Index	C1	C2	С3	C4	C5	C6
\overline{DC}	0.74-0.78	0.71-0.75	0.63-0.73	0.36-0.46	0.35-0.49	0.08-0.14
WDC	0.93-0.94	0.83-0.86	0.77-0.84	0.58-0.69	0.54-0.60	0.23-0.30
CC	0.73 - 0.77	0.69-0.75	0.64-0.73	0.34-0.45	0.36-0.45	0.03-0.09
BC	0.74-0.81	0.68 - 0.77	0.68 - 0.74	0.42 - 0.52	0.27-0.38	0.00-0.00
s	0.92 - 0.95	0.86-0.89	0.81-0.88	0.77-0.85	0.72 - 0.77	0.15 - 0.27
s'	0.88-0.91	0.86-0.92	0.86-0.89	0.75-0.78	0.67 - 0.74	0.21-0.32
Δs	0.88-0.91	0.86-0.89	0.84-0.90	0.75 - 0.79	0.71-0.78	0.21-0.30
k	0.70 - 0.75	0.70 - 0.74	0.57-0.67	0.27-0.40	0.19-0.33	0.02-0.08
k_{bu}	0.90-0.93	0.84-0.88	0.74-0.82	0.71 - 0.75	0.68-0.78	0.13-0.23
k_{td}	0.81-0.84	0.79-0.83	0.72 - 0.82	0.66 - 0.71	0.47 - 0.57	0.18-0.27
k_{dir}	0.65 - 0.71	0.63-0.68	0.51-0.64	0.19-0.31	0.11-0.32	0.03-0.07
k_{indir}	0.72 - 0.77	0.69 - 0.75	0.60- 0.71	0.41-0.49	0.33-0.45	0.01-0.07
TI^1	0.80-0.84	0.77-0.81	0.60- 0.73	0.45 - 0.53	0.40-0.53	0.12-0.18
TI^3	0.85-0.88	0.80 - 0.83	0.67 - 0.76	0.52 - 0.61	0.50 - 0.57	0.16-0.22
TI^5	0.87-0.89	0.80-0.84	0.69-0.78	0.51-0.62	0.52 - 0.58	0.14-0.25
WI^1	0.80-0.83	0.77-0.81	0.64 - 0.72	0.46 - 0.54	0.38-0.54	0.12-0.18
WI^3	0.85-0.88	0.79-0.83	0.66 - 0.77	0.50-0.60	0.49-0.58	0.15-0.22
WI^5	0.87-0.90	0.80-0.84	0.70-0.80	0.52 - 0.64	0.52 - 0.59	0.15-0.25
STO^1	0.89-0.92	0.77-0.81	0.65 - 0.79	0.56-0.67	0.56 - 0.62	0.05-0.09
STO^3	0.89-0.91	0.76-0.81	0.67-0.79	0.57-0.63	0.56-0.63	0.03-0.09
STO^5	0.87-0.90	0.74-0.80	0.67-0.76	0.56-0.62	0.55-0.63	0.05-0.10
$wSTO^1$	0.85-0.88	0.79-0.83	0.66-0.79	0.55-0.63	0.52-0.62	0.07-0.12
$wSTO^3$	0.83-0.88	0.80-0.83	0.66-0.78	0.55-0.61	0.47-0.61	0.08-0.13
$wSTO^5$	0.82-0.86	0.81-0.85	0.65-0.76	0.54-0.64	0.47-0.59	0.05-0.14

Table 1: Confidence intervals of the mean Kendalls in Table 1.

Index	C1	C2	С3	C4	C5	C6
\overline{DC}	50%	50%	50%	50%	25%	25%
WDC	50% mean	50% mean	25% sum	NMAX mean	NMAX mean	NMAX sum
CC	50%	50%	50%	50%	25%	25%
BC	50%	50%	50%	25%	25%	25%
s	NMAX	NMAX	25%	NMAX	25%	NMAX
s'	25%	25%	NMAX	25%	NMAX	25%
Δs	25%	NMAX	25%	25%	NMAX	NMAX
k	50%	50%	50%	25%	25%	NMAX
k_{bu}	25%	50%	25%	25%	25%	NMAX
k_{td}	25%	50%	50%	25%	25%	25%
k_{dir}	50%	50%	50%	50%	50%	25%
k_{indir}	50%	50%	50%	25%	25%	NMAX
TI^1	50%	50%	50%	NMAX	25%	NMAX
TI^3	50%	NMAX	50%	NMAX	NMAX	NMAX
TI^5	25%	25%	25%	NMAX	NMAX	NMAX
WI^1	50% mean	50% mean	50% mean	$NMAX \max$	25% mean	NMAX sum
WI^3	50% mean	NMAX mean	50% mean	NMAX mean	NMAX mean	NMAX mean
WI^5	25% mean	25% mean	25% mean	NMAX mean	NMAX mean	NMAX mean
STO^1	25%	50%	50%	25%	25%	25%
STO^3	25%	50%	50%	25%	25%	25%
STO^5	25%	50%	50%	25%	25%	25%
$wSTO^1$	25% mean	50% max	50% mean	25% min	25% mean	25% min
$wSTO^3$	25% mean	50% mean	50% max	25% mean	25% mean	25% max
$wSTO^5$	25% mean	50% mean	50% mean	25% mean	25% mean	NMAX sum

Table 2: Combination of linkage method and interaction strength method that gave us the highest Kendall's correlation coefficient. Most of the cells do not contain the interaction strength method because they are computed upon a binary network.

 ${\it webs}$