Appl. No. 10/708,606 Response dated January 3, 2005

Amendments to the Claims

1

2

[C7]

catalyst tubes.

Please amend the claims as follows:

[C1] (amended) A process for preparing syngas, comprising: 1 2 partially oxidizing a first hydrocarbon portion with oxygen in a partial oxidation reactor to produce a first reactor effluent; 3 cooling the first reactor effluent to a temperature from 650° and to 1000°C; 4 supplying the cooled first reactor effluent to a reforming exchanger; 5 passing a second hydrocarbon portion with steam through a catalyst zone 6 in the reforming exchanger to form a second reactor effluent; 7 discharging the second reactor effluent from the catalyst zone to form an 8 9 admixture with the first reactor effluent; passing the admixture across the catalyst zone in indirect heat exchange 10 11 therewith to cool the admixture and heat the catalyst zone; collecting the cooled admixture from the reforming exchanger. 12 [C2] (amended) The process of claim 1, wherein the first reactor effluent 1 cooling comprises direct heat exchange with water is introduced into the 2 first reactor effluent as a quench fluid. 3 The process of claim 2, wherein the first reactor effluent [C3] (amended) 1 cooling further comprises indirect heat exchange. 2 1 [C4] (amended) The process of claim 3, wherein the first reactor effluent cooling by indirect heat exchange comprises heating the second 2 3 hydrocarbon portion in a cross exchange. The process of claim 1, wherein the first reactor effluent (amended) 1 [C5] cooling comprises indirect heat exchange. 2 The process of claim 5, wherein the first reactor effluent 1 [C6] (amended) 2 cooling by indirect heat exchange comprises heating the second 3 hydrocarbon portion in a cross exchanger.

(original) The process of claim 1, wherein the catalyst zone comprises

1	[C8]	(original) The process of claim 5, wherein the second hydrocarbon portion
2		is supplied to a tube side of the reforming exchanger and passed through
3		the catalyst tubes.
1	[C9]	(original) The process of claim 5, wherein the cooled first reactor effluent
2		is supplied to a shell side inlet of the reforming exchanger.
1	[C10]	(original) The process of claim 7, wherein the shell side inlet is adjacent
2		an outlet end of the catalyst tubes.
1	[C11]	(original) The process of claim 1 wherein the first and second hydrocarbon
2		portions are supplied in a weight ratio of from 40:60 to 95:5.
1	[C12]	(original) The process of claim 1, wherein the first and second
2		hydrocarbon portions are supplied in a weight ratio of from 40:60 to 60:40.
1	[C13]	(original) The process of claim 1, wherein the first and second
2		hydrocarbon portions are supplied in a weight ratio of from 95:5 to 80:20.
1	[C14]	(amended) An apparatus for producing syngas, comprising:
2		partial oxidation reactor means for partially oxidizing a first hydrocarbon
3		portion with oxygen to produce a first reactor effluent;
4		means for cooling the first reactor effluent to a temperature from 650° to
5		1000°C;
6		means for supplying the cooled first reactor effluent to a reforming
7		exchanger;
8		means for passing a second hydrocarbon portion with steam through a
9		catalyst zone in the reforming exchanger to form a second reactor
0		effluent;
11		means for discharging the second reactor effluent from the catalyst zone to
12		form an admixture with the first reactor effluent;
13		means for passing the admixture across the catalyst zone in indirect heat
14		exchange therewith to cool the admixture and heat the catalyst zone;
15		means for collecting the cooled admixture from the reforming exchanger.

1	[C15] (original) A method for retrofitting a syngas process comprising a partial
2	oxidation reaction step for converting a first hydrocarbon stream to a first
3	reactor effluent, a heat recovery step for cooling the first reactor effluent
4	and producing steam with the recovered heat, and a downstream
5	processing step for receiving the cooled reactor effluent and producing a
6	product syngas of enhanced hydrogen content, comprising:
7	a step for cooling the first reactor effluent to a temperature from 650°
8	to 1000°C.
9	a step for diverting the cooled first reactor effluent to a reforming
10	exchanger;
11	a step for passing a second hydrocarbon portion with steam through
12	a catalyst zone in the reforming exchanger to form a second
13	reactor effluent;
14	a step for discharging the second reactor effluent from the catalyst
15	zone to form an admixture with the first reactor effluent;
16	a step for passing the admixture across the catalyst zone in indirect
17	heat exchange therewith to cool the admixture and heat the
18	catalyst zone;
19	a step for supplying the cooled admixture from the reforming
20	exchanger to the heat recovery step.
21	[C16] (original) The method of claim 15, wherein water is introduced into the first
22	reactor effluent as a quench fluid.
1	[C17] (amended) The method of claim 15 11, wherein the first reactor effluent is
2	cooled by indirect heat exchange.
1	[C18] (original) The method of claim 17, wherein the second hydrocarbon
2	portion is heated by indirect heat exchange before being supplied to the
3	reforming exchanger.
1	[C19] (original) The method of claim 17 wherein water is introduced into the first
2	reactor effluent

Appl. No. 10/708,606 Response dated January 3, 2005

- 1 [C20] (amended) The method of claim_15 11, wherein the catalyst zone further comprises catalyst tubes.
- 1 [C21] (original) The method of claim 18, wherein the second hydrocarbon portion is introduced to a tube side inlet of the reforming exchanger.