Derivatives of Exponential Functions

March 12, 2013

How can we find the derivative of $f(x) = 2^x$? To start, we can just use the limit definition of the derivative:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

To start, let's find f'(x), where $f(x) = 2^x$ by filling in the empty spaces in the table below:

h	f(0+h) - f(0)	$\frac{f(0+h)-f(0)}{h}$
1	1	
.01	,006956	.695
.0001		.693

h	f(1+h) - f(1)	$\left \frac{f(1+h) - f(1)}{h} \right $
1		a
.01		1,39
.0001		1.386

Using the tables above, estimate f'(0) and f'(1):

$$f'(0) \approx .69$$

$$f'(1) \approx 1.38$$

Repeat this process for $f(x) = 3^x$:

h	f(0+h) - f(0)	$\frac{f(0+h) - f(0)}{h}$
1		(7)
.01		1.104
.0001	3.	1.09

h	f(1+h) - f(1)	$\frac{f(1+h)-f(1)}{h}$
1		86
.01		3.31
.0001		3,29

Using the tables above, estimate f'(0) and f'(1):

$$f'(0) \approx 1.09$$

1

$$f'(1) \approx 3.29$$

Repeat this process for $f(x) = e^x$:

h	f(0+h) - f(0)	$\frac{f(0+h)-f(0)}{h}$
1		1.71
.01		1,005
.0001		1.00005

h	f(1+h) - f(1)	$\frac{f(1+h)-f(1)}{h}$
1		4.67
.01		2.73
.0001	******	2.718

Using the tables above, estimate f'(0) and f'(1):

$$f'(0) \approx$$

$$f'(1) \approx 2.718$$

Derivative of e^x :

$$\frac{d}{dx}e^x = \bigcirc$$

Practice Problems

Find the derivative of the following:

1.
$$f(x) = xe^x$$

 $\times e^{\times} + (1)e^{\times} = \times e^{\times} + e^{\times} = (\times + 1)e^{\times}$

2.
$$f(x) = \frac{e^{x} + 1}{x}$$

$$= \underbrace{\times e^{\times} - (e^{\times} + 1)(1)}_{\times^{2}}$$

3.
$$f(x) = e^x(\sqrt{x^2 + 1})$$

$$e^{\times} \frac{d}{dx} (x^2+1)^{1/2} + e^{\times} \sqrt{x^2+1}$$

$$e^{\times} \frac{1}{2} (x^2 + 1)^{1/2} (2x) + e^{\times} \sqrt{x^2 + 1}$$

4. The function $f(x) = x - e^x$ has one critical point. Find this point and determine if it is a maximum or a minimum.

$$f'(x) = 1 - e^{x}$$
 $f''(x) = -e^{x}$
 $0 = 1 - e^{x}$ $f''(0) = -e^{0} = -1 < 0$
 $e^{x} = 1$
 $x = 0$ $x = 0$

Chain Rule with Exponential Functions

Now we know the derivative of e^x . How do we differentiate e^{5x} ? How about e^{x^2} ?

Chain Rule for Exponential Functions:

$$\frac{d}{dx}\left(e^{g(x)}\right) = e^{g(x)}g'(x)$$

More Practice

Find the derivatives of the following:

1.
$$y = e^{5x}$$

2.
$$g(t) = e^{t^2}$$

$$g'(t) = 2te^{t^2}$$

3.
$$h(x) = xe^{5x^2}$$

$$h'(x) = X(10xe^{5x^2}) + (1)e^{5x^2}$$

4.
$$y = e^{\sqrt{2x^3 + x}}$$

$$\frac{d}{dx} \sqrt{12x^3 + x} = \frac{d}{dx} (2x^3 + x)^{1/2} = \frac{1}{z} (2x^3 + x) (6x^2 + 1)$$

$$y' = \frac{1}{2}(2x^3 + x)(6x^2 + 1)e^{-1/2}$$

Extra Derivative Practice

1.
$$y = (e^{2x})^4$$

2.
$$y = (e^2x)^4$$

3.
$$f(x) = e^{3x^2 + 5x}$$

4.
$$f(x) = \frac{2}{1 + e^{5x}}$$

5.
$$g(t) = \sqrt{t^2 + 4e^{t^2}}$$

6.
$$y = \frac{e^x}{x^2 + 4}$$

$$\lambda = 8e_{8x}$$

②
$$y = (e^2 x)^4 = e^8 x^4$$

3
$$f'(x) = (6x+5)e^{3x^2+5x}$$

$$f'(x) = -2(1+e^{5x})^{-2}(5e^{5x})$$

$$f'(x) = \frac{-10e^{5x}}{(1+e^{5x})^2}$$

(5)
$$g'(t) = \frac{2t}{\sqrt{t^2 + 4}} e^{t^2} + 2t\sqrt{t^2 + 4} e^{t^2}$$

7.
$$f(x) = 5x^3 + 6x - 2e^{-3x}$$

8.
$$f(x) = (4 - 5e^x)^3$$

9.
$$g(x) = x^2 e^x - 2xe^x + 2e^x$$

10.
$$y = (x+1)^3 e^{4x}$$

$$11. \ f(x) = x^4 e^x$$

12.
$$y = e^{x^2} - x^{e^2}$$

(6)
$$y' = \frac{(x^2 + 4)e^x - e^x(2x)}{(x^2 + 4)^2}$$

$$y' = \frac{x^2 - 2x + 4}{(x^2 + 4)^2} e^{x}$$

$$\int f'(x) = 15x^2 + 6 + 6e^{-3x}$$

$$3 f'(x) = 3 (4-5e^{x})^{2} (-5e^{x})$$

$$f'(x) = -15e^{x}(4-5e^{x})^{2}$$

$$g'(x) = x^2 e^{x}$$

$$(10) \left| y' = 3(x+1)^2 e^{4x} + 4(x+1)^3 e^{4x} \right|$$

$$f'(x) = 4x^3 e^x + x^4 e^x$$

(12)
$$y' = 2 \times e^{x^2} - e^{x^2} \times e^{x^2} - 1$$