Computer Vision

Assignment 3 Report By Chris Jimenez

I - Face Recognition

For this part of the assignment, the nearest-neighbor recognition algorithm, using Eigenface representation, was implemented in Matlab. The faces used were from the given $ORL_32x32.mat$ file, which contained 400 faces from the Olivetti Face database. Each face in the file is a 32 by 32 grayscale image. Below is a plot of the reconstructed training faces for K = 20 and a plot of the classification rate as a function of K.

K	Matches
5	72
6	83
7	88
8	87
9	91
10	93
15	102
20	103
30	103
50	104
60	105
70	105
80	106
100	107
120	108
150	108
170	108
190	108
200	108

.....

II - Scene Classification

For this part of the assignment, part of the Bag-of-Visual-Words classifier was implemented in Matlab. The classifier was applied to four different scene classes:

1 = "coast"

2 = "high-way"

3 - "street"

4 - "city"

Specifically, the given SIFT descriptors of the images were vector-quantized to make the Bag of Words histogram for each image.

Vector Quantization

The following is the HISTOGRAMS matrix computed by the program followed by the image of the matrix.

Bag-of-Words Classifier

The accuracy of the implemented classifier can be seen below, which is the fraction of test images whose label was predicted correctly.

ACCURACY = 0.7500