Importing Libraries

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Importing Datasets

In [2]:

df=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs(Dataset)\madrid_2017.
df

Out[2]:

	date	BEN	CH4	СО	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2
0	2017- 06-01 01:00:00	NaN	NaN	0.3	NaN	NaN	4.0	38.0	NaN	NaN	NaN	NaN	5.0
1	2017- 06-01 01:00:00	0.6	NaN	0.3	0.4	0.08	3.0	39.0	NaN	71.0	22.0	9.0	7.0
2	2017- 06-01 01:00:00	0.2	NaN	NaN	0.1	NaN	1.0	14.0	NaN	NaN	NaN	NaN	NaN
3	2017- 06-01 01:00:00	NaN	NaN	0.2	NaN	NaN	1.0	9.0	NaN	91.0	NaN	NaN	NaN
4	2017- 06-01 01:00:00	NaN	NaN	NaN	NaN	NaN	1.0	19.0	NaN	69.0	NaN	NaN	2.0
210115	2017- 08-01 00:00:00	NaN	NaN	0.2	NaN	NaN	1.0	27.0	NaN	65.0	NaN	NaN	NaN
210116	2017- 08-01 00:00:00	NaN	NaN	0.2	NaN	NaN	1.0	14.0	NaN	NaN	73.0	NaN	7.0
210117	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	4.0	NaN	83.0	NaN	NaN	NaN
210118	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	11.0	NaN	78.0	NaN	NaN	NaN
210119	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	14.0	NaN	77.0	60.0	NaN	NaN
210120 rows × 16 columns													
4													•

Data Cleaning and Data Preprocessing

In [3]:

df=df.dropna()

In [4]:

```
df.columns
```

```
Out[4]:
```

In [5]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 4127 entries, 87457 to 158286
Data columns (total 16 columns):
     Column
             Non-Null Count Dtype
     -----
              -----
---
                             ----
0
     date
              4127 non-null
                              object
              4127 non-null
 1
     BEN
                              float64
 2
     CH4
             4127 non-null
                              float64
 3
             4127 non-null
                              float64
     CO
 4
             4127 non-null
                              float64
     EBE
 5
             4127 non-null
                              float64
     NMHC
 6
     NO
             4127 non-null
                              float64
 7
     NO 2
             4127 non-null
                              float64
                              float64
 8
     NOx
             4127 non-null
 9
     0 3
                              float64
             4127 non-null
 10
    PM10
             4127 non-null
                              float64
 11
    PM25
             4127 non-null
                              float64
 12
     S0_2
             4127 non-null
                              float64
 13
     TCH
              4127 non-null
                              float64
                              float64
 14
             4127 non-null
    TOL
15 station 4127 non-null
                              int64
dtypes: float64(14), int64(1), object(1)
memory usage: 548.1+ KB
```

In [6]:

```
data=df[['BEN', 'TOL', 'TCH']]
data
```

Out[6]:

	BEN	TOL	тсн
87457	0.6	2.3	1.31
87462	0.2	1.1	1.27
87481	0.4	1.3	1.28
87486	0.2	8.0	1.26
87505	0.3	1.0	1.29
158238	0.3	0.2	1.14
158257	0.6	0.9	1.41
158262	0.3	0.2	1.14
158281	0.5	0.6	1.39
158286	0.3	0.2	1.14

4127 rows × 3 columns

Line chart

In [7]:

```
data.plot.line(subplots=True)
```

Out[7]:

array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

In [8]:

data.plot.line()

Out[8]:

<AxesSubplot:>

Bar chart

In [9]:

b=data[0:50]

In [10]:

b.plot.bar()

Out[10]:

<AxesSubplot:>

Histogram

In [11]:

data.plot.hist()

Out[11]:

<AxesSubplot:ylabel='Frequency'>

Area chart

In [12]:

data.plot.area()

Out[12]:

<AxesSubplot:>

Box chart

In [13]:

data.plot.box()

Out[13]:

<AxesSubplot:>

Pie chart

In [14]:

```
b.plot.pie(y='BEN' )
```

Out[14]:

<AxesSubplot:ylabel='BEN'>

Scatter chart

In [15]:

```
data.plot.scatter(x='BEN' ,y='TOL')
```

Out[15]:

<AxesSubplot:xlabel='BEN', ylabel='TOL'>

In [16]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 4127 entries, 87457 to 158286

Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	date	4127 non-null	object
1	BEN	4127 non-null	float64
2	CH4	4127 non-null	float64
3	CO	4127 non-null	float64
4	EBE	4127 non-null	float64
5	NMHC	4127 non-null	float64
6	NO	4127 non-null	float64
7	NO_2	4127 non-null	float64
8	NOx	4127 non-null	float64
9	0_3	4127 non-null	float64
10	PM10	4127 non-null	float64
11	PM25	4127 non-null	float64
12	S0_2	4127 non-null	float64
13	TCH	4127 non-null	float64
14	TOL	4127 non-null	float64
15	station	4127 non-null	int64

dtypes: float64(14), int64(1), object(1)

memory usage: 548.1+ KB

```
In [17]:
```

```
df.describe()
```

Out[17]:

	BEN	CH4	СО	EBE	NMHC	NO	
count	4127.000000	4127.000000	4127.000000	4127.000000	4127.000000	4127.000000	4127.0
mean	0.919918	1.323732	0.417858	0.578168	0.097269	41.785316	58.0
std	1.123078	0.215742	0.342871	0.962000	0.094035	71.118499	38.9
min	0.100000	1.100000	0.100000	0.100000	0.000000	1.000000	1.0
25%	0.300000	1.180000	0.200000	0.100000	0.050000	3.000000	30.0
50%	0.600000	1.270000	0.300000	0.300000	0.080000	16.000000	54.0
75%	1.100000	1.400000	0.500000	0.700000	0.110000	50.000000	78.0
max	19.600000	3.630000	4.900000	16.700001	1.420000	879.000000	349.0
4							•

In [18]:

```
df1=df[['date', 'BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'O_3', 'PM10', 'PM25', 'SO_2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

In [19]:

sns.pairplot(df1[0:50])

Out[19]:

<seaborn.axisgrid.PairGrid at 0x17eb5dbc220>

In [20]:

```
sns.distplot(df1['BEN'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[20]:

<AxesSubplot:xlabel='BEN', ylabel='Density'>

In [21]:

sns.heatmap(df1.corr())

Out[21]:

<AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

```
In [23]:
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

```
In [24]:
```

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[24]:

LinearRegression()

```
In [25]:
```

```
lr.intercept_
```

Out[25]:

28079043.71596757

In [26]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[26]:

Co-efficient BEN -0.131432 CO -5.878558 **EBE** -2.037298 **NMHC** 26.494987 NO 0.054856 NO_2 -0.179864 -0.089987 O_3 **PM10** 0.405238 **PM25** -0.134231 SO_2 -0.246020 **TCH** -14.958213 **TOL** 0.269782

```
In [27]:
```

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[27]:

<matplotlib.collections.PathCollection at 0x17ec1d3fd60>

ACCURACY

```
In [28]:
```

```
lr.score(x_test,y_test)
```

Out[28]:

0.6398945168135224

In [29]:

```
lr.score(x_train,y_train)
```

Out[29]:

0.6328582944214183

Ridge and Lasso

In [30]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [31]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[31]:

Ridge(alpha=10)

Accuracy(Ridge)

```
In [32]:
rr.score(x_test,y_test)
Out[32]:
0.6333974711063022
In [33]:
rr.score(x_train,y_train)
Out[33]:
0.6234301862215097
In [34]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[34]:
Lasso(alpha=10)
In [35]:
la.score(x_test,y_test)
Out[35]:
0.4213592202807822
```

Accuracy(Lasso)

```
In [36]:
la.score(x_train,y_train)
Out[36]:
0.3936921139196006
```

Accuracy(Elastic Net)

```
In [37]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[37]:
```

ElasticNet()

```
In [38]:
en.coef_
Out[38]:
                                , -0.
                                                          , 0.03233147,
array([-0.
       -0.2053017 , -0.08792252, 0.54764089, -0.41275344, -0.30528868,
                 , 0.
                                ])
In [39]:
en.intercept_
Out[39]:
28079025.696305502
In [40]:
prediction=en.predict(x_test)
In [41]:
en.score(x_test,y_test)
Out[41]:
0.5188724809294419
```

Evaluation Metrics

```
In [42]:
```

```
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
```

4.710186645608092 30.685269693955842 5.539428643276835

Logistic Regression

```
In [43]:
```

target_vector=df['station']

```
In [45]:
feature_matrix.shape
Out[45]:
(4127, 10)
In [46]:
target_vector.shape
Out[46]:
(4127,)
In [47]:
from sklearn.preprocessing import StandardScaler
In [48]:
fs=StandardScaler().fit_transform(feature_matrix)
In [49]:
logr=LogisticRegression(max_iter=10000)
logr.fit(fs,target_vector)
Out[49]:
LogisticRegression(max_iter=10000)
In [50]:
observation=[[1,2,3,4,5,6,7,8,9,10]]
In [51]:
prediction=logr.predict(observation)
print(prediction)
[28079008]
In [52]:
logr.classes_
Out[52]:
array([28079008, 28079024], dtype=int64)
In [53]:
logr.score(fs,target_vector)
Out[53]:
0.9437848315968016
```

```
In [54]:
logr.predict_proba(observation)[0][0]
Out[54]:
0.999999999725541
In [55]:
logr.predict_proba(observation)
Out[55]:
array([[1.00000000e+00, 2.74458959e-11]])
Random Forest
In [56]:
from sklearn.ensemble import RandomForestClassifier
In [57]:
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
Out[57]:
RandomForestClassifier()
In [58]:
parameters={'max_depth':[1,2,3,4,5],
            'min_samples_leaf':[5,10,15,20,25],
            'n_estimators':[10,20,30,40,50]
}
In [59]:
from sklearn.model_selection import GridSearchCV
grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
Out[59]:
GridSearchCV(cv=2, estimator=RandomForestClassifier(),
             param_grid={'max_depth': [1, 2, 3, 4, 5],
                          'min_samples_leaf': [5, 10, 15, 20, 25],
                          'n_estimators': [10, 20, 30, 40, 50]},
             scoring='accuracy')
In [60]:
grid_search.best_score_
Out[60]:
0.971606648199446
```

In [61]:

```
rfc_best=grid_search.best_estimator_
```

In [62]:

Conclusion

Accuracy

Linear Regression:0.6328582944214183

Ridge Regression: 0.6234301862215097

Lasso Regression:0.3936921139196006

ElasticNet Regression:0.5188724809294419

Logistic Regression:0.9437848315968016

Random Forest: 0.971606648199446

Random Forest is suitable for this dataset