ESAME DI MECCANICA RAZIONALE

CORSO DI LAUREA IN ARCHITETTURA – INGEGNERIA ALMA MATER – UNIVERSITÀ DI BOLOGNA

7 Febbraio 2024

ISTRUZIONI. Il tempo a disposizione per la risoluzione è di 120 minuti. È indicato il punteggio associato ad ogni domanda. Il voto minimo per l'accesso all'orale è 15/30.

In figura è rappresentato un sistema mobile su un piano dove è dato un riferimento cartesiano Oxy. Il sistema è costituito da quattro aste di massa trascurabile e di uguale lunghezza ℓ , imperniate con quattro giunti mobili in modo da formare un rombo di vertici A, B, C e O. I giunti in A, B e C sono tali da permettere alle aste incidenti di avere un angolo reciproco compreso tra l'angolo nullo e l'angolo piatto. Il restante vertice O è fissato nell'origine del riferimento cartesiano, dove un perno permette una rotazione libera senza attrito. Sono inoltre presenti una massa m in A, una massa m in B e una massa m in C. Tutte le masse sono da assumersi puntiformi. Infine, lungo la diagonale \overline{OC} è collocata una molla di costante elastica k e lunghezza a riposo trascurabile.

- A Utilizzando come parametri lagrangiani gli angoli θ e α indicati in figura, scrivere le coordinate dei tre punti A, B e C. Si individuino possibili configurazioni di confine, le forze attive agenti sul sistema e il tipo di vincoli a cui esso è soggetto. [7 pt]
- B Individuare la posizione del centro di massa in funzione dei parametri lagrangiani scelti. Calcolare inoltre il momento d'inerzia del sistema rispetto ad un asse perpendicolare al piano e passante per l'origine. [8 pt]
- C Calcolare le configurazioni di equilibrio non di confine del sistema, e dire se esse sono di equilibrio stabile, instabile o indifferente. [15 pt]

Suggerimento. Per risolvere l'esercizio, si osservi che, con riferimento alla figura, gli angoli ϕ e γ si possono scrivere in termini di α e θ come

$$\phi = \alpha + \theta$$
 $\gamma = \alpha - \theta$.

A Il sistema ha due gradi di libertà, descritti dai parametri lagrangiani $\theta \in \mathbb{R}$ e $\alpha \in [0, \pi/2]$: le configurazioni aventi $\alpha = 0$ e $\alpha = \pi/2$ sono di confine. Indicando con g vettore di accelerazione di gravità diretto verso il basso, le forze attive agenti sono la forza peso sulla massa in A, $P_A = -mg\hat{\imath}_2$, la forza peso sulla massa in B, $P_B = -mg\hat{\imath}_2$, e la forza peso sulla massa in C, $P_C = -mg\hat{\imath}_2$. Infine, in C agisce la forza elastica $F_C = k\overrightarrow{CO}$ dove CO ha lunghezza $2\ell \sin \alpha$. L'unico vincolo attivo è il perno in O che è olonomo e ideale e permette la rotazione del sistema. Le coordinate dei punti A, B e C sono

$$x_A = -\ell \binom{\cos\phi}{\sin\phi} = -\binom{\cos(\alpha+\theta)}{\sin(\alpha+\theta)}, \quad x_B = \ell \binom{\cos\gamma}{\sin\gamma} = \binom{\cos(\alpha-\theta)}{-\sin(\alpha-\theta)}, \quad x_C = 2\ell\sin\alpha \binom{\sin\theta}{-\cos\theta}.$$

 ${f B}$ La posizione del centro di massa è

$$x_G = \frac{mx_A + mx_B + mx_C}{3m} = \frac{\ell}{3} \Big(\begin{array}{c} \cos(\alpha - \theta) - \cos(\alpha + \theta) + 2\sin\alpha\sin\theta \\ -\sin(\alpha - \theta) - \sin(\alpha + \theta) - 2\sin\alpha\cos\theta \end{array} \Big) = \frac{4\ell\sin\alpha}{3} \Big(\begin{array}{c} \sin\theta \\ -\cos\theta \end{array} \Big).$$

dove nell'ultimo passaggio si sono usate le formule di addizione $\cos(x+y) = \cos x \cos y - \sin x \sin y$ e $\sin(x+y) = \sin x \cos y + \cos x \sin y$.

Il momento d'inderzia si trova ora facilmente essendo pari a

$$I = m||x_A||^2 + m||x_B||^2 + m||x_C||^2 = 2m\ell^2(1 + 2\sin^2\alpha).$$

C Osservando che $d^2(C,O) = 4\ell^2 \sin^2 \alpha$, possiamo scrivere l'energia potenziale come combinazione di un contributo gravitazionale U_g e un contributo elastico U_k . Avendo a disposizione le coordinate del centro di massa, possiamo scrivere

$$U_q = 4m\ell g \cos\theta \sin\alpha, \qquad U_k = -2k\ell^2 \sin^2\alpha$$

così che l'energia potenziale globale possa scriversi

$$U = U_g + U_k = 4m\ell g \cos \theta \sin \alpha - 2k\ell^2 \sin^2 \alpha.$$

I punti stazionari si ottengono risolvendo la coppia di equazioni

$$\partial_{\theta}U = 0 \Leftrightarrow \sin \alpha \sin \theta = 0, \qquad \partial_{\alpha}U = 0 \Leftrightarrow \cos \alpha (mg\cos \theta - k\ell\sin \alpha) = 0.$$

Dato che stiamo escludendo le configurazioni di confine, possiamo assumere cos $\alpha \neq 0$ e sin $\alpha \neq 0$. Deve essere quindi sin $\theta = 0$, abbiamo $\theta = n\pi$, $n \in \mathbb{Z}$. Se n è pari, la seconda equazione fornisce $mg - k\ell \sin \alpha = 0$, ovvero, se $\frac{mg}{k\ell} < 1$, $\alpha = \arcsin \frac{mg}{k\ell}$: diversamente non esiste una soluzione *che non sia di confine*. Se n è dispari, si ottiene $-mg - k\ell \sin \alpha = 0$ che non ha soluzione per $\alpha \in (0, \pi/2)$. L'unico possibile punto stazionario è quindi

(1)
$$(\alpha, \theta) = \left(\arcsin \frac{mg}{k\ell}, 0\right), \quad \text{se } \frac{mg}{k\ell} < 1.$$

$$A \longrightarrow B$$

La stabilità può essere studiata valutando la matrice Hessiana in questo punto di equilibrio. La matrice è

$$\begin{split} H &= -4\ell \begin{pmatrix} k\ell(\cos^2\alpha - \sin^2\alpha) + mg\sin\alpha\cos\theta & mg\sin\theta\cos\alpha \\ mg\sin\theta\cos\alpha & mg\cos\theta\sin\alpha \end{pmatrix} \\ &= -4\ell \begin{pmatrix} k\ell(1 - 2\sin^2\alpha) + mg\sin\alpha\cos\theta & mg\sin\theta\cos\alpha \\ mg\sin\theta\cos\alpha & mg\cos\theta\sin\alpha \end{pmatrix}. \end{split}$$

Calcolando sul punto dato dall'Eq. (1), si ha che sin $\theta=0$ e sin $\alpha=\frac{mg}{k\ell}$, per cui

$$H = 4k\ell^2 \begin{pmatrix} \frac{m^2g^2}{k^2\ell^2} - 1 & 0 \\ 0 & -\frac{m^2g^2}{k^2\ell^2} \end{pmatrix} \quad \text{con} \quad \frac{mg}{k\ell} < 1.$$

Nell'intervallo di validità della soluzione, $4k\ell^2\left(\frac{m^2g^2}{k^2\ell^2}-1\right)<0$, per cui tale punto di equilibrio, quando esiste, è stabile.

Q Lo studio delle configurazioni di confine non era richiesto ma lo riportiamo per completezza come esempio. Le configurazioni di confine sono associate a $\alpha=0$ e $\alpha=\pi/2$. L'analisi può essere svolta utilizzando il principio dei lavori virtuali, ovvero calcolando δU e imponendo che tale variazione virtuale sia sempre negativa. Non avendo θ vincoli di variazione, la prima condizione da imporre è $\partial_{\theta}U=0$, ovvero $\sin\alpha\sin\theta=0$.

Per $\alpha=0,\ \partial_{\theta}U|_{\alpha=0}=0$ sempre; dovendo essere $\delta\alpha>0,\ \partial_{\alpha}U|_{\alpha=0}\leq0$, ovvero $\partial_{\alpha}U|_{\alpha=0}=4\ell mg\cos\theta\leq0$, che è vera se e solo se $\frac{\pi}{2}+2n\pi\leq\theta\leq\frac{3\pi}{2}+2n\pi,\ n\in\mathbb{Z}$: in questo intervallo di angoli $\theta,\ \alpha=0$ è una configurazione di confine stabile.

Per $\alpha = \pi/2$, la situazione è più delicata. Infatti, $\partial_{\theta}U|_{\alpha=\pi/2} = -4\ell mg\sin\theta = 0$ è soddisfatto per $\theta = n\pi$, $n \in \mathbb{Z}$. In $\alpha = \pi/2$, abbiamo che $\partial_{\alpha}U|_{\alpha=\pi/2} = 0$ identicamente. Questo ci permette di dire che i punti $(\alpha, \theta) = (\pi/2, n\pi)$, $n \in \mathbb{Z}$, sono di equilibrio. Per capire se essi sono stabili o instabili, però, occorre considerare derivate di ordine superiore. La matrice hessiana è

$$H = \begin{pmatrix} 4\ell^2 - 4mg\ell\cos\theta & 0 \\ 0 & -4mg\ell\cos\theta \end{pmatrix}$$

che per $\theta=n\pi$ con n pari ha entrambi autovalori non positivi per $\frac{mg}{kl}\geq 1$, mentre per n dispari ha entrambi autovalori positivi ed è quindi instabile. Di conseguenza $(\alpha,\theta)=(\pi/2,n\pi),\ n\in\mathbb{Z}$ pari, è stabile se $\frac{g}{kl}\geq 1$, diversamente è instabile. È possibile eseguire un plot del valore di α associato ad una configurazione stabile al variare del parametro di controllo $\frac{mg}{k\ell}$ per $\theta=0$.

$$\alpha$$
stabile per $\theta=0$

