L'éolienne a le vent en poupe

Sébastien CHÉRY

Nino MORVAN--HECKEL

Encadrant: Romain DARDEVET

Introduction

Prototype réalisé en TPE

Éoliennes

Cx correspond au coefficient de trainer (qui qualifie la facilité avec lequel un objet peu ce déplacer dans un fluide)

Trainée différentielle

Savonius hélicoïdale

Flux d'air

Création des éoliennes et caractérisation de la soufflerie

Caractérisation de la première soufflerie

Soufflerie

Générateur

Anémomètre à hélice

Vitesse du vent en fonction de la tension d'alimentation

Mesure de la puissance

Soufflerie Générateur Multimètre

Eolienne

Moteur

Panneau de résistance

 $\eta_{global} = \frac{P_{elec\,r\'ecuper\'ee}}{P_{cinetique\,vent}}$

5,5m/s: $\eta_{global} \approx 0.21\%$

7,6 m/s : $\eta_{global} \approx 0.28\%$

Pour V_{vent} = 5,5 m/s : P_{elec}^{max} = 0,72 mW

Pour V_{vent} = 8 m/s: P_{elec}^{max} = 2,4 mW

Nouvelle maquette

Cadre

Éolienne

Plateau d'aimants

(12) Bobines

Fil de sortie

Cahier des charges:

- Tension générée maximum de 9 V

Les aimants sont faces à des bobines en mouvement, un phénomène d'induction apparait (loi de Faraday)

Caractérisation des aimants

Champ magnétique en fonction de la distance à l'aimant

$$B=f(1/r^3)$$

$$B(r) = \frac{\mu_0 M}{2\pi \times r^3}$$

$$M_{exp} \approx 3.55 A.m^2$$

Donnée constructeur: entre 3,5 et 3,6 $A. m^2$

Caractérisation du champ magnétique

Potence

Sonde teslamétrique

Ordinateur

Maquette

Carte d'acquisition

Teslamétre

Modélisation du champ magnétique $B_{(t)} = \widehat{B}\cos(6 \times \Omega \times t)$

Caractérisation du nombre de bobines

$$E_{ind}(t) = -\frac{d(N \times S \times B(t))}{dt}$$

$$N = \frac{U_{max}}{\widehat{B} \times S \times 6 \times 2\pi \times n} \Rightarrow N_{th} = 216 \text{ spires}$$

$$\Rightarrow N_{th} = 216 \text{ spires}$$

Schéma du bobinage d'un plot

$$R = \rho \times \frac{L}{S}$$

 $R_{th} = 1.2\Omega$

Bonus

20 spires par plot

N=240 spires

10 spires par plot supplémentaire

+120 spires

Pièce découpé

Premier bobinage

Avec Second bobinage (bonus)

Prise de la résistance induite dans les bobines

 $R_{exp} = 1.2\Omega$

Prise de la tension fournie

$$U_{th} = 9V$$

$$U_{exp} = 6V$$

Analyse des différences entre valeur théorique et valeur réelle

Idée 1: Influence du nombre d'aimants:

Analyse des différences entre valeur théorique et valeur réelle

Idée 2: Influence de la hauteur des bobines

Bilan de l'analyse des différences

Idée 3: répartition du champ non uniforme sur la surface des spires

Bilan: influence de la distance bobinages-aimants

Distance des bobinages	5 mm	10 mm	15 mm
Tension générée	6,1 V	3,0 V	1.5 V

Décomposition des différents rendements

Mesure du rendement global

Soufflerie

osiloscope

maquette

Résistance

multimètres

Puissance électrique générée maximale:

- Pour V_{vent} = 9,5 m/s : P_{elec}^{max} = 1,22 W

- Pour V_{vent} = 6,5 m/s : P_{elec}^{max} = 0,26 W

Puissance en fonction de la tension

Pour V_{vent} = 9,5m/s: $\eta_{global} \approx 9.1\%$

Pour V_{vent} = 6,5m/s: $\eta_{global} \approx 5.9\%$

Mesure du couple et de la vitesse de rotation

vitesse de rotation angulaire en fonction de la vitesse du

Couple en fonction de la vitesse du

+ Couple 1 + Couple 2

Bilan des différents rendements

Rendement du générateur :

$$\eta_{g\acute{e}n\acute{e}rateur} = \frac{P_{\acute{e}lectrique\ max}}{P_{\acute{e}lectrique\ max} + P_{joule}}$$

Bilan: pour V_{vent} = 9,5m/s (V_{vent} = 6,5m/s)

Conclusion Générale

MPPT (Maximum Power Point Tracking) : programme chargé de toujours exploiter le maximum de puissance récupérable.