大作业 1: Cluster 量化选股策略

作业背景

请仔细阅读研究报告《国海证券:新量化分类选股:Cluster量化选股策略》,然后参照研报中给的Cluster动量和反转策略,进行回测。

- (1) Cluster趋势: 在采样期通过对收益率序列进行Cluster, 实现对股票的分类, 依据动量因子选出在采样期平均表现最好的类, 在下一个时期持有, 持有期到期后, 再重新采样持有, 如此滚动选股。
- (2) Cluster反射: 在采样期通过对收益率序列进行Cluster,实现对股票的分类,依据反转因子选出在采样期平均表现最差的类,在下一个时期持有,持有期到期后,再重新采样持有,如此滚动选股。

策略的具体说明

什么是采样期和持有期?

采样期就是我们筛选股票的一个历史区间,而持有期就是我们持有股票的时间段。 比如,我在3月底根据1、2、3三个月的所有股票的历史数据计算出了一些指标,然后根据计算的结果选出了部分股票,这个时候采样期就是3个月(1月2月和3月),接着从4月初开始就持有这些选出的股票,一直持有到5月底,对应的持有期就是2个月(4月和5月)。等到5月末的时候,我再根据过去3个月(3月4月和5月)的历史数据重新计算指标,筛选股票,选出后从6月初开始持有,一直到7月底。依次循环······

上面这个例子就是一个采样期为3个月,持有期为2个月的策略。

避免断更, 清加微信501863613

采样期内我们要要做什么?

在得到采样期内所有股票的收益率后,首先要根据股票的收益率进行聚类。什么是聚类呢?大概意思就是根据所有股票在采样期的收益率序列,把收益率序列长得像的归为一类。而怎么定义长得像呢?就是根据两个收益率序列之间的距离来定义,两个收益率序列的距离越近,他们就越有可能是一个类的。根据收益率序列之间的距离最终可以把所有股票分成若干个类,每一类里面的股票

都是收益率序列比较接近的。这就是聚类,分类的个数就叫聚类个数。研报中聚类用到的算法是 Kmeans 方法,具体的算法内容请查看研报。(作业中可以使用 sklearn 这个包里面的 KMeans 函数: http://scikit-learn.org/stable/modules/clustering.html#k-means)。

在得到每只股票的类别之后,统计每一类下所有股票的平均累计收益率,选取平均累计收益率最高的类里的股票(动量)或者平均累计收益率最低的类里的股票(反转),得到动量或者反转的股票代码后,采样期要做的事情就结束了。

接下来就是持有期,持有期就比较简单了,就是根据采样期选出的动量/反转股票代码,计算这些股票在持有期每周的平均收益率。在得到所有持有期的收益率之后,就可以计算资金曲线,从而计算出年化收益、最大回撤和超额年化收益等指标。

回测样本选取全部 A 股,数据选取的是从 06 年初到最近的周数据,剔除采样期内有周数据缺失的股票。参数为聚类的个数、采样期和持有期。

默认聚类个数为 30 个。从 5 周到 40 周,步长为 5,分别遍历采样期和持有期,统计每组参数下的策略的年化收益、最大回撤和年化超额收益(基准为上证指数)。最后输出两个 csv 文件,分别是 output_动量. csv 和 output_反转. csv, 内容如下图所示:

	Α	В	С	D
1	params	return	max_drawo	excess_retu
2	5_5	0.388287	-0.71445	0.304812
3	5_10	0.3316	-0.70631	0.248125
4	5_15	0.250715	-0.72005	0.167241
5	5_20	0.235716	-0.70197	0.152241
6	5_25	0.294916	-0.8336	0.224739
7	5_30	0.202631	-0.71705	0.132454
8	5_35	0.297114	-0.64412	0.21364
9	5_40	0.272909	-0.68754	0.209024
10	10_5	0.360663	-0.74127	0.275396
11	10_10	0.192652	-0.7809	0.107385
12	10_15	0.287979	-0.76078	0.202713
13	10_20	0.242134	-0.75114	0.156867
14	10_25	0.251115	-0.72984	0.179273
15	10_30	0.176367	-0.80048	0.091101
16	10_35	0.297238	-0.70799	0.233808
17	10_40	0.231794	-0.73429	0.146527
18	15_5	0.419162	-0.70443	0.344065
19	15_10	0.316752	-0.72985	0.241655
20	15_15	0.279274	-0.76151	0.204177
21	15_20	0.249815	-0.72867	0.181765
22	15_25	0.287754	-0.6655	0.212657

作业中可能可以使用到的操作:

- 1. 数据的导入、导出
- 2. append
- 3. grouby
- 4. resample
- 5. KMeans
- 6. concat
- 7. pivot
- 8. sort_values
- 9. expanding
- 10. prod