1 Propriedades dos limites infinitos

Comecemos por recordar a proposição dada para as operações com funções reais de variável real (f.r.v.r.) que têm limites finitos quando x tende para a.

Proposição 1 Sejam f e g funções reais de variável real <u>com limite finito</u> em a (para a finito ou infinito) e $k \in \mathbb{R}$. Então

1. as funções kf, f+g, f-g, $f\times g$ têm limite finito em a e $\lim_{x\to a} kf(x) = k\lim_{x\to a} f(x),$ $\lim_{x\to a} \left[(f+g)(x) \right] = \lim_{x\to a} f(x) + \lim_{x\to a} g(x),$ $\lim_{x\to a} \left[(f-g)(x) \right] = \lim_{x\to a} f(x) - \lim_{x\to a} g(x),$ $\lim_{x\to a} \left[(f\times g)(x) \right] = \lim_{x\to a} f(x) \times \lim_{x\to a} g(x);$

2. se $\lim_{x\to a} g(x) \neq 0$, a função $\frac{f}{g}$ tem limite finito em a e

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}.$$

A aplicação desta propriedade permite-nos, para funções f e g cujos limites existam e sejam finitos, saber os limites das funções indicadas simplesmente a partir dos limites de f e de g.

Note-se ainda que esta proposição é válida quer x tenda para um valor finito, quer tenda para $+\infty$ ou para $-\infty$ (exige-se é que os valores dos limites quando x tende para a existam e sejam finitos).

Para limites infinitos, nalguns casos o simples conhecimento dos limites das funções envolvidas permite-nos saber, imediatamente, o limite da nova função; noutros casos, o conhecimento dos limites das funções envolvidas permite-nos apenas saber que não podemos aplicar nenhuma propriedade dos limites e que teremos que calcular explicitamente o valor do limite da nova função, por termos o que se chama uma **indeterminação**.

O objectivo destas folhas é recordar, ilustrando com exemplos simples, propriedades que são válidas para os limites infinitos e situações que correspondem a indeterminações, indicando também algumas técnicas que, para alguns destes casos, permitem **levantar a indeterminação**, isto é, calcular o valor desses limites.

A generalidade das propriedades que seguidamente indicaremos (bem como muitos limites dos exemplos que serão apresentados) resultam simplesmente das duas alíneas da proposição que se segue, que são intuitivas e muito fáceis de provar a partir da definição de limite infinito.

Proposição 2 Sejam f e g f.r.v.r., para as quais faz sentido falar de limite em a, tais que

$$g(x) \ge f(x)$$
,

para qualquer x suficientemente próximo de a (isto é, para qualquer x numa vizinhança de a):

1.
$$se \lim_{x \to a} f(x) = +\infty$$
, $ent\tilde{a}o \lim_{x \to a} g(x) = +\infty$;

2.
$$\operatorname{se} \lim_{x \to a} g(x) = -\infty$$
, $\operatorname{ent} \tilde{ao} \lim_{x \to a} f(x) = -\infty$.

Observação 1 Recorde-se que, quando nos referimos a x suficientemente próximo de a (isto é, numa vizinhança de a), temos que distinguir três situações:

- se $a \in \mathbb{R}$, estamos a considerar x pertencente a um intervalo $]a \varepsilon, a + \varepsilon[$ com $\varepsilon > 0$ (quanto mais pequeno for o ε , mais próximo garantimos que x está de a);
- se $a = +\infty$, estamos a considerar x pertencente a um intervalo $]M, +\infty[$, com M > 0, portanto x > M (quanto maior for o M, mais próximo garantimos que x está de $+\infty$);
- se $a = -\infty$, estamos a considerar x pertencente a um intervalo $]-\infty, N[$, com N < 0, portanto x < N (quanto menor for o N, mais próximo garantimos que x está de $-\infty$).

Convém, ainda, recordar que dizemos que uma função f tende para infinito quando x tende para a, e escrevemos

$$\lim_{x \to a} f(x) = \infty,$$

se

$$\lim_{x \to a} |f(x)| = +\infty.$$

É claro, pela definição, que caso $\lim_{x\to a} f(x) = +\infty$ ou $\lim_{x\to a} f(x) = -\infty$, verifica-se que $\lim_{x\to a} f(x) = \infty$.

No entanto, há casos em que $\lim_{x\to a} f(x) = \infty$ $\underline{sem\ que}\ \lim_{x\to a} f(x) = +\infty$ ou $\lim_{x\to a} f(x) = -\infty$; dizemos, nestes casos, que f tende para infinito sem sinal determinado.

É o caso de $\lim_{x\to 0} \frac{1}{x}$.

1.1 Propriedades da soma

Antes de apresentarmos as propriedades da soma, comecemos por ver um exemplo ilustrativo de algumas destas propriedades.

Exemplo 1: Consideremos as funções

$$f(x) = x$$
, $q(x) = x^2$, $h(x) = x^3$ e $i(x) = -x + 1$.

A proposição que veremos de seguida permite afirmar imediatamente que:

$$-$$
 como $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} h(x) = +\infty$, então a soma de quaisquer duas destas funções tende para $+\infty$, quando $x \to +\infty$;

$$-$$
 como $\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} i(x) = +\infty$, então $\lim_{x \to -\infty} [g(x) + i(x)] = +\infty$;

$$-\text{ como }\lim_{x\to -\infty}f(x)=\lim_{x\to -\infty}h(x)=-\infty,\text{ então }\lim_{x\to -\infty}\left[f(x)+h(x)\right]=-\infty.$$

Proposição 3 (Propriedades da soma)

Sejam f, g f.r.v.r e a finito ou infinito:

1.
$$se \lim_{x \to a} f(x) = +\infty$$
 $e \lim_{x \to a} g(x) = +\infty$, $ent\~ao \lim_{x \to a} \left[f(x) + g(x) \right] = +\infty$;

2.
$$se \lim_{x \to a} f(x) = -\infty$$
 $e \lim_{x \to a} g(x) = -\infty$, $ent\tilde{a}o \lim_{x \to a} [f(x) + g(x)] = -\infty$;

3. sendo $b \in \mathbb{R}$,

$$se \lim_{x \to a} f(x) = \infty \quad e \quad \lim_{x \to a} g(x) = b, \ \ ent \tilde{a}o \lim_{x \to a} \left[f(x) + g(x) \right] = \infty,$$

(se o limite de f for $+\infty$ ou $-\infty$, o limite da soma também o é).

Notação abreviada:

Estas propriedades são frequentemente escritas na forma

$(+\infty) + (+\infty) = +\infty$	$(-\infty) + (-\infty) = -\infty$	
$(+\infty) + b = +\infty$	$(-\infty) + b = -\infty$	$\infty + b = \infty$

Atenção, esta é uma mera notação abreviada, que deve ser interpretada exactamente no sentido das propriedades 1., 2. e 3. da proposição anterior, e não como se estivessemos realmente a "somar os infinitos" ou a "somar infinito com b".

Para as funções do exemplo 1, a simples aplicação da proposição anterior nada nos permitem afirmar sobre

$$\begin{split} &\lim_{x \to +\infty} \left[f\left(x\right) + i\left(x\right) \right], \ \lim_{x \to +\infty} \left[g\left(x\right) + i\left(x\right) \right], \lim_{x \to +\infty} \left[h\left(x\right) + i\left(x\right) \right], \\ &\lim_{x \to -\infty} \left[f\left(x\right) + g\left(x\right) \right], \lim_{x \to -\infty} \left[f\left(x\right) + i\left(x\right) \right], \lim_{x \to -\infty} \left[h\left(x\right) + g\left(x\right) \right], \\ &\text{ou} \lim_{x \to -\infty} \left[h\left(x\right) + i\left(x\right) \right] \end{split}$$

(pois, nestes casos, uma função tende para $-\infty$ e outra para $+\infty$).

Estes limites terão que ser calculados directamente.

Calculemos os dois primeiros limites:

$$\lim_{x \to +\infty} \left[f\left(x\right) + i\left(x\right) \right] \ = \ \lim_{x \to +\infty} \left[x + \left(-x + 1\right) \right] = \lim_{x \to +\infty} 1 = 1$$

$$\lim_{x \to +\infty} \left[g\left(x\right) + i\left(x\right) \right] \ = \ \lim_{x \to +\infty} \left[x^2 - x + 1 \right] = +\infty$$

(note-se que $x^2-x+1>x^2-x=x\,(x-1)\geq x$, para $x\geq 2$, pelo que tende para $+\infty$ quando x tende para $+\infty$).

Temos duas situações do mesmo tipo (a primeira função tende para $+\infty$ e a segunda para $-\infty$), cujos resultados são diferentes.

Quando uma função tende para $+\infty$ e outra para $-\infty$, temos uma situação de indeterminação para a soma.

Símbolos de Indeterminação (associados à soma)

Na notação abreviada, os símbolos

são designados por símbolos de indeterminação.

Isto quer apenas dizer que, nas situações correspondentes, o facto de existir ou não limite, bem como o seu valor, depende das funções envolvidas; não resulta imediatamente de uma propriedade das operações.

Observação: Tendo presente que a subtracção de duas funções é igual à soma da primeira com a simétrica da segunda, isto é,

$$f - g = f + (-g)$$

e que

$$\lim_{x \to a} f(x) = +\infty \text{ se e só se } \lim_{x \to a} (-f(x)) = -\infty,$$

é fácil concluir (a partir das propriedades da soma) quais as propriedades da subtracção de limites infinitos e ainda que

$$(+\infty) - (+\infty) \quad (-\infty) - (-\infty) \quad \infty - \infty$$

também são símbolos de indeterminação.

1.2 Propriedades do produto

Tal como fizemos para a soma, antes de apresentarmos as propriedades do produto comecemos por ver uns exemplos ilustrativos.

Exemplo 2: Consideremos as funções

$$f(x) = \ln x$$
, $g(x) = x + 3$ e $h(x) = -x^2 - 2$,

para as quais

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = +\infty \quad \text{e} \quad \lim_{x \to +\infty} h(x) = -\infty$$

$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} h(x) = -\infty$$

 $(D_f = \mathbb{R}^+, \text{ pelo que não faz sentido falar do seu limite quando } x \to -\infty).$

A proposição que veremos de seguida, conjugada com a respectiva observação, permite afirmar imediatamente que

$$\lim_{x \to +\infty} \left(f(x) \times g(x) \right) = +\infty, \qquad \lim_{x \to +\infty} \left(f(x) \times h(x) \right) = -\infty,$$

$$\lim_{x \to +\infty} \left(g(x) \times h(x) \right) = -\infty, \qquad \lim_{x \to -\infty} \left(g(x) \times h(x) \right) = +\infty.$$

Como

$$\lim_{x \to 0^{+}} f(x) = -\infty, \ \lim_{x \to 0} g(x) = 3 \quad \text{e} \quad \lim_{x \to 0} h(x) = -2,$$

a mesma proposição (e respectiva observação) permite-nos concluir que

$$\lim_{x \to 0^+} (f(x) \times g(x)) = -\infty$$
$$\lim_{x \to 0^+} (f(x) \times h(x)) = +\infty.$$

6

Proposição 4 (Propriedades do produto)

Sejam f, g f.r.v.r e a finito ou infinito:

1.
$$se \lim_{x \to a} f(x) = \infty$$
 $e \lim_{x \to a} g(x) = \infty$, $ent\tilde{a}o \lim_{x \to a} [(f \times g)(x)] = \infty$

[caso f e g tendam para $+\infty$ ou para $-\infty$, pelo sinal do produto sabemos se $f \times g$ tende para $+\infty$ ou $-\infty$];

2.
$$se \lim_{x \to a} f(x) = \infty$$
 $e \lim_{x \to a} g(x) = b \in \mathbb{R} \setminus \{0\}$, $ent\tilde{a}o \lim_{x \to a} [(f \times g)(x)] = \infty$,

[caso f tenda para $+\infty$ ou para $-\infty$, pelo sinal do produto sabemos se $f \times g$ tende para $+\infty$ ou $-\infty$].

Observação:

Como foi referido, caso f e g tendam para $+\infty$ ou para $-\infty$, pelo sinal do produto sabemos se $f \times g$ tende para $+\infty$ ou $-\infty$:

- se f e g tendem ambas para $+\infty$ ou ambas para $-\infty$, para x suficientemente próximo de a as funções são ambas positivas ou ambas negativas, pelo que $f \times g$ tende mesmo para $+\infty$;
- se uma das funções tende para $+\infty$ e a outra para $-\infty$, para x suficientemente próximo de a o produto é negativo, pelo que $f \times g$ tende mesmo para $-\infty$.

Analogamente se tiram as conclusões para a alínea 2.

A simples aplicação da proposição anterior nada nos permitem afirmar sobre os limites que se indicam de seguida, cujos valores são, no entanto, muito fáceis de calcular.

Exemplo 3: Consideremos as funções

$$f(x) = x^3$$
, $g(x) = x$, $h(x) = \sqrt{x}$ e $i(x) = \frac{1}{x}$.

A proposição anterior nada nos permite afirmar sobre

$$\lim_{x \to +\infty} \left[f(x) \times i(x) \right], \ \lim_{x \to +\infty} \left[g(x) \times i(x) \right] \text{ ou } \lim_{x \to +\infty} \left[h(x) \times i(x) \right]$$

nem sobre

$$\lim_{x \to 0} \left[f(x) \times i(x) \right], \ \lim_{x \to 0} \left[g(x) \times i(x) \right] \text{ ou } \lim_{x \to 0^{+}} \left[h\left(x\right) \times i\left(x\right) \right]$$

(pois, em qualquer um destes casos, uma função tende para infinito e outra para 0).

No entanto, é imediato que

$$\lim_{x \to +\infty} [f(x) \times i(x)] = \lim_{x \to +\infty} \left[x^3 \times \frac{1}{x} \right] = \lim_{x \to +\infty} x^2 = +\infty$$

$$\lim_{x \to +\infty} [g(x) \times i(x)] = \lim_{x \to +\infty} \left[x \times \frac{1}{x} \right] = \lim_{x \to +\infty} 1 = 1$$

$$\lim_{x \to +\infty} [h(x) \times i(x)] = \lim_{x \to +\infty} \left[\sqrt{x} \times \frac{1}{x} \right] = \lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$$

e que

$$\begin{split} & \lim_{x \to 0} \left[f(x) \times i(x) \right] &= \lim_{x \to 0} \left[x^3 \times \frac{1}{x} \right] = \lim_{x \to 0} x^2 = 0 \\ & \lim_{x \to 0} \left[g(x) \times i(x) \right] &= \lim_{x \to 0} \left[x \times \frac{1}{x} \right] = \lim_{x \to 0} 1 = 1 \\ & \lim_{x \to 0^+} \left[h(x) \times i(x) \right] &= \lim_{x \to 0^+} \left[\sqrt{x} \times \frac{1}{x} \right] = \lim_{x \to 0^+} \frac{1}{\sqrt{x}} = +\infty. \end{split}$$

Quer quando $x \to +\infty$, quer quando $x \to 0$, temos três situações do mesmo tipo em que os resultados são diferentes.

Quando uma função tende para 0 e outra para ∞, temos uma situação de indeterminação para o produto visto que, como acabámos de verificar, o facto de existir ou não limite, bem como o seu valor, depende das funções envolvidas; não resulta imediatamente de uma propriedade das operações.

Símbolos de Indeterminação (associados ao produto):

$$0 \times (+\infty) \quad 0 \times (-\infty) \quad 0 \times \infty$$

1.3 Propriedades do quociente

O estudo do quociente de duas funções fica mais simples tendo presente que

$$\frac{f(x)}{g(x)} = f(x) \times \frac{1}{g(x)}.$$

Assim, as propriedades desta operação resultam das do produto e das duas primeiras alíneas da proposição que se segue.

De igual modo, através das mesmas propriedades, qualquer indeterminação associada ao quociente pode transformar-se numa indeterminação associada ao produto.

A proposição que se segue resume as propriedades do quociente, quanto aos limites infinitos.

A seguir são apresentadas as situações de indeterminação e depois exemplos ilustrativos.

Proposição 5 (Propriedades do quociente)

Sejam f, g f.r.v.r, com g $n\~ao$ nula numa vizinhança de a (excepto, eventualmente, em a):

1.
$$se \lim_{x\to a} g(x) = \infty \ ent\tilde{a}o \lim_{x\to a} \frac{1}{g(x)} = 0;$$

2.
$$se \lim_{x \to a} g(x) = 0$$
 $então \lim_{x \to a} \frac{1}{g(x)} = \infty$

[pelo sinal de g(x) poderemos saber se $\frac{1}{g(x)}$ tende para $+\infty$ ou $-\infty$:

$$se \lim_{x \to a} g(x) = 0^+, \ ent \tilde{a}o \lim_{x \to a} \frac{1}{g(x)} = +\infty,$$

$$se \lim_{x \to a} g(x) = 0^-, \ ent \tilde{a}o \lim_{x \to a} \frac{1}{g(x)} = -\infty$$

3.
$$se \lim_{x \to a} g(x) = \infty \ e \lim_{x \to a} f(x) \ \'e \ finito, \ ent\~ao \lim_{x \to a} \frac{f(x)}{g(x)} = 0;$$

4. se $\lim_{x\to a} g(x) = 0$ e $\lim_{x\to a} f(x)$ é infinito ou finito <u>e diferente de zero</u>, então $\lim_{x\to a} \frac{f(x)}{g(x)} = \infty$

(dependendo do sinal das funções f e g, poderemos averiguar se $\frac{f(x)}{g(x)}$ tende para $+\infty$ ou $-\infty$).

Na notação abreviada, escreve-se:

$\frac{a}{\infty} = 0$ $\frac{\infty}{0} = \infty$	$\frac{a}{0} = \infty$, se $a \neq 0$
--	--

Saliente-se, novamente, que esta é uma mera notação abreviada, para nos lembrarmos das propriedades ou nos referirmos ao tipo de situação que ocorre, e não deve ser usada no decurso das contas.

Símbolos de Indeterminação (assoc. ao quociente):

0	<u>∞</u>	<u>±∞</u> +∞
U	\sim	$\pm\infty$

Exemplo 4:

Consideremos as funções

$$f(x) = \ln x$$
 e $g(x) = x^3 + 3$

para as quais se tem que

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = +\infty$$
$$\lim_{x \to 1} f(x) = 0, \lim_{x \to 1} g(x) = 4$$
$$\lim_{x \to 0^+} f(x) = -\infty \quad \text{e} \quad \lim_{x \to 0} g(x) = 3.$$

Então

$$\begin{split} &\lim_{x \to +\infty} \frac{1}{f(x)} = 0, \\ &\lim_{x \to 1^+} \left[\frac{1}{f(x)} \right] = \infty, \\ &\lim_{x \to 1^+} \left[\frac{1}{f(x)} \right] = +\infty \quad \text{(pois } \lim_{x \to 1^+} f(x) = 0^+), \\ &\lim_{x \to 1^-} \left[\frac{1}{f(x)} \right] = -\infty, \quad \text{(pois } \lim_{x \to 1^-} f(x) = 0^-), \\ &\lim_{x \to 0^+} \left[\frac{g(x)}{f(x)} \right] = 0, \\ &\lim_{x \to 1^-} \left[\frac{g(x)}{f(x)} \right] = \infty, \\ &\lim_{x \to 1^-} \left[\frac{g(x)}{f(x)} \right] = -\infty \quad \text{(pois } \lim_{x \to 1^-} f(x) = 0^- \quad \text{e} \quad \lim_{x \to 1} g(x) > 0), \\ &\lim_{x \to 1^+} \left[\frac{g(x)}{f(x)} \right] = +\infty \quad \text{(pois } \lim_{x \to 1^+} f(x) = 0^+ \quad \text{e} \quad \lim_{x \to 1} g(x) > 0). \end{split}$$

Exemplo 5: Consideremos as funções polinomiais

$$f(x) = 2x^2 + 1$$
, $g(x) = x^3 + 3$ e $h(x) = x^3 + 2$.

Os limites

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)}, \lim_{x \to +\infty} \frac{h(x)}{f(x)} \quad e \quad \lim_{x \to +\infty} \frac{g(x)}{h(x)}$$

correspondem a situações de indeterminação do tipo $\frac{+\infty}{+\infty}$.

Também nestes casos, facilmente se determinam os limites que são, respectivamente, $0, +\infty$ e 1.

De facto,

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{2x^2 + 1}{x^3 + 3} = \lim_{x \to +\infty} \frac{\frac{2x^2 + 1}{x^3}}{\frac{x^3 + 3}{x^3}} = \lim_{x \to +\infty} \frac{\frac{2x^2}{x^3} + \frac{1}{x^3}}{\frac{x^3}{x^3} + \frac{3}{x^3}} = \lim_{x \to +\infty} \frac{\frac{2}{x} + \frac{1}{x^3}}{1 + \frac{3}{x^3}} = 0$$

e analogamente se provaria para os restantes casos.

Observação 2 É frequente haver algum facilitismo na justificação de situações como a anterior, vendo-se frequentemente a "justificação"

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{2x^2 + 1}{x^3 + 3} = \lim_{x \to +\infty} \frac{2x^2}{x^3} = \lim_{x \to +\infty} \frac{2}{x} = 0.$$

Ana Matos - Prop. dos Lim. Inf.

Estas igualdades entre os limites são verdadeiras, precisamente porque o raciocínio acima as justifica.

O facto de se usar esta argumentação, sem ter presente a devida justificação, pode, além do mais, levar-nos a usar o mesmo procedimento em situações onde este não é válido. Como, por exemplo, na situação do exemplo que se segue.

Exemplo 6: Determinemos

$$\lim_{x \to 2} \frac{x^2 - 4}{x^3 - 8}.$$

Trata-se de uma indeterminação, do tipo $\frac{0}{0}$, consequência de ambos os polinómios se anularem para x=2.

Isto significa que qualquer um dos polinómios pode ser escrito na forma

$$(x-2) \times \text{polinómio},$$

o que permitirá simplificar a função.

De facto,

$$x^2 - 4 = (x - 2)(x + 2)$$

e o polimómio x^3-8 pode ser decomposto, descobrindo um zero deste polinómio e aplicando depois a Regra de Ruffini:

$$2$$
 é zero de $x^3 - 8$

(pois
$$2^3 - 8 = 0$$
)

pelo que

$$x^3 - 8 = (x - 2)(x^2 + 2x + 4).$$

Portanto,

$$\lim_{x \to 2} \frac{x^2 - 4}{x^3 - 8} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{(x - 2)(x^2 + 2x + 4)} = \lim_{x \to 2} \frac{x + 2}{x^2 + 2x + 4} = \frac{4}{12} = \frac{1}{3}.$$

1.4 Limites notáveis:

Os seguintes limites são conhecidos (demonstram-se sem ser pelas propriedades dos limites), estão relacionados com propriedades importantes das funções em causa e são chamados de **limites notáveis**:

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to 0} \frac{\sec x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

Por exemplo, os dois primeiros limites são consequência do tipo de crescimento das funções exponencial e logaritmo.

1.5 Propriedades da exponenciação

Sejam f e g duas funções reais de variável real, com f(x) > 0, para qualquer $x \in D_f$.

Consideremos a função

$$h(x) = f(x)^{g(x)}.$$

Supondo que, para um certo a, finito ou infinito, existem

$$\lim_{x \to a} f(x) \in \lim_{x \to a} g(x)$$

pretende-se averiguar a existência de

$$\lim_{x \to a} \left[f\left(x\right)^{g(x)} \right].$$

Tendo presente que

$$f(x)^{g(x)} = e^{\ln(f(x)) \times g(x)}$$

o estudo da exponenciação de duas funções pode ser reduzido à aplicação de propriedades do produto de funções e das funções exponencial e logaritmo.

Vejamos esta passagem com mais detalhe:

Comecemos por recordar que o logaritmo é a função inversa da exponencial, pelo que

$$e^{\ln x} = x$$
.

Portanto,

$$f(x)^{g(x)} = \left[e^{\ln(f(x))}\right]^{g(x)} = e^{\ln(f(x)) \times g(x)}$$

(note-se que, para qualquer $x \in D_f$, f(x) > 0, pelo que $f(x) \in D_{ln}$).

Assim, concluímos imediatamente, para o caso dos limites finitos, que é válida a seguite proposição:

Proposição 6

Sejam f e g f.r.v.r, com f(x) > 0 para qualquer $x \in D_f$, e a finito ou infinito tais que

$$\lim_{x \to a} f(x) = c \in \mathbb{R} \setminus \{0\} \quad e \quad \lim_{x \to a} g(x) = b \in \mathbb{R}.$$

 $Ent\~ao$

$$\lim_{x \to a} \left[f(x)^{g(x)} \right] = c^b.$$

Para enunciar as propriedades desta operação, quando algum dos limites é infinito, teríamos que considerar uma série de casos, quando na prática o mais eficaz é fazer a transformação acima indicada.

Exemplo 7: Determinemos alguns limites:

1.
$$\lim_{x\to 0} (1+x)^{x^2+2}$$

Estamos nas condições da proposição, pelo que podemos dizer imediatamente que

$$\lim_{x \to 0} (1+x)^{x^2+2} = 1^2 = 1.$$

2.
$$\lim_{x \to +\infty} \left(2 + \frac{3}{x}\right)^{x^2+2}$$

Neste caso, não podemos aplicar a proposição, visto que $x^2 + 2 \to +\infty$. Deve ser intuitivo que o limite é $+\infty$.

Fazendo a transformação,

$$\lim_{x \to +\infty} \left(2 + \frac{3}{x} \right)^{x^2 + 2} = \lim_{x \to +\infty} \left[e^{\ln\left(2 + \frac{3}{x}\right)} \right]^{x^2 + 2} = \lim_{x \to +\infty} \left[e^{\left(x^2 + 2\right)\ln\left(2 + \frac{3}{x}\right)} \right] = +\infty$$

pois $\ln\left(2+\frac{3}{x}\right)\to 2>0$ e $x^2+2\to +\infty$, pelo que $\left(x^2+2\right)\ln\left(2+\frac{3}{x}\right)\to +\infty$ e, consequentemente,

$$e^{\left(x^2+2\right)\ln\left(2+\frac{3}{x}\right)} \to +\infty.$$

3.
$$\lim_{x \to +\infty} (2+3x)^{-x^2+2}$$

Neste caso, $2 + 3x \rightarrow +\infty$ e $-x^2 + 2 \rightarrow -\infty$.

Pensando um pouco, podemos perceber que neste tipo de situação o limite é 0.

$$\lim_{x \to +\infty} (2+3x)^{-x^2+2} = \lim_{x \to +\infty} \left[e^{\ln(2+3x)} \right]^{-x^2+2} = \lim_{x \to +\infty} \left[e^{\left(-x^2+2\right)\ln(2+3x)} \right] = 0$$

pois
$$\ln(2+3x) \to +\infty$$
 e $-x^2+2 \to -\infty$, pelo que

$$(-x^2+2)\ln(2+3x) \to -\infty$$

e, consequentemente,

$$e^{\left(-x^2+2\right)\ln(2+3x)} \to 0$$

Símbolos de Indeterminação (assoc. à exponenciação):

0^0	1^{∞}	$(+\infty)^0$
-------	--------------	---------------

Recorrendo a

$$f(x)^{g(x)} = e^{\ln(f(x)) \times g(x)}$$

é fácil perceber que estes casos correspondem a situações de indeterminação, que estão relacionadas com indeterminações do tipo

$$(-\infty) \times 0$$
, $0 \times \infty$ e $(+\infty) \times 0$,

respectivamente.

Terminemos com dois exemplos, em que temos situações (de indeterminação) do mesmo tipo, muito semelhantes, cujos resultados são diferentes.

Exemplo 8:

1. Determinemos

$$\lim_{x\to 0} (1+x)^{\frac{1}{x}}.$$

Temos uma indeterminação do tipo 1^{∞} .

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{x \to 0} \left[e^{\ln(1+x)} \right]^{\frac{1}{x}} = \lim_{x \to 0} e^{\frac{\ln(1+x)}{x}} = e$$

pois $\lim_{x\to 0} \frac{\ln(x+1)}{x} = 1$ (limite notável) e a função exponencial é contínua.

2. Determinemos

$$\lim_{x \to 0^+} \left(1 + \sqrt{x}\right)^{\frac{1}{x}}.$$

Temos uma indeterminação do tipo 1^{∞} .

$$\lim_{x \to 0^{+}} (1 + \sqrt{x})^{\frac{1}{x}} = \lim_{x \to 0^{+}} \left[e^{\ln(1 + \sqrt{x})} \right]^{\frac{1}{x}} = \lim_{x \to 0^{+}} e^{\frac{1}{x} \ln(1 + \sqrt{x})} =$$

$$= \lim_{x \to 0^{+}} e^{\left(\sqrt{x} \times \frac{\ln(1 + \sqrt{x})}{\sqrt{x}}\right)} = e^{0} = 1$$

pois $\lim_{x\to 0^+} \frac{\ln\left(1+\sqrt{x}\right)}{\sqrt{x}} = 1$, visto que $\sqrt{x}\to 0$, e a função exponencial é contínua.