EDUCATION University of Illinois Urbana-Champaign (UIUC) Aug 2015–Dec 2019

B.S. Engineering Mechanics, Secondary Field: Fluid Mechanics

GPA: 3.66/4.00

B.S. Mathematics, Concentration: Graduate Preparatory

(dual degree)

Minor: Computational Science and Engineering

Thesis: Direct Numerical Simulation of Flows Over Wavy Walls at $Re_{\lambda} = 4780$

EXPERIENCE Data Science Trainee, CoreCompete, Durham, NC

Jan 2021–Present

- Developing conversational AI agent for supporting phone calls for debt collection
- Tech: Google Cloud Platform, Postman, REST API

Research Assistant, Carnegie Mellon University, Pittsburgh, PA

Sep 2020-Jan 2021

- Spectral element topology optimization code for inverse design applications
- Tech: Julia automatic differentiation, adjoint optimization

Research Aide, Argonne National Laboratory, Chicago, IL

Mar 2020–Sep 2020

- Fluid dynamics simulations (LES, RANS) of airflow over buildings
- Pre-processing (mesh generation), and analysis of OpenFOAM, Nek5000 simulations

Research Aide, Argonne National Laboratory, Chicago, IL

- Fluid dynamics simulations (DNS) of airflow over windfarm terrains on supercomputers
- Analyzed Reynolds stress budgets in canonical flows for turbulence model development
- Wrote FORTRAN77 setup for post-processing and turbulence budgets analysis in Nek5000

Intern, National Center for Supercomputing Applications, Urbana, IL Sep 2017–May 2018

- Initial data generation of spacetime metric for gravitational wave simulations in Einstein Toolkit
- Implemented numerical methods for solving nonlinear elliptic PDEs (preconditioning, relaxation)

Course Assistant, UIUC Mechanical Engineering, Urbana, IL

Jan 2016–Dec 2017

- Taught mechanical analysis using free-body-diagrams and control-volumes for Statics course
- Created instructional demonstrations for engineering courses serving 2500 students annually

Research

(manuscript in preparation) V. Puri, R. Balakrishnan, A. Obabko, P. Fischer, Turbulent Kinetic Energy Budgets of Flows Over Smooth and Rough Wavy Walls at $Re_{\lambda} = 4{,}780$

(talk) V. Puri, R. Balakrishnan, DNS of Flow Over Smooth and Rough Wavy Walls at $Re_{\lambda} = 4760$. American Physical Society Division of Fluid Dynamics 2020

(talk) V. Puri, R. Haas, E. Bentivegna, Initial Data Generation Algorithms for 'Einstein Toolkit'. American Physical Society April Meeting 2018

ACTIVITIES

President, Society for Engineering Mechanics, UIUC

Aug 2018-May 2019

Curriculum Development, Society for Engineering Mechanics, UIUC

Oct 2016-May 2018

Honours

Theoretical and Applied Mechanics Merit Award, UIUC

2019

SKILLS

Programming FORTRAN 77/90, C/C++, Python, Julia, MATLAB, UNIX, IATEX Design Computer aided design, woodworking, soldering, photography

Projects

https://github.com/vpuri3

- /NekTools: FORTRAN 77 toolbox for turbulence budget computation in NEK5000
- /SEM. jl: Julia spectral element PDE solver with adjoint optimization
- /Spec: MATLAB spectral element solver for the incompressible Navier-Stokes equations
- /Notes: LATEX notes on mechanics, real analysis, functional analysis
- /IlliniHyperloop: (UIUC capstone) Passive cooling solution to dissipate 300 kJ heat from propulsion system of Hyperloop pod; fabricated by sponsor, Novark Technologies, Inc.