(|f_n-f|\geq rac{1}{k}
ight) o 0$$

$$\exists n_k: \mathrm{при}\; n\geq n_k \;\; \mu X\left(|f_n-f|\geq rac{1}{k}
ight)<rac{1}{2^k}$$

Можно считать, что $n_1 < n_2 < n_3$

Проверим, что $f_{n_k} o f$ почти везде.

$$E_k := \bigcup_{j=k}^{+\infty} X\left(|f_{n_j} - f| \ge \frac{1}{j}\right) \quad E = \bigcap E_k$$

$$E_k \supset E_{k+1} \quad \mu E_k \stackrel{(??)}{\leq} \sum_{j=k}^{+\infty} \mu X \left(|f_{n_j} - f| \ge \frac{1}{j} \right) < \sum_{j=k}^{+\infty} \frac{1}{2^j} \le \frac{2}{2^k} \to 0$$

$$\mu E_k \to \mu E \Rightarrow \mu E = 0$$

Покажем, что при $x \notin E \ f_{n_k} \to f$.

$$x \notin E \; \exists N \; x \notin E_k \; \mathrm{при} \; k > N \; |f_{n_k}(x) - f(x)| < rac{1}{k}$$

To есть $f_{n_k}(x) \to f(x)$.

Т.к. $\mu E = 0$, искомое выполнено.

Следствие 6.1. $f_n \Longrightarrow_{\mu} f \ |f_n| \leq g$ почти всюду. Тогда $|f| \leq g$ почти всюду.

Доказательство. $\exists n_k \ f_{n_k} \to f$ почти всюду.

$$f_n \rightrightarrows f \Rightarrow f_n(x) \to f(x) \ \forall x \Rightarrow f_n \Longrightarrow f$$

Теорема 7 (Егорова).

- (X, \mathfrak{A}, μ) пространство с мерой
- $\mu X < +\infty$
- f_n, f почти везде конечно, измеримо
- $f_n o f$ почти везде

Тогда

$$\forall \varepsilon > 0 \ \exists e \subset X : \mu e < \varepsilon \quad f_n \Longrightarrow_{X \setminus e} f$$

Доказательство.

Примечание. Кажется, доказательство знать не нужно, т.к. нам его не давали.

Зафиксируем $\varepsilon > 0$. Рассмотрим следующее семейство множеств:

$$E_{n,k} = \bigcup_{m > n} \left\{ x \in X \mid |f_m(x) - f(x)| \ge \frac{1}{k} \right\}$$

^{(??):} по счётной полуаддитивности меры.

Т.к. $f_n \to f$ почти везде:

$$\mu\left(\bigcap_{n\in\mathbb{N}}E_{n,k}\right)=0$$

Т.к. $\mu X < +\infty$, то μ непрерывно сверху, т.е.

$$\lim_{n \to +\infty} \mu E_{n,k} = \mu \left(\bigcap_{n \in \mathbb{N}} E_{n,k} \right) = 0$$

Тогда по определению предела $\exists (n_k)$:

$$\mu E_{n_k,k} < \frac{\varepsilon}{2^k}$$

Пусть $e = \bigcup_{k \in \mathbb{N}} E_{n_k,k}$. По σ -аддитивности μ :

$$\mu(e) \le \sum_{k \in \mathbb{N}} \mu(E_{n_k,k}) < \sum_{k \in \mathbb{N}} \frac{\varepsilon}{2^k} = \varepsilon$$

Кроме того, $f_n \xrightarrow[X \setminus e]{} f$.

2 Интеграл

 $\sphericalangle(X,\mathfrak{A},\mu)$ — зафиксировали.

Определение (1).

- $f = \sum \alpha_k \chi_{E_k}$
- E_k допустимое разбиение
- $\alpha_k \ge 0$

$$\int_{X} f d_{\mu(x)} := \sum \alpha_k \mu E_k$$

И пусть $0 \cdot \infty = 0$

Свойства.

1. Не зависит от представления f в виде суммы, т.е.:

$$f = \sum \alpha_k \chi_{E_k} = \sum \alpha'_k \chi_{E'_k} = \sum_{k,j} \alpha_k \chi_{E_k \cap E'_j}$$

 $\mbox{Примечание.}$ При $E_k \cap E_j' \neq \varnothing \; \alpha_k = \alpha_j \Rightarrow$ можно писать любое из них.

$$\int f = \sum \alpha_k \mu E_k = \sum_{k,j} \alpha_k \mu(E_k \cap E'_j) = \sum \alpha'_k \mu E'_k$$

2.
$$\underbrace{f}_{\text{CT.}} \leq \underbrace{g}_{\text{CT.}} \Rightarrow \int_X f \leq \int_X g$$

Определение (2).

- $f \ge 0$
- f измеримо

$$\int_{X} f d\mu := \sup_{\substack{g - \text{cryn.} \\ 0 \le g \le f}} \int g d\mu$$

Свойства.

- Если f ступенчатая, то определение 2 = определение 1.
- $0 \le \int_X f \le +\infty$
- $g \leq f, f$ измеримая, g ступенчатая $\Rightarrow \int_X g \leq \int_X f$

Определение (3).

- ƒ измеримо
- $\int f^+$ или $\int f^-$ конечен

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu$$

Требование о конечности необходимо для избегания неопределенностей.

Теорема 8 (Тонелли).

- $f: \mathbb{R}^{m+n} \to \overline{\mathbb{R}}$
- $f \ge 0$
- f измерима
- Записывается как f(x,y), где $x \in \mathbb{R}^m, y \in \mathbb{R}^n$
- $E \subset \mathbb{R}^{m+n}$

Обозначение.

$$\forall x \in \mathbb{R}^m \ E_x := \{ y \in \mathbb{R}^n : (x, y) \in E \}$$

Тогда:

- 1. При почти всех $x \in \mathbb{R}^m$ функция $y \mapsto f(x,y)$ измерима на \mathbb{R}^n
- 2. Функция $x\mapsto \int_{E_x} f(x,y) d\lambda_n(y) \geq 0$, измерима и корректно задана.

3.

$$\int_{E} f(x,y)d\mu = \int_{\mathbb{R}^{m}} \left(\int_{E_{x}} f(x,y)d\lambda_{n}(y) \right) d\lambda_{m}(x)$$

Примечание. Неформально говоря, можно разбить \mathbb{R}^{m+n} на \mathbb{R}^m и \mathbb{R}^n и интегрировать сначала по одной переменной, потом по другой.

Лекция 3

22 февраля

Определение. Если оказалось, что $\int_X f^+, \int_X f^-$ оба конечны, то f называется **суммируемой**.

Примечание.

1. Если f измеримо и \geq , то интеграл определения 3 = интегралу определения 2.

Определение (4).

- $E \subset X$ измеримо
- f измеримо на X

$$\int_{E} f d\mu := \int_{Y} f \cdot \chi_{E}$$

Примечание.

- $f = \sum \alpha_k \chi_{E_k} \Rightarrow \int_E f = \sum \alpha_k \mu(E_k \cap E)$
- $\int_E f d\mu = \sup\{\int_E g: 0 \leq g \leq f$ на E,g ступ. $\}$ и мы считаем, что $g \equiv 0$ вне E.
- $\int_E f$ не зависит от значений f вне множества E.

 $\it Cвойства. \ (X, \mathfrak{A}, \mu)$ — пространство с мерой, $E \subset X$ — измеримо, g, f — измеримо.

1. Монотонность $f \leq g: \int_E f \leq \int_E g$

Доказательство.

- (a) При $f,g \ge 0$ очевидно из определения.
- (b) При произвольных f,g $f^+ \leq g^+$ и $f^- \geq g^-$ (очевидно из определения). Из предыдущего случая $\int_E f^+ \leq \int_E g^+, \int_E f^- \geq \int_E g^-$.

2.
$$\int_{E} 1d\mu = \mu E, \int_{E} 0d\mu = 0$$

3.
$$\mu E = 0 \Rightarrow \int_E f = 0$$

Доказательство.

- (a) f ступ. Тривиально.
- (b) f измеримо, $f \ge 0$. $\sup 0 = 0$, поэтому искомое выполнено.

(c)
$$\int f^+, \int f^- = 0 \Rightarrow \int f = 0$$

 Π римечание. f — измерима. Тогда f суммируема $\Leftrightarrow \int |f| < +\infty$

Доказательство.

- \Leftarrow следует из $f^+, f^- \leq |f|$
- \Rightarrow будет доказано позже на этой лекции.

4.
$$\int_E (-f) = -\int_E f, \forall c \in \mathbb{R} \quad \int_E cf = c \int_E f$$

Доказательство.

- (a) $(-f)^+=f^-, (-f)^-=f^+$, тогда искомое очевидно.
- (b) Можно считать c>0 без потери общности, тогда для $f\geq 0$ тривиально.

5.
$$\exists \int_E f d\mu$$
. Тогда $|\int_E f d\mu| \le \int_E |f| d\mu$

Доказательство.

$$-|f| \le f \le |f|$$

$$-\int |f| \le \int f \le \int |f|$$

$$\left| \int f \right| \le \int |f|$$

6.
$$\mu E < +\infty, a \le f \le b$$
. Тогда

$$a\mu E \le \int_E f \le b\mu E$$

 $\it C$ ледствие 8.1. f — измеримо на $E,\,f$ — ограничено на $E,\,\mu E<+\infty.$ Тогда f суммируемо на E

7. f суммируема на E. Тогда f почти везде конечна.

Доказательство.

- (a) $f \geq 0$ и $f = +\infty$ на $A \subset E$. Тогда $\int_E f \geq n \mu A \ \ \forall n \in \mathbb{N} \Rightarrow \mu A = 0$
- (b) В произвольном случае аналогично со срезками.

Лемма 2.

•
$$A = \coprod_{i=1}^{+\infty} A_i$$
 — измеримо

- *g* ступенчато
- $g \ge 0$

Тогда

$$\int_{A} g d\mu = \sum_{i=1}^{+\infty} \int_{A_{i}} g d\mu$$

Доказательство.

$$\int_{A} g d\mu = \sum_{\text{koh.}} \alpha_{k} \mu(E_{k} \cap A)$$

$$= \sum_{k} \sum_{i} \underbrace{\alpha_{k} \mu(E_{k} \cap A_{i})}_{\geq 0}$$

$$\stackrel{(??)}{=} \sum_{i} \sum_{k} \dots$$

$$= \sum_{i} \int_{A_{i}} g d\mu$$

Теорема 9.

• $A = \coprod A_i$ — измеримо

• $f:X \to \overline{\mathbb{R}}$ — измеримо на A

• $f \ge 0$

(??): переставлять можно, т.к. члены суммы ≥ 0 .

Тогда

$$\int_{A} f d\mu = \sum_{i=1}^{+\infty} \int_{A_i} f d\mu$$

Доказательство. Докажем, что части равенства \leq и \geq , тогда равенство выполнено.

 $\leq \lessdot$ ступенчатую $g:0\leq g\leq f$

$$\int_{A} g \stackrel{(??)}{=} \sum \int_{A_{i}} g \le \sum \int_{A_{i}} f$$

$$\int_{A} f d = \sup_{g} \int_{A} g \le \sum \int_{A_{i}} f$$

 \geq 1. $A = A_1 \sqcup A_2$

 \lhd ступенчатые $g_1,g_2:0\leq g_1\leq f\cdot\chi_{A_1},0\leq g_2\leq f\cdot\chi_{A_2}$. Пусть E_k — совместное разбиение, у g_1 коэффициенты α_k , у $g_2-\beta_k$.

$$\int_{A_1} g_1 + \int_{A_2} g_2 = \int_{A} (g_1 + g_2) \le \int_{A} f$$

$$\int_{A_1} f + \int_{A_2} g_2 \stackrel{(??)}{\le} \int_{A} f$$

$$\int_{A_1} f + \int_{A_2} f \stackrel{(??)}{\le} \int_{A} f$$

- 2. Для $n \in \mathbb{N}$: $A = \bigsqcup_{i=1}^n A_i$ тривиально по индукции.
- 3. $A=\coprod_{i=1}^n A_i\cup B_n$, где $B_n=\coprod_{i>n} A_i$ $\int_{B_n} f\geq 0$, т.к. $f\geq 0$. Таким образом:

$$\int_{A} f = \sum_{i=1}^{n} \int_{A_{i}} f + \int_{B_{n}} f \ge \sum_{i=1}^{n} \int_{A_{i}} f$$

 $\mathit{Спедствие}$ 9.1. $f\geq 0$ — измеримо. Пусть $\nu:\mathfrak{A}\to\overline{\mathbb{R}}_+$ и $\nu E:=\int_E f d\mu$. Тогда ν — мера.

^{(??):} по лемме 2.

^(??) и (??): переход к sup

 $\mathit{Следствие}$ 9.2 (Счётная аддитивность интеграла). f суммируема на $A=\bigsqcup A_i$ — измеримо. Тогда

$$\int_{A} f = \sum \int_{A_{i}} f$$

Доказательство. Очевидно, если рассмотреть срезки.

Следствие 9.3. $A \subset B, f \geq 0 \Rightarrow \int_A f \leq \int_B f$

2.1 Предельный переход под знаком интеграла

Пусть $f_n o f$. Можно ли утверждать, что $\int_E f_n o \int_E f$?

Пример (контр).

$$f_n:=rac{1}{n}\chi_{[0,n]}\quad f\equiv 0\quad f_n o f\quad ($$
даже $f_n
ightrightarrow f)$
$$\int_{\mathbb{R}}f_n=rac{1}{n}\lambda[0,n]=1
eq 0=\int_{\mathbb{R}}f$$

Теорема 10 (Леви).

- (X,\mathfrak{A},μ) пространство с мерой
- f_n измеримо
- $\forall n \ 0 \le f_n \le f_{n+1}$ почти везде.
- $f(x) := \lim_{n \to +\infty} f_n(x)$ эта функция определена почти везде.

Тогда

$$\lim_{n \to +\infty} \int_X f_n d\mu = \int_X f d\mu$$

 Π римечание. f задано везде, кроме множества e меры 0. Считаем, что f=0 на e. Тогда f измеримо на X.

Доказательство.

 \leq очевидно, т.к. $f_n \leq f$ почти везде, таким образом:

$$\int_{X} f_n = \int_{X \setminus e} f_n + \underbrace{\int_{e} f_n}_{0} = \int_{X \setminus e} f_n \le \int_{X \setminus e} f \le \int_{X} f$$

 \geq достаточно проверить, что \forall ступенчатой $g:0\leq g\leq f$ выполняется следующее $\lim\int_X f_n\geq \int_X g$

Сильный трюк: достаточно проверить, что $\forall c \in (0,1) \; \lim \int_X f_n \geq c \int_X g$

$$E_n := X(f_n \ge cg) \quad E_1 \subset E_2 \subset \dots$$

 $\bigcup E_n = X$, т.к. c < 1

$$\int_X f_n \ge \int_{E_n} f_n \ge c \int_{E_n} g$$

Тогда $\lim \int_X f_n \geq c \cdot \lim \int_{E_n} g \stackrel{(??)}{=} c \int_X g$

Теорема 11.

• f, q > 0

• f, q измеримо на E

Тогда $\int_E f + g = \int_E f + \int_E g$

Доказательство.

1. f,g — ступенчатые, т.е. $f=\sum \alpha_k \chi_{E_k}, g=\sum \beta_k \chi_{E_k}$

$$\int_{E} f + g = \sum (\alpha_k + \beta_k) \mu(E_k \cap E) = \sum \alpha_k \mu(E_k \cap E) + \sum \beta_k \mu(E_k \cap E) = \int_{E} f + \int_{E} g$$

2. $f \geq 0$, измеримо. \exists ступ. $f_n: 0 \leq f_n \leq f_{n+1} \leq \dots \lim f_n = f$ $g \geq 0$, измеримо. \exists ступ. $g_n: 0 \leq g_n \leq g_{n+1} \leq \dots \lim g_n = g$

$$\int_E f + \int_E g \xleftarrow{^{\mathrm{т. \, Леви}}} \int_E f_n + \int_E g_n \xrightarrow{\mathrm{пункт \, 1}} \int_E f_n + g_n \xrightarrow{\mathrm{т. \, Леви}} \int_E f + g$$

 $\it C$ ледствие 11.1. f,g суммируемы на E. Тогда f+g суммируемо и $\int_E f+g=\int_E f+\int_E g.$ Таким образом, доказано 3.

Доказательство суммируемости. $|f+g| \leq |f| + |g|$. Пусть h=f+g. Тогда

$$h^{+} - h^{-} = f^{+} - f^{-} + g^{+} - g^{-}$$

$$h^{+} + f^{-} + g^{-} = f^{+} + g^{+} + h^{-}$$

$$\int_{E} h^{+} + \int_{E} f^{-} + \int_{E} g^{-} = \int_{E} f^{+} + \int_{E} g^{+} + \int_{E} h^{-}$$

^{(??):} по непрерывности снизу меры $\nu: E \mapsto \int_E g$

$$\int_{E} h^{+} - \int_{E} h^{-} = \int_{E} f^{+} - \int_{E} f^{-} + \int_{E} g^{+} - \int_{E} g^{-}$$

Определение. $\mathcal{L}(X)$ — множество суммируемых на X функций

Следствие 11.2 (следствия). $\mathcal{L}(X)$ — линейное пространство, а отображение $f\mapsto \int_X f$ это линейный функционал 1 на $\mathcal{L}(X)$, т.е.:

$$\forall f_1 \dots f_n \in \mathcal{L}(X) \ \forall \alpha_1 \dots \alpha_n \in \mathbb{R} \quad \sum_{k=1}^n \alpha_k f_k \in \mathcal{L}(X) \text{ in } \int_X \sum_{k=1}^n \alpha_k f_k = \sum_{k=1}^n \alpha_k \int_X f_k$$

Теорема 12 (об интегрировании положительных рядов).

- (X,\mathfrak{A},μ) пространство с мерой
- $E \in \mathfrak{A}$
- $u_n: X \to \overline{\mathbb{R}}$
- $u_n \ge 0$ почти везде
- *u_n* измеримо

Тогда

$$\int_{E} \left(\sum_{n=1}^{+\infty} u_n(x) \right) d\mu = \sum_{n=1}^{+\infty} \int_{E} u_n d\mu$$

Доказательство. По теореме Леви:

$$S_n := \sum_{k=1}^n u_k \quad 0 \le S_n \le S_{n+1} \le \dots$$

$$S_n o S = \sum\limits_{k=1}^{+\infty} u_k$$
, тогда $\int_E S_n o \int_E S_n$

$$\int_{E} \left(\sum_{n=1}^{+\infty} u_n(x) \right) = \int_{E} S \leftarrow \int_{E} S_n \xrightarrow{\text{линейность } \int} \sum_{k=1}^{n} \int_{E} u_k$$

Следствие 12.1. u_n измеримо и $\sum_{n=1}^{+\infty} \int_E |u_n| < +\infty$. Тогда ряд $\sum u_n(x)$ абсолютно сходится при почти всех x.

¹ т.е. функция функций

Доказательство.

$$S(x):=\sum |u_n(x)|$$

$$\int_E S(X)=\sum \int_E |u_n|<+\infty \Rightarrow S \text{ суммируемо} \Rightarrow S \text{ почти везде конечно}$$

Пример. $x_n \in \mathbb{R}$ — произвольная последовательность, $\sum a_n$ абсолютно сходится.

Тогда $\sum \frac{a_n}{\sqrt{|x-x_n|}}$ абсолютно сходится при почти всех x.

Доказательство. Достаточно проверить абсолютную сходимость на [-N,N] почти везде.

$$\int_{[-N,N]} \frac{|a_n| d\lambda}{\sqrt{|x - x_n|}} = \int_{-N}^{N} \frac{|a_n|}{\sqrt{|x - x_n|}} dx$$

$$= |a_n| \int_{-N - x_n}^{N - x_n} \frac{dx}{\sqrt{|x|}}$$

$$\stackrel{(??)}{\leq} |a_n| \int_{-N}^{N} \frac{dx}{\sqrt{|x|}}$$

$$= 4\sqrt{N} |a_n|$$

$$\sum_{n} \int_{[-N,N]} \frac{|a_n| d\lambda}{\sqrt{|x - x_n|}} \leq 4\sqrt{N} \sum_{n} |a_n| < +\infty$$

^{(??):} Т.к. $\frac{1}{\sqrt{|x|}}$ чётна и при этом для $x \geq 0$ убывает, площадь под симметричным относительно 0 отрезком максимальна среди всех отрезков такой же длины.

Лекция 4. 1 марта стр. 30 из 104

Лекция 4

1 марта

Теорема 13 (об абсолютной непрерывности интеграла).

- (X,\mathfrak{A},μ) пространство с мерой
- $f: X \to \overline{\mathbb{R}}$
- f суммируемо

Тогда $\forall \varepsilon>0 \;\; \exists \delta>0 \;\; \forall E$ — изм., $\mu E<\delta:\left|\int_{E}f\right|<\varepsilon$

 $\it C$ ледствие 13.1. f суммируемо на $X,E_n\subset X,$ тогда $\mu E_n\to 0\Rightarrow \int_{E_n}f\to 0$

Доказательство. 1

$$X_{n} := X(|f| \ge n)$$

$$X_{n} \supset X_{n+1} \supset \dots \Rightarrow \mu\left(\bigcap X_{n}\right) \stackrel{(??)}{=} 0$$

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} \ \int_{X_{n\varepsilon}} |f| < \frac{\varepsilon}{2}$$

$$(1)$$

Пусть $\delta := \frac{\varepsilon}{2n_{\varepsilon}}$. Тогда при $\mu E < \delta$:

$$\left| \int_{E} f \right| \leq \int_{E} |f| = \int_{E \cap X_{n_{\varepsilon}}} |f| + \int_{E \cap X_{n_{\varepsilon}}^{c}} |f| \stackrel{(n)}{\leq} \int_{X_{n_{\varepsilon}}} |f| + \int_{E \cap X_{n_{\varepsilon}}^{c}} n_{\varepsilon} < \frac{\varepsilon}{2} + \underbrace{\mu E}_{\leq \delta} \cdot n_{\varepsilon} < \varepsilon$$

¹ Теоремы, не следствия

 $^{(\}ref{eq:constraint})$: Т.к. f на $\bigcap X_n$ бесконечна и f почти везде конечна.

^{(1):} По непрерывности сверху меры $A\mapsto \int_A |f| d\mu$

 $^{(\}ref{eq:constraint})$: Т.к. |f| на $E\cap X^c_{n_\varepsilon}$ не превосходит n_ε по построению X_{n_ε}

Лекция 4. 1 марта стр. 31 из 104

Примечание. Следующие два свойства не эквивалентны:

1.
$$f_n \underset{\mu}{\Rightarrow} f \stackrel{def}{\iff} \forall \varepsilon > 0 \ \mu X(|f_n - f| > \varepsilon) \to 0$$

2.
$$\int_{Y} |f_n - f| d\mu \to 0$$

Из 1 не следует 2: пусть $(X,\mathfrak{A},\mu)=(\mathbb{R},\mathfrak{M},\lambda),$ $f_n=\frac{1}{nx}.$ Тогда $f_n\overset{\lambda}{\Rightarrow}0,$ но $\int|f_n-f|=+\infty$ при всех n.

Из 2 следует 1, т.к.

$$\mu\underbrace{X(|f_n - f| > \varepsilon)}_{X_n} = \int_{X_n} 1 \le \int_{X_n} \frac{|f_n - f|}{\varepsilon} = \frac{1}{\varepsilon} \int_{X_n} |f_n - f| \le \frac{1}{\varepsilon} \int_X |f_n - f| \xrightarrow{n \to +\infty} 0$$

Теорема 14 (Лебега о мажорированной сходимости для случая сходимости по мере).

- (X,\mathfrak{A},μ) пространство с мерой
- f_n, f измеримо и почти везде конечно
- $f_n \stackrel{\mu}{\Rightarrow} f$
- $\exists g$, называемое "суммируемая мажоранта":
 - 1. $\forall n \mid f_n \mid \stackrel{(??)}{\leq} g$ почти везде
 - 2. g суммируемо на X

Тогда: f_n, f — суммируемы и $\int_X |f_n - f| d\mu \xrightarrow{n \to +\infty} 0$, и тем более $\int_X f_n d\mu \to \int_X f d\mu$

Примечание. Почти везде конечность f_n и f следует из (??), поэтому в условии этого можно не требовать.

Доказательство. f_n — суммируемы в силу неравенства (??), f суммируемо в силу следствия теоремы Рисса, тем более $|\int_X f_n - \int_X f| \le \int_X |f_n - f| \to 0$

1.
$$\mu X < +\infty$$

Зафиксируем ε . $X_n := X(|f_n - f| > \varepsilon)$

$$f_n \Rightarrow f$$
, r.e. $\mu X_n \to 0$

$$|f_n - f| \le |f_n| + |f| \le 2g$$

$$\int_X |f_n - f| = \int_{X_n} + \int_{X_n^c} \le \underbrace{\int_{X_n} 2g}_{\text{C.T. T. of afc. Herp.}} + \int_{X_n^c} \varepsilon d\mu < \varepsilon + \varepsilon \mu X$$
(2)

2. $\mu X = +\infty$

Утверждение: $\forall \varepsilon>0 \;\; \exists A\subset X,$ изм., конечной меры : $\int_{X\setminus A}g<\varepsilon.$ Докажем его.

$$\int_X g = \sup \left\{ \int g_n \mid 0 \le g_n \le g, g_n - \text{ступ.} \right\}$$

Возьмём достаточно большое n и положим:

$$A := \{x : g_n(x) > 0\}$$

$$0 \le \int_X g - \int_X g_n < \varepsilon$$

$$\int_A g - g_n + \int_{X \setminus A} g = \int_X g - \int_X g_n < \varepsilon \implies \int_{X \setminus A} g < \varepsilon$$

Вернёмся к теореме. Зафиксируем $\varepsilon > 0$:

$$\int_X |f_n - f| d\mu = \int_A + \int_{X \setminus A} \leq \underbrace{\int_A |f_n - f|}_{\text{fochyvalo 1}} + \underbrace{\int_{X \setminus A} 2g}_{<2\varepsilon} < 3\varepsilon$$

Теорема 15 (Лебега).

- (X, \mathfrak{A}, μ) пространство с мерой
- f_n, f измеримо
- $f_n \stackrel{(??)}{\to} f$ почти везде
- $\exists g$, называемое "суммируемая мажоранта":
 - 1. $\forall n \mid f_n \mid \leq q$ почти везде
 - 2. q суммируемо на X

Тогда f_n, f — суммируемы, $\int_X |f_n - f| d\mu \to 0$, и тем более $\int_X f_n \to \int_X f$

Доказательство. Суммируемость f_n , f, а также утверждение "и тем более" доказываются так же, как в теореме Лебега о мажорированной сходимости для случая сходимости по мере.

$$h_n := \sup(|f_n - f|, |f_{n+1} - f|, |f_{n+2} - f|, \dots)$$

$$0 \stackrel{(??)}{\leq} h_n \stackrel{(??)}{\leq} 2g$$

 h_n монотонно убывает, что очевидно по определению \sup .

$$\lim h_n \stackrel{\mathrm{def}}{=} \overline{\lim} |f_n - f| \stackrel{ ext{(??)}}{=} 0$$
 почти везде

 $2g-h_n \geq 0$ и возрастает как последовательность функций, $2g-h_n \rightarrow 2g$ почти везде. Тогда по теореме Леви:

$$\int_{X} 2g - h_n \to \int_{X} 2g \Rightarrow \int_{X} h_n \to 0$$
$$\int_{X} |f_n - f| \le \int_{X} h_n \to 0$$

Пример. $\triangleleft x > 0, x_0 > 0$

$$\int_{0}^{+\infty} t^{x-1} e^{-t} dt$$

$$\lim_{x \to x_{0}} \int_{0}^{+\infty} t^{x-1} e^{-t} dt \stackrel{?}{=} \int_{0}^{+\infty} t^{x_{0}-1} e^{-t} dt$$

Равенство выполнено, т.к. $t^{x-1}e^{-t} \xrightarrow{x \to x_0} t^{x_0-1}e^{-t}$ при t>0 и суммируемая мажоранта $t^{\alpha-1}e^{-t}+t^{\beta-1}e^{-t}$, где $0<\alpha< x_0, 0<\beta$

Теорема 16 (Фату).

- X, \mathfrak{A}, μ пространство с мерой
- $f_n \geq 0$
- f_n измеримо
- $f_n \to f$ почти везде
- $\exists C > 0 \ \forall n \ \int_X f_n \le C$

Тогда $\int_X f \leq C$

 $\mbox{\it Примечание}.$ Странность: здесь не требуется, чтобы $\int_X f_n \to \int_X f$ и это может быть неверно.

Пример.

$$f_n=rac{1}{n}\chi_{[0,n]} o 0=f$$
 п.в. $\int_{\mathbb{R}}f_n=1\leq 1$

По теореме Фату $\int_{\mathbb{R}} f \leq 1$, что верно, т.к. $\int_{\mathbb{R}} f = 0 \leq 1$

^{(??):} по построению

^{(??):} по (2)

^{(??):} по (??)

Пример. Условие $f_n \ge 0$ важно:

$$f_n=-rac{1}{n}\chi_{[0,n]} o 0=f$$
 п.в. $\int_{\mathbb{R}}f_n=-1\leq -1$, но $\int_{\mathbb{R}}f=0
ot\leq -1$

Доказательство.

$$g_{n} := \inf(f_{n}, f_{n+1}, \dots)$$

$$0 \le g_{n} \le g_{n+1}$$

$$\lim g_{n} \stackrel{\text{def}}{=} \underline{\lim} f_{n} = f \text{ n.b.}$$

$$\int_{X} g_{n} \le \int_{X} f_{n} \le C$$

$$\int_{X} g_{n} \stackrel{(??)}{\to} \int_{X} f$$
(3)

Значит $\int_X f \leq C$ по предельному переходу в (3)

Следствие 16.1.

- $f_n, f \ge 0$
- f_n, f измеримы
- f_n, f почти везде конечны
- $f_n \stackrel{\mu}{\Rightarrow} f$
- $\exists C > 0 \ \forall n \ \int_X f_n \leq C$

Тогда $\int_X f \leq C$

Доказательство.

$$f_n \stackrel{\mu}{\Rightarrow} f \xrightarrow[\mathrm{T.\,Pucca}]{} \exists (n_k): f_{n_k} o f$$
 п.в.

По теореме Фату получим искомое.

Следствие 16.2.

- $f_n \geq 0$
- f_n измеримо

Тогда $\int_X \underline{\lim} f_n \leq \underline{\lim} \int_X f_n$

(??): по теореме Леви

Лекция 4. 1 марта стр. 35 из 104

Доказательство. Возьмём g_n как в теореме, тогда выполняется неравенство $\int_X g_n \le \int_X f_n$. Выберем $(n_k): \int_X f_{n_k} \xrightarrow{n \to +\infty} \varliminf \int_X f_n$

$$\int_{X} g_{n_{k}} \leq \int_{X} f_{n_{k}}$$

$$\downarrow$$

$$\int_{X} \underline{\lim} f_{n} \leq \underline{\lim} \int_{X} f_{n}$$

3 Плотность одной меры по отношению к другой. Замена переменных в интеграле.

 $\sphericalangle(X,\mathfrak{A},\mu)$ — пространство с мерой, $(Y,\mathfrak{B},\),\Phi:X\to Y$

Пусть Φ — измеримо в следующем смысле:

$$\Phi^{-1}(\mathfrak{B})\subset\mathfrak{A}$$

Упражнение 5. Проверить, что $\Phi^{-1} - \sigma$ -алгебра.

Для $E\in\mathfrak{B}$ положим $\nu(E)=\mu\Phi^{-1}(E)$. Тогда ν — мера:

$$\nu\left(\bigsqcup E_n\right) = \mu\left(\Phi^{-1}\left(\bigsqcup E_n\right)\right) = \mu\left(\bigsqcup \Phi^{-1}(E_n)\right) = \sum \mu \Phi^{-1}E_n = \sum \nu E_n$$

Мера ν называется **образом** μ при отображении Φ и $\nu E = \int_{\Phi^{-1}(E)} 1 d\mu$

Hаблюдение 1. $f:Y \to \overline{\mathbb{R}}$ — измеримо относительно $\mathfrak{B}.$ Тогда $f\circ \Phi$ — измеримо относительно $\mathfrak{A}.$

$$X(f(\Phi(x)) < a) = \Phi^{-1}(Y(f < a)) \stackrel{(??)}{\in} \mathfrak{A}$$

Определение. $\omega:X\to\overline{\mathbb{R}}, \omega\geq 0$, измеримо на X.

$$\forall B \in \mathfrak{B} \ \nu(B) := \int_{\Phi^{-1}(B)} \omega(x) d\mu(x)$$

Тогда ν называется "взвешенный образ меры μ при отображении Φ ", ω называется весом.

(??): T.K.
$$Y(f < a) \in \mathfrak{B}$$

Лекция 4. 1 марта стр. 36 из 104

Теорема 17 (о вычислении интеграла по взвешенному образу меры).

- (X, \mathfrak{A}, μ) пространство с мерой
- (Y, \mathfrak{B}, ν) пространство с мерой
- $\Phi: X \to Y$
- $\omega > 0$
- ω измеримо на X
- $\,
 u$ взвешенный образ μ при отображении Φ с весом ω

Тогда \forall измеримой относительно \mathfrak{B} f на $Y, f \geq 0$ выполнено следующее:

1. $f \circ \Phi$ измеримо на X относительно $\mathfrak A$

2.

$$\int_{Y} f(y)d\nu(y) = \int_{X} f(\Phi(x)) \cdot \omega(x)d\mu(x) \tag{4}$$

То же самое верно для суммируемой f.

Доказательство. Измеримость $f \circ \Phi$ выполнена по наблюдению 1.

0. Пусть $f = \chi_B, B \in \mathfrak{B}$

$$(f \circ \Phi)(x) = f(\Phi(x)) = \begin{cases} 1, & \Phi(x) \in B \\ 0, & \Phi(x) \notin B \end{cases} = \chi_{\Phi^{-1}(B)}$$

Тогда (4) это:

$$\int_{Y} \chi_{B} d\nu = \int_{B} 1 \cdot d\nu = \nu B \stackrel{?}{=} \int_{X} \chi_{\Phi^{-1}(B)} \cdot \omega d\mu = \int_{\Phi^{-1}(B)} \omega d\mu$$

Это выполнено по определению νB

- 1. Пусть f ступенчатая
 - (4) следует из линейности интеграла.
- 2. Пусть $f \ge 0$, измеримая

По теореме о характеризации измеримых функций с помощью ступенчатых и теореме Леви $\exists \{h_i\}: 0 \leq h_1 \leq h_2 \leq \ldots$ — ступенчатые, $h_i \leq f, h_i \to f$

$$\int_{Y} h_{i} d\nu = \int_{X} h_{i} \circ \Phi \cdot \omega d\mu \xrightarrow{i \to +\infty}$$
 (4)

Лекция 4. 1 марта

3. Пусть f измерима.

Тогда для |f| выполнено (4); |f| и $|f \circ \Phi| \cdot \omega$ суммируемы одновременно.

$$(f \circ \Phi \cdot \omega)_{+} = f_{+} \circ \Phi \cdot \omega \quad (f \circ \Phi \cdot \omega)_{-} = f_{-} \circ \Phi \cdot \omega$$

Таким образом, искомое выполнено для f_+ и f_- , а следовательно и для f.

Следствие 17.1 (об интегрировании по подмножеству). В условиях теоремы пусть:

- $B \in \mathfrak{B}$
- f суммируемо на Y

Тогда

$$\int_{B} f d\nu = \int_{\Phi^{-1}(B)} f(\Phi(x))\omega(x)d\mu$$

Доказательство. В условие теоремы подставим $f \cdot \chi_B$

Определение. Рассмотрим частный случай: $X=Y, \mathfrak{A}=\mathfrak{B}, \Phi=\mathrm{id}$ - тождественное отображение. Кажется, что мы убили всю содержательность, но это не так — есть ещё ω .

$$\nu(B) = \int_{B} \omega(x) d\mu$$

В этой ситуации ω называется **плотностью** меры ν относительно меры μ и тогда по теореме о вычислении интеграла по взвешенному образу меры:

$$\int_{Y} f d\nu = \int_{Y} f(x)\omega(x)d\mu$$

Лекция 5

15 марта

Определение.

- X, \mathfrak{A}, μ пространство с мерой
- $\nu:\mathfrak{A}\to\overline{\mathbb{R}}$ мера

Плотность меры ν относительно μ есть положительная измеримая функция $\omega:X\to\overline{\mathbb{R}},$ такая что:

$$\forall B \in \mathfrak{A} \ \nu B = \int_{B} \omega d\mu$$

Теорема 18 (критерий плотности).

- X, \mathfrak{A}, μ пространство с мерой
- *v* − мера
- $\omega: X \to \overline{\mathbb{R}}$
- $\omega \geq 0$
- ω измеримо

Тогда ω — плотность ν относительно $\mu \Leftrightarrow$:

$$\forall A \in \mathfrak{A} \ \mu A \cdot \inf_{A} \omega \le \nu(A) \le \mu A \sup_{A} \omega$$

При этом $0 \cdot \infty$ считается = 0.

Пример (отсутствие плотности). $X=\mathbb{R},\mathfrak{A}=\mathfrak{M}^1,\mu=\lambda_1$

u — одноточечная мера: $u(A) = \begin{cases} 1, & 0 \in A \\ 0, & 0 \notin A \end{cases}$. Тогда $u(\{0\}) = 1$, но $\int_{\{0\}} \omega d\mu = 0$ — несостыковка.

Необходимое условие существования плотности — $\mu A=0 \Rightarrow \nu A=0$

Это и достаточное условие по теореме Радона-Никодима¹.

Доказательство теоремы критерий плотности.

"⇒"

$$\nu(A) \stackrel{\text{def}}{=} \int_{A} \omega(x) d\mu(x)$$
$$\inf \omega \cdot \mu A = \int_{A} \inf \omega d\mu \le \int_{A} \omega(x) d\mu(x) \le \int_{A} \sup \omega d\mu = \sup \omega \cdot \mu A$$

" \Leftarrow " Рассмотрим $\omega>0$. Общность не умаляется, т.к. пусть $e=X(\omega=0)$, тогда $\nu(e)\stackrel{\mathrm{def}}{=}\int_e\omega d\mu=0$, поэтому в случае $A\cap e\neq\varnothing$ всё ещё только лучше.

Фиксируем число $q \in (0, 1)$.

$$A_{j} := A(q^{j} \leq \omega < q^{j-1}), j \in \mathbb{Z}$$

$$A = \bigsqcup_{j \in \mathbb{Z}} A_{j}$$

$$\mu A_{j} \cdot q^{j} \overset{(??)}{\leq} \nu A_{j} \overset{(??)}{\leq} \mu A_{j} \sup_{A_{j}} q^{j-1}$$

$$\mu A_{j} \cdot q^{j} \overset{(??)}{\leq} \int_{A_{j}} \omega d\mu \overset{(??)}{\leq} \mu A_{j} q^{j-1}$$

Тогда:

$$q \cdot \int_{A} \omega d\mu = q \cdot \sum \int_{A_{j}} \omega d\mu$$

$$\stackrel{(??)}{\leq} \sum q^{j} \mu A_{j}$$

$$\stackrel{(??)}{\leq} \sum \nu A_{j}$$

$$\stackrel{(??)}{\leq} \frac{1}{q} \sum q^{j} \mu A_{j}$$

$$\stackrel{(??)}{\leq} \frac{1}{q} \sum \int_{A_{j}} \omega d\mu$$

$$= \frac{1}{q} \int_{A_{j}} \omega d\mu$$

¹ Возможно, мы разберём её в конце семестра.

То есть:

$$q \int_A \omega d\mu \le \nu A \le \frac{1}{q} \int_A \omega d\mu$$

Тогда предельный переход при $q \to 1-0$ дает искомое.

Лемма 3.

- f, g суммируемы
- (X,\mathfrak{A},μ) пространство с мерой
- $\forall A \in \mathfrak{A} \quad \int_A f = \int_A g$

Тогда f = g почти везде.

Доказательство. h:=f-g. Дано: $\forall A \ \int_A h=0$; доказать: h=0 почти везде.

$$A_+ := X(h \geq 0) \quad A_- := X(h < 0) \quad X = A_+ \sqcup A_-$$

$$\int_{A_+} |h| = \int_{A_+} h = 0 \quad \int_{A_-} |h| = - \int_{A_-} h = 0 \implies \int_X |h| = 0 \implies h = 0 \text{ п.в.}$$

Примечание. Если $\mathcal{L}(X)$ — линейное пространство, отображение $l_A: f \mapsto \int_A f$ есть линейный функционал. Таким образом, множество функционалов $\{l_A, A \in \mathfrak{A}\}$ разделяет точки, т.е. $\forall f \neq g \in \mathcal{L}(X) \ \exists A: l_A(f) \neq l_A(g)$

Примечание. В \mathbb{R}^m $a=(a_1\dots a_m),\ l_a:x\mapsto a_1x_1+\dots+a_nx_n.$ Тогда $\forall x,y\in\mathbb{R}^m$ $\exists a:l_a(x)=\frac{2}{3}l_a(y).$

4 Возвращаемся в \mathbb{R}^m

Лемма 4 (о мере образа малых кубических ячеек).

- $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m$
- О открыто

^{(??):} по (??)

^{(??):} по (??)

^{(??):} по (??)

^{(??):} по (??)

 $^{^{2}}$ Кажется, здесь должно быть " \neq "

- a ∈ O
- $\Phi \in C^1$
- $c > |\det \Phi'(a)| \neq 0$

Тогда $\exists \delta>0 \ \ \forall$ куба $Q\subset B(a,\delta), a\in Q$ выполняется неравенство $\lambda\Phi(Q)< c\lambda Q$

Примечание. Здесь можно считать, что Q — замкнутые кубы.

Доказательство. $L := \Phi'(a) - \text{обратимо}^3$

$$\Phi(x) = \Phi(a) + L(x - a) + o(x - a)$$

$$\underbrace{a + L^{-1}(\Phi(x) - \Phi(a))}_{\Psi(x)} = x + o^{4}(x - a)$$

$$\forall \varepsilon>0 \;\; \exists \; \mathrm{map} \; B_{\varepsilon^5}(a) \;\; \forall x \in B_{\varepsilon}(a) \;\; |\Psi(x)-x|<\frac{\varepsilon}{\sqrt{m}}|x-a|$$

Пусть $Q \subset B_{\varepsilon}(a), a \in Q, Q$ — куб со стороной h.

При $x \in Q$:

$$|x-a| \leq \sqrt{m} h^{6}$$

$$|\Psi(x) - x| \stackrel{(??)}{<} \frac{\varepsilon}{\sqrt{m}} |x - a| \le \varepsilon h$$

Тогда $\Psi(Q)\subset$ куб со стороной $(1+2\varepsilon)h$, т.к. при $x,y\in Q$

$$|\Psi(x)_i - \Psi(y)_i| \le |\Psi(x)_i - x_i| + |x_i - y_i| + |\Psi(y)_i - y_i|$$

$$\le |\Psi(x) - x| + h + |\Psi(y) - y|$$

$$\le (1 + 2\varepsilon)h$$

$$\lambda(\Psi(Q)) < (1 + 2\varepsilon)^m \cdot \lambda Q$$

 Ψ и Φ отличаются только сдвигом и линейным отображением.

$$\lambda \Phi(Q) = |\det L| \cdot \lambda \Psi(Q) \le |\det L| (1 + 2\varepsilon)^m \cdot \lambda Q$$

Выбираем ε такое, чтобы $|\det L|(1+2\varepsilon)^m < c$, потом берём $\delta =$ радиус $B_{\varepsilon}(a)$

³ Т.к. $\det \Phi'(a) \neq 0$.

 $^{^4}$ Это не то же самое o, что строчкой выше.

⁵ Это не радиус шара, а параметр.

 $^{^6}$ Это диагональ куба со стороной h в \mathbb{R}^m . (??): т.к. $x \in B_{\varepsilon}(a)$

Лемма 5.

- $f: O \subset \mathbb{R}^m \to \mathbb{R}$
- O открыто
- f непрерывна
- А измеримо
- $A \subset Q \subset \overline{Q} \subset O$
- Q кубическая ячейка

Тогда:

$$\inf_{\substack{G:A\subset G\\G \text{ other, }\subset O}} \lambda(G)\cdot \sup_G f = \lambda A\cdot \sup_A f$$

Доказательство. Упражнение.

Теорема 19.

- $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m$
- Ф диффеоморфизм

Тогда

$$\forall A \in \mathfrak{M}^m, A \subset O \ \lambda \Phi(A) = \int_A |\det \Phi'(x)| d\lambda(x)$$

Доказательство.

Обозначение.

- $J_{\Phi}(x) = |\det \Phi'(x)|$
- $\nu A := \lambda \Phi(A)$ мера

Надо доказать, что J_{Φ} — плотность ν относительно λ .

Достаточно проверить условие теоремы критерий плотности, что \forall измеримого A:

$$\inf_{A} J_{\Phi} \cdot \lambda A \le \nu(A) \stackrel{(??)}{\le} \sup_{A} J_{\Phi} \cdot \lambda A$$

Достаточно проверить только правое неравенство, т.к. левое неравенство — правое неравенство для $\Phi(A)$ и отображения Φ^{-1}

$$\inf \frac{1}{|\det(\Phi')|} \cdot \lambda \Phi(A) \le \lambda A$$

$$\lambda \Phi(A) \le \lambda A \cdot \frac{1}{\inf \frac{1}{|\det \Phi'|}}$$
$$\lambda \Phi(A) \le \lambda A \cdot \sup |\det \Phi'|$$

1. Проверяем (??) для случая A — кубическая ячейка, $A\subset \overline{A}\subset O$

От противного: $\lambda Q \cdot \sup_{Q} J_{\Phi} < \nu(Q)$

Возьмём $C > \sup_{Q} J_{\Phi} : C \cdot \lambda Q < \nu(Q)$.

Запускаем половинное деление: режем Q на 2^m более мелких кубических ячеек. Выберем "мелкую" ячейку $Q_1\subset Q:C\cdot\lambda Q_1<\nu Q_1$. Опять делим на 2^m частей, берём $Q_2\cdot\lambda Q_2<\nu Q_2$ и т.д.

$$a \in \bigcap \overline{Q}_i$$

$$Q_1 \supset Q_2 \supset \dots \qquad \forall n \ C \cdot \lambda Q_n < \nu Q_n$$
 (5)

 $C>\sup_Q J_\Phi=\sup_{\overline{Q}} J_\Phi$, в частности $c>|\det\Phi'(a)|$. Мы получили противоречие с леммой о мере образа малых кубических ячеек: в сколько угодно малой окрестности a имеются кубы \overline{Q}_n , где выполнено (5)

2. Проверяем (??) для случая A открыто.

Это очевидно, т.к. $A=\bigsqcup Q_j, Q_j$ — кубическая ячейка, $Q_j\subset \overline{Q}_j\subset A$

$$\nu A = \sum \lambda Q_j \le \sum \lambda Q_j \sup_{Q_j} J_{\Phi} \le \sup_{A} J_{\Phi} \cdot \sum \lambda Q_j = \sup_{A} J_{\Phi} \cdot \lambda A \tag{6}$$

3. По лемме 5 неравенство (??) выполнено для всех измеримых A:

$$O=\bigsqcup Q_j$$
— кубы $Q_j\subset \overline{Q}_j\subset O, A=\bigsqcup \underbrace{A\cap Q_j}_{A_j}$

$$\nu A_j \le \nu G \le \sup_G J_{\Phi} \cdot \lambda G \Rightarrow \nu A_j \le \inf_G (\sup_G J_{\Phi} \cdot \lambda G) = \sup_{A_j} J_{\Phi} \cdot \lambda A_j$$

Аналогично формуле (6) получаем $\nu A \leq \sup_A f \cdot \lambda A$

Теорема 20.

- $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m$
- Ф диффеоморфизм

Тогда \forall измеримой $f \geq 0$, заданной на $O' = \Phi(O)$:

$$\int_{O'} f(y)d\lambda = \int_{O} f(\Phi(x)) \cdot J_{\Phi} \cdot d\lambda, J_{\Phi}(x) = |\det \Phi'(x)|$$

То же самое верно для суммируемой f.

Доказательство. Применяем теорему о вычислении интеграла по взвешенному образу меры при $X = Y = \mathbb{R}^m, \mathfrak{A} = \mathfrak{B} = \mathfrak{M}^m, \mu = \lambda, \nu(A) = \lambda(\Phi(A))$:

$$\int_{B} f d\nu = \int_{\Phi^{-1}B} f(\Phi(x))\omega(x)d\mu$$

По теореме 19 $\lambda(B)=\int_{\Phi^{-1}(B)}J_{\Phi}d\lambda$, т.е. λ — взвешенный образ исходной меры по отношению к Φ .

Пример.

1. Полярные координаты в \mathbb{R}^2 :

$$\Phi = \begin{cases} x = r \cos \varphi \\ y = r \sin \varphi \end{cases} \qquad \Phi : \{ (r, \varphi), r > 0, \varphi \in (0, 2\pi) \} \to \mathbb{R}^2$$

$$\Phi' = \begin{pmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{pmatrix} \qquad \det \Phi' = r \qquad J_{\Phi} = r$$

$$\iint_{\Omega} f(x, y) d\lambda_r = \iint_{\Phi^{-1}(\Omega)} f(r \cos \varphi, r \sin \varphi) \cdot r d\lambda_2$$

2. Сферические координаты в \mathbb{R}^3 :

$$\begin{cases} x = r \cos \varphi \cos \psi \\ y = r \sin \varphi \cos \psi \\ z = r \sin \psi \end{cases}$$

$$\begin{cases} r > 0 \\ \varphi \in (0, 2\pi) \\ \psi \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \end{cases}$$

$$\Phi' = \begin{pmatrix} \cos \varphi \cos \psi & -r \sin \varphi \cos \psi & -r \cos \varphi \sin \psi \\ \sin \varphi \cos \psi & r \cos \varphi \cos \psi & -r \sin \varphi \sin \psi \\ \sin \psi & 0 & r \cos \psi \end{pmatrix} \quad J_{\Phi} = r^2 \cos \psi$$

$$\det \Phi' = r^2 (\sin^2 \psi \cos \psi + \cos^3 \psi) = r^2 \cos \psi$$

Лекция 6

22 марта

4.1 Сферические координаты в \mathbb{R}^m

Координаты задаются $r, \varphi_1, \varphi_2 \dots \varphi_{m-1}$. Зададим их по индукции:

- φ_1 угол между \overline{e}_1 и $\overline{OX} \in [0,\pi]$
- $\, \varphi_2 {\sf yroл} \,$ между \overline{e}_2 и $P_{2_{(e_2...e_n)}}(x) \in [0,\pi]$
- . :
- φ_{m-1} полярный угол в \mathbb{R}^2

$$x_{1} = r \cos \varphi_{1}$$

$$x_{2} = r \sin \varphi_{1} \cos \varphi_{2}$$

$$x_{3} = r \sin \varphi_{1} \sin \varphi_{2} \cos \varphi_{3}$$

$$\vdots$$

$$x_{n-1} = r \sin \varphi_{1} \dots \sin \varphi_{m-2} \cos \varphi_{m-1}$$

$$x_{n} = r \sin \varphi_{1} \dots \sin \varphi_{m-2} \sin \varphi_{m-1}$$

$$J = r^{m-1} \sin^{m-2} \varphi_1 \sin^{m-3} \varphi_2 \dots \sin \varphi_{m-2}$$

 Π римечание. В \mathbb{R}^3 "географические" координаты имеют якобиан $J=r^2\cos\psi$

Поймём, почему якобиан именно такой. Можно его посчитать руками, но это трудно.

1 шаг

$$x_m = \rho_{m-1} \sin \varphi_{m-1}$$

$$x_{m-1} = \rho_{m-1} \cos \varphi_{m-1}$$

$$(x_1 \dots x_m) \leadsto (x_1 \dots x_{m-2}, \rho_{m-1}, \varphi_{m-1})$$

$$J = \begin{vmatrix} E & 0 \\ 0 & J_2 \end{vmatrix} = \rho_{m-1}$$

2 шаг

$$\rho_{m-1} = \rho_{m-2} \sin \varphi_{m-2}$$

$$x_{m-2} = \rho_{m-2} \cos \varphi_{m-2}$$

$$(x_1 \dots x_{m-2}, \rho_{m-1}, \varphi_{m-1}) \leadsto (x_1 \dots x_{m-3}, \rho_{m-2}, \varphi_{m-2}, \varphi_{m-1})$$

последний шаг

$$(x_1 \rho_2, \varphi_2 \dots \varphi_{m-1}) \leadsto (r, \varphi_1 \dots \varphi_{m-1})$$

$$\rho_2 = r \sin \varphi_1$$

$$x_1 = r \cos \varphi_1$$

$$\begin{split} \lambda_m(\Omega) &= \int_{\Omega} 1 d\lambda_m \\ &\stackrel{\text{1 mar}}{=} \int_{\Omega_1} \rho_{m-1} \\ &\stackrel{\text{2 mar}}{=} \int_{\Omega_2} \underbrace{\rho_{m-2} \sin \varphi_{m-2}}_{\text{замена } \rho_{m-1}} \cdot \underbrace{\rho_{m_2}}_{J} \\ &\stackrel{\text{3 mar}}{=} \int_{\Omega_3} \underbrace{\rho_{m-3}^2 \sin^2 \varphi_{m-3}}_{\text{замена } \rho_{m-2}^2} \cdot \underbrace{\sin \varphi_{m-2}}_{\text{с прошлого шага}} \cdot \underbrace{\rho_{m_3}}_{J} \\ &= \dots \\ &= \int_{\Omega_{m-1}} r^{m-1} \sin^{m-2} \varphi_1 \sin^{m-3} \varphi_2 \dots \sin \varphi_{m-2} d\lambda \end{split}$$

Тогда по теореме о единственности плотности искомое верно.

5 Произведение мер

 $\sphericalangle(X,\mathfrak{A},\mu), (Y,\mathfrak{B},\nu)$ — пространства с мерой

Лемма 6. $\mathfrak{A},\mathfrak{B}$ — полукольца $\Rightarrow \mathfrak{A} \times \mathfrak{B} = \{A \times B \subset X \times Y : A \in \mathfrak{A}, B \in \mathfrak{B}\}$ — полукольцо.

Доказательство. Тривиально.

Обозначение. $\mathcal{P} = \mathfrak{A} \times \mathfrak{B}$ — называем **измеримыми прямоугольниками**.

 $m_0(A \times B) = \mu(A) \cdot \nu(B)$, при этом $0 \cdot \infty$ принимаем за 0.

Теорема 21.

- 1. m_0 мера на ${\cal P}$
- 2. $\mu, \nu \sigma$ -конечны $\Rightarrow m_0$ тоже σ -конечно¹.

Доказательство.

1. Проверим счётную аддитивность m_0 , т.е. $m_0P=\sum_{k=1}^{+\infty}m_0P_k^{\ 2}$, если $A\times B=P=|\ |P_k$, где $P_k=A_k\times B_k$

Заметим, что $\chi_{A\times B}(x,y)=\chi_A(x)\cdot\chi_B(y)$.

Тогда
$$\chi_P=\sum\chi_{P_k}$$
, где $\forall x\in X,y\in Y\;\;\chi_A(x)\chi_B(y)=\sum\chi_{A_k}(x)\chi_{B_k}(y)$

Слева измеримая функция, справа — неотрицательный ряд \Rightarrow можем интегрировать.

Проинтегрируем по y по мере ν по пространству Y:

$$\chi_A(x)\nu B = \sum \chi_{A_k}(x) \cdot \nu B_k$$

Проинтегрируем по x по мере μ по пространству X:

$$\mu A \nu B = \sum \mu A_k \nu B_k$$

Это и есть искомое.

- 2. Очевидно, т.к.:
 - μ σ -конечно $\Rightarrow X = \bigcup X_k, \mu X_k$ конечно $\forall k$
 - ν σ -конечно \Rightarrow $Y = \bigcup Y_n, \nu Y_n$ конечно $\forall n$

Тогда $X\times Y=\bigcup X_k\times Y_n, m_0(X_k\times Y_n)=\mu X_k\nu Y_n.$ Конечное произведение конечных конечно, поэтому m_0 σ -конечно.

Определение.

• $\triangleleft(X,\mathfrak{A},\mu),(Y,\mathfrak{B},\nu)$ — пространства с мерой

¹ Т.е. пространство можно представить в виде счётного объединения множеств конечной меры.

² Прочие суммы/объединения также счётны в рамках данного доказательства.

• μ, ν σ -конечны

Пусть m — лебеговское продолжение меры m_0 на σ -алгебру, которую будем обозначать $\mathfrak{A}\otimes\mathfrak{B}^3$

Обозначение. $m = \mu \times \nu$

$$(X \times Y, \mathfrak{A} \otimes \mathfrak{B}, \mu \times \nu)$$
 — произведение пространств с мерой (X, \mathfrak{A}, μ) и (Y, \mathfrak{B}, ν)

Примечание.

- Это произведение ассоциативно.
- σ -конечность нужна для единственности произведения, которая выполняется по теореме о продолжении меры.

Теорема 22. $\lambda_m \times \lambda_n = \lambda_{m+n}$

Доказательство. Не будет.

Определение. X, Y — множества, $C \subset X \times Y$

$$\forall x \in X \ C_x := \{ y \in Y : (x, y) \in C \}$$

$$\forall y \in Y \ C^y := \{x \in X : (x, y) \in C\}$$

 C_x, C^y называется **сечением**.

Примечание.

$$\left(\bigcup_{\alpha} C_{\alpha}\right)_{x} = \bigcup_{\alpha} (C_{\alpha})_{x} \quad \left(\bigcap_{\alpha} C_{\alpha}\right)_{x} = \bigcap_{\alpha} (C_{\alpha})_{x} \quad (C \setminus C')_{x} = C_{x} \setminus C'_{x}$$

Теорема 23 (принцип Кавальери). ⁴

- (X,\mathfrak{A},μ)
- (Y, \mathfrak{B}, ν)
- $\mu, \nu \sigma$ -конечны.
- μ, ν полные.
- $m = \mu \times \nu$
- $C \in \mathfrak{A} \otimes \mathfrak{B}$

 $^{^3 \}otimes -$ не тензорное произведение

⁴ Кавальери имеет к этой теореме косвенное отношение, т.к. он жил за пару веков до появления теории меры.

Тогда:

1. $C_x \in \mathfrak{B}$ при почти всех x

2.
$$x\mapsto \nu(C_x)$$
 — измеримая функция на X

3.
$$mC = \int_{Y} \nu(C_x) d\mu(x)$$

Аналогичное верно для C^y .

Пример. ???

Доказательство. Пусть \mathfrak{D} — система множеств, для которых выполнено 1.-3.

1. $C=A\times B$, где A и B измеримы в соответствующих пространствах $\Rightarrow C\in\mathfrak{D}$, так как:

(a)
$$C_x = egin{cases} \varnothing, x \notin A \\ B, x \in A \end{cases}$$
 и оба случая очевидно $\in \mathfrak{B}$

(b)
$$x \mapsto \nu(C_x)$$
 — функция $\nu B \cdot \chi_A$

(c)
$$\int \nu(C_x) d\mu = \int_X \nu B \cdot \chi_A d\mu = \nu B \cdot \mu A = mC$$

2. $E_i \in \mathfrak{D}$, дизъюнктны $\stackrel{?}{\Rightarrow} \bigsqcup E_i \in \mathfrak{D}$. Обозначим $E = \bigsqcup E_i$

 $E_i \in \mathfrak{D} \Rightarrow (E_i)_x$ измеримы почти везде \Rightarrow при почти всех x все $(E_i)_x$ измеримы.

Тогда при этих x $E_x = \bigsqcup (E_i)_x \in \mathfrak{B}$ по определению σ -алгебры — это 1.

$$u E_x = \sum_{\substack{\text{измеримая} \\ \text{функция}}} \underbrace{\nu(E_i)_x} \Rightarrow \Phi$$
ункция $x \mapsto \nu E_x$ измерима — это 2.

$$\int_X \nu E_x d\mu = \sum_i \int_X \nu(E_i) x = \sum_i m E_i = m E$$
 — это 3.

3. $E_i\in\mathfrak{D}, E_1\supset E_2\supset\ldots, E=\bigcap_i E_i, \mu E_i<+\infty$. Тогда $E\in\mathfrak{D}.$

$$\int_X \nu(E_i)_x d\mu = mE_i < +\infty \Rightarrow \nu(E_i)_x$$
 — конечно при почти всех x .

$$\forall x$$
 верно $(E_1)_x \supset (E_2)_x \supset \dots, E_x = \bigcap (E_i)_x$

Тогда E_x измеримо п.в. (это 1.) и $\lim_{i\to +\infty} \nu(E_i)_x = \nu E_x$ при п.в. x — непрерывность сверху ν .

Таким образом, $x\mapsto \nu E_x$ измерима — это 2.

$$\int_x
u E_x d\mu = \lim \int_X
u(E_i)_x d\mu = \lim m E_i = m E$$
 — это 3.

По теореме Лебега о предельном переходе под знаком интеграла $|\nu(E_i)x| \leq \nu(E_i)x$ суммируемо.

 $^{^{5}}$ Функция задана при почти всех X; она равна п.в. некоторой измеримой функции, заданной всюду.

Итого: Если $A_{ij} \in \mathcal{P} = \mathfrak{A} \times \mathfrak{B}$, то $\bigcap \bigcup A_{ij} \in \mathfrak{D}$. Строго говоря, мы это не доказали, т.к. ещё нужно упомянуть процесс дизъюнктнизации в полукольце и то, что пересечение множеств лежит в полукольце, следовательно любое пересечение можно свести к тому, которое мы рассматривали.

4. $E \subset X \times Y, mE = 0 \Rightarrow E \in \mathfrak{D}$

 $mE = \inf \{ \sum m_0 P_k : E \subset \bigcup P_k, P_k \in \mathcal{P} \}$ — из пункта 5 теоремы о лебеговском продолжении.

 \exists множество H вида $\bigcap_l \bigcup_k P_{kl}$, т.е. пересечение аппроксимаций. По пункту $\exists H \in \mathfrak{D}$. При этом $E \subset H, mH = mE = 0$.

$$0=mH=\int_X\underbrace{
u H_x}_{>0}d\mu\Rightarrow
u H_x=0$$
 про почти всех $x.$

 $E_x\subset H_x, \nu$ — полная $\Rightarrow E_x$ — измеримо при почти всех x — это 1 и $\nu E_x=0$ почти везде, это 2.

$$\int \nu E_x d\mu = 0 = mE$$
 — это 3.

5. C-m-измеримо, $mC<+\infty$. Тогда $C\in\mathfrak{D}$.

 $C=H\setminus e$, где H имеет вид $\bigcap\bigcup P_{kl}, me=0$. Почему? Из предыдущих соображений $C\subset H$, а нулевая мера $H\setminus C$ следует из того, что мера C конечна. Как оно следует? mC=mH-0=mH

- (a) $C_x = H_x \backslash e_x$ оба "слагаемых" измеримы при почти всех x, т.к. H_x по третьему пункту $\in \mathfrak{B}$, а e_x измеримы по полноте ν . В силу замкнутости по вычитанию $C_x \in \mathfrak{B}$ п.в.
- (b) $\nu e_x=0$ при почти всех $x\Rightarrow \nu C_x=\nu H_x-\nu E_x=\nu H_x$ п.в. \Rightarrow измеримо.

(c)
$$\int_X \nu C_x d\mu = \int_X \nu H_x d\mu = mH = mC$$

6. C — произвольное измеримое множество в $X \times Y \Rightarrow C \in \mathfrak{D}$

$$X=\bigsqcup X_k, \mu X_k<+\infty, Y=\bigsqcup Y_j, \nu Y_j<+\infty$$
 по полноте обеих мер.

$$C=\bigsqcup(\underbrace{C\cap(X_k imes Y_j)}_{m(\dots)<+\infty})$$
, тогда по пункту 5 все элементы объединения $\in\mathfrak{D}$ и по

пункту 2 объединение лежит в \mathfrak{D} .

 $\mathit{Спедствие}$ 23.1. C измеримо в $X\times Y.$ Пусть $P_1(C)=\{x\in X, C_x\neq\varnothing\}$ — проекция C на X.

Если $P_1(C)$ измеримо, то:

$$mC = \int_{P_1(C)} \nu(C_x) d\mu$$

Аналогично для проекции на y.

Доказательство. При $x \notin P_1(C)$ $\nu(C_x) = 0$

Примечание.

1. C измеримо $\Rightarrow P_1(C)$ измеримо.

Пример. Пусть C=(неизмеримое множество в $X)\times\{y\}$, где y- фиксированный элемент в Y. Тогда C измеримо в $X\times Y$ и имеет меру 0.

2. C измеримо $\Rightarrow \forall x \ C_x$ измеримо.

Пример. Пусть $C=\{\tilde{x}\}\times ($ неизмеримое множество в y), где $\tilde{x}-$ фиксированный элемент в X. Тогда C измеримо в $X\times Y$ и имеет меру 0, но при этом $C_{\tilde{x}}$ неизмеримо.

3. $\forall x, \forall y \ C_x, C^y$ измеримо $\Rightarrow C$ измеримо.

Пример Серпинского.

Лекция 7

29 марта

Следствие 23.2.

- $f:[a,b]\to\mathbb{R}$
- \bullet f непрерывно

Тогда $\int_a^b f(x)dx = \int_{[a,b]} fd\lambda_1$

Доказательство. Рассмотрим случай f>0. $C=\Pi\Gamma^1(f,[a,b])$ — измеримое в \mathbb{R}^2 множество. Доказать это — упражнение.

$$C_x = [0, f(x)], \lambda_1(C_x) = f(x)$$

$$\int_{a}^{b} f(x)dx = \lambda_{2}(\Pi\Gamma) = \int_{[a,b]} fd\lambda_{1}$$

Примечание.

- λ_2 можно продолжить на множество $2^{\mathbb{R}^2}$ с сохранением конечной аддитивности и это продолжение можно сделать не единственным образом.
- Для $\lambda_m, m>2$ аналогичным образом продолжить невозможно.

Для обоих случаев требуется инвариантность меры относительно движения \mathbb{R}^m .

В множествах размерности > 2 действует парадокс Хаусдорфа-Банаха-Тарского, вследствие чего аддитивность невозможна.

Определение.

¹ подграфик

•
$$C \subset X \times Y$$

•
$$f: X \times Y \to \overline{\mathbb{R}}$$

$$\forall x \in X \ f_x$$
 — функция $f_x(y) = f(x,y)$

$$\forall y \in Y \ f_y - функция f_y(x) = f(x,y)$$

Теорема 24 (Тонелли).

- (X,\mathfrak{A},μ)
- (Y, \mathfrak{B}, ν)
- $\mu, \nu \sigma$ -конечные, полные
- $m = \mu \times \nu$
- $f: X \times Y \to \overline{\mathbb{R}}$
- $f \ge 0$
- f измеримо относительно $\mathfrak{A}\otimes\mathfrak{B}$

Тогда:

- 1. При почти всех $x f_x$ измерима на Y.
- 2. $x\mapsto \varphi(x)=\int_{Y}f_{x}d\nu=\int_{Y}f(x,y)d\nu(y)$ измерима 2 на X
- 3. $\int_{X\times Y} f dm = \int_X \varphi d\mu = \int_X \left(\int_Y f(x,y) d\nu(y) \right) d\mu(x)$

Аналогичные утверждения верны, если поменять местами X и Y:

- 1. f^{y} измеримо на X почти везде.
- 2. $y\mapsto \psi(y)=\int_X f^y d\mu$ измерима 3 на Y
- 3. $\int_{X\times Y} f dm = \int_Y \psi d\mu = \int_Y \left(\int_X f(x,y) d\mu(x) \right) d\nu(y)$

Доказательство.

1. $f=\chi_{C_x}, C\subset X imes Y$, измеримо. Тогда $f_x(y)=\chi_{C_x}(y)$

 C_x измеримо при почти всех x по принцип Кавальери $\Rightarrow f_x$ измеримо при почти всех x

 $\varphi(x)=\int_Y f_x d
u=
u C_x$ — измеримая 4 функция по принцип Кавальери

 $^{^2}$ почти везде

³ почти везде

⁴ почти везде

$$\int_{X} \varphi(x) d\mu = \int_{X} \nu C_x d\mu \stackrel{\text{(??)}}{=} mC = \int_{X \times Y} f dm$$

2. f — ступенчатая, $f \geq 0, f = \sum_{\text{кон.}} \alpha_k \chi_{C_k}, f_x = \sum \alpha_k \chi_{(C_k)_x}$ — измеримо почти везде. $\varphi(x) = \int_Y f_x d\nu = \sum \alpha_k \nu(C_k)_x$ — измерима 5

$$\int_{X} \varphi(x) = \sum \int_{X} \alpha_k \nu(C_k)_x = \sum \alpha_k m C_k = \int_{X \times Y} f dm$$

3. $f \ge 0$, измеримо.

 $f = \lim g_n, g_n \uparrow f, g_n \ge 0$, ступенчатые

 $f_x = \lim_{n \to +\infty} (g_n)_x \Rightarrow f_x$ — измеримо на y по теореме об измеримости пределов.

$$\varphi(x) = \int_Y f_x d\nu \stackrel{(\ref{eq:gn})_x}{=} \lim \underbrace{\int_Y (g_n)_x d\nu}_{\varphi_n(x)} \implies \varphi$$
 — измерима⁶

 $\varphi_n(x)$ измерима почти везде по пункту 2, поэтому φ измерима почти везде.

$$\int_{X} \varphi(x) \stackrel{(??)}{=} \lim \int_{X} \varphi_n = \lim \int_{X \times Y} g_n \stackrel{(??)}{=} \int_{X \times Y} f dm$$

Следствие 24.1. Если в условиях теоремы Тонелли $C\subset X\times Y, P_1(C)$ измеримо, то $\int_C fdm=\int_{P_1(C)}\left(\int_{C_x}f(x,y)d\nu(y)\right)d\mu(x)$

Доказательство. Очевидно, т.к. вместо f можно взять $f \cdot \chi_C$

Теорема 25 (Фубини).

- (X,\mathfrak{A},μ)
- (Y, \mathfrak{B}, ν)
- $\mu, \nu \sigma$ -конечные, полные
- $m = \mu \times \nu$

(??), (??), (??): по теореме Леви

^{(??):} по принцип Кавальери

⁵ почти везде

П

• f — суммируемо на $X \times Y$

Тогда:

1. f_x — суммируема на Y при почти всех x

2.
$$x \mapsto \varphi(x) = \int_{Y} f_x d\nu = \int_{Y} f(x,y) d\nu(y)$$
 — суммируема на Y

3.
$$\int_{X\times Y} f dm = \int_X \varphi d\mu = \int_X \left(\int_Y f(x,y) d\nu(y) \right) d\mu(x)$$

Доказательство. Слишком неинтересно.

Общий подход: берём f_+ и f_- .

Пример. $B(s,t) \stackrel{\text{def}}{=} \int_0^1 x^{s-1} (1-x)^{t-1} dx$, s,t>0.

Тогда
$$B(s,t)=rac{\Gamma(s)\Gamma(t)}{\Gamma(s+t)}$$
, где $\Gamma(s)=\int_0^{+\infty}x^{s-1}e^{-x}dx$

Доказательство.

$$\Gamma(s)\Gamma(t) = \int_{0}^{+\infty} x^{s-1}e^{-x} \left(\int_{0}^{+\infty} y^{t-1}e^{-y}dy \right) dx$$

$$= \int_{0}^{+\infty} \left(\int_{0}^{+\infty} x^{s-1}y^{t-1}e^{-x}e^{-y}dy \right) dx$$

$$y := u - x$$

$$= \int_{0}^{+\infty} \left(\int_{x}^{+\infty} x^{s-1}(u - x)^{t-1}e^{-u}du \right) dx$$

$$= \int \dots d\lambda_{2}$$

$$= \int_{0}^{+\infty} \left(\int_{0}^{u} x^{s-1}(u - x)^{t-1}e^{-u}dx \right) du$$

$$x := u \cdot v$$

$$= \int_{0}^{+\infty} \left(\int_{0}^{1} (uv)^{s-1}(u - uv)^{t-1}e^{-u} \cdot udv \right) du$$

$$= \int_{0}^{+\infty} u^{s+t-1}e^{-u} \left(\int_{0}^{1} v^{s-1}(1 - v)^{t-1}dv \right) du$$

$$= B(s, t)\Gamma(s + t)$$

Пример (Объём иара в \mathbb{R}^m). $\alpha_m:=\lambda_m(B(0,1)),\lambda_m(B(0,r))=r^m\cdot\alpha_m$ — получается заменой координат.

⁷ на самом деле мера

$$B(0,1) \stackrel{\text{def}}{=} \left\{ x \in \mathbb{R}^m : \sum_{i=1}^m x_i^2 \le 1 \right\}$$

$$B(0,1)_{x_m} = \left\{ x \in \mathbb{R}^{m-1} : \sum_{i=1}^{m-1} x_i^2 \le 1 - x_m^2 \right\}$$

$$\alpha_m = \int_{-1}^1 \lambda_{m-1} \left(B\left(0, \sqrt{1 - y^2}\right) \right) dy$$

$$= \int_{-1}^1 \alpha_{m-1} (1 - y^2)^{\frac{m-1}{2}} dy$$

$$= 2\alpha_{m-1} \int_0^1 (1 - t)^{\frac{m-1}{2}} \frac{1}{2} t^{-\frac{1}{2}} dt$$

$$= B\left(\frac{m+1}{2}, \frac{1}{2}\right) \alpha_{m-1}$$

$$= \frac{\Gamma\left(\frac{m+1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{m+2}{2}\right)} \alpha_{m-1}$$

$$\alpha_{m} = \frac{\Gamma\left(\frac{m+1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{m+2}{2}\right)} \cdot \frac{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{m+1}{2}\right)} \dots \frac{\Gamma\left(\frac{3}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{4}{2}\right)} \underbrace{\alpha_{1}}_{=2}$$

$$= \frac{\Gamma\left(\frac{3}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{m}{2}+1\right)^{m-1}} \cdot 2$$

$$= \frac{\pi^{\frac{m}{2}}}{\Gamma\left(\frac{m}{2}+1\right)}$$

В случае m=3 $\alpha_3=\frac{4}{3}\pi$

Примечание.

$$\Gamma\left(\frac{1}{2}\right) = \int_0^{+\infty} t^{-\frac{1}{2}} e^{-t} dt = 2 \underbrace{\int_0^{+\infty} e^{-x^2} dx}_{I}$$

$$I^{2} = \int_{0}^{+\infty} \left(\int_{0}^{+\infty} e^{-x^{2} - y^{2}} dy \right) dx$$
$$= \int_{0}^{+\infty} dr \int_{0}^{\frac{\pi}{2}} e^{-r^{2}} \cdot r dr$$

$$= \frac{\pi}{4}e^{-r^2}\bigg|_0^{+\infty}$$
$$= \frac{\pi}{4}$$

Переход в полярные координаты:

$$x_1 = r \cos \varphi_1$$

$$x_2 = r \sin \varphi_1 \cos \varphi_2$$

$$\vdots$$

$$x_{m-1} = r \sin \varphi_1 \dots \sin \varphi_{m-1}$$

$$x_m = r \sin \varphi_1 \dots \cos \varphi_{m-1}$$

$$\lambda_{m}(B(0,R)) = \int_{B(0,R)} 1 d\lambda_{m}$$

$$= \int_{0}^{R} dr \int_{0}^{\pi} d\varphi_{1} \int_{0}^{\pi} d\varphi_{2} \cdots \int_{0}^{\pi} d\varphi_{m-2} \int_{0}^{2\pi} d\varphi_{m-1} \cdot r^{m-1} \cdot \sin^{m-2} \varphi_{1} \dots \sin \varphi_{m-2}$$

$$\stackrel{\text{no}}{=} 2\pi \frac{R^{m}}{m} \prod_{k=1}^{m-2} \frac{\Gamma\left(\frac{k+1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{k+2}{2}\right)}$$

$$= \pi \frac{R^{m}}{m} \frac{\pi^{\frac{m-2}{2}}}{\Gamma\left(\frac{m-2}{2}+1\right)}$$

$$\stackrel{\text{(2?)}}{=} \frac{\pi^{\frac{m}{2}R^{m}}}{\Gamma\left(\frac{m-2}{2}+1\right)}$$

$$\int_0^{\pi} \sin^k \alpha d\alpha = 2 \int_0^{\frac{\pi}{2}} = \begin{bmatrix} t = \sin^2 \alpha \\ dt = \frac{1}{2} t^{-\frac{1}{2}} (1 - t)^{-\frac{1}{2}} dt \end{bmatrix} = B\left(\frac{k}{2} + \frac{1}{2}, \frac{1}{2}\right)$$
 (7)

Мы потеряли двойку в (??).

6 Поверхностный интеграл

6.1 Поверхностный интеграл І рода

Определение.

- $M\subset\mathbb{R}^3$ простое двумерное гладкое многообразие
- $\varphi:G\subset\mathbb{R}^2\to\mathbb{R}^3$ параметризация M, т.е. $\varphi(G)=M$

 $E \subset M$ — измеримо по Лебегу, если $\varphi^{-1}(E)$ измеримо в \mathbb{R}^2 по Лебегу.

Обозначение.
$$\mathfrak{A}_M=\{E\subset M: E$$
 изм. $\}=\{\varphi(A), A\in\mathfrak{M}^2, A\subset G\}$

Определение (Мера на \mathfrak{A}_M).

$$S(E) := \iint_{\varphi^{-1}(E)} |\varphi'_u \times \varphi'_v| du dv$$

т.е. это взвешенный образ меры Лебега при отображении φ .

Примечание.

- 1. $\mathfrak{A}_{m} \sigma$ -алебра, S мера.
- 2. $E\subset M$ компакт $\Rightarrow \varphi^{-1}(E)$ компакт, т.к. непрерывный образ компакта компактен \Rightarrow измерим \Rightarrow замкнутые множества измеримы \Rightarrow открытые относительно M множества измеримы, т.к. их дополнения замкнуты и следовательно измеримы, а также σ -алгебра замкнута по дополнению.
- 3. \mathfrak{A}_m не зависит от параметризации φ по теореме о двух параметризациях⁸.
- 4. S не зависит от $\varphi!^9$

$$\begin{aligned} |\overrightarrow{\varphi}'_s \times \overrightarrow{\varphi}'_t| &= |(\overrightarrow{\varphi}'_u \cdot u'_s + \overrightarrow{\varphi}'_v \cdot v'_s) \times (\overrightarrow{\varphi}'_i \cdot u'_t + \overrightarrow{\varphi}'_v \cdot v'_t)| \\ &= |\overrightarrow{(\varphi'_u \times \varphi'_v)}(u'_s v'_t - v'_s u'_t)| \\ &= |\varphi'_u \times \varphi'_v| \cdot |\det \begin{pmatrix} u'_s & u'_t \\ v'_s & v'_u \end{pmatrix}| \end{aligned}$$

5. $f:M\to \overline{\mathbb{R}}$ измерима, если M(f< a) измеримо относительно \mathfrak{A}_m , что в свою очередь $\Leftrightarrow M(f\circ \varphi < a)$ измеримо относительно \mathfrak{M}^2 .

f измеримо относительно $\mathfrak{A}_m \Leftrightarrow f \circ \varphi$ измеримо относительно \mathfrak{M}^2 .

Определение (поверхностный интеграл первого рода).

 $^{^{8}}$ Которая гласит, что треугольник коммутирует.

⁹ Это восклицательный знак, а не факториал.

- M простое гладкое двумерное многообразие в \mathbb{R}^3
- φ параметризация M
- $f:M o \overline{\mathbb{R}}$ суммируемо по мере S на M

Тогда $\iint_M f dS = \iint_M f(x,y,z) dS$ называется **интегралом первого рода** от f по многообразию M.

Примечание. Как вычислять этот интеграл? По теореме о вычислении интеграла по взвешенному образу меры:

$$\iint_{M} f dS = \iint_{G} f(\varphi(u, v)) |\varphi'_{u} \times \varphi'_{v}| du dv$$

$$\varphi'_{u} \times \varphi'_{v} = \begin{vmatrix} i & x'_{u} & x'_{v} \\ j & y'_{u} & y'_{v} \\ k & z'_{u} & z'_{v} \end{vmatrix}$$

$$|\varphi'_{u} \times \varphi'_{v}| = |\varphi'_{u}| \cdot |\varphi'_{v}| \sin \alpha = \sqrt{|\varphi'_{u}|^{2} |\varphi'_{v}|^{2} (1 - \cos^{2} \alpha)} = \sqrt{EG - F^{2}}$$

$$F = \langle \varphi'_{u}, \varphi'_{v} \rangle = x'_{u} x'_{v} + y'_{u} y'_{v} + z'_{u} z'_{v}$$

Пример. M — график функции $f = \{(x,y,z) : (x,y) \in G, z = f(x,y)\}$

$$\varphi: G \to \mathbb{R}^3 \quad \varphi(u, v) = \begin{pmatrix} u \\ v \\ f(u, v) \end{pmatrix} \quad \varphi'_u = \begin{pmatrix} 1 \\ 0 \\ f'_u \end{pmatrix} \quad \varphi'_v \begin{pmatrix} 0 \\ 1 \\ f'_v \end{pmatrix}$$
$$|\varphi'_u \times \varphi'_v| = \sqrt{1 + f'^2_u + f'^2_v}$$
$$\iint_M g dS = \iint_G g(x, y, f(x, y)) \sqrt{1 + f'^2_x + f'^2_y} dx dy$$

Лекция 8

5 апреля

Определение. $M \subset \mathbb{R}^3$ — кусочно-гладкое двумерное многообразие, если M — конечное объединение:

- Простых гладких многообразий M_i
- Гладких кривых
- Точек

Определение. $E \subset M$ измеримо, если $E \cap M_i$ измеримо.

$$S(E) := \sum_{i} S(E \cap M_i)$$

$$\int_E f ds := \sum_i \int_{E \cap M_i} f ds$$

6.2 Поверхностный интеграл II рода

Обозначение. Будем называть простое двумерное гладкое многообразие в \mathbb{R}^3 поверхностью.

Определение. Сторона поверхности есть непрерывное семейство единичных нормалей к этой поверхности.

Для поверхности $M\subset\mathbb{R}^3$ сторона есть отображение

$$W: M \to \mathbb{R}^3 \quad \forall x \ |W(x)| = 1, W(x) \perp \Phi_u', \Phi_v'$$

Примечание. Локально каждая поверхность двусторонняя. В общем случае сторон либо две, либо одна (лента Мёбиуса). Для поверхностей с одной стороной нельзя задать сторону поверхности. Формально мы это не доказали и это требует трюков с топологией. В \mathbb{R}^4

можно сделать дырку в окружности и заткнуть её лентой Мёбиуса и тогда всё станет совсем странно.

Пример. График функции z(x, y).

$$\Phi: (x, y) \mapsto \begin{pmatrix} x \\ y \\ z(x, y) \end{pmatrix}$$

$$\Phi'_{x} = \begin{pmatrix} 1 \\ 0 \\ z'_{x} \end{pmatrix} \quad \Phi'_{y} = \begin{pmatrix} 0 \\ 1 \\ z'_{y} \end{pmatrix}$$

$$n := \Phi'_{x} \times \Phi'_{y} = \begin{pmatrix} -z'_{x} \\ -z'_{y} \\ 1 \end{pmatrix}$$

$$n_{0} = \pm \begin{pmatrix} -\frac{z'_{x}}{\sqrt{1 + z''_{x}^{2} + z''_{y}^{2}}} \\ -\frac{z'_{y}}{\sqrt{1 + z''_{x}^{2} + z''_{y}^{2}}} \\ \frac{1}{\sqrt{1 + z''_{x}^{2} + z''_{y}^{2}}} \end{pmatrix}$$

Другие способы задания стороны:

- 1. u, v касательные непараллельные вектора к M. Тогда (u, v) будем называть касательным репе́ром. Нормаль в таком случае можно восстановить векторным произведением $u \times v$. После нормировки по полю реперов мы получаем поле единичных нормалей, т.е. сторону поверхности.
- 2. Пусть задана петля и задано направление движения, то бишь **ориентированный контур**. Тогда с помощью гомотопий его можно стянуть в любую точку нашего многообразия M. Заметим, что направление движения на самом деле задаёт два вектора касательный вектор и вектор нормали "внутрь" петли. Тогда мы по ориентированному контуру получим поле касательных реперов, а следовательно зададим и сторону поверхности.

Определение.

- M поверхность в \mathbb{R}^3
- n₀ сторона
- γ контур (*петля*) в M, ориентированная
- $N_{\mbox{\tiny внутр.}}$ вектор нормали, направленный внутрь петли

Говорят, что сторона поверхности n_0 согласована с ориентацией γ , если:

$$(\gamma' \times N_{\text{внутр.}}) \parallel n_0$$

Т.е. если ориентация γ задаёт сторону n_0 .

Определение (интеграл II рода).

- M простое двумерное гладкое многообразие
- n_0 сторона M
- $F:M \to \mathbb{R}^3$ непрерывное векторное поле

Тогда $\int_M \langle F, n_0 \rangle \, dS$ — **интеграл II рода** векторного поля F по поверхности M. Примечание.

- Смена стороны = смена знака
- Не зависит от параметризации
- F=(P,Q,R), тогда интеграл обозначается $\iint_M P dy dz + Q dz dx + R dx dy$
- Φ параметризация, $n=\Phi'_u \times \Phi'_v \leadsto n_0$ нормирование Пусть $\Phi(u,v)=(x(u,v),y(u,v),z(u,v))$

$$\int_{M} \langle F, n_{0} \rangle ds = \int_{O} \left\langle F, \frac{\Phi'_{u} \times \Phi'_{v}}{|\Phi'_{u} \times \Phi'_{v}|} \right\rangle |\Phi'_{u} \times \Phi'_{v}| du dv$$

$$= \int_{O} \underbrace{\left\langle F, \Phi'_{u} \times \Phi'_{v} \right\rangle}_{\text{Смешанное произведение: (8)}} du dv$$

$$= \int_{O} P \cdot \begin{vmatrix} y'_{u} & y'_{v} \\ z'_{u} & z'_{v} \end{vmatrix} + Q \cdot \begin{vmatrix} z'_{u} & z'_{v} \\ x'_{u} & x'_{v} \end{vmatrix} + R \cdot \begin{vmatrix} x'_{u} & x'_{v} \\ y'_{u} & y'_{v} \end{vmatrix} du dv$$

$$\langle F, \Phi'_u \times \Phi'_v \rangle = \begin{vmatrix} P & x'_u & x'_v \\ Q & y'_u & y'_v \\ R & z'_u & z'_v \end{vmatrix}$$
(8)

Сторона поверхности учитывается в порядке переменных u, v.

Пример. Рассмотрим график функции z(x,y) над областью G по верхней стороне.

$$n_0 = \left(-\frac{z_x'}{\sqrt{1 + z_x'^2 + z_y'^2}} - \frac{z_y'}{\sqrt{1 + z_x'^2 + z_y'^2}} - \frac{1}{\sqrt{1 + z_x'^2 + z_y'^2}} \right)$$

$$\int_{\Gamma_z} R dx dy = \int_{\Gamma_z} 0 dy dz + 0 dz dx + R(x, y, z) dx dy$$

$$\stackrel{\text{def}}{=} \iint_{\Gamma_z} R(x, y, z) \cdot \frac{1}{\sqrt{1 + z_x'^2 + z_y'^2}} dS$$

$$= \iint_G R(x, y, z(x, y)) dx dy$$

$$= \iint_G R dx dy$$

Т.е. этот интеграл II рода равен интегралу по проекции.

Cледствие. $V \subset \mathbb{R}^3, M = \partial^1 V$ — гладкая двумерная поверхность, n_0 — внешняя нормаль.

$$\lambda_3 V = \iint_{\partial V} z dx dy = \frac{1}{3} \iint_{\partial V} x dy dz + y dz dx + z dx dy$$

 $\mathit{Следствие}.\ \Omega$ — гладкая кривая в $\mathbb{R}^2,\, M$ — цилиндр над $\Omega,$ т.е. $M=\Omega\times[z_0,z_1]$

Тогда $\int_M R dx dy = 0$ по любой стороне.

Доказательство. $n_0 \perp (0, 0, R)$

7 Ряды Фурье

7.1 Пространства L^p

- 1. (X, \mathfrak{A}, μ) пространство с мерой
 - $f: X \to \mathbb{C}$, r.e. x = f(x) = u(x) + iv(x), $u = \Re f, v = \Im f$

f **измеримо**, если u и v измеримы².

f суммируемо, если u и v суммируемы.

Если f суммируемо, то $\int_E f = \int_E u + i \int_E v$

Упражнение 6.

$$\left| \int_{E} f \right| \le \int_{E} |f| d\mu$$

- 2. Неравенство Гёльдера.
 - $p, q > 1, \frac{1}{p} + \frac{1}{q} = 1$

 $[\]overline{\ }^{1}$ Это не дифференциал, а граница.

² Или измеримы почти везде.

- (X,\mathfrak{A},μ)
- E измеримо
- $f, q: E \to \mathbb{C}$
- f, g измеримы

Тогда
$$\int_E |fg| d\mu \leq \left(\int_E |f|^p\right)^{\frac{1}{p}} \left(\int_E |g|^q\right)^{\frac{1}{q}}$$

Доказательство. Не будет, но общая идея следующая:

- (a) Для ступенчатых функций из неравенства Гёльдера для сумм 3
- (b) Для суммируемых функций по теореме <u>Леви</u>.

3. Неравенство Минковского.

В тех же условиях $\left(\int_E|f+g|^p\right)^{\frac{1}{p}}\leq \left(\int_E|f|^p\right)^{\frac{1}{p}}+\left(\int_E|g|^p\right)^{\frac{1}{p}}$

Доказательство. Не будет, можно вывести аналогично выводу во втором семестре.

Примечание. Для p = 1 тоже верно.

- 4. Определение пространства $L^p, 1 \leq p < +\infty$
 - (X, \mathfrak{A}, μ) пространство с мерой.
 - $E \subset X$ измеримо.

 $\mathcal{L}^p(E,\mu):=\{f:$ почти везде $E o\overline{\mathbb{R}}(\overline{\mathbb{C}}^4), f-$ изм. $^5,\int_E|f|^pd\mu<+\infty\}$ — это линейное пространство по неравенству Минковского.

Зададим отношение эквивалентности \sim на $\mathcal{L}^p(E,\mu)$: $f\sim g\Leftrightarrow f=g$ почти везде.

 $\mathcal{L}^p/_{\sim}=L^p(E,\mu)$ — линейное пространство.

Задаём норму на L^p : $||f||_{L^p(E,\mu)} = \left(\int_E |f|^p\right)^{\frac{1}{p}}$, обозначается $||f||_p$

Эта функция корректно определена, т.к. для $f \sim g: ||f||_p = ||g||_p$. Кроме того, она является нормой, т.к.:

- (a) $||f||_p \geq 0$ очевидно, т.к. $\int |f|^p \geq 0$
- (b) $||f||_p = 0 \Rightarrow \int |f|^p = 0 \Rightarrow \int |f| = 0 \Rightarrow f = 0 \text{ n.b.} \Rightarrow f \sim 0.$

 $^{^{3}}$ Мы его рассматривали во втором семестре.

 $^{^{4}\}overline{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$

⁵ Или измерима почти везде.

(c)
$$||f \cdot \alpha||_p = \left(\int |f \cdot \alpha|^p\right)^{\frac{1}{p}} = \alpha \cdot ||f||_p$$

- (d) $||f+g||_p = ||f||_p + ||g||_p$ по неравенству Минковского.
- 5. $L^{\infty}(E,\mu)$
 - (X, \mathfrak{A}, μ) пространство с мерой.
 - $E \subset X$ измеримо.
 - f : почти везде на $E o \overline{\mathbb{R}}$ измеримо

Определение (существенный супремум⁶).

$$\mathop{\mathrm{ess\,sup}}_{x\in E}f=\inf\{A\in\overline{\mathbb{R}}, f\leq A$$
 почти везде $\}$

При этом A называется существенной вещественной границей.

Свойства.

- ess sup $f \leq \sup f$ очевидно.
- $f \leq \operatorname{ess\ sup} f$ почти везде пусть $B = \operatorname{ess\ sup} f$, тогда $\forall n \ f \leq B + \frac{1}{n}$ почти везде.
- f суммируемо, f,g почти везде $E \to \overline{\mathbb{R}}(\mathbb{C})$, ess $\sup_E |g| < +\infty$. Тогда $|\int_E fg| \le \mathrm{ess}\,\sup|g| \cdot \int_E |f|$

Доказательство.

$$\left| \int_{E} fg \right| \le \int_{E} |fg| \le \int_{E} \operatorname{ess sup} |g| \cdot |f| = \operatorname{ess sup} |g| \cdot \int_{E} |f| \tag{9}$$

 $L^\infty(E,\mu)=\{f:$ почти везде $E\to\overline{\mathbb{R}}(\overline{\mathbb{C}}),\ \text{изм.}, \text{ess sup}\,|f|<+\infty\}/_\sim-$ линейное пространство.

$$||f||_{L^\infty(E,\mu)} := \operatorname{ess\ sup}_E |f| = ||f||_\infty$$

Примечание.

- (a) В новых обозначениях неравенство Гёльдера: $||fg||_1 \le ||f||_p \cdot ||g||_q$ здесь можно брать $p=1, q=+\infty-$ это (9).
- (b) $f \in L^p \Rightarrow f$ почти везде конечно, если $1 \le p \le +\infty \Rightarrow$ можно считать, что f задана всюду на E и всюду конечна.

⁶ Также называется истинным супремумом

Лекция 9

12 апреля

В третьем семестре у нас был криволинейный интеграл функции и векторного поля вдоль кривой $\gamma:[a,b]\to\mathbb{R}^m$:

$$\int_{\gamma} f \underbrace{dS}_{|\gamma'|dt} \quad \int \langle F, \gamma' \rangle \, dt$$

Мера на кривой, т.е. гладком одномерном многообразии, с параметризацией γ , является мерой Лебега в \mathbb{R}^1 с весом $|\gamma'|$. Такой интеграл — первого рода.

В общем случае интеграл II рода по m-1-мерной поверхности в \mathbb{R}^m от векторного поля F есть: $\int \langle F, n_0 \rangle \, dS_{m-1}$

Определение (мера Лебега на k-мерном многообразии в \mathbb{R}^m).

- $\Phi: O \subset \mathbb{R}^k \to \mathbb{R}^m$
- $\exists \Phi'_1 \dots \Phi'_k$

 $\lambda_k(\Pi P \Pi \Pi(\Phi_1' \dots \Phi_k'))^1$ — это и будет плотность меры.

8 Формула Грина

Теорема 26 (формула грина).

- $D \subset \mathbb{R}^2$ компактное, связное, односвязное 2 , ограниченное множество.
- D ограничено кусочно-гладкой кривой ∂D
- (P,Q) гладкое векторное поле в окрестности D

¹ Объём параллелепипеда на этих векторах

 $^{^{2}}$ Любая петля стягиваема

Пусть ∂D ориентирована согласованно с ориентацией D (против часовой стрелки) — обозначим ∂D^+ . Тогда:

$$\iint_{D} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dx dy = \int_{\partial D^{+}} P dx + Q dy$$

Доказательство. Ограничимся случаем D — "криволинейный четырёхугольник".

Рис. 9.1: Криволинейный четырёхугольник с ∂D

 ∂D состоит из путей $\gamma_1 \dots \gamma_4$, где γ_2 и γ_4 — вертикальные отрезки³, γ_1 и γ_3 — гладкие кривые — можно считать, что это графики функций $\varphi_1(x), \varphi_3(x)$.

Аналогично можно описать ∂D по отрезкам, параллельным оси OY.

Проверим, что
$$-\iint_{D} \frac{\partial P}{\partial y} dx dy = \int_{\partial D^{+}} P dx + 0 dy$$

$$-\iint_{D} \frac{\partial P}{\partial y} dx dy = -\int_{a}^{b} dx \int_{\varphi_{1}(x)}^{\varphi_{3}(x)} \frac{\partial P}{\partial y} dy$$

³ Возможно, вырожденные

$$= -\int_a^b P(x, \varphi_3(x)) - P(x, \varphi_1(x)) dx$$

$$\begin{split} \int_{\partial D^+} P dx + 0 dy &= \int_{\gamma_1} + \underbrace{\int_{\gamma_2}}_{0} + \int_{\gamma_3} + \underbrace{\int_{\gamma_4}}_{0} \\ &= \int_a^b P(x, \gamma_1(x)) dx - \int_a^b P(x, \gamma_3(x)) dx \end{split}$$

Таким образом, искомое доказано.

 Π римечание. Теорема верна для любой области D с кусочно-гладкой границей, которую можно разрезать на криволинейные четырёхугольники.

Такой разрез — безобидное действие, которое можно выполнить вертикальным разрезанием по середине:

Кажется, такими разрезами можно достичь искомого в любой области, но мы не будем это утверждать.

Теорема 27 (формула Стокса).

- Ω простое гладкое двумерное многообразие в \mathbb{R}^3 (двустороннее)
- $\Phi:G\subset\mathbb{R}^2\to\mathbb{R}^3$ параметризация Ω
- L^+ граница G
- n₀ сторона Ω
- $\partial\Omega$ кусочно-гладкая кривая
- $\partial\Omega^+$ кривая с согласованной ориентацией
- (P,Q,R) гладкое векторное поле в окрестности Ω

Тогда:

$$\int_{\partial\Omega^+} P dx + Q dy + R dz = \iint_{\Omega} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Примечание. dxdy = -dydx, dxdx = 0

$$dPdx + dQdy + dRdz = (P'_x dx + P'_y dy + P'_z dz)dx + \dots$$

Доказательство. Ограничимся случаем $\Omega \in C^2$, т.е. параметризация Ω дважды гладко дифференцируема.

Достаточно показать, что:

$$\int_{\partial\Omega^{+}} P dx = \iint_{\Omega} \frac{\partial P}{\partial z} dz dx - \frac{\partial P}{\partial y} dx dy$$

Пусть $\Phi = (x(u, v), y(u, v), z(u, v)).$

Запараметризуем L^+ как $\gamma:[a,b]\to\mathbb{R}^2, t\mapsto (u(t),v(t))$. Тогда $\Phi\circ\gamma$ — параметризация $\partial\Omega^+$. Тогда $(\Phi\circ\gamma)'=\Phi'\cdot\gamma'$

$$\begin{split} \int_{\partial\Omega^+} P dx &= \int_{L^+} P \left(\frac{\partial x}{\partial u} u' + \frac{\partial x}{\partial v} v' \right) dt \\ &= \int_{L^+} P \left(\frac{\partial x}{\partial u} du + \frac{\partial x}{\partial v} dv \right) \\ &\stackrel{(\ref{eq:constraints})}{=} \iint_G \frac{\partial}{\partial u} \left(P \frac{\partial x}{\partial v} \right) - \frac{\partial}{\partial v} \left(P \frac{\partial x}{\partial u} \right) du dv \\ &\stackrel{(\ref{eq:constraints})}{=} \iint_G (P'_x x'_u + P'_y y'_u + P'_z z'_u) x'_v + P_x x''_u - (P'_x x'_v + P'_y y'_v + P'_z z'_v) x'_u - P x''_u v du dv \\ &= \iint_G \frac{\partial P}{\partial z} (z'_u x'_v - z'_v x'_u) - \frac{\partial P}{\partial y} (x'_u y'_v - x'_v y'_u) du dv \\ &= \iint_G \frac{\partial P}{\partial z} dz dx - \frac{\partial P}{\partial x} dx dy \end{split}$$

9 Ряды Фурье (возвращение)

Теорема 28.

(??): по формула грина

(??): это дифференцирование произведения

•
$$\mu E < +\infty$$

•
$$1 \le s < r \le +\infty$$

Тогда:

1.
$$L^r(E,\mu) \subset L^s(E,\mu)$$

2.
$$||f||_s \le \mu E^{\frac{1}{s} - \frac{1}{r}} \cdot ||f||_r$$

Доказательство. 1 следует из 2, т.к. если $f \in L^r(E,\mu)$, то $||f||_s$ конечно. Докажем 2.

При $r=\infty$ очевидно:

$$\left(\int_E |f|^S d\mu\right)^{\frac{1}{s}} \le \operatorname{ess sup} |f| \cdot \mu E^{\frac{1}{s}}$$

При $r<+\infty$ $p:=rac{r}{s}, q:=rac{r}{r-s}$

$$\begin{aligned} ||f||_s^s &= \int_E |f|^s d\mu \\ &= \int_E |f|^s \cdot 1 d\mu \\ &\leq \left(\int_E |f|^{s \cdot \frac{r}{s}} d\mu \right)^{\frac{s}{r}} \cdot \left(\int_E 1^{\frac{r}{r-s}} d\mu \right)^{\frac{r-s}{r}} \\ &\leq ||f||_r^s \mu E^{1-\frac{s}{r}} \end{aligned}$$

Следствие 28.1. $\mu E<+\infty, 1\leq s, r\leq +\infty, f_n \xrightarrow{L^r} f$. Тогда $f_n \xrightarrow{L^s} f$

Доказательство.
$$||f_n - f||_s \le \mu E^{\frac{1}{s} - \frac{1}{r}} \cdot ||f_n - f||_r \to 0$$

Теорема 29 (о сходиомсти в L^p и по мере).

•
$$1 \le p < +\infty$$

•
$$f_n \in L^p(X,\mu)$$

Тогда

1.
$$f \in L^p, f_n \xrightarrow{L^p} f \Rightarrow f_n \stackrel{\mu}{\Rightarrow} f$$

2. •
$$f_n \stackrel{\mu}{\Rightarrow} f$$
 (либо $f_n \to f$ п.в.)

•
$$|f_n| < q$$

•
$$g \in L^p$$

Тогда $f \in L^p$ и $f_n \to f$ в L^p

Доказательство.

1. Пусть $X_n(\varepsilon) = X(|f_n - f| \ge \varepsilon)$

$$\mu X_n(\varepsilon) = \int_{X_n(\varepsilon)} 1 d\mu \le \frac{1}{\varepsilon^p} \int_{X_n(\varepsilon)} |f_n - f|^p d\mu \le \frac{1}{\varepsilon^p} ||f_n - f||_p^p \to 0$$

2. Пусть $f_n \Rightarrow f$. Тогда по теореме Рисса $\exists n_k: f_{n_k} \to f$ почти везде. $|f| \leq g$ почти везде. $|f_n - f|^p \leq (2g)^p$ — суммируема, т.к. $g \in L^p$.

$$||f_n-f||_p^p=\int_X|f_n-f|^p\xrightarrow{\mathrm{r. Jle6era}}0$$

9.1 Напоминание

• Фундаментальная последовательность : $\forall \varepsilon > 0 \;\; \exists N \;\; \forall k,n > N \;\; ||f_n - f_k|| < \varepsilon$, т.е. $||f_n - f_k|| \xrightarrow{n,k \to +\infty} 0$

• $f_n o f \Rightarrow (f_n)$ — фундаментальная, т.к. $||f_n - f_k|| \le \underbrace{||f_n - f||}_{\to 0} + \underbrace{||f - f_k||}_{\to 0}$

• C(K) — пространство непрерывных функций на компакте K. $||f|| = \max_K |f|$. Утверждение: C(K) — полное, т.е. любая фундаментальная последовательность сходится.

Упражнение 7. $L^{\infty}(X,\mu)$ — полное

Теорема 30. $L^p(X,\mu), 1 \le p < +\infty -$ полное.

 \mathcal{L} Доказательство. Рассмотрим f_n — фундаментальную. Куда бы она могла сходиться?

Пусть $\varepsilon = \frac{1}{2}$. Тогда $\exists N_1 \ \forall n_1, k > N_1 \ ||f_{n_1} - f_k||_p < \frac{1}{2}$. Зафиксируем какой-либо n_1 .

Аналогично для $\varepsilon = \frac{1}{4}$.

В общем случае $\sum_k ||f_{n_{k+1}} - f_{n_k}||_p \leq \sum_k \frac{1}{2^k} = 1$. Рассмотрим ряд $S(x) = \sum |f_{n_{k+1}}(x) - f_{n_k}(x)|, S(x) \in [0, +\infty]$ и его частичные суммы S_N .

$$||S_N||_p \le \sum_{k=1}^N ||f_{n_{k+1}} - f_{n_k}||_p < 1$$

Таким образом, $\int_X S_N^p < 1.$ По теореме Фату $\int_X S^p d\mu < 1,$ т.е. S^p — суммируемо $\Rightarrow S$ почти везде конечно.

 $f(x) = f_{n_1}(x) + \sum_{k=1}^{+\infty} (f_{n_{k+1}}(x) - f_{n_k}(x))$ — его частичные суммы это $f_{n_{N+1}}(x)$, т.е. сходимость этого ряда почти везде означает, что $f_{n_k} \to f$ почти везде. Таким образом, кандидат — f. Проверим, что $||f_n - f||_p \to 0$:

$$\forall \varepsilon > 0 \ \exists N \ \forall m, n > N \ ||f_n - f_m||_p < \varepsilon$$

Берём $m = n_k > N$.

$$||f_n - f_{n_k}||_p^p = \int_X |f_n - f_{n_k}|^p d\mu < \varepsilon^p$$

Это выполнено при всех достаточно больших k. Тогда по теореме Фату $\int_X |f_n - f|^p d\mu < \varepsilon^p$, т.е. $||f_n - f||_p < \varepsilon$.

Определение. Y — метрическое пространство, $A \subset Y$, A — (всюду) плотно в Y, если:

$$\forall y \in Y \ \forall U(y) \ \exists a \in A : a \in U(y)$$

Пример. \mathbb{Q} плотно в \mathbb{R} .

Лемма 7.

- (X,\mathfrak{A},μ)
- 1

Множество ступенчатых функций (из L^p) плотно в L^p .

Доказательство.

1. $p=\infty$

 $\sphericalangle f \in L^\infty$. Изменив f на множестве меры 0, считаем, что $|f| \leq ||f||_\infty$, т.к. f > A на множестве меры 0.

Тогда из доказательство теоремы о характеризации неотрицательных функций с помощью ступенчатых \exists ступенчатые функции φ_n , такие что $0 \le \varphi_n \rightrightarrows f^+$ и ψ_n , такие что $0 \le \psi_n \rightrightarrows f^-$

Тогда сколь угодно близко к f можно найти ступенчатую функцию вида $\varphi_n + \psi_n$, т.е. $|f - \varphi_n - \psi_n| \leq \frac{1}{n}$, что и требовалось показать.

2. $p < +\infty$. Пусть $f \ge 0$.

 $\exists \varphi_n \geq 0$ ступенчатые : $\varphi_n \uparrow f$

$$||arphi_n - f||_p^p = \int_X \underbrace{|arphi_n - f|^p}_{\leq |f|^p$$
 — мажоранта $\stackrel{ ext{т. Лебега}}{\longrightarrow} 0$

Если f любого знака, то при рассмотрении срезок искомое очевидно.

Примечание. $\varphi \in L^p$ — ступенчатая $\Rightarrow \mu X(\varphi \neq 0) < +\infty$

Определение. $f: \mathbb{R}^m \to \mathbb{R}$ — финитная, если $\exists B(0,r): f \equiv 0$ вне B(0,r).

Oбозначение. $C_0(\mathbb{R}^m)$ — непрерывные финитные функции

Очевидно, что $\forall p \geq 1 \;\; C_0(\mathbb{R}^m) \subset L^p(\mathbb{R}^m, \lambda_m)$

Определение. Топологическое пространство X **нормальное**, если:

- 1. Точки X суть замкнутые множества
- 2. $\forall F_1,F_2\subset X$ замкнутых 4 , тогда $\exists U(F_1),U(F_2)$ открыты, $U(F_1)\cap U(F_2)=\varnothing$ Загадка: \mathbb{R}^m нормальные. 5

 $^{^4}$ И непересекающихся, но это не было сказано на лекции.

 $^{^{5}}$ Если очень хочется, то здесь можно почитать доказательство того, что все метрические пространства (коим \mathbb{R}^{m} является) нормальные.

Лекция 10

19 апреля

10 Формула Остроградского

Теорема 31 (Формула Остроградского).

- $V = \{(x, y, z) : (x, y) \in G \subset \mathbb{R}^2 \ f(x, y) \le z \le F(x, y)\}$
- *G* компакт
- ∂G кусочно-гладкая кривая в \mathbb{R}^2
- $f, F \in C^1$
- Фиксируем внешнюю сторону поверхности
- R: окрестность $V \to \mathbb{R}, R \in C^1$

Тогда

$$\iiint_{V} \frac{\partial R}{\partial z} dx dy dz = \iint_{\partial V_{\text{answer}}} R dx dy = \iint_{\partial V} 0 dy dz + 0 dz dx + R dx dy$$

Доказательство.

$$\iiint_{V} \frac{\partial R}{\partial z} = \iint_{G} dxdy \int_{f(x,y)}^{F(x,y)} \frac{\partial R}{\partial z} dz$$

$$= \iint_{G} R(x, y, F(x, y)) dxdy - \iint_{G} R(x, y, f(x, y)) dxdy$$

$$= \iint_{\Omega_{F}} R(x, y, z) dxdy + \iint_{\Omega_{f}} R dxdy + \underbrace{\iint_{\Omega} R dxdy}_{0}$$

$$= \iint_{\partial V} R dxdy$$

Следствие 31.1 (обощенная формула Остроградского).

$$\iiint_{V} \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} dx dy dz = \iint_{\partial V_{\text{BHCII.}}} P dy dz + Q dz dx + R dx dy$$

Определение. V — гладкое векторное поле. Тогда **дивергенция** div $V=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}$ Наблюдение:

$$\operatorname{div} V(a) \stackrel{(\ref{eq:proposition})}{=} \lim_{\varepsilon \to 0} \frac{1}{\frac{4}{3}\pi\varepsilon^3} \iiint_{B(a,\varepsilon)} \operatorname{div} V dx dy dz \stackrel{(\ref{eq:proposition})}{=} \lim_{\varepsilon \to 0} \frac{1}{\frac{4}{3}\pi\varepsilon^3} \iint_{S(a,\varepsilon)} \langle V, n_0 \rangle \, dS$$

— не зависит от координат.

Физический смысл — мы измеряем поток воды и обнаруживаем, что поток по замкнутой поверхности пропадает или же появляется. Тогда div V — мера 1 интенсивности стока/истока.

Следствие 31.2. $l \in \mathbb{R}^3, f \in C^1(\text{окр.}(V))$

$$\iiint_{V} \frac{\partial f}{\partial l} dx dy dz = \iint_{\partial V} f \cdot \langle l, n_0 \rangle dS$$

Доказательство. Загадка.

Определение. Ротор (вихрь)

$$\operatorname{rot} V = \begin{pmatrix} \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} & \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} & \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \end{pmatrix}$$

^{(??): &}quot;-" спрятан в нормали, направленной вниз

^{(??):} по непрерывности div

^{(??):} по формуле Стокса

¹ Не та, что в теории меры; "измерение"

Аналогично можно определить ротор:

$$\operatorname{rot} F(a) = \lim_{\Omega \to x_0} \frac{1}{S(\Omega_{\varepsilon})} \int_{\Omega_{\varepsilon}} \langle \operatorname{rot} A, n_0 \rangle \, dS$$

 $\mbox{Примечание.}$ Поле V=(P,Q,R) — потенциально $\Leftrightarrow \exists f:V=\nabla f.$ По теореме Пуанкаре при Ω — односвязной: V — потенциально $\Leftrightarrow {\rm rot}\, V=0$, т.к. ${\rm rot}(\nabla f)\equiv 0$

Определение. Векторное поле $A = (A_1, A_2, A_3)$ **соленоидально** в области $\Omega \subset \mathbb{R}^3$, если \exists гладкое векторное поле B в Ω , такое что $A = \operatorname{rot} B$.

Теорема 32 (Пуанкаре').

- Ω открытый параллелепипед
- A векторное поле в Ω
- $A \in C^1$

Тогда A — соленоидально \Leftrightarrow div A=0

Доказательство.

 \Rightarrow div rot $B \equiv 0$, что всегда выполнено.

← Дано:

$$A_{1x}' + A_{2y}' + A_{3z}' = 0 (10)$$

Найдём векторный потенциал $B = (B_1, B_2, B_3)$, где A = rot B.

Пусть $B_3 \equiv 0$.

$$\begin{cases} B'_{3y} - B'_{2z} = A_1 \\ B'_{1z} - B'_{3x} = A_2 \\ B'_{2x} - B'_{1y} = A_3 \end{cases}$$

$$-B_{2z}' = A_1 (11)$$

$$-B_{1z}' = A_2 (12)$$

$$B_{2x}' - B_{2y}' = A_3 (13)$$

$$(12) \quad B_1 = \int_{z_0}^z A_2 dz$$

(11)
$$B_2 = -\int_{z_0}^z A_1 dz + \varphi(x, y)$$

(13)
$$A_3 = -\int_{z_0}^z A'_{1x} dz + \varphi'_x - \int_{z_0}^z A'_{2y} dz$$

Πο (10):

$$\int_{z_0}^{z} A'_{3z} + \varphi'_x = A_3$$
$$A_3(x, y, z) - A_3(x, y, z_0) + \varphi'_x = A_3(x, y, z)$$
$$\varphi'_x = A_3(x, y, z_0)$$

Отсюда найдём $\varphi = \int_{x_0}^x A_3(x,y,z_0) dx$

Лемма 8 (Урысона).

• X нормальное

• $F_0, F_1 \subset X$ — замкнутые

• $F_0 \cap F_1 = \emptyset$

Тогда $\exists f: X \to \mathbb{R}$ непрерывное, $0 \le f \le 1, f\Big|_{F_0} \equiv 0, f\Big|_{F_1} \equiv 1$

Доказательство. Переформулируем нормальность: если $F\subset G$, F замкнутое, G открытое, то $\exists U(F)$ — открытое, такое что $F\subset U(F)\subset \overline{U(F)}\subset G$. Почему это нормальность? Первое замкнутое множество — F, а второе замкнутое — G^c .

$$F \leftrightarrow F_0 \quad G \leftrightarrow (F_1)^c \quad F_0 \subset \underbrace{U(F_0)}_{G_0} \subset \underbrace{\overline{U(F_0)}}_{\overline{G_0}} \subset \underbrace{F_1^c}_{G_1}$$

Строим $G_{\frac{1}{2}}$:

$$G_0 \subset \overline{G_0} \subset \underbrace{U(\overline{G_0})}_{G_{\frac{1}{2}}} \subset \underbrace{\overline{U(\overline{G_0})}}_{\overline{G_{\frac{1}{2}}}}$$

Строим $G_{\frac{1}{4}}, G_{\frac{3}{4}}$:

$$\overline{G_{\frac{1}{2}}} \subset \underbrace{U(\overline{G_{\frac{1}{2}}})}_{G_{\frac{3}{4}}} \subset \overline{U(\overline{G_{\frac{1}{2}}})} \subset G_1$$

Таким образом, \forall двоично рациональной $\alpha \in [0,1]$ задаётся открытое множество G_{α} .

$$f(x) := \inf\{\alpha$$
 — двоично рациональная $: x \in G_{\alpha}\}$

f — непрерывно $\stackrel{?}{\Leftrightarrow} f^{-1}(a,b)$ — всегда открыто.

Достаточно проверить:

1.
$$\forall b \ f^{-1}(-\infty, b)$$
 — открыто

2.
$$\forall a \ f^{-1}(-\infty, a]$$
 — замкнуто

, так как:

$$f^{-1}(a,b) = f^{-1}(-\infty,b) \setminus f^{-1}(-\infty,a)$$

1.
$$f^{-1}(-\infty,b)=\bigcup_{\substack{q< b\ q$$
 дв. рац.}}G_q — открыто. Почему это так?

$$f^{-1}(-\infty,b)\subset\bigcup$$
, т.к. $f(x)=b_0< b$. Возьмём $q:b_0< q< b$. Тогда $x\in G_q$ $f^{-1}(-\infty,b)\supset\bigcup$ очевидно, т.к. при $x\in G_q$ $f(x)\leq q< b$.

2.
$$f^{-1}(-\infty,a] = \bigcap_{q>a} G_q = \bigcap_{q>a} \overline{G_q}$$
 — замкнуто

- (\supset) тривиально
- (\subset) Для двоично рациональных q, r:

$$\bigcap_{\substack{q>a\\\text{BCEX}}} G_q\supset \bigcap_{\substack{r>a\\\text{HEKOTOPDIX}}} \overline{G_r}\supset \bigcap_{\substack{r>a\\\text{BCEX}}} \overline{G_r}$$

, так как $\forall \alpha < \beta : G_{\alpha} \subset \overline{G_{\alpha}} \subset G_{\beta}$ по построению.

Теорема 33.

- $(\mathbb{R}^m, \mathfrak{M}, \lambda_m)$
- $E \subset \mathbb{R}^m$ измеримое

Тогда в $L^p(E, \lambda_m)$, $1 \le p < +\infty$ множество непрерывных финитных функция плотно.

Доказательство. По уже доказанной теореме множество ступенчатых функций плотно в $L^p(E,\lambda_m)$. Достаточно научиться приближать характеристические функции финитными, т.е.:

$$\forall A$$
 — огр. $\exists f$ — финитная непрерывная : $||f - \chi_A||_p < \varepsilon$

Тогда можно будет приближать ступенчатые функции финитными, а следовательно искомое будет верно.

По регулярности меры лебега:

$$\forall \varepsilon > 0 \; \exists \underbrace{F}_{\text{3amkh.}} \subset A \subset \underbrace{G}_{\text{otkp.}} \; \lambda_m(G \setminus F) < \varepsilon$$

По лемме Урысона \exists непрерывное $f:\mathbb{R}^m \to \mathbb{R}$: $f\Big|_{E} \equiv 1, f\Big|_{C^c} \equiv 0$

$$||f - \chi_A||_p^p = \int_{\mathbb{R}^m} |f - \chi_A|^p d\lambda_m = \int_{G \setminus F} |f - \chi_A|^p \le 1 \cdot \lambda_m(G \setminus F) = \varepsilon$$

Примечание. При $p=+\infty$ утверждение теоремы неверно!

Упражнение 8. $\sphericalangle L^{+\infty}(\mathbb{R},\lambda), B(\chi_{[a,b]},\frac{1}{2})$ не содержит непрерывных функций, т.к. $\sup_{\mathbb{R}}|f-\chi_A|\geq \max(\lim_{x\to a+0}|f(x)-\chi_A|,\lim_{x\to a-0}|f(x)-\chi_A|)\geq \frac{1}{2}.$

В $L^p(E, \lambda_m)$ плотны:

- Линейные комбинации характеристических функций ячеек
- Гладкие финитные функции
- Рациональные линейные комбинации характеристических функций рациональных ячеек, а это множество счётно.
- Непрерывные функции

Вопрос: что-либо из упомянутого плотно ли в $L^{\infty}(\mathbb{R},\lambda)$?

Ответ не совсем на этот вопрос: в $L^{+\infty}$ нет счётного плотного множества, зато конечные линейные комбинации характеристических функций плотны.

Лекция 11

26 апреля

Соглашение. $L^p[0,T], T \in \mathbb{R}$ можно понимать как пространство T-периодических функций, т.е. $\forall x \ f(x) = f(x+T)$.

Удобство: $\int_0^\mathsf{T} f = \int_a^{a+T} f$.

Соглашение. $f \in C[a,b] \Rightarrow ||f|| = \max_{x \in [a,b]} |f(x)|$.

 $\widetilde{C}[0,T]$ — непрерывные T-периодические функции.

- $f\in C[0,T]$ или $f\in \widetilde{C}[0,T]\Rightarrow f$ равномерно непрерывна по теореме Кантора о непрерывной на компакте функции.
- В $L^p[0,T]$ функции из \widetilde{C} образуют плотное множество.

Линейная функция на $L^p(X,\mu), \frac{1}{p}+\frac{1}{q}=1$. Берём $g\in L^q(x,\mu)$ и строим отображение $L^p\to\mathbb{R}, \, \alpha: f\mapsto \int_X fg d\mu$. Нам известно неравенство $|\int_X fg|\le (\int |f|^p)^{\frac{1}{p}}(\int |g|^p)^{\frac{1}{q}},$ поэтому интеграл конечен. Несложно заметить, что α действительно линейно. Непрерывно ли α ? Сходится ли $\alpha(f_n)$ к $\alpha(f)$? Да, т.к.:

$$|\alpha(f_n) - \alpha(f)| = \left| \int_X (f_n - f) \cdot g \right| \le ||f_n - f||_p \cdot ||g||_q$$

Определение.

- $f: \mathbb{R}^m \to \mathbb{R}$
- $h \in \mathbb{R}^m$

 $f_h(x) := f(x+h) - \text{сдвиг}.$

Теорема 34 (о непрерывности сдвига).

- 1. f равномерно непрерывно на \mathbb{R}^m . Тогда $||f_h f||_{\infty} \xrightarrow[h \to 0]{} 0^1$
- 2. $f \in L^p(\mathbb{R}^m), 1 \leq p < +\infty$. Тогда $||f_h f||_p \xrightarrow[h \to 0]{} 0$
- 3. $f \in \widetilde{C}[0,T]$. Тогда $||f_h f||_{\infty} \xrightarrow[h \to 0]{} 0^2$
- 4. $1 \le p < +\infty, f \in L^p[0,T] \Rightarrow ||f_h f||_p \to 0$

Примечание.

- 1. Для L^∞ непрерывности сдвига нет: $f=\chi_{[0,1]}, f_n=\chi_{[-h,1-h]},$ ess sup $|f-f_n|=1$
- 2. В случаях 2 и 4 $h\mapsto ||f_h-f||_p$ непрерывно в нуле \Rightarrow непрерывно всюду.

$$|||f_n - f||_p - ||f_{h_0} - f||_p| \le ||f_n - f_{h_0}||_p = ||f_{h-h_0} - f||_p \xrightarrow[h]{h_{h_0}} 0$$

Доказательство. Пункты 1 и 3 очевидны по определению равномерной непрерывности. Докажем пункты 2 и 4.

По плотности непрерывных функций в L^p :

$$\forall \varepsilon > 0 \ \forall f \in L^p[0,T] \ \exists g - \text{непр.} \in \widetilde{C}[0,T] \ ||f - g||_p < \frac{\varepsilon}{3}$$

$$||f_h - f||_p \leq ||f - g||_p + ||g - g_h||_p + ||g_h - f_h||_p \leq \frac{\varepsilon}{3} + ||g - g_h||_p + \frac{\varepsilon}{3}$$

Покажем, что $||g-g_h||_p \leq \frac{\varepsilon}{3}$

4:

$$||g_h - g||_p = \left(\int_0^{\mathsf{T}} |g(x+h) - g(x)|^p dx\right)^{\frac{1}{p}}$$

$$\leq \left(||g_h - g||_{\infty}^p \cdot \int_0^{\mathsf{T}} 1 dx\right)^{\frac{1}{p}}$$

$$= T^{\frac{1}{p}} ||g_h - g||_{\infty}$$

, что $< \frac{\varepsilon}{3}$ для достаточно малых h.

2: g — финитное, носитель³ $g \subset B(0, R)$, пусть |h| < 1.

$$||g_h - g||_p = ||g_h - g||_{L^p(B(0,R+1),\lambda_m)} \le ||g_n - g||_{\infty} (\lambda_m(B))^{\frac{1}{p}}$$

 $^{^1}$ T.e. $\sup_x |f(x+h)-f(x)| \to 0$ 2 Или $||f_n-f||_{\widetilde{C}} \to 0$

 $^{^3}$ Множество точек, где $g \neq 0$

11 Гильбертово пространство

Пусть X — линейное пространство над $\mathbb R$ (или $\mathbb C$) со скалярным произведением $X \times X \to \mathbb R$ (или $\mathbb C$) со следующими свойствами:

- 1. $\langle x, x \rangle > 0$
- 2. $\langle x, x \rangle = 0 \Leftrightarrow x = 0$
- 3. $\langle \alpha_1 x_1 + \alpha_2 x_2, y \rangle = \alpha_1 \langle x, y \rangle + \alpha_2 \langle x_2, y \rangle$
- 4. $\langle x,y\rangle=\langle y,x\rangle$ или $\langle x,y\rangle=\overline{\langle y,x\rangle}$ в С.

Нам известно неравенство Коши-Буняковского: $|\langle x,y\rangle|^2 \leq \langle x,x\rangle \langle y,y\rangle$

 $||x||\stackrel{\mathrm{def}}{=} \sqrt{\langle x,x \rangle}$ — норма порожденная, скалярным произведением.

Определение. \mathcal{H} — линейное пространство, в котором задано скалярное произведение и соответствующая норма. Если при этом \mathcal{H} — полное, то оно называется **Гильбертовым**.

Пример.

- 1. \mathbb{R}^m , \mathbb{C}^m
- 2. $L^2(X,\mu), \langle f,g \rangle := \int_X f(x) \overline{g(x)} d\mu(x)$

Корректно по неравенству КБШ для интегралов: $|\int_X f\overline{g}| \leq \left(\int_X |f|^2\right)^{\frac{1}{2}} \left(\int_X |\overline{g}|^2\right)^{\frac{1}{2}}$ Это скалярное произведение:

$$\langle g, f \rangle = \int_X g\overline{f} = \overline{\left(\int_X fg\right)}$$

 $||f||=\left(\int_X |f|^2 d\mu\right)^{\frac{1}{2}}$ — норма, порожденная скалярным произведением. Именно эту норму мы и рассматривали с самого начала.

- 3. Антипример: L^p , $p \neq 2$ не Гильбертово.
- 4. $l^2 = \{(x_n)_{n=1}^{+\infty}, x_j \in \mathbb{R}$ (или \mathbb{C}) $\}: \sum |x_j|^2 < +\infty$

$$\langle x, y \rangle := \sum_{j} x_{j} \overline{y_{j}}$$

$$||x|| = \sqrt{\sum |x_j|^2}$$

Определение. Сходящийся ряд: $\sum a_n, a_n \in \mathcal{H}$: $S_N := \sum_{1 \le n \le N} a_n$, если $\exists S \in \mathcal{H}: S_N \xrightarrow{\mathtt{B} \, \mathcal{H}} S$

Определение. $x,y \in \mathcal{H}$. x ортогонален y, если $\langle x,y \rangle = 0$ и обозначается $x \perp y$

Определение. $A \subset \mathcal{H} \ x \perp A : \forall a \in A \ \langle x, a \rangle = 0$

Определение. Ряд $\sum a_k$ ортогональный, если $\forall k, l \ a_k \perp a_l$.

Пример. $a_k \in l^2 : (0 \dots 0, \frac{1}{k}, 0 \dots)$

Теорема 35 (свойства сходимости в Гильбертовом пространстве).

- 1. $x_n \to x, y_n \to y$ в \mathcal{H} . Тогда $\langle x_n, y_n \rangle \to \langle x, y \rangle$, т.е. скалярное произведение непрерывно в $\mathcal{H} \times \mathcal{H}$.
- 2. $\sum x_k$ сходится. Тогда:

$$\forall y \in \mathcal{H} \left\langle \sum x_k, y \right\rangle = \sum \left\langle x_k, y \right\rangle \tag{14}$$

3. $\sum x_k$ — ортогональный ряд. Тогда $\sum x_k$ сходится $\Leftrightarrow \sum ||x_k||^2$ сходится.

Доказательство.

1.

$$\begin{split} |\left\langle x_n,y_n\right\rangle - \left\langle x,y\right\rangle| &\leq |\left\langle x_n,y_n\right\rangle - \left\langle x,y_n\right\rangle| + |\left\langle x,y_n\right\rangle - \left\langle x,y\right\rangle| \\ &\leq \underbrace{\left|\left|x_n-x\right|\right|}_{\text{бесконечно малое}} \cdot \underbrace{\left|\left|y_n\right|\right|}_{\text{огр.}} + \underbrace{\left|\left|x\right|\right|}_{\text{солst}} \cdot \underbrace{\left|\left|y_n-y\right|\right|}_{\text{бесконечно малое}} \to 0 \end{split}$$

$$2. S_N = \sum_{k=1}^N x_k \xrightarrow[N \to +\infty]{} S$$

$$\langle S_n, y \rangle \to \langle S, y \rangle = \left\langle \sum x_n, y \right\rangle$$

$$\langle S_n, y \rangle = \left\langle \sum_{k=1}^N x_k, y \right\rangle = \sum_{k=1}^N \langle x_k, y \rangle$$

Это член суммы ряда из правой части (14).

3.
$$S_N = \sum_{k=1}^N x_k$$

$$||S_N||^2 = \left\langle \sum_{k=1}^N x_k, \sum_{j=1}^N x_j \right\rangle = \sum_{k,j} \left\langle x_k, x_j \right\rangle = \sum_{k=1}^n ||x_k||^2 =: C_N$$

- ⇒ Очевидно
- \Leftarrow Аналогично формуле выше: $||S_M S_N||^2 = |C_M C_N|$. Таким образом, если C_N сходится, то C_N фундаментально $\Rightarrow S_N$ фундаментально в \mathcal{H} .

Примечание. Равенство $||S_N||^2 = \sum ||x_k||^2$ — теорема Пифагора.

Определение. $\{e_k\}\subset \mathcal{H}$ — ортогональное семейство, если:

- 1. $\forall k, l \ e_k \perp e_l$
- 2. $\forall k \ e_k \neq 0$

Если потребовать $||e_k|| = 1$, то такое семейство называется **ортонормированным**.

Примечание. $\{e_k\}$ — ортогональное семейство $\Rightarrow \{\frac{e_k}{||e_k||}\}$ — ортонормированное семейство. Пример.

- 1. $l^2, e_k := (0 \dots 0, 1, 0 \dots)$ ортонормированное семейство.
- 2. L^2 над $\mathbb R$ или $\mathbb C$, $\{1,\cos t,\sin t,\cos 2t,\sin 2t,\dots\}$ ортогональное семейство:

$$\int_0^{2\pi} \cos kt \cdot \cos lt = \frac{1}{2} \int_0^{2\pi} \cos(kt - lt) + \cos(kt + lt) dt = \begin{cases} 0, & k \neq l \\ \pi, & k = l \end{cases}$$

Можно разобрать остальные случаи и подтвердить искомое.

Если поделить все элементы 4 на $\sqrt{\pi}$, то мы получим ортонормированное семейство.

3. $L^{2}[0,2\pi]$ над $\mathbb{C}, \{\frac{e^{ikt}}{\sqrt{2\pi}}\}$ — ортогонормированное семейство.

$$\int_0^{2\pi} \frac{e^{ikt}}{\sqrt{2\pi}} \cdot \frac{e^{-ilt}}{\sqrt{2\pi}} dt = \frac{1}{2\pi} \int_0^{2\pi} e^{i(k-l)t} dt \stackrel{k \neq l}{=} \frac{1}{2\pi} \frac{1}{(k-l)i} e^{i(k-l)t} \Big|_{t=0}^{t=2\pi} = 0$$

4. $L^2[0,2\pi], \{\frac{1}{\sqrt{\pi}}, \sqrt{\frac{2}{\pi}}\cos t, \sqrt{\frac{2}{\pi}}\cos 2t \dots\}$ — ортонормированное семейство.

Теорема 36.

- $\{e_k\}$ ортогональное семейство в $\mathcal H$
- $x \in \mathcal{H}$
- $x=\sum_{k=1}^{\infty}c_ke_k$, где $c_k\in\mathbb{R}$ или $\mathbb C$

Тогда:

- 1. $\{e_k\}$ ЛНЗ
- 2. $c_k = \frac{\langle x, e_k \rangle}{||e_k||^2}$
- 3. $c_k e_k$ проекция x на прямую $\{te_k, t \in \mathbb{R}(\mathbb{C})\}$. $x = c_k e_k + z, z \perp e_k$.

Доказательство.

 $^{^4}$ Кроме единицы, её на $\sqrt{2\pi}$

1.
$$\sum_{k=1}^{N} \alpha_k e_k = 0 \Rightarrow \alpha_n ||e_n||^2 = 0$$

2.
$$\langle x, e_k \rangle = \langle \sum c_j e_j, e_k \rangle = c_k \cdot ||e_k||^2$$

3.
$$\langle z, e_k \rangle = \langle x, e_k \rangle - \langle c_k e_k, e_k \rangle = 0$$

Определение.

• $\{e_k\}$ — ортогональное семейство в ${\cal H}$

• $x \in \mathcal{H}$

 $c_k:=rac{\langle x,e_k
angle}{||e_k||^2}$ — называется коэффициентом Фурье по системе $\{e_k\}.$

 $\sum_{k=1}^{+\infty} c_k(x) e_k$ — ряд Фурье вектора x по системе e_k .

Примечание. При замене ортогонального семейства на ортонормированное семейство $\{\frac{e_k}{||e_k||}=\tilde{e}_k\}$ ряд Фурье не изменится.

$$\tilde{c}_k = \frac{\langle x, \tilde{e}_k \rangle}{||\tilde{e}_k||^2} = \frac{\langle x, \frac{e_k}{||e_k||} \rangle}{1} = \frac{\langle x, e_k \rangle}{||e_k||}$$

$$\tilde{c}_k \cdot \tilde{e}_k = \frac{\langle x, e_k \rangle}{||e_k||} \cdot \frac{e_k}{||e_k||} = \frac{\langle x, e_k \rangle}{||e_k||^2} \cdot e^k = c_k(x) \cdot e_k$$

Теорема 37 (о свойствах частичных сумм ряда Фурье).

- $\{e_k\}$ ортогональное семейство в $\mathcal H$
- $x \in \mathcal{H}$
- $n \in \mathbb{N}$
- $S_n = \sum_{k=1}^n c_k(x)e_k$
- $\mathcal{L}_n = \operatorname{Lin}(e_1 \dots e_n)$

Тогда:

- 1. S_n проекция x на \mathcal{L}_n , т.е. $x = S_n + z \Rightarrow z \perp \mathcal{L}_n$
- 2. S_n элемент наилучшего приближения дял x в \mathcal{L}_n :

$$||x - S_n|| = \min_{y \in \mathcal{L}_n} ||x - y||$$

3.
$$||S_n|| \le ||x||$$

Доказательство.

1.
$$k = 1 ... n$$

$$\langle z, e_k \rangle = \langle x - S_n, e_k \rangle = \langle x, e_k \rangle - c_k(x) ||e_k||^2 = 0$$

2.
$$x = S_n + z$$

$$||x - y||^2 = ||\underbrace{(S_n - y)}_{\in \mathcal{L}_n} + \underbrace{z}_{\perp \mathcal{L}_n}|| = ||S_n - y||^2 + ||z||^2 \ge ||z||^2 = ||x - S_n||^2$$

3.
$$||x||^2 = ||S_n||^2 + ||z||^2 \ge ||S_n||^2$$

Лекция 12. 3 мая стр. 87 из 104

Лекция 12

3 мая

Неравенство Бесселя:

$$\sum_{k=1}^{+\infty} |c_k(x)|^2 \cdot ||e_k||^2 \le ||x||^2$$

Теорема 38 (Рисс, Фишер).

- $\{e_k\}$ ортогональная система в ${\cal H}$
- $x \in \mathcal{H}$

Тогда:

1. Ряд Фурье вектора x сходится в \mathcal{H} .

2.
$$x = \sum_{k=1}^{+\infty} c_k(x)e_k + z, z \perp e_k \ \forall k$$

3.
$$x = \sum_{k=1}^{+\infty} c_k(x)e_k \Leftrightarrow \sum |c_k(x)|^2 \cdot ||e_k||^2 = ||x||^2$$

Доказательство.

1. Ряд Фурье ортогонален. Тогда по теореме о свойствах сходимости сходимость ряда Фурье \Leftrightarrow сходимость $\sum |c_k(x)|^2||e_k||^2$, что выполнено по неравенству Бесселя.

2.
$$z = x - \sum_{k=1}^{+\infty} c_k(x)e_k$$

$$\langle z, e_n \rangle = \langle x, e_n \rangle - \left\langle \sum_{k=1}^{+\infty} c_k(x) e_k, e_n \right\rangle = \langle x, e_n \rangle - \sum_{k=1}^{+\infty} \langle c_k(x) e_k, e_n \rangle = \langle x, e_n \rangle - c_n(x) ||e_n||^2 = 0$$

3. \Rightarrow по теореме о свойствах сходимости, пункт 3.

Лекция 12. 3 мая стр. 88 из 104

← из пункта 2:

$$||x||^2 = ||\sum c_k(x)e_k||^2 + ||z||^2 = \sum |c_k(x)|^2 ||e_k||^2 + ||z||^2$$

Дано:
$$||x||^2 = \sum |c_k(x)|^2 ||e_k||^2 \Rightarrow z = 0 \Rightarrow x = \sum c_k(x)e_k$$

Примечание.

1. $\mathcal{L} := Cl(Lin(e_1, e_2...))$

2. \mathcal{H}, e_k — ортонормированная система. Тогда последовательность $(c_k(x))_{k\in\mathbb{N}}\in l_2$. Обратное тоже верно:

$$\forall (c_k) \in l_2 \ \exists x \in \mathcal{H} \ c_k = c_k(x)$$

Доказательство. Берём в качестве x ряд $\sum c_k e_k$, который сходится по теореме. $\ \Box$

3.

Упражнение 9. Если ортогональный ряд сходится, то он является рядом Фурье своей суммы.

Равенство $\sum_k |c_k(x)|^2 ||e_k||^2 = ||x||^2$ называется уравнением замкнутости или **равенством Персиваля**.

Определение. Ортогональная система $\{e_k\}$ — базис \mathcal{H} , если $\forall x \in \mathcal{H} \ x = \sum c_k(x)e_k$ Определение. Ортогональная система полная (нечего добавить), если $\nexists z \neq 0 : z \perp c_k \ \forall k$. Определение. Ортогональная система замкнутая, если $\forall x \ \sum |c_k(x)|^2 ||e_k||^2 = ||x||^2$ Теорема 39 (о характеристике базиса).

• $\{e_k\}$ — ортогональная система в \mathcal{H} .

Тогда эквивалентно следующее:

- 1. $\{e_k\}$ базис
- 2. $\forall x, y$ выполняется обобщенное уравнение замкнутости:

$$\langle x, y \rangle = \sum_{k=1}^{+\infty} c_k(x) \overline{c_k(y)} \cdot ||e_k||^2$$

- 3. $\{e_k\}$ замкнуто
- 4. $\{e_k\}$ полно
- 5. $Lin(e_1, e_2...)$ плотна в \mathcal{H} , т.е. $Cl(Lin(e_1, e_2...)) = \mathcal{H}$.

Лекция 12. 3 мая стр. 89 из 104

Доказательство.

1⇒2 Берём x, раскладываем его по базису и скалярно умножаем на y:

$$\langle e_k, y \rangle = \overline{\langle y, e_k \rangle} = \overline{c_k(y) \cdot ||e_k||^2} = \overline{c_k(y)} \cdot ||e_k||^2$$
$$\langle x, y \rangle = \sum_k c_k(x) \overline{c_k(y)} \cdot ||e_k||^2$$

 $2\Rightarrow 3$ Из обобщенного следует частное при подстановке y вместо x.

- 3⇒4 Если $\exists z: \forall n \ \langle z,e_n\rangle=0$, то $c_n(z)=0$, но тогда по уравнению замкнутости для z выполняется $||z||^2=\sum |c_k(z)|^2\cdot ||e_k||^2=0$, а следовательно z=0.
- $4\Rightarrow 1$ По теореме Рисса-Фишера $x=\sum c_k(x)e_k+z$, где $z\perp$ всем e_k . По полноте z=0.
- $4\Rightarrow$ 5 $\mathcal{L}:=\mathrm{Cl}(\mathrm{Lin}(e_1,e_2\dots)).$ Надо проверить, что $\mathcal{L}=\mathcal{H}.$ Если $\exists x\in\mathcal{H}\setminus\mathcal{L},$ то по теореме Рисса-Фишера $\exists z:\forall k\ z\perp e_k.$
- 5 \Rightarrow 4 Если $z\perp e_k \ \forall k$, то $z\perp \mathrm{Lin}(e_1,e_2\dots)\Rightarrow z\perp \mathcal{L}$, но $\mathcal{L}=\mathcal{H}\Rightarrow z\perp z$, т.е. $\langle z,z\rangle=0$, но тогла z=0.

Примечание. В ${\cal H}$ существование ортогональной системы $\Leftrightarrow {\cal H}$ сепарабельно, т.е. "счётномерно", т.е. имеет счётное плотное подмножество.

12 Тригонометрические ряды Фурье

Определение.

- $T_n(x) = \frac{a_0}{2} + \sum_{n=1}^n a_k \cos kx + b_k \sin kx$ тригонометрический полином степени не выше n.
- $\frac{a_0}{2} + \sum_{n=1}^{+\infty} a_k \cos kx + b_k \sin kx$ **тригонометрический ряд**, где a_k, b_k коэффициенты тригонометрического ряда.

$$\cos kx = \frac{e^{ikx} + e^{-ikx}}{2} \quad \sin kx = \frac{e^{ikx} - e^{-ikx}}{2i}$$

Тогда при подстановке этих формул в $T_n(x)$ получается $T_n(x) = \sum_{k=-n}^n c_k e^{ikx}$ — тригонометрический полином в комплексной записи.

• $\sum_{k\in\mathbb{Z}}c_ke^{ikx}$ — тригонометрический ряд в комплексной записи, понимается как $\lim_{n\to+\infty}T_n(x).$

Лемма 9.

Лекция 12. 3 мая стр. 90 из 104

• Дан тригонометрический ряд (вещественный или комплексный)

• Пусть
$$S_n \to f$$
 в $L^1[-\pi,\pi]$, т.е. $||S_n - f||_1 = \int_{-\pi,\pi} |S_n - f| \to 0$

Тогда:

• $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos kt dt$, в том числе при k=0

•
$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin kt dt$$

•
$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-ikt}dt$$

Доказательство. Докажем для a_k . Пусть $n \geq k$.

$$\int_{-\pi}^{\pi} S_n(t) \cos kt dt = 0 + \int_{-\pi}^{\pi} a_k \cos^2 kt = \pi a_k$$

$$\left| \pi a_k - \int_{-\pi}^{\pi} f(t) \cos kt dt \right| = \left| \int_{-\pi}^{\pi} (S_n(t) - f(t)) \cos kt \right| \le \int_{-\pi}^{\pi} |S_n(t) - f(t)| dt = ||S_n - f||_1 \to 0$$

Определение. $f\in L^1[-\pi,\pi]$. $a_k(f),b_k(f),c_k(f)$, заданные в лемме, называются коэффициентами Фурье функции f, а ряд $\frac{a_0}{2}+\sum\limits_{n=1}^{+\infty}a_k\cos kx+b_k\sin kx$ или $\sum_{k\in\mathbb{Z}}c_ke^{ikx}$ называется рядом Фурье этой функции.

Примечание. В $L^{1}[0,2\pi]$ всё то же самое.

Примечание. $\triangleleft f \in L^1[-\pi,\pi]$

•
$$f$$
 — чётная $\Rightarrow \forall k \;\; b_k(f) = 0, a_k(f) = rac{2}{\pi} \int_0^\pi f(t) \cos kt dt$

•
$$f$$
 — нечётная $\Rightarrow \forall k \ a_k(f) = 0, b_k(f) = \frac{2}{\pi} \int_0^{\pi} f(t) \sin kt dt$

Примечание. $\triangleleft f \in L^1[0,\pi]$ — для таких функций рассматриваются два ряда Фурье — для чётного и нечётного продолжения f:

$$f \sim \frac{a_0}{2} + \sum a_k(f) \cos kx$$
 $f \sim \sum b_k(f) \sin kx$

Обозначение.
$$A_k(f,x) := \begin{cases} \frac{1}{2} a_0(f) & k=0 \\ a_k(f) \cos kx + b_k(f) \sin kx & k=1,2\dots \end{cases}$$

Тогда:

Лемма 10.

$$A_k(f,x) = \begin{cases} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+t)dt, & k = 0\\ \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+t)\cos ktdt & k = 1, 2 \dots \end{cases}$$

Лекция 12. 3 мая стр. 91 из 104

Доказательство.

$$A_k(f,x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos kt \cos kx + f(t) \sin kt \sin kx dx$$
$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(k(t-x)) dt$$
$$t := x + \tau$$
$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+\tau) \cos k\tau d\tau$$

При сдвиге промежуток интегрирования не изменился, т.к. функция периодична.

Не дописано

Несколько "контрпримеров", где ряд Фурье ведёт себя странно:

Чей	Какое пространство	Что странно
До Буа Реймонд	\widetilde{C}	Расходится в некоторой точке
Лебег	\widetilde{C}	Сходится неравномерно
Колмогоров	L^1	Расходится в каждой точке
Карлесон	L^2	Сходится почти везде
Хант	$L^p, 1$	Сходится почти везде

Теорема 40 (Римана-Лебега).

- $E \subset \mathbb{R}^1$
- $f \in L^1(E)$

Тогда

$$\int_{E} f(t)e^{i\lambda t}dt \xrightarrow{\lambda \to 0} 0$$

$$\int_{E} f(t)\cos \lambda t dt \to 0$$

$$\int_{E} f(t)\sin \lambda t dt \to 0$$

В частности для $f\in L^1[-\pi,\pi]:a_k(f),b_k(f),c_k(f)\xrightarrow{k\to +\infty}0.$

Доказательство. Не умаляя общности $E=\mathbb{R}$, т.к. иначе дополним f до \mathbb{R} так, что f=0 вне E.

$$\int_{\mathbb{R}} f(t) e^{i\lambda t} dt \stackrel{t := \tau + \frac{\pi}{\lambda}}{=} \int_{\mathbb{R}} f\left(\tau + \frac{\pi}{\lambda}\right) e^{i\lambda \tau} \cdot e^{i\pi} = -\int_{\mathbb{R}} f\left(\tau + \frac{\pi}{\lambda}\right) e^{i\lambda \tau}$$

Лекция 12. 3 мая стр. 92 из 104

$$\int_{\mathbb{R}} f(t)e^{i\lambda t}dt = \frac{1}{2}\left(\int + \int\right) = \frac{1}{2}\int_{\mathbb{R}} \left(f(t) - f\left(t + \frac{\pi}{\lambda}\right)\right)e^{i\lambda t}dt$$
$$\left|\int_{\mathbb{R}} f(t)e^{i\lambda t}dt\right| = \frac{1}{2}\int_{\mathbb{R}} \left|f(t) - f\left(t + \frac{\pi}{\lambda}\right)\right|\underbrace{\left|e^{i\lambda t}\right|}_{-1}dt \to 0$$

, что выполнено по лемме о непрерывности сдвига.

Следствие 40.1. Пусть $\omega(f,h) = \sup_{\substack{x,y \in E \\ |x-y| \leq h}} |f(x)-f(y)|$ — модуль непрерывности. Если $f \in \widetilde{C}[-\pi,\pi]$, то $|a_k(f)|, |b_k(f)|, |2c_k(f)| \leq \omega\left(f,\frac{\pi}{k}\right)$ при $k \neq 0$.

Доказательство.

$$|2c_{-k}(f)| = \left| \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)e^{ikt}dt \right| \le \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} \left| f(t) - f\left(t + \frac{\pi}{k}\right) \right| dt \le$$

$$\le \frac{1}{2\pi} \int_{-\pi}^{\pi} \omega\left(f, \frac{\pi}{k}\right) dt = \omega\left(f, \frac{\pi}{k}\right)$$

 Π римечание. $\omega(f,h) \xrightarrow{h o 0} 0$. Тогда f равномерно непрерывна.

Следствие 40.2. $E \subset \mathbb{R}, E = \langle a, b \rangle^1$

Определение. **Класс Липшица** для M > 0, $\alpha \in \mathbb{R}$, $\alpha \in (0,1]$:

$$\mathrm{Lip}_{M}\alpha(E)=\{f:E\rightarrow\mathbb{R}:\forall x,y\ |f(x)-f(y)|\leq M|x-y|^{\alpha}\}$$

Пусть $f\in \mathrm{Lip}_Mlpha$, тогда при k
eq 0 $|a_k(f)|, |b_k(f)|, |2c_k(f)| \leq \frac{M\pi^lpha}{|k|^lpha}$

Доказательство. Аналогично.

Примечание. $f \in \mathrm{Lip}_M \alpha \Rightarrow \omega(f,h) \leq M \cdot h^{\alpha}$

Наблюдение 2. $f\in \widetilde{C}^1[-\pi,\pi]$. Тогда при $k\neq 0$ $a_k(f')=kb_k(f),b_k(f')=-ka_k(f),c_k(f')=ikc_k(f)$

Доказательство. Интегрирование по частям:

$$c_k(f') = \frac{1}{2\pi} \int_{-\pi}^{\pi} f'(t)e^{-ikt}dt = \frac{1}{2\pi} \left(\underbrace{f(t)e^{-ikt}\Big|_{-\pi}^{\pi}}_{0} + \int_{-\pi}^{\pi} f(t) \cdot ike^{-ikt}dt\right) = ikc_k(f)$$

¹ Промежуток с любым видом скобки, а не скалярное произведение.

Лекция 12. 3 мая стр. 93 из 104

Следствие 40.3.

1.
$$f\in \widetilde{C}^{(r)}[-\pi,\pi]$$
. Тогда $|a_k(f)|, |b_k(f)|, |c_k(f)|\leq \frac{\mathrm{const}}{|k|^r}.$

2.
$$f \in \widetilde{C}^{(r)}[-\pi,\pi], f^{(r)} \in \mathrm{Lip}_m \alpha, 0 < \alpha \leq 1$$
. Тогда $|a_k(f)|, |b_k(f)|, |2c_k(f)| \leq \frac{M\pi^\alpha}{|k|^{r+\alpha}}$.

Доказательство. Очевидно из наблюдения выше.

Лекция 13. 10 мая стр. 94 из 104

Лекция 13

10 мая

Определение. 1. Ядро Дирихле:

$$D_n(t) = \frac{1}{\pi} \left(\frac{1}{2}t + \sum_{k=1}^n \cos kt \right)$$

2. Ядро Фейера:

$$\Phi_n(t) = \frac{1}{n+1} \sum_{k=0}^{n} D_k(t)$$

Лемма 11.

1.

$$D_n(t) = \frac{\sin\left(n + \frac{1}{2}\right)t}{2\pi \cdot \sin\frac{t}{2}} = \frac{1}{2\pi} \left(\operatorname{ctg}\frac{t}{2}\sin nt + \cos nt\right)$$

2.

$$\Phi_n = \frac{1}{2\pi(n+1)} \frac{\sin^2 \frac{n+1}{2} t}{\sin^2 \frac{t}{2}}$$

3. D_n, Φ_n — чётные, $\Phi_n \geq 0, \int_{-\pi}^{\pi} D_n = \int_{-\pi}^{\pi} \Phi_n = 1$

4. $\triangleleft f \in L^1[-\pi,\pi]$

$$S_n(f,x) = \int_{-\pi}^{\pi} f(x+t)D_n(t)dt$$

, где S_n — частичная сумма ряда Фурье.

Доказательство.

1.

$$2\sin\frac{t}{2}\cos kt = \sin\left(k + \frac{1}{2}\right)t - \sin\left(k - \frac{1}{2}\right)t$$

Тогда при домножении D_n на $\sin\frac{t}{2}$ благодаря телескопической сумме получается искомое.

2. Достаточно проверить, что

$$\sum \sin\left(k + \frac{1}{2}\right)t = \frac{\sin^2\frac{n+1}{2}t}{\sin\frac{t}{2}}$$

Это очевидно из того факта, что:

$$\sin\frac{t}{2}\sin\left(k+\frac{1}{2}\right)t = \frac{1}{2}\left(\cos kt - \cos(k+1)t\right)$$

И по телескопической сумме получается $\frac{1}{2}(1-\cos(n+1)t)=\sin^2\frac{n+1}{2}t$.

3. Очевидно, т.к. чётные функции замкнуты по линейной комбинации, по пункту 2 ядро Фейера неотрицательно и $\int_{-\pi}^{\pi}\cos kt=0$, поэтому $\int D_n=\int \frac{1}{2\pi}=1$. Арифметическое среднее единиц равно единице, поэтому это выполнено и для Φ_n тоже.

4.

$$S_n(f,x) \stackrel{\text{def}}{=} \sum_{k=0}^n A_k(f,x) \stackrel{\text{по лемме}}{=\!\!\!=} \int_{-\pi}^{\pi} f(x+t) D_n(t)$$

Теорема 41 (принцип локализации Римана).

- $f, g \in L^1[-\pi, \pi]$
- $x_0 \in \mathbb{R}$
- $\delta > 0$
- $\forall x \in (x_0 \delta, x_0 + \delta) \ f(x) = g(x)^1$

Тогда ряды Фурье f и g ведут себя одинаково в точке x_0 :

$$S_n(f, x_0) - S_n(g, x_0) \xrightarrow{n \to +\infty} 0$$

Переформулировка:

$$\bullet \ h:=f-g, h\in L^1[-\pi,\pi]$$

¹ С оговоркой, что либо почти везде, либо существуют такие представители данного класса эквивалентности.

Лекция 13. 10 мая стр. 96 из 104

•
$$h \equiv 0$$
 на $(x_0 - \delta, x_0 + \delta)$

Тогда $S_n(h,x_0) \to 0$

Доказательство переформулировки.

$$S_n(h, x_0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} h(x_0 + t) \left(\operatorname{ctg} \frac{t}{2} \sin nt + \cos nt \right) = b_n(h_1) + a_n(h_2)$$

, где:

$$h_1(t) = \frac{1}{2}h(x_0 + t) \cdot \operatorname{ctg} \frac{t}{2}$$
 $h_2(t) = \frac{1}{2}h(x_0 + t)$

Так можно сказать, если $h_1, h_2 \in L^1[-\pi, \pi]$.

- Для h_2 это очевидно.
- Для h_1 : $h_1 \equiv 0$ при $t \in (-\delta, \delta)$, поэтому:

$$|h_1(t)| \le |h(x_0+t)| \cdot \frac{1}{2} \cdot \operatorname{ctg} \frac{\delta}{2} \in L^1$$

Тогда $b_n(h_1) \to 0, a_n(h_2) \to 0$ по теореме Римана-Лебега.

Примечание.

- 1. Если $[a, b] \subset (x_0 \delta, x_0 + \delta)$, то $S_n(h, x) \Rightarrow 0$ на [a, b].
- 2. Для определения ряда Фурье нужен весь $[-\pi,\pi]$ по лемме о вычислении коэффициентов Фурье, а его поведение в точке x_0 зависит лишь от его окрестности.
- 3. $f \in L^1[0,\pi]$ можно разложить по \sin или по \cos . Фокус: эти разложения в $(0,\pi)$ ведут себя одинаково.

Теорема 42 (признак Дини).

- $f \in L^1[-\pi,\pi]$
- $x_0 \in \mathbb{R}$
- $S \in \mathbb{R}$ или \mathbb{C}

$$\int_0^\pi \frac{|f(x_0+t) - 2s + f(x_0-t)|}{t} dt < +\infty \tag{15}$$

Тогда ряд Фурье f сходится к S в точке x_0 , т.е. $S_n(f,x_0) \to S$.

Лекция 13. 10 мая стр. 97 из 104

Доказательство. Пусть $\varphi(t) = f(x_0 + t) - 2s + f(x_0 - t)$.

$$S_n(f, x_0) - S \stackrel{(??)}{=} \int_{-\pi}^{\pi} (f(x_0 + t) - S) D_n(t) dt = \int_0^{\pi} + \int_{-\pi}^0 \dots =$$

$$= \int_0^{\pi} \varphi(t) D_n(t) = \frac{1}{\pi} \int_0^{\pi} \frac{1}{2} \varphi(t) \cdot \left(\operatorname{ctg} \frac{t}{2} \sin nt + \cos nt \right) = b_n(h_1) + a_n(h_2)$$

, где

$$h_1 = \begin{cases} 0, & t \in [-\pi, 0] \\ \frac{1}{2}\varphi(t)\operatorname{ctg}\frac{t}{2}, & t \in [0, \pi] \end{cases} \quad h_2 = \begin{cases} 0, & t \in [-\pi, 0] \\ \frac{1}{2}\varphi(t), & t \in [0, \pi] \end{cases}$$

Искомое следует из теоремы Римана-Лебега, если h_1 и $h_2 \in L^1[-\pi,\pi]$.

- Для h_2 это очевидно.
- Для h₁: по формуле (15):

$$\operatorname{ctg} \frac{t}{2} = \frac{1}{\operatorname{tg} \frac{t}{2}} < \frac{1}{\frac{t}{2}} = \frac{2}{t}$$

при $\frac{t}{2} \in \left[0, \frac{\pi}{2}\right]$

$$\int_{-\pi}^{\pi} |h_1| = \int_{0}^{\pi} |h_1| = \frac{1}{2} \int_{0}^{\pi} |\varphi(t)| \cdot \operatorname{ctg} \frac{t}{2} < \int_{0}^{\pi} \frac{|\varphi(t)|}{t} \stackrel{(??)}{<} + \infty$$

Примечание.

1. (15)
$$\Leftrightarrow \forall \delta > 0$$
 $\int_0^\delta \frac{|\varphi(t)|}{t} < +\infty$

2. $\sphericalangle f(x) = \frac{1}{\ln|x|}, x \in [-\pi,\pi]$. Тогда $\forall S$ интеграл (15) расходится при $x_0 = 0$.

Следствие 42.1.

- $f \in L^1$
- $x_0 \in [-\pi, \pi]$
- Существуют четыре конечных предела: $f(x_0+0), f(x_0-0), \alpha_{\pm} := \lim_{t \to +0} \frac{f(x_0+t)-f(x_0\pm 0)}{t}$

Тогда ряд Фурье в точке x_0 сходится к $S = \frac{1}{2}(f(x_0+0) + f(x_0-0))$

Доказательство.

$$\frac{\varphi(t)}{t} = \frac{f(x_0 + t) - f(x_0 + 0) + f(x_0 - t) - f(x_0 - 0)}{t} \xrightarrow[t \to +0]{} \alpha_+ - \alpha_-$$

, т.е. $\frac{\varphi(t)}{t}-$ ограничена вблизи 0 на $[0,\pi] \implies$ по замечанию 1, интеграл (15) сходится. \qed

(??): т.к.
$$\int_{-\pi}^{\pi} D_n = 1$$

(??): по условию дини

Лекция 13. 10 мая стр. 98 из 104

Следствие 42.2.

- $f \in L^1[-\pi, \pi]$
- f непрерывно в точке x_0 .
- \exists конечные односторонние производные в точке x_0

Тогда $S_n(f,x_0) \to f(x_0)$.

Доказательство. Следует из следствия 1.

13 Свертки и аппроксимационные единицы

Определение. $f,K\in L^1[-\pi,\pi].$ $(f*K)(x)=\int_{-\pi}^\pi f(x-t)K(t)dt$ называется сверткой функций f,K.

Лемма 12. Свертка корректно задана.

Доказательство.

$$g(x,t) := f(x-t) \cdot k(t)$$

1. Проверим, что $\varphi(x,y):=f(x-t)$ измерима как функция $\mathbb{R}^2 \to \overline{\mathbb{R}}$. Если это так, то g тоже измерима как произведение измеримых.

Обозначим $\forall a \in \mathbb{R}$ $E_a := \mathbb{R}(f(x) < a), v(x,t) = \langle x-t,t \rangle$. Тогда $V(\mathbb{R}^2(\varphi < a)) = E_a \times \mathbb{R}$ измеримо в \mathbb{R}^2 , т.к. это декартово произведение измеримых множеств. Следовательно $\mathbb{R}^2(\varphi < a)$ тоже измеримо в \mathbb{R}^2 .

2. Лежит ли $g \in L^1([-\pi, \pi] \times [-\pi, \pi])$?

$$\iint_{[-\pi,\pi]^2} |g(x,t)| = \int_{-\pi}^{\pi} dt |k(t)| \int_{-\pi}^{\pi} |f(x-t)| dx = ||f||_1 \cdot ||k||_1 < +\infty$$

Тогда по теореме Фубини для интеграла:

$$\int_{-\pi}^{\pi} dx \int_{-\pi}^{\pi} f(x-t)k(t)dt$$

— при почти всех $x\in [-\pi,\pi]$ этот интеграл сходится и задает по x функцию из $L^1[-\pi,\pi]$, т.е. f*k определен при почти всех x, и при этом $\in L^1[-\pi,\pi]$

Свойства.

1.
$$f * K = K * f$$

Доказательство. Очевидно после замены t на -t под интегралом.

Лекция 13. 10 мая стр. 99 из 104

2.
$$c_k(f * K) = 2\pi c_k(f) \cdot c_k(K)$$

Доказательство.

$$2\pi c_k(f * K) = \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(x - t)K(t) \cdot e^{-inx} dt dx =$$

$$= \int_{-\pi}^{\pi} K(t)e^{-int} \int_{-\pi}^{\pi} f(x - t)e^{-in(x - t)} dx dt = 2\pi c_n(f) \cdot 2\pi c_n(K)$$

3. • $f \in L^p[-\pi, \pi]$

•
$$K \in L^q[-\pi,\pi]$$

•
$$\frac{1}{p} + \frac{1}{q} = 1$$
 $1 \le p \le +\infty$

Тогда f*K — непрерывная функция и $\|f*K\|_{\infty} \leq \|K\|_q \cdot \|f\|_p$

Доказательство. Неравенство очевидно, т.к. это неравенство Гёльдера:

$$\left| \int_{-\pi}^{\pi} f(x-t)K(t) dt \right| \le \int_{-\pi}^{\pi} |f(x-t)| \cdot |K(t)| dt \le$$

$$\le \left(\int_{-\pi}^{\pi} |f(x-t)|^p \right)^{\frac{1}{p}} \cdot \left(\int_{-\pi}^{\pi} |K(t)|^q \right)^{\frac{1}{q}} = \|f\|_p \cdot \|K\|_q$$

Если p или $q=+\infty$, то это неравенство надо модифицировать.

Непрерывность:

$$|f*K(x+h)-f*K(x)| = \left|\int_{-\pi}^{\pi} \left(f(x+h-t)-f(x-t)\right)K(t)\,dt\right| \leq \|K\|_q \cdot \underbrace{\|f_h(x)-f(x)\|_p}_{\to 0 \text{ по т. 0 непр. сдвига}}$$

Это всё верно, если $p<+\infty$. Если же $p=+\infty$, то поменяем местами f и K. \square

4. • 1

•
$$f \in L^p[-\pi,\pi]$$

•
$$K \in L^1[-\pi, \pi]$$

Тогда $f*K \in L^p[-\pi,\pi]$ и $\left\|f*K\right\|_p \leq \left\|K\right\|_1 \cdot \left\|f\right\|_p$

Примечание. * похоже на умножение, т.к. $(f_1+f_2)*g=f_1*g+f_2*g$ и можно сделать вывод, что L^1 — алгебра.

Примечание. Линейный оператор $A:L^p\to L^p, f\mapsto f*K$:

$$\forall f \ \|Af\| \le C \cdot \|f\|$$

Это значит, что оператор ограничен: $||A|| \le C$.

 \Box

Лекция 14. 17 мая стр. 100 из 104

Лекция 14

17 мая

Обозначение. $[-\pi,\pi]\setminus [-\delta,\delta]=E_\delta$

Определение (аппроксимативная единица).

- $D \subset \mathbb{R}$
- h_0 предельная точка D в $\overline{\mathbb{R}}$

Семейство функций $\{K_h\}_{h\in D}$, удовлетворяющее нижеуказанным аксиомам, называется аппроксимативной единицей.

Аксиома 1. $\forall h \in D \ K_h \in L^1[-\pi, \pi], \int_{-\pi}^{\pi} K_h = 1$

Аксиома 2. L_1 нормы функций K_h ограничены в совокупности:

$$\exists M \ \forall h \ \int_{[-\pi,\pi]} |K_h| \le M$$

Аксиома 3. $\forall \delta \in (0,\pi)$

$$\int_{E_{\delta}} |K_h| \, dx \xrightarrow[h \to h_0]{} 0$$

Примечание.

- 1. Если $K_h \geq 0 \ \ \forall h$, то аксиома 1 \Rightarrow аксиома 2.
- 2. Рассмотрим аксиому 3': $K_h \in L^{+\infty}[-\pi,\pi]$ и $\forall \delta \in (0,\pi)$ ess $\sup_{t \in E_\delta} |K_h(t)| \xrightarrow{h \to h_0} 0$ Утверждение. Аксиома 3' \Rightarrow аксиома 3.

Определение. Семейство функций, удовлетворяющее аксиомам 1, 2 и 3' называется **усиленной аппроксимативной единицей**.

Лекция 14. 17 мая стр. 101 из 104

3. Если K_h — (возможно усиленная) аппроксимативная единица, то $\frac{|K_h|}{\|K_h\|_1}$ — тоже (возможно усиленная) аппроксимативная единица.

Доказательство. Первая аксиома очевидна.

Вторая аксиома следует из того, что $\|K_h\|_1 \ge 1$, т.к. $\int K_n = 1$. Аксиомы 3 и 3' тоже следуют из этого соображения.

Теорема 43.

• K_h — аппроксимативная единица

Тогда:

1.
$$f \in \widetilde{C}[-\pi, \pi] \Rightarrow f * K_h \xrightarrow[h \to h_0]{[-\pi, \pi]} f$$

2.
$$f \in L^1[-\pi, \pi] \Rightarrow ||f * K_h - f||_1 \xrightarrow{h \to +\infty} 0$$

3. K — усиленная аппроксимативная единица, $f \in L^1[-\pi,\pi], f$ непрерывно в x.

Тогда $f*K_h$ непрерывно в x и $f*K_h(x) \xrightarrow{h \to h_0} f(x)$

Доказательство.

$$f * K_h(x) - f(x) = \int_{-\pi}^{\pi} (f(x-t) - f(x)) K_h(t) dt$$

1. $\sphericalangle \varepsilon > 0, f$ — равномерно непрерывна, т.к. $[-\pi, \pi]$ — компакт.

$$\exists \delta > 0 \ \forall t : |t| < \delta \ \forall x \ |f(x-t) - f(x)| < \frac{\varepsilon}{2M}$$

M взято из аксиомы 2.

$$|f * K_h(x) - f(x)| \le \int_{-\pi}^{\pi} |f(x - t) - f(x)| |K_h(t)| dt = \int_{-\delta}^{\delta} + \int_{E_{\delta}} = I_1 + I_2 < \varepsilon?$$

$$I_1 \le \frac{\varepsilon}{2M} \cdot \int_{-\delta}^{\delta} |K_h| \le \frac{\varepsilon}{2M} \int_{-\pi}^{\pi} |K_h| \le \frac{\varepsilon}{2}$$

$$I_2 \le 2 \cdot ||f||_{\infty} \cdot \int_{E_{\delta}} |K_h| \xrightarrow{h \to h_0} 0$$

Тогда $\exists V(h_0) \ \forall h \in V(h_0) \ I_2 \leq \frac{\varepsilon}{2}.$

Лекция 14. 17 мая стр. 102 из 104

3. $f \in L^1$, $K_h \in L^\infty \Rightarrow f * K_h$ — непрерывна (в том числе и в x). Для данного x проверим утверждение $\varepsilon > 0$; $I_1 + I_2 < \varepsilon$; $\exists V(h_0) \ \forall h \in V(h_0)$ f непрерывна в x:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall t : |t| < \delta \ |f(x-t) - f(x)| < \frac{\varepsilon}{2M}$$

Как в пункте 1:

$$\begin{split} I_1 &\leq \frac{\varepsilon}{2} \\ I_2 &\leq \int_{E_{\delta}} |f(x-t)| \cdot |K_h(t)| \, dt + |f(x)| \int_{E_{\delta}} |K_h(t)| \, dt \\ &\leq \operatorname*{ess\,sup}_{E_{\delta}} |K_h| \cdot (\|f\|_1 + 2\pi |f(x)|) \xrightarrow[h \to h_0]{\operatorname{arc. 3'}} 0 \end{split}$$

Тогда $\exists V(h_0) \ \forall h \in V(h_0) \ I_2 \leq \frac{\varepsilon}{2}$.

2.

$$||f * K_h - f||_1 = \int_{-\pi}^{\pi} \left| \int_{-\pi}^{\pi} (f(x - t) - f(x)) K_h dt \right| dx \le$$

$$\le \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} |f(x - t) - f(x)| \cdot |K_h(t)| dx dt =$$

$$= ||K_h||_1 \cdot \int_{-\pi}^{\pi} g(-t) \frac{|K_h(t)|}{||K_h||_1} dt$$

, где $g(t) = \int_{-\pi}^{\pi} |f(x+t) - f(x)|$ — непрерывна (по теореме о непрерывности сдвига)

$$\stackrel{\mathrm{def}}{=} \|K_h\|_1 \underbrace{\left(g * \frac{|K_h|}{\|K_h\|}\right)(0)}_{\rightarrow g(0) = 0 \text{ to ti.1}}$$

Примечание (модификация пункта 2). $f \in L^p[-\pi,\pi] \Rightarrow ||f*K_h - f||_p \xrightarrow{h \to h_0} 0$

Доказательство. Аналогично пункту 2, но хуже.

Примечание (модификация пункта 3). $f \in L^1, \exists f(x-0), f(x+0).$ K_h — усиленная аппроксимативная единица, $\forall h \ K_h$ чётная. Тогда $(f*K_h)(x) \to \frac{1}{2}(f(x-0)+f(x+0))$

Лекция 14. 17 мая стр. 103 из 104

14 Суммирование рядов Фурье

14.1 Метод средних арифметических (Чезаро)

Определение.

$$\sum a_n \quad S_n \coloneqq \sum_{k=0}^n a_k$$
 $\sigma_n \coloneqq rac{1}{n+1}(S_0 + S_1 + \dots + S_n)$ $\sum a_n \stackrel{ ext{cped. арифм.}}{=} S$

, если $\sigma_n \to S$

Теорема 44 (о перманентности метода средних арифметических).

$$\sum a_n = S \Rightarrow \sum a_n \xrightarrow{\text{сред. арифм.}} S$$

Определение (суммы Фейера). $f \in L^1[-\pi,\pi], S_n(f)$ — част. сумма ряда Фурье.

$$\sigma_n(f) = \frac{1}{n+1} \sum_{k=0}^{n} S_k(f)$$

Примечание.

$$S_n(f) = \int_{-\pi}^{\pi} f(x+t) D_n(t) dt$$

$$\sigma_n(f,x) = \int_{-\pi}^{\pi} f(x+t) \Phi_n(t) dt \xrightarrow{\Phi_n \text{ "v\'etho}} \int_{-\pi}^{\pi} f(x-t) \Phi_n(t) dt$$

 Π ример. Для расходящегося факта $1-1+1-1\ldots\sigma_n \to \frac{1}{2}$

Доказательство теоремы.

$$|\sigma_n - S| = \left| \frac{1}{n+1} \sum_{k=0}^n (S_k - S) \right| \le \frac{1}{n+1} \sum_{k=0}^n |S_k - S| = \underbrace{\frac{\sum_{k=0}^{N_1} |S_k - S|}{n+1}}_{n \to +\infty} + \underbrace{\frac{\sum_{k=N_1+1}^n |S_k - S|}{n+1}}_{<\frac{\varepsilon}{2}}$$

Теорема 45 (Фейера).

Лекция 14. 17 мая стр. 104 из 104

1.
$$f \in \widetilde{C}[-\pi,\pi]$$
. Тогда $\sigma_n(f) \xrightarrow{[-\pi,\pi]} f$

2.
$$f \in L^p[-\pi,\pi], 1 \leq p \leq +\infty$$
. Тогда $\|\sigma_n(f) - f\|_{\infty} \to 0$

3.
$$f \in L^1, f$$
 непрерывно в x . Тогда $\sigma_n(f,x) \xrightarrow{n \to +\infty} f(x)$

Не дописано