Anwendung Höherer Mathematik

Sebastian Matkovich

FH Campus Wien sebastianmatkovich@gmail.com

October 31, 2024

Presentation Overview

- 1 Wiederholung Differenzial-/ Integralrechnung
 - Differenzialrechnung
 - Differenzialrechnung
 - Produktregel für Differenziation eines Produktes zweier
 - Funktionen
 - Integralrechnung
- 2 Differenzialgleichungen
- Gewöhnliche homogene Differenzialgleichungen 1. Ordnung
 - Logarithmenregeln
 - Gewöhnliche inhomogene Differenzialgleichungen 1. Ordnung Gewöhnliche homogene Differenzialgleichungen 2. Ordnung
 - Eulerdarstellung
 - Gewöhnliche inhomogene Differenzialgleichungen 2. Ordnung
- Partielle Differenzialgleichungen
- 3 Fourierreihenentwicklung

Differenzialrechnung

Die Ableitung der Exponentialfunktion lässt sich so herleiten:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \lim_{h \to 0} \left(1 + h \right)^{\frac{1}{h}}$$
 (1)

$$\frac{de^{x}}{dx} = \lim_{h \to 0} \frac{e^{x+h} - e^{x}}{h} = e^{x} \cdot \lim_{h \to 0} \frac{e^{h} - 1}{h} = e^{x} \cdot \lim_{h \to 0} \frac{(1+h)^{\frac{1}{h}^{h}} - 1}{h} = e^{x}$$
(2)

Differenzialrechnung

Die Ableitung einer Umkehrfunktion $f^{-1}(y) = x(y)$ erhalten wir ganz leicht über die Leibnizschreibweise folgendermaßen:

$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} \tag{3}$$

Ein einfaches Beispiel, das häufig bei Differenzialgleichungen auftritt, bei denen das Ergebnis dieser Rechnung integriert wird, ist die Ableitung von $\mathsf{In}(x)$ nach x.

$$\frac{d\ln(y)}{dy} = \frac{1}{\frac{de^x}{dx}} = \frac{1}{e^x} = \frac{1}{y}$$
 (4)

Damit ist das häufig bei Differenzialgleichungen auftretende Integral über $\frac{1}{x}$:

$$\int \frac{1}{x} dx = \ln(|x|) + c \tag{5}$$

Produktregel für Differenziation eines Produktes zweier Funktionen

$$f(x) = u(x) \cdot v(x)$$

$$f'(x) = \lim_{h \to 0} \frac{u(x+h) \cdot v(x+h) - u(x) \cdot v(x)}{h} = \lim_{h \to 0} \frac{u(x+h) \cdot v(x+h) - u(x) \cdot v(x) + u(x+h) \cdot v(x) - u(x+h) \cdot v(x)}{h}$$

$$= \lim_{h \to 0} \frac{u(x+h) \cdot [v(x+h) - v(x)] + v(x) \cdot [u(x+h) - u(x)]}{h}$$

$$= \lim_{h \to 0} \frac{u(x+h) \cdot [v(x+h) - v(x)] + \lim_{h \to 0} \frac{v(x) \cdot [u(x+h) - u(x)]}{h}$$

$$= \lim_{h \to 0} u(x+h) \cdot \lim_{h \to 0} \frac{v(x+h) - v(x)}{h} + v(x) \cdot \lim_{h \to 0} \frac{u(x+h) - u(x)}{h}$$

$$= u(x) \cdot v'(x) + u'(x) \cdot v(x)$$

Anw. höhere Mathe

October 31, 2024

5/52

Partielle Integration

Aus der Produktregel für zwei Funktionen u(x) und v(x) können wir eine Regel für Partielle Integration herleiten.

$$(u \cdot v)' = u' \cdot v + u \cdot v' \tag{6}$$

Integrieren wir auf beiden Seiten, erhalten wir

$$\int (u \cdot v)' dx = \int (u' \cdot v) dx + \int (u \cdot v') dx - \int u \cdot v' dx$$
 (7)

$$u \cdot v + c - \int (u \cdot v') dx = \int (u' \cdot v) dx$$
 (8)

$$\int (u' \cdot v) dx = u \cdot v + c - \int (u \cdot v') dx$$
 (9)

Ziel ist es die Integration durch Ableitung eines Terms so zu vereinfachen, dass ein schon bekanntes Integral entsteht, oder das ursprüngliche Integral, das dann wie eine Gleichung gelöst werden kann.

Mit folgendem Trick lässt sich ln(x) so integrieren

$$\int \underbrace{1}_{u'} \cdot \underbrace{\ln(x)}_{v} dx = \underbrace{x}_{u} \cdot \underbrace{\ln(x) + c}_{v} - \int \underbrace{x}_{u} \cdot \underbrace{\frac{1}{x}}_{v'} dx = x \cdot \ln(x) + x + c =$$

$$x[\ln(x) + 1] + c$$
 (10)

So lässt sich auch das Integral über $sin(x) \cdot cos(x)$ durchführen.

$$\int \underbrace{\sin(x)}_{u} \cdot \underbrace{\cos(x)}_{v'} dx = [\sin(x)]^{2} + c - \int \underbrace{\cos(x)}_{u'} \cdot \underbrace{\sin(x)}_{v} dx \bigg| + \int \cos(x) \cdot \sin(x) dx$$
(12)

$$2 \cdot \int \sin(x) \cdot \cos(x) dx = [\sin(x)]^2 + c : 2$$
 (13)

$$\int \sin(x) \cdot \cos(x) dx = \frac{[\sin(x)]^2}{2} + c'$$
 (14)

Ähnlich funktionieren auch die Integrale über $[\sin(x)]^2$ oder $(\cos(x))^2$, nur, dass nach der ersten partiellen Integration ein Additionstheorem anzuwenden ist.

(4 □) (回) (重) (重) (平)

Differenzialgleichungen

Definition

Eine Differenzialgleichung ist eine Gleichung, deren Lösung keine Zahl, sondern eine Funktion ist.

Definition

Bei einer gewöhnlichen Differenzialgleichung ist die gesuchte Funktion von nur einer Variablen abhängig und es treten nur Ableitungen nach einer Variablen auf.

Beispiel

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^x$$

Definition

Bei einer partiellen Differenzialgleichung ist die gesuchte Funktion von mehreren Variablen abhängig und es treten partielle Ableitungen nach verschiedenen Variablen auf.

Beispiel

$$\frac{\partial^2 u}{\partial x^2} + 2\frac{\partial u}{\partial y} + u = e^x$$

Definition

Eine Dgl. heißt von n-ter Ordnung, wenn die höchste in ihr auftretende Ableitung von n-tem Grad ist.

Definition

Es gibt noch die Unterscheidung zwischen homogenen und inhomogenen Dgln. Sei f(x) die gesuchte Funktion, dann wird ein eventuell auftretender Term g(x) Inhomogenität genannt.

Beispiel

Die vorher gezeigten Beispiele sind inhomogene Dgln. In homogener Form würden sie so aussehen: $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$

Definition

Eine Dgl. deren höchste Potenz der Variablen, von der die gesuchte Funktion abhängt, n ist, nennen wir n-ten Grades.

Definition

Eine Dgl. vom Grad 1 nennen wir linear, vom Grad > 1, nichtlinear.

Einschub: Logarithmenregeln

$$y = e^{x} \tag{15}$$

$$x = \ln(y) \tag{16}$$

$$\ln(y_1 \cdot y_2) = \ln(e^{x_1} \cdot e^{x_2}) = \ln(e^{x_1 + x_2}) = x_1 + x_2 = \ln(y_1) + \ln(y_2)$$
 (17)

$$\ln(y^n) = \underbrace{\ln(y) + \ln(y) + \dots + \ln(y)}_{n - Mal} = \underbrace{n \cdot \ln(y)}_{18}$$
(18)

Lösungsmethoden

Methode der Trennung der Variablen (Veränderlichen)

Enführung anhand eines Beispiels

$$\mathbf{y}' = \mathbf{y} \tag{19}$$

Ziel ist es Ausdrücke mit derselben Variable auf einer Seite zu sammeln.

$$\frac{dy}{dx} = y | : y \tag{20}$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = 1 \left| \int dx \right| \tag{21}$$

$$\int \frac{1}{v} \cdot \frac{dy}{dx} dx = \int 1 dx \tag{22}$$

(ロ) (個) (差) (差) (差) ぞく()

Fortsetzung des Beispiels

$$\int \frac{1}{y} dy = \int 1 dx$$

$$\ln(|y|) = x + \ln(c)|e^{()}$$
(24)

$$|\mathbf{y}| = \mathbf{c} \cdot \mathbf{e}^{\mathbf{x}} \tag{25}$$

(23)

Inhomogenitäten, Variation der Konstanten (nach Lagrange)

Bei einer inhomogenen Dgl. wird zuerst die Inhomegenität = 0 gesetzt und wir sagen wir lösen die homogene Dgl. Danach kann bei linearen Dgln. 1. Ordnung von der Integrationskonstante c angenommen werden, dass sie von der Variable abhängt, von der auch die gesuchte Funktion abhängt, üblicherweise c(x) oder c(t) und die Lösung der homogenen Gleichung in die inhomogene Dgl. eingesetzt. Damit kann nach der Funktion c aufgelöst werden. Die Lösung der homogenen Dgl. nennen wir homogene Lösung und eine Lösung der inhomogenen Dgl. nennen wir partikuläre Lösung. Die allgemeine Lösung ergibt sich aus der Summe der homogenen und der partikulären Lösung.

Theorem (Superpositionsprinzip)

Sind y_1 und y_2 Lösungen einer Dgl., so ist auch eine Superposition Lösung der Dgl.

Beweis.

Sei
$$y' \equiv A(x) \cdot y$$
 und $y = \alpha \cdot y_1 + \beta \cdot y_2$.
Dann ist $y' = (\alpha \cdot y_1 + \beta \cdot y_2)' = \alpha \cdot y_1' + \beta \cdot y_2' \equiv \alpha \cdot A \cdot y_1 + \beta \cdot A \cdot y_2 = A(x_1 \cdot y_2 + \beta \cdot y_2)'$

$$A(\alpha \cdot y_1 + \beta \cdot y_2)$$

Demonstration der Variation der Konstanten anhand eines Beispiels

Zu bestimmen ist die allgemeine Lösung der linearen Dgl. erster Ordnung

$$xy' + y - xe^{-2x} = 0.$$
 (26)

In Normalform:

$$y' + \frac{y}{x} \equiv e^{-2x} \tag{27}$$

Die homogene Dgl.:

$$y' + \frac{y}{x} = 0 \tag{28}$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = -\frac{1}{x} \Big| \int dx \tag{29}$$

$$\ln(|y|) = -\ln(|x|) + \ln(c) \left[= \ln\left(\frac{c}{|x|}\right) \right]$$
(30)

$$|y| = \frac{c}{|x|} \tag{31}$$

Anw. höhere Mathe

Demonstration der Variation der Konstanten anhand eines Beispiels - Fortsetzung

$$y = \frac{c(x)}{x} \tag{32}$$

(33)

(35)

(36)

19 / 52

$$y' = \frac{c'(x) \cdot x - c(x)}{x^2}$$

$$\frac{c'(x) \cdot x - c(x)}{x^2} + \frac{c(x)}{x^2} = \frac{c'(x)}{x} \equiv e^{-2x}$$
 (34)

$$c'(x) = x \cdot e^{2x}$$

$$e^{2x} \qquad e^{2x} \qquad e^{2x}$$

$$c(x) = \int \underbrace{x}_{u} \cdot \underbrace{e^{2x}}_{v'} dx = \underbrace{x}_{u} \cdot \underbrace{\frac{e^{2x}}{2} + k}_{v} - \int \underbrace{1}_{u'} \cdot \underbrace{\frac{e^{2x}}{2}}_{v} = \underbrace{\frac{x \cdot e^{2x}}{2} + k}_{v} - \underbrace{\frac{e^{2x}}{2} + k}_{v} - \underbrace{\frac$$

$$\Rightarrow y = \frac{e^{2x}}{2}(1 - \frac{1}{2x}) + \frac{k}{x}$$

Anw. höhere Mathe October 31, 2024

Dgln. höherer Ordnung

Eine lineare Dgl. n-ter Ordnung läßt sich auf folgende Normalform bringen:

$$a_n(x) \cdot y^{(n)} + a_{n-1}(x) \cdot y^{(n-1)} + \ldots + a_1(x) \cdot y' + a_0(x) \cdot y = g(x)$$
 (37)

mit $a_n(x) \neq 0$. Ist g(x) = 0, so heißt die Dgl. homogen, sonst heißt sie inhomogen. Für die Lösung linearer Dgln. höherer Ordnung haben die folgenden zwei Sätze große Bedeutung:

- 1 Satz 1: Die homogene Dgl. n-ter Ordnung besitzt genau n voneinander linear unabhängige Lösungen y_1, \ldots, y_n , deren Linearkombination die allgemeine Läung der Dgl. darstellt.
- 2 Satz 2: Die allgemeine Lösung der inhomogenen Dgl. n-ter Ordnung ist gleich der Summe aus der allgemeinen Lösung der zugehörigen homogenen und einer speziellen Lösung der inhomogenen Dgl.

Lösungsweg:

Nachdem die gegebene homogene lineare Dgl. auf die Normalform gebracht worden ist [g(x)=0], wird die zugehörige charakteristische Gleichung gebildet. Dazu wird der Ansatz

$$y(x) = e^{\lambda \cdot x} \tag{38}$$

in die homogene Dgl. (37) eingesetzt. Dabei entsteht:

$$e^{\lambda \cdot x} \cdot [a_n(x) \cdot \lambda^n + a_{n-1}(x) \cdot \lambda^{n-1} + \dots + a_1(x) \cdot \lambda + a_0(x)] = 0$$
 (39)

Durch Division durch $e^{\lambda \cdot x}$ (da $e^{\lambda \cdot x} \neq 0$ für alle λ und alle x) erhalten wir die sogenannte charakteristische Gleichung oder das charakteristische Polynom:

$$a_n(x) \cdot \lambda^n + a_{n-1}(x) \cdot \lambda^{n-1} + \ldots + a_1(x) \cdot \lambda + a_0(x) = 0$$
 (40)

Einschub zur Eulerdarstellung der Winkelfunktionen

$$e^{i\cdot\phi}=\cos(\phi)+i\cdot\sin(\phi)$$

$$e^{i\cdot\phi} + e^{-i\cdot\phi} = 2\cdot\cos(\phi) \Rightarrow \cos(\phi) = \frac{e^{i\cdot\phi} + e^{-i\cdot\phi}}{2}$$
(41)

$$e^{i\cdot\phi} - e^{-i\cdot\phi} = 2i\cdot\sin(\phi) \Rightarrow \sin(\phi) = \frac{e^{i\cdot\phi} - e^{-i\cdot\phi}}{2i}$$
 (42)

Bei der Lösung unterscheiden wir 4 Fälle.

• Fall 1: Alle Lösungen von (40) sind reell und voneinander verschieden

Die allgemeine Lösung von (37) lautet dann:

$$y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x} + \ldots + C_n e^{\lambda_n x}$$

wobei $\lambda_1, \lambda_2, \dots, \lambda_n$ die reellen Nullstellen des charakteristischen Polynoms (40) sind.

2 Fall 2: In (40) treten mehrfache reelle Lösungen auf (im vorliegenden Fall eine k-fache Lösung) Dann lautet die allgemeine Lösung von (37)

$$y = (C_1 + C_2 \times + C_3 \times^2 + \ldots + C_k \times^{k-1}) e^{\lambda_1 x} + C_{k+1} e^{\lambda_{k+1} x} + \ldots + C_n e^{\lambda_n x}$$

wobei λ_1 die k-fache Nullstelle des charakteristischen Polynoms (40) ist.

3 Fall 3: Alle Lösungen von (40) sind einfach, je zwei zueinander konjugiert komplex

$$\lambda_{1,2} = a_1 \pm b_1 \cdot i; \quad \lambda_{3,4} = a_3 \pm b_3 \cdot i; \dots;$$

 $\lambda_{n-1,n} = a_{n-1} \pm b_{n-1} \cdot i;$ n gerade Die allgemeine Lösung von (37) lautet:

$$y = e^{a_1 x} [C_1 \cos(b_1 \cdot x) + C_2 \sin(b_1 \cdot x)] + e^{a_3 x} [C_3 \cos(b_3 \cdot x) + C_4 \sin(b_3 \cdot x)] + \dots + e^{a_{n-1} x} [C_{n-1} \cos(b_{n-1} \cdot x) + C_n \sin(b_{n-1} \cdot x)]$$

wobei a_1, a_2, \ldots, a_n die reellen Teile der komplexen Nullstellen des charakteristischen Polynoms (40) und b_1, b_2, \ldots, b_n die imaginären Teile der komplexen Nullstellen des charakteristischen Polynoms (40) sind.

4 Fall 4: Die Kombination der 3 Fälle.

Ein Beispiel aus dem "Alltag", eine Federschwingung in Schwerelosigkeit (harmonischer Oszillator)

Die Kraft einer Feder wirkt einer

Auslenkung aus der Ruhelage x_0 entgegen und ist proportional zu dieser. Also ist die Kraft F, die die Feder auf eine Masse m an der Feder ausübt:

$$F = -k \cdot (x - x_0) \tag{43}$$

Dabei ist k die Federkonstante.

Die Kraft ist nach dem 1. Newton'schen Axiom $m \cdot a = m \cdot \frac{d^2x}{dt^2} = m \cdot \ddot{x}$, wobei a die Beschleunigung ist. So lautet dann die Dgl.

$$\mathbf{m} \cdot \ddot{\mathbf{x}} = -\mathbf{k} \cdot \mathbf{x} \tag{44}$$

wenn Als Ruhelage, der Einfachheit halber, $x_0=0$ gewählt wird. Das charakteristische Polynom ergibt dann:

$$m \cdot \lambda^2 = -k \Rightarrow \lambda = \pm \sqrt{\frac{k}{m}} \cdot i$$
 (45)

Damit haben wir Fall 3 und Die Lösung ist:

$$x(t) = C_1 \cdot \cos\left(\sqrt{\frac{k}{m}} \cdot t\right) + C_2 \cdot \sin\left(\sqrt{\frac{k}{m}} \cdot t\right)$$
 (46)

Üblicherweise benötigt es dann noch Randbedingungen, beziehungsweise Anfangsbedingungen, um die Konstanten zu bestimmen.

Lösung inhomogener Dgln.

Inhomogene Dgln. werden in 2 Schritten gelöst. Zuerst wird die homogene Dgl. gelöst und dann die inhomogene Dgl. Je nach Inhomogenität g(x) wird dann ein Ansatz gewählt(s=sin, c=cos):

0 0()	
Inhomogenität \boldsymbol{g}	Ansatz für y_p
be^{lpha_X}	ae ^{αX} x^r
$b_0 + b_1 x + \ldots + b_m x^m$	$a_0 + a_1 x + \ldots + a_m x^m$
$p_1(x)\sin(\beta x) + p_2(x)\cos(\beta x)$	$[q_1(x)\sin(\beta x)+q_2(x)\cos(\beta x)]x^r$
$e^{\alpha x} [p_1(x)s(\beta x) + p_2(x)c(\beta x)]$	$e^{\alpha x} \left[q_1(x) s(\beta x) + q_2(x) c(\beta x) \right] x^r$
$e^{\alpha x}p(x)$	$e^{\alpha x}q(x)x^r$
Polynom p_i mit Grad m_i , $i \in [1; 2]$	Polynom q_i mit Grad $max[m_1; m_2]$

Tabelle 5.1: Übersicht über mögliche Ansätze zur Berechnung einer partikulären Lösung. Sind α , $\pm i \cdot \beta$ oder $\alpha \pm i \cdot \beta$ Nullstelleen des charakteristischen Polynoms ist r gleich der Vielfachheit der Nullstellen zu setzen, sonst ist r=0 zu setzen. Wenn in der Inhomogenität α und β Vorkommen, muss $\alpha \pm i \cdot \beta$ eine Nullstelle des charakteristischdn Polynoms sein, um $r \neq 0$ zu setzen.

October 31, 2024

Getriebener harmonischer Oszillator

Wir betrachten wieder den harmonischen Oszillator und berücksichtigen diesmal die Schwerkraft, also fügen die Inhomogenität $m \cdot g$ hinzu. Damit lautet die Dgl.:

$$m \cdot \ddot{x} + k \cdot x = m \cdot g \tag{47}$$

Wir machen den Ansatz $y_p = c$. Da die homogene Lösung eingesetzt verschwindet, bleibt:

$$k \cdot c = m \cdot g \Rightarrow c = \frac{m \cdot g}{k}$$
 (48)

Die vollständige Lösung aus homogener und Partikulärlösung lautet damit:

$$x(t) = C_1 \cdot \cos\left(\sqrt{\frac{k}{m}} \cdot t\right) + C_2 \cdot \sin\left(\sqrt{\frac{k}{m}} \cdot t\right) + \frac{m \cdot g}{k}$$
(49)

←□ → ←□ → ← = → ← = → ←

Noch ein etwas schwereres Beispiel

$$y'' - 4 \cdot y' + 3y = 3 \cdot x^2 - x + 4 \tag{50}$$

Die Nullstellen des charakteristischen Polynoms sind 1 und 3. Damit lautet die homogene Lösung: $y_h(x) = c_1 \cdot e^x + c_2 \cdot e^{3 \cdot x}$. Die Inhomogenität ist ein Polynom 2. Grades, deshalb wählen wir den Ansatz: $y_p(x) = a \cdot x^2 + b \cdot x + c$.

$$y_{\rho}'(x) = 2 \cdot a \cdot x + b \tag{51}$$

$$y_p''(x) = 2 \cdot a \tag{52}$$

Eingesetzt ergibt das:

$$2 \cdot a - 8 \cdot a \cdot x - 4 \cdot b + 3a \cdot x^2 + 3b \cdot x + 3c = 3 \cdot x^2 - 5 \cdot x + 4 \quad (53)$$

Anw. höhere Mathe

$$3a \cdot x^2 + (3b - 8)x + (2 - 4b) = x^2 - 5 \cdot x + 4$$
 (54)

Koeffizientenvergleich ergibt für x^2 :

$$3a = 3 \tag{55}$$

$$x:3b-8=-5$$

$$x^0: 2a-4b+3c=4$$

$$\Rightarrow a = 1; b = 1; c = 2$$

Damit lautet die vollständige Lösung:

$$y = c_1 \cdot e^x + c_2 \cdot e^{3 \cdot x} + x^2 + x + 2 \tag{59}$$

(FHCW)

(56)

(57)

(58)

Separationsansatz für partielle Dgln.

Für eine gesuchte Funktion $\mathbf{u}(\mathbf{x},\mathbf{y},\mathbf{z})$ wird ein Produktansatz folgender Art gemacht:

$$u(x, y, z) = f(x) \cdot g(y) \cdot h(z) \tag{60}$$

October 31, 2024

32 / 52

Eingesetzt in die Dgl., kann dann durch u dividiert werden und es entstehen lauter Brüche, die jeweils nur von einer Variable abhängen. Dann Geben wir den x-abhängigen Term nach links und alle anderen nach rechts. Wenn jetzt beide Seiten für alle x, y und z gleich sein sollen, dann muss die so entstandene Gleichung konstant sein, also können wir beide Seiten gleich einer Konstanten K setzen. So entsteht eine gewöhnliche Dgl. in x, die wir mit bekannten Methoden lösen können. Mit der anderen Seite, die von y und Z abhängt können wir gleich verfahren, indem wir den y-abhängigen Term auf die Seite von K geben und wieder beide Seiten gleich einer Konstanten L setzen und die zwei übriggebliebenen gewöhnlichen Dgln. mit bereits bekannten Methoden lösen. Dieses Verfahren lässt sich auf eine beliebige Anzahl Variablen anwenden, solange keine gemischten Ableitungen nach diesen Variablen in der partiellen Døl (PDGL) auftreten

Typen von PDGLn in der Physik

1 Potenzialgleichung oder auch Laplacegleichung

$$\Delta U = 0 \tag{61}$$

Zur Errinerung

$$\Delta U = \operatorname{div} \cdot \operatorname{grad} U = \nabla \cdot \nabla U = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) U \qquad (62)$$

2 Wellengleichung

$$\Delta U = \frac{1}{c^2} \cdot \frac{\partial^2 U}{\partial t^2} \tag{63}$$

3 Wärmeleitungs- bzw. Diffusionsgleichung

$$\Delta U = \frac{1}{\kappa} \cdot \frac{\partial U}{\partial t} \tag{64}$$

33 / 52

4 Schrödingergleichung

$$\left(-\frac{\hbar^2}{2 \cdot m} + V(x)\right) \Delta \psi = i \cdot \hbar \cdot \frac{\partial \psi}{\partial t}$$
 (65)

inkompressible Stationäre Strömung

Die Navier-Stokes - Gleichungen für kompressible Strömung lauten:

$$\rho \cdot \frac{Dv_i}{Dt} = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_i} (\bar{\mu} \nabla \cdot v_i) + \frac{\partial}{\partial x_j} (2\mu D_{ij}) + \rho g_i$$
 (66)

Wobei $\bar{\mu}$ die Volumenviskosität (zweite Zähigkeit) $\bar{\mu}(p,T)$, μ die dynamische Viskosität (Scherviskosität) $\mu(p,T)$, g_i je nach Konvention die Erdbeschleunigung in y- oder in z-Richtung und D die massenfeste Zeitableitung ist (das Koordinatensystem sitzt in Massepartikel), im Gegensatz zur ortsfesten Zeitableitung (Koorinatensystem ist ortsfest bzw. raumfest):

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + (\mathbf{v} \cdot \nabla) \cdot = \frac{\partial}{\partial t} + \mathbf{v}_k \frac{\partial}{\partial \mathbf{x}_k}.$$
 (67)

 D_{ij} ist der symmetrische Teil des Geschwindigkeitsgradienten:

$$\frac{\partial \mathbf{v}_j}{\partial \mathbf{x}_i} = \mathbf{D}_{ij} + \Omega_{ij} \tag{68}$$

$$D_{ij} = D_{ji} = \frac{1}{2} \cdot \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right), \Omega_{ij} = -\Omega_{ji} = \frac{1}{2} \cdot \left(\frac{\partial v_j}{\partial x_i} - \frac{\partial v_i}{\partial x_j} \right)$$
(69)

Für inkompressible Strömungen gilt $\nabla \cdot \mathbf{v} = \mathbf{0}$ und $\mu = \mu(T)$. Bei stationärer und auch bei horizontaler Strömung kann der "Kraftterm" $\rho \frac{D\mathbf{v}}{Dt} = \mathbf{0}$ gesetzt werden, sowie auch g, da es normal auf die Strömungsrichtung steht. Der Druckgradient wird konstant und wir setzen ihn -K. Wenn wir die Strömungsrichtung in Z-Richtung annehmen, ist v nicht mehr von z abhängig. Dann erhalten wir diese Gleichung:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) v = -\frac{K}{\mu} \tag{70}$$

マロンス部とスランスラン 夏 そ

Diese Gleichung lösen wir jetzt mit dem Separaionsansatz. Gemischte Ableitungen treten nicht auf, also können wir den Produktansatz wählen:

$$V(x,y) = X(x) \cdot Y(y) \tag{71}$$

eingesetzt in die homogene PDGl. erhalten wir:

$$X'' \cdot Y + X \cdot Y'' = 0 : (X \cdot Y)$$
 (72)

$$\frac{X''}{X} \equiv -\frac{Y''}{Y} = C \tag{73}$$

wir bekommen zwei gewöhnliche Dgln

$$\frac{X''}{X} = C^2, \frac{Y''}{Y} = -C^2 \tag{74}$$

$$X = A_1 \cdot \sinh(C \cdot x) + A_2 \cdot \cosh(C \cdot x), Y = B_1 \cdot \sin(C \cdot x) + B_2 \cdot \cos(C \cdot x)$$
(75)

←□ > ←□ > ← 壹 > ← 壹 > □

Jetzt lösen wir noch die inhomogene Gleichung. Die zweite Ableitung von v ergibt eine Konstante. Ein Polynom 2. Grades erfüllt genau diese Eigenschaft:

$$v = D \cdot x^2 + E \cdot y^2 \tag{76}$$

eingesetzt erhalten wir:

$$2 \cdot D + 2 \cdot E = -\frac{K}{\mu} \tag{77}$$

$$E = -D - \frac{K}{2 \cdot \mu} \tag{78}$$

Hier benötigen wir noch Randbedingungen um die zweite Konstante zu bestimmen.

Die Wärmeleitungsgleichung

Wir leiten sie zunächst her. Die Wärmemenge Q bekommen wir aus der Temperatur folgendermaßen:

$$Q = c \cdot m \cdot \Delta T \tag{79}$$

c ist die spezifische Wärmekapazität, m
 die Masse und δ ist hier ein Delta und nicht der Laplace
operator. In einem dünnen Stab mit Querschnittsfläche A können wir die Masse m
 so asdrücken

$$m = \int \rho \cdot A dx \tag{80}$$

So können wir dann für den Wärmestrom schreiben:

$$\dot{Q} = c \cdot \int \rho \cdot A dx \cdot \frac{dT}{dt} \left| \frac{d}{dx} \right|$$
 (81)

$$\frac{\dot{Q}}{dx} = c \cdot \rho \cdot A \cdot \frac{dT}{dt} \tag{82}$$

(FHCW)

Das Fourier'sche Wärmeleitgesetz besagt, dass der Wärmestrom proportional zum Temperaturunterschied und zur Fläche ist und indirekt proportional zur Entfernung ist.

$$\dot{Q} = -\lambda \cdot A \cdot \frac{dT}{dx} \tag{83}$$

 λ ist hier die Wärmeleitfähigkeit oder Wärmeleitkoeffizient. Eingesetzt in die vorige Gleichung erhalten wir, wenn wir noch mit einem negativen Vorzeichen berücksichtigen, dass es sich eigentlich um einen Wärmeverlust handelt:

$$\lambda \cdot \mathbf{A} \cdot \frac{\partial^2 T}{\partial \mathbf{x}^2} = \mathbf{c} \cdot \rho \cdot \mathbf{A} \cdot \frac{\partial T}{\partial t}$$
 (84)

Nach einer Umstellung und kürzen von A erhalten wir:

$$\frac{\partial T}{\partial t} = \frac{\lambda}{c \cdot \rho} \frac{\partial^2 T}{\partial x^2} \tag{85}$$

《中》《部》《意》《意》 - 夏

Um die Wärmeleitungsgleichung für alle Raumdimensionen zu erhalten betrachten wir die Bilanz in jeder Raumrichtung und summieren. So erhalten wir:

$$\dot{T} = \frac{\lambda}{\mathbf{c} \cdot \rho} \Delta T \tag{86}$$

Wenn wir den Vorfaktor als Konstante a schreiben und statt der Temperatur die Stoffkonzentration u einsetzen erhalten wir die Diffusionsgleichung.

$$\dot{u} = \mathbf{a} \cdot \Delta u \tag{87}$$

Fourierreihenentwicklung

— Funktion —
$$n = 1$$
 — $n = 3$ — $n = 5$ — $n = 7$ — $n = 9$

Einschub gerade Funktionen, ungerade Funktionen

Für ungerade Funktionen gilt: f(x) = -f(-x) und sie sind punktsymmetrisch bezüglich des Ursprungs. Ein Beispiel für eine ungerade Funktion ist der Sinus:

Für gerade Funktionen gilt: f(x) = f(x) und sie sind spiegelsymmetrisch bezüglich der y-Achse (Ordinate). Ein Beispiel für eine gerade Funktion ist der Cosinus:

Fourierreihenentwicklung

Motivation: Näherung einer periodischen Funktion durch Winkelfunktionen, bzw. Zerlegung in Frequenzen. Eine andere Betrachtungsweise wäre Sin und Cos mit den verschiedenen Frequenzen Als Basisvektoren für einen Vektorraum zu betrachten. Dann wäre eine Linearkombination dieser Basisvektoren eine eindeutige Darstellung dieser periodischen Funktion.

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx)) + \sum_{n=1}^{\infty} (b_n \sin(nx))$$

Durch Integration von T bis $T + 2\pi$ nach x erhalten wir:

$$\int_{T}^{T+2\pi} f(x)dx = \frac{a_0}{2} \int_{T}^{T+2\pi} dx +$$

$$+ \sum_{n=1}^{\infty} \left[a_n \int_{T}^{T+2\pi} \cos(nx) dx + b_n \int_{T}^{T+2\pi} \sin(nx) dx \right] =$$

→□ > →□ > → □ > → □ > → □ > → □ > → □ > → □ > → □ > → □

Anw. höhere Mathe

$$= \frac{a_0}{2}(T + 2\pi - T) + \sum_{n=1}^{\infty} \left[a_n \left(\frac{\sin(nx)}{n} \right)_T^{T + 2\pi} + b_n \left(\frac{-\cos(nx)}{n} \right)_T^{T + 2\pi} \right]$$

$$= a_0\pi + \sum_{n=1}^{\infty} \left[a_n \cdot 0 - b_n \cdot 0 \right]$$

$$= a_0\pi$$

Nach a_0 umgeformt bekommen wir:

(FHCW)

$$a_0 = \frac{1}{\pi} \int_T^{T+2\pi} f(x) dx$$

Anw. höhere Mathe October 31, 2024 46 / 52

Jetzt möchten wir eine Formel für a_n bekommen. Wir multiplizieren dazu beide Seiten mit $\cos(mx)$ und integrieren wieder.

$$\int_{T}^{T+2\pi} f(x) \cos(mx) dx = \frac{a_0}{2} \int_{T}^{T+2\pi} \cos(mx) dx +$$

$$+\sum_{n=1}^{\infty}a_n\left[\int_{T}^{T+2\pi}\cos(nx)\cos(mx)dx\right]+\sum_{n=1}^{\infty}b_n\left[\int_{T}^{T+2\pi}\sin(nx)\cos(mx)dx\right]$$

$$\int_{T}^{T+2\pi} f(x) \cos(nx) dx = \frac{1}{2} \sum_{n=1}^{\infty} \left[a_{n} \int_{T}^{T+2\pi} 2 \cdot \cos^{2}(nx) dx \right]$$

$$= \frac{a_{n}}{2} \int_{T}^{T+2\pi} (1 + \cos(2nx)) dx$$

$$= \frac{a_{n}}{2} \left(x + \frac{\sin(2nx)}{2n} \right)_{T}^{T+2\pi}$$

 $= \frac{a_n}{2}(2\pi) = a_n\pi \Rightarrow a_n = \frac{1}{\pi} \int_T^{T+2\pi} f(x) \cos(nx) dx$

(FHCW) Anw. höhere Mathe October 31, 2024

47 / 52

Zuguterletzt hätten wir noch gerne eine Formel für b_n . Dazu multiplizieren wir beide Seiten mit sin(mx):

$$\int_T^{T+2\pi} f(x) \sin(mx) dx =$$

$$= \frac{a_0}{2} \int_T^{T+2\pi} \sin(mx) dx + \sum_{n=1}^{\infty} a_n \left[\int_T^{T+2\pi} \cos(nx) \sin(mx) dx \right] +$$

$$+ \sum_{n=1}^{\infty} b_n \left[\int_T^{T+2\pi} \sin(nx) \sin(mx) dx \right]$$

Die ersten beiden Integrale der rechten Seite verschwinden und es bleibt:

$$\int_{T}^{T+2\pi} f(x) \sin(nx) dx = \frac{1}{2} \sum_{n=1}^{\infty} \left[b_n \int_{T}^{T+2\pi} 2 \cdot \sin^2(nx) dx \right]$$

$$= \frac{b_n}{2} \int_{T}^{T+2\pi} (1 - \cos(2nx)) dx$$

$$= \frac{b_n}{2} \left(x - \frac{\sin(2nx)}{2n} \right)_{T}^{T+2\pi}$$

$$= \frac{b_n}{2} (2\pi) = b_n \pi$$

$$\Rightarrow b_n = \frac{1}{\pi} \int_{T}^{T+2\pi} f(x) \sin(nx) dx$$

Anw. höhere Mathe

Beispiel: Kippschwingung

Wir modellieren eine Kippschwingung mit Periode 2π und Werten zwischen $-\pi$ und π mithilfe der Funktion

$$g(x) = \left\{ egin{array}{ll} x & ext{wenn } -\pi < x \leq \pi \\ ext{periodisch fortgesetzt} & ext{sonst.} \end{array}
ight.$$

Abbildung 1 zeigt oben links den Graphen der auf dem Intervall $(-\pi,\pi]$ definierten Funktion $x\mapsto x$ (entspricht der ersten Zeile von (3.1)) und oben rechts die periodische Fortsetzung. g ist stückweise stetig differenzierbar, aber unstetig und (abgesehen von den Unstetigkeitsstellen) eine ungerade Funktion, daher ist $a_n = 0$ für alle n > 0. Wir müssen also nur die Fourierkoeffizienten b_n ermitteln:

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(nx) g(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(nx) x dx = -\frac{2}{n} (-1)^n = \frac{2}{n} (-1)^{n+1}.$$

$$\Rightarrow \widetilde{g}(x) = \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \sin(nx)$$

Eine etwas unkonventionellere Anwendung der Fourieranalyse

Fragen? Kommentare?

