1. In the context of exercise 5 (iii) on page 31:

a. Give two examples of open sets that are not \mathbb{R} or \emptyset . Use at least one complete sentence to explain why the given sets are open.

 τ_3 consists of \mathbb{R} , \emptyset , and every interval $[n, \infty)$, for $n \in \mathbb{R}^+$.

The sets $[1, \infty)$ and $[2, \infty)$ are open to τ_3 . Either sets compliment is an interval from $-\infty$ to the start-point exclusive. Since the compliment of the sets is not in τ_3 , the sets are open to τ .

b. Give two examples of closed sets that are not \mathbb{R} or \emptyset . Use at least one complete sentence to explain why the given sets are closed.

The sets $(-\infty, 1)$ and $(-\infty, 2)$ are closed to τ_3 . These are, in fact, the compliments to the sets defined above. Since the compliment of either set is in τ_3 , these sets are closed to τ_3 .

2. In the context of exercise 6 (ii) on page 31:

a. Give two examples of open sets that are not \mathbb{N} or \emptyset . Use at least one complete sentence to explain why the given sets are open.

 τ_2 consists of \mathbb{N} , \emptyset , and every set $\{n, n+1, \dots\}$, for $n \in \mathbb{Z}^+$. This is called the final segment topology.

The sets $\{2,3,4,\ldots\}$ and $\{3,4,5,\ldots\}$ are in τ_2 and are thus open sets.

b. Give two examples of closed sets that are not \mathbb{N} or \emptyset . Use at least one complete sentence to explain why the given sets are closed.

The sets $\{1\}$ and $\{1,2\}$ are closed sets to τ_2 . These sets are the compliments to the sets define above over the positive integers, \mathbb{N} , and are thus closed sets to τ_2 .

3.	${\bf Exercise}$	1.2:	#2	(page	36).	Let	(X,τ)	be a	topological	space	with	the
	property	that	ever	y subs	et is	closed	Prov	e that	this is a di	screte s	space.	

 \square