FYS3150 - project 1

Sverre Wehn Noremsaune & Frida Marie Engøy Westby (Dated: September 11, 2021)

https://github.uio.no/comPhys/FYS3150/tree/project1

PROBLEM 1

We have the one-dimensional Poisson equation

$$-\frac{d^2u}{dx^2} = f(x) \tag{1}$$

where f(x) is known to be $100e^{-10x}$. We also assume $x \in [0, 1]$, that the boundary condition are u(0) = 0 = u(1) and u(x) is

$$u(x) = 1 - (1 - e^{-10})x - e^{-10x}$$
(2)

where u(x) is an exact solution to Eq. (1). We can check this analytically by differentiating u(x) twice.

$$-u''(x) = f(x)$$

$$u''(x) = -f(x)$$

$$u(x)' = 10x^{-10x} - 1 + \frac{1}{e}$$

$$u''(x) = -100e^{-10x} = -f(x)$$

PROBLEM 2

problem a)

See 'poisson_exact.cpp' in the github repository

problem b)

FIG. 1. A plot of the exact solution for the Poisson equation from 1 for $x \in [0,1]$

PROBLEM 3

We are discretizing the Poisson equation from 1. Discretizing x and setting up some notation:

$$x \to x_i$$

$$u(x) \to u_i$$

$$i = 0, 1, \dots, n$$

$$h = \frac{x_{max} - x_{min}}{n}$$

$$x_i = x_0 + ih$$

We're using the three-point formula to find the second derivative:

$$\frac{du^2}{dx^2} = u'' = \frac{u_{i-1} - 2u_i + u_{i+1}}{h^2} + O(h^2)$$

$$f_i = -\left(\frac{u_{i-1} - 2u_i + u_{i+1}}{h^2} + O(h^2)\right)$$

We then approximate and change the notation, $v_i \approx u_i$ and get

$$f_i = \frac{-v_{i-1} + 2v_i - v_{i+1}}{h^2} \tag{3}$$

PROBLEM 4

The equation we got in 3 isn't the most ergonomic for setting up a matrix equation, so we can rewrite it to

$$-v_{i-1} + 2v_i - v_{i+1} = h^2 f_i \tag{4}$$

We know: $f_i, v(0) = v(1) = 0$ 4 is a set of equations for every i

$$i = 1$$
 $-v_0$ $2v_1$ $-v_2$ $= h^2 f_i$
 $i = 2$ $-v_1$ $2v_2$ $-v_3$ $= h^2 f_2$

and so on and so forth. We can see that v_0 and v_n will end up and alone on their columns, and since we know what they are we simply move them over.

$$i = 1$$
 $2v_1 - v_2$ $= h^2 f_i + v_0$
 $i = 2$ $-v_1$ $2v_2$ $-v_3$ $= h^2 f_2$

This can then be easily rewritten as a matrix equation $A\vec{v} = \vec{g}$

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \dots & 0 & 0 \\ -1 & 2 & -1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 2 & -1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & -1 & 2 & -1 & 0 \\ 0 & 0 & \dots & 0 & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_{n-3} \\ v_{n-2} \\ v_{n-1} \end{bmatrix} = \begin{bmatrix} g_1 \\ g_2 \\ g_3 \\ \vdots \\ gn - 3 \\ gn - 2 \\ g_{n-1} \end{bmatrix}$$

where g_i is $h^2 f_i$ (+ v_0 for f_1 and + v_n for f_{n-1})

PROBLEM 5

Problem a

Since we're "dropping" 2 columns, n = m - 2

problem b

we will find $\vec{v_i}$ for 1..(n-1), meaning everything but the boundary points.

${\bf problem} \ {\bf 6}$

problem a

Algorithm 1 Algorithm for solving general tridiagonal matrix

```
arrays a, b, c, u, f, temp of length n btemp = b[1] \\ u[1] = f[1]/btemp \\ \label{eq:btemp} \\ \begin{cases} for $i=2,3,...,n$ do \\ temp[i] = c[i-1] / btemp \\ btemp = b[i] - a[i] * temp[i] \\ u[i] = (f[i] - a[i] * u[i-1]) / btemp \\ \end{cases} \\ \begin{cases} for $i=n-1,\,n-2,\,...,\,1$ do \\ u[i] -= temp[i+1] * u[i+1] \\ \end{cases}
```

problem b

FLOPs:
$$1 + 6(n-1) + 2(n-1) = 1 + 8(n-1) = 8n - 7$$

PROBLEM 7

problem a

see 'general_tridiag.cpp' in the github repository

${\bf problem}\ {\bf b}$

FIG. 2. Exact vs numerical comparison for the solution of equation ${\color{black}1}$