1314기 텍스트세미나 ToBig's 14기 장예은

Lecture 12_ subwords

Ont

Unit 01 | Purely character-level models

Unit 02 | Subword-models

Unit 03 | Hybrid models

잠깐 용어정리

- Phonetics: 음성학
- Phonology: 음운론
- Phonemes: 음소 (뜻 구별의 최소 단위)
- Morphology: 형태학
- Morpheme: 형태소
- Semantic: 의미론적인

Character - level로 접근해야 하는 이유

1. Writing systems vary in how the represent the words

2. Need to handle large, open vocabulary

- 1. 언어별로 특성이 상이함
- No word segmentation 安理会认可利比亚问题柏林峰会成果
- Words (mainly) segmented: This is a sentence with words.
 - Clitics/pronouns/agreement?
 - Separated Je vous ai apporté des bonbons
 - so+said+we+it = فقلناها = فقلناها = so+said+we+it
 - Compounds?
 - Separated life insurance company employee
 - Joined Lebensversicherungsgesellschaftsangestellter

- 2. Need to handle large, open vocabulary
- Rich morphology: nejneobhospodařovávatelnějšímu

("to the worst farmable one")

- Transliteration: Christopher → Kryštof
- Informal spelling:

Purely character – level models

- 영어 체코어 번역
- Pure character-level seq2seq system (2015)
- 하지만 학습시간이 너무 느렸고(3주), BLEU 15.9 의 성능에 불과함

source	Her 11-year-old daughter, Shani Bart, said it felt a little bit weird
human	Její jedenáctiletá dcera Shani Bartová prozradila, že je to trochu zvláštní
char	Její jedenáctiletá dcera , Shani Bartová , říkala , že cítí trochu <i>divně</i>
word	Její <unk> dcera <unk> <unk> řekla , že je to trochu divné</unk></unk></unk>
word	Její 11-year-old dcera Shani , řekla, že je to trochu <i>divné</i>

Word level 모델에 비해서 사람 이름을 잘 번역하는 경향

- 체코어-영어 번역
- Fully character-level neural machine translation without explicit segmentation(2017)
- https://arxiv.org/abs/1610.03017

앞의 모델보다 더 나아진 성능

4.2 Attention and Decoder

Similarly to the attention model in (Chung et al., 2016; Firat et al., 2016a), a single-layer feedforward network computes the attention score of next target character to be generated with every source segment representation. A standard two-layer character-level decoder then takes the source context vector from the attention mechanism and predicts each target character. This decoder was described as *base decoder* by Chung et al. (2016).

Bilingual	bpe2char	char2char	
Vocab size	24,440	300	
Source emb.	512	128	
Target emb.	512	512	
Conv.		200-200-250-250	
filters		-300-300-300-300	
Pool stride		5	
Highway		4 layers	
Encoder	1-lay	yer 512 GRUs	
Decoder	2-layer 1024 GRUs		

Table 1: Bilingual model architectures. The char2char model uses 200 filters of width 1, 200 filters of width 2, ... and 300 filters of width 8.

Figure 1: Encoder architecture schematics. Underscore denotes padding. A dotted vertical line delimits each segment. The stride of pooling s is 5 in the diagram.

Seq2seq 모델/BPE 모델 성능 언어별 비교

Unit 02 | Subword models

1. BPE

- word level 모델과 동일하지만, 더 작은 word인 word pieces를 이용함
- 딥러닝(neural network)과 전혀 무관한 간단한 아이디어
- 문서를 알집으로 압축하는것, 단축번호, 텍스트대치(?)와 유사
- 자주 나오는 byte pair(n gram)를 새로운 byte(a new gram)로 clustering

Dictionary

- 5 **lo** w
- 2 **lo** w e r
- 6 newest
- 3 widest

Vocabulary

I, o, w, e, r, n, w, s, t, i, d, es, est, **lo**

- 자주 등장하는 es, est, lo를 새로운 단어로 추가(clustering)
- 새로 추가된 단어도 하나의 단어처럼 취급
- 지정한 최대 길이 넘으면 clustering 멈춤
- 성능 효과적(널리 응용됨)
- 시스템의 vocabulary를 자동적으로 결정

Unit 02 | Subword models

word piece 보충설명

참고링크: https://wikidocs.net/22592, https://lovit.github.io/nlp/2018/04/02/wpm/

- WordPiece Model은 BPE의 변형 알고리즘. BPE가 빈도수에 기반하여 가장 많이 등장한 쌍을 병합하는 것과는 달리, 병합되었을 때 코퍼스의 우도(Likelihood)를 가장 높이는 쌍을 병합
- 자주 등장하는 piece는 unit으로 묶음 (BPE와 유사), 자주 등장하지 않는 것은 분리

WPM을 수행하기 이전의 문장: Jet makers feud over seat width with big orders at stake WPM을 수행한 결과(wordpieces): _J et _makers _fe ud _over _seat _width _with _big _orders _at _stake

- Jet는 J와 et로 나누어졌으며, feud는 fe와 ud로 나누어짐.
- WPM은 모든 단어의 맨 앞에 _를 붙이고, 단어는 서브 워드(subword)로 통계에 기반하여 띄어 쓰기로 분리함.(_는 문장 복원을 위한 장치)
- Jet → _J et : 띄어쓰기가 서브 워드(subwords)들을 구분, 기존 띄어쓰기는 _
- WPM이 수행 결과로부터 수행 전의 결과로 돌리는 방법은 현재 있는 모든 띄어쓰기를 전부 제거하고, 언더바를 띄어쓰기로 바꾸는 것

Sentencepiece

- 구글에서 2018년 공개한 비지도학습 기반 형태소 분석 패키지
- 사전 토큰화 작업없이 문장 단위 input의 단어 분리 토큰화를 수행하는 단어 분리 패키지

```
I didn't at all think of it this way.
['_I', '_didn', "'", 't', '_at', '_all', '_think', '_of', '_it', '_this', '_way', '.']
[41, 623, 4950, 4926, 138, 169, 378, 30, 58, 73, 413, 4945]

I have waited a long time for someone to film
['_I', '_have', '_wa', 'ited', '_a', '_long', '_time', '_for', '_someone', '_to', '_film']
[41, 141, 1364, 1120, 4, 666, 285, 92, 1078, 33, 91]
```

Unit 02 | Subword models

다른 word piece/ sentence piece 모델

- BERT: vocab size가 크지만, 엄청 크지는 않음 => wordpiece 사용 필요
- 상대적으로 등장 빈도가 높은 단어들 + wordpiece를 이용
- Ex) 사전에 없는 Hypatia = h ##yp ##ati #a 라는 wordpiece로 쪼개짐, 4개의 word vector pieces

Hybrid models : 기본적으로 word 단위로 취급, 몇몇만 character 단위로 취급 (ex-사전에 없는 단 어, 이름)

Character-based LSTM

• Character level을 합친 output을 더 높은 레벨의 모델의 input으로

Char level

Character-Aware Neural Language Models

- Subword 관계성을 인코딩
- Ex) eventful, eventfully, uneventful
- 다른 모델이 가진 rare-word problem을 해결함
- 더 적은 파라미터 수로 비슷한 성능을 냄

- Char 단위로 구분한 상태에서 시작
- Convolutional layer를 거쳐 feature representation

- Convolutions over character-level inputs.
- Max-over-time pooling (effectively n-gram selection).

- Highway Network LSTM과 유사한 기능

Highway Network Output

- Word-level LSTM
- 최종 출력층

		DATA-S					
		Cs	DE	Es	FR	RU	AR
Botha	KN-4 MLBL	545 465	366 296	241 200	274 225	396 304	323
	Word	503	305	212	229	352	216
Small	Morph	414	278	197	216	290	230
	Char	401	260	182	189	278	196
Large	Word Morph	$\frac{493}{398}$	$\begin{array}{c} 286 \\ 263 \end{array}$	$\frac{200}{177}$	$\frac{222}{196}$	$\frac{357}{271}$	172 148
	Char	371	239	165	184	261	148

		DATA-L					
		Cs	DE	Es	FR	RU	En
Botha	KN-4 MLBL	862 643	$\frac{463}{404}$	219 203	243 227	390 300	291 273
Small	Word Morph Char	701 615 578	347 331 305	186 189 169	202 209 190	353 331 313	236 233 216

Comparable performance with fewer parameters!

		PPL	Size
	LSTM-Word-Small	97.6	5 m
	LSTM-Char-Small	92.3	5 m
	LSTM-Word-Large	85.4	20 m
\rightarrow	LSTM-Char-Large	78.9	19 m
	KN-5 (Mikolov et al. 2012)	141.2	2 m
	RNN [†] (Mikolov et al. 2012)	124.7	6 m
	RNN-LDA [†] (Mikolov et al. 2012)	113.7	$7 \mathrm{m}$
	genCNN [†] (Wang et al. 2015)	116.4	8 m
	FOFE-FNNLM [†] (Zhang et al. 2015)	108.0	6 m
	Deep RNN (Pascanu et al. 2013)	107.5	6 m
	Sum-Prod Net [†] (Cheng et al. 2014)	100.0	5 m
	LSTM-1 [†] (Zaremba et al. 2014)	82.7	20 m
	LSTM-2 [†] (Zaremba et al. 2014)	78.4	52 m

			In Vocabular	y	
	while	his	you	richard	trading
LSTM-Word	although letting though minute	your her my their	conservatives we guys i	jonathan robert neil nancy	advertised advertising turnover turnover
LSTM-Char (before highway)	chile whole meanwhile white	this hhs is has	your young four youth	hard rich richer richter	heading training reading leading
LSTM-Char (after highway)	meanwhile whole though nevertheless	hhs this their your	we your doug i	eduard gerard edward carl	trade training traded trader

- ->가장 유사한 단어들 출력 결과
- Richard(사람 이름) 결과를 보면
- Highway block부분 이전에는
- Richard와 의미가 아닌 철자만 유사한 단어들이 가장 유사하다 고 출력
- Highway block이후에는 의미를 고려하여 다른 사람 이름을 출력

Hybrid NMT

- 대부분 word level 사용
- 필요할때만 character level

Hybrid 모델의 우수성

source	The author Stephen Jay Gould died 20 years after diagnosis .	
human	Autor Stephen Jay Gould zemřel 20 let po diagnóze .	
char	Autor Stepher Stepher zemřel 20 let po diagnóze .	
word	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>	Word 기반 모델:
WOIG	Autor Stephen Jay Gould zemřel 20 let po po .	Diagnosis라는 단어를 아예 잃어버림
hybrid	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>	Hybrid 모델은
Inybria	Autor Stephen Jay Gould zemřel 20 let po diagnóze .	완벽하게 해석

참고) FastText Embeddings

- 차세대 word2vec (word vector learning library
- 한 단어의 n-gram과 원래의 단어를 모두 학습에 사용
 where = <wh, whe, her, ere, re>, <where>
 - Note that <her> or <her is different from her
 - Prefix, suffixes and whole words are special

https://arxiv.org/pdf/1607.04606.pdf

Q & A

들어주셔서 감사합니다.