Finding many Collisions via Quantum Walks Application to Lattice Sieving

Xavier Bonnetain André Chailloux André Schrottenloher

Yixin Shen

June 22, 2023

Classical Collisions Finding

Problem

Given random $f:\{0,1\}^n \to \{0,1\}^m, n \le m \le 2n$, find 2^k collision pairs,

Problem

Given random $f: \{0,1\}^n \to \{0,1\}^m, n \le m \le 2n$, find 2^k collision pairs, where $k \le 2n-m$.

Birthday paradox: expect 2^{2p-m} collisions among 2^p random x's

Problem

Given random $f: \{0,1\}^n \to \{0,1\}^m, n \le m \le 2n$, find 2^k collision pairs, where $k \le 2n - m$.

Birthday paradox: expect 2^{2p-m} collisions among 2^p random x's

Algorithm

- Query f on $2^{k/2+m/2}$ different x.
- Sort the list of (x, f(x)) according to f(x).
- ▶ The list contains 2^k collisions on average (birthday paradox).

Problem

Given random $f: \{0,1\}^n \to \{0,1\}^m, n \le m \le 2n$, find 2^k collision pairs, where $k \le 2n - m$.

Birthday paradox: expect 2^{2p-m} collisions among 2^p random x's

Algorithm

- Query f on $2^{k/2+m/2}$ different x.
- Sort the list of (x, f(x)) according to f(x).
- ▶ The list contains 2^k collisions on average (birthday paradox).

Lower bounds

Matching query lower bound in all cases

Quantum Collisions Finding

Quantum Collisions Finding

BHT algorithm for finding 1 collision when m = n

- ► Take a list $L = (f(y_0), ..., f(y_{2^r}))$
- ▶ (Grover) Search for an x with $f(x) = f(y_i)$ and $x \neq y_i$
- ► Cost 2^r memory, $2^r + \sqrt{\frac{2^n}{2^r}}$ time \sim optimal for r = n/3

Finding 2^k collisions when m = n

- ▶ Use one larger list of size $2^{n/3+2k/3}$
- ▶ Do 2^k quantum searches $\left(\cos t \ 2^k \times \sqrt{\frac{2^n}{2^{n/3+2k/3}}} = 2^{n/3+2k/3} \right)$

Lower bound [LZ19]

General query lower bound $\Omega\left(2^{m/3+2k/3}\right)$

Summary

Find 2^k collision pairs of $f: \{0,1\}^n \to \{0,1\}^m$, with $k \le 2n - m$

Summary

Find 2^k collision pairs of $f: \{0,1\}^n \to \{0,1\}^m$, with $k \le 2n - m$

Collision Finding via Random Walks

We move to random neighbors until we find a marked vertex.

Applications

- graph: search space
- marked nodes: solutions

We move to random neighbors until we find a marked vertex.

Applications

graph: search space

marked nodes: solutions

We move to random neighbors until we find a marked vertex.

Applications

graph: search space

marked nodes: solutions

We move to random neighbors until we find a marked vertex.

Applications

- graph: search space
- marked nodes: solutions

Cost of a classical random walk

We need procedures:

- ► To **setup** a starting arbitrary vertex (S)
- ► To move from one vertex to one of its neighbors (U)
- ► To **check** if a vertex is marked (C)

We will find a marked vertex in time:

where $\frac{1}{\delta}$ is the number of updates before we reach a new uniformly random vertex.

Definition (Johnson graph)

- Nodes are sets of 2^r elements among 2ⁿ
- ▶ N_1 and N_2 are adjacents if $|N_1 \cap N_2| = 2^r 1$
- $ightharpoonup rac{1}{\delta} = rac{2^r(2^n-2^r)}{2^n} \simeq 2^r$ (We need to replace all elements.)

Definition (Johnson graph)

- Nodes are sets of 2^r elements among 2ⁿ
- ▶ N_1 and N_2 are adjacents if $|N_1 \cap N_2| = 2^r 1$
- ▶ $\frac{1}{\delta} = \frac{2^r(2^n-2^r)}{2^n} \simeq 2^r$ (We need to replace all elements.)

Collision finding with Johnson graph

- Create a random list of elements of size 2^r
- Repeat until a collision is found:
 - Walk 2^r times
 - Check whether the node contains a collision

Definition (Johnson graph)

- Nodes are sets of 2^r elements among 2ⁿ
- ▶ N_1 and N_2 are adjacents if $|N_1 \cap N_2| = 2^r 1$
- $ightharpoonup rac{1}{\delta} = rac{2^r(2^n-2^r)}{2^n} \simeq 2^r$ (We need to replace all elements.)

Collision finding with Johnson graph

- Create a random list of elements of size 2^r
- Repeat until a collision is found:
 - Walk 2^r times
 - Check whether the node contains a collision

Complexity

$$2^r + \frac{1}{2^{2r-m}}(2^r \times 1 + 2^r) \approx \max(2^r, 2^{m-r})$$

Definition (Johnson graph)

- Nodes are sets of 2^r elements among 2ⁿ
- ▶ N_1 and N_2 are adjacents if $|N_1 \cap N_2| = 2^r 1$
- $ightharpoonup rac{1}{\delta} = rac{2^r(2^n-2^r)}{2^n} \simeq 2^r$ (We need to replace all elements.)

Collision finding with Johnson graph

- Create a random list of elements of size 2^r
- Repeat until a collision is found:
 - Walk 2^r times
 - Check whether the node contains a collision

Complexity

$$2^r + \frac{1}{2^{2r-m}}(2^r \times 1 + 2^r) \approx \max(2^r, 2^{m-r}) \quad \rightsquigarrow \quad \text{optimal for } r = m/2$$

Time of a quantum walk (MNRS framework)

- The setup now requires to create a superposition over all vertices
- ▶ As in quantum search, we perform $\sqrt{\frac{1}{\epsilon}}$ steps instead of $\frac{1}{\epsilon}$
- But the mixing is also accelerated!

$$S + \underbrace{\sqrt{\frac{1}{\epsilon}}}_{\text{Walk steps}} \left(\underbrace{\sqrt{\frac{1}{\delta}}U}_{\text{Mixing time}} + C \right)$$

The Update handles all vertices and all edges in superposition

Ambainis's algorithm for Collision Finding

Problem

 $f: \{0,1\}^n \rightarrow \{0,1\}^m, n \le m \le 2n$, find a collision

MNRS walk in a Johnson graph

- ▶ Setup : Create the uniform superposition of all lists of 2^r elements
- Fraction of marked nodes : $\epsilon = 2^{2r-m}$
- Mixing time: $\sqrt{\frac{1}{\delta}} = 2^{r/2}$
- Assume Update and Check polynomial time
- ► Cost $2^r + 2^{m/2-r} \times 2^{r/2} \simeq \max(2^r, 2^{m/2-r/2})$

Ambainis's algorithm for Collision Finding

Problem

 $f: \{0,1\}^n \rightarrow \{0,1\}^m, n \le m \le 2n$, find a collision

MNRS walk in a Johnson graph

- ▶ Setup : Create the uniform superposition of all lists of 2^r elements
- Fraction of marked nodes : $\epsilon = 2^{2r-m}$
- Mixing time: $\sqrt{\frac{1}{\delta}} = 2^{r/2}$
- Assume Update and Check polynomial time
- ► Cost $2^r + 2^{m/2-r} \times 2^{r/2} \simeq \max(2^r, 2^{m/2-r/2})$ \sim optimal for r = m/3

Finding 2^k collisions

Idea

Repeat the quantum walk 2^k times.

Finding 2^k collisions

Idea

Repeat the quantum walk 2^k times.

Issue

Repeat Ambainis's walk 2^k times is expensive.

Finding 2^k collisions

Idea

Repeat the quantum walk 2^k times.

Issue

Repeat Ambainis's walk 2^k times is expensive.

Aim

At the end of each walk, extract collisions and preserve a useful quantum data structure \leadsto new starting state of the next quantum walk.

$$2^k \cdot \left(S + \frac{1}{\sqrt{\epsilon}} \left(\frac{1}{\sqrt{\delta}} U + C \right) \right) \to S + \frac{2^k}{\sqrt{\epsilon}} \left(\frac{1}{\sqrt{\delta}} U + C \right)$$

Results

Find 2^k collision pairs of $f: \{0,1\}^n \to \{0,1\}^m$, with $k \le 2n-m$

Results

Find 2^k collision pairs of $f: \{0,1\}^n \to \{0,1\}^m$, with $k \le 2n - m$

Application to Lattice Sieving

What is a (Euclidean) lattice?

Definition

$$\mathcal{L}(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n) = \left\{\sum_{i=1}^n x_i \boldsymbol{b}_i : x_i \in \mathbb{Z}\right\}$$
 where $\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n$ is a basis of \mathbb{R}^n .

Lattice-based cryptography: fundamental idea

- good basis: private information, makes problem easy
- bad basis: public information, makes problem hard

Lattice-based cryptography: fundamental idea

- good basis: private information, makes problem easy
- bad basis: public information, makes problem hard

Basis reduction: transform a bad basis into a good one Main tool: BKZ algorithm and its variants

Requires to solve the (approx-)SVP problem in smaller dimensions.

The Shortest Vector Problem

The Shortest Vector Problem (SVP):

Given a basis, find a shortest nonzero vector in the lattice.

The Shortest Vector Problem

- The Shortest Vector Problem (SVP):
- Given a basis, find a shortest nonzero vector in the lattice.

Two main approaches:

- enumeration: super-exponentiel time, polynomial space
- sieving: exponential time and space

Enumeration

- 1. choose a radius R
- enumerate all vectors of length smaller than R
- keep the shortest

The Shortest Vector Problem

The Shortest Vector Problem (SVP):

Given a basis, find a shortest nonzero vector in the lattice.

Two main approaches:

- enumeration: super-exponentiel time, polynomial space
- sieving: exponential time and space

Sieving

- generate a lot of random vectors
- combine them recursively to reduce the length

Heuristic Sieving Algorithms

Nguyen-Vidick Sieve (NV-sieve) [NV08]

Input: list *L* of *N* lattice vectors of norm at most *R* ; γ < 1.

Output: list L' of N lattice vectors of norm at most $\gamma R < R$.

for $(\mathbf{v}, \mathbf{w}) \in L$:

if $\|\mathbf{v} - \mathbf{w}\| \leqslant \gamma R$: add $\mathbf{v} - \mathbf{w}$ to $L' \rhd (\mathbf{v}, \mathbf{w})$ is called a reducing

vector pair.

Fact

For
$$\gamma = 1 - \frac{1}{\text{poly}(d)}$$
 and $\mathbf{v}, \mathbf{w} \in R \cdot \mathcal{S}^d$, $\|\mathbf{v} - \mathbf{w}\| \leqslant \gamma R \Leftrightarrow \theta(\mathbf{v}, \mathbf{w}) \leqslant \frac{\pi}{3}$.

Heuristic Sieving Algorithms

Main heuristic

At each sieving step, lattice vectors acts as random independent vectors of similar norm.

- ▶ We can pretend that they are randomly lying on the border of $R \cdot S^d := \{ \mathbf{x} \in \mathbb{R}^d : ||\mathbf{x}|| \leq R \}.$
- Validated by experiments.

Sieving - Solving SVP [NV08]

Solve SVP by sieving

Input: a lattice \mathcal{L} of basis $(\mathbf{b}_1, ..., \mathbf{b}_d)$

Output: a shortest vector of \mathcal{L} (probably)

 $L \leftarrow$ generate $N = (4/3)^{d/2 + o(d)}$ lattice vectors ¹ \triangleright Klein's algorithm

while *L* does not contain a short vector :

$$L \leftarrow \mathsf{NV}\text{-sieve step}(L, \gamma)$$

return min(*L*)

Choose
$$\gamma = 1 - \frac{1}{\text{poly}(d)}$$

- ▶ initially: norm ≈ R (Gaussian vectors)
- ▶ 1st iteration: norm $\approx \gamma R$ (by heuristic)
- ► *K*-th iteration: norm $\approx \gamma^K R$

Only need K = poly(d) iterations.

Complexity: $N^2 = 2^{0.415d + o(d)}$ time and $N = 2^{0.208d + o(d)}$ space.

¹Number chosen to get enough reducing vector pairs.

Locality Sensitive Filtering [BDGL16]

Improvement over the NV-sieve: only check pairs of close vectors.

α -filter

A filter $f_{\mathbf{s},\alpha}$ of center $\mathbf{s} \in \mathbb{R}^d$ and angle $\alpha \in [0, \pi/2]$ only accepts vectors \mathbf{v} such that $\theta(\mathbf{v}, \mathbf{s}) \leqslant \alpha$.

Use of filtering for sieving [BDGL16]

- Choose an efficiently decodable code C
- ▶ Define f: lattice points \rightarrow C

Look for pairs of vectors in the same filter, i.e f(x) = f(y), to speed up search of reducing vector pairs.

NV-sieve with LSF

NV-sieve with LSF

- 1. Generate filters all over the sphere. \triangleright centers = codewords
- 2. Add each vector to its nearest filters of angle at most α .
- 3. Search reducing vector pairs inside each filters (instead of in the whole list).
 - Classically or by Grover's search

Complexity $(2^{0.208d+o(d)} \text{ space})$:

- ► Original NV-sieve [NV08]: 2^{0.415d+o(d)} time.
- ► Classical with LSF [BDGL16]: 2^{0.292d+o(d)} time.
- ▶ Quantum search with LSF [Laa16]: 2^{0.265d+o(d)} time.

Double filtering [CL21]

Previous approach: Search reducing vector pairs inside each α -filter.

New approach: first α -filter, then β -filter in lower dimension inside each α -filter

- \blacktriangleright vectors in the same α -filter not necessary close enough
- exponentially many vectors in each list
- \triangleright vectors in same (α,β) filters lead to short vectors

Leads to better quantum algorithm:

- ▶ Quantum search with LSF [Laa16]: 2^{0.265d+o(d)} time.
- ▶ Quantum wallk with LSF [CL21]: 2^{0.2570d+o(d)} time.

- ▶ Sample a code C and generate the α -filters.
- ▶ Insert each vector into its nearest α -filters.

Each α -filter contains $N^{c_{\alpha}}$ vectors, $c_{\alpha} \in [0, 1]$.

Fact

With high probability¹, lattice vectors fall on the border of the filter.

¹This only works in high dimension, the picture in a bit counter-intuitive.

- ▶ Sample a code C and generate the α -filters.
- ▶ Insert each vector into its nearest α -filters.

Each α -filter contains $N^{c_{\alpha}}$ vectors, $c_{\alpha} \in [0, 1]$.

Fact

With high probability¹, lattice vectors fall on the border of the filter.

¹This only works in high dimension, the picture in a bit counter-intuitive.

- ▶ Sample a code C and generate the α -filters.
- ▶ Insert each vector into its nearest α -filters.

Each α -filter contains $N^{c_{\alpha}}$ vectors, $c_{\alpha} \in [0, 1]$.

Consider the projection of the vectors on the (d-1)-dimensional sphere defining the filter, called residuals.

¹This only works in high dimension, the picture in a bit counter-intuitive.

- ▶ Sample a code C and generate the α -filters.
- ▶ Insert each vector into its nearest α -filters.

Each α -filter contains $N^{c_{\alpha}}$ vectors, $c_{\alpha} \in [0, 1]$.

Consider the projection of the vectors on the (d-1)-dimensional sphere defining the filter, called residuals.

Fact

For $\mathbf{v}, \mathbf{w} \in \mathcal{S}^d$ and their residual vectors $\mathbf{v}_B, \mathbf{w}_B \in \mathcal{S}^{d-1}$,

$$\theta(\textbf{v},\textbf{w}) \leqslant \frac{\pi}{3} \Leftrightarrow \theta(\textbf{v}_{\textit{R}},\textbf{w}_{\textit{R}}) \leqslant \theta^*_{\frac{\pi}{3}}.$$

¹This only works in high dimension, the picture in a bit counter-intuitive.

- ▶ Sample a code C and generate the α -filters.
- ▶ Insert each vector into its nearest α -filters.

Each α -filter contains $N^{c_{\alpha}}$ vectors, $c_{\alpha} \in [0, 1]$.

Fact

For $\mathbf{v}, \mathbf{w} \in \mathcal{S}^d$ and their residual vectors $\mathbf{v}_R, \mathbf{w}_R \in \mathcal{S}^{d-1}$,

$$\theta(\mathbf{v}, \mathbf{w}) \leqslant \frac{\pi}{3} \Leftrightarrow \theta(\mathbf{v}_R, \mathbf{w}_R) \leqslant \theta_{\frac{\pi}{3}}^*.$$

Same situation as before in dimension d-1: we can build $\beta=\frac{\theta_{\frac{\pi}{2}}^*}{2}$ -filters on the residuals.

¹This only works in high dimension, the picture in a bit counter-intuitive.

Step 2 [CL21]

For each α -filter : Walk on a Johnson graph of the list of the vectors.

- 1. VERTEX : A subset of N^{c_V} vectors in the list.
- 2. Sample a code C' and generate the β -filters. Insert each VERTEX's vector in its nearest β -filter.
- 3. Mark vertices that contain two vectors in the same β -filter (collisions).
- 4. Perform Quantum Random Walks to find all the marked vertices (reducing vector pairs) in the α -filter.

With our improvement on quantum collision finding:

$$\textbf{N} \cdot \left(\textbf{S} + \frac{1}{\sqrt{\epsilon}} \left(\frac{1}{\sqrt{\delta}} \textbf{U} + \textbf{C} \right) \right) \rightarrow \textbf{S} + \frac{\textbf{N}}{\sqrt{\epsilon}} \left(\frac{1}{\sqrt{\delta}} \textbf{U} + \textbf{C} \right)$$

Quantum lattice sieving $2^{0.2570d} \rightarrow 2^{0.2563d}$

Conclusion

- searching for collision is an important problem in cryptography
- quantum walks are very versatile
- with clever data structures, we can reuse previous searches' quantum states ~ probably applies to other algorithms!
- ▶ Best quantum lattice sieving algorithm: $2^{0.2570d} \rightarrow 2^{0.2563d}$.

Backup slides

Do a normal quantum walk

- ▶ Do a normal quantum walk
- Measure the collisions

- Do a normal quantum walk
- Measure the collisions
- Remove the collisions from the state

- Do a normal quantum walk
- Measure the collisions
- Remove the collisions from the state
- ▶ Remaining state is now the uniform superposition of all nodes:
 - Without collision
 - Without any of the extracted inputs

- Do a normal quantum walk
- Measure the collisions
- Remove the collisions from the state
- Remaining state is now the uniform superposition of all nodes:
 - Without collision
 - Without any of the extracted inputs
- Do a new march on a smaller Johnson graph:
 - With smaller sets
 - In a smaller ambient set (avoid the extracted preimages)

- Do a normal quantum walk
- Measure the collisions
- Remove the collisions from the state
- Remaining state is now the uniform superposition of all nodes:
 - Without collision
 - Without any of the extracted inputs
- Do a new march on a smaller Johnson graph:
 - With smaller sets
 - In a smaller ambient set (avoid the extracted preimages)

Complexity:

$$\widetilde{\mathcal{O}}\left(2^r+2^k2^{m/2-r/2}\right)=\widetilde{\mathcal{O}}\left(2^{k+m/2-r/2}\right)$$

where $r \leq \min(2k/3 + m/3, m/2)$.

With larger m

BHT algorithm

- ► Take a list $L = (f(y_0), ..., f(y_{2^r}))$
- ▶ (Grover) Search for an x with $f(x) = f(y_i)$ and $x \neq y_i$
- ▶ Only 2^{2n-m} inputs are part of a collision
- ► Each element has probability 2^{n-m} to be part of a collision.
- ▶ In the initial list, $\mathcal{O}(2^{r-m+n})$ elements are part of a collision.
- ▶ Output 2^k collision pairs, need $r m + n \ge k$, otherwise the list might contain no relevant input
- ▶ Cost 2^r memory, $2^r + 2^k \times \sqrt{\frac{2^n}{2^{r-m+n}}}$ time $\sim 2^{m/3+2k/3}$ time for $k \leq 3n-2m$.

▶ Need efficient data structures to allow poly time Update and Test

- Need efficient data structures to allow poly time Update and Test
- ➤ To have a proper interference, one node must be represented by a single quantum state

- Need efficient data structures to allow poly time Update and Test
- ➤ To have a proper interference, one node must be represented by a single quantum state
- This state must not depend on the path in the graph

- Need efficient data structures to allow poly time Update and Test
- ➤ To have a proper interference, one node must be represented by a single quantum state
- This state must not depend on the path in the graph

- Need efficient data structures to allow poly time Update and Test
- To have a proper interference, one node must be represented by a single quantum state
- This state must not depend on the path in the graph

History-free quantum data structures: step 1

Take an efficient classical data structure (ex. radix tree)

Tree representing {0000,0010,1001,1011,1111}.

Representing a tree

Node: (addr left, addr right)

Actual memory content:

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline 0 & (1,2) & 1 & (3,4) & 2 & (5,7) \\ \hline 3 & (\bot,\bot) & 4 & (\bot,\bot) & 5 & (8,9) \\ \hline 6 & Empty cell & 7 & (\bot,\bot) & 8 & (\bot,\bot) \\ \hline 9 & (\bot,\bot) & & & & & \\ \hline \end{array}$$

Address sequence: (0, 1, 3, 4, 2, 5, 8, 9, 7)

Representing a tree

Node: (addr left, addr right)

Actual memory content:

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline 0 & (6,2) & 1 & (\bot,\bot) & 2 & (4,5) \\ \hline 3 & (\bot,\bot) & 4 & (3,9) & 5 & (\bot,\bot) \\ 6 & (1,7) & 7 & (\bot,\bot) & 8 & Empty cell \\ \hline 9 & (\bot,\bot) & & & & \\ \hline \end{array}$$

Address sequence: (0, 6, 1, 7, 2, 4, 3, 9, 5)

Quantum tree: problems and solutions

- a tree can have several representations
- the representation depends on the memory allocations
- the memory allocations are history dependent

Quantum tree: problems and solutions

- a tree can have several representations
- the representation depends on the memory allocations
- the memory allocations are history dependent

Solution: superposition of all possible representations

$$|T(S)
angle = \sum_{ ext{address sequences } I} |T_I(S)
angle \ .$$

Lots of details:

- allocate memory uniformly at random
- need data structure for free cells
- need extra data in nodes for efficient operations/collision extraction

Quantum tree: problems and solutions

- a tree can have several representations
- the representation depends on the memory allocations
- the memory allocations are history dependent

Solution: superposition of all possible representations

$$|\mathit{T}(\mathcal{S})
angle = \sum_{\mathsf{address sequences } \mathit{I}} |\mathit{T}_{\mathit{I}}(\mathcal{S})
angle \;\;.$$

Lots of details:

- allocate memory uniformly at random
- need data structure for free cells
- need extra data in nodes for efficient operations/collision extraction

Summary

Make update operations polynomial time and history independent