Algorithmics of Dynamic Well-Structured Graphs

Marek Sokołowski

16 October 2025

n vertices, m edges

n vertices, m edgespeople relationships

n vertices, *m* edges intersections streets

n vertices, m edges

n vertices, m edges

MAXIMUM MATCHING

n vertices, m edges

MAXIMUM MATCHING

Easy! [Edmonds '61]

n vertices, m edges

MAXIMUM MATCHING

Easy! [Edmonds '61]

MAXIMUM INDEPENDENT SET

n vertices, m edges

MAXIMUM MATCHING

Easy! [Edmonds '61]

MAXIMUM INDEPENDENT SET

NP-hard! [Cook '71, Karp '72, Levin '73]

MAXIMUM INDEPENDENT SET is NP-hard in general... But becomes easy on trees!

Question

Maybe some hard problems can be solved efficiently on more general tree-like graphs?

tree decomposition

• Each vertex in a non-empty connected subgraph of the decomposition

• Each vertex in a non-empty connected subgraph of the decomposition

- Each vertex in a non-empty connected subgraph of the decomposition
- Each edge $uv \Longrightarrow$ both u and v in some common bag of the decomposition

- Each vertex in a non-empty connected subgraph of the decomposition
- Each **edge** $uv \Longrightarrow$ both u and v in some common bag of the decomposition

- Each vertex in a non-empty connected subgraph of the decomposition
- Each edge $uv \Longrightarrow$ both u and v in some common bag of the decomposition
- Width: maximum bag size, minus 1

- Each vertex in a non-empty connected subgraph of the decomposition
- Each edge $uv \Longrightarrow$ both u and v in some common bag of the decomposition
- Width: maximum bag size, minus 1

- Each vertex in a non-empty connected subgraph of the decomposition
- Each edge $uv \Longrightarrow$ both u and v in some common bag of the decomposition
- Width: maximum bag size, minus 1
- Treewidth: minimum possible width of a tree decomposition

Marek Sokołowski Dynamic Well-Structured Graphs 16 October 2025

Treewidth is great!

Given: n-vertex graph G and its tree decomposition of width w

Then: MAXIMUM INDEPENDENT SET can be solved in time $2^{\mathcal{O}(w)} \cdot n$

Treewidth is great!

Given: n-vertex graph G and its tree decomposition of width w

Then: MAXIMUM INDEPENDENT SET can be solved in time $2^{\mathcal{O}(w)} \cdot n$

Problem: Usually we don't have a tree decomposition of a graph beforehand.

Treewidth is great!

Given: n-vertex graph G and its tree decomposition of width w

Then: MAXIMUM INDEPENDENT SET can be solved in time $2^{\mathcal{O}(w)} \cdot n$

Problem: Usually we don't have a tree decomposition of a graph beforehand.

Tree decomposition algorithms

Treewidth is great!

Given: n-vertex graph G and its tree decomposition of width w

Then: MAXIMUM INDEPENDENT SET can be solved in time $2^{\mathcal{O}(w)} \cdot n$

Problem: Usually we don't have a tree decomposition of a graph beforehand.

Tree decomposition algorithms

	Width guarantee	Time
[Robertson, Seymour '86]	4w + 3	$2^{\mathcal{O}(w)} \cdot n^2$

Treewidth is great!

Given: n-vertex graph G and its tree decomposition of width w

Then: MAXIMUM INDEPENDENT SET can be solved in time $2^{\mathcal{O}(w)} \cdot n$

Problem: Usually we don't have a tree decomposition of a graph beforehand.

Tree decomposition algorithms

	Width guarantee	Time
[Robertson, Seymour '86]	4w + 3	$2^{\mathcal{O}(w)} \cdot n^2$
[Bodlaender '96]	W	$2^{\mathcal{O}(w^3)} \cdot n$

Treewidth is great!

Given: n-vertex graph G and its tree decomposition of width w

Then: MAXIMUM INDEPENDENT SET can be solved in time $2^{\mathcal{O}(w)} \cdot n$

Problem: Usually we don't have a tree decomposition of a graph beforehand.

Tree decomposition algorithms

	Width guarantee	Time
[Robertson, Seymour '86]	4w + 3	$2^{\mathcal{O}(w)} \cdot n^2$
[Bodlaender '96]	W	$2^{\mathcal{O}(w^3)} \cdot n$
[Bodlaender et al. '16]	5w + 4	$2^{\mathcal{O}(w)} \cdot n$

Treewidth is great!

Given: n-vertex graph G and its tree decomposition of width w

Then: MAXIMUM INDEPENDENT SET can be solved in time $2^{\mathcal{O}(w)} \cdot n$

Problem: Usually we don't have a tree decomposition of a graph beforehand.

Tree decomposition algorithms

	Width guarantee	Time
[Robertson, Seymour '86]	4w + 3	$2^{\mathcal{O}(w)} \cdot n^2$
[Bodlaender '96]	W	$2^{\mathcal{O}(w^3)} \cdot n$
[Bodlaender et al. '16]	5w + 4	$2^{\mathcal{O}(w)} \cdot n$
[Korhonen '21]	2w + 1	$2^{\mathcal{O}(w)} \cdot n$

Treewidth is great!

Given: n-vertex graph G and its tree decomposition of width w

Then: MAXIMUM INDEPENDENT SET can be solved in time $2^{\mathcal{O}(w)} \cdot n$

Problem: Usually we don't have a tree decomposition of a graph beforehand.

Tree decomposition algorithms

	Width guarantee	Time
[Robertson, Seymour '86]	4w + 3	$2^{\mathcal{O}(w)} \cdot n^2$
[Bodlaender '96]	W	$2^{\mathcal{O}(w^3)} \cdot n$
[Bodlaender et al. '16]	5w + 4	$2^{\mathcal{O}(w)} \cdot n$
[Korhonen '21]	2w + 1	$2^{\mathcal{O}(w)} \cdot n$
[Korhonen, Lokshtanov '23]	W	$2^{\mathcal{O}(w^2)} \cdot n$

Suddenly...

Problem

How to maintain tree decompositions of dynamic graphs?

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

DYNAMIC TREEWIDTH

Main result

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

DYNAMIC TREEWIDTH

Main result

In a **dynamic graph** G with n vertices of treewidth $w \dots$

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

DYNAMIC TREEWIDTH

Main result

In a dynamic graph G with n vertices of treewidth $w \dots$

We maintain: a tree decomposition of G of width at most 6w + 5...

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

DYNAMIC TREEWIDTH

Main result

In a **dynamic graph** G with n vertices of treewidth $w \dots$

We maintain: a tree decomposition of G of width at most 6w + 5...

Initialization time: $2^{w^{\mathcal{O}(1)}} \cdot n$

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

DYNAMIC TREEWIDTH

Main result

In a dynamic graph G with n vertices of treewidth $w \dots$

We maintain: a tree decomposition of G of width at most 6w + 5...

Initialization time: $2^{w^{\mathcal{O}(1)}} \cdot n$

Update time: $2^{w^{\mathcal{O}(1)} \cdot \sqrt{\log n \log \log n}}$ (amortized)

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

DYNAMIC TREEWIDTH

Main result

In a dynamic graph G with n vertices of treewidth $w \dots$

We maintain: a tree decomposition of G of width at most 6w + 5...

Initialization time: $2^{w^{\mathcal{O}(1)}} \cdot n$

Update time: $2^{w^{\mathcal{O}(1)} \cdot \sqrt{\log n \log \log n}}$ (amortized)

$$\log^{1000} n \ll 2^{\sqrt{\log n \log \log n}} \ll n^{0.001}$$

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

DYNAMIC TREEWIDTH

Main result

In a dynamic graph G with n vertices of treewidth $w \dots$

We maintain: a tree decomposition of G of width at most 6w + 5...

Initialization time: $2^{w^{\mathcal{O}(1)}} \cdot n$

Update time: $2^{w^{\mathcal{O}(1)} \cdot \sqrt{\log n \log \log n}}$ (amortized)

Extension

We can also dynamically solve any decision/optimization problem expressible in $CMSO_2$ logic.

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

DYNAMIC TREEWIDTH

Main result

In a dynamic graph G with n vertices of treewidth $w \dots$

We maintain: a tree decomposition of *G* of width at most 6w + 5...

Initialization time: $2^{w^{\mathcal{O}(1)}} \cdot n$

Update time: $2^{w^{\mathcal{O}(1)} \cdot \sqrt{\log n \log \log n}}$ (amortized)

Extension

We can also dynamically solve any decision/optimization problem expressible in CMSO₂ logic.

MAX MATCHING, MAX INDEPENDENT SET, LONGEST PATH, HAMILTONIAN CYCLE...

Dynamic Treewidth: Follow-Up

Korhonen [FOCS '25]

DYNAMIC TREEWIDTH IN LOGARITHMIC TIME

Follow-up result

In a **dynamic graph** G with n vertices of treewidth $w \dots$

We maintain: a tree decomposition of *G* of width at most 9w + 8...

Initialization time: $2^{\mathcal{O}(w)} \cdot n$

Update time: $2^{\mathcal{O}(w)} \cdot \log n$ (amortized)

Extension

We can also dynamically solve any decision/optimization problem expressible in CMSO₂ logic.

MAX MATCHING, MAX INDEPENDENT SET, LONGEST PATH, HAMILTONIAN CYCLE...

x, y biconnected \iff in the same connected component, not separated by another vertex

16 October 2025

Holm, Nadara, Rotenberg, Sokołowski [STOC '25]

Fully Dynamic Biconnectivity in $\widetilde{O}(\log^2 n)$ Time

	Update/Query Time	Deterministic?
[Henzinger '92]	$\mathcal{O}(\mathit{m}^{2/3})$	yes

Holm, Nadara, Rotenberg, **Sokołowski** [STOC '25] FULLY DYNAMIC BICONNECTIVITY IN $\widetilde{O}(\log^2 n)$ TIME

	Update/Query Time	Deterministic?
[Henzinger '92]	$\mathcal{O}(\mathit{m}^{2/3})$	yes
[Eppstein et al. '92]	$\mathcal{O}(n^{2/3})$	yes

	Update/Query Time	Deterministic?
[Henzinger '92]	$\mathcal{O}(m^{2/3})$	yes
[Eppstein et al. '92]	$\mathcal{O}(n^{2/3})$	yes
[Henzinger '00]	$\mathcal{O}(n^{1/2})$	yes

	Update/Query Time	Deterministic?
[Henzinger '92]	$\mathcal{O}(\mathit{m}^{2/3})$	yes
[Eppstein et al. '92]	$\mathcal{O}(n^{2/3})$	yes
[Henzinger '00]	$\mathcal{O}(n^{1/2})$	yes
[Henzinger, King '95]	$\mathcal{O}(\log^4 n)$	no

	Update/Query Time	Deterministic?
[Henzinger '92]	$\mathcal{O}(\mathit{m}^{2/3})$	yes
[Eppstein et al. '92]	$\mathcal{O}(n^{2/3})$	yes
[Henzinger '00]	$\mathcal{O}(n^{1/2})$	yes
[Henzinger, King '95]	$\mathcal{O}(\log^4 n)$	no
[Holm, de Lichtenberg, Thorup '98]	$\mathcal{O}(\log^5 n)$	yes

	Update/Query Time	Deterministic?
[Henzinger '92]	$\mathcal{O}(\mathit{m}^{2/3})$	yes
[Eppstein et al. '92]	$\mathcal{O}(n^{2/3})$	yes
[Henzinger '00]	$\mathcal{O}(n^{1/2})$	yes
[Henzinger, King '95]	$\mathcal{O}(\log^4 n)$	no
[Holm, de Lichtenberg, Thorup '98]	$\mathcal{O}(\log^5 n)$	yes
[Thorup '00]	$\mathcal{O}(\log^4 n \log \log n)$	yes

	Update/Query Time	Deterministic?
[Henzinger '92]	$\mathcal{O}(\mathit{m}^{2/3})$	yes
[Eppstein et al. '92]	$\mathcal{O}(n^{2/3})$	yes
[Henzinger '00]	$\mathcal{O}(n^{1/2})$	yes
[Henzinger, King '95]	$\mathcal{O}(\log^4 n)$	no
[Holm, de Lichtenberg, Thorup '98]	$\mathcal{O}(\log^5 n)$	yes
[Thorup '00]	$\mathcal{O}(\log^4 n \log \log n)$	yes
our work	$\mathcal{O}(\log^2 n \log^2 \log n)$	yes

THANK YOU!

EXTRA SLIDES: DYNAMIC RANKWIDTH

Issue: treewidth applicable only to sparse graphs...

Issue: treewidth applicable only to sparse graphs...

trees

Issue: treewidth applicable only to **sparse** graphs...

But there also exist dense tree-like graphs!

complements of trees

Issue: treewidth applicable only to sparse graphs...

complements of trees

Issue: treewidth applicable only to sparse graphs...

But there also exist dense tree-like graphs!

complements of trees

trees

Issue: treewidth applicable only to sparse graphs...

complements of trees

squares of trees

Issue: treewidth applicable only to sparse graphs...

But there also exist dense tree-like graphs!

Solution

Equivalent notions of cliquewidth [Courcelle et al. '93] and rankwidth [Oum, Seymour '06].

Issue: treewidth applicable only to sparse graphs...

But there also exist dense tree-like graphs!

Solution

Equivalent notions of cliquewidth [Courcelle et al. '93] and rankwidth [Oum, Seymour '06].

Rankwidth is great!

Given: n-vertex graph G and its **rank decomposition** of width w

Then: MAXIMUM INDEPENDENT SET can be solved in time $2^{f(w)} \cdot n$

Issue: treewidth applicable only to sparse graphs...

But there also exist dense tree-like graphs!

Solution

Equivalent notions of cliquewidth [Courcelle et al. '93] and rankwidth [Oum, Seymour '06].

Rankwidth is great!

Given: *n*-vertex graph G and its **rank decomposition** of width w **Then:** MAXIMUM INDEPENDENT SET can be solved in time $2^{f(w)} \cdot n$

Also Max Clique, Min Dominating Set, Longest Induced Path, ...

Rankwidth

Rankwidth is great!

Given: n-vertex graph G and its **rank decomposition** of width w

Then: Maximum Independent Set can be solved in time $2^{f(w)} \cdot n$

Same problem: Need to compute a rank decomposition.

Rankwidth

Rankwidth is great!

Given: n-vertex graph G and its **rank decomposition** of width w **Then:** MAXIMUM INDEPENDENT SET can be solved in time $2^{f(w)} \cdot n$

Same problem: Need to compute a rank decomposition.

Rank decomposition algorithms

Given an n-vertex graph G of rankwidth w, we can **find** a rank decomposition of G...

	Width guarantee	Time
[Oum, Seymour '06]	3w + 1	$2^{\mathcal{O}(w)} \cdot n^9$
[Oum '08]	3w - 1	$f(w) \cdot n^3$
[Jeong, Kim, Oum '21]	W	$f(w) \cdot n^3$
[Fomin, Korhonen '22]	W	$f(w) \cdot n^2$

Korhonen, **Sokołowski** [STOC '24]

Almost-Linear Time Parameterized Algorithm for Rankwidth via Dynamic Rankwidth

Main result

Korhonen, Sokołowski [STOC '24]

Almost-Linear Time Parameterized Algorithm for Rankwidth via Dynamic Rankwidth

Main result

In a dynamic graph G with n vertices and m edges of rankwidth $w \dots$

Korhonen, Sokołowski [STOC '24]

Almost-Linear Time Parameterized Algorithm for Rankwidth via Dynamic Rankwidth

Main result

In a dynamic graph G with n vertices and m edges of rankwidth $w \dots$

We maintain: a rank decomposition of G of width at most $4w \dots$

Korhonen, Sokołowski [STOC '24]

Almost-Linear Time Parameterized Algorithm for Rankwidth via Dynamic Rankwidth

Main result

In a dynamic graph G with n vertices and m edges of rankwidth $w \dots$

We maintain: a rank decomposition of G of width at most $4w \dots$

Initialization time: $2^{f(w)} \cdot n \log^2 n$

Korhonen, Sokołowski [STOC '24]

ALMOST-LINEAR TIME PARAMETERIZED ALGORITHM FOR RANKWIDTH VIA DYNAMIC RANKWIDTH

Main result

In a dynamic graph G with n vertices and m edges of rankwidth $w \dots$

We maintain: a rank decomposition of G of width at most $4w \dots$

Initialization time: $2^{f(w)} \cdot n \log^2 n$

Update time: $2^{f(w)\cdot\sqrt{\log n\log\log n}}$ (amortized)

Korhonen, Sokołowski [STOC '24]

Almost-Linear Time Parameterized Algorithm for Rankwidth via Dynamic Rankwidth

Main result

In a dynamic graph G with n vertices and m edges of rankwidth $w \dots$

We maintain: a rank decomposition of G of width at most $4w \dots$

Initialization time: $2^{f(w)} \cdot n \log^2 n$

Update time: $2^{f(w)\cdot\sqrt{\log n\log\log n}}$ (amortized)

Extension

We can also dynamically solve any decision/optimization problem expressible in $CMSO_1$ logic.

Korhonen, Sokołowski [STOC '24]

Almost-Linear Time Parameterized Algorithm for Rankwidth via Dynamic Rankwidth

Main result

In a dynamic graph G with n vertices and m edges of rankwidth $w \dots$

We maintain: a rank decomposition of G of width at most $4w \dots$

Initialization time: $2^{f(w)} \cdot n \log^2 n$

Update time: $2^{f(w)\cdot\sqrt{\log n\log\log n}}$ (amortized)

Extension

We can also dynamically solve any decision/optimization problem expressible in $CMSO_1$ logic.

MAX CLIQUE, MAX INDEPENDENT SET, MIN DOMINATING SET, LONGEST PATH...

Rank decomposition algorithms

Given an n-vertex graph G of rankwidth w, we can **find** a rank decomposition of G...

	Width guarantee	Time
[Oum, Seymour '06]	3w + 1	$2^{\mathcal{O}(w)} \cdot n^9$
[Oum '08]	3w - 1	$f(w) \cdot n^3$
[Jeong, Kim, Oum '21]	W	$f(w) \cdot n^3$
[Fomin, Korhonen '22]	W	$f(w) \cdot n^2$

Rank decomposition algorithms

Given an n-vertex graph G of rankwidth w, we can **find** a rank decomposition of G...

	Width guarantee	Time
[Oum, Seymour '06]	3w + 1	$2^{\mathcal{O}(w)} \cdot n^9$
[Oum '08]	3w - 1	$f(w) \cdot n^3$
[Jeong, Kim, Oum '21]	W	$f(w) \cdot n^3$
[Fomin, Korhonen '22]	W	$f(w) \cdot n^2$
[Korhonen, Sokołowski '24]	W	$f(w)\cdot n^{1+o(1)}+\mathcal{O}(m)$