

Měsíční kvantum informací

2. série, březen 2023

II.U1 Header2-U1

II.U2 Header2-U2

II.U3 Header2-U3

II.A Header2-A

Lidé vzhlíží k hvězdné obloze a obdivují její krásu již od nepaměti. Avšak nejen to. Díky obloze se orientují na svých cestách či třeba vytváří kalendáře.

Začněmě tím, proč se vlastně obloha (nebeská sféra) během roku mění. Asi všem je jasné, že Země obíhá kolem Slunce a otáčí se kolem své osy. Dráha, po které se Slunce pohybuje na obloze se nazývá *ekliptika*. Je to průmět pohybu Země kolem Slunce na nebeskou sféru. Jelikož všechny planety mají podobný sklon roviny oběhu kolem Slunce, najdeme kolem ekliptiky i planety.

Sklon rotační osy Země je zhruba 23,5°. To znamená, že úhel který osa svírá s nebeským rovníkem (průmět zemského rovníku na oblohu) je 66,5°. Kvůli oběhu Země kolem slunce se ekliptika a nebeský rovník spolu po obloze hýbají. Proto je v zimě Slunce nízko, a v létě vysoko.

Dalším pojmem, který budem potřebovat je nebeský severní a jižní pól. Opomenu-li málo výrazné pohyby Země, které mají vliv na sklon rotační osy, míří severní pól stále k stejné hvězdě, Polárce (Severka, Polaris, α Ursae Minoris). To znamená, že Polárka bude na obloze vždy na "stejném místě". Kde přesně? Víme, že severní pól a rovník svírají úhel 90°. Proto budeme Polárku hledat 90° severně od nebeského rovníku. Odborně bychom řekli, že deklinace Polárky je zhruba 90°. Důležitá je Polárka hlavně v tom, že se kolem ní "otáčí" obloha.

Po pochopení proč a jak se obloha mění, se můžeme zabývat tím, co se na obloze nachází. Nejvýraznějšími útvary na obloze jsou *souhvězdí*. Často si lidé milně domnívají, že se jedná pouze o obrazce tvořené jasnými hvězdami. V moderní astronomii je však souhvězdí oblast na obloze s přesně vymezenými hranicemi. Na nebi jich bylo přesně vymezeno 88. Většina souhvězdí viditelných ze severní polokoule převzalo název z dob antických. Souhvězdí na jižní obloze mají názvy většinou od mořeplavců, kteří se vydávali na daleké výpravy.

Po celý rok na obloze najdete *cirkumpolární souhvězdí*. Vídime je v jakémkoliv ročním období jelikož se pro pozorovatele na Zemi nacházejí na obloze blízko Polárky, tedy hvězdy kolem které se celá obloha otáčí. Polárka je součástí souhvězdí Malý Medvěd. Poblíž se nachází Velká medvědice, jejíž částí je všem známý Velký vůz.

Cirkumpolárních souhvězdí není mnoho, pouze 8. Všechna ostatní rozdělujeme podle toho, kdy jsou v noci vidět. Tedy jarní, letní, podzimní a zimní souhvězdí. Každá z obloh má svůj hlavní orientační obrazec, skládající se z nejjasnějších hvězd různých souhvězdí. Na jarní obloze se budem orientovat pomocí Jarního trojúhelníku a v létě nám pomůže trojúhelník letní. Na podzim si nelze nevšimnout výrazného Pegasova čtverce. A konečně na zimní obloze, v pozadí s Mléčnou dráhou, je obrazec tvořený šesti velmi jasnými hvězdami, Zimní šestiuhelník. Tyto obrazce nám pomáhají rychle se orientovat na obloze. Pozorujete-li oblohu, nejprvě si najděte tento obrazec. Odtud lehce naleznete požadované souhvězdí. Věřím, že není nutné vyjménovávat

všechna souhvězdí... jednoduše si na internetu či v knihách najděte seznam sami. Pro pozorování je vemi dobrou pomůckou otočná mapa, či dnes více popularní, mobilní aplikace.

Na obloze nenajdeme jen hvězdy, planety, Měsíc a Slunce. Avšak záleží kde pozorujete, v městech nemusíte najít ani to. Doopravdy je celá obloha poseta galaxiemi, mlhovinami, hvězdokupami a mnoho dalším. To si ale necháme na seriál o hlubokém vesmíru, ať se máte na co těšit.

Úlohy:

V seriálu jsem psal o souhvězdích severní oblohy a jižní oblohy. Vysvětlete, co to je jižní a severní obloha, a proč nějaké souhvězdí přiřazujeme severní obloze a jiné jižní.

Jelikož nad hlavami právě máme zimní oblohu, pozorujte v noci Zimní šestiuhelník. Která planeta se momentálně nachází "uvnitř" tohoto obrazce?

II.K Není všechno teplé, co se třpytí!

V minulém díle jsme si představili základní principy kvantového světa. Vědní obor zabývající se popisem tohoto světa elementárních částic se nejčastěji nazývá jako kvantová mechanika. Nyní se však vydáme na cestu napříč časem i prostorem a podíváme se na historický vývoj tohoto odvětví fyziky. Vysvětlíme si, proč byl vznik kvantové teorie potřeba a na základě čeho dostala své jméno.

Naše putování můžeme začít v polovině 19. století, kdy světoznámý fyzik James Clerk Maxwell formuloval své čtyři základní rovnice elektromagnetismu. Tyto rovnice se dodnes používají k popisu všech možných jevů a modelů jako je elektromagnetická indukce, pole permanentního magnetu nebo třeba šíření světla. A právě o světle bude v tomto seriálu řeč.

Z řešení Maxwellových rovnic vyplývá, že světlo se chová jako nositel elektromagnetického pole s vlnovým charakterem. Pomocí Maxwellových rovnic se dokázalo to, co bylo téměř 200 let pozorováno. Světlo se šíří ve vlnách.

Vlnový popis světla se zdál být dostatečný, a proto se na jeho základu snažili fyzici na přelomu 19. a 20. století postavit kompletní teorii vyzařování těles. Lidé si v té době kladli otázky typu: proč hvězdy svítí? Jakým mechanismem mohou ztrácet energii? Jak může těleso předávat teplo i bez kontaktu? Načež se dopracovalo k tomu, že každé těleso, ať se nachází ve vakuu či atmosféře, musí odevzdávat teplo okolí. Tento proces zprostředkovává právě ono elektromagnetické záření. Každé těleso tedy dle teorie z konce 19. století jakýmsi způsobem "svítí". Ale vzhledem k tomu, že ku příkladu lidi vidíme zářit maximálně tak v televizních výstupech, může se tato teorie zdát jako trochu přitažená za vlasy. Bylo proto potřeba spočítat, jak tomu doopravdy je.

Způsob, jak dosáhnout zpracovatelných dat, je sestavit závislost tzv. spektrální intenzity záření (míra vyzařování) na vlnové délce (vzdálenost mezi dvěma vrcholy světelné vlny). Dle klasické fyziky bylo spočítáno, že spektrální intenzita by enormně rostla se zmenšující se vlnovou délkou. Rostla by pořád a do nekonečna, což by nám říkalo, že tělesa by na ultrafialovém spektru vydávala nekonečně mnoho energie, a to je samozřejmě nesmysl. Tento problém nese věhlasné jméno ultrafialová katastrofa.

Jak se s tímto problémem vypořádat? Tuto otázku si kladly koncem 19. století největší vědecké kapacity. Ovšem teprve roku 1900 byla tato hádanka vyřešena a samozřejmě tento průlom neměl na svědomí nikdo jiný než sám německý fyzik *Max Planck*. Formuloval prvně z části odhadnutý, *semi*-

empirický (z poloviny experimentálně zjištěný) vztah mezi spektrální intenzitou a vlnovou délkou. O pár měsíců později se mu podařilo tento zákon plně odvodit. Podařilo se mu to díky jistému matematickému obratu, jenž spočívá v předpokladu, že světlo jakožto forma energie nemůže být vyzařováno spojitě či kontinuálně, nýbrž po určitých částech, tzv. kvantech. Takové "balíčky" světelné energie dostaly název fotony. U takového modelu světla se může zdát, že je v nesouladu s vlnovým charakterem, jenže pouze tímto trikem lze dosáhnout správných výsledků. Ukazuje nám to, že oba pohledy na charakter světla jsou správné, chová se jako částice a zároveň jako vlna. O tomto paradoxu kvantové mechaniky se budeme podrobněji bavit příště. Na závěr zmiňuji, že vyzařovací zákon formulovaný Planckem se dnes nazývá Planckův vyzařovací zákon a jeho hlavní poselství je, že každé těleso o libovolné teplotě vyzařuje na všech možných vlnových délkách, ovšem na některých více a na některých méně. Jak moc na jakých vlnových délkách je už otázka teploty. Takže v podstatě i my sami záříme podobně jako Slunce viditelným světlem, jenže tak nepatrně, že tento děj nelze postřehnout.

Jistě jste si všimli, že jsme během vysvětlování podstaty světla použili slovo kvantum. A právě výše zmíněné použití tohoto slova vedlo ke vzniknu názvu kvantová fyzika. Hledání nejmenší možné části jisté veličiny (nejen energie, ale i další) se stalo podstatným principem tohoto revolučního oboru, a fyzici proto pro něj vytvořili speciální název: kvantování. Jak následně ukázal všem známý Albert Einstein, kvantování není pouze matematický konstrukt, ale reálný jev přírody.

II.B Header2-B

Seznámení a podrobné informace

Jak sepisovat řešení, pravidla

Budeme rádi, když vyplníte dotazník

Jindřich Anderle, Vojtěch Kubrycht, Michal Stroff

kvantuminformaci@gmail.com