Kelly Shiptoski

Email: kship at seas upenn edu Github: https://github.com/krs85

Research Interests

- Operating systems
- · Parallelism and concurrency
- · Determinism and reproducibility
- · Distributed systems
- · System design and development

Skills

• Languages: Rust, C++, C, Java, Python

• Linux Systems Programming

Education

2017 – Present	Ph.D., Computer Science,	University of Pennsylvania
----------------	--------------------------	----------------------------

Architecture and Compilers Group

Advised by Dr. Joseph Devietti

2017 – 2019 M.S.E., Computer Science, **University of Pennsylvania**

2012 – 2017 B.S., Computer Science, B.A., Mathematics

Drexel University

Graduated cum laude

Publications

Reproducible Containers, Omar S. Navarro Leija, Kelly Shiptoski, Ryan Scott, Baojun Wang, Nicholas Renner, Ryan Newton, and Joseph Devietti. International Conference on Architectural Support for Programming Languages and Operating Systems (*ASPLOS '20*), March 2020.

Industry Research Experience

Research Intern, VMWare Research Group, Summer 2020.

Research Projects

Process Cache:

- A system for providing automatic caching of computation at the process level (WIP).
- Written in Rust, utilizing asynchronous futures and ptrace.
- Leading design and implementation of the project.

Distributed Differential Datalog (D3log) - VMWare Research Group:

- D3log is an extension of the Differential Datalog language (a language built upon Datalog, specifically designed for incremental computation), which provides automatic distribution of Differential Datalog computations across compute nodes.
- Contributed to the distributed runtime (written in Rust) by adapting the distributed API to allow for incremental on-the-fly reconfiguration of the nodes within the network, expanding the fault tolerance guarantees of the runtime.

Reproducible Containers (DetTrace):

- A container abstraction for Linux which guarantees both determinism and reproducibility for any unmodified Linux program run through it. Written in C++ and utilizes ptrace.
- Extended the scheduler from serialized execution to parallelization of system-call-free regions of execution, reducing the overhead of compute-bound workflows to under 2%.

Teaching

- **Graduate Teaching Assistant** for Computer Architecture (CIS 501), University of Pennsylvania, Spring 2019.
- **Teaching Assistant and Recitation Leader** for Intro to Computer Science (CIS 110), University of Pennsylvania, Spring 2018.

Other Experience

- **Computer Science Instructor** for Penn GEMS (Girls in Engineering, Math, and Science) Camp, University of Pennsylvania, June 2018.
- **Software Engineering Intern** for Thomson Reuters, Summer 2016.
- **Software Engineering Intern** for Bentley Systems, Inc., Summer 2015.
- **Software Engineering Intern** for Independence Blue Cross, Summer 2014.