Домашнее задание к ЛР №5

1. Построение динамической модели трехзвенного манипуляционного робота

В данном задании необходимо разработать модель трехзвенного манипулятора. Для этого требуется:

- 1) В соответствии с Вашим вариантом разработать модель манипулятора в виде структурно-функциональной схемы, используя необходимые блоки Simscape:
 - а. В качестве входных параметров модели должны выступать желаемые позиции звеньев (углы и поступательные перемещения);
 - b. Выходными параметрами модели принять положение, скорость и ускорение каждого звена;
- 2) Провести моделирование системы при подаче на вход телескопических соединений требуемое перемещение 1 м, а на вход узлов вращения 90°;
- 3) Во всех звеньях ввести ограничение на перемещение/поворот, значения выбрать исходя из здравого смысла;
- 4) С помощью моделирования показать, что введенные ограничения выполняются (позволить модели достичь этих ограничений).

Вариант определить по формуле:

$$K = mod(i, 24) + 1,$$

где i – ваш номер в списке группы.

На рисунке 1 показаны схемы, соответствующие каждому варианту.

Рисунок 1 – Кинематические схемы по вариантам

Сочленениями в данных схемах являются: узел качения K, узел ротации P и телескопическое соединение T (рисунок 2).

Рисунок 2 – Обозначения узлов на кинематической схеме

Движение звеньев манипулятора описать с помощью модели привода, обобщенная структурная схема которого представлена на рисунке 3.

Рисунок 3 – Структурная схема привода

Параметры приводов и звеньев взять согласно таблице 1. (Возможно, что использование данных параметров приведет к неустойчивому поведению системы, в таком случае подобрать параметры привода таким образом, чтобы он мог поворачивать звено на требуемый угол достаточно быстро и не уходить в колебания. Проводить синтез не требуется.)

Таблица 1 – Параметры приводов и звеньев

Параметры звена и привода робота	Узел <i>K</i> 1	Узел <i>K</i> 2	Узел <i>Р</i>	У зел <i>Т</i>
<i>l</i> , м	0,7	0,55	0,875	0,785
I_{xx} , $\kappa \Gamma \cdot M^2$	9,4	16,5	33,3	5,8
I_{yy} , кг·м ²	9,4	16,5	33,3	5,8
I_{zz} , $K\Gamma \cdot M^2$	0,7	0,7	9,1	0,6
т, кг	46	. 78	194	26
<i>d</i> , cм	19,4	24,7	30,2	4,8
K_1	3880 ^	2330	4202	1950
K_2	2,94	2,8	2,97	0,275
<i>K</i> ₃	96	117	120	200
K_4	0,044	0,043	0,055	0,05
K ₅	156	94	168	78

В отчете необходимо привести:

- 1. Общий вид смоделированной системы, параметры всех сочленений (joint-ов) и скриншот 3D модели из Mechanics Explorer;
- 2. Графики положения, скорости и ускорения каждого звена при выполнении пункта 2).
- 3. Графики положения, скорости и ускорения каждого звена при выполнении пункта 4).

2. Необязательная часть. Управление шестизвенным манипулятором

Настоятельно рекомендуется при работе с данной задачей пользоваться следующим источником:

Frank C. Park, Kevin M. Lynch Modern Robotics: Mechanics, Planning and Control Или, если Вам больше нравится слушать, то можно воспользоваться одноименным курсом на coursera.

Данное задание состоит из двух частей:

- 1) Управление положением робота в упрощенном виде
- 2) Управление положением робота в обычном виде

Управление положением робота в упрощенном виде заключается в следующем:

- а) Реализация дискретного контроллера
 - Данный контроллер должен преобразовывать поступающие на него последовательно с периодом 50 мс сигналы положения рабочего органа $(x, y, z, \varphi, \psi, \theta)$ в требуемые для обеспечения данного состояния координаты звеньев и выдает их с периодом в 30 мс. (Необходимо решить обратную задачу кинематики).
- b) Проверить его работоспособность, подав на вход кривую следующей формы:
 - а. Фиксированное положение;
 - b. Круг в воздухе;
 - с. Произвольную 3D-кривую;

Подавать их необходимо из mat файла или Workspace.

Управление положением робота в обычном виде заключается в следующем:

- а) Замена моделей приводов системами «двигатель-редуктор», замкнутых по току (системами управления моментом);
- b) Реализация дискретного контроллера, который:
 - Получает входной сигнал и выдает выходной аналогично предыдущему контроллеру, однако выходной сигнал теперь является желаемыми моментами на приводах;
 - II. Получает дифференциальные уравнения системы с помощью решения обратной задачи динамики:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = \tau$$
,

где M(q) – матрица инерций системы;

 $\mathcal{C}(q,\dot{q})$ – матрица кориолисовых сил и сил сопротивления;

g(q) – матрица потенциальных сил;

q – обобщенные координаты робота (положение его звеньев);

au – вектор управляющих воздействий (моменты на выходе двигателей).

III. Закон управления принять следующего вида

$$U = k_P e(t) + k_I \int_0^t e(x) dx + k_D \dot{e} + g(q(t))$$

где e(t) – сигнал ошибки.

с) Проверить работоспособность привода аналогично пункту b) предыдущего задания

Формат отчетности необязательных заданий:

В отчете поясняете все свои действия, а любые утверждения сопровождаете соответствующими графическими или аналитическими доказательствами.

За полностью выполненное задание возможно получить два А, при этом проставление первой А возможно в случае, если полностью сделана первая часть «Управление положением робота в упрощенном виде» и вторая часть «Управление положением робота в обычном виде» до пункта b.I) включительно.