Ejercicio 1.

• a) Sea μ_1 una distribución en \mathbb{R} . Calcule el parámetro $c \in \mathbb{R}$ que falta

 $\mu_1(dx) = c \frac{1}{x} \mathbb{I}\{x > 2\} dx.$

b) Sea μ_2 una distribución en $\mathbb R.$ Calcule el parámetro $c\in\mathbb R$ que falta.

 $\mu_2(dx) = 5\frac{1}{x^c} \mathbb{I}\{x > 1\} dx.$

c) Sea μ_3 una distribución en \mathbb{R} . Calcule el parámetro $c \in \mathbb{R}$ que falta.

 $\mu_3(dx) = 5 \frac{\log(x)}{x^c} \mathbb{I}\{x > 1\} dx.$

- Considere una familia independiente de variables aleatorias $(X_i)_{i \in \mathbb{N}}$, con $X_i \sim \mathcal{U}_{[0,1]}$.
 - a) Calcule y dibuje la densidad de $X_1 + X_2$.
 - b) Calcule y dibuje la densidad de $X_1 + X_2 + X_3$.
 - c) Calcule y dibuje la densidad de $X_1 + X_2 + X_2 + X_4$.
 - d) ¿Qué se puede decir de $\sum_{i=1}^{n} X_i$?
- Demuestre por cálculo directo que para las variables aleatorias $\bot (X, Y)$, se tienen las siguientes implicaciones:
 - a) $X \sim \mathcal{P}_{\lambda}, Y \sim \mathcal{P}_{\lambda'} \implies X + Y \sim \mathcal{P}_{\lambda + \lambda'}.$
 - b) $X \sim \mathcal{B}_{n_1,p}, Y \sim \mathcal{B}_{n_2,p} \implies X + Y \sim \mathcal{B}_{n_1+n_2,p}.$
 - c) $X \sim N(m_1, \sigma_1^2), Y \sim N(m_2, \sigma_2^2) \implies X + Y \sim N(m_1 + m_2, \sigma_1^2 + \sigma_2^2).$

Ejercicio 2.

En un típico texto alemán, la letra e es la más frecuente con un 12,5 % de probabilidad, por encima de todas las demás letras. Un software reapasa un texto desconocido de una forma puramente aleatoria y reconoce con 99 % de la letra e correctamente. Con la probabilidad de 0,1 % reconoce una e erroneamente.

- a) ¿Qué tan grande es la probabilidad de que el softaware indique la letra e en un paso?
- b) ¿Qué tan grande es la probabilidad de que sea efectivamente la letra e cuando detecta una e?

Formalice estas probabilidades y cuide meticulosamente la notación.

Identifique todos los eventos que utiliza.

Calcule todo en fracciones y de el resultado como fracción simplificada de dos números enteros.

Ejercicio 3.

Sin memoria implica distribución exponencial o geométrica.

a) Demuestre que para toda variable aleatoria con valores $[0, \infty)$ cuya distribución \mathbb{P}_X es absolutamente contínua con respecto a la medida de Lebesgu, con una densidad estrictamente positiva y que satisface:

$$\forall t, s > 0, 0 < \mathbb{P}(X > t + s | X > t) = \mathbb{P}(X > s) < 1.$$

Se tiene que $\exists \lambda > 0$ tal que $\mathbb{P}_X = \exp(\lambda)$.

Ayuda: Calcule la ecuación que satisface $\log(1 - F_X)$, resuelva la ecuación y deduzca el resultado.

b) Demuestre que para toda variable aleatoria X con valores en \mathbb{N} , cuya distribucion \mathbb{P}_X satisface:

$$\mathbb{P}(X > n + m | X > m) = \mathbb{P}(X > n), \forall n, m \in \mathbb{N} \setminus 0.$$

Se tiene que existe un parámetro $a \in (0,1]$ tal que $X \sim \mathcal{G}_a$. Ayuda: Calcule $\mathbb{P}(x=k)$ como diferencia de 1 menos la función de distribución y use el inciso anterior. La demostración se hace entonces, por inducción