Projective Geometry

Computer Vision

Application: Panorama Stitching

feature extraction and matching

→ homography

Geometric Transformations

Geometric (Parametric) 2D Transformations

- 1. relocate individual pixels (without changing its intensity values)
- 2. calculate new intensity values through interpolation on neighborhood in original image

Linear Transformations

identity:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

scaling:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{bmatrix} S_{\chi} & 0 \\ 0 & S_{y} \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

rotation:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

shear:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{bmatrix} 1 & s_h \\ s_n & 1 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
parameters

$$\rightarrow$$
 can be chained: $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

Translation

$$x' = x + t_x$$
$$y' = y + t_y$$

not a linear operation \rightarrow no matrix representation using 2D coordinates

homogeneous coordinates to the rescue:
$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

represent 2D point with 3D vector

only defined up to scale:
$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} \stackrel{\text{def}}{=} \begin{pmatrix} wx' \\ wy' \\ w \end{pmatrix}$$

Affine Transformations

affine transformations:

linear transformations and translation

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Projective Geometry

projective space: 3D scene → 2D image

Projective Transformations: Homographies

$$\begin{pmatrix} x' \\ y' \\ w' \end{pmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

homographies: affine transformations and "projective warps"

special points:

• point at infinity:

$$\begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$

undefined:

 $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

After Transformation: Intensity Interpolation

two possibilities:

forward mapping: send each source pixel to its target location

each pixel in original image can contribute to more than one pixel in transformed image can result in holes inverse mapping: get each target pixel from its source location

each pixel in transformed image can come from more than one pixel in original image

resampling from interpolated (filtered) original image

Example: Rotation

nearest-neighbor interpolation:

bilinear interpolation: bicubi

bicubic interpolation:

piecewise-polynomial function, aka spline

$$v(x,y) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} x^{i} y^{j}$$
using 16 neighbors

Example: Resizing

scaling means changing image size in terms of number of pixels (Do not confuse this with pixel size, which depends only on the used display or printer.)

- shrinking: sub- or downsampling (pixel deletion)
- zooming: upsampling (pixel replication)

original to be upsampled:

Nearest-neighbor interpolation

Bilinear interpolation

Bicubic interpolation

Image Alignment

Image Registration

need to find parameters of geometric transformation (in general, homography):

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Fitting

2 equations per correspondence (x, y):

$$x' = \frac{ax + by + c}{gx + hy + i}$$

$$y' = \frac{dx + ey + f}{gx + hy + i}$$

in general, non-linear

→ numerical (iterative) optimization

least squares method: minimize sum of squared residuals (cost function)

$$\sum_{j=1}^{n} \left(\left(\frac{ax_j + by_j + c}{gx_j + hy_j + i} - x'_j \right)^2 + \left(\frac{dx_j + ey_j + f}{gx_j + hy_j + i} - y'_j \right)^2 \right)$$

problem: typically, there are several outliers (wrong matches)

Random Sample Consensus (RANSAC)

alignment requirement: robustness against matched outliers

RANSAC approach:

randomly choose as many samples (i.e., matches) as needed for fit fit a model to these samples (e.g., linear regression) count number of inliers approximately fitting this model

repeat and finally choose the model with most inliers

Stereo Vision

Depth is lost in imaging process.

So, how do we get it back?

Binocular Disparity

almost all animals have (at least) two eyes

stereo vision:

- (at least) two cameras in different views
- with matched correspondences for the points for which the depth should be estimated (all pixels for a full depth map)

Two images captured by a purely horizontal translating camera (rectified stereo pair)

lines

 $x_2 - x_1 =$ the *disparity* of pixel (x_1, y_1)

Triangulation

(with respect to one camera origin in image plane \rightarrow flip sign of x')

disparity:

$$d = x - x' = \frac{bf}{Z}$$

Epipolar Geometry

Find Best Match on Epipolar Line

for each pixel ...

Image Rectification

epipolar lines become horizontal

homographies:

→ simplifies triangulation process

Basic Stereo Matching Pipeline

- 1. image rectification
- 2. for each pixel in image 1 find correspondence in image 2
- 3. calculate depth from disparity
- 4. create depth map

Issue: Noisy Images

might not intersect in one 3D point

→ optimization problem

Prerequisite for Triangulation

$$Z = \frac{bf}{d}$$

focal length (f), camera positions (for b), and camera coordinate systems (for d) need to be known

→ camera calibration

Geometric Camera Calibration

Pinhole Camera Model

scaled object projection object distance in image plane focal length

focal length:

Can think of as "zoom"

4mm

50mm

200mm

800mm

Also related to *field of view*

3D world coordinates (x, y, z) to 2D image coordinates (u, v):

$$\binom{u}{v} = -\frac{f}{z} \binom{x}{y}$$

Rearranged Pinhole Camera Setup

in homogeneous coordinates:

$$\begin{pmatrix} wu \\ wv \\ w \end{pmatrix} = \boldsymbol{C} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

with 3×4 projection matrix \boldsymbol{C} (camera matrix)

$$\mathbf{C} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

in general 11 degrees of freedom

Generalized Camera Intrinsics

more potential generalizations:

- pixels may not be square (aspect ratio α)
- sensor may be skewed (γ)

$$\mathbf{C} = \begin{bmatrix} f & \gamma & u_0 & 0 \\ 0 & \alpha f & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Decomposition of Camera Matrix

$$C = K[R|t]$$

$$\mathbf{C} = \begin{bmatrix} f & \gamma & u_0 \\ 0 & \alpha f & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_1 & r_2 & r_3 & t_1 \\ r_4 & r_5 & r_6 & t_2 \\ r_7 & r_8 & r_9 & t_3 \end{bmatrix}$$

intrinsic parameters

(camera-to-image transformation)

5 parameters

extrinsic parameters (world-to-camera transformation)

camera pose:

3D translation (origin of world in camera coordinates)

3 parameters

3D rotation (camera orientation)

3 parameters (rotation angles)

Estimation of Camera Parameters

typically via images of known calibration target (e.g., checkerboard)

one alternative: use of vanishing points

Pose Estimation = Inverse Triangulation

Structure from Motion

uncalibrated stereo: simultaneous calculation of both 3D locations and camera poses (typically using many images)

Alternatives for Depth Estimation

Not All Animals See Stereo

stereopsis: depth perception through binocular disparity

stereoblind: need to use motion parallax for depth perception (wide field of view to spot predators)

→ move the camera, find matching correspondences

Active Depth Sensors

structured light

time-of-light

e.g., Kinect RGBD cameras

Shape from X

- shape from shading and photometric stereo
- shape from texture
- shape from focus

humans:

using also perspective effects and familiar objects in scene

