

Selected Tables and Formulas for 2nd Partial Exam

$$G_{1}(s) = \frac{K_{est}}{1 + \tau \cdot s} \qquad ; \qquad p = -\frac{1}{\tau} \qquad ; \qquad te_{98\%} = 4 \cdot \tau$$

$$G_{2}(s) = \frac{K_{est} \cdot \left(\sigma^{2} + \omega_{p}^{2}\right)}{\left(s + \sigma\right)^{2} + \omega_{p}^{2}} = \frac{K_{est} \cdot \omega_{n}^{2}}{s^{2} + 2 \cdot \xi \cdot \omega_{n} \cdot s + \omega_{n}^{2}} \quad ; \quad p1 = -\sigma + \omega_{p} \cdot j = -\xi \cdot \omega_{n} + \omega_{n} \cdot \sqrt{\xi^{2} - 1} \\ p2 = -\sigma - \omega_{p} \cdot j = -\xi \cdot \omega_{n} - \omega_{n} \cdot \sqrt{\xi^{2} - 1} \\ tp = \frac{\pi}{\omega_{p}} = \frac{\pi}{\omega_{n} \cdot \sqrt{1 - \xi^{2}}} \quad ; \quad te_{98\%} = \frac{4}{\sigma} = \frac{4}{\xi \cdot \omega_{n}} \quad ; \quad \delta = e^{-\sigma \cdot tp} = e^{-\frac{\pi \cdot \sigma}{\omega_{p}}} = e^{-\frac{\pi \cdot \xi}{\sqrt{1 - \xi^{2}}}}$$

Relations between the complex s-plane and the time-domain dynamic response.

s = - σ ω _p j		Settling time	Time to Peak	Overshoot
-σ	ω _p	$t_{s(98\%)} = \frac{4}{\sigma}$	$t_p = \frac{\pi}{\omega_p}$	$\delta = e^{\frac{-\sigma \cdot \pi}{\omega_p}} = e^{\frac{-\pi}{\log \phi}}$

Steady-state Errors (in magnitude)

Error Type	$r(t)=A \rightarrow e_p$	$r(t)=At \rightarrow e_V$	$r(t)=At^2/2 \rightarrow e_a$
0	$\frac{A}{1+Kp} ; Kp = \lim_{s \to 0} G_{OpenLoop}(s)$	∞	8
1	0	$\frac{A}{Kv}$; $Kv = \lim_{s \to 0} s \cdot G_{OpenLoop}(s)$	∞
2	0	0	$\frac{A}{Ka}$; $Ka = \lim_{s \to 0} s^2 \cdot G_{OpenLoop}(s)$

High-order System

A A Y	$G(s) = \frac{K_{est} \cdot \left(\sigma^2 + \omega_p^2\right)}{\left[\left(s + \sigma\right)^2 + \omega_p^2\right]} \frac{1}{\left(1 + \tau_p \cdot s\right)}$	$t_p' = \frac{\pi + \theta_p}{\omega_p}$	$\delta' = e^{-\sigma \cdot t_p'} \frac{\overline{OP}}{\overline{AP}} \times 100$
Α A Y O Y	$G(s) = \frac{K_{est} \cdot \left(\sigma^2 + \omega_p^2\right)}{\left[\left(s + \sigma\right)^2 + \omega_p^2\right]} \left(1 + \tau_z \cdot s\right)$	$t_p' = \frac{\pi - \theta_z}{\omega_p}$	$\delta' = \mathbf{e}^{-\sigma \cdot t_p'} \frac{\overline{AZ}}{\overline{OZ}} \times 100$
	$G(s) = \frac{K_{est} \cdot \left(\sigma^{2} + \omega_{p}^{2}\right)}{\left[\left(s + \sigma\right)^{2} + \omega_{p}^{2}\right]} \cdot \frac{\prod_{i} \left(1 + \tau_{zi} \cdot s\right)}{\prod_{j} \left(1 + \tau_{pj} \cdot s\right)}$	$t_p' = \frac{\pi - \sum_i \theta_{zi} + \sum_j \theta_{pj}}{\omega_p}$	$\delta' = e^{-\sigma \cdot l_p'} \prod_{i} \overline{AZ} \cdot \prod_{j} \overline{OP} \cdot \frac{1}{\prod_{j} \overline{AP}} \cdot 100$

Selected Tables and Formulas for 2nd Partial Exam

$$\underbrace{ \text{Laplace Transform Table} }_{ y(t) = \sum_{i} A_{i} \cdot e^{-\sigma_{i} \cdot t} + \sum_{i} \left[B_{i} \cdot e^{-\sigma_{i} \cdot t} \cdot \cos\left(w_{i} \cdot t\right) + C_{i} \cdot e^{-\sigma_{i} \cdot t} \cdot \sin\left(w_{i} \cdot t\right) \right] } \quad Y(s) = \sum_{i} \frac{A_{i}}{s + \sigma_{i}} + \sum_{i} \left[\frac{B_{i} \cdot \left(s + \sigma_{i}\right) + C_{i} \cdot w_{i}}{\left(s + \sigma_{i}\right)^{2} + w_{i}^{2}} \right] }{ \left(s + \sigma_{i}\right)^{2} + w_{i}^{2}} \right]$$

$$y(t) = \sum_{i} r_{i} \cdot e^{p_{i} \cdot t} + \sum_{i} 2 \cdot e^{a_{i} \cdot t} \cdot \left[\alpha_{i} \cdot \cos\left(w_{i} \cdot t\right) - \beta_{i} \cdot \sin\left(w_{i} \cdot t\right) \right] \quad \Leftrightarrow \quad \begin{cases} s = p_{i} \leftrightarrow r_{i} \\ s = a_{i} \pm w_{i} \cdot j \leftrightarrow \alpha_{i} \pm \beta_{i} \cdot j \end{cases}$$

Module (Magnitude) and Argument (Angular) Criteria

$$1 + \frac{K_{RL} \cdot \prod_{i=1}^{m} (s + z_i)}{\prod_{j=1}^{n} (s + p_j)} = 0 \rightarrow \frac{K_{RL} \cdot \prod_{i=1}^{m} (s + z_i)}{\prod_{j=1}^{n} (s + p_j)} = -1 \rightarrow -K_{RL} = \frac{\prod_{j=1}^{n} (s + p_j)}{\prod_{i=1}^{m} (s + z_i)} \rightarrow \begin{cases} K_{RL} = \frac{\prod_{j=1}^{n} |s + p_j|}{\prod_{i=1}^{m} |s + z_j|} \\ 180^{\circ} \pm q \cdot 360^{\circ} = \sum_{j=1}^{n} \tan^{-1} (s + p_j) - \sum_{i=1}^{m} \tan^{-1} (s + z_j) \end{cases}$$

PID controllers/regulators

$G_{PID}(s) = K_r \left(1 + T_d s\right) \left(1 + \frac{1}{T_i s}\right)$	$K_{r} = \frac{K_{LDR}}{K_{G} \cdot K_{H} \cdot T_{d}}$	$T_d = \frac{1}{z_d}$	$T_i = \frac{1}{z_i}$
$G_{PID}(s) = K_r' \left(1 + T_d' s + \frac{1}{T_i' s} \right)$	$K_r' = K_r \cdot \frac{T_i + T_d}{T_i}$	$T_d' = \frac{T_d \cdot T_i}{T_d + T_i}$	$T_i' = T_i + T_d$

Step-response Ziegler-Nichols Method or Open-loop Ziegler-Nichols Method

TIPO DE CONTROLADOR	Кр	Ti	Td
Р	$\frac{1}{R \cdot L}$		
PI	$\frac{0.9}{R \cdot L}$	3L	
PID	$\frac{1,2}{R \cdot L}$	2 <i>L</i>	0,5L

Critical Oscillation Ziegler-Nichols Method or Closed-loop Ziegler-Nichols Method

TIPO DE CONTROLADOR	Кр	Ti	Td
Р	0,5 <i>Kcr</i>		
PI	0,45 <i>Kcr</i>	$\frac{Tcr}{1,2}$	
PID	0,6 <i>Kcr</i>	$\frac{Tcr}{2}$	$\frac{Tcr}{8}$

NOTE