Notes from MAT331 - First Course in Linear Algebra

Notetaker: Grant Griffiths

Semester: Fall 2012 - Syracuse University

Contents

1	Line	Linear Equations in Linear Algebra		
	1.1	Lesson 1.1: Systems of Linear Equations	2	
	1.2	Lesson 1.2: Row Reduction and Echelon Forms	2	
	1.3	Lesson 1.3: Vector Equations	3	
	1.4	Lesson 1.4: The Matrix Equation $Ax = b$	3	
	1.5	Lesson 1.5: Solution Sets of Linear System	4	
	1.6	Lesson 1.7: Linear Independence	4	
	1.7	Lesson 1.8: Introduction to Linear Transformations		
	1.8	Lesson 1.9: The Matrix of a Linear Transformation	6	
2	Matrix Algebra			
	2.1	Lesson 2.1: Matrix Operations	7	
	2.2	Lesson 2.2: The Inverse of a Matrix		
	2.3	Lesson 2.3: Characterizations of invertible Matrices	8	
	2.4	Lesson 2.4 Partitioned Matrices		
	2.5	Lesson 2.8 Subspaces of R	9	
	2.6	Lesson 2.9 Dimension and Rank	10	
3	Det	Determinants		
	3.1	Lesson 3.1 Introduction to Determinants	11	
	3.2	Lesson 3.2 Properties of Determinants		
	3.3	Lesson 3.3 Cramer's Rule, Volume, and Linear Transformations		
5	Eige	envalues and Eigenvectors	13	
	_	Lesson 5.1 Eigenvectors and Eigenvalues	13	

Chapter 1: Linear Equations in Linear Algebra

Lesson 1.1: Systems of Linear Equations

- Linear Equation An equation that can be written in the form $a_1x_1 + a_2x_2 + ... + a_nx_n = b$
- Systems of Linear Equations a collection of one or more linear equations involving the same variables
- Elementary Row Operations
 - 1. Replacement Replace one row by the sum of itself and a multiple of another row
 - 2. **Interchange** Interchange two rows
 - 3. Scaling Multiply all entries in a row by a nonzero constant
- Row Equivalent when a matrix can be transformed into a another one using the row operations.
- Fact: If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.

Lesson 1.2: Row Reduction and Echelon Forms

- Leading Entry the leftmost nonzero entry in a nonzero row
- Echelon form requirements:
 - 1. All non-zero rows are above any rows of all zeros
 - 2. Each leading entry of a row is in a column to the right of the leading entry of the row above it
 - 3. All entries in a column below a leading entry are zeros
- Reduced Echelon form additional requirements
 - 1. The leading entry in each nonzero row is 1
 - 2. Each leading 1 is the only nonzero entry in its column
- Echelon Matrix matrix that is in echelon form
- Fact Any nonzero matrix may be row reduced
- Pivot Position location in matrix A that corresponds to a leading 1 in the reduced echelon form of A
- Pivot Column is a column of A that contains a pivot position
- Using Row Reduction to solve a Linear System
 - 1. Write the augmented matrix of the system
 - 2. Use the row reduction algorithm to obtain an equivalent augmented matrix in echelon form. Decide whether the system is consistent. If there is no solution, stop; otherwise, go to the next step.
 - 3. Continue row reduction to obtain the reduced echelon form. Write the system of equations corresponding to the matrix obtained in step 3.
 - 4. Write the system of equations corresponding to the matrix obtained in step 3.
 - 5. Rewrite each nonzero equation from step 4 so that its one basic variable is expressed in terms of any free variables appearing the equation.

Lesson 1.3: Vector Equations

- Column Vector a matrix with only one column
- Equal two vectors are equal iff their corresponding entries are equal.
- Vector Addition Given two vectors \vec{u} and \vec{v} in \mathbb{R}^2 , their sum is the vector $\mathbf{u} + \mathbf{v}$ obtained by adding corresponding entries of \mathbf{u} and \mathbf{v} .
- Scalar Multiple Given a vector u and a real number c, the scalar multiple of u by c is the vector cu
- Parallelogram Rule for Addition If u and v in \mathbb{R}^2 are represented as points in the plane, then u + v corresponds to the fourth vertex of the parallelogram whose other vertices are u, 0, and v.
- If $v_1, ..., v_p$ are in \mathbb{R}^n , then the set of all linear combinations of $v_1, ..., v_p$ is denoted by $Span\{v_1, ..., v_p\}$, and is called the subset of \mathbb{R}^n spanned (or generated) by $v_1, ..., v_p$. That is, $Span\{v_1, ..., v_p\}$ is the collection of vectors that can be written in form $c_1v_1 + c_2v_2 + ... + c_pv_p$ with $c_1...c_p$ scalars.

Lesson 1.4: The Matrix Equation Ax = b

• If A is an m×n matrix, with columns $a_1...a_n$, and \vec{x} is in \mathbb{R}^2 , then the **product of A and** \vec{x} , denoted by $A\vec{x}$, is the linear combination of the columns of A using the corresponding entries in \vec{x} as weights; that is,

$$A\vec{x} = [a_1 a_2 ... a_n] \begin{bmatrix} x_1 \\ ... \\ x_n \end{bmatrix} = x_1 \vec{a_1} + x_2 \vec{a_2} + ... + x_n \vec{a_n}$$

• If A is an m \times n matrix, with columns $a_1, ..., a_n$, and if b is in \mathbb{R}^m , the matrix equation

$$A\vec{x} = \vec{b}$$

has the same solution set as the vector equation $x_1\vec{a_1} + x_2\vec{a_2} + ... + x_n\vec{a_n} = \vec{b}$ which, in turn, has the same solution set as the system of linear equations whose augmented matrix is $[\vec{a_1} \ \vec{a_2} \ ... \ \vec{a_n}]$

- The equation $A\vec{x} = b$ has a solution iff \vec{b} is a linear combination of the columns of A.
- Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.
 - 1. For each \vec{b} in \mathbb{R}^m , the equation $A\vec{x} = b$ has a solution.
 - 2. Each \vec{b} in \mathbb{R}^m is a linear combination of the columns of A.
 - 3. The columns of A span \mathbb{R}^m
 - 4. A has a pivot position in every row.
- Row-Vector Rule for computing $A\vec{x}$

If the product $A\vec{x}$ is defined, then the *i*th entry in $A\vec{x}$ is the sum of products of corresponding entries from row *i* of A and from the vector \vec{x}

- Identity Matrix when there are a set of diagonal 1's from the top left to bottom right in a square matrix.
- If A is an m×n matrix, \vec{u} and \vec{v} are vectors in \mathbb{R}^n , and c is a scalar, then:
 - 1. $A(\vec{u}+\vec{v}) = A\vec{u}+A\vec{v}$
 - 2. $A(c\vec{u}) = c(A\vec{u})$

Lesson 1.5: Solution Sets of Linear System

- A system of linear equations is said to be **homogeneous** if it can be written in the form $A\vec{x}=0$, where A is in an $m \times n$ matrix and 0 is the zero factor in \mathbb{R}^m
- The homogeneous equation $A\vec{x}=0$ has a nontrivial solution iff the equation has at least one free variable. Such a system $A\vec{x}=0$ always has at least one solution, namely, x=0. This zero solution is usually called the **trivial** solution.
- Nontrivial Solution a nonzero vector \vec{x} that satisfies $A\vec{x}=0$
- The homogeneous equation $A\vec{x}=0$ has a nontrivial solution iff the equation has at least one free variable.
- Whenever a solution set is described explicitly with vectors, we say that the solution is in **parametric vector** form.
- Equation of a line through p parallel to v: x = p + tv
- Suppose the equation $A\vec{x}=b$ is consistent for some given b, and let p be a solution. Then the solution set of $A\vec{x}=b$ is the set of all vectors of the form $\mathbf{w}=\mathbf{p}+\mathbf{v}_h$, where \mathbf{v}_h is any solution of the homogeneous equation $A\vec{x}=0$.
- Writing a solution set in parametric vector form
 - 1. Row reduce the augmented matrix to reduced echelon form
 - 2. Express each basic variable in terms of any free variables appearing in an equation.
 - 3. Write a typical solution \vec{x} as a vector whose entries depend on the free variables, if any.
 - 4. Decompose \vec{x} into a linear combination of vectors(with numeric entries) using the free variables as parameters.

Lesson 1.7: Linear Independence

- Linearly independent There are no free variables in a vector equation
- Linearly dependent There is at least one free variable in a vector equation
- The columns of a matrix A are linearly indepedent iff the equation $A\vec{x}=0$ has only the trivial solution.
- A set of two vectors \vec{v}_1, \vec{v}_2 is linearly depednet if at least one of the vectors is a multiple of te other. The set is linearly indepednet iff neither of the evectors is a multiple of the other.
- An indexed set $S = v_1, ..., v_p$ of two or more vectors is linearly dependent iff at least one of the vectors in S is a linear combination of the others.
- If a set contains more vectors than there are entries in each vector, then the set is linearly dependent.
- if a set $S = v_1, ..., v_p$ in \mathbb{R}^n contains the zero vector, then the set is linearly dependent.

Lesson 1.8: Introduction to Linear Transformations

- A transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \vec{x} in \mathbb{R}^n a vector $T(\vec{x})$ in \mathbb{R}^m . The set \mathbb{R}^n is called the **domain** of T, and \mathbb{R}^m is called the codomain of T.
- Image the vector $T(\vec{x})$
- Range the set of all images $T(\vec{x})$
- Let $A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$. The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(\mathbf{x}) = A\mathbf{x}$ is called the **shear transformation**.
- A transformation (or mapping) T is **linear** if:
 - 1. $T(\vec{u}+Vv)=T(\vec{u})+T(\vec{v})$ for all \vec{u},\vec{v} in the domain of T
 - 2. $T(c\vec{u})=cT(\vec{u})$ for all scalars c and all \vec{u} in the domain of T
- If T is a linear transformation, then

$$T(\mathbf{0}) = \mathbf{0}$$

and

$$\mathbf{T}(\mathbf{c}\vec{u}\!+\!\mathbf{d}\vec{v})\!\!=\!\!\mathbf{c}\mathbf{T}(\vec{u})\!+\!\mathbf{d}\mathbf{T}(\vec{v})$$

for all vectors \vec{u} , \vec{v} , in the domain of T and all scalars c,d.

• Given a scalar r, define $T:\mathbb{R}^2 \to \mathbb{R}^2$ by $T(\vec{x}) = r\vec{x}$. T is called **contraction** when $0 \le r \le 1$ and a **dilation** when r > 1.

Lesson 1.9: The Matrix of a Linear Transformation

• Let $T:\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation Then there exists a unique matrix A such that

$$T(\vec{x})=A\vec{x}$$
 for all \vec{x} in \mathbb{R}^n

In fact, A is the m×n matrix whose jth column is the vector $T(\vec{e}_j)$ where \vec{e}_j is the jth column of the identity matrix in \mathbb{R}^n :

$$A = [T(\vec{e}_1) \dots T(\vec{e}_n)]$$

• Reflections

- Reflection through the x_1 -axis: $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
- Reflection through the x_2 -axis: $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
- Reflection through line $x_2 = x_1$: $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
- Reflection through line $x_2=-x_1$: $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$
- Reflection through the origin: $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

• Contractions and Expansions

- Horizontal contraction and expansion
- Vertical contraction and expansion

• Shears

- Horizontal Shear: $\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$
- Vertical Shear: $\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$

• Projections

- Projection onto the x_1 -axis: $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
- Projection onto the x_2 -axis: $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
- A mapping $T:\mathbb{R}^n \to \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each \vec{b} in \mathbb{R}^m is the image of at least one \vec{x} in \mathbb{R}^n .
- A mapping $T:\mathbb{R}^n \to \mathbb{R}^m$ is said to be **one-to-one** \mathbb{R}^m if each \vec{b} in \mathbb{R}^m is the image of at most one \vec{x} in \mathbb{R}^n .

6

- Let $T:\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is one-to-one iff the equation $T(\vec{x})=0$ has only the trivial solution.
- Let $T:\mathbb{R}^n \to \mathbb{R}^m$ and Let A be the standard matrix for T. Then:
 - 1. T maps \mathbb{R}^n onto \mathbb{R}^m iff the columns of A spans \mathbb{R}^m
 - 2. T is one-to-one iff the columns of A are linearly independent.

Chapter 2: Matrix Algebra

Lesson 2.1: Matrix Operations

- The diagonal entries in an m×n matrix $A = [a_{ij}]$ are $a_{11}, a_{22}, a_{33}, ...$, and they form the main diagonal of A.
- A diagonal matrix is a square $n \times n$ matrix whose non-diagonal entries are zero.
- A matrix whose entries are all 0 is a **zero matrix** and is written as 0.
- Two matrices are equal if they have the same size and their corresponding columns are equal.
- The sum of two matrices A and B is the matrix whose columns are the sums of the columns of A and B.
- Scalar Multiple matrix rA whose columns are r times the corresponding columns A.
- Matrices follow standard algebraic laws such as commutativity, associativity, distributivity, A + 0 = A, and IA = A.
- AB = A[$b_1 \ b_2 \ ... \ b_p$] = [A $b_1 \ Ab_2 \ ... \ Ab_p$]
- Each column of AB is a linear combination of the columns of A using weights from the corresponding columns of B.

• Row-columns rule for computing AB

If the product AB is defined, then the entry in row i and colun j of AB is the sum of the products of corresponding entries from row i of A and column j of B. If $(AB)_{ij}$ denotes the (i,j)-entry in AB, and if A is an $m \times n$ matrix, then

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + ..a_{in}b_{nj}$$

• WARNINGS:

- 1. In general, AB≠BA
- 2. The cancellation laws do not hold for matrix multiplication. That is, if AB = AC, then it is *not* true in general that B = C.
- 3. If a product AB is the zero matrix, you cannot conclude in general that either A = 0 or B = 0.
- $A^k = \underbrace{A \cdot \cdot \cdot A}$ for k times.
- Given an $m \times n$ matrix A, the **transpose** of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A.

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, B = \begin{bmatrix} -5 & 2 \\ 1 & -3 \\ 0 & 4 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -3 & 5 & -2 & 7 \end{bmatrix}$$

Then

$$A^{T} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}, B^{T} = \begin{bmatrix} -5 & 1 & 0 \\ 2 & -3 & 4 \end{bmatrix}, C^{T} = \begin{bmatrix} 1 & -3 \\ 1 & 5 \\ 1 & -2 \\ 1 & 7 \end{bmatrix}$$

- Let A and B denote matrices whose sizes are appropriate for the following sums and products.
 - 1. $(A^T)^T = A$
 - 2. $(A + B)^T = A^T + B^T$
 - 3. For any scalar r, $(rA)^T = rA^T$
 - 4. $(AB)^T = B^T A^T$

Lesson 2.2: The Inverse of a Matrix

- Singular Matrix matrix that cannot be inverted
- Nonsingular Matrix matrix that can be inverted
- $A^{-1}A = I$ and $AA^{-1} = I$
- Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad bc \neq 0$, then A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If ad - bc = 0, then A is not invertible.

- The quantity det A = ad bc is called the **determinant** of A.
- If A is an invertible matrix, then for each b in \mathbb{R}^n , the equation $A\vec{x}=b$ has the unique solution $\vec{x}=A^{-1}b$.
- If A and B are invertible matrices then,
 - 1. $(A^{-1})^{-1} = A$
 - 2. $(AB)^{-1} = B^{-1}A^{-1}$
 - 3. $(A^T)^{-1} = (A^{-1})^T$
- An **elementary matrix** is one that is obtained by performing a single elementary row operation on an identity matrix.
- An $n \times n$ matrix A is invertible iff A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduces A to I_n , also transforms I_n into A^{-1} .
- How to find A^{-1}
 - 1. Row reduce the augmented matrix [A I]
 - 2. If A is row equivalent to I, then [A I] is row equivalent to [I A^{-1}]
 - 3. Else, A does not have an inverse

Lesson 2.3: Characterizations of invertible Matrices

- Let A be a square n×n matrix. Then, the following statements must be all true or all false:
 - 1. A is an invertible matrix
 - 2. A is row equivalent to the $n \times n$ identity matrix
 - 3. A has n pivot position
 - 4. The equation $A\vec{x}=0$ has only the trivial solution
 - 5. The columns of A form a linearly independent set
 - 6. The Linear Transformation $x \to A\vec{x}$ is one-to-one
 - 7. The equation $A\vec{x}=b$ has at least one solution for each b in \mathbb{R}^n
 - 8. The linear transformation $x \to A\vec{x}$ maps \mathbb{R}^n onto \mathbb{R}^n
 - 9. There is an $n \times n$ matrix C such that CA = I
 - 10. There is an $n \times n$ matrix D such that AD = I
 - 11. A^T is an invertible matrix
- Let A and B be square matrices. If AB = I, then A and B are both invertible with $B = A^{-1}$ and $A = B^{-1}$

Lesson 2.4 Partitioned Matrices

• You can split a matrix into parts called **Partitions**

Lesson 2.8 Subspaces of R

- A subspace of \mathbb{R}^n is any set H in \mathbb{R}^n that has three properties:
 - 1. The Zero vector is in H
 - 2. For each \vec{u} and \vec{v} in H, the sum $\vec{u} + \vec{v}$ is in H.
 - 3. For each \vec{u} in H and each scalar c, the vector $c\vec{u}$ is in H.
- \bullet We now refer to $Span\{v_1,...,v_p\}$ as the subspace spanned (or generated) by $v_1,...,v_p$
- Zero subspace subspace containing only the zero vector
- Column Space of a matrix A is the set Col A of all linear combinations of the columns of A.
- If $A = [a_1...a_n]$, with the columns in \mathbb{R}^n , then Col A is the same as $Span\{a_1,...,a_n\}$.
- Col A equals \mathbb{R}^m only when the columns of A span \mathbb{R}^m . Otherwise, Col A is only part of \mathbb{R}^m
- The null space of a matrix A is the set Nul A of all solutions of the homogenous equation $A\vec{x}=0$
- The null space of an m×n matrix A is a subspace of \mathbb{R}^n . Equivalently, the set of all solutions of a system $A\vec{x}=0$ of m homogenous linear equations in n unknowns is a subspace of \mathbb{R}^n .
- A basis for a subspace H of \mathbb{R}^n is a linearly independent set in H that spans H.
- The pivot columns of a matrix A form a basis for the columns of A.
- Warning: Be careful to use *pivot columns* of A *itself* for the basis of Col A. The columns of an echelon form B are often not in the column space of A.

Lesson 2.9 Dimension and Rank

• Suppose the set $\beta = b_1, ..., b_p$ is a basis for a subspace H. For each x in H, the **coordinates of x relative to the** basis β are the weights $c_1, ..., c_p$ such that $x = c_1b_1 + ... + c_pb_p$, and the vector in \mathbb{R}^p

$$[X]_{\beta} = \begin{bmatrix} c_1 \\ \dots \\ c_p \end{bmatrix}$$

is called the coordinate vector of x (relative to β) or the β -Coordinate vector of x

- The **dimension** of a nonzero subspace H, denoted by dim H, is t he number of vectors in any basis for H. The dimension of the zero subspace 0 is defined to be zero.
- The rank of matrix A, denoted by rank A, is the dimension of the column space of A.
- The Rank Theorem: If a matrix A has n columns, then rank $A + \dim Nul A = n$
- The Basis Theorem: Let H be a p-dimensional subspace of \mathbb{R}^n . Any linearly independent set of exactly p elements in H is automatically a basis for H. Also, any set of p elements of H that spans H is automatically a basis for H.
- The Invertible Matrix Theorem (continued):

Let A be an $n \times n$ matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix.

- 1. The columns of A form a basis of \mathbb{R}^n
- 2. Col A = \mathbb{R}^n
- 3. $\dim \operatorname{Col} A = n$
- 4. $\operatorname{rank} A = n$
- 5. Nul A = 0
- 6. dim Nul A = 0

Chapter 3: Determinants

Lesson 3.1 Introduction to Determinants

- If A is an 2×2 matrix, then the determinant of A, written det A, $= a_{11}a_{22} a_{12}a_{21}$
- For $n \geq 2$, the **determinant** of an n×n matrix $A = [a_{ij}]$ is

$$\sum_{j=1}^{n} (-1)^{1+j} a_{1j} det A_{1j}$$

• The determinant of an $n \times n$ matrix A can be computed by a cofactor expansion across any column. The expansion across the *i*th row using the cofactors in $C_{ij} = (-1)^{i+j} \det A_{ij}$ is

$$\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$$

The cofactor expansion down the jth column is

$$\det A = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{2j}C_{2j}$$

• If A is a triangular matrix, then det A is the product of the entries in the main diagonal of A.

Lesson 3.2 Properties of Determinants

- Let A be a square matrix
 - 1. If a multiple of one row of A is added to another row to produce a matrix B, then det $B = \det A$
 - 2. If two rows of A are interchanged to produce B, then det $B = -\det A$
 - 3. If one row of A is multiplied by k to produce B, then $\det B = k \det A$
- A square matrix A is invertible iff det $A \neq 0$
- If A is an $n \times n$ matrix, then det $A^T = \det A$
- Multiplicative Property If A and B are $n \times n$ matrices, then det AB = (det A)(det B)
- Warning: $det(A+B)\neq det(A)+det(B)$ in general.

Lesson 3.3 Cramer's Rule, Volume, and Linear Transformations

• Cramer's Rule - Let A be an invertible $n \times n$ matrix. For any \vec{b} in \mathbb{R}^n , the unique solution \vec{b} of $A\vec{x} = \vec{b}$ has entries given by

$$x_i = \frac{\det(A_i)(b)}{\det(A)}, i = 1, 2, ..., n$$

- A matrix of cofactors is called a adjugate (or classical adjoint) of A, denoted by adj A
- An Inverse Formula Let A be an invertible $n \times n$ matrix. Then,

$$A^{-1} = \frac{1}{\det(A)} adj(A)$$

- If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is |det A|
- If A is a 3×3 matrix, the volume of the parallelepiped determined by the columns of A is |det A|
- Let T: $\mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation determined by a 2×2 matrix A. If S is a parallelogram in \mathbb{R}^2 , then

$${\text{area of T(S)}} = |det A| \cdot {\text{area of S}}$$

If T is determined by a 3×3 matrix A, and if S is a parallelepiped in \mathbb{R}^2 , then

$$\{\text{volume of T(S)}\}=|det A| \cdot \{volume \ of \ S\}$$

Chapter 5: Eigenvalues and Eigenvectors

Lesson 5.1 Eigenvectors and Eigenvalues

- An eigenvector of an $n \times n$ matrix A is a non zero vector \vec{x} such that $A\vec{x} = \lambda \vec{x}$ for some scalar λ . A scalar λ is called an eigenvalue of A if there is a nontrivial solution \vec{x} of $A\vec{x} = \lambda \vec{x}$; such an \vec{x} is called an eigenvector corresponding to λ .
- **Eigenspace**: The subspace defined as the set of all solutions to $(A \lambda I)\vec{x} = 0$
- The eigenvalues of a triangular matrix are the entries on its main diagonal
- If $v_1, ..., v_r$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, ..., \lambda_r$ of an n×n matrix A, then the set $\{v_1, ..., v_r\}$ is linearly independent.

Bibliography

Book used: David C. Lay's Linear Algebra and its application 4th Edition

Professor: Notes from Dr. Gregory Verchota's Fall 2012 course MAT331 - First Course in Linear Algebra