Apuntes de clase

José Antonio de la Rosa Cubero

Observación 1. Los grupos abelianos de orden 12 pueden ser $C_4 \times C_3 \cong C_{12}$ y $C_2 \times C_2 \times C_3 \cong C_6 \times C_2$.

Grupos no abelianos de orden 12 existen

Demostración. La primera parte se justificó en el tema anterior.

 $n_3|4$ y $n_3 \equiv 1 \mod 3$ con lo que n_3 es 1 o 4.

Si $n_3 = 4$ entonces ya vimos que $G \cong A_4$.

Supongamos $n_3=1$. Sea $P \leq G$ con |P|=3. $P \cong C_3$, y P está generado por $x \in G$.

Veamos que en G hay un elemento de orden 6. Consideramos $\operatorname{cl}(x) = \{gxg^{-1}: g \in G\}$. Puesto que $P \trianglelefteq G$ entonces $\operatorname{cl}(x) \leq P \leq \{1, x, x^2\}$. Además, $1 \notin \operatorname{cl}(x)$ (si no, habría un $g \in G$ tal que $1 = gxg^{-1}$, luego x = 1, lo que es una contradicción).

Entonces cl(x) es $\{x\}$ o $\{x, x^2\}$, ya que contiene siempre a x. Recordamos que:

$$[G:c_G(x)] = |\operatorname{cl}(x)|$$

donde $c_G(x) = \{g \in G : gx = xg\} \leq G$. Entonces $[G : c_G(x)] \in \{1, 2\}$, por tanto el centralizador tiene orden 12 o 6. En ambos casos, $2||c_G(x)||$ y por el teorema de Cauchy, existe un $z \in c_G(x)$ tal que ord(z) = 2.

Sea a=xz. Tenemos que $\gcd(\operatorname{ord}(x),\operatorname{ord}(z))=\operatorname{mcm}(3,2)=1$ tal que xz=zx.

Porque conmutan, $\operatorname{ord}(a) = \operatorname{ord}(x) \operatorname{ord}(z) = 3 \cdot 2 = 6$. Sea

$$K = \langle a \rangle$$

tenemos que $[G:K] = \frac{|G|}{|K|} = \frac{12}{6} = 2$, luego $K \subseteq G$. Además hay únicamente dos clases laterales a derecha: K y Kb con $b \notin K$. Tenemos que

$$G=K\cup Kb=\{1,a,a^2,a^3,a^4,a^5,b,ab,a^2b,a^3b,a^4b,a^5b\}$$

Veamos que $bab^{-1} = a^5$, como $K \leq G$ tenemos que $bab^{-1} \in K$, y tenemos que ord $(bab^{-1}) = \text{ord}(a) = 6$, por lo tanto $bab^{-1} \in \{a, a^5\}$. Pero si fuera igual a a tendríamos que ba = ab y esto no puede ser porque G no es abeliano.

 $ba=a^5b=a^{-1}b$. Consideramos $b^2\in G$. Tenemos que $b^2\in Kb$ porque $b\notin K$. Por tanto $b^2\in K=\{1,a,a^2,a^3,a^4,a^5\}$.

Descartamos que b^2 sea a a o a^5 , porque si no caemos en contradicción: $\operatorname{ord}(b^2)=6$, con lo que $\operatorname{ord}(b)=12$ y G sería abeliano.

Si $b^2 = a^2$, como $bab^{-1} = a^{-1}$, tendríamos que:

$$(a^{-1})^2 = (bab^{-1})^2 = ba^2b^{-1} = bb^2b^{-1} = b^2 = a^2$$

y $a^4 = 1$ en contradicción con que $\operatorname{ord}(a) = 6$.

Si $b^2 = a^4$ tendríamos, con el mismo procedimiento, que $a^8 = 1$, lo que contradice que ord(a) = 6.

Entonces $b \in \{1, a^3\}$. Tenemos que

$$G = \langle a, b | a^6 = 1, b^2 = 1, ba = a^{-1}b \rangle = D_6$$

o si $b^2 = a^3$:

$$G = \langle a, b | a^6 = 1, b^2 = a^3, ba = a^{-1}b \rangle = Q_3$$

Proposición 1. El grupo A_4 es isomorfo a:

$$\langle a, b | a^2 = 1, b^3 = 1, (ab)^3 = 1 \rangle$$

Demostración. Sea G ese grupo. Veamos que existe un epimorfismo de G en A_4 .

Consideramos $\sigma = (1 \quad 2)(3 \quad 4) \in A_4, \ \tau = (1 \quad 2 \quad 3) \in A_4$. Tenemos que $\tau^3 = \sigma^2 = \mathrm{id}$, y que $\sigma \tau = (2 \quad 4 \quad 3)$ y $(\sigma \tau)^3 = \mathrm{id}$.

Por el teorema de Dyck, existe un único homomorfismo $f: G \longrightarrow A_4$ tal que $f(a) = \sigma$ y $f(b) = \tau$. Es fácil ver que $A_4 = \langle \sigma, \tau \rangle$, con lo que f es un epimorfismo.

Tenemos que $G/\ker(f)\equiv A_4$. Basta ver que |G|=12. Ya sabemos que $|G|\geq 12$.

Notemos que ord(a) = 2 y ord(b) = 3.

Demostremos que los elementos $a, bab^2 \in G$ tienen orden 2 y conmutan entre sí, generando un subgrupo de G, $N = \langle a, bab^2 \rangle$, que es tipo Klein. Además vamos a ver que N es normal en G.

Ya sabemos que ord(a) = 2. Tenemos que

$$(bab^2)^2 = bab^2bab^2 = ba^2b^2 = bb^2 = b^3 = 1$$

 $\operatorname{ord}(bab^2) = 2.$

Veamos que conmutan, veamos que ambos son iguales a ab^2ab . Vamos a usar que $(ab)^3 = 1$.

$$a(bab^{2}) = abab^{2} = ababb = (ab)^{-1}b = b^{-1}a^{-1}b = b^{2}ab$$

 $(bab^{2}) = bab^{2}a = bbabaa = b^{2}aba^{2} = b^{2}ab$

tenemos que N es tipo Klein y está formado por $\{1,a,bab^2,b^2ab\}$. Veamos que es normal.

Como $G=\langle a,b\rangle$, basta con ver que: $aNa^{-1}\leq N$ y $bNb^{-1}\leq N$. Como $N=\langle a,bab^2\rangle$, basta con ver que $bab^{-1}\in N$ y $b(bab^2)b^{-1}\in N$.

Vemos que $bab^{-1}=bab^2\in N$ y $b(bab^2)b^{-1}=b^2ab\in N$ por ser el producto de a y bab^2 .

Entonces $N \subseteq G$.

 $G/N = \langle bN \rangle$, como $(bN)^3 = b^3N = N$, podemos decir que ord(bN) = 3. |G/N| = 3, ord(N) = 4, tenemos que |G| = 12.

Tenemos que $ker(f) = \{1\}$ y f es un isomorfismo.