1

AI24BTECH11031 - Shivram S

2) The mean-square of a zero-mean random process is $\frac{kT}{C}$, where k is Boltzmann's constant, T is the absolute temperature, and C is a capacitance. The standard deviation

3) A system transfer function is $H(s) = \frac{a_1 s^2 + b_1 s + c_1}{a_2 s^2 + b_2 s + c_2}$. If $a_1 = b_1 = 0$, and all other coefficients are positive, the transfer function represents a

c) $\frac{C}{kT}$

c) $\frac{z^2-1}{z-0.5}$

d) $\frac{z^2-1}{z+i0.5}$

d) $\frac{\sqrt{kT}}{C}$

1) Which one of the following functions is analytic in the region $|z| \le 1$?

b) $\frac{z^2-1}{z+2}$

b) $\sqrt{\frac{kT}{C}}$

a) $\frac{z^2-1}{z}$

a) $\frac{kT}{C}$

of the random process is

a) low pass filter

b) high pass filc) band pass fild) notch filter4) The symbols a	lter	tive quantities, and $u($	t) is the unit step function.
•	the following impulse	-	e output of a causal linear
a) $e^{+at}u(t)$ b) $e^{-a(t+T)}u(t)$		c) $1 + e^{-at}u(t)$ d) $e^{-a(t-T)}u(t)$	
	7/100 V, single-phase aded. The regulation of		ondary terminal voltage of
a) 4.5%	b) 9%	c) 5%	d) 1%
AC source. As		output current of the	lanced three-phase, 50 Hz e rectifier is constant, the
a) 100 Hz	b) 150 Hz	c) 250 Hz	d) 300 Hz
_	MS value of the supp	uit of a three-phase ir oly voltage at the rate	nduction motor affected by d frequency is

- b) rotor leakage reactance
- c) magnetizing reactance
- d) stator resistance
- 8) A three-phase synchronous motor draws 200 A from the line at unity power factor at rated load. Considering the same line voltage and load, the line current at a power factor of 0.5 leading is
 - a) 100 A
- b) 200 A
- c) 300 A
- d) 400 A
- 9) In the circuit shown below, the switch is closed at t = 0. The value of θ in degrees which will give the maximum value of DC offset of the current at the time of switching is

a) 60

b) -45

c) 90

- d) -30
- 10) The output response of a system is denoted as y(t), and its Laplace transform is given by

$$Y(s) = \frac{10}{s(s^2 + s + 100\sqrt{2})}$$

The steady state value of y(t) is

- a) $\frac{1}{10\sqrt{2}}$
- b) $10\sqrt{2}$ c) $\frac{1}{100\sqrt{2}}$
- d) $100\sqrt{2}$
- 11) The open loop transfer function of a unity feedback system is given by

$$G(s) = \frac{\pi e^{-0.25s}}{s}.$$

In G(s) plane, the Nyquist plot of G(s) passes through the negative real axis at the point

a) (-0.5, j0)

c) (-1.25, *j*0) d) (-1.5, *j*0)

b) (-0.75, i0)

- 12) The characteristic equation of a linear time-invariant (LTI) system is given by

$$\Delta(s) = s^4 + 3s^3 + 3s^2 + s + k = 0.$$

The system is BIBO stable if

a)
$$0 < k < \frac{12}{9}$$

c)
$$0 < k < \frac{8}{9}$$

d) $k > 6$

b)
$$k > 3$$

- 13) Given V_{gs} is the gate-source voltage, V_{ds} is the drain-source voltage, and V_{th} is the threshold voltage of an enhancement type NMOS transistor, the conditions for the transistor to be biased in saturation are
 - a) $V_{gs} < V_{th}$; $V_{ds} \ge V_{gs} V_{th}$
 - b) $V_{gs} > V_{th}$; $V_{ds} \ge V_{gs} V_{th}$
 - c) $V_{gs} > V_{th}$; $V_{ds} \leq V_{gs} V_{th}$
 - d) $V_{gs} < V_{th}$; $V_{ds} \le V_{gs} V_{th}$