JOB SCHEDULING

Sociologia das Organizações 2016/17

Job scheduling

- ■O tema do job scheduling é um dos mais cruciais na gestão da produção
- A correcta utilização das máquinas para concluir diversas tarefas conduz a uma maior produtividade e eficiência
- □Genericamente, considera-se que um certo conjunto de tarefas J tem que ser processado por um certo conjunto de máquinas
- □É possível considerar um conjunto de critérios, que ajudam a definir o que será um "bom" escalonamento dessas tarefas

Job scheduling

- □Para cada tarefa *j*, considerem-se as seguintes características:
 - Tempo de processamento (p_i)
 - Data de disponibilização (r_i)
 - Prazo pretendido (d_i)
 - Peso/importância (w_i)

Job scheduling

- □Com base nas características da tarefa j, é possível deduzir algumas métricas:
 - Tempo de início do processamento (S_i)
 - Data de conclusão (C_i)
 - Atraso $(L_j = C_j d_j)$
 - Tardeza $(T_i = \max(L_i; 0))$
 - Folga no instante t $(S_j(t) = \max(d_j p_j t; 0))$
 - Tarefa em atraso ($U_i = 1$, se $T_i > 0$)

Escalonamento

- □De uma forma geral, é possível considerar que existem m máquinas e n tarefas a realizar
- Um escalonamento pode ser representado com recurso a um diagrama de Gantt

Escalonamento – Definições gerais

- ■No quadro genérico do escalonamento (m máquinas, n tarefas), uma afectação entre uma tarefa j e uma máquina i é designada por operação e representada por (i,j)
- \square O tempo de processamento da operação (i,j) é representado por p_{ij} (basta p_j , quando só existe uma máquina)

Precedências

- Uma questão que pode ser importante no escalonamento das tarefas é a eventual existência de precedências
- □Caso existam precedências, considera-se como definida uma rede de precedências, onde a tarefa j_1 está ligada j_2 , se a segunda só pode ser realizada depois da primeira estar concluída
- □Esta rede de precedências terá que ser, necessariamente acíclica

Escalonamento – Problemas

- \square Os problemas de escalonamento são usualmente representados através da notação $\alpha |\beta| \gamma$
 - α fornece informação sobre as máquinas
 - β descreve as características das tarefas
 - $\cdot \gamma$ dá indicação do critério a considerar no escalonamento
- ■Do ponto de vista das máquinas, consideram-se os seguintes problemas:
 - Uma só máquina ($\alpha = 1$)
 - Máquinas paralelas (idênticas) ($\alpha = P$ ou Pm)
 - O tempo de processamento da tarefa j é sempre p_i
 - Máquinas paralelas uniformes ($\alpha = Q$ ou Qm)
 - As máquinas têm velocidades diferentes $(s_1, ..., s_m)$
 - Os tempos de processamento são iguais a $p_{ij} = p_j/s_i$

Escalonamento – Problemas

- Máquinas paralelas não relacionadas ($\alpha = R$ ou Rm)
 - As tarefas são processadas em velocidades diferentes pelas máquinas (s_{ii})
 - Os tempos de processamento são iguais a $p_{ij} = p_j/s_{ij}$
 - Cada tarefa tem que ser processada por uma máquina
- Flow shop ($\alpha = F \text{ ou } Fm$)
 - m máquinas em série
 - Cada tarefa tem que passar por cada uma das máquinas
- Job shop ($\alpha = J$ ou Jm)
 - Cada tarefa tem o seu percurso pelas máquinas pré-definido
 - É possível que uma tarefa não tenha que passar por todas as máquinas
- Open shop ($\alpha = O$ ou Om)
 - Cada tarefa tem que ser processada por uma máquina, sem ordem pré-determinada

□Caso exista apenas uma máquina para as tarefas a realizar, a data máxima de conclusão (C_{max}) será sempre igual

•
$$C_{\text{max}} = \max(C_1, C_2, ..., C_n)$$

□Isto significa que a minimização de C_{max} é trivial e irrelevante

Escalonamento com uma só máquina $(1||C_W)$

- ightharpoonupUma questão que pode ser relevante no escalonamento de tarefas com uma só máquina é a data de conclusão ponderada C_W
 - $C_W = \sum w_j C_j$
- □Um caso especial dá-se quando os pesos são todos unitários (w_i =1)
- \square Nesse caso, C_W é igual à soma de todas as datas de conclusão
- □Para encontrar o escalonamento que minimize C_W nessas condições, basta aplicar a regra SPT (shortest processing time)

Escalonamento com uma só máquina $(1||C_W)$

□Se os pesos atribuídos às tarefas forem distintos (caso sejam todos iguais, é possível reduzir a um caso unitário), é necessário aplicar a regra weighted shortest processing time, em que se escolhe primeiro as tarefas que apresentam menor rácio p_i/w_i

□Exemplo:

Tarefas	1	2	3	4
p_{j}	10	20	40	30
W_{j}	2	5	8	1
p_j / w_j	5	4	5	30

□Se o objectivo for minimizar o atraso máximo (considerando que existem prazos), a regra *Earliest Due Date* fornece a solução óptima, se as datas de disponibilização forem todas iguais (por exemplo, iguais a 0)

Tarefas	1	2	3	4	5
p_{j}	20	20	50	40	30
d_{j}	70	180	60	100	90

Escalonamento com uma só máquina $(1|prec|L_{MAX})$

- □Caso existam precedências estabelecidas entre as tarefas, é possível ainda assim resolver o problema de minimização de L_{max}
- □Para tal, basta considerar ir considerando as tarefas que têm os seus sucessores já calendarizados, e escolher dessas a que tem o menor atraso

Tarefas	1	2	3	4	5
p_{j}	20	20	50	40	30
d_{j}	70	180	60	100	90
Prec.	-	4	1	1	2,3

- □Caso existam datas de disponibilização das tarefas, o problema de minimizar a data máxima de conclusão pode ser convertido num problema de minimização do atraso máximo
- □Para tal, considere-se uma constante K>max $\{r_j\}$ e definam-se prazos de conclusão d_i =K- r_i
- ■Resolva-se o problema $1||L_{max}$, considerando esses prazos de conclusão
- □A solução óptima para o problema inicial é dada pela ordem inversa da solução obtida

- □Curiosamente, este problema tem elevada complexidade (*NP-hard*)
- □Para resolver este tipo de problemas, é necessário recorrer a processos mais sofisticados, embora o tempo de computação para a obtenção da solução óptima possa ser, em muitos casos, demasiadamente elevado
- Um método de resolução está relacionado com outro problema associado

Escalonamento com uma só máquina – *Preemption* (interrupção)

- □Em alguns contextos de escalonamento de tarefas, considera-se possível a interrupção da execução de tarefas, para que se possa avançar com outras por alguma motivo (prioridade)
- □Essa situação é designada habitualmente por preemption
- □Quando se admite esta situação, a regra *Earliest Due Date*, devidamente adaptada, resolve bem o problema da miminização do atraso máximo

□Exemplo:

Tarefas	1	2	3	4
p_{j}	4	2	6	5
r_j	0	1	3	5
d_{j}	8	12	11	10

- □Ordenam-se as tarefas por ordem crescente do prazo de conclusão
- □Aplica-se a regra *Earliest Due Date* e, sempre que uma tarefa passar a estar disponível, interromper se adequado a que está a ser executada

- □Quando não é permitido interromper tarefas, é necessário recorrer a métodos mais complexos
- □Um desses métodos é do tipo branch-and-bound
- ■No passo inicial, considera-se que t=0 e que a primeira decisão consiste em decidir qual a primeira tarefa a executar
- □Seja S o conjunto de tarefas já escalonadas, num certo ponto da árvore de pesquisa
- □Só deverão ser consideradas as tarefas para pesquisa que verifiquem a seguinte condição:
 - $r_k < \min_{j \notin S} \{ \max\{t, r_j\} + p_j \}$

- □Em cada ponto da árvore de pesquisa é possível usar como limite inferior a resolução do problema com as tarefas ainda não escalonados de acordo com $1|pmtn,r_i|$ L_{max}
- □Um limite superior geral é dado por uma solução admissível que tenha sido encontrada
- □O instante t associado a um ponto de pesquisa corresponde sempre ao instante anterior somado com o tempo de processamento da tarefa escalonada

□Exemplo:

Tarefas	1	2	3	4
p_{j}	4	2	6	5
r_j	0	1	3	5
d_{j}	8	12	11	10

Escalonamento com uma só máquina $(1||\sum U_j)$

- □Estrutura de uma solução óptima:
 - Conjunto S_1 de tarefas que cumprem o prazo de conclusão
 - Conjunto S_2 de tarefas em atraso
 - As tarefas de S_1 são escalonadas antes das tarefas de S_2
 - As tarefas de S₁ estão escalonadas de acordo com a Earliest Due Date
 - As tarefas de S_2 estão escalonadas arbitrariamente

□Algoritmo:

- Ordenar as tarefas por ordem crescente do prazo de conclusão
- Escalonar as tarefas sucessivamente e, se uma ficar em atraso, remover a tarefa já escalonada com maior tempo de processamento
- As tarefas removidas ficam em atraso

Escalonamento com uma só máquina $(1||\sum U_i)$

□Exemplo:

Tarefas	1	2	3	4	5
p_{j}	7	8	4	6	6
d_{j}	9	17	18	19	21

- ■O problema $(1||\sum w_iU_i)$ é complexo (NP-hard)
- □Sugere-se a utilização de uma regra heurística para gerar soluções sub-optimais
- Um desses métodos pode ser a aplicação da regra Weighted Shortest Processing Time (tarefas ordenadas por ordem crescente de p_i/w_i)
- □Esta complexidade verifica-se, mesmo que os prazos de conclusão sejam todos iguais

Máquinas paralelas $Pm||C_{max}|$

- □Caso só existisse uma máquina, a questão de minimizar C_{max} é irrelevante
- Quando existem máquinas paralelas, o problema passa a ser complexo (NP-hard)
- □O problema corresponde a balancear correctamente a ocupação das máquinas
- □Exemplo:

Tarefas	1	2	3	4	5
p_i	20	20	50	40	30

Máquinas paralelas $Pm||C_{max}|$

- ■Se as tarefas estiverem todas disponíveis no momento inicial, $r_j = 0$, a regra *Longest Processing Time* (LPT) fornece habitualmente bons resultados
- \square As soluções obtidas com esta regra nunca estarão mais distantes, em termos do C_{\max} gerado, de 33% do valor óptimo
- ■Na realidade, o rácio de entre o valor dado pela solução assim gerada (LPT) e o valor óptimo não ultrapassa 4/3 – 1/(3m)

Máquinas paralelas $Pm||C_{max}|$

□Para observar um "pior caso", considere-se a seguinte instância, para 4 máquinas paralelas:

Tarefas	1	2	3	4	5	6	7	8	9
p_{j}	7	7	6	6	5	5	4	4	4

 \square A regra LPT dá um C_{\max} igual a 15, mas é possível obter 12!

Máquinas paralelas $Pm || \sum C_j$

- □Caso se pretende minimizar o tempo total de conclusão das tarefas (equivalente a minimizar o tempo médio de conclusão), a regra *Shortest Processing Time* (SPT) fornece sempre a solução óptima
- □Porém, caso o problema seja $Pm||\sum w_jC_j$, o problema passa a ser complexo
- \square A regra WSPT (considerando os rácios p_j/w_j) pode fornecer boas soluções, mas só garante estar a 22% do óptimo

Flow shop $Fm \mid C_{max}$

- ■Nos problemas de flow shop, é necessário processar n tarefas que têm que atravessar m máquinas em série, pela ordem pré-especificada
- □Embora possa parecer que basta determinar a permutação ideal de tarefas e fazê-las passar sequencialmente pelas máquinas, é possível que uma tarefa "ultrapasse" outra na espera por uma máquina
- □Caso se dêem essas "ultrapassagens", significa que não terá que se verificar, necessariamente, uma política *First Come First Served*

Flow shop $Fm || C_{max}$

- □Um resultado importante em problemas de flow shop, é que uma solução óptima nunca têm "ultrapassagens" entre as duas primeiras máquinas e entre as duas últimas
- □Logo, as soluções óptimas dos problemas $F2||C_{max}|$ e $F3||C_{max}|$ nunca têm "ultrapassagens"
- □Já nos problemas $F4||C_{max}|$ podem existir "ultrapassagens" da segunda para a terceira máquina
- □A possibilidade de ultrapassagens é algo que traz muita complexidade ao problema

Flow shop $Fm \mid C_{max}$

- Quando não são permitidas "ultrapassagens" (permutation flow shop), é possível determinar recursivamente o tempo de conclusão de cada tarefas em cada máquina
- □Dada uma permutação j_1 , ..., j_n das tarefas, as datas de conclusão em cada máquina podem ser calculadas do seguinte modo:

$$C_{i,j_1} = \sum_{l=1}^{i} p_{l,j_1}, i = 1, ..., m$$

$$C_{1,j_k} = \sum_{l=1}^{k} p_{1,j_l}, k = 1, ..., n$$

$$C_{i,j_k} = \max(C_{i-1,j_k}, C_{i,j_{k-1}}) + p_{i,j_k}, i = 2, ..., m, k = 2, ..., n$$

Flow shop $Fm||C_{max}|$

□Exemplo:

Tarefas	1	2	3	4	5
	5	5	3	6	3
	4	4	2	4	4
	4	4	3	4	1
	3	6	3	2	5

Flow shop $Fm||C_{max}|$

□Exemplo:

Tarefas	1	2	3	4	5
	5	5	3	6	3
	4	4	2	4	4
	4	4	3	4	1
	3	6	3	2	5

Flow shop $Fm \mid C_{max}$

□Um problema de flow shop dual corresponde a construir um outro problema com n tarefas e m máquinas, tal que o tempo de processamento da i-ésima tarefa, num problema, é igual ao da (m+1-i)-ésima, no outro

Tarefas	1	2	3	4	5
	3	6	3	5	5
	4	4	2	4	4
	1	4	3	4	4
	5	2	3	6	3

Flow shop $Fm \mid C_{max}$

- \square A permutação (j_1,j_2,j_3,j_4) no primeiro problema e a permutação (j_4,j_3,j_2,j_1) no problema dual apresentam o mesmo C_{max}
- □Para determinar a melhor permutação no caso $F2||C_{max}$, começa-se por dividir as tarefas em dois conjuntos
- ■No conjunto I colocam-se as tarefas que têm um menor tempo de processamento na máquina 1 $(p_{1j} < p_{2j})$, e as restantes colocam-se no conjunto II
- □Uma permutação SPT(I)-LPT(II) é óptima para o problema $F2||C_{max}$

Job shop $Jm || C_{max}$

- ■No job shop, cada tarefa tem a sua sequência de processamento pré-definida
- O problema consiste em determinar qual a forma de colocar as tarefas nas máquinas

□Exemplo:

- $j_1:M1->M2->M3$
- $j_2:M2->M1->M4->M3$
- $j_3:M1->M2->M4$

Tarefas\Máquinas	M1	M2	M3	M4
j_1	6	7	2	-
j_2	1	5	5	4
j_3	4	3	-	1

Job shop J2|| C_{max}

- □Quando existem apenas duas máquinas, é possível resolver o problema em tempo polinomial
- □Dividam-se as tarefas em dois conjuntos
 - $J_{1,2}$ conjunto das tarefas que têm que ser processadas em primeiro lugar pela máquina M1
 - $J_{2,1}$ conjunto das tarefas que têm que ser processadas em primeiro lugar pela máquina M2
- □Resolva-se o problema das tarefas em $J_{1,2}$ como se tratasse de um F2 $||C_{max}$, ou seja, utilizando o método SPT(I)-LPT(II)
- \square Faça-se o mesmo para as tarefas em $J_{2,1}$

Job shop $Jm || C_{max}$

- Quando o número de máquinas é superior a 2, o problema torna-se muito complexo
- □Uma alternativa à formulação em programação inteira é a utilização da heurística Shifting bottleneck*

Tarefas\Máquinas	M1	M2	М3	M4
j_1	6	7	2	-
j_2	1	5	5	4
j_3	4	3	-	1

^{*} Não estudada neste contexto