Online Appendix to Simulating Collusion:

Challenging Conventional Estimation Methods

Nicole Beller
t 1,2 and Andrea Günster 3

¹Institute for Wealth & Asset Management, Zurich University of Applied Sciences, Gertrudstrasse 8, Winterthur, 8401, Zurich, Switzerland.

²Department of Informatics, University of Zurich, Binzmühlestrasse 14,

³Institute of Business Information Technology, Zurich University of Applied Sciences, Theaterstrasse 17, Winterthur, 8400, Zurich, Switzerland.

Zurich, 8050, Zurich, Switzerland.

Contributing authors: bell@zhaw.ch; gues@zhaw.ch;

This online appendix contains result tables for the individual models we simulate. Hazard rate (HR) estimation, Linear regression, Lasso cross-validation (CV) Regression (Tibshirani (1996)), and regressions corrected for Heckman Sample Selection (Heckman (1979)) are applied on data simulated based on Model I (Stigler (1964), II (Stigler (1964) and Harrington and Wei (2017), and III (Stigler (1964) and Bos et al (2018).

Appendix A Lasso Results

Table A1 Lasso CV Regression and HR for Cartel Duration on Model I - ICC on Stigler - Detection independent of Collusion

		Cartel Death			Ln(Duration+1)	
	${ m HRLasSample}$	$\operatorname{HRLasUnd}$	${ m HRLasCartels}$	${\rm LasSample}$	m LasUndetec	LasCartels
$\mathrm{Firms}\;\mathrm{Ln}(n_f)$	0.12***	0.35	0.35	-0.25***	-0.40***	-0.52***
	(0.02)	(0.004)	(0.004)	(0.02)	(0.01)	(0.01)
n_f^2	-0.01***	-0.01***	-0.01***	0.01	0.02***	0.02***
۰	(0.001)	(0.0002)	(0.0002)	(0.002)	(0.0002)	(0.0002)
n_f^3	0.0001***	0.0001***	0.0001***	-0.0002***	-0.0002***	-0.0002***
•	(0)	(0)	(0)	(0)	(0)	(0)
Detection Probability σ	1.23**	***09.0	0.15	-1.78***	-0.75***	-0.28
	(0.49)	(0.16)	(1.12)	(0.59)	(0.24)	(1.87)
σ^2			-0.60			5.74
			(5.29)			(8.86)
σ^3	-0.79	1.27	1.97	1.45	-0.96	-9.17
	(2.32)	(0.80)	(7.77)	(2.83)	(1.26)	(13.02)
$n_f \sigma$	-0.03	-0.05***	-0.03***	0.10**	0.07	-0.03**
	(0.04)	(0.01)	(0.01)	(0.02)	(0.01)	(0.01)
Start	0.002***	0.0001***	0.0003***	-0.002***	-0.0004***	-0.001***
	(0)	(0)	(0)	(0)	(0)	0)
Constant				6.53	4.30***	5.10***
				(0.11)	(0.05)	(0.12)
Observations	11,366	97,045	108'411	11,366	97,045	108'411
\mathbb{R}^2				0.20	0.09	0.17
Adjusted \mathbb{R}^2				0.20	0.09	0.17
Log Likelihood	-73'101.01	$-324^{\circ}924.30$	-405'501.10			

for Model I. Columns 2 - 4 estimate linear regression coefficients, while columns 5 - 7 estimate HR coefficients, both on the sample of detected cartels, the group of undetected cartels and the population of all cartels, respectively. The estimated coefficients show standard errors in the sample, but do not test for the real population. The estimated HR coefficients show the change of risk for cartel breakdown if the covariate increases by 1 unit, keeping all others fixed. Note: This table shows the estimation results of Lasso CV feature selected linear cross-sectional regressions to explain cartel duration (ln(duration+1)) and the estimation results of a Lasso CV feature selected Weibull Hazard Model to explain cartel death, both at the industry level, for data simulated

Table A2 Lasso CV Regression and HR for Cartel Duration on Model II - ICC on Stigler - Detection depends on number of Firms

	HRLasSample	Cartel Death HRLasUnd	HRLasCartels	LasSample	Ln(Duration+1) LasUndetec	LasCartels
Firms $\operatorname{Ln}(n_f)$		0.27***	0.27		-0.38***	-0.38**
. 2		(0.004)	(0.004)		(0.01)	(0.01)
f_{a}		(0.0002)	(0.0002)		(0.0003)	(0.0003)
n_f^3		0.0001^{***}	0.0001^{***}		-0.0002^{***}	-0.0002^{***}
•		(0)	(0)		(0)	(0)
Detection Probability σ		-0.10	-0.12		-0.06	-0.02
		(0.16)	(0.16)		(0.26)	(0.26)
σ^3		0.93	0.94		-0.54	-0.58
		(0.80)	(0.80)		(1.33)	(1.33)
$n_f \sigma$		-0.002	-0.002		0.02	0.02
,		(0.01)	(0.01)		(0.02)	(0.02)
Start	0.003***	0.001***	0.001***	-0.003***	-0.001***	-0.001***
	(0.0004)	(0)	(0)	(0.0004)	(0)	(0)
Constant				5.82***	4.62***	4.62***
				(0.12)	(0.05)	(0.05)
Observations	120	97,226	97'346	120	97,226	97'346
\mathbb{R}^2				0.35	0.15	0.15
Adjusted \mathbb{R}^2				0.34	0.15	0.15
Log Likelihood	-804.79	-331'179.20	-332'075.30			

the group of undetected cartels and the population of all cartels, respectively. The estimated coefficients show standard errors in the sample, but do not test for the real population. The estimated HR coefficients show the change of risk for cartel breakdown if the covariate increases by 1 unit, keeping all others fixed. Note: This table shows the estimation results of Lasso CV feature selected linear cross-sectional regressions to explain cartel duration (ln(duration+1)) and the estimation results of a Lasso CV feature selected Weibull Hazard Model to explain cartel death, both at the industry level, for data simulated for Model II. Columns 2 - 4 estimate linear regression coefficients, while columns 5 - 7 estimate HR coefficients, both on the sample of detected cartels,

Table A3 Cartel Duration with CV Lasso on Model III - ICC on Harrington et al.

	HRLasSample	Cartel Death HRLasUnd	HRLasCartels	LasSample	Ln(Duration+1) LasUndetec	LasCartels
$ \text{Firms Ln}(n_f) \\ n_x^2$	0.06***	$0.40*** \\ (0.002) \\ -0.02***$	$\begin{array}{c} 0.41^{***} \\ (0.001) \\ -0.02^{***} \end{array}$	-0.10^{***} (0.01)	-0.39*** (0.002) $0.02***$	-0.50*** (0.002) $0.02***$
n_f^3	***00000-	(0.0001) $0.0001***$	$(0.0001) \\ 0.0002***$	0.0001***	(0.001) -0.0001^{***}	(0.0001) $-0.0002***$
Fines γ (% Profit)	(0)	(0) $0.02**$	(0) -0.06	(0)	$(0) \\ -0.02$	(0) 0.25
γ^2		(0.01)	(0.28)		(0.02)	(0.47) -0.18
γ^3	0.02		(0.18)	-0.005		(0.30)
Leniency θ (% Fine)	$(0.02) \\ -0.03***$	-0.12***	-0.13***	$(0.02) \\ 0.07***$	0.13***	0.19***
$\theta^{\tau u}$	(0.01)	(0.005)	(0.004)	(0.02) $-0.01***$	(0.01)	(0.01) $-0.02***$
o for	(0.003)	(0.001)	(0.001)	(0.004)	(0.001)	(0.001)
Detection Probability σ	1.01***	3.36***	2.32***	-1.57***	-3.48***	-1.78***
<i>م</i> ²2	(0.22) $0.81*$	(0.05)	(0.04)	(0.28) -0.56	(0.07)	(0.07)
	(0.44)			(0.55)		
σ^3		-0.42**	0.41**		0.42	-2.75***
$n_{f}\sigma$	-0.01	$(0.21) \\ -0.29***$	(0.20) $-0.22***$	-0.004	$(0.33) \\ 0.29^{***}$	(0.34) 0.17^{***}
	(0.01)	(0.004)	(0.003)	(0.02)	(0.01)	(0.01)
Structured	0.07***	0.09***	0.08***	-0.09***	-0.10*** (0.003)	-0.10***
Start	0.002***	0.0000	0.0004 ***	-0.002***	-0.0004**	-0.001^{***}
Constant	(0)	(0)	(0)	(0) 6.13^{***} (0.04)	(0) $4.29***$ (0.02)	$ \begin{pmatrix} (0) \\ 4.88*** \\ (0.19) $
Observations R ²	152'747	1,404,446	1,557,193	152'747	1,404,446	1,557,193
$ m Adjusted~R^2$ Log Libelihood	070391.40	-4,708,036	2,789,100	0.19	0.06	0.13
DOS DINGILIDOU	710 077	100 200	CCT 701 0_			

and the estimation results of a Lasso CV feature selected Weibull Hazard Model to explain cartel death, both at the industry level, for data simulated for Models IIIa and IIIb combined. Columns 2 - 4 estimate linear regression coefficients, while columns 5 - 7 estimate HR coefficients, both on the sample of detected cartels, the group of undetected cartels and the population of all cartels, respectively. The estimated coefficients show standard errors in the sample, but do not test for the real population. The estimated HR coefficients show the change of risk for cartel breakdown if the covariate increases by 1 unit, keeping all others fixed. Note: This table shows the estimation results of Lasso CV feature selected linear cross-sectional regressions to explain cartel duration (ln(duration+1))

Appendix B Heckman Sample Selection Correction Results

Table B4 Linear Regression and HR with and without Heckman Correction for Sample Selection on Model I - ICC on Stigler - Detection independent of Collusion

	HRSample	Carte HRUndetect	Cartel Death ect HRCartels	HRHeck	mlrSample	Ln(Dura mlrUndetect	Ln(Duration+1) detect mlrCartels	mlrHeck
Firms $\operatorname{Ln}(n_f)$	0.28***	0.81**	0.82***	0.46***	-0.51***	-1.09**	-1.44***	***65.0-
Detection Probability σ	(0.02) $0.92***$	$(0.01) \\ 0.43^{***}$	$(0.01) \\ 0.02$	$(0.02) \\ 0.90^{***}$	(0.02) -1.04**	(0.01) -0.39***	(0.01) $0.52***$	(0.02) $-0.71***$
Start	(0.12) 0.002^{***}	(0.04) $0.0001***$	(0.04) 0.0003^{***}	(0.13) 0.002^{***}	(0.15) -0.002^{***}	(0.06) $-0.0003***$	(0.06) $-0.001***$	(0.13) -0.001^{***}
9	(0)	(0)	(0)	(0.0001)	(0)	(0)	(0)	(0.0001)
IMR				-452,375.00 (47,665.59)				(43,828.61)
Constant					6.33^{***} (0.05)	4.34^{***} (0.03)	5.24^{***} (0.03)	6.30^{***} (0.05)
Observations R ² Adjusted D ²	11,366	97,045	108'411	9'507	11,366 0.19	97'045	0.17	9,507
Aujustea r. Log Likelihood	-73'101.14	-325'270	$-405^{\circ}938.80$	$-61^{\circ}023.71$	0.13	60.0	0.17	0.20

coefficients, while columns 6 - 9 estimate HR coefficients, both on the sample of detected cartels, the group of undetected cartels, the population of all cartels, and the sample corrected for Heckman Sample Selection, respectively. The estimated coefficients show standard errors in the sample, but do not test for the real population. The estimated HR coefficients show the change of risk for cartel breakdown if the covariate increases by 1 unit, keeping all others fixed. Note: This table shows the estimation results of linear cross-sectional regressions to explain cartel duration (ln(duration+1)) and the estimation results of a Weibull Hazard Model to explain cartel death, both at the industry level, for data simulated for Model I. Columns 2 - 5 estimate linear regression

Table B5 Linear Regression and HR with and without Heckman Correction for Sample Selection on Model II

		Carte	Cartel Death			Ln(Dur	Ln(Duration+1)	
	HRSample	${ m HRUndetect}$	HRCartels	${ m HRHeck}$	mlrSample	mlrUndetect	mlrCartels	mlrHeck
${\rm Firms}\ {\rm Ln}(n_f)$	-0.13	0.56***	0.56***	-0.11	0.01	-0.98***	***86.0-	-0.06
	(0.23)	(0.01)	(0.01)	(0.24)	(0.25)	(0.01)	(0.01)	(0.25)
Detection Probability σ	0.15	0.04	0.04	0.38	1.39	0.001	0.02	1.81
	(1.29)	(0.04)	(0.04)	(1.32)	(1.44)	(0.07)	(0.02)	(1.46)
Start	0.003***	0.001***	0.001^{***}	0.003***	-0.003^{***}	-0.001^{***}	-0.001^{***}	-0.003^{***}
	(0.001)	(0)	(0)	(0.001)	(0.001)	(0)	(0)	(0.001)
IMR				2,673,699.00				14,160,666.00
				(8,660,622.00)				(9,668,147.00)
Constant					5.46***	4.62***	4.63***	5.18***
					(0.47)	(0.03)	(0.03)	(0.51)
Observations	120	97,226	97'346	120	120	97,226	97'346	120
\mathbb{R}^2					0.35	0.14	0.14	0.36
Adjusted \mathbb{R}^2					0.34	0.14	0.14	0.34
Log Likelihood	-804.63	-331'810.60	-332'709.30	-805.52				

Note: This table shows the estimation results of linear cross-sectional regressions to explain cartel duration (ln(duration+1)) and the estimation results of a Weibull Hazard Model to explain cartel death, both at the industry level, for data simulated for Model II. Columns 2 - 5 estimate linear regression coefficients, while columns 6 - 9 estimate HR coefficients, both on the sample of detected cartels, the group of undetected cartels, the population of all cartels, and the sample corrected for Heckman Sample Selection, respectively. The estimated coefficients show standard errors in the sample, but do not test for the real population. The estimated HR coefficients show the change of risk for cartel breakdown if the covariate increases by 1 unit, keeping all others fixed.

Table B6 Linear Regression and HR with and without Heckman Correction for Sample Selection on Model III

		Carte	Cartel Death			Ln(Dura	Ln(Duration+1)	
	HRSample	HRUndetect	HRCartels	HRHeck	mlrSample	mlrUndetect	mlrCartels	mlrHeck
Firms $\operatorname{Ln}(n_f)$	0.29***	0.71***	0.76	0.51^{***}	-0.54***	-0.90***	-1.28***	***69.0—
	(0.01)	(0.002)	(0.002)	(0.01)	(0.01)	(0.003)	(0.003)	(0.01)
Fines γ (% Profit)	0.04	0.02	0.02**	,90°0	-0.01	-0.02	-0.04^{**}	-0.01
	(0.03)	(0.01)	(0.01)	(0.04)	(0.04)	(0.02)	(0.02)	(0.04)
Leniency θ (% Fine)	-0.01**	-0.04***	-0.04***	-0.02**	0.03***	0.05	0.08**	0.03***
	(0.01)	(0.002)	(0.002)	(0.01)	(0.01)	(0.003)	(0.003)	(0.01)
Detection Probability σ	1.39***	1.56***	1.15	1.50***	-1.94***	-1.85**	-1.45***	-1.73***
	(0.03)	(0.01)	(0.01)	(0.04)	(0.04)	(0.02)	(0.02)	(0.04)
Structured	0.08**	***60.0	***80.0	0.04***	-0.10***	-0.10***	-0.10***	-0.07***
	(0.01)	(0.002)	(0.002)	(0.01)	(0.01)	(0.003)	(0.003)	(0.01)
Start	0.002***	0.0002***	0.0004***	0.002***	-0.002***	-0.0004***	-0.001***	-0.001***
	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
IMR				-394,538.20***				375,963.90***
				(12,577.86)				(11,646.80)
Constant					6.45***	4.11***	5.09***	6.48
					(0.04)	(0.02)	(0.02)	(0.03)
Observations	152,747	1,404,446	1,557,193	122'619	152,747	1,404,446	1,557,193	122'619
\mathbb{R}^2					0.20	0.07	0.14	0.25
Adjusted \mathbb{R}^2					0.20	0.07	0.14	0.25
Log Likelihood	-970'106.10	-4'711'575	-5'785'056	-782'818.70				

regression coefficients, while columns 6 - 9 estimate HR coefficients, both on the sample of detected cartels, the group of undetected cartels, the population of all cartels, and the sample corrected for Heckman Sample Selection, respectively. The estimated coefficients show standard errors in the sample, but do not test for the real population. The estimated HR coefficients show the change of risk for cartel breakdown if the covariate increases by 1 unit, keeping all others fixed. Note: This table shows the estimation results of linear cross-sectional regressions to explain cartel duration (ln(duration+1)) and the estimation results of a Weibull Hazard Model to explain cartel death, both at the industry level, for data simulated for Model III. Columns 2 - 5 estimate linear

Appendix C Quantifying the Bias

Fig. C1 This figure shows the bias between ADT and ACD for each group of equal variables in Model I

 $\textbf{Fig. C2} \ \ \text{This figure shows the bias between ADT and ACD for each group of equal variables in Model II.}$

 ${f Fig.}$ C3 This figure shows the bias between ADT and ACD for each group of equal variables in Model III.

Appendix D Confidence Intervals

Table D7 Hazard Rate 95% Confidence Intervals (Model I)

	San	nple	Unde	tected	Popu	lation
	Lower	Upper	Lower	Upper	Lower	Upper
Firms $\operatorname{Ln}(n_f)$	0.235	0.330	0.790	0.823	0.809	0.840
Detection Probability σ	0.633	1.204	0.332	0.519	-0.071	0.105
Start	0.002	0.002	0	0	0	0
N	11'	366	97'	045	108	'411

This table compares the confidence intervals of the estimated HR coefficients for the sample of detected cartels, the group of undetected cartels, and the population of detected and undetected cartels. The confidence intervals of the estimations do not overlap between estimations of the population and sample.

Table D8 Hazard Rate 95% Confidence Intervals (Model II)

	San	nple	Unde	tected	Popu	lation
	Lower	Upper	Lower	Upper	Lower	Upper
Firms $\operatorname{Ln}(n_f)$	-0.674	0.423	0.543	0.579	0.542	0.578
Detection Probability σ	-2.880	3.184	-0.049	0.136	-0.056	0.130
Start	0.002	0.004	0.001	0.001	0.001	0.001
N	1:	20	97'	226	97'	346

This table compares the confidence intervals of the estimated HR coefficients for the sample of detected cartels, the group of undetected cartels, and the population of detected and undetected cartels. Except for detection probability (σ) , the confidence intervals of the estimations do not overlap between estimations of the population and sample.

 ${\bf Table~D9~~ Hazard~ Rate~95\%~ Confidence~ Intervals~ (Model~III)}$

	San	nple	Unde	tected	Popu	lation
	Lower	Upper	Lower	Upper	Lower	Upper
Firms $\operatorname{Ln}(n_f)$	0.275	0.299	0.705	0.712	0.756	0.763
Fines γ (% Profit)	-0.023	0.099	-0.004	0.038	0.004	0.044
Leniency θ (% Fine)	-0.027	-0.002	-0.046	-0.038	-0.049	-0.041
Detection Probability σ	1.330	1.460	1.543	1.585	1.133	1.173
Structured	0.068	0.088	0.088	0.095	0.080	0.086
Start	0.002	0.002	0	0	0	0
N	152	'747	1'40	4'446	1'55'	7'193

This table compares the confidence intervals of the estimated HR coefficients for the sample of detected cartels, the group of undetected cartels, and the population of detected and undetected cartels. Except for fine (γ) and Structured, the confidence intervals of the estimations do not overlap between estimations of the population and sample.

References

- Bos I, Davies SW, Harrington JE, et al (2018) Does Enforcement Deter Cartels? A Tale of Two Tails. International Journal of Industrial Organization 59:372–405
- Harrington JE, Wei Y (2017) What Can the Duration of Discovered Cartels Tell Us About the Duration of All Cartels? The Economic Journal 127(604):1977–2005
- Heckman JJ (1979) Sample Selection Bias as a Specification Error. Econometrica: Journal of the econometric society pp 153–161
- Stigler GJ (1964) A Theory of Oligopoly. Journal of Political Economy 72(1):44-61
- Tibshirani R (1996) Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society Series B (Methodological) 58(1):267–288