

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

SISTEMI ENERGETICI PER INGEGNERIA FISICA

26/07/2018

Allievi fisici

Allega	gare alle soluzioni il presente testo indicando (in STAMPATELLO):	
NOME E COGNON	ME	

Tempo a disposizione: 2 ore 30 minuti

Leggere attentamente le avvertenze: Indicare chiaramente nome e cognome su <u>tutti</u> i fogli da consegnare. Rispondere <u>brevemente</u> ma <u>con chiarezza solamente ai quesiti posti, evidenziando le necessarie unità di misura</u>. Calcoli e spiegazioni - pur corretti in sé - che non rispondono ai quesiti posti <u>non</u> saranno considerati ai fini della valutazione del compito. Nel caso sia richiesta una <u>soluzione grafica</u> indicare con chiarezza sui grafici allegati la soluzione proposta.

Tenere spenti i telefoni cellulari, non usare appunti, dispense, etc. Riportare i risultati richiesti su questo foglio e procedimento/calcoli intermedi sul foglio a quadretti.

Punteggio: Punteggio totale pari a 35. Il docente si riserva di normalizzare i risultati in trentesimi con coefficienti correttivi in base all'esito medio delle risposte date.

Dati per la risoluzione dei quesiti

Costante universale dei gas \Re = 8314 J/(kmol·K), densità acqua = 1000 kg/m³,cacqua=4.2 kJ/kg/K, μ acqua=1.14E-03 Pa*s

□ ESERCIZIO 1 (punti 5)

Un impianto idroelettrico produce 1 MW sfruttando la differenza di quota tra due bacini 1 e 2. Il 15% della portata estratta dal serbatoio 1 viene deviata nel tratto A2-A4, mentre la rimanente parte viene inviata alla turbina.

Il tratto A1-A2 è lungo 350 m ed ha un diametro di 800 mm, i tratti A2-A3 e S1-S2 sono entrambi lunghi 250 m.

La velocità dell'acqua è uguale in tutti i tubi (2 m/s) così come il coefficiente di perdita f (0.03) e il coefficiente delle perdite di carico concentrate (K_c=6).

Sapendo che il rendimento idraulico e il rendimento meccanico-elettrico della turbina sono rispettivamente pari a 0.85 e 0.98, calcolare:

- portata massica nei vari tratti dell'impianto
- differenza di quota tra i due bacini
- pressione all'ingresso della turbina (assumere z_{turbina}=z2)

□ ESERCIZIO 2 (punti 4)

Una portata di elio alla temperatura di 900°C e pressione 110 bar viene espansa a temperatura costante fino alla pressione di 30 bar. Successivamente viene compressa isoentropicamente fino alla pressione iniziale e laminata adiabaticamente fino ad avere

s4=2*s2.

Assumendo il comportamento dell'elio assimilabile a quello di gas perfetto (MM=4 kg/kmol), si chiede di:

- Rappresentare su un piano T-s le trasformazioni ed identificare i punti termodinamici (s1=0 kJ/kg/K)
- Valutare la potenza termica scambiata e la potenza meccanica della sequenza di trasformazioni (in entrambi i casi specificando se assorbita o ceduta).

ESERCIZIO 3 (punti 6)

Si vuole studiare lo scambio termico del sistema costituito da 3 pareti piane in figura. La parete centrale (spessore s2=20 cm) è di materiale solido (k=55 W/m/K) ed è sede di

Le due pareti laterali sono di spessore 5 cm e conduttività termica rispettivamente $k_1=20$ W/m/K e $k_3=10$ W/m/K. La parete esterna dello strato 1-2 è a contatto con un fluido a 400°C con coefficiente di scambio convettivo pari a 50 W/m²/K. La parete esterna dello strato 3-4 è lambita da aria a 15°C.

Sapendo che il flusso termico scambiato tra la parete 1 e il fluido è 300 W/m² e che le temperature superficiali T1 e T4 sono uguali, si chiede di (problema stazionario e monodimensionale):

- Calcolare la resistenza termica delle due pareti 1-2 e 3-4
- Calcolare le temperature T1, T2, T3 e T4.

una generazione di potenza pari a 100 kW/m³.

- Calcolare il coefficiente di scambio termico convettivo hamb-4 e la velocità dell'aria

La relazione per il calcolo del numero di Nusselt è (lunghezza caratteristica pari alla profondità della parete L= 5 m):

$$Nu = 0.037Re^{\frac{4}{5}}Pr^{\frac{1}{3}}$$

Proprietà dell'aria assunte costanti:

cp=1.006 kJ/kg/K

k=0.0262 W/m/K

 μ =1.873E-05 Pa*s

 ρ =1.15 kg/m³

□ ESERCIZIO 4 (punti 5)

Si vuole studiare la produzione di potenza elettrica sfruttando la differenza di temperatura dell'acqua di mare a differente profondità tramite un ciclo Rankine saturo ad ammoniaca. Si preleva una portata di 9000 kg/s di acqua in superficie a $T_{in}=28$ °C che funge da sorgente termica ad alta temperatura (acqua fluido incomprimibile, $\rho=1000$ kg/m³, c=4200 J/kg/K) e viene scaricata a $T_{out}=24$ °C.

La sorgente termica a bassa temperatura è rappresentata da una portata di 8500 kg/s prelevata nelle profondità oceaniche.

La temperatura di evaporazione del ciclo è 22°C mentre la temperatura di condensazione è 10°C.

Utilizzando le informazioni riportate in figura e le tabelle delle proprietà dell'ammoniaca in condizioni sature, si chiede di:

Curva di Andrews qualitativa per ammoniac

- Rappresentare qualitativamente il ciclo in un piano T-s
- Completare la tabella dei punti termodinamici del ciclo
- La portata di ammoniaca circolante nel ciclo

Assumendo che il rendimento idraulico e il rendimento organico elettrico sono pari rispettivamente a 0.8 e 0.95 (uguali per entrambe le pompe di prelievo dell'acqua marina) e che il salto di pressione a cavallo delle pompe è 0.5 e 1 bar rispettivamente per l'acqua calda e quella fredda ($\Delta Z=0$ m e $\Delta V=0$ m/s), si chiede di determinare:

- La potenza delle pompe di prelievo dell'acqua di mare (sia calda che fredda)
- La potenza netta dell'intero impianto e il rendimento di primo principio

Flusso	Portata [kg/s]	Temperatura [°C]	Pressione [bar]	Entalpia [kJ/kg]	Titolo [-]
1	122.495	10.1	9.137	390.35	Liquido
2	122.495	22	9.137	1624.68	1
3	122.495	10	6.150	1581.08	0.972
4	122,495	10	6.150	389.72	0

□ QUESITO 5 (Rispondere ad una sola delle due domande) (punteggio 7.5)

- 1- Applicare il principio di conservazione dell'energia ad una laminazione adiabatica ed introdurre il coefficiente di Joule-Thompson ed il significato della curva di inversione.
- 2- Discutere l'approccio a parametri concentrati per la risoluzione di problemi di scambio termico in condizioni non stazionarie. Ricavare l'espressione dell'andamento di temperatura evidenziando i numeri adimensionali caratteristici.

□ QUESITO 6 (DOMANDE A RISPOSTA GUIDATA) (punteggio 7.5)

Rispondere alle seguenti 15 domande a risposta guidata. Segnare la casella relativa alla sola risposta corretta (0.5 punto per risposta corretta, -0.125 punti se sbagliata).

Considerate un gas perfetto	\Box $c_V=c_p+R$
biatomico:	Sempre c _p [kJ/kg/K]>c _√ [kJ/kg/K]
R=8314 J/kmol/K	□ c _p =3/2 R
	□ Nessuna delle precedenti
Una sfera di rame (k=395 W/m/K,	Se D=1 m → t raffreddamento calcolabile approccio
ρ =7850 kg/m ³ , c=385 J/kg/K) a	par.concentrati
T _{iniziale} =95°C è immersa in vasca	■ L'energia totale è dipendente da D³
d'olio (T=30°C, h=20 W/m²/K), la	□ Se D=1 mm → t raffreddamento è 36 min
temperatura finale è 15°C:	□ Nessuna delle precedenti
In un ciclo Rankine surriscaldato	□ Un aumento del rendimento del ciclo
ideale, la riduzione del rendimento	□ Un aumento del lavoro del ciclo
isoentropico della turbina implica:	 Un aumento del lavoro della pompa di alimento
	L'aumento del titolo di vapore allo scarico dela turbina

La resistenza termica conduttiva di uno strato cilindrico:	 □ Decresce all'aumentare dallo spessore dello strato □ Dipende dalla densità del materiale □ Dipende linearmente dal logaritmo di Din/Dout □ Dipende linearmente dalla conduttività termica
Una portata di fluido incomprimibile	•
m fluisce in un tubo verticale (z ₁ -	□ v2>v1
z ₂ =10 m) di lunghezza L e di	□ Le perdite di carico portano ad aumento della velocità
diametro crescente, si può	□ Idealmente P2>P1
affermare che: 1→ In; 2→Out	a recumente i 221 i
Dato il corpo nero A (TA=1000 K) e	□ cA < cB
il corpo grigio B (TB=2000 K) con	
БВ=0.1:	 □ II flusso termico è sempre q= σε_B*(T_B⁴-T_A⁴) [W/m²] □ II fattore di vista influenza il flusso termico
λ _{max} → Lungh.onda di massima	□ λ _{max,B} >λ _{max,A}
emissione, E→ Pot.Emissivo totale	- Contouts
L'entropia di un fluido	□ Costante
incomprimibile è:	Dipendente solo da T
	□ Dipendente da T, P e densità
0: 11: 11: 11: 11: 11: 11: 11: 11: 11: 1	□ Dipendente da T e P
Si consideri un'aletta di alluminio di	
lunghezza L1 e un'aletta di	□ Efficacia1=Efficacia2 poiché hanno lo stesso materiale
alluminio di lunghezza L2=2*L1. Si	□ Tapice1 <tapice2< td=""></tapice2<>
può dire che: (stessa T _{base} e h)	□ Potenza scambiata 2=2*Potenza Scambiata1
Dati due cicli Joule-Brayton ideali	Se T2A=T2B allora ηA= ηB
chiusi (A e B). Se fluido A è elio	□ Se βA=βB allora ηA>ηB
(He) e il fluido B elabora azoto	□ Se T3A=T3B allora sicuramente ηA>ηB
(N2), si può dire che: (T1A=T1B)	□ Nessuna delle precedenti
Per un ciclo Rankine rigenerativo	□ Un η pari a quello reversibile
reale, si ha generalmente:	□ T _{media} introduzione calore più bassa del ciclo semplice
	Un incremento del rendimento
	□ L _{netto} crescente con aumento del numero rigeneratori
La generica grandezza specifica y	y = yLS + x (yVS - yLS)
della miscela è:	y = yVS / (1 - x) + yLS / x
(LS = liq.saturo, VS = vap.saturo,	□ y = yVS + xv / (1 - x) yLS
x=frazione massica vapore,	□ y = (1 - xv) yLS + xv yVS
xv=frazione volumica vapore)	
Le isoterme di un fluido	□ Presentano punti angolosi per P <pcritica< td=""></pcritica<>
rappresentate in un diagramma h-	□ Sono curve a pendenza costante
s:	□ Sono rette con pendenza crescente con la P
	Sono segmenti orizzontali per liquido incomprimibile
Data una turbina a gas reale,	□ Un aumento del rendimento del sistema
	□ Un aumento della T dei fumi scaricati in ambiente
che ha come sorgente termica i	□ Un aumento della potenza della TG
fumi di scarico della TG, implica:	□ Un η _{II} pari a 1
Per una macchina operatrice che	□ ∆Tideale>∆Treale
elabora un fluido incomprimibile, si	
ha:	□ Pot. all'albero>Pot Elettrica> Pot. ideale
	□ Pot.ideale>Pot all'albero>Pot.elettrica
7 g/s di olio (densità=900 kg/m³,	□ Il coefficiente di attrito è circa 0.08
viscosità cinematica= 1.2 E-6 m²/s)	□ II numero di Reynolds è circa 7.43E-5
scorre in tubo (D=1cm). Sapendo	□ La caduta di pressione è circa 407 Pa
che la lunghezza del tubo è 5 m:	Nessuna delle precedenti