Libfact - Quick Documentation

A C library to compute generalised factorial functions and co.

$\begin{array}{c} 2020 \\ \text{October} \end{array}$

Quick documentation for libfact. For a more talkative documentation with explanations, references and many gp-code examples, see "libfact-doc.pdf".

Contents

1	Orderings		3
	1.1	Regular \mathfrak{p} -orderings	3
	1.2	r -removed \mathfrak{p} -orderings	4
	1.3	\mathfrak{p} -orderings of order h	4
2	Factorial ideals		
	2.1	Regular factorial ideals	5
	2.2	r-removed factorial ideals	6
	2.3	Factorial ideals of modulus M	7
3	Regular basis		8
	3.1	Regular basis for integer-valued polynomials	8
	3.2	Regular basis for integer-valued polynomials with integer-valued r -divided differ-	
		ences	8
	3.3	Regular basis for integer-valued polynomials of modulus M	9
4	Simultaneous orderings of \mathbb{Z}_K		10
	4.1	Almost strong simultaneous ordering of \mathbb{Z}_K	10
	4.2	Simultaneous ordering of the ring of integers of a quadratic number field	10
5	Miscellaneous		10
6	Use	ful functions	11

1 Orderings

Prefixes:

- \bullet $\circ = \text{order}$
- r = removed
- zk = ring of integers of nf
- nothing = finite set

1.1 Regular p-orderings

• GEN pord(GEN nf, GEN pr, GEN S, long first = 1, long trunc = −1, GEN* ex = NULL, GEN* inv = NULL)

Return in a vector beginning by S[first] the first trunc elements of a pr-ordering of the set S. If trunc = -1, it is set to #S. Set to *ex the extraction small vector and to *inv the invariant vector as it would be returned by pord_e(nf, pr, S, trunc)

- GEN pord_e(GEN nf, GEN pr, GEN S, long trunc = -1)

 Return in a vector the first trunc-1 invariant exponents of any pr-ordering of the set S.

 If trunc = -1, it is set to #S.
- int ispord(GEN nf, GEN pr, GEN S, long trunc = -1, GEN *i = NULL)

 Return 1 if the sequence of the first trunc elements of S is the beginning of a pr-ordering of the set S, 0 otherwise. If trunc = -1, it is set to #S. If 0 is returned, set to *i the index of the first element of S responsible for failure.
- GEN pord_get_e(GEN nf, GEN pr, GEN po, long trunc = -1)
 Return in a vector the first trunc 1 invariant exponents of the pr-ordering po. If trunc = -1, it is set to #po.
- GEN zkpord(GEN nf, GEN pr, long n)
 Return a pr-ordering of length n of nf.
- GEN iszkpord(GEN nf GEN pr, GEN S)

 Return 1 if the sequence S is a pr-ordering of length #S of nf, 0 otherwise.
- GEN zkpord_e(GEN nf, GEN pr, long n)

 Return the n first invariant exponents of any pr-ordering of nf.

1.2 r-removed p-orderings

- GEN rpord(GEN nf, GEN pr, GEN S, long r, long trunc = -1, GEN* ex = NULL, GEN* inv = NULL) Return in a vector the first trunc elements of a r-removed pr-ordering of the set S. If trunc = -1, it is set to #S*(r+1). Set to *ex the extraction small vector and to *inv the invariant vector as it would be returned by rpord_e(nf, pr, S, r, trunc).
- GEN rpord_e(GEN nf, GEN pr, GEN S, long r, long trunc = -1)

 Return in a vector the first trunc-1 invariant exponents of any r-removed pr-ordering of the set S. If trunc = -1, it is set to #S*(r+1).
- GEN isrpord(GEN nf, GEN pr, GEN S, long r, long trunc = -1)

 Return 1 if the sequence of the first trunc elements of S is the beginning of a r-removed pr-ordering of the set S, 0 otherwise. If trunc = -1, it is set to #S*(r+1). Set to *i the index of the first element of S responsible for failure.
- GEN rpord_get_e(GEN nf, GEN pr, GEN rpo, long r, long trunc = -1)
 Return in a vector the first trunc 1 invariant exponents of the r-removed pr-ordering rpo. If trunc = -1, it is set to #rpo.
- GEN zkrpord(GEN nf, GEN pr, long r, long n)
 Return a r-removed pr-ordering of length n of nf.
- GEN iszkrpord(GEN nf, GEN pr, long rpo, long r)

 Return 1 if the sequence S is a r-removed pr-ordering of length #S of nf, 0 otherwise.
- GEN zkrpord_e(GEN nf, GEN pr, long r, long n)

 Return the n first invariant exponents of any r-removed pr-ordering of nf.

1.3 \mathfrak{p} -orderings of order h

• GEN opord(GEN nf, GEN pr, GEN S, long h, long first, long trunc = -1, GEN* ex = NULL, GEN* inv = NULL)

Return in a vector beginning by S[first] the first trunc elements of a pr-ordering of order h of the set S. If trunc = -1, it is set to #S. Set to *ex the extraction small vector and to *inv the vector of invariants as it would be returned by opord_e(nf,npr, S, r, trunc).

• GEN opord_e(GEN nf, GEN pr, GEN S, long h, long trunc = -1)

Return in a vector the first trunc-1 invariant exponents of any pr-ordering of order h of the set S. If trunc = -1, it is set to #S.

- GEN isopord(GEN nf, GEN pr, GEN S, long h, long trunc = -1)

 Return 1 if the sequence of the first trunc elements of S is the beginning of a pr-ordering of order h of the set S, 0 otherwise. If trunc = -1, it is set to #S. Set to *i the index of the first element of S responsible for failure.
- GEN opord_get_e(GEN nf, GEN pr, GEN opo, long h, long trunc = -1)
 Return in a vector the first trunc 1 invariant exponents of the pr-ordering of order h opo. If trunc = -1, it is set to #opo.
- GEN zkopord(GEN nf, GEN pr, long h, long n)
 Return a pr-ordering of order h of length n of nf.
- GEN iszkopord(GEN nf, GEN pr, long opo, long h)

 Return 1 if the sequence S is a pr-ordering of order h of length #S of nf, 0 otherwise.
- GEN zkopord_e(GEN nf, GEN pr, long h, long n)

 Return the n first invariant exponents of any pr-ordering of order h of nf.

2 Factorial ideals

Prefixes:

- s = finite set
- zk = the whole ring of integers of nf
- q = the whole ring of integers of the quadratic field nf
- rem = removed
- \bullet mod = modulus

2.1 Regular factorial ideals

- GEN sfact(GEN nf, GEN S, long k)

 Return the k-th factorial ideal of the set S.
- GEN sfact_vec(GEN nf, GEN S, long n = -1)

 Return in a vector the first n factorial ideals of the set of algebraic integers S. If n=-1, it is set to #S-1. Faster than building the vector by incremental calls to sfact.
- GEN sfactnorm(GEN nf, GEN S, long k)

 Return the norm of the k-th factorial ideal of the set S.

• GEN sfactnorm_vec(GEN nf, GEN S, long n = -1)

Return in a vector the norms of the first n factorial ideals of the set S. If n=-1, it is set to #S-1. Faster than building the vector by incremental calls to sfactnorm.

• GEN zkfact(GEN nf, long k)

Return the k-th factorial ideal of nf.

• GEN zkfact_vec(GEN nf, long n)

Return in a vector the n first factorial ideals of nf. Faster than building the vector by incremental calls to zkfact.

• GEN zkfactnorm(GEN nf, long k)

Return the norm of the k-th factorial ideal of nf. Faster than calling idealnorm(nf, zkfact(nf, k)).

• GEN zkfactnorm_vec(GEN nf, long n)

Return in a vector the norm of the n first factorial ideals of nf. Faster than building the vector by incremental calls to zkfactnorm.

• GEN qfact(GEN nf, long k)

Return the k-th factorial ideal of the quadratic number field nf. Faster than calling zkfact.

• GEN qfact_vec(GEN nf, long n)

Return in a vector the first **n** factorial ideals of the quadratic number field **nf**.

• GEN qfactnorm(GEN nf, long k)

Return the norm of the k-th factorial ideal of the quadratic number field nf. Faster than calling idealnorm(nf,qfact(nf,k)) or zkfactnorm.

• GEN qfactnorm_vec(GEN nf, long n)

Return in a vector the norms of the first n factorial ideals of the quadratic number field nf.

2.2 r-removed factorial ideals

• GEN sremfact(GEN nf, GEN S, long r, long k)
Return the k-th r-removed factorial ideal of the set S.

• GEN sremfact_vec(GEN nf, GEN S, long r, long n)

Return in a vector the n first r-removed factorial ideals of the set S. If n = -1, it is set to ((r+1)*#S)-1. Faster than building the vector by incremental calls to sremfact.

• GEN sremfactnorm(GEN nf, GEN S, long r, long k)

Return the norm of the k-th r-removed factorial ideal of the set S.

• GEN sremfactnorm_vec(GEN nf, GEN S, long r, long n)

Return in a vector the norms of the n first r-removed factorial ideals of the set S. If n = -1, it is set to ((r+1)*#S)-1. Faster than building the vector by incremental calls to sremfactnorm.

- GEN zkremfact(GEN nf, long r, long k)
 Return the k-th r-removed factorial ideal of nf.
- GEN zkremfact_vec(GEN nf, long r, long n)

 Return in a vector the n first r-removed factorial ideals of nf. Faster than building the vector by incremental calls to zkremfact.
- GEN zkremfactnorm(GEN nf, long r, long k)

 Return the norm of the k-th r-removed factorial ideal of nf.
- GEN zkremfactnorm_vec(GEN nf, long r, long n)

 Return in a vector the norms of the first n r-removed factorial ideals of nf. Faster than building the vector by incremental calls to zkremfactnorm.

2.3 Factorial ideals of modulus M

- GEN sfactmod(GEN nf, GEN S, GEN M, long k)
 Return the k-th factorial ideal of modulus M of the set S.
- GEN sfactmod_vec(GEN nf, GEN S, GEN M, long n)
 Return in a vector the n first factorial ideals of modulus M of the set S. If n = -1, it is set to #S 1. Faster than building the vector by incremental calls to sfactmod.
- GEN sfactmodnorm(GEN nf, GEN S, GEN M, long k)

 Return the norm of the k-th factorial ideal of modulus M of the set S.
- GEN sfactmodnorm_vec(GEN nf, GEN S, GEN M, long n)
 Return in a vector the norms of the first n factorial ideals of modulus M of the set S.
 If n = -1, it is set to #S 1. Faster than building the vector by incremental calls to sfactmodnorm.
- GEN zkfactmod(GEN nf, GEN M, long k)

 Return the k-th factorial ideal of modulus M of nf.
- GEN zkfactmod_vec(GEN nf, GEN M, long n)

 Return in a vector the n first factorial ideals of modulus M of nf. Faster the building the vector by incremental calls to zkfactmod.

- GEN zkfactmodnorm(GEN nf, GEN M, long k)
 Return the norm of the k-th factorial ideal of modulus M of nf.
- GEN zkfactmodnorm_vec(GEN nf, GEN M, long n)

 Return in a vector the norms of the first n factorial ideals of modulus M of nf. Faster than building the vector by incremental calls to zkfactmodnorm.

3 Regular basis

3.1 Regular basis for integer-valued polynomials

- GEN zkfactpol(GEN nf, long k, const char *s, long cmode = 1) Return a polynomial pol of degree k in zk[X] such that pol(zk) generates the k-th factorial ideal of nf. The variable name is set to s. The flag cmode tunes the returned polynomial coefficients: 0 for t_POLMOD, 1 for t_POL, 2 for t_COL.
- GEN zkfactpol_vec(GEN nf, long n, const char *s, long cmode = 1)

 Return a vector v of length n+1 such that v[i] = zkfactpol(nf,i-1,s,cmode).
- int ispolyaupto(GEN bnf, long n)

 Return 1 if the n first factorial ideals of bnf are principal, 0 otherwise. Useful to test if zkregbasis is callable.
- GEN zkregbasis(GEN bnf, long n, const char *s, long cmode = 1) Return in a vector v of length n+1 a regular basis for the zk-module Int(n,X). For such a basis to exist, it is **mandatory** that all factorial ideals up to n are principal and this can be checked with the function ispolyaupto.

3.2 Regular basis for integer-valued polynomials with integer-valued r-divided differences

- GEN zkremfactpol(GEN nf, long r, long k, const char *s, long cmode = 1) Return a polynomial pol of degree k in zk[X] such that pol(zk) generates the k-th r-removed factorial ideal of nf. The variable name is set to s. The flag cmode tunes the returned polynomial coefficients: 0 for t_POLMOD, 1 for t_POL, 2 for t_COL.
- GEN zkremfactpol_vec(GEN nf, long r, long n, const char *s, long cmode = 1) Return a vector v of length n+1 such that v[i] = zkremfactpol(nf,r,i-1,s,cmode).
- int ispolyaupto_rem(GEN bnf, long r, long n)

 Return 1 if the n first r-removed factorial ideals of bnf are principal, 0 otherwise. Useful to test if zkremregbasis is callable.

• GEN zkremregbasis(GEN bnf, long r, long n, const char *s, long cmode = 1) Return in a vector v of length n+1 a regular basis for the zk-module Int(n, r, X).

It is the module of all integer-valued polynomials of $\mathtt{bnf}[X]$ of degree at most n such that their r first divided differences are also integer-valued.

Being a regular basis means that deg(v[i]) = i - 1 for $1 \le i \le n + 1$.

For such a basis to exist, it is **mandatory** that the n first r-removed factorial ideals of bnf are principal and this can be checked with the function ispolyaupto_rem.

If the later condition is not met, the behavior is undefined. The flag cmode tunes the returned polynomial coefficients: 0 for t_POLMOD, 1 for t_POL, 2 for t_COL.

3.3 Regular basis for integer-valued polynomials of modulus M

- GEN zkfactmodpol(GEN nf, GEN M, long k, const char *s, long cmode = 1) Return a polynomial pol of degree k in zk[X] such that pol(zk) generates the k-th factorial ideal of modulus M of nf. The variable name is set to s. The flag cmode tunes the returned polynomial coefficients: 0 for t_POLMOD, 1 for t_POL, 2 for t_COL.
- GEN zkfactmodpol_vec(GEN nf, GEN M, long n, const char *s, long cmode = 1) Return a vector v of length n+1 such that v[i] = zkfactmodpol(nf,M,i-1,s,cmode).
- int ispolyaupto_mod(bnf, M, n)

 Return 1 if the n first factorial ideals of modulus M of bnf are principal, 0 otherwise. Useful to test id zkmodregbasis is callable.
- GEN nfX_divdiff(GEN nf, GEN pol, long k, GEN* vars = NULL)

 Return the k-th divided difference of the polynomial pol \in nf[X]. The returned polynomial is in nf[x_0, x_1, \ldots, x_n]. Set to *vars the vector of variables [x_0, \ldots, x_k].
- GEN zkmodregbasis(GEN nf, long h, long n, const char *s, long cmode = 1) Return in a vector v of length n+1 a regular basis for the zk-module Int(n, M, X). It is the module of all integer-valued polynomials pol of bnf[X] of degree at most n such that if I_M is the ideal represented by the modulus M and $m \in I_M$, then $pol(mX+s) \in zk[X]$ for all $s \in zk$.

Being a regular basis means that deg(v[i]) = i - 1 for $1 \le i \le n + 1$.

For such a basis to exist, it is **mandatory** that the n first factorial ideals of modulus M of bnf are principal and this can be checked with the function ispolyaupto_mod.

If the later condition is not met, the behavior is undefined. The flag cmode tunes the returned polynomial coefficients: 0 for t_POLMOD, 1 for t_POL, 2 for t_COL.

4 Simultaneous orderings of \mathbb{Z}_K

4.1 Almost strong simultaneous ordering of \mathbb{Z}_K

- GEN zkalmostsso(GEN nf, long n, GEN a0 = 0, GEN* ipr = NULL)
 - Return an almost strong simultaneous ordering of length n starting by a0, i.e a sequence of length n of algebraic integers in nf satisfying the two following property:
 - 1. for every prime ideal pr, the sequence obtained by slicing at most one element (depending on pr) is a strong pr-ordering of length n-1 (or n if no slice happened)
 - 2. every subsequence of k + 2 consecutive terms of the sequence is a k-universal set of zk.

The argument ipr (for initial primes) can be a single prime ideal or a vector (t_VEC or t_COL) of prime ideals (possibly empty), those one for which a0 might have to be sliced to satisfy the first property.

In particular, the following returns a *n*-universal set of zk: zkalmostsso(nf, n + 2).

• int zkissimulord(GEN nf, GEN S)

Return 1 if the sequence S is a simultaneous ordering of length #S-1 of nf, 0 otherwise.

4.2 Simultaneous ordering of the ring of integers of a quadratic number field

- GEN qallsimulord(GEN nf, long n)
 - Return in a vector of vectors all basal (i.e starting by [0,1]) simultaneous ordering of length n of the quadratic number field nf.
- GEN qrso_testfirstnonsplit(GEN d)
 - The argument d is a positive squarefree integer and represents the real quadratic number field $nf = \mathbb{Q}(\sqrt{d})$. Let m_d be the least prime who does not split in nf as returned by qfirstnonsplit. This function will test efficiently if there exist a basal simultaneous ordering of length m_d in $\mathbb{Q}(\sqrt{d})$ such that the first $m_d 1$ terms are contained in \mathbb{Z} and return in a vector the candidates if any, the empty vector otherwise.
- int qrso_search(GEN first, GEN upto, int verbose = 0, GEN *found = NULL) This function looks for a real quadratic number field $\mathbb{Q}(\sqrt{d})$, for d running from first to upto and $d=1 \pmod 8$, such that there exist a sequence of length superior or equal to $m_d=$ qfirstnonsplit(d) with the first m_d-1 terms contained in \mathbb{Z} . The function returns 1 if some exception is found and set to *found the value of d, 0 otherwise. Setting verbose to 1 will print informations about the search on standart output.

5 Miscellaneous

• GEN allpord(GEN nf, GEN pr, GEN S, GEN SS, long trunc = -1, GEN *ex = NULL)

Return in a vector of vectors all sequences of trunc elements of S beginning by the subsequence SS which are the beginning of a pr-ordering of the set S. If trunc = -1, it is set to *s. Set to *ex all the extraction small vectors. The argument SS can also be a t_INT i which is interpreted as if SS = [S[i]].

- GEN simulard(GEN nf, GEN S, long trunc = -1, GEN *ex = NULL)

 Return in a vector the first trunc elements of a possible simultaneous ordering (or Newton sequence) of the set S. If no such sequence exists, return an empty vector. If trunc = -1, it is set to #S. Set to *ex the extraction small vector.
- GEN issimulord(GEN nf, GEN S, long trunc = -1, GEN *i = NULL)

 Return 1 if the sequence of the first trunc elements of S could be the beginning of a simultaneous ordering of the set S, 0 otherwise. If trunc = -1, it is set to #S. If 0 is returned, set to *i the index of the first element responsible for failure.
- GEN allsimulord(GEN nf, GEN S, GEN SS, long trunc = -1, GEN *ex = NULL)

 Return in a vector of vectors all sequences of trunc elements of S beginning by the subsequence SS which could be the beginning of a simultaneous ordering of the set S. If trunc = -1, it is set to #S. Set to *ex all the extraction small vectors. The argument SS can also be a t_INT i which is interpreted as if SS = [S[i]].
- GEN strongpord(GEN nf, GEN pr, long n)

 Return a strong pr-ordering of length n of nf. The argument pr can be a single prime ideal or a vector of prime ideals in which case the returned sequence will be a strong p-ordering for every prime ideal p in the vector pr.
- int isstrongpord(GEN nf, GEN pr, GEN S) Return 1 if the sequence S is a strong prodering of length #S of nf, 0 otherwise. The argument pr can be a single prime ideal or a vector of prime ideals in which case the function return 1 if S is a strong p-ordering for every prime ideal p in the vector pr.

6 Useful functions

- GEN vdiffprod(GEN nf, GEN v, GEN x)

 Return the product of differences of x with components of the vector v.
- GEN vdiffprod_i(GEN nf, GEN v, long i)
 Equivalent to vdiffprod(nf, v[1..i-1], v[i]).
- GEN vdiffs(GEN nf, GEN v)
 Return the vector [vdiffprod_i(nf, v, i)], 2 < i < #v.

• GEN volume(GEN nf, GEN v)

Return the volume of the vector v, i.e the product of all distinct pairs of elements of v. Volume is defined up to ± 1 .

• GEN volume_i(GEN nf, GEN v, long i)

Equivalent to volume(nf, vec_shorten(S, i)).

• GEN volume2(GEN nf, GEN v)

This is just the square of volume, sometimes preferred to volume.

• GEN qfirstnonsplit(GEN nf)

Return the first prime number who does not split in the quadratic number field **nf**. The argument **nf** can also be a fundamental discriminant or a squarefree integer.

• GEN idealmaxlist(GEN nf, long n)

Same as ideallist but for maximal ideals.

• GEN idealmaxprod(GEN nf, GEN p, long k)

Return the product of all maximal ideals of norm equal to p^k .

• GEN qfunorm(GEN nf)

Return the norm of the fundamental unit of the quadratic number field **nf**. The argument **nf** can also be a fundamental discriminant or a squarefree integer.

• GEN legf(GEN q, GEN n)

Generalised Legendre formula. If $v_q(n)$ is the exponent of the highest power of $q \geq 2$ dividing n, the function computes $w_q(n) = \sum_{i=1}^n v_q(i)$. If q is prime, this is just the q valuation of n!.

• GEN legf_vec(GEN q, GEN n)

Return the vector [legf(q, k)], $1 \le k \le n$.

• GEN rlegf(GEN q, GEN n, long r)

Analogous of Legendre formula for r-removed p-ordering.

The function returns $\operatorname{legf}(q,n) - \operatorname{legf}(q,\left\lfloor \frac{n}{q^k} \right\rfloor) - kr$ where $k = \left\lfloor \frac{\log \frac{n}{r}}{\log q} \right\rfloor$.

• GEN rlegf_vec(GEN q, long r, GEN n)

Return the vector [rlegf(q,k,r)], $1 \le k \le n$.

• GEN olegf (GEN q, GEN n, GEN h)

Analogous of Legendre formula for p-orderings of order h.

The function returns $legf(q, n) - legf(q, \left| \frac{n}{q^h} \right|)$.

- GEN olegf_vec(GEN q, GEN h, long n) $\mbox{Return the vector [olegf(q, k, h)]}, \ 1 \leq k \leq n.$
- int qispolya(GEN nf)

Return 1 if the quadratic number field **nf** is a Polya number field, 0 otherwise. If it is the case, **zkregbasis** is callable without restriction.