MIDS W207 Applied Machine Learning

Week 11 Live Session Slides

Curse of Dimensionality

Principal Component Analysis

Component	Initial Eigenvalues		
	Total	% of Variance	Cumulative %
1	5.994	59.938	59.938
2	1.654	16.545	76.482
3	1.123	11.227	87.709
4	.339	3.389	91.098
5	.254	2.541	93.640
6	.199	1.994	95.633
7	.155	1.547	97.181
8	.130	1.299	98.480
9	.091	.905	99.385
10	.061	.615	100.000

Principal Component Analysis (Terms)

Dimensionality: It is the number of features or variables present in the given dataset. More easily, it is the number of columns present in the dataset.

Correlation: It signifies that how strongly two variables are related to each other.

Orthogonal: It defines that variables are not correlated to each other, and hence the correlation between the pair of variables is zero.

Eigenvectors: If there is a square matrix M, and a non-zero vector v is given. Then v will be eigenvector if Av is the scalar multiple of v.

Covariance Matrix: A matrix containing the covariance between the pair of variables is called the Covariance Matrix.

Principal Component Analysis Terms

- Getting the dataset.
- Representing data into a structure.
- 3. Standardize the data
- 4. Getting the covariance
- 5. Calculating Eigenvalues and Eigenvectors
- 6. Sorting the Eigenvectors
- 7. Calculating the new features or principal components
- 8. Remove less or unimportant features from the new dataset.

Code Review

Eigenfaces: Key Idea

Assume that most face images lies on a low dimensional subspace determined by the first k (k < < < d) directions of maximum variance

Use PCA to determine the vectors or Eigenfaces $\mathbf{u_1}$, $\mathbf{u_2}$,.... $\mathbf{u_k}$ that span the subspace

Represent all face images in the dataset as linear combinations of eigenfaces. Find the coefficients by dot product.

Training images x_1, \dots, x_m

Face x in "face space" coordinates (dot products):

$$\mathbf{x} \to [\mathbf{u}_{1}^{T}(\mathbf{x} - \mu), ..., \mathbf{u}_{k}^{T}(\mathbf{x} - \mu)]$$

$$= [w_{1}, ...w_{k}]$$
This vector is

This vector is the representation of the face.

Recognition with Eigenfaces

Given novel image x:

Project onto subspace:

$$[w_1, ..., w_k] = [u_1^T(\mathbf{x} - \mu), ..., u_k^T(\mathbf{x} - \mu)]$$

- Classify as closest training face in k-dimensional subspace
- This is why it's a generative model.