# **ABC Call Volume Trend Analysis**

### **Description:**

A customer experience (CX) team consists of professionals who analyse customer feedback and data, and share insights with the rest of the organization. Typically, these teams fulfil various roles and responsibilities such as: Customer experience programs (CX programs), Digital customer experience, Design and processes, Internal communications, Voice of the customer (VoC), User experiences, Customer experience management, Journey mapping, Nurturing customer interactions, Customer success, Customer support, Handling customer data, Learning about the customer journey.

#### **Business Understanding:**

Advertising is a way of marketing your business in order to increase sales or make your audience aware of your products or services. Until a customer deal with you directly and actually buys your products or services, your advertising may help to form their first impressions of your business. Target audience for businesses could be local, regional, national or international or a mixture. So they use different ways for advertisement. Some of the types of advertisement are: Internet/online directories, Trade and technical press, Radio, Cinema, Outdoor advertising, National papers, magazines and TV. Advertising business is very competitive as a lot of players bid a lot of money in a single segment of business to target the same audience. Here comes the analytical skills of the company to target those audiences from those types of media platforms where they convert them to their customers at a low cost.

#### **Tech Stack Used:**

Microsoft Excel 2019 for data analysis and visualization.

# **Case Study Objectives:**

Attached is the dataset of Inbound calls of a ABC company from the insurance category. Use this data to answer the following:

a. Calculate the average call time duration for all incoming calls received by agents (in each Time\_Bucket).

At first, I created a pivot table with Time\_Bucket and Average of Call\_Seconds columns by filtering on the Wrapped By column as shown below:

| Wrapped _By        | (AII)                       |
|--------------------|-----------------------------|
|                    |                             |
| Time_Bucket        | Average of Call_Seconds (s) |
| 9_10               | 92.01                       |
| 10_11              | 97.42                       |
| 11_12              | 116.78                      |
| 12_13              | 144.73                      |
| 13_14              | 149.54                      |
| 14_15              | 146.97                      |
| 15_16              | 169.90                      |
| 16_17              | 181.44                      |
| 17_18              | 179.72                      |
| 18_19              | 174.32                      |
| 19_20              | 144.58                      |
| 20_21              | 105.95                      |
| <b>Grand Total</b> | 139.53                      |
|                    |                             |

> The total average duration of all the calls is about 140 seconds.



This graph displays the average call duration in seconds for each time bucket.

➤ We can see that calls with the greatest durations take place in the evening time bucket, specifically between 3 and 7pm.

After that, I used a pivot table to filter out all of the calls that the agents had received, as shown below:

| Wrapped _By | Agent           | Ψ,           |
|-------------|-----------------|--------------|
|             |                 |              |
| Time_Bucket | Average of Call | _Seconds (s) |
| 9_10        |                 | 199.01       |
| 10_11       |                 | 209.15       |
| 11_12       |                 | 203.35       |
| 12_13       |                 | 190.76       |
| 13_14       |                 | 193.60       |
| 14_15       |                 | 193.20       |
| 15_16       |                 | 195.49       |
| 16_17       |                 | 196.54       |
| 17_18       |                 | 198.71       |
| 18_19       |                 | 201.09       |
| 19_20       |                 | 203.94       |
| 20_21       |                 | 202.55       |
| Grand Total |                 | 197.71       |

➤ The duration of each call, on average, is approximately 198 seconds, or over 3.3 minutes.



This graph displays the average number of seconds per call that the agents in each time bucket received.

- ➤ We can see that calls that last the longest fall into the time blocks of 10–11 am, 11–12 pm, and 7-8 pm.
- The average call time is shortest at noon, between 12 and 1 p.m.

b. Show the total volume/ number of calls coming in via charts/ graphs [Number of calls v/s Time]. You can select time in a bucket form (i.e. 1-2, 2-3, .....)

I created pivot table for Time\_Bucket columns and Count of Customer\_Phone\_No column which represents total number of incoming calls.

| Time_Bucket 🔻 | Count of Customer_Phone_No |
|---------------|----------------------------|
| 9_10          | 9588.00                    |
| 10_11         | 13313                      |
| 11_12         | 14626                      |
| 12_13         | 12652                      |
| 13_14         | 11561                      |
| 14_15         | 10561                      |
| 15_16         | 9159                       |
| 16_17         | 8788                       |
| 17_18         | 8534                       |
| 18_19         | 7238                       |
| 19_20         | 6463                       |
| 20_21         | 5505                       |
| Grand Total   | 117988                     |



This graph displays the overall number of incoming calls for each time period.

We can observe that the peak call volume occurs between the hours of 10 a.m. and 1 p.m., after which there is a fall in the number of incoming calls.

c. As you can see current abandon rate is approximately 30%. Propose a manpower plan required during each time bucket [between 9am to 9pm] to reduce the abandon rate to 10%. (i.e. You have to calculate minimum number of agents required in each time bucket so that at least 90 calls should be answered out of 100.)

I created a pivot table for Time\_Bucket column and percentage of incoming calls per day as shown below:

| Time_Bucket Percenta | ge of incoming calls per day |
|----------------------|------------------------------|
| 9_10                 | 8.13%                        |
| 10_11                | 11.28%                       |
| 11_12                | 12.40%                       |
| 12_13                | 10.72%                       |
| 13_14                | 9.80%                        |
| 14_15                | 8.95%                        |
| 15_16                | 7.76%                        |
| 16_17                | 7.45%                        |
| 17_18                | 7.23%                        |
| 18_19                | 6.13%                        |
| 19_20                | 5.48%                        |
| 20_21                | 4.67%                        |
| Grand Total          | 100.00%                      |



Then I made another pivot table that displays the overall daily call volume for each category—abandon, answered, and transfer.

| Days        | abandon | answered   | transfer   | Grand Total |
|-------------|---------|------------|------------|-------------|
| 01-Jan      | 684     | 3883       | 77         | 4644        |
| 02-Jan      | 356     | 2935       | 60         | 3351        |
| 03-Jan      | 599     | 4079       | 111        | 4789        |
| 04-Jan      | 595     | 4404       | 114        | 5113        |
| 05-Jan      | 536     | 4140       | 114        | 4790        |
| 06-Jan      | 991     | 3875       | 85         | 4951        |
| 07-Jan      | 1319    | 3587       | 42         | 4948        |
| 08-Jan      | 1103    | 3519       | 50         | 4672        |
| 09-Jan      | 962     | 2628       | 62         | 3652        |
| 10-Jan      | 1212    | 3699       | 72         | 4983        |
| 11-Jan      | 856     | 3695       | 86         | 4637        |
| 12-Jan      | 1299    | 3297       | 47         | 4643        |
| 13-Jan      | 738     | 3326       | 59         | 4123        |
| 14-Jan      | 291     | 2832       | 32         | 3155        |
| 15-Jan      | 304     | 2730       | 24         | 3058        |
| 16-Jan      | 1191    | 3910       | 41         | 5142        |
| 17-Jan      | 16636   | 5706       | 5          | 22347       |
| 18-Jan      | 1738    | 4024       | 12         | 5774        |
| 19-Jan      | 974     | 3717       | 12         | 4703        |
| 20-Jan      | 833     | 3485       | 4          | 4322        |
| 21-Jan      | 566     | 3104       | 5          | 3675        |
| 22-Jan      | 239     | 3045       | 7          | 3291        |
| 23-Jan      | 381     | 2832       | 12         | 3225        |
| Grand Total | 34403   | 82452      | 1133       | 117988      |
| % of Total  | 29.16   | 69.88      | 0.96       |             |
|             |         | Average da | aily calls | 5129.91304  |

- > This indicates that 30% of calls are abandoned.
- The typical number of inbound calls each day is 5130.
- > To lower the abandonment rate to 10%, we must raise the call responding rate by 20%, resulting in a goal answering rate of 90%.
- > And according to previous calculations, an agent spends 198 seconds on a call on average.
- Assumedly, an agent is engaged for 60% of 7.5 hours per day, or 4.5 hours per day.

I calculated the necessary manpower by using all these numbers:

|    | G                               | Н            | 1       | J       |
|----|---------------------------------|--------------|---------|---------|
| 17 | total average calls per day     | 5130         |         |         |
| 18 | need to answer                  | 90%          |         |         |
| 19 | avg time per call in seconds    | 198          |         |         |
| 20 |                                 |              |         |         |
| 21 | total time req in sec per day   | 5130*0.9*198 | 914166  | seconds |
| 22 | total time req in hours per day | H21/3600     | 253.935 | hours   |
| 23 |                                 |              |         |         |
| 24 | agent on call per day (hours)   | 4.5          |         |         |
| 25 | agent req per day               | H22/H24      | 56.43   |         |
|    |                                 |              |         |         |

> This implies that 57 agents will be required to answer 90% of daily calls.

According to the percentage of incoming calls per day table, this suggests that these 57 agents handle 100% of the calls received each day. I determined the number of agents needed for each time bucket as follows:

| C3 | 5 🔻 🗎         | $\times$ $\checkmark$ $f_x$ =ROUND(B35*57,0) |                 |  |  |
|----|---------------|----------------------------------------------|-----------------|--|--|
| 4  | А             | В                                            | С               |  |  |
| 33 |               |                                              |                 |  |  |
| 34 | Time_Bucket 🔻 | Percentage of incoming calls per day         | Agents Required |  |  |
| 35 | 9_10          | 8.13%                                        | 5               |  |  |
| 36 | 10_11         | 11.28%                                       | 6               |  |  |
| 37 | 11_12         | 12.40%                                       | 7               |  |  |
| 38 | 12_13         | 10.72%                                       | 6               |  |  |
| 39 | 13_14         | 9.80%                                        | 6               |  |  |
| 40 | 14_15         | 8.95%                                        | 5               |  |  |
| 41 | 15_16         | 7.76%                                        | 4               |  |  |
| 42 | 16_17         | 7.45%                                        | 4               |  |  |
| 43 | 17_18         | 7.23%                                        | 4               |  |  |
| 44 | 18_19         | 6.13%                                        | 3               |  |  |
| 45 | 19_20         | 5.48%                                        | 3               |  |  |
| 46 | 20_21         | 4.67%                                        | 3               |  |  |
| 47 | Grand Total   | 100.00%                                      | 57              |  |  |

These are the bare minimum agents needed in each time bucket in order to answer at least 90% of incoming calls each day.

d. Let's say customers also call this ABC insurance company in night but didn't get answer as there are no agents to answer, this creates a bad customer experience for this Insurance company. Suppose every 100 calls that customer made during 9 Am to 9 Pm, customer also made 30 calls in night between interval [9 Pm to 9 Am] and distribution of those 30 calls are as follows:

|           | Distribution of 30 calls coming in night for every 100 calls coming in between 9am - 9pm (i.e. 12 hrs slot) |            |           |           |           |           |           |           |           |           |           |
|-----------|-------------------------------------------------------------------------------------------------------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 9pm- 10pm | 10pm - 11pm                                                                                                 | 11pm- 12am | 12am- 1am | 1am - 2am | 2am - 3am | 3am - 4am | 4am - 5am | 5am - 6am | 6am - 7am | 7am - 8am | 8am - 9am |
| 3         | 3                                                                                                           | 2          | 2         | 1         | 1         | 1         | 1         | 3         | 4         | 4         | 5         |

Now propose a manpower plan required during each time bucket in a day. Maximum Abandon rate assumption would be same 10%.

Now, for night calls, as stated for 100-day calls, there are 30-night calls, implying that 30% of daily day calls come at night, with a 90% responding rate. Calculations are therefore shown as follows for this:

| 1  | L                                 | М            | N        | 0       |
|----|-----------------------------------|--------------|----------|---------|
| 17 | night calls per day               | 30% of 5130  | 1539     |         |
| 18 | need to answer                    |              | 90%      |         |
| 19 | avg time per call in seconds      |              | 198      |         |
| 20 |                                   |              |          |         |
| 21 | total time req in sec per night   | 1539*0.9*198 | 274249.8 | seconds |
| 22 | total time req in hours per night | N21/3600     | 76.1805  | hours   |
| 23 |                                   |              |          |         |
| 24 | agent on call per day (hours)     | 4.5          |          |         |
| 25 | agent req per night               | N22/M24      | 16.929   |         |
| 26 |                                   |              |          |         |

➤ In order to maintain a 90% responding rate at night, we therefore require 17 agents.

I calculated the number of agents needed in each time bucket at night to maintain a responding rate of at least 90% using the distribution of 30-night calls for every 100-day calls.

| Night_Time_Bucket | Incoming night calls | Percentage of incoming night calls | Agents Required |
|-------------------|----------------------|------------------------------------|-----------------|
| 9pm-10pm          | 154                  |                                    |                 |
| 10pm-11pm         | 154                  |                                    |                 |
| 11pm-12am         | 103                  |                                    |                 |
| 12am-1am          | 103                  | 6.69%                              | 1               |
| 1am-2am           | 51                   | 3.31%                              | 1               |
| 2am-3am           | 51                   | 3.31%                              | 1               |
| 3am-4am           | 51                   | 3.31%                              | 1               |
| 4am-5am           | 51                   | 3.31%                              | 1               |
| 5am-6am           | 154                  | 10.01%                             | 2               |
| 6am-7am           | 205                  | 13.32%                             | 2               |
| 7am-8am           | 205                  | 13.32%                             | 2               |
| 8am-9am           | 257                  | 16.70%                             | 3               |
| Grand Total       | 1539                 | 100.00%                            | 17              |



For a full 24-hour service, ABC Company needs 74 call support agents—57 during the day and 17 at night—to maintain a responding rate of 90%.

Assumption: An agent work for 6 days a week; On an average total unplanned leaves per agent is 4 days a month; An agent total working hrs is 9 Hrs out of which 1.5 Hrs goes into lunch and snacks in the office. On average an agent occupied for 60% of his total actual working Hrs (i.e 60% of 7.5 Hrs) on call with customers/ users. Total days in a month is 30 days.

## **Insights:**

- > The company can divide its agents according to the times of day and night when the amount of incoming calls is the lowest. i.e., more agents when there are plenty of calls, and fewer agents when there are few calls.
- Additionally, ABC Company can split their 24-hour service into three halves, i.e., three shifts of 8 hours each. They will benefit from this, as well as the agents who will be able to work more productively and take more incoming calls.