Categorical data analysis: classical approach.

The multiple test results in GWATCH are created from the original data in form of four P-values and the quantative association statistics (QAS) for codominant, dominant and recessive alternatives, and for allelic approach.

1: The original data

Before starting cflculations of multiple tests the input clynical data should be checked. The phenotype should be a factor of d-levels. Number of the phenotype levels are calculated on the preliminary stage. Denote the common variant is "+" and the minor variant is "-". The genotype levels for the codominant, dominant and recessive alternatives and for the allelic approach are given in the following table.

$Test \setminus Variant$	"++"	"+-"	""	Missed
Codominant	0	1	2	3
Dominant	0	1	1	3
Recessive	0	0	1	3
Allelic	(0, 0)	(1,0)	(1, 1)	(3, 3)

Under the allelic approach each observation produces two with the same phenotype and genotype belonging to $\{0,1\}$, so the population size is doubled.

The GWATCH forms $d \times 3$ contingency table $\{n_{ij}\}$ for the codominant alternative and $d \times 2$ contigency table $\{n_{ij}\}$ for other approaches, where n_{ij} are the corresponding counts. Before starting multiple tests GWATCH classify the phenotype: binary or multilevel. GWATCH removes missed data for each SNP-test separately. For each genetic marker GWATCH calculates P-value of the association test and QAS.

2: The binary phenotype

Currently, GWATCH uses the χ^2 test for *codominant* alternative, and the combined two sided χ^2 and Fisher's exact test by default in other cases. Let $n_{\cdot j} = \sum_i n_{ij}$, $n_{i\cdot} = \sum_j n_{ij}$ and $n = n_{\bullet} = \sum_{ij} n_{ij}$. For the combined test: the χ^2 test is used under $n_i \cdot n_{\cdot j} \geq 5$ for all $i, j \in \{1, 2\}$ and Fisher's exact test is used otherwise. The QAS is the Fisher's z-transformation of Pearson's correlation coefficient $z' = \log((1+\rho)/(1-\rho))/2$, where $\rho = \frac{n_{12} + 2n_{13} - n_2 \cdot t/n}{\sqrt{n_2 \cdot (1-n_2 \cdot /n)(n_2 + 4n_3 - t^2/n)}}$ and $t = n_{\cdot 2} + 2n_{\cdot 3}$, for *codominant* test, and the log odds ratio $lor = \log(n_{11}n_{22}/(n_{21}n_{12}))$ for other tests.

3: The multilevel phenotype

Currently, GWATCH uses the χ^2 test under multilevel phenotype, even in the case of 2×2 table after removing missed data. The P-value is calculated from the obtained contigency table $d' \times l'$ $(d', l' > 1; d' \le d; l' \le 3$ under the codominant alternative and $l' \le 2$ otherwise) The QAS is the Fisher's z-transformation of Pearson's correlation coefficient $z' = \log((1+\rho)/(1-\rho))/2$, where ρ is the Pearson's correlation coefficient:

$$\rho = \begin{cases} \frac{\sum_{i} (n_{i2} + 2n_{i3})(i-1) - st/n}{\sqrt{\sum_{i} n_{i.}(i-1)^{2} - s^{2}/n)(n_{.2} + 4n_{.3} - t^{2}/n)}}, & \text{under codominant alternative,} \\ \frac{\sum_{i} n_{i2}(i-1) - st/n}{\sqrt{\left(\sum_{i} n_{i.}(i-1)^{2} - s^{2}/n\right)n_{.2}(1 - n_{.2}/n)}}, & \text{otherwise,} \end{cases}$$

where
$$s = \sum_{i} n_{i} (i - 1)$$
 and $t = n_{2} + 2n_{3}$.