

Projet de robotique

Cahier des charges

Intelligence Artificielle L3 MIASHS

2024-2025

Projet réalisé par:

Yassmina CHERQAOUI Zoé LAGET-THOMAS Narta NEZIRAJ Basak UNAL

Sous la supervision de :

M. Damien Pellier

SOMMAIRE

1. Introduction	
Contexte	
2. Description de la demande	
Objectifs	
Produits du Projet	
Fonctions du Produit	
États d'Erreur et d'Ajustement	
3. Contraintes et Risques	
Contraintes	
Plan de mitigation	6
4. Déroulement du projet	
Ressources	

1. Introduction

1.1 Contexte

Ce projet est entrepris dans le cadre du cours complémentaire "L'introduction à l'intelligence artificielle" enseigné par M. Damien Pellier à l'Université Grenoble Alpes au sein du parcours L3 MIASHS. Les étudiants sont chargés de concevoir et de construire le programme d'un robot EV3 LeJOS en Lego. Le robot doit naviguer dans un espace délimité et clôturé par des murs en verre, en évitant les autres robots, et en collectant des palettes. Ce défi met notre groupe en compétition avec un autre, où le vainqueur est déterminé par le nombre de palettes collectées dans le temps le plus court possible.

2. Description de la demande

2.1 Objectifs

- Développer un robot capable de reconnaître et de manipuler des palettes, et d'éviter les obstacles (mur, robot), naviguer efficacement.
- Utiliser des algorithmes d'intelligence artificielle pour optimiser la collecte des palettes en prenant en compte les actions de l'autre robot.
- Programmer le robot en Java sur la plateforme EV3 LeJOS, en intégrant capteurs et moteurs, etc.

2.2 Produits du Projet

- Un logiciel en Java utilisant la plateforme EV3 LeJOS pour contrôler les capteurs, moteurs et algorithmes d'IA.
- Un rapport documentant les méthodes, résultats et performances du robot.

2.3 Fonctions du Produit

Fonction	Description	
1. Robot à l'arrêt	Le robot est en attente du signal de départ, initialisation des capteurs et des moteurs.	
2. Déplacement Initial (move)	Le robot quitte sa position de départ et avance pour commencer la recherche de palets.	
3. Recherche de Palet (Recherche)	Le robot fait un tour complet sur lui-même et scanne l'environnement avec le capteur ultrason. Il repère les palets disponibles et sélectionne le plus proche.	
4. Planification Vers le Palet (PlanifierChemin)	Calcul d'un chemin optimisé vers le palet sélectionné, en évitant les obstacles et les autres robots.	
5.Approcher du Palet (AvancerTantQuePalet)	Le robot suit le chemin planifié et ajuste sa trajectoire en fonction des détections de palets et d'obstacles.	
6.Saisir le Palet (PrendrePalet)	Le robot abaisse la pince, vérifie la position du palet avec un capteur tactile, et saisit le palet.	
7.Vérifier la Préhension (VérifierPalet)	Vérifie que le palet est bien saisi. Si ce n'est pas le cas, il tente de le ressaisir ou il change de stratégie.	
8. Se réorienter	Se mettre en position initial	
9. Avancer vers la Ligne Blanche (AvancerTantQueLigne)	Avance vers la ligne blanche en suivant le chemin planifié, ajuste sa trajectoire si nécessaire.	
10. Traverser la Ligne Blanche	Le robot s'assure de franchir la ligne blanche avec le palet et se positionne pour le déposer.	

11. Déposer le Palet (LacherPalet)	Relâche le palet au-delà de la ligne blanche en ouvrant la pince.
12. Planifier le Retour	Planifie le chemin le plus court pour retrouver un palet, en évitant le mur et le robot adverse.

-États d'Erreur et d'Ajustement

État d'Erreur	Condition	Action	Transition
1. Éviter Obstacle (EviterObstacle)	Si l'obstacle est un autre palet et que le robot a déjà un palet : Le robot ne peut pas prendre ce palet.	Le robot évite le palet et ajuste sa trajectoire pour se diriger vers la ligne blanche.	Le robot continue vers Avancer vers la Ligne Blanche pour déposer le palet qu'il transporte.
	Si l'obstacle est un autre robot : Le robot attend ou change de cible.	Le robot choisit une nouvelle cible ou attend que l'autre robot bouge.	Si le robot attend : Retour à l'état précédent, comme Recherche de Palet ou Avancer vers la Ligne Blanche, une fois l'autre robot parti. Si le robot change de cible : Retour à Recherche de Palet pour trouver un autre palet cible.
	Si l'obstacle est un mur : Le robot ne peut pas atteindre le palet.	Le robot doit recalculer un chemin.	Retour à Recalculer le Chemin pour trouver une nouvelle trajectoire contournant l'obstacle.

2. Recalculer le Chemin	Le chemin planifié est bloqué ou impossible à	Recalcule un chemin alternatif en prenant en compte les nouvelles positions	Retour à Planification Vers le Palet ou Se réorienter
	suivre.	des obstacles.	

3. Contraintes et Risques

Contraintes	Description
Temporelle (délai)	Le projet doit être achevé avant la fin décembre, imposant une gestion
_ , , ,	rigoureuse du temps et des échéances.
Imprévus techniques	Des imprévus sont attendus lors des phases de test, liés à la précision des
	capteurs et l'efficacité des algorithmes de navigation.
Capacité d'adaptation	Le projet nécessite une grande réactivité pour résoudre les problèmes
	techniques et ajuster rapidement les solutions face aux défis rencontrés.
Ressources matérielles	Le développement est limité aux composants du kit LEGO EV3, ce qui
	implique des restrictions sur la puissance des moteurs et la portée des capteurs.
Précision des actions	Le robot doit exécuter des tâches avec précision, dans le respect des règles* du
	jeu, notamment dans la reconnaissance et la manipulation des palettes,
	nécessitant des capteurs calibrés.

Risque	Possibilité	Impact	Description	Plan de mitigation
Retard sur les	Moyenne	Élevé	Des imprévus techniques ou	Mise en place d'un planning
délais			une mauvaise gestion du	détaillé avec des jalons
			temps pourraient entraîner	intermédiaires.
			des retards.	
				Révision hebdomadaire de
				l'avancement et ajustement des
				priorités si nécessaire.
Problèmes de	Élevée	Élevé	Les capteurs peuvent	Effectuer des tests réguliers de
précision des			manquer de précision,	calibration des capteurs et
capteurs			affectant la détection des	ajuster les algorithmes de
			palettes ou des obstacles.	détection pour améliorer la
				fiabilité.

Défaillance	Moyenne	Moyen	Les algorithmes de	Itérer et tester les algorithmes
des			navigation pourraient ne pas	en continu, intégrer des
algorithmes			gérer correctement les	solutions de secours pour gérer
de navigation			obstacles ou les chemins	les situations imprévues.
			complexes.	
Pannes	Faible	Moyen	Des pannes de capteurs ou	Solliciter M. Pellier pour avoir
matérielles			moteurs peuvent ralentir le	des composants de rechange et
(capteurs,			projet ou rendre le robot non	prévoir des tests matériels
moteurs, etc.)			fonctionnel.	réguliers pour identifier les
				défaillances à temps.
Manque	Moyenne	Élevé	Des imprévus techniques	Prévoir du temps dans le
d'adaptation			peuvent survenir, nécessitant	planning pour la gestion des
face aux			des ajustements rapides.	imprévus et renforcer la
imprévus				collaboration dans l'équipe
				pour résoudre les problèmes en
				groupe.
Complexité	Moyenne	Élevé	L'implémentation	Commencer par des solutions
des			d'algorithmes d'IA	simples, puis ajouter des
algorithmes			complexes pourrait ralentir le	couches d'intelligence au fur et
d'IA			développement et poser des	à mesure de l'avancement, en
			défis.	évitant les algorithmes trop
				complexes dès le départ.
Surcharge de	Moyenne	Moyen	La charge de travail pourrait	Répartition équitable des tâches
travail			dépasser les capacités de	dans l'équipe et suivi régulier
			l'équipe, entraînant une	de l'état de charge des membres
			baisse de qualité.	pour éviter les surcharges.

 $^{* \}underline{https://lig-membres.imag.fr/PPerso/membres/pellier/doku.php?id=teaching: ia:project_lego\#le_rapport_du_projet=teaching: ia:project_lego#le_rapport_du_projet=teaching: ia:project_lego#le_rapport_du_projet=teaching: ia:project_lego#le_rapport_du_projet=teaching: ia:project_lego#le_rapport_du_projet=teaching: ia:project_lego#le_rapport_du_projet=teaching: ia:project_lego#le_rapport_du_projet=teaching: ia:project_lego#le_rapport_du_project_lego#le_rapport_$

4. Déroulement du projet

4.1 Ressources

Humaines	Matérielles	Intellectuelles
- 4 étudiantes	-Robot Lego EV3	-Support de cours
-1 professeur encadrant	-Ordinateurs	-Ressources en ligne (Github, tutos, Lejos etc)

4.2 Planification

