Ejercicio 5 (PotenciaSum) ★

Suponga que se tiene un método potencia que, dada un matriz cuadrada A de orden 4×4 y un número n, computa la matriz A^n . Dada una matriz cuadrada A de orden 4×4 y un número natural n que es potencia de

2 (i.e., $n=2^k$ para algun $k\geq 1$), desarrollar, utilizando la técnica de dividir y conquistar y el método potencia, un algoritmo que permita calcular

 $A^1 + A^2 + A^3 + \ldots + A^n$.

Procure que el algoritmo propuesto aplique el método potencia, sume y haga productos de matrices una cantidad estrictamente menor que O(n) veces.

estrictamente menor	que $O(n)$ veces.					
k=1-	11+A= A(I+A)					
	$A^1 + A^2 + A^3 + A^4 +$	+ A" - Ca	elactor esto e	n trempo <	и	
	AlI+A+A2+A3+	4 N.)		1		
	VII+ 4(I+W + N+	+114-2)				
	NI + VII+V II	+A+ +A -3) -1	que semos ((n)		
			0			
Ques chirches o	mi publimon en	mbinstance	u & Chic	as y resche	cılar	
-> pulluna	$\int_{0}^{\infty} A^{2} = A^{2} + A^{2}$	+A +A'+ +A" = (A'	+ 4+ + 4 + 1	+ 13 + 1/2 + +)=		
V .	Cr 1	(1)	1, 44, 44, 14,) t	A'+A'(A'+A'+	14++14n-1>	
			-> 2(12)	+14+1"-2)		
	N=4 _ > A	1+A2+A3+A'->.	2 pass			
	n=2 -> A	1 LAZ	'			
	u=1 A1	- car las	se			
-> 5 qui	t log - 2do cas	s TM con b = b	- 9=7 AF 2 2	ι		
·						
Caso	n=4 - s mitodo de	la potencia à vece	~ ~ A1+ A2	+ 13 + 14		
	n:0(e) -> voja dindin	1				
	lase N=1 -> A					
Comb	me - 0(1) 0 (5g u	.7 /	, (2 \ L		
	$A' + A^2 + A^3 + A' = A'$	(A'+A+A')+A'-	A'IN'+ A	'(A') + A		
	$N_1 + N_2 = $	A + AA				
	1 +1 -	V + V				

