

Programmation de Modèles Linguistiques (I), partie 2 (TALA330A L3 INALCO)

Crédits : Karën Fort (pépites pour le TAL)

Caroline Parfait caroline.parfait@sorbonne-universite.fr

2021-2022

Obtic, Sorbonne Center for Artificial Intelligence STIH EA 4509, Sorbonne Université

Plan de la présentation

1. Les solutions

Les solutions

Les solutions

Typologie des techniques

Identification de la langue

Des techniques variées

- systèmes à base de règles
 - définies par l'humain (linguistes)
 - entrées manuellement
- systèmes basés sur les données
 - apprentissage supervisé ou non supervisé
 - à partir d'exemples (rédigés et/ou annotés par des humains)
 - algorithmes (pensés par des humains)
- → et tous les intermédiaires/mélanges possibles (approches hybrides)

Des techniques variées

- systèmes à base de règles
 - définies par l'humain (linguistes)
 - entrées manuellement
- systèmes basés sur les données
 - apprentissage supervisé ou non supervisé
 - à partir d'exemples (rédigés et/ou annotés par des humains)
 - algorithmes (pensés par des humains)
- → et tous les intermédiaires/mélanges possibles (approches hybrides)
 - Traduction automatique :
 - analyse linguistique + traitement statistiques
 - ullet génération statistique + redressement linguistique

Les solutions

Typologie des techniques

Identification de la langue

Exercice: identifier la langue d'un texte

Trouver au moins 2 algorithmes permettant d'identifier la langue d'un texte

Conseil : connaître les langues et leurs caractéristiques

Loi de Zipf:

- "the" représente près de 7 % du *Brown Corpus* 1;
- 135 mots représentent la moitié des occurrences du *Brown Corpus* ;
- Inversement, la moitié du vocabulaire du corpus sont des hapax;
- **proportionnalité** entre rang (r) et fréquence (f) : $\hat{f}_i \approx \frac{1}{r_i} \times f_1$;
- Les mots fréquents sont très rares. . . et inversement.

Rang (r)	Mot	Fréquence (f)	ĥ
1	the	69 971	69 971
2	of	36 412	34 986
3	and	28 853	23 324
20	1	5 164	3 499

1. 1 million de mots

Loi de Zipf sur le Brown corpus

Figure 1: Données très proches de l'attendu, surtout sur la longue traîne

Loi de Zipf sur le Brown corpus

Figure 2: Validité plus marquante encore en échelle logarithmique

Identifier la langue : solution 1

Méthode des short words / frequent words :

- Liste de "mots outils" (mots grammaticaux, "petits" mots) pour chaque langue
- Compter les occurrences de ces mots outils dans le texte
- Comparer avec des listes de référence

Implantation rapide (POC)

Données : corpus parallèle de l'Union Européenne (22 langues)

- Découpage en deux parties (entraînement et test)
- Entraînement : extraction d'un modèle de langue (les *n* mots les plus fréquents) à partir de tous les textes de chaque langue

Implantation rapide (POC)

Données : corpus parallèle de l'Union Européenne (22 langues)

- Découpage en deux parties (entraînement et test)
- Entraînement : extraction d'un modèle de langue (les *n* mots les plus fréquents) à partir de tous les textes de chaque langue
- Test, pour chaque texte :
 - calcul de l'intersection en mots
 - on prend la plus grande → prédiction

Les modèles

Les modeles					
lg	#1	#2	#3	#4	#5
bg	на (12593)	за (5657)	и (5529)	в (3919)	от (3474)
CS	a (5510)	v (3378)	na (2424)	se (1955)	pro (1668
da	og (5435)	i (4542)	at (4147)	af (3682)	for (3636
de	der (5867)	die (5604)	und (5155)	in (2747)	für (2256
en	the (9547)	and (5692)	of (5430)	to (4787)	in (3667)
es	de (16556)	la (8571)	en (5096)	y (5048)	los (4721
et	ja (4295)	on (2746)	Euroopa (1658)	et (1240)	ning (102
fi	ja (4952)	on (2623)	Euroopan (985)	EU :n (898)	että (875
fr	de (11801)	la (6466)	et (5177)	les (4999)	des (4821
hu	a (9824)	az (4956)	és (4327)	A (2509)	hogy (17
it	di (7617)	e (4838)	in (2987)	la (2958)	per (2746
lt	ir (4984)	Europos (1645)	kad (1311)	- (1293)	ES (1247
lv	un (5028)	ir (2448)	par (1658)	Eiropas (1473)	ES (1261
mt	u (5234)	li (4557)	ta' (2960)	ta' (1554)	biex (123
nl	de (11253)	van (7093)	en (5167)	het (3986)	in (3687)
pl	w (5750)	i (3799)	na (2844)	z (1986)	do (1890
pt	de (10488)	a (6684)	e (5153)	da (3785)	o (2983)
ro	de (10094)	în (5478)	și (5020)	a (4710)	la (28 ¹¹ 6)

L'application

Référence	Préd 1	Préd 2	Préd 3
CS	sk (2)	cs (2)	sl (1)
CS	sk (4)	cs (3)	pt (2)
CS	sk (4)	cs (4)	sl (2)
CS	sk (5)	cs (5)	sl (3)
CS	sk (5)	cs (5)	sl (3)
CS	sk (6)	cs (6)	sl (3)
CS	sk (6)	cs (6)	sl (4)
CS	sl (3)	sk (3)	cs (3)
et	fi (2)	et (2)	en (1)
et	fi (2)	et (2)	en (1)
et	fi (2)	et (2)	en (1)
et	fi (2)	et (2)	en (1)
et	fi (2)	et (2)	en (2)
et	fi (3)	et (3)	en (3)
bg	en (8)	fi (3)	et (3)
CS	en (8)	fi (3)	et (3)
da	en (8)	fi (3)	et (3)
de	en (8)	fi (3)	et (3)

Identifier la langue : solution 2

Méthode des trigrammes :

 Rechercher la probabilité qu'un caractère C_i apparaisse après les deux précédents dans la langue I:

$$P(C_i|C_{i-2}:C_{i-1},I)$$

 Calculer la probabilité résultante pour chaque langue, pour l'ensemble du texte :

$$\prod_{i=1}^{l=n} P(C_i | C_{i-2} : C_{i-1}, I)$$

Dans quelle langue est ce texte :

Roiajr oj earoij reoa o eo ao aeoi oj aeroij aoeir eoaj Sachant que :

- L1 : P(i,ro, L1)=0,3; P(i,eo, L1)=0,2; P(i,oe, L1)=0,3
- L2 : P(i,ro, L2)=0,8;P(i,eo, L2)=0,2; P(i,oe, L2)=0,3

Dans quelle langue est ce texte :

Roiajr oj earoij reoa o eo ao aeoi oj aeroij aoeir eoaj Sachant que :

- L1 : P(i,ro, L1)=0,3; P(i,eo, L1)=0,2; P(i,oe, L1)=0,3
- L2 : P(i,ro, L2)=0.8; P(i,eo, L2)=0.2; P(i,oe, L2)=0.3
- P(c,L1)=0,3*0,3*0,2*0,3*0,3=0,00162
- P(c,L2)=0.8*0.8*0.2*0.8*0.3=0.03072

Autres Modèles : 3-grammes de caractère #2

lg

#1

bg	_на (12863)	на_ (11886)	ите (9741)	_за (6523)	та_ (6271)	
da	er_ (14032)	en_ (9306)	for (8681)	_de (8165)	_fo (7199)	$et_{\scriptscriptstyle{-}}$
en	_th (13006)	the (11879)	$he_{-}(11177)$	ion (8614)	and (6666)	_in
es	_de (20787)	de_ (16648)	$os_{-}(13741)$	_la (11721)	$as_{-}(9391)$	es_
et	mis (6513)	se_ (5245)	ise (4791)	ja₋ (4568)	_ja (4563)	ust
fi	en_ (11551)	ist (6937)	an_ (6291)	sta (6028)	ja₋ (5459)	ta₋
fr	es_ (21305)	_de (17707)	de_ (12042)	ion (11016)	ent (9673)	_le
hu	_a_ (8998)	_az (5594)	és_ (4906)	$az_{-}(4712)$	_sz (4534)	_és
it	ion (9886)	_di (9647)	_de (9207)	di_ (7761)	re_ (7434)	to_
lt	os_ (9469)	_pa (6289)	_ir (4924)	ir_ (4770)	ti ₋ (4449)	_pr
lv	as_ (11209)	_pa (5859)	_un (5018)	un_ (4714)	s_p (4065)	iem
mt	_ta (14740)	tal (7746)	al- (7613)	li_ (7590)	jon (6872)	oni
nl	en_ (25906)	de_ (13221)	_de (12334)	an_ (9452)	van (7780)	n_d
pl	nie (7586)	ch ₋ (7460)	_pr (7326)	ie ₋ (7261)	ych (5844)	_pc
pt	_de (13126)	os_ (12968)	de_ (11863)	$as_{-}(9777)$	ent (7858)	ão₋
sk	_pr (8264)	ch_ (5970)	_po (5275)	_na (4609)	ie_ (4094)	ých
sl	_pr (7414)	_po (7173)	je ₋ (7010)	_in (6385)	_za (6004)	₋na
ro	_de (12515)	de_ (10232)	are (8296)	_în (7364)	re_ (7350)	15 le_

#3

#4

#5

6

Bilan : ça marche!

Plus de 96% de bonne prédiction sur 22 langues, langid.py fait encore mieux. Plus rapide et plus efficace que l'humain.

Mais pourquoi?

Bilan : ça marche!

Plus de 96% de bonne prédiction sur 22 langues, langid.py fait encore mieux. Plus rapide et plus efficace que l'humain.

Mais pourquoi?

- Des données disponibles
- Une tâche facile à définir (classification)
- Et facile à évaluer

Bilan : ça marche!

Plus de 96% de bonne prédiction sur 22 langues, langid.py fait encore mieux. Plus rapide et plus efficace que l'humain.

Mais pourquoi?

- Des données disponibles
- Une tâche facile à définir (classification)
- Et facile à évaluer
- Une théorie linguistique bien stable ...
- ... et facile à rendre calculable

Limitations

- Longueur du texte (5 mots mini.)
- textes multilingues :

- mais aussi des pièges et du contexte :
 - Barack Obama → italien
 - Nicolas Sarkozy → polonais
 - ullet Barack Obama and Nicolas Sarkozy o anglais
 - · camping caravaning, trekking

Identifier la langue : solutions 3 et 4

- Identifier l'encodage
- Regarder les méta-données

Limitations

- Identification non-triviale
- Remplissage des méta-données (ex [Html)

Premier bilan des obstacles

C'est à vous

Premier bilan des obstacles

C'est à vous

- Quantité de données;
- Qualité des données;
- Qualité des méta-données;
- Définition des tâches.