Synthèses inorganique

Eau de Javel

HYPOCHLORITE DE SODIUM EN SOLUTION ≥ 5 % CL ACTIF

Danger

H314 - Provoque des brûlures de la peau et des lésions oculaires graves

H400 - Très toxique pour les organismes aquatiques

EUH 031 - Au contact d'un acide, dégage un gaz toxique

Nota : Les conseils de prudence P sont sélectionnés selon les critères de l'annexe 1 du réglement

CE n° 1272/2008.

231-668-3

Synthèse industrielle

Cellule à membrane

Cellule à mercure

Électrosynthèse de l'eau de Javel

MESTRE Eloïse

Dosage de l'eau de Javel

•Titrage indirect :

$$\circ$$
 ClO⁻(aq) + 2I⁻(aq) + 2H⁺(aq) = Cl⁻(aq) + I₂(aq) + H₂O(l)

$$\circ 2 S_2 O_3^{2-}(aq) + I_2(aq) = 2I^-(aq) + S_4 O_6^{2-}(aq)$$

• À l'équivalence :
$$n(I_2) = \frac{n(S_2O_3^{2-})}{2} = n(ClO^-)$$

• Calcul du rendement :

Exemples de complexes

• Nom : $[Cu(H_2O)_6]^{2+}$

• Atome central: Cu

• Ligand : H₂O

Exemples de complexes

Nom : [Fe(acac)₃]

• Atome central: Fe

• Ligand :

Synthèse de $[Fe(acac)_3] = Fe(C_5H_7O_2)_3$

Calcule du rendement

	Fe(Cl) ₃ (s)) +	+ 3C5H8O2(I) =	Fe(C ₅ H ₇ O ₂) ₃ (s)	+ 3 Cl ⁻ (aq)	+ 3H+(aq)
t=0	n _o	n_1	0	0	0
t=t _{eq}	n0-ξ	3 ξ	$n_3 = \xi$	3ξ	3ξ

- Réactif limitant : Fe(Cl)₃(s)
- Avancement maximal : $n^{th\acute{e}o}(Fe(C_5H_7O_2)_3) = 1,85 \text{ mmol}$

$$\rho = \frac{n^{exp}(\operatorname{Fe}(C_5H_7O_2)_3)}{n^{th\acute{e}o}(\operatorname{Fe}(C_5H_7O_2)_3)}$$

L'Hémoglobine

MESTRE Eloïse

Hème et transport du dioxygène

MESTRE Eloïse

Merci