(esson 14: 保持武智 25)性!

非免加权和

 $f_1, f_2, \sim f_n$ 为凸,则 $f = \sum_{i=1}^m W_i f_i$ 为凸,其中 $W_i \gtrsim 0$ 记册:使用定义]

扩展:

若f(x,y), 对任意 $y \in A$, f(x,y) 为凸,设wiyxo $g(x) = \int_{y \in A} w(y) f(x,y) dy$ 为凸

仿射映射:

f: $R^n \to R$ $A \in R^{n \times m}$ $b \in R^n$ g(x) = f(Ax + b) $dom g = f(Ax + b) \in dom f$ χ 心財動動 $Ax + b \xrightarrow{f} f(Ax + b)$ 注意: χ f(x, f(x), f(x),

两个函数的极大值函数:

f., fz 为立 定义: $g(x) = \max \{f_1(x), f_2(x)\} \ domg = domf, \wedge domfz 力力$ i证AA: $\forall x, y \in domg$ $\forall \in Lo_1(1)$ $f(\theta x) + (|+\theta)(y) = \max \{f_1(\theta x) + (|+\theta)(y), f_2(\theta x) + (|+\theta)(y)\}$

$$\leq \max_{\beta} \theta f_{\alpha}(x) + (1+\theta) f_{\alpha}(y), \theta f_{\alpha}(x) + (1+\theta) f_{\alpha}(y)$$

$$\leq \max_{\beta} (\theta f_{\alpha}(x), \theta f_{\alpha}(x)) + \max_{\beta} (1+\theta) f_{\alpha}(y), (1+\theta) f_{\alpha}(y)$$

$$= \theta f_{\alpha}(x) + (1+\theta) f_{\beta}(y)$$

150: fix = Max [x, x2]

f(X)仍然是凸函数!

例:向量中下个最大元季的和:XER1

定义: X [i] 为第i太的元季;

XII > XIZ] > ~ > XII] > ~ > XIN]

 $fw = \sum_{i=1}^{r} \chi[i]$

 $f(x) = \max \left[\frac{\chi_{i1} + \dots + \chi_{ir}}{\nu} \right] \leq \hat{j} \leq$

①(1.0,---1):【次】为信射映射,保凸

日 Max 保門

何): 实对称矩阵的最大特征值.

 $f(x) = \max \lambda(x)$ domf = S^m

特征值的含义: $Xy = \lambda y$ $\therefore y^{T} \lambda y = y^{T} \lambda y \Rightarrow \lambda = \frac{y^{T} \lambda y}{y^{T} y} = \frac{y^{T} \lambda y}{||y^{T} y||_{L^{2}}}$

以 y 是可以任意 效缩的, 不妨全 || y y l l = |

fix)= Max 「yTxy | yTy=1]

一 对于父来说是线性的,保证极大值函数保凸