ECE 2521: Analysis of Stochastic Processes

Lecture 9

Department of Electrical and Computer Engineering University of Pittsburgh

November, 10^{th} 2021

azime

X,, X2,..., XN -> N independent measurements of X (bii)

Example:

estimator of E[x] -> How good is this estimator?

- shouldn't vary too much

unbiased estimator for m

E[x:] = E[x] = M for all ; because sid

$$E[(M_n - M)^2] = E[(M_n - E[M_n])^2]$$

$$S_n = x_1 + \dots + x_n \longrightarrow M_n = \frac{S_n}{n}$$

$$V_{n}(m_{n}) = \frac{1}{n^{2}} v_{n}(s_{n}) = \frac{n\sigma^{2}}{n^{2}} = \frac{\sigma^{2}}{n^{2}}$$

Chebysher Inequality:

$$P[|M_n - E[M_n]| E] \leq \frac{\sigma^2}{n\epsilon^2} \rightarrow P[|M_n - n| | C E] = 1 - \frac{\sigma^2}{n\epsilon^2}$$

How many measurements required such that E=1 MV with probability of 0.99?

$$1 - \frac{\sigma^2}{n\epsilon^2} = 1 - \frac{1}{n} = 0.99 \implies n = 100$$

Weak law of large numbers

x,,..., x~ -> :: L RVs with finite mean E[x]=M

meaning: for large enough N, the sample mean will be close to the the mean with high probability

weak because it doesn't make a connection between

Mn and M

Strong law of large numbers

×, ×2, ×3, ...

sequence of sample meens $M_1, M_2, ..., M_J, M_{J+1}$ $\uparrow \\ \chi_1 - \chi_j$

this convergence will happen eventually and certainly (to the mean)

now a could be tinstead, for time

Central Limit Theorem

x, xz, ... , x with finite mean M, finite variance (iid)

→ Sn=x1+x2+...+xn

formssion

RV (constant)

Mr -> M as n-> 00

X, Xz,..., X (random variable)

X => X as ~ -> 00

Sequences of Random Variables

Deterministic sequence you can access by n

• Let $X_1, X_2, ..., X_n, ...$ be a sequence of random variables such that each X_i maps points in sample space S to \mathbb{R} . That is, for every $\xi_j \in S$, $X_1(\xi_j), X_2(\xi_j), ..., X_n(\xi_j), ...$ is a sequence of real numbers.

		X_1	X_2	X_3	 X_n		X
Each	ξ_i	$X_1(\xi_1)$	$X_2(\xi_1)$	$X_3(\xi_1)$	 $X_n(\xi_1)$		$X(\xi_1)$
	ξ_2	$X_1(\xi_2)$	$X_2(\xi_2)$	$X_3(\xi_2)$	 $X_n(\xi_2)$		$X(\xi_2)$
outcome	ξ_3	$X_1(\xi_3)$	$X_2(\xi_3)$	$X_3(\xi_3)$	 $X_n(\xi_3)$		$X(\xi_3)$
	' :	:	:	:	:	:	

Note: X_i is a function not a real number.

• $X_n \to X$ (X_n convergence to X)

Relevant for stochastic processe, which change over time

- A fair coin toss is tossed once: $S = \{H, T\}$
- Define a sequence of random variables $X_1, X_2, X_3, ...$ as follows:

$$X_n(\xi) = \begin{cases} \frac{1}{n+1} & \text{if } \xi = H \\ 1 & \text{if } \xi = T \end{cases}$$

$$\rho(x_i = 1, x_k = 1) = \rho(x_k = 1)$$

$$\rho(x_i = 1, x_k = 1) = \frac{1}{4}$$

- 2 Find the PMF and CDF of X_n for n = 1, 2, 3, ...
- 3 As $n \to \infty$, what does the CDF of X look like?

$$x_{1}(\xi) = \begin{cases} \frac{1}{2} & \text{if } \xi = H \\ 1 & \text{if } \xi = T \end{cases}$$

$$x_{2}(\xi) = \begin{cases} \frac{1}{3} & \text{if } \xi = H \\ 1 & \text{if } \xi = T \end{cases}$$

$$(\alpha) \quad p(x_{i}=1, x_{2}=1) = p(T) = \frac{1}{2}$$

$$p(x_{i}=1) \cdot p(x_{2}=1) = p(T) \cdot p(T) = \frac{1}{4}$$

$$x_{i}'s \quad \text{one } NOT \quad \text{independent} \quad \text{values are determined by same can foss}$$

$$(b) \quad pMF: \quad p(x_{i}=x) = \begin{cases} \frac{1}{2} & x = \frac{1}{2} \\ \frac{1}{2} & x = 1 \end{cases}$$

$$(b) \quad pMF: \quad p(x_{i}=x) = \begin{cases} \frac{1}{2} & x = \frac{1}{2} \\ \frac{1}{2} & x = 1 \end{cases}$$

$$(c) \quad p(x_{i}=1, x_{i}=1) = p(x_{i}=x) = \begin{cases} \frac{1}{2} & x = \frac{1}{2} \\ \frac{1}{2} & x = \frac{1}{2} \end{cases}$$

$$(c) \quad p(x_{i}=1, x_{i}=1) = p(x_{i}=x) = \begin{cases} \frac{1}{2} & x = \frac{1}{2} \\ \frac{1}{2} & x = \frac{1}{2} \end{cases}$$

$$(c) \quad p(x_{i}=1, x_{i}=1) = p(x_{i}=x) = \begin{cases} \frac{1}{2} & x = \frac{1}{2} \\ \frac{1}{2} & x = \frac{1}{2} \end{cases}$$

$$(d) \quad p(x_{i}=1, x_{i}=1) = p(T) = \frac{1}{2}$$

$$(d) \quad p(x_{i}=1, x$$

(c) As n-700 Fx=(x) = Does not converse to a fixed value. LOF approximates COF of Bernoulla vardon variable $X_{p}(\xi) = \begin{cases} 0 & \text{if } \xi = H \\ 1 & \text{if } \xi = T \end{cases}$ x 2 | 0 5 x 5 1 x < 0

Convergence of Real Sequences

• $\lim_{n\to\infty} x_n = x \iff$ for any $\epsilon > 0$ there exists an $N \in \mathbb{Z}^+$ such that for any $n \geq N$, we have $|x_n - x| < \epsilon$.

Types of Convergence for Random Sequences

sequence for any outcome 1 Convergence everywhere (surely): will converge to a value

• $\lim_{n\to\infty} X_n(\xi) = X(\xi)$ for any $\xi \in S$.

2 Convergence almost everywhere (almost surely):

• $P[\xi : \lim_{n \to \infty} X_n(\xi) = X(\xi)] = 1.$

sequences that don't conveye

• Example: Strong law of large numbers

are part of outcomes that do not happen

- Let ξ be selected at random from the interval S = [0, 1], where we assume that the probability that ξ is in a subinterval of S is equal to the length of the subinterval. Uniform distribution
- For n = 1, 2, ..., we define the following five sequences of random variables:

(1)
$$U_n = \frac{\xi}{n}$$

$$(2) V_n = \xi \left(1 - \frac{1}{n}\right)$$

(3)
$$W_n = \xi e^n$$

(4)
$$Y_n = \cos 2\pi n\xi$$

(4)
$$Y_n = \cos 2\pi n\xi$$

(5) $Z_n = e^{-n(n\xi - 1)}$

- Which of these sequences converge surely? almost surely?
- Identify the limiting random variable.

1. Does converge of goes to O as non 2. noo, Un of 1 Sarely Surely 3. gen, nom, word, doesn't converge Y. Yn = cos (ZITh): doesn't converge because it's oscillating 5. Zn= e-n(ng-1): almost surely, when g=0, Zn=en which diverges, but for all other \$70 it becomes $e^{n^2\beta + n}$ which goes to 0 as $n \to \infty$

Types of Convergence for Random Sequences

Don't know prob law

3 Convergence in the mean-square sense: 4, \$

•
$$\lim_{n\to\infty} E\left[|X_n-X|^2\right]=0.$$

4 Convergence in probability:

• $\lim_{n\to\infty} P[|X_n-X|>\epsilon]=0$ for any $\epsilon>0$.

• Example: Weak law of large numbers.

Types of Convergence Weak Law of Large Numbers Strong Law of Large Nnumbers

Types of Convergence for Random Sequences

5 Convergence in distribution:

- $\lim_{n\to\infty} F_{X_n}(\alpha) = F_X(\alpha)$ at every point α where the cumulative distribution function F is continuous.
- Convergence in distribution $\iff \lim_{n \to \infty} \Phi_{X_n}(s) \to \Phi_X(s)$.
- Example: Central limit theorem

Sequences of Random Variables Central Limit Theorem Stochastic Processes Types of Convergence Weak Law of Large Numbers Strong Law of Large Nnumbers

Propositions

- **Proposition 1:** Convergence in mean-square sense implies convergence in probability, but the converse does not hold.
- **Proposition 2:** Convergence almost everywhere does not imply convergence in the mean-square sense.

Sample Mean Estimation

- Let X be a random variable with mean $E[X] = \mu$ (unknown) and variance σ^2 (finite)
- Let $X_1, X_2, ..., X_n$ be a sequence of n independent repeated measurements of X
- The **sample mean** of this sequence is used to estimate μ :

$$M_n = \frac{1}{n} \sum_{j=1}^n X_j$$

- We will consider $E[M_n]$ and $Var[M_n]$ to assess the effectiveness of M_n as an estimator for μ :
 - (1) A good estimator should give the correct value on average (i.e. $E[M_n] = \mu$ to be an **unbiased estimator**)
 - (2) The estimator should not vary much about the correct value: the mean square error should be small (i.e. $Var[M_n] \to 0$ as $n \to \infty$)

Weak Law of Large Numbers

• Let $X_1, X_2, \ldots, X_n, \ldots$ be a sequence of i.i.d random variables with finite mean $E[X_i] = \mu$ satisfying

$$\lim_{n\to\infty} \frac{1}{n^2} \sum_{i=1}^n \sigma_i^2 = 0 \quad \text{(finite variance)}$$

• Then $M_n = \frac{1}{n} \sum_{i=1}^n X_i \to \mu$ in probability:

$$\lim_{n\to\infty} P\left[|M_n-\mu|>\epsilon\right]=0$$
 for any $\epsilon>0$

• Interpretation: For a large enough (and fixed) number of samples n, the sample mean using n samples will be close to the μ with high probability.

Strong Law of Large Nnumbers

- Let $X_1, X_2, \ldots, X_n, \ldots$ be a sequence of i.i.d random variables with finite mean $E[X_i] = \mu$ and finite variance.
- Then $M_n = \frac{1}{n} \sum_{i=1}^n X_i \to \mu$ almost everywhere:

$$P\left[\lim_{n\to\infty}M_n=\mu\right]=1$$

• Interpretation: Every sequence of sample mean calculations will eventually approach and stay close to μ with probability 1.

Central Limit Theorem

- The central limit theorem explains why Gaussian random variables arise in so many practical applications.
- Let X_1, X_2, \ldots, X_n be a sequence of i.i.d random variables, each with mean μ and variance σ^2 . Let $W_n = X_1 + \cdots + X_n$. The mean and variance of W_n is given by $n\mu$ and $n\sigma^2$. We define the standardized random variable:

$$Z_n = \frac{W_n - n\mu}{\sqrt{\sigma^2 n}} = \frac{X_1 + \dots + X_n - n\mu}{\sqrt{\sigma^2 n}}$$

One can show that

$$E\left[Z_{n}\right] = rac{E\left[X_{1} + \dots + X_{n}\right] - n\mu}{\sqrt{\sigma^{2}n}} = 0$$
 $Var\left[Z_{n}\right] = E\left[Z_{n}^{2}\right] = rac{Var\left[X_{1} + \dots + X_{n}\right]}{\sigma^{2}n} = 1$

• The random variable Z_n is called **standardized** since for all n: $E[Z_n] = 0$, and $Var[Z_n] = 1$.

Central Limit Theorem

Given X_1, X_2, \ldots a sequence of i.i.d random variables with expected value μ and variance σ^2 , the CDF of $Z_n = \frac{\sum_{i=0}^n X_i - n\mu}{\sqrt{\sigma^2 n}}$ converges to the standard normal CDF:

$$\lim_{n\to\infty} F_{Z_n}(z) = \Phi(z)$$

where the standard normal CDF: $\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-u^2/2} du$ is available from the normal tables.

- What exactly does the Central Limit Theorem say? The CDF of Z_n converges to the standard normal CDF (note that this is <u>not</u> a statement about the convergence of PDFs or PMFs)

Central Limit Theorem Approximation

- Let $W_n = X_1 + \cdots + X_n$ be the sum of i.i.d random variables with mean μ and variance σ^2 .
- The Central Limit Theorem **approximation** to the CDF of W_n is:

$$F_{W_n}(w)pprox \Phi(rac{w-n\mu}{\sqrt{n\sigma^2}})$$
 Normakeed version

How to use the Central Limit Theorem?

1 Express $W_n = X_1 + \cdots + X_n$ in terms of Z_n

$$W_n = \sqrt{n\sigma^2}Z_n + n\mu$$

2 The CDF of W_n can now be expressed in terms of the CDF of Z_n

$$F_{W_n}(w) = P[W_n \le w] = P\left[\sqrt{n\sigma^2}Z_n + n\mu \le w\right]$$
$$= F_{Z_n}(\frac{w - n\mu}{\sqrt{n\sigma^2}})$$

3 For large n, treat Z_n as if standard normal (Gaussian (0,1))

$$F_{Z_n}(z) \approx \Phi(z)$$

$$F_{w_n}(w) = F_{Z_n}(\frac{w - n\mu}{\sqrt{n\sigma^2}}) \approx \Phi(\frac{w - n\mu}{\sqrt{n\sigma^2}})$$

Treat W_n as if Gaussian $(n\mu, \sqrt{n\sigma^2})$.

- (a) The CDF of the sum of 5 independent Bernoulli RVs and the CDF of a Gaussian RV of the same mean and variance.
- (b) The CDF of the sum of 25 independent Bernoulli RVs and the CDF of a Gaussian random variable of the same mean and variance.

- (a) The CDF of the sum of 5 independent discrete, uniform RVs from the set $\{0,1,\ldots,9\}$ and the CDF of a Gaussian random variable of the same mean and variance .
- (b) The CDF of the sum of 5 independent exponential RVs of mean 1 and the CDF of a Gaussian random variable of the same mean and variance.

Central Limit Theorem

- The Central limit theorem is very general, the only conditions are:
 - independence of X_i s
 - finite mean and variance
- The distribution of X_i s can be continuous, discrete or mixed
- The Central limit theorem provides a justification for why
 Gaussian random variables occur so often in natural and
 man-made phenomena: Many macroscopic phenomena result
 from the addition of numerous independent microscopic
 elements. Often times we are interested in averages consisting
 of a sum of independent random variables.

Sequences of Random Variables Central Limit Theorem Stochastic Processes

Example

The access times X to get one block of information from a computer disk are independent of one another and are uniformly distributed between 0 and 12 milliseconds. Before performing a certain task, the computer must access 12 different blocks of information from the disk. The total access time for all the information is a random variable A milliseconds.

- 1) What is the expected value of access time X?
- 2) What is the variance of access time X?
- 3) What is the expected value of the total access time A?
- 4) What is the standard deviation of the total access time A?
- 5) Use the central limit theorem to estimate the probability that the total access time exceeds 75 ms.
- 6) Use the central limit theorem to estimate the probability that the total access time is less than 48 ms.

990

1.
$$E[X] = \frac{1}{2}(0+12) = 6 \text{ ms}$$

2. $Var[X] = \frac{1}{12}(12-0)^2 = 12$

$$= 1 - P \left[\overline{z} \right] = 12$$

$$= Q(\frac{1}{4}) = 0.4$$

Sequences of Random Variables Central Limit Theorem Stochastic Processes

Averages
Types of Stochastic Processes

Stochastic Processes

- In some random experiments, the outcome of the experiment is a function of time or space:
 - Temporally varying: temperature of your body, electrical noise at output of equipment
 - Spatially varying: roughness of sand on the ground
 - Both temporally and spatially varying: waves on a pond, atmospheric temperature, ocean temperature

Stochastic Processes

- In some random experiments, the outcome of the experiment is a function of time or space:
 - Temporally varying: temperature of your body, electrical noise at output of equipment
 - Spatially varying: roughness of sand on the ground
 - Both temporally and spatially varying: waves on a pond, atmospheric temperature, ocean temperature
- More examples of time-varying outcomes:
 - The number of customers in a queuing system varies with time
 - The sequence of daily prices of a stock market
 - The sequence of scores in a football game
 - The traffic load in a communication network
 - The radar measurements of the position of an airplane

Sequences of Random Variables Central Limit Theorem Stochastic Processes

Averages Types of Stochastic Processes

Definition

• A random or stochastic process X(t) consists of an experiment with a probability measure $P[\cdot]$ defined on a sample space S and a function that assigns a **time function** X(t,s) to each outcome s in the sample space of the experiment.

Definition

• A random or stochastic process X(t) consists of an experiment with a probability measure $P[\cdot]$ defined on a sample space S and a function that assigns a **time function** X(t,s) to each outcome s in the sample space of the experiment.

Note: Recall the definition of a random variable: A random variable X consists of an experiment with a probability measure $P[\cdot]$, defined on a sample space S and a function that assigns a *real* number to each outcome in S.

 Just as a random variable assigns a number to each outcome s in the sample space, a stochastic process assigns a sample function to each outcome s.

Stochastic Processes

Notation:

- X(t) denotes the stochastic process
- s denotes the particular outcome of the experiment
- t indicates time dependence

Stochastic Processes

Notation:

- X(t) denotes the stochastic process
- s denotes the particular outcome of the experiment
- t indicates time dependence
- The function X(t,s), for fixed s, is called a sample function.
- Set of all possible time functions X(t,s) that can result from an experiment is called the **ensemble** of a stochastic process.

Example: Single toss of a fair coin

• We toss a fair coin once, the outcome of the experiment includes the events $S = \{H, T\}$. We associate the following time functions with the outcome of the experiment:

$$\begin{cases} X(t, H) = \sin t & \text{for } s = H \\ X(t, T) = 5 & \text{for } s = T \end{cases}$$

- The probability for each of the two outcomes is $\frac{1}{2}$.
- The collection of these two functions X(t, H) and X(t, T) and their corresponding probabilities provide a complete description of the stochastic process, where the set $\{\sin t, 5\}$ is the ensemble of the stochastic process.

Stochastic Processes

- A stochastic process is a function of both s and t:
 - If s is fixed at $s = s_0$ and t is variable then $X(t, s_0)$ is a time function.
 - If t is fixed at $t = t_0$ and s is variable then $X(t_0, s)$ is a random variable.
 - If s and t are both fixed at $s=s_0$ and $t=t_0$ then $X(t_0,s_0)$ is a real number.

200

Averages

- Since a stochastic process is a function of two variables t and s, there are two kinds of averages associated with it:
 - **Ensemble Average**: When t is fixed at $t = t_0$, $X(t_0)$ is a random variable and the *ensemble average* in this case corresponds to the expected value of that random variables.
 - **Time Average**: If s is fixed at $s = s_0$, then the sample function $X(t, s_0)$ is a function of time and we can define a time average of the sample function.

Averages

- Since a stochastic process is a function of two variables t and s, there are two kinds of averages associated with it:
 - **Ensemble Average**: When t is fixed at $t = t_0$, $X(t_0)$ is a random variable and the *ensemble average* in this case corresponds to the expected value of that random variables.
 - **Time Average**: If s is fixed at $s = s_0$, then the sample function $X(t, s_0)$ is a function of time and we can define a time average of the sample function.
- Example The noontime temperature at Pittsburgh airport is measured daily for one year in consecutive years: the sequence T(1), T(2),..., T(365) represents the temperature measurements.
 - The ensemble average corresponds to "the average noontime temperature for February 26" over all years for which it's
 - The time average corresponds to "the average noontime temperature for 2017".

Types of Stochastic Processes

- Discrete-Value vs. Continuous-Value Processes

 The stochastic process X(t) is a discrete-value process if the set S of all possible outcomes of X(t) is a countable set; otherwise X(t) is a continuous-value stochastic process.
- Discrete-Time vs. Continuous-Time Processes

 The stochastic process X(t) is a discrete-time process if X(t) is defined for a countable set of time instances I where $t \in I$; otherwise X(t) is a continuous-time stochastic process.

Types of Stochastic Processes

Continuous-Time, Continuous-Value

Continuous-Time, Discrete-Value

Discrete-Time, Continuous-Value

Discrete-Time, Discrete-Value

• Let s be a number selected at random from the interval S = [0,1) and let b_1, b_2, \ldots be the binary expansion of s:

$$s=\sum_{i=1}^{\infty}b_i2^{-i}$$
 where $b_i\in\{0,1\}$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$

Define the discrete-time random process X(n) by

$$X(n) = b_n$$
 $n = 1, 2, \dots$

• The resulting process is a sequence of binary numbers, with X(n) equal to the nth number in the binary expansion.

• Let s be a number selected at random from the interval S=[-1,1]. Define the continuous-time stochastic process X(t) with the following sample functions: Continuous Value

$$X(t,s) = s\cos(2\pi t) - \infty \le t \le \infty$$

• The sample functions of this stochastic process are sinusoidal with amplitude $s \in [-1, 1]$ as shown below in Figure (a).

• Let s be a number selected at random from the interval S = [-1, 1]. Define the continuous-time stochastic process X(t) with the following sample functions:

$$X(t,s) = s\cos(2\pi t) - \infty \le t \le \infty$$

- The sample functions of this stochastic process are sinusoidal with amplitude $s \in [-1, 1]$ as shown below in Figure (a).
- Let s be selected uniformly at random from interval $(-\pi, \pi)$ and define the continuous-time stochastic process Y(t) with Discrete value the following sample functions:

$$Y(t,s) = \cos(2\pi t + s)$$

• The sample function of the stochastic process Y(t) are time-shifted versions of $\cos(2\pi t)$ as shown below in Figure (b).

Example 2 (continued)

