Package 'SSRA'

October 17, 2024

Type Package

Title Sakai Sequential Relation Analysis									
Version 0.1-1									
Date 2024-10-17									
Author Takuya Yanagida [cre, aut], Keiko Sakai [aut]									
Maintainer Takuya Yanagida <takuya.yanagida@univie.ac.at></takuya.yanagida@univie.ac.at>									
Description 'Takea Semantic Structure Analysis' (TSSA) and 'Sakai Sequential Relation Analysis' (SSRA) for polytomous items. Package includes functions for generating a sequential relation table and a treegram to visualize the sequential relations between pairs of items.									
License GPL-3									
LazyLoad yes									
LazyData true									
Imports shape, stringr									
Depends R (>= $3.2.0$)									
RoxygenNote 5.0.1									
NeedsCompilation no									
Repository CRAN									
Date/Publication 2024-10-17 10:00:02 UTC									
Contents									
exdat 2 plot.ssra 2 print.ssra 3 print.tssa 4 scatterplot 5 seqtable 6 SSRA 7 summary.seqtable 9									

2 plot.ssra

	treegram TSSA .																		
Index																			15

exdat

Example data based on Takeya (1991)

Description

A dataset containing 10 observations on 5 items.

Usage

exdat

Format

A data frame with 10 rows and 5 variables

plot.ssra

Plot ssra

Description

Function for plotting the ssra object

Usage

```
## S3 method for class 'ssra'
plot(x, r.crt = NULL, r.sig = TRUE, d.sq = NULL,
    m.sig = TRUE, sig.col = TRUE, col = c("red2", "green4", "blue3",
    "black"), pch = c(1, 2, 0, 4), mar = c(3.5, 3.5, 1.5, 1), ...)
```

Arguments

X	requires the return object from the SSRA function
r.crt	minimal absolute correlation to be judged 'sequential'
r.sig	plot statistically significant correlations
d.sq	minimal effect size Cohen's d to be judged 'sequential'
m.sig	plot statistically significant mean difference
sig.col	significance in different colors
col	color code or name
pch	plotting character
mar	number of lines of margin to be specified on the four sides of the plot
	further arguments passed to or from other methods

print.ssra 3

Details

Takea Semantic Structure Analysis (TSSA) and Sakai Sequential Relation Analysis (SSRA) are graphical approaches

Author(s)

Takuya Yanagida Keiko Sakai

References

Takeya, M. (1991). A new test theory: Structural analyses for educational information. Tokyo: Waseda University Press.

See Also

```
SSRA, treegram, scatterplot
```

Examples

```
## Not run:
# Example data based on Takeya (1991)

# Sakai Sequential Relation Analysis
# ordering assesed according to the correlation coefficient and mean difference
exdat.ssra <- SSRA(exdat, output = FALSE)
plot(exdat.ssra)

## End(Not run)</pre>
```

print.ssra

Sakai Sequential Relation Analysis Print

Description

print function for the ssra object

Usage

```
## S3 method for class 'ssra'
print(x, digits = 3, ...)
```

Arguments

```
    requires the result object of hssr function
    digits integer indicating the number of decimal places to be used
    further arguments passed to or from other methods
```

print.tssa

Details

Takea Semantic Structure Analysis (TSSA) and Sakai Sequential Relation Analysis (SSRA) are graphical approaches

Author(s)

Takuya Yanagida Keiko Sakai

References

Takeya, M. (1991). A new test theory: Structural analyses for educational information. Tokyo: Waseda University Press.

See Also

```
seqtable
```

Examples

```
# Example data based on Takeya (1991)

# Sakai Sequential Relation Analysis
# ordering assessed according to the correlation coefficient and mean difference
exdat.ssra <- SSRA(exdat, output = FALSE)
print(exdat.ssra)</pre>
```

print.tssa

Semantric Structure Analysis Print

Description

print function for the tssa object

Usage

```
## S3 method for class 'tssa'
print(x, digits = 3, ...)
```

Arguments

x requires the result object of hssr functiondigits integer indicating the number of decimal places to be used... further arguments passed to or from other methods

Details

Takea Semantic Structure Analysis (TSSA) and Sakai Sequential Relation Analysis (SSRA) are graphical approaches

scatterplot 5

Author(s)

Takuya Yanagida Keiko Sakai

References

Takeya, M. (1991). A new test theory: Structural analyses for educational information. Tokyo: Waseda University Press.

See Also

```
seqtable
```

Examples

```
# Example data based on Takeya (1991)

# Takea Semantic Structure Analysis
# ordering assesed according to the ordering coefficient
exdat.tssa <- TSSA(exdat, m = 5, output = FALSE)
print(exdat.tssa)

# Takea Semantic Structure Analysis including statistical testing
# ordering assesed according to the ordering coefficient and statistical significance
exdat.tssa <- TSSA(exdat, m = 5, sig = TRUE, output = FALSE)
print(exdat.tssa)</pre>
```

scatterplot

Scatterplot Matrices

Description

This function produces a scatterplot matrix

Usage

```
scatterplot(data, type = c("jitter", "size", "count", "sun"))
```

Arguments

data a data frame
type type of plot, i.e., 'jitter', 'size', 'count', and 'sun'

Details

Takea Semantic Structure Analysis (TSSA) and Sakai Sequential Relation Analysis (SSRA) are graphical approaches

6 seqtable

Author(s)

Takuya Yanagida Keiko Sakai

References

Takeya, M. (1991). A new test theory: Structural analyses for educational information. Tokyo: Waseda University Press.

See Also

```
TSSA, SSRA
```

Examples

```
# Example data based on Takeya (1991)
# Scatterplot matrix: jitter
scatterplot(exdat)
# Scatterplot matrix: size
scatterplot(exdat, type = "size")
# Scatterplot matrix: count
scatterplot(exdat, type = "count")
# Scatterplot matrix: sun
scatterplot(exdat, type = "sun")
```

seqtable

Sequential Relation Table

Description

This function builds a table for the tssa and ssra object used to create a treegram

Usage

```
seqtable(object, order = c("no", "decreasing", "increasing"), digits = 3,
  output = TRUE)
```

Arguments

object	requires the return object from the TSSA or SSRA function
order	sort by item mean of j?
digits	integer indicating the number of decimal places to be used
output	print result table?

SSRA 7

Details

Takea Semantic Structure Analysis (TSSA) and Sakai Sequential Relation Analysis (SSRA) are graphical approaches

Author(s)

Takuya Yanagida Keiko Sakai

References

Takeya, M. (1991). A new test theory: Structural analyses for educational information. Tokyo: Waseda University Press.

See Also

TSSA, SSRA, treegram, summary.seqtable

Examples

```
# Example data based on Takeya (1991)

# Takea Semantic Structure Analysis
# ordering assesed according to the correlation coefficient and mean difference
exdat.tssa <- TSSA(exdat, m = 5, output = FALSE)
seqtable(exdat.tssa)

# Sakai Sequential Relation Analysis
# ordering assesed according to the correlation coefficient and mean difference
exdat.ssra <- SSRA(exdat, output = FALSE)
seqtable(exdat.ssra)</pre>
```

SSRA

Sakai Sequential Relation Analysis

Description

This function conducts the Sequential Relation Analysis based on Sakai 2016

Usage

```
SSRA(dat, r.crt = 0.3, mu.sq = 0, mu.eq = Inf, d.sq = 0.2, d.eq = 0.2,
pairwise = TRUE, method = c("pearson", "kendall", "spearman"),
alpha = 0.05, p.adjust.method = c("holm", "hochberg", "hommel",
"bonferroni", "BH", "BY", "fdr", "none"), digits = 3, vnames = TRUE,
order = c("no", "decreasing", "increasing"), exclude = TRUE,
output = TRUE)
```

SSRA

Arguments

dat	requires a data frame with polytomous data
r.crt	correlation coefficient criterion to be judged 'sequential' or 'equivalent
mu.sq	Absolute mean difference criterion to be judged 'sequential'
mu.eq	maximal absolute mean difference to be judged 'equivalent'
d.sq	effect size for mean difference criterion to be judged 'sequential'
d.eq	maximal effect size Cohen's d to be judged 'equivalent'
pairwise	pairwise deletion of missing data, if pairwise = FALSE listwise deletion is applied
method	character string indicating which correlation coefficient to be used, 'pearson' = Pearson's product moment correlation coefficien 'spearman' = Spearman's rho statistic 'kendall' = Kendall's tau (default)
alpha	significance level
p.adjust.metho	d
	p-value correction method for multiple comparisons, see: ?p.adjust (default = holm)
digits	integer indicating the number of decimal places to be used
vnames	use variable names for labeling?
order	sort by item mean of j and k?
exclude	exclude paths with no relationship?
output	print result table?

Details

Takea Semantic Structure Analysis (TSSA) and Sakai Sequential Relation Analysis (SSRA) are graphical approaches

Value

Returns an object of class ssra, to be used for the seqtable function. The object is a list with following entries: 'dat' (data frame), 'call" (function call), 'args' (specification of arguments), 'time' (time of analysis), 'R' (R version), 'package' (package version), and 'restab' (result table). The 'restab' entry has following entries:

j	item j
k	item k
n	sample size
j.mean	mean of item j
j.sd	standard deviation of item j
k.mean	mean of item k
k.sd	standard deviation of item k
r	correlation coefficient
r.t	test statistic of the statistical significanc test for the correlation coefficient
r.p	statistical significance value of the correlation

summary.seqtable 9

```
statistical significance of the correlation (0 = \text{not significant} / 1 = \text{significant})
r.sig
                correlation criterion for judging 'sequential' or 'equal': 'r.p < alpha' and 'r > r.crt' (0 = no / 1 = yes)
r.crt
m.diff
                mean difference
sd.diff
                standard deviation difference
m.diff.eff
                effect size Cohen's d for dependent samples
                test statistic of the statistical significanc test for mean difference
m.t
                statistical significance value of the mean difference
m.p
                statistical significance of the mean difference (0 = \text{not significant} / 1 = \text{significant})
m.sig
                mean difference criteria for judging 'sequential': 'm.diff.p < alpha', 'm.diff > mu.sq' and 'm.diff.eff > d.sq' (0
m.crt.sq
                mean difference criteria for judging 'equivalence': statistical significant and 'm <= mu.eq' 'd <= d.sq' (0 = no
m.crt.eq
                sequential relation of item pairs ("+","-", "")
seq
                equivalence of item pairs ("=" or "")
eq
                order structure of item pairs ("=", "+","-")
order
```

Author(s)

Takuya Yanagida Keiko Sakai

References

Takeya, M. (1991). A new test theory: Structural analyses for educational information. Tokyo: Waseda University Press.

See Also

```
seqtable, TSSA, plot.ssra, scatterplot
```

Examples

```
# Example data based on Takeya (1991)
# Sakai Sequential Relation Analysis
# ordering assesed according to the correlation coefficient and mean difference
SSRA(exdat)
```

summary.seqtable

Sequential Relationship Table Summary

Description

summary function for the seqtab object

Usage

```
## S3 method for class 'seqtable'
summary(object, exclude = TRUE, ...)
```

summary.seqtable

Arguments

object requires the result object of sequable function

exclude exclude lower-order paths (i.e., paths included in higher order paths)?

... additional arguments affecting the summary produced

Details

Takea Semantic Structure Analysis (TSSA) and Sakai Sequential Relation Analysis (SSRA) are graphical approaches

Value

```
rel relationship: sq = sequential / eq = equal var variables involved in the sequential/equal paths
```

Author(s)

Takuya Yanagida Keiko Sakai

References

Takeya, M. (1991). A new test theory: Structural analyses for educational information. Tokyo: Waseda University Press.

See Also

```
SSRA, TSSA
```

Examples

```
# Example data based on Takeya (1991)

# Sakai Sequential Relation Analysis
# ordering assesed according to the correlation coefficient and mean difference
exdat.ssra <- SSRA(exdat, output = FALSE)
exdat.seqtab<- seqtable(exdat.ssra, output = FALSE)
summary(exdat.seqtab)</pre>
```

treegram 11

treegram Treegram

Description

This function draws a treegram for the Takea Semantic Structure Analysis (TSSA) and Sakai Sequential Relation Analysis (SSRA)

Usage

```
treegram(object, select = NULL, pos = NULL, col = NULL, mai = c(0.2, 0,
    0.2, 0.2), print.pos = TRUE, cex.text = 0.95, x.factor = 1.7,
    x.digits = 0, y.digits = 2, y.intersp = 1.45, cex.legend = 0.9)
```

Arguments

object	requires the result object of seqtab function
select	select items to be plotted
pos	position of items on the x-axis
col	color code or name for paths
mai	numeric vector of the form c(bottom, left, top, right) which gives the margin size specified in inches
print.pos	display x/y-position as legend
cex.text	text expansion factor relative to current par("cex")
x.factor	shift factor of legend position
x.digits	decimal places of x-position
y.digits	decimal places of y-position
y.intersp	legend character interspacing factor for vertical (y) line distances
cex.legend	legend character expansion factor relative to current par("cex)

Details

Takea Semantic Structure Analysis (TSSA) and Sakai Sequential Relation Analysis (SSRA) are graphical approaches

Author(s)

Takuya Yanagida Keiko Sakai

References

Takeya, M. (1991). A new test theory: Structural analyses for educational information. Tokyo: Waseda University Press.

12 TSSA

See Also

seqtable

Examples

```
# Example data based on Takeya (1991)
# Sakai Sequential Relation Analysis
# ordering assesed according to the correlation coefficient and mean difference
exdat.ssra <- SSRA(exdat, output = FALSE)</pre>
exdat.segtab <- segtable(exdat.ssra, output = FALSE)</pre>
treegram(exdat.seqtab)
# Select items to be plotted
exdat.ssra <- SSRA(exdat, output = FALSE)</pre>
exdat.segtab <- segtable(exdat.ssra, output = FALSE)</pre>
treegram(exdat.seqtab, select = c("Item2", "Item3", "Item4"))
# Define position for each item on the x-axis
exdat.ssra <- SSRA(exdat, output = FALSE)</pre>
exdat.seqtab <- seqtable(exdat.ssra, output = FALSE)</pre>
treegram(exdat.seqtab, pos = c(Item5 = 1, Item4 = 3,
                                Item3 = 5, Item2 = 2, Item1 = 4))
# Change colors for each path of an item
exdat.ssra <- SSRA(exdat, output = FALSE)</pre>
exdat.seqtab <- seqtable(exdat.ssra, output = FALSE)</pre>
treegram(exdat.seqtab,
         col = c(Item5 = "red3", Item4 = "blue3",
                  Item3 = "gray99", Item2 = "darkgreen", Item1 = "darkorange2"))
```

TSSA

Takea Semantic Structure Analysis

Description

This function conducts the Semantic Structure Analysis for polytomous items based on Takeya 1991

Usage

```
TSSA(dat, m, crit = 0.93, pairwise = TRUE, sig = FALSE, exact = TRUE, alpha = 0.05, p.adjust.method = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"), digits = 3, vnames = TRUE, order = c("no", "decreasing", "increasing"), exclude = TRUE, output = TRUE)
```

TSSA 13

Arguments

dat requires a data frame with polytomous data, all items need to have the same

numbers of response categories

m requires the number of item response categories

crit criteria for ordering coefficient

pairwise pairwise deletion of missing data, if pairwise = FALSE listwise deletion if ap-

plied

sig if sig = TRUE, ordering will be assessed according to ordering coefficient and

statistical significance

exact if exact = TRUE, exact binomial test will be applied otherwise single-sample

proportion test will be applied

alpha significance level

p.adjust.method

p-value correction method for multiple comparisons, see: ?p.adjust (default =

holm)

digits integer indicating the number of decimal places to be used

vnames use variable names for labeling? order sort by item mean of j and k?

exclude exclude paths with no relationship?

output print result table?

Details

Takea Semantic Structure Analysis (TSSA) and Sakai Sequential Relation Analysis (SSRA) are graphical approaches

Value

Returns an object of class tssa, to be used for the seqtable function. The object is a list with following entries: 'dat' (data frame), 'call" (function call), 'args' (specification of arguments), 'time' (time of analysis), 'R' (R version), 'package' (package version), and 'restab' (result table). The 'restab' entry has following entries:

```
 \begin{array}{ccc} \texttt{j} & & \texttt{item j} \\ \texttt{k} & & \texttt{item k} \\ \texttt{n} & & \texttt{sample size} \\ \texttt{j.mean} & & \texttt{mean of item j} \end{array}
```

j.sd standard devication of item j

k.mean mean of item k

k.sd standard devication of item kc.jk ordering coefficient j -> k

p. jk p-value j -> k (available if sig = TRUE)

sig.jk statistical significane p-value $j \rightarrow k$ (0 = no / 1 = yes; available if sig = TRUE)

c.kj ordering coefficient $k \rightarrow j$

14 TSSA

```
p.kj p-value k \rightarrow j (0 = no / 1 = yes; available if sig = TRUE) sig.kj statistical significane p-value k \rightarrow j (available if sig = TRUE) ordering j \rightarrow k ordering k \rightarrow j order order structure of item pairs ("=", "+","-")
```

Author(s)

Takuya Yanagida Keiko Sakai

References

Takeya, M. (1991). A new test theory: Structural analyses for educational information. Tokyo: Waseda University Press.

See Also

```
SSRA, seqtable, scatterplot
```

Examples

```
# Example data based on Takeya (1991)

# Takea Semantic Structure Analysis
# ordering assesed according to the ordering coefficient
TSSA(exdat, m = 5)

# Takea Semantic Structure Analysis including statistical testing
# ordering assesed according to the ordering coefficient and statistical significance
TSSA(exdat, m = 5, sig = TRUE)
```

Index

```
* datasets
exdat, 2
exdat, 2
plot.ssra, 2, 9
print.ssra, 3
print.tssa, 4
scatterplot, 3, 5, 9, 14
seqtable, 4, 5, 6, 9, 12, 14
SSRA, 3, 6, 7, 7, 10, 14
summary.seqtable, 7, 9
treegram, 3, 7, 11
TSSA, 6, 7, 9, 10, 12
```