第三章 导数、微分、边际与弹性

— .	单项选择题
\	一一

			λ	$\frac{(-x)}{(-x)} = () .$	
	(A) 1		(C) 4		
2. Ē	函数 $f(x) = x ^3$ 在.	x=0 处满足下列哪~	个结论 ().		
`	A) 极限不存在		(B) 极限存在,不连	续	
((C) 连续,不可导		(D) 可导		
3. 🗵	函数 $f(x)$ 在区间 (a	(a,b) 内连续是 $f(x)$ (a,b)) 在 (a, b) 内可导的 ().		
(1	(A) 充分但非必要条件		(B) 必要但非充分条件		
(C) 充分必要条件		(D) 既非充分又非必	必要条件	
4.)	没函数 $f(x)$ 可导,	记 $g(x) = f(x) + f(-$	- <i>x</i>),则导数 <i>g′</i> (<i>x</i>) 为	J ().	
(A) 奇函数	(B) 偶函数	(C) 非奇非偶	(D) 奇偶性不定	
5. 🖟	函数 $f(x) = \begin{cases} \frac{x}{1 - e^{\frac{1}{x}}} \\ 0 \end{cases}$	$\begin{array}{c} x \neq 0 \\ x = 0 \end{array}, \text{if } x = 0 $	也().		
(4	A) 不连续		(B) 连续但不可导		
((C) 可导,且 $f'(0)=0$		(D) 可导,且 $f'(0) = 1$		
6. ģ	д e^{2x} 为 f(x) 的导向	函数,则 $f''(x) = ($).		
((A) e^{2x}	(B) $2e^{2x}$	(C) $4e^{2x}$	(D) 0	

(A) 低阶无穷小量 (B) 同阶无穷小量 (C) 高阶无穷小量 (D) 等价无穷小量

7. 设 f'(0)=2,则当 $x\to 0$ 时,f(x)-f(0) 是 x 的 ().

8.	设 $f(x) = x \ln 2x$ 在	$\exists x_0$ 处可导,且 $f'(x)$	$(x_0) = 2$, \emptyset $f(x_0) = 0$).	
	(A) 1	(B) $\frac{e}{2}$	(C) $\frac{2}{e}$	(D) e^2	
9.	曲线 $y = x \ln x - x$	在 $x = e$ 处的切线方	程是().		
	(A) y = e - x	(B) $y = x - e$	(C) $y = x - e + 1$	(D) $y = e + x$	
10	. 设 <i>f</i> (x) 可导且 <i>f</i> ′($(-2)=2, \forall y=f(-1)$	$-x^2$),则 $\mathrm{d}y _{x=\sqrt{2}}=($).	
	(A) $2 dx$	(B) -2 dx	(C) $4\sqrt{2} dx$	$(D) - 4\sqrt{2} \mathrm{d}x$	
11	. 设 $f(0) = 0$,且 f'	(0) 存在,则 $\lim_{x\to 0} \frac{f(x)}{x}$	$\frac{(x)}{x} = ($).		
		(B) $f'(0)$		(D) $\frac{1}{2}f(0)$	
12	. 设 $f(x) = \begin{cases} x^2 \sin x \\ 0 \end{cases}$	$\frac{1}{x} x \neq 0$ $x = 0$, 则该函数	数在 <i>x</i> = 0 处 ().		
	(A) 极限不存在 (C) 连续但不可导		(B) 极限存在但不足 (D) 可导	生 续	
13	. 设 $y = f(x)$,已知	$\lim_{x \to 0} \frac{f(x_0) - f(x_0 + 2)}{6x}$	$\frac{dx}{dx} = 3$,则 $dy _{x=x_0} =$	= ().	
			(C) -3 dx		
14	. 设 $y = x(x-1)(x-1)$	(x-2)(x-3)(x-4)(x-4)	5), $y' _{x=0} = ($).		
	(A) 0	(B) —5!	(C) -5	(D) -15	
15	. 设可微函数 <i>y = f</i> 的微分 d <i>y</i> 是 (.5,则当 $\Delta x \rightarrow 0$ 时	,该函数在 $x = x_0$ 处	
	(A) Δx 的等价无穷小(C) Δx 的低阶无穷小		(B) Δx 的同阶但不等价的无穷小 (D) Δx 的高阶无穷小		
16	. 下列函数中, 在点	$\bar{x} = 0$ 处可导的是 ().		
	(A) f(x) = x		(B) $f(x) = x - 1 $	< 0	
	$(C) f(x) = \sin x $		$(D) f(x) = \begin{cases} x^2 & x \\ x & x \end{cases}$	≤ 0 >0	

- **17.** 设周期函数 f(x) 在 $(-\infty, +\infty)$ 内可导,周期为 4,又 $\lim_{x\to 0} \frac{f(1)-f(1-x)}{2x} = -1$,则 y = f(x) 在点 (5, f(5)) 处的切线的斜率为 ().
 - (A) $\frac{1}{2}$
- (B) 0
- (C) -1
- (D) -2
- **18.** 设 $f(x) = \begin{cases} \frac{1-\cos x}{\sqrt{x}} & x > 0 \\ x^2 g(x) & x \le 0 \end{cases}$ 其中 g'(x) 是有界函数,则 f(x) 在 x = 0 处 ().
 - (A) 极限不存在

(B) 极限存在, 但不连续

(C) 连续,但不可导

- (D) 可导
- **19.** 设函数 $f(x) = \begin{cases} \sqrt{|x|} \sin(1/x^2) & x \neq 0 \\ 0 & x = 0 \end{cases}$,则 f(x) 在 x = 0 处 ().
 - (A) 极限不存在

(B) 极限存在但不连续

(C) 连续但不可导

- (D) 可导
- - (A) $F'(x) = \begin{cases} 1 & 0 < x < 0.5 \\ 2x & 0.5 < x < 2 \end{cases}$
- (B) $F'(x) = \begin{cases} 1 & 0 < x \le 1 \\ 2x & 1 < x < 2 \end{cases}$
- (C) $F'(x) = \begin{cases} 1 & 0 < x < 1 \\ 2x & 1 \le x < 2 \end{cases}$
- (D) $F'(x) = \begin{cases} 1 & 0 < x < 1 \\ 2x & 1 < x < 2 \end{cases}$

二、填空题

- **1.** 设 $y = f(\ln x)e^{f(x)}$,其中 f 可微,则 dy =_____.
- **3.** 设 (x_0, y_0) 是抛物线 $y = ax^2 + bx + c$ 上的一点,若在该点的切线过原点,则系数应满足的关系是______.

- **6.** 设 f(x) 具有二导数,且 $f'(x) = [f(x)]^2$,则 $f''(x) = _____.$

- 7. 设函数 f(x)=(x+1)(x+2)(x+3)...(x+n) (其中 n 为正整数),则 f'(0)=_____.
- 8. 曲线 $y = (1+x)e^x$ 在点 x = 0 处的切线方程为 $y = _____.$
- **9.** 设 $f(x) = x^2$,则 $f'[f(x)] = _____.$
- **10.** 某商品的需求量 Q 与价格 P 的关系为 $Q = P^5$,则需求量 Q 对价格 P 的弹性 是
- **11.** 设函数 f(u) 二阶可导,且 $y = f(\ln x)$,则 $y'' = _____.$
- **12.** 设 $f(x) = \left(1 + \frac{1}{x}\right)^x$,则 $f'\left(\frac{1}{2}\right) =$ _____.
- **13.** 设函数 f(x) 在 $(-\infty, +\infty)$ 上可导,且 $y = f(x^{2006}) + [f(x)]^{2006}$,则 $\frac{dy}{dx} = \underline{\qquad}$.
- 14. 设 $\ln \sqrt{x^2 + y^2} = \arctan \frac{y}{x}$,则 $\frac{dy}{dx} =$ _____.
- **15.** 设曲线 $f(x) = x^n$ 在点(1,1)处的切线与 x 轴的交点为(ξ_n ,0),则 $\lim_{n\to\infty} f(\xi_n) =$ ______
- **16.** 函数 $f(x) = \sqrt[3]{x} |x|$ 在点 x = 0 处的导数 $f'(0) = _____.$
- **17.** 设 y = 2x + 1,则其反函数 x = x(y) 的导数 $x'(y) = _____.$

18. 设
$$\begin{cases} x = t - \ln(1+t) \\ y = t^3 + t^2 \end{cases}$$
 , 则 $\frac{d^2 y}{dx^2} = \underline{\hspace{1cm}}$

- 三、计算题

1. 设函数
$$f(x) = \begin{cases} 3x + 2, & x \le 0 \\ e^x + 1, & x > 0 \end{cases}$$
 , 求 $f'(x)$.

- **2.** 设 $y = \frac{x \arctan x}{1+x}$, 求 dy.
- **4.** 设 y = y(x) 由方程 y = f[x + g(y)]. 所确定,其中 f 和 g 均可导,求 y'.

- **7.** 已知 $y^x = x^y$,求 y'.
- 8. 由 $e^{x^2+y^2} + \sin(xy) = 5$ 确定 $y \in X$ 的函数 y(x),求 y'(x).
- **9.** 函数 y = y(x) 由方程 $e^x e^y xy = 0$ 确定,求 $\frac{d^2y}{dx^2}\Big|_{x=0}$
- **11.** 设曲线方程为 $\begin{cases} x = t + \sin t + 2 \\ y = t + \cos t \end{cases}$, 求此曲线在点 x = 2 处的切线方程,及 $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$.
- **12.** 设 f(x) 存在二阶连续导数,且 $\lim_{x\to 0} \frac{f(x)}{x} = 0$, f''(0) = 4,求 $\lim_{x\to 0} \left(1 + \frac{f(x)}{x}\right)^{\frac{1}{x}}$.
- **13.** 设曲线 f(x) 在 [0,1] 上可导,且 $y = f(\sin^2 x) + f(\cos^2 x)$,求 $\frac{dy}{dx}$

四、综合与应用题

- **1.** 一人以 2m 每秒的速度通过一座高 20m 的桥,此人的正下方有一小船以 $\frac{4}{3}$ m 每秒的速度与桥垂直的方向前进,求第 5 秒末人与船相离的速率。
- 2. 设 $f(x) = \begin{cases} k + \ln(1+x) & x \ge 0 \\ e^{\sin x} & x < 0 \end{cases}$, 当 k 为何值时,点 x = 0 处可导;此时求出 f'(x).

- **3.** 若 y = f(x) 是奇函数且在点 x = 0 处可导,则点 x = 0 是函数 $F(x) = \frac{f(x)}{x}$ 什么类型的间断点? 说明理由.
- **4.** 试确定常数 a,b 的值,使得函数 $f(x) = \begin{cases} 2e^x + a & x < 0 \\ x^2 + bx + 1 & x \ge 0 \end{cases}$ 处处可导.
- 5. 已知某商品的需函数为 $Q = \frac{1200}{P}$, 试求:
 - (1) 从 P = 30 到 P = 20,25,32,50 各点间的需求弹性;
 - (2) P=30 时的需求弹性,并说明其经济意义。
- **6.** 设 f(x) 对任何 x 满足 f(x+1)=2 f(x), 且 f(0)=1, f'(0)=C (常数), 求 f'(1).
- 7. 试确定常数 a,b 的值,使函数 $f(x) = \begin{cases} \cos 3x & x \le 0 \\ be^x + a & x > 0 \end{cases}$,在 x = 0 处可导.
- 8. 设 $f(x) = \begin{cases} \cos x & x \le 0 \\ ax^2 + bx + c & x > 0 \end{cases}$, 求 a, b, c 的值,使 f(x) 在 x = 0 处二阶可导.

五、分析与证明题

- **1.** 设函数 f(x) 在 $(-\infty, +\infty)$ 上有定义,对任意的 $x, y \in (-\infty, +\infty)$ 有 f(x+y) = f(x) + f(y) + xy,且 f'(0) = 1,证明 f'(x) = 1 + x
- **2.** 设 $f(x) = g(x)\sin^{\alpha}(x x_0)$ ($\alpha > 1$), 其中 g(x) 在 x_0 处连续, 证明: f(x) 在 x_0 处 可导。
- 3. 设 f(x) 在 $(-\infty, +\infty)$ 上有定义且在 x = 0 处连续,对任意的 x_1 , x_2 均有 $f(x_1 + x_2) = f(x_1) + f(x_2).$
 - (1) 证明 f(x) 在 ($-\infty$, $+\infty$) 上连续;
 - (2) 又设 f'(0) = a (常数), 证明 f(x) = ax.
- **4.** 设函数 f(x) 对任何实数 x_1 , x_2 有 $f(x_1+x_2)=f(x_1)+f(x_2)$. 且 f'(0)=1, 证明: 函数 f(x) 可导,且 f'(x)=1.
- **5.** 设函数 $f(x) = \frac{\sqrt{x}}{\sqrt{1+x}+1}$, 证明 f(x) 在 x = 0 处右连续,但右导数不存在.