Задание 11.

Найти степень A^{20} матрицы $A = \begin{pmatrix} -3 & 1 \\ -4 & 1 \end{pmatrix}$ двумя способами:

- а) приводя матрицу к жордановой нормальной форме;
- b) используя характеристический многочлен матрицы как аннулирующий.

Решение.

- а) Находим многочлен $p(\lambda) = \lambda^{20}$ от матрицы A первым способом.
- 1. Приводим матрицу A к жордановой форме. Для этого составляем характеристический многочлен

$$\Delta_{A}(\lambda) = \begin{vmatrix} -3 - \lambda & 1 \\ -4 & 1 - \lambda \end{vmatrix} = \lambda^{2} + 2\lambda + 1 = (\lambda + 1)^{2}.$$

Характеристическое уравнение $(\lambda+1)^2=0$ имеет один двойной корень $\lambda_1=-1$. Для собственного значения $\lambda_1=-1$ (алгебраической кратности $n_1=2$) находим собственные векторы. Составляем расширенную матрицу однородной системы уравнений $(A-\lambda_1 E)x=o$ и приводим ее к ступенчатому виду

$$(A - \lambda_1 E | o) = \begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \end{pmatrix} \sim (1 - 0, 5 | 0).$$

Выражаем базисную переменную через свободную $x_1 = 0,5x_2$. При $x_2 = 2$ получаем собственный вектор $s_1 = \begin{pmatrix} 1 & 2 \end{pmatrix}^T$. Так как геометрическая кратность собственного значения $\lambda_1 = -1$ равна единице $(n - rg(A - \lambda_1 E) = 1)$, то есть используем частный случай нахождения жорданова базиса. Собственному

значению $\lambda_1=-1$ соответствует жорданова клетка второго порядка $J_2(-1)$. Так как других собственных значений нет, то искомая матрица J_A совпадает с этой клеткой $J_A=J_2(-1)=\begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$.

Находим столбцы матрицы S перехода к жорданову базису. Первый столбец этой матрицы — собственный вектор $s_1=(1\ 2)^T$. Второй столбец — присоединенный вектор $s_1^{(1)}$. Находим присоединенный вектор. Составляем расширенную матрицу неоднородной системы $(A-\lambda_1 E)s_1^{(1)}=s_1$ и приводим ее к упрощенному виду

$$(A - \lambda_1 E | s_1) = \begin{pmatrix} -2 & 1 & 1 \\ -4 & 2 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & -0, 5 & -0, 5 \\ 0 & 0 & 0 \end{pmatrix}.$$

Выражаем базисную переменную через свободную $x_1 = 0, 5x_2 - 0, 5$. При $x_2 = 3$ получаем $s_1^{(1)} = \begin{pmatrix} 1 & 3 \end{pmatrix}^T$ — присоединенный вектор первого порядка. Из полученных столбцов составляем искомую матрицу $S = \begin{pmatrix} s_1 & s_1^{(1)} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$.

2. Составляем матрицу $p(J_A)$. Для многочлена $p(\lambda)=\lambda^{20}$ составляем многочлен $p(J_2(-1))$ от жордановой клетки $J_2(-1)$. Учитывая, что $p(-1)=(-1)^{20}=1, p'(-1)=20\cdot (-1)^{19}=-20,$ получаем

$$p(J_A) = p(J_2(-1)) = \begin{pmatrix} p(-1) & p'(-1) \\ 0 & p(-1) \end{pmatrix} = \begin{pmatrix} 1 & -20 \\ 0 & 1 \end{pmatrix}.$$

3. Находим искомый многочлен от матрицы A по формуле $p(A) = Sp(J_A)S^{-1}$

$$p(A) = Sp(I_A)S^{-1} = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & -20 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -19 \\ 2 & -37 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -19 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1$$

$$= \begin{pmatrix} 41 & -20 \\ 80 & -39 \end{pmatrix}.$$

Следовательно,
$$A^{20} = \begin{pmatrix} 41 & -20 \\ 80 & -39 \end{pmatrix}$$
.

- b) Находим многочлен $p(\lambda) = \lambda^{20}$ от матрицы A вторым способом.
- 1. Составляем характеристический многочлен матрицы $A: \Delta_{A}(\lambda) = (\lambda + 1)^{2}$
- 2. Характеристическое уравнение $(\lambda + 1)^2 = 0$ имеет один корень $\lambda_1 = -1$ (алгебраической кратности $n_1 = 2$)
- $3. \ \, \text{Для корня} \ \lambda_1^{} = \ 1 \ \text{кратности} \ n_1^{} = 2 \ \text{составляем два уравнения}$ $1 = \ r_1^{} + r_0^{}, \ 20 = r_1^{},$

где r_0, r_1 — неопределенные коэффициенты многочлена $r(\lambda) = r_1 \lambda + r_0$

Эту систему можно получить иначе. Запишем тождество $\lambda^{20} \equiv r_1 \lambda + r_0$. Подставляя в него $\lambda = -1$, получаем $1 = -r_1 + r_0$. Дифференцируем тождество по λ , приходим к равенству $20\lambda^{19} \equiv r_1$. Подставляем $\lambda = -1$ (этот корень кратности 2): $-20 = r_1$. В результате получаем ту же систему двух уравнений с двумя неизвестными.

- 4. Решаем полученную систему уравнений: $r_1 = -20$, $r_0 = -19$.
- 5. Находим искомый многочлен от матрицы:

$$p(A) = -20A - 19E = \begin{pmatrix} 60 & -20 \\ 80 & -20 \end{pmatrix} - \begin{pmatrix} -19 & 0 \\ 0 & -19 \end{pmatrix} = \begin{pmatrix} 41 & -20 \\ 80 & -39 \end{pmatrix}.$$

Omsem:
$$A^{20} = \begin{pmatrix} 41 & -20 \\ 80 & -39 \end{pmatrix}$$
.