Subject- DWM TE SEM V(Academic year 2024-25)

QUESTIONS BANK

Chapter 1

- Q1 .Write short note on: Operational support system.
- Q2. Explain Data Warehouse Architecture in detail
- Q3. Differentiate Data Warehouse vs. Data Mart
- Q4.Differentiate top-down and bottom-up approaches for building data warehouses. Discuss the merits and limitations of each approach.
- Q5. What is meant by Metadata in the context of a Data warehouse? Explain the types of metadata stored in a data warehouse. Illustrate with a suitable example.
- Q6. What is metadata? Why do we need metadata when search engines like google seem so effective?
- Q7 Explain the steps in dimensional modeling and its advantages of dimensional modeling
- Q8. Explain with examples Factless Fact Table and Fact constellation.
- Q9. In real-world data, tuples with missing values for some attributes are a common occurrence. Describe various methods for handling this problem
- Q10. Describe the process of Extraction, Transformation and Loading (ETL)with a neat and labeled diagram.
- Q11. Discuss various OLAP models and their architecture.
- Q12. Describe about the following OLAP operations on a cube:
 - i) Rollup ii) Drill down iii) Slice iv) Dice v) Pivot.
- Q13. All Design Star Schema case study problems

Chapter 2

- 1)Explain the process of Knowledge discovery in databases
- 2) For the given data apply smoothing by a) bin-mean, b) bin-boundaries

8,9,15,30,16,24,26,27,21,21,30,34

- 3) For the given data values 8,9,15,30,16,24,26,27,21,21,30,34 lFind Mean, Median, Mode, Midrange,Q1,Q2,Q3, five number summary, also draw box plot
- 4) Short notes on data visualization techniques for data warehousing and data mining
- 5) Explain steps involved in data preprocessing.

Numerical

Use k-means algorithm to create two clusters (Use Euclidean distance) A(2,2) B(3,2) C(1,1) D(3,1)E(1.5,0.5)

Solution

Algorithm 8.1 Basic K-means algorithm.

- Select K points as initial centroids.
- 2: repeat
- Form K clusters by assigning each point to its closest centroid.
- Recompute the centroid of each cluster.
- until Centroids do not change.

Use k-means algorithm to create two clusters (Use Euclidean distance)

A(2,2) B(3,2) C(1,1) D(3,1)E(1.5,0.5)

Objects		
Α	2	2
В	3	2
С	1	1
D	3	1
E	1.5	0.5

Solution:

Select randomly two objects as centroids eg A(2,2) and C(1,1). Compute distance of every object to each centroids

Euclidean distance between A(2,2) and c(1,1)

 $(|2-1|^2 + |2-1|^2)^{1/2} = (1+1)^{1/2} = 1.41$

Iteration 1

	1011	A (2, 2)	C (1,1)	
	Point	Dist Mean 1	Dist Mean 2	Cluster
Α	(2, 2)	0	1.41	1

В	(3,2)	1	2.24	1
С	(1,1)	1.41	0	2
D	(3,1)	1.41	2	1
E	(1.5,0.5)	1.58	0.71	2

Clusters are

Cluster1	Cluster2		
· · · · · ·	C(1,1) E(1.5,0.5)		
Calculate centroid			
	C2=(1+1.5)/2 , (1+.5)/2 =(1.25,0.75)		

Iteration 2

ILCIA	STATION Z					
		C1 (2.67, 1.67)	C2 (1.25,0.75)			
	Point	Dist Mean 1	Dist Mean 2	Cluster		
Α	(2, 2)	0.75	1.45	1		
В	(3,2)	0.47	2.15	1		
С	(1,1)	1.79	0.32	2		
D	(3,1)	0.75	1.76	1		
E	(1.5,0.5)	1.65	0.36	2		

Clusters are

Cluster1	Cluster2
	C(1,1) E(1.5,0.5)
Calculate centroid	
	C2=(1+1.5)/2 , (1+.5)/2 =(1.25,0.75)