Crash Severity Prediction Study

PRESENTED BY GROUP #4

- BADR AL-MAHRUQI (44831132)
- SANSKRUTI SHINDE (45238989)
- SHREY SHAH (45207417)
- VINCENT ABBOSH (45019218)

Problem Solving with Data

- ▶ Aim To show that severity of a crash is predictable.
- Classifying and recognizing an accident as Severe / Non-Severe.
- Predicting crash severity with reasonable error margin.
- Enable to recognize the influential predictors of crash severity.

SE Qld and Sunshine Coast Average Traffic

SE QLD and Sunshine Coast Crashes

Crash Severity
Fatal
Hospitalisation
Medical treatment
Minor injury

Getting the Data I need

Is my Data Fit for Use

- Carried out Data Quality process like,
- 1. Discarding Incomplete Rows
- 2. Location wise bidirectional Traffic data aggregation.
- 3. Cleansing of speed dimension.
- **Carried out Data Integration** process like,
- 1. Estimated traffic at crash locations using K-NN Regression technique
- 2. Generalized Multi Valued attribute 'Severity' to binary valued attribute.

Light Traffic

Medium Traffic

Heavy Traffic

151

152

153

Data Exploration

- Traffic at all crash locations post (left)
- Crash Severity at all locations (right)

Crash locations Traffic Light Traffic Medium Traffic Heavy Traffic Severe

Crash Longitude

Crash Longitude

AUC on testing data: 0.6154 Prediction Accuracy: 62.3%

```
logfit <- glm(sev
             longitude + month + hour + speed limit*traffic + I(traffic^2)
             road hor al + lighting cond,
             data = Crash Sev train, family=binomial)
summary(logfit)
qlm(formula = sev ~ longitude + month + hour + speed limit *
   traffic + I(traffic^2) + road hor al + lighting cond, family = binomial,
   data = Crash Sev train)
Deviance Residuals:
                 Median
                                      Max
-1.7571 -1.0077 -0.8723
                          1.2441
                                   1.6158
Coefficients:
                                     Estimate Std. Error z value Pr(>|z|)
                                    1.577e+01 2.232e+00 7.067 1.58e-12 ***
(Intercept)
                                   -1.025e-01 1.452e-02 -7.055 1.72e-12 ***
longitude
monthAugust
                                   -6.899e-02 6.214e-02 -1.110 0.26689
monthDecember
                                   2.286e-02 6.357e-02
                                                         0.360 0.71914
monthFebruary
                                   -9.035e-02 6.412e-02
                                                         -1.409 0.15882
monthJanuary
                                   4.541e-02 6.484e-02
                                                          0.700 0.48373
                                   1.046e-01 6.202e-02
                                                          1.686 0.09183
monthJuly
                                   -7.247e-02 6.283e-02 -1.153 0.24873
monthJune
monthMarch
                                   -1.320e-01 6.226e-02 -2.120 0.03400
monthMay
                                   3.353e-03 6.088e-02
                                                         0.055
monthNovember
                                   -6.374e-02 6.249e-02 -1.020
monthOctober
                                   -7.581e-02 6.210e-02 -1.221 0.22220
monthSeptember
                                   -1.244e-01 6.427e-02 -1.936 0.05285
                                   -4.143e-03 2.673e-03 -1.550 0.12119
speed limit
                                                          9.522 < 2e-16 ***
                                   8.421e-03 8.844e-04
                                   -2.774e-04 6.816e-05
traffic
                                                         -4.069 4.72e-05 ***
I(traffic^2)
                                   8.710e-08
                                              1.093e-08
                                                         7.969 1.61e-15 ***
road hor alCurved - view open
                                   -2.845e-01 6.605e-02 -4.307 1.65e-05 ***
road hor alStraight
                                   -5.058e-01 6.198e-02 -8.160 3.34e-16 ***
lighting condDarkness - Not lighted 3.414e-02 6.264e-02
                                                          0.545 0.58576
lighting condDawn/Dusk
                                   -1.716e-01 5.921e-02 -2.898 0.00375 **
lighting_condDaylight
                                   -2.350e-01 3.981e-02 -5.904 3.56e-09 ***
speed limit:traffic
                                  -3.065e-06 7.141e-07 -4.292 1.77e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Making the Data Confess using Logistic Regression

Story Telling with Data

Traffic and Estimated Speed

- > Severe crashes tend to occur at High Speed but in Low Traffic conditions (Red cluster).
- > None Severe crashes are concentrated on Low speed but High traffic regions (Green cluster).

Story Telling with Data Road Condition

- > Severity is clearly influenced by the horizontal shape of the road.
- > Crashes on curved roads are more severe.
- > Around 60% of crashes on Curved-Obscured view roads are Severe compared to 40% on Straight roads.

Story Telling with Data Day of Week

- > Day of the week is NOT very influential to predict Severe and Not Severe crashes.
- > Amongst the total # crashes, Friday and Thursday lead the chart.
- ▶ But for Severe crashes, Sunday and Saturday are the highest with 49.2% and 46.4% respectively.

Story Telling with Data

Month of Year

- > Month of the year is NOT very influential to predict Severe and Not Severe crashes.
- > Amongst the total # crashes, May and August lead the chart.
- > But for Severe crashes, July and January are the highest with 45.7% and 44.7% respectively.

Conclusion

- Many crash factors are NOT captured in the dataset.
- Reliability on Average Traffic and Speed NOT enough to predict crash severity.
- External dataset show how Gender (left) and Age (right) influence crash severity.

Casualty by Road User/Gender/Severity

Driver Casualty by Gender/Age group

Thanks