Galois Theory Notes

Made by Leon:) Note: Any reference numbers are to the lecture notes

1 Galois Groups

Definition 1.1.1: Conjugate Numbers

Two complex numbers z and z' are **conjugate over** \mathbb{Q} (exact same def. for \mathbb{R} but we usually use \mathbb{Q}) iff either z=z' or $\overline{z}=z'$. Alternatively, if for all polynomials p with coefficients in \mathbb{Q} ,

$$p(z) = 0 \iff p(z') = 0$$

 (z_1,\ldots,z_k) , and (z_1',\ldots,z_k') k-tuples in $\mathbb C$ are **conjugate over** $\mathbb Q$ if for all polynomials $p(t_1,\ldots,z_k)$ over $\mathbb Q$ in k variables,

$$p(z_1, ..., z_k) = 0 \iff p(z'_1, ..., z'_k) = 0$$

Additionally, if (z_1, \ldots, z_n) conjugate to (z'_1, \ldots, z'_n) , then z_i is conjugate to z'_i for all i

2 Groups, Rings, and Fields

Definition 2.1.1: Group Action

Let G be a group and X a set. An **action** of G on X is a function $G \times X \to X$, written as $(g,x) \mapsto gx$ such that

$$(gh)x = g(hx)$$
 and $1x = x$

for all $g,h\in G$ and $x\in X,$ where 1 is the identity of G

Definition 2.1.7: Faithful Actions

An action of a group G on a set X is **faithful** if for $g, h \in G$,

$$gx = hx$$
 for all $x \in X \implies g = h$

"If two elements of the group do the same, they are the same."

Lemma 2.1.8: Properties of Faithful Actions

For an action of a group G on a set X, the following are equal:

- 1. The action is faithful
- 2. For $g \in G$, if gx = x for all $x \in X$ then g = 1
- 3. The homomorphism $\Sigma: G \to \operatorname{Sym}(X)$ is injective
- 4 ker Σ is trivial

— Lemma 2.1.11: Isomorphisms of Faithful Groups ——

Let G be a group acting faithfully on a set X. then G is isomorphic to the subgroup of $\mathrm{Sym}(X)$, where $\Sigma:G\to\mathrm{Sym}(X)$

im
$$\Sigma = \{\overline{q} \mid q \in G\}$$
, where $\overline{q}: X \to X$ and $\overline{q}(x) = qx$

Definition 2.1.1: Fixed Set

For a group G acting on a set X, let $S\subseteq G$. The **fixed set** of S is

$$Fix(S) = \{ x \in X \mid sx = x \text{ for all } s \in S \}$$

— Lemma 2.1.15: Normal Fixed Sets

Let G be a group acting on a set X, let $S\subseteq G,$ and let $g\in G.$ Then ${\rm Fix}(gSg^{-1})=g\,{\rm Fix}(S).$

Here,
$$gSg^{-1} = \{gsg^{-1} \mid s \in S\}$$
 and $gFix(S) = \{gx \mid x \in Fix(S)\}$

Definition 2.2.1: Ring Homomorphism

Given rings R and S, a **homomorphism** from R to S is a function $\phi: R \to S$ satisfying the following equations for all $r, r' \in R$:

•
$$\phi(r + r') = \phi(r) + \phi(r')$$

•
$$\phi(0) = 0$$
, $\phi(1) = 1$

•
$$\phi(rr') = \phi(r)\phi(r')$$

•
$$\phi(-r) = -\phi(r)$$

A subring of a ring R is a subset $S\subseteq R$ that contains 0 and 1 and is closed under addition, multiplication, and negatives. When S is a subring of R, the inclusion $\iota:S\to R$ is a homomorphism.

Lemma 2.2.3: Intersection of Subrings -

Let R be a ring and let S be any set (perhaps infinite) of subrings of R. Then their intersection $\bigcap_{S \in S} S$ is also a subring of R.

Recall 2.0.1: Ideals and Quotient Rings

Let R be a ring. $I \subseteq R$ is an **ideal**, $I \subseteq R$, if the following hold:

- $I \neq \emptyset$ 2. I is closed under subtraction
- 3. for all $i \in I$ and $r \in R$ we have $ri, ir \in I$

Every ring homomorphism $\phi:R\to S$ has an image im ϕ , which is a subring of S, and a kernel ker ϕ , which is an ideal of R.

Given an ideal $I \subseteq R$, define the quotient ring R/I and canonical homomorphism $\pi_I : R \to R/I$ which is surjective and has kernel I.

Universal Property of Factor Rings: Given a ring S and any homomorphism $\phi:R\to S$ satisfying $\ker \phi\supseteq I$, there is exactly one homomorphism $\phi:R/I\to S$ s.t. this diagram commutes

Recall 2.0.2: Integral Domains and Generators

An integral domain is a ring R s.t. $0_R \neq 1_R$, and for $r, r' \in R$,

$$rr' = 0 \implies r = 0 \text{ or } r' = 0.$$
Generated Ideals

Let Y be a subset of a ring R. The **ideal** $\langle Y \rangle$ **generated by** Y is defined as the intersection of all the ideals of R containing Y.

- Principal ideals are ideals of the form $\langle r \rangle$. A principle ideal domain is an integral domain where every ideal is principal.
- Let r and s be elements of a ring R. r divides s, or $r \mid s$, if $\exists a \in R$ s.t. s = ar. This is equivalent to $s \in \langle r \rangle$, and $\langle s \rangle \supset \langle r \rangle$.
- An element $u \in R$ is a **unit** if it has a multiplicative inverse, i.e. if $\langle u \rangle = R$. The units form a group R^{\times} under multiplication.
- Elements r and s of a ring are **coprime** if for $a \in R$,

$$a \mid r \text{ and } a \mid s \implies a \text{ is a unit}$$

2.2.11) For a ring R and a finite subset $Y = \{r_1, \ldots, r_n\}$. Then

$$\langle Y \rangle = \{ a_1 r_1 + \dots + a_n r_n : a_1, \dots, a_n \in R \}$$

2.2.16) Let R be a principal ideal domain and $r, s \in R$. Then

r and s are coprime $\iff ar + bs = 1$ for some $a, b \in R$

Recall 2.3.A: Fields, Fieldeals, and Subfields

A **field** is a ring K in which $0 \neq 1$ and every nonzero element is a unit. Equivalently, it is a ring such that $K^{\times} = K \setminus \{0\}$. Every field is an integral domain. A field K has exactly two ideals: $\{0\}$ and K. A **subfield** of a field K is a subring that is a field

Example 2.3.2: Rational Expressions

Let K be a field. A **rational expression** over K is a ratio of two polynomials

where f(t), $g(t) \in K[t]$ with $g \neq 0^a$. Two such expressions, f_1/g_1 and f_2/g_2 are regarded as equal if $f_1g_2 = f_2g_1$ in K[t]. i.e. equivalence class. The set of rational expressions over K is called K(t)

°Note that these are **not** functions, e.g. 1/(t-1) is a valid element of K(t), and you don't need to worry about t=1.

Definition 2.3.7: Equaliser

For sets X and Y, and $S \subseteq \{$ functions $X \to Y \}$, the **equalizer** of S is "the part of X where all the functions in S are equal", i.e.

$$Eq(S) = \{x \in X \mid f(x) = g(x) \text{ for all } f, g \in S\}$$

Lemma 2.3.B: Ring Homomorphism Properties

2.3.3) Every (ring) homomorphism between fields is injective.

- **2.3.6**) Let $\phi: K \to L$ be a homomorphism between fields.
 - For a subfield K' of K, the image φK' is a subfield of L
 For a subfield L' of L, the preimage φ⁻¹L' is a subfield of K
- **2.3.8**) Let K and L be fields, and let

 $S \subseteq \{\text{homomorphisms } K \to L\}$

Then Eq(S) is a subfield of K.

Recall 2.3.9: Characteristic

For a ring R, there is a unique homomorphism $\chi: \mathbb{Z} \to R$ whose kernel is an ideal of the PID \mathbb{Z} . Hence $\ker \chi = \langle n \rangle$ for a unique integer $n \geq 0$. n is the **characteristic** of R (char R). So for $m \in \mathbb{Z}$, we have that $m \cdot 1_R = 0$ iff m is a multiple of char R. Or:

$$\operatorname{char} R = \begin{cases} \operatorname{the \ least} \ n > 0 \ \text{s.t.} \ n \cdot 1_R = 0_R, & \text{if such an } n \text{ exists} \\ 0 & \text{otherwise} \end{cases}$$

2.3.11) The characteristic of an integral domain is 0 or prime.

2.3.12) Let $\phi: K \to L$ be a homomorphism of fields. Then $\operatorname{char} K = \operatorname{char} L$.

Recall 2.3.C: Prime Subfield

The **prime subfield** of K is the intersection of all the subfields of K. Concretely, the prime subfield of K is

$$\left\{\frac{m\cdot 1_K}{n\cdot 1_K}\mid m,\, n\in\mathbb{Z} \text{ with } n\cdot 1_K\neq 0\right\}$$

Lemma 2.3.16 ——

Let K be a field.

- If char K=0 then the prime subfield of K is (iso to) \mathbb{Q} .
- If char K = p > 0 then the prime subfield of K is (iso to) \mathbb{F}_p

Lemma 2.3.17: Every finite field has positive characteristic.

Proposition 2.3.19: The Frobenius Map

Lemma 2.3.19: Let p be a prime and 0 < i < p. Then $p \mid \binom{p}{i}$

Let p be a prime number and R a ring of characteristic p. Let the **Frobeinus Map** be the homomorphism $\theta: R \to R \quad r \mapsto r^p$.

- 1. The Frobenius map is a homomorphism.
- 2. If R is a field then θ is injective.
- 3. If R is a finite field then θ is an automorphism of R. In this case we call θ the **Frobenius Automorphism**

— Corollary 2.3.22: Roots by Characteristic –

Let p be a prime number, and K be a field with characteristic p.

- 1. Every element in K has at most one pth root.
- 2. If K is a finite field, every element has exactly one pth root.

Recall 2.3.D: Reducible Elements

An element r of a ring R is $\mathbf{irreducible}$ if r is not 0 or a unit, and if for $a,\,b\in R$.

$$r = ab \implies a \text{ or } b \text{ is an unit}$$

For example, the irreducibles in \mathbb{Z} are $\pm 2, \pm 3, \pm 5, \ldots$ An element of a ring is **reducible** if it is not 0, a unit, or irreducible.

Warning: The 0 and units of a ring are neither reducible nor irreducible, in much the same way that the integers 0 and 1 are neither prime nor compos-

Proposition 2.3.26

Let R be a principal ideal domain and $0 \neq r \in R$. Then

r is irreducible
$$\iff R/\langle r \rangle$$
 is a field

This lets us construct fields from irreducible elements of a PID.

3 Polynomials

Definition 3.1.1: Polynomial Ring

Let R be a ring. A **polynomial over** R is an infinite sequence $(a_0, a_1, a_2, ...)$ of elements of R s.t. $\{i \mid a_i \neq 0\}$ is finite.

The set of polynomials over R, written R[t], forms a ring:

$$(a_0, a_1, \ldots) + (b_0, b_1, \ldots) = (a_0 + b_0, a_1 + b_1, \ldots),$$

 $(a_0, a_1, \ldots) \cdot (b_0, b_1, \ldots) = (c_0, c_1, \ldots),$

where
$$c_k = \sum_{i,j:i+j=k} a_i b_j$$

Polynomials are typically written as f or f(t) interchangeably. A polynomial $f = (a_0, a_1, \dots)$ over R gives rise to a function

$$R \to R$$
, $r \mapsto a_0 + a_1 r + a_2 r^2 + \cdots$.

Proposition 3.1.6: Universal Property of the Polyring

Let R, B be rings. For every homomorphism $\phi: R \to B$ and every $b \in B$, there is exactly one homomorphism $\theta: R[t] \to B$ such that

$$\theta(a) = \phi(a) \text{ for all } a \in R$$
 (3.4)

$$\theta(t) = b \tag{3.5}$$

Definition 3.1.7: Induced Homomorphism

Let $\phi:R\to S$ be a ring homomorphism. We define

$$\phi_*: R[t] \to S[t]$$

as the **induced homomorphism**, which is the unique homomorphism $R[t] \to S[t]$ s.t. $\phi_* = \phi(a)$ for all $a \in R$ and $\phi_*(t) = t$.

Definition 3.1.9: Degree of a Polynomial

The **degree**, $\deg(f)$, of a nonzero polynomial $f(t) = \sum a_i t^i$ is the largest $n \geq 0$ s.t. $a_n \neq 0$. By convention, $\deg(0) = -\infty$, where $-\infty$ is a formal symbol which we give the properties for all $n \in \mathbb{Z}$:

$$\begin{array}{ccc} -\infty < n, & (-\infty) + n = -\infty, & (-\infty) + (-\infty) = -\infty \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$
 Lemma 3.1.11

Let R be an integral domain. Then:

- 1. $\deg(fg) = \deg(f) + \deg(g)$ for all $f, g \in R[t]$
- 2. R[t] is an integral domain.

 $\deg(-\infty)$ implies the (unique) zero polynomial, $\deg(0)$ implies the nonzero constants, $\deg(>0)$ implies the nonconstant polynomials.

Lemma 3.1.14 -

Let K be a field. Then

- 1. The units in K[t] are the nonzero constants
- 2. $f \in K[t]$ is irreducible iff f is nonconstant and cannot be expressed as a product of two nonconstant polynomials.

- Lemma 3.2.1 - Uniqueness of Poly Division -

For a field K and f, $g \in K[t]$ with $g \neq 0$, there is exactly one pair of polynomials q, $r \in K[t]$ s.t. f = qg + r and $\deg(r) < \deg(g)$

Lemma 3.2.A: Facts about Fields

- **3.2.2**) Let K be a field. Then K[t] is a principal ideal domain.
- **3.2.5**) Let K be a field and let $0 \neq f \in K[t]$. Then

f is irreducible $\iff K[t]/\langle f \rangle$ is a field.

- **3.2.6**) Let K be a field and let $f(t) \in K[t]$ be a nonconstant polynomial. Then f(t) is divisible by some irreducible in K[t]
- **3.2.7**) Let K be a field and f, g, $h \in K[t]$. Suppose that f is irreducible and $f \mid gh$. Then $f \mid g$ or $f \mid h$.

Theorem 3.2.8: Unique Determination of Polys

Let K be a field and $0 \neq f \in K[t]$. Then

$$f = a f_1 f_2 \cdots f_n$$

for some $n \geq 0$, $a \in K$, and monic^a irreducibles $f_1, \ldots, f_n \in K[t]$. Moreover, n and a are uniquely determined by f, and f_1, \ldots, f_n are uniquely determined up to reordering.

^aMonic means that the highest order element has coefficient 1.

Lemma 3.2.9: Root Finding

One way to find an irreducible factor of a polynomial $f(t) \in K[t]$ is to find a **root**. Let K be a field, $f(t) \in K[t]$, and $a \in K$. Then

$$f(a) = 0 \iff (t - a) \mid f(t).$$

Lemma 3.2.10: Algebraically Closed Field

A field is **algebraically closed** if every nonconstant polynomial has at least one root.

Let K be an algebraically closed field and $0 \neq f \in K[t]$, then

$$f(t) = c(t - a_1)^{m_1} \cdots (t - a_k)^{m_k},$$

where c is the leading coefficient of f, and a_1,\ldots,a_k are the distinct roots of f in K, and $m_1,\ldots,m_k\geq 1$

Lemma 3.3.1: Degrees and Irreducibility

Let K be a field and $f \in K[t]$.

- 1. If f is constant then f is not irreducible.
- 2. If deg(f) = 1 then f is irreducible.
- 3. If $deg(f) \ge 2$ and f has a root then f is reducible.
- 4. If $deg(f) \in \{2,3\}$ and f has no root then f is irreducible.

Warning: To show a polynomial is irreducible, it's generally not enough to show it has no root. The converse of 3 is false!

Definition 3.3.6: Primitive Polynomial

A polynomial over \mathbb{Z} is **primitive** if its coefficients have no common divisor except for ± 1 .

— Lemma 3.3.7: Existence of Primitives —

Let $f(t) \in \mathbb{Q}[t]$. Then there exists a primitive polynomial $F(t) \in \mathbb{Z}[t]$ and $\alpha \in \mathbb{Q}$ such that $f = \alpha F$.

Remark 3.3.A: Irreducibility over

If the coefficients of a polynomial $f(t) \in \mathbb{Q}[t]$ happen to all be integers, the word "irreducible" could mean two things: irreducibility in the ring $\mathbb{Q}[t]$ or in the ring $\mathbb{Z}[t]$. We say that f is irreducible **over** \mathbb{Q} or \mathbb{Z} to distinguish between the two.

Lemma 3.3.B: Irreducibility Tests

- Lemma 3.3.8: Gauss' Lemma -

- 1. The product of two primitive polynomials over $\mathbb Z$ is primitive.
- 2. If a nonconstant polynomial over $\mathbb Z$ is irreducible over $\mathbb Z,$ it is irreducible over $\mathbb O$

— Lemma 3.3.9: Mod-p Method ——

Let $f(t) = a_0 + a_1 t + \dots + a_n t^n \in \mathbb{Z}[t]$. If there is some prime p s.t. $p \nmid a_n$ and $\overline{f} \in \mathbb{F}_p[t]$ is irreducible, then f is irreducible over \mathbb{Q} .

Warning: This only tells you that a polynomial is *irreducible* over $\mathbb Q$ and says nothing about whether it is *reducible*.

Lemma 3.3.12: Eisenstein's Criterion

Let $f(t)=a_0+\cdots+a_nt^n\in\mathbb{Z}[t],$ with $n\geq 1.$ Suppose there exists a prime p such that

• $p \nmid a_n$ • $p \mid a_i, \forall i \in \{0, \dots, n-1\}$ • $p^2 \nmid a_0$

Then f is irreducible over \mathbb{Q} .

4 Field Extensions

Definition 4.1.1: Field Extension

It is sometimes easier to think of a subset as an injection. Given a set A and a subset $B\subseteq A,$ define an **inclusion** function

$$\iota: B \to A$$
 defined by $\iota(b) = b$ for all $b \in B$.

Let K be a field. An **extension** of K is a field M together with a homomorphism $\iota: K \to M$. We write M: K to mean that M is an extension of K, not bothering to mention ι .

Example 4.1.2: Examples of Field Extensions

$$\iota_1: \mathbb{Q} \to \mathbb{R}, \quad \iota_2: \mathbb{R} \to \mathbb{C}, \quad \iota_3: \mathbb{Q} \to \mathbb{C}$$

$$\iota_4: Q \to K$$
, where $K = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ (we call this $\mathbb{Q}(\sqrt{2})$)

Definition 4.1.4: Generated Subfields

For a field K, and X a subset of K, the subfield of K generated by X is the intersection of all subfields of K containing X. Let F be the subfield of K generated by X. F contains X, and F is also the smallest subfield of K containing X (i.e. any subfield of K containing X contains F)

- Definition 4.1.8: Adjoined Subfields -

For a field extension M:K, and $Y\subseteq M$, we write K(Y) for the subfield of M generated by $K\cup Y$. We call it the subfield of M generated by Y over K, or K with Y adjoined.

K(Y) is the smallest subfield of M containing both K, Y. If Y is a finite set $\{\alpha_1, \ldots, \alpha_n\}$, write $K(\{\alpha_1, \ldots, \alpha_n\})$ as $K(\alpha_1, \ldots, \alpha_n)$

Definition 4.2.1: Algebraic Numbers

A complex number $\alpha \in \mathbb{C}$ is said to be "algebraic" if

$$a_0 + a_1 \alpha + \dots + a_n a^n = 0$$

for some rational numbers a_i , not all zero

Algebraic Numbers for Arbitrary Fields ——For a field extension M: K, and $\alpha \in M$, α is algebraic over K if $\exists f \in K[t] \text{ s.t. } f(\alpha) = 0 \text{ but } f \neq 0$, transcendental otherwise.

Lemma 4.2.6: Annihilators

Let M: K be a field extension and $\alpha \in M$. An **annihilating polynomial** of α is a polynomial $f \in K[t]$ such that $f(\alpha) = 0$. So, α is algebraic iff it has some nonzero annihilating polynomial.

For a field extension M:K and $\alpha\in M,$ there is a polynomial $m(t)\in K[t]$ such that

$$\langle m \rangle = \{\text{annihilating polynomials of } \alpha \text{ over } K\}.$$
 (4.2)

If α is transcendental over K then m=0. If α is algebraic over K then there is a unique monic polynomial m satisfying (4.2).

Definition 4.2.7: Minimal Polynomial

Let M:K be a field extension and let $\alpha\in M$ be algebraic over K. The **minimal polynomial** of α is the unique monic polynomial satisfying (4.2). Warning: This isn't defined over transcendentals, therefore some elements of M might not have a minimal polynomial.

Lemma 4.2.10: Minimal Polynomial Conditions Let M: K be a field extension, let $\alpha \in M$ be algebraic over K and let $m \in K[t]$ be a monic polynomial. The following are equivalent:

- 1. m is the minimal polynomial of α over K
- 2. $m(\alpha) = 0$, $m \mid f$ for all annihilating polynomials f of α over K
- 3. $m(\alpha) = 0$ and $\deg(m) \le \deg(f)$ for all nonzero annihilating polynomials. "monic annihilating polynomial of least degree."
- 4. $m(\alpha) = 0$ and m is irreducible over K.

Definition 4.3.1

Let K be a field.

- 1. Let $m \in K[t]$ be monic and irreducible. Write $\alpha \in K[t]/\langle m \rangle$ for the image of t under the canonical homomorphism $K[t] \to K[t]/\langle m \rangle$. Then α has minimal polynomial m over K, and $K[t]/\langle m \rangle$ is generated by α over K.
- 2. The element t of the field K(t) of rational expressions over K is transcendental over K, and K(t) is generated by t over K

Definition 4.3.3: Homomorphism over Fields

For a field K, and let $\iota : K \to M$, $\iota': K \to M'$ be extensions of K. A homomorphism $\phi: M \to M'$ is called a **homo**morphism over K if the following diagram commutes:

Lemma 4.3.6: Uniqueness of Field Homomorphisms

Let M and M' be extensions of a field K, and let $\phi, \psi: M \to M'$ be homomorphisms over K. Let Y be a subset of M such that M = K(Y). If $\phi(\alpha) = \psi(\alpha)$ for all $\alpha \in Y$ then $\phi = \psi$.

Proposition 4.3.7: Universal Props of $K[t]/\langle m \rangle$, K(t)

– Universal Property of $K[t]/\langle m \rangle$ –

Let K be a field, and:

- $m \in K[t]$ monic and irreducible
- L: K an extension of K
- $\beta \in L$ with minimal polynomial m
- Write α for the image of t under the canonical homomorphism $K[t] \rightarrow$ $K[t]/\langle m \rangle$.
- · Then there is exactly one homomorphism $\phi: K[t]/\langle m \rangle \to L$ over K such that $\phi(a) = \beta$.

— Universal Property of K(t) ——

For L:K an extension of K, and transcendental $\beta \in L$, there is exactly one homomorphism $\phi: K(t) \to L$ over K s.t. $\phi(t) = \beta$.

Corollary 4.3.11: Isomorphisms and Uniqueness

Let M and M' be extensions of a field K. A homomorphism $\phi: M \to M'$ is an **isomorphism over** K if it is a homomorphism over K and an isomorphism of fields. If such a ϕ exists, we say that M and M' are isomorphic over K.

Let K be a field.

- 1. Let the conditions from 4.3.7 apply, alongside the condition that $L = K(\beta)$. Then there is exactly one isomorphism $\phi: K[t]/\langle m \rangle \to L$ over K such that $\phi(\alpha) = \beta$.
- 2. Let L: K be an extension of K, and let $\beta \in L$ be transcendental with $L = K(\beta)$. Then there is exactly one isomorphism $\phi: K(t) \to L$ over K such that $\phi(t) = \beta$.

Definition 4.3.13: Simple Extension

A field extension M: K is **simple** if $\exists \alpha \in M$ s.t. $M = K(\alpha)$.

Theorem 4.3.16: Classification of Simple Extensions

Let K be a field.

- 1. Let $m \in K[t]$ be a monic irreducible polynomial. Then there exists an extension M: K and an algebraic element $\alpha \in M$ such that $M = K(\alpha)$ and α has minimal polynomial m over K. Moreover, if (M, α) and (M', α') are two such pairs, there is exactly one isomorphism $\phi: M \to M'$ over K s.t. $\phi(\alpha) = \alpha'$
- 2. There exists an extension M:K and a transcendental element $\alpha\in M$ such that $M = K(\alpha)$. Moreover, if (M, α) and (M', α') are two such pairs, there is exactly one isomorphism $\phi: M \to M'$ over K such that $\phi(\alpha) = \alpha'$.

Definition 5.1.1: Degree of a Field Extension

Let M:K be a field extension. Then M can be seen as a vector space over K. When we view M as a vector space over K rather than an extension, we forget how to multiply together elements of M that aren't in K.

The **degree** [M:K] of a field extension M:K is the dimension of M as a vector space over K. If M is an *infinite-dimensional* vector space over K, we write $[M:K]=\infty$, where ∞ is a formal symbol which we give the prop-

$$n < \infty, \quad n \cdot \infty = \infty \ (n \ge 1), \quad \infty \cdot \infty = \infty$$

for integers n. An extension M:K is **finite** if $[M:K]<\infty$.

The degree [K:K] of K over itself is 1, not 0. Degrees of extensions are

Theorem 5.1.5: Basis of Field Extensions

Let $K(\alpha): K$ be a simple extension.

1. Suppose that α is algebraic over K. Write $m \in K[t]$ for the minimal polynomial of α and $n = \deg(m)$. Then

$$1, \alpha, \dots, \alpha^{n-1}$$

is a basis of $K(\alpha)$ over K. In particular, $[K(\alpha):K] = \deg(m)$ 2. Suppose that α is transcendental over K. Then $1, \alpha, \alpha^2, \ldots$ are linearly independent over K. In particular, $[K(\alpha):K]=\infty$

Theorem 5.1.17: Tower Law

For field extensions M:L:K and (potentially infinite) sets I, J,

- 1. If $(\alpha_i)_{i \in I}$ is a basis of L over K and $(\beta_i)_{i \in J}$ is a basis of M over L, then $(\alpha_i \beta_j)_{(i,j) \in I \times J}$ is a basis of M over K.
- 2. M: K is finite $\iff M: L$ and L: K are finite.
- 3. [M:K] = [M:L][L:K]

A family $(\alpha_i)_{i\in I}$ of elements of a field is **finitely supported** if the set $\{i \in I \mid \alpha_i \neq 0\}$ is finite.

Corollary 5.1.A: Degree Results

— Corollary 5.1.10: Degree means Algebraic —

Let M: K be a field extension and $\alpha \in M$, the **degree** of α over K is $[K(\alpha):K]$. We write it as $\deg_K(\alpha)$. Then

 $\deg_K(\alpha) < \infty \iff \alpha \text{ is algebraic over } K.$

If α is algebraic over K then the degree of α over K is the degree of the minimal polynomial of α over K.

— Corollary 5.1.12: Size of Nested Extension —

Let M:L:K be a field extension and $\beta\in M$. Then

$$[L(\beta):L] < [K(\beta):K]$$

— Corollary 5.1.14: Polynomial Form of Extensions —

Let M: K be an extension and $\alpha_1, \ldots, \alpha_n \in M$, with α_i algebraic over Kof degree d_i . Then every element $\alpha \in K(\alpha_1, \ldots, \alpha_n)$ can be expressed as a polynomial in $\alpha_1, \ldots, \alpha_n$ over K. More exactly,

$$\alpha = \sum_{r_1, \dots, r} c_{r_1, \dots, r_n} a_1^{r_1} \cdots a_n^{r_n}$$

for some $c_{r_1,\ldots,r_n} \in K$, where r_i ranges over $0,\ldots,d_i-1$.

— Corollary 5.1.19: Dividing Extensions —

Let M:L':L:K be field extensions. If M:K is finite, then [L':L] di- $\frac{\text{vides } [M:K]}{\text{Corollary 5.1.21: Triangle Tower Inequality }}$

Let M: K be a field extension and $\alpha_1, \ldots, \alpha_n \in M$. Then

 $[K(\alpha_1,\ldots,\alpha_n):K] \leq [K(\alpha_1):K]\cdots[K(\alpha_n):K].$

Definition 5.2.1: Finitely Generated Extensions

A field extension M: K is **finitely generated** if M = K(Y) for some finite subset $Y \subseteq M$.

- Definition 5.2.2: Algebraic Extension -

A field ext. M:K is algebraic if all elements of M are algebraic over K

Proposition 5.2.4: Algebraic and Finiteness

The following conditions on a field extension M:K are equivalent:

- 1. *M* : *K* is finite
- 2. M:K is finitely generated and algebraic
- 3. $M = K(\alpha_1, \dots, \alpha_n)$ for some finite set $\{\alpha_1, \dots, \alpha_n\}$ of elements of M algebraic over K.

— Corollary 5.2.6: Variation for Simple Extensions —

Let $K(\alpha)$: K be a simple extension. The following are equivalent:

- 1. $K(\alpha): K$ is finite
- 2. $K(\alpha): K$ is algebraic

- 3. α is algebraic over K.
- Corollary 5.2.7: $\overline{\mathbb{Q}}$ is a subfield of \mathbb{C} .

Def 5.3.3: Ruler and Compass Constructions

A point C in the plane is **immediately constructible** from Σ if it is a point of intersection between lines or circles. C is **constructible** from Σ if there is a finite sequence $C_1, \ldots, C_n = C$ of points such that C_i is immediately constructible from $\Sigma \cup \{C_1, \ldots, C_{i-1}\}$ for each i.

For a subfield $K \subseteq \mathbb{R}$, an extension $K : \mathbb{Q}$ is **iterated quadratic** if there is some finite sequence of subfields

$$\mathbb{Q} = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n = K$$

such that $[K_i : K_{i-1}] = 2$ for all $i \in \{1, ..., n\}$

Let L and L' be subfields of a field M. The **compositum** LL' of L and L' is the subfield of M generated by $L \cup L'$. That is, LL' is the smallest subfield of M containing both L and L'.

Lemma 5.3.B: Ruler and Compass Results

Lemma 5.3.6: For a field extension M: K and L, L' subfields of M containing K, if [L:K] = 2 then $[LL':L'] \in \{1,2\}$.

Lemma 5.3.8: Let K and L be subfields of \mathbb{R} s.t. the extensions $K:\mathbb{Q}$ and $L:\mathbb{Q}$ are iterated quadratic. Then there is some subfield M of \mathbb{R} s.t. the $M:\mathbb{Q}$ is iterated quadratic and $K, L\subseteq M$.

— Proposition 5.3.9: Iterated Quadratics from Points — Let $(x,y) \in \mathbb{R}^2$. If (x,y) is constructable from $\{(0,0),(1,0)\}$ then there is an iterated quadratic extension of \mathbb{Q} containing x and y.

— Theorem 5.3.10: Quadratics and Constructability — Let $(x,y) \in \mathbb{R}^2$. If (x,y) is constructible from $\{(0,0),(1,0)\}$ then x,y are algebraic over \mathbb{Q} , and their degrees over \mathbb{Q} are powers of 2.

Definition 6.1.1: Extending Homomorphism

Let $\iota: K \to M$ and $\iota: K' \to M'$ be field extensions. Let $\psi: K \to K'$ be a homomorphism of fields. A homomorphism $\phi: M \to M'$ extends ψ if the square commutes $(\phi \circ \iota = \iota' \circ \psi)$.

Usually we view K as a subset of M, and K' as a subset of M', with inclusions ι and ι' . In this case, for ϕ to extend ψ means that

$$\pi(a) = \psi(a)$$
 for all $a \in K$

Lemma 6.1.3: Extending Isomorphisms

Induced Homomorphism 2: Let M: K and M': K' be field extensions. let $\phi: K \to K'$ be a homomorphism, and let $\phi: M \to M'$ be a homomorphism extending ψ . Let $\alpha \in M$ and $f(t) \in K[t]$. Then

$$f(\alpha) = 0 \iff (\psi_* f)(\phi(\alpha)) = 0.$$

- Prop 6.1.6: Extending Isomorphisms -

Let $\psi: K \to K'$ be an isomorphism of fields, $K(\alpha): K$ a simple extension where α has minimal polynomial m over K, and $K'(\alpha'):K'$ a simple extension where α' has minimal polynomial $\psi_* m$ over K'.

Then there is exactly one isomorphism $\phi: K(\alpha) \to K'(\alpha')$ that extends ψ and satisfies $\phi(\alpha) = \alpha'$. (Dotted arrow: a map whose existence is part of the conclusion.)

$$K(\alpha) \xrightarrow{\overset{\tau}{\cong}} K'(\alpha')$$

$$\uparrow \qquad \qquad \uparrow$$

$$K' \xrightarrow{\frac{\cong}{\imath b}} K'$$

Definition 6.2.2: Splitting Polynomial

Let f be a polynomial over a field M. Then f splits in M if

$$f(t) = \beta(t - \alpha_1) \cdots (t - a_n)$$

for some $n \neq 0$ and $\beta, \alpha_1, \ldots, \alpha_n \in M$. Equivalently, f splits in M if all its irreducible factors in M[t] are linear.

— Definition 6.2.6: Splitting Field —

Let f be a nonzero polynomial over a field K. A splitting field of f over K is an extension M of K such that:

- 1. f splits in M
- 2. $M = K(\alpha_1, \ldots, \alpha_n)$, where $\alpha_1, \ldots, \alpha_n$ are the roots of f in M. "If L is a subfield of M containing K, and f splits in L, then L = M"

Lemma 6.2.A: Splitting Field Results

Lemma 6.2.10: Let $f \neq 0$ be a polynomial over a field K. Then there exists a splitting field M of f over K s.t. $[M:K] \leq \deg(f)!$.

— Prop 6.2.11: Splitting Fields and Isomorphisms –

Let $\psi:K\to K'$ be an isomorphism of fields, $0\neq f\in K[t],\ M$ be a splitting field of f over K, and M' be a splitting field of ψ_*f over K'. Then

- 1. There exists an isomorphism $\phi: M \to M'$ extending ψ .
- 2. There are at most [M:K] such extensions ϕ .

We often use this result when K' = K and $\psi = \mathrm{id}_K$.

— Theorem 6.2.13: Isos and Autos of a Splitting Field —

Let f be a nonzero polynomial over a field K. Then

- 1. There exists a splitting field of f over K
- 2. Any two splitting fields of f are isomorphic over K
- 3. When M is a splitting field of f over K,

num. of automorphisms of M over $K \leq [M:K] \leq \deg(f)$

Lemma 6.2.14: Splitting Fields and Extensions -

- 1. Let M: S: K be field extensions, $0 \neq f \in K[t]$, and $Y \subseteq M$. Suppose that S is the splitting field of f over K. Then S(Y) is the splitting field of f over K(Y)
- 2. Let $f \neq 0$ be a polynomial over a field K, and let L be a subfield of $SF_K(f)$ containing K (so that $SF_K(f):L:K$). Then $SF_K(f)$ is the splitting field of f over L.

Definition 6.3.1: Galois Group of an Extension

The Galois Group $\operatorname{Gal}(M:K)$ of a field extension M:K is the group of automorphisms of M over K, with composition as the group operation. In other words, an element of $\operatorname{Gal}(M:K)$ is an isomorphism $\theta:M\to M$ such that $\theta(a)=a$ for all $a\in K$.

polynomial \longmapsto field extension \longmapsto group

Via Theoerem 6.2.13.

$$|\operatorname{Gal}_K(f)| \le |\operatorname{SF}_K(f) : 0K| \le \operatorname{deg}(f)!$$

In particular, $Gal_K(f)$ is always a finite group.

Lemma 6.3.7: Restriction of Actions on GGs

For a nonzero polynom F over a field K, the action of $\operatorname{Gal}_K(f)$ on $\operatorname{SF}_K(f)$ restricts to an action on the set of roots of f in $\operatorname{SF}_K(f)$.

Terminology: Given a group G acting on a set X and a subset $A \subseteq X$, the action **restricts** to A if $ga \in A$, $\forall g \in G$ and $a \in A$.

———— Lemma 6.3.8: Galois Actions are Faithful —

Let f be a nonzero polynomial over a field K. Then the action of $\mathrm{Gal}_K(f)$ on the roots of f is **faithful**.

Definition 6.3.9: Conjugacy for real this time

Let M: K be a field extension, let $k \geq 0$, and let $(\alpha_1, \ldots, \alpha_k)$ and $(\alpha'_1, \ldots, \alpha'_k)$ be k-tuples of elements of M. Then $(\alpha_1, \ldots, \alpha_k)$ and $(\alpha'_1, \ldots, \alpha'_k)$ are **conjugate** over K if for all $p \in K[t_1, \ldots, t_k]$,

$$p(\alpha_1, \dots, \alpha_k) = 0 \iff p(\alpha'_1, \dots, \alpha'_k) = 0$$

If k = 1 we omit the brackets and say α and α' are conjugate.

Remark 6.3.B: What The Galois Group Actually Means

An element of $\operatorname{Gal}_K(f)$ is completely determined by how it permutes the roots of f. So you can view elements of $\operatorname{Gal}_K(f)$ as being permutations of the roots. However, not every permutation of the roots belongs to the Galois group. Suppose $f \in K[t]$ has distinct roots $\alpha_1, \ldots, \alpha_k$ in its splitting field. For each $\theta \in \operatorname{Gal}_K(f)$ there is a permutation $\sigma_\theta \in S_k$ defined by

$$\theta(\alpha_i) = \alpha_{\sigma_{\theta}(i)}$$
 for $i \in \{1, \dots, k\}$

Then $\operatorname{Gal}_K(f)$ is isomorphic to the subgroup $\{\sigma_\theta \mid \theta \in \operatorname{Gal}_K(f)\}$ of S_K . The isomorphism is given by $\theta \mapsto \sigma_\theta$.

Proposition 6.3.10: Permutation Definition of Galois

Let f be a nonzero polynomial over a field K with distinct roots α_1,\dots,α_k in ${\rm SF}_k(f).$ Then

$$\{\sigma \in S_k \mid (\alpha_1, \dots, \alpha_k) \text{ and } (\alpha_{\sigma(1)}, \dots, \alpha_{\sigma(k)}) \text{ are conj. over } K\}$$

is a subgroup of S_k isomorphic to $Gal_K(f)$

Corollary 6.3.12: Galois Groups and Extensions —

Let L:K be a field extension and $0\neq f\in K[t].$ Then $\mathrm{Gal}_L(f)$ is isomorphic to a subgroup of $\mathrm{Gal}_K(f).$

———— Corollary 6.3.14: Division of Roots in Galois —

Let f be a nonzero polynomial over a field K, with k distinct roots in $SF_K(f)$. Then $|Gal_K(f)|$ divides k!.

Definition 7.1.1: Normal Extensions

An algebraic field extension M:K is **normal** if for all $\alpha \in M$, the minimal polynomial of α splits in M. We also say M is **normal over** K to mean that M:K is normal.

———— Lemma 7.1.2 —

Let M:K be an algebraic extension. Then M:K is normal iff every irreducible polynomial over K either has no roots in M or splits in M. Put another way, normality means that any irreducible polynomial over K with at least one root in M has all its roots in M.

Thm 7.1.5: Splitting and Normality

Let M: K be a field extension. Then $M = SF_K(f)$ for some nonzero $f \in K[t]$

 $\iff M: K \text{ is finite and normal}$

— Corollary 7.1.6 —

Let M:L:K be field extensions. If M:K is finite and normal then so is M:L.

Warning: This does not follow that L: K is normal

Thm 7.1.5: Maps

Proposition 7.1.9: Conjugacy and Orbits

Let M: K be a finite normal extension and $\alpha, \alpha' \in M$. Then

 α and α' conjugate over $K \iff \alpha' = \phi(\alpha)$ for some $\phi \in \operatorname{Gal}(M:K)$

- Corollary 7.1.11: Transitivity of Actions -

Let f be an irreducible polynomial over a field K. Then the action of $\operatorname{Gal}_K(f)$ on the roots of f in $\operatorname{SF}_K(f)$ is transitive, i.e. for all $x,x'\in X$ there exists $g\in G$ such that gx=x'

Theorem 7.1.15: Quotients of Normal Extensions

Let M:L:K be field extensions with M:K finite and normal.

- 1. L: K is a normal extension $\iff \phi L = L$ for all $\phi \in Gal(M: K)$
- 2. If L:K is a normal extension then $\operatorname{Gal}(M:L)$ is a normal subgroup of $\operatorname{Gal}(M:K)$ and

$$\frac{\operatorname{Gal}(M:K)}{\operatorname{Gal}(M:L)} \cong \operatorname{Gal}(L:K)$$

Definition 7.2.2: Separable Polynomial

For a polynomial $f(t) \in K[t]$ and a root α of f in some extension M of K, we say that α is a **repeated** root if $(t-a)^2 \mid f(t)$ in M[t].

An irreducible polynomial over a field is **separable** if it has no repeated roots in its splitting field. Equivalently, an irreducible polynomial $f \in K[t]$ is separable if it splits into distinct linear factors in $SF_K(f)$:

$$f(t) = a(t - \alpha_1) \cdots (t - a_n)$$

for some $a \in K$ and $distinct \alpha_1, \ldots, \alpha_n \in \mathrm{SF}_K(f)$. Put another way, an irreducible f is separable iff it has $\deg(f)$ distinct roots in its splitting field. Warning: this only works for $irreducible\ polynomials$.

Definition 7.2.6: Formal Derivative

For a field K and $f(t) = \sum_{i=0}^{n} i_i t_n^i \in K[t]$, the **formal derivative** of f is

$$(Df)(t) = \sum_{i=1} i a_i t^{i-1} \in K[t]$$

- Lemma 7.2.7: Basic Derivative Rules -

Let K be a field. Then

 $D(f+g)=Df+Dg,\quad D(fg)=f\cdot Dg+Df\cdot g,\quad Da=0$ for all $f,\,g\in K[t]$ and $\alpha\in K.$

Lemma 7.2.9: Separability Results

— Lemma 7.2.9: Repeated Roots ——

Let f be a nonzero polynomial over a field K. The following are equivalent:

- 1. f has a repeated root in $SF_K(f)$
- 2. f and Df have a common root in $SF_K(f)$
- 3. f and Df have a nonconstant common factor in K[t]

— Lemma 7.2.10: Inseparability of Zero –

- 1. If char K = 0, every irreducible polynomial over K is separable.
- 2. If char K=p>0, an irreducible polynomial $f\in K[t]$ is inseparable iff $f(t)=b_0+b_1t^p+\cdots+b_rt^{rp}$

for some $b_0, \ldots, b_r \in K$

i.e. the only irreducible inseparable polynomials are ones in t^p in char p.

Definition 7.2.13: Separable Elements

Let M:K be an algebraic extension. An element of M is **separable** over K if its miminal polynomial over K is separable. The extension M:K is **separable** if every element of M is separable over K.

Lemma 7.2.16: Let M:L:K be field extensions, with M:K algebraic. If M:K is separable then so are M:L and L:K.

—— Proposition 7.2.17: Splitting Field Isomorphisms —

Let $\phi: K \to K'$ be an isomorphism of fields, let $0 \neq f \in K[t]$, let M be a splitting field of f over K, and let M' be a splitting field of $\phi_* f$ over K'. Suppose that the extension M': K' is separable. Then there are exactly [M:K] isomorphisms $\phi: M \to M'$ extending ψ .

———— Theorem 7.2.18: Size of Galois Extensions —

|Gal(M:K)| = [M:K] for every finite normal separable extension M:K

Lemma 7.3.1: Fixed Fields

 $\operatorname{Aut}(M)$ is the group of automorphisms of a field M, which acts naturally on M. Given $S\subseteq\operatorname{Aut}(M)$, $\operatorname{Fix}(S)$ is the set of elements of M fixed by S.

Fix(S) is a subfield of M, for any $S \subseteq Aut(M)$.

_____ Thm 7.3.3: Size of Fixed Field _____ Let M be a field and H a finite subgroup of Aut(M). Then

[M: Fix(H)] < |H|. This is actually an equality.

— Fixed Field Normal Extensions

Let M: K be a finite normal extension and H a normal subgroup of Gal(M:K). Then Fix(H) is a normal extension of K.

5 The Fundamental Theorem of Galois Theory!

Remark 8.1.A: Intermediate Field

Let M: K be a field extension, with K viewed as a subfield of M. An **intermediate field** of M: K is a subfield of M containing K.

Write

 $\mathcal{F} = \{\text{intermediate fields of } M : K\}$

For $L\in \mathscr{F},$ we draw diagrams like this:

We also write

 $\mathscr{G} = \{ \text{subgroups of } \operatorname{Gal}(M:K) \}$

For $H \in \mathscr{G}$, we draw diagrams like this:

with the bigger fields higher up.

with the bigger groups lower down.

For $L \in \mathscr{F}$, the group $\operatorname{Gal}(M:K)$ consists of all automorphisms ϕ of M that fix each element of L. Since $K \subseteq L$, any such ϕ certainly fixes each element of K. Hence $\operatorname{Gal}(M:L)$ is a subgroup of $\operatorname{Gal}(M:K)$. this process defines a function

$$Gal(M:-): \mathscr{F} \mapsto \mathscr{G}$$

 $L \mapsto Gal(M:L)$

In the expression Gal(M:-), the symbol - should be seen as a blank space into which arguments can be inserted.

In the other direction, for $H \in \mathcal{G}$, the subfield $\operatorname{Fix}(H)$ of M contains K. Indeed $H \subseteq \operatorname{Gal}(M:K)$, and by definition, every element of $\operatorname{Gal}(M:K)$ fixes every element of K, so $\operatorname{Fix}(H) \supseteq K$. Hence $\operatorname{Fix}(H)$ is an intermediate field of M:K. This process defines a function

$$Fix : \mathscr{G} \mapsto \mathscr{F}$$
 $H \mapsto Fix(H)$

We have now defined functions

$$\mathscr{F} \xrightarrow{\operatorname{Gal}(M:-)} \mathscr{G}$$

Lemma 8.1.2: Ordering of Intermediates

Let M:K be a field extension, and define \mathscr{F} and \mathscr{G} as above.

Remark 8.1.B: Galois Correspondence

The functions

$$\mathscr{F} \xrightarrow{\operatorname{Gal}(M:-)} \mathscr{G}$$

are called the **Galois correspondence** for M:K. This terminology is mostly used in the case where the functions are **mutually inverse**, i.e.

$$L = Fix(Gal(M : L)), \quad H = Gal(M : Fix(H))$$

for all $L \in \mathscr{F}$ and $H \in \mathscr{G}$. In both cases, the LHS is a subset of the RHS. (But they are not always equal.) If $\operatorname{Gal}(M:-)$ and Fix are mutually inverse then they set up a one-to-one correspondence between \mathscr{F} and \mathscr{G} .

Thm 8.2.1: The Fundamental Theorem of Galois Theory

Let M:K be a finite normal separable extension. Write

$$\begin{split} \mathscr{F} &= \{ \text{intermediate fields of } M:K \} \\ \mathscr{G} &= \{ \text{subgroups of } \operatorname{Gal}(M:K) \} \end{split}$$

- 1. The functions $\mathscr{F} \xleftarrow{\operatorname{Gal}(M:-)}_{\operatorname{Fix}} \mathscr{G}$ are mutually inverse.
- 2. $|\mathrm{Gal}(M:L)|=[M:L]$ for all $L\in\mathscr{F}$ and $[M:\mathrm{Fix}(H)]=|H|$ for all $H\in\mathscr{G}$
- 3. Let $L \in \mathscr{F}$. Then

L is a normal extension of $K \iff$

Gal(M:L) is a normal subgroup of Gal(M:K).

and in that case,

$$\frac{\operatorname{Gal}(M:K)}{\operatorname{Gal}(M:L)} \cong \operatorname{Gal}(L:K)$$

Remark 8.2.3: Useful Results

- 1. Lemmas 6.3.7 and 6.3.8 say that $Gal_K(f)$ acts faithfully on the set of roots of f in $SF_K(f)$. i.e. an element of the Galois group can be understood as a permutation of the roots
- 2. Corollary 6.3.14 states that $|Gal_K(f)|$ divides k!, where k is the number of distinct foots of f in its splitting field.
- 3. Let α and β be roots of f in $\mathrm{SF}_K(f)$. Then there is an element of the Galois group mapping α to β iff α and β are conjugate over K (have the same minimal polynomial). This follows from Prop 7.1.9.
- 4. In particular, when f is irreducible, the action of the Galois group on the roots is transitive (Corollary 7.1.11).

Corollary 8.2.7: Automorphisms with FTGT

Let M:K be a finite normal separable extension. Then for every $\alpha\in M\backslash K$, there is some automorphism ϕ of M over K such that $\phi(\alpha)\neq\alpha$

Definition 9.1.2: Radical Number

Let $\mathbb{O}^{\mathrm{rad}}$ be the smallest subfield of \mathbb{C} such that for $\alpha \in \mathbb{C}$.

$$\alpha^n \in \mathbb{Q}^{\mathrm{rad}}$$
 for some $n > 1 \implies \alpha \in \mathbb{Q}^{\mathrm{rad}}$.

A complex number is $\mathbf{radical}$ if it belongs to $\mathbb{Q}^{\mathrm{rad}}$

— Definition 9.1.5: Solvability by Radicals —

A nonzero polynomial over $\mathbb Q$ is $\mathbf{solvable}$ by $\mathbf{radicals}$ if all of its complex roots are radical.

Lemma 9.1.6: Abelian Groups

Lemma 9.1.6: For all $n \geq 1$, the group $Gal_{\mathbb{Q}}(t^n - 1)$ is abelian.

Lemma 9.1.8: Let K be a field and $n \ge 1$. Suppose that $t^n - 1$ splits in K. Then $\operatorname{Gal}_K(t^n - a)$ is abelian for all $a \in K$.

Definition 9.2.1: Solvable Extension

Roughly, the diagram of solvable polynomials is

solvable polynomial \longmapsto solvable extension \longmapsto solvable group

In other words, we define "solvable extension" in such a way that

- 1. If $f \in \mathbb{Q}[t]$ is a polynomial solvable by radicals then $SF_{\mathbb{Q}}(f) : \mathbb{Q}$ is a solvable extension.
- 2. If M:K is a solvable extension then Gal(M:K) is a solvable group. Hence if f is solvable by radicals then $Gal_0(f)$ is solvable.

Let M: K be a finite normal separable extension. Then M: K is **solvable** (or M is **solvable over** K) if there exist r > 0 and intermediate fields

$$K = L_0 \subset L_1 \subset \cdots \subset L_r = M$$

s.t. $L_i: L_{i-1}$ is normal and $Gal(L_i: L_{i-1})$ is abelian for each $i \in \{1, ..., r\}$.

Lemma 9.2.A: Solvable Results

— Lemma 9.2.4: Solvable Galois and Extensions —

Let M:K be a finite normal separable extension. Then

$$M: K$$
 is solvable \iff $\operatorname{Gal}(M:K)$ is solvable

— Lemma 9.2.6: Finite Normal Results —

Let M:K be a field extension and let L and L' be intermediate fields.

- 1. If L: K and L': K are finite and normal, then so is LL': K.
- 2. If L: K is finite and normal, then so is LL': L'.
- 3. If K: K is finite, normal with abelian Galois group, then so is LL': L'

— Lemma 9.2.7: Iterated Subfields —

Let L and M be subfields of $\mathbb C$ such that the extensions $L:\mathbb Q$ and $M:\mathbb Q$ are finite, normal, and solvable. Then there is some subfield M of $\mathbb C$ such that $N:\mathbb Q$ is finite, normal, and solvable and $L,\ M\subseteq N$.

------ Working with the Rationals -

Lemma 9.2.8: Let \mathbb{Q}^{sol} be defined as

$$\mathbb{Q}^{\text{sol}} = \{ \alpha \in \mathbb{C} \mid \alpha \in L \text{ for some subfield } L \subseteq \mathbb{C}$$

that is finite, normal, and solvable over \mathbb{Q} .

Then \mathbb{Q}^{sol} is a subfield of \mathbb{C} .

Lemma 9.2.9: Let $\alpha \in \mathbb{C}$ and n > 1. If $\alpha^n \in \mathbb{Q}^{\text{sol}}$ then $\alpha \in \mathbb{Q}^{\text{sol}}$.

Proposition 9.2.12: $\mathbb{Q}^{\text{rad}} \subseteq \mathbb{Q}^{\text{sol}}$. That is, every radical number is contained in some subfield of \mathbb{C} that is a finite, normal, solvable extension of \mathbb{Q} .

Theorem 9.2.13: Solvability of Galois Group

Let $0 \neq f \in \mathbb{Q}[t]$. If the polynomial f is solvable by radicals then the group $\operatorname{Gal}_{\mathbb{Q}}(f)$ is solvable.

Lemma 9.3: Unsolvable Polynomials

Lemma 9.3.1: Let f be an irreducible polynomial over a field K, with $SF_K(f): K$ separable. Then $\deg(f)$ divides $|Gal_K(f)|$.

Lemma 9.3.2: For $n \geq 2$, the symmetric group S_n is generated by (12) and $(12 \dots n)$.

Lemma 9.3.3: Let p be a prime number, and let $f \in \mathbb{Q}[t]$ be an irreducible polynomial of degree p with exactly p-2 real roots. Then $\operatorname{Gal}_{\mathbb{Q}}(f) \cong S_p$.

Theorem 9.3.5: Unsolvability of the Quintics

Not every polynomial over \mathbb{Q} of degree 5 is solvable by radicals.

Lemma 10.1: Classification of the Finite Fields

Lemma 10.1.1: Let M be a finite field. Then char M is a prime number p, and $|M| = p^n$ where $n = [M : \mathbb{F}_p] \ge 1$. In particular, the order of a finite field is a prime power.

Lemma 10.1.5: Let p be a prime number and $n \ge 1$. Then the splitting field of $t^{p^n} - t$ over \mathbb{F}_p has order p^n .

Lemma 10.1.6 Let M be a finite field of order q. Then $\alpha^q = \alpha$ for all $\alpha \in M$.

Lemma 10.1.8: Every finite field of order q is a splitting field of t^q-t over \mathbb{F}_p

——— Theorem 10.1.9: Classification of Finite Fields —

- 1. Every finite field has order p^n for some prime p and integer $n \geq 1$.
- 2. For each prime p and integer $n \geq 1$, there is exactly one field of order p^n , up to isomorphism. It has characteristic p and is a splitting field for $t^{p^n} t$ over \mathbb{F}_p .

Lemma 10.2: Multiplicative Structure

Proposition 10.2.1: For an arbitrary field K, every finite subgroup of K^{\times} is cyclic. In particular, if K is finite, then K^{\times} is cyclic.

Corollary 10.2.5: Every extension of one finite field over another is simple.

Corollary 10.2.8: For every prime number p and integer $n \geq 1$, there exists an irreducible polynomial over \mathbb{F}_p of degree n.

Lemma 10.3: Galois Groups for Finite Fields

Lemma 10.3.2: Let M: K be a field extension.

- 1. If K is finite then M:K is separable.
- 2. If M is also finite then M:K is finite and normal.

Proposition 10.3.3: Let p be a prime and $n \geq 1$. Then $\operatorname{Gal}(\mathbb{F}_{p^n}:\mathbb{F}_p)$ is cyclic of order n, generated by the Frobenius Automorphism of \mathbb{F}_{p^n}

Proposition 10.3.6: Let p be a prime and $n \ge 1$. Then \mathbb{F}_{p^n} has exactly one subfield of order p^m for each divisor m of n, and no others. It is

$$\{\alpha \in \mathbb{F}_{p^n} : \alpha^{p^m} = \alpha\}$$

Proposition 10.3.8: Let M:K be a field extension with M finite. Then $\operatorname{Gal}(M:K)$ is cyclic of order [M:K].