MATH50003 Numerical Analysis

III.5 Orthogonal and Unitary Matrices

Part III

Numerical Linear Algebra

Software Application Theory

- 1. Structured matrices such as banded
- 2. Differential Equations via finite differences
- 3. LU and Cholesky factorisation for solving linear systems
- 4. Polynomial regression for approximating data via least squares
- 5. Orthogonal matrices such as Householder reflections
- 6. QR factorisation for solving rectangular least squares problems

Definition 23 (orthogonal/unitary matrix). A square real matrix is *orthogonal* if its inverse is its transpose:

$$O(n) = \{ Q \in \mathbb{R}^{n \times n} : Q^{\top}Q = I \}$$

A square complex matrix is *unitary* if its inverse is its adjoint:

$$U(n) = \{ Q \in \mathbb{C}^{n \times n} : Q^*Q = I \}.$$

Here the adjoint is the same as the conjugate-transpose: $Q^* := \bar{Q}^\top$.

Properties of orthogonal/unitary matrices

III.5.1 Rotations

Rotations in \mathbb{R}^2 correspond to 2×2 orthogonal matrices

Definition 24 (Special Orthogonal and Rotations). Special Orthogonal Matrices are

$$SO(n) := \{Q \in O(n) | \det Q = 1\}$$

And (simple) rotations are SO(2).

Definition 25 (two-arg arctan).

$$atan(b, a) := \begin{cases}
atan \frac{b}{a} & a > 0 \\
atan \frac{b}{a} + \pi & a < 0 \text{ and } b > 0 \\
atan \frac{b}{a} - \pi & a < 0 \text{ and } b < 0 \\
\pi/2 & a = 0 \text{ and } b > 0 \\
-\pi/2 & a = 0 \text{ and } b < 0
\end{cases}$$

Proposition 8 (simple rotation). A 2×2 rotation matrix through angle θ is

$$Q_{ heta} := egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$$

We have $Q \in SO(2)$ if and only if $Q = Q_{\theta}$ for some $\theta \in \mathbb{R}$.

Proposition 9 (rotation of a vector). The matrix

$$Q = \frac{1}{\sqrt{a^2 + b^2}} \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

is a rotation matrix $(Q \in SO(2))$ satisfying

$$Q \begin{bmatrix} a \\ b \end{bmatrix} = \sqrt{a^2 + b^2} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Example 23 (rotating a vector).

III.5.2 Reflections

Every unit vector corresponds to a reflection, which is unitary

Definition 26 (reflection matrix). Given a unit vector $\mathbf{v} \in \mathbb{C}^n$ (satisfying $||\mathbf{v}|| = 1$), define the corresponding reflection matrix as:

$$Q_{\boldsymbol{v}} := I - 2\boldsymbol{v}\boldsymbol{v}^{\star}$$

Example 24 (reflection through 2-vector).

Householder reflections

Reflect to the x-axis

Householder reflections

Reflect to the x-axis (2 ways)

Definition 27 (Householder reflection, real case). For a given vector $\boldsymbol{x} \in \mathbb{R}^n$, define the Householder reflection

$$Q_{m{x}}^{\pm,\mathrm{H}} := Q_{m{w}}$$

for $\boldsymbol{y} = \mp \|\boldsymbol{x}\|\boldsymbol{e}_1 + \boldsymbol{x}$ and $\boldsymbol{w} = \frac{\boldsymbol{y}}{\|\boldsymbol{y}\|}$. The default choice in sign is:

$$Q_{m{x}}^{ ext{H}} := Q_{m{x}}^{- ext{sign}(x_1), ext{H}}.$$

Lemma 4 (Householder reflection maps to axis). For $\mathbf{x} \in \mathbb{R}^n$,

$$Q_{oldsymbol{x}}^{\pm,\mathrm{H}}oldsymbol{x}=\pm\|oldsymbol{x}\|oldsymbol{e}_{1}$$

Definition 28 (Householder reflection, complex case). For a given vector $\mathbf{x} \in \mathbb{C}^n$, define the Householder reflection as

$$Q_{m{x}}^{ ext{H}} := Q_{m{w}}$$

for $\boldsymbol{y} = \operatorname{csign}(x_1) \|\boldsymbol{x}\| \boldsymbol{e}_1 + \boldsymbol{x}$ and $\boldsymbol{w} = \frac{\boldsymbol{y}}{\|\boldsymbol{y}\|}$, for $\operatorname{csign}(z) = \operatorname{e}^{\operatorname{i} \operatorname{arg} z}$.

Lemma 5 (Householder reflection maps to axis, complex case). For $\mathbf{x} \in \mathbb{C}^n$,

$$Q_{\boldsymbol{x}}^{\mathrm{H}}\boldsymbol{x} = -\mathrm{csign}(x_1)\|\boldsymbol{x}\|\boldsymbol{e}_1$$