(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-9659

(43)公開日 平成11年(1999)1月19日

(51) Int.Cl. ⁶		識別記号	FΙ			
A 6 1 J	1/14		A61J	1/00	390S	
	1/05		A61M	1/14	520	
A 6 1 M		5 2 0	A 6 1 J	1/00	3 5 1 A	

審査請求 未請求 請求項の数4 FD (全 7 頁)

		_	
(21)出顧番号	特顏平9-181791	(71)出願人	390003263 株式会社新素材総合研究所
(22) 出顧日	平成9年(1997)6月23日	(72)発明者	東京都世田谷区大原 2 「目21番13号本林 博志 東京都新宿区矢来町52番地

(54) 【発明の名称】 医療用容器

(57)【要約】

【目的】 製造前、製造後、或いは長期保存後のどの段階であってもPH値がほぼ一定に維持され、且つ炭酸ガス濃度も一定に維持される炭酸成分入り医療用溶液を収容した医療用容器を提供。

【構成】 一の室に重炭酸又は炭酸から成る炭酸成分溶液を液密に収容し、他の室に炭酸成分以外の電解質からなる母液を液密に収容した多室容器からなり、使用時に上記各室同士を連通して炭酸成分溶液と母液とを混合して炭酸成分入り医療用溶液が提供される医療用容器において、上記混合後の医療用溶液中に重炭酸イオン量が10~35mmo1/Lの範囲で含まれるように上記一の室に上記炭酸成分が収容され、上記混合後の医療用溶液中に上記炭酸成分の一部が炭酸(炭酸イオン及び炭酸ガス)を10~80mmHgの範囲で生じるように上記他の室の母液に過剰酸が含まれていることを特徴とする。

【特許請求の範囲】

【請求項1】一の室に重炭酸又は炭酸から成る炭酸成分溶液を液密に収容し、他の室に炭酸成分以外の電解質からなる母液を液密に収容した多室容器からなり、使用時に上記各室同士を連通して炭酸成分溶液と母液とを混合して炭酸成分入り医療用溶液が提供される医療用容器において、

上記混合後の医療用溶液中に重炭酸イオン量が10~3 5 mm o 1/Lの範囲で含まれるように上記一の室に上 記炭酸成分が収容され、

上記混合後の医療用溶液中に上記炭酸成分の一部が炭酸 (炭酸イオン及び炭酸ガス)を10~80mmHgの範 囲で生じるように上記他の室の母液に過剰酸が含まれて いることを特徴とする炭酸成分入り医療用容器。

【請求項2】上記炭酸成分溶液には保存時に炭酸成分の分解喪失を防止するための過剰アルカリ塩(B)を添加し、上記母液中に過剰酸を、0.5mEq/L≤過剰酸(A)-過剰アルカリ塩(B)≤5.0mEq/Lの範囲となるように添加することを特徴とする請求項1記載の医療用容器。

【請求項3】少なくとも上記一の室をガスバリアー性の 包装材で包装してなることを特徴とする請求項2記載の 医療用容器。

【請求項4】上記包装材の包装が真空包装であることを 特徴とする請求項3記載の医療用容器。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、輸液、透析液、臓器保存液等を収納した医療用容器に関するものであり、特に、安定性に欠ける炭酸成分を含有させた医療用溶液を収容した医療用容器に関するものである。

[0002]

【従来の技術】一般に重炭酸ナトリウム溶液を樹脂容器等に収容すれば、加熱或いは保存中に分解し、炭酸ガスが発生し、炭酸ガスは容器壁を透過して消失する。かかる分解により溶液中には [OH-]が電離平衡のため増加し、溶液のPH値は上昇する。このため、医療用容器を長く保存するために、医療用容器をガスバリアー性の包装体で密封包装し、包装体内に炭酸ガスを導入したり、炭酸ガス発生型の脱酸素剤を配して医療用容器の外側を炭酸ガス雰囲気とすることにより、樹脂容器内の炭酸ガスが樹脂容器外にでることを阻止した技術が提案されている(特許第2527532号公報、特開昭6-105905号公報)。

[0003]

【発明が解決しようとする課題】しかしながら、従来の 炭酸成分を含有した医療用容器の製造方法には以下の点 で問題が見られる。包装体に炭酸ガスを収容したもの も、或いは脱酸素剤を配したものも、医療用容器内の溶 液の初期PH値は蒸気減菌処理時の若干の炭酸イオンの 喪失のため8.32或いは8.60と高い。そして、10日後以降に医療用容器内のPH値が8.0以下を示す。これは、医療用容器内のPH値が8.0以下を示す。これは、医療用容器内の溶液が容器壁を透過してくる炭酸ガスを取り込んだものと考えられる。しかし、このような医療用容器にあっては、初期組成から明らかに相違し、どの程度の炭酸ガスが医療用容器内の溶液に溶け込んだか不明である。また、炭酸ガスを過剰に取り込んだ溶液では溶液中のカルシウムイオンやマグネシウムイオンと反応して沈殿物を生じるおそれがある。従って、本発明は製造前、製造後、或いは長期保存後のどの段階であってもPH値がほぼ一定に維持され、且つ炭酸ガス濃度も一定に維持される炭酸成分入り医療用溶液を収容した医療用容器を提供することにある。

[0004]

【課題を解決するための手段】本発明は、一の室に重炭 酸又は炭酸から成る炭酸成分溶液を液密に収容し、他の 室に炭酸成分以外の電解質からなる母液を液密に収容し た多室容器からなり、使用時に上記各室同士を連通して 炭酸成分溶液と母液とを混合して炭酸成分入り医療用溶 液が提供される医療用容器において、上記混合後の医療 用溶液中に重炭酸イオン量が10~35mmol/Lの 範囲で含まれるように上記一の室に上記炭酸成分が収容 され、上記混合後の医療用溶液中に上記炭酸成分の一部 が炭酸(炭酸イオン及び炭酸ガス)を10~80mmH gの範囲で生じるように上記他の室の母液に過剰酸が含 まれていることを特徴とする炭酸成分入り医療用容器を 提供することにより、上記目的を達成したものである。 【0005】上記医療用容器は通常可撓性壁を有する樹 脂容器である。可撓性壁は撓むことにより容器内の容積 が容易に変化するものであれば良い。また容器壁は内容 物の確認できる程度に透明性を有することが望ましい。 容器内での薬剤の状態を確認する上で必要となるからで ある。上記容器は、インフレーションフィルム、チュー ブ、シート及びフィルムから成形したもの、押出成形、 射出成形、又はブロー成形したものである。樹脂容器の 樹脂素材としてはポリオレフィン系樹脂、塩化ビニル、 塩化ビニリデン系樹脂、ポリエステル系樹脂、ポリビニ ルアルコール系樹脂、ポリアクリルニトリル系樹脂、ポ リアクリル酸系樹脂、ポリアミド系樹脂等の汎用樹脂で ある。また樹脂容器は単層又は多層で形成されていても 良い。樹脂容器内の薬剤と接触する最内層は、薬剤に影 響を与えない、また溶出物が生じない樹脂層であること が望ましい。このような樹脂としては、ポリオレフィン 系樹脂が望ましく、例えば、低、中、高一密度ポリエチ レン、ポリプロピレン等の低級オレフィン樹脂等が挙げ られる。また、樹脂容器壁にはガスバリアー性層が形成 されていることが望ましい。特に、酸素等を容易に透過 しない層であることが望ましい。このようなガスバリア ー性層としては、殆ど、又は全くガスを透過させないア ルミニウム等の金属層や酸化珪素、酸化マグネシウム、

酸化チタン等の無機蒸着層であり、またポリ塩化ビニリ デン、ポリエステル、ナイロン、エチレンービニルアル コール共重合体、フッ素系樹脂等のようにガスバリアー 性の高い樹脂層である。ガスバリアー性層の酸素透過量 は40cc・20μ/m²・day・atm (温度:2 0℃) 以下、特に、30cc·20µ/m²·day· atm以下、また好ましくは5cc・20μ/m²・d ay・atm以下、更には1 cc・20μ/m²・da y・a t m以下であることが望ましい。また、樹脂容器 の壁は内部の薬剤が確認できる程度に透明性を有するこ とが望まれる。このため、ガスを全く透過させない優れ た機能を有する上記アルミニウム層等の金属層から成る 壁は少なくとも一部においてその金属層が剥離可能に形 成されていることが望ましい。かかる層を有した樹脂容 器においては高圧蒸気滅菌時に内部の薬剤の熱による変 質を十分に防止することができる。

【0006】上記炭酸成分と母液とを分けて液密充填し 蒸気滅菌処理する。炭酸成分溶液と母液とを分けて液密 に収容するとは、上記炭酸成分溶液と上記母液を個別に 収容する複数の室を有した樹脂製の容器を用いても良 い。このような容器が複数の室に分割される場合には室 と室とを隔離する部分に容器壁越しの操作により室と室 とを互いに連通する連通手段を構成することが望まし い。かかる連通手段とは、閉鎖型管の端部を容器壁越し に破断して該管を連通管とするもの、隔離部分を挟持ク リップ等で止めたもの、或いは、隔離する部分を外側か らの操作により剥離可能なピールシール部とするもの 等、その他公知の無菌的連通が可能な手段である。ま た、上記炭酸成分と上記母液とを別個の容器に収容して これを接続した複数容器からなるものでも良い。容器同 士の接続には上記ピールシール部で構成した容器端部同 士を接続して使用時に容器越しの操作で連通可能な構造 となるもの、容器同士をそれ自体公知の連通針を備えた 連通手段で連通操作可能なもの等が挙げられる。尚、容 器が複数容器から構成されるものは、少なくとも一方は ガラス製の容器であっても良いが、好ましく樹脂製容器 同士から構成することが望ましい。また特に、複数の室 は容器越し及び包装体越しに連通過能なピールシール部 で形成或いは接続されている容器であることが望まし W.

【0007】即ち、上記ピールシール部は弱シール部とも称され、外部から室或いは容器を圧迫し、内部が一定の昇圧状態になったときに剥離する隔離シール部である。上記ピールシール部の剥離強度は、室内の圧が0.01~1.0Kgf/cm²、特に、0.05~0.5Kgf/cm²の昇圧で剥離する強度が望ましい。上記範囲を下回る強度であれば、製造、運搬、保存時等の隔離状態を保つための安全性に欠ける。上記範囲を上回る強度であれば、用時に室と室同士の連通操作を容易にすることができなくなるおそれがある。樹脂容器の内層同

士のピールシールの形成或いは完全固着シールを形成す る場合にはそれ自体公知の技術を用いることができ、こ れらのシールを確実に異ならせて形成するためには、樹 脂容器の内層が異なる樹脂のプレンド物であることが望 ましい。特に、異なる樹脂は、熱溶融開始温度、或いは ピカッド軟化点が異なり、相溶性のあまりない樹脂ブレ ンド物からなることが望ましい。かかるブレンド物層を 有することより、同一の内層で、完全な密封シール接着 のシール温度条件設定が簡単にできる一方、ピールシー ル接着のシール温度条件設定も簡単にできる。また、ピ ールシール接着に求められるシール強度、即ち、使用時 の外力による易剥離性と、保存時に剥離が生じないシー ル強度との関係を厳密に設定することができる。即ち、 内層に相溶性の異なる樹脂を溶融混合し、これをシート 状に成形することによって、ミクロ的に熱接着性の異な る部分に分離した表面としたものである。そして、任意 の温度におけるそのシートの表面相互のミクロ的な部分 の熱溶融性を決めることにより、シール強度の強弱を正 確に付け、上記効果を容易に達成するものである。

【0008】上記母液は輸液、透析液、臓器保存液に用 いられる成分であり、例えば、ナトリウム、カリウム、 マグネシウム、カルシウム、クロール、リン等、その他 の人体に存在する無機電解質、酢酸、乳酸、クエン酸 等、その他の人体に存在する有機電解質等であり、ま た、電解質の他に糖類、アミノ酸、蛋白質、脂肪等のエ ネルギー、必要により生理活性物質、ビタミン等も含ま れる。尚、母液は樹脂容器に無菌的に充填しても良い が、樹脂容器の収容室に液密収容した後、蒸気滅菌処理 されたものである。かかる滅菌処理により、母液の滅菌 が確実になされ、患者への安全な投与ができるからであ る。上記一の室の炭酸成分溶液は、上記混合後の医療用 溶液中に重炭酸イオン量が10~35mmol/Lの範 囲、特に15~30mmol/L、より好ましくは20 ~28mmo1/Lの範囲になるように重炭酸塩或いは 炭酸塩を溶解したものである。血漿中の重炭酸イオン濃 度は22~26mm q/Lが正常とされ、医療用溶液中 にはかかる正常値の範囲で含ませることが望ましいが、 輸液剤等は一時的に投与されるものであるため、正常値 より投与値は広い範囲で許容できる。また炭酸成分溶液 中にはナトリウム、カリウム等のアルカリ塩が上記炭酸 成分である重炭酸イオン量と同等又はそれ以上を含有さ せることが望ましい。アルカリ塩が同等又はそれ以上含 まれる場合には炭酸が弱酸であることから上記一の室内 がアルカリ性に維持され、炭酸成分が炭酸ガスとして容 器外に喪失することを極力抑えることができる。上記炭 酸成分溶液の容積容量は母液容積容量の1/10~1/ 1であることが望ましい。上記炭酸成分溶液の容積容量 が上記範囲を下回ると充填誤差が大きくなり製造ライン に支障を来す。

【0009】上記混合後の医療用溶液中に上記炭酸成分

の一部から10~80mmHgの範囲で炭酸(炭酸イオ ン及び炭酸ガス)が生じるように上記他の室の母液には 過剰酸が含まれる。母液は電解質溶液であるため通常、 溶液中には {OH-、X-、Y-、Z-、···}と {H¹、A¹、B¹、C¹・・} との種々の陽及び負イオン が解離して存在している。そして、PH値が7付近であ れば、水素イオン及び水酸基イオンを除いた場合でも {X-、Y-、Z-・・}と{A*、B*、C*・・}との陽 ・負電解質イオン量は等しい。しかし、負電解質を陽電 解質より過剰に存在させた場合、過剰負電解質イオン量 $= \{X^-, Y^-, Z^- \cdot \cdot\} - \{A^+, B^+, C^+ \cdot \cdot\} \ge c$ り、かかる負電解質イオン量と溶液中の水素イオン[H †]とが平衡を保ちPH値が下がる。これが過剰酸状態 である。このような過剰酸が存在する母液にあっては、 例えば25.0mmo1/Lに相当する重炭酸ナトリウ ムからなる炭酸成分を過剰酸1.0mEq/Lの母液に 混合すると、炭酸ガス及び炭酸イオンが発生する。重炭 酸は母液中の塩酸、乳酸、酢酸等よりも弱酸であるた め、混合前まで重炭酸イオンと平衡関係にあったナトリ ウムイオンの25mmol/L中、混合後の医療用溶液 中では過剰酸の1mmg/L量だけ電離関係を持つ。こ こで、その他の電解質の緩衝作用により混合医療用液の PH値が7付近に維持されると、水酸基イオンも水素イ オンもナノ単位量であるため、重炭酸イオンの25mE q/L中1mmolの[HCO3-]は[H*]と結合し て、炭酸ガスとして溶液中に解けるか、一部は溶液外に 放出される。従って、混合医療用溶液中の重炭酸イオン は24mEq/Lとなり、医療用溶液中には炭酸ガスが 発生して一部又は全部が溶解されて、炭酸ガスは下記式 のヘンダーソン・ハッセルバルヒの式に従って溶液のP H値に寄与する。PH値=6.1+Log[HCO3-] $/[0.03\times P(CO_2)]$

【0010】本発明に係る医療用容器では、混合医療用 溶液中に炭酸ガスが10~80mmHgの範囲で生じ る。このため、理論上、過剰酸は80×0.03mEq /L~10×0.03mEq/L、即ち2.4~0.3 mEq/Lの範囲で含まれる。しかし、過剰酸に対して 全て炭酸ガスが混合溶液中に溶解せずに外界にも放出さ れる。かかる炭酸ガスの放出量は発生する炭酸量にもよ るが、100mmHg~200mmHgの間では約50 %が放出され、50mmHg~90mmHgの間では約 40%程度が放出される。従って、かかる量を考慮すれ ば、過剰酸はO.5~5mEq/Lで存在することがで き、特に1.0~2.4 m E q/Lの範囲で存在するこ とが望ましい。尚、本発明に係る混合医療用溶液中の炭 酸濃度は上記ヘンダーソン・ハッセルバルヒの式から求 めるものである。また過剰酸は炭酸を混合医療用溶液中 に発生させる目的とする酸である。例えば、炭酸成分の 一の室に重炭酸イオンと当モル量のナトリウム等の塩が 含まれない場合、即ち、炭酸成分のアルカリ性を高める ため水酸化ナトリウム等を加えて重炭酸イオンより過剰 アルカリ塩(B)が含まれる場合には、母液中の過剰酸 は炭酸ガスの発生を目的とする量の他に、かかる過剰ア ルカリ塩と同等の酸、例えば塩酸等が更に加算されるも のである。

【0011】このように構成された本発明に係る炭酸成分入り医療用容器では、製造後において炭酸ガス等の吸収或いは補給をする必要がないため、医療用溶液に変動が生じない。また使用時に各室同士を連通するのみで炭酸ガスが医療用溶液中に生じ、体液とほぼ同様な成分組成を維持させることができる。特に、血漿中に近い重炭酸イオン量と炭酸ガスとを存在させ、PH値も血漿に近い値とすることができる。このため、従来から生じる乳酸アシドーシス等を起こすことがない。

【0012】本発明に係る請求項2記載の医療用容器は、請求項1記載の医療用容器において、上記炭酸成分溶液には保存時に炭酸成分の分解喪失を防止するための過剰アルカリ塩(B)を添加し、上記母液中に過剰酸を、0.5mEq/L≤過剰酸(A)-過剰アルカリ塩(B)≦5.0mEq/Lの範囲となるように添加することを特徴とする。上記一の室に収容される炭酸成分溶液に過剰アルカリ塩(B)を添加すると炭酸成分が分解して室外にでることが極力抑えられる。通常、医療用容器を高圧蒸気減菌処理したときの加熱により炭酸成分が分解し易くなる。保存時に不用意に高温下に晒した場合にも炭酸成分の一部が炭酸ガスとして喪失するおそれが生じる。しかし、重炭酸イオン量よりアルカリ塩(B)を過剰にした炭酸成分溶液にあっては、炭酸成分の一部が炭酸ガスとして放出するのを防止する。

【0013】本発明に係る請求項3記載の医療用容器 は、請求項2記載の医療用容器において、少なくとも上 記一の室をガスバリアー性の包装材で包装してなること を特徴とする。ガスバリアー性の包装材で医療用容器の 全体を包装しても良く、また上記一の室のみを包装して も良い。上記一の室に過剰アルカリ塩(B)が存在する と、保存時に外界の炭酸ガスを容器越しに吸収するおそ れがある。このため、炭酸成分量が保存中に変わり、医 療用溶液の安定性に問題が生じる。しかし、上記ガスバ リアー性の包装材で上記一の室を包装することにより外 界から炭酸ガスを吸収することがない。本発明に係る請 求項4記載の医療用容器は、請求項3記載の医療用容器 において、上記包装材の包装が真空包装であることを特 徴とする。保存時に不用意に高温下に晒した場合に炭酸 成分の一部が容器外に出るおそれがあり、かかる炭酸ガ スが出た場合、医療用溶液の安全性が失われる。そこ で、上記ガスバリアー性の包装材で真空包装すると、使 用時に高温化に晒された医療用容器が炭酸ガスを容器外 に放出した場合、包装材内に炭酸ガスが溜まり、使用直 前に安全性を欠いた医療用容器の認識が容易にでき、医 療用容器の危険な使用を避けることができる。

【0014】具体的なガスバリアー性包装体としては、 包装壁が殆ど、又は全くガスを透過させないアルミニウ ム等の金属層、またポリ塩化ビニリデン、ポリエステ ル、ナイロン、エチレンービニルアルコール共重合体、 フッ素系樹脂等のようにガスバリアー性の高い樹脂層、 又はアルミニウム、珪素、マグネシウム、チタン、銀、 金等の土類金属若しくは金属、又はその酸化物の蒸着層 等を有するものである。包装体におけるガスバリアー性 層の酸素透過量は40cc・20μ/m²・day・a tm (温度: 20℃) 以下、特に、30cc·20μ/ m²·day·atm以下、また好ましくは5cc・2 0μ/m²·day·atm以下、更には1cc·20 $\mu/m^2 \cdot day \cdot atm以下であることが望ましい。$ 包装体におけるガスバリアー性層の炭酸ガス透過量は、 200cc·20µ/m²·day·atm(温度:2 5℃) 以下、特に、100cc·20µ/m²·day ·atm以下、また好ましくは10cc・20μ/m² ·day·atm以下、更には1cc·20μ/m²· day・atm以下であることが望ましい。

[0015]

【実施例】以下、本発明に係る炭酸成分入り医療用容器 の好ましい実施例を添付図面を参照しながら詳述する。 図1は本発明に係る炭酸成分入り医療用容器における第 一実施例の平面図である。図2は第一実施例の医療用容 器の使用時の平面図である。本実施例に係る炭酸成分入 り医療用容器1は一の室2に重炭酸から成る炭酸成分溶 液3を液密に収容し、他の室5に炭酸成分以外の電解質 からなる母液6を液密に収容した多室容器からなり、使 用時に上記各室2、3同士を連通して炭酸成分溶液3と 母液6とを混合して炭酸成分入り医療用溶液9が提供さ れる医療用容器である。医療用容器1は上記混合後の医 療用溶液9中に重炭酸イオン量が10~35mmo1/ Lの範囲で含まれるように上記一の室2に炭酸成分が収 容され、上記混合後の医療用溶液9中に上記炭酸成分の 一部が10~80mmHgの範囲で炭酸(炭酸イオン及 び炭酸ガス)が生じるように上記他の室5の母液6に過 剰酸が含まれている。

【0016】第一実施例に係る炭酸成分入り医療用容器 1を更に詳しく説明すると、医療用容器 1はブロー成形物からなり、ブロー成形物の胴壁の厚みは250μmで、その容量は1600mlで、長さが500mmで、幅が200mmである。ブロー成形物の胴壁は外層と内層との二層に成形され、外層は厚みが220μmの直鎖状低密度ポリエチレン(密度:0.935g/cm³、MI:2、融点:121℃)からなる。内層は厚みが30μmの直鎖状低密度ポリエチレン(密度:0.935g/cm³、融点:121℃)とポリプロピレン(密度:0.900g/cm³、MI:0.7、融点:165℃)とを2:1の割合で混合したブレンド物の層からなる。ブロー成形物はブロー成形時のブロー吹出口が医

療用容器1における排出用ボート8として形成され、対向端部に混注用ボート7が形成されている。医療用容器1の胴部には容器1内を二室に分ける接着シール部4、4が形成されている。接着シール部4、4は内壁同士が液密に接着シールされて形成され、接着シール部4、4は剥離可能なビールシールである。接着シール部の剥離強度は、一の室2内の圧が0.01~0.03Kgf/cm²の昇圧で剥離する強度である。

【0017】接着シールで隔離される医療用容器1の一 の室2には炭酸成分溶液3が収容され、他の室5には母 液6が収容される。炭酸成分溶液3には炭酸水素ナトリ ウム26mmolが水500mlに含有され、母液に は、塩化ナトリウム102mmol、塩化カリウム4m o1、塩化カルシウム1.5mo1、グルコース40g 及び過剰酸として乳酸2.5mmolが水500mlに 含有されている。次に、第一実施例の医療用容器1の製 造方法について説明すると、ブロー成形により医療用容 器1の本体を作製し、接着シール部4、4を形成した 後、各室2、5内を洗滌、乾燥する。次に、混注用ポー ト7から上記炭酸成分溶液3を収容室2に充填し、混注 用ポート7をゴム栓で液密に密封する。排出用ポート8 から上記母液6を収容室5に充填し、排出用ポート8を ゴム栓で液密に密封する。密封後、温度110℃で高圧 蒸気滅菌処理する。高圧蒸気滅菌処理の際にはオートク レーブ内を窒素と共に炭酸ガス100mmHgの雰囲気 で行う。冷却後、これを医療用容器1とする。かかる第 一実施例の医療用容器1を10サンプル製造し、図2に 示す如く接着シール部4、4を剥離して上記炭酸成分溶 液3及び母液6を混合し、その混合医療用溶液1中のP H値及び総炭酸量の測定から該溶液1中の重炭酸イオン 量及び炭酸ガス量を求めその結果を表1に示した。

[0018]

【表1】

実施例1 サンブルN o	重良酸イオン量 (a rol/L)	戻設ガス電 (malls)	PHW
1	22, 9	52	7. 27
2	23. 2	67	7. 23
3	23.3	61	7.20
4	23.5	66	7. 17
6	23.8	51	7. 29
6	23. 1	53	7. 26
7	23.4	59	7. 22
8	23.5	55	7. 25
9	23. 0	54	7. 25
10	23. 2	54	7. 26

【0019】上記表1の結果から医療用容器1内の医療用溶液9は重炭酸イオン濃度及び炭酸ガス量がほぼ血漿中に近い状態で得られることが分かる。またサンプルのばらつきも許容されるものである。また、上記医療用容器1では各溶液3、6の分注誤差も製造上少なく、また蒸気滅菌時の炭酸ガスの喪失も許容範囲内であることが分かる。

【0020】次に、本発明に係る医療用容器の第二実施例について説明する。図3は本発明に係る医療用容器の

第二実施例の平面図である。図3に示す如く第二実施例 に係る医療用容器11は第一実施例に係る医療用容器1 とほぼ同様な構成からなるが、異なる点は以下の点にあ る。上記炭酸成分溶液13には重炭酸ナトリウム26m mol及び水酸化ナトリウム5mmolが500mL含 有されている。母液16には、塩化ナトリウム102m mol、塩化カリウム4mol、塩化カルシウム1.5 mol、グルコース40g及び過剰酸として塩酸5.0 mmol、及び酢酸1.5mmolが水500mlに含 有されている。また医療用容器11は通常の蒸気滅菌処 理した後に包装体21で上記炭酸成分溶液13の収容室 2の部分が真空密封包装されている。包装体21は低密 度ポリエチレン層:50μm/エチレン・ビニルアルコ ール共重合体層:20 m/低密度ポリエチレン層:5 $0\mu m$ からなり、炭酸ガス透過量が $0.81cc/m^2 \cdot 2$ 4hr (温度25℃、DRY) 以下のガスバリアー性シートか らなる。かかる第二実施例の医療用容器 1 1 を第一実施 例と同様に10サンプル製造し、1カ月間室温で保存し た後に接着シール部4、4を剥離して上記炭酸成分溶液 13及び母液16を混合し、その混合医療用溶液中のP H値及び総炭酸量の測定から該溶液中の重炭酸イオン量 及び炭酸ガス量を求めその結果を表2に示した。

[0021]

【表2】

実施例 2 サンプルNo	電 皮酸イオン量 (a noi/L)	炭酸ガス型 (gmilg)	РНСС
1	24. 5	41	7.40
2	24. 5	42	7.39
3	24.2	44	7.37
4	24.6	43	7.38
5	24.6	41	7.40
6	24, 4	45	7.36
7	24.0	48	7.32
8	24. 2	42	7.38
9	24.4	47 .	7. 34
10	24. 1	45	7.34

【0022】上記表2の結果から医療用容器11内の医療用溶液は重炭酸イオン濃度及び炭酸ガス量が血漿中と同様な状態で得られることが分かる。またサンプルのばらつきも殆ど無かった。また蒸気滅菌時の炭酸ガスの喪失も殆ど無かった。上記実施例では、輪液剤の組成を用

いたが、臓器保存液等に用いても良い。上記実施例では、輸液剤の母液を一の収容室5に収容したが、アミノ酸と糖とを含むものについては母液収容室5を更に2以上の室に分けても良い。上記実施例では、ブロー成形物から容器本体を成形したが、可撓性で透明性を有する限り、インフレーション樹脂シート、射出成形物、真空成形物等であっても良い。上記実施例では、収容室は容器を区分して形成したが、別別の容器を接続させて形成しても良く、また、無菌的連通手段は剥離可能な接着シール部である必要はない。

[0023]

【発明の効果】以上説明したように本発明に係る炭酸成分入り医療用容器によれば、上記混合後の医療用溶液中に重炭酸イオン量が10~35mmol/Lの範囲で含まれるように上記一の室に上記炭酸成分が収容され、上記混合後の医療用溶液中に上記炭酸成分の一部が炭酸(炭酸イオン及び炭酸ガス)を10~80mmHgの範囲で生じるように上記他の室の母液に過剰酸が含まれているので、製造前、製造後、或いは長期保存後のどの段階であってもPH値がほぼ一定に維持され、且つ炭酸ガス濃度も一定に維持される炭酸成分入り医療用溶液を収容することができる。

【図面の簡単な説明】

【図1】図1は本発明に係る炭酸成分入り医療用容器における第一実施例の平面図である。

【図2】図2は第一実施例の医療用容器の使用時の平面図である。

【図3】図3は本発明に係る医療用容器の第二実施例の 平面図である。

【符号の説明】

9

Į
ß

医療用溶液

