

СОДЕРЖАНИЕ

		1	Вв	Введение					4			
			1.1	Цель к	урсовой	рабо	ты				5	
			1.2	Тема к	урсовой	рабо	ты:				5	
			1.3	Задани	Задание на курсавую работу							
		2	Ис	Исследование функции							7	
			2.1	Решени	е уравн	ения					7	
			2.2	Аналет	ический	і мето	од решения				7	
			2.3	Числов	ой мето	д реп	пения				9	
			2.4	Порядо	к иссле,	дован	ния функции				11	
				2.4.1	Найти о	бласт	гь определения. Выделить особь	ые точк	и (точ	КИ		
					разрыва	ı)					12	
				2.4.2	Точки п	epece	ечения с осями координат				12	
				2.4.3	Анализ	поис	ка вертикальной асимптоты				12	
				2.4.4	Анализ	выяв	вления чётности, нечётности фун	нкции			14	
				2.4.5	Построє	ение і	графика y=h(x)				16	
Подп. и дата	2.4.6 Производная первого и второго порядков с пом						омощь	ю инте	p-			
ш. и	поляционной формулы Ньютона										17	
Под				2.4.7	Получен	ние т	очек перегиба функции с помоп	цью ин	терпол	-Ri		
\vdash					ционной	і фор	мулы Ньютона				21	
дубл.				2.4.8	Итоги и	сслед	цования функции $h(x)$				24	
Инв. № дубл.		3	По	иск куб	ическо	го сп	ілайна				25	
\vdash	_		3.1	Нахожд	цение ко	эффе	ициентов кубического сплайна				25	
нв. Л			3.2	Вычисл	іение зн	ачені	ия функции в точке				28	
Взам. инв. №			3.3	Опреде	ление п	огрег	иности функции сплайна в точк	æ			29	
B3		4	20	поно оп	имо пт	пово	распределения неоднородн	IIV DO	evneor		33	
та		4	Ja	дача опт	MWAJID	пого	распределения неоднородн	ых ре	сурсов	•	JJ	
и да												
Подп. и дата							D	. 1				
I	И	Ізм	Лист	№ докум.	Подп.	Дата	Вариант N	1				
дл.	I	Разр	аб.	Авсюкевич (CB	7 1	Пояснительная записка	Лит.	Лист	Л	истов	
№ 110,	I	Трон	3.	Прокшин А	H		к Курсовой работе		2	<u> </u>	37	
Инв. № подл.	_		онтр.				по дисциплине "Изгарата катууга"					
И	7	y_{TB} .					"Информатика"					

5 Вывод		;
Список литературы		•
		ı
Ізм Лист № докум. Подп. Дата	Вариант N1	<u> </u>

Подп. и дата

Взам. инв. $\mathcal{N}_{\mathbf{i}}$ Инв. $\mathcal{N}_{\mathbf{i}}$ дубл.

Подп. и дата

Инв. $\mathcal{N}^{\underline{o}}$ подл.

1 ВВЕДЕНИЕ

В настоящее время при решении различных как прикладных инженерных, так и чисто исследовательских задач, возникает необходимость в использовании широкого круга алгоритмов из множества разделов математики. Между тем самостоятельная реализация многих алгоритмов на некотором языке программирования может быть сложна и избыточна. Вследствие этого широкое распространение получили математические пакеты и системы компьютерной алгебры, такие как: MatLab, Octave, SciLab, Mathematica, Reduce, Mapple, призванные избавить пользователя от рутинных процедур, предоставить удобный интерфейс взаимодействия с уже написанным программным кодом и быстрым созданием нового. К сожалению, некоторые из перечисленных выше математических пакетов, будучи коммерческими по природе, имеют пакетом SciLab и системой компьютерной алгебры Reduce.

Подп. и даз			
Инв. № дубл.			
Взам. инв. №			
Подп. и дата			
Инв. № подл.	Изм Лист № докум. Подп. Дата	Вариант N1	<i>Лист</i> 4

1.1 Цель курсовой работы

Ууметь применять персональный компьютер и математические пакеты прикладных программ в инженерной деятельности.

1.2 Тема курсовой работы:

Решение математических задач с использованием математического пакета «SciLab» и системы компьютерной алгебры «Reduce».

1.3 Задание на курсавую работу

- а) Даны функции $f(x)=\sqrt{3}(x)+cos(x)$ и $g(x)=cos(2x+(\frac{\pi}{3})-1)$
 - Решить уравнение f(x)=g(x)
 - Исследовать функцию h(x) = f(x) g(x) на промежутке $[0; \frac{5\pi}{6}]$
- б) Найти коэффициенты кубического сплайна, интерполирующего данные, представленные в векторах V_y и V_x . Построить на графике функцию f(x), полученную после нахождения коэффициентов кубического сплайна. Представить графическое изображение результатов интерполяции исходных данных различными методами с использованием встроенных функций.
- в) Решить задачу оптимального распределения неоднородных ресурсов. На предприятии постоянно возникают задачи определения оптимального плана производства продукции при наличии конкретных ресурсов (сырья, полуфабрикатов, оборудования, финансов, рабочей силы и др.)

Изм	Лист	№ докум.	Подп.	Дата	

Подп. и дата

Взам. инв. №

или проблемы оптимизации распределения неоднородных ресурсов на производстве.

Постановка задачи. Для изготовления п видов изделий N_1 , N_2 , ..., N_n необходимы ресурсы m видов: трудовые, материальные, финансовые и др. Известно требуемое количество отдельного i-го ресурса для изготовления каждого j-го изделия. Назовем эту величину нормой расхода $c_i j$. Пусть определено количество каждого вида ресурса, которым предприятие располагает в данный момент, - a_i . Известна прибыль i, получаемая предприятием от изготовления каждого j-го изделия. Требуется определить, какие изделия и в каком количестве должны производиться предприятием, чтобы прибыль была максимальной.

paint.jpg

Используемые	Изі	Наличие			
ресурсы $\mathbf{a_i}$	И1	И2	И ₃	И4	ресурсов, а _i
Трудовые	3	5	2	7	15
Материальные	4	3	3	5	9
Финансовые	5	6	4	8	30
Прибыль, Π_i	40	50	30	20	

Рисунок 1 – Исходные данные

Подп. и дата	
$H_{ m HB}$. № Ду 6 л.	
B3am. nhb. $\mathcal{N}^{\underline{o}}$	
Подп. и дата	
M нв. $\mathcal{N}^{\underline{o}}$ подл.	

Изм	Лист	№ докум.	Подп.	Дата

Исследование функции— задача, заключающаяся в определении основных параметров заданной функции.

Даны функции
$$f(x) = \sqrt{3}sin(x) + cos(x), g(x) = cos(2x + \frac{\pi}{3}) - 1$$

- а) Решить уравнение f(x) = g(x)
- б) Исследовать функцию h(x) = f(x) g(x) на промежутке $[0; \frac{5\pi}{6}]$

2.1 Решение уравнения

Уравнение – это равенство, содержащее одно или несколько неизвестных, при условии, что ставится задача нахождения тех значений неизвестных, для которых оно истинно.

Решить уравнение – это значит найти все значения неизвестных, при которых оно обращается в верное числовое равенство, или установить, что таких значений нет.

Обычно при использовании мат. пакетов решение нелинейных уравнений можно получить двумя путями — численно и аналитически. Поскольку в «SciLab» и «SMath studio» с помощью стандартных функций можно получить только численное решение, при нахождении аналитического воспользуемся системой компьютерной алгебры «Reduce».

2.2 Аналетический метод решения

Аналетический метод решения - это решение, представленное в виде формулы (и соответственно полученное тоже путём математических выкладок).

Для отыскания аналитического решения воспользуемся функцией solve из системы компьютерной алгебры «Reduce» где:

Изм	Лист	№ докум.	Подп.	Дата

Подп. и дата

инв. $\mathcal{N}^{\underline{o}}$

Взам. 1

Подп. и дата

Вариант N1

При попытке разрешить уравнение h(x) = 0 относительно x: solve(sqrt(3)sin(x)+cos(x)-cos(2x+pi/3)-1,x);получаем:

$$\left\{x = root_of\left(cos\left(\frac{6x_- + \pi}{3}\right) - cos(x_-) - sqrt(3)sin(x_-) - 1, x_-, tag_{-2}\right)\right\}$$

То есть решение данного уравнения не было найдено. Упростим данное уравнение, воспользовавшись двумя тригонометрическими тождествами:

$$sin(x+y) = sin(x)cos(y) + cos(x)sin(y)$$
(1)

$$\cos(2x) = 1 - 2\sin^2(x) \tag{2}$$

Выразим множетели функции f(x) таким образом:

$$\sqrt{3} = 2\cos\frac{\pi}{6},$$
$$1 = 2\sin\frac{\pi}{6}$$

Функцию $f(x) = \sqrt{3}sin(x) + cos(x)$ запишем так:

$$sin(x) \times 2cos(\frac{\pi}{6}) + cos(x) \times 2sin(\frac{\pi}{6})$$
$$2 \times (sin(x) \times cos(\frac{\pi}{6}) + cos(x) \times sin(\frac{\pi}{6}))$$
$$2sin(x + \frac{\pi}{6})$$

Функцию $g(x) = cos(2x + \frac{\pi}{3}) - 1$ запишим так:

$$\mathcal{X} - 2sin^2(x + \frac{\pi}{6}) - \mathcal{X}$$
$$2sin^2(x + \frac{\pi}{6})$$

И получим тривиальное уравнение, эквивалентное исходному

$$2(\sin(x + \frac{\pi}{6}) + \sin^2(x + \frac{\pi}{6})) = 0$$

	·			·
Изм	Лист	№ докум.	Подп.	Дата

Инв. № дубл. Взам. инв. №

Подп. и дата

$$x = \frac{\pi(arbint(4) + 5)}{6}, \qquad x = \frac{\pi(12arbint(4) - 1)}{6},$$
$$x = \frac{2\pi(arbint(3) + 2)}{3}, \qquad x = \frac{2\pi(3arbint(3) - 1)}{3}$$

где arbint (arbitrary integer) является произвольным целым числом. Запишем решение в более привычной форме:

$$x_{1} = \frac{5}{6} * \pi + 2n\pi, n \in Z$$

$$x_{2} = -\frac{1}{6} * \pi + 2n\pi, n \in Z$$

$$x_{3} = \frac{8}{6} * \pi + 2n\pi, n \in Z$$

$$x_{4} = -\frac{4}{6} * \pi + 2n\pi, n \in Z$$

Периодические решения для x_3 и x_4 совпадают, а периодическое решение для x_2 можно записать в виде:

$$x_2 = \frac{11}{6} * \pi + 2n\pi, n \in Z$$

Таким образов воспользовавшись математическим пакетом «Reduce» мы получили ответ Аналетическим способом. Но для более полн картины мы должны найти корни и Числовым методом используя пакет «SMath studio».

2.3 Числовой метод решения

Для отыскания численного решения воспользуемся стандартной функцией «SMath studio» solve.

					_
					ı
					ı
					ı
					ı
Изм	Лист	№ докум.	Подп.	Лата	l
10111	011101	и допуш.	ттоди.	μ	1

Инв. № дубл.

Взам. инв. №

Подп. и дата

Вариант N1

Рисунок 2 – График функции $f(x) = \sqrt{3}sin(x) + cos(x) - cos(2x + \frac{\pi}{3}) + 1$

Для того чтобы найти корни уравнения используем функции solve() с двумя аргументами (первый задаёт функцию, а второй переменную, по которой ведётся поиск корней), как и команда «Найти корни», ищет корни в заданном в настройках диапазоне (Сервис/Опции/Вычисление/Корни/Диапазон), по умолчанию — 20..20. Выбираем диапазон - 5...5.

В результате программа «SMath studio» выдала ответ:

$$solve(f(x); x) = \begin{cases} -3.6652\\ -0.5236\\ 2.618 \end{cases}$$

Теперь мы можем указать эти значения на графике 3 изображённом ниже. Таким образом видно, где находятся наши корни уравнения f(x) на графике в интервале (-5, 5).

Изм	Лист	№ докум.	Подп.	Дата	

Инв. № дубл.

инв. $\mathcal{N}^{\underline{o}}$

Взам. 1

Рисунок 3 – График функции f(x) с отмеченными корнями

2.4 Порядок исследования функции

Алгаритм исследованиия функции:

- а) Найти область определения. Выделить особые точки (точки разрыва)
- б) Проверить наличие вертикальных асимптот в точках разрыва и на границах области определения
- в) Найти точки пересечения с осями координат
- г) Установить, является ли функция чётной или нечётной
- д) Определить, является ли функция периодической или нет (только для тригонометрических функций)
- е) Найти точки экстремума и интервалы монотонности
- ж) Найти точки перегиба и интервалы выпуклости-вогнутости
- з) Найти наклонные асимптоты. Исследовать поведение на бесконечности
- и) Выбрать дополнительные точки и вычислить их координаты
- к) Построить график и асимптоты.

I	
$H_{ m HB}$. № ду 6π .	
Взам. инв. №	
Подп. и дата	
$И$ нв. $\mathcal{N}^{\underline{o}}$ подл.	

				·
Изм	Лист	№ докум.	Подп.	Дата

Данная функция имеет следующую область определения функции $h(x) = \sqrt{3}sin(x) + cos(x) - cos(2x + \frac{\pi}{3}) + 1$:

$$x \in R$$

2.4.2 Точки пересечения с осями координат

Для того чтобы найти точки пересечения с осями необходимо вместо переменых подставить вместо премныых значение «0».

Находим точки пересечения с осью $_{x}$. В разделе $^{2.3}$ уже были найдены эти значения.

$$O_x$$
: точки $A(-3.6652,0)$; $B(-0.5236,0)$; $C(2.618,0)$.

Находим точки пересечения с осью O_y . Для этого в программе «SMath studio» подставляем x=0 и получаем:

$$O_y$$
: точка $D(0, 1.5)$

Точки пересечения функции (h(x)) с осями O_x и O_y представлены на рисунке 4.

По заданию необходимо исследовать функцию h(x) на итервале $[o, \frac{5\pi}{6}] \Rightarrow$ O_x равная C(2.618,0) и точка D(0,1.5) с осью O_y . Данные точки представлены в соответстсвии с рисунком 5.

2.4.3 Анализ поиска вертикальной асимптоты

По условию задания граничными точками области определения являются $(0; \frac{5\pi}{6})$

-				i I	
Изм	Лист	№ докум.	Подп.	Дата	

Вариант N1

Лист

12

Подп. и дата

№ | Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

Рисунок 4 – График функции h(x) с точками пересечения осей O_x и O_y

На границах области определения функция имеет вертикальные асимптоты, если односторонние пределы функции в этих граничных точках бесконечны.

Поскольку математический пакет "Scilab" не имеет возможности посчитать пределы, данную операцию пройдётся сделать частично в ручную.

Рассчитаем вертикальную асимптоту при x=0, точка является началом промежутка исследования функции h(x):

$$\lim_{x \to 0-0} \sqrt{3} sin(x) + cos(x) - cos(2x + \frac{\pi}{3}) + 1 = \lim_{x \to 0-0} 1.5 \neq \pm \infty$$

Из этого следует что по краю исследуемого промежутка вертикальных асимптот не наблюдается. В момент расчётов в функцию h(x) было подставленною значение x в математический пакет "Scilab".

Листинг программы:

$$-->x=0$$

Подп. и дата

Инв. № дубл.

инв. $N^{\underline{\varrho}}$

Взам. 1

Подп. и дата

Инв. № подл.

0.

$$-- > \sqrt{3} * sin(x) + cos(x) - cos((2*x) + ((pi)/3)) + 1$$

Изм	Лист	№ докум.	Подп.	\mathcal{L} ата
10111	v 11101	и допуш.	ттодп.	Δ^{a_1a}

1.5

Рассчитаем вертикальную асимптоту при $x=\frac{5\pi}{6}$, точка является концом промежутка исследования функции h(x):

$$\lim_{x \to \frac{5\pi}{6} + 0} \sqrt{3} sin(x) + cos(x) - cos(2x + \frac{\pi}{3}) + 1 = \lim_{x \to \frac{5\pi}{6} + 0} -2,22 \neq \pm \infty$$

Из этого следует что по краю исследуемого промежутка вертикальных асимптот не наблюдается. В момент расчётов в функцию h(x) было подставленною значение x в математический пакет "Scilab".

Листинг программы:

$$--> x = (5*(pi))/6$$

 $x = //$
 2.61

Инв. № дубл.

Взам. инв. №

$$--> q = sqrt(3) * sin(x) + cos(x) - cos((2*x) + ((pi)/3)) + 1 q = -2.22$$

2.4.4 Анализ выявления чётности, нечётности функции

Из этого следует что при решении следует:

$$\begin{cases} x = -1 \\ h(-x) = \sqrt{3}sin(x) + cos(x) - cos(2x + \frac{\pi}{3}) + 1 = -0.0349609 \end{cases}$$

Изм.	Лист	$\mathcal{N}_{\underline{o}}$ докум.	Подп.	Дата

Вариант N1

```
\begin{cases} x = 1 \\ h(x) = ((\sqrt{3}) * (sin(x)) + (cos(x))) - ((cos(2 * x) + (\pi/3)) - 1) = -0.0349609 \end{cases}
       h(-x) = h(-x) \iff -0.0349609 = -0.0349609 \Longrightarrow Функция чётная.
        Из этого следует что функция является симметричной. В момент расчё-
 тов в функцию h(x) было подставленною значение x в математический пакет
 "Scilab"и использован следующий листинг:
        --> x1 = -1
 x1 =
 --> \neq 1 = + (3) + \sin(x) + \cos(x) - \cos((2 + x) + ((pi)/3)) + 1
 q1 =
        column 1 to 6
        - 0.0349609 - 0.0448128 - 0.0849485 - 0.1727211 - 0.3132469 - 0.4599841
        column 7 to 12
        - 0.4817829 - 0.1877381 0.5573472 1.6851065 2.8831929 3.7428516
        column 13 to 16
        3.9959654 3.6480703 2.9206719 2.0889372
        ->x2=1
 x2 =
 ->q2=sqrt(3)*sin(x)+cos(x)-cos((2*x) + ((pi)/3)) + 1
                                                                                    Лист
                                                Вариант N1
                                                                                      15
Изм Лист
         № докум.
                    Подп.
                          Дата
```

Инв. № дубл.

инв.

Взам.

Подп. и дата

Инв. № подл.

q2 =column 1 to 6 - 0.0349609 - 0.0448128 - 0.0849485 - 0.1727211 - 0.3132469 - 0.4599841 column 7 to 12 - 0.4817829 - 0.1877381 0.5573472 1.6851065 2.8831929 3.7428516 column 13 to 16 3.9959654 3.6480703 2.9206719 2.0889372->if (q1 == q2) then ->disp ("Чётная") Чётная ->elseif (q1 == (q2)*(-1)) then ->disp ("Не чётная! ") ->else ->disp ("В общем виде") ->end Построение графика у=h(x) 2.4.5

Поскольку для упрощения поиска производных первого и второго порядков, значение которых максимально приближено к нулю, проще ориентироваться уже по готовому графику функции h(x), построение следует провести на данном

этапе.

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

№ докум. Изм. Лист Подп. Дата

Вариант N1

Пример листинга построения простейшего графика в математическом пакете "Scilab":

```
->function f = myquadratic (x)
```

- -> f = x+1
- ->endfunction

```
->xdata = linspace (0,3,200);
```

- ->ydata = myquadratic (xdata);
- ->plot (xdata , ydata)

Результат построения графика представлен в соотвецтвии с рисунком 5.

2.4.6 Производная первого и второго порядков с помощью интерполяционной формулы Ньютона.

Данный способ заключается в том, что функцию y(x), заданную в равно стоящих точках x_i отрезка [a,b] с помощью значений $y_1=f(x_i)$, приближенно заменяют интерполяционным полиномом Ньютона, построенном для системы узлов $x_0,x_1,....,x_k (k\leqslant n)$ и вычисляют производные y'=f'(x),y''=f''(x).

Изм.	Лист	$\mathcal{N}_{\underline{o}}$ докум.	Подп.	Дата
	Изм	Изм Лист	Изм Лист № докум.	Изм Лист № докум. Подп.

Вариант N1

Лист

17

Подп. и дата

Инв. № дубл.

Для выявления точки экстремума производная исследуемой функции должна быть равна нулю h(x)=0. При расчётах на исследуемый области $x=(0;\frac{5\pi}{6},$ ориентируясь по рисунку №2 видим что количество таких точек равно единице, поскольку поскольку функция в данном случае изгибается один раз. Возьмём за первичную точку приближения, x=1. В следствии чего получим h'(x)=0.2873079. Поскольку приближение к нулю в десятых долях является достаточно большим, возьмём за точку приближения x=1,04. В следствии получим h'(x)=0.0475615. Приближение к нулю в погрешности сотых долей является малым, но не достаточно. возьмём за точку приближения x=1,048. В следствии получим h'(x)=-0.0004526. Для максимального приближения к нулю используем x=1.047921. В следствии получим h'(x)=0.0000215. Данное приближение вполне можно считать допустимым.

Листин проводимых расчётов в математическом пакете "Scilab": -->h=0.1;

Изм	Лист	№ докум.	Подп.	Дата	

Подп. и дата

Взам. инв. №

Подп. и дата

$$-->$$
Y=(dy(1)-dy2(1)/2+dy3(1)/3)/h Y =

0.0000215

Поскольку точка экстремума являться h(x)=0, то в случае когда h'(x)>0 функция возрастает, а в случае h'(x)<0 функция убывает. Из расчётов было выявлено, что при x=1,048 функция h'(x)<0, следственно функция убывает после точки экстремума, на исследуемом промежутке. При x=1 функция h'(x)>0 больше нуля, следственно она возрастет. Таким образом в промежутке [1,1.47921] находится точка max функции h(x).

Представим данные на рисунке 6 в графическом виде :

Рисунок 6 – График точки экстремума

2.4.7 Получение точек перегиба функции с помощью интерполяционной формулы Ньютона

Получение точек перегиба в данном случае отличаться лишь тем, что при проведении данной операции в команду вставляться значение функции решённой производной первого порядка аналитическим способом. В предоставленных расчётах взята в ручную $h'(x) = -\sin(x) + 2 * \sin(2x + \frac{\pi}{3}) + \sqrt(3) * \cos(x)$.

Из рисунка $\frac{5}{6}$ следует что на исследуемом промежутке $x=(0;\frac{5\pi}{6})$ имеются две точи перегиба. Первая точка перегиба в районе значений x=(0;0,2), вторая

Изм	Лист	№ докум.	Подп.	Дата	

Взам. инв. №

Подп. и дата

в районе значений x = (1; 1,5)

Рассчитывая вторую точку приблизим x=0,1. Из этого значение производной функции h'(x)=0.1123053. Поскольку погрешность данной производной в отличию нуля имеет десятичную долю, то данная точка не может рассматриваться как точка перегиба. Рассчитывая вторую точку приблизим x=0,1111. Из этого значение производной функции h'(x)=0.0098675. Поскольку в данной точке низкая доля, возьмём эту точку как точку перегиба. Рассчитаем вторую точку перегиба, приближая значения функции то точки x=1,98. Из этого значение производной функции h'(x)=-0.0362294. Примем эту точку за приближенную к нулю. В итоге получаем две точки перегиба $x_1=0.1111x_2=1.98$. Поскольку функция возрастет на точке x_1 и убывает на точке x_2 то в промежуток этих точек выпуклый.

Листинг полных расчётов в математическом пакете "Scilab":

$$-1->h=0.1;$$

$$-1->x=0.1:h:(5*(pi)/6);$$

$$-1 > y = -\sin(x) + 2 \sin((2x) + ((pi)/3)) + \operatorname{sqrt}(3) \cos(x);$$

$$-1$$
->dy=diff(y);

$$-1->dy2=diff(y,2);$$

$$-1->dy3=diff(y,3);$$

$$\text{-1->}Y{=}(\mathrm{d}y(1)\text{-d}y2(1)/2{+}\mathrm{d}y3(1)/3)/h$$

$$Y =$$

Подп. и дата

Инв. № дубл.

Взам. инв. №

0.1123053

$$-1->h=0.1$$
;

$$-1->x=0.1111:h:(5*(pi)/6);$$

Изм	Лист	№ докум.	Подп.	Дата

2.4.8 Итоги исследования функции h(x)

Итоги исследования функции h(x) в интервале $[0, \frac{5\pi}{6}]$:

- a) OO Φ : $x \in R$;
- б) функция h(x) переодична;
- в) функция h(x) чётная;
- г) Монотонность:
 - возрастае на промежутке [0, 1.047921];
 - убывает на промежутке $[1.047921, \frac{5\pi}{6}]$
- д) максимум h(x) = 1.047921;
- е) функция h(x) в интервале [0.1111, 1.98];
- ж) корень функции h(x) равен x = 2.618.

Подп. и дата	
$H_{ m HB}$. № Ду 6 л.	
B зам. инв. $\mathcal{N}^{\underline{o}}$	
Подп. и дата	
подл.	

Изм	Лист	№ докум.	Подп.	Дата

Найти коэффициенты кубического сплайна, интерполирующего данные, представленные в векторах:

- $-V_x = [0, 0.25, 1.25, 2.125, 3.25];$
- $-V_y = [2, 1.6, 2.325, 2.017, 2.833].$

Построить на графике функцию f(x), полученную после нахождения коэффициентов кубического сплайна. Представить графическое изображение результатов интерполяции исходных данных различными методами с использованием встроенных функций splin(x,y,"natural"), splin(x,y,"clamped"), $splin(x,y,"not_a_knot")$, splin(x,y,"fast"), splin(x,y,"monotone"), и interp(xx,x,y,d)

Оценить погрешность интерполяции в точке ${\rm x}=2.2.$ Вычислить значение функции в точке ${\rm x}=1.2.$

3.1 Нахождение коэффициентов кубического сплайна

Найдем уравнение сплайна проходящего через четыре точки (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , (x_4, y_4) и (x_5, y_5) . Для того чтобы потенциальная энергия изогнутой металлической линейки (сплайна) принимала минимальное значение, производная четвертого порядка должна быть равна нулю, значит мы можем представить сплайн полиномом третьей степени на каждом отрезк $[x_i, x_{i+1}]$.

$$F_i(x) = A_{i0} + A_{i1}x + A_{i2}x^2 + A_{i3}x^3$$
, где $x \in [x_i, x_{i+1}]$

Найдем коэффициэнты A_{ij} исходя и того, что в точках склейки функция не имеет разрывов, изломов и изгиб ее слева и справа совпадает. На каждом из отрезков $[x_i, x_{i+1}]$ график $F_i(x)$ проходит через точки y_i, y_{i+1} или $F_i(x_i) = y_i, F_i(x_{i+1}) = y_{i+1}$. Записывая равенства через коэффициэнты A_{ij} :

$$f_i = A_{i0} + A_{i1}x_i + A_{i2}x_i^2 + A_{i3}x_i^3.$$

Изм	Лист	№ докум.	Подп.	Дата

Вариант N1

Лист

25

Полп. и дата

Взам. инв. № | Инв. № дубл.

бодп. и дата

 $\hat{\mathcal{N}}^{\underline{o}}$ ПОДЛ.

В результате получаем 8 уравнений.

Производные первого порядка во внутренних точках x_i должны совпадать, т.е. производная слева $F_i'(x_i) = A_{i1} + 2A_{i2}x_i + 3A_{i3}x_i^2$ должна быть равна производной справа $F_{i+1}'(x_i) = A_{(i+1)1} + 2A_{(i+1)2}x_i + 3A_{(i+1)3}x_i^2$. Физический смысл равенства производных состоит в том, что в точках склейки у нас нет излома сплайна. В результате получаем ещё 3 уравнения.

Производные второго порядка в точках склейки x_i должны совпадать, вторая производная слева $F_i(x_i) = 2A_{i2} + 6A_{i3}x_i$ должна быть равна второй производной справа $F_{i+1}(x_i) = 2A_{(i+1)2} + 6A_{(i+1)3}x_i$. Физический смысл равенства вторых производных в том, что в точках склейки изгиб сплайна справа и слева должен быть одинаковым. В результате получаем ещё 3 уравнения.

Еще два уравнения получаем из граничных условий в крайних точках x_1, x_n . В условии не котируеться закреплены ли наши крайнии точки, поэтому примем, что концы сплайна оставлены свободными в крайних точках (x_1, y_1) , (x_n, y_n) В этом случае изгиба в крайних точках нет и, значит, вторая производная в этих точках равна 0.

$$F(x_1) = 0$$

$$F(x_n) = 0$$

Тем самым ещё добовляеться два уравнения. В сумме получаем 16 уравнений, характерезующий данный сплайн, для определения коэффициентов A_{ij} все урванения составим в одну систему и решим с помощью матриц.

Для решения данной системой воспользуемся математическим пакетом «SMath studio». На риссунке 7 представлена уравнения для нахождения коэффициентов сплайна.

Решая уравнение, получаем значение для коэффициэнтов A_{ij} , ??.

Вариант N1

[1	х1	x1 2	x1 3	0	0	0	0	0	0	0	0	0	0	0	0	
	1	x2	x2 2	x2 3	0	0	0	0	0	0	0	0	0	0	0	0	
	0	1	2 · x2	3 · x2 2	0	-1	-2·x2	-3·x2 ²	0	0	0	0	0	0	0	0	
	0	0	2	6 · x2	0	0	-2	$-6 \cdot x2$	0	0	0	0	0	0	0	0	
	0	0	0	0	1	х2	x2 2	x2 3	0	0	0	0	0	0	0	0	
	0	0	0	0	1	хЗ	х3 ²	ж3	0	0	0	0	0	0	0	0	
	0	0	0	0	0	1	2 · x3	3·x3 ²	0	-1	-2·x3	$-3 \cdot x3^2$	0	0	0	0	
A :=	0	0	0	0	0	0	2	6 · x3	0	0	-2	-6·x3	0	0	0	0	
	0	0	0	0	0	0	0	0	1	хЗ	x3 2	х3 3	0	0	0	0	
	0	0	0	0	0	0	0	0	1	х4	x4 ²	x4 3	0	0	0	0	
	0	0	0	0	0	0	0	0	0	1	2 · x4	3·x4 ²	0	-1	$-2 \cdot x4$	-3·x4 ²	
	0	0	0	0	0	0	0	0	0	0	2	6 · x4	0	0	-2	$-6 \cdot x4$	
	0	0	0	0	0	0	0	0	0	0	0	0	1	x4	x4 ²	x4 3	
	0	0	0	0	0	0	0	0	0	0	0	0	1	х5	x5 ²	x5 3	
	0	0	2	6 · x1	0	0	0	0	0	0	0	0	0	0	0	0	
Į	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	6 · x5	

0 0 f2 f3 0 0 f3 f4 0 0 0 f4 f5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9035 0 356 059 1748 085 924 1847 9227 9929 968 3808 7579 803 3775
---	---

Рисунок 7 – Решение матричного уравнения

Изм	Лист	№ докум.	Подп.	Дата	

Окончательно, уравнение для сплайна получаем в виде

Подп. и дата

инв. $N^{\underline{o}}$

Взам.

Подп. и дата

$$F(x) = \begin{cases} F_1(x) = 4.856 \times x^3 + 0 \times x^2 - 1.9035 \times x + 2 \text{ где } x \in [0, 0.25], \\ F_2(x) = -1.924 \times x^3 + 5.085 \times x^2 - 3.1748 \times x + 2.1059 \text{ где } x \in [0.25, 1.25], \\ F_3(x) = 1.2968 \times x^3 - 6.9929 \times x^2 + 11.9227 \times x - 4.1847 \text{ где } x \in [1.25, 2.125], \\ F_4(x) = -0.3775 \times x^3 + 3.6803 \times x^2 - 10.7579 \times x + 11.8808 \text{ где } x \in [2.125, 2.125], \end{cases}$$

По данным уравнениям строим гафик, представленный в соответствии с рисунком 8.

3.2 Вычисление значения функции в точке

Дальше по заданию необходимо вычислить значение функции при x=1.2. Для решения задачи необходимо выбрать функцию, в которой находится данная

					D N11	Лист
Изм	Лист	№ докум.	Подп.	Дата	Вариант N1	28

Рисунок 8 – График функции кубического сплайна

точка и вместо x подставить её значение. Для решения воспользуемся программой «SMath studio». Решение представлено в соответствии с рисунком 9.

$$x := 1, 2$$

$$F3(x) := -1,924 \cdot x^{3} + 5,085 \cdot x^{2} - 3,1748 \cdot x + 2,1059$$

$$F3(x) = 2,293868$$

Рисунок 9 — Вычисление функции в точке x=1.2

Полученаа точка представлена в соответствии с рисунком 10.

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

3.3 Определение погрешности функции сплайна в точке

Для орпеделения погрешности в точке x=2.2 исползуем формулу 3.

$$\left| S_3^{(r)}(x) - f^{(r)}(x) \right| \leqslant R_r, r = 0, 1, 2, 3...$$
 (4)

ľ							Лист
						Вариант N1	29
į	Изм	Лист	№ докум.	Подп.	Дата		29

Рисунок 10 – Графичекое расположение точки x=1.2 на графике функции

Если функция достаточно гладкая, то:

$$\left| S_3^{(r)}(x) - f^{(r)}(x) \right| \leqslant \frac{1}{384} \times \bar{h}^4 \left| f^{IV}(x) \right|$$
 (5)

где

Инв. № дубл.

Взам. инв. №

 $\bar{h} = |x_{\text{точка, в которй вычисляется погрешность}} - x_{\text{ближайшее i}}|.$

Для определения погрешности составим выражение полинома Ньютона:

$$P(x) = A_0 + A_1(x - x_0) + A_2(x - x_0)(x - x_1) + A_3(x - x_0)(x - x_1)(x - x_2) + A_4(x - x_0)(x - x_1)(x - x_2)(x - x_3)$$

Неизвестные коэффициенты найдём, используя метод разделённых разностей.

$$A_0 = f(x_0); (6)$$

$$A_1 = \frac{f(x_1)}{x_1 - x_0} + \frac{f(x_0)}{x_0 - x_1};\tag{7}$$

$$A_2 = \frac{f(x_2)}{(x_2 - x_1)(x_2 - x_0)} + \frac{f(x_1)}{(x_1 - x_2)(x_1 - x_0)} + \frac{f(x_0)}{(x_0 - x_2)(x_0 - x_1)};$$
(8)

Изм	Лист	№ докум.	Подп.	Дата

Вариант N1

$$A_{3} = \frac{f(x_{3})}{(x_{3} - x_{2})(x_{3} - x_{1})(x_{3} - x_{0})} + \frac{f(x_{2})}{(x_{2} - x_{1})(x_{2} - x_{0})(x_{2} - x_{3})} + \frac{f(x_{1})}{(x_{1} - x_{2})(x_{1} - x_{0})(x_{1} - x_{3})} + \frac{f(x_{0})}{(x_{0} - x_{2})(x_{0} - x_{1})(x_{0} - x_{3})};$$

$$A_{4} = \frac{f(x_{4})}{(x_{4} - x_{3})(x_{4} - x_{2})(x_{4} - x_{1})(x_{4} - x_{0})} + \frac{f(x_{3})}{(x_{3} - x_{4})(x_{3} - x_{2})(x_{3} - x_{1})(x_{3} - x_{0})} + \frac{f(x_{2})}{(x_{2} - x_{4})(x_{2} - x_{3})(x_{2} - x_{1})(x_{2} - x_{0})} + \frac{f(x_{1})}{(x_{1} - x_{4})(x_{1} - x_{3})(x_{1} - x_{2})(x_{1} - x_{0})} + \frac{f(x_{0})}{(x_{0} - x_{4})(x_{0} - x_{3})(x_{0} - x_{2})(x_{0} - x_{1})}.$$
Формулы для нахождения коэффициентов полинома Ньютона, приведёнше рассчитаем в математическом пакете «SMath studio». Результаты распредставлены в соответствии с рисунком 11.

Формулы для нахождения коэффициентов полинома Ньютона, приведённые выше рассчитаем в математическом пакете «SMath studio». Результаты расчётов представлены в соответствии с рисунком 11.

$$A0 = 2$$
 $A1 = -1, 6$
 $A2 = 1,85992$
 $A3 = -1,1453848739$
 $A4 = 0,7095723348$

Рисунок 11 – Результат расчётов коэффициентов полинома Ньютона

Подставляя полученные коэффициенты в формулу полиномв Ньютона и упростив благодаря программе «Махіта», получаем следующее выражение:

Сплайн является достатаочно гладкой функцией, поэтому для нахождения погрешности используем формулу 4.

Изм	Лист	№ докум.	Подп.	Дата	

Подп. и дата

Взам. инв. №

Подп. и дата

Вариант N1

Находим \bar{h} по формуле:

 $\bar{h} = |x_{\text{точка, в которй вычисляется погрешность}} - x_{\text{ближайшее i}}|.$

Подставляем установленные данные и получаем:

$$\bar{h} = |2.2 - 2.125| = 0.075.$$

Используя программу «Reduce Algebra», находим производную четвёртой степени:

 $\left| f^{IV}(x) \right| = \frac{21287169}{1250000}. \tag{12}$

Подставляем полученные данные в формулу 4 и определяем погрешность с помощью математического пакета «SMath studio». Расчёт представлен в соответствии с рисунком 12

$$R := \frac{0,075^{4} \cdot \frac{21287169}{1250000}}{384}$$

$$R = 0.000001403206941$$

Рисунок 12 – Расчёт погрешности

В результате получается:

$$\left| S_3^{(r)}(x) - f^{(r)}(x) \right| \le 1.0555 \times 10^{-6}.$$
 (13)

Расчитав погрешность, найдём значение функции в точке x=1.2 более точнее, чем в разделе 3.2 Курсовой. Для нахождения значения функции в точке x=1.2 используем функцию 10, получаем:

$$P(1.2) = 2.303$$

Изм	Лист	№ докум.	Подп.	Дата
			, ,	

Инв. № дубл.

Взам. инв. №

Вариант N1

Требуется решить следующую задачу оптимального распределения неоднородных ресурсов.

Для изготовления п видов изделий $N_1, N_2, ..., N_n$ неходимы ресурсы m видов: трудовые, материальные, финансовые и др. Известно требуемое количество отдельного i-го ресурса для изготовления каждого j-го изделия. Назовем эту величину нормой расхода c_{ij} . Пусть определено количество каждого вида ресурса, которым предприятие располагает в данный момент, — a_i . Известна прибыль i, получаемаяпредприятием от изготовления каждого j-го изделия. Требуетсяопределить, какие изделия и в каком количестве должны произво-диться предприятием, чтобы прибыль была максимальной.

Исходные данные представлены в соответствии с рисункои 13.

paint.jpg

Используемые	Изі	Наличие			
ресурсы $\mathbf{a_i}$	И1		И2 И3 И4		ресурсов, а
Трудовые	3	5	2	7	15
Материальные	4	3	3	5	9
Финансовые	5	6	4	8	30
Прибыль, Π_i	40	50	30	20	

Рисунок 13 – Исходные данные

Так как данная задача является целочисленной задачей линейного программирования (ILP), стандартная функция мат. пакета «SciLab» . Для решения задачи предназначена функция linpro.

где р – массив (вектор-столбец) коэффициентов при неизвестных целевой функции, длина вектора n совпадает с количеством неизвестных x;

C – матрица при неизвестных из левой части системы ограничений, количество строк матрицы равно количеству ограничений, а количество столбцов совпадает

Изм	Лист	№ докум.	Подп.	Дата	

Взам. инв. №

Подп. и дата

Вариант N1

```
b – массив (вектор-столбец), содержит свободные члены системы ограничений;
сі - массив (вектор-столбец) содержит нижнюю границу переменных;
сѕ - массив (вектор-столбец) содержит верхнюю границу переменных, если тако-
вая отсутствует, указывают [].
      Функция linpro возвращает массив неизвестных x, минимальное значение
функции f и массив множителей Лагранжа lagr.
      Листинг кода:
->C=[3,5,2,7;4,3,3,5;5,6,4,8;]
C =
3. 5. 2. 7.
4. 3. 3. 5.
5. 6. 4. 8.
-> b=[15;9;30;]
b =
15.
9.
30.
->ci=[0;0;0;0;]
ci =
0.
0.
0.
0.
->cs=[]
->p=[40;50;30;20]
p =
40.
50.
30.
20.
->[x,lagr,f]=linpro(-p,C,b,ci,cs)
f = -150.
                                                                               Лист
```

Вариант N1

34

с количеством неизвестных;

Взам. инв. №

Подп.

Инв. № подл.

№ докум.

Подп.

Дата

Изм. Лист

			$\mathbf{x} =$						
		0.							
		3.							
		0.							
		0.							
		е.) мох						ьную прибыл бъёме выпуск	
		,	Ü				_	·	
дата									
И									
Подп.									
л.									
<u>в</u> дуб.									
Инв. № дубл.									
инв.									
Взам. инв. №									
В									
цата									
Подп. и дата									
Под									
ای	\dashv								
Инв. № подл.			1						
HB. M	}					B_{ϵ}	ариант N	<i>T</i> 1	Лист
\overline{N}	V	Изм Лист	№ докум.	Подп. Д	ата		•		35

5 ВЫВОД

Были изучены встроенные функции математического пакета «SciLab», операторы системы компьютерной алгебры «Reduce», проамма «Maxima», которая позволяет упрощать выражения и приложение «SMath studio». Полученные знания были применены при решении задач:

- а) нашли корни функции аналитическим и численным способом;
- б) нахождения нулей функции на заданном участке;
- в) аналитического исследования функции в заданном промежутке;
- г) интерполяции кубическими сплайнами и нахождения погрешности в заданной точке неизвестной функции;
- д) целочисленного линейного программирования.

Подп. и дата	
Инв. № дубл.	
Взам. инв. №	
Подп. и дата	
Инв. № подл.	

СПИСОК ЛИТЕРАТУРЫ

- 1. Ю.С. Завьялов. Методы сплайн-функций. М.Наука, 1980.
- 2. Калиткин. Численные методы. М.,Мир, 1980
- 3. Разделённая разность. 2015. url:https://ru.wikipedia.org/wiki/

Подп. и дата					
Инв. № дубл.					
Взам. инв. №					
Подп. и дата					
Инв. № подл.	Изм Лист № ,	докум. Подп. Дг	ата	Вариант N1	Лист 37