Zadanie 20

Zadanie zostało rozwiązane za pomocą programu Mathematica (11).

Ponieważ pomiary są nieskorelowane i identyczne , to macierz kowariacji $G = \sigma^2 I$ gdzie σ to odchylenie standardowe pojedyńczego pomiaru. żeby dopasować współczynniki wielomianu wystarczy rozwiązać układ równań $A^T A p = A^T y$ gdzie p jest wektorem współczników e wielomianu , y wartościami doświadczalnymi , a A macierzą o wartościach $A_{ij} = (x_i)^{j-1}$.

Następnie obliczyć możemy odchylenie standardowe zgodnie z treścią zadania.

Estymator największej wiarygodności wynosi wtedy Q=1/2 ee^T / σ^2 gdzie e jest wektorem błędów. Macierz kowaraicji estymatorów upraszcza sie do Cp = σ^2 (A^T A)⁻¹

Do wykresu dopasowano wielomiany stopnia od 0 do 4

Najlepszy wynik uzyskał wielomian stopnia 0.

Na wykresie narysowano dopasowane wielomiany, parametr d oznacza stopień dopasowanego wielomianu.

Macierz kowariacji jest wtedy liczbą 0.000163123.

Dopasowując wieloman stopnia 1 uzyskujemy macierz kowariacji

```
{0.000151721, -3.55552*10^-6},
{-3.55552*10^-6, 0.000455107}
```

Widać więc że współczynniki korelacji różnych współczynników są wyraznie mniejsze wartości na diagonali. Przy wielomianach stopnia 2,3,4 niektóre wartości współczynników korelacji są porównywalne z wartościami na diagonali.