Practice

Give the full lambda computation of the following sentences, including tense. Hint: noun phrases don't have tense!

Computation solution

- 1. [PRES Wonderwoman see Cheetah]
 - (a) [see Cheetah] = [see]([Cheetah]) = [see](c) $= \lambda x [\lambda y [\lambda t [SEE(y, x) \text{ at } t]]](c)$ $= \lambda y [\lambda t [SEE(y, c) \text{ at } t]]$
 - (b) [Wonderwoman see Cheetah]
 - $= [\![see\ Cheetah]\!]([\![Wonderwoman]\!])$
 - = [see Cheetah](o)
 - $= \lambda y [\lambda t [SEE(y,c) \text{ at } t]](o)$
 - $= \lambda t[SEE(o,c) \text{ at } t]$
 - (c) [PRES Wonderwoman see Cheetah]
 - = [Wonderwoman see Cheetah]([PRES])
 - $= [Wonderwoman see Cheetah](t^*)$
 - $= \lambda t [SEE(o,c) \text{ at } t](t^*)$
 - = T iff SEE(o,c) at t^*
- 2. [PAST Antman lift the crumb]
 - (a) [the crumb]
 - = [the]([crumb])
 - $= \lambda f_{\langle e,t\rangle}[\iota x[f(x)]]([[\text{crumb}]])$
 - $= \iota x \lceil \lceil \operatorname{crumb} \rceil (x) \rceil$
 - $= \iota x [\lambda y [CRUMB(y)](x)]$
 - $= \iota x \lceil CRUMB(x) \rceil$
 - = c
 - (b) [lift the crumb]
 - = [[lift]([the crumb])]
 - = [[lift]](c)
 - $= \lambda x [\lambda y [\lambda t [LIFT(y, x) \text{ at } t]]](c)$
 - $= \lambda y [\lambda t [LIFT(y,c) \text{ at } t]]$
 - (c) [Antman lift the crumb]
 - = [[lift the crumb] ([Antman])]
 - = [lift the crumb] (a)
 - $= \lambda y [\lambda t [LIFT(y,c) \text{ at } t]](a)$
 - $= \lambda t [LIFT(a,c) \text{ at } t]$

- (d) [PAST Antman lift the crumb]
 - = [PAST]([Antman lift the crumb])
 - $= \lambda f_{(i,t)}[\exists t'[t' < t^* \& f(t')]]([Antman lift the crumb])$
 - $=\exists t'[t' < t^* \& [Antman lift the crumb](t')]$
 - $= \exists t' \lceil t' < t^* \& \lambda t \lceil LIFT(a,c) \text{ at } t \rceil (t') \rceil$
 - = T iff $\exists t'[t' < t^* \& LIFT(a,c) \text{ at } t']$
- 3. [Professor X will recruit the team]
 - (a) [the team]
 - = [the]([team])
 - $= \lambda f_{\langle e,t\rangle}[\iota x[f(x)]](\llbracket \text{team} \rrbracket)$
 - $= \iota x[[team](x)]$
 - $= \iota x[\lambda y[TEAM(y)](x)]$
 - $= \iota x [TEAM(x)]$
 - = m
 - (b) [recruit the team]
 - = [[recruit]]([[the team]])
 - = [[recruit]](m)
 - $= \lambda x [\lambda y [\lambda t [RECRUIT(y, x) \text{ at } t]]](m)$
 - = $\lambda y[\lambda t[RECRUIT(y, m) \text{ at } t]]$
 - (c) [Professor X recruit the team]
 - = [[recruit the team]([Professor X]])
 - = [recruit the team](p)
 - = $\lambda y[\lambda t[RECRUIT(y, m) \text{ at } t]](p)$
 - = $\lambda t [RECRUIT(p, m) \text{ at } t]$
 - (d) [FUT Professor X recruit the team]
 - = [FUT]([Professor X recruit the team])
 - $= \lambda f_{(i,t)}[\exists t'[t' > t^* \& f(t')]]([Professor X recruit the team])$
 - $= \exists t' \lceil t' > t^* \& \llbracket \text{Professor X recruit the team} \rrbracket (t') \rceil$
 - $= \exists t' \lceil t' > t^* \& \lambda t \lceil RECRUIT(p, m) \text{ at } t \rceil (t') \rceil$
 - = T iff $\exists t' [t' > t^* \& RECRUIT(p, m) \text{ at } t']$