

#### A Complete Formalized Knowledge Representation Model for Advanced Digital Forensics Timeline Analysis

Ву

Yoan Chabot, Aurelie Bertaux, Christophe Nicolle and Tahar Kechadi

Presented At

The Digital Forensic Research Conference **DFRWS 2014 USA** Denver, CO (Aug 3<sup>rd</sup> - 6<sup>th</sup>)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to help drive the direction of research and development.

http:/dfrws.org







# August 5, 2014

# A Complete Formalized Knowledge Representation Model for Advanced Digital Forensics Timeline Analysis

Yoan Chabota,b, Aurélie Bertauxa, Christophe Nicollea and M-Tahar Kechadib

yoan.chabot@checksem.fr

<sup>a</sup> CheckSem Team, Laboratoire Le2i, Université de Bourgogne, Dijon, FRANCE <sup>b</sup> School of Computer Science & Informatics, University College Dublin, IRELAND







# Outline







# **Event Reconstruction**



**GOAL:** Determine the circumstances of the incident





# The Underlying Issues



#### **Technical gaps**

- Large amount of data
- Heterogeneity (Semantic, Format, Time)



#### **Legal requirements**

- Credibility
- Veracity
- Precision
- Reproducibility





## **Existing Solutions**



ECF, FORE, Finite state machine approach, Zeitline, Neural networks appraoch, CyberForensic TimeLab, etc.



*log2timeline* by Kristinn Gudjonsson Super-timelines using a large number of sources

- Windows Event Logs
- Web Browsers Histories
- Apache logs
- PDF document metadata
- Firewall logs
- etc.

```
Yoan@Checksem-PC /cygdrive/j/Local Workspace/plaso
$ ./log2timeline ../output.dump ../Scenarios/scenario1/EnCase/scenario1.E01 > log.txt
Yoan@Checksem-PC /cygdrive/j/Local Workspace/plaso
$ ./psort -w ../timeline.txt ../output.dump > log.txt
```













How to analyze this large amount of data?











Introduce a semantically rich knowledge representation of events to enhance analysis capabilities













#### **Entities**

- $s \in S = \{a \in A_s \mid s \mid \alpha_s \mid a\}$
- $o \in O = \{a \in A_o \mid x \alpha_o a\}$
- $0 \subseteq \wp(A_o)$
- $f \in F = \{ f \in A_f \mid x \alpha_f a \}$

- $e \in E = \{t_{start}, t_{end}, l, S_e, O_e, E_e\}$
- $S_e = \{ s \in S \mid e \in E, s \sigma_s e \}$
- $O_e = \{o \in O \mid e \in E, e \sigma_o o\}$
- $E_e = \{x \in E \mid e \in E, e \sigma_e x\}$











#### Relationships

- $\sigma_s = \{participation, repercussion\}$
- $\sigma_o = \{creation, suppression, modification, utilization\}$
- $\sigma_e = \{correlation\}$
- $\sigma_f = \{support\}$
- $support(en \in \{E \times O \times S\}) = \{f \in F \mid f \sigma_f en\}$









### Operators













2014-07-03T07:36:39.408000+00:00,Last Visited Time,WEBHIST,MSIE Cache File URL record,Location:

Visited: Yoan@file:///C:/Users/Yoan/Pictures/dfrws12-039.jpg Number of hits: 2 Cached file size: 0,msiecf,TSK:/Users/Yoan/AppData/Local/Microsoft/Windows/History/History.IE5/index.dat,-,3,378480

> Yoan Chabot – <u>yoan chabot @checksem fr</u> - Equipe de projet Checksem – Laboratoire Electronique Informatique (LE2I – UMR CNRS 5158) IUT Dijon-Auxerre – Université de Bourgogne, BP 47870, 21078 Dijon Cedex, Frar **Event** 15455222 rdf:type :hasID 2014-07-03T07:36:39 :hasTime e1 :hasType **WEBHIST** :hasSubType Cache Access

#### **Mapping: 1st Example**













2014-07-03T07:36:39.408000+00:00,Last Visited Time,WEBHIST,MSIE Cache File URL record,Location: Visited: Yoan@file:///C:/Users/Yoan/Pictures/dfrws12-039.jpg Number of hits: 2 Cached file size: 0,msiecf,TSK:/Users/Yoan/AppData/Local/Microsoft/Windows/History/History.IE5/index.dat,-,3,378480



#### **Mapping: 1st Example**













2014-07-03T07:36:39.408000+00:00,Last Visited Time,WEBHIST,MSIE Cache File URL record,Location: Visited: Yoan@file:///C:/Users/Yoan/Pictures/dfrws12-039.jpg Number of hits: 2 Cached file size: 0,msiecf,TSK:/Users/Yoan/AppData/Local/Microsoft/Windows/History/History.IE5/index.dat,-,3,378480











2014-07-03T07:36:46.662000+00:00, Content Deletion Time, RECBIN, Recycle

Bin,C:\Users\Yoan\Pictures\dfrws12-039.jpg,recycle\_bin,TSK:/\$Recycle.Bin/S-1-5-21-3724914695-4089496160-3424763353-1000/\$IAXNK4E.jpg,-,3,378521



#### **Mapping: 2nd Example**













2014-07-03T07:36:46.662000+00:00, Content Deletion Time, RECBIN, Recycle Bin, C:\Users\Yoan\Pictures\dfrws12-039.jpg, recycle\_bin, TSK:/\$Recycle.Bin/S-1-5-21-3724914695-4089496160-3424763353-1000/\$IAXNK4E.jpg,-,3,378521



#### **Mapping: 2nd Example**























Yoan Chabot – <u>yoan chabot@checksem.fr</u> - Equipe de projet Checksem – Laboratoire Electronique Informatique et Image (LE2I – UMR CNRS 5158) IUT Dijon-Auxerre – Université de Bourgogne, BP 47870, 21078 Dijon Cedex, France







 $Correlation_O(e, x) = |O_e \cap O_x|/\max(|O_e|, |O_x|)$ 

















 $Correlation_S(e, x) = |S_e \cap S_x| / \max(|S_e|, |S_x|)$ 

















| $Correlation_T(e, x)$  |
|------------------------|
| $= \alpha \times star$ |

 $= \alpha \times starts(e, x) + \alpha$ 

 $\times$  equals(e, x) + meets(e, x)

+ overlaps(e, x) + during(e, x)

+ finishes(e, x) + before(e, x)

| Functions     | Constraints                                                    | Example    |
|---------------|----------------------------------------------------------------|------------|
| before(X,Y)   | $x_{t_{end}} < y_{t_{start}}$                                  |            |
| equal(X,Y)    | $x_{t_{start}} = y_{t_{start}} & & x_{t_{end}} = y_{t_{end}}$  | X          |
| meets(X,Y)    | $x_{t_{end}} = y_{t_{start}}$                                  |            |
| overlaps(X,Y) | $x_{t_{start}} < y_{t_{start}} & x_{t_{end}} > y_{t_{start}}$  | <u>х</u> у |
| during(X,Y)   | $x_{t_{start}} > y_{t_{start}} \&\& x_{t_{end}} < y_{t_{end}}$ | X          |
| starts(X,Y)   | $x_{t_{start}} = y_{t_{start}}$                                | X          |
| finishes(X,Y) | $x_{t_{end}} = y_{t_{end}}$                                    | X          |

Object Correlation

Event Correlation

Temporal Correlation

Knowledge-Based Correlation











UCD DUBLIN

2014-06-20T13:57:16.544000+00:00 | Creation Time | WEBHIST | Firefox History | Bookmark URL CheckSem - Semantic Intelligence Research (http://checksem.u-bourgogne.fr/www/)| sqlite | TSK:/Users/Yoan/AppData/Roaming/Mozilla/Firefox/Profiles/94zxtt2a.default/places.sqlite | - | 3 | 373176 |





Page Visited

**Bookmark Created** 

2014-06-20T13:57:21.474000+00:00 | Page Visited | WEBHIST | Firefox History | http://checksem.u-bourgogne.fr/www/ (CheckSem - Semantic Intelligence Research Host: checksem.u-bourgogne.fr visited

from: http://checksem.u-bourgogne.fr/www/ (checksem.u-bourgogne.fr) Transition: BOOKMARK | sqlite | TSK:/Users/Yoan/AppData/Roaming/Mozilla/Firefox/Profiles/94zxtt2a.default/places.sqlite | - | 3 | 373182 |

$$Correlation_{KBR}(e, x) = \sum_{r=1}^{n} rule_r(e, x)$$

With  $rule_r(e, x) = 1$  if the rule is satisfied and 0 otherwise

Object Correlation

Event Correlation

Temporal Correlation

Knowledge-Based Correlation













#### $Correlation(e1, e2) \approx 1.143$

C:/Users/Yoan/Pictur

es/dfrws12-039.jpg

- Correlation<sub>0</sub>(e1, e2):  $o1 \rightarrow 1/1 = 1$
- Correlation<sub>S</sub>(e1, e2):  $\emptyset \rightarrow 0/1 = 0$
- *Correlation*<sub>T</sub>(e1, e2): 2014-07-03T07:36:39 <-> 2014-07-03T07:36:46 →  $\approx$  **0,143**

**Object** 

rdf:type

 $Correlation_{KBR}(e1, e2)$ : **0** 



RECBIN

Content Deletion

:hasSubType





'oan Chabot – <u>voan chabot @checksem.fr</u> - Equipe de projet Checksem – Laboratoire Electronique Informatique et Image (LE2I – UMR CNRS 5158) IUT Dijon-Auxerre – Université de Bourgogne, BP 47870, 21078 Dijon Cedex, France

\* \* \*

Yoan Chabot – <u>yoan chabot @checksem.fr</u> - Equipe de projet Checksem – Laboratoire Electronique Informatiqu (LE2I – UMR CNRS 5158) IUT Dijon-Auxerre – Université de Bourgogne, BP 47870, 21078 Dijon Cedex, Fr<del>an</del>ro







Monitor.lnk



#### Contributions



#### Data volume

Automatic **Operators** 

Scalable Technologies

#### Heterogeneity

Unified model of knowledge representation

> **Extractors** dedicated to each source

#### Credibility

Based on a formal knowledge representation

#### Reproducibility

Storing information about provenance









## Future Works



Mechanisms for knowledge checking and reproducibility













# August 5, 2014

# A Complete Formalized Knowledge Representation Model for Advanced **Digital Forensics Timeline Analysis**

Yoan Chabota,b, Aurélie Bertauxa, Christophe Nicollea and M-Tahar Kechadib

yoan.chabot@checksem.fr

<sup>a</sup> CheckSem Team, Laboratoire Le2i, Université de Bourgogne, Dijon, FRANCE <sup>b</sup> School of Computer Science & Informatics, University College Dublin, IRELAND





