

<u>Home</u> <u>Gameboard</u> Chemistry Organic Organic Reactions Haloalkane Substitution

Haloalkane Substitution

Part A 2-lodobutane and sodium ethoxide

is the product of a nucleophilic substitution reaction between 2-iodobutane and sodium le $({ m NaOC}_2{ m H}_5)$?
$\mathrm{CH_{3}CH}{=}\mathrm{CHCH_{3}}$
$\mathrm{CH_{3}CH_{2}CH(OCH_{3})CH_{2}CH_{3}}$
$\mathrm{CH_{3}CH_{2}CH(CH_{3})OCH_{2}CH_{3}}$
$(\mathrm{CH_3})_2\mathrm{CHCH_2OCH_2CH_3}$

$\begin{array}{ll} \textbf{Part B} & C_2H_5X+OH^- \end{array}$

Why does the reaction

$$C_2H_5X+OH^- \longrightarrow C_2H_5OH + X^-$$

take place more rapidly in aqueous solution when X is I than when X is Br?

The I^- ion is a stronger nucleophile than the $B{\bf r}^-$ ion.
The ${\rm I^-}$ ion is less hydrated in solution than the ${\rm Br^-}$ ion.
The $\mathrm{C}\mathrm{-Br}$ bond is weaker than the $\mathrm{C}\mathrm{-I}$ bond.
The $\mathrm{C-Br}$ bond is stronger than the $\mathrm{C-I}$ bond.

<u>Home</u> <u>Gameboard</u> Chemistry Organic Organic Reactions Haloalkane Substitution Mechanism

Haloalkane Substitution Mechanism

Part A Energy profile

Halogenoalkanes react with aqueous alkali. One mechanism of this reaction has the energy profile shown below.

Figure 1: Energy profile for haloalkane with aqueous alkali

Which of the following statements are correct?

- **1**. The reaction is an example of nucleophilic substitution.
- **2**. Between **X** and **Z** the C-Hal bond will be lengthening.
- 3. The energy difference between **X** and **Y** represents the activation energy.
 - 1, 2 and 3 are correct
 1 and 2 only are correct
 2 and 3 only are correct
 1 only is correct
 3 only is correct

Part B Curly arrow mechanism

Which diagram correctly represents the transfer of electrons when ammonia reacts with a chloroalkane (alkyl chloride)?

Figure 2: Possible mechanisms for ammonia with chloroalkane

() A

B

() C

Part A adapted with permission from UCLES, A-Level Chemistry, June 1993, Paper 4, Question 37; Part B adapted with permission from UCLES, A-Level Chemistry, June 1994, Paper 4, Question 26

Gameboard:

STEM SMART Chemistry Week 25

<u>Home</u> <u>Gameboard</u> Chemistry Organic Organic Reactions Alkene Bromination

Alkene Bromination

Which of the following compounds could be formed by the action of bromine on an alkene of formula ${\rm C_4H_8}$?

Figure 1: Possible products of C_4H_8 with bromine

- (A
- () B
- () **D**

Part B Bromination of limonene

Limonene is an oil formed in the peel of citrus fruits.

Figure 2: Structure of limonene

Which product is formed when limonene reacts with excess molecular bromine at room temperature in the dark?

Figure 3: Possible products of limonene bromination

○ c	
D	

Part A adapted with permission from UCLES, A-Level Chemistry, November 1994, Paper 4, Question 22; Part B adapted with permission from UCLES, A-Level Chemistry, November 1996, Paper 4, Question 22

Gameboard:

STEM SMART Chemistry Week 25

<u>Home</u> <u>Gameboard</u> Chemistry Organic Organic Reactions Alkene Bromination Mechanism

Alkene Bromination Mechanism

Part A Curly arrows

What is the sequence of curly arrows denoting movement of electrons in the first step of the reaction between ethene and bromine (below)?

Figure 1: Bromination mechanism

For example in the reaction below, if you think the mechanism is as shown, your answer would be **cdef**.

Figure 2: Sequence cdef

Ethene bromination sequence:

Part B Reaction type

What type of reaction is this?

Created for isaacphysics.org by R. Less

Gameboard:

STEM SMART Chemistry Week 25

 ${\color{red} \underline{\mathsf{Home}}} \quad {\color{red} \underline{\mathsf{Gameboard}}} \quad {\color{red} \mathsf{Chemistry}} \quad {\color{red} \mathsf{Organic}} \quad {\color{red} \mathsf{Organic}} \quad {\color{red} \mathsf{Reactions}} \quad {\color{red} \mathsf{Alkenes}} \, {\color{red} \mathsf{With}} \, {\color{red} \mathsf{HBr}}$

Alkenes With ${ m HBr}$

Which of the following structures represents the main organic compound produced when hydrogen bromide is added to 1-methylcyclohexene (shown below)?

Figure 1: 1-methylcyclohexene and possible products of reaction with HBr

A
В
С
D
Ε

Part B Methylpropene with ${ m HBr}$

Methylpropene has the structure shown below.

Figure 2: Structure of methylpropene

What is the **major** product formed when methylpropene reacts with HBr?

Use the <u>structure editor</u> to generate a SMILES string.

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

Using the structure editor

Part A adapted with permission from OCSEB, A-Level Chemistry, June 1998, Paper 1, Question 22; Part B created for Isaac Physics by R. Less

Gameboard:

STEM SMART Chemistry Week 25

<u>Home</u> <u>Gameboard</u> Chemistry Organic Organic Reactions Alkene Reactions

Alkene Reactions

Propene reacts under the following conditions to give compounds **A**, **B** and **C**.

Figure 1: Propene with bromine and steam in presence of an acid catalyst

$\begin{array}{cc} \textbf{Part A} & \textbf{with } Br_2 \\ \end{array}$

What is product **A**?

Use the <u>structure editor</u> to generate a SMILES string.

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

<u>Using the structure editor</u>

Part B with steam / acid catalyst

What are products **B** and **C**?

Use the <u>structure editor</u> to generate SMILES strings.

Give your answer in the format "B, C" (space after comma).

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

Using the structure editor

Created for isaacphysics.org by R. Less

Gameboard:

STEM SMART Chemistry Week 25

Home Gameboard Chemi

Chemistry Organic

Organic Reactions

More Alkene Bromination

More Alkene Bromination

Compound **A** undergoes the following reactions:

$$\begin{array}{c} \mathbf{A} \xrightarrow[\text{bromine in trichloroethane}]{(II)} & CH_3CHBrCHBrCH_3 \xrightarrow{(II)} CH_2 = CH - CH = CH_2 \end{array}$$

Part A Bromination of compound A

What is compound A? (There are two possible isomers - give the structure of either)

Use the structure editor to generate a SMILES string.

Click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

Using the structure editor

Part B Step (II)

What type of reaction is step (II)?

Part C Ethene with aqueous bromine

Etnene reacts with aqueous promine to give the two products, CH_2BrCH_2Br and CH_2BrCH_2OH .
Which statement is correct for these products?
Both products can be hydrolysed to form the same diol.
Both products are obtained in this reaction by nucleophilic addition.
Both products possess an overall dipole.
Both products are obtained in this reaction by electrophilic substitution.
Reaction of ethene with aqueous ${ m HBr}$ gives the same products.

Part A adapted with permission from UCLES, A-Level Chemistry, June1991, Paper 3, Question 8; Part B adapted with permission from UCLES, A-Level Chemistry, November 1993, Paper 4, Question 24

Gameboard:

STEM SMART Chemistry Week 25

<u>Home</u> <u>Gameboard</u> Chemistry Organic Organic Reactions Free Radical Reactions

Free Radical Reactions

Part A CFCs
In the upper atmosphere, chlorofluoroalkanes (CFCs) are broken down to give chlorine radicals but not fluorine radicals.
What is the best explanation for this?
Chlorine has a higher molecular weight.
$igcup$ The $\mathrm{C}\mathrm{-F}$ bond is stronger than the $\mathrm{C}\mathrm{-Cl}$ bond.
Fluorine has a lower atomic number.
Fluorine has a higher ionisation energy than chlorine.
Part B Chlorination of methane
Methane reacts with chlorine in the presence of sunlight. Which statement about the intermediates is correct?
They contain an odd number of electrons.
They are more energetically stable than the reactants.
They combine to form HCl.
They are positively charged ions.

Home Gameboard Chemistry Organic Organic Reactions Ethene Oxidation

Ethene Oxidation

Part A Ethene to ethanal

Aldehydes and ketones are produced industrially by the catalytic oxidation of alkenes, *e.g.* ethanal is manufactured from ethene as shown below:

$$ext{H}_2 ext{C=CH}_2 + rac{1}{2} ext{O}_2 \xrightarrow{ ext{catalyst}} ext{CH}_3 ext{CHO}$$

This process is also used industrially with but-2-ene.

Which of the following represents the structure of the compound which would be produced from but-2-ene?

- CH₃CH₂CHO
- CH₃COCH₃
- \bigcirc CH₃COCH₂CH₃
- \bigcirc (CH₃)₂CHCHO
- CH₃CH₂CH₂CHO

Part B Ethene with bromine and sodium nitrate

When ethene reacts with bromine in the presence of concentrated aqueous sodium nitrate, the product contains the following compound:

$$\begin{array}{c|c} H & H \\ \hline I & I \\ \hline -C & C - H \\ \hline ONO_2 & Br \end{array}$$

Figure 1: Reaction product

What is the intermediate formed in this reaction?

Figure 2: Possible intermediates

- () A
- () **B**
- \bigcirc C
- () E

<u>Home</u> <u>Gameboard</u> Chemistry Organic Organic Reactions Epoxy Precursor

Epoxy Precursor

Epoxy resins are polymers which are used as adhesives. One monomer used in their manufacture has the displayed formula:

$$H_2C$$
 CH CH_2C

Figure 1: Epoxy resin monomer

This is manufactured from propene in three stages:

Figure 2: Three stages of epoxy monomer manufacture from propene

What type of reaction mechanism takes place between propene and chlorine gas in stage I?
Suggest what conditions are necessary for this reaction.
Part B Stage II What type of reaction mechanism takes place when the aqueous chlorine reacts in stage II?
Part C Stage III What type of organic reaction takes place in stage III?
Adapted with permission from UCLES, A-Level Chemistry, November 1994, Paper 3, Question 4

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Stage I

Part A