SECTION 6.5 EXERCISES

In Exercises 1 and 2, (a) complete the table for the polar equation, and (b) plot the corresponding points.

1. $r = 3 \cos 2\theta$

548

θ	0	$\pi/4$	$\pi/2$	$3\pi/4$	$ \pi $	$5\pi/4$	$3\pi/2$	$7\pi/4$	
r									-

2. $r = 2 \sin 3\theta$

θ	0	$\pi/6$	$\pi/3$	$\pi/2$	$2\pi/3$	$5\pi/6$	$ \pi$
r							

In Exercises 3-6, draw a graph of the rose curve. State the smallest θ -interval $(0 \le \theta \le k)$ that will produce a complete graph.

- 3. $r = 3 \sin 3\theta$
- **4.** $r = -3 \cos 2\theta$
- **5.** $r = 3 \cos 2\theta$
- $6. r = 3 \sin 5\theta$

Exercises 7 and 8 refer to the curves in the given figure.

[-4.7, 4.7] by [-3.1, 3.1](b)

7. The graphs of which equations are shown?

$$r_1 = 3\cos 6\theta$$
 $r_2 = 3\sin 8\theta$ $r_3 = 3|\cos 3\theta|$

8. Use trigonometric identities to explain which of these curves is the graph of $r = 6 \cos 2\theta \sin 2\theta$.

In Exercises 9–12, match the equation with its graph without using your graphing calculator.

[-4.7, 4.7] by [-4.1, 2.1]

(a)

- **9.** Does the graph of $r = 2 + 2 \sin \theta$ or $r = 2 2 \cos \theta$ appear in the figure? Explain.
- **10.** Does the graph of $r = 2 + 3 \cos \theta$ or $r = 2 3 \cos \theta$ appear in the figure? Explain.
- **11.** Is the graph in (a) the graph of $r = 2 2 \sin \theta$ or $r = 2 + 2 \cos \theta$? Explain.
- **12.** Is the graph in (d) the graph of $r = 2 + 1.5 \cos \theta$ or r = 2 1.5 $\sin \theta$? Explain.

In Exercises 13-20, use the polar symmetry tests to determine if the graph is symmetric about the x-axis, the y-axis, or the origin.

- **13.** $r = 3 + 3 \sin \theta$
- **14.** $r = 1 + 2 \cos \theta$
- **15.** $r = 4 3 \cos \theta$
- **16.** $r = 1 3 \sin \theta$
- **17.** $r = 5 \cos 2\theta$
- **18.** $r = 7 \sin 3\theta$
- **19.** $r = \frac{3}{1 + \sin \theta}$
- **20.** $r = \frac{2}{1 \cos \theta}$

In Exercises 21–24, identify the points for $0 \le \theta \le 2\pi$ where maximum r-values occur on the graph of the polar equation.

- **21.** $r = 2 + 3 \cos \theta$
- **22.** $r = -3 + 2 \sin \theta$
- **23.** $r = 3 \cos 3\theta$
- **24.** $r = 4 \sin 2\theta$

In Exercises 25–44, analyze the graph of the polar curve.

25. r = 3

26. r = -2

27. $\theta = \pi/3$

- **28.** $\theta = -\pi/4$
- **29.** $r = 2 \sin 3\theta$
- **30.** $r = -3 \cos 4\theta$
- **32.** $r = 6 5 \cos \theta$
- **31.** $r = 5 + 4 \sin \theta$
- **33.** $r = 4 + 4 \cos \theta$
- **34.** $r = 5 5 \sin \theta$
- **35.** $r = 5 + 2 \cos \theta$
- **36.** $r = 3 \sin \theta$
- **37.** $r = 2 + 5 \cos \theta$
- **38.** $r = 3 4 \sin \theta$
- **39.** $r = 1 \cos \theta$

40. $r = 2 + \sin \theta$

41. $r = 2\theta$

- **42.** $r = \theta/4$
- **43.** $r^2 = \sin 2\theta$, $0 \le \theta \le 2\pi$
- **44.** $r^2 = 9 \cos 2\theta$, $0 \le \theta \le 2\pi$

In Exercises 45-48, find the length of each petal of the polar curve.

- **45.** $r = 2 + 4 \sin 2\theta$
- **46.** $r = 3 5 \cos 2\theta$
- **47.** $r = 1 4 \cos 5\theta$
- **48.** $r = 3 + 4 \sin 5\theta$

In Exercises 49-52, select the two equations whose graphs are the same curve. Then, even though the graphs of the equations are identical, describe how the two paths are different as θ increases from 0 to 2π .

- **49.** $r_1 = 1 + 3 \sin \theta$, $r_2 = -1 + 3 \sin \theta$, $r_3 = 1 3 \sin \theta$
- **50.** $r_1 = 1 + 2\cos\theta$, $r_2 = -1 2\cos\theta$, $r_3 = -1 + 2\cos\theta$
- **51.** $r_1 = 1 + 2 \cos \theta$, $r_2 = 1 2 \cos \theta$, $r_3 = -1 2 \cos \theta$
- **52.** $r_1 = 2 + 2 \sin \theta$, $r_2 = -2 + 2 \sin \theta$, $r_3 = 2 2 \sin \theta$

n Exercises 53-56, (a) describe the graph of the polar equation, b) state any symmetry that the graph possesses, and (c) state its naximum r-value if it exists.

§3.
$$r = 2 \sin^2 2\theta + \sin 2\theta$$

54.
$$r = 3\cos 2\theta - \sin 3\theta$$

55.
$$r = 1 - 3 \cos 3\theta$$

56.
$$r = 1 + 3 \sin 3\theta$$

- 57. Group Activity Analyze the graphs of the polar equations $r = a \cos n\theta$ and $r = a \sin n\theta$ when n is an even integer.
- **§8. Revisiting Example 4** Use the polar symmetry tests to prove that the graph of the curve $r = 3 \sin 4\theta$ is symmetric about the y-axis and the origin.
- 59. Writing to Learn Revisiting Example 5 Confirm the range stated for the polar function $r = 3 - 3 \sin \theta$ of Example 5 by graphing $y = 3 - 3 \sin x$ for $0 \le x \le 2\pi$. Explain why this works.
- 60. Writing to Learn Revisiting Example 6 Confirm the range stated for the polar function $r = 2 + 3 \cos \theta$ of Example 6 by graphing $y = 2 + 3 \cos x$ for $0 \le x \le 2\pi$. Explain why this works.

Standardized Test Questions

- (i1. True or False A polar curve is always bounded. Justify your answer.
- **62.** True or False The graph of $r = 2 + \cos \theta$ is symmetric about the x-axis. Justify your answer.
- 1 Exercises 63-66, solve the problem without using a calculator.
- 63. Multiple Choice Which of the following gives the number of petals of the rose curve $r = 3 \cos 2\theta$?
 - (A) 1
- (D) 4 (\mathbf{E}) 6
- 64. Multiple Choice Which of the following describes the symmetry of the rose graph of $r = 3 \cos 2\theta$?
 - (A) only the x-axis
 - (B) only the y-axis
 - (C) only the origin
 - (D) the x-axis, the y-axis, the origin
 - (E) Not symmetric about the x-axis, the y-axis, or the origin
- 65. Multiple Choice Which of the following is a maximum r-value for $r = 2 - 3 \cos \theta$?
 - (B) 5 (A) 6
 - (C)3
- (**D**) 2 (**E**) 1
- 6. Multiple Choice Which of the following is the number of petals of the rose curve $r = 5 \sin 3\theta$?
 - (A) 1
- (B) 3
- (C) 6
- (D) 10 (E) 15

Explorations

- 67. Analyzing Rose Curves Consider the polar equation $r = a \cos n\theta$ for n, an odd integer.
 - (a) Prove that the graph is symmetric about the x-axis.
 - (b) Prove that the graph is not symmetric about the y-axis.
 - (c) Prove that the graph is not symmetric about the origin.
 - (d) Prove that the maximum r-value is |a|.
 - (e) Analyze the graph of this curve.
- 68. Analyzing Rose Curves Consider the polar equation $r = a \sin n\theta$ for n an odd integer.
 - (a) Prove that the graph is symmetric about the y-axis.
 - (b) Prove that the graph is not symmetric about the x-axis.
 - (c) Prove that the graph is not symmetric about the origin.
 - (d) Prove that the maximum r-value is |a|.
 - (e) Analyze the graph of this curve.
- **69. Extended Rose Curves** The graphs of $r_1 = 3 \sin((5/2)\theta)$ and $r_2 = 3 \sin ((7/2)\theta)$ may be called rose curves.
 - (a) Determine the smallest θ -interval that will produce a complete graph of r_1 ; of r_2 .
 - (b) How many petals does each graph have?

Extending the Ideas

In Exercises 70-72, graph each polar equation. Describe how they are related to each other.

70. (a)
$$r_1 = 3 \sin 3\theta$$

(b)
$$r_2 = 3 \sin 3 \left(\theta + \frac{\pi}{12} \right)$$

(c)
$$r_3 = 3 \sin 3 \left(\theta + \frac{\pi}{4}\right)$$

71. (a)
$$r_1 = 2 \sec \theta$$

(b)
$$r_2 = 2 \sec \left(\theta - \frac{\pi}{4}\right)$$

(c)
$$r_3 = 2 \sec \left(\theta - \frac{\pi}{3}\right)$$

72. (a)
$$r_1 = 2 - 2 \cos \theta$$

(b)
$$r_2 = r_1 \left(\theta + \frac{\pi}{4}\right)$$

(c)
$$r_3 = r_1 \left(\theta + \frac{\pi}{3}\right)$$

73. Writing to Learn Describe how the graphs of $r = f(\theta)$, $r = f(\theta + \alpha)$, and $r = f(\theta - \alpha)$ are related. Explain why you think this generalization is true.