Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 962 532 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 08.12.1999 Builetin 1999/49

(21) Application number: 98870127.2

(22) Date of filing: 03.06.1998

(51) Int. Cl.⁵: **C12N 15/31**, C07K 14/35, C07K 19/00, C07K 16/12, G01N 33/569

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Designated Extension States:

AL LT LV MK RO SI

(71) Applicant: INNOGENETICS N.V. 9052 Gent (BE)

(72) Inventors:

Cocito, Carlo
 1340 Ottignies (BE)

 Coetsier, Christophe 5530 Spontin (BE)

(11)

Remarks:

- The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.
- Claims 11 to 14 are deemed to be abandoned due to non-payment of the claims fees (Rule 31 (2) EPC).

(54) Polypeptides and nucleic acids encoding the same for the diagnosis and prevention of tuberculosis disease.

(57) The invention relates to an isolated nucleic acid of *M. tuberculosis* containing in its nucleotide sequence at least two overlapping ORF's which encode the following two antigenic proteins, recognized by a pool of sera from tuberculous patients:

(i) B2 protein represented by SEQ ID N0 2, or a protein homologous to B2 containing in its amino acid sequence at least one conservative amino acid substitution (according to Table 1) with respect to the sequence represented by SEQ ID No 2, and (ii) B3 protein represented by SEQ ID No 3, or a protein homologous to B3 containing in its amino acid sequence at least one conservative amino acid substitution (according to Table 1) with respect to the sequence represented by SEQ ID N0 3, or a fragment of said nucleic acid, said fragment containing at least 15, preferably at least 30 and more preferably at least 45 contiguous nucleotides of the sequence of said nucleic acid, and encoding at least one epitope of the B2 and/or B3 protein, or its homologues.

Description

[0001] The current invention relates to an isolated nucleic acid molecule of *M. tuberculosis*, encoding several antigenic polypeptides useful for the *in vitro* diagnosis and prevention of tuberculosis disease in mammals. The invention also relates to recombinant polypeptides encoded by said nucleic acid, methods for producing the same, and their use rine for the prevention of tuberculosis disease in mammals. The invention also relates to a vaccoline for the prevention of tuberculosis disease in mammals, comprising as an active principle said nucleic acid or the polypeptides encoded thereby.

10 BACKGROUND OF THE INVENTION

[0002] Tuberculosis is the infectious disease with the largest diffusion worldwide, affecting about one third of the world population. Its high morbidity (8 million new patients a year) and mortality (3 million deaths a year) rates witness the visual content of the etiological agents (*M. tuberculosis* and *M. bovis*).

[0003] Tuberculous bacilli are disseminated by post-primary tuberculosis patients with open lesions (Daniel, 1994; Youmans, 1985). The commonly used diagnostic procedures are unsatisfactory. Culturing the bacilli starting from a sample taken from the patient requires very long incubation times, while only mycobacteria with intact envelop are identified in biopsies by the Ziehl-Neelsen staining. These handicaps are not shared by the immunological diagnostic procedures (Daniel and Debanne, 1987). However, commercially available serological methods lack species-specificity, being unable to distinguish tuberculous bacilli from the other pathogenic and saprophytic mycobacteria. In fact, extensive homologies exist among the corresponding proteins of different mycobacterial species.

[0004] Numerous proteins of *M.tuberculosis* and *M.bovis* have been identified as immunologically significant for diagnosis, being recognized by patients sera and/or eliciting a cellular immune response. Most of them are secretory products, released by growing bacteria and thus directly interacting with the host immune system. Reference can be made to the review article of Young et al (1992) for the mycobacterial proteins described before 1992. Those more recently 16 (Verbon et al. 1992; Friscia et al., 1995), 18 (Manca et al. 1995; Pollock and Andersen, 1997), 10-14 (Boom et al., 1994), 16 (Verbon et al. 1996), 26 (O'Loan et al., 1994), 28 (Berthet et al., 1995; Bigi et al. 1995), 29 (Laqueyrerie et al., 1995), 30 (Sinha et al., 1997), 34 (Hermans et al., 1995), 45 (Romain et al., 1993), 66 (Deshpande et al., 1994) and 88 (Braibant et al., 1994; Laal et al., 1997) kDa.

[0005] A small number of mycobacterial protein genes have been cloned: the corresponding translation products have been characterized, and some of them have been used on an experimental scale for immunoassays. The heat-shock proteins of 14, 65, and 71 kDa of the tuberculous bacilli have been purified (Young et al. 1992): they cross-react, however, with the homologous proteins of other species, since they hold ancient motifs shared by even distantly-related bacteria (Young et al. 1987). Among the recombinant proteins biochemically characterized, those of 6 kDa (ESAT-6) (Sörensen et al., 1995), 18 kDa (MPT-63) (Manca et al., 1997), 19 kDa (Prestidge et al., 1995), 22 and 25 kDa (MPB83 and 70) (Hewinson et al., 1996; Matsumoto et al., 1995), 28 kDa (erp) (Berthet et al., 1995; Bigi et al., 1995), 29 kDa (Apa 45/47) (Laqueyrerie et al., 1995), 30-32 kDa (Ag 85 A-B-C) (Borremans et al., 1989; Content et al., 1991), 34 kDa (Ag 84) (Hermans et al., 1995), 38 kDa (Singh et al., 1992), ought to be cited. Most of these proteins crossreact with the corresponding proteins of mycobacteria other than M. tuberculosis. None of them has been used so far as a reagent in commercially available diagnostic kits, or applied for large scale epidemiological investigation. Detection assays based on these antigens still lack sensitivity and/or specificity. In order to enhance sensitivity, a combination of different M. tuberculosis antigens will be indispensable. Specificity of the assay has to be increased by selecting peptides which specifically react with sera from M. tuberculosis (M. bovis) infected subjects and not with sera from healthy subjects, or subjects infected by mycobacteria other than M. tuberculosis. There remains a continuing need for new M. tuberculosis antigens, more particularly antigens containing M. tuberculosis species-specific epitopes useful in the immunodiagnosis of tuberculosis.

AIMS

50

[0006] It is an aim of the current invention to provide new *M. tuberculosis* antigens useful in the immunodiagnosis of tuberculosis disease.

[0007] More specifically, it is an aim of the current invention to provide new *M. tuberculosis* polypeptides containing species-specific epitopes, useful in the serodiagnosis of tuberculosis disease.

[0008] It is moreover an aim of the current invention to provide the nucleic acids encoding said polypeptides. The sequence of said nucleic acids and their translation products is also provided by the current invention.

[0009] It is also an aim of the current invention to provide methods for producing said *M. tuberculosis* polypeptides. It is moreover an aim of the current invention to provide methods and kits for immunodiagnosis of tuberculosis

disease in mammals.

[0011] Finally, it is an aim of the current invention to provide for a vaccine composition against tuberculosis disease. It is believed that all the above-mentioned aims have been met by the different embodiments of the current [0012] invention.

DEFINITIONS

[0013] The term "nucleic acid" or "polynucleic acid" refers to a single stranded or double stranded nucleic acid molecule which may contain from 10 nucleotides to the complete nucleotide sequence (such as for instance 20, 30, 40, 50, 60, 70, 80 or more nucleotides). A nucleic acid which is smaller than about 100 nucleotides in length is often also referred to as an oligonucleotide. A nucleic acid may consist of deoxyribonucleotides (DNA) or ribonucleotides (RNA), nucleotide analogues or modified nucleotides, or may have been adapted for therapeutic purposes. Nucleic acid molecules are represented throughout the current invention by single stranded DNA-sequences, extending from the 5' end to the 3' end. It should be understood however that the nucleic acids of the current invention also encompass the complementary strand of the illustrated molecule, as well as the double stranded molecules and the corresponding RNA molecules, wherein the deoxyribonucleotides are replaced by ribonucleotides, and wherein T is replaced by U.

[0014] The expression "isolated" means that the respective component (nucleic acid, protein) is preferably 90%, more preferably 95%, most preferably 98% pure as measured by its weight versus the weight of possible contaminants. For the isolated polypeptides of the invention, the purity is high enough in order to ensure a specific reactivity of the polypeptides with sera from tuberculous patients.

[0015] The term "Open Reading Frame (ORF)" refers to a nucleotide sequence containing a series of triplets coding for amino acids, without the occurrence of a termination codon. The sequence of an ORF is (potentially) translatable into a protein.

[0016] The term "polypeptide" designates a linear series of amino acids connected one to the other by peptide bonds between the alpha-amino and carboxy groups of adjacent amino acids. In the context of the present invention, the term "polypeptide" may be used interchangeably with the term "protein". Polypeptides can be in a variety of lengths, shorter polypeptides (i.e. of 50 amino acids in length or shorter), are usually termed "peptides". Polypeptides and peptides may occur either in their natural (uncharged) forms or in forms which are salts, and either free of modifications such as glycosylation, side chain oxidation, or phosphorylation or containing these modifications. It is well understood in the art that amino acid sequences contain acidic and basic groups, and that the particular ionization state exhibited by the polypeptide is dependent on the pH of the surrounding medium when the protein is in solution, or that of the medium from which it was obtained if the protein is in solid form. Also included in the definition are proteins modified by additional substituents attached to the amino acids side chains, such as glycosyl units, lipids, or inorganic ions such as phosphates, as well as modifications relating to chemical conversions of the chains, such as oxidation of sulfhydryl groups. Thus the polypeptides of the invention also include the appropriate amino acid sequence referenced subject to those of the foregoing modifications which do not destroy its functionality (i.e. immunoreactivity).

[0017] The polypeptides of the invention, and particularly the shorter peptides, can be prepared by classical chemical synthesis. The synthesis can be carried out in homogeneous solution or on solid phase.

[0018] For instance, the synthesis technique in homogeneous solution which can be used is the one described by Houbenweyl in the book entitled "Methode der organischen chemie" (Method of organic chemistry) edited by E. Wunsh, vol. 15-I et II. THIEME, Stuttgart 1974.

[0019] The polypeptides of the invention can also be prepared in solid phase according to the methods described by Atherton and Shepard in their book entitled "Solid phase peptide synthesis" (IRL Press, Oxford, 1989).

[0020] The polypeptides according to this invention can also be prepared by means of recombinant DNA techniques as described by Maniatis et al., (Molecular Cloning: A Laboratory Manual, New York, Cold Spring Harbor Laboratory, 1982), and as illustrated in the examples section.

The term "antigenic polypeptide" means that the polypeptide contains antigenic regions which induce a humoral (i.e. formation of antibodies) or a cellular immune response in the host organism which has been infected by the pathogen from which the polypeptide is isolated.

[0022] The term "immunogenic polypeptide" means that the polypeptide induces a protective immune response in the host organism. Immunogenic (poly)peptides are preferred reagents for vaccine compositions.

[0023] The term "immunodiagnosis" refers to the diagnosis of a disease by detection of a disease-specific immune response of the host organism. The immune response may be either of the humoral type (raise in antibody titer) or of the cellular type (specific lymphoproliferation, secretion of certain lymphokines...).

[0024] The term "serodiagnosis" refers to the diagnosis of a disease by the detection in the serum of a raised titer of specific antibodies against the pathogen.

[0025] The term "sensitivity" of an assay refers to the proportion of correctly identified patients. It is calculated as the ratio of "true positives" over the sum of "true positives" and "false negatives".

[0026] The term "specificity" of an assay refers to the proportion of healthy (=non-tuberculous) subjects that are sero-logically negative. It is calculated as the ratio of "true negatives" over the sum of "true negatives" and "false positives". The term "epitope" or "antigenic determinant" refers to that portion of a molecule (in this case protein molecule) that is specifically bound by an antibody combining site. Epitopes may be determined by any of the techniques known in the art. They may be roughly predicted by a variety of computer prediction models known in the art. An epitope contains usually a stretch of at least 6 amino acids, preferably 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 50 contiguous amino acids.

[0028] The expression "species-specific epitope" refers to an epitope which will only be recognized by antibodies raised against the respective species (organism). For example, a *M. tuberculosis* specific epitope will only be recognized by antibodies raised against the species *M. tuberculosis*, and not by antibodies raised against other types of technique used in the examples section (absorption technique). It may also be evaluated using antibodies present in sera from subjects who have been infected with the respective species.

[0029] It should be understood that in the context of the present invention the closely related species *M. tuberculosis* and *M. bovis* have to be considered as one single species, causing tuberculosis in mammals, and more particularly in man and bovine. It should be clear that, where the term *M. tuberculosis* is used, it encompasses in fact all the species africanum.

[0030] The expression "immunodominant epitope" refers to an epitope which is recognized by the majority of host immune systems. It means that, if a random set of sera from tuberculous patients is analysed, at least 30%, preferably 100311. The expression "expression to the sera recognize that particular epitope.

[0031] The expression "conservative amino acid substitution" means the substitution of an amino acid by a "related" amino acid, of which the side chain characteristics are comparable to the original amino acid. Table 1 shows a list of which substitutions are generally considered to be conservative.

25

30

35

40

45

50

55

TABLE 1

	IABLE 1
Overview of stitutions.	conservative amino acid sub-
Amino acid	Conservative substitution by
Ser (S)	Thr, Giy, Asn
Arg (R)	His, Lys, Glu, Gin
Leu (L)	lle, Met, Phe, Val, Tyr
Pro (P)	Ala, Thr, Gly
Thr (T)	Pro, Ser, Ala, Gly, His, Gln
Ala (A)	Pro, Gly, Thr
Val (V)	Met, Ile, Tyr, Phe, Leu
Gly (G)	Ala, Thr, Pro, Ser
lle (I)	Met, Leu, Phe, Val, Tyr
Phe (F)	Met, Tyr, Ile, Leu, Trp, Val
Tyr (Y)	Phe, Trp, Met, Ile, Val, Leu
Cys (C)	Ser, Thr, Met
His (H)	Gln, Arg, Lys, Glu, Thr
Gin (Q)	Glu, His, Lys, Asn, Thr, Arg
Asn (N)	Asp, Ser, Gin
Lys (K)	Arg, Glu, Gln, His
Asp (D)	Asn, Glu, Gln
Glu (E)	Gln, Asp, Lys, Asn, His, Arg

TABLE 1 (continued)

Overview of c	onservative amino acid sub-
Amino acid	Conservative substitution by
Met (M)	lle, Leu, Phe, Val

DETAILED DESCRIPTION OF THE INVENTION

25

[0032] The current invention provides for an isolated nucleic acid of M. tuberculosis containing a nucleotide sequence with a maximum length of 3000 contiguous nucleotides, wherein said nucleotide sequence contains at least two overlapping ORF's which encode at least a fragment of the following two antigenic proteins recognized by a pool of sera from tuberculous patients:

- (i) a B2 protein represented by SEQ ID No 2, or a protein homologous to B2 containing in its amino acid sequence at least one conservative amino acid substitution (according to Table 1) with respect to the sequence represented
- (ii) a B3 protein represented by SEQ ID N0 3, or a protein homologous to B3 containing in its amino acid sequence at least one conservative amino acid substitution (according to Table 1) with respect to the sequence represented
- or a fragment of said nucleic acid, said fragment containing at least 15, preferably at least 30 and more preferably by SEQ ID NO 3, at least 45 contiguous nucleotides of the sequence of said nucleic acid, and encoding at least one epitope of the B2 and/or B3 protein, or its homologues.
- [0033] The amino acid sequence of protein B2 (SEQ ID N0 2) is shown in figure 2, and corresponds to the translation product of ORF1 (amino acid sequence shown below the nucleic acid sequence: position 1 to 626).
- [0034] The amino acid sequence of protein B3 (SEQ ID N0 3) is shown in figure 2, and corresponds to the translation product of ORF2 (amino acid sequence shown above the nucleic acid sequence: position 1 to 513).
- [0035] It is to be understood that the amino acid sequence of the protein homologous to B2 (or B3) differs from the sequence represented by SEQ ID No 2 (respectively SEQ ID No 3) by at least one conservative amino acid substitution as shown in Table 1. The percentage substitutions calculated over the total length of the polypeptide or peptide considered should not exceed 50%, and preferably is lower than 40%, most preferably lower than 30%, 20% or even lower
- than 10%. The homologous proteins of the invention are all recognized by sera from tuberculous patients. The fragments of the above-described nucleic acid molecule should encode at least one epitope of the B2 and/or B3 protein. Preferably, the nucleic acid fragment encodes a M. tuberculosis (M. bovis) specific epitope of the B2 and/or B3 protein. The nucleic acid fragments of the invention contain a stretch of at least 15, preferably at least 30, more preferably at least 45 contiguous nucleotides of the sequence of the nucleic acid molecule as above-defined.
- [0037] The B2 and B3 antigens described in the current invention form part of the thermostable macromolecular antigen complex (TMA) of M. tuberculosis (M. bovis), also termed A60. Purification of the A60 antigen of M. bovis BCG has been described before (Cocito et al., 1986; Cocito et al., 1991). The protein components of the TMA complex are responsable for its immunodominant character (Cocito et al., 1995; Fabre et al., 1986). The A60 antigen complex of M.bovis has been used as a reagent for an ELISA-type assay (Baelden et al., 1990) and cutaneous testing (Benoit et al., 1989) for the detection of tuberculosis, These assays proved to be able to correctly diagnose infection and to monitor development of disease (Carlucci et al., 1993; Zou et al., 1994a, 1994b). However, they lacked species-specificity, owing to the extensive cross-reactions among homologous proteins of different mycobacterial species (Coetsier et al.,
 - The aim of the current invention was to identify those protein components of the A60 complex which contain immunodominant epitopes specific for the species M. tuberculosis (and M. bovis), to clone and sequence the corresponding gene(s), and to produce the proteins (or protein fragments) by recombinant DNA techniques. As will be shown in the examples section, this approach has enabled the identification of a M. tuberculosis genomic fragment containing two overlapping genes (b2 and b3), whose translation products are both recognized by tuberculous patients sera. The DNA segment including the two genes and their regulatory sequences has been cloned and sequenced, leading to the identification of two open reading frames (ORF 1 and 2), accounting for the synthesis of two proteins B2 and B3. The expression of the two genes from genetically engineered constructs has been demonstrated. Finally, the part of the B2 protein containing species-specific epitopes has been produced in E. coli by recombinant DNA techniques, it has subsequently been purified and used as a reagent in a serological assay (B2-ELISA) for the detection of tuberculosis.

[0039] According to a more specific embodiment, the invention provides for an isolated nucleic acid as defined above,

- (i) the nucleotide sequence as represented in figure 2 (SEQ ID N0 1),
- (ii) a nucleotide sequence which hybridizes to the nucleotide sequence of (i) and which encodes a B2 protein, or a protein homologous to B2, and/or a B3 protein, or a protein homologous to B3, with said B2 (B3) protein and its
- (iii) a nucleotide sequence which is degenerate as a result of the genetic code to any of the nucleotide sequences as defined in (i) and (ii) and which encodes a B2 protein, or a protein homologous to B2, and/or a B3 protein, or a protein homologous to B3, with said B2 (B3) protein and its homologues as defined above, and
- (iv) a fragment of any of the nucleotide sequences as defined in (i) to (iii), said fragment containing a stretch of at least 15, preferably 30 and more preferably 45 contiguous nucleotides of any of the nucleotide sequences as defined in (i) to (iii), and encoding at least one epitope of the B2 and/or B3 protein, or the homologous proteins
- It should be clear that the term "hybridizing" in point (ii) of the abovementioned embodiment refers to hybridization under stringent conditions, i.e. conditions allowing selective hybridization of nucleic acids which show at least 70% homology, preferably 80% homology, and most preferably 90%, or 95% homology.
- [0040] The terms "homologous" and "homology" are used in the current invention as synonyms for "identical" and "identity"; this means that amino acid sequences which are e.g. said to be 55% homologous, show 55% identical amino acids in the same position upon alignment of the sequences. The same definition holds for homologous nucleic acid sequences, i.e. nucleic acid sequences which are e.g. said to be 55% homologous, show 55% identical basepairs in
- [0041] According to a more specific embodiment, the invention provides for a nucleic acid as described above, containing or consisting of the nucleic acid sequence as represented in figure 2 (SEQ ID No 1), or a fragment thereof said fragment containing a stretch of at least 15, preferably at least 30 and more preferably at least 45 contiguous nucleotides of the sequence represented by SEQ ID No 1, and encoding at least one epitope of the B2 and/or B3 antigen. [0042] More specifically, the invention provides for an isolated nucleic acid molecule as described above, containing
- a nucleotide sequence extending from position (x) to position (y) in the sequence of figure 2 (SEQ ID N0 1), with (x) and (y) representing any of the following values:
 - from position (71) to position (1951),

5

10

15

50

55

- from position (398) to position (1951),
- from position (1063) to position (2604),
- from position (272) to position (1438), 35
 - from position (1439) to position (1951),
- from position (1438) to position (2604), or a fragment of said nucleic acid, said fragment containing at least 15, preferably at least 30 and more preferably at least 45 contiguous nucleotides of the sequence of said nucleic acid, and encoding at least one epitope of the

The above-defined nucleotide sequence stretches (x)-(y) encode the following polypeptides or polypeptide [0043] fragments:

- the nucleic acid fragment (71)-(1951) encodes the B2 protein in its longest form, i.e. starting from the first presum-45
 - the nucleic acid fragment (398)-(1951) encodes the B2 protein in its shorter form, i.e. starting from the second pre-
 - the nucleic acid fragment (1063)-(2604) encodes the B3 protein,
 - the nucleic acid fragment (272)-(1438) encodes the a390 fragment of the B2 protein, described further in the exam-
 - the nucleic acid fragment (1439)-(1951) encodes the a171 fragment of the B2 protein, described further in the
- the nucleic acid fragment (1438)-(2604) encodes the a389 fragment of the B3 protein, described further in the

[0044] According to another embodiment, the invention provides for a recombinant vector, for cloning and/or expression purposes, into which a nucleic acid as described above, or a fragment of said nucleic acid, has been inserted and

wherein, in case of an expression vector, the coding sequence of said nucleic acid is operably linked to an expression cassette enabling the expression of the coding sequence by a host cell.

[0045] The expression "operably linked" refers to a juxtaposition wherein the components are configured so as to perform their usual function. Thus, control sequences operably linked to a coding sequence are capable of effecting the

[0046] The term "expression cassette" encompasses a cassette of elements enabling the correct transcription and translation of the encoded sequences by the host cell machinery: i.e. a promoter sequence, a ribosome binding site,

[0047] The invention furthermore provides for a host cell transformed by a recombinant vector as described above, with said host cell being preferably a prokaryotic organism, preferably chosen from among the following group of organisms: E. coli, Streptomyces species, Corynebacterium species, such as e.g. C. glutamicum, or fast-growing

[0048] Suitable vectors and host cell systems for expression and/or doning of the nucleic acids of the invention are well known in the art of recombinant DNA technology (e.g. Sambrook et al., 1989; Bothwell et al., 1990), and will be

30

[0049] According to a subsequent embodiment, the invention provides for a polypeptide encoded by any of the nucleic acids as described above, or a fragment thereof, said fragment being recognized by a pool of sera from tuberculous exemplified furtheron.

[0050] More particularly, the invention provides for a polypeptide as described above, having at least one of the folpatients.

lowing amino acid sequences:

(I) the amino acid sequence of protein B2 represented by SEQ ID N0 2,

(ii) the amino acid sequence of protein B3 represented by SEQ ID N0 3,

(iii) the amino acid sequence extending from position (110) to position (626) in SEQ ID NO 2,

(iv) the amino acid sequence extending from position (68) to position (456) in SEQ ID No 2,

(v) the amino acid sequence extending from position (457) to position (626) in SEQ ID NO 2,

(vi) the amino acid sequence extending from position (126) to position (513) in SEQ ID No 3, or a fragment of any of the polypeptides according to (i) to (vi), said fragment consisting of a contiguous stretch of at least 6, preferably 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 50 or more amino acids of the sequence represented by SEQ ID No 2 or SEQ ID No 3, and being recognized by a pool of sera from tuberculous patients.

[0051] According to a very specific embodiment, the invention provides for a peptide having at least one of the following amino acid sequences:

KGADVDAGGSQHNR (K-14-R peptide, SEQ ID N0 4), or GQPPSRRRGDRHQSTRR (G-17-R peptide, SEQ ID N0 5).

[0052] The peptides K-14-R and G-17-R correspond to an epitope region in the B2 (resp. B3) protein. The positions of both peptides are indicated on the sequence of figure 2 (boxed) and on the hydrophilicity patterns of figure 8 (resp.

According to another embodiment, the invention provides for a fusion protein comprising an amino acid sequence of a polypeptide as described above, or a fragment thereof, linked to a heterologous amino acid sequence. [0054] The production of the recombinant polypeptides of the invention as fusion proteins may offer several advantages, such as e.g. enhanced expression levels of the polypeptides of the invention, or easiness of purification due to the presence of purification "tags", or a better presentation of the polypeptide on a solid surface. The heterologous part of the fusion protein may be cleaved off in a later stage using appropate endoproteases, or it may remain attached to

[0055] In order to carry out the expression of the polypeptides of the invention in bacteria, such as E. coli, the following

steps are required:

- transformation of an appropriate bacterial host strain with a recombinant vector in which a nucleotide sequence coding for one of the polypeptides of the invention has been inserted (insert) under the control of the appropriate regulatory elements, particularly a promoter recognized by the polymerases of the bacterial host and an appropriate ribosome binding site (RBS), enabling the expression in said bacterial host of said nucleotide sequence,
- culture of said transformed bacterial host in conditions enabling the expression of said insert, and
- possibly, purification of the recombinant polypeptide.

[0056] The techniques for carrying out the expression of recombinant proteins in any of the other hosts as specified above are also well known in the art of recombinant expression technology.

[0057] The invention thus also provides for a method for the production of a recombinant polypeptide as described above, or a fusion protein as described above, comprising at least the following steps:

- culturing a transformed cellular host as described above under conditions allowing the heterologous expression - isolating the polypeptide from the culture broth.

5

- According to another embodiment, the invention provides for an antibody raised against a polypeptide as described above, more preferably a monoclonal antibody. Antibodies according to the invention include specific polyclonal antisera prepared against the M. tuberculosis polypeptides of the invention, and having no cross-reactivity to other proteins. The antibodies according to the invention specifically include monoclonal antibodies raised against the
- [0059] The monoclonal antibodies of the invention can be produced by any hybridoma liable to be formed according to classical methods from splenic cells of an animal, particularly of a mouse or rat, immunized against the polypeptides of the invention on the one hand, and of cells of a myeloma cell line on the other hand, and to be selected by the ability of the hybridoma to produce the monoclonal antibodies recognizing the polypeptides which have been initially used for
- [0060] The monoclonal antibodies according to this preferred embodiment of the invention may be humanized versions of the mouse monoclonal antibodies made by means of recombinant DNA technology, departing from the mouse and/or human genomic DNA sequences coding for H and L chains or from cDNA clones coding for H and L chains.
- [0061] Also fragments derived from these monoclonal antibodies such as Fab, F(ab) 2 and ssFv ("single chain variable fragment"), providing they have retained the original binding properties, form part of the present invention. Such fragments are commonly generated by, for instance, enzymatic digestion of the antibodies with papain, pepsin, or other proteases. It is well known to the person skilled in the art that monoclonal antibodies, or fragments thereof, can be modified
 - [0062] The antibodies of the current invention can be labelled by an appropriate label of the enzymatic, fluorescent,
- [0063] According to another embodiment, the invention provides for a method for the in vitro detection of tuberculosis disease in a mammal subject, based on the detection of anti- M. tuberculosis antibodies present in a sample taken from
- contacting said sample with a polypeptide as described above, or with a fusion protein as described above, under 35
 - detecting the presence of an immunological complex formed between said polypeptide and the anti M.
- [0064] It is to be understood that the detection of anti- M. tuberculosis antibodies in a serum sample is an indication [0065] Preferably said mammal is a human subject, or a bovine animal.

 - [0066] The sample may be any body fluid possibly containing antibodies against M. tuberculosis, such as cerebrospinal fluid, serum, blood, plasma, milk, urine... Preferably, the sample is serum.
- [0067] Conditions allowing the formation of an immunological complex are known to the person skilled in the art. [0068] According to an alternative embodiment, the invention provides for a method for the in vitro detection of tuberfrom said subject, and comprising the steps of
- culosis disease in a mammal subject, based on the detection of M. tuberculosis antigens present in a sample taken 50
- if necessary, pretreatment of said sample in order to release the M. tuberculosis antigens which may be present in
 - contacting said sample with an antibody as described above, under conditions allowing the formation of an immu-
 - detecting the presence of an immunological complex formed between said antibody and the M. tuberculosis anti-
 - [0069] It is to be understood that the detection of M. tuberculosis antigens in a sample is an indication of tuberculosis
 - [0070] Design of immunoassays suitable for detection of antibodies or antigens in a sample, is subject to a great deal

of variation, and many formats are known in the art. Most assays involve the use of labeled antibody and/or polypeptide. The labels may be, for example, enzymatic (like horse radish peroxidase, alkaline phosphatase), fluorescent, chemoluminescent, radioactive, or dye molecules. In an enzyme linked immuno sorbent assay (ELISA) the label is enzymatic, and the detection signal is usually colorimetric (optical density).

[0071] Different types of ELISA may be feasable for detection of antibodies in a sample. In an indirect ELISA the polypeptides of the invention are coated on a solid surface (microtiter plates) where they capture the antibodies possibly present in the sample. The bound antibodies from the sample are subsequently detected by a labeled second antibody (conjugate). The signal generated by the latter is quantified.

[0072] In an antigen sandwich ELISA, the polypeptides of the invention are used twice, first as a capturing agent (bound on the surface of e.g. a microtiter plate) and secondly as a detecting agent (labelled polypeptide reacting with the bound antibodies from the sample). The antibodies from the sample are "sandwiched" between two layers of peptide (this is made possible by the two antigen binding sites which are present on each antibody).

[0073] In an antibody sandwich ELISA, the antibodies of the invention are used twice, first as a capturing agent (bound on the surface of a solid phase) and secondly as a detecting agent (labelled antibody reacting with the bound antigen from the sample). The antigens to be detected from the sample are "sandwiched" between two layers of anti-

bodies.
[0074] According to a preferred embodiment, the invention provides for an immunodetection method or assay as described above, wherein said method or assay is an ELISA.

[0075] According to another embodiment, the invention provides for an immunodiagnostic kit for the in vitro detection of tuberculosis disease in mammals, said kit comprising a polypeptide as described above, or a fusion protein as described above, or an antibody as described above.

[0076] According to a more specific embodiment, the invention provides for an immunodiagnostic kit for the *in vitro* detection of tuberculosis disease in mammals, based on the detection of anti- *M. tuberculosis* antibodies present in a sample taken from said mammal, said kit comprising a polypeptide as described above, or a fusion protein as described above, possibly in combination with other *M. tuberculosis* antigens.

[0077] In a preferred embodiment, the immunodiagnostic kit comprises a solid support onto which the polypeptide of the invention has been readily immobilized.

[0078] The solid support onto which the polypeptides of the invention are coated may be chosen from the supports commonly used in the art of immunodiagnosis. Depending on the type of assay the solid support may be a polystyrene carrier (microtiter plate (e.g. ELISA) or beads (e.g. microbeads assay)), a nylon membrane (LIA (Line Immuno Assay)), latex beads (coagulation tests), etc. If different polypeptides are used simultaneously as detecting reagent, they may be coated either on different locations of the solid support, or together, on the same location.

[0079] The present invention relates more particularly to a kit for determining the presence of anti- *M. tuberculosis* antibodies in a biological sample liable to contain them, comprising:

at least one polypeptide as defined above, preferentially in combination with other polypeptides or peptides from M.
 tuberculosis, with said polypeptides being preferentially immobilized on a solid substrate,

- a buffer or components necessary for producing the buffer enabling a binding reaction between these polypeptides
 and the antibodies against M. tuberculosis present in the biological sample,
- 40 means or reagents for detecting (i.e. generating a detectable signal from) the immune complexes formed in the pre ceding binding reaction.
 - possibly also including an automated scanning and interpretation device for inferring the presence of *M. tuberculosis* antibodies in the sample from the detected signal.
- [0080] According to another embodiment, the invention provides for a diagnostic kit for the detection of M. tuberculosis antigens in a sample, said kit comprising an antibody as described above.
 - [0081] According to yet another embodiment, the present invention relates to a method using at least one of the polypeptides of the invention, possibly in combination with other *M. tuberculosis* polypeptides, for measuring a cellular immune response in an individual which has been in contact with the *M. tuberculosis* pathogen, said cellular immune response being measured either *in vivo*, such as a delayed type hypersensitivity reaction upon subcutaneous injection of the polypeptides of the invention, or *in vitro*, such as the stimulation of periferal blood lymphocytes or the secretion of certain lymphokines or cytokines (e.g. interferon-gamma), upon addition of the polypeptides of the invention to a sample of periferal blood lymphocytes under conditions allowing recognition of the polypeptides by the cells responsive for the immune response, conditions which are known to the person skilled in the art.
- [0082] It is to be understood that the presence of a cellular immune response against *M. tuberculosis* antigens in a subject, indicates that the subject has been in contact with the *M. tuberculosis* pathogen. It is an indication of a protective immune response which has been mounted against the pathogen, and it is not necessarily an indication of tuberculosis disease. This is in contrast with the presence of anti-*M.tuberculosis* antibodies, or the presence of *M.*

tuberculosis antigens in a sample, which do indicate the presence of tuberculosis disease in the subject from which the sample was taken, as described above.

[0083] The invention also provides for a vaccine composition for the prevention of tuberculosis disease in mammals, said vaccine composition comprising as an active principle a polypeptide as described above, or a fusion protein as ple being combined with a pharmaceutically acceptable carrier.

[0084] Besides the *M. tuberculosis* polypeptides according to the invention, said vaccine composition may comprise also any other *M. tuberculosis* immunogenic component or any other bacterial or other immunogenic component in

[0085] In a specific embodiment, the nucleic acid encoding any of the polypeptides as defined above, is used as a vaccine, either as naked DNA or as part of recombinant vectors. In this case, it is the aim that said nucleic acid is expressed into immunogenic protein / peptide in situ in the vaccinated host and thus confers in vivo protection (e.g.

[0086] The active ingredients of such a vaccine composition may be administered orally, subcutaneously, conjunctivally, intranuscularly, intranasally, or via any other route known in the art including for instance via the binding to carriers, via incorporation into liposomes, by adding adjuvants known in the art. etc.

FIGURE LEGEND

20 [0087]

25

30

40

45

55

Figure 1. Immunoblot analysis of recombinant polypeptides produced by the ZAP-Tb22 phage. Proteins obtained, upon IPTG-induction, from the lysis plaques were separated by acrylamide gel electrophoresis (12% SDS-PAGE), and transferred to nitrocellulose membranes, which were either stained with colloïdal gold (lane B), or incubated with a pool of tuberculous patients sera (lane C). Molecular weight markers are in lane A.

Figure 2. Nucleotide sequence (SEQ ID N0 1) of the overlapping genes b2 and b3 encoding the B2 and B3 proteins of *M. tuberculosis*. The nucleotide sequence shown in this figure contains two open reading frames of 1878 (ORF1) and 1539 (ORF2) nucleotides. The putative initiation codons and ribosomal binding sites are indicated in bold characters. Promoter-like sequences are underlined. The b2 and b3 genes encode proteins of 626 and 513 as respectively, whose deduced amino acid sequences are displayed. The lower amino acid backbone represents the protein B2 (SEQ ID N0 2). The upper amino acid backbone represents the protein B3 (SEQ ID N0 3). H* indicates the first amino acid residue encoded by the *M.tuberculosis* DNA insert within the ZAP-Tb22 phage. The EcoR1 and Sal1 restriction sites used for subcloning are underlined. The protein fragments a390, a171 and a389 which have been expressed in *E. coli* are indicated with arrows. The peptides K-14-R (B2) and G-17-R (B3) are boxed. The position of the nucleic acid region hybridizing to the Tbbiot1 probe is also indicated (double underlined).

Figure 3. Schematic diagram of subclones used for expression and/or sequencing of portions of the b2 and b3 genes.

- (a) Scheme of the Tb22 DNA insert indicating the positions of the ORF 1 and 2, and of the main restriction sites EcoR1=E, Sal1=S, Kpn1=K, BamH1=B, Pst1=P) used for subcloning.
- (b) The 1170-bp EcoR1 fragment of Tb22 was ligated into the EcoR1 site of pmTNFIIXH, yielding the pmTNF.XH.a390 plasmid carrying the first 390 codons of ORF1, under the control of the pl lambda promoter. The insert of the plasmid is shown in shaded box.
- (c) (d) The adjacent 2411 -bp EcoR1 fragment was ligated into the EcoR1 site of pmTNFIIXH and pmTNFIIIXH. The resulting plasmids, carried the terminal 171 codons of ORF1 (pmTNF.XH.a171), and the 389 carboxyl-terminal codons of ORF2 (pmTNF.XH.a389), respectively, under the control of the pl lambda promoter. The inserts of the plasmids are shown in shaded boxes.
- (e) position of the Tb3 clone (Pst1-Sal1) carrying the upstream region and presumptive starting codons of the b2 gene.
- (f) position of the region of which the nucleic acid sequence is illustrated in figure 2.

Figure 4. Western blot analysis of the recombinant polypeptide a171. Crude cell extracts from *E.coli* cells containing the pmTNF.XH.a171 plasmid were heat-shocked at 42°C, fractionated by 12% SDS-PAGE, transferred to nitrocellulose membranes, and reacted with a pool of tuberculosis patient sera, preabsorbed (lane B') or not (lane B) with a *M.avium* lysate. Lane A': lysate of *E.coli* DH5α carrying no mycobacterial insert (negative control). Lane A

Figure 5. Western blot analysis of the recombinant polypeptide a389. Crude cell extracts from *E.coli* cells containing the pmTNF.XH.a389 plasmid were heat-shocked at 42°C, fractionated by 12% SDS-PAGE, transferred to nitrocellulose membranes, and reacted with the pool of tuberculosis patients sera, preabsorbed (lane B') or not (lane B) with *M.avium* lysates. Lane A': lysate of *E.coli* DH5αcarrying no mycobacterial insert (negative control). Lane A: molecular mass standards.

Figure 6. Electrophoretic analysis of the proteins expressed by recombinant E. coli, containing the plasmid pmTNF.XH.a171. The inclusion bodies fraction from recombinant *E.coli* SG4044 cells (containing the pmTNF.XH.a171 plasmid that codes for the carboxyl-terminal portion of protein B2) were isolated. Dissociated proteins were fractionated by electrophoresis (12% SDS-PAGE), and stained with Coomassie blue. (A) total cell lysate; (B) inclusion bodies.

10

15

20

25

30

35

40

Figure 7. Comparative serological analysis of healthy (BCG vaccinated and non-vaccinated) and tuberculosis patients sera by the A60 and the a171 ELISA assays. The absorbance values (A_{492} nm) are reported on the ordonate axis. The horizontal lines represent the cutoff values. Different types of tuberculous (tbc) patients sera were considered: tbc post-primary (= patients who relapse after a previous tb-infection), tbc military (=patients with disseminated form of the disease throughout the body), tbc meningitis (=patients from which tuberculous bacilli have been isolated from the cerebrospinal fluid), tbc sera mixed (=patients with tuberculous infection of different organs, besides a pulmonary tuberculosis).

Figure 8: Hydrophilicity pattern of the B2 protein. Hydrophilicity values on the ordinate axis are calculated by the combined methods of Parker et al. 1986 (hydrophilicity sensu strictu), Karplus et al. 1985 (flexibility) and Janin, 1979 (accessibility). The region of the peptide K-14-R is indicated in black. Position 1 in this figure corresponds to amino acid position 455 in the B2 protein sequence as shown in figure 2.

Figure 9: Hydrophilicity pattern of the B3 protein. Hydrophilicity values on the ordinate axis are calculated by the combined methods of Parker et al. 1986 (hydrophilicity sensu strictu), Karplus and Shultz, 1985 (flexibility) and Janin, 1979 (accessibility). The region of the peptide G-17-R is indicated in black. Position 1 in this figure corresponds to amino acid position 125 in the B3 protein sequence as shown in figure 2.

Figure 10: Map of the pmTNFIXH plasmid used for expression of the polypeptides of the invention as a N-terminal fusion protein with the first 25 amino acids of mTNF. The plasmids pmTNFIIXH and pmTNFIIXH are identical to pmTNFIXH except for the sequence of the polylinker site which contains one (pmTNFIXH) or two (pmTNFIIXH) additional nucleotides, allowing the translation of the different reading frames (I, II, III) of an inserted nucleic acid molecule. A detail of the nucleotide sequence of the polylinker site for the three different plasmids is given below:

polylinker site of pmTNFIXH:

.... CAG GGA ATT CGA GCT CGG TAC CCG GGG AGG CCT GCA CGT GAT CGA

aa 25 mTNF EcoRI KpnI Stul PmII

GGG CAG ACA CCA TCA CCA TCA CTA ATA GTT AAT TAA CTG CAG GGA

TCC TCT AGA GTC GAC CGG CAT GCA AGAITA GTT AAT TAA CTG CAG GG

TCC TCT AGA GTC GAC CGG CAT GCA AGC TTA AGT AAG TAA ...

BamHI Xbal Sall Sphl

(SEQ ID NO 7)

15

20

35

45

50

55

polylinker site of pmTNFIIXH:

.... CAG CCG AAT TCG AGC TCG GTA CCC GGG GAG GCC TGC ACG TGA TCG
aa 25 mTNF EcoRi Kpnl Stul Pmll

AGG GCA GAC ACC ACC ACC ACT AAT AG<u>T TAA TTA A</u>CT GCA G<u>GG</u>

ATC CTC TAG AGT CGA CCG GCA TGC AAG CTT AAG TAA GTA A ..

BamHI Sall Sphl

(SEQ ID NO 8)

polylinker site of pmTNFIIIXH:

ATC GAG GGC AGA CAC CAT CAC CAT CAC TAA TAG TTA ATT AAC TGC

AG<u>G GAT CC</u>T CTA GA<u>G TCG AC</u>C G<u>GC ATG C</u>AA GCT TAA GTA AGT AA ... BamHI Sall SphI

(SEQ ID NO 9)

EXAMPLES

I. Materials and methods

[0088] Bacterial strains. The following mycobacteria were used: M.tuberculosis H37Rv, MAIS ATCC-10708, MAIS ATCC-10719, M.avium D4 (from F. Portaels, Institute of Tropical Medecine, Antwerp, Belgium) and M. scrofulaceum 82/549 (from M. Weckx, Pasteur Institute, Brussels, Belgium). A M.leprae preparation was provided by the World Health

[0089] The strains of Escherichia coli K-12 DH5αF' (Life Technologies, Gaithersburg, Md.), XL1-Blue MRA (Stratagene, La Jolla, Calif.) and SG4044 (Innogenetics, Ghent, Belgium) were used as hosts for cloning and/or expression. [0090] Antibodies and sera. Sera from tuberculosis patients were obtained from the Pneumology Department, Mt. Godinne Clinics, Belgium. Five sera from human immunodeficiency virus-negative postprimary tuberculosis cases under chemotherapy were pooled and used for serological screening.

[0091] Polyclonal rabbit antibodies against the peptides K-14-R (from B2 protein) and G-17-R (from B3 protein) were raised according to the techniques well known in the art. The peptides were coupled with KLH carrier protein (Neosystem Labs, Strasbourg, France). Conjugate KLH-peptides (500 µg) emulsified with incomplete Freunds adjuvant were subcutaneously inoculated to rabbits twice, at two weeks interval. Sera were taken two weeks after the second injection. They were tested by Western blot analysis on BCG lysates (results not shown).

[0092] Serum absorption. At all stages of the work, sera were previously absorbed on lysates of E.coli K-12 (the cloning host). To identify species specific epitopes, cross-reacting antibodies were eliminated by absorption on lysates of atypical mycobacteria. Sera diluted (1/50) in TBS buffer (0.15 M NaCl, 0.10 M Tris-HCL [pH 7.5] containing 0.05 % [vol/vol] Tween 20, 10 mM phenylmethylsulfonyl fluoride, and 1 % [wt/vol] gelatin) were incubated overnight at 4°C with bacterial lysates (5 mg [dried weight] per ml of diluted serum). Absorption efficiency was controlled by dot-blot for West-

ern blot analysis, and by ELISA for serological testing.

[0093] DNA techniques. Chromosomal DNA from M.tuberculosis H37Rv was prepared as previously described (De Kesel et at. 1993). Purification of phage DNA, DNA digestion, ligation, transformation of E.coli cells with plasmid, and infection with phage DNA were carried out according to Sambrook et al. (1989). The boiling minilysate method (Holmes et al. 1981) was used to screen restriction endonuclease segments of plasmid DNA. Large-scale preparation of E.coli plasmid DNA was made using a Qiagen-tip 500 kit (Westburg b.v., Leusden, Netherlands), Restriction enzymes and T4 DNA ligase were purchased from Boerhinger (Mannheim, Germany). Restriction endonuclease fragments were purified from agarose gels with Nucleotrap kit (Macherey-Nagel, Düren, Germany).

[0094] Screening of bacteriophage plaques and Southern blot analysis (Sambrook et al., 1989), were done with the biotinylated DNA probe Tbbiot1 (5'-bGCGGGCGTTTCGGCTTCACC (SEQ ID No 6)) and riylon membranes (Hybond-

[0095] Nucleotide sequence analysis. For analysis of DNA sequences, appropriate restriction fragments of cloned inserts were subcloned within the polylinker sites of pBluescript SK (Stratagene, La Jolla, California), Subclone sequences were determined by the dideoxy chain termination method by using the Taq Dye Deoxy Terminator Cycle sequencing kit and a ABI 373a DNA sequencer (PE Applied Biosystems, Foster City, CA). The complete sequence was

[0096] Expression of ORFs by E.coli. Recombinant plasmids were introduced in E.coli SG 4044 by transformation. Single transformed colonies were grown at 28°C in the presence of tetracycline to an A₆₀₀ of 0.2, and then heat shocked (4h, 42°C). Cell lysates were mixed with 4x SDS gel-loading buffer and analyzed by Western blot.

[0097] Purification of a171 polypeptide. E.coli SG 4044 cells containing the pmTNF-a171 plasmid, were concentrated by centrifugation and lysed by the lysozyme-plus-detergent procedure. The inclusion bodies were pelleted by

centrifugation, washed with Triton X-100 and EDTA, and solubilized with 8 M urea (Sambrook et al. 1989). SDS-PAGE and Western blot analysis. Different protein samples (lysis plaques, or cell lysates, or a171 polypeptide) in gel loading buffer, were boiled at 100°C for 5 min and loaded on 12 % polyacrylamide gels. Protein fractionation was carried out at a constant current of 30 mA in a vertical electrophoresis unit (gel 16 by 18 cm, Hoefer Scientific Instruments, San Francisco, Cal.). Electrophoresed components were transblotted (LKB 217 Multiphor 2, Bromma, Sweden, 100 mA, 2 h, with buffer containing 20 % methanol, 0.039 M glycine and 0.048 M Tris base pH 8.8) onto nitrocellulose membranes (BA 85, Macherey-Nagel, Germany). Total proteins were stained by colloidal gold (Aurodye forte, Amersham, UK). Tuberculosis-specific proteins were visualized by sequential incubation with a pool of tuberculosis patients sera and with peroxydase-labeled anti-human immunoglobulins.

II. Isolation and characterization of the DNA fragment containing the b2 and b3 genes of M. tuberculosis

Construction and immunological screening of a M.tuberculosis genomic library. A genomic library of M.tuberculosis H37Rv was constructed as previously described (De Kesel et al. 1993). Mycobacterial DNA fragments

of 2 to 5 kb were ligated with lambda ZAPII (Stratagene, La Jolla, Calif.), by using *EcoRI* linkers. Recombinant lambda phages from the unamplified genomic library were plated according to manufacturers directions. After incubation at 42°C, when lysis plaques were just seen, plates were covered with nitrocellulose filters satured with isopropyl-β-D-thi-M Tris-HCl pH 7.5), incubated with the same buffer containing 2 % gelatin, and then for 12 h with a pool of 5 tuberculosis patients sera diluted (1/20) in TBST buffer (TBS buffer containing 0.05 % Tween 20 and 1 % gelatin). Bound human lg lmmunoreactive lysis plaques were detected with chloro-1-naphtol (Rio Rad Laboratories, Richmond, Calif.) and H₂O₂ (0.015%). The plaques corresponding to the reactive spots on the filters were transferred to SM medium (100 mM NaCl, 10 mM MgSO₄, 20 mM Tris-HCl pH 7.4), and purified by repeated passages on *E.coli* DH5αF'.

[0100] Proteins produced by recombinant phages were analyzed by Western blot. Plaque-purified recombinant phages were plated in soft agar, in the presence of 10 mM IPTG. The plates were incubated for 4h at 42°C, and then one night at 37°C. Approximatively 10 plaques of each recombinant phage were removed and suspended in 100 μ l of bromophenol blue).

[0101] Isolation of recombinant phages coding for *M.tuberculosis*-specific proteins. Recombinant lambda ZAPII phages carrying mycobacterial DNA sequences were screened with a pool of tuberculosis patients sera: 21 strongly reactive clones were selected out of some 100,000 plaques. These clones were retested with anti-A60 polypool of tuberculosis patients sera preabsorbed on lysates of non-tuberculous mycobacteria (MAIS strains, *M. avium*, *M.tuberculosis*, with respect to the other mycobacterial species. Western blot analysis of proteins from the lysis plaques of the recombinant phage showed two bands of 65 and 55 kDa reacting with tuberculosis patients sera (Fig. 1).

[0102] Analysis of the Tb22 region of recombinant mycobacterial DNA. Recombinant phage ZAP-Tb22 carrying a mycobacterial DNA segment was amplified. Its DNA was purified and hydrolyzed with EcoR1 endonuclease, yielding a DNA insert of about 3,700 bp (Tb22) as determined by gel electrophoresis. The DNA sequence of the Tb22 insert was determined (see figures 2 and 3).

[0103] The expression of Tb22 was analysed by subcloning the restriction fragments of the insert in the members of an expression vectors family (pmTNFXH I, II and III; Innogenetics, Ghent, Belgium). A map of these vectors is shown in figure 10. These constructs allow the translation of the cloned genes in the 3 reading frames, as N-terminal fusion proteins with the first 25 amino acids of mouse tumor necrosis factor α, under the control of the pl lambda promoter (see DNA fragment, subcloned in vector pmTNFIIXH, yielded a recombinant plasmid (pmTNFXH.a390) which expressed the initial part of a gene comprised in Tb22, from now on called the b2 gene. The adjacent 2411 bp-EcoR1 segment sub-cloned in the same vector (plasmid pmTNFXH.a171) expressed a further portion (513 bp) of the same gene. However, this same DNA fragment, upon insertion in vector pmTNFIIIXH (plasmid pmTNFXH.a389), which allows expression of a different reading frame on the same strand, expressed a 1167 bp product, forming part of a second gene comprised in the Tb22 clone (gene b3).

[0104] These results indicated that the Tb22 insert of mycobacterial DNA carried two partly overlapping ORF's (ORF1 corresponding to the b2 gene and ORF2 corresponding to the b3 gene), which were transcribed and translated into protein fragments in the recombinant strains. The overall expression product of Tb22 contained two different proteins corresponding to the partly overlapping reading frames ORF1 and ORF2 depicted in figures 2 and 3. The subsequent examples will demonstrate that fragments of both proteins (B2 and B3) are recognized by a pool of tuberculous sera, and contain species specific epitopes useful in the serodiagnosis of tuberculosis

III. Characterization and expression of the b2 gene (ORF1)

45

[0105] Base composition and expression of the B2 gene. According to the nucleotide sequence of the 3,700 bp Tb22 insert, and to the open reading frame ORF1 (in phase with the α -peptide gene of lambda ZAP), a DNA segment of 1551 bp was delineated (Fig.2). This segment extended from an ATG triplet at position 398 to a TAG triplet at position 1949, representing the putative (second) start and stop signals of gene b2, respectively.

[0106] The overal base composition of the b2 gene (63,5 mol% of G+C), was consistent with the global G+C content observed in the mycobacterial genome. The G+C contents for codon positions 1, 2, and 3 were 64.8, 47.5, and 74.3 mol%, respectively. These data agree with the codon usage described for the few known genes of the *M.tuberculosis* complex, and confirm the preference for either G or C in the third position

[0107] A search for regulatory sequences within the nucleotide stretch preceding the b2 start codon at 398, revealed the presence of an AG-rich segment (G₃₈₉AAGG₃₉₃) resembling the Shine-Dalgarno consensus elements found in several bacteria, and also of promoter-like sequences (Hawley and McClure, 1983) mimicking those previously described

[0108] The α -peptide Tb22 fusion protein (corresponding to the Tb22 insert) had a calculated size of 62,990 Da, in agreement with a molecular mass of about 66 kDa determined by Western blotting (size of α-peptide= 3864 Da). However, the expression of the entire ORF1 in E.coli under the control of a strong promoter was unsuccessful, presumably because entailing the synthesis of a protein detrimental for the host cell. To circumvent this difficulty, two plasmids were constructed: pmTNF.XH.a390 containing the first 390 codons of ORF1, and pmTNF.XH.a171 including the 171 carboxyl-terminal codons of ORF1, both expressed under the control of the pl lambda promoter (Fig. 4). Exponential SG4044 cells harboring either plasmid produced relatively high levels of the corresponding gene products, detected as SDS-PAGE bands of 45- and 25-kDa respectively (data not shown), in agreement with the values calculated from the DNA sequence. In Western blot analysis, only the 25-kDa product mTNF-a171 was recognized by the pool of tuberculosis sera (Fig. 4, line C), suggesting the occurrence of B cell epitopes in the carboxyl-terminal portion of the B2 protein. The species-specificity of these epitopes was verified in Western blots with tuberculosis patients sera pre-absorbed with sonicates of either M.leprae or M. avium strains (Fig. 4, line D). Persistence of the positive signal upon serum preabsorption proved the B2 protein to have M.tuberculosis-specific epitopes non crossreacting with other mycobacterial

[0109] The hydrophilicity pattern of the B2 protein is illustrated on figure 8. According to this profile a predicted antigenic peptide K-14-R was synthesised. Antibodies were raised against this peptide in rabbits according to the method

[0110] Cloning of the DNA segment preceding the b2 gene. To confirm the structure of the mycobacterial DNA described in example 1. segment including the origin of the b2 gene, and to explore the possible occurrence of additional regulatory elements in this region, 10- to 12-kb-DNA fragments from a M.tuberculosis H37RV gene bank, were ligated with the lambda DASH cloning vector, using BamH1 linkers. One phage, out of some 4,000 plaques screened by in situ hybridization with the Tbbiot1 probe (carrying the initial sequence of the Tb22 insert), yielded a 0.9-kb Sal1-Pst1 DNA fragment (Tb3). The latter was subcloned in the vector pbluescript SK- and sequenced. Inspection of the sequence reported in Fig.2 revealed another putative starting codon for the b2 gene at position 71 preceded by a putative Shine-Dalgarno element (G₆₀AGA₆₃).

IV. Characterization and expresssion of the b3 gene (ORF2)

[0111] Base composition and expression of the b3 gene. A segment of the Tb22 insert, which would account for a translation product of an open reading frame (ORF2) different than that of b2 was sought in the sequence map of Fig. 2. A 1539 bp-long sequence, partly overlapping that of b2/ORF1 and involving the same strand in the same direction was thus indentified. The corresponding gene (b3) extended from a putative initiation TTG triplet at position 1063 to a presumptive stop codon TAG at position 2602. The initiation codon of b3 was located 665 bp downstream that of b2, with a 886 bp overlap of the two genes. A search for regulatory sequences preceding the TTG₇₉₂ codon suggested the presence of a putative Shine-Dalgarno-like element (G₁₀₅₄GTGG₁₀₅₈), the presumptive translation initiation signal of

A plasmid containing the terminal 1167 bp of ORF2 under the control of the pl lambda promoter (pmTNF.XH.a389) was constructed and introduced by transformation in E. coli SG4044 cells. The lysates of these ORF2. recombinant cells, submitted to Western blot analysis with a tuberculous sera pool, showed a 42 kDa-band (Fig.5), in agreement with the value calculated from the DNA sequence. These data indicate that the expression product of gene b3 contained B cells epitopes recognized by tuberculous human sera. The species-specificity of these epitopes was tested as for the ORF1 product. Persistence of positive signal after serum pre-absorption indicates the presence, in the a389 protein, of epitopes specific for M.tuberculosis and not shared by other mycobacterial species.

The hydrophilicity pattern of the B3 protein is illustrated on figure 9. According to this profile a predicted antigenic peptide G-17-R was synthesised. Antibodies were raised against this peptide in rabbits according to the method

described in example 1.

50

V. Development of an a171-based serological assay for tuberculosis.

[0114] Large scale preparation of the recombinant a171 polypeptide, coded for by gene b2, was based on the expression of this protein in *E.coli* under the form of inclusion bodies. The corresponding cellular fraction was separated from the crude lysate by centrifugation and solubilized. The results of an electrophoretic analysis of the partly purified fraction is shown in Fig. 6. This recombinant product was used to coat microtiter plates. Reference plates were coated with the A60 antigen, the natural mycobacterial antigen complex containing protein B2, in addition to several other proteins. Antigen A60 was prepared according to Cocito and Vanlinden (1986). A series of sera from healthy subjects (non vaccinated and BCG-vaccinated), and patients (56 persons with different forms of tuberculosis) were tested. Data displayed in Fig.7 indicate that most tuberculous sera positive with the A60-ELISA were also positive with the a171-ELISA,

which thus represents a species-specific serological assay for tuberculosis.

[0115] Based on the production of a B2 protein segment as inclusion bodies in recombinant E.coli, the a171 polypeptide corresponding to the carboxyl-terminal portion of B2 has been purified and used as reagent for a serological assay (a171-ELISA) for tuberculosis. According to this preliminary trial, the test was negative for healthy subjects and positive for tuberculosis patients. Although, a larger clinical work, extended to all forms of tuberculosis, is needed to assess the medical importance of this assay, our data suggest that the a171-ELISA, a test endowed with species-specificity, is a promising tool allowing the etiological diagnosis of tuberculosis. Indeed, most of the available immunoassays, including the A60 ELISA previously developed (Baelden et al., 1990; Cocito, 1991), are unable to distinguish tuberculosis from the other mycobacterioses. Yet, such a distinction is important, especially since the prognosis and therapy of mycobacterial diseases are different depending on the mycobacterial species causing the disease.

LITERATURE REFERENCES

[0116]

15

25

35

- Baelden, M. C., B. Vanderelst, M. Dieng, J. Prignot, and C. Cocito. 1990. Serological analysis of human tuberculosis by an ELISA with mycobacterial antigen 60. Scand J. Infect. Dis. 22:63-73.
- Benoit, C., A. Beschin, M. Desmecht, P. Dekeyser, and C. Cocito. 1989. Delayed hypersensitivity reactions by the mycobacterial antigen A60 and cutaneous testing in tuberculosis. Med. Microbiol. Immunol. 178:105-112. 20
 - Berthet, F. X., J. Rauzier, F. M. Lim, W. Philipp, B. Gicquel, D. Portnoi. 1995. Characterization of the Mycobacterium tuberculosis erp gene encoding a potential cell surface protein with repetitive structures. Microbiology. 141:2123-
 - Bigi, F., A. Alito, J. C. Fisanotti, M. I. Romano, and A. Cataldi. 1995. Characterization of a novel Mycobacterium bovis secreted antigen containing PGLTS repeats. Infect. Immun. 63:2581-2586.
 - Boom, W. H., K. N. Balaji, R. Nayak, K. Tsukaguchi, and K. A. Chervenak. 1994. Characterization of a 10- to 14kilodaitons protease-sensitive Mycobacterium tuberculosis H37Ra antigen that stimulates human gamma delta T
 - Borremans, M., L. De Wit, G. Volckaert, J. Ooms, J. De Bruyn, K. Huygen, J. P. Van Vooren, M. Stelandre, R. Verhofstadt, and J. Content. 1989. Cloning, sequence determination and expression of a 32 kDa protein gene from
 - Bothwell, A., G.D. Yancopoulos and F.W. Alt. 1990. Methods of cloning and analysis of eukaryotic genes. Eds.
- Braibant, M., L. De Wit, P. Peirs, M. Kalai, J. Ooms, A. Drowart, K. Huygen, J. Content. 1994. Structure of the Myco-40 bacterium tuberculosis antigen 88, a protein related to Escherichia coli PstA periplasmic phosphate permease
- Carlucci, S., Beschin, A., Tuoso, L., Amegilo, F., Gandolfo, G.M., Cocito, C., Fiorucci, F., C. Saltini, and E. Piccolella.:1993. Mycobacterial antigen complex A60-specific T-cell repertoire during the course of pulmonary tuber-45 culosis. Infect. Immun. 61:439-447.
 - Cocito, C., and F. Vanlinden. 1986. Preparation and properties of antigen 60 from Mycobacterium bovis BCG.
 - Cocito, C. 1991. Properties of the mycobacterial antigen complex A60 and its applications to diagnosis and prog-
- Cocito, C., M. Coene, M. De Kesel, P. Gilot, P. Poupart, and P. Vannuffel.:1994. Paratuberculosis. Clin. Microbiol. 55 Rev. 7:328-345.
 - Cocito, C., and F. Vanlinden. 1995. Composition and immunoreactivity of different fractions and of the A60 complex from Mycobacterium bovis BCG. Scand. J. Immunol. 41:179-187.

- Coetsier, C., M. C. Baelden, M. Coene, and C. Cocito. 1994. Immunological analysis of the components of the antigen complex A60 of *Mycobacterium bovis BCG*. Clin. Diagn. Lab. Immunol. 1:139-144.
- Content, J., A. de a Cuvellerie, L. de Wit, V. Vincent-Levy Fébrault, J. Ooms, and J. de Bruyn. 1991. The genes coding for the antigen 85 complex of *M. tuberculosis* and *M. bovis* BCG are members of a gene family: cloning, sequence determination, and genomic organization of the gene coding for antigen 85 C of *M.tuberculosis*. Infect. Immun. 59:3205-3212.
- Dale, J., and A. Patki. 1990. Mycobacterial gene expression and regulation, p. 172-198. In J. McFadden (ed), Molecular biology of the mycobacteria. Surrey University Press, London.
- Daniel, T. D., and S. M. Debanne. 1987. The serodiagnosis of tuberculosis and other mycobacterial diseases by enzyme linked immunosorbent assay. Am. Rev. Respir. Dis. 135:1137-1151.
- Daniel, T. D. 1994. Tuberculosis, p. 710-718. In Harrison's principles of internal medicine, Mc Graw-Hill, New York.
 - De Kesel, M., P. Gilot, M. C. Misonne, M. Coene, and C. Cocito. 1993. Cloning and expression of portions of the 34 kDa protein gene of *Mycobacterium paratuberculosis*: its application to serological analysis of Johne's disease. J. Clin. Microbiol. 31:947-954.
- Deshpande, R. G., M. B. Khan, D. A. Bhat, and R. G. Navalkar. 1994. Purification and partial characterization of a novel 66-kDa seroreactive protein of *Mycobacterium tuberculosis* H37Rv. J. Med. Microbiol. 41:173-178.
 - Fabre, I., O. L'Homme, M. Bruneteau, G. Michel, and C. Cocito. 1986. Chemical composition of antigen 60 from *Mycobacterium bovis* BCG. Scand. J. Immunol. 24:591-602.
 - Friscia, G., H. M. Vordermeier, G. Pasvol, D. P. Harris, C. Moreno, and J. Ivanyi. 1995. Human T cell responses to peptide epitopes of the 16-kDa antigen in tuberculosis. Clin. Exp. Immunol. 102:53-57.
- Gilot, P., M. De Kesel, M. Coene, and C. Cocito. 1992. Induction of cellular immune reactions by A36, an antigen complex of *Mycobacterium paratuberculosis*. Comparison of A36 and johnin components. Scand. J. Immunol. 36:811-821.
 - Gilot, P., M. De Kesel, L. Machtelinckx, C. Coene, and C. Cocito. 1993. Isolation and sequencing of the gene coding for an antigenic 34 kDa protein of *Mycobacterium paratuberculosis*. J. Bacteriol. 175:4930-4935.
 - Harris, D. P., H. M. Vordermeier, S. J. Brett, G. Pasvol, C. Moreno, and J. Ivanyi. 1994. Epitope specificity and isoforms of the mycobacterial 19-kilodaltons antigen. Infect. Immun. 62:2963-2972.
- 40 Hawley, D., and W. McClure. 1983. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucl. Acids. Res. 11:2237-2255.
 - Hermans, P. W., F. Abebe, V. I. Kuteyi, A. H. Kolk, J. E. Thole, and M. Harboe. 1995. Molecular and immunological characterization of the highly conserved antigen 84 from *Mycobacterium tuberculosis* and *Mycobacterium leprae*. Infect. Immun. 63:954-960.
 - Hewinson, R. G., S. L. Michell, W. P. Russell, R. A. McAdam, and W. R. Jacobs. 1996. Molecular characterization of MPT83: a seroreactive antigen of *Mycobacterium tuberculosis* with homology to MPT70. Scand. J. Immunol. 43:490-499.
- Holmes, D. S., and M. Quigley. 1981. A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 114:193-197.
 - Janin 1979. Nature (London), 277: 491-492.

5

10

25

35

- Karplus P.A. and Schultz G.E. 1985. Naturwissenschaften 72: 212-213.
 - Laal, S., K. M. Samanich, M. G. Sonnenberg, J. T. Belisle, J. O'Leary, M. S. Simberkoff, S. Zolla-Pazner. 1997. Sur-

rogate marker of preclinical tuberculosis in human immunodeficiency virus infection: antibodies to an 88-kDa secreted antigen of *Mycobacterium tuberculosis*. J. Infect. Dis. 176:133-143.

- Laqueyrerie, A., P. Militzer, F. Romain, K. Eiglmeier, S. Cole, and G. Marchal. 1995. Cloning, sequencing, and expression of the apa gene coding for the *Mycobacterium tuberculosis* 45/47-kilodalton secreted antigen complex. Immun. 63:4003-4010.
- Manca, C., K. Lyashchenko, H. G. Wiker, D. Usai, R. Colangeli, and M. L. Gennaro. 1997. Molecular cloning, purification, and serological characterization of MPT63, a novel antigen secreted by *Mycobaterium tuberculosis*. Infect.
- Matsumoto, S., T. Matsuo, N. Ohara, H. Hotokezaka, M. Naito, J. Minami, and T. Yamada. 1995. Cloning and sequencing of a unique antigen MPT70 from *Mycobacterium tuberculosis* H37Rv and expression in BCG using E. coli-mycobacteria shuttle vector. Scand. J. Immunol. 41:281-287.
- O'Loan, C. J., J. M. Pollock, J. Hanna, and S. D. Neill. 1994. Immunoblot analysis of humoral immune responses to *Mycobacterium bovis* in expermentally infected cattle: early recognition of a 26-kilodaltons antigen. Clin. Diagn. Lab. Immunol. 1:608-611.
- Parker J.M., Guo D, and Hodges RS. 1986. Biochemistry 25: 5425-5432.

5

10

15

30

40

- Pollock, J. M., and P. Andersen. 1997. The potential of the ESAT-6 antigen secreted by virulent mycobacteria for specific diagnosis of tuberculosis. J. Infect. Dis. 175:1251-1254.
- Prestidge, R. L., P. M. Grandison, D. W. Chuk, R. J. Booth, and J. D. Watson. 1995. Production of the 19-kDa antigen of *Mycobacterium tuberculosis* in *Escherichia coli* and its purification. Gene. **164**:129-132.
 - Romain, F., A. Laqueyrerie, P. Militzer, P. Pescher, P. Chavarot, M. Lagranderie, G. Auregan, M. Gheorghiu, and G. Marchal. 1993. Identification of a *Mycobacterium bovis* BCG 45/47-kilodaltons antigen complex, an immunodominant target for antibody response after immunization with living bacteria. Infect. Immun. 61:742-750.
 - Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.
- Sinha, R. K., I. Verma, and G. K. Khuller. 1997. Immunobiological properties of a 30 kDa secretory protein of *Myco-bacterium tuberculosis* H37Ra. Vaccine. **15:**689-699.
 - Singh, M., A. B. Andersen, J. E. McCarthy, R. Rohde, H. Schutte, E. Sanders, and K. N. Timmis. 1992. The *myco-bacterium tuberculosis* 38-kDa antigen: overproduction in *Escherichia coli*, purification and characterization. Gene.
 - Sorensen, A. L., S. Nagai, G. Houen, P. Andersen, and A. B. Andersen. 1995. Purification and characterization of a low-molecular-mass T-cell antigen secreted by *Mycobaterium tuberculosis*. Infect. Immun. 63:1710-1717.
- Ulmer J, Donnelly J, Parker S, et al. 1993. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science, 259: 1745-1749.
 - Verbon, A., R. A. Hartskeel, C. Moreno, and A. H. Kolk. 1992. Characterization of B cell epitopes on the 16K antigen of *Mycobacterium tuberculosis*. Clin. Exp. Immunol. 89:395-401.
 - Youmans, G. P. 1985. The biological and clinicalm basis of Infections Diseases, p.348-367. In Youmans, G. P., P. Y. Paterson, H. M. Sommers (eds), Saunders, Philadelphia.
- Young, D. B., S. H. E. Kaufmann, P. W. M. Hermans, and J. E. R. Thole. 1992. Mycobacterial protein antigens: a compilation. Mol. Microbiol. 6:133-145.
 - Young, D., J. Ivanyi, J. Cox, and J. Lamp. 1987. The 65 kDa antigen of mycobacteria a common bacterial protein. Immunol. Today. 8:215-219.

Zou, Y. L., M. P. Van Antwerpen, G. Q. Shi, Q. X. Chen, C. J. M. Sindic, and C. Cocito. 1994a. Analysis of tuberculous meningitis cases by an immunoblotting assay based on a mycobacterial antigen complex. Clin. Diagn. Labor. Immunology. 1:353-356.

Zou, Y. L., J. D. Zhang, M. H. Chen, G. Q. Shi, and C. Cocito. 1994b. Serological analysis of pulmonary and extrapulmonary tuberculosis with ELISA assays for different immunoglobulins. Clin. Inf. Dis. 19:1084-1091.

10.

(1) GENERAL INFORMATION:

55

SEQUENCE LISTING

Ð.	10 - 20 - 10 - 10 - 10 - 10 - 10 - 10	
	(1) APPLICANT:	
	(A) NAME: Innogenetics N.V.	
	(B) STREET: Industriepark Zwijnaarde 7, box 4 (C) CITY: Ghent	• .
	(E) COUNTRY: Belgium	
10	(F) POSTAL CODE (ZIP): B-9052	
	19/ 15D5PHONE* ON 22 B 64* 66 :	
	(H) TELEFAX: 00 32 9 241 07 11	
	(ii) TITLE OF INVENTION: New polypeptides and nucleic acids encode the same for the diagnosis and prevention of tubes.	
4.5	the same for the diagnosis and prevention of tuberculosis	ling
15	cursease.	
•	(111) NUMBER OF SEQUENCES: 9	
	(iv) COMPUTER READABLE FORM:	
	(A) MEDIUM TYPE: Flore di -1	
20	(D) COMPUTER TOW NO	•
	(D) SOFTWARE: Patentin Release #1.0, Version #1.30 (EPO)	
	(V) CURRENT APPLICATION DATA:	
	APPLICATION NUMBER: EP 98870127.2	
25	(2) INFORMATION FOR SEQ ID NO: 1:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2708 base pairs (B) TYPE: nucleic acid	
•	(C) STRANDEDNESS: single	
30	(D) TOPOLOGY: linear	
30		
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	•
	(iv) ANTI-SENSE: NO	
35		
	W	
	(ix) FEATURE:	
	(A) NAME/KEY: CDS	
	(B) LOCATION: 711951	
40	(ix) FEATURE:	
40	(A) NAME/KEY: mat peptide	
	(B) LOCATION: 71 1948	
	(ix) FEATURE:	
	(A) NAME/KEY: CDS	
45	(B) LOCATION: 10632599	
	(ix) FEATURE:	
	(A) NAMP (KRY, TALL	
	(A) NAME/KEY: mat_peptide (B) LOCATION:10632596	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	GACTECTARE CONCERNMENT	
	GACTGCAAAG CTGGGTTGTC CCGCCGACAC CGCATTCGCG CGCGTCGCTG GCCCGATACG	
	AGATAGCGCA ATG ACC ACC ACC	60
	AGATAGCGCA ATG ACC ACC CCT TCC CAC CTG TCC GAC CGC TAC GAA CTT	109
55	•	,00

	Met Thr Thr Pro Ser His Leu Ser Asp Arg Tyr Glu Leu 1 5 10	
	GGC GAA ATC CTT GGA TTT GGG GGC ATG TCC GAG GTC CAC CTG GCC CGC Gly Glu Ile Leu Gly Phe Gly Gly Met Ser Glu Val His Leu Ala Arg 15 20 25	157
	GAC CTC CGG TTG CAC CGC GAC GTT GCG GTC AAG GTG CTG CGC GCT GAT Asp Leu Arg Leu His Arg Asp Val Ala Val Lys Val Leu Arg Ala Asp 30 45	205
10	CTA GCC CGC GAT CCC AGT TTT TAC CTT CGC TTC CGG CGT GAG GCG CAA Leu Ala Arg Asp Pro Ser Phe Tyr Leu Arg Phe Arg Arg Glu Ala Gln 50 55 60	253
15	AAC GCC GCG GCA TTG AAC CAC CCT GCA ATC GTC GCG GTC TAC GAC ACC Asn Ala Ala Leu Asn His Pro Ala Ile Val Ala Val Tyr Asp Thr 65 70 75	301
	GGT GAA GCC GAA ACG CCC GCC GGG CCA TTG CCC TAC ATC GTC ATG GAA Gly Glu Ala Glu Thr Pro Ala Gly Pro Leu Pro Tyr Ile Val Met Glu 80 85 90	349
20	TAC GTC GAC GGC GTT ACC CTG CGC GAC ATT GTC CAC ACC GAA GGG CCG Tyr Val Asp Gly Val Thr Leu Arg Asp Ile Val His Thr Glu Gly Pro 95 100 105	397
	ATG ACG CCC AAA CGC GCC ATC GAG GTC ATC GCC GAC GCC TGC CAA GCG Met Thr Pro Lys Arg Ala Ile Glu Val Ile Ala Asp Ala Cys Gln Ala 110 125	445
.	CTG AAC TTC AGT CAT CAG AAC GGA ATC ATC CAC CGT GAC GTC AAG CCG Leu Asn Phe Ser His Gln Asn Gly Ile Ile His Arg Asp Val Lys Pro 130 135 140	493
30	GCG AAC ATC ATG ATC AGC GCG ACC AAT GCA GTA AAG GTG ATG GAT TTC Ala Asn Ile Met Ile Ser Ala Thr Asn Ala Val Lys Val Met Asp Phe 145 150 150	541
: 	GGC ATC GCC CGC GCC ATT GCC GAC AGC GGC AAC AGC GTG ACC CAG ACC Gly Ile Ala Arg Ala Ile Ala Asp Ser Gly Asn Ser Val Thr Gln Thr 160 165 170	589
35	GCA GCA GTG ATC GGC ACG GCG CAG TAC CTG TCA CCC GAA CAG GCC CGG Ala Ala Val Ile Gly Thr Ala Gln Tyr Leu Ser Pro Glu Gln Ala Arg 175 180 185	637
40	GGT GAT TCC GTC GAC GCC CGA TCC GAT GTC TAT TCC TTG GGC TGT GTT Gly Asp Ser Val Asp Ala Arg Ser Asp Val Tyr Ser Leu Gly Cys Val 190 195 200	685
	CTT TAT GAA GTC CTC ACC GGG GAG CCA CCT TTC ACC GGC GAC TCA CCC Leu Tyr Glu Val Leu Thr Gly Glu Pro Pro Phe Thr Gly Asp Ser Pro 210 215 220	733
45	GTC TCG GTT GCC TAC CAA CAT GTG CGC GAA GAC CCG ATC CCA CCT TCG Val Ser Val Ala Tyr Gln His Val Arg Glu Asp Pro Ile Pro Pro Ser 235	781
	GCG CGG CAC GAA GGC CTC TCC GCC GAC CTG GAC GCC GTC GTT CTC AAG Ala Arg His Glu Gly Leu Ser Ala Asp Leu Asp Ala Val Val Leu Lys 240 245 250	829
50	GCG CTG GCC AAA AAT CCG GAA AAC CGC TAT CAG ACA GCG GCG GAG ATG Ala Leu Ala Lys Asn Pro Glu Asn Arg Tyr Gln Thr Ala Ala Glu Met 255 260 265	877

	2°	SC G(rg A) 70	CC GA	C CT	G GT u Vai	C CGC 1 Arc 275	GT(G CAC	C AA	C GG n Gl	T GA	u Pre	G CC	C GA	G GC u Al	G CCC	925
5										•						285	
	A) Ly	VA GI	C CT	C AC	C GAS F Asp 290	F GCC P Ala	GA(G CGG	G ACC	TC: Se: 29:	r net	G CTO	TC Se	G TC	F GC	G GCC	973
	GC	C AP	C CT	ጥ አር													
10				30	5			,	310	5	· Det	1 PEC	Arg	3 Gl:	ı Ası	C TTA C Leu	1021
	•		, 320	0		-		325	;	- 613	, ser	val	33(/ Arq	Tr	GTT Val	1069
15		33	5.				340				. var	345	. vai	Thi	Ile	GCC Ala	1117
	TA	CAA	C AC	3 TTC	GGC	· ccc	משת										
20	35	0				355				برسم.	360	GIN	val	Pro	Asp	GTT Val 365	1165
			•		370	٠	•			375	· ·	rea	Gin	Asn	Arg 380		1213
. 25			A ATC	385				~,,	390	мар	ser	Thr	Ile	Pro 395	Pro	Asp	1261
	CA	C GT	r ATC	GGC	ACC	GAC	CCG	ccc				<u>.</u>					
30			400	_		-		405		W2 II	THE	ser	410	Ser	Ala	Gly	1309
. 30	GA: Asj	GA0 Glu 415	ATC Ile	ACA	GTC Val	AAC Asn	GTG Val 420	TCC Ser	ACC Thr	GGA Gly	CCG Pro	GAG Glu 425	CAA Gln	CGC Arg	GAA Glu	ATA Ile	1357
	CCC	GAC	GTC	TCC	ACG	CITIC											
35	430		GTC Val	•		435		-1-	~ Lq	GIU	440	val	Lys	Lys	Leu	Thr 445	1405
	AL:	Ala	GGA Gly	TTC Phe	GGC Gly 450	CGC Arg	TTC Phe	AAG Lys	CAA Gln	GCG Ala 455	AAT Asn	TCG Ser	CCG Pro	TCC Ser	ACC Thr 460	CCG Pro	1453
40	GAF Glu	CTG Leu	GTG Val	GGC Gly 465	AAG Lys	GTC Val	ATC Ile	GGG Gly	ACC Thr 470	AAC Asn	CCG Pro	CCA Pro	GCC Ala	AAC Asn 475		ACG Thr	1501
	TCG Ser	GCC	ATC Ile 480	ACC Thr	AAT Asn	GTG Val	GTC Val	ATC Ile 485	ATC Ile	ATC Ile	GTT Val	GGC Gly	Ser	GGT Gly	CCG Pro	GCG Ala	1549
45	ACC Thr	AAA Lys 495	GAC Asp	ATT Ile	CCC Pro				GGC Gly	CAG Gln	ACC Thr	GTC Val	490 GAC Asp	GTG Val	GCG Ala	CAG Gln	1597
												202					•
50	510		CTC Leu			515	,	- 110		пåг	520	Ser	GIN	Ala	Ser	Val 525	1645
	Asp	AGC Ser	Pro	CGT Arg	Pro .	GCC (Ala (GGC Gly	GAG Glu	GTG Val	ACC Thr	GC .	ACC . Thr .	aat Asn	CCA Pro	CCC Pro	GCA Ala	1693

	530 535 540	
5	GGC ACC ACA GTT CCG GTC GAT TCA GTC ATC GAA CTA CAG GTG TCC AAG Gly Thr Thr Val Pro Val Asp Ser Val Ile Glu Leu Gln Val Ser Lys 545 550 555	1741
,	GGC AAC CAA TTC GTC ATG CCC GAC CTA TCC GGC ATG TTC TGG GTC GAC Gly Asn Gln Phe Val Met Pro Asp Leu Ser Gly Met Phe Trp Val Asp 560 565	1789
10	GCC GAA CCA CGA TTG CGC GCG CTG GGC TGG ACC GGG ATG CTC GAC AAA Ala Glu Pro Arg Leu Arg Ala Leu Gly Trp Thr Gly Met Leu Asp Lys 575 580 585	1837
	GGG GCC GAC GTC GAC GCC GGT GGC TCC CAA CAC CGG GTC GTC TAT Gly Ala Asp Val Asp Ala Gly Gly Ser Gln His Asn Arg Val Val Tyr 600 605	1885
15	CAA AAC CCG CCG GCG GGG ACC GGC GTC AAC CGG GAC GGC ATC ATC ACG Gln Asn Pro Pro Ala Gly Thr Gly Val Asn Arg Asp Gly Ile Ile Thr 610 620	1933
20	CTG AGG TTC GGC CAG TAG CTTCGCCCGC GCTAGCGGTT GAAGTTGGGA Leu Arg Phe Gly Gln * 625	1981
	AGTCCGGTGA GATGCCGGTG AGCACTTCGT TTTCCAGCCG ACGTACCAGG GTGTCGTCTT	2041
	AGTCCGGTGA GATGGCGGTG AGCCAGTTGG CCAGTATGCG GTGCCCGCCC TCGGTGAGAA	2101
25	TCGACTCCGG ATGGAACTGG ACACCGTGGA TCGGCAGCCC GGTGTGCTGC ACGGCCATGA	2161
*	TCGACTCCGG ATGGAACTGG ACACCGIGGA TCCCCCCC TGGCAGCGAC TTAGGCAGAA TCACACCGCT GCTAGTGCGG GCCGTGACCC TCAGCACCGC TGGCAGCGAC TTAGGCAGAA	2221
	TCACACCECT GCTACTECEG GCCGTGACCC TCACGCTCGG AAGCCCTTGT AGCACACCGA TTTTCAACGA ATGGTATCGA GTGGCCGTGA AGGGATCCGG AAGCCCTTGT AGCACACCGA	2281
	TTTTCAACGA ATGGTATCGA GFGGCCGIGA AGGGTATAG CTCGGGCGCA CGGTCCACGG	2341
30	CATTGGTGTG GAATACGCTG CTGGTCTTGC CGTGCAATAG	2401
	TGGCGCCGAA CGCAACGCCG ATGGCTTGGT GCCCAAGGCA GACCCCCAGC AAAGGGGTGT	2461
	GTGCTGCCGC ACACGCGTGC ACGATACTCA CCGACGCGCC CGCGCGCTCC GGGGTACCCG	2521
35	GACCGGGACT GAGCAGGACA CCGTCGAATT GGCCGGCGAC GGCGGCCTCA TCGGATAACC	2581
	GGTGGTCGTC GTTGCGCCAC ACCTCGGCCT CGATGCCGAG CTGGCCGAGG TACTGCACCA	2641
	GGTTGAACAC GAAGCTGTCG TAGTTGTCAA CGACCAGGAT CCGCATCGTG ACAGGCTACC	
40	GCCTGACCCT GCCGGCAGTC GTTCAGTAGT CCAAGGGGCC TGCAGGCTGC GCGAAGTGCA	2708
	TCCGGAC	2.00
•		

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 627 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Thr Thr Pro Ser His Leu Ser Asp Arg Tyr Glu Leu Gly Glu Ile 15 10 15

55

45

													•			
									_	-				3	0	u Arg
5								_	-				4	σ.		a Arg
												-	U			a Ala
10												3			•	u Ala 80
										,	·				9:	L Asp
15										•				110	•	Pro
													12:	•		Phe -
20												141	,			. Ile
											100	,				Ala 160
25					165	•				4,0					175	
					Gln									190		
30					Ser								205			
					Glu							220				
<i>35</i>				•	Val						233					240
					Ala 245		•			250					255	
40					Asn									270		
40					His								285			
					Arg	•						300				•
45											212	•				320
					Ser 325					330					335	
50					Val				- 10					350		
	rne	etÀ	Gly 355	Ile	Thr :	Arg i	Asp :	Val (Gln	Val	Pro	Asp	Val 365	Arg	Gly	Gln

	Ser Ser Ala Asp Ala fle Ala Thr Bed 311 380 370
5	Arg Thr Leu Gln Lys Pro Asp Ser Thr Ile Pro Pro Asp His Val Ile 395 400
	Gly Thr Asp Pro Ala Ala Asn Thr Ser Val Ser Ala Gly Asp Glu Ile 415 405
	Thr Val Asn Val Ser Thr Gly Pro Glu Gln Arg Glu Ile Pro Asp Val 420 425 430
10	Ser Thr Leu Thr Tyr Ala Glu Ala Val Lys Lys Leu Thr Ala Ala Gly 445 435
	Phe Gly Arg Phe Lys Gln Ala Asn Ser Pro Ser Thr Pro Glu Leu Val 450 455 460
15	Gly Lys Val Ile Gly Thr Asn Pro Pro Ala Asn Gln Thr Ser Ala Ile 480 465
	Thr Asn Val Val Ile Ile Ile Val Gly Ser Gly Pro Ala Thr Lys Asp 495 485
20	Ile Pro Asp Val Ala Gly Gln Thr Val Asp Val Ala Gln Lys Asn Leu 500 505
	Asn Val Tyr Gly Phe Thr Lys Phe Ser Gln Ala Ser Val Asp Ser Pro 525 515
25	Arg Pro Ala Gly Glu Val Thr Gly Thr Asn Pro Pro Ala Gly Thr Thr 540 530 535
	Val Pro Val Asp Ser Val Ile Glu Leu Gln Val Ser Lys Gly Asn Gln 560 545 550 560 570
30	Phe Val Met Pro Asp Leu Ser Gly Met Phe Trp Val Asp Ala Glu Pro 575 565 570 570 570 Asp Ala Asp
	Arg Leu Arg Ala Leu Gly Trp Thr Gly Met Leu Asp Lys Gly Ala Asp 580 580 580 580 580 580 580 580
35	Val Asp Ala Gly Gly Ser Gln His Asn Arg Val Val Tyr Gln Asn Pro 605 595 600 71 71 71 71 71 71 71 71 71 71 71 71 71 7
	Pro Ala Gly Thr Gly Val Asn Arg Asp Gly Ile Ile Thr Leu Arg Phe 610 615 620
40	Gly Gln * 625
	(2) INFORMATION FOR SEQ ID NO: 3: (i) SEQUENCE CHARACTERISTICS:
. 45	(A) LENGTH: 513 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: protein
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
	Leu Gly Cys Gly Gly Arg Arg Ala Arg Cys Ala Asp Arg Arg Gly Asr 10 15
<i>55</i>	

	H1	s Ar	g Hi	s Gl: 20	n Hi:	s Val	l Ar	g Ar	g Hi: 25	s His	Pro	Ar	g Ar	3 Se:	r Se	r Ser
5													. 45			a Lys
												90				Pro
10											13					7 Glu 80
										30					95	Thr
15														110)	Glu
									•				125			Val
. 20												TÃO				Gln
											133					Trp 160
25										-10					- 175	Arg
														190		Gly
30								_		Arg			203			
										Phe		220				
35										Arg	233					240 .
	Gly														255	
								•		Trp				270		
40										Arg			285			
										Ser		300				•
45											313					320
	Arg									330					335	Leu
	Ala													Gly '	Trp :	
	Trp	Thr	Pro 355	Trp	Ile	Gly :	Ser	Pro '	Val	Cys (Cys '	Thr :	Ala 1 365	Met :	Ile '	Thr

Tou Ser Thr Ala Gly Ser Asp Leu
Pro Leu Leu Val Arg Ala Val Thr Leu Ser Thr Ala Gly Ser Asp Leu 375
Gly Arg Ile Phe Asn Glu Trp Tyr Arg Val Ala Val Lys Gly Ser Gly 390 395
390 395 Thr Leu Leu Val Leu
Ser Pro Cys Ser Thr Pro Thr Leu Val Trp Asn Thr Leu Leu Val Leu 415 405
Pro Cys Asn Ser Ser Gly Ala Arg Ser Thr Val Ala Pro Asn Ala Thr 430 425 420 425 420 425 420 425
Pro Met Ala Trp Cys Pro Arg Gln Thr Pro Ser Lys Gly Val Cys Ala 445 435
Ala Ala His Ala Cys Thr Ile Leu Thr Asp Ala Pro Ala Arg Ser Gly 450 450 450
Val Pro Gly Pro Gly Leu Ser Arg Thr Pro Ser Asn Trp Pro Ala Thr 480 475 470
Ala Ala Ser Ser Asp Asn Arg Trp Ser Ser Leu Arg His Thr Ser Ala 490 495
Ser Met Pro Ser Trp Pro Arg Tyr Cys Thr Arg Leu Asn Thr Lys Leu 505 510
Ser
2) INFORMATION FOR SEQ ID NO: 4:
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: peptide
(111) HYPOTHETICAL: NO
(iv) Anti-sense: NO
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:
Lys Gly Ala Asp Val Asp Ala Gly Gly Ser Gln His Asn Arg 1 10
(2) INFORMATION FOR SEQ ID NO: 5:
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: peptide
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
5	Gly Gln Pro Pro Ser Arg Arg Arg Gly Asp Arg His Gln Ser Thr A 5 10 15	ırg
10	(2) INFORMATION FOR SEQ ID NO: 6:	
*	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
20	(iv) ANTI-SENSE: NO	· ·
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
25	GCGGGCGTT TCGGCTTCAC C	•
	(2) INFORMATION FOR SEQ ID NO: 7:	21
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 132 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	;
• .	(ii) MOLECULE TYPE: DNA (genomic)	
35	(111) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
	CAGGGAATTC GAGCTCGGTA CCCGGGGAGG CCTGCACGTG ATCGAGGGCA GACACCATCA	
	CCACCATCAC TAATAGTTAA TTAACTGAG	60
45	CCACCATCAC TAATAGTTAA TTAACTGCAG GGATCCTCTA GAGTCGACCG GCATGCAAGC TTAAGTAAGT AA	120
	(2) INFORMATION FOR SEQ ID NO: 8:	132
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 133 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
55		

	· · · · · · · · · · · · · · · · · · ·	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
5		
	TOTAL SEO ID NO: 8:	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	60
. 10	(xi) SEQUENCE DESCRIPTION CAGCCGAATT CGAGCTCGGT ACCCGGGGAG GCCTGCACGT GATCGAGGGC AGACACCATC	120
	CAGCCGAATT CGAGCTCGGT ACCCCCTATA ACCACCATCA CTAATAGTTA ATTAACTGCA GGGATCCTCT AGAGTCGACC GGCATGCAAG	133
	CTTAAGTAAG TAA	-
15	(2) INFORMATION FOR SEQ ID NO: 9:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 134 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
25	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
30	(X1) SEQUENCE DESCRIPTION CAGCCCGAAT TCGAGCTCGG TACCCGGGGA GGCCTGCACG TGATCGAGGG CAGACACCAT CAGCCCGAAT TCGAGCTCGG TACCCGGGGA GGCCTGCACG TAGAGTCGAC CGGCATGCAA	60
	CAGCCCGAAT TCGAGCTCGG TACCCGGGGAT CAGCCACCATC ACTAATAGTT AATTAACTGC AGGGATCCTC TAGAGTCGAC CGGCATGCAA	120
	CACCACCATC ACTAATAGTT AATTAACTGC AGGGATOOT	134
35	GCTTAAGTAA GTAA	
40		
45	 An isolated nucleic acid of <i>M. tuberculosis</i> containing a nucleotide sequence with a maximum leng tiguous nucleotides, wherein said nucleotide sequence contains at least two overlapping ORF's witiguous nucleotides, wherein said nucleotide sequence contains at least two overlapping ORF's witiguous nucleotides, wherein said nucleotide sequence contains at least two overlapping ORF's witiguous nucleotides, wherein said nucleotide sequence contains at least two overlapping ORF's witiguous nucleotides, wherein said nucleotide sequence contains at least two overlapping ORF's witiguous nucleotides, wherein said nucleotide sequence contains at least two overlapping ORF's witiguous nucleotides, wherein said nucleotide sequence contains at least two overlapping ORF's witiguous nucleotides, wherein said nucleotide sequence contains at least two overlapping ORF's witiguous nucleotides, wherein said nucleotide sequence contains at least two overlapping ORF's witiguous nucleotides, wherein said nucleotide sequence contains at least two overlapping ORF's witiguous nucleotides, wherein said nucleotide sequence contains at least two overlapping ORF's witiguous nucleotides, wherein said nucleotide sequence contains at least two overlapping ORF's witiguous nucleotides at least two overlap	its amino acid
_	sequence at least one conservations	n its amino acid
5	represented by SEQ ID No 3, or a fragment of said nucleic acid, said fragment containing at least 15, preferably at least 30 ably at least 45 contiguous nucleotides of the sequence of said nucleic acid, and encoding at the R3 and/or R3 protein, or its homologues.	and more prefer- least one epitope
•	 An isolated nucleic acid according to claim 1, wherein said nucleotide sequence is selected from 	1:
	2. An isolated fidoleic asia according	

- (i) the nucleotide sequence as represented in figure 2 (SEQ ID N0 1),
- (ii) a nucleotide sequence which hybridizes to the nucleotide sequence of (i) and which encodes a B2 protein, or a protein homologous to B2, and/or a B3 protein, or a protein homologous to B3, with said B2 (B3) protein
- (iii) a nucleotide sequence which is degenerate as a result of the genetic code to any of the nucleotide sequences as defined in (i) and (ii) and which encodes a B2 protein, or a protein homologous to B2, and/or a B3 protein, or a protein homologous to B3, with said B2 (B3) protein and its homologues as defined in claim 1,
- (iv) a fragment of any of the nucleotide sequences as defined in (i) to (iii), said fragment containing a stretch of at least 15, preferably 30 and more preferably 45 contiguous nucleotides of any of the nucleotide sequences as defined in (i) to (iii), and encoding at least one epitope of the B2 and/or B3 protein, or the homologous pro-
- An isolated nucleic acid according to any of claims 1 to 2, wherein said nucleotide sequence extends from position (x) to position (y) in the sequence of figure 2 (SEQ ID No 1), with (x) and (y) representing any of the following val-15
 - from position (71) to position (1951),

10

20

25

45

50

- from position (398) to position (1951),
- from position (1063) to position (2604),
- from position (272) to position (1438),
- from position (1439) to position (1951),
- from position (1438) to position (2604),
- or a fragment of said nucleic acid, said fragment containing at least 15, preferably at least 30 and more preferably at least 45 contiguous nucleotides of the sequence of said nucleic acid, and encoding at least one epitope
- A recombinant vector, for cloning and/or expression purposes, into which a nucleic acid according to any of claims 1 to 3, or a fragment of said nucleic acid, has been inserted and wherein, in case of an expression vector, the coding sequence of said nucleic acid is operably linked to an expression cassette enabling the expression of the coding 30
- 5. A host cell transformed by a recombinant vector according to claim 4, with said host cell being preferably a prokaryotic organism, preferably chosen from among the following group of organisms: E. coli, Streptomyces species, Corynebacterium species, such as e.g. C. glutamicum, or tast-growing Mycobacterium species, such as e.g. M. 35
 - A polypeptide encoded by any of the nucleic acids according to claims 1 to 3.
- 7. A polypeptide according to claim 6, having at least one of the following amino acid sequences:
 - (i) the amino acid sequence of the B2 protein represented by SEQ ID N0 2,
 - (ii) the amino acid sequence of the B3 protein represented by SEQ ID N0 3,
 - (iii) the amino acid sequence extending from position (110) to position (626) in SEQ ID No 2,
 - (iv) the amino acid sequence extending from position (68) to position (456) in SEQ ID No 2,
 - (v) the amino acid sequence extending from position (457) to position (626) in SEQ ID No 2.
 - (vi) the amino acid sequence extending from position (126) to position (513) in SEQ ID N0 3,
 - or a fragment of any of the polypeptides according to (i) to (vi), said fragment consisting of a stretch of at least 6, preferablyl 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 50 or more contiguous amino acids of the sequence represented by SEQ ID N0 2 or SEQ ID N0 3, and being recognized by a pool of
 - 8. A fusion protein comprising an amino acid sequence of a polypeptide according to any of claims 6 to 7, or a frag-
 - A method for the production of a recombinant polypeptide according to any of claims 6 to 7, or a fusion protein

- culturing a transformed cellular host according to claim 5 under conditions allowing the heterologous expression of the polypeptide or the fusion protein which is encoded,
- isolating the polypeptide or fusion protein from the culture broth.

10

15

20

35

40

45

- 10. An antibody raised against a polypeptide according to any of claims 6 to 7, or raised against a fusion protein according to claim 8, more preferably a monoclonal antibody.
 - 11. A method for the *in vitro* detection of tuberculosis disease in a mammal subject, based on the detection of anti- *M. tuberculosis* antibodies present in a sample taken from said subject, comprising the steps of
 - contacting said sample with a polypeptide according to any of claims 6 to 7, or with a fusion protein according to daim 8, under conditions allowing the formation of an immunological complex, and
 - to claim 8, under conditions allowing the iornation of an infinition of some between said polypeptide and the anti *M.* tuberculosis antibodies which may be present in said sample.
 - 12. A method for the *in vitro* detection of tuberculosis disease in a mammal subject, based on the detection of *M. tuberculosis* antigens present in a sample taken from said subject, and comprising the steps of
 - if necessary, pretreatment of said sample in order to release the *M. tuberculosis* antigens which may be present in said sample.
 - present in said sample,
 contacting said sample with an antibody according to claim 10, under conditions allowing the formation of an immunological complex, and
 - detecting the presence of an immunological complex formed between said antibody and the *M. tuberculosis* antigens which may be present in said sample.
 - 13. An immunodiagnostic kit for the in vitro detection of tuberculosis disease in mammals, said kit comprising a polypeptide according to any of claims 6 to 7, or a fusion protein according to claim 8, or an antibody according to claim 10.
- 14. A vaccine composition for the prevention of tuberculosis disease in mammals, said vaccine composition comprising as an active principle a polypeptide according to any of claims 6 to 7, or a fusion protein according to claim 8, or a nucleic acid according to any of claims 1 to 3, or a recombinant vector according to claim 4, said active principle being combined with a pharmaceutically acceptable carrier.

Figure 1

Figure 2

•	
GACTGCAAAGCTGGGTTGTCCCGCCGACACCGCATTCGCGCGCG	70
GACTGCAAAGCTGGGTTGTCCCGCCGACACCGCTT	
	140
ATGACCACCCTTCCCACCTGTCCGACCGCTACGACTTGGCGAAATTCCCAACTTGGCGAAATTCCAACTTGGCGAAATTCCCAACTTGGCGAAATTCCCAACTTGGCGAAATTCCCAACTTGGCGAAACTTGGCGAAATTCCCAACTTGGCGAAATTCCCAACTTGGCGAAATTCCCAACTTGGCGAAATTCAACTTGGCGAAATTCCAACTTGGCGAAATTCCAACTTGGCGAAATTCCAACTTGGCGAAATTCAACTTGGCGAAATTCCAACTTGGCGAAATTCCAACTTGGCGAAATTCCAACTTGGCGAAATTCCAACTTGGCGAAATTCCAACTTGGCGAAATTCCAACTTGGCGAAATTCCAACTTGGCGAAATTCCAACTTGGCGAAATTCCAACTTGGCGAAATTCCAACTTGGCGAAATTCCAACTTGGCGAAATTCCAACTTGGCGAAATTCCAACTTGGCGAAATTCCAACTTGGCGAAATTCCAACTTGGCGAAATTCCAACTTGGCAAATTCCAACTTGGCAAATTCCAACTTGGCAAATTCCAACTTGGCAAATTCCAACTTGGCAAATTCCAACTTGGCAAATTCAACTTGGCAAATTCAACTTGGCAAATTCAACTTGGCAAATTCAACTTGGCAAATTCAACTTGGCAAATTCAACTTGGAAATTCAACTTGGAAATTCAACTTGGAAATTCAAAATTGGCAAAATTCAAAATTGGCAAAATTCAAAATTGGCAAAATTGGCAAAATTCAAAATTGGCAAAATTCAAAATTGGCAAAATTGGCAAAATTGGCAAAATTCAAAATTGGCAAAATTAAAATTGGCAAAATTGGCAAAATTGGCAAAATTGGCAAAATTGGCAAATTGGAAAATTGGAAATTAAAATTGGAAAAAA	
MTTPSELSDR	
	•
L-ORF1 (B2)	
AGGTCCACCTGGCCGGGACCTCCGGTTGCACCGCGACGTTGCGGTCAAGGTGCTGCGCGCTGATCTAGC	210
AGGTCCACCTGGCCCGCGACCTTGCGGCGACGTTGCGGTCAGGTCCAGGTCCAGGTCCAGGTCGCGCGACGTTGCGGTCAGGTCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTCCAGGTC	
V H L A R D L R Z L 40	
30	
CCGCGATCCCAGTTTTTACCTTCGGCTTCCGGCGTGAGGCGCAAAACGCCGGGCATTGAACCACCCTGCA	280
CCGCGATCCCAGTITTTACCTTCCGCTTCCGGTGTCAGGCGCGCTTTTTACCTTCCGCTTCCGGTGTCAGGCGCGCTTTTTACCTTCCGCTTCCGGTGTCAGGCGCGCTTTTTACCTTCCGGTGTCAGGCGCGCTTTTTACCTTCCGGTGTCAGGCGCGCTTTTTACCTTCCGGTGTCAGGCGCGCTTTTTACCTTCCGGTGTCAGGCGCGCTTTTTACCTTCCGGTGTCAGGCGCGCTTTTTACCTTCCGGTGTCAGGCGCGCTTTTTACCTTCCGGTGTCAGGCGCGCTTTTTACCTTCCGGTGTCAGGCGCGCTTCCGGTGTCAGGCGCGCTTTTTACCTTCCGGTGTCAGGCGCGCTTTTTACCTTCCGGTGTCAGGCGCGCGC	
• u	
50	
Table: 1	250
TEDDIO: 1 ATCOTOCOTACACACACCOCCOLÀNCOCCOCCOCCOCCOCCOCCOCTACACACACACCCCCALÀNCOCCOLÀNACACCCCALÀNCOCCALÀ	
3 (A (Y) 1 BO 90	
	·
Sell Sell	420
Sali AC <u>GTOGAC</u> GGCGTTACCCTGCGCGACATTGTCCACACCGAAGGGCCGATGACGCCCAAACGCGCCATCGA	
V D G V T L R D I V H T E G P M T P K R A I E	
200	
GGTCATCGCCGACGCCTGCCAAGCGCTGAACTTCAGTCATCAGAACGGAATCATCCACCGTGACGTCAAG	490
GETCATCGCCGACGCCTGCAAGCGCTGAACTT AGICATCACACTT AGICATCACACTT AGICATCACACTT AGICATCACACTT AGICATCACACTT AGICATCACTT AGICATCACTACT AGICATCACTACT AGICATCACTACT AGICATCACTACT AGICATCACTACTACTACTACTACTACTACTACTACTACTACT	
VIADACQALNISTY	
120	
CCGGCGAACATCATGATCAGCGCGACCAATGCAGTAAAGGTGATGGATTTCGGCATCGCCGCGCCACTTG	560
CCGGCGAACATCATGATCAGCGCGACCAATGCAGTAAAGTGATGATGATGATGATGATGATGAATGCAGTAAAGTGAATGCAGTAAAGTGAATGCAGTAAAGTGAATGCAGTAAAGTGAATGCAATGCAGTAAAGTGAATGCAATG	
P A N 2 M 2 S A 1 N 1 150	
	€30.
COGNONGO CONTROL DE LA COCAGA COGO CAGA CAGA CAGA CAGA CAGA C	520.
D S G N S V 1 Q 1 A A A A A A A A A A A A A A A A A	
	700
GEODGEGETSKTTOTTETETSEEDITATOTTKTOTETKEDDCTGEGTGEDTKTTCTTEEGGECGG	
regrest DARES Vistorial Control of the control of t	
200	
	770
ACCORDAGE DE CONTRACO DE LA CONTRACO DE CO	_
T G E P P F T G D F P V S V A Y C H V R E D P 1	
220	

Figure 2 (cont'd 1)

P P S A R H F C L F D GARGECCTGGACGCGTCGTTCTCAAGGCGCTGGCCAA	
PPSARHEGLSADLDAVVLKALAK 240 250	640
AAATCCGGAAAACCGCTATCACACACGCGGGGGG	
AAATCCGGAAAACCGCTATCAGACAGCGSCGGAGATGCGCGCGACCTGGTCCGCGTGCACAACGGTGAG N P E N R Y Q T A A E M R A D L V R V H N G E 260 270 280	510
CCGCCCGAGGCGCCCAAACTCCTTCACCCATTCCCCA	
CCGCCCGAGGCGCCCAAAGTGCTCACCGATGCCGAGCGGACCTCGCTGCTGTCGTCTGCGGCCGGC	980
TTAGCGGTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	
TTAGCGGTCGGGCACCGATCCGCTACCACGCCAGGACTTAGACGACACCGACCG	1050
S V G R W V A V V A V L A V L T V V V T I A I 340 340 350	1120
HVRRHHPRRSSSRRSGSILRRH	
F F G G I T R D Y Q V P D V R G Q S S A D A I	1190
50 5 2 T 7 T - 1	
R H T A K P G L Q N P H L A E A G L D N P T G CGCCACACTGCAAAACCGGGGCTTCAAAATCCGCACCTTGCAGAAGCCGGACTCGACAATCCCACCGGA A T L Q N R G F K I R T L Q K P D S T I P P D 390	. 1260
70.	
BO B	1330
HRTGATRN-55 110	•
FRIGATRONIRRLHADIRRS GOET COACCGGACCAGGAAATACCCGACGTCTCCACGCTGACATACGCCGAAGCGGTCAAGAAAC TGPECREIPDVSTLTYAEAVKL 450 440	1400

Figure 2 (cont'd 2)

= a389 130	
120 2 A S E F A V H P G T G G Q G D C R R I R P L Q A S E F A V H P G T G G Q G	- 4 - 0
TGACTGCCGCCGGATTCGGCCGCTTCAAGCAAGCGAATTCGCCGCGGCAACTGGTGGGCAAGGT	1470
TO STREET GREET GREET CARGEA AGE GAAGE GAA	•
	•
450 a390 a390	
EcoRI	
160	
150 240 TO COHHHRWLW	
H R D Q P A S Q P D V G H H Q C G H H H R W L W	1540
H R D Q P A S Q P D V G H H Q C TO TO TO THE TOTAL CATCAGGACCAACCAGACGTCGGCCATCACCAATGTGGTCATCATCATCATCATCGTTGGCTCT CATCGGGACCAACCCGCCAGCCAACCAGACGTCGGCCATCACCAATGTGGTCATCATCATCATCATCGTTGGCTCT CATCGGGACCAACCCGCCAGCCAACCAGACGTCGGCCATCACCAATGTGGTCATCATCATCATCGTTGGCTCT CATCGGGACCAACCCAGCCAACCAGACGTCGGCCATCACCAATGTGGTCATCATCATCATCGTTGGCTCT CATCGGGACCAACCCAGCCAACCAGACGTCGGCCATCACCAATGTGGTCATCATCATCATCGTTGGCTCT CATCGGGACCAACCCAGCCAACCAGACGTCGGCCATCACCAATGTGGTCATCATCATCATCGTTGGCTCT CATCGGGACCAACCCAGCCAACCAGACGTCGGCCATCACCAATGTGGTCATCATCATCATCATCATCGTTGGCTCT CATCGGGACCAACCCAGCCAACCAGACGTCGGCCATCACCAATGTGGTCATCATCATCATCATCATCATCATCATCATCATCATCAT	13.0
CATCGGGACCAACCCGCCAACCAGACGTS A I T N V V I I I V G S	
490	
470	
470	
170	
S G D Q R H S R C R G P D R R R G G G G G G G G G G G G G G G G	1610
GETCEGCGACCAAAGACAIICCCCIIIDD A G Q T V D V A Q K N L N V	
GPATKDIPDYAGET	
500	
200 G-17-R	
-90	
	1680
n	
TCTACGGCTTCACCAAATTCAGTCAGGCCTCGGTGGACAGGCTTCACGGCTTCACGAAATTCAGTCAG	*
YGFTKFSQASVDSPKFAGE	
520	
230	
728	
210 PRHHSSGRFSHRTTGVQGQCACCAACCAA	
() 5 1 N MINISTER CONTRACTOR OF THE CONTRACTOR O	1750
Q S T R R H H S S G R F S H K CANTCCACCGCAGGCACCACAGTTCCGGTCGATTCAGTCATCGAACTACAGGTGTCCAAGGGCAACCAA N P P A G T T V P V D S Y I E L Q V S K G N Q 560	
550	
540	
250	
240 TIARAGLD	
THE PART OF THE VALUE OF THE PROPERTY OF THE P	1820
F V M P D L S G M 1 M 580	
570	
270 260 - 1 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	
	1890
CCGGGATGCTCGACAAAGGGGCCGACGTCGACGCCGCTGGCTTUTAACAAACCGCTVVVACAAACCGCTVVVACAAACCGCCTCGACGACGACGTCGACGCCGCGGCGGCGTGGCTTUTAACAAAACCGCCTVVACAAAACCGCCTVVACAAAACCGCCTVVACAAAACCGCCTVVACAAAACCGCCTVVACAAAACCGCCTVVACAAAACCGCCTVVACAAAACCGCCTVVACAAAACCGCCTVACAAAACAACCGCCTVACAAAACAACCGCCTVACAAAACAACCGCCTVACAAAACAACCGCCTVACAAAAACCGCCTVACAAAAACAACCGCCTVACAAAAACAACCGCCTVACAAAAACAACCGCCTVACAAAAACAACCGCCTVACAAAAACAAACCGCCTVACAAAAACAAACCGCCTVACAAAAACAAACCGCCTVACAAAAAACAAACCGCCTVACAAAAAACAAACCGCCTVACAAAAAACAAAAC	
OM TORK GAUV PRODUCTION	,
500 E-14-E 500	
30	0
290 280 290 Y A S P A	
280 280 280 280 290 28 28 28 28 28 28 28 28 28 28 28 28 28	1950
PAGGDR ROFGRANDSGCCTGAGGTTCGGCCAGTAGCTTCGCCCG	
CCCGCCGGCGGCGCCCCACCGGGALGGARGARGARGARGARGARGARGARGARGARGARGARGAR	
	•
\$20 \$10	

Figure 2 (cont'd 3)

310 LAVEVGRSGEMAVSTSFSSRTR CGCTAGCGGTTGAAGTTGGGAAGTCCGGTGAGATGGCGGTGAGCACTTCGTTTTCCAGCCGACGTACCAG	. 203
340 V S S C V H P Q Q V S Q L A S M R C P P S V R GGTGTCGTCTTGCGTCCATCCGCAGCAGGTGAGCCAGTTGGCCAGTATGCGGTGCCCGCCC	210
350 I D S G W N W T P W I G S P V C C T A M I T P L ATCGACTCCGGATGGAACTGGACACCGTGGATCGCACGGTGTGCTGCACGGCCATGATCACACCGC	2170
380 L V R A V T L S T Å G S D L G R I F N E W Y R TGCTAGTGCGGGCGCGACCTCAGCACCGCTGGCAGCGACTTAGGCAGAATTTTCAACGAATGGTATCG	2240
400 V A V K G S G S P C S T P T L V W N T L L V L AGTGGCCGTGAAGGGATCCGGAAGCCCTTGTAGCACACCGACATTGGTGTGGAATACGCTGCTGGTCTTG	2310
PCNSSGARSTVAPNATPMAWCPROCCETECAATAGCTCGGGGCGCCCAAGGCCCGAACGCCGATGGCTTGGTGCCCCAAGGC	2380
TPSKGVCAAAHAACTILTDAPARSAGACCCCCAGCAAAAGGGGTGTGCCGCACACGCGTGCACGATACTCACCGACGCGCCCCGCGCGCTC	2450
G V P G P G L S R T P S N W P A T A A S S D N CGGGGTACCCGGGACCTGAGCAGGACACCGTCGAATTGGCCGGCGACGGCGCCTCATCGGATAAC	2520
490 500 510 R W S S L R H T S A S M P S W P R Y C T R L N T CGGTGGTCGTCGTTGCGCCACACCTCGACCTCGATGCCGAGCTGGCCGAGGTACTGCACCAGGTTGAACA 513 K L S	2590
CEAAGCTGTCGTAGTTGTCAACGACCAGGATCCGCATCGTGACAGGCTACCGGCCTGACCCTGCCGGCCAGT	2650

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

PARTIAL EUROPEAN SEARCH REPORT

Application Number

which under Rule 45 of the European Patent Convention EP 98 87 0127 shall be considered, for the purposes of subsequent proceedings, as the European search report

ategory	Citation of document with indication, where appointment of relevant passages	propriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
X	DATABASE EMBL Accession No. M33814, 30 June ESSAR D.W. ET AL.: XP002102734 * abstract *	1990	1-10	C12N15/31 C07K14/35 C07K19/00 C07K16/12 G01N33/569
x	DATABASE EMBL Accession No. P71584, 1 Januar MURPHY L. ET AL.: XP002102735 * abstract *	y 1998	1-10	
X	DATABASE EMBL Accession No. P54744, 1 Octobe FSIHI H. ET AL.: XP002102736 * abstract *	er 1996	1-10	,
				TECHNICAL FIELDS SEARCHED (Int.Ci.6)
		· · · · · · · · · · · · · · · · · · ·		C12N C07K G01N
The Senot combe carri	DMPLETE SEARCH arch Division considers that the present application, or one in the EPC to such an extent that a meaningful search of out, or oan only be carried out partially, for these claims.	I into the state of the art	e/do cannot	
	searched completely :	• .		
	not searched : n for the limitation of the search:			·
se	e sheet C			
	Place of search Date	of completion of the search	· ·	Examiner
3		May 1999		Chakravarty, A
E Y:	CATEGORY OF CITED DOCUMENTS particularly relevant if taken alone particularly relevant if combined with another document of the same category technological background	the invention sublished on, or dion ons arnily, corresponding		

INCOMPLETE SEARCH SHEET C

Application Number EP 98 87 0127

Claim(s) searched incompletely: 1-10

Reason for the limitation of the search:

The claims of the present patent application do not comply with the requirements of Article 84 EPC to such an extent that it is not possible to carry out a meaningful search.

The Guidelines say explicitly that "no special search effort need be made for searching unduly wide or speculative claims" [Guidelines, B-III 3.7], and that the costs for the search are to be "kept within reasonable bounds" [Guidelines B-III 2.1 and 3.6].

In this case homologues (with 50% identity), of homologues (with 50% identity) of undefined fragments, of undefined fragments of a given (degenerate) sequence.

Moreover, such claims cannot be regarded as a "clear and concise description of the matter for which protection is sought".

The search has been limited to SEQ IDs 1-5 and to the examples.