Softwaretechnik / Software-Engineering

Lecture 9: Live Sequence Charts

2017-06-19

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Requirements Engineering: Content

Language of LSC Body: Example

The TBA $\mathcal{B}(\mathscr{L})$ of LSC \mathscr{L} over \mathcal{C} and \mathcal{E} is $(\mathcal{C}_{\mathcal{B}}, Q, q_{ini}, \rightarrow, Q_F)$ with

- $\mathcal{C}_{\mathcal{B}} = \mathcal{C} \stackrel{.}{\cup} \mathcal{E}_{!?}$, where $\mathcal{E}_{!?} = \{E!, E? \mid E \in \mathcal{E}\}$,
- Q is the set of cuts of \mathcal{L} , q_{ini} is the instance heads cut,
- \rightarrow consists of loops, progress transitions (from $\leadsto_{\mathcal{F}}$), and legal exits (cold cond./local inv.),
- $Q_F = \{C \in Q \mid \Theta(C) = \operatorname{cold} \vee C = \mathcal{L}\}$ is the set of cold cuts and the maximal cut.

Content

- Formal Methods in Requirements Engineering
- → Software & Software Specification, formally
- Requirements Engineering, formally
- **← Examples**:
 - Decision Tables
 - → Use Cases
 - Live Sequence Charts
- LSC Semantics:
- → Full LSC syntax
- Activation, Pre-Chart, Chart Mode
- Automaton Construction
- Loop / Progress / Exit Conditions
- LSCs vs. Software
 - Excursion: Symbolic Büchi Automata

Doguiromonts Engineering Wran-I In

- Methodology
 - Requirements Engineering with scenarios
 - Strengthening scenarions into requirements

-9 - 2017-06-19 - Scont

Formal Methods in Requirements Engineering

- We would like to precisely and objectively specify the allowed softwares that make the customer happy.
- In other words, we want to formally define a satisfies relation between softwares and software specifications.

That is, given a software S and a software specification \mathscr{S} , we want to define when (and only when) software S satisfies software specification \mathscr{S} , denoted by

$$S \models \mathscr{S}$$
.

- Once again:
 - $S \models \mathscr{S}$: specification is **satisfied**, S is one "allowed" design, should be accepted.
 - $S \not\models \mathscr{S}$: specification is **not satisfied**, S may not satisfy customer's needs.

Software and Software Specification, formally

Definition. Software is a finite description S of a (possibly infinite) set [S] of (finite or infinite) computation paths of the form

$$\sigma_0 \xrightarrow{\alpha_1} \sigma_1 \xrightarrow{\alpha_2} \sigma_2 \cdots$$

where

- $\sigma_i \in \Sigma$, $i \in \mathbb{N}_0$, is called state (or configuration), and
- $\alpha_i \in A$, $i \in \mathbb{N}_0$, is called action (or event).

The (possibly partial) function $[\![\cdot]\!]:S\mapsto [\![S]\!]$ is called interpretation of S.

Definition. A software specification is a finite description $\mathscr S$ of a (possibly infinite) set $[\![\mathscr S]\!]$ of softwares, i.e.

$$[\![\mathscr{S}]\!] = \{ (S_1, [\![\cdot]\!]_1), (S_2, [\![\cdot]\!]_2), \dots \}.$$

The (possibly partial) function $[\![\cdot]\!]: \mathscr{S} \mapsto [\![\mathscr{S}]\!]$ is called interpretation of \mathscr{S} .

Software Satisfies Software Specification

Definition. Software $(S, \llbracket \cdot \rrbracket)$ satisfies software specification \mathscr{S} , denoted by $S \models \mathscr{S}$, if and only if

$$(S, \llbracket \cdot \rrbracket) \in \llbracket \mathscr{S} \rrbracket.$$

Customer Developer announcement (Lastenheft)

Customer Developer

offer
(Pflichtenheft)

Customer Developer software contract (incl. Pflichtenheft)

Developer Customer software delivery

Needs!

Software Specification

T: room ventilation		r_1	r_2	r_3
b	button pressed?	×	×	_
off	ventilation off?	×	_	*
on	ventilation on?	_	×	*
go	start ventilation	×	_	_
stop	stop ventilation	_	×	_

Define: $(S, \llbracket \cdot \rrbracket) \in \llbracket \mathscr{S} \rrbracket$ if and only if for all

$$\sigma_0 \xrightarrow{\alpha_1} \sigma_1 \xrightarrow{\alpha_2} \sigma_2 \dots \in \llbracket S \rrbracket$$

and for all $i \in \mathbb{N}_0$,

$$\exists r \in T \bullet \sigma_i \models \mathcal{F}(r).$$

Software

- ullet Assume we have a program S for the room ventilation controller.
- Assume we can **observe** at well-defined points in time the conditions b, off, on, go, stop when the software runs.
- Then the behaviour $[\![S]\!]$ of S can be viewed as computation paths of the form

$$\sigma_0 \xrightarrow{\tau} \sigma_1 \xrightarrow{\tau} \sigma_2 \cdots$$

where each σ_i is a valuation of b, off, on, go, stop, i.e. $\sigma_i:\{b,off,on,go,stop\}\to\mathbb{B}$.

• Assume there is $\sigma_0 \xrightarrow{\tau} \sigma_1 \cdots \in [S]$ with

$$\sigma_1 = \{ \underbrace{b \mapsto 0} \text{ off } \mapsto 1, \text{ on } \mapsto 0, \\ \underbrace{\text{go } \mapsto 1}, \text{ stop } \mapsto 0 \}.$$

Software Specification vs. Software

Software Satisfies Software Specification: Another Example

Software Specification

 \mathscr{S} :

- Example positive scenarios
- Example negative scenarios
- Use Cases with pre-condition

Define: $(S, \llbracket \cdot \rrbracket) \in \llbracket \mathscr{S} \rrbracket$ if and only if

- for each positive scenario, there is a corresponding $\sigma_0 \xrightarrow{\alpha_1} \sigma_1 \xrightarrow{\alpha_2} \sigma_2 \cdots \in [\![S]\!]$,
- for each **negative** scenario, there **is no** corresponding $\sigma_0 \xrightarrow{\alpha_1} \sigma_1 \xrightarrow{\alpha_2} \sigma_2 \cdots \in [\![S]\!]$,
- for each use case with pre-condition, if some σ_i satisfies the pre-condition, then

$$\sigma_i \xrightarrow{\alpha_{i+1}} \sigma_{i+1} \xrightarrow{\alpha_{i+2}} \cdots$$

corresponds to the use case.

Software

- Assume we can **observe** at well-defined points in time the observables relevant for the use cases when the software *S* runs.
- Then the behaviour [S] of S can be viewed as computation paths where each state σ_i is a valuation of the use case's observables.
- And then we can relate S to \mathcal{S} .

Software Satisfies Software Specification: Another Example

Software Specification

\mathscr{S} :

Define: $(S, \llbracket \cdot \rrbracket) \in \llbracket \mathscr{S} \rrbracket$ if and only if

• tja... (in a minute)

Software

- Assume we can observe at well-defined points in time the observables relevant for the LSC (conditions and messages) when the software S runs.
- Then the behaviour [S] of S can be viewed as computation paths over the LSC's observables.
- And then we can relate S to \mathscr{S} .

Content

- Formal Methods in Requirements Engineering
- → Software & Software Specification, formally
- Requirements Engineering, formally
- ← Examples:
 - Decision Tables
 - → Use Cases
 - Live Sequence Charts
- LSC Semantics:
- → Full LSC syntax
- Activation, Pre-Chart, Chart Mode
- Automaton Construction
- Loop / Progress / Exit Conditions
- LSCs vs. Software
- Excursion: Symbolic Büchi Automata
- Methodology
 - Requirements Engineering with scenarios
 - Strengthening scenarions into requirements

- 9 - 2017-06-19 - Scontent

LSC Semantics

Full LSC Syntax

A full LSC $\mathcal{L} = (PC, MC, ac_0, am, \Theta_{\mathcal{L}})$ actually consist of

- pre-chart $PC = ((\mathcal{L}_P, \preceq_P, \sim_P), \mathcal{I}_P, \mathsf{Msg}_P, \mathsf{Cond}_P, \mathsf{LocInv}_P, \Theta_P)'$ (possibly empty),
- main-chart $MC = ((\mathcal{L}_M, \preceq_M, \sim_M), \mathcal{I}_M, \mathsf{Msg}_M, \mathsf{Cond}_M, \mathsf{LocInv}_M, \Theta_M)$ (non-empty),
- activation condition $ac_0 \in \Phi(\mathcal{C})$,
- strictness flag strict (if false, \mathcal{L} is permissive)
- activation mode am ∈ {initial, invariant},
- chart mode existential ($\Theta_{\mathscr{L}} = \text{cold}$) or universal ($\Theta_{\mathscr{L}} = \text{hot}$).

From Concrete to Abstract Syntax

- locations \mathcal{L} ,
- $\preceq \subseteq \mathcal{L} \times \mathcal{L}$, $\sim \subseteq \mathcal{L} \times \mathcal{L}$
- $\mathcal{I} = \{I_1, \dots, I_n\},\$
- Msg $\subset \mathcal{L} \times \mathcal{E} \times \mathcal{L}$,
- Cond $\subseteq (2^{\mathcal{L}} \setminus \emptyset) \times \Phi(\mathcal{C})$
- LocInv $\subseteq \mathcal{L} \times \{\circ, \bullet\} \times \Phi(\mathcal{C}) \times \mathcal{L} \times \{\circ, \bullet\},$
- $\Theta : \mathcal{L} \cup \mathsf{Msg} \cup \mathsf{Cond} \cup \mathsf{LocInv} \rightarrow \{\mathsf{hot}, \mathsf{cold}\}.$

- $\mathcal{L} = \{l_{1,0}, l_{1,1}, l_{1,2}, l_{1,3}, l_{1,2}, l_{1,4}, l_{2,0}, l_{2,1}, l_{2,2}, l_{2,3}, l_{3,0}, l_{3,1}, l_{3,2}, l_{3,3}\}$
- $l_{1,0} \prec l_{1,1} \prec l_{1,2} \prec l_{1,3}$, $l_{1,2} \prec l_{1,4}$, $l_{2,0} \prec l_{2,1} \prec l_{2,2} \prec l_{2,3}$, $l_{3,0} \prec l_{3,1} \prec l_{3,2} \prec l_{3,3}$, $l_{1,1} \prec l_{2,1}$, $l_{2,2} \prec l_{1,2}$, $l_{2,3} \prec l_{1,3}$, $l_{3,2} \prec l_{1,4}$, $l_{2,1} \sim l_{3,1}$, $l_{2,2} \sim l_{3,2}$,
- $Msg = \{(l_{1,1}, A, l_{2,1}), (l_{2,2}, B, l_{1,2}), (l_{2,2}, C, l_{3,2}), (l_{2,3}, D, l_{1,3}), (l_{3,3}, E, l_{1,4})\}$
- Cond = $\{(\{l_{2,1}, l_{3,1}\}, c_4), (\{l_{2,2}\}, c_2 \land c_3)\},$
- $\bullet \ \mathsf{LocInv} = \{(l_{1,1}, \circ, \underbrace{c_1}, l_{1,2}, \bullet)\}$

32/46

LSC Semantics

- Here, W is a set of words (for the moment, think of computation paths, like $[\![S]\!]$).
- $w \in W$ is a word (for the moment, think of a computation path, like $\sigma_0 \xrightarrow{\alpha_1} \sigma_1 \xrightarrow{\alpha_2} \sigma_2 \cdots \in [\![S]\!]$).

LSC Semantics

- Here W is a set of words (for the moment, think of computation paths, like [S]).
- $w \in W$ is a word (for the moment, think of a computation path, like $\sigma_0 \xrightarrow{\alpha_1} \sigma_1 \xrightarrow{\alpha_2} \sigma_2 \cdots \in \llbracket S
 rbracket$).

Example: Vending Machine

Positive scenario: Buy a Softdrink

- (i) Insert one 1 euro coin.
- (ii) Press the 'softdrink' button.
- (iii) Get a softdrink.

Positive scenario: Get Change

- Insert one 50 cent and one 1 euro coin.
- (ii) Press the 'softdrink' button.
- (iii) Get a softdrink.
- (iv) Get 50 cent change.

Negative scenario: A Drink for Free

- (i) Insert one 1 euro coin.
- (ii) Press the 'softdrink' button.
- (iii) Do not insert any more money.
- (iv) Get two softdrinks.

	am = initial	$\underline{am = invariant}$
$\Theta_{\mathscr{L}} = \widehat{cold}$	$\exists w \in W \exists m \in \mathbb{N}_{0} \bullet$ $\land w^{0} \models ac \land \neg \psi_{exit}(C_{0}^{P}) \land \psi_{prog}(\emptyset, C_{0}^{P})$ $\land w/1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\land w^{m+1} \models \neg \psi_{exit}(C_{0}^{M})$ $\land w^{m+1} \models \psi_{prog}(\emptyset, C_{0}^{M})$ $\land w/m + 2 \in Lang(\mathcal{B}(MC))$	$\exists w \in W \exists k < m \in \mathbb{N}_0 \bullet$ $\land w^k \models ac \land \neg \psi_{exit}(C_0^P) \land \psi_{prog}(\emptyset, C_0^P)$ $\land w/k + 1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\land w^{m+1} \models \neg \psi_{exit}(C_0^M)$ $\land w^{m+1} \models \psi_{prog}(\emptyset, C_0^M)$ $\land w/m + 2 \in Lang(\mathcal{B}(MC))$
$\Theta_{\mathscr{L}}=hot$	$\forall w \in W \forall m \in \mathbb{N}_0 \bullet$ $\wedge w^0 \models ac \wedge \neg \psi_{exit}(C_0^P) \wedge \psi_{prog}(\emptyset, C_0^P)$ $\wedge w/1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\wedge w^{m+1} \models \neg \psi_{exit}(C_0^M)$ $\implies w^{m+1} \models \psi_{prog}(\emptyset, C_0^M)$ $\wedge w/m + 2 \in Lang(\mathcal{B}(MC))$	$\forall w \in W \forall k \leq m \in \mathbb{N}_0 \bullet$ $\wedge w^k \models ac \wedge \neg \psi_{exit}(C_0^P) \wedge \psi_{prog}(\emptyset, C_0^P)$ $\wedge w/k + 1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\wedge w^{m+1} \models \neg \psi_{exit}(C_0^M)$ $\implies w^{m+1} \models \psi_{prog}(\emptyset, C_0^M)$ $\wedge w/m + 2 \in Lang(\mathcal{B}(MC))$

	am = initial	am = invariant
$\Theta_{\mathscr{L}}=\operatorname{cold}$	$\exists w \in W \exists m \in \mathbb{N}_0 \bullet$ $\land w^0 \models ac \land \neg \psi_{exit}(C_0^P) \land \psi_{prog}(\emptyset, C_0^P)$ $\land w/1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\land w^{m+1} \models \neg \psi_{exit}(C_0^M)$ $\land w^{m+1} \models \psi_{prog}(\emptyset, C_0^M)$ $\land w/m + 2 \in Lang(\mathcal{B}(MC))$	$\exists w \in W \exists k < m \in \mathbb{N}_0 \bullet$ $\land w^k \models ac \land \neg \psi_{exit}(C_0^P) \land \psi_{prog}(\emptyset, C_0^P)$ $\land w/k + 1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\land w^{m+1} \models \neg \psi_{exit}(C_0^M)$ $\land w^{m+1} \models \psi_{prog}(\emptyset, C_0^M)$ $\land w/m + 2 \in Lang(\mathcal{B}(MC))$
$\Theta_{\mathscr{L}}=hot$	$\forall w \in W \forall m \in \mathbb{N}_0 \bullet$ $\wedge w^0 \models ac \wedge \neg \psi_{exit}(C_0^P) \wedge \psi_{prog}(\emptyset, C_0^P)$ $\wedge w/1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\wedge w^{m+1} \models \neg \psi_{exit}(C_0^M)$ $\implies w^{m+1} \models \psi_{prog}(\emptyset, C_0^M)$ $\wedge w/m + 2 \in Lang(\mathcal{B}(MC))$	$\forall w \in W \forall k \leq m \in \mathbb{N}_0 \bullet$ $\wedge w^k \models ac \wedge \neg \psi_{exit}(C_0^P) \wedge \psi_{prog}(\emptyset, C_0^P)$ $\wedge w/k + 1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\wedge w^{m+1} \models \neg \psi_{exit}(C_0^M)$ $\implies w^{m+1} \models \psi_{prog}(\emptyset, C_0^M)$ $\wedge w/m + 2 \in Lang(\mathcal{B}(MC))$

LSC Semantics

	am = initial	am = invariant
$\Theta_{\mathscr{L}}=cold$	$\exists w \in W \exists m \in \mathbb{N}_{0} \bullet$ $\land w^{0} \models ac \land \neg \psi_{exit}(C_{0}^{P}) \land \psi_{prog}(\emptyset, C_{0}^{P})$ $\land w/1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\land w^{m+1} \models \neg \psi_{exit}(C_{0}^{M})$ $\land w^{m+1} \models \psi_{prog}(\emptyset, C_{0}^{M})$ $\land w/m + 2 \in Lang(\mathcal{B}(MC))$	$\exists w \in W \exists k < m \in \mathbb{N}_0 \bullet$ $\land w^k \models ac \land \neg \psi_{exit}(C_0^P) \land \psi_{prog}(\emptyset, C_0^P)$ $\land w/k + 1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\land w^{m+1} \models \neg \psi_{exit}(C_0^M)$ $\land w^{m+1} \models \psi_{prog}(\emptyset, C_0^M)$ $\land w/m + 2 \in Lang(\mathcal{B}(MC))$
$\Theta_{\mathscr{L}}=\overline{hot}$	$\forall w \in W \forall m \in \mathbb{N}_0 \bullet$ $\wedge w^0 \models ac \wedge \neg \psi_{exit}(C_0^P) \wedge \psi_{prog}(\emptyset, C_0^P)$ $\wedge w/1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\wedge w^{m+1} \models \neg \psi_{exit}(C_0^M)$ $\implies w^{m+1} \models \psi_{prog}(\emptyset, C_0^M)$ $\wedge w/m + 2 \in Lang(\mathcal{B}(MC))$	$ \frac{\forall w \in W \ \forall k \leq m \in \mathbb{N}_0 \bullet}{\wedge w^k \models ac \land \neg \psi_{exit}(C_0^P) \land \psi_{prog}(\emptyset, C_0^P)} \\ \wedge w/k + 1, \dots, w/m \in \underline{Lang}(\mathcal{B}(PC)) \\ \wedge w^{m+1} \models \neg \psi_{exit}(C_0^M) $ $ \Longrightarrow w^{m+1} \models \psi_{prog}(\emptyset, C_0^M) \\ \wedge w/m + 2 \in \underline{Lang}(\mathcal{B}(MC)) $

$\Theta_{\mathscr{L}}$	am = initial	$\underline{am} = \text{invariant}$
ploo	$\exists w \in W \exists m \in \mathbb{N}_0 \bullet w^0 \models ac$ $\land w^0 \models \psi_{hot}^{Cond}(\emptyset, C_0^P)$ $\land w/1, \dots, w/m \in Lang(\mathcal{B}(P^{\mathcal{L}}))$ $\land w^{m+1} \models \psi_{hot}^{Cond}(\emptyset, C_0^M)$ $\land w/m + 1 \in Lang(\mathcal{B}(MC))$	$\exists w \in W \exists k < m \in \mathbb{N}_0 \bullet w^k \models ac$ $\land w^k \models \psi_{hot}^{Cond}(\emptyset, C_0^P)$ $\land w/k + 1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\land w^{m+1} \models \psi_{hot}^{Cond}(\emptyset, C_0^M)$ $\land w/m + 1 \in Lang(\mathcal{B}(MC))$
hot	$\forall w \in W \bullet w^{0} \models ac$ $\wedge w^{0} \models \varphi_{hot}^{cond}(\emptyset, C_{0}^{P})$ $\wedge w/1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\wedge w^{m+1} \models \psi_{cold}^{cond}(\emptyset, C_{0}^{M})$ $\implies w^{m+1} \models \psi_{cold}^{cond}(\emptyset, C_{0}^{M})$ $\wedge w/m + 1 \in Lang(\mathcal{B}(MC))$	$\forall w \in W \forall k \leq m \in \mathbb{N}_{0} \bullet w^{k} \models ac$ $\wedge w^{k} \models \psi_{hot}^{Cond}(\emptyset, C_{0}^{P})$ $\wedge w/k + 1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\wedge w^{m+1} \models \psi_{cold}^{Cond}(\emptyset, C_{0}^{M})$ $\implies w^{m+1} \models \psi_{cold}^{Cond}(\emptyset, C_{0}^{M})$ $\wedge w/m + 1 \in Lang(\mathcal{B}(MC))$

LSC Semantics

$\Theta_{\mathscr{L}}$	am = initial	am = invariant
ploo	$\exists w \in W \exists m \in \mathbb{N}_0 \bullet w^0 \models ac$ $\land w^0 \models \psi_{hot}^{Cond}(\emptyset, C_0^P)$ $\land w/1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\land w^{m+1} \models \psi_{hot}^{Cond}(\mathcal{B}, C_0^M)$ $\land w/m + 1 \in Lang(\mathcal{B}(MC))$	$\exists w \in W \ \exists k < m \in \mathbb{N}_0 \bullet w^k \models ac$ $\land w^k \models \psi_{hot}^{Cond}(\emptyset, C_0^P)$ $\land w/k + 1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\land w^{m+1} \models \psi_{hot}^{Cond}(\emptyset, C_0^M)$ $\land w/m + 1 \in Lang(\mathcal{B}(MC))$
hot	$\forall w \in W \bullet w^{0} \models ac$ $w^{0} \models \psi_{hot}^{Cond}(\emptyset, C_{0}^{P})$ $\wedge w/1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\wedge w^{m+1} \models \psi_{cold}^{Cond}(\emptyset, C_{0}^{M})$ $\implies w^{m+1} \models \psi_{cold}^{Cond}(\emptyset, C_{0}^{M})$ $\wedge w/m + 1 \in Lang(\mathcal{B}(MC))$	$\forall w \in W \forall k \leq m \in \mathbb{N}_0 \bullet w^k \models ac$ $\wedge w^k \models \psi_{hot}^{Cond}(\emptyset, C_0^P)$ $\wedge w/k + 1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\wedge w^{m+1} \models \psi_{cold}^{Cond}(\emptyset, C_0^M)$ $\implies w^{m+1} \models \psi_{cold}^{Cond}(\emptyset, C_0^M)$ $\wedge w/m + 1 \in Lang(\mathcal{B}(MC))$

$\Theta_{\mathscr{L}}$	am = initial	$\underline{am} = \text{invariant}$
ploo	$\exists w \in W \exists m \in \mathbb{N}_0 \bullet w^0 \models ac$ $\land w^0 \models \psi_{hot}^{Cond}(\emptyset, C_0^P)$ $\land w/1, \dots, w/m \in Lan_{\mathcal{B}}(\mathcal{B}(PC))$ $\land w^{m+1} \models \psi_{hot}^{Cond}(\emptyset, C_0^M)$ $\land w/m + 1 \in Lang(\mathcal{B}(MC))$	$\exists w \in W \exists k < m \in \mathbb{N}_0 \bullet w^k \models ac$ $\land w^k \models \psi_{hot}^{Cond}(\emptyset, C_0^P)$ $\land w/k + 1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\land w^{m+1} \models \psi_{ho}^{Cond}(\emptyset, C_0^M)$ $\land w/m + 1 \in Lang(\mathcal{B}(MC))$
hot	$\forall w \in W w^{0} \models ac$ $\wedge w^{0} \models \psi_{hot}^{Cond}(\emptyset, C_{0}^{P})$ $\wedge w/1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\wedge w^{m+1} \models \psi_{cold}^{Cond}(\emptyset, C_{0}^{M})$ $\implies w^{m+1} \models \psi_{cold}^{Cond}(\emptyset, C_{0}^{M})$ $\wedge w/m + 1 \in Lang(\mathcal{B}(MC))$	$ \forall w \in W \ \forall k \leq m \in \mathbb{N}_0 \bullet w^k \models ac $ $ \land w^k \models \psi_{hot}^{Cond}(\emptyset, C_0^P) $ $ \land w/k + 1, \dots, w/m \in Lang(\mathcal{B}(PC)) $ $ \land w^{m+1} \models \psi_{cold}^{Cond}(\emptyset, C_0^M) $ $ \Longrightarrow w^{m+1} \models \psi_{cold}^{Cond}(\emptyset, C_0^M) $ $ \land w/m + 1 \in Lang(\mathcal{B}(MC)) $

Example: Vending Machine

- Positive scenario: Buy a Softdrink
 - (i) Insert one 1 euro coin.
 - (ii) Press the 'softdrink' button.
 - (iii) Get a softdrink.
- Positive scenario: Get Change
 - Insert one 50 cent and one 1 euro coin.
 - (ii) Press the 'softdrink' button.
 - (iii) Get a softdrink.
 - (iv) Get 50 cent change.
- Negative scenario: A Drink for Free
 - (i) Insert one 1 euro coin.
 - (ii) Press the 'softdrink' button.
 - (iii) Do not insert any more money.
 - (iv) Get two softdrinks.

LSC Semantics

$\Theta_{\mathscr{L}}$	am = initial	am = invariant
cold	$\exists w \in W \exists m \in \mathbb{N}_0 \bullet w^0 \models ac$ $\land w^0 \models \psi_{hot}^{Cond}(\emptyset, C_0^P)$ $\land w/1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\land w^{m+1} \models \psi_{hot}^{Cond}(\emptyset, C_0^M)$ $\land w/m + 1 \in Lang(\mathcal{B}(MC))$	$\exists w \in W \ \exists k < m \in \mathbb{N}_0 \bullet w^k \models ac$ $\land w^k \models \psi_{hot}^{Cond}(\emptyset, C_0^P)$ $\land w/k + 1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\land w^{m+1} \models \psi_{hot}^{Cond}(\emptyset, C_0^M)$ $\land w/m + 1 \in Lang(\mathcal{B}(MC))$
hot	$\forall w \in W \bullet w^{0} \models ac$ $\wedge w^{0} \models \psi_{hot}^{Cond}(\emptyset, C_{0}^{P})$ $\wedge w/1, \dots, w/m \in Lang(\mathcal{B}(PC))$ $\wedge w^{m+1} \models \psi_{cold}^{Cond}(\emptyset, C_{0}^{M})$ $\implies w^{m+1} \models \psi_{cold}^{Cond}(\emptyset, C_{0}^{M})$ $\wedge w/m + 1 \in Lang(\mathcal{B}(MC))$	$\forall w \in W \forall k \leq m \in \mathbb{N}_0 \bullet w^k \models ac$ $\wedge w^k \models \psi_{hot}^{Cond}(\emptyset, C_0^P)$ $\wedge w/k + 1, \dots, w/m \in \underline{Lang(\mathcal{B}(PC))}$ $\wedge w^{m+1} \models \psi_{cold}^{Cond}(\emptyset, C_0^M)$ $\implies w^{m+1} \models \psi_{cold}^{Cond}(\emptyset, C_0^M)$ $\wedge w/m + 1 \in \underline{Lang(\mathcal{B}(MC))}$

LSC Semantics: TBA Construction

The Plan: A Formal Semantics for a Visual Formalism

 $((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta)$ **abstract syntax**

Language of LSC Body: Example

The TBA $\mathcal{B}(\mathscr{L})$ of LSC \mathscr{L} over \mathcal{C} and \mathcal{E} is $(\mathcal{C}_{\mathcal{B}},Q,q_{ini},\rightarrow,Q_F)$ with

- $\mathcal{C}_{\mathcal{B}} = \mathcal{C} \stackrel{.}{\cup} \mathcal{E}_{!?}$, where $\mathcal{E}_{!?} = \{E!, E? \mid E \in \mathcal{E}\}$,
- ullet Q is the set of cuts of \mathscr{L} , q_{ini} is the instance heads cut,
- ullet \to consists of loops, progress transitions (from $\leadsto_{\mathcal{F}}$), and legal exits (cold cond./local inv.),
- $Q_F = \{C \in Q \mid \Theta(C) = \text{cold} \lor C = \mathcal{L}\}$ is the set of cold cuts and the maximal cut.

- 8 - 2017-06-01 - Scutfire -

42/46

TBA Construction Principle

"Only" construct the transitions' labels:

$$\rightarrow = \{(q, \psi_{loop}(q), q) \mid q \in Q\} \cup \{(q, \psi_{prog}(q, q'), q') \mid q \leadsto_{\mathcal{F}} q'\} \cup \{(q, \psi_{exit}(q), \mathcal{L}) \mid q \in Q\}$$

Loop Condition

$$\psi_{loop}(q) = \psi^{\mathsf{Msg}}(q) \wedge \psi^{\mathsf{LocInv}}_{\mathsf{hot}}(q) \wedge \psi^{\mathsf{LocInv}}_{\mathsf{cold}}(q)$$

$$\bullet \quad \psi^{\mathsf{Msg}}(q) = \neg \bigvee_{1 \leq i \leq n} \psi^{\mathsf{Msg}}(q, q_i) \land \underbrace{\left(strict \implies \bigwedge_{\psi \in \mathcal{E}_{!?} \cap \mathsf{Msg}(\mathcal{L})} \neg \psi\right)}_{=:\psi_{\mathsf{strict}}(q)}$$

A location l is called front location of cut C if and only if $\nexists l' \in \mathcal{L} \bullet l \prec l'$.

Local invariant $(l_o, \iota_0, \phi, l_1, \iota_1)$ is **active** at cut (!) q if and only if $l_0 \leq l \prec l_1$ for some front location l of cut q or $l = l_1 \wedge \iota_1 = \bullet$.

- $\bullet \ \operatorname{\mathsf{Msg}}(\mathcal{F}) = \{E!, |\ (l, E, l') \in \operatorname{\mathsf{Msg}},\ l \in \mathcal{F}\} \cup \{E? \mid (l, E, l') \in \operatorname{\mathsf{Msg}},\ l' \in \mathcal{F}\}$
- $\mathsf{Msg}(\mathcal{F}_1, \dots, \mathcal{F}_n) = \bigcup_{1 \leq i \leq n} \mathsf{Msg}(\mathcal{F}_i)$

Progress Condition

$$\psi_{prog}^{\mathsf{hot}}(q,q_i) = \psi^{\mathsf{Msg}}(q,q_n) \wedge \psi_{\mathsf{hot}}^{\mathsf{Cond}}(q,q_n) \wedge \psi_{\mathsf{hot}}^{\mathsf{LocInv}, \bullet}(q_n)$$

$$\psi^{\mathsf{Msg}}(q,q_i) = \bigwedge_{\psi \in \mathsf{Msg}(q_i \backslash q)} \psi \land \bigwedge_{j \neq i} \bigwedge_{\psi \in (\mathsf{Msg}(q_j \backslash q) \backslash \mathsf{Msg}(q_i \backslash q))} \neg \psi$$

$$\land \left(strict \implies \bigwedge_{\psi \in (\mathcal{E}_{!?} \cap \mathsf{Msg}(\mathcal{L})) \backslash \mathsf{Msg}(\mathcal{F}_i)} \neg \psi \right)$$

$$=: \psi_{\mathsf{strict}}(q,q_i)$$

•
$$\psi_{\theta}^{\mathsf{Cond}}(q, q_i) = \bigwedge_{\gamma = (L, \phi) \in \mathsf{Cond}, \ \Theta(\gamma) = \theta, \ L \cap (q_i \setminus q) \neq \emptyset} \phi$$

$$\bullet \ \ \psi^{\mathsf{LocInv}, \bullet}_{\theta}(q, q_i) = \bigwedge_{\lambda = (l, \iota, \phi, l', \iota') \in \mathsf{LocInv}, \ \Theta(\lambda) = \theta, \ \lambda \ \bullet \text{-active at } q_i \ \phi$$

Local invariant $(l_0, \iota_0, \phi, l_1, \iota_1)$ is \bullet -active at q if and only if

- $l_0 \prec l \prec l_1$, or
- $l = l_0 \wedge \iota_0 = \bullet$, or
- $l = l_1 \wedge \iota_1 = \bullet$

for some front location l of cut (!) q.

Example

Tell Them What You've Told Them...

- Live Sequence Charts (if well-formed)
 - have an abstract syntax.
- From an abstract syntax, mechanically construct its TBA.
- ullet A universal LSC is satisfied by a software S if and only if
 - ullet all words induced by the computation paths of S
 - are accepted by the LSC's TBA.
- ullet An existential LSC is satisfied by a software S if and only if
 - ullet there is a word induced by a computation path of S
 - which is accepted by the LSC's TBA.
- Pre-charts allow us to specify
 - anti-scenarios ("this must not happen"),
 - activation interactions.

References

References

Harel, D. and Marelly, R. (2003). *Come, Let's Play: Scenario-Based Programming Using LSCs and the Play-Engine*. Springer-Verlag.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Rupp, C. and die SOPHISTen (2014). Requirements-Engineering und -Management. Hanser, 6th edition.