

UNIVERSITÉ GRENOBLE-ALPES

THÈSE

Pour obtenir le grade de

DOCTEUR DE L'UNIVERSITÉ DE GRENOBLE-ALPES

Spécialité : Modèles, méthodes et algorithmes en biologie, santé et environnement

Arrêté ministériel : ?

Présentée par

Thomas Karaouzene

Thèse dirigée par Pierre Ray

Thèse co-dirigée par Nicolas Thierry-Mieg

préparée au sein du laboratoire et de l'école doctorale "Ingénierie de la Santé, de la Cognition et Environnement" (EDISCE)

Écrire le titre de la thèse ici

Thèse soutenue publiquement le 31 octobre 2017, devant le jury composé de :

Préface

This is an example of a thesis setup to use the reed thesis document class (for LaTeX) and the R bookdown package, in general.

Table des matières

Remer	cieme	nts	1
Résum	ı é		3
Abstra	ict		5
Chapit	re 1 :	Introduction	7
1.1	La spe	ermatogénèse	7
	1.1.1	Rappels sur le testicule	7
	1.1.2		8
	1.1.3	La méïose	(
	1.1.4	La spermiogénèse	2
1.2	Struct	sure et fonction du spermatozoïde	4
	1.2.1	Anatomie du spermatozoïde	4
	1.2.2	Fonction du spermatozoïde	Ć
1.3	L'infe	rtilité masculine	Ć
	1.3.1	Les différents phénotypes d'infertilité masculine)(
	1.3.2	La génétique de l'infertilité) [
1.4	Les te	chniques d'analyses génétiques	12
	1.4.1	Les puces	2
	1.4.2	Le séquençage NGS	2
1.5	L'anal	lyse bioinformatique des données de NGS	26
	1.5.1	L'analyse des données brutes	27
	1.5.2	L'annotation des variants	9
	1.5.3	Conclusion NGS	}_
Chapit	tre 2	: Investigation génétique et physiologique de la globo-	
zoo	sperm	ie	3
Chapit	re 3:	AAA	Ē
Conclu	ısion .		7
Annex	e A : 7	The First Appendix	9
Annex	e B : '	The Second Appendix, for Fun 4	1

References	43

Liste des tableaux

1.1 Durée de vie moyenne des cellules germinales humaines	7
---	---

Table des figures

1.1	Schéma anatomique du testicule humain :	8
1.2	Les différentes phases de la spermatogénèse (À CHANGER!!!!!)	10
1.3	Les différentes étapes de la méiose gamétique masculine	11
1.4	Les différentes phases de la division cellulaire	12
1.5	Schéma simplifé d'un enjambement chromosomique	12
1.6	Principales étapes et modifications structurales lors de la spermiogénèse	14
1.7	Anatomie du spermatozoïde	15
1.8	Schéma de la compaction de l'ADN dans les cellules somatiques et dans	
	les spermatozoïde	17
1.9	Structure simplifiée de l'axonème d'après Inaba (2003)	18
1.10	Structure du flagelle d'un spermatozoïde d'après Borg et al. (2010)	19
1.11	Présentation de la taille des reads et du nombre de reads par run en	
	fonction de la technologie de séquençage utilisée, d'après Brendan et.	
	al, (2014)	23
1.12	Présentation des différentes stratégies d'amplification de l'ADN dans le	
	cadre du NGS	25
1.13	Représentation des erreurs d'appel de type IR et AR en fonction de la	
	platforme de séquençage et du logiciel d'appel, d'après n Hwang et al	
	2015	28
1.14	Diagramme de Venn des prédictions de pathogénicités de six logiciels	
	d'après Salgado et al. (2016)	30

Remerciements

Je remercie . . .

- Les rapporteurs
- Les membres du jury
- Pierre
- Nicolas
- L'équipe BCM
- Kevin Keurcien Thomas Florient
- Léquipe GETI
- La BGM
- Mes amis
- Ma famille
- Dadette et Marco
- Simon
- Aurélien
- Mes parents
- Ma soeur
- Estelle
- Noham

Résumé

Résumé de ma thèse Second paragraph of abstract starts here.

Abstract

Même chose en anglais

Chapitre 1

Introduction

1.1 La spermatogénèse

La spermatogenèse des mammifères est un processus long et complexe contrôlé par plusieurs mécanismes étroitement liés ((Gnessi, Fabbri, & Spera, 1997, KIERSZEN-BAUM (1994)), Sharpe1994 à trouver!!!). C'est au cours de celle-ci qu'à partir de cellules germinales, seront produits les spermatozoïdes matures. Ce processus est divisé en trois phases principales : La phase de multiplication, la phase de division (appelée la méiose) et la phase de maturation. Chez les hommes, ces étapes se déroulent en continue dans la paroi des tubes séminifères du testicule depuis la puberté jusqu'à la mort et implique trois types de cellules germinales : les spermatogonies, les spermatocytes et les spermatides. Le temps nécessaire pour obtenir un spermatozoïde mature à partir de cellules germinales est de 74 jours et la production quotidienne de spermatozoïde est d'environ 45 million par testicules (JOHNSON, PETTY, & NEAVES, 1980). Le cycle spermatogénétique est défini comme la succession chronologique des différents stades de différenciation d'une génération de cellules germinales (depuis la spermatogonie jusqu'au spermatozoïde). Chacune des étapes 35du cycle spermatogénétique a une durée fixe et constante selon les espèces

1.1.1 Rappels sur le testicule

Les testicules sont les organes sexuels masculins. Ils possèdent deux fonctions principales (plus ou moins exprimés selon les périodes de la vie de l'individu) :

Table 1.1 – Durée de vie moyenne des cellules germinales humaines

Cellules germinales	Durée de vie moyenne (jours)
Spermatogonies Ap	16-18
Spermatogonie B	7.5-9
Spermatocytes primaires	23
Spermatocytes secondaires	1
Spermatides	1

une fonction endocrine caractérisée par la synthèse des hormones stéroïdes sexuelles masculines (la stéroïdogenèse) et une fonction exocrine au cours de laquelle seront produits les gamètes masculins. Chez un individu adulte en bonne santé, le testicule présente une forme ovoïde ayant un volume moyen de 18 cm3. Chez l'homme, comme chez la plupart des mammifères terrestres, ils sont localisés sous le pénis dans une poche de peau appelée scrotum et reliés à l'abdomen par le cordon spermatique (**Figure :** 1.1). Cette externalisation des testicules permet leur maintien à une température plus basse que celle du reste du corps nécessaire à la spermatogenèse.

L'intérieur du testicule contient des tubes séminifères enroulés ainsi que du tissu entre les tubules appelé espace interstitiel. Les tubes séminifères sont de longs tubes compactés sous forme de boucles et dont les deux extrémités débouchent sur le *rete testis* (**Figure :** 1.1). C'est le long des parois du tube séminifère que se déroulera l'ensemble des étapes de la spermatogenèse.

Figure 1.1 – Schéma anatomique du testicule humain :

1.1.2 La phase de multiplication

La phase de multiplication est la phase au cours de laquelle les spermatogonies se divisent par mitoses pour aboutir au stade de spermatocytes primaires. Les spermatogonies sont des cellules diploïdes à l'origine de l'ensemble des autres cellules germinales humaines. Pour cela, elles vont s'auto-renouveler par mitose successive afin

de maintenir une production continue de spermatozoïdes tout au long de la vie de l'individu. Ces cellules sont localisées dans le compartiment basal des tubes séminifères. Les analyses histologiques ont permis de distinguer trois types de spermatogonies en fonction de leur contenu en hétérochromatine ((Clermont, 1963, Clermont (1966), Goossens & Tournaye (2013))):

- 1. Les spermatogonies de type A dark (ou Ad)
- 2. Les spermatogonies de type A pale (ou Ap)
- 3. Les spermatogonies de type B

Chez l'Homme, les spermatogonies Ad ont une activité mitotique au cours de la spermatogénèse et servent de réserve. Elles vont au cours d'une première mitose former une spermatogonie Ad et un spermatogonie Ap (**Figure :** 1.2). Cette propriété permet à la fois de se différencier en spermatocytes tout en constituant un compartiment de réserve de spermatogonies Ad pour la régénération de la population de cellules germinales au sein de l'épithélium séminifère. L'entrée en division des spermatogonies Ap se fait par groupes cellulaire tous les 16 jours. Les cellules d'une même génération maintiennent entre elles des ponts cytoplasmiques jusqu'à la spermiogénèse ce qui permet la synchronisation parfaite du développement gamétique de toutes les cellules filles issues d'un groupe de spermatogonies Ap. Ce phénomène est appelé onde spermatogénétique. Chaque spermatogonie Ap va, lorsqu'elle se divise par mitose, former deux spermatogonies B qui elles-mêmes se diviseront en deux spermatocytes primaires diploïdes (**Figure :** 1.2).

Figure 1.2 – Les différentes phases de la spermatogénèse (À CHANGER!!!!!)

1.1.3 La méïose

La méiose, ou phase de maturation, est l'étape au cours de laquelle, à partir de cellules diploïdes (les spermatogonies B) vont se former des cellules haploïdes, les spermatocytes secondaire (spermatocytes II). Ce résultat est le fruit de deux divisions successives (Figure: @ref(fig:méiose)) appelée respectivement méiose réductionnelle ou méiose I (MI) et méiose équationnelle ou méiose II (MII). La MI va séparer les chromosomes homologues, produisant deux cellules et réduisant la ploïdie de diploïde à haploïde (d'où son non réductionelle). En plus de son rôle de division vu précédemment, la méiose joue un rôle clef dans le brassage génétique (mélange des gènes) et ce, grâce à deux mécanismes de brassage : le brassage inter-chromosomique, lorsque les chromosomes sont séparés et le brassage intra-chromosomique impliquant notamment des enjambements chromosomiques (crossing-over) (Figure: 1.5).

Figure 1.3 – Les différentes étapes de la méiose gamétique masculine : D'après Sasaki et Matsui,2008

La méiose est initié dès la fin de la phase de multiplication à partir des spermatocytes primaires issus de la division des spermatogonies de type B. Ces cellules nouvellement formées se situent dans le compartiment basal du tube séminifère. C'est là qu'ils vont tout d'abord subir une interphase (stade préleptotène) durant entre 2 à 4 jours. Au cours de cette phase a lieu la réplication de l'ADN. Cette réplication se fait lorsque l'ADN est à l'état de chromatine, pendant la phase S (pour synthèse) de l'interphase. À l'issue de cette phase, chaque chromosome sera composé de deux chromatides reliées entres elles par le centromère, le matériel génétique de chaque cellules ayant donc été multiplié par 2. Par la suite, ces cellules vont subir deux divisions méiotiques, chacune composées de 4 étapes distincte (**Figure :** 1.4) :

- 1. La prophase, caractérisée par la condensation de la chromatine formant ainsi les chromosomes.
- 2. La métaphase, phase au cours de laquelle les chromosomes vont s'aligner à l'équateur de la cellule pour former la plaque équatoriale.
- 3. L'anaphase, les chromatides sœurs (ou les chromosomes homologues en fonction de la phase méiotique) vont se séparer et migrer aux pôles opposés de la cellule.
- 4. La télophase, qui est l'étape finale, les chromosomes se décondensent et l'enveloppe nucléaire se reforme autours des chromosomes. La cellule mère se sépare alors en deux cellules filles.

Figure 1.4 – Les différentes phases de la division cellulaire : De la prophase (à gauche) à la télophase (à droite)

La première division méiotique aboutit à la formation des spermatocytes secondaires (spermatocytes II). À ce stade, les cellules sont haploïdes et chaque chromosome est composé de deux chromatides sœurs. Après, cette brève étape (environ 1 jour) ainsi qu'une très courte interphase sans réplication de l'ADN, les spermatocytes II vont entrer en deuxième division méiotique. Cette deuxième division est très semblable à une division mitotique. La prophase II, à la différence de la prophase I, est très courte. Lors de cette étape, les chromosomes constitués de chromatides sœurs se dirigent vers la plaque équatoriale. En métaphase II, les chromosomes s'alignent au niveau de leurs centromères. En anaphase II, les chromatides sœurs se séparent l'une de l'autre et migrent vers les pôles opposés des spermatocytes II. Lors de la télophase II, on observe la formation de cellules filles haploïdes appelées spermatides, contenant chacune n chromosomes.

Figure 1.5 – Schéma simplifé d'un enjambement chromosomique

1.1.4 La spermiogénèse

La spermiogénèse est la phase finale de la spermatogénèse. Elle dure environs 23 jours chez l'humain et peut être subdivisée en sept étapes (**Figure :** 1.6). La spermiogénèse définie la cytodiférentiation des spermatides en spermatozoïdes. C'est au cours de cette phase que les caractéristiques morphologique et fonctionnelles du spermatozoïde seront déterminées (Clermont & Oko 1993 à trouver!!!). Elle est caractérisée par 3 évènements majeurs : la formation de l'acrosome, la compaction

de l'ADN nucléaire et la formation du flagelle. Le développement de l'acrosome et la formation du flagelle commence au niveau des spermatides rondes (Escalier et al., 1991). pendant l'élongation de la spermatide, le noyau se condense et devient hautement polarisé (Hamilton, D. W., Waites, 1990).

Les spermatides sont situées dans le compartiment adluminal, à proximité de la lumière du tube séminifère. Ce sont de petites cellules (8 à 10 $\mu m)$ que l'on peut schématiquement diviser en trois classes :

- 1. les spermatides rondes (**Figure**: 1.6 1-2): L'identification de ces ces cellules représente un difficulté technique. Elles ont cependant pu être décrites en détaille par différentes techniques de coloration sous microscope optique ((Clermont, 1963), (Papic, Katona, & Skrabalo, 1988), (Schenck & Schill, n.d.), (Adelman & Cahill, 1989), (World Health Organization, 1992)). Plusieurs études animales on pu démontrées le potentiel des spermatides rondes à donner la vie à des individus sains et fertiles, ((a Ogura, Matsuda, & Yanagimachi, 1994), (A. Ogura, Matsuda, Asano, Suzuki, & Yanagimachi, 1996), (Sasagawa & Yanagimachi, 1997)), la même chose ayant été également observée plus récemment chez l'homme ((A. Tanaka et al., 2015)) bien que le taux de fécondation et d'implantation soit extrêmement faible ((Asimakopoulos, 2003)). Ils possèdent un noyau rond avec une chromatine pâle et homogène. C'est à partir de ces étapes que démarre la biogenèse de l'acrosome avec la production par l'appareil de Golgi des vésicules pro-acrosomales (phase de Golgi). Les deux centrioles contenus dans le cytoplasme vont se déplacer au futur pôle caudal. Le centriole proximal est inactif alors que le centriole distal donne naissance à un ensemble de microtubules à l'origine de l'axonème du futur flagelle.
- 2. Les spermatides en élongation (**Figure :** 1.6 3-4) : peuvent aussi donner naissance avec un meilleur taux que les spermatides rondes et engendrerai théoriquement moins de risques d'anomalies génétiques ((Asimakopoulos, 2003)). **A completer**
- 3. Les spermatides en condensation (**Figure :** 1.6 5-7) : C'est le stade final de la différentiation du spermatide en spermatozoïde. À ce stade le noyau est très allongé, avec une partie caudale globulaire et une partie antérieure saillante. La chromatine est sombre et condensée. L'axonème va continuer à s'allonger pour former le flagelle mature. Les différentes organelles inutiles pour la physiologique spermatique et l'excès de cytoplasme vont former la gouttelette cytoplasmique qui va se détacher et donner le corps résiduel qui va ensuite être phagocyté par les cellules de Sertoli ((Hermo, Pelletier, Cyr, & Smith, 2010)).

Une fois ces étapes de différentiation finies, les spermatides sont relachées en tant que spermatozoïdes dans la lumière du tube séminifère. Ce procédé est appelé spermiation.

Figure 1.6 – Principales étapes et modifications structurales lors de la spermiogénèse : 1. La spermatide immature avec un gros noyau arrondi. La vésicule acrosomale est attachée au noyau, l'ébauche du flagelle n'atteint pas le noyau. 2. La vésicule acrosomale a augmenté de taille et apparaît aplatie au niveau du noyau. Le flagelle entre en contact avec le noyau. 3-7. Formation de l'acrosome, condensation du noyau et développement des structures flagellaires. Ac, acrosome; Ax, axonème; CC, corps chromatoïdes; CR, corps résiduel; FD, fibres denses; GF, gaine fibreuse; M, mitochondrie; Ma, manchette. D'après Touré et al., 2011

1.2 Structure et fonction du spermatozoïde

1.2.1 Anatomie du spermatozoïde

Une fois Il est composé de deux parties principales : La tête et le flagelle (**Figure :** 1.7).

Figure 1.7 – Anatomie du spermatozoïde

La tête

- 1. L'acrosome : C'est une vésicule de sécrétion géante située dans la moitiée superieur de la tête du spermatozoïde. Elle se développe à partir de l'appareil de Golgi lors de la spermiogénèse. Au cours de sa formation, l'acrosome forme tout d'abord un granule sphérique qui se colle sur la partie apical du noyau. En s'aplatissant contre celui-ci, l'acrosome va prendre une forme hémishpérique recouvrant la membrane nucléaire formant la coiffe céphalique... Le rôle de l'acrosome est fondamental dans le processus de fécondation puisqu'il permet d'excréter nottament l'acrosine, une enzyme de digestion permettant au spermatozoïde de pénétrer la zone pellucide qui entoure les ovocytes. Ce processus de relargage est appelé réaction acrosomal.
- 2. L'acroplaxome : TODO!!!
- 3. Le noyau : Le noyau est une structure cellulaire présente dans la majorité des cellules eucaryotes. Il contient l'essentiel du materiel génétique. Le noyau du

spermatozoïde est caractérisé par une compaction extrêmement importante de l'ADN. Dans les cellules somatiques l'ADN est enroulé par unité de 146 paires de bases autour d'un octamère d'histones dit de cœur (H2A, H2B, H3 et H4) afin d'organiser les 3 milliards de paires de bases du génome humain dans un noyau de quelques microns (Figure: 1.8). L'ADN des spermatides va subir une réorganisation chromatinienne plus importante au cours de la spermatogénèse afin d'augmenter sa compaction. Ainsi, les octamères d'histones présents dans les cellules somatiques sont remplacées par deux protéines riches en arginine et en cystéine PRM1 et PRMM2). Ces protéines sont appellées des protamines (Figure: 1.8). L'intégrité des deux protéines composant ce dimère est nécéssaire pour la procréation (Cho et al., 2001). Cette compaction extrême permet de réduire la taille du noyau, mais aussi de protéger l'ADN d'agents de dégradation comme l'oxydation des bases. Parallèlement à cette condensation chromatinienne se produit un arrêt des processus de transcription cellulaire ((Kierszenbaum & Tres, 1978)). Le noyau du spermatozoïde est donc un noyau au repos, transcriptionnellement inactif ((Ward, 1994))

Figure 1.8 – Schéma de la compaction de l'ADN dans les cellules somatiques et dans les spermatozoïde : D'après Braun (2001)

Le flagelle

Le flagelle représente la queue du spermatozoïde. Celui-ci permet, par mouvement d'oscilation à haute vitesse, le déplacement du spermatozoïde. Cette mobilité est générée par un cytosquelette interne extrêmement conservé durant l'évolution appelée l'axonème. Celui-ci est composé de neuf doublets de microtubules périphériques et de deux doublets internes (Inaba, 2003) (**Figure :** 1.9), on parle alors de structure "9 + 2". Les doublets externes sont reliés entre eux par des ponts de nexine et au doublet central par des ponts radiaires.

Figure 1.9 – L'axonème es constitué de neuf doublets de microtubules périphériques reliés entre eux par des liens de nexine d'un doublet central relié aux doublets périphériques par des ponts radiaires

Le flagelle su spermatozoïde peut être divisé en trois partie distinctes (**Figure :** 1.10) :

- 1. La pièce intermédiaire : Elle fait jonction avec la tête du spermatozoïde et est composée de la gaine de mitochondrie qui fournira une partie de de l'énergie nécéssaire au batement flagellairee (grâce à la phosphorylation oxydative qui produit de l'ATP), l'axonème qui se prolonge dans la pièce principale et un ensemble de neuf faisceaux de fibres denses.
- 2. La pièce principale : Ici, la gaine de mitochodrie a disparue ainsi que deux des faisceaux de fibres denses présents dans la pièce intermédiaire. On note cependant la présence d'une structure suplémentaire, la gaine fibreuse. Cette gaine entoure l'axonème et comporte deux épaississements diamétralement opposés, appelées colonnes longitudinales sur lesquelles s'insère les fibres denses 3 et 8. C'est le long de la gaine fibreuse qu'est produit la majorité de l'énergie 46nécessaire au glissement des microtubules ((Eddy, 2007)).
- 3. La pièce terminale : Elle est située au niveau'de l'extrémité distale du flagelle et ne contient que l'axonème (Inaba, 2003).

Figure 1.10 – Structure du flagelle d'un spermatozoïde d'après Borg et al. (2010) : Coupes transversales en microscopie électronique. Le flagelle se compose de trois parties : la pièce intermédiaire, contenant les mitochondries, la pièce principale et la pièce terminale. L'axonème, en position centrale, parcours tout le flagelle. Des structures périaxonèmales sont observables : les fibres denses dans la pièce intermédiaire et principale, et la gaine fibreuse dans la pièce principale seulement.

1.2.2 Fonction du spermatozoïde

En plus d'être unique dans sa morphologie, le spermatozoïde l'est aussi dans sa fonction puisque c'est la seule cellule produite de manière endogène et dont l'action est exercée de manière exogène.

1.3 L'infertilité masculine

L'organisation mondiale de la santé définie l'infertilité comme étant : "une pathologie du système reproductif définie par l'échec d'une grossesse clinique après 12 mois ou plus de rapports sexuels réguliers non protégés" (Who.int. 2013-03-19. Retrieved 2013-06-17). Environ 10-15% des couples humains sont considérés infertiles. On estime que dans la moitié des cas, la cause sous-jacente est masculine. Les facteurs causaux sous-jacents de l'infertilité masculine peuvent être attribués à des toxines environnementales, des troubles systémiques tels que la maladie hypothalamo-hypophysaire, les cancers testiculaires et l'aplasie des cellules germinales. Les facteurs génétiques, y compris les aneuploïdies et les mutations de gènes uniques, contribuent également à l'infertilité masculine. Cependant, aucune cause n'est identifiée dans 10-20% des cas.

The entire process (of spermatogenesis) is tightly synchronized and integrated, so that pathological conditions which produce even very small deviations are likely to lead to infertility (Barratt, 1995)

Barratt, C.L.R. (1995) Spermatogenesis. In Grudzinsky, J.G. and Yovich, J.L. (eds) Gametes: the spermatozoon. Cambridge University Press, Cambridge

1.3.1 Les différents phénotypes d'infertilité masculine

Liée à la quantité

Immature germ cells are present in ejaculates of subjects with a normal sperm count (Michael and Joel, 1937; Tomlinson et al., 1992), oligozoospermia (Mac Leod, 1970; Tomlinson et al., 1993), or azoospermia (Kurilo et al., 1993) and the presence of immature germ cells increases as the sperm count decreases (Sperling and Kaden, 1971) Michael, M. and Joel, K. (1937) Zellformen in normalen und pathologischen Ejakulaten und ihre klinische Bedeutung. Schweiz. Med. Wsch., 33, 757.

Tomlinson, M.J., Barratt, C.L.R., Bolton, A.E. et al. (1992) Round cells and sperm fertilizing capacity: the presence of immature germ cells but not seminal leukocytes are associated with reduced success of in vitro fertilization. Fertil. Steril., 58, 1257–1259. MacLeod, J. (1970) The significance of deviations in human sperm morphology. In: Rosemberg, E. and Paulsen, C.A. (eds) The human testis. Plenum, New York, pp. 481–494.

Tomlinson, M.J., Barratt, C.L.R. and Cook, I.D. (1993) Prospective study of leukocytes and leukocyte populations in semen suggests they are not a cause of male infertility. Fertil. Steril., 60, 1069–1075

Kurilo, L.F., Liubashevskaia, I.A., Dubinskaia, V.P. and Gaeva, T.N. (1993) Karyological analysis of the count of immature germ cells in the ejaculate. Urol. Nefrol. (Mosk.), 2, 45–47.

Sperling, K. and Kaden, R. (1971) Meiotic studies of the ejaculated seminal fluids of humans with normal sperm count and oligospermia. Nature, 232, 481

In humans, spermatogenic arrest was considered a hopeless condition for couples desiring to conceive. However, the documented success of intracytoplasmic sperm injection (ICSI; Palermo et al., 1992) has pointed to using this technique to inject spermatids into oocytes (Edwards et al. 1994; Ogura et al., 1994) Palermo, G., Joris, H., Devroey, P. and Van Steirteghem, A.C. (1992) Pregnancies after intracytoplasmic sperm injection of a single spermatozoon into an oocyte. Lancet, 340, 17–18.

Edwards, R.G., Tarin, J.J., Dean, N. et al. (1994) Are spermatids injections into human oocytes now mandatory? Hum. Reprod., 9, 2217–2219.

Ogura, A., Matsuda, J. and Yanagimachi, R. (1994) Birth of normal young after electrofusion of mouse oocytes with round spermatids. Proc. Natl. Acad. Sci. USA, 91, 7460–7462

Spermatogenic arrest, the inability of spermatogenetic cells to develop into male gametes within the gonads, has been reported in 4–30% of testicular biopsies of patients with severe oligospermia or azoospermia (Wong et al., 1973; Levin, 1979; Colgan et al., 1980; Soderstrom and Suominen, 1980; Nomen et al., 1984) Wong,

T.W., Strauss, F.H. and Worne, N.E. (1973) Testicular biopsy in male infertility: I. Testicular causes of infertility. Arch. Pathol. Lab. Med., 95, 151–159.

Levin, H.S. (1979) Testicular biopsy in the study of male infertility. Hum. Pathol., 10, 569–579

Colgan, T.J., Bedar, Y.C., Strawbridge, H.T.G. et al. (1980) Reappraisal of the value of the testicular biopsy in the investigation of infertility. Fertil. Steril., 33, 56–60. Soderstro"m, K.O. and Suominen, J. (1980) Histopathology and ultrastructure of meiotic arrest in human spermatogenesis. Arch. Pathol. Lab. Med., 104, 476–482. Soderstro"m, K.O. and Suominen, J. (1980) Histopathology and ultrastructure of meiotic arrest in human spermatogenesis. Arch. Pathol. Lab. Med., 104, 476–482.

Spermatogenic arrest can occur at any stage of germ cell formation; primary spermatocyte arrest is most prominent, followed by spermatid arrest, and least commonly, spermatogonial arrest. Arrest at primary spermatocyte stage can be incomplete, so that a few secondary spermatocytes or spermatids are observed (Girgis et al., 1969) Girgis, S.M., Etriby, A., Ibrahim, A.A. and Kahil, A. (1969) Testicular biopsy in azoospermia. A review of the last ten years' experience of over 800 cases. Fertil. Steril., 20, 467–477.

liée à la forme

teratozoospermia

La globozoospermie La globozoospermie est une anomalies des spermatozoïdes caractérisé par une tête ronde dépourvue d'acrosome et d'une pièce intermédiaire désorganisiée ((Singh, n.d.), (Pedersen & Rebbe, 1974))

liée à la mobilitée

Sperm motility is necessary for the transport of male DNA to eggs in species with both external and internal fertilization.

1.3.2 La génétique de l'infertilité

Les causes fréquentes

Les microdélétions du chromosome Y

Anomalies chromosomiques

Mutations CFTR

Les nouveaux gènes

1.4 Les techniques d'analyses génétiques

L'acide desoxyribonucléique (ADN) a été identifié comme étant le porteur de l'information génétique par Oswald Theodore Avery en 1944. Sa structure en double hélice composée par quatre bases, la thymine, l'adénine, la guanine et la cytosine fut caractérisée en 1953 par James D. Watson et Francis Crick

1.4.1 Les puces

1.4.2 Le séquençage NGS

Avant de parler des nouvelles technologies de séquençage (NGS) faisons un bref historique du séquençage de l'ADN. En 1977 Frederick Sanger développe une technologie de séquençage d'ADN basée sur la méthode chain-termination. Ce procédé est desormais connu sous le nom de séquençage Sanger. D'autre méthode furent développées à la même periode, notamment celle de Walter Gilbert basée sur la modification chimique de l'ADN, cependant sa grande efficience et sa faible utilisation de la radioactivité permirent au séquençage Sanger de s'imposer comme référence dans la "première génération" de séquençeur à application de commerciale et de recherche (Wikipedia). Apparu en 1998, les instruments de séquençage automatique ainsi que les logiciels associés utilisant le séquençage par capilarité et la technologie Sanger furent les outils principaux qui permirent la completion du human genome project en 2001 (Collins, Morgan, & Patrinos, 2003).

Contrairement à la méthode Sanger, le NGS lit des fragment d'ADN, provenant d'un génome entier, de manière aléatoire. Pour cela, la molécule d'ADN est "coupée" en plusieurs fragments d'une taille donnée. Ce sont ensuite ces fragments qui seront, après une étape d'amplification spécifique au différentes plateformes, séquencés simultanément. C'est pourquoi on parle souvent de séquençage parrallèle massif pour décrire le NGS. Le produit de ce séquençage est appelé read. Cette technologie est avantageuse de part la masse de reads qu'elle produit et par son faible cout par bases séquencées (Metzker, 2010). Ces caractéristiques ont permis au séquençage Haut-débit d'être courmment utilisé dans le domaine de la recherche clinique.

La taille des *reads* obtenus par séquençage NGS est nettement inferieure à celle atteinte par le séquençage Sanger. À l'heure actuelle, les *reads* aobtenus par séquençage NGS ont une taille comprise entre 50 et 500 pb pour la plupart des plateforme contre . . . obtenus par Sanger (**Figure :** 1.11), c'est pour cela que les résultats du séquençage NGS sont appelés des *reads* courts ou *short reads*.

Étant donnée que le NGS produit à l'heure actuelle des *reads* courts la notion de couverture est importante et représente l'un des critère majeur à considérer dans l'analyse des données (Sims, Sudbery, Ilott, Heger, & Ponting, 2014). La couverture

est définie comme le nombre de *reads* qui, après l'atape d'alignement, se chevauchent les uns les autres au sein du région génomique spécifique. Par exemple, une couverture de 30x pour le gène *XXXX* signifie que chaque nucléotide de ce gène est chevauchés par au moins 30 *reads* distincts.

Figure 1.11 – Présentation de la taille des reads et du nombre de reads par run en fonction de la technologie de séquençage utilisée, d'après Brendan et. al, (2014) : Sequencing space based on read length (in bases) and number of reads per run. Points represent official platform/chemistry combination releases and are color-coded based on the platform family. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/wound

L'amplification

Dans la plupart des technologies, la phase de séquençage est précédée par une étape d'amplification de l'ADN. Cette amplification se fait dans la grande majoritée des cas sur une surface solide exepté pour la PCR en émultion qui s'effectue en phase aqueuse. Elle permet d'obtenir dans une région définie plusieurs milliers de copie du même fragment d'ADN, appelés des clones. Cette étape assure que le signal emis lors du séquençage pourra être distingué du bruit. Chacun de ces spots d'amplification appelés aussi centre de réaction, se retrouve donc être le représentant d'un unique fragment

d'ADN et sera ensuite séquencé parrallèlement aux autres spots. Une platforme de séquençage pouvant gérer plusieurs millions de ces centres de réactions simultanément, séquençant ainsi plusieurs millions de mollécules d'ADN en parrallèle, donnant ainsi le nom à ces techniques qualifiées de séquençage massif en parrallèle. Cette étape d'amplification est généralement précédée d'une phase de fragmentation de l'ADN. cette fragmentation peut-être phisique, enzymatique ou bien chimique. Ce sont les résidus d'ADN résultant de cette fragmentation qui seront ensuite amplifié. Il existe quatre stratégies utilisées pour le clonage de l'ADN dans le cadre du NGS :

- 1. La PCR en emulsion ou emPCR (**Figure :** 1.12 **a**) : Le patron d'ADN fragmenté simple brin est lié à une séquence adaptatrice complémentaire et est capturé par une goutelette aqueuse appelée micelle contenant une bille recouverte d'adaptateur complémentaire à celui fixé sur le fragment d'ADN ainsi que tout les composant nécéssaire à la réaction de PCR. En respectant un ratio nombre de molécule d'ADN / nombre de billes, on va fixer un seul fragment d'ADN sur chaque bille. Chacune de ces billes seront donc, en fin de réaction, recouverte par plusieurs milliers de copies de la même séquence d'ADN.
- 2. L'amplification par pont sur face solide (**Figure :** 1.12 **b**) : Les fragments d'ADN sont liés à des séquences adaptatrices et liée par une de leurs extrémités à une amorce fixée sur un support solide. Du fait de la dilution, les molécules d'ADN se trouvent éloignées les unes des autres. L'extrémitée libre du fragment interagit avec les amorces situées à proximité formant une structure en pont, d'où le nom de PCR en pont ou bridge-PCR. La PCR va alors synthétizer un deuxième brin complémentaire aux fragments immobilisés sur le support. En procédant à des cycles de température comme pour une réaction PCR classique, on obtient à l'emplacement de chaque molécule initiale un massif de molécules fixées sur la plaque, toutes identiques à la molécule initiale.
- 3. Amplification par modèle mobile ou walking-template (Figure: 1.12 c): L'ADN fragmenté est lié à un adaptateur et lié à une amorce complémentaire fixée sur un suport solide. Le brin complémentaire du fragment sera synthétisé par PCR à partir de l'amorce fixée. La molécule double brin nouvellement formée sera ensuite partiellement dénaturée permettant à l'extrémitée libre de se fixée à une séquence amorce voisine. Des amorces reverse sont ensuite utilisées por resynthétiser un fragment d'ADN libre à partir des fragments fixés sur le support.
- 4. (Figure: 1.12 d): PAS DU TOUT COMPRIS LE MECHANISME!!!

a Emulsion PCR (454 (Roche), SOLiD (Thermo Fisher), GeneReader (Qiagen), Ion Torrent (Thermo Fisher)) On-bead amplification Emulsion Final product Micelle droplets are loaded Templates hybridize to bead-bound primers and are amplified; 100-200 million beads with after amplification, the complement strand disassociate's, leaving bead-bound ssDNA templates with primer, template, thousands of bound template dNTPs and polymerase b Solid-phase bridge amplification c Solid-phase template walking (SOLiD Wildfire (Thermo Fisher)) (Illumina) Template binding Free templates hybridize with slide-bound adapters Template binding Primer walking Free DNA templates hybridize to bound primers and the dsDNA is partially denatured, allowing the free end to second strand is amplified hybridize to a nearby primer Bridge amplification Cluster generation Distal ends of hybridized templates After several rounds of interact with nearby primers where amplification, 100-200 million amplification can take place clonal clusters are formed Patterned flow cell Microwells on flow cell direct cluster generation, Template regeneration Cluster generation increasing cluster density Bound template is amplified After several cycles of to regenerate free DNA amplification, clusters on a templates patterned flow cell are generated In-solution DNA nanoball generation Rolling circle amplification (Complete Genomics (BGI)) Circular templates are amplified to generated long Cleavage concatamers, called DNA nanoballs; intermolecular Circular DNA interactions keep the nanoballs cohesive and templates eparate in solution are cleaved downstream of the adapter sequence Adapter ligation Iterative ligation 3× One set of adapters Three additional is ligated to either rounds of ligation, end of a DNA circularization and template, followed cleavage generate a Hybridization by template circular template with DNA nanoballs are immobilized on a four different adapters circularization patterned flow cell

Figure 1.12 – Présentation des différentes stratégies d'amplification de l'ADN dans le cadre du NGS d'après Goodwin (2016) :

Le séquençage

pyroséquençage

Il existe deux types de technologies permettant le séquençage de reads courts :

1. Séquençage par ligation

2. Séquençage par synthèse

Le séquençage nouvelle génération (NGS) a apporté avec lui des opportunités sans précédent dans le domaine de la recherche en génomique. Il a pu être appliqué à une grande variété de contexte avec nottament le séquençage de génome entier, ou Whole Genome Sequencing (WGS) ou encore le séquençage exonique, le Whole Exome Sequencing (WES). Cependant, certaines de ses caractéristiques techniques tel que la production de plusieurs milliards de **reads** courts, bien quelles soient en partie responsable de son succès, sont aussi à l'origine de nouvelle problématique, notamment dans l'analyse et l'interprétation des données.

1.5 L'analyse bioinformatique des données de NGS

Next-generation sequencing techniques are demonstrating promise in transforming research in life sciences (Schuster, 2007)

Next-generation sequencing transforms today's biology

Ces techniques ont été appliquées dans différents contextes, notamment la métagénomique (J. Qin et al., 2010), la détéction de SNPs (Van Tassell et al., 2008) et de variants structuraux (Alkan et al., 2010, Medvedev, Stanciu, & Brudno (2009)) mais également dans des études portant sur la méthylation de l'ADN (K. H. Taylor et al., 2007), l'analyse de l'expression des ARNs messagers (Sultan et al., 2008), dans la génétique du cancer (Guffanti et al., 2009) et la médecine personalisée (Auffray, Chen, & Hood, 2009). Cependant, pour l'ensemble de ces applications, la grande quantité de données générées par chaque analyse pose plusieurs défis informatiques (Horner et al., 2009). En effet, les progres techniques des dernières décénies ont rendu possible le séquençage de plusieurs millions des reads d'ADN en un temps reliativement court et à couts raisonable. Ainsi, l'émergence du du WGS et du WES a permit de réunir une quantité jusqu'à présent inégalé d'information sur les variation génétiques, et d'une manière plus générale, sur les gènes et leurs fonctions ((Mardis, 2008), (Bentley, 2006)). Cependant, de part leur nature et leur quantité, l'aquisition de ces nouvelles données a engendrée de nouvelles problématiques notamment dans l'analyse des données et leur interprétation.

The number of research projects dealing with whole-genome sequencing data has been emerging in humans [3, 4, 5, 6], 3 Goldstein DB, Allen A, Keebler J, Margulies EH, Petrou S, Petrovski S, et al. Sequencing studies in human genetics : design and interpretation

- 4 Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet
- 5 Lam HYK, Clark MJ, Chen R, Chen R, Natsoulis G, O'Huallachain M, et al. Performance comparison of whole-genome sequencing platforms. Nat Biotechnol
- 6 Morozova O, Marra M. Applications of next-generation sequencing technologies in functional genomics. Genomics

1.5.1 L'analyse des données brutes

L'alignement

L'alignement des séquences constitue probablement l'étape la plus importante de l'analyse des données issues du séquençage haut débit (Flicek & Birney, 2009). Elle est la base sur laquelle reposent l'ensemble des étapes effectuées en aval, notamment l'appel des variants (R. Nielsen, Paul, Albrechtsen, & Song, 2011). L'objectif de l'alignement est de déterminer la position correcte de chacun des reads séquencés le long du génome de référence. Cette référence est souvent construite à partir des données de séquençage de plusieurs donneurs et ne représente donc pas la séquence d'un individu en particulier mais est sensé représenter la séquence consensus d'une espèce donnée. Par exemple, la séquence de référence humaine GRCh37 (Genome Reference Consortium human build 37) a été crées à partir de 13 volontaires anonymes New-Yorkais. Dès lors, cette référence servira de patron aux aligneurs afin qu'ils replacent correctements les différents reads des l'individus séquencés.

Cependant, l'étape d'alignement peut est sujette à de nombreuses erreurs dont certaines proviennent directement des erreurs de survenues lors de l'étape de séquençage, d'autres, sont dues aux caractéristiques des régions séquencées comme par exemple les séquence répétées (Ben Langmead & Salzberg, 2012) qui pourront entrainer l'alignement d'un même read à plusieurs région du génome (Treangen & Salzberg, 2013). De nombreux aligneurs ont emmergé afin de répondre au mieux à cette problématique tel que Bowtie1(B Langmead, Trapnell, Pop, & Salzberg, 2009), Bowtie2 (Ben Langmead & Salzberg, 2012), BWA, NovoAlign 2. BWA 3. mrFAST and mrsFAST

- 4. Novoalign
- 5. SHRiMP
- 6. SOAPv2

L'appel des variants

L'appel des variants, ou variant calling, fait référence à l'ensemble des méthodes permettant d'identifier des SNVs ou des indels à partir des résultats de l'alignement. On appelera variants toutes différences de séquence observées entre un individu et la séquence de référence utilisée. De nombreux logiciels d'appel des variants, ou caller, basés sur des algorithmes différents ont emmergés ces dernières années pour répondre à cette problématique. Parmis les plus connus on note SAMtools (H. Li et al., 2009), Genome Analysis Tool Kit - HaplotypeCaller (GATK-HC) (McKenna et al., 2010), Freebayes, SOAPindel et tvc . Les quatre premiers cités, peuvent être utilisés pour analyser des données provenant de tout type de plateforme de séquençage contrairement à TVC qui a été dévoeloppé spécifiquement pour les données provenant de Ion Proton. Les données issues de NGS peuvent présenter un taux d'erreur important. Ce taux d'erreur est multi-factorielles et inclus nottament les erreurs de l'alignement. L'un des éléments clef à prendre en compte pour pouvoir effectuer un appel de qualité est la couverture de la position appelée (Sims et al., 2014). Cependant, malgré la

prise en compte de cet élément, l'appel de variants reste un processus dificille souvent lié à plusieurs erreurs. Plusieurs de ces erreurs sont même directement liées à la plateforme de séquençage utilisée en amont, et les différents logiciels ne présentent pas les même performances en fonction de ces différentes plateforme (Hwang, Kim, Lee, & Marcotte, 2015), c'est pourquoi il convient d'adapter le logiciel d'appel en fonction de la plateforme de séquençage utilisée préalablement. Les erreurs d'appel sont généralement classées en deux catégories principales et certains aligneurs auront tendance à être plus sujets à l'un de ces types d'erreur qu'à l'autre (**Figure :** 1.13) :

- 1. Oubli de l'allele de référence (IR, ignore the reference allele) : représente un variant appelé homozygote correspondant en réalité à un variant hétérozygote composé de l'allèle de référence et d'un allèle variant.
- 2. Ajout de l'allèle de référence (**AR**, adding the reference allele) : représente un variant appelé hétérozygote composé de l'allèle de référence et d'un allèle variant correspondant en réalité à un variant homozygote composé de deux allèles variants.

Figure 1.13 – Représentation des erreurs d'appel de type IR et AR en fonction de la platforme de séquençage et du logiciel d'appel, d'après n Hwang et al 2015 : Pour les plateforme Illumina, on peut voir que Freebayes préfère les appels variant-homozygote tandis que GATK-HC et Samtools préfèrent les appels hétérozygotes. Pour la plateforme Ion Proton, les 4 logiciels ont une préférence pour les erreurs de type IR

De même que pour l'aligneur, le choix du logiciel d'appel est crutial car il existe de nombreuses différences dans les variants appelés par différents logiciels se basant sur les mêmes données brutes (Baes et al., 2014, O'Rawe et al. (2013), Rosenfeld, Mason, Smith, Wallin, & Diekhans (2012)). En effet, en 2013, une étude comparant les réssultats de 5 caller montrait que seulement 57,4% des variants étaient appelés

par les 5 caller et que 80,7% des variants étaient appelés par au moins 3 d'entre eux. Ce taux justait drastiquement pour les indels puisque la concordance était cette fois seulement de 26,8% pour les indels non retrouvés par les 3 caller (O'Rawe et al., 2013). Ces résultats sont cependant à pondérés avec une étude de 2015 comparant 4 caller et montrant que 91,7% des SNVs séquencés sur une plateforme Illumina étaient appelés par 3 caller, cependant, pour les variants séquencés sur Ion Proton, seulement 27,3% des variants étaient appelés par au moins 3 caller et 57,4% des variants n'étaient appelés que par un seul des caller (Hwang et al., 2015).

1.5.2 L'annotation des variants

En moins de 10 ans, les technologies NGS sont passées du séquençage de panel de gènes (environs 100 Mb pour le Roche GS FLX system) au séquençage de génome entiers (environs 1500 GB pour l'Illumina Hiseq 4000) et d'une utilisation exclusive à la recherche à la routine clinique. La limitation de cette technologie n'étant plus le séquençage d'un, de plusieurs, ou de l'ensemble des gènes, mais plutôt l'analyse et l'inerprétation de la masse de donnée générée.

The main objective of this process is to gather substantial information at the variant and the gene levels. This will include the variants' data quality, their localization at the genomic, gene and transcripts levels, their genotype, their frequency in the general population, their impact at the mRNA and protein levels, the conservation among species of the affected protein residues, the variant pathogenicity prediction, and reported associations with diseases. At the gene level, they include the gene function, its spatiotemporal expression pattern, its involvement in various pathways, and its involvement in various phenotypes/diseases.

L'annotation des variants a pour but de replacer l'ensemble des variants identifiés lors de l'étape d'appel dans leur contexte biologique. Cette phase est une des clefs de l'analyse puisqu'elle permet de prioriser des variants d'interet...

L'objectif principal de cette étape est de réunir l'ensemble des informations disponibles sur un variant...

Ces information regroupe la fréquence, sa localisation et son impact...

Cependant, cette quantité de donnée produites crées de nouvelles problématiques pour les généticiens qui se retrouvent désormais face au "déluge de données génétiques" (Schatz & Langmead, 2013) ce qui se retrouve être un frein dans la compréhension et l'interprétation des réseaux de gènes et leurs implication dans des pathologies.

This step is a requirement for the identification of variants of interest based upon a combined filtration of the collected data from one or multiple samples.

the annotation step must be considered carefully, and that a conscious choice should be made to select transcript set and software for annotation [McCarthy et al., 2014].

Au niveau du variant

par la fréquence : (ExAC) Large consortia (e.g the human genome project [12, 13]) have been established to accumulate available resources, detect new variants in genomes, better understand genetic architecture of different traits and find or narrow down positions of potential causal loci

12 International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome

13 International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome

Par l'impact : VEP SNPEFF... SIFT,polyPhen CADD

Figure 1.14 — Diagramme de Venn des prédictions de pathogénicités de six logiciels d'après Salgado et al. (2016) : aaaaaaaaaaaaaaaaaaaaaaaaaaaa

Au niveau du gène

L'annotation au niveau du gène (ou du transcrit) consiste à récupérer l'ensemble des information disponible sur le gène (impacté par le variant) et non plus sur le variant directement. L'ensemble de ces informations est donc extrêmement dépendante du jeux de gène utilisé et peuvent donc variaer en fonction de celui-ci (McCarthy et

al., 2014, Zhao & Zhang (2015)) même si les gènes CCDS sont bien représentés à la fois par le NCBI, Ensembl et UCSC (Pruitt et al., 2009)

Expression du gene

Pathway impliquant le gene : Panther,

score pour le gene : RVIS, PLI, Loftool...

HPO, OMIM RVIS, pLI

1.5.3 Conclusion NGS

cf Evaluation of next-generation sequencing software in mapping and assembly partie CHALLENGES AND PROSPECTS

Chapitre 2

Investigation génétique et physiologique de la globozoospermie

Chapitre 3

$\mathbf{A}\mathbf{A}\mathbf{A}$

Conclusion

Annexe A The First Appendix

In the main Rmd file In Chapter ??:

Annexe B The Second Appendix, for Fun

References

- Adelman, M. M., & Cahill, E. M. (1989). Atlas of sperm morphology (p. 123). ASCP Press.
- Alkan, C., Kidd, J. M., Marques-bonet, T., Aksay, G., Hormozdiari, F., Kitzman, J. O., ... Eichler, E. E. (2010). Personalized Copy-Number and Segmental Duplication Maps using Next-Generation Sequencing. *Nature Genetics*, 41(10), 1061–1067. http://doi.org/10.1038/ng.437.Personalized
- Asimakopoulos, B. (2003). Is There a Place for Round and Elongated Spermatids Injection in, 1(1), 1–6.
- Auffray, C., Chen, Z., & Hood, L. (2009). Systems medicine: the future of medical genomics and healthcare. *Genome Medicine*, 1(1), 2. http://doi.org/10.1186/gm2
- Baes, C. F., Dolezal, M. A., Koltes, J. E., Bapst, B., Fritz-Waters, E., Jansen, S., ... Gredler, B. (2014). Evaluation of variant identification methods for whole genome sequencing data in dairy cattle. *BMC Genomics*, 15(1), 948. http://doi.org/10.1186/1471-2164-15-948
- Bentley, D. R. (2006). Whole-genome re-sequencing. Current Opinion in Genetics and Development, 16(6), 545–552. http://doi.org/10.1016/j.gde.2006.10.009
- Cho, C., Willis, W. D., Goulding, E. H., Jung-Ha, H., Choi, Y. C., Hecht, N. B., & Eddy, E. M. (2001). Haploinsufficiency of protamine-1 or -2 causes infertility in mice. *Nature Genetics*, 28(1), 82–6. http://doi.org/10.1038/88313
- Clermont, Y. (1963). The cycle of the seminiferous epithelium in man. American Journal of Anatomy, 112(1), 35-51. http://doi.org/10.1002/aja.1001120103
- Clermont, Y. (1966). Renewal of spermatogonia in man. American Journal of Anatomy, 118(2), 509–524. http://doi.org/10.1002/aja.1001180211
- Collins, F. S., Morgan, M., & Patrinos, A. (2003). The Human Genome Project: Lessons from Large-Scale Biology. *Science*, 300(5617), 286-290. http://doi.org/10.1126/science.1084564
- Eddy, E. M. (2007). The scaffold role of the fibrous sheath. Society of Reproduction and Fertility Supplement, 65, 45–62. Retrieved from http://www.ncbi.nlm.nih.

gov/pubmed/17644954

- Escalier, D., Gallo, J. M., Albert, M., Meduri, G., Bermudez, D., David, G., & Schrevel, J. (1991). Human acrosome biogenesis: immunodetection of proacrosin in primary spermatocytes and of its partitioning pattern during meiosis. *Development (Cambridge, England)*, 113(3), 779–788. Retrieved from http://dev.biologists.org/content/develop/113/3/779.full.pdf
- Flicek, P., & Birney, E. (2009). Sense from sequence reads: methods for alignment and assembly. *Nature Methods*, 6(11 Suppl), S6–S12. http://doi.org/10.1038/nmeth0610-479b
- Gnessi, L., Fabbri, A., & Spera, G. (1997). Gonadal peptides as mediators of development and functional control of the testis: An integrated system with hormones and local environment. *Endocrine Reviews*, 18(4), 541–609. http://doi.org/10.1210/er.18.4.541
- Goossens, E., & Tournaye, H. (2013). Adult stem cells in the human testis. Seminars in Reproductive Medicine, 31(1), 39–48. http://doi.org/10.1055/s-0032-1331796
- Guffanti, A., Iacono, M., Pelucchi, P., Kim, N., Soldà, G., Croft, L. J., ... De Bellis, G. (2009). A transcriptional sketch of a primary human breast cancer by 454 deep sequencing. *BMC Genomics*, 10(1), 163. http://doi.org/10.1186/1471-2164-10-163
- Hamilton, D. W., Waites, G. M. H. (1990). Cellular and Molecular Events in Spermiogenesis (p. 334). Cambridge University Press. Retrieved from http://www.cambridge.org/us/academic/subjects/medicine/obstetrics-and-gynecology-reproductive-medicine/cellular-and-molecular-events-spermiogenesis
- Hermo, L., Pelletier, R. M., Cyr, D. G., & Smith, C. E. (2010). Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: Developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane. *Microscopy Research and Technique*, 73(4), 320–363. http://doi.org/10.1002/jemt.20784
- Horner, D. S., Pavesi, G., Castrignano', T., Meo, P. D. O. de, Liuni, S., Sammeth, M., ... Pesole, G. (2009). Bioinformatics approaches for genomics and post genomics applications of next-generation sequencing. *Briefings in Bioinformatics*, 11(2), 181–197. http://doi.org/10.1093/bib/bbp046
- Hwang, S., Kim, E., Lee, I., & Marcotte, E. M. (2015). Systematic comparison of variant calling pipelines using gold standard personal exome variants. *Scientific Reports*, 5(December), 17875. http://doi.org/10.1038/srep17875
- Inaba, K. (2003). Molecular Architecture of the Sperm Flagella: Molecules for Motility and Signaling. Zoological Science, 20(9), 1043–1056. http://doi.org/10.2108/

- zsj.20.1043
- JOHNSON, L., PETTY, C. S., & NEAVES, W. B. (1980). A Comparative Study of Daily Sperm Production and Testicular Composition in Humans and Rats. *Biol Reprod*, 22(5), 1233–1243. Retrieved from http://www.biolreprod.org/content/22/5/1233.short
- KIERSZENBAUM, A. L. (1994). Mammalian Spermatogenesis <i>in Vivo</i> and <i>in Vitro</i> : A Partnership of Spermatogenic and Somatic Cell Lineages*. Endocrine Reviews, 15(1), 116–134. http://doi.org/10.1210/edrv-15-1-116
- Kierszenbaum, A. L., & Tres, L. L. (1978). RNA transcription and chromatin structure during meiotic and postmeiotic stages of spermatogenesis. *Federation Proceedings*, 37(11), 2512–6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/357185
- Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. http://doi.org/10.1038/nmeth.1923
- Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome Biology*, 10(3), R25. http://doi.org/10.1186/gb-2009-10-3-r25
- Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ... Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25(16), 2078–2079. http://doi.org/10.1093/bioinformatics/btp352
- Mardis, E. R. (2008). The impact of next-generation sequencing technology on genetics. Trends in Genetics, 24(3), 133–141. http://doi.org/10.1016/j.tig.2007.12.007
- McCarthy, D. J., Humburg, P., Kanapin, A., Rivas, M. a, Gaulton, K., Cazier, J.-B., & Donnelly, P. (2014). Choice of transcripts and software has a large effect on variant annotation. *Genome Medicine*, 6(3), 26. http://doi.org/10.1186/gm543
- McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., ... DePristo, M. A. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Research*, 20(9), 1297–303. http://doi.org/10.1101/gr.107524.110
- Medvedev, P., Stanciu, M., & Brudno, M. (2009). Computational methods for discovering structural variation with next-generation sequencing. *Nature Methods*, 6(11s), S13–S20. http://doi.org/10.1038/nmeth.1374
- Metzker, M. L. (2010). Sequencing technologies the next generation. *Nature Reviews*. Genetics, 11(1), 31-46. http://doi.org/10.1038/nrg2626
- Nielsen, R., Paul, J. S., Albrechtsen, A., & Song, Y. S. (2011). Genotype and SNP calling from next-generation sequencing data. *Nature Reviews. Genetics*, 12(6),

- 443-51. http://doi.org/10.1038/nrg2986
- Ogura, a, Matsuda, J., & Yanagimachi, R. (1994). Birth of normal young after electrofusion of mouse oocytes with round spermatids. *Proceedings of the National Academy of Sciences of the United States of America*, 91(16), 7460–7462. http://doi.org/10.1073/pnas.91.16.7460
- Ogura, A., Matsuda, J., Asano, T., Suzuki, O., & Yanagimachi, R. (1996). Mouse oocytes injected with cryopreserved round spermatids can develop into normal offspring. *Journal of Assisted Reproduction and Genetics*, 13(5), 431–434. http://doi.org/10.1007/BF02066177
- O'Rawe, J., Jiang, T., Sun, G., Wu, Y., Wang, W., Hu, J., ... Lyon, G. J. (2013). Low concordance of multiple variant-calling pipelines: practical implications for exome and genome sequencing. *Genome Medicine*, 5(3), 28. http://doi.org/10.1186/gm432
- Papic, Z., Katona, G., & Skrabalo, Z. (1988). The cytologic identification and quantification of testicular cell subtypes. Reproducibility and relation to histologic findings in the diagnosis of male infertility. *Acta Cytologica*, 32(5), 697–706. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3421018
- Pedersen, H., & Rebbe, H. (1974). Fine structure of round-headed human spermatozoa. Journal of Reproduction and Fertility, 37(1), 51-4. http://doi.org/10.1530/ JRF.0.0370051
- Pruitt, K. D., Harrow, J., Harte, R. A., Wallin, C., Diekhans, M., Maglott, D. R., ... Lipman, D. (2009). The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. *Genome Research*, 19(7), 1316–1323. http://doi.org/10.1101/gr.080531.108
- Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, S., Manichanh, C., ... Yang, H. (2010). A human gut microbial gene catalog established by metagenomic sequencing. Nature, 464(7285), 59–65. http://doi.org/10.1038/nature08821.A
- Rosenfeld, J. A., Mason, C. E., Smith, T. M., Wallin, C., & Diekhans, M. (2012). Limitations of the Human Reference Genome for Personalized Genomics. *PLoS ONE*, 7(7), e40294. http://doi.org/10.1371/journal.pone.0040294
- Sasagawa, I., & Yanagimachi, R. (1997). Spermatids from mice after cryptorchid and reversal operations can initiate normal embryo development. *Journal of Andrology*, 18(2), 203–209. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9154515
- Schatz, M. C., & Langmead, B. (2013). The DNA Data Deluge: Fast, efficient genome sequencing machines are spewing out more data than geneticists can analyze. *IEEE Spectrum*, 50(7), 26–33. http://doi.org/10.1109/MSPEC.2013.6545119
- Schenck, U., & Schill, W. B. (n.d.). Cytology of the human seminiferous epithelium. *Acta Cytologica*, 32(5), 689-96. Retrieved from http://www.ncbi.nlm.nih.gov/

pubmed/3421017

- Sims, D., Sudbery, I., Ilott, N. E., Heger, A., & Ponting, C. P. (2014). Sequencing depth and coverage: key considerations in genomic analyses. *Nature Reviews. Genetics*, 15(2), 121–32. http://doi.org/10.1038/nrg3642
- Singh, G. (n.d.). Ultrastructural features of round-headed human spermatozoa. *International Journal of Fertility*, 37(2), 99–102. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1349598
- Sultan, M., Schulz, M. H., Richard, H., Magen, A., Klingenhoff, A., Scherf, M., ... Yaspo, M.-L. (2008). A Global View of Gene Activity and Alternative Splicing by Deep Sequencing of the Human Transcriptome. *Science*, 321 (5891), 956–960. http://doi.org/10.1126/science.1160342
- Tanaka, A., Nagayoshi, M., Takemoto, Y., Tanaka, I., Kusunoki, H., Watanabe, S., ... Yanagimachi, R. (2015). Fourteen babies born after round spermatid injection into human oocytes. *Proceedings of the National Academy of Sciences*, 112(March 2014), 201517466. http://doi.org/10.1073/pnas.1517466112
- Taylor, K. H., Kramer, R. S., Davis, J. W., Guo, J., Duff, D. J., Xu, D., ... Shi, H. (2007). Ultradeep Bisulfite Sequencing Analysis of DNA Methylation Patterns in Multiple Gene Promoters by 454 Sequencing. *Cancer Research*, 67(18), 8511–8518. http://doi.org/10.1158/0008-5472.CAN-07-1016
- Treangen, T. J., & Salzberg, S. L. (2013). Repetitive DNA and next-generation sequencing: computational challenges and solutions. *Nat Rev Genet.*, 13(1), 36–46. http://doi.org/10.1038/nrg3117.Repetitive
- Van Tassell, C. P., Smith, T. P. L., Matukumalli, L. K., Taylor, J. F., Schnabel, R. D., Lawley, C. T., ... Sonstegard, T. S. (2008). SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. *Nature Methods*, 5(3), 247–252. http://doi.org/10.1038/nmeth.1185
- Ward, W. S. (1994). The structure of the sleeping genome: implications of sperm DNA organization for somatic cells. *Journal of Cellular Biochemistry*, 55(1), 77–82. http://doi.org/10.1002/jcb.240550109
- World Health Organization. (1992). WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. (3th ed, p. 128). Cambridge University Press.
- Zhao, S., & Zhang, B. (2015). A comprehensive evaluation of ensembl, RefSeq, and UCSC annotations in the context of RNA-seq read mapping and gene quantification. BMC Genomics, 16(1), 97. http://doi.org/10.1186/s12864-015-1308-8