Homework 1

Xiaoling Long Student ID.:81943968 email:longxl@shanghaitech.edu.cn

September 23, 2017

Problem 1 (4/10, If G is an abelian group, then End(G) is a ring):

Let G be an abelian group with group operation *. For $\phi, \psi \in End(G)$, consider the definition of $\phi + \psi$ and $\phi \psi$ that we gave in the class. Verify that End(G) is a ring under these two operations, i.e., check that all the axioms of the ring structure are true. For example, verify that for $\phi, \psi, \chi \in End(G)$, we have that $\phi(\psi + \chi) = \phi \psi + \phi \chi$.

Proof.

$$\forall \phi, \psi, \chi \in End(G)$$

We have that,

$$[(\phi + \psi) + \chi](g) = [\phi + \psi](g) * \chi(g)$$
$$= [\phi(g) * \psi(g)] * \chi(g)$$

G is an abelian group.

$$[\phi(g) * \psi(g)] * \chi(g) = \phi(g) * [\psi(g) * \chi(g)]$$

= $[\phi + (\psi + \chi)](g)$

So,

$$(\phi + \psi) + \chi = \phi + (\psi + \chi)$$

Problem 2 (4/10, Behavior of identity element and inverses under group homomorphisms):

Let G, H be groups with group operations $*_G$, $*_H$ and identity elements e_G , e_H respectively. Let $\phi: G \to H$ be a group homomorphism. Show that $\phi(e_G) = e_H$ and that $\forall g \in G$ we have that $\phi(g^{-1}) = (\phi(g))^{-1}$.

Proof. Here goes your anwser.

Problem 3 (2/10, Group isomorphism is a transitive relation):

Let G, H, K be groups such that G is isomorphic to H, and H is isomorphic to K. Show that G is isomorphic to K.

Proof. Here goes your anwser. \Box