Soal

No 1 : Algoritma **Priority** berdasarkan **Non-Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

No 1 : Algoritma Priority berdasarkan Non-Preemptive			
Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0 → 1	3
P2	6	1	2
P3	3	2	1
P4	4	2	1

Berhubung waktu kedatangan ada yang sama maka belum bisa ditentukan Jadi lihat priority yang tertinggi

No 1 : Algoritma Priority berdasarkan Non-Preemptive			
Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0 -> 1	3
P2	6	1 → 2	2
P3	3	2	1
P4	4	2	1

No 1 : Algoritma Priority berdasarkan Non-Preemptive			
Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0 → 1	3
P2	6	<u>1</u> → 2	2
Р3	3	2 Siapa yg	ke 3 ?
P4	4	2	1

Kebetulan waktu kedatangan ada yg sama maka belum bisa ditentukan Jadi, lihat priority yang tertinggi

No 1 : Algoritma Priority berdasarkan Non-Preemptive			
Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0 → 1	3
P2	6	1 → 2	2
Р3	3 Siapa	yg ke 3? 2	1
P4	4	2	1

Kebetulan lagi prioritynya sama maka belum bisa ditentukan :v Jadi, diliat nama prosesnya

	No 1 : Algoritma Priority berdasarkan Non-Preemptive			
Proses	Burst time	Waktu Kedatangan	Priority	
P1	9	0 -> 1	3	
P2	6	1 → 2	2	
P3	3 Siapa	yg ke 3 ? 2	1	
P4	4	2	1	

Jika diliat dari nama prosesnya maka yang duluan adalah P3 kemudian P4 Jadi, yang ke 3 adalah P3 (Mungkin)

No 1 : Algoritma Priority berdasarkan Non-Preemptive			
Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0 → 1	3
P2	6	1 → 2	2
Р3	3	<u>2</u> → 3	1
P4	4	² 4	1

Jadi urutan sesuai waktu kedatangan adalah P1 -> P2 -> P3 -> P4 (Tapi belum pasti karena ini algoritma priority yang artinya tergantung priority yang tertinggi)

No 1 : Algoritma Priority berdasarkan Non-Preemptive			
Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1 1
P4	4	2	1

Sama seperti sebelumnya karena prioritynya sama maka yang diliat nama prosesnya Jadi yang paling tinggi prioritasnya adalah P3

No 1 : Algoritma Priority berdasarkan Non-Preemptive			
Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	<u>1</u> → 1
P4	4	2	<u>1</u> → 2

No 1 : Algoritma Priority berdasarkan Non-Preemptive			
Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2 -> 3
Р3	3	2	<u>1</u> → 1
P4	4	2	<u>1</u> → 2

No 1 : Algoritma Priority berdasarkan Non-Preemptive			
Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3 → 4
P2	6	1	<u>2</u> → 3
Р3	3	2	<u>1</u> → 1
P4	4	2	<u>1</u> → 2

Jadi urutan sesuai priority adalah P3 -> P4 -> P2 -> P1 (Tapi belum pasti karena proses dimulai dari proses yang datang duluan)

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Urutan sesuai waktu kedatangan : P1 -> P2 -> P3 -> P4

Urutan sesuai priority : P3 -> P4 -> P2 -> P1

Karena ini Algoritma Priority berdasarkan Non-Preemptive berarti proses yang punya priority paling tinggi dikerjakan duluan dan Non-Preemptive artinya proses yang sedang berjalan tidak boleh diganti

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Urutan sesuai waktu kedatangan: P1 -> P2 -> P3 -> P4
Urutan sesuai priority: P3 -> P4 -> P2 -> P1

Semua proses otomatis dimulai dari 0 Ibaratnya ngisi bensin "dari 0 ya mas" :v Jadi Gant Chart dimulai dari 0

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Urutan sesuai waktu kedatangan: P1 -> P2 -> P3 -> P4
Urutan sesuai priority: P3 -> P4 -> P2 -> P1

Karena dimulai dari 0 maka proses yang mulai duluan adalah P1 karena dia yang dateng paling pertama

P1

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Urutan sesuai waktu kedatangan: P1 -> P2 -> P3 -> P4
Urutan sesuai priority: P3 -> P4 -> P2 -> P1

Pertanyaannya, sampe berapa P1 selesai ? Lihat lagi soalnya karena ini algoritma priority berdasarkan non-preemptive berarti ga boleh diganggu

Jadi sampai burst time P1 habis

Apa itu burst time? Burst time ibaratnya waktu yang dibutuhkan proses supaya selesai memproses

P1

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

	-			
Proses	В	urst time	Waktu Kedatangan	Priority
P1		9	0	3
P2		6	1	2
Р3		3	2	1
P4		4	2	1

P1

(0 + 9)

3. Buat Gant Chart

Urutan sesuai waktu kedatangan: P1 -> P2 -> P3 -> P4
Urutan sesuai priority: P3 -> P4 -> P2 -> P1

Jika diliat Burst time P1 adalah 9 Maka hanya tinggal 0 + 9 = 9

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Urutan sesuai waktu kedatangan: P1 -> P2 -> P3 -> P4
Urutan sesuai priority: P3 -> P4 -> P2 -> P1

Sampai sini berarti proses P1 selesai Mudahkan ? Lanjutkan sendiri :v

P1

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Urutan sesuai waktu kedatangan: P1 -> P2 -> P3 -> P4
Urutan sesuai priority: P3 -> P4 -> P2 -> P1

Sampai sini berarti proses P1 selesai Mudahkan ? Lanjutkan sendiri :v

P1

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Urutan sesuai waktu kedatangan: P1 -> P2 -> P3 -> P4
Urutan sesuai priority: P3 -> P4 -> P2 -> P1

Sampai sini berarti proses P1 selesai Mudahkan ? Lanjutkan sendiri :v

P1

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

-				
Proses	Burst time	Waktu Kedatangan	Priority	
P1	9	0	3	
P2	6	1	2	
Р3	3	2	1	
P4	4	2	1	

Urutan sesuai waktu kedatangan : P1 -> P2 -> P3 -> P4
Urutan sesuai priority : P3 -> P4 -> P2 -> P1

Ketemu lagi:v

Sekarang lanjutannya proses ke berapa? apa diliat dari waktu kedatangan atau dari priority?

Coba renungkan dulu

P1

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority	
P1	9	0	3	
P2	6	1	2	
Р3	3	2	1	
P4	4	2	1	

Urutan sesuai waktu kedatangan : P1 -> P2 -> P3 -> P4
Urutan sesuai priority : P3 -> P4 -> P2 -> P1

Y, proses selanjutnya ditentuin dari prioritynya. Kenapa ? karena jika diliat waktunya udah 9 detik, itu artinya semua proses sudah menunggu

P1

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Ibaratnya begini:

3. Buat Gant Chart

Urutan sesuai waktu kedatangan : P1 -> P2 -> P3 -> P4
Urutan sesuai priority : P3 -> P4 -> P2 -> P1

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority	
P1	9	0	3	
P2	6	1	2	
Р3	3	2	1	
P4	4	2	1	

Berarti proses selanjutnya ditentukan sesuai urutan priority, maka lihat urutannya dan masalah selesai

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

-				
Proses	Burst time	Waktu Kedatangan	Priority	
P1	9	0	3	
P2	6	1	2	
Р3	3	2	1	
P4	4	2	1	

Urutan sesuai waktu kedatangan : P1 > P2 -> P3 -> P4

Urutan sesuai priority : P3 -> P4 -> P2 > P1

Karena tinggal 3 proses maka hanya tinggal memasukkan prosesnya ke dalam Gant Chart

P3 P4 P2

P1

0 1 2 ... 8 9

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Urutan sesuai waktu kedatangan : P1 -> P2 -> P3 -> P4

Urutan sesuai priority : P3 -> P4 -> P2 -> P1

Hanya tinggal buat 3 kotak lagi maka prosesnya selesai

P3 P4 P2

P1

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Hanya tinggal buat 3 kotak lagi maka prosesnya selesai

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
P3	3	2	1
P4	4	2	1

Sekarang tinggal main tambah-tambahan

P1	P3	P4	P2

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority	
P1	9	0	3	
P2	6	1	2	
P3	3	2	1	
P4	4	2	1	

Urutan sesuai waktu kedatangan : P1 -> P2 -> P3 -> P4
Urutan sesuai priority : P3 -> P4 -> P2 -> P1

Burst time proses ditambah waktu sebelumnya

P1 P3 P4 P2
0 9 (9+3)

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority	
P1	9	0	3	
P2	6	1	2	
P3	3	2	1	
P4	4	2	1	

Urutan sesuai waktu kedatangan : P1 -> P2 -> P3 -> P4

Urutan sesuai priority : P3 -> P4 -> P2 -> P1

Burst time proses ditambah waktu sebelumnya

P1 P3 P4 P2
0 9 (9+3) 12

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority	
P1	9	0	3	
P2	6	1	2	
P3	3	2	1	
P4	4	2	1	

Burst time proses ditambah waktu sebelumnya

P1 P3 P4 P2

0 9 (12 + 4)

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

	•				
Proses	Burst time	Waktu Kedatangan	Priority		
P1	9	0	3		
P2	6	1	2		
Р3	3	2	1		
P4	4	2	1		

Burst time proses ditambah waktu sebelumnya

P1 P3 P4 P2

0 9 (12 + 4) 16

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

•					
Proses	Burst time	Waktu Kedatangan	Priority		
P1	9	0	3		
P2	6	1	2		
Р3	3	2	1		
P4	4	2	1		

Burst time proses ditambah waktu sebelumnya

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

•					
Proses	Burst time	Waktu Kedatangan	Priority		
P1	9	0	3		
P2	6	1	2		
Р3	3	2	1		
P4	4	2	1		

Burst time proses ditambah waktu sebelumnya

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Gant Chart selesai dibuat

	P1	Р3	P4	P2
0	Ç) 1	2	16 22

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

4. Waiting Time

Menghitung waiting time dari masing" proses, caranya: Bagian kiri dari proses dikurangi waktu kedatangan

Waiting Time		
P1		
P2		
Р3		
Р4		

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

4. Waiting Time

Waiting Time				
P1	0 - 0 = 0			
P2				
Р3				
P4				

P1:0-0=0

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Lihat prosesnya, proses selanjutnya P3 bukan P2

	P1	P3		P4	P2	
0		9	12	1	.6	22

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Waiting Time		
P1	0 - 0 = 0	
P2		
Р3	9 - 2 = 7	
> P4	12 - 2 = 10	

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Waiting Time			
P1	0 - 0 = 0		
P2	16 - 1 = 15		
Р3	9 - 2 = 7		
Р4	12 - 2 = 10		

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Waiting Time		
P1	0 - 0 = 0	
P2	16 - 1 = 15	
Р3	9 - 2 = 7	
P4	12 - 2 = 10	

Waiting Time, Selesai

	P1	P3	P4	P2
C	S) 1	2	16 22

No 1: Algoritma Priority berdasarkan Non-**Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Waiting Time		
P1	0 - 0 = 0	
P2	16 - 1 = 15	
Р3	9 - 2 = 7	
P4	12 - 2 = 10	

5. Waiting Time 6. Rata" Waiting Time

Rata-Rata Waiting Time		
0 + 15 + 7 + 10	_	0
4	11	8

Waiting Time, Selesai dan tinggal cari rata"nya

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Turn Around Time		
P1		
P2		
Р3		
P4		

Turn around time artinya Bagian paling kanan proses dikurang waktu kedatangan (sama seperti sebelumnya tapi kebalikannya)

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Turn Around Time		
P1		
P2	22 - 1 = 21	
Р3		
P4		

P2:22-1=21

	P1	P3		P4	P2	
0	g)	12		16	22

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Turn Around Time		
P1		
P2	22 - 1 = 21	
Р3		
P4	16 - 2 = 14	

P2:16-2=14

P1 P3 P4 P2
0 9 12 16 22

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Turn Around Time		
P1		
P2	22 - 1 = 21	
P3	12 - 2 = 10	
P4	16 - 2 = 14	

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Turn Around Time		
P1	9 - 0 = 9	
P2	22 - 1 = 21	
P3	12 - 2 = 10	
P4	16 - 2 = 14	

P2:9-0=9

P1 P3 P4 P2

0

12

16

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Turn Around Time		
P1	9 - 0 = 9	
P2	22 - 1 = 21	
Р3	12 - 2 = 10	
P4	16 - 2 = 14	

Turn Around Time, Selesai

	P1	P3	P4	P2
C	9) 1	2 1	16 22

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

7. Turn Around Time 8. Rata" Turn Around Time

Turn Around Time		
P1	9 - 0 = 9	
P2	22 - 1 = 21	
Р3	12 - 2 = 10	
P4	16 - 2 = 14	

Rata-Rata Turn Around Time			
9 + 21 + 10 + 14		C 75	
4	=	6,75	

Turn Around Time, Selesai dan tinggal cari rata" nya

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Turn Around Time		
P1	9 - 0 = 9	
P2	22 - 1 = 21	
Р3	12 - 2 = 10	
P4	16 - 2 = 14	

Rata-Rata Turn Around Time			
9 + 21 + 10 + 14		6.75	
4	I	6,75	

Pembuktian		
P1		
P2		
Р3		
P4		

Pembuktian dengan cara memastikan turn around time dikurang waiting time adalah burst time

Waiting Time		
P1	0 - 0 = 0	
P2	16 - 1 = 15	
Р3	9 - 2 = 7	
P4	12 - 2 = 10	

Rata-Rata Waiting Time			
0 + 15 + 7 + 10		0	
4	II	8	

	P	1

P3

P4

P2

0

9

12

16

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

9. Pembuktian

Turn Around Time	
P1	9-0-9
P2	22 - 1 = 21
P3	12 - 2 = 10
P4	16 - 2 = 14

Rata-Rata Turn Around Time		
9 + 21 + 10 + 14	_	6.75
4	=	6,75

Р	embuktian	
P1	9 - 0 =	9
P2		
Р3		
P4		

Pembuktian dengan cara memastikan turn around time dikurang waiting time adalah burst time

Waiting Time	
P1	0-0-0
P2	16 - 1 = 15
Р3	9 - 2 = 7
P4	12 - 2 = 10

Rata-Rata Waiting Time		
0 + 15 + 7 + 10	_	o
4	=	8

P1

P3

P4

P2

0

9

12

16

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Turn Around Time	
P1	9 - 0 = 9
P2	22 - 1 21
Р3	12 - 2 = 10
P4	16 - 2 = 14

Rata-Rata Turn Around Time		
9 + 21 + 10 + 14	_	6.75
4	=	6,75

Pembuktian	
P1	9 - 0 = 9
P2	21 - 15 : 6
Р3	
P4	

Pembuktian dengan cara memastikan turn around time dikurang waiting time adalah burst time

Waiting Time	
P1	0 - 0 = 0
P2	16 - 1 : 15
Р3	9 - 2 = 7
P4	12 - 2 = 10

Rata-Rata Waiting Time		
0 + 15 + 7 + 10	_	0
4	11	8

D	1
Г	4

P3

P4

P2

0

9

12

16

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Turn Around Time	
P1	9 - 0 = 9
P2	22 - 1 = 21
Р3	12 - 2 = 10
P4	16 - 2 = 14

Rata-Rata Turn Around Time		
9 + 21 + 10 + 14	_	6.75
4	=	6,75

Pembuktian	
P1	9 - 0 = 9
P2	21 - 15 = 6
Р3	10 - 7 = 3
P4	

Pembuktian dengan cara memastikan turn around time dikurang waiting time adalah burst time

Waiting Time		
P1	0 - 0 = 0	
P2	16 - 1 = 15	
Р3	9 - 2 7	
P4	12 - 2 = 10	

Rata-Rata Waiting Time		
0 + 15 + 7 + 10	_	o
4	I	8

P1

P3

P4

P2

0

9

L2

16

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Turn Around Time		
P1	9 - 0 = 9	
P2	22 - 1 = 21	
Р3	12 - 2 = 10	
P4	16 - 2 = 14	

Rata-Rata Turn Around Time		
9 + 21 + 10 + 14	_	6.75
4	=	6,75

Pembuktian	
P1	9 - 0 = 9
P2	21 - 15 = 6
Р3	10 - 7 = 3
P4	14 - 10 = 4

Pembuktian dengan cara memastikan turn around time dikurang waiting time adalah burst time

Waiting Time		
P1	0 - 0 = 0	
P2	16 - 1 = 15	
Р3	9 - 2 = 7	
P4	12 - 2 = 10	

Rata-Rata Waiting Time		
0 + 15 + 7 + 10		0
4	II	8

P1

P3

P4

P2

0

9

12

16

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

Turn Around Time		
P1	9 - 0 = 9	
P2	22 - 1 = 21	
Р3	12 - 2 = 10	
P4	16 - 2 = 14	

Rata-Rata Turn Around Time		
9 + 21 + 10 + 14	_	6.75
4	=	6,75

Pembuktian		
P1	9 - 0 = 9	
P2	21 - 15 = 6	
Р3	10 - 7 = 3	
Р4	14 - 10 = 4	
. 7	14 10 - 4	

Dari pembuktiannya sudah diketahui bahwa jawaban tersebut benar (Mungkin)

Waiting Time		
P1	0 - 0 = 0	
P2	16 - 1 = 15	
Р3	9 - 2 = 7	
P4	12 - 2 = 10	

Rata-Rata Waiting Time		
0 + 15 + 7 + 10	_	o
4	I	8

P1

P3

P4

P2

0

9

12

16

No 1 : Algoritma **Priority** berdasarkan **Non- Preemptive**

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

10. Jawaban

Turn Around Time		
P1	9 - 0 = 9	
P2	22 - 1 = 21	
Р3	12 - 2 = 10	
P4	16 - 2 = 14	

Rata-Rata Turn Arour	d Time	}
9 + 21 + 10 + 14		6.75
4	II	6,75

Pembuktian		
P1	9 - 0 = 9	
P2	21 - 15 = 6	
Р3	10 - 7 = 3	
P4	14 - 10 = 4	

Waiting Time		
P1	0 - 0 = 0	
P2	16 - 1 = 15	
Р3	9 - 2 = 7	
P4	12 - 2 = 10	

Rata-Rata Waiting Time		
0 + 15 + 7 + 10		o
4	=	8

P1

P3

P4

P2

0

9

12

16