Statistical Methodology for Software Engineering

Hadas Lapid, PhD

Contents

Comparison of two paired & unpaired group means - Extensions

Decision tree for comparison of two sample means

Comparison of paired sample means using t-test

Assumptions:

- Equal group lengths
- No significant outliers
- the difference of pairs follow a normal distribution

If normal: perform paired t-test

Otherwise: perform Wilcoxon signed-rank test

paired t-test Equal grouplengths

Example:

mice before and after treatment

id [‡]	before [‡]	after [‡]
1	187.2	429.5
2	194.2	404.4
3	231.7	405.6
4	200.5	397.2
5	201.7	377.9
6	235.0	445.8
7	208.7	408.4
8	172.4	337.0
9	184.6	414.3
10	189.6	380.3

Paired t-test No significant outliers

Outliers
$$\equiv \{y_i \in Y: |y_i| > (\bar{Y} + 3 \cdot s)\}$$

Group differences follow normal distribution

$$\Delta Y = y_1 - y_2 \sim N$$
 (Normal)

$$H_0: \Delta Y \sim N$$

$$H_A: \Delta Y \neq N$$

Perform Shapiro—Wilk test on ΔY , demand $P_v > 0.05$

character [1]

data.name

'mice2\$diff'

$\Delta Y \neq N$: Paired Wilcoxon signed-rank test (non-parametric test)

 H_0 : $\mu_{before} = \mu_{after}$

 H_A : $\mu_{before} \neq \mu_{after}$

If P_v< 0.05, group population means are different

wilcoxon_h_mice

ice

list [7] (S3: htest)

List of length 7

statistic

double [1]

0

parameter

NULL

Pairlist of length 0

p.value

double [1]

1.082509e-05

🚺 null.value

double [1]

0

alternative

character [1]

'two.sided'

method

character [1]

'Wilcoxon rank sum test'

data.name

character [1]

'values by ind'

If $\Delta Y \sim N \rightarrow$ Perform Levene test Test equality of group variances

^	Df ≑	F value	Pr(>F)
group	1	0.5266265	0.4773587
	18	NA	NA

 H_0 : $\sigma_1 = \sigma_2$

 H_A : $\sigma_1 \neq \sigma_2$

If $P_v > 0.05$ variances are not different

Perform Paired test for normal distribution

Paired T-test

h_paired_mice	list [10] (S3: htest)	List of length 10
statistic	double [1]	-17.453
parameter	double [1]	18
p.value	double [1]	9.973664e-13
conf.int	double [2]	-223 -175
estimate	double [2]	201 400
null.value	double [1]	0
stderr	double [1]	11.42956
alternative	character [1]	'two.sided'
method	character [1]	' Two Sample t-test'
data.name	character [1]	'mice2\$before and mice2\$after'

Statistics for Software Engineers

Comparison of un-paired sample means

Assumptions:

- Mutual normality of groups
- Equality of variances

Test mutual normality of groups

Construct mutual sample: subtract group mean from values:

$$\forall i \ in \ Y_1, \ y'_{1i} = y_{1i} - \overline{Y_1}$$

 $\forall i \ in \ Y_2, \ y'_{2i} = y_{2i} - \overline{Y_2}$

Test normality of mutual sample

$$Y' = Y - \overline{Y} \sim N$$

Perform **Shapiro–Wilk test** on Y'

$$H_0: Y' \sim N$$

 $H_A: Y' \neq N$ demand $P_v > 0.05$

- shapiro_h_unpaired list [4] (S3: htest) List of length 4
 - statistic double [1] 0.9629943
 - p.value double [1] 2.158936e-07
 - method character [1] 'Shapiro-Wilk normality test'
 - data.name character [1] 'data_flat\$vals_shifted'

If $Y' \sim N \rightarrow$ perform Levene test Test equality of group variances

•	Df	F [‡] value	Pr(>F)
group	1	0.1624512	0.6871739
	326	NA	NA

 H_0 : $\sigma_1 = \sigma_2$

 H_A : $\sigma_1 \neq \sigma_2$

If $P_v > 0.05$ variances are not different

Comparison of un-paired sample means

Normal Distribution

ttest_h list [10] (S3: htest) List of length 10

statistic double [1] -12.62059

D parameter double [1] 326

p.value double [1] 5.272935e-30

conf.int double [2] -11.95 -8.73

estimate double [2] 20.1 30.5

null.value double [1] 0

stderr double [1] 0.8190135

alternative character [1] 'two.sided'

method character [1] 'Two Sample t-test'

data.name character [1] 'values by ind'

Un-normal Distribution

Wilcoxon signedrank test

wilcoxon_h list [7] (S3: htest) List of length 7

statistic double [1] 2521.5

parameter NULL Pairlist of length 0

p.value double [1] 2.070329e-23

null.value double [1] 0

alternative character [1] 'two.sided'