CSCI 4621 INTRO TO CYBERSECURITY

Review - Networking

Vassil Roussev

vassil@cs.uno.edu

THE INTERNET

The Internet is a global data communication infrastructure (network).

The <u>network edge</u> consists of all the hosts that serve end users via network applications.

The <u>network core</u> consists of routers and communication links that connect all hosts.

Routers are specialized computers that manage network traffic.

Internet communication links are organized in a loose hierarchy similar to transport networks.

The 'Net has decentralized structure with different parts owned/managed autonomously.

Backbone Network Service Providers (NSPs) own long-haul networks and exchange data at *Internet eXchange Points* (IXPs), a.k.a. *Network Access Points* (NAP) in the US.

Regional/local ISPs deliver local traffic & aggregate traffic for long-haul delivery.

Long-haul fiber links are expensive; traffic aggregation ensures proper utilization.

Regional ISPs increasingly use long-haul links for internal traffic delivery.

Beyond a certain (traffic) threshold, it is cheaper to build out the network then to pay other ISPs for delivery.

Observing routes: traceroute

Tracing route to internet-service.ucc.uno.edu [137.30.1.92] over a maximum of 30 hops:

```
10.128.32.1 ← Harahan, LA 70123
       9 ms
 1
                9 ms
                          8 ms
 2
      11 ms
               10 ms
                         10 ms
                                68.11.12.25
 3
      11 ms
                8 ms
                         12 ms
                                mctydsrc01-gew0304.rd.no.cox.net [68.11.14.9]
                                                                                New Orleans
      13 ms
                                mctybbrc01-pos0101.rd.no.cox.net [68.1.0.64]
                9 ms
                         13 ms
                                mctybbrc02-pos0100.rd.no.cox.net [68.1.0.63]
 5
      10 ms
               10 ms
                          9 ms
 6
                        20 ms
                                lkhnbbrc02-pos0102.rd.at.cox.net [68.1.0.10]
      21 ms
               19 ms
 7
                                lkhnbbrc01-pos0100.rd.at.cox.net [68.1.0.2]
      22 ms
               21 ms
                         20 ms
                                                                                     Atlanta
 8
      29 ms
               21 ms
                         21 ms
                                so-1-2-0-0.gar2.Atlanta1.Level3.net [65.59.222.5]
                                so-0-3-0.bbr2.Atlanta1.Level3.net [209.247.11.225]
      21 ms
               21 ms
                         21 ms
                                so-0-0-0.bbr1.Washington1.Level3.net [64.159.1.2]
10
      35 ms
               36 ms
                         34 ms
11
      35 ms
                         34 ms
               37 ms
                                so-6-0-0.edge1.Washington1.Level3.net [209.244.11]
                                                                                    Washington,
      36 ms
                                gwest-level3-oc48.Washington1.Level3.net [209.244]
12
                         36 ms
               35 ms
13
      35 ms
               35 ms
                         36 ms
                                205.171.251.33
14
      35 ms
                                dca-core-02.inet.qwest.net [205.171.8.221]
               35 ms
                         37 ms
                                atl-core-02.inet.gwest.net [205.171.8.153]
15
      36 ms
               37 ms
                         36 ms
                                                                              Atlanta
16
      37 ms
               46 ms
                         37 ms
                                atl-edge-05.inet.gwest.net [205.171.21.54]
17
      51 ms
                         51 ms
                                65.112.33.250
               52 ms
                                nor2-isp2.atm-vcc.La.Net [162.75.7.78] ← Louisiana
               56 ms
18
      56 ms
                         60 ms
                                Request timed out. ← UNO campus, 70148
19
                          *
```

Q: Why do we connect to the Internet?

A: To use different network applications

All network applications rely on standard 'Net communication services.

The 'Net infrastructure offers two standard communication services:

Connectionless service (UDP) provides no feedback/delivery guarantees.

Connection-oriented service (TCP) provides acknowledgements and guarantees eventual delivery.

A communication protocol defines the <u>syntax</u>, <u>semantics</u>, order, and timing of data transmissions.

Syntax: the *format* of data transmitted.

Semantics: the *meaning* of the data transmitted.

A **communication protocol** defines the syntax, semantics, **order**, and timing of data transmissions.

Order: the conversation rules of the transmissions.

TCP handshake

A **communication protocol** defines the syntax, semantics, order, and **timing** of data transmissions.

Timing: the **beginning** and **rate** of the transmissions.

MAC protocols coordinate transmissions; necessary to avoid interference.

Ethernet ports negotiate transmission rates (10,100,1000M).

The Internet Protocols Food Chain

Network interface-to-transmission media

Media access protocols

Router-to-router

Routing protocol

Operating system-to-server

Name resolution protocols

Transport protocol-to-TP

- Reliable transmission
- Congestion & flow control

Application-level

File transfer, email, ...

APPLICATION LAYER

Network applications consist of two, or more, processes communicating over the network.

Each application defines its own protocol for exchanging messages; multiple implementations are possible.

Try this at a shell prompt:

```
>telnet google.com 80 > google.html UGET / HTTP/1.0 UGET / HTT
```

google.html should look like this:

```
Remove these lines, save,
Connected to google.com.
                                         and open in browser
Escape character is '^]'.
HTTP/1.0 200 OK
Date: Wed, 02 Sep 2009 21:39:00 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
Set-Cookie: PREF=ID=28e4088ee4e9eb4b:TM=1251927540:LM=12
MT; path=/; domain=.google.com
Set-Cookie: NID=26=gkijYBJQ-o lcBItp1xNqy4enRCW9k4aNIA7d
H12-IRASV81x3YLylObeCsjkDli; expires=Thu, 04-Mar-2010 21
Server: gws
```

```
<!doctype html><html><head><meta http-equiv="content-typ"
<script>window.google={kEI:"90WeSt2NL4LStgPp6cjmDQ", kEXP
WeSt2NL4LStgPp6cjmDQ"}, kHL:"en"};
```

Browser view

Congratulations—you just 'spoke' HTTP!

The World Wide Web (WWW)

Uniform Resource Locator (URL)

Protocol:

http,ftp,...

Server port (80 for WWW)

http://www.cs.uno.edu:80/index.html

Server domain name/
IP address

Local object name (opaque)

Interpretation:

- Open TCP socket to www.cs.uno.edu:80
- Request /index.html using the http protocol

HTTP request format

HTTP request examples

HTTP response format

HTTP response example

```
status line
  (protocol -
                 HTTP/1.1 200 OK
 status code
status phrase)
                 Connection close
                 Date: Thu, 06 Aug 1998 12:00:15 GMT
                 Server: Apache/1.3.0 (Unix)
         header
           lines
                 Last-Modified: Mon, 22 Jun 1998 .....
                 Content-Length: 6821
blank line
                 Content-Type: text/html
                 <!doctype html><html><head><meta ...
data, e.g.,
requested
HTML file
```

HTTP response types (RFC 2616)

2xx Success

request succeeded, requested object later in this message

3xx Redirection

requested object moved, new location specified later in this message

4xx Bad client request

request message not understood by server

5xx Server error

an error occurred while processing the request

Common response status codes

200 OK

request succeeded, requested object later in this message

301 Moved Permanently

 requested object moved, new location specified later in this message (Location:)

400 Bad Request

request message not understood by server

404 Not Found

requested document not found on this server

505 HTTP Version Not Supported

DNS: DOMAIN NAME SYSTEM

DNS: Domain Name System

People identifiers:

- Name/SSN/Passport #/...
- Why so many?

Internet hosts, routers:

- IP address (32 bit) used for addressing datagrams
- Issues:
 - Host IP address may change
 - IP address not suitable for human consumption
- Solution:
 - Human-readable "name":
 e.g., www.cs.uno.edu

New problem:

Internet-wide mapping b/w names and IP addresses!

Solution: DNS

Distributed database implemented in a hierarchy of many name servers

Application-layer protocol

Host, routers, name servers to communicate to *resolve* names (i.e. perform name → address translation)

Essential Internet function, implemented as an application-layer protocol

DNS: Root Name Servers

http://root-servers.org

DNS Recursive Query

Root name server:

May not know authoritative name server

But does know intermediate name server

In a recursive query, each serve in the chain performs inquiries on behalf of requestors.

NB: Root servers never perform recursive queries on behalf of clients.

root name server

target host gaia.cs.umass.edu

DNS Iterated Query

Recursive query:

Puts burden of name resolution on contacted name server Heavy load?

Iterated query:

Contacted server replies with name of server to contact

"I don't know this name, but ask this server"

root name server

gaia.cs.umass.edu

DNS: Caching and Updating Records

Once (any) name server learns mapping, it *caches* mapping:

- cache entries timeout (disappear) after some time
- a.k.a. soft state

Update/notify mechanisms under design by IETF

- RFC 2136
- http://www.ietf.org/html.charters/dnsind-charter.html

DNS Records

DNS: Distributed DB storing resource records (RR)

RR format: (name, value, type, ttl)

Type=A

- > name is hostname
- value is IP address

Type=NS

- name is domain (e.g. foo.com)
- value is IP address of authoritative name server for this domain

Type=CNAME

name is alias name for some
 "cannonical" (the real) name
 www.ibm.com is really
 servereast.backup2.ibm.com

value is canonical name

Type=MX

value is name of mailserver associated with name