

A conic operator splitting method for large convex conic problems

Michael Garstka · Paul Goulart · Mark Cannon

JuMP-dev workshop, Santiago, Chile 13th March 2019

Motivation

Why do we care about solving large convex conic programs?

Motivation

Why do we care about solving large convex conic programs?

Overview

Conic Problem Format

ADMM Algorithm

Example: Nearest correlation matrix

Chordal decomposition of PSD constraints

Example: Block-arrow structured SDPs

Implementation

Problem Format

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}x^TPx + q^Tx \\ \text{subject to} & Ax + s = b \\ & s \in \mathcal{K} \end{array}$$

- Decision variables: $x \in \mathbb{R}^n$, $s \in \mathbb{R}^m$
- Problem data: real matrices $P \succeq 0$, A, and real vectors q, b
- Convex cone $\mathcal K$ which can be a Cartesian product of cones:

$$\mathcal{K} = \mathcal{K}_1^{m_1} \times \mathcal{K}_2^{m_2} \times \cdots \times \mathcal{K}_N^{m_N}, \quad \mathsf{where} \sum_{i=1}^N m_i = m$$

Problem Format

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}x^TPx + q^Tx \\ \text{subject to} & Ax + s = b \\ & s \in \{0\}^{m_1} \times \mathbb{R}_+^{m_2} \end{array}$$

Linear Program

- Decision variables: $x \in \mathbb{R}^n$, $s \in \mathbb{R}^m$
- Problem data: real matrices $P \succeq 0$, A, and real vectors q, b
- Convex cone ${\cal K}$ which can be a Cartesian product of cones:

$$\mathcal{K} = \mathcal{K}_1^{m_1} \times \mathcal{K}_2^{m_2} \times \cdots \times \mathcal{K}_N^{m_N}, \quad \text{where } \sum_{i=1}^N m_i = m$$

Problem Format

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}x^TPx + q^Tx \\ \text{subject to} & Ax + s = b \\ & \max(s) \succeq 0 \end{array} \text{ Semidefinite Program}$$

- Decision variables: $x \in \mathbb{R}^n$, $s \in \mathbb{R}^m$
- Problem data: real matrices $P \succeq 0$, A, and real vectors q, b
- Convex cone $\mathcal K$ which can be a Cartesian product of cones:

$$\mathcal{K} = \mathcal{K}_1^{m_1} \times \mathcal{K}_2^{m_2} \times \cdots \times \mathcal{K}_N^{m_N}, \quad \text{where } \sum_{i=1}^N m_i = m$$

minimize
$$f(x) + g(z)$$

subject to $Ax + Bz = c$

• Augmented Lagrangian:

$$L_{\rho}(x,z,y) = f(x) + g(z) + y^{T}(Ax + Bz - c) + \frac{\rho}{2} ||Ax + Bz - c||_{2}^{2},$$

minimize
$$f(x) + g(z)$$

subject to $Ax + Bz = c$

• Augmented Lagrangian:

$$L_{\rho}(x,z,y) = f(x) + g(z) + y^{T}(Ax + Bz - c) + \frac{\rho}{2} ||Ax + Bz - c||_{2}^{2},$$

$$x^{k+1} \coloneqq \mathop{\rm argmin}_x L_\rho(x,z^k,y^k)$$

minimize
$$f(x) + g(z)$$

subject to $Ax + Bz = c$

• Augmented Lagrangian:

$$L_{\rho}(x,z,y) = f(x) + g(z) + y^{T}(Ax + Bz - c) + \frac{\rho}{2} ||Ax + Bz - c||_{2}^{2},$$

$$\begin{split} x^{k+1} &\coloneqq \operatorname*{argmin}_x L_\rho(x,z^k,y^k) \\ z^{k+1} &\coloneqq \operatorname*{argmin}_z L_\rho(x^{k+1},z,y^k) \end{split}$$

minimize
$$f(x) + g(z)$$

subject to $Ax + Bz = c$

Augmented Lagrangian:

$$L_{\rho}(x,z,y) = f(x) + g(z) + y^{T}(Ax + Bz - c) + \frac{\rho}{2} ||Ax + Bz - c||_{2}^{2},$$

$$\begin{split} x^{k+1} &\coloneqq \operatorname*{argmin}_x L_\rho(x,z^k,y^k) \\ z^{k+1} &\coloneqq \operatorname*{argmin}_z L_\rho(x^{k+1},z,y^k) \\ y^{k+1} &\coloneqq y^k + \rho(Ax^{k+1} + Bz^{k+1} - c) \end{split}$$

Splitting method

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}x^TPx + q^Tx \\ \text{subject to} & Ax + s = b \\ & s \in \mathcal{K} \\ \\ \text{minimize} & \frac{1}{2}\tilde{x}^TP\tilde{x} + q^T\tilde{x} + I_{Ax+s=b}(\tilde{x},\tilde{s}) \\ \\ \text{subject to} & (\tilde{x},\tilde{s}) = (x,s) \end{array}$$

ADMM algorithm

```
Input: Initial values x^0, s^0, y^0, step sizes \sigma, \rho
2:
        Do
                           (\tilde{\boldsymbol{x}}^{k+1}, \tilde{\boldsymbol{s}}^{k+1}) = \underset{\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{s}}}{\operatorname{argmin}} L_{\rho}\left(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{s}}, \boldsymbol{x}^k, \boldsymbol{s}^k, \boldsymbol{y}^k\right)
                                                                                                                                                 equality
                                                                                                                                                   constrained OP
                                            s^{k+1} = \Pi_{\mathcal{K}} \left( \tilde{s}^{k+1} + \frac{1}{\rho} y^k \right) projection onto \mathcal{K}
                             y^{k+1} = y^k + \rho \left( \tilde{s}^{k+1} - s^{k+1} \right)
```

7: while termination criteria not satisfied

Solving the equality constrained quadratic program

Equality constrained QP:

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}\tilde{x}^TP\tilde{x}+q^T\tilde{x}+\frac{\sigma}{2}\|\tilde{x}-x^k\|_2^2+\frac{\rho}{2}\|\tilde{s}-s^k+\frac{1}{\rho}y^k\|_2^2\\ \text{subject to} & A\tilde{x}+\tilde{s}=b \end{array}$$

KKT system:

$$\begin{bmatrix} P + \sigma I & A^T \\ A & -\frac{1}{\rho}I \end{bmatrix} \begin{bmatrix} \tilde{x}^{k+1} \\ \nu^{k+1} \end{bmatrix} = \begin{bmatrix} -q + \sigma x^k \\ b - s^k + \frac{1}{\rho}y^k \end{bmatrix}$$

- always quasi-definite
- factorisation can be cached

$$\tilde{s}^{k+1} = s^k - \frac{1}{\rho} \left(\nu^{k+1} + y^k \right)$$

ADMM algorithm

```
Input: Initial values x^0, s^0, y^0, step sizes \sigma, \rho
2:
         Do
                 (\tilde{x}^{k+1},\tilde{s}^{k+1}) = \left[ \underset{\tilde{x},\tilde{s}}{\operatorname{argmin}} \, L_{\rho} \left( \tilde{x},\tilde{s},x^k,s^k,y^k \right) \right] \begin{array}{c} \text{equality} \\ \text{constrain} \end{array} x^{k+1} = \tilde{x}^{k+1}
                                                                                                                                                                 constrained OP
                             s^{k+1} = \Pi_{\mathcal{K}} \left( \tilde{s}^{k+1} + \frac{1}{\rho} y^k \right) projection onto \mathcal{K} y^{k+1} = y^k + \rho \left( \tilde{s}^{k+1} - s^{k+1} \right)
```

7: while termination criteria not satisfied

Projection onto ${\cal K}$

The update equation for s becomes a projection onto \mathcal{K} :

$$s^{k+1} = \Pi_{\mathcal{K}} \left(\tilde{s}^{k+1} + \frac{1}{\rho} y^k \right)$$

- Projections for LPs, QPs are computationally cheap
- Projection onto positive semidefinite cone requires an eigenvalue decomposition
- Algorithms for the eigen decomposition of a N-by-N matrix have a complexity of $\mathcal{O}(N^3)$

Example: Nearest correlation matrix problem

• Given data matrix $C \in \mathbb{R}^{n \times n}$ find the nearest correlation matrix X:

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}\|X-C\|_F^2 \\ \text{subject to} & X_{ii}=1, \quad i=1,\dots,n \\ & X\in\mathbb{S}_+^n, \end{array}$$

The objective function can be rewritten as

$$\frac{1}{2}||X - C||_F^2 = \frac{1}{2}x^{\top}x - c^{\top}x + \frac{1}{2}c^{\top}c$$

with
$$x = \text{vec}(X)$$
 and $c = \text{vec}(C)$

Example: Nearest correlation matrix problem

• We can solve this with a few lines of code with JuMP and COSMO:

```
C = rand(rng, n, n);
    c = vec(C);
    m = JuMP.Model(with_optimizer(COSMO.Optimizer));
    Ovariable(m, X[1:n, 1:n], PSD);
    x = vec(X):
    Objective(m, Min, 0.5 * x' * x - c' * x + 0.5 * c' * c)
    for i = 1:n
10
      @constraint(m, X[i, i] == 1.)
11
    end
12
13
    JuMP.optimize!(m)
14
```

Example: Nearest correlation matrix problem

Conic Problem Format

ADMM Algorithm

Example: Nearest correlation matrix

Chordal decomposition of PSD constraints

Example: Block-arrow structured SDPs

Implementation

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}x^TPx + q^Tx \\ \\ \text{subject to} & \sum_{i=1}^m \mathcal{A}_ix_i + S = B \\ \\ & S \in \mathbb{S}_+^r \end{array}$$

$$\begin{bmatrix} S_{11} & S_{12} & 0 & 0 & 0 & S_{16} \\ S_{21} & S_{22} & S_{23} & S_{24} & 0 & S_{26} \\ 0 & S_{32} & S_{33} & S_{34} & 0 & 0 \\ 0 & S_{42} & S_{43} & S_{44} & S_{45} & S_{46} \\ 0 & 0 & 0 & S_{54} & S_{55} & S_{56} \\ S_{61} & S_{62} & 0 & S_{64} & S_{65} & S_{66} \end{bmatrix}$$

minimize
$$\frac{1}{2}x^TPx + q^Tx$$
 subject to
$$\sum_{i=1}^m \mathcal{A}_ix_i + S = B$$

$$S \in \mathbb{S}_+^r$$

$$\begin{bmatrix} S_{11} & S_{12} & 0 & 0 & 0 & S_{16} \\ S_{21} & S_{22} & S_{23} & S_{24} & 0 & S_{26} \\ 0 & S_{32} & S_{33} & S_{34} & 0 & 0 \\ 0 & S_{42} & S_{43} & S_{44} & S_{45} & S_{46} \\ 0 & 0 & 0 & S_{54} & S_{55} & S_{56} \\ S_{61} & S_{62} & 0 & S_{64} & S_{65} & S_{66} \end{bmatrix}$$

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}x^TPx + q^Tx \\ \text{subject to} & \sum_{i=1}^m \mathcal{A}_ix_i + S = B \\ & S \in \mathbb{S}_+^r \end{array}$$

S_{11}	S_{12}	0	0	0	S_{16}
S_{21}	S_{22}	S_{23}	S_{24}	0	S_{26}
0	S_{32}	S_{33}	S_{34}	0	0
0	S_{42}	S_{43}	S_{44}	S_{45}	S_{46}
0	0	0	S_{54}	S_{55}	S_{56}
S_{61}	S_{62}	0	S_{64}	S_{65}	S_{66}

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}x^TPx + q^Tx \\ \text{subject to} & \sum_{i=1}^m \mathcal{A}_ix_i + S = B \\ & S \in \mathbb{S}_+^r \end{array}$$

$$\begin{bmatrix} S_{11} & S_{12} & 0 & 0 & 0 & S_{16} \\ S_{21} & S_{22} & S_{23} & S_{24} & 0 & S_{26} \\ 0 & S_{32} & S_{33} & S_{34} & 0 & 0 \\ 0 & S_{42} & S_{43} & S_{44} & S_{45} & S_{46} \\ 0 & 0 & 0 & S_{54} & S_{55} & S_{56} \\ S_{61} & S_{62} & 0 & S_{64} & S_{65} & S_{66} \end{bmatrix}$$

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}x^TPx + q^Tx \\ \text{subject to} & \sum_{i=1}^m \mathcal{A}_ix_i + S = B \\ & S \in \mathbb{S}_+^r \end{array}$$

$$\begin{bmatrix} S_{11} & S_{12} & 0 & 0 & 0 & S_{16} \\ S_{21} & S_{22} & S_{23} & S_{24} & 0 & S_{26} \\ 0 & S_{32} & S_{33} & S_{34} & 0 & 0 \\ 0 & S_{42} & S_{43} & S_{44} & S_{45} & S_{46} \\ 0 & 0 & 0 & S_{54} & S_{55} & S_{56} \\ S_{61} & S_{62} & 0 & S_{64} & S_{65} & S_{66} \end{bmatrix}$$

• Represent aggregate sparsity pattern of S by a graph G(V, E)

Theorem (Agler's theorem)

Let G(V,E) be a chordal graph with a set of maximal cliques $\{C_1,\ldots,C_p\}$. Then $S\in\mathbb{S}^n_+(E,0)$ if and only if there exist matrices $S_\ell\in\mathbb{S}^{|C_\ell|}_+$ for $\ell=1,\ldots,p$ such that

$$S = \sum_{\ell=1}^{p} T_{\ell}^{T} S_{\ell} T_{\ell}.$$

Chordal Decomposition with JuMP and COSMO

in Jupyter notebook

Example: Block-arrow structured SDPs

$$\begin{array}{ll} \text{minimize} & q^Tx \\ \text{subject to} & \sum_{i=1}^m \mathcal{A}_i x_i + S = B \\ & S \in \mathbb{S}_+^r \end{array}$$

Figure: Parameters of block-arrow sparsity pattern.

Example: Block-arrow structured SDPs

• Benchmark problems: d=10, m=100, $N_b=50-140$

Conclusion:

- open source ADMM-based solver written in Julia
- supports quadratic objectives
- supports LPs, QPs, SOCPs, SDPs
- infeasiblity detection
- chordal decomposition of PSD constraints
- allows user-defined convex sets
- supports MOI v0.8 / JuMP v0.19

Conclusion:

- open source ADMM-based solver written in Julia
- supports quadratic objectives
- supports LPs, QPs, SOCPs, SDPs
- infeasiblity detection
- chordal decomposition of PSD constraints
- allows user-defined convex sets
- supports MOI v0.8 / JuMP v0.19

Future work:

- Acceleration methods
- Approximate projections
- Parallel Implementation of projections

COSMO.jl Package

Installation via the Julia package manager

 Code and documentation available at: https://github.com/oxfordcontrol/COSMO.jl

We want to solve the following semidefinite program:

minimize
$$q^T x$$

subject to $Ax + S = B$, $S \ge 0$

where A and B have the same structure:

$$A = B = \begin{bmatrix} X & X & 0 & 0 \\ X & X & X & X \\ 0 & X & X & X \\ 0 & X & X & X \end{bmatrix}$$

Lets formulate the problem in JuMP and solve it with COSMO:

In [7]:

```
using COSMO, JuMP, LinearAlgebra
# Define problem data
A =
[0.128183 0.612346 0.0 0.0;
0.612346 0.744476 0.526152 0.817133;
         0.526152 0.404581 0.454653;
0.0
0.0
         0.817133 0.454653 0.535701];
B =
[0.67846 0.924571 0.0 0.0;
0.924571 1.60899 0.794429 1.23378;
0.0
         0.794429 1.09579 0.686474;
         1.23378 0.686474 1.29377];
0.0
q = -1.0907161041533153;
```

```
In [8]:
```

```
model = JuMP.Model(with optimizer(COSMO.Optimizer, decompose = true, verbose = t
rue));
@variable(model, x);
@objective(model, Min, q * x);
@constraint(model, B - A .* x in JuMP.PSDCone());
JuMP.optimize!(model);
______
             COSMO - A Quadratic Objective Conic Solver
                         Michael Garstka
                University of Oxford, 2017 - 2018
Problem: x \in R^{14},
          constraints: A \in R^{29x14} (38 nnz), b \in R^{29},
          matrix size to factor: 43x43 (1849 elem, 119 nnz)
          ZeroSet{Float64} of dim: 16
Sets:
          PsdCone{Float64} of dim: 9
          PsdCone{Float64} of dim: 4
          Num of original PSD cones: 1
Decomp:
          Num decomposable PSD cones: 1
          Num PSD cones after decomposition: 2
Settings: \epsilon abs = 1.0e-04, \epsilon rel = 1.0e-04,
          \epsilon prim inf = 1.0e-06, \epsilon dual inf = 1.0e-04,
          \varrho = 0.1, \sigma = 1.0e-6, \alpha = 1.6,
          \max iter = 2500,
          scaling iter = 10 (on),
          check termination every 40 iter,
          check infeasibility every 40 iter
Setup Time: 0.9ms
                       Primal Res:
Iter:
       Objective:
                                      Dual Res:
                                       8.2750e-06
40
       -1.9240e+00
                       6.9916e-04
                                                        1.0000e-01
        -1.9238e+00
                       3.1361e-13
                                      6.3127e-13
                                                        1.0000e-01
80
>>> Results
Status: Solved
Iterations: 80
Optimal objective: -1.9238
Runtime: 0.008s (7.67ms)
```

You can see that the original 4x4 JuMP.PSDCone - constraint was decomposed into 2 smaller PsdCones of dimension 3x3 and 2x2