Probability Reference Sheet

By Danny Liu

1 Basic Knowledge

Let *E* be an event and *S* the sample space, then $P(E) \ge 0$, P(S) = 1, $P(E) = 1 - P(\overline{E})$ If $A \perp B$, then $P(A \cap B) = P(A)P(B)$ and P(A|B) = P(A), If $A \cap B = \emptyset$, then $P(A \cap B) = 0$ $P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$ and $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ If $S = B_1 \cup ... \cup B_n$ and $A \subseteq S$, then $P(A) = \sum_i P(A \cap B_i) = \sum_i P(A|B_i)P(B_i)$ $P(x_1, ..., x_n) = p(x_n|x_{n-1}, ..., x_1)p(x_{n-1}|x_{n-2}, ..., x_1) ... p(x_1)$

2 Bayesian Inference

 $p(\theta|D) = \frac{p(D|\theta)p(\theta)}{\int p(D|\theta)p(\theta)d\theta}$, where $p(D|\theta)$ is the likelihood, $p(\theta)$ is the prior and p(D) is the marginal

2.1 Conjugate Priors

A family F of priors $p(\theta)$ is conjugate to the likelihood $p(D|\theta)$ if the posterior $p(\theta|D)$ is in F Beta (α, β) is conjugate to Bin(n, p), Geo(p), Bern (ϕ) . Dir (α) is conjugate to Cat(p), Mult(n, p) $\mathcal{N}(\mu, \sigma^2)$ is self-conjugate. Gamma (α, β) is conjugate to Exp (λ) , Poi (λ) , $\mathcal{N}(\mu, \sigma^2)$

2.2 Maximum Likelihood Estimate

Find θ that maximizes the likelihood, $\theta^* = \operatorname*{argmax}_{\theta} p(D|\theta)$. Assuming that D is iid, then The conditional likelihood of y|x is $L(\theta) = \prod_{i=1}^n p(y^{(i)}|x^{(i)};\theta)$

2.3 Maximum a Posteriori

Given prior $p(\theta)$, find θ that maximizes the posterior, $\theta^* = \underset{\theta}{\operatorname{argmax}} p(\theta|D) = \underset{\theta}{\operatorname{argmax}} p(D|\theta)p(\theta)$ When $n \to \infty$ or $p(\theta)$ is uniform, then MAP = MLE as $p(\theta|D) \propto p(D|\theta)$

3 Expectation and Variance

$$\begin{split} E[X] &= \int_x x f(x) dx, \, \text{var}(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2, \, \sigma^2 = \frac{\sum (X - \mu)}{N} \\ E[g(X)] &= \int_x g(x) f(x) dx, \, E[aX + b] = a E[X] + b, \, \text{var}(aX + b) = a^2 \text{var}(X) \\ E[\sum_i X_i] &= \sum_i E[X_i], \, \text{var}(\sum_i X_i) = \sum_i \text{var}(X_i) + 2 \sum_{i < j} \text{cov}(X_i, X_j) \\ \text{cov}(X, Y) &= \langle X, Y \rangle = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y] \\ \text{Define correlation of } X \text{ and } Y \text{ as } \rho(X, Y) = \frac{\text{cov}(X, Y)}{\sqrt{\text{var}(X)\text{var}(Y)}} = \frac{\langle X, Y \rangle}{\|X\| \|Y\|} = \cos \theta \\ \rho(X, Y) &= \pm 1 \iff Y = aX + b \text{ for some } a, b \in \mathbb{F} \end{split}$$

3.1 Covariance Matrix

 $\Sigma = E[(x - \mu)(x - \mu)^T] = E[xx^T] - \mu\mu^T$, where $\Sigma_{ij} = \text{cov}(x_i, x_j)$ and $\text{cov}(Ax + b) = A\Sigma A^T$ Given data $\{x^{(i)}\}_{i=1}^n$ with 0 mean, the empirical $\Sigma = \frac{1}{n}\sum_{i=1}^n x^{(i)}(x^{(i)})^T = \frac{1}{n}X^TX$ $\Sigma_{ij} = \Sigma_{ji}$ for $i \neq j$ are the covariances and linearly correlate the *i*th and *j*th dimensions The diagonal entries of Σ are the variances along the original axes whereas the eigenvalues are the variances along the principal axes, hence $\Sigma \succeq 0$ as we can always rotate to the principal axes

3.2 Conditional Expectation

The conditional distribution of X given Y is $p(x|y) = \frac{p(x,y)}{p(y)} = \frac{P[X=x\cap Y=y]}{P[Y=y]}$ The conditional expectation $E[X|Y] = E_{p(x|y)}[X] = \sum_x xp(x|y)$ is a function of y $E[E[X|Y]] = \sum_y \sum_x xp(x|y)p(y) = E[X], \sum_x p(x|y) = 1, \sum_y p(x|y) = p(x)$ Suppose $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)$ is jointly Gaussian with parameters $\mathbf{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$ and $\mathbf{\Sigma} = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$, then The marginals are $p(x_1) = \mathcal{N}(x_1|\mu_1, \Sigma_{11})$ and $p(x_2) = \mathcal{N}(x_2|\mu_2, \Sigma_{22})$ with posterior conditional $p(x_1|x_2) = \mathcal{N}(x_1|\mu_{1|2}, \Sigma_{1|2})$, where $\mu_{1|2} = \mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(x_2 - \mu_2)$ and $\Sigma_{1|2} = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$

4 Inequalities and Limit Theorems

If X only takes on non-negative values, then for any a>0, $P[X\geq a]\leq \frac{E[X]}{a}$ (Markov) If $E[X]=\mu$ and $\mathrm{var}(X)=\sigma^2$, then for any k>0, $P[|X-\mu|\geq k\sigma]\leq \frac{1}{k^2}$ (Chebyshev) If f is a convex function, then $E[fX]\geq f(EX)$ (Jensen) Let $X_1,X_2,...,X_n$ be iid with $E[X]=\mu$ and $\mathrm{var}(X)=\sigma^2<\infty$, then for n sufficiently large

1.
$$\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \approx Z \sim \mathcal{N}(0,1)$$
, where $\bar{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$ has mean μ and variance $\frac{\sigma^2}{n}$ (CLT)

2.
$$P\left[\lim_{n\to\infty}\frac{X_1+X_2+...+X_n}{n}=\mu\right]=1$$
 (Law of Large Numbers)

5 Moment Generating Functions

 $M_X(t)=E[e^{tX}]=\int_x e^{tx}f(x)dx$, where $E[X], E[X^2], E[X^3],...$ are the moments of X Consider Taylor expansion of $e^{tX}=1+tX+\frac{t^2X^2}{2!}+\frac{t^3X^3}{3!}+...$ If two r.vs have the same mgf for all $t\in\mathbb{R}$, then they have the same distribution for all $t\in\mathbb{R}$. $M_X(t)=\sum_{k=0}^\infty E[x^k]\frac{t^k}{k!}$ and $E[X^k]=\frac{d^k}{dt^k}M_X(t)\big|_{t=0}$ for any integer k>0 If X,Y are r.vs and Y=aX+b, then $M_Y(t)=e^{bt}M_X(at)$ If $X_1,X_2,...,X_n$ are independent r.vs, then $M_{X_1+X_2+...+X_n}(t)=M_{X_1}(t)M_{X_2}(t)...M_{X_n}(t)$

6 Random Variables

A random variable is a function $X:S\to\mathbb{R}$ where S is the sample space. For discrete X,Y, the joint pmf is $p(x,y)=P[X=x\cap Y=y]$, where $\sum_x\sum_y p(x,y)=1$ For continuous X,Y, the joint pdf is $\int\int_{(x,y)\in R}f(x,y)dxdy=P[(x,y)\in R]$ Note that although $\int_a^bf(x)dx=P[a\le X\le b]$ for continuous X,P[X=a]=0 If $F(a)=P[X\le a]=\int_{-\infty}^af(x)dx$ is the cdf, then $f(x)=\frac{d}{dx}F(x)$ Continuous (discrete) r.vs are independent if and only if f(x,y)=f(x)f(y) The marginal density of X is $f(x)=\int_yf(x,y)dy$

6.1 Functions of Random Variables

Suppose X is a random variable and Y = g(X). If g is increasing and differentiable, then $f_Y(y) = \begin{cases} f_X(g^{-1}(y)) \cdot \frac{d}{dy}g^{-1}(y) & \text{if } g(a) \le y \le g(b) \\ 0 & \text{otherwise} \end{cases}$

$$d_Y(y) = \begin{cases} 3A(3-3) & \text{ay } 3 & \text{otherwise} \\ 0 & \text{otherwise} \end{cases}$$

6.2**Continuity Correction**

If a discrete distribution (e.g Binomial, Poisson) is approximated by a continuous distribution (e.g. normal), then the following adjustments must be made

x = n becomes n - 0.5 < x < n + 0.5

x > n becomes x > n + 0.5 and x < n becomes x < n - 0.5

7 Common Distributions

Bernoulli Distribution

$$X \sim \text{Bernoulli}(\phi), \ p(x) = \phi^x (1 - \phi)^x, \ M_X(t) = (1 - \phi) + \phi e^t, \ E[X] = \phi, \ \text{var}(X) = \phi (1 - \phi)$$

Categorial Distribution

 $X \sim \operatorname{Cat}(\boldsymbol{p}), \, p(\boldsymbol{x}) = \prod_{i=1}^{\kappa} p_i^{x_i}$ is a generalization of the Bernoulli/special case of multinomial

Binomial Distribution

 $X \sim \text{Bin}(n,p)$ models the number of n Bernoulli trials that end up being successes $p(x) = p^{x}(1-p)^{n-x}\binom{n}{x}, M_X(t) = (pe^{t}+1-p)^{n}, E[X] = np, var(X) = np(1-p)$

7.4 **Multinomial Distribution**

 $X \sim \text{Multinomial}(n, \mathbf{p}) \text{ models the outcome of } n \text{ categorial trials}$

$$p(\mathbf{x}) = \binom{n}{x_1, \dots, x_k} \prod_{i=1}^k p_i^{x_i}, M_X(\mathbf{t}) = (\sum_{i=1}^k p_i e^{t_i})^n$$
, where $\sum_i p_i = 1$ and $\sum_i x_i = n$

Geometric Distribution

 $X \sim \text{Geo}(p)$ models the number of Bernoulli trials needed to get one success

$$p(x) = (1-p)^{x-1}p, M_X(t) = \frac{pe^t}{1-(1-p)e^t}, E[X] = \frac{1}{p}, \text{var}(X) = \frac{1-p}{p^2}$$

7.6 Poisson Distribution

 $X \sim \text{Poi}(\lambda)$ models the number of times a given event occurs independently in a fixed interval $p(x) = e^{-\lambda} \frac{\lambda^x}{x!}$, $M_X(t) = e^{\lambda(e^t - 1)}$, $E[X] = \text{var}(X) = \lambda = \text{rate}$ at which event occurs Approximates binomial well when n is large, p is small and $\lambda = np$ is moderate

Uniform Distribution

$$X \sim U(a,b), f(x) = \frac{1}{b-a}$$
 for $a \le x \le b, M_X(t) = \frac{e^{tb} - e^{ta}}{t(b-a)}, E[X] = \frac{1}{2}(a+b), var(X) = \frac{(b-a)^2}{12}$

7.8 Exponential Distribution

 $X \sim \operatorname{Exp}(\lambda)$ models the time between events in a Poisson process with rate λ $f(x) = \lambda e^{-\lambda x}$ for $x \geq 0$, $M_X(t) = \frac{\lambda}{\lambda - t}$, $E[X] = \frac{1}{\lambda}$, $\operatorname{var}(X) = \frac{1}{\lambda^2}$ Key property memoryless and continuous analogue of the geometric distribution

7.9 Gamma Distribution

 $X \sim \text{Gamma}(\alpha, \beta)$ models the amount of time until α events occur in a Poisson process with rate β $f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$, $M_X(t) = (\frac{\beta}{\beta - t})^{\alpha}$, $E[X] = \frac{\alpha}{\beta}$, $\text{var}(X) = \frac{\alpha}{\beta^2}$

7.10 Gaussian Distribution

$$X \sim \mathcal{N}(\mu, \sigma^2), f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(\frac{-(x-\mu)^2}{2\sigma^2}), M_X(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}, E[X] = \mu, \text{ var}(X) = \sigma^2$$

 $P(a \leq X \leq b) = P(Z \leq \frac{b-\mu}{\sigma}) - P(Z \leq \frac{a-\mu}{\sigma}), \text{ where } Z \sim \mathcal{N}(0, 1)$
Approximates binomial well (with continuity correction) when np and $n(1-p) > 5$

7.11 Multivariate Gaussian

$$X \sim \mathcal{N}(\mu, \Sigma)$$
, where $f(x) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$
If the joint $f(x)$ is radially symmetric, then $\Sigma_{ij} = 0$ for $i \neq j$ and $\Sigma_{ii} = \Sigma_{jj}$ for $i = j$

7.12 Laplace Distribution

$$X \sim \text{Laplace}(\mu, b), \ f(x) = \frac{1}{2b} \exp(-\frac{|x-\mu|}{b}), \ M_X(t) = \frac{\exp(\mu t)}{1-b^2t^2}, \ E[X] = \mu, \ \text{var}(X) = 2b^2$$

If $X, Y \sim \text{Exp}(\lambda)$, then $X - Y \sim \text{Lap}(0, \lambda^{-1})$. If $X \sim \text{Lap}(\mu, b)$, then $kX + c \sim \text{Lap}(k\mu + c, kb)$
Laplace has a fatter tail and taller head than the Gaussian due to abs. value and constant term

7.13 Beta Distribution

 $X \sim \text{Beta}(\alpha, \beta)$ represents a distribution of probabilities of an uncertain binomial variable $f(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha-1} (1-x)^{\beta-1}$, where $x \in [0, 1]$, $\alpha, \beta > 0$ and $E[X] = \frac{\alpha}{\alpha+\beta}$ Note $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$ is the beta function and $\Gamma(n) = (n-1)!$ is the gamma function Well suited to represent a prior, as the posterior after n Bernoulli trials is $\text{Beta}(\alpha + \text{success}, \beta + \text{fail})$

7.14 Dirichlet Distribution

 $X \sim \text{Dir}(\boldsymbol{\alpha})$ represents a distribution of probabilities of an uncertain multinomial variable $f(\boldsymbol{x}) = \frac{1}{B(\boldsymbol{\alpha})} \prod_{i=1}^K x_i^{\alpha_i - 1}$, where $x_i \in [0, 1]$, $\sum_i x_i = 1$, $\alpha_i > 0$ and $E[X_i] = \frac{\alpha_i}{\sum_k \alpha_k}$

8 Calculus

Let
$$f$$
 be a continuous real-valued function on $[a,b]$ and F be the antiderivative of f . Then $\int_a^b f(t)dt = F(b) - F(a)$ and $\frac{d}{dx} \int_a^x f(t)dt = f(x)$.
$$\int u dv = uv - \int v du, \int_s^\infty \lambda e^{-\lambda x} dx = e^{-\lambda s}, \int x e^{-\lambda x} dx = \frac{1}{\lambda^2} (-\lambda e^{-\lambda x} x - e^{-\lambda x}) + C$$
.
$$\int \frac{1}{1+x^2} dx = \arctan(x) + C, \int \frac{x^2}{1+x^2} dx = \int 1 - \frac{1}{1+x^2} dx, \int \frac{x^3}{1+x^2} dx = \int x - \frac{x}{1+x^2} dx$$