Lecture Summary: Image and Kernel of Linear Transformations

Source: Lec42.pdf

Key Points

- Definition of Kernel:
 - For a linear transformation $f: V \to W$, the **kernel** of f is defined as:

$$\ker(f) = \{ v \in V \mid f(v) = 0 \}.$$

- The kernel is a subspace of V:
 - * Closure under addition: If $v_1, v_2 \in \ker(f)$, then $v_1 + v_2 \in \ker(f)$.
 - * Closure under scalar multiplication: If $v \in \ker(f)$ and $\alpha \in \mathbb{R}$, then $\alpha v \in \ker(f)$.
- Definition of Image:
 - For $f: V \to W$, the **image** of f (also called the range) is:

$$Im(f) = \{ w \in W \mid \exists v \in V, w = f(v) \}.$$

- The image is a subspace of W:
 - * Closure under addition: If $w_1, w_2 \in \text{Im}(f)$, then $w_1 + w_2 \in \text{Im}(f)$.
 - * Closure under scalar multiplication: If $w \in \text{Im}(f)$ and $\alpha \in \mathbb{R}$, then $\alpha w \in \text{Im}(f)$.
- Kernel and Injectivity:
 - A linear transformation f is injective if and only if $ker(f) = \{0\}$ (the zero subspace).
- Image and Surjectivity:
 - A linear transformation f is surjective if and only if Im(f) = W.
- Relation to Matrices:
 - For $f: V \to W$, let $\beta = \{v_1, \ldots, v_n\}$ and $\gamma = \{w_1, \ldots, w_m\}$ be ordered bases for V and W, respectively.
 - The corresponding matrix A is defined by expressing $f(v_i)$ as a linear combination of $\{w_1, \ldots, w_m\}$:

$$f(v_j) = \sum_{i=1}^m a_{ij} w_i.$$

- The jth column of A consists of the coefficients a_{ij} .
- Kernel and Null Space:
 - $-\ker(f)$ corresponds to the null space of A, which is:

$$Null(A) = \{ x \in \mathbb{R}^n \mid Ax = 0 \}.$$

- The kernel is isomorphic to the null space of the associated matrix A.
- Image and Column Space:
 - $\operatorname{Im}(f)$ corresponds to the column space of A, which is the span of the columns of A.
 - Finding a basis for Im(f) involves identifying pivot columns of A in row-reduced form.
- Summary of Isomorphisms:
 - $-\ker(f)$ is isomorphic to the null space of A.
 - $\operatorname{Im}(f)$ is isomorphic to the column space of A.

Simplified Explanation

Example 1: Linear Transformation on \mathbb{R}^2 Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined as:

$$f(x,y) = (2x,y).$$

• Kernel: Solve f(x, y) = (0, 0):

$$(2x, y) = (0, 0) \implies x = 0, y = 0.$$

- $ker(f) = \{(0,0)\}$ (the zero subspace).
- Image: Check if every $(u, v) \in \mathbb{R}^2$ can be written as:

$$(2x, y) = (u, v).$$

• Solve:

$$x = \frac{u}{2}, y = v.$$

• $\operatorname{Im}(f) = \mathbb{R}^2$ (entire space).

Example 2: Linear Transformation on \mathbb{R}^2 Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined as:

$$f(x,y) = (2x,0).$$

• Kernel: Solve f(x, y) = (0, 0):

$$(2x,0) = (0,0) \implies x = 0.$$

- $\ker(f) = \{(0, y) \mid y \in \mathbb{R}\}$ (the y-axis).
- Image: Check if every $(u, v) \in \mathbb{R}^2$ can be written as:

$$(2x,0) = (u,v).$$

- v = 0, $u = 2x \implies x = \frac{u}{2}$.
- $\operatorname{Im}(f) = \{(u, 0) \mid u \in \mathbb{R}\}\ (\text{the } x\text{-axis}).$

Conclusion

In this lecture, we:

- Defined the kernel and image of linear transformations.
- Connected kernels to null spaces and images to column spaces.
- Established isomorphisms between these subspaces and their matrix representations.
- Demonstrated examples to compute kernel and image using matrices.

This lays the foundation for understanding the structure of linear transformations and their interplay with matrices.