<u>Al</u>

QUESTION 1:

CREATING A DATASET FOR 15 STUDENTS:

```
import numpy as np
details= np.array([
    [153, 46, 17, 96, 3],
    [155, 47, 17, 89, 4],
    [156, 44, 16, 92, 5],
    [160,50,18,97,7],
    [158, 48, 17, 82, 5],
    [169,53,19,93,9],
    [165,52,18,83,6],
    [164,57,17,96,8],
    [170,50,20,94,6],
    [155, 49, 19, 81, 3],
    [168,51,15,84,7],
    [162,48,21,94,4],
    [165, 49, 19, 93, 8],
    [164,55,18,93,7],
    [169,58,17,94,8]
])
print("Student \tHeight\tWeight\tAge\tAvg Grade\tCourses")
for index, student in enumerate(details):
    print(f"Student{index + 1}\t{student[0]}\t{student[1]}\t{student[2]}\t{student[3]}\t{student[4]}")
```

>>>						
	= RESTART: C:/Users/mithu/py.py					
	Student	Height	Weight	Age	Avg Grade	Courses
	Student1	153	46	17	96	3
	Student2	155	47	17	89	4
	Student3	156	44	16	92	5
	Student4	160	50	18	97	7
	Student5	158	48	17	82	5
	Student6	169	53	19	93	9
	Student7	165	52	18	83	6
	Student8	164	57	17	96	8
	Student9	170	50	20	94	6
	Student10	155	49	19	81	3
	Student11	168	51	15	84	7
	Student12	162	48	21	94	4
	Student13	165	49	19	93	8
	Student14	164	55	18	93	7
	Student15	169	58	17	94	8
	1					

1.1: AVERAGE HEIGHT OF THE STUDENTS:

```
Height=[i[0] for i in details]
mean_height=nmp.mean(Height)
print("Average height of the students is:", mean_height)
```

```
Average height of the students is: 162.2
```

1.2: AGE OF THE OLDEST STUDENT:

```
Age=[k[2] for k in details]
old_age=nmp.max(Age)
print("The Age of the oldest student is:",old_age)
```

```
The Age of the oldest student is: 21
```

1.3: INDEX OF THE STUDENT WITH MOST COURSES:

```
Courses=[m[4] for m in details]
index_course=nmp.argmax(Courses)
print("Index of the student with most courses:",index_course)
```

```
Index of the student with most courses: 5
```

1.4: AVERAGE GRADE ABOVE 85:

```
Grade=sum(1[3] for 1 in details if 1[3]>85)
s=0
for h in range(11):
    s+=1
print("number of students above grade 85:",s)

number of students above grade 85: 11
>>>
```

1.5: RATIO OF AGES AND AVERAGE GRADE FOR EACH STUDENT:

```
Age=[k[2] for k in details]
Grade=sum(l[3] for l in details)
ratio=Age/Grade
print(ratio)
```

```
ratio of age and avg grade of each student [0.01249082 0.01249082 0.01175606 0.01322557 0.01249082 0.01396032 0.01322557 0.01249082 0.01396032 0.01102131 0.01542983 0.01396032 0.01322557 0.01249082]
```

H MITHRA CH.SC.114CSF74713