ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ПРОБЛЕМ МОРСКИХ ТЕХНОЛОГИЙ ДАЛЬНЕВОСТОЧНОГО ОТДЕЛЕНИЯ РАН

Программный комплекс управления АНПА Руководство системного программиста RU.ИУПМ.10001-01 32

Оглавление

Аннотация	3
1. Общие сведения о ПКУ	
1.1. Назначение	
1.2. Функции ПКУ АНПА	4
1.3. Функции ПКУ АУС	4
1.4. Используемые технические и программные средства	5
2. Структура ПКУ	6
2.1. Структура и составные части ПКУ	6
2.2. Связи между составными частями программы	7
3. Установка и настройка ПКУ	8
3.1. Установка	8
3.2. Настройка на состав технических средств	8
3.3. Настройка на состав программных средств	9
4. Проверка ПКУ	10
5. Сообщения системному программисту	12
Перечень сокращений	13
ПРИЛОЖЕНИЕ 1. Структура используемых директорий	14

Аннотация

Документ содержит руководство системного программиста по установке и настройке программного комплекса управления (ПКУ) автономного необитаемого подводного аппарата (АНПА).

В разделах «Общие сведения о ПКУ» и «Структура ПКУ» приведены сведения, достаточные для понимания функций комплекса программ, его состава и условий эксплуатации. В разделе «Установка и настройка ПКУ» указана последовательность действий системного программиста, обеспечивающих установку комплекса программ на аппаратуре АНПА, а также необходимые настройки конфигурационных файлов операционной системы. В разделе «Проверка ПКУ» приведено описание способов проверки, позволяющих дать общее заключение о работоспособности ПКУ после установки.

При разработке данного документа использовались следующие регламентирующие документы ЕСПД:

- ГОСТ 19.503-79 Руководство системного программиста. Требования к содержанию и оформлению
- ГОСТ 19.106-78 Общие требования к программным документам, выполненным печатным способом

1. Общие сведения о ПКУ

1.1. Назначение

Программный комплекс управления предназначен для подготовки программы-задания (миссии) и организации её выполнения на борту АНПА, включая управление движением и координированное управление бортовым оборудованием.

1.2. Функции ПКУ АНПА

ПКУ выполняет следующие функции:

- а) дистанционное включение и проверку работоспособности и исправности технических средств АНПА перед началом миссии;
- б) координированное управление системами АНПА в ходе выполнения миссии, включающее выявление аварийных ситуаций, их локализацию и выработку управляющих воздействий на исправное бортовое оборудование (БО);
- в) возможность корректировки миссии после её начала по командам с АУС;
- г) управление траекторным движением АНПА с контролем отклонения от маршрута и обеспечением прихода в конечную точку.

В части управления движением ПКУ обеспечивает:

- управление курсом на ходу и без хода;
- управление скоростью хода;
- управление глубиной погружения на ходу и без хода;
- вывод АНПА в заданную точку;
- стабилизация отстояния АНПА от дна;

1.3. Функции ПКУ АУС

ПКУ в составе АУС выполняет следующие функции:

- а) дистанционное включение и проверку работоспособности и исправности технических средств АНПА перед началом миссии;
- б) подготовку, верификацию и загрузку маршрутного задания в ПКУ АНПА;
- в) инициирование выполнения миссии;
- г) корректировку миссии после её начала с использованием телекоманд (при необходимости);
- д) слежение за ходом выполнения миссии с использованием средств телеметрии;
- е) терминирование выполнения миссии;

1.4. Используемые технические и программные средства

ПКУ предназначен для функционирования в вычислительной среде АНПА и АУС. Используемая версия ПКУ ориентирована на работу в среде операционной системы Astra Linux 1.6 CE Orel на компьютере, обладающем следующими характеристиками:

- процессор, поддерживающий набор команд архитектуры x86-64 с тактовой частотой не менее 1.0 ГГц
- объем оперативной памяти не менее 1 Гб
- объем свободного дискового пространства не менее 5 Гб

2. Структура ПКУ

2.1. Структура и составные части ПКУ

ПКУ состоит из двух основных частей:

- ПКУ в составе АНПА (ПКУ АНПА);
- ПКУ в составе АУС (ПКУ АУС).
 ПКУ АНПА включает следующие программные модули:
- настраиваемой модель динамики АНПА (исполняемый файл _dynamic);
- агрегатора навигационных данных АНПА (исполняемые файлы _navig_fusion, _navig_kns, _navig_reckoning, _navig_smooth);
- объектов сцены морского дна и препятствий в толще воды (исполняемый файл _obstacle);
- регуляторов движения АНПА (исполняемый файл motion);
- создания и поддержания заданной конфигурации системы (исполняемый файл _launcher);
- передачи данных телеметрии и приема команд телеуправления АНПА (исполняемый файл – _telemetry);
- объектно-ориентированной библиотеки программных агентов маршрутного задания (исполняемый файл – _tack_mission);
- контроля параметров вычислителей (исполняемый файл _service);
- контроля и проверки версий интерфейсов на всех узлах сети (исполняемый файл _version);
- планировщика маршрутного задания АНПА (исполняемый файл _mission);
- базового модуля контрольно-аварийной системы (исполняемый файл _cas);
- драйвера бортовых устройств (исполняемые файлы –_battery_can20, _dvl_echo20,_imu_vn100, _gnss_stm20_auv, _power_can22, _thrusters_can20). ПКУ АУС включает следующие программные модули:
- подготовки маршрутного задания, отображения данных и управления АНПА (исполняемые файлы – viewer и index.html);
- дистанционного взаимодействия с планировщиком маршрутного задания, передачи команд телеуправления и приема данных телеметрии АНПА БА (исполняемый файл – _telecontrol_command);
- контроля параметров вычислителей (исполняемый файл _service);
- контроля и проверки версий интерфейсов на всех узлах сети (исполняемый файл _version);

2.2. Связи между составными частями программы

Информационное взаимодействие между ПКУ АНПА и ПКУ АУС производится по следующим группам данных. От ПКУ АУС в ПКУ АНПА передаётся:

- маршрутное задание (файл с текстом миссии);
- данные от модуля телеуправления (во время выполнения миссии);
 От ПКУ АНПА в ПКУ АУС передаётся:
- данные от модуля телеметрии (во время выполнения миссии);
- файлы с информацией накопителей данных АНПА.

3. Установка и настройка ПКУ

3.1. Установка

Процедура установки для ПКУ АУС и ПКУ АНПА выполняется идентично. Для установки необходимо выполнить следующие действия:

- 1) Создать рабочие директории, описанные в Приложении 1.
- 2) Выполнить распаковку исполняемый файлов из поставляемого архива:

```
- cd /exe
- tar -xzf /autopilot.tgz
```

3) Выполнить установку сервера nginx из репозитория:

```
apt-get updateapt-get install nginx
```

3.2. Настройка на состав технических средств

Для настройки сетевого интерфейса необходимо отредактировать файл «/etc/network/interfaces», добавив в него следующие строчки:

```
auto eth0
iface eth0 inet static
address {IP ADDRESS}
gateway {IP ADDRESS ROUTER}
netmask 255.255.255.0
```

Для компьютера АУС следует использовать IP адрес -10.25.101.101, для компьютера автопилота АНПА IP адрес -10.25.1.101, для компьютера системы технического зрения АНПА IP адрес -10.25.1.102

Настройка WEB-сервера nginx ПКУ АУС и ПКУ АНПА производится идентично, для этого необходимо отредактировать файл «/etc/nginx/sites-available/default», файл должен содержать следующие строки:

```
server {
    listen 80 default_server;
    listen [::]:80 default_server;
    root /exe_imtp/viewer;
    index index.html index.htm;
    server_name _;
    location / {
        try_files $uri $uri/ =404;
    }
}
```

3.3. Настройка на состав программных средств

Для автоматизации процесса запуска ПКУ, следует настроить автозапуск всех программных модулей, для этого необходимо выполнить следующие действия:

1) Создать файл «/etc/system/system/auv.service», со следующим содержимым:

```
[Unit]
Description=AUV soft
After=network.target syslog.targer
[Service]
Type=forking
ExecStart=/bin/bash '/exe_imtp/bin/start.sh'
ExecStop=/bin/bash '/exe_imtp/bin/stop.sh'
WorkingDirectory=/exe_imtp/bin
User=root
Group=root
[Install]
WantedBy=multi-user.target
```

2) Выполнить команду перезапуска systemd:

sudo systemctl daemon-reload

3) Включить автозапуск сервиса:

sudo systemctl enable auv

4. Проверка ПКУ

Перед началом проверок, необходимо провести установку и настройку всех компонентов ПКУ.

Убедиться в отсутствии аварий в модуле «_launcher», отвечающего за поддержание заданной конфигурации системы. А также убедиться в наличии вкладок во вьювере от всех программных модулей ПКУ АНПА и ПКУ АУС, согласно списку из п. 2.1». В случае обнаружения проблем с запуском отдельных программных модулей (см. п. 6), следуют произвести повторную установку ПО.

Проверка ПКУ заключается в прогоне контрольного маршрутного задания в ходе которого производится проверка как отдельных компонент ПКУ АНПА и ПКУ АУС, так и всего комплекса в целом. Подготовка маршрутного задания для АНПА производится по плану контрольной миссии с использованием программы viewer. План контрольной миссии состоит из одной задачи — бездействии в течение 5 минут (Листинге 1).

Проверка модуля дистанционного взаимодействия с планировщиком маршрутного задания проводится в ходе прогона контрольного МЗ. Для этого во вьювере подготавливаются и публикуются следующие команды телеуправления:

- Включение ГБО;
- Выключение ГБО.

В окне вьювера бортового журнала появится информация о передаваемой команде телеуправления и статус доставки. Список ошибок при передаче и инструкции по устранению описаны в Пункте 6. Проверка считается успешной, если данные телеметрии соответствуют подаваемым командам ТУ.

По завершению выполнения МЗ, производится выгрузка данных бортового накопителя. Структура директорий накопителя данных имеет следующий вид: «{yyyy-mm-dd_hh-mm-ss}_{mission_name}/autopilot/{prog_name}». Каждый программный модуль ({prog_name}) ведет накопление данных в свою уникальную директорию. Имя директории совпадает с именем бинарного файла модуля. Проверка ПКУ АНПА пройдена успешно, если:

- в выгруженных данных имеются файлы накопителя от всех программных модулей, перечисленных в списке из п. 2.1;
- эти файлы без ошибок открываются с помощью программы постобработки данных «IMTPLooker».

Листинг 1. Сгенерированный текст контрольного маршрутного задания

5. Сообщения системному программисту

Таблица 1 – Аварийные сообщения

Сообщение бортового журнала	Примечание
Файл миссии missions/misson.json не найден	При получении такого сообщения, необходимо проверить наличие файла с МЗ по указанному пути
Сообщение №2 [event::Command] не доставлено	Данное аварийное сообщение информирует о проблеме доставки команды с ПКУ АУС на ПКУ АНПА. Необходимо проверить наличие драйверов обеспечивающих каналы связи а так же оборудование отвечающее за передачу данных.
Ошибка перезапуска модуля «_mission»	Данное аварийное сообщение информирует о проблеме запуска модуля «Миссии». Возможная причина: отсутствие или повреждение бинарного файла. Для решения проблемы необходимо восстановить бинарный файл из резервной копии.

Перечень сокращений

АНПА – автономный необитаемый подводный аппарат

АУС – аппаратура управления и связи

БО – бортовое оборудование
 МЗ – маршрутное задание
 ОС – операционная система

ПКУ – программный комплекс управления

ПРИЛОЖЕНИЕ 1. Структура используемых директорий

Директория	Описание
/exe	Ссылка на директорию /exe_imtp/bin
/exe_imtp	Директория с файлами ПКУ
/exe_ imtp/bin	Директория с исполняемыми файлами ПКУ
/exe_imtp/bin/load	Директория с конфигурационными файлами ПКУ
/exe_imtp/bin/data	Ссылка на директорию /exe_imtp/data
/exe_imtp/bin/data_zip	Ссылка на директорию /exe_imtp/data_zip
/exe_imtp/data	Директория с файлами накопителя данных
/exe_imtp/data_zip	Директория с файлами накопителя данных упакованных в архивы, по окончанию выполнения M3
/exe_imtp/viewer	Директория с файлами WEB вьювера