LeanIMT: An optimized IMT

Privacy & Scaling Explorations $\label{eq:June 5} \mbox{June 5, 2024}$

1 Abstract

Contents

1	Abstract	1
2	Introduction	
	2.1 Motivation	3
3	Merkle Tree	
	3.1 Incremental Merkle Tree	3
	3.2 Binary Tree	3
4	LeanIMT	3
	4.1 Definition	3
	4.2 Insertion	4
5	Benchmarks	4
6	Conslusions	4

2 Introduction

2.1 Motivation

3 Merkle Tree

3.1 Incremental Merkle Tree

An Incremental Merkle Tree (IMT) is a Merkle Tree (MT) designed to be updated efficiently.

3.2 Binary Tree

A Binary Tree is a tree data structure in which each node has at most two children, referred to as the left child and the right child.

TODO: Explain what is a Merkle tree and an Incremental Merkle Tree.

4 LeanIMT

4.1 Definition

The **LeanIMT** (Lean Incremental Merkle Tree) is a Binary IMT.

The LeanIMT has two properties:

- 1. Every node with two children is the hash of its two child nodes.
- 2. Every node with one child has the same value as its child node.

Example of a LeanIMT

$$T = (V, E)$$

$$V = \{a_0, a_1, a_2, H_0, H_1, H_2\}$$

$$E = \{(a_0, H_0), (a_1, H_0), (a_2, a_2), (H_0, H_1), (a_2, a_2)\}$$

4.2 Insertion

$$T = (V, E)$$

$$V = \{a_0, a_1, a_2, a_3, H_0, H_1, H_2\}$$

$$E = \{(a_0, H_0), (a_1, H_0), (a_2, H_1), (a_3, H_1), (H_0, H_2), (H_1, H_2)\}$$

Before inserting a_4

After inserting a_4

5 Benchmarks

6 Conslusions

This document is based on the work of [1].

References

[1] Barry Whitehat Kobi Gurkan Koh Wei Jie. "Semaphore: Zero-Knowledge Signaling on Ethereum". In: (2020). URL: https://semaphore.pse.dev/whitepaper-v1.pdf.