

FCC SAR Test Report

Product

Smart Phone

Trade mark

ecom

Model/Type reference

Smart-Ex 02

Add. Model No.

N/A

Report Number

190518040SAR-1

Date of Issue

July 5, 2019

FCC ID

XAM500079GR01

Test Standards

FCC 47 CFR Part 2 §2.1093

ANSI/IEEE C95.1-1992

IEEE Std 1528-2013

Test result

PASS

Prepared for:

ecom instruments GmbH Industriestrasse 2, Assamstadt, 97959 Germany

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

> TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Prepared by:

Reviewed by:

Clover Huang Assistant

CBilly Li **Technical Director** Ricky Xu

Assistant Manager

Approved by:

Date:

July 5, 2019

Version

Version No.	Date	Description
V1.0	July 5, 2019	Original

Contents

			Page
1	GEN	ERAL INFORMATION	5
	1.1	STATEMENT OF COMPLIANCE	5
	1.2	EUT DESCRIPTION	6
		1.2.1 General Description	6
		1.2.2 Wireless Technologies	7
		1.2.3 List of Accessory	
	1.3	MAXIMUM CONDUCTED POWER	
	1.4	OTHER INFORMATION	
	1.5	TESTING LOCATION	
	1.6	TEST FACILITY	
	1.7	GUIDANCE STANDARD	
2	SPE	CIFIC ABSORPTION RATE (SAR)	12
	2.1	INTRODUCTION	12
	2.2	SAR DEFINITION	
	2.3	SAR LIMITS	12
3	SAR	MEASUREMENT SYSTEM	13
	3.1	SPEAG DASY SYSTEM	
	3. I	3.1.1 Robot	
		3.1.2 Probe	
		3.1.3 Data Acquisition Electronics (DAE)	
		3.1.4 Phantom	
		3.1.5 Device Holder	
		3.1.6 System Validation Dipoles	
	3.2	SAR SCAN PROCEDURE	
	0.2	3.2.1 SAR Reference Measurement (drift)	
		3.2.2 Area Scan	
		3.2.3 Zoom Scan	
		3.2.4 SAR Drift Measurement	
	3.3	TEST EQUIPMENT	
	3.4	MEASUREMENT UNCERTAINTY	
	3.5	TISSUE DIELECTRIC PARAMETER MEASUREMENT & SYSTEM VERIFICATION	21
		3.5.1 Tissue Simulating Liquids	21
		3.5.2 System Check Description	23
		3.5.3 Tissue Verification	24
		3.5.4 System Verification	24
4	SAR	MEASUREMENT EVALUATION	25
	4.1	EUT CONFIGURATION AND SETTING	25
		4.1.1 GSM Configuration and Testing	
		4.1.2 WCDMA Configuration and Testing	
		4.1.3 LTE Configuration and Testing	
		4.1.4 WLAN Configuration and Testing	
	4.2	EUT TESTING POSITION	
		4.2.1 Head Exposure Conditions	
		4.2.2 Body-worn Accessory Exposure Conditions	
		4.2.3 Hotspot Mode Exposure Conditions	
		4.2.4 Extremity Exposure Conditions	35
	4.3	MEASURED CONDUCTED POWER RESULT	
		4.3.1 Conducted Power of GSM Band	
		4.3.2 Conducted Power of LTE Band	
		4.3.3 Conducted Power of LTE Band	38

Page 4 of 79

Report No.: 190518040SAR-1

	4.3.4 Conducted Power of WLAN	56
	4.3.5 Conducted Power of BT	
4.4	SAR TEST EXCLUSION EVALUATIONS	
	4.4.1 Standalone SAR Test Exclusion Considerations	61
	4.4.2 Estimated SAR Calculation	
4.5	SAR TESTING RESULTS	
	4.5.1 SAR Test Reduction Considerations	
	4.5.2 SAR Results for Head Exposure Condition	
	4.5.3 SAR Results for Body-worn Exposure Condition (Separation Distance is 1.0 cm)	
	4.5.4 SAR Results for Hotspot Exposure Condition (Separation Distance is 1.0 cm)	
	4.5.5 SAR Results for Extremity Exposure Condition (Separation Distance is 0 cm)	
4.6	SAR MEASUREMENT VARIABILITY	
	4.6.1 Repeated Measurement	
4.7	SIMULTANEOUS MULTI-BAND TRANSMISSION EVALUATION	
	4.7.1 Simultaneous Transmission SAR Test Exclusion Considerations	
	4.7.2 Simultaneous Transmission Possibilities	
	4.7.3 Max. Standalone SAR	
	4.7.4 Sum of SAR	
oendi	ix A. SAR Plots of System Verification	

Appendix B. SAR Plots of SAR Measurement

Appendix C. Calibration Certificate for Probe and Dipole

Appendix D. Photographs of EUT and Setup

1 General Information

1.1 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for the EUT are as follows:

Equipment Class	Mode	Highest Reported Head SAR _{1g} (W/kg)	Highest Reported Body-worn SAR _{1g} (1.0 cm Gap) (W/kg)	Highest Reported Hotspot SAR _{1g} (1.0 cm Gap) (W/kg)	Highest Reported Extremity SAR _{10g} (0 cm Gap) (W/kg)
	GSM850	0.10	0.18	0.18	N/A
	GSM1900	0.21	0.42	0.42	N/A
	WCDMA II	0.36	1.01	1.01	N/A
	WCDMA IV	0.28	1.18	1.18	N/A
	WCDMA V	0.11	0.21	0.21	N/A
	LTE 2	N/A	N/A	N/A	N/A
	LTE 4	N/A	N/A	N/A	N/A
205	LTE 5	N/A	N/A	N/A	N/A
PCE	LTE 7	0.06	1.15	1.18	N/A
	LTE 12	0.04	0.11	0.11	N/A
	LTE 13	0.11	0.20	0.20	N/A
	LTE 25	0.42	0.70	0.70	N/A
	LTE 26	0.13	0.18	0.18	N/A
	LTE 38	N/A	N/A	N/A	N/A
	LTE 41	0.04	0.74	0.76	N/A
	LTE 66	0.25	1.18	1.18	N/A
	LTE 71	0.01	0.02	0.02	N/A
DTS	2.4G WLAN	0.58	0.24	0.24	N/A
	5.2G WLAN	N/A	N/A	N/A	N/A
NII	5.3G WLAN	0.59	0.23	N/A	0.28
INII	5.6G WLAN	0.36	0.16	N/A	0.20
	5.8G WLAN	0.56	0.31	N/A	0.43
DSS	Bluetooth	N/A	N/A	N/A	N/A
DXX	NFC	N/A	N/A	N/A	N/A
Highest Simultaneous Transmission SAR		Head (W/kg)	Body-worn (W/kg)	Hotspot (W/kg)	Extremity (W/kg)
PCE + DTS		0.85	1.43	1.43	N/A
PCE + NII		0.85	1.42	N/A	N/A
PCE + DSS		0.75	1.35	N/A	N/A

1.2 EUT Description

1.2.1 General Description

Product Name	Smart Phone
Trade mark	ecom
Model No.(EUT)	Smart-Ex 02
Add. Model No.:	N/A
FCC ID	XAM500079GR01
IMEL Code	004403109015539
IMEI Code	004403109021537
HW Version	DVT2.1
SW Version	RIGEL_M_P_025_260619
Tx Frequency Bands (Unit: MHz)	GSM850: 824.2 – 848.8 GSM1900: 1850.2 – 1909.8 WCDMA Band II: 1852.4 ~ 1907.6 WCDMA Band II: 1852.4 ~ 1907.6 WCDMA Band IV: 4712.4 ~ 1752.6 WCDMA Band IV: 7172.4 ~ 1752.6 WCDMA Band IV: 1826.4 ~ 846.6 LTE Band 2: 1850.7 ~ 1909.3 (1.4M), 1851.5 ~ 1908.5 (3M), 1852.5 ~ 1907.5 (5M), 1855 ~ 1905 (10M), 1857.5 ~ 1902.5 (15M), 1860 ~ 1900 (20M) LTE Band 4: 1710.7 ~ 1754.3 (1.4M), 1711.5 ~ 1753.5 (3M), 1712.5 ~ 1752.5 (5M), 1715 ~ 1750.1 (10M), 1717.5 ~ 1747.5 (15M), 1720 ~ 1745 (20M) LTE Band 5: 824.7 ~ 848.3 (1.4M), 825.5 ~ 847.5 (3M), 826.5 ~ 846.5 (5M), 829 ~ 844 (10M) LTE Band 7: 2502.5 ~ 2567.5 (5M), 2505 ~ 2565 (10M), 2507.5 ~ 2562.5 (15M), 2510 ~ 2560 (20M) LTE Band 12: 699.7 ~ 715.3 (1.4M), 700.5 ~ 714.5 (3M), 701.5 ~ 713.5 (5M), 704 ~ 711 (10M) LTE Band 13: 779.5 ~ 784.5 (5M), 782 (10M) LTE Band 25: 1850.7 ~ 1914.3 (1.4M), 1851.5 ~ 1913.5 (3M), 1852.5 ~ 1912.5 (5M), 1855 ~ 1910 (10M), 1857.5 ~ 1907.5 (15M), 1860 ~ 1905 (20M) LTE Band 26: 814.7 ~ 848.3 (1.4M), 815.5 ~ 1913.5 (3M), 816.5 ~ 846.5 (5M), 819 ~ 844 (10M), 821.5 ~ 841.5 (15M) LTE Band 28: 2572.5 ~ 2617.5 (5M), 2575 ~ 2615 (10M), 2577.5 ~ 2612.5 (15M), 2500 ~ 2610 (20M) LTE Band 41: 2498.5 ~ 2687.5 (5M), 2501 ~ 2685 (10M), 2503.5 ~ 2682.5 (15M), 2506 ~ 2680 (20M) LTE Band 66: 717.0 ~ 7179.3 (1.4M), 1711.5 ~ 1778.5 (3M), 1712.5 ~ 1777.5 (5M), 1715 ~ 1775 (10M), 1717.5 ~ 1772.5 (15M), 1720 ~ 1770 (20M) LTE Band 66: 7410.7 ~ 1779.3 (1.4M), 1711.5 ~ 1778.5 (3M), 1712.5 ~ 1777.5 (5M), 1715 ~ 1775 (10M), 1717.5 ~ 1772.5 (15M), 1700.7 ~ 1779.3 (1.4M), 1711.5 ~ 1775.5 (15M), 1715 ~ 1775 (10M), 1717.5 ~ 1772.5 (15M), 1715 ~ 1775.5 (15M), 673 ~ 688 ULAN: 2412 ~ 2462, 5180 ~ 5240, 5260 ~ 5320, 5500 ~ 5700,5745 ~ 5825 Bluetoott: 2402 ~ 2480 NFC: 13.56 Note: According to 201504 FCC TCB workshop RF exposure slides, for overlapping bands, only larger band was tested. 1. The maximum output power, including tolerance, for the smaller band is = the larger band to qualify for the SAR test exclusion. 2. The channel bandwidth and other operating parameters for the sma
Antenna Type	Fixed Internal Antenna
EUT Stage	Identical Prototype
LOT Glage	μασπιισαι τ τοισιγρο

1.2.2 Wireless Technologies

	Voice		
GSM	GPRS (Multi-Slot Class: 33-4UP)		
	EDGE (Multi-Slot Class: 33-4UP)		
	RMC		
WCDMA	HSDPA		
WODINA	DC-HSDPA		
	HSUPA		
	QPSK		
LTE	16QAM		
	DL CA		
	VolTE		
	802.11b		
2.4G WLAN	802.11g		
	802.11n (HT20/HT40)		
	802.11a		
5G WLAN	802.11n (HT20/HT40)		
	802.11ac (VHT20/VHT40/VHT80)		
Bluetooth	BR+EDR		
Bidetootii	LE		
Others	NFC		
	2.4G WLAN: Support		
	5.2G WLAN: Not Support		
Wireless Router (Hotspot)	5.3G WLAN: Not Support		
	5.6G WLAN: Not Support		
	5.8G WLAN: Not Support		
	Support		
VOIP	Note:		
VOII	Since this device supports VOIP capability through 3rd party apps software, we have		
	evaluated data mode for head and body-worn SAR.		
	SIM 1: GSM + WCDMA + LTE		
	SIM 2: GSM + WCDMA + LTE		
	Note:		
Dual SIM	This device support dual SIM but they share the same antenna. Since these two SIM		
	are used for subscriber identification only and it is not related to RF identity, only		
	SIM1 was used for SAR testing.		

1.2.3 List of Accessory

	Model Name	EX-BP S02
	Power Rating	3.7Vdc, 4400mAh
	Туре	Li-ion
	Model Name	EX-BP S02C
	Power Rating	3.7Vdc, 3920mAh
	Туре	Li-ion

1.3 Maximum Conducted Power

The maximum conducted average power (Unit: dBm) including tune-up tolerance is shown as below.

Mode	GSM850	GSM1900
GSM (GMSK, 1Tx-slot)	33.5	31.0
GPRS (GMSK, 1Tx-slot)	33.5	31.0
GPRS (GMSK, 2Tx-slot)	31.0	28.5
GPRS (GMSK, 3Tx-slot)	29.0	26.5
GPRS (GMSK, 4Tx-slot)	27.5	25.5
EDGE (8PSK, 1Tx-slot)	27.5	25.5
EDGE (8PSK, 2Tx-slot)	24.5	22.5
EDGE (8PSK, 3Tx-slot)	24.0	20.5
EDGE (8PSK, 4Tx-slot)	22.5	19.5

Mode	WCDMA Band II	WCDMA Band IV	WCDMA Band V
RMC 12.2K	24.0	24.5	24.5
HSDPA Subtest-1	23.5	24.0	23.0
HSDPA Subtest-2	23.5	24.0	23.0
HSDPA Subtest-3	23.0	23.5	22.5
HSDPA Subtest-4	23.0	23.5	22.5
DC-HSDPA Subtest-1	23.5	24.0	23.0
DC-HSDPA Subtest-2	23.5	24.0	23.0
DC-HSDPA Subtest-3	23.0	23.5	22.5
DC-HSDPA Subtest-4	23.0	23.5	22.5
HSUPA Subtest-1	23.5	24.0	23.0
HSUPA Subtest-2	23.0	23.5	22.5
HSUPA Subtest-3	23.5	24.0	23.0
HSUPA Subtest-4	23.5	24.0	23.0
HSUPA Subtest-5	23.0	23.5	22.5

Band	Mode	Maximum Conducted Power (Unit: dBm)
LTE 2	QPSK / 16QAM	24.0
LTE 4	QPSK / 16QAM	24.5
LTE 5	QPSK / 16QAM	24.0
LTE 7	QPSK / 16QAM	24.0
LTE 12	QPSK / 16QAM	23.5
LTE 13	QPSK / 16QAM	24.0
LTE 25	QPSK / 16QAM	24.0
LTE 26	QPSK / 16QAM	24.0
LTE 38	QPSK / 16QAM	24.0
LTE 41	QPSK / 16QAM	24.0
LTE 66	QPSK / 16QAM	24.5
LTE 71	QPSK / 16QAM	24.5

Mode	2.4G WLAN
802.11b	18.0
802.11g	17.0
802.11n HT20	15.0
802.11n HT40	15.0

Page 9 of 79

Report No.: 190518040SAR-1

Mode	5.2G WLAN	5.3G WLAN	5.6G WLAN	5.8G WLAN
802.11a	16.0	15.5	14.0	15.0
802.11n HT20	14.5	16.5	13.0	16.0
802.11n HT40	17.0	17.0	10.0	16.0
802.11ac VHT20	14.5	16.5	13.0	15.5
802.11ac VHT40	16.5	16.5	10.0	15.5
802.11ac VHT80	9.0	9.0	8.5	16.0

Mode		2.4G Bluetooth		
BR + EDR	GFSK	9.0		
	π/4-DQPSK	7.0		
	8-DPSK	7.0		
LE	GFSK	-1.0		

Page 10 of 79 Report No.: 190518040SAR-1

1.4 Other Information

Sample Received Date:	May 18, 2019
Sample tested Date:	June 14, 2019 to July 4, 2019

1.5 Testing Location

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1,

Longhua New District, Shenzhen, China

Telephone: +86-755-28230888 Fax: +86-755-28230886

Mail: info@uttlab.com Website: Http://www.uttlab.com

1.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

FCC Accredited Lab.

Designation Number: CN1194

Test Firm Registration Number: 259480

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

ISED Wireless Device Testing Laboratories

CAB identifier: CN0032

1.7 Guidance Standard

The tests documented in this report were performed in accordance with FCC 47 CFR Part 2 §2.1093, IEEE Std 1528-2013, ANSI/IEEE C95.1-1992, the following FCC Published RF exposure KDB procedures:

2 Specific Absorption Rate (SAR)

2.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling, by appropriate techniques, to produce specific absorption rates (SARs) as averaged over the whole-body, any 1 g or any 10 g of tissue (defined as a tissue volume in the shape of a cube). All SAR values are to be averaged over any six-minute period. When portable device was used within 20 cm of the user's body, SAR evaluation of the device will be required. The SAR limit in chapter 2.3.

2.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

2.3 SAR Limits

(A) Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B) Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

- 1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.
- 2. At frequencies above 6.0 GHz, SAR limits are not applicable and MPE limits for power density should be applied at 5 cm or more from the transmitting device.
- 3. The SAR limit is specified in FCC 47 CFR Part 2 §2.1093, ANSI/IEEE C95.1-1992.

3 SAR Measurement System

3.1 SPEAG DASY System

DASY system consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY5 software defined. The DASY software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.

DASY Measurement System

3.1.1 Robot

The DASY system uses the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY4: CS7MB) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- · High precision (repeatability ±0.02 mm)
- · High reliability (industrial design)
- · Jerk-free straight movements
- · Low ELF interference (the closed metallic construction shields against motor control fields)

3.1.2 **Probe**

The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

Model	EX3DV4	
Construction	Symmetrical design with triangular core. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE).	
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB	
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)	
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)	
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	

Model	ES3DV3	
	Symmetrical design with triangular core. Interleaved sensors.	
Construction	Built-in shielding against static charges. PEEK enclosure material	
	(resistant to organic solvents, e.g., DGBE).	
Fraguency	10 MHz to 4 GHz	202
Frequency	Linearity: ± 0.2 dB	
Directivity	± 0.2 dB in HSL (rotation around probe axis)	.08
Directivity	± 0.3 dB in tissue material (rotation normal to probe axis)	109
Dumamia Banga	5 μW/g to 100 mW/g	
Dynamic Range	Linearity: ± 0.2 dB	A Comment of the Comm
	Overall length: 337 mm (Tip: 20 mm)	AST
Dimensions	Tip diameter: 3.9 mm (Body: 12 mm)	
	Distance from probe tip to dipole centers: 2.0 mm	

3.1.3 Data Acquisition Electronics (DAE)

Model	DAE3, DAE4	
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.	
Measurement	-100 to +300 mV (16 bit resolution and two range settings: 4mV,	
Range	400mV)	
Input Offset	< 5µV (with auto zero)	Talk W
Voltage	< 5µV (Will1 auto 2e10)	
Input Bias Current	< 50 fA	
Dimensions	60 x 60 x 68 mm	

3.1.4 Phantom

Model	Twin SAM	
Construction	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.	
Material	Vinylester, glass fiber reinforced (VE-GF)	
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	
Dimensions	Length: 1000 mm Width: 500 mm Height: adjustable feet	
Filling Volume	approx. 25 liters	

Model	ELI	
Construction	Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.	
Material	Vinylester, glass fiber reinforced (VE-GF)	-
Shell Thickness	2.0 ± 0.2 mm (bottom plate)	
Dimensions	Major axis: 600 mm Minor axis: 400 mm	
Filling Volume	approx. 30 liters	

3.1.5 Device Holder

Model	Mounting Device	
Construction	In combination with the Twin SAM Phantom or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).	
Material	POM	

Report No.: 190518040SAR-1

Model	Laptop Extensions Kit
Construction	Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner.
Material	POM, Acrylic glass, Foam

3.1.6 System Validation Dipoles

Ī	Model	D-Serial		
	Construction	Symmetrical dipole with I/4 balun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions.		
	Frequency	750 MHz to 5800 MHz		
	Return Loss	> 20 dB		
	Power Capability	> 100 W (f < 1GHz), > 40 W (f > 1GHz)		

3.2 SAR Scan Procedure

3.2.1 SAR Reference Measurement (drift)

Prior to the SAR test, local SAR shall be measured at a stationary reference point where the SAR exceeds the lower detection limit of the measurement system.

3.2.2 Area Scan

Measurement procedures for evaluating the SAR of wireless device start with a coarse measurement grid to determine the approximate location of the local peak SAR values. This is known as the area-scan procedure. All antennas and radiating structures that may contribute to the measured SAR or influence the SAR distribution must be included in the area scan. The area scan measurement resolution must enable the extrapolation algorithms of the SAR system to correctly identify the peak SAR location(s) for subsequent zoom scan measurements to correctly determine the 1-g SAR. Area scans are performed at a constant distance from the phantom surface, determined by the measurement frequencies. When a measured peak is closer than ½ the zoom scan volume dimension (x, y) from the edge of the area scan region, unless the entire peak and gram-averaging volume are both captured within the zoom scan volume, the area scan must be repeated by shifting and expanding the area scan region to ensure all peaks are away from the area scan boundary. The area scan resolutions specified in the table below must be applied to the SAR measurements.

scarriesolutions specified in the table below must be applied	d to the or tre modernio	1110.		
	≤ 3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 mm ± 1 mm	½·δ·ln(2) mm ± 0.5 mm		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°		
	≤ 2 GHz: ≤ 15 mm	3 – 4 GHz: ≤ 12 mm		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	the measurement plane the above, the measured the corresponding x or	4 – 6 GHz: ≤ 10 mm sion of the test device, in orientation, is smaller than ment resolution must be ≤ y dimension of the test measurement point on the		

3.2.3 Zoom Scan

To evaluate the peak spatial-average SAR values with respect to 1 g or 10 g cubes, fine resolution volume scans, called zoom scans, are performed at the peak SAR locations identified during the area scan. If the cube volume within the zoom scan chosen to calculate the peak spatial-average SAR touches any boundary of the zoom-scan volume, the zoom scan shall be repeated with the center of the zoom-scan volume shifted to the new maximum SAR location. For any secondary peaks found in the area scan that are within 2 dB of the maximum peak and are not within this zoom scan, the zoom scan shall be performed for such peaks, unless the peak spatial-average SAR at the location of the maximum peak is more than 2 dB below the applicable SAR limit (i.e., 1 W/kg for a 1.6 W/kg 1 g limit, or 1.26 W/kg for a 2 W/kg 10 g limit). The zoom scan resolutions specified in the table below must be applied to the SAR measurements.

Page 18 of 79 Report No.: 190518040SAR-1

			≤ 3 GHz	> 3 GHz		
NAi	4! . 1	alutiana A	≤ 2 GHz: ≤ 8 mm	3 – 4 GHz: ≤ 5 mm*		
Maximum zoom scar	i spatiai res	olution: Δx_{Zoom} , Δy_{Zoom}	2 – 3 GHz: ≤ 5 mm*	4 – 6 GHz: ≤ 4 mm*		
				3 – 4 GHz: ≤ 4 mm		
Maximum zoom	uniform g	rid: $\Delta Z_{Zoom}(n)$	≤ 5 mm	4 – 5 GHz: ≤ 3 mm		
				5 – 6 GHz: ≤ 2 mm		
		$\Delta Z_{Zoom}(1)$: between		3 – 4 GHz: ≤ 3 mm		
Scan spatial		1 ST two points closest	≤ 4 mm	4 – 5 GHz: ≤ 2.5 mm		
resolution, normal	graded	to phantom surface		5 – 6 GHz: ≤ 2 mm		
to phantom surface	grid	$\Delta Z_{Zoom}(n>1)$:				
		between subsequent	≤ 1.5·ΔZ _Z	_{oom} (n-1) mm		
		points				
NAin income and an				3 – 4 GHz: ≥ 28 mm		
Minimum zoom	x, y, z		≥ 30 mm	4 – 5 GHz: ≥ 25 mm		
scan volume				5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

3.2.4 SAR Drift Measurement

The local SAR (or conducted power) shall be measured at exactly the same location as in 3.2.1 section. The absolute value of the measurement drift (the difference between the SAR measured in 3.2.1 and 3.2.4 section) shall be recorded. The SAR drift shall be kept within $\pm 5\%$.

^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

3.3 Test Equipment

Equipment	Manufacturer	Model	SN	Cal. Date	Cal. Interval
System Validation Dipole	SPEAG	D750V3	1048	Jul. 06, 2016	3 Year
System Validation Dipole	SPEAG	D835V2	4d005	May. 18, 2018	3 Year
System Validation Dipole	SPEAG	D1750V2	1086	May. 18, 2018	3 Year
System Validation Dipole	SPEAG	D1800V2	2d140	May. 18, 2018	3 Year
System Validation Dipole	SPEAG	D1900V2	509	May. 18, 2018	3 Year
System Validation Dipole	SPEAG	D2450V2	1014	Jun. 07, 2018	3 Year
System Validation Dipole	SPEAG	D2600V2	1153	Jun. 07, 2018	3 Year
System Validation Dipole	SPEAG	D5GHzV2	1145	Nov. 06, 2018	1 year
Dosimetric E-Field Probe	SPEAG	EX3DV4	3578	Jun. 19, 2019	1 year
Dosimetric E-Field Probe	SPEAG	ES3DV3	3090	Apr. 12, 2019	1 Year
Data Acquisition Electronics	SPEAG	DAE4	662	Apr. 11, 2019	1 Year
Data Acquisition Electronics	SPEAG	DAE4	679	Apr. 23, 2019	1 year
Radio Communication Analyzer	Anritsu	MT8820C	6200918396	Dec. 12, 2018	1 Year
ENA Series Network Analyzer	Agilent	8753ES	US39170317	Dec. 12, 2018	1 Year
Dielectric Assessment Kit	SPEAG	DAK-3.5	1056	N/A	N/A
USB/GPIB Interface	Agilent	82357B	N10149	N/A	N/A
Signal Generator	R&S	SMT06	100796	May. 14, 2019	1 Year
Signal Generator	R&S	SMB100A	103718	Dec. 12, 2018	1 Year
POWER METER	R&S	NRP	101293	Dec. 18, 2018	1 Year
Thermometer	Shanghai Gao Zhi Precision Instrument Co., Ltd.	HB6801	120100323	May. 16, 2019	1 Year
Coupler	REBES	TC-05180-10 S	161221001	N/A	N/A
Amplifier	Mini-Circuit	ZHL42	QA1252001	N/A	N/A
DC Source	Agilent	66319B	MY43000795	N/A	N/A

3.4 Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

3.5 Tissue Dielectric Parameter Measurement & System Verification

3.5.1 Tissue Simulating Liquids

The temperature of the tissue-equivalent medium used during measurement must also be within 18 °C to 25 °C and within ± 2 °C of the temperature when the tissue parameters are characterized. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance.

The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm with ≤ ± 0.5 cm variation for SAR measurements ≤ 3 GHz and ≥ 10.0 cm with ≤ ± 0.5 cm variation for measurements > 3 GHz. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in Table-3.1.

Photo of Liquid Height

Table-3.1 Tissue Dielectric Parameters for Head and Body

Torget Frequency	Target Frequency Head Body										
(MHz)	€r	σ (S/m)	εr	σ (S/m)							
750	41.9	0.89	55.5	0.96							
835	41.5	0.90	55.2	0.97							
900	41.5	0.97	55.0	1.05							
1450	40.5	1.20	54.0	1.30							
1640	40.3	1.29	53.8	1.40							
1750	40.1	1.37	53.4	1.49							
1800	40.0	1.40	53.3	1.52							
1900	40.0	1.40	53.3	1.52							
2000	40.0	1.40	53.3	1.52							
2300	39.5	1.67	52.9	1.81							
2450	39.2	1.80	52.7	1.95							
2600	39.0	1.96	52.5	2.16							
3500	37.9	2.91	51.3	3.31							
5200	36.0	4.66	49.0	5.30							
5300	35.9	4.76	48.9	5.42							
5500	35.6	4.96	48.6	5.65							
5600	35.5	5.07	48.5	5.77							
5800	35.3	5.27	48.2	6.00							
	(εr = relative permi	ttivity, σ = conductivity and	$d \rho = 1000 \text{ kg/m3}$								

The following table gives the recipes for tissue simulating liquids.

Table-3.2 Recipes of Tissue Simulating Liquid

		1 451	c o.z recorpe	3 01 1133GC C	Simulating Li	quiu		
Tissue Type	Bactericide	DGBE	HEC	NaCl	Sucrose	Triton X-100	Water	Diethylene Glycol Mono- hexylether
H750	0.2	-	0.2	1.4	57.0	-	41.1	-
H835	0.1	ı	1.0	1.4	57.0	-	40.5	-
H900	0.1	-	1.0	1.5	56.5	-	40.9	-
H1450	-	45.5	-	0.7	-	-	53.8	-
H1640	-	45.8	-	0.5	-	-	53.7	-
H1750	-	44.5	-	0.3	-	-	55.2	-
H1800	-	44.9	-	0.2	-	-	54.9	-
H1900	-	44.9	-	0.2	-	-	54.9	-
H2000	-	50	-	_	-	-	50	-
H2300	-	44.9	-	0.1	-	-	55.0	-
H2450	-	45.0	-	0.1	-	_	54.9	-
H2600	-	45.1	-	0.1	-	-	54.8	-
H3500	-	8.0	-	0.2	-	20.0	71.8	-
H5G	-	-	-	-	-	17.2	65.52	17.3
B750	0.2	-	0.2	0.8	48.8	-	50.0	-
B835	0.2	-	0.2	0.9	48.5	-	50.2	-
B900	0.2	-	0.2	0.9	48.2	-	50.5	-
B1450	-	34.0	-	0.3	-	-	65.7	-
B1640	-	32.5	-	0.3	-	-	67.2	-
B1750	-	29.4	-	0.4	-	-	70.2	_
B1800	-	29.5	-	0.4	-	-	70.1	-
B1900	-	29.5	-	0.3	-	-	70.2	-
B2000	-	30.0	-	0.2	-	-	69.8	-
B2300	-	31.0	-	0.1	-	-	68.9	-
B2450	-	31.4	-	0.1	-	-	68.5	_
B2600	-	31.8	-	0.1	-	-	68.1	-
B3500	-	28.8	-	0.1	-	-	71.1	-
B5G	<u>-</u>	-	-	-	-	10.7	78.6	10.7

3.5.2 System Check Description

The system check procedure provides a simple, fast, and reliable test method that can be performed daily or before every SAR measurement. The objective here is to ascertain that the measurement system has acceptable accuracy and repeatability. This test requires a flat phantom and a radiating source. The system verification setup is shown as below.

System Verification Setup

3.5.3 Tissue Verification

The measuring results for tissue simulating liquid are shown as below.

Test Date	Tissue Type	Frequency (MHz)	Liquid Temp. (°C)	Measured Conductivity (σ)	Measured Permittivity (ε _r)	Target Conductivity (σ)	Target Permittivity (ε _r)	Conductivity Deviation (%)	Permittivity Deviation (%)
Jun. 24, 2019	Head	750	22.2	0.908	40.500	0.89	41.90	2.02	-3.34
Jun. 24, 2019	Head	835	22.2	0.890	42.400	0.90	41.50	-1.11	2.17
Jun. 23, 2019	Head	1800	22.1	1.440	40.300	1.40	40.10	2.86	0.50
Jun. 23, 2019	Head	1900	22.1	1.390	39.800	1.40	40.00	-0.71	-0.50
Jun. 27, 2019	Head	2450	21.9	1.790	40.100	1.80	39.20	-0.56	2.30
Jun. 25, 2019	Head	2600	21.9	2.030	37.600	1.96	39.00	3.57	-3.59
Jul. 04, 2019	Head	5250	21.8	4.683	35.341	4.71	35.90	-0.57	-1.56
Jul. 04, 2019	Head	5600	21.8	5.032	34.840	5.07	35.50	-0.75	-1.86
Jul. 04, 2019	Head	5750	21.8	5.193	34.627	5.22	35.40	-0.52	-2.18
Jun. 21, 2019	Head	750	21.7	0.968	55.400	0.96	55.50	0.83	-0.18
Jun. 20, 2019	Head	835	21.7	0.992	55.600	0.97	55.20	2.27	0.72
Jun. 17, 2019	Head	1750	21.7	1.47	53.800	1.49	53.40	-1.34	0.75
Jun. 19, 2019	Head	1900	21.7	1.550	52.900	1.52	53.30	1.97	-0.75
Jun. 28, 2019	Head	2450	21.9	2.030	52.800	1.95	52.70	4.10	0.19
Jun. 14, 2019	Head	2600	21.9	2.200	52.400	2.16	52.50	1.85	-0.19
Jul. 02, 2019	Head	5250	21.8	5.581	49.845	5.36	48.90	4.12	1.93
Jul. 02, 2019	Head	5600	21.8	6.011	47.673	5.77	48.50	4.18	-1.71
Jul. 02, 2019	Head	5750	21.8	6.080	48.993	5.94	48.30	2.36	1.43

Note:

The dielectric properties of the tissue simulating liquid must be measured within 24 hours before the SAR testing and within \pm 5% of the target values. The variation of the liquid temperature must be within \pm 2 °C during the test.

3.5.4 System Verification

The measuring result for system verification is tabulated as below.

Test Date	Tissue Type	Frequency (MHz)	1W Target SAR-1g (W/kg)	Measured SAR-1g (W/kg)	Normalized to 1W SAR-1g (W/kg)	Deviation (%)	Dipole S/N	Probe S/N	DAE S/N
Jun. 24, 2019	Head	750	8.34	0.785	7.85	-5.88	1048	3090	662
Jun. 24, 2019	Head	835	9.45	0.087	8.70	-7.94	4d005	3090	662
Jun. 23, 2019	Head	1800	39.20	0.408	4.08	-89.59	2d140	3090	662
Jun. 23, 2019	Head	1900	39.60	0.375	37.50	-5.30	509	3090	662
Jun. 27, 2019	Head	2450	52.40	0.481	48.10	-8.21	883	3090	662
Jun. 25, 2019	Head	2600	56.40	0.515	51.50	-8.69	1082	3090	662
Jul. 04, 2019	Head	5250	78.90	7.91	79.10	0.25	1145	3578	679
Jul. 04, 2019	Head	5600	80.30	8.20	82.00	2.12	1145	3578	679
Jul. 04, 2019	Head	5750	79.30	7.70	77.00	-2.90	1145	3578	679
Jun. 21, 2019	Body	750	8.72	0.895	8.95	2.64	1048	3090	662
Jun. 20, 2019	Body	835	9.74	0.095	9.50	-2.46	4d005	3090	662
Jun. 17, 2019	Body	1750	39.00	0.382	38.20	-2.05	2d140	3090	662
Jun. 19, 2019	Body	1900	39.50	0.406	40.60	2.78	509	3090	662
Jun. 28, 2019	Body	2450	51.80	0.520	52.00	0.39	883	3090	662
Jun. 14, 2019	Body	2600	57.60	0.566	56.60	-1.74	1082	3090	662
Jul. 02, 2019	Body	5250	73.20	6.940	69.40	-5.19	1145	3578	679
Jul. 02, 2019	Body	5600	77.60	7.170	71.70	-7.60	1145	3578	679
Jul. 02, 2019	Body	5750	75.40	6.900	69.00	-8.49	1145	3578	679

Note:

Comparing to the reference SAR value, the validation data should be within its specification of 10%. The result indicates the system check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Shenzhen UnionTrust Quality and Technology Co., Ltd.

4 SAR Measurement Evaluation

4.1 EUT Configuration and Setting

Connections between EUT and System Simulator

For WWAN SAR testing, the EUT was linked and controlled by base station emulator. Communication between the EUT and the emulator was established by air link. The distance between the EUT and the communicating antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during SAR testing.

4.1.1 GSM Configuration and Testing

GSM (GMSK: CS1) voice mode transmits with 1 time slot. GPRS (GMSK: CS1) and EDGE (GMSK: MCS1, 8PSK: MCS9) may transmit up to 4 time slots in the 8 time-slot frame according to the multislot class implemented in a device.

4.1.2 WCDMA Configuration and Testing

WCDMA Handsets Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode.

WCDMA Handsets Body-worn SAR

SAR for body-worn configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode.

Handsets with Release 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body-worn configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices", for the highest reported SAR body-worn exposure configuration in 12.2 kbps RMC. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

Handsets with Release 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices", for the highest reported body-worn exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn measurements is tested for next to the ear head exposure.

Release 5 HSDPA Data Devices

The 3G SAR test reduction procedure is applied to body SAR with 12.2 kbps RMC as the primary mode. Otherwise, body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA.

Page 26 of 79 Report No.: 190518040SAR-1

HSDPA is configured according to the applicable UE category of a test device. The number of HS-DSCH / HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms and a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors (β_c , β_d), and HS-DPCCH power offset parameters (Δ_{ACK} , Δ_{NACK} , Δ_{CQI}) are set according to values indicated in below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Sub-test	β _c	β_d	β _d (SF)	β _c / β _d	β _{hs} ⁽¹⁾	CM (dB) ⁽²⁾	MPR
1	2 / 15	15 / 15	64	2 / 15	4 / 15	0.0	0
2	12 / 15 ⁽³⁾	15 / 15 ⁽³⁾	64	12 / 15 ⁽³⁾	24 / 15	1.0	0
3	15 / 15	8 / 15	64	15 / 8	30 / 15	1.5	0.5
4	15 / 15	4 / 15	64	15 / 4	30 / 15	1.5	0.5

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs} / \beta_{c} = 30 / 15 \Leftrightarrow \beta_{hs} = 30 / 15 * \beta_{c}$

Release 6 HSUPA Data Devices

The 3G SAR test reduction procedure is applied to body SAR with 12.2 kbps RMC as the primary mode. Otherwise, body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA. When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode. Otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing. Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in below.

Sub-test	βε	βd	β _d (SF)	β _c / β _d	β _{hs} ⁽¹⁾	βec	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11 / 15 ⁽³⁾	15 / 15 ⁽³⁾	64	11 / 15 (3)	22 / 15	209 / 225	1039 / 225	4	1	1.0	0.0	20	75
2	6 / 15	15 / 15	64	6 / 15	12 / 15	12 / 15	94 / 75	4	1	3.0	2.0	12	67
3	15 / 15	9 / 15	64	15 / 9	30 / 15	30 / 15	$\begin{array}{c} \beta_{ed1}\text{: }47/15 \\ \beta_{ed2}\text{: }47/15 \end{array}$	4	2	2.0	1.0	15	92
4	2 / 15	15 / 15	64	2 / 15	4 / 15	2 / 15	56 / 75	4	1	3.0	2.0	17	71
5	15 / 15 ⁽⁴⁾	15 / 15 (4)	64	15 / 15 ⁽⁴⁾	30 / 15	24 / 15	134 / 15	4	1	1.0	0.0	21	81

Note 1: \triangle_{ACK} , \triangle_{NACK} and $\triangle_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs} / \beta_c = 30 / 15 \Leftrightarrow \beta_{hs} = 30 / 15 * \beta_c$.

Note 2: CM = 1 for β_c / β_d = 12 / 15, β_{hs} / β_c = 24 / 15.

Note 3: For subtest 2 the β_c / β_d ratio of 12 / 15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β_c = 11 / 15 and β_d = 15 / 15.

Note 2: CM = 1 for β_c / β_d = 12 / 15, β_{hs} / β_c = 24 / 15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c / β_d ratio of 11 / 15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β_c = 10 / 15 and β_d = 15 / 15.

Note 4: For subtest 5 the β_c / β_d ratio of 15 / 15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β_c = 14 / 15 and β_d = 15 / 15.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: βed cannot be set directly; it is set by Absolute Grant Value.

4.1.3 LTE Configuration and Testing

UE power class is category 3. The LTE maximum power reduction (MPR) in accordance with 3GPP TS 36.101 is active all times during LTE operation. The allowed MPR for the maximum output power please refer to the tune up procedure.

In addition, the device is compliant with additional maximum power reduction (A-MPR) requirements defined in 3GPP TS 36.101 section 6.2.4 that was disabled for all FCC compliance testing.

A properly configured base station simulator is used for the SAR and power measurements, so spectrum plots for each RB allocation and offset configuration are not included in the SAR report to demonstrate that the tested RB allocations have been correctly established at the maximum output power conditions.

TDD-LTE Setup Configurations

According to KDB 941225 D05, SAR testing for TDD-LTE device must be tested using a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by the defined 3GPP TDD-LTE configurations. The TDD-LTE of this device supports frame structure type 2 defined in 3GPP TS 36.211 section 4.2, and the frame structure configuration can be referred to below.

3GPP TS 36.211 Figure 4.2-1: Frame Structure Type 2

	Nor	mal Cyclic Prefix in	Downlink	Exten	ded Cyclic Prefix in	Downlink
Special Subframe			PTS			PTS
Configuration	DwPTS	Normal Cyclic Prefix in Uplink	Extended Cyclic Prefix in Uplink	DwPTS	Normal Cyclic Prefix in Uplink	Extended Cyclic Prefix in Uplink
0	6592·Ts			7680·Ts		
1	19760·Ts			20480·Ts	2192·Ts	2560·Ts
2	21952·Ts	2192·Ts	2560·Ts	23040·Ts		2500-15
3	24144·Ts			25600·Ts		
4	26336·Ts			7680·Ts		
5	6592·Ts			20480·Ts	4004 =	5400 Ta
6	19760·Ts			23040·Ts	4384·Ts	5120·Ts
7	21952·Ts	4384·Ts	5120·Ts	12800·Ts		
8	24144·Ts			-	-	-
9	13168·Ts			-	-	-

3GPP TS 36.211 Table 4.2-1: Configuration of Special Subframe

Upl	ink-Downlink	Downlink-to-Uplink	Subframe Number	Duty-	ı
-----	--------------	--------------------	-----------------	-------	---

Page 28 of 79

Report No.: 190518040SAR-1

Configuration	Switch-Point Periodicity	0	1	2	3	4	5	6	7	8	9	Cycle
0	5 ms	D	S	U	U	U	D	S	U	U	U	63.33%
1	5 ms	D	S	J	U	D	D	S	U	U	D	43.33%
2	5 ms	D	S	U	D	D	D	S	U	D	D	23.33%
3	10 ms	D	S	U	U	U	D	D	D	D	D	31.67%
4	10 ms	D	S	U	U	D	D	D	D	D	D	21.67%
5	10 ms	Δ	S	J	D	D	D	D	D	D	D	11.67%
6	5 ms	D	S	U	U	U	D	S	U	U	D	53.33%

Uplink-Downlink Configurations and duty cycle

Considering the highest transmission duty cycle, TDD-LTE was tested using Uplink-Downlink Configuration 0 with 6 uplink subframe and 2 special subframe. The special subframe was set to special subframe configuration 7 using extended cyclic prefix uplink. Therefore, SAR testing for TDD-LTE was performed at the maximum output power with highest transmission duty cycle of 63.33%.

4.1.4 WLAN Configuration and Testing

In general, various vendor specific external test software and chipset based internal test modes are typically used for SAR measurement. These chipset based test mode utilities are generally hardware and manufacturer dependent, and often include substantial flexibility to reconfigure or reprogram a device. A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement. The test frequencies established using test mode must correspond to the actual channel frequencies. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. In addition, a periodic transmission duty factor is required for current generation SAR systems to measure SAR correctly. The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

According to KDB 248227 D01, this device has installed WLAN engineering testing software which can provide continuous transmitting RF signal. During WLAN SAR testing, this device was operated to transmit continuously at the maximum transmission duty with specified transmission mode, operating frequency, lowest data rate, and maximum output power.

Initial Test Configuration

An initial test configuration is determined for OFDM transmission modes in 2.4 GHz and 5 GHz bands according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

Subsequent Test Configuration

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. When the highest reported SAR for the initial test configuration according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.

SAR Test Configuration and Channel Selection

When multiple channel bandwidth configurations in a frequency band have the same specified maximum output power, the initial test configuration is using largest channel bandwidth, lowest order modulation, lowest data rate, and lowest order 802.11 mode (i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n). After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following.

- 1) The channel closest to mid-band frequency is selected for SAR measurement.
- 2) For channels with equal separation from mid-band frequency; for example, high and low channels or two

Page 30 of 79 Report No.: 190518040SAR-1

mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

Test Reduction for U-NII-1 (5.2 GHz) and U-NII-2A (5.3 GHz) Bands

For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following.

- 1) When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is $\leq 1.2 \text{ W/kg}$, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition).
- 2) When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration.

4.2 EUT Testing Position

4.2.1 Head Exposure Conditions

RF Exposure Conditions	Test Position	Separation Distance	SAR test exclusion	
Head	Right Cheek			
	Right Tilted	0.00	N/A	
	Left Cheek	0 cm	IVA	
	Left Tilted			

Note:

- 1. Head exposure for voice mode of handset is limited to next to the ear exposure conditions.
- 2. Devices that are designed to transmit next to the ear must be tested using the SAM phantom.
- 3. Other head exposure conditions, for example, in-front-of the face, should be tested using a flat phantom according to the required published RF exposure KDB procedures.
- 4. When data mode operates in next to the ear configurations, either data alone or in conjunction with voice transmissions, SAR evaluation is required for such use conditions.
- 5. When device supports VoIP, SAR evaluation for head Exposure Conditions using the most appropriate wireless data mode configurations is required.

Fig-4.2 Tilted Position

Define two imaginary lines on the handset

- a) The vertical centerline passes through two points on the front side of the handset the midpoint of the width w_t of the handset at the level of the acoustic output, and the midpoint of the width w_b of the bottom of the handset.
- b) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- c) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that

the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

Report No.: 190518040SAR-1

Fig-4.3 Handset Vertical and Horizontal Reference Lines

4.2.2 Body-worn Accessory Exposure Conditions

RF Exposure Conditions	Test Position	Separation Distance	SAR test exclusion	
Body-worn	Front Face	0 ~ 2.5 cm	N/A	
	Rear Face	0 ~ 2.5 Cm		

- 1. Body-worn accessories that do not contain metallic or conductive components may be tested according to worst-case exposure configurations, typically according to the smallest test separation distance required for the group of body-worn accessories with similar operating and exposure characteristics. All body-worn accessories containing metallic components are tested in conjunction with the host device.
- 2. Body-worn accessory SAR compliance is based on a single minimum test separation distance for all wireless and operating modes applicable to each body-worn accessory used by the host, and according to the relevant voice and/or data mode transmissions and operations. If a body-worn accessory supports voice only operations in its normal and expected use conditions, testing of data mode for body-worn compliance is not required.
- 3. A conservative minimum test separation distance for supporting off-the-shelf body-worn accessories that may be acquired by users of consumer handsets should be used to test for body-worn accessory SAR compliance. This distance is determined by the handset manufacturer according to the typical body-worn accessories users may acquire at the time of equipment certification, but not more than 2.5 cm, to enable users to purchase aftermarket body-worn accessories with the required minimum separation.
- 4. Devices that are designed to operate on the body of users using lanyards and straps or without requiring additional body-worn accessories must be tested for SAR compliance using a conservative minimum test separation distance ≤ 5 mm to support compliance.
- 5. When device supports VoIP, SAR evaluation for body-worn accessory Exposure Conditions using the most appropriate wireless data mode configurations is required.
- 6. Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories.
- 7. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset.

Fig-4.4 **Body Worn Position**

4.2.3 Hotspot Mode Exposure Conditions

RF Exposure Conditions	Test Position	Separation Distance	SAR test exclusion	
Hotspot	Front Face			
	Rear Face		Note 2/3	
	Left Side	1 cm		
	Right Side	1 CIII		
	Top Side			
	Bottom Side			

- 1. The SAR test separation distance for hotspot mode is determined according to device form factor. When the overall length and width of a device is > 9 cm x 5 cm (~3.5" x 2"), a test separation distance of 10 mm is required for hotspot mode SAR measurements. A test separation distance of 5 mm or less is required for smaller devices. The SAR test separation distance for hotspot mode is determined according to device form factor.
- 2. Hotspot mode SAR is measured for all edges and surfaces of the device with a transmitting antenna located within 25 mm from that surface or edge.
- 3. Based on the antenna location shown on appendix D of this report, the SAR testing required for hotspot mode is listed on section 4.5.1.

Fig-4.5 Test Positions for Hotspot Mode

4.2.4 Extremity Exposure Conditions

RF Exposure Conditions	Test Position	Separation Distance	SAR test exclusion	
Extremity	Front Face			
	Rear Face		Note 3/4	
	Left Side	0 cm		
	Right Side	O CIII		
	Top Side			
	Bottom Side			

- For smart phones with a display diagonal dimension > 15 cm or an overall diagonal dimension > 16 cm that
 provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that
 support voice calls next to the ear. This new generation of devices has been referred to by industry as
 "phablets."
- 2. The normally required head and body-worn accessory SAR test procedures for handsets, including hotspot mode, must be applied.
- 3. Extremity SAR is measured for all edges and surfaces of the device with a transmitting antenna located within 25 mm from that surface or edge.
- 4. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg; however, when power reduction applies to hotspot mode the measured SAR must be scaled to the maximum output power, including tolerance, allowed for phablet modes to compare with the 1.2 W/kg SAR test reduction threshold.
- 5. The normal tablet procedures in KDB Publication 616217 are required when the overall diagonal dimension of the device is > 20.0 cm. Hotspot mode SAR is not required when normal tablet procedures are applied. Extremity 10-g SAR is also not required for the front (top) surface of larger form factor full size tablets. The more conservative normal tablet SAR results can be used to support phablet mode 10-g extremity SAR.
- 6. The simultaneous transmission operating configurations applicable to voice and data transmissions for both phone and mini-tablet modes must be taken into consideration separately for 1-g and 10-g SAR to determine the simultaneous transmission SAR test exclusion and measurement requirements for the relevant wireless modes and exposure conditions.

4.3 Measured Conducted Power Result

4.3.1 Conducted Power of GSM Band

The measuring conducted average power (Unit: dBm) is shown as below.

Band	GSM850		GSM1900			
Channel	128	190	251	512	661	810
Frequency (MHz)	824.2	836.6	848.8	1850.2	1880.0	1909.8
	N	Maximum Burst-	Averaged Outp	ut Power		
GSM (GMSK, 1Tx-slot)	32.77	32.75	32.70	30.23	30.56	30.63
GPRS (GMSK, 1Tx-slot)	32.75	32.73	32.69	30.21	30.53	30.61
GPRS (GMSK, 2Tx-slot)	30.15	30.25	30.02	27.74	27.82	27.93
GPRS (GMSK, 3Tx-slot)	28.05	28.21	28.36	25.90	26.02	26.18
GPRS (GMSK, 4Tx-slot)	26.77	26.87	26.85	24.69	24.87	24.95
EDGE (8PSK, 1Tx-slot)	26.78	26.75	26.82	24.71	24.96	25.04
EDGE (8PSK, 2Tx-slot)	23.72	23.77	23.79	21.71	21.96	22.05
EDGE (8PSK, 3Tx-slot)	23.37	23.58	23.51	19.82	19.73	19.77
EDGE (8PSK, 4Tx-slot)	21.94	22.06	22.14	18.67	18.81	18.95
	IV	laximum Frame	-Averaged Outp	ut Power		
GSM (GMSK, 1Tx-slot)	23.77	23.75	23.70	21.23	21.56	21.63
GPRS (GMSK, 1Tx-slot)	23.75	23.73	23.69	21.21	21.53	21.61
GPRS (GMSK, 2Tx-slot)	24.15	24.25	24.02	21.74	21.82	21.93
GPRS (GMSK, 3Tx-slot)	23.79	23.95	24.10	21.64	21.76	21.92
GPRS (GMSK, 4Tx-slot)	23.77	23.87	23.85	21.69	21.87	21.95
EDGE (8PSK, 1Tx-slot)	17.78	17.75	17.82	15.71	15.96	16.04
EDGE (8PSK, 2Tx-slot)	17.72	17.77	17.79	15.71	15.96	16.05
EDGE (8PSK, 3Tx-slot)	19.11	19.32	19.25	15.56	15.47	15.51
EDGE (8PSK, 4Tx-slot)	18.94	19.06	19.14	15.67	15.81	15.95

- 1. SAR testing was performed on the maximum frame-averaged power mode.
- The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the
 maximum burst-averaged power based on time slots. The calculated method is shown as below:
 Frame-averaged power = 10 x log (Burst-averaged power mW x Slot used / 8)

4.3.2 Conducted Power of WCDMA Band

Band	WC	DMA Ban	d II	WC	DMA Ban	d IV	WC	DMA Ban	id V	3GPP
Channel	9262	9400	9538	1312	1413	1513	4132	4182	4233	MPR
Frequency (MHz)	1852.4	1880.0	1907.6	1712.4	1732.6	1752.6	826.4	836.4	846.6	(dB)
RMC 12.2K	23.26	23.27	23.09	24.35	24.10	24.06	23.43	23.37	23.82	-
HSDPA Subtest-1	22.53	22.95	22.36	23.30	23.55	23.07	22.77	22.50	22.60	-
HSDPA Subtest-2	22.61	22.97	22.29	23.45	23.58	23.07	22.62	22.59	22.61	-
HSDPA Subtest-3	22.30	22.61	21.84	23.08	23.02	22.55	22.18	22.13	22.02	-
HSDPA Subtest-4	22.33	22.44	21.73	22.96	23.06	22.63	22.29	22.15	22.06	-
DC-HSDPA Subtest-1	22.49	22.83	22.18	23.25	23.39	23.03	22.60	22.50	22.54	-
DC-HSDPA Subtest-2	22.47	22.81	22.19	23.41	23.43	22.99	22.59	22.47	22.48	-
DC-HSDPA Subtest-3	22.17	22.45	21.68	22.92	22.95	22.43	22.09	21.98	21.95	-
DC-HSDPA Subtest-4	22.16	22.44	21.67	22.92	22.94	22.45	22.10	21.96	21.93	-
HSUPA Subtest-1	22.64	22.93	21.90	23.41	23.37	23.37	22.63	22.48	22.67	-
HSUPA Subtest-2	22.18	22.49	21.48	22.94	22.96	22.85	21.85	21.57	21.79	-
HSUPA Subtest-3	22.52	22.77	21.85	23.44	23.33	23.31	22.57	22.19	22.35	-
HSUPA Subtest-4	22.67	22.90	22.31	23.41	23.34	23.33	22.47	22.16	22.33	-
HSUPA Subtest-5	22.25	22.53	21.58	22.96	22.98	22.87	21.91	21.56	21.83	-

4.3.3 Conducted Power of LTE Band

				QPSK				16QAM				64QAM		
LTE Band /	RB Size	RB Offers	Low CH 18607	Mid CH 18900	High CH 19193	3GPP MPR	Low CH 18607	Mid CH 18900	High CH 19193	3GPP MPR	Low CH 18607	Mid CH 18900	High CH 19193	3GPP MPR
BW	Size	Offset	1850.7	1880.0	1909.3	(dB)	1850.7	1880.0	1909.3	(dB)	1850.7	1880.0	1909.3	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	22.85	23.27	23.05	0	21.97	22.38	22.24	1	/	/	/	2
	1	2	22.71	22.88	22.94	0	22.00	22.00	22.18	1	/	/	/	2
2./	1	5	22.59	22.59	22.57	0	21.96	21.76	21.98	1	/	/	/	2
2 / 1.4M	3	0	23.05	23.03	23.05	0	22.07	22.20	22.03	1	/	/	/	2
1.4101	3	1	22.89	23.04	22.93	0	22.00	22.06	21.96	1	/	/	/	2
	3	3	22.74	23.10	23.14	0	21.75	22.03	22.05	1	1	/	/	2
	6	0	21.88	22.20	22.08	1	21.05	20.97	21.21	2	/	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB Offered	Low CH 18615	Mid CH 18900	High CH 19185	3GPP MPR	Low CH 18615	Mid CH 18900	High CH 19185	3GPP MPR	Low CH 18615	Mid CH 18900	High CH 19185	3GPP MPR
BW	Size	Offset	1851.5	1880.0	1908.5	(dB)	1851.5	1880.0	1908.5	(dB)	1851.5	1880.0	1908.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	22.83	23.25	23.12	0	22.02	22.38	22.36	1	/	/	/	2
	1	7	22.79	22.81	22.86	0	21.89	21.90	22.09	1	/	/	/	2
	1	14	22.62	22.48	22.64	0	21.82	21.93	21.97	1	/	/	/	2
2 / 3M	8	0	22.04	22.03	22.01	1	20.94	21.05	21.14	2	1	/	/	3
	8	3	21.94	22.07	21.94	1	21.03	20.99	21.10	2	/	/	/	3
	8	7	21.73	22.10	22.23	1	20.84	21.03	21.03	2	/	/	/	3
	15	0	21.95	22.28	22.09	1	20.98	21.02	21.15	2	/	/	/	3

				QPSK				16QAM				64QAM		
LTE			Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP
Band /	RB	RB	18625	18900	19175	MPR	18625	18900	19175	MPR	18625	18900	19175	MPR
BW	Size	Offset	1852.5	1880.0	1907.5	(dB)	1852.5	1880.0	1907.5	(dB)	1852.5	1880.0	1907.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	22.89	23.28	23.14	0	22.11	22.31	22.19	1	/	/	/	2
	1	12	22.64	22.87	22.87	0	22.05	22.07	22.11	1	1	1	/	2
	1	24	22.69	22.56	22.69	0	21.86	21.87	21.89	1	1	/	/	2
2 / 5M	12	0	21.99	22.12	21.97	1	20.95	21.17	21.10	2	1	/	1	3
	12	6	21.81	22.05	22.08	1	20.90	21.14	21.12	2	/	/	/	3
	12	13	21.85	22.12	22.22	1	20.71	21.11	21.16	2	/	1	1	3
	25	0	21.96	22.23	22.22	1	20.96	21.14	21.24	2	/	1	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB Size	RB Offset	Low CH 18650	Mid CH 18900	High CH 19150	3GPP MPR	Low CH 18650	Mid CH 18900	High CH 19150	3GPP MPR	Low CH 18650	Mid CH 18900	High CH 19150	3GPP MPR
BW			1855.0	1880.0	1905.0	(dB)	1855.0	1880.0	1905.0	(dB)	1855.0	1880.0	1905.0	(dB)
		_	MHz	MHz	MHz	_	MHz	MHz	MHz		MHz	MHz	MHz	_
	1	0	22.95	23.16	23.12	0	22.12	22.35	22.36	1	/		/	2
	1	24	22.75	22.98	22.95	0	21.96	21.88	22.06	1	1	1	/	2
0.7	1	49	22.61	22.60	22.64	0	21.96	21.87	21.87	1	1	1	/	2
2/	25	0	22.03	22.13	22.13	1	20.95	21.04	21.13	2	1	/	/	3
10M	25	12	21.94	22.04	22.00	1	20.89	20.98	21.07	2	1	/	/	3
	25	25	21.71	21.96	22.09	1	20.76	21.05	21.00	2	/	/	/	3
	50	0	21.95	22.21	22.21	1	21.02	21.00	21.12	2	/	/	/	3

Page 39 of 79

Report No.: 190518040SAR-1

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB Offset	Low CH 18675	Mid CH 18900	High CH 19125	3GPP MPR	Low CH 18675	Mid CH 18900	High CH 19125	3GPP MPR	Low CH 18675	Mid CH 18900	High CH 19125	3GPP MPR
BW	Size	Offset	1857.5 MHz	1880.0 MHz	1902.5 MHz	(dB)	1857.5 MHz	1880.0 MHz	1902.5 MHz	(dB)	1857.5 MHz	1880.0 MHz	1902.5 MHz	(dB)
	1	0	22.97	23.14	23.14	0	22.07	22.33	22.28	1	/	/	/	2
	1	37	22.61	22.94	22.78	0	22.04	22.07	22.12	1	/	/	/	2
2/	1	74	22.68	22.51	22.66	0	21.93	21.82	22.00	1	/	/	/	2
15M	36	0	22.05	22.10	22.02	1	20.90	21.17	21.11	2	/	/	/	3
TOW	36	19	21.93	22.05	22.06	1	21.02	21.09	21.06	2	/	/	/	3
	36	39	21.81	22.08	22.19	1	20.82	21.07	21.15	2	/	/	/	3
	75	0	21.92	22.19	22.10	1	20.91	21.07	21.11	2	/	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB Offert	Low CH 18700	Mid CH 18900	High CH 19100	3GPP MPR	Low CH 18700	Mid CH 18900	High CH 19100	3GPP MPR	Low CH 18700	Mid CH 18900	High CH 19100	3GPP MPR
BW	Size	Offset	1860.0	1880.0	1900.0	(dB)	1860.0	1880.0	1900.0	(dB)	1860.0	1880.0	1900.0	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.00	23.28	23.19	0	22.14	22.42	22.38	1	/	/	/	2
	1	50	22.81	22.99	22.97	0	22.05	22.08	22.24	1	/	/	/	2
2/	1	99	22.75	22.66	22.73	0	22.01	21.96	22.06	1	/	/	/	2
20M	50	0	22.09	22.18	22.15	1	21.08	21.22	21.19	2	/	/	/	3
ZUIVI	50	25	21.99	22.21	22.12	1	21.04	21.18	21.13	2	/	/	/	3
	50	50	21.88	22.13	22.24	1	20.86	21.14	21.17	2	/		/	3
	100	0	22.02	22.30	22.26	1	21.07	21.15	21.25	2	1	/	/	3

Page 40 of 79 Report No.: 190518040SAR-1

				QPSK				16QAM				64QAM		
LTE Band /	RB Size	RB Offset	Low CH 19957	Mid CH 20175	High CH 20393	3GPP MPR	Low CH 19957	Mid CH 20175	High CH 20393	3GPP MPR	Low CH 19957	Mid CH 20175	High CH 20393	3GPP MPR
BW	Size	Oliset	1710.7	1732.5	1754.3	(dB)	1710.7	1732.5	1754.3	(dB)	1710.7	1732.5	1754.3	(dB)
	4	_	MHz	MHz	MHz		MHz	MHz	MHz	4	MHz	MHz	MHz	
	1	0	23.15	23.13	22.82	0	22.06	22.18	22.09	1	/	/	/	2
	1	2	22.86	22.95	22.76	0	21.95	22.10	21.74	1	/	/	/	2
4./	1	5	22.94	23.02	23.18	0	22.14	22.13	22.09	1	/	/	/	2
4/	3	0	23.04	23.09	22.92	0	22.13	22.09	21.89	1	/	/	/	2
1.4M	3	1	22.99	23.05	22.82	0	22.02	21.95	21.87	1	/	/	/	2
	3	3	23.04	22.87	22.92	0	22.02	21.95	21.80	1	/	/	/	2
	6	0	22.04	22.10	22.12	1	20.94	21.12	21.05	2	/	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB	Low CH 19965	Mid CH 20175	High CH 20385	3GPP MPR	Low CH 19965	Mid CH 20175	High CH 20385	3GPP MPR	Low CH 19965	Mid CH 20175	High CH 20385	3GPP MPR
BW	Size	Offset	1711.5	1732.5	1753.5	(dB)	1711.5	1732.5	1753.5	(dB)	1711.5	1732.5	1753.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.11	23.22	22.95	0	22.13	22.27	22.11	1	/	/	/	2
	1	7	22.98	22.89	22.77	0	22.07	21.97	21.81	1	/	/	/	2
	1	14	22.93	22.93	23.07	0	22.10	22.14	22.08	1	/	/	/	2
4 / 3M	8	0	22.12	22.11	21.86	1	21.07	21.09	20.89	2	/	/	/	3
	8	3	21.92	22.07	21.96	1	21.03	20.92	20.98	2	/	/	/	3
	8	7	21.94	21.89	21.87	1	21.00	20.94	20.91	2	/	1	/	3
	15	0	22.13	22.04	22.10	1	21.10	21.15	21.08	2	1	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB Offert	Low CH 19975	Mid CH 20175	High CH 20375	3GPP MPR	Low CH 19975	Mid CH 20175	High CH 20375	3GPP MPR	Low CH 19975	Mid CH 20175	High CH 20375	3GPP MPR
BW	Size	Offset	1712.5	1732.5	1752.5	(dB)	1712.5	1732.5	1752.5	(dB)	1712.5	1732.5	1752.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.15	23.10	22.87	0	22.17	22.27	22.08	1	/	/	/	2
	1	12	22.96	22.89	22.74	0	21.91	22.15	21.75	1	/	1	/	2
	1	24	22.98	23.09	23.17	0	22.17	22.16	22.09	1	/	/	1	2
4 / 5M	12	0	22.23	22.06	21.85	1	21.09	21.16	21.04	2	1	1	/	3
	12	6	21.87	22.01	21.93	1	20.92	20.98	20.90	2	1	/	/	3
	12	13	21.95	22.05	21.83	1	21.00	20.99	20.94	2	1	/	/	3
	25	0	22.09	22.04	22.17	1	21.10	21.09	21.11	2	1	/		3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB Offers	Low CH 20000	Mid CH 20175	High CH 20350	3GPP MPR	Low CH 20000	Mid CH 20175	High CH 20350	3GPP MPR	Low CH 20000	Mid CH 20175	High CH 20350	3GPP MPR
BW	Size	Offset	1715.0	1732.5	1750.0	(dB)	1715.0	1732.5	1750.0	(dB)	1715.0	1732.5	1750.0	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.15	23.10	22.84	0	22.15	22.22	22.15	1	1	1	1	2
	1	24	22.87	22.93	22.76	0	21.94	22.00	21.87	1	/	1	1	2
4./	1	49	22.98	22.92	23.09	0	22.04	22.06	22.03	1	/	1	1	2
4 / 10M	25	0	22.10	22.08	21.99	1	21.13	21.14	21.03	2	1	1	/	3
TOW	25	12	21.87	21.96	21.94	1	20.87	20.94	20.98	2	1	1	/	3
	25	25	22.05	21.91	21.81	1	21.00	20.99	20.89	2	1	1	/	3
	50	0	22.04	21.96	22.13	1	21.07	21.11	21.08	2	1	/	/	3

Page 41 of 79 Report No.: 190518040SAR-1

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB Offert	Low CH 20025	Mid CH 20175	High CH 20325	3GPP MPR	Low CH 20025	Mid CH 20175	High CH 20325	3GPP MPR	Low CH 20025	Mid CH 20175	High CH 20325	3GPP MPR
BW	Size	Offset	1717.5 MHz	1732.5 MHz	1747.5 MHz	(dB)	1717.5 MHz	1732.5 MHz	1747.5 MHz	(dB)	1717.5 MHz	1732.5 MHz	1747.5 MHz	(dB)
	4	_				0				-1	IVIHZ	IVIHZ /	IVIHZ	2
	ı	0	23.19	23.21	22.81	0	22.05	22.24	22.11	ı	/	/	/	2
	1	37	22.81	23.00	22.83	0	22.09	22.00	21.80	1	/	/	/	2
4./	1	74	22.80	23.04	23.22	0	22.13	22.05	22.18	1	/	/	/	2
4/	36	0	22.05	22.02	21.96	1	21.21	21.09	20.91	2	/	/	/	3
15M	36	19	21.98	22.07	21.95	1	20.92	20.91	20.98	2	/	/	/	3
	36	39	21.92	21.96	21.90	1	20.89	21.01	20.81	2	/	/	/	3
	75	0	22.06	22.02	22.14	1	20.92	21.20	20.95	2	/	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB	Low CH 20050	Mid CH 20175	High CH 20300	3GPP MPR	Low CH 20050	Mid CH 20175	High CH 20300	3GPP MPR	Low CH 20050	Mid CH 20175	High CH 20300	3GPP MPR
BW	Size	Offset	1720.0	1732.5	1745.0	(dB)	1720.0	1732.5	1745.0	(dB)	1720.0	1732.5	1745.0	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.23	23.26	22.98	0	22.22	22.28	22.21	1	/	/	/	2
	1	50	22.98	23.05	22.87	0	22.09	22.15	21.92	1	/	/	/	2
4./	1	99	23.00	23.11	23.24	0	22.21	22.19	22.21	1	/	/	/	2
4 / 20M	50	0	22.23	22.20	21.99	1	21.22	21.22	21.07	2	/	/	/	3
20101	50	25	22.05	22.08	21.96	1	21.07	21.09	21.03	2	/	/	/	3
	50	50	22.06	22.06	21.93	1	21.08	21.07	20.95	2	/	1	/	3
	100	0	22.15	22.15	22.19	1	21.11	21.21	21.11	2	1	/	/	3

Page 42 of 79 Report No.: 190518040SAR-1

				QPSK				16QAM				64QAM		
LTE Band /	RB Size	RB Offset	Low CH 20407	Mid CH 20525	High CH 20643	3GPP MPR	Low CH 20407	Mid CH 20525	High CH 20643	3GPP MPR	Low CH 20407	Mid CH 20525	High CH 20643	3GPP MPR
BW	Size	Oliset	824.7	836.5	848.3	(dB)	824.7	836.5	848.3	(dB)	824.7	836.5	848.3	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	22.75	22.79	22.81	0	21.98	21.86	22.05	1	/	/	/	2
	1	2	22.59	22.66	22.76	0	21.84	21.74	21.98	1	/	/	/	2
- /	1	5	22.96	22.88	22.95	0	22.14	22.23	22.12	1	/	/	/	2
5/	3	0	22.93	22.60	23.04	0	21.87	21.67	21.80	1	/	/	/	2
1.4M	3	1	22.79	22.54	22.74	0	21.72	21.65	21.78	1	/	/	/	2
	3	3	22.66	22.70	22.70	0	21.85	21.74	21.72	1	/	/	/	2
	6	0	21.66	21.66	21.80	1	20.76	20.67	20.77	2	/	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB	Low CH 20415	Mid CH 20525	High CH 20635	3GPP MPR	Low CH 20415	Mid CH 20525	High CH 20635	3GPP MPR	Low CH 20415	Mid CH 20525	High CH 20635	3GPP MPR
BW	Size	Offset	825.5	836.5	847.5	(dB)	825.5	836.5	847.5	(dB)	825.5	836.5	847.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	22.76	22.82	22.86	0	21.89	21.78	22.02	1	/	/	/	2
	1	7	22.58	22.80	22.81	0	21.95	21.66	21.90	1	/	/	/	2
	1	14	23.13	22.97	22.81	0	22.11	22.21	22.29	1	/	/	/	2
5 / 3M	8	0	21.95	21.76	22.03	1	20.84	20.68	20.85	2	/	/	/	3
	8	3	21.73	21.55	21.77	1	20.73	20.61	20.81	2	/	/	/	3
	8	7	21.73	21.74	21.78	1	20.85	20.73	20.81	2	/	-1	/	3
	15	0	21.70	21.73	21.80	1	20.72	20.62	20.76	2	1	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB Size	RB Offset	Low CH 20425	Mid CH 20525	High CH 20625	3GPP MPR	Low CH 20425	Mid CH 20525	High CH 20625	3GPP MPR	Low CH 20425	Mid CH 20525	High CH 20625	3GPP MPR
BW	O.ZC	Oliset	826.5	836.5	846.5	(dB)	826.5	836.5	846.5	(dB)	826.5	836.5	846.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	22.82	22.78	22.89	0	21.89	21.92	21.97	1	/	/	/	2
	1	12	22.57	22.84	22.89	0	21.77	21.60	21.97	1	/	/	/	2
	1	24	22.95	23.01	22.90	0	22.21	22.20	22.25	1	/	/	1	2
5 / 5M	12	0	21.83	21.65	22.03	1	20.83	20.69	20.79	2	1	1	/	3
	12	6	21.69	21.49	21.72	1	20.64	20.54	20.73	2	/	/	/	3
	12	13	21.72	21.70	21.74	1	20.85	20.75	20.83	2	1	/	/	3
	25	0	21.77	21.77	21.76	1	20.68	20.68	20.64	2	1	/		3

				QPSK				16QAM				64QAM		
LTE Band /	RB Size	RB Offset	Low CH 20450	Mid CH 20525	High CH 20600	3GPP MPR	Low CH 20450	Mid CH 20525	High CH 20600	3GPP MPR	Low CH 20450	Mid CH 20525	High CH 20600	3GPP MPR
BW	Size	Offset	829.0	836.5	844.0	(dB)	829.0	836.5	844.0	(dB)	829.0	836.5	844.0	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	22.86	22.92	22.97	0	22.01	21.95	22.15	1	1	/	1	2
	1	24	22.76	22.85	22.92	0	21.95	21.75	22.02	1	/	1	1	2
- ,	1	49	23.15	23.03	22.97	0	22.27	22.26	22.32	1	/	1	1	2
5 / 10M	25	0	21.97	21.76	22.04	1	20.91	20.76	20.94	2	1	1	/	3
TOIVI	25	12	21.82	21.69	21.89	1	20.77	20.68	20.86	2	1	/	/	3
	25	25	21.83	21.79	21.78	1	20.87	20.81	20.91	2	1	1	/	3
	50	0	21.80	21.85	21.86	1	20.83	20.75	20.79	2	/	/	/	3

Page 43 of 79 Report No.: 190518040SAR-1

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB	Low CH 20775	Mid CH 21100	High CH 21425	3GPP MPR	Low CH 20775	Mid CH 21100	High CH 21425	3GPP MPR	Low CH 20775	Mid CH 21100	High CH 21425	3GPP MPR
BW	Size	Offset	2502.5	2535.0	2567.5	(dB)	2502.5	2535.0	2567.5	(dB)	2502.5	2535.0	2567.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.51	22.33	22.83	0	22.52	21.27	22.35	1	/	/	/	2
	1	12	23.40	23.21	21.97	0	22.64	22.33	21.46	1	/	/	/	2
	1	24	22.00	23.29	22.01	0	21.22	22.58	21.39	1	/	/	/	2
7 / 5M	12	0	22.42	22.27	21.84	1	21.43	20.86	20.36	2	/	/	/	3
	12	6	22.45	22.21	21.43	1	21.41	21.36	20.43	2	/	/	/	3
	12	13	22.35	22.20	21.37	1	21.35	21.19	20.00	2	/	/	/	3
	25	0	22.63	22.27	21.19	1	21.57	21.31	20.49	2	/	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB	Low CH 20800	Mid CH 21100	High CH 21400	3GPP MPR	Low CH 20800	Mid CH 21100	High CH 21400	3GPP MPR	Low CH 20800	Mid CH 21100	High CH 21400	3GPP MPR
BW	Size	Offset	2505.0	2535.0	2565.0	(dB)	2505.0	2535.0	2565.0	(dB)	2505.0	2535.0	2565.0	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.61	22.49	22.90	0	22.36	21.25	22.43	1	/	/	/	2
	1	24	23.39	23.09	22.04	0	22.61	22.30	21.42	1	/	/	/	2
7/	1	49	21.89	23.39	21.93	0	21.27	22.40	21.39	1	/	/	/	2
10M	25	0	22.37	22.34	21.92	1	21.51	20.77	20.33	2	1	/	/	3
TOW	25	12	22.48	22.21	21.52	1	21.37	21.30	20.48	2	/	/	/	3
	25	25	22.32	22.31	21.42	1	21.39	21.33	19.92	2	/	-1	/	3
	50	0	22.70	22.24	21.28	1	21.51	21.33	20.52	2	1	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB Size	RB Offset	Low CH 20825	Mid CH 21100	High CH 21375	3GPP MPR	Low CH 20825	Mid CH 21100	High CH 21375	3GPP MPR	Low CH 20825	Mid CH 21100	High CH 21375	3GPP MPR
BW	Size	Oliset	2507.5	2535.0	2562.5	(dB)	2507.5	2535.0	2562.5	(dB)	2507.5	2535.0	2562.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.60	22.38	22.78	0	22.43	21.40	22.35	1	/	/	/	2
	1	37	23.26	23.26	22.02	0	22.63	22.19	21.56	1	/	1	/	2
7 /	1	74	22.01	23.42	22.04	0	21.19	22.47	21.34	1	/	/	1	2
7 / 15M	36	0	22.48	22.34	21.77	1	21.49	20.88	20.41	2	1	1	/	3
TOW	36	19	22.50	22.29	21.49	1	21.42	21.28	20.42	2	/	/	/	3
	36	39	22.30	22.26	21.49	1	21.48	21.20	19.95	2	1	/	/	3
	75	0	22.69	22.20	21.29	1	21.62	21.38	20.57	2	1	/		3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB Offers	Low CH 20850	Mid CH 21100	High CH 21350	3GPP MPR	Low CH 20850	Mid CH 21100	High CH 21350	3GPP MPR	Low CH 20850	Mid CH 21100	High CH 21350	3GPP MPR
BW	Size	Offset	2510.0	2535.0	2560.0	(dB)	2510.0	2535.0	2560.0	(dB)	2510.0	2535.0	2560.0	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.64	22.51	22.98	0	22.55	21.40	22.51	1	1	/		2
	1	50	23.44	23.27	22.13	0	22.74	22.37	21.59	1	/	1	1	2
7/	1	99	22.07	23.47	22.05	0	21.31	22.59	21.40	1	/	1	1	2
20M	50	0	22.55	22.47	21.96	1	21.59	20.94	20.51	2	1	1	/	3
20101	50	25	22.52	22.39	21.58	1	21.56	21.38	20.58	2	1	1	/	3
	50	50	22.42	22.34	21.54	1	21.54	21.35	20.03	2	1	1	/	3
	100	0	22.73	22.37	21.30	1	21.62	21.51	20.62	2	/	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB Size	RB Offset	Low CH 23017	Mid CH 23095	High CH 23173	3GPP MPR	Low CH 23017	Mid CH 23095	High CH 23173	3GPP MPR	Low CH 23017	Mid CH 23095	High CH 23173	3GPP MPR
BW	O.Z.C	Oliset	699.7	707.5	715.3	(dB)	699.7	707.5	715.3	(dB)	699.7	707.5	715.3	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	22.60	22.21	22.76	0	21.75	21.52	22.02	1	/	/	/	2
	1	2	22.55	22.85	22.93	0	21.78	21.98	22.11	1	/	/	/	2
40 /	1	5	22.65	22.32	22.34	0	22.07	21.64	21.52	1	/	/	/	2
12 /	3	0	23.00	23.15	23.03	0	21.83	22.10	22.35	1	/	/	/	2
1.4M	3	1	23.13	23.13	23.01	0	21.96	21.94	22.07	1	/	/	/	2
	3	3	23.08	23.00	23.06	0	21.92	22.16	22.04	1	/	/	/	2
	6	0	21.86	21.95	22.15	1	20.94	20.95	21.13	2	/	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB	Low CH 23025	Mid CH 23095	High CH 23165	3GPP MPR	Low CH 23025	Mid CH 23095	High CH 23165	3GPP MPR	Low CH 23025	Mid CH 23095	High CH 23165	3GPP MPR
BW	Size	Offset	700.5	707.5	714.5	(dB)	700.5	707.5	714.5	(dB)	700.5	707.5	714.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	22.58	22.15	22.65	0	21.78	21.56	22.02	1	/	/	/	2
	1	7	22.46	22.89	22.82	0	21.81	22.07	22.13	1	/	/	/	2
40 /	1	14	22.68	22.38	22.44	0	21.99	21.75	21.70	1	/	/	/	2
12 / 3M	8	0	22.01	22.25	22.20	1	20.89	21.01	21.25	2	1	/	/	3
SIVI	8	3	22.09	22.14	22.15	1	21.03	20.94	21.08	2	/	/	/	3
	8	7	21.98	21.90	22.04	1	20.94	21.08	21.11	2	/	/	/	3
	15	0	21.91	22.00	22.18	1	20.95	20.94	20.99	2	1	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB Size	RB Offset	Low CH 23035	Mid CH 23095	High CH 23155	3GPP MPR	Low CH 23035	Mid CH 23095	High CH 23155	3GPP MPR	Low CH 23035	Mid CH 23095	High CH 23155	3GPP MPR
BW	Size	Oliset	701.5	707.5	713.5	(dB)	701.5	707.5	713.5	(dB)	701.5	707.5	713.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	22.58	22.15	22.81	0	21.85	21.47	22.02	1	/	/	/	2
	1	12	22.49	22.90	22.91	0	21.81	21.99	22.13	1	/	1	/	2
40 /	1	24	22.56	22.27	22.46	0	21.93	21.62	21.55	1	/	/	1	2
12 / 5M	12	0	22.11	22.21	22.05	1	20.88	21.08	21.23	2	1	1	/	3
Sivi	12	6	22.04	22.07	21.99	1	21.00	21.01	21.15	2	/	/	/	3
	12	13	21.92	22.05	21.92	1	20.93	20.98	21.08	2	1	/	/	3
	25	0	21.99	22.03	22.05	1	20.85	20.92	21.06	2	1	/		3

				QPSK				16QAM				64QAM		
LTE Band /	RB Size	RB Offset	Low CH 23060	Mid CH 23095	High CH 23130	3GPP MPR	Low CH 23060	Mid CH 23095	High CH 23130	3GPP MPR	Low CH 23060	Mid CH 23095	High CH 23130	3GPP MPR
BW	Size	Offset	704.0	707.5	711.0	(dB)	704.0	707.5	711.0	(dB)	704.0	707.5	711.0	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	22.64	22.31	22.85	0	21.92	21.59	22.11	1	1	/	1	2
	1	24	22.61	22.95	22.99	0	21.87	22.09	22.17	1	/	1	1	2
10 /	1	49	22.73	22.47	22.49	0	22.07	21.78	21.71	1	/	1	1	2
12 / 10M	25	0	22.13	22.27	22.21	1	21.03	21.16	21.37	2	1	1	/	3
TOIVI	25	12	22.18	22.18	22.17	1	21.09	21.08	21.16	2	1	/	/	3
	25	25	22.12	22.09	22.06	1	21.10	21.18	21.11	2	1	1	/	3
	50	0	22.00	22.07	22.18	1	20.97	21.10	21.15	2	/	/	/	3

Page 45 of 79 Report No.: 190518040SAR-1

				QPSK				16QAM				64QAM		
LTE Band /	RB Size	RB Offset	Low CH 23205	Mid CH 23230	High CH 23255	3GPP MPR	Low CH 23205	Mid CH 23230	High CH 23255	3GPP MPR	Low CH 23205	Mid CH 23230	High CH 23255	3GPP MPR
BW	0.20	0001	779.5	782.0	784.5	(dB)	779.5	782.0	784.5	(dB)	779.5	782.0	784.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	22.34	22.47	22.43	0	21.64	21.71	21.81	1	/	/	/	2
	1	12	23.07	23.02	22.99	0	22.20	22.23	22.11	1	/	/	/	2
40 /	1	24	23.20	23.33	23.18	0	22.25	22.31	22.19	1	/	/	/	2
13 /	12	0	22.28	22.41	22.25	1	20.99	21.06	20.99	2	/	/	/	3
5M	12	6	22.07	22.12	22.24	1	21.11	21.04	21.09	2	/	/	/	3
	12	13	22.02	21.86	21.93	1	21.01	20.97	20.90	2	/	/	/	3
	25	0	22.19	22.13	22.13	1	21.27	21.28	21.16	2	/	/	/	3

LTE Band / BW	RB Size	RB Offset	QPSK Mid CH 23230 782.0 MHz	3GPP MPR (dB)	16QAM Mid CH 23230 782.0 MHz	3GPP MPR (dB)	64QAM Mid CH 23230 782.0 MHz	3GPP MPR (dB)
	1	0	22.50	0	21.81	1	/	2
	1	24	23.11	0	22.23	1	/	2
	1	49	23.34	0	22.34	1	/	2
13 / 10M	25	0	22.41	1	21.18	2	/	3
	25	12	22.24	1	21.12	2	/	3
	25	25	22.05	1	21.06	2	1	3
	50	0	22.28	1	21.31	2	/	3

Page 46 of 79 Report No.: 190518040SAR-1

				QPSK				16QAM				64QAM		
LTE Band /	RB Size	RB Offset	Low CH 26047	Mid CH 26365	High CH 26683	3GPP MPR	Low CH 26047	Mid CH 26365	High CH 26683	3GPP MPR	Low CH 26047	Mid CH 26365	High CH 26683	3GPP MPR
BW	0.20	0001	1850.7	1882.5	1914.3	(dB)	1850.7	1882.5	1914.3	(dB)	1850.7	1882.5	1914.3	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.04	23.29	23.29	0	22.06	22.27	22.29	1	/	/	/	2
	1	2	22.82	23.03	22.99	0	22.01	22.02	22.07	1	/	/	/	2
25 /	1	5	22.81	22.90	21.90	0	22.06	22.09	21.41	1	/	/	/	2
25 / 1.4M	3	0	23.01	23.09	23.26	0	21.98	22.22	23.15	1	/	/	/	2
1.4101	3	1	22.89	23.15	23.15	0	22.03	22.05	22.16	1	/	/	/	2
	3	3	22.97	23.07	23.17	0	21.98	22.12	22.34	1	/	/	/	2
	6	0	22.02	22.19	22.50	1	21.17	21.07	21.21	2	/	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB	Low CH 26055	Mid CH 26365	High CH 26675	3GPP MPR	Low CH 26055	Mid CH 26365	High CH 26675	3GPP MPR	Low CH 26055	Mid CH 26365	High CH 26675	3GPP MPR
BW	Size	Offset	1851.5	1882.5	1913.5	(dB)	1851.5	1882.5	1913.5	(dB)	1851.5	1882.5	1913.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.03	23.28	23.33	0	21.97	22.16	22.29	1	/	/	/	2
	1	7	22.97	23.11	23.10	0	22.05	22.00	22.19	1	/	/	/	2
25 /	1	14	22.98	22.89	22.01	0	22.00	22.08	21.42	1	/	/	/	2
25 / 3M	8	0	22.02	22.17	22.09	1	20.95	21.13	22.08	2	/	/	/	3
SIVI	8	3	21.88	22.09	22.20	1	20.96	21.06	21.21	2	/	/	/	3
	8	7	21.99	22.14	22.34	1	21.06	21.17	21.34	2	/	/	/	3
	15	0	21.92	22.33	22.48	1	21.13	21.09	21.30	2	1	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB Size	RB Offset	Low CH 26065	Mid CH 26365	High CH 26665	3GPP MPR	Low CH 26065	Mid CH 26365	High CH 26665	3GPP MPR	Low CH 26065	Mid CH 26365	High CH 26665	3GPP MPR
BW	Size	Oliset	1852.5	1882.5	1912.5	(dB)	1852.5	1882.5	1912.5	(dB)	1852.5	1882.5	1912.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.08	23.33	23.35	0	22.11	22.33	22.28	1	/	/	/	2
	1	12	22.98	23.04	23.02	0	22.05	22.09	22.21	1	/	/	/	2
05 /	1	24	22.83	22.90	21.89	0	22.10	22.19	21.23	1	/	/	1	2
25 / 5M	12	0	22.07	22.17	22.19	1	20.96	21.04	22.20	2	1	1	/	3
SIVI	12	6	21.97	22.03	22.32	1	20.92	20.97	21.13	2	1	1	/	3
	12	13	21.83	22.20	22.33	1	21.03	21.05	21.36	2	1	/	/	3
	25	0	21.94	22.33	22.45	1	21.03	21.16	21.28	2	1	/	1	3

				QPSK				16QAM				64QAM		
LTE Band /	RB Size	RB Offset	Low CH 26090	Mid CH 26365	High CH 26640	3GPP MPR	Low CH 26090	Mid CH 26365	High CH 26640	3GPP MPR	Low CH 26090	Mid CH 26365	High CH 26640	3GPP MPR
BW	Size	Oliset	1855.0	1882.5	1910.0	(dB)	1855.0	1882.5	1910.0	(dB)	1855.0	1882.5	1910.0	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.13	23.32	23.26	0	22.12	22.21	22.28	1	1	/	1	2
	1	24	22.83	23.14	23.07	0	21.96	21.94	22.09	1	/	1	1	2
25 /	1	49	22.88	22.85	21.87	0	22.13	22.06	21.33	1	/	1	1	2
25 / 10M	25	0	22.10	22.20	22.20	1	21.00	21.13	22.14	2	1	1	/	3
TOIVI	25	12	22.00	22.03	22.24	1	21.02	21.06	21.21	2	1	/	/	3
	25	25	21.93	22.17	22.35	1	20.95	21.03	21.27	2	1	1	/	3
	50	0	21.92	22.22	22.43	1	21.11	21.11	21.20	2	/	/	/	3

Page 47 of 79 Report No.: 190518040SAR-1

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB Offert	Low CH 26115	Mid CH 26365	High CH 26615	3GPP MPR	Low CH 26115	Mid CH 26365	High CH 26615	3GPP MPR	Low CH 26115	Mid CH 26365	High CH 26615	3GPP MPR
BW	Size	Offset	1857.5	1882.5	1907.5	(dB)	1857.5	1882.5	1907.5	(dB)	1857.5	1882.5	1907.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.03	23.21	23.28	0	21.99	22.25	22.31	1	/	/	/	2
	1	37	22.87	23.20	23.11	0	22.03	22.04	22.08	1	/	/	/	2
25 /	1	74	22.91	22.80	21.88	0	22.11	22.13	21.39	1	/	/	/	2
25 / 15M	36	0	21.99	22.08	22.28	1	21.06	21.19	22.13	2	/	/	/	3
I DIVI	36	19	21.92	22.06	22.32	1	20.97	21.03	21.16	2	/	/	/	3
	36	39	21.93	22.06	22.21	1	21.04	21.16	21.22	2	/	/	/	3
	75	0	22.06	22.25	22.48	1	21.15	21.08	21.25	2	/	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB Offered	Low CH 26140	Mid CH 26365	High CH 26590	3GPP MPR	Low CH 26140	Mid CH 26365	High CH 26590	3GPP MPR	Low CH 26140	Mid CH 26365	High CH 26590	3GPP MPR
BW	Size	Offset	1860.0	1882.5	1905.0	(dB)	1860.0	1882.5	1905.0	(dB)	1860.0	1882.5	1905.0	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.19	23.36	23.45	0	22.15	22.36	22.35	1	/	/	/	2
	1	50	22.98	23.23	23.16	0	22.13	22.09	22.23	1	/	/	/	2
25 /	1	99	23.01	22.98	22.05	0	22.17	22.21	21.43	1	/	/	/	2
25 / 20M	50	0	22.11	22.25	22.28	1	21.11	21.24	22.22	2	/	/	/	3
ZUIVI	50	25	22.03	22.17	22.33	1	21.06	21.15	21.24	2	/	/	/	3
	50	50	22.00	22.21	22.37	1	21.10	21.20	21.41	2	/		/	3
	100	0	22.08	22.37	22.58	1	21.18	21.25	21.38	2	1	/	/	3

Page 48 of 79 Report No.: 190518040SAR-1

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB	Low CH 26697	Mid CH 26865	High CH 27033	3GPP MPR	Low CH 26697	Mid CH 26865	High CH 27033	3GPP MPR	Low CH 26697	Mid CH 26865	High CH 27033	3GPP MPR
BW	Size	Offset	814.7	831.5	848.3	(dB)	814.7	831.5	848.3	(dB)	814.7	831.5	848.3	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.21	23.21	23.25	0	22.39	22.87	22.30	1	/	/	/	2
	1	2	22.91	22.71	22.79	0	22.33	22.71	22.31	1	/	/	/	2
26 /	1	5	23.56	23.43	22.89	0	22.94	22.81	22.25	1	/	/	/	2
26 / 1.4M	3	0	23.35	23.21	23.38	0	22.30	22.38	22.39	1	/	/	/	2
1.4101	3	1	23.02	23.03	23.06	0	22.27	22.07	22.15	1	/	/	/	2
	3	3	22.99	22.85	22.97	0	22.17	21.77	21.85	1	/	/	/	2
	6	0	22.16	22.03	22.21	1	21.08	20.86	21.18	2	/	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB	Low CH 26705	Mid CH 26865	High CH 27025	3GPP MPR	Low CH 26705	Mid CH 26865	High CH 27025	3GPP MPR	Low CH 26705	Mid CH 26865	High CH 27025	3GPP MPR
BW	Size	Offset	815.5	831.5	847.5	(dB)	815.5	831.5	847.5	(dB)	815.5	831.5	847.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.18	23.35	23.24	0	22.50	22.91	22.31	1	/	/	/	2
	1	7	22.85	22.84	22.72	0	22.35	22.81	22.25	1	/	/	/	2
26 /	1	14	23.50	23.30	22.91	0	22.79	22.79	22.34	1	/	/	/	2
26 / 3M	8	0	22.29	22.27	22.26	1	21.33	21.24	21.31	2	1	/	/	3
SIVI	8	3	22.13	22.00	22.16	1	21.30	21.00	21.29	2	/	/	/	3
	8	7	22.04	21.90	21.81	1	21.04	20.80	20.86	2	/	1	/	3
	15	0	22.12	22.15	22.07	1	21.18	20.78	21.11	2	1	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB O#==4	Low CH 26715	Mid CH 26865	High CH 27015	3GPP MPR	Low CH 26715	Mid CH 26865	High CH 27015	3GPP MPR	Low CH 26715	Mid CH 26865	High CH 27015	3GPP MPR
BW	Size	Offset	816.5	831.5	846.5	(dB)	816.5	831.5	846.5	(dB)	816.5	831.5	846.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.12	23.38	23.16	0	22.52	22.87	22.37	1	/	/	/	2
	1	12	22.78	22.69	22.79	0	22.23	22.77	22.32	1	/	/	/	2
00.7	1	24	23.65	23.31	23.00	0	22.82	22.86	22.42	1	/	/	1	2
26 / 5M	12	0	22.19	22.21	22.26	1	21.24	21.39	21.29	2	1	1	/	3
SIVI	12	6	22.15	22.16	21.99	1	21.25	20.92	21.22	2	1	/	/	3
	12	13	21.91	21.80	21.97	1	21.06	20.78	20.90	2	1	/	/	3
	25	0	22.23	22.17	22.19	1	21.14	20.81	21.19	2	1	/		3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB Offers	Low CH 26740	Mid CH 26865	High CH 26990	3GPP MPR	Low CH 26740	Mid CH 26865	High CH 26990	3GPP MPR	Low CH 26740	Mid CH 26865	High CH 26990	3GPP MPR
BW	Size	Offset	819.0	831.5	844.0	(dB)	819.0	831.5	844.0	(dB)	819.0	831.5	844.0	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.22	23.31	23.22	0	22.34	22.86	22.36	1	1	/	1	2
	1	24	22.92	22.67	22.68	0	22.17	22.72	22.26	1	/	1	1	2
26 /	1	49	23.50	23.39	22.88	0	22.88	22.78	22.26	1	/	1	1	2
10M	25	0	22.23	22.28	22.31	1	21.33	21.24	21.28	2	1	1	/	3
TOW	25	12	22.09	22.06	22.00	1	21.29	20.97	21.19	2	1	1	/	3
	25	25	22.00	21.96	21.97	1	21.09	20.92	20.87	2	1	1	/	3
	50	0	22.09	22.16	22.09	1	21.03	20.91	21.23	2	/	/	/	3

Page 49 of 79 Report No.: 190518040SAR-1

				QPSK				16QAM				64QAM		
LTE Band /	RB Size	RB Offset	Low CH 26765	Mid CH 26865	High CH 26965	3GPP MPR	Low CH 26765	Mid CH 26865	High CH 26965	3GPP MPR	Low CH 26765	Mid CH 26865	High CH 26965	3GPP MPR
BW			821.5 MHz	831.5 MHz	841.5 MHz	(dB)	821.5 MHz	831.5 MHz	841.5 MHz	(dB)	821.5	831.5 MHz	841.5 MHz	(dB)
		_				_					MHz	WHZ	WHZ	_
	1	0	23.31	23.40	23.36	0	22.53	22.99	22.38	1	/	/	/	2
	1	37	22.95	22.85	22.88	0	22.36	22.87	22.34	1	/	/	/	2
20.7	1	74	23.67	23.48	23.08	0	22.96	22.87	22.42	1	/	/	/	2
26 / 15M	36	0	22.38	22.37	22.42	1	21.41	21.43	21.41	2	/	/	/	3
I DIVI	36	19	22.22	22.19	22.17	1	21.30	21.09	21.29	2	/	/	/	3
	36	39	22.07	21.98	21.99	1	21.21	20.94	20.97	2	/	/	/	3
	75	0	22.24	22.19	22.27	1	21.23	20.94	21.29	2	/	/	/	3

Page 50 of 79 Report No.: 190518040SAR-1

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB	Low CH 37775	Mid CH 38000	High CH 38225	3GPP MPR	Low CH 37775	Mid CH 38000	High CH 38225	3GPP MPR	Low CH 37775	Mid CH 38000	High CH 38225	3GPP MPR
BW	Size	Offset	2572.5	2595.0	2617.5	(dB)	2572.5	2595.0	2617.5	(dB)	2572.5	2595.0	2617.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.58	23.46	23.26	0	22.61	22.79	22.53	1	/	/	/	2
	1	12	23.18	23.14	22.88	0	22.36	22.41	22.06	1	/	/	/	2
20 /	1	24	23.38	23.19	23.11	0	22.49	22.62	22.26	1	/	/	/	2
38 / 5M	12	0	22.43	22.15	22.04	1	21.38	21.20	21.05	2	/	/	/	3
SIVI	12	6	22.47	22.20	21.97	1	21.44	21.27	21.11	2	/	/	/	3
	12	13	22.41	22.29	22.00	1	21.39	21.34	20.95	2	/	/	/	3
	25	0	22.42	22.29	21.99	1	21.53	21.24	21.22	2	/	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB	Low CH 37800	Mid CH 38000	High CH 38200	3GPP MPR	Low CH 37800	Mid CH 38000	High CH 38200	3GPP MPR	Low CH 37800	Mid CH 38000	High CH 38200	3GPP MPR
BW	Size	Offset	2575.0	2595.0	2615.0	(dB)	2575.0	2595.0	2615.0	(dB)	2575.0	2595.0	2615.0	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.57	23.33	23.32	0	22.57	22.77	22.56	1	/	/	/	2
	1	24	23.22	23.14	22.98	0	22.38	22.37	22.11	1	/	/	/	2
38 /	1	49	23.47	23.16	23.10	0	22.49	22.55	22.31	1	/	/	/	2
10M	25	0	22.42	22.30	22.00	1	21.38	21.26	21.04	2	1	/	/	3
TOW	25	12	22.43	22.08	21.94	1	21.43	21.12	21.16	2	/	/	/	3
	25	25	22.30	22.24	22.02	1	21.42	21.31	20.85	2	/	1	/	3
	50	0	22.36	22.45	22.08	1	21.44	21.37	21.11	2	1	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB	Low CH 37825	Mid CH 38000	High CH 38175	3GPP MPR	Low CH 37825	Mid CH 38000	High CH 38175	3GPP MPR	Low CH 37825	Mid CH 38000	High CH 38175	3GPP MPR
BW	Size	Offset	2577.5 MHz	2595.0 MHz	2612.5 MHz	(dB)	2577.5 MHz	2595.0 MHz	2612.5 MHz	(dB)	2577.5	2595.0 MHz	2612.5 MHz	(dB)
	-1	0				0				1	MHz /	IVIHZ /	IVIHZ /	2
	ı	0	23.56	23.38	23.22	0	22.58	22.64	22.44		/	/	/	
	1	37	23.29	23.28	22.86	0	22.45	22.32	22.22	1	/	1	/	2
20./	1	74	23.43	23.30	23.27	0	22.49	22.49	22.32	1	/	/	1	2
38 / 15M	36	0	22.45	22.13	22.04	1	21.29	21.34	21.01	2	1	1	/	3
TOW	36	19	22.29	22.09	21.98	1	21.26	21.11	21.05	2	1	/	/	3
	36	39	22.38	22.31	22.02	1	21.26	21.17	20.85	2	1	/	/	3
	75	0	22.52	22.39	22.00	1	21.44	21.27	21.26	2	1	/		3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB	Low CH 37850	Mid CH 38000	High CH 38150	3GPP MPR	Low CH 37850	Mid CH 38000	High CH 38150	3GPP MPR	Low CH 37850	Mid CH 38000	High CH 38150	3GPP MPR
BW	Size	Offset	2580.0	2595.0	2610.0	(dB)	2580.0	2595.0	2610.0	(dB)	2580.0	2595.0	2610.0	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.68	23.51	23.37	0	22.76	22.80	22.61	1	1	/	1	2
	1	50	23.36	23.29	22.99	0	22.54	22.45	22.24	1	/	1	1	2
38 /	1	99	23.56	23.34	23.28	0	22.66	22.66	22.33	1	/	1	1	2
20M	50	0	22.55	22.31	22.17	1	21.47	21.39	21.15	2	1	1	/	3
20101	50	25	22.48	22.28	22.06	1	21.44	21.29	21.18	2	1	/	/	3
	50	50	22.50	22.34	22.09	1	21.45	21.37	21.03	2	1	1	/	3
	100	0	22.53	22.45	22.11	1	21.58	21.40	21.27	2	/	/	/	3

Page 51 of 79 Report No.: 190518040SAR-1

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB	Low CH 39675	Mid CH 40620	High CH 41565	3GPP MPR	Low CH 39675	Mid CH 40620	High CH 41565	3GPP MPR	Low CH 39675	Mid CH 40620	High CH 41565	3GPP MPR
BW	Size	Offset	2498.5	2593.0	2687.5	(dB)	2498.5	2593.0	2687.5	(dB)	2498.5	2593.0	2687.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.40	23.06	22.67	0	22.55	22.39	22.27	1	/	/	/	2
	1	12	23.22	22.76	22.59	0	22.52	22.12	21.90	1	/	/	/	2
41 /	1	24	23.41	23.13	22.74	0	22.72	22.34	22.14	1	/	/	/	2
5M	12	0	22.45	22.21	21.91	1	21.39	21.21	20.92	2	/	/	/	3
JIVI	12	6	22.45	22.03	21.92	1	21.44	20.99	20.79	2	/	/	/	3
	12	13	22.41	22.12	21.86	1	21.60	21.02	20.89	2	/	/	/	3
	25	0	22.58	22.01	22.03	1	21.74	21.06	21.08	2	/	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB	Low CH 39700	Mid CH 40620	High CH 41540	3GPP MPR	Low CH 39700	Mid CH 40620	High CH 41540	3GPP MPR	Low CH 39700	Mid CH 40620	High CH 41540	3GPP MPR
BW	Size	Offset	2501.0	2593.0	2685.0	(dB)	2501.0	2593.0	2685.0	(dB)	2501.0	2593.0	2685.0	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.42	23.21	22.76	0	22.60	22.34	22.25	1	/	/	/	2
	1	24	23.32	22.87	22.75	0	22.36	21.98	21.84	1	/	/	/	2
44 /	1	49	23.47	23.32	22.81	0	22.69	22.38	21.96	1	/	/	1	2
41 / 10M	25	0	22.42	22.19	21.99	1	21.46	21.18	21.00	2	/	/	/	3
I OIVI	25	12	22.43	21.96	21.85	1	21.44	20.95	20.94	2	/	/	/	3
	25	25	22.37	21.99	21.71	1	21.51	21.05	20.94	2	/	/	/	3
	50	0	22.42	21.94	22.00	1	21.69	21.04	21.07	2	1	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB	Low CH 39725	Mid CH 40620	High CH 41515	3GPP MPR	Low CH 39725	Mid CH 40620	High CH 41515	3GPP MPR	Low CH 39725	Mid CH 40620	High CH 41515	3GPP MPR
BW	Size	Offset	2503.5	2593.0	2682.5	(dB)	2503.5	2593.0	2682.5	(dB)	2503.5	2593.0	2682.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.32	23.21	22.77	0	22.66	22.35	22.29	1	/	/	/	2
	1	37	23.29	22.72	22.68	0	22.41	21.98	21.88	1	/	1	/	2
41 /	1	74	23.42	23.16	22.85	0	22.72	22.41	22.12	1	/	/	/	2
15M	36	0	22.43	22.09	22.01	1	21.46	21.13	21.00	2	1	1	/	3
TOW	36	19	22.37	22.01	21.84	1	21.49	20.99	20.99	2	/	/	/	3
	36	39	22.46	22.06	21.85	1	21.42	21.17	20.92	2	/	/	/	3
	75	0	22.52	22.02	21.97	1	21.65	21.12	20.99	2	1	/	1	3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB Offert	Low CH 39750	Mid CH 40620	High CH 41490	3GPP MPR	Low CH 39750	Mid CH 40620	High CH 41490	3GPP MPR	Low CH 39750	Mid CH 40620	High CH 41490	3GPP MPR
BW	Size	Offset	2506.0	2593.0	2680.0	(dB)	2506.0	2593.0	2680.0	(dB)	2506.0	2593.0	2680.0	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.48	23.26	22.85	0	22.75	22.39	22.32	1	1	/	1	2
	1	50	23.40	22.90	22.78	0	22.55	22.15	21.97	1	/	1	/	2
44 /	1	99	23.55	23.32	22.91	0	22.79	22.50	22.14	1	/		/	2
41 / 20M	50	0	22.54	22.25	22.10	1	21.55	21.25	21.09	2	1	1	/	3
20101	50	25	22.50	22.05	21.93	1	21.52	21.07	20.99	2	1	1	/	3
	50	50	22.55	22.15	21.89	1	21.61	21.20	20.94	2	/	/	/	3
	100	0	22.62	22.08	22.11	1	21.74	21.22	21.18	2	1	/	/	3

Page 52 of 79 Report No.: 190518040SAR-1

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB	CH 131979	CH 132322	CH 132665	3GPP MPR	CH 131979	CH 132322	CH 132665	3GPP MPR	CH 131979	CH 132322	CH 132665	3GPP MPR
BW	Size	Offset	1710.7	1745	1779.3	(dB)	1710.7	1745	1779.3	(dB)	1710.7	1745	1779.3	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	24.02	23.59	23.34	0	23.08	23.02	22.90	1	/	/	/	2
	1	2	23.54	23.52	23.33	0	22.93	22.92	22.54	1	/	/	/	2
00.7	1	5	24.20	23.97	23.93	0	22.52	22.69	22.64	1	/	/	/	2
66 / 1.4M	3	0	23.88	23.48	23.39	0	22.78	22.53	22.36	1	/	/	/	2
1.4101	3	1	23.80	23.36	23.48	0	22.73	22.46	22.45	1	/	/	/	2
	3	3	23.89	23.40	23.38	0	22.67	22.52	22.68	1	/	/	/	2
	6	0	22.72	22.76	22.60	1	21.71	21.75	21.34	2	/	/	/	3

				QPSK				16QAM				64QAM		
LTE	RB	RB	СН	СН	СН	3GPP	СН	СН	СН	3GPP	СН	СН	СН	3GPP
Band /			131987	132322	132657	MPR	131987	132322	132657	MPR	131987	132322	132657	MPR
BW	Size	Offset	1711.5	1745	1778.5	(dB)	1711.5	1745	1778.5	(dB)	1711.5	1745	1778.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.88	23.49	23.26	0	23.09	23.02	22.74	1	/	/	/	2
	1	7	23.48	23.45	23.28	0	22.85	22.98	22.52	1	/	/	/	2
66 /	1	14	24.04	23.98	23.80	0	22.43	22.71	22.75	1	/	/	/	2
3M	8	0	22.78	22.47	22.49	1	21.67	21.64	21.35	2	/	/	/	3
SIVI	8	3	22.76	22.51	22.42	1	21.69	21.53	21.42	2	/	/	/	3
	8	7	22.77	22.50	22.52	1	21.73	21.54	21.68	2	/	/	/	3
	15	0	22.71	22.62	22.55	1	21.84	21.58	21.44	2	1	/	/	3

				QPSK				16QAM				64QAM		
LTE		DD.	СН	СН	СН	3GPP	СН	СН	СН	3GPP	СН	СН	СН	3GPP
Band /	RB	RB	131997	132322	132647	MPR	131997	132322	132647	MPR	131997	132322	132647	MPR
BW	Size	Offset	1712.5	1745	1777.5	(dB)	1712.5	1745	1777.5	(dB)	1712.5	1745	1777.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	24.03	23.51	23.33	0	23.02	22.95	22.75	1	/	/	/	2
	1	12	23.59	23.35	23.33	0	22.75	23.02	22.60	1	/	1	/	2
66./	1	24	24.15	23.97	23.89	0	22.45	22.55	22.78	1	/	/	1	2
66 / 5M	12	0	22.71	22.43	22.50	1	21.77	21.68	21.26	2	1	1	/	3
SIVI	12	6	22.83	22.44	22.38	1	21.61	21.51	21.54	2	/	/	/	3
	12	13	22.94	22.44	22.41	1	21.76	21.43	21.68	2	1	/	/	3
	25	0	22.81	22.66	22.54	1	21.81	21.63	21.46	2	1	/		3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB	CH 132022	CH 132322	CH 132622	3GPP MPR	CH 132022	CH 132322	CH 132622	3GPP MPR	CH 132022	CH 132322	CH 132622	3GPP MPR
BW	Size	Offset	1715	1745	1775	(dB)	1715	1745	1775	(dB)	1715	1745	1775	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.97	23.53	23.38	0	22.97	23.04	22.92	1	1	1	1	2
	1	24	23.64	23.38	23.29	0	22.76	22.87	22.63	1	/	1	1	2
CC /	1	49	24.11	24.13	23.87	0	22.43	22.54	22.75	1	/	1	/	2
66 / 10M	25	0	22.86	22.40	22.42	1	21.65	21.69	21.42	2	1	1	/	3
TOW	25	12	22.77	22.44	22.41	1	21.70	21.55	21.38	2	1	1	/	3
	25	25	22.83	22.41	22.46	1	21.69	21.56	21.57	2	1	1	/	3
	50	0	22.76	22.75	22.60	1	21.67	21.65	21.46	2	1	/	/	3

Page 53 of 79 Report No.: 190518040SAR-1

				QPSK				16QAM				64QAM		
LTE	RB	RB	СН	СН	СН	3GPP	СН	СН	СН	3GPP	СН	СН	СН	3GPP
Band /	Size	Offset	132047	132322	132597	MPR	132047	132322	132597	MPR	132047	132322	132597	MPR
BW	0126	Oliset	1717.5	1745	1772.5	(dB)	1717.5	1745	1772.5	(dB)	1717.5	1745	1772.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.96	23.58	23.33	0	22.95	23.03	22.87	1	/	/	/	2
	1	37	23.46	23.49	23.28	0	22.92	22.94	22.63	1	/	/	/	2
66 /	1	74	24.22	24.13	23.86	0	22.57	22.59	22.70	1	/	/	/	2
66 / 15M	36	0	22.83	22.55	22.39	1	21.73	21.66	21.40	2	/	/	/	3
IOIVI	36	19	22.75	22.46	22.48	1	21.57	21.53	21.42	2	/	/	/	3
	36	39	22.82	22.49	22.43	1	21.75	21.60	21.66	2	/	/	/	3
	75	0	22.68	22.74	22.49	1	21.66	21.57	21.44	2	/	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB	CH 132072	CH 132322	CH 132572	3GPP MPR	CH 132072	CH 132322	CH 132572	3GPP MPR	CH 132072	CH 132322	CH 132572	3GPP MPR
BW	Size	Offset	1720	1745	1770	(dB)	1720	1745	1770	(dB)	1720	1745	1770	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	24.04	23.64	23.45	0	23.10	23.14	22.92	1	/	/	/	2
	1	50	23.66	23.53	23.39	0	22.94	23.05	22.67	1	/	/	/	2
66./	1	99	24.23	24.15	23.99	0	22.62	22.72	22.82	1	/	/	/	2
66 / 20M	50	0	22.91	22.59	22.55	1	21.83	21.73	21.46	2	1	/	/	3
ZUIVI	50	25	22.86	22.53	22.53	1	21.76	21.59	21.55	2	/	/	/	3
	50	50	22.97	22.56	22.55	1	21.78	21.63	21.72	2	/		/	3
	100	0	22.87	22.78	22.61	1	21.86	21.76	21.51	2	1	/	/	3

Page 54 of 79 Report No.: 190518040SAR-1

				QPSK				16QAM				64QAM		
LTE	RB	RB	СН	СН	СН	3GPP	СН	СН	СН	3GPP	СН	СН	СН	3GPP
Band /	Size	Offset	133147	133297	133447	MPR	133147	133297	133447	MPR	133147	133297	133447	MPR
BW	Size	Oliset	665.5	680.5	695.5	(dB)	665.5	680.5	695.5	(dB)	665.5	680.5	695.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.57	23.32	23.83	0	22.95	22.86	23.05	1	/	/	/	2
	1	12	23.47	24.20	23.49	0	22.65	23.10	22.92	1	/	/	/	2
71 /	1	24	23.77	23.67	23.85	0	23.11	23.22	23.25	1	/	/	/	2
5M	12	0	22.50	22.63	22.77	1	21.60	21.66	21.70	2	/	/	/	3
SIVI	12	6	22.63	22.63	22.55	1	21.45	21.59	21.74	2	/	/	/	3
	12	13	22.70	22.66	22.72	1	21.69	21.66	21.62	2	/	/	/	3
	25	0	22.60	22.61	22.71	1	21.75	21.75	21.76	2	/	/	/	3

				QPSK				16QAM				64QAM		
LTE Band /	RB	RB Offert	CH 133172	CH 133297	CH 133422	3GPP MPR	CH 133172	CH 133297	CH 133422	3GPP MPR	CH 133172	CH 133297	CH 133422	3GPP MPR
BW	Size	Offset	668 MHz	680.5	693 MHz	(dB)	668 MHz	680.5 MHz	693 MHz	(dB)	668 MHz	680.5 MHz	693 MHz	(dB)
	1	0	23.51	MHz 23.34	23.88	0	22.90	22.95	23.22	1	/	/	/	2
	1	24	23.52	24.23	23.45	0	22.66	22.95	22.95	1	/	/	/	2
	1	49	23.73	23.83	23.83	0	23.09	23.21	23.22	1	/	/	/	2
71 /	25	0	22.65	22.60	22.69	1	21.48	21.67	21.86	2	1	/	/	3
10M	25	12	22.57	22.63	22.58	1	21.54	21.63	21.58	2	/	/	/	3
	25	25	22.59	22.63	22.77	1	21.62	21.79	21.51	2	/	1	/	3
	50	0	22.55	22.70	22.77	1	21.61	21.77	21.76	2	1	/	/	3

				QPSK				16QAM				64QAM		
LTE	RB	RB	СН	СН	СН	3GPP	СН	СН	СН	3GPP	СН	СН	СН	3GPP
Band /	Size	Offset	133197	133297	133397	MPR	133197	133297	133397	MPR	133197	133297	133397	MPR
BW	Size	Oliset	670.5	680.5	690.5	(dB)	670.5	680.5	690.5	(dB)	670.5	680.5	690.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.50	23.39	23.83	0	22.88	22.94	23.17	1	/	/	/	2
	1	37	23.34	24.34	23.44	0	22.82	23.02	22.95	1	/	/	/	2
74 /	1	74	23.84	23.83	23.82	0	23.23	23.26	23.17	1	/	/	1	2
71 / 15M	36	0	22.62	22.75	22.66	1	21.56	21.64	21.84	2	1	1	/	3
I JIVI	36	19	22.55	22.65	22.65	1	21.41	21.61	21.62	2	1	/	/	3
	36	39	22.58	22.71	22.74	1	21.68	21.83	21.60	2	1	/	/	3
	75	0	22.47	22.69	22.66	1	21.60	21.69	21.74	2	1	/		3

				QPSK				16QAM				64QAM		
LTE Band / BW	RB Size	RB Offset	CH 133222 673 MHz	CH 133322 683 MHz	CH 133372 688 MHz	3GPP MPR (dB)	CH 133222 673 MHz	CH 133322 683 MHz	CH 133372 688 MHz	3GPP MPR (dB)	CH 133222 673 MHz	CH 133322 683 MHz	CH 133372 688 MHz	3GPP MPR (dB)
	1	0	23.58	23.45	23.95	0	23.03	23.05	23.22	1	1	/	1	2
	1	50	23.54	24.38	23.55	0	22.84	23.13	22.99	1	1	1	1	2
74 /	1	99	23.85	23.85	23.95	0	23.28	23.39	23.29	1	/	1	1	2
71 / 20M	50	0	22.70	22.79	22.82	1	21.66	21.71	21.90	2	/	1	/	3
20101	50	25	22.66	22.72	22.70	1	21.60	21.67	21.75	2	1	1	/	3
	50	50	22.73	22.78	22.86	1	21.71	21.86	21.66	2		1	/	3
	100	0	22.66	22.73	22.78	1	21.80	21.88	21.81	2	1	1	/	3

Page 55 of 79 Report No.: 190518040SAR-1

DL CA

DE 07	•																			
CA			PCC					SCC 1			SCC 2			SCC 3	3		SCC 4	1	Tune	DL CA
Config.	Band	Mode	Ch.	Freq.	RB Size	RB Offset	Band	BW	DL Freq.	Up	Power									
2A+2A	2	QPSK20M	18900	1880	1	0	2	20	1979.8	1	1	1	1	1	1	1	1	1	24.0	23.21
2A+4A	2	QPSK20M	18900	1880	1	0	4	20	2120	1	1	1	1	I	1	1	1	1	24.0	23.09
2A+5A	2	QPSK20M	18900	1880	1	0	5	10	881.7	1	1	1	1	1	1	1	1	1	24.0	23.45
2A+12A	2	QPSK20M	18900	1880	1	0	12	10	737.7	1	1	1	1	I	1	1	1	1	24.0	22.85
2A+66A	2	QPSK20M	18900	1880	1	0	66	20	2145.2	1	1	1	1	1	1	1	1	1	24.0	23.29
4A+2A	4	QPSK20M	20175	1732.5	1	0	2	20	1960.2	1	1	1	1	I	I	1	1	1	24.5	23.43
4A+4A	4	QPSK20M	20300	1745.0	1	0	4	20	2120	1	1	1	1	1	1	1	1	1	24.5	23.43
4A+5A	4	QPSK20M	20175	1732.5	1	0	5	10	881.7	1	1	1	1	1	I	1	I	1	24.5	23.45
4A+7A	4	QPSK20M	20175	1732.5	1	0	7	20	2655.2	1	1	1	1	I	1	1	1	1	24.5	23.39
4A+12A	4	QPSK20M	20175	1732.5	1	0	12	10	737.7	1	1	1	1	I	1	1	1	1	24.5	23.48
4A+13A	4	QPSK20M	20175	1732.5	1	0	13	10	751	1	1	1	-1	I	1	1	1	1	24.5	23.49
5A+2A	5	QPSK10M	20450	829	1	49	2	20	1960.2	1	1	1	-1	I	1	1	1	1	24.0	22.23
5A+4A	5	QPSK10M	20450	829	1	49	4	20	2120	1	1	1	1	I	1	-1	1	1	24.0	22.23
5A+5A	5	QPSK10M	20450	829	1	49	5	10	881.7	1	1	1	1	1	1	1	1	1	24.0	22.90
5A+7A	5	QPSK10M	20450	829	1	49	7	20	2655.2	1	1	1	I	I	1	1	1	1	24.0	22.20
5A+66A	5	QPSK10M	20450	829	1	49	66	20	2145.2	1	1	1	1	1	1	1	1	1	24.0	22.21
7A+4A	7	QPSK20M	20850	2510	1	0	4	20	2120	1	- 1	1	1	I	1	1	I	1	24.0	22.77
7A+5A	7	QPSK20M	20850	2510	1	0	5	10	881.7	1	1	1	1	I	1	-1	1	1	24.0	22.88
12A+2A	12	QPSK10M	23130	711	1	24	2	20	1960.2	1	1	1	1	I	1	1	I	1	23.5	22.44
12A+4A	12	QPSK10M	23130	711	1	24	4	20	2120	1	1	1	1	1	I	1	I	1	23.5	22.45
12A+66A	12	QPSK10M	23130	711	1	24	66	20	2145.2	1	1	1	- 1	1	1	1	I	1	23.5	22.92
13A+4A	13	QPSK10M	23230	782		49	4	20	2120	1	1	1	- 1	1	1	1	1	1	24.0	22.58
25A+25A	25	QPSK20M	26590	1905	1	0	25	20	1962.7	1	1	1	1	I	1	1	I	1	24.0	23.68
66A+2A	66	QPSK20M	132072	1720	1	99	2	20	1960.2	I	1	1	1	I	I	1	1	1	24.5	24.18
66A+5A	66	QPSK20M	132072	1720	1	99	5	10	881.7	1	- 1	1	1	1	1	1	1	1	24.5	24.27
66A+12A	66	QPSK20M	132072	1720	1	99	12	10	737.7	1	1	1	1	1	1	1	1	1	24.5	24.15
66A+66A	66	QPSK20M	132072	1720	1	99	66	20	2145.2	1	1	1	I	1	1	1	1	1	24.5	23.66

Note:

The PCC Tx power is measured with SCC downlink carrier aggregation active, using the channel with highest measured maximum output power when downlink carrier aggregation is inactive, to confirm that when downlink carrier aggregation is active, uplink maximum output power remains within the specified tune-up tolerance limits and not more than 1/4 dB higher than the maximum output power measured when downlink carrier aggregation inactive.

4.3.4 Conducted Power of WLAN

Mo	ode	Channel	Frequency (MHz)	Average Power (dBm)
		1	2412	17.16
	802.11b	6	2437	17.34
		11	2462	17.05
		1	2412	16.30
	802.11g	6	2437	16.51
2.4G		11	2462	16.25
2.4G	000 117	1	2412	14.05
	802.11n	6	2437	14.27
	(HT20)	11	2462	14.00
	002 44 =	3	2422	14.15
	802.11n	6	2437	14.24
	(HT40)	9	2452	14.18

Mo	ode	Channel	Frequency (MHz)	Average Power (dBm)
		36	5180	15.49
	F 20	40	5200	15.26
	5.2G	44	5220	15.21
		48	5240	15.08
		52	5260	15.04
	5.3G	56	5280	14.93
	5.3G	60	5300	14.90
		64	5320	13.73
		100	5500	13.58
		104	5520	13.39
		108	5540	13.43
902 110		112	5560	13.38
802.11a		116	5580	13.14
	5.6G	120	5600	13.01
		124	5620	12.91
		128	5640	12.88
		132	5660	12.74
		136	5680	12.71
		140	5700	12.61
		149	5745	14.22
		153	5765	14.20
	5.8G	157	5785	14.39
		161	5805	14.36
		165	5825	14.41

Mo	ode	Channel	Frequency (MHz)	Average Power (dBm)
		36	5180	14.18
	5.00	40	5200	14.06
	5.2G	44	5220	13.83
		48	5240	13.86
		52	5260	15.94
	5.3G	56	5280	15.85
	5.3G	60	5300	15.80
		64	5320	15.72
		100	5500	12.44
		104	5520	12.33
		108	5540	12.37
802.11n		112	5560	12.35
(HT20)		116	5580	12.22
	5.6G	120	5600	12.27
		124	5620	12.25
		128	5640	12.32
		132	5660	12.33
		136	5680	12.29
		140	5700	11.47
		149	5745	15.32
		153	5765	15.31
	5.8G	157	5785	15.21
		161	5805	15.30
		165	5825	15.28

Mo	ode	Channel	Frequency (MHz)	Average Power (dBm)
	5.00	38	5190	16.58
	5.2G	46	5230	16.42
	5.3G	54	5270	16.21
	5.3G	62	5310	16.03
000 44 m		102	5510	9.49
802.11n		110	5550	9.41
(HT40)	5.6G	118	5590	9.03
		126	5630	8.78
		134	5670	8.53
	5.8G	151	5755	15.33
	5.6G	159	5795	15.29

Мо	de	Channel	Frequency (MHz)	Average Power (dBm)
		36	5180	14.14
	5.00	40	5200	14.00
	5.2G	44	5220	13.81
		48	5240	13.76
		52	5260	15.73
	5.3G	56	5280	15.69
	5.36	60	5300	15.62
		64	5320	15.62
		100	5500	12.41
		104	5520	12.37
		108	5540	12.35
802.11ac		112	5560	12.27
(VHT20)		116	5580	12.30
	5.6G	120	5600	12.18
		124	5620	12.22
		128	5640	12.17
		132	5660	12.25
		136	5680	12.16
		140	5700	11.41
		149	5745	15.08
		153	5765	15.01
	5.8G	157	5785	15.00
		161	5805	15.06
		165	5825	15.13

Mo	ode	Channel	Frequency (MHz)	Average Power (dBm)
	5.00	38	5190	16.21
	5.2G	46	5230	16.00
	5.3G	54	5270	15.84
	5.3G	62	5310	15.72
000 4400		102	5510	9.48
802.11ac		110	5550	9.40
(VHT40)	5.6G	118	5590	9.01
		126	5630	8.72
		134	5670	8.52
	5 °C	151	5755	15.01
	5.8G	159	5795	15.09

Page 59 of 79 Report No.: 190518040SAR-1

Mo	ode	Channel	Frequency (MHz)	Average Power (dBm)	
	5.2G	42	5210	8.38	
000 44	5.3G	58	5290	8.05	
802.11ac	5.00	106	5530	7.98	
(VHT80)	5.6G	122	5610	7.53	
	5.8G	155	5775	15.21	

4.3.5 Conducted Power of BT

Mo	ode	Channel	Frequency (MHz)	Average Power (dBm)
		0	2402	7.74
	GFSK	39	2441	8.56
		78	2480	7.61
		0	2402	5.55
BR + EDR	π/4-DQPSK	39	2441	6.31
		78	2480	5.35
		0	2402	5.49
	8-DPSK	39	2441	6.33
		78	2480	5.39

Mo	de	Channel	Frequency (MHz)	Average Power (dBm)
		0	2402	-2.71
LE	LE	19	2440	-1.64
		39	2480	-2.63

4.4 SAR Test Exclusion Evaluations

4.4.1 Standalone SAR Test Exclusion Considerations

According to KDB 447498 D01, the SAR test exclusion condition is based on source-based time-averaged maximum conducted output power, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions. The 1-g and 10-g SAR test exclusion thresholds are determined by the following:

a) For 100 MHz to 6 GHz and test separation distances ≤ 50 mm:

$$\frac{Max.Tune\ up\ Power_{(mW)}}{Min.Test\ Separation\ Distance_{(mm)}} \times \sqrt{f_{(GHz)}} \le 3.0\ for\ SAR-1g, \le 7.5\ for\ SAR-10g$$

When the minimum *test separation distance* is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

b) For 100 MHz to 1500 MHz and test separation distances > 50 mm:

{[Threshold for 50 mm in step a)] + [(test separation distance – 50 mm) \cdot ($f_{(MHz)}/150$)]} mW

c) For > 1500 MHz and ≤ 6 GHz and test separation distances > 50 mm:

{[Threshold for 50 mm in step a)] + [(test separation distance - 50 mm) ·10]} mW

When the calculated result in step a) is <= 3.0 for SAR-1g exposure condition, or <= 7.5 for SAR-10g exposure condition, the SAR testing exclusion is applied.

When the device output power is less than the calculated result (power threshold, mW) shown in in step b) and

c), the SAR testing exclusion is applied.

	Max.	Max.		Head			Body-Worn		Extremity			
Mode	Tune-up Power (dBm)	Tune-up Power (mW)	Ant. to Surface (mm)	Calculated Result	Require SAR Testing?	Ant. to Surface (mm)	Calculated Result	Require SAR Testing?	Ant. to Surface (mm)	Calculated Result	Require SAR Testing?	
BT	9.0	7.94	5	2.5	No	10	1.3	No	5	2.5	No	

4.4.2 Estimated SAR Calculation

According to KDB 447498 D01, when an antenna qualifies for the standalone SAR test exclusion and also transmits simultaneously with other antennas, the standalone SAR value must be estimated according to the following to determine the simultaneous transmission SAR test exclusion criteria:

a) For test separation distances ≤ 50 mm:

$$Estimated \ SAR = \frac{Max.Tune \ up \ Power_{(mW)}}{Min.Test \ Separation \ Distance_{(mm)}} \times \frac{\sqrt{f(_{GHz})}}{x}$$

Where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR.

b) For test separation distances > 50 mm, 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR.

Mode / Band	Frequency (GHz)	Max. Tune-up Power (dBm)	Test Position	Separation Distance (mm)	Estimated SAR (W/kg)
BT (DSS)	2.48	9.0	Head	5	0.33
BT (DSS)	2.48	9.0	Body-worn	10	0.17
BT (DSS)	2.48	9.0	Extremity	5	0.13

4.5 SAR Testing Results

4.5.1 SAR Test Reduction Considerations

KDB 447498 D01 General RF Exposure Guidance

Testing of other required channels within the operating mode of a frequency band is not required when the *reported* SAR for the mid-band or highest output power channel is:

- a) ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- b) ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- c) ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 941225 D01 3G SAR Procedures

a) GSM SAR Test Reduction

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

b) 3G SAR Test Reduction Procedure

The mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/4$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

KDB 941225 D05 SAR for LTE Devices

a) QPSK with 1 RB and 50% RB allocation

Start with the largest channel bandwidth and measure SAR, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

b) QPSK with 100% RB allocation

SAR is not required when the highest maximum output power for 100% RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

c) Higher order modulations

SAR is required only when the highest maximum output power for the configuration in the higher order

Page 64 of 79 Report No.: 190518040SAR-1

modulation is > 1/2 dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

d) Other channel bandwidth

SAR is required when the highest maximum output power of the smaller channel bandwidth is > 1/2 dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

KDB 941225 D06 Hot Spot SAR

Hotspot mode SAR is measured for all edges and surfaces of the device with a transmitting antenna located within 25 mm from that surface or edge.

Antenna	Front Face	Rear Face	Left Side	Right Side	Top Side	Bottom Side
WWAN Ant-0	Yes	Yes	Yes	Yes	Yes N/A	
WLAN / BT	Yes	Yes	N/A	Yes	Yes	N/A

KDB 248227 D01 Wi-Fi SAR

- a) For handsets operating next to ear, hotspot mode or mini-tablet configurations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When the reported SAR of initial test position is <= 0.4 W/kg, SAR testing for remaining test positions is not required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is <= 0.8 W/kg or all test positions are measured.</p>
- b) For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.
- c) For WLAN 5 GHz, the initial test configuration was selected according to the transmission mode with the highest maximum output power. When the reported SAR of initial test configuration is > 0.8 W/kg, SAR is required for the subsequent highest measured output power channel until the reported SAR result is <= 1.2 W/kg or all required channels are measured. For other transmission modes, SAR is not required when the highest reported SAR for initial test configuration is adjusted by the ratio of subsequent test configuration to initial test configuration specified maximum output power and it is <= 1.2 W/kg.

4.5.2 SAR Results for Head Exposure Condition

Plot No.	Band	Mode	Test Position	Ch.	RB	offset	Battery	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
1	GSM850	GPRS10	Right Cheek	190	-	-	1	31.0	30.25	0.02	0.081	1.19	0.10
	GSM850	GPRS10	Right Tilted	190	-	-	1	31.0	30.25	-0.04	0.038	1.19	0.05
	GSM850	GPRS10	Left Cheek	190	-	1	1	31.0	30.25	0.06	0.079	1.19	0.09
	GSM850	GPRS10	Left Tilted	190	-	•	1	31.0	30.25	0.02	0.038	1.19	0.05
	GSM850	GPRS10	Right Cheek	190	-	•	2	31.0	30.25	0.01	0.079	1.19	0.09
2	GSM1900	GPRS12	Right Cheek	810	-	-	1	25.5	24.95	0.11	0.189	1.14	0.21
	GSM1900	GPRS12	Right Tilted	810	-	-	1	25.5	24.95	0.03	0.097	1.14	0.11
	GSM1900	GPRS12	Left Cheek	810	-	-	1	25.5	24.95	-0.01	0.11	1.14	0.12
	GSM1900	GPRS12	Left Tilted	810	-	-	1	25.5	24.95	-0.09	0.111	1.14	0.13
	GSM1900	GPRS12	Right Cheek	810	-	-	2	25.5	24.95	0.10	0.177	1.14	0.20
						1	ı			ı			ı
3	WCDMA II	RMC12.2K	Right Cheek	9400	-	-	1	24.0	23.27	0.03	0.303	1.18	0.36
	WCDMA II	RMC12.2K	Right Tilted	9400	-	-	1	24.0	23.27	-0.08	0.154	1.18	0.18
	WCDMA II	RMC12.2K	Left Cheek	9400	-	•	1	24.0	23.27	-0.08	0.228	1.18	0.27
	WCDMA II	RMC12.2K	Left Tilted	9400	-	-	1	24.0	23.27	-0.19	0.208	1.18	0.25
	WCDMA II	RMC12.2K	Right Cheek	9400	-	-	2	24.0	23.27	0.09	0.298	1.18	0.35
4	WCDMA IV	RMC12.2K	Right Cheek	1413	l	_	1	24.5	24.10	-0.05	0.256	1.10	0.28
4	WCDMA IV	RMC12.2K	Right Tilted	1413			1	24.5	24.10	-0.05	0.144	1.10	0.16
		RMC12.2K	_		-		1						
	WCDMA IV	RMC12.2K	Left Cheek	1413 1413	-	-	1	24.5	24.10	-0.02	0.155	1.10	0.17
	WCDMA IV		Left Tilted		-	-	2	24.5	24.10	-0.04	0.169	1.10	0.19
	WCDMA IV	RMC12.2K	Right Cheek	1413	-	-	2	24.5	24.10	0.04	0.251	1.10	0.28
5	WCDMA V	RMC12.2K	Right Cheek	4233	_	-	1	24.5	23.82	-0.10	0.094	1.17	0.11
	WCDMA V	RMC12.2K	Right Tilted	4233	_		1	24.5	23.82	-0.09	0.042	1.17	0.05
	WCDMA V	RMC12.2K	Left Cheek	4233	_	_	1	24.5	23.82	0.08	0.098	1.17	0.11
	WCDMA V	RMC12.2K	Left Tilted	4233	_	_	1	24.5	23.82	-0.15	0.045	1.17	0.05
	WCDMA V	RMC12.2K	Left Cheek	4233	-		2	24.5	23.82	0.05	0.091	1.17	0.11
			2011 0110011	.200					20.02	0.00	0.001		• • • • • • • • • • • • • • • • • • • •
6	LTE 7	QPSK20M	Right Cheek	20850	1	0	1	24.0	23.64	0.03	0.045	1.09	0.05
	LTE 7	QPSK20M	Right Tilted	20850	1	0	1	24.0	23.64	0.13	0.038	1.09	0.04
	LTE 7	QPSK20M	Left Cheek	20850	1	0	1	24.0	23.64	0.10	0.058	1.09	0.06
	LTE 7	QPSK20M	Left Tilted	20850	1	0	1	24.0	23.64	0.03	0.051	1.09	0.06
	LTE 7	QPSK20M	Right Cheek	20850	50	0	1	23.0	22.55	-0.07	0.036	1.11	0.04
	LTE 7	QPSK20M	Right Tilted	20850	50	0	1	23.0	22.55	-0.03	0.034	1.11	0.04
	LTE 7	QPSK20M	Left Cheek	20850	50	0	1	23.0	22.55	-0.13	0.05	1.11	0.06
	LTE 7	QPSK20M	Left Tilted	20850	50	0	1	23.0	22.55	0.01	0.042	1.11	0.05
	LTE 7	QPSK20M	Left Cheek	20850	1	0	2	24.0	23.64	0.03	0.049	1.09	0.05
7	LTE 12	QPSK10M	Right Cheek	23130	1	24	1	23.5	22.99	-0.08	0.037	1.12	0.04
	LTE 12	QPSK10M	Right Tilted	23130	1	24	1	23.5	22.99	-0.03	0.019	1.12	0.02
	LTE 12	QPSK10M	Left Cheek	23130	1	24	1	23.5	22.99	0.08	0.029	1.12	0.03
	LTE 12	QPSK10M	Left Tilted	23130	1	24	1	23.5	22.99	0.12	0.017	1.12	0.02
	LTE 12	QPSK10M	Right Cheek	23095	25	0	1	22.5	22.27	0.19	0.04	1.05	0.04
	LTE 12	QPSK10M	Right Tilted	23095	25	0	1	22.5	22.27	0.14	0.02	1.05	0.02
	LTE 12	QPSK10M	Left Cheek	23095	25	0	1	22.5	22.27	0.05	0.031	1.05	0.03
	LTE 12	QPSK10M	Left Tilted	23095	25	0	1	22.5	22.27	0.02	0.018	1.05	0.02
	LTE 12	QPSK10M	Right Cheek	23095	25	0	2	22.5	22.27	0.03	0.037	1.05	0.04
		·					ı						
8	LTE 13	QPSK10M	Right Cheek	23230	1	49	1	24.0	23.34	0.07	0.094	1.16	0.11

Page 66 of 79 Report No.: 190518040SAR-1

1 1	L TE 40	0001/4014	l B: 1. ## 1			۱ ،۰	۱ .	1 040	00.04	1 0 00	0.045	1 440	ا ممد ا
	LTE 13	QPSK10M	Right Tilted	23230	1	49	1	24.0	23.34	0.09	0.045	1.16	0.05
	LTE 13	QPSK10M	Left Cheek	23230	1	49	1	24.0	23.34	0.05	0.081	1.16	0.09
	LTE 13	QPSK10M	Left Tilted	23230	1	49	1	24.0	23.34	0.03	0.057	1.16	0.07
	LTE 13	QPSK10M	Right Cheek	23230	25	0	1	23.0	22.41	0.09	0.071	1.15	0.08
	LTE 13	QPSK10M	Right Tilted	23230	25	0	1	23.0	22.41	-0.04	0.037	1.15	0.04
	LTE 13	QPSK10M	Left Cheek	23230	25	0	1	23.0	22.41	0.03	0.056	1.15	0.06
	LTE 13	QPSK10M	Left Tilted	23230	25	0	1	23.0	22.41	0.02	0.041	1.15	0.05
8	LTE 13	QPSK10M	Right Cheek	23230	1	49	2	24.0	23.34	0.04	0.091	1.16	0.11
			ı	ı		1	ı			1		ı	
9	LTE 25	QPSK20M	Right Cheek	26590	1	0	1	24.0	23.45	0.01	0.374	1.14	0.42
	LTE 25	QPSK20M	Right Tilted	26590	1	0	1	24.0	23.45	-0.19	0.163	1.14	0.19
	LTE 25	QPSK20M	Left Cheek	26590	1_	0	1	24.0	23.45	-0.14	0.239	1.14	0.27
	LTE 25	QPSK20M	Left Tilted	26590	1	0	1	24.0	23.45	-0.07	0.192	1.14	0.22
	LTE 25	QPSK20M	Right Cheek	26590	50	50	1	23.0	22.37	0.00	0.312	1.16	0.36
	LTE 25	QPSK20M	Right Tilted	26590	50	50	1	23.0	22.37	-0.14	0.133	1.16	0.15
	LTE 25	QPSK20M	Left Cheek	26590	50	50	1	23.0	22.37	-0.09	0.192	1.16	0.22
	LTE 25	QPSK20M	Left Tilted	26590	50	50	1	23.0	22.37	-0.04	0.154	1.16	0.18
	LTE 25	QPSK20M	Right Cheek	26590	1	0	2	24.0	23.45	0.06	0.369	1.14	0.42
10	LTE 26	QPSK15M	Right Cheek	26765	1	74	1	24.0	23.67	-0.09	0.122	1.08	0.13
	LTE 26	QPSK15M	Right Tilted	26765	1	74	1	24.0	23.67	0.03	0.06	1.08	0.06
	LTE 26	QPSK15M	Left Cheek	26765	1	74	1	24.0	23.67	0.03	0.111	1.08	0.12
	LTE 26	QPSK15M	Left Tilted	26765	1	74	1	24.0	23.67	-0.03	0.061	1.08	0.07
	LTE 26	QPSK15M	Right Cheek	26965	36	0	1	23.0	22.42	0.09	0.109	1.14	0.12
	LTE 26	QPSK15M	Right Tilted	26965	36	0	1	23.0	22.42	-0.02	0.055	1.14	0.06
	LTE 26	QPSK15M	Left Cheek	26965	36	0	1	23.0	22.42	0.06	0.112	1.14	0.13
	LTE 26	QPSK15M	Left Tilted	26965	36	0	1	23.0	22.42	-0.05	0.06	1.14	0.07
	LTE 26	QPSK15M	Right Cheek	26765	1	74	2	24.0	23.67	0.03	0.117	1.08	0.13
11	LTE 41	QPSK20M	Right Cheek	39750	1	99	1	24.0	23.55	0.07	0.026	1.11	0.03
11	LTE 41 LTE 41	QPSK20M QPSK20M	Right Cheek Right Tilted	39750 39750	1	99	1 1	24.0 24.0	23.55 23.55	0.07	0.026 0.027	1.11	0.03
11			_										
11	LTE 41	QPSK20M	Right Tilted	39750	1	99	1	24.0	23.55	0.11	0.027	1.11	0.03
11	LTE 41 LTE 41	QPSK20M QPSK20M	Right Tilted Left Cheek	39750 39750	1	99 99	1	24.0 24.0	23.55 23.55	0.11	0.027 0.037	1.11 1.11	0.03 0.04
11	LTE 41 LTE 41 LTE 41	QPSK20M QPSK20M QPSK20M	Right Tilted Left Cheek Left Tilted	39750 39750 39750	1 1 1	99 99 99	1 1 1	24.0 24.0 24.0	23.55 23.55 23.55	0.11 0.05 0.06	0.027 0.037 0.02	1.11 1.11 1.11	0.03 0.04 0.02
11	LTE 41 LTE 41 LTE 41 LTE 41	QPSK20M QPSK20M QPSK20M QPSK20M	Right Tilted Left Cheek Left Tilted Right Cheek	39750 39750 39750 39750	1 1 1 50	99 99 99 50	1 1 1	24.0 24.0 24.0 23.0	23.55 23.55 23.55 22.55	0.11 0.05 0.06 0.06	0.027 0.037 0.02 0.023	1.11 1.11 1.11 1.11	0.03 0.04 0.02 0.03
11	LTE 41 LTE 41 LTE 41 LTE 41 LTE 41	QPSK20M QPSK20M QPSK20M QPSK20M QPSK20M	Right Tilted Left Cheek Left Tilted Right Cheek Right Tilted	39750 39750 39750 39750 39750	1 1 1 50 50	99 99 99 50 50	1 1 1 1	24.0 24.0 24.0 23.0 23.0	23.55 23.55 23.55 22.55 22.55	0.11 0.05 0.06 0.06 0.01	0.027 0.037 0.02 0.023 0.022	1.11 1.11 1.11 1.11 1.11	0.03 0.04 0.02 0.03 0.02
11	LTE 41	QPSK20M QPSK20M QPSK20M QPSK20M QPSK20M QPSK20M	Right Tilted Left Cheek Left Tilted Right Cheek Right Tilted Left Cheek	39750 39750 39750 39750 39750 39750	1 1 1 50 50	99 99 99 50 50	1 1 1 1 1	24.0 24.0 24.0 23.0 23.0 23.0	23.55 23.55 23.55 22.55 22.55 22.55	0.11 0.05 0.06 0.06 0.01	0.027 0.037 0.02 0.023 0.022 0.03	1.11 1.11 1.11 1.11 1.11 1.11	0.03 0.04 0.02 0.03 0.02 0.03
11	LTE 41	QPSK20M QPSK20M QPSK20M QPSK20M QPSK20M QPSK20M QPSK20M	Right Tilted Left Cheek Left Tilted Right Cheek Right Tilted Left Cheek Left Tilted	39750 39750 39750 39750 39750 39750 39750	1 1 1 50 50 50	99 99 99 50 50 50	1 1 1 1 1 1	24.0 24.0 24.0 23.0 23.0 23.0 23.0	23.55 23.55 23.55 22.55 22.55 22.55 22.55	0.11 0.05 0.06 0.06 0.01 0.01	0.027 0.037 0.02 0.023 0.022 0.03 0.026	1.11 1.11 1.11 1.11 1.11 1.11 1.11	0.03 0.04 0.02 0.03 0.02 0.03 0.03
11	LTE 41	QPSK20M QPSK20M QPSK20M QPSK20M QPSK20M QPSK20M QPSK20M	Right Tilted Left Cheek Left Tilted Right Cheek Right Tilted Left Cheek Left Tilted	39750 39750 39750 39750 39750 39750 39750	1 1 1 50 50 50	99 99 99 50 50 50	1 1 1 1 1 1	24.0 24.0 24.0 23.0 23.0 23.0 23.0	23.55 23.55 23.55 22.55 22.55 22.55 22.55	0.11 0.05 0.06 0.06 0.01 0.01	0.027 0.037 0.02 0.023 0.022 0.03 0.026	1.11 1.11 1.11 1.11 1.11 1.11 1.11	0.03 0.04 0.02 0.03 0.02 0.03 0.03
	LTE 41	QPSK20M QPSK20M QPSK20M QPSK20M QPSK20M QPSK20M QPSK20M QPSK20M	Right Tilted Left Cheek Left Tilted Right Cheek Right Tilted Left Cheek Left Tilted Left Cheek Left Tilted	39750 39750 39750 39750 39750 39750 39750 39750	1 1 1 50 50 50 50	99 99 99 50 50 50 50 99	1 1 1 1 1 1 1 1 2	24.0 24.0 24.0 23.0 23.0 23.0 23.0 24.0	23.55 23.55 23.55 22.55 22.55 22.55 22.55 23.55	0.11 0.05 0.06 0.06 0.01 0.01 0.16	0.027 0.037 0.02 0.023 0.022 0.03 0.026 0.032	1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.1	0.03 0.04 0.02 0.03 0.02 0.03 0.03 0.04
	LTE 41	QPSK20M	Right Tilted Left Cheek Left Tilted Right Cheek Right Tilted Left Cheek Left Tilted Left Cheek Left Tilted Left Cheek	39750 39750 39750 39750 39750 39750 39750 39750 39750	1 1 50 50 50 50 1	99 99 99 50 50 50 50 99	1 1 1 1 1 1 1 2	24.0 24.0 24.0 23.0 23.0 23.0 23.0 24.0	23.55 23.55 23.55 22.55 22.55 22.55 22.55 23.55 24.23	0.11 0.05 0.06 0.06 0.01 0.01 0.16 0.04	0.027 0.037 0.02 0.023 0.022 0.03 0.026 0.032	1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.1	0.03 0.04 0.02 0.03 0.02 0.03 0.03 0.04
	LTE 41 LTE 46 LTE 66	QPSK20M	Right Tilted Left Cheek Left Tilted Right Cheek Right Tilted Left Cheek Left Tilted Left Cheek Left Tilted Left Cheek Right Cheek Right Cheek	39750 39750 39750 39750 39750 39750 39750 39750 39750 132072	1 1 50 50 50 50 1	99 99 99 50 50 50 50 99	1 1 1 1 1 1 1 2	24.0 24.0 24.0 23.0 23.0 23.0 23.0 24.0 24.5	23.55 23.55 23.55 22.55 22.55 22.55 22.55 23.55 24.23	0.11 0.05 0.06 0.06 0.01 0.01 0.16 0.04	0.027 0.037 0.02 0.023 0.022 0.03 0.026 0.032 0.235 0.149	1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.1	0.03 0.04 0.02 0.03 0.02 0.03 0.03 0.04
	LTE 41 LTE 66 LTE 66 LTE 66	QPSK20M	Right Tilted Left Cheek Left Tilted Right Cheek Right Tilted Left Cheek Left Tilted Left Cheek Right Tilted Left Cheek Right Cheek Right Tilted Left Cheek	39750 39750 39750 39750 39750 39750 39750 39750 132072 132072	1 1 1 50 50 50 50 1	99 99 99 50 50 50 50 99 99	1 1 1 1 1 1 1 2	24.0 24.0 24.0 23.0 23.0 23.0 24.0 24.5 24.5	23.55 23.55 23.55 22.55 22.55 22.55 22.55 23.55 24.23 24.23	0.11 0.05 0.06 0.06 0.01 0.16 0.04 -0.09 0.13	0.027 0.037 0.02 0.023 0.022 0.03 0.026 0.032 0.235 0.149 0.133	1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.1	0.03 0.04 0.02 0.03 0.02 0.03 0.03 0.04 0.25 0.16 0.14
	LTE 41 LTE 66 LTE 66 LTE 66 LTE 66	QPSK20M	Right Tilted Left Cheek Left Tilted Right Cheek Right Tilted Left Cheek Left Tilted Left Cheek Left Tilted Left Cheek Right Tilted Left Cheek Right Tilted Left Cheek Left Cheek	39750 39750 39750 39750 39750 39750 39750 39750 132072 132072 132072	1 1 1 50 50 50 50 1 1 1 1 1	99 99 99 50 50 50 50 99 99	1 1 1 1 1 1 1 2	24.0 24.0 24.0 23.0 23.0 23.0 24.0 24.5 24.5 24.5 24.5	23.55 23.55 23.55 22.55 22.55 22.55 22.55 23.55 24.23 24.23 24.23 24.23	0.11 0.05 0.06 0.06 0.01 0.16 0.04 -0.09 0.13 0.12 -0.17	0.027 0.037 0.02 0.023 0.022 0.03 0.026 0.032 0.235 0.149 0.133 0.173	1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.1	0.03 0.04 0.02 0.03 0.02 0.03 0.03 0.04 0.25 0.16 0.14 0.18
	LTE 41 LTE 46 LTE 66 LTE 66 LTE 66 LTE 66	QPSK20M	Right Tilted Left Cheek Left Tilted Right Cheek Right Tilted Left Cheek Left Tilted Left Cheek Left Tilted Left Cheek Right Cheek Right Tilted Left Cheek Right Tilted Left Cheek Right Tilted Right Cheek	39750 39750 39750 39750 39750 39750 39750 39750 39750 132072 132072 132072 132072	1 1 1 50 50 50 50 1 1 1 1 1 1 50	99 99 99 50 50 50 50 99 99 99 99 99	1 1 1 1 1 1 1 2	24.0 24.0 24.0 23.0 23.0 23.0 24.0 24.5 24.5 24.5 24.5 24.5	23.55 23.55 23.55 22.55 22.55 22.55 22.55 23.55 24.23 24.23 24.23 24.23 22.97	0.11 0.05 0.06 0.06 0.01 0.01 0.16 0.04 -0.09 0.13 0.12 -0.17 -0.14	0.027 0.037 0.02 0.023 0.022 0.03 0.026 0.032 0.235 0.149 0.133 0.173 0.172	1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.1	0.03 0.04 0.02 0.03 0.02 0.03 0.03 0.04 0.25 0.16 0.14 0.18 0.19
	LTE 41 LTE 46 LTE 66 LTE 66 LTE 66 LTE 66 LTE 66	QPSK20M	Right Tilted Left Cheek Left Tilted Right Cheek Right Tilted Left Cheek Left Tilted Left Cheek Left Tilted Left Cheek Right Tilted Left Cheek Right Tilted Left Cheek Left Tilted Right Cheek Left Tilted Right Cheek	39750 39750 39750 39750 39750 39750 39750 39750 39750 132072 132072 132072 132072 132072	1 1 50 50 50 1 1 1 1 1 50 50 50 50 50 50 50 50 50 50 50 50 50	99 99 99 50 50 50 50 99 99 99 99 50 50	1 1 1 1 1 1 1 2	24.0 24.0 23.0 23.0 23.0 23.0 24.0 24.5 24.5 24.5 24.5 24.5 23.5	23.55 23.55 23.55 22.55 22.55 22.55 22.55 22.55 23.55 24.23 24.23 24.23 24.23 24.23 22.97	0.11 0.05 0.06 0.06 0.01 0.01 0.16 0.04 -0.09 0.13 0.12 -0.17 -0.14 -0.04	0.027 0.037 0.02 0.023 0.022 0.03 0.026 0.032 0.235 0.149 0.133 0.173 0.172 0.108	1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.1	0.03 0.04 0.02 0.03 0.02 0.03 0.04 0.25 0.16 0.14 0.18 0.19 0.12
	LTE 41 LTE 66	QPSK20M	Right Tilted Left Cheek Right Cheek Right Tilted Left Cheek Left Tilted Left Cheek Left Tilted Left Cheek Right Tilted Left Cheek Right Tilted Left Cheek Right Tilted Left Cheek Left Tilted Left Cheek Left Tilted Right Cheek Right Tilted Right Cheek	39750 39750 39750 39750 39750 39750 39750 39750 132072 132072 132072 132072 132072 132072	1 1 50 50 50 1 1 1 1 1 50 50 50 50 50 50 50 50 50 50 50 50 50	99 99 99 50 50 50 50 99 99 99 99 50 50	1 1 1 1 1 1 1 2	24.0 24.0 23.0 23.0 23.0 23.0 24.0 24.5 24.5 24.5 24.5 23.5 23.5	23.55 23.55 23.55 22.55 22.55 22.55 22.55 23.55 24.23 24.23 24.23 24.23 22.97 22.97	0.11 0.05 0.06 0.06 0.01 0.16 0.04 -0.09 0.13 0.12 -0.17 -0.14 -0.04 0.08	0.027 0.037 0.02 0.023 0.022 0.03 0.026 0.032 0.149 0.133 0.173 0.172 0.108 0.098	1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.1	0.03 0.04 0.02 0.03 0.02 0.03 0.04 0.25 0.16 0.14 0.18 0.19 0.12 0.11
	LTE 41 LTE 66	QPSK20M	Right Tilted Left Cheek Right Cheek Right Tilted Left Cheek Left Tilted Left Cheek Left Tilted Left Cheek Right Tilted Left Cheek Right Tilted Left Cheek Left Tilted Left Cheek Left Tilted Right Cheek Left Tilted Right Cheek Right Tilted Left Cheek Left Tilted Left Cheek Left Tilted	39750 39750 39750 39750 39750 39750 39750 39750 132072 132072 132072 132072 132072 132072 132072	1 1 1 50 50 50 1 1 1 1 1 1 50 50 50 50 50 50 50 50 50 50 50 50 50	99 99 99 50 50 50 50 99 99 99 99 50 50	1 1 1 1 1 1 1 2	24.0 24.0 24.0 23.0 23.0 23.0 24.0 24.5 24.5 24.5 24.5 24.5 23.5 23.5 23.5	23.55 23.55 23.55 22.55 22.55 22.55 22.55 23.55 24.23 24.23 24.23 24.23 22.97 22.97 22.97	0.11 0.05 0.06 0.06 0.01 0.16 0.04 -0.09 0.13 0.12 -0.17 -0.14 -0.04 0.08 -0.15	0.027 0.037 0.02 0.023 0.022 0.03 0.026 0.032 0.235 0.149 0.133 0.173 0.172 0.108 0.098 0.128	1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.1	0.03 0.04 0.02 0.03 0.02 0.03 0.04 0.25 0.16 0.14 0.18 0.19 0.12 0.11 0.14
	LTE 41 LTE 66	QPSK20M	Right Tilted Left Cheek Right Cheek Right Tilted Left Cheek Left Tilted Left Cheek Left Tilted Left Cheek Right Tilted Left Cheek Right Tilted Left Cheek Left Tilted Left Cheek Left Tilted Right Cheek Left Tilted Right Cheek Right Tilted Left Cheek Left Tilted Left Cheek Left Tilted	39750 39750 39750 39750 39750 39750 39750 39750 132072 132072 132072 132072 132072 132072 132072	1 1 1 50 50 50 1 1 1 1 1 1 50 50 50 50 50 50 50 50 50 50 50 50 50	99 99 99 50 50 50 50 99 99 99 99 50 50	1 1 1 1 1 1 1 2	24.0 24.0 24.0 23.0 23.0 23.0 24.0 24.5 24.5 24.5 24.5 24.5 23.5 23.5 23.5	23.55 23.55 23.55 22.55 22.55 22.55 22.55 23.55 24.23 24.23 24.23 24.23 22.97 22.97 22.97	0.11 0.05 0.06 0.06 0.01 0.16 0.04 -0.09 0.13 0.12 -0.17 -0.14 -0.04 0.08 -0.15	0.027 0.037 0.02 0.023 0.022 0.03 0.026 0.032 0.235 0.149 0.133 0.173 0.172 0.108 0.098 0.128	1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.1	0.03 0.04 0.02 0.03 0.02 0.03 0.04 0.25 0.16 0.14 0.18 0.19 0.12 0.11 0.14
12	LTE 41 LTE 46 LTE 66	QPSK20M	Right Tilted Left Cheek Left Tilted Right Cheek Right Tilted Left Cheek Left Tilted Left Cheek Left Tilted Left Cheek Right Tilted Left Cheek Right Tilted Left Cheek Left Tilted Left Cheek Left Tilted Right Cheek Right Tilted Right Tilted Left Cheek Left Tilted Left Cheek Left Tilted Right Cheek	39750 39750 39750 39750 39750 39750 39750 39750 39750 132072 132072 132072 132072 132072 132072 132072 132072 132072	1 1 50 50 50 1 1 1 1 1 50 50 50 1	99 99 99 50 50 50 50 99 99 99 99 50 50 50	1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1	24.0 24.0 24.0 23.0 23.0 23.0 24.0 24.5 24.5 24.5 24.5 23.5 23.5 23.5 23.5 24.5	23.55 23.55 23.55 22.55 22.55 22.55 22.55 23.55 24.23 24.23 24.23 24.23 22.97 22.97 22.97 22.97 24.23	0.11 0.05 0.06 0.06 0.01 0.01 0.16 0.04 -0.09 0.13 0.12 -0.17 -0.14 -0.04 0.08 -0.15	0.027 0.037 0.02 0.023 0.022 0.03 0.026 0.032 0.235 0.149 0.133 0.173 0.172 0.108 0.098 0.128 0.231	1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.1	0.03 0.04 0.02 0.03 0.02 0.03 0.04 0.25 0.16 0.14 0.18 0.19 0.12 0.11 0.14 0.25
12	LTE 41 LTE 66 LTE 71 LTE 71	QPSK20M	Right Tilted Left Cheek Right Cheek Right Cheek Right Tilted Left Cheek Left Tilted Left Cheek Right Tilted Left Cheek Right Tilted Left Cheek Left Tilted Left Cheek Left Tilted Right Cheek Right Tilted Right Cheek Right Cheek Left Tilted Right Cheek Left Tilted Right Cheek Right Cheek	39750 39750 39750 39750 39750 39750 39750 39750 39750 132072 132072 132072 132072 132072 132072 132072 132072 132072 132072	1 1 50 50 50 1 1 1 1 1 50 50 50 1	99 99 99 50 50 50 50 99 99 99 99 50 50 50 50	1 1 1 1 1 1 1 2	24.0 24.0 24.0 23.0 23.0 23.0 24.0 24.5 24.5 24.5 23.5 23.5 23.5 23.5 24.5 24.5	23.55 23.55 23.55 22.55 22.55 22.55 22.55 23.55 24.23 24.23 24.23 24.23 22.97 22.97 22.97 22.97 24.23	0.11 0.05 0.06 0.06 0.01 0.16 0.04 -0.09 0.13 0.12 -0.17 -0.14 -0.04 0.08 -0.15 0.05	0.027 0.037 0.02 0.023 0.022 0.03 0.026 0.032 0.235 0.149 0.133 0.173 0.172 0.108 0.098 0.128 0.231	1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.1	0.03 0.04 0.02 0.03 0.02 0.03 0.03 0.04 0.25 0.16 0.14 0.18 0.19 0.12 0.11 0.14 0.25
12	LTE 41 LTE 66 LTE 71 LTE 71	QPSK20M	Right Tilted Left Cheek Left Tilted Right Cheek Right Tilted Left Cheek Left Tilted Left Cheek Left Tilted Left Cheek Right Tilted Left Cheek Right Tilted Left Cheek Left Tilted Right Cheek Left Tilted Right Tilted Right Tilted Right Cheek Left Tilted Right Cheek Left Tilted Right Cheek	39750 39750 39750 39750 39750 39750 39750 39750 39750 132072 132072 132072 132072 132072 132072 132072 132072 132072 132072 132072	1 1 1 50 50 50 1 1 1 1 1 50 50 50 1 1 1 1	99 99 99 50 50 50 50 99 99 99 99 50 50 50	1 1 1 1 1 1 1 2 2	24.0 24.0 23.0 23.0 23.0 23.0 24.0 24.5 24.5 24.5 23.5 23.5 23.5 23.5 24.5	23.55 23.55 23.55 22.55 22.55 22.55 22.55 23.55 24.23 24.23 24.23 24.23 22.97 22.97 22.97 22.97 24.23 24.23	0.11 0.05 0.06 0.06 0.01 0.16 0.04 -0.09 0.13 0.12 -0.17 -0.14 -0.04 0.08 -0.15 0.05	0.027 0.037 0.02 0.023 0.022 0.03 0.026 0.032 0.235 0.149 0.133 0.173 0.172 0.108 0.098 0.128 0.231	1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.1	0.03 0.04 0.02 0.03 0.02 0.03 0.04 0.25 0.16 0.14 0.18 0.19 0.12 0.11 0.14 0.25
12	LTE 41 LTE 66 LTE 71 LTE 71 LTE 71	QPSK20M	Right Tilted Left Cheek Left Tilted Right Cheek Right Tilted Left Cheek Left Tilted Left Cheek Right Tilted Left Cheek Right Tilted Left Cheek Left Tilted Right Cheek Left Tilted Right Cheek Right Tilted Right Cheek Left Tilted Left Cheek Left Tilted Left Cheek Left Tilted Right Cheek Left Tilted Right Cheek Left Tilted Right Cheek Right Tilted Left Cheek Left Cheek Left Cheek	39750 39750 39750 39750 39750 39750 39750 39750 39750 132072 132072 132072 132072 132072 132072 132072 132072 132072 132072 132072 132072	1 1 1 50 50 50 1 1 1 1 1 50 50 50 1 1 1 1	99 99 99 50 50 50 50 99 99 99 99 50 50 50 50 50	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24.0 24.0 24.0 23.0 23.0 23.0 23.0 24.0 24.5 24.5 24.5 24.5 23.5 23.5 23.5 24.5 24.5 24.5 24.5 24.5 24.5	23.55 23.55 23.55 22.55 22.55 22.55 22.55 23.55 24.23 25 26.23 26.23 26.23 26.23 26.23 26.23 26.23 26.23 26.23 26.23 26.	0.11 0.05 0.06 0.06 0.01 0.16 0.04 -0.09 0.13 0.12 -0.17 -0.14 -0.04 0.08 -0.05 0.06 0.09	0.027 0.037 0.02 0.023 0.022 0.03 0.026 0.032 0.235 0.149 0.133 0.173 0.172 0.108 0.098 0.128 0.231 0.009 0.005 0.006 0.004	1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.1	0.03 0.04 0.02 0.03 0.02 0.03 0.03 0.04 0.25 0.16 0.14 0.18 0.19 0.12 0.11 0.14 0.25 0.01 0.01 0.01
12	LTE 41 LTE 66 LTE 71 LTE 71 LTE 71 LTE 71	QPSK20M	Right Tilted Left Cheek Left Tilted Right Cheek Right Tilted Left Cheek Left Tilted Left Cheek Right Tilted Left Cheek Right Tilted Left Cheek Left Tilted Right Cheek Right Tilted Right Cheek Right Tilted Right Cheek Right Tilted Right Cheek Left Tilted	39750 39750 39750 39750 39750 39750 39750 39750 39750 132072 132072 132072 132072 132072 132072 132072 132072 132072 132072 132072 132072 132072 132072 132072	1 1 50 50 50 1 1 1 1 1 50 50 50 50 1 1 1 1	99 99 99 50 50 50 50 99 99 99 99 50 50 50 50 50 50	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24.0 24.0 24.0 23.0 23.0 23.0 23.0 24.0 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5	23.55 23.55 23.55 22.55 22.55 22.55 22.55 22.55 23.55 24.23 25.23 26.23	0.11 0.05 0.06 0.06 0.01 0.16 0.04 -0.09 0.13 0.12 -0.17 -0.14 -0.04 0.08 -0.15 0.05 0.06 0.09 -0.06 0.09 0.08	0.027 0.037 0.02 0.023 0.022 0.03 0.026 0.032 0.235 0.149 0.133 0.173 0.172 0.108 0.098 0.128 0.231 0.009 0.005 0.006 0.004 0.005	1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.06 1.06 1.06 1.06 1.13 1.13 1.13 1.13 1.106 1.06	0.03 0.04 0.02 0.03 0.02 0.03 0.04 0.25 0.16 0.14 0.18 0.19 0.12 0.11 0.14 0.25 0.01 0.01 0.01
12	LTE 41 LTE 66 LTE 71 LTE 71 LTE 71	QPSK20M	Right Tilted Left Cheek Left Tilted Right Cheek Right Tilted Left Cheek Left Tilted Left Cheek Right Tilted Left Cheek Right Tilted Left Cheek Left Tilted Right Cheek Left Tilted Right Cheek Right Tilted Right Cheek Left Tilted Left Cheek Left Tilted Left Cheek Left Tilted Right Cheek Left Tilted Right Cheek Left Tilted Right Cheek Right Tilted Left Cheek Left Cheek Left Cheek	39750 39750 39750 39750 39750 39750 39750 39750 39750 132072 132072 132072 132072 132072 132072 132072 132072 132072 132072 132072 132072	1 1 1 50 50 50 1 1 1 1 1 50 50 50 50 1 1 1 1	99 99 99 50 50 50 50 99 99 99 99 50 50 50 50 50	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24.0 24.0 24.0 23.0 23.0 23.0 23.0 24.0 24.5 24.5 24.5 24.5 23.5 23.5 23.5 24.5 24.5 24.5 24.5 24.5 24.5	23.55 23.55 23.55 22.55 22.55 22.55 22.55 23.55 24.23 25 26.23 26.23 26.23 26.23 26.23 26.23 26.23 26.23 26.23 26.23 26.	0.11 0.05 0.06 0.06 0.01 0.16 0.04 -0.09 0.13 0.12 -0.17 -0.14 -0.04 0.08 -0.05 0.06 0.09	0.027 0.037 0.02 0.023 0.022 0.03 0.026 0.032 0.235 0.149 0.133 0.173 0.172 0.108 0.098 0.128 0.231 0.009 0.005 0.006 0.004	1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.1	0.03 0.04 0.02 0.03 0.02 0.03 0.03 0.04 0.25 0.16 0.14 0.18 0.19 0.12 0.11 0.14 0.25 0.01 0.01 0.01 0.00

Page 67 of 79 Report No.: 190518040SAR-1

1	i	i	İ	ı		i	ı	ı	Ī	1	i	ı	1
	LTE 71	QPSK20M	Left Tilted	133372	50	50	1	23.5	22.86	0.06	0.004	1.16	0.00
	LTE 71	QPSK20M	Right Cheek	133322	1	50	2	24.5	24.38	0.04	0.008	1.03	0.01
14	802.11b	-	Right Cheek	6	-	-	1	18.0	17.34	-0.02	0.272	1.16	0.32
	802.11b	-	Right Tilted	6	-		1	18.0	17.34	-0.08	0.211	1.16	0.25
	802.11b	-	Left Cheek	6	-	-	1	18.0	17.34	-0.03	0.495	1.16	0.58
	802.11b	-	Left Tilted	6	-	-	1	18.0	17.34	-0.05	0.393	1.16	0.46
	802.11b	-	Left Cheek	6	-	-	2	18.0	17.34	0.02	0.487	1.16	0.57
15	802.11n	HT40	Right Cheek	54	-	-	1	17.0	16.21	-0.05	0.314	1.20	0.38
	802.11n	HT40	Right Tilted	54	-	-	1	17.0	16.21	0.17	0.488	1.20	0.59
	802.11n	HT40	Left Cheek	54	-	-	1	17.0	16.21	0.01	0.305	1.20	0.37
	802.11n	HT40	Left Tilted	54	-	•	1	17.0	16.21	0.02	0.296	1.20	0.36
	802.11n	HT40	Right Tilted	54	-	-	2	17.0	16.21	0.11	0.466	1.20	0.56
16	802.11a	-	Right Cheek	100	-	-	1	14.0	13.58	0.02	0.329	1.10	0.36
	802.11a	_	Right Tilted	100	-	-	1	14.0	13.58	0.15	0.331	1.10	0.36
	802.11a	-	Left Cheek	100	-	-	1	14.0	13.58	0.03	0.201	1.10	0.22
	802.11a	-	Left Tilted	100	-		1	14.0	13.58	-0.01	0.243	1.10	0.27
	802.11a	-	Right Tilted	100	-	-	2	14.0	13.58	0.03	0.322	1.10	0.35
17	802.11ac	VHT80	Right Cheek	155	-	-	1	16.0	15.21	0.13	0.355	1.20	0.43
	802.11ac	VHT80	Right Tilted	155	-	-	1	16.0	15.21	0.01	0.425	1.20	0.51
	802.11ac	VHT80	Left Cheek	155	-	-	1	16.0	15.21	0.00	0.469	1.20	0.56
	802.11ac	VHT80	Left Tilted	155	-	-	1	16.0	15.21	0.14	0.467	1.20	0.56
	802.11ac	VHT80	Left Cheek	155	-	-	2	16.0	15.21	0.05	0.433	1.20	0.52

4.5.3 SAR Results for Body-worn Exposure Condition (Separation Distance is 1.0 cm)

	<i>-</i>	toodito it	or Body-v	7 O 1 1 1 L	, po	Jui C	Jonai			011 01	Starioc	15 1.0	01117
Plot No.	Band	Mode	Test Position	Ch.	RB	offset	Battery	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
18	GSM850	GPRS10	Front Face	190	-	-	1	31.0	30.25	-0.11	0.05	1.19	0.06
	GSM850	GPRS10	Rear Face	190	-	-	1	31.0	30.25	-0.04	0.148	1.19	0.18
	GSM850	GPRS10	Rear Face	190	-	-	2	31.0	30.25	0.04	0.136	1.19	0.16
19	GSM1900	GPRS12	Front Face	810	-	-	1	25.5	24.95	-0.18	0.276	1.14	0.31
	GSM1900	GPRS12	Rear Face	810	-	-	1	25.5	24.95	-0.18	0.371	1.14	0.42
	GSM1900	GPRS12	Rear Face	810	-	-	2	25.5	24.95	0.09	0.336	1.14	0.38
20	WCDMA II	RMC12.2K	Front Face	9400	-	-	1	24.0	23.27	0.11	0.416	1.18	0.49
	WCDMA II	RMC12.2K	Rear Face	9400	-	-	1	24.0	23.27	-0.13	0.834	1.18	0.99
	WCDMA II	RMC12.2K	Rear Face	9262	-		1	24.0	23.26	-0.03	0.854	1.19	1.01
	WCDMA II	RMC12.2K	Rear Face	9538	-	-	1	24.0	23.09	0.09	0.448	1.23	0.55
	WCDMA II	RMC12.2K	Rear Face	9262	-	-	1	24.0	23.26	0.03	0.847	1.19	1.00
	WCDMA II	RMC12.2K	Rear Face	9262	-	-	2	24.0	23.26	-0.08	0.809	1.19	0.96
21	WCDMA IV	RMC12.2K	Front Face	1413	-	-	1	24.5	24.10	-0.14	0.187	1.10	0.21
	WCDMA IV	RMC12.2K	Rear Face	1413	-	-	1	24.5	24.10	-0.19	1.08	1.10	1.18
	WCDMA IV	RMC12.2K	Rear Face	1312	-	-	1	24.5	24.35	-0.15	1.04	1.04	1.08
	WCDMA IV	RMC12.2K	Rear Face	1513	-	-	1	24.5	24.06	-0.08	0.987	1.11	1.09
	WCDMA IV	RMC12.2K	Rear Face	1413	-	-	1	24.5	24.10	-0.08	1.02	1.10	1.12
	WCDMA IV	RMC12.2K	Rear Face	1413	-	-	2	24.5	24.10	-0.11	1.03	1.10	1.13
22	WCDMA V	RMC12.2K	Front Face	4233	-	-	1	24.5	23.82	0.00	0.061	1.17	0.07
	WCDMA V	RMC12.2K	Rear Face	4233	-	-	1	24.5	23.82	-0.13	0.18	1.17	0.21
	WCDMA V	RMC12.2K	Rear Face	4233	-	-	2	24.5	23.82	0.11	0.159	1.17	0.19
32	LTE 7	QPSK20M	Front Face	20850	1	0	1	24.0	23.64	0.04	0.271	1.09	0.29
	LTE 7	QPSK20M	Rear Face	20850	1	0	1	24.0	23.64	0.06	0.988	1.09	1.07
	LTE 7	QPSK20M	Front Face	20850	50	0	1	23.0	22.55	-0.12	0.277	1.11	0.31
	LTE 7	QPSK20M	Rear Face	20850	50	0	1	23.0	22.55	-0.13	1	1.11	1.11
	LTE 7	QPSK20M	Rear Face	20850	100	0	1	23.0	22.73	-0.16	1.04	1.06	1.11
	LTE 7	QPSK20M	Rear Face	21100	1	99	1	24.0	23.47	-0.03	0.969	1.13	1.09
	LTE 7	QPSK20M	Rear Face	21350	1	0	1	24.0	22.98	-0.06	0.91	1.26	1.15
	LTE 7	QPSK20M	Rear Face	21100	50	0	1	23.0	22.47	-0.19	0.932	1.13	1.05
	LTE 7	QPSK20M	Rear Face	21350	50	0	1	23.0	21.96	-0.04	0.78	1.27	0.99
	LTE 7	QPSK20M	Rear Face	21350	1	0	2	24.0	22.98	0.05	0.82	1.26	1.04
						ı							
24	LTE 12	QPSK10M	Front Face	23130	1	24	1	23.5	22.99	-0.10	0.04	1.12	0.04
	LTE 12	QPSK10M	Rear Face	23130	1	24	1	23.5	22.99	-0.08	0.093	1.12	0.10
	LTE 12	QPSK10M	Front Face	23095	25	0	1	22.5	22.27	0.03	0.046	1.05	0.05
	LTE 12	QPSK10M	Rear Face	23095	25	0	1	22.5	22.27	0.09	0.101	1.05	0.11
	LTE 12	QPSK10M	Rear Face	23095	25	0	2	22.5	22.27	0.03	0.091	1.05	0.10
'	:-	O DOLL STORY		000			I .				0.00-		
25	LTE 13	QPSK10M	Front Face	23230	1	49	1	24.0	23.34	-0.07	0.067	1.16	0.08
	LTE 13	QPSK10M	Rear Face	23230	1	49	1	24.0	23.34	-0.05	0.173	1.16	0.20
	LTE 13	QPSK10M	Front Face	23230	25	0	1	23.0	22.41	-0.09	0.052	1.15	0.06
	LTE 13	QPSK10M	Rear Face	23230	25	0	1	23.0	22.41	-0.09	0.14	1.15	0.16
	LTE 13	QPSK10M	Rear Face	23230	1	49	2	24.0	23.34	0.02	0.166	1.16	0.19
00	1 TE 65	ODOMOSTA	F / F	00500				64.6	00.45	0.0=	0.4=	444	0.50
26	LTE 25	QPSK20M	Front Face	26590	1	0	1	24.0	23.45	0.05	0.47	1.14	0.53
	LTE 25	QPSK20M	Rear Face	26590	1	0	1	24.0	23.45	0.14	0.618	1.14	0.70

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 69 of 79

Report No.: 190518040SAR-1

l 1	LTE OF	OBSKOOM	Front Face	26500	l 50	F0	I 4	1 22.0	1 22 27	0.45	0.270	1 4 46	l 044 l
	LTE 25	QPSK20M		26590	50	50	1	23.0	22.37	-0.15	0.379	1.16	0.44
	LTE 25	QPSK20M	Rear Face	26590	50	50	1	23.0	22.37	-0.15	0.459	1.16	0.53
	LTE 25	QPSK20M	Rear Face	26590	1	0	2	24.0	23.45	0.05	0.578	1.14	0.66
27	LTE 26	QPSK15M	Front Face	26765	1	74	1	24.0	23.67	-0.04	0.088	1.08	0.09
	LTE 26	QPSK15M	Rear Face	26765	1	74	1	24.0	23.67	-0.10	0.165	1.08	0.18
	LTE 26	QPSK15M	Front Face	26965	36	0	1	23.0	22.42	0.00	0.081	1.14	0.09
	LTE 26	QPSK15M	Rear Face	26965	36	0	1	23.0	22.42	-0.19	0.001	1.14	0.03
	LTE 26	QPSK15M	Rear Face	26765	1	74	2	24.0	23.67	0.04	0.136	1.08	0.15
	LIE 20	QFSK15W	Neal Face	20703	'	74		24.0	23.07	0.04	0.130	1.06	0.15
33	LTE 41	QPSK20M	Front Face	39750	1	99	1	24.0	23.55	-0.09	0.194	1.11	0.22
	LTE 41	QPSK20M	Rear Face	39750	1	99	1	24.0	23.55	-0.14	0.668	1.11	0.74
	LTE 41	QPSK20M	Front Face	39750	50	50	1	23.0	22.55	-0.07	0.164	1.11	0.18
	LTE 41	QPSK20M	Rear Face	39750	50	50	1	23.0	22.55	-0.12	0.556	1.11	0.62
	LTE 41	QPSK20M	Bottom Side	39750	1	99	2	24.0	23.55	0.04	0.657	1.11	0.73
		4, 5, 25,					_			0.00	0.000		511.5
29	LTE 66	QPSK20M	Front Face	132072	1	99	1	24.5	24.23	-0.09	0.196	1.06	0.21
	LTE 66	QPSK20M	Rear Face	132072	1	99	1	24.5	24.23	-0.15	1.01	1.06	1.07
	LTE 66	QPSK20M	Front Face	132072	50	50	1	23.5	22.97	-0.05	0.144	1.13	0.16
	LTE 66	QPSK20M	Rear Face	132072	50	50	1	23.5	22.97	-0.15	0.77	1.13	0.87
	LTE 66	QPSK20M	Rear Face	132322	1	99	1	24.5	24.15	-0.04	1.07	1.08	1.16
	LTE 66	QPSK20M	Rear Face	132572	1	99	1	24.5	23.99	-0.19	1.05	1.12	1.18
	LTE 66	QPSK20M	Rear Face	132072	100	0	1	23.5	22.87	-0.14	0.787	1.16	0.91
	LTE 66	QPSK20M	Rear Face	132322	50	0	1	23.5	22.59	-0.13	0.791	1.23	0.98
	LTE 66	QPSK20M	Rear Face	132572	50	0	1	23.5	22.55	-0.03	0.813	1.24	1.01
	LTE 66	QPSK20M	Rear Face	132322	1	99	1	24.5	24.15	-0.09	1.07	1.08	1.16
	LTE 66	QPSK20M	Rear Face	132322	1	99	2	24.5	24.15	-0.09	0.981	1.08	1.06
30	LTE 71	QPSK20M	Front Face	133322	1	50	1	24.5	24.38	-0.19	0.01	1.03	0.01
	LTE 71	QPSK20M	Rear Face	133322	1	50	1	24.5	24.38	0.00	0.013	1.03	0.01
	LTE 71	QPSK20M	Front Face	133372	50	50	1	23.5	22.86	0.03	0.01	1.16	0.01
	LTE 71	QPSK20M	Rear Face	133372	50	50	1	23.5	22.86	0.04	0.014	1.16	0.02
	LTE 71	QPSK20M	Rear Face	133372	50	50	2	23.5	22.86	0.03	0.012	1.16	0.01
31	802.11b	-	Front Face	6	-	-	1	18.0	17.34	0.09	0.131	1.16	0.15
	802.11b	-	Rear Face	6	-	·	1	18.0	17.34	-0.16	0.207	1.16	0.24
	802.11b	-	Rear Face	6	-	-	2	18.0	17.34	0.05	0.201	1.16	0.23
		T		r					T				
34	802.11n	HT40	Front Face	54	-	-	1	17.0	16.21	0.03	0.124	1.20	0.15
	802.11n	HT40	Rear Face	54	-	-	1	17.0	16.21	-0.06	0.194	1.20	0.23
	802.11n	HT40	Rear Face	54	-	-	2	17.0	16.21	0.04	0.178	1.20	0.21
35	902.110	-	Front Face	100			1	14.0	12.50	-0.11	0.004	1 10	0.10
33	802.11a 802.11a		Rear Face	100		_	1	14.0 14.0	13.58		0.094 0.143	1.10	0.10 0.16
		-			-				13.58	-0.07		1.10	
	802.11a	-	Rear Face	100	-	-	2	14.0	13.58	0.03	0.133	1.10	0.15
36	802.11ac	VHT80	Front Face	155	-	-	1	16.0	15.21	0.00	0.258	1.20	0.31
	802.11ac	VHT80	Rear Face	155		_	1	16.0	15.21	0.08	0.192	1.20	0.23
36	802.11ac	VHT80	Front Face	155	-	-	2	16.0	15.21	0.04	0.239	1.20	0.29
- 00	002.11d0	V11100	1 TOTAL T ACC	100				10.0	10.21	0.04	0.200	1.20	0.23

4.5.4 SAR Results for Hotspot Exposure Condition (Separation Distance is 1.0 cm)

				<u> </u>									
Plot No.	Band	Mode	Test Position	Ch.	RB	offset	Battery	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
18	GSM850	GPRS10	Front Face	190	-	-	1	31.0	30.25	-0.11	0.05	1.19	0.06
	GSM850	GPRS10	Rear Face	190	-	-	1	31.0	30.25	-0.04	0.148	1.19	0.18
	GSM850	GPRS10	Left Side	190	-	-	1	31.0	30.25	-0.15	0.051	1.19	0.06
	GSM850	GPRS10	Right Side	190	-	-	1	31.0	30.25	-0.04	0.049	1.19	0.06
	GSM850	GPRS10	Bottom Side	190	-	-	1	31.0	30.25	-0.09	0.071	1.19	0.08
	GSM850	GPRS10	Rear Face	190	-	-	2	31.0	30.25	0.04	0.136	1.19	0.16
19	GSM1900	GPRS12	Front Face	810	-	-	1	25.5	24.95	-0.18	0.276	1.14	0.31
	GSM1900	GPRS12	Rear Face	810	-	-	1	25.5	24.95	-0.06	0.371	1.14	0.42
	GSM1900	GPRS12	Left Side	810	-	-	1	25.5	24.95	0.09	0.011	1.14	0.01
	GSM1900	GPRS12	Right Side	810	_	-	1	25.5	24.95	-0.04	0.144	1.14	0.16
	GSM1900	GPRS12	Bottom Side	810	-	-	1	25.5	24.95	0.09	0.128	1.14	0.15
	GSM1900	GPRS12	Rear Face	810	-	-	2	25.5	24.95	0.09	0.336	1.14	0.38
20	WCDMA II	RMC12.2K	Front Face	9400	-	-	1	24.0	23.27	0.11	0.416	1.18	0.49
	WCDMA II	RMC12.2K	Rear Face	9400	-	-	1	24.0	23.27	-0.13	0.834	1.18	0.99
	WCDMA II	RMC12.2K	Left Side	9400	_		1	24.0	23.27	-0.12	0.021	1.18	0.02
	WCDMA II	RMC12.2K	Right Side	9400	_	_	1	24.0	23.27	-0.08	0.304	1.18	0.36
	WCDMA II	RMC12.2K	Bottom Side	9400	_	_	1	24.0	23.27	0.01	0.263	1.18	0.31
	WCDMA II	RMC12.2K	Rear Face	9262	-	_	1	24.0	23.26	-0.03	0.854	1.19	1.01
	WCDMA II	RMC12.2K	Rear Face	9538	_	_	1	24.0	23.09	0.09	0.448	1.23	0.55
	WCDMA II	RMC12.2K	Rear Face	9262	_	_	1	24.0	23.26	0.03	0.847	1.19	1.00
	WCDMA II	RMC12.2K	Rear Face	9262	_	_	2	24.0	23.26	-0.08	0.809	1.19	0.96
	VV ODIVI/ CII	TUNO 12.210	rtear race	3202				24.0	20.20	0.00	0.000	1.10	0.00
21	WCDMA IV	RMC12.2K	Front Face	1413	_		1	24.5	24.10	-0.14	0.187	1.10	0.21
	WCDMA IV	RMC12.2K	Rear Face	1413	-	_	1	24.5	24.10	-0.19	1.08	1.10	1.18
	WCDMA IV	RMC12.2K	Left Side	1413	_	_	1	24.5	24.10	-0.07	0.03	1.10	0.03
	WCDMA IV	RMC12.2K	Right Side	1413	_	_	1	24.5	24.10	-0.13	0.261	1.10	0.29
	WCDMA IV	RMC12.2K	Bottom Side	1413	_	_	1	24.5	24.10	0.12	0.354	1.10	0.39
	WCDMA IV	RMC12.2K	Rear Face	1312	_	_	1	24.5	24.35	-0.15	1.04	1.04	1.08
	WCDMA IV	RMC12.2K	Rear Face	1513	_	-	1	24.5	24.06	-0.08	0.987	1.11	1.09
	WCDMA IV	RMC12.2K	Rear Face	1413	_	-	1	24.5	24.10	-0.08	1.02	1.10	1.12
	WCDMA IV	RMC12.2K	Rear Face	1413	_	_	2	24.5	24.10	-0.11	1.03	1.10	1.13
	WODIVIATV	TOTO 12.210	iteal l'ace	1410	_	_	2	24.0	24.10	-0.11	1.00	1.10	1.10
22	WCDMA V	RMC12.2K	Front Face	4233	_	-	1	24.5	23.82	0.00	0.061	1.17	0.07
	WCDMA V	RMC12.2K	Rear Face	4233		_	1	24.5	23.82	-0.13	0.001	1.17	0.07
	WCDMA V	RMC12.2K	Left Side	4233	_	-	1	24.5	23.82	0.11	0.066	1.17	0.08
	WCDMA V	RMC12.2K	Right Side	4233			1	24.5	23.82	0.11	0.062	1.17	0.00
	WCDMA V	RMC12.2K	Bottom Side	4233	-	_	1	24.5	23.82	0.02	0.002	1.17	0.07
	WCDMA V	RMC12.2K	Rear Face	4233	_	_	2	24.5	23.82	0.03	0.094	1.17	
	WCDIVIA V	RIVIC 12.2N	Real Face	4233	-	-	2	24.5	23.02	0.11	0.159	1.17	0.19
23	LTE 7	QPSK20M	Front Face	20850	1	0	1	24.0	23.64	0.04	0.271	1.09	0.29
23	LTE 7							24.0					
	LTE 7	QPSK20M	Rear Face	20850	1	0	1	24.0	23.64	0.06	0.988	1.09	1.07
		QPSK20M	Left Side	20850	1	0	1	24.0	23.64	0.12	0.061	1.09	0.07
	LTE 7	QPSK20M	Right Side	20850	1	0	1	24.0	23.64	-0.09	0.145	1.09	0.16
	LTE 7	QPSK20M	Bottom Side	20850	1	0	1	24.0	23.64	0.15	1.09	1.09	1.18
	LTE 7	QPSK20M	Front Face	20850	50	0	1	23.0	22.55	-0.12	0.277	1.11	0.31
	LTE 7	QPSK20M	Rear Face	20850	50	0	1	23.0	22.55	-0.13	1	1.11	1.11
	LTE 7	QPSK20M	Left Side	20850	50	0	1	23.0	22.55	0.05	0.04	1.11	0.04
	LTE 7	QPSK20M	Right Side	20850	50	0	1	23.0	22.55	-0.04	0.093	1.11	0.10

Page 71 of 79

Report No.: 190518040SAR-1

1 1	LTE 7	QPSK20M	Bottom Side	20850	50	0	l 1	23.0	22.55	0.03	0.986	1.11	1.09
	LTE 7	QPSK20M	Bottom Side	20850	100	0	1	23.0	22.73	0.02	1.02	1.06	1.09
	LTE 7	QPSK20M	Rear Face	20850	100	0	1	23.0	22.73	-0.16	1.04	1.06	1.11
	LTE 7	QPSK20M	Rear Face	21100	1	99	1	24.0	23.47	-0.03	0.969	1.13	1.09
	LTE 7	QPSK20M	Rear Face	21350	1	0	1	24.0	22.98	-0.06	0.903	1.26	1.15
	LTE 7	QPSK20M	Bottom Side	21100	1	99	1	24.0	23.47	0.04	0.939	1.13	1.06
	LTE 7	QPSK20M			1	0	1						
			Bottom Side	21350				24.0	22.98	0.03	0.802	1.26	1.01
	LTE 7	QPSK20M	Rear Face	21100	50	0	1	23.0	22.47	-0.19	0.932	1.13	1.05
	LTE 7	QPSK20M	Rear Face	21350	50	0	1	23.0	21.96	-0.04	0.78	1.27	0.99
	LTE 7	QPSK20M	Bottom Side	21100	50	0	1	23.0	22.47	0.19	0.849	1.13	0.96
	LTE 7	QPSK20M	Bottom Side	21350	50	0	1	23.0	21.96	0.03	0.611	1.27	0.78
	LTE 7	QPSK20M	Bottom Side	20850	1	0	1	24.0	23.64	0.05	1.09	1.09	1.18
	LTE 7	QPSK20M	Bottom Side	20850	1	0	2	24.0	23.64	0.01	1.08	1.09	1.17
					ı			I	T			1	
24	LTE 12	QPSK10M	Front Face	23130	1	24	1	23.5	22.99	-0.10	0.04	1.12	0.04
	LTE 12	QPSK10M	Rear Face	23130	1	24	1	23.5	22.99	-0.08	0.093	1.12	0.10
	LTE 12	QPSK10M	Left Side	23130	1	24	1	23.5	22.99	-0.06	0.038	1.12	0.04
	LTE 12	QPSK10M	Right Side	23130	1	24	1	23.5	22.99	-0.06	0.05	1.12	0.06
	LTE 12	QPSK10M	Bottom Side	23130	1	24	1	23.5	22.99	-0.04	0.022	1.12	0.02
	LTE 12	QPSK10M	Front Face	23095	25	0	1	22.5	22.27	0.03	0.046	1.05	0.05
	LTE 12	QPSK10M	Rear Face	23095	25	0	1	22.5	22.27	0.09	0.101	1.05	0.11
	LTE 12	QPSK10M	Left Side	23095	25	0	1	22.5	22.27	0.17	0.039	1.05	0.04
	LTE 12	QPSK10M	Right Side	23095	25	0	1	22.5	22.27	0.07	0.054	1.05	0.06
	LTE 12	QPSK10M	Bottom Side	23095	25	0	1	22.5	22.27	-0.09	0.023	1.05	0.02
	LTE 12	QPSK10M	Rear Face	23095	25	0	2	22.5	22.27	0.03	0.091	1.05	0.10
		Q. O.C.O.	110011 000	20000		•	_			0.00	0.001		00
25	LTE 13	QPSK10M	Front Face	23230	1	49	1	24.0	23.34	-0.07	0.067	1.16	0.08
	LTE 13	QPSK10M	Rear Face	23230	1	49	1	24.0	23.34	-0.05	0.173	1.16	0.20
	LTE 13	QPSK10M	Left Side	23230	1	49	1	24.0	23.34	-0.07	0.068	1.16	0.08
	LTE 13	QPSK10M	Right Side	23230	1	49	1	24.0	23.34	-0.02	0.000	1.16	0.09
	LTE 13	QPSK10M	Bottom Side	23230	1	49	1	24.0	23.34	0.02	0.068	1.16	0.09
	LTE 13	QPSK10M	Front Face	23230	25	0	1	23.0	22.41	-0.09	0.052	1.15	0.06
	LTE 13	QPSK10M	Rear Face	23230	25	0	1	23.0	22.41	-0.09	0.14	1.15	0.16
	LTE 13	QPSK10M	Left Side	23230	25	0	1	23.0	22.41	-0.07	0.054	1.15	0.06
	LTE 13	QPSK10M	Right Side	23230	25	0	1	23.0	22.41	-0.05	0.061	1.15	0.07
	LTE 13	QPSK10M	Bottom Side	23230	25	0	1	23.0	22.41	-0.03	0.049	1.15	0.06
	LTE 13	QPSK10M	Rear Face	23230	1	49	2	24.0	23.34	0.02	0.166	1.16	0.19
	. TE 05	0.001/0014					Ι					.	
26	LTE 25	QPSK20M	Front Face	26590	1	0	1	24.0	23.45	0.05	0.47	1.14	0.53
	LTE 25	QPSK20M	Rear Face	26590	1	0	1	24.0	23.45	-0.14	0.618	1.14	0.70
	LTE 25	QPSK20M	Left Side	26590	1	0	1	24.0	23.45	0.10	0.022	1.14	0.02
	LTE 25	QPSK20M	Right Side	26590	1	0	1	24.0	23.45	-0.15	0.269	1.14	0.31
	LTE 25	QPSK20M	Bottom Side	26590	1	0	1	24.0	23.45	0.11	0.203	1.14	0.23
	LTE 25	QPSK20M	Front Face	26590	50	50	1	23.0	22.37	-0.15	0.379	1.16	0.44
	LTE 25	QPSK20M	Rear Face	26590	50	50	1	23.0	22.37	-0.15	0.459	1.16	0.53
	LTE 25	QPSK20M	Left Side	26590	50	50	1	23.0	22.37	0.03	0.019	1.16	0.02
	LTE 25	QPSK20M	Right Side	26590	50	50	1	23.0	22.37	-0.08	0.221	1.16	0.26
	LTE 25	QPSK20M	Bottom Side	26590	50	50	1	23.0	22.37	-0.02	0.148	1.16	0.17
	LTE 25	QPSK20M	Rear Face	26590	1	0	2	24.0	23.45	0.05	0.578	1.14	0.66
27	LTE 26	QPSK15M	Front Face	26765	1	74	1	24.0	23.67	-0.04	0.088	1.08	0.09
	LTE 26	QPSK15M	Rear Face	26765	1	74	1	24.0	23.67	-0.10	0.165	1.08	0.18
	LTE 26	QPSK15M	Left Side	26765	1	74	1	24.0	23.67	0.19	0.077	1.08	0.08
	LTE 26	QPSK15M	Right Side	26765	1	74	1	24.0	23.67	-0.06	0.077	1.08	0.00
-			_										
-	LTE 26	QPSK15M	Bottom Side	26765	1	74	1	24.0	23.67	0.02	0.099	1.08	0.11
	LTE 26	QPSK15M	Front Face	26965	36	0	1	23.0	22.42	0.00	0.081	1.14	0.09

Page 72 of 79

Report No.: 190518040SAR-1

l l	LTE 26	QPSK15M	Door Food	26065	26	ا ا	l 4	ا مو م	1 22.42	l 0.40	0.450	1 111	l 040 l
		QPSK15M	Rear Face	26965	36	0	1	23.0	22.42	-0.19	0.159	1.14	0.18
	LTE 26		Left Side	26965	36	0	1	23.0	22.42	-0.03	0.07	1.14	0.08
	LTE 26	QPSK15M	Right Side	26965	36	0	1	23.0	22.42	-0.06	0.071	1.14	0.08
	LTE 26	QPSK15M	Bottom Side	26965	36	0	1	23.0	22.42	-0.06	0.1	1.14	0.11
	LTE 26	QPSK15M	Rear Face	26765	1	74	2	24.0	23.67	0.04	0.136	1.08	0.15
28	LTE 41	QPSK20M	Front Face	39750	1	99	1	24.0	23.55	-0.09	0.194	1.11	0.22
20	LTE 41	QPSK20M	Rear Face	39750	1	99	1	24.0	23.55	-0.09	0.194	1.11	0.74
	LTE 41	QPSK20M	Left Side	39750	1	99	1	24.0	23.55	-0.08	0.044	1.11	0.05
	LTE 41	QPSK20M	Right Side	39750	1	99	1	24.0	23.55	-0.08	0.044	1.11	0.03
	LTE 41	QPSK20M	Bottom Side	39750	1	99	1	24.0	23.55	0.19	0.122	1.11	0.76
	LTE 41	QPSK20M	Front Face	39750	50	50	1	23.0	22.55	-0.07	0.164	1.11	0.18
	LTE 41	QPSK20M	Rear Face	39750	50	50	1	23.0	22.55	-0.07	0.164	1.11	0.16
	LTE 41	QPSK20M	Left Side	39750	50	50	1	23.0	22.55	-0.12	0.037	1.11	0.02
	LTE 41					1			-	1			
	LTE 41	QPSK20M	Right Side Bottom Side	39750	50 50	50	1	23.0	22.55	-0.18	0.102	1.11	0.11 0.64
		QPSK20M	.,	39750		50	1	23.0	22.55	0.07	0.577		
	LTE 41	QPSK20M	Bottom Side	39750	1	99	2	24.0	23.55	0.04	0.657	1.11	0.73
29	LTE 66	QPSK20M	Front Face	132072	1	99	1	24.5	24.23	-0.09	0.196	1.06	0.21
20	LTE 66	QPSK20M	Rear Face	132072	1	99	1	24.5	24.23	-0.15	1.01	1.06	1.07
	LTE 66	QPSK20M	Left Side	132072	1	99	1	24.5	24.23	-0.04	0.035	1.06	0.04
	LTE 66	QPSK20M	Right Side	132072	1	99	1	24.5	24.23	0.03	0.033	1.06	0.04
	LTE 66	QPSK20M	Bottom Side	132072	1	99	1	24.5	24.23	-0.01	0.333	1.06	0.25
	LTE 66	QPSK20M	Front Face	132072	50	50	1	23.5	22.97	-0.05	0.333	1.13	0.33
	LTE 66	QPSK20M	Rear Face	132072	50	50	1	23.5	22.97	-0.15	0.77	1.13	0.10
	LTE 66	QPSK20M	Left Side	132072	50	50	1	23.5	22.97	-0.15	0.027	1.13	0.03
	LTE 66	QPSK20M	Right Side	132072	50	50	1	23.5	22.97	-0.02	0.169	1.13	0.03
	LTE 66	QPSK20M	Bottom Side	132072	50	50	1	23.5	22.97	-0.02	0.103	1.13	0.13
	LTE 66	QPSK20M	Rear Face	132322	1	99	1	24.5	24.15	-0.03	1.07	1.08	1.16
	LTE 66	QPSK20M	Rear Face	132572	1	99	1	24.5	23.99	-0.19	1.05	1.12	1.18
	LTE 66	QPSK20M	Rear Face	132072	100	0	1	23.5	22.87	-0.14	0.787	1.16	0.91
	LTE 66	QPSK20M	Rear Face	132322	50	0	1	23.5	22.59	-0.13	0.791	1.23	0.98
	LTE 66	QPSK20M	Rear Face	132572	50	0	1	23.5	22.55	-0.03	0.731	1.24	1.01
	LTE 66	QPSK20M	Rear Face	132372	1	99	1	24.5	24.15	-0.09	1.07	1.08	1.16
	LTE 66	QPSK20M	Rear Face	132322	1	99	2	24.5	24.15	-0.09	0.981	1.08	1.06
	LIL 00	QF SINZUM	ixeai i ace	132322		99		24.5	24.13	-0.09	0.901	1.00	1.00
30	LTE 71	QPSK20M	Front Face	133322	1	50	1	24.5	24.38	-0.19	0.01	1.03	0.01
	LTE 71	QPSK20M	Rear Face	133322	1	50	1	24.5	24.38	0.00	0.013	1.03	0.01
	LTE 71	QPSK20M	Left Side	133322	1	50	1	24.5	24.38	0.00	0.004	1.03	0.00
	LTE 71	QPSK20M	Right Side	133322	1	50	1	24.5	24.38	-0.01	0.009	1.03	0.01
	LTE 71	QPSK20M	Bottom Side	133322	1	50	1	24.5	24.38	-0.11	0.006	1.03	0.01
	LTE 71	QPSK20M	Front Face	133372	50	50	1	23.5	22.86	0.03	0.01	1.16	0.01
	LTE 71	QPSK20M	Rear Face	133372	50	50	1	23.5	22.86	0.04	0.014	1.16	0.02
	LTE 71	QPSK20M	Left Side	133372	50	50	1	23.5	22.86	0.10	0.004	1.16	0.00
	LTE 71	QPSK20M	Right Side	133372	50	50	1	23.5	22.86	0.05	0.005	1.16	0.01
	LTE 71	QPSK20M	Bottom Side	133372	50	50	1	23.5	22.86	-0.14	0.003	1.16	0.00
	LTE 71	QPSK20M	Rear Face	133372	50	50	2	23.5	22.86	0.03	0.012	1.16	0.01
31	802.11b	-	Front Face	6	-	-	1	18.0	17.34	0.09	0.131	1.16	0.15
	802.11b	-	Rear Face	6	-	-	1	18.0	17.34	-0.16	0.207	1.16	0.24
	802.11b	-	Right Side	6	-	-	1	18.0	17.34	-0.01	0.152	1.16	0.18
	802.11b	-	Top Side	6	-	-	1	18.0	17.34	0.12	0.142	1.16	0.17
	802.11b	-	Rear Face	6	-	-	2	18.0	17.34	0.05	0.189	1.16	0.22

4.5.5 SAR Results for Extremity Exposure Condition (Separation Distance is 0 cm)

				_	-		_	-			-
Plot No.	Band	Mode	Test Position	Ch.	Battery	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (dB)	Measured SAR-10g (W/kg)	Scaling Factor	Scaled SAR-10g (W/kg)
37	802.11n	HT40	Front Face	54	1	17.0	16.21	0.12	0.108	1.20	0.13
	802.11n	HT40	Rear Face	54	1	17.0	16.21	0.08	0.235	1.20	0.28
	802.11n	HT40	Right Side	54	1	17.0	16.21	-0.02	0.224	1.20	0.27
	802.11n	HT40	Top Side	54	1	17.0	16.21	0.08	0.092	1.20	0.11
	802.11n	HT40	Rear Face	54	2	17.0	16.21	0.03	0.219	1.20	0.26
38	802.11a	1	Front Face	100	1	14.0	13.58	0.03	0.069	1.10	0.08
	802.11a	•	Rear Face	100	1	14.0	13.58	0.00	0.18	1.10	0.20
	802.11a	-	Right Side	100	1	14.0	13.58	-0.09	0.173	1.10	0.19
	802.11a	-	Top Side	100	1	14.0	13.58	0.05	0.088	1.10	0.10
	802.11a	-	Rear Face	100	2	14.0	13.58	0.04	0.169	1.10	0.19
39	802.11ac	VHT80	Front Face	155	1	16.0	15.21	-0.07	0.278	1.20	0.33
	802.11ac	VHT80	Rear Face	155	1	16.0	15.21	0.11	0.32	1.20	0.38
	802.11ac	VHT80	Right Side	155	1	16.0	15.21	0.01	0.361	1.20	0.43
	802.11ac	VHT80	Top Side	155	1	16.0	15.21	0.02	0.206	1.20	0.25
	802.11ac	VHT80	Right Side	155	2	16.0	15.21	0.04	0.332	1.20	0.40

4.6 SAR Measurement Variability

4.6.1 Repeated Measurement

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are ≤ 1.45 W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10 , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR repeated measurement procedure:

- 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.
- 2. When the highest measured SAR is >= 0.80 W/kg, repeat that measurement once.
- 3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement.

4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement.

Band	Mode	Test Position	Ch.	Original Measured SAR-1g (W/kg)	1st Repeated SAR-1g (W/kg)	L/S Ratio	2nd Repeated SAR-1g (W/kg)	L/S Ratio	3rd Repeated SAR-1g (W/kg)	L/S Ratio
				Hotspot	Exposure Co	ondition				
WCDMA II	RMC12.2K	Rear Face	9262	0.854	0.847	1.01	N/A	N/A	N/A	N/A
WCDMA IV	RMC12.2K	Rear Face	1413	1.08	1.02	1.05	N/A	N/A	N/A	N/A
LTE 7	QPSK20M	Bottom Side	20850	1.09	1.09	1.00	N/A	N/A	N/A	N/A
LTE 66	QPSK20M	Rear Face	132322	1.07	1.07	1.00	N/A	N/A	N/A	N/A

4.7 Simultaneous Multi-band Transmission Evaluation

4.7.1 Simultaneous Transmission SAR Test Exclusion Considerations

a) Sum of SAR

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR_{1g} of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR_{1g} 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR_{1g} is greater than the SAR limit (SAR_{1g} 1.6 W/kg), SAR test exclusion is determined by the SPLSR.

b) SAR to Peak Location Separation Ratio

The simultaneous transmitting antennas in each operating mode and exposure condition combination are considered one pair at a time to determine the SPLSR.

$$SPLSR = (SAR_1 + SAR_2)^{1.5}/R_i$$

The ratio is rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion. When 10-g SAR applies, the ratio must be ≤ 0.10 .

 SAR_1 and SAR_2 are the highest reported or estimated SAR values for each antenna in the pair, and R_i is the separation distance in mm between the peak SAR locations for the antenna pair

peak location separation distance =
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

Where (x_1, y_1, z_1) and (x_2, y_2, z_2) are the coordinates of the extrapolated peak SAR locations in the area or zoom scans.

When standalone test exclusion applies, SAR is estimated; the peak location is assumed to be at the feed-point or geometric center of the antenna. Due to curvatures on the SAM phantom, when SAR is estimated for one of the antennas in an antenna pair, the measured peak SAR location will be translated onto the test device to determine the peak location separation for the antenna pair.

When SAR is estimated for both antennas, the peak location separation should be determined by the closest physical separation of the antennas, according to the feed-point or geometric center of the antennas.

c) Volume Scan

When the SPLSR is <= 0.04 for 1-g SAR and <= 0.10 for 10-g SAR, the simultaneous transmission SAR is not required. Otherwise, the enlarged zoom scan and volume scan post-processing procedures will be performed.

4.7.2 Simultaneous Transmission Possibilities

The simultaneous transmission possibilities for this device are listed as below.

Simultaneous Transmission Configurations	Head (Voice / VoIP)	Body-worn (Voice / VoIP)	Hotspot (Data)	Extremity (Data)
GSM (Voice / Data) + WLAN (Data)	Yes	Yes	Yes	Yes
WCDMA (Voice / Data) + WLAN (Data)	Yes	Yes	Yes	Yes
LTE (Data) + WLAN (Data)	Yes	Yes	Yes	Yes
GSM (Voice / Data) + BT (Data)	Yes	Yes	No	Yes
WCDMA (Voice / Data) + BT (Data)	Yes	Yes	No	Yes
LTE (Data) + BT (Data)	Yes	Yes	No	Yes

Note:

- 1. The 2.4G WLAN and 5G WLAN cannot transmit simultaneously.
- 2. The WLAN and Bluetooth cannot transmit simultaneously, so there is no co-location test requirement for WLAN and Bluetooth.

4.7.3 Max. Standalone SAR

Doo	ition	GSM		WCDMA			LTE							
Pos	ition	850	1900	I	IV	V	7	12	13	25	26	41	66	71
	Right Cheek	0.10	0.21	0.36	0.28	0.11	0.05	0.04	0.11	0.42	0.13	0.03	0.25	0.01
Head	Right Tilted	0.05	0.11	0.18	0.16	0.05	0.04	0.02	0.05	0.19	0.06	0.03	0.16	0.01
пеац	Left Cheek	0.09	0.12	0.27	0.17	0.11	0.06	0.03	0.09	0.27	0.13	0.04	0.14	0.01
	Left Tilted	0.05	0.13	0.25	0.19	0.05	0.06	0.02	0.07	0.22	0.07	0.02	0.18	0.00
Dady ware	Front Face	0.06	0.31	0.49	0.21	0.07	0.31	0.04	0.08	0.53	0.09	0.22	0.21	0.01
Body-worn	Rear Face	0.18	0.42	1.01	1.18	0.21	1.15	0.11	0.20	0.70	0.18	0.74	1.18	0.02
	Front Face	0.06	0.31	0.49	0.21	0.07	0.31	0.04	0.08	0.53	0.09	0.22	0.21	0.01
	Rear Face	0.18	0.42	1.01	1.18	0.21	1.15	0.11	0.20	0.70	0.18	0.74	1.18	0.02
Hotspot	Left Side	0.06	0.01	0.02	0.03	0.08	0.07	0.04	0.08	0.02	0.08	0.05	0.04	0.00
поізроі	Right Side	0.06	0.16	0.36	0.29	0.07	0.16	0.06	0.09	0.31	0.09	0.14	0.24	0.01
	Top Side	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Bottom Side	0.08	0.15	0.31	0.39	0.11	1.18	0.02	0.08	0.23	0.11	0.76	0.35	0.01
	Front Face	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Rear Face	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Futuamit.	Left Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Extremity	Right Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Top Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Bottom Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

_		WLAN					ВТ
Pos	sition	2.4G	5.2G	5.3G	5.6G	5.8G	2.4G
	Right Cheek	0.32	N/A	0.38	0.36	0.43	0.33
Head	Right Tilted	0.25	N/A	0.59	0.36	0.51	0.33
пеаи	Left Cheek	0.58	N/A	0.37	0.22	0.56	0.33
	Left Tilted	0.46	N/A	0.36	0.27	0.56	0.33
Dadaman	Front Face	0.15	N/A	0.15	0.10	0.31	0.17
Body-worn	Rear Face	0.24	N/A	0.23	0.16	0.23	0.17
	Front Face	0.15	N/A	N/A	N/A	N/A	N/A
	Rear Face	0.24	N/A	N/A	N/A	N/A	N/A
Hotspot	Left Side	0.00	N/A	N/A	N/A	N/A	N/A
потерот	Right Side	0.18	N/A	N/A	N/A	N/A	N/A
	Top Side	0.17	N/A	N/A	N/A	N/A	N/A
	Bottom Side	0.00	N/A	N/A	N/A	N/A	N/A
	Front Face	N/A	N/A	0.13	0.08	0.33	0.13
	Rear Face	N/A	N/A	0.28	0.20	0.38	0.13
Cutuamitu	Left Side	N/A	N/A	0.00	0.00	0.00	0.13
Extremity	Right Side	N/A	N/A	0.27	0.19	0.43	0.13
	Top Side	N/A	N/A	0.11	0.10	0.25	0.13
	Bottom Side	N/A	N/A	0.00	0.00	0.00	0.13

4.7.4 Sum of SAR

WWAN + WLAN (DTS)

	·	Highest	GSM		WCDM	Α		LTE							
Pos	ition	Simultaneous Transmission SAR	850	1900	II	IV	٧	7	12	13	25	26	41	66	71
	Right Cheek		0.41	0.53	0.68	0.60	0.43	0.37	0.36	0.43	0.74	0.45	0.35	0.57	0.33
Head	Right Tilted	0.85	0.29	0.36	0.43	0.40	0.29	0.29	0.27	0.30	0.43	0.31	0.28	0.40	0.25
пеаи	Left Cheek	0.03	0.67	0.70	0.85	0.75	0.69	0.64	0.61	0.67	0.85	0.71	0.62	0.72	0.58
	Left Tilted		0.50	0.58	0.70	0.64	0.51	0.51	0.48	0.52	0.68	0.52	0.48	0.64	0.46
Daduum	Front Face	1.42	0.21	0.47	0.64	0.36	0.22	0.46	0.20	0.23	0.69	0.25	0.37	0.36	0.16
Body-worn	rn Rear Face	1.43	0.42	0.66	1.25	1.43	0.45	1.39	0.35	0.44	0.94	0.42	0.98	1.42	0.26
	Front Face		0.21	0.47	0.64	0.36	0.22	0.46	0.20	0.23	0.69	0.25	0.37	0.36	0.16
	Rear Face		0.42	0.66	1.25	1.43	0.45	1.39	0.35	0.44	0.94	0.42	0.98	1.42	0.26
Hotonot	Left Side	1.43	0.06	0.01	0.02	0.03	0.08	0.07	0.04	0.08	0.02	0.08	0.05	0.04	0.00
Hotspot	Right Side	1.43	0.24	0.34	0.54	0.46	0.25	0.33	0.23	0.26	0.48	0.26	0.31	0.42	0.19
	Top Side		0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
	Bottom Side		0.08	0.15	0.31	0.39	0.11	1.18	0.02	0.08	0.23	0.11	0.76	0.35	0.01

WWAN + WLAN(NII)

 	_ ,														
		Highest	GSM		WCDM	Α		LTE							
Posi	ition	Simultaneous Transmission SAR	850	1900	II	IV	V	7	12	13	25	26	41	66	71
	Right Cheek		0.52	0.64	0.78	0.71	0.54	0.47	0.47	0.54	0.85	0.56	0.45	0.68	0.44
Head	Right Tilted	0.85 ⊢	0.63	0.70	0.77	0.74	0.63	0.63	0.61	0.64	0.77	0.65	0.62	0.74	0.59
neau	Left Cheek		0.66	0.69	0.83	0.73	0.68	0.63	0.60	0.66	0.83	0.69	0.60	0.70	0.57
	Left Tilted		0.61	0.69	0.81	0.75	0.61	0.62	0.58	0.63	0.78	0.63	0.58	0.74	0.56
Pody worn	Front Face	1,42	0.37	0.62	0.80	0.51	0.38	0.62	0.35	0.39	0.84	0.40	0.52	0.52	0.32
Body-worn	Rear Face	1.42	0.41	0.65	1.25	1.42	0.44	1.38	0.34	0.43	0.93	0.41	0.97	1.41	0.25

WWAN + BT(DSS)

WWAIT 1 15 (1505)																
			Highest Simultaneous Transmission SAR	GSM		WCDMA			LTE							
	Position			850	1900	II	IV	V	7	12	13	25	26	41	66	71
Ī	Head	Right Cheek	0.75	0.43	0.54	0.69	0.61	0.44	0.38	0.37	0.44	0.75	0.46	0.36	0.58	0.34
		Right Tilted		0.38	0.44	0.51	0.49	0.38	0.37	0.35	0.38	0.52	0.39	0.36	0.49	0.34
		Left Cheek		0.42	0.45	0.60	0.50	0.44	0.39	0.36	0.42	0.60	0.46	0.37	0.47	0.34
		Left Tilted		0.38	0.46	0.58	0.52	0.38	0.39	0.35	0.40	0.55	0.40	0.35	0.51	0.33
Ī	Body-worn	Front Face	1.35	0.23	0.48	0.66	0.38	0.24	0.48	0.21	0.25	0.70	0.26	0.39	0.38	0.18
	Douy-Worn	Rear Face		0.35	0.59	1.18	1.35	0.38	1.32	0.28	0.37	0.87	0.35	0.91	1.35	0.19

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of UnionTrust, this report can't be reproduced except in full.

Appendix A. SAR Plots of System Verification

The plots for system verification with largest deviation for each SAR system combination are shown as follows.

Appendix B. SAR Plots of SAR Measurement

The SAR plots for highest measured SAR in each exposure configuration, wireless mode and frequency band combination, and measured SAR > 1.5 W/kg are shown as follows.

Appendix C. Calibration Certificate for Probe and Dipole

The calibration certificates are shown as follows.

Appendix D. Photographs of EUT and Setup

