Player Pricing: Using Performance to Predict Salaries in MLB

Ben Stan General Assembly DS 20 - Winter 2016

Motivation

- Baseball: History of statistics/analytics
- Various means of evaluating players and new metrics always being created
 - WAR (Wins above replacement)
 - DRS (Defensive runs saved)
 - EqA (Equivalent average or BA independent of park)
 - BABIP (Batting average on balls in play)
- Question: Is it possible to predict hitter salary based on performance and what are the most important factors? (Prediction + Interpretation)

Getting and cleaning data

- Used "The History of Baseball" data set from Kaggle
- Five sources: Batting, Fielding, AllStar, Salary, Player
- Considered player stats in 2014 and salaries in 2015
- Final feature set included

0	Games ((a)

- At bats (ab)
- o Runs (r)
- o Hits (h)
- Doubles (double)
- Triples (triple)
- Home runs (hr)
- o RBI (rbi)
- Walks (bb)
- Intentional walks (ibb)

- Batting average (ba)
- Slugging percentage (slg)
- On Base percentage (obp)
- Stolen bases (sb)
- Caught stealing (cs)
- Strikeouts (so)
- Hit by pitch (hbp)
- Sacrifice hits (sh)
- Sacrifice flies (sf)
- Hit into double plays (g_idp)

- Number of outs played in field (inn_outs)
- Put outs (po)
- Assists (a)
- o Errors (e)
- Double plays (dp)
- All Star status (was_all_star)
- Age (age)
- League (in_al)
- Position (pos_)

Working with salary data

- Incomplete data: Batting stats for 1320
 players and salary info for only 817
 - 404 observations in final set once pitchers and missing values were removed
- Summary stats

Mean: \$4.75M

St. Dev: \$5.78M

o Min: \$508k

Median: \$2.05M

Max: \$25.0M

 To remove skew in salary data, took natural log (see graphs) - Removed interpretability from approach

Using linear regression

- Positive initial results: $R^2 = 0.70$
- Lasso regression too demanding, performed Ridge instead and removed insignificant features
- Most features highly correlated possible to simplify model down to age and bb without sacrificing performance
- Coefficients lacked interpretability
- MSE = 0.60

Variable	Coefficient
age	0.16
sf	0.042
g_idp	0.031
bb	0.016
h	0.012
SO	0.0046
g	-0.012

Using decision trees and related approaches

- Used decision tree models to increase predictive power and reduce MSE
- Simple decision tree regressor
 - Depth of 3
 - MSE = 0.69 (Below linear regression)
- Random forest regressor
 - Six features per node
 - 1000 trees per estimate
 - \circ MSE = 0.60
- Gradient boosting regressor
 - Depth of 1 per tree
 - Learning rate of 0.1
 - 100 trees per estimate
 - MSE = 0.56 (Best performance)

Alternative approach: PCA

- Looking to reduce feature set
- Over 99% of variance explained in first two principal components
- Used with K nearest neighbors regressor
 - Five neighbors
 - o MSE = 1.28
- Used with simple decision trees
 - o Depth of 2
 - o MSE = 1.25

Conclusions

- Gradient boosting regressor had strongest performance (MSE = 0.56)
- Feature importances for both advanced tree methods look similar
- PCA captured variance but did not perform as well as tree methods

Rank	Random Forest	Gradient Boosting
1	age	age
2	bb	sh
3	rbi	h
4	h	а
5	ab	bb
6	double	rbi
7	r	ab
8	g	g_idp
9	g_idp	ро
10	inn_outs	so

Similar study: Magel et. al

Similarities

- Broke apart pitcher and hitter data
- Took natural log of salary data as well
- Technique: Stepwise regression was primary method for this publication

Differences

- Considered same-year salary (not following year)
- Only considered players with 400 at bats or 30 innings pitched
- Created separate model for career stats versus year-to-year performance

Results

- \circ MSE = 0.97; R² = 0.35
- Significant features: Total Bases, Games, Sacrifice Hits, Position, Caught Steali
 Ground into Double Play, At-Bats, and Stolen Bases

Next steps

- Obtain missing salary information
- Consider players in contract years Expect improved performance and removes issue of guaranteed salaries in MLB
- Increase interpretability split data set if necessary
- Perform similar analysis on pitchers