Design of Addors

D Logic Circuit to add two 4-bit BCD numbers and with proper condection circuit to get convect BCD output (Addition using covery look afreed adder).

Implementation:

with Table:

· 4-bit covey look ahead binary adder for initial addition

· logic circuit to detect sum gleater than 9. or a carry.

· one more 4-bit adder to add (0110) or 6,0 if the sum ≥ 9 or covery is 1.

+ 0110 + Add 6 for coverection.

0 001 0110 + BED for 14

etecting	18	Sum	1 >9	1		
0	Ş	S_2	S	So	output (1)
$0 \rightarrow$	0	0	0	0	0	_
1-	0	0	0	1	9	
2-	0	0	1	0	.0	
3 ->	0	0	1	1	0	
4→ 5→	O	1	0	0	0	
	0	1	0	1	0 .	-
6→	0	1	ı	0	0	
7→	0	1	. 1 .	1	0	
8-	1	0	0	0	0	
9-	1	0	0	1	0	ť,
10-	1	0	-1	0	11.	ij,
11-	1	0	1	1	47	100
1						-

K-Map:	S _o			
2325 /31	00	01	.11	10
00	0	0	0	0
	0	D	0	0
11:	A	1	1	D
10	0	0	1	1
			-	_

Output, Y= S352 + S351

2) 3 bit signed binary adder circuit (4 bits, 1 bit for sign) to add two negative numbers; control logic to predict whether the number is negative or not and based on that do the addition.

Soln: $A = \begin{bmatrix} A_3 & A_2 & A_1 & A_0 \\ B_2 & B_3 & B_2 & B_1 & B_0 \end{bmatrix}$ $S_3 = \begin{bmatrix} S_2 & S_1 & S_0 \\ S_3 & S_2 & S_1 & S_0 \end{bmatrix}$ $S_3 = \begin{bmatrix} A_3 & B_3 \\ A_3 & B_3 \end{bmatrix}$

Sig Magnitude Addition

Sound

Cavry Look ohead adder:

$$S_i = P_i \oplus C_i$$
 $P_i = A_i \oplus B_i$
 $G_{i+1} = G_{i+1} + P_i C_i$ $G_{i+1} = A_i B_i$

$$S_0 = P_0 C_0$$

$$S_1 = P_1 \oplus C_1$$

$$S_2 = P_2 \oplus C_2$$

