

Monitoring Report

CARBON OFFSET UNIT (CoU) PROJECT

Title: 0.27 MW Captive Solar Power Project ZIPL, Gujarat, India.

UCR PROJECT ID: 415

MR Version 1.0

MR Date: 27/02/2024

First CoU Issuance Period: 01/03/2019 to 31/12/2023 (04 years, 09 months) **First Monitoring Period**: 01/03/2019 to 31/12/2023 (04 years, 09 months)

Monitoring Report (MR) CARBON OFFSET UNIT (CoU) PROJECT

Monitoring Report				
Title of the project activity	0.27 MW Captive Solar Power Project ZIPL, Gujarat, India.			
UCR Project Registration Number	415			
MR Version	1.0			
Scale of the project activity	Small Scale			
Completion date of the MR	27/02/2024			
Project participants	Project Proponent: Zydus Infrastructure Pvt. Ltd. (ZIPL), Ahmedabad, Gujarat.			
Host Party	India			
SDGs	SDG 7: Affordable and Clean Energy SDG 8: Decent Work and Economic Growth SDG 13: Climate Action			
Applied methodologies and standardized baselines	Type I (Renewable Energy Projects) UNFCCC CDM Methodology Category			
	AMS-I.F. Small-scale Methodology, <i>Renewable</i> electricity generation for captive use and mini-grid Ver 05			
	UCR Protocol Standard Baseline EF			
Sectoral scopes	01 Energy industries (Renewable / Non-renewable Sources)			
Estimated amount of GHG emission	01/03/2019-31/12/2019 : 283 CoUs (283 tCO ₂ eq)			
reductions for the crediting period per year.	01/01/2020-31/12/2020: 346 CoUs (346 tCO ₂ eq)			
per year.	01/01/2021-31/12/2021: 308 CoUs (308 tCO ₂ eq)			
	01/01/2022-31/12/2022: 312 CoUs (312 tCO ₂ eq)			
	01/01/2023-31/12/2023: 291 CoUs (291 tCO ₂ eq)			
	Total for period 01/03/2019-31/12/2023 : 1540 CoUs (1540 tCO ₂ eq)			

SECTION A. Description of project activity

A.1. Purpose and general description of project activity >>

The project activity titled, 0.27 MW Captive Solar Power Project ZIPL, Gujarat, India is located in Village Matoda, Taluka Sanand, District Ahmedabad, State Gujarat, Country India.

This is a single project activity of total installed capacity 0.27 MW, which is a ground mounted captive solar power generation activity for captive use by M/s Zydus Infrastructure Pvt. Ltd. (ZIPL, Project Proponent or PP). Zydus Cadila, group of companies, is a fully integrated global healthcare and pharmaceutical provider, which has set up a Pharmaceutical Special Economy Zone (SEZ) called "Pharmez", about 25 kilometers from Ahmedabad, Gujarat. The Zydus group has undertaken focused efforts towards solar energy, water and wastewater recycling and reuse across all of its operations in India.

The PP has the full ownership of the project activity. This project is an operational activity with continuous reduction of GHGs, currently being applied under "Universal Carbon Registry" (UCR), which rewards solar programs with carbon credits as an incentive for positive climate action in the Global South, as opposed to carbon finance in other international voluntary carbon programs.

There is a growing consensus that urgent action is needed on a global scale to ramp up the adoption of clean technology by 2030 in order to prevent irreversible climate catastrophe. In this endeavour, policies promoting carbon incentives, such as those seen in initiatives like the UCR CoU, will be instrumental. India has set ambitious targets, aiming for 450 GW of renewable energy capacity and 500 GW of non-fossil fuel capacity by 2030. Currently, with 110 GW of capacity already in operation (as of 2021-22), the nation needs to add 340 GW of new renewable energy capacity over the next eight years, averaging 42.5 GW annually. This significant expansion is critical for combating climate change and inspiring hope globally. To meet these targets, India must increase its solar capacity fivefold, reaching 280 GW from the current 54 GW. This requires an average annual addition of 29 GW of new solar capacity until the end of the decade – a pace notably faster than the nation's previous achievement of 15 GW renewable energy (including 14 GW of solar and 1 GW of wind) added in fiscal year 2021-22.

a) Purpose of the project activity:

The objective of the proposed project is to produce electricity through a sustainable and renewable energy source: solar radiation. Specifically, the project involves setting up and operating a 0.27 MW solar power plant in Sanand Taluka, located in the state of Gujarat:

Village	Taluka	Туре	Total installed capacity	Commissioning date
			KW	
Matoda	Sanand	ground mounted -	270	20.01.2019
		Captive		

As per the ex-post calculations, this project activity generated approximately <u>1713.8 MWh</u> of renewable electricity over the entire monitored period. The project employs Polycrystalline solar photovoltaic technology to generate environmentally friendly energy.

Solar photovoltaic power generation is inherently environmentally friendly, given its avoidance of fossil fuel combustion and greenhouse gas (GHG) emissions. A photovoltaic module consists of interconnected photovoltaic cells enveloped in an environmentally protective laminate. These modules act as the basic components of a complete PV (photovoltaic) generating unit. When several PV panels are assembled on a frame, they constitute a PV Array. By replacing fossil fuel-based electricity generation within the regional grid, this project aids in curbing GHG emissions.

Commissioning Certificate

Solar Project Site Handover Certificate

This is to certify that, U R Energy India Pvt. Ltd has successfully installed Solar Plant having Capacity of 270 (2704-60) kWp at Zydus infrastructure Pvt. Ltd. With the Mentioned timeline, Scope of work, and Specified Make of appliances as per the Commercial Offer.

Site has been handed over to us and we are satisfied with the installation work.

U R Energy india Pvt. Ltd

Customor San Stamer

Toll Free No : 1800 120 4011 Website : www.urenergyglobal.com Email : india@urenergyglobal.com

INSTALLATION REPORT

Component	Observation
Customer Name	Zydus Intrustructure PV+. Lit
Project No.	(DRE-18-19-06-C-B-094
Site/Location with Complete Address	Raud_ Mutader , Sutablita (2015)
Capacity of system installation (kWp)	60.16 KWP
ïlt Angle (Degree)	20
Azimuth Angle (Degree)	o If grater than 10° then inform the customer for lower generation effect.
Specification of the Modules Type of modules (multi)	Polycoistabline
Make of Module	Sercephim
Wattage and no of modules	320 Wp , 188
No of series & Parallel	18 P SNes, 24PW INO, 20 P 2 NOS, 17 P21
Inverter : Make & Rating	Solis - sok, Solis - 10K
AC Output	GODN A-C
Input Voltage to Inverter	1000 A D.C
Date of Installation	70 01 2019
Technical Person Trained to maintain system Name with Mobile no.	

ON GRID SYSTEM:

M GKID 2	DILIVI.						
•		. P\	/1	Pv	2	Pv3	
DC	Voltage	7-274	-Thgv	- FSONAL	691Vac.	814 Vac	
	Amp.						
Grid	R	Υ	В	N			
Voltage				-			
Amp.				-		**	

	DC	, AC & Earthing C	ables		
Sr No	Cable Details (From – To)	Cable Type	Size	Length	
1	Inv. to ACDB	A.C.	2554 K4C. , 48	4x4C. 7m	, 10m
2	Punch to DCDB	9. C.	659 XIC	700m	
3	ACOB to AC Panol	A.C.	40054 X3.5C	450m	
4	Structure to Earthingpit	Eurthing	1654x1C	250m	
5	L.A. to E.P.	Earthing	1659 X1C	30 m	

b) Brief description of the installed technology and equipment>>

The project employs clean renewable solar energy to generate electricity. The utilized technology is regarded as one of the most environmentally friendly options available, as the operation of Solar photovoltaic systems does not emit any greenhouse gases (GHGs) or other harmful substances, unlike conventional power plants.

A Photovoltaic module comprises numerous photovoltaic cells connected by circuits and enclosed in an environmentally protective laminate. These modules serve as the fundamental components of the complete PV generating unit. Multiple PV panels mounted on a frame are collectively referred to as a PV Array. The project has adopted a reliable and well-established technology to ensure that only environmentally safe and sustainable practices are employed, thereby contributing to the reduction of GHG emissions.

Each power production unit will in general constitute the following equipment:

- ✓ Solar Photovoltaic modules
- ✓ Inverters
- ✓ Transformers
- ✓ Circuit breakers
- ✓ Mounting structures
- ✓ Cables and hardware.
- ✓ Junction box and distribution boxes.
- ✓ Earthing kit.
- ✓ Control room equipment.
- ✓ System for control and monitoring.
- ✓ Evacuation system

In contrast to fossil fuel-fired power plants, the technology utilized in this project poses no environmental threat. It is a proven and reliable technology, ensuring safety and soundness in its application. Importantly, the project does not entail the transfer of technology from any Annex 1 country, nor does it receive any public funding from Official Development Assistance (ODA) or Annex I countries.

Parameter	Description
Total number of Photovoltaic Modules	842
Rating of Photovoltaic Module	0.320 KWP- Kilo watt peak / 320 WP- watt peak
Technology	Poly Crystalline Silicon
Solar Panel Maker	Seraphim
Meter Maker	Secure
Commissioning Date	20.01.2019
Inverter Make	Solis
Total no. of inverters	6

OFFICE OF THE CHIEF ELECTRICAL INSPECTOR

Office of the Chief Electrical InspectorUdyog Bhavan, 6th Floor, Block No.18, Sector-11, Gandhinagar.

No/CEI/Gan/Certi/13741/2019

E-mail:

ph no: (079) 23256642 to 44

Date: 5/2/2019

cei-epd@gujarat.gov.in

fax no: (079) 232 566 51

To

Zydus Infrastructure Pvt Ltd.

Zydus Infrastructure Pvt. Ltd, Zydus Tower, Satellite Cross Road

Matoda, Ta- Sanand.

Vi.Matoda

Ta.Sanand

Dist.Ahmedabad, 382213

Subject Initial inspection for the electrical installation of 269.44 KW Grid Connected Solar Power Plant along with associated equipments at Zydus Infrastructure Pvt Ltd., Zydus Infrastructure Pvt. Ltd, Zydus Tower, Satellite Cross Road, Matoda, Ta- Sanand., Vi.Matoda, Ta.Sanand, Dist.Ahmedabad, Gujarat, 382213 (Consumer No. 18415).

Sir.

Initial Inspection of the Electrical Installation of 269.44 KW Grid Connected Solar Power Plant at Zydus Infrastructure Pvt. Ltd, Zydus Tower, Satellite Cross Road, Matoda, Ta-Sanand., Vi.Matoda, Sanand, Ahmedabad, Gujarat, 382213 for Zydus Infrastructure Pvt Ltd. has been carried out by EI, Ahmedabad on 02/02/2019 and the same is found in order in accordance with the drawing approved vide this office letter No: No/CEI/Gan/Plan/13177/2019, Date: 24/01/2019. The details of the same are as following.

Details of Installation

No.	Particular	Solar PV Cells (Modules)
1 .	Make	Seraphim**
2	Capacity (Wp)	320 -
3	Total No. of Modules	842
4	Total Capacity (KWp)	269.44
Total (KWp)		269.44
No.	Particular	Inverters
1	Make	Solis,Solis
2	Capacity in KW/KVA	50KW,10KW
3	No. Of Inverters	5,1
4	Output Voltage in AC(V)	415,415
5	Sr.No.	110610185160176, 110610185260180, 110610185260112, 110610185260178, 110610185260155, 110420185260022

As provided under the Regulation 32 of the Central Electricity Authority (Measures relating to Safety and Electric Supply) Regulation, 2010 permission is hereby granted to energize the above installation along with the associated equipments.

Your's Faithfully

c) Relevant dates for the project activity (e.g. construction, commissioning, continued operation periods, etc.)>>

UCR Project ID: 415

Commissioning Date: 20/01/2019

1st CoU Issuance Period: 01/03/2019 to 31/12/2023 (04 years 09 months) **1st Monitoring Period**: 01/03/2019 to 31/12/2023 (04 years 09 months)

d) Total GHG emission reductions achieved or net anthropogenic GHG removals by sinks achieved in this monitoring period>>

The total GHG emission reductions achieved in this monitoring period is as follows:

Summary of the Project Activity and ERs Generated for the Monitoring Period			
Start date of this Monitoring Period	01/03/2019		
Carbon credits claimed up to	31/12/2023		
Total ERs generated (tCO ₂ eq)	1540 tCO ₂ eq		
Leakage	0		
Project Emissions	0		

e) Baseline Scenario>> As per the approved consolidated methodology AMS-I.F. Version 05

Methodology key elements

Typical project(s)	Production of electricity using renewable energy technologies such as			
	photovoltaic, hydro, tidal / wave, wind, geothermal and renewable biomass			
	that supply electricity to user(s).			
Type of GHG emissions	Renewable energy:			
mitigation action	Displacement of electricity that would be provided to the user(s) by more-			
	GH-intensive means.			

As per the adapted UNFCCC Methodology, eligible projects comprise of renewable energy generation units, such as photovoltaic, hydro, tidal/wave, wind, geothermal and renewable biomass that supply electricity to user(s).

The project activity displaces electricity from an electricity distribution system that is or would have been supplied by at least one fossil fuel fired generating unit, i.e. in the absence of the project activity, the users would have been supplied electricity from:

(a) A national or a regional grid (grid hereafter)

The baseline scenario identified at the PCN stage and this MR of the project activity is:

• The product of amount electricity displaced with the electricity produced by the renewable generating unit and an emission factor.

A.2. Location of project activity>>

Country : India.

District : Ahmedabad
Village : Matoda
Taluka : Sanand
State : Gujarat
Pincode : 382213

Latitude : 22°52'51.6"N & 22°52'55.8"N Longitude : 72°24'24.5"E & 72°24'28.5"E

Project Commissioning Year : 20.01.2019.5

The representative location map is included below:

A.3. Parties and project participants >>

Party (Host)	Participants		
India	Project Proponent: PHARMEZ Special Economic Zone, Zydus		
	Infrastructure Pvt. Ltd., Village: Matoda, Taluka: Sanand, District:		
	Ahmedabad, Gujarat.		
	Contact: Mr. Kapil Acharya - GM Operations		
	Email: kapilacharya@zydusinfra.com		

A.4. References to methodologies and standardized baselines >>

SECTORAL SCOPE – 01 Energy industries (Renewable/Non-renewable sources)

TYPE I - Renewable Energy Projects

CATEGORY - AMS-I.F. – Renewable electricity generation for captive use and mini-grid, ver 05

This methodology comprises renewable energy generation units, such as photovoltaic, hydro, tidal/wave, wind, geothermal and renewable biomass that supply electricity to user(s). The project activity will displace electricity from an electricity distribution system that is or would have been supplied by at least one fossil fuel fired generating unit, i.e. in the absence of the project activity, the users would have been supplied electricity from:

(a) A national or a regional grid (grid hereafter)

A.5. Crediting period of project activity >>

First CoU Issuance Period: 01/03/2019 to 31/12/2023 (04 years, 09 months) **First Crediting Period:** 01/03/2019 to 31/12/2023 (04 years, 09 months)

A.6. Contact information of responsible persons/entities >>

UCR Aggregator: Kapil Acharya

UCR ID: 623322759

Email Address: kapilacharya@zydusinfra.com
Company Name: Zydus Infrastructure Pvt. Ltd. (PP)
Company Website: https://www.zydusinfra.com

SECTION B. Implementation of project activity

B.1. Description of implemented registered project activity >>

a) Provide information on the implementation status of the project activity during this

monitoring period in accordance with UCR PCN>>

The project activity is using clean renewable solar energy to produce electricity. The applied technology is considered to be one of the most environment friendly technologies available as the operation of the Solar photovoltaic does not emit any GHGs or any other harmful gases unlike the operation of conventional power plants.

Photovoltaic module consists of a number of photovoltaic cells connected by circuits and sealed in an environmentally protective laminate, which forms the fundamental building blocks of the complete PV generating unit. Several PV panels mounted on a frame are termed as PV Array. The project activity has used the reliable and proven technology to ensure that an environmentally safe and sound technology is only being implemented in the proposed project activity leading to the GHG reduction.

The technology used does not pose any threat to the environment in comparison to the fossil fuel-fired power plants. The technology to be applied in the project activity is proven technology and can hence be considered safe and sound technology. The project does not involve any transfer of technology from any Annex 1 country. There is no Public funding (ODA and/ or Annex I countries) for the project activity.

Parameter	Description
Total number of Photovoltaic Modules	842
Rating of Photovoltaic Module	0.320 KWP- Kilo watt peak / 320 WP- watt peak
Technology	Poly Crystalline Silicon
Solar Panel Maker	Seraphim
Meter Maker	Secure
Commissioning Date	20.01.2019
Inverter Make	Solis
Total no. of inverters	6

This MR uses the methodology which comprises renewable energy generation units, such as photovoltaic, that supplies renewable electricity to user(s). The project activity displaces electricity from an electricity distribution system that is supplied by at least one fossil fuel fired generating unit, i.e. in the absence of the project activity, the users would have been supplied electricity from:

A national or a regional grid (grid hereafter)

b) For the description of the installed technology(ies), technical process and equipment, include diagrams, where appropriate>>

Photovoltaic module consists of several photovoltaic cells connected by circuits and sealed in an environmentally protective laminate, which forms the fundamental building blocks of the complete PV generating unit. Several PV panels mounted on a frame are termed as PV Array. The project activity has used the reliable and proven technology from supplier to ensure that an environmentally safe and sound technology is only being implemented in the proposed project activity leading to the GHG reduction. The technical arrangement of the project activity is as provided below:

The project activity is using clean renewable solar energy to produce electricity. The applied technology is considered to be one of the most environment friendly technologies available as the operation of the Solar photovoltaic does not emit any GHGs or any other harmful gases unlike the operation of conventional power plants.

Photovoltaic module consists of a number of photovoltaic cells connected by circuits and sealed in an environmentally protective laminate, which forms the fundamental building blocks of the complete PV generating unit. Several PV panels mounted on a frame are termed as PV Array. The project activity has used the reliable and proven technology to ensure that an environmentally safe and sound technology is only being implemented in the proposed project activity leading to the GHG reduction.

Each power production unit will in general constitute the following equipment:

- > Solar Photovoltaic modules
- **➤** Inverters
- > Transformers
- Circuit breakers
- ➤ Mounting structures
- > Cables and hardware.
- > Junction box and distribution boxes.
- > Earthing kit.
- > Control room equipment.
- > System for control and monitoring.
- > Evacuation system

N. (N.) (A. DER N.) - 1 - 1 - 1 -	Meter manufacture name	HPL	
Net Meter/ABT Meter details	Meter Serial No.	000408	
Solar Meter details	Meter manufacture name Meter Serial No.	HPL L554585, L554060	
GEDA Registration No. and Date	GMSPVIND21072 Date: 21/07/		
Consumer No.	18415		
End use of Electricity	Captive Consumption		
Capacity of Module (Wp),	320 Wp		
Make of each photovoltaic modules	Seraphim		
Total number of photovoltaic modules	842 Nos		
Type of Inverter	String Inverter		
Inverter Serial No.	50KW- 110610185160176,110610185260180,110610185260112 110610185260178,110610185260155 10KW-110420185260022		

Sr.	Meter Sr. No:	Make	Type	Mfg. Year:	Imp/Kwh	Class:	Current
1	GHBD1348	SCHNEIDER	ER300P	APR 2023	100	0.5s	-/5A, Ib=5A, Imax=10A
2	GHBD1356	SCHNEIDER	ER300P	APR 2023	100	0.5s	-/5A, Ib=5A, Imax=10A

B.2 Do no harm or Impact test of the project activity>>

The Indian economy heavily relies on coal as a primary fuel for energy generation and production processes. Thermal power plants, being the major consumers of coal in India, struggle to meet the basic electricity needs of a significant portion of the population. Consequently, there is a surge in electricity demand, placing substantial strain on the environment.

Addressing the issue of coal consumption entails adopting a multifaceted approach. This includes strategies aimed at reducing demand, minimizing energy wastage, and maximizing the utilization of renewable energy sources (RE). The current project, being a greenfield initiative, operates within the framework of grid power as the baseline. While renewable power generation gradually increases its contribution to the grid, the grid emission factor remains relatively high, delineating the grid as a distinct baseline.

The Government of India, recognizing the importance of sustainable development, has outlined specific indicators in the interim approval guidelines for projects involved in GHG mitigation efforts. These indicators encompass economic, social, environmental, and technological well-being. It is envisioned that the project will foster sustainable development through various means:

- Compliance: The solar project falls under the "White category" as per the Central Pollution Control Board, indicating minimal environmental impact and exempting it from the need for Environmental Clearance or Consent to Operate from the Pollution Control Board.
- Regulatory Exemptions: Small-scale Solar Projects are not subject to Environmental and Social Impact Assessment requirements according to Indian regulations, as discussed in the preceding section.
- Community Engagement: The project offers employment opportunities to local communities through both construction and maintenance activities, thereby contributing to local economic development and empowerment.

United Nations Sustainable Development Goals:

The project generates electrical power by harnessing solar energy through photovoltaic cells, effectively replacing non-renewable fossil resources. This transition contributes to sustainable economic and environmental development. Without the project, the equivalent power generation would have relied on fossil fuel-dominated power stations.

Consequently, the renewable energy generation from the project leads to a reduction in greenhouse gas emissions. Positive contribution of the project to the following Sustainable Development Goals:

• SDG13: Climate Action

• SDG 7: Affordable and Clean Energy

• SDG 8: Decent Work and Economic Growth

Development Goals	Targeted SDG	Target Indicator (SDG Indicator)
13 CLIMATE ACTION		13.2.1: Number of countries that have communicated establishment or operationalization of an
SDG 13: Climate Action	13.2: Integrate climate change measures into national policies, strategies and planning Target: 1540 tCO ₂ avoided for the Monitored Period 01	integrated policy/ strategy/ plan which increases their ability to adapt to the adverse impacts of climate change, and foster climate resilience and low greenhouse gas emissions development in a manner that does not threaten food production (including a national adaptation plan, nationally determined contribution, national communication, biennial update report or other)

7 AFFORDABLE AND CLEAN ENERGY SDG 7: Affordable and Clean Energy	7.2: By 2030, increase substantially the share of renewable energy in the global energy mix Target: 1713 MWh renewable power supplied for the Monitored Period 01	7.2.1: Renewable energy share in the total final energy consumption
8 DECENT WORK AND ECONOMIC GROWTH	8.5: By 2030, achieve full and productive employment and decent work for all women and men, including for young people and persons with disabilities, and equal pay for work of equal value Target: Training, O&M staff	8.5.1: Average hourly earnings of female and male employees, by occupation, age and persons with disabilities
SDG 8: Decent Work and Economic Growth		

B.3. Baseline Emissions>>

If the project activity were absent, the equivalent amount of electricity would have been sourced from the regional grid, which is connected to the unified Indian Grid system. This grid predominantly relies on fossil fuel-based power plants, making it carbon-intensive. Therefore, this project activity represents a voluntary investment, replacing an equivalent amount of electricity sourced from the Indian grid. The project proponent was under no obligation to undertake this investment, as it was not mandated by national or sectoral policies. Consequently, the ongoing operation of the project will continue to displace fossil fuel-based power plants, contributing to the mitigation of climate change impacts. The Project Proponent anticipates that carbon incentives offered by the UCR program under the CoU from 2019-2023 vintage years, accrued through generated carbon credits, will assist in repaying project costs, expanding project capacity, and ensuring ongoing maintenance.

The baseline scenario identified at the MR stage of the project activity is:

• The product of amount electricity displaced with the electricity produced by the renewable generating unit and an emission factor.

B.4. Debundling>>

This project activity is not a debundled component of a larger carbon or GHG registered project activity.

SECTION C. Application of methodologies and standardized baselines

C.1. References to methodologies and standardized baselines >>

SECTORAL SCOPE – 01 Energy industries (Renewable/Non-renewable sources)

TYPE I - Renewable Energy Projects

CATEGORY - AMS-I.F. – Renewable electricity generation for captive use and mini-grid, ver 05

This methodology comprises renewable energy generation units, such as photovoltaic, hydro, tidal/wave, wind, geothermal and renewable biomass that supply electricity to user(s). The project activity will displace electricity from an electricity distribution system that is or would have been supplied by at least one fossil fuel fired generating unit, i.e. in the absence of the project activity, the users would have been supplied electricity from:

A national or a regional grid (grid hereafter)

Methodology key elements

Typical project(s)	Production of electricity using renewable energy technologies such as						
	photovoltaic, hydro, tidal / wave, wind, geothermal and renewab						
	biomass that supply electricity to user(s).						
Type of GHG emissions	Renewable energy:						
mitigation action	Displacement of electricity that would be provided to the user(s) by more-						
	GH-intensive means.						

C.2. Applicability of methodologies and standardized baselines >>

The project status is corresponding to the methodology AMS-I.F., version 05 and applicability of methodology is discussed below:

	Project type	AMS-I.A	AMS-I.D	AMS-I.F
1	Project supplies electricity to a national/regional grid		V	
2	Project displaces grid electricity consumption (e.g. grid import) and/or captive fossil fuel electricity generation at the user end (excess electricity may be supplied to a grid)			√
3	facility via national/regional grid (through a contractual arrangement such as wheeling)		V	
4	Project supplies electricity to a mini grid ⁵ system where in the baseline all generators use exclusively fuel oil and/or diesel fuel			V
5	Project supplies electricity to household users (included in the project boundary) located in off grid areas	4		

This project is included within the UCR Standard Positive List of technologies and are within the small-scale CDM thresholds (e.g. installed capacity up to 15 MW). The positive list comprises of: (a) renewable electricity generation technologies of installed capacity up to 15 MW, (b) Solar technologies (photovoltaic and solar thermal electricity generation);

Project activity involves installation of captive use solar photovoltaic power generation with capacity 0.27 MW which is less than 15MW.

The project activity involves installation of Solar PV (SPV). Hence, the activity is not a hydro power project or combined heat and power (co-generation) systems.

Project displaces grid electricity consumption (e.g. grid import).

The project activity is a new installation, it does not involve any retrofit measures nor any replacement.

Landfill gas, waste gas, wastewater treatment and agro-industries projects are not relevant to the project activity. No biomass is involved, the project is only a solar power project.

The technology/measure allowed under the grid connected Solar PV based generation systems displace equivalent quantity of electricity from the regional grid in India. The testing/certifications; all the equipment of the solar project activity will be complying with applicable national/ international standards. The above details may be verified from one or more of the following documents:

- Technology Specification provided by the technology supplier.
- Purchase order copies
- EPC contracts
- · Power purchase agreement
- Project commissioning certificates, etc

The project activity is a voluntary coordinated action.

As per the Ministry of Environment and Forest (MoEF), Govt. of India Office Memorandum dated 13/05/2011, it had received specific clarification regarding the applicability of EIA Notification, 2006 in respect of Solar Photo Voltaic (PV) Power plants. It was further clarified in the above memorandum that both Solar PV power projects are not covered under the ambit of EIA notification, 2006 and no environment clearance is required for such projects under provisions thereof.

This methodology comprises renewable energy generation units, such as photovoltaic, hydro, tidal/wave, wind, geothermal and renewable biomass that supply electricity to user(s). Hence this methodology is applicable and fulfilled for the solar project activity.

The project activity involves installation of new power plants at listed sites where there was no renewable energy power plant operating prior to implementation of project.

Project and leakage emissions from biomass are not applicable.

C.3 Applicability of double counting emission reductions >>

Renewable electricity units are meticulously monitored through digital means, utilizing distinct energy meters positioned within the project activity boundary. It's essential to note that the project activity will not participate in India's NDC carbon ecosystem/market and has not been enlisted under any other GHG mechanism for carbon offsets/credits previously.

C.4. Project boundary, sources and greenhouse gases (GHGs)>>

The spatial extent of the project boundary includes industrial, commercial facilities consuming energy generated by the system and encompasses the physical, geographical site of the solar power plant and the energy metering equipment.

In the case of electricity generated and supplied to distributed users (e.g. residential users) via mini/isolated grid(s) the project boundary may be confined to physical, geographical site of

renewable generating units. The boundary also extends to the project power plant and all power plants connected physically to the electricity system as per the requirements provided in TOOL07 to which the project power plant is connected.

	Source	GHG	Included?	Justification/Explanation
Baseline		CO ₂	Included	Major source of emission
	Grid connected electricity.	CH ₄	Excluded	Excluded for simplification. This is conservative.
		N ₂ O	Excluded	Excluded for simplification. This is conservative.
Project Activity		CO ₂	Excluded	Excluded for simplification. This is conservative.
	Greenfield Solar Power Project	CH ₄	Excluded	Excluded for simplification. This is conservative.
		N ₂ O	Excluded	Excluded for simplification. This is conservative.

Net GHG Emission Reductions and Removals

Thus, $ER_y = BE_y - PE_y - LE_y$

Where:

 $ER_y = Emission reductions in year y (tCO₂/y)$

 $BE_y = Baseline Emissions in year y (t CO₂/y)$

 $PE_y = Project emissions in year y (tCO₂/y)$

According to AMS-I.F, project emissions (PE_y) for the following categories of project activities, including relevant definitions, shall be considered following the procedure described in the ACM0002:

- Emissions related to the operation of geothermal power plants (e.g. non condensable gases, electricity/fossil fuel consumption);
- Emissions from water reservoirs of hydro power plants.
- For the other types of renewable energy projects, $PE_y = 0$

Year/Month/KWh	Jan	Feb	Mar	Apr	May	Jun	Jul
2019	0	0	37184	42939	42738	31186	22500
2020	30908	32929	39300	39360	38020	31640	31280
2021	28940	29160	36160	38040	35000	27860	23680
2022	28820	31740	36760	37280	28020	26100	21380
2023	27460	30820	31920	33180	35880	22160	21840

Year/Month/KWh	Aug	Sep	Oct	Nov	Dec
2019	23379	25034	36162	28529	25882
2020	21300	32300	32000	28200	27300
2021	24040	19140	31680	25300	23420
2022	24380	25040	32320	28280	27440
2023	23540	27860	28260	24400	16420

Hence $PE_y = 0$ since the project is a solar power project.

 $LE_y = Leakage emissions in year y (tCO₂/y)$

Commissioning Date of first installation: 20/01/2019

C.5. Establishment and description of baseline scenario (UCR Protocol) >>

Baseline emissions are the product of amount electricity displaced with the electricity produced by the renewable generating unit and an emission factor.

The baseline scenario identified at the MR stage of the project activity is:

• The product of amount electricity displaced with the electricity produced by the renewable generating unit and an emission factor.

Estimated Annual Emission Reductions: $BE_y = EG_{BL,y1} \times EF$, co2, grid, y

 $BE_y = Emission reductions in a year y.$

where:

EG $_{BL,y}$ = Quantity of net electricity supplied to the grid as a result of the implementation of the UCR project activity in year y (MWh)

EF _{Grid,CO2,y} = CO₂ emission factor of the Indian grid in year y (t CO₂/MWh) as determined by the UCR CoU Standard.

EF _{Grid,y} = UCR recommended conservative Indian grid emission factor of 0.9 tCO₂/MWh has been considered, this is conservative as compared to the current combined margin Indian grid emission factor of **0.9185 tCO₂/MWh** (assuming 50% equal distribution between OM and BM) which can be derived from Database of Central Electricity Authority (CEA), India. (Reference: General Project Eligibility Criteria and Guidance, UCR Standard, page 4), and higher still if considered as an intermittent form of energy. Hence, the same emission factor has been considered to calculate the emission reduction.

Net GHG Emission Reductions and Removals

Thus,
$$ER_y = BE_y - PE_y - LE_y$$

Where:

 $ER_y = Emission reductions in year y (tCO_2/y)$

 $BE_y = Baseline Emissions in year y (t CO₂/y)$

 $PE_y = Project emissions in year y (tCO₂/y)$

 $LE_y = Leakage emissions in year y (tCO₂/y)$

Project Emissions

 $PE_y = 0$

Leakage Emissions

All projects other than Biomass projects have zero leakage.

Hence, $LE_v = 0$

Total Emission Reduction (ER) by the project activity for the current monitoring period is calculated as below:

Year	KWh	MWh	ER (tCO ₂)
2019	315533	315.533	283
2020	384537	384.537	346
2021	342420	342.42	308
2022	347560	347.56	312
2023	323740	323.74	291
	Total	1713.8	1540

C.6. Prior History>>

The project was not applied under any other GHG mechanism. Hence project will not cause double accounting of carbon credits (i.e., COUs).

C.7. Monitoring period number and duration>>

Monitoring Period No: 01

1st Monitoring Period: 01/03/2019 – 31/12/2023

C.8. Changes to start date of crediting period >>

There is no changes applicable.

C.9. Permanent changes from PCN monitoring plan, applied methodology or applied standardized baseline >>

There is no changes applicable.

C.10. Monitoring plan>>

PP, as the project implementer, oversees and monitors the electricity generated by the project activity. Data pertaining to this is electronically archived and has been stored since 01/03/2019.

To uphold reliability and transparency in the data, PP has instituted Quality Assurance and Quality Control (QA&QC) measures. These measures are designed to efficiently manage and oversee data reading, recording, auditing, as well as the archiving of data and associated documents. Data is monitored on a daily basis and submitted to PP accordingly.

PP has also implemented QA&QC measures to calibrate and ensure the accuracy of metering devices, as well as the safety aspects of project operation. Metering devices are calibrated and inspected regularly and in accordance state electricity board's specifications and requirements to ensure accuracy in readings.

Data/Parameter	EGy				
Data unit	MWh				
		Year	KWh	MWh	
		2019	315533	315.533	
		2020	384537	384.537	
		2021	342420	342.42	
		2022	347560	347.56	
		2023	323740	323.74	
		To	tal	1713.8	
Description	Quantity of net electricity displaced in year y				
Source of data Value(s) applied	Main Meter Unit Re	eadings, Dire	ect measuren	nent.	
Measurement methods and procedures	Daily: Direct measu	rement using	g electricity	meters	
Monitoring frequency	Continuously, aggregated at least annually. Calibration Frequency: The calibration is done following the relevant applicable National Guidelines updated from time to time during the operation of the project activity. Entity responsible: Aggregator The electricity meter is subject to regular maintenance and testing in accordance with the stipulation of the meter supplier or national requirements. The calibration of meters, including the frequency of calibration, is done in accordance with national standards or requirements set by the meter supplier. The accuracy class of the meters is in accordance with the stipulation of the meter supplier or national requirements. The PP calibrates the meters every 3 years and uses the meters with at least 0.5 accuracy class (e.g. a meter with 0.2 accuracy class is more accurate and thus it is accepted)				
QA/QC procedures:	Monitoring frequency: Continuous Measurement frequency: Hourly Recording frequency: Monthly				
Purpose of data	Calculation of basel		ıs		

HI-TECH METER LABORATORY

Near Torrent Power railway crossing, Sabarmati, Ahmedabad-380 005 PHONE: (079) 27506435, E-MAIL: hitechlab@ugvcl.com

TEST REPORT

Test Report No: HML/T/23-09/8358

Issue Date: 08/09/2023 ULR - TC591423000001247F

Page 1 of 2

Discipline: Electrical

Group: Electrical Indicating & Recording Instruments

NAME & CONTACT INFORMATION OF CUSTOMER:

M/s. Zydus Infrastructure Pvt Ltd.

Pharmez, N.H. - 8A,

Sarkhej - Bavla Road,

Vi. Matoda,

Ta. Sanand,

Dist. Ahmedabad - 382213.

Reference SRF No: 8358/2023[T]

Date of receipt: 06/09/2023

Date of testing: 08/09/2023

Consumer Reference:

TEST ITEM DESCRIPTION & IDENTIFICATION: 3P4W Bidirectional Energy Meter (KWh Meter)

T	Voltage	11KV/110V, Vref- 3*63.5V	Current	-/5A, Ib=5A, Imax=10A
1	Applicable Standard	IS 14697	Condition of sample	GOOD

Sr.	Meter Sr. No:	Job No:	Make	Туре	Mfg. Year:	Imp/Kwh	Class:	Current
1	GHBD1348	HML/T/8358/23-09-01	SCHNEIDER	ER300P	APR 2023	100	0.5s	-/5A, Ib=5A, Imax=10A
2	GHBD1356	HML/T/8358/23-09-02	SCHNEIDER	ER300P	APR 2023	100	0.5s	-/5A, Ib=5A, Imax=10A

Test Details: As mentioned in page no 2, Results: As per enclosed pages,

Temperature: 27°C±2°C,Relative Humidity: between 45 % to 75%

Test methods used: As Per IS 14697

Addition or deviation from method used: No, Results from external provider: Not applicable.

Test witnessed by:

Major Equipments used for testing:

Sr. No.	Description	Make/ Model	Sr. no.	Range of Measurement	Measurement Uncertainty	
1	1 Reference Standard Meter Ap		1207020594	Voltage –3x40 to 300VAC(P-N) Current 3x10 mA120A(cl.0.02)	CMC FOR ENERGY: ±0.028 to ±0.055	

NOTE:

- 1. This report relates only to the particular sample received in good condition for testing at Hi-Tech Meter Laboratory, UGVCL, Sabarmati.
- The results mentioned are in % error with respect to unit of measurement.
- 3. This report cannot be reproduced in part under any circumstances.
- 4. Publication of this report requires prior permission in writing from at Hi-Tech Meter Laboratory, Sabarmati.
 5. All the tests within the scope of Hi-Tech Meter Laboratory are carried out.
- 6. The decision rule applied as per contract with customer.
- 7. The test item details are provided by the customer and on the name plate of test item.
- Sample provided by customer, no sampling done at Hi-Tech Meter Laboratory, Sabarmati
 Any Anomaly/discrepancy in this report should be brought to our notice within 45days from issue of this report.

B32421 PREPARED BY

S K KARAMATA **DEPUTY QUALITY MANAGER**

REVIEWED, APPROVED & AUTHORIZED BY A N DIWAN

TECHNICAL MANAGER

Calibration Certificate

Date	SOLAR PLANT 210 KW				SOLAR PLANT 60 KW		Total Generated	210 KW ongrid Meter	60 KW ongrid Mete
	(50KW)	(50KW)	(50 KW)	(50 KW)	(50 KW)	(10 KW)	Unit (KW)	reading (80)	reading (40)
	235	2.37	209	240	221	46	1188		
- 3	244	244	203	248	226	49	1220		
	268	270	231	273	252	54	1348		
	254	257	220	260	242	52	1285		
	242	245	214	248	231	52	1232		
	261	260	227	264	242	53	1307		
7	246	246	216	248	230	50	12.36		
8	212,	210	190	213	195	43	1063		
9	266	267	230	270	251	54	336		
10	239	239	213	243	221	48	1203		
11	281	280	240	283	259	54	1397		
12	281	279	241	282	254	54	1395		
13	266	261	227	264	248	52.	1316		
14	239	236	205	239	222	48	1189		
15	234	232_	202	238	220	48	1174		
16	238	237	206	240	222	49	1192		
_ 17	226	224	196	230	210	46	1132		
18	217	217	205	230	411	126377	1131		
19	248	240	218	251	214		1219		
20	231	233	201	233	198	7-27	1139		
21	221	223	195	223	189	1.	1092		
22	220	222		223	189	41	1688		
23	a46	246	213	246	232	50	1233		
24	240	241	209	241	231	-	1212		
25	Programme and the second	209		209	199	1000	1052		
26	177	179	159	179	170		901		1
	10000	127	113		118	27	650		
	168	168	200		156		848		
	12000-1-1	199			186		994		
30	243	242		120000000000000000000000000000000000000	241	er 10	253		
5335	230	226			208		134		

Sample data meter reading sheet on file

Data / Parameter:	EF, co2, grid, y
Data unit:	tCO ₂ /MWh
Value of data applied	0.9 UCR Standard Protocol as per Standard
Description:	Fixed
Measurement	A "grid emission factor" refers to a CO ₂ emission factor
procedures:	(tCO ₂ /MWh) which will be associated with unit of electricity
	provided by an electricity system. The UCR recommends an
	emission factor of 0.9 tCO ₂ /MWh for the 2019 - 2023 years as a
	fairly conservative estimate for Indian projects not previously
	verified under any GHG program. Hence, the same emission
	factor has been considered to calculate the emission reduction
	under conservative approach.
Monitoring frequency:	NA
Purpose of data:	To estimate baseline emissions
Additional comment:	The combined margin emission factor as per CEA
	database (current Version 16, Year 2021 and 2022)
	results into higher emission factor. Hence for 2021-22
	vintage UCR default emission factor remains conservative.