

## 3D Microscopy Vision Using Multiple View Geometry and Differential Evolutionary Approaches

A. Pahlavan Tafti, A. B. Kirkpatrick, H. A. Owen, Z. Yu

Biomedical Modeling and Visualization Laboratory University of Wisconsin Milwaukee, WI, USA

ISVC' 14, Las Vegas, Nevada, USA



### **Outline**

- Generic 3D Surface Reconstruction
- Microscopic 3D Surface Reconstruction
- Method
- Experimental Validations
- Conclusion and Future Work



#### **Generic 3D Surface Reconstruction**

3D surface reconstruction refers to the process of creating 3D model from a set of 2D images.

Input: a set of 2D images







Output: 3D model



**Fig 1.** Generic 3D surface reconstruction. This work was done by **Computer Vision Laboratory** at **Stanford University** in 2013. 11,230 images were captured and camera traversed over 184 meters. (http://vision.stanford.edu)



## Microscopic 3D Surface Reconstruction

#### **Motivations and Objectives**

- To effectively measure and visualize the surface properties of 2D images taken by a Scanning Electron Microscope.
- To provide quantitative and visual information for microscopic samples.
- To create realistic anatomic shape from microscopic samples.
- To allow rotation and depth for further interpretation of microscopic objects.



#### The Scanning Electron Microscope (Contd.)

A SEM offers an excellent capability to overcome the limitation of the human eye by its ability to image microscopic surfaces and achieve increased magnification, contrast

and resolution greater than 1 nanometer.





**Fig 2.** SEM is a type of electron microscope that produces images with a focused beam of electrons. Image courtesy of the EM Laboratory at University of Wisconsin Milwaukee (http://uwm.edu)



#### The Scanning Electron Microscope (SEM)

**Table 1.** Comparison of the SE and BSE imaging in a SEM

| SE-based imaging                            | BSE-based imaging                          |
|---------------------------------------------|--------------------------------------------|
| Higher resolution and darker intensities    | Lower resolution and brighter intensities  |
| Inelastic scattering (low energy electrons) | Elastic scattering (high energy electrons) |
| Contains topographical information          | Contains compositional information         |



**Fig 3.** Secondary electron (SE) and Backscatter (BSE) micrographs of a *copper TEM grid*. SE micrograph (a) exhibits greater resolution and topography on the surface of the grid as well as in background. BSE micrograph (b) exhibits greater contrast and brightness between materials comprising the sample. Resolution compared to SE micrograph is much reduced. Image courtesy of the EM Laboratory at University of Wisconsin Milwaukee. (http://uwm.edu)



#### 3D SEM Surface Reconstruction System (Contd.)



**Fig 4.** The proposed system for 3D SEM surface reconstruction. We use Projective Geometry (Multiple View Geometry) to initialize a 3D model, then perform Differential Evolutionary (DE) algorithm to refine both SEM parameters and 3D shape model.



#### 3D SEM Surface Reconstruction System (Contd.)

- Using the general pipeline of multi view 3D reconstruction, we normally initialize the 3D points and extrinsic parameters with some error thresholds.
- Suppose that we are given two 2D images with N matching points, then the aim is to estimate six parameters for modeling the camera motion (R and t known as extrinsic parameters) and N\*3 for the 3D points  $X_i$  by minimizing the following projection error:

$$E(X_1, ..., X_N, R, T) = \sum_{i=1}^{N} ||x_1^i - P(X_i)||^2 + ||x_2^i - P([R \mid t], X_i)||^2$$

- Parameterizing the space of rotation and translation is the most important portion of the problem.
- In order to have better flexibility, the quaternion parameterization is applied to 3D rotation representation.

# UNIVERSITY of WISCONSIN UNIVERSITY of WISCONSIN Computer Science Department

#### Method

#### 3D SEM Surface Reconstruction System (Contd.)

• A quaternion z = a + bi + cj + dk, where a, b, c, d are real numbers and  $i^2 = j^2 = k^2 = -1$ , and z is a unit quaternion if and only if:

$$|z| = \sqrt{a^2 + b^2 + c^2 + d^2} = 1$$

• Then the rotation matrix representation is as follow:

$$R(z) = \begin{bmatrix} a^2 + b^2 - c^2 - d^2 & 2bc - 2ad & 2bd + 2ac \\ 2bc + 2ad & a^2 - b^2 + c^2 - d^2 & 2cd - 2ab \\ 2bd - 2ac & 2cd + 2ab & a^2 - b^2 - c^2 + d^2 \end{bmatrix}$$

• We denote the translation vector of the second position with respect to the first position as  $\mathbf{t} = (t_x; t_y; t_z)^T$ 



#### 3D SEM Surface Reconstruction System (Contd.)

 By considering the previous equations for rotation parameterization and t for translation, then the parameterization of two projection matrices will be determined by a seven dimensional vector as follow:

$$\psi = (a, b, c, d, t_x, t_y, t_z)^{\top}$$

• The final optimization is:

$$\psi^* = \arg\min_{\psi} \left( \sum_{i=1}^{N} \|x_1^i - P(X_i)\|^2 + \|x_2^i - P(\psi, X_i)\|^2 \right)$$

We use Differential Evolution to solve the above equation.



#### **3D SEM Surface Reconstruction System**

• DE is a minimization strategy using generated populations within the parameter space. This method first generates an initial population randomly, then iteratively updates them to estimate the best possible values for an optimization problem.

```
begin
 Initialize S, CR, P_{Total}, G_{max};
 Initialize the population \{\psi_i; (1 \le i \le P_{Total})\} randomly;
 G = 1;
 while G < G_{max}
    for (i=1; i<= P_{Total}; i++)
        choose three individual agents \psi_{m,G}, \psi_{n,G}, \psi_{p,G} randomly;
           r = U(0,1);
           if r < CR
            m_{i,G} = \psi_{m,G} + S \times (\psi_{n,G} - \psi_{p,G})
          else
            m_{i,G} = \psi_{i,G};
          if m_{i,G} < \psi_{i,G};
           \psi^* = m_{i,G};
      end.
    G = G+1;
  end.
return
end.
```

The parameters  $CR \in [0; 1]$  and  $S \in [0; 2]$  will be obtained by performing several experiments on the problem.





#### **3D Visualization**

#### Sample #1

| Data (Sample) | Tapetal                                           |
|---------------|---------------------------------------------------|
| # 2D Images   | 4                                                 |
| Tilting       | 9 Degree between each                             |
| # 3D points   | 1129                                              |
| Resource      | EM Laboratory, Biological Science Department, UWM |





**Fig 6.** We generated a 3D model of a *Tapetal* cell using only its 2D images. We solved inverse problem going from 2D to 3D.



#### **3D Visualization**

#### Sample #2

| Data (Sample) | Diatom                                            |
|---------------|---------------------------------------------------|
| # 2D Images   | 3                                                 |
| Tilting       | 15 Degree between each                            |
| # 3D points   | 531                                               |
| Resource      | EM Laboratory, Biological Science Department, UWM |







Going from 2D to 3D

**Fig 7.** We took multiple 2D images from a *Diatom Frustule* using Scanning Electron Microscope (SEM).

**Fig 8.** We generated a 3D model of a *Diatom* Frustule using only its 2D images. We solved inverse problem going from 2D to 3D.



#### **SEM Extrinsic calibration**

**Table 2.** Accuracy and reliability validation of the proposed method by examining different variables.  $\Delta R$  is given as  $R_{real} - R_{estimated}$ , indicating error for estimating the 3D rotation. Rotation angles show the ground truth 3D SEM rotations( $R_{real}$ ). In each row we used only two images in the set.

| Image set       | Total Matches | Rotation angle | $G_{max}$ | $\Delta R$ | Elapsed time          |
|-----------------|---------------|----------------|-----------|------------|-----------------------|
| tapetal cell    | 509           | 9 degrees      | 500       | 2.12E-03   | 6.61 Sec.             |
| tapetal cell    | 509           | 9 degrees      | 1000      | 5.07E-04   | 9.18 Sec.             |
| tapetal cell    | 441           | 18 degrees     | 500       | 2.57E-03   | $6.53  \mathrm{Sec}.$ |
| tapetal cell    | 441           | 18 degrees     | 1000      | 7.12E-04   | 8.89 Sec.             |
| diatom frustule | 317           | 15 degrees     | 500       | 2.88E-03   | $6.02  \mathrm{Sec}.$ |
| diatom frustule | 317           | 15 degrees     | 1000      | 7.13E-04   | 7.25 Sec.             |
| diatom frustule | 286           | 30 degrees     | 500       | 2.95E-03   | 5.81 Sec.             |
| diatom frustule | 286           | 30 degrees     | 1000      | 7.41E-04   | 4.97 Sec.             |



#### **Comparison With Other Methods**

**Table 3.** Comparison of our proposed DE based model with two traditional approaches demonstrates that our system provides a greater improvement to the accuracy and time efficiency of SEM rotation estimation. Here, we investigate and compare our method with ADBA and ASDBA techniques. We labeled our proposed method as **DE**.

| Method        | Image set       | Total Matches | Rotation angle | $\Delta R$ | Elapsed time |
|---------------|-----------------|---------------|----------------|------------|--------------|
| ADBA          | tapetal cell    | 509           | 9 degrees      | 7.39E-02   | 21.74 Sec.   |
| ASDBA         | tapetal cell    | 509           | 9 degrees      | 9.86E-03   | 16.18 Sec.   |
| $\mathbf{DE}$ | tapetal cell    | 509           | 9 degrees      | 5.07E-04   | 9.18 Sec.    |
| ADBA          | diatom frustule | 286           | 30 degrees     | 1.94E-02   | 12.48 Sec.   |
| ASDBA         | diatom frustule | 286           | 30 degrees     | 6.19E-02   | 9.83 Sec.    |
| $\mathbf{DE}$ | diatom frustule | 286           | 30 degrees     | 7.41E-04   | 4.97 Sec.    |



#### **Convergence Graph (Contd.)**



**Fig 9.** Convergence graph comparison for the "*Tapetal*" set. In this experiment we only used two images tilting by 9 degree with 509 3D points. (A) and (B) show the results on a different number of generations obtained with G=200 (A) and G=1000 (B).



#### **Convergence Graph**



**Fig 10.** Convergence graph comparison for the "*Diatom*" set. In this experiment we only used two images tilting by 15 degree with 317 3D points. (A) and (B) show the results on a different number of generations obtained with G=200 (A) and G=1000 (B).



#### **Accuracy in 3D Modeling (Contd.)**



**Fig 11.** A set of seven 2D images of the synthetic "Face" model along with its 3D shape structure are shown in this figure. These images were tilted 10 degrees from one to the next in the image sequence. 4097 3D points were used in the experiment to compare the accuracy on 3D shape modeling. Comparing results are shown in Table 4.



#### **Accuracy in 3D Modeling**

**Table 4.** Hausdorff Distance unit calculations on the synthetic "Face" Model. We called our method as **DE**.

| Method        | Number of 3D Points | HDu (min) | HDu (max) | HDu (mean) |
|---------------|---------------------|-----------|-----------|------------|
| ADBA          | 4097                | 0.000000  | 0.077471  | 0.041309   |
| ASDBA         | 4097                | 0.000000  | 0.067120  | 0.009711   |
| $\mathbf{DE}$ | 4097                | 0.000000  | 0.032709  | 0.003961   |



#### **Conclusion and Future Work**

- Our approach combines Projective Geometry with Differential Evolutionary algorithm to restore the 3D surface model of various objects from micro size to macro.
- The main focus of this research project was to increase the reliability and accuracy of SEM 3D surface reconstruction from multiple views.
- The present work is expected to bridge the gap between microscopy imaging and computer vision community, opening the doors for different interesting directions from the computer vision community to this fast-growing application area.
- Future direction would be to increase the robustness of the algorithm by better handling the matching points at the first step to get rid of the outliers, increasing the speed of the process.



## Thank you!

#### To cite this contribution:

```
@PROCEEDINGS {sem01, title={3D Microscopy vision using multiple view geometry and differential evolutionary approaches}, author={A. Pahlavan Tafti and A. B. Kirkpatrick and H. A. Owen and Z. Yu}, journal={The 10th International Symposium on Visual Computing (ISVC), LNCS 8888}, organization={Springer}, year={2014}, address = {Las Vegas, USA}}
```