Computer Architecture 7. Computer Buses

Lecturer: A.Prof.Dr. Hoàng Xuân Dậu

Email: dauhx@ptit.edu.vn

Faculty of Information Security

Posts & Telecommunications Institute of Technology

Main topics

- Introduction to computer buses
- ISA, EISA buses
- PCI buses
- AGP buses
- PCI Express bus

Introduction to Computer Buses

- Computer bus is a subsystem that transfers data between components inside a computer.
- Computer bus usually consists of 3 subbuses:
 - Address bus (A Bus)
 - Data bus (D Bus)
 - Control bus (C Bus)
- Common computer buses: ISA, EISA, PCI, AGP, PCI Express (or PCIe), USB bus, etc.

Computer Buses – Principle Diagram

Computer Buses – Modern Systems

Computer Buses – Modern Systems

ISA - Industrial Standard Architecture

- ISA was developed by IBM in 1981
- □ Bit width: 8 (XT) or 16 (AT) bits
- Number of max devices: 6
- □ Clock speed: 4, 6, 8MHz

8 Bit XT Bus - top view

EISA buses

- EISA is an ISA extension released in 1988.
- □ Bit width: 32 bits
- EISA is compatible with 8 and 16 bit ISA devices
- Number of devices: 1 per slot
- □ Clock speed: 8.33MHz
- Data transfer rate:33MB/s.

EISA buses

	CMD	START	EX MPY	EX 35	0.00	Kodierung, Kay	SLBURST	MSBURST		-		Reserved		QWD	Kodienung, Kery							GMD			LA13		-			LA7	GWD		GND	Kodlerung, Key	Data 17	Data 19			OND Date 24							MIRE ON
		EM .	III			# t-		-	2 2	=	27	0.0	2	813	2 1		9	2	E C	22	E 23	2	S .	5 1	12.0	2 2	22	E 24		0	0 1		9 0	0	0	0	0	20	0 0			0 0	91.0	0.17	0	81.0
	A 1 DOCHOK	A 2 Details		A 5 Data 4	A 6 Data 3	A 7 Data 2	A 8 Date 1	_		-	-	A 13 A 200 118		N N	A.17 Addr 14	A 18 A 66/13	Adde		A 27 A Addr 10		6 79	-	100	A 27 Addr 4	746	-	-	A 31 Addr 0		C 1 38HB	C 2 Addr 23	C 1 Addr 22	C 4 A89/21	C 5 Addr 20	C 0 A000 13	C B AMPTT		9	C 11 Data 8	G 12 Data 9	C 13 Data 10	C 14 Date 11			0.17 0.0014	1
		1		∦		H			1		H				H					I	Į	I I	ļ	ļ	I			II		İ	ļ	1							I							
								0	2	=	2 :	2 2		2	51.0	=	2	2 :	5 2	1 2	2	2	8	Si e	20	200	2	5		0	0	0	9	0	0 0			100	=	27 00	0	2 0	2	2 :	2 5	l h
1	OND	WEST DAY	100	Š	080	AZI-	Reserved, NC	A21+	QND	WE 150	3	# 10 0	DACK 1	040	DACK 1	1 080	DACK 0	ST CITY	7 700	2 08	NO 4	100	DAKOK 2	90	ALE	Agu	0490	ONS		MICH CS 16	NO CS 16	BRQ 10	11001	200	80013	0.828.0	0.000	DAKEN S	8 080	DACK 6	9 0 0 0	DACK 7	DMO 7	Ag.	SCHOOL	
	e-	ev m.	9% ML	* 1		e 1-	-	-	2	-	2	0	2	en En	2 1		9	2	5	8	en Se	ž	£ 1	2 3		2	2	E.		I	m :		· w	¥	×	=	×	2	= :	: :			z	ř.	Ξ	£
	GND	20+	A\$+	X.NG	A. NC	Koderung, Key x NC	X, NG	V21+	Q-M	LOCK	Reserved	GND	Reserved	86.3	Kodlerung, Kay	1 2	GNO	75+	LA 38	GND	×	LA 24	Kodierung, Key	# :	# A	75+	GND	UA 10		I'V	LAG	-	E 43	Kodlerung, Key	Data 16	Data 18	GND	Data 21	Data 24	CAND	Data 27	Kodlenang, Kery	Owta 29	AG+	A\$+	MACKN

PCI Buses

- PCI (Peripheral Component Interconnect) bus was developed by Intel in 1993.
- Bit width: 32 or 64 bits
- Capacity:
 - 133 MB/s (32bit at 33MHz)
 - 266 MB/s (32bit at 66MHz or 64bit at 33MHz)
 - 533 MB/s (64bit at 66MHz)

PCI Local Buses

32 bit vs 64 bit PCI buses

PCI Block Diagram

PCI Bus Signals

- Signals to initiate a transaction:
 - REQ#: bus request signal sent by initiator
 - GNT#: bus grant signal given by Arbiter
- Signals to control a transaction:
 - FRAME#: Start a bus cycle
 - IRDY#: Initiator is ready
 - DEVSEL#: Target confirms transaction begin
 - TRDY#: Target is ready
 - STOP#: Stop a transaction.

PCI Bus Transaction Phases

- A PCI transaction (a session of data transmission on PCI bus) usually consists of 3 phases:
 - Arbitration: Initialize a transaction
 - Address: Determine address of parties participated in a transaction
 - Data: Transfer data.

PCI Bus Transaction Phases

Arbitration

- A PCI device (initiator) sends REQ# signal to Arbiter to use bus
- If bus is free, Arbiter sends GNT# to initiator
- If bus is busy, the request is added into a queue
- GNT# signals may be removed by Arbiter at any time
- A PCI device with granted GNT# can start a PCI transaction if bus is idle.

PCI Bus Transaction Phases

Address phase

- PCI device with GNT# can start a PCI transaction by sending FRAME# signal and send the target address and associated command (Read/Write)
- Each other device examines the address and command and decides whether to respond as the target by asserting DEVSEL#.
- A device must respond by asserting DEVSEL# within 3 cycles.

PCI Bus- Address phase timing

PCI Bus – Data Phase

After the address phase (when DEVSEL# goes low) comes a burst of one or more data phases

AGP - Accelerated Graphics Port

- AGP was developed by Intel in 1993
- Bit width: 32
- Data transfer rate
 - 1x: 66MHz, 266MB/s
 - 2x: 133MHz,533MB/s
 - 4x: 266MHz, 1066MB/s
 - 8x: 533MHz, 2133MB/s

AGP - Accelerated Graphics Port

AGP Card

PCI Express

- PCI Express (PCIe) was developed by Intel in 2004.
- □ Width in bits: 1-32
- Communication type: serial (point to point)
- Capacity:
 - Per lane:
 - v1.x: 250 MB/s
 - v2.0: 500 MB/s
 - v3.0: 1 GB/s
 - v4.0: 1,969 GB/s
 - v5.0: 3,938 GB/s
 - 16 lane slot:
 - v1.x: 4 GB/s
 - v2.0: 8 GB/s
 - v3.0: 16 GB/s
 - v4.0: 31,51 GB/s
 - v5.0: 63 GB/s

PCI Express Slots

PCI Express vs PCI

Devices using PCI share a common bus, but each device using PCI Express has its own dedicated connection to the switch

PCIe Architecture

- PCIe is structured around point-to-point serial links.
- A pair of 2 serial links (one in each direction) is a lane.
- Lanes are routed by a hub on the mainboard acting as a crossbar switch.
- Physical PCIe slots may contain from 1 to 32 lanes.

PCIe Architecture – Serial Bus

PCIe is a type of serial bus:

- Parallel buses (ISA, PCI, AGP) require all bits of a transferred data unit to come to destination at the same time;
- Due to the timing skew issue, bits of a transferred data unit may fail come to destination at the same time, which makes it difficult to recover the final data word;
- There is no timing issue in serial buses because they don't require all bits of a transferred data unit to come to destination at the same time.