Resúmenes – Capítulos 4 y 5 Modelos de Turbulencia (EVM y RSM)

Cristian Herledy López Lara

Capítulo 4 – Modelos de Viscosidade Turbulenta (EVM)

1. Motivación

Los modelos EVM (*Eddy Viscosity Models*) usan la hipótesis de Boussinesq para representar las tensiones de Reynolds como proporcionales a los gradientes del flujo medio:

$$\overline{u_i'u_j'} = -\nu_t \left(\frac{\partial \overline{U}_i}{\partial x_j} + \frac{\partial \overline{U}_j}{\partial x_i} \right) + \frac{2}{3} k \delta_{ij}$$

2. Tipos de Modelos EVM

Modelos Algebraicos (ej. Prandtl)

- Simples y rápidos.
- Requieren el campo medio.
- Usados en escoamentos livres o camadas limites.
- Limitados: no funcionan con separación ni recirculación.

Modelo de 1 ecuación (k)

- Resuelve transporte de k.
- Requiere correlación para la longitud de mezcla L.
- Mejor que algebraico, pero difícil de aplicar en geometrías complejas.

Modelos de 2 ecuaciones

- \mathbf{k} - ε : bueno para escoamentos livres, falla en paredes.
- \mathbf{k} - ω : bueno para región junto a la pared, sensible a condiciones de frontera.
- SST: híbrido k- ε / k- ω , robusto en separación y presión adversa.

3. Aplicación y Comparación

Modelo	Variables	Fortalezas	Limitaciones	Aplicación
Algebraico	-	Muy simple	No sirve con separación	Camadas limite
1 ecuación	k	Intermedio	Requiere L empírico	Flujos internos
$k-\varepsilon$	k, ε	Robusto	Malo en paredes	Jets, estelas
$k-\omega$	k, ω	Pared precisa	Frágil en frontera	Tubos, ductos
SST	k,ω	Preciso y robusto	Más caro	Flujos complejos

4. Deficiencias Generales

- No capturan anisotropía.
- Fallan con memoria, curvatura, separación y presión adversa.
- Relación lineal entre tensiones y gradientes es limitada.

Capítulo 5 – Modelos de Transporte para Tensões de Reynolds (RSM)

1. Motivación

Modelos RSM resuelven directamente las ecuaciones de transporte de $\overline{u_i'u_j'}$, permitiendo capturar:

- Curvatura de líneas de corriente.
- Esfuerzos normales relevantes.
- Efectos de rotación, Coriolis, empuje térmico.

2. Estructura General

$$\frac{D\overline{u_i'u_j'}}{Dt} = P_{ij} + F_{ij} + d_{ij} + \varphi_{ij} - \varepsilon_{ij}$$

3. Componentes del Modelo

Producción P_{ij}

Transferencia de energía desde el flujo medio. Es exacta.

Fuente F_{ij}

Incorpora fuerzas externas: empuje, Coriolis, etc. No modelables con EVM.

Difusión d_{ij}

Modelada con Daly & Harlow (1970):

$$d_{ij} = -c_s \frac{u_k u_m}{\varepsilon} \frac{\partial \overline{u_i' u_j'}}{\partial x_m}$$

Redistribución φ_{ij}

Modela transferencia entre componentes (isotropía). Incluye modelos:

- Rotta (1951)
- Naot et al. (1970)
- Gibson & Launder (1978)
- Craft & Launder (1992)

Disipación ε_{ij}

Generalmente se asume isotrópica:

$$\varepsilon_{ij} = \frac{2}{3}\varepsilon\delta_{ij}$$

4. Ecuaciones auxiliares

Energía cinética turbulenta

$$k = \frac{1}{2}(\overline{u_1'^2} + \overline{u_2'^2} + \overline{u_3'^2})$$

Ecuación para ε

$$\frac{\partial \varepsilon}{\partial t} + U_j \frac{\partial \varepsilon}{\partial x_j} = c_{\varepsilon 1} \frac{\varepsilon}{k} P_k - c_{\varepsilon 2} \frac{\varepsilon^2}{k} + \text{difusion}$$

5. Condiciones de Contorno

• Se utilizan funciones-parede o interfaz EVM-RSM.

• En la pared: $uv = -\tau_w/\rho$, k y ε por perfil log.

• Tensiones normales: $\partial (uu/k)/\partial n = 0$ en la interfaz.

6. Comparación RSM vs EVM

Aspecto	RSM	EVM (e.g. $k-\varepsilon$)
Anisotropía	Capturada naturalmente	No representada
Curvatura y separación	Bien predicho	Mal predicho
Complejidad	Alta	Moderada
Número de ecuaciones	$6+k+\varepsilon$	2
Aplicación típica	Flujos complejos, rotación, empuje	Flujos internos/externos simples

Questão 1 – Deficiências da Relação de Kolmogorov

- 1. Suposição de isotropia: a relação assume que as tensões turbulentas são proporcionais aos gradientes de velocidade média, o que implica isotropia uma suposição que falha em regiões como paredes ou zonas de separação.
- 2. Incapacidade de prever curvatura ou efeitos externos: o modelo ignora gradientes como $\partial V/\partial x$, importantes em superfícies curvas ou escoamentos com rotação/empuxo, resultando em subestimação de tensões como $\overline{u'v'}$.

4

Questão 2 – Característica Particular de Modelos Específicos

- **SST:** combina $k-\omega$ próximo da parede com $k-\varepsilon$ longe da parede, permitindo melhor previsão de separação e gradientes adversos de pressão.
- RNG k-ε: deriva suas constantes a partir de teoria de grupos de renormalização, melhorando previsões com curvatura e rotação.
- **k**- ε realizável: permite que C_{μ} varie com o campo de escoamento, garantindo tensões físicas (ex. tensões normais sempre positivas).

Comparação: O modelo k- ε clássico assume constantes fixas, é robusto para escoamentos livres, mas falha em regiões próximas à parede.

Questão 3 – Por que usar o perfil logarítmico sem resolver a subcamada viscosa

Na região logarítmica (30 ; y^+ ; 400), o transporte de momento é dominado pelas tensões turbulentas. Negligenciando o termo viscoso na equação de balanço de momentum:

$$\frac{dU}{dy} = \frac{u_{\tau}^2}{\nu_t}, \quad \text{com } \nu_t = \kappa y u_{\tau} \Rightarrow \frac{dU}{dy} = \frac{u_{\tau}}{\kappa y}$$

Integrando:

$$U(y) = \frac{u_{\tau}}{\kappa} \ln \left(\frac{y}{y_0} \right) \Rightarrow \frac{U}{u_{\tau}} = \frac{1}{\kappa} \ln(y^+) + B$$

Conclusão: Quando não se resolve a subcamada viscosa, usa-se o perfil logarítmico como condição de contorno porque ele é solução assintótica válida na região onde o fluxo é puramente turbulento.

Questão 4 – Aumento de uv com curvatura do escoamento

O termo de produção P_{ij} inclui:

$$P_{12} = -\overline{u'^2}\frac{\partial V}{\partial x} - \overline{v'u'}\frac{\partial U}{\partial y}$$

Em superfícies curvas (ex. côncavas), $\partial V/\partial x > 0$, e como $\overline{u'^2} > 0$, o termo aumenta P_{12} , resultando em maior $\overline{u'v'}$. Modelos EVM ignoram esse termo, subestimando uv.

Conclusão: A curvatura intensifica *uv* devido ao termo extra na produção, o que exige uso de modelos RSM para capturar corretamente o efeito.

Questão 5 – Perfil Logarítmico de Temperatura e Baixos Reynolds

a) Por que não usar o perfil logarítmico de temperatura como condição de contorno

- O perfil assume domínio do transporte turbulento. - Em baixos Re, ou com $Pr \neq 1$, o transporte é ainda molecular. - A subcamada térmica é espessa ou fina dependendo do fluido.

Prandtl ajustou isso, propondo uma função de mistura térmica separada, rompendo a analogia simples com a velocidade.

b) Física não modelada em baixos Reynolds com transferência de calor

- O fluxo de calor ainda é controlado por condução, não por turbulência. - A analogia de Prandtl falha porque $\nu \neq \alpha$ (número de Prandtl $\neq 1$). - Camadas térmica e de momento se desenvolvem em escalas distintas.

Conclusão: Modelos baseados na analogia de Prandtl não representam corretamente os mecanismos dominantes em baixos Re.

Questão 6 – LES vs RANS e Sub-malha dinâmica

a) Por que o LES é conceitualmente mais simples que RANS

- LES resolve diretamente as grandes escalas (dependentes da geometria). - Modela apenas as pequenas escalas com um modelo sub-malha (SGS). - RANS modela todas as escalas, inclusive estruturas grandes, com modelos empíricos mais complexos.

Conclusão: LES separa claramente o que é resolvido e o que é modelado, o que o torna conceitualmente mais direto.

b) Como funciona a modelação sub-malha dinâmica

- 1. Aplica-se dois filtros: um no nível da malha e outro maior (filtro de teste).
- 2. Usa-se a identidade de Germano para obter um erro entre tensores de Reynolds em diferentes escalas.
- 3. Calcula-se localmente o coeficiente do modelo SGS (ex. C_s) com base nesse erro.
- 4. O modelo adapta-se ao escoamento: mais preciso e menos dependente de calibração empírica.

Conclusão: A modelação sub-malha dinâmica ajusta os coeficientes de forma adaptativa usando dois níveis de filtro e a estrutura do escoamento local.