G-Computation

Malcolm Barrett

Teladoc Health

2021-09-01 (updated: 2021-08-30)

Normal regression estimates associations. But we want causal estimates: what would happen if everyone in the study were exposed to x vs if no one was exposed.

G-Computation/G-Formula

- 1 Fit a model for y ~ x + z where z is all covariates
- 2 Create a duplicate of your data set for each level of x
- 3 Set the value of x to a single value for each cloned data set (e.g x = 1 for one, x = 0 for the other)

G-Computation/G-Formula

- Make predictions using the model on the cloned data sets
- Calculate the estimate you want, e.g. mean(x_1) - mean(x_0)

Advantages of the parametric G-formula

Often more statistically precise than propensity-based methods

Incredibly flexible

Basis of other important causal models, e.g. causal survival analysis and TMLE

Greek Pantheon data (greek_data)

name	l	a	у
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1
Artemis	1	0	1
Apollo	1	0	1

+ 10 more rows

1. Fit a model for y ~ a + l

```
greek_model <- lm(y ~ a + 1, data = greek_data)
```

2. Create a duplicate of your data set for each level of a

name	l	a	у
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1
Artemis	1	0	1
Apollo	1	0	1

2. Create a duplicate of your data set for each level of a

name	l	a	у
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1
Artemis	1	0	1
Apollo	1	0	1

l	a	у
0	0	0
0	0	1
0	0	0
0	0	0
0	1	0
0	1	0
0	1	0
0	1	1
1	0	1
1	0	1
	0 0 0 0 0 0 0	l a 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0

3. Set the value of a to a single value for each cloned data set

name	l	a	У
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	0	0
Poseidon	0	0	0
Hera	0	0	0
Zeus	0	0	1
Artemis	1	0	1
Apollo	1	0	1

name	l	a	у
Rheia	0	1	0
Kronos	0	1	1
Demeter	0	1	0
Hades	0	1	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1
Artemis	1	1	1
Apollo	1	1	1

3. Set the value of a to a single value for each cloned data set

```
# set all participants to have a = 0
untreated_data <- greek_data %>%
    mutate(a = 0)

# set all participants to have a = 1
treated_data <- greek_data %>%
    mutate(a = 1)
```

4. Make predictions using the model on the cloned data sets

```
# predict under the data where everyone is untreated
predicted_untreated <- greek_model %>%
    augment(newdata = untreated_data) %>%
    select(untreated = .fitted)

# predict under the data where everyone is treated
predicted_treated <- greek_model %>%
    augment(newdata = treated_data) %>%
    select(treated = .fitted)

predictions <- bind_cols(
    predicted_untreated,
    predicted_treated
)</pre>
```

5. Calculate the estimate you want

Your Turn

Work through Your Turns 1-3 in 07-g-computationexercises.Rmd

10:00

Detour: Colliders, selection bias, and loss to follow-up

Confounders and chains

Colliders

Colliders

Loss to follow-up

Adjusting for selection bias

- 1 Fit a probability of censoring model, e.g. glm(censoring ~ predictors, family = binomial())
- Create weights using inverse probability strategy
- Use weights in your causal model

We won't do it here, but you can include many types of weights in a given model. Just take their product, e.g. multiply inverse propensity of treatment weights by inverse propensity of censoring weights.

Your Turn

Work through Your Turns 4-6 in 07-g-computation-exercises.Rmd

10:00