# 1. Pitanje: Popuniti Karnoovu mapu i odraditi minimizaciju.



#### REŠENJE:

Prvi način bi bio da prvo nacrtamo tablicu i da onda iz nje određujemo Karnoovu mapu, ali i funkciju takođe. Moguće je izvesti, ali ovde imamo funkciju 4 promenljive, što znači da bi tablica imala ukupno 16 redova što bi nam oduzelo puno vremena.

#### Kako onda?

Odmah ćemo analitički izvući funkciju bez rađenja tabele. Prvo uradimo izlaze iz kola S1, S2 i S3 koje je označeno sa X.



Zatim ćemo raditi šta se dešava na izlazu S4. Kod njega je bitno primetiti da on faktički obavlja funkciju invertora.

| X <sub>1</sub> | <b>X</b> 2 | Υ |
|----------------|------------|---|
| 0              | 0          | 1 |
| 0              | 1          | 1 |
| 1              | 0          | 1 |
| 1              | 1          | 0 |

Objašnjenje: tablica za NI (NAND) kolo izgleda ovako:

| Α | Α | A · A |
|---|---|-------|
| 0 | 0 | 1     |
| 1 | 1 | 0     |

Dok ako bi NI (NAND) kolo bilo funkcija jedne promenljive izgleda ovako: poklapa sa  $\bar{A}$ .

takođe vidimo da se  $\overline{AA}$ 

Isti zaključak bismo mogli izvesti i da je u pitanju NILI (NOR) kolo bilo kao S4.

Upotrebom ideje da S4 radi inverziju sledi:

Sledeća dva koraka su da uradimo Karnoovu kartu i minimizaciju. Redosled zapravo nije bitan, stoga ću objasniti 2 načina za rešavanje.

Prvi način jeste da prvo uradimo minimizaciju pa onda popunimo Karnoovu mapu.
 Upotrebom De Morganovih zakona i zakona idempotentnosti (a\*a=a) sledi:

$$Y = \overline{A} \cdot \overline{B} + C + \overline{A} \cdot \overline{D}$$

$$= \overline{A} + \overline{B} + C + \overline{D}$$

$$= \overline{A} + \overline{B} + C + \overline{D}$$

Ne moramo posmatrati kao da smo dobili MKNF već možemo posmatrati kao funkciju gde Y=1 čim je neki činilac jednak 1 i da onda kartu popunjavamo sa 1, videli bismo da na kraju ostaje prazno polje u kojem stavljamo 0. Čisto podsećanja radi, ovde je opisan postupak gde primetimo da je u pitanju MKNF.

Vidimo da smo dobili MKNF koju možemo iskoristiti da popunimo Karnoovu mapu. Kako je u pitanju MKNF kad budemo popunjavali mapu bitno je da pazimo na to da je 0 glavna što znači da ako imamo na primer  $\bar{A}$  to označava da je tad A=1, dok ako imamo C to znači da je C=0. U osnovi gledamo oznake suprotno u odnosu na MDNF. Oznake oko mape se odnose na rad sa MDNF što znači da bi za MKNF bile obrnute, gde je  $\bar{A}$  treba A i obrnuto. Postavili smo samo 0 koje je označeno dok ostala polja popunjavamo sa 1.



• Drugi način jeste da prvo uradimo Karnoovu mapu na osnovu dobijenog Y.

Kako bismo u Karnoovu mapu uneli 1, potrebno je da Y bude jednako 1, a Y=1 kad je neki od članova jednak 1. Prema Karnoovoj mapi se ovde odnosimo kao kad radimo DNF.

Prvo, kad je C=1, popunjavamo desnu polovinu sa 1.



Zatim ćemo popuniti mapu na osnovu člana  $\overline{AB}$  koji će davati vrednost 1 za sve slučajeve osim za A=1 i B=1.



Za kraj je ostalo da to isto uradimo  $\overline{AD}$  činilac koji ima vrednost 1 za sve slučajeve osim za A=1 i D=1 i poslednje prazno polje postavimo na 0.



# 2. Pitanje: Koje logičko kolo je prikazano na slici?



## REŠENJE:

Do rešenja se može doći detaljnom analizom, što predugo traje.

Takođe prepoznajemo da je kolo u CMOS tehnologiji.

Do rešenja se brzo može doći na neki od sledećih načina:

- Brzinskom analizom kod koje:
  - NMOS provodi kad mu je na gejtu 1 (napon napajanja), dok ne provodi ako mu je na gejtu 0 (uzemljenje).
  - o PMOS provodi kad mu je na gejtu 0 (uzemljenje), dok ne provode ako mu je na gejtu 0 (napon napajanja).

Nacrta se tablica i prolazi se kroz stanja ulaza 00, 01, 10 i 11 i gleda se šta je na izlazu i upisuje u tablicu, odakle zaključujemo koje je kolo u pitanju.



• Naučimo kola napamet i odmah prepoznamo. :)

# 3. Pitanje: Šta je prikazano na slici?



REŠENJE:

Osnovni memorijski element.

# 4. Pitanje: Šta je prikazano na slici?



### REŠENJE:

a) Demultiplekser

# 5. Pitanje: Pretvoriti u realne brojeve. Format je naveden iznad brojeva i koristimo nepokretan zarez.

| S | 1 |   | 1 |   | • | F | F | F | REAL   |
|---|---|---|---|---|---|---|---|---|--------|
| 1 | 0 | 0 | 0 | 1 | • | 1 | 1 | 0 | -14.25 |
| 1 | 1 | 0 | 1 | 1 |   | 0 | 1 | 1 | -4.625 |

#### REŠENJE:

Ideja je da prvo nađemo apsolutne vrednosti brojeva, uradimo komplementiranje, i da im onda samo dodamo – ispred.

10001.110 - Originalni broj

01110.001 – Invertovanje bitova

+ 1 – Dodajemo 1 na najnižu poziciju

01110.010 = 14.25 – Apsolutna vrednost originalnog broja

Rešenje za 10001.110 je -14.25.

11011.011 – Originalni broj

00100.100 - Invertovanje bitova

+ 1 – Dodajemo 1 na najnižu poziciju

00100.101 = 4.625 – Apsolutna vrednost originalnog broja

Rešenje za 11011.011 je -4.625.

Drugi način jeste da sračunamo čemu je jednako broj na početku na osnovu vrednosne pozicije bita.

$$10001.110 = -1*16 + 1*1 + 1*0.5 + 1*0.25 = -14.25$$

$$11011.011 = -1*16 + 1*8 + 1*2 + 1*1 + 1*0.25 + 1*0.125 = -16 + 11.375 = -4.25$$

#### **NAPOMENE:**

- Sadržaj testova: Test + Zadatak
- Student mora biti ulogovan striktno iz računarskog centra. U osnovi neophodno je odjaviti se sa svih naših uređaja gde imamo SOVU.
- Moguće je koristiti samo ono što nam je dozvoljeno na računaru, znači quartus, za druge stvari pitati asistente.
- Pitanja su selektivnog tipa na SOVI.
- Možemo dobiti papir za rad!!!
- Ako je rečeno da je broj u komplement 2 predstavi to ne znači da ga treba komplementirati već samo kaže koju brojnu predstavu koristimo.