第八周周-作业 4月20日

Section 44

4. (a. Assume a(1-3x+2x) + b(1+x+4x2) + c(1-7x)=0

Then a+b+c=0 (1 | 1 | 0) -3a+b-7c=0 (3 | -3 | -7 | 0) 2a+4b=0 (2 4 0 0)

According to Gaussian Elimination:

Then (1-3x+2x2), (1+x+4x2), (1-7x) are linear dependent.

So (a) is not a basis for P2

(b). Assume a(4+ bx + x2) + b(-1+4x + 2x2) + c(5+2x-x2) =0

Then 4a-b+sc=0 4a-b+5c=0 (4-1 5 0 ba+4b+2c=0 (6 4 2 0

Then $(4+6x+x^2)$, $(-1+4x+2x^2)$, $(5+2x-x^2)$ are linear dependent

So (b) is not a basis for P2

(C) Assume $a(1+x+x^2) + b(x+x^2) + cx^2 = 0$ Then a = 0 $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & + b & = 0 & \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$

According to Gaussian Elimination (100:0)

So (c) is a basis for P2

(d). Assume
$$a(-4+\pi+3x^2) + b(6+5x+2x^2) + c(8+4\pi+x^2) = 0$$

Then
$$-4a + 6b + 8c = 0$$

$$a + 5b + 4c = 0$$

$$3a + 2b + c = 0$$

$$3a + 2b + c = 0$$

$$S_0 = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$$
 is not a basis for V .

(b).
$$\vec{U}_1 = \cos^2 x$$
 $\vec{U}_2 = \sin^2 x$

$$S = \{\vec{u}_1, \vec{u}_2\}$$
 is a basis for V .

V A = (an ans) & M 22

Which shows Maxx = span { II, IZ, IB, I4}

18. Yes, $\vec{v}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\vec{v}_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $\vec{v}_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\vec{v}_4 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

So there is a basis for M22 consisting of invertible matrices.

det (1) = 1 fo det (1) = -1 fo det (1) = -1 fo det (1) = -1 fo : 1, 1, 1, 1, 1, 1, 1, 1 are invertible matrices.

 $A = \frac{1}{2} \left[a_{11} \cdot \left(\vec{V}_{1} + \vec{U}_{2} \right) + a_{12} \cdot \left(\vec{V}_{3} + \vec{U}_{4} \right) + a_{13} \cdot \left(\vec{V}_{3} - \vec{V}_{4} \right) + a_{22} \cdot \left(\vec{V}_{1} - \vec{V}_{3} \right) \right] = \frac{a_{11} + a_{22}}{2} \cdot \vec{V}_{1} + \frac{a_{11} - a_{22}}{2} \cdot \vec{V}_{2} + \frac{a_{12} + a_{23}}{2} \cdot \vec{V}_{3} + \frac{a_{12} - a_{23}}{2} \cdot \vec{V}_{4} + \frac{a_{13} - a_{23}}{2} \cdot \vec{V}_{3} + \frac{a_{13} - a_{23}}{2} \cdot \vec{V}_{4} + \frac{a_{13} - a_{23}}{2} \cdot \vec{V}_{3} + \frac{a_{13} - a_{23}}{2} \cdot \vec{V}_{4} + \frac{a_{13} - a_{23}}{2} \cdot \vec{V}_{4} + \frac{a_{13} - a_{23}}{2} \cdot \vec{V}_{3} + \frac{a_{13} - a_{23}}{2} \cdot \vec{V}_{4} + \frac{a_{13} - a_{23}}{2} \cdot$

Section 45
4. 1/3/1 + 1/3 = 0
24, -6 1/2 1/2 2/3 =0
3x1 - 9x2 + 3x3 =0
Basis: (3,1,0) (-1.0,1) dimension = 2
8. (a). dimension = 3
1b) dimension = 2
c). dimension = 1
9. (a). dimension = n
(b). dimension = $\frac{\Lambda(n+1)}{2}$
(c). dimension = $\frac{n(x+y)}{\lambda}$

第八周周三作业 4月22日.

$$|\mathcal{L}(\alpha)| \vec{V}_3 = \vec{V}_1 \times \vec{V}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -1 & 2 & 3 \end{vmatrix} = 2\vec{i} + |\vec{j}| + o\vec{k} = (2,1,0)$$

(b).
$$\vec{V}_3 = \vec{V}_1 \times \vec{V}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 0 \end{vmatrix} = 2\vec{i} + 2\vec{j} + 4\vec{k} = (2, 2, 4)$$

$$V n \in \mathbb{N}, \quad \text{Assume } F_0 = 1 \quad F_1 = x \quad \cdots \quad F_n = x^n$$

$$|V(x_0)| = 1 \quad x \quad x^n \quad | \quad = 1 \quad x^n \quad | \quad =$$

$$W(n) = \begin{bmatrix} 1 & x & x^2 & \cdots & x^n \\ 0 & 1 & 2x & \cdots & n \cdot x^{n-1} \\ 0 & 0 & 2 & \cdots & n \cdot n \cdot x^{n-1} \\ \vdots & & & & & & & \\ \vdots & & & & & & \\ \end{bmatrix} = (n!) \cdot [(n-1)!] \cdot \cdots \cdot 2 \cdot |> 0$$

(b). Assume
$$F(-\infty,+\infty)$$
 is finite-dimensional and $dim(F)=m$.

Then if
$$n > m+1$$
, we can find $n+1$ linearly independent vectors in $F(-\infty, +\infty)$

$$\therefore \exists n > N_1$$
 and $n \in N_1$ x^n can't be a linear combination of $C(\cdot \bullet, \cdot \bullet)$ \therefore The assumption is not right.
So $C(\cdot \bullet, \cdot \bullet)$ is infinite - dimensional vector space

②Assume
$$C^{m}(-\infty, +\infty)$$
 in finite - dimensional vector space and dim $(C^{m}) = N_{\perp}$

And a basis for
$$C^m = \{f_1, \dots f_{N_n}\}$$

We can easily find $\exists n > N_2$ $f_{m,n} = x^n$ can't be a linear combination of C^m So the assumption is not right.

⊕. Assume C[∞](-∞, +∞) in finite - dimensional vector space and dim (C[∞]) = N₃

So C(-00,+00), C^m(-00,+00). (°(-00,+00) are infinite-dimsional vector space.

And a basis for $C^{\infty} = \{f_1, \dots f_{N_3}\}$

We also can easily find $\exists n > N_b$ $f_{M_b n} = x^A$ $A = \{f, f_b, \dots, f_{M_b}, f_{M_b n}\}$ $W(A) \neq 0$ for any $n \in R$.

So C[∞](-m. +∞) is infinite-dimsional vector space.

So the assumption is not right.

So $C^m(-\infty, +\infty)$ is infinite-dimsional vector space.

Section 4.6

4. Assume A = a A1 + b A2 + c A3 + d A4

d = 3

[4] = (2,1)

[4] = (-3, 4)

[u],]; = (= 1, =)

(b). $\vec{U}_{i} = \frac{4}{11} \vec{U}_{i}' + (-\frac{1}{11}) \vec{U}_{i}' \qquad [\vec{U}_{i}]_{B}' = (\frac{4}{11}, -\frac{1}{11})$

 $[\hat{W}]_{a'} = P_{B \rightarrow a'} [W]_{B} = \begin{bmatrix} -\frac{a}{11} \\ -\frac{a}{11} \end{bmatrix}$

ld). 成= 3대 - 5대 = 3(유대-뉴대) - 5(유대+큐대) = -휴대 - 유교

u₁ = (1,0) u₁ = (0,1)

:. Ps+B = [1 1 1 1]

[v], = [-3]

 $|\vec{k}|_{g'} = \begin{bmatrix} -\frac{3}{4} \\ -\frac{\alpha}{4} \end{bmatrix}$ The same as (c).

a+ b

ui = -3u + 4u

 $P_{B'\to B} = \begin{pmatrix} 2 & -3 \\ 1 & 4 \end{pmatrix}$

 $\vec{U}_{2} = \frac{\lambda}{11} \vec{u}_{1}^{2} + \frac{\lambda}{11} \vec{u}_{2}^{2}$

 $P_{\mathbf{B} \rightarrow \mathbf{B}'} = \begin{pmatrix} \frac{4}{11} & \frac{3}{11} \\ -\frac{1}{11} & \frac{3}{11} \end{pmatrix}$

ω. [成]_B=(3,-5)

So [A] = (-1, 1, -1, 3)

6. (a). $\vec{u}_1' = 2\vec{u}_1 + \vec{u}_2$

12. (a), S= { \vec{u}_1, \vec{u}_2}

[1], = []

(-1) rowo towa

10WO x 1

Pa+s = [1 4]

(c)
$$P_{\theta \Rightarrow S} P_{S \Rightarrow B} = \begin{bmatrix} 1 & -5 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} \frac{4}{11} & \frac{3}{11} \\ -\frac{1}{11} & \frac{1}{11} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$P_{S \Rightarrow B} P_{\theta \Rightarrow S} = \begin{bmatrix} \frac{1}{11} & \frac{1}{11} \\ -\frac{1}{11} & \frac{1}{11} \end{bmatrix} \begin{bmatrix} 1 & -\frac{3}{11} \\ 1 & \frac{1}{11} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
So $P_{S \Rightarrow B} = P_{S \Rightarrow B} = P_{S \Rightarrow C} = P_{$

Pose Pass =
$$\begin{bmatrix} \frac{1}{11} & \frac{1}{11} \end{bmatrix} \begin{bmatrix} \frac{1}{1} & \frac{3}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{1} & 0 \end{bmatrix}$$
So Pase and Pass are inverses of an

So Poss =
$$\begin{bmatrix} -\frac{1}{11} & \frac{1}{11} \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

So Poss and Poss are inverses of one another.
2a-3b=5
Ul). Assume $\vec{W} = a\vec{V}_1 + b\vec{V}_2$. Then $a + 4b = -3$

So
$$R_{998}$$
 and R_{999} are inverses of one ul). Assume $\vec{w} = \vec{a} \cdot \vec{l} + \vec{b} \cdot \vec{l}$. Then \vec{a}

(e) [w]_{s=}[-s]

Page Page =
$$\begin{bmatrix} -\frac{1}{11} & \frac{1}{11} \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

So Page and Page inverses of one another.
2a-3b=5
d). Assume $\vec{w} = a \vec{l}_1 + b \vec{l}_2$. Then $a + 4b = -3$

 $[\vec{W}]_{B} = \beta_{S+B} [\vec{W}]_{S} = \begin{bmatrix} \frac{1}{11} & \frac{1}{11} \\ \frac{1}{11} & \frac{1}{11} \end{bmatrix} \begin{bmatrix} \frac{3}{11} & \frac{1}{11} \\ \frac{1}{11} & \frac{1}{11} \end{bmatrix}$

So Room and Poos are inverses of one d). Assume
$$\vec{w} = a \vec{v}_1 + b \vec{v}_2$$
. Then \vec{v}_3

we have a=1 b=-1

