Računarska grafika (20ER7002)

Osvetljenje i senčenje

Predavanja

Realnost prikaza

- Uklanjanje sakrivenih ivica i površina
- Boje
- Osvetljenje
- Senke

Osvetljenje i senčenje

- Realističnost prikaza donosi potrebu za modeliranjem mnogih fizičkih pojava, kao što su: refleksija, transparentnost, refrakcija, potpuno ili delimično zaklanjanje svetlosti (senke), tipova izvora svetlosti, karakteristke materijala, itd.
- Problem osvetljenja i senčenja je znatno komplikovaniji od problema vidljivosti.

Modeli osvetljenja i senčenja

- Postoji više modela osvetljenja (illumination) i modela senčenja (shading).
- Model senčenja je širi okvir i on koristi model osvetljenja (neki modeli senčenja pozivaju/koriste model osvetljenja za svaki piksel slike, dok drugi pozivaju model osvetljenja samo za neke piksele, dok se za preostale koristi interpolacija).
- Neka od rešenja za problem osvetljenja zasnovana su na iskustvu i eksperimentima i nisu utemeljena u fizici, ali daju dovoljno dobre rezultate, a brzo se izračunavaju.

Modeli osvetljenja

- Samoosvetljenje
- Ambijentalno svetlo
- Tačkasti izvori svetla
- Direkciono svetlo
- Spot svetlo
- Prošireni izvori svetla

Samoosvetljenje

- Ovo je najjednostavniji model osvetljenja.
- Svakoj tački objekta pridružen je isti (inherentni) intenzitet svetlosti, kao da sam objekat isijava svetlost.
- Intenzitet osvetljenja (I) zavisi samo od koeficijenta k_i dodeljenog objektu kao mera samoosvetljenosti:

$$\vdash I = K_i$$

Ambijentalno osvetljenje

- Ambijentalno svetlo je difuzno, bez usmerenog izvora, koje je proizvod višestrukog odbijanja svetlosti od svih površina prisutnih u okruženju.
- Ako pretpostavimo da se svetlost rasprostire jednako u svim smerovima po svim objektima, jednačina osvetljenja je za svaki objekat:

$$I = I_a k_a$$

- I_a (konstantni) intenzitet ambijentalnog svetla,
- k_a koeficijent ambijentalne refleksije objekta (u opsegu [0..1])

Difuziona refleksija

- Tačkasti izvor svetla ravnomerno širi zrake u svim pravcima iz jedne tačke.
- Difuzna ili lambertovska refleksija (odbijanje svetlosti od matiranih, hrapavih površina). Ovakve površine izgledaju jednako osvetljene iz svih uglova posmatranja i njihova osvetljenost zavisi samo od ugla θ između pravca svetla L i pravca normale N. Jednačina osvetljenosti u ovom modelu je:

$$I = I_p k_d \cos \theta$$

- - I_p jačina tačkastog (pozicionog) izvora svetlosti, k_d koeficijent difuzne refleksije materijala (u opsegu [0..1]) i
- θ ugao između pravca svetla i pravca normale.
- Ako su vektori L i N normalizovani, onda je:

$$I = I_p k_d \, (\overline{L} \cdot \overline{N})$$

Difuziona refleksija

Primenom samo difuzione refleksije, objekti izgledaju kao da su osvetljeni samo sa jedne strane i da se nalaze u mračnoj prostoriji. Realističnost se povećava dodavanjem ambijentalnog osvetljenja:

$$I = I_a K_a + I_p K_d (\overline{L} \cdot \overline{N})$$

Reflektor (spot light)

Reflektor (*spot light*) je tačkasti izvor svetlosti čiji je opseg delovanja ograničen kupastim zastorom.

Slabljenje

Slabljenja osvetljenja sa rastojanjem, često se modelira uvođenjem dodatnog faktora atenuacije f_{att} u jednačinu intenziteta osvetljenosti:

lako količina emitovane energije opada sa kvadratom rastojanja (f_{att} =1/ d^2), primena pojednostavljenog modela osvetljena ne daje zadovoljavajuće efekte. Zato se za faktor atenuacije najčešće koristi sledeća formula:

$$f_{att} = min(1/(c_1 + c_2 d + c_3 d^2), 1)$$

Obojena svetlost

- Prethodni modeli i jednačine razmatrali su samo monohromatsku svetlost. Obojena svetlost se obično obrađuje tako što se posebno obrađuju jednačine za njene tri komponente.
- Ako (O_{dR}, O_{dG}, O_{dB}) predstavlja crvenu, zelenu i plavu difuzionu komponentu boje objekta u RGB sistemu boja, osvetljenje se može definisati pomoću tri primarne komponente (I_{pR}, I_{pG}, I_{pB}) .
- Na primer, crvena komponenta ima sledeći oblik:

$$I_R = I_{aR} k_a O_{dR} + f_{att} I_{pR} k_d O_{dR} (\overline{L} \cdot \overline{N})$$

Umseto $k_a O_{dX}$ i $k_d O_{dX}$ koeficijenata, mogu se koristiti k_{aX} i k_{dX} :

$$I_R = I_{aR} k_{aR} + f_{att} I_{pR} k_{dR} (\overline{L} \cdot \overline{N})$$

Spekularna refleksija

- Spekularna refleksija se javlja na sjajnim objektima i sem od položaja izvora svetlosti i orijentacije normale, zavisi i od položaja posmatrača.
- Phong je 1975. predložio model za nesavršene reflektore maksimalna spekularna refleksija se dešava kada je α=0 (ugao između vektora refleksije R i pravca posmatrača V) i rapidno opada sa cosⁿα, gde je n eksponent spekularne refleksivnosti materijala.

$$I_{\lambda} = I_{a\lambda} k_a O_{d\lambda} + f_{att} I_{p\lambda} [k_d O_{d\lambda} \cos \theta + W(\theta) \cos^n \alpha]$$

Deo reflektovane energije $W(\theta)$, koji zavisi od upadnog ugla, obično se smatra konstantnim i zamenjuje sa k_s (koeficijentspekularne refleksije)

$$I_{\lambda} = I_{a\lambda} k_{a} O_{d\lambda} + f_{att} I_{p\lambda} [k_{d} O_{d\lambda} (\overline{L} \cdot \overline{N}) + k_{s} (\overline{R} \cdot \overline{V})^{n}]$$

Spekularna refleksija

Spekularna refleksivnost zavisi od svojstva materijala i može imati drugačiju boju (O_{s2}) od difuzione

$$I_{\lambda} = I_{a\lambda} k_{a} O_{d\lambda} + f_{att} I_{p\lambda} [k_{d} O_{d\lambda} (\overline{L} \cdot \overline{N}) + k_{s} O_{s\lambda} (\overline{R} \cdot \overline{V})^{n}]$$

Vektor refleksije računa se po sledećoj formuli:

$$R = \overline{N} \cos \theta + \overline{S} = 2\overline{N} \cos \theta - \overline{L} = 2\overline{N} (\overline{N} \cdot \overline{L}) - \overline{L}$$

Alternativna formula koristi halfway vektor H, koji se računa kao:

$$H = (\overline{L} + \overline{V}) / |\overline{L} + \overline{V}|$$

Faktor spekularne refleksije je u tom slučaju (*N· H*)ⁿ i izračunava se mnogo efikasnije, kada su izvor svetlosti i posmatrač u beskonačnosti, jer je H konstantno. Eksponent spekularne refleksije (**n**) se razlikuje za ovu formulu, jer uglovi α i β nisu jednaki.

$$L + S = N \cos \theta$$

Prošireni izvori svetla

Za razliku od tačkastih izvora svetla, prošireni ili distribuirani izvori svetla imaju površinu i, kao posledicu, daju mekše senke.

Rendering

- Rendering je postupak određivanja odgovarajuće boje piksela koji je pridružen nekom objektu u sceni.
- Ovaj postupak je složen i zavisi od geometrije objekta u toj tački (vektor normale), geometrije, tipa, pozicije i boje svetlosnog izvora, pozicije posmatrača, materjala od koga je objekat napravljen (refleksija svetlosti), uticaja drugih faktora (magla, dim,...).
- Osnovni modeli kod renderinga su modeli osvetljavanja i senčenja (illumination and shading).

Modeli osvetljavanja i senčenja

Lokalni pristup

Razmatra samo osvetljenje od lokalnih izvora svetlosti i ne uzima se u obzir refleksija od ostalih objekata u sceni.

Globalni pristup

Uzima se u obzir i refleksija od ostalih objekata u sceni.

Modeli osvetljavanja i senčenja

Lokalni pristup

Globalni pristup

Lokalni pristup

- Konstantno senčenje (flat shading)
- Gouraud-ovo senčenje
- Phong-ovo senčenje

Konstantno senčenje

- Najjednostavniji model senčenja
- Osvetljenje se izračunava samo jednom, a zatim primenjuje na čitav poligon
- Ovaj pristup je validan kada:
 - Izvor svetlosti u beskonačnosti, pa je L · N konstantno na površini čitavog poligona
 - Posmatrač je u beskonačnosti, pa je *N · V* konstantno
 - Poligon predstavlja ravnu površinu i nije aproksimacija za krivu površ
- Ako neki od prethodnih uslova nije zadovoljen, treba odabrati tačku za koju će biti izračunato *L* i *V*. To može biti centar poligona, ali je obično **prvo** ili **zadnje** teme.

$$\vec{n}_A = \frac{\vec{n}_1 + \vec{n}_2 + \vec{n}_3 + \vec{n}_4}{4}$$

Konstantno senčenje

 Dobra strana ove metode je velika brzina, ali je veliki nedostatak prevelika istaknutost ivica.

Gouraud senčenje

- Spada u grupu interpolacionih senčenja.
- Wylie, Romney, Evans i Erdahl su 1967. prvi predložili interpolaciono senčenje trougla na osnovu vrednosti u njegovim temenima.

- Direktno primenljivo na scan-line algoritam (koji se koristi za rasterizaciju i određivanje preklapanja po dubini).
- lako interpolacija dubine jeste fizički korektna, interpolacija senčenja nije.

Gouraud senčenje

- Gouraud senčenje je senčenje interpolacijom intenziteta ili boja.
- Izračunavanje intenziteta osvetljenja, tj. boje, vrši se u temenima poligona, a zatim se vrednosti najpre duž ivica poligona, a zatim duž sken-linije (tokom rasterizacije).

Interpolacija duž ivica

$$I_{Q} = (1-u)I_{A} + uI_{B}, \ u = \frac{\overline{AQ}}{\overline{AB}}$$

$$I_{R} = (1-v)I_{D} + vI_{C}, \ v = \frac{\overline{DR}}{\overline{DC}}$$

Interpolacija duž sken-linije:

$$I_P = (1-t)I_R + tI_Q, \ t = \frac{\overline{RP}}{\overline{RQ}}$$

Gouraud senčenje

- Rezultat ovakvog postupka su vrlo glatki prelazi.
- Postupak je sporiji od prethodnog, ali još uvek dovoljno brz za praktičnu upotrebu.

Phong senčenje

- Phong senčenje je senčenje interpolacijom vektora normala.
- Metod je sličan Gouraud metodu, ali se ne interpoliraju boje, već sve tri komponente vektora normala, najpre duž ivica poligona, a zatim duž sken-linije.

Interpolacija duž ivica

$$\vec{n}_Q = (1 - u)\vec{n}_A + u\vec{n}_B, \ u = \frac{\overline{AQ}}{\frac{\overline{AB}}{DR}}$$

$$\vec{n}_R = (1 - v)\vec{n}_D + v\vec{n}_C, \ v = \frac{\overline{\overline{AQ}}}{\frac{\overline{DC}}{DC}}$$

Interpolacija duž sken-linije:

$$\vec{n}_P = (1-t)\vec{n}_R + t\,\vec{n}_Q, \ t = \frac{\overline{RP}}{\overline{RQ}}$$

Poređenje

Flat Gouraud Phong

Poređenje

Globalni pristup

- Metod praćenja zraka (Ray-tracing)
- Metod isijavanja (Radiosity method)
- Path-tracing metod

Ray-tracing

Uzima u obzir senke, refleksiju (odbijanje zraka), i refrakciju (prelamanje zraka kroz transparentne objekte).

- Podrazumeva tačkaste izvore svetlosti.
- Zavisi od položaja posmatrača

Ray-tracing

Radiosity metod

- Uzima u obzir senke, refleksiju (odbijanje zraka), i refrakciju (prelamanje zraka kroz transparentne objekte).
- Svetlosni izvori mogu da budu proizvoljnih dimenzija i geometrije.
- Ne zavisi od položaja posmatrača.

Path-tracing metod

- Najbolji metod, ali i najzahtevniji.
- Koristi Monte-Carlo metodu za upravljanje geometrijom, refleksijom i osvetljajem.

Poređenje - Ray-tracing

Poređenje - Path-tracing

Radiosity

Path-tracing

Uticaj materijala - aluminijum

Uticaj materijala - bronza

Uticaj materijala - hrom

Teksture

Korišćenje tekstura čini scene realističnijim

Senke

- Doprinose realističnosti scene.
- Omogućavaju dobijanje dopunskih informacija:
 - Položaj objekta u sceni
 - Dubinska udaljenost objekta
 - Oblik objekta
 - Položaj izvora svetlosti

Vrste senki

- Umbra
- Penumbra

(Uticaj više izvora svetlosti ili izvora svetlosti koji nisu tačkasti)

Algoritmi određivanja senki

- Lažne senke
- Projektovane senke
- Mape senki
- Zapremina senke

Lažne senke

Koriste se jednostavni objekti kao senke...

Projektovane senke

Koriste se projekcije objekata iz pozicije izvora svetla kao senke...

Mape senki

Zapremina senke

 Za svaki objekat se određuje poluotvorena zapremina senke.

Dubina senke

Prolazak zraka kroz svaki "prednji" poligon povećava dubinu senke, dok izlazak iz zapremine senke smanjuje dubinu senke.

izvor

PITANJA

