Lecture 8: Classification

Reading: Chapter 4

STATS 202: Data mining and analysis

Jonathan Taylor, 10/10 Slide credits: Sergio Bacallado

Supervised learning with a qualitative or categorical response.

Supervised learning with a qualitative or categorical response.

Just as common, if not more common than regression:

► *Medical diagnosis:* Given the symptoms a patient shows, predict which of 3 conditions they are attributed to.

Supervised learning with a qualitative or categorical response.

- ► *Medical diagnosis:* Given the symptoms a patient shows, predict which of 3 conditions they are attributed to.
- ► Online banking: Determine whether a transaction is fraudulent or not, on the basis of the IP address, client's history, etc.

Supervised learning with a qualitative or categorical response.

- Medical diagnosis: Given the symptoms a patient shows, predict which of 3 conditions they are attributed to.
- Online banking: Determine whether a transaction is fraudulent or not, on the basis of the IP address, client's history, etc.
- Web searching: Based on a user's history, location, and the string of a web search, predict which link a person is likely to click.

Supervised learning with a qualitative or categorical response.

- Medical diagnosis: Given the symptoms a patient shows, predict which of 3 conditions they are attributed to.
- Online banking: Determine whether a transaction is fraudulent or not, on the basis of the IP address, client's history, etc.
- Web searching: Based on a user's history, location, and the string of a web search, predict which link a person is likely to click.
- Online advertising: Predict whether a user will click on an ad or not.

Review: Bayes classifier

Suppose $P(Y \mid X)$ is known. Then, given an input x_0 , we predict the response

$$\hat{y}_0 = \operatorname{argmax}_y P(Y = y \mid X = x_0).$$

Review: Bayes classifier

Suppose $P(Y \mid X)$ is known. Then, given an input x_0 , we predict the response

$$\hat{y}_0 = \operatorname{argmax}_y P(Y = y \mid X = x_0).$$

The Bayes classifier minimizes the expected 0-1 loss:

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\mathbf{1}(\hat{y}_i \neq y_i)\right]$$

Review: Bayes classifier

Suppose $P(Y \mid X)$ is known. Then, given an input x_0 , we predict the response

$$\hat{y}_0 = \operatorname{argmax}_y P(Y = y \mid X = x_0).$$

The Bayes classifier minimizes the expected 0-1 loss:

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\mathbf{1}(\hat{y}_i \neq y_i)\right]$$

This minimum 0-1 loss (the best we can hope for) is the Bayes error rate.

If we have a good estimate for the conditional probability $\hat{P}(Y \mid X)$, we can use the classifier:

$$\hat{y}_0 = \operatorname{argmax}_y \hat{P}(Y = y \mid X = x_0).$$

If we have a good estimate for the conditional probability $\hat{P}(Y\mid X)$, we can use the classifier:

$$\hat{y}_0 = \operatorname{argmax}_y \hat{P}(Y = y \mid X = x_0).$$

Suppose Y is a binary variable. Could we use a linear model?

$$P(Y=1|X) = \beta_0 + \beta_1 X_1 + \dots + \beta_1 X_p$$

If we have a good estimate for the conditional probability $\hat{P}(Y\mid X)$, we can use the classifier:

$$\hat{y}_0 = \operatorname{argmax}_y \hat{P}(Y = y \mid X = x_0).$$

Suppose Y is a binary variable. Could we use a linear model?

$$P(Y=1|X) = \beta_0 + \beta_1 X_1 + \dots + \beta_1 X_p$$

Problems:

If we have a good estimate for the conditional probability $\hat{P}(Y\mid X)$, we can use the classifier:

$$\hat{y}_0 = \operatorname{argmax}_y \, \hat{P}(Y = y \mid X = x_0).$$

Suppose Y is a binary variable. Could we use a linear model?

$$P(Y = 1|X) = \beta_0 + \beta_1 X_1 + \dots + \beta_1 X_p$$

Problems:

► This would allow probabilities <0 and >1.

If we have a good estimate for the conditional probability $\hat{P}(Y \mid X)$, we can use the classifier:

$$\hat{y}_0 = \operatorname{argmax}_y \, \hat{P}(Y = y \mid X = x_0).$$

Suppose Y is a binary variable. Could we use a linear model?

$$P(Y = 1|X) = \beta_0 + \beta_1 X_1 + \dots + \beta_1 X_p$$

Problems:

- ▶ This would allow probabilities <0 and >1.
- Difficult to extend to more than 2 categories.

Logistic regression

We model the joint probability as:

$$P(Y = 1 \mid X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}},$$

$$P(Y = 0 \mid X) = \frac{1}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}.$$

This is the same as using a linear model for the log odds:

$$\log \left[\frac{P(Y=1 \mid X)}{P(Y=0 \mid X)} \right] = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p.$$

The training data is a list of pairs $(y_1, x_1), (y_2, x_2), \dots, (y_n, x_n)$. In the linear model

$$\log \left[\frac{P(Y=1 \mid X)}{P(Y=0 \mid X)} \right] = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p,$$

we don't observe the left hand side.

The training data is a list of pairs $(y_1, x_1), (y_2, x_2), \dots, (y_n, x_n)$. In the linear model

$$\log \left[\frac{P(Y=1 \mid X)}{P(Y=0 \mid X)} \right] = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p,$$

we don't observe the left hand side.

We cannot use a least squares fit.

Solution:

The likelihood is the probability of the training data, for a fixed set of coefficients β_0, \ldots, β_p :

$$\prod_{i=1}^{n} P(Y = y_i \mid X = x_i)$$

Solution:

The likelihood is the probability of the training data, for a fixed set of coefficients β_0, \ldots, β_p :

$$\prod_{i=1}^n P(Y=y_i\mid X=x_i)$$

$$= \underbrace{\prod_{i:y_i=1} \frac{e^{\beta_0+\beta_1x_{i1}+\dots+\beta_px_{ip}}}{1+e^{\beta_0+\beta_1x_{i1}+\dots+\beta_px_{ip}}}}_{\text{Probability of responses} = 1} \underbrace{\prod_{j:y_j=0} \frac{1}{1+e^{\beta_0+\beta_1x_{j1}+\dots+\beta_px_{jp}}}}_{\text{Probability of responses} = 0}$$

Solution:

The likelihood is the probability of the training data, for a fixed set of coefficients β_0, \ldots, β_p :

$$\prod_{i=1}^n P(Y=y_i\mid X=x_i)$$

$$= \underbrace{\prod_{i:y_i=1} \frac{e^{\beta_0+\beta_1x_{i1}+\cdots+\beta_px_{ip}}}{1+e^{\beta_0+\beta_1x_{i1}+\cdots+\beta_px_{ip}}}}_{\text{Probability of responses}=1} \underbrace{\prod_{j:y_j=0} \frac{1}{1+e^{\beta_0+\beta_1x_{j1}+\cdots+\beta_px_{jp}}}}_{\text{Probability of responses}=0}$$

► Choose estimates $\hat{\beta}_0, \dots, \hat{\beta}_p$ which maximize the likelihood.

Solution:

The likelihood is the probability of the training data, for a fixed set of coefficients β_0, \ldots, β_p :

$$\prod_{i=1}^n P(Y=y_i\mid X=x_i)$$

$$= \underbrace{\prod_{i:y_i=1} \frac{e^{\beta_0+\beta_1x_{i1}+\dots+\beta_px_{ip}}}{1+e^{\beta_0+\beta_1x_{i1}+\dots+\beta_px_{ip}}}}_{\text{Probability of responses} = 1} \underbrace{\prod_{j:y_j=0} \frac{1}{1+e^{\beta_0+\beta_1x_{j1}+\dots+\beta_px_{jp}}}}_{\text{Probability of responses} = 0}$$

- ▶ Choose estimates $\hat{\beta}_0, \dots, \hat{\beta}_p$ which maximize the likelihood.
- ► Solved with numerical methods (e.g. Newton's algorithm).

```
> glm.fit=glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume,
   data=Smarket, family=binomial)
> summary(glm.fit)
Call:
glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5
   + Volume, family = binomial, data = Smarket)
Deviance Residuals:
  Min
          10 Median
                        30
                               Max
 -1.45 -1.20 1.07 1.15
                              1.33
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.12600 0.24074 -0.52 0.60
Lag1
        -0.07307 0.05017 -1.46 0.15
Lag2
         -0.04230 0.05009 -0.84 0.40
Lag3
          0.01109 0.04994 0.22 0.82
Lag4
          0.00936 0.04997 0.19
                                      0.85
Lag5
          0.01031 0.04951 0.21
                                      0.83
Volume
           0.13544 0.15836 0.86
                                       0.39
```

▶ We can estimate the Standard Error of each coefficient.

- ▶ We can estimate the Standard Error of each coefficient.
- ► The *z*-statistic is the equivalent of the *t*-statistic in linear regression:

$$z = \frac{\hat{\beta}_j}{\mathsf{SE}(\hat{\beta}_j)}.$$

- ▶ We can estimate the Standard Error of each coefficient.
- ► The *z*-statistic is the equivalent of the *t*-statistic in linear regression:

$$z = \frac{\hat{\beta}_j}{\mathsf{SE}(\hat{\beta}_j)}.$$

▶ The p-values are test of the null hypothesis $\beta_j = 0$ (Wald's test).

- ▶ We can estimate the Standard Error of each coefficient.
- ► The *z*-statistic is the equivalent of the *t*-statistic in linear regression:

$$z = \frac{\hat{\beta}_j}{\mathsf{SE}(\hat{\beta}_j)}.$$

- ▶ The p-values are test of the null hypothesis $\beta_j = 0$ (Wald's test).
- Other possible hypothesis tests: likelihood ratio test (chi-square distribution).

Predictors:

student: 1 if student, 0 otherwise.

balance: credit card balance.

▶ income: person's income.

Predictors:

- student: 1 if student, 0 otherwise.
- balance: credit card balance.
- ▶ income: person's income.

In this dataset, there is *confounding*, but little collinearity.

使惊惶;使困惑惊讶;搞乱

Predictors:

- student: 1 if student, 0 otherwise.
- balance: credit card balance.
- ▶ income: person's income.

In this dataset, there is confounding, but little collinearity.

Students tend to have higher balances. So, balance is explained by student, but not very well.

Predictors:

- student: 1 if student, 0 otherwise.
- balance: credit card balance.
- ▶ income: person's income.

In this dataset, there is confounding, but little collinearity.

- ► Students tend to have higher balances. So, balance is explained by student, but not very well.
- People with a high balance are more likely to default.

Predictors:

- student: 1 if student, 0 otherwise.
- balance: credit card balance.
- ▶ income: person's income.

In this dataset, there is confounding, but little collinearity.

- ► Students tend to have higher balances. So, balance is explained by student, but not very well.
- People with a high balance are more likely to default.
- ► Among people with a given balance, students are less likely to default.

Predictors:

- ▶ student: 1 if student, 0 otherwise.
- balance: credit card balance.
- ▶ income: person's income.

Logistic regression using only balance:

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

Logistic regression using only student:

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

Logistic regression using only balance:

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

Logistic regression using only student:

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

Logistic regression using all 3 predictors:

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Extending logistic regression to more than 2 categories

Multinomial logistic regression:

Suppose Y takes values in $\{1, 2, ..., K\}$, then we use a linear model for the log odds against a baseline category (e.g. 1):

Extending logistic regression to more than 2 categories

Multinomial logistic regression:

Suppose Y takes values in $\{1, 2, \dots, K\}$, then we use a linear model for the log odds against a baseline category (e.g. 1):

$$\log \left[\frac{P(Y=2 \mid X)}{P(Y=1 \mid X)} \right] = \beta_{0,2} + \beta_{1,2} X_1 + \dots + \beta_{p,2} X_p,$$

Extending logistic regression to more than 2 categories

Multinomial logistic regression:

Suppose Y takes values in $\{1, 2, \dots, K\}$, then we use a linear model for the log odds against a baseline category (e.g. 1):

$$\log \left[\frac{P(Y=2 \mid X)}{P(Y=1 \mid X)} \right] = \beta_{0,2} + \beta_{1,2} X_1 + \dots + \beta_{p,2} X_p,$$

. . .

$$\log \left[\frac{P(Y = K \mid X)}{P(Y = 1 \mid X)} \right] = \beta_{0,K} + \beta_{1,K} X_1 + \dots + \beta_{p,K} X_p.$$

Some issues with logistic regression

► The coefficients become unstable when there is collinearity. Furthermore, this affects the convergence of the fitting algorithm.

Some issues with logistic regression

- ► The coefficients become unstable when there is collinearity. Furthermore, this affects the convergence of the fitting algorithm.
- When the classes are well separated, the coefficients become unstable. This is always the case when $p \ge n 1$.

Strategy: Instead of estimating $P(Y \mid X)$, we will estimate:

Strategy: Instead of estimating $P(Y \mid X)$, we will estimate:

1. $\hat{P}(X \mid Y)$: Given the response, what is the distribution of the inputs.

Strategy: Instead of estimating $P(Y \mid X)$, we will estimate:

- 1. $\hat{P}(X \mid Y)$: Given the response, what is the distribution of the inputs.
- 2. $\hat{P}(Y)$: How likely are each of the categories.

Strategy: Instead of estimating $P(Y \mid X)$, we will estimate:

- 1. $\hat{P}(X \mid Y)$: Given the response, what is the distribution of the inputs.
- 2. $\hat{P}(Y)$: How likely are each of the categories.

Then, we use **Bayes rule** to obtain the estimate:

$$\hat{P}(Y = k \mid X = x) = \frac{\hat{P}(X = x \mid Y = k)\hat{P}(Y = k)}{\hat{P}(X = x)}$$

Strategy: Instead of estimating $P(Y \mid X)$, we will estimate:

- 1. $\hat{P}(X \mid Y)$: Given the response, what is the distribution of the inputs.
- 2. $\hat{P}(Y)$: How likely are each of the categories.

Then, we use *Bayes rule* to obtain the estimate:

$$\hat{P}(Y=k\mid X=x) = \frac{\hat{P}(X=x\mid Y=k)\hat{P}(Y=k)}{\sum_{j}\hat{P}(X=x\mid Y=j)\hat{P}(Y=j)}$$

Strategy: Instead of estimating $P(Y \mid X)$, we will estimate:

1. We model $\hat{P}(X = x \mid Y = k) = \hat{f}_k(x)$ as a *Multivariate Normal Distribution*:

Strategy: Instead of estimating $P(Y \mid X)$, we will estimate:

1. We model $\hat{P}(X = x \mid Y = k) = \hat{f}_k(x)$ as a Multivariate Normal Distribution:

2. $\hat{P}(Y = k) = \hat{\pi}_k$ is estimated by the fraction of training samples of class k.

Next time

- ► Linear Discriminant Analysis (LDA):
 - How do we estimate the parameters of the MVN distribution \hat{f}_k for each class k?
 - ► What do LDA predictions look like.

Next time

- Linear Discriminant Analysis (LDA):
 - ► How do we estimate the parameters of the MVN distribution \hat{f}_k for each class k?
 - ▶ What do LDA predictions look like.
- ► How to evaluate a classification method?

Next time

- Linear Discriminant Analysis (LDA):
 - How do we estimate the parameters of the MVN distribution \hat{f}_k for each class k?
 - What do LDA predictions look like.
- ▶ How to evaluate a classification method?
- ► Examples: comparing KNN, logistic regression and LDA.