الصف الثاني عشر – مادة الكيمياء – أسئلة على الوحدة الأولى

نظرية أرهينيوس للأحماض والقواعد:

(۱) يكون المحلول حمضيًا إذا كان تركيز أيون الهيدروكسيد
$$OH^-$$
 فيه:

$$10^{-7} \, \mathrm{M}$$
 ب) أكثر من

$$10^{-7}\,\mathrm{M}$$
 أ) أقل من

د) يتراوح بين
$${
m M}^{-14}$$
 إلى ${
m M}^{-14}$

$$^{-7}\,\mathrm{M}$$
ج) مساویاً لــ من

(٢) في جميع المحاليل المائية، يكون محلولاً ما متعادلاً، إذا كان تركيزي أيون الهيدرونيوم $^+ O_3$ وأيون الهيدروكسير $^+ O_3$ كما يلى:

$$2\left[H_{3}O^{+}\right] = \left[OH^{-}\right] (\downarrow \qquad \left[H_{3}O^{+}\right] = \left[OH^{-}\right] (\dagger)$$

$$\left[\mathbf{H}_{3}\mathbf{O}^{+}\right] = \left[\mathbf{O}\mathbf{H}^{-}\right] (\mathbf{1}$$

$$\left[H_{3}O^{+} \right] < \left[OH^{-} \right]$$
 (s

$$\left[H_{3}O^{+} \right] > \left[OH^{-} \right]$$
 (8

العلاقة بين تركيز أيونات الهيدروجين الموجبة (H^+) وتركيز أيونات الهيدروكسير (H^+)

السالبة في الماء النقى هى: (OH^-)

$$10^{-14} = \left[H^+ \right] \left[OH^- \right] = \left[OH^- \right]$$
 (ب

٤٠٠) حسب تعريف أرهينيوس. المادة التي تنتج أيونات هيدروجين موجبة (H+) عند ذوبانها في الماء هي:

$$NH_3$$
 (ب

$$HCl$$
 (†

💠 (٥) في المحلول القاعدي يكون:

$$10^{-7} > [OH^-] > [H^+]$$
 (ب

$$10^{-7} < \lceil OH^- \rceil > \lceil H^+ \rceil$$
 (†

$$10^{-7} > [OH^-] < [H^+]$$
 (s

$$10^{-7} < \left[OH^{-}\right] < \left[H^{+}\right]$$
 (8)

لة أرهينيوس للأحماض والقواعد:

٥	٤	٣	۲	١	رقم السؤال
Î	Î	ب	Î	Î	رمز الإجابة

الشكل البياني الذي يمثل العلاقة بين قيمة pH ودرجة الحمضية للمحلول هو:

(A) أعطى معلم الكيمياء أحد الطلاب ثلاثة محاليل رموزها (C و B و pH لها على الترتيب (5 و3 و8) وطلب منه ترتيب هذه المحاليل تصاعديًا حسب زيادة تركيز أيون الهيدروجين من اليمين إلى اليسار:

$$C,B,A$$
 (s

$$C,B,A$$
 (ه C,A,B (ج A,C,B

$$A,C,B$$
 (φ

$$B,A,C$$
 (i

(٩) قيمـة pH لمحلـول 0.01 مـول/ لـتر مـن حمـض HCl تـام التـأين تسـاوى: ب) 1 ج) 2 (ج 0.01 (1

♦ (١٠) كتلة (HCl) الذائب في المحلول في الشكل المقابل بوحدة الجرام تساوي:

0.73 (1

ج) 2.4

لهيـدرونيوم لامـت أن pOH لمحلـول مـا تسـاوي (14)، فـإن تركيـز أيـون الهيـدرونيوم

يساوي:
$$\left[H_3O^+\right]$$

3 (3

ج) 2

أ) صفر

Ċ	يدروجيز	بونات اله	، تركيــز أب	جات فإن	ثلاث در	ما مقدار	لمحلول ه	pH مة	ناقص قي	۱) عند ت	۳)
									، مقدار:		
		10000 ((3	:	1000 (8	:	100	ب)		10 (i
•	100 مـرة	مقدار 00	ة التركيــز	مضاعفا	، إذا تـم	(1×10^{-1})	-6M) (الابتداؤ	ل ترکیـزه	۱) محلوا	٤)*
								، تساوي:	لة Hq ك	فإن قيه	
		9 ((১		6 (8	2	5	ب)		3 (İ
8	، بوحـدهٔ	ذا المحلول	⊌ [H+	، قيمة	13، فإن	ما تساوي	لمحلول	рОН а	انت قيمة	۱۱) إذا ك	o)�
									لتر تساو		
	1	×10 ⁺¹³ ((3	1×10	ج) 1+(1×		
		اء عمليـة							مت أن ا ، فإن [٦) 🛞
		10 ¹²						1000	- 100 m		(أ
	КОН	10 <i>n</i> مـن	nL ضافة			للمحلـوا الماء المق					
		11.3	(3	**	ج) 11.0			ب) 0		2.7	
			: . (10	-	_	ى (2) فإ	ن (3) إل		غير قيمة ر (10) ،		
) walst s		,	ب) يقل ۽ د) يزيد ۽		taligal		ار (10) ار (10)		
٨	14	17	10	12	14		11	1.	٩	٨	٧
	2	1	ب	i	2		ب	Í	3	İ	د

3

(١) المحلول المائي للحمض الضعيف (HF) يحتوي على:

ب)
$$F^-$$
 و H_3O^+ فقط F^- (ب

أ
$$H_3O^+$$
 و H_3O^+ فقط

د)
$$F^-$$
 و H_3O^+ و فقط F^- (د

ج)
$$HF$$
 و $^-$ فقط

▲ (٢) الخاصية التي تميز الأحماض القوية أنها تتأين:

ب) كليا منتجة
$$\left(OH^{-} \right)$$
 في محاليلها

أ) جزئيا منتجة
$$\left(\mathrm{OH}^{-} \right)$$
 في محاليلها

د) كليا منتجة
$$\left(H_{3}O^{+}\right)$$
 في محاليلها

ج) جزئيا منتجة
$$\left(\mathrm{H_{3}O}^{+} \right)$$
 في محاليلها

■ (٣) الحمض الضعيف بين الأحماض الآتية هو:

د) HI

HBr (₹

ب) HCl

HF (1

*(٤) من خلال المعادلة الآتية:

$$C_6H_5NH_{2(aq)} + H_2O_{(l)} \Longrightarrow C_6H_5NH_{3(aq)}^+ + OH_{(aq)}^-$$

في نهاية التفاعل يحتوي وعاء التفاعل على الماء و:

- أ) OH^- فقط
- ب) $C_6H_5NH_3^+$ فقط
- ج) $C_6H_5NH_3^+$, OH^- فقط
- فقط $C_6H_5NH_2$, $C_6H_5NH_3^+$, OH^- (د

♦(٥) النواتج الصحيحة لتأين ثنائي إيثيل أمين وفق المعادلة الآتية هي:

البديل الذي عثل التصنيف الصحيح لحمض الخليك CH_3COOH من حيث القوة وعدد البروتونات هو:

عدد البروتونات	القوة	البديل
أحادي البروتون	ضعيف	j
أحادي البروتون	قوي	ب
عديد البروتون	ضعیف	ج
عديد البروتون	قوي	٥

 $^{\circ}HA$ أي الأشكال البيانية الآتية يوضح مكونات محلول الحمض الضعيف أحادي البروتون $^{\circ}HA$

(١) الحمض ثنائي البروتون من بين الأحماض التالية هو:

CH₃COOH (s

 H_2SO_4 (2

ب) HClO₄

HCOOH (1

■ (٥) المحلول القاعدي الذي يعطي 2 مول من أيونات الهيدروكسيد عند تأين مول واحد منه هو:

 $Al(OH)_3$ (2)

 $Ca(OH)_2$ (ε

KOH (ب

LiOH (1

الجواب: ج، ج

أسئلة مقالية:

- 0.1M ترکیزه یساوی pH محلول احسب قیمة pH ترکیزه یساوی
- 0.2M ترکیزه یساوی H_2SO_4 محلول pOH ترکیزه یساوی (۲)
- (٣) احسب تركيز أيون الهيدرونيوم H_3O^+ ، وتركيز أيون الهيدروكسيل OH^- في الماء المعدني علمًا أن قيمة pH=7.8 .
 - $[H^+] = 3.9 \times 10^{-8} \text{ M}$ إذا علمت أن تركيز أيون الهيدروجين في دم الإنسان يساوي pH للـدم.
 - ب) احسب تركيز أيون الهيدروكسيد $\left[ext{OH}^-
 ight]$ في الدم.
 - $[OH^{-}] = 1 \times 10^{-5} \ M$ إذا كان تركيز أيون الهيدروكسيد في محلول كيميائي يساوي pOH المحلول.
 - ب) احسب تركيز أيون الهيدروجين $\left[H^{+}
 ight]$ في المحلول.
 - ه (٦) ((محلول مائي حجمه (1L) ويحتوي على (1.00g) من هيدروكسيد الباريوم ($(Ba(OH)_2)$).

المطلوب:

- أ) اكتب معادلة تأين هيدروكسيد الباريوم.
- ب) احسب قيمة pOH لهذا المحلول موضحًا خطوات الحل.
- (۷) أراد أحد الطلاب أن يتأكد من قيمة الرقم الهيدروجيني لمحلول HCl قبل استخدامه في إحدى التجارب فوجدها تساوي 1.5.
 - أ) اكتب معادلة تأين هذا الحمض في المحلول.
 - pOH ب) احسب کلا من: ۱ ترکیز H^+

(٩) إذا كانت لديك عينة من عصير البرتقال قيمة pH لها تساوي 3.8 ، $\frac{de_{-L}}{de_{-L}}$ (٩) $\left[H^{+} \right]$

(pH) رتب المحاليل التالية تصاعديًا حسب قيمة الأس الهيدروجيني (pH).

$$0.0^{-2} = H^+$$
 مول / لتر $0.0^{-4} = H^+$ مول / لتر $0.0^{-4} = H^+$ مول / لتر $0.0^{-4} = H^+$ مول / لتر $0.0^{-11} = H^+$ مول / لتر

(١١) عثل الجدول التالي مقارنة بين مجموعة من المواد والمحاليل، ادرسه جيداً ثم انقل الأرقام الموجودة إلى ورقة إجابتك وأمام كل رقم اكتب الإكمال المناسب:

1) 1 12 mel 1	ور شا دو حن بدنیدی _{در} ر	س	الموادنة أوجه المقارنة
متعادل	(2)	(1)	طبيعت المحلول
(4)	pH > 7	(3)	قیمیۃ pH
(5)	لا يتغير لونها	يتحول لونها إلى اللون الأحمر	التأثير على ورقة تباع الشمس الزرقاء

(١٢) عثل الجدول التالي مقارنة بين مجموعة من المواد والمحاليل المختلفة، ادرسه جيدًا ثم أنقل الأرقام الموجودة إلى ورقة إجابتك وأمام كل رقم اكتب الإكمال المناسب:

ن		J	الموادة المقارنة
(2)	(1)	<i>pH</i> > 7	pH قيمة
(4)	متعادل	(3)	طبيعة المحلول
لا يتغير لونها	(5)	يتحول لونها إلى اللون الأزرق	التأثير على ورقة تباع الشمس الحمراء

▲ (١٤) أراد أحد الطلاب حساب تركيز أيون الهيدورنيوم في محلولين مختلفين (A,B) وحصل على النتائج الموضحة في الجدول التالى:

В	Α	رمز المحلول
0.000001 <i>M</i>	0.01 <i>M</i>	$\left[H_3O^+\right]$

أ) اكتب رمز المحلول الحامضي الأكثر تركيزًا.

$$^{
m H}$$
ج) كم مرة تضاعف $\left[H_3O^+
ight]$ بين المحلولين $^{
m H}$ و $^{
m H}$

الإجابات:

$$KOH \longrightarrow K^{+} + OH^{-}$$

$$\left[H^{+}\right] = \frac{1 \times 10^{-14}}{\left[OH^{-}\right]}$$

$$\left[H^{+}\right] = \frac{1 \times 10^{-14}}{0.1} = 1 \times 10^{-13} \text{ M}$$

$$pH = -\log\left[H^{+}\right] = -\log \times 10^{-13} = 13$$

$$H_{2}SO_{4} \longrightarrow 2H^{+} + SO_{4}^{2-}$$

$$\vdots$$

$$\vdots$$

$$H^{+} = 0.2 \times 2 = 0.4 \text{ M}$$

$$pH = -\log\left[H^{+}\right]$$

$$= -\log 0.4 = 0.39$$

$$pH + pOH = 14$$

$$pOH = 14 - 0.39 = 13.61$$

$$[H^{+}] = 0.2 \times 2 = 0.4 M$$

$$[OH^{-}] = \frac{10^{-14}}{[H^{+}]} = \frac{10^{-14}}{0.4} = 2.5 \times 10^{-14} M$$

$$pOH = -\log[OH^{-}]$$

$$= -\log 2.5 \times 10^{-14} = 13.6$$

$$PH = 7.8$$

$$\left[H_3O^+\right] = 10^{-7.8} = 1.6 \times 10^{-8}$$

$$\left[OH^-\right] = \frac{10^{-14}}{\left[H_3O^+\right]} = \frac{10^{-14}}{1.6 \times 10^{-8}} = 6.25 \times 10^{-7}$$

$$pH = -\log[H^+] = -\log 3.9 \times 10^{-8} = 7.4$$
 († (1)

$$\left[\mathbf{H}^{+}\right]\left[\mathbf{O}\mathbf{H}^{-}\right] = 10^{-14} \tag{$\mathbf{\varphi}$}$$

$$\left[OH^{-}\right] = \frac{10^{-14}}{3.9 \times 10^{-8}} = 2.5 \times 10^{-7} \text{ M}$$

$$pOH = -\log[OH^{-}]$$

$$= -\log 1 \times 10^{-5} = 5$$

$$[H^{+}][OH^{-}] = 10^{-14}$$
(6)

$$[H^+] = \frac{10^{-14}}{1 \times 10^{-5}} = 10^{-9} M$$

$$Ba(OH)_{2(\alpha q)} \longrightarrow Ba_{(\alpha q)}^{2+} + 2 OH_{(\alpha q)}^{-}$$
 (1 (1)

 $aubsin Ba(OH)_{2}$ $aubsin Ba(OH)_{2}$

حسل آخسر:

$$pH + pOH = 14$$

 $pOH = 14 - pH$
 $pOH = 14 - 1.5 = 12.5$

(4)

pH قيمة	التركيز (M)	الرمز
1	$\mathbf{M} \ \mathbf{10^{-1}} = \left[\mathbf{H}^{+} \right]$	1
7	$\mathbf{M} \ 10^{-7} = \left[\mathbf{H}^{+} \right]$	ų
4	$M 10^{-10} = \left[OH^{-}\right]$	٤
2	$M 10^{-12} = \left[OH^{-}\right]$	

$$pH = -\log[H^{+}]$$
 (1 (4)
 $3.8 = -\log[H^{+}]$
 $[H^{+}] = 1.58 \times 10^{-4} M$
 $pH + pOH = 14$
 $pOH = 14 - pH$
 $pOH = 14 - 3.8 = 10.2$
 $pOH = -\log[OH^{-}]$
 $10.2 = -\log[OH^{-}]$
 $[OH^{-}] = 6.3 \times 10^{-11} M$

حسل آخسر:

$$[H^+][OH^-] = 10^{-14}$$

$$[OH^-] = \frac{10^{-14}}{[H^+]}$$

$$[OH^-] = \frac{10^{-14}}{[1.58 \times 10^{-4}]} = 6.3 \times 10^{-11} M$$

(1.)

pH قيمة	(M)التركيز	الرمز
2	$10^{-2} = \left[H^+ \right]$	س
4	$10^{-4} = \left[H^{+}\right]$	ص
3	$10^{-11} = \left[\text{OH}^{-} \right]$	٤
7	$10^{-7} = \left[\text{OH}^{-} \right]$	J

الترتيب الصحيح: س \rightarrow ع \rightarrow ص \rightarrow ل.

٤	ص	س	الم واد
متعادل	قاعدي	حمضي	طبيعت المحلول
pH = 7	pH > 7	pH < 7	pH.
لا يتغير لونها	لا يتغير لونها	يتحول لونها إلى اللون الأحمر	التأثير على ورقة تباع الشمس الزرقاء

ن	٩	J	الم واد أوجه المقارنة
pH < 7	pH = 7	pH > 7	قیم <u>ټ</u> pH
حمضي	متعادل	قاعدي	طبيعة المحلول
لا يتغير لونها	لا يتغير لونها	يتحول لونها إلى اللون الأزرق	التأثير على ورقة تباع الشمس الحمراء

$$pH = -\log[H_3O^+] \qquad (16)$$

$$= -\log 0.000001 = 6$$

$$pH + pOH = 14$$

$$pOH = 14 - 6 = 8$$

$$10^4 \text{ j} 10000 \quad (5)$$

الأسئلة:

الماء. علل: تعتبر الأنيلين
$$C_6H_5NH_2$$
، قاعدة ضعيفة. اكتب معادلة تأينها في الماء. $C_6H_5NH_2$ (۲) اكتب معادلة التأين الموزونة للمواد التالية:
$$CH_3NH_2 \; () \qquad \qquad HBr \; ()$$
 (۳) $+$ معادلة تأين الأنيلين $(C_6H_5NH_2)$ في الماء.
$$(C_6H_5NH_2) \qquad \qquad () \qquad$$

هُ (٥) الشكل أدناه يوضح حمضين صيغتهما الافتراضية HY, HX ادرس الشكل جيدا ثم أجب عن الأسئلة التي تليه:

حمض HX

- أ) عرف الحمض حسب نظرية آرهينيوس
- ب) أي من الحمضين يكون فيه تركيز أيونات ${
 m H}_3{
 m O}^+$ أعلى ${
 m !}$
 - ج) اكتب معادلة تأين حمض HY.
- د) عند إضافة كمية من محلول افتراضى (A) إلى محلول الحمض HY لوحظ وصول المحلول الكلى لحالة التعادل pH=7. ما طبيعة المحلول A المضاف؟

| (٦) ادرس الجدول الآتي ثم أجب عن الأسئلة التي تليه:

NaOH	NH ₃	H_3PO_4	CH₃COOH	HNO ₃	الصيغة الكيميائية للمحلول
14	11	5	3	1	الرقم الهيدروجيني pH

- أ) اكتب الصيغة الكيميائية للحمض عديد البروتون.
 - ب) اكتب معادلة تأين الأمونيا في الماء.
 - ج) حدد المادة الأعلى قاعدية.
- د) اكتب الصيغة الكيميائية للملح الناتج من تفاعل HNO_3 مع

الشكل أدناه عملية تأين اثنين من الأحماض القوية (B ، A) في الماء. ادرسه جيدًا وأجب عن الأسئلة التي تليه:

(أ) سمِّ كلا من الحمضين:

 В	:	A

(ب) صنف الحمضين بناء على عدد البروتونات.

(ج) ما اسم الأيون (G) ؟

(د) إذا علمت أن تركيز محلولي الحمضين متساوٍ $(0.1\,M)$ فأيهما سيكون أعلى في الرقم الهيدروجيني فسّر إجابتك.

الإجابات:

(١) لأنها تتأين جزيئًا في المحلول

$$C_{6}H_{5}NH_{2} + H_{2}O \iff C_{6}H_{5}NH_{3}^{+} + OH^{-}$$

$$HBr + H_{2}O \longrightarrow H_{3}O_{(aq)}^{+} + Br_{(aq)}^{-} \qquad (i \quad (Y))$$

$$HBr \longrightarrow H_{(aq)}^{+} + Br_{(aq)}^{-} \qquad \underline{\text{i}}$$

$$CH_{3}NH_{2} + H_{2}O \iff CH_{3}NH_{3}^{+} + OH^{-} \qquad (\Box$$

$$C_{6}H_{5}NH_{2} + H_{2}O \iff C_{6}H_{5}NH_{3}^{+} + OH \qquad (Y)$$

$$H_{2}SO_{4} + 2NaOH \longrightarrow Na_{2}SO_{4} + 2H_{2}O \qquad (4)$$

(0) اهو المادة التي تنتج ايونات الهيدروجين الموجبة H^+ عند ذوبانها H^+ الماء. H^+ الهيدرونيوم H^+ عند ذوبانها H^+ الماء. H^+ المحمض H^+ المحمول

 H_3PO_4 (1 (1)

$$NH_3 + H_2O \iff NH_4OH$$
 (ب $NH_3 + H_2O \iff NH_4^+ + OH^-$ او $NaOH$ (ج $NaNO_3$ (ع

- عمض الهيدروبروميڪ. B
- دمض الكبريتيك. A (i) (۷)
- ا أحادي البروتون. B
- (ب) A: ثنائي البروتون أو عديد البروتون.
 - (ج) أيون الهيدرونيوم أو الأكسونيوم.
 - (د) B سيكون أعلى $\frac{1}{2}$ الرقم الهيدروجيني.

لأن تركيز أيونات H^+ في محلوله سيكون أقل لأنه أحادي البروتون.

(۱) اكتب معادلة تفكك حمض الكبريتيك ${
m H}_2{
m SO}_4$ ومعادلة تفكك هيدروكسيد الكالسيوم (1) ${
m Ca}({
m OH})_2$

$$H_2SO_4 \xrightarrow{\text{ola}} 2H^+ + SO_4^{-2}$$

$$Ca(OH)_2 \xrightarrow{\text{ola}} Ca^{+2} + 2OH^-$$
(1)

أسئلة على أحماض وقواعد برونستد - لوري:

$$HSO_{4(aq)}^{-} + HSO_{3(aq)}^{-} \Longrightarrow H_2SO_{3(aq)} + SO_{4(aq)}^{2-} :$$
 (1) في التفاعل الآتي

ووفقاً لنظرية برونستد - لوري ، فإن الحمضين الموجودين في هذا التفاعل هما :

$$H_2SO_3$$
 9 $HSO_4^ \bigcirc$

$$HSO_3^ _9$$
 $HSO_4^ _9$

$$SO_4^{2-} \circ HSO_3^{-} \circ$$

$$H_2SO_3$$
 e SO_4^{2-} (ϵ)

- (٢) توصف القاعدة حسب نظرية برونستد لوري بأنها:
- ب تستقبل البروتون

أ تمنح البروتون

ه تستقبل الهيدروكسيد

ج منح الهيدروكسيد

		ابه البروتون	﴿ الحمض بعد اكتس
		ابها البروتون .	د القاعدة بعد اكتس
القاعدة $H_2CO_{3(aq)}$	$+H_2O_{(l)} \Longrightarrow H$	$CO_{3(aq)}^- + H_3C$	$Q_{\left(aq\right)}^{+}$: في التفاعل الآتي (٦)
			المرافقة للحمض هي :
H_3O^+ \odot	HCO_3^- ©	H_2O	المرافقة للحمض هي : H_2CO_3
			$_{aq)}^{-}$: في التفاعل الآتي $^{+}$
: اه	ظرية لوري – برونستد ه	في التفاعل حسب ند	القاعدتين الموجودتين
SO_4	O_3^- 9 $HSO_4^ \bigcirc$ $HSO_3^ \bigcirc$	H_2S	O_3 $_9$ $HSO_4^ _{\odot}$
		فاعل:	(٨) القاعدة المرافقة في الت
: هي C	$_{6}H_{5}NH_{2(aq)}+H_{2}O_{0}$		(٨) القاعدة المرافقة في الت $H_{3\left(aq\right)}^{+}\!$
	$C_6H_5NH_2(aq) + H_2O_0$	C_6H_5N	$H_{3(aq)}^{+} + OH_{(aq)}^{-}$
<i>OH</i> ⁻ (3)	$C_6H_5NH_2$	$H_2O \bigcirc$	$C_6H_5NH_3^+$
OH ⁻ (هي :	$C_6H_5NH_2$	$(I) \stackrel{\longleftarrow}{\longleftarrow} C_6 H_5 N$ $H_2 O \stackrel{\smile}{\hookrightarrow}$ دة الافتراضية (B)	$(H_{3(aq)}^{+} + OH_{(aq)}^{-}$ $(H_{3(aq)}^{+} + OH_{(aq)}^{-}$ $(H_{5}^{+} + OH_{3}^{+} + OH_{3}^{-}$ (A)
OH ⁻ (هي :	$C_6 H_5 N H_2$ وفق نظرية برونستد – لا BH^{-}	$(I) \Longrightarrow C_6 H_5 N$ $H_2 O \odot$ (B) الافتراضية $BH^+ \odot$	$(H_{3(aq)}^{+}+OH_{(aq)}^{-}+OH_{(aq)}^{-}+OH_{3$
OH ⁻ (هي :	$C_6 H_5 N H_2$ وفق نظرية برونستد – لا BH^{-}	$(I) \Longrightarrow C_6 H_5 N_6$ $H_2 O$ $H_2 O$. A second with (B) . B H^+ . B H	$(H_{3(aq)}^{+} + OH_{(aq)}^{-}$ $(H_{3(aq)}^{+} + OH_{(aq)}^{-}$ $(H_{5}^{+} + OH_{3}^{+} + OH_{3}^{-}$ (A)
OH ⁻ هي: وري هي: B ⁻ ه	$C_6H_5NH_2$ وفق نظرية برونستد – لا BH^{-} القاعدة معاً \cdot	$(I) \Longrightarrow C_6 H_5 N_6$ $H_2 O$ $H_2 O$. A second with (B) . B H^+ . B H	$(H_{3(aq)}^{+} + OH_{(aq)}^{-}$ $(H_{3(aq)}^{+} + OH_{(aq)}^{-}$ $(H_{5}^{-}NH_{3}^{+})$ $(H_{5}^{-}NH_{3}^{-})$ $(H_{5}^{-}NH_{3}^{-})$ $(H_{5}^{-}NH_{3}^{-})$ $(H_{5}^{-}NH_{3}^{-})$ $(H_{5}^{-}NH_{3}^{-})$ $(H_{5}^{-}NH_{3}^{-})$

 $H_3 AsO_{4(aq)} + H_2 O_{(l)} \Longrightarrow H_2 AsO_{4(aq)}^- + H_3 O_{(aq)}^+ :$ في التفاعل الآتي $H_3 AsO_{4(aq)} + H_3 O_{(aq)}^+ + H_3 O_{(aq)}^+$

(٥) في ضوء نظرية برونستد - لوري يطلق مصطلح القاعدة المرافقة على :

 $H_2AsO_4^ \bigcirc$

 H_3AsO_4 (3)

القاعدة المرافقة للحمض في هذا التفاعل هي:

أ الحمض بعد فقده البروتون.

(ب) القاعدة بعد فقدها البروتون.

 H_2O (†)

H₃O ⁺ €

(۱۷) ♦ من خلال دراستك للتفاعل:

$$HNO_{2(aq)} + H_2O_{(l)} \rightleftharpoons H_3O_{(aq)}^+ + NO_{2(aq)}^-$$

ما التصنيف الصحيح للمواد المتفاعلة والناتجة ؟

قاعدة مرافقة	حمض مرافق	قاعدة	حمض	
$H_3O_{(aq)}^{+}$	$NO_{2(aq)}^{-}$	$H_2O_{(l)}$	$HNO_{2(aq)}$	(j)
$NO_{2\left(aq ight)}^{\;\;-}$	$H_3O_{(aq)}^+$	$HNO_{2(aq)}$	$H_2O_{(l)}$	Ģ
$NO_{2\left(aq ight)}^{-}$	$H_3O_{(aq)}^+$	$H_2O_{(l)}$	$HNO_{2(aq)}$	(3)
$NO_{2(aq)}^{-}$	$H_3O_{(aq)}^+$	$HNO_{2(aq)}$	$H_2O_{(l)}$	3

 $PCO_{3(aq)}^{-}$ ما القاعدة المرافقة للحمض (۱۸)

$$H_2O_{(l)}$$
 \odot

$$CO_{3(aq)}^{2-}$$
 \bigcirc

$$H_2CO_{3(aq)}$$
 \bigcirc

$$H_3O_{(aq)}^+$$

(١٩) ٨ أحد البدائل الآتية لا يعتبر زوجاً مرافقاً من الحمض والقاعدة ؟

$$NH_3/NH_4^+$$
 (1)

$$HS^-/H_2S$$
 \bigcirc

$$H_2PO_4^{-}/HPO_4^{2-}$$
 ©

$$H_3O^+/OH^-$$
 3

٧	٦	0	٣	۲	,	السؤال
3	3	(i)	(.)	(<u>ب</u>	(9)	الإجابة

19	1/	17	1.	٩	٨
3	j	(3)	3	(.)	3

ه عند الشكل الذي يوضح العلاقة بين $\left[H_3O^+
ight]$ وقيمة $\left(K_W
ight)$ في المحلول المائي عند وه $\left(25\,^{\circ}C\right)$

الجواب: ج

الأسئلة:

- الم اكتب معادلات رمزية للتفاعلات التالية ثم وضح ، في ضوء نظرية برونستد لوري أزواج الأحماض والقواعد المرافقة :
 - . والماء (HF) والماء (أ) التفاعل بين حمض
 - . HCN وحمض CH_3COO^- وحمض أيون الخلات Θ
 - ادرس التفاعل الآتي ، ثم أجب عما يليه من أسئلة وفقاً لنظرية برونستد لوري:

- أ) حدد الحمض والقاعدة .
- ب حدد الحمض المرافق والقاعدة المرافقة .

. عكن اعتبار الأيون $\left(HSO_4^ight)$ حمضاً ، وكذلك يمكن اعتباره قاعدة Π

المقصود بالعبارة التالية :

(يمكن للماء أن يكون حمضاً في بعض المحاليل ، وقاعدة في محاليل أخرى)

الإجابات:

$$\left(egin{array}{c} O \\ \| \\ C-O \\ | \\ H_3C \end{array}
ight)$$
 : القاعدة المرافقة : $\left(egin{array}{c} OH_2 \\ | \\ H \end{array}
ight)$

يسلك (HSO_4^-) سلوك الحمض عندما يمنح بروتوناً ليتحول إلى قاعدة مرافقة صيغتها (HSO_4^-) ، ويسلك (HSO_4^-) سلوك القاعدة عندما يستقبل بروتوناً ليتحول إلى حمض مرافق صيغته (HSO_4^-) .

أي أن الماء يمكنه أن يسلك سلوك الحمض عند تفاعله مع القواعد فيمنح بروتوناً ، كما يكنه أن يسلك سلوك القاعدة عند تفاعله مع الأحماض فيستقبل بروتوناً .