- The resultant dispersion after allowing to settle for 2 h, was used to coat the inner wall of the throughly cleaned silica glass tubes with inner diameter of 17.8 mm. The outer wall of the tubes were properly masked with a suitable substance (parafilm).
- Coating was performed by dipping the silica glass tubes with a speed of 10 cm/min into the dispersion and lifting the same tube from the above dispersions with the same speed.
- The coated tubes were dried in air at 100°C for 1h.
- Oxidation at temperatures of 610°, 700°, 825° and 950°C with 2 passes of the burner at each temperature maintaining a constant He/O₂ ratio of 1:5.
- The dehydration was carried out at a temperature of 1000°C with a Cl₂: O₂ ratio of 2: 1 for a period of one hour.
- For sintering the temperature was increased in 4 steps up to 1220°C, each step consisting of 2 passes of the burner. GeCl₄ was added in controlled quantities during this stage with the input oxygen with two passes at 1220°C in order to adjust the NA of the preform / fibre.
- The tube was further heated to increase the temperature stepwise to 1600°C for complete sintering of the Ge, Eu & Al containing coated layer. During sintering O₂ and He flow was in the ratio of of 4:1.
- The collapsing was done in 3 steps in the usual manner with positive oxygen pressure of 4 psi inside the tube to avoid any deformation in shape or geometry and excessive evaporation of GeO₂ or other oxides from the core.
- The core:clad ratio before overcladding was 7.2:125. The NA measured in the fibre was 0.14 ± 0.01 .
- The presence of Eu in the core was established from the characteristic fluoresence at 624 nm in the preform sample when excited at 392 nm.
- Spectral attenuation was measured in the fibre from 400 nm to 800 nm.

EXAMPLE 4

Tb-doped fibre

- Amorphous silica microspheres synthesized by hydrolysis of tetraethoxyorthosilicate (Stober method) were dispersed in a solution of terbium nitrate (kept in an ice bath) in a proportion of 98.5 mol% SiO₂ and 1.5 mol% Tb₂O₃ under sonication followed by the addition of aqueous ammonia by known process. The resulting product was washed with water followed by centrifugation and drying under vacuum.
- A stable dispersion of composition 95.9SiO₂: 2GeO₂: 2Al₂O₃: 0.1 Tb₂O₃ (in equivalent oxide mol%) was prepared for the application of coating to the inner wall of high purity clear fused silica glass tubes.
- From the terbium oxide (Tb₂O₃) coated silica powders with 98.5 mol% SiO₂ and 1.5 mol% Tb₂O₃, a silica sol of composition of 95.9 equivalent mol% of SiO₂ and 0.1 equivalent mol% of Tb₂O₃ was prepared by diluting with a slica sol containing the desired amount of silicon tetraethoxide (TEOS).
- Silica-germania sol containing 2 equivalent oxide mol% of germanium ethoxide $[Ge(OC_2H_5)_4]$ was prepared through the hydrolysis of TEOS and $[Ge(OC_2H_5)_4]$ with water and hydrochloric acid in presence of a mixed solvent of propan-1-ol and butan-2-ol. pH of the above sol was 1.2 ± 0.05 .
- 2 equivalent oxide mol% of [Al(NO₃)₃.9H₂O] and 0.1 equivalent mol% of Tb₂O₃ through Tb₂O₃ coated SiO₂ powders (after baking at 100°C for 1h) were dispersed in the above silica sol under sonication (26 kHz) for 80 mins.
- The resultant dispersion after allowing to settle for 2 h, was used to coat the inner wall of the throughly cleaned silica glass tubes with inner diameter of 20.1 mm. The outer wall of the tubes were properely masked with a suitable substance (parafilm).
- Coating was performed by dipping the silica glass tubes with a speed of 10 cm/min into the dispersion and lifting the same tube from the above dispersions with the same speed.
- The coated tubes were dried in air at 150°C for 0.5h.

- Oxidation at temperatures of 720°, 825° and 950°C with 2 passes of the burner at each temperature maintaining a constant He/O₂ ratio of 1:6.
- The dehydration was carried out at a temperature of 950°C with a Cl₂: O₂ ratio of 2.5: 1 for a period of one hour.
- For sintering the temperature was increased in 3 steps up to 1200°C, each step consisting of 2 passes of the burner. GeCl₄ was added in controlled quantities with the input oxygen during the passes at 1200°C in order to adjust the NA of the preform / fibre.
- The tube was further heated to increase the temperature stepwise to 1650°C for complete sintering of the Ge, Tb & Al containing coated layer. During sintering O₂ and He flow was in the ratio of of 4:1.
- The collapsing was done in 4 steps in the usual manner with positive oxygen pressure of 4 psi inside the tube to avoid any deformation in shape or geometry and excessive evaporation of GeO₂ or other oxides from the core.
- Overcladding was done to reduce the core:clad ratio to 5:125. The NA measured in the fibre was 0.11 ± 0.01 .
- The preform sample was excited at 355 nm and 400 nm and characteristic fluoresence of Tb was measured at 533 nm and 580 nm.
- Spectral attenuation was measured in the fibre from 400 nm to 800 nm

Comparison of the characteristics of RE-doped fibre.fabricated at CGCRI using REcoated silica nano particles w.r.t. commercially available fibres for special applications

Parameters	Commercial fibre	CGCRI fibre
Clad composition	SiO_2 or SiO_2 - P_2O_5 -F	Same
Core composition	SiO_{2} +GeO ₂ +Al ₂ O ₃ + Er ₂ O ₃ (+P ₂ O ₅)	Same
Numerical aperture	0.15 - 0.30	0.10 - 0.30
Cut-off wavelength	850 - 1450 nm	850 - 1450 nm
RE-ion concentration	50 - 2000 ppm	50 - 4000 ppm
Fibre diameter	125 ± 1 μm	125 ± 1 μm
Coating diameter	245 µm (nominal)	245 μm
Mode Field Diameter	3.5 - 8.0 µm	3.0 - 8.0 μm