Python

Zusammenfassung

Dario Scheuber / • Quelldateien

Inhaltsverzeichnis ————									
IIIIaitsveizeiciiiis									
Variablen									2
Ausgabe	 	 	 	 	 		 		2
Variablen	 	 	 	 	 		 		2
Typen Umwandlung	 	 	 	 	 		 		3
Operatoren	 	 	 	 	 		 		3
Zahlenformate	 	 	 	 	 		 		4
Strings	 	 	 	 	 		 		4
Raw Text	 	 	 	 	 		 		4
Zeichenliterale	 	 	 	 	 		 		4
Indexieren von Strings	 	 	 	 	 		 		5
String Funktionen	 	 	 	 	 		 		5
									_
Schleifen									5
IF-Statement									5
if - elif - else Statement									6
Verknüpfen von Bedingungen									6
Ablaufdiagramm / Flussdiagramm									6
While-Schleife	 	 	 	 	 		 		7
continue	 	 	 	 	 		 		7
break	 	 	 	 	 		 		7
For-Schleife	 	 	 	 	 		 		7
range	 	 	 	 	 		 		8
enumerate	 	 	 	 	 		 		8
zip	 	 	 	 	 		 		8
zip und enumerate	 	 	 	 	 		 		8
									_
Funktionen									9
Funktionsaufruf									9
Funktionsaufruf mit default Values									9
Funktionsaufruf mit Typehints	 	 	 	 	 		 		9
Docstring	 	 	 	 	 	 -	 		10
Rekursion	 	 	 	 	 		 		10
Datentypen									11
F-Strings									11
Sequenzen									11
Tuples									12
Listen									12
_									
Sets									14 15
Vergleich von zwei Sets									
Dictionaries									15
Hinzufügen von Elementen in Dicts									16
nested dict									16
.pop(key, default return)	 	 	 	 	 		 		16

Dict-Comprehension	17
JSON	17
Generatoren	17
Module	18
Environments	18
Module Import	19
Eigene Module	20
Modul Name	20
System Modul	21
OS Modul	21
Pakete	22
Raspberry Pi	23
$show_message()$	23
clear()	24
show letter()	24
$sleep(\overline{\overline{}})$	24
set_pixel()	24
load image()	24
set rotation()	24
Sense HAT Emulator	24
Auslesen Sensor	25
Gyroskop (Drehratensensor)	25
Sensor Luftdruck, Luftfeuchtigkeit, Temperatur	
Magnetfeldsensor	26
Joystick	

Variablen

Ausgabe

Eine einfache Variante um Ausgaben zu machen

Variablen

Zuweisungen mit dem = Zeichen

Variablennamen

Können nur Buchstaben, Zahlen oder Unterstriche im namen verwendet werden. Zusätzliche Sonderzeichen sind nicht erlaubt.

Typen Umwandlung

```
#int: 10
x = 10
int(x)
                          #int: 10
float(x)
                          #float : 10.0
str(x)
                          #String: 10
bool(x)
                          #bool: True
                          #int: 10 --> Kommawert wird abgeschnitten
int(10.6)
bool(-4)
                          #bool: True
bool(0)
                          #bool: False
bool(0.0)
                          #bool: False
```

Operatoren

Operation	Befehl
Addition	+
Subtraktion	-
Multiplikation	*
Division	/
Exponent	**
Modulo (Restberechnung)	%
Floor Division	//
Bitwise XOR	^

```
print(2*2)  #4
print(2**3)  #8
print(1.0/2.0)  #0.5
print(1/2)  #0.5
print(16%5)  #1
print(7//2)  #3
print(1^3)  #0b1 ^ 0b11 = 0b10 = 2
```

Hinweis

Alle Division wurden in Python mit Float realisiert

Zahlenformate

Strings

In Python sind Strings mit Doppelten- "Text" und Einfachen-Anführungszeichen 'Text' realisiert.

```
print("Text1"+"Text2") #Text1Text2
print("Text1", "Text2") #Text1 Text2
print("Text"*5) #TextTextTextTextText
print("Text\tText") #Text Text
print("Text\nText") #Text
print("Text\nText") #Text
print("\U0001f600") #Unicode: :) (Smile)
```

Sonderzeichen	Befehl
Tab	\t
NewLine	\n
Backslash	\\
"-Zeichen	п
'-Zeichen	1

Raw Text

Mit dem r Vorzeichen wird der nachfolgende String genau so Interpretiert.

```
print(r'C:\some\name') #C:\some\name
print('C:\some\name') #C:\some
#C:\some
#ame
```

Zeichenliterale

Zeichenliterale sind Strings, welche die Einrückungen etc. übernehmen.

Indexieren von Strings

Wichtig

Strings werden mit folgender notations Indexiert: <Stringname>[<start>:<stop>:<step>]. Negative Indexe wird von hinten gezählt, sowie bei einem negativen Step-Index wird die Zeichenkette rückwärts gezählt.

```
word = "Hello this is a Test"
print(word[0])
print(word[1])
                        #e
print(word[2])
                         #l
                         #l
print(word[3])
print(word[4])
                         #0
print(word[0:5])
                        #Hello
                         # thi
print(word[5:9])
print(word[5: ])
                        # this is a Test
                        #Hello this
print(word[ :10])
print(word[::2])
                         #Hloti saTs
print(word[0:10:2])
                         #Hloti
                        # Test
print(word[-5:])
print(word[5:-1])
                        # this is a Tes
                        #tseT a si siht olleH
print(word[::-1])
print("Hello" in word) #True
print(leng("Test"))
```

String Funktionen

Alle Strings unterstützen auch einige **String – eigene Funktionen**.

```
name = "Wolfgang"
# Gross und Kleinschreiben
print(name.upper())  #WOLFGANG
print(name.lower())  #wolfgang

string_path = "//path//to//a//file//deep//in//a//folder"
string_path.split("//")
#['', 'path', 'to', 'a', 'file', 'deep', 'in', 'a', 'folder']
last_folder = string_path.split("//")[-1]
#'folder'
string_path.count("//") #8
```

Schleifen -

IF-Statement

Das if-Statement wird ausgeführt soblad das die condition true ist

Vergleichsoperator	Bedeutung
==	ist gleich?
!=	nicht gleich?
>	grösser als
<	kleiner als
>=	grösser gleich
<=	kleiner gleich

if - elif - else Statement

Bei mehreren if-Statements wird jedes einzelne überprüft auch wenn eines True war. Das elif- oder else-Statement wird nur ausgeführt, wenn das if-Statement false war.

Verknüpfen von Bedingungen

```
x = True
y = False
z = x and y  #False
z = x or y  #True
z = not y  #True
```


Ablaufdiagramm / Flussdiagramm

Ein Ablauf- oder Flussdiagramm kann verwendet werden den Prozess /Ablauf eines Algorithmus, Programms, etc. graphisch zu beschreiben.

Baublock	Diagrammzeichen
Terminal/Terminator	Terminator

While-Schleife

Die while Schleife kann verwendet werden, um einen Code Block mehrfach auszuführen, bis eine bestimmte Bedingung eingetreten ist.

continue

'continue': Wenn continue aufgerufen wird, wird der **Rest** des Code Blockes **übersprungen** und es beginnt ein neuer Durchlauf der Schleife

break

'break': Wenn break aufgerufen wird, wird die Schleife sofort beendet.

For-Schleife

For in Python wird etwas anders behandelt als in anderen Programmiersprachen. In Python wird for verwendet, um **alle Elemente einer Sequenz** zu bearbeiten.

```
for elem in range(10):
    print(elem) #0\n 1\n 2\n 3\n 4\n ...

for c in "Word":
    print(c) #W\n o\n r\n d\n

for i in [1,3,5]:
    print(i) #1\n 3\n 5\n
```

range

'range': produziert eine Sequenz von (default 0) bis zu dem eingegebenen Wert (10).

```
list(range(10)) #0,1,2,....9
```

enumerate

'enumerate' gibt einen Index einer Iterable. **enumerate** liefert dazu ein Tuple (zwei Werte). Diese Werte sind index und Element von einer Iterablen.

```
for i,elem in enumerate("word"):
    print(f"{i}th letter is a {elem}")
    #0th letter is a w
    #1th letter is a o
    #2th letter is a r
#3th letter is a d
```

zip

'zip' um gleichzeitig zwei oder mehr gleichlange Listen zu iterieren. zip aggregiert Element für Element von mehreren Iterables und gibt jeweils ein Tuple mit einem Element von allen Iterables zurück.

Iterable 1	6	5	4	3	2	1	
<u>Iterable</u> 2		0	L	L	Α	Н	
•							
Zip Resultat		(5,0)	(4,L)	(3,L)	(A,H)	(1,H)	

```
for elem1,elem2 in zip([1,2,3,4,5,6],"hello"):
    print(elem1,elem2)
    #1 h
    #2 e
    #3 l
    #4 l
    #5 o
```

I zip-Länge

zip gibt nur so lange Tuples aus, wie alle Iterables Elemente haben.

zip und enumerate

```
for idx, tup in enumerate(zip(word_1,word_2)):
    print(f"{idx}th letters of words are: {tup[0]} \t {tup[1]}")
```

zip und enumerate

Wenn zip und enumerate gleichzeitig angewendet werden, werden leider NICHT 3 Werte zurückgegeben, sondern 1 Index und 1 Tuple (2 Werte) zurückgegeben.

Funktionen -

Funktionen sind Unterprogramme, die aus dem Programm aufgrufen werden können, um danach das Programm fortzusetzen.

```
def function_name(param1):
    return_param = param1 * 10
    return_return_param
```

Funktions-Header mit Parameter

Funktions - Body

Return Statement (optional)

Der Gültigkeitsbereich, auch **Scope** genannt, beschreibt in welchem Bereich Variablen, Funktionen, etc. ersichtlich sind.

Funktionsaufruf

```
#Main programm
x = 10
y = foo(x)

#Funktion
def foo(n):
    return n *10
```

Funktionsaufruf mit default Values

Parameter können auch mit Default Werten versehen werden. Dies macht die betroffenen Parameter **optional**. Heisst wenn sie nicht beim Aufruf angegeben werden, wird der Default – Wert verwendet.

```
#Main programm
x = 10
y = foo(x)  #gleiche auswirkung wie unten
y = foo(n=x) #

#Funktion
def foo(n,word = "hello"):
    print(word)
    return n *10
```

Funktionsaufruf mit Typehints

Zudem ist es möglich, dem Interpreter zu sagen, was man für einen Datentyp man bei den verschiedenen Funktionsparametern erwartet. Dies kann man mit **:datatype** definieren

```
#Main programm
x = 10
y = foo(x)  #gleiche auswirkung wie unten
y = foo(n=x) #

#Funktion
def foo(n:int,word:str = "hello"):
    print(word)
    return n *10
```

I NICHT FORCIEREND

Diese Type Hints sind NICHT FORCIEREND. Es sind jeweils nur Hinweise für den Programmierer. Ich kann den Variablen trotzdem noch andere Datentypen zuweisen, ohne dass es Fehler angezeigt wird. Der Code kann sogar funktionieren.

Rückgabewerte können auch mit einem Type Hint ->int versehen werden.

```
def add_binary(a:int, b:int) -> str:
    binary_sum = bin(a+b)[2:]
    return binary_sum #Wird als String zurückgegeben
```

Docstring

Funktionen, welche man definiert, sollten **immer dokumentiert** sein, damit man auch später noch weiss, was die Funktion machen sollte. Dies ist vor allem dann wichtig wenn man komplexere Programme mit vielen Funktionen schreibt. Generell dokumentiert man Funktionen mit einem DocString nach dem Header, nach folgender Konvention.

```
def calc_rect_area(l:float, w:float):
    """
    Calculate the Rectangle Area from a rectangle with width w and length l.
        Parameters:
        l (float) : Lenght of the Rectangle
        w (float) : Width of the Rectangle
        Returns:
        rect_area (float) : rectangle area (l*w)
    """
    rect_area = l * w
    return rect_area
```

Docstring

Mit help(my_func) kann die Docstring abgefragt werden, zusätzlich sind diese mit dem Mouse hover sichtbar

Rekursion

Es ist möglich eine Funktion von innerhalb derselben Funktion aufzurufen. Dies nennt sich **Rekursion**. (sich selbst aufrufen)

```
def recursion(x):
    # End Condition
    if condition:
        return fixed_value

# Recursive Condition
    if condition:
        return recursion(x-1)
```

Datentypen

F-Strings

Wenn Sie bei normalen Strings Variablen einfügen wollen müssen Sie dies mühsam mit der String-Concats machen. Zusätzlich erlauben F-Strings das spezifizieren des gewünschten Formates. Die definition von F-Strings ist auch **schneller**.

```
normal_string = "string plus"+str(variabel)
print("string plus ",variabel)

f_string = f"string plus {variabel}"
print(f"string plus {variabel}")
```

Tipp

Das kann auch mit mehreren Variablen gemacht werden

```
#runden (4 stellen nach dem Komma)
pi = 3.141592653589793
print(f"{pi:.4f}")
                      #3.1415
#0-padding (5 stellen vor dem Komma)
print(f"{12:05}")
                      #00012
#binar
print(f"{3:b}")
                        #11
#hex
print(f"{11:x}")
                        #b
#oktal
print(f"{11:0}")
                        #13
```

Sequenzen

unveränderbare Sequenzen (non-mutable)

- Zeichenketten (Strings)
- Tuples

Eigenschaften:

- keine neuen Elemente einfügbar
- Werte von Elementen nicht veränderbar

Veränderbare Sequenzen (mutable)

• Listen

Eigenschaften:

- neue Elemente können eingefügt werden
- Elemente können entfernen werden
- Werte von Elementen können verändert werden

Tuples

Tuples sind eine geordnete Sequenz von Elementen und verfügt deswegen über alle standard Sequenz-Funktionalitäten. Ein Tuple wird mit normalen Klammern () definiert. ::: callout-note Ein Tuple Elemente von verschiedenen Datentypen besitzen. Klammern sind optional. :::

```
x = 1
my_tuple = (1,2,4,"word",x)
                                 #1
print(my_tuple[0])
for elem in my_tuple:
                                 #1
    print(elem)
                                 #2
                                 #4
                                 #...
1 in my_tuple
                                 #True
(1,2) in my_tuple
                                 #False: (1,2) ist ein Tuple in einem Tuple
len(my_tuple)
my_tup = 1,2
                                 #Klammern optional
x,y = my_tup
                                 \#x=1 y=2
```

Wichtig

Aber Achtung Tuples sind nicht veränderbar!

Falls jedoch **nicht alle Werte eines Tuples benötigt** werden, kann die **Tuple Entpackung** angewendet werden.

Wichtig

Hierbei sind die Variabel Namen frei wählbar, eine muss lediglich mit * beginnen.

Listen

Eine Liste ist eine **veränderbare**, **geordnete Sequenz von Elementen**. Eine Liste kann einfach mit [] definiert werden.

Wichtig

Die Elemente in einer Liste können auch verschiedene Datentypen aufweisen.

Listen Funktionen

```
my_list = [1,2,3,4]
#Element Löschen
elem = my_list.pop(0)
                               #elem=1 my_list=[2,3,4]
#Element Hinzufügen am Ende
my_list.append(5)
                                \#my_list=[2,3,4,5]
#Hinzufügen an einem Spezifischen Index
my_list.insert(0,"a")
                               #my_list=["a",2,3,4,5]
#Liste am Ende einer Liste anfügen
my_list.extend([1,2,3])
                               #my_list=["a",2,3,4,5,1,2,3]
#entfernt die erste Instanz von 1
my_list.remove(1)
                               #my_list=["a",2,3,4,5,2,3]
#alle Einträge einer Liste löschen
my_list.clear()
```

Wichtig

Wenn value bei .remove() nicht in der Liste ist, gibt es einen Value_Error

Wenn eine **Liste nur Zahlen** (floats und ints) beinhaltet kann diese ebenfalls mit .sort() der Grösse nach aufsteigen sortiert werden. Oder eine Liste (**Datentyp unabhängig**) kann mit .reverse() umgekehrt werden.

List Copy by Reference

```
my_list = [1,2,3]
my_list_2 = my_list
my_list_2[2] = 4
```

```
print(my_list) #[1, 2, 4]
```

Copy by Reference

Mutables werden mit Copy by Refernce kopiert das heisst das my_list2 mithilfe eines Zeigers auf die Speicherstelle von my_list zeigt. Wenn my_list2 geändert wird, ändert sich auch my_list und umgekehrt!

Um richtig zu Kopieren gibt es die .copy() Methode.

```
my_list_2 = my_list.copy()
my_list_2[2] = 5
```

i Hinweis

Die .copy() Methode erzeugt ein neues Objekt im Speicher und weist die neue Variabel darauf zu.

Mutable Default Values

```
def add_to_list(item, list_to_add:list=None):
    if list_to_add is None:
        list_to_add = []
    ist_to_add.append(item)

return list_to_add
```

Wichtig

Wenn keine Liste übergeben wird, wird dies Detektiert. Darauf wird eine neue (leere) Liste erstellt.

Listen und Schleifen

Python unterstützt die sogenannte **List-Comprehension**, welche es erlaubt in einem 1-Zeiler Listen nach bestimmten Regeln zu erstellen.

```
#List erstellen mit Schleifen
my_list_2 = [i for i in range(10)]
#List erstellen mit Schleifen und einer Funktion
my_list = [my_func(elem) for elem in my_list_2]
#List erstellen mit Bedingungen
my_list = [elem**2 if elem%2==0 else elem for elem in my_list_2]
```

[f(x) if condition else g(x) for x in sequence]

Heisst es wird Funktion f(x) auf jedes Element der Sequenz angewendet wenn die Bedingung wahr ist. Ansonsten wird die Funktion g(x) angewendete.

Sets

Sets sind **ungeordnete** Listen, welche **jedes Element nur einmal beinhalten.** Die Items in einem Set sind **unveränderbar**, jedoch kann man Elemente **hinzufügen und entfernen**.

```
Syntax: {}
```

```
my_set = {"apple","banana", "pear"}

#Hinzufügen .add()
my_set.add("pineapple")

#{'banana', 'pineapple', 'pear','apple'}

#Bei mehrfach hinzufügen passiert nichts!
my_set.add("pineapple")

#Entfernen .remove()
my_set.remove("apple")

#{'banana', 'pear', 'pineapple'}
```

Wichtig

Wenn das zu entfernende Item nicht vorhanden ist, gibt es eine KeyError. Bei mehrfach hinzugefühen des gleichen Elementes, passiert nichts.

Vergleich von zwei Sets

B ist ein **Subset** von A ($B \in A$)

A ist ein **Superset** von B $(A \subset B)$

```
my_set_A.issuperset(my_set_B)
my_set_B.issubset(my_set_A)
```

Dictionaries

Ein Dictionary, kurz dict, ist eine **veränderbare (mutable)** Datenstruktur, welche das **Speichern** von **Key-Value-Pairs** erlaubt. Anders als bei Listen, werden hier die Werte (Values) nicht mit Indices sondern mit **Keys angewählt.** Beim Dictionary wie auch beim Set sind die Keys **einzigartig (unique).**

```
Syntax: {:}, my_dict = {"key1":"value"}
```

```
my_dict = {"key1":"value"}
my_dict["key1"] #'value'
```


i Hinweis

Die Keys sowohl Strings wie auch Ints oder Floats sein. Jedoch sollten in der Regel Strings als Keys verwendet werden.

Hinzufügen von Elementen in Dicts

```
my_dict["a"] = "value1"
my_dict["b"] = "value2"
my_dict["a"] = "value3" #überschreiben von key a
```

nested dict

```
my_dict = {"John":{
    "Age": 48,
    "Gender": "m",
    "Profession":"Carpenter"
    }
}

for key in my_dict:
    print(key) #John

for key,value in my_dict.items():
    print(f"{key}: {value}") #John: {'Age': 48, ...}

"John" in my_dict.keys() #True
"Age" in my_dict["John"].keys() #True
```

Falls gleichzeitig geprüft werden soll: ob ein Key existiert, was für einen Wert dieser hat, und falls der Key nicht existiert dieser mit einem Default Wert erstell werden soll. Gibt es dafür die set_default() Methode:

print(my_dict.setdefault("Robert",{}))

```
set_default()
```

Gibt den Wert von «Robert» zurück, erstellt dieses Key-Value-Pair mit Default Value falls nicht vorhanden

.pop(key, default return)

Die .pop(key) Methode kann verwendet werden, um den Wert eines Keys zu erhalten und diesen Key zu löschen.

```
my_dict.pop("Robert")
my_dict.pop("Klaus","Key nicht vorhanden")
#'Key nicht vorhanden'
```

Pretty Print

In Python gibt es Module (vorgeschriebener Code) welcher importiert werden kann. Eines dieser Module ist das PrettyPrint Modul (pprint), welches eigene print() Funktionen zur Verfügung stellt.

Einer dieser Funktionen ist das «schöne» Printen von Dictionaries. So kann zB genau spezifiziert werden:

- Wie viele Levels eines Dictionaries überhaupt geprinted werden sollen (depth)
- Wie viel Leerzeichen Abstand zwischen Levels geprinted werden soll (indent)

```
import pprint
pp = pprint.PrettyPrinter(depth=1, indent = 3)
pp.pprint(my_dict)
```

Dict-Comprehension

{key:value for elem in iterable} Hierbei ist oft so dass sowohl key wie auch value eine **Funktion von** f(elem) sind.

JSON

Was wenn man nun ein Dictionary in einem File abspeichern will? Dafür gibt es das **JSON Modul.** JSON steht für JavaScript Object Notation und ist ein standardisiertes File Format, um unter anderem Dictionaries abspeichern zu können. Um ein Dict abzuspeichern hat das json Modul die .dump() Methode.

```
# JSON Modul importieren
import json
# öffnen eines Files
with open(file="dict.json",mode = "w+") as fp:
# speichern (schreiben) des Dicts in das File
    json.dump(obj = my_dict, fp = fp, indent= 4)
```

Ein Dict kann natürlich auch von einem JSON File erstellt werden. Dafür muss wiederum das JSON Modul verwendet werden. Hierzu hat das json Modul die .load() Methode.

```
# öffnen des JSON files
with open(file="dict.json", mode = "r+") as fp:
    # auslesen des Dicts
    my_read_dict = json.load(fp=fp)
pp.pprint(my_read_dict)
```

Generatoren

In Python ist ein **Generator** eine Funktion, **die einen Iterator zurückgibt**, der erst dann eine Folge von Werten erzeugt, wenn man darüber iteriert. Generatoren sind nützlich, wenn wir eine **grosse Folge von Werten** erzeugen wollen, aber nicht alle auf einmal im Speicher ablegen wollen. Ein Generator kann in Python als eine Funktion mit einem yield Keyword definiert werden.

```
def my_generator(n):
    """
    Function to Return Generator to count to n
    """
```

```
i = 0
while i < n:
    i += 1
    yield i

gen = my_generator(10)
#<generator object count at 0x000001C167494580>
list(gen)
#[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

i yield

Wenn yield aufgerufen wird, wird der aktuelle Zustand der Funktion gespeichert und ein Wert zurückgegeben.

Module -

Diese Umgebungen können jeweils mit Paket-Managern verwaltet werden. Pakete Manager sind Paketverwaltungsprogramme, die es erlauben in Python Libraries zu installieren und deinstallieren.

- Anaconda conda
- Pip pip

```
pip install paket #install paket
pip uninstall paket #uninstall paket
pip help #verschiedenen Befehle und Optionen aufrufen
pip list #aktuell installierten Pakete mit Versionsnummern
pip show paket #informiert über ein installiertes Paket
```

Environments

conda hat auch die Fähigkeit isolierte (virtuelle) Python Environments zu erstellen, welche unterschiedliche Python Versionen und Packet-Versionen installiert haben.

V1: Via Anaconda Promt (command line):

- conda create -- name ihr _ name python = 3.9.2
- conda activate ihr name
- conda install numpy
- conda install matplotlib
- conda install pandas

Conda basics	
Verify conda is installed, check version number	conda info
Update conda to the current version	conda update conda
Install a package included in Anaconda	conda install PACKAGENAME
Run a package after install, example Spyder*	spyder
Update any installed program	conda update PACKAGENAME
Command line help	COMMANDNAMEhelp conda installhelp
*Must be installed and have a deployable command, usually PACKAGENAME	
Using environments	
Create a new environment named py35, install Python 3.5	conda createname py35 python=3.5
Activate the new environment to use it	WINDOWS: activate py35 LINUX, macOS: source activate py35
Get a list of all my environments, active environment is shown with *	conda env list

Module Import

Um Globale Module in Python Scripts verwenden zu können müssen Sie in die Python Umgebung eingebunden werden Module werden mit der import-Anweisung eingebunden. import modul_name

```
import math
import random
#Äquivalent
import math, random
math.sin(1)
```

Spezifische Funktionen können aber auch direkt importiert werden. from modul import function

```
from math import sin, pi sin(pi) #0
```

Bibliothek und mit all ihren Funktionen können aber auch mit * komplett in globalen Namensraum eingebunden werden. from modul import *

```
from math import *
sin(pi) #0
```

Wichtig

GEFAHR! Interferenz mit vorhandener Referenz!

Zur Schreiberleichterung können neue Namen für Namensräume definiert werden. import module as new_name

```
import math as m
m.pi #3.14...
```

Auch beim importieren von Objekten/Funktionen in den globalen Namensraum können diese umbenannt werden. from module import function as new_name

```
from math import sqrt as wurzel wurzel(6)
```

Mit der eingebetteten Funktion dir(module) kann man sich die definierten Methoden innerhalb eines Moduls ausgeben lassen. Wenn man dir() einfach so leer ohne Argument ausführt, werden alle belegten Variablenamen (Namespace) angezeigt.

Die help(module) Funktion kann auch bei Modulen und Funktionen angewandt werden, um Hilfestellungen zu erhalten.

Eigene Module

Genau genommen ist **jedes Python Programm automatisch** auch ein (lokales) **Modul**. Es kann also jedes selber **geschriebene py-Skript** ebenfalls von anderen lokalen Skripts importiert werden.

Wenn sich Module in einem anderen Ordner (Speicherort) als das jetzige Skript befinden, müssen diese relativ zum aktiven Skript importiert werden! from mein_unterordner import mein_modul

Falls mehrere Unterordner verwendet werden, müssen deren Namen beim Importieren mit einem «.» getrennt werden

from mein_unterordner.my_subsub_folder import mein_modul mit mein_modul.my_function() können auch einzelene Funktionen genutzt werden.

Eine der einfacheren Varianten dieses zu importieren ist, den **relativen Pfad** von Skript zum File zum **System-Path hinzuzufügen.**

```
import sys
sys.path.append(r"../top_folder") #relative Path to Top Folder

#import as if it is in the same folder
import my_top_module
my_top_module.my_function()
```

Modul Name

Jedes Python Skript besitzt das __name__ Attribut.

Dieses Attribut wird beim **Ausführen bzw. Importieren** des jeweiligen Files gesetzt und beschreibt den **Namen des Skriptes**. Speziell jedoch ist, dass das von der **Hauptskript** welches ausgeführt wurde den **Namen** __main__ bekommt.

if __name__ == "__main__": Ist NUR true wenn das Skript direkt ausgeführt wurde.

System Modul

Die Standard- Bibliothek sys in Python bietet Funktionen für die Interaktion mit dem Interpreter der verwendeten Python Umgebung. Als Standard-Bibliothek ist sys immer verfügbar und muss nicht installiert werden. import sys

Das System Modul

OS Modul

Das standard OS Modul enthält Funktionen welche Operation-System spezifisch sind (zB Windows Funktionen) import os

```
os.getcwd() #aktuelle Arbeitsverzeichnis
os.listdir() #auflistung Dateien und Unterordner
os.mkdir("test_folder") #wird ein neues Verzeichnis generiert
os.chdir("./test_folder") #Wechseln des Arbeitsverzeichnisses
os.rename("test_folder", "new_test") #Umbenennung von Dateien oder Ordnern
os.rmdir("new_test") #löscht Verzeichnisse
```

Name	Beschreibung
access(path, mode)	Prüft die Rechte, die das Programm auf den übergebenen Pfad path hat.
chdir(path)	Setzt das aktuelle Arbeitsverzeichnis auf den mit path übergebenen Pfad.
getcwd()	Gibt einen String zurück, der den Pfad des aktuellen Arbeitsverzeichnisses (<i>Current Working Directory</i>) enthält.
chmod(path, mode)	Ändert die Zugriffsrechte des Pfades path.
listdir([path])	Erzeugt eine Liste mit allen Dateien und Verzeichnissen, die sich unter path befinden.
mkdir(path, [mode])	Legt ein neues Verzeichnis an der Stelle path an.
makedirs(path, [mode])	Legt ein neues Verzeichnis an der Stelle path an. Falls erforderlich, werden auch übergeordnete Verzeichnisse mit angelegt.
remove(path)	Entfernt die mit path angegebene Datei aus dem Dateisystem.
removedirs(path)	Löscht eine ganze Ordnerstruktur. Dabei löscht es von der tiefsten bis zur höchsten Ebene nacheinander alle Ordner, sofern diese leer sind.
rename(src, dst)	Benennt die mit src angegebene Datei oder den Ordner in dst um.
renames(src, dst)	Wie rename, legt aber bei Bedarf die Verzeichnisstruktur des Zielpfades an. Außerdem wird nach dem Benennungsvorgang versucht, den src-Pfad mittels removedirs von leeren Ordnern zu reinigen.
replace(src, dst)	Ersetzt die Datei oder das Verzeichnis dst durch src.
rmdir(path)	Entfernt das übergebene Verzeichnis aus dem Dateisystem oder wirft os.error, wenn das Verzeichnis nicht existiert. Dies funktioniert nur mit leeren Verzeichnissen.
walk(top, [topdown, onerror])	Durchläuft den Verzeichnisbaum unter top rekursiv.

Pakete

Aus einem Ordner kann einfach ein **Paket** gemacht werden, indem ein (ein leeres) Python **File mit dem Namen __init__.py** darin erstellt wird.

Im Init – File selbst können nun **alle relativen imports** des Paketes gemacht werden, um **alle relevanten** Funktionen und Module in der obersten Ebene des Paketes zur Verfügung zu stellen.

```
# In __init__.py
# Bereitstellen einer Funktion
from unser_paket.unter_ordner_1.modul_1 import f1
# Bereitstellen eines Modules (.py)
from unser_paket.unter_ordner_2 import modul_2
from unser_paket.unter_ordner_2 import modul_3

# Benutzung im main
import unser_paket
unser_paket.f1()
unser_paket.modul_2.f2()
unser_paket.modul_3.f3()
```

Für das Erstellen von Unterpaketen muss jeweils in den Unterordnern **ebenfalls ein __init__.py File angelegt** werden.

Raspberry Pi -

Um mit dem Sense HAT in Verbindung zu treten, muss zuerst das Sense HAT Modul importiert werden. from sense_hat import SenseHat

Instanziere ein SenseHat Objekt: sense = SenseHat()

show_message()

Für unser «Hello World» Beispiel, verwende nun die Methode .show_message(), um «Hello World» als Laufschrift auf der LED Matrix auszugeben. sense.show_message("Hello World")

Parameter	Туре	Valid values	Explanation
text string	String	Any <u>text</u> string.	The message to scroll.
scroll_speed	Float	Any floating point number.	The speed at which the text should scroll. This value represents the time paused (in seconds) for between shifting the text to the left by one column of pixels. Defaults to 0.1
text_colour	List	[R, G, B]	A list containing the R-G-B (red, green, blue) <u>colour</u> of the text. Each R-G-B element must be an integer between 0 and 255. Defaults to [255, 255, 255] white .
back colour	List	[R, G, B]	A list containing the R-G-B (red, green, blue) <u>colour</u> of the background. Each R-G-B element must be an integer between 0 and 255. Defaults to [0, 0, 0] black / off.

clear()

Mit der Methode .clear() können wir die alle Pixel der LED Matrix auf einmal ansteuern. Es kann zudem ein Tupel oder eine Liste mit den RGB Werten übergeben werden.

```
def clear((r,g,b)):
    """
    Clears the LED matrix with a single
    colour, default is black / off
    """
```

show letter()

Mit .show_letter() können einzelne Buchstaben/Zeichen (String mit Länge 1) auf der LED Matrix ausgeben werden. sense.show_letter("A") or sense.show_letter("A", [0,255,0], [0,0,255])

sleep()

Mit sleep kann die Anzeigedauer (in Sekunden) bestimmt werden.

```
from time import sleep
sleep(0.5) #wait 0.5s
```

set_pixel()

Mit .set_pixel() können einzelne Pixel der 8x8 LED Matrix angesteuert werden. sense.set_pixel(x,y,r,g,b) or sense.set_pixel(x, y, color)

load_image()

Bilder mit 8x8 Pixel und 8-bit Farbtiefe können mit .load_image() übergeben werden.

set_rotation()

Mit .set_rotation() kann das Bild auf der LED Matrix um 0, 90, 180 oder 270 Grad gedreht werden (im Uhrzeigersinn). Der Winkel ist dabei immer absolut.

Sense HAT Emulator

Wird der Emulator verwendet, muss für alle Programme jeweils bei der Import Anweisung sense_hat mit sense_emu ersetzt werden. from sense_emu import SenseHat

Auslesen Sensor

```
# Library importieren
from sense_hat import SenseHat
# erstellen des SenseHat Objektes
sense = SenseHat()

# einmaliges Auslesen der Beschleunigungswerte
accel = sense.get_accelerometer_raw()
# auslesen des Dicts
print(f"Acceleration in X: {accel['x']}")
print(f"Acceleration in Y: {accel['y']}")
print(f"Acceleration in Z: {accel['z']}")
```

Gyroskop (Drehratensensor)

```
gyro = sense.get_orientation()
roll = gyro["roll"]
pitch = gyro["pitch"]
yaw = gyro["yaw"]
```


Sensor Luftdruck, Luftfeuchtigkeit, Temperatur

Magnetfeldsensor

Man kann mit dem SenseHat ebenfalls einen Magnetfeld-Sensor um ein Magnetfeld zu messen. Dieser Sensor eignet sich ideal, um das Natürliche Magnetfeld der Erde zu messen, um so einen Kompass zu programmieren.

```
def get_compass(self):
    """
    Gets the direction of North from the magnetometer in degrees
    """

while True:
    # read out sensor value
    north = sense.get_compass()  # print the values
    print(f"North is in {north:2.2f} deg ")  # sleep (optional)
    time.sleep(0.5)
```

Joystick

So gibt es zb die .stick.get_events() Methode, welche eine Liste von vorgekommenen Joystick Bewegungen zurückgibt. event = ('timestamp', 'direction', 'action') timestamp: Zeitpunkt des Events direction: Richtung, in welche der Joystick gedrückt wurde action: Aktion (pressed, held, released)

```
while True:
    for event in sense.stick.get_events():
        print(event.direction, event.action)
```