HMMT February 2024

February 17, 2024

Geometry Round

1. Inside an equilateral triangle of side length 6, three congruent equilateral triangles of side length x with sides parallel to the original equilateral triangle are arranged so that each has a vertex on a side of the larger triangle, and a vertex on another one of the three equilateral triangles, as shown below.

A smaller equilateral triangle formed between the three congruent equilateral triangles has side length 1. Compute x.

- 2. Let ABC be a triangle with $\angle BAC = 90^{\circ}$. Let D, E, and F be the feet of altitude, angle bisector, and median from A to BC, respectively. If DE = 3 and EF = 5, compute the length of BC.
- 3. Let Ω and ω be circles with radii 123 and 61, respectively, such that the center of Ω lies on ω . A chord of Ω is cut by ω into three segments, whose lengths are in the ratio 1 : 2 : 3 in that order. Given that this chord is not a diameter of Ω , compute the length of this chord.
- 4. Let ABCD be a square, and let ℓ be a line passing through the midpoint of segment \overline{AB} that intersects segment \overline{BC} . Given that the distances from A and C to ℓ are 4 and 7, respectively, compute the area of ABCD.
- 5. Let ABCD be a convex trapezoid such that $\angle DAB = \angle ABC = 90^{\circ}$, DA = 2, AB = 3, and BC = 8. Let ω be a circle passing through A and tangent to segment \overline{CD} at point T. Suppose that the center of ω lies on line BC. Compute CT.
- 6. In triangle ABC, a circle ω with center O passes through B and C and intersects segments \overline{AB} and \overline{AC} again at B' and C', respectively. Suppose that the circles with diameters BB' and CC' are externally tangent to each other at T. If AB = 18, AC = 36, and AT = 12, compute AO.
- 7. Let ABC be an acute triangle. Let D, E, and F be the feet of altitudes from A, B, and C to sides \overline{BC} , \overline{CA} , and \overline{AB} , respectively, and let Q be the foot of altitude from A to line EF. Given that AQ = 20, BC = 15, and AD = 24, compute the perimeter of triangle DEF.
- 8. Let ABTCD be a convex pentagon with area 22 such that AB = CD and the circumcircles of triangles TAB and TCD are internally tangent. Given that $\angle ATD = 90^{\circ}$, $\angle BTC = 120^{\circ}$, BT = 4, and CT = 5, compute the area of triangle TAD.
- 9. Let ABC be a triangle. Let X be the point on side \overline{AB} such that $\angle BXC = 60^{\circ}$. Let P be the point on segment \overline{CX} such that $BP \perp AC$. Given that AB = 6, AC = 7, and BP = 4, compute CP.
- 10. Suppose point P is inside quadrilateral ABCD such that

$$\angle PAB = \angle PDA$$
,
 $\angle PAD = \angle PDC$,
 $\angle PBA = \angle PCB$, and
 $\angle PBC = \angle PCD$.

If PA = 4, PB = 5, and PC = 10, compute the perimeter of ABCD.