第七次作业参考答案

By 梁文艺 朱映

第七次作业最大问题:

1. 证明要求完整清晰,不能模糊。特别是第二题,要写出存在一个有限证明序列,才能说明这是一个有限的集合

- 1. 求证 $\vdash p(x_1,\ldots,x_n)\Rightarrow \vdash p(p_1,\ldots,p_n)$,其中 p_1,\ldots,p_n 是任意的公式。证明:
 - 1. 可靠性: $\vdash p(x_1,\ldots,x_n) \Rightarrow \models p(x_1,\ldots,x_n)$
 - 2. 由于后式是永真式,和变元的真假无关,可得 $p(p_1,\ldots,p_n)$
 - 3. 完备性(或完全性): $\vdash p(p_1,\ldots,p_n) \Rightarrow \vdash p(p_1,\ldots,p_n)$ 得证。
- 2. 求证,若 $\Gamma \vDash p$,则定有 Γ 的有限子集 Σ ,使得 $\Sigma \vDash p$ 。

证明:

由L的完备性: $\Gamma \vdash p \Rightarrow \Gamma \vDash p$,

存在一个 p 从 Γ 的证明序列:

 $p_0, p_1, \ldots, p_{n-1}, p_n (=p)$

 $p_i \in \Gamma$ 或为公理,取 $p_i \in \Gamma$ 构成公式集 Σ ,则 $|\Sigma| \leq n$ 且 Σ 为 Γ 的子集;

即 $\Sigma \vdash p$ 且 Σ 为 Γ 的有限子集,由可靠性得 $\Sigma \vDash p$,得证。