习题二十五 级数的概念与基本性质

	专业班级	_姓名	学号	
_	、填空题:			
1,	设 $\frac{1}{2} + \frac{3}{2^2} + \frac{1}{2^3} + \frac{3}{2^4} + \cdots$	则一般项 <i>u</i> _n =		;
2、		⁴ +…,则一般项 <i>u</i> "=_		;
3、	设 $\sum_{n=1}^{\infty} (-1)^n (\frac{2}{7})^n$,则其和	S=		;
4、	设 $1+x+x^2+\cdots+x^n+\cdots$	·, $(x <1)$,则其和 $S=$	<u> </u>	:
5、	已知 $\sum_{n=1}^{\infty} \frac{\pi^{2n}}{(2n)!}$ 收敛,则 $\lim_{n\to\infty}$	$\lim_{n\to\infty}\frac{\pi^{2n}}{(2n)!}=\underline{\hspace{1cm}}$	0	
<u> </u>	、是非题:			
1,	若 $\sum_{n=1}^{\infty} u_n$ 发散, $\lim_{n\to\infty} u_n \neq 0$) 。	()
2,	若 $\lim_{n\to\infty} u_n \neq 0$,则 $\sum_{n=1}^{\infty} u_n$ 发	 t t t	()
3、	若 $\sum_{n=1}^{\infty} u_n$ 发散,则 $\lim_{n\to\infty} S_n$	$=\infty$	()
4、	若 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ 都发散,	则 $\sum_{n=1}^{\infty} (u_n + v_n)$ 也发散	ζ. ()
5、	若 $\sum_{n=1}^{\infty} u_n$ 发散, $\sum_{n=1}^{\infty} v_n$ 收敛	攻,则 $\sum_{n=1}^{\infty} (u_n + v_n)$ 发散	ζ. ()
6、	若加括号所得级数发散,	则原级数也发散。	()
三	、按定义判断下列级数的	敛散性:		
1,	$\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n})$			

$$2 \cdot \sum_{n=1}^{\infty} \frac{1}{(3n-1)(3n+2)}$$

四、判断下列级数的敛散性:

$$1 \cdot \sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n$$

$$2 \cdot \sum_{n=1}^{\infty} \left[\left(\frac{\ln 3}{3} \right)^n + \frac{1}{2^n} \right]$$

1.
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n$$
 2. $\sum_{n=1}^{\infty} \left[\left(\frac{\ln 3}{3}\right)^n + \frac{1}{2^n}\right]$ 3. $\sum_{n=1}^{\infty} \left[\left(\frac{3}{2}\right)^n + \frac{1}{n(n+1)}\right]$

五、分别就 $\sum_{n=1}^{\infty} u_n$ 收敛和发散两种情况讨论下列级数的敛散性:

$$1 \cdot \sum_{n=1}^{\infty} u_{n+1000}$$

$$2 \cdot \sum_{n=1}^{\infty} (u_n + 0.0001)$$

习题二十六 数项级数审敛法

- 一、判断下列陈述是否正确:
- 1、若正项级数 $\sum_{n=1}^{\infty}u_n$ 收敛,则其部分和数列 $\{S_n\}$ 必有界。()
- 2、若数项级数 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 满足 $u_v \le v_n (n = 1, 2, \cdots)$,且 $\sum_{n=1}^{\infty} v_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 也 收敛。(
- 3、若正项级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则 $\sum_{n=1}^{\infty} (1 + \frac{1}{n})^n u_n$ 也收敛。()
- 4、若数项级数 $\sum_{n=1}^{\infty} u_n$ 满足 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \rho < 1$,则 $\sum_{n=1}^{\infty} u_n$ 收敛。(
- 二、判断下列级数的敛散性:

$$1 \cdot \sum_{n=1}^{\infty} (\sqrt{n^3 + 1} - \sqrt{n^3})$$

$$2, \sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n^3 - 3n + 4}}$$

$$3 \cdot \sum_{n=1}^{\infty} \ln(1 + \frac{1}{n^2})$$

$$4, \sum_{n=1}^{\infty} \frac{n\sin^2(n\pi/3)}{2^n}$$

$$5 \cdot \sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$

$$6 \cdot \sum_{n=1}^{\infty} n \tan \frac{\pi}{2^{n+1}}$$

三、讨论级数 $\sum_{n=1}^{\infty} \frac{1}{1+\lambda^n}$, $\lambda \ge 0$ 的敛散性:

四、证明级数 $\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$ 收敛, $\sum_{n=2}^{\infty} \frac{1}{n^{2/3} \ln n}$ 发散。

五、设正项级数 $\sum_{n=1}^{\infty} u_n$ 收敛,证明 $\sum_{n=1}^{\infty} u_n^2$ 和 $\sum_{n=1}^{\infty} \frac{u_n}{n}$ 都收敛。

习题二十七 数项级数审敛法(续)

一、判断下列级数的敛散性:

$$1 \cdot \sum_{n=1}^{\infty} (1 - \frac{1}{n})^{n^2}$$

$$2 \cdot \sum_{n=1}^{\infty} \left(\frac{n}{2n-1}\right)^{2n-1}$$

$$3 \cdot \sum_{n=1}^{\infty} \frac{\sqrt{n^3 + 1}}{e^n}$$

$$4, \sum_{n=1}^{\infty} \frac{n^{n+\frac{1}{n}}}{\left(n+\frac{1}{n}\right)^n}$$

二、判断下列级数的敛散性,若收敛是绝对收敛还是条件收敛?

$$1, \sum_{n=1}^{\infty} (-1)^n \frac{1}{\ln(n+1)}$$

$$2 \cdot \sum_{n=1}^{\infty} (-1)^{n-1} \frac{n+2}{n+1} \frac{1}{\sqrt{n}}$$

$$3 \cdot \sum_{n=1}^{\infty} (-1)^n \frac{2 + (-1)^n}{n^{5/4}}$$

4,
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{na^n} (a > 0)$$

三、设
$$\sum_{n=1}^{\infty} u_n$$
绝对收敛, $\sum_{n=1}^{\infty} v_n$ 收敛,证明 $\sum_{n=1}^{\infty} u_n v_n$ 绝对收敛。

习题二十八 幂级数收敛半径与收敛区域

三、求下列幂级数的收敛半径:

$$1 \cdot \sum_{n=1}^{\infty} \frac{(-1)^n \cdot n^n}{n! e^n} x^n$$

$$2 \cdot \sum_{n=1}^{\infty} (1 + \frac{1}{n})^{n^2} x^n$$

四、求下列幂级数的收敛区域:

$$1, \sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n-1)!} x^{2n-1}$$

$$2 \cdot \sum_{n=1}^{\infty} \frac{(x+2)^n}{n2^n}$$

$$3 \cdot \sum_{n=1}^{\infty} \frac{3^n + (-2)^n}{n} x^n$$

$$4, \sum_{n=1}^{\infty} \frac{(-1)^n 3^n}{n^3 + 1} x^{3n}$$

习题二十九 幂级数的逐项微分,逐项积分与求和

专业班级		学与	<u>1</u> J	
一、填空题:				
$1、设级数\sum_{n=0}^{\infty}(-1)^n$	<i>x</i> ⁿ⁺¹ ,则当 <i>x</i> ∈	时,其禾	邛函数为	o
$2、设级数\sum_{n=1}^{\infty}a_{n}x^{n},$	的收敛半径为 R,和	l函数 s(x), 则结	级数 $\sum_{n=1}^{\infty} na_n x^{n-1}$	的收敛半
径为,	和函数为	,级数 $\sum_{n=1}^{\infty} \frac{a_n}{2^{n+1}}$	-x"的收敛半径	为
,和函数为	o	<i>n</i> -1		
二、求下列幂级数	的收敛区域及和函数	:		
$1 \sum_{n=1}^{\infty} n^{n-1}$				

$$2 \cdot \sum_{n=1}^{\infty} \frac{x^{n+1}}{n(n+1)}$$

$$3 \cdot \sum_{n=1}^{\infty} nx^n = \sum_{n=1}^{\infty} n^2 x^n$$

4、
$$\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$$
,并求数项级数 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)2^n}$ 的和。

三、求数项级数
$$\sum_{n=1}^{\infty} \frac{n(n+1)}{2^n}$$
的和。

习题三十 函数的幂级数展开及其应用

	专业班级	_姓名	学号	
一、	填空题:			
1、	$\sin \frac{x}{2}$ 关于 x 的幂级数展开	式是		,
收敛	收区域为	o		
2、	e^x 关于 $x-1$ 的幂级数展开	式是		,
收敛	牧区域为	o		
3、	ln(10+x) 关 x 于的幂级数周	屡开式是		,
收敛	牧区域为	o		
二,	将下列函数展开成 $(x-x_0)$)的幂级数,并求收敛	效区域:	
1,	$f(x) = \frac{1}{4 - x}, \ x_0 = 0$			

$$2x \quad f(x) = \frac{5 - 2x}{x^2 - 5x + 6}, \ x_0 = 0$$

$$3 \cdot f(x) = \ln x, \ x_0 = 1$$

$$4, \quad f(x) = \arctan x, \quad x_0 = 0$$

5、
$$f(x) = \frac{1}{(1-x)^2}$$
, $x_0 = 0$ (提示: $\frac{1}{(1-x)^2} = (\frac{1}{1-x})'$)

习题三十一 周期为 2π函数的傅里叶级数

专业班级	_姓名	_学号
一、填空题:		
1 、设 $f(x)$ 是以 2π 为周		
$f(x) = \begin{cases} x+1, & -\pi < x \le 0 \\ -x+1, & 0 < x \le \pi \end{cases},$	则其傅里叶级数收	敛到函数自身的点的集合
是。	,	
是 $2 \cdot 将 f(x) = \begin{cases} -1, & -\pi < \\ -x^2 + 1, & 0 < \end{cases}$	$(x \le 0)$ 以 2π 为周期延 $x \le \pi$	拓到整个数轴上,则其傅里
叶级数在 $x=\pi$ 处收敛于于		, 在 x=0 处收敛
于	$Ex = -\pi/2$ 收敛于_	o
3、若把 $f(x) = x$ 在 $[-\pi, \pi)$ $b_n = $,若把 $f(x) = \pi$	$f(x) = x $ 在 $[-\pi,\pi)$ 上月	
数,则 $b_n =$ 二、设 $f(x)$ 是周期为	—° 2π 的函数,它	在 $(-\pi,\pi]$ 的表达式为
$f(x) = \begin{cases} 1, & -\pi < x \le 0 \\ 0, & 0 < x \le \pi \end{cases}, \forall f$		

三、将函数
$$f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x < 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x < \pi \end{cases}$$
 展开成以 2π 为周期的傅里叶级数,并 利用它求数项级数 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ 的和。

习题三十二 正弦级数和余弦级数

一、填空题:

1、设
$$f(x) = \begin{cases} x, & 0 \le x < 1 \\ 1, & 1 \le x \le \pi \end{cases}$$
的余弦级数为 $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \operatorname{cons} x$,则等式

2、设当
$$0 < x < \pi$$
时, $1 = \sum_{n=1}^{\infty} b_n \sin nx$,则 $b_n = \underline{\hspace{1cm}}$ 。

3、已知
$$f(x) = \frac{x}{2}$$
 在 $[0,\pi)$ 上的正弦级数为 $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \sin nx$,则 $f(x) = \frac{x}{2}$ 在

 $(-\pi,\pi)$ 上的傅里叶级数为_____。

二、将函数
$$f(x) = \frac{\pi - x}{2} (0 \le x \le \pi)$$
 展成正弦级数和余弦级数。

三、将 $f(x) = \sin x (0 \le x \le \pi)$ 展开成余弦级数,并利用它求数项级数 $\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$ 的和。

习题三十三 周期为21的函数的傅里叶级数

三、将 $f(x) = x^2$ 在 $[0,\pi/2]$ 上展成余弦级数,并利用它求数项级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}$ 的和。

习题三十四 微分方程的基本概念及一阶方程

Ą	专业班级	姓名	_学号		
— ,	判断题:				
1,	$y = e^{-x}$ 是否为微分方程	y'' + 2y' + 3y = 0 的解?		()
2、	$y = 2\sin x - \cos x$ 是否为	微分方程 $y'' + y = 0$ 的角	解?	()
3、	y=0 是否为微分方程 y"-	+xy'-y=0的解?		()
4、	由方程 $y-x+e^y=0$ 确定	的函数是否为微分方积	$ \exists (x-y+1)y'=1 $ 的	解?	()
二,	设热水瓶中水冷却的速度	度与水温和室温之差成	正比,室温为 20℃,	若 10	00°C
的フ	K 24 小时的降到 50℃,	求 12 小时后的水温。			

三、曲线 $y = f(x) \ge 0$ ($x \ge 0$) 围成一以[0, x]为底的曲边梯形,其面积与 f(x)的 4 次幂成正比,已知 f(0) = 0, f(1) = 1,求该曲线的方程。

四、设为 y_1 , y_2 是线性微分方程 $\frac{dy}{dx}$ + P(x)y = Q(x) 的两个解,试证: 当 α + β = 1 时, α y_1 + β y_2 也是该方程的解。

五、求下列微分方程的通解(变量可分离方程)

$$1, (x+2)y' - x^2y = 0$$

$$2 \cdot \cos x \cdot \sin y dx + \sin x \cdot \cos y dy = 0$$

$$3, \ yy' + e^{y^2 + 3x} = 0$$

二、求 Cauchy 问题
$$\begin{cases} (1+y^2)dx - xydy = 0\\ y(2) = -\sqrt{3} \end{cases}$$
 的解。

习题三十五 一阶微分方程(续)

一、求下列微方程的通解(齐次方程):

$$1, (x + y\cos\frac{y}{x})dx - x\cos\frac{y}{x}dy = 0;$$

$$2 \cdot ydx - (ye^{\frac{x}{y}} + x)dy = 0 \circ$$

二、求 Cauchy 问题
$$\begin{cases} x \frac{dy}{dx} = y \ln \frac{y}{x} \text{ 的解} \\ y(1) = 1 \end{cases}$$

三、求下列各微分方程的通解或特解:

1.
$$xy' - y = x^2 - 1$$
;

$$2, \frac{dy}{dx} = \frac{1}{x\cos y + \sin 2y};$$

3.
$$\frac{dy}{dx} + y \cot x = 5 \cos x$$
, $y \Big|_{x = \frac{\pi}{2}} = -4$.

四、求下列微分方程的通解或特解:

1.
$$\frac{dy}{dx} + y = e^x y^4$$
, $y|_{x=0} = 1$;

$$2 \cdot y^3 dx + 2(x^2 - xy^2) dy = 0 \circ$$

五、求满足
$$f(x) = x^2 + \int_0^x f(t)dt$$
 的连续函数。

六、验证下列方程是全微分方程,并求通解:

(1)
$$(3x^2e^y + 3y^2)dx + (x^3e^y + 6xy)dy = 0$$
;

(2)
$$\left(\frac{xy}{\sqrt{1+x^2}} + 2xy - \frac{y}{x}\right)dx + \left(\sqrt{1+x^2} + x^2 - \ln x\right)dy = 0$$

七、利用积分因子,求方程 $2xy^3dx + (x^2y^2 - 1)dy = 0$ 的通解:

八、已知方程 $f(x)y'+x^2+y=0$ 有一个积分因子u(x)=x,求f(x)。

习题三十六 可降阶的二阶微分方程

一、求下列各微分方程的通解或特解:

$$1, y'' = x + \sin x;$$

$$2, \quad y'' = y' + x;$$

3,
$$y^3y'' + 1 = 0$$
, $y|_{x=1} = 1$, $y'|_{x=1} = 0$;

4,
$$(1-x^2)y'' - xy' = 0$$
, $y(0) = 0$, $y'(0) = 1$.

二、若可微函数 f(x) 满足 $f(x) = \int_0^x f(t)dt$, 试证 $f(x) \equiv 0$ 。

习题三十七 线性微分方程解的结构

专业班级	姓名	学号
一、判断下列函数组	且是否线性无关:	
$1 \cdot \sin 2x = \cos x \cdot \sin x$	n <i>x</i>	;
$2, e^{ax} = e^{bx}(a \neq b)$;
3、 <i>x</i> 与tan <i>x</i>		;
$4. e^{2x} \cos \beta x = e^{2x}$	$\sin \beta x (\beta \neq 0)$	0
二、写出下列方程的	的通解:	
$1, y_1 = \cos \omega x \not \boxtimes y$	$_{2} = \sin \omega x (\omega \neq 0)$ 都是方	$\mp \frac{1}{4} y'' + \omega^2 y = 0$ 的解,则方程的通
解为		o
$2, y_1 = e^{x^2} \not \not D y_2 = 0$	xe ^{x²} 都是方程 y"-4xy'+($(4x^2 - 2)y = 0$ 的解,则方程的通解
为		o
$3, y_1 = 3, y_2 = 3 +$	$-x^2$, $y_3 = 3 + x^2 + e^x$ 都是	是方程
$(x^2-2x)y''-(x^2-2)$	$2)y' + 2(x-1)y = 6(x-1) \mathrm{i}$	的解,则方程的通解为
	o	
三、证明 $y = c_1 \cos x$	$3x + c_2 \sin 3x + \frac{1}{32} (4x \cos 3x)$	$(x + \sin x)$ 是方程 $y'' + 9y = x \cos x$ 的
通解(c_1,c_2 是任意	常数)。	

四、已知 $y_1 = e^{2x}$ 是方程 (x+2)y'' - (2x+5)y' + 2y = 0 的特解,试求另一线性无 关的特解及方程的通解。(提示:令 $y_2 = y_1 \cdot u(x)$)

五、设 y'' + P(x)y' + Q(x)y = f(x) 的三个特解: x, e^x, e^{3x} , 求此方程满足初始条件 y(0) = 4, y'(0) = 3 的特解。

习题三十八 常系数线性齐次微分方程

 $2v'' + 2\sqrt{2}v' + 2v = 0$

3、
$$f''(x) + \frac{1}{\lambda} f(x) = 0 (\lambda \neq 0, 常数)$$

1, y'' - 4y' = 0

$$4y'' + 5y'' - 36y = 0$$

三、求下列微分方程满足所给初始条件的特解:

1,
$$y'' - 4y' + 3y = 0$$
, $y|_{x=0} = 6$, $y'|_{x=0} = 10$

$$2, y'' + 4y' + 29y = 0, y|_{x=0} = 0, y'|_{x=0} = 15$$

3,
$$y''' + 4y'' + 5y' + 2y = 0$$
, $y|_{x=0} = 0$, $y'|_{x=0} = 1$, $y''|_{x=0} = 0$

四、弹簧的上端固定,下端悬挂两个相同的质量为m的物体时,弹簧的伸长为2a,拿去下面一个物体,重物开始振动,求其运动规律。

习题三十九 常系数线性非齐次微分方程

一、写出下列各微分方程的特解形式:

1.
$$y'' + y = (x - 2)e^{3x}$$
, $y'' =$

2,
$$y'' - 2y' + y = (x^2 + x)e^x$$
, $y'' = \underline{\qquad}$

二、求下列各微分方程的通解:

$$1, \quad 2y'' + y' - y = 2e^x$$

$$2y'' + y = \sin x \cdot \sin 2x$$

三、求微分方程
$$y'' - 6y' + 9y = e^{3x} + 9$$
满足初始条件 $y|_{x=0} = 0$, $y'|_{x=0} = 1$ 的解。

四、设 f(x) 有二阶连续导数,且满足方程 $\int_0^x (x-t)f(t)dt = xe^x - f(x)$,求f(x)。

五、一匀质链条悬持在钉子上,起动时一端离开钉子8米,另一端离开钉子12米,分别在以下两种情况下求链条滑下所需要的时间:

- (1) 若不计钉子对链条所产生的摩擦力;
- (2) 若摩擦力为链条的1米长的重量。

习题四十 欧拉方程、常系数线性微分方程组

一、求下列欧拉方程的通解:

$$1, \quad x^2y'' + 3xy' + 5y = 0$$

$$2x y''' + xy'' - 4y' = 3x$$

二、求微分方程组
$$\begin{cases} \frac{d^2x}{dt^2} + 2\frac{dy}{dt} - x = 0 \\ \frac{dx}{dt} + y = 0 \end{cases}$$
 满足初始条件
$$\begin{cases} x|_{t=0} = 1 \\ y|_{t=0} = 0 \end{cases}$$
的特解。