

Simultaneous Elicitation of Committee and Voters' Preferences

B. Napolitano¹, O. Cailloux¹ and P. Viappiani²

¹ LAMSADE, Université Paris-Dauphine, Paris, France ² LIP6, Sorbonne Université, Paris, France

Advances in Economic Design : Games, voting, information and measurement 28 November 2019

Scenario

Setting: Incompletely specified profile and positional scoring rule

(Head of the)

Committee

Voters

Mickey Donald Goofy

Scenario

Setting: Incompletely specified profile and positional scoring rule

Goal: Development of an incremental elicitation protocol based on minimax regret

Motivation and approach

Who?

• Imagine to be an external observer helping with the voting procedure

Motivation and approach

Who?

• Imagine to be an external observer helping with the voting procedure

Why?

- Voters: difficult or costly to order all alternatives
- Committee: difficult to specify a voting rule precisely and abstractly

Motivation and approach

Who?

• Imagine to be an external observer helping with the voting procedure

Why?

- Voters: difficult or costly to order all alternatives
- Committee: difficult to specify a voting rule precisely and abstractly

How?

 Minimax regret: given the current knowledge, the alternatives with the lowest worst-case regret are selected as tied winners

Related Works

Incomplete profile

• and known weights: Minimax regret to produce a robust winner approximation (*Lu and Boutilier 2011*, [2]; *Boutilier et al. 2006*, [1])

Uncertain weights

- and complete profile: dominance relations derived to eliminate alternatives always less preferred than others (Stein et al. 1994, [3])
- in positional scoring rules (Viappiani 2018, [4])

Context

$$A \ \ \text{alternatives, } |A| = m$$

$$N \ \ \text{voters}$$

$$P = (\succ_j, \ j \in N), \ P \in \mathcal{P} \ \ \text{complete preferences profile}$$

$$W = (\textit{\textbf{w}}_r, \ 1 \leq r \leq m), \ W \in \mathcal{W} \ \ \text{(convex) scoring vector that the committee has in mind}$$

Context

$$A \ \ \text{alternatives, } |A| = m$$

$$N \ \ \text{voters}$$

$$P = (\succ_j, \ j \in N), \ P \in \mathcal{P} \ \ \text{complete preferences profile}$$

$$W = (\textit{\textbf{w}}_r, \ 1 \leq r \leq m), \ \ W \in \mathcal{W} \ \ \text{(convex) scoring vector that the committee has in mind}$$

W defines a Positional Scoring Rule $f_W(P) \subseteq A$ using scores $s^{W,P}(a), \forall a \in A$

A alternatives, |A| = m

Context

$$N$$
 voters $P=(\succ_j,\ j\in N),\ P\in \mathcal{P}$ complete preferences profile $W=(\textbf{\textit{w}}_r,\ 1\leq r\leq m),\ W\in \mathcal{W}$ (convex) scoring vector that the committee has in mind

W defines a Positional Scoring Rule $f_W(P) \subseteq A$ using scores $s^{W,P}(a), \ \forall \ a \in A$

P and W exist in the minds of voters and committee but unknown to us

Questions

Questions

Questions to the voters

Comparison queries that ask a particular voter to compare two alternatives $a, b \in A$

$$a \succ_j b$$
 ?

Questions

Questions to the voters

Comparison queries that ask a particular voter to compare two alternatives $a, b \in A$

$$a \succ_j b$$
 ?

Questions to the committee

Queries relating the difference between the importance of consecutive ranks from r to r+2

$$w_r - w_{r+1} \ge \lambda (w_{r+1} - w_{r+2})$$
 ?

Our Knowledge

The answers to these questions define C_P and C_W that is our knowledge about P and W

Our Knowledge

The answers to these questions define C_P and C_W that is our knowledge about P and W

• $C_P \subseteq \mathcal{P}$ constraints on the profile given by the voters

Our Knowledge

The answers to these questions define C_P and C_W that is our knowledge about P and W

- $C_P \subseteq \mathcal{P}$ constraints on the profile given by the voters
- $C_W \subseteq \mathcal{W}$ constraints on the voting rule given by the committee

Minimax Regret

Given $C_P \subseteq \mathcal{P}$ and $C_W \subseteq \mathcal{W}$:

$$\mathsf{PMR}^{C_P,C_W}(a,b) = \max_{P \in C_P, W \in C_W} s^{P,W}(b) - s^{P,W}(a)$$

is the maximum difference of score between a and b under all possible realizations of the full profile and weights

Minimax Regret

Given $C_P \subseteq \mathcal{P}$ and $C_W \subseteq \mathcal{W}$:

$$\mathsf{PMR}^{C_P,C_W}(a,b) = \max_{P \in C_P, W \in C_W} s^{P,W}(b) - s^{P,W}(a)$$

is the maximum difference of score between a and b under all possible realizations of the full profile and weights

We care about the worst case loss: *maximal regret* between a chosen alternative *a* and best real alternative *b*.

Minimax Regret

Given $C_P \subseteq \mathcal{P}$ and $C_W \subseteq \mathcal{W}$:

$$\mathsf{PMR}^{C_P,C_W}(a,b) = \max_{P \in C_P, W \in C_W} s^{P,W}(b) - s^{P,W}(a)$$

is the maximum difference of score between a and b under all possible realizations of the full profile and weights

We care about the worst case loss: *maximal regret* between a chosen alternative *a* and best real alternative *b*.

We select the alternative which minimizes the maximal regret

Pairwise Max Regret Computation

The computation of PMR^{C_P , C_W} (\P , \ref{P}) can be seen as a game in which an adversary both:

Pairwise Max Regret Computation

The computation of PMR^{C_P , C_W}(\P , $\ref{poisson}$) can be seen as a game in which an adversary both:

ullet chooses a complete profile $oldsymbol{\mathsf{P}} \in \mathcal{P}$

ullet chooses a feasible weight vector $old W \in \mathcal W$

$$(1,?,0) \longrightarrow (1,0,0)$$

in order to maximize the difference of scores

Computing Minimax Regret: Example

Profile completion

Consider the following partial profile

Computing Minimax Regret: Example

Weight selection

Consider the following constraints on the scoring vector given by the committee

$$w_1 \ge 2 \cdot w_2$$

$$w_2 > w_3$$

$$w_1 - w_2 \ge w_2 - w_3$$

Computing Minimax Regret: Example

Minimax computing

$$MR(\nearrow) = \max \begin{cases} PMR(\nearrow) = 19 \implies v = 3 & w = \{10,1,0\} \\ PMR(\nearrow) = 9 \implies v = 2 & w = \{10,1,0\} \end{cases}$$

$$MR(\ref{p}) = \boxed{-1}$$

• Random: equiprobably draws a question among the set of the possible ones;

- Random: equiprobably draws a question among the set of the possible ones;
- Extreme completions: choses the question that reduces the most the uncertainty;

- Random: equiprobably draws a question among the set of the possible ones;
- Extreme completions: choses the question that reduces the most the uncertainty;
- Pessimistic: selects the question that leads to minimal regret in the worst case;

- Random: equiprobably draws a question among the set of the possible ones;
- Extreme completions: choses the question that reduces the most the uncertainty;
- Pessimistic: selects the question that leads to minimal regret in the worst case;
- Two phase: it asks a predefined sequence of questions to the committee and then it only asks questions about the voters.

Thank You!

C. Boutilier, R. Patrascu, P. Poupart, and D. Schuurmans. Constraint-based Optimization and Utility Elicitation using the Minimax Decision Criterion.

Artifical Intelligence, 170(8–9):686–713, 2006.

Tyler Lu and Craig Boutilier.

Robust approximation and incremental elicitation in voting protocols. In *Proceedings of IJCAI 2011*, pages 287–293, 2011.

A stochastic dominance analysis of ranked voting systems with scoring.

European Journal of Operational Research, 74(1):78 – 85, 1994.

Paolo Viappiani.

Positional scoring rules with uncertain weights.

In Scalable Uncertainty Management - 12th International Conference, SUM 2018, Milan, Italy, October 3-5, 2018, Proceedings, pages 306-320, 2018,