	CS 148 HW3
(A)	Entropy = - [p(0) x log p(0) = p(1) x log p(1)]
	$\rho(0) = \frac{3}{8} \rho(1) = \frac{5}{8}$
	Entropy = - [(3/8 x log (3/8)) + (5/8 x log (5/8)]
	Entropy = 0.954
8)	CHEST PAIN Information Grain
	YES-E=03 NO-E=0.811 Gam = 0.954-0.4055
	(½ × O) + (½ × 0.811) = 0.4055 = 0.5485
	MALE Information Gara
	7ES - Entropy = 1 NO - E = 0.811 Gain = 0.954 - 0.9055
	$(\frac{1}{2} \times 1) + (\frac{1}{2} \times 0.811) = 0.4055$ = 0.0485
	SMOKES Information Gain
	YES - Entropy = 0.722 NO-E=0.918 Crain=0.954-0.7955
	(5/8 × 0.722) + (3/8 × 0 9/8) = 0.7955 = 0.1585
	EXERCISES Infomation Gain
	YES-E=0,971 NO-E=0 Gain=0.954-0.6069
	$(5/8 \times 0.971) \times (3/8 \times 0) = 0.6069 = 0.3471$
	I would split on CHEST PAIN, since it has larghest information gain. (0.5485)
c)	1) Stop splitting into more regions if all instances in a region
	belong in the same class
	Stop splitting if all of the information gains are negative/less than accitain threshold
	3) Stop splitting if the number of instances in a vegion falls below
	the pre-defined threshold
	9 Stop spiriting if the total number of regions exceeds a pre-defined threshold
	5) Stop splitting if the points in a region are independent of the predictors
0)	Standardizing or normalizing shouldn't be necessary for decision trees
	as such transformations will not affect hav a decision tree is created.
	We look at outsepy / Information gain, neither of which are affected by standardization/normalization.
E)	Decresion frees are generally robust to outliers. We split based on observed
	entropy or Gint Index. Neither of these measurements shall really be affected
	by outliers, meaning that the decision trees can still well fine with a few outliers.

6	
	W=0
2 a)	
	X2 W= Y1 X1
	X3 W= Y1X1 + Y3X3
	Xy W= Y1X1 + Y2X3 + Y4X4
	X5 W = Y1X17 Y5X3 + Y4X4
	After the training epoch, W=Y,X,+Y3X3+Y4X4
6)	Based on My canswer from parta, I got that W=YIXI - YIXI + YYXY
	$W = \langle 1, 1, 0 \rangle - \langle 1, 1, -3 \rangle + \langle 1, 3, -1 \rangle$ with the values from the table
	$W = \langle 1, 3, 2 \rangle$
	Does Yi = Sgn (w'xi)? If yes, then the prediction is correct ()
7.5	If no, then the prediction is wrong (-1)
$(110)(\frac{3}{2})=4$	$\gamma_1 = sgn(4)$
	+1 = 1
	Model predicts Xi=1, which is correct.
c)	The activation function for this Reception model is called sgn,
	whereas in class the professor said that tradiffernally a
	Step function TS used (for the logistic regression model).
	If the perception in this problem used the sigmoid activation
	function, it would bu steally be the same as the model
	discussed during class.

3. a)	For the hidden layers, we could use sigmord, touch, Relu(andits variations),
	Softplus, or Swish. Sigmord outputs a value between 0 and 1, which
	makes sense for binary classification. Relu can regulate the input
	by eliminating negative inputs and acting as a linear function for
	non-negative inputs. The variations of ReLU have the same louste
	idea but have minor advantages (ie Expinential Relu is differentiable
	at all points, tanh is a compressed version of signord, so it follows
	the same idea but has outputs between I and I instead. This bit foster
	world still work fine for this binary classification. Softplus and
	swish are similar to ReLU so they would also work fine, but they
	are typically used for large neural networks. All of the authoritin
	functions listed orbove could work in the headen layers) of a binary
	classification nevial network; it really depends on the context of
	the problem. Personally, I would try using ReLu or sigmord first,
	then possibly experiment with other functions.
	for the output layer, we want outputs to be binary for the sake of
	binary classification. Activation functions such as organized
	or legistic would probably work best since frey output from O to 1,
	A modified version of tank that outputs from 0 to 1 may he used
	as well. Personally, I would try using sigmost for a binary
	classification problem and then experiment with other activation
	functions of the results are unsattsfactory.
b)	$X_i = 2$ $X_2 = -3$ $\gamma = 1$
	Wn = 0.9 W12 = 0.41 W21 = -1.5 W22 = -0.7 W51 = -0.2 W62 = 1.6
	$W_{10} = 0$ $W_{20} = 0$ $W_{30} = 0$
	Neuron 1: W. = (x. · W.,) + (x2 · W.2)
	= (2·0,9) + (-3·0,9) = 0.6 -> ReLU -> 0.6
	Neuron 2: Wz = (x, · wz,) + (x2 · woz)
	= (2 · -1.5) · (-3 · -0.7) = -0.9 -> Sigmord -> 0.289
	4 = (w, · wz,) + (wz · wzz) = (0.6 x - 0.2) + (0.289 · 1.6)
	. 4 = 0.34 Output = 0.34

()	Birary Cross-Entropy Loss Function
	2(W; X, Y) = - \[\frac{7}{2} \left(1 - \frac{1}{2} \right) \left(1 - \frac{1}{2} \right) \left(1 - \frac{1}{2} \right) \right]
	2 = - [(1)(10920.34) - (1-1)(1090.66)] = 1.5564
	Basically: $2 = -\ln(9)$ $\partial 2$
	Basically: $2 = -\ln(\hat{q})$ $\frac{\partial 2}{\partial \hat{q}} = \frac{1}{\sqrt{2}}$
4)	7 = - lus (-07 : marx (0 0.9.7 = 3.W.) + 16. 1.e-(-1.5.2+-0.73)
	2 = - In (-0.2 · max(0, 0.9 · 2 - 3 W.2) + 1.6 · 1+e-(-1.5.2+-0.7-3)) Was Neuron ((ReLU) Neuron 2 (Signal)
1	L = - In (-0.2 · max (0, 1.8-3 W ₁₂) + 0.4625)
	If Wiz < 0.6 : 2 = -ln(0.6x+0.1025)
- A	$W_{12} = 0.6$: $\lambda = -\ln(0.4625)$
	$\frac{2}{\partial h} = \frac{1}{0.6 k_0 + 0.025} \cdot 0.6$
	-1.75
е	The network has a total of 9 parameters (6 weights + 3 bras terms).

4. a) In logistic regression, the number of parameters is:

of features + 1 (bras term) = 20+1 = 21 parameters

Total number of parameters = 5 (classes) × 21 = 105

We need 105 total parameters for a multi-class classification

problem with 5 classes and 20 features.

b) OVR C DD R R

a - separates circles from squares + stars
b - separates squares from circles + stars
c - separates stars from circles + squares

Multinomral

Use the square as the reference group

Line 1: predict yesquare from y = square

Line 2: predict y = circle from y = square

Square vs star

and

Square vs cricles

Note: I realize my sketches of the unlift-class classification aren't perfect, but hopefully you get the general rdea.

6	Relu-pieceute Relu-pieceute straight line fanh-much smatter
5,/1)	
	Decision Tree shouldn't generate a curve like A or B. Ingeneral,
De orson Trees	Decision trees should have very clear-cut bandaires
make /	
straight, (2)	D
hard	Random Forest should look similar to decision free, but the
bardenes	bundaries are a bit less clear cut as many decision.
	ties are averaged out to get the final model
(3)	В
Neural	Reluis more of a piecewie straight line, and this is
Network)	reflected in the decision bandary of B
75 a	
cure 4)	
	fanh is a much smoother function than Re LV, and this is
	reflected in the decision boundary.