#### COMPUTATIONAL MATERIAL MODELS

#### Piet Schreurs

Department of Mechanical Engineering Eindhoven University of Technology

 $\verb|http://www.mate.tue.nl/\sim|piet|$ 

2013/2014

### **INDEX**

back to index

- Homogeneous truss
- Finite element method
- Nonlinear deformation
- Weighted residual formulation
- Finite element method
- One-dimensional material behavior
- Elastic
- Elastoplastic
- Linear viscoelastic
- Creep
- Viscoplastic
- Nonlinear viscoelastic

Piet Schreurs (TU/e) 3 / 694

- Vectors and tensors
- Kinematics
- Small (linear) deformation
- Stress
- Balance laws
- Constitutive equations
- Linear elastic material
- Material symmetry
- Linear elastic isotropic material : engineering parameters
- Linear elastic isotropic material: tensorial form
- Thermo-elasticity
- Planar deformation
- Flastic limit
- Governing equations
- Solution strategies
- Weighted residual formulation
- Finite element method
- Numerical solutions

Piet Schreurs (TU/e) 4 / 694

- Three-dimensional material models
- Elastic
- Elastoplastic
- Linear viscoelastic
- Viscoplastic
- Nonlinear viscoelastic

Piet Schreurs (TU/e) 5 / 694

- APPENDICES
- Tutorial; tr2d.m
- Utilities m2cc.m and m2mm.m
- Stiffness and compliance matrices
- WR for axi-symmetric deformation
- FEM for axi-symmetric deformation
- FEM for planar deformation

Piet Schreurs (TU/e) 6 / 694

### **HOMOGENEOUS TRUSS**

back to index

## Homogeneous truss



```
\begin{array}{ll} \mathsf{length} & & & \mathit{l}_0 \\ \mathsf{truss} \ \mathsf{cylindrical} & \rightarrow & \\ \mathsf{cross-sectional} \ \mathsf{area} \ \mathsf{uniform} & & \mathit{A}_0 \end{array}
```

Piet Schreurs (TU/e) 8 / 694

### Elongation and contraction



elongation factor 
$$\lambda = \frac{l}{l_0} = \frac{l_0 + \Delta l}{l_0} = 1 + \frac{\Delta l}{l_0}$$
 contraction 
$$\mu = \sqrt{\frac{A}{A_0}}$$
 volume change 
$$J = \frac{lA}{l_0 A_0} = \lambda \mu^2$$
 exampl. circular cross section 
$$\rightarrow \quad \mu = \frac{d}{d_0} = \sqrt{\frac{A}{A_0}}$$

Piet Schreurs (TU/e) 9 / 694

#### **Stress**



axial tensile force (external) N cross-sectional force (internal) N(x) = N

Piet Schreurs (TU/e) 10 / 694

#### Axial stress



axial stress
cross-sectional force

stress uniform in cross-section

true stress

engineering stress

relation

$$\sigma = \sigma(y, z)$$

$$N(x) = N = \int_{A} \sigma(y, z) dA$$

$$N = \int_{A} \sigma dA = \sigma A$$

$$\sigma = \frac{N}{A}$$

$$\sigma_{n} = \frac{N}{A_{0}}$$

$$\sigma = \frac{N}{A_{0}} - \frac{1}{A_{0}} \sigma$$

Piet Schreurs (TU/e) 11 / 694

#### Linear elastic behavior

```
\begin{array}{ll} \text{axial stress} \sim \text{strain} & \sigma = E \, \epsilon \\ \text{contraction strain} & \epsilon = \lambda - 1 & \rightarrow \\ & \epsilon_d = \mu - 1 = -\nu \epsilon = -\nu (\lambda - 1) \\ \text{volume change} & J = (\epsilon + 1)(-\nu \epsilon + 1)^2 \approx \epsilon (1 - 2\nu) + 1 \end{array}
```

| material        | E [GPa]    | ν [-]       | material | E [GPa]    | ν [-]       |
|-----------------|------------|-------------|----------|------------|-------------|
| Aluminum        | 69 - 79    | 0.31 - 0.34 | Copper   | 105 - 150  | 0.33 - 0.35 |
| Cast iron       | 105 - 150  | 0.21 - 0.30 | Steel    | 200        | 0.33        |
| Stainless steel | 190 - 200  | 0.28        | Lead     | 14         | 0.43        |
| Magnesium       | 41 - 45    | 0.29 - 0.35 | Nickel   | 180 - 215  | 0.31        |
| Titanium        | 80 - 130   | 0.31 - 0.34 | Tungsten | 400        | 0.27        |
| Diamond         | 820 - 1050 | -           | Graphite | 240 - 390  | _           |
| Glass           | 70 - 80    | 0.24        | Ероху    | 3.5 - 17   | 0.34        |
| Nylon           | 1.4 - 2.8  | 0.32 - 0.40 | Rubber   | 0.01 - 0.1 | 0.5         |

Piet Schreurs (TU/e) 12 / 694

### Equilibrium

external force

f

internal force

 $f_i = f_i(u)$ 

equilibrium of point P

 $f_i(u) = f_e$ 

Piet Schreurs (TU/e) 13 / 694

#### Linear deformation



external force internal force equilibrium of point 
$$P$$

$$f_e$$
  
 $f_i = \sigma_n A_0$   
 $f_i(u) = f_e$ 

 $f_i(u)$  linear

direct solution possible

Piet Schreurs (TU/e) 14 / 694

#### Direct solution

$$f_i = \sigma_n A_0 = E \varepsilon A_0 = \frac{EA_0}{I_0} u = Ku$$
  
 $f_i = f_e \rightarrow Ku = f_e \rightarrow u = u_s = \frac{f_e}{K} = \frac{I_0}{EA_0} f_e$ 



Piet Schreurs (TU/e) 15 / 694

### Proportionality and superposition



Piet Schreurs (TU/e) 16 / 694

### FINITE ELEMENT METHOD

back to index

#### Truss element



$$\begin{aligned}
\underline{u}^{e} &= \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix} = \begin{bmatrix} u(0) \\ u(I^{e}) \end{bmatrix} \\
f_{i}^{e} &= \begin{bmatrix} f_{i1} \\ f_{i2} \end{bmatrix} = \begin{bmatrix} -N(0) \\ N(I^{e}) \end{bmatrix} = \begin{bmatrix} -k(u_{2} - u_{1}) \\ k(u_{2} - u_{1}) \end{bmatrix} = \begin{bmatrix} k & -k \\ -k & k \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix}
\end{aligned}$$

Piet Schreurs (TU/e) 18 / 694

#### Two-dimensional element



$$\begin{bmatrix} f_{i11} \\ f_{i12} \\ f_{i21} \\ f_{i22} \end{bmatrix} = \begin{bmatrix} cf_{i1}^L \\ sf_{i1}^L \\ cf_{i2}^L \\ sf_{i2}^L \end{bmatrix} = k(u_2^L - u_1^L) \begin{bmatrix} -c \\ -s \\ c \\ s \end{bmatrix} = k(u_{21}c + u_{22}s - u_{11}c - u_{12}s) \begin{bmatrix} -c \\ -s \\ c \\ s \end{bmatrix}$$

$$= k \begin{bmatrix} c^2 & cs & -c^2 & -cs \\ cs & s^2 & -cs & -s^2 \\ -c^2 & -cs & c^2 & cs \\ -cs & -s^2 & cs & s^2 \end{bmatrix} \begin{bmatrix} u_{11} \\ u_{12} \\ u_{21} \\ u_{22} \end{bmatrix} = \underline{K}^e \, \underline{y}^e \qquad \begin{cases} c = \cos(\alpha) \\ s = \sin(\alpha) \end{cases}$$

Piet Schreurs (TU/e) 19 / 694

# Assembling



Piet Schreurs (TU/e) 20 / 694

## Assembling: internal forces



$$\begin{bmatrix} f_{e11} \\ f_{e12} \\ f_{e21} \\ f_{e21} \\ f_{e31} \\ f_{e32} \end{bmatrix} = \begin{bmatrix} f_{i11} \\ f_{i12} \\ f_{i21} \\ f_{i22} \\ f_{i31} \\ f_{i32} \end{bmatrix} = \begin{bmatrix} f_{i11}^a \\ f_{i12}^a \\ f_{i11}^b \\ f_{i2}^b \\ f_{i21}^a + f_{i21}^b \\ f_{i22}^a + f_{i22}^b \end{bmatrix} = \begin{bmatrix} f_{i11}^a \\ f_{i12}^a \\ 0 \\ 0 \\ f_{i21}^a \\ f_{i21}^b \\ f_{i21}^b \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ f_{i11}^b \\ f_{i11}^b \\ f_{i21}^b \\ f_{i21}^b \end{bmatrix}$$

Piet Schreurs (TU/e) 21 / 694

## Assembling: nodal displacements

Assembled system equations  $f_i = \underline{K}\underline{u}$ 

Piet Schreurs (TU/e) 22 / 694

## **Boundary conditions**

| equilibrium       | ${	ilde f}_i={	ilde f}_e$ | $\rightarrow$ | <u>K</u> <u> </u> | $= f_e$       | $=$ $\tilde{f}$   |
|-------------------|---------------------------|---------------|-------------------|---------------|-------------------|
| rigid translation | u =  a                    |               |                   |               |                   |
| no forces needed  | <u>K</u> <u>a</u> = 00    | with          | a≠ 0              | $\rightarrow$ | <u>K</u> singular |

Piet Schreurs (TU/e) 23 / 694

### Prescribed nodal displacements and forces

reorganizing 
$$\underline{u} = \left[ \begin{array}{c} \underline{u}_u \\ \underline{u}_p \end{array} \right]$$
 ;  $\underline{f} = \left[ \begin{array}{c} \underline{f}_u \\ \underline{f}_p \end{array} \right]$ 

Piet Schreurs (TU/e) 24 / 694

## Partitioning for boundary conditions

reorganizing 
$$\begin{array}{ll} \underline{u} = \left[ \begin{array}{c} \underline{u}_u \\ \underline{u}_p \end{array} \right] &; \qquad \underline{f} = \left[ \begin{array}{c} \underline{f}_u \\ \underline{f}_p \end{array} \right] \\ \\ \text{equilibrium} & \underline{K}\underline{u} = \underline{f} \\ \\ \text{partitioning} & \left[ \begin{array}{c} \underline{K}_{uu} & \underline{K}_{up} \\ \underline{K}_{pu} & \underline{K}_{up} \end{array} \right] \left[ \begin{array}{c} \underline{u}_u \\ \underline{u}_p \end{array} \right] = \left[ \begin{array}{c} \underline{f}_u \\ \underline{f}_p \end{array} \right] \quad \rightarrow \\ \\ \underline{K}_{uu}\underline{u}_u + \underline{K}_{up}\underline{u}_p = \underline{f}_u \\ \underline{K}_{pu}\underline{u}_u + \underline{K}_{pp}\underline{u}_p = \underline{f}_p \end{array} \right] \\ \\ \text{solving } \underline{u}_u & \underline{K}_{uu}\underline{u}_u = \underline{f}_u - \underline{K}_{up}\underline{u}_p \quad \rightarrow \quad \underline{u}_u = \underline{K}_{uu}^{-1}(\underline{f}_u - \underline{K}_{up}\underline{u}_p) \\ \\ \text{calculating } \underline{f}_p & \underline{f}_p = \underline{K}_{pu}\underline{u}_u + \underline{K}_{pp}\underline{u}_p \end{array}$$

Piet Schreurs (TU/e) 25 / 694

#### Links

equilibrium

$$\underline{K}\underline{u} = \underline{f}$$

partitioning

$$\begin{bmatrix} \underline{K}_{ff} & \underline{K}_{fr} & \underline{K}_{fl} \\ \underline{K}_{rf} & \underline{K}_{rr} & \underline{K}_{rl} \\ \underline{K}_{lf} & \underline{K}_{lr} & \underline{K}_{ll} \end{bmatrix} \begin{bmatrix} \underline{u}_f \\ \underline{u}_r \\ \underline{u}_l \end{bmatrix} = \begin{bmatrix} \underline{f}_f \\ \underline{f}_r + \underline{\bar{f}}_r \\ \underline{f}_l + \underline{\bar{f}}_l \end{bmatrix}$$

$$\underline{K}_{ff} \underline{u}_f + \underline{K}_{fr} \underline{u}_r + \underline{K}_{fl} \underline{u}_l = \underline{f}_f$$

$$\underline{K}_{rf} \underline{u}_f + \underline{K}_{rr} \underline{u}_r + \underline{K}_{rl} \underline{u}_l = \underline{f}_r + \underline{\bar{f}}_r$$

$$\underline{K}_{lf} \underline{u}_f + \underline{K}_{lr} \underline{u}_r + \underline{K}_{ll} \underline{u}_l = \underline{f}_l + \underline{\bar{f}}_l$$

Piet Schreurs (TU/e) 26 / 694

#### Link relations

$$\begin{split} & \underline{u}_{l} = \underline{L}_{lr} \underline{u}_{r} \\ & \overline{\underline{t}}_{l}^{T} \delta \underline{u}_{l} + \overline{\underline{t}}_{r}^{T} \delta \underline{u}_{r} = 0 \quad \forall \quad \{ \delta \underline{u}_{l}, \delta \underline{u}_{r} \} \qquad \rightarrow \\ & \overline{\underline{t}}_{l}^{T} \underline{L}_{lr} + \overline{\underline{t}}_{r}^{T} = \underline{0}^{T} \quad \rightarrow \quad \underline{L}_{lr}^{T} \overline{\underline{t}}_{l} + \overline{\underline{t}}_{r} = \underline{0} \quad \rightarrow \quad \overline{\underline{t}}_{r} = -\underline{L}_{lr}^{T} \overline{\underline{t}}_{l} = -\underline{L}_{rl} \overline{\underline{t}}_{l} \end{split}$$

Piet Schreurs (TU/e) 27 / 694

### Partitioning for links

substitution of link relations  $\ \ o$ 

$$\begin{array}{l} \underline{K}_{\mathit{ff}}\,\underline{u}_{\mathit{f}} + (\underline{K}_{\mathit{fr}} + \underline{K}_{\mathit{fl}}\underline{L}_{\mathit{lr}})\underline{u}_{\mathit{r}} = \underline{f}_{\mathit{f}} \\ \underline{K}_{\mathit{rf}}\,\underline{u}_{\mathit{f}} + (\underline{K}_{\mathit{rr}} + \underline{K}_{\mathit{rl}}\underline{L}_{\mathit{lr}})\underline{u}_{\mathit{r}} = \underline{f}_{\mathit{r}} - \underline{L}_{\mathit{rl}}\overline{f}_{\mathit{l}} \\ \underline{K}_{\mathit{lf}}\,\underline{u}_{\mathit{f}} + (\underline{K}_{\mathit{lr}} + \underline{K}_{\mathit{ll}}\underline{L}_{\mathit{lr}})\underline{u}_{\mathit{r}} = \underline{f}_{\mathit{l}} + \overline{f}_{\mathit{l}} \end{array} \right\}$$
 
$$= \text{elimination of } \overline{f}_{\mathit{l}}$$

$$\left. \begin{array}{l} \underline{K}_{ff} \, \underline{y}_f + (\underline{K}_{fr} + \underline{K}_{fl} \underline{L}_{lr}) \, \underline{y}_r = \underline{f}_f \\ (\underline{K}_{rf} + \underline{L}_{rl} \underline{K}_{lf}) \, \underline{y}_f + \\ (\underline{K}_{rr} + \underline{K}_{rl} \underline{L}_{lr} + \underline{L}_{rl} \underline{K}_{lr} + \underline{L}_{rl} \underline{K}_{ll} \underline{L}_{lr}) \, \underline{y}_r = \underline{f}_r + \underline{L}_{rl} \underline{f}_l \end{array} \right\} \rightarrow$$

$$\left[\begin{array}{cc} \underline{K}_{ff} & \underline{K}_{fr} + \underline{K}_{fl}\underline{L}_{rl} \\ \underline{K}_{rf} + \underline{L}_{rl}\underline{K}_{lf} & \underline{K}_{rr} + \underline{K}_{rl}\underline{L}_{lr} + \underline{L}_{rl}\underline{K}_{lr} + \underline{L}_{rl}\underline{K}_{ll}\underline{L}_{lr} \end{array}\right] \left[\begin{array}{c} \underline{u}_f \\ \underline{u}_r \end{array}\right] = \left[\begin{array}{c} \underline{f}_f \\ \underline{f}_r + \underline{L}_{rl}\underline{f}_l \end{array}\right] \quad \rightarrow \quad$$

$$Ku = f$$

Piet Schreurs (TU/e) 28 / 694

#### Program structure

```
read input data from input file
calculate additional variables from input data
initialize values and arrays
for all elements
   calculate initial element stiffness matrix
   assemble global stiffness matrix
end element loop
determine external load from input
take tyings into account
take boundary conditions into account
calculate nodal displacements
for all elements
   calculate stresses from material behavior
   calculate element internal nodal forces
   assemble global internal load column
end element loop
```

store data for post-processing

Piet Schreurs (TU/e) 29 / 694

### Simple two-dimensional truss structure





Piet Schreurs (TU/e) 30 / 694

## Transformation of nodal coordinate system



Piet Schreurs (TU/e) 31 / 694

# **Tyings**



equilibrium

truss stiffness

$$F_1 + F_2 + F_3 - P = 0$$
 ;  $-F_1 2I - F_2 I = 0$ 

deformation

$$v_1 = -\frac{F_1}{k}$$
 ;  $v_2 = -\frac{F_2}{k}$  ;  $v_3 = -\frac{F_3}{k}$ 

equilibrium equations in displacements

$$-kv_1 - kv_2 - kv_3 - P = 0$$
 ;  $2lkv_1 + lkv_2 = 0$ 

Piet Schreurs (TU/e) 32 / 694

### Example: link relations

link relation

$$v_2 = \frac{1}{2} (v_1 + v_3)$$
  $\rightarrow$   $v_2 = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} v_1 \\ v_3 \end{bmatrix}$ 

elimination of  $v_2 \longrightarrow$  equation for retained displacements

$$\left. \begin{array}{l} -\frac{3}{2}kv_1 - \frac{3}{2}kv_3 - P = 0 \\ \\ \frac{5}{2}lkv_1 + \frac{1}{2}lkv_3 = 0 \end{array} \right. \rightarrow v_1 = -\frac{1}{5}v_3 \qquad \right\} \rightarrow$$

solving

$$\begin{array}{lll} \frac{3}{10}kv_3 - \frac{3}{2}kv_3 - P = 0 & \rightarrow & -\frac{6}{5}kv_3 - P = 0 & \rightarrow \\ v_3 = -\frac{5}{6}\frac{P}{k} & \rightarrow & v_1 = \frac{1}{6}\frac{P}{k} \\ \\ \text{link} & \rightarrow & v_2 = -\frac{1}{3}\frac{P}{k} \end{array}$$

Piet Schreurs (TU/e) 33 / 694

### FE solution



Piet Schreurs (TU/e) 34 / 694

### NONLINEAR DEFORMATION

back to index

## Strains for large elongation

linear strain logarithmic strain Green-Lagrange strain

$$\begin{split} \varepsilon &= \varepsilon_{\mathit{I}} = \lambda - 1 \\ \varepsilon &= \varepsilon_{\mathit{In}} = \ln(\lambda) \\ \varepsilon &= \varepsilon_{\mathit{gI}} = \frac{1}{2}(\lambda^2 - 1) \end{split}$$



Piet Schreurs (TU/e) 36 / 694

#### Linear strain

linear strain

$$\varepsilon = \varepsilon_I = \lambda - 1 = \frac{\Delta I}{I_0}$$

contraction strain

$$\varepsilon_d = \mu - 1 = -\nu \varepsilon_I = -\nu (\lambda - 1)$$

change of cross-sectional area

$$\mu = \sqrt{\frac{A}{A_0}} = 1 - \nu(\lambda - 1) \quad \to \quad A = A_0 \{1 - \nu(\lambda - 1)\}^2$$

restriction of elongation

$$1-\nu(\lambda-1)>0 \quad \to \quad \lambda-1<rac{1}{\nu} \quad \to \quad \lambda<rac{1+\nu}{\nu}$$

Piet Schreurs (TU/e) 37 / 694

### Logarithmic strain

logarithmic strain 
$$\epsilon = \epsilon_{\textit{ln}} = \ln(\lambda)$$

contraction strain 
$$\epsilon_{\textit{d}} = \ln(\mu) = -\nu \epsilon_{\textit{ln}} = -\nu \ln \lambda$$

change of cross-sectional area

$$\begin{split} \mu &= \sqrt{\frac{A}{A_0}} = e^{-\nu \, \epsilon_{\text{ln}}} = e^{-\nu \, \text{ln}(\lambda)} = \left[ e^{\text{ln}(\lambda)} \right]^{-\nu} = \lambda^{-\nu} \\ A &= A_0 \lambda^{-2\nu} \end{split}$$

NB: 
$$ln(x) = {}^{e}log(x) = y \rightarrow x = e^{y}$$

Piet Schreurs (TU/e) 38 / 694

### Advantage logarithmic strain



$$\begin{split} I_0 \rightarrow I_1 & \qquad \qquad \varepsilon_I(01) = \frac{I_1 - I_0}{I_0} \\ & \qquad \qquad \varepsilon_{In}(01) = \ln(\frac{I_1}{I_0}) \end{split}$$

$$I_1 \rightarrow I_2 & \qquad \qquad \varepsilon_I(12) = \frac{I_2 - I_1}{I_1} \\ & \qquad \qquad \varepsilon_{In}(12) = \ln(\frac{I_2}{I_1}) \end{split}$$

$$I_0 \rightarrow I_2 & \qquad \qquad \varepsilon_I(02) = \frac{I_2 - I_0}{I_0} \neq \varepsilon_I(01) + \varepsilon_I(12) \\ & \qquad \qquad \varepsilon_{In}(02) = \ln(\frac{I_2}{I_0}) = \ln(\frac{I_2}{I_0}) = \varepsilon_{In}(01) + \varepsilon_{In}(12) \end{split}$$

Piet Schreurs (TU/e) 39 / 694

#### Green-Lagrange strain

Green-Lagrange strain 
$$\epsilon = \epsilon_{gl} = \tfrac{1}{2}(\lambda^2 - 1)$$
 contraction strain 
$$\epsilon_d = \tfrac{1}{2}(\mu^2 - 1) = -\nu \epsilon_{ln} = -\nu \tfrac{1}{2}(\lambda^2 - 1)$$

change of cross-sectional area

$$1 - \nu(\lambda^2 - 1) > 0 \quad \rightarrow \quad \lambda < \sqrt{\frac{1 + \nu}{\nu}}$$

Piet Schreurs (TU/e) 40 / 694

# Mechanical power for an axially loaded truss



mechanical power 
$$P = F\dot{l}$$
 
$$\varepsilon_{l} = \lambda - 1 \qquad \rightarrow \qquad \dot{\varepsilon}_{l} = \dot{\lambda} = \frac{\dot{l}}{l_{0}}$$
 
$$\varepsilon_{ln} = \ln(\lambda) \qquad \rightarrow \qquad \dot{\varepsilon}_{ln} = \dot{\lambda}\lambda^{-1} = \frac{\dot{l}}{l}$$
 
$$\varepsilon_{gl} = \frac{1}{2}(\lambda^{2} - 1) \qquad \rightarrow \qquad \dot{\varepsilon}_{gl} = \dot{\lambda}\lambda = \lambda \frac{\dot{l}}{l_{0}} = \lambda^{2} \frac{\dot{l}}{l}$$

Piet Schreurs (TU/e) 41 / 694

# Mechanical power for an axially loaded truss



$$P = F\dot{\ell} = F\ell_0\dot{\epsilon}_I = \frac{F}{A_0}A_0\ell_0\dot{\epsilon}_I = \frac{F}{A_0}V_0\dot{\epsilon}_I$$

$$P = F\dot{\ell} = F\ell\dot{\epsilon}_{In} = \frac{F}{A}A\ell\dot{\epsilon}_{In} = \frac{F}{A}V\dot{\epsilon}_{In}$$

$$P = F\dot{\ell} = F\ell_0\dot{\epsilon}_I = \frac{F}{A}A\ell\frac{\ell_0}{\ell}\dot{\epsilon}_I = \frac{F}{A}V\lambda^{-1}\dot{\epsilon}_I$$

$$P = F\dot{\ell} = F\ell\lambda^{-2}\dot{\epsilon}_{gI} = \frac{F}{A}A\ell\lambda^{-2}\dot{\epsilon}_{gI} = \frac{F}{A}V\lambda^{-2}\dot{\epsilon}_{gI}$$

Piet Schreurs (TU/e) 42 / 694

### Mechanical power : stress $\sim$ strain

$$P = V_0 \dot{W}_0 = V \dot{W}$$

Piet Schreurs (TU/e) 43 / 694

#### Equilibrium: linear



external force internal force

equilibrium of point P

$$\begin{split} f_e \\ f_i &= \sigma_n A_0 = E \varepsilon_I A_0 = E A_0 \frac{u}{I_0} \\ f_i &= \frac{E A_0}{I_0} u = f_e \quad \rightarrow \quad u_{\text{exact}} = \frac{I_0}{E A_0} f_e \end{split}$$



Piet Schreurs (TU/e) 44 / 694

#### Equilibrium: nonlinear



external force internal force equilibrium of point 
$$P$$

$$f_e$$
  
 $f_i = \sigma A = f_i(u)$   
 $f_i(u) = f_e$ 

$$f_i(u)$$
 non-linear

iterative solution process needed

Piet Schreurs (TU/e) 45 / 694

#### Iterative solution procedure



analytic solution 
$$f_i(u_{\sf exact}) = f_e \quad \to \quad f_e - f_i(u_{\sf exact}) = 0$$
 approximation  $u^*$  
$$f_e - f_i(u^*) = r(u^*) \neq 0$$
 residual 
$$r^* = r(u^*)$$

Piet Schreurs (TU/e) 46 / 694

#### Newton-Raphson iteration procedure

$$f_{i}(u_{exact}) = f_{e}$$

$$u_{exact} = u^{*} + \delta u$$

$$f_{i}(u^{*}) + \frac{df_{i}}{du}\Big|_{u^{*}} \delta u = f_{e}$$

$$K^{*} \delta u = f_{e} - f_{i}^{*} = r^{*}$$

$$\rightarrow \delta u = \frac{1}{K^{*}} r^{*}$$



Piet Schreurs (TU/e) 47 / 694

## New approximate solution



new approximation  $u^{**} = u^* + \delta u$  error  $u_{exact} - u^{**}$  error smaller  $\rightarrow$  convergence

Piet Schreurs (TU/e) 48 / 694

#### Convergence control



residual force

 $|r^{**}| \leq c_r \quad o \quad \mathsf{stop} \; \mathsf{iteration}$ 

iterative displacement

 $|\delta u| \leq c_u \quad o \quad \text{stop iteration}$ 

Piet Schreurs (TU/e) 49 / 694

# Convergence



Piet Schreurs (TU/e) 50 / 694

# Residual and tangential stiffness

internal nodal force 
$$\begin{aligned} f_i^* &= N(\lambda^*) = A^* \sigma^* \\ K^* &= \left. \frac{\partial f_i}{\partial u} \right|_{u^*} = \left. \frac{\partial N(\lambda)}{\partial u} \right|_{u^*} = \left. \frac{dN}{d\lambda} \right|_{\lambda^*} \frac{d\lambda}{du} \\ \text{geometry} & \lambda = 1 + \frac{\Delta I}{I_0} = 1 + \frac{1}{I_0} u & \rightarrow & \frac{d\lambda}{du} = \frac{1}{I_0} \\ K^* &= \left. \frac{dN}{d\lambda} \right|_{\lambda^*} \frac{\partial \lambda}{\partial u} = \left. \frac{dN}{d\lambda} \right|^* \frac{1}{I_0} = \frac{1}{I_0} \frac{d}{d\lambda} (\sigma A) \right|^* \end{aligned}$$

$$K^* = \frac{1}{l_0} \left. \frac{d\sigma}{d\lambda} \right|^* A^* + \frac{1}{l_0} \sigma^* \left. \frac{dA}{d\lambda} \right|^*$$

Piet Schreurs (TU/e) 51 / 694

# Incremental loading



Piet Schreurs (TU/e) 52 / 694

# Non-converging solution process



Piet Schreurs (TU/e) 53 / 694

# Modified Newton-Raphson procedure



Piet Schreurs (TU/e) 54 / 694

# Path-following solution algorithm



$$\begin{array}{llll} \mathcal{K}_0\delta \textit{u}_1 = \textit{f}_{e0} + \lambda_1 \textit{f}_{ef} = \textit{g}_1 & \rightarrow & \delta \textit{u}_1 = \textit{K}_0^{-1}\textit{g}_1 & \rightarrow \\ \Delta \textit{u}_1 = \delta \textit{u}_1 & ; & \textit{u}_1 = \textit{u}_0 + \Delta \textit{u}_1 & \rightarrow & \textit{f}_{i1} \; , \; \textit{K}_1 \end{array}$$

Piet Schreurs (TU/e) 55 / 694

# Path-following solution algorithm



$$K_1 \delta u_2 = g_2 - f_{i2} = f_{e0} + \lambda_2 f_{ef} - f_{i2} \rightarrow \delta u_2 = K_1^{-1} (f_{e0} + \lambda_2 f_{ef} - f_{i2})$$

Piet Schreurs (TU/e) 56 / 694

# Path-following solution algorithm



$$\begin{bmatrix} \Delta u_2 & g_2 \end{bmatrix} \begin{bmatrix} \Delta u_2 \\ g_2 \end{bmatrix} = (\Delta u_2)^2 + (g_2)^2 = C^2 \rightarrow$$

$$(\Delta u_1 + K_1^{-1} f_{e0} + K_1^{-1} f_{ef} \lambda_2 - K_1^{-1} f_{i2})^2 + (f_{e0} + \lambda_2 f_{ef})^2 = C^2 \rightarrow$$

$$\lambda_2 \rightarrow \delta u_2 \rightarrow \Delta u_2, \quad u_2 \rightarrow f_{i3}, \quad K_2$$

Piet Schreurs (TU/e) 57 / 694

#### WEIGHTED RESIDUAL FORMULATION

back to index

# Weighted residual formulation



equilibrium 
$$\frac{d\vec{N}}{ds} + \vec{q}(s) = \vec{0} \quad \rightarrow \quad \frac{d(\sigma A \vec{n})}{ds} + \vec{q}(s) = \vec{0} \quad \forall \ s \in [0,\ell]$$
 approximation 
$$\frac{d(\sigma^* A^* \bar{\vec{n}})}{ds} + \vec{q}(s) = \vec{\Delta}(s) \neq \vec{0} \quad \forall \ s \in [0,\ell]$$
 weighted error 
$$\vec{\Delta}(s) \text{ is "smeared out" over}[0,\ell] \quad \rightarrow \quad \int_{s=0}^{s=\ell} \vec{w}(s) \cdot \vec{\Delta}(s) \, ds$$

Piet Schreurs (TU/e) 59 / 694

### Weighted residual formulation

$$\int_{s=0}^{s=\ell} \vec{w} \cdot \left\{ \frac{d(\sigma A \vec{n})}{ds} + \vec{q} \right\} ds = 0 \qquad \forall \quad \vec{w}(s)$$

partial integration of 1st term  $\longrightarrow$  weak formulation

$$\int_{s=0}^{s=\ell} \frac{d\vec{w}}{ds} \cdot (\sigma A \vec{n}) \, ds = \int_{s=0}^{s=\ell} \vec{w} \cdot \vec{q} \, ds + \left[ \vec{w}(\ell) \cdot \vec{N}(\ell) - \vec{w}(0) \cdot \vec{N}(0) \right]$$
$$= f_e(\vec{w}) \quad \forall \quad \vec{w}(s)$$

Piet Schreurs (TU/e) 60 / 694

#### State transformation

$$\int_{s=0}^{s=\ell} \frac{d\vec{w}}{ds} \cdot (\sigma A \vec{n}) \, ds = f_e(\vec{w}) \quad \forall \quad \vec{w}(s)$$

$$\frac{d(\ )}{ds} = \frac{ds_0}{ds} \frac{d(\ )}{ds_0} = \frac{1}{\lambda} \frac{d(\ )}{ds_0} \qquad ; \qquad ds = \lambda ds_0$$

integral transformation

$$\int_{s_0=0}^{s_0=\ell_0} \frac{d\vec{w}}{ds_0} \cdot (\sigma A \vec{n}) \, ds_0 = f_{e0}(\vec{w}) \qquad \forall \quad \vec{w}(s_0)$$

Piet Schreurs (TU/e) 61 / 694

#### Iterative solution process

$$\int_{s_0=0}^{s_0=\ell_0} \frac{d\vec{w}}{ds_0} \cdot (\sigma^* + \delta\sigma)(A^* + \delta A)(\vec{n}^* + \delta \vec{n}) ds_0 = f_{e0}(\vec{w}) \qquad \forall \quad \vec{w}(s_0)$$

Piet Schreurs (TU/e) 62 / 694

#### Linearization

$$\int_{s_0=0}^{s_0=\ell_0} \frac{d\vec{w}}{ds_0} \cdot (\sigma^* + \delta\sigma)(A^* + \delta A)(\vec{n}^* + \delta \vec{n}) ds_0 = f_{e0}(\vec{w}) \qquad \forall \qquad \vec{w}(s_0)$$

$$\int_{s_0=0}^{s_0=\ell_0} \frac{d\vec{w}}{ds_0} \cdot \delta \, \sigma A^* \, \vec{n}^* \, ds_0 + \int_{s_0=0}^{s_0=\ell_0} \frac{d\vec{w}}{ds_0} \cdot \sigma^* A^* \delta \, \vec{n} \, ds_0$$

$$= f_{e0}(\vec{w}) - \int_{s_0=0}^{s_0=\ell_0} \frac{d\vec{w}}{ds_0} \cdot \sigma^* A^* \, \vec{n}^* \, ds_0 \qquad \forall \quad \vec{w}(s_0)$$

Piet Schreurs (TU/e) 63 / 694

## Material model $\rightarrow$ iterative stress change

$$\int_{s_0=0}^{s_0=\ell_0} \frac{d\vec{w}}{ds_0} \cdot (\sigma^* + \delta\sigma)(A^* + \delta A)(\vec{n}^* + \delta \vec{n}) ds_0 = f_{e0}(\vec{w}) \qquad \forall \qquad \vec{w}(s_0)$$

$$\int_{s_0=0}^{s_0=\ell_0} \frac{d\vec{w}}{ds_0} \cdot \delta \sigma A^* \vec{n}^* ds_0 + \int_{s_0=0}^{s_0=\ell_0} \frac{d\vec{w}}{ds_0} \cdot \sigma^* A^* \delta \vec{n} ds_0$$

$$= f_{e0}(\vec{w}) - \int_{s_0=0}^{s_0=\ell_0} \frac{d\vec{w}}{ds_0} \cdot \sigma^* A^* \vec{n}^* ds_0 \qquad \forall \qquad \vec{w}(s_0)$$

$$\sigma = \sigma(\lambda) \quad \rightarrow \quad \delta \sigma = \left. \frac{d\,\sigma}{d\lambda} \right|^* \, \delta \lambda = \left. \frac{d\,\sigma}{d\lambda} \right|^* \, \frac{d(\delta s)}{ds_0} = \left. \frac{d\,\sigma}{d\lambda} \right|^* \, \vec{n}^* \cdot \frac{d(\delta \vec{u})}{ds_0}$$

Piet Schreurs (TU/e) 64 / 694

### Rotation → iterative orientation change

$$\begin{split} \vec{n} &= \frac{d\vec{x}}{ds} = \frac{ds_0}{ds} \frac{d\vec{x}}{ds_0} = \frac{1}{\lambda} \frac{d\vec{x}}{ds_0} \\ \delta \vec{n} &= \left[ -\frac{1}{\lambda^2} \frac{d\vec{x}}{ds_0} \right]^* \delta \lambda + \left[ \frac{1}{\lambda} \right]^* \frac{d(\delta \vec{x})}{ds_0} = \left[ -\frac{1}{\lambda} \vec{n} \right]^* \delta \lambda + \left[ \frac{1}{\lambda} \right]^* \frac{d(\delta \vec{x})}{ds_0} \\ &= \left[ -\frac{1}{\lambda} \vec{n} \vec{n} \right]^* \cdot \frac{d(\delta \vec{u})}{ds_0} + \left[ \frac{1}{\lambda} \right]^* \frac{d(\delta \vec{u})}{ds_0} = \left[ (\mathbf{I} - \vec{n} \vec{n}) \frac{1}{\lambda} \right]^* \cdot \frac{d(\delta \vec{u})}{ds_0} \\ &= \left[ \vec{m} \vec{m} \frac{1}{\lambda} \right]^* \cdot \frac{d(\delta \vec{u})}{ds_0} \end{split}$$

Piet Schreurs (TU/e) 65 / 694

## Iterative weighted residual integral

$$\begin{split} \int_{s_0=0}^{s_0=\ell_0} \frac{d\vec{w}}{ds_0} \cdot \left( \frac{d\sigma}{d\lambda} \right|^* \vec{n}^* \cdot \frac{d(\delta \vec{u})}{ds_0} \right) A^* \vec{n}^* \, ds_0 + \\ \int_{s_0=0}^{s_0=\ell_0} \frac{d\vec{w}}{ds_0} \cdot \sigma^* A^* \left( \vec{m}^* \vec{m}^* \cdot \frac{1}{\lambda^*} \frac{d(\delta \vec{u})}{ds_0} \right) \, ds_0 \\ &= f_{e0}(\vec{w}) - \int_{s_0=0}^{s_0=\ell_0} \frac{d\vec{w}}{ds_0} \cdot \sigma^* A^* \vec{n}^* \, ds_0 \qquad \forall \qquad \vec{w}(s_0) \\ \int_{s_0=0}^{s_0=\ell_0} \frac{d\vec{w}}{ds_0} \cdot \vec{n}^* \left( \frac{d\sigma}{d\lambda} \right|^* A^* \right) \vec{n}^* \cdot \frac{d(\delta \vec{u})}{ds_0} \, ds_0 + \\ \int_{s_0=0}^{s_0=\ell_0} \frac{d\vec{w}}{ds_0} \cdot \vec{m}^* \left( \sigma^* A^* \frac{1}{\lambda^*} \right) \vec{m}^* \cdot \frac{d(\delta \vec{u})}{ds_0} \, ds_0 \\ &= f_{e0}(\vec{w}) - \int_{s_0=0}^{s_0=\ell_0} \frac{d\vec{w}}{ds_0} \cdot \sigma^* A^* \vec{n}^* \, ds_0 \qquad \forall \qquad \vec{w}(s_0) \end{split}$$

Piet Schreurs (TU/e) 66 / 694

#### FINITE ELEMENT METHOD

back to index

## Element equation



$$\text{local coordinate}: \qquad -1 \leq \xi \leq 1 \quad ; \quad \textit{ds}_0 = \frac{\textit{l}_0}{2} \, \textit{d} \, \xi \quad ; \quad \frac{\textit{d}(\ )}{\textit{ds}_0} = \frac{2}{\textit{l}_0} \, \frac{\textit{d}(\ )}{\textit{d} \, \xi}$$

$$\int_{\xi=-1}^{\xi=-1} \frac{d\vec{w}}{d\xi} \cdot \vec{n}^* \left( \frac{d\sigma}{d\lambda} \right|^* A^* \frac{2}{l_0} \right) \vec{n}^* \cdot \frac{d(\delta \vec{u})}{d\xi} d\xi +$$

$$\int_{\xi=-1}^{\xi=1} \frac{d\vec{w}}{d\xi} \cdot \vec{m}^* \left( \sigma^* A^* \frac{1}{\lambda^*} \frac{2}{l_0} \right) \vec{m}^* \cdot \frac{d(\delta \vec{u})}{d\xi} d\xi = f_{e0}^e(\vec{w}) - \int_{\xi=-1}^{\xi=-1} \frac{d\vec{w}}{d\xi} \cdot \sigma^* A^* \vec{n}^* d\xi$$

Piet Schreurs (TU/e) 68 / 694

#### Components

$$\int_{\xi=-1}^{\xi=1} \frac{d\underline{w}^{T}}{d\xi} \, \underline{n}^{*} \left( \frac{d\sigma}{d\lambda} \right)^{*} A^{*} \frac{2}{l_{0}} \, \underline{n}^{*T} \frac{d(\delta\underline{u})}{d\xi} \, d\xi + \\
\int_{\xi=-1}^{\xi=1} \frac{d\underline{w}^{T}}{d\xi} \, \underline{m}^{*} \left( \sigma^{*} A^{*} \frac{1}{\lambda^{*}} \frac{2}{l_{0}} \right) \, \underline{m}^{*T} \frac{d(\delta\underline{u})}{d\xi} \, d\xi + \\
= f_{e0}^{e}(\underline{w}) - \int_{\xi=-1}^{\xi=1} \frac{d\underline{w}^{T}}{d\xi} \, \sigma^{*} A^{*} \, \underline{n}^{*} \, d\xi$$

Piet Schreurs (TU/e) 69 / 694

#### Interpolation

$$\begin{split} \delta \underline{y}^T &= \left[ \begin{array}{ccc} \delta u_1 & \delta u_2 \end{array} \right] = \left[ \begin{array}{ccc} \delta u_{11} \psi^1 + \delta u_{21} \psi^2 & \delta u_{12} \psi^1 + \delta u_{22} \psi^2 \end{array} \right] \\ \underline{w}^T &= \left[ \begin{array}{ccc} w_{11} \psi^1 + w_{21} \psi^2 & w_{12} \psi^1 + w_{22} \psi^2 \end{array} \right] \\ \text{with} & \psi^1(\xi) = \frac{1}{2} (1 - \xi) \quad ; \quad \psi^2(\xi) = \frac{1}{2} (1 + \xi) \end{split}$$

$$\frac{d(\delta \underline{u})}{d\xi} = \begin{bmatrix} \frac{d(\delta u_1)}{d\xi} \\ \frac{d(\delta u_2)}{d\xi} \end{bmatrix} = \begin{bmatrix} \frac{d\psi^1}{d\xi} & 0 & \frac{d\psi^2}{d\xi} & 0 \\ 0 & \frac{d\psi^1}{d\xi} & 0 & \frac{d\psi^2}{d\xi} \end{bmatrix} \begin{bmatrix} \delta u_{11} \\ \delta u_{12} \\ \delta u_{21} \\ \delta u_{22} \end{bmatrix} \\
= \frac{1}{2} \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \delta \underline{u}^e$$

$$\frac{d\underline{w}^{T}}{d\xi} = \begin{bmatrix} \frac{dw_1}{d\xi} & \frac{dw_2}{d\xi} \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} & w_{21} & w_{22} \end{bmatrix} \begin{bmatrix} \frac{d\psi^1}{d\xi} & 0 \\ 0 & \frac{d\psi^1}{d\xi} \\ \frac{d\psi^2}{d\xi} & 0 \\ 0 & \frac{d\psi^2}{d\xi} \end{bmatrix}$$

$$= w^{eT} \frac{1}{2} \begin{bmatrix} -1 & 0 \\ 0 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Piet Schreurs (TU/e) 70 / 694

### Element equation

$$\begin{split} \underline{w}^{eT} \int_{\xi=-1}^{\xi=1} \begin{bmatrix} -1 & 0 \\ 0 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} c \\ s \end{bmatrix}^* \frac{1}{4} \left( \frac{d\sigma}{d\lambda} \right|^* A^* \frac{2}{l_0} \right) \\ & \left[ c & s \right]^* \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} d\xi \delta \underline{u}^e + \\ \underline{w}^{eT} \int_{\xi=-1}^{\xi=1} \begin{bmatrix} -1 & 0 \\ 0 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -s \\ c \end{bmatrix}^* \frac{1}{4} \left( \sigma^* A^* \frac{1}{\lambda^*} \frac{2}{l_0} \right) \\ & \left[ -s & c \right]^* \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} d\xi \delta \underline{u}^e \\ & = f_{e0}^e(\underline{w}^e) - \underline{w}^{eT} \int_{\xi=-1}^{\xi=1} \begin{bmatrix} -1 & 0 \\ 0 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \frac{1}{2} \begin{bmatrix} c \\ s \end{bmatrix}^* (\sigma^* A^*) d\xi \end{split}$$

Piet Schreurs (TU/e) 71 / 694

### Element equation

$$\begin{split} \boldsymbol{w}^{eT} \int_{\xi=-1}^{\xi=1} \left( \frac{1}{2} \frac{d\sigma}{d\lambda} \right|^{*} A^{*} \frac{1}{I_{0}} \right) \begin{bmatrix} -c \\ -s \\ c \\ s \end{bmatrix}^{*} \begin{bmatrix} -c \\ -s \\ c \\ s \end{bmatrix}^{*} \begin{bmatrix} -c \\ -s \\ c \\ s \end{bmatrix}^{*} d\xi \delta \boldsymbol{u}^{e} + \\ & \boldsymbol{w}^{eT} \int_{\xi=-1}^{\xi=1} \left( \frac{1}{2} \sigma^{*} A^{*} \frac{1}{\lambda^{*}} \frac{1}{I_{0}} \right) \begin{bmatrix} s \\ -c \\ -s \\ c \end{bmatrix}^{*} \begin{bmatrix} s \\ -c \\ -s \\ c \end{bmatrix}^{*} \begin{bmatrix} s \\ -c \\ -s \\ c \end{bmatrix}^{*} d\xi \delta \boldsymbol{u}^{e} \\ & = f_{e0}^{e}(\boldsymbol{w}^{e}) - \boldsymbol{w}^{eT} \int_{\xi=-1}^{\xi=1} \frac{1}{2} (\sigma^{*} A^{*}) \begin{bmatrix} -c \\ -s \\ c \\ s \end{bmatrix}^{*} d\xi \end{split}$$

Piet Schreurs (TU/e) 72 / 694

## Element equation

$$\begin{split} \boldsymbol{w}^{eT} \int_{\xi=-1}^{\xi=1} \left( \frac{1}{2} \frac{d\sigma}{d\lambda} \right|^* A^* \frac{1}{l_0} \right) \begin{bmatrix} c^2 & cs & -c^2 & -cs \\ cs & s^2 & -cs & -s^2 \\ -c^2 & -cs & c^2 & cs \\ -cs & -s^2 & cs & s^2 \end{bmatrix}^* d\xi \delta \boldsymbol{u}^e + \\ \boldsymbol{w}^{eT} \int_{\xi=-1}^{\xi=1} \left( \frac{1}{2} \sigma^* A^* \frac{1}{\lambda^*} \frac{1}{l_0} \right) \begin{bmatrix} s^2 & -cs & -s^2 & cs \\ -cs & c^2 & cs & -c^2 \\ -s^2 & cs & s^2 & -cs \\ cs & -c^2 & -cs & c^2 \end{bmatrix}^* d\xi \delta \boldsymbol{u}^e \\ = f_{e0}^e(\boldsymbol{w}^e) - \boldsymbol{w}^{eT} \int_{\xi=-1}^{\xi=1} \frac{1}{2} \left( \sigma^* A^* \right) \begin{bmatrix} -c \\ -s \\ c \\ s \end{bmatrix}^* d\xi \end{split}$$

Piet Schreurs (TU/e) 73 / 694

## Element equation

$$\begin{split} \boldsymbol{w}^{eT} \left[ \int_{\xi = -1}^{\xi = 1} \left( \frac{1}{2} \frac{d\sigma}{d\lambda} \right|^* A^* \frac{1}{l_0} \right) d\xi \, \underline{M}_L^* \right] \delta \boldsymbol{u}^e \, + \\ \boldsymbol{w}^{eT} \left[ \int_{\xi = -1}^{\xi = 1} \left( \frac{1}{2} \sigma^* A^* \frac{1}{\lambda^*} \frac{1}{l_0} \right) \, d\xi \, \underline{M}_N^* \right] \delta \boldsymbol{u}^e \\ &= f_{e0}^e(\boldsymbol{w}^e) - \boldsymbol{w}^{eT} \int_{\xi = -1}^{\xi = 1} \frac{1}{2} \left( \sigma^* A^* \right) \, \boldsymbol{V}^* \, d\xi \end{split}$$

$$\underline{w}^{eT}\underline{K}^{e^*}\delta\underline{u}^e = \underline{w}^{eT}\underline{f}^e_{e0} - \underline{w}^{eT}\underline{f}^{e^*}_{i} = \underline{w}^{eT}\underline{f}^{e^*}$$

Piet Schreurs (TU/e) 74 / 694

### Integration

tangential stiffness matrix

$$\underline{K}^{e^*} = \left(\frac{d\sigma}{d\lambda}\right|^* A^* \frac{1}{l_0}\right) \begin{bmatrix} c^2 & cs & -c^2 & -cs \\ cs & s^2 & -cs & -s^2 \\ -c^2 & -cs & c^2 & cs \\ -cs & -s^2 & cs & s^2 \end{bmatrix}^* + \\ \left(\sigma^* A^* \frac{1}{l^*}\right) \begin{bmatrix} s^2 & -cs & -s^2 & cs \\ -cs & c^2 & cs & -c^2 \\ -s^2 & cs & s^2 & -cs \\ cs & -c^2 & -cs & c^2 \end{bmatrix}^*$$

internal nodal forces

$$f_i^{e^*} = \sigma^* A^* \begin{bmatrix} -c \\ -s \\ c \\ s \end{bmatrix}^*$$

Piet Schreurs (TU/e) 75 / 694

## Assembling

element contribution 
$$\underline{w}^{eT}\underline{K}^{e^*}\delta\underline{y}^e = \underline{w}^{eT}\underline{f}^e_{e0} - \underline{w}^{eT}\underline{f}^{e^*}_i = \underline{w}^{eT}\underline{r}^{e^*}$$
 assembled equation 
$$\underline{w}^T\underline{K}^*\delta\underline{y} = \underline{w}^T\underline{f}_{e0} - \underline{w}^T\underline{f}^*_i = \underline{w}^T\underline{r}^* \quad \forall \ \underline{w}$$

iterative equation system  $\underline{K}^* \delta \underline{y} = \underline{r}^*$ 

Piet Schreurs (TU/e) 76 / 694

### Program structure

store data for post-processing

end load increment

read input data from input file calculate additional variables from input data initialize values and arrays while load increments to be done for all elements calculate initial element stiffness matrix assemble global stiffness matrix end element loop determine external incremental load from input while non-converged iteration step take tvings into account take boundary conditions into account calculate iterative nodal displacements calculate total deformation for all elements calculate stresses from material behavior calculate material stiffness from material behavior calculate element internal nodal forces calculate element stiffness matrix assemble global stiffness matrix assemble global internal load column end element loop calculate residual load column calculate convergence norm end iteration step

Piet Schreurs (TU/e) 77 / 694

## Large deformation of a truss structure



Piet Schreurs (TU/e) 78 / 694

## Buckling



symm : 
$$F_c = \frac{kl}{3}$$







Piet Schreurs (TU/e) 79 / 694

#### ONE-DIMENSIONAL MATERIAL BEHAVIOR

back to index

# Time history plots elastic, elastoplastic, viscoelastic, viscoelastic



Piet Schreurs (TU/e) 81 / 694

#### Tensile curve: elastic behavior





Piet Schreurs (TU/e) 82 / 694

#### Tensile curve: viscoelastic behavior





energy dissipation

→ heat

Piet Schreurs (TU/e) 83 / 694

# Tensile curve : elastoplastic behavior



Piet Schreurs (TU/e) 84 / 694

## Tensile curve : viscoplastic behavior



Piet Schreurs (TU/e) 85 / 694

## Tensile curve : damage



- necking / stable necking
- softening
- fracture
- ductile / brittle

Piet Schreurs (TU/e) 86 / 694

#### Discrete material models

spring

$$\rightarrow$$
  $\sim$   $\sim$   $\epsilon$ 

dashpot

$$\longrightarrow$$
  $\sigma$ 

friction slider

$$\sigma$$

Piet Schreurs (TU/e) 87 / 694

## **ELASTIC**

back to index

#### Elastic material behavior



- no permanent deformation after unloading
- no path- or time dependency
- no energy dissipation

Piet Schreurs (TU/e) 89 / 694

## Small strain elastic behavior

| strain                  | $\varepsilon = \varepsilon_{gl} = \varepsilon_{ln} = \varepsilon_{l} = \lambda - 1$                   |
|-------------------------|-------------------------------------------------------------------------------------------------------|
| stress                  | $\sigma = \frac{F}{A} = \frac{F}{A_0} = \sigma_n$                                                     |
| linear elastic behavior | $\sigma = E\varepsilon = E(\lambda - 1)$                                                              |
| modulus                 | $E = \lim_{\lambda \to 1} \frac{d\sigma}{d\lambda} = \lim_{\epsilon \to 0} \frac{d\sigma}{d\epsilon}$ |

## Large strain elastic behavior





atomic bond

rubber

## Elasticity models

constitutive equation

$$\sigma = \sigma(\lambda)$$

stiffness

$$C_{\lambda} = \frac{d\sigma}{d\lambda} = \frac{d\sigma}{d\varepsilon} \frac{d\varepsilon}{d\lambda} = C_{\varepsilon} \frac{d\varepsilon}{d\lambda}$$

elastic models (examples)

$$\left\{ \begin{array}{ll} \text{linear true-log.} & \sigma = C \ln(\lambda) = C \epsilon_{\textit{ln}} \\ \\ \text{linear eng.-lin.} & \sigma_n = C(\lambda-1) = C \epsilon_{\textit{l}} \end{array} \right.$$

Piet Schreurs (TU/e) 92 / 694

## Hyper-elastic models, incompressible

incompressible deformation

$$\frac{\Delta \textit{V}}{\textit{V}} = \textit{J} = \textit{det}(\textbf{F}) = \lambda_1 \lambda_2 \lambda_3 = 1$$

specific energy

$$W = \sum_{i}^{n} \sum_{j}^{m} C_{ij} (I_{1} - 3)^{i} (I_{2} - 3)^{j} \quad \text{with} \quad C_{00} = 0$$

$$I_{1} = \lambda_{1}^{2} + \lambda_{2}^{2} + \lambda_{3}^{2}$$

$$I_{2} = \lambda_{1}^{2} \lambda_{2}^{2} + \lambda_{2}^{2} \lambda_{3}^{2} + \lambda_{3}^{2} \lambda_{1}^{2} = \frac{1}{\lambda_{3}^{2}} + \frac{1}{\lambda_{1}^{2}} + \frac{1}{\lambda_{2}^{2}}$$

change of specific energy

$$dW = \sigma_1 d\varepsilon_{ln_1} + \sigma_2 d\varepsilon_{ln_2} + \sigma_3 d\varepsilon_{ln_3}$$

Piet Schreurs (TU/e) 93 / 694

## Mooney models

Neo-Hookean 
$$W = C_{10} (I_1 - 3)$$

Mooney-Rivlin 
$$W = C_{10} (I_1 - 3) + C_{01} (I_2 - 3)$$

Signiorini 
$$W = C_{10}(I_1 - 3) + C_{01}(I_2 - 3) + C_{20}(I_1 - 3)^2$$

Yeoh 
$$W = C_{10}(I_1 - 3) + C_{20}(I_1 - 3)^2 + C_{30}(I_1 - 3)^3$$

Klosner-Segal 
$$W = C_{10}(I_1 - 3) + C_{01}(I_2 - 3) + C_{20}(I_1 - 3)^2 + C_{03}(I_2 - 3)^3$$

2-order invariant 
$$W = C_{10}(I_1 - 3) + C_{01}(I_2 - 3) + C_{11}(I_1 - 3)(I_2 - 3) + C_{20}(I_1 - 3)^2$$

Third-order model of James, Green and Simpson

$$W = C_{10}(I_1 - 3) + C_{01}(I_2 - 3) + C_{11}(I_1 - 3)(I_2 - 3) + C_{20}(I_1 - 3)^2 + C_{02}(I_2 - 3)^2 + C_{21}(I_1 - 3)^2(I_2 - 3) + C_{30}(I_1 - 3)^3 + C_{03}(I_2 - 3)^3 + C_{12}(I_1 - 3)(I_2 - 3)^2$$

Piet Schreurs (TU/e) 94 / 694

## Ogden models

#### slightly compressible

$$W = \sum_{i=1}^{N} \frac{a_i}{b_i} \left[ J^{-\frac{b_i}{3}} \left( \lambda_1^{b_i} + \lambda_2^{b_i} + \lambda_3^{b_i} \right) - 3 \right] + 4.5 K \left( J^{\frac{1}{3}} - 1 \right)^2$$

K = bulk modulus

 $J = \text{volume change factor} = \lambda_1 \lambda_2 \lambda_3$ 

#### highly compressible

$$W = \sum_{i=1}^{N} \frac{a_i}{b_i} \left( \lambda_1^{b_i} + \lambda_2^{b_i} + \lambda_3^{b_i} - 3 \right) + \sum_{i=1}^{N} \frac{a_i}{c_i} (1 - J^{c_i})$$

Piet Schreurs (TU/e) 95 / 694

#### One-dimensional models: Neo-Hookean

$$\begin{split} W &= C_{10} \left( \lambda^2 + \frac{2}{\lambda} - 3 \right) \\ \sigma &= C_{10} \left( 2\lambda - \frac{2}{\lambda^2} \right) \lambda = 2C_{10} \left( \lambda^2 - \frac{1}{\lambda} \right) \\ C_{\lambda} &= \frac{\partial \sigma}{\partial \lambda} = 2C_{10} \left( 2\lambda + \frac{1}{\lambda^2} \right) \\ E &= \lim_{\lambda \to 1} \frac{\partial \sigma}{\partial \lambda} = 6C_{10} \\ F &= \sigma A = \sigma \frac{1}{\lambda} A_0 = 2C_{10} A_0 \left( \lambda - \frac{1}{\lambda^2} \right) \end{split}$$

$$\sigma = \frac{\rho RT}{M} \left( \lambda^2 - \frac{1}{\lambda} \right) \qquad \text{with} \qquad \rho \qquad : \quad \text{density} \\ R \qquad : \quad \text{gas constant} = 8.314 \ \text{JK}^{-1} \text{mol}^{-1}$$

T : absolute temperature

M : average molecular weight

Piet Schreurs (TU/e) 96 / 694

## One-dimensional models: Mooney-Rivlin

$$W = C_{10} \left(\lambda^2 + \frac{2}{\lambda} - 3\right) + C_{01} \left(\frac{1}{\lambda^2} + 2\lambda - 3\right)$$

$$\sigma = 2C_{10} \left(\lambda^2 - \frac{1}{\lambda}\right) + 2C_{01} \left(\lambda^2 - \frac{1}{\lambda}\right) \frac{1}{\lambda}$$

$$C_{\lambda} = \frac{\partial \sigma}{\partial \lambda} = 2C_{10} \left(2\lambda + \frac{1}{\lambda^2}\right) + 2C_{01} \left(1 + \frac{2}{\lambda^3}\right)$$

$$E = \lim_{\lambda \to 1} \frac{\partial \sigma}{\partial \lambda} = 6(C_{10} + C_{01})$$

$$F = \sigma A = \sigma \frac{1}{\lambda} A_0$$

$$= A_0 \frac{1}{\lambda} \left[2C_{10} \left(\lambda^2 - \frac{1}{\lambda}\right) + 2C_{01} \left(\lambda^2 - \frac{1}{\lambda}\right) \frac{1}{\lambda}\right]$$

Piet Schreurs (TU/e) 97 / 694

#### NUMERICAL IMPLEMENTATION

back to index

## Stress update

stress update 
$$\sigma = \sigma(\lambda)$$

#### Stiffness

stress update 
$$\sigma=\sigma(t+\Delta t)=\sigma\left(\lambda(t+\Delta t)\right)=\sigma(\lambda)$$
 stiffness 
$$C_{\lambda}=\frac{\partial\sigma}{\partial\lambda}$$

Piet Schreurs (TU/e) 100 / 694

# Implementation

tr2delas.m

tr2delam.m

Piet Schreurs (TU/e) 101 / 694

#### Strain excitation



| initial length               | <i>I</i> <sub>0</sub> | 100 | mm     |
|------------------------------|-----------------------|-----|--------|
| initial cross-sectional area | $A_0$                 | 10  | $mm^2$ |

Piet Schreurs (TU/e) 102 / 694

#### Elastic models: stress

| elastic constant | С | 100000 | MPa |
|------------------|---|--------|-----|
| Poisson's ratio  | ν | 0.3    | -   |

 $\sigma \sim \varepsilon_{I} \mod \theta$   $\sigma \sim \varepsilon_{In} \mod \theta$   $\sigma \sim \varepsilon_{gI} \mod \theta$   $\sigma \sim \varepsilon_{gI} \mod \theta$ 









#### Elastic models: force and area

| elastic constant | С | 100000 | MPa |
|------------------|---|--------|-----|
| Poisson's ratio  | ν | 0.3    | -   |

 $\sigma \sim \varepsilon_I \mod \theta$   $\sigma \sim \varepsilon_{In} \mod \theta$ 









Piet Schreurs (TU/e) 104 / 694

#### Elastic models: force and area











Piet Schreurs (TU/e) 105 / 694

#### Elastomeric models: stress

| elastic constant                     | $C_{01}$ | 20000 | MPa |
|--------------------------------------|----------|-------|-----|
| elastic constant<br>elastic constant | $C_{10}$ | 20000 | MPa |





Neo-Hookean

Mooney-Rivlin

Piet Schreurs (TU/e) 106 / 694

#### Elastomeric models: force and area

| elastic constant | $C_{01}$ | 20000 | MPa |
|------------------|----------|-------|-----|
| elastic constant | $C_{10}$ | 20000 | MPa |





Neo-Hookean

Mooney-Rivlin

Piet Schreurs (TU/e) 107 / 694

## **ELASTOPLASTIC**

back to index

## Elastoplastic material behavior



Piet Schreurs (TU/e) 109 / 694

#### Tensile test



```
proportional limit
  \sigma_P
                        initial yield stress
  \sigma_{v0}
                        strain at \sigma_{v0} : \varepsilon_{v0} = \sigma_{v0}/E
  \varepsilon_{y0}
                        0.2-strain : \varepsilon_p = 0.2\% = 0.002
  \varepsilon_{0.2}
                        tensile strength
  \sigma_T
                        fracture strength
  \sigma_F
                        fracture strain (\approx 5\% = 0.05 (metals))
 \varepsilon_F
NB.: forming
                        \rightarrow pressure \rightarrow larger strains
```

Piet Schreurs (TU/e) 110 / 694

### Compression test



yield in tensile test yield in compression test yield general elastic region

$$\begin{split} \sigma &= \sigma_{y0} \\ \sigma &= -\sigma_{y0} \\ \sigma^2 &= \sigma_{y0}^2 \\ -\sigma_{y0} &< \sigma < \sigma_{y0} \end{split}$$

$$f = \sigma^2 - \sigma_{v0}^2 = 0$$

Piet Schreurs (TU/e)

#### Interrupted tensile test



total strain plastic strain elastic strain assumptions

$$\begin{array}{l} \varepsilon = \varepsilon_{\mathcal{A}} \\ \varepsilon_{p} \\ \varepsilon_{e} \\ \text{elastic parameters constant } \rightarrow \Delta \sigma = E \Delta \varepsilon = E \Delta \varepsilon_{e} \end{array}$$

Piet Schreurs (TU/e) 112 / 694

#### Resumed tensile test



linear behavior  $B \rightarrow A$  **current** yield stress hardening hardening model history parameter

$$\begin{array}{l} \Delta \sigma = E \Delta \varepsilon = E \Delta \varepsilon_{e} \\ \sigma_{y} = \sigma_{A} \\ \sigma_{y} \text{ increases} & \rightarrow & \sigma_{y} > \sigma_{y0} \\ \sigma_{y} \sim \varepsilon_{p} \\ \varepsilon_{p} \end{array}$$

Piet Schreurs (TU/e) 113 / 694

#### Hardening



```
isotropic hardening : elastic area larger & symmetric w.r.t. \sigma = 0
```

tensile :  $\sigma = \sigma_y$  compression :  $\sigma = -\sigma_y$   $\rightarrow f = \sigma^2 - \sigma_y^2 = 0$ 

kinematic hardening : elastic area constant & symmetric w.r.t.  $\sigma=q$ 

tensile :  $\sigma = q + \sigma_{y0}$  compression :  $\sigma = q - \sigma_{y0}$   $\rightarrow$   $f = (\sigma - q)^2 - \sigma_{y0}^2 = 0$ 

combined isotropic/kinematic hardening

tensile :  $\sigma = q + \sigma_y$  compression :  $\sigma = q - \sigma_y$   $\rightarrow$   $f = (\sigma - q)^2 - \sigma_y^2 = 0$ 

Piet Schreurs (TU/e) 114 / 694

#### Effective plastic strain



$$\sigma_{yC} > \sigma_{yA}$$
 ;  $\epsilon_{pC} < \epsilon_{pA}$  —

effective plastic strain (rate)

$$\overline{\boldsymbol{\varepsilon}_{\boldsymbol{p}}} = \sum_{\boldsymbol{\varepsilon}} |\Delta \boldsymbol{\varepsilon}_{\boldsymbol{p}}| = \sum_{\tau=0}^{\tau=t} \frac{|\Delta \boldsymbol{\varepsilon}_{\boldsymbol{p}}|}{\Delta t} \, \Delta t = \int_{\tau=0}^{t} |\dot{\boldsymbol{\varepsilon}}_{\boldsymbol{p}}| \, d\tau = \int_{\tau=0}^{t} \dot{\overline{\boldsymbol{\varepsilon}}}_{\boldsymbol{p}} \, d\tau$$

Piet Schreurs (TU/e) 115 / 694

## Linear and power law hardening laws

linear hardening 
$$\sigma_y = \sigma_{y0} + H\bar{\epsilon}_p$$
 Ludwik (1909) 
$$\sigma_y = \sigma_{y0} + \sigma_{y0} \left(\frac{\bar{\epsilon}_p}{\bar{\epsilon}_{y0}}\right)^n \quad (0 \le n \le 1) \quad \rightarrow \\ H = n \frac{\sigma_{y0}}{\bar{\epsilon}_{y0}} \left(\frac{\bar{\epsilon}_p}{\bar{\epsilon}_{y0}}\right)^{n-1} = nE \left(\frac{\bar{\epsilon}_p}{\bar{\epsilon}_{y0}}\right)^{n-1}$$
 mod. Ludwik 
$$\sigma_y = \sigma_{y0} \left(1 + m\bar{\epsilon}_p^n\right) \quad \rightarrow \quad H = \sigma_{y0} m n\bar{\epsilon}_p^{n-1}$$
 Swift (1952) 
$$\sigma_y = C(m + \bar{\epsilon}_p)^n \quad \text{with} \quad C = \frac{\sigma_{y0}}{m^n}$$
 
$$H = Cn \left(m + \bar{\epsilon}_p\right)^{n-1}$$
 Ramberg-Osgood (1943) 
$$\bar{\epsilon}_p = \frac{\sigma_y}{E} \left[1 + \alpha \left(\frac{\sigma_y}{\sigma_{y0}}\right)^{m-1}\right]$$
 
$$(m \ge 0; \alpha = \frac{3}{7})$$

Piet Schreurs (TU/e) 116 / 694

# Asymptotically perfect hardening laws

$$\begin{array}{ll} \text{ideal plastic} & \sigma_y = \sigma_{y0} \\ \text{Prager (1938)} & \sigma_y = \sigma_{y0} \tanh \left( \frac{E \bar{\epsilon}_p}{\sigma_{y0}} \right) \\ & H = \frac{\sigma_{y0}}{\varepsilon_{y0}} \left[ \operatorname{sech} \left( \frac{\bar{\epsilon}_p}{\varepsilon_{y0}} \right) \right]^2 = E \left[ \operatorname{sech} \left( \frac{\bar{\epsilon}_p}{\varepsilon_{y0}} \right) \right]^2 \\ \text{Betten I (1975)} & \sigma_y = \sigma_{y0} \left[ \tanh \left( \frac{E \bar{\epsilon}_p}{\sigma_{y0}} \right)^m \right]^{1/m} & (m > 1) \\ & H = E \left( \frac{\bar{\epsilon}_p}{\varepsilon_{y0}} \right)^{m-1} \left[ \tanh \left( \frac{\bar{\epsilon}_p}{\varepsilon_{y0}} \right)^m \right]^{\frac{1}{m}-1} \left[ \operatorname{sech} \left( \frac{\bar{\epsilon}_p}{\varepsilon_{y0}} \right)^m \right]^2 \\ \text{Voce (1949)} & \sigma_y = C \left( 1 - n e^{-m \bar{\epsilon}_p} \right) & \text{with } C = \frac{\sigma_{y0}}{1-n} & (m > 1) \\ & H = C n m e^{-m \bar{\epsilon}_p} \\ \text{Betten II (1975)} & \sigma_y = \sigma_{y0} + (E \, \bar{\epsilon}_p) \left[ 1 + \left( \frac{\bar{\epsilon}_p}{\varepsilon_{y0}} \right)^m \right]^{-1/m} \\ & H = E \left[ 1 + \left( \frac{\bar{\epsilon}_p}{\varepsilon_{y0}} \right)^m \right]^{-\frac{1}{m}} \left[ 1 - \left( \frac{\bar{\epsilon}_p}{\varepsilon_{y0}} \right)^m \left\{ 1 + \left( \frac{\bar{\epsilon}_p}{\varepsilon_{y0}} \right)^m \right\}^{-1} \right] \end{array}$$

Piet Schreurs (TU/e) 117 / 694

# Cyclic load



Piet Schreurs (TU/e) 118 / 694

#### Elastoplastic model



• 
$$\sigma_y = \sigma_y(\sigma_{y0}, \bar{\epsilon}_p)$$
 ;  $q = q(\epsilon_p)$ 

• 
$$\dot{\varepsilon} = \dot{\varepsilon}_e + \dot{\varepsilon}_p$$

• 
$$\sigma = E \varepsilon_e \rightarrow \dot{\varepsilon}_e = \frac{1}{F} \dot{\sigma}$$

• 
$$\dot{\varepsilon}_{p} = \dot{\lambda} \frac{\partial f}{\partial \sigma} = 2\dot{\lambda}(\sigma - q)$$
 ;  $\dot{\overline{\varepsilon}}_{p} = |\dot{\varepsilon}_{p}| = 2\dot{\lambda}|\sigma - q|$   
•  $\bar{\varepsilon}_{p} = \int_{\tau=0}^{t} \dot{\overline{\varepsilon}}_{p} d\tau = \sum_{\bullet} |\Delta \varepsilon_{p}|$ 

$$\bullet \quad \bar{\varepsilon}_{p} = \int_{\tau=0}^{t^{0}} \dot{\bar{\varepsilon}}_{p} \, d\tau = \sum_{\tau} |\Delta \varepsilon_{p}|$$

Piet Schreurs (TU/e) 119 / 694

#### Constitutive equations

Piet Schreurs (TU/e) 120 / 694

### Isotropic hardening "monotonic" tensile test $A \rightarrow B$



$$\begin{split} \Delta\sigma &= E\Delta\epsilon_e = E(\Delta\epsilon - \Delta\epsilon_p) \\ &= E\left(\Delta\epsilon - \frac{\Delta\sigma_y}{H}\right) = E\left(\Delta\epsilon - \frac{\Delta\sigma}{H}\right) \quad \rightarrow \\ \Delta\sigma &= \frac{EH}{E+H}\,\Delta\epsilon = S\Delta\epsilon \qquad ; \qquad \Delta\epsilon_p = \frac{\Delta\sigma}{H} = \frac{E}{E+H}\,\Delta\epsilon \end{split}$$

Piet Schreurs (TU/e) 121 / 694

### Kinematic hardening

$$\Delta\sigma = \frac{EK}{E+K}\,\Delta\epsilon \quad ; \quad \Delta\epsilon_{\text{p}} = \frac{1}{K}\,\Delta\sigma = \frac{E}{E+K}\,\Delta\epsilon$$

$$\begin{split} \Delta\sigma &= E\Delta\varepsilon_e = E(\Delta\varepsilon - \Delta\varepsilon_p) \\ &= E\left(\Delta\varepsilon - \frac{\Delta q}{K}\right) = E\left(\Delta\varepsilon - \frac{\Delta\sigma}{K}\right) \quad \rightarrow \\ \Delta\sigma &= \frac{EK}{E+K}\,\Delta\varepsilon = S\Delta\varepsilon \qquad ; \qquad \Delta\varepsilon_p = \frac{\Delta\sigma}{K} = \frac{E}{E+K}\,\Delta\varepsilon \end{split}$$

Piet Schreurs (TU/e) 122 / 694

$$\lim_{H \to \infty} \frac{EH}{E+H} = \lim_{H \to \infty} \frac{E}{\frac{E}{H}+1} = E$$

## Stress update

#### WHERE ARE WE ??



Piet Schreurs (TU/e) 124 / 694

#### Elastic stress predictor

$$\sigma_e = \sigma_n + E(\varepsilon - \varepsilon_n)$$

• 
$$f = (\sigma_e - q_n)^2 - \sigma_{\nu_n}^2 \le 0$$
 — elastic increment

$$f = (\sigma_{\rm e} - q_n)^2 - \sigma_{y_n}^2 > 0$$
 elastoplastic increment

Piet Schreurs (TU/e) 125 / 694

#### Elastic increment

- elastic solution is end-increment solution
- continue loading history

$$\begin{split} \sigma(t_{n+1}) &= \sigma_e & ; \quad \bar{\epsilon}_p(t_{n+1}) = \bar{\epsilon}_p(t_n) = \bar{\epsilon}_{p_n} \\ \sigma_y(t_{n+1}) &= \sigma_y(t_n) = \sigma_{y_n} & ; \quad q(t_{n+1}) = q(t_n) = q_n \end{split}$$

Piet Schreurs (TU/e) 126 / 694

### Implicit solution procedure

$$\sigma - \sigma_{n} + 2E(\sigma - q)(\lambda - \lambda_{n}) = E(\varepsilon - \varepsilon_{n})$$

$$f - f_{n} = f = 0$$

$$\sigma^{*} + \delta\sigma - \sigma_{n} + 2E(\sigma^{*} + \delta\sigma - q^{*} - \delta q)(\lambda^{*} + \delta\lambda - \lambda_{n}) = E(\varepsilon - \varepsilon_{n})$$

$$f^{*} + \delta f = 0 \quad \rightarrow \quad f^{*} + \frac{\partial f}{\partial \sigma} \delta\sigma + \frac{\partial f}{\partial \lambda} \delta\lambda = 0$$

$$\frac{\partial f}{\partial \sigma} = 2(\sigma - q)$$

$$\frac{\partial f}{\partial \lambda} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial \varepsilon_{p}} \frac{\partial \varepsilon_{p}}{\partial \lambda} + \frac{\partial f}{\partial \sigma_{y}} \frac{\partial \sigma_{y}}{\partial \overline{\varepsilon}_{p}} \frac{\partial \overline{\varepsilon}_{p}}{\partial \lambda}$$

$$= [-2(\sigma - q)][K][2(\sigma - q)] + [-2\sigma_{y}][H][2|\sigma - q]]$$

$$= -4K(\sigma - q)^{2} - 4H\sigma_{y}|\sigma - q|$$

$$\sigma^* + \delta\sigma - \sigma_n + 2E(\sigma^* + \delta\sigma - q^* - \delta q)(\lambda^* + \delta\lambda - \lambda_n) = E(\varepsilon - \varepsilon_n)$$

$$f^* + 2(\sigma^* - q^*)\delta\sigma - [4K^*(\sigma^* - q^*)^2 + 4H^*\sigma_y^*|\sigma^* - q^*|]\delta\lambda = 0$$

Piet Schreurs (TU/e) 127 / 694

#### Implicit solution procedure

$$\sigma^* + \delta\sigma - \sigma_n + 2E(\sigma^* + \delta\sigma - q^* - \delta q)(\lambda^* + \delta\lambda - \lambda_n) = E(\varepsilon - \varepsilon_n)$$

$$f^* + 2(\sigma^* - q^*)\delta\sigma - [4K^*(\sigma^* - q^*)^2 + 4H^*\sigma_y^*|\sigma^* - q^*|]\delta\lambda = 0$$

$$\begin{split} &\sigma^* = \sigma^* + \delta \sigma \\ &\lambda^* = \lambda^* + \delta \lambda \\ &\Delta \varepsilon_p = 2(\lambda^* - \lambda_n)(\sigma^* - q_n) \quad \rightarrow \quad \varepsilon_p \quad \rightarrow \quad q^*, K^* \\ &\Delta \overline{\varepsilon}_p = |\Delta \varepsilon_p| \quad \rightarrow \quad \overline{\varepsilon}_p \quad \rightarrow \quad \sigma_y^*, H^* \end{split}$$

Piet Schreurs (TU/e) 128 / 694

### Stiffness: implicit

$$\begin{cases} & \sigma - \sigma_n + 2E(\sigma - q)(\lambda - \lambda_n) - E(\varepsilon - \varepsilon_n) = 0 \\ & f = 0 \end{cases}$$

$$\begin{cases} & \delta \sigma + 2E\delta\sigma(\lambda - \lambda_n) + 2E(\sigma - q)\delta\lambda - E\delta\varepsilon = 0 \\ & (\sigma - q)\delta\sigma - 2K(\sigma - q)^2\delta\lambda - 2H\sigma_y|\sigma - q|\delta\lambda = 0 \end{cases}$$

$$\begin{bmatrix} 1 + 2E(\lambda - \lambda_n) + \frac{2E(\sigma - q)^2}{2K(\sigma - q)^2 + 2H\sigma_y|\sigma - q|} \end{bmatrix} \delta\sigma = E\delta\varepsilon$$

$$C_\varepsilon = \frac{E\{2K(\sigma - q)^2 + 2H\sigma_y|\sigma - q|\}}{\{1 + 2E(\lambda - \lambda_n)\}\{2K(\sigma - q)^2 + 2H\sigma_y|\sigma - q|\} + 2E(\sigma - q)^2}$$

$$\text{yield at } \tau = t = t_{n+1} \quad \rightarrow \quad (\sigma - q)^2 = \sigma_y^2 \text{ and } |\sigma - q| = \sigma_y \quad \rightarrow$$

$$C_\varepsilon = \frac{E(K + H)}{E + K + H + 2E(K + H)(\lambda - \lambda_n)}$$

Piet Schreurs (TU/e) 129 / 694

### Explicit solution procedure

$$\Delta \sigma + 2E(\sigma_n - q_n)\Delta \lambda = E\Delta \varepsilon$$

$$\Delta f = 0 \quad \rightarrow \quad \frac{\partial f}{\partial \sigma} \Big|_n \Delta \sigma + \frac{\partial f}{\partial \lambda} \Big|_n \Delta \lambda = 0$$

$$\Delta \sigma + 2E(\sigma_n - q_n)\Delta \lambda = E\Delta \varepsilon$$

$$2(\sigma_{n}-q_{n})\Delta\sigma - 4K_{n}(\sigma_{n}-q_{n})^{2}\Delta\lambda - 4H_{n}\sigma_{yn}|\sigma_{n}-q_{n}|\Delta\lambda = 0 \rightarrow$$

$$\Delta\lambda = \frac{(\sigma_{n}-q_{n})}{2K_{n}(\sigma_{n}-q_{n})^{2} + 2H_{n}\sigma_{yn}|\sigma_{n}-q_{n}|}\Delta\sigma = \frac{1}{2K_{n}(\sigma_{n}-q_{n}) + 2H_{n}(\sigma_{n}-q_{n})}\Delta\sigma$$

$$\Delta \sigma = \frac{E[K_n(\sigma_n - q_n)^2 + H_n\sigma_{yn}|\sigma_n - q_n|]}{K_n(\sigma_n - q_n)^2 + H_n\sigma_{yn}|\sigma_n - q_n| + E(\sigma_n - q_n)^2} \Delta \varepsilon$$
$$\Delta \varepsilon_p = 2(\sigma_n - q_n)\Delta \lambda = \frac{(\sigma_n - q_n)^2}{K_n(\sigma_n - q_n)^2 + H_n\sigma_{yn}|\sigma_n - q_n|}$$

Piet Schreurs (TU/e) 130 / 694

#### Increment splitting



$$\sigma_{e} = \sigma_{n} + E(\varepsilon - \varepsilon_{n}) \rightarrow \Delta \sigma_{e} = \sigma_{e} - \sigma_{n} = E(\varepsilon - \varepsilon_{n})$$

$$\beta = \frac{|\operatorname{sign}(\varepsilon - \varepsilon_{n})\sigma_{y_{n}} - (\sigma_{n} - q_{n})|}{|\sigma_{e} - \sigma_{n}|}$$

$$\varepsilon^{f} = \varepsilon_{n} + \beta(\varepsilon - \varepsilon_{n}) \rightarrow \Delta \varepsilon^{f} = \varepsilon - \varepsilon^{f} = (1 - \beta)(\varepsilon - \varepsilon_{n})$$

Piet Schreurs (TU/e) 131 / 694

#### Explicit stress update

$$\begin{cases} \Delta \sigma^{f} + 2E(\sigma_{n} - q)\Delta \lambda = E\Delta \varepsilon^{f} \\ 2(\sigma_{n} - q)\Delta \sigma^{f} - 4K_{n}(\sigma_{n} - q_{n})^{2}\Delta \lambda - 4H_{n}\sigma_{yn}|\sigma_{n} - q_{n}|\Delta \lambda = 0 \end{cases}$$

$$\Delta \sigma = \beta \Delta \sigma_{e} + \Delta \sigma^{f} \quad \rightarrow \quad \sigma = \sigma_{n} + \Delta \sigma$$

$$\lambda = \lambda_{n} + \Delta \lambda$$

$$\Delta \varepsilon_{p} = 2(\lambda - \lambda_{n})(\sigma - q_{n}) \quad \rightarrow \quad \varepsilon_{p} \quad \rightarrow \quad q, K$$

 $\Delta \bar{\varepsilon}_{p} = |\Delta \varepsilon_{p}| \quad \rightarrow \quad \bar{\varepsilon}_{p} \quad \rightarrow \quad \sigma_{v}, H$ 

Piet Schreurs (TU/e)

# Implementation

tr2delp1.m

Piet Schreurs (TU/e) 133 / 694

## Cyclic loading



| initial length               | <i>I</i> <sub>0</sub> | 100 | mm            |
|------------------------------|-----------------------|-----|---------------|
| initial cross-sectional area | $A_0$                 | 10  | $\text{mm}^2$ |

| Young's modulus                 | Ε             | 100000 | MPa |
|---------------------------------|---------------|--------|-----|
| Poisson's ratio                 | ν             | 0.3    | -   |
| initial yield stress            | $\sigma_{y0}$ | 250    | MPa |
| isotropic hardening coefficient | Ĥ             | 5000   | MPa |
| kinematic hardening coefficient | K             | 5000   | MPa |





Piet Schreurs (TU/e) 134 / 694

### Clamped truss





Piet Schreurs (TU/e) 135 / 694

#### Truss structure







Piet Schreurs (TU/e) 136 / 694

### Softening material





Piet Schreurs (TU/e) 137 / 694

#### LINEAR VISCOELASTIC

back to index

#### Linear elastic material behavior



constant Young's modulus linear spring: spring stiffness

$$E$$
: Hooke's law  $k = \frac{EA}{I}$ 

#### Load cycle



no dissipation : no area under  $(\sigma, \varepsilon)$ -curve

$$U_{d} = \int_{t_{0}}^{t_{1}} \sigma \, d\varepsilon + \int_{t_{1}}^{t_{2}} \sigma \, d\varepsilon = \int_{t_{0}}^{t_{1}} E\varepsilon \, d\varepsilon + \int_{t_{1}}^{t_{2}} E\varepsilon \, d\varepsilon$$
$$= \frac{1}{2} E[\varepsilon_{1}^{2} - \varepsilon_{0}^{2} + \varepsilon_{2}^{2} - \varepsilon_{1}^{2}] = 0$$

#### NO ENERGY DISSIPATION

Piet Schreurs (TU/e)

#### Linear viscous material behavior



constant viscosity

141 / 694

linear dashpot : damping constant

Piet Schreurs (TU/e)

### Load cycle



#### dissipated energy ~ area

$$U_{d} = \int_{t_{0}}^{t_{1}} \sigma d\varepsilon + \int_{t_{1}}^{t_{2}} \sigma d\varepsilon = \int_{t_{0}}^{t_{1}} \eta \dot{\varepsilon} d\varepsilon + \int_{t_{1}}^{t_{2}} \eta \dot{\varepsilon} d\varepsilon = \int_{t_{0}}^{t_{1}} \eta c d\varepsilon - \int_{t_{1}}^{t_{2}} \eta c d\varepsilon$$
$$= \eta c [\varepsilon_{1} - \varepsilon_{0} - \varepsilon_{2} + \varepsilon_{1}] = 2\eta ca$$

#### TOTAL ENERGY DISSIPATION

Piet Schreurs (TU/e) 142 / 694

#### Viscoelastic material behavior



- small deformations !!
- description of experimental observations
- modeling the material behavior (a.o. with spring-dashpot models)

Piet Schreurs (TU/e) 143 / 694

## Proportionality



linear **isochrones** 
$$\rightarrow$$
 proportionality

$$\varepsilon(t) = \Delta \sigma D(t - t_0)$$
 for  $\forall t \ge t_0$ 

 $D(t-t_0)$  is no function of the stresses

Piet Schreurs (TU/e) 144 / 694

#### Superposition





separate excitations

$$egin{array}{lll} \Delta\sigma = \Delta\sigma_0 & \to & \epsilon(t) = \Delta\sigma_0 D(t-t_0) & ext{ for } & t>t_0 \ \Delta\sigma = \Delta\sigma_1 & \to & \epsilon(t) = \Delta\sigma_1 D(t-t_1) & ext{ for } & t>t_1 \end{array}$$

subsequent excitations

$$\Delta \sigma = \Delta \sigma_0 \qquad o \qquad \varepsilon(t) = \Delta \sigma_0 D(t-t_0) \qquad \qquad \text{for} \quad t_0 < t < t_1 \ \Delta \sigma = \Delta \sigma_0 + \Delta \sigma_1 \quad o \quad \varepsilon(t) = \Delta \sigma_0 D(t-t_0) + \Delta \sigma_1 D(t-t_1) \qquad \text{for} \quad t > t_1$$

Piet Schreurs (TU/e) 145 / 694

# Boltzmann integral: strain respons





$$\begin{split} \varepsilon(t) &= \Delta \sigma_0 D(t-t_0) + \Delta \sigma_1 D(t-t_1) + \Delta \sigma_2 D(t-t_2) + \dots \\ &= \sum_{i=1}^n \Delta \sigma_i D(t-t_i) & \to \text{ limit } n \to \infty \\ &= \int_{\tau=t_0^-}^t D(t-\tau) \, d\sigma(\tau) = \int_{\tau=t_0^-}^t D(t-\tau) \frac{d\sigma(\tau)}{d\tau} \, d\tau \\ &\varepsilon(t) = \int_{\tau=t^-}^t D(t-\tau) \dot{\sigma}(\tau) \, d\tau \end{split}$$

Piet Schreurs (TU/e) 146 / 694

### Boltzmann integral: stress respons

$$\sigma(t) = \int_{\tau=t_0^-}^t E(t-\tau)\dot{\varepsilon}(\tau) d\tau$$

Piet Schreurs (TU/e) 147 / 694

### Step excitations

#### Heaviside function

$$H(t,t^*) \quad \left\{ egin{array}{lll} t < t^* & : & H(t,t^*) = 0 \ t > t^* & : & H(t,t^*) = 1 \end{array} 
ight\}$$



#### Dirac function

$$\delta(t, t^*) = \frac{d}{dt} \{ H(t, t^*) \}$$

$$\int_{0}^{t>t^*} \delta(\tau, t^*) \ d\tau = 1$$

$$\int_{\tau=0}^{t>t^*} \delta(\tau,t^*) \ d\tau = 1 \quad ; \quad \int_{\tau=0}^{t>t^*} f(\tau) \delta(\tau,t^*) \ d\tau = f(t^*)$$



Creep (Retardation)  $\rightarrow$  creep function

$$\sigma(t) = \sigma_0 H(t,0)$$
  $\rightarrow$   $\dot{\sigma}(t) = \sigma_0 \delta(t,0)$ 

$$\varepsilon(t) = \int_{\tau=0^-}^t D(t-\tau)\dot{\sigma}(\tau) d\tau = \int_{\tau=0^-}^t D(t-\tau)\sigma_0\delta(\tau,0) d\tau = \sigma_0D(t)$$





- $\begin{array}{llll} \bullet \ \dot{D}(t) \geq 0 & \forall & t \geq 0 \\ \bullet \ \ddot{D}(t) < 0 & \forall & t \geq 0 \end{array}$

Piet Schreurs (TU/e) 149 / 694

#### Relaxation $\rightarrow$ relaxation function

$$\begin{split} \varepsilon(t) &= \varepsilon_0 H(t,0) &\to &\dot{\varepsilon}(t) = \varepsilon_0 \delta(t,0) \\ \sigma(t) &= \int_{\tau=0^-}^t E(t-\tau) \dot{\varepsilon}(\tau) \, d\tau = \int_{\tau=0^-}^t E(t-\tau) \varepsilon_0 \delta(\tau,0) \, d\tau = \varepsilon_0 E(t) \end{split}$$



• 
$$\dot{E}(t) \leq 0$$
  $\forall t \geq 0$ 

• 
$$\ddot{E}(t) > 0$$
  $\forall t \ge 0$ 

$$\begin{array}{lll} \bullet & \dot{E}(t) \leq 0 & \forall & t \geq 0 \\ \bullet & \ddot{E}(t) > 0 & \forall & t \geq 0 \\ \end{array}$$

$$\bullet \int_{t=0}^{\infty} \dot{E}(t) \, dt \geq 0 & \rightarrow & \lim_{t \to \infty} \dot{E}(t) = 0 \end{array}$$

Piet Schreurs (TU/e) 150 / 694

#### Harmonic strain excitation

$$(\omega = \text{angular frequency [rad s}^{-1}])$$

$$\varepsilon(t) = \varepsilon_0 \sin(\omega t) \quad \rightarrow \quad \dot{\varepsilon}(t) = \varepsilon_0 \omega \cos(\omega t)$$



amplitude angular frequency period and frequency

$$\varepsilon_0 \\ \omega \text{ [rad s}^{-1}\text{]} \\ T = \frac{2\pi}{\omega} \text{ [s}^{-1}\text{]} \quad ; \quad f = \frac{1}{T}$$

Piet Schreurs (TU/e)

### Stress response

$$\begin{split} \sigma(t) &= \int_{\tau = -\infty}^{t} E(t - \tau) \varepsilon_0 \omega \cos(\omega \tau) \, d\tau \\ &= \varepsilon_0 \omega \int_{\xi = -\infty}^{t} E(t - \tau) \cos(\omega \tau) \, d\tau \\ &\quad t - \tau = s \quad \rightarrow \quad \tau = t - s \quad \rightarrow \quad d\tau = -ds \\ &= \varepsilon_0 \omega \int_{s = 0}^{\infty} E(s) \cos\{\omega(t - s)\} \, ds \\ &\quad \cos(\omega t - \omega s) = \cos(\omega t) \cos(\omega s) + \sin(\omega t) \sin(\omega s) \\ &= \varepsilon_0 \left[ \omega \int_{s = 0}^{\infty} E(s) \sin(\omega s) \, ds \right] \sin(\omega t) + \varepsilon_0 \left[ \omega \int_{s = 0}^{\infty} E(s) \cos(\omega s) \, ds \right] \cos(\omega t) \\ &= \varepsilon_0 E' \sin(\omega t) + \varepsilon_0 E'' \cos(\omega t) \end{split}$$

$$E'(\omega) = \omega \int_{s=0}^{\infty} E(s) \sin(\omega s) ds$$
 : storage modulus  $E''(\omega) = \omega \int_{s=0}^{\infty} E(s) \cos(\omega s) ds$  : loss modulus

Piet Schreurs (TU/e) 152 / 694

### **Energy dissipation**

one period  $0 \le t \le \frac{2\pi}{\omega} = T = \frac{1}{f}$  dissipated energy per unit of volume

$$\begin{split} U_{d} &= \int_{\varepsilon(0)}^{\varepsilon(T)} \sigma \, d\varepsilon = \int_{t=0}^{T} \sigma \dot{\varepsilon} \, dt \\ &= \int_{t=0}^{T} \{ \varepsilon_{0} E' \sin(\omega t) + \varepsilon_{0} E'' \cos(\omega t) \} \{ \varepsilon_{0} \omega \cos(\omega t) \} \, dt \\ &= \int_{t=0}^{T} \varepsilon_{0}^{2} \omega \, \{ E' \sin(\omega t) \cos(\omega t) + E'' \cos^{2}(\omega t) \} \, dt \\ &= \int_{t=0}^{T} \varepsilon_{0}^{2} \omega \, \{ \frac{1}{2} E' \sin(2\omega t) + \frac{1}{2} E'' + \frac{1}{2} E'' \cos(2\omega t) \} \, dt \\ &= \frac{1}{2} \varepsilon_{0}^{2} \omega \, \left[ -E' \frac{1}{2\omega} \cos(2\omega t) + E'' t + E'' \frac{1}{2\omega} \sin(2\omega t) \right]_{0}^{T = \frac{2\pi}{\omega}} \\ &= \frac{1}{2} \varepsilon_{0}^{2} \omega \, \left[ -E' \frac{1}{2\omega} + E' \frac{1}{2\omega} + E'' \frac{2\pi}{\omega} \right] = \pi \varepsilon_{0}^{2} E'' \\ &> 0 \quad \Rightarrow \quad E'' > 0 \quad \to \end{split}$$

Piet Schreurs (TU/e) 153 / 694

#### Phase difference

phase angle  $\delta$  — (phase difference  $\frac{\delta}{\omega})$ 



hysteresis

Piet Schreurs (TU/e) 154 / 694

### Relation between E', E'' and $\delta_{\sigma}$

stress response

$$(\delta = \text{phase angle})$$

$$\begin{split} \sigma(t) &= \sigma_0 \sin(\omega t + \delta) \\ &= \sigma_0 \cos(\delta) \sin(\omega t) + \sigma_0 \sin(\delta) \cos(\omega t) \\ \sigma(t) &= \varepsilon_0 E' \sin(\omega t) + \varepsilon_0 E'' \cos(\omega t) \end{split}$$

storage and loss modulus

amplitude

 $\sigma_0 = \varepsilon_0 \sqrt{(E')^2 + (E'')^2}$ 

Piet Schreurs (TU/e) 155 / 694

# Measured E', E'' and $tan(\delta)$



- measurement of E' and E'' can be done accurately
- $E'(\omega), E''(\omega) \rightarrow E(t)$  via fitting procedure
- range  $\omega$   $\rightarrow$  temperature  $\rightarrow$  DMTA
- measurement of E(t) in relaxation test is difficult
- fit is inaccurate

Piet Schreurs (TU/e) 156 / 694

#### Harmonic stress excitation

$$\sigma(t) = \sigma_0 \sin(\omega t) \quad \rightarrow \quad \dot{\sigma}(t) = \sigma_0 \omega \cos(\omega t)$$

$$\begin{split} \varepsilon(t) &= \int_{\tau=-\infty}^t D(t-\tau) \dot{\sigma}(\tau) \, d\tau \\ &= \int_{\tau=-\infty}^t D(t-\tau) \sigma_0 \omega \cos(\omega \tau) \, d\tau \\ &= \sigma_0 \left[ \omega \int_{s=0}^\infty D(s) \sin(\omega s) \, ds \right] \sin(\omega t) + \sigma_0 \left[ \omega \int_{s=0}^\infty D(s) \cos(\omega s) \, ds \right] \cos(\omega t) \\ &= \sigma_0 D' \sin(\omega t) - \sigma_0 D'' \cos(\omega t) \end{split}$$

$$D'(\omega) = \omega \int_{s=0}^{\infty} D(s) \sin(\omega s) ds$$
 : storage compliance

$$D''(\omega) = -\omega \int_{s=0}^{\infty} D(s) \cos(\omega s) ds$$
 : loss compliance

Piet Schreurs (TU/e) 157 / 694

# Relation between D', D'' and $\delta_{\varepsilon}$

strain response

$$\begin{split} \varepsilon(t) &= \varepsilon_0 \sin(\omega t - \delta) \\ &= \varepsilon_0 \cos(\delta) \sin(\omega t) - \varepsilon_0 \sin(\delta) \cos(\omega t) \\ \varepsilon(t) &= \sigma_0 D' \sin(\omega t) - \sigma_0 D'' \cos(\omega t) \end{split}$$

storage and loss compliance

$$D' = \frac{\varepsilon_0}{\sigma_0} \cos(\delta)$$
 
$$D'' = \frac{\varepsilon_0}{\sigma_0} \sin(\delta)$$
 
$$\rightarrow \begin{cases} \frac{D''}{D'} = \tan(\delta) & \rightarrow \\ \delta = \arctan\left(\frac{D''}{D'}\right) \end{cases}$$
 amplitude 
$$\varepsilon_0 = \sigma_0 \sqrt{(D')^2 + (D'')^2}$$

Piet Schreurs (TU/e) 158 / 694

#### Measured D' and D''



Piet Schreurs (TU/e) 159 / 694

# Relation between (D', D'') and (E', E'')

$$\begin{array}{c} \sigma_0 = \epsilon_0 \sqrt{(E')^2 + (E'')^2} \\ \\ \epsilon_0 = \sigma_0 \sqrt{(D')^2 + (D'')^2} \end{array} \right\} \quad \rightarrow \\ [(E')^2 + (E'')^2][(D')^2 + (D'')^2] = 1 \end{array} \eqno(1)$$

$$\frac{D''}{D'} = \frac{E''}{F'} \quad \rightarrow \quad D'' = D' \frac{E''}{F'} \tag{2}$$

(1) & (2) 
$$D' = \frac{E'}{(E')^2 + (E'')^2} ; \qquad D'' = \frac{E''}{(E')^2 + (E'')^2}$$
 idem 
$$E' = \frac{D'}{(D')^2 + (D'')^2} ; \qquad E'' = \frac{D''}{(D')^2 + (D'')^2}$$

Piet Schreurs (TU/e)

### Complex variables

$$\begin{split} \varepsilon(t) &= \varepsilon_0 \sin(\omega t) = \varepsilon_0 \cos(\omega t - \tfrac{\pi}{2}) = Re \left[ \varepsilon_0 e^{-i\tfrac{\pi}{2}} e^{i\omega t} \right] = Re \left[ \varepsilon^* e^{i\omega t} \right] \\ \sigma(t) &= \sigma_0 \sin(\omega t + \delta) = \sigma_0 \cos(\omega t - \tfrac{\pi}{2} + \delta) = Re \left[ \sigma_0 e^{i(\delta - \tfrac{\pi}{2})} e^{i\omega t} \right] = Re \left[ \sigma^* e^{i\omega t} \right] \end{split}$$

complex modulus and compliance

$$E^* = \frac{\sigma^*}{\varepsilon^*} = \frac{\sigma_0}{\varepsilon_0} e^{i\delta} = \frac{\sigma_0}{\varepsilon_0} \cos(\delta) + i \frac{\sigma_0}{\varepsilon_0} \sin(\delta) = E' + iE''$$

$$D^* = \frac{\varepsilon^*}{\sigma^*} = \frac{\varepsilon_0}{\sigma_0} e^{-i\delta} = \frac{\varepsilon_0}{\sigma_0} \cos(\delta) - i \frac{\varepsilon_0}{\sigma_0} \sin(\delta) = D' - iD''$$

dynamic modulus en compliance

$$E_d = |E^*| = \sqrt{(E')^2 + (E'')^2} = \frac{\sigma_0}{\varepsilon_0}$$
$$D_d = |D^*| = \sqrt{(D')^2 + (D'')^2} = \frac{\varepsilon_0}{\sigma_0}$$

Piet Schreurs (TU/e) 161 / 694

#### Viscoelastic models

Maxwell

Kelvin-Voigt

$$\begin{array}{c}
E \\
\downarrow \\
\eta
\end{array}$$

Standard Solid



Generalized Maxwell



Piet Schreurs (TU/e) 162 / 694

#### Maxwell model



$$\begin{split} \epsilon &= \epsilon_E + \epsilon_\eta \quad \rightarrow \\ \dot{\epsilon} &= \dot{\epsilon}_E + \dot{\epsilon}_\eta = \frac{\dot{\sigma}}{E} + \frac{\sigma}{\eta} \end{split}$$

Piet Schreurs (TU/e) 163 / 694

### Maxwell: stress step excitation

$$\sigma(t) = \sigma_0 H(t, 0) \quad \rightarrow \quad \dot{\sigma}(t) = \sigma_0 \delta(t, 0)$$

$$\begin{split} \dot{\varepsilon}(t) &= \frac{\sigma_0}{E} \, \delta(t,0) + \frac{\sigma_0}{\eta} \\ \varepsilon(t) &= \frac{\sigma_0}{E} H(t,0) + \frac{\sigma_0}{\eta} \, t = \sigma_0 \left[ \frac{1}{\eta} \left( t + \frac{\eta}{E} \right) \right] = \sigma_0 D(t) \end{split}$$





Piet Schreurs (TU/e) 164 / 694

### Maxwell: strain step excitation

$$\varepsilon(t) = \varepsilon_0 H(t,0) \quad \rightarrow \quad \dot{\varepsilon}(t) = \varepsilon_0 \delta(t,0)$$

$$\sigma(t) = \epsilon_0 E \, e^{-\frac{E}{\eta} \, t} = \epsilon_0 E \, e^{-\frac{t}{\tau_m}} = \epsilon_0 E(t)$$





Piet Schreurs (TU/e) 165 / 694

## Maxwell: Boltzmann integrals

creep

$$\varepsilon(t) = \frac{1}{\eta} \int_{\tau = -\infty}^{t} \left\{ (t - \tau) + \frac{\eta}{E} \right\} \dot{\sigma}(\tau) d\tau$$
$$= \int_{\tau = -\infty}^{t} D(t - \tau) \dot{\sigma}(\tau) d\tau$$

relaxation

$$\sigma(t) = \int_{\tau = -\infty}^{t} \left\{ E e^{-\frac{E}{\eta}(t - \tau)} \right\} \dot{\varepsilon}(\tau) d\tau$$
$$= \int_{\tau = -\infty}^{t} E(t - \tau) \dot{\varepsilon}(\tau) d\tau$$

Piet Schreurs (TU/e) 166 / 694

#### Maxwell: harmonic stress excitation

$$\sigma(t) = \sigma_0 \sin(\omega t)$$
  $\rightarrow$   $\dot{\sigma}(t) = \sigma_0 \omega \cos(\omega t)$ 

strain response

$$\begin{split} \dot{\varepsilon}(t) &= \frac{1}{E} \, \sigma_0 \omega \cos(\omega t) + \frac{1}{\eta} \, \sigma_0 \sin(\omega t) \\ \varepsilon(t) &= \sigma_0 \left[ \frac{1}{E} \right] \sin(\omega t) - \sigma_0 \left[ \frac{1}{\eta \omega} \right] \cos(\omega t) \\ &= \varepsilon_P(t) \qquad \qquad \varepsilon_H \text{ damps out} \\ &= \sigma_0 D' \sin(\omega t) - \sigma_0 D'' \cos(\omega t) \end{split}$$

dynamic quantities

$$\begin{split} D' &= \frac{1}{E} \qquad ; \qquad D'' = \frac{1}{\eta \omega} \\ \delta &= \arctan\left(\frac{D''}{D'}\right) = \arctan\left(\frac{E}{\eta \omega}\right) \end{split}$$

Piet Schreurs (TU/e) 167 / 694

#### Maxwell: harmonic strain excitation

$$\varepsilon(t) = \varepsilon_0 \sin(\omega t)$$
  $\rightarrow$   $\dot{\varepsilon}(t) = \varepsilon_0 \omega \cos(\omega t)$ 

stress response

$$\begin{split} \sigma(t) &= \int_{\tau=-\infty}^{t} E(t-\tau)\dot{\varepsilon}(\tau) \, d\tau = E\varepsilon_{0}\omega e^{-\frac{E}{\eta}t} \int_{\tau=0}^{t} e^{\frac{E}{\eta}\tau} \cos(\omega\tau) \, d\tau \\ &= \left[ \frac{E\varepsilon_{0}\omega}{(\frac{E}{\eta})^{2} + \omega^{2}} \frac{E}{\eta} \right] e^{-\frac{E}{\eta}t} + \\ &\qquad \left[ \frac{E\varepsilon_{0}\omega}{(\frac{E}{\eta})^{2} + \omega^{2}} \omega \right] \sin(\omega t) + \left[ \frac{E\varepsilon_{0}\omega}{(\frac{E}{\eta})^{2} + \omega^{2}} \frac{E}{\eta} \right] \cos(\omega t) \\ &= \varepsilon_{0} \left[ \frac{E\omega}{(\frac{E}{\eta})^{2} + \omega^{2}} \omega \right] \sin(\omega t) + \varepsilon_{0} \left[ \frac{E\omega}{(\frac{E}{\eta})^{2} + \omega^{2}} \frac{E}{\eta} \right] \cos(\omega t) \quad \text{for } t \geq 0 \\ &= \varepsilon_{0} \left[ \frac{E\omega^{2}\tau_{m}^{2}}{1 + \omega^{2}\tau_{m}^{2}} \right] \sin(\omega t) + \varepsilon_{0} \left[ \frac{E\omega\tau_{m}}{1 + \omega^{2}\tau_{m}^{2}} \right] \cos(\omega t) \\ &= \varepsilon_{0}E' \sin(\omega t) + \varepsilon_{0}E'' \cos(\omega t) \end{split}$$

Piet Schreurs (TU/e) 168 / 694

#### Maxwell: harmonic strain excitation

dynamic quantities

$$E' = \frac{E\omega^2}{(\frac{E}{\eta})^2 + \omega^2} \quad ; \quad E'' = \frac{E\omega(\frac{E}{\eta})}{(\frac{E}{\eta})^2 + \omega^2} \quad ; \quad \tan(\delta) = \frac{E''}{E'} = \frac{1}{\omega\tau_m}$$

Piet Schreurs (TU/e) 169 / 694

### Kelvin-Voigt model



$$\sigma = \sigma_E + \sigma_\eta = E \, \epsilon + \eta \, \dot{\epsilon}$$

Piet Schreurs (TU/e) 170 / 694

### Kelvin-Voigt: stress step excitation

Piet Schreurs (TU/e) 171 / 694

### Kelvin-Voigt: strain step excitation

$$\varepsilon(t) = \varepsilon_0 H(t,0) \quad \rightarrow \quad \dot{\varepsilon}(t) = \varepsilon_0 \delta(t,0)$$

$$\begin{split} & \sigma(t) = E \varepsilon(t) + \eta \dot{\varepsilon}(t) \\ & \sigma(t) = E \varepsilon_0 + \eta \varepsilon_0 \delta(t,0) = \varepsilon_0 \left[ E + \eta \delta(t,0) \right] = \infty \end{split}$$

Piet Schreurs (TU/e) 172 / 694

# Kelvin-Voigt : Boltzmann integral

$$\begin{split} \varepsilon(t) &= \frac{1}{E} \int_{\tau = -\infty}^{t} \left\{ 1 - \mathrm{e}^{-\frac{E}{\eta}(t - \tau)} \right\} \dot{\sigma}(\tau) \, d\tau \\ &= \int_{\tau = -\infty}^{t} D(t - \tau) \dot{\sigma}(\tau) \, d\tau \end{split}$$

Piet Schreurs (TU/e) 173 / 694

#### Kelvin-Voigt: harmonic stress excitation

$$\sigma(t) = \sigma_0 \sin(\omega t)$$
  $\rightarrow$   $\dot{\sigma}(t) = \sigma_0 \omega \cos(\omega t)$ 

strain response

$$\begin{split} \varepsilon(t) &= \int_{\tau=0}^{t} D(t-\tau) \dot{\sigma}(\tau) \, d\tau \\ &= \sigma_0 \left[ \frac{1}{\left(\frac{E}{\eta}\right)^2 + \omega^2} \, \frac{E}{\eta^2} \right] \sin(\omega t) - \sigma_0 \left[ \frac{\omega}{\left(\frac{E}{\eta}\right)^2 + \omega^2} \, \frac{1}{\eta} \right] \cos(\omega t) \\ &= \sigma_0 \left[ \frac{1}{E(1+\omega^2 \tau_k^2)} \right] \sin(\omega t) - \sigma_0 \left[ \frac{\omega \tau_k}{E(1+\omega^2 \tau_k^2)} \right] \cos(\omega t) \\ &= \sigma_0 D' \sin(\omega t) - \sigma_0 D'' \cos(\omega t) \end{split}$$

Piet Schreurs (TU/e) 174 / 694

### Kelvin-Voigt: harmonic stress excitation

dynamic quantities

$$\begin{split} D'(\omega) &= \frac{1}{\left(\frac{E}{\eta}\right)^2 + \omega^2} \, \frac{E}{\eta^2} = \frac{1}{E(1 + \omega^2 \tau_k^2)} \\ D''(\omega) &= \frac{\omega}{\left(\frac{E}{\eta}\right)^2 + \omega^2} \, \frac{1}{\eta} = \frac{\omega \tau}{E(1 + \omega^2 \tau_k^2)} \\ \tan(\delta) &= \frac{D''}{D'} = \omega \tau_k \qquad \rightarrow \qquad \delta = \arctan\left(\frac{\eta \omega}{E}\right) \end{split}$$

Piet Schreurs (TU/e) 175 / 694

#### Standard Solid model



#### constitutive relations

• 
$$\sigma = \sigma_{\infty} + \sigma_{ve}$$

$$\bullet \quad \dot{\varepsilon} = \dot{\varepsilon}_v + \dot{\varepsilon}_e$$

$$\bullet \quad \dot{\varepsilon}_{\nu} = \frac{1}{\eta} \, \sigma_{\nu e}$$

$$\bullet \quad \sigma_{ve} = E \varepsilon_e \quad \to \quad \dot{\varepsilon}_e = \frac{1}{E} \, \dot{\sigma}_{ve}$$

$$\bullet \quad \varepsilon = \frac{1}{E_{\infty}} \, \sigma_{\infty}$$

#### Standard Solid model



#### constitutive equation

$$\begin{split} \sigma &= \sigma_{\infty} + \sigma_{ve} = E_{\infty} \, \varepsilon + \eta \dot{\varepsilon}_{v} \\ &= E_{\infty} \, \varepsilon + \eta (\dot{\varepsilon} - \dot{\varepsilon}_{e}) = E_{\infty} \, \varepsilon + \eta \dot{\varepsilon} - \eta \, \frac{\dot{\sigma}_{ve}}{E} \\ &= E_{\infty} \, \varepsilon + \eta \dot{\varepsilon} - \frac{\eta}{E} \left( \dot{\sigma} - E_{\infty} \dot{\varepsilon} \right) \quad \rightarrow \\ \sigma &+ \frac{\eta}{E} \, \dot{\sigma} = E_{\infty} \, \varepsilon + \frac{\eta (E + E_{\infty})}{E} \, \dot{\varepsilon} \end{split}$$

Piet Schreurs (TU/e) 177 / 694

## Standard Solid: step excitations









Piet Schreurs (TU/e) 178 / 694

## Standard Solid: Boltzmann integrals

$$\begin{split} \varepsilon(t) &= \int_{\tau = -\infty}^{t} \left\{ \frac{1}{E_{\infty}} - \frac{E}{E_{\infty}(E_{\infty} + E)} e^{-\frac{E_{\infty}E}{\eta(E_{\infty} + E)}(t - \tau)} \right\} \dot{\sigma}(\tau) \, d\tau \\ &= \int_{\tau = -\infty}^{t} D(t - \tau) \dot{\sigma}(\tau) \, d\tau \\ \sigma(t) &= \int_{\tau = -\infty}^{t} \left\{ E_{\infty} + E e^{-\frac{E}{\eta}(t - \tau)} \right\} \dot{\varepsilon}(\tau) \, d\tau \\ &= \int_{\tau = -\infty}^{t} E(t - \tau) \dot{\varepsilon}(\tau) \, d\tau \end{split}$$

Piet Schreurs (TU/e) 179 / 694

#### Generalized Maxwell model



$$E(t) = E_{\infty} + \sum_{i} E_{i} e^{-\frac{t}{\tau_{i}}}$$
 ;  $\tau_{i} = \frac{\eta_{i}}{E_{i}}$ 

equilibrium modulus

$$E_{\infty} = \lim_{t \to \infty} E(t)$$

glass modulus

$$E_g = \lim_{t \to 0} E(t) = E_{\infty} + \sum_i E_i$$

i=1 ightarrow Standard Solid Model

Piet Schreurs (TU/e) 180 / 694

#### Generalized Kelvin model



$$D(t) = \frac{1}{E_g} + \sum_{i} \frac{1}{E_i} (1 - e^{-\frac{t}{\tau_i}})$$
;  $\tau_i = \frac{\eta_i}{E_i}$ 
$$= D_g + \sum_{i} D_i (1 - e^{-\frac{t}{\tau_i}})$$

glass compliance

$$D_g = \frac{1}{E_g} = \lim_{t \to 0} D(t)$$

$$D_{\infty} = \lim_{t \to \infty} D(t) = D_g + \sum_{i} D_i$$

equilibrium compliance

viscoelastic liquid : extra serial dashpot with end viscosity  $\eta_v \rightarrow D(t) = .. + \frac{1}{n} t$ 

Piet Schreurs (TU/e) 181 / 694

#### NUMERICAL IMPLEMENTATION

back to index

## Stress update

stress must be updated  $\quad \rightarrow \quad$  Bolzmann integral must be calculated

we assume "Generalized Maxwell model"

Piet Schreurs (TU/e) 183 / 694

#### Stress relaxation

$$\sigma(t) = \int_{\tau=0}^{t} E(t-\tau)\dot{\varepsilon}(\tau) d\tau$$

$$E(t) = E_{\infty} + \sum_{i=1}^{N} E_{i}e^{-\frac{t}{\tau_{i}}}$$

$$\sigma(t) = \int_{\tau=0}^{t} \left[ E_{\infty} + \sum_{i=1}^{N} E_{i}e^{-\frac{t-\tau}{\tau_{i}}} \right] \dot{\varepsilon}(\tau) d\tau$$

$$= E_{\infty} \varepsilon(t) + \sum_{i=1}^{N} \int_{\tau=0}^{t} E_{i}e^{-\frac{t-\tau}{\tau_{i}}} \dot{\varepsilon}(\tau) d\tau$$

To evaluate the integral, the time is discretized

Piet Schreurs (TU/e) 184 / 694

#### Time discretization

$$\sigma(t) = E_{\infty} \varepsilon(t) + \sum_{i=1}^{N} \int_{\tau=0}^{t} E_{i} e^{-\frac{t-\tau}{\tau_{i}}} \dot{\varepsilon}(\tau) d\tau$$

$$= E_{\infty} \varepsilon(t) + \sum_{i=1}^{N} \left[ e^{-\frac{\Delta t}{\tau_{i}}} \int_{\tau=0}^{t_{n}} E_{i} e^{-\frac{t_{n}-\tau}{\tau_{i}}} \dot{\varepsilon}(\tau) d\tau + E_{i} \int_{\tau=t_{n}}^{t} e^{-\frac{t-\tau}{\tau_{i}}} \dot{\varepsilon}(\tau) d\tau \right]$$

Only the integral over the current increment has to be calculated This can be done analytically after assumption for strain rate :

incremental strain rate is constant

Piet Schreurs (TU/e) 185 / 694

#### Linear incremental strain

$$\int_{\tau=t_n}^{t} e^{-\frac{t-\tau}{\tau_i}} \dot{\varepsilon}(\tau) d\tau$$

$$= \frac{\Delta \varepsilon}{\Delta t} \int_{\tau=t_n}^{t} e^{-\frac{t-\tau}{\tau_i}} d\tau$$

$$= \frac{\Delta \varepsilon}{\Delta t} \tau_i \left(1 - e^{-\frac{\Delta t}{\tau_i}}\right)$$

Piet Schreurs (TU/e) 186 / 694

#### **Stress**

$$\begin{split} \sigma(t) &= E_{\infty} \, \varepsilon(t) + \sum_{i=1}^{N} \sigma_{i}(t) \\ &= E_{\infty} \, \varepsilon(t) + \\ &\sum_{i=1}^{N} \left[ e^{-\frac{\Delta t}{\tau_{i}}} \int\limits_{\tau=0}^{t_{n}} E_{i} e^{-\frac{t_{n}-\tau}{\tau_{i}}} \dot{\varepsilon}(\tau) \, d\tau + \\ &E_{i}\tau_{i} \left( 1 - e^{-\frac{\Delta t}{\tau_{i}}} \right) \frac{\Delta \varepsilon}{\Delta t} \right] \\ &\sigma(t) &= E_{\infty} \, \varepsilon(t) + \sum_{i=1}^{N} \left[ e^{-\frac{\Delta t}{\tau_{i}}} \, \sigma_{i}(t_{n}) + E_{i} p_{i} \Delta \varepsilon \right] \\ &\text{with} \qquad p_{i} &= \frac{\tau_{i}}{\Delta t} \left( 1 - e^{-\frac{\Delta t}{\tau_{i}}} \right) \end{split}$$

Piet Schreurs (TU/e) 187 / 694

#### **Stiffness**

$$\sigma(t) = E_{\infty} \, \varepsilon(t) + \sum_{i=1}^{N} \left[ e^{-rac{\Delta t}{\tau_i}} \sigma_i(t_n) + E_i p_i \Delta \varepsilon 
ight] \quad o$$
 $rac{\partial \sigma}{\partial \lambda} = C_{\lambda} = C_{\varepsilon} = E_{\infty} + \sum_{i=1}^{N} E_i p_i$ 

Piet Schreurs (TU/e) 188 / 694

# Implementation

tr2dviel.m

Piet Schreurs (TU/e) 189 / 694

# Strain step

| Maxwell        | $E_{\infty}=0$ | $E_1 = 1$ | $	au_1 = 0.01$ |
|----------------|----------------|-----------|----------------|
| Standard-Solid | $E_{\infty}=1$ | $E_1 = 1$ | $\tau_1=0.01$  |





Piet Schreurs (TU/e) 190 / 694

## Linear viscoelastic models

|                | $E_{\infty}$ | $E_1$     | $\tau_1$   | $E_2$ | $\tau_2$ | ν |
|----------------|--------------|-----------|------------|-------|----------|---|
| Maxwell        | 0            | 100       | 0.1        | 0     | 0        | 0 |
| Kelvin-Voigt   | 100          | $10^{10}$ | $10^{-12}$ | 0     | 0        | 0 |
| Standard-Solid | 100          | 100       | 0.1        | 0     | 0        | 0 |
| 2-mode         | 100          | 100       | 0.1        | 100   | 0.1      | 0 |



1Dvielexss

α [MPa]







Piet Schreurs (TU/e) 191 / 694

# Multi-mode model response

|    | E [MPa] | τ [s]  |    | E [MPa] | τ [s]  |
|----|---------|--------|----|---------|--------|
| 1  | 3.0e6   | 3.1e-8 | 2  | 1.4e6   | 3.0e-7 |
| 3  | 3.9e6   | 3.0e-6 | 4  | 5.4e6   | 2.9e-5 |
| 5  | 1.3e6   | 2.8e-4 | 6  | 2.3e5   | 2.7e-3 |
| 7  | 7.6e4   | 2.6e-2 | 8  | 3.7e4   | 2.5e-1 |
| 9  | 3.3e4   | 2.5e+0 | 10 | 1.7e4   | 2.4e+1 |
| 11 | 8.0e3   | 2.3e+2 | 12 | 1.2e4   | 2.2e+3 |



Piet Schreurs (TU/e) 192 / 694

## **CREEP**

back to index

## Creep behavior



- primary / stage I / transient creep (delayed elastic effect)
- secondary / steady-state / stage II creep (viscous flow)
- tertiary / stage III / accelerating creep

Piet Schreurs (TU/e) 194 / 694

# Creep strain rate



general model 
$$\dot{\varepsilon}_c = A\,f_\sigma(\sigma)f_\varepsilon(\varepsilon_c)f_T(T)f_t(t)$$
 power law model 
$$\dot{\varepsilon}_c = A\sigma^m\varepsilon_c^nT^p\left(qt^{q-1}\right)$$

Piet Schreurs (TU/e) 195 / 694

## Primary creep

- $T < 0.4 T_m$
- ullet dislocation coalescence ullet entanglement / pile-up -
- hardening
- time-dependent plasticity

$$\dot{\varepsilon}_c = C(\sigma) \exp[-\alpha(\sigma)t]$$

Piet Schreurs (TU/e)

# Secondary creep

- $0.5 T_m < T < 0.6 T_m$
- vacancy movement (self diffusion)

$$\dot{\varepsilon}_c = A \exp\left(-\frac{Q_c}{RT}\right) \left(\frac{\sigma}{E}\right)^n \qquad (n \approx 5)$$

power-law-breakdown model

$$\dot{\varepsilon}_c = A \exp\left(-\frac{Q_c}{RT}\right) \left(\sinh\left(\alpha \frac{\sigma}{E}\right)\right)^5$$

Piet Schreurs (TU/e)

#### Tertiary creep

- $\bullet$  0.6  $T_m < T < 0.8 T_m$
- ullet grain boundary sliding o void initiation/coalescence o inter granular cracks
- diffusional flow
- modelled with damage mechanics

tertiary creep damage model (Kachanov & Rabotnov)

$$\frac{\dot{\varepsilon}_c}{\dot{\varepsilon}_{c0}} = \frac{(\sigma/\sigma_0)^n}{(1-\omega)^m} \qquad ; \qquad \frac{\dot{\omega}}{\dot{\omega}_0} = \frac{(\sigma/\sigma_0)^{\gamma}}{(1-\omega)^{\mu}} \qquad (n \ge \gamma)$$

Piet Schreurs (TU/e)

## Stress functions

| Norton; Bailey (1929)     | $\dot{\varepsilon}_c = K \sigma^n$                                                                         |
|---------------------------|------------------------------------------------------------------------------------------------------------|
| Hooke-Norton              | $\dot{\varepsilon}_c = \frac{\dot{\sigma}}{E} + K \sigma^n$                                                |
| Johnson et.al. (1963)     | $\dot{\varepsilon}_c = D_1 \sigma^{n_1} + D_2 \sigma^{n_2}$                                                |
| Dorn (1955)               | $\dot{\varepsilon}_c = B \exp(\beta \sigma)$                                                               |
| Soderberg (1936)          | $\dot{\varepsilon}_c = B \left[ \exp \left( \frac{\sigma}{\sigma_0} \right) - 1 \right]$                   |
| Prandtl (1928)            | $\dot{\varepsilon}_c = A \sinh\left(\frac{\sigma}{\sigma_0}\right)$                                        |
| Garofalo (1965)           | $\dot{\varepsilon}_c = A \left[ \sinh \left( \frac{\sigma}{\sigma_0} \right) \right]^n$                    |
| Lemaitre, Chaboche (1985) | $\dot{\varepsilon}_c = \left(\frac{\sigma}{\lambda_0}\right)^{N_0} \exp\left(\alpha \sigma^{N_0+1}\right)$ |

Piet Schreurs (TU/e) 199 / 694

## Temperature functions

Kauzmann (1941) 
$$\dot{\varepsilon}_c = A \exp\left(-\frac{\Delta H - \gamma \sigma}{RT}\right)$$
Lifszic (1963) 
$$\dot{\varepsilon}_c = \frac{\sigma}{T} \exp\left(-\frac{\Delta H}{RT}\right)$$
Dorn, Tietz (1949/55) 
$$\varepsilon_c = f\left(t \exp\left[-\frac{\Delta H}{RT}\right]\right) f_\sigma(\sigma)$$
Penny, Marriott (1971) 
$$\varepsilon_c = \left(t \exp\left[-\frac{\Delta H}{RT}\right]\right)^n f_\sigma(\sigma)$$
Boyle, Spence (1983) 
$$\varepsilon_c = C \exp\left(-\frac{\Delta H}{RT}\right) t^m \sigma^n$$

Piet Schreurs (TU/e) 200 / 694

## Time functions

| Andrade (1910)                 | $arepsilon_c = \ln\left(1 + \beta t^{rac{1}{3}} ight) + kt$                            |
|--------------------------------|-----------------------------------------------------------------------------------------|
| Andrade (small $\varepsilon$ ) | $\varepsilon_c = \beta t^{\frac{1}{3}} + kt \approx \beta t^{\frac{1}{3}}$              |
| Bailey (1935)                  | $\varepsilon_c = Ft^n$                                                                  |
| Graham, Walles (1955)          | $arepsilon_c = \sum_{j=1}^M a_j t^{m_j}$                                                |
| McVetty (1934)                 | $\varepsilon_c = G\left(1 - \exp(-qt)\right) + Ht$                                      |
| Findley et.al. (1944)          | $ \varepsilon_c = \varepsilon_1 + \varepsilon_2 t^n $ $(n < 1)$                         |
| Pugh (1975)                    | $\varepsilon_c = \frac{a_1t}{1 + b_1t} + \frac{a_2t}{1 + b_2t} + \dot{\varepsilon}_m t$ |
| Garofalo                       | $ \varepsilon_c = \varepsilon_t (1 - e^{-rt}) + \dot{\varepsilon}_s t $                 |

Piet Schreurs (TU/e) 201 / 694

# Creep model



#### constitutive relations

- $\dot{\varepsilon} = \dot{\varepsilon}_e + \dot{\varepsilon}_c$
- $\sigma = E \varepsilon_e \rightarrow \dot{\varepsilon}_e = \frac{1}{E} \dot{\sigma}$
- $\dot{\varepsilon}_c = A f_{\sigma}(\sigma) f_{\varepsilon_c}(\varepsilon_c) f_T(T) f_t(t) = f(\sigma, \varepsilon_c, T, t)$

#### constitutive equation

$$\dot{\sigma} = E\dot{\epsilon}_e = E\dot{\epsilon} - E\dot{\epsilon}_c = E\dot{\epsilon} - Ef(\sigma, \epsilon_c, T, t)$$

Piet Schreurs (TU/e) 202 / 694

#### NUMERICAL IMPLEMENTATION

back to index

## Stress update

$$\begin{split} \dot{\sigma} &= E\dot{\varepsilon} - Ef(\sigma, \varepsilon_c, T, t) \\ \Delta\sigma &= E\Delta\varepsilon - \Delta t Ef(\sigma, \varepsilon_c, T, t) \\ \sigma - \sigma_n &= E(\varepsilon - \varepsilon_n) - \Delta t Ef(\sigma, \varepsilon_c, T, t) \end{split}$$

- implicit procedure
- explicit procedure

Piet Schreurs (TU/e) 204 / 694

## Implicit stress update

$$\sigma - \sigma_{n} = E(\varepsilon - \varepsilon_{n}) - \Delta t E f(\sigma, \varepsilon_{c}, T, t)$$

$$\sigma^{*} + \delta \sigma - \sigma_{n} = E(\varepsilon - \varepsilon_{n}) - \Delta t E (f^{*} + \delta f) = E(\varepsilon - \varepsilon_{n}) - \Delta t E f^{*} - \Delta t E \delta f$$

$$= E(\varepsilon - \varepsilon_{n}) - \Delta t E f^{*} - \Delta t E \frac{\partial f}{\partial \sigma} \delta \sigma \quad \rightarrow$$

$$\left[1 + \Delta t E \frac{\partial f}{\partial \sigma}\right] \delta \sigma = -\sigma^{*} + \sigma_{n} + E(\varepsilon - \varepsilon_{n}) - \Delta t E f^{*}$$

Piet Schreurs (TU/e) 205 / 694

## Explicit stress update

$$\sigma = \sigma_n + E(\varepsilon - \varepsilon_n) - \Delta t \; Ef(\sigma_n, \varepsilon_{c_n}, T_n, t_n)$$

Piet Schreurs (TU/e) 206 / 694

#### Stiffness

implicit

$$\sigma - \sigma_n - E\varepsilon + E\varepsilon_n + \Delta t \, Ef(\sigma, \varepsilon_c, T, t) = 0$$

$$\delta\sigma + \Delta t \, E \left. \frac{\partial f}{\partial \sigma} \right|^* \delta\sigma - E\delta\varepsilon = 0$$

$$C_\varepsilon = \left( 1 + \Delta t \, E \, \frac{\partial f}{\partial \sigma} \right|^* \right)^{-1} E$$

explicit

$$\begin{split} & \sigma - \sigma_n - E \varepsilon + E \varepsilon_n + \Delta t \ Ef(\sigma_n, \varepsilon_{c_n}, T_n, t_n) = 0 \\ & \delta \sigma = E \delta \varepsilon \quad \to \quad C_{\varepsilon} = E \end{split}$$

Piet Schreurs (TU/e) 207 / 694

# Implementation

tr2delvi.m

Piet Schreurs (TU/e) 208 / 694

# Creep versus viscoelasticity

Maxwell model 
$$(E, \eta)$$
 
$$\begin{aligned} \varepsilon &= \varepsilon_e + \varepsilon_c \quad ; \quad E(t) = E e^{t/\tau} \quad ; \quad \tau = \frac{\eta}{E} \\ \dot{\varepsilon}_c &= \frac{\sigma}{\eta} \quad ; \quad \varepsilon_e = \frac{\sigma}{E} \\ \text{Norton model } (A, m) \\ \dot{\varepsilon}_c &= A \sigma^m \quad ; \quad \varepsilon_e = \frac{\sigma}{E} \end{aligned}$$

| Maxwell | $E = 10^9$ | $\eta=10^9$                | au=1  |
|---------|------------|----------------------------|-------|
| Norton  | $E = 10^9$ | $A=\frac{1}{\eta}=10^{-9}$ | m = 1 |





Piet Schreurs (TU/e) 209 / 694

# General creep model for SnAg-solder

$$\begin{split} & \varepsilon_c(t) = \varepsilon_0 + A(\sigma) \left[ 1 - \mathrm{e}^{-\alpha(\sigma,T)t} \right] + B(\sigma,T) \left[ \mathrm{e}^{\alpha(\sigma,T)t} - 1 \right] \\ & \alpha(\sigma,T) = c_1 \left[ \sinh(\beta\sigma) \right]^{n_1} \mathrm{e}^{-\frac{Q_1}{RT}} \\ & A(\sigma) = c_2 \sigma^{n_2} \\ & B(\sigma,T) = c_3 \sigma^{n_3} \mathrm{e}^{-\frac{Q_2}{RT}} \end{split}$$

Piet Schreurs (TU/e) 210 / 694

# General creep model for SnAg-solder

$$\dot{\varepsilon}_{c} = A\alpha e^{-\alpha t} + B\alpha e^{\alpha t} \; ; \; \dot{\varepsilon}_{c,i} = \dot{\varepsilon}_{c}(t=0) = \alpha(A+B) \; ; \; t_{m} = \frac{1}{2\alpha} \ln\left(\frac{A}{B}\right)$$

$$\dot{\varepsilon}_{c,m} = \dot{\varepsilon}_{c}(t=t_{m}) = 2\alpha\sqrt{AB} \quad ; \quad \varepsilon_{c,m} = \varepsilon_{c}(t=t_{m}) = \varepsilon_{0} + A - B$$

| ε <sub>0</sub>        | 0                     |                |      |
|-----------------------|-----------------------|----------------|------|
| $c_1$                 | $1.73 \times 10^{5}$  | $n_1$          | 4.66 |
| β                     | 0.095                 | $Q_1$          | 70   |
| <i>c</i> <sub>2</sub> | $2.06 \times 10^{-3}$ | n <sub>2</sub> | 1.1  |
| <i>c</i> <sub>3</sub> | $9.65 \times 10^{-4}$ | n <sub>3</sub> | 2.38 |
| $Q_2$                 | 17.8                  |                |      |



Piet Schreurs (TU/e) 211 / 694

# Special creep model for SnAg-solder

Wiese (2005): 2-term model Sn4Ag0.5Cu

$$\dot{\epsilon}_c = A_1 \sigma^{m_1} e^{e_1/T} + A_2 \sigma^{m_2} e^{e_2/T}$$

| E = 59.533 - 66.667 T |            |               |  |
|-----------------------|------------|---------------|--|
| $A_1 = 4.10^{-7}$     | $m_1 = 3$  | $e_1 = -3223$ |  |
| $A_1 = 1.10^{-12}$    | $m_1 = 12$ | $e_1 = -7348$ |  |



Piet Schreurs (TU/e) 212 / 694

## **VISCOPLASTIC**

back to index

# Viscoplastic material behavior



```
\begin{array}{c} \mathsf{viscoelastic} \; (\mathsf{rate} \; \mathsf{effects}) \\ \mathsf{elastoplastic} \; (\mathsf{permanent} \; \mathsf{deformation}) \end{array} \right\} \quad \rightarrow \mathsf{viscoplastic}
```

Piet Schreurs (TU/e) 214 / 694

# Softening



polymers

Piet Schreurs (TU/e) 215 / 694

# Viscoplastic (Perzyna) model



#### constitutive relations

$$\begin{array}{lll} \bullet & f = \bar{\sigma} - \sigma_y & \text{with} & f < 0 & \rightarrow & \text{elastic} \\ & & f \geq 0 & \rightarrow & \text{viscoplastic} \end{array}$$

$$\bullet \quad \sigma_y = \sigma_y(\sigma_{y0}, \bar{\varepsilon}_{vp}) \qquad \qquad \bullet \quad \bar{\sigma} = |\sigma|$$

• 
$$\dot{\varepsilon} = \dot{\varepsilon}_e + \dot{\varepsilon}_{vp}$$

• 
$$\sigma = E \varepsilon_e \rightarrow \dot{\varepsilon}_e = \frac{1}{E} \dot{\sigma}$$

• 
$$\sigma = E \varepsilon_{e} \rightarrow \dot{\varepsilon}_{e} = \frac{1}{E} \dot{\sigma}$$
  
•  $\dot{\varepsilon}_{vp} = \dot{\lambda} \frac{\partial f}{\partial \sigma} = \dot{\lambda} \frac{\sigma}{\bar{\sigma}} ; \dot{\varepsilon}_{vp} = |\dot{\varepsilon}_{vp}|$   
•  $\bar{\varepsilon}_{vp} = \int_{\tau=0}^{t} \dot{\bar{\varepsilon}}_{vp} d\tau$ 

$$\bullet \quad \bar{\varepsilon}_{vp} = \int_{-\infty}^{t} \dot{\bar{\varepsilon}}_{vp} \, d\tau$$

• 
$$\dot{\lambda} = \gamma \phi(f) = \gamma (f/\sigma_{v0})^N$$

Piet Schreurs (TU/e) 216 / 694

## Hardening laws

$$\sigma_{y} = \sigma_{y0} + H\bar{\epsilon}_{vp} + a\bar{\epsilon}_{vp}^{2} + b\bar{\epsilon}_{vp}^{3} + c\bar{\epsilon}_{vp}^{4} + d\bar{\epsilon}_{vp}^{7}$$

- parameters fitted with compression tests to prevent instability
- 7th-order polynomial is used for polycarbonate

Piet Schreurs (TU/e) 217 / 694

### Constitutive equations

$$\begin{cases} &\dot{\sigma} = E\dot{\epsilon}_e = E(\dot{\epsilon} - \dot{\epsilon}_{\textit{Vp}}) = E\{\dot{\epsilon} - \dot{\lambda} \left(\frac{\sigma}{\bar{\sigma}}\right)\} \\ &\dot{\lambda} = \gamma \varphi \end{cases}$$
 
$$\begin{cases} &\Delta \sigma = E\Delta \epsilon - E\Delta \lambda \left(\frac{\sigma}{\bar{\sigma}}\right) \\ &\Delta \lambda = \gamma \varphi \Delta t \end{cases}$$
 
$$\begin{cases} &\sigma - \sigma_n = E\epsilon - E\epsilon_n - E(\lambda - \lambda_n) \left(\frac{\sigma}{\bar{\sigma}}\right) \\ &\lambda - \lambda_n = \gamma \varphi \Delta t \end{cases}$$

- f > 0 is allowed  $\rightarrow$  "overstress model" (no consistency equation)
- viscoplastic multiplier  $\lambda$  cannot be eliminated

Piet Schreurs (TU/e) 218 / 694

### NUMERICAL IMPLEMENTATION

back to index

## Elastic stress predictor

$$\sigma_e = \sigma_n + E(\varepsilon - \varepsilon_n)$$

• 
$$f = \bar{\sigma}_e - \sigma_{y_n} \leq 0$$
  $ightarrow$  elastic increment

$$f=ar{\sigma}_{\rm e}-\sigma_{y_n}>0 \qquad 
ightarrow {
m elastoviscoplastic} {
m increment}$$

Piet Schreurs (TU/e) 220 / 694

#### Elastic increment

$$\sigma(t_{n+1}) = \sigma_{e}$$

$$\bar{\varepsilon}_{\nu\rho}(t_{n+1}) = \bar{\varepsilon}_{\nu\rho}(t_{n}) = \bar{\varepsilon}_{\nu\rho_{n}}$$

$$\sigma_{\nu}(t_{n+1}) = \sigma_{\nu}(t_{n}) = \sigma_{\nu_{n}}$$

Piet Schreurs (TU/e) 221 / 694

## Elastoviscoplastic increment

$$\begin{cases} & \Delta \sigma = E \Delta \varepsilon - E \Delta \lambda \left(\frac{\sigma}{\bar{\sigma}}\right) \} \\ & \Delta \lambda = \gamma \phi \Delta t \end{cases}$$

$$\begin{cases} & \sigma - \sigma_n = E \varepsilon - E \varepsilon_n - E(\lambda - \lambda_n) \left(\frac{\sigma}{\bar{\sigma}}\right) \\ & \lambda - \lambda_n = \Delta t \gamma \phi \end{cases}$$

- implicit
- explicit

Piet Schreurs (TU/e) 222 / 694

## Implicit stress update

$$\begin{cases} & \sigma - \sigma_n = E\varepsilon - E\varepsilon_n - E(\lambda - \lambda_n) \left(\frac{\sigma}{\overline{\sigma}}\right) \\ & \lambda - \lambda_n = \Delta t \gamma \phi \end{cases}$$

$$\begin{cases} & \sigma^* + \delta \sigma - \sigma_n = E\varepsilon - E\varepsilon_n - E(\lambda^* + \delta \lambda - \lambda_n) \left\{ \left(\frac{\sigma}{\overline{\sigma}}\right)^* + \delta \left(\frac{\sigma}{\overline{\sigma}}\right) \right\} \\ & \lambda^* + \delta \lambda - \lambda_n = \Delta t \gamma (\phi^* + \delta \phi) \end{cases}$$

linearization and reorganization

$$\begin{cases} \delta \sigma + \left[ E \left( \frac{\sigma}{\bar{\sigma}} \right)^* \right] \delta \lambda \\ = -\sigma^* + \sigma_n + E\varepsilon - E\varepsilon_n - E(\lambda^* - \lambda_n) \left( \frac{\sigma}{\bar{\sigma}} \right)^* \\ \left[ -\Delta t \gamma \frac{\partial \phi}{\partial \sigma} \right] \delta \sigma + \left[ 1 - \Delta t \gamma \frac{\partial \phi}{\partial \lambda} \right] \delta \lambda \\ = -\lambda^* + \lambda_n + \Delta t \gamma \phi^* \end{cases}$$

Piet Schreurs (TU/e) 223 / 694

## Implicit stress update

$$\frac{\partial \varphi}{\partial \lambda} = \frac{\frac{d \varphi}{d f}}{\frac{d f}{d \sigma_y}} \frac{d \sigma_y}{d \bar{\epsilon}_{\textit{vp}}} \frac{d \bar{\epsilon}_{\textit{vp}}}{d \lambda} = \frac{\frac{d \varphi}{d f}}{\frac{d f}{d f}} (-1) \, H \left(\frac{\sigma}{\bar{\sigma}}\right)^* = -\frac{\frac{d \varphi}{d f}}{\frac{d f}{d f}} \, H \left(\frac{\sigma}{\bar{\sigma}}\right)^*$$

$$\frac{\partial \Phi}{\partial \sigma} = \frac{d\Phi}{df} \frac{df}{d\sigma} = \frac{d\Phi}{df} \left(\frac{\sigma}{\overline{\sigma}}\right)^*$$

$$\frac{d\Phi}{df} = N \left( \frac{f}{\sigma_{y0}} \right)^{N-1} \frac{1}{\sigma_{y0}}$$

Piet Schreurs (TU/e) 224 / 694

## Explicit stress update

$$\begin{cases} & \sigma - \sigma_n = E\varepsilon - E\varepsilon_n - E(\lambda - \lambda_n) \left(\frac{\sigma}{\overline{\sigma}}\right) \\ & \lambda - \lambda_n = \Delta t \gamma \Phi \end{cases} \\ & \begin{cases} & \sigma - \sigma_n = E\varepsilon - E\varepsilon_n - E(\lambda - \lambda_n) \left(\frac{\sigma_n}{\overline{\sigma}_n}\right) \\ & \lambda - \lambda_n = \Delta t \gamma \Phi_n \end{cases} \\ & \begin{cases} & \sigma + E\left(\frac{\sigma_n}{\overline{\sigma}_n}\right) \lambda = \sigma_n + E\varepsilon - E\varepsilon_n + E\lambda_n \left(\frac{\sigma_n}{\overline{\sigma}_n}\right) \\ & \lambda = \lambda_n + \Delta t \gamma \Phi_n \left(\frac{\sigma_n}{\overline{\sigma}_n}\right) \end{cases} \end{cases}$$

Piet Schreurs (TU/e) 225 / 694

## Stiffness: implicit

$$\begin{split} \sigma - \sigma_n &= E(\varepsilon - \varepsilon_n) - E(\lambda - \lambda_n) \left(\frac{\sigma}{\overline{\sigma}}\right) \\ \lambda - \lambda_n &= \Delta t \gamma \phi \end{split}$$

$$\delta \sigma &= E \, \delta \varepsilon - E \, \delta \lambda \left(\frac{\sigma}{\overline{\sigma}}\right) - E(\lambda - \lambda_n) \left(\frac{1}{\overline{\sigma}}\right) \delta \sigma \\ \delta \lambda &= \Delta t \gamma \delta \phi = \Delta t \gamma \frac{\partial \phi}{\partial \sigma} \delta \sigma + \Delta t \gamma \frac{\partial \phi}{\partial \lambda} \delta \lambda \end{split}$$

$$\delta \sigma &= E \, \delta \varepsilon - E \left(\frac{\sigma}{\overline{\sigma}}\right) \frac{\gamma \Delta t \frac{\partial \phi}{\partial \sigma}}{1 - \gamma \Delta t \frac{\partial \phi}{\partial \lambda}} \delta \sigma - E(\lambda - \lambda_n) \left(\frac{1}{\overline{\sigma}}\right) \delta \sigma$$

$$C_{\varepsilon} = \frac{E\left\{1 - \gamma \Delta t \frac{\partial \Phi}{\partial \lambda}\right\}}{\left\{1 - \gamma \Delta t \frac{\partial \Phi}{\partial \lambda}\right\} + E\left(\frac{\sigma}{\overline{\sigma}}\right) \gamma \Delta t \frac{\partial \Phi}{\partial \sigma} + E(\lambda - \lambda_n) \frac{1}{\overline{\sigma}} \left\{1 - \gamma \Delta t \frac{\partial \Phi}{\partial \lambda}\right\}}$$

Piet Schreurs (TU/e) 226 / 694

## Stiffness: explicit

$$\begin{cases} \sigma - \sigma_n = E\varepsilon - E\varepsilon_n - E(\lambda - \lambda_n) \left(\frac{\sigma_n}{\overline{\sigma}_n}\right) \\ \lambda - \lambda_n = \Delta t \gamma \phi_n \end{cases}$$

$$\begin{cases} \delta \sigma = E\delta\varepsilon - E\delta\lambda \left(\frac{\sigma_n}{\overline{\sigma}_n}\right) \\ \delta\lambda = 0 \end{cases}$$

$$C_{\varepsilon} = E$$

Piet Schreurs (TU/e) 227 / 694

## Implementation

tr2dperz.m

Piet Schreurs (TU/e) 228 / 694

### Prescribed constant strain rates

$$\Delta I(t) = u(t) = u_0 f(t) \quad \rightarrow \quad \lambda(t) = 1 + \frac{u_0}{l_0} f(t) \quad \rightarrow \quad f(t) = \frac{l_0}{u_0} \left( \lambda(t) - 1 \right)$$

#### linear strain

$$\dot{\varepsilon}_I = \dot{\lambda} = c \quad \rightarrow \quad \lambda(t) = ct + 1 \quad \rightarrow \quad f(t) = \frac{l_0}{u_0} c t$$
 $\lambda_e = \lambda(t_e) = ct_e + 1 \quad \rightarrow \quad t_e = \frac{1}{c} \left( \lambda_e - 1 \right)$ 

#### logarithmic strain

$$\begin{split} \dot{\epsilon}_{\mathit{ln}} &= \frac{\dot{\lambda}}{\lambda} = c \quad \rightarrow \quad \ln(\lambda) = ct \quad \rightarrow \quad \lambda(t) = e^{ct} \quad \rightarrow \quad f(t) = \frac{\mathit{l}_0}{\mathit{u}_0} \left( e^{ct} - 1 \right) \\ \lambda_e &= \lambda(t_e) = e^{ct_e} \quad \rightarrow \quad t_e = \frac{1}{c} \ln(\lambda_e) \end{split}$$

229 / 694

### Tensile test at various strain rates



| initial length $I_0$               | 1 100 | mm |
|------------------------------------|-------|----|
| initial cross-sectional area $A_0$ |       |    |

$$\sigma_{y} = \sigma_{v0} + H\bar{\epsilon}_{vp} + a\bar{\epsilon}_{vp}^{2} + b\bar{\epsilon}_{vp}^{3} + c\bar{\epsilon}_{vp}^{4} + d\bar{\epsilon}_{vp}^{7}$$

| Ε             | 1800  | MPa | ν | 0.37  | -   |
|---------------|-------|-----|---|-------|-----|
| $\sigma_{v0}$ | 37    | MPa | Н | -200  | MPa |
| γ             | 0.001 | 1/s | Ν | 3     | -   |
| a             | 500   | MPa | b | 700   | MPa |
| С             | 800   | MPa | d | 30000 | MPa |

$$\dot{\varepsilon}_I = \{0.01, 0.1, 1\}$$

Piet Schreurs (TU/e) 230 / 694

#### Tensile test at various strain rates

NB: linear strain is used :  $\dot{\varepsilon} = \dot{\lambda} = dGldt$ 





Piet Schreurs (TU/e) 231 / 694

## Tensile test at various time steps



Piet Schreurs (TU/e) 232 / 694

### NONLINEAR VISCOELASTIC

back to index

### Nonlinear viscoelastic material behavior



- ullet compression test of polymers o
- OA : linear viscoelastic
- AB : nonlinear viscoelastic
- ullet B : "(maximum) yield stress" ( $\sigma_{yma}$ ) follwed by flow (creep)
- BC : softening
- C: "minimum yield stress"  $(\sigma_{ymi})$
- CD : hardening
- different strain rate dependency

Piet Schreurs (TU/e) 234 / 694

# Strain rate dependency : PC





Piet Schreurs (TU/e) 235 / 694

## Strain rate dependency: PMMA





Piet Schreurs (TU/e) 236 / 694

## Aging



- ullet rejuvenation ullet no softening
- ullet aging o softening

Piet Schreurs (TU/e) 237 / 694

### Nonlinear viscoelastic model

- Linear viscoelastic behavior
- Non-linear viscoelastic behavior
- Softening
- Hardening

Piet Schreurs (TU/e) 238 / 694

### Linear viscoelastic behavior



$$\sigma(t) = \int_{t}^{t} E(t-\xi)\dot{\varepsilon}(\xi) d\xi \quad ; \quad E(x) = E_{\infty} + \sum_{i=1}^{N} E_{i}e^{-\frac{x}{\tau_{i}}} \quad ; \quad \tau_{i} = \frac{\eta_{i}}{E_{i}}$$



239 / 694

#### Nonlinear viscoelastic behavior

$$\sigma(t) = \int_{\xi = -\infty}^{t} E(\psi - \psi') \dot{\epsilon}(\xi) d\xi$$

$$\psi = \int_{\zeta = -\infty}^{t} \frac{d\zeta}{a_{\sigma} \{\sigma(\zeta)\}} ; \qquad \psi' = \int_{\zeta = -\infty}^{\xi} \frac{d\zeta}{a_{\sigma} \{\sigma(\zeta)\}}$$

$$E(x) = E_{\infty} + \sum_{i=1}^{N} E_{i} e^{-\frac{x}{\tau_{i}(\sigma)}}$$

$$\sigma$$

Piet Schreurs (TU/e) 240 / 694

 $\varepsilon_{In}$ 

## Softening = tertiary creep



- $\dot{\varepsilon} = \dot{\varepsilon}_e + \dot{\varepsilon}_v$
- $\begin{aligned} \bullet & \sigma = E \varepsilon_e & \to & \dot{\varepsilon}_e = \frac{1}{E} \, \dot{\sigma} \\ \bullet & \dot{\varepsilon}_v = \frac{1}{\eta(\bar{s}, T, D)} \, \sigma & ; & \bar{s} = |s| \end{aligned}$
- $\bullet \quad \dot{D} = \left(1 \frac{D}{D_{\infty}}\right) h \dot{\bar{\epsilon}}_{\nu} \qquad ; \qquad \dot{\bar{\epsilon}}_{\nu} = |\dot{\epsilon}_{\nu}|$



Piet Schreurs (TU/e) 241 / 694

## Hardening



- $\dot{\varepsilon} = \dot{\varepsilon}_e + \dot{\varepsilon}_v$
- $\sigma = s + w = E \varepsilon_e + H \varepsilon$
- $\dot{\varepsilon}_{v} = \frac{1}{\eta(\bar{s}, T, D)} s$  ;  $\bar{s} = |s|$
- $\dot{D} = \left(1 \frac{D}{D_{\infty}}\right)h\dot{\bar{\epsilon}}_{v}$  ;  $\dot{\bar{\epsilon}}_{v} = |\dot{\epsilon}_{v}|$



Piet Schreurs (TU/e) 242 / 694

## Aging and hardening (newest model)



- $\dot{\varepsilon} = \dot{\varepsilon}_e + \dot{\varepsilon}_v$
- $\sigma = s + \Delta \sigma_v + w = E \varepsilon_e + \Delta \sigma_v + H \varepsilon$
- $\bullet \quad \dot{\epsilon}_{\nu} = \frac{1}{\eta(\bar{s}, T, \textcolor{red}{S})} \, s \qquad ; \qquad \bar{s} = |s|$

Piet Schreurs (TU/e) 243 / 694

# Aging and hardening (newest model)

• 
$$S(t, \bar{\varepsilon}_v) = S_a(t) R_{\gamma}(\bar{\varepsilon}_v)$$

• 
$$R_{\gamma}(\bar{\epsilon}_{\nu}) = \left[\left\{1 + \left(r_0 e^{\bar{\epsilon}_{\nu}}\right)^{r_1}\right\} / \left\{1 + r_0^{r_1}\right\}\right]^{\frac{r_2 - 1}{r_1}}$$
 ;  $0 < R < 1$ 

• 
$$S_{\alpha}(t) = S_a(t_{eff}) = c_0 + c_1 \ln \left[ \frac{t_{eff} + t_a}{t_0} \right]$$

• 
$$t_{eff}(T,\bar{s}) = \int_{\xi=0}^{t} \frac{d\xi}{\alpha_{T}(T(\xi))\alpha_{\sigma}(\bar{s}(\xi))}$$

• 
$$t_a = exp\left(\frac{S_{\alpha}(0) - c_0}{c_1}\right)$$

• 
$$\Delta \sigma_y = \sigma_y(t) - \sigma_{y0} = \frac{c}{c_1} \{ S_{\alpha}(t) - c_0 \}$$

Piet Schreurs (TU/e) 244 / 694

## Eyring viscosity

$$\begin{split} \eta &= A_0 \, \frac{\bar{s}}{\sqrt{3} \, \sinh \left(\bar{s}/(\sqrt{3}\tau_0)\,\right)} \, \exp \left[\frac{\Delta H}{RT} + \frac{\mu p}{\tau_0} - D\right] \\ \bar{s} &= |s| \quad ; \quad p = -\frac{1}{3} s \quad ; \quad \tau_0 = \frac{RT}{V} \end{split}$$

Piet Schreurs (TU/e) 245 / 694

## Bodner-Partom viscosity

$$\eta = \frac{\bar{s}}{\sqrt{12\Gamma_0}} \exp\left[\frac{1}{2} \left(\frac{Z}{\bar{s}}\right)^{2n}\right]$$

$$Z = Z_1 + (Z_0 - Z_1) \exp\left[-m\bar{\epsilon}_p\right]$$

Piet Schreurs (TU/e) 246 / 694

### Nonlinear viscoelastic model older model



• 
$$\dot{\varepsilon} = \dot{\varepsilon}_e + \dot{\varepsilon}_v$$

• 
$$\sigma = s + w = E \varepsilon_e + H \varepsilon$$

• 
$$\dot{\varepsilon}_{v} = \frac{1}{n(\bar{s}, T, D)} s$$
 ;  $\bar{s} = |s|$ 

$$\begin{split} \bullet & \dot{\varepsilon}_{v} = \frac{1}{\eta(\bar{s}, T, D)} s & ; & \bar{s} = |s| \\ \bullet & \dot{D} = \left(1 - \frac{D}{D_{\infty}}\right) h \dot{\bar{\varepsilon}}_{v} & ; & \dot{\bar{\varepsilon}}_{v} = |\dot{\varepsilon}_{v}| \end{split}$$

Piet Schreurs (TU/e) 247 / 694

#### Nonlinear viscoelastic model older model

#### constitutive equations

$$\begin{array}{lll} \dot{\varepsilon}_{e} & = & \dot{\varepsilon} - \dot{\varepsilon}_{v} = \dot{\varepsilon} - \frac{1}{\eta(\bar{s}, T, D)} \, s = \dot{\varepsilon} - \frac{E}{\eta(\bar{s}, T, D)} \, \varepsilon_{e} \\ \\ \sigma & = & s + w = E \, \varepsilon_{e} + H \, \varepsilon \\ \\ \dot{D} & = & \left(1 - \frac{D}{D_{\infty}}\right) \, h \dot{\bar{\varepsilon}}_{v} \\ \end{array} \right\}$$

Piet Schreurs (TU/e) 248 / 694

### NUMERICAL IMPLEMENTATION

back to index

## Stress update

$$\begin{cases} &\dot{\varepsilon}_{e}=\dot{\varepsilon}-E\zeta(\bar{s},T,D)\varepsilon_{e}\\ &\dot{D}=\left(1-\frac{D}{D_{\infty}}\right)h\dot{\bar{\varepsilon}}_{v}\\ &\\ &\Delta\varepsilon_{e}=\Delta\varepsilon-\Delta tE\zeta(\bar{s},T,D)\varepsilon_{e}\\ &\Delta D=\left(1-\frac{D}{D_{\infty}}\right)h\Delta\bar{\varepsilon}_{v} \end{cases}$$

Piet Schreurs (TU/e) 250 / 694

## Implicit stress update

$$\begin{cases} & \varepsilon_{e} - \varepsilon_{en} = \varepsilon - \varepsilon_{n} - \Delta t E \zeta(\bar{s}, T, D) \varepsilon_{e} \\ & D - D_{n} = \left(1 - \frac{D}{D_{\infty}}\right) h \Delta \bar{\varepsilon}_{v} \end{cases}$$

$$\begin{cases} & \varepsilon_{e}^{*} + \delta \varepsilon_{e} - \varepsilon_{en} = \varepsilon - \varepsilon_{n} - \Delta t E \zeta(\bar{s}, T, D^{*} + \delta D)(\varepsilon_{e}^{*} + \delta \varepsilon_{e}) \\ & D^{*} + \delta D - D_{n} = \left(1 - \frac{D^{*} + \delta D}{D_{\infty}}\right) h \Delta \bar{\varepsilon}_{v} \end{cases}$$

$$\begin{cases} & \delta \varepsilon_{e} + \Delta t E \zeta(\bar{s}, T, D^{*}) \delta \varepsilon_{e} + \Delta t E \frac{\partial \zeta}{\partial D} \delta D \varepsilon_{e}^{*} \\ & = -\varepsilon_{e}^{*} + \varepsilon_{en} + \varepsilon - \varepsilon_{n} - \Delta t E \zeta(\bar{s}, T, D^{*}) \varepsilon_{e}^{*} \end{cases}$$

$$\begin{cases} & \delta \varepsilon_{e} + \Delta t E \zeta(\bar{s}, T, D^{*}) \delta \varepsilon_{e} + \Delta t E \zeta(\bar{s}, T, D^{*}) \varepsilon_{e}^{*} \\ & = -\varepsilon_{e}^{*} + \varepsilon_{en} + \varepsilon - \varepsilon_{n} - \Delta t E \zeta(\bar{s}, T, D^{*}) \varepsilon_{e}^{*} \end{cases}$$

$$\begin{cases} & \delta \varepsilon_{e} + \Delta t E \zeta(\bar{s}, T, D^{*}) \delta \varepsilon_{e} + \Delta t E \zeta(\bar{s}, T, D^{*}) \varepsilon_{e}^{*} \\ & \delta E_{e} + \Delta t E \zeta(\bar{s}, T, D^{*}) \delta \varepsilon_{e} + \Delta t E \zeta(\bar{s}, T, D^{*}) \varepsilon_{e}^{*} \end{cases}$$

$$\begin{cases} & \delta \varepsilon_{e} + \Delta t E \zeta(\bar{s}, T, D^{*}) \delta \varepsilon_{e} + \Delta t E \zeta(\bar{s}, T, D^{*}) \varepsilon_{e}^{*} \\ & \delta E_{e} + \delta E_{e} + \varepsilon_{e} + \varepsilon_{e} + \varepsilon_{e} + \varepsilon_{e} - \delta E_{e} + \delta E_{e} \end{cases}$$

$$\begin{cases} & \delta \varepsilon_{e} + \Delta t E \zeta(\bar{s}, T, D^{*}) \delta \varepsilon_{e} + \Delta t E \zeta(\bar{s}, T, D^{*}) \varepsilon_{e}^{*} \\ & \delta E_{e} + \delta E_{e} + \varepsilon_{e} + \varepsilon_{e} + \varepsilon_{e} + \varepsilon_{e} - \delta E_{e} + \delta E_{e} \end{cases}$$

$$\begin{cases} & \delta \varepsilon_{e} + \Delta t E \zeta(\bar{s}, T, D^{*}) \delta \varepsilon_{e} + \Delta t E \zeta(\bar{s}, T, D^{*}) \varepsilon_{e}^{*} \\ & \delta E_{e} + \delta E_{e} + \varepsilon_{e} + \varepsilon_{e} + \varepsilon_{e} + \varepsilon_{e} - \delta E_{e} + \delta E_{e} \end{cases}$$

$$\begin{cases} & \delta \varepsilon_{e} + \Delta t E \zeta(\bar{s}, T, D^{*}) \delta \varepsilon_{e} + \Delta t E \zeta(\bar{s}, T, D^{*}) \varepsilon_{e}^{*} \\ & \delta E_{e} + \delta E_{e} \end{cases}$$

$$\begin{cases} & \delta \varepsilon_{e} + \Delta t E \zeta(\bar{s}, T, D^{*}) \delta E_{e} + \delta E_{e} +$$

Piet Schreurs (TU/e) 251 / 694

## Explicit stress update

$$\left\{ \begin{array}{l} \varepsilon_{e} - \varepsilon_{en} = \varepsilon - \varepsilon_{n} - \Delta t E \, \zeta(\bar{s}_{n}, \, T, \, D_{n}) \varepsilon_{en} \\ D - D_{n} = \left(1 - \frac{D_{n}}{D_{\infty}}\right) h \Delta \bar{\varepsilon}_{v} \\ \\ \varepsilon_{e} = \varepsilon - \varepsilon_{n} + \left\{1 - \Delta t E \, \zeta(\bar{s}_{n}, \, T, \, D_{n})\right\} \varepsilon_{en} \\ D = D_{n} + \left(1 - \frac{D_{n}}{D_{\infty}}\right) h \Delta \bar{\varepsilon}_{v} \end{array} \right.$$

Piet Schreurs (TU/e) 252 / 694

# Stiffness: implicit

$$\begin{cases} \sigma = s + w = E\varepsilon_e + H\varepsilon \\ \varepsilon_e - \varepsilon_{en} = \varepsilon - \varepsilon_n - \Delta t E \zeta(\bar{s}, T, D)\varepsilon_e \\ D - D_n = \left(1 - \frac{D}{D_{\infty}}\right) h \Delta \bar{\varepsilon}_v \\ \begin{cases} \delta \sigma = E \delta \varepsilon_e + H \delta \varepsilon \\ \delta \varepsilon_e = \delta \varepsilon - \Delta t E \frac{\partial \zeta}{\partial D} \delta D \varepsilon_e - \Delta t E \zeta(\bar{s}, T, D) \delta \varepsilon_e \\ \delta D = -\frac{\delta D}{D_{\infty}} h \Delta \bar{\varepsilon}_v & \rightarrow \delta D = 0 \end{cases} \\ \begin{cases} \delta \sigma = E \delta \varepsilon_e + H \delta \varepsilon \\ \delta \varepsilon_e = \delta \varepsilon - \Delta t E \zeta(\bar{s}, T, D) \delta \varepsilon_e \\ \delta D = 0 \end{cases} \\ C_{\varepsilon} = \frac{E + H\{1 + \Delta t E \zeta(\bar{s}, T, D)\}}{1 + \Delta t E \zeta(\bar{s}, T, D)} \end{cases}$$

Piet Schreurs (TU/e) 253 / 694

# Stiffness: explicit

$$\begin{cases} & \sigma = s + w = E\varepsilon_e + H\varepsilon \\ & \varepsilon_e - \varepsilon_{en} = \varepsilon - \varepsilon_n - \Delta t E \zeta(\bar{s}_n, T, D_n)\varepsilon_e \\ & D = D_n + \left(1 - \frac{D_n}{D_\infty}\right) h \Delta \bar{\varepsilon}_v \\ & \begin{cases} & \delta \sigma = E \delta \varepsilon_e + H \delta \varepsilon \\ & \delta \varepsilon_e = \delta \varepsilon - \Delta t E \zeta(\bar{s}_n, T, D_n) \delta \varepsilon_e \\ & \delta D = 0 \end{cases} \\ & \delta \sigma = \frac{E}{1 + \Delta t E \zeta(\bar{s}_n, T, D_n)} \delta \varepsilon + H \delta \varepsilon \\ & C_\varepsilon = \frac{E + H\{1 + \Delta t E \zeta(\bar{s}_n, T, D_n)\}}{1 + \Delta t E \zeta(\bar{s}_n, T, D_n)} \end{cases}$$

Piet Schreurs (TU/e) 254 / 694

# **Examples**

|              | PET        | PC         | PS         | PP         |       |
|--------------|------------|------------|------------|------------|-------|
| Ε            | 2400       | 2305       | 3300       | 1092       | MPa   |
| ν            | 0.35       | 0.37       | 0.37       | 0.4        | -     |
| Н            | 15         | 29         | 13         | 3          | MPa   |
| h            | 13         | 270        | 100        | 0          | -     |
| $D_{\infty}$ | 11         | 19         | 14         | -          | -     |
| $A_0$        | 3.8568E-27 | 9.7573E-27 | 4.2619E-34 | 2.0319E-29 | S     |
| $\Delta H$   | 2.617E+05  | 2.9E+05    | 2.6E+5     | 2.2E+5     | J/mol |
| μ            | 0.0625     | 0.06984    | 0.294      | 0.23       | -     |
| $\tau_0$     | 0.927      | 0.72       | 2.1        | 1.0        | MPa   |

Piet Schreurs (TU/e) 255 / 694

## Tensile test at various strain rates



Piet Schreurs (TU/e) 256 / 694

# Tensile test for various polymers



Piet Schreurs (TU/e) 257 / 694

## **VECTORS AND TENSORS**

back to index

#### **Vectors**

$$\begin{split} \vec{a} &= ||a||\vec{e} \quad ; \quad ||\vec{e}|| = 1 \\ \alpha \vec{a} &= \vec{b} \\ \vec{a} + \vec{b} &= \vec{c} \\ \vec{a} \cdot \vec{b} &= ||\vec{a}|| ||\vec{b}|| \cos(\varphi) \\ \vec{c} &= \vec{a} * \vec{b} = \left\{ ||\vec{a}|| ||\vec{b}|| \right\} \sin(\varphi) \, \vec{n} \quad ; \quad ||\vec{n}|| = 1 \\ \vec{a} * \vec{b} \cdot \vec{c} &= \left\{ ||\vec{a}|| ||\vec{b}|| \sin(\varphi) \right\} ||\vec{c}|| \cos(\psi) \\ \vec{a} \vec{b} &= \text{dyad} \quad ; \quad \vec{q} &= \vec{a} \vec{b} \cdot \vec{p} = \vec{p} \cdot (\vec{a} \vec{b})^c \\ \{\vec{e}_1, \vec{e}_2, \vec{e}_3\} \quad ; \quad \vec{e}_i \cdot \vec{e}_{j \neq i} = 0 \quad ; \quad \vec{e}_i \cdot \vec{e}_i = 1 \\ \vec{a} &= \vec{a}^T \vec{e} = \vec{e}^T \vec{a} \end{split}$$

Piet Schreurs (TU/e) 259 / 694

#### Second-order tensors

$$\mathbf{A} = \sum_{i} \alpha_{i} \vec{a}_{i} \vec{b}_{i} \quad ; \quad \mathbf{A} \cdot \vec{p} = \vec{q} \quad ; \quad \mathbf{A} = \vec{\varrho}^{T} \underline{A} \vec{\varrho}$$

$$\mathbf{I} \cdot \vec{a} = \vec{a} \quad \forall \quad \vec{a} \qquad \rightarrow \qquad \mathbf{I} = \vec{\varrho}^{T} \underline{I} \vec{\varrho}$$

$$\mathbf{A}^{c} = \sum_{i} \alpha_{i} \vec{b}_{i} \vec{a}_{i} \quad ; \quad \mathbf{A} \cdot \vec{p} = \vec{p} \cdot \mathbf{A}^{c}$$

$$\alpha \mathbf{A} = \mathbf{B} \quad ; \quad \mathbf{A} + \mathbf{B} = \mathbf{C} \quad ; \quad \mathbf{B} \cdot \mathbf{A} = \mathbf{C}$$

$$\mathbf{A} : \mathbf{B} = \mathbf{A}^{c} : \mathbf{B}^{c} = \text{scalar}$$

$$J_{1}(\mathbf{A}) = \text{tr}(\mathbf{A})$$

$$J_{2}(\mathbf{A}) = \frac{1}{2} \left\{ \text{tr}^{2}(\mathbf{A}) - \text{tr}(\mathbf{A} \cdot \mathbf{A}) \right\}$$

$$J_{3}(\mathbf{A}) = \det(\mathbf{A}) \quad ; \quad \det(\mathbf{A}) = \mathbf{0} \rightarrow \mathbf{A} = \text{singular}$$

$$\mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{I} \quad ; \quad \mathbf{A} = \text{regular}$$

$$\mathbf{A}^{c} = \mathbf{A} \quad ; \quad \mathbf{A}^{c} = -\mathbf{A}$$

$$\vec{a} \cdot \mathbf{A} \cdot \vec{a} > \mathbf{0} \quad \forall \quad \vec{a} \neq \vec{\mathbf{0}}$$

$$(\mathbf{A} \cdot \vec{a}) \cdot (\mathbf{A} \cdot \vec{b}) = \vec{a} \cdot \vec{b} \quad \forall \quad \vec{a}, \vec{b}$$

$$(\mathbf{A} \cdot \vec{a}) \cdot (\mathbf{A} \cdot \vec{b}) = \mathbf{A}^{a} \cdot (\vec{a} * \vec{b}) \quad \forall \quad \vec{a}, \vec{b}$$

Piet Schreurs (TU/e) 260 / 694

#### Fourth-order tensors

$$^{4}$$
A =  $\sum_{i} \alpha_{i} \vec{a}_{i} \vec{b}_{i} \vec{c}_{i} \vec{d}_{i}$  ;  $^{4}$ A : B = C
 $^{4}$ I : A = A  $\forall$  A
 $^{4}$ A · B =  $^{4}$ C

Piet Schreurs (TU/e) 261 / 694

## **COLUMN AND MATRIX NOTATION**

back to index

# Matrix/column notation for second-order tensor

 $3 \times 3$  matrix of a second-order tensor

$$\mathbf{A} = \vec{e}_i A_{ij} \vec{e}_j \quad \rightarrow \quad \underline{A} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$$

column notation

conjugate tensor

$$\mathbf{A}^{c} \to A_{ji} \to \underline{A}^{T} = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix} \to \underline{A}_{zt}^{T}$$

Piet Schreurs (TU/e) 263 / 694

## Column notation for A: B

$$C = \mathbf{A} : \mathbf{B}$$

$$= \vec{e}_i A_{ij} \vec{e}_j : \vec{e}_k B_{kl} \vec{e}_l = A_{ij} \delta_{jk} \delta_{il} B_{kl} = A_{ij} B_{ji}$$

$$= A_{11} B_{11} + A_{12} B_{21} + A_{13} B_{31} +$$

$$A_{21} B_{12} + A_{22} B_{22} + A_{23} B_{32} +$$

$$A_{31} B_{13} + A_{32} B_{23} + A_{33} B_{33}$$

$$= \begin{bmatrix} A_{11} & A_{22} & A_{33} & A_{21} & A_{12} & A_{32} & A_{23} & A_{13} & A_{31} \end{bmatrix}$$

$$\begin{bmatrix} B_{11} & B_{22} & B_{33} & B_{12} & B_{21} & B_{23} & B_{32} & B_{31} & B_{13} \end{bmatrix}^T$$

$$= A_{zt}^T B_{zt} = A_{zt}^T B_{zt}$$

idem

$$C = \mathbf{A} : \mathbf{B}^{c} \qquad \rightarrow \qquad C = \underset{z}{A_{t}^{T}} \underset{z}{\mathcal{B}}_{t} = \underset{z}{A^{T}} \underset{z}{\mathcal{B}}_{z}$$

$$C = \mathbf{A}^{c} : \mathbf{B} \qquad \rightarrow \qquad C = \underset{z}{A^{T}} \underset{z}{\mathcal{B}}_{z} = \underset{z}{A^{T}} \underset{t}{\mathcal{B}}_{z}$$

$$C = \mathbf{A}^{c} : \mathbf{B}^{c} \qquad \rightarrow \qquad C = \underset{t}{A^{T}} \underset{z}{\mathcal{B}}_{z} = \underset{z}{A^{T}} \underset{z}{\mathcal{B}}_{z}$$

Piet Schreurs (TU/e) 264 / 694

# Matrix/column notation $\mathbf{C} = \mathbf{A} \cdot \mathbf{B}$

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B} = \vec{e}_i A_{ik} \vec{e}_k \cdot \vec{e}_l B_{lj} \vec{e}_j = \vec{e}_i A_{ik} \delta_{kl} B_{lj} \vec{e}_j = \vec{e}_i A_{ik} B_{kj} \vec{e}_j \quad \rightarrow$$

$$\underline{C} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} + A_{13}B_{31} \\ A_{11}B_{12} + A_{12}B_{22} + A_{13}B_{32} \\ A_{21}B_{11} + A_{22}B_{21} + A_{23}B_{31} \\ A_{21}B_{12} + A_{22}B_{22} + A_{23}B_{32} \\ A_{21}B_{13} + A_{22}B_{23} + A_{23}B_{33} \\ A_{31}B_{11} + A_{32}B_{21} + A_{33}B_{31} \\ A_{31}B_{12} + A_{32}B_{22} + A_{33}B_{32} \\ A_{31}B_{13} + A_{32}B_{23} + A_{33}B_{33} \end{bmatrix}$$

$$\zeta = \left[ \begin{array}{c} C_{11} \\ C_{22} \\ C_{33} \\ C_{12} \\ C_{21} \\ C_{23} \\ C_{32} \\ C_{33} \\ C_{12} \\ C_{21} \\ C_{23} \\ C_{31} \\ C_{13} \\ C_{13} \end{array} \right] = \left[ \begin{array}{c} A_{11}B_{11} + A_{12}B_{21} + A_{13}B_{31} \\ A_{21}B_{12} + A_{22}B_{22} + A_{23}B_{32} \\ A_{31}B_{13} + A_{32}B_{23} + A_{33}B_{33} \\ A_{11}B_{12} + A_{12}B_{22} + A_{13}B_{32} \\ A_{21}B_{11} + A_{22}B_{21} + A_{23}B_{31} \\ A_{21}B_{13} + A_{22}B_{23} + A_{23}B_{33} \\ A_{31}B_{12} + A_{32}B_{22} + A_{33}B_{32} \\ A_{31}B_{11} + A_{32}B_{21} + A_{33}B_{31} \\ A_{11}B_{13} + A_{12}B_{23} + A_{13}B_{33} \end{array} \right]$$

Piet Schreurs (TU/e) 265 / 694

# Matrix/column notation $C = A \cdot B$

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B} \qquad \rightarrow \qquad \underbrace{C}_{z} = \underline{\underline{A}} \underbrace{B}_{z} = \underline{\underline{A}}_{c} \underbrace{B}_{t}$$

$$C_{z}_{t} = \underline{\underline{A}}_{r} \underbrace{B}_{z} = \underline{\underline{A}}_{rc} \underbrace{B}_{z} \underbrace{B}_{t}$$

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B}^{c} \qquad \rightarrow \qquad \underbrace{C}_{z} = \underline{\underline{A}} \underbrace{B}_{z} = \underline{\underline{A}}_{c} \underbrace{B}_{z}$$

$$\mathbf{C} = \mathbf{A}^{c} \cdot \mathbf{B} \qquad \rightarrow \qquad \underbrace{C}_{z} = \underline{\underline{A}}_{t} \underbrace{B}_{z} = \underline{\underline{A}}_{tc} \underbrace{B}_{z}$$

$$\mathbf{C} = \mathbf{A}^{c} \cdot \mathbf{B}^{c} \qquad \rightarrow \qquad \underbrace{C}_{z} = \underline{\underline{A}}_{t} \underbrace{B}_{z} = \underline{\underline{A}}_{tc} \underbrace{B}_{z}$$

Piet Schreurs (TU/e) 266 / 694

#### Matrix notation of fourth-order tensor

$$^{4}\mathbf{A}=\vec{e}_{i}\vec{e}_{j}A_{ijkl}\vec{e}_{k}\vec{e}_{l}$$
  $\rightarrow$ 

$${}^{4}\textbf{A}^{c} \rightarrow \underline{\underline{A}}^{T}$$
 ;  ${}^{4}\textbf{A}^{rc} \rightarrow \underline{\underline{A}}_{c}$  ;  ${}^{4}\textbf{A}^{lc} \rightarrow \underline{\underline{A}}_{r}$ 

Piet Schreurs (TU/e) 267 / 694

# Matrix/column notation $C = {}^{4}A : B$

$$\begin{aligned} \mathbf{C} &= \ ^{4}\mathbf{A} : \mathbf{B} &\rightarrow \\ \vec{e}_{i}C_{ij}\vec{e}_{j} &= \vec{e}_{i}\vec{e}_{j}A_{ijmn}\vec{e}_{m}\vec{e}_{n} : \vec{e}_{p}B_{pq}\vec{e}_{q} \\ &= \vec{e}_{i}\vec{e}_{j}A_{ijmn}\delta_{np}\delta_{mq}B_{pq} = \vec{e}_{i}\vec{e}_{j}A_{ijmn}B_{nm} &\rightarrow \\ \vec{\zeta} &= \underline{\underline{A}}_{c} \ \vec{\xi}_{j} = \underline{\underline{A}} \ \vec{\xi}_{j} \\ & t \end{aligned}$$

$$\mathbf{C} = \mathbf{B} : {}^{4}\mathbf{A} \rightarrow$$

$$\vec{e}_{i}C_{ij}\vec{e}_{j} = \vec{e}_{p}B_{pq}\vec{e}_{q} : \vec{e}_{m}\vec{e}_{n}A_{mnij}\vec{e}_{i}\vec{e}_{j}$$

$$= B_{pq}\delta_{qm}\delta_{pn}A_{mnij}\vec{e}_{i}\vec{e}_{j} = B_{nm}A_{mnij}\vec{e}_{i}\vec{e}_{j} \rightarrow$$

$$C^{T} = \mathcal{B}^{T}\underline{A}_{r} = \mathcal{B}^{T}_{t}\underline{A}_{r}$$

Piet Schreurs (TU/e) 268 / 694

# Matrix notation ${}^{4}C = {}^{4}A \cdot B$

$${}^{4}\mathbf{C} = {}^{4}\mathbf{A} \cdot \mathbf{B} = \vec{e}_{i}\vec{e}_{j}A_{ijkl}\vec{e}_{k}\vec{e}_{l} \cdot \vec{e}_{p}B_{pq}\vec{e}_{q}$$

$$= \vec{e}_{i}\vec{e}_{j}A_{ijkl}\vec{e}_{k}\delta_{lp}B_{pq}\vec{e}_{q} = \vec{e}_{i}\vec{e}_{j}A_{ijkl}B_{lq}\vec{e}_{k}\vec{e}_{q}$$

$$= \vec{e}_{i}\vec{e}_{j}A_{ijkp}B_{pl}\vec{e}_{k}\vec{e}_{l} \longrightarrow$$

$$\underline{\underline{C}} = \begin{bmatrix} A_{111p}B_{p1} & A_{112p}B_{p2} & A_{113p}B_{p3} & A_{111p}B_{p2} & A_{112p}B_{p1} \\ A_{221p}B_{p1} & A_{222p}B_{p2} & A_{223p}B_{p3} & A_{221p}B_{p2} & A_{222p}B_{p1} \\ A_{331p}B_{p1} & A_{332p}B_{p2} & A_{333p}B_{p3} & A_{331p}B_{p2} & A_{332p}B_{p1} \\ A_{121p}B_{p1} & A_{122p}B_{p2} & A_{123p}B_{p3} & A_{121p}B_{p2} & A_{122p}B_{p1} \\ A_{211p}B_{p1} & A_{212p}B_{p2} & A_{213p}B_{p3} & A_{211p}B_{p2} & A_{212p}B_{p1} \end{bmatrix}$$

$$= \begin{bmatrix} A_{1111} & A_{1122} & A_{1133} & A_{1112} & A_{1121} \\ A_{2211} & A_{2222} & A_{2233} & A_{2212} & A_{2221} \\ A_{3311} & A_{3322} & A_{3333} & A_{3312} & A_{3321} \\ A_{1211} & A_{1222} & A_{1233} & A_{1212} & A_{1221} \\ A_{2111} & A_{2122} & A_{2133} & A_{2112} & A_{2121} \end{bmatrix} \begin{bmatrix} B_{11} & 0 & 0 & B_{12} & 0 \\ 0 & B_{22} & 0 & 0 & B_{21} \\ 0 & 0 & B_{33} & 0 & 0 \\ B_{21} & 0 & 0 & B_{22} & 0 \\ 0 & B_{12} & 0 & 0 & B_{11} \end{bmatrix}$$

Piet Schreurs (TU/e) 269 / 694

 $= \underline{A}\underline{B}_{cr} = \underline{A}_{c}\underline{B}_{cr} \longrightarrow \underline{C}_{r} = \underline{A}_{r}\underline{B}_{cr} = \underline{A}_{cr}\underline{B}_{cr}$ 

## Matrix notation ${}^{4}C = B \cdot {}^{4}A$

$${}^{4}\mathbf{C} = \mathbf{B} \cdot {}^{4}\mathbf{A} = \vec{e}_{i}B_{ij}\vec{e}_{j} \cdot \vec{e}_{p}\vec{e}_{q}A_{pqrs}\vec{e}_{r}\vec{e}_{s}$$

$$= \vec{e}_{i}B_{ij}\delta_{jp}\vec{e}_{q}A_{pqrs}\vec{e}_{r}\vec{e}_{s} = \vec{e}_{i}\vec{e}_{q}B_{ij}A_{jqrs}\vec{e}_{r}\vec{e}_{s}$$

$$= \vec{e}_{i}\vec{e}_{j}B_{ip}A_{pjkl}\vec{e}_{k}\vec{e}_{l} \longrightarrow$$

$$\underline{\underline{C}} = \begin{bmatrix} B_{1p}A_{p111} & B_{1p}A_{p122} & B_{1p}A_{p133} & B_{1p}A_{p112} & B_{1p}A_{p121} \\ B_{2p}A_{p211} & B_{2p}A_{p222} & B_{2p}A_{p233} & B_{2p}A_{p212} & B_{2p}A_{p221} \\ B_{3p}A_{p311} & B_{3p}A_{p322} & B_{3p}A_{p333} & B_{3p}A_{p312} & B_{3p}A_{p321} \\ B_{1p}A_{p211} & B_{1p}A_{p222} & B_{1p}A_{p233} & B_{1p}A_{p212} & B_{1p}A_{p221} \\ B_{2p}A_{p111} & B_{2p}A_{p122} & B_{2p}A_{p133} & B_{2p}A_{p112} & B_{2p}A_{p121} \end{bmatrix}$$

$$= \begin{bmatrix} B_{11} & 0 & 0 & 0 & B_{12} \\ 0 & B_{22} & 0 & B_{21} & 0 \\ 0 & 0 & B_{33} & 0 & 0 \\ 0 & B_{12} & 0 & B_{11} & 0 \\ B_{21} & 0 & 0 & 0 & B_{22} \end{bmatrix} \begin{bmatrix} A_{1111} & A_{1122} & A_{1133} & A_{1112} & A_{1121} \\ A_{2211} & A_{2222} & A_{2233} & A_{2212} & A_{2221} \\ A_{3311} & A_{3322} & A_{3333} & A_{3312} & A_{3321} \\ A_{1211} & A_{1222} & A_{1233} & A_{1212} & A_{1221} \\ A_{2111} & A_{2122} & A_{2133} & A_{2112} & A_{2121} \end{bmatrix}$$

Piet Schreurs (TU/e) 270 / 694

 $= \underline{B}\underline{A} = \underline{B}\underline{A}\underline{A}$   $\rightarrow \underline{C}_r = \underline{B}_r\underline{A}\underline{A}\underline{A}$ 

# Matrix notation ${}^{4}C = {}^{4}A : {}^{4}B$

$$^{4}\mathbf{C} = {^{4}\mathbf{A}} : {^{4}\mathbf{B}} = \vec{e}_{i}\vec{e}_{j}A_{ijkl}\vec{e}_{k}\vec{e}_{l} : \vec{e}_{p}\vec{e}_{q}B_{pqrs}\vec{e}_{r}\vec{e}_{s}$$

$$= \vec{e}_{i}\vec{e}_{j}A_{ijkl}\delta_{lp}\delta_{kq}B_{pqrs}\vec{e}_{r}\vec{e}_{s} = \vec{e}_{i}\vec{e}_{j}A_{ijqp}B_{pqrs}\vec{e}_{r}\vec{e}_{s}$$

$$= \vec{e}_{i}\vec{e}_{j}A_{ijqp}B_{pqkl}\vec{e}_{k}\vec{e}_{l}$$

$$\underline{\underline{C}} = \begin{bmatrix} A_{11qp}B_{pq11} & A_{11qp}B_{pq22} & A_{11qp}B_{pq33} & A_{11qp}B_{pq12} & A_{11qp}B_{pq21} \\ A_{22qp}B_{pq11} & A_{22qp}B_{pq22} & A_{22qp}B_{pq33} & A_{22qp}B_{pq12} & A_{22qp}B_{pq21} \\ A_{33qp}B_{pq11} & A_{33qp}B_{pq22} & A_{33qp}B_{pq33} & A_{33qp}B_{pq12} & A_{33qp}B_{pq21} \\ A_{12qp}B_{pq11} & A_{12qp}B_{pq22} & A_{12qp}B_{pq33} & A_{12qp}B_{pq12} & A_{12qp}B_{pq21} \\ A_{21qp}B_{pq11} & A_{21qp}B_{pq22} & A_{21qp}B_{pq33} & A_{21qp}B_{pq12} & A_{21qp}B_{pq21} \\ A_{21qp}B_{pq11} & A_{21qp}B_{pq22} & A_{21qp}B_{pq33} & A_{21qp}B_{pq12} & A_{21qp}B_{pq21} \end{bmatrix} = \begin{bmatrix} A_{1111} & A_{1122} & A_{1133} & A_{1112} & A_{1121} \\ A_{2211} & A_{2222} & A_{2233} & A_{2212} & A_{2221} \\ A_{3311} & A_{3322} & A_{3333} & A_{3312} & A_{3321} \\ A_{1211} & A_{1222} & A_{1233} & A_{1212} & A_{1221} \\ A_{2111} & A_{2122} & A_{2133} & A_{2112} & A_{2121} \end{bmatrix} \begin{bmatrix} B_{1111} & B_{1122} & B_{1133} & B_{1112} & B_{1121} \\ B_{2211} & B_{2222} & B_{2233} & B_{2212} & B_{2221} \\ B_{3311} & B_{3322} & B_{3333} & B_{3312} & B_{3321} \\ B_{2111} & B_{2122} & B_{2133} & B_{2112} & B_{2121} \\ B_{1211} & B_{1222} & B_{1233} & B_{1212} & B_{1221} \end{bmatrix}$$

 $= \underline{\underline{A}}\underline{\underline{B}}_r = \underline{\underline{A}}_c\underline{\underline{B}}$ 

Piet Schreurs (TU/e) 271 / 694

#### Matrix notation fourth-order unit tensor

$${}^{4}\mathbf{I}=ec{e}_{i}ec{e}_{j}\delta_{il}\delta_{jk}ec{e}_{k}ec{e}_{l}\quad
ightarrow$$

symmetric fourth-order tensor

Piet Schreurs (TU/e) 272 / 694

## Matrix notation II

Piet Schreurs (TU/e) 273 / 694

# Matrix notation ${}^{4}\mathbf{B} = {}^{4}\mathbf{I} \cdot \mathbf{A}$

$${}^{4}\mathbf{B} = {}^{4}\mathbf{I} \cdot \mathbf{A} = \vec{e}_{i}\vec{e}_{j}\delta_{il}\delta_{jk}\vec{e}_{k}\vec{e}_{l} \cdot \vec{e}_{p}A_{pq}\vec{e}_{q}$$

$$= \vec{e}_{i}\vec{e}_{j}\delta_{il}\delta_{jk}\vec{e}_{k}\delta_{lp}A_{pq}\vec{e}_{q} = \vec{e}_{i}\vec{e}_{j}\delta_{il}\delta_{jk}A_{lq}\vec{e}_{k}\vec{e}_{q}$$

$$= \vec{e}_{i}\vec{e}_{j}A_{iq}\delta_{jk}\vec{e}_{k}\vec{e}_{q} = \vec{e}_{i}\vec{e}_{j}A_{il}\delta_{jk}\vec{e}_{k}\vec{e}_{l}$$

$$= \mathbf{A} \cdot {}^{4}\mathbf{I} \quad \rightarrow$$

Piet Schreurs (TU/e) 274 / 694

## Summary and examples

$$\vec{X} \rightarrow \qquad \vec{X}$$

$$\mathbf{A} \rightarrow \qquad \underline{A} \quad ; \quad \underline{A} \quad ; \quad \underline{A}$$

$$^{4}\mathbf{A} \rightarrow \qquad \underline{A}$$

$$^{4}\mathbf{I} \rightarrow \qquad \underline{I}$$

$$\vec{X} = \begin{bmatrix} X_{1} \\ X_{2} \\ X_{3} \end{bmatrix} \quad ; \quad \underline{A} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$$

$$\vec{A} = \begin{bmatrix} A_{11} \\ A_{22} \\ A_{33} \\ A_{12} \\ A_{21} \\ \vdots \end{bmatrix} \quad ; \quad \underline{A} = \begin{bmatrix} A_{11} & 0 & 0 & 0 & A_{12} & \dots \\ 0 & A_{22} & 0 & A_{21} & 0 & \dots \\ 0 & A_{22} & 0 & A_{21} & 0 & \dots \\ 0 & A_{12} & 0 & A_{11} & 0 & \dots \\ A_{21} & 0 & 0 & 0 & A_{22} & \dots \\ \vdots \\ A_{211} & A_{2222} & A_{2233} & A_{2112} & A_{2221} & \dots \\ A_{3311} & A_{3322} & A_{3333} & A_{3312} & A_{3321} & \dots \\ A_{1211} & A_{1222} & A_{1233} & A_{1212} & A_{1221} & \dots \\ A_{2111} & A_{2122} & A_{2133} & A_{2112} & A_{2121} & \dots \end{bmatrix}$$
Schreurs (TU/e)

# Manipulations

$$\mathbf{A} \rightarrow \underline{A} : \rightarrow \text{mA}$$

$$\mathbf{A} \rightarrow \underline{A} : \rightarrow \text{ccA} = \text{m2cc(mA,9)}$$

$$\mathbf{A} \rightarrow \underline{\underline{A}} : \rightarrow \text{mmA} = \text{m2mm(mA,9)}$$

$$\mathbf{A}^{c} \rightarrow \underline{A}^{T} : \rightarrow \text{mAt} = \text{mA'}$$

$$\mathbf{A}^{c} \rightarrow \underline{A}_{t} : \rightarrow \text{ccAt} = \text{m2cc(mAt,9)}$$

$$\mathbf{A}^{c} \rightarrow \underline{\underline{A}}_{t} : \rightarrow \text{mmAt} = \text{m2mm(mA')}$$

$${}^{4}\mathbf{A}^{lc} \rightarrow \underline{\underline{A}}_{r} : \rightarrow \text{mmAr} = \text{mmA([1 2 3 5 4 7 6 9 8],:)}$$

$${}^{4}\mathbf{A}^{lc} \rightarrow \underline{\underline{A}}_{c} : \rightarrow \text{mmAc} = \text{mmA(:,[1 2 3 5 4 7 6 9 8])}$$

Piet Schreurs (TU/e) 276 / 694

## **Gradients**

#### Cartesian

$$\vec{\nabla} = \vec{e}_x \frac{\partial}{\partial x} + \vec{e}_y \frac{\partial}{\partial y} + \vec{e}_z \frac{\partial}{\partial z} = \begin{bmatrix} \vec{e}_x & \vec{e}_t & \vec{e}_z \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix} \vec{e}^T \nabla$$

#### cylindrical

$$\vec{\nabla} = \vec{e}_r \frac{\partial}{\partial r} + \vec{e}_t \frac{1}{r} \frac{\partial}{\partial \theta} + \vec{e}_z \frac{\partial}{\partial z} = \begin{bmatrix} \vec{e}_r & \vec{e}_t & \vec{e}_z \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial r} \\ \frac{1}{r} \frac{\partial}{\partial \theta} \\ \frac{\partial}{\partial z} \end{bmatrix} = \vec{e}^T \nabla$$

Piet Schreurs (TU/e) 277 / 694

#### Gradient of a vector in Cartesian coordinates

$$\vec{\nabla} \vec{a} = \mathbf{L}_{a}^{c} = \left( \vec{e}_{x} \frac{\partial}{\partial x} + \vec{e}_{y} \frac{\partial}{\partial y} + \vec{e}_{z} \frac{\partial}{\partial z} \right) \left( a_{x} \vec{e}_{x} + a_{y} \vec{e}_{y} + a_{z} \vec{e}_{z} \right)$$

$$= \vec{e}_{x} a_{x,x} \vec{e}_{x} + \vec{e}_{x} a_{y,x} \vec{e}_{y} + \vec{e}_{x} a_{z,x} \vec{e}_{z} + \vec{e}_{y} a_{x,y} \vec{e}_{x} +$$

$$\vec{e}_{y} a_{y,y} \vec{e}_{y} + \vec{e}_{y} a_{z,y} \vec{e}_{z} + \vec{e}_{z} a_{x,z} \vec{e}_{x} + \vec{e}_{z} a_{y,z} \vec{e}_{y} + \vec{e}_{z} a_{z,z} \vec{e}_{z}$$

$$\underline{L}_{a} = \begin{bmatrix} a_{x,x} & a_{x,y} & a_{x,z} \\ a_{y,x} & a_{y,y} & a_{y,z} \\ a_{z,x} & a_{z,y} & a_{z,z} \end{bmatrix}$$

$$\underline{L}_{a}^{T} = \begin{bmatrix} a_{x,x} & a_{y,y} & a_{z,z} & a_{x,y} & a_{y,z} & a_{z,y} & a_{z,z} \\ a_{x,x} & a_{x,y} & a_{x,z} & a_{x,z} & a_{x,z} \end{bmatrix}$$

Piet Schreurs (TU/e) 278 / 694

## Gradient of a vector in cylindrical coordinates

$$\begin{split} \vec{\nabla} \vec{a} &= \mathbf{L}_{a}^{c} = \left( \vec{e}_{r} \frac{\partial}{\partial r} + \vec{e}_{t} \frac{1}{r} \frac{\partial}{\partial \theta} + \vec{e}_{z} \frac{\partial}{\partial z} \right) \left( a_{r} \vec{e}_{r} + a_{t} \vec{e}_{t} + a_{z} \vec{e}_{z} \right) \\ &= \vec{e}_{r} a_{r,r} \vec{e}_{r} + \vec{e}_{r} a_{t,r} \vec{e}_{t} + \vec{e}_{r} a_{z,r} \vec{e}_{z} + \\ &= \vec{e}_{t} \frac{1}{r} a_{r,t} \vec{e}_{r} + \vec{e}_{t} \frac{1}{r} a_{t,t} \vec{e}_{t} + \vec{e}_{t} \frac{1}{r} a_{z,t} \vec{e}_{z} + \vec{e}_{t} \frac{1}{r} a_{r} \vec{e}_{t} - \vec{e}_{t} \frac{1}{r} a_{t} \vec{e}_{r} \\ &= \vec{e}_{z} a_{r,z} \vec{e}_{r} + \vec{e}_{z} a_{t,z} \vec{e}_{t} + \vec{e}_{z} a_{z,z} \vec{e}_{z} \\ &= \begin{bmatrix} a_{r,r} & \frac{1}{r} a_{r,t} - \frac{1}{r} a_{t} & a_{r,z} \\ a_{t,r} & \frac{1}{r} a_{t,t} + \frac{1}{r} a_{r} & a_{t,z} \\ a_{z,r} & \frac{1}{r} a_{z,t} & a_{z,z} \end{bmatrix} \\ \vec{L}_{a}^{T} &= \begin{bmatrix} a_{r,r} & \frac{1}{r} a_{t,t} + \frac{1}{r} a_{r} & a_{z,z} & \frac{1}{r} a_{r,t} - \frac{1}{r} a_{t} & a_{t,r} & a_{t,z} & \frac{1}{r} a_{z,t} & a_{z,r} & a_{r,z} \end{bmatrix} \end{split}$$

Piet Schreurs (TU/e) 279 / 69

# Divergence of tensor in cylindrical coordinates

$$\vec{\nabla} \cdot \mathbf{A} = \vec{e}_{i} \cdot \nabla_{i} (\vec{e}_{j} A_{jk} \vec{e}_{k}) 
= \vec{e}_{i} \cdot (\nabla_{i} \vec{e}_{j}) A_{jk} \vec{e}_{k} + \vec{e}_{i} \cdot \vec{e}_{j} (\nabla_{i} A_{jk}) \vec{e}_{k} + \vec{e}_{i} \cdot \vec{e}_{j} A_{jk} (\nabla_{i} \vec{e}_{k}) 
= \vec{e}_{i} \cdot (\nabla_{i} \vec{e}_{j}) A_{jk} \vec{e}_{k} + \delta_{ij} (\nabla_{i} A_{jk}) \vec{e}_{k} + \delta_{ij} A_{jk} (\nabla_{i} \vec{e}_{k}) 
\nabla_{i} \vec{e}_{j} = \delta_{i2} \delta_{1j} \frac{1}{r} \vec{e}_{t} - \delta_{i2} \delta_{2j} \frac{1}{r} \vec{e}_{r} 
= \delta_{1j} \frac{1}{r} A_{jk} \vec{e}_{k} + (\nabla_{j} A_{jk}) \vec{e}_{k} + (\delta_{j2} \delta_{1k} \frac{1}{r} \vec{e}_{t} - \delta_{j2} \delta_{2k} \frac{1}{r} \vec{e}_{r}) A_{jk} 
= \frac{1}{r} A_{1k} \vec{e}_{k} + (\nabla_{j} A_{jk}) \vec{e}_{k} + \frac{1}{r} (A_{21} \vec{e}_{t} - A_{22} \vec{e}_{r}) 
= (\frac{1}{r} A_{11} - \frac{1}{r} A_{22}) \vec{e}_{1} + (\frac{1}{r} A_{12} + \frac{1}{r} A_{21}) \vec{e}_{2} + \frac{1}{r} A_{13} \vec{e}_{3} + (\nabla_{j} A_{jk}) \vec{e}_{k} 
= g_{k} \vec{e}_{k} + \nabla_{j} A_{jk} \vec{e}_{k} 
= g_{k} \vec{e}_{k} + \nabla_{j} A_{jk} \vec{e}_{k} 
= g_{k} \vec{e}_{j} + (\nabla_{j} \vec{A}) \vec{e}_{j} 
= (\nabla_{j} \vec{A}) \vec{e}_{j} + g_{j} \vec{e}_{j} 
\text{with} \qquad g^{T} = \frac{1}{r} [ (A_{11} - A_{22}) (A_{12} + A_{21}) A_{33} ]$$

Piet Schreurs (TU/e) 280 / 694

## **KINEMATICS**

back to index

## **Kinematics**



Piet Schreurs (TU/e) 282 / 694

## Material coordinates



$$\boldsymbol{\xi}^T = \left[\begin{array}{ccc} \boldsymbol{\xi}_1 & \boldsymbol{\xi}_2 & \boldsymbol{\xi}_3 \end{array}\right]$$

Piet Schreurs (TU/e) 283 / 694

#### Position vectors



undeformed configuration 
$$(t_0)$$

$$\vec{x}_0 = \vec{\chi}(\xi, t_0) = x_{01}\vec{e}_1 + x_{02}\vec{e}_2 + x_{03}\vec{e}_3$$

deformed configuration 
$$(t)$$

$$\vec{x} = \vec{\chi}(\xi, t) = x_1 \vec{e}_1 + x_2 \vec{e}_2 + x_3 \vec{e}_3$$

Piet Schreurs (TU/e) 284 / 694

## Euler-Lagrange

Euler: "observer" is fixed in space 
$$a = \mathcal{A}_E(\vec{x},t)$$
 
$$da = a_Q - a_P = \mathcal{A}_E(\vec{x}+d\vec{x},t) - \mathcal{A}_E(\vec{x},t) = d\vec{x} \cdot (\vec{\nabla} a) \Big|_t$$
 
$$\vec{\nabla} = \vec{e}_1 \frac{\partial}{\partial x_1} + \vec{e}_2 \frac{\partial}{\partial x_2} + \vec{e}_3 \frac{\partial}{\partial x_3}$$

$$a = \mathcal{A}_L(\vec{x}_0, t)$$

$$da = a_{Q} - a_{P} = \mathcal{A}_{L}(\vec{x}_{0} + d\vec{x}_{0}, t) - \mathcal{A}_{L}(\vec{x}_{0}, t) = d\vec{x}_{0} \cdot (\vec{\nabla}_{0} a) \Big|_{t}$$

$$\vec{\nabla}_0 = \vec{e}_1 \frac{\partial}{\partial x_{01}} + \vec{e}_2 \frac{\partial}{\partial x_{02}} + \vec{e}_3 \frac{\partial}{\partial x_{03}}$$

#### position vectors

$$ec{
abla}ec{x}=\mathbf{I}$$
 ;  $ec{
abla}_0ec{x}_0=\mathbf{I}$ 

Piet Schreurs (TU/e) 285 / 694

#### Time derivatives

material time derivative

$$\frac{\textit{Da}}{\textit{Dt}} = \dot{\textit{a}} = \lim_{\Delta t \rightarrow 0} \; \frac{1}{\Delta t} \left\{ \textit{A}(\vec{\textit{x}}_0, t + \Delta t) - \textit{A}(\vec{\textit{x}}_0, t) \right\}$$

velocity of a material point

$$\vec{v} = \vec{v}(\vec{x}_0) = \dot{\vec{x}}$$

spatial time derivative

$$\frac{\delta a}{\delta t} = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left\{ \mathcal{A}(\vec{x}, t + \Delta t) - \mathcal{A}(\vec{x}, t) \right\}$$

velocity field

$$\vec{v} = \vec{v}(\vec{x}, t)$$

Piet Schreurs (TU/e) 286 / 694

Relation  $\dot{\vec{a}}$  and  $\frac{\delta \vec{a}}{\delta t}$ 

$$\begin{split} \frac{Da}{Dt} &= \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left\{ A(\vec{x}_0, t + \Delta t) - A(\vec{x}_0, t) \right\} \\ &= \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left\{ A(\vec{x} + d\vec{x}, t + \Delta t) - A(\vec{x}, t) \right\} \\ &= \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left\{ A(\vec{x} + d\vec{x}, t + \Delta t) - A(\vec{x}, t + \Delta t) + A(\vec{x}, t + \Delta t) - A(\vec{x}, t) \right\} \\ &= \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left\{ d\vec{x} \cdot (\vec{\nabla} a) \Big|_{t + \Delta t} + A(\vec{x}, t + \Delta t) - A(\vec{x}, t) \right\} \\ &= \lim_{\Delta t \to 0} \left\{ \frac{d\vec{x}}{\Delta t} \cdot (\vec{\nabla} a) \Big|_{t + \Delta t} \right\} + \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left\{ A(\vec{x}, t + \Delta t) - A(\vec{x}, t) \right\} \\ &= \vec{v} \cdot (\vec{\nabla} a) + \frac{\delta a}{\delta t} \\ &= \text{(convective time derivative)} + \text{(spatial time derivative)} \\ &= \text{(material time derivative)} \end{split}$$

Piet Schreurs (TU/e) 287 / 694

## Deformation



displacement : 
$$\vec{u} = \vec{x} - \vec{x}_0 = u_1 \vec{e}_1 + u_2 \vec{e}_2 + u_3 \vec{e}_3$$

Piet Schreurs (TU/e) 288 / 694

#### Deformation tensor



$$\begin{split} d\vec{x} &= \mathbf{F} \cdot d\vec{x}_0 \\ &= \vec{X}(\vec{x}_0 + d\vec{x}_0, \mathbf{t}) - \vec{X}(\vec{x}_0, \mathbf{t}) = d\vec{x}_0 \cdot \left(\vec{\nabla}_0 \vec{x}\right) \\ &= \left(\vec{\nabla}_0 \vec{x}\right)^c \cdot d\vec{x}_0 = \mathbf{F} \cdot d\vec{x}_0 \\ \mathbf{F} &= \left(\vec{\nabla}_0 \vec{x}\right)^c = \left[\left(\vec{\nabla}_0 \vec{x}_0\right)^c + \left(\vec{\nabla}_0 \vec{u}\right)^c\right] = \mathbf{I} + \left(\vec{\nabla}_0 \vec{u}\right)^c \end{split}$$

Piet Schreurs (TU/e) 289 / 694

### Deformation tensor



$$d\vec{x}_1 = \mathbf{F} \cdot d\vec{x}_{01}$$
 ;  $d\vec{x}_2 = \mathbf{F} \cdot d\vec{x}_{02}$  ;  $d\vec{x}_3 = \mathbf{F} \cdot d\vec{x}_{03}$ 

Piet Schreurs (TU/e) 290 / 694

### Volume change



$$\begin{aligned} dV &= d\vec{x}_1 * d\vec{x}_2 \cdot d\vec{x}_3 \\ &= (\mathbf{F} \cdot d\vec{x}_{01}) * (\mathbf{F} \cdot d\vec{x}_{02}) \cdot (\mathbf{F} \cdot d\vec{x}_{03}) \\ &= \det(\mathbf{F}) (d\vec{x}_{01} * d\vec{x}_{02} \cdot d\vec{x}_{03}) \\ &= \det(\mathbf{F}) dV_0 \\ &= \mathbf{J} dV_0 \end{aligned}$$

Piet Schreurs (TU/e) 291 / 694

### Area change

$$\begin{array}{c} \textit{dA}\,\vec{n} = \textit{d}\vec{x}_1 * \textit{d}\vec{x}_2 = (\textbf{F} \cdot \textit{d}\vec{x}_{01}) * (\textbf{F} \cdot \textit{d}\vec{x}_{02}) \\ \textit{dA}\,\vec{n} \cdot (\textbf{F} \cdot \textit{d}\vec{x}_{03}) = (\textbf{F} \cdot \textit{d}\vec{x}_{01}) * (\textbf{F} \cdot \textit{d}\vec{x}_{02}) \cdot (\textbf{F} \cdot \textit{d}\vec{x}_{03}) \\ &= \det(\textbf{F})(\textit{d}\vec{x}_{01} * \textit{d}\vec{x}_{02}) \cdot \textit{d}\vec{x}_{03} \quad \forall \quad \textit{d}\vec{x}_{03} \quad \rightarrow \\ \textit{dA}\,\vec{n} \cdot \textbf{F} = \det(\textbf{F})(\textit{d}\vec{x}_{01} * \textit{d}\vec{x}_{02}) \\ \textit{dA}\,\vec{n} = \det(\textbf{F})(\textit{d}\vec{x}_{01} * \textit{d}\vec{x}_{02}) \cdot \textbf{F}^{-1} \\ &= \det(\textbf{F})\textit{dA}_0\,\vec{n}_0 \cdot \textbf{F}^{-1} \\ &= \textit{dA}_0\,\vec{n}_0 \cdot \left(\textbf{F}^{-1}\det(\textbf{F})\right) \end{array}$$

Piet Schreurs (TU/e) 292 / 694

#### Inverse deformation

$$J = \frac{dV}{dV_0} = \det(\mathbf{F}) > 0 \quad \rightarrow \quad \mathbf{F} \text{ regular} \quad \rightarrow \quad d\vec{x}_0 = \mathbf{F}^{-1} \cdot d\vec{x}$$

relation between gradient operators

$$\mathbf{I} = \mathbf{F}^{-T} \cdot \mathbf{F}^T \to \left( \vec{\nabla} \vec{x} \right) = \mathbf{F}^{-T} \cdot \left( \vec{\nabla}_0 \vec{x} \right) \quad \to \quad \vec{\nabla} = \mathbf{F}^{-T} \cdot \vec{\nabla}_0$$

Piet Schreurs (TU/e) 293 / 694

## Homogeneous deformation



$$ec{
abla}_0 ec{x} = \mathbf{F}^c = ext{uniform tensor} \quad 
ightarrow \ ec{x} = (ec{x}_0 \cdot \mathbf{F}^c) + ec{t} = \mathbf{F} \cdot ec{x}_0 + ec{t}$$

Piet Schreurs (TU/e) 294 / 694

### Elongation and shear



elongation factor in initial  $\vec{e}_0$ -direction

$$\lambda^{2}(\vec{e}_{01}) = \frac{d\vec{x}_{1} \cdot d\vec{x}_{1}}{d\vec{x}_{01} \cdot d\vec{x}_{01}} = \frac{d\vec{x}_{01} \cdot \mathbf{F}^{T} \cdot \mathbf{F} \cdot d\vec{x}_{01}}{d\vec{x}_{01} \cdot d\vec{x}_{01}} = \frac{\|d\vec{x}_{01}\|^{2}}{\|d\vec{x}_{01}\|^{2}} \left(\vec{e}_{01} \cdot \mathbf{F}^{T} \cdot \mathbf{F} \cdot \vec{e}_{01}\right)$$

$$= \vec{e}_{01} \cdot \mathbf{F}^{T} \cdot \mathbf{F} \cdot \vec{e}_{01} = \vec{e}_{01} \cdot \mathbf{C} \cdot \vec{e}_{01}$$

Piet Schreurs (TU/e) 295 / 694

### Elongation and shear



shear of initial  $(\vec{e}_{01}, \vec{e}_{02})$ -directions

$$\begin{array}{ll} \gamma(\vec{e}_{01},\vec{e}_{02}) & = & \sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta) = \frac{d\vec{x}_{1} \cdot d\vec{x}_{2}}{\|d\vec{x}_{1}\| \|d\vec{x}_{2}\|} = \frac{d\vec{x}_{01} \cdot \mathbf{F}^{T} \cdot \mathbf{F} \cdot d\vec{x}_{02}}{\|d\vec{x}_{1}\| \|d\vec{x}_{2}\|} \\ & = & \frac{\|d\vec{x}_{01}\| \|d\vec{x}_{02}\| (\vec{e}_{01} \cdot \mathbf{F}^{T} \cdot \mathbf{F} \cdot \vec{e}_{02})}{\lambda(\vec{e}_{01}) \|d\vec{x}_{01}\| \lambda(\vec{e}_{02}) \|d\vec{x}_{02}\|} = \frac{\vec{e}_{01} \cdot \mathbf{F}^{T} \cdot \mathbf{F} \cdot \vec{e}_{02}}{\lambda(\vec{e}_{01})\lambda(\vec{e}_{02})} \\ & = & \frac{\vec{e}_{01} \cdot \mathbf{C} \cdot \vec{e}_{02}}{\lambda(\vec{e}_{01})\lambda(\vec{e}_{02})} \end{array}$$

Piet Schreurs (TU/e) 296 / 694

## Principal directions of deformation



$$\begin{split} \lambda_1 &= \frac{ds_1}{ds_{01}} \quad ; \quad \lambda_2 = \frac{ds_2}{ds_{02}} \quad ; \quad \lambda_3 = \frac{ds_3}{ds_{03}} \quad ; \quad \gamma_{12} = \gamma_{23} = \gamma_{31} = 0 \\ J &= \frac{dV}{dV_0} = \frac{ds_1 ds_2 ds_3}{ds_{01} ds_{02} ds_{03}} = \lambda_1 \lambda_2 \lambda_3 \end{split}$$

Piet Schreurs (TU/e) 297 / 694

#### **Strains**

$$\varepsilon = f(\lambda)$$

• 
$$f(\lambda = 1) = 0$$

• 
$$\lim_{\lambda \to 1} f(\lambda) = \lambda - 1$$

• 
$$f(\lambda)$$
 monotonic increasing

 $f(\lambda)$  differentiable

linear 
$$\varepsilon_I = \lambda - 1$$

logarithmic 
$$\varepsilon_{In} = \ln(\lambda)$$

Green-Lagrange 
$$\varepsilon_{\it gl}={1\over 2}(\lambda^2-1)$$

Euler-Almansi 
$$\varepsilon_{ea}=rac{1}{2}\left(1-rac{1}{\lambda^2}
ight)$$



Piet Schreurs (TU/e) 298 / 694

#### Strain tensor

$$\begin{split} \frac{1}{2} \left\{ \lambda^2(\vec{e}_{01}) - 1 \right\} &= \vec{e}_{01} \cdot \left\{ \frac{1}{2} \left( \textbf{F}^T \cdot \textbf{F} - \textbf{I} \right) \right\} \cdot \vec{e}_{01} = \vec{e}_{01} \cdot \textbf{E} \cdot \vec{e}_{01} \\ \gamma(\vec{e}_{01}, \vec{e}_{02}) &= \frac{\vec{e}_{01} \cdot (\textbf{F}^T \cdot \textbf{F} - \textbf{I}) \cdot \vec{e}_{02}}{\lambda(\vec{e}_{01})\lambda(\vec{e}_{02})} = \left[ \frac{2}{\lambda(\vec{e}_{01})\lambda(\vec{e}_{02})} \right] \vec{e}_{01} \cdot \textbf{E} \cdot \vec{e}_{02} \end{split}$$

$$\mathbf{E} = \frac{1}{2} \left( \mathbf{F}^T \cdot \mathbf{F} - \mathbf{I} \right)$$

$$\mathbf{F} = \left( \vec{\nabla}_0 \vec{x} \right)^T = \mathbf{I} + \left( \vec{\nabla}_0 \vec{u} \right)^T$$

$$\mathbf{E} = \frac{1}{2} \left[ \left\{ \mathbf{I} + \left( \vec{\nabla}_0 \vec{u} \right) \right\} \cdot \left\{ \mathbf{I} + \left( \vec{\nabla}_0 \vec{u} \right)^T \right\} - \left( \vec{\nabla}_0 \vec{u} \right) \cdot \left( \vec{\nabla}_0 \vec{u} \right) \right]$$

$$= \frac{1}{2} \left[ \left( \vec{\nabla}_0 \vec{u} \right)^T + \left( \vec{\nabla}_0 \vec{u} \right) + \left( \vec{\nabla}_0 \vec{u} \right) \cdot \left( \vec{\nabla}_0 \vec{u} \right) \right]$$

Piet Schreurs (TU/e) 299 / 694

### Right Cauchy-Green deformation tensor

$$C = F^c \cdot F$$

- 1. symmetric  $\mathbf{C}^c = \mathbf{C}$ 2. positive definite
  - $\vec{a} \cdot \mathbf{C} \cdot \vec{a} = \vec{a} \cdot \mathbf{F}^c \cdot \mathbf{F} \cdot \vec{a} = (\mathbf{F} \cdot \vec{a}) \cdot (\mathbf{F} \cdot \vec{a})$ F is regular  $\rightarrow \mathbf{F} \cdot \vec{a} \neq \vec{0}$  if  $\vec{a} \neq \vec{0} \rightarrow \vec{a} \cdot \mathbf{C} \cdot \vec{a} > 0 \quad \forall \quad \vec{a} \neq \vec{0}$
- - $\mathbf{C} = \mu_1 \vec{m}_1 \vec{m}_1 + \mu_2 \vec{m}_2 \vec{m}_2 + \mu_3 \vec{m}_3 \vec{m}_3$

Piet Schreurs (TU/e) 300 / 694

### Eigenvectors and eigenvalues

$$\begin{split} \mathbf{C} &= \mu_1 \vec{m}_1 \vec{m}_1 + \mu_2 \vec{m}_2 \vec{m}_2 + \mu_3 \vec{m}_3 \vec{m}_3 \\ \lambda(\vec{e}_0) &= \sqrt{\vec{e}_0 \cdot \mathbf{C} \cdot \vec{e}_0} \quad ; \qquad \gamma(\vec{e}_{01}, \vec{e}_{02}) = \frac{\vec{e}_{01} \cdot \mathbf{C} \cdot \vec{e}_{02}}{\sqrt{\vec{e}_{01} \cdot \mathbf{C} \cdot \vec{e}_{01}} \sqrt{\vec{e}_{02} \cdot \mathbf{C} \cdot \vec{e}_{02}}} \quad \to \\ \mathbf{C} &= \mu_1 \vec{n}_{01} \vec{n}_{01} + \mu_2 \vec{n}_{02} \vec{n}_{02} + \mu_3 \vec{n}_{03} \vec{n}_{03} \end{split}$$

$$\lambda(\vec{n}_{01}) = \sqrt{\vec{n}_{01} \cdot \mathbf{C} \cdot \vec{n}_{01}} = \sqrt{\mu_1} \quad ; \quad \gamma(\vec{n}_{01}, \vec{n}_{02}) = \frac{\vec{n}_{01} \cdot \mathbf{C} \cdot \vec{n}_{02}}{\sqrt{\vec{n}_{01} \cdot \mathbf{C} \cdot \vec{n}_{01}} \sqrt{\vec{n}_{02} \cdot \mathbf{C} \cdot \vec{n}_{02}}} = 0$$

$$\mathbf{C} = \lambda_1^2 \, \vec{n}_{01} \vec{n}_{01} + \lambda_2^2 \, \vec{n}_{02} \vec{n}_{02} + \lambda_3^2 \, \vec{n}_{03} \vec{n}_{03}$$

Piet Schreurs (TU/e) 301 / 694

### Right stretch tensor

$$\mathbf{U} = \sqrt{\mathbf{C}} = \lambda_1 \vec{n}_{01} \vec{n}_{01} + \lambda_2 \vec{n}_{02} \vec{n}_{02} + \lambda_3 \vec{n}_{03} \vec{n}_{03}$$

#### properties

- 1. symmetric :  $\mathbf{U}^c = \mathbf{U}$
- 2. pos. def. :  $\vec{a} \cdot \mathbf{U} \cdot \vec{a} > 0$   $\forall \vec{a}$
- 3. regular :  $\mathbf{U}^{-1} = \frac{1}{\lambda_1} \, \vec{n}_{01} \vec{n}_{01} + \frac{1}{\lambda_2} \, \vec{n}_{02} \vec{n}_{02} + \frac{1}{\lambda_3} \, \vec{n}_{03} \vec{n}_{03}$
- 4.  $\det(\mathbf{C}) = \det(\mathbf{U} \cdot \mathbf{U}) = \det(\mathbf{F}^c \cdot \mathbf{F}) = \det^2(\mathbf{F}) \rightarrow \det(\mathbf{U}) = \lambda_1 \lambda_2 \lambda_3 = \det(\mathbf{F}) = J$

Piet Schreurs (TU/e) 302 / 694

### Stretch tensor transformation



$$d\vec{x}_{01}^* = \mathbf{U} \cdot d\vec{x}_{01}$$
 ;  $d\vec{x}_{02}^* = \mathbf{U} \cdot d\vec{x}_{02}$  ;  $d\vec{x}_{03}^* = \mathbf{U} \cdot d\vec{x}_{03}$ 

Piet Schreurs (TU/e) 303 / 694

#### Total transformation



Piet Schreurs (TU/e) 304 / 694

#### Rotation tensor

$$R = F \cdot U^{-1}$$

$$\begin{split} \mathbf{R}^c \cdot \mathbf{R} &= \mathbf{U}^{-c} \cdot \mathbf{F}^c \cdot \mathbf{F} \cdot \mathbf{U}^{-1} \\ &= \mathbf{U}^{-c} \cdot \mathbf{U} \cdot \mathbf{U} \cdot \mathbf{U}^{-1} \\ &= \mathbf{U}^{-c} \cdot \mathbf{U}^c \cdot \mathbf{U} \cdot \mathbf{U}^{-1} \\ &= \mathbf{I} \quad \rightarrow \quad \mathbf{R} \text{ is orthogonal} \end{split}$$

2.

$$\begin{split} \det(\mathbf{R}) &= \det(\mathbf{F} \cdot \mathbf{U}^{-1}) \\ &= \det(\mathbf{U}) \det(\mathbf{U}^{-1}) = \det(\mathbf{U} \cdot \mathbf{U}^{-1}) \\ &= \det(\mathbf{I}) = 1 \quad \rightarrow \quad \mathbf{R} \text{ is rotation tensor} \end{split}$$

Piet Schreurs (TU/e)

305 / 694

### Right polar decomposition

$$F = R \cdot U$$

```
• F known

• calculate \mathbf{C} = \mathbf{F}^c \cdot \mathbf{F}

• calculate \lambda_i \text{ en } \vec{n}_{0i}

• U known

• calculate \mathbf{U}^{-1}

• calculate \mathbf{R} = \mathbf{F} \cdot \mathbf{U}^{-1}
```

Piet Schreurs (TU/e) 306 / 694

### Strain tensors

| stretch ratio  | $\lambda(ec{e}_0) = \sqrt{ec{e}_0 \cdot \mathbf{C} \cdot ec{e}_0}$                             |
|----------------|------------------------------------------------------------------------------------------------|
| strain tensor  | ε                                                                                              |
| strain measure | $\varepsilon(\vec{e}_0) = \vec{e}_0 \cdot \varepsilon \cdot \vec{e}_0 = f(\lambda(\vec{e}_0))$ |
| shear measure  | $\gamma(\vec{e}_{01},\vec{e}_{02})=\vec{e}_{01}\cdot \epsilon\cdot \vec{e}_{02}$               |

Piet Schreurs (TU/e) 307 / 694

#### Linear strain tensor

$$\mathcal{E} = \mathbf{U} - \mathbf{I}$$

$$\begin{split} \vec{e}_0 \cdot \mathcal{E} \cdot \vec{e}_0 &= \vec{e}_0 \cdot \mathbf{U} \cdot \vec{e}_0 - \vec{e}_0 \cdot \mathbf{I} \cdot \vec{e}_0 \\ &= \vec{e}_0 \cdot \mathbf{U} \cdot \vec{e}_0 - 1 \\ &\neq \lambda(\vec{e}_0) - 1 \end{split}$$

$$\vec{n}_{0i} \cdot \mathcal{E} \cdot \vec{n}_{0i} = \vec{n}_{0i} \cdot \mathbf{U} \cdot \vec{n}_{0i} - 1$$

$$= \lambda(\vec{n}_{0i}) - 1$$

$$= \lambda_i - 1$$

Piet Schreurs (TU/e) 308 / 694

### Logarithmic strain tensor

$$\Lambda = ln(\mathbf{U})$$

$$\vec{e}_0 \cdot \boldsymbol{\Lambda} \cdot \vec{e}_0 = \vec{e}_0 \cdot \ln(\mathbf{U}) \cdot \vec{e}_0$$

$$\neq \ln(\lambda(\vec{e}_0))$$

$$\vec{n}_{0i} \cdot \mathbf{\Lambda} \cdot \vec{n}_{0i} = \vec{n}_{0i} \cdot \ln(\mathbf{U}) \cdot \vec{n}_{0i}$$

$$= \ln(\lambda(\vec{n}_{0i}))$$

$$= \ln(\lambda_i)$$

Piet Schreurs (TU/e) 309 / 694

### Green-Lagrange strain tensor

$$\mathbf{E} = \frac{1}{2} \left( \mathbf{C} - \mathbf{I} \right)$$

$$\vec{e}_0 \cdot \mathbf{E} \cdot \vec{e}_0 = \frac{1}{2} \left( \vec{e}_0 \cdot \mathbf{C} \cdot \vec{e}_0 - 1 \right)$$
$$= \frac{1}{2} \left( \lambda^2 (\vec{e}_0) - 1 \right)$$

Piet Schreurs (TU/e) 310 / 694

#### Infinitesimal linear strain tensor

$$\begin{split} \mathbf{E} &= \frac{1}{2} \left( \mathbf{F}^c \cdot \mathbf{F} - \mathbf{I} \right) \\ &= \frac{1}{2} \left\{ (\vec{\nabla}_0 \vec{u}) + (\vec{\nabla}_0 \vec{u})^c + (\vec{\nabla}_0 \vec{u}) \cdot (\vec{\nabla}_0 \vec{u})^c \right\} \\ & \text{linearisation} \quad \rightarrow \quad \text{infinitesimal strain tensor} \\ & \mathbf{\epsilon} &= \frac{1}{2} \left\{ (\vec{\nabla}_0 \vec{u}) + (\vec{\nabla}_0 \vec{u})^c \right\} \\ &= \frac{1}{2} \left\{ (\mathbf{F} + \mathbf{F}^c) - \mathbf{I} \right. \\ &= \frac{1}{2} \left\{ (\vec{\nabla} \vec{u}) + (\vec{\nabla} \vec{u})^c \right\} \end{split}$$

only correct for small strains AND small rotations

Piet Schreurs (TU/e) 311 / 694

#### Deformation rate

$$d\vec{x} = \dot{\mathbf{F}} \cdot d\vec{x}_0 = \dot{\mathbf{F}} \cdot \mathbf{F}^{-1} \cdot d\vec{x} = \mathbf{L} \cdot d\vec{x} = (\vec{\nabla} \vec{v})^c \cdot d\vec{x}$$
$$= \frac{1}{2} \{ \mathbf{L} + \mathbf{L}^c \} \cdot d\vec{x} + \frac{1}{2} \{ \mathbf{L} - \mathbf{L}^c \} \cdot d\vec{x}$$
$$= \mathbf{D} \cdot d\vec{x} + \mathbf{\Omega} \cdot d\vec{x}$$

| velocity gradient tensor            | L |
|-------------------------------------|---|
| deformation rate tensor             | D |
| rotation rate tensor or spin tensor | Ω |

Piet Schreurs (TU/e) 312 / 694

### Spin tensor

$$\mathbf{\Omega} = \frac{1}{2} \left\{ \dot{\mathbf{F}} \cdot \mathbf{F}^{-1} - (\dot{\mathbf{F}} \cdot \mathbf{F}^{-1})^c \right\} = \frac{1}{2} \left\{ \left( \vec{\nabla} \vec{v} \right)^c - \left( \vec{\nabla} \vec{v} \right) \right\}$$

 $\boldsymbol{\Omega} = \mathsf{skewsymmetric} \quad \rightarrow \quad$ 

 $\mathbf{\Omega} \cdot d\vec{x} = \vec{w} * d\vec{x} = \text{velocity } \perp d\vec{x} = \text{rotation rate}$ 

 $\vec{\omega}$  : axial vector



Piet Schreurs (TU/e) 313 / 694

#### Axial vector

$$\begin{split} \vec{q} \cdot \Omega \cdot \vec{q} &= \vec{q} \cdot \Omega^c \cdot \vec{q} = - \vec{q} \cdot \Omega \cdot \vec{q} \quad \rightarrow \\ \vec{q} \cdot \Omega \cdot \vec{q} &= 0 \quad \rightarrow \\ \Omega \cdot \vec{q} &= \vec{p} \quad \rightarrow \\ \vec{q} \cdot \vec{p} &= 0 \quad \rightarrow \\ \vec{q} \perp \vec{p} \quad \rightarrow \\ \exists \quad \vec{\omega} \quad \mathsf{zdd} \quad \vec{p} &= \vec{\omega} * \vec{q} \quad \rightarrow \end{split}$$

$$\mathbf{\Omega} \cdot \vec{q} = \vec{\omega} * \vec{q}$$

Piet Schreurs (TU/e) 314 / 694

### Axial vector components

$$\begin{split} \boldsymbol{\Omega} \cdot \vec{q} &= \vec{\omega} * \vec{q} & \forall \quad \vec{q} \\ \boldsymbol{\Omega} \cdot \vec{q} &= \vec{e}^T \begin{bmatrix} \Omega_{11} & \Omega_{12} & \Omega_{13} \\ \Omega_{21} & \Omega_{22} & \Omega_{23} \\ \Omega_{31} & \Omega_{32} & \Omega_{33} \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} = \vec{e}^T \begin{bmatrix} \Omega_{11}q_1 + \Omega_{12}q_2 + \Omega_{13}q_3 \\ \Omega_{21}q_1 + \Omega_{22}q_2 + \Omega_{23}q_3 \\ \Omega_{31}q_1 + \Omega_{32}q_2 + \Omega_{33}q_3 \end{bmatrix} \\ \vec{\omega} * \vec{q} &= (\omega_1 \vec{e}_1 + \omega_2 \vec{e}_2 + \omega_3 \vec{e}_3) * (q_1 \vec{e}_1 + q_2 \vec{e}_2 + q_3 \vec{e}_3) \\ &= \omega_1 q_2 (\vec{e}_3) + \omega_1 q_3 (-\vec{e}_2) + \omega_2 q_1 (-\vec{e}_3) + \omega_2 q_3 (\vec{e}_1) + \omega_3 q_1 (\vec{e}_2) + \omega_3 q_2 (-\vec{e}_1) \end{bmatrix} \\ &= [\vec{e}_1 \ \vec{e}_2 \ \vec{e}_3] \begin{bmatrix} \omega_2 q_3 - \omega_3 q_2 \\ \omega_3 q_1 - \omega_1 q_3 \\ \omega_1 q_2 - \omega_2 q_1 \end{bmatrix} \\ \vec{\Omega} \cdot \vec{q} &= \vec{\omega} * \vec{q} & \forall \vec{q} & \rightarrow \underline{\Omega} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \end{split}$$

Piet Schreurs (TU/e) 315 / 694

#### Deformation rate tensor

$$\textbf{D} = \textbf{D}^c \quad \rightarrow \quad \textbf{D} = \nu_1 \vec{\eta}_1 \vec{\eta}_1 + \nu_2 \vec{\eta}_2 \vec{\eta}_2 + \nu_3 \vec{\eta}_3 \vec{\eta}_3$$

1.: vector  $d\vec{x}$  along  $\vec{\eta}_1$  :  $d\vec{x} = dx_1\vec{\eta}_1$ 

$$\mathbf{D} \cdot d\vec{x} = dx_1 \mathbf{D} \cdot \vec{\eta}_1 = dx_1 v_1 \vec{\eta}_1 = v_1 d\vec{x}$$

2.: random vector : 
$$d\vec{x} = dx_1\vec{\eta}_1 + dx_2\vec{\eta}_2 + dx_3\vec{\eta}_3$$

$$\mathbf{D} \cdot d\vec{x} = dx_1 \nu_1 \vec{\eta}_1 + dx_2 \nu_2 \vec{\eta}_2 + dx_3 \nu_3 \vec{\eta}_3$$





Piet Schreurs (TU/e) 316 / 694

### Elongation rate

$$\lambda^{2} = \vec{e}_{0} \cdot \mathbf{C} \cdot \vec{e}_{0} \qquad \rightarrow \qquad \frac{D}{Dt} (\lambda^{2}) = \frac{D}{Dt} (\vec{e}_{0} \cdot \mathbf{C} \cdot \vec{e}_{0}) \qquad \rightarrow$$

$$2\lambda \dot{\lambda} = \vec{e}_{0} \cdot \frac{D}{Dt} (\mathbf{C}) \cdot \vec{e}_{0} = \vec{e}_{0} \cdot \frac{D}{Dt} (\mathbf{F}^{c} \cdot \mathbf{F}) \cdot \vec{e}_{0}$$

$$= \vec{e}_{0} \cdot \{\dot{\mathbf{F}}^{c} \cdot \mathbf{F} + \mathbf{F}^{c} \cdot \dot{\mathbf{F}}\} \cdot \vec{e}_{0}$$

$$= \vec{e}_{0} \cdot \mathbf{F}^{c} \cdot \{\mathbf{F}^{-c} \cdot \dot{\mathbf{F}}^{c} + \dot{\mathbf{F}} \cdot \mathbf{F}^{-1}\} \cdot \mathbf{F} \cdot \vec{e}_{0}$$

$$= (\mathbf{F} \cdot \vec{e}_{0}) \cdot \{(\dot{\mathbf{F}} \cdot \mathbf{F}^{-1})^{c} + \dot{\mathbf{F}} \cdot \mathbf{F}^{-1}\} \cdot (\mathbf{F} \cdot \vec{e}_{0})$$

$$= (\lambda \vec{e}) \cdot (2 \mathbf{D}) \cdot (\lambda \vec{e}) \qquad \rightarrow$$

$$\frac{\dot{\lambda}}{\lambda} = \vec{e} \cdot \mathbf{D} \cdot \vec{e}$$

Piet Schreurs (TU/e) 317 / 694

### Volume change rate





$$\begin{aligned} \operatorname{tr}(\mathbf{D}) &= \vec{n}_1 \cdot \mathbf{D} \cdot \vec{n}_1 + \vec{n}_2 \cdot \mathbf{D} \cdot \vec{n}_2 + \vec{n}_3 \cdot \mathbf{D} \cdot \vec{n}_3 = \frac{\lambda_1}{\lambda_1} + \frac{\lambda_2}{\lambda_2} + \frac{\lambda_3}{\lambda_3} \\ &= \frac{D}{Dt} \{ \ln(\lambda_1) + \ln(\lambda_2) + \ln(\lambda_3) \} = \frac{D}{Dt} \{ \ln(\lambda_1 \lambda_2 \lambda_3) \} \\ &= \frac{D}{Dt} \left[ \ln\{\det(\mathbf{U})\} \right] = \frac{D}{Dt} \left[ \ln\{\det(\mathbf{F})\} \right] = \frac{D}{Dt} \{ \ln(J) \} = \frac{\dot{J}}{J} \quad \rightarrow \\ \dot{J} &= J\operatorname{tr}(\mathbf{D}) = J\left(\vec{\nabla} \cdot \vec{v}\right) \end{aligned}$$

Piet Schreurs (TU/e) 318 / 694

### Area change rate

$$\begin{split} \frac{D}{Dt} \left( dA \, \vec{n} \right) &= \frac{D}{Dt} \left\{ \det(\mathbf{F}) dA_0 \, \vec{n}_0 \cdot \mathbf{F}^{-1} \right\} \\ &= \frac{D}{Dt} \left\{ \det(\mathbf{F}) \right\} dA_0 \, \vec{n}_0 \cdot \mathbf{F}^{-1} + \det(\mathbf{F}) dA_0 \, \vec{n}_0 \cdot \dot{\mathbf{F}}^{-1} \\ &= \dot{J} \, dA_0 \, \vec{n}_0 \cdot \mathbf{F}^{-1} - J \, dA_0 \, \vec{n}_0 \cdot \mathbf{F}^{-1} \cdot \mathbf{L} \\ &= \operatorname{tr}(\mathbf{L}) J dA_0 \, \vec{n}_0 \cdot \mathbf{F}^{-1} - J \, dA_0 \, \vec{n}_0 \cdot \mathbf{F}^{-1} \cdot \mathbf{L} \\ &= J \operatorname{tr}(\mathbf{L}) \mathbf{F}^{-c} \cdot dA_0 \, \vec{n}_0 - J \, \mathbf{L}^c \cdot \mathbf{F}^{-c} \cdot dA_0 \, \vec{n}_0 \\ &= J \, \left( \operatorname{tr}(\mathbf{L}) \mathbf{I} - \mathbf{L}^c \right) \cdot \mathbf{F}^{-c} \cdot dA_0 \, \vec{n}_0 \\ &= \left( \operatorname{tr}(\mathbf{L}) \mathbf{I} - \mathbf{L}^c \right) \, dA \, \vec{n} \end{split}$$

Piet Schreurs (TU/e) 319 / 694

# SMALL (LINEAR) DEFORMATION

back to index

#### Linear deformation



$$\begin{split} \mathbf{E} &= \frac{1}{2} \left[ \left( \vec{\nabla}_0 \vec{u} \right)^T + \left( \vec{\nabla}_0 \vec{u} \right) + \left( \vec{\nabla}_0 \vec{u} \right) \cdot \left( \vec{\nabla}_0 \vec{u} \right)^T \right] \\ \text{small deformation} & \rightarrow & \left( \vec{\nabla}_0 \vec{u} \right)^T = \mathbf{F} - \mathbf{I} \approx \mathbf{O} \end{split}$$

$$\mathbf{E} pprox rac{1}{2} \left[ \left( \vec{\nabla}_0 \vec{u} \right)^T + \left( \vec{\nabla}_0 \vec{u} \right) \right] pprox rac{1}{2} \left[ \left( \vec{\nabla} \vec{u} \right)^T + \left( \vec{\nabla} \vec{u} \right) \right] = \mathbf{\epsilon}$$
 symm

Piet Schreurs (TU/e) 321 / 694

## Rigid rotation



Piet Schreurs (TU/e) 322 / 694

## Elongational, shear and volume strain

elong. strain 
$$\begin{array}{lll} \frac{1}{2} \left( \lambda^2 (\vec{e}_{01}) - 1 \right) & = & \vec{e}_{01} \cdot \mathbf{E} \cdot \vec{e}_{01} \\ & \downarrow & \\ \lambda (\vec{e}_{01}) - 1 & = & \vec{e}_{01} \cdot \boldsymbol{\epsilon} \cdot \vec{e}_{01} \end{array}$$
 shear strain 
$$\gamma (\vec{e}_{01}, \vec{e}_{02}) = \sin \left( \frac{\pi}{2} - \theta \right) & = & \left( \frac{2}{\lambda (\vec{e}_{01}) \lambda (\vec{e}_{02})} \right) \vec{e}_{01} \cdot \mathbf{E} \cdot \vec{e}_{02}$$
 
$$\frac{\pi}{2} - \theta & = & 2 \vec{e}_{01} \cdot \boldsymbol{\epsilon} \cdot \vec{e}_{02} \\ volume change \\ J = \frac{dV}{dV_0} & = & \lambda_1 \lambda_2 \lambda_3 = (\epsilon_1 + 1)(\epsilon_2 + 1)(\epsilon_2 + 1) \\ \downarrow & \downarrow \\ J & = & \epsilon_1 + \epsilon_2 + \epsilon_3 + 1 = \operatorname{tr}(\boldsymbol{\epsilon}) + 1 \end{array}$$
 volume strain 
$$J - 1 & = & \operatorname{tr}(\boldsymbol{\epsilon})$$

Piet Schreurs (TU/e) 323 / 694

#### Linear strain matrix

$$\underline{\boldsymbol{\varepsilon}} = \left[ \begin{array}{ccc} \boldsymbol{\epsilon}_{11} & \boldsymbol{\epsilon}_{12} & \boldsymbol{\epsilon}_{13} \\ \boldsymbol{\epsilon}_{21} & \boldsymbol{\epsilon}_{22} & \boldsymbol{\epsilon}_{23} \\ \boldsymbol{\epsilon}_{31} & \boldsymbol{\epsilon}_{32} & \boldsymbol{\epsilon}_{33} \end{array} \right] \qquad \text{with} \qquad \left\{ \begin{array}{c} \boldsymbol{\epsilon}_{21} = \boldsymbol{\epsilon}_{12} \\ \boldsymbol{\epsilon}_{32} = \boldsymbol{\epsilon}_{23} \\ \boldsymbol{\epsilon}_{31} = \boldsymbol{\epsilon}_{13} \end{array} \right.$$

principal strain matrix

$$\underline{\varepsilon} = \left[ \begin{array}{ccc} \varepsilon_1 & 0 & 0 \\ 0 & \varepsilon_2 & 0 \\ 0 & 0 & \varepsilon_3 \end{array} \right]$$

spectral form

$$\boldsymbol{\varepsilon} = \varepsilon_1 \vec{n}_1 \vec{n}_1 + \varepsilon_2 \vec{n}_2 \vec{n}_2 + \varepsilon_3 \vec{n}_3 \vec{n}_3$$

## Linear strain: Cartesian components

gradient operator  $\vec{\nabla} = \vec{e}_x \frac{\partial}{\partial x} + \vec{e}_y \frac{\partial}{\partial y} + \vec{e}_z \frac{\partial}{\partial z}$  displacement vector  $\vec{u} = u_x \vec{e}_x + u_y \vec{e}_y + u_z \vec{e}_z$  linear strain tensor  $\epsilon = \frac{1}{2} \left\{ (\vec{\nabla} \vec{u})^c + (\vec{\nabla} \vec{u}) \right\} = \vec{\varrho}^T \underline{\epsilon} \vec{\varrho}$ 

$$\underline{\varepsilon} = \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 2u_{x,x} & u_{x,y} + u_{y,x} & u_{x,z} + u_{z,x} \\ u_{y,x} + u_{x,y} & 2u_{y,y} & u_{y,z} + u_{z,y} \\ u_{z,x} + u_{x,z} & u_{z,y} + u_{y,z} & 2u_{z,z} \end{bmatrix}$$

Piet Schreurs (TU/e) 325 / 694

## Linear strain: cylindrical components

gradient operator  $\vec{\nabla} = \vec{e}_r \frac{\partial}{\partial r} + \vec{e}_t \frac{1}{r} \frac{\partial}{\partial \theta} + \vec{e}_z \frac{\partial}{\partial z}$  displacement vector  $\vec{u} = u_r \vec{e}_r(\theta) + u_t \vec{e}_t(\theta) + u_z \vec{e}_z$  linear strain tensor  $\epsilon = \frac{1}{2} \left\{ (\vec{\nabla} \vec{u})^c + (\vec{\nabla} \vec{u}) \right\} = \vec{\varrho}^T \underline{\epsilon} \, \vec{\varrho}$ 

$$\underline{\varepsilon} = \begin{bmatrix} \varepsilon_{rr} & \varepsilon_{rt} & \varepsilon_{rz} \\ \varepsilon_{tr} & \varepsilon_{tt} & \varepsilon_{tz} \\ \varepsilon_{zr} & \varepsilon_{zt} & \varepsilon_{zz} \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 2u_{r,r} & \frac{1}{r}(u_{r,t} - u_t) + u_{t,r} & u_{r,z} + u_{z,r} \\ \frac{1}{r}(u_{r,t} - u_t) + u_{t,r} & 2\frac{1}{r}(u_r + u_{t,t}) & \frac{1}{r}u_{z,t} + u_{t,z} \\ u_{z,r} + u_{r,z} & \frac{1}{r}u_{z,t} + u_{t,z} & 2u_{z,z} \end{bmatrix}$$

Piet Schreurs (TU/e) 326 / 694

## Compatibility relations

$$\begin{split} \frac{\partial^2 \varepsilon_{xx}}{\partial y^2} + \frac{\partial^2 \varepsilon_{yy}}{\partial x^2} &= 2 \frac{\partial^2 \varepsilon_{xy}}{\partial x \partial y} \\ \frac{\partial^2 \varepsilon_{yy}}{\partial z^2} + \frac{\partial^2 \varepsilon_{zz}}{\partial y^2} &= 2 \frac{\partial^2 \varepsilon_{yz}}{\partial y \partial z} \\ \frac{\partial^2 \varepsilon_{zz}}{\partial x^2} + \frac{\partial^2 \varepsilon_{xx}}{\partial z^2} &= 2 \frac{\partial^2 \varepsilon_{zx}}{\partial z \partial x} \\ \frac{\partial^2 \varepsilon_{xx}}{\partial y \partial z} + \frac{\partial^2 \varepsilon_{yz}}{\partial x^2} &= \frac{\partial^2 \varepsilon_{xz}}{\partial x \partial y} + \frac{\partial^2 \varepsilon_{xy}}{\partial x \partial z} \\ \frac{\partial^2 \varepsilon_{yy}}{\partial z \partial x} + \frac{\partial^2 \varepsilon_{zx}}{\partial y^2} &= \frac{\partial^2 \varepsilon_{yx}}{\partial y \partial z} + \frac{\partial^2 \varepsilon_{yz}}{\partial y \partial x} \\ \frac{\partial^2 \varepsilon_{zz}}{\partial x \partial y} + \frac{\partial^2 \varepsilon_{xy}}{\partial z^2} &= \frac{\partial^2 \varepsilon_{zy}}{\partial z \partial x} + \frac{\partial^2 \varepsilon_{zx}}{\partial z \partial y} \end{split}$$

$$\frac{1}{r^2} \frac{\partial^2 \varepsilon_{rr}}{\partial \theta^2} + \frac{\partial^2 \varepsilon_{tt}}{\partial r^2} - \frac{2}{r} \frac{\partial^2 \varepsilon_{rt}}{\partial r \partial \theta} - \frac{1}{r} \frac{\partial \varepsilon_{rr}}{\partial r} + \frac{2}{r} \frac{\partial \varepsilon_{tt}}{\partial r} - \frac{2}{r^2} \frac{\partial \varepsilon_{rt}}{\partial \theta} = 0$$

Piet Schreurs (TU/e) 327 / 694

### Planar deformation

$$u_1 = u_1(x_1, x_2)$$
 ;  $u_2 = u_2(x_1, x_2)$  ;  $u_3 = u_3(x_1, x_2, x_3)$ 

Piet Schreurs (TU/e) 328 / 694

#### Plane strain

#### planar deformation

$$u_1 = u_1(x_1, x_2)$$
;  $u_2 = u_2(x_1, x_2)$ ;  $u_3 = u_3(x_1, x_2, x_3)$ 

#### plane strain

$$u_1 = u_1(x_1, x_2)$$
 ;  $u_2 = u_2(x_1, x_2)$  ;  $u_3 = 0$ 

$$\begin{split} \epsilon_{33} &= 0 \quad ; \quad \gamma_{13} = \gamma_{23} = 0 \\ \text{compatibility} \quad : \quad \epsilon_{11,22} + \epsilon_{22,11} = 2\epsilon_{12,12} \end{split}$$

Piet Schreurs (TU/e) 329 / 694

## Axi-symmetric deformation



$$\frac{\partial}{\partial \theta}(\ )=0 \qquad \rightarrow \qquad \vec{u}=u_r(r,z)\vec{e}_r(\theta)+u_t(r,z)\vec{e}_t(\theta)+u_z(r,z)\vec{e}_z$$

$$\underline{\varepsilon} = \frac{1}{2} \begin{bmatrix} 2u_{r,r} & -\frac{1}{r}(u_t) + u_{t,r} & u_{r,z} + u_{z,r} \\ -\frac{1}{r}(u_t) + u_{t,r} & 2\frac{1}{r}(u_r) & u_{t,z} \\ u_{z,r} + u_{r,z} & u_{t,z} & 2u_{z,z} \end{bmatrix}$$

Piet Schreurs (TU/e) 330 / 694

## Axi-symmetric deformation with $u_t = 0$



$$\frac{\partial}{\partial \theta}(\ )=0 \ \mbox{and} \ \ u_t=0 \qquad \qquad \rightarrow \qquad \vec{u}=u_r(r,z)\vec{e}_r(\theta)+u_z(r,z)\vec{e}_z$$

$$\underline{\varepsilon} = \frac{1}{2} \begin{bmatrix} 2u_{r,r} & 0 & u_{r,z} + u_{z,r} \\ 0 & 2\frac{1}{r}(u_r) & 0 \\ u_{z,r} + u_{r,z} & 0 & 2u_{z,z} \end{bmatrix}$$

Piet Schreurs (TU/e) 331 / 694

## Axi-symmetric plane strain

plane strain deformation

$$\left. \begin{array}{l} u_r = u_r(r,\theta) \\ u_t = u_t(r,\theta) \\ u_z = 0 \end{array} \right\} \quad \rightarrow \quad \varepsilon_{zz} = \gamma_{rz} = \gamma_{tz} = 0$$

linear strain matrix

$$\underline{\varepsilon} = \frac{1}{2} \left[ \begin{array}{ccc} 2u_{r,r} & u_{t,r} - \frac{1}{r}(u_t) & 0 \\ u_{t,r} - \frac{1}{r}(u_t) & \frac{2}{r}(u_r) & 0 \\ 0 & 0 & 0 \end{array} \right]$$

plane strain deformation with  $u_t = 0$ 

$$\begin{array}{c} u_r = u_r(r) \\ u_z = 0 \end{array} \right\} \quad \to \quad \underline{\varepsilon} = \frac{1}{2} \left[ \begin{array}{ccc} 2u_{r,r} & 0 & 0 \\ 0 & \frac{2}{r}(u_r) & 0 \\ 0 & 0 & 0 \end{array} \right]$$

Piet Schreurs (TU/e) 332 / 694

# **STRESS**

back to index

## Stress vector



$$\vec{p} = \lim_{\Delta A \to 0} \frac{\Delta \vec{k}}{\Delta A}$$

Piet Schreurs (TU/e) 334 / 694

#### Normal stress and shear stress



```
\begin{array}{llll} \text{normal stress} & : & p_n = \vec{p} \cdot \vec{n} \\ \text{tensile stress} & : & \text{positive } (\varphi < \frac{\pi}{2}) \\ \text{compression stress} & : & \text{negative } (\varphi > \frac{\pi}{2}) \\ \text{normal stress vector} & : & \vec{p}_n = p_n \vec{n} \\ \text{shear stress vector} & : & \vec{p}_s = \vec{p} - \vec{p}_n \\ \text{shear stress} & : & p_s = ||\vec{p}_s|| = \sqrt{||\vec{p}||^2 - p_n^2} \end{array}
```

Piet Schreurs (TU/e) 335 / 694

## Cauchy stress tensor



#### Theorem of Cauchy:

 $\exists !$  tensor  $\sigma$  such that :  $\vec{p} = \sigma \cdot \vec{n}$ 

Piet Schreurs (TU/e) 336 / 694

# Cauchy stress matrix



$$\vec{p} = \boldsymbol{\sigma} \cdot \vec{n} \quad \rightarrow \quad \vec{g}^T \underline{\boldsymbol{\rho}} = \vec{g}^T \underline{\boldsymbol{\sigma}} \ \vec{g} \cdot \vec{g}^T \underline{\boldsymbol{n}} = \vec{g}^T \underline{\boldsymbol{\sigma}} \ \underline{\boldsymbol{n}}$$

$$\vec{n} = \vec{e}_1 \quad \rightarrow$$

$$\begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \sigma_{11} \\ \sigma_{21} \\ \sigma_{31} \end{bmatrix}$$

Piet Schreurs (TU/e) 337 / 694

### Stress cube



$$\underline{\sigma} = \left[ \begin{array}{ccc} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{array} \right]$$

Piet Schreurs (TU/e) 338 / 694

## Cartesian components



 $\underline{\sigma} = \left[ \begin{array}{ccc} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{array} \right]$ 

Piet Schreurs (TU/e) 339 / 694

# Cylindrical components



$$\underline{\sigma} = \left[ \begin{array}{ccc} \sigma_{rr} & \sigma_{rt} & \sigma_{rz} \\ \sigma_{tr} & \sigma_{tt} & \sigma_{tz} \\ \sigma_{zr} & \sigma_{zt} & \sigma_{zz} \end{array} \right]$$

Piet Schreurs (TU/e) 340 / 694

# Principal stresses and directions



$$\left. \begin{array}{l} \boldsymbol{\sigma} \cdot \vec{\boldsymbol{n}}_1 = \boldsymbol{\sigma}_1 \vec{\boldsymbol{n}}_1 \\ \boldsymbol{\sigma} \cdot \vec{\boldsymbol{n}}_2 = \boldsymbol{\sigma}_2 \vec{\boldsymbol{n}}_2 \\ \boldsymbol{\sigma} \cdot \vec{\boldsymbol{n}}_3 = \boldsymbol{\sigma}_3 \vec{\boldsymbol{n}}_3 \end{array} \right\} \rightarrow \boldsymbol{\sigma} = \boldsymbol{\sigma}_1 \vec{\boldsymbol{n}}_1 \vec{\boldsymbol{n}}_1 + \boldsymbol{\sigma}_2 \vec{\boldsymbol{n}}_2 \vec{\boldsymbol{n}}_2 + \boldsymbol{\sigma}_3 \vec{\boldsymbol{n}}_3 \vec{\boldsymbol{n}}_3 \end{array}$$

$$\underline{\sigma}_{P} = \left[ \begin{array}{ccc} \sigma_{1} & 0 & 0 \\ 0 & \sigma_{2} & 0 \\ 0 & 0 & \sigma_{3} \end{array} \right]$$

Piet Schreurs (TU/e) 341 / 694

### Stress transformation



$$\begin{split} & \sigma = \sigma_1 \vec{e}_1 + \sigma_2 \vec{e}_2 \\ & \vec{n} = -\sin(\alpha) \vec{e}_1 + \cos(\alpha) \vec{e}_2 \\ & \vec{p} = \sigma \cdot \vec{n} = -\sigma_1 \sin(\alpha) \vec{e}_1 + \sigma_2 \cos(\alpha) \vec{e}_2 \\ & \sigma_\alpha = \sigma_1 \sin^2(\alpha) + \sigma_2 \cos^2(\alpha) \\ & \tau_\alpha = (\sigma_2 - \sigma_1) \sin(\alpha) \cos(\alpha) \end{split}$$

Piet Schreurs (TU/e) 342 / 694

## Mohr's circles of stress

$$\begin{split} \sigma_{\alpha} &= \sigma_{1} \sin^{2}(\alpha) + \sigma_{2} \cos^{2}(\alpha) = \sigma_{1}(\frac{1}{2} - \frac{1}{2} \cos(2\alpha)) + \sigma_{2}(\frac{1}{2} + \frac{1}{2} \cos(2\alpha)) \\ &= \frac{1}{2}(\sigma_{1} + \sigma_{2}) - \frac{1}{2}(\sigma_{1} - \sigma_{2}) \cos(2\alpha) \quad \rightarrow \\ (1) \qquad \left\{ \sigma_{\alpha} - \frac{1}{2}(\sigma_{1} + \sigma_{2}) \right\}^{2} = \left\{ \frac{1}{2}(\sigma_{1} - \sigma_{2}) \right\}^{2} \cos^{2}(2\alpha) \\ \tau_{\alpha} &= -\cos(\alpha) \sin(\alpha)\sigma_{1} + \cos(\alpha) \sin(\alpha)\sigma_{2} = \frac{1}{2}(\sigma_{2} - \sigma_{1}) \sin(2\alpha) \quad \rightarrow \\ (2) \qquad \tau_{\alpha}^{2} &= \left\{ \frac{1}{2}(\sigma_{2} - \sigma_{1}) \right\}^{2} \sin^{2}(2\alpha) \end{split}$$

$$(1)+(2) \quad \rightarrow \quad \left\{\sigma_{\alpha}-\tfrac{1}{2}(\sigma_1+\sigma_2)\right\}^2+\tau_{\alpha}^2=\left\{\tfrac{1}{2}(\sigma_1-\sigma_2)\right\}^2$$





Piet Schreurs (TU/e) 343 / 694

## Mohr's circles of stress

inside  $\sigma_1$ ,  $\sigma_3$ -circle

$$\begin{split} \{\sigma - \tfrac{1}{2}(\sigma_1 + \sigma_3)\}^2 + \tau^2 &= \sigma^2 + \tau^2 = \|\vec{p}\|^2 = \vec{p} \cdot \vec{p} = \underline{n}^T \underline{\sigma}^T \underline{\sigma} \, \underline{n} \\ &= n_1^2 \alpha^2 + n_2^2 \beta^2 + n_3^2 \alpha^2 \end{split}$$
 with 
$$\beta^2 = \left(\sigma_2 - \tfrac{1}{2}(\sigma_1 + \sigma_3)\right)^2 \leq \alpha^2 = \left(\sigma_1 - \tfrac{1}{2}(\sigma_1 + \sigma_3)\right)^2 \quad \rightarrow \quad \sigma^2 + \tau^2 \leq \alpha^2 \end{split}$$
 subtide  $\sigma_2$ ,  $\sigma_3$  sincle

outside  $\sigma_2$ ,  $\sigma_3$ -circle

$$\begin{split} \{\sigma - \tfrac{1}{2}(\sigma_3 + \sigma_2)\}^2 + \tau^2 &= \sigma^2 + \tau^2 = ||\vec{p}||^2 = \vec{p} \cdot \vec{p} = \underline{n}^T \underline{\sigma}^T \underline{\sigma} \underline{n} \\ &= n_1^2 \beta^2 + n_2^2 \alpha^2 + n_3^2 \alpha^2 \end{split}$$
 with 
$$\beta^2 = \left(\sigma_1 - \tfrac{1}{2}(\sigma_3 + \sigma_2)\right)^2 \geq \alpha^2 = \left(\sigma_2 - \tfrac{1}{2}(\sigma_3 + \sigma_2)\right)^2 \quad \rightarrow \quad \sigma^2 + \tau^2 \geq \alpha^2 \end{split}$$

outside  $\sigma_1$ ,  $\sigma_2$ -circle

$$\{ \sigma - \frac{1}{2} (\sigma_1 + \sigma_2) \}^2 + \tau^2 = \sigma^2 + \tau^2 = ||\vec{p}||^2 = \vec{p} \cdot \vec{p} = \underline{n}^T \underline{\sigma}^T \underline{\sigma} \underline{n}$$

$$= n_1^2 \alpha^2 + n_2^2 \alpha^2 + n_3^2 \beta^2$$
with 
$$\beta^2 = (\sigma_3 - \frac{1}{2} (\sigma_1 + \sigma_2))^2 > \alpha^2 = (\sigma_2 - \frac{1}{2} (\sigma_1 + \sigma_2))^2 \quad \rightarrow \quad \sigma^2 + \tau^2 > \alpha^2$$

Piet Schreurs (TU/e) 344 / 694

## Uni-axial stress



true or Cauchy stress

engineering stress

$$\sigma = rac{N}{A} = \sigma_{xx} \quad o \quad \sigma = \sigma_{xx} \, \vec{e}_x \, \vec{e}_x$$
 $\sigma_n = rac{N}{A_0}$ 

Piet Schreurs (TU/e) 345 / 694

# Hydrostatic stress



Piet Schreurs (TU/e) 346 / 694

## Shear stress



$$\sigma = au(ec{e}_iec{e}_j + ec{e}_jec{e}_i)$$
 with  $i 
eq j$ 

Piet Schreurs (TU/e) 347 / 694

#### Plane stress



$$\begin{array}{lll} \sigma_{33}=\sigma_{13}=\sigma_{23}=0 & \rightarrow & \sigma \cdot \vec{e}_3=\vec{0} & \rightarrow \\ \text{relevant stresses}: & \sigma_{11},\sigma_{22},\sigma_{12} \end{array}$$

Piet Schreurs (TU/e) 348 / 694

## Resulting force on arbitrary material volume



$$\vec{K} = \int_{\vec{V}} \rho \vec{q} \, dV + \int_{\vec{A}} \vec{p} \, dA = \int_{\vec{V}} \rho \vec{q} \, dV + \int_{\vec{A}} \vec{n} \cdot \sigma^T \, dA$$

$$\text{Gauss theorem} \qquad : \qquad \int_{\vec{A}} \vec{n} \cdot (\ ) \, dA = \int_{\vec{V}} \vec{\nabla} \cdot (\ ) \, dV \quad \rightarrow$$

$$\vec{K} = \int [\rho \vec{q} + \vec{\nabla} \cdot \sigma^T] \, dV$$

Piet Schreurs (TU/e) 349 / 694

## Resulting moment on arbitrary material volume



$$\vec{M}_O = \int_{\vec{V}} \vec{x} * \rho \vec{q} \, dV + \int_{\vec{A}} \vec{x} * \vec{p} \, dA$$

Piet Schreurs (TU/e) 350 / 694

# Resulting moment on total body

$$\begin{split} \vec{M}_O &= \int_V \vec{x} * \rho \vec{q} \, dV + \int_A \vec{x} * \vec{p} \, dA \\ &= \int_V (\vec{x}_R + \vec{r}) * \rho \vec{q} \, dV + \int_A (\vec{x}_R + \vec{r}) * \vec{p} \, dA \\ &= \vec{x}_R * \int_V \rho \vec{q} \, dV + \vec{x}_R * \int_A \vec{p} \, dA + \int_V \vec{r} * \rho \vec{q} \, dV + \int_A \vec{r} * \vec{p} \, dA \\ &= \vec{x}_R * \vec{K} + \vec{M}_R \\ &= \vec{x}_M * \vec{K} + \vec{M}_M \quad \to \\ \vec{M}_R &= (\vec{x}_M - \vec{x}_R) * \vec{K} + \vec{M}_M = \vec{r}_M * \vec{K} + \vec{M}_M \end{split}$$

Piet Schreurs (TU/e) 351 / 694

## **BALANCE LAWS**

back to index

### Balance or conservation laws

- mass
- momentum
- moment of momentum
- energy

Piet Schreurs (TU/e) 353 / 694

#### Balance of mass



$$\begin{split} \int\limits_{\bar{V}} \rho \, dV &= \int\limits_{\bar{V}_0} \rho_0 \, dV_0 \quad \forall \ \bar{V} \quad \rightarrow \quad \int\limits_{\bar{V}_0} (\rho J - \rho_0) \, dV_0 = 0 \quad \forall \ \bar{V}_0 \quad \rightarrow \\ \rho J &= \rho_0 \qquad \forall \quad \vec{x} \in V(t) \end{split}$$

$$dM = dM_0 \rightarrow \rho dV = \rho_0 dV_0 \rightarrow \rho J = \rho_0 \rightarrow \dot{\rho} J + \rho \dot{J} = 0$$

Piet Schreurs (TU/e) 354 / 694

## Balance of momentum: global



$$\begin{split} \vec{K} &= \frac{D\vec{i}}{Dt} = \frac{D}{Dt} \int_{\vec{V}} \rho \vec{v} \, dV = \frac{D}{Dt} \int_{\vec{V}_0} \rho \vec{v} J \, dV_0 = \int_{\vec{V}_0} \frac{D}{Dt} \left( \rho \vec{v} J \right) \, dV_0 \qquad \forall \quad \vec{V}_0 \\ &= \int_{\vec{V}_0} \left( \dot{\rho} \vec{v} J + \rho \dot{\vec{v}} J + \rho \vec{v} \dot{J} \right) \, dV_0 \qquad \forall \quad \vec{V}_0 \\ &\text{mass balance} \quad : \quad \dot{\rho} J + \rho \dot{J} = 0 \quad \rightarrow \\ &= \int_{\vec{V}_0} \rho \dot{\vec{v}} J \, dV_0 = \int_{\vec{V}} \rho \dot{\vec{v}} \, dV \qquad \forall \quad \vec{V} \end{split}$$

Piet Schreurs (TU/e) 355 / 694

## Balance of momentum: local

$$\int_{\vec{V}} \left( \rho \vec{q} + \vec{\nabla} \cdot \boldsymbol{\sigma}^T \right) \, dV = \int_{\vec{V}} \rho \dot{\vec{v}} \, dV \qquad \forall \qquad \vec{\boldsymbol{V}} \quad \rightarrow$$

$$\vec{\nabla} \cdot \boldsymbol{\sigma}^T + \rho \vec{q} = \rho \dot{\vec{v}} = \rho \frac{\delta \vec{v}}{\delta t} + \rho \vec{v} \cdot \left( \vec{\nabla} \vec{v} \right) \qquad \forall \quad \vec{x} \in V(t)$$

stationary 
$$\left(\frac{\delta \vec{v}}{\delta t} = 0\right)$$

 $\delta \left( \delta t \right)$ 

static: equilibrium equation

$$\vec{\nabla} \boldsymbol{\cdot} \boldsymbol{\sigma}^{\mathsf{T}} + \rho \vec{q} = \rho \vec{v} \boldsymbol{\cdot} \left( \vec{\nabla} \vec{v} \right)$$

$$\vec{\nabla} \cdot \boldsymbol{\sigma}^T + \rho \vec{q} = \vec{0}$$

Piet Schreurs (TU/e) 356 / 694

## Equilibrium equations : Cartesian components

$$ec{
abla} \cdot \mathbf{\sigma}^c + \rho \vec{q} = \vec{0}$$
 $\mathbf{\sigma} = \mathbf{\sigma}^c$ 

$$\begin{split} &\sigma_{xx,x} + \sigma_{xy,y} + \sigma_{xz,z} + \rho q_x = 0 \\ &\sigma_{yx,x} + \sigma_{yy,y} + \sigma_{yz,z} + \rho q_y = 0 \\ &\sigma_{zx,x} + \sigma_{zy,y} + \sigma_{zz,z} + \rho q_z = 0 \end{split}$$

Piet Schreurs (TU/e) 357 / 694

## Equilibrium equations : cylindrical components

$$ec{
abla} \cdot \sigma^c + \rho \vec{q} = \vec{0}$$
  
 $\sigma = \sigma^c$ 

$$\sigma_{rr,r} + \frac{1}{r}\sigma_{rt,t} + \frac{1}{r}(\sigma_{rr} - \sigma_{tt}) + \sigma_{rz,z} + \rho q_r = 0$$

$$\sigma_{tr,r} + \frac{1}{r}\sigma_{tt,t} + \frac{1}{r}(\sigma_{tr} + \sigma_{rt}) + \sigma_{tz,z} + \rho q_t = 0$$

$$\sigma_{zr,r} + \frac{1}{r}\sigma_{zt,t} + \frac{1}{r}\sigma_{zr} + \sigma_{zz,z} + \rho q_z = 0$$

Piet Schreurs (TU/e) 358 / 694

# Balance of moment of momentum : global



$$\vec{M}_{O} = \frac{\vec{D}\vec{L}_{O}}{Dt} = \frac{\vec{D}}{Dt} \int_{\vec{V}} \vec{x} * \rho \vec{v} \, dV = \frac{\vec{D}}{Dt} \int_{\vec{V}_{0}} \vec{x} * \rho \vec{v} J \, dV_{0} = \int_{\vec{V}_{0}} \frac{\vec{D}}{Dt} \left( \vec{x} * \rho \vec{v} J \right) \, dV_{0}$$

$$= \int_{\vec{V}_{0}} \left( \dot{\vec{x}} * \rho \vec{v} J + \vec{x} * \dot{\rho} \dot{\vec{v}} J + \vec{x} * \dot{\rho} \dot{\vec{v}} J + \vec{x} * \rho \vec{v} \dot{J} \right) \, dV_{0} \qquad \forall \quad \vec{V}_{0}$$

$$= \int_{\vec{V}_{0}} \vec{x} * \dot{\rho} \dot{\vec{v}} J \, dV_{0} = \int_{\vec{V}} \vec{x} * \dot{\rho} \dot{\vec{v}} \, dV \qquad \forall \quad \vec{V}$$

Piet Schreurs (TU/e) 359 / 694

### Balance of moment of momentum: local

$$\int_{\bar{V}} \vec{x} * \rho \vec{q} \, dV + \int_{\bar{A}} \vec{x} * \vec{p} \, dA = \int_{\bar{V}} \vec{x} * \rho \dot{\vec{v}} \, dV \qquad \forall \quad \bar{V}$$

Transformation of surface integral with

$$\vec{x} * \vec{p} = {}^{3}\!\varepsilon : (\vec{x}\,\vec{p})$$

$$\int_{\bar{A}} \vec{x} * \vec{p} \, dA = \int_{\bar{A}}^{3} \boldsymbol{\epsilon} : (\vec{x} \, \vec{p}) \, dA = \int_{\bar{A}}^{3} \boldsymbol{\epsilon} : (\vec{x} \, \boldsymbol{\sigma} \cdot \vec{n}) \, dA = \int_{\bar{A}} \vec{n} \cdot \{^{3} \boldsymbol{\epsilon} : (\vec{x} \, \boldsymbol{\sigma})\}^{c} \, dA$$

$$= \int_{\bar{V}} \vec{\nabla} \cdot \{^{3} \boldsymbol{\epsilon} : (\vec{x} \, \boldsymbol{\sigma})\}^{c} \, dV$$

$$= \int_{\bar{V}} \left[ (\vec{\nabla} \cdot \boldsymbol{\sigma}^{c}) \vec{x} : {}^{3} \boldsymbol{\epsilon}^{c} + \boldsymbol{\sigma} \cdot (\vec{\nabla} \cdot \vec{x}) : {}^{3} \boldsymbol{\epsilon}^{c} \right] \, dV$$

$$= \int_{\bar{V}} \left[ (\vec{\nabla} \cdot \boldsymbol{\sigma}^{c}) \vec{x} : {}^{3} \boldsymbol{\epsilon}^{c} + \boldsymbol{\sigma} : {}^{3} \boldsymbol{\epsilon}^{c} \right] \, dV$$

$$= \int_{\bar{V}} \left[ (\vec{\nabla} \cdot \boldsymbol{\sigma}^{c}) \vec{x} : {}^{3} \boldsymbol{\epsilon}^{c} + \boldsymbol{\sigma} : {}^{3} \boldsymbol{\epsilon}^{c} \right] \, dV$$

$$= \int_{\bar{V}} \left[ (\vec{\nabla} \cdot \boldsymbol{\sigma}^{c}) \vec{x} : {}^{3} \boldsymbol{\epsilon}^{c} + \boldsymbol{\sigma} : {}^{3} \boldsymbol{\epsilon}^{c} \right] \, dV$$

Piet Schreurs (TU/e) 360 / 694

#### Balance of moment of momentum: local

$$\int_{\vec{V}} \vec{x} * \rho \vec{q} \, dV + \int_{\vec{V}} {}^{3} \boldsymbol{\varepsilon} : \boldsymbol{\sigma}^{c} \, dV + \int_{\vec{V}} \vec{x} * (\vec{\nabla} \cdot \boldsymbol{\sigma}^{c}) \, dV = \int_{\vec{V}} \vec{x} * \rho \dot{\vec{v}} \, dV \quad \forall \quad \vec{V} \quad \rightarrow \\
\int_{\vec{V}} \vec{x} * \left[ \rho \vec{q} + (\vec{\nabla} \cdot \boldsymbol{\sigma}^{c}) - \rho \dot{\vec{v}} \right] \, dV + \int_{\vec{V}} {}^{3} \boldsymbol{\varepsilon} : \boldsymbol{\sigma}^{c} \, dV = \vec{0} \quad \forall \quad \vec{V} \quad \rightarrow \\
\int_{\vec{V}} {}^{3} \boldsymbol{\varepsilon} : \boldsymbol{\sigma}^{c} \, dV = \vec{0} \quad \forall \quad \vec{V} \quad \rightarrow \quad {}^{3} \boldsymbol{\varepsilon} : \boldsymbol{\sigma}^{c} = \vec{0} \quad \forall \quad \vec{x} \in \vec{V}$$

$$\boldsymbol{\varepsilon}_{ijk} = -1|0|1 \quad \rightarrow \quad \begin{bmatrix} \sigma_{32} - \sigma_{23} \\ \sigma_{13} - \sigma_{31} \\ \sigma_{21} - \sigma_{12} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad \rightarrow \quad$$

$$\mathbf{\sigma}^c = \mathbf{\sigma} \qquad \forall \quad \vec{\mathbf{x}} \in V(t)$$

Piet Schreurs (TU/e) 361 / 694

## Cartesian and cylindrical components

$$\underline{\sigma} = \underline{\sigma}^T \longrightarrow$$

Piet Schreurs (TU/e) 362 / 694

### Balance of energy

$$\frac{D}{Dt}\left(U_{e}+U_{t}\right)=\frac{D}{Dt}\left(U_{k}+U_{i}\right)$$

 $egin{array}{lll} U_e & : & & \text{mechanical energy} \\ U_t & : & & \text{thermal energy} \\ U_k & : & & \text{kinetic energy} \\ U_i & : & & \text{internal energy} \\ \end{array}$ 

Piet Schreurs (TU/e) 363 / 694

# Mechanical energy



$$\dot{U}_{e} = \int_{\vec{V}} \rho \vec{q} \cdot \vec{v} \, dV + \int_{\vec{A}} \vec{p} \cdot \vec{v} \, dA = \int_{\vec{V}} \{\rho \vec{q} \cdot \vec{v} + \vec{\nabla} \cdot (\sigma^{c} \cdot \vec{v})\} \, dV$$

$$\vec{\nabla} \cdot (\sigma^{c} \cdot \vec{v}) = (\vec{\nabla} \cdot \sigma^{c}) \cdot \vec{v} + \sigma : (\vec{\nabla} \vec{v})$$

$$= \rho \vec{v} \cdot \vec{v} - \rho \vec{q} \cdot \vec{v} + \sigma : \mathbf{D} + \sigma : \mathbf{\Omega}$$

$$= \int_{\vec{V}} (\rho \dot{\vec{v}} \cdot \vec{v} + \sigma : \mathbf{D}) \, dV$$

Piet Schreurs (TU/e) 364 / 694

# Thermal energy



heat flux density

$$\vec{h} = \lim_{\Delta A \to 0} \frac{\vec{H}}{\Delta A}$$

$$[\mathsf{J}\ \mathsf{m}^{-2}]$$

$$\dot{U}_{t} = \int_{\vec{V}} \rho r \, dV - \int_{\vec{A}} \vec{n} \cdot \vec{h} \, dA = \int_{\vec{V}} (\rho r - \vec{\nabla} \cdot \vec{h}) \, dV$$

Piet Schreurs (TU/e) 365 / 694

## Kinetic energy

$$\begin{split} U_k(t) &= \int\limits_{\bar{V}} \frac{1}{2} \; \rho \; \vec{v} \cdot \vec{v} \, dV \\ \dot{U}_k &= \frac{D}{Dt} \int\limits_{\bar{V}} \frac{1}{2} \; \rho \; \vec{v} \cdot \vec{v} \, dV = \frac{D}{Dt} \int\limits_{\bar{V}_0} \frac{1}{2} \; \rho \; \vec{v} \cdot \vec{v} J \, dV_0 \\ &= \frac{1}{2} \int\limits_{\bar{V}_0} \left\{ \dot{\rho} \; \vec{v} \cdot \vec{v} J + 2 \rho \; \dot{\vec{v}} \cdot \vec{v} J + \rho \; \vec{v} \cdot \vec{v} \dot{J} \right\} \, dV_0 \\ &= \int\limits_{\bar{V}_0} \rho \; \dot{\vec{v}} \cdot \vec{v} J \, dV_0 = \int\limits_{\bar{V}} \rho \; \dot{\vec{v}} \cdot \vec{v} \, dV \end{split}$$

Piet Schreurs (TU/e) 366 / 694

## Internal energy

$$\begin{aligned} U_i(t) &= \int\limits_{\bar{V}} \rho \varphi \, dV \\ \dot{U}_i &= \frac{D}{Dt} \int\limits_{\bar{V}} \rho \varphi \, dV = \frac{D}{Dt} \int\limits_{\bar{V}_0} \rho \varphi J \, dV_0 \\ &= \int\limits_{\bar{V}_0} \left\{ \dot{\rho} \varphi J + \rho \dot{\varphi} J + \rho \varphi \dot{J} \right\} \, dV_0 \\ &= \int\limits_{\bar{V}} \rho \dot{\varphi} \, dV \end{aligned}$$

Piet Schreurs (TU/e) 367 / 694

# Energy balance

$$\dot{U}_e + \dot{U}_t = \dot{U}_k + \dot{U}_i$$

$$\int_{\bar{V}} (\rho \dot{\vec{v}} \cdot \vec{v} + \mathbf{\sigma} : \mathbf{D} + \rho r - \vec{\nabla} \cdot \vec{h}) \, dV = \int_{\bar{V}} (\rho \dot{\vec{v}} \cdot \vec{v} + \rho \dot{\phi}) \, dV \qquad \forall \quad \bar{V}$$

$$\int_{\bar{V}} \rho \dot{\phi} \, dV = \int_{\bar{V}} (\mathbf{\sigma} : \mathbf{D} + \rho r - \vec{\nabla} \cdot \vec{h}) \, dV \qquad \forall \quad \bar{V}$$

Piet Schreurs (TU/e) 368 / 694

### **Energy equation**

$$\begin{array}{lll} \rho\dot{\varphi} = \boldsymbol{\sigma}: \mathbf{D} + \rho\boldsymbol{r} - \vec{\nabla}\cdot\vec{\boldsymbol{h}} & \forall \quad \vec{x} \in V(t) \\ \dot{\varphi} = C_{\rho}\dot{T} & (C_{\rho}: \text{specific heat}) & \forall \quad \vec{x} \in V(t) \\ \\ \rho C_{\rho}\dot{T} = \boldsymbol{\sigma}: \mathbf{D} + \rho\boldsymbol{r} - \vec{\nabla}\cdot\vec{\boldsymbol{h}} & \forall \quad \vec{x} \in V(t) \\ \\ \vec{\boldsymbol{h}} = -\boldsymbol{k}\,\vec{\nabla}T & (\boldsymbol{k}: \text{thermal conductivity}) & \rightarrow \end{array}$$

$$\rho C_{\rho} \dot{T} - k \nabla^2 T = \sigma : \mathbf{D} + \rho r$$
  $\forall \vec{x} \in V(t)$ 

Piet Schreurs (TU/e) 369 / 694

## Mechanical power for three-dimensional deformation

$$\begin{split} \dot{W} &= \sigma : \mathbf{D} & \sigma = \mathsf{Cauchy \, stress \, tensor} \\ \dot{W}_0 &= [J\sigma] : \mathbf{D} \\ &= \kappa : \mathbf{D} & \kappa = \mathsf{Kirchhoff \, stress \, tensor} \\ \dot{W}_0 &= J\sigma : \mathbf{D} = J\sigma : \frac{1}{2} \left( \dot{\mathbf{F}} \cdot \mathbf{F}^{-1} + (\dot{\mathbf{F}} \cdot \mathbf{F}^{-1})^c \right) = \\ &= J\sigma : \left( \dot{\mathbf{F}} \cdot \mathbf{F}^{-1} \right) = J \left( \mathbf{F}^{-1} \cdot \sigma \right) : \dot{\mathbf{F}} = \mathbf{S} : \dot{\mathbf{F}} = \mathbf{S} : \dot{\mathbf{U}} \\ &= \mathbf{S} : \dot{\mathcal{E}} & \mathbf{S} = 1 \text{st-Piola-Kirchhoff \, stress \, tensor} \\ \dot{W}_0 &= J\sigma : \mathbf{D} = J\sigma : \left( \mathbf{F}^{-c} \cdot \dot{\mathbf{E}} \cdot \mathbf{F}^{-1} \right) = J \left( \mathbf{F}^{-1} \cdot \sigma \cdot \mathbf{F}^{-c} \right) : \dot{\mathbf{E}} \\ &= \mathbf{P} : \dot{\mathbf{E}} & \mathbf{P} = 2 \text{nd-Piola-Kirchhoff \, stress \, tensor} \end{split}$$

Piet Schreurs (TU/e) 370 / 694

#### Planar deformation

#### Cartesian components

$$\begin{split} &\sigma_{xx,x} + \sigma_{xy,y} + \rho q_x = 0 \\ &\sigma_{yx,x} + \sigma_{yy,y} + \rho q_y = 0 \\ &\sigma_{xy} = \sigma_{yx} \end{split}$$

#### cylindrical components

$$\sigma_{rr,r} + \frac{1}{r}\sigma_{rt,t} + \frac{1}{r}(\sigma_{rr} - \sigma_{tt}) + \rho q_r = 0$$
  
$$\sigma_{tr,r} + \frac{1}{r}\sigma_{tt,t} + \frac{1}{r}(\sigma_{tr} + \sigma_{rt}) + \rho q_t = 0$$
  
$$\sigma_{rt} = \sigma_{tr}$$

Piet Schreurs (TU/e) 371 / 694

## Axisymmetric deformation

$$\begin{split} &\sigma_{rr,r} + \frac{1}{r}(\sigma_{rr} - \sigma_{tt}) + \sigma_{rz,z} + \rho q_r = 0 \\ &\sigma_{tr,r} + \frac{2}{r}(\sigma_{tr}) + \sigma_{tz,z} + \rho q_t = 0 \\ &\sigma_{zr,r} + \frac{1}{r}\sigma_{zr} + \sigma_{zz,z} + \rho q_z = 0 \\ &\sigma_{rt} = \sigma_{tr} \quad ; \quad \sigma_{tz} = \sigma_{zt} \qquad \text{(if } u_t \neq 0) \\ &\sigma_{zr} = \sigma_{rz} \end{split}$$

planar

$$\begin{split} &\sigma_{rr,r} + \frac{1}{r}(\sigma_{rr} - \sigma_{tt}) + \rho q_r = 0 \\ &\sigma_{tr,r} + \frac{2}{r}(\sigma_{tr}) + \rho q_t = 0 \\ &\sigma_{rt} = \sigma_{tr} \qquad \text{(if } u_t \neq 0\text{)} \end{split}$$

Piet Schreurs (TU/e) 372 / 694

#### THREE-DIMENSIONAL MATERIAL MODELS

back to index

## Equations and unknowns

| mass               | $ ho J =  ho_0$                                                           |
|--------------------|---------------------------------------------------------------------------|
| momentum           | $\vec{ abla} \cdot \mathbf{\sigma}^c + \rho \vec{q} = \rho \dot{\vec{q}}$ |
| moment of momentum | $\sigma^c = \sigma$                                                       |

 $\begin{array}{ll} \text{density} & \rho \\ \text{position vector} & \vec{x} \\ \text{Cauchy stress tensor} & \sigma \end{array}$ 

$$\sigma = N(\vec{x})$$

Piet Schreurs (TU/e) 374 / 694

## General constitutive equation



$$\sigma(\vec{x},t) = \mathbf{N}\{\hat{\vec{x}}, \tau \mid \forall \hat{\vec{x}} \in V; \ \forall \ \tau \leq t\}$$

Piet Schreurs (TU/e) 375 / 694

## Locality

$$\sigma(\vec{x}, t) = \mathbf{N}\{\hat{\vec{x}}, \tau \mid \forall \hat{\vec{x}} \in V ; \forall \tau \leq t\}$$

$$\hat{\vec{x}} = \vec{x} + d\vec{x} = \vec{x} + \mathbf{F}(\vec{x}) \cdot d\vec{x}_{0}$$

$$\sigma(\vec{x}, t) = \mathbf{N}(\vec{x}, \mathbf{F}(\vec{x}, \tau), \tau \mid \forall \tau \leq t)$$



Piet Schreurs (TU/e) 376 / 694

# Rigid body translation



 $\mathbf{\sigma}(\vec{x},t) = \mathbf{N}(\mathbf{F}(\vec{x},\tau),\tau \mid \forall \ \tau \leq t)$ 

Piet Schreurs (TU/e) 377 / 694

## Rigid body rotation



$$ec{n}_1^* = \mathbf{Q} \cdot ec{n}_1$$
 $ec{n}_2^* = \mathbf{Q} \cdot ec{n}_2$ 
 $ec{n}_3^* = \mathbf{Q} \cdot ec{n}_3$ 

$$\sigma = \sigma_1 \vec{n}_1 \vec{n}_1 + \sigma_2 \vec{n}_2 \vec{n}_2 + \sigma_3 \vec{n}_3 \vec{n}_3 
\sigma^* = \sigma_1 \vec{n}_1^* \vec{n}_1^* + \sigma_2 \vec{n}_2^* \vec{n}_2^* + \sigma_3 \vec{n}_3^* \vec{n}_3^* 
= \sigma_1 \mathbf{Q} \cdot \vec{n}_1 \vec{n}_1 \cdot \mathbf{Q}^c + \sigma_2 \mathbf{Q} \cdot \vec{n}_2 \vec{n}_2 \cdot \mathbf{Q}^c + \sigma_3 \mathbf{Q} \cdot \vec{n}_3 \vec{n}_3 \cdot \mathbf{Q}^c 
= \mathbf{Q} \cdot [\sigma_1 \vec{n}_1 \vec{n}_1 + \sigma_2 \vec{n}_2 \vec{n}_2 + \sigma_3 \vec{n}_3 \vec{n}_3] \cdot \mathbf{Q}^c = \mathbf{Q} \cdot \sigma \cdot \mathbf{Q}^c$$

$$\mathbf{F} = \mathbf{R} \cdot \mathbf{U} \quad \rightarrow \quad \mathbf{F}^* = \mathbf{R}^* \cdot \mathbf{U} = \mathbf{Q} \cdot \mathbf{R} \cdot \mathbf{U} \quad \rightarrow \quad \mathbf{F}^* = \mathbf{Q} \cdot \mathbf{F}$$

objectivity requirement

$$\mathbf{Q}(t) \cdot \mathbf{N} \left( \mathbf{F}(\tau) \mid \forall \ \tau < t \right) \cdot \mathbf{Q}^{c}(t) = \mathbf{N} \left( \mathbf{Q} \cdot \mathbf{F}(\tau) \mid \forall \ \tau < t \right) \qquad \forall \quad \mathbf{Q}$$

Piet Schreurs (TU/e) 378 / 694

## Example

$$\sigma = C\mathbf{E} = C\frac{1}{2} (\mathbf{C} - \mathbf{I}) = C\frac{1}{2} (\mathbf{F}^T \cdot \mathbf{F} - \mathbf{I})$$

$$\sigma^* = \mathbf{Q} \cdot \sigma \cdot \mathbf{Q}^T$$

$$\mathbf{F}^* = \mathbf{Q} \cdot \mathbf{F}$$

$$\mathbf{E}^* = \frac{1}{2} (\mathbf{F}^T \cdot \mathbf{Q}^T \cdot \mathbf{Q} \cdot \mathbf{F} - \mathbf{I}) = \frac{1}{2} (\mathbf{F}^T \cdot \mathbf{F} - \mathbf{I}) = \mathbf{E}$$

$$\sigma^* = C\mathbf{E}$$

**NOT OBJECTIVE** 

Piet Schreurs (TU/e) 379 / 694

### Example

$$\sigma = C\mathbf{A} = C\frac{1}{2}(\mathbf{B} - \mathbf{I}) = C\frac{1}{2}(\mathbf{F} \cdot \mathbf{F}^{T} - \mathbf{I})$$

$$\sigma^{*} = \mathbf{Q} \cdot \sigma \cdot \mathbf{Q}^{T}$$

$$\mathbf{F}^{*} = \mathbf{Q} \cdot \mathbf{F}$$

$$\mathbf{A}^{*} = \frac{1}{2}(\mathbf{Q} \cdot \mathbf{F} \cdot \mathbf{F}^{T} \cdot \mathbf{Q}^{T} - \mathbf{I}) = \frac{1}{2}\mathbf{Q} \cdot (\mathbf{F} \cdot \mathbf{F}^{T} - \mathbf{I}) \cdot \mathbf{Q}^{T} = \mathbf{Q} \cdot \mathbf{A} \cdot \mathbf{Q}^{c}$$

$$\sigma^{*} = C\mathbf{A}^{*}$$
OBJECTIVE

Piet Schreurs (TU/e) 380 / 694

### Example

$$\begin{split} &\sigma = -\rho \mathbf{I} + 2\eta \mathbf{D} \\ &\mathbf{D} = \frac{1}{2} (\mathbf{L} + \mathbf{L}^c) \qquad \text{with} \qquad \mathbf{L} = \dot{\mathbf{F}} \cdot \mathbf{F}^{-1} \\ &\sigma^* = \mathbf{Q} \cdot \boldsymbol{\sigma} \cdot \mathbf{Q}^T \\ &\mathbf{F}^* = \mathbf{Q} \cdot \mathbf{F} \quad ; \quad \mathbf{F}^{*^{-1}} = \mathbf{F}^{-1} \cdot \mathbf{Q}^c \quad ; \quad \dot{\mathbf{F}}^* = \dot{\mathbf{Q}} \cdot \mathbf{F} + \mathbf{Q} \cdot \dot{\mathbf{F}} \\ &\mathbf{L}^* = (\dot{\mathbf{Q}} \cdot \mathbf{F} + \mathbf{Q} \cdot \dot{\mathbf{F}}) \cdot \mathbf{F}^{-1} \cdot \mathbf{Q}^c = \dot{\mathbf{Q}} \cdot \mathbf{Q}^c + \mathbf{Q} \cdot \dot{\mathbf{F}} \cdot \mathbf{F}^{-1} \cdot \mathbf{Q}^c \\ &\mathbf{D}^* = \frac{1}{2} \left[ \dot{\mathbf{Q}} \cdot \mathbf{Q}^c + \mathbf{Q} \cdot \dot{\mathbf{F}} \cdot \mathbf{F}^{-1} \cdot \mathbf{Q}^c + \mathbf{Q} \cdot \dot{\mathbf{Q}}^c + \mathbf{Q} \cdot (\dot{\mathbf{F}} \cdot \mathbf{F}^{-1})^c \cdot \mathbf{Q}^c \right] \\ &\mathbf{Q} \cdot \mathbf{Q}^c = \mathbf{I} \quad \rightarrow \quad \dot{\mathbf{Q}} \cdot \mathbf{Q}^c + \mathbf{Q} \cdot \dot{\mathbf{Q}}^c \\ &= \mathbf{Q} \cdot \mathbf{D} \cdot \mathbf{Q}^c \\ &\sigma^* = -\rho \mathbf{I} + 2\eta \mathbf{D}^* \\ &\text{OBJECTIVE} \end{split}$$

Piet Schreurs (TU/e) 381 / 694

## Special stress tensors

- choose invariant stress tensor
- choose invariant rate of stress tensor

Piet Schreurs (TU/e) 382 / 694

#### Invariant stress tensor

$$\mathbf{S} = \mathbf{A} \cdot \mathbf{\sigma} \cdot \mathbf{A}^c$$

$$\begin{array}{ll} \mathbf{S}^* = \mathbf{A}^* \cdot \mathbf{\sigma}^* \cdot \mathbf{A}^{*c} = \mathbf{A}^* \cdot \mathbf{Q} \cdot \mathbf{\sigma} \cdot \mathbf{Q}^c \cdot \mathbf{A}^{*c} \\ \\ \text{define} & \mathbf{A}^* = \mathbf{A} \cdot \mathbf{Q}^c \end{array} \right\} \quad \rightarrow \quad$$

$$\mathbf{S}^* = \mathbf{A} \cdot \mathbf{Q}^c \cdot \mathbf{Q} \cdot \boldsymbol{\sigma} \cdot \mathbf{Q}^c \cdot \mathbf{Q} \cdot \mathbf{A}^c = \mathbf{A} \cdot \boldsymbol{\sigma} \cdot \mathbf{A}^c = \mathbf{S}$$

**S** = invariant for rigid rotation

Piet Schreurs (TU/e) 383 / 694

#### Invariant rate of stress tensor

$$\begin{split} \dot{\mathbf{S}} &= \dot{\mathbf{A}} \cdot \boldsymbol{\sigma} \cdot \mathbf{A}^c + \mathbf{A} \cdot \dot{\boldsymbol{\sigma}} \cdot \mathbf{A}^c + \mathbf{A} \cdot \boldsymbol{\sigma} \cdot \dot{\mathbf{A}}^c \\ \dot{\mathbf{S}}^* &= \dot{\mathbf{A}}^* \cdot \boldsymbol{\sigma}^* \cdot \mathbf{A}^{*c} + \mathbf{A}^* \cdot \dot{\boldsymbol{\sigma}}^* \cdot \mathbf{A}^{*c} + \mathbf{A}^* \cdot \boldsymbol{\sigma}^* \cdot \dot{\mathbf{A}}^{*c} \\ &= (\dot{\mathbf{A}} \cdot \mathbf{Q}^c + \mathbf{A} \cdot \dot{\mathbf{Q}}^c) \cdot \mathbf{Q} \cdot \boldsymbol{\sigma} \cdot \mathbf{Q}^c \cdot \mathbf{Q} \cdot \mathbf{A}^c + \\ &\quad \mathbf{A} \cdot \mathbf{Q}^c \cdot (\dot{\mathbf{Q}} \cdot \boldsymbol{\sigma} \cdot \mathbf{Q}^c + \mathbf{Q} \cdot \dot{\boldsymbol{\sigma}} \cdot \mathbf{Q}^c + \mathbf{Q} \cdot \boldsymbol{\sigma} \cdot \dot{\mathbf{Q}}^c) \cdot \mathbf{Q} \cdot \mathbf{A}^c + \\ &\quad \mathbf{A} \cdot \mathbf{Q}^c \cdot (\dot{\mathbf{Q}} \cdot \boldsymbol{\sigma} \cdot \mathbf{Q}^c + \mathbf{Q} \cdot \dot{\boldsymbol{\sigma}} \cdot \mathbf{Q}^c + \mathbf{Q} \cdot \boldsymbol{\sigma} \cdot \dot{\mathbf{Q}}^c) \cdot \mathbf{Q} \cdot \mathbf{A}^c + \\ &\quad \mathbf{A} \cdot \mathbf{Q}^c \cdot \mathbf{Q} \cdot \boldsymbol{\sigma} \cdot \mathbf{Q}^c \cdot (\mathbf{Q} \cdot \dot{\mathbf{A}}^c + \dot{\mathbf{Q}} \cdot \mathbf{Q} \cdot \dot{\mathbf{Q}} \cdot \dot{\mathbf{$$

Piet Schreurs (TU/e) 384 / 694

## Rate of Cauchy stress tensor

$$\begin{split} \mathbf{S} &= \mathbf{A} \cdot \boldsymbol{\sigma} \cdot \mathbf{A}^{c} \\ \dot{\mathbf{S}} &= \dot{\mathbf{A}} \cdot \boldsymbol{\sigma} \cdot \mathbf{A}^{c} + \mathbf{A} \cdot \dot{\boldsymbol{\sigma}} \cdot \mathbf{A}^{c} + \mathbf{A} \cdot \boldsymbol{\sigma} \cdot \dot{\mathbf{A}}^{c} \\ &= \mathbf{A} \cdot \left\{ (\mathbf{A}^{-1} \cdot \dot{\mathbf{A}}) \cdot \boldsymbol{\sigma} + \boldsymbol{\sigma} \cdot (\mathbf{A}^{-1} \cdot \dot{\mathbf{A}})^{c} + \dot{\boldsymbol{\sigma}} \right\} \cdot \mathbf{A}^{c} = \mathbf{A} \cdot \overset{\circ}{\boldsymbol{\sigma}} \cdot \mathbf{A}^{c} \\ \overset{\circ}{\boldsymbol{\sigma}} &= \dot{\boldsymbol{\sigma}} + (\mathbf{A}^{-1} \cdot \dot{\mathbf{A}}) \cdot \boldsymbol{\sigma} + \boldsymbol{\sigma} \cdot (\mathbf{A}^{-1} \cdot \dot{\mathbf{A}})^{c} \\ \overset{\circ}{\boldsymbol{\sigma}}^{*} &= \dot{\boldsymbol{\sigma}}^{*} + (\mathbf{A}^{-1^{*}} \cdot \dot{\mathbf{A}}^{*}) \cdot \boldsymbol{\sigma}^{*} + \boldsymbol{\sigma}^{*} \cdot (\mathbf{A}^{-1^{*}} \cdot \dot{\mathbf{A}}^{*})^{c} \\ &= \mathbf{A}^{*} \cdot \mathbf{A}^{-1^{*}} \cdot \dot{\mathbf{A}}^{*}) \cdot \boldsymbol{\sigma}^{*} + \boldsymbol{\sigma}^{*} \cdot (\mathbf{A}^{-1^{*}} \cdot \dot{\mathbf{A}}^{*})^{c} \\ &= \mathbf{A}^{*} \cdot \mathbf{A} \cdot \mathbf{Q}^{c} \quad \rightarrow \mathbf{A}^{*-1} = \mathbf{A}^{-1^{*}} = \mathbf{Q} \cdot \mathbf{A}^{-1} \\ &\dot{\mathbf{A}}^{*} = \dot{\mathbf{A}} \cdot \mathbf{Q}^{c} + \mathbf{A} \cdot \dot{\mathbf{Q}}^{c} \\ &= \dot{\boldsymbol{\sigma}}^{*} + \mathbf{Q} \cdot \dot{\mathbf{A}}^{-1} \cdot \dot{\mathbf{A}} \cdot \mathbf{Q}^{c} \cdot \boldsymbol{\sigma}^{*} + \mathbf{Q} \cdot \dot{\mathbf{Q}}^{c} \cdot \boldsymbol{\sigma}^{*} + \\ &= \dot{\boldsymbol{\sigma}}^{*} \cdot \mathbf{Q} \cdot (\mathbf{A}^{-1} \cdot \dot{\mathbf{A}})^{c} \cdot \mathbf{Q}^{c} + \boldsymbol{\sigma}^{*} \cdot \dot{\mathbf{Q}} \cdot \mathbf{Q}^{c} \\ &= \mathbf{Q} \cdot \overset{\circ}{\boldsymbol{\sigma}} \cdot \mathbf{Q}^{c} \qquad \rightarrow \overset{\circ}{\boldsymbol{\sigma}} = \text{objective} \end{split}$$

Piet Schreurs (TU/e) 385 / 694

# Objective rates and associated tensors

general tensor 
$$\begin{array}{c} \mathbf{S} = \boldsymbol{\sigma}_O = \mathbf{A} \cdot \boldsymbol{\sigma} \cdot \mathbf{A}^c \\ \dot{\mathbf{S}} = \dot{\boldsymbol{\sigma}}_O = \mathbf{A} \cdot \overset{\circ}{\boldsymbol{\sigma}}_O \cdot \mathbf{A}^c \\ \\ \mathbf{g} \text{ general rate} \\ \end{array}$$
 
$$\begin{array}{c} \overset{\circ}{\boldsymbol{\sigma}}_O = \dot{\boldsymbol{\sigma}} + (\mathbf{A}^{-1} \cdot \dot{\mathbf{A}}) \cdot \boldsymbol{\sigma} + \boldsymbol{\sigma} \cdot (\mathbf{A}^{-1} \cdot \dot{\mathbf{A}})^c \\ \\ \boldsymbol{\sigma}_C = \dot{\boldsymbol{\sigma}} + (\mathbf{A}^{-1} \cdot \dot{\mathbf{A}}) \cdot \boldsymbol{\sigma} + \boldsymbol{\sigma} \cdot (\mathbf{A}^{-1} \cdot \dot{\mathbf{A}})^c \\ \\ \boldsymbol{\sigma}_T = \mathbf{F}^{-1} \cdot \overset{\circ}{\boldsymbol{\sigma}}_T \cdot \mathbf{F}^{-c} \\ \\ \dot{\boldsymbol{\sigma}}_T = \mathbf{F}^{-1} \cdot \overset{\circ}{\boldsymbol{\sigma}}_T \cdot \mathbf{F}^{-c} \\ \\ \dot{\boldsymbol{\sigma}}_T = \overset{\circ}{\boldsymbol{\sigma}} = \dot{\boldsymbol{\sigma}} - \mathbf{L} \cdot \boldsymbol{\sigma} - \boldsymbol{\sigma} \cdot \mathbf{L}^c \\ \\ \boldsymbol{\sigma}_J = \mathbf{Q}^{-1} \cdot \overset{\circ}{\boldsymbol{\sigma}}_J \cdot \mathbf{Q}^{-c} \quad \text{with} \quad \dot{\mathbf{Q}} = \boldsymbol{\Omega} \cdot \mathbf{Q} \\ \\ \dot{\boldsymbol{\sigma}}_J = \mathbf{Q}^{-1} \cdot \overset{\circ}{\boldsymbol{\sigma}}_J \cdot \mathbf{Q}^{-c} \quad \text{with} \quad \dot{\mathbf{Q}} = \boldsymbol{\Omega} \cdot \mathbf{Q} \\ \\ \dot{\boldsymbol{\sigma}}_J = \overset{\circ}{\boldsymbol{\sigma}} = \dot{\boldsymbol{\sigma}} - \boldsymbol{\Omega} \cdot \boldsymbol{\sigma} - \boldsymbol{\sigma} \cdot \boldsymbol{\Omega}^c \\ \\ \boldsymbol{\sigma}_J = \overset{\circ}{\boldsymbol{\sigma}} = \dot{\boldsymbol{\sigma}} - \boldsymbol{\Omega} \cdot \boldsymbol{\sigma} - \boldsymbol{\sigma} \cdot \boldsymbol{\Omega}^c \\ \\ \boldsymbol{\sigma}_C = \mathbf{F}^c \cdot \overset{\circ}{\boldsymbol{\sigma}}_C \cdot \mathbf{F} \\ \\ \dot{\boldsymbol{\sigma}}_C = \mathbf{F}^c \cdot \overset{\circ}{\boldsymbol{\sigma}}_C \cdot \mathbf{F} \\ \\ \dot{\boldsymbol{\sigma}}_C = \overset{\wedge}{\boldsymbol{\sigma}} = \dot{\boldsymbol{\sigma}} + \mathbf{L}^c \cdot \boldsymbol{\sigma} + \boldsymbol{\sigma} \cdot \mathbf{L} \\ \\ \boldsymbol{\sigma}_D = \mathbf{R}^c \cdot \overset{\circ}{\boldsymbol{\sigma}}_D \cdot \mathbf{R} \\ \\ \boldsymbol{\sigma}_D = \overset{\circ}{\boldsymbol{\sigma}} = \overset{\circ}{\boldsymbol{\sigma}} - (\dot{\mathbf{R}} \cdot \mathbf{R}^c) \cdot \boldsymbol{\sigma} - \boldsymbol{\sigma} \cdot (\dot{\mathbf{R}} \cdot \mathbf{R}^c)^c \end{aligned}$$

Piet Schreurs (TU/e)

386 / 694

### LINEAR ELASTIC MATERIAL

back to index

#### Linear elastic material

```
C_{1111} C_{1122} C_{1133} C_{1121} C_{1112} C_{1132} C_{1123} C_{1113}
                                                                             C_{1131}
                                                                                        \epsilon_{11}
                     C_{2222} C_{2233} C_{2221} C_{2212}
                                                    C_{2232} C_{2223} C_{2213}
\sigma_{22}
                                                                                        £22
       C_{3311} C_{3322} C_{3333} C_{3321} C_{3312} C_{3332}
                                                             C_{3323} C_{3313}
                                                                                        €33
                     C_{1222} C_{1233} C_{1221} C_{1212} C_{1232}
                                                             C_{1223} C_{1213} C_{1231}
                                                                                        \epsilon_{12}
       =  C_{2111} C_{2122} C_{2133} C_{2121}
\sigma_{21} \\
                                                    C_{2132}
                                            C_{2112}
                                                             C_{2123} C_{2113} C_{2131}
                                                                                        ε21
      £23
                                                                                        £32
                                                                                        €31
```

Piet Schreurs (TU/e) 388 / 694

#### Symmetry

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{21} \\ \sigma_{23} \\ \sigma_{32} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{32} \\ \sigma_{31} \\ \sigma_{32} \\ \sigma_{32} \\ \sigma_{31} \\ \sigma_{32} \\ \sigma_{32} \\ \sigma_{31} \\ \sigma_{32} \\ \sigma_{311} \\ \sigma_{322} \\ \sigma_{313} \\ \sigma_{321} \\ \sigma_{313} \\ \sigma_{312} \\ \sigma_{313} \\ \sigma_{132} \\ \sigma_{131} \\ \sigma_{132} \\ \sigma_{132} \\ \sigma_{1312} \\ \sigma_{132} \\ \sigma_{132} \\ \sigma_{132} \\ \sigma_{132} \\ \sigma_{132} \\ \sigma_{132} \\ \sigma_{133} \\$$

specific energy 
$$W=\frac{1}{2}\underline{\xi}^T\underline{C}\underline{\xi} \longrightarrow$$
 symmetry  $\underline{\underline{C}}=\underline{\underline{C}}^T$ 

Piet Schreurs (TU/e) 389 / 694

#### Symmetric stresses

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{21} \\ \sigma_{23} \\ \sigma_{32} \\ \sigma_{32} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{33} \\ \sigma_{13} \end{bmatrix} = \begin{bmatrix} C_{1111} & C_{1122} & C_{1133} & C_{1121} & C_{1112} & C_{1132} & C_{1123} & C_{1131} & C_{1131} \\ C_{2211} & C_{2222} & C_{2233} & C_{2221} & C_{2212} & C_{2232} & C_{2223} & C_{2213} & C_{2231} \\ C_{3311} & C_{3322} & C_{3333} & C_{3321} & C_{3312} & C_{3322} & C_{3323} & C_{3313} & C_{3331} \\ C_{1211} & C_{1222} & C_{1233} & C_{1221} & C_{1212} & C_{1232} & C_{1223} & C_{1213} & C_{1231} \\ C_{2111} & C_{2122} & C_{2133} & C_{2121} & C_{2112} & C_{2132} & C_{2123} & C_{2131} & C_{2131} \\ C_{2311} & C_{2322} & C_{2333} & C_{2321} & C_{2312} & C_{2322} & C_{2323} & C_{2313} & C_{2331} \\ C_{3211} & C_{3222} & C_{3233} & C_{3221} & C_{3212} & C_{3232} & C_{3223} & C_{3213} & C_{3231} \\ C_{3111} & C_{3122} & C_{3133} & C_{3121} & C_{3112} & C_{3132} & C_{3123} & C_{3131} & C_{3131} \\ C_{1311} & C_{1322} & C_{1333} & C_{1321} & C_{1312} & C_{1332} & C_{1323} & C_{1313} & C_{1331} \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{12} \\ \varepsilon_{21} \\ \varepsilon_{22} \\ \varepsilon_{333} \\ \varepsilon_{12} \\ \varepsilon_{21} \\ \varepsilon_{22} \\ \varepsilon_{2332} \\ \varepsilon_{2323} \\ \varepsilon$$

$$\sigma_{ij} = \sigma_{ji}$$

```
\epsilon_{11}
                                                                                                                   \epsilon_{22}
                                     C_{1133}
                                                          C_{1112}
                                                                     C_{1132}
                                                                               C_{1123}
                                                C_{1121}
                                                                                                                   €33
                 C_{2211}
                           C_{2222}
                                     C_{2233}
                                                C_{2221}
                                                                     C_{2232}
                                                          C_{2212}
                                                                               C_{2223}
                                                                                          C_{2213}
                                                                                                    C_{2231}
ε12
                                                C_{3321}
                                                          C_{3312}
                                                                     C_{3332}
                                                                               C_{3323}
                                                                                          C_{3313}
                                                                                                                   ε21
                                                C_{1221}
                                                          C_{1212}
                                                                     C_{1232}
                                                                               C_{1223}
                                                                                                                   €23
                                              C_{2321}
                                                          C_{2312}
                                                                     C_{2332}
                                                                               C_{2323}
                                                                                                                   £32
                                     C_{3133}
                                                C_{3121}
                                                          C_{3112}
                                                                     C_{3132}
                                                                               C_{3123}
                                                                                                                    €31
                                                                                                                    ε13
```

Piet Schreurs (TU/e) 390 / 694

## Symmetric strains

```
\epsilon_{11}
                                                                                                                                                                                                                                                                                                                                                                                    \epsilon_{22}
 \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} = \begin{bmatrix} C_{1111} & C_{1122} & C_{1122} & C_{2212} & C_{2232} & C_{2233} \\ C_{2211} & C_{2222} & C_{2233} & C_{2221} & C_{2212} & C_{2232} & C_{2232} \\ C_{3311} & C_{3322} & C_{3333} & C_{3321} & C_{3312} & C_{3332} & C_{2221} \\ C_{1211} & C_{1222} & C_{1233} & C_{1221} & C_{1212} & C_{1232} & C_{2232} \\ C_{2311} & C_{2322} & C_{2333} & C_{2321} & C_{2312} & C_{2332} \\ C_{3111} & C_{3122} & C_{3133} & C_{3121} & C_{3112} & C_{3132} \end{bmatrix} 
                                                                                                                                C_{1133} C_{1121}
                                                                                                                                                                                               C_{1112} C_{1132} C_{1123} C_{1113}
                                                                                                C_{1122}
                                                                                                                                                                                                                                                                                                                                                                                    €33
                                                                                                                                                                                                                                                                      C_{2223}
                                                                                                                                                                                                                                                                                                                                                                                    \epsilon_{12}
                                                                                                                                                                                                                                                                      C_{3323}
                                                                                                                                                                                                                                                                                                                                                                                    ε21
                                                                                                                                                                                                                                                                     C_{1223} C_{1213}
                                                                                                                                                                                                                                                                                                                                                                                    \epsilon_{23}
                                                                                                                                                                                                                                                                     C_{2323} C_{2313}
                                                                                                                                                                                                                                                                                                                                                                                    \epsilon_{32}
                                                                                                                                                                                                                                                                      C_{3123}
```

$$\varepsilon_{ij} = \varepsilon_{ji}$$

```
 \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} = \begin{bmatrix} C_{1111} & C_{1122} & C_{1133} & [C_{1121} + C_{1112}] & [C_{1132} + C_{1123}] & [C_{1113} + C_{1131}] \\ C_{2211} & C_{2222} & C_{2233} & [C_{2221} + C_{2212}] & [C_{2232} + C_{2223}] & [C_{2213} + C_{2231}] \\ C_{3311} & C_{3322} & C_{3333} & [C_{3321} + C_{3312}] & [C_{3332} + C_{3323}] & [C_{3313} + C_{3331}] \\ C_{1211} & C_{1222} & C_{1233} & [C_{1221} + C_{1212}] & [C_{1232} + C_{1223}] & [C_{1213} + C_{1231}] \\ C_{2311} & C_{2322} & C_{2333} & [C_{2321} + C_{2312}] & [C_{2332} + C_{2323}] & [C_{2313} + C_{2331}] \\ C_{3111} & C_{3122} & C_{3133} & [C_{3121} + C_{3112}] & [C_{3132} + C_{3123}] & [C_{3113} + C_{3131}] \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{23} \\ \varepsilon_{23} \\ \varepsilon_{31} \end{bmatrix}
```

Piet Schreurs (TU/e) 391 / 694

## Symmetric material parameters

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} = \begin{bmatrix} C_{1111} & C_{1122} & C_{1133} & [C_{1121} + C_{1112}] & [C_{1132} + C_{1123}] & [C_{1113} + C_{1131}] \\ C_{2211} & C_{2222} & C_{2233} & [C_{2221} + C_{2212}] & [C_{2232} + C_{2223}] & [C_{2213} + C_{2231}] \\ C_{3311} & C_{3322} & C_{3333} & [C_{3321} + C_{3312}] & [C_{3332} + C_{3323}] & [C_{3313} + C_{3331}] \\ C_{1211} & C_{1222} & C_{1233} & [C_{1221} + C_{1212}] & [C_{1222} + C_{1223}] & [C_{1213} + C_{1231}] \\ C_{2311} & C_{2322} & C_{2333} & [C_{2321} + C_{2312}] & [C_{2332} + C_{2323}] & [C_{2313} + C_{2331}] \\ C_{3111} & C_{3122} & C_{3133} & [C_{3121} + C_{3112}] & [C_{3132} + C_{3123}] & [C_{3113} + C_{3131}] \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{12} \\ \varepsilon_{23} \\ \varepsilon_{31} \end{bmatrix}$$

$$C_{ijkl} = C_{ijlk}$$

```
 \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} = \begin{bmatrix} C_{1111} & C_{1122} & C_{1133} & 2C_{1121} & 2C_{1132} & 2C_{1113} \\ C_{2211} & C_{2222} & C_{2233} & 2C_{2221} & 2C_{2232} & 2C_{2213} \\ C_{3311} & C_{3322} & C_{3333} & 2C_{3321} & 2C_{3332} & 2C_{3313} \\ C_{1211} & C_{1222} & C_{1233} & 2C_{1221} & 2C_{1232} & 2C_{2123} \\ C_{2311} & C_{2322} & C_{2333} & 2C_{2321} & 2C_{2332} & 2C_{2313} \\ C_{3111} & C_{3122} & C_{3133} & 2C_{3121} & 2C_{3132} & 2C_{3113} \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{12} \\ \varepsilon_{23} \\ \varepsilon_{31} \\ \varepsilon_{31} \end{bmatrix}
```

Piet Schreurs (TU/e) 392 / 694

#### Shear strain

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} = \begin{bmatrix} C_{1111} & C_{1122} & C_{1133} & 2C_{1121} & 2C_{1132} & 2C_{1113} \\ C_{2211} & C_{2222} & C_{2233} & 2C_{2221} & 2C_{2232} & 2C_{2213} \\ C_{3311} & C_{3322} & C_{3333} & 2C_{3321} & 2C_{3332} & 2C_{3313} \\ C_{1211} & C_{1222} & C_{1233} & 2C_{1221} & 2C_{1232} & 2C_{1213} \\ C_{2311} & C_{2322} & C_{2333} & 2C_{2321} & 2C_{2332} & 2C_{2313} \\ C_{3111} & C_{3122} & C_{3133} & 2C_{3121} & 2C_{3132} & 2C_{3113} \end{bmatrix} \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\ \epsilon_{12} \\ \epsilon_{23} \\ \epsilon_{31} \end{bmatrix}$$

$$2\epsilon_{ij}=\gamma_{ij}$$

```
 \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} = \begin{bmatrix} C_{1111} & C_{1122} & C_{1133} & C_{1121} & C_{1132} & C_{1113} \\ C_{2211} & C_{2222} & C_{2233} & C_{2221} & C_{2232} & C_{2213} \\ C_{3311} & C_{3322} & C_{3333} & C_{3321} & C_{3332} & C_{3313} \\ C_{1211} & C_{1222} & C_{1233} & C_{1221} & C_{1232} & C_{1213} \\ C_{2311} & C_{2322} & C_{2333} & C_{2321} & C_{2332} & C_{2313} \\ C_{3111} & C_{3122} & C_{3133} & C_{3121} & C_{3132} & C_{3113} \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \gamma_{12} \\ \gamma_{23} \\ \gamma_{31} \end{bmatrix}
```

Piet Schreurs (TU/e) 393 / 694

## Material symmetry

 $\begin{array}{c} \mathsf{monoclinic} \to \mathsf{orthotropic} \to \mathsf{quadratic} \to \mathsf{transversal} \ \mathsf{isotropic} \to \mathsf{cubic} \to \\ \mathsf{isotropic} \end{array}$ 

Piet Schreurs (TU/e) 394 / 694

### MATERIAL SYMMETRY

back to index

### Triclinic: no symmetry

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} = \begin{bmatrix} C_{1111} & C_{1122} & C_{1133} & C_{1121} & C_{1132} & C_{1113} \\ C_{2211} & C_{2222} & C_{2233} & C_{2221} & C_{2232} & C_{2213} \\ C_{3311} & C_{3322} & C_{3333} & C_{3321} & C_{3332} & C_{3313} \\ C_{1211} & C_{1222} & C_{1233} & C_{1221} & C_{1232} & C_{1213} \\ C_{2311} & C_{2322} & C_{2333} & C_{2321} & C_{2332} & C_{2313} \\ C_{3111} & C_{3122} & C_{3133} & C_{3121} & C_{3132} & C_{3113} \end{bmatrix} \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\ \gamma_{12} \\ \gamma_{23} \\ \gamma_{31} \end{bmatrix}$$

21 material parameters

Piet Schreurs (TU/e) 396 / 694

# Monoclinic: 1 symmetry plane (here 12)

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} = \begin{bmatrix} C_{1111} & C_{1122} & C_{1133} & C_{1121} & C_{1132} & C_{1113} \\ C_{2211} & C_{2222} & C_{2233} & C_{2221} & C_{2232} & C_{2213} \\ C_{3311} & C_{3322} & C_{3333} & C_{3321} & C_{3332} & C_{3313} \\ C_{1211} & C_{1222} & C_{1233} & C_{1221} & C_{1232} & C_{1213} \\ C_{2311} & C_{2322} & C_{2333} & C_{2321} & C_{2332} & C_{2313} \\ C_{3111} & C_{3122} & C_{3133} & C_{3121} & C_{3132} & C_{3113} \end{bmatrix} \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\ \gamma_{12} \\ \gamma_{23} \\ \gamma_{31} \end{bmatrix}$$



Piet Schreurs (TU/e) 397 / 694

#### Monoclinic: tensile test

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} = \begin{bmatrix} C_{1111} & C_{1122} & C_{1133} & C_{1121} & C_{1132} & C_{1113} \\ C_{2211} & C_{2222} & C_{2233} & C_{2221} & C_{2232} & C_{2213} \\ C_{3311} & C_{3322} & C_{3333} & C_{3321} & C_{3332} & C_{3313} \\ C_{1211} & C_{1222} & C_{1233} & C_{1221} & C_{1232} & C_{1213} \\ C_{2311} & C_{2322} & C_{2333} & C_{2321} & C_{2332} & C_{2313} \\ C_{3111} & C_{3122} & C_{3133} & C_{3121} & C_{3132} & C_{3113} \end{bmatrix} \begin{bmatrix} \epsilon_{11} \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$



Piet Schreurs (TU/e) 398 / 694

#### Monoclinic: tensile test

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} = \begin{bmatrix} C_{1111} & C_{1122} & C_{1133} & C_{1121} & C_{1132} & C_{1113} \\ C_{2211} & C_{2222} & C_{2233} & C_{2221} & C_{2232} & C_{2213} \\ C_{3311} & C_{3322} & C_{3333} & C_{3321} & C_{3332} & C_{3313} \\ C_{1211} & C_{1222} & C_{1233} & C_{1221} & C_{1232} & C_{1213} \\ 0 & C_{2322} & C_{2333} & C_{2321} & C_{2332} & C_{2313} \\ 0 & C_{3122} & C_{3133} & C_{3121} & C_{3132} & C_{3113} \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$



Piet Schreurs (TU/e) 399 / 694

# Monoclinic: 1 symmetry plane (here 12)



| ı | Г С        | C          | C          | C          | Λ          | Λ          | - |
|---|------------|------------|------------|------------|------------|------------|---|
|   |            | $C_{1122}$ |            |            | -          | 0          |   |
|   |            | $C_{2222}$ |            |            | 0          | 0          |   |
|   | $C_{3311}$ | $C_{3322}$ | $C_{3333}$ | $C_{3321}$ | 0          | 0          |   |
|   | $C_{1211}$ | $C_{1222}$ | $C_{1233}$ | $C_{1221}$ | 0          | 0          |   |
|   | 0          | 0          | 0          | 0          | $C_{2332}$ | $C_{2313}$ |   |
|   | 0          | 0          | 0          | 0          | $C_{3132}$ | $C_{3113}$ |   |

13 material parameters

Piet Schreurs (TU/e) 400 / 694

# Orthotropic: 3 symmetry planes (12, 23, 31)



$$\underline{\underline{C}} = \left[ \begin{array}{ccccc} A & Q & R & 0 & 0 & 0 \\ Q & B & S & 0 & 0 & 0 \\ R & S & C & 0 & 0 & 0 \\ 0 & 0 & 0 & K & 0 & 0 \\ 0 & 0 & 0 & 0 & L & 0 \\ 0 & 0 & 0 & 0 & 0 & M \end{array} \right]$$

9 material parameters

Piet Schreurs (TU/e) 401 / 694

# Quadratic: 2 isotropic directions (here 1 and 2)



$$\underline{\underline{C}} = \left[ \begin{array}{cccccc} A & Q & R & 0 & 0 & 0 \\ Q & A & R & 0 & 0 & 0 \\ R & R & C & 0 & 0 & 0 \\ 0 & 0 & 0 & K & 0 & 0 \\ 0 & 0 & 0 & 0 & L & 0 \\ 0 & 0 & 0 & 0 & 0 & L \end{array} \right]$$

6 material parameters

Piet Schreurs (TU/e) 402 / 694

# Transversal isotropic: 1 isotropic plane (here 12)



Piet Schreurs (TU/e) 403 / 694

## Transversal isotropic: shear test in 12-plane

$$\begin{split} \underline{\sigma} &= \left[ \begin{array}{cc} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{array} \right] = \left[ \begin{array}{cc} 0 & \tau \\ \tau & 0 \end{array} \right] & \rightarrow \ \text{det}(\underline{\sigma} - \sigma \underline{I}) = 0 \ \rightarrow \ \left\{ \begin{array}{cc} \sigma_{1} = \tau \\ \sigma_{2} = -\tau \end{array} \right. \\ \underline{\epsilon} &= \left[ \begin{array}{cc} \epsilon_{11} & \epsilon_{12} \\ \epsilon_{21} & \epsilon_{22} \end{array} \right] = \left[ \begin{array}{cc} 0 & \frac{1}{2}\gamma \\ \frac{1}{2}\gamma & 0 \end{array} \right] \ \rightarrow \ \text{det}(\underline{\epsilon} - \epsilon \underline{I}) = 0 \ \rightarrow \ \left\{ \begin{array}{cc} \epsilon_{1} = \frac{1}{2}\gamma \\ \epsilon_{2} = -\frac{1}{2}\gamma \end{array} \right. \end{split}$$

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix} = \begin{bmatrix} A & Q \\ Q & A \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \end{bmatrix} \rightarrow \begin{matrix} \sigma_1 = A\varepsilon_1 + Q\varepsilon_2 = & \tau = K\gamma \\ \sigma_2 = Q\varepsilon_1 + A\varepsilon_2 = -\tau = -K\gamma \end{matrix} \rightarrow$$

$$(A - Q)(\varepsilon_1 - \varepsilon_2) = 2K\gamma$$

$$\varepsilon_1 = \frac{1}{2}\gamma \quad ; \quad \varepsilon_1 = -\frac{1}{2}\gamma$$

$$\rightarrow \begin{matrix} K = \frac{1}{2}(A - Q) \\ K = \frac{1}{2}(A - Q) \end{matrix}$$

Piet Schreurs (TU/e) 404 / 69

## Transversal isotropic



$$\underline{\underline{C}} = \left[ \begin{array}{cccccc} A & Q & R & 0 & 0 & 0 \\ Q & A & R & 0 & 0 & 0 \\ R & R & C & 0 & 0 & 0 \\ 0 & 0 & 0 & K & 0 & 0 \\ 0 & 0 & 0 & 0 & L & 0 \\ 0 & 0 & 0 & 0 & 0 & L \end{array} \right]$$

$$K = \frac{1}{2}(A - Q)$$

5 material parameters

Piet Schreurs (TU/e) 405 / 694

# Cubic: 3 isotropic directions (here 1, 2 and 3)



$$\underline{\underline{C}} = \begin{bmatrix} A & Q & Q & 0 & 0 & 0 \\ Q & A & Q & 0 & 0 & 0 \\ Q & Q & A & 0 & 0 & 0 \\ 0 & 0 & 0 & L & 0 & 0 \\ 0 & 0 & 0 & 0 & L & 0 \\ 0 & 0 & 0 & 0 & 0 & L \end{bmatrix}$$

$$L \neq \frac{1}{2}(A - Q)$$
3 material

$$L \neq \frac{1}{2}(A-Q)$$

material parameters

Piet Schreurs (TU/e) 406 / 694

## Isotropic



$$\underline{\underline{C}} = \left[ \begin{array}{cccccc} A & Q & Q & 0 & 0 & 0 \\ Q & A & Q & 0 & 0 & 0 \\ Q & Q & A & 0 & 0 & 0 \\ 0 & 0 & 0 & L & 0 & 0 \\ 0 & 0 & 0 & 0 & L & 0 \\ 0 & 0 & 0 & 0 & 0 & L \end{array} \right]$$

$$L = \frac{1}{2}(A - Q)$$

2 material parameters

Piet Schreurs (TU/e) 407 / 694

# ENGINEERING PARAMETERS

#### Tensile test

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} = \begin{bmatrix} A & Q & Q & 0 & 0 & 0 \\ Q & A & Q & 0 & 0 & 0 \\ Q & Q & A & 0 & 0 & 0 \\ 0 & 0 & 0 & L & 0 & 0 \\ 0 & 0 & 0 & 0 & L & 0 \\ 0 & 0 & 0 & 0 & 0 & L \end{bmatrix} \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\ \gamma_{12} \\ \gamma_{23} \\ \gamma_{31} \end{bmatrix} \quad \text{with} \quad L = \frac{1}{2}(A - Q)$$

$$\underbrace{\varepsilon}^{T} = \begin{bmatrix} \varepsilon & \varepsilon_{d} & \varepsilon_{d} & 0 & 0 & 0 \end{bmatrix}; \ \underline{\sigma}^{T} = \begin{bmatrix} \sigma & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\sigma = A\varepsilon + 2Q\varepsilon_{d}$$

$$0 = Q\varepsilon + (A + Q)\varepsilon_{d} \to \varepsilon_{d} = -\frac{Q}{A + Q}\varepsilon$$

$$\varepsilon_{d} = -\mathbf{v}\varepsilon \qquad ; \qquad \sigma = \mathbf{E}\varepsilon$$

$$A = \frac{(1 - \mathbf{v})E}{(1 + \mathbf{v})(1 - 2\mathbf{v})} \quad Q = \frac{\mathbf{v}E}{(1 + \mathbf{v})(1 - 2\mathbf{v})}$$

$$L = \frac{E}{2(1 + \mathbf{v})}$$

Piet Schreurs (TU/e) 409 / 694

#### Shear test

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} = \begin{bmatrix} A & Q & Q & 0 & 0 & 0 \\ Q & A & Q & 0 & 0 & 0 \\ Q & Q & A & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & L & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & L & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & L & 0 \\ 0 & 0 & 0 & 0 & 0 & L & 0 \\ 0 & 0 & 0 & 0 & 0 & L & 0 \\ 0 & 0 & 0 & 0 & 0 & L & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & L \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \gamma_{12} \\ \gamma_{23} \\ \gamma_{31} \end{bmatrix}$$
 with  $L = \frac{1}{2}(A - Q)$ 

$$\underbrace{\varepsilon}^{T} = \begin{bmatrix} 0 & 0 & 0 & 0 & \gamma \end{bmatrix}; \underbrace{\sigma}^{T} = \begin{bmatrix} 0 & 0 & 0 & 0 & \tau \end{bmatrix}$$

$$\tau = L\gamma = \frac{E}{2(1+\gamma)}\gamma = G\gamma$$

410 / 694

# Volume change

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} = \begin{bmatrix} A & Q & Q & 0 & 0 & 0 \\ Q & A & Q & 0 & 0 & 0 \\ Q & Q & A & 0 & 0 & 0 \\ 0 & 0 & 0 & L & 0 & 0 \\ 0 & 0 & 0 & 0 & L & 0 \\ 0 & 0 & 0 & 0 & 0 & L \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \gamma_{12} \\ \gamma_{23} \\ \gamma_{31} \end{bmatrix} \quad \text{with} \quad L = \frac{1}{2}(A - Q)$$

$$\begin{split} \xi^T &= \left[ \begin{array}{cccc} \varepsilon_{11} & \varepsilon_{22} & \varepsilon_{33} & 0 & 0 & 0 \end{array} \right] \\ J - 1 &\approx \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33} = \frac{1 - 2\nu}{E} (\sigma_{11} + \sigma_{22} + \sigma_{33}) \\ &= \frac{3(1 - 2\nu)}{E} \frac{1}{3} (\sigma_{11} + \sigma_{22} + \sigma_{33}) = \frac{1}{K} \frac{1}{3} tr(\underline{\sigma}) \end{split}$$

Piet Schreurs (TU/e) 411 / 694

## Isotropic compliance and stiffness matrix

$$\begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\ \gamma_{12} \\ \gamma_{23} \\ \gamma_{31} \end{bmatrix} = \frac{1}{E} \begin{bmatrix} 1 & -\nu & -\nu & 0 & 0 & 0 \\ -\nu & 1 & -\nu & 0 & 0 & 0 \\ -\nu & -\nu & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2(1+\nu) & 0 & 0 \\ 0 & 0 & 0 & 0 & 2(1+\nu) & 0 \\ 0 & 0 & 0 & 0 & 0 & 2(1+\nu) \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix}$$

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} = \alpha \begin{bmatrix} 1-\nu & \nu & \nu & 0 & 0 & 0 \\ \nu & 1-\nu & \nu & 0 & 0 & 0 \\ \nu & \nu & 1-\nu & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2}(1-2\nu) & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2}(1-2\nu) & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}(1-2\nu) \end{bmatrix} \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\ \gamma_{12} \\ \gamma_{23} \\ \gamma_{31} \end{bmatrix}$$

Piet Schreurs (TU/e) 412 / 694

# LINEAR ELASTIC ISOTROPIC MATERIAL TENSORIAL FORM

# Column/matrix notation of Hooke's law

$$\begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{12} \\ \varepsilon_{23} \\ \varepsilon_{31} \end{bmatrix} = \frac{1}{E} \begin{bmatrix} 1 & -\nu & -\nu & 0 & 0 & 0 \\ -\nu & 1 & -\nu & 0 & 0 & 0 \\ -\nu & -\nu & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1+\nu & 0 & 0 \\ 0 & 0 & 0 & 0 & 1+\nu & 0 \\ 0 & 0 & 0 & 0 & 0 & 1+\nu \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix}$$

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} = \alpha \begin{bmatrix} 1-\gamma & \gamma & \gamma & 0 & 0 & 0 \\ \gamma & 1-\gamma & \gamma & 0 & 0 & 0 \\ \gamma & \gamma & 1-\gamma & 0 & 0 & 0 \\ 0 & 0 & 0 & 1-2\gamma & 0 & 0 \\ 0 & 0 & 0 & 0 & 1-2\gamma & 0 \\ 0 & 0 & 0 & 0 & 0 & 1-2\gamma \end{bmatrix} \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\ \epsilon_{12} \\ \epsilon_{23} \\ \epsilon_{31} \end{bmatrix}$$
 with 
$$\alpha = \frac{E}{(1+\gamma)(1-2\gamma)}$$

Piet Schreurs (TU/e) 414 / 694

#### Isotropic stiffness matrix

Piet Schreurs (TU/e) 415 / 694

#### Isotropic stiffness tensor

$$\sigma = \left[\frac{E\nu}{(1+\nu)(1-2\nu)}\right] \mathbf{I} \operatorname{tr}(\varepsilon) + \left[\frac{E}{(1+\nu)}\right] \varepsilon$$

$$= Q \operatorname{tr}(\varepsilon) \mathbf{I} + 2L\varepsilon$$

$$= c_0 \operatorname{tr}(\varepsilon) \mathbf{I} + c_1 \varepsilon$$

$$= \left[c_0 \mathbf{II} + c_1^4 \mathbf{I}^s\right] : \varepsilon \qquad \text{with} \qquad {}^4 \mathbf{I}^s = \frac{1}{2} ({}^4 \mathbf{I} + {}^4 \mathbf{I}^{rc})$$

$$= {}^4 \mathbf{C} : \varepsilon$$

Piet Schreurs (TU/e) 416 / 694

## Stiffness and compliance tensor

$$\sigma = {}^{4}\mathbf{C} : \epsilon$$

$$= \left[ c_{0}\mathbf{I} \mathbf{I} + c_{1} {}^{4}\mathbf{I}^{s} \right] : \epsilon$$

$$\text{with } {}^{4}\mathbf{I}^{s} = \frac{1}{2} \left( {}^{4}\mathbf{I} + {}^{4}\mathbf{I}^{rc} \right)$$

$$= c_{0}\text{tr}(\epsilon)\mathbf{I} + c_{1}\epsilon$$

$$= c_{0}\text{tr}(\epsilon)\mathbf{I} + c_{1}\epsilon$$

$$= c_{0}\text{tr}(\epsilon)\mathbf{I} + c_{1}\left\{ \epsilon^{d} + \frac{1}{3}\text{tr}(\epsilon)\mathbf{I} \right\}$$

$$= (c_{0} + \frac{1}{3}c_{1})\text{tr}(\epsilon)\mathbf{I} + c_{1}\epsilon^{d}$$

$$= (3c_{0} + c_{1})\frac{1}{3}\text{tr}(\epsilon)\mathbf{I} + c_{1}\epsilon^{d}$$

$$= (3c_{0} + c_{1})\frac{1}{3}\text{tr}(\epsilon)\mathbf{I} + c_{1}\epsilon^{d}$$

$$= (3c_{0} + c_{1})\epsilon^{h} + c_{1}\epsilon^{d}$$

$$= \sigma^{h} + \sigma^{d}$$

$$c_{0} = \frac{\gamma E}{(1 + \gamma)(1 - 2\gamma)} = Q$$

$$\gamma_{0} = -\frac{c_{0}}{(3c_{0} + c_{1})c_{1}} = -\frac{\gamma}{E} = q$$

$$; c_{1} = \frac{E}{1 + \gamma} = 2L$$

$$\gamma_{1} = \frac{1}{c_{1}} = \frac{1 + \gamma}{E} = \frac{1}{2}I$$

Piet Schreurs (TU/e)

## Stiffness and compliance components

$$\sigma = \left[c_{0}\mathbf{I}\mathbf{I} + c_{1}^{4}\mathbf{I}^{s}\right] : \varepsilon$$

$$\sigma_{ij} = \left[c_{0}\delta_{ij}\delta_{kl} + c_{1}\frac{1}{2}\left(\delta_{il}\delta_{jk} + \delta_{ik}\delta_{jl}\right)\right] \varepsilon_{lk}$$

$$\varepsilon_{ij} = \left[-\frac{c_{0}}{(3c_{0} + c_{1})c_{1}}\mathbf{I}\mathbf{I} + \frac{1}{c_{1}}^{4}\mathbf{I}^{s}\right] : \sigma$$

$$\varepsilon_{ij} = \left[-\frac{c_{0}}{(3c_{0} + c_{1})c_{1}}\delta_{ij}\delta_{kl} + \frac{1}{c_{1}}\delta_{ij}\delta_{kl} + \frac{1}{c_{1}}\delta_{ij}\delta_{kl} + \frac{1}{c_{1}}\delta_{ij}\delta_{ik} + \delta_{ik}\delta_{jl}\right] \sigma_{lk}$$

$$= c_{1}\left(\varepsilon_{ij} + \frac{c_{0}}{c_{1}}\delta_{ij}\varepsilon_{kk}\right)$$

$$= \frac{E}{1 + \nu}\left(\varepsilon_{ij} + \frac{\nu}{1 - 2\nu}\delta_{ij}\varepsilon_{kk}\right)$$

$$= \frac{1}{c_{1}}\left(\sigma_{ij} - \frac{c_{0}}{3c_{0} + c_{1}}\delta_{ij}\sigma_{kk}\right)$$

$$\begin{split} \epsilon &= \left[ -\frac{c_0}{(3c_0 + c_1)c_1} \mathbf{I} \mathbf{I} + \frac{1}{c_1} \, {}^4 \mathbf{I}^s \right] : \\ \epsilon_{ij} &= \left[ -\frac{c_0}{(3c_0 + c_1)c_1} \, \delta_{ij} \delta_{kl} + \right. \\ &\left. \frac{1}{c_1} \, \frac{1}{2} \left( \delta_{il} \delta_{jk} + \delta_{ik} \delta_{jl} \right) \right] \\ &= -\frac{c_0}{(3c_0 + c_1)c_1} \, \delta_{ij} \sigma_{kk} + \frac{1}{c_1} \, \sigma_{ij} \\ &= \frac{1}{c_1} \left( \sigma_{ij} - \frac{c_0}{3c_0 + c_1} \, \delta_{ij} \sigma_{kk} \right) \\ &= \frac{1 + \nu}{E} \left( \sigma_{ij} - \frac{\nu}{1 + \nu} \, \delta_{ij} \sigma_{kk} \right) \end{split}$$

# Specific elastic energy

$$\begin{split} \boldsymbol{W} &= \frac{1}{2}\boldsymbol{\sigma}: \boldsymbol{\epsilon} = \frac{1}{2}\boldsymbol{\sigma}: \, ^{4}\boldsymbol{S}: \boldsymbol{\sigma} = \frac{1}{2}(\boldsymbol{\sigma}^{h} + \boldsymbol{\sigma}^{d}): \, ^{4}\boldsymbol{S}: (\boldsymbol{\sigma}^{h} + \boldsymbol{\sigma}^{d}) \\ &= \frac{1}{2}(\boldsymbol{\sigma}^{h} + \boldsymbol{\sigma}^{d}): \left(\boldsymbol{\gamma}_{0}\boldsymbol{\mathsf{II}} + \boldsymbol{\gamma}_{1}{}^{4}\boldsymbol{\mathsf{I}}^{s}\right): (\boldsymbol{\sigma}^{h} + \boldsymbol{\sigma}^{d}) \\ &\qquad \qquad \boldsymbol{\gamma}_{0}\boldsymbol{\mathsf{I}}\left[\boldsymbol{\mathsf{I}}: \boldsymbol{\sigma}^{h}\right] = \boldsymbol{\gamma}_{0}\boldsymbol{\mathsf{I}}\left[\boldsymbol{\mathsf{I}}: \boldsymbol{\mathsf{I}}\frac{1}{3}\mathrm{tr}(\boldsymbol{\sigma})\right] = \boldsymbol{\gamma}_{0}\boldsymbol{\mathsf{I}}\left[\mathrm{tr}(\boldsymbol{\sigma})\right] = 3\boldsymbol{\gamma}_{0}\boldsymbol{\sigma}^{h} \\ &\qquad \qquad \boldsymbol{\gamma}_{0}\boldsymbol{\mathsf{I}}\left[\boldsymbol{\mathsf{I}}: \boldsymbol{\sigma}^{d}\right] = \boldsymbol{\gamma}_{0}\boldsymbol{\mathsf{I}}\left[\mathrm{tr}(\boldsymbol{\sigma}^{d})\right] = \boldsymbol{\gamma}_{0}\boldsymbol{\mathsf{I}}\left[\boldsymbol{\mathsf{I}}\right] = 0 \end{split}$$

$$&= \frac{1}{2}(\boldsymbol{\sigma}^{h} + \boldsymbol{\sigma}^{d}): (3\boldsymbol{\gamma}_{0}\boldsymbol{\sigma}^{h} + \boldsymbol{\gamma}_{1}\boldsymbol{\sigma}^{h} + \boldsymbol{\gamma}_{1}\boldsymbol{\sigma}^{d}) \\ &\qquad \qquad \boldsymbol{\sigma}^{h}: \boldsymbol{\sigma}^{h} = \frac{1}{3}\mathrm{tr}(\boldsymbol{\sigma})\boldsymbol{\mathsf{I}}: \frac{1}{3}\mathrm{tr}(\boldsymbol{\sigma})\boldsymbol{\mathsf{I}} = \frac{1}{9}\mathrm{tr}^{2}(\boldsymbol{\sigma})(3) = \frac{1}{3}\mathrm{tr}^{2}(\boldsymbol{\sigma}) \\ &\qquad \qquad \boldsymbol{\sigma}^{h}: \boldsymbol{\sigma}^{d} = \frac{1}{3}\mathrm{tr}(\boldsymbol{\sigma})\boldsymbol{\mathsf{I}}: [\boldsymbol{\sigma} - \frac{1}{3}\mathrm{tr}(\boldsymbol{\sigma})\boldsymbol{\mathsf{I}}] = \frac{1}{3}\mathrm{tr}^{2}(\boldsymbol{\sigma}) - \frac{1}{3}\mathrm{tr}^{2}(\boldsymbol{\sigma}) = 0 \end{split}$$

$$&= \left[\frac{1}{2}(\boldsymbol{\gamma}_{0} + \frac{1}{3}\boldsymbol{\gamma}_{1})\right]\mathrm{tr}^{2}(\boldsymbol{\sigma}) + \left[\frac{1}{2}\boldsymbol{\gamma}_{1}\right]\boldsymbol{\sigma}^{d}: \boldsymbol{\sigma}^{d} \\ &= \left[\frac{1}{2}\frac{1 - 2\boldsymbol{\nu}}{3E}\right]\mathrm{tr}^{2}(\boldsymbol{\sigma}) + \left[\frac{1}{2}\frac{1 + \boldsymbol{\nu}}{E}\right]\boldsymbol{\sigma}^{d}: \boldsymbol{\sigma}^{d} = \frac{1}{18K}\mathrm{tr}^{2}(\boldsymbol{\sigma}) + \frac{1}{4G}\boldsymbol{\sigma}^{d}: \boldsymbol{\sigma}^{d} \\ &= W^{h} + W^{d} \end{split}$$

Piet Schreurs (TU/e) 419 / 694

## THERMO-ELASTICITY

back to index

# Thermoelasticity

#### Anisotropic

$$\begin{aligned}
\boldsymbol{\varepsilon} &= \boldsymbol{\varepsilon}_m + \boldsymbol{\varepsilon}_T = {}^{4}\mathbf{S} : \boldsymbol{\sigma} + \mathbf{A}\Delta T &\rightarrow \\
\underline{\varepsilon} &= \underline{\varepsilon}_m + \underline{\varepsilon}_T = \underline{S}\,\underline{\sigma} + \underline{A}\Delta T \\
\boldsymbol{\sigma} &= {}^{4}\mathbf{C} : (\boldsymbol{\varepsilon} - \mathbf{A}\Delta T) &\rightarrow \\
\underline{\sigma} &= \underline{C}\,(\underline{\varepsilon} - \underline{A}\Delta T)
\end{aligned}$$

#### Isotropic

$$\begin{array}{lll} \boldsymbol{\epsilon} = \, ^{4}\boldsymbol{\mathsf{S}} : \boldsymbol{\sigma} + \boldsymbol{\alpha} \, \Delta T \boldsymbol{\mathsf{I}} & \rightarrow & \underline{\boldsymbol{\varepsilon}} = \underline{\underline{\boldsymbol{S}}} \, \underline{\boldsymbol{\varepsilon}} + \boldsymbol{\alpha} \, \Delta T \underline{\boldsymbol{\xi}} \\ \boldsymbol{\sigma} = \, ^{4}\boldsymbol{\mathsf{C}} : (\boldsymbol{\epsilon} - \boldsymbol{\alpha} \Delta T \boldsymbol{\mathsf{I}}) & \rightarrow & \underline{\boldsymbol{\varepsilon}} = \underline{\underline{\boldsymbol{C}}} (\underline{\boldsymbol{\varepsilon}} - \boldsymbol{\alpha} \, \Delta T \, \underline{\boldsymbol{\xi}}) \end{array}$$

Piet Schreurs (TU/e) 421 / 694

# Orthotropic thermo-elasticity

$$\begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \gamma_{12} \\ \gamma_{23} \\ \gamma_{31} \end{bmatrix} = \begin{bmatrix} a & q & r & 0 & 0 & 0 \\ q & b & s & 0 & 0 & 0 \\ r & s & c & 0 & 0 & 0 \\ 0 & 0 & 0 & k & 0 & 0 \\ 0 & 0 & 0 & 0 & l & 0 \\ 0 & 0 & 0 & 0 & 0 & m \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} + \alpha \Delta T \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} = \begin{bmatrix} A & Q & R & 0 & 0 & 0 \\ Q & B & S & 0 & 0 & 0 \\ R & S & C & 0 & 0 & 0 \\ 0 & 0 & 0 & K & 0 & 0 \\ 0 & 0 & 0 & 0 & L & 0 \\ 0 & 0 & 0 & 0 & 0 & M \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \gamma_{12} \\ \gamma_{23} \\ \gamma_{31} \end{bmatrix} - \alpha \Delta T \begin{bmatrix} A + Q + R \\ Q + B + S \\ R + S + C \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Piet Schreurs (TU/e) 422 / 694

## PLANAR DEFORMATION

back to index

#### Plane strain

$$\varepsilon_{33} = \gamma_{23} = \gamma_{31} = 0 \quad \rightarrow \quad \sigma_{33} = R\varepsilon_{11} + S\varepsilon_{22}$$

$$\underline{\sigma} = \left[ \begin{array}{c} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{array} \right] = \left[ \begin{array}{ccc} A & Q & 0 \\ Q & B & 0 \\ 0 & 0 & K \end{array} \right] \left[ \begin{array}{c} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{array} \right] = \left[ \begin{array}{ccc} A_{\varepsilon} & Q_{\varepsilon} & 0 \\ Q_{\varepsilon} & B_{\varepsilon} & 0 \\ 0 & 0 & K \end{array} \right] \left[ \begin{array}{c} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{array} \right] = \underline{\underline{C}}_{\varepsilon} \underline{\varepsilon}$$

$$\xi = \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} = \frac{1}{AB - Q^2} \begin{bmatrix} B & -Q & 0 \\ -Q & A & 0 \\ 0 & 0 & \frac{AB - Q^2}{K} \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} \\
= \begin{bmatrix} a_{\varepsilon} & q_{\varepsilon} & 0 \\ q_{\varepsilon} & b_{\varepsilon} & 0 \\ 0 & 0 & k \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \underline{\underline{S}}_{\varepsilon} \sigma$$

$$\sigma_{33} = \frac{1}{AB^2 - Q^2} [(BR - QS)\sigma_{11} + (AS - QR)\sigma_{22}]$$

424 / 694 Piet Schreurs (TU/e)

#### Plane strain

$$\epsilon_{33}=0=r\sigma_{11}+s\sigma_{22}+c\sigma_{33}\quad\rightarrow\quad\sigma_{33}=-\frac{r}{c}\sigma_{11}-\frac{s}{c}\sigma_{22}$$

$$\begin{split} \underline{\varepsilon} &= \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} = \begin{bmatrix} a & q & 0 \\ q & b & 0 \\ 0 & 0 & k \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} - \begin{bmatrix} r \\ s \\ 0 \end{bmatrix} \begin{bmatrix} \frac{r}{c} & \frac{s}{c} & 0 \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} \\ &= \frac{1}{c} \begin{bmatrix} ac - r^2 & qc - rs & 0 \\ qc - sr & bc - s^2 & 0 \\ 0 & 0 & kc \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \begin{bmatrix} a_{\varepsilon} & q_{\varepsilon} & 0 \\ q_{\varepsilon} & b_{\varepsilon} & 0 \\ 0 & 0 & k \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \underline{\underline{S}}_{\varepsilon} \underline{\varphi} \end{split}$$

$$\underline{\sigma} = \left[ \begin{array}{c} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{array} \right] = \left[ \begin{array}{ccc} a_{\epsilon} & q_{\epsilon} & 0 \\ q_{\epsilon} & b_{\epsilon} & 0 \\ 0 & 0 & k \end{array} \right]^{-1} \left[ \begin{array}{c} \epsilon_{11} \\ \epsilon_{22} \\ \gamma_{12} \end{array} \right] = \frac{1}{\Delta_{s}} \left[ \begin{array}{ccc} bc - s^{2} & -qc + rs & 0 \\ -qc + rs & ac - r^{2} & 0 \\ 0 & 0 & \frac{\Delta_{s}}{k} \end{array} \right] \left[ \begin{array}{c} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{12} \end{array} \right]$$

with 
$$\Delta_s = abc - as^2 - br^2 - cq^2 + 2qrs$$

$$= \left[ \begin{array}{ccc} A_{\varepsilon} & Q_{\varepsilon} & 0 \\ Q_{\varepsilon} & B_{\varepsilon} & 0 \\ 0 & 0 & K \end{array} \right] \left[ \begin{array}{c} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{12} \end{array} \right] = \underline{\underline{C}}_{\varepsilon} \underline{\sigma}$$

$$\sigma_{33} = -\frac{1}{\Lambda} \left[ (\textit{br} - \textit{qs}) \epsilon_{11} + (\textit{as} - \textit{qr}) \epsilon_{22} \right]$$

Piet Schreurs (TU/e) 425 / 694

#### Plane stress

$$\sigma_{33} = \sigma_{23} = \sigma_{31} = 0 \quad \rightarrow \quad \varepsilon_{33} = r\sigma_{11} + s\sigma_{22}$$

$$\begin{split} \xi &= \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} = \begin{bmatrix} a & q & 0 \\ q & b & 0 \\ 0 & 0 & k \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \begin{bmatrix} a_{\sigma} & q_{\sigma} & 0 \\ q_{\sigma} & b_{\sigma} & 0 \\ 0 & 0 & k \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \underline{\underline{S}}_{\sigma} \underline{\sigma} \\ \\ \sigma &= \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \frac{1}{ab - q^2} \begin{bmatrix} b & -q & 0 \\ -q & a & 0 \\ 0 & 0 & \underline{ab - q^2} \\ 0 & 0 & \underline{ab - q^2} \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} \\ \\ &= \begin{bmatrix} A_{\sigma} & Q_{\sigma} & 0 \\ Q_{\sigma} & B_{\sigma} & 0 \\ 0 & 0 & K \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} = \underline{\underline{C}}_{\sigma} \underline{\varepsilon} \\ \\ \varepsilon_{33} &= \frac{1}{ab - q^2} [(br - qs)\varepsilon_{11} + (as - qr)\varepsilon_{22}] \end{split}$$

Piet Schreurs (TU/e) 426 / 694

#### Plane stress

$$\sigma_{33} = 0 = R\varepsilon_{11} + S\varepsilon_{22} + C\varepsilon_{33} \rightarrow \varepsilon_{33} = -\frac{R}{C}\varepsilon_{11} - \frac{S}{C}\varepsilon_{22}$$

$$\sigma = \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \begin{bmatrix} A & Q & 0 \\ Q & B & 0 \\ 0 & 0 & K \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} - \begin{bmatrix} R \\ S \\ 0 \end{bmatrix} \begin{bmatrix} \frac{R}{C} & \frac{S}{C} & 0 \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix}$$

$$= \frac{1}{C} \begin{bmatrix} AC - R^2 & QC - RS & 0 \\ QC - SR & BC - S^2 & 0 \\ 0 & 0 & KC \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix}$$

$$= \begin{bmatrix} A_{\sigma} & Q_{\sigma} & 0 \\ Q_{\sigma} & B_{\sigma} & 0 \\ 0 & 0 & K \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} = \underline{C}_{\sigma} \varepsilon$$

$$\varepsilon = \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} = \begin{bmatrix} A_{\sigma} & Q_{\sigma} & 0 \\ Q_{\sigma} & B_{\sigma} & 0 \\ 0 & 0 & K \end{bmatrix}^{-1} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \frac{1}{\Delta_{c}} \begin{bmatrix} BC - S^2 & -QC + RS & 0 \\ -QC + RS & AC - R^2 & 0 \\ 0 & 0 & \frac{\Delta_{c}}{K} \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix}$$

$$\text{with} \quad \Delta_{c} = ABC - AS^2 - BR^2 - CQ^2 + 2QRS$$

$$= \begin{bmatrix} a_{\sigma} & q_{\sigma} & 0 \\ q_{\sigma} & b_{\sigma} & 0 \\ 0 & 0 & k \end{bmatrix} = \underline{\underline{S}}_{\sigma} \underline{\sigma}$$

Piet Schreurs (TU/e)

427 / 694

#### Plane strain thermo-elastic

$$\begin{split} \sigma_{33} &= R \varepsilon_{11} + S \varepsilon_{22} - \alpha (R + S + C) \, \Delta T & \text{(from $\underline{\underline{C}}$)} \\ &= -\frac{r}{c} \, \sigma_{11} - \frac{s}{c} \, \sigma_{22} - \frac{\alpha}{c} \, \Delta T & \text{(from $\underline{\underline{S}}$)} \end{split}$$

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \begin{bmatrix} A & Q & 0 \\ Q & B & 0 \\ 0 & 0 & K \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} - \alpha \Delta T \begin{bmatrix} A + Q + R \\ B + Q + S \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} = \begin{bmatrix} A & Q & 0 \\ Q & B & 0 \\ 0 & 0 & K \end{bmatrix}^{-1} \left\{ \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} + \alpha \Delta T \begin{bmatrix} A + Q + R \\ B + Q + S \\ 0 \end{bmatrix} \right\}$$
$$= \begin{bmatrix} a_{\varepsilon} & q_{\varepsilon} & 0 \\ q_{\varepsilon} & b_{\varepsilon} & 0 \\ 0 & 0 & k \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} + \alpha \Delta T \begin{bmatrix} 1 + q_{\varepsilon}S + a_{\varepsilon}R \\ 1 + q_{\varepsilon}R + b_{\varepsilon}S \\ 0 \end{bmatrix}$$

Piet Schreurs (TU/e) 428 / 694

#### Plane stress thermo-elastic

$$\begin{split} \varepsilon_{33} &= r\sigma_{11} + s\sigma_{22} + \alpha\Delta T & \text{(from $\underline{\underline{S}}$)} \\ &= -\frac{R}{C}\,\varepsilon_{11} - \frac{S}{C}\,\varepsilon_{22} + \frac{1}{C}\,(R+S+C)\,\alpha\Delta T & \text{(from $\underline{\underline{C}}$)} \end{split}$$

$$\begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} = \begin{bmatrix} a & q & 0 \\ q & b & 0 \\ 0 & 0 & k \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} + \alpha \Delta T \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \begin{bmatrix} a & q & 0 \\ q & b & 0 \\ 0 & 0 & k \end{bmatrix}^{-1} \left\{ \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} - \alpha \Delta T \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}$$
$$= \begin{bmatrix} A_{\sigma} & Q_{\sigma} & 0 \\ Q_{\sigma} & B_{\sigma} & 0 \\ 0 & 0 & K \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} - \alpha \Delta T \begin{bmatrix} A_{\sigma} + Q_{\sigma} \\ B_{\sigma} + Q_{\sigma} \\ 0 \end{bmatrix}$$

Piet Schreurs (TU/e) 429 / 694

## General planar material laws

$$\underline{\underline{C}}_{p} = \begin{bmatrix} A_{p} & Q_{p} & 0 \\ Q_{p} & B_{p} & 0 \\ 0 & 0 & K \end{bmatrix} - \alpha \Delta T \begin{bmatrix} \Theta_{p1} \\ \Theta_{p2} \\ 0 \end{bmatrix}$$

$$\underline{\underline{S}}_{p} = \begin{bmatrix} a_{p} & q_{p} & 0 \\ q_{p} & b_{p} & 0 \\ 0 & 0 & k \end{bmatrix} + \alpha \Delta T \begin{bmatrix} \theta_{p1} \\ \theta_{p2} \\ 0 \end{bmatrix}$$

```
plane strain : ()_p = ()_{\epsilon}
plane stress : ()_p = ()_{\sigma}
```

Piet Schreurs (TU/e) 430 / 694

## **ELASTIC LIMIT**

back to index

## Elastic limit criteria

| failure mode          | mechanism                                            |  |  |  |
|-----------------------|------------------------------------------------------|--|--|--|
| plastic yielding      | crystallographic slip (metals)                       |  |  |  |
| brittle fracture      | (sudden) breakage of bonds                           |  |  |  |
| progressive damage    | $micro\text{-cracks} \ \to growth \ \to coalescence$ |  |  |  |
| fatigue               | damage/fracture under cyclic loading                 |  |  |  |
| dynamic failure       | $vibration \ \to resonance$                          |  |  |  |
| thermal failure       | creep / melting                                      |  |  |  |
| elastic instabilities | buckling $	o$ plastic deformation                    |  |  |  |

Piet Schreurs (TU/e) 432 / 694

#### Yield function: one-dimensional

$$f(\sigma) = \sigma^2 - \sigma_{y0}^2 = 0 \quad 
ightarrow$$
  $g(\sigma) = \sigma^2 = \sigma_{y0}^2 = g_t$   $g_t = \text{limit in tensile test}$ 



Piet Schreurs (TU/e) 433 / 694

#### Yield function: three-dimensional

$$\begin{array}{cccc} f(\sigma)=0 & \to & g(\sigma)=g_t \\ & \text{yield surface in 6D stress space} \\ f(\sigma_1,\sigma_2,\sigma_3)=0 & \to & g(\sigma_1,\sigma_2,\sigma_3)=g_t \\ & \text{yield surface in 3D principal stress space} \end{array}$$



Piet Schreurs (TU/e) 434 / 694

### Principal stress space





hydrostatic axis

$$ec{e}_p = \frac{1}{3}\sqrt{3}(ec{e}_1 + ec{e}_2 + ec{e}_3)$$
 with  $||ec{e}_p|| = 1$ 

plane  $\perp$  hydrostatic axis

$$\begin{split} \vec{e}_q^* &= \vec{e}_1 - (\vec{e}_p \cdot \vec{e}_1) \vec{e}_p = \vec{e}_1 - \tfrac{1}{3} (\vec{e}_1 + \vec{e}_2 + \vec{e}_3) = \tfrac{1}{3} (2\vec{e}_1 - \vec{e}_2 - \vec{e}_3) \\ \vec{e}_q &= \tfrac{1}{6} \sqrt{6} (2\vec{e}_1 - \vec{e}_2 - \vec{e}_3) \\ \vec{e}_r &= \vec{e}_p * \vec{e}_q = \tfrac{1}{3} \sqrt{3} (\vec{e}_1 + \vec{e}_2 + \vec{e}_3) * \tfrac{1}{6} \sqrt{6} (2\vec{e}_1 - \vec{e}_2 - \vec{e}_3) = \tfrac{1}{2} \sqrt{2} (\vec{e}_2 - \vec{e}_3) \end{split}$$
 vector in  $\Pi$ -plane 
$$\begin{aligned} \vec{e}_t(\phi) &= \cos(\phi) \vec{e}_q - \sin(\phi) \vec{e}_r \end{aligned}$$

Piet Schreurs (TU/e) 435 / 694

### Principal stress space

$$\begin{split} \vec{\sigma} &= \sigma_{1}\vec{e}_{1} + \sigma_{2}\vec{e}_{2} + \sigma_{3}\vec{e}_{3} = \vec{\sigma}^{h} + \vec{\sigma}^{d} \\ \vec{\sigma}^{h} &= (\vec{\sigma} \cdot \vec{e}_{p})\vec{e}_{p} = \sigma^{h}\vec{e}_{p} = \frac{1}{3}\sqrt{3}(\sigma_{1} + \sigma_{2} + \sigma_{3})\vec{e}_{p} = \sqrt{3}\sigma_{m}\vec{e}_{p} \\ \sigma^{h} &= \frac{1}{3}\sqrt{3}(\sigma_{1} + \sigma_{2} + \sigma_{3}) \\ \vec{\sigma}^{d} &= \vec{\sigma} - (\vec{\sigma} \cdot \vec{e}_{p})\vec{e}_{p} \\ &= \sigma_{1}\vec{e}_{1} + \sigma_{2}\vec{e}_{2} + \sigma_{3}\vec{e}_{3} - \frac{1}{3}\sqrt{3}(\sigma_{1} + \sigma_{2} + \sigma_{3})\frac{1}{3}\sqrt{3}(\vec{e}_{1} + \vec{e}_{2} + \vec{e}_{3}) \\ &= \sigma_{1}\vec{e}_{1} + \sigma_{2}\vec{e}_{2} + \sigma_{3}\vec{e}_{3} - \frac{1}{3}(\sigma_{1}\vec{e}_{1} + \sigma_{2}\vec{e}_{1} + \sigma_{3}\vec{e}_{1} + \sigma_{1}\vec{e}_{2} + \sigma_{2}\vec{e}_{2} + \sigma_{3}\vec{e}_{2} + \sigma_{1}\vec{e}_{3} + \sigma_{2}\vec{e}_{3} + \sigma_{3}\vec{e}_{3}) \\ &= \frac{1}{3}\{(2\sigma_{1} - \sigma_{2} - \sigma_{3})\vec{e}_{1} + (-\sigma_{1} + 2\sigma_{2} - \sigma_{3})\vec{e}_{2} + (-\sigma_{1} - \sigma_{2} + 2\sigma_{3})\vec{e}_{3}\} \\ \sigma^{d} &= ||\vec{\sigma}^{d}|| = \sqrt{\vec{\sigma}^{d} \cdot \vec{\sigma}^{d}} \\ &= \frac{1}{3}\sqrt{(2\sigma_{1} - \sigma_{2} - \sigma_{3})^{2} + (-\sigma_{1} + 2\sigma_{2} - \sigma_{3})^{2} + (-\sigma_{1} - \sigma_{2} + 2\sigma_{3})^{2}} \\ &= \sqrt{\frac{2}{3}}(\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2} - \sigma_{1}\sigma_{2} - \sigma_{2}\sigma_{3} - \sigma_{3}\sigma_{1})} \\ &= \sqrt{\sigma^{d} : \sigma^{d}} \end{split}$$

Piet Schreurs (TU/e) 436 / 694

### Principal stress space

$$\begin{split} \vec{\sigma} &= \vec{\sigma}^h + \vec{\sigma}^d = \sigma^h \vec{e}_p + \sigma^d \vec{e}_t(\varphi) \\ &= \sigma^h \vec{e}_p + \sigma^d \{ \cos(\varphi) \vec{e}_q - \sin(\varphi) \vec{e}_r \} \\ &= \sigma^h \frac{1}{3} \sqrt{3} (\vec{e}_1 + \vec{e}_2 + \vec{e}_3) + \sigma^d \{ \cos(\varphi) \frac{1}{6} \sqrt{6} (2\vec{e}_1 - \vec{e}_2 - \vec{e}_3) - \sin(\varphi) \frac{1}{2} \sqrt{2} (\vec{e}_2 - \vec{e}_3) \} \\ &= \{ \frac{1}{3} \sqrt{3} \, \sigma^h + \frac{1}{3} \sqrt{6} \, \sigma^d \cos(\varphi) \} \vec{e}_1 + \\ &\qquad \{ \frac{1}{3} \sqrt{3} \, \sigma^h - \frac{1}{6} \sqrt{6} \, \sigma^d \cos(\varphi) - \frac{1}{2} \sqrt{2} \, \sigma^d \sin(\varphi) \} \vec{e}_2 + \\ &\qquad \{ \frac{1}{3} \sqrt{3} \, \sigma^h - \frac{1}{6} \sqrt{6} \, \sigma^d \cos(\varphi) + \frac{1}{2} \sqrt{2} \, \sigma^d \sin(\varphi) \} \vec{e}_3 \\ &= \sigma_1 \vec{e}_1 + \sigma_2 \vec{e}_2 + \sigma_3 \vec{e}_3 \end{split}$$

Piet Schreurs (TU/e) 437 / 694

### Maximum stress/strain

$$\sigma_{ij} = \sigma_{max} \quad | \quad \epsilon_{ij} = \epsilon_{max} \quad ; \quad \{i,j\} = \{1,2,3\}$$
 (orthotropic materials)

Piet Schreurs (TU/e) 438 / 694

#### Rankine

$$|\sigma_{max}| = max(|\sigma_i| \; ; \; i = 1, 2, 3) = \sigma_{max,t} = \sigma_{y0}$$
 (brittle materials; cast iron)

Piet Schreurs (TU/e) 439 / 694

#### Rankine

$$|\sigma_{max}| = max(|\sigma_i| \; ; \; i=1,2,3) = \sigma_{max,t} = \sigma_{y0}$$
 (brittle materials; cast iron)







Piet Schreurs (TU/e) 440 / 694

#### De Saint Venant

$$\varepsilon_{max} = max(|\varepsilon_i| \ ; \ i=1,2,3) = \varepsilon_{max_t} = \varepsilon_{y0} = \frac{\sigma_{y0}}{F}$$
 (brittle materials; cast iron)



Piet Schreurs (TU/e) 441 / 694

#### Tresca

$$\tau_{\textit{max}} = \tfrac{1}{2}(\sigma_{\textit{max}} - \sigma_{\textit{min}}) = \tau_{\textit{max},t} = \tfrac{1}{2}\sigma_{y0} \to \bar{\sigma}_{\textit{TR}} = \sigma_{\textit{max}} - \sigma_{\textit{min}} = \sigma_{y0}$$

Piet Schreurs (TU/e) 442 / 694

#### Tresca: 2D yield contour



Piet Schreurs (TU/e) 443 / 694

### Tresca: 3D yield surface

 $\begin{array}{ll} \mathsf{Mohr} & \to & \mathsf{invariant} \ \mathsf{for} \ \mathsf{hydrostatic} \ \mathsf{stress} & \to \\ \mathsf{yield} \ \mathsf{surface} \ // \ \mathsf{hydrostatic} \ \mathsf{axis} \\ \Pi - \mathsf{plane} \ \bot \ \mathsf{hydrostatic} \ \mathsf{axis} \end{array}$ 



Piet Schreurs (TU/e) 444 / 694

# Tresca: st-plane



Piet Schreurs (TU/e) 445 / 694

#### Von Mises

$$W^d = W_t^d$$

$$W^{d} = \frac{1}{4G} \sigma^{d} : \sigma^{d} = \frac{1}{4G} \left\{ \sigma : \sigma - \frac{1}{3} tr^{2}(\sigma) \right\} \quad \left( = -\frac{1}{2G} J_{2}(\sigma^{d}) \right)$$

$$= \frac{1}{4G} (\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2}) - \frac{1}{12G} (\sigma_{1} + \sigma_{2} + \sigma_{3})^{2}$$

$$= \frac{1}{4G} \frac{1}{3} \left\{ (\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2} \right\}$$

$$W^{d}_{t} = \frac{1}{4G} \frac{1}{3} \left\{ (\sigma - 0)^{2} + (0 - 0)^{2} + (0 - \sigma)^{2} \right\} = \frac{1}{4G} \frac{1}{3} 2\sigma^{2} = \frac{1}{4G} \frac{1}{3} 2\sigma_{y0}^{2}$$

 $\bar{\sigma}_{VM} = \sqrt{\frac{1}{2}}\{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2\} = \sigma_{y0}$ 

### Von Mises: Cartesian stress components

$$\begin{split} \bar{\sigma}_{VM}^2 &= \frac{3}{2} \sigma^d : \sigma^d = 3J_2 \\ &= \frac{3}{2} \text{tr}(\underline{\sigma}^d \underline{\sigma}^d) \quad \text{with } \underline{\sigma}^d = \underline{\sigma} - \frac{1}{3} \text{tr}(\underline{\sigma}) \underline{I} \\ &= \frac{3}{2} \left\{ \left( \frac{2}{3} \sigma_{xx} - \frac{1}{3} \sigma_{yy} - \frac{1}{3} \sigma_{zz} \right)^2 + \sigma_{xy}^2 + \sigma_{xz}^2 + \right. \\ & \left. \left( \frac{2}{3} \sigma_{yy} - \frac{1}{3} \sigma_{zz} - \frac{1}{3} \sigma_{xx} \right)^2 + \sigma_{yz}^2 + \sigma_{yx}^2 + \right. \\ & \left. \left( \frac{2}{3} \sigma_{zz} - \frac{1}{3} \sigma_{xx} - \frac{1}{3} \sigma_{yy} \right)^2 + \sigma_{zx}^2 + \sigma_{zy}^2 \right\} \\ &= \left. \left( \sigma_{xx}^2 + \sigma_{yy}^2 + \sigma_{zz}^2 \right) - \left( \sigma_{xx} \sigma_{yy} + \sigma_{yy} \sigma_{zz} + \sigma_{zz} \sigma_{xx} \right) + 2 \left( \sigma_{xy}^2 + \sigma_{yz}^2 + \sigma_{zx}^2 \right) \\ &= \sigma_{y0}^2 \end{split}$$

Piet Schreurs (TU/e) 447 / 69

# Von Mises: 2D yield surface



Piet Schreurs (TU/e) 448 / 694

### Von Mises: 3D yield surface

$$\frac{1}{2} \left\{ (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right\} = \sigma_{y0}^2$$



Piet Schreurs (TU/e) 449 / 694

# Beltrami-Haigh

$$W = W_t$$

$$W = W^{h} + W^{d} = \frac{1}{18K} \operatorname{tr}^{2}(\sigma) + \frac{1}{4G} \sigma^{d} : \sigma^{d}$$

$$= \left(\frac{1}{18K} - \frac{1}{12G}\right) (\sigma_{1} + \sigma_{2} + \sigma_{3})^{2} + \frac{1}{4G} (\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2})$$

$$W_{t} = \left(\frac{1}{18K} - \frac{1}{12G}\right) \sigma^{2} + \frac{1}{4G} \sigma^{2} = \frac{1}{2E} \sigma^{2} = \frac{1}{2E} \sigma_{y0}^{2}$$

$$2E\left(\frac{1}{18K} - \frac{1}{12G}\right)(\sigma_1 + \sigma_2 + \sigma_3)^2 + \frac{2E}{4G}\left(\sigma_1^2 + \sigma_2^2 + \sigma_3^2\right) = \sigma_{y0}^2$$

Piet Schreurs (TU/e) 450 / 694

# Beltrami-Haigh: 2D/3D yield surface





Piet Schreurs (TU/e) 451 / 694

## Mohr-Coulomb: 2D/3D yield surface





Piet Schreurs (TU/e) 452 / 694

### Drucker-Prager

$$\sqrt{\frac{2}{3}\sigma^d:\sigma^d} + \frac{6\sin(\phi)}{3-\sin(\phi)}p = \frac{6\cos(\phi)}{3-\sin(\phi)}C$$







Piet Schreurs (TU/e)

# Other yield criteria

Hoffman

$$\begin{split} \left(\frac{1}{X_t} - \frac{1}{X_c}\right)\sigma_{11} + \left(\frac{1}{Y_t} - \frac{1}{Y_c}\right)\sigma_{22} + \left(\frac{1}{X_tX_c}\right)\sigma_{11}^2 + \left(\frac{1}{Y_tY_c}\right)\sigma_{22}^2 + \\ \left(\frac{1}{S^2}\right)\sigma_{12}^2 - \left(\frac{1}{X_tX_c}\right)\sigma_{11}\sigma_{22} = 0 \end{split}$$

Tsai-Wu

$$\begin{split} \left(\frac{1}{X_t} - \frac{1}{X_c}\right) \sigma_{11} + \left(\frac{1}{Y_t} - \frac{1}{Y_c}\right) \sigma_{22} + \left(\frac{1}{X_t X_c}\right) \sigma_{11}^2 + \left(\frac{1}{Y_t Y_c}\right) \sigma_{22}^2 + \\ \left(\frac{1}{S^2}\right) \sigma_{12}^2 + 2F_{12} \ \sigma_{11} \sigma_{22} = 0 \end{split}$$
 with 
$$F_{12}^2 > \frac{1}{X_t X_c} \frac{1}{Y_t Y_c}$$

Piet Schreurs (TU/e)

# **GOVERNING EQUATIONS**

back to index

#### Vector/tensor equations

```
gradient operator : \vec{
abla} = \vec{
abla}^T \vec{e}
```

position : 
$$\vec{x} = \vec{x}^T \vec{e}$$

displacement : 
$$\vec{u} = \vec{u}^T \vec{e}$$

strain : 
$$\varepsilon = \frac{1}{2} \left\{ \left( \vec{\nabla} \vec{u} \right)^T + \left( \vec{\nabla} \vec{u} \right) \right\} = \vec{\varrho}^T \underline{\varepsilon} \, \vec{\varrho}$$

compatibility : 
$$\nabla^2 \{ \mathsf{tr}(\epsilon) \} - \vec{\nabla} \cdot (\vec{\nabla} \cdot \epsilon)^{\mathcal{T}} = 0$$

stress : 
$$\sigma = \vec{e}^T \underline{\sigma} \vec{e}$$

balance laws : 
$$\vec{\nabla} \cdot \boldsymbol{\sigma}^T + \rho \vec{q} = \rho \ddot{\vec{u}}$$
 ;  $\boldsymbol{\sigma} = \boldsymbol{\sigma}^T$ 

material law : 
$$\sigma = {}^4\textbf{C} : \epsilon$$
 ;  $\epsilon = {}^4\textbf{C}^{-1} : \sigma = {}^4\textbf{S} : \sigma$ 

th.mech. mat. law : 
$$\sigma = {}^4C : (\epsilon - \alpha \Delta T I)$$
 :  $\epsilon = {}^4S : \sigma + \alpha \Delta T I$ 

Piet Schreurs (TU/e) 456 / 694

## Cartesian components



Piet Schreurs (TU/e) 457 / 694

### Cartesian components, 3D

$$\chi^{T} = \begin{bmatrix} x & y & z \end{bmatrix} ; \quad \tilde{\nabla}^{T} = \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{bmatrix} ; \quad \underline{u}^{T} = \begin{bmatrix} u_{x} & u_{y} & u_{z} \end{bmatrix} \\
\underline{\varepsilon} = \frac{1}{2} \begin{bmatrix} 2u_{x,x} & u_{x,y} + u_{y,x} & u_{x,z} + u_{z,x} \\ \dots & 2u_{y,y} & u_{y,z} + u_{z,y} \\ \dots & \dots & 2u_{z,z} \end{bmatrix} \\
2\varepsilon_{xy,xy} - \varepsilon_{xx,yy} - \varepsilon_{yy,xx} = 0 & \to \text{ cyc. } 2x \\
\varepsilon_{xx,yz} + \varepsilon_{yz,xx} - \varepsilon_{zx,xy} - \varepsilon_{xy,xz} = 0 & \to \text{ cyc. } 2x \\
\underline{\varepsilon}_{xx,yz}^{T} = \underline{\varepsilon}^{T} = \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{yy} & \varepsilon_{zz} & \varepsilon_{xy} & \varepsilon_{yz} & \varepsilon_{zx} \\ \sigma_{xy} & \sigma_{yz} & \sigma_{zz} \end{bmatrix} \\
\underline{\sigma}_{xx,x}^{T} = \underline{\sigma}^{T} = \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{yy} & \varepsilon_{zz} & \varepsilon_{xy} & \varepsilon_{yz} & \varepsilon_{zx} \\ \sigma_{xy} & \sigma_{yz} & \sigma_{zx} \end{bmatrix} \\
\sigma_{xx,x} + \sigma_{xy,y} + \sigma_{xz,z} + \rho q_{x} = \rho \ddot{u}_{x} & (\sigma_{xy} = \sigma_{yx}) \\
\sigma_{yx,x} + \sigma_{yy,y} + \sigma_{yz,z} + \rho q_{y} = \rho \ddot{u}_{y} & (\sigma_{yz} = \sigma_{zy}) \\
\sigma_{zx,x} + \sigma_{zy,y} + \sigma_{zz,z} + \rho q_{z} = \rho \ddot{u}_{z} & (\sigma_{zx} = \sigma_{xz})
\end{bmatrix}$$

$$\underline{\sigma} = \underline{C} \ \varepsilon \ \underline{\sigma} = \underline{C} \ \varepsilon \ \varepsilon \ ; \qquad \underline{\varepsilon} = \underline{S} \ \underline{\sigma} \ \underline{\varepsilon} = \underline{S} \ \underline$$

Piet Schreurs (TU/e) 458 / 694

# Cylindrical components



Piet Schreurs (TU/e) 459 / 694

### Cylindrical components, 3D

$$\underline{x}^{T} = \begin{bmatrix} r & \theta & z \end{bmatrix} ; \quad \underline{\nabla}^{T} = \begin{bmatrix} \frac{\partial}{\partial r} & \frac{1}{r} \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \end{bmatrix} ; \quad \underline{u}^{T} = \begin{bmatrix} u_{r} & u_{t} & u_{z} \end{bmatrix} \\
\underline{\varepsilon} = \frac{1}{2} \begin{bmatrix} 2u_{r,r} & \frac{1}{r}(u_{r,t} - u_{t}) + u_{t,r} & u_{r,z} + u_{z,r} \\ \cdots & 2\frac{1}{r}(u_{r} + u_{t,t}) & \frac{1}{r}u_{z,t} + u_{t,z} \\ \cdots & 2u_{z,z} \end{bmatrix}$$

$$\underline{\underline{\sigma}} = \underline{\underline{C}} \underbrace{\underline{\varepsilon}} \underline{\underline{\sigma}} = \underline{\underline{C}} \underline{\underline{\varepsilon}} \qquad ; \qquad \underline{\underline{\varepsilon}} = \underline{\underline{S}} \underbrace{\underline{\sigma}} \underline{\underline{\varepsilon}} \underline{\underline{\varepsilon}} = \underline{\underline{S}} \underline{\underline{\sigma}}$$

Piet Schreurs (TU/e)

### Material law, 3D (No $\Delta T$ )

$$\underline{\underline{C}} = \begin{bmatrix} A & Q & R & 0 & 0 & 0 \\ Q & B & S & 0 & 0 & 0 \\ R & S & C & 0 & 0 & 0 \\ 0 & 0 & 0 & 2K & 0 & 0 \\ 0 & 0 & 0 & 0 & 2L & 0 \\ 0 & 0 & 0 & 0 & 0 & 2M \end{bmatrix} \rightarrow \underline{\underline{S}} = \underline{\underline{C}}^{-1} = \begin{bmatrix} a & q & r & 0 & 0 & 0 \\ q & b & s & 0 & 0 & 0 \\ r & s & c & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2}k & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2}l & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}m \end{bmatrix}$$

quadratic 
$$B=A\;;\;S=R\;;\;M=L;$$
 transversal isotropic 
$$B=A\;;\;S=R\;;\;M=L\;;\;K=\tfrac{1}{2}(A-Q)$$
 cubic 
$$C=B=A\;;\;S=R=Q\;;\;M=L=K\ne\tfrac{1}{2}(A-Q)$$
 isotropic 
$$C=B=A\;;\;S=R=Q\;;\;M=L=K=\tfrac{1}{2}(A-Q)$$

3D isotropic
3D transversal isotropic
3D orthotropic
3D general orthotropic
plane strain / plane stress / planar

Piet Schreurs (TU/e)

#### Planar deformation: Cartesian

plane strain : 
$$\varepsilon_{zz} = \varepsilon_{xz} = \varepsilon_{yz} = 0$$
  $\left\{ \begin{array}{l} u_x = u_x(x,y) \\ u_y = u_y(x,y) \end{array} \right.$   $\left\{ \begin{array}{l} u_x = u_x(x,y) \\ u_y = u_y(x,y) \end{array} \right.$   $\left\{ \begin{array}{l} \varepsilon_{zz} = \varepsilon_{xz} = \varepsilon_{yz} = 0 \\ u_z = 0 \end{array} \right.$   $\left\{ \begin{array}{l} u_x = u_x(x,y) \\ u_y = u_y(x,y) \end{array} \right.$   $\left\{ \begin{array}{l} \varepsilon_{zz} = \varepsilon_{zz} = \varepsilon_{zz} = \varepsilon_{yz} = 0 \end{array} \right.$   $\left\{ \begin{array}{l} u_x = u_x(x,y) \\ u_y = u_y(x,y) \end{array} \right.$   $\left\{ \begin{array}{l} \varepsilon_{zz} = 0 \end{array} \right.$   $\left\{ \begin{array}{l} u_x = u_x(x,y) \\ u_y = u_y(x,y) \end{array} \right.$   $\left[ \left( u_x = u_x(x,y) \\ u_y = u_y(x,y) \end{array} \right.$   $\left[ \left( u_x = u_x(x,y) \\ u_y = u_y(x,y) \right.$   $\left[ \left( u_x = u_x(x,y) \\ v_y = v_y(x,y) \right. \right]$   $\left[ \left( u_x = u_x(x,y) \\ v_y = u_y(x,y) \end{array} \right]$   $\left[ \left( u_x = u_x(x,y) \\ v_y = u_y(x,y) \right.$   $\left[ \left( u_x = u_x(x,y) \\ v_y = u_y(x,y) \right. \right]$   $\left[ \left( u_x = u_x(x,y) \\ v_y = u_y(x,y) \right. \right]$   $\left[ \left( u_x = u_x(x,y) \\ v_y = u_y(x,y) \right. \right]$   $\left[ \left( u_x = u_x(x,y) \\ v_y = u_y(x,y) \right. \right]$   $\left[ \left( u_x = u_x(x,y) \\ v_y = u_y(x,y) \right. \right]$   $\left[ \left( u_x = u_x(x,y) \\ v_y = u_y(x,y) \right. \right]$   $\left[ \left( u_x = u_x(x,y) \\ v_y = u_y(x,y) \right. \right]$   $\left[ \left( u_x = u_x(x,y) \\ v_y = u_y(x,y) \right. \right]$   $\left[ \left( u_x = u_x(x,y) \\ v_y = u_y(x,y) \right. \right]$   $\left[ \left( u_x = u_x(x,y) \\ v_y = u_y(x,y) \right. \right]$   $\left[ \left( u_x = u_x(x,y) \\ v_y = u_y(x,y) \right. \right]$   $\left[ \left( u_x = u_x(x,y) \\ v_y = u_y(x,y) \right. \right]$   $\left[ \left( u_x = u_x(x,y) \\ v_y = u_y(x,y) \right. \right]$   $\left[ \left( u_x = u_x(x,y) \\ v_y = u_y(x,y) \right. \right]$   $\left[ \left( u_x = u_x(x,y) \\ v_y = u_y(x,y) \right. \right]$   $\left( u_x = u_x(x,y) \\ v_y = u_y(x,y) \right.$   $\left( u_y = u_y(x,y) \right. \right.$   $\left( u_y = u_y(x,y) \right.$   $\left( u_x = u_x(x,y) \\ v_y = v_y(x,y) \right.$   $\left( u_x = u_x(x,y) \\ v_y = v_y(x,y) \right.$   $\left( u_x = u_x(x,y) \\ v_y = v_y(x,y) \right.$   $\left( u_x = u_x(x,y) \\ v_y = v_y(x,y) \right.$   $\left( u_x = u_x(x,y) \\ v_y = v_y(x,y) \right.$   $\left( u_x = u_x(x,y) \\ v_y = v_y(x,y) \right.$   $\left( u_x = u_x(x,y) \\ v_y = v_y(x,y) \right.$   $\left( u_x = u_x(x,y) \\ v_y = v_y(x,y) \right.$   $\left( u_x = u_x(x,y) \\ v_y = v_y(x,y) \right.$   $\left( u_x = u_x(x,y) \\ v_y = v_y(x,y) \right.$   $\left( u_x = u_x(x,y) \\ v_y = v_y(x,y) \right.$   $\left( u_x = u_x(x,y) \\ v_y = v_y(x,y) \right.$   $\left( u_x =$ 

orthotr. pe/ps ▷ ▷

transv.iso. pe/ps ▷▷

isotropic pe/ps ▷▷

Piet Schreurs (TU/e) 462 / 694

### Planar deformation: cylindrical

plane strain : 
$$\varepsilon_{zz} = \varepsilon_{rz} = \varepsilon_{tz} = 0$$
 plane stress :  $\sigma_{zz} = \sigma_{rz} = \sigma_{tz} = 0$  
$$\left\{ \begin{array}{l} u_r = u_r(r,\theta) \\ u_t = u_t(r,\theta) \end{array} \right.$$
 
$$\left\{ \begin{array}{l} \varepsilon_{zz} = \varepsilon_{rz} = \varepsilon_{tz} = 0 \\ \varepsilon_{zz} = \sigma_{rz} = 0 \end{array} \right\}$$
 
$$\left\{ \begin{array}{l} u_r = u_r(r,\theta) \\ u_t = u_t(r,\theta) \end{array} \right.$$
 
$$\left\{ \begin{array}{l} \varepsilon_{rz} = \varepsilon_{rz} = \varepsilon_{rz} \\ \varepsilon_{rz} = \varepsilon_{rz} = 0 \end{array} \right.$$
 
$$\left\{ \begin{array}{l} \varepsilon_{rz} = \varepsilon_{rz} + \varepsilon_{rz} \\ \varepsilon_{rz} = \varepsilon_{rz} = 0 \end{array} \right.$$

$$\begin{split} & \underbrace{\tilde{g}}^T = \tilde{g}^T = \left[ \begin{array}{ccc} \sigma_{rr} & \sigma_{tt} & \sigma_{rt} \end{array} \right] \\ & \sigma_{rr,r} + \frac{1}{r} \, \sigma_{rt,t} + \frac{1}{r} \left( \sigma_{rr} - \sigma_{tt} \right) + \rho q_r = \rho \ddot{u}_r \\ & \sigma_{tr,r} + \frac{1}{r} \, \sigma_{tt,t} + \frac{1}{r} \left( \sigma_{tr} + \sigma_{rt} \right) + \rho q_t = \rho \ddot{u}_t \end{split} \tag{$\sigma_{rt} = \sigma_{tr}$}$$

$$\underline{\underline{C}}_{p} = \left[ \begin{array}{ccc} A_{p} & Q_{p} & 0 \\ Q_{p} & B_{p} & 0 \\ 0 & 0 & 2K \end{array} \right] \qquad ; \qquad \underline{\underline{S}}_{p} = \left[ \begin{array}{ccc} a_{p} & q_{p} & 0 \\ q_{p} & b_{p} & 0 \\ 0 & 0 & \frac{1}{2}k \end{array} \right]$$

orthotr. pe/ps ▷ ▷ transv.iso. pe/ps ▷ ▷

isotropic pe/ps ▷ ▷

Piet Schreurs (TU/e) 463 / 694

### Axi-symmetric $+ u_t = 0$

plane strain : 
$$\varepsilon_{zz} = \varepsilon_{rz} = \varepsilon_{tz} = 0$$
  $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_t = 0 \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_r = u_r(r) \\ u_r = u_r(r) \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_r = u_r(r) \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_r = u_r(r) \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_r = u_r(r) \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_r = u_r(r) \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_r = u_r(r) \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_r = u_r(r) \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_r = u_r(r) \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_r = u_r(r) \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_r = u_r(r) \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_r = u_r(r) \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\ u_r = u_r(r) \end{array} \right\}$   $\left\{ \begin{array}{l} u_r = u_r(r) \\$ 

orthotr. pe/ps ▷ ▷ transv.iso. pe/ps ▷ ▷

isotropic pe/ps ▷ ▷

Piet Schreurs (TU/e) 464 / 694

#### **SOLUTION STRATEGIES**

back to index

### Governing equations

#### unknown variables

displacements : 
$$\vec{u} = \vec{u}(\vec{x}) \rightarrow \mathbf{F} = \left(\vec{\nabla}_0 \vec{x}\right)^T \rightarrow \mathbf{E}$$
,  $\epsilon$  stresses :  $\mathbf{\sigma} \rightarrow g(\mathbf{\sigma}) = g(\sigma_1, \sigma_2, \sigma_3) = g_t$ 

#### equations

compatibility : 
$$\nabla^2 \{ \operatorname{tr}(\epsilon) \} - \vec{\nabla} \cdot (\vec{\nabla} \cdot \epsilon)^T = 0$$

equilibrium : 
$$\vec{\nabla} \cdot \boldsymbol{\sigma}^T + \rho \vec{q} = \rho \vec{u}$$
 ;  $\boldsymbol{\sigma} = \boldsymbol{\sigma}^T$  material law :  $\boldsymbol{\sigma} = \boldsymbol{\sigma}(\mathbf{F}) \rightarrow \boldsymbol{\sigma} = {}^4\mathbf{C} : \boldsymbol{\varepsilon} \rightarrow \boldsymbol{\varepsilon} = {}^4\mathbf{S} : \boldsymbol{\sigma}$ 

material law : 
$$\sigma = \sigma(\textbf{F}) \rightarrow \sigma = {}^{4}\textbf{C} : \epsilon \rightarrow \epsilon = {}^{4}\textbf{S} :$$

#### boundary conditions

displacement : 
$$\vec{u} = \vec{u}_p$$
  $\forall$   $\vec{x} \in A_u$ 

$$\begin{array}{lll} \text{displacement} & : & \vec{u} = \vec{u}_p & \forall & \vec{x} \in A_u \\ \text{edge load} & : & \vec{p} = \vec{n} \cdot \sigma = \vec{p}_p & \forall & \vec{x} \in A_p \end{array}$$

Piet Schreurs (TU/e) 466 / 694

# Saint-Venant's principle



$$P = \int_A \sigma(x) dA = \sigma A$$
 ;  $A = b * t$ 

Piet Schreurs (TU/e) 467 / 694

# Superposition



Piet Schreurs (TU/e) 468 / 694

# Solution: displacement method

$$\vec{\nabla} \cdot \left\{ {}^{4}\mathbf{C} : \left( \vec{\nabla} \vec{\boldsymbol{u}} \right) \right\}^{T} + \rho \vec{\boldsymbol{q}} = \rho \ddot{\vec{\boldsymbol{u}}} \qquad \rightarrow$$

$$\vec{\boldsymbol{u}} \rightarrow \boldsymbol{\varepsilon} \rightarrow \boldsymbol{\sigma}$$

Piet Schreurs (TU/e) 469 / 69

# Planar, Cartesian: Navier equations

$$\begin{split} \sigma_{xx,x} + \sigma_{xy,y} + \rho q_x &= \rho \ddot{u}_x \qquad ; \qquad \sigma_{yx,x} + \sigma_{yy,y} + \rho q_y = \rho \ddot{u}_y \\ \sigma_{xx} &= A_p \varepsilon_{xx} + Q_p \varepsilon_{yy} \\ \sigma_{yy} &= Q_p \varepsilon_{xx} + B_p \varepsilon_{yy} \\ \sigma_{xy} &= 2K \varepsilon_{xy} \end{split}$$

$$\left. \begin{array}{l} A_{p} \varepsilon_{xx,x} + Q_{p} \varepsilon_{yy,x} + 2K \varepsilon_{xy,y} + \rho q_{x} = \rho \ddot{u}_{x} \\ 2K \varepsilon_{xy,x} + Q_{p} \varepsilon_{xx,y} + B_{p} \varepsilon_{yy,y} + \rho q_{y} = \rho \ddot{u}_{y} \end{array} \right\}$$

$$A_{p}u_{x,xx} + Ku_{x,yy} + (Q_{p} + K)u_{y,yx} + \rho q_{x} = \rho \ddot{u}_{x} Ku_{y,xx} + B_{p}u_{y,yy} + (Q_{p} + K)u_{x,xy} + \rho q_{y} = \rho \ddot{u}_{y}$$

Piet Schreurs (TU/e) 470 / 694

# Planar, axi-symmetric with $u_t = 0$ , isotropic

$$\begin{split} &\sigma_{rr,r} + \frac{1}{r}(\sigma_{rr} - \sigma_{tt}) + \rho q_r = \rho \ddot{u}_r \\ &\sigma_{rr} = A_{\rho} \varepsilon_{rr} + Q_{\rho} \varepsilon_{tt} - \Theta_{\rho 1} \alpha \Delta T \\ &\sigma_{tt} = Q_{\rho} \varepsilon_{rr} + A_{\rho} \varepsilon_{tt} - \Theta_{\rho 1} \alpha \Delta T \\ &A_{\rho} \varepsilon_{rr,r} + Q_{\rho} \varepsilon_{tt,r} - \Theta_{\rho 1} \alpha (\Delta T)_r + \\ &\frac{1}{r} \{ (A_{\rho} - Q_{\rho}) \varepsilon_{rr} + (Q_{\rho} - A_{\rho}) \varepsilon_{tt} \} + \rho q_r = \rho \ddot{u}_r \\ &\varepsilon_{rr} = u_{r,r} \quad ; \quad \varepsilon_{tt} = \frac{1}{r} u_r \end{split}$$

Piet Schreurs (TU/e) 471 / 69

## WEIGHTED RESIDUAL FORMULATION

back to index

# Weighted residual formulation for 3D deformation

equilibrium equation

$$\vec{\nabla} \cdot \boldsymbol{\sigma}^T + \rho \vec{q} = \vec{0} \qquad \forall \vec{x} \in V$$

approximation  $\rightarrow$  residual

$$\vec{\nabla} \cdot \mathbf{\sigma}^T + \rho \vec{q} = \vec{\Delta}(\vec{x}) \neq \vec{0} \qquad \forall \ \vec{x} \in V$$

weighted residual

$$\int_{V} \vec{\mathbf{w}}(\vec{\mathbf{x}}) \cdot \vec{\Delta}(\vec{\mathbf{x}}) \, dV = \int_{V} \vec{\mathbf{w}} \cdot \left[ \vec{\nabla} \cdot \mathbf{\sigma}^{T} + \rho \vec{q} \right] \, dV$$

equivalent problem formulation

$$\int \vec{\mathbf{w}} \cdot \left[ \vec{\nabla} \cdot \mathbf{\sigma}^T + \rho \vec{q} \right] dV = 0 \qquad \forall \quad \vec{\mathbf{w}}(\vec{x}) \quad \leftrightarrow \quad \vec{\nabla} \cdot \mathbf{\sigma}^T + \rho \vec{q} = \vec{0} \qquad \forall \vec{x} \in V$$

Piet Schreurs (TU/e) 473 / 694

### Weak formulation

$$\begin{cases}
\vec{\mathbf{w}} \cdot \left[ \vec{\nabla} \cdot \mathbf{\sigma}^{T} + \rho \vec{q} \right] dV = 0 \\
\vec{\nabla} \cdot (\mathbf{\sigma}^{T} \cdot \vec{\mathbf{w}}) = (\vec{\nabla} \vec{\mathbf{w}})^{T} : \mathbf{\sigma}^{T} + \vec{\mathbf{w}} \cdot (\vec{\nabla} \cdot \mathbf{\sigma}^{T})
\end{cases}$$

$$\int_{V} \left[ \vec{\nabla} \cdot (\mathbf{\sigma}^{T} \cdot \vec{\mathbf{w}}) - (\vec{\nabla} \vec{\mathbf{w}})^{T} : \mathbf{\sigma}^{T} + \vec{\mathbf{w}} \cdot \rho \vec{q} \right] dV = 0 \qquad \forall \vec{\mathbf{w}}$$

$$Gauss / \text{Stokes} : \int_{V} \vec{\nabla} \cdot (\mathbf{\sigma}^{T} \cdot \vec{\mathbf{w}}) = \int_{V} \vec{\mathbf{n}} \cdot \mathbf{\sigma}^{T} \cdot \vec{\mathbf{w}} dA = \int_{A} \vec{\mathbf{w}} \cdot \vec{\mathbf{p}} dA$$

$$\int_{V} (\vec{\nabla} \vec{\mathbf{w}})^{T} : \mathbf{\sigma} dV = \int_{V} \vec{\mathbf{w}} \cdot \rho \vec{q} dV + \int_{A} \vec{\mathbf{w}} \cdot \vec{\mathbf{p}} dA \qquad \forall \vec{\mathbf{w}}$$

$$\int_{V} (\vec{\nabla} \vec{\mathbf{w}})^{T} : \mathbf{\sigma} dV = f_{e}(\vec{\mathbf{w}}) \qquad \forall \vec{\mathbf{w}}$$

Piet Schreurs (TU/e) 474 / 69

### Linear elastic formulation

$$\int_{V_0} (\vec{\nabla} \vec{w})^T : \mathbf{\sigma} \, dV_0 = \int_{V_0} \vec{w} \cdot \rho \vec{q} \, dV_0 + \int_{A_0} \vec{w} \cdot \vec{p} \, dA_0 = f_{e0}(\vec{w}) \qquad \forall \vec{w}$$

$$\mathbf{\sigma} = {}^{\mathbf{4}} \mathbf{C} : \varepsilon$$

$$= {}^{\mathbf{4}} \mathbf{C} : \frac{1}{2} \left\{ (\vec{\nabla}_0 \vec{u}) + (\vec{\nabla}_0 \vec{u})^T \right\} = {}^{\mathbf{4}} \mathbf{C} : (\vec{\nabla}_0 \vec{u})$$

$$\int (\vec{\nabla}_0 \vec{w})^T : {}^{\mathbf{4}} \mathbf{C} : (\vec{\nabla}_0 \vec{u}) \, dV_0 = \int \vec{w} \cdot \rho \vec{q} \, dV_0 + \int \vec{w} \cdot \vec{p} \, dA_0 = f_{e0}(\vec{w}) \qquad \forall \vec{w}$$

Piet Schreurs (TU/e) 475 / 694

# Matrix/column notation

$$\int_{V_0} \left( \underline{L}_{z_{0w}} \right)_t^T \underline{\underline{C}} \left( \underline{L}_{z_{0u}} \right)_t dV_0 = f_{e0}(\underline{w}) \qquad \forall \underline{w}$$

Piet Schreurs (TU/e) 476 / 694

## Total Lagrange formulation

$$\int_{V} (\vec{\nabla} \vec{w})^{c} : \sigma \, dV = f_{e}(\vec{w}) \qquad \forall \quad \vec{w}(\vec{x})$$

transformation to undeformed configuration  $t_0$ 

$$\vec{\nabla} = \mathbf{F}^{-c} \cdot \vec{\nabla}_0 \quad \to \quad (\vec{\nabla} \vec{w})^c = (\vec{\nabla}_0 \vec{w})^c \cdot \mathbf{F}^{-1}$$

$$dV = \det(\mathbf{F}) dV_0 = J dV_0$$

weighted residual integral

$$\begin{cases} \int_{V_0} (\vec{\nabla}_0 \vec{w})^c \cdot \mathbf{F}^{-1} : \sigma J \, dV_0 = f_{e0}(\vec{w}) & \forall \quad \vec{w}(\vec{x}) \\ \mathbf{P} = J \mathbf{F}^{-1} \cdot \sigma \cdot \mathbf{F}^{-c} \end{cases}$$

$$\int_{V_0} (\vec{\nabla}_0 \vec{w})^c : (\mathbf{P} \cdot \mathbf{F}^c) \, dV_0 = f_{e0}(\vec{w}) \qquad \forall \quad \vec{w}(\vec{x})$$

Piet Schreurs (TU/e) 477 / 694

### Iterative solution process

$$\int_{V_0} (\vec{\nabla}_0 \vec{w})^c : (\mathbf{P} \cdot \mathbf{F}^c) \, dV_0 = f_{e0}(\vec{w}) \qquad \forall \, \vec{w}(\vec{x})$$

$$\mathbf{F} = (\vec{\nabla}_0 \vec{x})^c = {\{\vec{\nabla}_0 (\vec{x}^* + \delta \vec{x})\}^c = (\vec{\nabla}_0 \vec{x}^*)^c + (\vec{\nabla}_0 \delta \vec{x})^c}$$

$$= \mathbf{F}^* + \delta \mathbf{F} = \mathbf{F}^* + \mathbf{L}_{0u}$$

$$\mathbf{P} = \mathbf{P}^* + \delta \mathbf{P}$$

$$\int_{V_0} (\vec{\nabla}_0 \vec{w})^c : (\mathbf{P}^* + \delta \mathbf{P}) \cdot (\mathbf{F}^* + \mathbf{L}_{0u})^c \, dV_0 = f_{e0}(\vec{w}) \qquad \forall \ \vec{w}(\vec{x})$$

Piet Schreurs (TU/e) 478 / 694

#### Linearisation

$$\begin{split} \int_{V_0} \mathbf{L}_{0w} : (\mathbf{P}^* + \delta \mathbf{P}) \cdot (\mathbf{F}^* + \mathbf{L}_{0u})^c \, dV_0 &= f_{e0}(\vec{w}) \qquad \forall \quad \vec{w}(\vec{x}) \\ \int_{V_0} \mathbf{L}_{0w} : (\mathbf{P}^* \cdot \mathbf{F}^{*c} + \mathbf{P}^* \cdot \mathbf{L}_{0u}^c + \delta \mathbf{P} \cdot \mathbf{F}^{*c}) \, dV_0 &= f_{e0}(\vec{w}) \qquad \forall \quad \vec{w}(\vec{x}) \\ \int_{V_0} \mathbf{L}_{0w} : (\mathbf{P}^* \cdot \mathbf{L}_{0u}^c + \delta \mathbf{P} \cdot \mathbf{F}^{*c}) \, dV_0 &= \\ f_{e0}(\vec{w}) - \int_{V_0} \mathbf{L}_{0w} : (\mathbf{P}^* \cdot \mathbf{F}^{*c}) \, dV_0 &= r^* \qquad \forall \quad \vec{w}(\vec{x}) \end{split}$$

Piet Schreurs (TU/e) 479 / 694

### Material model

$$\begin{split} \delta \mathbf{P} &= {}^{4}\mathbf{M} : \mathbf{L}_{0u} \quad \rightarrow \\ & \int_{V_{0}} \mathbf{L}_{0w} : \left( \mathbf{P}^{*} \cdot \mathbf{L}_{0u}^{c} + ({}^{4}\mathbf{M} : \mathbf{L}_{0u}) \cdot \mathbf{F}^{*c} \right) \, dV_{0} = \\ & f_{e0}(\vec{w}) - \int_{V_{0}} \mathbf{L}_{0w} : \left( \mathbf{P}^{*} \cdot \mathbf{F}^{*c} \right) \, dV_{0} \qquad \forall \qquad \vec{w}(\vec{x}) \\ & \int_{V_{0}} \left[ \mathbf{L}_{0w} : \left( \mathbf{P}^{*} \cdot \mathbf{L}_{0u}^{c} \right) + \mathbf{L}_{0w} : \left( \mathbf{F}^{*} \cdot {}^{4}\mathbf{M}^{lrc} \right) : \mathbf{L}_{0u}^{c} \right] \, dV_{0} = \\ & f_{e0}(\vec{w}) - \int_{V_{0}} \mathbf{L}_{0w} : \left( \mathbf{P}^{*} \cdot \mathbf{F}^{*c} \right) \, dV_{0} \qquad \forall \qquad \vec{w}(\vec{x}) \end{split}$$

Piet Schreurs (TU/e) 480 / 694

## Matrix/column notation

$$\begin{split} \int_{V_0} \left[ \left( \underline{L}_{0w} \right)_t^T \underline{\underline{P}} \left( \underline{L}_{0u} \right)_t + \left( \underline{L}_{0w} \right)_t^T \underline{\underline{F}}_{cr} \underline{\underline{M}}_{0c} \left( \underline{L}_{0u} \right)_t \right] dV_0 = \\ f_{e0}(\underline{w}) - \int_{V_0} \left( \underline{L}_{0w} \right)_t^T \underline{\underline{F}}_{cr} \underline{\underline{P}} dV_0 = f_{e0}(\underline{w}) - f_{i0}(\underline{w}) \\ \int_{V_0} \left( \underline{L}_{0w} \right)_t^T \left[ \underline{\underline{P}} + \underline{\underline{F}}_{cr} \underline{\underline{M}}_{0c} \right] \left( \underline{L}_{0u} \right)_t dV_0 = f_{e0}(\underline{w}) - f_{i0}(\underline{w}) \end{split}$$

Piet Schreurs (TU/e) 481 / 69

## **Updated Lagrange formulation**

$$\int_{V} (\vec{\nabla} \vec{w})^{c} : \sigma \, dV = f_{e}(\vec{w}) \qquad \forall \quad \vec{w}(\vec{x})$$

transformation to begin increment configuration  $t_n$ 

$$\vec{\nabla} = \mathbf{F}_n^{-c} \cdot \vec{\nabla}_n \quad \to \quad (\vec{\nabla} \vec{w})^c = (\vec{\nabla}_n \vec{w})^c \cdot \mathbf{F}_n^{-1}$$

$$dV = \det(\mathbf{F}_n) dV_n$$

weighted residual integral

$$\int_{V_n} (\vec{\nabla}_n \vec{w})^c \cdot \mathbf{F}_n^{-1} : \sigma \det(\mathbf{F}_n) \, dV_n = f_{en}(\vec{w}) \qquad \forall \quad \vec{w}(\vec{x}) \longrightarrow$$

$$\int_{V} (\vec{\nabla}_n \vec{w})^c : (\mathbf{F}_n^{-1} \cdot \sigma) \det(\mathbf{F}_n) \, dV_n = f_{en}(\vec{w}) \qquad \forall \quad \vec{w}(\vec{x})$$

Piet Schreurs (TU/e) 482 / 694

### Iterative solution process

$$\int_{V_n} (\vec{\nabla}_n \vec{w})^c : (\mathbf{F}_n^{-1} \cdot \mathbf{\sigma}) \det(\mathbf{F}_n) \, dV_n = f_{en}(\vec{w}) \qquad \forall \ \vec{w}(\vec{x})$$

$$\mathbf{F}_{n} = (\vec{\nabla}_{n}\vec{x})^{c} = {\{\vec{\nabla}_{n}(\vec{x}^{*} + \delta\vec{x})\}^{c}} = (\vec{\nabla}_{n}\vec{x}^{*})^{c} + (\vec{\nabla}_{n}\delta\vec{x})^{c}}$$

$$= \mathbf{F}_{n}^{*} + \delta\mathbf{F}_{n} = \mathbf{F}_{n}^{*} + (\vec{\nabla}^{*}\delta\vec{x})^{c} \cdot (\vec{\nabla}_{n}\vec{x}^{*})^{c} = \mathbf{F}_{n}^{*} + \mathbf{L}_{u}^{*} \cdot \mathbf{F}_{n}^{*} = (\mathbf{I} + \mathbf{L}_{u}^{*}) \cdot \mathbf{F}_{n}^{*}}$$

$$\sigma = \sigma^* + \delta \sigma$$

$$\int_{V_n} (\vec{\nabla}_n \vec{w})^c : [(\mathbf{F}_n^*)^{-1} \cdot (\mathbf{I} + \mathbf{L}_u^*)^{-1} \cdot (\sigma^* + \delta \sigma) \det\{(\mathbf{I} + \mathbf{L}_u^*) \cdot \mathbf{F}_n^*\}] \ dV_n$$

$$= f_{en}(\vec{w}) \qquad \forall \ \vec{w}(\vec{x})$$

Piet Schreurs (TU/e) 483 / 694

### Linearisation

$$\begin{aligned} (\mathbf{I} + \mathbf{L}_u^*)^{-1} &\approx \mathbf{I} - \mathbf{L}_u^* \\ \det\{(\mathbf{I} + \mathbf{L}_u^*) \cdot \mathbf{F}_n^*\} &= \det(\mathbf{I} + \mathbf{L}_u^*) \det(\mathbf{F}_n^*) \approx \operatorname{tr}(\mathbf{I} + \mathbf{L}_u^*) \det(\mathbf{F}_n^*) = (1 + \mathbf{I} : \mathbf{L}_u^*) \det(\mathbf{F}_n^*) \end{aligned}$$

weighted residual integral

$$\begin{split} \int_{V_n} (\vec{\nabla}_n \vec{w})^c : \\ & \left[ (\mathbf{F}_n^*)^{-1} \cdot (\mathbf{I} - \mathbf{L}_u^*) \cdot (\sigma^* + \delta \sigma) (1 + \mathbf{I} : \mathbf{L}_u^*) \det(\mathbf{F}_n^*) \right] \ dV_n \\ & = f_{en}(\vec{w}) \qquad \forall \qquad \vec{w}(\vec{x}) \end{split}$$

further linearisation

$$\int_{V^*} \left[ \mathbf{L}_w^* : \sigma^* \mathbf{I} : \mathbf{L}_u^{*c} + \mathbf{L}_w^* : \delta \sigma - \mathbf{L}_w^* : (\sigma^{*c} \cdot \mathbf{L}_u^{*c})^c \right] dV^* =$$

$$f_e^*(\vec{w}) - \int_{V^*} \mathbf{L}_w^* : \sigma^* dV^* =$$

$$r^* \qquad \forall \qquad \vec{w}(\vec{x})$$

Piet Schreurs (TU/e) 484 / 694

#### Material model

$$\begin{split} \delta \sigma &= {}^4 \mathbf{M} : \mathbf{L}_u^* &\rightarrow \\ \int_{V^*} \left[ \mathbf{L}_w^* : \sigma^* \mathbf{I} : \mathbf{L}_u^{*c} + \mathbf{L}_w^* : {}^4 \mathbf{M} : \mathbf{L}_u^* - \mathbf{L}_w^* : (\sigma^{*c} \cdot \mathbf{L}_u^{*c})^c \right] \ dV^* &= \\ f_e^* (\vec{w}) - \int_{V^*} \mathbf{L}_w^* : \sigma^* \ dV^* \qquad \forall \quad \vec{w}(\vec{x}) \end{split}$$

Piet Schreurs (TU/e) 485 / 694

# Matrix/column notation

$$\begin{split} \int_{V^*} \left[ \left( \underline{L}_{w} \right)_{t}^{T} \underbrace{g}_{z}^{IT} \left( \underline{L}_{u} \right)_{t} + \left( \underline{L}_{w} \right)_{t}^{T} \underline{M} \left( \underline{L}_{u} \right)_{t} - \left( \underline{L}_{w} \right)_{t}^{T} \underline{g}_{tr} \left( \underline{L}_{u} \right)_{t} \right] dV^* &= \\ f_{e}(\underline{w}) - \int_{V^*} \left( \underline{L}_{w} \right)_{t}^{T} \underbrace{g}_{t} dV^* &= \\ f_{e}(\underline{w}) - f_{i}(\underline{w}) \\ \int_{V^*} \left( \underline{L}_{w} \right)_{t}^{T} \left[ \underbrace{g}_{z}^{IT} - \underline{g}_{tr} + \underline{M} \right] \left( \underline{L}_{u} \right)_{t} dV^* &= f_{e}(\underline{w}) - f_{i}(\underline{w}) \\ \int_{V^*} \left( \underline{L}_{w} \right)_{t}^{T} \left[ \underline{\underline{S}} + \underline{M} \right] \left( \underline{L}_{u} \right)_{t} dV^* &= f_{e}(\underline{w}) - f_{i}(\underline{w}) \end{split}$$

Piet Schreurs (TU/e) 486 / 694

## FINITE ELEMENT METHOD

back to index

### Discretisation



$$\int_{V} \left( \underbrace{L}_{zw} \right)_{t}^{T} \left[ \underline{\underline{W}} \right] \left( \underbrace{L}_{zu} \right)_{t} dV = f_{e}(\underline{w}) - f_{i}(\underline{w})$$

$$\sum_{e} \int_{V^{e}} \left( \underline{L}_{zw} \right)_{t}^{T} \left[ \underline{\underline{W}} \right] \left( \underline{L}_{zu} \right)_{t} dV^{e} = \sum_{e} f_{e}^{e}(\underline{w}) - \sum_{e} f_{i}^{e}(\underline{w})$$
  $\forall \underline{w}$ 

Piet Schreurs (TU/e) 488 / 694

## Isoparametric elements







isoparametric (local) coordinates

$$(\xi_1, \xi_2, \xi_3)$$
 ;  $-1 \le \xi_i \le 1$   $i = 1, 2, 3$ 

Jacobian matrix

$$\underline{J} = \left(\nabla_{\xi} \underline{x}^{T}\right)^{T} dV^{e} = \det(\underline{J}) d\xi_{1} d\xi_{2} d\xi_{3}$$

Piet Schreurs (TU/e) 489 / 694

### Interpolation

$$\vec{a} = N^1 \vec{a}^1 + N^2 \vec{a}^2 + \dots + N^{nep} \vec{a}^{nep} = \vec{N}^T \vec{g}^e \rightarrow a_i = N^1 a_i^1 + N^2 a_i^2 + \dots + N^{nep} a_i^{nep} = \vec{N}^T \vec{g}^e_i \rightarrow \underline{a} = \underline{N} \underline{a}^e$$

Piet Schreurs (TU/e) 490 / 694

#### Gradient

$$\vec{a} = N^{1}\vec{a}^{1} + N^{2}\vec{a}^{2} + \dots + N^{nep}\vec{a}^{nep} = \tilde{N}^{T}\vec{a}^{e} \rightarrow a_{i} = N^{1}a_{i}^{1} + N^{2}a_{i}^{2} + \dots + N^{nep}a_{i}^{nep} = \tilde{N}^{T}\vec{a}^{e}_{i} \rightarrow \underline{a} = \underline{N}\underline{a}^{e}$$

$$\mathbf{L}^{c} = \nabla \vec{a} \rightarrow \underline{L}_{z} = \underline{B}\underline{a}^{e}$$

Piet Schreurs (TU/e) 491 / 694

# Integration

$$\vec{a} = N^{1}\vec{a}^{1} + N^{2}\vec{a}^{2} + \dots + N^{nep}\vec{a}^{nep} = N^{T}\vec{a}^{e} \rightarrow a_{i} = N^{1}a_{i}^{1} + N^{2}a_{i}^{2} + \dots + N^{nep}a_{i}^{nep} = N^{T}\vec{a}^{e} \rightarrow \underline{a} = \underline{N}\underline{a}^{e}$$

$$\mathbf{L}^{c} = \nabla \vec{a} \rightarrow \underline{L}_{t} = \underline{B}\underline{a}^{e}$$

$$\mathcal{L}^{c} = \nabla \vec{a} \rightarrow \underline{L}_{t} = \underline{B}\underline{a}^{e}$$

$$\mathcal{L}^{e} = \nabla \mathbf{L}^{e} = \underline{N}\underline{a}^{e}$$

$$\mathcal{L}^{e} = \nabla \mathbf{L}^{e} = \underline{N}\underline{a}^{e}$$

$$\mathcal{L}^{e} = \nabla \mathbf{L}^{e} = \underline{N}\underline{a}^{e}$$

$$\mathcal{L}^{e} = \underline{$$

Piet Schreurs (TU/e) 492 / 694

## Integration

$$\int_{V^{e}} g(x_{1}, x_{2}, x_{3}) dV^{e} = \int_{\xi_{1} = -1}^{1} \int_{\xi_{2} = -1}^{1} \int_{\xi_{3} = -1}^{1} f(\xi_{1}, \xi_{2}, \xi_{3}) d\xi_{1} d\xi_{2} d\xi_{3}$$

$$= \sum_{i_{0} = 1}^{nip} c^{ip} f(\xi_{1}^{ip}, \xi_{2}^{ip}, \xi_{3}^{ip})$$

Piet Schreurs (TU/e) 493 / 694

#### Assemblation

$$\sum_{e} \underline{w}^{eT} \underline{K}^{e} \, \delta \underline{u}^{e} = \sum_{e} \underline{w}^{eT} \underline{f}_{e}^{e} - \sum_{e} \underline{w}^{eT} \underline{f}_{i}^{e} \longrightarrow$$

$$\underline{w}^{T} \underline{K} \, \delta \underline{u} = \underline{w}^{T} \, \underline{f}_{e} - \underline{w}^{T} \, \underline{f}_{i} = \underline{w}^{T} \, \underline{r} \qquad \forall \, \underline{w} \longrightarrow$$

$$\underline{K} \, \delta \underline{u} = \underline{f}_{e} - \underline{f}_{i} = \underline{r}$$

Piet Schreurs (TU/e) 494 / 694

### Solution

$$\begin{bmatrix} k_{11} & k_{12} & k_{13} & \cdots \\ k_{21} & k_{22} & k_{23} & \cdots \\ k_{31} & k_{32} & k_{33} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} a \\ a \\ a \\ \vdots \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \end{bmatrix} \qquad \rightarrow \qquad \underline{K} = \text{ singular } \rightarrow \text{ } \det \underline{K} = 0$$

prevent rigid body movement with BC's other BC's : prescribed displacements / loads / temperature

$$\delta \underline{u} = \underline{K}^{-1} \underline{r}$$

Piet Schreurs (TU/e) 495 / 694

### Program structure

end load increment

```
read input data from input file
calculate additional variables from input data
initialize values and arrays
while load increments to be done
   for all elements
      for all integration points
         calculate contribution to initial element stiffness matrix
      end integration point loop
      assemble global stiffness matrix
   end element loop
   determine external incremental load from input
   while non-converged iteration step
      take tyings into account
      take boundary conditions into account
      calculate iterative nodal displacements
      calculate total deformation
      for all elements
         for all integration points
            calculate stresses from material behavior
            calculate material stiffness from material behavior
            calculate contribution to element internal nodal forces
            calculate contribution to element stiffness matrix
         end ntegration point loop
         assemble global stiffness matrix
         assemble global internal load column
      end element loop
      calculate residual load column
      calculate convergence norm
   end iteration step
   store data for post-processing
```

Piet Schreurs (TU/e) 496 / 694

## **NUMERICAL SOLUTIONS**

back to index

### Example

| isotropic | plane stress | 
$$p_i = 100$$
 MPa |  $p_e = 0$  MPa |  $a = 0.25$  m |  $b = 0.5$  m |  $b = 0.3$  |  $b$ 





Piet Schreurs (TU/e) 498 / 694

# Compound thick-walled pressurized cylinder

| isotropic | plane stress | 
$$p_i = 100$$
 MPa |  $p_e = 0$  MPa |  $a_1 = 0.25$  m |  $a_2 = 0.375$  m |  $E = 250$  GPa |  $v = 0.33$  |  $a_2 = 0.375$  m |  $b = 0.5$  m |  $E1 = E$  GPa |  $E2 = 10E$  GPa |  $v_{12} = v/10$  |  $v_{32} = v/10$  |





Piet Schreurs (TU/e) 499 / 694

## Rotating disc





Piet Schreurs (TU/e) 500 / 694

# Thick-walled pressurized cylinder: plane stress

$$|a = 0.25 \text{ m}| |b = 0.5 \text{ m}| |h = 0.5 \text{ m}| E = 250 \text{ GPa} |\nu = 0.33|$$
  
 $|p_i = 100 \text{ MPa} |p_e = 0 \text{ MPa}|$ 





Piet Schreurs (TU/e) 501 / 694

# Thick-walled pressurized cylinder: axi-symmetric





Piet Schreurs (TU/e) 502 / 694

# Rigid rotation



Piet Schreurs (TU/e) 503 / 694

### THREE-DIMENSIONAL MATERIAL MODELS

back to index

# **ELASTIC**

back to index

### Elastic material behavior

$$\mathbf{P} = \mathbf{G}(\mathbf{E}) \hspace{1cm} \text{with} \hspace{1cm} \mathbf{E} = \tfrac{1}{2}(\mathbf{C} - \mathbf{I}) = \tfrac{1}{2}(\mathbf{F}^c \cdot \mathbf{F} - \mathbf{I})$$

$$\begin{split} & \sigma = J^{-1} \mathbf{F} \cdot \mathbf{P} \cdot \mathbf{F}^c \\ &= J^{-1} \mathbf{F} \cdot \mathbf{G}(\mathbf{E}) \cdot \mathbf{F}^c & \text{ with } & J = \det(\mathbf{F}) \\ &= \mathbf{K}(\mathbf{A}) & \text{ with } & \mathbf{A} = \frac{1}{2}(\mathbf{B} - \mathbf{I}) = \frac{1}{2}(\mathbf{F} \cdot \mathbf{F}^c - \mathbf{I}) \end{split}$$

Piet Schreurs (TU/e) 506 / 694

### Isotropic elastic material models



$$\mathbf{U} = \lambda_1 \vec{n}_{01} \vec{n}_{01} + \lambda_2 \vec{n}_{02} \vec{n}_{02} + \lambda_3 \vec{n}_{03} \vec{n}_{03}$$

$$\mathbf{R} = \vec{n}_1 \vec{n}_{01} + \vec{n}_2 \vec{n}_{02} + \vec{n}_3 \vec{n}_{03}$$

$$\mathbf{F} = \lambda_1 \vec{n}_1 \vec{n}_{01} + \lambda_2 \vec{n}_2 \vec{n}_{02} + \lambda_3 \vec{n}_3 \vec{n}_{03}$$

$$\begin{split} \mathbf{P} &= J \mathbf{F}^{-1} \cdot (\sigma_1 \vec{n}_1 \vec{n}_1 + \sigma_2 \vec{n}_2 \vec{n}_2 + \sigma_3 \vec{n}_3 \vec{n}_3) \cdot \mathbf{F}^{-c} \\ &= J \left\{ \sigma_1 \lambda_1^{-2} \vec{n}_{01} \vec{n}_{01} + \sigma_2 \lambda_2^{-2} \vec{n}_{02} \vec{n}_{02} + \sigma_3 \lambda_3^{-2} \vec{n}_{03} \vec{n}_{03} \right\} \\ &= s_1 \vec{n}_{01} \vec{n}_{01} + s_2 \vec{n}_{01} \vec{n}_{01} + s_3 \vec{n}_{01} \vec{n}_{01} \end{split}$$

Piet Schreurs (TU/e) 507 / 694

#### P – E model

$$\mathbf{P} = s_1 \vec{n}_{01} \vec{n}_{01} + s_2 \vec{n}_{02} \vec{n}_{02} + s_3 \vec{n}_{03} \vec{n}_{03}$$
$$\mathbf{E} = \varepsilon_1 \vec{n}_{01} \vec{n}_{01} + \varepsilon_2 \vec{n}_{02} \vec{n}_{02} + \varepsilon_3 \vec{n}_{03} \vec{n}_{03}$$

$$\begin{aligned} \mathbf{P} &= \sum s_i \vec{n}_{0i} \vec{n}_{0i} \\ &= \mathbf{G}(\mathbf{E}) = \sum G(\varepsilon_i) \vec{n}_{0i} \vec{n}_{0i} \\ &= a_0 \mathbf{I} + a_1 \mathbf{E} + a_2 \mathbf{E}^2 + a_3 \mathbf{E}^3 + \dots \end{aligned}$$

Cayley-Hamilton's theorem

$$\mathbf{E}^3 = J_1(\mathbf{E})\mathbf{E}^2 - J_2(\mathbf{E})\mathbf{E} + J_3(\mathbf{E})\mathbf{I}$$

$$\mathbf{P} = \alpha_0 \mathbf{I} + \alpha_1 \mathbf{E} + \alpha_2 \mathbf{E}^2 \qquad \text{with} \qquad \alpha_i = \alpha_i \{J_1(\mathbf{E}), J_2(\mathbf{E}), J_3(\mathbf{E})\}$$

Piet Schreurs (TU/e) 508 / 694

### $\sigma - A$ model

$$\mathbf{\sigma} = \sigma_1 \vec{n}_1 \vec{n}_1 + \sigma_2 \vec{n}_2 \vec{n}_2 + \sigma_3 \vec{n}_3 \vec{n}_3$$
$$\mathbf{A} = A_1 \vec{n}_1 \vec{n}_1 + A_2 \vec{n}_2 \vec{n}_2 + A_3 \vec{n}_3 \vec{n}_3$$

$$\begin{aligned} \mathbf{\sigma} &= \sum_{i} \sigma_{i} \vec{n}_{i} \vec{n}_{i} \\ &= \mathbf{K}(\mathbf{A}) = \sum_{i} K(A_{i}) \vec{n}_{i} \vec{n}_{i} \\ &= b_{0} \mathbf{I} + b_{1} \mathbf{A} + b_{2} \mathbf{A}^{2} + b_{3} \mathbf{A}^{3} + \dots \end{aligned}$$

Cayley-Hamilton's theorem

$$\mathbf{A}^3 = J_1(\mathbf{A})\mathbf{A}^2 - J_2(\mathbf{A})\mathbf{A} + J_3(\mathbf{A})\mathbf{I}$$

$$\mathbf{\sigma} = \beta_0 \mathbf{I} + \beta_1 \mathbf{A} + \beta_2 \mathbf{A}^2 \qquad \text{with} \qquad \beta_i = \beta_i \{J_1(\mathbf{A}), J_2(\mathbf{A}), J_3(\mathbf{A})\}$$

509 / 694

## Isotropic elastic material : $\sigma - A$

$$\begin{split} & \sigma = J^{-1} \mathbf{F} \cdot \mathbf{P} \cdot \mathbf{F}^c \\ &= J^{-1} \mathbf{F} \cdot \left[ \alpha_0 \mathbf{I} + \alpha_1 \mathbf{E} + \alpha_2 \mathbf{E}^2 \right] \cdot \mathbf{F}^c \\ &= J^{-1} \mathbf{F} \cdot \left[ (\alpha_0 - \frac{1}{2}\alpha_1 + \alpha_2) \mathbf{I} + (\frac{1}{2}\alpha_1 - \frac{1}{2}\alpha_2) \mathbf{C} + \frac{1}{4}\alpha_2 \mathbf{C}^2 \right] \cdot \mathbf{F}^c \\ &= \{J_3(\mathbf{B})\}^{-1/2} \left[ (\alpha_0 - \frac{1}{2}\alpha_1 + \alpha_2) \mathbf{B} + (\frac{1}{2}\alpha_1 - \frac{1}{2}\alpha_2) \mathbf{B}^2 + \frac{1}{4}\alpha_2 \mathbf{B}^3 \right] \\ & \mathbf{B}^3 = J_1(\mathbf{B}) \mathbf{B}^2 - J_2(\mathbf{B}) \mathbf{B} + J_3(\mathbf{B}) \mathbf{I} \\ &= J_3^{-1/2} \left[ (\frac{1}{2}\alpha_1 - \frac{1}{2}\alpha_2 + \frac{1}{4}\alpha_2 J_1) \mathbf{B}^2 + (\alpha_0 - \frac{1}{2}\alpha_1 + \alpha_2 - \frac{1}{4}\alpha_2 J_2) \mathbf{B} + \frac{1}{4}\alpha_2 J_3 \mathbf{I} \right] \\ & \mathbf{A} = \frac{1}{2} (\mathbf{B} - \mathbf{I}) \quad \rightarrow \quad \mathbf{B} = 2 \mathbf{A} + \mathbf{I} \\ & \mathbf{A}^2 = \frac{1}{4} \mathbf{B}^2 - \frac{1}{2} \mathbf{B} + \frac{1}{4} \mathbf{I} \quad \rightarrow \quad \mathbf{B}^2 = 4 \mathbf{A}^2 + 2 \mathbf{B} - \mathbf{I} \\ &= J_3^{-1/2} \left[ (2\alpha_1 - 2\alpha_2 + \alpha_2 J_1) \mathbf{A}^2 + (\alpha_0 + \frac{1}{2}\alpha_1 + \frac{1}{2}\alpha_2 J_1 - \frac{1}{4}\alpha_2 J_2) \mathbf{A} + (\alpha_0 + \alpha_1 - \frac{1}{2}\alpha_2 + \frac{3}{4}\alpha_2 J_1 - \frac{1}{4}\alpha_2 J_2 + \frac{1}{4}\alpha_2 J_3) \mathbf{I} \right] \\ &= \beta_2 \mathbf{A}^2 + \beta_1 \mathbf{A} + \beta_0 \mathbf{I} \end{split}$$

Piet Schreurs (TU/e) 510 / 694

### Linear **P** – **E** model

$$\mathbf{P} = \alpha_0 \mathbf{I} + \alpha_1 \mathbf{E} + \alpha_2 \mathbf{E}^2$$
 with  $\alpha_i = \alpha_i \{J_1(\mathbf{E}), J_2(\mathbf{E}), J_3(\mathbf{E})\}$ 

linear —

- 1.  $\alpha_2 = 0$
- 2.  $\alpha_1 = \text{constant} = c_1$
- 3.  $\alpha_0 = \text{linear in } \mathbf{E} = c_0 \text{tr}(\mathbf{E})$

$$\mathbf{P} = c_0 \mathsf{tr}(\mathbf{E}) \mathbf{I} + c_1 \mathbf{E}$$

Piet Schreurs (TU/e) 511 / 694

#### Tensile test

$$P = c_0 \frac{1}{2} (\lambda^2 - 1) + 2c_0 \frac{1}{2} (\mu^2 - 1) + c_1 \frac{1}{2} (\lambda^2 - 1)$$

$$0 = c_0 \frac{1}{2} (\lambda^2 - 1) + 2c_0 \frac{1}{2} (\mu^2 - 1) + c_1 \frac{1}{2} (\mu^2 - 1)$$

$$\frac{1}{2} (\mu^2 - 1) = -\frac{c_0}{2c_0 + c_1} \frac{1}{2} (\lambda^2 - 1) = -\nu \frac{1}{2} (\lambda^2 - 1)$$

$$P = \frac{c_1 (3c_0 + c_1)}{2c_0 + c_1} \frac{1}{2} (\lambda^2 - 1) = E \frac{1}{2} (\lambda^2 - 1)$$

$$F = \sigma A = \frac{\lambda}{\mu^2} P \mu^2 A_0 = \lambda P A_0 = \frac{1}{2} \lambda (\lambda^2 - 1) E A_0$$





Piet Schreurs (TU/e) 512 / 694

# Simple shear test: plane stress

$$\sigma_{33} = P_{33} = 0 \quad \rightarrow \quad c_0(E_{11} + E_{22} + E_{33}) + c_1E_{33} = 0 \quad \rightarrow \quad E_{33} = -\frac{c_0}{c_0 + c_1}(E_{11} + E_{22})$$

$$\begin{split} \mathbf{F} &= \mathbf{I} + (F_{33} - 1)\vec{e}_3\vec{e}_3 + \gamma\vec{e}_1\vec{e}_2 \\ \mathbf{E} &= \frac{1}{2}(\mathbf{F}^c \cdot \mathbf{F} - \mathbf{I}) = \frac{1}{2}\left[\gamma^2\vec{e}_2\vec{e}_2 + \gamma(\vec{e}_1\vec{e}_2 + \vec{e}_2\vec{e}_1) + \left\{2(F_{33} - 1) + (F_{33} - 1)^2\right\}\vec{e}_3\vec{e}_3\right] \\ F_{33} &= \sqrt{2E_{33} + 1} \quad \rightarrow \quad J = \det(\mathbf{F}) = F_{33} = \sqrt{2E_{33} + 1} \\ \mathbf{P} &= \frac{c_0c_1}{c_0 + c_1} \left(E_{11} + E_{22}\right) + c_1\mathbf{E} \\ &= \frac{c_0c_1}{c_0 + c_1} \frac{1}{2}\gamma^2\mathbf{I} + c_1\frac{1}{2}\gamma^2\vec{e}_2\vec{e}_2 + c_1\frac{1}{2}\gamma(\vec{e}_1\vec{e}_2 + \vec{e}_2\vec{e}_1) \\ \sigma &= J^{-1}\mathbf{F} \cdot \mathbf{P} \cdot \mathbf{F}^c = J^{-1}\left[\mathbf{P} + (\gamma P_{12} + \gamma P_{21} + \gamma^2 P_{22})\vec{e}_1\vec{e}_1 + \gamma P_{22}(\vec{e}_1\vec{e}_2 + \vec{e}_2\vec{e}_1)\right] \end{split}$$

$$p_n = \vec{e}_2 \cdot \sigma \cdot \vec{e}_2 = \sigma_{22}$$
;  $p_s = \vec{e}_1 \cdot \sigma \cdot \vec{e}_2 = \sigma_{12}$   
 $F_n = p_n dw_0 = p_n F_{33} d_0 w_0$ ;  $F_s = p_s dw_0 = p_s F_{33} d_0 w_0$ 





Piet Schreurs (TU/e) 513 / 694

### Linear $\sigma - A$ model

$$\sigma = \beta_0 \mathbf{I} + \beta_1 \mathbf{A} + \beta_2 \mathbf{A}^2$$
 with  $\beta_i = \beta_i \{J_1(\mathbf{A}), J_2(\mathbf{A}), J_3(\mathbf{A})\}$ 

linear -

- 1.  $\beta_2 = 0$
- 2.  $\beta_1 = \text{constant} = c_1$
- 3.  $\beta_0 = \text{linear in } \mathbf{A} = c_0 \text{tr}(\mathbf{A})$

$$\sigma = {\color{red}c_0} \text{tr}(\textbf{A}) \textbf{I} + {\color{red}c_1} \textbf{A}$$

Piet Schreurs (TU/e) 514 / 694

### Tensile test

$$\sigma = c_0 \frac{1}{2} (\lambda^2 - 1) + 2c_0 \frac{1}{2} (\mu^2 - 1) + c_1 \frac{1}{2} (\lambda^2 - 1)$$

$$0 = c_0 \frac{1}{2} (\lambda^2 - 1) + 2c_0 \frac{1}{2} (\mu^2 - 1) + c_1 \frac{1}{2} (\mu^2 - 1)$$

$$\frac{1}{2} (\mu^2 - 1) = -\frac{c_0}{2c_0 + c_1} \frac{1}{2} (\lambda^2 - 1) = -\nu \frac{1}{2} (\lambda^2 - 1)$$

$$\sigma = \frac{c_0 (3c_0 + c_1)}{2c_0 + c_1} \frac{1}{2} (\lambda^2 - 1) = E \frac{1}{2} (\lambda^2 - 1)$$

$$F = \sigma A = \sigma \mu^2 A_0 = \frac{1}{2} (\lambda^2 - 1) \{1 - \nu (\lambda^2 - 1)\} EA_0$$





Piet Schreurs (TU/e) 515 / 694

## Simple shear test: plane strain

$$\begin{split} \mathbf{F} &= \mathbf{I} + \gamma \ \vec{\mathbf{e}}_1 \vec{\mathbf{e}}_2 \\ \mathbf{B} &= \mathbf{F} \cdot \mathbf{F}^c = \mathbf{I} + \gamma^2 \vec{\mathbf{e}}_1 \vec{\mathbf{e}}_1 + \gamma (\vec{\mathbf{e}}_1 \vec{\mathbf{e}}_2 + \vec{\mathbf{e}}_2 \vec{\mathbf{e}}_1) \\ \mathbf{A} &= \frac{1}{2} (\mathbf{B} - \mathbf{I}) = \frac{1}{2} \gamma^2 \vec{\mathbf{e}}_1 \vec{\mathbf{e}}_1 + \frac{1}{2} \gamma (\vec{\mathbf{e}}_1 \vec{\mathbf{e}}_2 + \vec{\mathbf{e}}_2 \vec{\mathbf{e}}_1) \\ \sigma &= c_0 \frac{1}{2} \gamma^2 \mathbf{I} + c_1 \frac{1}{2} \gamma^2 \vec{\mathbf{e}}_1 \vec{\mathbf{e}}_1 + c_1 \frac{1}{2} \gamma (\vec{\mathbf{e}}_1 \vec{\mathbf{e}}_2 + \vec{\mathbf{e}}_2 \vec{\mathbf{e}}_1) \\ \sigma_{33} &= c_0 \frac{1}{2} \gamma^2 \\ \rho_n &= \vec{\mathbf{e}}_2 \cdot \mathbf{\sigma} \cdot \vec{\mathbf{e}}_2 = c_0 \frac{1}{2} \gamma^2 \quad ; \quad \rho_s = \vec{\mathbf{e}}_1 \cdot \mathbf{\sigma} \cdot \vec{\mathbf{e}}_2 = c_1 \frac{1}{2} \gamma \\ F_n &= \rho_n d_0 w_0 \quad ; \quad F_s = \rho_s d_0 w_0 \end{split}$$





Piet Schreurs (TU/e) 516 / 694

### Simple shear test: plane stress

$$\sigma_{33} = c_0(A_{11} + A_{22} + A_{33}) + c_1A_{33} = 0 \rightarrow$$

$$A_{33} = -\frac{c_0}{c_0 + c_1}(A_{11} + A_{22}) \rightarrow F_{33} = \sqrt{2A_{33} + 1}$$

$$\sigma = \frac{c_0c_1}{c_0 + c_1}(A_{11} + A_{22})\mathbf{I} + c_1\mathbf{A}$$

$$\begin{split} \mathbf{A} &= \frac{1}{2} \, \gamma^2 \vec{e}_1 \vec{e}_1 + \frac{1}{2} \, \gamma (\vec{e}_1 \vec{e}_2 + \vec{e}_2 \vec{e}_1) \\ \sigma &= \frac{c_0 c_1}{c_0 + c_1} \, \frac{1}{2} \gamma^2 \mathbf{I} + c_1 \, \frac{1}{2} \gamma^2 \vec{e}_1 \vec{e}_1 + c_1 \, \frac{1}{2} \gamma (\vec{e}_1 \vec{e}_2 + \vec{e}_2 \vec{e}_1) \\ p_n &= \vec{e}_2 \cdot \sigma \cdot \vec{e}_2 = \frac{c_0 c_1}{c_0 + c_1} \, \frac{1}{2} \gamma^2 \quad ; \quad p_s = \vec{e}_1 \cdot \sigma \cdot \vec{e}_2 = c_1 \, \frac{1}{2} \gamma \\ F_n &= p_n dw_0 = p_n F_{33} d_0 w_0 \quad ; \quad F_s = p_s dw_0 = p_s F_{33} d_0 w_0 \end{split}$$





# Hyper-elastic material models

$$\phi = \phi(\textbf{E}) \quad \rightarrow \quad \textit{W} = \textit{W}(\textbf{C}) \qquad \rightarrow$$

$$\mathbf{P} = \frac{d\phi(d\mathbf{E})}{\mathbf{E}} = \frac{dW(\mathbf{C})}{d\mathbf{C}} : \frac{d\mathbf{C}}{d\mathbf{E}} = 2\frac{dW(\mathbf{C})}{d\mathbf{C}} = \mathbf{G}(\mathbf{E})$$

$$\sigma = \frac{1}{J} \mathbf{F} \cdot \mathbf{P} \cdot \mathbf{F}^c = \frac{2}{J} \mathbf{F} \cdot \frac{dW(\mathbf{C})}{d\mathbf{C}} \cdot \mathbf{F}^c$$

Piet Schreurs (TU/e) 518 / 694

## Isotropic hyper-elastic model : P - E

$$\begin{split} & \varphi = \varphi(\mathbf{E}) = \varphi\{J_1(\mathbf{E}), J_2(\mathbf{E}), J_3(\mathbf{E})\} \quad \to \\ & \mathbf{P} = \frac{\partial \varphi}{\partial J_1} \frac{dJ_1}{d\mathbf{E}} + \frac{\partial \varphi}{\partial J_2} \frac{dJ_2}{d\mathbf{E}} + \frac{\partial \varphi}{\partial J_3} \frac{dJ_3}{d\mathbf{E}} \end{split}$$

$$\frac{dJ_1}{d\mathbf{E}} = \mathbf{I} \qquad ; \qquad \frac{dJ_2}{d\mathbf{E}} = J_1\mathbf{I} - \mathbf{E} \qquad ; \qquad \frac{dJ_3}{d\mathbf{E}} = J_2\mathbf{I} - J_1\mathbf{E} + \mathbf{E}^2 \qquad \rightarrow$$

$$\mathbf{P} = \left(\frac{\partial \phi}{\partial J_1} + \frac{\partial \phi}{\partial J_2} J_1 + \frac{\partial \phi}{\partial J_3} J_2\right) \mathbf{I} + \left(-\frac{\partial \phi}{\partial J_2} - \frac{\partial \phi}{\partial J_3} J_1\right) \mathbf{E} + \frac{\partial \phi}{\partial J_3} \mathbf{E}^2$$
$$= \alpha_0 \mathbf{I} + \alpha_1 \mathbf{E} + \alpha_2 \mathbf{E}^2$$

Piet Schreurs (TU/e) 519 / 694

## Isotropic hyper-elastic model : P - C

$$W = W(\mathbf{C}) = W\{J_1(\mathbf{C}), J_2(\mathbf{C}), J_3(\mathbf{C})\} \longrightarrow$$

$$\mathbf{P} = 2\left(\frac{\partial W}{\partial J_1}\frac{dJ_1}{d\mathbf{C}} + \frac{\partial W}{\partial J_2}\frac{dJ_2}{d\mathbf{C}} + \frac{\partial W}{\partial J_3}\frac{dJ_3}{d\mathbf{C}}\right)$$

$$\frac{dJ_1}{d\mathbf{C}} = \mathbf{I}$$
 ;  $\frac{dJ_2}{d\mathbf{C}} = J_1\mathbf{I} - \mathbf{C}$  ;  $\frac{dJ_3}{d\mathbf{C}} = J_2\mathbf{I} - J_1\mathbf{C} + \mathbf{C}^2$   $\rightarrow$ 

$$\mathbf{P} = 2\left(\frac{\partial W}{\partial J_1} + \frac{\partial W}{\partial J_2}J_1 + \frac{\partial W}{\partial J_3}J_2\right)\mathbf{I} + 2\left(-\frac{\partial W}{\partial J_2} - \frac{\partial W}{\partial J_3}J_1\right)\mathbf{C} + 2\frac{\partial W}{\partial J_3}\mathbf{C}^2$$
$$= \bar{\alpha}_0\mathbf{I} + \bar{\alpha}_1\mathbf{E} + \bar{\alpha}_2\mathbf{E}^2$$

Piet Schreurs (TU/e) 520 / 694

Isotropic hyper-elastic model :  $\sigma - A$  model

$$\sigma = \frac{1}{J} \mathbf{F} \cdot \mathbf{P} \cdot \mathbf{F}^{c} = \frac{2}{J} \mathbf{F} \cdot \frac{dW(\mathbf{C})}{d\mathbf{C}} \cdot \mathbf{F}^{c}$$

$$= \frac{2}{\sqrt{J_{3}}} \mathbf{F} \cdot \left( \frac{\partial W}{\partial J_{1}} \frac{dJ_{1}}{d\mathbf{C}} + \frac{\partial W}{\partial J_{2}} \frac{dJ_{2}}{d\mathbf{C}} + \frac{\partial W}{\partial J_{3}} \frac{dJ_{3}}{d\mathbf{C}} \right) \cdot \mathbf{F}^{c}$$

$$= \frac{2}{\sqrt{J_{3}}} \mathbf{F} \cdot \left\{ \left( \frac{\partial W}{\partial J_{1}} + J_{1} \frac{\partial W}{\partial J_{2}} + J_{2} \frac{\partial W}{\partial J_{3}} \right) \mathbf{I} + \left( -\frac{\partial W}{\partial J_{2}} - J_{1} \frac{\partial W}{\partial J_{3}} \right) \mathbf{C} + \left( \frac{\partial W}{\partial J_{3}} \right) \mathbf{C}^{2} \right\}$$

$$= \frac{2}{\sqrt{J_{3}}} \mathbf{F} \cdot \left( \gamma_{0} \mathbf{I} + \gamma_{1} \mathbf{C} + \gamma_{2} \mathbf{C}^{2} \right) \cdot \mathbf{F}^{c} = \frac{2}{\sqrt{J_{3}}} \left( \gamma_{0} \mathbf{B} + \gamma_{1} \mathbf{B}^{2} + \gamma_{2} \mathbf{B}^{3} \right)$$

$$= \frac{2}{\sqrt{J_{3}}} \left[ (\gamma_{1} + \gamma_{2} J_{1}) \mathbf{B}^{2} + (\gamma_{0} - \gamma_{2} J_{2}) \mathbf{B} + (\gamma_{2} J_{3}) \mathbf{I} \right]$$

$$= \frac{2}{\sqrt{J_{3}}} \left[ (\gamma_{1} + \gamma_{2} J_{1}) \mathbf{A}^{2} + (\gamma_{0} - \gamma_{2} J_{2}) \mathbf{B} + (\gamma_{2} J_{3}) \mathbf{I} \right]$$

$$= \frac{2}{\sqrt{J_{3}}} \left[ (4\gamma_{1} + 4\gamma_{2} J_{1}) \mathbf{A}^{2} + (\gamma_{0} + 2\gamma_{1} + 2\gamma_{2} J_{1} - \gamma_{2} J_{2}) \mathbf{A} + (\gamma_{0} - \gamma_{1} + \gamma_{2} J_{1} - \gamma_{2} J_{2} + \gamma_{2} J_{3}) \mathbf{I} \right]$$

$$= \beta_{2} \mathbf{A}^{2} + \beta_{1} \mathbf{A} + \beta_{0} \mathbf{I}$$

Piet Schreurs (TU/e) 521 / 694

# Incompressibility

$$J=\det(\textbf{F})=1 \quad \rightarrow \quad \det(\textbf{C})=J_3(\textbf{C})=1 \quad \rightarrow \quad W(\textbf{C})=W\{J_1(\textbf{C}),J_2(\textbf{C})\}$$

$$\mathbf{P} = 2\left(\frac{\partial W}{\partial J_1}\frac{dJ_1}{d\mathbf{C}} + \frac{\partial W}{\partial J_2}\frac{dJ_2}{d\mathbf{C}}\right) = 2\left\{\left(\frac{\partial W}{\partial J_1} + \frac{\partial W}{\partial J_2}J_1\right)\mathbf{I} - \frac{\partial W}{\partial J_2}\mathbf{C}\right\}$$

$$\mathbf{\sigma} = \mathbf{F} \cdot \mathbf{P} \cdot \mathbf{F}^{c} = 2 \left\{ \left( \frac{\partial W}{\partial J_{1}} + \frac{\partial W}{\partial J_{2}} J_{1} \right) \mathbf{B} - \frac{\partial W}{\partial J_{2}} \mathbf{B}^{2} \right\}$$

Piet Schreurs (TU/e) 522 / 694

# Incompressibility



$$\sigma = -\rho \mathbf{I} + \mathbf{F} \cdot \mathbf{P} \cdot \mathbf{F}^{c}$$

$$= -\rho \mathbf{I} + 2 \left\{ \left( \frac{\partial W}{\partial J_{1}} + \frac{\partial W}{\partial J_{2}} J_{1} \right) \mathbf{B} - \frac{\partial W}{\partial J_{2}} \mathbf{B}^{2} \right\}$$

$$= -\rho \mathbf{I} + \tau$$

hydrostatic pressure : p : extra unknown incompressibility condition :  $\det(\mathbf{F}) = J = 1$  : extra equation

Piet Schreurs (TU/e) 523 / 694

### Rivlin models

$$W(\mathbf{C}) = \sum_{i=0}^{m} \sum_{j=0}^{n} C_{ij} \{J_1(\mathbf{C}) - 3\}^i \{J_2(\mathbf{C}) - 3\}^j \quad \text{with} \quad C_{00} = 0$$

$$J_1 = \text{tr}(\mathbf{C}) = \lambda_1^2 + \lambda_2^2 + \lambda_3^2$$

$$J_2 = \frac{1}{2} \{ \text{tr}^2(\mathbf{C}) - \text{tr}(\mathbf{C}^2) \}$$

$$= \frac{1}{2} \left\{ (\lambda_1^2 + \lambda_2^2 + \lambda_3^2)^2 - (\lambda_1^4 + \lambda_2^4 + \lambda_3^4) \right\}$$

$$= \lambda_1^2 \lambda_2^2 + \lambda_2^2 \lambda_3^2 + \lambda_3^2 \lambda_1^2$$

$$J_3 = \det(\mathbf{C}) = \lambda_1^2 \lambda_2^2 \lambda_3^2 = 1$$

$$W(\mathbf{C}) = \sum_{i=0}^{m} \sum_{j=0}^{n} c_{ij} \left( \lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 3 \right)^{i} \left( \frac{1}{\lambda_1^2} + \frac{1}{\lambda_2^2} + \frac{1}{\lambda_3^2} - 3 \right)^{j}$$

Piet Schreurs (TU/e) 524 / 694

### Neo-Hookean model

$$W = C_{10}(J_1 - 3)$$

$$\sigma = -\, \rho \textbf{I} + 2\, \textit{C}_{10} \textbf{B}$$

Piet Schreurs (TU/e) 525 / 694

### Tensile test

$$\begin{split} \mathbf{B} &= \lambda^2 \vec{e}_1 \vec{e}_1 + \mu^2 (\vec{e}_2 \vec{e}_2 + \vec{e}_3 \vec{e}_3) = \lambda^2 \vec{e}_1 \vec{e}_1 + \frac{1}{\lambda} (\vec{e}_2 \vec{e}_2 + \vec{e}_3 \vec{e}_3) \\ \sigma &= -\rho \mathbf{I} + 2 C_{10} \lambda^2 \vec{e}_1 \vec{e}_1 + 2 C_{10} \frac{1}{\lambda} (\vec{e}_2 \vec{e}_2 + \vec{e}_3 \vec{e}_3) \\ \sigma &= -\rho + 2 C_{10} \lambda^2 \\ 0 &= -\rho + 2 C_{10} \frac{1}{\lambda} \end{split} \right\} \quad \rightarrow \\ \sigma &= 2 C_{10} (\lambda^2 - \frac{1}{\lambda}) \\ \mathcal{F} &= \sigma A = \sigma \mu^2 A_0 = \sigma \frac{1}{\lambda} A_0 = 2 C_{10} A_0 (\lambda - \frac{1}{\lambda^2}) \end{split}$$

Piet Schreurs (TU/e) 526 / 694

# Mooney-Rivlin material model

$$W = C_{10}(J_1 - 3) + C_{01}(J_2 - 3)$$

$$\sigma = - \rho \mathbf{I} + 2 \{C_{10} + C_{01} \text{tr}(\mathbf{B})\} \mathbf{B} - 2C_{01} \mathbf{B}^2$$

Piet Schreurs (TU/e) 527 / 694

### Tensile test

$$\begin{split} \mathbf{B} &= \lambda^2 \vec{e}_1 \vec{e}_1 + \mu^2 (\vec{e}_2 \vec{e}_2 + \vec{e}_3 \vec{e}_3) = \lambda^2 \vec{e}_1 \vec{e}_1 + \frac{1}{\lambda} (\vec{e}_2 \vec{e}_2 + \vec{e}_3 \vec{e}_3) \\ \mathrm{tr}(\mathbf{B}) &= \lambda^2 + \frac{2}{\lambda} \\ \mathbf{B}^2 &= \lambda^4 \vec{e}_1 \vec{e}_1 + \frac{1}{\lambda^2} (\vec{e}_2 \vec{e}_2 + \vec{e}_3 \vec{e}_3) \\ \sigma &= -p\mathbf{I} + 2\{C_{10} + C_{01}(\lambda^2 + \frac{2}{\lambda})\}\{\lambda^2 \vec{e}_1 \vec{e}_1 + \frac{1}{\lambda} (\vec{e}_2 \vec{e}_2 + \vec{e}_3 \vec{e}_3)\} \\ &- 2C_{01}\{\lambda^4 \vec{e}_1 \vec{e}_1 + \frac{1}{\lambda^2} (\vec{e}_2 \vec{e}_2 + \vec{e}_3 \vec{e}_3)\} \\ \sigma &= -p + 2\{C_{10} + C_{01}(\lambda^2 + \frac{2}{\lambda})\}\lambda^2 - 2C_{01}\lambda^4 \\ 0 &= -p + 2\{C_{10} + C_{01}(\lambda^2 + \frac{2}{\lambda})\}\frac{1}{\lambda} - 2C_{01}\frac{1}{\lambda^2} \\ \sigma &= 2C_{10}(\lambda^2 - \frac{1}{\lambda}) + 2C_{01}(\lambda - \frac{1}{\lambda^2}) \\ F &= \sigma A = \sigma \mu^2 A_0 = \sigma \frac{1}{\lambda} A_0 = 2A_0\{C_{10}(\lambda - \frac{1}{\lambda^2}) + C_{01}(1 - \frac{1}{\lambda^3})\} \end{split}$$

Piet Schreurs (TU/e) 528 / 694

# Other energy functions

3-term Mooney-Rivlin 
$$W = c_{10}(J_1 - 3) + c_{01}(J_2 - 3) + c_{11}(J_1 - 3)(J_2 - 3)$$

Signiorini 
$$W = c_{10}(J_1 - 3) + c_{01}(J_2 - 3) + c_{20}(J_1 - 3)^2$$

Yeoh 
$$W = c_{10}(J_1 - 3) + c_{20}(J_1 - 3)^2 + c_{30}(J_1 - 3)^3$$

2nd-order invariant model

$$W = c_{10}(J_1 - 3) + c_{01}(J_2 - 3) + c_{11}(J_1 - 3)(J_2 - 3) + c_{20}(J_1 - 3)^2$$

Kloaner-Segal

$$W = c_{10}(J_1 - 3) + c_{01}(J_2 - 3) + c_{20}(J_1 - 3)^2 + c_{03}(J_2 - 3)^3$$

James, Green, Simpson (3rd-order deformation model)

$$W = c_{10}(J_1 - 3) + c_{01}(J_2 - 3) + c_{11}(J_1 - 3)(J_2 - 3) + c_{20}(J_1 - 3)^2 + c_{30}(J_1 - 3)^3$$

Piet Schreurs (TU/e) 529 / 694

# Ogden models

$$W = \sum_{n=1}^{N} \frac{\mu_n}{\alpha_n} J^{\frac{-\alpha_n}{3}} \left( \lambda_1^{\alpha_n} + \lambda_2^{\alpha_n} + \lambda_3^{\alpha_n} - 3 \right) + 4.5 K \left( 1 - J^{\frac{1}{3}} \right)^2$$

 $\mu_n$  : moduli

 $\alpha_n$  : exponents K : bulk modulus

J: volume ratio =  $det(\mathbf{F})$ 

foam model

$$W = \sum_{n=1}^{N} \frac{\mu_n}{\alpha_n} \left( \lambda_1^{\alpha_n} + \lambda_2^{\alpha_n} + \lambda_3^{\alpha_n} - 3 \right) + \sum_{n=1}^{N} \frac{\mu_n}{\beta_n} \left( 1 - J^{\beta_n} \right)$$

Piet Schreurs (TU/e) 530 / 694

#### Linear **P** – **E** model

- stress update
- consistent material stiffness tensor for  $\delta P$   $\rightarrow$  Total Lagrange formulation
- consistent material stiffness tensor for  $\delta\sigma$   $\rightarrow$  Updated Lagrange formulation

Piet Schreurs (TU/e) 531 / 694

# Stress update

$$\mathbf{P} = c_0 \operatorname{tr}(\mathbf{E})\mathbf{I} + c_1 \mathbf{E} \qquad \text{with} \qquad \mathbf{E} = \frac{1}{2}(\mathbf{C} - \mathbf{I})$$

$$= \frac{1}{2}c_0 \mathbf{C} : \mathbf{II} + \frac{1}{2}c_1 \mathbf{C} - \frac{1}{2}(3c_0 + c_1)\mathbf{I} \qquad \text{with} \qquad \mathbf{C} = \mathbf{F}^c \cdot \mathbf{F}$$

 $\sigma = J^{-1}\mathbf{F} \cdot \mathbf{P} \cdot \mathbf{F}^c = J^{-1}\mathbf{F} \cdot (\mathbf{P} \cdot \mathbf{F}^c) = J^{-1}\mathbf{F} \cdot (\mathbf{F} \cdot \mathbf{P}^c)^c$ 

Piet Schreurs (TU/e) 532 / 694

### Stiffness

$$\begin{split} \delta \mathbf{P} &= \frac{1}{2}c_0 \delta \mathbf{C} : \mathbf{II} + \frac{1}{2}c_1 \delta \mathbf{C} \\ \mathbf{C} &= \mathbf{F}^c \cdot \mathbf{F} \quad \rightarrow \quad \delta \mathbf{C} = \delta \mathbf{F}^c \cdot \mathbf{F} + \mathbf{F}^c \cdot \delta \mathbf{F} \\ &= \frac{1}{2}c_0 \left( \delta \mathbf{F}^c \cdot \mathbf{F} + \mathbf{F}^c \cdot \delta \mathbf{F} \right) : \mathbf{II} + \frac{1}{2}c_1 \left( \delta \mathbf{F}^c \cdot \mathbf{F} + \mathbf{F}^c \cdot \delta \mathbf{F} \right) \\ &= c_0 (\mathbf{F}^c \cdot \delta \mathbf{F}) : \mathbf{II} + \frac{1}{2}c_1 \left( \delta \mathbf{F}^c \cdot \mathbf{F} + \mathbf{F}^c \cdot \delta \mathbf{F} \right) \\ &= c_0 \mathbf{I} (\mathbf{F}^c : \delta \mathbf{F}) + \frac{1}{2}c_1 \left\{ (\mathbf{F}^c \cdot \delta \mathbf{F})^c + (\mathbf{F}^c \cdot \delta \mathbf{F}) \right\} \\ \sigma &= J^{-1} \mathbf{F} \cdot \mathbf{P} \cdot \mathbf{F}^c \quad \rightarrow \\ \delta \sigma &= J^{-1} \left[ -\delta J \mathbf{F} \cdot \mathbf{P} \cdot \mathbf{F}^c + \delta \mathbf{F} \cdot \mathbf{P} \cdot \mathbf{F}^c + \mathbf{F} \cdot \delta \mathbf{P} \cdot \mathbf{F}^c + \mathbf{F} \cdot \mathbf{P} \cdot \delta \mathbf{F}^c \right] \\ \delta J &= J \mathbf{tr} (\mathbf{L}) = J \mathbf{L} : \mathbf{I} \quad ; \quad \delta \mathbf{F} = \mathbf{L} \cdot \mathbf{F} \\ &= J^{-1} \left[ -(\mathbf{L} : \mathbf{I}) \mathbf{F} \cdot \mathbf{P} \cdot \mathbf{F}^c + (\mathbf{L} \cdot \mathbf{F}) \cdot \mathbf{P} \cdot \mathbf{F}^c + \\ &\qquad \qquad \mathbf{F} \cdot \delta \mathbf{P} \cdot \mathbf{F}^c + \mathbf{F} \cdot \mathbf{P} \cdot (\mathbf{F}^c \cdot \mathbf{L}^c) \right] \\ &= -(\mathbf{L} : \mathbf{I}) \sigma + \mathbf{L} \cdot \sigma + \sigma \cdot \mathbf{L}^c + J^{-1} \mathbf{F} \cdot \delta \mathbf{P} \cdot \mathbf{F}^c \\ &= -\sigma (\mathbf{I} : \mathbf{L}) + (\sigma^c \cdot \mathbf{L}^c)^c + \sigma \cdot \mathbf{L}^c + J^{-1} \mathbf{F} \cdot (\mathbf{F} \cdot \delta \mathbf{P}^c)^c \end{split}$$

Piet Schreurs (TU/e) 533 / 694

# Matrix/column notation

$$\mathbf{P} = \frac{1}{2}c_0\mathbf{C} : \mathbf{II} + \frac{1}{2}c_1\mathbf{C} - \frac{1}{2}(3c_0 + c_1)\mathbf{I} \qquad \text{with} \qquad \mathbf{C} = \mathbf{F}^c \cdot \mathbf{F}$$

$$P_c = \frac{1}{2}c_0 \mathcal{C}^T \mathcal{I}_{z_t} \mathcal{I}_z + \frac{1}{2}c_1 \mathcal{C}_z - \frac{1}{2}(3c_0 + c_1)\mathcal{I}_z \qquad \text{with} \qquad \mathcal{C}_z = \underline{F}_t F_z$$

$$\sigma = J^{-1}\mathbf{F} \cdot (\mathbf{F} \cdot \mathbf{P}^c)^c$$

$$\sigma = J^{-1}\underline{F} \left(\underline{F}_t P_z^c\right) = J^{-1}\underline{F} \underline{F}_t P_z^c$$

Piet Schreurs (TU/e) 534 / 694

## Matrix/column notation

$$\begin{split} \delta \mathbf{P} &= c_0 \mathbf{I} (\mathbf{F}^c : \delta \mathbf{F}) + \frac{1}{2} c_1 \{ (\mathbf{F}^c \cdot \delta \mathbf{F})^c + (\mathbf{F}^c \cdot \delta \mathbf{F}) \} \\ \delta \overset{P}{\mathcal{Q}} &= c_0 \overset{P}{\underset{z}{\mathcal{E}}} \overset{T}{t} \delta \overset{P}{\underset{z}{\mathcal{E}}}_t + \frac{1}{2} c_1 \left\{ (\underline{\overset{P}{\underline{E}}}_t \delta \overset{P}{\underset{z}{\mathcal{E}}})_r + (\underline{\overset{P}{\underline{E}}}_t \delta \overset{P}{\underset{z}{\mathcal{E}}}) \right\} \\ &= c_0 \overset{P}{\underset{z}{\mathcal{E}}} \overset{T}{t} \delta \overset{P}{\underset{z}{\mathcal{E}}} + \frac{1}{2} c_1 \left( \underline{\overset{P}{\underline{E}}}_{tr} \delta \overset{P}{\underset{z}{\mathcal{E}}} + \underline{\overset{P}{\underline{E}}}_t \delta \overset{P}{\underset{z}{\mathcal{E}}} \right) \\ &= \underline{\overset{M}{\underline{M}}}_0 \delta \overset{P}{\underset{z}{\mathcal{E}}} = \underline{\overset{M}{\underline{M}}}_0 \left( \overset{L}{\underline{L}}_0 \right)_t = \underline{\overset{M}{\underline{M}}}_0 \overset{P}{\underline{E}}_{tr} \overset{L}{\underline{L}}_t = \underline{\overset{M}{\underline{M}}}_1 \overset{L}{\underset{z}{\mathcal{E}}}_t \\ \delta \sigma &= -\sigma (\mathbf{I} : \mathbf{L}) + (\sigma^c \cdot \mathbf{L}^c)^c + \sigma \cdot \mathbf{L}^c + J^{-1} \mathbf{F} \cdot (\mathbf{F} \cdot \delta \mathbf{P}^c)^c \\ \delta \overset{Q}{\underset{z}{\mathcal{E}}} &= -\overset{Q}{\underset{z}{\mathcal{E}}} \overset{T}{\underset{z}{\mathcal{E}}}_t + \overset{Q}{\underset{z}{\mathcal{E}}}_t + \frac{\sigma}{\underline{L}}_z + + \frac{\sigma}{\underline{L}}_z + J^{-1} \overset{P}{\underline{F}} \overset{P}{\underline{F}}_r \delta \overset{P}{\underset{z}{\mathcal{E}}}_t \\ &= -\overset{Q}{\underset{z}{\mathcal{E}}} \overset{T}{\underset{z}{\mathcal{E}}}_t + \overset{Q}{\underset{z}{\mathcal{E}}}_t + \overset{Q}{\underset{z}{\mathcal{E}}}_t + J^{-1} \overset{P}{\underline{F}} \overset{P}{\underline{F}}_r \delta \overset{P}{\underset{z}{\mathcal{E}}}_t \\ &= \left[ -\overset{Q}{\underset{z}{\mathcal{E}}} \overset{T}{\underset{z}{\mathcal{E}}}_t + \overset{Q}{\underset{z}{\mathcal{E}}}_t + J^{-1} \overset{P}{\underset{z}{\mathcal{E}}}_t - \overset{M}{\underset{z}{\mathcal{E}}}_t \right] \overset{L}{\underset{z}{\mathcal{E}}}_t = \overset{M}{\underset{z}{\mathcal{E}}}_t & \overset{L}{\underset{z}{\mathcal{E}}}_t \end{aligned}$$

Piet Schreurs (TU/e) 535 / 694

### $\sigma - A$ model

- stress update
- $\bullet$  consistent material stiffness tensor for  $\delta\sigma$   $\longrightarrow$  Updated Lagrange formulation

Piet Schreurs (TU/e) 536 / 694

# Stress update

$$\sigma = c_0 \operatorname{tr}(\mathbf{A})\mathbf{I} + c_1 \mathbf{A}$$
 with 
$$\mathbf{A} = \frac{1}{2}(\mathbf{B} - \mathbf{I})$$

$$= \frac{1}{2}c_0 \mathbf{B} : \mathbf{II} + \frac{1}{2}c_1 \mathbf{B} - \frac{1}{2}(3c_0 + c_1)\mathbf{I}$$
 with 
$$\mathbf{B} = \mathbf{F} \cdot \mathbf{F}^c$$

Piet Schreurs (TU/e) 537 / 694

#### Stiffness

$$\begin{split} \delta\sigma &= \frac{1}{2}c_0\delta\mathbf{B}: \mathbf{II} + \frac{1}{2}c_1\delta\mathbf{B} \\ &= \frac{1}{2}c_0\{(\mathbf{F}\cdot\delta\mathbf{F}^c)^c + \mathbf{F}\cdot\delta\mathbf{F}^c\}: \mathbf{II} + \frac{1}{2}c_1\{(\mathbf{F}\cdot\delta\mathbf{F}^c)^c + \mathbf{F}\cdot\delta\mathbf{F}^c\} \\ &= c_0(\mathbf{F}\cdot\delta\mathbf{F}^c): \mathbf{II} + \frac{1}{2}c_1\{(\mathbf{F}\cdot\delta\mathbf{F}^c)^c + \mathbf{F}\cdot\delta\mathbf{F}^c\} \\ &= c_0\mathbf{IF}: \delta\mathbf{F}^c + \frac{1}{2}c_1\{(\mathbf{F}\cdot\delta\mathbf{F}^c)^c + \mathbf{F}\cdot\delta\mathbf{F}^c\} \\ &\text{with} \qquad \delta\mathbf{F} = \mathbf{L}\cdot\mathbf{F} = (\mathbf{F}^c\cdot\mathbf{L}^c)^c \qquad \text{and} \qquad \mathbf{L}^c = \vec{\nabla}\vec{u} \end{split}$$

Piet Schreurs (TU/e) 538 / 694

# Matrix/column notation

$$\sigma = \frac{1}{2}c_{0}\mathbf{B}: \mathbf{II} + \frac{1}{2}c_{1}\mathbf{B} - \frac{1}{2}(3c_{0} + c_{1})\mathbf{I} \qquad \text{with} \qquad \mathbf{B} = \mathbf{F} \cdot \mathbf{F}^{c}$$

$$\sigma = \frac{1}{2}c_{0}\mathcal{B}^{T} \mathcal{I}_{z}t_{z}^{I} + \frac{1}{2}c_{1}\mathcal{B} - \frac{1}{2}(3c_{0} + c_{1})\mathcal{I}_{z}^{I} \qquad \text{with} \qquad \mathcal{B} = \underline{F} \cdot \mathbf{F}^{c}$$

$$\delta \sigma = c_{0}\mathbf{IF}: \delta \mathbf{F}^{c} + \frac{1}{2}c_{1}\{(\mathbf{F} \cdot \delta \mathbf{F}^{c})^{c} + \mathbf{F} \cdot \delta \mathbf{F}^{c}\} \qquad \text{with} \qquad \delta \mathbf{F} = \mathbf{L} \cdot \mathbf{F} = (\mathbf{F}^{c} \cdot \mathbf{L}^{c})^{c}$$

$$\delta \sigma = c_{0}\mathcal{I}_{z}\mathcal{E}^{T}\delta \mathcal{E}_{z} + \frac{1}{2}c_{1}\{(\mathbf{F} \cdot \delta \mathbf{F}^{c})^{c} + \mathbf{F} \cdot \delta \mathbf{F}^{c}\} \qquad \text{with} \qquad \delta \mathbf{F} = \mathbf{L} \cdot \mathbf{F} = (\mathbf{F}^{c} \cdot \mathbf{L}^{c})^{c}$$

$$\delta \sigma = c_{0}\mathcal{I}_{z}\mathcal{E}^{T}\delta \mathcal{E}_{z} + \frac{1}{2}c_{1}\{(\mathbf{F} \cdot \delta \mathcal{E}^{c})^{c} + \mathbf{F} \cdot \delta \mathcal{E}^{c}\} \qquad \text{with} \qquad \delta \mathcal{E} = (\mathbf{F}^{c} \cdot \mathbf{L}^{c})^{c}$$

$$\delta \sigma = c_{0}\mathcal{I}_{z}\mathcal{E}^{T}\delta \mathcal{E}_{z} + \frac{1}{2}c_{1}\{(\mathbf{F} \cdot \delta \mathcal{E}_{z} + \mathbf{F} \cdot \delta \mathcal{E}_{z})\} \qquad \delta \sigma = c_{0}\mathcal{I}_{z}\mathcal{E}^{T}\delta \mathcal{E}_{z} + \frac{1}{2}c_{1}\{(\mathbf{F} \cdot \delta \mathcal{E}_{z} + \mathbf{F} \cdot \delta \mathcal{E}_{z})\} \qquad \delta \sigma = c_{0}\mathcal{I}_{z}\mathcal{E}^{T}\delta \mathcal{E}_{z} + \frac{1}{2}c_{1}\{(\mathbf{F} \cdot \delta \mathcal{E}_{z} + \mathbf{F} \cdot \delta \mathcal{E}_{z})\} \qquad \delta \sigma = c_{0}\mathcal{I}_{z}\mathcal{E}^{T}\delta \mathcal{E}_{z} + \frac{1}{2}c_{1}\{(\mathbf{F} \cdot \delta \mathcal{E}_{z} + \mathbf{F} \cdot \delta \mathcal{E}_{z})\} \qquad \delta \sigma = c_{0}\mathcal{I}_{z}\mathcal{E}^{T}\delta \mathcal{E}_{z} + \frac{1}{2}c_{1}\{(\mathbf{F} \cdot \delta \mathcal{E}_{z} + \mathbf{F} \cdot \delta \mathcal{E}_{z})\} \qquad \delta \sigma = c_{0}\mathcal{I}_{z}\mathcal{E}_{z} + \frac{1}{2}c_{1}\{(\mathbf{F} \cdot \delta \mathcal{E}_{z} + \mathbf{F} \cdot \delta \mathcal{E}_{z})\} \qquad \delta \sigma = c_{0}\mathcal{I}_{z}\mathcal{E}_{z} + \frac{1}{2}c_{1}\{(\mathbf{F} \cdot \delta \mathcal{E}_{z} + \mathbf{F} \cdot \delta \mathcal{E}_{z})\} \qquad \delta \sigma = c_{0}\mathcal{I}_{z}\mathcal{E}_{z} + \frac{1}{2}c_{1}\{(\mathbf{F} \cdot \delta \mathcal{E}_{z} + \mathbf{F} \cdot \delta \mathcal{E}_{z})\} \qquad \delta \sigma = c_{0}\mathcal{I}_{z}\mathcal{E}_{z} + \frac{1}{2}c_{1}\{(\mathbf{F} \cdot \delta \mathcal{E}_{z} + \mathbf{F} \cdot \delta \mathcal{E}_{z})\} \qquad \delta \sigma = c_{0}\mathcal{I}_{z}\mathcal{E}_{z} + \frac{1}{2}c_{1}\{(\mathbf{F} \cdot \delta \mathcal{E}_{z} + \mathbf{F} \cdot \delta \mathcal{E}_{z})\} \qquad \delta \sigma = c_{0}\mathcal{I}_{z}\mathcal{E}_{z} + \frac{1}{2}c_{1}\mathcal{E}_{z} + \frac{1}{2}c_{1}\mathcal{E}_{z} + \frac{1}{2}c_{1}\mathcal{E}_{z} + \frac{1}{2}c_{2}\mathcal{E}_{z} + \frac{$$

Piet Schreurs (TU/e) 539 / 694

# **Examples**

- Tensile test
- Shear test

Piet Schreurs (TU/e) 540 / 694

## Tensile test



| Cartesian         |       |     |    |
|-------------------|-------|-----|----|
| initial width     | $w_0$ | 100 | mm |
| initial height    | $h_0$ | 100 | mm |
| initial thickness | $d_0$ | 0.1 | mm |

| cylindrical    |       |                   |    |
|----------------|-------|-------------------|----|
| initial radius | $r_0$ | $\sqrt{(10/\pi)}$ | mm |
| initial height | $h_0$ | 100               | mm |

| modulus       | С | 100000 | MPa |
|---------------|---|--------|-----|
| Poisson ratio | ν | 0.3    | -   |

Piet Schreurs (TU/e) 541 / 694

### Elastic models in tensile test

plane stress;  $\sigma \sim \epsilon$ 





#### plane stress; $\sigma \sim \textbf{A}$





Piet Schreurs (TU/e) 542 / 694

### Elastic models in tensile test

plane stress;  $\boldsymbol{P}\sim\boldsymbol{E}$ 





Piet Schreurs (TU/e) 543 / 694

## Total Lagrange formulation







plane strain;  $P \sim E$ ; Tot.Lag.





Piet Schreurs (TU/e) 544 / 694

## Shear test



| initial width     | $w_0$ | 100 | mm |
|-------------------|-------|-----|----|
| initial height    | $h_0$ | 100 | mm |
| initial thickness | $d_0$ | 0.1 | mm |

Piet Schreurs (TU/e) 545 / 694

### Elastic models in shear test

plane stress;  $\sigma \sim \textbf{A}$ 





plane stress;  $\mathbf{P} \sim \mathbf{E}$ 





Piet Schreurs (TU/e) 546 / 694

## **ELASTOPLASTIC**

back to index

## Elastoplastic material behavior



$$\begin{array}{cccc} \sigma < \sigma_y & \rightarrow & \epsilon = \epsilon_e \\ \\ \sigma = \sigma_y & \rightarrow & \dot{\epsilon} = \dot{\epsilon}_e + \dot{\epsilon}_p \end{array}$$

Piet Schreurs (TU/e) 548 / 694

### **Kinematics**



$$\begin{split} \mathbf{F} &= (\vec{\nabla}_0 \vec{x})^c = \mathbf{F}_e \cdot \mathbf{F}_p \\ \mathbf{C} &= \mathbf{F}^c \cdot \mathbf{F} \quad ; \quad \mathbf{B} = \mathbf{F} \cdot \mathbf{F}^c \quad ; \quad \mathbf{E} = \frac{1}{2} (\mathbf{C} - \mathbf{I}) \\ \mathbf{L} &= \dot{\mathbf{F}} \cdot \mathbf{F}^{-1} = (\vec{\nabla} \vec{v})^c \\ &= \mathbf{L}_e + \mathbf{L}_p = (\mathbf{D}_e + \Omega_e) + (\mathbf{D}_p + \Omega_p) = (\mathbf{D}_e + \Omega_e) + \mathbf{D}_p \end{split}$$

Piet Schreurs (TU/e) 549 / 694

### Elastic deformation

metal alloys  $\ \ o$  small elastic strains  $\ \ o$  hypo-elastic model

$$\begin{split} \sigma &= \, ^{4}\textbf{C} : \boldsymbol{\Lambda}_{e} \\ ^{4}\textbf{C} &= c_{0}\textbf{I}\textbf{I} + \frac{1}{2}c_{1}(\, ^{4}\textbf{I} + \, ^{4}\textbf{I}^{rc}) = \boldsymbol{K}\textbf{I}\textbf{I} + 2\boldsymbol{G}\left(\, ^{4}\textbf{I} - \frac{1}{3}\textbf{I}\textbf{I}\right) \end{split} \end{split}$$

invariant tensors

$$\begin{split} & \sigma_A = \mathbf{A} \cdot \boldsymbol{\sigma} \cdot \mathbf{A}^c = \sigma_A^* & \text{with} \quad \mathbf{A}^* = \mathbf{A} \cdot \mathbf{Q}^c \quad \forall \quad \mathbf{Q} \\ & \dot{\sigma}_A = \mathbf{A} \cdot \left\{ (\mathbf{A}^{-1} \cdot \dot{\mathbf{A}}) \cdot \boldsymbol{\sigma} + \boldsymbol{\sigma} \cdot (\mathbf{A}^{-1} \cdot \dot{\mathbf{A}})^c + \dot{\boldsymbol{\sigma}} \right\} \cdot \mathbf{A}^c = \mathbf{A} \cdot \overset{\odot}{\sigma}_A \cdot \mathbf{A}^c = \dot{\sigma}_A^* \end{split}$$

objective elastic law

$$\overset{\odot}{oldsymbol{\sigma}}{}_{\hspace{-0.1cm}arDelta}=\,{}^4{f C}:{f D}_{\hspace{-0.1cm}arDelta}$$

Piet Schreurs (TU/e) 550 / 694

# Yield criterion and hardening

yield criterion

$$F=\bar{\sigma}^2-\sigma_y^2(\bar{\epsilon}_p)$$

effective plastic strain

$$\bar{\varepsilon}_{p} = \int_{\tau=0}^{t} \dot{\bar{\varepsilon}}_{p} \, d\tau$$

hardening law

$$\sigma_y = \sigma_y(\sigma_{y0}, \bar{\epsilon}_p) \quad \text{with} \quad \frac{\partial \sigma_y}{\partial \bar{\epsilon}_p} = H(\bar{\epsilon}_p)$$

Kuhn-Tucker relations

$$\begin{array}{ll} \{(F<0) \lor (F=0 \land \dot{F}<0)\} & \to & \mathsf{elastic} \\ \{(F=0) \land (\dot{F}=0)\} & \to & \mathsf{elastoplastic} \end{array}$$

Piet Schreurs (TU/e) 551 / 694

# Von Mises plasticity

$$\begin{split} \bar{\sigma} &= \sqrt{\frac{3}{2}} \sigma^d : \sigma^d \\ \dot{\bar{\epsilon}}_p &= \sqrt{\frac{2}{3}} \mathbf{D}_p : \mathbf{D}_p \\ F &= \frac{3}{2} \sigma^d : \sigma^d - \sigma_y^2 (\bar{\epsilon}_p) \\ \dot{F} &= 2\bar{\sigma}\dot{\bar{\sigma}} - 2\sigma_y \dot{\sigma}_y = 2\bar{\sigma}\dot{\bar{\sigma}} - 2\sigma_y H \dot{\bar{\epsilon}}_p \\ &= 3\sigma^d : \dot{\sigma} - 2\sigma_y H \dot{\bar{\epsilon}}_p = 3\sigma_A^d : \dot{\sigma}_A - 2\sigma_y H \dot{\bar{\epsilon}}_p = 0 \end{split}$$

Piet Schreurs (TU/e) 552 / 694

# Elastoplastic deformation



$$\begin{aligned} \mathbf{D}_{p} &= \dot{\lambda} \frac{\partial F}{\partial \sigma} = \dot{\lambda} \mathbf{a} \\ \mathbf{a} &= \frac{\partial F}{\partial \sigma^{d}} : \frac{\partial \sigma^{d}}{\partial \sigma} = \left[ 3\sigma^{d} : {}^{4}\mathbf{I} \right] : \frac{\partial}{\partial \sigma} \left\{ \sigma - \frac{1}{3} \text{tr}(\sigma) \mathbf{I} \right\} = 3\sigma^{d} : \left( {}^{4}\mathbf{I} - \frac{1}{3}\mathbf{II} \right) = 3\sigma^{d} \\ \dot{\bar{\epsilon}}_{p} &= \dot{\lambda} \sqrt{\frac{2}{3} \mathbf{a} : \mathbf{a}} \end{aligned}$$

Piet Schreurs (TU/e) 553 / 694

### Constitutive model

$$\begin{cases} (F < 0) \lor (F = 0 \land \dot{F} < 0) \} & \rightarrow \quad \mathbf{D} = \mathbf{D}_{e} \quad \rightarrow \quad \dot{\bar{\epsilon}}_{p} = 0 \\ & \stackrel{\odot}{\sigma}_{A} = {}^{4}\mathbf{C} : \mathbf{D} \quad \rightarrow \quad \dot{\sigma}_{A} = {}^{4}\mathbf{C}_{A} : \mathbf{D}_{A} \end{cases}$$

$$\begin{cases} (F = 0) \land (\dot{F} = 0) \} & \rightarrow \quad \mathbf{D} = \mathbf{D}_{e} + \mathbf{D}_{p} \\ & \stackrel{\odot}{\sigma}_{A} = {}^{4}\mathbf{C} : (\mathbf{D} - \dot{\lambda}\mathbf{a}) \\ 2\bar{\sigma}\dot{\bar{\sigma}} - 2\sigma_{y}H\dot{\bar{\epsilon}}_{p} = 0 \end{cases} \qquad \rightarrow$$

$$\dot{\sigma}_{A} = {}^{4}\mathbf{C}_{A} : (\mathbf{D}_{A} - \dot{\lambda}\mathbf{a}_{A}) \\ 3\sigma_{A}^{d} : \dot{\sigma}_{A} - 2\sigma_{y}H\dot{\lambda}\sqrt{\frac{2}{3}}\mathbf{a}_{A} : \mathbf{a}_{A} = 0 \end{cases}$$

$$\dot{\sigma}_{A} = {}^{4}\mathbf{C}_{A} : (\mathbf{D}_{A} - \dot{\lambda}\mathbf{a}_{A}) \\ 3\sigma_{A}^{d} : {}^{4}\mathbf{C}_{A} : (\mathbf{D}_{A} - \dot{\lambda}\mathbf{a}_{A})$$

$$3\sigma_{A}^{d} : {}^{4}\mathbf{C}_{A} : \mathbf{D}_{A} - \dot{\lambda} \left(3\sigma_{A}^{d} : {}^{4}\mathbf{C}_{A} : \mathbf{a}_{A} + 2\sigma_{v}H\sqrt{\frac{2}{3}}\mathbf{a}_{A} : \mathbf{a}_{A}\right) = 0$$

$$\sigma_{v} = \sigma_{v}(\sigma_{v0}, \bar{\epsilon}_{p})$$

Piet Schreurs (TU/e) 554 / 694

## Incremental analysis



$$\begin{split} \mathbf{F}(\tau) &= \mathbf{F}_n(\tau) \cdot \mathbf{F}(t_n) \quad \rightarrow \quad \mathbf{F}_n(\tau) = (\vec{\nabla}_n \vec{x})^c = \mathbf{F}(\tau) \cdot \mathbf{F}^{-1}(t_n) \\ \mathbf{D} &= \frac{1}{2} \left( \dot{\mathbf{F}}_n \cdot \mathbf{F}_n^{-1} + \mathbf{F}_n^{-c} \cdot \dot{\mathbf{F}}_n^c \right) = \frac{1}{2} \mathbf{R}_n \cdot \left( \dot{\mathbf{U}}_n \cdot \mathbf{U}_n^{-1} + \mathbf{U}_n^{-1} \cdot \dot{\mathbf{U}}_n \right) \cdot \mathbf{R}_n^c \\ \mathbf{\Omega} &= \frac{1}{2} \left\{ \dot{\mathbf{F}}_n \cdot \mathbf{F}_n^{-1} - \mathbf{F}_n^{-c} \cdot \dot{\mathbf{F}}_n^c \right\} = \dot{\mathbf{R}}_n \cdot \mathbf{R}_n^c + \frac{1}{2} \mathbf{R}_n \cdot \left( \dot{\mathbf{U}}_n \cdot \mathbf{U}_n^{-1} - \mathbf{U}_n^{-1} \cdot \dot{\mathbf{U}}_n \right) \cdot \mathbf{R}_n^c \\ \mathbf{U}_n &= \sum_{i=1}^3 \lambda_{ni} \vec{n}_{ni} \vec{n}_{ni} \quad ; \quad \boldsymbol{\Lambda}_n &= \sum_{i=1}^3 \ln(\lambda_{ni}) \vec{n}_{ni} \vec{n}_{ni} \end{split}$$

Piet Schreurs (TU/e) 555 / 694

## Elastic stress predictor

elastic trial stress 
$$\sigma_e = \sigma(t_n) + \, ^4\textbf{C} : (\boldsymbol{\Lambda} - \boldsymbol{\Lambda}(t_n))$$
 yield criterion 
$$F = \frac{3}{2}\sigma_e^d : \sigma_e^d - \sigma_y^2(\sigma_{y0}, \bar{\boldsymbol{\epsilon}}_p(t_n))$$
 
$$F \leq 0 \quad \rightarrow \quad \text{elastic increment}$$
 
$$F > 0 \quad \rightarrow \quad \text{elastoplastic increment}$$

matrix/column notation

$$\begin{split} & \underline{\underline{C}} = K \underline{\underline{I}} \underline{\underline{I}}^T + 2G \left( \underline{\underline{I}} - \frac{1}{3} \underline{\underline{I}} \underline{\underline{I}}^T \right) \\ & \underline{\underline{\Lambda}}_n \quad \rightarrow \quad \underline{\underline{\Lambda}}_n \\ & \underline{\underline{\sigma}}_{D_e} = \underline{\underline{\sigma}}(t_n) + \underline{\underline{C}}_{\underline{c}} \underline{\underline{\Lambda}}_n \quad \rightarrow \quad \underline{\underline{\sigma}}_{D_e} \quad \rightarrow \\ & \underline{\underline{\sigma}}_{e} = \underline{R}_n \, \underline{\underline{\sigma}}_{D_e} \, \underline{R}_n^T \\ & F = \frac{3}{2} \left( \underline{\underline{\sigma}}_{D_{tr}} \right)^T \left( \underline{\underline{\sigma}}_{D_{tr}} \right) - \underline{\sigma}_y^2 (\overline{\epsilon}_p) \end{split}$$

Piet Schreurs (TU/e) 556 / 694

### Elastic increment

$$\begin{split} &\sigma(t_{n+1}) = \sigma_e \\ &\Delta \lambda = 0 \\ &\bar{\epsilon}_p(t_{n+1}) = \bar{\epsilon}_p(t_n) \\ &\sigma_v(t_{n+1}) = \sigma_v(t_n) \end{split}$$

Piet Schreurs (TU/e) 557 / 694

## Elastoplastic increment

$$\dot{\boldsymbol{\sigma}}_{A} = {}^{4}\boldsymbol{\mathsf{C}}_{A} : \left(\boldsymbol{\mathsf{D}}_{A} - \dot{\boldsymbol{\lambda}}\boldsymbol{\mathsf{a}}_{A}\right)$$

$$3\boldsymbol{\sigma}_{A}^{d} : {}^{4}\boldsymbol{\mathsf{C}}_{A} : \boldsymbol{\mathsf{D}}_{A} - \dot{\boldsymbol{\lambda}}\left(3\boldsymbol{\sigma}_{A}^{d} : {}^{4}\boldsymbol{\mathsf{C}}_{A} : \boldsymbol{\mathsf{a}}_{A} + 2\boldsymbol{\sigma}_{v}H\sqrt{\frac{2}{3}}\boldsymbol{\mathsf{a}}_{A} : \boldsymbol{\mathsf{a}}_{A}\right) = 0$$

Dienes tensor and Dienes derivative

$$\begin{array}{cccc} \sigma_D = R_n^c \boldsymbol{\cdot} \boldsymbol{\sigma} \boldsymbol{\cdot} R_n & \rightarrow & \dot{\boldsymbol{\sigma}}_D = R_n^c \boldsymbol{\cdot} \overset{\odot}{\boldsymbol{\sigma}}_D \boldsymbol{\cdot} R_n \\ D_D = R_n^c \boldsymbol{\cdot} D \boldsymbol{\cdot} R_n = \frac{1}{2} \left( \dot{\boldsymbol{U}}_n \boldsymbol{\cdot} \boldsymbol{U}_n^{-1} + \boldsymbol{U}_n^{-1} \boldsymbol{\cdot} \dot{\boldsymbol{U}}_n \right) \end{array} \right)$$

$$\begin{aligned} \dot{\boldsymbol{\sigma}}_D &= \,^4\boldsymbol{\mathsf{C}}_D : \left(\boldsymbol{\mathsf{D}}_D - \dot{\boldsymbol{\lambda}}\boldsymbol{\mathsf{a}}_D\right) \\ 3\boldsymbol{\sigma}_D^d : \,^4\boldsymbol{\mathsf{C}}_D : \boldsymbol{\mathsf{D}}_D - \dot{\boldsymbol{\lambda}}\left(3\boldsymbol{\sigma}_D^d : \,^4\boldsymbol{\mathsf{C}}_D : \boldsymbol{\mathsf{a}}_D + 2\boldsymbol{\sigma}_y H\sqrt{\frac{2}{3}}\boldsymbol{\mathsf{a}}_D : \boldsymbol{\mathsf{a}}_D\right) = 0 \end{aligned} \right\}$$

Piet Schreurs (TU/e) 558 / 694

## Rotation neutralized elastoplastic increment

incremental rotation neutralized

$$t_n \le \tau < t_{n+1}$$
 :  $\mathbf{R}_n = I$  ;  $\mathbf{D}_D = \mathbf{D}$  ;  $\mathbf{a}_D = \mathbf{a}$  ;  ${}^4\mathbf{C}_D = {}^4\mathbf{C}$    
  $\tau = t_{n+1}$  :  $\mathbf{R}_n(t_{n+1}) = \mathbf{F}(t_{n+1}) \cdot \mathbf{U}^{-1}(t_{n+1})$ 

• incremental principal strain directions constant  $\vec{n}_{ni}(\tau) = \vec{n}_{ni}(t_n)$ 

$$\begin{aligned} \mathbf{U}_n(\tau) &= \sum_{i=1}^3 \lambda_{ni}(\tau) \vec{n}_{ni}(t_n) \vec{n}_{ni}(t_n) \\ \mathbf{D} &= \dot{\mathbf{U}}_n \cdot \mathbf{U}_n^{-1} = \sum_{i=1}^3 \left( \frac{\dot{\lambda}_{ni}(\tau)}{\lambda_{ni}(\tau)} \right) \vec{n}_{ni}(t_n) \vec{n}_{ni}(t_n) = \dot{\Lambda}_n \end{aligned}$$

constitutive equations

$$\dot{\boldsymbol{\sigma}}_{D} = {}^{4}\mathbf{C} : \left\{ \dot{\boldsymbol{\Lambda}}_{n} - \dot{\boldsymbol{\lambda}} \mathbf{a} \right\}$$

$$3\boldsymbol{\sigma}_{D}^{d} : {}^{4}\mathbf{C} : \dot{\boldsymbol{\Lambda}}_{n} - \dot{\boldsymbol{\lambda}} \left( 3\boldsymbol{\sigma}_{D}^{d} : {}^{4}\mathbf{C} : \mathbf{a} + 2\boldsymbol{\sigma}_{y}H\sqrt{\frac{2}{3}\mathbf{a} : \mathbf{a}} \right) = 0$$

Piet Schreurs (TU/e) 559 / 694

## Rotation neutralized stress update

$$\dot{\sigma}_{D} = {}^{4}\mathbf{C} : \left\{ \dot{\mathbf{\Lambda}}_{n} - \dot{\mathbf{\lambda}} \mathbf{a} \right\}$$

$$3\sigma_{D}^{d} : {}^{4}\mathbf{C} : \dot{\mathbf{\Lambda}}_{n} - \dot{\mathbf{\lambda}} \left( 3\sigma_{D}^{d} : {}^{4}\mathbf{C} : \mathbf{a} + 2\sigma_{y}H\sqrt{\frac{2}{3}\mathbf{a} : \mathbf{a}} \right) = 0$$

$$\sigma_{D} = \sigma_{D}(t_{n}) + {}^{4}\mathbf{C} : (\boldsymbol{\Lambda}_{n} - \Delta \lambda \mathbf{a})$$

$$3\sigma_{D}^{d} : {}^{4}\mathbf{C} : \boldsymbol{\Lambda}_{n} - \Delta \lambda \left(3\sigma_{D}^{d} : {}^{4}\mathbf{C} : \mathbf{a} + 2\sigma_{y}H\sqrt{\frac{2}{3}\mathbf{a} : \mathbf{a}}\right) = 0$$

Piet Schreurs (TU/e) 560 / 69

## Iterative stress update

$$\mathbf{q} \cdot \mathbf{R} : \delta \sigma_D + \mathbf{t} \delta \lambda = -\mathbf{s}_1 
\mathbf{u} : \delta \sigma_D + \nu \delta \lambda = -\mathbf{s}_2$$

$${}^{4}\mathbf{R} = {}^{4}\mathbf{I} + 3\Delta\lambda^{4}\mathbf{C} : {}^{4}\mathbf{I}$$

$$\mathbf{t} = {}^{4}\mathbf{C} : \mathbf{a}$$

$$\mathbf{u} = (3{}^{4}\mathbf{C} - \mathbf{II} : {}^{4}\mathbf{C}) : \mathbf{\Lambda}_{n} - \Delta\lambda \left\{ (3{}^{4}\mathbf{C} - \mathbf{II} : {}^{4}\mathbf{C}) : \mathbf{a} + 4\sigma_{y}H \left(\frac{2}{3}\mathbf{a} : \mathbf{a}\right)^{-\frac{1}{2}}\mathbf{a} : {}^{4}\mathbf{I} \right\}$$

$$v = 3{}^{4}\mathbf{C} : \mathbf{a} : \sigma_{D}^{d} + 2\sigma_{y}H\sqrt{\frac{2}{3}\mathbf{a} : \mathbf{a}}$$

$$\mathbf{s}_{1} = \sigma_{D} - \sigma_{D}(t_{n}) - {}^{4}\mathbf{C} : \mathbf{\Lambda}_{n} + \Delta\lambda^{4}\mathbf{C} : \mathbf{a}$$

$$\mathbf{s}_{2} = 3\sigma_{D}^{d} : {}^{4}\mathbf{C} : \mathbf{\Lambda}_{n} - \Delta\lambda \left(3\sigma_{D}^{d} : {}^{4}\mathbf{C} : \mathbf{a} + 2\sigma_{y}H\sqrt{\frac{2}{3}\mathbf{a} : \mathbf{a}}\right)$$

Piet Schreurs (TU/e) 561 / 69

### Stiffness

$$\sigma_{D} - \sigma_{D}(t_{n}) - {}^{4}\mathbf{C} : \mathbf{\Lambda}_{n} + \Delta \lambda {}^{4}\mathbf{C} : \mathbf{a} = 0$$

$$3\sigma_{D}^{d} : {}^{4}\mathbf{C} : \mathbf{\Lambda}_{n} - \Delta \lambda \left( 3\sigma_{D}^{d} : {}^{4}\mathbf{C} : \mathbf{a} + 2\sigma_{y}H\sqrt{\frac{2}{3}\mathbf{a} : \mathbf{a}} \right) = 0$$

$$\delta \sigma_{D} = \sigma_{D}(t_{n}) + {}^{4}\mathbf{C} : \delta \Lambda_{n} - \delta \lambda {}^{4}\mathbf{C} : \mathbf{a} - \Delta \lambda {}^{4}\mathbf{C} : \delta \mathbf{a} = 0$$

$$3\delta \sigma_{D}^{d} : {}^{4}\mathbf{C} : \Lambda_{n} + 3\sigma_{D}^{d} : {}^{4}\mathbf{C} : \delta \Lambda_{n} -$$

$$\delta \lambda \left( 3\sigma_{D}^{d} : {}^{4}\mathbf{C} : \mathbf{a} + 2\sigma_{y}H\sqrt{\frac{2}{3}\mathbf{a} : \mathbf{a}} \right) -$$

$$\Delta \lambda \left( 3\delta \sigma_{D}^{d} : {}^{4}\mathbf{C} : \mathbf{a} + 3\sigma_{D}^{d} : {}^{4}\mathbf{C} : \delta \mathbf{a} +$$

$$2\delta \sigma_{y}H\sqrt{\frac{2}{3}\mathbf{a} : \mathbf{a}} + 2\sigma_{y}H\frac{1}{2}[\frac{2}{3}\mathbf{a} : \mathbf{a}]^{-1/2}\frac{4}{3}\mathbf{a} : \delta \mathbf{a} \right) = 0$$

Piet Schreurs (TU/e) 562 / 694

## LINEAR VISCOELASTIC

back to index

### Linear viscoelastic material behavior



$$\sigma(t) = \int_{ au=0}^{t} {}^4\mathbf{C}(t- au) : \dot{\mathbf{\epsilon}}( au) \, d au$$
 ${}^4\mathbf{C}(t) = {}^4\mathbf{C}_{\infty} + \sum_{i=1}^{N} {}^4\mathbf{C}_i e^{-rac{t}{ au_i}}$ 

$${}^{4}\mathbf{C}(t) = {}^{4}\mathbf{C}_{\infty} + \sum_{i=1}^{N} {}^{4}\mathbf{C}_{i}e^{-\frac{t}{\tau}}$$

Piet Schreurs (TU/e) 564 / 694

### Constitutive model

$$\sigma(t) = \int_{\tau=0}^{t} {}^{4}\mathbf{C}(t-\tau) : \dot{\varepsilon}(\tau) d\tau$$

$${}^{4}\mathbf{C}(t) = {}^{4}\mathbf{C}_{\infty} + \sum_{i=1}^{N} {}^{4}\mathbf{C}_{i} e^{-\frac{t}{\tau_{i}}}$$

$$\begin{split} \boldsymbol{\sigma}(t) &= \int\limits_{\tau=0}^{t} \left[ {}^{4}\boldsymbol{\mathsf{C}}_{\infty} + \sum_{i=1}^{N} {}^{4}\boldsymbol{\mathsf{C}}_{i} e^{-\frac{t-\tau}{\tau_{i}}} \right] : \dot{\boldsymbol{\epsilon}}(\tau) \, d\tau \\ &= {}^{4}\boldsymbol{\mathsf{C}}_{\infty} : \boldsymbol{\epsilon}(t) + \sum_{i=1}^{N} {}^{4}\boldsymbol{\mathsf{C}}_{i} : \int\limits_{\tau=0}^{t} e^{-\frac{t-\tau}{\tau_{i}}} \, \dot{\boldsymbol{\epsilon}}(\tau) \, d\tau \\ &= {}^{4}\boldsymbol{\mathsf{C}}_{\infty} : \boldsymbol{\epsilon}(t) + \sum_{i=1}^{N} \boldsymbol{\sigma}_{i}(t) \end{split}$$

Piet Schreurs (TU/e) 565 / 694

## Incremental analysis



$$egin{aligned} [0,t] & 
ightarrow & [t_1=0,t_2,t_3,..,t_n,t_{n+1}=t] \ & \Delta t = t_{i+1}-t_i & ; \quad i=1,...,n \ & & & & \dot{\epsilon}( au) = rac{\Delta \epsilon}{\Delta t} & 
ightarrow & \dot{\dot{\epsilon}}( au) = rac{\Delta \epsilon}{\Delta t} \end{aligned}$$

Piet Schreurs (TU/e) 566 / 694

## Stress update

$$\sigma_{i}(t) = {}^{4}\mathbf{C}_{i} : \int_{\tau=0}^{t} e^{-\frac{t-\tau}{\tau_{i}}} \dot{\boldsymbol{\epsilon}}(\tau) d\tau$$

$$= {}^{4}\mathbf{C}_{i} : \left[ \int_{\tau=0}^{t_{n}} e^{-\frac{t-\tau}{\tau_{i}}} \dot{\boldsymbol{\epsilon}}(\tau) d\tau + \int_{\tau=t_{n}}^{t} e^{-\frac{t-\tau}{\tau_{i}}} \dot{\boldsymbol{\epsilon}}(\tau) d\tau \right]$$

$$= {}^{4}\mathbf{C}_{i} : \left[ e^{-\frac{\Delta t}{\tau_{i}}} \int_{\tau=0}^{t_{n}} e^{-\frac{t_{n}-\tau}{\tau_{i}}} \dot{\boldsymbol{\epsilon}}(\tau) d\tau + \int_{\tau=t_{n}}^{t} e^{-\frac{t-\tau}{\tau_{i}}} \dot{\boldsymbol{\epsilon}}(\tau) d\tau \right]$$

$$= e^{-\frac{\Delta t}{\tau_{i}}} {}^{4}\mathbf{C}_{i} : \int_{\tau=0}^{t_{n}} e^{-\frac{t_{n}-\tau}{\tau_{i}}} \dot{\boldsymbol{\epsilon}}(\tau) d\tau + {}^{4}\mathbf{C}_{i} : \int_{\tau=t_{n}}^{t} e^{-\frac{t-\tau}{\tau_{i}}} \dot{\boldsymbol{\epsilon}}(\tau) d\tau$$

$$= e^{-\frac{\Delta t}{\tau_{i}}} \sigma_{i}(t_{n}) + {}^{4}\mathbf{C}_{i} : \int_{\tau=0}^{t} e^{-\frac{t-\tau}{\tau_{i}}} \dot{\boldsymbol{\epsilon}}(\tau) d\tau$$

Piet Schreurs (TU/e) 567 / 694

## Stress update

$$\begin{split} \sigma_i(t) &= e^{-\frac{\Delta t}{\tau_i}} \, \sigma_i(t_n) + \, ^4\textbf{C}_i : \int\limits_{\tau=t_n}^t e^{-\frac{t-\tau}{\tau_i}} \frac{\Delta \epsilon}{\Delta t} \, d\tau = e^{-\frac{\Delta t}{\tau_i}} \, \sigma_i(t_n) + \, ^4\textbf{C}_i : \int\limits_{\tau=t_n}^t e^{-\frac{t-\tau}{\tau_i}} \, d\tau \\ &= e^{-\frac{\Delta t}{\tau_i}} \sigma_i(t_n) + \, ^4\textbf{C}_i : \tau_i \left(1 - e^{-\frac{\Delta t}{\tau_i}}\right) \, \frac{\Delta \epsilon}{\Delta t} \\ \sigma(t) &= \, ^4\textbf{C}_\infty : \epsilon(t) + \sum_{i=1}^N \sigma_i(t) \\ &= \, ^4\textbf{C}_\infty : \epsilon(t) + \end{split}$$

Piet Schreurs (TU/e) 568 / 694

 $\sum_{i=1}^{N} \left[ e^{-\frac{\Delta t}{\tau_{i}}} \sigma_{i}(t_{n}) + {}^{4}C_{i} : \tau_{i} \left( 1 - e^{-\frac{\Delta t}{\tau_{i}}} \right) \frac{\Delta \varepsilon}{\Delta t} \right]$ 

### Stiffness

$$\begin{split} \boldsymbol{\sigma}(t) &= \, ^{4}\boldsymbol{\mathsf{C}}_{\infty} : \boldsymbol{\epsilon}(t) + \\ &\sum_{i=1}^{N} \left[ e^{-\frac{\Delta t}{\tau_{i}}} \boldsymbol{\sigma}_{i}(t_{n}) + \, ^{4}\boldsymbol{\mathsf{C}}_{i} : \frac{\Delta \boldsymbol{\epsilon}}{\Delta t} \, \tau_{i} \left( 1 - e^{-\frac{\Delta t}{\tau_{i}}} \right) \right] \end{split}$$

$$\delta \mathbf{\sigma} = \left[ {}^{4}\mathbf{C}_{\infty} + \sum_{i=1}^{N} {}^{4}\mathbf{C}_{i} \frac{\tau_{i}}{\Delta t} \left( 1 - e^{-\frac{\Delta t}{\tau_{i}}} \right) \right] : \delta \varepsilon$$
$$= {}^{4}\mathbf{M} : \delta \varepsilon$$

Piet Schreurs (TU/e) 569 / 694

## Isotropic material

$$\begin{split} & \boldsymbol{\sigma} = \,^{4}\boldsymbol{\mathsf{C}} : \boldsymbol{\epsilon} \\ & = \left[ \lambda \boldsymbol{\mathsf{I}} \boldsymbol{\mathsf{I}} + 2 \boldsymbol{\mu}^{4} \boldsymbol{\mathsf{I}}^{s} \right] : \boldsymbol{\epsilon} = \left[ \lambda \boldsymbol{\mathsf{I}} \boldsymbol{\mathsf{I}} + \boldsymbol{\mu} \left( \,^{4}\boldsymbol{\mathsf{I}} + \,^{4}\boldsymbol{\mathsf{I}}^{rc} \right) \right] : \boldsymbol{\epsilon} = \lambda \boldsymbol{\mathsf{I}} \operatorname{tr}(\boldsymbol{\epsilon}) + 2 \boldsymbol{\mu} \, \boldsymbol{\epsilon} \\ & = (3\lambda + 2\boldsymbol{\mu}) \, \frac{1}{3} \operatorname{tr}(\boldsymbol{\epsilon}) \boldsymbol{\mathsf{I}} + 2 \boldsymbol{\mu} \, \boldsymbol{\epsilon}^{d} = (3\lambda + 2\boldsymbol{\mu}) \, \boldsymbol{\epsilon}^{h} + 2 \boldsymbol{\mu} \, \boldsymbol{\epsilon}^{d} \\ & = 3K \, \boldsymbol{\epsilon}^{h} + 2G \, \boldsymbol{\epsilon}^{d} \\ & = \boldsymbol{\sigma}^{h} + \boldsymbol{\sigma}^{d} \end{split}$$

$$K = \frac{1}{3} (3\lambda + 2\mu) = \frac{E}{3(1 - 2\nu)}$$

$$\mu = G = \frac{E}{2(1 + \nu)}$$

$$\lambda = \frac{E\nu}{(1 + \nu)(1 - 2\nu)}$$

Piet Schreurs (TU/e) 570 / 694

## Isotropic viscoelastic material

$$\begin{split} \sigma(t) &= \sigma^h(t) + \sigma^d(t) \\ &= 3 \int\limits_{\tau=0}^t K(t-\tau) \, \frac{d}{d\tau} \left\{ \varepsilon^h(\tau) \right\} \, d\tau + 2 \int\limits_{\tau=0}^t G(t-\tau) \, \frac{d}{d\tau} \left\{ \varepsilon^d(\tau) \right\} \, d\tau \end{split}$$

$$K(t) = K_{\infty} + \sum_{i=1}^{n} K_{i} e^{-\frac{t}{\tau_{i}}} = \frac{1}{3(1-2\nu)} \left[ E_{\infty} + \sum_{i=1}^{n} E_{i} e^{-\frac{t}{\tau_{i}}} \right]$$

$$G(t) = G_{\infty} + \sum_{i=1}^{n} G_{i} e^{-\frac{t}{\tau_{i}}} = \frac{1}{2(1+\nu)} \left[ E_{\infty} + \sum_{i=1}^{n} E_{i} e^{-\frac{t}{\tau_{i}}} \right]$$

Piet Schreurs (TU/e) 571 / 694

## Stress update

$$\begin{aligned}
\boldsymbol{\sigma}(t) &= {}^{4}\boldsymbol{\mathsf{C}}_{\infty} : \boldsymbol{\varepsilon}(t) + \sum_{i=1}^{N} \boldsymbol{\sigma}_{i}(t) \\
&= {}^{4}\boldsymbol{\mathsf{C}}_{\infty} : \boldsymbol{\varepsilon}(t) + \sum_{i=1}^{N} \left[ e^{-\frac{\Delta t}{\tau_{i}}} \boldsymbol{\sigma}_{i}(t_{n}) + {}^{4}\boldsymbol{\mathsf{C}}_{i} : \tau_{i} \left( 1 - e^{-\frac{\Delta t}{\tau_{i}}} \right) \frac{\Delta \boldsymbol{\varepsilon}}{\Delta t} \right] \\
&= 3K_{\infty} \Delta \boldsymbol{\varepsilon}^{h} + 2G_{\infty} \Delta \boldsymbol{\varepsilon}^{d} + \\
&\sum_{i=1}^{N} \left[ e^{-\frac{\Delta t}{\tau_{i}}} \boldsymbol{\sigma}_{i}(t_{n}) + \frac{\tau_{i}}{\Delta t} \left( 1 - e^{-\frac{\Delta t}{\tau_{i}}} \right) \left\{ 3K_{i} \Delta \boldsymbol{\varepsilon}^{h} + 2G_{i} \Delta \boldsymbol{\varepsilon}^{d} \right\} \right]
\end{aligned}$$

Piet Schreurs (TU/e) 572 / 694

### Stiffness

$$\begin{split} \boldsymbol{\delta\sigma} &= 3 \textit{K}_{\infty} \delta \epsilon^{\textit{h}} + 2 \textit{G}_{\infty} \delta \epsilon^{\textit{d}} + \\ &\sum_{\textit{i}=1}^{\textit{N}} \frac{\tau_{\textit{i}}}{\Delta t} \left( 1 - e^{-\frac{\Delta t}{\tau_{\textit{i}}}} \right) \left\{ 3 \textit{K}_{\textit{i}} \delta \epsilon^{\textit{h}} + 2 \textit{G}_{\textit{i}} \delta \epsilon^{\textit{d}} \right\} \end{split}$$

Piet Schreurs (TU/e) 573 / 694

## Matrix/column notation

$$\underline{\underline{\sigma}}(t) = \left(3K_{\infty} \underline{\underline{A}}^{h} + 2G_{\infty} \underline{\underline{A}}^{d}\right) \Delta_{\underline{\varepsilon}} + \\
\sum_{i=1}^{N} \left[ e^{-\frac{\Delta t}{\tau_{i}}} \underline{\sigma}_{i}(t_{n}) + \\
\frac{\tau_{i}}{\Delta t} \left(1 - e^{-\frac{\Delta t}{\tau_{i}}}\right) \left\{3K_{i} \underline{\underline{A}}^{h} + 2G_{i} \underline{\underline{A}}^{d}\right\} \right] \Delta_{\underline{\varepsilon}}$$

$$\delta \underline{\underline{\sigma}}(t) = \left[ \left( 3K_{\infty} \underline{\underline{A}}^{h} + 2G_{\infty} \underline{\underline{A}}^{d} \right) \delta_{\underline{\varepsilon}} + \sum_{i=1}^{N} \frac{\tau_{i}}{\Delta t} \left( 1 - e^{-\frac{\Delta t}{\tau_{i}}} \right) \left( 3K_{i} \underline{\underline{A}}^{h} + 2G_{i} \underline{\underline{A}}^{d} \right) \right] \delta_{\underline{\varepsilon}}$$

Piet Schreurs (TU/e) 574 / 69

### Initial stiffness formulation

$$\Delta \sigma(t) = 3K_0 \Delta \varepsilon^h + 2G_0 \Delta \varepsilon^d - \sum_{i=1}^N \left[ 1 - \left( 1 - e^{-\frac{\Delta t}{\tau_i}} \right) \frac{\tau_i}{\Delta t} \right] \left\{ 3K_i \Delta \varepsilon^h + 2G_i \Delta \varepsilon^d \right\} -$$

$$\sum_{i=1}^N \left( 1 - e^{-\frac{\Delta t}{\tau_i}} \right) \left\{ \sigma_i^h(t_n) + \sigma_i^d(t_n) \right\}$$

$$\delta \sigma = 3K_0 \delta \varepsilon^h + 2G_0 \delta \varepsilon^d -$$

$$\sum_{i=1}^N \left[ 1 - \left( 1 - e^{-\frac{\Delta t}{\tau_i}} \right) \frac{\tau_i}{\Delta t} \right] \left\{ 3K_i \delta \varepsilon^h + 2G_i \delta \varepsilon^d \right\}$$

Piet Schreurs (TU/e) 575 / 694

### Tensile test

|    | E [MPa] | τ [s]  |    | E [MPa] | τ [s]  |
|----|---------|--------|----|---------|--------|
| 1  | 3.0e6   | 3.1e-8 | 2  | 1.4e6   | 3.0e-7 |
| 3  | 3.9e6   | 3.0e-6 | 4  | 5.4e6   | 2.9e-5 |
| 5  | 1.3e6   | 2.8e-4 | 6  | 2.3e5   | 2.7e-3 |
| 7  | 7.6e4   | 2.6e-2 | 8  | 3.7e4   | 2.5e-1 |
| 9  | 3.3e4   | 2.5e+0 | 10 | 1.7e4   | 2.4e+1 |
| 11 | 8.0e3   | 2.3e+2 | 12 | 1.2e4   | 2.2e+3 |



### **VISCOPLASTIC**

back to index

## Viscoplastic material behavior



$$\begin{array}{cccc} \sigma < \sigma_{y} & \rightarrow & \epsilon = \epsilon_{e} \\ \\ \sigma \geq \sigma_{y} & \rightarrow & \dot{\epsilon} = \dot{\epsilon}_{e} + \dot{\epsilon}_{vp} \end{array}$$

Piet Schreurs (TU/e) 578 / 694

#### **Kinematics**



$$\begin{split} \mathbf{F} &= (\vec{\nabla}_0 \vec{x})^c = \mathbf{F}_e \cdot \mathbf{F}_{\nu p} \\ \mathbf{C} &= \mathbf{F}^c \cdot \mathbf{F} \quad ; \quad \mathbf{B} = \mathbf{F} \cdot \mathbf{F}^c \quad ; \quad \mathbf{E} = \frac{1}{2} (\mathbf{C} - \mathbf{I}) \\ \mathbf{L} &= \dot{\mathbf{F}} \cdot \mathbf{F}^{-1} = (\vec{\nabla} \vec{v})^c \\ &= \mathbf{L}_e + \mathbf{L}_{\nu p} = (\mathbf{D}_e + \Omega_e) + (\mathbf{D}_{\nu p} + \Omega_{\nu p}) = (\mathbf{D}_e + \Omega_e) + \mathbf{D}_{\nu p} \end{split}$$

Piet Schreurs (TU/e) 579 / 694

#### Elastic deformation

polymers  $\ \ o$  large elastic strains  $\ \ o$  hyper-elastic model

$$\begin{split} \mathbf{P} &= \frac{\partial W(\mathbf{E}_e)}{\partial \mathbf{E}_e} = 2 \frac{\partial W}{\partial \mathbf{C}_e} = \mathbf{F}^{-1} \cdot \boldsymbol{\tau} \cdot \mathbf{F}^{-c} \quad \rightarrow \quad \dot{\mathbf{P}} = 2 \frac{\partial^2 W}{\partial \mathbf{C}^2} : \dot{\mathbf{C}} \\ & \\ W(\lambda_1, \lambda_2, \lambda_3) &= \frac{1}{2} \, \mu \left\{ \lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 3 - 2 \ln(J) \right\} + \frac{1}{2} \, \lambda \{ \ln(J) \}^2 \\ & \text{with} \qquad \lambda = \frac{\nu E}{(1 + \nu)(1 - 2\nu)} \qquad ; \qquad \mu = \frac{E}{2(1 + \nu)} \end{split}$$

Piet Schreurs (TU/e) 580 / 694

# Yield criterion and hardening

$$F = \bar{\tau} - \tau_y(\bar{\epsilon}_{\textit{vp}})$$

$$\bar{\varepsilon}_{vp} = \int_{\tau=0}^{t} \dot{\bar{\varepsilon}}_{vp} \, d\tau$$

$$au_y = au_y( au_{y0}, ar{\epsilon}_{vp}) \quad ext{with} \quad rac{\partial au_y}{\partial ar{\epsilon}_p} = H(ar{\epsilon}_p)$$

$$\begin{array}{cccc} F < 0 & \longrightarrow & \text{elastic deformation} \\ F \geq 0 & \longrightarrow & \text{viscoplastic deformation} \end{array}$$

Piet Schreurs (TU/e) 581 / 694

# Von Mises plasticity

$$ar{ au} = \sqrt{rac{3}{2} au^d : au^d}$$
  $\dot{ar{\epsilon}}_{vp} = \sqrt{rac{2}{3} extbf{D}_{vp} : extbf{D}_{vp}}$   $F = \sqrt{rac{3}{2} au^d : au^d} - au_y(ar{\epsilon}_{vp})$ 

Piet Schreurs (TU/e) 582 / 694

# Viscoplastic deformation



$$\begin{split} \mathbf{D}_{\nu p} &= \dot{\lambda} \frac{\partial F}{\partial \tau} = \dot{\lambda} \mathbf{a} \quad \rightarrow \quad \dot{\mathbf{C}}_{\nu p} = 2 \, \mathbf{F}^c \cdot \mathbf{D}_{\nu p} \cdot \mathbf{F} = 2 \dot{\lambda} \, \mathbf{F}^c \cdot \mathbf{a} \cdot \mathbf{F} \\ \mathbf{a} &= \frac{\partial F}{\partial \tau^d} : \frac{\partial \tau^d}{\partial \tau} = \left[ \frac{3}{2} \left( \frac{3}{2} \tau^d : \tau^d \right)^{-1/2} \tau^d : {}^4 \mathbf{I} \right] : \left[ \frac{\partial}{\partial \tau} \left\{ \tau - \frac{1}{3} \text{tr}(\tau) \mathbf{I} \right\} \right] \\ &= \frac{3}{2} \left( \frac{3}{2} \tau^d : \tau^d \right)^{-1/2} \tau^d : \left( {}^4 \mathbf{I} - \frac{1}{3} \mathbf{II} \right) = \frac{3}{2} \left( \frac{3}{2} \tau^d : \tau^d \right)^{-1/2} \tau^d \\ &= \frac{3}{2} \frac{1}{\tau} \tau^d \\ \dot{\bar{\epsilon}}_{\nu p} &= \dot{\lambda} \sqrt{\frac{2}{3} \, \mathbf{a} : \mathbf{a}} \end{split}$$

Piet Schreurs (TU/e) 583 / 694

#### Constitutive model

$$\begin{split} F &< 0 &\rightarrow \dot{\mathbf{C}} = \dot{\mathbf{C}}_e \\ \dot{\mathbf{P}} &= 2 \frac{\partial^2 W}{\partial \mathbf{C}^2} : \dot{\mathbf{C}} \qquad ; \qquad \dot{\bar{\mathbf{c}}}_{\nu p} = \mathbf{0} \qquad ; \qquad \dot{\bar{\mathbf{\epsilon}}}_{\nu p} = 0 \\ F &\geq 0 &\rightarrow \dot{\mathbf{C}} = \dot{\mathbf{C}}_e + \dot{\mathbf{C}}_{\nu p} \quad \rightarrow \\ \dot{\mathbf{P}} &= 2 \frac{\partial^2 W}{\partial \mathbf{C}^2} : \left( \dot{\mathbf{C}} - 2 \, \mathbf{F}^c \cdot \dot{\lambda} \mathbf{a} \cdot \mathbf{F} \right) \\ \dot{\lambda} &= \gamma \phi(F) = \gamma \left( \frac{F}{\tau_{y0}} \right)^N \\ &\qquad \qquad \tau_y = \tau_y(\tau_{y0}, \bar{\epsilon}_{\nu p}) \qquad ; \qquad \dot{\bar{\epsilon}}_{\nu p} = \dot{\lambda} \sqrt{\frac{2}{3} \, \mathbf{a} : \mathbf{a}} \end{split}$$

Piet Schreurs (TU/e) 584 / 694

## Incremental analysis



$$\begin{split} \mathbf{F}(\tau) &= \mathbf{F}_n(\tau) \cdot \mathbf{F}(t_n) & \to \quad \mathbf{F}_n(\tau) = \mathbf{F}(\tau) \cdot \mathbf{F}^{-1}(t_n) \\ \mathbf{F}_n &= (\vec{\nabla}_n \vec{x})^c = \mathbf{R}_n \cdot \mathbf{U}_n \quad ; \quad J_n = \det(\mathbf{F}_n) \quad ; \quad \vec{\nabla} = \mathbf{F}_n^{-c} \cdot \vec{\nabla}_n \\ \mathbf{D} &= \frac{1}{2} \left\{ (\vec{\nabla} \vec{v})^c + (\vec{\nabla} \vec{v}) \right\} = \frac{1}{2} \left( \dot{\mathbf{F}}_n \cdot \mathbf{F}_n^{-1} + \mathbf{F}_n^{-c} \cdot \dot{\mathbf{F}}_n^c \right) \end{split}$$

Piet Schreurs (TU/e) 585 / 694

### Elastic stress predictor

elastic trial stress 
$$\begin{aligned} \mathbf{P}_e &= \mathbf{P}_n + 2\,\frac{\partial^2 W}{\partial \mathbf{G}^2} : (\mathbf{C} - \mathbf{C}(t_n)) &\rightarrow \quad \boldsymbol{\tau}_e = \mathbf{F} \cdot \mathbf{P}_e \cdot \mathbf{F}^c \\ \end{aligned}$$
 yield criterion 
$$\begin{aligned} F &= \sqrt{\frac{3}{2}\left(\boldsymbol{\tau}_e\right)^d} : (\boldsymbol{\tau}_e)^d - \boldsymbol{\tau}_y(\boldsymbol{\tau}_{y0}, \bar{\boldsymbol{\varepsilon}}_{vp}(t_n)) \end{aligned}$$
 
$$\begin{aligned} F &< 0 &\rightarrow \quad \text{elastic increment} \\ F &\geq 0 &\rightarrow \quad \text{elastoviscoplastic increment} \end{aligned}$$

matrix/column notation

$$\begin{split} & \underbrace{\tau}_{\tilde{z}e} = \underbrace{A}_{\tilde{z}} + \underline{\underline{H}}_{c} \underbrace{e_{n}}_{\tilde{z}} \\ & F = \sqrt{\frac{3}{2} \left( \underbrace{\tau}_{\tilde{z}e} \right)^{T} \left( \underbrace{\tau}_{\tilde{z}e} \right)_{t}} - \zeta(\kappa) \\ & \text{with} \quad \left\{ \begin{array}{c} \underline{\underline{H}} = 2 \{ \mu - \lambda \ln(J) \} \underline{\underline{I}} + \lambda \underbrace{JJ}_{\tilde{z}}^{T} \\ \underline{e_{n}} = \frac{1}{2} \left( \underline{I} - \underline{F_{n}}^{-T} \underline{F_{n}}^{-1} \right) & \rightarrow e_{n} \\ \underline{\underline{A}} = \underline{F_{n}} \underline{\tau}(t_{n}) \underline{F_{n}}^{T} \rightarrow \underbrace{A}_{\tilde{z}} \end{split} \right. \end{split}$$

Piet Schreurs (TU/e) 586 / 694

#### Elastic increment

$$\begin{split} & \boldsymbol{\tau}(t_{n+1}) = \boldsymbol{\tau}_{e} \\ & \Delta \lambda = 0 \\ & \bar{\epsilon}_{\boldsymbol{\nu} p}(t_{n+1}) = \bar{\epsilon}_{\boldsymbol{\nu} p}(t_{n}) \\ & \boldsymbol{\tau}_{\boldsymbol{\nu}}(t_{n+1}) = \boldsymbol{\tau}_{\boldsymbol{\nu}}(t_{n}) \end{split}$$

Piet Schreurs (TU/e) 587 / 694

## Viscoplastic increment

$$\dot{\mathbf{P}} = 2 \frac{\partial^2 W}{\partial \mathbf{C}^2} : (\dot{\mathbf{C}} - 2 \mathbf{F}^c \cdot \dot{\lambda} \mathbf{a} \cdot \mathbf{F})$$

$$\dot{\lambda} = \gamma \phi(F) = \gamma \left(\frac{F}{\tau_{v0}}\right)^N$$

$$\mathbf{P} = \mathbf{P}(t_n) + 2 \frac{\partial^2 W}{\partial \mathbf{C}^2} : \{ \mathbf{C} - \mathbf{C}(t_n) - 2 \, \mathbf{F}^c \cdot \Delta \lambda \, \mathbf{a} \cdot \mathbf{F} \}$$

$$\Delta \lambda = \Delta t \gamma \phi(F)$$

Piet Schreurs (TU/e) 588 / 694

### Viscoplastic increment

$$\begin{aligned} \mathbf{F}^{-1} \cdot \mathbf{\tau} \cdot \mathbf{F}^{-c} &= \mathbf{F}^{-1}(t_n) \cdot \mathbf{\tau}(t_n) \cdot \mathbf{F}^{-c}(t_n) + 2 \frac{\partial^2 W}{\partial \mathbf{C}^2} : \{ \mathbf{C} - \mathbf{C}(t_n) - 2 \, \mathbf{F}^c \cdot \Delta \lambda \, \mathbf{a} \cdot \mathbf{F} \} \\ \Delta \lambda &= \Delta t \, \gamma \phi(F) \end{aligned}$$

$$\mathbf{F}_n &= \mathbf{F} \cdot \mathbf{F}^{-1}(t_n) \quad \rightarrow \quad \mathbf{C} - \mathbf{C}(t_n) = \mathbf{F}^c \cdot (\mathbf{I} - \mathbf{F}_n^{-c} \cdot \mathbf{F}_n^{-1}) \cdot \mathbf{F} = 2 \, \mathbf{F}^c \cdot \mathbf{e}_n \cdot \mathbf{F}$$

$$\mathbf{\tau} &= \mathbf{F}_n \cdot \mathbf{\tau}(t_n) \cdot \mathbf{F}_n^c + 4 \mathbf{F} \cdot \frac{\partial^2 W}{\partial \mathbf{C}^2} : \mathbf{F}^c \cdot (\mathbf{e}_n - \Delta \lambda \, \mathbf{a}) \cdot \mathbf{F} \cdot \mathbf{F}^c$$

$$\Delta \lambda &= \Delta t \, \gamma \phi(F) \end{aligned}$$

$$^4 \mathbf{H} = 4 \, \mathbf{F} \cdot \left( \mathbf{F} \cdot \frac{\partial^2 W}{\partial \mathbf{C}^2} \cdot \mathbf{F}^c \right)^{lc,rc} \cdot \mathbf{F}^c = 2 \{ \mu - \lambda \ln(J) \}^4 \mathbf{I}^{rc} + \lambda \mathbf{II}$$

$$\mathbf{\tau} &= \mathbf{F}_n \cdot \mathbf{\tau}(t_n) \cdot \mathbf{F}_n^c + ^4 \mathbf{H} : (\mathbf{e}_n - \Delta \lambda \, \mathbf{a}) = \mathbf{\tau}_e - \Delta \lambda \, ^4 \mathbf{H} : \mathbf{a}$$

$$\Delta \lambda &= \Delta t \, \gamma \phi(F) \end{aligned}$$

Piet Schreurs (TU/e) 589 / 694

### Iterative stress update

$$\left. egin{aligned} oldsymbol{ au} - oldsymbol{ au}_e + \Delta \lambda^4 oldsymbol{\mathsf{H}} : oldsymbol{\mathsf{a}} = oldsymbol{\mathsf{0}} \ \Delta \lambda - \Delta t \, \gamma \varphi(F) = 0 \end{aligned} 
ight.$$

$$\delta \mathbf{\tau} - \delta \mathbf{\tau}_{e} + {}^{4}\mathbf{H} : \mathbf{a} \, \delta \lambda + \Delta \lambda \, \delta^{4}\mathbf{H} : \mathbf{a} + \Delta \lambda \, {}^{4}\mathbf{H} : \delta \mathbf{a} = -\mathbf{s}_{1}$$

$$\delta \lambda - \Delta t \, \gamma \left( \frac{\partial \phi}{\partial F} \right) \mathbf{a} : \delta \mathbf{\tau} - \Delta t \, \gamma \left( \frac{\partial \phi}{\partial F} \right) \left( \frac{\partial F}{\partial \bar{\epsilon}_{\nu p}} \right) \delta \lambda = -\mathbf{s}_{2}$$

with 
$$\begin{cases} \delta \boldsymbol{\tau}_e = \mathbf{M}_1 \delta \boldsymbol{\lambda} + \,^4 \mathbf{M}_2 : \delta \boldsymbol{\tau} \\ \delta^4 \mathbf{H} = \left(\frac{\partial^4 \mathbf{H}}{\partial J}\right) \, \delta J = \,^4 \mathbf{c} \, \delta J \\ \delta \mathbf{a} = \left(\frac{\partial \mathbf{a}}{\partial \boldsymbol{\tau}}\right) : \delta \boldsymbol{\tau} = \,^4 \mathbf{b} : \delta \boldsymbol{\tau} \\ \delta J = J_1 \delta \boldsymbol{\lambda} + \mathbf{J}_2 : \delta \boldsymbol{\tau} \end{cases}$$

plane strain

 $\delta \mathbf{\tau}_{tr} = \mathbf{0}$  ;  $\delta J = 0$ 

Piet Schreurs (TU/e) 590 / 694

### Iterative stress update

$$\mathbf{q} = \mathbf{q} \mathbf{l} + \Delta \lambda^{4} \mathbf{H} : \mathbf{q} \mathbf{b} + \Delta \lambda^{4} \mathbf{c} : \mathbf{a} \mathbf{J}_{2} - \mathbf{q} \mathbf{M}_{2}$$

$$\mathbf{q} = \mathbf{q} \mathbf{l} + \Delta \lambda^{4} \mathbf{H} : \mathbf{q} \mathbf{b} + \Delta \lambda^{4} \mathbf{c} : \mathbf{a} \mathbf{J}_{2} - \mathbf{q} \mathbf{M}_{2}$$

$$\mathbf{t} = \mathbf{q} \mathbf{H} : \mathbf{a} + \Delta \lambda^{4} \mathbf{c} : \mathbf{a} \mathbf{J}_{1} - \mathbf{M}_{1}$$

$$\mathbf{q} = -\Delta t \gamma \left( \frac{\partial \phi}{\partial F} \right) \mathbf{a}$$

$$\mathbf{r} = 1 - \Delta t \gamma \left( \frac{\partial \phi}{\partial F} \right) \left( \frac{\partial F}{\partial \overline{\epsilon}_{vp}} \right)$$

$$\mathbf{s}_{1} = \tau - \tau_{e} + \Delta \lambda^{4} \mathbf{H} : \mathbf{a}$$

$$\mathbf{s}_{2} = \Delta \lambda - \Delta t \gamma \phi(F)$$

Piet Schreurs (TU/e) 591 / 694

Piet Schreurs (TU/e) 592 / 694

#### Stiffness

$$\tau = \mathbf{F}_{n} \cdot \boldsymbol{\tau}(t_{n}) \cdot \mathbf{F}_{n}^{c} + {}^{4}\mathbf{H} : \mathbf{e}_{n} - \Delta \lambda {}^{4}\mathbf{H} : \mathbf{a}$$

$$\Delta \lambda = \Delta t \, \gamma \, \phi(F)$$

$$\delta \boldsymbol{\tau} = \delta \mathbf{F}_{n} \cdot \boldsymbol{\tau}(t_{n}) \cdot \mathbf{F}_{n}^{c} + \mathbf{F}_{n} \cdot \boldsymbol{\tau}(t_{n}) \cdot \delta \mathbf{F}_{n}^{c} + \delta {}^{4}\mathbf{H} : (\mathbf{e}_{n} - \Delta \lambda \, \mathbf{a}) +$$

$${}^{4}\mathbf{H} : \delta \mathbf{e}_{n} - {}^{4}\mathbf{H} : \mathbf{a} \, \delta \lambda - \Delta \lambda {}^{4}\mathbf{H} : \left(\frac{\partial \mathbf{a}}{\partial \boldsymbol{\tau}}\right) : \delta \boldsymbol{\tau}$$

$$\delta \lambda = \left[\left\{\Delta t \, \gamma \left(\frac{\partial \phi}{\partial F}\right)\right\} / \left\{1 - \Delta t \, \gamma \left(\frac{\partial \phi}{\partial F}\right) \left(\frac{\partial F}{\partial \bar{\epsilon}_{vp}}\right)\right\}\right] \mathbf{a} : \delta \boldsymbol{\tau} = c_{1} \mathbf{a} : \delta \boldsymbol{\tau}$$

$$\left\{{}^{4}\mathbf{I} + \Delta \lambda {}^{4}\mathbf{H} : \left(\frac{\partial \mathbf{a}}{\partial \boldsymbol{\tau}}\right) + c_{1} \, {}^{4}\mathbf{H} : \mathbf{a}\mathbf{a}\right\} : \delta \boldsymbol{\tau} =$$

$$\delta \mathbf{F}_{n} \cdot \boldsymbol{\tau}(t_{n}) \cdot \mathbf{F}_{n}^{c} + \mathbf{F}_{n} \cdot \boldsymbol{\tau}(t_{n}) \cdot \delta \mathbf{F}_{n}^{c} + \delta \, {}^{4}\mathbf{H} : (\mathbf{e}_{n} - \Delta \lambda \, \mathbf{a}) + {}^{4}\mathbf{H} : \delta \mathbf{e}_{n}$$

$${}^{4}\mathbf{V} : \delta \boldsymbol{\tau} = {}^{4}\mathbf{E} : \delta \mathbf{F}_{n} \quad \rightarrow \quad \delta \boldsymbol{\tau} = {}^{4}\mathbf{V}^{-1} : {}^{4}\mathbf{E} : \delta \mathbf{F}_{n}$$

Piet Schreurs (TU/e) 593 / 694

#### Stiffness

$$\delta \mathbf{F}_{n} \cdot \mathbf{\tau}(t_{n}) \cdot \mathbf{F}_{n}^{c} + \mathbf{F}_{n} \cdot \mathbf{\tau}(t_{n}) \cdot \delta \mathbf{F}_{n}^{c} = {}^{4}\mathbf{T} : \delta \mathbf{F}_{n}$$

$$J = \det(\mathbf{F}_{n}) = \det(\mathbf{F}_{n} + \delta \mathbf{F}_{n}) = J(1 + \mathbf{F}_{n}^{-1} : \delta \mathbf{F}_{n}) \quad \rightarrow \quad \delta J = J \mathbf{F}_{n}^{-1} : \delta \mathbf{F}_{n}$$

$$\delta {}^{4}\mathbf{H} = \left(\frac{\partial {}^{4}\mathbf{H}}{\partial J}\right) \delta J = \left(\frac{\partial {}^{4}\mathbf{H}}{\partial J}\right) \left(J \mathbf{F}_{n}^{-1} : \delta \mathbf{F}_{n}\right)$$

$$\delta \mathbf{e}_{n} = -\frac{1}{2} \delta \mathbf{F}_{n}^{-c} \cdot \mathbf{F}_{n}^{-1} - \frac{1}{2} \mathbf{F}_{n}^{-c} \cdot \delta \mathbf{F}_{n}^{-1} = -{}^{4}\mathbf{A}_{1} : \delta \mathbf{F}_{n}^{-1}$$

$$\delta \mathbf{F}_{n}^{-1} = -\mathbf{F}_{n}^{-1} \cdot \delta \mathbf{F}_{n} \cdot \mathbf{F}_{n}^{-1} = -{}^{4}\mathbf{A}_{2} : \delta \mathbf{F}_{n}$$

$$\delta \mathbf{e}_{n} = ({}^{4}\mathbf{A}_{1} : {}^{4}\mathbf{A}_{2}) : \delta \mathbf{F}_{n} = {}^{4}\mathbf{P} : \delta \mathbf{F}_{n}$$

Piet Schreurs (TU/e) 594 / 694

#### Consistent material stiffness tensor

$$\tau = J\sigma \quad \rightarrow \quad \sigma = \frac{1}{J}\tau \quad \rightarrow$$

$$\delta\sigma = \frac{1}{J}(\delta\tau - \sigma\delta J)$$

$$= \frac{1}{J}\left\{{}^{4}\mathbf{V}^{-1}: {}^{4}\mathbf{E} - \sigma J\mathbf{F}_{n}^{-1}\right\}: \delta\mathbf{F}_{n}$$

$$= {}^{4}\mathbf{C}: \delta\mathbf{F}_{n}$$

$$= {}^{4}\mathbf{M}: \mathbf{L}_{u}$$

Piet Schreurs (TU/e) 595 / 694

# Matrix/column notation

$$\delta \boldsymbol{\sigma} = {}^{4}\boldsymbol{\mathsf{C}} : \delta \boldsymbol{\mathsf{F}}_{n} \qquad \rightarrow \qquad \delta \underline{\boldsymbol{\sigma}} = \underline{\underline{\boldsymbol{C}}} \, \delta \boldsymbol{\mathsf{F}}_{n}_{t} \\ \delta \boldsymbol{\mathsf{F}}_{n} = \left(\boldsymbol{\mathsf{F}}^{-c}(t_{n}) \cdot \delta \boldsymbol{\mathsf{F}}^{c}\right)^{c} \qquad \rightarrow \qquad \delta \boldsymbol{\mathsf{F}}_{n}_{n} = \left(\underline{\underline{\boldsymbol{F}}}_{t}^{-1}(t_{n}) \delta \underline{\boldsymbol{\mathsf{F}}}_{t}\right)_{t} \rightarrow \delta \boldsymbol{\mathsf{F}}_{n}_{t} = \underline{\underline{\boldsymbol{F}}}_{t}^{-1}(t_{n}) \delta \underline{\boldsymbol{\mathsf{F}}}_{t} \\ \delta \boldsymbol{\mathsf{F}}^{c} = \boldsymbol{\mathsf{F}}^{c} \cdot \boldsymbol{\mathsf{L}}_{u}^{c} \qquad \rightarrow \qquad \delta \underline{\boldsymbol{\mathsf{F}}}_{t} = \underline{\underline{\boldsymbol{F}}}_{t} \boldsymbol{\mathsf{L}}_{u},$$

$$\begin{split} \delta \underline{\sigma} &= \left[ \underline{\underline{C}} \, \underline{\underline{F}}_{t}^{-1}(t_{n}) \underline{\underline{F}}_{t} \right] \, \underline{L}_{z_{t}}^{u} = \underline{\underline{M}} \underline{L}_{z_{t}}^{u} \\ &\underline{\underline{M}} = \underline{\underline{C}} \, \underline{\underline{F}}_{t}^{-1}(t_{n}) \underline{\underline{F}}_{t} \\ &\underline{\underline{C}} &= \frac{1}{J} \left( \underline{\underline{V}}^{-1} \, \underline{\underline{E}}_{r} - J \underline{\sigma} \underline{F}_{n}^{-T} \right) \\ &\underline{\underline{V}} &= \underline{\underline{I}} + \Delta \lambda \, \underline{\underline{H}}_{c} \, \underline{\underline{b}} + c_{1} \underline{\underline{H}}_{c} \, \underline{\underline{a}} \underline{\underline{a}}^{T} \\ &\underline{\underline{E}} &= \underline{\underline{T}} - 2 \lambda \underline{\underline{I}} \left( e_{n} - \Delta \lambda \, \underline{\underline{a}} \right) \left( F_{n}^{-1} \right)^{T} + \underline{\underline{H}}_{c} \, \underline{\underline{P}} \end{split}$$

Piet Schreurs (TU/e) 596 / 694

#### Plane strain

$$\delta J = J_1 \delta \lambda + \mathbf{J}_2 : \delta \mathbf{\tau} = 0$$

$$\delta \mathbf{\tau}_{tr} = \mathbf{M}_1 \delta \lambda + {}^4 \mathbf{M}_2 : \delta \mathbf{\tau} = \mathbf{O}$$

Piet Schreurs (TU/e) 597 / 694

## Iterative stress update

$$\mathbf{q} \cdot \mathbf{R} : \delta \mathbf{\tau} + \mathbf{t} \delta \lambda = -\mathbf{s}_1 \\
\mathbf{u} : \delta \mathbf{\tau} + v \delta \lambda = -\mathbf{s}_2$$

$${}^{4}\mathbf{R} = {}^{4}\mathbf{I} + \Delta\lambda^{4}\mathbf{H} : {}^{4}\mathbf{b}$$

$$\mathbf{t} = {}^{4}\mathbf{H} : \mathbf{a}$$

$$\mathbf{u} = -\Delta t \gamma \left(\frac{\partial \phi}{\partial F}\right) \mathbf{a}$$

$$v = 1 - \Delta t \gamma \left(\frac{\partial \phi}{\partial F}\right) \left(\frac{\partial F}{\partial \bar{\epsilon}_{vp}}\right)$$

$$\mathbf{s}_{1} = \mathbf{\tau} - \mathbf{\tau}_{tr} + \Delta\lambda^{4}\mathbf{H} : \mathbf{a}$$

$$\mathbf{s}_{2} = \Delta\lambda - \Delta t \gamma \phi(F)$$

Piet Schreurs (TU/e) 598 / 694

# Matrix/column notation

$$\begin{bmatrix} \underline{\underline{R}}_c & t \\ \underline{\underline{v}}_t^T & v \end{bmatrix} \begin{bmatrix} \delta_{\underline{\tau}} \\ \delta \lambda \end{bmatrix} = - \begin{bmatrix} s \\ s_1 \\ s_2 \end{bmatrix}$$

$$\underline{\underline{R}} = \underline{\underline{I}} + \Delta \lambda \, \underline{\underline{H}} \, \underline{\underline{b}}_{t} 
\underline{\underline{t}} = \underline{\underline{H}} \, \underline{\underline{g}}_{t} 
\underline{\underline{v}} = -\Delta t \, \gamma \left( \frac{\partial \phi}{\partial F} \right) \, \underline{\underline{g}} 
v = 1 - \Delta t \, \gamma \left( \frac{\partial \phi}{\partial F} \right) \left( \frac{\partial F}{\partial \bar{\epsilon}_{vp}} \right) 
\underline{\underline{s}}_{1} = \underline{\underline{\tau}} - \underline{\underline{\tau}}_{tr} + \Delta \lambda \, \underline{\underline{H}} \, \underline{\underline{g}}_{t} 
\underline{\underline{s}}_{2} = \Delta \lambda - \Delta t \, \gamma \phi(F)$$

Piet Schreurs (TU/e) 599 / 694

#### Stiffness

$$\delta \sigma = {}^{4}\mathbf{C} : \delta \mathbf{F}_{n} = \frac{1}{J} \left\{ {}^{4}\mathbf{V}^{-1} : {}^{4}\mathbf{E} - \sigma J \mathbf{F}_{n}^{-1} \right\} : \delta \mathbf{F}_{n}$$

$${}^{4}\mathbf{V} = \left\{ {}^{4}\mathbf{I} + \Delta \lambda^{4}\mathbf{H} : {}^{4}\mathbf{b} + c_{1}{}^{4}\mathbf{H} : \mathbf{a}\mathbf{a} \right\}$$

$${}^{4}\mathbf{E} = \left\{ {}^{4}\mathbf{T} + {}^{4}\mathbf{c} : (\mathbf{e}_{n} - \Delta \lambda \mathbf{a}) J \mathbf{F}_{n}^{-1} + {}^{4}\mathbf{H} : {}^{4}\mathbf{P} \right\}$$

$$\delta \mathbf{F}_{n} \cdot \boldsymbol{\tau}(t_{n}) \cdot \mathbf{F}_{n}^{c} + \mathbf{F}_{n} \cdot \boldsymbol{\tau}(t_{n}) \cdot \delta \mathbf{F}_{n}^{c} = {}^{4}\mathbf{T} : \delta \mathbf{F}_{n}$$

$$\delta \mathbf{e}_{n} = {}^{4}\mathbf{P} : \delta \mathbf{F}_{n}$$

Piet Schreurs (TU/e) 600 / 694

## Matrix/column notation

$$\delta \underline{g} = \underline{\underline{C}} \left( \delta \underline{\underline{F}}_{n} \right)_{t} = \left[ \underline{\underline{I}} \left\{ \underline{\underline{V}}^{-1} \underline{\underline{\underline{E}}}_{r} - \underline{g} J \underline{\underline{F}}_{n}^{-T} \right\} \right] \left( \delta \underline{\underline{F}}_{n} \right)_{t}$$

$$\underline{\underline{V}} = \underline{\underline{I}} + \Delta \lambda \underline{\underline{H}}_{c} \underline{\underline{b}} + c_{1} \underline{\underline{H}}_{c} \underline{\underline{a}} \underline{\underline{a}}^{T}$$

$$\underline{\underline{E}} = \underline{\underline{T}} + 2 \lambda \underline{\underline{I}} \left( \underline{\underline{e}} - \Delta \lambda \underline{\underline{a}} \right) J \underline{\underline{F}}_{n}^{-T} + \underline{\underline{H}}_{c} \underline{\underline{P}}$$

Piet Schreurs (TU/e) 601 / 694

### Plane stress

Piet Schreurs (TU/e) 602 / 694

## Iterative stress update

$$\mathbf{q} \cdot \mathbf{R} : \delta \mathbf{\tau} + \mathbf{t} \delta \lambda = -\mathbf{s}_1 \\
\mathbf{q} : \delta \mathbf{\tau} + v \delta \lambda = -\mathbf{s}_2$$

$$^{4}\mathbf{R} = ^{4}\mathbf{I} - ^{4}\mathbf{M}_{2} + \Delta\lambda^{4}\mathbf{C} : \mathbf{aJ}_{2} + \Delta\lambda^{4}\mathbf{H} : ^{4}\mathbf{b}$$

$$\mathbf{t} = -\mathbf{M}_{1} + \Delta\lambda^{4}\mathbf{C} : \mathbf{aJ}_{1} + ^{4}\mathbf{H} : \mathbf{a}$$

$$\mathbf{u} = -\Delta t \gamma \left(\frac{\partial \Phi}{\partial F}\right) \mathbf{a}$$

$$v = 1 - \Delta t \gamma \left(\frac{\partial \Phi}{\partial F}\right) \left(\frac{\partial F}{\partial \bar{\epsilon}_{vp}}\right)$$

$$\mathbf{s}_{1} = \mathbf{\tau} - \mathbf{\tau}_{trial} + \Delta\lambda^{4}\mathbf{H} : \mathbf{a}$$

$$\mathbf{s}_{2} = \Delta\lambda - \Delta t \gamma \Phi(F)$$

Piet Schreurs (TU/e) 603 / 694

# Matrix/column notation

$$\begin{bmatrix} \underline{\underline{R}}_{c} & \underline{t} \\ \underline{\underline{u}}_{t}^{T} & v \end{bmatrix} \begin{bmatrix} \delta_{\underline{\tau}} \\ \delta \lambda \end{bmatrix} = - \begin{bmatrix} \underline{s}_{1} \\ \underline{s}_{2} \end{bmatrix}$$

$$\begin{split} & \underline{R} = \underline{I} - \underline{M}_2 + \Delta \lambda \underline{C} \underbrace{a}_z r_{z_2}^T + \Delta \lambda \underline{H} \underline{b}_r \\ & \underline{t} = -\underline{M}_1 + \Delta \lambda \underline{C} \underbrace{a}_{\overline{z}_t} J_1 + \underline{H} \underline{a}_{\overline{z}_t} \\ & \underline{u}_z = -\Delta t \gamma \left( \frac{\partial \Phi}{\partial F} \right) \underbrace{a}_{\overline{z}_z} \\ & v = 1 - \Delta t \gamma \left( \frac{\partial \Phi}{\partial F} \right) \left( \frac{\partial F}{\partial \overline{\epsilon}_{vp}} \right) \\ & \underline{s}_{z_1} = \underline{\tau} - \underline{\tau}_{tr} + \Delta \lambda \underline{H} \underline{a}_{z_t} \\ & \underline{s}_2 = \Delta \lambda - \Delta t \gamma \Phi(F) \end{split}$$

Piet Schreurs (TU/e) 604 / 694

#### **Stiffness**

$$\delta \sigma = {}^{4}\mathbf{C} : \delta \mathbf{F}_{n} = \frac{1}{J} \left\{ {}^{4}\mathbf{V}^{-1} : {}^{4}\mathbf{E} - \sigma J \mathbf{F}_{n}^{-1} \right\} : \delta \mathbf{F}_{n}$$

$${}^{4}\mathbf{V} = \left\{ {}^{4}\mathbf{I} + \Delta\lambda^{4}\mathbf{H} : \left(\frac{\partial\mathbf{a}}{\partial\boldsymbol{\tau}}\right) + c_{1}{}^{4}\mathbf{H} : \mathbf{a}\mathbf{a} \right\}$$

$${}^{4}\mathbf{E} = \left\{ {}^{4}\mathbf{T} + \left(\frac{\partial^{4}\mathbf{H}}{\partial\boldsymbol{J}}\right) : (\mathbf{e} - \Delta\lambda\,\mathbf{a})\boldsymbol{J}\mathbf{F}_{n}^{-1} + {}^{4}\mathbf{H} : {}^{4}\mathbf{P} \right\}$$

$$\delta\mathbf{F}_{n} \cdot \boldsymbol{\tau}(t_{n}) \cdot \mathbf{F}_{n}^{c} + \mathbf{F}_{n} \cdot \boldsymbol{\tau}(t_{n}) \cdot \delta\mathbf{F}_{n}^{c} = {}^{4}\mathbf{T} : \delta\mathbf{F}_{n}$$

Piet Schreurs (TU/e) 605 / 694

Piet Schreurs (TU/e) 606 / 694

# Examples

Piet Schreurs (TU/e) 607 / 694

## Tensile test





| initial width     | w <sub>0</sub> | 100 | mm |
|-------------------|----------------|-----|----|
| initial height    | $h_0$          | 100 | mm |
| initial thickness | $d_0$          | 0.1 | mm |

| initial radius | $r_0$ | $\sqrt{(10/\pi)}$ | mm |
|----------------|-------|-------------------|----|
| initial height | $h_0$ | 100               | mm |

Piet Schreurs (TU/e) 608 / 694

#### Tensile test at various strain rates

| Ε             | 1800  | MPa | ν | 0.37  | -   |
|---------------|-------|-----|---|-------|-----|
| $\sigma_{y0}$ | 37    | MPa | Н | -200  | MPa |
| γ             | 0.001 | 1/s | Ν | 3     | -   |
| а             | 500   | MPa | Ь | 700   | MPa |
| С             | 800   | MPa | d | 30000 | MPa |



### Shear test



| initial width     | $w_0$ | 100 | mm |
|-------------------|-------|-----|----|
| initial height    | $h_0$ | 100 | mm |
| initial thickness | $d_0$ | 0.1 | mm |

strain rate





Piet Schreurs (TU/e) 610 / 694

### NONLINEAR VISCOELASTIC

back to index

### Nonlinear viscoelastic material behavior



$$\sigma = s + w$$

Piet Schreurs (TU/e) 612 / 694

#### **Kinematics**



$$\begin{split} \mathbf{F} &= (\vec{\nabla}_0 \vec{\mathbf{x}})^c = \mathbf{F}_e \cdot \mathbf{F}_p = J^{1/3} \mathbf{I} \cdot \tilde{\mathbf{F}}_e \cdot \mathbf{F}_p \\ \mathbf{C} &= \mathbf{F}^c \cdot \mathbf{F} \quad ; \quad \mathbf{B} = \mathbf{F} \cdot \mathbf{F}^c \quad \rightarrow \quad \tilde{\mathbf{B}}_e = \tilde{\mathbf{F}}_e \cdot \tilde{\mathbf{F}}_e^c \\ \mathbf{L} &= \dot{\mathbf{F}} \cdot \mathbf{F}^{-1} = (\vec{\nabla} \vec{\mathbf{v}})^c \\ &= \mathbf{L}_e + \mathbf{L}_p = (\mathbf{D}_e + \Omega_e) + (\mathbf{D}_p + \Omega_p) = (\mathbf{D}_e + \Omega_e) + \mathbf{D}_p \end{split}$$

Piet Schreurs (TU/e) 613 / 694

## Stress decomposition



$$\sigma = s + w = s^d + s^h + w$$

$$\mathbf{s} = G\tilde{\mathbf{B}}_e^d + \kappa(J-1)\mathbf{I}$$
 ;  $\mathbf{w} = H\tilde{\mathbf{B}}^d$ 

Piet Schreurs (TU/e) 614 / 694

#### Elastic deformation

$$\begin{split} \tilde{\mathbf{B}}_{e} &= \tilde{\mathbf{F}}_{e} \cdot \tilde{\mathbf{F}}_{e}^{c} \quad \rightarrow \quad \dot{\tilde{\mathbf{B}}}_{e} = \dot{\tilde{\mathbf{F}}}_{e} \cdot \tilde{\mathbf{F}}_{e}^{c} + \tilde{\mathbf{F}}_{e} \cdot \dot{\tilde{\mathbf{F}}}_{e}^{c} \\ & \tilde{\mathbf{F}} = \tilde{\mathbf{F}}_{e} \cdot \mathbf{F}_{p} \quad \rightarrow \quad \tilde{\mathbf{F}}_{e} = \tilde{\mathbf{F}} \cdot \mathbf{F}_{p}^{-1} \quad \rightarrow \quad \dot{\tilde{\mathbf{F}}}_{e} = \dot{\tilde{\mathbf{F}}} \cdot \mathbf{F}_{p}^{-1} + \tilde{\mathbf{F}} \cdot \dot{\mathbf{F}}_{p}^{-1} \\ \dot{\tilde{\mathbf{B}}}_{e} &= \left( \dot{\tilde{\mathbf{F}}} \cdot \mathbf{F}_{p}^{-1} + \tilde{\mathbf{F}} \cdot \dot{\mathbf{F}}_{p}^{-1} \right) \cdot \tilde{\mathbf{F}}_{e}^{c} + \tilde{\mathbf{F}}_{e} \cdot \left( \mathbf{F}_{p}^{-c} \cdot \dot{\tilde{\mathbf{F}}}^{c} + \dot{\mathbf{F}}_{p}^{-c} \cdot \tilde{\mathbf{F}}^{c} \right) \\ &= \left( \dot{\tilde{\mathbf{F}}} \cdot \mathbf{F}_{p}^{-1} \cdot \tilde{\mathbf{F}}_{e}^{-1} + \tilde{\mathbf{F}} \cdot \dot{\mathbf{F}}_{p}^{-1} \cdot \tilde{\mathbf{F}}_{e}^{-1} \right) \cdot \tilde{\mathbf{B}}_{e} + \\ & \tilde{\mathbf{B}}_{e} \cdot \left( \tilde{\mathbf{F}}_{e}^{-c} \cdot \mathbf{F}_{p}^{-c} \cdot \dot{\tilde{\mathbf{F}}}^{c} + \tilde{\mathbf{F}}_{e}^{-c} \cdot \dot{\mathbf{F}}_{p}^{-c} \cdot \dot{\mathbf{F}}_{p}^{c} \cdot \tilde{\mathbf{F}}_{p}^{c} \right) \\ &= \left( \tilde{\mathbf{L}} + \tilde{\mathbf{F}}_{e} \cdot \mathbf{F}_{p} \cdot \dot{\mathbf{F}}_{p}^{-1} \tilde{\mathbf{F}}_{e}^{-1} \right) \cdot \tilde{\mathbf{B}}_{e} + \tilde{\mathbf{B}}_{e} \cdot \left( \tilde{\mathbf{L}}^{c} + \tilde{\mathbf{F}}_{e}^{-c} \cdot \dot{\mathbf{F}}_{p}^{-c} \cdot \dot{\mathbf{F}}_{p}^{c} \cdot \tilde{\mathbf{F}}_{e}^{c} \right) \\ & \qquad \qquad \mathbf{F}_{p} \cdot \mathbf{F}_{p}^{-1} = \mathbf{I} \quad \rightarrow \quad \mathbf{F}_{p} \cdot \dot{\mathbf{F}}_{p}^{-1} = -\dot{\mathbf{F}}_{p} \cdot \mathbf{F}_{p}^{-1} \quad \rightarrow \\ &= \left( \tilde{\mathbf{L}} - \mathbf{D}_{p} \right) \cdot \tilde{\mathbf{B}}_{e} + \tilde{\mathbf{B}}_{e} \cdot \left( \tilde{\mathbf{L}}^{c} - \mathbf{D}_{p} \right) \end{split}$$

Piet Schreurs (TU/e) 615 / 694

### Viscoplastic deformation

$$\mathbf{D}_{p} = \frac{1}{2\eta} \mathbf{s}^{d}$$

$$\eta = \eta(\bar{\mathbf{s}}, p, T, D)$$

$$\bar{\mathbf{s}} = \sqrt{\frac{3}{2}} \mathbf{s}^{d} : \mathbf{s}^{d}$$

$$p = \kappa(J - 1)\mathbf{I}$$

Piet Schreurs (TU/e) 616 / 694

# Eyring viscosity

plastic deformation rate

$$\mathbf{D}_p = rac{1}{2\eta(ar{s}, p, T, D)} \mathbf{s}^d$$

$$\begin{split} \eta &= \frac{A\bar{s}}{\sqrt{3}\sinh\left(\frac{\bar{s}}{\sqrt{3\tau_0}}\right)} \\ &\bar{s} = \sqrt{\frac{3}{2}}\mathbf{s}^d:\mathbf{s}^d \\ &A = A_0\exp\left[\frac{\Delta H}{RT} + \frac{\mu p}{\tau_0} - D\right] \\ &\tau_0 &= \frac{RT}{V} \qquad ; \qquad p = -\frac{1}{3}\operatorname{tr}(\sigma) \\ &\dot{D} = h\left(1 - \frac{D}{D_\infty}\right) \frac{\bar{s}}{\sqrt{6}\,\mathrm{m}} \qquad ; \quad D \in [0,D_\infty] \end{split}$$

Piet Schreurs (TU/e) 617 / 694

### Bodner-Partom viscosity

plastic deformation rate

$$\mathbf{D}_p = \frac{1}{2\eta(\bar{s}, \mathbf{D}_p)} \, \mathbf{s}^d$$

$$\eta = \frac{\bar{s}}{\sqrt{12\Gamma_0}} \exp\left[\frac{1}{2} \left(\frac{Z}{\bar{\sigma}}\right)^{2\bar{n}}\right]$$

$$\bar{s} = \sqrt{\frac{3}{2}} \mathbf{s}^d : \mathbf{s}^d$$

$$Z = Z_1 + (Z_0 - Z_1) e^{-m\bar{\epsilon}_p}$$

$$\dot{\bar{\epsilon}}_p = \sqrt{\frac{2}{3}} \mathbf{D}_p : \mathbf{D}_p \longrightarrow \bar{\epsilon}_p$$

Piet Schreurs (TU/e) 618 / 694

#### Plastic strain rate

$$\begin{split} \tilde{F} &= \tilde{F}_e \cdot F_\rho \quad \rightarrow \quad C_\rho = F_\rho^c \cdot F_\rho = \tilde{F}^c \cdot \tilde{B}_e^{-1} \cdot \tilde{F} \quad \rightarrow \\ \dot{C}_\rho &= \tilde{F}^c \cdot \tilde{B}_e^{-1} \cdot \left[ \tilde{B}_e \cdot \tilde{L}^c + \tilde{B}_e \cdot \dot{\tilde{B}}_e^{-1} \cdot \tilde{B}_e + \tilde{L} \cdot \tilde{B}_e \right] \cdot \tilde{B}_e^{-1} \cdot \tilde{F} \\ \\ \dot{\tilde{B}}_e &= (\tilde{L} - D_\rho) \cdot \tilde{B}_e + \tilde{B}_e \cdot (\tilde{L}^c - D_\rho) \quad \rightarrow \\ \tilde{B}_e \cdot \dot{\tilde{B}}_e^{-1} &= -\tilde{L} - \tilde{B}_e \cdot \tilde{L}^c \cdot \tilde{B}_e^{-1} + D_\rho + \tilde{B}_e \cdot D_\rho \cdot \tilde{B}_e^{-1} \\ \end{split}$$

$$\begin{split} \dot{\boldsymbol{C}}_{\rho} &= \tilde{\boldsymbol{F}}^{c} \cdot \tilde{\boldsymbol{B}}_{e}^{-1} \cdot \left[ \boldsymbol{D}_{\rho} \cdot \tilde{\boldsymbol{B}}_{e} + \tilde{\boldsymbol{B}}_{e} \cdot \boldsymbol{D}_{\rho} \right] \cdot \tilde{\boldsymbol{B}}_{e}^{-1} \cdot \tilde{\boldsymbol{F}} \\ & \text{with} \quad \boldsymbol{D}_{\rho} = \frac{1}{2\eta} \, \boldsymbol{s}^{d} = \frac{G}{2\eta} \, \tilde{\boldsymbol{B}}_{e}^{d} \quad \rightarrow \\ &= \frac{G}{\eta} \, \left( \tilde{\boldsymbol{C}} - \frac{1}{3} \operatorname{tr}(\tilde{\boldsymbol{B}}_{e}) \boldsymbol{C}_{\rho} \right) = \Gamma \left( \tilde{\boldsymbol{C}} - \frac{1}{\alpha} \, \boldsymbol{C}_{\rho} \right) = \Gamma \, \boldsymbol{A} \end{split}$$

Piet Schreurs (TU/e) 619 / 69

#### Constitutive model

$$J = \det(\mathbf{F}) \quad o \quad \tilde{\mathbf{F}} = J^{-1/3}\mathbf{F} \quad o \quad \tilde{\mathbf{B}} = \tilde{\mathbf{F}} \cdot \tilde{\mathbf{F}}^c \quad o \quad \mathbf{w} = H\tilde{\mathbf{B}}^d$$

$$p = \kappa(J-1) \rightarrow \mathbf{s}^h = p\mathbf{I}$$

$$\left. \begin{array}{l} \dot{\mathbf{C}}_{\rho} = \frac{G}{\eta} \, \left( \tilde{\mathbf{C}} - \frac{1}{3} \mathrm{tr}(\tilde{\mathbf{B}}_{e}) \, \mathbf{C}_{\rho} \right) \\ \tilde{\mathbf{B}}_{e} = \tilde{\mathbf{F}} \cdot \mathbf{C}_{\rho}^{-1} \cdot \tilde{\mathbf{F}}^{c} \end{array} \right\} \quad \rightarrow \quad \mathbf{s}^{d} = G \tilde{\mathbf{B}}_{e}^{d} \rightarrow \bar{\mathbf{s}} = \sqrt{\frac{3}{2}} \mathbf{s}^{d} : \mathbf{s}^{d}$$

$$\sigma = \mathbf{s}^d + \mathbf{s}^h + \mathbf{w}$$

Piet Schreurs (TU/e) 620 / 694

### Incremental analysis



$$\begin{aligned} \mathbf{F}(\tau) &= \mathbf{F}_n(\tau) \cdot \mathbf{F}(t_n) &\rightarrow & \mathbf{F}_n(\tau) &= \mathbf{F}(\tau) \cdot \mathbf{F}^{-1}(t_n) \\ \tilde{\mathbf{F}}(\tau) &= \tilde{\mathbf{F}}_n(\tau) \cdot \tilde{\mathbf{F}}(t_n) \\ \mathbf{F}_n &= \left(\vec{\nabla}_n \vec{x}\right)^c &= \mathbf{R}_n \cdot \mathbf{U}_n \end{aligned}$$

Piet Schreurs (TU/e) 621 / 694

### Incremental plastic strain

$$\begin{split} \mathbf{C}_{\rho}(\tau) &= \mathbf{F}_{\rho}^{c}(\tau) \cdot \mathbf{F}_{\rho}(\tau) = \tilde{\mathbf{F}}^{c}(\tau) \cdot \tilde{\mathbf{B}}_{e}^{-1}(\tau) \cdot \tilde{\mathbf{F}}(\tau) \\ & \text{with} \quad \tilde{\mathbf{F}}(\tau) = \tilde{\mathbf{F}}_{n}(\tau) \cdot \tilde{\mathbf{F}}(t_{n}) \quad \rightarrow \\ &= \tilde{\mathbf{F}}^{c}(t_{n}) \cdot \left[\tilde{\mathbf{F}}_{n}^{c}(\tau) \cdot \tilde{\mathbf{B}}_{e}^{-1}(\tau) \cdot \tilde{\mathbf{F}}_{n}(\tau)\right] \cdot \tilde{\mathbf{F}}(t_{n}) \\ &= \tilde{\mathbf{F}}^{c}(t_{n}) \cdot \mathbf{C}_{p_{n}}(\tau) \cdot \tilde{\mathbf{F}}(t_{n}) \end{split}$$

incremental rotation neutralized plastic strain

$$\begin{split} \mathbf{C}_{p_n}(\tau) &= \tilde{\mathbf{F}}_n^c(\tau) \cdot \tilde{\mathbf{B}}_e^{-1}(\tau) \cdot \tilde{\mathbf{F}}_n(\tau) \\ &= \tilde{\mathbf{U}}_n(\tau) \cdot \left[ \mathbf{R}_n^c(\tau) \cdot \tilde{\mathbf{B}}_e^{-1}(\tau) \cdot \mathbf{R}_n(\tau) \right] \cdot \tilde{\mathbf{U}}_n(\tau) \\ &= \tilde{\mathbf{U}}_n(\tau) \cdot \bar{\tilde{\mathbf{B}}}_{e_n}^{-1}(\tau) \cdot \tilde{\mathbf{U}}_n(\tau) \end{split}$$

Piet Schreurs (TU/e) 622 / 694

### Constitutive equations

$$J = \det(\mathbf{F}) \quad \to \quad \tilde{\mathbf{F}} = J^{-1/3}\mathbf{F} \quad \to \quad \tilde{\mathbf{B}} = \tilde{\mathbf{F}} \cdot \tilde{\mathbf{F}}^c \quad \to \quad \mathbf{w} = H\tilde{\mathbf{B}}^d$$

$$p = \kappa(J-1) \quad \to \quad \mathbf{s}^h = p\mathbf{I}$$

$$\dot{\mathbf{C}}_{p_n} = \frac{G}{\eta} \left( \tilde{\mathbf{C}}_n - \frac{1}{3} \text{tr} \left( \bar{\tilde{\mathbf{B}}}_{e_n} \right) \mathbf{C}_{p_n} \right)$$

$$\bar{\tilde{\mathbf{B}}}_{e_n} = \tilde{\mathbf{U}}_n \cdot \mathbf{C}_{p_n}^{-1} \cdot \tilde{\mathbf{U}}_n^c \to \tilde{\mathbf{B}}_e = \mathbf{R}_n \cdot \bar{\tilde{\mathbf{B}}}_{e_n} \cdot \mathbf{R}_n^c$$

$$\dot{D} = h \left( 1 - \frac{D}{D_{\infty}} \right) \frac{\bar{\mathbf{s}}}{\sqrt{6} \eta}$$

$$\eta = \eta(\bar{\mathbf{s}}, p, T, D)$$

$$\sigma = \mathbf{s}^d + \mathbf{s}^h + \mathbf{w}$$

Piet Schreurs (TU/e) 623 / 694

### Stress update

$$\begin{split} \dot{\mathbf{C}}_{p_n}(\tau) &= \Gamma(\tau) \left[ \tilde{\mathbf{C}}_n(\tau) - \frac{1}{\bar{\alpha}_n(\tau)} \, \mathbf{C}_{p_n}(\tau) \right] \quad ; \quad \frac{1}{\bar{\alpha}_n} = \frac{1}{3} \mathrm{tr} \left( \tilde{\bar{\mathbf{B}}}_{\mathbf{e}_n} \right) \\ \frac{1}{\Delta t} \left[ \mathbf{C}_{p_n} - \mathbf{C}_{p_n}(t_n) \right] &= \Gamma \left[ \tilde{\mathbf{C}}_n - \frac{1}{\bar{\alpha}_n} \, \mathbf{C}_{p_n} \right] \quad \rightarrow \\ \mathbf{C}_{p_n} &= \frac{\bar{\alpha}_n \, \Delta t \, \Gamma}{\bar{\alpha}_n + \Delta t \, \Gamma} \, \tilde{\mathbf{C}}_n + \frac{\bar{\alpha}_n}{\bar{\alpha}_n + \Delta t \, \Gamma} \, \mathbf{C}_{p_n}(t_n) \quad \rightarrow \\ \mathbf{C}_{p_n} &= \bar{\alpha}_n (1 - \lambda) \, \tilde{\mathbf{C}}_n + \lambda \, \mathbf{C}_{p_n}(t_n) \quad ; \quad \lambda = \frac{\bar{\alpha}_n}{\bar{\alpha}_n + \Delta t \, \Gamma} = \mathrm{elasticity \ parameter} \\ \tilde{\mathbf{B}}_{e} &= \mathbf{R}_n \cdot \tilde{\bar{\mathbf{B}}}_{e_n} \cdot \mathbf{R}_{e}^c = \tilde{\mathbf{F}}_n \cdot \mathbf{C}_{e}^{-1} \cdot \tilde{\mathbf{F}}_{e}^c \end{split}$$

Piet Schreurs (TU/e) 624 / 694

## Sub-incremental plastic strain update

$$\begin{split} \dot{\mathbf{C}}_{p_n}(\tau) &= \Gamma(\tau) \left[ \tilde{\mathbf{C}}_n(\tau) - \frac{1}{\bar{\alpha}_n(\tau)} \, \mathbf{C}_{p_n}(\tau) \right] \quad ; \quad \frac{1}{\bar{\alpha}_n} = \frac{1}{3} \mathrm{tr} \left( \bar{\tilde{\mathbf{B}}}_{e_n} \right) \\ & \text{sub-incremental deformation} : \quad j = 1 \cdots ns + 1 \\ & j = 1 \quad : \quad \tau = t_n \qquad ; \qquad j = ns + 1 \quad : \quad \tau = t_{n+1} \\ & \delta t = \Delta t / ns \qquad ; \qquad \delta \tilde{\mathbf{C}}_n = \left\{ \tilde{\mathbf{C}}_n \right\}^{1/ns} \qquad ; \qquad \tilde{\mathbf{C}}_n^j = \left\{ \delta \tilde{\mathbf{C}}_n \right\}^j \end{split} \right\} \\ & \frac{1}{\delta t} \left[ \mathbf{C}_{p_n}^j - \mathbf{C}_{p_n}^{j-1} \right] = \Gamma^j \left[ \tilde{\mathbf{C}}_n^j - \frac{1}{\bar{\alpha}_n^j} \, \mathbf{C}_{p_n}^j \right] \quad \rightarrow \\ & \mathbf{C}_{p_n}^j = \frac{\bar{\alpha}_n^j \, \delta t \, \Gamma^j}{\bar{\alpha}_n^j + \delta t \, \Gamma^j} \, \tilde{\mathbf{C}}_n^j + \frac{\bar{\alpha}_n^j}{\bar{\alpha}_n^j + \delta t \, \Gamma^j} \, \mathbf{C}_{p_n}^{j-1} \quad \rightarrow \\ & \mathbf{C}_{p_n}^j = \bar{\alpha}_n^j (1 - \lambda^j) \, \tilde{\mathbf{C}}_n^j + \lambda^j \, \mathbf{C}_{p_n}^{j-1} \quad ; \qquad \lambda^j = \frac{\bar{\alpha}_n^j}{\bar{\alpha}_n^j + \delta t \, \Gamma^j} \end{split}$$

incremental plastic strain  $\mathbf{C}_{p_n} = \mathbf{C}_{p_n}(t_{n+1}) = \mathbf{C}_{p_n}^{ns+1}$  total isochoric elastic strain  $\tilde{\mathbf{B}}_e = \mathbf{R}_n \cdot \tilde{\bar{\mathbf{B}}}_{e_n} \cdot \mathbf{R}_n^c = \tilde{\mathbf{F}}_n \cdot \mathbf{C}_{p_n}^{-1} \cdot \tilde{\mathbf{F}}_n^c$ 

Piet Schreurs (TU/e) 625 / 694

### Scalar variable update

$$\begin{array}{lll} \lambda = 1/(1+\Delta t\Gamma) & \to & f(\lambda,D) = \lambda(1+\Delta t\Gamma) = 1 \\ & \frac{1}{\Delta t}\{D-D(t_n)\} = \dot{D} & \to & g(\lambda,D) = D-\Delta t\dot{D} = D(t_n) \end{array}$$

Newton-Raphson iterative solution procedure

$$\begin{bmatrix} \frac{\partial f}{\partial \lambda} & \frac{\partial f}{\partial D} \\ \frac{\partial g}{\partial \lambda} & \frac{\partial g}{\partial D} \end{bmatrix} \begin{bmatrix} \delta \lambda \\ \delta D \end{bmatrix} = \begin{bmatrix} 1 - f^* \\ D(t_n) - g^* \end{bmatrix} = \begin{bmatrix} r_{\lambda}^* \\ r_{D}^* \end{bmatrix}$$

Piet Schreurs (TU/e) 626 / 694

### Partial derivatives

$$\begin{split} \frac{\partial f}{\partial \lambda} &= 1 + \Delta t \Gamma + \lambda \Delta t \, \frac{\partial \Gamma}{\partial \lambda} = 1 + \Delta t \Gamma - \lambda \Delta t \, \frac{G}{\eta^2} \, \frac{\partial \eta}{\partial \bar{\sigma}} \, \frac{\partial \bar{\sigma}}{\partial \lambda} \\ &= 1 + \Delta t \Gamma - \lambda \Delta t \, \frac{G}{\eta^2} \left[ \eta \, \left( \frac{1}{\bar{\sigma}} - \frac{1}{\sqrt{3} \tau_0} \right) \right] \bar{\sigma} \\ \frac{\partial f}{\partial D} &= \lambda \Delta t \, \frac{\partial \Gamma}{\partial D} = -\lambda \Delta t \, \frac{G}{\eta^2} \, \frac{\partial \eta}{\partial D} = \lambda \Delta t \, \frac{G}{\eta^2} \, \eta = \lambda \Delta t \, \Gamma \\ \frac{\partial g}{\partial \lambda} &= -\Delta t \, \frac{\partial \dot{D}}{\partial \lambda} = -\Delta t \, \frac{\partial \dot{D}}{\partial \bar{\sigma}} \, \frac{\partial \bar{\sigma}}{\partial \lambda} = -\Delta t \, \left[ \frac{\dot{D}}{\sqrt{3} \tau_0} \right] \bar{\sigma} \\ \frac{\partial g}{\partial D} &= 1 - \Delta t \, \frac{\partial \dot{D}}{\partial D} = 1 - \Delta t \, \left[ \dot{D} - \frac{h \bar{\sigma}}{\sqrt{6} D_{\infty} \eta} \right] \end{split}$$

Piet Schreurs (TU/e) 627 / 694

$$J = \det(\underline{F}) \to \underline{\tilde{F}} = J^{-1/3}\underline{F} \to \underline{\tilde{B}} = \underline{\tilde{F}}\underline{\tilde{F}}^T \to \underline{w} = H\underline{\tilde{B}}^d$$

$$p = \kappa(J-1) \to \underline{\underline{s}}^h = p\underline{I}$$

$$\lambda = 1/(1 + \Delta t\Gamma)$$

$$\frac{1}{\Delta t} \{D - D(t_n)\} = \dot{D}$$

$$\frac{C_{p_n}}{\bar{D}_{e_n}} = (1 - \lambda)\underline{\tilde{C}}_n + \lambda\underline{C}_{p_n}(t_n)$$

$$\underline{\tilde{B}}_{e_n} = \underline{\tilde{U}}_n \underline{C}_{p_n}^{-1} \underline{\tilde{U}}_n^T$$

$$\underline{\underline{\tilde{S}}}^d = G\underline{\tilde{B}}_{e_n} \to \bar{s} = \sqrt{\frac{3}{2}} tr(\underline{\bar{s}}^d \underline{\bar{s}}^d)$$

$$\eta = \eta(\bar{s}, p, T, D)$$

$$\frac{\bar{B}}{\bar{S}} = \frac{\bar{K}}{\bar{S}}\underline{\tilde{S}}^d = \frac{\bar{K}}{\bar{S}}\underline{\tilde{S}}^d$$

$$\underline{\sigma} = \underline{s}^d + \underline{s}^h + \underline{w}$$

Piet Schreurs (TU/e) 628 / 694

#### Stiffness

$$\begin{split} \sigma &= \mathbf{s}^d + \mathbf{s}^h + \mathbf{w} = G \tilde{\mathbf{B}}_e^d + \kappa \mathbf{I}(J-1) + H \tilde{\mathbf{B}}^d \\ \tilde{\mathbf{B}}_e &= \tilde{\mathbf{F}} \cdot \mathbf{C}_p^{-1} \cdot \tilde{\mathbf{F}}^c \\ \mathbf{C}_p &= (1-\lambda)\tilde{\mathbf{C}} + \lambda \mathbf{C}_p(t_n) \\ \tilde{\mathbf{F}} &= J^{-1/3} \mathbf{F} \end{split} \right\}$$

$$\begin{split} \delta \mathbf{\sigma} &= \delta \mathbf{s}^d + \delta \mathbf{s}^h + \delta \mathbf{w} \\ &= G \, \delta \tilde{\mathbf{B}}_e^d + \kappa \, \mathbf{I} \delta J + H \, \delta \tilde{\mathbf{B}}^d = \left( {}^4 \mathbf{S}_d + {}^4 \mathbf{S}_h + {}^4 \mathbf{H} \right) : \delta \mathbf{F} \\ &= {}^4 \mathbf{S} : \delta \mathbf{F} = {}^4 \mathbf{S}^{rc} : \delta \mathbf{F}^c \quad \text{with} \qquad \delta \mathbf{F}^c = \vec{\nabla}_0 \vec{u} = \mathbf{F}^c \cdot \vec{\nabla} \vec{u} = \mathbf{F}^c \cdot \mathbf{L}_u^c \\ &= {}^4 \mathbf{S}^{rc} : (\mathbf{F}^c \cdot \mathbf{L}_u^c) \\ &= {}^4 \mathbf{M} : \mathbf{L}_u^c \end{split}$$

Piet Schreurs (TU/e) 629 / 694

#### Elastic strain variation

$$\begin{split} \tilde{\mathbf{B}}_{e} &= \tilde{\mathbf{F}} \cdot \mathbf{C}_{p}^{-1} \cdot \tilde{\mathbf{F}}^{c} \\ \delta \tilde{\mathbf{B}}_{e} &= \delta \tilde{\mathbf{F}} \cdot \mathbf{C}_{p}^{-1} \cdot \tilde{\mathbf{F}}^{c} - \tilde{\mathbf{F}} \cdot \mathbf{C}_{p}^{-1} \cdot \delta \mathbf{C}_{p} \cdot \mathbf{C}_{p}^{-1} \cdot \tilde{\mathbf{F}}^{c} + \tilde{\mathbf{F}} \cdot \mathbf{C}_{p}^{-1} \cdot \delta \tilde{\mathbf{F}}^{c} \\ &= \left( \tilde{\mathbf{F}} \cdot \mathbf{C}_{p}^{-c} \cdot \delta \tilde{\mathbf{F}}^{c} \right)^{c} - \tilde{\mathbf{F}} \cdot \mathbf{C}_{p}^{-1} \cdot \left( \tilde{\mathbf{F}} \cdot \mathbf{C}_{p}^{-c} \cdot \delta \mathbf{C}_{p}^{c} \right)^{c} + \tilde{\mathbf{F}} \cdot \mathbf{C}_{p}^{-1} \cdot \delta \tilde{\mathbf{F}}^{c} \\ &= \left( \mathbf{M}^{(1)} \cdot \delta \tilde{\mathbf{F}}^{c} \right)^{c} - \mathbf{M}^{(2)} \cdot \left( \mathbf{M}^{(1)} \cdot \delta \mathbf{C}_{p}^{c} \right)^{c} + \mathbf{M}^{(2)} \cdot \delta \tilde{\mathbf{F}}^{c} \\ \tilde{\mathbf{B}}_{e}^{d} &= \tilde{\mathbf{B}}_{e} - \frac{1}{3} \mathrm{tr} (\tilde{\mathbf{B}}_{e}) \mathbf{I} = \left( {}^{4} \mathbf{I} - \frac{1}{3} \mathbf{II} \right) : \tilde{\mathbf{B}}_{e} \\ \delta \tilde{\mathbf{B}}_{e}^{d} &= \left( {}^{4} \mathbf{I} - \frac{1}{2} \mathbf{II} \right) : \delta \tilde{\mathbf{B}}_{e} \end{split}$$

Piet Schreurs (TU/e) 630 / 694

#### Plastic strain variation

$$\begin{split} \mathbf{C}_{p} &= (1 - \lambda)\tilde{\mathbf{C}} + \lambda \mathbf{C}_{p}(t_{n}) \\ \delta \mathbf{C}_{p} &= (1 - \lambda)\delta\tilde{\mathbf{C}} + \left(\mathbf{C}_{p}(t_{n}) - \tilde{\mathbf{C}}\right)\delta\lambda \\ &= (1 - \lambda)\left(\delta\tilde{\mathbf{F}}^{c} \cdot \tilde{\mathbf{F}} + \tilde{\mathbf{F}}^{c} \cdot \delta\tilde{\mathbf{F}}\right) + \left(\mathbf{C}_{p}(t_{n}) - \tilde{\mathbf{C}}\right)\delta\lambda \\ &= (1 - \lambda)\left[\left(\tilde{\mathbf{F}}^{c} \cdot \delta\tilde{\mathbf{F}}\right)^{c} + \tilde{\mathbf{F}}^{c} \cdot \delta\tilde{\mathbf{F}}\right] + \left(\mathbf{C}_{p}(t_{n}) - \tilde{\mathbf{C}}\right)\delta\lambda \end{split}$$

Piet Schreurs (TU/e) 631 / 694

### Deformation tensor variation

$$\begin{split} \tilde{\mathbf{F}} &= J^{-1/3} \mathbf{F} \\ \delta \tilde{\mathbf{F}} &= -\frac{1}{6} J^{-1/3} \mathbf{F} \mathbf{I} : \left( \delta \mathbf{F} \cdot \mathbf{F}^{-1} + \mathbf{F}^{-c} \cdot \delta \mathbf{F}^{c} \right) + J^{-1/3} \delta \mathbf{F} \\ &= -\frac{1}{3} J^{-1/3} \mathbf{F} \left( \mathbf{F}^{-c} : \delta \mathbf{F}^{c} \right) + J^{-1/3} \delta \mathbf{F} \end{split}$$

Piet Schreurs (TU/e) 632 / 694

# Elasticity scalar variation

$$\delta\lambda = \frac{\lambda\Delta t\Gamma}{G\Delta t + \eta}\,\delta\eta = \mathit{I}_{1}\tilde{\mathbf{B}}_{e}^{d}:\delta\tilde{\mathbf{B}}_{e} + \mathit{I}_{2}\mathbf{I}:\delta\mathbf{F}$$

$$\begin{split} & l_1 = \frac{\lambda \Delta t \, \Gamma \, h_1}{\Delta t \, G + \eta} \qquad ; \qquad \qquad l_2 = \frac{l_1 h_2}{h_1} \\ & h_1 = \frac{3 G^2}{2 \bar{\sigma}} \left( \frac{\partial \eta}{\partial \bar{\sigma}} + \frac{\partial \eta}{\partial D} \frac{\partial D}{\partial \bar{\sigma}} \right) \qquad ; \qquad \qquad h_2 = -\kappa J \left( \frac{\partial \eta}{\partial \rho} + \frac{\partial \eta}{\partial D} \frac{\partial D}{\partial \rho} \right) \\ & \frac{\partial \eta}{\partial \bar{\sigma}} = \eta \left( \frac{1}{\bar{\sigma}} - \frac{1}{\sqrt{3} \tau_0} \right) \qquad ; \qquad \frac{\partial \eta}{\partial \rho} = \frac{\eta \mu}{\tau_0} \qquad ; \qquad \frac{\partial \eta}{\partial D} = -\eta \\ & \frac{\partial D}{\partial \bar{\sigma}} = \frac{\Delta t \, \frac{\partial \dot{D}}{\partial \bar{\sigma}}}{1 - \Delta t \, \frac{\partial \dot{D}}{\partial \bar{D}}} \qquad ; \qquad \frac{\partial D}{\partial \rho} = \frac{\Delta t \, \frac{\partial \dot{D}}{\partial \rho}}{1 - \Delta t \, \frac{\partial \dot{D}}{\partial \bar{D}}} \\ & \frac{\partial \dot{D}}{\partial \bar{\sigma}} = \frac{\dot{D}}{\sqrt{3} \tau_0} \qquad ; \qquad \frac{\partial \dot{D}}{\partial \rho} = -\frac{\dot{D} \mu}{\tau_0} \qquad ; \qquad \frac{\partial \dot{D}}{\partial D} = \dot{D} - \frac{h \bar{\sigma}}{\sqrt{6} \, D_\infty \, \eta} \\ & \text{with} \qquad \dot{D} = h \left( 1 - \frac{D}{D} \right) \frac{\bar{\sigma}}{\sqrt{6} \, D} \end{split}$$

Piet Schreurs (TU/e) 633 / 694

### Deviatoric stress variation

$$\delta \mathbf{s}^d = G \, \delta \tilde{\mathbf{B}}_e^d = {}^4\mathbf{S}_d : \delta \mathbf{F}$$

Piet Schreurs (TU/e) 634 / 694

## Hydrostatic stress variation

$$\delta \mathbf{s}^h = \kappa \, \mathbf{I} \delta J = \, ^4\mathbf{S}_h : \delta \mathbf{F}$$

$$\dot{J} = J \operatorname{tr}(\mathbf{D}) = J \, \frac{1}{2} \operatorname{tr} \left\{ \dot{\mathbf{F}} \cdot \mathbf{F}^{-1} + \left( \dot{\mathbf{F}} \cdot \mathbf{F}^{-1} \right)^c \right\} \quad \rightarrow$$

$$\delta J = \, \frac{1}{2} J \operatorname{tr} \left( \delta \mathbf{F} \cdot \mathbf{F}^{-1} + \mathbf{F}^{-c} \cdot \delta \mathbf{F}^c \right)$$

$$= \, \frac{1}{2} J \left( \mathbf{F}^{-c} : \delta \mathbf{F}^c \right) + \frac{1}{2} J \left( \mathbf{F}^{-c} : \delta \mathbf{F}^c \right)$$

$$= J \, \mathbf{F}^{-c} : \delta \mathbf{F}^c = J \, \mathbf{F}^{-1} : \delta \mathbf{F}$$

Piet Schreurs (TU/e) 635 / 694

## Hardening stress variation

$$\delta \mathbf{w} = H \, \delta \tilde{\mathbf{B}}^d = {}^4\mathbf{H} : \delta \mathbf{F}$$

$$\tilde{\mathbf{B}} = \tilde{\mathbf{F}} \cdot \tilde{\mathbf{F}}^c$$

$$\delta \tilde{\mathbf{B}} = \delta \tilde{\mathbf{F}} \cdot \tilde{\mathbf{F}}^c + \tilde{\mathbf{F}} \cdot \delta \tilde{\mathbf{F}}^c$$

$$\tilde{\mathbf{B}}^d = \tilde{\mathbf{B}} - \frac{1}{3} \text{tr}(\tilde{\mathbf{B}}) \mathbf{I} = \left( {}^4\mathbf{I} - \frac{1}{3} \mathbf{II} \right) : \tilde{\mathbf{B}}$$

$$\delta \tilde{\mathbf{B}}^d = \left( {}^4\mathbf{I} - \frac{1}{3} \mathbf{II} \right) : \left\{ \left( \tilde{\mathbf{F}} \cdot \delta \tilde{\mathbf{F}}^c \right)^c + \tilde{\mathbf{F}} \cdot \delta \tilde{\mathbf{F}}^c \right\}$$

Piet Schreurs (TU/e) 636 / 694

#### Consistent material stiffness tensor

$$\delta \sigma = \delta \mathbf{s}^{d} + \delta \mathbf{s}^{h} + \delta \mathbf{w}$$

$$= ({}^{4}\mathbf{S}_{d} + {}^{4}\mathbf{S}_{h} + {}^{4}\mathbf{H}) : \delta \mathbf{F} = {}^{4}\mathbf{S} : \delta \mathbf{F} = {}^{4}\mathbf{S}^{rc} : \delta \mathbf{F}^{c}$$
with  $\delta \mathbf{F}^{c} = \vec{\nabla}_{0}\vec{u} = \mathbf{F}^{c} \cdot \vec{\nabla}\vec{u} = \mathbf{F}^{c} \cdot \mathbf{L}_{u}^{c} \rightarrow$ 

$$= {}^{4}\mathbf{S}^{rc} : (\mathbf{F}^{c} \cdot \mathbf{L}_{u}^{c}) = {}^{4}\mathbf{M} : \mathbf{L}_{u}^{c}$$

Piet Schreurs (TU/e) 637 / 694

$$\begin{split} \delta \tilde{\mathcal{B}}_{e} &= \left(\underline{\underline{M}}_{cr}^{(1)} + \underline{\underline{M}}_{c}^{(2)}\right) \delta \tilde{\mathcal{E}}_{z} - \underline{\underline{M}}_{c}^{(2)} \underline{\underline{M}}_{c}^{(1)} \delta \tilde{\mathcal{E}}_{p} \quad ; \quad \underline{\underline{M}}^{(1)} &= \underline{\tilde{F}} \, \underline{C}_{p}^{-T} \; ; \; \underline{\underline{M}}^{(2)} = \underline{\tilde{F}} \, \underline{C}_{p}^{-1} \\ &= \underline{\underline{A}}^{(1)} \delta \tilde{\mathcal{E}}_{z} + \underline{\underline{A}}^{(2)} \delta \tilde{\mathcal{E}}_{p} \\ \delta \tilde{\mathcal{B}}_{e}^{d} &= \left(\underline{\underline{I}} - \frac{1}{3} \underline{\underline{I}} \underline{\underline{I}}_{z}^{T}\right) \delta \tilde{\underline{B}}_{e} \\ \delta \mathcal{\mathcal{C}}_{p} &= \left[ (1 - \lambda) \left( \underline{\tilde{E}}_{tr} + \underline{\tilde{F}}_{t} \right) \right] \delta \tilde{\underline{F}} + \left( \underline{\mathcal{C}}_{p}(t_{n}) - \tilde{\mathcal{C}}_{z} \right) \delta \lambda = \underline{\underline{C}}^{(1)} \delta \tilde{\underline{F}}_{z} + \underline{\mathcal{C}}^{(2)} \delta \lambda \\ \delta \tilde{\mathcal{E}}_{z} &= \left[ -\frac{1}{3} J^{-1/3} \underline{\mathcal{F}}_{z} \left( \underline{\mathcal{E}}^{-1} \right)_{t}^{T} + J^{-1/3} \underline{\underline{I}} \right] \delta \underline{\mathcal{F}}_{z} = \underline{\underline{F}} \delta \underline{\mathcal{F}}_{z} \\ \delta \lambda &= I_{1} \left( \underline{\tilde{B}}_{e}^{d} \right)_{t}^{T} \delta \tilde{\underline{B}}_{e} + I_{2} \underline{\underline{I}}_{t}^{T} \delta \underline{\mathcal{F}}_{z} \end{split}$$

Piet Schreurs (TU/e) 638 / 69

$$\begin{split} \delta \tilde{\tilde{\mathcal{B}}}_{e} &= \underline{A}^{(1)} \delta \tilde{\tilde{\mathcal{E}}}_{e} + \underline{A}^{(2)} \delta \tilde{\mathcal{C}}_{e}_{p} \\ &= \left(\underline{A}^{(1)} + \underline{A}^{(2)} \underline{C}^{(1)}\right) \delta \tilde{\tilde{\mathcal{E}}}_{e} + \underline{A}^{(2)} \tilde{\mathcal{C}}_{e}^{(2)} \delta \lambda = \underline{B}^{(1)} \delta \tilde{\tilde{\mathcal{E}}}_{e} + \underline{B}^{(2)} \delta \lambda \\ &= \underline{B}^{(1)} \underline{F} \delta \tilde{F}_{e} + l_{1} \underline{B}^{(2)} \left(\tilde{\tilde{B}}_{e}^{d}\right)_{t}^{T} \delta \tilde{\tilde{B}}_{e} + l_{2} \underline{B}^{(2)} \tilde{l}_{t}^{T} \delta \tilde{\tilde{E}}_{e} \\ \delta \tilde{\tilde{B}}_{e} &= \left[\underline{l} - l_{1} \tilde{\tilde{B}}^{(2)} \left(\tilde{\tilde{B}}_{e}^{d}\right)_{t}^{T}\right]^{-1} \left[\underline{B}^{(1)} \underline{F} + l_{2} \underline{B}^{(2)} \tilde{l}_{t}^{T}\right] \delta \tilde{\tilde{E}}_{e} \\ \delta \tilde{\tilde{B}}_{e}^{d} &= \left(\underline{l} - \frac{1}{3} \tilde{l} \tilde{l} \tilde{l}_{t}^{T}\right) \delta \tilde{\tilde{B}}_{e} \\ &= \left(\underline{l} - \frac{1}{3} \tilde{l} \tilde{l} \tilde{l}_{t}^{T}\right) \left[\underline{l} - l_{1} \tilde{\tilde{B}}^{(2)} \left(\tilde{\tilde{B}}_{e}^{d}\right)_{t}^{T}\right]^{-1} \left[\underline{B}^{(1)} \underline{F} + l_{2} \tilde{\tilde{B}}^{(2)} \tilde{l}_{t}^{T}\right] \delta \tilde{\tilde{E}}_{e} \\ \delta \tilde{\tilde{B}}^{d} &= \left(\underline{l} - \frac{1}{3} \tilde{l} \tilde{l} \tilde{l}_{t}^{T}\right) \left(\underline{\tilde{F}}_{cr} + \underline{\tilde{F}}_{c}\right) \delta \tilde{\tilde{E}}_{e} \\ &= \left(\underline{\tilde{F}}_{cr} + \underline{\tilde{F}}_{c} - \frac{2}{3} \tilde{l} \tilde{l} \tilde{l}_{t}^{T} \tilde{\tilde{F}}_{c}\right) \underline{F} \delta \tilde{\tilde{E}}_{e} = \underline{B}^{(4)} \delta \tilde{\tilde{E}}_{e} \end{split}$$

Piet Schreurs (TU/e) 639 / 694

$$\begin{split} \delta \underline{s}^d &= G \delta \tilde{\underline{B}}^d_e = G \underline{\underline{B}}^{(3)} \delta \underline{F} = \underline{\underline{S}}_d \delta \underline{F}_{\underline{z}} \\ \delta \underline{s}^h &= \kappa \underline{I} \delta J = \kappa J \underline{I} \left( \underline{F}^{-1} \right)_t^T \delta \underline{F} = \underline{\underline{S}}_h \delta \underline{F}_{\underline{z}} \\ \delta \underline{w} &= H \delta \tilde{\underline{B}}^d = H \underline{\underline{B}}^{(4)} \delta \underline{F} = \underline{\underline{H}} \delta \underline{F}_{\underline{z}} \\ \delta \underline{w} &= \delta \underline{s}^d + \delta \underline{s}^h + \delta \underline{w}_{\underline{z}} \\ &= \left( \underline{\underline{S}}_d + \underline{\underline{S}}_h + \underline{\underline{H}} \right) \delta \underline{F} = \underline{\underline{S}} \delta \underline{F} = \underline{\underline{S}}_c \delta \underline{F}_{\underline{z}} \\ & \text{with} \quad \delta \underline{F}_t = \underline{\underline{F}}_t \left( \underline{L}_{\underline{z}u} \right)_t \\ &= \underline{\underline{M}} \left( \underline{L}_{\underline{u}} \right)_t \end{split}$$

Piet Schreurs (TU/e) 640 / 694

### Tensile test





| initial width     | w <sub>0</sub> | 100 | mm |
|-------------------|----------------|-----|----|
| initial height    | $h_0$          | 100 | mm |
| initial thickness | $d_0$          | 0.1 | mm |

| initial radius | $r_0$ | $\sqrt{(10/\pi)}$ | mm |
|----------------|-------|-------------------|----|
| initial height | $h_0$ | 100               | mm |

Piet Schreurs (TU/e) 641 / 694

### Viscoelastic model in tensile test

| Ε            | 2305  | MPa   | ν     | 0.37       | - |
|--------------|-------|-------|-------|------------|---|
| Н            | 29    | MPa   | h     | 270        | - |
| $D_{\infty}$ | 19    | -     | $A_0$ | 9.7573E-27 | S |
| $\Delta H$   | 2.9E5 | J/mol | μ     | 0.06984    | - |
| $	au_0$      | 0.72  | MPa   |       |            |   |

elongation rate

$$\frac{\dot{\Delta}I}{h_0} = 0.01 \text{ s}^{-1}$$





### Shear test



| initial width     | $w_0$ | 100 | mm |
|-------------------|-------|-----|----|
| initial height    | $h_0$ | 100 | mm |
| initial thickness | $d_0$ | 0.1 | mm |

strain rate



$$\dot{\gamma} = \frac{\dot{u}}{h_0} = 0.01 \text{ s}^{-1}$$



- Bathe, K.-J. *Finite Element Procedures*. Prentice Hall, New Jersey, 1996.
- Boyle, J.T.; Spence, J. Stress analysis for creep. Butterwort, 1983, pp 283.
- Crisfield, M. Non-linear Finite Element Analysis of Solids and Structures, Vol. 1: Essentials. John Wiley and Sons Ltd., West Sussex, England...
- Crisfield, M. Non-linear Finite Element Analysis of Solids and Structures, Vol. 2: Advanced Topics. John Wiley and Sons Ltd., West Sussex, England...
- Gordon, J.E. The new science of strong materials. Penguin Books, 1976.
- Gordon, J.E. Structures. Penguin Books, 1978.
  - Hughes, T. Numerical implementation of constitutive models: rate-independent deviatoric plasticity. In: Theoretical Foundation for Large-scale Computations for Nonlinear Material Behaviour, Ed: Nemat-Nasser, R. Asaro, G. Hegemier Martinus Nijhoff Publishers, Dordrecht, The Netherlands..., pp 29-57.
- Hunter, S.C. *Mechanics of continuous media, 2nd edition.* Ellis Horwood Limited, 1983.
- Simo, J.C.; Hughes, T. Computational Inelasticity. Interdisciplinary Applied Mathematics. Springer-Verlag, New York, 1998.

Press, Inc., Florida, USA, 1993.

Timoshenko, Stephen P. History of strength of materials: with a brief account of the history of elasticity and theory of structures. London: McGraww-Hill,

Skrzypek, J. Plasticity and Creep - Theory, Examples and Problems. CRC

- 1953, pp 452.
   Tschoegl, N.W. The phenomenological theory of linear viscoelastic behaviour; An introduction. Springer-Verlag, 1989.
  - Zienkiewicz, O.; Taylor, R. *The Finite Element Method, Vol. 1, Basic Formulation and Linear Problems.* McGraw-Hill, London, UK, 1989.
    - Zienkiewicz, O.; Taylor, R. *The Finite Element Method, Vol. 2, Solid and Fluid Mechanics. Dynamics and Non-linearity.* McGraw-Hill, London, UK.
  - Fluid Mechanics, Dynamics and Non-linearity. McGraw-Hill, London, UK, 1989.

### **APPENDICES**

back to index

Piet Schreurs (TU/e) 644 / 694

### Utilities m2cc.m and m2mm.m

back to index

#### m2cc

```
function [C] = m2cc(m,s);
C = zeros(s,1):
if <==9
 C = \lceil m(1.1) : m(2.2) : m(3.3) :
      m(1,2); m(2,1); m(2,3); m(3,2); m(3,1); m(1,3)];
elseif s==5
 C = [m(1.1): m(2.2): m(3.3): m(1.2): m(2.1)]:
elseif s==4
 C = \lceil m(1.1) : m(2.2) : m(1.2) : m(2.1) \rceil:
end:
```

Piet Schreurs (TU/e) 646 / 694

#### m2mm

```
function [M] = m2mm(m,s);
M = zeros(s):
if s==9
  M = [m(1,1) \ 0 \ 0 \ m(1,2) \ 0 \ m(1,3) \ 0
     0 	 m(2,2) 	 0 	 m(2,1) 	 0 	 0 	 m(2,3) 	 0
     0 0 m(3,3) 0 0 m(3,2) 0 0 m(3,1)
     0 	 m(1,2) 	 0 	 m(1,1) 	 0 	 0 	 m(1,3) 	 0
     0 m(3,2) 0 m(3,1) 0 0 m(3,3) 0
     m(3,1) 0 0 m(3,2) 0 m(3,3) 0
     0 0 m(1,3) 0 0 m(1,2) 0 0 m(1,1);
elseif s==5
  M = [m(1,1) \ 0 \ 0 \ m(1,2)
     0 m(2.2) 0 m(2.1) 0
     0 0 m(3,3) 0 0
     0 m(1,2) 0 m(1,1) 0
     m(2,1) 0 0 m(2,2);
elseif s==4
  M = [m(1,1) \ 0 \ m(1,2)]
     0 \quad m(2,2) \quad m(2,1) \quad 0
     0 \quad m(1,2) \quad m(1,1) \quad 0
     m(2,1) 0 0 m(2,2);
end:
```

Piet Schreurs (TU/e) 647 / 694

## Stiffness and compliance matrices

back to index

## General orthotropic stiffness matrix

$$\tilde{\sigma} = \begin{bmatrix}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{12} \\
\sigma_{23} \\
\sigma_{31}
\end{bmatrix} = \begin{bmatrix}
A & Q & R & 0 & 0 & 0 \\
Q & B & S & 0 & 0 & 0 \\
R & S & C & 0 & 0 & 0 \\
0 & 0 & 0 & K & 0 & 0 \\
0 & 0 & 0 & 0 & L & 0 \\
0 & 0 & 0 & 0 & 0 & M
\end{bmatrix} \begin{bmatrix}
\varepsilon_{11} \\
\varepsilon_{22} \\
\varepsilon_{33} \\
\gamma_{12} \\
\gamma_{23} \\
\gamma_{31}
\end{bmatrix} = \underline{\underline{C}} \, \underline{\varepsilon}$$

$$\xi = \begin{bmatrix}
\varepsilon_{11} \\
\varepsilon_{22} \\
\varepsilon_{33} \\
\gamma_{12} \\
\gamma_{23} \\
\gamma_{31}
\end{bmatrix} = \begin{bmatrix}
a & q & r & 0 & 0 & 0 \\
q & b & s & 0 & 0 & 0 \\
r & s & c & 0 & 0 & 0 \\
0 & 0 & 0 & k & 0 & 0 \\
0 & 0 & 0 & 0 & l & 0 \\
0 & 0 & 0 & 0 & 0 & m
\end{bmatrix} \begin{bmatrix}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{12} \\
\sigma_{23} \\
\sigma_{31}
\end{bmatrix} = \underline{\underline{C}}^{-1} \, \underline{\sigma} = \underline{\underline{S}} \, \underline{\sigma}$$

Piet Schreurs (TU/e) 649 / 694

#### General orthotropic compliance matrix

$$\underline{\underline{C}}^{-1} = \frac{1}{\Delta_c} \left[ \begin{array}{cccccc} BC - S^2 & -QC + RS & QS - BR & 0 & 0 & 0 \\ -QC + RS & AC - R^2 & -AS + QR & 0 & 0 & 0 \\ QS - BR & -AS + QR & AB - Q^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & \Delta_c(1/K) & 0 & 0 \\ 0 & 0 & 0 & 0 & \Delta_c(1/L) & 0 \\ 0 & 0 & 0 & 0 & 0 & \Delta_c(1/L) \end{array} \right]$$

with 
$$\Delta_c = ABC - AS^2 - BR^2 - CQ^2 + 2QRS$$

$$\underline{\underline{S}}^{-1} = \frac{1}{\Delta_s} \left[ \begin{array}{cccccc} bc - s^2 & -qc + rs & qs - br & 0 & 0 & 0 \\ -qc + rs & ac - r^2 & -as + qr & 0 & 0 & 0 \\ qs - br & -as + qr & ab - q^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & \Delta_s(1/k) & 0 & 0 \\ 0 & 0 & 0 & 0 & \Delta_s(1/l) & 0 \\ 0 & 0 & 0 & 0 & 0 & \Delta_s(1/l) \end{array} \right]$$

with 
$$\Delta_s = abc - as^2 - br^2 - cq^2 + 2qrs$$

Piet Schreurs (TU/e) 650 / 694

#### Material symmetry

```
quadratic B=A\;;\;S=R\;;\;M=L; transversal isotropic B=A\;;\;S=R\;;\;M=L\;;\;K=\frac{1}{2}(A-Q) cubic C=B=A\;;\;S=R=Q\;;\;M=L=K\neq\frac{1}{2}(A-Q) isotropic C=B=A\;;\;S=R=Q\;;\;M=L=K=\frac{1}{2}(A-Q)
```

Piet Schreurs (TU/e) 651 / 694

## Orthotropic thermo-elasticity

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} = \begin{bmatrix} A & Q & R & 0 & 0 & 0 \\ Q & B & S & 0 & 0 & 0 \\ R & S & C & 0 & 0 & 0 \\ 0 & 0 & 0 & K & 0 & 0 \\ 0 & 0 & 0 & 0 & L & 0 \\ 0 & 0 & 0 & 0 & 0 & M \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \gamma_{12} \\ \gamma_{23} \\ \gamma_{31} \end{bmatrix} - \alpha \Delta T \begin{bmatrix} A + Q + R \\ Q + B + S \\ R + S + C \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \gamma_{12} \\ \gamma_{23} \\ \gamma_{31} \end{bmatrix} = \begin{bmatrix} a & q & r & 0 & 0 & 0 & 0 \\ q & b & s & 0 & 0 & 0 & 0 \\ r & s & c & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & k & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & l & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & m \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} + \alpha \Delta T \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Piet Schreurs (TU/e) 652 / 694

#### Plane strain

$$\epsilon_{33} = \gamma_{23} = \gamma_{31} = 0 \quad \rightarrow \quad \sigma_{33} = R\epsilon_{11} + S\epsilon_{22}$$

$$\underline{\sigma} = \left[ \begin{array}{c} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{array} \right] = \left[ \begin{array}{ccc} A & Q & 0 \\ Q & B & 0 \\ 0 & 0 & K \end{array} \right] \left[ \begin{array}{c} \epsilon_{11} \\ \epsilon_{22} \\ \gamma_{12} \end{array} \right] = \left[ \begin{array}{ccc} A_{\epsilon} & Q_{\epsilon} & 0 \\ Q_{\epsilon} & B_{\epsilon} & 0 \\ 0 & 0 & K \end{array} \right] \left[ \begin{array}{c} \epsilon_{11} \\ \epsilon_{22} \\ \gamma_{12} \end{array} \right] = \underline{\underline{C}}_{\epsilon} \underline{\varepsilon}$$

$$\begin{split}
\underline{\varepsilon} &= \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} = \frac{1}{AB - Q^2} \begin{bmatrix} B & -Q & 0 \\ -Q & A & 0 \\ 0 & 0 & \frac{AB - Q^2}{K} \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} \\
&= \begin{bmatrix} a_{\varepsilon} & q_{\varepsilon} & 0 \\ q_{\varepsilon} & b_{\varepsilon} & 0 \\ 0 & 0 & k \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \underline{\underline{S}}_{\varepsilon} \underline{\sigma}
\end{split}$$

Piet Schreurs (TU/e) 653 / 694

#### Plane strain

$$\epsilon_{33}=0=r\sigma_{11}+s\sigma_{22}+c\sigma_{33}\quad\rightarrow\quad\sigma_{33}=-\frac{r}{c}\sigma_{11}-\frac{s}{c}\sigma_{22}$$

$$\begin{split} \underline{\varepsilon} &= \left[ \begin{array}{c} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{array} \right] = \left[ \begin{array}{c} a & q & 0 \\ q & b & 0 \\ 0 & 0 & k \end{array} \right] \left[ \begin{array}{c} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{array} \right] - \left[ \begin{array}{c} r \\ s \\ 0 \end{array} \right] \left[ \begin{array}{c} \frac{r}{c} & \frac{s}{c} & 0 \end{array} \right] \left[ \begin{array}{c} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{array} \right] \\ &= \frac{1}{c} \left[ \begin{array}{c} ac - r^2 & qc - rs & 0 \\ qc - sr & bc - s^2 & 0 \\ 0 & 0 & kc \end{array} \right] \left[ \begin{array}{c} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{array} \right] = \left[ \begin{array}{c} a_{\varepsilon} & q_{\varepsilon} & 0 \\ q_{\varepsilon} & b_{\varepsilon} & 0 \\ 0 & 0 & k \end{array} \right] \left[ \begin{array}{c} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{array} \right] = \underline{\underline{S}}_{\varepsilon} \underline{\sigma} \end{split}$$

$$\underline{\sigma} = \left[ \begin{array}{c} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{array} \right] = \left[ \begin{array}{ccc} a_{\epsilon} & q_{\epsilon} & 0 \\ q_{\epsilon} & b_{\epsilon} & 0 \\ 0 & 0 & k \end{array} \right]^{-1} \left[ \begin{array}{c} \epsilon_{11} \\ \epsilon_{22} \\ \gamma_{12} \end{array} \right] = \frac{1}{\Delta_s} \left[ \begin{array}{ccc} bc - s^2 & -qc + rs & 0 \\ -qc + rs & ac - r^2 & 0 \\ 0 & 0 & \frac{\Delta_s}{k} \end{array} \right] \left[ \begin{array}{c} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{12} \end{array} \right]$$

with 
$$\Delta_s = abc - as^2 - br^2 - cq^2 + 2qrs$$

$$= \left[ \begin{array}{ccc} A_{\varepsilon} & Q_{\varepsilon} & 0 \\ Q_{\varepsilon} & B_{\varepsilon} & 0 \\ 0 & 0 & K \end{array} \right] \left[ \begin{array}{c} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{12} \end{array} \right] = \underline{\underline{C}}_{\varepsilon} \underline{\sigma}$$

$$\sigma_{33} = -\frac{1}{\Lambda_{-}} \left[ (br - qs) \epsilon_{11} + (as - qr) \epsilon_{22} \right]$$

Piet Schreurs (TU/e) 654 / 694

#### Plane stress

$$\sigma_{33} = \sigma_{23} = \sigma_{31} = 0 \quad \rightarrow \quad \varepsilon_{33} = r\sigma_{11} + s\sigma_{22}$$

$$\begin{split} \xi &= \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} = \begin{bmatrix} a & q & 0 \\ q & b & 0 \\ 0 & 0 & k \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \begin{bmatrix} a_{\sigma} & q_{\sigma} & 0 \\ q_{\sigma} & b_{\sigma} & 0 \\ 0 & 0 & k \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \underline{\underline{S}}_{\sigma} \underline{\sigma} \\ \\ \sigma & 0 & 0 & k \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \underline{\underline{S}}_{\sigma} \underline{\sigma} \\ \\ \sigma & 0 & 0 & k \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} \\ &= \begin{bmatrix} A_{\sigma} & Q_{\sigma} & 0 \\ Q_{\sigma} & B_{\sigma} & 0 \\ 0 & 0 & K \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} = \underline{\underline{C}}_{\sigma} \underline{\varepsilon} \\ \\ \varepsilon_{33} &= \frac{1}{ab-a^2} [(br-qs)\varepsilon_{11} + (as-qr)\varepsilon_{22}] \end{split}$$

Piet Schreurs (TU/e) 655 / 694

#### Plane stress

$$\sigma_{33} = 0 = R \epsilon_{11} + S \epsilon_{22} + C \epsilon_{33} \quad \rightarrow \quad \epsilon_{33} = -\frac{R}{C} \epsilon_{11} - \frac{S}{C} \epsilon_{22}$$

$$\begin{split}
\underline{\sigma} &= \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \begin{bmatrix} A & Q & 0 \\ Q & B & 0 \\ 0 & 0 & K \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} - \begin{bmatrix} R \\ S \\ 0 \end{bmatrix} \begin{bmatrix} R & S \\ \overline{C} & \overline{C} \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} \\
&= \frac{1}{C} \begin{bmatrix} AC - R^2 & QC - RS & 0 \\ QC - SR & BC - S^2 & 0 \\ 0 & 0 & KC \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} \\
&= \begin{bmatrix} A_{\sigma} & Q_{\sigma} & 0 \\ Q_{\sigma} & B_{\sigma} & 0 \\ 0 & 0 & K \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} = \underline{\underline{C}}_{\sigma} \underline{\varepsilon}
\end{split}$$

$$\underline{\varepsilon} = \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} = \begin{bmatrix} A_{\sigma} & Q_{\sigma} & 0 \\ Q_{\sigma} & B_{\sigma} & 0 \\ 0 & 0 & K \end{bmatrix}^{-1} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \begin{bmatrix} a_{\sigma} & q_{\sigma} & 0 \\ q_{\sigma} & b_{\sigma} & 0 \\ 0 & 0 & k \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \underline{\underline{S}}_{\sigma} \underline{\sigma}$$

Piet Schreurs (TU/e) 656 / 694

## General planar material laws

$$\underline{\underline{C}}_{p} = \begin{bmatrix} A_{p} & Q_{p} & 0 \\ Q_{p} & B_{p} & 0 \\ 0 & 0 & K \end{bmatrix} - \alpha \Delta T \begin{bmatrix} \Theta_{p1} \\ \Theta_{p2} \\ 0 \end{bmatrix}$$

$$\underline{\underline{S}}_{p} = \begin{bmatrix} a_{p} & q_{p} & 0 \\ q_{p} & b_{p} & 0 \\ 0 & 0 & k \end{bmatrix} + \sigma \Delta T \begin{bmatrix} \theta_{p1} \\ \theta_{p2} \\ 0 \end{bmatrix}$$

```
plane strain : ()_p = ()_{\epsilon}
plane stress : ()_p = ()_{\sigma}
```

Piet Schreurs (TU/e) 657 / 694

## Linear elastic orthotropic, 3D

$$\underline{\underline{S}} = \begin{bmatrix} E_1^{-1} & -\nu_{21}E_2^{-1} & -\nu_{31}E_3^{-1} & 0 & 0 & 0 \\ -\nu_{12}E_1^{-1} & E_2^{-1} & -\nu_{32}E_3^{-1} & 0 & 0 & 0 \\ -\nu_{13}E_1^{-1} & -\nu_{23}E_2^{-1} & E_3^{-1} & 0 & 0 & 0 \\ 0 & 0 & 0 & G_{12}^{-1} & 0 & 0 \\ 0 & 0 & 0 & 0 & G_{23}^{-1} & 0 \\ 0 & 0 & 0 & 0 & 0 & G_{23}^{-1} & 0 \end{bmatrix}$$
 with 
$$\frac{\nu_{12}}{E_1} = \frac{\nu_{21}}{E_2} \; ; \; \frac{\nu_{23}}{E_2} = \frac{\nu_{32}}{E_3} \; ; \; \frac{\nu_{31}}{E_3} = \frac{\nu_{13}}{E_1}$$
 
$$\underline{\underline{C}} = \frac{1}{\Delta_s} \begin{bmatrix} \frac{1-\nu_{32}\nu_{23}}{E_2E_3} & \frac{\nu_{31}\nu_{23}+\nu_{21}}{E_2E_3} & \frac{\nu_{21}\nu_{32}+\nu_{31}}{E_1E_3} & 0 & 0 & 0 \\ \frac{\nu_{13}\nu_{32}+\nu_{12}}{E_1E_3} & \frac{1-\nu_{31}\nu_{13}}{E_1E_2} & \frac{\nu_{12}\nu_{31}+\nu_{32}}{E_1E_3} & 0 & 0 & 0 \\ \frac{\nu_{12}\nu_{23}+\nu_{13}}{E_1E_2} & \frac{\nu_{21}\nu_{13}+\nu_{23}}{E_1E_2} & \frac{1-\nu_{12}\nu_{21}}{E_1E_3} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \Delta_s G_{12} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \Delta_s G_{23} & 0 \\ 0 & 0 & 0 & 0 & 0 & \Delta_s G_{23} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \Delta_s G_{31} \end{bmatrix}$$
 with 
$$\Delta_s = \frac{1-\nu_{12}\nu_{21}-\nu_{23}\nu_{32}-\nu_{31}\nu_{13}-\nu_{12}\nu_{23}\nu_{31}-\nu_{21}\nu_{32}\nu_{13}}{E_1E_2E_3}$$

Piet Schreurs (TU/e) 658 / 694

## Voigt notation

$$\mathfrak{g}^{T} = [\sigma_{11} \ \sigma_{22} \ \sigma_{33} \ \sigma_{12} \ \sigma_{23} \ \sigma_{31}] = [\sigma_{1} \ \sigma_{2} \ \sigma_{3} \ \sigma_{6} \ \sigma_{4} \ \sigma_{5}] 
\mathfrak{g}^{T} = [\varepsilon_{11} \ \varepsilon_{22} \ \varepsilon_{33} \ \gamma_{12} \ \gamma_{23} \ \gamma_{31}] = [\varepsilon_{1} \ \varepsilon_{2} \ \varepsilon_{3} \ \varepsilon_{6} \ \varepsilon_{4} \ \varepsilon_{5}]$$

$$\begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & 0 & 0 & 0 \\ S_{21} & S_{22} & S_{23} & 0 & 0 & 0 \\ S_{31} & S_{32} & S_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & S_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & S_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & S_{66} \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{bmatrix}$$

Piet Schreurs (TU/e) 659 / 694

# Linear elastic orthotropic, plane strain

$$\sigma_{33} = \nu_{13} \frac{E_3}{E_1} \sigma_{11} + \nu_{23} \frac{E_3}{E_2} \sigma_{22}$$

$$\underline{\underline{S}}_{\varepsilon} = \begin{bmatrix} \frac{1 - \nu_{31} \nu_{13}}{E_1} & -\frac{\nu_{31} \nu_{23} + \nu_{21}}{E_2} & 0\\ -\frac{\nu_{13} \nu_{32} + \nu_{12}}{E_1} & \frac{1 - \nu_{32} \nu_{23}}{E_2} & 0\\ 0 & 0 & \frac{1}{G_{12}} \end{bmatrix}$$

$$\begin{split} \underline{\underline{C}}_{\epsilon} &= \underline{\underline{S}}_{\epsilon}^{-1} = \frac{1}{\Delta_{s}} \left[ \begin{array}{ccc} \frac{1-\nu_{32}\nu_{23}}{E_{2}E_{3}} & \frac{\nu_{31}\nu_{23}+\nu_{21}}{E_{2}E_{3}} & 0 \\ \frac{\nu_{13}\nu_{32}+\nu_{12}}{E_{1}E_{3}} & \frac{1-\nu_{31}\nu_{13}}{E_{1}E_{3}} & 0 \\ 0 & 0 & \Delta_{s}G_{12} \end{array} \right] \\ \text{with} \qquad \Delta_{s} &= \frac{1-\nu_{12}\nu_{21}-\nu_{23}\nu_{32}-\nu_{31}\nu_{13}-\nu_{12}\nu_{23}\nu_{31}-\nu_{21}\nu_{32}\nu_{13}}{E_{1}E_{2}E_{3}} \end{split}$$

$$\sigma_{33} = \frac{1}{\Delta_s} \left\{ \frac{\nu_{12}\nu_{32} + \nu_{13}}{E_1 E_2} \, \epsilon_{11} + \frac{\nu_{21}\nu_{13} + \nu_{23}}{E_1 E_2} \, \epsilon_{22} \right\}$$

Piet Schreurs (TU/e) 660 / 694

#### Linear elastic orthotropic, plane stress

$$\epsilon_{33} = -\nu_{13}E_1^{-1}\sigma_{11} - \nu_{23}E_2^{-1}\sigma_{22}$$

$$\underline{\underline{S}}_{\sigma} = \left[ \begin{array}{ccc} E_1^{-1} & -\nu_{21}E_2^{-1} & 0 \\ -\nu_{12}E_1^{-1} & E_2^{-1} & 0 \\ 0 & 0 & G_{12}^{-1} \end{array} \right]$$

$$\underline{\underline{C}}_{\sigma} = \underline{\underline{S}}_{\sigma}^{-1} = \frac{1}{1 - \nu_{21}\nu_{12}} \begin{bmatrix} E_1 & \nu_{21}E_1 & 0 \\ \nu_{12}E_2 & E_2 & 0 \\ 0 & 0 & (1 - \nu_{21}\nu_{12})G_{12} \end{bmatrix}$$

$$\epsilon_{33} = -\frac{1}{1 - \nu_{12}\nu_{21}} \{ (\nu_{12}\nu_{23} + \nu_{13})\epsilon_{11} + (\nu_{21}\nu_{13} + \nu_{23})\epsilon_{22} \}$$

Piet Schreurs (TU/e) 661 / 694

#### Linear elastic transversal isotropic, 3D

$$\underline{\underline{S}} = \left[ \begin{array}{ccccc} E_{\rho}^{-1} & -\nu_{\rho}E_{\rho}^{-1} & -\nu_{3\rho}E_{3}^{-1} & 0 & 0 & 0 \\ -\nu_{\rho}E_{\rho}^{-1} & E_{\rho}^{-1} & -\nu_{3\rho}E_{3}^{-1} & 0 & 0 & 0 \\ -\nu_{\rho3}E_{\rho}^{-1} & -\nu_{\rho3}E_{\rho}^{-1} & E_{3}^{-1} & 0 & 0 & 0 \\ 0 & 0 & 0 & G_{\rho}^{-1} & 0 & 0 \\ 0 & 0 & 0 & 0 & G_{\rho3}^{-1} & 0 \\ 0 & 0 & 0 & 0 & 0 & G_{\beta3}^{-1} \end{array} \right]$$

with 
$$\frac{\nu_{p3}}{E_p} = \frac{\nu_{3p}}{E_3}$$

$$\underline{\underline{C}} = \underline{\underline{S}}^{-1} = \frac{1}{\Delta_s} \begin{bmatrix} \frac{1 - \gamma_{3\rho} \gamma_{\rho 3}}{E_{\rho} E_{3}} & \frac{\gamma_{3\rho} \gamma_{\rho 3} + \gamma_{\rho}}{E_{\rho} E_{3}} & \frac{\gamma_{\rho} \gamma_{3\rho} + \gamma_{3\rho}}{E_{\rho} E_{3}} & 0 & 0 & 0 \\ \frac{\gamma_{\rho 3} \gamma_{3\rho} + \gamma_{\rho}}{E_{\rho} E_{3}} & \frac{1 - \gamma_{3\rho} \gamma_{\rho 3}}{E_{\rho} E_{3}} & \frac{\gamma_{\rho} \gamma_{3\rho} + \gamma_{3\rho}}{E_{\rho} E_{3}} & 0 & 0 & 0 \\ \frac{\gamma_{\rho} \gamma_{\rho 3} + \gamma_{\rho 3}}{E_{\rho} E_{3}} & \frac{\gamma_{\rho} \gamma_{\rho 3} + \gamma_{\rho 3}}{E_{\rho} E_{\rho}} & \frac{1 - \gamma_{\rho} \gamma_{\rho}}{E_{\rho} E_{\rho}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \Delta_{s} G_{\rho} & 0 & 0 \\ 0 & 0 & 0 & \Delta_{s} G_{\rho} & 0 & 0 \\ 0 & 0 & 0 & 0 & \Delta_{s} G_{\rho 3} & 0 \\ 0 & 0 & 0 & 0 & 0 & \Delta_{s} G_{\rho 3} & 0 \end{bmatrix}$$

with 
$$\Delta_s = \frac{1 - \nu_p \nu_p - \nu_{p3} \nu_{3p} - \nu_{3p} \nu_{p3} - \nu_p \nu_{p3} \nu_{3p} - \nu_p \nu_{3p} \nu_{p3}}{E_p E_p E_3}$$

Piet Schreurs (TU/e) 662 / 694

# Linear elastic transversal isotropic, plane strain

$$\sigma_{33} = \frac{E_3 \nu_{\rho 3}}{E_{\rho}} (\sigma_{11} + \sigma_{22}) = \nu_{3\rho} (\sigma_{11} + \sigma_{22})$$

$$\underline{\underline{S}}_{\varepsilon} = \begin{bmatrix} \frac{1 - \nu_{3\rho} \nu_{\rho 3}}{E_{\rho}} & -\frac{\nu_{3\rho} \nu_{\rho 3} + \nu_{\rho}}{E_{\rho}} & 0\\ -\frac{\nu_{\rho 3} \nu_{3\rho} + \nu_{\rho}}{E_{\rho}} & \frac{1 - \nu_{3\rho} \nu_{\rho 3}}{E_{\rho}} & 0\\ 0 & 0 & \frac{1}{G_{\rho}} \end{bmatrix}$$

$$\begin{split} \underline{\underline{C}}_{\epsilon} &= \underline{\underline{S}}_{\epsilon}^{-1} = \frac{1}{\Delta_{s}} \begin{bmatrix} \frac{1-\nu_{3\rho}\nu_{\rho3}}{E_{\rho}E_{3}} & \frac{\nu_{3\rho}\nu_{\rho3}+\nu_{\rho}}{E_{\rho}E_{3}} & 0 \\ \frac{\nu_{\rho3}\nu_{3\rho}+\nu_{\rho}}{E_{\rho}E_{3}} & \frac{1-\nu_{3\rho}\nu_{\rho3}}{E_{\rho}E_{3}} & 0 \\ 0 & 0 & \Delta_{s}G_{\rho} \end{bmatrix} \\ \text{with} \qquad \Delta_{s} &= \frac{1-\nu_{\rho}\nu_{\rho}-\nu_{\rho3}\nu_{3\rho}-\nu_{3\rho}\nu_{\rho3}-\nu_{\rho}\nu_{\rho3}\nu_{3\rho}-\nu_{\rho}\nu_{\rho3}\nu_{\rho3}}{E_{\rho}E_{\rho}E_{3}} \end{split}$$

$$\sigma_{33} = \frac{1}{\Delta_s} \frac{\nu_{\rho 3}(\nu_{\rho} + 1)}{E_{\rho}^2} \left(\epsilon_{11} + \epsilon_{22}\right)$$

Piet Schreurs (TU/e) 663 / 694

## Linear elastic transversal isotropic, plane stress

$$\varepsilon_{33} = -\frac{\nu_{p3}}{E_p} (\sigma_{11} + \sigma_{22})$$

$$\underline{S}_{\sigma} = \begin{bmatrix}
E_p^{-1} & -\nu_p E_p^{-1} & 0 \\
-\nu_p E_p^{-1} & E_p^{-1} & 0 \\
0 & 0 & G_p^{-1}
\end{bmatrix}$$

$$\begin{split} \underline{\underline{C}}_{\sigma} &= \underline{\underline{S}}_{\sigma}^{-1} = \frac{1}{1 - \nu_{\rho} \nu_{\rho}} \begin{bmatrix} E_{\rho} & \nu_{\rho} E_{\rho} & 0 \\ \nu_{\rho} E_{\rho} & E_{\rho} & 0 \\ 0 & 0 & (1 - \nu_{\rho} \nu_{\rho}) G_{\rho} \end{bmatrix} \\ \varepsilon_{33} &= -\frac{\nu_{\rho 3}}{1 - \nu_{\rho}} \left( \varepsilon_{11} + \varepsilon_{22} \right) \end{split}$$

Piet Schreurs (TU/e) 664 / 694

#### Linear elastic isotropic, 3D

$$\underline{\underline{S}} = \frac{1}{E} \begin{bmatrix} 1 & -\mathbf{v} & -\mathbf{v} & 0 & 0 & 0 \\ -\mathbf{v} & 1 & -\mathbf{v} & 0 & 0 & 0 \\ -\mathbf{v} & -\mathbf{v} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2(1+\mathbf{v}) & 0 & 0 \\ 0 & 0 & 0 & 0 & 2(1+\mathbf{v}) & 0 \\ 0 & 0 & 0 & 0 & 0 & 2(1+\mathbf{v}) \end{bmatrix}$$

$$\underline{\underline{C}} = \underline{\underline{S}}^{-1} = \frac{\underline{\underline{E}}}{(1+\mathbf{v})(1-2\mathbf{v})}$$

$$\begin{bmatrix}
1-\mathbf{v} & \mathbf{v} & \mathbf{v} & 0 & 0 & 0 \\
\mathbf{v} & 1-\mathbf{v} & \mathbf{v} & 0 & 0 & 0 \\
\mathbf{v} & \mathbf{v} & 1-\mathbf{v} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2}(1-2\mathbf{v}) & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2}(1-2\mathbf{v}) & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2}(1-2\mathbf{v})
\end{bmatrix}$$

Piet Schreurs (TU/e) 665 / 694

## Linear elastic isotropic, plane strain

$$\sigma_{33}=\nu(\sigma_{11}+\sigma_{22})$$

$$\underline{\underline{S}}_{\varepsilon} = \frac{1+\nu}{E} \begin{bmatrix} 1-\nu & -\nu & 0 \\ -\nu & 1-\nu & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\underline{\underline{C}}_{\varepsilon} = \underline{\underline{S}}_{\varepsilon}^{-1} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & 0\\ \nu & 1-\nu & 0\\ 0 & 0 & \frac{1}{2}(1-2\nu) \end{bmatrix}$$

$$\sigma_{33} = \frac{E}{(1+\nu)(1-2\nu)} \nu(\varepsilon_{11} + \varepsilon_{22})$$

Piet Schreurs (TU/e) 666 / 694

## Linear elastic isotropic, plane stress

$$\varepsilon_{33} = -\frac{\nu}{E} (\sigma_{11} + \sigma_{22})$$

$$\underline{\underline{S}}_{\sigma} = \frac{1}{E} \begin{bmatrix} 1 & -\nu & 0 \\ -\nu & 1 & 0 \\ 0 & 0 & 2(1+\nu) \end{bmatrix}$$

$$\underline{\underline{C}}_{\sigma} = \underline{\underline{S}}_{\sigma}^{-1} = \frac{\underline{E}}{1 - \nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1}{2}(1 - \nu) \end{bmatrix}$$

$$\varepsilon_{33} = -\frac{\nu}{1 - \nu} \left(\varepsilon_{11} + \varepsilon_{22}\right)$$

Piet Schreurs (TU/e) 667 / 694

# WR for axi-symmetric deformation

back to index

# Weighted residual formulation for axi-symmetric deformation

$$\sigma_{rr,r} + \frac{1}{r}(\sigma_{rr} - \sigma_{tt}) + q_r = 0 \quad \forall \quad r \quad \leftrightarrow$$

$$\int_{V} w\{\sigma_{rr,r} + \frac{1}{r}(\sigma_{rr} - \sigma_{tt}) + q_r\} dV = 0 \quad \forall \quad w(r)$$

$$2\pi t \int_{R_i}^{R_o} w\{\sigma_{rr,r} + \frac{1}{r}(\sigma_{rr} - \sigma_{tt}) + q_r\} r dr = 0 \quad \forall \quad w(r)$$

Piet Schreurs (TU/e) 669 / 694

#### Weak formulation

$$w\sigma_{rr,r}r = w\frac{d\sigma_{rr}}{dr}r = \frac{d}{dr}(w\sigma_{rr}r) - \frac{dw}{dr}\sigma_{rr}r - w\sigma_{rr} \longrightarrow$$

$$\int_{R_i}^{R_o} (w_{,r}\sigma_{rr}r + w\sigma_{tt}) dr = \int_{R_i}^{R_o} wq_rr dr + [w\sigma_{rr}t]_{R_i}^{R_o} = f_e$$

Piet Schreurs (TU/e) 670 / 694

#### Linear elastic deformation

$$\sigma_{rr} = A_{p}\varepsilon_{rr} + Q_{p}\varepsilon_{tt} = A_{p}u_{r,r} + Q_{p}\frac{u_{r}}{f_{r}}$$

$$\sigma_{tt} = Q_{p}\varepsilon_{rr} + B_{p}\varepsilon_{tt} = Q_{p}u_{r,r} + B_{p}\frac{u_{r}}{r}$$

$$\int_{R_{i}}^{R_{o}} \left\{ w_{,r} \left( A_{p}u_{r,r} + Q_{p}\frac{u_{r}}{r} \right) r + w \left( Q_{p}u_{r,r} + B_{p}\frac{u_{r}}{r} \right) \right\} dr = f_{e}$$

Piet Schreurs (TU/e) 671 / 694

# FEM for axi-symmetric deformation

back to index

Finite element method for an axi-symmetric ring

Piet Schreurs (TU/e) 673 / 694

#### Discretisation



$$\sum_{e=1}^{ne} \int_{R_1}^{R_2} \left[ A_p w_{,r} u_{r,r} r + Q_p w_{,r} u_r + Q_p w u_{r,r} + B_p w \frac{1}{r} u_r \right] dr = \sum_{e=1}^{ne} f_e^e$$

Piet Schreurs (TU/e) 674 / 694

## Interpolation

$$u_r = \psi_1 u_1 + \psi_2 u_2$$

Galerkin 
$$\rightarrow$$
  $w = \psi_1 w_1 + \psi_2 w_2$ 

Piet Schreurs (TU/e) 675 / 694

#### Substitution

$$\begin{bmatrix} w_{1} & w_{2} \end{bmatrix} \int_{R_{1}}^{R_{2}} \left\{ A_{p} \begin{bmatrix} \psi_{1,r} \\ \psi_{2,r} \end{bmatrix} \begin{bmatrix} \psi_{1,r} & \psi_{2,r} \end{bmatrix} r + Q_{p} \begin{bmatrix} \psi_{1,r} \\ \psi_{2,r} \end{bmatrix} \begin{bmatrix} \psi_{1} & \psi_{2} \end{bmatrix} + Q_{p} \begin{bmatrix} \psi_{1} \\ \psi_{2,r} \end{bmatrix} \begin{bmatrix} \psi_{1} & \psi_{2} \end{bmatrix} + Q_{p} \begin{bmatrix} \psi_{1} \\ \psi_{2} \end{bmatrix} \begin{bmatrix} \psi_{1} & \psi_{2} \end{bmatrix} \begin{bmatrix} \psi_{1} & \psi_{2} \end{bmatrix} \begin{bmatrix} u_{r1} \\ u_{r2} \end{bmatrix} = \begin{bmatrix} w_{1} & w_{2} \end{bmatrix} f_{e}^{e}$$

$$\begin{bmatrix} w_{1} & w_{2} \end{bmatrix} \left\{ A_{p} \begin{bmatrix} \psi_{1,r}\psi_{1,r} & \psi_{1,r}\psi_{2,r} \\ \psi_{2,r}\psi_{1,r} & \psi_{2,r}\psi_{2,r} \end{bmatrix} r + Q_{p} \begin{bmatrix} \psi_{1,r}\psi_{1} & \psi_{1,r}\psi_{2} \\ \psi_{2,r}\psi_{1} & \psi_{2,r}\psi_{2} \end{bmatrix} + Q_{p} \begin{bmatrix} \psi_{1}\psi_{1,r} & \psi_{1}\psi_{2} \\ \psi_{2}\psi_{1,r} & \psi_{2}\psi_{2,r} \end{bmatrix} + B_{p} \begin{bmatrix} \psi_{1}\psi_{1} & \psi_{1}\psi_{2} \\ \psi_{2}\psi_{1} & \psi_{2}\psi_{2} \end{bmatrix} \frac{1}{r} \right\} dr \begin{bmatrix} u_{r1} \\ u_{r2} \end{bmatrix} = \begin{bmatrix} w_{1} & w_{2} \end{bmatrix} f_{e}^{e}$$

$$w^{eT} K^{e} u^{e} = w^{eT} f_{e}^{e}$$

Piet Schreurs (TU/e) 676 / 694

#### Integration

$$\begin{split} &K_{11}^{e} = \int_{R_{i}}^{R_{o}} \left[ A_{\rho} \psi_{1,r} \psi_{1,r} r + Q_{\rho} \psi_{1,r} \psi_{1} + Q_{\rho} \psi_{1} \psi_{1,r} + B_{\rho} \psi_{1} \psi_{1} \frac{1}{r} \right] dr \\ &K_{12}^{e} = \int_{R_{1}}^{R_{2}} \left[ A_{\rho} \psi_{1,r} \psi_{2,r} r + Q_{\rho} \psi_{1,r} \psi_{2} + Q_{\rho} \psi_{1} \psi_{2,r} + B_{\rho} \psi_{1} \psi_{2} \frac{1}{r} \right] dr \\ &K_{21}^{e} = \int_{R_{1}}^{R_{2}} \left[ A_{\rho} \psi_{2,r} \psi_{1,r} r + Q_{\rho} \psi_{2,r} \psi_{1} + Q_{\rho} \psi_{2} \psi_{1,r} + B_{\rho} \psi_{2} \psi_{1} \frac{1}{r} \right] dr \\ &K_{22}^{e} = \int_{R_{1}}^{R_{2}} \left[ A_{\rho} \psi_{2,r} \psi_{2,r} r + Q_{\rho} \psi_{2,r} \psi_{2} + Q_{\rho} \psi_{2} \psi_{2,r} + B_{\rho} \psi_{2} \psi_{2} \frac{1}{r} \right] dr \end{split}$$

Piet Schreurs (TU/e) 677 / 694

#### External load

$$f_e = \int_{R_i}^{R_o} w q_r r \, dr + [w \sigma_{rr} r]_{R_i}^{R_o} = \sum_{e=1}^{ne} \int_{R_1}^{R_2} w q_r r \, dr + [w \sigma_{rr} r]_{R_i}^{R_o} = \sum_{e=1}^{ne} q_e^e + [w \sigma_{rr} r]_{R_i}^{R_o}$$

Piet Schreurs (TU/e) 678 / 694

## Volume load = centrifugal load

$$\begin{split} q_{e}^{e} &= \rho \omega^{2} \int_{R_{1}}^{R_{2}} w r^{2} dr = \left[ \begin{array}{cc} w_{1} & w_{2} \end{array} \right] \rho \omega^{2} \int_{R_{1}}^{R_{2}} \left[ \begin{array}{c} \psi_{1} \\ \psi_{2} \end{array} \right] r^{2} dr = \underline{w}^{eT} \underline{q}^{e} \\ f_{e}^{e} &= \underline{w}^{eT} \underline{q}^{e} + w_{o} \sigma_{rr} (r = R_{o}) R_{o} - w_{i} \sigma_{rr} (r = R_{i}) R_{i} \end{split}$$

Piet Schreurs (TU/e) 679 / 694

## Assembling

$$\underline{w}^T \underline{K} \underline{u} = \underline{w}^T \underline{f}_e \quad \forall \quad \underline{w} \qquad \Rightarrow \quad \underline{K} \underline{u} = \underline{f}_e$$

Piet Schreurs (TU/e) 680 / 694

# **Boundary conditions**

Piet Schreurs (TU/e) 681 / 694

# FEM for planar deformation

back to index

### Four-node quadrilateral element



interpolation (shape) functions bi-linear in  $(\xi_1, \xi_2)$ 

$$\begin{split} & \textit{N}^1 = \tfrac{1}{4}(1-\xi_1)(1-\xi_2) \quad ; \quad \textit{N}^2 = \tfrac{1}{4}(1+\xi_1)(1-\xi_2) \\ & \textit{N}^3 = \tfrac{1}{4}(1+\xi_1)(1+\xi_2) \quad ; \quad \textit{N}^4 = \tfrac{1}{4}(1-\xi_1)(1+\xi_2) \end{split}$$

Piet Schreurs (TU/e) 683 / 694

# Shape functions



Piet Schreurs (TU/e) 684 / 694

## Cartesian coordinate system

displacement

displacement 
$$\begin{bmatrix} u_x \\ u_y \end{bmatrix} = \begin{bmatrix} N^1 & 0 & N^2 & 0 & N^3 & 0 & N^4 & 0 \\ 0 & N^1 & 0 & N^2 & 0 & N^3 & 0 & N^4 \end{bmatrix} \begin{bmatrix} u_x^1 \\ u_y^1 \\ u_x^2 \\ u_y^2 \\ u_x^3 \\ u_y^4 \\ u_y^4 \end{bmatrix} \rightarrow \underline{u} = \underline{N} \, \underline{u}^e$$
 element shape 
$$\underline{x} = \underline{N} \, \underline{x}^e \quad ; \quad \underline{x}_0 = \underline{N} \, \underline{x}_0^e$$
 weighting function 
$$\underline{w} = N \, \underline{w}^e$$

weighting function

$$\dot{x} = \underline{N} \dot{x}^e \quad ; \quad \dot{x}_0 = \underline{N} \dot{x}^e$$

$$w = N w^e$$

Piet Schreurs (TU/e) 685 / 694

#### **Derivatives**

$$\begin{bmatrix} u_{x,x} \\ u_{y,y} \\ u_{y,x} \\ u_{x,y} \end{bmatrix} = \begin{bmatrix} N_{,x}^{1} & 0 & N_{,x}^{2} & 0 & N_{,x}^{3} & 0 & N_{,x}^{4} & 0 \\ 0 & N_{,y}^{1} & 0 & N_{,y}^{2} & 0 & N_{,y}^{3} & 0 & N_{,x}^{4} \\ 0 & N_{,x}^{1} & 0 & N_{,x}^{2} & 0 & N_{,x}^{3} & 0 & N_{,x}^{4} \\ N_{,y}^{1} & 0 & N_{,y}^{2} & 0 & N_{,y}^{3} & 0 & N_{,y}^{4} & 0 \end{bmatrix} \begin{bmatrix} u_{x}^{1} \\ u_{y}^{1} \\ u_{x}^{2} \\ u_{y}^{2} \\ u_{x}^{3} \\ u_{y}^{4} \\ u_{x}^{4} \end{bmatrix} \rightarrow \left( \underline{L}_{\underline{z}u} \right)_{t} = \underline{B} \, \underline{u}^{e}$$

$$\begin{bmatrix} N_{,x}^{1} & N_{,y}^{1} \\ N_{,x}^{2} & N_{,y}^{2} \\ N_{,x}^{3} & N_{,y}^{3} \\ N_{,x}^{4} & N_{,y}^{4} \end{bmatrix} = \begin{bmatrix} N_{,1}^{1} & N_{,2}^{1} \\ N_{,1}^{2} & N_{,2}^{2} \\ N_{,1}^{3} & N_{,2}^{3} \\ N_{,1}^{4} & N_{,2}^{4} \end{bmatrix} \begin{bmatrix} \xi_{1,x} & \xi_{1,y} \\ \xi_{2,x} & \xi_{2,y} \end{bmatrix} = \begin{bmatrix} N_{,1}^{1} & N_{,2}^{1} \\ N_{,1}^{2} & N_{,2}^{2} \\ N_{,1}^{4} & N_{,2}^{4} \end{bmatrix} \underline{J}^{-T}$$

$$\underline{J} = \begin{bmatrix} x_{,1} & y_{,1} \\ x_{,2} & y_{,2} \end{bmatrix} = \begin{bmatrix} N_{,1}^{1} & N_{,2}^{2} & N_{,3}^{3} & N_{,4}^{4} \\ N_{,2}^{1} & N_{,2}^{2} & N_{,3}^{3} & N_{,2}^{4} \end{bmatrix} \begin{bmatrix} x_{e}^{1} & y_{e}^{1} \\ x_{e}^{2} & y_{e}^{2} \\ x_{e}^{3} & y_{e}^{3} \\ x_{e}^{4} & y_{e}^{4} \end{bmatrix}$$

Piet Schreurs (TU/e) 686 / 694

#### Deformation matrix

$$\underline{F} = \begin{bmatrix} \frac{\partial x}{\partial x_0} & \frac{\partial x}{\partial y_0} & 0\\ \frac{\partial y}{\partial x_0} & \frac{\partial y}{\partial y_0} & 0\\ 0 & 0 & F_{zz} \end{bmatrix}$$

$$\begin{bmatrix} \frac{\partial x}{\partial x_0} & \frac{\partial y}{\partial x_0} \\ \frac{\partial x}{\partial y_0} & \frac{\partial y}{\partial y_0} \end{bmatrix} = \begin{bmatrix} N_{,x_0}^1 & N_{,x_0}^2 & N_{,x_0}^3 & N_{,x_0}^4 \\ N_{,y_0}^1 & N_{,y_0}^2 & N_{,y_0}^3 & N_{,y_0}^4 \end{bmatrix} \begin{bmatrix} x_e^1 & y_e^1 \\ x_e^2 & y_e^2 \\ x_e^3 & y_e^3 \\ x_e^4 & y_e^4 \end{bmatrix}$$

$$= \begin{bmatrix} \xi_{1,x_0} & \xi_{2,x_0} \\ \xi_{1,y_0} & \xi_{2,y_0} \end{bmatrix} \begin{bmatrix} N_{1}^1 & N_{1}^2 & N_{1}^3 & N_{1}^4 \\ N_{,2}^1 & N_{,2}^2 & N_{,2}^3 & N_{,2}^4 \end{bmatrix} \begin{bmatrix} x_e^1 & y_e^1 \\ x_e^2 & y_e^2 \\ x_e^3 & y_e^3 \\ x_e^4 & y_e^4 \end{bmatrix}$$

$$= \underline{J}_0^{-1} \underline{J}$$

Piet Schreurs (TU/e) 687 / 694

# Cylindrical coordinate system

Piet Schreurs (TU/e)

 $r = \tilde{N}^T \tilde{r}$  ;  $z = \tilde{N}^T \tilde{z}$   $r_0 = \tilde{N}^T \tilde{r}_0$  ;  $z_0 = \tilde{N}^T \tilde{z}_0$ element shape  $w = N w^e$ weighting function

688 / 694

#### **Derivatives**

$$\begin{bmatrix} u_{r,r} \\ u_{z,z} \\ \frac{1}{r}u_{r} \\ u_{z,r} \\ u_{r,z} \end{bmatrix} = \begin{bmatrix} N_{,r}^{1} & 0 & N_{,r}^{2} & 0 & N_{,r}^{3} & 0 & N_{,r}^{4} & 0 \\ 0 & N_{,z}^{1} & 0 & N_{,z}^{2} & 0 & N_{,z}^{3} & 0 & N_{,z}^{4} \\ \frac{1}{r}N^{1} & 0 & \frac{1}{r}N^{2} & 0 & \frac{1}{r}N^{3} & 0 & \frac{1}{r}N^{4} & 0 \\ 0 & N_{,r}^{1} & 0 & N_{,r}^{2} & 0 & N_{,r}^{3} & 0 & N_{,r}^{4} \\ N_{,z}^{1} & 0 & N_{,z}^{2} & 0 & N_{,z}^{3} & 0 & N_{,z}^{4} & 0 \end{bmatrix} \begin{bmatrix} u_{r}^{1} \\ u_{z}^{2} \\ u_{r}^{2} \\ u_{r}^{2} \\ u_{r}^{3} \\ u_{z}^{3} \\ u_{z}^{4} \\ u_{z}^{4} \end{bmatrix}$$

$$\rightarrow \left( \underline{L}_{zu} \right)_{t} = \underline{B}\underline{u}^{e}$$

$$\begin{bmatrix} N_{,r}^{1} & N_{,z}^{1} \\ N_{,r}^{2} & N_{,z}^{2} \\ N_{,r}^{3} & N_{,z}^{3} \\ N_{,t}^{4} & N_{,t}^{4} \end{bmatrix} = \begin{bmatrix} N_{1}^{1} & N_{1}^{1} \\ N_{1}^{2} & N_{2}^{2} \\ N_{1}^{3} & N_{2}^{3} \\ N_{,t}^{4} & N_{,2}^{4} \end{bmatrix} \begin{bmatrix} \xi_{1,r} & \xi_{1,z} \\ \xi_{2,r} & \xi_{2,z} \end{bmatrix} = \begin{bmatrix} N_{1}^{1} & N_{1}^{1} \\ N_{1}^{2} & N_{2}^{2} \\ N_{1}^{3} & N_{2}^{3} \\ N_{1}^{4} & N_{2}^{4} \end{bmatrix} \underline{I}^{-T}$$

$$\underline{J} = \begin{bmatrix} r_{,1} & z_{,1} \\ r_{,2} & z_{,2} \end{bmatrix} = \begin{bmatrix} N_{,1}^{1} & N_{,1}^{2} & N_{,1}^{3} & N_{,1}^{4} \\ N_{,2}^{1} & N_{,2}^{2} & N_{,2}^{3} & N_{,2}^{4} \end{bmatrix} \begin{bmatrix} r_{e}^{1} & z_{e}^{1} \\ r_{e}^{2} & z_{e}^{2} \\ r_{e}^{3} & z_{e}^{3} \\ r_{e}^{4} & z_{e}^{4} \end{bmatrix}$$

Piet Schreurs (TU/e) 689 / 694

#### Deformation matrix

$$\underline{F} = \begin{bmatrix} \frac{\partial r}{\partial r_0} & \frac{\partial r}{\partial z_0} & 0\\ \frac{\partial z}{\partial r_0} & \frac{\partial z}{\partial z_0} & 0\\ 0 & 0 & \frac{r}{r_0} \end{bmatrix}$$

$$\begin{bmatrix} \frac{\partial r}{\partial r_{0}} & \frac{\partial z}{\partial r_{0}} \\ \frac{\partial r}{\partial r_{0}} & \frac{\partial z}{\partial z_{0}} \end{bmatrix} = \begin{bmatrix} N_{,r_{0}}^{1} & N_{,r_{0}}^{2} & N_{,r_{0}}^{3} & N_{,r_{0}}^{4} \\ N_{,z_{0}}^{1} & N_{,z_{0}}^{2} & N_{,z_{0}}^{3} & N_{,z_{0}}^{4} \end{bmatrix} \begin{bmatrix} r_{e}^{1} & z_{e}^{1} \\ r_{e}^{2} & z_{e}^{2} \\ r_{e}^{3} & z_{e}^{3} \\ r_{e}^{4} & z_{e}^{4} \end{bmatrix}$$

$$= \begin{bmatrix} \xi_{1,r_{0}} & \xi_{2,r_{0}} \\ \xi_{1,z_{0}} & \xi_{2,z_{0}} \end{bmatrix} \begin{bmatrix} N_{1}^{1} & N_{1}^{2} & N_{1}^{3} & N_{1}^{4} \\ N_{,2}^{1} & N_{,2}^{2} & N_{,2}^{3} & N_{,2}^{4} \end{bmatrix} \begin{bmatrix} r_{e}^{1} & z_{e}^{1} \\ r_{e}^{2} & z_{e}^{2} \\ r_{e}^{3} & z_{e}^{3} \\ r_{e}^{4} & z_{e}^{4} \end{bmatrix}$$

$$= \underline{J_{0}^{-1}}\underline{J}$$

Piet Schreurs (TU/e) 690 / 694

# Numerical integration



| ip | ξ,1                    | ξ,2                    | ζ |
|----|------------------------|------------------------|---|
| 1  | $-\frac{1}{3}\sqrt{3}$ | $-\frac{1}{3}\sqrt{3}$ | 1 |
| 2  | $\frac{1}{3}\sqrt{3}$  | $-\frac{1}{3}\sqrt{3}$ | 1 |
| 3  | $-\frac{1}{3}\sqrt{3}$ | $\frac{1}{3}\sqrt{3}$  | 1 |
| 4  | $\frac{1}{3}\sqrt{3}$  | $\frac{1}{3}\sqrt{3}$  | 1 |

Piet Schreurs (TU/e) 691 / 694

## Eight-node quadrilateral element



interpolation functions quadratic in  $(\xi_1, \xi_2)$ 

$$\begin{array}{ll} \textit{N}^1 = \frac{1}{4}(\xi_1 - 1)(\xi_2 - 1)(-\xi_1 - \xi_2 - 1) & \textit{N}^5 = \frac{1}{2}(\xi_1^2 - 1)(\xi_2 - 1) \\ \textit{N}^2 = \frac{1}{4}(\xi_1 + 1)(\xi_2 - 1)(-\xi_1 + \xi_2 + 1) & \textit{N}^6 = \frac{1}{2}(-\xi_1 - 1)(\xi_2^2 - 1) \\ \textit{N}^3 = \frac{1}{4}(\xi_1 + 1)(\xi_2 + 1)(\xi_1 + \xi_2 - 1) & \textit{N}^7 = \frac{1}{2}(\xi_1^2 - 1)(-\xi_2 - 1) \\ \textit{N}^4 = \frac{1}{4}(\xi_1 - 1)(\xi_2 + 1)(\xi_1 - \xi_2 + 1) & \textit{N}^8 = \frac{1}{2}(\xi_1 - 1)(\xi_2^2 - 1) \end{array}$$

Piet Schreurs (TU/e) 692 / 694

# Shape functions



Piet Schreurs (TU/e) 693 / 694

## Numerical integration



$$a = 0.77459$$
;  $p = 0.55556$ ;  $q = 0.88889$ 

| ip | ξ1 | ξ2 | ζ            |
|----|----|----|--------------|
| 1  | —а | -а | $p \times p$ |
| 2  | 0  | -а | $p \times q$ |
| 3  | а  | -а | $p \times p$ |
| 4  | —а | 0  | $p \times q$ |
| 5  | 0  | 0  | $q \times q$ |
| 6  | а  | 0  | $p \times q$ |
| 7  | —а | а  | $p \times p$ |
| 8  | 0  | а  | $p \times q$ |
| 9  | а  | а  | $p \times p$ |

Piet Schreurs (TU/e) 694 / 694