KDD'24 | 腾讯广告:深入理解推荐模型Ranking Loss

原创 州懂学习笔记 州懂学习笔记 2024年09月23日 08:15 广东

州懂学习笔记

分享大模型推荐系统相关知识和学习笔记 37篇原创内容

公众号

KDD'24 | 腾讯广告:深入理解推荐模型Ranking Loss

标题: Understanding the Ranking Loss for Recommendation with Sparse User Feedback

地址: https://arxiv.org/pdf/2403.14144

公司: 腾讯广告 会议: KDD'24

代码: https://github.com/SkylerLinn/Understanding-the-Ranking-Loss

1. 问题背景

近年来, 业界有不少工作是在CTR模型中额外引入排序损失函数, 即:

$$L_{\rm final} = \alpha L_{\rm classification} + (1 - \alpha) L_{\rm rank}$$

比如早年Twitter的工作《Click-through Prediction for Advertising in Twitter Timeline》, 去年KDD'23阿里的JRC方法《Joint Optimization of Ranking and Calibration with Contextualized Hybrid Model》,这些都取得了不错的业务收益。

已有的工作主要将效果归功于Ranking Loss的引入提升了模型的排序能力,但是,并没有分析 Ranking Loss的引入对CTR模型主要的分类能力的影响。这里,作者的研究重点在于探索这种组合损失对模型分类能力的影响。

2. 梯度消失视角分析

2.1 组合损失代表: Combined-Pair Loss

这里作者DCN-V2作为Backbone模型,并使用Combined-Pair Loss的组合损失作为不失一般性的研究对象,其分类损失使用Binary Cross Entropy(简称BCE),而排序损失使用RankNet loss, 具体地:

$$\mathcal{L}_{ ext{BCE}} = -rac{1}{N} \sum_{i=1}^N [y_i \log(\sigma(z_i)) + (1-y_i) \log(1-\sigma(z_i))]$$

$$\mathcal{L}_{ ext{RankNet}} = -rac{1}{N_{+}N_{-}} \sum_{i=1}^{N_{+}} \sum_{j=1}^{N_{-}} \log(\sigma(z_{i}^{(+)} - z_{j}^{(-)}))$$

同样的, 也是做加权融合

$$\mathcal{L}^{\mathrm{CP}} = \alpha \mathcal{L}_{\mathrm{BCE}} + (1 - \alpha) \mathcal{L}_{\mathrm{RankNet}}$$

2.2 分类能力探究

现有的研究一般认为,在BCE损失之外引入Ranking Loss是可以提高排序能力,但对于CTR模型的分类能力的影响并没有探究。

为了探索引入Ranking Loss对CTR模型分类能力的影响,作者在公开的Criteo数据集上,分别基于BCE Loss和Combined-Pair Loss进行训练。这里,需要注意的是,由于Criteo数据集本身对负样本做了下采样,CTR很高,为了模拟真实业务中CTR正样本稀疏的情况,作者在训练和评估时都引入了小于1的正样本权重。

作者分别绘制了BCE方法和ComBined-Pair方法在验证集和测试集上的BCE损失,如下图(a)所示:

(a) BCE Loss Dynamics along epochs.

(b) Loss Landscapes.

基于上述实验, 作者发现:

发现1: Combined-Pair方法在验证集的BCE Loss比BCE方法更低, 说明了组合损失同时也提高了CTR模型的分类能力, 而不仅仅是排序能力。

发现2: Combined-Pair方法在训练集的BCE Loss比BCE方法也低, 说明引入辅助排序损失有助于BCE损失的优化。

此外,作者也分析了Combined-Pair方法和BCE方法的损失曲面的差异。如上图(b)所示,可以看到,BCE方法的损失曲面比Combined-Pair更加平缓。

2.3 梯度分析

为了深入分析上述现象产生原因,作者对BCE和Combined-Pair方法的梯度进行了详细分析。根据链式法则,DNN中每层参数的梯度与logit的梯度成正比,因此,作者分析了Logit梯度。

2.3.1 负样本BCE Loss的梯度

对于负样本的logit, 其BCE Loss的梯度可以推导为:

$$egin{aligned}
abla_{z_{j}^{(-)}} \mathcal{L}_{ ext{BCE}} = & rac{1}{1 - \sigma(z_{j}^{(-)})} \cdot \sigma(z_{j}^{(-)}) (1 - \sigma(z_{j}^{(-)})) \ = & \sigma(z_{j}^{(-)}) = \hat{m{p}}_{m{j}}. \end{aligned}$$

这表明负样本的梯度与它的pCTR值成正比,而当正反馈稀疏时,pCTR值会很小。这样,负样本的梯度也会倾向于相对较小。作者将这种现象称为在**稀疏正反馈下的负样本梯度消失**。基于此,作者得出如下结论:

发现3: 当正反馈稀疏时,负样本会发生梯度消失,因为它们正比于估计的正率成正比,而这个正率在无偏估计器中是很小的。

2.3.2 正样本BCE Loss的梯度

对于正样本的Logit, 作者也推导了其BCE Loss的梯度:

$$egin{aligned}
abla_{z_i^{(+)}} \mathcal{L}_{ ext{BCE}} &= -rac{1}{\sigma(z_i^{(+)})} \cdot \sigma(z_i^{(+)}) (1 - \sigma(z_i^{(+)})) \ &= - \left(1 - \sigma(z_i^{(+)})
ight) = - (1 - \hat{p}_i). \end{aligned}$$

可以发现, 正样本Logit的梯度 $\nabla_{z_i^{(+)}}\mathcal{L}_{\mathrm{BCE}} \propto 1-\hat{p_i}$, 在稀疏正反馈下, 1 - pCTR是接近于1, 因此不会出现像负样本那样梯度消失的问题。

2.3.3 负样本Combined-Pair Loss的梯度

Combined-Pair Loss包含两部分,先看RankNet损失中负样本logit的梯度,从上面RankNet Loss中,可以很容易推导出:

$$abla_{z_{j}^{(-)}} \mathcal{L}_{\mathrm{Rank}}^{\mathrm{CP}} = rac{1}{N_{+}} \sum_{i=1}^{N_{+}} \sigma(z_{j}^{(-)} - z_{i}^{(+)}).$$

在广告场景,由于正反馈非常稀疏,作者观察到即使是正样本的预估值也是远远低于0.5的,也就是正样本对应的logit $z_i^{(+)}$ 是小于0的,这会使得RankNet Loss中,负样本的梯度会比BCE Loss的更大,即有:

$$egin{aligned}
abla_{z_{j}^{(-)}} \mathcal{L}_{ ext{Rank}}^{ ext{CP}} = & rac{1}{N_{+}} \sum_{i=1}^{N_{+}} \sigma(z_{j}^{(-)} - z_{i}^{(+)}) \ > & rac{1}{N_{+}} \cdot N_{+} \cdot \sigma(z_{j}^{(-)}) \ = & \sigma(z_{j}^{(-)}) =
abla_{z_{i}^{(-)}} \mathcal{L}_{ ext{BCE}}. \end{aligned}$$

上述不等式说明了在稀疏正反馈的情况下,对于相同的负样本logit, RankNet Loss可能会比BCE Loss有更大的梯度。这样,对于Combined-Pair方法,下面的不等式成立:

$$egin{aligned}
abla_{z_{j}^{(-)}} \mathcal{L}^{ ext{CP}} = & lpha
abla_{z_{j}^{(-)}} \mathcal{L}_{ ext{BCE}} + (1-lpha)
abla_{z_{j}^{(-)}} \mathcal{L}_{ ext{Rank}}^{ ext{CP}} \\ > & lpha
abla_{z_{j}^{(-)}} \mathcal{L}_{ ext{BCE}} + (1-lpha)
abla_{z_{j}^{(-)}} \mathcal{L}_{ ext{BCE}} \\ = &
abla_{z_{j}^{(-)}} \mathcal{L}_{ ext{BCE}}. \end{aligned}$$

基于此, 可以得到以下结论:

发现4: 当正反馈稀疏时, 对于负样本, Combined-Pair方法有比BCE方法更大的梯度

2.3.4 实证分析验证梯度消失问题

为了实证分析验证前面的梯度消失问题,作者在训练的第一个周期检查了负样本logits的梯度范数的动态变化过程。基于Criteo数据,这里为了模拟稀疏正反馈情况,作者调整了正样本权重,并设置融合系数 $\alpha=0.5$,实验结果如下图所示:

可以看出, BCE方法对负样本的梯度范数非常小, 而相应的Combined-Pair方法就要大很多。

此外,作者还近一步的比较了DCN-V2里的DNN和CrossNet的底层梯度范数,输出了训练过程中梯度范数的第90百分位数和平均值的动态过程。

可以看出,上述负样本梯度差异在训练过程中是一直存在的,这也进一步验证了Combined-Pair方法能有效地缓解可学习参数的梯度消失问题。

3. 实验部分

同样还是基于Criteo数据集,并对正样本权重一个小于1的权重 $eta_{
m pos}$,实验主要围绕分析以下问题

3.1 RQ1: 不同正样本稀疏率下的效果评估

当正样本稀疏率小于某个阈值($\beta=0.6$) 时, Combined-Pair方法比BCE方法在AUC和BCE Loss两个指标上, 都实现了更大的效果提升。

3.2 RQ2: 分类和排序损失间的权衡

组合损失中是通过 α 来平衡分类(α)和排序($1-\alpha$)损失的。下图作者给出了不同正样本稀疏率下,通过调整 α 的值,在AUC和BCE Loss两个指标上的效果(越右上表示效果越好)。特别留意下图中剪头的几个颜色的点,分别是: 红色($\alpha=1.0$ 完全由分类损失控制)、橙色($\alpha=0.7$ 平衡了两个Loss),绿色($\alpha=0.1$ 由排序损失主导)。

可以发现:

- 橙色的剪头表明: 通过减少 α 直到某个阈值,可以单调地提高分类和排序能力
- 蓝色的剪头表明:当排序损失在组合损失中占据主导地位超过某个阈值时,分类和排序能力都会单调地恶化。
- 当正反馈非常稀疏时, 即使排序损失占据主导, 模型的效果仍优于BCE方法。

3.3 RQ3: 其他排序损失的评估

作者也分析了Combined-Pair之外的其他分类-排序组合方法(如Combined-List, RCR, JRC等)的梯度,如下图右侧所示:

可以发现,和BCE方法相比,这些组合方法在负样本的梯度范数都有不同程度的提高,表明梯度消失问题在这些方法中也得到了缓解。

此外,作者还给出了 $\beta_{pos}=0.1$ 下,不同损失组合方法的效果,说明了其它损失组合方法通过引入Ranking Loss缓解了梯度消失问题,进而带来性能提升。

Metric	BCE	BCE+Pairwise	se BCE+Listwise		
Wietrie		Combined-Pair	JRC	Combined-List	RCR
AUC↑ BCE loss↓	0.81321 0.12152	$egin{array}{c} {\bf 0.81398}^{\uparrow} \ {f 0.12131}^{\downarrow} \end{array}$	$\begin{vmatrix} 0.81355^{\uparrow} \\ 0.12146^{\downarrow} \end{vmatrix}$	0.81351↑	0.81349 [↑] 並2.12141

3.4 RQ4: 可以扩展到分类排序组合损失之外的方法

3.4.1 Focal Loss和负采样方法

3.4.2 与对比学习Loss融合的方法

Stage	Metrics	BCE Method	Combined-Contrastive
Training	Gradient Norm BCE loss↓	$\begin{array}{ c c c c } & 4.9 \times 10^{-6} \\ & 0.09667 \end{array}$	7.5×10^{-6} 0.09428^{\downarrow}
Testing	AUC↑ BCE loss↓	0.81321 0.12152	0.81340 [↑] 公众 6.12147 学习笔记

3.5 线上实验

3.5.1 整体效果

在腾讯广告的多个广告CTR预估场景下的整体效果

Table 4: Online A/B Testing Results.

Ad Scenario	CTR	GMV	Cost
WeChat Channels	+0.91%	+1.08%	+0.29%
WeChat Moment	+0.16%	+0.70%	+0.59%
WeChat Moment DSP	-0.04%	+0.55%	△ + 0.15%

3.5.2 负样本梯度分布

与BCE方法相比,Combined-Pair方法的负样本梯度分布显著右偏,表明Combined-Pair方法在负样本上获得了更大的梯度。

3.5.3 新广告冷启

越新的新广告(比如在当天创建的新广告),GMV效果提升越大,表明对冷启友好

Table 5: Online A/B Testing Results for New Ads.

Launch Date	GMV	Cost	
T	+1.04%	+0.27%	
T-1	+1.04% +1.04%	+0.27%	
T-2	+0.83% +0.81%	+0.47%	
T-3	+0.81%	+0.17%	
Total	+1.26%	+0.34%	号・州懂学习笔记