$12a_{0761} \ (K12a_{0761})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{69} + u^{68} + \dots - u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 69 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{69} + u^{68} + \dots - u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} - 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{10} - 5u^{8} + 8u^{6} - 3u^{4} - 3u^{2} + 1 \\ -u^{10} + 4u^{8} - 5u^{6} + 3u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{27} + 12u^{25} + \dots - 2u^{5} + 5u^{3} \\ u^{27} - 11u^{25} + \dots - u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{15} - 6u^{13} + 14u^{11} - 14u^{9} + 2u^{7} + 6u^{5} - 2u^{3} - 2u \\ u^{17} - 7u^{15} + 19u^{13} - 22u^{11} + 3u^{9} + 14u^{7} - 6u^{5} - 4u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{32} - 13u^{30} + \dots - 2u^{2} + 1 \\ u^{34} - 14u^{32} + \dots - 8u^{4} + u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{49} - 20u^{47} + \dots - 8u^{3} - u \\ u^{51} - 21u^{49} + \dots - 3u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{66} + 108u^{64} + \cdots 12u 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6, c_8	$u^{69} + 17u^{68} + \dots + 3u + 1$
c_2, c_7	$u^{69} + u^{68} + \dots + u - 1$
c_3	$u^{69} + u^{68} + \dots - 129u - 137$
c_4, c_5, c_{11}	$u^{69} - u^{68} + \dots - u - 1$
<i>C</i> 9	$u^{69} - 7u^{68} + \dots - u + 1$
c_{10}, c_{12}	$u^{69} + 3u^{68} + \dots + 137u + 39$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6, c_8	$y^{69} + 71y^{68} + \dots - 29y - 1$
c_2, c_7	$y^{69} - 17y^{68} + \dots + 3y - 1$
c_3	$y^{69} - 13y^{68} + \dots + 104047y - 18769$
c_4, c_5, c_{11}	$y^{69} - 57y^{68} + \dots + 3y - 1$
<i>C</i> 9	$y^{69} - y^{68} + \dots - 237y - 1$
c_{10}, c_{12}	$y^{69} + 43y^{68} + \dots + 12139y - 1521$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.092180 + 0.321855I	5.91460 + 0.32154I	0
u = -1.092180 - 0.321855I	5.91460 - 0.32154I	0
u = 1.096740 + 0.333708I	5.47967 - 6.53917I	0
u = 1.096740 - 0.333708I	5.47967 + 6.53917I	0
u = 0.138165 + 0.798793I	2.56851 + 10.69340I	1.65374 - 7.70378I
u = 0.138165 - 0.798793I	2.56851 - 10.69340I	1.65374 + 7.70378I
u = 1.145410 + 0.328636I	-1.73469 - 2.50512I	0
u = 1.145410 - 0.328636I	-1.73469 + 2.50512I	0
u = -0.140078 + 0.792908I	3.02805 - 4.42671I	2.55261 + 2.89150I
u = -0.140078 - 0.792908I	3.02805 + 4.42671I	2.55261 - 2.89150I
u = 0.110756 + 0.793388I	-4.87332 + 6.59799I	-3.56404 - 7.84229I
u = 0.110756 - 0.793388I	-4.87332 - 6.59799I	-3.56404 + 7.84229I
u = -1.166290 + 0.294481I	0.672378 - 0.761865I	0
u = -1.166290 - 0.294481I	0.672378 + 0.761865I	0
u = 0.012224 + 0.791415I	-0.94544 - 2.84281I	-1.00503 + 2.82836I
u = 0.012224 - 0.791415I	-0.94544 + 2.84281I	-1.00503 - 2.82836I
u = 0.074603 + 0.785868I	-5.96794 + 1.10890I	-6.58754 - 0.13737I
u = 0.074603 - 0.785868I	-5.96794 - 1.10890I	-6.58754 + 0.13737I
u = -0.106193 + 0.769108I	-2.51716 - 3.12629I	2.15915 + 3.27567I
u = -0.106193 - 0.769108I	-2.51716 + 3.12629I	2.15915 - 3.27567I
u = 1.193520 + 0.331076I	-2.55117 + 2.93757I	0
u = 1.193520 - 0.331076I	-2.55117 - 2.93757I	0
u = 1.245240 + 0.345004I	2.86320 + 6.94117I	0
u = 1.245240 - 0.345004I	2.86320 - 6.94117I	0
u = -1.30108	2.90585	0
u = -1.277260 + 0.264440I	2.55105 - 1.50715I	0
u = -1.277260 - 0.264440I	2.55105 + 1.50715I	0
u = -0.070446 + 0.690883I	-1.19123 - 1.83777I	2.28274 + 4.57123I
u = -0.070446 - 0.690883I	-1.19123 + 1.83777I	2.28274 - 4.57123I
u = -1.264530 + 0.340025I	3.01410 - 1.23373I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.264530 - 0.340025I	3.01410 + 1.23373I	0
u = -0.603470 + 0.301354I	6.73153 - 0.61716I	7.13438 + 2.10966I
u = -0.603470 - 0.301354I	6.73153 + 0.61716I	7.13438 - 2.10966I
u = 0.589520 + 0.321708I	6.41855 + 6.84674I	6.30902 - 7.28330I
u = 0.589520 - 0.321708I	6.41855 - 6.84674I	6.30902 + 7.28330I
u = 1.318830 + 0.298622I	3.18430 + 5.45567I	0
u = 1.318830 - 0.298622I	3.18430 - 5.45567I	0
u = -1.315810 + 0.338996I	-1.61288 - 5.16596I	0
u = -1.315810 - 0.338996I	-1.61288 + 5.16596I	0
u = -1.362700 + 0.054216I	4.88257 - 4.45827I	0
u = -1.362700 - 0.054216I	4.88257 + 4.45827I	0
u = -0.215382 + 0.597701I	5.40705 - 2.59249I	4.08361 + 4.36083I
u = -0.215382 - 0.597701I	5.40705 + 2.59249I	4.08361 - 4.36083I
u = 1.365400 + 0.023049I	6.60295 + 0.80819I	0
u = 1.365400 - 0.023049I	6.60295 - 0.80819I	0
u = -1.346740 + 0.250330I	10.10940 + 0.56737I	0
u = -1.346740 - 0.250330I	10.10940 - 0.56737I	0
u = 1.348030 + 0.257995I	10.26320 + 5.75336I	0
u = 1.348030 - 0.257995I	10.26320 - 5.75336I	0
u = 1.333890 + 0.330249I	2.00995 + 7.10245I	0
u = 1.333890 - 0.330249I	2.00995 - 7.10245I	0
u = 0.231821 + 0.578390I	5.22939 - 3.62581I	3.68752 + 0.72835I
u = 0.231821 - 0.578390I	5.22939 + 3.62581I	3.68752 - 0.72835I
u = -1.337180 + 0.342771I	-0.32289 - 10.69870I	0
u = -1.337180 - 0.342771I	-0.32289 + 10.69870I	0
u = 1.352750 + 0.339947I	7.73069 + 8.51857I	0
u = 1.352750 - 0.339947I	7.73069 - 8.51857I	0
u = -1.352500 + 0.343185I	7.2637 - 14.8161I	0
u = -1.352500 - 0.343185I	7.2637 + 14.8161I	0
u = -1.398340 + 0.054036I	12.5949 - 7.8659I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.398340 - 0.054036I	12.5949 + 7.8659I	0
u = 1.398680 + 0.048186I	12.92990 + 1.53899I	0
u = 1.398680 - 0.048186I	12.92990 - 1.53899I	0
u = 0.462955 + 0.294667I	-0.73130 + 3.44818I	1.19909 - 9.10721I
u = 0.462955 - 0.294667I	-0.73130 - 3.44818I	1.19909 + 9.10721I
u = -0.465435 + 0.129552I	0.992427 - 0.375285I	9.31448 + 1.85856I
u = -0.465435 - 0.129552I	0.992427 + 0.375285I	9.31448 - 1.85856I
u = 0.246534 + 0.364424I	-1.34874 - 0.90520I	-2.53630 + 0.15595I
u = 0.246534 - 0.364424I	-1.34874 + 0.90520I	-2.53630 - 0.15595I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6, c_8	$u^{69} + 17u^{68} + \dots + 3u + 1$
c_2, c_7	$u^{69} + u^{68} + \dots + u - 1$
c_3	$u^{69} + u^{68} + \dots - 129u - 137$
c_4, c_5, c_{11}	$u^{69} - u^{68} + \dots - u - 1$
<i>c</i> ₉	$u^{69} - 7u^{68} + \dots - u + 1$
c_{10}, c_{12}	$u^{69} + 3u^{68} + \dots + 137u + 39$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6, c_8	$y^{69} + 71y^{68} + \dots - 29y - 1$
c_2, c_7	$y^{69} - 17y^{68} + \dots + 3y - 1$
c_3	$y^{69} - 13y^{68} + \dots + 104047y - 18769$
c_4, c_5, c_{11}	$y^{69} - 57y^{68} + \dots + 3y - 1$
<i>c</i> 9	$y^{69} - y^{68} + \dots - 237y - 1$
c_{10}, c_{12}	$y^{69} + 43y^{68} + \dots + 12139y - 1521$