William Stallings Arquitetura e Organização de Computadores 8ª Edição

Capítulo 7 Entrada/saída

Problemas de entrada/saída

- Grande variedade de periféricos:
 - Entregando diferentes quantidades de dados.
 - -Em velocidades diferentes (maior ou menor).
 - -Em formatos diferentes.
- Em geral mais lentos que CPU e RAM.
- Daí a necessidade de módulos de E/S.

Módulo de entrada/saída

- Interface com CPU e memória.
- Interface com um ou mais periféricos.

Modelo genérico de módulo de E/S

slide

WILLIAM STALLINGS

ARQUITETURA E ORGANIZAÇÃO

Linhas de endereço Barramento Linhas de dados do sistema Linhas de controle Módulo de E/S Conexões para dispositivos periféricos

Dispositivos externos

- Legíveis ao ser humano:
 - -Monitor, impressora, teclado.
- Legíveis à máquina:
 - Monitoração e controle.
- Comunicação:
 - -Modem.
 - —Placa de interface de rede (NIC).

Diagrama em blocos de um dispositivo externo

WILLIAM STALLINGS

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Função do módulo de E/S

- Controle e temporização.
- Comunicação com a CPU.
- Comunicação com os dispositivos.
- Buffering de dados.
- Detecção de erro.

Etapas da E/S

- CPU verifica estado do dispositivo do módulo de E/S.
- Módulo de E/S retorna o estado.
- Se estiver pronto, CPU solicita transferência de dados.
- Módulo de E/S recebe dados do dispositivo.
- Módulo de E/S transfere dados à CPU.
- Variações para saída, DMA etc.

Comunicação do módulo de E/S com o processador

- Decodificação de comandos
 - -Ex: READ SECTOR, WRITE SECTOR, SEEK (trilha)
- Troca de dados
- Informação de estado
 - Ex: BUSY, READY, ERROR
- Reconhecimento de Endereço

Diagrama do módulo de E/S

ARQUITETURA E ORGANIZAÇÃO

DE COMPLITADODES

Decisões do módulo de E/S

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

- Ocultar ou revelar propriedades do dispositivo à CPU.
- Admitir dispositivo múltiplo ou único.
- Controlar funções do dispositivo.
 - —P.e., Rebobinar uma fita.
- Permite que o processador veja uma grande quantidade de dispositivos de uma maneira simples.
- Também decisões do SO.
 - —P.e., Unix trata tudo o que pode como arquivo.
- Em relação a complexidade pode ser classificado:
 - Canal ou processador de E/S.
 - Controlador de dispositivo.

Técnicas de E/S

- Programada (PIO).
- Controlada por interrupção.
- Acesso direto à memória (DMA).

E/S programada

- CPU tem controle direto sobre E/S:
 - Conhecendo o estado.
 - -Comandos de leitura/escrita.
 - —Transferindo dados.
- CPU espera que módulo de E/S termine a operação.
- Desperdiça tempo de CPU.

E/S programada - detalhe

- CPU solicita operação de E/S.
- Módulo de E/S realiza operação.
- Módulo de E/S define bits de estado.
- CPU verifica bits de estado periodicamente.
- Módulo de E/S não informa à CPU diretamente.
- Módulo de E/S não interrompe CPU.
- CPU pode esperar ou voltar mais tarde.

Comandos de E/S

- CPU emite endereço:
 - -Identifica módulo (& disp. se >1 por módulo).
- CPU emite comando:
 - Controle dizendo ao módulo o que fazer.
 - P.e., girar disco
 - —Teste verifica estado:
 - P.e., alimentado? Erro?
 - —Leitura/escrita:
 - Módulo transfere dados via buffer de/para dispositivo.

Endereçando dispositivos de E/S

- Sob E/S programa, transferência de dados é muito semelhante ao acesso à memória (CPU ponto de vista da CPU).
- Cada dispositivo recebe identificador exclusivo.
- Comandos da CPU contêm identificador (endereço).

Mapeamento de E/S

- E/S mapeada na memória:
 - Dispositivos e memória compartilham um espaço de endereços comum.
 - —E/S se parece com leitura/escrita na memória.
 - Nenhum comando especial para E/S.
 - Grande seleção disponível de comandos de acesso à memória.
- E/S independente:
 - Espaços de endereços separados.
 - Precisa de linhas de seleção de E/S ou memória.
 - —Comandos especiais para E/S.
 - Conjunto limitado.

E/S mapeada na memória e independente

WILLIAM STALLINGS

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

E/S controlada por interrupção

- Contorna problema de espera da CPU.
- Sem verificação de dispositivo repetida da CPU.
- Módulo de E/S interrompe quando estiver pronto.

E/S controlada por interrupção – Operação básica

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

- CPU emite comando de leitura.
- Módulo de E/S recebe dados do periférico enquanto CPU faz outro trabalho.
- Módulo de E/S interrompe CPU.
- CPU solicita dados.
- Módulo de E/S transfere dados.

Processamento de interrupção simples

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Ponto de vista da CPU

- Emite comando de leitura.
- Realiza outro trabalho.
- Verifica interrupção ao final de cada ciclo de instrução.
- Se interrompida:
 - —Salva contexto (registradores).
 - -Processa interrupção.
 - Busca dados & armazena.
- Ver notas do sistema operacional.

Aspectos de projeto

- Como identificar o módulo que emite a interrupção?
- Como lidar com interrupções múltiplas?
 - Ou seja, um tratador de interrupção sendo interrompido.

Identificando módulo que interrompe

- Linha diferente para cada módulo:
 - -PC.
 - -Limita número de dispositivos.
- Verificação por software:
 - -CPU verifica cada módulo por vez.
 - -Lento.

- Daisy chain ou verificação por hardware.
 - -Interrupt Acknowledge enviado por uma cadeia.
 - -Módulo responsável coloca vetor no barramento.
 - -CPU usa vetor para identificar rotina do tratador.
- Arbitração de barramento:
 - Módulo deve reivindicar o barramento antes que possa causar uma interrupção.
 - -P.e., PCI & SCSI.

Múltiplas interrupções

- Cada linha de interrupção tem uma prioridade.
- Linhas com prioridade mais alta podem interromper linhas com prioridade mais baixa.
- Com bus mastering, só o mestre atual pode interromper.

Exemplo - Barramento do PC

- 80x86 tem uma linha de interrupção.
- Sistemas baseados no 8086 usam um controlador de interrupção 8259^a.
- 8259A tem 8 linhas de interrupção.

Sequência de eventos

- 8259A aceita interrupções.
- 8259A determina prioridade.
- 8259A envia sinal ao 8086 (levanta linha INTR).
- CPU confirma.
- 8259A coloca vetor correto no barramento de dados.
- CPU processa interrupção.

Sistema de interrupção de barramento ISA

- Barramento ISA encadeia dois 8259As.
- Ligação é via interrupção 2.
- Gera 15 linhas:
 - -16 linhas menos uma para ligação.
- IRQ 9 é usada para redirecionar qualquer coisa tentando usar IRQ 2.
 - —Compatibilidade.
- Incorporado no chip set.

Intel 82C55A

Acesso direto à memória

- E/S controlada por interrupção e programada exige intervenção ativa da CPU.
 - —Taxa de transferência é limitada.
 - -CPU fica amarrada.
- DMA é a resposta.

Função do DMA

- Módulo adicional (hardware) no barramento.
- Controlador de DMA toma o comando da CPU para E/S.

WILLIAM STALLINGS

Diagrama típico do módulo de DMA

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Operação do DMA

- CPU diz ao controlador de DMA:
 - —Leitura/escrita.
 - Endereço do dispositivo.
 - -Endereço inicial do bloco de memória para dados.
 - Quantidade de dados a serem transferidos.
- CPU prossegue com outro trabalho.
- Controlador de DMA lida com transferência.
- Controlador de DMA envia interrupção quando terminar.

Transferência de DMA - Roubo de ciclo

- Controlador de DMA assume o barramento por um ciclo.
- Transferência de uma palavra de dados.
- Não uma interrupção.
 - -CPU não troca de contexto.
- CPU suspensa logo antes de acessar o barramento.
 - Ou seja, antes de uma busca de operando ou dados ou uma escrita de dados.
- Atrasa a CPU, mas não tanto quanto a CPU fazendo transferência.

WILLIAM STALLINGS

DMA e pontos de interrupção durante um ciclo de instrução

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Aparte

- Que efeito tem a memória caching sobre o DMA?
- E a cache da placa?
- Dica: o quanto os barramentos do sistema estão disponíveis?

Configurações de DMA

- Único barramento, controle de DMA separado.
- Cada transferência usa barramento duas vezes.
 - -E/S para DMA, depois DMA para memória.
- CPU é suspensa duas vezes.

- Único barramento, controlador de DMA integrado.
- Controlador pode aceitar mais de um dispositivo.
- Cada transferência usa barramento uma vez.
 - DMA para memória.
- CPU é suspensa uma vez.

- Barramento de E/S separado.
- Barramento aceita todos dispositivos habilitados para DMA.
- Cada transferência usa barramento uma vez.
 - DMA para memória.
- CPU é suspensa uma vez.

Controlador de DMA Intel 8237A

- Interfaces com família 80x86 e DRAM.
- Quando o módulo de DMA precisa de barramentos, ele envia sinal HOLD ao processador.
- CPU responde HLDA (hold acknowledge) .
 - Módulo de DMA pode usar barramentos.
- P.e., transferir dados da memória para o disco.
 - Dispositivo requisita serviço de DMA levantando DREQ (requisição de DMA).
 - 2. DMA levanta sua linha HRQ (hold request).
 - 3. CPU termina ciclo de barramento presente (não necessariamente instrução presente) e levanta linha HDLA HDLA (hold acknowledge). HOLD permanece ativo pela duração do DMA.
 - 4. DMA ativa DACK (DMA acknowledge), dizendo ao dispositivo para iniciar a transferência.
 - 5. DMA inicia transferência colocando endereço do primeiro byte no barramento de endereço e ativando MEMR; depois, ativa IOW para escrever no periférico. DMA decrementa contador e incrementa ponteiro de endereço. Repete até contagem chegar a zero.
 - 6. DMA desativa HRQ, retornando o controle do barramento de volta à CPU.

DACK = DMA adknowledge (reconhecimento de DMA)

DREQ = DMA request (requisição de DMA)

HLDA = HOLD acknowledge (reconhecimento de HOLD)

HRQ = HOLD request (requisição de HOLD)

slice io

Flutuando

- Enquanto DMA usa barramentos, processador fica ocioso.
- Processador usando barramento, DMA ocioso:
 - Conhecido como controlador de DMA flutuante.
- Dados não passam e são armazenados no chip de DMA.
 - DMA apenas entre porta de E/S e memória.
 - Não entre duas portas de E/S ou dois locais de memória.
- Pode transferir de memória para memória via registrador.
- 8237 contém quatro canais de DMA.
 - Programado independentemente.
 - Qualquer um ativo.
 - Canais numerados com 0, 1, 2 e 3.

Canais de E/S

- Dispositivos de E/S se tornam mais sofisticados.
- P.e., placas gráficas 3D.
- CPU instrui controlador de E/S a realizar transferência.
- Controlador de E/S realiza transferência inteira.
- Melhora velocidade.
 - —Retira carga da CPU.
 - -Processador dedicado é mais rápido.

Arquitetura do canal de E/S

Interface

- Conexão de dispositivos.
- Bit de fio?
- Processador dedicado/memória/barramentos?
- P.e., FireWire, InfiniBand.

IEEE 1394 FireWire

- Barramento serial de alto desempenho.
- Rápido.
- Baixo custo.
- Fácil de implementar.
- Também sendo usado em câmeras digitais, VCRs e TV.

Configuração de FireWire

- Daisy chain.
- Até 63 dispositivos em única porta.
 - Na realidade, 64, dos quais um é a própria interface.
- Até 1022 barramentos podem ser conectados com pontes.
- Configuração automática.
- Sem terminações de barramento.
- Pode ser estruturada em forma de árvore.

Configuração FireWire simples

Pilha de 3 camadas do FireWire

- Física:
 - —Meio de transmissão, características elétricas e de sinalização.
- Enlace:
 - -Transmissão de dados em pacotes.
- Transação:
 - Protocolo requisição-resposta.

Pilha de protocolos FireWire

Fire Wire - Camada física

- Taxas de dados de 25 a 400Mbps.
- Duas formas de arbitração:
 - -Baseado na estrutura em forma de árvore.
 - -Raiz atua como árbitro.
 - Primeiro a chegar, primeiro a ser atendido.
 - —Prioridade natural controla requisições simultâneas.
 - Ou seja, quem está mais próximo da raiz.
 - Arbitração imparcial.
 - Arbitração urgente.

Fire Wire - Camada de enlace

- Dois tipos de transmissão:
 - -Assíncrono:
 - Quantidade variável de dados e vários bytes de dados de transação transferidos como um pacote.
 - Para endereço explícito.
 - Confirmação retornada.
 - -Isócrono:
 - Quantidade variável de dados em sequência de pacotes de tamanho fixo em intervalos regulares.
 - Endereçamento simplificado.
 - Sem confirmação.

Subações do Fire Wire

InfiniBand

- Especificação de E/S voltada para servidores de ponta.
 - —União da Future I/O (Cisco, HP, Compaq, IBM) e Next Generation I/O (Intel).
- Versão 1 lançada no início de 2001.
- Arquitetura e especificação para fluxo de dados entre processador e dispositivos de E/S inteligentes.
- Pretende substituir PCI nos servidores.
- Maior capacidade, facilidade de expansão, flexibilidade.

Arquitetura InfiniBand

- Armazenamento remoto, rede e conexão entre servidores.
- Conecta servidores, armazenamento remoto, dispositivos de rede à estrutura central de comutadores e conexões.
- Maior densidade de servidores.
- Central de dados expansível.
- Nós independentes acrescentados conforme a necessidade.
- Distribuição de E/S do servidor até:
 - 17m usando cobre.
 - 300m usando fibra óptica multimodo.
 - 10km usando fibra óptica de modo único.
- Até 30Gbps.

Fábrica de comutadores InfiniBand

Operação do InfiniBand

- 16 canais lógicos (pistas virtuais) por enlace físico.
- Uma pista para gerenciamento, restante para dados.
- Dados no fluxo de pacotes.
- Pista virtual dedicada temporariamente a transferência fim a fim.
- Comutador mapeia tráfego da pista de entrada para pista de saída.

Pilha de protocolos InfiniBand

Leitura de base

- Procure por Universal Serial Bus (USB).
- Compare com outros padrões de comunicação, p.e., Ethernet.