TEST REPORT

Reference No. : WTU17S0579073E

FCC ID : 2AHAK-E4SFC5017

Applicant : KUNSHAN KONKA ELECTRONIC CO.,LTD

Address : No.189 East Qianjin Road, KUNSHAN Jiangsu 215300 CHINA

Manufacturer : The same as above

Address : The same as above

Product Name : LCD TV

Model No. : E4SFC5017

Standards : FCC CFR47 Part 15 C Section 15.247:2016

Date of Receipt sample : May 12, 2017

Date of Test : May 13—May 30, 2017

Date of Issue : May 31, 2017

Test Result : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Zero Zhou / Test Engineer

Philo Zhong / Manager

sho shoul

Reference No.: WTU17S0579073E Page 2 of 80

2 Test Summary

Test Items	Test Requirement	Result
Conducted Emissions	15.207(a)	PASS
	15.247	
Radiated Emissions	15.205(a)	PASS
	15.209(a)	
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3),(4)	PASS
Power Spectral Density	15.247(e)	PASS
Band Edge	15.247(d)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

Reference No.: WTU17S0579073E

3 Contents

		Page
1	COVER PAGE	
2	TEST SUMMARY	
3	CONTENTS	
4	GENERAL INFORMATION	
	4.1 GENERAL DESCRIPTION OF E.U.T.	
	4.2 DETAILS OF E.U.T	
	4.4 TEST MODE	
	4.5 TEST FACILITY	
5	EQUIPMENT USED DURING TEST	8
	5.1 EQUIPMENTS LIST	
	5.2 DESCRIPTION OF SUPPORT UNITS	
	5.3 MEASUREMENT UNCERTAINTY	
6	CONDUCTED EMISSION	
U	6.1 E.U.T. OPERATION	
	6.2 EUT SETUP	
	6.3 MEASUREMENT DESCRIPTION	
	6.4 CONDUCTED EMISSION TEST RESULT	
7	RADIATED EMISSIONS	-
	7.1 EUT OPERATION	
	7.3 SPECTRUM ANALYZER SETUP	
	7.4 TEST PROCEDURE	
	7.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	
	7.6 SUMMARY OF TEST RESULTS	
8	BAND EDGE MEASUREMENT	
	8.1 TEST PRODUCE	
9	6 DB BANDWIDTH MEASUREMENT	
,	9.1 TEST PROCEDURE:	
	9.2 TEST RESULT:	
10	MAXIMUM PEAK OUTPUT POWER	
	10.1 Test Procedure:	51
	10.2 TEST RESULT:	51
11	POWER SPECTRAL DENSITY	52
	11.1 Test Procedure:	
	11.2 TEST RESULT:	
12	ANTENNA REQUIREMENT	
13	RF EXPOSURE	
	13.1 REQUIREMENTS	
	13.2 THE PROCEDURES / LIMIT	
14	PHOTOGRAPHS – MODEL E4SFC5017 TEST SETUP	
17	14.1 CONDUCTED EMISSION	
	14.1 CONDUCTED EMISSION	

Reference No.: WTU17S0579073E Page 4 of 80

15	PHOT	OGRAPHS - CONSTRUCTIONAL DETAILS	70
	15.1	MODEL E4SFC5017 – EXTERNAL VIEW	70
	15.2	MODEL FASEC5017-INTERNAL VIEW	7.4

Reference No.: WTU17S0579073E Page 5 of 80

4 General Information

4.1 General Description of E.U.T.

Product Name: LCD TV

Model No.: E4SFC5017

Operation Frequency: 802.11b/g/n HT20: 2412MHz ~ 2462MHz,

802.11n HT40: 2422MHz~2452MHz

The Lowest Oscillator: 16MHz

Antenna Gain: 3dBi

IEEE 802.11b (CCK/QPSK/BPSK,11Mbps max.)

Type of modulation: IEEE 802.11g (BPSK/QPSK/16QAM/64QAM,54Mbps max.)
IEEE 802.11n (BPSK/QPSK/16QAM/64QAM,HT20:72Mbps max.,

HT40:150Mbps max.)

Number of

WIFI:2*2 (MIMO) transmitter chains:

The device supports MIMO 2*2, and the MIMO works with STBC(Space-Time Block Coding). The antenna is omnidirectional, does not support any directional gain in any modes.

MIMO rate, antennas use two different streams, from this side, if RX side need to decode MIMO, data between the two stream should be corelated.

TX power for MIMO rate, the wifi chip has a power/rate table that controls TX power from chipout, it's preset in nvram, FW don't need to calculate it again when MIMO rate is fixed. Of course the real radiation power is also related to antenna efficient.

4.2 Details of E.U.T.

Technical Data: AC 120V~50/60Hz, 100W

4.3 Channel List

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
No.	(MHz)	No.	(MHz)	No.	(MHz)	No.	(MHz)
1	2412	2	2417	3	2422	4	2427
5	2432	6	2437	7	2442	8	2447
9	2452	10	2457	11	2462	12	-

Reference No.: WTU17S0579073E Page 6 of 80

4.4 Test Mode

Table 1 Tests Carried Out Under FCC part 15.247

Test Items	Mode	Data Rate	Channel	TX/RX
	802.11b	11 Mbps	1/6/11	TX
Maximum Book Output Bower	802.11g	54 Mbps	1/6/11	TX
Maximum Peak Output Power	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX
	802.11b	11 Mbps	1/6/11	TX
Dougas Chaetral Daneity	802.11g	54 Mbps	1/6/11	TX
Power Spectral Density	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX
	802.11b	11 Mbps	1/11	TX
Fraguenay Bango	802.11g	54 Mbps	1/11	TX
Frequency Range	802.11n HT20	108 Mbps	1/11	TX
	802.11n HT40	150 Mbps	3/9	TX
	802.11b	11 Mbps	1/6/11	TX
Transmitter Spurious Emissions	802.11g	54 Mbps	1/6/11	TX
Transmitter Spundus Emissions	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX

Note :Parameters set by test software during channel & power tests, the software provided by the customer was used to set the operating channels as well as the output power level. The RF output power set is the power expected by the manufacturer and is going to be fixed on the firmware of the final product .

Table 2 Tests Carried Out Under FCC part 15.207 & FCC part 15.209

Test Item	Test Mode
Conduction Emission, 0.15MHz to 30MHz	Communication

Reference No.: WTU17S0579073E Page 7 of 80

4.5 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: 7760A

Waltek Services(Shenzhen) Co., Ltd. Has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A,July 12, 2012.

• FCC Test Site 2#– Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

5 Equipment Used during Test

5.1 Equipments List

					Last	Calibration
Item	Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.12,2016	Sep.11,2017
2.	LISN	R&S	ENV216	101215	Sep.12,2016	Sep.11,2017
3.	Cable	Тор	TYPE16(3.5M)	-	Sep.12,2016	Sep.11,2017
Condu	cted Emissions Test	Site 2#				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.12,2016	Sep.11,2017
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.12,2016	Sep.11,2017
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.12,2016	Sep.11,2017
4.	Cable	LARGE	RF300	-	Sep.12,2016	Sep.11,2017
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	1#		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	1 EMC Analyzer Agilent		E7405A	MY45114943	Sep.14,2016	Sep.13,2017
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Oct.15,2016	Oct.14,2017
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.07,2017	Apr.06,2018
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.12,2016	Sep.11,2017
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.07,2017	Apr.06,2018
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Sep.14,2016	Sep.13,2017
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Apr.07,2017	Apr.06,2018
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Apr.07,2017	Apr.06,2018
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	2#		
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	Apr.06,2017	Apr.05,2018
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Apr.07,2017	Apr.06,2018
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	Sep.14,2016	Sep.13,2017
4	Cable	HUBER+SUHNER	CBL2	525178	Sep.07,2016	Sep.06,2017

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.14,2016	Sep.13,2017
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.12,2016	Sep.11,2017
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Apr.06,2017	Apr.05,2018

5.2 Description of Support Units

Equipment	Manufacturer	Model No.	Series No.
1	1	1	1

5.3 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
De dieta de Occasiona Francisco de de	± 5.03 dB (30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by GUANG ZHOU GRG METROLOGY & TES T CO., LTD. address is No.163, Pingyun Rd. West of Huangpu Ave, Tianhe District, Guangzhou, Guangdong, China.

Reference No.: WTU17S0579073E Page 10 of 80

6 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz & 5MHz $60~dB\mu V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

6.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10.

6.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

Reference No.: WTU17S0579073E Page 12 of 80

Neutral line:

Reference No.: WTU17S0579073E Page 13 of 80

7 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

I imit

LIIIIIL.					
	Field Strength		Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance uV/m		dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

7.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Reference No.: WTU17S0579073E Page 15 of 80

The test setup for emission measurement above 1 GHz.

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GHz	<u>z</u>	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTU17S0579073E Page 16 of 80

7.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane for below 1GHz and 1.5m for above 1GHz.

The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis.so the worst data were shown as follow.

8. A 2.4GHz high -pass filter is used druing radiated emissions above 1GHz measurement.

7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

7.6 Summary of Test Results

Test Frequency: 16MHz ~ 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency : 30MHz ~ 18GHz

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	Carrantad	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		Д	NT0 11b:	Low Cha	nnel 24	12MHz			
223.16	42.19	QP	113.22	1.24	Н	11.09	31.10	46.00	-14.90
223.16	36.48	QP	316.66	1.80	V	11.09	25.39	46.00	-20.61
4824.00	50.19	PK	2.27	1.81	V	1.12	49.07	74.00	-24.93
4824.00	46.11	Ave	2.27	1.81	V	1.12	44.99	54.00	-9.01
7236.00	40.00	PK	349.74	1.39	Н	1.33	41.33	74.00	-32.67
7236.00	40.08	Ave	349.74	1.39	Н	1.33	41.41	54.00	-12.59
2333.72	45.23	PK	68.15	1.14	V	13.24	31.99	74.00	-42.01
2333.72	39.54	Ave	68.15	1.14	V	13.24	26.30	54.00	-27.70
2371.30	43.34	PK	280.86	1.96	Н	13.06	30.28	74.00	-43.72
2371.30	38.80	Ave	280.86	1.96	Н	13.06	25.74	54.00	-28.26
2491.63	43.73	PK	58.19	1.20	V	13.22	30.51	74.00	-43.49
2491.63	38.98	Ave	58.19	1.20	V	13.22	25.76	54.00	-28.24

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		AN.	NT0 11b: N	Middle Ch	nannel 2	2437MHz			
223.16	42.12	QP	69.35	1.51	Н	11.09	31.03	46.00	-14.97
223.16	35.46	QP	346.65	1.94	V	11.09	24.37	46.00	-21.63
4874.00	49.58	PK	117.67	1.48	V	1.12	48.46	74.00	-25.54
4874.00	45.51	Ave	117.67	1.48	V	1.12	44.39	54.00	-9.61
7311.00	40.84	PK	99.94	1.80	Н	2.21	43.05	74.00	-30.95
7311.00	39.14	Ave	99.94	1.80	Н	2.21	41.35	54.00	-12.65
2341.79	46.32	PK	117.11	1.80	V	13.24	33.08	74.00	-40.92
2341.79	39.12	Ave	117.11	1.80	V	13.24	25.88	54.00	-28.12
2366.54	43.80	PK	266.13	1.49	Н	13.06	30.74	74.00	-43.26
2366.54	38.58	Ave	266.13	1.49	Н	13.06	25.52	54.00	-28.48
2493.48	43.67	PK	274.45	1.92	V	13.22	30.45	74.00	-43.55
2493.48	38.98	Ave	274.45	1.92	V	13.22	25.76	54.00	-28.24

_	Receiver	5	Turn	RX An	tenna	Corrected		FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		А	NT0 11b:	High Ch	annel 24	162MHz			
223.16	42.58	QP	304.86	1.37	Н	11.09	31.49	46.00	-14.51
223.16	35.18	QP	65.07	1.98	V	11.09	24.09	46.00	-21.91
4924.00	49.55	PK	327.39	1.19	V	1.12	48.43	74.00	-25.57
4924.00	44.11	Ave	327.39	1.19	V	1.12	42.99	54.00	-11.01
7386.00	41.19	PK	293.27	1.93	Н	2.84	44.03	74.00	-29.97
7386.00	38.49	Ave	293.27	1.93	Н	2.84	41.33	54.00	-12.67
2323.90	46.67	PK	91.33	1.35	V	13.24	33.43	74.00	-40.57
2323.90	39.65	Ave	91.33	1.35	V	13.24	26.41	54.00	-27.59
2359.78	43.10	PK	203.34	1.41	Н	13.06	30.04	74.00	-43.96
2359.78	38.16	Ave	203.34	1.41	Н	13.06	25.10	54.00	-28.90
2495.77	43.67	PK	41.58	1.69	V	13.22	30.45	74.00	-43.55
2495.77	38.80	Ave	41.58	1.69	V	13.22	25.58	54.00	-28.42

_	Receiver		Turn	RX An	tenna	Corrected		FCC F 15.247/20	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		Δ	NT1 11b:	Low Cha	nnel 24	12MHz			
223.16	41.08	QP	240.67	1.86	Н	11.09	29.99	46.00	-16.01
223.16	34.62	QP	138.42	1.71	V	11.09	23.53	46.00	-22.47
4824.00	49.00	PK	49.70	1.99	V	1.12	47.88	74.00	-26.12
4824.00	43.06	Ave	49.70	1.99	V	1.12	41.94	54.00	-12.06
7236.00	40.65	PK	94.38	1.43	Н	1.33	41.98	74.00	-32.02
7236.00	37.47	Ave	94.38	1.43	Н	1.33	38.80	54.00	-15.20
2331.64	45.49	PK	88.27	1.78	V	13.24	32.25	74.00	-41.75
2331.64	37.05	Ave	88.27	1.78	V	13.24	23.81	54.00	-30.19
2385.43	42.70	PK	333.40	1.01	Н	13.06	29.64	74.00	-44.36
2385.43	38.40	Ave	333.40	1.01	Н	13.06	25.34	54.00	-28.66
2487.56	44.63	PK	111.43	1.51	V	13.22	31.41	74.00	-42.59
2487.56	36.05	Ave	111.43	1.51	V	13.22	22.83	54.00	-31.17

	Receiver	Detector	Turn	RX An	tenna	Corrected	Commonto d	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		1A	NT1 11b: N	Middle Ch	nannel 2	2437MHz			
223.16	41.27	QP	65.92	1.69	Н	11.09	30.18	46.00	-15.82
223.16	35.41	QP	322.24	1.07	V	11.09	24.32	46.00	-21.68
4874.00	47.65	PK	57.25	1.74	V	1.12	46.53	74.00	-27.47
4874.00	43.24	Ave	57.25	1.74	V	1.12	42.12	54.00	-11.88
7311.00	40.42	PK	22.28	1.07	Н	2.21	42.63	74.00	-31.37
7311.00	37.16	Ave	22.28	1.07	Н	2.21	39.37	54.00	-14.63
2312.94	45.84	PK	188.98	1.82	V	13.24	32.60	74.00	-41.40
2312.94	38.13	Ave	188.98	1.82	V	13.24	24.89	54.00	-29.11
2372.50	42.54	PK	359.66	1.42	Н	13.06	29.48	74.00	-44.52
2372.50	36.51	Ave	359.66	1.42	Н	13.06	23.45	54.00	-30.55
2497.47	42.44	PK	2.63	1.06	V	13.22	29.22	74.00	-44.78
2497.47	37.21	Ave	2.63	1.06	V	13.22	23.99	54.00	-30.01

	Receiver	Datastar	Turn	RX An	tenna	Corrected	On manks d	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		А	NT1 11b:	High Cha	annel 24	162MHz			
223.16	40.14	QP	194.48	1.82	Н	11.09	29.05	46.00	-16.95
223.16	36.19	QP	22.39	1.41	V	11.09	25.10	46.00	-20.90
4924.00	47.60	PK	338.38	1.85	V	1.12	46.48	74.00	-27.52
4924.00	43.34	Ave	338.38	1.85	V	1.12	42.22	54.00	-11.78
7386.00	40.90	PK	289.16	1.35	Н	2.84	43.74	74.00	-30.26
7386.00	37.45	Ave	289.16	1.35	Н	2.84	40.29	54.00	-13.71
2320.28	45.81	PK	255.11	1.12	V	13.24	32.57	74.00	-41.43
2320.28	38.95	Ave	255.11	1.12	V	13.24	25.71	54.00	-28.29
2354.13	43.73	PK	29.29	1.73	Н	13.06	30.67	74.00	-43.33
2354.13	38.52	Ave	29.29	1.73	Н	13.06	25.46	54.00	-28.54
2492.19	43.89	PK	168.42	1.57	V	13.22	30.67	74.00	-43.33
2492.19	38.39	Ave	168.42	1.57	V	13.22	25.17	54.00	-28.83

	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		A	ANT0 11g:	Low Cha	annel 24	12MHz			
223.16	41.17	QP	267.06	1.93	Н	11.09	30.08	46.00	-15.92
223.16	34.83	QP	311.85	1.43	V	11.09	23.74	46.00	-22.26
4824.00	47.71	PK	290.63	1.58	V	1.12	46.59	74.00	-27.41
4824.00	42.51	Ave	290.63	1.58	V	1.12	41.39	54.00	-12.61
7236.00	42.12	PK	212.89	1.28	Н	1.33	43.45	74.00	-30.55
7236.00	35.99	Ave	212.89	1.28	Н	1.33	37.32	54.00	-16.68
2339.52	45.50	PK	216.66	1.65	V	13.24	32.26	74.00	-41.74
2339.52	39.09	Ave	216.66	1.65	V	13.24	25.85	54.00	-28.15
2357.75	43.71	PK	249.67	1.90	Н	13.06	30.65	74.00	-43.35
2357.75	37.35	Ave	249.67	1.90	Н	13.06	24.29	54.00	-29.71
2495.86	43.13	PK	245.65	1.34	V	13.22	29.91	74.00	-44.09
2495.86	38.52	Ave	245.65	1.34	V	13.22	25.30	54.00	-28.70

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	Carra ata d	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		1A	NT0 11g: I	Middle Ch	nannel 2	437MHz			
223.16	40.98	QP	201.22	1.88	Н	11.09	29.89	46.00	-16.11
223.16	33.74	QP	207.33	1.48	V	11.09	22.65	46.00	-23.35
4874.00	46.61	PK	271.66	1.77	V	1.12	45.49	74.00	-28.51
4874.00	41.45	Ave	271.66	1.77	V	1.12	40.33	54.00	-13.67
7311.00	43.52	PK	145.76	1.33	Н	2.21	45.73	74.00	-28.27
7311.00	35.44	Ave	145.76	1.33	Н	2.21	37.65	54.00	-16.35
2348.82	45.38	PK	83.18	1.85	V	13.24	32.14	74.00	-41.86
2348.82	37.58	Ave	83.18	1.85	V	13.24	24.34	54.00	-29.66
2354.88	43.19	PK	326.36	1.58	Н	13.06	30.13	74.00	-43.87
2354.88	36.91	Ave	326.36	1.58	Н	13.06	23.85	54.00	-30.15
2489.68	42.69	PK	84.10	1.08	V	13.22	29.47	74.00	-44.53
2489.68	36.04	Ave	84.10	1.08	V	13.22	22.82	54.00	-31.18

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		Δ	NT0 11g:	High Cha	annel 24	162MHz			
223.16	40.90	QP	265.32	1.71	Н	11.09	29.81	46.00	-16.19
223.16	34.12	QP	207.01	1.67	V	11.09	23.03	46.00	-22.97
4924.00	47.55	PK	83.97	1.15	V	1.12	46.43	74.00	-27.57
4924.00	41.77	Ave	83.97	1.15	V	1.12	40.65	54.00	-13.35
7386.00	44.17	PK	204.92	1.67	Н	2.84	47.01	74.00	-26.99
7386.00	36.80	Ave	204.92	1.67	Н	2.84	39.64	54.00	-14.36
2341.51	45.26	PK	74.88	1.66	V	13.24	32.02	74.00	-41.98
2341.51	39.49	Ave	74.88	1.66	V	13.24	26.25	54.00	-27.75
2375.36	42.11	PK	46.96	1.19	Н	13.06	29.05	74.00	-44.95
2375.36	38.64	Ave	46.96	1.19	Н	13.06	25.58	54.00	-28.42
2495.42	44.16	PK	301.65	1.70	V	13.22	30.94	74.00	-43.06
2495.42	37.52	Ave	301.65	1.70	V	13.22	24.30	54.00	-29.70

_	Receiver	D 1 1	Turn	RX An	tenna	Corrected		FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		A	NT1 11g:	Low Cha	annel 24	12MHz			
223.16	41.29	QP	147.01	1.86	Н	11.09	30.20	46.00	-15.80
223.16	33.10	QP	210.15	1.77	V	11.09	22.01	46.00	-23.99
4844.00	46.51	PK	264.35	1.73	V	1.12	45.39	74.00	-28.61
4844.00	40.24	Ave	264.35	1.73	V	1.12	39.12	54.00	-14.88
7266.00	41.19	PK	227.10	1.76	Н	1.33	42.52	74.00	-31.48
7266.00	34.89	Ave	227.10	1.76	Н	1.33	36.22	54.00	-17.78
2324.98	46.52	PK	48.69	1.28	V	13.24	33.28	74.00	-40.72
2324.98	37.41	Ave	48.69	1.28	V	13.24	24.17	54.00	-29.83
2356.03	44.78	PK	19.72	1.34	Н	13.06	31.72	74.00	-42.28
2356.03	38.33	Ave	19.72	1.34	Н	13.06	25.27	54.00	-28.73
2497.41	43.04	PK	326.28	1.91	V	13.22	29.82	74.00	-44.18
2497.41	38.03	Ave	326.28	1.91	V	13.22	24.81	54.00	-29.19

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		1A	NT1 11g: I	Middle Ch	nannel 2	437MHz			
223.16	41.08	QP	138.87	1.40	Н	11.09	29.99	46.00	-16.01
223.16	33.29	QP	181.68	1.10	V	11.09	22.20	46.00	-23.80
4874.00	46.48	PK	70.18	1.86	V	1.12	45.36	74.00	-28.64
4874.00	39.79	Ave	70.18	1.86	V	1.12	38.67	54.00	-15.33
7311.00	40.92	PK	114.72	1.03	Н	2.21	43.13	74.00	-30.87
7311.00	35.53	Ave	114.72	1.03	Н	2.21	37.74	54.00	-16.26
2324.42	45.84	PK	247.29	1.40	V	13.24	32.60	74.00	-41.40
2324.42	39.27	Ave	247.29	1.40	V	13.24	26.03	54.00	-27.97
2358.05	42.44	PK	350.33	1.98	Н	13.06	29.38	74.00	-44.62
2358.05	37.39	Ave	350.33	1.98	Н	13.06	24.33	54.00	-29.67
2499.68	42.22	PK	328.50	1.53	V	13.22	29.00	74.00	-45.00
2499.68	37.56	Ave	328.50	1.53	V	13.22	24.34	54.00	-29.66

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		Д	NT1 11g:	High Cha	annel 24	162MHz			
223.16	40.22	QP	66.60	2.00	Н	11.09	29.13	46.00	-16.87
223.16	34.00	QP	194.70	1.13	V	11.09	22.91	46.00	-23.09
4904.00	45.81	PK	73.55	1.96	V	1.12	44.69	74.00	-29.31
4904.00	40.27	Ave	73.55	1.96	V	1.12	39.15	54.00	-14.85
7356.00	41.37	PK	17.47	1.39	Н	2.84	44.21	74.00	-29.79
7356.00	35.75	Ave	17.47	1.39	Н	2.84	38.59	54.00	-15.41
2349.30	46.51	PK	263.58	1.76	V	13.24	33.27	74.00	-40.73
2349.30	37.19	Ave	263.58	1.76	V	13.24	23.95	54.00	-30.05
2379.31	43.33	PK	305.83	1.18	Н	13.06	30.27	74.00	-43.73
2379.31	38.09	Ave	305.83	1.18	Н	13.06	25.03	54.00	-28.97
2487.26	42.96	PK	284.09	1.44	V	13.22	29.74	74.00	-44.26
2487.26	38.69	Ave	284.09	1.44	V	13.22	25.47	54.00	-28.53

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTU17S0579073E Page 29 of 80

8 Band Edge Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance V04

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

8.1 Test Produce

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

8.2 Test Result

Test result plots shown as follows:

Reference No.: WTU17S0579073E Page 38 of 80

9 6 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance V04

9.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

9.2 Test Result:

ANIT	Operation	Bandwidth (MHz)			
ANT	mode	Low	Middle	High	
ANT0	11b	9.461	9.461	9.461	
	11g	16.567	16.567 16.567		
	11n HT20	17.838	17.838	17.838	
	11n HT40	36.560	36.560	36.560	
ANT1	11b	9.461	9.461	9.461	
	11g	16.567	16.567	16.567	
	11n HT20	17.838	17.838	17.838	
	11n HT40	36.560	36.560	36.560	

Reference No.: WTU17S0579073E Page 51 of 80

10 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance V04

10.1 Test Procedure:

KDB558074 D01 DTS Meas Guidance V04 section 9.1.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 1 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

10.2 Test Result:

Operation	A N I T	Maximum Peak Output Power (dBm)			
mode	ANT	Low	Middle	High	
11b	ANT0	8.79	8.56	8.37	
	ANT1	8.96	8.56	8.57	
	ANT0	9.73	8.21	9.07	
11g	ANT1	9.80	8.20	9.12	
11n HT20	ANT0	9.65	9.39	9.43	
	ANT1	9.49	9.27	8.86	
	ANT0+ANT1	12.58	12.34	12.16	
11n HT40	ANT0	9.18	8.83	8.66	
	ANT1	8.81	8.57	8.33	
	ANT0+ANT1	12.01	11.71	11.51	
Limit					
1W/30dBm					

Reference No.: WTU17S0579073E Page 52 of 80

11 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance V04

11.1 Test Procedure:

KDB558074 D01 DTS Meas Guidance V04 section 10.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

11.2 Test Result:

Operation	ANIT	Maximum Peak Output Power (dBm per 3kHz)			
mode ANT		Low	Middle	High	
11b	ANT0	-19.61	-20.61	-20.51	
	ANT1	-19.63	-20.64	-20.55	
	ANT0	-25.24	-27.00	-26.26	
11g	ANT1	-25.30	-26.91	-26.05	
	ANT0	-25.88	-25.99	-26.35	
11n HT20	ANT1	-25.73	-26.17	-26.35	
	ANT0+ANT1	-22.79	-23.07	-23.34	
	ANT0	-28.33	-29.52	-29.33	
11n HT40	ANT1	-28.65	-29.85	-29.38	
	ANT0+ANT1	-25.48	-26.67	-26.34	
Limit					
8dBm per 3kHz					

12 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has an Embedded Antenna fulfill the requirement of this section.

Reference No.: WTU17S0579073E Page 66 of 80

13 RF Exposure

Test Requirement: FCC Part 1.1307
Evaluation Method: FCC Part 2.1091

13.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

13.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

(b) Limits for General Population Policontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ², H ² or S (minutes)		
0.3-1.34	614	1.63	(100)*	30		
1.34-30	824/f	2.19/f	(180/f)*	30		
30-300	27.5	0.073	0.2	30		
300-1500			F/1500	30		
1500-100,000			1.0	30		

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTU17S0579073E Page 67 of 80

13.3 MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)
3.00	1.995	12.58	18.11	0.007190	1

14 Photographs – Model E4SFC5017 Test Setup

14.1 Conducted Emission

14.2 Radiated Emission

Test frequency from 30MHz to 1GHz

Test frequency above 1GHz

15 Photographs - Constructional Details

15.1 Model E4SFC5017 - External View

Reference No.: WTU17S0579073E Page 71 of 80

Reference No.: WTU17S0579073E Page 72 of 80

Reference No.: WTU17S0579073E Page 73 of 80

Reference No.: WTU17S0579073E Page 74 of 80

15.2 Model E4SFC5017- Internal View

Reference No.: WTU17S0579073E Page 75 of 80

Reference No.: WTU17S0579073E Page 76 of 80

Reference No.: WTU17S0579073E Page 77 of 80

Reference No.: WTU17S0579073E Page 78 of 80

Reference No.: WTU17S0579073E Page 79 of 80

Reference No.: WTU17S0579073E Page 80 of 80

=====End of Report=====