- 1. El número de horas por semana que 200 estudiantes de MACC gastan procrastinando (en redes sociales, videojuegos, etc.) está agrupada en las clases 0 a 3, 4 a 7, 8 a 11, 12 a 15, 16 a 19, 20 a 23, y 24 a 27, con las respectivas frecuencias observadas 12, 25, 36, 45, 34, 31 y 17. La media y la desviación estándar agrupadas se pueden calcular a partir de los datos. La hipótesis nula es que los datos se encuentran distribuidos normalmente. Usando la media y la desviación estándar que se encuentran a partir de los datos agrupados, se determinaron las siguientes frecuencias esperadas (correspondientes): 10, 30, 40, 50, 36, 28 y 6. Realice una prueba de bondad de ajuste para determinar si hay sustento estadístico para la hipótesis planteada.
 - a) Calcule el estadístico de prueba.
 - b) Determine la región de rechazo para un nivel de significancia del $5\,\%$ y concluya.
 - c) Determine el valor p y concluya.
- 2. La tabla 1 proporciona valores experimentales de la presión P de cierta masa de gas que corresponde a varios valores del volumen V. De acuerdo a la termodinámica, existe una relación entre las variables de la forma $PV^{\gamma} = C$, donde γ y C son constantes. Realice todos los cálculos usando las expresiones que dependen de S_{xx} , S_{xy} y S_{yy} .

Volumen (m^3)	54.3	61.8	72.4	88.7	118.6	194.0
Presión (N/m^2)	61.2	49.5	37.6	28.4	19.2	10.1

Cuadro 1: Datos para el punto 2

- a) Estime los valores de γ y C, y escriba la ecuación que relaciona a P y V.
- b) Estime el valor de P cuando $V=100\,m^3$ y su intervalo al 95 % de confianza.

Sugerencia: Dado que $PV^{\gamma} = C$, se puede tomar logaritmos (base 10, por ejemplo) a ambos lados de la ecuación produciendo: $\log P = \log C - \gamma \log V$. Puede utilizar $x = \log V$ y $y = \log P$ y realizar una regresión lineal simple para solucionar el problema escribiendo la ecuación como $y = \beta_0 + \beta_1 x$.

- 3. Un coeficiente de correlación para una muestra de 24 se calculó igual a r=0.75. ¿Se puede rechazar la hipótesis de que el coeficiente de correlación poblacional es tan pequeño como los valores de ρ indicados, a un nivel de significancia de 0.05?
 - a) $\rho = 0.60$.
 - b) $\rho = 0.50$.
- 4. Como parte del estudio de una especie de insectos se han capturado 10 especímenes y se les ha medido su longitud en centímetros. A continuación se muestran los datos recolectados.

$$0.2 \mid 0.3 \mid 0.6 \mid 0.7 \mid 0.9 \mid 1.3 \mid 1.4 \mid 1.5 \mid 1.7 \mid 1.9$$

Profesor: Santiago Alférez

Al observar estos datos, la persona a cargo de la investigación ha propuesto que la longitud de los insectos sigue una distribución uniforme entre 0 y 2 centímetros. Realice una prueba de bondad de ajuste para determinar si hay sustento estadístico

para la hipótesis planteada.

- a) Construya un histograma de los datos con 5 cajas de igual tamaño entre 0 y 2.
- b) Calcule el estadístico de prueba.
- c) Determine la región de rechazo y concluya.
- 5. Se busca estudiar la relación entre la longitud y el ancho del sépalo de una especie de flores. Para este fin se han recolectado 150 muestras y se ha propuesto un modelo lineal de la forma

LongSepalo =
$$\beta_0 + \beta_1$$
AnchoSepalo + ϵ .

El resultado de correr el modelo en R se muestra continuación:

Call:

lm (formula = Sepal. Length ~ Sepal. Width)

Residuals:

Coefficients:

```
Signif. codes: 0 '*** ^{'} 0.001 '** ^{'} 0.01 '* ^{'} 0.05 '. ^{'} 0.1 ' ' 1
```

Residual standard error: 0.8251 on 148 degrees of freedom Multiple R-squared: 0.01382, Adjusted R-squared: 0.007159 F-statistic: 2.074 on 1 and 148 DF, p-value: 0.1519

- a) ¿Qué pue de concluir sobre β_1 ? ¿Es significativamente diferente de 0?
- b) ¿Qué puede concluir sobre la relación propuesta entre estas dos variables?
- 6. Ahora se busca estudiar la relación entre la longitud del sépalo y el ancho del **pétalo** de la misma especie de flores del punto anterior. Usando los mismos datos del punto anterior se ha propuesto un modelo lineal de la forma

$$LongSepalo = \beta_0 + \beta_1 Ancho Petalo + \epsilon.$$

El resultado de correr el modelo en R se muestra continuación:

Profesor: Santiago Alférez

Taller: Preparcial, parcial 3 Profesor: Santiago Alférez

Call:

lm(formula = Sepal.Length ~ Petal.Width)

Residuals:

Coefficients:

Residual standard error: 0.478 on 148 degrees of freedom Multiple R-squared: 0.669, Adjusted R-squared: 0.6668 F-statistic: 299.2 on 1 and 148 DF, p-value: < 2.2e-16

- a) ¿Qué puede concluir sobre β_1 ? ¿Es significativamente diferente de 0?
- b) Al comparar el \mathbb{R}^2 de este modelo con el del modelo del punto anterior, ¿qué puede concluir?
- 7. Se han tomado 100 muestras del peso (en gramos) y el número de días de vida de pollos de cierta especie. Con estos datos se ha estimado un modelo lineal que explica la variable dependiente Peso a través de la variable independiente Días, así

Peso =
$$\beta_0 + \beta_1 \text{Dias} + \epsilon$$
.

Se ha estimado el valor de los parámetros con el método de cuadrados mínimos, obteniendo $\hat{\beta}_0 = 20$ y $\hat{\beta}_1 = 10$. También se sabe que la suma de cuadrados del error (SSE) del modelo es 1500, mientras la media muestral del número de días de vida es $\bar{x} = 15$, y la suma de las diferencias al cuadrado en el número de días de vida es $S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 = 1000$.

- a) Determine un intervalo al 95 % de confianza para el valor esperado del peso de un pollo de 10 días de vida.
- b) Determine un intervalo al 95 % de confianza para el peso de un pollo de 10 días de vida.
- c) Interprete el valor de $\hat{\beta}_0$ y $\hat{\beta}_1$ dentro del contexto del problema.
- 8. En R cargue los datos mtcars (mediante data(mtcars)) y utilícelos para realizar los siguientes ejercicios. Realice todos los cálculos usando las expresiones que dependen de S_{xx} , S_{xy} y S_{yy} (es decir, sin utilizar comandos directos de R, como lm).
 - a) Estudie y asegúrese de entender todos los campos.

Profesor: Santiago Alférez

- b) Calcule estadísticas descriptivas de cada campo.
- c) Considere los campos mpg y hp.
 - 1) Grafique un diagrama de dispersión de estas dos variables.
 - 2) Estime un modelo de regresión lineal entre estas dos variables, dejando a la variable hp como variable independiente. Determine el valor de $\hat{\beta}_0$ y $\hat{\beta}_1$.
 - 3) Realice una prueba de hipótesis para determinar si β_1 es diferente de 0 o no.
 - 4) Construya un intervalo de confianza para β_1 .
 - 5) Concluya sobre el valor de β_1 en el contexto del problema.
 - 6) Realice una prueba de hipótesis para determinar si β_0 es diferente de 0 o no.
 - 7) Construya un intervalo de confianza para β_0 .
 - 8) Concluya sobre el valor de β_0 en el contexto del problema.
 - 9) Estime la correlación entre estas dos variables.
- d) Considere los campos qsec y hp.
 - 1) Estime la correlación entre estas dos variables.
 - 2) Grafique un diagrama de dispersión de estas dos variables.
 - 3) Estime un modelo de regresión lineal entre estas dos variables, dejando a la variable qsec como variable independiente. Determine el valor de $\hat{\beta}_0$ y $\hat{\beta}_1$.
 - 4) Realice una prueba de hipótesis para determinar si β_1 es diferente de 0 o no.
 - 5) Construya un intervalo de confianza para β_1 .
 - 6) Concluya sobre el valor de β_1 en el contexto del problema.
 - 7) Realice una prueba de hipótesis para determinar si β_0 es diferente de 0 o no.
 - 8) Construya un intervalo de confianza para β_0 .
 - 9) Concluya sobre el valor de β_0 en el contexto del problema.