1)

The displacement vector starting at P_1 and ending at Q_2 :

$$Q_2 - P_1 = (L_1, L_2, L_3) - (L_1, 0, 0)$$

$$Q_2 - P_1 = (0, L_2, L_3)$$

$$\vec{v}_{1,2} = (0, L_2, L_3)$$

The displacement vector starting at P_1 and ending at Q_3 :

$$Q_3 - P_1 = (0, L_2, L_3) - (L_1, 0, 0)$$

$$Q_3 - P_1 = (-L, L_2, L_3)$$

$$\vec{v}_{1,3} = (-L, L_2, L_3)$$

The displacement vector starting at P_1 and ending at Q_4 :

$$Q_4 - P_1 = (0, 0, L_3) - (L_1, 0, 0)$$
$$Q_4 - P_1 = (-L, 0, L_3)$$
$$\vec{v}_{1,4} = (-L, 0, L_3)$$

The displacement vector starting at P_3 and ending at Q_2 :

$$Q_2 - P_3 = (L, L_2, L_3) - (0, L_2, 0)$$

$$Q_2 - P_3 = (L_1, 0, L_3)$$

$$\vec{v}_{2,3} = (L_1, 0, L_3)$$

The displacement vector starting at P_3 and ending at Q_3 :

$$Q_3 - P_3 = (0, L_2, L_3) - (0, L_2, 0)$$
$$Q_3 - P_3 = (0, 0, L_3)$$
$$\vec{v}_{3,3} = (0, 0, L_3)$$

The displacement vector starting at P_3 and ending at Q_4 :

$$Q_4 - P_3 = (0, 0, L_3) - (0, L_2, 0)$$

$$Q_4 - P_3 = (0, -L_2, L_3)$$

$$\vec{v}_{4,3} = (0, -L_2, L_3)$$

2) Let the differential equation $u''(x) + \lambda u(x) = 0$ for $0 \le x \le L$, and subject to the *Dirichlet boundary conditions* u(0) = 0 and $u(L_1) = 0$ be given.

Next, suppose that the solutions are of the form $u(x) = e^{kx}$. Then, $u'(x) = ke^{kx}$ and $u''(x) = k^2e^{kx}$. Plugging back in, we have:

$$k^2e^{kx}+\lambda e^{kx}=0$$

$$e^{kx}(k^2+\lambda)=0$$

$$k^2+\lambda=0, \text{ which is our auxiliary equation.}$$

3)Consider $\lambda < 0$. Using the auxiliary equation we obtained in question 2, we have

$$k^{2} + \lambda = 0$$
$$k^{2} = -\lambda$$
$$k = \pm \sqrt{\lambda}$$

So,
$$v_1(x) = e^{\sqrt{-\lambda} x}$$
 and $v_2 = e^{-\sqrt{-\lambda} x}$.

Now, check the wronskian:

$$w(v_1, v_2) = \begin{vmatrix} e^{kx} & e^{-kx} \\ ke^{kx} & -ke^{kx} \end{vmatrix}$$

$$w(v_1, v_2) = (e^{kx} \cdot -ke^{kx}) - (e^{-kx} \cdot ke^{kx})$$

$$w(v_1, v_2) = (-k(e^{kx})(e^{-kx})) - (k(e^{-kx})(e^{kx}))$$

$$w(v_1, v_2) = (-k \cdot 1) - (k \cdot 1) = (-k)(k) = -k^2 \neq 0$$

Since $w(v_1, v_2) \neq 0$, the solutions $v_1(x)$ and $v_2(x)$ are linearly independent and thus form a fundamental set of solutions. Now, the astute reader can observer that plugging in any values (say, $\sqrt{-\lambda}$) will have the same result.

4) Now, consider $\lambda = 0$. Then, the differential equation becomes

$$u''(x) = 0$$

Then, if we integrate, we have:

$$u'(x) = c$$

 $u(x) = c_1 x + c_0$, for some constants c_1 and c_0

Using u(0) = 0, we have:

$$u(0) = c_1(0) + c_0$$

0 = 0

Using $u(L_1) = 0$, we have:

$$u(L_1) = c_1(L_1) + c_0$$

0 = c_0

So, our two solutions are $h_1(x) = 1$ and $h_2(x) = x$

Now, check the wronskian:

$$w(h_1(x), h_2(x)) = \begin{vmatrix} 1 & x \\ 0 & 1 \end{vmatrix}$$
$$w(h_1(x), h_2(x)) = (1 \cdot 1) - (0 \cdot x)$$
$$w(h_1(x), h_2(x)) = 1 - 0 = 1 \neq 0$$

Since $w(h_1(x), h_2(x)) \neq 0$, our two solutions are linearly independent and thus form a fundamental set of solutions.

Using u(0) = 0, we have:

$$h_1(0) = 1$$
 $h_2(0) = 1$
 $0 = 1$ $0 = 0$
 $h_1(L_1) = 1$ $h_2(L_1) = 1$
 $0 = 1$ $0 = L_1$

Since the functions don't satisfy the boundary conditions, they are not *Dirichlet-Laplacian eigenfunctions*.

5) Now, consider $\lambda > 0$. Then, suppose the solutions are of the form $u(x) = e^{kx}$. Then, $u'(x) = ke^{kx}$ and $u''(x) = k^2e^{kx}$. Plugging in, we have:

$$k^{2}e^{kx} + \lambda e^{kx} = 0$$

$$e^{kx}(k^{2} + \lambda) = 0$$

$$k^{2} + \lambda = 0$$

$$k = \pm \sqrt{-\lambda}$$

$$k = \pm i\sqrt{\lambda}$$

So,
$$u_1(x) = e^{i\sqrt{\lambda}}$$
 and $u_2(x) = e^{-i\sqrt{\lambda}}$.
Next, let $u_{\lambda}(x) = \frac{1}{2} \left[u_1(x) + u_2(x) \right]$.
Then,
 $u_{\lambda}(x) = \frac{1}{2} \left[\cos(\sqrt{\lambda} x) + i \sin(\sqrt{\lambda} x) + \cos(-\sqrt{\lambda} x) + i \sin(\sqrt{\lambda} x) \right]$
 $u_{\lambda}(x) = \cos(\sqrt{\lambda} x)$
Let $v_{\lambda}(x) = \frac{1}{2i} \left[\cos(\sqrt{\lambda} x) + i \sin(\sqrt{\lambda} x) - \cos(-\sqrt{\lambda} x) + i \sin(\sqrt{\lambda} x) \right]$
 $u_{\lambda}(x) = \sin(\sqrt{\lambda} x)$

Now, consider $u_{\lambda}(x) = \cos(\sqrt{\lambda} x)$. Using u(0) = 0, we have:

$$u_{\lambda}(0) = \cos(\sqrt{\lambda} \ (0))$$
$$0 = \cos(0)$$
$$0 = 1$$

Then, using $u(L_1) = 0$, we have:

$$u_{\lambda}(0) = \cos(\sqrt{\lambda} L_1)$$
$$0 = \cos(\sqrt{\lambda} L_1)$$
$$\sqrt{\lambda} L_1 = 0$$

Now, consider $u_{\lambda}(x) = \sin(\sqrt{\lambda} x)$. Using, Using u(0) = 0, we have:

$$u_{\lambda}(0) = \sin(\sqrt{\lambda} \ (0))$$
$$0 = 0$$

Then, using $u(L_1) = 0$, we have:

$$u_{\lambda}(0) = \sin(\sqrt{\lambda} L_1)$$

$$0 = \sin(\sqrt{\lambda} L_1)$$

$$\sqrt{\lambda} L_1, n\pi, \text{ where } n \in \mathbb{N}$$

So, $\lambda = \left(\frac{n\pi}{L_1}\right)^2$, where $n \in \mathbb{N}$. These are the allowable eigenvalues.

Denote this result as $\lambda_{n,D}$. Finally, let $u_{n,D}(x) = \sin\left(\frac{n\pi x}{L_1}\right)$, where $n \in \mathbb{N}$.

6) Let the differential equation $u''(y) + \lambda u(y) = 0$ for $0 \le y \le L_2$ and subject to the *Neumann boundary conditions* u'(0) = 0 and $u'(L_2) = 0$ be given. Next, suppose that the solutions are of the form $u(x) = e^{kx}$. Then, $u'(x) = ke^{kx}$ and $u''(x) = k^2e^{kx}$. Plugging in, we have:

$$k^{2}e^{kx} + \lambda e^{kx} = 0$$
$$e^{kx}(k^{2} + \lambda) = 0$$

 $k^2 + \lambda = 0$, which is, again, our auxiliary equation.

Note how this auxiliary equation is exactly the same as the one we obtained in number two.

7) Consider $\lambda < 0$. Using the auxiliary equation we obtained in question six, we have

$$k^{2} + \lambda = 0$$
$$k^{2} = -\lambda$$
$$k = \pm \sqrt{\lambda}$$

So,
$$v_1(y) = e^{\sqrt{-\lambda} x}$$
 and $v_2(y) = e^{-\sqrt{-\lambda} x}$.

Now, check the wronskian:

$$w(v_1(y), v_2(y)) = \begin{vmatrix} e^{ky} & e^{-ky} \\ ke^{ky} & -ke^{ky} \end{vmatrix}$$

$$w(v_1(y), v_2(y)) = (e^{ky} \cdot -ke^{ky}) - (e^{-ky} \cdot ke^{ky})$$

$$w(v_1(y), v_2(y)) = (-k(e^{ky})(e^{-ky})) - (k(e^{-ky})(e^{ky}))$$

$$w(v_1(y), v_2(y)) = (-k \cdot 1) - (k \cdot 1) = (-k)(k) = -k^2 \neq 0$$

Since $w(v_1(y), v_2(y)) \neq 0$, the solutions $v_1(y)$ and $v_2(y)$ are linearly independent and thus form a fundamental set of solutions. Now, the astute reader can observer that plugging in any values (say, $\sqrt{-\lambda}$) will have the same result.

Next, taking derivatives, we have:

$$v_1'(y) = \sqrt{-\lambda}e^{\sqrt{-\lambda}y}$$
 and $v_2'(y) = -\sqrt{-\lambda}e^{-\sqrt{-\lambda}y}$.

Using u'(0) = 0, we have:

$$\begin{array}{ccc} v_1'(0) = \sqrt{-\lambda}e^{\sqrt{-\lambda}~(0)} & & v_2'(0) = -\sqrt{-\lambda}e^{\sqrt{-\lambda}~(0)} \\ v_1'(0) = \sqrt{-\lambda} & & v_2'(0) = -\sqrt{-\lambda} \\ 0 = \sqrt{-\lambda} & & 0 = -\sqrt{-\lambda} \end{array}$$

Using $u'(L_2) = 0$, we have:

$$v_1'(L_2) = \sqrt{-\lambda}e^{\sqrt{-\lambda} (L_2)} \qquad v_2'(0) = -\sqrt{-\lambda}e^{\sqrt{-\lambda} (L_2)}$$

$$0 = \sqrt{-\lambda}e^{\sqrt{-\lambda} (L_2)} \qquad 0 = -\sqrt{-\lambda}e^{\sqrt{-\lambda} (L_2)}$$

Since the functions $v_1(y)$ and $v_2(y)$ do not satisfy the boundary conditions, they are not Neumann-Laplacian eigenfunctions.

8) Now, consider $\lambda = 0$. Then, the differential equation becomes

$$u''(y) = 0$$

Then, if we integrate, we have:

$$u'(y) = c$$

 $u(y) = c_1 y + c_0$, for some constants c_1 and c_0

Using u(0) = 0, we have:

$$u(0) = c_1(0) + c_0$$
$$0 = 0$$

Using $u(L_1) = 0$, we have:

$$u(L_1) = c_1(L_1) + c_0$$
$$0 = c_0$$

Similar to the *Dirichlet-Laplacian eigenproblem*, our two solutions are $h_1(y) = 1$ and $h_2(y) = y$

Now, check the wronskian:

$$w(h_1(y), h_2(y)) = \begin{vmatrix} 1 & x \\ 0 & 1 \end{vmatrix}$$
$$w(h_1(y), h_2(y)) = (1 \cdot 1) - (0 \cdot x)$$
$$w(h_1(y), h_2(y)) = 1 - 0 = 1 \neq 0$$

Since $w(h_1(y), h_2(y)) \neq 0$, our two solutions are linearly independent and thus form a fundamental set of solutions.

Calculating some derivatives, we have:

$$h'_1(y) = 0$$
 and $h'_2(y) = 1$

Using u'(0) = 0, we have:

$$h'_1(0) = 0$$
 $h'_2(0) = 1$
 $0 = 0$ $0 = 1$

Using $u'(L_2) = 0$, we have:

$$h'_1(L_2) = 0$$
 $h'_2(L_2) = 1$
 $0 = 0$ $0 = 1$

Just as in the *Dirichlet-Laplacian eigenproblem*, the corresponding harmonic functions do not satisfy the boundary conditions, and in this case, are not *Neumann-Laplacian eigenfunctions*.

9) Now, consider $\lambda > 0$. Then, suppose the solutions are of the form $u(y) = e^{ky}$. Then, $u'(y) = ke^{ky}$ and $u''(y) = k^2e^{ky}$. Plugging in, we have:

$$k^{2}e^{ky} + \lambda e^{ky} = 0$$

$$e^{ky}(k^{2} + \lambda) = 0$$

$$k^{2} + \lambda = 0$$

$$k = \pm \sqrt{-\lambda}$$

$$k = \pm i\sqrt{\lambda}$$

So,
$$u_1(y) = e^{i\sqrt{\lambda}}$$
 and $u_2(y) = e^{-i\sqrt{\lambda}}$.
Next, let $u_{\lambda}(y) = \frac{1}{2} \left[u_1(y) + u_2(y) \right]$.

Then,

$$u_{\lambda}(y) = \frac{1}{2} \left[\cos(\sqrt{\lambda} y) + i \sin(\sqrt{\lambda} y) + \cos(-\sqrt{\lambda} y) + i \sin(\sqrt{\lambda} y) \right]$$

$$u_{\lambda}(y) = \cos(\sqrt{\lambda} y)$$

Let
$$v_{\lambda}(y) = \frac{1}{2i} \left[\cos(\sqrt{\lambda} y) + i \sin(\sqrt{\lambda} y) - \cos(-\sqrt{\lambda} y) + i \sin(\sqrt{\lambda} y) \right]$$

 $v_{\lambda}(y) = \sin(\sqrt{\lambda} y)$

Now, calculating some derivatives, we have:

$$u'_{\lambda}(y) = -\sqrt{\lambda}\sin(\sqrt{\lambda} y)$$
$$v_{\lambda}(y) = \sqrt{\lambda}\cos(\sqrt{\lambda} y)$$

Now, consider $u_{\lambda}(x) = \cos(\sqrt{\lambda} x)$. Using u'(0) = 0, we have:

$$u'_{\lambda}(0) = -\sqrt{\lambda}\sin(\sqrt{\lambda} y)$$

$$u'_{\lambda}(0) = 0$$

$$0 = 0$$

Then, using $u'(L_2) = 0$, we have:

$$u'_{\lambda}(L_2) = -\sqrt{\lambda} \sin(\sqrt{\lambda} \ l_2)$$

$$0 = \sqrt{\lambda} \sin(\sqrt{\lambda} \ L_2)$$

$$0 = \sin(\sqrt{\lambda} \ L_2)$$

$$\sqrt{\lambda} \ L_1, \ n\pi, \text{ where } n \in \mathbb{N}$$

So, $\lambda = \left(\frac{n\pi}{L_2}\right)^2$, where $n \in \mathbb{N}$. These are the allowable eigenvalues.

Denote this result as $\lambda_{n,N}$. Finally, let $u_{n,N}(y) = \sin\left(\frac{n\pi y}{L_2}\right)$, where $n \in \mathbb{N}$.

10) The two sets of eigendata that were obtained from the two problems for the one-dimensional Laplacian are identical except for some notation changes here and there.