

华中科技大学 2019~2020 学年第二学期 "微积分 (一)"考试试卷(A卷)

	考试方式:	<u>闭卷</u>	考试日期:	2020.09	9.03	考试时十	★: <u>150</u>	分钟
	院 (系): _			专业	班级:_			
	学 号:_			姓	名:_			
— 、	单项选择题((每小题 3 分	·, 6 个小题共	失18分,	将结果剂	余在答題	远卡上。)	
1. 🗄	L知函数 $f(x,y)$	= xy , 则以	以下说法中正确	的是【】	۱.			
Α	f(x,y)在原点连	E续且偏导数在	序在 B.	f(x, y)	在原点连	续但偏导	数不存在	
C. j	f(x,y)在原点不	下连续但偏导数	存在 D.	f(x, y)	在原点不	连续且偏	导数不存在	在
2. 函数 $f(x,y)$ 在点 (a,b) 可微是函数 $f(x,y)$ 在点 (a,b) 有连续的偏导数的【 】.								
A. 3	它分必要条件		B.	必要但非	丰充分条件	:		
C. 3	它分但非必要条件	牛	D.	既非充分) 也非必要	条件		
3. 设	改光滑曲线 € 是	光滑曲面 F(x	(x,y,z)=0	G(x, y, z)	= 0 的交约	线, P 是	<i>C</i> 上一点	.若∇F(P)与
$\nabla G(P)$ 不平行,则 C 在点 P 的一个切矢量为【 】.								
A. V	$F(P) + \nabla G(P)$	B. ∇ <i>F</i> (<i>I</i>)	$(P) - \nabla G(P)$	C. V .	$F(P) \cdot \nabla C$	G(P)	D. $\nabla F(F)$	$\nabla G(P)$
4. 已知函数 $f(x,y)$ 连续,则二次积分 $\int_{1}^{2} dx \int_{1}^{x^{2}} f(x,y) dy = \mathbf{I}$] .								
Α.	$\int_{1}^{4} \mathrm{d}y \int_{\sqrt{y}}^{2} f(x, y)$	dx B. $\int_{1}^{4} dy$	$y\int_{1}^{\sqrt{y}}f(x,y)\mathrm{d}x$	$C. \int_1^4$	$\mathrm{d}y \int_{1}^{2} f(x)$	(x, y) dx	D. $\int_{1}^{2} dy \int$	$\int_{\sqrt{y}}^{2} f(x, y) dx$
5. 该	ξS 为 $z = x^2 + y$	$y^2, 0 \le z \le 1,$	$I = \iint_{S} x \mathrm{d}S , J$	$=\iint_{S} y dS$	S , $K = \iint_{S}$	zdS. 以	下说法中国	正确的是【】
Α. Ι	I,J,K 中仅有一	个等于 0	В. Л	J,J,K 中	有两个等	于 0		
C. <i>I</i>	<i>J,J,K</i> 都等于 0		D. <i>I</i>	J,J,K 全	都不等于	0		
6. 设	$ graph f(x)$ 是以 2π	为周期的周期	用函数且 $f(x)$	$= x, -\pi <$	$x \le \pi$,	f(x) 的{	博里叶级数	数的和函数是
S(x)). 以下说法中』	E确的是【】						

A. S(x) 处处连续 B. $S(x) \equiv f(x)$ C. $S(\pi) = \pi$ D. $S(\pi) = 0$

- 二、填空题(每小题 4 分, 4 个小题共 16 分, 将计算结果写在答题卡上。)
- 7. 设 $a \times b \cdot c = 3$, 则 $(2a b) \cdot [(b c) \times (c a)] = ___.$
- **8.** 方程 $x = z + ye^z$ 在点 (1,1,0) 的一个邻域内确定函数 z = z(x, y),则 $z_y(1,1) = \underline{\hspace{1cm}}$.
- 9. 函数 $u = x^2 + 3y^2 + 5z^2$ 在点 (1,1,1) 沿曲面 $x^2 + 3y^2 + 5z^2 = 9$ 的外法线方向的方向导数为___.
- **10.** 已知 L 为直线 2x + y = 2 从点 (1,0) 到点 (0,2) 的一段,则 $\int_L (2x + y) ds = ____.$
- 三、基本计算题(每小题 7 分, 6 个小题共 42 分, 必须写出主要计算过程。)
- 11. 求微分方程 $y'' + y = \cos 2x$ 的通解.
- **12**. 求经过点 P(3,1,-2) 并且包含直线 $L: \frac{x-4}{5} = \frac{y-3}{2} = \frac{z}{1}$ 的平面方程.
- **13.** 已知函数 $z = f(x^2 y^2, 2x + 3y)$,其中 f 有二阶连续偏导数,求 z_x, z_{xy} .
- 14. 求二重积分 $I = \iint_D y^2 dx dy$, 其中 D 为圆域 $x^2 2x + y^2 \le 0$.
- **15.** 求曲面积分 $I = \iint_S xz^3 dydz$, 其中 S 是上半球面 $x^2 + y^2 + z^2 = 1, z \ge 0$ 的下侧.
- 16. 将 $f(x) = \begin{cases} \frac{x \cos x \sin x}{x^2}, & x \neq 0, \\ 0, & x = 0 \end{cases}$ 展开为 Maclaurin 级数.
- 四、应用题(每小题7分,2个小题共14分,必须写出主要过程。)
- **17.** 求函数 f(x, y) = x + y 在曲线 $x^2 + 2y^2 = 6$ 上所取到的最大值和最小值.
- **18.** 求抛物柱面 $z = 3 2x^2$ 和椭圆抛物面 $z = x^2 + 3y^2$ 所围成的立体的体积.
- 五、综合题(每小题 5 分, 2 个小题共 10 分, 必须写出主要过程。)
- 19. 设 L 为位于右半平面内的光滑曲线,积分 $\int_L 2xy(x^4+y^2)^a dx x^2(x^4+y^2)^a dy$ 在右半平面 (x>0)与路径无关,求a和 $I = \int_{(2,0)}^{(1,\sqrt{3})} 2xy(x^4+y^2)^a dx x^2(x^4+y^2)^a dy$ 的值.
- **20.** 设级数 $\sum_{n=1}^{\infty} a_n^2$ 收敛, 证明级数 $\sum_{n=2}^{\infty} \frac{a_n}{n \ln^2 n}$ 绝对收敛.