Instructions: Solve all questions. Show your work where applicable.

Question 1 (2 marks)

Construct a DFA that accepts all strings from the language $L = \{\text{strings of size not divisible by 3}\}$. Draw the state diagram and provide the transition table.

Question 2 (2 marks)

Given the following DFA, determine whether the strings "1011" and "1010" are accepted or rejected. Show the path of computation for each string.

State diagram:

• States: {q₀, q₁, q₂}

Initial state: qo

Final state: q2

Transitions:

$$\circ \delta(q_0, 0) = q_0, \delta(q_0, 1) = q_1$$

$$\circ \delta(q_1, 0) = q_2, \delta(q_1, 1) = q_0 \cdot$$

$$\delta(q_2, 0) = q_2, \delta(q_2, 1) = q_2$$

Question 3 (1 mark)

How many states can the equivalent DFA have in the worst case if the original NFA has N states?

Question 5

Find the minimum automata: (Use Table Filling / Equivalence method)

State / Σ	0	1	
→ q0	q1	q2	
q1	q3	q4	
q2	q5	q6	•
q3	q3	q4	
q4	q5	q6 ·	
*q5	q3	q4	
q6	q5	q6	