

Ayudantía 13 Estructuras Algebraicas

Profesor: Pedro Montero

Ayudante: Sebastián Fuentes

20 de junio de 2023

Problema 1.

- 1. Sea S un subconjunto multiplicativamente cerrado de un anillo A, y sea M un módulo A generado finitamente. Demostrar que $S^{-1}M = 0$ si y sólo si existe $s \in S$ tal que sM = 0.
- 2. Sea $I \subseteq A$ ideal y S = 1 + I. Muestre que $S^{-1}I$ está contenido en el ideal de Jacobson de $S^{-1}A$. Indicación: Recuerde la caracterización del ideal de Jacobson probada en clases.

Problema 2. Sea A un anillo, $f \in A$. Demuestre que:

$$A_f \cong A[X]/\langle fX - 1 \rangle$$

donde A_f denota la localización de A en f.

Indicación: Defina $\varphi: A[X] \to A_f$ mediante $X \mapsto \frac{1}{f}$ y calcule su kernel.

Problema 3. El objetivo de este problema es estudiar cómo interactúan la localización y el producto tensorial. Sea A anillo, M, N A-módulos y $S \subseteq A$ conjunto multiplicativo. Muestre que

$$S^{-1}(M \otimes_A N) \cong (S^{-1}M) \otimes_{S^{-1}(A)} (S^{-1}N)$$

Indicación: Defina $\varphi: (S^{-1}M) \times (S^{-1}N) \to S^{-1}(M \otimes_A N), \quad \left(\frac{m}{s}, \frac{n}{t}\right) \mapsto \frac{m \otimes n}{st}.$

Problema 4. Sea A un anillo y sea $\mathfrak{p} \subseteq A$ ideal primo. Demuestre que

$$A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \cong \operatorname{Fr}(A/\mathfrak{p})$$

donde $Fr(A/\mathfrak{p})$ denota el cuerpo de fracciones del anillo cociente A/\mathfrak{p} .

Indicación: Defina $\varphi: A_{\mathfrak{p}} \mapsto \operatorname{Fr}(A/\mathfrak{p}), \frac{a}{s} \mapsto \frac{\pi(a)}{\pi(s)}$ donde $\pi: A \to A/\mathfrak{p}$ es la proyección canónica. Recuerde que A/\mathfrak{p} es un dominio y que $A_{\mathfrak{p}}$ es un anillo local.

Problema 5. El objetivo de este problema es estudiar el concepto de **soporte** de un módulo. Sea A un anillo, Mun módulo A. El soporte de M, denotado por Supp(M), se define como el conjunto de ideales primos \mathfrak{p} de A tal que $M_{\mathfrak{p}} \neq 0$.

- 1. Si $0 \to M_1 \to M \to M_2 \to 0$ es una sucesión exacta, entonces $\operatorname{Supp}(M) = \operatorname{Supp}(M_1) \cup \operatorname{Supp}(M_2)$.
- 2. Sea $\{M_{\lambda}\}$ una colección de A-módulos, $S \subseteq A$ multiplicativo. Demuestre que la suma directa y la localización conmutan, ie,

$$S^{-1}\left(\bigoplus M_{\lambda}\right) \cong \bigoplus S^{-1}(M_{\lambda})$$

Use esto para probar que si $M = \sum M_{\lambda}$, entonces $\operatorname{Supp}(M) = \bigcup \operatorname{Supp}(M_{\lambda})$. Indicación: Use el Problema 2. de la Ayudantía 12. junto con la caracterización de la localización en términos del producto tensorial vista en clases. Recuerde que hay una aplicación $\bigoplus M_{\lambda} \twoheadrightarrow \sum M_{\lambda}$.

- 3. Si M es finitamente generado, entonces $\operatorname{Supp}(M) = V(\operatorname{ann}(M))$ (y por lo tanto es un subconjunto cerrado de $\operatorname{Spec}(A)$).
- 4. Si M, N son finitamente generados, entonces $\operatorname{Supp}(M \otimes_A N) = \operatorname{Supp}(M) \cap \operatorname{Supp}(N)$ Indicación: Use el Problema 3 y el Problema 3 de la Ayudantía 12.