NFA WITH ε- MOVES

Beulah A. AP/CSE

INTRODUCTION

- The NFA can be extended to include transitions on empty input ε
- The NFA with ε moves is defined by 5 tuple $(Q, \Sigma, \delta, q_0, F)$, with all components as in NFA except δ

$$\delta: \mathcal{Q} \times (\Sigma \cup \{\epsilon\}) \to 2^{\mathcal{Q}}$$

• The intention is that δ (q, a) will consists of all states p such that there is a transition labeled 'a' from q to p, where a is either ϵ or any symbol in Σ .

- An ε-NFA accepting decimal numbers like 2.15, .125, +1.4, -0.501...
- To accept a number like "+5." (nothing after the decimal point), add new state q_4 .

- An ε-NFA accepting decimal numbers like 2.15, .125, +1.4, -0.501...
- To accept a number like "+5." (nothing after the decimal point), we have to add q_4 .

Beulah A. 2 July 2013

- The transition diagram of the NFA accepts the language consisting of any number of 0's followed by any number of 1's followed by any number of 2's.
- For example, the string w = 002 is accepted by the NFA along the path $-q_0$, q_0 , q_0 , q_1 , q_2 , q_2 , with arcs labeled 0, 0, ϵ , ϵ , 2.

E - CLOSURE

- We have to define the ε -closure to define the extended transition function for the ε -NFA.
- Formal recursive definition of the set ECLOSE(q) for q:
 - State q is in ECLOSE(q) (including the state itself);
 - If p is in ECLOSE(q), then all states accessible from p through paths of ε 's are also in ECLOSE(q).

 \odot ϵ -closure for a set of states S:

$$ECLOSE(S) = \bigcup_{q \in S} ECLOSE(q)$$

- \bullet ECLOSE(1) = {1, 2, 3, 4, 6}
- ECLOSE({3, 5}) = ECLOSE(3)UECLOSE(5) = {3, 6}U{5, 7} = {3, 5, 6, 7}

 \bullet ECLOSE(A) = {A}

 \bullet ECLOSE(E)={E,B,C,D}

 \bullet ECLOSE({C, D}) = {C, D}

EXTENDED TRANSITIONS OF E-NFA

- Basis: $\hat{\mathcal{S}}(q, \varepsilon) = \text{ECLOSE}(q)$.
- Induction:

$$\hat{\delta}$$
 (q, xa) is computed as:
If $\hat{\delta}(q, x) = \{p_1, p_2, ..., p_k\}$ and
$$\bigcup_{i=1}^k \delta(p_i, a) = \{r_1, r_2, ..., r_m\},$$

then
$$\hat{\delta}(q, xa) = \text{ECLOSE}(\{r_1, r_2, ..., m\})$$

= $\text{ECLOSE}(\bigcup_{i=1}^k \delta(p_i, a))$

LANGUAGE OF E-NFA

• The language accepted by NFA with ε - move is defined as:

• L(M) = {w
$$|\hat{\delta}(q_0, w) \cap F \neq \varphi$$
}

 \bullet Find $\delta(q_0, 01)$

EQUIVALENCE OF NFA & E-NFA

• Theorem

If L is accepted by NFA with ϵ -transitions, than L is accepted by an NFA without ϵ -transitions.

• Proof

• Let $M = (Q, \sum, \delta, q_0, F)$ be an NFA with ε - transitions. Construct M^1 which is NFA without ε - transition.

$$M^{1} = (Q, \sum, \delta^{1}, q, F^{1})$$
 where
$$F^{1} \neq \begin{cases} F \cup \{q\} & \text{if } \epsilon \text{-CLOSURE } (q) \text{ contains a state of } F. \\ F & \text{otherwise} \end{cases}$$

By induction:

 δ^1 and $\widehat{\delta}$ are same

 δ and $\hat{\delta}$ are different

Let x be any string

$$\delta^1(q_0, x) = \widehat{\delta}(q_0, x)$$

This statement is not true if

$$x = \varepsilon$$
 because $\delta^{1}(q, \varepsilon) = \{q\}$ and $\widehat{\delta}(q_{0}, \varepsilon) = \varepsilon - \text{CLOSURE}(q_{0})$

Basis step

$$\mid x \mid = 1$$

x is a symbol whose value is a

$$\delta^1(q_0, a) = \hat{\delta}(q_0, a)$$
 (because by definition of δ^{Λ})

Induction step

let x = wa where a is in Σ .

$$\delta^{1}(q_{0}, wa) = \delta^{1}(\delta^{1}(q_{0}, w), a)$$

$$= \delta^{1}(\hat{\delta}(q_{0}, w), a)$$

$$= \delta^{1}(p, a) \text{ [because by inductive hypothesis}$$

$$\delta(q_{0}, w) = \hat{\delta}(q_{0}, w) = p(\text{say}) \text{]}$$

Now we must show that

$$\delta^1(p, a) = \widehat{\delta} (q_0, wa)$$

But

$$\delta^{1}(p, a) = \bigcup_{qinP} \delta^{1}(q, a)$$

$$=\bigcup_{qinP} \widehat{\delta} (q,a)$$

$$= \widehat{\delta} (\widehat{\delta} (q_0, w), a)$$

$$= \widehat{\delta} (q_0, wa)$$

$$= \widehat{\delta} (q_0, x)$$

Hence
$$\delta^1(q_0, x) = \hat{\delta}(q_0, x)$$

SUMMARY

- Definition of ε-NFA
- Transition diagram, transition function and properties of transition function for ε-NFA.
- Equivalence of NFA & ε-NFA

TEST YOUR KNOWLEDGE

- State true or false?
 - An NFA can be modified to allow transition without input alphabets, along with one or more transitions on input symbols.
- According to the given transitions, which among the following are the epsilon closures of q1 for the given NFA?

$$\delta$$
 (q1, ϵ) = {q2, q3, q4}

$$\delta$$
 (q4, 1) =q1

$$\delta$$
 (q1, ϵ) =q1

REFERENCE

• Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008