

Mathematics Specialist

Test 4 2019

Integration Techniques & Applications of Integral Calculus

NAME: SOLUTIONS

TEACHER: Mrs Da Cruz

Resource Free Section

25 marks 25 minutes

Question 1

[3, 2, 5, 4, 5, 2, 4 = 25 marks]

(a)
$$\int_{-\pi}^{\pi} |\sin x| dx$$

(Hint: sketch the function first.)

$$\int_{-\pi}^{\pi} |\sin x| \, dx = 2 \int_{0}^{\pi} \sin(x) \, dx$$

$$= 2 \left[-\cos(x) \right]_{0}^{\pi}$$

$$= 2 \left[-\cos(x) \right]$$

$$= 2 \left[-\sin(x) - \cos(x) \right]$$

$$= 2 \left[-\cos(x) - \cos(x) - \cos(x) \right]$$

$$= 2 \left[-\cos(x) - \cos(x) - \cos(x) \right]$$

$$= 2 \left[-\cos(x) - \cos(x) - \cos(x) \right]$$

$$= 2 \left[-\cos(x) - \cos(x) - \cos(x) - \cos(x) \right]$$

$$= 2 \left[-\cos(x) - \cos(x) - \cos(x) - \cos(x) - \cos(x) \right]$$

$$= 2 \left[-\cos(x) - \cos(x) - \cos(x) - \cos(x) - \cos(x) \right]$$

$$= 2 \left[-\cos(x) - \cos(x) - \cos(x) - \cos(x) - \cos(x) - \cos(x) - \cos(x) \right]$$

$$= 2 \left[-\cos(x) - \cos(x) - \cos($$

$$= xe^{x} - e^{x} + \frac{x^{2}}{2} + c$$

$$\sqrt{ }$$

(c) Use the substitution $u = \ln x$ to determine $\int \frac{\sqrt{\ln x} + \ln \sqrt{x}}{x} dx$. $u = \ln x \implies x = e^{u}$ $\sqrt{\frac{\ln x}{x}} = \frac{1}{2} \ln x = \frac{u}{2}$.

$$\frac{du}{dx} = \frac{1}{x}$$

$$\int \frac{\sqrt{\ln x} + \ln \sqrt{x}}{x} dx = \int \sqrt{u} + \ln \sqrt{e^{u}} du$$

$$= \int u^{1/2} + \ln e^{u/2} du$$

$$= \int u^{1/2} + \frac{u}{2} du$$

$$= \frac{2}{3} u^{3/2} + \frac{u^{2}}{4} + C$$

$$= \frac{2}{3} [\ln x]^{\frac{3}{2}} + [\ln x]^{2} + C$$

(c)
$$\int \sin^3 2t \, dt = \int \sin 2t \cdot \sin^2 2t \, dt$$

$$= \int \sin 2t \left[1 - \cos^2 2t \right] \, dt$$

$$= \int \sin 2t - \sin 2t \cos^2 2t \, dt$$

$$= -\frac{\cos 2t}{2} + \frac{\cos^3 2t}{6\sqrt{2}} + c$$

(d) Using partial fractions, find
$$\int \frac{1}{2x^2-x-6} dx$$

$$= \int \frac{1}{(2x+3)(x-2)} dx$$

$$\frac{1}{(2x+3)(x-2)} = \frac{A}{2x+3} + \frac{B}{x-2}$$

$$\therefore 1 = A(x-2) + B(2x+3)$$

$$x=2: \qquad 1 = B(7)$$

$$B = \frac{1}{4} \checkmark$$

$$x = -\frac{3}{2}: \qquad 1 = A(-\frac{3}{2}-2) + O$$

$$1 = A(-\frac{7}{2})$$

$$A = -\frac{Q}{7} \checkmark$$

$$\int \frac{1}{(2x+3)(x-2)} dx = \int \frac{-2}{7(2x+3)} + \frac{1}{7(x-2)} dx \checkmark$$

$$= \frac{1}{7} \int \frac{1}{x-2} - \frac{2}{2x+3} dx$$

$$= \frac{1}{7} \left[\ln|x-2| - \ln|2x+3| \right] + C \checkmark$$

$$= \frac{1}{7} \ln\left|\frac{x-2}{2x+3}\right| + C$$

[5]

(e)
$$\int \frac{e^{2x}}{3+2e^{2x}} dx = \frac{1}{4} \int \frac{4e^{2x}}{3+2e^{2x}} dx$$
 [2]
= $\frac{1}{4} \ln (3+2e^{2x}) + c$

(f)
$$\int_{0}^{1} \frac{1-x}{x+1} dx$$
 (Hint: You could use $u = x + 1$)

 $u = x + 1 \implies x = u - 1$
 $du = 1$
 $x = 1, u = 2$
 $x = 0, u = 1$

$$du = \int_{1}^{2} \frac{1-(u-1)}{u} du$$
 $u = \int_{1}^{2} \frac{2-u}{u} du$
 $u = \left[2\ln u - u \right]_{1}^{2}$
 $u = 2\ln 2 - 1$

Alternately:
$$-\int_{0}^{1} \frac{x-1}{x+1} dx$$

$$=-\int_{0}^{1} \frac{x+1-2}{x+1} dx$$

$$=-\int_{0}^{1} 1-\frac{2}{x+1} dx$$

$$=-\left[x-2\ln(x+1)\right]_{0}^{1}$$

$$=-\left[1-2\ln 2\right]$$

$$=2\ln 2-1$$

Mathematics Specialist

Test 4 2019

Integration Techniques & Applications of Integral Calculus

	SOLUTIONS	
NAME:	SOLUTIONS	

TEACHER: Mrs Da Cruz

Resource Rich Section

19 marks 25 minutes

One unfolded A4 page of notes, SCSA formulae booklet and ClassPad calculator permitted. Show sufficient working for marks to awarded.

Question 2

[2 marks]

Consider the area under the curve $f(x) = \frac{2x}{3+x^2}$ between x = 1 and x = 3. Using four mid-point rectangles

approximate the area.

using eactivity: Area $\approx 1.102 \text{ units}^2$ 1.25 0.5479

1.75 0.5773

2.25 0.5581

2.75 0.5207

... $A \approx 0.5 (0.5474 + 0.5773 + 0.6581 + 0.5207)$... $A \approx 1.102 \text{ units}^2$

Show that the volume of a sphere, $V = \frac{4\pi r^3}{3}$, may be generated by rotating the circle $x^2 + y^2 = r^2$ about the *x*-axis.

$$= \pi \left[\frac{1}{2} - \frac{1}{2} \frac{1}{2} \right]$$

$$= \pi \left[\frac{1}{2} - \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2} \right]$$

$$= \pi \left[\frac{1}{2} - \frac{1}{2} \frac{3}{2} - \frac{1}{2} \frac{1}{2} \frac{3}{2} \right]$$

$$= \pi \left[\frac{1}{2} - \frac{1}{2} \frac{3}{2} - \frac{1}{2} \frac{1}{2} \frac{3}{2} \right]$$

$$= \pi \left[\frac{1}{2} - \frac{1}{2} \frac{3}{2} - \frac{1}{2} \frac{1}{2} \frac{3}{2} \right]$$

$$= \pi \left[\frac{1}{2} - \frac{1}{2} \frac{3}{2} - \frac{1}{2} \frac{1}{2} \frac{3}{2} \right]$$

$$= \pi \left[\frac{1}{2} - \frac{1}{2} \frac{3}{2} - \frac{1}{2} \frac{1}{2} \frac{3}{2} \right]$$

$$= \pi \left[\frac{1}{2} - \frac{1}{2} \frac{3}{2} - \frac{1}{2} \frac{3}{2} - \frac{1}{2} \frac{3}{2} \right]$$

$$= \pi \left[\frac{1}{2} - \frac{1}{2} \frac{3}{2} - \frac{1}{2} \frac{3}{2} - \frac{1}{2} \frac{3}{2} - \frac{1}{2} \frac{3}{2} \right]$$

$$= \pi \left[\frac{1}{2} - \frac{1}{2} \frac{3}{2} - \frac{1}{2} \frac{3}{2} - \frac{1}{2} \frac{3}{2} - \frac{1}{2} \frac{3}{2} \right]$$

$$= \pi \left[\frac{1}{2} - \frac{1}{2} \frac{3}{2} - \frac{1}{2} \frac{1}{2} \frac{3}{2} - \frac{1}{2} \frac{3}{2}$$

Consider the region bounded by the curves $f(x) = 4x^2$ and $g(x) = x^3$ for $x \ge 0$. Determine the volume of the solid formed when the region is rotated about the y-axis.

$$= 4x^{2}$$

$$y = 4$$

$$V = \pi \int_{0}^{64} (y^{1/3})^{2} - (\frac{y^{1/2}}{2})^{2} dy$$

$$= \pi \int_{0}^{64} (y^{1/3})^{2} - (\frac{y^{1/2}}{2})^{2} dy$$

$$= \pi \int_{0}^{64} y^{3/3} - y^{1/3} + y^{1/$$

* required.

 $V = 2\pi \int_{0}^{4} x \left(4x^{2} - x^{3}\right) dx \sqrt{4}$ Alternate: = $2\pi \int_{0}^{4} 4x^{3} - x^{4} dx$ = $2\pi \left[x^{4} - x^{5} \right]_{0}^{4} \sqrt{2}$

 $=2\pi\left(\frac{256}{5}\right)$:. V = 5121T units 3 integrated function for all 5 marks.

Find the area of the lens shape formed between two circles, $x^2 + y^2 = 1$ and $x^2 + (y - 1)^2 = 1$.

(Hints: You will need to first find the relevant semi-circle equations. Use the substitution $x = \sin \theta$)

$$A = 2 \int \sqrt{1-x^2} - (1-\sqrt{1-x^2}) dx$$

$$= 2 \int \sqrt{3} 2\sqrt{1-x^2} - 1 dx$$

$$= 2 \int \sqrt{3} (2\cos\theta - 1) \cos\theta d\theta$$

$$\sqrt{1-x^2}$$

$$= \sqrt{1-\sin^2\theta}$$

$$= \sqrt{\cos^2\theta}$$

$$= \cos\theta. \sqrt{1-\cos\theta}$$

$$= 2 \int_{0}^{\sqrt{3}} (2 \cos \theta - 1) \cos \theta d\theta$$

$$= 2 \int_{0}^{\sqrt{3}} 2 \cos^{2}\theta - \cos \theta d\theta$$

= 2
$$\int_{0}^{\pi_{3}} \cos 2\theta + 1 - \cos \theta d\theta$$

= 2 $\left[\frac{\sin 2\theta}{2} + \theta - \sin \theta \right]_{0}^{\pi_{3}} \sqrt{2\theta}$
= 2 $\left[\frac{\sqrt{3}}{4} + \frac{\pi}{3} - 2\frac{\sqrt{3}}{4} \right]$