November 8, 2019

5. Definition for $O(2^{f(n)})$ and $2^{O(f(n))}$.

Problem Set #08

Prove that that is $O(2^{f(n)})$ is a proper subset of $2^{O(f(n))}$:

First we will prove that it is a subset.

we know:
$$a^{bc} = (a^b)^c$$

 $2^{2x} = (2^2)^x = 4^x$

We know that $O(2^x) \neq O(3^x) \neq O(4^x)$.

 $c * 2^{f(n)} \le 2^c * 2^{(f(n))}$ We know that we can cross out $2^{(f(n))}$ on both sides.

this leaves us with $c \leq 2^c$, and we know this is true for any c. Therefore $O(2^{f(n)}) \subset 2^{O(f(n))}$

Now we need to prove that it is a proper subset:

Intuition:
$$c * 2^{f(n)} \le g \le 2^c * f(n)$$

 $c * 2^x \le g \le 2^{c*x}$
so $c * 2^x \le 2.01^x \le 2^{c*x}$

as $x \to \infty$ then there's a c that makes the above true.

Therefore c *
$$2^{f(n)} \leq 2.01^{f(n)} \leq 2^c * f(n)$$

Since $g \in O(2.01^x)$ but $g \notin O(2^x)$

Since $g \notin O(2^{f(n)})$ meaning there are elements in $2^{O(f(n))}$ but not in $O(2^{f(n)})$ makes it a proper subset.

Therefore we have proven that $O(2^{f(n)}) \subset 2^{O(f(n))}$