### Anwendung Höherer Mathematik

#### Sebastian Matkovich

FH Campus Wien sebastianmatkovich@gmail.com

November 3, 2024



- Wiederholung Differenzial-/ Integralrechnung Differenzialrechnung
   Differenzialrechnung
  - Produktregel für Differenziation eines Produktes zweier Funktionen Integralrechnung
- 2 Differenzialgleichungen
- Gewöhnliche homogene Differenzialgleichungen 1. Ordnung Logarithmenregeln
  - Gewöhnliche inhomogene Differenzialgleichungen 1. Ordnung Gewöhnliche homogene Differenzialgleichungen 2. Ordnung Eulerdarstellung
  - Gewöhnliche inhomogene Differenzialgleichungen 2. Ordnung Partielle Differenzialgleichungen
- 3 Fourierreihenentwicklung
- 4 Anhang

   inkompressible Strömungen
   Navier-Stokes Gleichungen
   Reynold'sches Transporttheorem

## Differenzialrechnung

Die Ableitung der Exponentialfunktion lässt sich so herleiten:

$$e = \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n = \lim_{h \to 0} (1 + h)^{\frac{1}{h}}$$
 (1)

$$\frac{de^{x}}{dx} = \lim_{h \to 0} \frac{e^{x+h} - e^{x}}{h} = e^{x} \cdot \lim_{h \to 0} \frac{e^{h} - 1}{h} = e^{x} \cdot \lim_{h \to 0} \frac{(1+h)^{\frac{1}{h}} - 1}{h} = e^{x}$$
(2)

4 ロ ト 4 固 ト 4 重 ト 4 重 ト 9 9 0

## Differenzialrechnung

Die Ableitung einer Umkehrfunktion  $f^{-1}(y) = x(y)$  erhalten wir ganz leicht über die Leibnizschreibweise folgendermaßen:

$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} \tag{3}$$

Ein einfaches Beispiel, das häufig bei Differenzialgleichungen auftritt, bei denen das Ergebnis dieser Rechnung integriert wird, ist die Ableitung von  $\ln(x)$  nach x.

$$\frac{d\ln(y)}{dy} = \frac{1}{\frac{de^x}{dx}} = \frac{1}{e^x} = \frac{1}{y}$$
 (4)

Damit ist das häufig bei Differenzialgleichungen auftretende Integral über  $\frac{1}{x}$ :

$$\int \frac{1}{x} dx = \ln(|x|) + c \tag{5}$$

# Produktregel für Differenziation eines Produktes zweier Funktionen

$$f(x) = u(x) \cdot v(x)$$

$$f'(x) = \lim_{h \to 0} \frac{u(x+h) \cdot v(x+h) - u(x) \cdot v(x)}{h} =$$

$$\lim_{h \to 0} \frac{u(x+h) \cdot v(x+h) - u(x) \cdot v(x) + u(x+h) \cdot v(x) - u(x+h) \cdot v(x)}{h}$$

$$= \lim_{h \to 0} \frac{u(x+h) \cdot [v(x+h) - v(x)] + v(x) \cdot [u(x+h) - u(x)]}{h}$$

$$= \lim_{h \to 0} \frac{u(x+h) \cdot [v(x+h) - v(x)] + \lim_{h \to 0} \frac{v(x) \cdot [u(x+h) - u(x)]}{h}$$

$$= \lim_{h \to 0} u(x+h) \cdot \lim_{h \to 0} \frac{v(x+h) - v(x)}{h} + v(x) \cdot \lim_{h \to 0} \frac{u(x+h) - u(x)}{h}$$

$$= u(x) \cdot v'(x) + u'(x) \cdot v(x)$$

## Partielle Integration

Aus der Produktregel für zwei Funktionen u(x) und v(x) können wir eine Regel für Partielle Integration herleiten.

$$(u \cdot v)' = u' \cdot v + u \cdot v' \tag{6}$$

Integrieren wir auf beiden Seiten, erhalten wir

$$\int (u \cdot v)' dx = \int (u' \cdot v) dx + \int (u \cdot v') dx - \int u \cdot v' dx$$
 (7)

$$u \cdot v + c - \int (u \cdot v') dx = \int (u' \cdot v) dx$$
 (8)

$$\int (u' \cdot v) dx = u \cdot v + c - \int (u \cdot v') dx$$
 (9)

Ziel ist es die Integration durch Ableitung eines Terms so zu vereinfachen, dass ein schon bekanntes Integral entsteht, oder das ursprüngliche Integral, das dann wie eine Gleichung gelöst werden kann.

(FHCW) Anw. höhere Mathe November 3, 2024 6/63

#### Mit folgendem Trick lässt sich ln(x) so integrieren:

$$\int \underbrace{\frac{1}{u'}} \cdot \underbrace{\ln(x)}_{v} dx = \underbrace{x}_{u} \cdot \underbrace{\ln(x) + c}_{v} - \int \underbrace{x}_{u} \cdot \underbrace{\frac{1}{x}}_{v'} dx = x \cdot \ln(x) + x + c =$$

$$x[\ln(x) + 1] + c$$
(10)

So lässt sich auch das Integral über  $sin(x) \cdot cos(x)$  durchführen.

$$\int \underbrace{\sin(x)}_{u} \cdot \underbrace{\cos(x)}_{v'} dx = [\sin(x)]^{2} + c - \int \underbrace{\cos(x)}_{u'} \cdot \underbrace{\sin(x)}_{v} dx \bigg| + \int \cos(x) \cdot \sin(x) dx$$
(12)

$$2 \cdot \int \sin(x) \cdot \cos(x) dx = [\sin(x)]^2 + c : 2$$
 (13)

$$\int \sin(x) \cdot \cos(x) dx = \frac{\left[\sin(x)\right]^2}{2} + c' \tag{14}$$

Ähnlich funktionieren auch die Integrale über  $[\sin(x)]^2$  oder  $(\cos(x))^2$ , nur, dass nach der ersten partiellen Integration ein Additionstheorem anzuwenden ist.



8/63

## Differenzialgleichungen

#### Definition

Eine Differenzialgleichung ist eine Gleichung, deren Lösung keine Zahl, sondern eine Funktion ist.

#### Definition

Bei einer gewöhnlichen Differenzialgleichung ist die gesuchte Funktion von nur einer Variablen abhängig und es treten nur Ableitungen nach einer Variablen auf.

#### Beispiel

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^x$$



9/63

#### Definition

Bei einer partiellen Differenzialgleichung ist die gesuchte Funktion von mehreren Variablen abhängig und es treten partielle Ableitungen nach verschiedenen Variablen auf.

#### Beispiel

$$\frac{\partial^2 u}{\partial x^2} + 2\frac{\partial u}{\partial y} + u = e^x$$

#### Definition

Eine Dgl. heißt von n-ter Ordnung, wenn die höchste in ihr auftretende Ableitung von n-tem Grad ist.



10/63

#### Definition

Es gibt noch die Unterscheidung zwischen homogenen und inhomogenen Dgln. Sei f(x) die gesuchte Funktion, dann wird ein eventuell auftretender Term g(x) Inhomogenität genannt.

#### Beispiel

Die vorher gezeigten Beispiele sind inhomogene Dgln. In homogener Form würden sie so aussehen:  $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$ 



11/63

#### Definition

Eine Dgl. deren höchste Potenz der Variablen, von der die gesuchte Funktion abhängt, n ist, nennen wir n-ten Grades.

#### Definition

Eine Dgl. vom Grad 1 nennen wir linear, vom Grad > 1, nichtlinear.



12/63

### Einschub: Logarithmenregeln

$$y=e^{x} (15)$$

$$x = \ln(y) \tag{16}$$

$$\ln(y_1 \cdot y_2) = \ln(e^{x_1} \cdot e^{x_2}) = \ln(e^{x_1 + x_2}) = x_1 + x_2 = \ln(y_1) + \ln(y_2)$$
 (17)

$$\frac{\ln(y^n)}{\ln(y)} = \underbrace{\ln(y) + \ln(y) + \dots + \ln(y)}_{n - Mal} = \underbrace{n \cdot \ln(y)}_{n \cdot Mal} \tag{18}$$



13/63

## Lösungsmethoden

Methode der Trennung der Variablen (Veränderlichen)

#### Enführung anhand eines Beispiels

$$y' = y \tag{19}$$

Ziel ist es Ausdrücke mit derselben Variable auf einer Seite zu sammeln.

$$\frac{dy}{dx} = y | : y \tag{20}$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = 1 \left| \int dx$$
 (21)

$$\int \frac{1}{v} \cdot \frac{dy}{dx} dx = \int 1 dx \tag{22}$$



(FHCW) Anw. höhere Mathe November 3, 2024 14/63

#### Fortsetzung des Beispiels

$$\int \frac{1}{y} dy = \int 1 dx \tag{23}$$

$$ln(|y|) = x + ln(c)|e^{()}$$
 (24)

$$|y| = c \cdot e^{x} \tag{25}$$



(FHCW) Anw. höhere Mathe No

## Inhomogenitäten, Variation der Konstanten (nach Lagrange)

Bei einer inhomogenen Dgl. wird zuerst die Inhomegenität = 0 gesetzt und wir sagen wir lösen die homogene Dgl. Danach kann bei linearen Dgln. 1. Ordnung von der Integrationskonstante c angenommen werden, dass sie von der Variable abhängt, von der auch die gesuchte Funktion abhängt, üblicherweise c(x) oder c(t) und die Lösung der homogenen Gleichung in die inhomogene Dgl. eingesetzt. Damit kann nach der Funktion c aufgelöst werden. Die Lösung der homogenen Dgl. nennen wir homogene Lösung und eine Lösung der inhomogenen Dgl. nennen wir partikuläre Lösung. Die allgemeine Lösung ergibt sich aus der Summe der homogenen und der partikulären Lösung.



16/63

#### Theorem (Superpositionsprinzip)

Sind  $y_1$  und  $y_2$  Lösungen einer Dgl., so ist auch eine Superposition Lösung der Dgl.

Beweis.

Sei 
$$y' \equiv A(x) \cdot y$$
 und  $y = \alpha \cdot y_1 + \beta \cdot y_2$ .  
Dann ist  $y' = (\alpha \cdot y_1 + \beta \cdot y_2)' = \alpha \cdot y_1' + \beta \cdot y_2' \equiv \alpha \cdot A \cdot y_1 + \beta \cdot A \cdot y_2 = A(\alpha \cdot y_1 + \beta \cdot y_2)$ 



(FHCW) Anw. höhere Mathe November 3, 2024 17/63

#### Demonstration der Variation der Konstanten anhand eines Beispiels

Zu bestimmen ist die allgemeine Lösung der linearen Dgl. erster Ordnung

$$xy' + y - xe^{-2x} = 0. (26)$$

In Normalform:

$$y' + \frac{y}{x} \equiv e^{-2x} \tag{27}$$

Die homogene Dgl.:

$$y' + \frac{y}{x} = 0 \tag{28}$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = -\frac{1}{x} \Big| \int dx \tag{29}$$

$$\ln(|y|) = -\ln(|x|) + \ln(c) [= \ln(\frac{c}{|x|})]$$
 (30)

$$|y| = \frac{c}{|x|} \tag{31}$$

18/63

#### Demonstration der Variation der Konstanten anhand eines Beispiels - Fortsetzung

$$y = \frac{c(x)}{x} \tag{32}$$

$$y' = \frac{c'(x) \cdot x - c(x)}{r^2} \tag{33}$$

$$\frac{c'(x) \cdot x - c(x)}{x^2} + \frac{c(x)}{x^2} = \frac{c'(x)}{x} \equiv e^{-2x}$$
 (34)

$$c'(x) = x \cdot e^{2x} \tag{35}$$

(36)

19/63

$$c(x) = \int \underbrace{x}_{u} \cdot \underbrace{e^{2x}}_{v'} dx = \underbrace{x}_{u} \cdot \underbrace{\frac{e^{2x}}{2} + k}_{v} - \int \underbrace{1}_{u'} \cdot \underbrace{\frac{e^{2x}}{2}}_{v} = \underbrace{\frac{x \cdot e^{2x}}{2} + k - \frac{e^{2x}}{4}}_{v} = \underbrace{\frac{e^{2x}}{2}}_{v} (x - \frac{1}{2}) + k$$

$$\Rightarrow y = \frac{e^{2x}}{2}(1 - \frac{1}{2x}) + \frac{k}{x}$$

## Dgln. höherer Ordnung

Eine lineare Dgl. n-ter Ordnung läßt sich auf folgende Normalform bringen:

$$a_n(x) \cdot y^{(n)} + a_{n-1}(x) \cdot y^{(n-1)} + \ldots + a_1(x) \cdot y' + a_0(x) \cdot y = g(x)$$
 (37)

mit  $a_n(x) \neq 0$ . Ist g(x) = 0, so heißt die Dgl. homogen, sonst heißt sie inhomogen. Für die Lösung linearer Dgln. höherer Ordnung haben die folgenden zwei Sätze große Bedeutung:

- 1 Satz 1: Die homogene Dgl. n-ter Ordnung besitzt genau n voneinander linear unabhängige Lösungen  $y_1, ..., y_n$ , deren Linearkombination die allgemeine Läung der Dgl. darstellt.
- 2 Satz 2: Die allgemeine Lösung der inhomogenen Dgl. n-ter Ordnung ist gleich der Summe aus der allgemeinen Lösung der zugehörigen homogenen und einer speziellen Lösung der inhomogenen Dgl.

4日 > 4日 > 4目 > 4目 > 4目 > 900

20/63

## Lösungsweg:

Nachdem die gegebene homogene lineare Dgl. auf die Normalform gebracht worden ist [g(x)=0], wird die zugehörige charakteristische Gleichung gebildet. Dazu wird der Ansatz

$$y(x) = e^{\lambda \cdot x} \tag{38}$$

in die homogene Dgl. (37) eingesetzt. Dabei entsteht:

$$e^{\lambda \cdot x} \cdot [a_n(x) \cdot \lambda^n + a_{n-1}(x) \cdot \lambda^{n-1} + \ldots + a_1(x) \cdot \lambda + a_0(x)] = 0$$
 (39)

Durch Division durch  $e^{\lambda \cdot x}$  (da  $e^{\lambda \cdot x} \neq 0$  für alle  $\lambda$  und alle x) erhalten wir die sogenannte charakteristische Gleichung oder das charakteristische Polynom:

$$a_n(x) \cdot \lambda^n + a_{n-1}(x) \cdot \lambda^{n-1} + \ldots + a_1(x) \cdot \lambda + a_0(x) = 0$$
 (40)

イロト 4回 ト 4 豆 ト 4 豆 ト 9 Q @

21/63

(FHCW) Anw. höhere Mathe N

## Einschub zur Eulerdarstellung der Winkelfunktionen

$$e^{i\cdot\phi}=\cos(\phi)+i\cdot\sin(\phi)$$



$$e^{i\cdot\phi} + e^{-i\cdot\phi} = 2\cdot\cos(\phi) \Rightarrow \cos(\phi) = \frac{e^{i\cdot\phi} + e^{-i\cdot\phi}}{2}$$
 (41)

$$e^{i\cdot\phi} - e^{-i\cdot\phi} = 2i\cdot\sin(\phi) \Rightarrow \sin(\phi) = \frac{e^{i\cdot\phi} - e^{-i\cdot\phi}}{2i}$$
 (42)



23/63

Bei der Lösung unterscheiden wir 4 Fälle.

1 Fall 1: Alle Lösungen von (40) sind reell und voneinander verschieden
Die allgemeine Lösung von (37) lautet dann:

$$y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x} + \ldots + C_n e^{\lambda_n x}$$

wobei  $\lambda_1, \lambda_2, \dots, \lambda_n$  die reellen Nullstellen des charakteristischen Polynoms (40) sind.

Fall 2: In (40) treten mehrfache reelle Lösungen auf (im vorliegenden Fall eine k-fache Lösung)
Dann lautet die allgemeine Lösung von (37)

$$y = (C_1 + C_2 \times + C_3 \times^2 + \ldots + C_k \times^{k-1}) e^{\lambda_1 x} + C_{k+1} e^{\lambda_{k+1} x} + \ldots + C_n e^{\lambda_n x}$$

wobei  $\lambda_1$  die k-fache Nullstelle des charakteristischen Polynoms (40) ist.

24/63

3 Fall 3: Alle Lösungen von (40) sind einfach, je zwei zueinander konjugiert komplex

$$\lambda_{1,2} = a_1 \pm b_1 \cdot i; \quad \lambda_{3,4} = a_3 \pm b_3 \cdot i; \dots;$$

 $\lambda_{n-1,n} = a_{n-1} \pm b_{n-1} \cdot i$ ; *n* gerade Die allgemeine Lösung von (37) lautet:

$$y = e^{a_1 x} [C_1 \cos(b_1 \cdot x) + C_2 \sin(b_1 \cdot x)] + e^{a_3 x} [C_3 \cos(b_3 \cdot x) + C_4 \sin(b_3 \cdot x)] + \dots + e^{a_{n-1} x} [C_{n-1} \cos(b_{n-1} \cdot x) + C_n \sin(b_{n-1} \cdot x)]$$

wobei  $a_1, a_2, \ldots, a_n$  die reellen Teile der komplexen Nullstellen des charakteristischen Polynoms (40) und  $b_1, b_2, \ldots, b_n$  die imaginären Teile der komplexen Nullstellen des charakteristischen Polynoms (40) sind.

4 Fall 4: Die Kombination der 3 Fälle.



25/63

## Ein Beispiel aus dem "Alltag", eine Federschwingung in Schwerelosigkeit (harmonischer Oszillator)



Die Kraft einer Feder wirkt einer Auslenkung aus der Ruhelage  $x_0$  entgegen und ist proportional zu dieser. Also ist die Kraft F, die die Feder auf eine Masse m an der Feder ausübt:

$$F = -k \cdot (x - x_0) \tag{43}$$

Dabei ist k die Federkonstante.



26/63

Die Kraft ist nach dem 1. Newton'schen Axiom  $m \cdot a = m \cdot \frac{d^2x}{dt^2} = m \cdot \ddot{x}$ , wobei a die Beschleunigung ist. So lautet dann die Dgl.

$$m \cdot \ddot{x} = -k \cdot x \tag{44}$$

27/63

wenn Als Ruhelage, der Einfachheit halber,  $x_0 = 0$  gewählt wird. Das charakteristische Polynom ergibt dann:

$$m \cdot \lambda^2 = -k \Rightarrow \lambda = \pm \sqrt{\frac{k}{m}} \cdot i$$
 (45)

Damit haben wir Fall 3 und Die Lösung ist:

$$x(t) = C_1 \cdot \cos\left(\sqrt{\frac{k}{m}} \cdot t\right) + C_2 \cdot \sin\left(\sqrt{\frac{k}{m}} \cdot t\right)$$
 (46)

Üblicherweise benötigt es dann noch Randbedingungen, beziehungsweise Anfangsbedingungen, um die Konstanten zu bestimmen.

## Lösung inhomogener Dgln.

Inhomogene Dgln. werden in 2 Schritten gelöst. Zuerst wird die homogene Dgl. gelöst und dann die inhomogene Dgl. Je nach Inhomogenität g(x) wird dann ein Ansatz gewählt(s=sin, c=cos):

|  | Inhomogenität <i>g</i>                                | Ānsatz für <i>y<sub>p</sub></i>                                   |
|--|-------------------------------------------------------|-------------------------------------------------------------------|
|  | $b\mathrm{e}^{lpha_X}$                                | $ae^{\alpha x}x^r$                                                |
|  | $b_0 + b_1 x + \ldots + b_m x^m$                      | $a_0 + a_1 x + \ldots + a_m x^m$                                  |
|  | $p_1(x)\sin(\beta x)+p_2(x)\cos(\beta x)$             | $[q_1(x)\sin(eta x)+q_2(x)\cos(eta x)]x^r$                        |
|  | $e^{lpha x}\left[p_1(x)s(eta x)+p_2(x)c(eta x) ight]$ | $e^{lpha x} \left[ q_1(x) s(eta x) + q_2(x) c(eta x) \right] x^r$ |
|  | $e^{\alpha X}p(X)$                                    | $e^{\alpha x}q(x)x^r$                                             |
|  | Polynom n. mit Grad m. i c [1.2]                      | Polynom a mit Grad may [m.: ma]                                   |

Tabelle 5.1: Übersicht über mögliche Ansätze zur Berechnung einer partikulären Lösung. Sind  $\alpha$ ,  $\pm i \cdot \beta$  oder  $\alpha \pm i \cdot \beta$  Nullstelleen des charakteristischen Polynoms ist r gleich der Vielfachheit der Nullstellen zu setzen, sonst ist r=0 zu setzen. Wenn in der Inhomogenität  $\alpha$  und $\beta$  Vorkommen, muss  $\alpha \pm i \cdot \beta$  eine Nullstelle des charakteristischdn Polynoms sein, um  $r \neq 0$  zu setzen.

28/63

#### Getriebener harmonischer Oszillator

Wir betrachten wieder den harmonischen Oszillator und berücksichtigen diesmal die Schwerkraft, also fügen die Inhomogenität  $m \cdot g$  hinzu. Damit lautet die Dgl.:

$$m \cdot \ddot{x} + k \cdot x = m \cdot g \tag{47}$$

Wir machen den Ansatz  $y_p = c$ . Da die homogene Lösung eingesetzt verschwindet, bleibt:

$$k \cdot c = m \cdot g \Rightarrow c = \frac{m \cdot g}{k} \tag{48}$$

Die vollständige Lösung aus homogener und Partikulärlösung lautet damit:

$$x(t) = C_1 \cdot \cos\left(\sqrt{\frac{k}{m}} \cdot t\right) + C_2 \cdot \sin\left(\sqrt{\frac{k}{m}} \cdot t\right) + \frac{m \cdot g}{k}$$
 (49)

29/63

#### Noch ein etwas schwereres Beispiel

$$y'' - 4 \cdot y' + 3y = 3 \cdot x^2 - x + 4 \tag{50}$$

Die Nullstellen des charakteristischen Polynoms sind 1 und 3. Damit lautet die homogene Lösung:  $y_h(x) = c_1 \cdot e^x + c_2 \cdot e^{3 \cdot x}$ . Die Inhomogenität ist ein Polynom 2. Grades, deshalb wählen wir den Ansatz:  $y_p(x) = a \cdot x^2 + b \cdot x + c$ .

$$y_p'(x) = 2 \cdot a \cdot x + b \tag{51}$$

$$y_p''(x) = 2 \cdot a \tag{52}$$

Eingesetzt ergibt das:

$$2 \cdot a - 8 \cdot a \cdot x - 4 \cdot b + 3a \cdot x^2 + 3b \cdot x + 3c = 3 \cdot x^2 - 5 \cdot x + 4 \quad (53)$$



30/63

$$3a \cdot x^2 + (3b - 8)x + (2 - 4b) = x^2 - 5 \cdot x + 4 \tag{54}$$

Koeffizientenvergleich ergibt für  $x^2$ :

$$3a=3\tag{55}$$

$$x:3b-8=-5 (56)$$

$$x^0: 2a-4b+3c=4$$

$$\Rightarrow a = 1; b = 1; c = 2 \tag{58}$$

Damit lautet die vollständige Lösung:

$$y = c_1 \cdot e^x + c_2 \cdot e^{3 \cdot x} + x^2 + x + 2 \tag{59}$$



(57)

31/63

## Separationsansatz für partielle Dgln.

Für eine gesuchte Funktion u(x,y,z) wird ein Produktansatz folgender Art gemacht:

$$u(x, y, z) = f(x) \cdot g(y) \cdot h(z) \tag{60}$$

Eingesetzt in die Dgl., kann dann durch u dividiert werden und es entstehen lauter Brüche, die jeweils nur von einer Variable abhängen. Dann Geben wir den x-abhängigen Term nach links und alle anderen nach rechts. Wenn jetzt beide Seiten für alle x, y und z gleich sein sollen, dann muss die so entstandene Gleichung konstant sein, also können wir beide Seiten gleich einer Konstanten K setzen. So entsteht eine gewöhnliche Dgl. in x, die wir mit bekannten Methoden lösen können. Mit der anderen Seite, die von y und Z abhängt können wir gleich verfahren, indem wir den y-abhängigen Term auf die Seite von K geben und wieder beide Seiten gleich einer Konstanten L setzen und die zwei übriggebliebenen gewöhnlichen Dgln. mit bereits bekannten Methoden lösen. Dieses Verfahren lässt sich auf eine beliebige

## Typen von PDGLn in der Physik

1 Potenzialgleichung oder auch Laplacegleichung

$$\Delta U = 0 \tag{61}$$

Zur Errinerung

$$\Delta U = div \cdot gradU = \nabla \cdot \nabla U = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) U$$
 (62)

2 Wellengleichung

$$\Delta U = \frac{1}{c^2} \cdot \frac{\partial^2 U}{\partial t^2} \tag{63}$$

3 Wärmeleitungs- bzw. Diffusionsgleichung

$$\Delta U = \frac{1}{\kappa} \cdot \frac{\partial U}{\partial t} \tag{64}$$

4 Schrödingergleichung

$$\left(-\frac{\hbar^2}{2 \cdot m} + V(x)\right) \Delta \psi = i \cdot \hbar \cdot \frac{\partial \psi}{\partial t}$$
 (65)

#### inkompressible Stationäre Strömung

Die Navier-Stokes - Gleichungen für kompressible Strömung lauten:

$$\rho \cdot \frac{Dv_i}{Dt} = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_i} (\bar{\mu} \nabla \cdot v_i) + \frac{\partial}{\partial x_j} (2\mu D_{ij}) + \rho g_i$$
 (66)

Wobei  $\bar{\mu}$  die Volumenviskosität (zweite Zähigkeit)  $\bar{\mu}(p,T)$ ,  $\mu$  die dynamische Viskosität (Scherviskosität)  $\mu(p,T)$ ,  $g_i$  je nach Konvention die Erdbeschleunigung in y- oder in z-Richtung und D die massenfeste Zeitableitung ist (das Koordinatensystem sitzt in Massepartikel), im Gegensatz zur ortsfesten Zeitableitung (Koorinatensystem ist ortsfest bzw. raumfest):

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + (\mathbf{v} \cdot \nabla) \cdot = \frac{\partial}{\partial t} + \mathbf{v}_k \frac{\partial}{\partial \mathbf{x}_k}.$$
 (67)

4 □ ト 4 圖 ト 4 圖 ト 4 圖 ・ 夕 Q (や)

34/63

 $D_{ij}$  ist der symmetrische Teil des Geschwindigkeitsgradienten:

$$\frac{\partial \mathbf{v}_j}{\partial \mathbf{x}_i} = D_{ij} + \Omega_{ij} \tag{68}$$

$$D_{ij} = D_{ji} = \frac{1}{2} \cdot \left( \frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right), \Omega_{ij} = -\Omega_{ji} = \frac{1}{2} \cdot \left( \frac{\partial v_j}{\partial x_i} - \frac{\partial v_i}{\partial x_j} \right)$$
(69)

Für inkompressible Strömungen gilt  $\nabla \cdot v = 0$  und  $\mu = \mu(T)$ . Bei stationärer und auch bei horizontaler Strömung kann der "Kraftterm"  $\rho \frac{Dv}{Dt} = 0$  gesetzt werden, sowie auch g, da es normal auf die Strömungsrichtung steht. Der Druckgradient wird konstant und wir setzen ihn -K. Wenn wir die Strömungsrichtung in Z-Richtung annehmen, ist v nicht mehr von z abhängig. Dann erhalten wir diese Gleichung:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) v = -\frac{K}{\mu} \tag{70}$$

<ロ > < 個 > < 量 > < 量 > 量 > のQで

(FHCW) Anw. höhere Mathe November 3, 2024 35/63

Diese Gleichung lösen wir jetzt mit dem Separaionsansatz. Gemischte Ableitungen treten nicht auf, also können wir den Produktansatz wählen:

$$v(x,y) = X(x) \cdot Y(y) \tag{71}$$

eingesetzt in die homogene PDGI. erhalten wir:

$$X'' \cdot Y + X \cdot Y'' = 0 : (X \cdot Y)$$
 (72)

$$\frac{X''}{X} \equiv -\frac{Y''}{Y} = C \tag{73}$$

wir bekommen zwei gewöhnliche Dgln

$$\frac{X''}{X} = C^2, \frac{Y''}{Y} = -C^2 \tag{74}$$

36/63

$$X = A_1 \cdot \sinh(C \cdot x) + A_2 \cdot \cosh(C \cdot x), Y = B_1 \cdot \sin(C \cdot x) + B_2 \cdot \cos(C \cdot x)$$
(75)

Jetzt lösen wir noch die inhomogene Gleichung. Die zweite Ableitung von v ergibt eine Konstante. Ein Polynom 2. Grades erfüllt genau diese Eigenschaft:

$$v = D \cdot x^2 + E \cdot y^2 \tag{76}$$

eingesetzt erhalten wir:

$$2 \cdot D + 2 \cdot E = -\frac{K}{\mu} \tag{77}$$

$$E = -D - \frac{K}{2 \cdot \mu} \tag{78}$$

Hier benötigen wir noch Randbedingungen um die zweite Konstante zu bestimmen.



37/63

#### Die Wärmeleitungsgleichung

Wir leiten sie zunächst her. Die Wärmemenge Q bekommen wir aus der Temperatur folgendermaßen:

$$Q = c \cdot m \cdot \Delta T \tag{79}$$

c ist die spezifische Wärmekapazität, m die Masse und  $\delta$  ist hier ein Delta und nicht der Laplaceoperator. In einem dünnen Stab mit Querschnittsfläche A können wir die Masse m so asdrücken

$$m = \int \rho \cdot A dx \tag{80}$$

So können wir dann für den Wärmestrom schreiben:

$$\dot{Q} = c \cdot \int \rho \cdot A dx \cdot \frac{dT}{dt} \left| \frac{d}{dx} \right|$$
 (81)

$$\frac{Q}{dx} = c \cdot \rho \cdot A \cdot \frac{dT}{dt} \tag{82}$$

38 / 63

Das Fourier'sche Wärmeleitgesetz besagt, dass der Wärmestrom proportional zum Temperaturunterschied und zur Fläche ist und indirekt proportional zur Entfernung ist.

$$\dot{Q} = -\lambda \cdot A \cdot \frac{dT}{dx} \tag{83}$$

 $\lambda$  ist hier die Wärmeleitfähigkeit oder Wärmeleitkoeffizient. Eingesetzt in die vorige Gleichung erhalten wir, wenn wir noch mit einem negativen Vorzeichen berücksichtigen, dass es sich eigentlich um einen Wärmeverlust handelt:

$$\lambda \cdot A \cdot \frac{\partial^2 T}{\partial x^2} = c \cdot \rho \cdot A \cdot \frac{\partial T}{\partial t}$$
 (84)

Nach einer Umstellung und kürzen von A erhalten wir:

$$\frac{\partial T}{\partial t} = \frac{\lambda}{\mathbf{c} \cdot \rho} \frac{\partial^2 T}{\partial x^2} \tag{85}$$

39/63

Um die Wärmeleitungsgleichung für alle Raumdimensionen zu erhalten betrachten wir die Bilanz in jeder Raumrichtung und summieren. So erhalten wir:

$$\dot{T} = \frac{\lambda}{c \cdot \rho} \Delta T \tag{86}$$

Wenn wir den Vorfaktor als Konstante a schreiben und statt der Temperatur die Stoffkonzentration u einsetzen erhalten wir die Diffusionsgleichung.

$$\dot{u} = a \cdot \Delta u \tag{87}$$



40/63

Wir machen wieder den Produktansatz:

$$u(x, y, z, t) = X(x) \cdot Y(y) \cdot Z(z) \cdot T(t)$$
(88)

Nach Einsetzen und Division durch XYZT erhalten wir:

$$\frac{\dot{T}}{T} \equiv a \cdot \left(\frac{X''}{X} + \frac{Y''}{Y} + \frac{Z''}{Z}\right) = K_1 \tag{89}$$

Wir bekommen für T:

$$T(t) = A_1 \cdot e^{K_1 \cdot t} \tag{90}$$

$$\frac{X''}{X} \equiv \frac{K_1}{a} - \left(\frac{Y''}{Y} + \frac{Z''}{Z}\right) = K_2 \tag{91}$$

$$X(x) = A_2 \sinh\left(\sqrt{K_2} \cdot x\right) + A_3 \cosh\left(\sqrt{K_2} \cdot x\right) \tag{92}$$

41/63

Anw. höhere Mathe

$$\frac{Y''}{Y} \equiv \frac{K_1}{a} - K_2 - \frac{Z''}{Z} = K_3 \tag{93}$$

$$Y(y) = A_4 \sinh\left(\sqrt{K_3} \cdot y\right) + A_5 \cosh\left(\sqrt{K_3} \cdot x\right)$$
 (94)

$$Z(z) = A_6 \sinh\left(\sqrt{\frac{K_1}{a} - K_2 - K_3} \cdot z\right) + A_7 \cosh\left(\sqrt{\frac{K_1}{a} - K_2 - K_3} \cdot z\right)$$
(95)

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 9 へ (で

42/63

# Fourierreihenentwicklung



— Funktion — 
$$n = 1$$
 —  $n = 3$  —  $n = 5$  —  $n = 7$  —  $n = 9$ 



(FHCW) Anw. höhere Mathe

# Einschub gerade Funktionen, ungerade Funktionen

Für ungerade Funktionen gilt: f(x) = -f(-x) und sie sind punktsymmetrisch bezüglich des Ursprungs. Ein Beispiel für eine ungerade Funktion ist der Sinus:



(FHCW) Anw. höhere Mathe November 3, 2024 44/63

Für gerade Funktionen gilt: f(x) = f(x) und sie sind spiegelsymmetrisch bezüglich der y-Achse (Ordinate). Ein Beispiel für eine gerade Funktion ist der Cosinus:



# Fourierreihenentwicklung

(FHCW)

Motivation: Näherung einer periodischen Funktion durch Winkelfunktionen, bzw. Zerlegung in Frequenzen. Eine andere Betrachtungsweise wäre Sin und Cos mit den verschiedenen Frequenzen Als Basisvektoren für einen Vektorraum zu betrachten. Dann wäre eine Linearkombination dieser Basisvektoren eine eindeutige Darstellung dieser periodischen Funktion.

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx)) + \sum_{n=1}^{\infty} (b_n \sin(nx))$$

Durch Integration von T bis  $T + 2\pi$  nach x erhalten wir:

$$\int_{T}^{T+2\pi} f(x)dx = \frac{a_0}{2} \int_{T}^{T+2\pi} dx +$$

$$+ \sum_{n=1}^{\infty} \left[ a_n \int_{T}^{T+2\pi} \cos(nx) dx + b_n \int_{T}^{T+2\pi} \sin(nx) dx \right] =$$

Anw. höhere Mathe November 3, 2024 46/63

$$= \frac{a_0}{2}(T + 2\pi - T) + \sum_{n=1}^{\infty} \left[ a_n \left( \frac{\sin(nx)}{n} \right)_T^{T + 2\pi} + b_n \left( \frac{-\cos(nx)}{n} \right)_T^{T + 2\pi} \right]$$

$$= a_0\pi + \sum_{n=1}^{\infty} \left[ a_n \cdot 0 - b_n \cdot 0 \right]$$

$$= a_0\pi$$

Nach  $a_0$  umgeformt bekommen wir:

$$a_0 = \frac{1}{\pi} \int_T^{T+2\pi} f(x) dx$$



47/63

Jetzt möchten wir eine Formel für  $a_n$  bekommen. Wir multiplizieren dazu beide Seiten mit cos(mx) und integrieren wieder.

$$\int_{T}^{T+2\pi} f(x) \cos(mx) dx = \frac{a_0}{2} \int_{T}^{T+2\pi} \cos(mx) dx +$$

$$+\sum_{n=1}^{\infty}a_{n}\left[\int_{T}^{T+2\pi}\cos(nx)\cos(mx)dx\right]+\sum_{n=1}^{\infty}b_{n}\left[\int_{T}^{T+2\pi}\sin(nx)\cos(mx)dx\right]$$

$$\int_{T}^{T+2\pi} f(x) \cos(nx) dx = \frac{1}{2} \sum_{n=1}^{\infty} \left[ a_{n} \int_{T}^{T+2\pi} 2 \cdot \cos^{2}(nx) dx \right]$$
$$= \frac{a_{n}}{2} \int_{T}^{T+2\pi} (1 + \cos(2nx)) dx$$

$$=\frac{1}{2}\int_{T}$$
  $(1+\cos(2nx))dx$ 

$$=\frac{a_n}{2}\left(x+\frac{\sin(2nx)}{2n}\right)_T^{T+2\pi}$$

$$=\frac{a_n}{2}(2\pi)=a_n\pi\Rightarrow a_n=\frac{1}{\pi}\int_T^{T+2\pi}f(x)\cos(nx)dx$$

48/63

Zuguterletzt hätten wir noch gerne eine Formel für  $b_n$ . Dazu multiplizieren wir beide Seiten mit sin(mx):

$$\int_{T}^{T+2\pi} f(x) \sin(mx) dx =$$

$$= \frac{a_0}{2} \int_T^{T+2\pi} \sin(mx) dx + \sum_{n=1}^{\infty} a_n \left[ \int_T^{T+2\pi} \cos(nx) \sin(mx) dx \right] + \sum_{n=1}^{\infty} b_n \left[ \int_T^{T+2\pi} \sin(nx) \sin(mx) dx \right]$$



(FHCW) Anw. höhere Mathe November 3, 2024 49/63

Die ersten beiden Integrale der rechten Seite verschwinden und es bleibt:

$$\int_{T}^{T+2\pi} f(x) \sin(nx) dx = \frac{1}{2} \sum_{n=1}^{\infty} \left[ b_n \int_{T}^{T+2\pi} 2 \cdot \sin^2(nx) dx \right]$$

$$= \frac{b_n}{2} \int_{T}^{T+2\pi} (1 - \cos(2nx)) dx$$

$$= \frac{b_n}{2} \left( x - \frac{\sin(2nx)}{2n} \right)_{T}^{T+2\pi}$$

$$= \frac{b_n}{2} (2\pi) = b_n \pi$$

$$\Rightarrow b_n = \frac{1}{\pi} \int_{T}^{T+2\pi} f(x) \sin(nx) dx$$



(FHCW) Anw. höhere Mathe November 3, 2024 50 / 63

### Beispiel: Kippschwingung

Wir modellieren eine Kippschwingung mit Periode  $2\pi$  und Werten zwischen  $-\pi$  und  $\pi$  mithilfe der Funktion

$$g(x) = \left\{ egin{array}{ll} x & ext{wenn } -\pi < x \leq \pi \ ext{periodisch fortgesetzt} & ext{sonst.} \end{array} 
ight.$$

Abbildung 1 zeigt oben links den Graphen der auf dem Intervall  $(-\pi,\pi]$  definierten Funktion  $x\mapsto x$  (entspricht der ersten Zeile von (3.1)) und oben rechts die periodische Fortsetzung. g ist stückweise stetig differenzierbar, aber unstetig und (abgesehen von den Unstetigkeitsstellen) eine ungerade Funktion, daher ist  $a_n=0$  für alle  $n\geq 0$ . Wir müssen also nur die Fourierkoeffizienten  $b_n$  ermitteln:

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(nx) g(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(nx) x dx = -\frac{2}{n} (-1)^n = \frac{2}{n} (-1)^{n+1}.$$

$$\Rightarrow \widetilde{g}(x) = \sum_{\text{Anw. h\"ohere Mathe}}^{\infty} \frac{2(-1)^{n+1}}{\widehat{\text{sin}}(nx)}$$

# Eine etwas unkonventionellere Anwendung der Fourieranalyse



52/63

## Fragen? Kommentare?



# Inkompressible Strömungen

Zum Zeitpunkt 0 befindet sich ein Fluidpartikel in der Strömung am Ort  $\mathbf{X}(x,y,z)$ , zu einem Zeitpunkt t>0 am Ort  $\mathbf{x}(x,y,z)$ . Wir unterscheiden dann bei einer physikalischen Größe b zwischen der massenfesten Zeitabeitung

$$\frac{Db}{Dt} = \frac{\partial b(\mathbf{X}, t)}{\partial t} \tag{96}$$

und der ortsfesten Zeitableitung

$$\frac{\partial b}{\partial t} = \frac{\partial b(\mathbf{x}, t)}{\partial t} \tag{97}$$

Die Teilchengeschwindigkeit v ist dann  $\frac{D\mathbf{x}}{Dt}$  und die Teilchenbeschleunigung ist dann  $\frac{D\mathbf{v}}{Dt}$ . In Indexschreibweise und unter Verwendung der Einstein'schen Summenkonvention, dass in einem Term über doppelt vorkommende Indizes summiert wird:

$$\frac{Dv_i}{Dt} = \frac{\partial v_i}{\partial t} + \frac{\partial v_i}{\partial x_j} \cdot \frac{Dx_j}{Dt}$$
(98)

(FHCW) Anw. höhere Mathe November 3, 2024 54/63

$$\Rightarrow \mathbf{a} = \frac{D\mathbf{v}}{Dt} = \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v}$$
 (99)

Also gilt allgemein für eine Größe b

$$\frac{D\mathbf{b}}{Dt} = \frac{\partial \mathbf{b}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{b}$$
 (100)

Die Dehnung eines infinitesimalen Volumens dV während der Bewegung wird durch die Funktionaldeterminante

$$\det J(\mathbf{X}, t) = \frac{\partial(x, y, z)}{\partial(X, Y, Z)} = \begin{vmatrix} \frac{\partial x}{\partial X} \frac{\partial x}{\partial Y} \frac{\partial x}{\partial Z} \\ \frac{\partial y}{\partial X} \dots \\ \dots \end{vmatrix}$$
(101)

charakterisiert.  $J=\left(rac{\partial x_i}{\partial X_i}
ight)=\left(c_{ij}
ight)$  ist dabei die Jacobimatrix der Transformation.

Der laplace'sche Entwicklungssatz für Determinanten lässt sich auf folgende Weise schreiben:

$$\det J = \sum_{k=1}^{3} c_{ik} \cdot \alpha_{ik}, \alpha_{ik} = (-1)^{i+k} \det J_{ik}$$
 (102)

hier für die Entwicklung nach der i-ten Zeile, für beliebiges aber festes i zwischen 1 und 3. Dabei sind  $c_{ik}$  die Elemente der Jacobimatrix und  $\alpha_{ik}$  die algebraischen Komplemente der i-en Zeile und k-ten Spalte und det  $J_{ik}$  jene Unterdeterminanten (Minoren), die sich jeweils duech Streichen der i-ten Zeile und k-ten Spalte ergeben.

$$\sum_{k=1}^{3} c_{ik} \cdot \alpha_{jk} = \delta_{ij} \det J \tag{103}$$

$$\delta_{ij} = \left\{ egin{array}{ll} 1 & {\sf wenn} \ i=j \ 0 & {\sf sonst.} \end{array} 
ight.$$

Das können wir für die Ableitung der Funktionaldeterminante verwenden

(FHCW) Anw. höhere Mathe November 3, 2024 56/63

$$\frac{d \det J}{dx} = \sum_{i=1}^{3} \sum_{j=1}^{3} \underbrace{\frac{\partial \det J}{\partial c_{ij}}}_{\alpha_{ij}} \frac{dc_{ij}}{dx}$$
(104)

$$\Rightarrow \frac{D \det J}{Dt} = \sum_{i=1}^{3} \sum_{j=1}^{3} \alpha_{ij} \frac{Dc_{ij}}{dt} = \sum_{i=1}^{3} \sum_{k=1}^{3} \sum_{j=1}^{3} \frac{c_{kj} \alpha_{ij}}{\partial x_{k}} \frac{\partial v_{i}}{\partial x_{k}} = \det J \sum_{j=1}^{3} \frac{\partial v_{i}}{\partial x_{i}}$$

$$(105)$$

Mit

$$\frac{Dc_{ij}}{Dt} = \frac{D}{Dt} \left( \frac{\partial x_i}{\partial X_j} \right) = \frac{\partial v_i}{\partial X_j} = \sum_{k=1}^3 \frac{\partial v_i}{\partial x_k} \underbrace{\frac{\partial x_k}{\partial X_j}}_{C_{ki}}$$
(106)

Da bei inkompressiblen Strömungen die Strömung keine Volumendehnung erfährt, muss die Zeitableitung der Funktionaldeterminante verschwinden. Damit das für alle beliebigen Funktionaldeterminanten der Fall ist muss im Produkt

 $\nabla \cdot \mathbf{v} = 0$  sein.

# Herleitung der Navier-Stokes - Gleichungen

Diese sind im Prinzip Bewegungsgleichungen für ein viskoses, Newton'sches Fluid. Diese können wir aus der Impulserhaltung in integraler Form herleiten:

$$\frac{D}{Dt} \int_{V} \rho v_{i} dV = \int_{\partial V} \sigma_{ji} n_{j} dO + \int \rho g_{i} dV + K_{i}$$
 (107)

Die resultierende Kraft ergipt sich dabei aus dem an der Oberfläche wirkenden Spannungsvektor  $\sigma_{ii} \cdot n_i$ , wobei  $\sigma_{ii}$  der Spannunstensor ist, der Erdanziehungskraft und einer Kraft K, die ein umströmter Körper im Volumen V auf die Strömung ausübt. Mithilfe des Gauß'schen Satzes können wir den Spannungvektor umschreiben.

$$\int_{V} \rho \frac{Dv_{i}}{Dt} dV = \int_{V} \frac{\partial \sigma_{ji}}{\partial x_{j}} + \rho g_{i} dV$$
 (108)

Dabei wurde noch unterschlagen, dass die Ableitung außerhalb des Integrals im linken Term nicht von Vorne herin einfach nur die Ableitung der Dichte ist. Wir benötigen dazu das Reynolds'sche Transporttheorem, das im Sinne der Übersicht am Ende an die 58/63

November 3, 2024

Auch haben wir den Bereich fester Körper ausgeschlossen, da wir in differenzieller Form nur einen lokalen Bereich betrachten und K=0 gesetzt. Da der Zusammenhang für ein beliebigesVolumen gelten soll:

$$\rho \frac{Dv_i}{Dt} = \frac{\partial \sigma_{ji}}{\partial x_i} + \rho g_i \tag{109}$$

Üblicherweise wird der Spannungstensor in einen Tensor der inneren Reibspannungen  $\left(\sigma'_{ji}\right)$  und einen Anteil  $p\delta_{ij}$ , der vom Druck herrührt, aufgespalten:

$$\sigma_{ji} = \sigma'_{ji} - p\delta_{ij} \tag{110}$$

November 3, 2024

59/63

$$\rho \frac{Dv_i}{Dt} = -\frac{\partial p}{\partial x_i} + \frac{\partial \sigma'_{ji}}{\partial x_j} + \rho g_i$$
 (111)

Um die Navier-Stokes - Gleichungn zu erhalten benötigen wir einen Ausdruck für den Reibspannungstensor.

Anw. höhere Mathe

(FHCW)

Die Stokes'schen Postulate für ein viskoses, Stokes'sches Fluid lauten:

- 1  $\sigma_{ij}$  ist eine stetige Funktion von  $D_{ij}$ , unabhängig von anderen kinematischen Größen,
- 2  $\sigma_{ij}$  hängt nicht explizit von der räumlichen Position **x** ab.
- 3 es existiert keine ausgezeichnete Richtung im Raum (Isotropie)
- 4 falls  $D_{ij} = 0$ , dann gelte  $\sigma_{ij} = -p\delta_{ij}$ .

Die mathematische Übersetzung von 1 und 2 ist  $\sigma = f(D)$ . 3 drückt sich durch  $O\sigma O^{-1} = f(ODO^{-1})$  für alle orthogonalen Transformationsmatrizen O aus.



60/63

1-4 führen auf die nichtlineare quadratische Relation

$$\sigma_{ij} = \alpha \delta_{ij} + \beta D_{ij} + \gamma D_{ik} D_{kj}$$
 (112)

Die griechischen Variablen sind skalare Funktionen von  $I_1$ ,  $I_2$  und  $I_3$ , den Hauptinvarianten von D. Diese sind die Koeffizienten im charakteristischen Polynom

$$p_D(\lambda) = \det(\lambda - D) = \lambda^3 - l_1 \lambda^2 + l_2 \lambda - l_3 = 0$$
 (113)

Wenn wir fordern, dass  $\sigma$  linear von D abhängt dann nennen wir ein solches Fluid ein Newton'sches Fluid.Wir erhalten dann für  $\sigma$ 

$$\sigma_{ij} = \sigma_{ji} = (-\rho + \bar{\mu}\nabla \cdot \mathbf{v})\,\delta_{ij} + 2\mu D_{ij} \tag{114}$$



(FHCW) Anw. höhere Mathe November 3, 2024 61/63

und  $\sigma'$ 

$$\sigma'_{ij} = \sigma_{ji'} = \bar{\mu} \nabla \cdot \mathbf{v} \delta_{ij} + 2\mu D_{ij} \tag{115}$$

Eingesetzt in die Bewegungsgleichung erhalten wir die lang ersehnten Navier-Stokes - Gleichungen

$$\rho \frac{Dv_i}{Dt} = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_i} \left( \bar{\mu} \nabla \cdot \mathbf{v} \right) + \frac{\partial}{\partial x_i} \left( 2\mu D_{ij} \right) + \rho g_i \tag{116}$$

Für ein perfektes (reibungsfreies) Fluid erhalten wir die Eulergleichungen

$$\rho \frac{Dv_i}{Dt} = -\frac{\partial p}{\partial x_i} + \rho g_i \tag{117}$$

Für ein nicht newton'sches Fluid mit konstanten Stoffwerten  $ho,\mu=$ const. bekommen wir

$$\frac{Dv_i}{Dt} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 v_i}{\partial x_i^2} + \rho g_i$$
 (118)

deren stationäre Variante wir mit dem Separationsansatz lösen können, wobei  $\nu=\frac{\mu}{\rho}$  ist.

(FHCW) Anw. höhere Mathe November 3, 2024 62/63

## Einschub Reynolds'sches Transporttheorem

Sei V(t) ein mit der Strömung massenfest mitbewegtes Kontrollvolumen und  $b(\mathbf{x}, t)$  eine beliebige Feldgröße. Dann gilt für die Transformation von Bereichsintegralen, s. Abb. 1:

$$\int_{V} b(\mathbf{x},t) dV = \int_{V_0} b(\mathbf{X},t) \underbrace{|\det J(\mathbf{X},t)| dV_0}_{dV}, \quad V_0 = V(0) = \text{const.}$$

Die massenfeste Zeitableitung dieses Ausdrucks ist unter Verwendung von (96), (97) und (99) gegeben durch

$$\frac{\mathrm{D}}{\mathrm{D}t} \int_{V} b \, \mathrm{d}V = \int_{V_0} \left( b \underbrace{\frac{\mathrm{D}|\det J|}{\mathrm{D}t}}_{|\det J|\nabla \cdot \mathbf{v}} + |\det J| \frac{\mathrm{D}b}{\mathrm{D}t} \right) \mathrm{d}V_0 = \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_{V_0} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b\nabla \cdot \mathbf{v} \right) |\det J| \int_$$

$$= \int_{V} \left( \frac{\mathrm{D}b}{\mathrm{D}t} + b \nabla \cdot \mathbf{v} \right) \mathrm{d}V = \int_{V} \left( \frac{\partial b}{\partial t} + \nabla \cdot (b\mathbf{v}) \right) \mathrm{d}V$$

Mit Hilfe des Gaußschen Integralsatzes erhält man daraus das Reynoldssche Transporttheorem