Kha Le

1.	Value i of X	Associated Sample Points	Prob (X=i)
	0	(T,T,T)	(1-P)3
	1	(HTT) (T.H.T) (TTH)	$3(p)(1-p)^2$
	2	(H,H,T), (H,T,H), (T,H,H) (H,H,H)	$3(p)^{2}(1-p)$
	3	(H,H,H)	PS

•
$$(1-p)^3 + 3(p)(1-p)^2 + 3(p^2)(1-p) + p^3$$

= $1-3p+3p^2-p^3+3p-6p^2+3p^3+3p^2-3p^3+p^3$
= 1

between \frac{1}{2} and \frac{3}{4}

2.
$$E(x) = \sum_{i=0}^{n} i \cdot C(n,i) p^{i} q^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot C(n,i) p^{i} q^{n-i} = \sum_{i=1}^{n} b (n \cdot (n \cdot (n-i,i-1)) p^{i} q^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot C(n,i) p^{i} q^{n-i} = \sum_{i=1}^{n} b (n \cdot (n-i,i-1)) p^{i} q^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot C(n-i,i) p^{i} q^{n-i} = \sum_{i=1}^{n} b (n \cdot (n-i,i-1)) p^{i} q^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot C(n-i,i) p^{i} q^{n-i} = \sum_{i=1}^{n} b (n \cdot (n-i,i-1)) p^{i} q^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot C(n-i,i) p^{i} q^{n-i} = \sum_{i=1}^{n} b (n \cdot (n-i,i-1)) p^{i} q^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot C(n-i,i) p^{i} q^{n-i} = \sum_{i=1}^{n} b (n \cdot (n-i,i-1)) p^{i} q^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot C(n-i,i) p^{i} q^{n-i} = \sum_{i=1}^{n} b (n \cdot (n-i,i-1)) p^{i} q^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot C(n-i,i) p^{i} q^{n-i} = \sum_{i=1}^{n} b (n \cdot (n-i,i-1)) p^{i} q^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot C(n-i,i) p^{i} q^{n-i} = \sum_{i=1}^{n} b (n \cdot (n-i,i-1)) p^{i} q^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot C(n-i,i) p^{i} q^{n-i} = \sum_{i=1}^{n} b (n \cdot (n-i,i-1)) p^{i} q^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot C(n-i,i) p^{i} q^{n-i} = \sum_{i=1}^{n} b (n \cdot (n-i,i-1)) p^{i} q^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot C(n-i,i) p^{i} q^{n-i} = \sum_{i=1}^{n} b (n \cdot (n-i,i-1)) p^{i} q^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot C(n-i,i) p^{i} q^{n-i} = \sum_{i=1}^{n} b (n \cdot (n-i,i-1)) p^{i} q^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot C(n-i,i-1) p^{i} q^{n-i} = \sum_{i=1}^{n} b (n \cdot (n-i,i-1)) p^{i} q^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot C(n-i,i-1) p^{i} q^{n-i} = \sum_{i=1}^{n} b (n \cdot (n-i,i-1)) p^{i} q^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot C(n-i,i-1) p^{i} q^{n-i} = \sum_{i=1}^{n} b (n \cdot (n-i,i-1)) p^{i} q^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot C(n-i,i-1) p^{i} q^{n-i} = \sum_{i=1}^{n} b (n \cdot (n-i,i-1)) p^{i} q^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot C(n-i,i-1) p^{i} q^{n-i} = \sum_{i=1}^{n} b (n \cdot (n-i,i-1)) p^{i} q^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot C(n-i,i-1) p^{i} q^{n-i} = \sum_{i=1}^{n} b (n \cdot (n-i,i-1)) p^{i} q^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot C(n-i,i-1) p^{i} q^{n-i} = \sum_{i=1}^{n} b (n \cdot (n-i,i-1) p^{i} q^{n-i} = \sum_{i=1}^{n} b (n \cdot ($$

3.	#(H)	Prob	Total net gain	Contribution to expected not gain	expected ner gail
	0	(3)3 = 27	-3	$-3(\frac{1}{4}) = -\frac{1}{9}$	1 26 > 27
	1	(3)(1) = 2	\bigcirc	0(2) = 0	一有十分有一个
	2	(部) 岩	3	3(4) - 4	[19]
	3	$\binom{2}{3}^3 = \frac{8}{27}$	6	6(2)= 16	= 9
		21		- 01 /	

- 4. Certain; uncertainties example: E(X+Y) = E(X)+E(Y)
- 5. If R is a linear order, each row in R should have a distinct # of I's from £1,2,..., n3 where n is the # of rows.

 The rows with the smallest # of I's correspond to maximal items.

- 7. It relation is auti-symmetric if it dontains no symmetric relations. In other wards, if two items x, y have a relation, exactly one of (x, x) or (y, x) exist.
- 8. Equivalence relations one symmetric while partial orders one not.