Оглавление

0.1	Продолжаем примеры на аксиомы делимости	1
0.2	Нормальные пространства	1
0.3	Компактификация по Александрову (Павлу Сергеевичу)	3

0.1 Продолжаем примеры на аксиомы делимости

Примеры.

1. $X = \mathbb{R}^2$

База – шары с выколотым конечным чилом радиусов Открытое множество – множество, такое, что $\forall x \quad \exists \, M_x$ указанного вида X хаусдорфово, не регулярно

2. Пространство Немыцкого:

X – замкнутая полуплоскость

Открытое множество – у любой точки существует окрестность специального вида Окрестности:

- Если точка не на границе полуплоскости окрестность обычного вида (открытый круг)
- Если точка на границе полуплоскости открытый круг, сдвинутый к краю полуплоскости + сама точка (см. рис. 1)

X регулярно, но не нормально

Рис. 1: Пространство Немыцкого

0.2 Нормальные пространства

Теорема 1. Метрическое простанство нормально

Доказательство.

• Докажем, что метрическое пространство хаусдорфово: Для этого надо доказать, что выполняется **Т2**:

Возьмём
$$x \neq y$$
, $\varepsilon \coloneqq \frac{\rho(x,y)}{2}$

$$B(x,\varepsilon) \cap B(y,\varepsilon) = \emptyset$$

(по неравенству треугольника)

• Регулярность:

$$x_0 \in X$$
, F – замкн. $\Longrightarrow \exists \rho(x_0, F) \coloneqq \inf_{y \in F} \rho(x, y) > 0$?

Допустим $\inf_{y \in F}(x_0, y) = 0$

$$\implies \exists y_n : \rho(x_0, y_n) \xrightarrow[n \to \infty]{} 0 \implies \forall \varepsilon > 0 \quad \exists N : \forall n > N \quad y_n \in B(x_0, \varepsilon) \implies x_0 \in \operatorname{Cl} \{y_n\} \subset \operatorname{Cl} F = F$$

$$arepsilon:=rac{
ho(x_0,F)}{2}, \qquad U_{x_0}=B(x_0,arepsilon)$$

$$U_F=\bigcup_{y\in F}B(y,arepsilon) ext{ - otkp.}$$

• T4

 F_1, F_2 – замкнутые, хотим, чтобы $ho(F_1, F_2)$ могло равняться нулю

Пример. \mathbb{R}^2 , обычная топология

$$\forall x \in F_1 \quad \exists \, \varepsilon_x \coloneqq \frac{\rho(x, F_2)}{2} > 0$$

$$\forall y \in F_2 \quad \exists \, \varepsilon_y \coloneqq \frac{\rho(y, F_1)}{2} > 0$$

Возьмём $U_{F_1} \coloneqq \bigcup_{x \in F_1} B(x, \varepsilon_x), \qquad U_{F_2} \coloneqq \bigcup_{y \in F_2} B(y, \varepsilon_y)$

$$x \in U_{F_1} \cap U_{F_2} \implies z \in B(x, \varepsilon_x) \cap B(y, \varepsilon_y)$$

Пусть, НУО, $\varepsilon_x \ge \varepsilon_y \implies \rho(x,y) < 2\varepsilon_x = \rho(x,F_2)$ Вспомним, что $x \in F_1, y \in F_2$. Получили, что расстояние от x до некоторой точки фигуры F_2 больше, чем расстояние до самой F_2

Рис. 2: Доказательство Т2 для метрического пространства

Теорема 2. X – компактно и хаусдорфово $\implies X$ нормально

Замечание. Иногда, "компакт" = "хаусдорфово + компакт"

Доказательство.

• Докажем, что X регулярно Возьмём $x_0 \in X, \quad F$ – замкн. в X ($\Longrightarrow F$ компактно, в силу хаусдорфовости) В силу хаусдорфовости,

$$\forall y \in F \left\{ \begin{array}{l} \exists \, U_{x_0,y} - \text{otkp.} \\ \exists \, V_y - \text{otkp.} \end{array} \right\} : U_{x_0,y} \cap V_y = \emptyset$$

2

Возьмём $\{V_y\}_{y\in F}$ – открытое покрытие $\implies \exists y_1,...,y_n\in F$ $\{V_{y_i}\}$ – конечное подпокрытие F

$$U_{x_0} \coloneqq \bigcap_{i=1}^n U_{x_0,y_i}$$
 – откр. , $U_F \coloneqq \bigcap_{i=1}^n V_{y_i}$

• Нормальность:

 F_1, F_2 – замкнутые непересекающиеся множества Возьмём $x \in F_1$, U_x , V_x : $U_x \cap V_x = \emptyset$

$$\{U_x\}_{x\in F_1}$$
 – покр. $F_1 \implies \exists x_1,...,x_n \in F_1 : \{U_{x_i}\}_{i=1}^k$ – покр. F_1

$$U_{F_1} := \bigcup_{i=1}^n U_{x_i}, \qquad U_{F_2} := \bigcap_{i=1}^n V_{x_i}$$

Компактификация по Александрову (Павлу Сергеевичу) 0.3

Определение 1. X называется локально компактным, если $\forall x_0 \in X \quad \exists U_{x_0} : \operatorname{Cl} U_{x_0}$ – комп. (у любой точки есть окрестность с компактным замыканием)

Примеры.

- 1. \mathbb{R}^n локально компактно
- 2. О не локально компактно

Теорема 3 (Александрова). X локально компактно + хаусдорфово $\implies \exists \, \widehat{X} \coloneqq X \cup \{\infty\}$, X подпространство XX – комп. + хаусдорфово

Доказательство. По условию, $\widehat{X} = X \cup \{\infty\}$

Открытые в \widehat{X} :

- $U \not\ni \infty \implies U$ откр. в $\widehat{X} \iff U$ откр. в X
- $U \ni \infty \implies U$ откр. в $\widehat{X} \iff \widehat{X} \setminus U (= X \setminus U)$ компактно
- Докажем, что X подпространство \widehat{X} : Нужно доказать, что если $\infty \in U$, то $U \setminus \{\infty\}$ – откр. в X

$$X\setminus \left(U\setminus \set{\infty}\right)$$
 – комп. в $X\xrightarrow[X-\text{хаусд.}]{}X\setminus \left(U\setminus \set{\infty}\right)$ – замкн. $\implies U\setminus \set{\infty}$ – откр.

- \bullet Очевидно, что X компактно
- \bullet Докажем, что X хаусдорфово:

$$-x_0,y_0\in \widehat{X}\setminus \{\infty\}\implies \mathrm{OK}\ ($$
разделяем в $X)$

$$-x_0 \in \widehat{X} \setminus \{\infty\}, y_0 = \infty$$
:

$$\exists U_{x_0} \subset X : \operatorname{Cl} U_{x_0}$$
 – копм.

$$U_{y_0} \coloneqq X \setminus \operatorname{Cl} U_{x_0}$$
 – откр. в \widehat{X} и $cod.$ $y_0 = \infty$

Теорема 4 (Урысона (о функциональной делимости)). X – норм., F_1, F_2 – замкнутые непересекающиеся

множества

$$\implies$$
 \exists непр. $f:X \to \mathbb{R}: \left. \begin{cases} f \middle|_{F_1} = 0 \\ f \middle|_{F_2} = 1 \end{cases} \right.$

Доказательство. Без доказательства

Аксиома 1 (Т3.5).
$$\forall F_1, F_2$$
 – замкн. неперес. $\exists \, f: X \to \mathbb{R}$ – непр. $: \begin{cases} f \middle|_{F_1} = 0 \\ f \middle|_{F_2} = 1 \end{cases}$