Hunter Lybbert Student ID: 2426454 10-07-24 AMATH 561

PROBLEM SET 2

1. Suppose X and Y are random variables on (Ω, \mathcal{F}, P) and let $A \in \mathcal{F}$. Show that if we let $Z(\omega) = X(\omega)$ for $\omega \in A$ and $Z(\omega) = Y(\omega)$ for $\omega \in A^c$, then Z is a random variable.

Solution:

We need to show that Z is a random variable as it is defined. That is we need to show it is a function that maps from a sample space Ω to the real numbers. Starting from knowing X and Y are random variables that means we have:

$$X:\Omega\to\mathbb{R}$$

and

$$Y:\Omega\to\mathbb{R}$$
.

Now rewriting Z a little more mathematically we have

$$Z(\omega) = \begin{cases} X(\omega), & \omega \in A, \\ Y(\omega), & \omega \in A^c \end{cases}$$

where $A \in \mathcal{F}$. Note, since A is an event in \mathcal{F} , every $\omega \in A$ must also be in Ω since \mathcal{F} is a collection of events composed of outcomes from Ω . In other words, \mathcal{F} is made up of subsets of Ω which means $A \subseteq \Omega$ and thus $A^c \subseteq \Omega$ as well. By definition of the compliment $A \cap A^c = \emptyset$. Therefore A and A^c are a partition on Ω . Since Z is defined on $\omega \in A$ or $\omega \in A^C$ then Z is defined on all of Ω . Now we have shown that the domain of Z is Ω . Additionally, since X and Y each map from Ω to \mathbb{R} , Z must also map to \mathbb{R} since it's output is determined by the output of X and Y. Therefore Z is function such that

$$Z:\Omega \to \mathbb{R}$$

and thus Z is a random variable.

- **2.** Suppose X is a continuous random variable with distribution function F_X . Let g be a strictly increasing continuous function. Define Y = g(X).
- a) What is F_Y , the distribution function of Y? Solution:

We know that there is some probability space that the random variable X is defined on, let that be (Ω, \mathcal{F}, P) . Therefore $X : \Omega \to \mathbb{R}$ and since g is a strictly increasing continuous function $g : \mathbb{R} \to L$ where L is the output space of g, L could be \mathbb{R} for example, then $g(X) : \Omega \to \mathbb{R}$ (we take $L = \mathbb{R}$ for now as the most likely assumption). Note that since Y = g(X) then $Y : \Omega \to \mathbb{R}$ is also true. In order to construct F_Y we need to determine the relationship they have.

$$F_X = \int_{-\infty}^x f_X(x) \mathrm{d}x$$

Therefore we get

$$g(F_X) = \int_{-\infty}^x g(f_X(x)) dx$$
$$F_Y = \int_{-\infty}^x F_y(x) dx$$

b) What is f_Y , the density function of Y?

Solution:

And thus $f_Y = g(f_X(x))$.

- **3.** Suppose X is a continuous random variable with distribution function F_X . Find F_Y where Y is given by
- a) X^2 Solution:

That is to say $Y = X^2$ This is going to be easy once I know how to change from X to Y.

b) $\sqrt{|X|}$ Solution:

That is to say $Y = \sqrt{|X|}$

c) $\sin X$ Solution:

That is to say $Y = \sin X$

d) $F_X(X)$ Solution:

That is to say $Y = F_X(X)$

- **4.** Let $X:[0,1] \to \mathbf{R}$ be a function that maps every rational number in the interval [0,1] to 0, and every irrational number to 1. We assume that the probability space where X is defined is $([0,1],\mathcal{B}[0,1],P)$, where $\mathcal{B}[0,1]$ is the Borel σ -algebra on [0,1], and P is the Lebesgue measure.
- (a) Is the set of rational numbers in [0,1] a Borel set? Show using definition of the Borel σ -algebra on [0,1].
- (b) Is X a random variable (and why)? If it is, what are its distribution function and expectation? Does X have a density function? Is X discrete?