

Názov cvičenia:

Meranie na nf zosilňovači

Ciel': naučiť žiakov vyhľadať z katalógu potrebné údaje , vedieť menovité prevádzkové podmienky daného nízkofrekvenčného zosilňovača, odmerať frekvenčné charakteristiky nf zosilňovača, posúdiť frekvenčné charakteristiky z hľadiska prenosu a vypočítať maximálny výstupný výkon a porovnať s katalógom

Úlohy:

- 1. Odmerajte na danom nízkofrekvenčnom zosilňovači:
 - Prenosovú frekvenčnú charakteristiku $v_U = f$ (frekvencia)
 - Fázovú frekvenčnú charakteristiku $\varphi = f$ (frekvencia)
 - Nelineárne skreslenie $d_h = f$ (frekvencia)
- 2. Nakreslite frekvenčné charakteristiky a skreslenie nf zosilňovača
- 3. Vypočítajte z odmeraných hodnôt:
 - Maximálny výstupný výkon
- 4. Porovnajte odmerané veličiny s katalógovými údajmi

Teoretický úvod: vysvetliť pojem zosilňovač (Z), rozdelenie Z, nakresliť základné zapojenie nf Z so SE, vysvetliť činnosť, základné parametre nf Z, základné vlastnosti nf Z, základné podmienky a požiadavky pri meraní na nf Z, normálne prevádzkové podmienky

Predmet merania: nízkofrekvenčný zosilňovač MBA 810DS katalógové údaje:

	- min					
Charakteristické údaje:		MBA810	, MBA810A	MBA810S	, MBA810AS	
Klidový proud		prům.	min max.	prům.	min max.	
$U_{CC} = 14.4 \text{ V}, \ U_I = 0 \text{ V} $ $U_{CC} = 20 \text{ V}, \ U_I = 0 \text{ V}$	lee lee	9	< 20 < 50	12	< 20 < 50	mA mA
/ýstupní napětí						
$U_{CC} = 6 \text{ V}, R_L = 4 \Omega, k = 10 \%, f = 1 \text{ kHz}$	Uo	1.9	_	1.9		V
$U_{CC} = 9 \text{ V}, R_L = 4 \Omega, k = 10 \%, f = 1 \text{ kHz}$	Uo	3,0	> 2,5	3,0	> 2.6	V
$U_{CC} = 14.4 \text{ V}, R_L = 4 \Omega, k = 10 \%, f = 1 \text{ kHz}$	Uo	4,5	> 4,0	4,7	> 4.2	V
$U_{CC} = 16 \text{ V}, R_L = 4 \Omega, k = 10 \%, f = 1 \text{ kHz}$	Uo	5,1	_	5,3	_	V
Vstupní napětí						
$U_{CC} = 14.4 \text{ V}, R_L = 4 \Omega, U_{\Omega} = 4 \text{ V}, f = 1 \text{ kHz}$	\cup_I	40	≦ 100	50	40100	mV
Zkreslení						
$U_{CC} = 14.4 \text{ V}, \ U_{O} = 3.1 \text{ V}, \ R_{L} = 4 \Omega,$	k	0.7	< 2	0.7	< 2	0/0
f = 1 kHz		57490		350	102-20	
$U_{CC} = 14.4 \text{ V}, \ U_{\Omega} = 0.5 \text{ V}, \ R_{L} = 4 \Omega$	k	0,7	_	0,7	100	0/0
Vstupní odpor						
$U_{CC} = 14.4 \text{ V}, \ U_D = 2 \text{ V}, \ R_L = 4 \Omega,$						
t = 1 kHz	R _I	85	> 80	85	> 80	kΩ
Proud při vybuzení						
$U_{CC} = 14.4 \text{ V}, U_{Cl} = 4 \text{ V}, R_{L} = 4 \Omega,$						
f = 1 kHz	100	500	< 550	500	< 550	mA
	19.56	500	1 000	500	. 556	mes
Vstupni proud	400					
$U_{CC} = 14.4 \text{ V}, R_L = 4 \Omega, U_I = 0 \text{ V}$	11	1,0	_	1,0	-	μΑ
Sumové napětí na výstupu						
$U_{CC} = 14.4 \text{ V}, R_L = 4 \Omega, U_I = 0 \text{ V}$	Uon	4,0	-	4.0	-	mV
Šířka pásma						
$U_{CC} = 14.4 \text{ V}, \ U_{O} = 2 \text{ V}, \ R_{L} = 4 \Omega,$						
$U_I = konst$	BW	50 12000	00 —	50 1500	0 —	Hz

Meno a priezvisko: Daniel Orbán, IV.C

Použité meracie prístroje a pomôcky:

G – generátor = HAMEG HM 8037

EVI, *EV2* – elektronický voltmeter = *GVT*-427*B*

O – osciloskop = VOLTCRAFT 630-2 + digitálny osc. RIGOL DS1052E

MS – merač skreslenia = HAMEG HM 8037

ZDROJ – jednosmerný typ *GPS-303D*

Nf zosilňovač = KMJ7233, pomocné odpory - $z\acute{a}t'a\check{z}$ 4Ω

Tabuľky nameraných a vypočítaných hodnôt:

$U_1 = \frac{20}{1}$	<mark>mV</mark> = konšt	., $f_d =$	kHz,	$f_h = \dots$	kHz,	$B_3 =$	kHz
M.Č	f	\overline{U}_2	\overline{a}_u	y_u	D	d	φ

M.Č	f	U_2	a_u	y_u	D	d	$\boldsymbol{\varphi}$	d_h
WI.C	(kHz)	(V)	(dB)	(dB)	(diel)	(diel)	(°)	(%)
1.	0,03	0,4	26,02	-2,77	6,7	1,1	56	3,5
2.	0,04	0,46	27,23	-1,55	5	0,7	50	3,76
3.	0,1	0,64	30,1	1,32	5	0,3	17	5,2
4.	0,2	0,68	30,63	1,84	5	0,1	7	5
5.	0,5	0,7	30,88	2,09	10	0,1	2	4,03
6.	1	$U_{20} = 0,55$	28,79	0	4,8	0	0	3,2
7.	5	0,73	31,25	2,46	5	0	0	3,65
8.	10	0,71	31	2,22	10	0,4	-10	1,17
9.	16	0,66	30,37	1,58	6,3	0,3	-17	1,3
10.	20	0,64	30,1	1,32	10	0,4	-17	1,35

Postup pri meraní: K meraniu budeme potrebovať: **osciloskop** (na meranie fázového posunu); generátor (obsahuje: nízke harmonické skreslenie, vieme nastaviť signály od pásma počuteľ nosti =>10/20Hz -> 20/50kHz, vieme nastaviť vst. napätie, merač harmonického skreslenia); **NFZ**; napájanie; predpísanú záťaž (odpory špeciálne upravené pre vysoký výkon); 2x elektronické voltmetre (dvojkanálový- v našom prípade). Začneme tak, že si na NFZ nastavíme referenčnú

Meno a priezvisko: Daniel Orbán, IV.C

frekvenciu 1kHz (je uvedená výrobcom). Napájacie napätie je udané výrobcom 20mV. Pri tejto frekvencií by nám malo výjsť max. zosilenenie a fázový posun 0°. Na osciloskope môžeme vidieť, že výstupný signál je veľmi skreslený. Pri meraní fázového posunu, môžeme použiť aj 2. metódu => X-Y (lenže čiaru neuvidíme-veľké skreslenie). Odmeriame výstupné napätie U2 pri 1kHz => 0,55V. Odčítame počet dielikov a zistíme fázový posun, ktorý je teda 0°. Smerom k nižším frekvenciám je kladná fáza a k vyšším frekvenciám je záporná fáza. Pri meraní skreslenia si zvolíme správny merací rozsah (nahrubo/najemno), nakalibrujeme (nast. harmonické skreslenie 100%). Otočným potenciometrom nastavíme tak, aby ani jeden trojuholníček nesvietil. Odmeriame skreslenie v percentách-(3,2%). Ďalej meriame pre predpísané frekvencie (z pásma počuteľnosti). Tu už budeme vidieť fázový posun medzi priebehmi (viď. kalibrácia osciloskopu). Zostrojíme charakteristiku pre napäťový zisk (AFCH) a prenosovú charakteristiku pre porovnanie s inými zosilňovačmi (výst. napätie k výst. napätiu pri ref. frekv. 1kHz).

Pri meraní max. dovoleného výkonu meriame opäť pri referenčnej frekvencií 1kHz. Zvyšujeme amplitúdu vstupu a na výstupe sledujeme, kedy sa nám signál začína skresľovať. Vrátime sa kúsok do bodu, kde ešte nebol skreslený a odčítame výst. efektívne napätie. Môžeme vidieť charakter tranzistora-pracuje ako zosik (je v nasýtenom stave)-skreslí log.1. Lenže pri zosilňovači je to neprípustné=nadmerne sa zohrieva. Porovnáme či naozaj je výstupný výkon 1,6W.

Použité vzťahy pre výpočet:

Meranie amplitúdovej, prenosovej a fázovej frekvenčnej charakteristiky:

$$a_U = 20.\log \frac{U_2}{U_1}$$
 (dB) $y_U = 20\log \frac{U_2}{U_{20}}$ (dB) $\varphi = \frac{d}{D}.360$ (°)

Meranie maximálneho výstupného výkonu: // Pri zapojení menšej odporovej záťaže, ako je daná výrobcom, $R_z = 4~\Omega$ sa zvýši I_{VYST} a tým sa môže zničiť koncový stupeň zosil.

 $U_{2 \text{ max ef}} = 2,28 \text{ V}$

 $P_{\text{max}} = \frac{U_{2\text{max }ef}}{R_{z}}^{2} = \frac{2,28^{2}}{4} = 1,3 W$

Pri zapojení väčšej odporovej záťaže, ako je predpísaná, sa zníži

I_{VÝST} a tým aj výkon koncového stupňa zosilňovača. !

Vyhodnotenie: zostavte graf prenosovej a fázovej frekvenčnej charakteristiky, vyznačte dolné a horné postranné pásmo nf Z, vypočítajte šírku prenášaného pásma nf Z (napíšte vzťah), napíšte rozdiel medzi amplitúdovou a prenosovou frekvenčnou charakteristikou, vyhodnoť te maximálny výkon

Meno a priezvisko: Daniel Orbán, IV.C

Meranie FFCH a AFCH bolo sprevádzané mnohými nepresnosťami, ktoré je možné vidieť aj z grafov. Nepresnosti mohli byť spôsobené zlým odčítaním hodnoty pre slabú ostrosť čiary na osciloskope alebo aj náhodnými chybami.

Meno a priezvisko: Daniel Orbán, IV.C

Ako sme meraním mohli zistiť **zosilňovač** slúži na **zosilnenie** slabých el. signálov. Pri zosilnenú sa zväčšuje len **AMPLITÚDA!**, tvar a frekvencia signálu zostáva **nezmenená**. Zaraďuje sa do skupiny **aktívnych dvojbrán**. Potrebuje js. napájanie pre svoju činnosť (na nastavenie prac. bodov + dodanie js. príkonu). **Nelineárna** VACH. **Zapojenie NFZ so SE:** (vedieť nakresliť)

Pre zosilnenie signálu je potrebný zosilňovací prvok (tranzistor), vďaka ktorému musí byť na výstupe js. napätie (napr. 12V js. \rightarrow nie \sim !). Striedavú a js. zložku nám oddeľuje C_V ("viaže"). R_I nám slúži na nastavenie prac. bodu. Prúd I_C regulujeme pomocou pracovného R_C . Odporový delič R_E slúži na stabilizáciu prac. bodu. Kondenzátor C_E premosťuje R_E . Výstupný signál I_C je vždy zosilnený (na vstupe rovnaký, ale na výstupe je veľký). Vlastnosti a parametre zosilňovačov:

- 1. Vstupný a výstupný odpor požadujeme, aby R_{vst} bol čo najväčší (najmenší odber zo zdroja) a R_{vyst} čo najmenší (najväčší dodávaný výkon do záťaže). Tejto požiadavke najviac vyhovuje zapojenie so SE. Zapojenie so SE má výstupný odpor veľký a vstupný odpor malý
- 2. Zosilnenie Pomer výstupného signálu k vstupnému.
- 3. **Účinnosť** je pomer výstupného výkonu zosilňovača k celkovému príkonu zosilňovača odoberaného z napájacieho jednosmerného zdroja
- 4. **Šírka prenášaného frekvenčného pásma** v závislosti od frekvencie signálu sa mení amplitúda aj fáza prenášaného signálu
- 5. **Skreslenie** ak sa výstupný signál svojim tvarom nepodobá vstupnému signálu (ne / lineárne, modulačné) **Činnosť:**
- a.) U_1 je kladné tranzistor je otvorený I_C je maximálne na R_C je maximálny úbytok napätia výstupné napätie bude záporné (II.KZ) prevráti fázu vstupného napätia o 180°
- b.) U_1 je záporné tranzistor sa zatvorí I_C je minimálne na R_C je minimálny úbytok napätia výstupné napätie je kladné

<u>Triedy zosilňovačov:</u> $A \rightarrow \downarrow$ skreslenie a účinnosť; $B \rightarrow \downarrow$ skreslenie a väčšia účinnosť; $C \rightarrow \uparrow$ účinnosť <u>Väzby:</u> **Priama** \rightarrow minimálne skreslenie na úkor \downarrow zosilnenia; **Impedančná** \rightarrow ovplyvňovanie tranzistorov vzájomne; **Transformátorová** \rightarrow dobré prispôsobenie, nákladná záležitosť

Meno a priezvisko: Daniel Orbán, IV.C

	KMJ7233				
NF výkonový monofonní zesilovač 1.9W s nesymetrickým napájením					
Napájecí napětí U _Z :	1.8 až 15V				
Osazení:	TDA7233				
Výstupní výkon zátěž proti GND: můstek:	1.6W (4Ω, 9V) 1.9W (8Ω, 12V)				
Proudový odběr:	220mA (typ.)				
Kmitočtová charakteristika:	32Hz až 100kHz				
Zkreslení:	0.3 % (1kHz)				
Klidový odběr (UZ=12V):	4mA (typ.)				
Klidový odběr v režimu MUTE:	1mA (typ.)				
Regulace hlasitosti:					
Vstupní citlivost :	160mV (typ.)				
Minimální zatěžovací impedance:	4Ω / 8 Ω (dle režimu a napájení)				
Výška modulu:	16 mm				
Rozteč otvorů pro uchycení:	32.5 x 42.5 mm				
Rozměry plošného spoje:	40 x 50 mm				
Stupeň obtížnosti:	0				

datasheet

Meno a priezvisko: Daniel Orbán, IV.C