lab6

GITHUB: https://github.com/theeho/lab6

```
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.1 --
                  v purrr
## v ggplot2 3.3.5
                             0.3.4
## v tibble 3.1.6 v dplyr 1.0.7
## v tidyr 1.1.4 v stringr 1.4.0
## v readr 2.1.1
                   v forcats 0.5.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
library(knitr)
library(broom)
library(leaps)
library(rms)
## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
##
##
      src, summarize
## The following objects are masked from 'package:base':
##
##
      format.pval, units
## Loading required package: SparseM
```

```
##
## Attaching package: 'SparseM'
## The following object is masked from 'package:base':
##
##
      backsolve
library(Sleuth3) #case1201 data
Exercise 1/2: Note: Was not sure how to use coef function so I used tidy function. I think it works.
sat_scores <- Sleuth3::case1201</pre>
full_model <- lm(SAT ~ Takers + Income + Years + Public + Expend + Rank , data = sat_scores)
tidy(full_model)
## # A tibble: 7 x 5
##
    term
                 estimate std.error statistic p.value
##
    <chr>>
                 <dbl> <dbl> <dbl>
                                                 <dbl>
## 1 (Intercept) -94.7
                            212.
                                      -0.448 0.657
## 2 Takers
                 -0.480
                            0.694 -0.692 0.493
                 -0.00820
                            0.152 -0.0538 0.957
## 3 Income
## 4 Years
                 22.6
                              6.31
                                       3.58 0.000866
## 5 Public
                -0.464
                              0.579 -0.802 0.427
## 6 Expend
                 2.21
                              0.846
                                       2.61 0.0123
## 7 Rank
                                       4.02 0.000230
                 8.48
                              2.11
model_select <- regsubsets(SAT ~ Takers + Income + Years + Public + Expend +
                            Rank , data = sat_scores, method = "backward")
select_summary <- summary(model_select)</pre>
coef(model_select, 6) #display coefficients
##
    (Intercept)
                       Takers
                                     Income
                                                    Years
                                                                 Public
## -94.659108883 -0.480080120 -0.008195013 22.610081908 -0.464152292
##
         Expend
                         Rank
    2.212004850
                  8.476216985
##
BIC_coef <- tidy(model_select) %>% pull(BIC)
adjr_coef <- tidy(model_select) %>% pull(adj.r.squared)
BIC_coef
## [1] -66.59010 -82.14815 -86.79191 -85.24089 -81.99674 -78.08808
adjr_coef
## [1] 0.7695367 0.8405479 0.8627047 0.8661268 0.8649009 0.8617684
```

Exercise 3:

```
## Start: AIC=333.58
## SAT ~ Takers + Income + Years + Public + Expend + Rank
            Df Sum of Sq
##
                            RSS
                                   AIC
## - Income
                     2.0 29844 331.59
             1
## - Takers
                   332.4 30175 332.14
## - Public
                   445.8 30288 332.32
             1
## <none>
                          29842 333.58
                  4744.9 34587 338.96
## - Expend
             1
## - Years
             1
                  8897.8 38740 344.63
## - Rank
                 11223.0 41065 347.54
##
## Step: AIC=331.59
## SAT ~ Takers + Years + Public + Expend + Rank
##
            Df Sum of Sq
                            RSS
## - Takers
                   401.3 30246 330.25
             1
## - Public
                   495.5 30340 330.41
                          29844 331.59
## <none>
## - Expend
                  6904.4 36749 339.99
             1
## - Years
             1
                  9219.7 39064 343.05
## - Rank
             1
                  11645.9 41490 346.06
##
## Step: AIC=330.25
## SAT ~ Years + Public + Expend + Rank
##
            Df Sum of Sq
                             RSS
                                    AIC
## <none>
                           30246 330.25
## - Public
                           31708 330.62
             1
                    1462
## - Expend
                           37589 339.12
                    7343
             1
## - Years
             1
                    8837
                           39083 341.07
## - Rank
             1
                  184786 215032 426.33
tidy(model_select_aic)
## # A tibble: 5 x 5
##
     term
                 estimate std.error statistic p.value
##
     <chr>>
                     <dbl>
                               <dbl>
                                          <dbl>
                                                   <dbl>
                                          -1.74 8.90e- 2
## 1 (Intercept) -205.
                             118.
## 2 Years
                                          3.63 7.31e- 4
                   21.9
                               6.04
## 3 Public
                   -0.664
                               0.450
                                          -1.48 1.47e- 1
## 4 Expend
                                          3.31 1.87e- 3
                    2.24
                               0.678
## 5 Rank
                   10.0
                               0.603
                                         16.6 8.67e-21
```

model_select_aic <- step(full_model, direction = "backward")</pre>

Exercise 4: The models do not have the same number of predictors. The AIC has the least number of predictors at 4 while BIC and adjr2 have 6 predictors. This is expected because AIC has a greater penalty for more predictors compared to BIC and adjr2. Exercise 5:

```
sat_aug <- augment(model_select_aic) %>%
    mutate(obs_num = row_number())
head(sat_aug, n=5)
```

```
## # A tibble: 5 x 12
##
      SAT Years Public Expend Rank .fitted .resid
                                                   .hat .sigma .cooksd
##
    <int> <dbl> <dbl> <dbl> <dbl> <
                                    <dbl> <dbl> <dbl>
                                                         <dbl>
                                                                <dbl>
## 1 1088 16.8
                 87.8
                        25.6 89.7
                                    1059. 28.7 0.100
                                                          25.8 0.0304
## 2 1075 16.1
                 86.2
                        20.0 90.6
                                           34.0 0.0788
                                                          25.7 0.0320
                                    1041.
                        20.6 89.8
## 3 1068 16.6
                 88.3
                                    1044. 24.0 0.0894
                                                         25.9 0.0185
## 4 1045 16.3
                 83.9
                        27.1 86.3
                                    1021. 24.4 0.0585
                                                          25.9 0.0117
                 83.6
                        21.0 88.5
                                    1050. -4.99 0.113
                                                          26.2 0.00106
## 5 1045 17.2
## # ... with 2 more variables: .std.resid <dbl>, obs_num <int>
```

Exercise 6: Based on lecture notes, we should use 2(p+1)/n as our leverage threshold.

Exercise 7:

```
(leverage_threshold <- 2*(4+1)/nrow(sat_aug))</pre>
```

[1] 0.2

```
ggplot(data = sat_aug, aes(x = obs_num, y = .hat)) +
  geom_point() +
  geom_hline(yintercept = leverage_threshold, color = "red")+
  labs(x = "Observation Number",y = "Leverage",title = "Leverage per Observation") +
  geom_text(aes(label=ifelse(.hat > leverage_threshold, as.character(obs_num), "")), nudge_x = 2)
```

Leverage per Observation

Exercise 8:

```
obnum_s <- sat_scores %>% mutate(obs_num = row_number())
high_lev <- filter(obnum_s, obs_num == 22 | obs_num == 29)
head(high_lev, n = 2)</pre>
```

It appears that Alaska and Louisiana are the two high leverage points.

Exercise 9:

```
ggplot(data = sat_aug, aes(x = .fitted,y = .std.resid)) +
  geom_point() +
  geom_hline(yintercept = -2,color = "red") +
  geom_hline(yintercept = 2,color = "red") +
  labs(x = "Predicted Value",y = "Standardized Residuals",title = "Standardized Residuals vs. Predicted")
  geom_text(aes(label = ifelse(abs(.std.resid) > 2,as.character(obs_num),"")), nudge_x = 5)
```

Standardized Residuals vs. Predicted

Exercise 10:

```
high_res <- filter(obnum_s, obs_num == 16 | obs_num == 29 | obs_num == 50)
head(high_res, n = 3)</pre>
```

```
##
             State SAT Takers Income Years Public Expend Rank obs_num
## 1
       Mississippi 988
                            3
                                  315 16.76
                                              67.9 15.36 90.1
                                                                     16
## 2
            Alaska 923
                                  401 15.32
                                              96.5
                                                    50.10 79.6
                                                                     29
                           31
## 3 SouthCarolina 790
                           48
                                  214 15.42
                                              88.1
                                                    15.60 74.0
                                                                     50
```

It appears that Mississippi, Alaska, and South Carolina have large standardized residuals.

Exercise 11:

```
ggplot(data = sat_aug, aes(x = obs_num, y = .cooksd)) +
  geom_point() +
  geom_hline(yintercept=1,color = "red")+
  labs(x= "Observation Number",y = "Cook's Distance",title = "Cook's Distance") +
  geom_text(aes(label = ifelse(.cooksd > 1,as.character(obs_num),"")), nudge_x =1.5)
```

Cook's Distance

It appears Alaska has a high cooks distance and is therefore considered an influential point. I think the best practice would be to check the model with and without this point, and also determine if the outlier is due to the predictor variables or response variables.

Exercise 12

```
sat_modelr <- lm(Expend ~ Rank + Years+Public ,data = sat_aug)
summary(sat_modelr)</pre>
```

```
##
## lm(formula = Expend ~ Rank + Years + Public, data = sat_aug)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                        Max
## -9.0866 -3.9495 -0.1809
                           2.3098 25.1092
##
##
  Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -10.23862
                           25.54114
                                     -0.401
                                             0.69037
## Rank
                -0.28539
                            0.12423
                                     -2.297
                                             0.02620 *
## Years
                 2.19154
                            1.27212
                                       1.723
                                             0.09165
                 0.25256
                            0.09047
                                       2.792 0.00761 **
## Public
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 5.636 on 46 degrees of freedom
```

```
## Multiple R-squared: 0.2102, Adjusted R-squared: 0.1587
## F-statistic: 4.081 on 3 and 46 DF, p-value: 0.01189
tidy(vif(sat_modelr))
## Warning: 'tidy.numeric' is deprecated.
## See help("Deprecated")
## Warning: 'data_frame()' was deprecated in tibble 1.1.0.
## Please use 'tibble()' instead.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was generated.
## # A tibble: 3 x 2
##
    names
     <chr> <dbl>
## 1 Rank
            1.01
## 2 Years 1.22
## 3 Public 1.22
```

Because the VIF values for each paramater are small, Expend does not appear to be correlated.

```
## Warning: 'tidy.numeric' is deprecated.
## See help("Deprecated")

## # A tibble: 4 x 2
## names x
## <chr> <dbl>
## 1 Years 1.30
## 2 Public 1.43
## 3 Expend 1.27
## 4 Rank 1.13
```

tidy(vif(model_select_aic))

In this model the VIC values for all the parameters are also small. None of the parameters appear to be correlated.