Review: Bandit Techniques

x: context, a: action, r: reward

MAB

CB

Value-based

Mean estimation

+

EG, BE, IGW

Regression

+

EG, BE, IGW

(context, action) to reward

Policy-based

context to action distribution

KL-regularized update with reward estimators (EXP3)

+

baseline, bias, or uniform exploration

PPO/NPG

PG

+

baseline, bias, uniform exploration, clipping

Are we done with bandits?

 Almost, but we have a last important topic: how to deal with continuous action sets? (#actions could be infinite)

We will go over the 4 regimes once again to deal with continuous actions

	MAB	СВ
VB		
PB		

Dealing with Continuous Action Set

Continuous Action Set

Full-information feedback

Given: Action set $\Omega \subseteq \mathbb{R}^d$

For time t = 1, 2, ..., T:

Learner chooses a point $a_t \in \Omega$

Environment reveals a reward function $r_t : \Omega \to \mathbb{R}$

Bandit feedback

Given: Action set $\Omega \subseteq \mathbb{R}^d$

For time t = 1, 2, ..., T:

Learner chooses a point $a_t \in \Omega$

Environment reveals a reward value $r_t(a_t)$

Continuous Multi-Armed Bandits

With a mean estimator

	MAB	СВ
VB	•	
РВ		

Value-Based Approach (mean estimation)

• Use supervised learning to learn a reward function $R_{\phi}(a)$

- How to perform the exploration strategies (like ϵ -Greedy)?
 - How to find $\operatorname{argmax}_a R_{\phi}(a)$?
 - Usually, there needs to be another policy learning procedure that helps to find $\arg\max_{a} R_{\phi}(a)$
 - Then we can explore as $a_t = \operatorname{argmax}_a R_{\phi}(a) + \sigma \mathcal{N}(0, I)$

Full-Information Policy learning Procedure

Gradient Ascent

For t = 1, 2, ..., T:

Choose action a_t

Receive reward function $r_t : \Omega \to \mathbb{R}$

Update action $a_{t+1} \leftarrow \mathcal{P}_{\Omega}(a_t + \eta \nabla r_t(a_t))$

When $\pi_{\theta} = \mathcal{N}(\mu_{\theta}, \sigma^2 I)$, the KL-regularized policy update

$$\theta_{t+1} = \underset{\theta}{\operatorname{argmax}} \left\{ \int \left(\pi_{\theta}(a) - \pi_{\theta_t}(a) \right) r_t(a) \, \mathrm{d}a - \frac{1}{\eta} \, \operatorname{KL}(\pi_{\theta}, \pi_{\theta_t}) \right\}$$

is close to $\mu_{\theta_{t+1}} \leftarrow \mu_{\theta_t} + \eta \sigma \nabla r_t(\mu_{\theta_t})$

Regret Bound of Gradient Ascent

Theorem. If Ω is convex and all reward functions r_t are concave, then Gradient Ascent ensures

Regret =
$$\max_{a^* \in \Omega} \sum_{t=1}^{T} r_t(a^*) - r_t(a_t) \le \frac{\max_{a \in \Omega} \|a\|_2^2}{\eta} + \eta \sum_{t=1}^{T} \|\nabla r_t\|_2^2$$

This can also be applied to the finite-action setting, but only ensures a \sqrt{AT} regret bound (using exponential weights we get $\sqrt{(\log A)T}$)

Combining with Mean Estimator

The mean estimator R_{ϕ} essentially gives us a full-information reward function

For t = 1, 2, ..., T:

Take action $\tilde{a}_t = \mathcal{P}_{\Omega}(a_t + \sigma \mathcal{N}(0, I))$

Receive $r_t(\tilde{a}_t)$

Update the mean estimator:

$$\phi \leftarrow \phi - \lambda \nabla_{\underline{\phi}} \left[\left(\underline{R_{\phi}(\tilde{a}_t)} - \underline{r_t(\tilde{a}_t)} \right)^2 \right]$$

Update policy:

$$a_{t+1} = \mathcal{P}_{\Omega} \left(a_t + \eta \nabla_{\mathbf{a}} R_{\phi}(a_t) \right) \leftarrow \phi /_{\alpha} r_{\mathbf{y}} r_{\mathbf{x}} \times \mathcal{K}_{\phi}(\alpha)$$

Think of this as a continuous-action counterpart of ϵ -Greedy

Continuous Contextual Bandits

With a regression oracle

	MAB	СВ
VB		•
PB		

Combining with Regression Oracle (a bandit version of DDPG)

For t = 1, 2, ..., T:

Receive context x_t

Take action $a_t = \mathcal{P}_{\Omega}(\mu_{\theta}(x_t) + \sigma \mathcal{N}(0, I))$

Receive $r_t(x_t, a_t)$

Update the mean estimator:

$$\phi \leftarrow \phi - \lambda \nabla_{\phi} \left[\left(R_{\phi}(x_t, a_t) - r_t(x_t, a_t) \right)^2 \right]$$

Update policy:

$$\theta \leftarrow \theta + \eta \nabla_{\theta} R_{\phi}(\mu_{\theta}(x_t))$$

Assume policy parametrization $\pi_{\theta}(\cdot | x) = \mathcal{N}(\mu_{\theta}(x), \sigma^2 I)$

Continuous Multi-Armed Bandits

Pure policy-based algorithms

	MAB	СВ
VB		
PB	•	

Pure Policy-Based Approach

Gradient Ascent

For t = 1, 2, ..., T:

Choose action a_t

Receive reward function $r_t : \Omega \to \mathbb{R}$

Update action $a_{t+1} \leftarrow \mathcal{P}_{\Omega}(a_t + \eta \nabla r_t(a_t))$

We face a similar problem as in EXP3: if we only observe $r_t(a_t)$, how can we estimate the **gradient**?

(Nearly) Unbiased Gradient Estimator

Goal: construct $g_t \in \mathbb{R}^d$ such that $\mathbb{E}[g_t] \approx \nabla r_t(a_t)$ with only $r_t(a_t)$ feedback

(Nearly) Unbiased Gradient Estimator (1/3)

Uniformly randomly choose a direction $i_t \in \{1, 2, ..., d\}$

Uniformly randomly choose $\beta_t \in \{1, -1\}$

Sample $\tilde{a}_t = a_t + \delta \beta_t e_{i_t}$

Observe $r_t(\tilde{a}_t)$

Define $g_t = \frac{dr_t(\tilde{a}_t)}{\delta} \beta_t e_{i_t}$

(Nearly) Unbiased Gradient Estimator (2/3)

Uniformly randomly choose s_t from the unit sphere $\mathbb{S}_d = \{s \in \mathbb{R}^d : ||s||_2 = 1\}$

Sample
$$\tilde{a}_t = a_t + \delta s_t$$

Observe $r_t(\tilde{a}_t)$

Define
$$g_t = \frac{dr_t(\tilde{a}_t)}{\delta} s_t$$

(Nearly) Unbiased Gradient Estimator (3/3)

Choose $s_t \sim \mathcal{D}$ with $\mathbb{E}_{s \sim \mathcal{D}}[s] = 0$

Sample $\tilde{a}_t = a_t + s_t$

Observe $r_t(\tilde{a}_t)$

Define $g_t = r_t(\tilde{a}_t)H_t^{-1}s_t$ where $H_t := \mathbb{E}_{s \sim \mathcal{D}}[ss^{\mathsf{T}}]$

Gradient Ascent with Gradient Estimator

Assume the feasible set Ω contains a ball of radius δ

Define $\Omega' = \{a \in \Omega: \ \mathcal{B}(a, \delta) \subset \Omega\}$

Arbitrarily pick $a_1 \in \Omega'$

For
$$t = 1, 2, ..., T$$
:

Let $\tilde{a}_t = a_t + s_t$ where $s_t \sim \mathcal{D}$ (assume that $||s_t|| \leq \delta$ always holds)

Receive $r_t(\tilde{a}_t)$

Define

$$g_t = (r_t(\tilde{a}_t) - b_t)H_t^{-1}s_t$$
 where $H_t := \mathbb{E}_{s \sim \mathcal{D}}[ss^{\mathsf{T}}]$

Update policy:

$$a_{t+1} = \Pi_{\Omega'} \left(a_t + \eta g_t \right)$$

Continuous Contextual Bandits

Pure policy-based algorithms

	MAB	СВ
VB		
PB		•