

รายงาน

Lab 01 สร้างสมการทางคณิตศาสตร์โดยโปรแกรม MATLAB

เสนอ

ผศ.คร.พนมขวัญ ริยะมงคล

จัดทำโดย

นายคชา วงศ์เศรษฐภูษิต รหัสนิสิต 59360556 ประธาน

นายจักรกฤษณ์ เสือครบุรี รหัสนิสิต 59360624 รองประธาน

นางสาวเกศมณี จันผ่อง รหัสนิสิต 59360501 เลขานุการ

นาวสาวศิริลักษณ์ เทียมเมฆา รหัสนิสิต 59365476 สมาชิกคนที่เ

นายโอบนิธิ ปิวศิลป์ศักดิ์ รหัสนิสิต 59366787 สมาชิกคนที่ 2

กลุ่ม SmartIP

รายงานนี้เป็นส่วนหนึ่งของรายวิชา 305434 การประมวลผลภาพคิจิทัล (Digital Image Processing)

ปีการศึกษา 2562 ภาคเรียนที่ 2

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ สาขาวิชาวิศวกรรมคอมพิวเตอร์

คณะวิศวกรรมศาสตร์ มหาวิยาลัยนเรศวร

1.สมการเชิงเส้นสร้างด้วยโปรแกรม MATLAB

ระบบสมการเชิงเส้น คือสมการที่แต่ละพจน์มีเพียงค่าคงตัว หรือเป็นผลคูณระหว่างค่าคงตัวกับตัวแปรยก กำลังหนึ่ง ซึ่งจะมีคีกรีของพหุนามเท่ากับ 0 หรือ 1 สมการเหล่านี้เรียกว่า "เชิงเส้น" เนื่องจากสามารถวาด กราฟของฟังก์ชันบนระบบพิกัดคาร์ทีเซียนได้เป็นเส้นตรง รูปแบบทั่วไปของสมการเชิงเส้นในตัวแปร x และ y คือ

y=mx+c

โดยที่ m คือค่าคงตัวที่แสดงความชันหรือเกรเดียนต์ของเส้นตรง และพจน์ b แสดงจุดที่เส้นตรงนี้ตัดแกน y สำหรับสมการที่มีพจน์ x2, y1/3, xy ฯลฯ ที่มีดีกรีมากกว่าหนึ่งไม่เรียกว่าเป็นสมการเชิงเส้น

เราสามารถสร้างสมการเชิงเส้นให้ออกมาในรูปแบบของกราฟด้วยคำสั่งบนโปรแกรม MATLAB ได้ดังนี้

```
x = [1:100];

y1 = 77*x+2;

plot(x,y1)
```

กราฟจากการแสดงผล คือ

2.สมการฟังก์ชันไซน์ (sin) สร้างด้วยโปรแกรม MATLAB

ฟังก์ชันไซน์ (sin)

 $(\theta,y)\in \text{sine }$ จะได้ว่า y เป็นค่าฟังก์ชันไซน์ที่ θ เขียนเป็นสมการความสัมพันธ์ได้ว่า y = sine (θ) แต่ นิยมเขียนเป็น y = sin θ จะเห็นว่า y จากสมการเป็นค่า y ของ P(x,y) และ θ ที่เป็น ความยาวส่วน โค้งหรือ มุมที่จุดศูนย์กลางของวงกลมหนึ่งหน่วย

สมการฟังก์ชันใชน์ (sine)

สมการฟังก์ชันไซน์ คือ $y = \sin x$ โดยที่ x เป็นความยาวส่วนโค้งบนวงกลมหนึ่งหน่วยหรือมุม ตารางแสดง ค่าความสัมพันธ์ $y = \sin x$ เมื่อ x แทนความยาวส่วนโค้งที่จุดศูนย์กลางของวงกลมหนึ่ง หน่วย หรือมุม

x	0	<u>π</u>	<u>π</u>	<u>π</u> 3	<u>π</u>	<u>2 π</u> 3	<u>3π</u>	<u>5π</u> 6	π	<u>7π</u> 6	<u>5π</u> 4	<u>2 π</u> 3	<u>3π</u>	<u>5π</u> 3	<u>7π</u> 4	<u>11 π</u>	2π
	0 °	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
y	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2	0	- <u>1</u>	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	- <u>1</u>	0

เขียนกราฟได้ดังนี้

ส่วนกราฟแสดงคลื่นไซน์(sine wave) ที่ซ้ำไปเรื่อย ๆ ทั้งทางบวกและลบของสมการ $y = \sin x$ ได้แก่

เราสามารถสร้างสมการเชิงเส้นให้ออกมาในรูปแบบของกราฟด้วยคำสั่งบนโปรแกรม MATLAB ได้ดังนี้

$$x = [1:100]$$

 $y2 = \sin(13*x)$
 $plot(x,y2)$

กราฟจากการแสดงผล คือ

3.สมการกำลังสองสร้างด้วยโปรแกรม MATLAB

สมการกำลังสอง คือสมการพหุนามที่มีตัวแปรในพจน์ใดพจน์หนึ่ง ยกกำลังสองโดยมีรูปทั่วไปของสมการ กำลังสอง

$$ax^2 + bx + c = 0$$

เมื่อ $a \neq 0$ (ถ้า a = 0 สมการนี้จะกลายเป็นสมการเชิงเส้น) ซึ่ง a, b อาจเรียกว่าเป็นสัมประสิทธิ์ของ x2, x ตามลำคับ ส่วน c คือสัมประสิทธิ์คงตัว บางครั้งเรียกว่าพจน์อิสระหรือพจน์คงตัว ฟังก์ชันของสมการกำลัง สองสามารถวาดกราฟบนระบบพิกัดคาร์ทีเซียนได้รูปเส้นโค้งพาราโบลา

ตัวอย่างกราฟของสมการกำลังสอง

เราสามารถสร้างสมการเชิงเส้นให้ออกมาในรูปแบบของกราฟด้วยคำสั่งบนโปรแกรม MATLAB ได้ดังนี้

$$x = [1:100]$$

 $y3 = (x.^2) + 5$
 $plot(x,y3)$

กราฟจากการแสดงผล คือ

