472 Recitation

Week 4

Problem set 1 due on this Friday at 5:00 PM

Weighted A* Search

A* search	g(n) + h(n)	(W=1)	
Uniform-cost search	g(n)	(W=0)	
Best-cost search	h(n)	$(W = \infty)$	Greedy Search
Weighted A* search	$g(n) + W \times h(n)$	$(1 \le W < \infty)$	

Memory Bounded Search

- Beam search keeps the k nodes with the best f scores.
 - Less memory and faster execution.
 - Incomplete and suboptimal.
- Iterative-deepening A* search (IDA*)
 - The cutoff at each iteration is the f-cost.

Recursive Best First Search (RBFS)

- Best-first search at the currently visited node v, if $f(v) \leq f_{limit}(v)$
- Otherwise, back to the alterative path and update f for nodes on current path

Both IDA* and RBFS suffering from using too little memory and may explore the same state multiple times.

Criteria	Performance
Completeness	Complete with positive cost (I guess so)
Optimality	Yes, if the heuristic function is admissible
Time Complexity	Depending on $h(n)$ and how often the best path changes
Space Complexity	O(bd)

Heuristic Functions

- If h_2 dominates h_1 ($h_2 \ge h_1$ for every node), A* using h_2 will not expand more nodes than using h_2 .
- An admissible heuristic can be derived from optimal solution cost of a relaxed problem (has fewer restrictions).
- Multiple Heuristics

$$h(n) = \max\{h_1(n), h_2(n), \dots, h_k(n)\}$$

Local Search- Hill Climbing

```
function HILL-CLIMBING(problem) returns a state that is a local maximum current \leftarrow problem.INITIAL while true do
neighbor \leftarrow \text{a highest-valued successor state of } current
if \ VALUE(neighbor) \leq VALUE(current) \ then \ return \ current
current \leftarrow neighbor
```

Hill climbing can get stuck on the local optimal state.

- Stochastic hill climbing
- First-choice hill climbing
- Random restart hill climbing

Local Search-Simulated Annealing

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state  current \leftarrow problem. \text{INITIAL}  for t=1 to \infty do  temperature \longrightarrow T \leftarrow schedule(t)  Minimization  if \ T=0 \ then \ return \ current \ \text{// solution}   next \leftarrow \text{a randomly selected successor of } current  badness \longrightarrow \Delta E \leftarrow \text{Value}(current) - \text{Value}(next)   if \ \Delta E > 0 \ then \ current \leftarrow next   else \ current \leftarrow next \ only \ with \ probability \ e^{-\Delta E/T} \ e^{\Delta E/T} \ \text{// } \Delta E < 0
```

- $e^{\Delta E/T} \in (0 \ 1]$
- T is decreasing
- $e^{\Delta E/T}$ decrease, possibility to switch to new state decrease

Local Beam Search

- Main idea: keep track of k states rather than 1
 - 1. Start with k randomly generated states.
 - Generate all their successors.
 - 3. Stop if any successor is a goal.
 - 4. Otherwise, keep the *k* best successors and go back to step 2.
 - > stochastic beam search which chooses successors with probabilities proportional to their values.

Genetic Algorithms

- 1. Start with a population of k randomly generated states (individuals).
- 2. Select most fit individuals to become parents of the next generation
- 3. Combine every ρ parents to form an offspring (typically $\rho = 2$).
- Go back to step 2 and repeat until sufficiently fit states are discovered (in which case the best one is chosen as a solution).

Local Search in Continuous Space

Gradient Descent

- 1. Start at an initial state x=x
- 2. Calculate $\nabla f(x)$
- 3. Update: $x \leftarrow x \alpha \nabla f(x)$ (Gradient ascent: $x \leftarrow x + \alpha \nabla f(x)$)
- 4. Go back to step 2, until reach the optimal point

Newton-Raphson Method

$$\mathbf{x} \leftarrow \mathbf{x} - H_f^{-1}(\mathbf{x})(\nabla f(\mathbf{x}))^T$$

$$\uparrow$$
Hessian of f : matrix $\left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)$

Nondeterministic Actions

- •The agent may not know the current state in a partially observable environment.
- •The agent may not know the next state after taking an action in a nondeterministic environment.

Solution: Conditional Plan (depending on what percepts the agent receives while executing the plan)