Формулы расчёта в jmulti

С. В. Иванов

январь 2021

Содержание

1	Атомный фактор	1
2	Структурный фактор	2
3	Константы и простые соотношения	3
4	Отбор пар плоскостей	4
5	Расчет интенсивности рефлексов	4

Аннотация

В этой статье приведена математическая запись формул по которым ведется вычисление интенсивности двухволновой дифракции.

1. Атомный фактор

Для расчёта атомного фактора используются данные из международных кристаллографических таблиц, том C [1]

Из таблицы 4.2.6.8 (Dispersion corrections for forward scattering) берутся поправочные коэффициенты f' и f''. Для промежуточных значений длины волны используется линейная интерполяция табличных значений.

В зависимости от значения величины $\sin\theta/\lambda$ для расчёта атомного фактора использются разные таблицы. Для интервала $0 <= \sin\theta/\lambda <= 2.0$ используется таблица 6.1.1.4 (Coefficients for analytical approximation to the scattering factors of Tables 6.1.1.1 and 6.1.1.2) и формула:

$$f(\sin \theta/\lambda) = \sum_{i=1}^{4} a_i \exp(-b_i(\sin \theta/\lambda)^2) + c$$
 (1)

Для интервала $2.0 < \sin\theta/\lambda$ используется таблица 6.1.1.5 (Coefficients for analytical approximation to the scattering factors of Table 6.1.1.1 for the range $2.0 < \sin\theta/\lambda < 6.0 \ \text{Å}^{-1}$) и формула:

$$f(\sin \theta/\lambda) = \sum_{i=0}^{3} a_i (\sin \theta/\lambda)^i$$
 (2)

Величина $\sin \theta / \lambda$ рассчитывается из условия Брегга по формуле:

$$\sin \theta / \lambda = \frac{\sqrt{d_{hkl}}}{2},\tag{3}$$

где d_{hkl} обратный квадрат расстояния между кристаллографическими плоскостями соответствующих индексам Миллера hkl.

$$d_{hkl} = \frac{\left(\frac{h\sin\alpha}{a}\right)^2 + \left(\frac{k\sin\beta}{b}\right)^2 + \left(\frac{l\sin\gamma}{c}\right)^2 + \frac{2kl\cos\alpha}{bc} + \frac{2hl\cos\beta}{ac} + \frac{2hk\cos\gamma}{ab}}{1 - \cos^2\alpha - \cos^2\beta - \cos^2\gamma + 2\cos\alpha\cos\beta\cos\gamma}$$
(4)

$$(\frac{h*h*\sin\alpha*\sin\alpha}{a*a} + \frac{k*k*\sin\beta*\sin\beta}{b*b} + \frac{l*l*\sin\gamma*\sin\gamma}{c*c} + \frac{2*k*l*\cos\alpha}{b*c} + \frac{2*h*l*\cos\beta}{a*c} + \frac{2*h*k*\cos\gamma}{a*b})$$

$$/(1-\cos\alpha*\cos\alpha-\cos\beta*\cos\beta-\cos\gamma*\cos\gamma + 2*\cos\alpha*\cos\beta*\cos\gamma)$$
(5)

Итоговый атомный фактор это комплексное число образованное суммой $f+f^{\prime}+if^{\prime\prime}.$

$$f_a = f + f' + if'' \tag{6}$$

2. Структурный фактор

Структурный фактор отражения от плоскости вычисляется по формуле:

$$F_{hkl} = \sum_{a} f_a e^{i\pi(hx_a + ky_a + lz_a)} \tag{7}$$

где x, y, z клсталлографические координаты атома в ячейке.

3. Константы и простые соотношения

Классический радиус электрона:

$$r_0 = 2.81794092 * 10^{-5} (8)$$

Длина волны из энергии в кЭв:

$$\lambda = 12.398519/E \tag{9}$$

Угол Брегга основного рефлекса:

$$\theta_b = \arcsin\left(\frac{\lambda\sqrt{d_{hkl}}}{2}\right) \tag{10}$$

Модуль волнового вектора:

$$k = \frac{2\pi}{\lambda} \tag{11}$$

Учет взаимодействия с магнитным полем зашит в формулы, но поле задано нулевым.

$$F_{Mag} = 0 + i0 \tag{12}$$

$$F_{DQ} = 0 + i \tag{13}$$

$$F_{OO} = -1 + i \tag{14}$$

Объем ячейки и базовые вектора обратной решетки:

$$V = \vec{a} \cdot (\vec{b} \times \vec{c}) \tag{15}$$

$$\vec{a}_{Rec} = \frac{2\pi(\vec{b} \times \vec{c})}{V} \tag{16}$$

$$\vec{b}_{Rec} = \frac{2\pi(\vec{c} \times \vec{a})}{V} \tag{17}$$

$$\vec{c}_{Rec} = \frac{2\pi(\vec{a} \times \vec{b})}{V} \tag{18}$$

$$\chi_0 = \frac{-4\pi r_0 \sum_a Z_a + f' + if''}{k^2 V} \tag{19}$$

4. Отбор пар плоскостей

Перед рассчетом интенсивности рефлекса производится выборка пар прлоскостей (abc плоскость первого отражения, a'b'c' плоскость второго отражения). При этом из условия что нужны только такие пары, которые дают рефлекс в том же направлениии, что и основной от плоскости hkl, следует, что индексы abc и a'b'c' связаны соотношением:

$$a' = h - a, b' = k - b, c' = l - c.$$
 (20)

Таким образом выбор первой плоскости однозначно определяет и вторую плоскость.

Также производится вычисление структурного фактора двойного отражения F_{hkl}^{abc} , тут верхние индексы abc использованы для обозначения для какой пары плоскостей вычисляется этот структурный фактор.

$$F_{hkl}^{abc} = F_{abc}F_{a'b'c'} \tag{21}$$

Выборка плоскостей осуществляется пребором индексов abc в заданных пределах, в выборку попадают только плоскости удовлетворяюще условиям:

$$\frac{\sqrt{d_{abc}}}{2} <= \frac{5}{\lambda} \tag{22}$$

$$\frac{\sqrt{d_{a'b'c'}}}{2} <= \frac{5}{\lambda} \tag{23}$$

$$|F_{abc}| > 10^{-6}$$
 (24)

$$|F_{a'b'c'}| > 10^{-6}$$
 (25)

$$|F_{hkl}^{abc}| >= 1 \tag{26}$$

5. Расчет интенсивности рефлексов

В расчете для упрощения формул используется локальные декартовы координаты с базовыми векторами $\vec{a_0}, \vec{b_0}, \vec{n}$. Выбор этих векторов зависит от параметров ячейки и основного рефлекса hkl. Подробности выбора векторов опустим, скажем только, что \vec{n} совпадает с вектором нормали плоскости hkl, а угол ψ отсчитывается от вектора $\vec{a_0}$ в направлении $\vec{b_0}$.

Волновой вектор \vec{k} и вектора поляризации падающего излучения $\vec{e_s}, \vec{e_p}$ и после рассеяного $\vec{e_n'}$:

$$\vec{k} = k \left(\cos \theta_b \cos \psi \vec{a_0} + \cos \theta_b \sin \psi \vec{b_0} + -\sin \theta_b \vec{n} \right)$$
 (27)

$$\vec{e_s} = -\sin\psi \vec{a_0} + \cos\psi \vec{b_0} \tag{28}$$

$$\vec{e_p} = \sin \theta_b \cos \psi \vec{a_0} + \sin \theta_b \sin \psi \vec{b_0} + \cos \theta_b \tag{29}$$

$$\vec{e_p'} = -\sin\theta_b \cos\psi \vec{a_0} - \sin\theta_b \sin\psi \vec{b_0} + \cos\theta_b \vec{n}$$
 (30)

Здесь a, b, c это индексы отобранных на предыдущем шаге прлоскостей.

$$\vec{p} = a\vec{a}_{Rec} + b\vec{b}_{Rec} + c\vec{c}_{Rec} \tag{31}$$

$$\vec{k}_n = \vec{k} + \vec{p} \tag{32}$$

$$\mathbf{k}_n^2 = |\vec{k} + \vec{p}| \tag{33}$$

$$k_{ns} = \vec{k}_n \cdot \vec{e_s} \tag{34}$$

$$k_{np} = \vec{k}_n \cdot \vec{e_p} \tag{35}$$

$$k'_{np} = \vec{k}_n \cdot \vec{e'_p} \tag{36}$$

$$F_{Mult}^{ss} = \frac{4\pi r_0}{k^2 V} \sum_{abc} \frac{F_{hkl}^{abc}(\vec{k}_n^2 - k_{ns}^2)}{\vec{k}_n^2 (1 - \chi_0) - k^2}$$
(37)

$$F_{Mult}^{pp} = \frac{4\pi r_0}{k^2 V} \sum_{abc} \frac{F_{hkl}^{abc}(\vec{k}_n^2 \cos 2\theta_b - k_{np} k'_{np})}{\vec{k}_n^2 (1 - \chi_0) - k^2}$$
(38)

$$F_{Mult}^{ps} = -\frac{4\pi r_0}{k^2 V} \sum_{abc} \frac{F_{hkl}^{abc} k_{np}' k_{ns}}{\vec{k}_n^2 (1 - \chi_0) - k^2}$$
(39)

$$F_{Mult}^{sp} = -\frac{4\pi r_0}{k^2 V} \sum_{abc} \frac{F_{hkl}^{abc} k_{ns} k_{np}}{\vec{k}_n^2 (1 - \chi_0) - k^2}$$
(40)

(41)

$$c_{QQ} = F_{QQ} \sin 3\psi \tag{42}$$

$$|F_{Mod}^{ss}| = |F_{Mult}^{ss} + F_{Mag}| \tag{43}$$

$$|F_{Mod}^{pp}| = |F_{Mult}^{pp} + F_{Mag}| \tag{44}$$

$$|F_{Mod}^{ps}| = |F_{Mult}^{ps} - F_{Mag} + c_{QQ} + F_{DQ}|$$
(45)

$$|F_{Mod}^{sp}| = |F_{Mult}^{sp} + F_{Mag} + c_{QQ} - F_{DQ}|$$

$$F_{Mod}^{s} = |F_{Mod}^{ps}|^{2} + |F_{Mod}^{ss}|^{2}$$
(46)
(47)

$$F_{Mod}^{s} = |F_{Mod}^{ps}|^{2} + |F_{Mod}^{ss}|^{2} \tag{47}$$

$$F_{Mod}^{p} = |F_{Mod}^{pp}|^{2} + |F_{Mod}^{sp}|^{2}$$

$$\tag{48}$$

$$Rr2 = \frac{|F_{Mult}^{ss} + iF_{Mult}^{sp} - iF_{Mag}|^2 + |iF_{Mult}^{pp} + F_{Mult}^{ps} + F_{Mag}^{ps}|^2}{|}$$
(49)

$$Rl2 = \frac{|F_{Mult}^{ss} - iF_{Mult}^{sp} + iF_{Mag}|^2 + |-iF_{Mult}^{pp} + F_{Mult}^{ps} + F_{Mag}|^2}{2}$$
(50)

Список литературы

E. Prince, ред. International Tables for Crystallography. Springer, 2006. ISBN: 978-1-4020-1900-5.