10

CLAIMS

What is claimed is:

1	1.	An apparatus, comprising:
2		charge storage circuitry to maintain a first amplitude of a first interrelated
3		control signal and a second amplitude of a second interrelated
4		control signal;
5		amplitude circuitry coupled to said charge storage circuitry to increase the
6		first amplitude at a rate substantially equivalent to a rate of
7		decrease in the second amplitude, to change an amplitude
8		contribution of a reference clock phase, within high and low
9		amplitude boundaries of a substantially small signal region of a
0		transfer characteristic of phase control circuitry of a phase
1		interpolator.
1	2.	The apparatus of claim 1, further comprising common mode feedback circuitry
2		coupled with said charge storage circuitry to maintain a substantially consisten
3		common mode voltage between the first amplitude and the second amplitude.
1	3.	The apparatus of claim 2, wherein the common mode feedback circuitry
2		comprises
3		circuitry to compare the common mode voltage with a reference voltage
4		and
5		an output coupled to charge circuitry to increase the first amplitude and the
6		second amplitude in response to the common mode voltage being
7		less than the reference voltage, and coupled to discharge circuitry
8		to decrease the first amplitude and the second amplitude in
٠.		remonse to the common made valtage being greater than the

reference voltage.

- The apparatus of claim 2, wherein the common mode feedback circuit comprises discrete time circuitry to output charging and discharging pulses for the first
- 3 interrelated control signal and the second interrelated control signal.
- The apparatus of claim 2, wherein the common mode feedback circuit comprises circuitry to facilitate a domination of an increase in the first amplitude over a
- 3 decrease in the second amplitude.
- 1 6. The apparatus of claim 1, further comprising reference circuitry coupled with comparison circuitry to provide a high voltage boundary for the first amplitude
- 3 and a low voltage boundary for the second amplitude.
 - The apparatus of claim 6, wherein the reference circuitry comprises a resistive ladder.
- 1 8. The apparatus of claim 6, wherein the reference circuitry further comprises a
 2 middle reference voltage to provide a reference for a common mode voltage
 3 between the first amplitude and the second amplitude.
- The apparatus of claim 1, further comprising a leakage compensation circuit coupled with a capacitance circuit of said charge storage circuitry to compensate
- 3 for differences in leakage of charge.
- 1 10. The apparatus of claim 9, wherein the leakage compensation circuit comprises an impedance to couple the capacitance circuit with a voltage supply node.
- 1 11. The apparatus of claim 1, wherein said charge storage circuitry comprises a
- 2 capacitance circuit to provide a differential interrelated control signal for the
- 3 reference clock phase.

1 2	12.	The apparatus of claim 1, wherein said charge storage circuitry comprises a first capacitance circuit to store a first charge and a second capacitance circuit to store
3		a second charge, wherein the first charge is substantially equivalent to the first
4		amplitude and the second charge is substantially equivalent to the second
5		amplitude.
1	13.	The apparatus of claim 12, wherein said amplitude circuitry comprises a
2		differential current-steering mechanism coupled to said charge storage circuitry to
3		charge the first capacitance circuit and discharge the second capacitance circuit.
1	14.	The apparatus of claim 1, wherein said amplitude circuitry comprises:
2		charging circuitry to increase the first amplitude; and
3		discharging circuitry to decrease the second amplitude in proportion to an
4		increase in the first amplitude.
1	15.	The apparatus of claim 1, wherein said amplitude circuitry comprises:
2		trip high circuitry to compare the first amplitude to a high amplitude
3		boundary; and
4		trip low circuitry to compare the second amplitude to a low amplitude
5		boundary.
1	16.	The apparatus of claim 15, wherein said amplitude circuitry comprises:
2		an overflow output to output an overflow signal in response to a charge
3		stored by said charge storage circuitry; and
4		hysteresis circuitry to prevent chatter in the overflow signal in response to

the charge stored by said charge storage circuitry.

1	17.	A method, comprising:
2		receiving a signal to transition a phase of an interpolated clock signal;
3		increasing an amplitude of a first interrelated control signal in response to
4		said receiving a signal, to increase an amplitude contribution of a
5		first reference clock phase;
6		decreasing an amplitude of a second interrelated control signal
7		substantially simultaneously with said increasing an amplitude, to
8		decrease an amplitude contribution of a second reference clock
9		phase in proportion to the increase in the amplitude contribution of
10		the first reference clock phase; and
11		bounding the amplitudes of the first interrelated control signal and the
12		second interrelated control signal between a high amplitude
13		boundary and a low amplitude boundary, to change the phase of the
14		interpolated clock signal with a substantially analog transition.
1	18.	The method of claim 17, further comprising maintaining a common mode
2		amplitude of the first interrelated control signal and the second interrelated control
3		signal.
1	19.	The method of claim 17, further comprising compensating for leakage of charge.
1	20.	The method of claim 17, wherein said receiving a signal to transition the phase of
2		the interpolated clock signal comprises receiving a signal to instruct charge
3		circuitry to charge a first charge storage circuit associated with the first
4		interrelated control signal and to discharge a second charge storage circuit
5		associated with the second interrelated control signal.

The method of claim 17, wherein said increasing an amplitude comprises charging a first charge storage circuit to increase the amplitude contribution of the first

reference clock phase.

21.

2 3

- 1 22. The method of claim 17, wherein said decreasing an amplitude comprises
 2 discharging a second charge storage circuit to decrease the amplitude contribution
- 3 of the second reference clock phase.
- 1 23. The method of claim 17, wherein said bounding the amplitudes comprises
 2 outputting an overflow signal to indicate that an amplitude of the amplitudes is
 3 substantially near at least one of the boundaries.
- 1 24. The method of claim 23, wherein outputting an overflow signal comprises
 2 outputting an overflow signal based on a hysteresis range of amplitudes to prevent
 3 chatter in the overflow signal.

	23.	A system, comprising.
2		circuitry to clock data with an interpolated clock signal;
3		a phase interpolator to generate the interpolated clock signal based upon a
4		first interrelated control signal and a second interrelated control
5		signal; and
6		a phase controller coupled to said phase interpolator, comprising
7		charge storage circuitry to maintain a first amplitude of the first
8		interrelated control signal and a second amplitude of the
9		second interrelated control signal;
10		amplitude circuitry coupled to said charge storage circuitry to
11		increase the first amplitude at a rate substantially equivalent
12		to a rate of decrease in the second amplitude, to change an
13		amplitude contribution of a reference clock phase, within
14		high and low amplitude boundaries of a substantially small
15		signal region of a transfer characteristic of phase control
16		circuitry of said phase interpolator.
1	26.	The system of claim 25, wherein the phase interpolator comprises a degenerative
2		mesh to flatten a change in bias current associated with a change in the amplitude
3		of the first interrelated control signal.
1	27.	The system of claim 25, wherein the amplitude circuitry comprises:
2		charging circuitry to increase the first amplitude; and
3		discharging circuitry to decrease the second amplitude in substantially
4		inverse proportion to an increase in the first amplitude.

2

2

3

A machine-readable medium containing instructions, which when executed by a 28. 1 machine, cause said machine to perform operations, comprising: 2 receiving a signal to transition a phase of an interpolated clock signal; 3 increasing an amplitude of a first interrelated control signal in response to said receiving a signal, to increase an amplitude contribution of a 5 first reference clock phase; decreasing an amplitude of a second interrelated control signal 7 substantially simultaneously with said increasing an amplitude, to decrease an amplitude contribution of a second reference clock 9 phase in proportion to the increase in the amplitude contribution of 10 the first reference clock phase; and bounding the amplitudes of the first interrelated control signal and the 12 second interrelated control signal between a high amplitude 13 boundary and a low amplitude boundary, to change the phase of the interpolated clock signal with a substantially analog transition. 15

29. The machine-readable medium of claim 28, wherein said increasing an amplitude comprises charging a first charge storage circuit to increase the amplitude contribution of the first reference clock phase.

30. The machine-readable medium of claim 28, wherein said decreasing an amplitude comprises discharging a second charge storage circuit to decrease the amplitude contribution of the second reference clock phase.