Optimizing	Lempel	Ziv	Welch	for	DNA	Compres	sion

A Thesis

Presented to

The Division of Mathematics and Natural Sciences $\label{eq:Reed_College} \mbox{Reed College}$

 $\label{eq:continuous} \mbox{In Partial Fulfillment}$ of the Requirements for the Degree $\mbox{Bachelor of Arts}$

Caden Corontzos

May 2023

Approved for the Division (Computer Science)

Eitan Frachtenberg

Acknowledgements

I want to thank a few people.

Preface

This is an example of a thesis setup to use the reed thesis document class (for LaTeX) and the R bookdown package, in general.

List of Abbreviations

LZW Lempel Ziv Welch

Table of Contents

Introd	uction		1
Chapte	er 1: B	Backround and Motivations	3
1.1	What	is information?	3
1.2	Comp	ression: A history	3
1.3	Lossles	ss vs. Lossy Compression	3
	1.3.1	Lossless	3
	1.3.2	Lossy	3
1.4	Examp	ples of Compression Algorithms	3
	1.4.1	Run Length Encoding	3
	1.4.2	Huffman	3
	1.4.3	Arithmetic	3
	1.4.4	Lempel Ziv Welch	3
Chapte	er 2: N	Mathematics and Science	5
2.1	Math		5
2.2	Chemi	istry 101: Symbols	5
	2.2.1	Typesetting reactions	6
	2.2.2	Other examples of reactions	6
2.3	Physic	es	6
2.4	Biolog	gy	6
Chapte	er 3: G	Graphics, References, and Labels	7
3.1	Figure	es	7
3.2	Footno	otes and Endnotes	11
3.3	Bibliog	graphies	11
3.4	Anyth	ing else?	13
Concli	ision .		15

Appendix A: The First Appendix	17
Appendix B: The Second Appendix, for Fun	21
References	23

List of Tables

List of Figures

3.1	Reed logo	,
3.2	Mean Delays by Airline	Ć
3.3	Subdiv. graph	1
3.4	A Larger Figure, Flipped Upside Down	1

Abstract

The Lempel Ziv Welch compression algorithm is a lossless data compression algorithm used for numerous applications, including the Unix file compression utility compress and the GIF image format. Storing, reading, and transferring enormous amounts of data is often an issue in the biological field, especially when concerning DNA. This thesis explores the application of Lempel Ziv Welch to the compression of DNA. A variety of different optimization of the original LZW algorithm are explore included palatalizing, multiple dictionaries, and some other cool thing here broh.

Dedication

You can have a dedication here if you wish.

Introduction

When dealing with DNA, it

Chapter 1

Backround and Motivations

This thesis deals with some high level topics and uses language specific to compression research. This chapter tries to give brief summaries and examples of the relevant topics to be discussed so readers of all experience levels can put our results into context.

- 1.1 What is information?
- 1.2 Compression: A history
- 1.3 Lossless vs. Lossy Compression
- 1.3.1 Lossless
- 1.3.2 Lossy
- 1.4 Examples of Compression Algorithms
- 1.4.1 Run Length Encoding
- 1.4.2 Huffman
- 1.4.3 Arithmetic
- 1.4.4 Lempel Ziv Welch

Chapter 2

Mathematics and Science

2.1 Math

TEX is the best way to typeset mathematics. Donald Knuth designed TEX when he got frustrated at how long it was taking the typesetters to finish his book, which contained a lot of mathematics. One nice feature of *R Markdown* is its ability to read LaTeX code directly.

If you are doing a thesis that will involve lots of math, you will want to read the following section which has been commented out. If you're not going to use math, skip over or delete this next commented section.

2.2 Chemistry 101: Symbols

Chemical formulas will look best if they are not italicized. Get around math mode's automatic italicizing in LaTeX by using the argument \$\mathrm{formula here}\$, with your formula inside the curly brackets. (Notice the use of the backticks here which enclose text that acts as code.)

So, $Fe_2^{2+}Cr_2O_4$ is written $\mathrm{Fe_2^{2+}Cr_2O_4}$ \$.

Exponent or Superscript: O⁻

Subscript: CH₄

To stack numbers or letters as in Fe_2^{2+} , the subscript is defined first, and then the superscript is defined.

Bullet: CuCl • 7H₂O

Delta: Δ

Reaction Arrows: \longrightarrow or $\xrightarrow{solution}$

Resonance Arrows: \leftrightarrow

Reversible Reaction Arrows: \rightleftharpoons

2.2.1 Typesetting reactions

You may wish to put your reaction in an equation environment, which means that LaTeX will place the reaction where it fits and will number the equations for you.

$$C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O$$
 (2.1)

We can reference this combustion of glucose reaction via Equation (2.1).

2.2.2 Other examples of reactions

$$\begin{aligned} & \mathrm{NH_4Cl_{(s)}} & \rightleftharpoons \mathrm{NH_{3(g)}} + \mathrm{HCl_{(g)}} \\ & \mathrm{MeCH_2Br} + \mathrm{Mg} \xrightarrow[below]{above} \mathrm{MeCH_2} \bullet \mathrm{Mg} \bullet \mathrm{Br} \end{aligned}$$

2.3 Physics

Many of the symbols you will need can be found on the math page https://web.reed.edu/cis/help/latex/math.html and the Comprehensive LaTeX Symbol Guide (https://mirror.utexas.edu/ctan/info/symbols/comprehensive/symbols-letter.pdf).

2.4 Biology

You will probably find the resources at https://www.lecb.ncifcrf.gov/~toms/latex.html helpful, particularly the links to bsts for various journals. You may also be interested in TeXShade for nucleotide typesetting (https://homepages.unituebingen.de/beitz/txe.html). Be sure to read the proceeding chapter on graphics and tables.

Chapter 3

Graphics, References, and Labels

3.1 Figures

If your thesis has a lot of figures, R Markdown might behave better for you than that other word processor. One perk is that it will automatically number the figures accordingly in each chapter. You'll also be able to create a label for each figure, add a caption, and then reference the figure in a way similar to what we saw with tables earlier. If you label your figures, you can move the figures around and R Markdown will automatically adjust the numbering for you. No need for you to remember! So that you don't have to get too far into LaTeX to do this, a couple R functions have been created for you to assist. You'll see their use below.

In the **R** chunk below, we will load in a picture stored as reed.jpg in our main directory. We then give it the caption of "Reed logo", the label of "reedlogo", and specify that this is a figure. Make note of the different **R** chunk options that are given in the R Markdown file (not shown in the knitted document).

include graphics(path = "figure/reed.jpg")

Figure 3.1: Reed logo

Here is a reference to the Reed logo: Figure 3.1. Note the use of the fig: code

here. By naming the ${\bf R}$ chunk that contains the figure, we can then reference that figure later as done in the first sentence here. We can also specify the caption for the figure via the R chunk option fig.cap.

3.1. Figures 9

Below we will investigate how to save the output of an **R** plot and label it in a way similar to that done above. Recall the flights dataset from Chapter ??. (Note that we've shown a different way to reference a section or chapter here.) We will next explore a bar graph with the mean flight departure delays by airline from Portland for 2014.

```
mean_delay_by_carrier <- flights %>%
  group_by(carrier) %>%
  summarize(mean_dep_delay = mean(dep_delay))
ggplot(mean_delay_by_carrier, aes(x = carrier, y = mean_dep_delay)) +
  geom_bar(position = "identity", stat = "identity", fill = "red")
```


Figure 3.2: Mean Delays by Airline

Here is a reference to this image: Figure 3.2.

A table linking these carrier codes to airline names is available at https://github.com/ismayc/pnwflights14/blob/master/data/airlines.csv.

Next, we will explore the use of the out.extra chunk option, which can be used to shrink or expand an image loaded from a file by specifying "scale= ". Here we use the mathematical graph stored in the "subdivision.pdf" file.

Figure 3.3: Subdiv. graph

Here is a reference to this image: Figure 3.3. Note that echo=FALSE is specified so that the R code is hidden in the document.

More Figure Stuff

Lastly, we will explore how to rotate and enlarge figures using the out.extra chunk option. (Currently this only works in the PDF version of the book.)

Figure 3.4: A Larger Figure, Flipped Upside Down

As another example, here is a reference: Figure 3.4.

3.2 Footnotes and Endnotes

You might want to footnote something. ¹ The footnote will be in a smaller font and placed appropriately. Endnotes work in much the same way. More information can be found about both on the CUS site or feel free to reach out to data@reed.edu.

3.3 Bibliographies

Of course you will need to cite things, and you will probably accumulate an armful of sources. There are a variety of tools available for creating a bibliography

¹footnote text

database (stored with the .bib extension). In addition to BibTeX suggested below, you may want to consider using the free and easy-to-use tool called Zotero. The Reed librarians have created Zotero documentation at https://libguides.reed.edu/citation/zotero. In addition, a tutorial is available from Middlebury College at https://sites.middlebury.edu/zoteromiddlebury/.

R Markdown uses pandoc (https://pandoc.org/) to build its bibliographies. One nice caveat of this is that you won't have to do a second compile to load in references as standard LaTeX requires. To cite references in your thesis (after creating your bibliography database), place the reference name inside square brackets and precede it by the "at" symbol. For example, here's a reference to a book about worrying: (Molina & Borkovec, 1994). This Molina1994 entry appears in a file called thesis.bib in the bib folder. This bibliography database file was created by a program called BibTeX. You can call this file something else if you like (look at the YAML header in the main .Rmd file) and, by default, is to placed in the bib folder.

For more information about BibTeX and bibliographies, see our CUS site (https://web.reed.edu/cis/help/latex/index.html)². There are three pages on this topic: bibtex (which talks about using BibTeX, at https://web.reed.edu/cis/help/latex/bibtex.html), bibtexstyles (about how to find and use the bibliography style that best suits your needs, at https://web.reed.edu/cis/help/latex/bibtexstyles.html) and bibman (which covers how to make and maintain a bibliography by hand, without BibTeX, at https://web.reed.edu/cis/help/latex/bibman.html). The last page will not be useful unless you have only a few sources.

If you look at the YAML header at the top of the main .Rmd file you can see that we can specify the style of the bibliography by referencing the appropriate csl file. You can download a variety of different style files at https://www.zotero.org/styles. Make sure to download the file into the csl folder.

Tips for Bibliographies

- Like with thesis formatting, the sooner you start compiling your bibliography for something as large as thesis, the better. Typing in source after source is mind-numbing enough; do you really want to do it for hours on end in late April? Think of it as procrastination.
- The cite key (a citation's label) needs to be unique from the other entries.

²Reed College (2007)

- When you have more than one author or editor, you need to separate each author's name by the word "and" e.g. Author = {Noble, Sam and Youngberg, Jessica},.
- Bibliographies made using BibTeX (whether manually or using a manager) accept LaTeX markup, so you can italicize and add symbols as necessary.
- To force capitalization in an article title or where all lowercase is generally used, bracket the capital letter in curly braces.
- You can add a Reed Thesis citation³ option. The best way to do this is to use the phdthesis type of citation, and use the optional "type" field to enter "Reed thesis" or "Undergraduate thesis."

3.4 Anything else?

If you'd like to see examples of other things in this template, please contact the Data @ Reed team (email data@reed.edu) with your suggestions. We love to see people using R Markdown for their theses, and are happy to help.

 $^{^{3}}$ Noble (2002)

Conclusion

If we don't want Conclusion to have a chapter number next to it, we can add the {-} attribute.

More info

And here's some other random info: the first paragraph after a chapter title or section head *shouldn't be* indented, because indents are to tell the reader that you're starting a new paragraph. Since that's obvious after a chapter or section title, proper typesetting doesn't add an indent there.

Appendix A

The First Appendix

This first appendix includes all of the R chunks of code that were hidden throughout the document (using the include = FALSE chunk tag) to help with readibility and/or setup.

In the main Rmd file

```
# This chunk ensures that the thesisdown package is
# installed and loaded. This thesisdown package includes
# the template files for the thesis.
if (!require(remotes)) {
 if (params$`Install needed packages for {thesisdown}`) {
    install.packages("remotes", repos = "https://cran.rstudio.com")
 } else {
   stop(
     paste('You need to run install.packages("remotes")",
            "first in the Console.')
   )
 }
if (!require(thesisdown)) {
 if (params$`Install needed packages for {thesisdown}`) {
   remotes::install_github("ismayc/thesisdown")
 } else {
   stop(
     paste(
        "You need to run",
```

```
'remotes::install_github("ismayc/thesisdown")',
    "first in the Console."
    )
    }
}
library(thesisdown)
# Set how wide the R output will go
options(width = 70)
```

In Chapter 3:

```
# This chunk ensures that the thesisdown package is
# installed and loaded. This thesisdown package includes
# the template files for the thesis and also two functions
# used for labeling and referencing
if (!require(remotes)) {
 if (params$`Install needed packages for {thesisdown}`) {
    install.packages("remotes", repos = "https://cran.rstudio.com")
 } else {
    stop(
     paste(
        'You need to run install.packages("remotes")',
        "first in the Console."
     )
    )
 }
}
if (!require(dplyr)) {
 if (params$`Install needed packages for {thesisdown}`) {
    install.packages("dplyr", repos = "https://cran.rstudio.com")
 } else {
    stop(
     paste(
        'You need to run install.packages("dplyr")',
        "first in the Console."
```

```
)
  }
}
if (!require(ggplot2)) {
  if (params$`Install needed packages for {thesisdown}`) {
    install.packages("ggplot2", repos = "https://cran.rstudio.com")
  } else {
    stop(
      paste(
        'You need to run install.packages("ggplot2")',
        "first in the Console."
    )
  }
}
if (!require(bookdown)) {
  if (params$`Install needed packages for {thesisdown}`) {
    install.packages("bookdown", repos = "https://cran.rstudio.com")
  } else {
    stop(
      paste(
        'You need to run install.packages("bookdown")',
        "first in the Console."
      )
    )
  }
}
if (!require(thesisdown)) {
  if (params$`Install needed packages for {thesisdown}`) {
    remotes::install_github("ismayc/thesisdown")
  } else {
    stop(
      paste(
        "You need to run",
        'remotes::install_github("ismayc/thesisdown")',
```

```
"first in the Console."
)
)
}
library(thesisdown)
library(dplyr)
library(ggplot2)
library(knitr)
flights <- read.csv("data/flights.csv", stringsAsFactors = FALSE)</pre>
```

Appendix B

The Second Appendix, for Fun

References

- Angel, E. (2000). Interactive computer graphics: A top-down approach with OpenGL. Boston, MA: Addison Wesley Longman.
- Angel, E. (2001a). Batch-file computer graphics: A bottom-up approach with Quick-Time. Boston, MA: Wesley Addison Longman.
- Angel, E. (2001b). Test second book by angel. Boston, MA: Wesley Addison Longman.
- Molina, S. T., & Borkovec, T. D. (1994). The Penn State worry questionnaire: Psychometric properties and associated characteristics. In G. C. L. Davey & F. Tallis (Eds.), Worrying: Perspectives on theory, assessment and treatment (pp. 265–283). New York: Wiley.
- Noble, S. G. (2002). Turning images into simple line-art (Undergraduate thesis). Reed College.
- Reed College. (2007). LaTeX your document. Retrieved from https://web.reed.edu/cis/help/LaTeX/index.html