November 13, 2018

1 Git简介

Git是目前世界上最先进的分布式版本控制系统(没有之一)。Git有什么特点?简单来说就是:高端大气上档次!

那什么是版本控制系统?

如果你用Microsoft Word写过长篇大论,那你一定有这样的经历:想删除一个段落,又怕将来想恢复找不回来怎么办?有办法,先把当前文件"另存为....."一个新的Word文件,再接着改,改到一定程度,再"另存为....."一个新文件,这样一直改下去,最后你的Word文档变成了这样:

过了一周, 你想找回被删除的文字, 但是已经记不清删除前保存在哪个文件里了, 只好一个一个文件去找, 真麻烦。

看着一堆乱七八糟的文件,想保留最新的一个,然后把其他的删掉,又怕哪天会用上,还 不敢删,真郁闷。

更要命的是,有些部分需要你的财务同事帮助填写,于是你把文件Copy到U盘里给她(也可能通过Email发送一份给她),然后,你继续修改Word文件。一天后,同事再把Word文件传给你,此时,你必须想想,发给她之后到你收到她的文件期间,你作了哪些改动,得把你的改动和她的部分合并,真困难。

于是你想,如果有一个软件,不但能自动帮我记录每次文件的改动,还可以让同事协作编辑,这样就不用自己管理一堆类似的文件了,也不需要把文件传来传去。如果想查看某次改动,只需要在软件里瞄一眼就可以,岂不是很方便?

这个软件用起来就应该像这个样子, 能记录每次文件的改动:

版本	文件名	用户	说明	日期
1	service.doc	Male	删除了软件服务条款5	7/12 10:38
2	service.doc	Bill	增加了License人数限制	7/12 10:38
3	service.doc	Steve	删除了软件服务条款5	7/12 10:38
4	service.doc	Jobs	财务部门调整了合同金额	7/12 10:38
5	service.doc	Gates	延长了免费升级周期	7/12 10:38

这样, 你就结束了手动管理多个"版本"的史前时代, 进入到版本控制的20世纪。

1.1 Git的诞生

很多人都知道, Linus在1991年创建了开源的Linux, 从此, Linux系统不断发展, 已经成为最大的服务器系统软件了。

Linus虽然创建了Linux,但Linux的壮大是靠全世界热心的志愿者参与的,这么多人在世界各地为Linux编写代码,那Linux的代码是如何管理的呢?

事实是,在2002年以前,世界各地的志愿者把源代码文件通过diff的方式发给Linus,然后由Linus本人通过手工方式合并代码!

你也许会想,为什么Linus不把Linux代码放到版本控制系统里呢?不是有CVS、SVN这些免费的版本控制系统吗?因为Linus坚定地反对CVS和SVN,这些集中式的版本控制系统不但速度慢,而且必须联网才能使用。有一些商用的版本控制系统,虽然比CVS、SVN好用,但那是付费的,和Linux的开源精神不符。

不过,到了2002年,Linux系统已经发展了十年了,代码库之大让Linus很难继续通过手工方式管理了,社区的弟兄们也对这种方式表达了强烈不满,于是Linus选择了一个商业的版本控制系统BitKeeper,BitKeeper的东家BitMover公司出于人道主义精神,授权Linux社区免费使用这个版本控制系统。

安定团结的大好局面在2005年就被打破了,原因是Linux社区牛人聚集,不免沾染了一些梁山好汉的江湖习气。开发Samba的Andrew试图破解BitKeeper的协议(这么干的其实也不只他一个),被BitMover公司发现了(监控工作做得不错!),于是BitMover公司怒了,要收回Linux社区的免费使用权。

Linus可以向BitMover公司道个歉,保证以后严格管教弟兄们,嗯,这是不可能的。实际情况是这样的:

Linus花了两周时间自己用C写了一个分布式版本控制系统,这就是Git!一个月之内,Linux系统的源码已经由Git管理了! 牛是怎么定义的呢? 大家可以体会一下。

Git迅速成为最流行的分布式版本控制系统,尤其是2008年,GitHub网站上线了,它为开源项目免费提供Git存储,无数开源项目开始迁移至GitHub,包括iQuery,PHP,Ruby等等。

历史就是这么偶然,如果不是当年BitMover公司威胁Linux社区,可能现在我们就没有免费而超级好用的Git了。

1.2 集中式vs分布式

Linus一直痛恨的CVS及SVN都是集中式的版本控制系统,而Git是分布式版本控制系统,集中式和分布式版本控制系统有什么区别呢?

先说集中式版本控制系统,版本库是集中存放在中央服务器的,而干活的时候,用的都是自己的电脑,所以要先从中央服务器取得最新的版本,然后开始干活,干完活了,再把自己的活推送给中央服务器。中央服务器就好比是一个图书馆,你要改一本书,必须先从图书馆借出来,然后回到家自己改,改完了,再放回图书馆。

集中式版本控制系统最大的毛病就是必须联网才能工作,如果在局域网内还好,带宽够大,速度够快,可如果在互联网上,遇到网速慢的话,可能提交一个10M的文件就需要5分钟,这还不得把人给憋死啊。

那分布式版本控制系统与集中式版本控制系统有何不同呢?首先,分布式版本控制系统根本没有"中央服务器",每个人的电脑上都是一个完整的版本库,这样,你工作的时候,就不需要联网了,因为版本库就在你自己的电脑上。既然每个人电脑上都有一个完整的版本库,那多个人如何协作呢?比方说你在自己电脑上改了文件A,你的同事也在他的电脑上改了文件A,这时,你们俩之间只需把各自的修改推送给对方,就可以互相看到对方的修改了。

和集中式版本控制系统相比,分布式版本控制系统的安全性要高很多,因为每个人电脑里都有完整的版本库,某一个人的电脑坏掉了不要紧,随便从其他人那里复制一个就可以了。而集中式版本控制系统的中央服务器要是出了问题,所有人都没法干活了。

在实际使用分布式版本控制系统的时候,其实很少在两人之间的电脑上推送版本库的修改,因为可能你们俩不在一个局域网内,两台电脑互相访问不了,也可能今天你的同事病了,他的电脑压根没有开机。因此,分布式版本控制系统通常也有一台充当"中央服务器"的电脑,但这个服务器的作用仅仅是用来方便"交换"大家的修改,没有它大家也一样干活,只是交换修改不方便而已。

当然,Git的优势不单是不必联网这么简单,后面我们还会看到Git极其强大的分支管理,把SVN等远远抛在了后面。

CVS作为最早的开源而且免费的集中式版本控制系统,直到现在还有不少人在用。由于CVS自身设计的问题,会造成提交文件不完整,版本库莫名其妙损坏的情况。同样是开源而且免费的SVN修正了CVS的一些稳定性问题,是目前用得最多的集中式版本库控制系统。

除了免费的外,还有收费的集中式版本控制系统,比如IBM的ClearCase(以前是Rational公司的,被IBM收购了),特点是安装比Windows还大,运行比蜗牛还慢,能用ClearCase的一般是世界500强,他们有个共同的特点是财大气粗,或者人傻钱多。

微软自己也有一个集中式版本控制系统叫VSS,集成在Visual Studio中。由于其反人类的设计,连微软自己都不好意思用了。

分布式版本控制系统除了Git以及促使Git诞生的BitKeeper外,还有类似Git的Mercurial和Bazaar等。 这些分布式版本控制系统各有特点,但最快、最简单也最流行的依然是Git!

2 安装Git

最早Git是在Linux上开发的,很长一段时间内,Git也只能在Linux和Unix系统上跑。不过,慢慢地有人把它移植到了Windows上。现在,Git可以在Linux、Unix、Mac和Windows这几大平台上正常运行了。

在Linux上安装Git

首先, 你可以试着输入git, 看看系统有没有安装Git:

```
1 $ git
2 The program 'git' is currently not installed.
3 You can install it by typing:
4 sudo apt-get install git
```

像上面的命令,有很多Linux会友好地告诉你Git没有安装,还会告诉你如何安装Git。如果你碰巧用Debian或Ubuntu Linux,通过一条sudo apt-get install git就可以直接完成Git的安装,非常简单。

老一点的Debian或Ubuntu Linux,要把命令改为sudo apt-get install git-core,因为以前有个软件也叫GIT(GNU Interactive Tools),结果Git就只能叫git-core了。由于Git名气实在太大,后来就把GNU Interactive Tools改成gnuit,git-core正式改为git。

如果是其他Linux版本,可以直接通过源码安装。先从Git官网下载源码,然后解压,依次输入:./config, make, sudo make install这几个命令安装就好了。安装完成后,还需要最后一步设置,在命令行输入:

```
$ git config --global user.name "Your Name"
2 $ git config --global user.email "email@example.com"
```

因为Git是分布式版本控制系统,所以,每个机器都必须自报家门: 你的名字和Email地址。你也许会担心,如果有人故意冒充别人怎么办? 这个不必担心,首先我们相信大家都是善良无知的群众,其次,真的有冒充的也是有办法可查的。

注意git config命令的-global参数,用了这个参数,表示你这台机器上所有的Git仓库都会使用这个配置,当然也可以对某个仓库指定不同的用户名和Email地址。

参数,用了这个参数,表示你这台机器上所有的Git仓库都会使用这个配置,当然也可以对某个仓库指定不同的用户名和Email地址。

3 创建版本库

什么是版本库呢?版本库又名仓库,英文名repository,你可以简单理解成一个目录,这个目录里面的所有文件都可以被Git管理起来,每个文件的修改、删除,Git都能跟踪,以便任何时刻都可以追踪历史,或者在将来某个时刻可以"还原"。

所以, 创建一个版本库非常简单, 首先, 选择一个合适的地方, 创建一个空目录:

```
1 $ mkdir learngit
```

- 2 \$ cd learngit
- 3 \$ pwd
- 4 /Users/michael/learngit

pwd 命令用于显示当前目录。在我的Mac上,这个仓库位于/Users/michael/learngit。如果你使用Windows系统,为了避免遇到各种莫名其妙的问题,请确保目录名(包括父目录)不包含中文。

第二步,通过git init命令把这个目录变成Git可以管理的仓库:

```
$ git init
2 Initialized empty Git repository in /Users/learngit/.git/
```

瞬间Git就把仓库建好了,而且告诉你是一个空的仓库(empty Git repository),细心的读者可以发现当前目录下多了一个.git的目录,这个目录是Git来跟踪管理版本库的,没事千万不要手动修改这个目录里面的文件,不然改乱了,就把Git仓库给破坏了。

如果你没有看到.git目录,那是因为这个目录默认是隐藏的,用ls-ah命令就可以看见。 也不一定必须在空目录下创建Git仓库,选择一个已经有东西的目录也是可以的。不过, 不建议你使用自己正在开发的公司项目来学习Git,否则造成的一切后果概不负责。

3.1 把文件添加到版本库

现在我们编写一个readme.txt文件,内容如下:

Git is a version control system.

Git is free software.

一定要放到learngit目录下(子目录也行),因为这是一个Git仓库,放到其他地方Git再厉害也找不到这个文件。

和把大象放到冰箱需要3步相比,把一个文件放到Git仓库只需要两步。

第一步, 用命令git add告诉Git, 把文件添加到仓库:

```
1 $ git add readme.txt/
```

执行上面的命令,没有任何显示,这就对了,Unix的哲学是"没有消息就是好消息",说明添加成功。

第二步, 用命令git commit告诉Git, 把文件提交到仓库:

```
$\frac{1}{2}$ git commit -m "wrote a readme file"

[master (root-commit) eaadf4e] wrote a readme file

1 file changed, 2 insertions(+)

4 create mode 100644 readme.txt
```

简单解释一下git commit命令,-m后面输入的是本次提交的说明,可以输入任意内容,当然最好是有意义的,这样你就能从历史记录里方便地找到改动记录。

嫌麻烦不想输入-m"xxx"行不行?确实有办法可以这么干,但是强烈不建议你这么干,因为输入说明对自己对别人阅读都很重要。实在不想输入说明的童鞋请自行Google,我不告诉你这个参数。

git commit命令执行成功后会告诉你, 1 file changed: 1个文件被改动(我们新添加的readme.txt文件); 2 insertions: 插入了两行内容(readme.txt有两行内容)。 为什么Git添加文件需要add, commit一共两步呢? 因为commit可以一次提交很多文件, 所以你可以多次add不同的文件, 比如:

```
$ git add file1.txt

2 $ git add file2.txt file3.txt

3 $ git commit -m "add 3 files."
```

3.2 小结

现在总结一下今天学的两点内容:

初始化一个Git仓库,使用 git init 命令。

添加文件到Git仓库,分两步:

使用命令 git add ¡file; , 注意, 可反复多次使用, 添加多个文件;

使用命令 git commit -m ¡message; , 完成。

4 版本管理

- 4.1 版本回退
- 4.2 工作区和缓存区
- 4.3 管理修改
- 4.4 删除文件

5 远程仓库

到目前为止,我们已经掌握了如何在Git仓库里对一个文件进行时光穿梭,你再也不用担心文件备份或者丢失的问题了。

可是有用过集中式版本控制系统SVN的童鞋会站出来说,这些功能在SVN里早就有了,没看出Git有什么特别的地方。没错,如果只是在一个仓库里管理文件历史,Git和SVN真没啥区别。为了保证你现在所学的Git物超所值,将来绝对不会后悔,同时为了打击已经不幸学了SVN的童鞋,本章开始介绍Git的杀手级功能之一(注意是之一,也就是后面还有之二,之三……):远程仓库。

Git是分布式版本控制系统,同一个Git仓库,可以分布到不同的机器上。怎么分布呢?最早,肯定只有一台机器有一个原始版本库,此后,别的机器可以"克隆"这个原始版本库,而且每台机器的版本库其实都是一样的,并没有主次之分。

你肯定会想,至少需要两台机器才能玩远程库不是?但是我只有一台电脑,怎么玩?其实一台电脑上也是可以克隆多个版本库的,只要不在同一个目录下。不过,现实生活中是不会有人这么傻的在一台电脑上搞几个远程库玩,因为一台电脑上搞几个远程库完全没有意义,而且硬盘挂了会导致所有库都挂掉,所以我也不告诉你在一台电脑上怎么克隆多个仓库。

实际情况往往是这样,找一台电脑充当服务器的角色,每天24小时开机,其他每个人都从这个"服务器"仓库克隆一份到自己的电脑上,并且各自把各自的提交推送到服务器仓库里,也从服务器仓库中拉取别人的提交。

完全可以自己搭建一台运行Git的服务器,不过现阶段,为了学Git先搭个服务器绝对是小题大作。好在这个世界上有个叫GitHub的神奇的网站,从名字就可以看出,这个网站就是提供Git仓库托管服务的,所以,只要注册一个GitHub账号,就可以免费获得Git远程仓库。在继续阅读后续内容前,请自行注册GitHub账号。由于你的本地Git仓库和GitHub仓库之间的传输是通过SSH加密的,所以,需要一点设置:

第1步: 创建SSH Key。在用户主目录下,看看有没有.ssh目录,如果有,再看看这个目录下有没有 id-rsa 和 id——rsa.pub 这两个文件,如果已经有了,可直接跳到下一步。如果没有,打开Shell(Windows下打开Git Bash),创建SSH Key:

你需要把邮件地址换成你自己的邮件地址,然后一路回车,使用默认值即可,由于这个Key也不是用于军事目的,所以也无需设置密码如果一切顺利的话,可以在用户主目录里找到..ssh 目录,里面有id-rsa 和id-rsa.pub 两个文件,这两个就是SSH Key的秘钥对,id-rsa 是私钥,不能泄露出去,id-rsa.pub 是公钥,可以放心地告诉任何人。

第2步: 登陆GitHub, 打开"Account settings", "SSH Keys"页面: 然后,点"Add SSH Key",填上任意Title,在Key文本框里粘贴 id-rsa.pub 文件的内容:

点"Add Key", 你就应该看到已经添加的Key:

为什么GitHub需要SSH Key呢?因为GitHub需要识别出你推送的提交确实是你推送的,而不是别人冒充的,而Git支持SSH协议,所以,GitHub只要知道了你的公钥,就可以确认只有你自己才能推送。当然,GitHub允许你添加多个Key。假定你有若干电脑,你一会儿在公司提交,一会儿在家里提交,只要把每台电脑的Key都添加到GitHub,就可以在每台电脑上往GitHub推送了。

最后友情提示,在GitHub上免费托管的Git仓库,任何人都可以看到喔(但只有你自己才能改)。所以,不要把敏感信息放进去。

如果你不想让别人看到Git库,有两个办法,一个是交点保护费,让GitHub把公开的仓库变成私有的,这样别人就看不见了(不可读更不可写)。另一个办法是自己动手,搭一个Git服务器,因为是你自己的Git服务器,所以别人也是看不见的。这个方法我们后面会讲到的,相当简单,公司内部开发必备。

确保你拥有一个GitHub账号后,我们就即将开始远程仓库的学习。

5.1 添加远程仓库

现在的情景是,你已经在本地创建了一个Git仓库后,又想在GitHub创建一个Git仓库,并且让这两个仓库进行远程同步,这样,GitHub上的仓库既可以作为备份,又可以让其他人通过该仓库来协作,真是一举多得。 首先,登陆GitHub,然后,在右上角找到"Create a new repo"按钮,创建一个新的仓库:

在Repository name填入 learngit ,其他保持默认设置,点击"Create repository"按钮,就成功地创建了一个新的Git仓库:

目前,在GitHub上的这个 learngit 仓库还是空的,GitHub告诉我们,可以从这个仓库克隆出新的仓库,也可以把一个已有的本地仓库与之关联,然后,把本地仓库的内容推送到GitHub仓库。

现在,我们根据GitHub的提示,在本地的 learngit 仓库下运行命令:

1 \$ git remote add origin git@github.com:michaelliao/learngit.git

请千万注意,把上面的michaelliao替换成你自己的GitHub账户名,否则,你在本地关联的就是 我的远程库,关联没有问题,但是你以后推送是推不上去的,因为你的SSH Key公钥不在我的

账户列表中。

添加后,远程库的名字就是origin,这是Git默认的叫法,也可以改成别的,但是origin这个名字一看就知道是远程库。

下一步,就可以把本地库的所有内容推送到远程库上:

```
$ git push -u origin master
Counting objects: 20, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (15/15), done.
Writing objects: 100% (20/20), 1.64 KiB | 560.00 KiB/s, done.
Total 20 (delta 5), reused 0 (delta 0)
remote: Resolving deltas: 100% (5/5), done.
To github.com: michaelliao/learngit.git

* [new branch] master -> master
Branch 'master' set up to track remote branch 'master' from 'origin'.
```

把本地库的内容推送到远程,用git push命令,实际上是把当前分支master推送到远程。

由于远程库是空的,我们第一次推送master分支时,加上了-u参数,Git不但会把本地的master分支内容推送的远程新的master分支,还会把本地的master分支和远程的master分支 关联起来,在以后的推送或者拉取时就可以简化命令。

推送成功后,可以立刻在GitHub页面中看到远程库的内容已经和本地一模一样:

从现在起,只要本地作了提交,就可以通过命令:

```
$ git push origin master
```

把本地master分支的最新修改推送至GitHub, 现在, 你就拥有了真正的分布式版本库!

SSH警告

当你第一次使用Git的clone或者push命令连接GitHub时,会得到一个警告:

```
The authenticity of host 'github.com (xx.xx.xx.xx)' can't be established.

RSA key fingerprint is xx.xx.xx.xx.

Are you sure you want to continue connecting (yes/no)?
```

这是因为Git使用SSH连接,而SSH连接在第一次验证GitHub服务器的Key时,需要你确认GitHub的Key的指纹信息是否真的来自GitHub的服务器,输入yes回车即可。Git会输出一个警告,告诉你已经把GitHub的Key添加到本机的一个信任列表里了:

```
Warning: Permanently added 'github.com' (RSA) to the list of known hosts.
```

这个警告只会出现一次,后面的操作就不会有任何警告了。

如果你实在担心有人冒充GitHub服务器,输入yes前可以对照GitHub的RSA Key的指纹信息是否与SSH连接给出的一致。

SSH免密

通常我们会使用https方式克隆

```
git clone https://github.com/Name/project.git
```

这样便会在你git push时候要求输入用户名和密码 解决的方法是使用ssh方式克隆仓库

```
git clone git@github.com:Name/project.git
```

当如,如果你已经用https方式克隆了仓库,就不必删除仓库重新克隆,只需将 .git/config文件中的

```
url = https://github.com/Name/project.git
```

一行改为

即可。

小结

要关联一个远程库,使用命令git remote add origin git@server-name:path/repo-name.git; 关联后,使用命令git push -u origin master第一次推送master分支的所有内容;此后,每次本地提交后,只要有必要,就可以使用命令git push origin master推送最新修改;分布式版本系统的最大好处之一是在本地工作完全不需要考虑远程库的存在,也就是有没有联网都可以正常工作,而SVN在没有联网的时候是拒绝干活的!当有网络的时候,再把本地提交推送一下就完成了同步,真是太方便了!

5.2 从远程仓库克隆

上次我们讲了先有本地库,后有远程库的时候,如何关联远程库。现在,假设我们从零开发,那么最好的方式是先创建远程库,然后,从远程库克隆。首先,登陆GitHub,创建一个新的仓库,名字叫gitskills:

我们勾选Initialize this repository with a README,这样GitHub会自动为我们创建一个README.md文件。创建完毕后,可以看到README.md文件:

现在,远程库已经准备好了,下一步是用命令git clone克隆一个本地库:

```
$ git clone git@github.com:michaelliao/gitskills.git
Cloning into 'gitskills'...
remote: Counting objects: 3, done.
remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused
Receiving objects: 100% (3/3), done.
```

注意把Git库的地址换成你自己的,然后进入gitskills目录看看,已经有README.md文件了:

```
1 $ cd gitskills
2 $ ls
3 README.md
```

如果有多个人协作开发,那么每个人各自从远程克隆一份就可以了。 你也许还注意到,GitHub给出的地址不止一个,还可以用https://github.com/michaelliao/gitskills.git这样的地址。实际上,Git支持多种协议,默认的git://使用ssh,但也可以使用https等其他协议。使用https除了速度慢以外,还有个最大的麻烦是每次推送都必须输入口令,但是在某些只开放http端口的公司内部就无法使用ssh协议而只能用https。

小结

要克隆一个仓库,首先必须知道仓库的地址,然后使用git clone命令克隆。

Git支持多种协议,包括https,但通过ssh支持的原生git协议速度最快。

- 6 分支管理
- 7 标签管理
- 8 使用GitHub
- 9 自定义Git