SMART AIRCRAFT INVESTMENTS: Risk

& Strategy

Data-Driven Decisions for Safer Skies

March 2025

OUTLINE

OVERVIEW

- The presentation will walk through the business challenge, data analysis, key insights, and final recommendations.
- Exploring the risks and opportunities in the aviation industry using data-driven insights to guide the company's investment decisions.
- Analyzing aviation accident data from 1962 to 2023, Objectives: to identify key safety trends, uncover patterns in aircraft incidents, and determine which aircraft present the lowest risk.
- By the end, you will have a clear strategy for selecting the safest and most reliable aircraft for investment.

BUSINESS UNDERTSANDING

The aviation industry presents both opportunities and risks for new investors.

- Safety, operational efficiency, and regulatory compliance are key factors in determining the viability of an aircraft investment.
- Understanding historical data on aviation safety will help identify trends and make informed decisions on which aircraft are best suited for a low-risk, profitable entry into the market.

Accidents and incidents can lead to financial losses, reputational damage, and legal challenges.

DATA UNDERSTANDING

The dataset contains aviation accident data from **1962 to 2023**, sourced from the National Transportation Safety Board (NTSB). It includes key details about civil aviation accidents and selected incidents in the United States and international waters.

KEY FOCUS:

ACCIDENTS DETAILS

- Accident Date & Location When and where the incident occurred.
- Accident Severity Classification of incidents, including fatalities and damages.
- Probable Cause Identified reasons for the accident, such as mechanical failure or human error.

AIRCRAFT & FLIGHT DETAILS

- Aircraft Information Type, model, and manufacturer details.
- Flight Purpose Whether the flight was commercial, private, or military.

TABLE SLIDE

• First five records and key fields of the data

	Accident. Number	Event.Date			Registration. Number	Make		Purpose.of.fl	Weather. Condition	Broad.phase .of.flight	1	Month
20001218X4 5444	SFA871 A080	10/24/1948	MOOSE	Fatal(2)	NC6404	Stinson	108-3	Personal	UNK	Cruise	1948	10
20001218X4	LAX94LA336		BRIDGEPOR	,				Personal	UNK	Unknown	1962	
20061025X0 1555			Saltville, VA					Personal	IMC	Cruise	1902	
20001218X4	LAX96LA321		EUREKA, CA			Rockwell		Personal		Cruise	1974	
20041105X0	CHI79FA064		Canton, OH	, ,		Cessna		Personal	VMC	Approach	1979	

- ❖ Majority Unknown (63.45%) A large portion of aircraft involved in accidents are unidentified.
- ❖ Airplanes Account for 31.29% Most known accidents involve airplanes.
- ❖ Small Contribution from Other Categories Gyrocraft (0.20%), Powered Parachute (0.10%), and Weight-Shift (0.18%) have minimal accident occurrences.
- **❖ Total Recorded Events:** 87,542 accidents.
- ❖ Focus on Airplane Safety Since airplanes are the most recorded category, safety improvements in this sector can have a significant impact.

Accident Frequency

- •High Accidents in 1980s-1990s: Likely due to less advanced technology and regulations.
- •Improved Safety Since 2000s: Stricter regulations, better pilot training, and advanced aircraft safety features.
- •Cessna & Piper Most Involved: Common in accidents due to high usage in training and private flights.
- •Stable Accident Rates Recently: Aviation safety improvements have led to fewer accidents over time.

Accident Trends

- ☐ Accidents **increase steadily** from January to August, peaking in **August**.
- ☐ After August, accidents **decline gradually**, reaching the lowest levels in **December**.
- Possible reasons: seasonal weather changes, travel patterns, or operational factors.

- ✓ Accidents peaked in the early 1980s but have been declining over time.
- ✓ The overall trend suggests **improvements in aviation safety**.
- ✓ Recent years show **relatively stable accident numbers**, indicating a possible plateau in accident reduction.

RECOMMENDATIONS

- ➤ Invest in Aircraft with Strong Safety Records Focus on models with low accident rates and high reliability.
- ➤ Avoid High-Risk Flight Conditions Prioritize aircraft with advanced avionics for safer operations.
- Prioritize Commercial Over Private Operations Commercial aviation has lower accident rates and stricter regulations.

NEXT STEPS

- Develop a Risk Management Strategy Invest in pilot training, modern safety features, and strict maintenance protocols.
- Choose the Right Business Model Research profitable markets and consider partnerships with aviation firms.
- Monitor & Adapt Using Data Track aircraft performance, stay updated on regulations, and optimize operations.
- Consult industry experts.

THANK YOU!

Do you have any questions or need clarification on any points?

Doreen Murugi

Phone:

0742-543-359

Email:

doreen.kahare@student.moringaschool.com

