Formulario Fisica

1 Cinetica e Moti

Moto Rettilineo Uniforme

Velocità costante

- Legge Oraria : $x_f(t) = x_i \cdot V_x(t)$
- Velocità media $V_{x,med}$ uguale a velocità instantanea costante

Moto Accellerato

- Velocità Istantanea istante t_i : $V_x(t_i) = V_{x,i}$
- Accelerazione Media : $a_{x,med} = rac{V_{xf} V_{xi}}{t_f t_i}$
- Accelerazione Istantanea : $a_x(t_i) = [V_x(t)]' = [x(t)]''$

Moto Rettilineo Uniformemente Accellerato

- Accelerazione media = accelerazione istantanea $a_{x,med}=a_x$
- Velocità : $V_x(t) = V_{x0} + a_x t$
- Legge oraria : $x(t)=x_0+V_{x0}+rac{1}{2}a_xt^2$
- **Gravità** : $g=9.81\frac{m}{s^2}$, se corpo sale $a_x=-g$, altrimenti $a_x=g$

Vettori

- Modulo Vettore : $|\vec{V}|$
- Vettore : \vec{V}
- Direzione, Verso : Retta lungo la quale giace il vettore, orientamento del vettore
- Componenti Vettore : \vec{V}_x, \vec{V}_y
 - $V_x = V\cos(\theta), V_y = \sin(\theta)$
- Fase del vettore : Angolo $\theta \implies \arctan(\frac{V_y}{V_x}), V_x > 0; \arctan(\frac{V_y}{V_x}) + \pi, V_x < 0$

Moto Bidimensionale

Accelerazione costante

- Vettore spostamento del corpo : $\Delta ec{r} = ec{r}_f ec{r}_i$
- Velocità media : $\Delta \vec{V}_{med} = \frac{\Delta \vec{r}}{\Delta t}$
- Velocità istantanea : $ec{V} = [ec{r}(t)]^d$
 - Comp x : $V_x(t) = V_{x0} + a_x t$
 - Comp y : $V_y(t) = V_{y0} + a_y t$
- Accelerazione media : $\vec{a}_{med} = \frac{\Delta \vec{V}}{\Delta t}$
- Accelerazione istantanea : $ec{a} = [ec{r}(t)]''$
- Legge oraria : $\vec{r(t)} = \vec{r_0} + \vec{V_0}t + \frac{1}{2}\vec{a}t^2$
 - Comp x : $x(t) = x_0 + V_{x0}t + \frac{1}{2}a_xt^2$
 - Comp y : $y(t) = y_0 + V_{y0}t + \frac{1}{2}a_yt^2$

Moto Proiettile

 $\vec{a}=\vec{g}$ verso il basso costante; istante t=0 il corpo si trova in pos (0,0) con velocità \vec{V}_0 che forma angolo θ_0 con semiasse

- Accelerazione : $\vec{a} = -\vec{g} * \hat{j}$
- Componenti vettore velocità : $egin{cases} V_{x0} = V_0\cos(heta_0) \ V_{y0} = V_0\sin(heta_0) \end{cases}$
- Componenti vettore velocità istantanea : $\begin{cases} V_x(t) = V_0 \cos(\theta_0)(costante) \\ V_y(t) = V_0 \sin(\theta_0) gt \end{cases}$ Componenti vettore posizione in funzione di t : $\begin{cases} x(t) = V_0 \cos(\theta_0)t \\ y(t) = V_0 \sin(\theta_0)t \frac{1}{2}gt^2 \end{cases}$

- Gittata : Distanza orizzontale tra la pos di partenza e l'istante in cui il corpo ritorna y=0; formula : $D=\frac{V_0^2}{2g}\sin(2\theta_0)$, assume val max quando $\theta_0=45^\circ$, oppure $D=x(\tilde{t})=V_x o \tilde{t}$
- Formula che lega velocità e posizione : $(V_x(t))^2 = V_{x0}^2 + 2a_x(x(t)-x_0)$, vale anche per y(t)

Moto circolare uniforme

Traiettoria circolare

- Modulo velocità istantanea costante : $\left| ec{V}(t)
 ight| = V_0$
- Angolo : $\Delta \theta$ tra $\vec{r_1}, \vec{r_2} = \vec{V_1}, \vec{V_2}$
- Variazione vettore velocità : $\left|\Delta ec{V} \right| = 2 V_0 \sin(\frac{\Delta heta}{2})$
- Accelerazione vettoriale media : $ec{a}_{med} = rac{\Delta ec{V}}{\Delta t}$
- Accelerazione vettoriale istantanea : $ec{a}=\lim_{\Delta t o 0} rac{\Delta ec{V}}{\Delta t}$
 - Usando il raggio vale $a=\left|ec{a}\right|=rac{V_0^2}{R}, R=$ raggio
 - ullet diretta verso il centro ad ogni istante t, quindi si chiama **acc. centripeta**
- **Periodo** : Istante necessario a completare un giro completo, $T=\frac{2\pi r}{V_0}$
- ullet Frequenza : Numero di giri in un secondo, $f=rac{1}{T}=rac{V}{2\pi r}$, misura "Hertz"
- **Velocità angolare** : Angolo per unità di tempo, $\omega = \frac{2\pi}{T} = 2\pi f$, miusra rad/s
- Legame tra V_0, ω : $V_0 = \omega^2 R$
- Componenti acc. vettoriale istantanea :

$$\begin{cases} \vec{a_r} = ext{componente radiale} = ext{acc. radiale} \implies \vec{a_r} = rac{V^2}{R}, R = ext{Raggio della circonferenza osculatrice} \ \vec{a_t} = ext{componente tangenziale} = ext{acc. tangenziale} \implies \vec{a_r} = \left| rac{\Delta |\vec{V}|}{\Delta t} \right| \end{cases}$$

2 Dinamica

Leggi del moto

Ricorda, la proiezione di una forza su asse $x \in F\cos(\theta)$ e proiezione forza su asse $y \in F\sin(\theta)$, occhio ai segni. Se si tratta di piano inclinato la situazione si ribalta.

Se velocità costante, allora accelerazione nulla

- Forza risultante : Somma delle forze agenti sul corpo, si miusura in N(Newton)
 - Prima legge della dinamica : Se la forza risultante su un corpo è nulla \implies il corpo ha Accelerazione nulla
 - Seconda legge dinamica : $m ec{a} = \sum\limits_{k=1}^n ec{F}_k, ec{F}_k =$ forze agenti sul corpo
- ullet Forza gravitazionale : ec F g peso, risulta ec F g = m ec g
 - **Terza legge dinamica** : Dati 2 corpi A e B tra loro interaggenti, la forza esercitata da A su B è uguale alla forza esercitata da B su A, con stessa direzione ma verso opposto, $\vec{F}_{AB} = -\vec{F}_{BA}$
- Corpo fermo su piano orizzontale : La forza peso mg e la reazione vincolare N si annullano a vicenda, per la 2 legge din vale $\vec{N} + m\vec{q} = 0 \implies \vec{N} = m\vec{q}$
- Situazione di equilibrio : La somma delle forze agenti deve essere nulla (vale anche per attrito)
- Se chiede modulo max forza tale che corpo rimane attaccato a sup.piana, deve valere che la reazione vincolare ≥ 0 , quindi prima fai calcoli per trovare N e poi metti condizione ≥ 0

Applicazioni leggi del moto

Forza attrito statico/dinamico sono forze che si oppongono al moto

- Forza attrito dinamico : Resistenza al moto, vale $F_d = \mu_d N$, con $\mu_d =$ coeff. di attrito dinamico
 - Lavoro forza attrito dinamico : $F_d*\Delta \vec{s}, \Delta \vec{s}=$ spostamento del corpo
- Forza attrito statico : Resistenza al moto quando corpo rimane fermo, risulta $F_s \le \mu_s N$, con $\mu_s =$ coeff. di attrito statico
- Per trovare modulo max di F_d = derivata di F_d trovata durante i calcoli, posta ≥ 0 , da li esce $\tan(\theta) \leq \operatorname{qualcosa} e$ poi $\theta \leq \arctan(\theta)$, poi sostituisci in F_d il $\theta_1 = \arctan(\theta)$
- Per calcolare μ_s minimo basta svolgere i calcoli e risolvere l'eq. $F_S \leq \mu_s N$, con F_s ottenuta tramite calcoli

Dinamica del moto circolare uniforma

Velocità \vec{V} e acc. centripeta $\vec{a_c}$ costanti e $\vec{a_c} \perp \vec{V}$ Perpendicolari

• Tensione cavo : $T=m\left|ec{a_c}
ight|=mrac{V^2}{I}$

Moto viscoso

Il mezzo in cui si muove il corpo si oppone al moto del corpo, esercitando forza frenante

- ullet Forza frenante con modulo proporzionale alla velocità del corpo : $ec{F}_r = -bec{V}$
 - Velocità con cond. iniz. $V_x(0)=0$: $V_x(t)'=g-rac{b}{m}V_x(t)$, con $a_x(t)=V_x(t)'$
 - Velocità limite : $V_l = \frac{mg}{h}$, quindi
 - $V_x(t) = \frac{mg}{b}(1 e^{-\frac{bt}{m}}) = V_l(1 e^{-\frac{t}{ au}})$
- Forza frenante con modulo proporzionale al quadrato della velocità del corpo : $\vec{F}_r = \frac{1}{2}D\rho AV^2$, con D= coeff. di attrito viscoso, $\rho=$ densità aria, A= sez. trasversale perpendicolare alla velocità
 - Velocità con cond. iniz. $V_x(0)=0$: $V_x(t)'=g-rac{D
 ho A}{2m}(V_x(t))^2$, con $a_x(t)=V_x(t)'$
 - Velocità limite : $V_l = \sqrt{rac{2mg}{D
 ho A}}$

Energia e Lavoro

- Lavoro di una forza costante : $W=\left|ec{F}\right|\cos(heta)\left|\Deltaec{r}\right|$, con $\left|\Deltaec{r}\right|$ = spostamento del corpo (x_f-x_i)
 - Misura : $10^{-7}J(Joule)$
 - Lavoro forza peso : $W_p = -mg(y_f y_i) = mgy_i mgy_f$
- Una forza applicata al corpo non compie lavoro se :
 - · Corpo fermo
 - Se $|\Delta \vec{r}|$ perpendicolare a \vec{F} (es. se un corpo si sposta su una sup, la reazione vincolare \vec{N} risulta perpendicolare al vettore ist. del corpo velocità ad ogni istante, quindi \vec{N} non compie lavoro)
- Lavoro di una forza *variabile* : $W(\vec{r_0} \to \vec{r_1}) = \int_{t_0}^{t_1} [\vec{F}(t)\vec{V}(t)] dt$, indica lavoro svolto da forza agente sul corpo affinchè si sposti da pos. $r_0(ist.\ t_0)$ a $r_1(ist.\ t_1)$

Legge di Hooke e Forza elastica

Corpo poggiato su piano orizz. con attrito trascurabile. Il corpo è attaccato a un'estremità di una mollta, l'altra estremità della molla att. a parete

- Legge di Hooke : $F_x = -k(x-l)$, con l = lunghezza a riposo della molla, k = costante elastica misura $\frac{N}{m}$
- · La forza elastica è forza di richiamo
- Nei calcoli si mette l'origine dell'asse x dove la molla sta a riposo, cosi vale $F_x = -kx$
- Lavoro forza elastica : $W_{el}=(x_i
 ightarrow x_f)=rac{1}{2}k(x_i^2-x_f^2)$

Energia Cinetica e TH Energia Cinetica

- Energia cinetica : $K = \frac{1}{2}m{|V|}^2$ misura in J(Joule)
- TH energia cinetica : Il lavoro della risultante delle forze agenti sul corpo è uguale alla variazione di en. cinetica, $W_{tot} = K_f K_i$

Potenza

 ΔW lavoro costante da una forza nell'intervallo Δt

- Potenza media : $\mathbb{P} = rac{\Delta W}{\Delta t}$
- Potenza istantanea : $\mathbb{P}(t) = \vec{F}(t) \vec{V}(t)$, misura in W(Watt)
- ullet Energia potenziale gravitazionale : $U_p(y)=mgy$, quindi $W_p=-\Delta U_p$
- ullet Energia meccanica con forza peso : $E_m=rac{1}{2}mig|ec{V}ig|^2+mgy=K+U_p$
 - Sotto l'azione della sola forza peso, l'energia meccanica si conserva
- Energia potenziale elastica : $U_{el} = -\frac{1}{2}kx^2$
- ullet Energia meccanica con forza elastica : $E_m=rac{1}{2}m{\left|ec{V}
 ight.}^2+rac{1}{2}kx^2=K+U_{el}$
 - Sotto l'azione della sola forza elastica, l'energia meccanica si conserva
- Forze conservative : Forza peso, Forza Elastica
- Equilibrio stabile sotto forza cons. : punto di minimo relativo per la funzione di energia potenziale

- Equilibrio stabile sotto forza non cons. : punto di massimo relativo per la funzione di energia potenziale
- Equilibrio indifferente : Funzione energia potenziale costante per un certo tratto

3 Quantità di moto

- Quantità di moto : $ec{
 ho}(t)=mec{V}(t)$
- · La somma delle quantità di moto di un sistema isolato si conserva
- ullet Espressioe generale della 2 legge dinamica : $ec{F}_{ris} = (ec{
 ho}(t))'$
- Legge di conservazione della quantità di moto : $ec{
 ho_{tot}}(t)=ec{
 ho_1}(t)+ec{
 ho_2}(t)$ costante
 - A N corpi arbitrari vale : $\sum\limits_{i=1}^{N}ec{
 ho}_{i}(t)$
- Conservazione quantità di moto : $ho_{tot,f,x}=
 ho_{tot,i,x}$ implica che c.d.m si muove di moto rettilineo unif.

Impulsi e quantità di moto

- ullet Variazione della quantità di moto di un corpo sottoposto alla forza $ec F_{ris}$: $\Delta ec
 ho(t_i o t_f)=\int_{t_i}^{t_f}ec F_{ris}(t)\,dt$
- Impulso : Quantità $ec{I}=\Deltaec{
 ho}(t_i o t_f)$ oppure $I=ec{
 ho}_f-ec{
 ho}_i$
- Forza media : $\vec{F}_{med} = \frac{\Delta \vec{\rho}}{\Delta t}$

Urti unidimensionali

- Urto : Interazione tra due corpi che avviene in un intervallo breve di tempo
 - Se il sistema è isolato, la quantità di moto totale si conserva
 - Urto anelastico : Quando energia cinetica totale non si conserva
 - totalmente anelastico quando i due corpi rimangono attaccati
 - Urto elastico : Quando energia cinetica totale si conserva
- Velocità finale urti totalmente anelastici : $V_{fx} = (m_1 V_{1,i,x} + m_2 V_{2,i,x})/(m_1 + m_2)$
- $\text{ Velocità finale urti elastici}: \begin{cases} V_{1,f,x} = (\frac{m_1-m_2}{m_1+m_2})V_{1,i,x} + (\frac{2m_2}{m_1+m_2})V_{2,i,x} \\ V_{2,f,x} = (\frac{2m_1}{m_1+m_2})V_{1,i,x} + (\frac{m_2-m_1}{m_1+m_2})V_{2,i,x} \end{cases}$
 - · Casi generali

$$\begin{array}{l} \bullet \quad m_1=m_2 \text{, vale} \ \begin{cases} V_{1,f,x}=V_{2,i,x} \\ V_{2,f,x}=V_{1,i,x} \end{cases} \\ \bullet \quad V_{2,i,x}=0 \text{ vale} \ \begin{cases} V_{1,f,x}=(\frac{m_1-m_2}{m_1+m_2})V_{1,i,x} \\ V_{2,f,x}=(\frac{2m_1}{m_1+m_2})V_{1,i,x} \end{cases} \end{cases}$$

Urti bidimensionali

- Legge di conservazione della quantità di moto : $ec{
 ho}_{1f}+ec{
 ho}_{2f}=ec{
 ho}_{1i}+ec{
 ho}_{2i}$
- Caso in cui corpo 1 urta corpo 2, inizialmente fermo : $egin{cases}
 ho_{1,f,x}+
 ho_{2,f,x}=
 ho_{1,i,x} \
 ho_{1,f,y}+
 ho_{2,f,y}=
 ho_{1,i,y} \end{cases}$

$$\left\{egin{aligned} ec{V}_{1f} &= V_{1f}\cos(heta) ilde{i} + V_{1f}\sin(heta) ilde{j} \ ec{V}_{2f} &= V_{2f}\cos(\phi) ilde{i} + V_{2f}\sin(\phi) ilde{j} \end{aligned}
ight.$$

- Legge di conservazione della quantità di moto : $egin{cases} m_1V_{1f}\cos(\theta)+m_2V_{2f}\cos(\phi)=m_1V_{1,i} \\ m_1V_{1f}\sin(\theta)+m_2V_{2f}\sin(\phi)=0 \end{cases}$
 - Se l'urto è elastico bisogna aggiungere la cond. $E_{tot,f}=E_{tot,i}$

Centro di massa di un sistema

- **Velocità centro di massa** : $\vec{V}_{cm}(t)=rac{\vec{P}_{tot}(t)}{M_{tot}}$, con \vec{P}_{tot} = quantità di moto tot. , M_{tot} = massa totale
 - ullet Andamento temporale velocità c.d.m = $V_{cm}(t) = V_0 + a_x t$
- ullet Se il sistema è isolato o la risultante è nulla, risulta $ec{P}_{tot}$ = costante e quindi $ec{V}_{cm}(t)$ = costante
- Accelerazione centro di massa : $\vec{a}_{cm}(t)=rac{1}{M_{tot}}\vec{F}_{e,tot}(t)$, con $\vec{F}_{e,tot}$ = F. agente esterna totale
 - Si **può trovare anche** usando la velocità angolare, così $a_{cm}=\omega^2\cdot r$, con r= distanza tra perno e centro di massa, nella sbarra $r=\frac{L}{2}$
 - Uguale ad acc. centripeta nel moto circolare e rotatorio
- ullet Prima equazione cardinale della dinamica dei sistemi di punti materiali : $(ec{P}_{tot}(t))' = ec{F}_{e,tot}$, e quindi $mec{a_{cm}} = ec{F}_{e,tot}$

Determinazione centro di massa

- Posizione centro di massa di filo omogeneo : $x_{cm}=rac{L}{2}$, con L= lunghezza

Energia pot. gravitazionale di un sistema di punti mat.

- ullet Energia potenziale gravitazionale : $U_p=gM_{tot}z_{cm}$
- Corpo solido vincolato : la pos. di equilibrio stabile uguale a posizione in cui l'energia pot. risulta minima, quindi quando z_{cm} minimo

Energia cinetica e lavoro per sistema di punti mat.

- ullet Velocità relativa istantanea : $ec{V}_r(t) = ec{V}_1(t) ec{V}_2(t)$
- ullet Energia cinetica totale : $K_{tot}=rac{1}{2}M_{tot}ig|ec{V}_{cm}(t)ig|^2+rac{1}{2}rac{m_1m_2}{M_{tot}}ig|ec{V}_r(t)ig|^2$
- massa ridotta : $\mu = rac{m_1 m_2}{M_{tot}}$

Moto rotazionale

- conversione radianti gradi : $\theta(rad) = \frac{\pi}{180}\theta$ ed esce gradi
- **Spostamento angolare** : $\Delta \theta = \theta_f \theta_i$ variazione di posizione angolare di un punto tra t_i e t_f
- Velocità angolare media : $\omega_m = \frac{\Delta \theta}{\Delta t}$
- Velocità angolare istantanea : $\omega(t) = (\theta(t))^t$
 - Se $\theta(t)$ cresce allora $\omega(t)>0 \implies$ rotazione senso antiorario
 - Se $\theta(t)$ decresce allora $\omega(t) < 0 \implies$ rotazione senso orario
 - Andamento temporale velocità angolare = $\omega_{cm}(t) = \omega_0 + a_x t$
- Accelerazione angolare media : $\alpha_m = \frac{\Delta \omega}{\Delta t}$
- Accelerazione angolare istantanea : $lpha(t)=(\omega(t))'=(heta(t))''$
 - Per trovare acc angolare usare calcolo dei momenti rispetto al polo, così risulta $I_zlpha(t)= au_{tot}$

Moto circolare e rotatorio con acc. costante

 $\alpha(t) = \alpha$ costante

- Velocità angolare = $\omega(t) = \omega_0 + \alpha t$
- Legge oraria : $heta(t) + heta_0 + \omega_0 t + rac{1}{2} lpha t^2$
- Relazione che lega velocià e acc. : $(\omega(t))^2 = \omega_0^2 + 2\alpha[\theta(t) \theta_0]$
- · Quantità vettoriali nel moto circolatorio
 - **Velocità tangenziale** : $V_t(t) = r\omega(t)$, con r = raggio circonferenza
 - Acc. centripeta : $ec{a}_c = rac{(V_t(t))^2}{r}$
 - Acc. tangenziale : $\vec{a}_t = (V_t(t))'$

Energia cinetica rotazionale di un sistema rigido

- Energia cinetica del punto i-esimo : $K_i=rac{1}{2}m_iig|ec{V}_iig|^2=rac{1}{2}m_i(r_i\omega)^2=rac{1}{2}m_ir_i^2\omega^2$
- Momento di inerzia : $I_z = \sum\limits_{i=1}^N (m_i r_i)^2$
- Energia cinetica di sistema rigido : $K = \frac{1}{2}I_z\omega^2$
- Momenti inerzia canonici
 - Anello o guscio cilindrico molto sottile : $I_z=MR^2$, $R={
 m raggio}$
 - Corona circolare o guscio cilindrico non sottile : $I_z = \frac{1}{2}M(R_1^2 + R_2^2)$
 - Cilindro pieno o disco : $I_z=\frac{1}{2}MR^2$, se asse di rotazione passa per c.d.m
 - Sfera piena : $I_z=\frac{2}{5}MR^2$, asse di rotazione passante per centro della sfera
 - Guscio sferico sottile : $I_z = \frac{2}{3}MR^2$
 - Sbarra sottile, con asse di rotazione passante per perno fisso $I_z=rac{1}{3}ML^2$

Momento di una forza

- Momento di una forza \vec{F} rispetto al polo O : $\vec{\tau} = \vec{R} \times \vec{F}$, con \vec{R} vettore posizione, si misura in Nm
- Modulo momento di una forza $ec{F}$: $\left|ec{ au}
 ight| = \left|ec{R} imesec{F}
 ight| = RF\sin(\phi)$
 - $|\vec{\tau}| = R(F\sin(\phi)) = RF_t$

 $ullet |ec{ au}| = F(R\sin(\phi)) = Fd$, con d = braccio della forza $ec{F}$

Dinamica di un corpo rigido

Il momento totale delle forze applicate a un sistema rigido costituito da 2 punti mat. è uguale al momento risultante delle sole forze esterne agenti sui due punti materiali, rispetto al polo scelto

• Momento totale : $au_{z,tot} = I_z lpha$, con lpha costante

Equilibrio di un corpo solido

- · Condizioni necessarie per l'equilibrio
 - $\sum\limits_{i=1}^{N} \vec{F_{ie}} = 0 \implies \vec{V_{cm}}$ = costante, quindi se il sistema è inizialmente fermo vale $\vec{V}_{cm} = 0$
 - $\sum_{i=1}^{N} ec{ au_{ie}} = 0$ momento rispetto a un polo qualsiasi nullo

Lavoro e potenza nel moto rotazionale

- Lavoro di corpo rigido che ruota attorno asse z : $W_{tot} = \frac{1}{2} I_z \omega_f^2 \frac{1}{2} I_z \omega_i^2$
- Lavoro totale di sistema con N corpi : $\Delta W_{tot} = au_{tot,z}(t) \omega(t) \Delta t$
- Potenza istantanea : $\mathbb{P} = au_{tot,z}(t)\omega(t)$

Momento angolare

- Momento angolare/Momento della quantità di moto : $\vec{L}(t)=\vec{R}(t) imes ec{
 ho}(t)$, misura in kgm^2s^{-1}
- Seconda equazione cardinale della dinamica dei sistemi di N punti materiali : $[\vec{L}(t)]' = \vec{\tau}_{e,tot}(t)$, con $\vec{\tau}_{e,tot}(t)$ = momento delle forze esterne agenti sul sistema
- Corpo rigido con polo sull'asse di rotazione : $L_{tot,z} = I_z \omega \implies [L_{tot,z}]' = I_z(\omega)' = I_z \alpha$
- Teoremi di Konig
 - 1 . Momento angolare totale di un sistema di N punti : $ec{L}_{tot}(t)=ec{R}_{cm}(t) imesec{P}_{cm}(t)+ec{L}_{tot}'(t)$
 - ullet $ec{L}_{tot}(t)'$ momento angolare totale rispetto al c.d.m
 - \circ 2. Energia cinetica totale di un sistema di N punti materiali $K_{tot}=rac{1}{2}M_{tot}ig|ec{V}_{cm}ig|^2+K'_{tot}$
 - $K'_{tot} = \frac{1}{2} I_{z',cm} \omega'^2$, con $I_{z',cm}$ = mom. di inerzia rispetto ad asse pass. per c.d.m
- Conservazione momento angolare : $L_{tot,z,f} = L_{tot,z,i}$

Conservazione del momento angolare

La seconda equazione cardinale implica che se $\vec{\tau}_{e,tot}(t)=0$ allora il momento angolare totale del sistema resta costante, quindi si conserva

In sistema isolato si conservano la quantità di moto totale e il momento angolare totale

- Sistema isolato rigido in rotazione attorno asse z : $L_{tot,z} = I_z \omega$ = costante
- Sistema isolato non rigido in rotazione attorno asse z : $L_{tot,z}(t) = I_z(t)\omega(t)$ = costante

Moto di puro rotolamento di corpo rigido

Corpo rigido sferico che rotola senza strisciare su superficie piana

La condizione affinchè il corpo rigido rotoli senza strisciare è che la velocità istantanea del punto di contatto P tra il corpo e il piano sia nulla

- Condizione di pure rotolamento : $V_{cm}(t) = \omega(t) R$
- Acc. nel moto : $a_{cm} = lpha(t)R \implies lpha(t) = rac{a_{cm}(t)}{R}$
- Energia cinetica in questione (usando 2 TH Konig) : $K(t)=\frac{1}{2}\Big(M+\frac{I_z'}{R^2}\Big)\Big|\vec{V}_{cm}(t)\Big|^2$, con I_z' = mom. di inerzia del corpo rigido

Moto oscillatorio e onde

Consideriamo moto sotto l'effetto della forza elastica

- Moto armonico semplice : $[x(t)]'' = -rac{k}{m}x(t)$
 - posto $\omega^2=rac{k}{m}$ si ottiene $[x(t)]''+\omega^2x(t)=0$, la cui soluzione è

- $x(t) = A\cos(\omega t + \phi_0)$, con
 - A =ampiezza, valore massimo di |x(t)|
 - ω = pulsazione/frequenza angolare (nel caso di F. elastica = $\sqrt{\frac{k}{m}}$)
 - ϕ_0 = costante di fase/fase iniziale
 - $\phi(t) = \omega t + \phi_0$ = fase del moto
- Nel caso di moto armonico sotto l'eff. di forza elastica vale :
 - Periodo : $T=2\pi\sqrt{\frac{m}{k}}$
 - Frequenza : $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$
- Velocità istantanea : $V_x(t) = -\omega A \sin(\omega t + \phi_0)$
- Acc. istantanea : $a_x(t) = -\omega^2 A \cos(\omega t + \phi_0)$
- Condizioni iniziali del moto : $x_0=x(t=0), V_{x0}=V_x(t=0)$
 - $x_0 = A\cos(\phi_0)$
 - $V_{x0} = -\omega A \sin(\phi_0)$
 - $V_x(t) = \omega A \cos(\omega t + \phi_0 + \frac{\pi}{2})$
 - $a_x(t) = \omega^2 A \cos(\omega t + \phi_0 + \pi)$
- Pendolo Semplice :
 - · Verso positivo dell'asse tangenziale è in senso antiorario
 - Verso positivo dell'asse radiale è verso il centro della traiettoria circolare
 - Equazione del moto : $[\theta(t)]'' = \frac{g}{t}\sin([\theta(t)]) = 0 \ (**)$
 - Energia potenziale : $U(\theta) = -mgL\sin(\theta)$
- **Piccole oscillazioni** : piccolo intervallo $\Delta \theta(t)$ attorno al punto di equilibrio stabile, $sen[\theta(t)] \approx \theta(t)$
 - (**) diventa $heta(t) = heta_{max}\cos(\omega t + \phi_0) \implies \omega = \sqrt{rac{g}{L}}$
 - Periodo piccole oscillazioni : $T=2\pi\sqrt{rac{L}{g}}$
- Pendolo Fisico
 - Velocità angolare nelle piccole oscillazioni : $\omega = \sqrt{\frac{Mgd}{I_z}}$
 - Periodo angolare nelle piccole oscillazioni : $T=2\pi\sqrt{rac{I_z}{Mgd}}$

4 Elettricità e Forza Elettrica

Cariche elettriche con lo stesso segno si respingono, con segno diverso si attraggono

• Principio di conservazione della carica elettrica : In un sistema isolato, la carica elettrica totale si conserva

Isolanti e Conduttori

- Conduzione elettrica : Una carica elettrica può muoversi all'internon di un corpo
- Conduttori : In questi materiali alcuni elettroni sono liberi di muoversi nel corpo
- Isolanti : In questi materiali tutti gli elettroni sono legati agli atomi e non possono muoversi liberamente

Legge di Coulomb

- Legge di Coulomb : $\left| ec{F_e}
 ight| = F_e = K_e rac{|q_1||q_2|}{r^2}$
 - F_e = Forza elettrica
 - $|q_i|$ valore assoluto carica elettrica i-esima
 - r distanza tra due cariche
 - K_e = costante di Coulomb, si misura C(Coulomb) e vale $8.9876 \cdot 10^9 \frac{Nm^2}{C^2}$
 - Vale anche $K_e=rac{1}{4\piarepsilon_0}$, con $arepsilon_0$ = costante dielettrica del vuoto
 - vale $\varepsilon_0 = 8.854 \cdot 10^{-12} \frac{C^2}{Nm^2}$
- Carica elettrica dell'elettrone : $q_e = -e = -1.60218 \cdot 10^{-19} C$
- Osservazione : Per dire se una forza elettrica è repulsiva/attrattiva, basta vedere il segno delle cariche elettriche. Se hanno segno uguale allora repulsiva, altrimenti attrattiva
- ullet Se la forza elettrica è l'unica forza agente, l'energia meccanica si conserva, quindi $E_{mf}=E_{mi}$

Campi Elettrici

- Campo elettrico (vettore) : $\vec{E}=rac{\vec{F_c}}{q_0}$, si misura in N/C, con q_0 = carica di prova
- Con campo elettrico noto, si scrive $F_e=qec{E}$
- Campo elettrico (vettore) per cariche puntiformi : $ec{E}=rac{ec{F}_e}{q_0}=K_erac{q}{r^2}$
 - se q > 0 il campo elettrico è diretto verso q con verso uscente (verso dx)
 - se q < 0 il campo elettrico è diretto verso q con verso entrante (verso sx)
- Campo elettrico (vettore) per cariche puntiformi nel punto P : $ec{E}_P = K_e \sum\limits_{i=1}^N rac{q_i}{r_i^2}$
- il campo elettrico non è definito nella posizione in cui si trova la sorgente puntiforme

Campo Elettrico generato da distribuzione continua di carica

- · Distribuzione continua : quando la distanza tra due cariche sorgente di una distribuzione di carica è molto piccola
 - La distribuzione viene divisa in intervalli Δq , e il campo elettrico è $\vec{E}=K_e rac{\Delta q_i}{r_*^2}$
- Densità di carica : quando la carica è distribuita lungo linea, superficie o volume
 - $\lambda = \frac{Q}{I}$, se carica Q è distribuita uniformemente lungo tratto di lunghezza I (**densità lineare**)
 - $\sigma = \frac{Q}{A}$, se carica Q è distribuita uniformemente lungo superficie di area A (densità superficiale)
 - $\rho = \frac{Q}{V}$, se carica Q è distribuita uniformemente in volume V (densità di volume)

Moto di particelle cariche in campo elettrico uniforma

- ullet se $qec{E}$ è la risultante delle forze agenti sulle particelle, vale $mec{a}=qec{E}$, quindi
- Accelerazione : $\vec{a} = \frac{q\vec{E}}{m}$
 - Se \vec{E} costante anche \vec{a} è costante

Flusso elettrico

- Flusso elettrico :
 - Se il campo attraversa perpendicolarmente una superficie A, vale $|\Phi_E| = \left|ec{E}
 ight|A$
 - Se la superficie A non è perpendicolare al campo, vale $|\Phi_E| = \left| ec{E} \middle| A \cos(heta)
 ight|$
 - ullet è l'angolo tra il campo e la direzione normale, se $heta=90^\circ$ allora il flusso è nullo
 - ullet Se la superficie è curva, vale $\Phi_E = \int_{
 m superficie} ec{E} \, dec{A}$
 - Se la superficie è chiusa vale $\Phi_E = \oint \vec{E} \, d\vec{A} = \oint E_n dA$

Teorema di Gauss

Carica puntiforme positiva q al centro di una sfera di raggio r genera campo elettrico con linee radiali e verso uscente II flusso elettrico è $\Phi_E=\left|\vec{E}\right|A_{\mathrm{superficie}}$

- Flusso elettrico dentro la sfera : $\Phi_E = \frac{q}{\epsilon_0}$
 - Il flusso elettrico totale attraverso la superficie chiusa che non circonda una carica elettrina netta è nullo
- **Teorema di Guass** : Il flusso totale del campo attraverso una qualunque superficie chiusa è espresso dalla legge : $\Phi_E = \oint \vec{E} d\vec{A} = \frac{q_{in}}{\varepsilon_n}$, con q_{in} = carica totale interna alla superficie chiusa

Applicazioni th gauss

- A. Sfera solida con raggio a, densità ρ e carica tot. Q
 - ullet Campo elettrico in un punto esterno a sfera : $\left|ec{E}
 ight|=K_{e}rac{Q}{r^{2}}$
 - Campo elettrico in un punto interno a sfera : $|ec{E}| = K_e rac{Q}{a^3} r$
- ullet B. Campo elettrico a distanza r da filo di lunghezza inf. e carica λ costante
 - Campo elettrico : $|ec{E}| = 2K_e rac{\lambda}{r}$
- ullet C. campo elettrico generato da piano con densità σ
 - Campo elettrico : $|\vec{E}| = rac{\sigma}{2arepsilon_0}$

Conduttori in equilibrio elettrostatico

- Equilibrio elettrostatico : Non c'è moto di cariche nel conduttore
- 4 condizioni
 - · Campo elettrico interno nullo

- Eventuali cariche aggiunte vanno a localizzarsi su superficie esterna
- · Campo elet. esterno diretto perpendicolarmente alla superficie del condensatore
- Densità di carica maggiore nei punti in cui il raggio di curvatura della superficie è minore

Potenziale elettrico

La forza elettrica è conservativa

- Potenziale elettrico : $V = \frac{U}{a}$
- Differenza di potenziale : $V_f V_i = -q \int_{t_i}^{t_f} [ec{E}(t) ec{V}(t)] dt$
 - Unità di misura diff. di potenziale e potenziale elet. $V(Volt) = \frac{J}{C}$
 - Elettronvolt : $eV = 1.602 \cdot 10^{-19} J$

Diff. di potenziale in campo elettrico uniforme

- ullet Variazione differenza di potenziale : $\Delta V = V_B V_A = -Ed$, con d = distanza tra i punti A e B
- Variazione energia potenziale : $\Delta U = q\Delta V = -qEd$
- 2 osservazioni
 - la forza elettrica compie lavoro positivo su carica positiva quando questa si muove nel verso del campo elettrico
 - la forza elettrica compie lavoro positivo su carica negativa quando la carica si muove nel verso opposto rispetto a quello del campo elettrico

Potenziale elettrico ed ener. poten. elettrica di cariche puntiformi

- Energia potenziale coppia di particelle con cariche q,q_0 : $U(r)=K_e rac{qq_0}{r}+costante$, con r = posizione di q
 - Energia potenziale negativa se le cariche hanno segno negativo, altrimenti è positiva
- Potenziale elettrico associato a una carica puntiforme $q:V(r)=K_e^{\frac{q}{x}}+costante$, con r= distanza tra $q\in q_0$, quindi $(q_0 - q)$
- Potenziale elettrico totale in un dato punto P : $V=K_e\sum_i rac{q_i}{r_i}$, con r_i distanza tra q_i e P
- ullet Energia potenziale di sistema con due cariche : $U_{12}=K_erac{q_1q_2}{r_{12}}$, con $r_{12}=|ec{r_1}-ec{r_2}|$
- Condizione di annullamento di un campo elettrico : Energia potenziale prima carica+energia potenziale seconda carica=0

Capacità

- Condensatore : sistema di 2 conduttori in cui una carica positiva Q è stata trasferita da uno all'altro
 - Quando corrente a regime, il ramo del condesatore si comporta come ramo aperto, quindi non passa corrente
- Capacità : $\frac{Q}{V}$, indica quanta carica può essere accumulata nel condensatore quando viene applicata una diff. di potenziale V, unitò di misura $F(Farad) = 1 \frac{C}{V}$
 - Condensatore sferico isolato : $rac{Q}{V} = 4\pi arepsilon_0 R$
- · 2 tipi di condensatori
 - Condensatore piano : 2 piastre conduttrici parallele aventi stessa area A a distanza d tra loro
 - Densità : $|\sigma| = \frac{Q}{A}$
 - Campo elettrico : $|\vec{E}| = rac{Q}{arepsilon_0 A}$
 - Diff di pot. : $V = \frac{Qd}{arepsilon_0 A}$
 - Capacità $C = \frac{\varepsilon_0 A}{J}$
 - Condensatore cilindrico : raggio a

 - Diff di pot. : $V=\frac{2K_cQ}{l}\log(\frac{b}{a})$ Capacità : $C=\frac{2\pi\varepsilon_0l}{\log(\frac{b}{a})}$
- · 2 tipi di collegamento
 - A. Condensatori in parallelo
 - · Diff. di potenziale (tensione) : Potenziale polo positivo
 - Carica elettrica totale : $Q_{tot} = V(C_1 + C_2)$
 - ullet Con un solo condensatore vale $C_{eq}=C_1+C_2$
 - B. Condensatori in serie
 - Tensione : $V = \frac{Q}{C_1} + \frac{Q}{C_2}$
 - Con un solo condensatore $rac{1}{C_{eq}}=rac{1}{C_1}+rac{1}{C_2}$

Energia accumulata in un condensatore carico

- Energia accumulata : $U=rac{Q^2}{2C}=rac{1}{2}CV^2$
 - Con condensatore pieno vale $C=arepsilon_0^{A/d}$, quindi l'energia diventa $U=rac{1}{2}arepsilon_0(Ad)E^2$

Corrente elettrica e circuiti

- Corrente elettrica : Rapidità con cui la carica elettrica fluisce attraverso la superficie considerata
- Corrente media : $I_{med} = \frac{\Delta Q}{\Delta t}$
- Corrente istantanea : I(t) = [Q(t)]', con
 - Q(t) = quantità di carica elettrica che ha attraversato la superficie tra un istante fissato e istante t
 - Unità di misura corrente A(Ampere) = 1C/s
 - Il verso positivo della corrente è quello in cui fluisce la carica positiva, a prescindere dal segno delle cariche che sono in moto
- Portatori di carica : Costituenti mobili che contribuiscono alla corrente elettrica
- **Velocità di deriva** : V_d = velocità media con cui i portat. di carica si muovono lungo direzione parallela all'asta del cono cilindrico
- ullet Corrente media nuovo : $I_{med}=nqAV_d$, con
 - n = numero di port. di carica
 - q = carica per unità di volume
 - A sezione trasversale
- Densità di corrente : $J=rac{I}{A}=nqV_d$, misura in A/m^2
 - $V_d = \frac{I}{Ang}$

Legge di Ohm

- Legge di Ohm : $\Delta V=RI$, unità di misura 1Ω con R resistenza
- Resistenza di un filo conduttore ohmico con lunghezza l e sezione A : $R=
 ho rac{l}{A}$, con ho = resistività

Energia e potenza nei circuiti

- Potenza : $P(t) = I(t)\Delta V$
 - Nel caso di resistore, la potenza è $P=I^2R=rac{(\Delta V)^2}{R}$
- Sorgenti di f.e.m : Dispositivo che mantiene una diff. di potenziale costante tra due punti
 - simbolo $\mathcal{E} = \varepsilon(grande)$ misura in V(Volt)
 - ullet ai capi della batteria vale ${\cal E}=rI=\Delta V$
 - ullet in assenza di collegamento esterno, ovvero in assenza del ramo con il resistore R vale $\mathcal{E}=\Delta V$
 - Per misurare diff. di potenziale ai capi dei resistori basta fare così
 - scegli un nodo, es. P, poi vedi se resistore in parallelo o serie
 - se resistore è in serie calcoli $V_p = \mathrm{sorgente} \ \mathrm{f.e.m} rI$, con $r = \mathrm{resistore} \ \mathrm{e} \ I = \mathrm{corrente} \ \mathrm{passante} \ \mathrm{per} \ \mathrm{resistore}$
 - Da qui ti puoi calcolare la corrente, basta fare formula inversa
 - se il resistore che vedi è in parallelo allora sarà $V_p=rI$
 - · Stessa cosa, formula inversa per corrente
- Resistenza di carico : $RI = \mathcal{E} rI$
 - $(R+r)I = \mathcal{E}$ • $I = \frac{\mathcal{E}}{R+r}$
- Ampiezza oscillazioni f.e.m = $E = |\mathcal{E}|_{max}$

Resistori in serie e parallelo

- Serie
 - Differenza di potenziale = $\Delta V = I(R_1 + R_2)$
- Parallelo
 - $I=(rac{1}{R_1}+rac{1}{R_2})\Delta V$

Leggi di Kirchhoff

• Ramo : Tratto singolo di un circuito che contiene almeno un nodo

- · Nodo : Punto di circuito in cui confluiscono più rami
- · Maglia: Percorso chiuso in circuto
- Prima legge (regola dei nodi) : In ogni nodo del circuito, la somma algebrica delle correnti deve essere nulla
- Seconda legge (regola delle maglie): La somma algebrica delle diff. di potenziale ai capi di ciascun elemento della maglia
 deve essere nulla

Circuiti RC

- Circuito RC : Contiene almeno un collegamento in serie di un resistore e di un condensatore
- · Carica di un condensatore :
 - Corrente $I(0) = \frac{\mathcal{E}}{R}$
 - Carica : $Q_{max} = C\mathcal{E}$
 - $\quad \quad q(t) = C \mathcal{E}[1 e^{-(t/RC)}]$
 - $I(t) = \frac{\mathcal{E}}{R}e^{-(t/RC)}$
- Scarica di un condensatore
 - $q(t) = Qe^{-(t/RC)}$
 - $I(t) = -\frac{Q}{RC}e^{-(t/RC)}$

5 Campo Magnetico

- Campo magnetico : Vettore \vec{B}
- Forza magnetica : $ec{F}_b$ agente su particella, vale $ec{F}_b = q ec{V} imes ec{B}$ si misura in T(Tesla)
 - modulo : $F_b = |q|VB\sin(\theta)$

Moto particella carica in campo magnetico uniforme

- raggio traiettoria : $r=rac{mV}{|a|B}$
- Velocità angolare ciclotrone : $\omega = \frac{|q|B}{m}$
- Periodo : $T = \frac{2\pi m}{|q|B}$

Applicazioni moto particelle

• Forza di Lorentz : $ec{F} = q ec{E} + q ec{V} imes ec{B}$

Forza magnetica su conduttore percorso da corrente

- Forza magnetica eser. su tratta di filo rett. in campo magnetico : $ec{F}_b = I ec{L} imes ec{B}$
- La forza magnetica totale agente su generico circuito chiuso percorso da corrente e posto in campo magnetico unif. è nulla

Momento delle forze agenti su spira in campo magnetico

- Momento forza magnetica : $au_z^* = IAB$, $\operatorname{con} A = ab$
 - Se \vec{B} è perpendicolare ai lati verticali, vale $\tau_z = IAB\sin(\theta)$
- Momento di dipolo magnetico : $ec{\mu} = I ec{A}$
- Energia potenziale di dipolo magnetico : $U = \vec{\mu} \vec{B}$

Legge di Biot-Savart

- Legge di Biot-Savart : $\Delta \vec{B} = K_m I(rac{\Delta \vec{s} imes ilde{r}}{r^2})$
 - $K_m = \frac{\mu_0}{4\pi}$
 - $\mu_0 = 4\pi \cdot 10^{-7}$, misura in $\frac{Tm}{A}$
 - Se filo è rettilineo e molto lungo vale $B=rac{\mu_0 I}{2\pi r}$

Teorema di Ampere

• TH Ampere : $\oint \vec{B} d\vec{s} = \mu_0 I$

Legge di Faraday-Neumann

sbarra metallica in circuito che scende raggiungerà vel. limite quando la forza magnetica in seguito a passaggio di corrente equilibrerà la forza peso del corpo

- Flusso magnetico(attraverso superficie nello spazio) : $\Phi_B = \oint \vec{B} d\vec{A}$ misura in Wb(Weben)
 - Se superficie è spira allora $\vec{A}=\pi r^2$
- Legge di Gauss per campo magnetico(flusso attraverso superficie chiusa) : $\oint \vec{B} d\vec{A} = 0$
- Legge di Faraday-Neumann per circ. semplice : $\mathcal{E} = -[\Phi_B(t)]'$
 - Serve per f.e.m indotta
- Legge di Faraday-Neumann per circ. bobina con N spine : $\mathcal{E} = -N[\Phi_B(t)]'$
 - Anche questo per f.e.m indotta

Forza elettromotrice dinamica

- **f.e.m** : Forza indotta in un condensatore che si sta muovendo in campo \vec{B}
- $\Delta V = Blv$
- Equazione flusso magnetico concatenato a circuito : $\mathcal{E} = -[\Phi_B(t)]' = -Blv \implies I = \frac{Blv}{R}$

Generatore di corrente alternata

 $\bullet \;\; \mathcal{E} = -N[\Phi_B(t)]' = NBA\omega\sin(\omega t)$

Legge di Lentz

- Enunciato semplice : La f.e.m indotta ha un segno tale da produrre un flusso magnetico indotto tale da opporsi alla variazione di flusso magnetico che l'ha provocato
 - La direzione del campo mangetico te la dice il prof.
 - Campo magnetico uscente dal piano (verso di te):
 - Se il flusso uscente aumenta, la corrente indotta circola in senso orario per opporsi a questo aumento (creando un campo opposto, verso il piano).
 - Se il flusso uscente diminuisce, la corrente indotta circola in senso antiorario per "sostenere" il flusso uscente.
 - Campo magnetico entrante nel piano (verso il foglio):
 - Se il flusso entrante **aumenta**, la corrente indotta circola in **senso antiorario** per opporsi a questo aumento (creando un campo opposto, uscente).
 - Se il flusso entrante diminuisce, la corrente indotta circola in senso orario per mantenere il flusso entrante.
 - Se si tratta di sbarra che scorre senza attrito in guida metallica verticale vale
 - Se sbarra verso il basso, verso della corrente antiorario
 - Se sbarra verso l'alto, verso della corrente orario