Intervals, Transformations, and Slope Solution (version 63)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-5, -4) \cup (-2, 1)$
Negative	$(-4, -2) \cup (1, 8)$
Increasing	$(-3,-1) \cup (3,8)$
Decreasing	$(-5, -3) \cup (-1, 3)$
Domain	(-5,8)
Range	(-9,9)

Intervals, Transformations, and Slope Solution (version 63)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=48$ and $x_2=52$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 48 & 76 \\ 52 & 66 \\ 66 & 48 \\ 76 & 52 \\ \hline \end{array}$$

$$\frac{g(52) - g(48)}{52 - 48} = \frac{66 - 76}{52 - 48} = \frac{-10}{4}$$

The greatest common factor of -10 and 4 is 2. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-5}{2}$$

2