Introduction to Neural Networks

José Carlos Ortiz Bayliss jcobayliss@itesm.mx

The single-input neuron

The single-input neuron is an extremely simple computational unit that, given an input, produces an output.

The single-input neuron

• The summer output *n*, often referred to as the **net input**, goes into the activation function *f*, which produces the scalar output *a*.

The single-input neuron

- The summer output n, often referred to as the net input, goes into a
 activation function f, which produces the scalar neuron output a.
- The neuron output is calculated as a = f(wp+b). The actual output depends on the **activation function** that is chosen.

Activation functions

Changing the activation function affects the behaviour of the neuron (and its possible output values):

- Binary (0 or 1): hard limit.
- Bipolar (-1 or 1): symmetrical hard limit.
- Continuous (in the range -1 to 1): symmetrical saturating linear
- Continuous (in the range 0 to 1): saturating linear, sigmoid.
- Continuous (any value): linear.

Hard limit

$$a = \left\{egin{array}{ll} 0 & ext{if } n < 0 \ 1 & ext{if } n \geq 0 \end{array}
ight.$$

Symmetrical hard limit

$$a = \left\{ egin{array}{ll} -1 & ext{if } n < 0 \ 1 & ext{if } n \geq 0 \end{array}
ight.$$

Linear activation function

$$a = n$$

Saturating linear

$$a = \left\{egin{array}{ll} 0 & ext{if } n < 0 \ n & ext{if } 0 \leq n \leq 1 \ 1 & ext{if } n > 1 \end{array}
ight.$$

Symmetric saturating linear

$$a = \left\{ egin{array}{ll} -1 & ext{if } n < -1 \ n & ext{if } -1 \leq n \leq 1 \ 1 & ext{if } n > 1 \end{array}
ight.$$

Log-sigmoid

$$a=rac{1}{1+e^{-n}}$$

The multiple-input neuron

The multiple-input neuron

- The summer output n, often referred to as the net input, goes into a
 activation function f, which produces the scalar neuron output a.
- The neuron output is calculated as a = f(wp+b). The actual output depends on the **activation function** that is chosen.

The perceptron

- The perceptron is a neural network with only one layer of neurons (usually using a hard limit activation function).
- Single-neuron perceptrons can only classify input vectors into two categories.
- Unfortunately, the perceptron network is inherently limited (it can only classify classes which are linearly separable!).
- Although limited, the perceptron is still considered an important network because it provides a good basis for understanding more complex networks.

The single-neuron perceptron as a logic gate

The single-neuron perceptron as a logic gate

p ₁	p ₂	a
0	0	
0	1	
1	0	
1	1	

A multi-neuron perceptron

The multi-neuron perceptron

The multi-neuron perceptron

Multiple logic gates in one perceptron

Multiple logic gates in one perceptron

Multiple logic gates in one perceptron

p ₁	p_2	a_1	a_2	a_3
0	0	0	0	1
0	1	0	1	0
1	0	0	1	1
1	1	1	1	0

How can a perceptron be trained?

While we do not reach a termination criterion:

- Calculate the output of the network: $a = f(\mathbf{Wp} + b)$
- Is there an error (expected output vs actual output)?
 - o Yes: Update the weights and biases: $\mathbf{W} = \mathbf{W} + \mathbf{e}\mathbf{p}^{\mathrm{T}}$ and $\mathbf{b} = \mathbf{b} + \mathbf{e}$
 - o No: Do nothing.

Perceptron's learning rule in action

- In this example, we will calculate the weights and bias of a single-neuron perceptron that will be used as an AND gate.
- The perceptron receives two inputs and produces one output (the AND of the two inputs).

Perceptron's learning rule in action

• In this example, we will calculate the weights and bias of a single-neuron perceptron that will be used as an AND gate.

The perceptron receives two inputs and produces one output (the

AND of the two inputs).

p ₁	p ₂	а	
0	0	Ο	_
0	1	0	
1	0	0	
1	1	1	

