

SEQUENCE LISTING

<110> CropDesign N.V.
 <120> Plants having increased yield and method for making the same
 <130> CD-109-PCT
 <150> EP 04100841.5
 <151> 2004-03-01
 <150> US 60/550,918
 <151> 2004-03-05
 <160> 5
 <170> PatentIn version 3.3
 <210> 1
 <211> 1256
 <212> DNA
 <213> Arabidopsis thaliana

<400> 1
 atggaacagc cgaagaaaagt tgctgatagg tatctaaagc gaga~~g~~gttct tggtaaggt 60
 acttatggag tcgtcttcaa agctactgat acaaagaatg gaga~~a~~actgt agcgatcaag 120
 aaaataagac ttggtaaaga gaaagaaggt gtgaatgtaa cagc~~t~~cttag agaaatcaa 180
 ttacttaaag agcttaagca tccacatata attgagttga ttga~~t~~gcgtt tcctcacaag 240
 gagaatttgc acatcggtt tgagttcatg gagactgatc tcga~~a~~gcgt tatccgagat 300
 cgtaatctct atctttcgcc tggatgtgtc aaatcttacc tccaa~~a~~atgtat attgaaaggt 360
 cttgaatatt gccatggcaa atgggttctg cacagagata tgaagccaaa caacttgg 420
 ataggaccca atggacagct gaaacttgcg gattttgggt tagc~~a~~cgat atttggtagc 480
 ccaggtcgta agtttaccca ccaggtgttt gctagatgggt atag~~a~~gcacc tgaactttt 540
 tttggtgcaa aacaatatga tggtgcatgtt gatgtttggg ctgc~~t~~ggctg cattttgct 600
 gaacttctat tacgcagacc atttcttca gggaaacagtg atat~~t~~gatca attaagcaaa 660
 atctttgctg cctttgggac tccaaaagca gatcagtggc ctga~~c~~atgtat ctgccttcct 720
 gattatgttag agtataatt tgccttgct ccttctttac gttc~~t~~ttact cccaaacggtt 780
 agtgaggatg cttagattt gttgtcaaaatg atgttacact atga~~c~~cccaa gtctagaata 840
 tcgattcagc aggctctaaa acacaggtac ttcacatctg cacc~~t~~tcacc tactgaccct 900
 tttaaagctcc caagaccagt ttccaagcaa gatgctaagt catc~~t~~gatag taaacttgaa 960
 gccattaaag tgctgtcacc agcacataag tttagaagag tgat~~g~~cctga ccgagggaaag 1020
 tctggtaatg gttcaagga ccagagtgtt gatgtcatga gaca~~a~~gctag ccatgatgga 1080
 caagcaccaa tgtctttaga tttcaccatc ttagctgagc ggcc~~a~~cccaa ccgaccaacc 1140
 atcaccagtg cagatagatc tcatctgaag aggaaacttg atct~~c~~gagtt cctataggat 1200
 atcgcgtaac aggcttcttc ttgacgtcgt tcttcaggtt cctat~~a~~gct atagga 1256

<210> 2
 <211> 398
 <212> PRT
 <213> Arabidopsis thaliana

<400> 2
 Met Glu Gln Pro Lys Lys Val Ala Asp Arg Tyr Leu Lys Arg Glu Val
 1 5 10 15

Leu Gly Gln Gly Thr Tyr Gly Val Val Phe Lys Ala Thr Asp Thr Lys
 20 25 30

Asn Gly Glu Thr Val Ala Ile Lys Lys Ile Arg Leu Gly Lys Glu Lys

35	40	45
Glu Gly Val Asn Val Thr Ala Leu Arg Glu Ile Lys Leu Leu Lys Glu		
50	55	60
Leu Lys His Pro His Ile Ile Glu Leu Ile Asp Ala Phe Pro His Lys		
65	70	75
Glu Asn Leu His Ile Val Phe Glu Phe Met Glu Thr Asp Leu Glu Ala		
85	90	95
Val Ile Arg Asp Arg Asn Leu Tyr Leu Ser Pro Gly Asp Val Lys Ser		
100	105	110
Tyr Leu Gln Met Ile Leu Lys Gly Leu Glu Tyr Cys His Gly Lys Trp		
115	120	125
Val Leu His Arg Asp Met Lys Pro Asn Asn Leu Leu Ile Gly Pro Asn		
130	135	140
Gly Gln Leu Lys Leu Ala Asp Phe Gly Leu Ala Arg Ile Phe Gly Ser		
145	150	155
Pro Gly Arg Lys Phe Thr His Gln Val Phe Ala Arg Trp Tyr Arg Ala		
165	170	175
Pro Glu Leu Leu Phe Gly Ala Lys Gln Tyr Asp Gly Ala Val Asp Val		
180	185	190
Trp Ala Ala Gly Cys Ile Phe Ala Glu Leu Leu Leu Arg Arg Pro Phe		
195	200	205
Leu Gln Gly Asn Ser Asp Ile Asp Gln Leu Ser Lys Ile Phe Ala Ala		
210	215	220
Phe Gly Thr Pro Lys Ala Asp Gln Trp Pro Asp Met Ile Cys Leu Pro		
225	230	235
Asp Tyr Val Glu Tyr Gln Phe Val Pro Ala Pro Ser Leu Arg Ser Leu		
245	250	255
Leu Pro Thr Val Ser Glu Asp Ala Leu Asp Leu Leu Ser Lys Met Phe		
260	265	270
Thr Tyr Asp Pro Lys Ser Arg Ile Ser Ile Gln Gln Ala Leu Lys His		
275	280	285
Arg Tyr Phe Thr Ser Ala Pro Ser Pro Thr Asp Pro Leu Lys Leu Pro		
290	295	300
Arg Pro Val Ser Lys Gln Asp Ala Lys Ser Ser Asp Ser Lys Leu Glu		
305	310	315
Ala Ile Lys Val Leu Ser Pro Ala His Lys Phe Arg Arg Val Met Pro		
325	330	335
Asp Arg Gly Lys Ser Gly Asn Gly Phe Lys Asp Gln Ser Val Asp Val		
340	345	350

Met Arg Gln Ala Ser His Asp Gly Gln Ala Pro Met Ser Leu Asp Phe
 355 360 365

Thr Ile Leu Ala Glu Arg Pro Pro Asn Arg Pro Thr Ile Thr Ser Ala
 370 375 380

Asp Arg Ser His Leu Lys Arg Lys Leu Asp Leu Glu Phe Leu
 385 390 395

<210> 3

<211> 2193

<212> DNA

<213> Oryza sativa

<400> 3

aatccgaaaa	gtttctgcac	cgttttcacc	ccctaactaa	caatataggg	aacgtgtgct	60
aatataaaaa	tgagaccta	tatatgttagc	gctgataact	agaactatgc	aagaaaaaact	120
catccaccta	ctttagtggc	aatcgggcta	aataaaaaag	agtcgctaca	ctagttcgt	180
tttccttagt	aattaagtgg	gaaaatgaaa	tcattattgc	ttagaatata	cgttcacatc	240
tctgtcatga	agttaaatta	ttcgaggtag	ccataattgt	catcaaactc	ttcttgaata	300
aaaaaatctt	tctagctgaa	ctcaatgggt	aaagagagag	attttttta	aaaaaataga	360
atgaagatat	tctgaacgta	ttggcaaaga	tttaaacata	taatttatata	atttatagt	420
ttgtgcattc	gtcatatcgc	acatcattaa	ggacatgtct	tactccatcc	caatttttat	480
ttagtaat	aagacaatttgc	acttattttt	atttatttac	ttttttcgat	tagatgcaag	540
gtacttacgc	acacattttgc	tgctcatgtg	catgtgtgag	tgcacccct	caatacacgt	600
tcaactagca	acacatctct	aatatcactc	gcctatttaa	tacatttagg	tagaatatc	660
tgaattcaag	cactccacca	tcaccagacc	actttaata	atatctaaaa	tacaaaaaat	720
aattttacag	aatagcatga	aaagtatgaa	acgaactatt	tagtttttc	acataaaaaa	780
aaaaaaaagaa	ttttgctcgt	gchgagcgc	caactccca	tattgggcac	acaggcaaca	840
acagagtgc	tgccccacaga	acaacccaca	aaaaacgatg	atctaacgga	ggacagcaag	900
tccgcaacaa	ccttttaaca	gcaggcttgc	cgccaggag	agaggaggag	aggcaaagaa	960
aaccaagcat	cctccctc	ccatctataa	attctccccc	cctttccccc	tcttatata	1020
ggaggcatcc	aagccaagaa	gagggagagc	accaaggaca	cgcgactagc	agaagccgag	1080
cgaccgcctt	cttcgatcca	tatctccgg	tcgagttctt	ggtcgatctc	ttccctcctc	1140
cacccctccc	tcacaggta	tgtgccctc	ggttgttctt	ggattttatg	ttctaggttg	1200
tgttagtacgg	gcgtttagt	tagaaaggg	gatctgtatc	tgtgatgatt	cctgttcttg	1260
gattttggat	agaggggttc	ttgatgttgc	atgttatcg	ttcgggttga	ttagtagtat	1320
gtttttcaat	cgtctggaga	gctctatgga	aatgaaaatgg	tttagggatc	ggaatcttgc	1380
gattttgtga	gtacccttttgc	tttgaggtaa	aatcagagca	ccggtgat	tgcttgggt	1440
aataaaagta	cggttggtttgc	gtcctcgatt	ctggtagtga	tgcttctcga	tttgacgaag	1500
ctatcccttgc	tttattccct	attgaacaaa	aataatccaa	ctttaagac	ggtcccgttgc	1560
atgagattga	atgattgatt	cttaagcctg	tccaaaattt	cgcagcttgc	ttgttttagat	1620
acagagtgc	ccatcacgaa	attcatggaa	acagttataa	tcctcagaa	caggggattc	1680
cctgttcttc	cgatttgctt	tagcccaaga	atttttttc	ccaaatatct	taaaaaagtca	1740
cittctgggtt	cagttcaatg	aatttatttgc	tacaaataat	gcttttata	cgttattccta	1800
gctgttagttc	agttaaatagg	taataccct	atagtttagt	caggagaaga	acttattccga	1860
tttctgtatc	ccatttttaa	ttatatgaaa	tgaactgtat	cataaggat	attcattttgg	1920
attatttttt	ttttagtgc	tcaccccttc	attatttgc	gctgaaatgc	tggcatgaac	1980
tgtcctcaat	tttgggttca	aattcacatc	gattatctat	gcattatct	cttgcattcta	2040
cctgtagaag	tttcttttttgc	gttattccctt	gactgcttgc	ttacagaaag	aaatttatgaa	2100
agctgtaaatc	gggatagtttgc	tactgcttgc	tcttattgatt	catttcctt	gtgcagttct	2160
tggtgtagct	tgccactttc	accagcaag	ttc			2193

<210> 4

<211> 53

<212> DNA

<213> Artificial sequence

<220>

<223> primer prm2676

<400> 4
ggggacaagt ttgtacaaaa aaggcaggctt cacaatggaa cagccgaaga aag 53

<210> 5

<211> 53

<212> DNA

<213> Artificial sequence

<220>

<223> primer prm2677

<400> 5
ggggaccact ttgtacaaga aagctgggtc ctataggaac tcgagatca a gtt 53