МЕЖДУНАРОДНЫЙ СТАНДАРТ

ИСО 2768-1 Первое издание 15 ноября 1989

Общие допуски.

Часть 1:

Предельные отклонения на линейные и угловые размеры без специального обозначения допуска

Tolérances générales -

Partie 1: Tolérances pour dimensions linéaires et angulaires non affectées de tolerances individuelles

Предисловие

ИСО (Международная Организация по Стандартизации) является всемирной федерацией национальных организаций по стандартизации (организации – участники ИСО). Работа по подготовке международных стандартов обычно осуществляется через технические комитеты ISO. Каждая организация-участник, которую интересует предмет, для которого учрежден технический комитет, имеет право быть представленной в этом комитете. Международные организации, правительственные и неправительственные, взаимодействующие с ИСО, также принимают участие в работе. ИСО тесно сотрудничает с Международной Электротехнической Комиссией (МЭК) по всем вопросам электротехнической стандартизации.

Проекты международных стандартов, принятые техническими комитетами, направляются всем организациям-участникам для одобрения перед утверждением проекта Советом ИСО как Международного стандарта. Проекты одобряются в соответствии с процедурами ИСО, по меньшей мере 75% голосующих организаций-участников.

Международный стандарт ИСО 2768-1 подготовлен Техническим комитетом ИСО/ТС 3, *Предельные допуски и посадки*.

Это первое издание ИСО 2768-1 вместе с ИСО 2768-2:1989 отменяет и заменяет ИСО 2768:1073.

ИСО 2768 состоит из следующих частей под общим названием Общие допуски:

- Часть 1: Предельные отклонения на линейные и угловые размеры без специального обозначения допуска;
- Часть 2: Геометрические допуски для деталей без специального обозначения допуска на размеры.

Приложение А настоящей части ИСО 2768 приведено для информации.

© ISO 1989

Все права сохраняются. Если не указано иное, никакую часть данной публикации нельзя воспроизводить или использовать ни в какой из форм и никакими средствами, электронными или механическими, включая фотокопирование и микропленку, без письменного разрешения издателя.

Международная организация по стандартизации Почтовый ящик 56 • CH-1211 Женева 20 • Швейцария

Отпечатано в Швейцарии

ВВЕДЕНИЕ

Все характеристики деталей компонента имеют размер и геометрическую форму. Для отклонений размера и отклонений геометрических характеристик (форма, ориентация и положение) функциональности детали необходимо определить те ограничения, при отклонении от которых ухудшается такая функциональность.

Определение допусков на чертеже должно быть достаточным для того, чтобы гарантировать, что элементы размера и геометрии по всем характеристикам под контролем, то есть ничего не будет упущено или оставлено на усмотрение в производственном цехе или в отделе технического контроля.

Применение общих допусков на размер и геометрию упрощает задачу по обеспечению требования, при котором необходимые условия удовлетворены.

МЕЖДУНАРОДНЫЙ СТАНДАРТ

ИСО 2768-1:1989 (Е)

Общие допуски.

Часть 1:

Предельные отклонения на линейные и угловые размеры без специального обозначения допуска

1. Область применения

Настоящая часть ИСО 2768 предназначена для того, чтобы упростить обозначения на чертеже, а также она определяет общие предельные отклонения на линейные и угловые размеры без специального обозначения допуска в четырех классах точности.

ПРИМЕЧАНИЕ 1 – Концепции по общим допускам для линейных и угловых размеров описаны в Приложении А.

Эта часть применима к размерам деталей, которые производятся путем механической обработки, или же деталей, которые формуются из листового металла.

ПРИМЕЧАНИЯ

- 2 Эти допуски могут быть пригодными для применения к материалам, отличающимся от металлов.
- 3 Сходные Международные Стандарты существуют и планируются, например, обратитесь к ИСО $8062^{1)}$ по отливкам.

Настоящая часть ISO 2768 применяется только для следующих размеров, которые не имеют специального обозначения допуска:

- а) линейные размеры (например: наружные размеры, внутренние размеры, ступенчатые размеры, диаметры, радиусы, внешние радиусы и высоты фасок для ломаных кромок);
- b) угловые размеры, включая те, которые обычно не указываются, например, прямые углы (90^0) , если не делается ссылка на ИСО 2768 -2, или же углы равносторонних многоугольников;
- с) линейные и угловые размеры, получаемые при механической сборке леталей.

Настоящая часть не относится к следующим размерам:

- а) линейным и угловым размерам, на которые распространяется ссылка на другие стандарты по общим допускам;
- b) вспомогательным размерам, указанным в скобках;
- с) теоретически точным размерам, указанным в прямоугольных скобках.

¹⁾ ИСО 8062:1984, Отливки – Система предельных допусков.

2 – Общая часть

При выборе класса допуска следует принимать во внимание общепринятую точность цехового оборудования, соответствующую данному случаю. Если требуются меньшие допуски, но допустимы, и более экономичны большие допуски для какой-то конкретной детали, то эти допуски должны быть указаны рядом с соответствующими номинальным(и) размером(ами).

Общие допуски ДЛЯ линейных И угловых размеров применяются случаях, когда чертежи или прилагаемые спецификации относятся к этой части ИСО 2768, в соответствии с параграфами 4 и 5. Если существуют общие допуски для других процессов, как оговаривается в других Международных Стандартах, то необходимо делать ссылку на них в чертежах или прилагаемых спецификациях. Для размера, между необработанной и обработанной поверхностью, например, омкап никакой литых или кованых деталей, ДЛЯ которого указан конкретный применяется больший общих допуск, ИЗ двух рассматриваемых допусков, например, в случае отливок - смотри ИСО 8062 1).

3 – Нормативные ссылки

Следующие стандарты содержат положения, которые, посредством ссылки в данном тексте, составляют положения этой части ИСО 2768. На момент публикации действительны указанные издания. Все стандарты подлежат пересмотру и сторонам в договорах, которые руководствуются данной частью ИСО 2768, рекомендуется предусмотреть возможность применения наиболее поздних изданий указанных ниже стандартов. Члены МЭК и ИСО ведут реестры Международных Стандартов, которые действительны в настоящее время.

ISO 2768-2: 1989, Общие допуски – Часть 2: Геометрические допуски для деталей без специального обозначения допуска на размеры.

ISO 8015: 1985, Технические чертежи - Основные принципы установления допусков

4 – Общие допуски

4.1 Линейные размеры

Общие допуски для линейных размеров приведены в таблице 1 и 2.

4.2 Угловые размеры

Общие допуски, указанные в угловых единицах, контролируют лишь общую ориентацию линий или элементов линий поверхностей, но не отклонения от их формы.

Общая ориентация линий, идущих от фактической поверхности, - это ориентация контактной линии идеальной геометрической формы. Максимальное расстояние между контактной линией и фактической линией должно равняться наименьшему значению из возможных (смотри ИСО 8015).

Допустимые отклонения угловых размеров даны в Таблице 3.

5 Обозначения на чертежах

Если будут применяться общие допуски в соответствии с настоящей частью ИСО 2768, то следующая информация должна быть указана в или возле заглавной части.

- a) «ISO 2768»;
- b) Класс точности в соответствии с настоящей частью ИСО 2768.

ПРИМЕР:

ISO 2768-m

6 Отклонение

Если иначе не указано, то размеры обрабатываемых деталей, которые превышают общий допуск, не должны приводить к их автоматической отбраковке, при условии того, что функциональные характеристики деталей не ухудшились (смотри параграф А.4).

Таблица 1 – Предельные отклонения для линейных размеров, исключая ломанные кромки.

(для внешних радиусов и высоты фасок смотри таблицу 2)

Значения в миллиметрах

Класс точности		Предельные отклонения для диапазонов номинальных размеров							
Обозна-	Описание	ОТ	свыше	свыше	свыше	свыше	Свыше	Свыше	Свыше
чение		$0,5^{1)}$	3 до 6	6 до 30	30 до	120 до	400 до	1000	2000
		до 3			120	400	1000	до	до
								2000	4000
f	точный	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	-
m	средний	±0,1	±0,1	±0,2	±0,3	±0,5	±0,8	±1,2	±2
С	грубый	±0,2	±0,3	±0,5	±0,8	±1,2	±2	±3	±4
V	очень грубый	-	±0,5	±1	±1,5	±2,5	<u>+</u> 4	±6	±8

¹⁾ Для номинальных размеров менее 0,5 мм, отклонения должны указываться рядом с соответствующими номинальным(и) размером(ами).

Таблица 2 – Предельные отклонения для притупленных кромок (внешние радиусы и высота фасок).

Значения в миллиметрах

Класс	точности	Предельные отклонения для диапазонов				
		номинальных размеров				
Обозначение	Описание	от 0,5 ¹⁾ до 3	свыше 3 до 6	свыше б		
f	точный	±0,2	±0,5	±1		
m	средний	±0,2	±0,3			
С	грубый	±0,4	±1	±2		
v	очень грубый	∪,4	1			

¹⁾ Для номинальных размеров менее 0,5 мм, отклонения должны указываться рядом с соответствующими номинальным(и) размером(ами).

Таблица 3 – Предельные отклонения для угловых размеров

Класс точности		Предельные отклонения для диапазонов длин в миллиметрах						
		меньшей стороны рассматриваемого угла						
Обозначение	Описание	до 10	свыше 10	свыше	свыше	Свыше 400		
			до 50	50 до 120	120 до 400			
f	точный	±1 ⁰	±0°30'	±0°20'	±0 ⁰ 10'	±0°5'		
m	средний	Ξ1	±0/30	±0/20	±0 10	<u> </u>		
c	грубый	$\pm 1^{0}30'$	±1 ⁰	$\pm 0^{0}30'$	$\pm 0^{0}15$	$\pm 0^{0}10'$		
v	очень	±3 ⁰	±2 ⁰	±1 ⁰	±0°30'	±0°20'		
	грубый					0 20		

ПРИЛОЖЕНИЕ А (информативное)

Концепции по установлению общих допусков линейных и угловых размеров

А.1. Общие допуски должны указываться на чертеже путем ссылки на эту часть ИСО 2768 в соответствии с параграфом 5.

Значения общих допусков соответствуют классам допусков обычной точности цехового оборудования, и подходящий класс выбирается и указывается на чертеже согласно требованиям для компонентов.

А.2. Обычно не достигается значительная экономия при изготовлении, если допуски увеличиваются сверх определенных значений. Например, деталь, имеющая диаметр 35 мм, может изготавливаться до высокого уровня соответствия в цехе со «средней принятой точностью оборудования». Определение допуска в \pm 1 мм не принесет никакой пользы в этом конкретном цехе, так как значения общего допуска \pm 0,3 мм будут совершенно адекватными.

Однако если по каким-либо функциональным причинам деталь требует меньшего значения допуска, в сравнении с «общими допусками», то такая деталь должна иметь конкретное указание меньшего допуска рядом с размером, определяющим ее размер или угол. Такой тип допуска выходит за пределы общих допусков.

В тех случаях, когда функциональность детали позволяет допуск больший, чем значения общего допуска или равный ему, то не нужно давать указаний рядом с размером, однако необходимо сделать отметку на чертеже, как описано в параграфе 5. Такой тип допуска позволяет полностью использовать концепцию установления общих допусков.

Можно называть «исключением из правил» те случаи, когда функция детали позволяют допуск больший в сравнении с общими допусками, и этот больший допуск обеспечивает экономию при изготовлении. В этих особых случаях больший допуск необходимо указывать конкретно рядом с размером для конкретной, например, глубины глухих отверстий, которые сверлятся при сборке.

- А3. Использование общих допусков дает следующие преимущества:
- а) чертежи легче читать, и поэтому информация более эффективно передается пользователю чертежа;
- b) конструктор-проектировщик экономит время, не занимаясь детальными расчетами допусков, так как достаточно просто знать, что функциональность позволяет допуск больший или равный в сравнении с общим допуском;
- с) чертеж наглядно показывает то, какая деталь может быть произведена с использованием нормальных технологических возможностей, что также способствует проектированию необходимого качества путем уменьшения уровней контроля.
- d) те остающиеся размеры, что имеют конкретно указанные допуски, будут большей частью теми, что контролируются в детали, функция которых требует относительно малых допусков, и которые, таким образом, могут потребовать особого внимания при изготовлении, это поможет при производственном планировании и окажет содействие службам контроля качества в их анализе требований к инспекции;

е) инженеры по закупкам и субподрядным поставкам могут более легко договариваться о заказах, так как «обычная точность цехового оборудования» известна до того, как размещается контракт; это также позволяет избежать споров в отношении поставки между покупателем и поставщиком, так как в этом отношении чертеж является достаточным и полным.

Эти преимущества полностью достигаются только в том случае, когда имеется достаточная уверенность в том, что общие допуски не будут превышены. То есть, когда обычная точность цехового оборудования в конкретном цехе равна общим допускам, указанным в чертеже, или даже более точна.

Цех, таким образом, должен:

- определить путем измерений принятую в цехе обычную точность оборудования;
- принимать только те чертежи, которые имеют общие допуски, равные обычной точности цехового оборудования, или большие, чем она;
- проверять путем выборочного контроля, не ухудшилась ли обычная точность цехового оборудования.

С использованием концепции общих геометрических допусков больше нет необходимости полагаться на «хорошее качество работы» со всеми неопределенностями и "неправильным" пониманием, заключенным в этом термине. Общие геометрические допуски определяют требуемую точность «хорошего качества работы».

А.4. Допуск, который позволяет функциональность, часто является больше, чем общий допуск. Функция узла, таким образом, не всегда ухудшается, когда общий допуск (случайно) превышается для какой-то детали обрабатываемого изделия. Превышение общего допуска приведет к отбраковке только в том случае, если это отрицательно влияет на функциональность.

UDC 621.753.1:744.4

Описание: фундаментальные допуски, допуски на размеры, допуски на углы Цена основана на 3 страницах