

Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria

Corso di Laurea Triennale in Ingegneria delle Tecnologie di Internet

Candidato: Daniele Biasini Relatore: Franco Mazzenga

Co-Relatore: Romeo Giuliano

Analisi di copertura di una rete di UAV basata sull'impiego di tecnologie LTE

 Nelle situazioni di emergenza la mancanza di comunicazione tra le parti coinvolte è un serio ostacolo allo svolgimento delle operazioni di soccorso.

• È quindi importante riuscire a realizzare/ripristinare in tempi rapidi una rete di telecomunicazione a supporto degli operatori

dell'emergenza.

 In questo contesto si inserisce l'idea di poter creare/ripristinare una rete per comunicazioni usando UAV, (aeromobili pilotati da remoto), in grado di trasportare una serie di apparecchiature come un apparato LTE.

UAV

- Velivoli senza pilota, che possono essere controllati da remoto o volare autonomamente secondo un itinerario prestabilito.
- Possono essere impiegati con successo nelle missioni dull, dirty and dangerous (noiose, sporche e pericolose).
- Nel presente lavoro di tesi gli UAV trasportano apparati di telecomunicazione a uso civile come LTE e sono usati per realizzare una rete di telecomunicazione da dispiegarsi nell'area della emergenza.

- LTE (Long Term Evolution) tecnologia 4G
- Progettata per aumentare la capacità delle reti telefoniche mobili e offrire servizi a banda larga.

- Principali innovazioni rispetto alle tecnologie precedenti:
 - Riduzione del costo per bit.
 - Fornitura di più servizi a costi inferiori e con migliore esperienza utente.
 - Flessibilità nell'utilizzo di bande frequenza nuove o esistenti.
 - Architettura semplificata.
 - Ragionevole consumo energetico del terminale.

Analisi di copertura

- Area di simulazione
 - Area a diverse densità urbane di 1 km²

- Modello tridimensionale del terreno
 - E' stato possibile ottenere il Digital Terrain Model (DTM) dell'area interessata.

Modello della mappa

 Dalle mappe di Google Maps è stato ottenuto un modello degli ostacoli presenti nell'area.

Modello degli ostacoli

- Sono stati combinati i modelli del terreno (DTM) e il modello degli ostacoli per ottenere la distribuzione degli ostacoli nell'area.
- Per simulare la presenza degli ostacoli, sono state assegnate altezze e dimensioni secondo un modello casuale per riprodurre lo scenario urbano.

 I parametri del modello sono stati ottenuti andando a prelevare alcuni valori di altezza degli ostacoli in modo casuale per

ciascuna specifica area. Sono state ottenute le distribuzioni sperimentali dei parametri di altezza usate poi per la generazione aleatoria degli ostacoli.

Copertura dell'area

 Diffrazione dovuta alla presenza di ostacoli multipli

Il modello tridimensionale mostra come il segnale possa attenuarsi a causa di ostacoli multipli.

- Raggio medio di copertura
 - Rappresenta una stima dell'area coperta dal velivolo.

Attenuazione massima

 Il calcolo dell'attenuazione massima permette di capire la potenza minima in grado di riconoscere il ricevitore.

 Le simulazioni sono state effettuate con tre diverse potenze che hanno portato a tre differenti attenuazioni massime:

Potenza Trasmessa (dBm)	Attenuazione massima (dBm)
46	163.5
24	141.5 (pico cella)
20	137.5 (femto cella)

RAN Technology		LTE
Data	rate (kbps)	1024
Trans	mitter – BTS/Node B, eNode B	
а	Max. TX power (dBm)	46
b	TX antenna gain (dBi)	18
С	Cable loss (dB)	2
d	EIRP (dBm)	62
Receiver – UE		
е	UE noise figure (dB)	7
f	Thermal noise (dBm)	-104.5
g	Receiver noise floor (dBm)	-97.5
h	SINR (dB)	-9
i	Receiver sensitivity (dBm)	-106.4
j	Interference Margin (dB)	4
k	Control channel overhead (%)	20
1	RX antenna gain (dBi)	0
m	Body loss (dB)	0
Maximum path loss		163,5

Risultati

Scenario: Campus Universitario di Tor Vergata

Potenza Trasmessa (dBm)	Raggio medio (m)	Raggio 50° percentile (m)	Raggio 75° percentile (m)
46	388.3664	405.1234	490.1020
24	386.0185	403.1129	487.5705
20	384.704	401.5283	488.3646

Attenuazione area Tor Vergata con Potenza Trasmessa 46dBm.

Risultati

Scenario Colle Oppio

Potenza Trasmessa (dBm)	Raggio medio (m)	Raggio 50° percentile (m)	Raggio 75° percentile (m)
46	363.9597	374.7332	470.1064
24	282.0619	277.3310	375.0333
20	256.2801	254.9510	346.0943

Attenuazione area Colle Oppio con Potenza Trasmessa 46dBm.

Risultati

Scenario Pantheon

Potenza Trasmessa (dBm)	Raggio medio (m)	Raggio 50° percentile (m)	Raggio 75° percentile (m)
46	348.2113	360.3471	453.3693
24	294.3916	297.4685	393.8591
20	242.1427	215.0581	338.0089

Attenuazione area Pantheon con Potenza Trasmessa 46dBm.