

Data Wrangling and Transformation

Riki Akbar Ibrahim Saleh Siregar

About Us

Riki Akbar

Direktorat TIK - DJP

Ibrahim Saleh Siregar

Direktorat DIP - DJP

Standar Kompetensi

Konsep

Data Wrangling

Fundamentals

Advanced

Data Wrangling

Techniques

Data Cleaning
dan
Missing Values

What is Data Wrangling

Data Wrangling - Data Munging

Data Wrangling vs ETL

Load to Target

Data Wrangling: How

SQL

PANDAS

Pandas: an Overview

Series (one-dimensional)

```
1 df['total_bedrooms']
         1283.0
         1901.0
          174.0
          337.0
          326.0
16995
          394.0
          528.0
16996
          531.0
16997
          552.0
16998
16999
          300.0
Name: total_bedrooms, Length: 17000, dtype: float64
```

Dataframe (two-dimensional)

Pandas: Access Data

By Index

Dataframe Name

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
0	-114.31	34.19	15.0	5612.0	1283.0	1015.0	472.0	1.4936	66900.0

1

1 df.iloc[0]	
longitude latitude housing_median_age total_rooms total_bedrooms population	-114.3100 34.1900 15.0000 5612.0000 1283.0000 1015.0000
households median_income median_house_value Name: 0, dtype: floa	472.0000 1.4936 66900.0000 t64

2

1 df.iloc[0,0:]	
longitude	-114.3100
latitude	34.1900
housing_median_age	15.0000
total_rooms	5612.0000
total_bedrooms	1283.0000
population	1015.0000
households	472.0000
median_income	1.4936
median_house_value	66900.0000
Name: 0, dtype: float6	54

3

1 df.iloc[0:1,0:1]

Pandas: Access Data

By Label

Dataframe Name

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
0	-114.31	34.19	15.0	5612.0	1283.0	1015.0	472.0	1.4936	66900.0

1

1 df.loc[0]	
longitude latitude	-114.3100 34.1900
housing_median_age	15.0000
total_rooms	5612.0000
total_bedrooms	1283.0000
population	1015.0000
households	472.0000
median_income	1.4936
median_house_value	66900.0000
Name: 0, dtype: float	:64

2

1 df.loc[0, 'longite	ude':]
longitude	-114.3100
latitude	34.1900
housing_median_age	15.0000
total_rooms	5612.0000
total_bedrooms	1283.0000
population	1015.0000
households	472.0000
median_income	1.4936
median_house_value	66900.0000
Name: 0, dtype: float	t64

3

1 0	f.loc[0:1,	'longitud	de':'latitude']
	longitude	latitude	
0	-114.31	34.19	11.
1	-114.47	34.40	

Pandas: Access Data

Filtering

1 df[df['latitude'] > 35]					
	longitude	latitude			
119	-115.93	35.55			
157	-116.22	36.00			
264	-116.57	35.43			
568	-117.02	36.40			
1863	-117.28	35.13			

<pre>1 df[(df['latitude'] > 35) & df['housing_median_age'].isin([18,19])]</pre>					
	longitude	latitude	housing_median_age	total_rooms	total_bed
119	-115.93	35.55	18.0	1321.0	
568	-117.02	36.40	19.0	619.0	
2638	-117.67	35.65	18.0	2737.0	
2745	-117.70	35.62	18.0	2657.0	
3054	-117.81	35.65	19.0	1124.0	

1. Discovery

Dataset

Data Profiling

2. Structuring

- Transforming the raw data to be more readily leveraged
- Operations Involved:
 - Handling Dates
 - Encode Categorical Attributes
 - One-Hot Encoding (OHE)
 - Label Encoding

2. Structuring

One-Hot Encoding

Original categorical column

Origin
USA
Japan
Europe
USA
Europe

One-Hot encoded columns

Origin_USA	Origin_Japan	Origin_Europe
1	0	0
0	1	0
0	0	1
1	0	0
0	0	1

Source: 4 Categorical Encoding Concepts to Know for Data Scientists by Cornellius Yudha Wijaya

Pros

 Suitable for non-ordinal categories, less cardinality

Cons

 For high-cardinal categories, leading to the Curse of Dimensionality

2. Structuring

Label Encoding

Source: 4 Categorical Encoding Concepts to Know for Data Scientists by Cornellius Yudha Wijaya

Pros

- Suitable for ordinal categories
- Produces only one encoded column

Cons

Not suitable for non-ordinal categories

- Process of removing inherent errors in the data that distort the analysis
- Operations Involved:
 - Handling Duplicates
 - Handling Missing values
 - Aggregation/Grouping
 - Attributes Enrichment (New Measures)
 - Attribute Standardisation (with or without regex)
 - Text

 Uppercase, Lowercase, Capitalisation, Other Patterns

Handling Missing Values

Types of Missing Data (Rubin, 1976)

- MCAR (Missing Completely at Random)
- MAR (Missing at Random)
- MNAR (Missing Not at Random)

Handling
Missing
Values MCAR VS
MAR VS
MNAR

Co	mplete data
Age	IQ score
25	133
26	121
29	91
51	116
54	97
31	98
44	118
46	93
48	141
51	104
30	105
30	110

Source: <u>Missing Completely at Random - Iris Eekhout | Missing data</u>

Handling
Missing
Values MCAR VS
MAR VS
MNAR

MCAR

Incomplete data				
Age	IQ score			
25				
26	121			
29	91			
30				
30	110			
31				
44	118			
46	93			
48				
51				
51	116			
54				

- No relationship with any values, missing or observed. Hence, completely random
- Typically indicated by small number of missing values

MAR

Incomplete data			
Age		IQ score	
25			
26			
29			
30			
30			
31			
44		118	
46		93	
48		141	
51		104	
51		116	
54		97	

 Somewhat related to another observed attribute

MNAR

Incomplete data				
Age	IQ score			
25	133			
26	121			
29				
30				
30	110			
31				
44	118			
46				
48	141			
51				
51	116			
54				

- There is a relationship within the attribute, involving both missing and observed values
- Typically indicated by much higher number of missing values (compared to MAR)

Reference: <u>How to Identify Missingness Types With Missingno</u>

Handling Missing Values – Important Notes

- We can never confirm if missing values are MNAR or MAR.
 - The only available option via statistical testing is to test whether missing values are MCAR or not MCAR
- Context and Common Sense are extremely important!
 - We need to know the context of the missing data e.g. the value range, to be able to determine the type of missing data
- Helpful guides:
 - The best strategy to handle missing values is getting new data
 - If the context (e.g. range) for categorical and continuous attributes is known, check if the attribute is somewhat related to the others
 - If no context known for a categorical attribute and there is high number of missing values in that attribute, **delete the attribute**

Strategy vs Type	MCAR	MAR	MNAR
Deletion	Yes	No	No
Imputation	Yes	Yes (Advanced e.g. MICE)	No

Get New Data if Possible

Reference: <u>Assuming a Missing Data Mechanism</u>

Handling
Missing
Values Strategies

Deletion

- Rows Deletion (Listwise Deletion)
- Column Deletion
- If too many rows/columns containing missing values, deletion leads to information loss or even worse: **not fit for analysis!**

• Imputation (Active Research Field)

- For Continuous Attribute(s)
 - Mean, Median, Mode
 - Introduces bias if too many rows are imputed
 - Mean imputation is sensitive to outliers
 - Median imputation assumes MCAR, which is not always the case
- For Categorical Attribute(s)
 - Mode
 - "Missing" category for missing observations
- MICE (Multiple Imputation by Chained Equations)
 - Fits predictive model

4. Enriching

- Sometimes, it isn't just enough! Other data may be required
- Depends on the analysis objective(s)
- Operation involves:
 - Concatenation (Adding rows)

Merge (combine two different datasets on common keys)

5. Verifying

Ensure the final data:

- Satisfy business rules/common sense
 - The numeric representation of **month** should not exceed 12
 - No negative values for income attribute
- Consistent Formatting
 - The values of currency attributes need to be of numeric types
 - Date format of yyyy-mm-dd

In short: fit for analysis

6. Publishing

- Show your data!
- Make it available for others to:
 - Be informed → visualization

Further analyse → clean data

Pop Quiz

Do those steps need to be in order?

That's it

Now open your

Data Wrangling and Transformation

Cheers!

Riki Akbar

Ibrahim Saleh Siregar