1 Épreuve de Mathématiques

1.1 Partie I : Une distance entre lois de variables aléatoires

Q1a. Vu que X et Y sont des variables aléatoires à valeurs dans \mathbb{N} , les séries $\sum_{n} \mathbf{P}([X=n])$ et $\sum_{n} \mathbf{P}([Y=n])$ sont convergentes (En effet $\sum_{n}^{+\infty} \mathbf{P}([X=n]) = \sum_{n}^{+\infty} \mathbf{P}([Y=n]) = 1$.) Maintenant comme :

$$|\mathbf{P}([X = n]) - \mathbf{P}([Y = n])| \le \mathbf{P}([X = n]) + \mathbf{P}([Y = n])$$

Il est alors clair que $\sum_{n} |\mathbf{P}([X=n]) - \mathbf{P}([Y=n])|$ converge.

Q1b. Caractérisons d(X, Y):

$$d(X,Y) = 0 \Leftrightarrow \sum_{n}^{+\infty} |\mathbf{P}([X=n]) - \mathbf{P}([Y=n])| = 0$$

$$\Leftrightarrow \mathbf{P}([X=n]) = \mathbf{P}([Y=n]), \forall n \in \mathbb{N}$$

En d'autres termes d(X,Y)=0 ssi X et Y ont la même loi. Cependant dire que X et Y ont la même loi ne veut pas dire qu'elles sont égales. Pour s'en convaincre prenons $N \in \mathbb{N}$ et considérons les variables aléatoires X et Y telles que $X \sim \mathcal{B}(N,\frac{1}{2})$ et Y=N-X. On peut aisément voir que $Y \sim \mathcal{B}(N,\frac{1}{2})$.

$$\mathbf{P}([Y=k]) = \mathbf{P}([X=N-k]) = \frac{C_N^{N-k}}{2^N} = \frac{C_N^k}{2^N} = \mathbf{P}([X=k])$$

Dans cet exemple ci X et Y ont la même sans être égales. En effet X=Y est équivalent à $X=Y=\frac{N}{2}$; chose contradictoire!

Q1c. En appliquant l'inégalité triangulaire :

$$|\mathbf{P}([X=n]) - \mathbf{P}([Z=n])| \le |\mathbf{P}([X=n]) - \mathbf{P}([Y=n])| + |\mathbf{P}([Y=n]) - \mathbf{P}([Z=n])|$$

En sommant cette inégalité sur $\mathbb N$ on obtient bien :

$$d(X,Z) \le d(X,Y) + d(Y,Z)$$

Q2a. Par définition des ensembles A, il vient que : $|\mathbf{P}([X=k]) - \mathbf{P}([Y=k])| = \mathbf{P}([X=k]) - \mathbf{P}([Y=k])$ pour $k \in A$. Donc en sommant sur k dans A, il vient que $\mathbf{P}([X \in A]) \ge \mathbf{P}([Y \in A])$. On a également

Ulrich GOUE -1-

 $|\mathbf{P}([X=n]) - \mathbf{P}([Y=n])| = \mathbf{P}([Y=n]) - \mathbf{P}([X=n])$ pour $n \in A^{c-1}$. On a aussi $\mathbf{P}([X \in A^c]) = 1 - \mathbf{P}([X \in A])$. A présent nous répondons à la question :

$$d(X,Y) = \frac{1}{2} \sum_{n=1}^{+\infty} |\mathbf{P}([X=n]) - \mathbf{P}([Y=n])|$$

$$= \frac{1}{2} \sum_{n \in A} |\mathbf{P}([X=n]) - \mathbf{P}([Y=n])| + \frac{1}{2} \sum_{n \in A^c} |\mathbf{P}([X=n]) - \mathbf{P}([Y=n])|$$

$$= \frac{1}{2} \sum_{n \in A} \mathbf{P}([X=n]) - \mathbf{P}([Y=n]) - \frac{1}{2} \sum_{n \in A^c} \mathbf{P}([X=n]) - \mathbf{P}([Y=n])$$

$$= \frac{\mathbf{P}([X \in A]) - \mathbf{P}([Y \in A])}{2} - \frac{\mathbf{P}([X \in A^c]) - \mathbf{P}([Y \in A^c])}{2}$$

$$= \frac{\mathbf{P}([X \in A]) - \mathbf{P}([Y \in A])}{2} - \frac{1 - \mathbf{P}([X \in A]) - 1 + \mathbf{P}([Y \in A])}{2}$$

$$= \mathbf{P}([X \in A]) - \mathbf{P}([Y \in A])$$

$$= |\mathbf{P}([X \in A]) - \mathbf{P}([Y \in A])|$$

Q2b.Par définition de A, en prenant U, V respectivement des parties de A et A^c il vient alors que $\mathbf{P}([X \in U]) \ge \mathbf{P}([Y \in V]) \ge \mathbf{P}([X \in V])$. En outre si U' est telle que $U \subset U' \subset A$ alors :

$$\mathbf{P}([X \in U']) - \mathbf{P}([Y \in U']) = (\mathbf{P}([X \in U]) - \mathbf{P}([Y \in U])) + \underbrace{(\mathbf{P}([X \in U' \setminus U]) - \mathbf{P}([Y \in U' \setminus U]))}_{\geq 0}$$

$$\geq \mathbf{P}([X \in U]) - \mathbf{P}([Y \in U])$$

Pareillement pour V' est une autre partie de A^c telle que $V \subset V'$ alors

$$P([Y \in V']) - P([X \in V']) \ge P([Y \in V]) - P([X \in V])$$

A présent nous sommes suffisamment armés pour achever cette question :

$$|\mathbf{P}([X \in B]) - \mathbf{P}([Y \in B])| = |(\mathbf{P}([X \in B \cap A]) - \mathbf{P}([Y \in B \cap A])) - (\mathbf{P}([Y \in B \cap A^c]) - \mathbf{P}([X \in B \cap A^c]))|$$

$$\leq \max(\mathbf{P}([X \in B \cap A]) - \mathbf{P}([Y \in B \cap A]), \mathbf{P}([Y \in B \cap A^c]) - \mathbf{P}([X \in B \cap A^c]))$$

$$\leq \max(\mathbf{P}([X \in A]) - \mathbf{P}([Y \in A]), \mathbf{P}([Y \in A^c]) - \mathbf{P}([X \in A^c]))$$

$$= \max(\mathbf{P}([X \in A]) - \mathbf{P}([Y \in A]), \mathbf{1} - \mathbf{P}([Y \in A]) - \mathbf{1} + \mathbf{P}([X \in A]))$$

$$= \max(\mathbf{P}([X \in A]) - \mathbf{P}([Y \in A]), \mathbf{P}([X \in A]) + \mathbf{P}([Y \in A]))$$

$$= \mathbf{P}([X \in A]) - \mathbf{P}([Y \in A])$$

$$= d(X, Y)$$

1. Pareillement $\mathbf{P}([Y \in A^c]) \ge \mathbf{P}([X \in A^c])$

Ulrich GOUE -2-

Q3a. La fonction $f: x \mapsto e^x$ étant convexe elle est au dessus de ses tangentes particulièrement la tangente au point x = 0:

$$\forall x \in \mathbb{R}, e^x \ge f(0) + f'(0)(x - 0)$$
$$= 1 + 1 \times (x - 0)$$
$$= 1 + x$$

(Avec égalité ssi x = 0).

Q3b. Pour tout entier $k \ge 2$, on a : $\mathbf{P}([X = k]) = 0 < \mathbf{P}([Y = k])$. Donc dans notre cas $A \subset \{0, 1\}$. Maintenant on sait que $\mathbf{P}([X = 0]) = 1 - p$, $\mathbf{P}([Y = 0]) = e^{-p}$ puis $\mathbf{P}([X = 1]) = p$ et $\mathbf{P}([Y = 1]) = pe^{-p}$.

*Cas 1: Si p = 0

on voit que toutes ces probabilités sont égales et $A = \{0, 1\}$ donc

$$d(X, Y) = \mathbf{P}([X \in A]) - \mathbf{P}([Y \in A]) = 0 = p(1 - e^{-p})$$

*Cas 2: Si $p \in [0,1]$

Dans ce cas on a bien $e^{-p} > 1 - p$ et $p > pe^{-p}$ donc $A = \{1\}$ et

$$d(X, Y) = \mathbf{P}([X = 1]) - \mathbf{P}([Y = 1]) = p - pe^{-p} = p(1 - e^{-p})$$

Donc dans tous les cas on a bien $d(X, Y) = p(1 - e^{-p})$. De ce qui précède :

$$d(X,Y) = p(1 - e^{-p}) \le p(1 - (1 - p)) = p^2.$$

Résultat Intermédiaire : Avant d'aborder la suite, nous allons montrer un résultat qui nous sera très utile aux questions Q4 et Q5.

Proposition Soit X une variable aléatoire à valeurs entières positives. On définit la matrice M_X de $\mathcal{M}_N(\mathbb{R})$ de terme général $M_{X,ij} = \mathbb{P}([X=j-i])$. Alors pour toute autre variable aléatoire Y à valeurs dans $\mathbb{N}: M_X M_Y = M_{X+Y}$

Preuve : On utilise simplement la définition du produit matriciel :

$$\begin{split} M_{X+Y,ij} &= \sum_{k=1}^{N} M_{X,ik} M_{X,kj} \\ &= \sum_{k=1}^{N} \mathbb{P}([X=k-i]) \mathbb{P}([Y=j-k]) \\ &= \sum_{k=i}^{j} \mathbb{P}([X=k-i]) \mathbb{P}([Y=j-k]) \\ &= \sum_{k=0}^{j-i} \mathbb{P}([X=k]) \mathbb{P}([Y=j-i-k]) \\ &= \mathbb{P}([X+Y=j-i]) \end{split}$$

Ulrich GOUE -3-

Corollaire : Soient X_1, \dots, X_n des variables aléatoires à valeurs dans \mathbb{N} et indépendantes alors :

$$M_{\sum_{i=1}^{n} X_i} = \prod_{i=1}^{n} M_{X_i}$$

Preuve : Elle découle d'une récurrence immédiate. Supposant la formule vraie pour n-1 :

$$M_{\sum_{i=1}^{n} X_{i}} = M_{X_{1} + \sum_{i=2}^{n} X_{i}}$$

$$= M_{X_{1}} M_{\sum_{i=2}^{n} X_{i}}$$

$$= M_{X_{1}} \prod_{i=2}^{n} M_{X_{i}}$$

$$= \prod_{i=1}^{n} M_{X_{i}}$$

Q4a. En remarquant que $P_i = M_{X_i}$, d'après la proposition ci-dessus on a $P_1P_2 = M_{X_1+X_2}$. Ainsi sa première ligne contient les éléments ($\mathbf{P}([X_1+X_2=j-1])_{1\leq j\leq N}$. Comme X_1+X_2 charge que les points 0,1,2; plus explicitement la première ligne est constituée de $\mathbf{P}([X_1+X_2=0],\mathbf{P}([X_1+X_2=1],\mathbf{P}([X_1+X_2=2]$ suivi de termes nuls.

Q4b. Pareillement $\prod_{k=1}^n P_k = \prod_{k=1}^n M_{X_k} = M_{\sum_{k=1}^n X_k} = M_{U_n}$. Ainsi sa première ligne contient les éléments $(\mathbf{P}(U_n=j-1))_{1\leq j\leq N}$. Comme U_n charge que les points $0,1,\ldots,n$; plus explicitement la première ligne est constituée de $\mathbf{P}(U_n=0)$, $\mathbf{P}([U_n=1]\ldots,\mathbf{P}([U_n=n]$ suivi de termes nuls.

Q5a. On applique la formule du binôme de Newton tout en manipulant habilement l'opérateur Σ

$$\begin{split} \sum_{k=0}^{r} \frac{Q_{i}^{k}}{k!} &= \sum_{K=0}^{r} \frac{p_{i}^{K}(R-I)^{K}}{K!} \\ &= \sum_{K=0}^{r} \frac{p_{i}^{K}}{K!} \sum_{j=0}^{K} (-1)^{K-j} C_{K}^{j} R^{j} \\ &= \sum_{K=0}^{r} \frac{p_{i}^{K}}{K!} \sum_{j=0}^{K} (-1)^{K-j} \frac{K!}{j!(K-j)!} R^{j} \\ &= \sum_{K=0}^{r} p_{i}^{K} \sum_{j=0}^{K} (-1)^{K-j} \frac{1}{j!(K-j)!} R^{j} \\ &= \sum_{j=0}^{r} \sum_{K=j}^{r} (-1)^{K-j} \frac{1}{j!(K-j)!} p_{i}^{K} R^{j} \\ &= \sum_{j=0}^{r} \sum_{k=0}^{r-j} (-1)^{k} \frac{1}{j!k!} p_{i}^{k+j} R^{j} \quad (K=k+j) \\ &= \sum_{j=0}^{r} \frac{p_{i}^{j}}{j!} \left(\sum_{k=0}^{r-j} \frac{(-1)^{k} p_{i}^{k}}{k!} \right) R^{j} \end{split}$$

Ulrich GOUE -4-

Q5b. *R* est une matrice de Jordan, il est alors facile de voir qu'elle est nilpotente d'ordre N. Ceci implique

$$\forall r \ge N, \sum_{k=0}^{r} \frac{Q_i^k}{k!} = \sum_{j=0}^{r} \frac{p_i^j}{j!} \left(\sum_{k=0}^{r-j} \frac{(-1)^k p_i^k}{k!} \right) R^j$$
$$= \sum_{j=0}^{N-1} \frac{p_i^j}{j!} \left(\sum_{k=0}^{r-j} \frac{(-1)^k p_i^k}{k!} \right) R^j$$

Et encore...

$$\exp Q_{i} = \lim_{r \to +\infty} \sum_{k=0}^{r} \frac{Q_{i}^{k}}{k!}$$

$$= \lim_{r \to +\infty} \sum_{j=0}^{N-1} \frac{p_{i}^{j}}{j!} \left(\sum_{k=0}^{r-j} \frac{(-1)^{k} p_{i}^{k}}{k!} \right) R^{j}$$

$$= \sum_{j=0}^{N-1} \frac{p_{i}^{j}}{j!} \lim_{r \to +\infty} \left(\sum_{k=0}^{r-j} \frac{(-1)^{k} p_{i}^{k}}{k!} \right) R^{j}$$

$$= \sum_{j=0}^{N-1} \frac{p_{i}^{j} e^{-p_{i}}}{j!} R^{j}$$

Mais pour faire la jonction avec la question suivante on prouve maintenant que $M_{Y_i} = \exp Q_i$. Mais il est facile de le terme général de R^j est $R^j_{kl} = \mathbf{1}_{[l-k=j]}$. Le terme général $t_{i,kl}$ de $\exp Q_i$ est alors :

$$t_{i,kl} = \sum_{j=0}^{N-1} \frac{p_i^j e^{-p_i}}{j!} \mathbf{1}_{[l-k=j]}$$

$$= \frac{p_i^{l-k} e^{-p_i}}{(l-k)!} \mathbf{1}_{[l-k\geq 0]}$$

$$= \mathbf{P}([Y_i = l-k])$$

Q5c. D'après la proposition ci-dessus on a $\prod_{k=1}^n \exp Q_k = \prod_{k=1}^n M_{Y_k} = M_{\sum_{k=1}^n Y_k} = M_{V_n}$. Ainsi sa première ligne contient les éléments ($\mathbf{P}(V_n = j-1]$) $_{1 \le j \le N}$. Comme V_n charge tous les entiers; plus explicitement la première ligne est constituée de $\mathbf{P}(V_n = 0]$, $\mathbf{P}([V_n = 1], \dots, \mathbf{P}([V_n = N], \dots, \mathbf{P}([V_n =$

Q6a. Notons C = AB, Pour tout $i \le N$ on a:

$$\sum_{j=1}^{N} |a_{ij} + b_{ij}| \leq \sum_{j=1}^{N} |a_{ij}| + |b_{ij}|$$

$$\leq \sum_{j=1}^{N} |a_{ij}| + \sum_{j=1}^{N} |b_{ij}|$$

$$\leq ||A|| + ||B||$$

Ulrich GOUE -5-

Par conséquent $||A + B|| \le ||A|| + ||B||$. On a également :

$$\sum_{j=1}^{N} || = \sum_{j=1}^{N} |\sum_{k=1}^{N} a_{ik} b_{kj}|$$

$$\leq \sum_{j=1}^{N} \sum_{k=1}^{N} |a_{ik}| . |b_{kj}|$$

$$= (\sum_{k=1}^{N} |a_{ik}|) (\sum_{j=1}^{N} |b_{kj}|)$$

$$\leq ||A|| . ||B||$$

D'où $||AB|| \le ||A|| \cdot ||B||$.

Q6b. Soit $i \le n$, la somme c_l des éléments de la l-ième ligne de $\exp Q_i$ est :

$$c_l = \sum_{i=1}^{n} \mathbf{P}(Y_i = j - l) = \sum_{i=0}^{N-l} \mathbf{P}(Y_i = j) \le 1$$

Par conséquent $||\exp Q_i|| \le 1$. Pareillement on prouve que $||P_i|| \le 1$ ou même mieux $||\prod_{i \in J} P_i|| \le 1$ avec J une partie de l'intervalle entier [1, N].

Q6c. On prouve l'identité par récurrence. Le cas n=1 est immédiat. A présent supposons la relation vrai à l'ordre n-1 et prouvons l'hérédité.

$$\begin{split} ||\prod_{i=1}^{n} P_{i} - \prod_{i=1}^{n} \exp Q_{i}|| &= ||(P_{1} - \exp Q_{1})(\prod_{i=2}^{n} P_{i}) + \exp Q_{1}(\prod_{i=2}^{n} P_{i} - \prod_{i=2}^{n} \exp Q_{i})|| \\ &\leq ||P_{1} - \exp Q_{1}||.||\prod_{i=2}^{n} P_{i}|| + \underbrace{||\exp Q_{1}||}.||\prod_{i=2}^{n} P_{i} - \prod_{i=2}^{n} \exp Q_{i}|| \\ &\leq ||P_{1} - \exp Q_{1}|| + ||\prod_{i=2}^{n} P_{i} - \prod_{i=2}^{n} \exp Q_{i}|| \\ &\leq ||P_{1} - \exp Q_{1}|| + \sum_{i=2}^{n} ||P_{i} - \exp Q_{i}|| \\ &= \sum_{i=1}^{n} ||P_{i} - \exp Q_{i}|| \end{split}$$

Q6d. Si vous vous souvenez nous avons déjà utilisé les propriétés des matrices R^j à la question Q5b. Se basant dessus on a caractérisé $\exp Q_i$. Maintenant appelons d_k la somme des valeurs absolues des

Ulrich GOUE -6-

éléments de la k-ième ligne de $P_i - \exp Q_i$:

$$d_{k} = \sum_{n=1}^{N} |\mathbf{P}([X_{i} = n - k]) - \mathbf{P}([Y_{i} = n - k])|$$

$$= \sum_{n=0}^{N-k} |\mathbf{P}([X_{i} = n]) - \mathbf{P}([Y_{i} = n])|$$

$$= 2 \times \frac{1}{2} \sum_{n=0}^{+\infty} |\mathbf{P}([X_{i} = n]) - \mathbf{P}([Y_{i} = n])|$$

$$= 2d(X_{i}, Y_{i})$$

$$\leq 2p_{i}^{2}$$

Donc on a bien $||P_i - \exp Q_i|| \le 2p_i^2$.

Q7a. Notons e_k la somme des valeurs absolues des éléments de la k-ième ligne de $\prod_{i=1}^n P_i - \prod_{i=1}^n Q_i$. En procédant comme précédemment :

$$e_k = \sum_{i=0}^{N-k} |\mathbf{P}([U_n = i]) - \mathbf{P}([V_n = i])|$$

Donc on déduit que :

$$\sum_{i=0}^{N-1} |\mathbf{P}([U_n = i]) - \mathbf{P}([V_n = i])| = ||\prod_{i=1}^{n} P_i - \prod_{i=1}^{n} \exp Q_i||$$

$$\leq \sum_{i=1}^{n} ||P_i - \exp Q_i||$$

$$\leq \sum_{i=1}^{n} 2p_i^2$$

En faisant $N \to +\infty$ on obtient $2d(U_n, V_n) \le \sum_{i=1}^n 2p_i^2$ d'où

$$d(U_n, V_n) \le \sum_{i=1}^n p_i^2$$

Q7b. En prenant $p_i = \frac{\lambda}{n}$ on obtient alors

$$d(U_n, V_n) \le \sum_{i=1}^n \frac{\lambda^2}{n^2} = \frac{\lambda^2}{n} \to 0$$

ce qui veut dire que U_n et V_n ont asymptotiquement les mêmes lois. Maintenant vu que $U_n \sim \mathcal{B}(n,\frac{\lambda}{n})$ et $V_n \sim \mathcal{P}(n\frac{\lambda}{n}) \equiv \mathcal{P}(\lambda)$, notre propriété d'approximation est prouvée.

Ulrich GOUE -7-

1.2 Partie II: Records d'une permutation

Q1: En posant $\gamma_n = H_n - \ln(n)$ on montre que $(\gamma_n)_{n \in \mathbb{N}^*}$ est décroissante et minorée.

$$\gamma_{n+1} - \gamma_n = (H_{n+1} - H_n) - (\ln(n+1) - \ln(n))$$

$$= \frac{1}{n+1} - \ln\left(1 + \frac{1}{n}\right)$$

Mais puisque $\ln(1+x) \ge \frac{x}{1+x}$ on a donc $\ln\left(1+\frac{1}{n}\right) \ge \frac{1/n}{1+1/n} = \frac{1}{n+1}$. Par conséquent $\gamma_{n+1} \le \gamma_n$ et la suite $(\gamma_n)_{n \in \mathbb{N}^*}$ est décroissante. Par ailleurs, il est connu que $x \ge \ln(1+x)$, il s'en suit alors :

$$\gamma_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$$

$$\geq \sum_{k=1}^n \ln(1 + \frac{1}{n}) - \ln(n)$$

$$= \sum_{k=1}^n \ln(k+1) - \ln(k) - \ln(n)$$

$$= \frac{1}{k} - \ln(n)$$

$$= \frac{1}{n} \ln(n+1) - \ln(n) = \ln(1 + \frac{1}{n})$$

$$\geq 0.$$

Notre suite est aussi minorée d'où le résultat.

Q2. Toutes les réponses sont dans ce tableau

σ	$R_3(\sigma)$	$\mathbf{P}(\{\sigma\})$
(1,2,3)	3	<u>1</u> 6
(2,3,1)	2	$\frac{1}{6}$
(3,1,2)	1	$\frac{1}{6}$
(2,1,3)	2	$\frac{1}{6}$
(3,2,1)	1	$\frac{1}{6}$
(1,3,2)	2	$\frac{1}{6}$
$\mathbf{P}([R_3=1]) = \frac{1}{3}$	$\mathbf{P}([R_3=2]) = \frac{1}{2}$	$\mathbf{P}([R_3=3]) = \frac{1}{6}$
$\mathbf{E}(R_3) = \frac{11}{6}$	$\mathbf{V}(R_3) = \frac{17}{36}$	-

Q3. En fait $[R_n = 1]$ regroupe toutes les permutations vérifiant $\sigma_1 = n$. On sait déjà que 1 est record, donc s'il existe $j \neq 1$ tel que $\sigma_j = n$ alors j serait un autre record, ce qui est contradictoire! Ainsi $\operatorname{Card}([R_n = 1]) = (n-1)!$. Il est aussi évident que $[R_n = n]$ est la seule permutation croissante (1, 2, ..., n). Autrement on pourrait trouver i < j tel que $\sigma_i > \sigma_j$. Dans ce cas j n'est pas un record et alors $R_n \leq n$

Ulrich GOUE -8-

n-1, Contradiction! D'où Card($[R_n=1]$) = (n-1)!. En divisant ces cardinaux par n!

$$\mathbf{P}([R_n = 1]) = \frac{(n-1)!}{n!} = \frac{1}{n} \quad \mathbf{P}([R_n = n]) = \frac{1}{n!}$$

Q4a. Soit σ une permutation qui n'a que deux records en 1 et p. Notons $A_p^{(2)}$ le nombre de telles permutations. Ici on prouve qu'on a nécessairement $\sigma_p = n$. En effet soit soit j tel que $\sigma_j = n$. On ne peut avoir j < p sinon p ne serait pas un record, ni j > p sinon j serait un autre record portant le nombre de records à au moins 3. Ainsi j = p. Maintenant par définition d'un record les nombres $\sigma_1, \ldots, \sigma_{p-1}$ sont choisis quelconques dans l'intervalle entier [1, n-1] excepté le fait que le plus grand d'entre eux soit σ_1^2 ce qui nous donne $(p-2)!C_{n-1}^{p-1}$ choix. Maintenant quand aux éléments $\sigma_{p+1}, \ldots, \sigma_n$ ils peuvent être tirés de façon quelconque parmi les nombres restants ce qui donne (n-p)! manières. En gros $A_p^{(2)} = (n-p)!(p-2)!C_{n-1}^{p-1}$

Q4b. Le second record pouvant être atteint en un point *p* entre 2 et *n*, on a d'après la question précédente :

$$\mathbf{P}([R_n = 2]) = \frac{1}{n!} \sum_{p=2}^{n} A_p^{(2)}$$

$$= \frac{1}{n!} \sum_{p=2}^{n} (n-p)! (p-2)! C_{n-1}^{p-1}$$

$$= \frac{1}{n!} \sum_{p=2}^{n} (n-p)! (p-2)! \frac{(n-1)!}{(p-1)! (n-p)!}$$

$$= \frac{(n-1)!}{n!} \sum_{p=2}^{n} \frac{(p-2)!}{(p-1)!}$$

$$= \frac{1}{n} \sum_{p=2}^{n} \frac{1}{p-1}$$

$$= \frac{1}{n} \sum_{k=1}^{n-1} \frac{1}{k} \quad (k=p-1)$$

Q4c. En utilisant Q1 et Q4b:

$$\mathbf{P}([R_n=2]) = \frac{H_{n-1}}{n} \sim \frac{\ln(n-1)}{n} \sim \frac{\ln(n)}{n}$$

Q5a. T_i est une loi de Bernoulli par définition, reste à savoir calculer $\mathbf{P}([T_i=1])$. Pour une permutation ayant i pour record, il est clair que $\sigma_i \geq i$. Maintenant si $\sigma_i = l$ est fixé (avec $l \geq i$), les nombres $\sigma_1, \ldots, \sigma_{i-1}$ sont choisis quelconques dans l'intervalle entier [1, l-1] ce qui nous donne $(i-1)!C_{l-1}^{i-1}$

Ulrich GOUE -9-

^{2.} Raisonnons par l'absurde et supposons que $\sigma_k = \max(\sigma_i)_{i < p}$ avec k > 1. Alors k est un autre record pour σ portant le nombre de recors à au moins trois. Contradiction!

choix. Maintenant quand aux éléments $\sigma_{i+1},...,\sigma_n$ ils peuvent être tirés de façon quelconque parmi les nombres restants ce qui donne (n-i)! manières.

$$\mathbf{P}([T_i = 1]) = \frac{1}{n!} \sum_{l=i}^{n} (n-i)!(i-1)!C_{l-1}^{i-1}$$

$$= \frac{1}{n!} (n-i)!(i-1)!C_n^i$$

$$= \frac{1}{n!} (n-i)!(i-1)! \frac{n!}{i!(n-i)!}$$

$$= \frac{(i-1)!}{i!}$$

$$= \frac{1}{i}$$

Q5b. Il va sans dire que : $R_n = \sum_{i=1}^n T_i$ donc

$$\mathbf{E}(R_n) = \sum_{i=1}^{n} \mathbf{E}(T_i)$$

$$= \sum_{i=1}^{n} \mathbf{P}([T_i = 1])$$

$$= \sum_{i=1}^{n} \frac{1}{i}$$

$$= H_n$$

Par conséquent $\mathbf{E}(R_n) \sim \ln(n)$.

Q6a. Notons $A^{(ij)}$ l'ensemble des permutations de \mathcal{S}_n ayant exactement trois records atteints en 1,i et j. On note aussi $A_k^{(ij)}$ l'ensemble des permutations de $A^{(ij)}$ vérifiant $\sigma_j = k$. Maintenant il est clair que si j est un record d'une permutation σ alors $\sigma_j \geq j$, chose qui permet d'affirmer que $A^{(ij)} = \bigcup_{k=j}^n A_k^{(ij)}$. Cette union consistant en des ensembles disjoints alors

$$Card(A^{(ij)}) = \sum_{k=j}^{n} Card(A_k^{(ij)})$$

Maintenant pour un élément typique de $A_k^{(ij)}$, il vient que pour tout (i',j') < (i-1,j-1) on a $\sigma_{i'} < \sigma_i$, $\sigma_{j'} < \sigma_j$ et $\sigma_j = k$. Pour arriver à dénombrer de telles permutations il nous suffit de savoir compter comment choisir des éléments c_1, c_2, \cdots, c_j de l'intervalle entier [1,n] tel que pour tout (i',j') < (i-1,j-1) on a $c_{i'} < c_i$, $c_{j'} < c_j$ et $c_j = k$. Notons ce nombre $B_k^{(ij)}$. En effet pour construire $A_k^{(ij)}$, il nous suffit de prendre c_1, c_2, \cdots, c_j comme ci-dessus et poser $c_m = \sigma_m$ pour $m \le j$ et prendre les autres éléments de l'intervalle entier [1,n] qui ne sont pas dans $\{c_i|1\le i\le m\}$ et les repartir de façon quelconque entre les $\sigma_{j+1}, \sigma_{j+2}, \cdots, \sigma_n$, chose qui peut bien entendu se faire de (n-j)! manières. En

Ulrich GOUE -10-

gros on a prouvé que $\operatorname{Card}(A_k^{(ij)}) = B_k^{(ij)}(n-j)!$, reste maintenant à calculer $B_k^{(ij)}$. Dans $B_k^{(ij)}$ le choix de $c_j = k$ est fixé. On voit bien que tous les c_l restant sont inférieurs à k, ils sont alors pris dans l'intervalle entier [1,k-1] chose qui peur se faire de C_{k-1}^{j-1} manières. Dès qu'ils sont tiré, l'élément c_i ne peut être pris que parmi les termes de rang variant entre i et j-1 quand ils sont rangés dans l'ordre croissant. A présent supposons que c_i est le terme de rang l. Maintenant pour les éléments c_m , avec $m \le i-1$ ils ont pris parmi les l-1 plus petits et peuvent être disposées librement ce qui fait $(i-1)!C_{l-1}^{i-1}$ choix. Les éléments restants sont les c_m , avec $i+1 \le m \le j-1$ et ils peuvent aussi être disposés librement ce qui fait encore (j-i-1)! possibilités. D'où

$$\begin{split} B_k^{(ij)} &= C_{k-1}^{j-1} \sum_{l=i}^{j-1} (i-1)! C_{l-1}^{i-1} (j-i-1)! \\ &= \left(C_{k-1}^{j-1} (i-1)! (j-i-1)! \right) \sum_{l=i}^{j-1} C_{l-1}^{i-1} \\ &= \left(C_{k-1}^{j-1} (i-1)! (j-i-1)! \right) C_{(j-1-1)+1}^{i-1+1} \\ &= \left(C_{j-1}^{i} (i-1)! (j-i-1)! \right) C_{k-1}^{j-1} \\ &= \left(\frac{(j-1)!}{i! (j-i-1)!} (i-1)! (j-i-1)! \right) C_{k-1}^{j-1} \\ &= \frac{1}{i} (j-1)! C_{k-1}^{j-1} \end{split}$$

On calcul notre cardinal initial

$$\operatorname{Card}(A^{(ij)}) = \sum_{k=j}^{n} B_{k}^{(ij)}(n-j)!$$

$$= \sum_{k=j}^{n} \frac{1}{i} (j-1)! C_{k-1}^{j-1}(n-j)!$$

$$= \sum_{k=j}^{n} \frac{1}{i} (j-1)! C_{k-1}^{j-1}(n-j)!$$

$$= \frac{1}{i} \sum_{k=j}^{n} (j-1)! C_{k-1}^{j-1}(n-j)!$$

$$= \frac{n!}{ij}$$

Ulrich GOUE -11-

Donc on est prêt à conclure ³

$$\mathbf{P}([T_i = 1] \cap [T_j = 1]) = \frac{\operatorname{Card}(A^{(ij)})}{n!}$$

$$= \frac{1}{ij}$$

$$= \mathbf{P}([T_i = 1]) \times \mathbf{P}([T_j = 1])$$

Q6b. Comme $R_n = \sum_{i=1}^n T_i$ et que les T_i sont indépendantes

$$\mathbf{V}(R_n) = \sum_{i=1}^{n} \mathbf{V}(T_i)$$

$$= \sum_{i=1}^{n} \mathbf{P}([T_i = 1])(1 - \mathbf{P}([T_i = 1]))$$

$$= \sum_{i=1}^{n} \frac{1}{i} \left(1 - \frac{1}{i}\right)$$

$$= \left(\sum_{i=1}^{n} \frac{1}{i}\right) - \left(\sum_{i=1}^{n} \frac{1}{i^2}\right)$$

$$= H_n - \sum_{i=1}^{n} \frac{1}{i^2}$$

Comme $\sum_{i=1}^{+\infty} \frac{1}{i^2} < +\infty$ par conséquent $\mathbf{V}(R_n) \sim \ln(n)$.

Q7. Dire que $\sigma \in [R_n = k]$ revient à dire que σ à k-1 records autres que 1, disons i_2, \ldots, i_k . Par conséquent en sommant sur ces nombres :

$$\begin{split} \mathbf{P}([R_n = k]) &= \sum_{2 \leq i_2 < i_3 < \dots < i_k \leq n} \mathbf{P} \left(\left(\bigcap_{l=2}^k [T_{i_l} = 1] \right) \cap \left(\bigcap_{j \notin \{i_2, \dots, i_k\}} [T_j = 0] \right) \right) \\ &= \sum_{2 \leq i_2 < i_3 < \dots < i_k \leq n} \left(\prod_{l=2}^k \mathbf{P}([T_{i_l} = 1]) \right) \times \left(\prod_{j \notin \{i_2, \dots, i_k\}} \mathbf{P}([T_j = 0]) \right) \\ &= \sum_{2 \leq i_2 < i_3 < \dots < i_k \leq n} \left(\prod_{l=2}^k \frac{1}{i_l} \right) \times \left(\prod_{j \notin \{i_2, \dots, i_k\}} \left(1 - \frac{1}{j} \right) \right) \\ &= \sum_{2 \leq i_2 < i_3 < \dots < i_k \leq n} \frac{1}{i_2} \frac{1}{i_3} \cdots \frac{1}{i_k} \prod_{j \notin \{i_2, \dots, i_k\}} \left(1 - \frac{1}{j} \right) \end{split}$$

3. Dans notre cas l'indépendance des évènements $[T_i = 1]$ et $[T_j = 1]$ suffit pour conclure à l'indépendance de T_i et T_j .

Ulrich GOUE -12-

Q8a. D'après ce qui précède:

$$\mathbf{P}([R_n = 3]) = \sum_{2 \le i_2 < i_3 \le n} \frac{1}{i_2} \frac{1}{i_3} \prod_{j \notin \{i_2, i_3\}} \frac{j-1}{j}$$

$$= \sum_{2 \le i_2 < i_3 \le n} \frac{1}{i_2} \frac{1}{i_3} \frac{i_2}{i_2 - 1} \frac{i_3}{i_3 - 1} \prod_{j=2}^n \frac{j-1}{j}$$

$$= \sum_{2 \le i_2 < i_3 \le n} \frac{1}{i_2 - 1} \frac{1}{i_3 - 1} \prod_{j=2}^n \frac{j-1}{j}$$
télescopage
$$= \sum_{2 \le i_2 < i_3 \le n} \frac{1}{i_2 - 1} \frac{1}{i_3 - 1} \frac{2 - 1}{n}$$

$$= \frac{1}{n} \sum_{1 \le i < j \le n - 1} \frac{1}{i} \frac{1}{j} \quad (i = i_2 - 1, j = i_3 - 1)$$

Q8b. En continuant un peu les calculs

$$\begin{split} \mathbf{P}([R_n = 3]) &= \frac{1}{n} \sum_{1 \le i < j \le n-1} \frac{1}{i} \frac{1}{j} \\ &= \frac{1}{2n} \left\{ \left(\sum_{k=1}^{n-1} \frac{1}{k} \right)^2 - \sum_{k=1}^{n-1} \frac{1}{k^2} \right\} \\ &= \frac{1}{2n} \left\{ H_{n-1}^2 - \sum_{k=1}^{n-1} \frac{1}{k^2} \right\} \end{split}$$

Comme $\sum_{i=1}^{+\infty} \frac{1}{i^2} < +\infty$ par conséquent

$$\mathbf{P}([R_n=3]) \sim \frac{\ln^2(n-1)}{2n} \sim \frac{1}{2} \frac{\ln^2(n)}{n}$$

1.3 Partie III : Deux résultats asymptotiques

Q1a. Soit $\sigma \in \left[|\frac{R_n}{\ln n} - 1| \ge \epsilon \right]$. Raisonnons par l'absurde en supposant que $\sigma \in \left[|\frac{R_n}{\ln n} - \frac{H_n}{\ln n}| < \frac{\epsilon}{2} \right]$ pour n suffisamment grand. Comme $H_n \sim \ln n$, alors pour n suffisamment grand il vient que $|\frac{H_n}{\ln n} - 1| < \frac{\epsilon}{2}$. Par conséquent :

$$\left|\frac{R_n(\sigma)}{\ln n} - 1\right| \le \left|\frac{R_n(\sigma)}{\ln n} - \frac{H_n}{\ln n}\right| + \left|\frac{H_n}{\ln n} - 1\right| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

i.e. $\sigma \in \left[\left| \frac{R_n}{\ln n} - 1 \right| < \epsilon \right]$, contradiction! D'où $\sigma \in \left[\left| \frac{R_n}{\ln n} - \frac{H_n}{\ln n} \right| \ge \frac{\epsilon}{2} \right]$. On a donc prouvé que :

$$\left[\left| \frac{R_n}{\ln n} - 1 \right| \ge \epsilon \right] \subset \left[\left| \frac{R_n}{\ln n} - \frac{H_n}{\ln n} \right| < \frac{\epsilon}{2} \right]$$

Ulrich GOUE -13-

Q1bi. D'après Q5b. on sait que $\mathbf{E}(R_n) = H_n$. En appliquant l'inégalité de Markov :

$$\mathbf{P}\left(\left[\left|\frac{R_n}{\ln n} - \frac{H_n}{\ln n}\right| < \epsilon\right]\right) \leq \frac{1}{\epsilon^2} \mathbf{V}\left(\frac{R_n}{\ln n}\right)$$

$$= \frac{1}{\epsilon^2} \frac{\mathbf{V}(R_n)}{\ln^2 n}$$

$$\sim \frac{1}{\epsilon^2} \frac{1}{\ln n}$$

On a a donc prouvé que

$$\lim_{n \to +\infty} \mathbf{P} \left(\left[\left| \frac{R_n}{\ln n} - \frac{H_n}{\ln n} \right| < \epsilon \right] \right) = 0$$

Q1bii D'après Q1a. on a alors:

$$\mathbf{P}\left(\left[\left|\frac{R_n}{\ln n} - 1\right| \ge \epsilon\right]\right) \le \mathbf{P}\left(\left[\left|\frac{R_n}{\ln n} - \frac{H_n}{\ln n}\right| < \frac{\epsilon}{2}\right]\right) \to_{n \to +\infty} = 0$$

Q2a. Prenons $X \sim \mathcal{B}(p)$

$$G_X(t) = (1 - p) + tp = 1 + p(t - 1)$$

Q2b. Prenons $Y \sim \mathcal{P}(\lambda)$

$$G_Y(t) = \sum_{k=0}^{+\infty} e^{-\lambda} \frac{\lambda^k t^k}{k!}$$
$$= \sum_{k=0}^{+\infty} e^{-\lambda} \frac{(\lambda t)^k}{k!}$$
$$= e^{-\lambda + \lambda t} = e^{\lambda(t-1)}$$

Q2c.Ce résultat est vraiment classique!!!

$$G_{S_n}(t) = \mathbf{E}(t^{S_n})$$

$$= \mathbf{E}(t^{\sum_{k=1}^n X_k})$$

$$= \mathbf{E}(\prod_{k=1}^n t^{X_k})$$

$$= \prod_{k=1}^n \mathbf{E}(t^{X_k}) \quad (\operatorname{car} X_i \perp X_j \Rightarrow t^{X_i} \perp t^{X_j})$$

$$= \prod_{k=1}^n G_{X_k}(t)$$

Ulrich GOUE -14-

Q2d. Il suffit d'appliquer le résultat tout en se souvenant que $T_i \sim \mathcal{B}(1/i)$:

$$\begin{aligned} \forall \, t \in [0,1], G_{W_n}(t) &= \prod_{i=m+1}^{2m} G_{T_i}(t) \\ &= \prod_{i=m+1}^{2m} \left(1 + \frac{t-1}{i}\right) \end{aligned}$$

Q2e. Définissons une quantité h_m qui nous sera utile dans la suite

$$h_m = \sum_{i=m+1}^{2m} \frac{1}{i} = H_{2m} - H_m = (\ln(2m) + \gamma) - (\ln(m) + \gamma) + o(1) = \ln(2) + o(1)$$

Un autre résultat intermédiaire est que pour tout $x \in]-1,0]$:

$$|\ln(1+x) - x| \le \frac{x^2}{2}$$

Nous sommes maintenant prêt. Pour tout $t \in [0,1]$:

$$\begin{split} |\ln\left(G_{W_n}(t)\right) - (t-1)h_m| &= |\sum_{i=m+1}^{2m} \ln\left(1 + \frac{t-1}{i}\right) - \frac{t-1}{i}| \\ &\leq \sum_{i=m+1}^{2m} |\ln\left(1 + \frac{t-1}{i}\right) - \frac{t-1}{i}| \\ &\leq \frac{(t-1)^2}{2} \sum_{i=m+1}^{2m} \frac{1}{i^2} \to 0 \end{split}$$

Ainsi d'après le théorème des gendarmes :

$$\lim_{n\to+\infty}\ln\left(G_{W_n}(t)\right)=(t-1)\ln 2$$

Par continuité de l'exponentielle

$$\lim_{n\to+\infty} G_{W_n}(t) = e^{(t-1)\ln 2}$$

On reconnaît bien la fonction génératrice de la loi de Poisson $\mathcal{P}(\ln 2)$. Par conséquent la suite de terme général W_n converge en loi vers la loi de Poisson $\mathcal{P}(\ln 2)$.

Ulrich GOUE -15-

2 Épreuve à option (A) : Mathématiques

2.1 Partie 1:premiers exemples

Q1ai. Notons $\mathscr{P}_a(x)$ le projeté orthogonal de x sur la droite D engendrée par a. Comme $D \oplus D^{\perp} = \mathbb{R}^3$ donc on peut écrire $x = \mu a + y$ avec $\langle y, a \rangle = 0$. Ceci implique encore $\langle x, a \rangle = \mu \|a\|^2 + \langle y, a \rangle = \mu \|a\|^2$. On déduit que $\mu = \frac{\langle x, a \rangle}{\|a\|^2}$. Finalement

$$\mathscr{P}_a(x) = \frac{\langle x, a \rangle}{\|a\|^2} a$$

Q1aii. La matrice H étant symétrique elle est diagonalisable. En notant λ_i ses valeurs propres pour i=1,2,3, on peut écrire $\operatorname{Ker}(H-\lambda_1I_3) \oplus \operatorname{Ker}(H-\lambda_2I_3) \oplus \operatorname{Ker}(H-\lambda_3I_3) = \mathbb{R}^3$. Si on appelle C_1 , C_2 et C_3 les colonnes de H on peut voir aisément que $C_1+2C_2+C_3=0$ ainsi 0 est valeur propre de H avec multiplicité 1. On peut alors noter que $\lambda_0=0$. Dans ce cas ci on peut prouver que $\operatorname{Ker}(H-\lambda_2I_3) \oplus \operatorname{Ker}(H-\lambda_3I_3) = \operatorname{Im}(h)$. En effet pour tout $x \in \mathbb{R}$, on peut écrire $x=x_1+x_2+x_3$ avec $x_i \in \operatorname{Ker}(H-\lambda_iI_3)$. On a alors $h(x)=\lambda_2x_2+\lambda_3x_3$. Et réciproquement $h(\frac{y_2}{\lambda_2}+\frac{y_3}{\lambda_3})=y_2+y_3$ pour $y_2 \in \operatorname{Ker}(H-\lambda_2I_3)$ et $y_3 \in \operatorname{Ker}(H-\lambda_3I_3)$. On vient donc de prouver que $\operatorname{Ker}(h) \oplus \operatorname{Im}(h) = \mathbb{R}^3$ en plus $\operatorname{Ker}(h)$ et $\operatorname{Im}(h)$ sont orthogonaux car les $\operatorname{Ker}(H-\lambda_iI_3)$ le sont. En conséquence $\operatorname{Ker}(h)$ et $\operatorname{Im}(h)$ sont des supplémentaires orthogonaux.

Q1aiii. On a prouvé à la question précédente que Ker(h) = Vec(a) avec a = (1,2,1)'. On note p_H la projection orthogonale sur Im(h). Et puisque Ker(h) et $Im(h) = \mathbb{R}^3$ sont des supplémentaires orthogonaux alors $p_H(x) = x - \mathcal{P}_a(x)$. Poussant les calculs un peu plus loin :

$$p_{H}(x) = x - \frac{\langle x, a \rangle}{\|a\|^{2}} a$$

$$= x - a \frac{a^{t} x}{\|a\|^{2}}$$

$$= \left(I_{3} - \frac{aa^{t}}{\|a\|^{2}}\right) x$$

La matrice de p_H dans la base canonique de \mathbb{R}^3 est alors :

$$I_{3} - \frac{aa^{t}}{\|a\|^{2}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \frac{1}{6} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{5}{6} & -\frac{1}{3} & -\frac{1}{6} \\ -\frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{6} & -\frac{1}{3} & \frac{5}{6} \end{bmatrix}$$

Ulrich GOUE -16-

Q1bi. On note que la matrice $H = (H_{ij})$ est symétrique donc

$$\operatorname{tr}(h \circ h) = \operatorname{tr}(H^2) = \operatorname{tr}(HH^t) = \sum_{i=1}^{3} \sum_{j=1}^{3} H_{ij}^3 = 93$$

Q1bii. On sait que 0 est valeur propre de h et notons μ et λ ses autres valeurs propres. On tire aisément que $\lambda + \mu = \operatorname{tr}(H) = 9$ et $\lambda^2 + \mu^2 = \operatorname{tr}(H^2) = 93$. On sait que $\lambda \mu = \frac{(\lambda + \mu)^2 - (\lambda^2 + \mu^2)}{2} = \frac{81 - 93}{2} = -6$. λ et μ sont donc les zéros du polynôme $r^2 - 9r - 6$ à savoir $\frac{9 \pm \sqrt{105}}{2}$. En conclusion :

$$Sp(h) = \left\{0, \frac{9 + \sqrt{105}}{2}, \frac{9 - \sqrt{105}}{2}\right\}$$

Q2a. En remarquant que le terme (i,j) de $H_{\varphi}^{(n)}$ est celui de $H_{\tau}^{(n)}$ par $(-1)^{i+j-2}$; L'on peut déduire qu'on peut passer de $H_{\tau}^{(n)}$ à $H_{\varphi}^{(n)}$ en multipliant d'abord les $j-\grave{e}me$ colonnes de $H_{\tau}^{(n)}$ par $(-1)^{j-1}$ puis les $i-\grave{e}me$ lignes de $H_{\tau}^{(n)}$ par $(-1)^{i-1}$. Par conséquent $H_{\varphi}^{(n)}=PH_{\tau}^{(n)}P$ avec

$$P = diag(1, -1, \dots, (-1)^{j-1}, \dots, (-1)^{n-1})$$

On remarque aisément que $P^{-1}=P$ ainsi $H_{\varphi}^{(n)}=PH_{\tau}^{(n)}P^{-1}$, du coup $H_{\varphi}^{(n)}$ et $H_{\tau}^{(n)}$ sont semblables. **Q2bi.** Appelons C_j la j-ième colonne de $H_{\tau}^{(n)}$. On remarque aisément que pour tout $i,j\leq n,\, \tau(i+j-1)-\tau(i+j-2)=\tau(i+j)-\tau(i+j-1)=1$. Ce qui veut dire que $C_{j+1}-C_j=C_{j+2}-C_{j+1}$ ou de façon équivalente $C_{j+2}=2C_{j+1}-C_j$. Se basant sur la dernière relation on voit récursivement que $C_j\in \mathrm{Vec}(C_1,C_2)=\mathrm{Vec}(g(e_1),g(e_2))$. Il ressort évidente que le système $(g(e_1),g(e_2))$ est libre donc $\mathrm{Im}(g)=\mathrm{Vec}(g(e_1),g(e_2))$ ou encore $\mathrm{Im}(g)=\mathrm{Vec}(g(e_2)-g(e_1),g(e_1))$. On pose maintenant $f_2=g(e_1)=\sum_{k=1}^n ke_k$ et $f_1=g(e_2)-g(e_1)=\sum_{k=1}^n (k+1)e_k-\sum_{k=1}^n ke_k=\sum_{k=1}^n e_k$. Ainsi l'image de g est le sous espace vectoriel F de \mathbb{R}^n engendré par les deux vecteurs :

$$\begin{cases} f_1 = \sum_{k=1}^n e_k \\ f_2 = \sum_{k=1}^n k e_k \end{cases}$$

Ulrich GOUE -17-

Q2bii. A la question précédente on a établi $g(e_{j+1}) - f(e_j) = g(e_{j+2}) - g(e_{j+1})$ par conséquent on peut donc déduire que $g(e_{j+1}) - g(e_j) = f_1$. A présent calculons $g(e_j)$:

$$g(e_j) = g(e_1) + \sum_{k=1}^{j-1} g(e_{k+1}) - g(e_k) = f_2 + (j-1)(g(e_2) - g(e_1)) = f_2 + (j-1)f_1$$

On est prêt maintenant à sortir la matrice de $g_{|F}$ dans la base (f_1, f_2) :

$$g(f_1) = \sum_{k=1}^{n} g(e_k) = \sum_{k=1}^{n} (f_2 + (k-1)f_1) = f_1(\sum_{k=1}^{n} k - 1) + nf_2 = \frac{\mathbf{n}(\mathbf{n} - \mathbf{1})}{2} f_1 + \mathbf{n}f_2$$

$$g(f_2) = \sum_{k=1}^{n} k g(e_k) = \sum_{k=1}^{n} (k f_2 + (k^2 - k) f_1) = f_1(\sum_{k=1}^{n} k^2 - k) + (\sum_{k=1}^{n}) f_2 = \frac{\mathbf{n}(\mathbf{n}^2 - \mathbf{1})}{3} f_1 + \frac{\mathbf{n}(\mathbf{n} + \mathbf{1})}{2} f_2$$

Où on a utilisé

$$\sum_{k=1}^{n} (k^2 - k) = \left(\sum_{k=1}^{n} k^2\right) - \left(\sum_{k=1}^{n} k\right)$$

$$= \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2}$$

$$= \frac{n(n+1)}{2} \left(\frac{2n+1}{3} - 1\right)$$

$$= \frac{n(n+1)}{2} \frac{2(n-1)}{3}$$

$$= \frac{n(n^2 - 1)}{3}$$

La matrice G de $g_{|F}$ dans la base (f_1, f_2)

$$G = \begin{bmatrix} \frac{n(n-1)}{2} & \frac{n(n^2-1)}{3} \\ n & \frac{n(n+1)}{2} \end{bmatrix}$$

Q2c. Soit \mathscr{F} une base de Ker(g) (évidemment composée de (n-2) vecteurs). Maintenant soit \mathscr{C} la base de \mathbb{R}^n formée de \mathscr{F} , f_1 et f_2 . Alors la matrice de g dans \mathscr{C} est alors $H=\operatorname{diag}(0,G)$. Les valeurs propres de H sont donc 0 (multiplicité n-2), et les valeurs propres de G. Ainsi diagonalisons G. Ces valeurs propres sont donc les zéros de $\kappa(\lambda)=\lambda^2-\operatorname{tr}(G)\lambda+\operatorname{det}(G)$. On laisse le lecteur établir que : $\kappa(\lambda)=\lambda^2-n^2\lambda-\frac{n^2(n^2-1)}{12}$. les zéros en questions sont $\lambda_{1,2}=\frac{n^2\pm n\sqrt{\frac{4n^2-1}{3}}}{2}$. Maintenant il est clair que H

Ulrich GOUE -18-

est équivalente à $H_{\tau}^{(n)}$ donc à $H_{\varphi}^{(n)}$, d'où :

$$\operatorname{Sp}(H_{\varphi}^{(n)}) = \operatorname{Sp}(H_{\tau}^{(n)}) = \operatorname{Sp}(H) = \left\{0, \frac{n^2 + n\sqrt{\frac{4n^2 - 1}{3}}}{2}, \frac{n^2 - n\sqrt{\frac{4n^2 - 1}{3}}}{2}\right\}$$

Q3ai. En vertu des résultats sur la croissance comparée $\lim_{t\to+\infty}t^2(\sum_{i=1}^nc_it^{i-1})^2\mathrm{e}^{-t}=0$. De façon équivalente $(\sum_{i=1}^nc_it^{i-1})^2\mathrm{e}^{-t}=_{+\infty}o(\frac{1}{t^2})$. Et comme $t\mapsto\frac{1}{t^2}$ est intégrale au voisinage de $+\infty$ il en est de même pour $t\mapsto(\sum_{i=1}^nc_it^{i-1})^2\mathrm{e}^{-t}$ d'où la convergence de :

$$\int_0^{+\infty} (\sum_{i=1}^n c_i t^{i-1})^2 e^{-t} dt$$

Q3aii. On calcule ...

$$\int_{0}^{+\infty} (\sum_{i=1}^{n} c_{i} t^{i-1})^{2} e^{-t} dt = \int_{0}^{+\infty} (\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} c_{j} t^{i+j-2}) e^{-t} dt$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \int_{0}^{+\infty} c_{i} c_{j} t^{i+j-2} e^{-t} dt$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} c_{j} \psi(i+j-2)$$

avec $\psi(k) = \int_0^{+\infty} t^k \mathrm{e}^{-t} dt$. En vertu des mêmes arguments que la question précédente $\psi(k)$ est bien défini. Nous allons la calculer de façon récursive tout en gardant à l'esprit que $\psi(0) = 1^4$.

$$\psi(k) = \int_0^{+\infty} t^k (-e^{-t})' dt$$

$$= \left[-t^k e^{-t} \right]_0^{+\infty} - \int_0^{+\infty} -kt^{k-1} e^{-t} dt$$

$$= k\psi(k-1)$$

On peut alors conclure que $\psi(k)=k!=\varphi(k)$. Nous pouvons maintenant achever comme suit :

$$\int_{0}^{+\infty} (\sum_{i=1}^{n} c_{i} t^{i-1})^{2} e^{-t} dt = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} c_{j} \psi(i+j-2)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} c_{j} \phi(i+j-2)$$
$$= C^{t} H_{\varphi}^{(n)} C$$

4. $\psi(0) = \int_0^{+\infty} e^{-t} dt = \left[-e^{-t} \right]_0^{+\infty} = 1$

Ulrich GOUE -19-

Q3b. De ce qui précède $C^t H_{\varphi}^{(n)} C > 0$ pour tout vecteur C non nul de \mathbb{R}^n . Par conséquent $H_{\varphi}^{(n)}$ est une matrice symétrique définie positive, elle est donc diagonalisable et toutes ses valeurs propres sont strictement positives.

Q4. Ici $\varphi(k) = 1/(k+1)$. On procède comme suit :

$$\begin{split} \int_0^1 (\sum_{i=1}^n c_i t^{i-1})^2 dt &= \int_0^1 (\sum_{i=1}^n \sum_{j=1}^n c_i c_j t^{i+j-2}) dt \\ &= \sum_{i=1}^n \sum_{j=1}^n \int_0^1 c_i c_j t^{i+j-2} dt \\ &= \sum_{i=1}^n \sum_{j=1}^n c_i c_j \frac{1}{i+j-1} \\ &= \sum_{i=1}^n \sum_{j=1}^n c_i c_j \varphi(i+j-2) \\ &= C^t H_{\omega}^{(n)} C \end{split}$$

On en déduit que $C^t H_{\varphi}^{(n)} C > 0$ pour tout vecteur C non nul de \mathbb{R}^n . Par conséquent $H_{\varphi}^{(n)}$ est une matrice symétrique définie positive, elle est donc diagonalisable et toutes ses valeurs propres sont strictement positives.

2.2 Partie 2:Les formes bilinéaires Delta n

Q1a. L'espace vectoriel des formes bilinéaires de $E_n \times E_n$ à la même dimension que les matrices symétriques de $\mathcal{M}_{n+1}(\mathbb{R})$ c'est à dire $\frac{(n+1)(n+2)}{2}$.

Q1b. Il est évident (d'accord?):

- $\sqrt{\text{Pour tout } A, B \in E_n, \Delta_n(A, B)} = \Delta(B, A)$
- $\sqrt{\text{Pour tout } A \in E_n}$, l'application $X \mapsto \Delta_n(A, X)$ est linéaire

Ulrich GOUE -20-

Q1c. Posons $C = AB = \sum_{k=0}^{2n} c_k X^k$ avec $c_k = \sum_{i=0}^{k} a_i b_{k-i}$ et $a_l = b_l = 0$ pour tout l > n.

$$\delta_{n}(AB) = \sum_{k=0}^{2n} c_{k} \varphi(k)$$

$$= \sum_{k=0}^{2n} \sum_{i=0}^{k} a_{i} b_{k-i} \varphi(k)$$

$$= \sum_{i=0}^{2n} \sum_{k=i}^{2n} a_{i} b_{k-i} \varphi(k)$$

$$= \sum_{i=0}^{n} \sum_{k=i}^{n+i} a_{i} b_{k-i} \varphi(k) \quad (a_{l} = b_{l} = 0 \text{ pour tout } l > n)$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{n} a_{i} b_{j} \varphi(i+j) \quad (j = k-i)$$

$$= \Delta_{n}(A, B)$$

Q1d. Prenons une forme bilinéaire Δ de $E_n \times E_n$ et une forme linéaire δ de E_{2n} tel que $\Delta(A,B) = \delta(AB)$. Enfin notons Γ la matrice de Δ et φ l'application liée à δ de sorte $\Delta(A,B) = \sum_{i=0}^n \sum_{j=0}^n a_i b_j \Gamma_{i+1,j+1}$ et $\delta(Q) = \sum_{k=0}^{2n} c_k \varphi(k)$. Maintenant en appliquant $\Delta(A,B) = \delta(AB)$ avec $A = X^i$ et $B = X^j$ on obtient $\Gamma_{i+1,j+1} = \varphi(i+j)$. Écrit autrement on a donc $\Gamma_{i,j} = \varphi(i+j-2)$ pour tout i,j dans l'intervalle entier [1,n+1]. Considérons les matrice de B_k de $\mathcal{M}_{n+1}(\mathbb{R})$ définies par $B_k = (\delta_{i+j-2,k})_{1 \le i,j \le n+1}$ où $k \le 2n$ et δ désigne le symbole de Kronecker. Du coup par définition des $\Gamma_{i,j}$ on peut aisément écrire $\Gamma = \sum_{k=0}^{2n} \varphi(k) B_k$. Ceci prouve bien l'espace des formes bilinéaires symétriques de $E_n \times E_n$ qui peuvent s'écrire $(A,B) \mapsto \delta(AB)$ avec δ forme linéaire sur E_{2n} est bien de dimension 2n+1.

Q2a. Posons $Q = \sum_{k=0}^{2n} c_k X^k$, on a:

$$\delta_n(Q) = \sum_{k=0}^{2n} c_k \mathbf{E}(Y^k)$$
$$= \mathbf{E}\left(\sum_{k=0}^{2n} c_k Y^k\right)$$
$$= \mathbf{E}(Q(Y))$$

Q2b. Dans cette section il suffit de trouver une condition sur n et d pour que $(\Delta_n(A, A) = 0 \Leftrightarrow A = 0)$ ou de façon équivalente $(\delta_n(A^2) = 0 \Leftrightarrow A = 0)$. Ici nous prouvons que la condition est d > n. Supposons que d > n. Puis prenons un polynôme A de E_n tel que $\delta_n(A^2) = 0$. Ceci veut dire que $\mathbf{E}(A^2(Y)) = 0$. On en déduit que $A^2(Y) = 0$ ou encore A(Y) = 0. Plus formellement on vient de prouver que $\forall k \leq d$, $A(y_k) = 0$. Ceci veut dire que A = 0 sinon A aurait plus de n racines (en réalité d racines avec d > n).

Ulrich GOUE -21-

Ceci prouve maintenant la première partie. A présent supposons que $d \le n$, nous allons exhiber un polynôme non nul \tilde{A} tel que $\delta_n(\tilde{A}^2) = 0$. En effet on prend $\tilde{A} = \prod_{i=1}^d (X - y_i)$. Ceci achève la deuxième partie de la preuve et la condition recherchée est bien d > n.

Q3ai. On vérifie aisément que :

$$\Delta_{2}(a_{2}X^{2} + a_{1}X + a_{0}, b_{2}X^{2} + b_{1}X + b_{0}) = \sum_{i=1}^{3} \sum_{j=1}^{3} a_{i-1}b_{j-1} \frac{1}{i+j-1}$$

$$= a_{0}b_{0} + a_{1}b_{1} \frac{1}{3} + a_{2}b_{2} \frac{1}{5} + 2\left(a_{0}b_{1} \frac{1}{2} + a_{0}b_{2} \frac{1}{3} + a_{1}b_{2} \frac{1}{4}\right)$$

$$= \left[a_{0} \quad a_{1} \quad a_{2}\right] \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix} \begin{bmatrix} b_{0} \\ b_{1} \\ b_{2} \end{bmatrix}$$

$$= C_{A}^{t}H_{\omega}^{(3)}C_{B}$$

Q3aii. On voit bien que $H_{\varphi}^{(3)}$ est la matrice de Δ_2 dans la base canonique de \mathbb{R}^3 . D'après Q4 de la première partie $H_{\varphi}^{(3)}$ est définie positive donc Δ_2 est définie positive. Notons $\|.\|_{\varphi}$ la norme associée à ce produit scalaire.

Q3b. On note $e_1 = 1$, $e_2 = X$, $e_3 = X^3$ et $\mathscr{B}_2' = (e_1', e_2', e_3')$. Par le procédé d'orthonormalisation de Schmidt on a :

$$e_1' = \frac{e_1}{\|e_1\|} \quad e_2' = \frac{e_2 - \Delta(e_2, e_1')e_1'}{\|e_2 - \Delta(e_2, e_1')e_1'\|} \quad e_3' = \frac{e_3 - \Delta(e_3, e_1')e_1' - \Delta(e_3, e_2')e_2'}{\|e_3 - \Delta(e_3, e_1')e_1' - \Delta(e_3, e_2')e_2'\|}$$

On trouve

$$e'_1 = 1$$
, $e'_2 = \sqrt{12}\left(X - \frac{1}{2}\right)$, $e'_3 = \sqrt{180}\left(X^2 - X + \frac{1}{6}\right)$

Q3ci. Vu que $N = \text{Pass}(\mathcal{B}'_2, \mathcal{B}_2)$ on a :

$$N = \text{mat}_{\mathscr{B}_2} \mathscr{B}_2' = \begin{bmatrix} 1 & \frac{-\sqrt{12}}{2} & \sqrt{180} \\ 0 & \sqrt{12} & -\sqrt{180} \\ 0 & 0 & \frac{\sqrt{180}}{6} \end{bmatrix}$$

N est bien triangulaire.

Q3cii. Vu que $M = \operatorname{Pass}(\mathscr{B}_2, \mathscr{B}_2')$ alors $M^t H_{\varphi}^{(3)} M$ est la matrice du produit scalaire Δ_2 dans la base \mathscr{B}_2'). Or la base \mathscr{B}_2') est orthonormale pour le produit scalaire Δ_2 donc $M^t H_{\varphi}^{(3)} M = I_3$. Par définition N et

Ulrich GOUE -22-

M sont inverses, ainsi en multipliant la dernière relation par N^t à gauche et N à droite on obtient clairement que $H_{\omega}^{(3)} = N^t N$.

Q3cii. Considérons la base $\mathscr{B}_n=(1,X,\cdots,X^n)$ et la \mathscr{B}'_n obtenue à partir de \mathscr{B}_n par le procédé d'orthonormalisation de Schmidt. On note $M_n=\operatorname{Pass}(\mathscr{B}_n,\mathscr{B}'_n)$ et $N_n=\operatorname{Pass}(\mathscr{B}'_n,\mathscr{B}_n)$. Par définition N_n est bien triangulaire supérieure puisque par construction $e'_j\in\operatorname{Vec}(e_1,\cdots,e_j)$ pour $j\leq n+1$ (avec $e_j=X^{j-1}$). Vu que $M_n=\operatorname{Pass}(\mathscr{B}_n,\mathscr{B}'_n)$ alors $M_n^tH_{\varphi}^{(n)}M_n$ est la matrice du produit scalaire Δ_n dans la base \mathscr{B}'_n). Or la base \mathscr{B}'_n) est orthonormale pour le produit scalaire Δ_n donc $M_n^tH_{\varphi}^{(3)}M_n=I_n$. Par définition N_n et M_n sont inverses, ainsi en multipliant la dernière relation par N_n^t à gauche et N_n à droite on obtient clairement que $H_{\varphi}^{(n)}=N_n^tN_n$. Il suffit donc de prendre $T^{(n)}=N_n$.

2.3 Partie 3 :polynômes positifs et matrices de moments

Q1a. Soit P un polynôme positif. Raisonnons par l'absurde et supposons qu'il existe une racine α du polynôme P qui soit de multiplicité impaire. Nous allons montrer que le polynôme P change de signe. En outre on sait que si P admet une racine complexe z=a+ib, le conjugué \bar{z} est aussi un zéro de P avec la même multiplicité que z. De sorte que P est divisible par le polynôme $(X-z)(X-\bar{z})=X^2-2\mathrm{Re}(z)X+|z|^2=X^2-2aX+a^2+b^2$. En notant $\alpha_1,\alpha_2,\cdots,\alpha_p$ les racines réelles de multiplicité impaire. On voit que P peut s'écrire sous la forme :

$$P = \lambda \left(\prod_{i=1}^p (X - \alpha_i) \right) \left(\prod_{j=1}^m (X - \alpha_i)^{2\beta_j} \right) \left(\prod_{k=1}^l (X^2 - 2a_k X + a_k^2 + b_k^2)^{\gamma_k} \right), \quad \lambda \in \mathbb{R}^*$$

où $m \ge p$ est le nombre de toutes les racines réelles, l le nombre de racines complexes. γ_k est l'ordre de multiplicité de la k-ième racine complexe. En vertu de cette égalité on peut conclure que P a le même signe que $\lambda \prod_{i=1}^p (X - \alpha_i)$ qui quant à lui change de signe (indépendamment de λ). Il en est donc de même pour P. Contradiction! par conséquent toute racine réelle d'un polynôme positif doit avoir un ordre de multiplicité pair.

Remarque: Se basant sur cette question on déduit que tout polynôme positif *P* a la forme ci-dessous:

$$P = \kappa^2 \left(\prod_{j=1}^m (X - \alpha_i)^{2\beta_j} \right) \left(\prod_{k=1}^l (X^2 - 2a_k X + a_k^2 + b_k^2)^{\gamma_k} \right), \quad \kappa \in \mathbb{R}^*$$

Q1b. De ce qui précède un polynôme positif de degré 2 a nécessairement la forme : $P = \kappa^2 (X^2 - 2aX + a^2 + b^2)$. On achève la question car on peut écrire : $P = (\kappa (X - a))^2 + (\kappa b)^2$.

Ulrich GOUE -23-

Q1c. C'est un classique:

$$(AC + BD)^{2} + (AD - BC)^{2} = A^{2}C^{2} + 2ACBD + B^{2}D^{2} + A^{2}D^{2} - 2ABCD + B^{2}C^{2}$$
$$= A^{2}C^{2} + B^{2}D^{2} + A^{2}D^{2} + B^{2}C^{2}$$
$$= (A^{2} + B^{2})(C^{2} + D^{2})$$

Remarque 2 : On peut étendre le résultat en prouvant que pour tout entier n qu'on exhiber des polynômes E_n et F_n tel que $\prod_{i=1}^n (A_i^2 + B_i^2) = E_n^2 + F_n^2$. On prouve le résultat par récurrence sur n. Le cas n = 1 est immédiat vu qu'on pose $E_1 = A_1$ et $F_1 = B_1$. Maintenant supposons qu'elle est vraie à l'ordre n - 1 et prouvons l'hérédité au rang n:

$$\prod_{i=1}^{n} (A_i^2 + B_i^2) = \left(\prod_{i=1}^{n-1} (A_i^2 + B_i^2) \right) (A_n^2 + B_n^2)
= (E_{n-1}^2 + F_{n-1}^2) (A_n^2 + B_n^2)
= (E_{n-1}A_n + F_{n-1}B_n)^2 + (E_{n-1}B_n - F_{n-1}A_n)^2$$

Fin de la récurrence avec $E_n = E_{n-1}A_n + F_{n-1}B_n$ et $F_n = E_{n-1}B_n - F_{n-1}A_n$. C.Q.F.D.

Q1d. En se servant de la remarque de Q1, on peut écrire P sous la forme :

$$P = \kappa^{2} \left(\prod_{j=1}^{m} (X - \alpha_{i})^{2\beta_{j}} \right) \left(\prod_{k=1}^{l} ((X - a_{k})^{2} + b_{k}^{2})^{\gamma_{k}} \right)$$

En utilisant la remarque de la question précédente il existe des polynômes *E*, *F* tel que :

$$\prod_{k=1}^{l} ((X - a_k)^2 + b_k^2)^{\gamma_k} = E^2 + F^2$$

D'où

$$P = (GE)^2 + (GF)^2$$
, avec $G = \kappa \prod_{i=1}^{m} (X - \alpha_i)^{\beta_i}$

Ce qu'il fallait démontrer.

Q1e. On sait pour tout $A \in E_n$, $\Delta_n(A, A) = \delta_n(A^2)$. Par conséquent Δ_n est un produit scalaire ssi $\delta_n(A^2) > 0$ pour tout $A \in E_n$ non nul. A présent supposons que Δ_n est un produit scalaire. Maintenant pour tout $P \in E_n$ polynôme positif on peut trouver des polynômes non tous nuls A, B de E_n tel que $P = A^2 + B^2$ donc $\delta_n(P) = \delta_n(A^2) + \delta_n(B^2) > 0$. Réciproquement supposons que $\delta_n(P) > 0$ pou tout polynôme positif $P \in E_{2n}$. Alors pour tout $A \in E_n$ non nul, A^2 est un polynôme positif de E_{2n} donc $\delta_n(A^2) > 0$.

Ulrich GOUE -24-

Q2a. Par définition P_n est orthogonal à $\operatorname{Vec}(P_0,\cdots,P_j)$ pour tout j < n. Maintenant $(P_i)_{0 \le i \le n}$ forme une famille de polynômes à degré échelonné partant de 0 à n. par conséquent (P_0,\cdots,P_j) est une base de E_j donc $\operatorname{Vec}(P_0,\cdots,P_j)=E_j$. En conséquence P_n est orthogonal à E_j pour tout j < n. En particulier pour j=n-2, P_n est orthogonal à E_{n-2} ou à tout polynôme de degré inférieur ou égal à n-2. Q2b. On prouve dans un premier temps que toutes les racines de P_n sont réelles. Raisonnons par l'absurde et supposons que P_n admet une racine complexe z. En outre on sait que si P_n admet une racine complexe z=a+ib, le conjugué \bar{z} est aussi un zéro de P avec la même multiplicité que z. De sorte que P_n est divisible par le polynôme $Q=(X-z)(X-\bar{z})=X^2-2\operatorname{Re}(z)X+|z|^2=X^2-2aX+a^2+b^2$, Q est bien sûr un polynôme positif. Par conséquent on peut écrire que $P_n=Q\tilde{P}_n$ avec $\tilde{P}_n\in E_{n-2}$. Le produit de deux polynômes positifs étant positif $Q\tilde{P}_n^2$ est alors positif. On a alors :

$$0 = \Delta_n(P_n, \tilde{P}_n)$$

$$= \Delta_n(Q\tilde{P}_n, \tilde{P}_n)$$

$$= \delta_n(Q\tilde{P}_n^2)$$

$$> 0$$

Contradiction! Par conséquent toutes les racines de P_n sont réelles. Il reste maintenant à prouver que toutes ses racines réelles sont simples. Raisonnons par l'absurde et supposons que P_n admet une racine d'ordre au moins 2, α . Dans ce cas on peut écrire $P_n = (X - \alpha)^2 \bar{P}_n$ avec $\bar{P}_n \in E_{n-2}$. En utilisant les mêmes arguments que précédemment :

$$0 = \Delta_n(P_n, \bar{P}_n)$$

$$= \Delta_n((X - \alpha)^2 \bar{P}_n, \bar{P}_n)$$

$$= \delta_n((X - \alpha)^2 \tilde{P}_n^2)$$

$$> 0$$

Contradiction! D'où toutes les racines de P_n sont réelles et simples, i.e. P_n est scindé à racines simples sur \mathbb{R} .

Q3a. Prenons des réels $(\lambda_1, \lambda_2, \dots, \lambda_n)$ tel que $\sum_{i=1}^n \lambda_i L_i = 0$. En évaluant la somme précédente en α_k on trouve $\lambda_k = 0$. Par conséquent (L_1, L_2, \dots, L_n) est une famille libre maximale de E_{n-1} elle en est donc une base. Posons $H = \sum_{i=1}^n L_i$. Le polynôme H-1 est de degré au plus n-1 mais vaut zéros en n points distincts à savoir $\alpha_1, \alpha_2, \dots, \alpha_n$. Par conséquent il est nul, i.e. $H = \sum_{i=1}^n L_i = 1$.

Ulrich GOUE -25-

Q3bi. Prenons $Q \in E_{2n-1}$. Effectuons la division euclidienne de Q par P_n . Alors il existe un unique couple de polynômes (A, R) tel que $Q = P_n A + R$. il est clair que $\deg(R) < \deg(P_n) = n$ donc $\deg(R) \le n - 1$ soit $R \in E_{n-1}$. Par ailleurs $\deg(Q) = \deg(A) + \deg(P_n) = \deg(A) + n$ d'où $\deg(A) = \deg(Q) - n \le 2n - 1 - n = n - 1$, i.e. $A \in E_{n-1}$.

Q3bii. Toujours avec les mêmes notations de la question précédente l'on a nécessairement $R(\alpha_i) = Q(\alpha_i)$ puisque les α_i sont les zéros de P_n . En utilisant la base (L_1, L_2, \dots, L_n) on se souvient que $R = \sum_{i=1}^n R(\alpha_i) L_i$ donc $R = \sum_{i=1}^n Q(\alpha_i) L_i$. Maintenant par définition de P_n il vient que : $\delta_n(P_n A) = \Delta_n(P_n, A) = 0$ (P_n étant orthogonal à A). Enfin :

$$\delta_n(Q) = \delta_n \left(P_n A + \sum_{i=1}^n Q(\alpha_i) L_i \right)$$

$$= \underbrace{\delta_n (P_n A)}_{=0} + \delta_n \left(\sum_{i=1}^n Q(\alpha_i) L_i \right)$$

$$= \sum_{i=1}^n Q(\alpha_i) \delta_n(L_i)$$

Q3c. L'idée ici est de prouver que $\delta_n(L_i) = \delta_n(L_i^2)$. Remarquons pour $i \neq j$ le polynôme $X - \alpha_i$ divise L_j et qu'il existe un réel μ_i tel que $\mu_i(X - \alpha_i)L_i = P_n$. On peut aussi poser $R_j^{(i)} = \frac{L_j}{X - \alpha_i}$. On montre que $\delta_n(L_iL_j) = 0$:

$$\begin{split} \delta_n(L_i L_j) &= \frac{1}{\mu_i} \delta_n \left(\mu_i (X - \alpha_i) L_i \frac{L_j}{X - \alpha_i} \right) \\ &= \frac{1}{\mu_i} \delta_n (P_n R_j^{(i)}) \\ &= \frac{1}{\mu_i} \Delta_n (P_n, R_j^{(i)}) \\ &= 0 \left(\operatorname{car} R_j^{(i)} \in E_{n-2} \right) \end{split}$$

On est prêt à achever :

$$\begin{split} \delta_n(L_i) &= \delta_n(L_i(\sum_{i=1}^n L_i = 1)) \\ &= \delta_n(L_i^2) + \sum_{j \neq i} \delta_n(L_i L_j) \\ &= \delta_n(L_i^2) \\ &> 0(\text{ D'après Q1e.}) \end{split}$$

Ulrich GOUE -26-

Ceci prouve p_1, p_2, \dots, p_n sont strictement positifs. Nous prouvons maintenant que leur somme est égale à 1 :

$$\sum_{i=1}^{n} p_{i} = \sum_{i=1}^{n} \delta_{n}(L_{i})$$

$$= \delta_{n} \left(\sum_{i=1}^{n} L_{i} \right)$$

$$= \delta_{n}(1)$$

$$= 1$$

Q4a. Considérons une variable aléatoire définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbf{P})$ prenant n valeurs distinctes $\alpha_1, \alpha_2, \cdots, \alpha_n$ avec les probabilités respectives $\delta_n(L_1), \delta_n(L_2), \cdots, \delta_n(L_n)$ strictement positives. Évidemment de ce qui précède $\sum_{k=1}^n \delta_n(L_k) = 1$. On montre que cette variable aléatoire Z convient. Pour tout k appartenant à l'intervalle entier [1, 2n-1]:

$$\varphi(k) = \delta_n(X^k)$$

$$= \sum_{i=1}^n \alpha_i^k \delta_n(L_i)$$

$$= \mathbf{E}(Z^k)$$

Q4b. Ici on montre que le nombre minimal de valeurs prises par Z est n. Maintenant appelons ce entier minimal n_{φ} . D'après la question précédente on peut exhiber une v.a. Z à n valeurs satisfaisant ladite condition donc $n_{\varphi} \leq n$. Maintenant il reste à montrer que $n_{\varphi} \geq n$. Pour cela il suffit de prouver que pour tout entier p < n on ne peut pas trouver une v.a. prenant au plus p valeurs et satisfaisant notre condition d'intérêt. Raisonnons par l'absurde et supposons qu'une telle v.a. Z_p existe et qu'elle charge les points $\alpha_1, \alpha_2, \cdots, \alpha_p$ avec les probabilités respectives $\pi_1, \pi_2, \cdots, \pi_p$ positives (pas nécessairement strictement positives). En gros on voit que le vecteur $(\alpha_1, \alpha_2, \cdots, \alpha_p, \pi_1, \pi_2, \cdots, \pi_p)$ de \mathbb{R}^{2p} est solution du système non linéaire à 2n équations :

$$(\mathscr{S}): \frac{1}{k+1} = \sum_{i=1}^{p} \alpha_i^k \pi_i, \quad 0 \le k \le 2n-1$$

Ulrich GOUE -27-

Considérons le polynôme $Q = \prod_{i=1}^p (X - \alpha_i)$. Si on note que $Q = X^n - \sum_{i=1}^p b_i X^{p-i}$. Par conséquent (\mathcal{S}) implique $(1/k)_{1 \le k \le 2n}$ sont les termes de la récurrence linéaire :

$$u_n = \sum_{i=1}^p b_i u_{n-i}$$

Par conséquent en notant $v_i=(\frac{1}{i},\frac{1}{i+1},\cdots,\frac{1}{i+p})$. On a un clairement :

$$v_{p+1} = \sum_{i=1}^{p} b_i v_{p+1-i}$$

En d'autres termes le système (v_1,\cdots,v_{p+1}) est lié. Ceci est absurde puisque les $(v_i)_{1\leq i\leq p+1}$ sont les colonnes de la matrice inversible $H_{\varphi}^{(p+1)}$ et donc ils forment un système libre 5 . Notre hypothèse est donc prouvée et $n_{\varphi}=n$.

Ulrich GOUE -28-

^{5.} Il est à noter que 2p + 1 < 2n.

J'espère que cette Solution vous aidera et Bonne Chance pour votre Concours.

Contactez moi à l'adresse de haut de page en cas de questions.

Également avertissez moi si vous soupçonnez une quelconque erreur.

Cordialement Ulrich GOUE

Ulrich GOUE -29-