1/19

Lecture 6

Linear stability of parallel shear flows III

AE209 Hydrodynamic stability
Dr Yongyun Hwang

Lecture outline

2/19

- 1. Eigenspectra and eigenfunctions
- 2. Neutral stability curve
- 3. Spatial stability analysis and vibrating ribbon problem

Leci	ture ou	tline					3/19
1.	Figens	spectra a	and eig	enfunci	tions		
				,			
	пцп						
	пцп				ellendin		
	пцп						
	пцп						
	пцп						

Review of Orr-Sommerfeld and Squire equations

4/19

Orr-Sommerfeld equation (for wall-normal velocity):

$$\left[\left(-i\omega + i\alpha U \right) \left(D^2 - k^2 \right) - i\alpha D^2 U - \frac{1}{\text{Re}} \left(D^2 - k^2 \right)^2 \right] \widetilde{v} = 0$$

Squire equation (for wall-normal vorticity):

$$\left[\left(-i\omega + i\alpha U \right) - \frac{1}{\text{Re}} \left(D^2 - k^2 \right) \right] \widetilde{\eta} = -i\beta DU \widetilde{v}$$

where $k^2 = \alpha^2 + \beta^2$ with boundary conditions:

Infinitely many sets of $|\varpi_n|$ with the corresponding $|\widetilde{v}_n|$ and $|\widetilde{\eta}_n|$

Gearch for the moist unstable eigenvalue and eigenfunction.

: strongly damped.

Eigenspectra and eigenfunctions

8/19

Eigenfunction of Blasius boundary layer ($\alpha = 0.2, \beta = 0$, and Re = 500)

FIGURE 3.5 Eigenfunctions for Blasius boundary layer flow, (a,b) Eigenfunction of the discrete spectrum, vertical (a) and streamwise (b) velocity component for $\alpha=0.2, \mathrm{Re}=500$. The thick line represents the absolute value of ν or n, the thin lines represent the real and imaginary part

LEC	ture outline	9/
2.	Neutral stability	

11/19

Neutral stability curve of Poiseulle flow

FIGURE 3.8 Neutral curve for plane Poiseuille flow (a) contours of constant growth rate c_1 , (b) contours of constant phase velocity c_1 . The shaded area represents the region of parameter space where unstable solutions exist

Neutral stability curve

13/19

Critical Reynolds numbers and streamwise wavenumbers

Linear stability analysis

Flow configurations	Critical Re (Linear stability)	Transition Re	Critical wavenumber	Critical phase speed
Couette flow	90	350-400		one grant
Poiseulle flow	5772.2	1000-2000	1.02	0.2639
Pipe flow	00	2000-2500		
Boundary layer	519.4	Depends on dist. env.	0.303	0.3935

Remark

Linear stability analysis does not provide a full explanation for the onset of transition.

ecture outline	14/19		

3. Spatial stability analysis and vibrating ribbon problem

Spatial stability analysis

15/19

Normal mode solution (2D case) revisited

$$v'(x, y, t) = \widetilde{v}(y)e^{i\alpha x - i\omega t} + c.c$$

So far, $\alpha \in R$ is given and $\omega \in C$ unknown

 $\omega_{i} > 0$ Linearly unstable $\omega_{i} < 0$ Linearly stable

Now, consider $\omega \in R$ is given and $\alpha \in C$ unknown

 $\alpha_i < 0$ Linearly unstable $\alpha_i > 0$ Linearly stable

Temporal

O Linearly stable

O Linearly stable

Inknown

Linearly stable

Perturbation decays

OG R-> 00

Temporal

Gtability

analysis

15

Summary 19/19

- 1. Eigenspectra and eigenfunctions
- 2. Neutral stability curve
- 3. Spatial stability analysis and vibrating ribbon problem

