

Рисунок 4.5 Метод діаграм Вейча

 $f4_{MH/I,\phi} = (X4\overline{X}3X2\overline{X}1) \ v \ (X4X3\overline{X}2) \ v \ (\overline{X}2X1) \ v \ (X3X1)$

3.4. Спільна мінімізація функцій f1, f2, f3

Для отримання схем з мінімальними параметрами треба провести спільну мінімізацію системи функцій та їх заперечень. Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДДНФ.

Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.6). Побудуємо таблицю покриття (таблиця 4.5).

, ,	J J	• ,
KO	K1	K2
0000 (1,2,3)	000X (1,2)	OXXO (1,3)
0001 (1,2)	00X0 (1,2,3)	OXXO (1,3)
0010 (1,2,3)	OXOO (1,3)	XX00 (1)
0100 (-1,3)	X000 (1)	XX00 (1)
0110 (1,-2,-3)	OX10 (1,2,3)	X11X (2)
0111 (-1,-2,3)	X010 (3)	X11X (2)
1000 (1)	01X0 (1,3)	11XX (2)
1001 (3)	X100 (1,3)	11XX (2)
1010 (3)	011X (1,2,3)	
1100 (1,-2,3)	X110 (2)	•
1101 (2)	X111 (1,2,3)	
1110 (2)	1X00 (1)	•
1111 (1,2,3)	110X (2)	
	11X0 (2)	
	11X1 (2)	
	111X (2)	

Рисунок 4.6 Склеювання і поглинання термів системи

<i>3</i> M.	Арк.	№ докцм.	Підп.	Дата

Таблиця 4.5 Таблиця покриття системи

Після мінімізації визначили кожну з функцій в формі І/АБО.

 $f1_{MJH\Phi} = (\overline{X}4\overline{X}3\overline{X}2) \ v \ (X3X2X1) \ v \ (\overline{X}4\overline{X}1) \ v \ (\overline{X}2\overline{X}1)$

 $f2_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}\overline{X3}\overline{X1}) \ v \ (X4X1) \ v \ (X4X3)$

 $f3_{MJH\phi} = (X4\overline{X}3\overline{X}2X1) \ v \ (\overline{X}3X2\overline{X}1) \ v \ (X3\overline{X}2\overline{X}1) \ v \ (X3X2X1) \ v \ (\overline{X}4\overline{X}1)$

Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДДНФ. Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.7). Побудуємо таблицю покриття (таблиця 4.6).

Зм.	Арк.	№ докум.	Підп.	Дата

KO	K1	K2
0001 (3)	00X1 (3)	01XX (2)
0011 (1,2,3)	0X01 (3)	01XX (2)
0100 (-1,2)	OX11 (1,2)	10XX (2)
0101 (1,2,3)	X011 (1,2,3)	10XX (2)
0110 (-2,-3)	010X (1,2)	
0111 (-1,-2)	01X0 (2)	_
1000 (2,3)	X100 (2)	
1001 (1,2)	01X1 (1,2)	
1010 (1,2)	X101 (1,3)	_
1011 (1,2,3)	011X (2)	
1100 (-2)	X110 (3)]
1101 (1,3)	100X (2)	_
1110 (1,3)	10X0 (2)	
	1X00 (2)	
	10X1 (1,2)	
	1X01 (1)	
	101X (1,2)	
	1X10 (1)	

Рисунок 4.7 Склеювання і поглинання термів системи

Зм.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.6 Таблиця покриття системи

	0011/F1)	01011F11	1001/F1/	1010/F1/	1011/F1)	1101/F1/	1110/F1/	0011/F2J	0100(F2	0101/F2J	1000IF2	1001/F2J	1010/F2/	1011/F2J	0001/F3	0011/F3/	0101(F3)	1000lF3	1011/F3/	11011F3/	1110IF3J
0101 (1 2 3)		+								+							+				
(1,2,3) 1000 (2,3)											+							+			
1110 (1,3)							+														+
00X1 (3)															+	+					
OXO1 (3)															+		+				
OX11 (1,2)	+							+													
X011(1,2,3)	+				+			+						+		+			+		
010X (1,2)		+							+	+											
X100 (2)									+												
01X1 (1,2)		+								+											
X101 (1,3)		+				+											+			+	
X110 (3)																					+
1X00 (2)											+										
10X1 (1,2)			+		+							+		+							
1X01 (1)			+			+															
101X (1,2)				+	+								+	+							
1X10 (1)				+			+														
01XX (2)									+	+											
10XX (2)											+	+	+	+							

Після мінімізації визначили кожну з функцій в формі І/АБО-НЕ.

 $f1_{MJH\Phi}=(\overline{X3}X2X1) \ v \ (X3\overline{X2}X1) \ v \ (X4\overline{X3}X1) \ v \ (X4X2\overline{X1})$

 $f2_{MDH\phi}=(\overline{X3}\ X2\ X1)\ v\ (\overline{X4}\ X3)\ v\ (X4\ \overline{X3})$

 $f3_{M\Pi H \phi} = (X4\overline{X3}\overline{X2}\overline{X1}) \ v \ (\overline{X4}\overline{X3}X1) \ v \ (\overline{X3}X2X1) \ v \ (X3\overline{X2}X1) \ v \ (X3X2\overline{X1})$

3.5. Одержання операторних форм для реалізації на ПЛМ

Для програмування ПЛМ використовують нормальны форми I/AБО, I/AБО-НЕ. Розглянемо програмування ПЛМ для системи перемикальних функцій, що подана в формі I/AБО.

 $f1_{MRH\Phi} = (\overline{X}4\overline{X}3\overline{X}2) \ v \ (X3X2X1) \ v \ (\overline{X}4\overline{X}1) \ v \ (\overline{X}2\overline{X}1)$

 $f2_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}\overline{X3}\overline{X1}) \ v \ (X4X1) \ v \ (X4X3)$

Зм.	Арк.	№ докум.	Підп.	Дата

ІАЛЦ.463626.004 ПЗ

Арк.

 $f3_{MJH\phi} = (X4\overline{X}3\overline{X}2X1) \ v \ (\overline{X}3X2\overline{X}1) \ v \ (X3\overline{X}2\overline{X}1) \ v \ (X3X2X1) \ v \ (\overline{X}4\overline{X}1)$

Позначимо терми системи:

 $P1 = \overline{X4} \overline{X3} \overline{X2}$

P2 = X3X2X1

 $P3 = \overline{X4}\overline{X1}$

 $P4 = \overline{X2}\overline{X1}$

 $P5 = \overline{X4}\overline{X3}\overline{X1}$

P6 = X4X1

P7 = X4X3

P8 = X4\bar{X}3\bar{X}2X1

P9 = \(\overline{X}\)3X2\(\overline{X}\)1

P10 = X3\overline{X}2\overline{X}1

Тоді функції виходів описуються системою:

 $f1 = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (X3X2X1) \ v \ (\overline{X4}\overline{X1}) \ v \ (\overline{X2}\overline{X1}) = P1 \ v \ P2 \ v \ P3 \ v \ P4$

f2 = (X4X3X2) v (X4X3X1) v (X4X1) v (X4X3) = P1 v P5 v P6 v P7

 $f3 = (X4\overline{X}3\overline{X}2X1) \vee (X\overline{3}X2\overline{X}1) \vee (X3\overline{X}2\overline{X}1) \vee (X3X2X1) \vee (X\overline{4}\overline{X}1) = P8 \vee P9 \vee P10 \vee$

P2 v P3

Визначимо мінімальні параметри ПЛМ:

п = 4 — число інформаційних входів, що дорівнює кількості аргументів системи перемикальних функцій.

р = 10 — число проміжних внутрішніх шин, яке дорівнює кількості різних термів системи.

т = 3 — число інформаційних виходів, котре дорівнює кількості функцій виходів.

Побудуємо спрощену мнемонічну схему П/ІМ(4,10,3) (рисунок 4.8).

Зм.	Арк.	№ докцм.	Підп.	Дата

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Рисунок 4.8 Мнемонічна схема ПЛМ

Складемо карту програмування ПЛМ(4,10,3) (таблиця 4.7).

Таблиця 4.7 Карта програмування ПЛМ

No		Вх	оди		Виход	<i>au</i>	
ШИНИ	<i>X1</i>	<i>X2</i>	<i>X3</i>	<i>X</i> 4	<i>f1</i>	f2	f3
<i>P1</i>	0	0	0	-	1	1	0
<i>P2</i>	-	1	1	1	1	0	1
<i>P3</i>	0	1	_	0	1	0	1
P4	_	1	0	0	1	0	0
<i>P5</i>	0	0	-	0	0	1	0
<i>P6</i>	_	1	1	_	0	1	0
<i>P7</i>	1	1	-	-	0	1	0
<i>P8</i>	1	0	0	1	0	1	1
<i>P9</i>	_	0	1	0	0	0	1
P10	-	1	0	0	0	0	1

Покажемо умовне графічне позначення даної П/ІМ (рисунок 4.8).

Зм.	Арк.	№ докум.	Підп.	Дата

Рисунок 4.8 – умовне графічне позначення ПЛМ

Зм.	Арк.	№ докум.	Підп.	Дата

4. Висновок

У даній курсовій роботі на підставі «Технічного завдання ІА/ІЦ.463626.002 ТЗ» був виконаний синтез керуючого автомата, а також синтез комбінаційних схем. Функціональна схема автомата приведена у документі «Керуючий автомат. Схема електрична функціональна» і виконана згідно з вимогами єдиної системи конструкторської документації.

При синтезі комбінаційних схем у роботі була виконана мінімізація функції різними методами, а також мінімізована методом Квайна— Мак-Класкі система функцій. В результаті було отримано дві форми представлення системи функцій, одна з яких була реалізована на програмувальній логічній матриці (ПЛМ).

Під час виконання роботи були закріплені знання теоретичного курсу, отримані навички їх практичного застосування, а також навички роботи зі стандартами та пошуку інформації.

Зм.	Арк.	№ докум.	Підп.	Дата

5. Список літератури

1. Жабін В.І., Жуков І.А., Клименко І.А., Ткаченко В.В. Прикладна теорія цифрових автоматів. Київ: книжкове видавництво НАУ, 2007 р. 2. Конспект лекцій з курсу «Комп'ютерна логіка», 2014 р.

Зм.	Арк.	№ докум.	Підп.	Дата