EMAp Summer Course

Topological Data Analysis with Persistent Homology

https://raphaeltinarrage.github.io/EMAp.html

Lesson 7: Topological inference

Last update: February 3, 2021

In real life, we are often given datasets that are subsets of the Euclidean space: $X \subset \mathbb{R}^n$.

Of course, \boldsymbol{X} is finite.

In real life, we are often given datasets that are subsets of the Euclidean space: $X \subset \mathbb{R}^n$.

Of course, X is finite.

In Topological Data Analysis, we think of X as being a sample of an underlying continuous object, $\mathcal{M} \subset \mathbb{R}^n$.

Understanding the topology of $\mathcal M$ would give us interesting insights about our dataset.

I - Thickenings

II - Čech complex

III - Rips complex

The Topological Inference problem

4/16 (1/13)

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded subset. Suppose that we are given a finite sample $X \subset \mathcal{M}$. Estimate the homology groups of \mathcal{M} from X.

X

 \mathcal{M}

The Topological Inference problem

4/16 (2/13)

 \mathcal{M}

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded subset. Suppose that we are given a finite sample $X \subset \mathcal{M}$. Estimate the homology groups of \mathcal{M} from X.

We cannot use X directly. Its homology is disapointing:

$$\beta_0(X) = 30$$
 and $\beta_i(X)$ for $i \ge 1$

number of connected components.

= number of points of X

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n}, \exists x \in X, ||x - y|| \le t \}.$$

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n}, \exists x \in X, ||x - y|| \le t \}.$$

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n}, \exists x \in X, ||x - y|| \le t \}.$$

 \mathcal{M}

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n}, \exists x \in X, ||x - y|| \le t \}.$$

 \mathcal{M}

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n}, \exists x \in X, ||x - y|| \le t \}.$$

 \mathcal{M}

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n}, \exists x \in X, ||x - y|| \le t \}.$$

 \mathcal{M}

We cannot use X directly.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n}, \exists x \in X, ||x - y|| \le t \}.$$

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded subset.

pose that we are given a finite sample $X \subset \mathcal{M}$.

homology groups of $\mathcal M$ from X.

Idea: Thicken X.

$$X^{t} = \{ y \in \mathbb{R}^{n}, \exists x \in X, ||x - y|| \le t \}.$$

The Topological Inference problem 4/16 (11/13)

Some thickenings are homotopy equivalent to \mathcal{M} .

Hence we can recover the homology of \mathcal{M} :

$$\beta_0(\mathcal{M}) = \beta_0(X^{0.3})$$
$$\beta_1(\mathcal{M}) = \beta_1(X^{0.3})$$
$$\beta_2(\mathcal{M}) = \beta_2(X^{0.3})$$

The Topological Inference problem

4/16 (12/13)

Some thickenings are homotopy equivalent to \mathcal{M} .

Hence we can recover the homology of \mathcal{M} :

$$\beta_0(\mathcal{M}) = \beta_0(X^{0.3})$$
$$\beta_1(\mathcal{M}) = \beta_1(X^{0.3})$$
$$\beta_2(\mathcal{M}) = \beta_2(X^{0.3})$$

. . .

Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

Question 2: How to compute the homology groups of X^t ?

The Topological Inference problem

4/16 (13/13)

Some thickenings are homotopy equivalent to \mathcal{M} .

Hence we can recover the homology of \mathcal{M} :

$$\beta_0(\mathcal{M}) = \beta_0(X^{0.3})$$
$$\beta_1(\mathcal{M}) = \beta_1(X^{0.3})$$
$$\beta_2(\mathcal{M}) = \beta_2(X^{0.3})$$

. . .

Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

→ Hausdorff distance

Reach

Question 2: How to compute the homology groups of X^t ?

Let X be any subset of \mathbb{R}^n . The function distance to X is the map

$$\operatorname{dist}(\cdot, X) : \mathbb{R}^n \longrightarrow \mathbb{R}$$
$$x \longmapsto \operatorname{dist}(x, X) = \inf\{\|y - x\|, x \in X\}$$

A projection of $y \in \mathbb{R}^n$ on X is a point $x \in X$ which attains this infimum.

Hausdorff distance

Let X be any subset of \mathbb{R}^n . The function distance to X is the map

$$\operatorname{dist}(\cdot, X) : \mathbb{R}^n \longrightarrow \mathbb{R}$$
$$x \longmapsto \operatorname{dist}(x, X) = \inf\{\|y - x\|, x \in X\}$$

A projection of $y \in \mathbb{R}^n$ on X is a point $x \in X$ which attains this infimum.

Definition: Let $Y \subset \mathbb{R}^n$ be another subset. The Hausdorff distance between X and Y is

$$d_{H}(X,Y) = \max \left\{ \sup_{y \in Y} \operatorname{dist}(y,X), \sup_{x \in X} \operatorname{dist}(x,Y) \right\}$$
$$= \max \left\{ \sup_{y \in Y} \inf_{x \in X} \|x - y\|, \sup_{x \in X} \inf_{y \in Y} \|x - y\| \right\}.$$

Let X be any subset of \mathbb{R}^n . The function distance to X is the map

$$\operatorname{dist}(\cdot, X) : \mathbb{R}^n \longrightarrow \mathbb{R}$$
$$x \longmapsto \operatorname{dist}(x, X) = \inf\{\|y - x\|, x \in X\}$$

A projection of $y \in \mathbb{R}^n$ on X is a point $x \in X$ which attains this infimum.

Definition: Let $Y \subset \mathbb{R}^n$ be another subset. The *Hausdorff distance* between X and Y is

$$d_{H}(X,Y) = \max \left\{ \sup_{y \in Y} \operatorname{dist}(y,X), \sup_{x \in X} \operatorname{dist}(x,Y) \right\}$$
$$= \max \left\{ \sup_{y \in Y} \inf_{x \in X} \|x - y\|, \sup_{x \in X} \inf_{y \in Y} \|x - y\| \right\}.$$

Exercise: Show that the Hausdorff distance is equal to $\inf\{t \geq 0, X \subset Y^t \text{ and } Y \subset X^t\}$.

$$med(X) = \{ y \in \mathbb{R}^n, \exists x, x' \in X, x \neq x', ||y - x|| = ||y - x'|| = dist(y, X) \}.$$

$$med(X) = \{ y \in \mathbb{R}^n, \exists x, x' \in X, x \neq x', ||y - x|| = ||y - x'|| = dist(y, X) \}.$$

Examples:

The medial axis of the unit circle is the origin

$$med(X) = \{ y \in \mathbb{R}^n, \exists x, x' \in X, x \neq x', ||y - x|| = ||y - x'|| = dist(y, X) \}.$$

Examples:

The medial axis of the unit circle is the origin

$$med(X) = \{ y \in \mathbb{R}^n, \exists x, x' \in X, x \neq x', ||y - x|| = ||y - x'|| = dist(y, X) \}.$$

Examples:

The medial axis of the unit circle is the origin

The medial axis of an ellipse is a segment

The medial axis of a point is the empty set

$$\operatorname{med}(X) = \{ y \in \mathbb{R}^n, \exists x, x' \in X, x \neq x', ||y - x|| = ||y - x'|| = \operatorname{dist}(y, X) \}.$$

Examples:

The medial axis of the unit circle is the origin

The medial axis of a point is the empty set

The medial axis of two points is their bisector

$$med(X) = \{ y \in \mathbb{R}^n, \exists x, x' \in X, x \neq x', ||y - x|| = ||y - x'|| = dist(y, X) \}.$$

The *reach* of X is

reach
$$(X) = \inf \{ \text{dist}(y, X), y \in \text{med}(X) \}$$

= $\inf \{ ||x - y||, x \in X, y \in \text{med}(X) \}$.

$$med(X) = \{ y \in \mathbb{R}^n, \exists x, x' \in X, x \neq x', ||y - x|| = ||y - x'|| = dist(y, X) \}.$$

The *reach* of X is

reach
$$(X) = \inf \{ \text{dist}(y, X), y \in \text{med}(X) \}$$

= $\inf \{ ||x - y||, x \in X, y \in \text{med}(X) \}$.

$$med(X) = \{ y \in \mathbb{R}^n, \exists x, x' \in X, x \neq x', ||y - x|| = ||y - x'|| = dist(y, X) \}.$$

The *reach* of X is

reach
$$(X) = \inf \{ \text{dist}(y, X), y \in \text{med}(X) \}$$

= $\inf \{ ||x - y||, x \in X, y \in \text{med}(X) \}$.

Proposition: For every $t \in [0, \text{reach}(X))$, the spaces X and X^t are homotopy equivalent.

$$med(X) = \{ y \in \mathbb{R}^n, \exists x, x' \in X, x \neq x', ||y - x|| = ||y - x'|| = dist(y, X) \}.$$

The *reach* of X is

reach
$$(X) = \inf \{ \text{dist}(y, X), y \in \text{med}(X) \}$$

= $\inf \{ ||x - y||, x \in X, y \in \text{med}(X) \}$.

Proposition: For every $t \in [0, \text{reach}(X))$, the spaces X and X^t are homotopy equivalent.

$$med(X) = \{ y \in \mathbb{R}^n, \exists x, x' \in X, x \neq x', ||y - x|| = ||y - x'|| = dist(y, X) \}.$$

The *reach* of X is

reach
$$(X) = \inf \{ \text{dist}(y, X), y \in \text{med}(X) \}$$

= $\inf \{ ||x - y||, x \in X, y \in \text{med}(X) \}$.

Proposition: For every $t \in [0, \text{reach}(X))$, the spaces X and X^t are homotopy equivalent.

If $t \ge \operatorname{reach}(X)$, the sets X and X^t may not be homotopy equivalent.

Proposition: For every $t \in [0, \operatorname{reach}(X))$, the spaces X and X^t are homotopy equivalent.

Proof: For every $t \in [0, \text{reach}(X))$, the thickening X^t deform retracts onto X. A homotopy is given by the following map:

$$X^{t} \times [0,1] \longrightarrow X^{t}$$

 $(x,t) \longmapsto (1-t)x + t \cdot \operatorname{proj}(x,X).$

Indeed, the projection proj(x, X) is well defined (it is unique).

Remember Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):

Let X and \mathcal{M} be subsets of \mathbb{R}^n . Suppose that \mathcal{M} has positive reach, and that $d_H(X,\mathcal{M}) \leq \frac{1}{17} \mathrm{reach}(\mathcal{M})$.

Then X^t and $\mathcal M$ are homotopic equivalent, provided that

$$t \in [4d_{\mathrm{H}}(X, \mathcal{M}), \mathrm{reach}(\mathcal{M}) - 3d_{\mathrm{H}}(X, \mathcal{M})).$$

Remember Question 1: How to select a t such that $X^t \approx \mathcal{M}$?

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):

Let X and \mathcal{M} be subsets of \mathbb{R}^n . Suppose that \mathcal{M} has positive reach, and that $d_H(X,\mathcal{M}) \leq \frac{1}{17} \mathrm{reach}(\mathcal{M})$.

Then X^t and $\mathcal M$ are homotopic equivalent, provided that

$$t \in [4d_{\mathrm{H}}(X, \mathcal{M}), \mathrm{reach}(\mathcal{M}) - 3d_{\mathrm{H}}(X, \mathcal{M})).$$

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):

Let X and \mathcal{M} be subsets of \mathbb{R}^n , with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M} . Suppose that \mathcal{M} has positive reach.

Then X^t and $\mathcal M$ are homotopic equivalent, provided that

$$t \in \left[2d_{\mathrm{H}}(X, \mathcal{M}), \sqrt{\frac{3}{5}} \mathrm{reach}(\mathcal{M}) \right].$$

I - Thickenings

II - Čech complex

III - Rips complex

(Weak) triangulations

Let us consider Question 2: How to compute the homology groups of X^t ?

We must a triangulation of X^t , that is: a simplicial complex K homeomorphic to X.

Actually, we will define something weaker: a simplicial complex K that is homotopy equivalent to X.

Let us consider Question 2: How to compute the homology groups of X^t ?

We must a triangulation of X^t , that is: a simplicial complex K homeomorphic to X.

Actually, we will define something weaker: a simplicial complex K that is homotopy equivalent to X.

Either case, we will have $\beta_i(X) = \beta_i(K)$ for all $i \geq 0$.

$$\bigcup_{1 \le i \le N} U_i = X.$$

$$\bigcup_{1 \le i \le N} U_i = X.$$

$$X^{0.2} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, 0.2)$$
 is covered by $\mathcal{U} = \{ \overline{\mathcal{B}}(x, 0.2), x \in X \}$

$$\bigcup_{1 \le i \le N} U_i = X.$$

$$X^{0.2}=\bigcup_{x\in X}\overline{\mathcal{B}}\left(x,0.2
ight)$$
 is covered by $\mathcal{U}=\left\{ \overline{\mathcal{B}}\left(x,0.2
ight),x\in X
ight\}$

$$\bigcup_{1 \le i \le N} U_i = X.$$

$$X^{0.3} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, 0.3)$$
 is covered by $\mathcal{U} = \{\overline{\mathcal{B}}(x, 0.3), x \in X\}$

$$\bigcup_{1 \le i \le N} U_i = X.$$

$$X^{0.3} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, 0.3)$$
 is covered by $\mathcal{U} = \{ \overline{\mathcal{B}}(x, 0.3), x \in X \}$

$$\bigcup_{1 \le i \le N} U_i = X.$$

The *nerve* of \mathcal{U} is the simplicial complex with vertex set $\{1,...,N\}$ and whose m-simplices are the subsets $\{i_1,...,i_m\}\subset\{1,...,N\}$ such that $\bigcap_{k=0}^m U_{i_k}\neq\emptyset$. It is denoted $\mathcal{N}(\mathcal{U})$.

Nerve theorem: Consider $X \subset \mathbb{R}^n$. Suppose that each U_i are balls (or more generally, closed and convex). Then $\mathcal{N}(\mathcal{U})$ is homotopy equivalent to X.

Let X be a finite subset of \mathbb{R}^n , and $t \geq 0$. Consider the collection

$$\mathcal{V}^{t} = \left\{ \overline{\mathcal{B}}(x,t), x \in X \right\}.$$

This is a cover of the thickening X^t , and each components are closed balls. By Nerve Theorem, its nerve $\mathcal{N}(\mathcal{V}^t)$ has the homotopy type of X^t .

Definition: This nerve is denoted $\operatorname{\check{C}ech}^t(X)$ and is called the $\operatorname{\check{C}ech}$ complex of X at time t.

Let X be a finite subset of \mathbb{R}^n , and $t \geq 0$. Consider the collection

$$\mathcal{V}^{t} = \left\{ \overline{\mathcal{B}}(x,t), x \in X \right\}.$$

This is a cover of the thickening X^t , and each components are closed balls. By Nerve Theorem, its nerve $\mathcal{N}(\mathcal{V}^t)$ has the homotopy type of X^t .

Definition: This nerve is denoted $\operatorname{\check{C}ech}^t(X)$ and is called the $\operatorname{\check{C}ech}$ complex of X at time t.

The Question 2 (How to compute the homology groups of X^t ?) is solved.

I - Thickenings

II - Čech complex

III - Rips complex

Let $X = \{x_1, \dots, x_N\} \subset \mathbb{R}^n$ be finite, let $t \geq 0$ and consider the t-thickening

$$X^{t} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, t).$$

By definition, its nerve, $\operatorname{\check{C}ech}^t(X)$, the $\operatorname{\check{C}ech}$ complex at time t, is a simplicial complex on the vertices $\{1,\ldots,N\}$ whose simplices are the subsets $\{i_1,\ldots,i_m\}$ such that

$$\bigcap_{1 \le k \le m} \overline{\mathcal{B}}(x_{i_k}, t) \neq \emptyset.$$

Let $X = \{x_1, \dots, x_N\} \subset \mathbb{R}^n$ be finite, let $t \geq 0$ and consider the t-thickening

$$X^{t} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, t).$$

By definition, its nerve, $\operatorname{\check{C}ech}^t(X)$, the $\operatorname{\check{C}ech}$ complex at time t, is a simplicial complex on the vertices $\{1,\ldots,N\}$ whose simplices are the subsets $\{i_1,\ldots,i_m\}$ such that

$$\bigcap_{1 \le k \le m} \overline{\mathcal{B}}(x_{i_k}, t) \neq \emptyset.$$

Therefore, computing the Čech complex relies on the following geometric predicate:

Given m closed balls of \mathbb{R}^n , do they intersect?

This problem is known as the *smallest circle problem*.

It can can be solved in ${\cal O}(m)$ time, where m is the number of points.

Let $X = \{x_1, \dots, x_N\} \subset \mathbb{R}^n$ be finite, let $t \geq 0$ and consider the t-thickening

$$X^{t} = \bigcup_{x \in X} \overline{\mathcal{B}}(x, t).$$

By definition, its nerve, $\operatorname{\check{C}ech}^t(X)$, the $\operatorname{\check{C}ech}$ complex at time t, is a simplicial complex on the vertices $\{1,\ldots,N\}$ whose simplices are the subsets $\{i_1,\ldots,i_m\}$ such that

$$\bigcap_{1 \le k \le m} \overline{\mathcal{B}}(x_{i_k}, t) \neq \emptyset.$$

Therefore, computing the Čech complex relies on the following geometric predicate:

Given m closed balls of \mathbb{R}^n , do they intersect?

This problem is known as the *smallest circle problem*. It can can be solved in O(m) time, where m is the number of points.

in practice, we prefer a more simple version

We call a *clique* of G a set of vertices $v_1, ..., v_m$ such that for every $i, j \in [1, m]$ with $i \neq j$, the edge $[v_1, v_j]$ belongs to G.

Definition: Given a graph G, the corresponding *clique complex* is the simplicial complex whose

- vertices are the vertices of G,
- simplices are the sets of vertices of the cliques of G.

We call a *clique* of G a set of vertices $v_1, ..., v_m$ such that for every $i, j \in [1, m]$ with $i \neq j$, the edge $[v_1, v_j]$ belongs to G.

Definition: Given a graph G, the corresponding *clique complex* is the simplicial complex whose

- vertices are the vertices of G,
- simplices are the sets of vertices of the cliques of G.

Exercise: Prove that the clique complex of a graph is a simplicial complex.

Let $X = \{x_1, \dots, x_N\} \subset \mathbb{R}^n$ and $t \geq 0$.

Consider the graph G^t whose vertex set is $\{1,\ldots,N\}$, and whose edges are the pairs (i,j) such that $||x_i-x_j|| \leq 2t$.

Alternatively, G^t can be seen as the 1-skeleton of the Čech complex $\operatorname{\check{C}ech}^t(X)$.

Let $X = \{x_1, \dots, x_N\} \subset \mathbb{R}^n$ and $t \geq 0$.

Consider the graph G^t whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $||x_i - x_j|| \le 2t$.

Alternatively, G^t can be seen as the 1-skeleton of the Čech complex $\operatorname{\check{C}ech}^t(X)$.

Definition: The Rips complex of X at time t is the clique complex of the graph G_t . We denote it $\operatorname{Rips}^t(X)$.

Let $X = \{x_1, \dots, x_N\} \subset \mathbb{R}^n$ and $t \ge 0$.

Consider the graph G^t whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $||x_i - x_j|| \le 2t$.

Alternatively, G^t can be seen as the 1-skeleton of the Čech complex $\operatorname{\check{C}ech}^t(X)$.

Definition: The Rips complex of X at time t is the clique complex of the graph G_t . We denote it $\operatorname{Rips}^t(X)$.

Let $X = \{x_1, \dots, x_N\} \subset \mathbb{R}^n$ and $t \geq 0$.

Consider the graph G^t whose vertex set is $\{1, \ldots, N\}$, and whose edges are the pairs (i, j) such that $||x_i - x_j|| \le 2t$.

Alternatively, G^t can be seen as the 1-skeleton of the Čech complex $\operatorname{\check{C}ech}^t(X)$.

Definition: The Rips complex of X at time t is the clique complex of the graph G_t . We denote it $\operatorname{Rips}^t(X)$.

Proposition: For every $t \ge 0$, we have

$$\operatorname{\check{C}ech}^t(X) \subset \operatorname{Rips}^t(X) \subset \operatorname{\check{C}ech}^{2t}(X).$$

 $\operatorname{\check{C}ech}^{2t}(X)$

Proposition: For every $t \geq 0$, we have

$$\operatorname{\check{C}ech}^t(X) \subset \operatorname{Rips}^t(X) \subset \operatorname{\check{C}ech}^{2t}(X).$$

 $\operatorname{\check{C}ech}^{2t}(X)$

Proof: Let $t \geq 0$. The first inclusion follows from the fact that $\operatorname{Rips}^t(X)$ is the clique complex of $\operatorname{\check{C}ech}^t(X)$.

To prove the second one, choose a simplex $\sigma \in \operatorname{Rips}^t(X)$. Let us prove that $\omega \in \operatorname{\check{C}ech}^{2t}(X)$.

Let $x\in\sigma$ be any vertex. Note that $\forall y\in\sigma$, we have $\|x-y\|\leq 2t$ by definition of the Rips complex. Hence

$$x \in \bigcap_{y \in \sigma} \overline{\mathcal{B}}(y, 2t).$$

The intersection being non-empty, we deduce $\sigma \in \operatorname{\check{C}ech}^{2t}(X)$.

We considered the problem of topological inference, and studied the solution by thickenings.

We've seen that a nice thickening exists, and that its homology can be computed via the Čech complex.

For computational reasons, we introduced the Rips complex.

Homework: Exercise 37

Facultative: Exercises 39, 40, 41

We considered the problem of topological inference, and studied the solution by thickenings.

We've seen that a nice thickening exists, and that its homology can be computed via the Čech complex.

For computational reasons, we introduced the Rips complex.

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):

Let X and \mathcal{M} be subsets of \mathbb{R}^n . Suppose that \mathcal{M} has positive reach, and that $d_H(X,\mathcal{M}) \leq \frac{1}{17} \mathrm{reach}(\mathcal{M})$.

Then X^t and \mathcal{M} are homotopic equivalent, provided that

$$t \in [4d_{\mathrm{H}}(X, \mathcal{M}), \mathrm{reach}(\mathcal{M}) - 3d_{\mathrm{H}}(X, \mathcal{M})).$$

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):

Let X and \mathcal{M} be subsets of \mathbb{R}^n , with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M} . Suppose that \mathcal{M} has positive reach.

Then X^t and \mathcal{M} are homotopic equivalent, provided that

$$t \in \left[2d_{\mathrm{H}}\left(X, \mathcal{M}\right), \sqrt{\frac{3}{5}}\mathrm{reach}\left(\mathcal{M}\right)\right).$$

We considered the problem of topological inference, and studied the solution by thickenings.

We've seen that a nice thickening exists, and that its homology can be computed via the Čech complex.

For computational reasons, we introduced the Rips complex.

Theorem (Frédéric Chazal, David Cohen-Steiner, and André Lieutier, 2009):

Let X and \mathcal{M} be subsets of \mathbb{R}^n . Suppose that \mathcal{M} has positive reach, and that $d_H(X,\mathcal{M}) \leq \frac{1}{17} \mathrm{reach}(\mathcal{M})$.

Then X^t and $\overline{\mathcal{M}}$ are homotopic equivalent, provided that

unknown in practice

$$t \in [4d_{\mathrm{H}}(X, \mathcal{M})] \text{ reach } (\mathcal{M}) + 3d_{\mathrm{H}}(X, \mathcal{M})).$$

Theorem (Partha Niyogi, Stephen Smale, and Shmuel Weinberger, 2008):

Let X and \mathcal{M} be subsets of \mathbb{R}^n , with \mathcal{M} a submanifold, and X a finite subset of \mathcal{M} . Suppose that \mathcal{M} has positive reach.

Then X^t and \mathcal{M} are homotopic equivalent, provided that

$$t \in \left[2d_{\mathrm{H}}(X, \mathcal{M}), \sqrt{\frac{3}{5}}\mathrm{reach}(\mathcal{M})\right].$$

We considered the problem of topological inference, and studied the solution by thickenings.

We've seen that a nice thickening exists, and that its homology can be computed via the Čech complex.

For computational reasons, we introduced the Rips complex.

Homework: Exercise 37

Facultative: Exercises 39, 40, 41