(1)
$$a = 2 \text{ 时}, f(x) = \frac{x^2}{2^x}$$

$$f'(x) = \frac{2x \cdot 2^x - 2^x \cdot \ln 2 \cdot x^2}{2^{2x}}$$

$$= \frac{2 - x \ln 2}{2^x}$$
则 $f'(x) = \frac{2x \cdot 2^x}{2^x}$ 則:
$$x < \frac{2}{ln^2} \text{ 时}, f'(x) > 0$$

$$x > \frac{2}{ln^2} \text{ 时}, f'(x) < 0$$

$$x = \frac{2}{ln^2} \text{ 时}, f'(x) = 0$$
故, $x \in (0, \frac{2}{ln^2}] \text{ 时}, f(x)$ 单调递增
$$x \in [\frac{2}{ln^2}, +\infty) \text{ 时}, f(x)$$
 单调递减

(2)
$$f'(x) = ax^{a-1}a^{-x} + x^{a}(-\ln a)a^{-x}$$
$$= x^{a-1}a^{-x}(a - x \ln a)$$
类似 (1), 我们有:
$$x \in (0, \frac{a}{\ln a}] \text{ 时, } f(x) \text{ 单调递增}$$
$$x \in \left[\frac{a}{\ln a}, +\infty\right) \text{ 时, } f(x) \text{ 单调递减}$$
考察函数得到: $f(a) = 1$ 若 $f(X)$ 与 $g = 1$ 有且仅有两个交点,则 $g = a$ 必然不是极值点 即 $g = a$ 必然不是极值点 $g = a$ 以 $g =$