Support Vector Machines

Machine Learning 1 — Lecture 11 6th June 2023

Robert Peharz Institute of Theoretical Computer Science Graz University of Technology

- Basically, support vector machines (SVMs) are linear models
- Beautiful theory
- Convex problem, i.e. a global minimum can be found
- They are often used to introduce the kernel trick, a powerful technique to work implicitly in high-dimensional spaces
- SVMs were the state-of-the-art from about 1995-2010
- Neural networks didn't take off back then
- We will discuss SVMs in the context of binary classification multi-class extensions are available and relatively straight-forward

A **vector** w and a **bias** b describe a **hyperplane** via

$$\mathbf{w}^T\mathbf{x} + b = 0$$

Vector \boldsymbol{w} is the **normal vector** of the hyperplane.

The positive and negative half-spaces are described as

$$\mathbf{w}^T \mathbf{x} + b > 0$$
 and $\mathbf{w}^T \mathbf{x} + b < 0$ respectively.

Linearly separable datasets: means that there exists at least one **separating hyperplane**, which classifies all samples correctly (positive samples in positive half-space, negative samples in negative half-space).

We will first assume that the training set is linearly separable and relax this assumption later.

Support Vector Machines

Support vector machines classify with a separating hyperplane:

$$f(\mathbf{x}) = sgn(\mathbf{w}^T\mathbf{x} + b) = \begin{cases} +1 & \text{if } \mathbf{w}^T\mathbf{x} + b \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

4

Separating hyperplane is usually not unique.

What is a "good" separating hyperplane?

Is this a good hyperplane?

Or this?

Or this?

The last one looks somehow good. But why?

Classification Margin (Margin): minimal distance *d* to any training example.

Max-Margin Hyperplane: maximizes the margin; uniquely defined; physical interpretation: thickest board fitting between training vectors.

Classification Margin (Margin): minimal distance *d* to any training example.

Max-Margin Hyperplane: maximizes the margin; uniquely defined; physical interpretation: thickest board fitting between training vectors.

The "board" is **supported** by a few **support vectors** on the margin, hence the name **Support Vector Machine (SVM)**.

SVM is entirely determined by support vectors – same solution if other points are removed.

Classification Margin (Margin): minimal distance *d* to any training example.

Max-Margin Hyperplane: maximizes the margin; uniquely defined; physical interpretation: thickest board fitting between training vectors.

The "board" is **supported** by a few **support vectors** on the margin, hence the name **Support Vector Machine (SVM)**.

Learning Support Vector Machines

Setting

Assume linearly separable data for now.

Setting

Goal: find the max-margin hyperplane.

Setting

Datapoints
$$(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots (\mathbf{x}^{(N)}, y^{(N)})$$

 $y^{(i)} = \begin{cases} +1 & \text{for positive class } (\times) \\ -1 & \text{for negative class } (\bullet) \end{cases}$
 $\hat{y} = f(\mathbf{x}) = sgn(\mathbf{w}^T \mathbf{x} + b) = \begin{cases} +1 & \text{if } \mathbf{w}^T \mathbf{x} + b \ge 0 \\ -1 & \text{otherwise} \end{cases}$

Optimization Problem 1

We can describe SVM learning as follows:

maximize
$$\min_{\substack{i \ w,b}} \frac{d(\mathbf{x}^{(i)}, \mathbf{w}, b)}{s.t.}$$
 all samples correctly classified

- d(x, w, b) := Euclidean distance of x to hyperplane w, b
- Correct formulation, but too abstract for optimizers. . .

If x is a normalized vector, then the projection of y onto x is

$$\hat{\mathbf{y}} = \mathbf{x}^T \mathbf{y} \mathbf{x}$$

If x is not normalized, we need to divide x by its norm, yielding:

$$\hat{\mathbf{y}} = \frac{\mathbf{x}^T \mathbf{y} \, \mathbf{x}}{\|\mathbf{x}\| \, \|\mathbf{x}\|} = \frac{\mathbf{x}^T \mathbf{y} \, \mathbf{x}}{\|\mathbf{x}\|^2}$$

Distance of Point to Hyperplane

- \bullet Let w and b be given, describing hyperplane
- Let x be an arbitrary point and x₀ an arbitrary point on the hyperplane
- $x x_0$ is the vector starting at x_0 and pointing to x
- Let \hat{x} be the projection of $x x_0$ onto w
- ullet $\|\hat{oldsymbol{x}}\|$ is the Euclidean distance between $oldsymbol{x}$ and the hyperplane

Distance of Point to Hyperplane cont'd

Euclidean distance of x to hyperplane:

$$d = \left\| \underbrace{\frac{\hat{\mathbf{x}}^T (\mathbf{x} - \mathbf{x}_0) \mathbf{w}}{\|\mathbf{w}\|^2}}_{\hat{\mathbf{x}}} \right\| = \left| \mathbf{w}^T (\mathbf{x} - \mathbf{x}_0) \right| \frac{\|\mathbf{w}\|}{\|\mathbf{w}\|^2} = \frac{\left| \mathbf{w}^T \mathbf{x} - \mathbf{w}^T \mathbf{x}_0 \right|}{\|\mathbf{w}\|}$$

Since \mathbf{x}_0 lies on the hyperplane, $\mathbf{w}^T \mathbf{x}_0 + b = 0$. Thus $\mathbf{w}^T \mathbf{x}_0 = -b$ and

$$d = \frac{\left| \boldsymbol{w}^T \boldsymbol{x} + \boldsymbol{b} \right|}{\|\boldsymbol{w}\|}$$

If we remove the absolute value we get a signed distance

$$d_{signed} = \frac{\boldsymbol{w}^T \boldsymbol{x} + b}{\|\boldsymbol{w}\|}$$

(Signed) Distance between Point and Hyperplane Example

(Signed) Distance between Point and Hyperplane Example

Optimization Problem 2 (formalizing Problem 1)

- For any separating hyperplane, $\frac{y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b)}{\|\mathbf{w}\|}$ is the correct distance, due to multiplication with $y_i \in \{-1, +1\}$
- Hence, the objective $\min_i \frac{y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b)}{\|\mathbf{w}\|}$ is positive exactly for separating hyperplanes
- Since we maximize the objective we will find
 - 1. a separating hyperplane,
 - 2. which maximizes the margin
- However, the min; and division by ||w|| make the problem non-convex, i.e. it is hard to find a global optimum

• Let $\mathbf{w}^T \mathbf{x} + b = 0$ be a separating hyperplane

Margin Hyperplanes

- Let $\mathbf{w}^T \mathbf{x} + b = 0$ be a separating hyperplane
- Introduce margin hyperplanes $\mathbf{w}^T \mathbf{x} + b = -1$ and $\mathbf{w}^T \mathbf{x} + b = 1$, i.e. shifted versions of the separating hyperplane

Margin Hyperplanes

- Let $\mathbf{w}^T \mathbf{x} + b = 0$ be a separating hyperplane
- Introduce margin hyperplanes $\mathbf{w}^T \mathbf{x} + b = -1$ and $\mathbf{w}^T \mathbf{x} + b = 1$, i.e. shifted versions of the separating hyperplane
- The distance of the margin hyperplanes to the separating hyperplane, is given as $\frac{1}{\|\mathbf{w}\|}$ (to see this, plug in $\mathbf{w}^T\mathbf{x} + b = \pm 1$ into the distance formula)

Margin Hyperplanes cont'd

• Scaling ${\bf w}$ and b does not change the separating hyperplane ${\bf w}^T{\bf x}+b=0$, but moves the margin hyperplanes closer to the separating hyperplane

Margin Hyperplanes cont'd

- Scaling w and b does not change the separating hyperplane $w^Tx + b = 0$, but moves the margin hyperplanes closer to the separating hyperplane
- Thus, by appropriately scaling **w** and **b** we can always achieve that all points satisfy the **margin constraints**, i.e.
 - all negative points satisfy $\mathbf{w}^T \mathbf{x} + b \le -1$
 - all positive points satisfy $\mathbf{w}^T \mathbf{x} + b \ge 1$

Working with Margins

Margin Constraints:

- All negative points must satisfy $\mathbf{w}^T \mathbf{x} + b \le -1$
- All positive points must satisfy $\mathbf{w}^T \mathbf{x} + b \ge 1$
- Thus, all points must satisfy:

$$y^{(i)}\left(\mathbf{w}^T\mathbf{x}^{(i)}+b\right)\geq 1$$

Thus, SVM learning can now be described as

- maximizing distance of margin hyperplanes $\frac{1}{\|\mathbf{w}\|}$
- while satisfying all margin constraints

Optimization Problem 3 (equivalent Problem 2)

maximize
$$\frac{1}{\|\boldsymbol{w}\|}$$

s.t. $y^{(i)}\left(\boldsymbol{w}^T\boldsymbol{x}^{(i)}+b\right) \geq 1$ for $i=1...N$

Optimization Problem 3 (equivalent Problem 2)

maximize
$$\frac{1}{\|\boldsymbol{w}\|}$$

s.t. $y^{(i)}\left(\boldsymbol{w}^{T}\boldsymbol{x}^{(i)}+b\right) \geq 1$ for $i=1...N$

- Still not convex, due to $\frac{1}{\|\mathbf{w}\|}$
- However, this is easily fixed:
 - $\frac{1}{\|\mathbf{w}\|} \rightarrow \|\mathbf{w}\|$
 - ullet max o min

Optimization Problem 3 (equivalent Problem 2)

maximize
$$\frac{1}{\|\boldsymbol{w}\|}$$

s.t. $y^{(i)}\left(\boldsymbol{w}^{T}\boldsymbol{x}^{(i)}+b\right) \geq 1$ for $i=1...N$

- Still not convex, due to $\frac{1}{\|\mathbf{w}\|}$
- However, this is easily fixed:
 - $\frac{1}{\|\mathbf{w}\|} \rightarrow \|\mathbf{w}\|$
 - $max \rightarrow min$
- Further, minimizing $\|\mathbf{w}\|$ is equivalent to minimizing $\frac{1}{2}\|\mathbf{w}\|^2$, which is smooth and differentiable everywhere.

Optimization Problem 4 (final, equivalent to Problem 3)

minimize
$$\frac{1}{2} \| \boldsymbol{w} \|^2$$

s.t. $y^{(i)} \left(\boldsymbol{w}^T \boldsymbol{x}^{(i)} + b \right) \ge 1$ for $i = 1 \dots N$

- Standard formulation of SVMs
- Quadratic program
- Quadratic objective $\frac{1}{2} \| \boldsymbol{w} \|^2$
- Linear constraints $y^{(i)}\left(\boldsymbol{w}^T\boldsymbol{x}^{(i)}+b\right)\geq 1$
- Convex optimization problem
- Amenable for standard solvers (e.g. Gurobi)
- Many specialized SVM solvers exist (e.g. scikit-learn)

SVMs with Soft-Margin

What if data is not linearly separable?

$$\begin{aligned} & \underset{\boldsymbol{w},b}{\text{minimize}} & & \frac{1}{2} \| \boldsymbol{w} \|^2 \\ & \text{s.t.} & & y^{(i)} \left(\boldsymbol{w}^T \boldsymbol{x}^{(i)} + b \right) \geq 1 \end{aligned} \qquad \text{for } i = 1 \dots N$$

What if data is not linearly separable?

$$\begin{aligned} & \underset{\boldsymbol{w},b}{\text{minimize}} & \frac{1}{2} \| \boldsymbol{w} \|^2 \\ & \text{s.t.} & y^{(i)} \left(\boldsymbol{w}^T \boldsymbol{x}^{(i)} + b \right) \geq 1 & \text{for } i = 1 \dots N \end{aligned}$$

If data is not linearly separable, there doesn't exist a **feasible solution**, i.e. no \boldsymbol{w} and \boldsymbol{b} can satisfy all margin constraints simultaneously.

How can we deal with that?

Margin Constraints $y^{(i)}\left(\mathbf{w}^{T}\mathbf{x}^{(i)} + b\right) \geq 1$

Margin Constraints $y^{(i)}(w^Tx^{(i)} + b) \ge 1$

• Safe point $\mathbf{w}^T \mathbf{x}^{(i)} + b > 1$

Margin Constraints $y^{(i)} (w^T x^{(i)} + b) \ge 1$

- Safe point $\mathbf{w}^T \mathbf{x}^{(i)} + b > 1$
- Support vector $\mathbf{w}^T \mathbf{x}^{(i)} + b = 1$

Margin Constraints $y^{(i)} (w^T x^{(i)} + b) \ge 1$

- Safe point $\mathbf{w}^T \mathbf{x}^{(i)} + b > 1$
- Support vector $\mathbf{w}^T \mathbf{x}^{(i)} + b = 1$
- Violates constraint $\mathbf{w}^T \mathbf{x}^{(i)} + b < 1$

Margin Constraints $y^{(i)} (w^T x^{(i)} + b) \ge 1$

- Safe point $\mathbf{w}^T \mathbf{x}^{(i)} + b > 1$
- Support vector $\mathbf{w}^T \mathbf{x}^{(i)} + b = 1$
- Violates constraint $\mathbf{w}^T \mathbf{x}^{(i)} + b < 1$
- Wrongly classified $\mathbf{w}^T \mathbf{x}^{(i)} + b < 0$

- In non-separable data, we cannot achieve all margin constraints simultaneously
- But we are the "happier" the less each constraint is violated
- Let's introduce slack variables, relaxing the constraints:

$$y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) \ge 1 - \xi^{(i)}$$
 where $\xi^{(i)} \ge 0$

• We want $\xi^{(i)}$ to be small \Rightarrow penalize them

SVM with Soft-Margin

$$\begin{aligned} & \underset{\boldsymbol{w},b,\boldsymbol{\xi}}{\text{minimize}} & & \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i} \xi^{(i)} \\ & \text{s.t.} & & y_i \left(\boldsymbol{w}^T \boldsymbol{x}^{(i)} + b\right) \geq 1 - \xi^{(i)} \\ & & \xi^{(i)} \geq 0 & \text{for } i = 1 \dots N \end{aligned}$$

- Hyperparameter C trades off $\frac{1}{2} \| {\bf w} \|^2$ and slacks $\sum_i \xi^{(i)}$
- $C \to \infty$: hard margin
- Select e.g. with cross-validation
- Still a Quadratic Program (convex)
- Amenable for standard solvers, and specialized solvers exist

SVM with Soft-Margin (scikit-learn)

Linearly Separable Data

Dual SVM and the Kernel Trick

The SVM optimization problem (primal problem):

minimize
$$\frac{1}{2} \| \boldsymbol{w} \|^2 + C \sum_{i=1}^{N} \xi^{(i)}$$
s.t.
$$y_i \left(\boldsymbol{w}^T \boldsymbol{x}^{(i)} + b \right) \ge 1 - \xi^{(i)}$$

$$\xi^{(i)} \ge 0 \qquad \text{for } i = 1 \dots N$$

It can be shown that the following is equivalent (dual problem):

$$\begin{aligned} & \underset{\lambda}{\text{maximize}} & & -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda^{(i)} \lambda^{(j)} \, \boldsymbol{y^{(i)}} \boldsymbol{y^{(i)}} \, \boldsymbol{x^{(i)}}^{T} \boldsymbol{x^{(j)}} + \sum_{i=1}^{N} \lambda^{(i)} \\ & \text{s.t.} & & \sum_{i=1}^{N} \lambda^{(i)} \boldsymbol{y^{(i)}} = 0 \\ & & 0 \leq \lambda^{(i)} \leq C & \text{for } i = 1 \dots N \end{aligned}$$

Dual SVM Problem

$$\begin{aligned} & \underset{\lambda}{\text{maximize}} & & -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda^{(i)} \lambda^{(j)} \, y^{(i)} y^{(j)} \, \boldsymbol{x^{(i)}}^T \boldsymbol{x^{(j)}} + \sum_{i} \lambda^{(i)} \\ & \text{s.t.} & & \sum_{i} \lambda^{(i)} y^{(i)} = 0 \\ & & 0 \leq \lambda^{(i)} \leq C & \text{for } i = 1 \dots N \end{aligned}$$

- Optimization variables $\lambda^{(i)}$, corresponding to **Lagrange-multiplier** for margin constraint of i^{th} sample
- Still a quadratic program (convex)
- Optimal λ^* delivers optimal solution for primal:
 - $\mathbf{w}^* = \sum_i \lambda^{(i)*} y^{(i)} \mathbf{x}^{(i)}$
 - $b^* = \mathbf{w}^{*T} \mathbf{x}^{(i)} y^{(i)}$ (for any i where $\lambda^{*(i)} > 0$)
- $\lambda^{(i)^*} > 0$ indicates a support vector

Dual vs. Primal SVM

- Solving primal SVM: $\Omega(DN)$
- Solving dual SVM: $\Omega(N^2)$
- Dual SVM depends only on inner products $\mathbf{x}^{(i)^T}\mathbf{x}^{(j)}$, i.e., on pair-wise similarities between samples, not on samples themselves
- This allows us to apply the so-called kernel trick
- In a nutshell, the kernel trick computes non-linear features implicitly

- Apply non-linear feature transforms first, transforming learning problem into higher dimensional feature space
- High dimensional data tends to be linearly separable
- For example, use
 - radial basis functions
 - polynomials
 - exp, log
 - trigonometric functions, cos, sin, tanh, . . .
- Non-linear features + linear classifier = non-linear classifier

Left: unsuitable for linear classifiers.

[Schölkopf, MLSS 2013]

Right: non-linear features yield linearly separable data.

$$\Phi:\mathbb{R}^2\mapsto\mathbb{R}^3$$

$$\Phi(\mathbf{x}) := (x_1^2, \sqrt{2}x_1x_2, x_2^2) = (z_1, z_2, z_3)$$

The Problem with Feature Transforms

- We want many feature transforms, since we don't know which are the "good" ones
- This quickly explodes. For example:
 - D original features
 - We take all polynomials of degree K
 - $\binom{D+K-1}{K}$ features
 - E.g., D=100, K=5, yields 75×10^6 features
- Exhaustive feature transforms are inefficient

Can we work **implicitly** in high-dimensional feature spaces, without computing features explicitly?

Can we work **implicitly** in high-dimensional feature spaces, without computing features explicitly?

Yes, using the kernel trick!

The Kernel Trick in a Nutshell

- Prerequisite: learning algorithms can be re-formulated such that it works only with
 - labels, and
 - pairwise inner products $\mathbf{x}^{(i)^T}\mathbf{x}^{(j)}$ of input vectors
- Each $\mathbf{x}^{(i)}^T \mathbf{x}^{(j)}$ is a scalar, regardless of input dimensionality, and is a similarity measure between $\mathbf{x}^{(i)}$ and $\mathbf{x}^{(j)}$
- We can replace now $\mathbf{x}^{(i)}^T \mathbf{x}^{(j)}$ with $\phi(\mathbf{x}^{(i)})^T \phi(\mathbf{x}^{(j)})$, i.e. the inner products in feature space
- The algorithm still works the same, we only replaced the similarity measure!
- Can we "shortcut" the computation of $\phi(\mathbf{x}^{(i)})^T \phi(\mathbf{x}^{(j)})$?

Kernel

A **kernel** $k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ is a function which maps two vectors $\mathbf{x}^{(i)}, \mathbf{x}^{(j)} \in \mathbb{R}^D$ to a real number.

Positive Definite Kernel

A kernel is **positive definite**, if for any finite collection of vectors $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}$ and any collection of real numbers $a^{(1)}, \dots a^{(N)}$ we have

$$\sum_{i,j} a^{(i)} a^{(j)} k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) \ge 0$$

Representer Theorem

A kernel *k* is **positive definite** if and only if

$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \phi(\mathbf{x}^{(i)})^T \phi(\mathbf{x}^{(j)})$$

for **some** feature transformation $\phi(x)$.

The Kernel Trick

- **Kernel Trick**: Replace direct computation $\phi(\mathbf{x}^{(i)})^T \phi(\mathbf{x}^{(i)})$ with cheap computation $k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$
- Many correspondences between kernels and feature transforms are known:
 - Linear kernel corresponds to $\phi(x) = x$

$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = {\mathbf{x}^{(i)}}^T \mathbf{x}^{(j)}$$

 • Polynomial kernel corresponds to ϕ computing all polynomials up to degree p

$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = (1 + \mathbf{x}^{(i)}^T \mathbf{x}^{(j)})^p$$

• Gaussian kernel correspond to infinite feature space ϕ (functional space)

$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma \|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\|^2)$$

• ...

Advantages of the Kernel Trick

- Large savings in compute, or enabling certain abstract feature space at all
- As long as k is positive definite, we don't even need to know φ explicitly!
- Generalizes many learning algorithms:
 - SVMs
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - . . .
- Embed "non-vector" data in vector space:
 - Strings
 - Graphs
 - ...

maximize
$$-\frac{1}{2} \sum_{i,j} \lambda^{(i)} \lambda^{(j)} y^{(i)} y^{(j)} \mathbf{x}^{(i)}^T \mathbf{x}^{(j)} + \sum_{i} \lambda^{(i)}$$
s.t.
$$\sum_{i} \lambda^{(i)} y^{(i)} = 0$$

$$0 \le \lambda^{(i)} \le C \qquad \text{for } i = 1 \dots N$$

maximize
$$-\frac{1}{2} \sum_{i,j} \lambda^{(i)} \lambda^{(j)} y^{(i)} y^{(j)} \phi(\mathbf{x}^{(i)})^{\mathsf{T}} \phi(\mathbf{x}^{(j)}) + \sum_{i} \lambda^{(i)}$$
s.t.
$$\sum_{i} \lambda^{(i)} y^{(i)} = 0$$

$$0 \le \lambda^{(i)} \le C \qquad \text{for } i = 1 \dots N$$

maximize
$$-\frac{1}{2} \sum_{i,j} \lambda^{(i)} \lambda^{(j)} y^{(i)} y^{(j)} k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) + \sum_{i} \lambda^{(i)}$$
s.t.
$$\sum_{i} \lambda^{(i)} y^{(i)} = 0$$

$$0 \le \lambda^{(i)} \le C \qquad \text{for } i = 1 \dots N$$

maximize
$$-\frac{1}{2} \sum_{i,j} \lambda^{(i)} \lambda^{(j)} y^{(i)} y^{(j)} k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) + \sum_{i} \lambda^{(i)}$$
s.t.
$$\sum_{i} \lambda^{(i)} y^{(i)} = 0$$

$$0 \le \lambda^{(i)} \le C \qquad \text{for } i = 1 \dots N$$

- Quadratic program (convex)
- Delivers globally optimal solution λ*

Classifying with Kernelized SVMs

Recall that

- $\mathbf{w}^* = \sum_i \lambda^{(i)*} y^{(i)} \phi(\mathbf{x}^{(i)})$
- $b^* = {\bf w}^{*T} \phi({\bf x}^{(i)}) y^{(i)}$ (for any *i* where $\lambda^{(i)} > 0$)

Classification for new \mathbf{x} via $sgn(\mathbf{w}^T\phi(\mathbf{x}) + b)$. We can express this again via the kernel as:

$$f(\mathbf{x}) = sgn\left(\sum_{i} \lambda^{(i)*} y^{(i)} k(\mathbf{x}^{(i)}, \mathbf{x}) - b^*\right)$$

where

$$b^* = \sum_{j} \lambda^{(j)*} y^{(j)} k(\mathbf{x}^{(j)}, \mathbf{x}^{(i)}) - y^{(i)}$$
 (for any i where $\lambda^{(i)} > 0$)

Effect of Different Kernels (sklearn)

- Primal SVM and Dual SVM
 - Size Primal $\Omega(DN)$
 - Size Dual Ω(N²)
 - Both are quadratic programs (convex, global optimum)
- Dual SVM depends only on inner products $\mathbf{x}^{(i)}^T \mathbf{x}^{(j)} \Rightarrow$ amenable to the kernel trick
- The Kernel Trick
 - replace $\mathbf{x}^{(i)^T}\mathbf{x}^{(j)}$ with $\phi(\mathbf{x}^{(i)})^T\phi(\mathbf{x}^{(j)})$ which can be cheaply computed via $k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$
 - Representer Theorem: Kernel corresponds to inner product in some feature space, if and only if *k* is positive definite
 - Kernel SVMs, Kernel PCA, Kernel LDA, ...
- Kernelized SVM is one of the strongest classifiers
- High time of SVMs and Kernels: 90's and early 2000's