Integrating Direction in Soar Believable Synthetic Characters

Mazin Assanie
University of Michigan
Artificial Intelligence Lab

Get that guy out of the room!

Example

Synthetic Characters

(a murder is about to happen in that room that the user should not see)

Example

Example

Example

Stop, you Hooligans!

Hero

Introduction

- Game developers want to
 - Create immersive virtual worlds, inhabited by autonomous characters
 - Dynamically determine narrative structure
- Synthetic Characters Challenge
 - Autonomous, directable, and believable
 - Inherent conflict between autonomy and directability
 - Must deal with this conflict without breaking believability

Why This Problem is Difficult

- Non-continuous or inexplicable behavior
- How actions relate to each other requires deeper knowledge
- Commitments made at agent design stage deeply influence accepting direction
- Nebulous requirements that need to be formalized
 - "Natural" integration
 - Coherent behavior
 - Believable agents

Research Plan

- Outline requirements of believability
- Outline requirements of directability
- Propose strategies on integration of direction
- Implement agent capabilities outlined to test integration of direction
- Develop criteria to evaluate integration
 - Both objective and subjective
- Implement a suite of test agents with varying degrees of abilities

Requirements of a Believable Synthetic Character

- Plausible performance
 - Sub-optimal, realistic errors, reactive to context, contextually driven, more than purely reactive
- Continuity of behavior
- Coherence between actions over time
- Evident intentionality
- Limited perception and management of perceptual resources

- "Personality Rich" and personality consistent
 - Conforms to user perception, predictable
- Displays or approximates emotionally driven behavior
- Past actions influence current/future ones
 - Some form of memory or learning
- Pragmatically based NL interaction
- Embodiment

Requirements of Directability

- Handle full range of directable commands
- Recognize conflicts between direction and current goals/behavior
- Resolve and avoid conflicts
- Explain resulting changes in behavior
- Don't break believability requirements

Possible Capabilities for Believability

- Necessary as a first step
 - Determines what integration strategies are available
- Try to meet requirements previously listed
- Leverage other believable agents work
- Use previous work in learning by instruction for natural language portion

Directive Commands

- Which ones would be useful?
 - What does the director want to achieve via direction to a synthetic character?
- Some possible classes of commands:
 - pursue high-level goal
 - perform intermediate action or low-level behavior
 - have emotion/attitude towards object
 - interfere with user achievement of goal
 - assist user towards goal
 - provide information

Criteria for Successful Integration

- Consistent with overall personality
 - How do we define an action consistent with personality?
 - Action set formulation? [Knight]
- Consistent with role of character
 - Represent responsibilities and typical actions of role

Coherency between actions over time

Coherency

- How do we define coherency
 - Actions make sense given previous actions (explainable)
 - Actions are consistent with goals of an agent's personality or role in the environment
- Coherency Requirements

Coherency Requirements

- If a goal is evident, actions should appear to work towards satisfying the goal
- If there is a goal switch, there should be an evident reason for the new goal
- If there is a goal switch, there should be a reason why the new goal is more important than the old one
- If there is emotional motivation in current behavior, it should be consistent with new behavior or there should be an evident reason why emotion changes

What is Difficult About These Situations?

- Determining goal interaction/conflict
- Determine whether a new goal is a valid thing to do
- Determining what to do with current or previous goal
- Communicating intention of switches
- Maintaining consistency with personality, emotion, previous actions.

Approach

- Step 1: Classification of conflict or interaction (25%)
- Step 2: Choose response (65%)
- Step 3: Implement response (10%)

• = 100% of our effort

More Detailed Example

- Hero enters room
- Butler takes the hero's coat.
- [Director instructs butler agent to get hero to the salon]
- [Butler finds several coinciding goals among which:
 - Offer drink in salon
 - Show hero interesting object in salon
 - Ask hero to follow him to salon without a reason
 - Grab hero, tie him up and carry him to Salon]

- [Butler chooses response 1 (most consistent with role, i.e. more believable)]
- [Butler decides to finish current goal of taking the hero's coat]
- Butler takes hero's coat and hangs
- Butler asks hero to go to Salon to have a drink.
- Hero agrees to go to salon for a drink.
- [Direction is satisfied]

Taxonomy of Goal Relationships

- Conflicting goals
 - Contextually
 - Temporally
 - Spatially
 - Emotionally
 - Personality

- Coinciding goals
 - Explicit
 - Opportunistic
- Non-interacting goals
- Different relationships have responses associated with them
- Note: We may have multiple conflict types occurring

Dealing with Conflicts

- Search for opportunistic coinciding goals
- Choose one of the responses found above
- Determine whether to finish current goal
- Determine whether to finish old goal

Choosing a response

- Utilize current goal coincidence
- Use operator preference knowledge
- Prime a situation where coinciding goal to be generated
 - Fight example
- Cheat, create a situation
- Preference mechanism

Evaluating Coherency

- Objective
 - Number of goal switches
 - Number of abrupt switches
 - Whether an explanation can be generated
- Subjective
 - Have people play and get feedback
 - Distributed implementation can hide which characters are synthetic

Experiments

- Create many different agents with different levels of capabilities
 - Isolate and group components to test effectiveness and interactions
- Drama manager not necessary
- NL could also be avoided in the same way if our NL system proves insufficient
- SOAR-ESCAPE environment

Related Work

- Oz work at Carnegie-Mellon, Zoesis [Bates, et al.]
- Phoebe Sengers thesis on communicating intentions
- Animate Agents[Hayes-Roth]
- Improv [NYU]
- Pedagogical Agents [Jack]
- Soar, Soar, Soar

- Planning
 - Opportunistic
 - Plan re-use
 - Reactive planning
 - Real-time planning
 - Plan repair
 - Plan coordination
 - Interleaved planning
- Argumentation systems
- Perceptual resource management [Freed]

Nuggets and Coals

Nuggets

- Brings together many different AI technologies
- Should be widely applicable to various game types
 - RPG's, MMORPG's, adventure, interactive fiction
 - Educational software, training simulations
- Allows computer scientists to play with a lot of cool humanities and drama concepts

Coals

- Brings together many different AI technologies
- A lot of very nebulous requirements
- Starting with many strong assumptions
- Preliminary, may be ambitious

