Réseaux de Petri: Présentation des propriétés

Pascal Racloz, Didier Buchs

Université de Genève

13 octobre 2014

Les concepts introduits

- Séquences de franchissements
- Monotonie
- Caractère borné
- Activité : vivacité, quasi-vivacité

Propriétés

Propriétés relatives à l'état, caractère borné

Le nombre de jetons circulant dans le réseau reste-t-il borné?

Propriétés relatives à l'activité

Est-ce-qu'une partie ou l'ensemble d'un réseau peut toujours évoluer?

Propriétés des séquences de franchissement

- Existence d'un marquage permettant le tir d'une séquence
- Monotonie
- Séquence répétitive

- Existence d'un marquage permettant le franchissement de toute séquence.
- Pour toute séquence de transitions s, il existe un marquage M tel que cette sequence est franchissable :

$$\forall s \in T^*, \exists M \in \mathbb{N}^m tel \ que$$

$$M \xrightarrow{s}$$

Monotonie

L'augmentation du nombre de jetons dans les places d'un marquage préserve la possibilité de franchissement d'une séquence de transitions :

Si

$$M1 \stackrel{s}{\rightarrow} M$$
 et $M1 \subseteq M2$

alors

$$M2 \stackrel{s}{\rightarrow} M + (M2 - M1)$$

 $(Rq: M_a \subseteq M_b \text{ si et seulement si } \forall p \in P M_a(p) \leq M_b(p))$

Séquence répétitive

Une séquence de transitions est dite *répétitive* si pour tout marquage M tel que

$$M \stackrel{s}{\rightarrow}$$

alors

$$\forall n \in \mathbb{N}^+, M \stackrel{s^n}{\to}$$

- La notion de séquence répétitive va nous permettre de définir une condition nécessaire et suffisante pour qu'un réseau marqué ait la possibilité d'être infiniment actif.
- On peut déjà citer le résultat suivant $\forall M, M' \in \mathbb{N}^m$

$$M \stackrel{s}{\rightarrow} M'$$
 et $M \subseteq M'$

 \Leftrightarrow

s est répétitive

Exercice

• Quelles sont les séquences répétitives?

Réseau borné

Cette partie définit et caractérise la possibilité pour une place d'accumuler une quantité bornée ou pas de jetons au cours de l'évolution d'un réseau.

Place k-bornée, non-bornée

Pour un réseau R et un marquage M_0 une place p du réseau marqué (R, M_0) est k-bornée si pour tout marquage M accessible depuis M_0 , M(p) < k.

Dans le cas contraire la place *p* est dite non-bornée.

Autrement dit:

$$p$$
 k-bornée $\Leftrightarrow \forall M \in A(R, M_0), M(p) \leq k$

- Un réseau (marqué) est borné si toutes ses places sont bornées
- Les réseaux 1-bornés sont appelés réseaux saufs

Exemple:

Exemples

- Propriété dépendant du marquage initial
- Structurellement borné : rdP borné pour tout marquage initial fini

Séquence répétitive croissante

• Une séquence répétitive est dite croissante pour une place p si pour tout couple de marquages M, M' (i.e. $M \subseteq M'$) tel que

$$M \stackrel{s}{\rightarrow} M'$$

alors

Résultat :

Un réseau marqué (R, M_0) est non-borné si et seulement si il existe une séquence répétitive s croissante pour une place p, un marquage M accessible depuis M_0 tels que

$$M\stackrel{s}{
ightarrow}$$

Activité d'un réseau

La notion d'activité d'un réseau recouvre deux classes de définitions. La première concerne *l'activité individuelle* des transitions, la seconde concerne *l'activité globale* d'un réseau (indépendamment de transitions particulières).

Quasi-vivacité

• La quasi-vivacité d'une transition signifie que depuis le marquage initial cette transition peut être franchie au moins une fois.

Autrement dit, pour un réseau marqué (R, M_0)

$$t \in T$$
 quasi — vivante $\Leftrightarrow \exists M \in A(R, M_0), M \stackrel{t}{\rightarrow}$

Une transition qui nest pas quasi-vivante est inutile!

- Un réseau est *quasi-vivant* si toutes ses transitions le sont.
- La propriété de monotonie implique qu'une transition quasi-vivante pour (R,M) le reste pour (R,M') où $M' \supset M$.

Vivacité

• La vivacité d'une transition exprime le fait que quelque soit l'évolution du réseau à partir du marquage initial, le franchissement à terme de cette transition est toujours possible. Autrement dit, pour un réseau marqué (R, M_0)

 $t \in T$ vivante $\Leftrightarrow \forall M \in A(R, M_0), t$ est quasi-vivante pour M

- Un réseau est *vivant* si toutes ses transitions le sont.
- Contrairement à la quasi-vivacité, la vivacité d'une transition n'est pas forcément conservée par une augmentation de jetons dans les places. La vivacité n'est pas monotone.

Vivacité, quasi-vivacité

Qui est vivant, quasi-vivant?

Vivacité et monotonie

Pour quels marquages, respectivement classes de marquages le réeau est vivant et non-vivant?

Vivacité et séquence répétitive complète

- Une séquence répétitive est dite complète si elle contient au moins une occurrence de chaque transition.
- Résultat :
 Un réseau marqué (R

Un réseau marqué (R,M_0) est vivant si et seulement si pour tout marquage accessible M, $M \in A(R,M_0)$, il existe un marquage M' accessible depuis M et une séquence complète s tels que

$$M' \stackrel{t}{\rightarrow}$$

i.e.

$$(R, M_0)$$
 est vivant

 \Leftrightarrow

$$\forall M \in A(R, M_0), \exists M' \in A(R, M) \exists s \in T^* \text{complète } tels \ que \ M' \stackrel{s}{\rightarrow}$$

Absence de blocage

Cette propriété est plus faible que celle de vivacité, elle implique seulement que le réseau a toujours la possibilité d'évoluer.

- Marquage puits
 Un marquage puits est un marquage à partir duquel aucune transition n'est tirable.
- Un réseau marqué est sans blocage si aucun de ses marquages accessibles n'est un marquage puits.
- Vivacité et sans blocage sont deux notions bien distinctes. Un réseau peut être sans blocage bien qu'aucune de ses transitions soient vivantes.

Vivacité et marquage puits

Ce rseau est-il vivant? a-t-il un marquage puits?

Exemples

- Vivacité, blocage : dépendant du marquage initial
- **Structurellement vivant** : il existe un marquage initial tel que le réseau est vivant

Exemple d'Interblocage

1ère sol : ordonner

Comment garantir le non-blocage s'il y a plusieurs ressources à acquérir par plusieurs processus?

Famine

Les philosophes (3)

Définitions connexes

Un rdP a un état d'accueil M_a pour un marquage initial M_0 si pour tout marquage accessible M_i il existe une séquence s telle que

$$M_i \stackrel{s}{\rightarrow} M_a$$

Un rdP est **réinitialisable** (ou **réversible**) pour un marquage initial M_0 si M_0 est un état d'accueil.

Définitions connexes (cont'd)

Un rdP est **répétitif** s'il existe un marquage initial M_0 et une séquence s franchissable telle que chaque transition apparaît un nombre illimité de fois.

Un rdP est **consistant** s'il existe un marquage initial M_0 et une séquence franchissable s qui contient au moins une fois chaque transition telle que

$$M_0 \stackrel{s}{\to} M_0$$

Exercices : validité des équivalences ?

Structurellement borné

Borné (a)

Vivant Structurellement vivant Vivant et réversible

Structurellement vivant

Répétitif (b) Consistant

(c)

Exercices : validité des propriétés ?

- Borné? Vivant? Sans blocage?
- Répétitifs ? Répétitifs croissants ?

Borné? Vivant? Sans blocage?

Résumé

- Propriétés étudiées dans un rdP : son caractère borné et son activité
- Séquence de franchissements : répétitive, croissante
- Notions d'activité : quasi-vivacité, vivacité
- Relations entre les propriétés avec la monotonie et les séquences de transitions
- Notions complémentaires : marquage puits, interblocage et famine