1. Statistics and SVD

See Section 7.3 of Strang's book.

Suppose we do n trials of an experiment, and each trial results in a measurement $v_i \in \mathbb{R}^m$. We obtain a data set which is an n-tuple of m-vectors: v_1, \ldots, v_n .

• Example. On n different days, we measure the temperature and humidity. The measurement for day i is a two-vector $\mathbf{v}_i = (\text{temp on day } i, \text{humidity on day } i) \in \mathbb{R}^2$.

The average measurement is

$$\mu = \frac{\boldsymbol{v}_1 + \dots + \boldsymbol{v}_n}{n}.$$

Let A be the $m \times n$ matrix whose i-th column is $v_i - \mu$. (So each row of A sums to zero, by an earlier homework problem.) Then

$$S = \frac{AA^{\top}}{n-1}$$

$$= \frac{(\boldsymbol{v}_1 - \boldsymbol{\mu})(\boldsymbol{v}_1 - \boldsymbol{\mu})^{\top} + \dots + (\boldsymbol{v}_n - \boldsymbol{\mu})(\boldsymbol{v}_n - \boldsymbol{\mu})^{\top}}{n-1}$$

is the sample covariance matrix. The entry $S_{j_1j_2}$ is large if the j_1 and j_2 coordinates tend to have the same sign, and it is negative if these coordinates tend to have the opposite sign. The diagonal entry S_{jj} is a sum of squares, hence positive; it measures how much the j-th coordinate tends to vary.

• In the previous example, S would be a 2×2 matrix. The entries S_{11} and S_{22} tell you the variance of the temperature and humidity, respectively. The entry S_{12} tells you how temperature correlates with humidity.

The 'correlation' between two measured variables, such as temperature and humidity, is more frequently expressed by drawing a 'line of best fit' on a scatter plot. The SVD of A will tell us how to do this.

The matrix S is symmetric and positive definite, so it admits an orthonormal basis of eigenvectors, each with positive eigenvalue. Let $u_1, u_2, \ldots, \in \mathbb{R}^m$ be the eigenvectors, and let $\sigma_1^2 > \sigma_2^2 > \cdots$ be the corresponding eigenvalues.

- Relation with the SVD of A. The vector u_i is also a singular vector of A with singular value $(n-1)\sigma_i$. This relationship between the SVD of a matrix A and the eigendecomposition of the matrix AA^{\top} is used in one of the proofs that an SVD always exists.
- The statistical meaning. What do these eigenvectors and eigenvalues tell us? Consider the following 'multivariate Gaussian distribution':
 - (1) On step i, choose new values for the scalars z_1, z_2, \ldots based on a bell curve centered at zero with variance 1.
 - (2) Set $\mathbf{v}_i = \mu + z_1 \sigma_1 \mathbf{u}_1 + z_2 \sigma_2 \mathbf{u}_2 + \cdots$

The 'total variance' is $\sigma_1^2 + \sigma_2^2 + \cdots$, and the 'amount of variance explained by u_i ' is σ_i^2 .

The assertion is that our measurements v_i 'look like' they are generated in this way.

Since σ_1 is relatively large, u_1 is the direction in which the data fluctuate away from the mean μ most wildly. The line through μ parallel to u_1 is the line of best fit (which minimizes the *perpendicular* distances to the points in the data set).

¹We will briefly discuss why the denominator is n-1 and not n, as would usually be the case for a statistical average.

We will look at the following example:

$$A = \begin{pmatrix} 6 & 5 & -4 & -3 \\ 3 & 4 & -5 & -6 \end{pmatrix}.$$

2. Fourier series

See Section 10.5 in Strang's book.

We focus on Example 3 from that section.

• Problem. Express the square wave function

$$f(x) = \begin{cases} 1 & \text{if } \lfloor \frac{x}{\pi} \rfloor \text{ is even} \\ -1 & \text{otherwise} \end{cases}$$

as an infinite linear combination of the functions $\sin(x)$, $\cos(x)$, $\sin(2x)$, $\cos(2x)$,

The crux of the computation is the integral

$$\int_0^{2\pi} f(x) \sin(nx) dx = \int_0^{\pi} \sin(nx) dx - \int_{\pi}^{2\pi} \sin(nx) dx$$

$$= \left[-\frac{1}{n} \cos(nx) \right]_{x=0}^{\pi} - \left[-\frac{1}{n} \cos(nx) \right]_{x=\pi}^{2\pi}$$

$$= \begin{cases} \frac{4}{n} & \text{if } n \text{ is odd} \\ 0 & \text{otherwise.} \end{cases}$$

We also need the 'orthonormality' relations

$$\int_0^{2\pi} \sin(nx)\sin(mx) dx = \frac{1}{2} \left(\int_0^{2\pi} \cos((n-m)x) dx - \int_0^{2\pi} \cos((n+m)x) dx \right)$$
$$= \begin{cases} \pi & \text{if } n = m \\ 0 & \text{otherwise.} \end{cases}$$

assuming that n and m are positive integers.

Once we find the answer for f(x), taking the derivatives gives the Taylor series for f'(x), which is an infinite sum of δ -functions.

Another phenomenon to ponder: (pointwise) multiplication by $\sin(x)$ yields a linear map (functions with period 2π) \rightarrow (functions with period 2π)

which is not invertible, but has nullspace = $\{0\}$. Hence, some of the facts we learned in the finite-dimensional setting break down in this infinite-dimensional vector space.