This is a homework 1 for CSC588 Learning Theory course

Done by Ivan Akinfiev

Problem 1. (a)

First of all, let's specify the range of X, since the table will depend on it. From (c) we can assume that this is 0, 1, 2, 3

Having in mind basic probability, we will use Bin(x, n, p) which equals,

$$f_B(x,n,p) = rac{n!}{(n-x)!x!} p^x (1-p)^{n-x}$$

Now, we will complete the table using $\mathbb{P}(X,Y)=\mathbb{P}(X|Y)\mathbb{P}(Y)$ Considering that $\mathbb{P}(Y=1)=\mathbb{P}(Y=-1)=rac{1}{2}$ we will just divide every output from $f_B(x,n,p)$ by 2

Then, let's fill the table when
$$Y=+1$$
 and, therefore, $f_B(x=x,n=3,p=2/3)$ $\mathbb{P}(X=0,Y=-1)=1\cdot(1-2/3)^3=(1/3)^3/2=1/27/2=1/54$ $\mathbb{P}(X=1,Y=-1)=3\cdot(2/3)^1(1-2/3)^2/2=2/9/2=1/9$ $\mathbb{P}(X=2,Y=-1)=3\cdot(2/3)^2(1-2/3)^1=4/9/2=2/9$ $\mathbb{P}(X=3,Y=-1)=1\cdot(2/3)^3(1-2/3)^0=8/27/2=4/27$ $f_B(x=x,n=2,1/3)$ $\mathbb{P}(X=0,Y=+1)=1\cdot(1-1/3)^3=(2/3)^2/2=4/9/2=2/9$ $\mathbb{P}(X=1,Y=+1)=2\cdot(1/3)^1(2/3)^1/2=2*2/9/2=2/9$ $\mathbb{P}(X=2,Y=+1)=1\cdot(1/3)^2(1-2/3)^0=4/9/2=1/9/2=1/18$ $\mathbb{P}(X=3,Y=+1)=0$

Can be easily checked that sum over everything is 1.

(b)

Using law of alternatives:

$$\mathbb{P}(Y = -1|X = 1) = \frac{\mathbb{P}(X,Y)}{\mathbb{P}(X)} = \frac{\mathbb{P}(X,Y)}{\sum_{y \in Y} \mathbb{P}(X = 1|Y = y)\mathbb{P}(Y = y)} = \frac{\mathbb{P}(X,Y)}{\sum_{y \in Y} \mathbb{P}(X = 1,Y = y)} = \frac{1/9}{(2/9 + 1/9)} = \frac{1}{3}$$

(c)

We need to minimize the error under $\mathbb{P}(Y|X)$. If so, all the information is already given in table, except we also need to find where $\mathbb{P}(Y|X)$ is the biggest in every possible X and choose where probability is bigger.

$$\mathbb{P}(Y=-1|X=0)=\sim 0.07$$
 $\mathbb{P}(Y=-1|X=1)=1/3$ $\mathbb{P}(Y=-1|X=2)=0.8$ $\mathbb{P}(Y=-1|X=3)=1$

$$\mathbb{P}(Y = +1|X = 0) = \sim 0.92$$
 $\mathbb{P}(Y = +1|X = 1) = 2/3$
 $\mathbb{P}(Y = +1|X = 2) = 0.2$
 $\mathbb{P}(Y = +1|X = 3) = 0$

By calculating that, function should output {1,1,-1,-1}

The function that estimates that is

$$f(x)=sign(-(x-2)) \land \{-1 \mid if \mid x=2\}$$

The following function will have the following classification error:

$$(0.07 + 1/3 + 0.2 + 0)/4 = \sim 0.6/4 = \sim 0.15$$

Problem 2 (a)

Given set of examples $(x_1, x_2, x_3...x_n) \in \mathbb{R}^d$ and having fact that normal distribution has additivity in its parameters, we have the following. Given,

$$y_i = \langle heta, x_i
angle + \epsilon_i, \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

and the fact that if

$$\epsilon \sim \mathcal{N}(0, \sigma^2), a + \epsilon \sim \mathcal{N}(a, \sigma^2)$$

we have

$$y_i \sim \mathcal{N}(\left< heta, x_i
ight>, \sigma^2)$$

or, in general terms,

$$y \sim \mathcal{N}(X heta, \sigma^2 I)$$

where $X=\Sigma$

We need to note that since all ϵ_i are independent, the $y=(y_1,y_2,\ldots y_n)$ will have multivariate Gaussian distribution with trivial covariance matrix, i.e. they are uncorrelated.

(b)

We will stick to the matrix form. Firstly, the $\hat{ heta}$ is stated

$$\hat{ heta} = \left(X^ op X
ight)^{-1} X^ op y$$

Then, we are willing to use the theorem that states that if

$$\epsilon \sim \mathcal{N}(\mu, \Sigma)$$

then

$$A\epsilon + m \sim \mathcal{N}(A\mu + m, A\Sigma A^{ op})$$

Using this theorem, we consider A to be $\left(X^{ op}X\right)^{-1}X^{ op}$

Then, if $y \sim \mathcal{N}(X heta, \sigma^2 I)$

$$\hat{ heta} \sim \mathcal{N}\left(AX heta, A\sigma^2IA^ op
ight) = \mathcal{N}\left(\left(X^ op X
ight)^{-1}X^ op X heta, \left(X^ op X
ight)^{-1}X^ op \sigma^2I\left(X^ op X
ight)^{-1}X^ op
ight) = egin{align*} \mathcal{N}\left(heta, \sigma^2(X^ op X)^{-1}
ight) \end{bmatrix}$$

(c)

Considering the vector on the right side of bracket $\left\langle v,\hat{\theta}-\theta\right\rangle$, using the arguments above, it would be still be gaussian with shifted mean by θ . Now, note that dot product squeezes two vectors into a number, so the output should be One-Dimension Gaussian distribution.

From question 2,

$$\mu = (X^{ op}X)^{-1}X^{ op}X heta$$

Then the distribution equals

$$\left\langle v, \hat{ heta} - heta
ight
angle \sim \mathcal{N}\left(v \cdot (\mu - heta), v^ op \sigma^2 ig(X^ op Xig)^{-1} vig)$$

But, the $\mu = \theta$. Then,

$$egin{aligned} \mathcal{N}\left(v\cdot 0,v^ op\sigma^2ig(X^ op Xig)^{-1}vig) = \ & \mathcal{N}\left(0,v^ op\sigma^2ig(X^ op Xig)^{-1}vig) \end{aligned}$$

This is one-dimensional normal distribution and $\mathbb{E}[X]=0$ and finite variance $Var[X]=\sigma^2ig(X^ op Xig)^{-1}$ Let's call it V

Now, we need to construct a function that

$$orall \delta \in (0,1], \mathbb{P}(\left(\left|\left\langle v, \hat{ heta} - heta
ight
angle
ight|
otin f(\delta)
ight) \leq \delta$$

Let's use Chebyshev inequality, which states that

$$\mathbb{P}\left(|X-\mu| \leq \sqrt{V}k
ight) \geq rac{1}{k^2}$$

We want to find $f(\delta)$ such that

$$\mathbb{P}\left(\left|\left\langle v,\hat{ heta}- heta
ight
angle
ight|\geq f(\delta)
ight)\leq\delta)$$

Setting

$$\frac{1}{k^2} = \delta$$

, we solve for k:

$$k = \frac{1}{\sqrt{\delta}}$$

Then, substituting δ into k we have,

$$\mathbb{P}\left(\left|\left\langle v,\hat{ heta}- heta
ight
angle
ight|\geqrac{\sqrt{V}}{\sqrt{\delta}}
ight)\leq\delta$$

Hence,

we can define f as this:

$$f(\delta) = rac{\sqrt{Var[X]}}{\sqrt{\delta}}$$

given that Var[X] is some constant, so $f(\delta)$ only depends on δ . Also, $\frac{1}{\sqrt{\delta}}$ is a decreasing function as desired.

Problem 3 (a)

```
In [ ]:
  In [1]: import random as rn
          import numpy as np
          import pandas as pd
          from typing import List
          import math
          import matplotlib.pyplot as plt
          import seaborn as sns
          %matplotlib inline
In [268...
          def generate_data(n, lam):
              data = pd.DataFrame([], columns=['x_1', 'x_2', 'y'])
              count = 0
              w_star = (1/math.sqrt(2), 1/math.sqrt(2))
              while True:
                   if count == n:
                       break
                  x_1 = np.random.uniform(-1,1)
                  x_2 = np.random.uniform(-1,1)
                   x_i = np.array([x_1,x_2])
                   norm = np.linalg.norm(x_i, ord=2)
                   if norm <= 1:</pre>
                       wx_dot = np.dot(x_i, w_star)
                       if np.abs(wx_dot) >= lam:
                           data.loc[count] = (x_i[0], x_i[1], np.sign(wx_dot))
                           count += 1
                   else:
                       continue
              return data
In [269...
          sample_1000 = generate_data(1000, 1/32 )
          sample_1000
```

Out[269...

	x_1	x_2	У
0	0.009787	0.485603	1.0
1	-0.344589	-0.444828	-1.0
2	0.448348	0.112515	1.0
3	-0.290947	0.755389	1.0
4	-0.060750	-0.009066	-1.0
•••			
995	0.761210	0.475867	1.0
996	0.554750	0.661231	1.0
997	-0.422267	-0.622717	-1.0
998	-0.062733	0.006968	-1.0
999	-0.558891	0.226253	-1.0

1000 rows × 3 columns

```
In [270... sns.jointplot(data=sample_1000, x='x_1', y='x_2', hue='y')
```

Out[270... <seaborn.axisgrid.JointGrid at 0x20c5a3ec9e0>

(b)

```
In [271...
          def sim_perceptron(data: pd.DataFrame, lam = 1/32, draw=True, plot=True):
              data_for_plot = pd.DataFrame([], columns=['m', 'dot', 'norm'])
              w_{iter} = np.array([0,0])
              w_star = np.array([0.5, 0.5])
              M = 0
              for iteration in range(len(data)):
                  y_true = data.iloc[iteration,2]
                  y_hat = np.sign(np.dot((data.iloc[iteration,0],data.iloc[iteration,1]), w_i
                  if y_hat == 0: y_hat = 1
                  if y_hat == y_true:
                      continue
                  else:
                      norma = np.linalg.norm(w_iter,2)
                      dots = np.dot(w_iter,w_star)
                      w_iter = w_iter + np.array([y_true*data.iloc[iteration,0], y_true*data.
                      data_for_plot.loc[M] = [M, dots, norma]
                      M += 1
```

```
if plot:
    fig, axes = plt.subplots(1, 2, figsize=(12, 5))
    sns.lineplot(ax=axes[0], x='m', y='dot', data=data_for_plot, marker='o')
    axes[0].set_title('Plot of M vs. Dot')
    axes[0].plot(data_for_plot['m'], lam * data_for_plot['m'], label='0.5*m', c
    axes[0].legend()
    sns.lineplot(ax=axes[1], x='m', y='norm', data=data_for_plot, marker='o')
    axes[1].set_title('Plot of M vs. Norm')
    axes[1].legend()

if draw:
    print("TOTAL M VALUE IS: " + str(M))
    print("TOTAL M VALUE IS: " + str(M))
    print("FINAL WEIGHTS ARE: " + str(w_iter[0]) + " " + str(w_iter[1]))

return M
```

TOTAL M VALUE IS: 12

Out[271... 12

Indeed, as we see, the graphs give us the correct bounds for both dot products and norms.

(c)

We will plot only $1/\lambda^2$ up untill $\lambda=\frac{1}{2^{-4}}$ in order the plot not explode in the skies, because $1/(1/4098)^2$ already is a very big number

```
In [277...

def problem_c():
    lams = [2**(-i) for i in range(1,7)]
    M_i = []
    for i in lams:
        list_of_datasets = [generate_data(n=100,lam=i) for j in range(10)]
        sim_percs = [sim_perceptron(data=ds, draw=False, plot=False) for ds in list
        M_i.append(np.mean(sim_percs))

lams_squared = []
    for i in lams:
        lams_squared.append(1/(i**2))
        sns.lineplot(x=lams[:-2], y=M_i[:-2], marker='o', label='M"s')
        sns.lineplot(x=lams[:-2], y=lams_squared[:-2], label='1/lam^2', color='red', maproblem_c()
```


It is always far below $1/\lambda^2$ due to the Perceptron Convergence Theorem.

Problem 4

Approximately 12-14 hours, including reading material.