Dynamic Programming

Zi Wang HKBU

Spring 2025

Cake-Eating Problem

- Infinite time: $t = 0, 1, ..., W_0 > 0$ is given

$$V(W_0) \equiv \max_{(c_t)_{t=0}^{\infty}, (W_t)_{t=1}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$
s.t. $W_{t+1} = W_t - c_t$, $W_{t+1} > 0$, $t = 0, 1, ...$ (1)

- Dynamic programming: Bellman equation

$$V(W_{t}) = \max_{c_{t} \in [0, W_{t}]} u(c_{t}) + \beta V(W_{t+1}), \quad \text{s.t. } W_{t+1} = W_{t} - c_{t}$$
(2)

- State variable: W_t
- Control variable: ct
- Rewrite the Bellman equation:

$$V(W_{t}) = \max_{W_{t+1} \in [0, W_{t}]} u(W_{t} - W_{t+1}) + \beta V(W_{t+1})$$
(3)

Value Function Iteration

- Grid
$$[0, W_0]$$
 as $w_j = \frac{j}{J}W_0$ for $j = 1, \dots, J$

- Initial guess
$$v_j^{(0)} = u(w_j)$$

- Update
$$v_j^{(1)} = \max_{k=1,...,j} u\left(w_j - w_k
ight) + eta v_k^{(0)}$$

- Iterate until
$$v_j^{(t)} = v_j^{(t-1)}$$
 for all $j = 1, \dots, J$

Policy Function Iteration

- Policy function: $c\left(W_{t}\right) \equiv \arg\max_{c_{t} \in [0, W_{t}]} u\left(c_{t}\right) + \beta V\left(W_{t} c_{t}\left(W_{t}\right)\right)$
- Equivalently: $g\left(W_{t}\right)\equiv\arg\max_{W_{t+1}\in\left[0,W_{t}\right]}u\left(W_{t}-W_{t+1}\right)+eta V\left(W_{t+1}\right)$
- Policy function iteration
 - Grid $[0, W_0]$ as $w_j = \frac{j}{J}W_0$ for $j = 1, \dots, J$
 - Initial guess $g_j^{(0)} = w_k$, $k = 1, \ldots, j-1$
 - Solve v_j by iterating $v_j^{(t)} = u(w_j w_k) + \beta v_k^{(t-1)}$ (inner loop)
 - Update $g_j^{(1)} = w_k$, where $k = rg \max_{s=1,\dots,j-1} u\left(w_j w_s
 ight) + eta v_s$
 - Iterate until $g_j^{(t)} = g_j^{(t-1)}$ for all $j = 1, \ldots, J$

Stochastic Cake-Eating Problem

- Random utility shifter: $z_t \in \mathcal{Z} \equiv \{z_1, \dots, z_S\}$
- Bellman equation:

$$V(W_{t}, z_{t}) = \max_{W_{t+1} \in [0, W_{t}]} z_{t} u(W_{t} - W_{t+1}) + \beta E_{t} V(W_{t+1}, z_{t+1})$$
(4)

- Example:
 - $\mathcal{Z} \equiv \{z_1,z_2\}$ with $z_2>z_1>0$
 - Markov shifter with a transition matrix: $\Pi = \begin{bmatrix} \pi_{11} & \pi_{12} \\ \pi_{21} & \pi_{22} \end{bmatrix}$
 - Bellman equation:

$$V\left(W,z_{s}\right) = \max_{W' \in [0,W]} z_{s} u\left(W-W'\right) + \beta\left[\pi_{ss} V\left(W',z_{s}\right) + \pi_{s,-s} V\left(W',z_{-s}\right)\right]$$
(5)

Value Function Iteration

- Grid $[0, W_0]$ as $w_j = \frac{j}{J}W_0$ for $j = 1, \dots, J$
- Initial guess $v_{j,s}^{(0)} = z_s u(w_j)$
- Update by:

$$v_{j,1}^{(1)} = \max_{k=1,\dots,j} z_1 u(w_j - w_k) + \beta \left[\pi_{11} v_{k,1}^{(0)} + \pi_{12} v_{k,2}^{(0)} \right]$$

$$v_{j,2}^{(1)} = \max_{k=1,\dots,j} z_2 u(w_j - w_k) + \beta \left[\pi_{21} v_{k,1}^{(0)} + \pi_{22} v_{k,2}^{(0)} \right]$$
(6)

- Iterate until $v_j^{(t)} = v_j^{(t-1)}$ for all $j = 1, \dots, J$

Dynamic Programming: General Form

- Maliar et al. (2021): Optimization problem
 - Exogenous state $m_{t+1} \in \mathbb{R}^{n_m}$ follows a Markov process driven by an i.i.d. innovation process $\epsilon_t \in \mathbb{R}^{n_m}$ with a transition function M: $m_{t+1} = M(m_t, \epsilon_t)$
 - Endogenous state $s_{t+1} \in \mathbb{R}^{n_s}$ is driven by the exogenous state m_t and controlled by a choice $x_t \in \mathbb{R}^{n_x}$ according to a transition function S: $s_{t+1} = S(m_t, s_t, x_t, m_{t+1})$
 - The choice x_t satisfies the constraint: $x_t \in X(m_t, s_t)$
 - The state (m_t, s_t) and choice x_t determine the period reward $r(m_t, s_t, x_t)$
 - The agent maximizes discounted lifetime reward: $\max_{\{x_t,s_{t+1}\}_{t=0}^{\infty}} E_0\left[\sum_{t=0}^{\infty} \beta^t r\left(m_t,s_t,x_t\right)\right]$
- Bellman equation: Value function $V: \mathbb{R}^{n_m} \times \mathbb{R}^{n_s} o \mathbb{R}$

$$V(m,s) = \max_{x \in X(m,s), s' = S(m,s,x,m'), m' = M(m,\epsilon)} \max \left\{ r(m,s,x) + \beta E_{\epsilon} \left[V(m',s') \right] \right\}$$
(7)

Dynamic Programming: Curse of Dimensionality

- When the number of state variables (exogenous+endogenous) increases, the dimensionality of value function increases exponentially
- Infeasible to assign grids in high-dimensional state space
- Approximate V(.,.) by polynomials:
 - cannot handle discrete states
 - the number of parameters increase exponentially
- Deep learning:
 - multi-layer neural networks to approximate high-dimensional functions
 - Maliar et al. (2021) Deep learning for solving dynamic economic models