High-Frequency Trade Sign Classification

Deep Learning - Final Project

Jared Hansen, Matt Isaac, Kegan Penovich

23 April, 2019

Outline

- Problem & Motivation
- Data
- Baseline Models (forests and k-NN)
- Neural Network Models (feedforward, LSTMs)
- Conclusions & Future Work

Problem and Motivation

 PROBLEM: classify high-frequency trade (HFT) initiation

Problem and Motivation

- MOTIVATION: Finance researchers often don't have ITCH access, but need to know trade signs (liquidity measures, price-estimation models)
- Target accuracy: surpass accuracies in Rosenthal's 2012 "Modeling Trade Direction"

Sector		Pe	Percent of trades correctly classified				
	N	Modeled	EMO	LR.new	LR.old	Tick	
Capital goods	216,800	74.7	73.0	72.1	71.8	61.6	
Conglomerates	33,863	84.7	83.4	79.5	78.9	63.7	
Cons. cyclical	236,193	73.4	72.1	71.7	71.4	62.9	
Energy	228,978	77.3	76.1	73.3	72.9	62.5	
Financial	1,014,479	74.2	72.4	72.4	72.2	63.3	
Healthcare	2,314,251	72.2	71.5	69.7	69.4	63.8	
Industrial goods	4917	62.5	63.8	60.4	60.3	54.3	

Data

- ITCH data feed (Nasdaq product)
- Dataset includes all 21 trading days in March 2018
- 10 Tickers (stocks)
 - AAOI (Applied Optoelectronics Inc.)
 - BABY (Natus Medical Inc.)
 - CA (CA Technologies)
 - DAIO (Data I/O Corporation)
 - EA (Electronic Arts Inc.)
 - FANG (Diamondback Energy Inc.)
 - o GABC (German American Bancorp Inc.)
 - HA (Hawaiian Holding Inc.)
 - IAC (InterActiveCorp)
 - JACK (Jack in the Box Inc.)

Data - Preparation and Cleaning

- 10 stocks x 21 days = 210 text files
- For each text file:
 - Remove all bids, asks, cancels, etc., leaving only executed trades
 - Convert to .csv file
- Result: total of about 700,000 observations
- Standardized within each variable (except the binary msg_type features) across each dataset, e.g.

$$standardized(timestamp_i) = \frac{timestamp_i - mean_{timestamp}}{\sigma_{timestamp}} \ \forall i, i \in \{1, 2, ...len(dataframe)\}$$

Data Aggregation

Two ways we aggregated the data for training:

- 1. One ticker, one day
- 2. One ticker, all days

Data Aggregation

Two ways we aggregated the data for training:

- 1. One ticker, one day
- 2. One ticker, all days

Baseline Models: k-NN & Random Forests

Bidirectional LSTM: Keras

- Since there is a time series aspect to the data, we could consider a RNN.
 LSTM's are the canonical choice for this kind of problem.
- We do not need to take this into account for our stated purpose, but we can try it to see if it can assist.

Better Leveraging B-LSTM

Data pre-processing: more predictive sequence inputs

Bidirectional LSTM Architecture

- We kept this very basic.
- Single LSTM layer
- Dropout = 0.2
- Single dense layer = 100 neurons
- Sigmoid output
- BCE loss function
- Adam optimizer (defaults)

```
epochs = 75
batch size = 64
keras.optimizers.Adam(lr=0.01, beta 1=0.9,
                      beta 2=0.999, epsilon=None,
                      decay=0.0, amsgrad=False)
ourmodel = Sequential()
ourmodel.add(Bidirectional(LSTM(100, input shape =(33,11),
                                bias regularizer = regularizers.12(0.03),
                                dropout = 0.1, recurrent dropout = 0.1)))
ourmodel.add(Dropout(0.2))
ourmodel.add(Dense(1, activation='sigmoid'))
ourmodel.compile(loss='binary crossentropy',
                 optimizer='adam', metrics=['accuracy'])
ourmodel.fit(X train, y train, validation data=(X val, y val),
             verbose = 2, shuffle = True,
             epochs=epochs, batch_size=batch_size)
print(ourmodel.summary())
```

B-LSTM Results (w/out regularization)

- A typical result (regardless of parameters) is in the low to mid 70's.
- There was a serious issue of over fitting that would happen.
- Initial efforts to address this did reduce overfitting, but did not increase validation accuracy.

B-LSTM Results (w/regularization)

To deal with the overfitting we implemented some regularization techniques.

- L2 Regularization (0.03)
- Drop Out (0.1, 0.1, 0.2)

These drastically reduced overfitting, though it did not improve the validation accuracy.

Bidirectional LSTM (PyTorch)

Amazing results! So good that they broke mathematical law

```
correct += (predicted == trade_signs).sum()

print('Test Accuracy of the model on the test t total))

Test Accuracy of the model on the test trades: 1278.0881 %
```

Unfortunately this wasn't the case

```
Test Accuracy of the model on the test trades: 66.5320 %
```

B-LSTM Architecture

- Window_length = 10 (10 sequences of features data per buy/sell target)
- Shift_by = 1 (maximizing utility of LSTM hidden & cell states)
- 2 hidden layers per cell, 128 neurons
- 1 output neuron, Sigmoid activation, round value to get 0 or 1
- Cost = BCE
- Learning rate = 0.001
- Optimizer = Adam
- Num_epochs = 4
- Batch_size = 20

B-LSTM Test Accuracies (PyTorch)

Model Accuracy Comparison

Conclusions

- Forests: low investment, high return
 - Beat Rosenthal -- and previous methods' -- accuracies!
- B-LSTM implementation?

How do we know? → timestamp/proxy-for-timestamp features in RF feature

importance vec

Future Work

- More exploration with B-LSTM model, modifying implementation, parameters
- Transfer learning: predict onto TAQ data
- Match Quotes data with Trades data (better features?)
- Hierarchical B-LSTM to maximize info in Quotes data (multiple quotes per trade)