Category Theory from Scratch: Sums Worksheet

Mathcamp 2025 - Della Hendrickson & Riley Shahar

We have now defined a sum:

Definition 1. Let x and y be objects in a category C, and let z be an object with morphisms $\iota_x : x \to z$ and $\iota_y : y \to z$. We say (z, ι_x, ι_y) is a sum of x and y if, for any object w with morphisms $f : x \to w$ and $g : y \to w$, there exists a unique morphism $h : z \to w$ such that $h \circ \iota_x = f$ and $h \circ \iota_y = g$.

Our goal in this worksheet is to work out some properties of this definition.

Problem 1. Describe what a sum is in as many categories as you can.

Problem 2. In this exercise, we will prove that sums are unique up to unique isomorphism.

- (a) Prove that, if (z, ι_x, ι_y) and (z', ι_x', ι_y') are sums of x and y, then there is an isomorphism $f: z \to z'$ such that $\iota_x' = f \circ \iota_x$ and $\iota_y' = f \circ \iota_y$. We are therefore justified in writing z or z' as x + y.
- (b) Prove that if f and q are isomorphisms satisfying this property, then f = q.

Problem 3 (optional). In this exercise, we will prove that the sum is commutative.

(a) Prove that, for objects x and y, there is an isomorphism

$$\gamma_{x,y}: x+y \xrightarrow{\sim} y+x.$$

(b) Prove that $\gamma_{x,y}$ commutes with the inclusions, in that

$$\gamma_{x,y} \circ \iota_x = \iota_x$$
 and $\gamma_{x,y} \circ \iota_y = \iota_y$.

Warning: the ι_x on the left is a different map from the ι_x on the right! The former is inclusion from y+x, while the latter is inclusion from x+y.

(c) Prove that $\gamma_{x,y}$ is the unique isomorphism satisfying Eq. (1).

Problem 4 (optional). In this exercise, we will prove that the sum is associative. We are thus justified in writing either (x + y) + z and x + (y + z) as x + y + z.

(a) Prove that, for objects x, y, and z, there is an isomorphism

$$\alpha_{x,y,z}: (x+y) + z \xrightarrow{\sim} x + (y+z).$$

(b) Prove that $\alpha_{x,y,z}$ commutes with the inclusions, in that

$$\alpha_{x,y,z} \circ \iota_{x+y} \circ \iota_x = \iota_x, \quad \alpha_{x,y,z} \circ \iota_{x+y} \circ \iota_y = \iota_{y+z} \circ \iota_y, \quad \text{and} \quad \alpha_{x,y,z} \circ \iota_z = \iota_{y+z} \circ \iota_z. \tag{2}$$

(c) Prove that $\gamma_{x,y}$ is the unique isomorphism satisfying Eq. (2).

Problem 5 (optional). Show that, if $f: x \to x'$ and $g: y \to y'$ are morphisms, then there is an induced morphism

$$f + q: x + y \rightarrow x' + y'$$
.

1