Hypothesis Testing -> population

(c.I) Testing claims -> true / false

USUA UNUSUA UNUSUA

The average payload of trucks on the highway is 18,000 lbs.

Rane event rule

guilty not guilty

gender selection:

claim: There is at least 50% chance of having a girl.

Random sample of 100 couples are studied.

Assumption: The drug does not work. > 50% chance of boy & girl.

- 1. 52 had girls.
- 2. 14 had girls.

Parts of a hypothesis test

alternative hypothesis

$$H_1/H_3$$

states that the population parameter has a value different from H_3 (<, >, \neq)

e.g: $p < 0.5 \Delta$, $M > 82$, $p \ne 0.5$

```
How to test hypothesis?
```

$$H_o \leftrightarrow H_a$$

- * begin by assuming that Ho is true.
- \star then you have to use the evidence (given by the sample) to reach a conclusion.

```
reject Ho ( enough evidence to prove that Ho is wrong) fail to reject Ho \approx accepting Ho?
```

* if you want to support a claim, always state it as H, (not Ho)

eg. suppose I want to prove that the drug works

$$H_0: p = 0.50$$
 (x) Inconclusive rejection region $H_1: p > 0.50$ ($\sqrt{\ }$)

How to identify Ho and HI

- 1. state the original claim symbolically.
- 2. state the opposite of the claim also.
- e.g.1. The mean fluid volume in a can is at least 12 oz.

claim:
$$\mu > 12 \rightarrow H_0$$
: $\mu = 12$ (claim)

opposite:
$$\mu < 12$$
 Ha: $\mu < 12$ (opposite)

- e.g.2. The proportion of male CEO's is greater than 0.5 claim: p > 0.5 Ha, p > 0.5 (claim)
 - opposite: $p \le 0.5 \rightarrow H_0: p = 0.5$ (opposite)
- e.g.3. The mean weight of babies is at most 8.9 lbs.

claim:
$$M \le 8.9 \rightarrow H_0$$
: $M = 8.9$ (claim)
opposite: $M > 8.9 \rightarrow H_a$: $M > 8.9$ (opposite)

e.g. 1. The mean IQ score is 100.

claim:
$$\mu = 100 \rightarrow H_0: \mu = 100$$
 (claim)

opposite:
$$n \neq 100$$
 H_a: $n \neq 100$ (opposite)

Test statistics

proportion:
$$p = Z = \frac{\hat{p} - p}{\sqrt{\frac{p \cdot q}{100}}}$$

mean
$$(\mu) = Z = \frac{\bar{x} - \mu}{\delta / \sqrt{n}}$$
 by unknown
$$T = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$
 by unknown

e.g. A sample of 406 companies found that 61% of the CEO's are male. Claim that most CEO's are male.

Z = 5.84

claim:
$$p > 0.5$$
; $H_a: p > 0.5$

Opposite: $p \le 0.5$; $H_o: p = 0.5$
 $P = 0.61$
 $Z = \frac{0.61 - 0.5}{(0.5)(0.5)}$
 $Z = \frac{0.61 - 0.5}{406}$

$$P = 0.5$$
 $q = 0.5$
 $n = 406$

How to make the decision?

significance level (d)

common & values : 0.10, 0.05, 0.01

critical value: seperates the rejection region from fail to reject region.

Z=1.605

d = 0.05 → Z= 1.615

right tail

left tail

2-ways to make the decision

traditional method:

p-value method:

/ p-value (look up this area)

p-value ≤ d → reject

P-value > d → fail to reject Ho

e.g. Assume
$$d = 0.05$$
, $H_1: p > 0.25$, $Z_{TS} = 1.18$

0.119 > 0.05