

TALLER N°4 Energía y potencial eléctrico 08 de abril de 2015

- 1. Considere un sistema compuesto por dos cargas puntuales $q_1 = q_2 = +Q$ fijas sin libertad de movimiento, ubicadas en los puntos (0,a) y (0,-a) respectivamente. En el punto $(x_0,0)$ se libera desde el reposo una partícula P de carga $q_3 = -q$ y masa m.
 - a) Realice un dibujo que ilustre la situación planteada.
 - b) ¿Cuánto vale la energía del sistema?
 - c) Escriba una expresión para la energía cinética y la velocidad de la partícula P en función de la coordenada x.
 - d) ¿Para cuál valor de x la velocidad de la partícula P es máxima?
- 2. Sea un disco de radio R=20~cm. Un electrón se libera en un punto P ubicado a 10~cm del centro del disco sobre el eje de simetría perpendicular al disco. El electrón choca contra el disco con una energía cinética de $3.2x10^{-16}J$. Si la carga de un electrón es $e=3.2x10^{-19}C$ y su masa $m=9.1x10^{-31}kg$.
 - a) ¿Cuánto vale la diferencia de potencial entre el centro del disco y el punto P?
 - b) Si la densidad de carga del disco es $\sigma = \sigma_0$, a partir de la ecuación $dV = \frac{KdQ}{|\vec{r} \vec{r}'|}$ obtenga la carga neta del disco.