Introduction to SQL Tuning

Objectives

After completing this lesson, you should be able to:

- Describe SQL tuning
- Explain SQL tuning strategies
- Describe Oracle SQL Developer
- Describe SQLTXPLAIN (SQLT)

Recognize: What Is Bad SQL?

- Bad SQL uses more resources than necessary.
- Bad SQL has the following characteristics:
 - Excessive parse time
 - Excessive I/O (physical reads and writes)
 - Excessive CPU time
 - Excessive waits

Clarify: Understand the Current Issue

Changes that might trigger the issue:

- Database upgraded
- Statistics gathered
- Schema changed
- Database parameter changed
- Application changed
- Operating system (OS) and hardware changed
- Data volume changed by more active users

Verify: Collect Data

These tools are available to identify bad SQL statements:

- Client Reports
- OS Statistics
- SQL Trace Facility
- Trace Analyzer (TRCANLZR)
- SQLTXPLAIN (SQLT)
- SQL Performance Analyzer (SPA)
- Automatic Workload Repository (AWR) Report
- Active Session History (ASH) Report
- Top SQL Report
- Automatic Database Diagnostic Monitor (ADDM)

Checking the Basics

Always check the basics first.

- Ensure that up-to-date statistics are collected properly.
- Ensure that reasonable initialization parameters are set.
- Ensure that the proper optimizer mode is set.
- Ensure that appropriate and valid hints are used.

Parse Time Reduction Strategy

Example 1: Inefficient SQL statements

- Example 2: Cursor sharing
- Example 3: Connection management

Find a Good Plan

- Use SQL Tuning Advisor (if you can).
- Get a good test case.
- Leverage the optimizer by changing settings to obtain the better plan (SESSION only):
 - OPTIMIZER_MODE (FIRST_ROWS_N, ALL_ROWS)
 - OPTIMIZER FEATURES ENABLE
 - OPTIMIZER INDEX COST ADJ
 - OPTIMIZER_INDEX_CACHING
- Try dynamic sampling at high levels.
- Try appropriate hints.

Implement the New Good Plan

- Use a stored outline.
- Accept a profile from STA.
- Use a SQLT profile that was generated from a good plan.
- Use SQL Plan Management (11g feature).

Query Analysis Strategy: Overview

- · Use this strategy when:
 - A good plan is not available
 - An urgent solution is not required
 - You want to determine an underlying cause
 - The query may be modified
- This strategy focuses on:
 - Statistics and parameters
 - SQL statement structure
 - Data access paths
 - Join orders and join methods
 - Other operations, such as parallelism or partition pruning

Query Analysis Strategy: Collecting Data

- Collect data for the query:
 - Execution plans
 - Information about each table or view
 - Object statistics and system statistics
 - Histograms
 - Parameter settings
- Tools available to collect data:
 - SQLT
 - Extended SQL trace and tkprof
 - SPREPSQL.SQL
 - AWRSQRPT.SQL
 - And more

Query Analysis Strategy: Examining SQL Statements

Look at the query for common mistakes:

- Understand the volume of resulting data.
- Ensure that no join predicates are missing.
- Look for unusual predicates.
- Look for constructs known to cause problems such as large IN list / OR statement, outer joins, hierarchy queries, views, inline views, and subqueries.

Query Analysis Strategy: Analyzing Execution Plans

Analyze the execution plan to find areas that need to be tuned:

- Examine data access paths, such as full table scan, index full scan, and index fast full scan.
- Examine join order and join types, such as nested loop join, hash join, and sort merge join.
- Review the actual number of rows and the estimated number of rows that are returned by the query.
- Look for plan steps where there is a large discrepancy between the actual and estimated rows.
- Look for plan steps where cost and logical read differ significantly.

Query Analysis Strategy: Finding Execution Plans

Use the following tools to find execution plans:

- V\$SQL PLAN (Library Cache)
- V\$SQL PLAN MONITOR (11g)
- DBA HIST SQL PLAN (AWR)
- SQL management base (SQL plan baselines)
- SQL tuning set
- Trace files generated by DBMS MONITOR
- Event 10053 trace file
- SQLTXPLAIN report
- SQL Trace
- Extended SQL trace and tkprof
- SPREPSQL.SQL
- AWRSQRPT.SQL

Query Analysis Strategy: Reviewing Common Observations and Causes

Review common observations and causes:

- Poorly written SQL
- Index used / not used
- Lack of an index
- Wrong join order
- Wrong type
- · Predicates not pushed, views not merged
- Transformation improperly costed
- Other problems

Query Analysis Strategy: Determining Solutions

Consider possible solutions:

- Gather statistics properly.
- Create a new index or re-create an existing index.
- · Use the SQL Advisors with the Tuning Pack option.
- Use hints and stored outline to get the preferred plan.
- Use SQL Plan Management.
- Use dynamic sampling to obtain accurate selectivity estimates.
- Eliminate implicit data type conversions.
- Create a function-based index.
- Rewrite the query to permit the use of an existing index.
- · Load the data in the key order.

Query Analysis Strategy: Determining Solutions

Consider possible solutions:

- Use an Index-Organized Table (IOT).
- · Remove hints that influence the choice of index.
- Correct common problems with hints.
- Use the correct optimizer mode.
- Add the appropriate join predicate for the query.
- Review the intent of the query and ensure that a predicate is not missing.
- Use parallel execution / parallel data manipulation language (DML).
- Ensure that array processing is used.
- Use materialized views and query rewrite.

Development Environments: Overview

- Oracle SQL Developer
- Oracle SQL*Plus

What Is Oracle SQL Developer?

- Oracle SQL Developer is a free graphical tool that improves productivity and simplifies database development tasks.
- You can connect to any target Oracle database schema by using standard Oracle database authentication.
- You use Oracle SQL Developer in this course.
- Appendix C contains details for using Oracle SQL Developer.

SQLTXPLAIN (SQLT) Diagnostic Tool

Quiz

Although views provide clean programming interfaces, they should be used carefully because they can cause suboptimal, resource-intensive queries when nested too deeply.

- a. True
- b. False

Quiz

Identify the characteristics that must be supported by an application that is designed for SQL execution efficiency.

- a. Use concurrent connections to the database.
- b. Use cursors so that SQL statements are parsed once and executed multiple times.
- c. For data-warehousing queries, cursor sharing is always important to get the best plan.

Summary

In this lesson, you should have learned how to:

- Describe SQL tuning
- Explain SQL tuning strategies
- Describe Oracle SQL Developer
- Describe SQLTXPLAIN (SQLT)

Practice 2: Overview	
This practice covers using SQL Developer.	