

EQUIVALENCIA ENTRE REGEX, NFA Y DFA

■ **FIGURE 2.3** The Cycle of Constructions.

CONSTRUCCIÓN DE THOMPSON: DE REGEX A NFA

■ FIGURE 2.4 Trivial NFAs for Regular Expression Operators.

CONSTRUCCIÓN DE THOMPSON: EJEMPLO

(a) NFAs for "a", "b", and "c"

(b) NFA for "b | c"

(c) NFA for "(b | c)*"

(d) NFA for "a(b | c)*"

FIGURE 2.5 Applying Thompson's Construction to $a(b|c)^*$.

CONSTRUCCIÓN POR SUBCONJUNTOS: DE NFA A DFA

```
q_0 \leftarrow \epsilon\text{-}closure(\{n_0\});
Q \leftarrow q_0;
WorkList \leftarrow \{q_0\};
while \ (WorkList \neq \emptyset) \ do
remove \ q \ from \ WorkList;
for \ each \ character \ c \in \Sigma \ do
t \leftarrow \epsilon\text{-}closure(Delta(q,c));
T[q,c] \leftarrow t;
if \ t \notin Q \ then
add \ t \ to \ Q \ and \ to \ WorkList;
end;
```


■ FIGURE 2.6 The Subset Construction.

CONSTRUCCIÓN POR SUBCONJUNTOS: EJEMPLO

Caso: a (b | c)*

Set	DFA	NFA	∢-closure(Delta(q,*))		
Name	States	States	a	b	С
q_0	d_0	n_0	$ \begin{cases} n_1, n_2, n_3, \\ n_4, n_6, n_9 \end{cases} $	– none –	– none –
q ₁	<i>d</i> ₁	$ \begin{cases} n_1, n_2, n_3, \\ n_4, n_6, n_9 \end{cases} $	– none –	$ \begin{cases} n_5, n_8, n_9, \\ n_3, n_4, n_6 \end{cases} $	$ \left\{ \begin{array}{l} n_7, n_8, n_9, \\ n_3, n_4, n_6 \end{array} \right\} $
q ₂	d ₂	$ \begin{cases} n_5, n_8, n_9, \\ n_3, n_4, n_6 \end{cases} $	– none –	q_2	q_3
<i>q</i> ₃	d ₃	$ \left\{ n_7, n_8, n_9, \\ n_3, n_4, n_6 \right\} $	– none –	q_2	q_3

(a) NFA for " $a(b \mid c)^*$ " (With States Renumbered)

(a) Resulting DFA

(b) Iterations of the Subset Construction

ALGORITMO DE HOPCROFT: MINIMIZACIÓN DE DFA

```
T \leftarrow \{D_A, \{D-D_A\}\}; Split(S) { for each c \in \Sigma do while (P \neq T) do if c splits S into s_1 and s_2 then return \{s_1, s_2\}; end; for each set p \in P do T \leftarrow T \cup Split(p); end; end;
```

■ **FIGURE 2.9** DFA Minimization Algorithm.

ALGORITMO DE HOPCROFT: EJEMPLO 1

La idea es detectar cuando dos estados son equivalentes

	Current	Examines		
Step	Partition	Set	Char	Action
0	$\{\{s_3,s_5\},\{s_0,s_1,s_2,s_4\}\}$	_	_	_
1	$\{\{s_3,s_5\},\{s_0,s_1,s_2,s_4\}\}$	$\{s_3, s_5\}$	all	none
2	$\{\{s_3,s_5\},\{s_0,s_1,s_2,s_4\}\}$	$\{s_0, s_1, s_2, s_4\}$	е	$split \{s_2, s_4\}$
3	$\{\{s_3,s_5\},\{s_0,s_1\},\{s_2,s_4\}\}$	$\{s_0, s_1\}$	f	split {s ₁ }
4	$\{\{s_3,s_5\},\{s_0\},\{s_1\},\{s_2,s_4\}\}$	all	all	none

(c) The Minimal DFA (States Renumbered)

(b) Critical Steps in Minimizing the DFA

ALGORITMO DE HOPCROFT: EJEMPLO 2

Caso: a (b/c)*

(a) NFA for " $a(b \mid c)$ " (With States Renumbered)

(a) Original DFA

(b) Initial Partition

CONSTRUCCIÓN DE KLEENE: DE DFA A REGEX

for
$$i = 0$$
 to $|D| - 1$
for $j = 0$ to $|D| - 1$
 $R_{ij}^{-1} = \{a \mid \delta(d_i, a) = d_j\}$
if $(i = j)$ then
 $R_{ij}^{-1} = R_{ij}^{-1} \mid \{\epsilon\}$
for $k = 0$ to $|D| - 1$
for $i = 0$ to $|D| - 1$
for $j = 0$ to $|D| - 1$
 $R_{ij}^k = R_{ik}^{k-1} (R_{kk}^{k-1})^* R_{kj}^{k-1} \mid R_{ij}^{k-1}$
 $L = |s_j \in D_A| R_{0j}^{|D|-1}$

■ FIGURE 2.18 Deriving a Regular Expression from a DFA.

CONSTRUCCIÓN DE KLEENE: EJEMPLO

1

nicio 0 0,1

DFA que acepta todas las cadenas que tienen al menos un 0

 $egin{array}{c|cccc} R_{11}^{(0)} & arepsilon + 1 \ R_{12}^{(0)} & oldsymbol{0} \ R_{21}^{(0)} & oldsymbol{\emptyset} \ R_{22}^{(0)} & (arepsilon + \mathbf{0} + \mathbf{1}) \end{array}$

Resultado final: unión de todas las expresiones en las que el primer estado sea el estado inicial y el segundo estado sea el estado de aceptación. En este caso R^2_{12} , o sea, 1*0(0|1)*

 $R_{ij}^{(1)} = R_{ij}^{(0)} + R_{i1}^{(0)} (R_{11}^{(0)})^* R_{1j}^{(0)}$

	Por sustitución directa	Simplificada
$R_{11}^{(1)}$	$\varepsilon + 1 + (\varepsilon + 1)(\varepsilon + 1)^*(\varepsilon + 1)$	1*
	$0 + (\varepsilon + 1)(\varepsilon + 1)^*0$	1*0
$R_{21}^{(1)}$	$\emptyset + \emptyset(\varepsilon + 1)^*(\varepsilon + 1)$	0
$R_{22}^{(1)}$	$\varepsilon + 0 + 1 + \emptyset(\varepsilon + 1)^*0$	$\varepsilon + 0 + 1$

Figura 3.5. Expresiones regulares para caminos que sólo pueden pasar a través del estado 1.

4	4	$R_{ij}^{(2)} = R_{ij}^{(1)} + R_{i2}^{(1)} (R_{22}^{(1)})^* R_{2j}^{(1)}$				
		Por sustitución directa	Simplificada			
1	$R_{11}^{(2)}$	$1^* + 1^* 0 (\varepsilon + 0 + 1)^* \emptyset$	1*			
	$R_{12}^{(2)}$	$1*0+1*0(\varepsilon+0+1)*(\varepsilon+0+1)$	1*0(0+1)*			
	$R_{21}^{(2)}$	$\emptyset + (\varepsilon + 0 + 1)(\varepsilon + 0 + 1)^*\emptyset$	0			
	$R_{22}^{(2)}$	$\varepsilon + 0 + 1 + (\varepsilon + 0 + 1)(\varepsilon + 0 + 1)^*(\varepsilon + 0 + 1)$	$(0+1)^*$			

Figura 3.6. Expresiones regulares para los caminos que puede pasar por cualquier estado.

 $^{\downarrow}$ Ejemplo 3.5 tomado de: Hopcroft, Motwani and Ullman; Automata Theory, Languages, and Computation

ELIMINACIÓN DE ESTADOS: DE DFA A REGEX El algoritmo de Kleene para transformar un DFA en una Regex resulta costoso

IDEA: considerar expresiones regulares sobre las aristas, y sacar los estados intermedios mientras mantenemos coherentes las etiquetas de las aristas

ELIMINACIÓN DE ESTADOS: EJEMPLO

Figura 3.11. Un AFN que acepta cadenas que tienen un 1 a dos o tres posiciones respecto del final.

Figura 3.12. El autómata de la Figura 3.11 con expresiones regulares como etiquetas.

Figura 3.13. Eliminación del estado *B*.

Figura 3.14. Autómata de dos estados con los estados *A* y *D*.

Figura 3.15. Autómata de dos estados resultado de la eliminación de *D*.

Resultado final: unir los dos últimos autómatas (0|1)*1(0|1)(0|1) | (0|1)*1(0|1)

