Definition: Associativity

Associativity is a fundamental property of a Binary Operation that allows us to perform multiple operations without needing to specify the order of evaluation using parentheses.

Formal Definition

A binary operation * on a set S is **associative** if for all $a, b, c \in S$:

$$(a*b)*c = a*(b*c)$$

When this property holds, we can write a * b * c without ambiguity.

Extended Associativity

By induction, if * is associative, then for any elements a_1, a_2, \ldots, a_n : - All possible ways of parenthesizing $a_1*a_2*\cdots*a_n$ yield the same result - We can write the expression without parentheses

Examples of Associative Operations

Arithmetic

- **Addition**: (a + b) + c = a + (b + c)
- Multiplication: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

Set Theory

- Union: $(A \cup B) \cup C = A \cup (B \cup C)$
- Intersection: $(A \cap B) \cap C = A \cap (B \cap C)$

Logic

- **AND**: $(p \land q) \land r = p \land (q \land r)$
- **OR**: $(p \lor q) \lor r = p \lor (q \lor r)$

Functions

• Composition: $(f \circ g) \circ h = f \circ (g \circ h)$

Strings

• Concatenation: (AB)C = A(BC) for strings A, B, C

Non-Associative Operations

Arithmetic

• Subtraction: $(a-b)-c \neq a-(b-c)$

- Example: (5-3)-1=1 but 5-(3-1)=3

• **Division**: $(a \div b) \div c \neq a \div (b \div c)$

- Example: $(8 \div 4) \div 2 = 1$ but $8 \div (4 \div 2) = 4$

• Exponentiation: $(a^{b})^{c} \neq a^{(b^{c})}$

- Example: $(2^3)^2 = 64$ but $2^{(3^2)} = 512$

Vector Operations

• Cross product: $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times (\vec{b} \times \vec{c})$

Importance

1. **Algebraic Structures**: Associativity is required for:

• Semigroups

• Monoids

• Groups

• Rings (for both operations)

2. Computation: Allows flexible evaluation order for optimization

3. Generalization: Enables definition of products/sums over arbitrary index sets

Related Properties

• Commutativity: a * b = b * a (independent of associativity)

• Power associativity: $(x^m)^n = x^{mn}$ (weaker than full associativity)

• Alternative property: (aa)b = a(ab) and a(bb) = (ab)b (weaker)

Consequences

In structures with associativity: - Can define powers: $a^n = a*a*\dots*a$ (n times) - Can extend to infinite products (with appropriate convergence) - Matrix multiplication is associative, enabling efficient computation

Dependency Graph

Local dependency graph