Skript Funktionalanalysis

Prof. Volkmar Liebscher SoSe2024

Jonas Harder und Jakob Kropf

Version vom 29. Mai 2024

Todo-Liste

Dieser Beweis muss noch beendet werden	24
???	27
Hier gab es in der Vorlesung einen Nachtrag, allerdings sollte es so auch gehen	29
In der Vorlesung wurde im Lemma $\ \varphi\ \ge \ \varphi_0\ $ angegeben, aber dies sollte direkt aus $\varphi _U = \varphi_0$	
folgen und wir zeigen im Lemma \leq und somit Gleichheit, oder?	34
Es ist nicht ganz klar, wozu die letzte Abschätzung nötig ist und wieso die Eindeutigkeit gilt	36

Inhaltsverzeichnis

1	Me_1	trische Räume	3
	1.1	Definitionen	3
	1.2	Konvergenz und Stetigkeit	3
	1.3	Offene und abgeschlossene Mengen	4
	1.4	Vollständigkeit	4
	1.5	Kompaktheit	7
2	Mai	ß- und Integrationstheorie	10
	2.1	Grundlegende Konstruktionen	10
	2.2	Integration	11
3	Nor	rmierte Räume	13
	3.1	Definitionen	13
	3.2	Vervollständigung	13
	3.3	L^p -Räume	14
	3.4	Beispiele für normierte Räume	18
	3.5	Äquivalenz von Normen	19
4	Hill	berträume	20
	4.1	Definitionen	20
	4.2	Beispiele	21
	4.3	Orthogonalbasen	22
	4.4	Projektionen	24
5	Line	eare Operatoren	27
	5.1	Definitionen	27
	5.2	Das Dual	30
	5.3	Der Satz von Hahn-Banach	34

Kapitel 1

Metrische Räume

1.1 Definitionen

Definition 1.1.1. Eine Menge T, versehen mit einer Abbildung $d: T \times T \to \mathbb{R}$ mit den Eigenschaften $(s, t, u \in T \text{ beliebig})$

- 1. $d(s,t) \geq 0$,
- 2. d(s,t) = d(t,s)
- 3. $d(s,u) \le d(s,t) + d(t,u)$
- 4. $d(s,t) = 0 \iff s = t$

ist metrischer Raum mit Metrik d. Falls nur (\Leftarrow) in 4. gilt, handelt es sich um eine Halbmetrik.

Beispiel 1.1.1. $(\mathbb{R}, |\cdot|)$ ist ein metrischer Raum.

Beispiel 1.1.2. $(\mathbb{C}, |\cdot|)$ ist ein metrischer Raum.

Beispiel 1.1.3. (\mathbb{R}^n, d_i) mit $i \in \{1, 2, \infty\}$ sind metrische Räume, wobei für $x, y \in \mathbb{R}$

$$d_1 := \sqrt{\sum_{i=1}^n (x_i - y_i)}, \quad d_2 := \sqrt{\sum_{i=1}^n (x_i - y_i)^2}, \quad d_\infty := \max\{|x_i - y_i| | i : 1, \dots, n\}$$

Definition 1.1.2. Sei X, d ein metrischer Raum. Dann definieren wir die offene bzw. abschlossene Kugel um $x \in X$ wie folgt.

$$K_{\nu}(x) := \{ y \in X | d(x, y) \le \nu \} \quad \overline{K_{\nu}(x)} := \{ y \in X | d(x, y) \le \nu \}$$

Weiterhin ist U eine Umgebung von $x \iff \exists \nu > 0 : K_{\nu}(x) \subseteq U$.

1.2 Konvergenz und Stetigkeit

Definition 1.2.1. Eine Folge $(x_n)_{n\in\mathbb{N}}$ in einem metrischen Raum X heißt konvergent gegen $x\in X$ (bez. $\lim_{n\to\infty}t_n=t$), falls

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \forall n \ge N : d(x_n, x) \le \varepsilon$$
.

Satz 1.2.1. Der Limes einer konvergenten Folge ist eindeutig bestimmt.

Satz 1.2.2. Jede Teilfolge einer konvergenten Folge ist konvergent und hat den gleichen Grenzwert.

Definition 1.2.2. Sei $f:(X_1,d_1)\to (X_2,d_2)$ eine Abbildung zwischen metrischen Räumen. Dann heißt f stetig an der Stelle $x_0\in X_1$, falls

$$\forall \varepsilon > 0 \; \exists \delta > 0 : d_1(x, x_0) < \delta \implies d_2(f(x), f(x_0)) < \varepsilon$$

Satz 1.2.3. Sei $f:(X_1,d_1)\to (X_2,d_2)$ eine Abbildung zwischen metrischen Räumen. Dann sind folgende Bedingungen äquivalent:

- 1. f ist stetig an x_0
- 2. $\forall (x_n)_{n \in \mathbb{N}} \text{ mit } x_n \in X_1 \forall n \in \mathbb{N} : \lim_{n \to \infty} x_n = x_0 \in X_1 \implies \lim_{n \to \infty} f(x_n) = f(x_0)$

Satz 1.2.4. Seien $f:X_1\to X_2,\ g:X_2\to X_3$ stetige Abbildungen zwischen metrischen Räumen. Dann ist die Verknüpfung $g\circ f:X_1\to X_3$ stetig.

1.3 Offene und abgeschlossene Mengen

Definition 1.3.1. Sei (X, d) ein metrischer Raum, dann heißt

- 1. $G \subseteq X$ offen : $\iff \forall x \in G \; \exists \nu > 0 : K_{\nu}(x) \subseteq G$
- 2. $F \subseteq X$ abgeschlossen : $\iff \forall (x_n)_{n \in \mathbb{N}} \text{ mit } x_n \in F \ \forall n \in \mathbb{N} : \lim_{n \to \infty} x_n = x \implies x \in F$
- 3. $S \subseteq X$ liegt dicht in $X : \iff \forall x \in X \exists (s_n)_{n \in \mathbb{N}}, s_n \in S : \lim_{n \to \infty} s_n = x$

Definition 1.3.2. Ein metrischer Raum (X, d) heißt *separabel*, wenn es eine höchstens abzählbare Teilmenge $S \subseteq X$ gibt, die in diesem Raum dicht liegt.

Beispiel 1.3.1. Der Banachraum

$$l^{\infty}(\mathbb{N}) := \{(a_n)_{n \in \mathbb{N}} | a_n \in \mathbb{R}, (a_n)_{n \in \mathbb{N}} \text{ beschränkt} \} \text{ mit } d_{\infty}((a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}}) = \sup_{n \in \mathbb{N}} |a_n - b_n|$$

ist nicht separabel.

Satz 1.3.1. Sei $f:(X_1,d_1)\to (X_2,d_2)$ eine Abbildung zwischen metrischen Räumen. Dann sind äquivalent:

- 1. f ist stetig.
- 2. $\forall G \subseteq X_2 : G \text{ offen } \Longrightarrow f^{-1}(G) \text{ offen.}$
- 3. $\forall F \subseteq X_2 : F \text{ abgeschlossen} \implies f^{-1}(F) \text{ abgeschlossen}.$

Bemerkung 1.3.1. Aus Satz 1.3.1 folgt: $K_{\varepsilon}(x)$ offen, da $K_{\varepsilon}(x) = d(x,\cdot)^{-1}((-\infty,\varepsilon))$.

1.4 Vollständigkeit

Definition 1.4.1. Sei (X, d) ein metrischer Raum, dann heißt $(x_n)_{n \in \mathbb{N}}$ mit $\forall n \in \mathbb{N} : x_n \in X$ Cauchyfolge, falls:

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \; \forall n, m \ge N : d(x_n, x_m) < \varepsilon$$

Satz 1.4.1. Jede konvergente Folge $(x_n)_{n\in\mathbb{N}}$ in einem metrischen Raum (X,d) ist eine Cauchy-Folge.

Definition 1.4.2. Ein metrischer Raum (X, d) heißt vollständig, falls jede Cauchyfolge konvergiert.

Beispiel 1.4.1. $(\mathbb{R}, |\cdot|)$ und $\mathbb{C}, |\cdot|$ sind vollständige metrische Räume.

Beispiel 1.4.2. Die metrischen Räume (\mathbb{R}^n, f_p) mit $p \in [1, \infty]$ sind vollständig.

Satz 1.4.2. Sei (X, d) ein vollständiger metrischer Raum. Dann gilt:

$$Y \subseteq X$$
 vollständig $\iff Y$ abgeschlossen.

Satz 1.4.3. Sei (X_1, d_1) ein metrischer Raum (X_2, d_2) ein vollständiger metrischer Raum sowie $\varphi: X_1 \to X_2$ isometrisch. Dann gibt es genau eine isometrisches $\hat{\varphi}: X_1 \to X_2$ mit $\hat{\varphi}|_S = \varphi$.

Beweis. Sei $x \in X_1$, dann gibt es eine Folge $(x_n)_{n \in \mathbb{N}}$ mit $\forall n \in \mathbb{N} : x_n \in S$ und $\lim_{n \to \infty} x_n = x$. Somit ist $(x_n)_{n \in \mathbb{N}}$ insbesondere eine Cauchyfolge. Folglich ist auch $(\varphi(x_n))_{n \in \mathbb{N}}$ eine Cauchyfolge und mit der Vollständigkeit von X_2 gilt

$$\exists y \in X_2 : \lim_{n \to \infty} \varphi(x_n) = y := \hat{\varphi}(x) .$$

Wir setzen also für solche Folgen

$$\hat{\varphi}\left(\lim_{n\to\infty}x_n\right) := \lim_{n\to\infty}\varphi(x_n) .$$

Zeige nun $\hat{\varphi}$ ist wohldefiniert. Sei eine weitere Folge $(y_n)_{n\in\mathbb{N}}$ gegeben mit $\forall n\in\mathbb{N}:y_n\in S$ und $\lim_{n\to\infty}y_n=x$. Es folgt:

$$d_2(\varphi(x_n), \varphi(y_n)) = d_1(x_n, y_n) \xrightarrow{n \to \infty} d_1(x, x) = 0 \implies \lim_{n \to \infty} \varphi(y_n) = y$$
.

Somit ist $\hat{\varphi}$ in der Tat wohldefiniert. Weiterhin gilt $\hat{\varphi}|_S = \varphi$, denn wir wählen für $x \in S$ die Folge $(x)_{n \in \mathbb{N}}$, somit gilt

$$\hat{\varphi}\left(\lim_{n\to\infty}x_n\right) = \hat{\varphi}(x) = \lim_{n\to\infty}\varphi(x_n) = \lim_{n\to\infty}\varphi(x) = \varphi(x)$$
.

Zeige nun $\hat{\varphi}$ ist eine Isometrie. Seien dazu $x,y\in X$ mit $(x_n)_{n\in\mathbb{N}},\ (y_n)_{n\in\mathbb{N}}$ Folgen in S, wobei $\lim_{n\to\infty}x_n=x,\ \lim_{n\to\infty}y_n=y.$ Somit

$$d_2(\hat{\varphi}(x), \hat{\varphi}(y)) = \lim_{n \to \infty} d_2(\varphi(x_n), \varphi(y_n)) = \lim_{n \to \infty} d_1(x_n, y_n) = d(x, y) .$$

Satz 1.4.4. Sei (X,d) ein metrischer Raum. Dann gibt es einen vollständigen metrischen Raum (\hat{X},\hat{d}) (bez. Vervollständigung von X) und eine Isometrie $\varphi:X\to\hat{X}$ (d. h. $\forall x,y\in X:d(x,y)=\hat{d}(\varphi(x),\varphi(y))$), sodass das Bild $\varphi(X)$ dicht in \hat{X} ist. Haben (\tilde{X},\tilde{d}) und $\tilde{\varphi}$ die gleiche Eigenschaft, so gibt es eine Bijektion $\psi:\hat{X}\to\tilde{X}$ mit $\tilde{\varphi}=\psi\circ\varphi$.

Beweis. Definiere die Menge aller Cauchyfolgen in X durch

$$\hat{X}_0 := \{(x_n)_{n \in \mathbb{N}} | \forall n \in \mathbb{N} : x_n \in X, (x_n)_{n \in \mathbb{N}} \text{ Cauchyfolge} \}.$$

Definiere weiterhin eine Äquivalenzrelation \sim auf \hat{X}_0 mit

$$(x_n)_{n\in\mathbb{N}} \sim (y_n)_{n\in\mathbb{N}} : \iff \lim_{n\to\infty} d(x_n, y_n) = 0$$
.

Wir setzen \hat{X} als die Menge aller Äquivalenzklassen an, d. h.

$$\hat{X} = \hat{X}_0 / \sim = \{ [(x_n)_{n \in \mathbb{N}}] \mid (x_n)_{n \in \mathbb{N}} \in \hat{X}_0 \} \text{ wobei } [(x_n)_{n \in \mathbb{N}}] = \{ (y_n)_{n \in \mathbb{N}} \mid (x_n)_{n \in \mathbb{N}} \sim (y_n)_{n \in \mathbb{N}} \}.$$

Nun konstruieren wir die Metrik $\hat{d}: \hat{X} \times \hat{X} \to [0, \infty)$, wobei für $\left[(x_n)_{n \in \mathbb{N}} \right], \left[(y_n)_{n \in \mathbb{N}} \right] \in \hat{X}$ gilt

$$\hat{d}(\left[(x_n)_{n\in\mathbb{N}}\right],\left[(y_n)_{n\in\mathbb{N}}\right]) = \lim_{n\to\infty} d(x_n,y_m) \iff \forall \varepsilon > 0 \; \exists N,M\in\mathbb{N} \; \forall n\geq N \; \forall m\geq M: d(x_n,y_m) < \varepsilon \; .$$

Zeigen nun, dass \hat{d} wohldefiniert. Seien $(x'_n)_{n\in\mathbb{N}}$, $(y'_n)_{n\in\mathbb{N}}\in\hat{X}_0$ mit $(x_n)_{n\in\mathbb{N}}\sim(x'_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}\sim(y'_n)_{n\in\mathbb{N}}$, dann nach Definition

$$\lim_{n\to\infty} d(x_n, x_n') = \lim_{n\to\infty} d(y_n, y_n') = 0.$$

Anwenden der Dreiecksungleichung ergibt

$$d(x_n, y_n) \le d(x_n, x'_n) + d(x'_n, y'_n) + d(y'_n, y_n)$$

$$d(x'_n, y'_n) \le d(x'_n, x_n) + d(x_n, y_n) + d(y_n, y'_n).$$

Somit

$$|d(x_n, y_n) - d(x'_n, y'_n)| \le d(x_n, x'_n) + d(y_n, y'_n) \to 0.$$

Da $(d(x_n, y_n))$ und $(d(x'_n, y'_n))$ konvergent, folgt

$$\lim_{n,m\to\infty} d(x_n,y_m) = \lim_{n',m'\to\infty} d(x'_{n'},y'_{m'})$$

und somit ist \hat{d} wohldefiniert. Nun gilt nach Def. 1.1.1 zu zeigen, dass \hat{d} eine Metrik auf \hat{X} ist. Wir zeigen hier nur die Dreiecksungleichung:

$$\lim_{n,m\to\infty} d(x_n,y_m) \leq \lim_{k\to\infty} \lim_{n,m\to\infty} d(x_n,z_k) + d(z_k,y_m) \iff \hat{d}(\left[(x_n)_{n\in\mathbb{N}}\right],\left[(y_n)_{n\in\mathbb{N}}\right]) \leq \hat{d}(\left[(x_n)_{n\in\mathbb{N}}\right],\left[(z_k)_{k\in\mathbb{N}}\right]) + \hat{d}(\left[(z_k)_{k\in\mathbb{N}}\right],\left[(y_n)_{n\in\mathbb{N}}\right]).$$

Setze nun $\varphi: X \to \hat{X}$, $x \mapsto [(x)_{n \in \mathbb{N}}]$, dies ist offensichtlich eine Isometrie. Zeigen nun, dass $\varphi(X)$ dicht in \hat{X} . Sei $[(x_n)_{n \in \mathbb{N}}] \in \hat{X}$. Nach Voraussetzung ist $(x_n)_{n \in \mathbb{N}}$ eine Cauchyfolge, d. h. $\exists N_0 \in \mathbb{N}$ sodass $\forall m, n \geq N_0 : d(x_m, x_n) < \varepsilon$. Somit $\hat{x}_{N_0} := [(x_{N_0})_{n \in \mathbb{N}}] = \varphi(x_{N_0}) \in \varphi(X)$ und

$$\hat{d}\left(\left[(x_n)_{n\in\mathbb{N}}\right],\hat{x}_{N_0}\right) = \lim_{n\to\infty} d(x_n,x_{N_0}) < \varepsilon$$
.

Somit $\hat{x}_{N_0} \in K_{\varepsilon}([(x_n)_{n \in \mathbb{N}}]) \cap \varphi(X)$ und folglich ist $\varphi(X)$ dicht in \hat{X} . Nun gilt zu zeigen, dass (\hat{X}, \hat{d}) vollständig ist. Zeige dafür zunächst folgendes Lemma.

Lemma 1.4.1. Sei X, d metrischer Raum, $S \subseteq X$ dicht in X, sodass jede Cauchyfolge in S in X konvergiert. Dann ist X vollständig.

Beweis. Sei $(x_n)_{n\in\mathbb{N}}$ eine Cauchyfolge in X. Da S dicht in X gilt

$$\forall n \in \mathbb{N} \ \exists y_n \in S : d(x_n, y_n) < 1/n$$
.

Somit ist $(y_n)_{n\in\mathbb{N}}$ auch eine Cauchyfolge in S, da

$$d(y_m, y_n) \le d(y_m, x_m) + d(x_m, x_n) + d(x_n, y_n) < 1/m + d(x_m, x_n) + 1/n$$
.

Nach Annahme existiert $\lim_{n\to\infty} y_n =: x \in X$. Da

$$d(x_n, x) \le d(x_n, y_n) + d(y_n, x) < 1/n + d(y_n, x)$$

folgt in der Tat $\lim_{n\to\infty} x_n = x$.

Nach Lemma 1.4.1 g. z. z., dass jede Cauchyfolge in $\varphi(X)$ in \hat{X} konvergiert. Sei $(\hat{x}_k)_{k\in\mathbb{N}}$ Cauchyfolge in $\varphi(X)$, d. h. $\hat{x}_k := (x_k, x_k, \ldots)$. Da φ eine Isometrie, ist $(x_k)_{k\in\mathbb{N}}$ eine Cauchyfolge in X durch

$$\forall m, n \in \mathbb{N} : d(x_n, x_m) = \hat{d}(\hat{x}_n, \hat{x}_m) .$$

Somit $(x_k)_{k\in\mathbb{N}}\in \hat{X}_0$, $\left[(x_k)_{k\in\mathbb{N}}\right]\in \hat{X}$. Sei $\varepsilon>0$, dann $\exists N\in\mathbb{N}$ mit $\forall k,n\geq N:d(z_k,z_n)<\varepsilon$. Somit gilt $\forall k\geq N$:

$$\hat{d}(\hat{x}_k, \hat{x}) = \lim_{n \to \infty} d(z_k, z_n) < \varepsilon$$
.

Folglich konvergiert $(\hat{x}_k)_{k\in\mathbb{N}}$ gegen $\hat{x}\in\hat{X}$ und \hat{X} ist vollständig. Betrachte nun (\tilde{X},\tilde{d}) sowie $\tilde{\varphi}$ mit den gleichen Eigenschaften. Wir definieren

$$\psi_0: \varphi(X) \to \tilde{X}, \ \psi_0(\varphi(x)) = \tilde{\varphi}(x)$$
.

Dies ist eine Isometrie, da für $x, y \in X$ gilt

$$\tilde{d}(\psi_0(\varphi(x)), \psi_0(\varphi(y))) = \tilde{d}(\tilde{\varphi}(x), \tilde{\varphi}(y)) = d(x, y) = \hat{d}(\varphi(x), \varphi(y)).$$

Nach Satz 1.4.3 existiert eine eindeutige Erweiterung $\psi: \hat{X} \to \tilde{X}$ Isometrie mit $\psi|_{\varphi(X)} = \psi_0$. Da ψ_0 als Isometrie injektiv ist, g. z. z. ψ_0 ist surjektiv. Sei also $z \in \tilde{X}$, dann wegen der Dichtheit von $\tilde{\varphi}(X)$

$$\exists (x_n)_{n \in \mathbb{N}}, \ \forall n \in \mathbb{N} \ x_n \in X : \lim_{n \to \infty} \tilde{\varphi}(x_n) = z.$$

Somit $(x_n)_{n\in\mathbb{N}}$ Cauchyfolge $\implies (\varphi(x_n))_{n\in\mathbb{N}}$ Cauchyfolge. Da \hat{X} vollständig

$$\exists w \in \hat{X} : \lim_{n \to \infty} \varphi(x_n) = w .$$

Da ψ eine Isometrie ist folgt schließlich $\lim_{n\to\infty} \psi(\varphi(x_n)) = \psi(w) = z$ und somit ist ψ bijektiv. \square

1.5 Kompaktheit

Definition 1.5.1. Ein metrischer Raum (X,d) heißt kompakt, wenn jede offene Überdeckung eine endliche Teilüberdeckung besitzt. D. h., wenn $(G_i)_{i\in I}$ eine Famile offener Mengen, mit $X = \bigcup_{i\in I} G_i$, dann existieren endlich viele G_{i_1},\ldots,G_{i_n} mit $X = \bigcup_{k=1}^n G_{i_k}$.

Satz 1.5.1. Sei X, d metrischer Raum, $K \subseteq X$ kompakt. Dann ist K beschränkt und abgeschlossen (Umkehrung gilt i. A.nicht).

Satz 1.5.2. Sei X, d metrischer Raum. Dann gilt

$$X$$
 kompakt $\iff \forall (x_n)_{n \in \mathbb{N}} \exists (x_{n_k})_{k \in \mathbb{N}}$ Teilfolge $\exists y \in X : \lim_{k \to \infty} x_{n_k} = y$

Satz 1.5.3 (Heine-Borel). Betrachte die metrischen Räume (\mathbb{R}^n, d_p) mit $p \in [1, \infty]$. Dann ist $X \subseteq \mathbb{R}^n$ kompakt $\iff X$ beschränkt und abgeschlossen.

Definition 1.5.2. Sei (X, d) metrischer Raum. Dann heißt $Y \subseteq X$ totalbeschränkt falls

$$\forall \varepsilon > 0 \; \exists M \in \mathbb{N} \; \exists x_1, \dots, x_M \in Y : Y \subseteq \bigcup_{i=1}^M K_{\varepsilon}(x_i)$$

Satz 1.5.4. Sei X, d ein vollständiger metrischer Raum, $Y \subseteq X$. Dann ist Y kompakt $\iff Y$ abgeschlossen und total beschränkt.

Beweis. (\Longrightarrow)

Sei Y kompakt. Y abgeschlossen folgt aus Satz 1.5.1. Zeige nun die totale Beschränktheit, sei $\varepsilon > 0$ dafür fixiert. Dann gilt offensichtlich

$$Y \subseteq \bigcup_{y \in Y} K_{\varepsilon}(y) \stackrel{Y \text{ kompakt}}{\Longrightarrow} \exists y_1, \dots, y_M : Y \subseteq \bigcup_{i=1}^M K_{\varepsilon}(y_i)$$

Somit ist Y total beschränkt.

(==)

Sei $Y \subseteq X$ abgeschlossen und total beschränkt und sei $(x_n)_{n \in \mathbb{N}}$ eine Folge aus Y. Es g. z. z., dass $(x_n)_{n \in \mathbb{N}}$ eine in Y konvergente Teilfolge besitzt. Wir nutzen die totale Beschränktheit zur Konstruktion der Teilfolge (TF).

$$\varepsilon = 1 : \exists \left\{ y_{i}^{1} \right\}_{i=1,\dots,M_{1}}, \ Y \subseteq \bigcup_{i=1}^{M_{1}} K_{1} \left(y_{i}^{1} \right) \implies \exists \ \text{TF} \ \left(x_{n_{k}^{1}} \right)_{k \in \mathbb{N}} \exists i_{1} \in \left\{ 1,\dots,M_{1} \right\} \forall k \in \mathbb{N} : x_{n_{k}^{1}} \in K_{1} \left(y_{i_{1}}^{1} \right)$$

$$\varepsilon = \frac{1}{2} : \exists \left\{ y_{i}^{2} \right\}_{i=1,\dots,M_{2}}, \ Y \subseteq \bigcup_{i=1}^{M_{2}} K_{1/2} \left(y_{i}^{2} \right) \implies \exists \ \text{TTF} \ \left(x_{n_{k}^{2}} \right)_{k \in \mathbb{N}} \exists i_{2} \in \left\{ 1,\dots,M_{2} \right\}$$

$$\forall k \in \mathbb{N} : x_{n_{k}^{2}} \in K_{1} \left(y_{i_{1}}^{1} \right) \cap K_{1/2} \left(y_{i_{2}}^{2} \right)$$

Diese Konstruktion lässt sich nun auf l Schritte erweitern.

$$\varepsilon = 2^{-l} : \exists \left\{ y_i^l \right\}_{i=1,\dots,M_l}, \ Y \subseteq \bigcup_{i=1}^{M_l} K_{2^{-l}} \left(y_i^l \right) \implies \exists \text{ TT...TF } \left(x_{n_k^l} \right)_{k \in \mathbb{N}} \exists i_l \in \{1,\dots,M_l\}$$

$$\forall k \in \mathbb{N} : x_{n_k^l} \in K_1 \left(y_{i_1}^1 \right) \cap K_{1/2} \left(y_{i_2}^2 \right) \cap \dots \cap K_{2^{-(l-1)}} \left(y_{i_{l-1}}^{l-1} \right) \cap K_{2^{-l}} \left(y_{i_l}^l \right)$$

Nach Konstruktion ist $\left(x_{n_k}^k\right)_{k\in\mathbb{N}}$ Teilfolge von $(x_n)_{n\in\mathbb{N}}$ und für $k,k'\geq l$ gilt

$$x_{n_k}^k, \ x_{n_{k'}}^{k'} \in K_{2^{-l}}\left(y_{i_l}^l\right) \implies d\left(x_{n_k}^k, x_{n_{k'}}^{k'}\right) < 2^{-(l-1)}$$
.

Folglich ist $(x_{n_k}^k)_{k\in\mathbb{N}}$ eine Cauchyfolge und da X nach Voraussetzung vollständig, gilt

$$\exists z \in X : \lim_{k \to \infty} x_{n_k}^k = z .$$

Da Y abgeschlossen, gilt insbesondere $z \in Y$ und folglich Y kompakt.

Beispiel 1.5.1. Betrachte

$$C[0,1] := \left\{ f : [0,1] \to \mathbb{R} \mid f \text{ stetig} \right\}, \ \|\cdot\|_{\infty}, \text{ für } f,g \in C[0,1] : d(f,g) = \max \left\{ |f(t) - g(t)| \mid t \in [0,1] \right\}$$

Dann gilt $Y \subseteq C[0,1]$ ist kompakt \iff Ypunktweise beschränkt, d. h.

$$\exists c > 0 \ \forall f \in Y \ \forall t \in [0,1] : |f(t)| \le c$$

und Y gleichgradig stetig, d. h.

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall f \in Y \ \forall s, t \in [0,1] : |t-s| < \delta \implies |f(t) - f(s)| < \varepsilon$$
.

Satz 1.5.5. Sei (X_1, d_1) ein kompakter metrischer Raum, (X_2, d_2) ein metrischer Raum, sowie $f: X_1 \to X_2$ stetig. Dann ist $f(X_1)$ kompakt.

Bemerkung 1.5.1. Falls $X_2 = \mathbb{R}$, dann existieren nach dem Satz von Weierstraß $x_+, x_- \in X_1$ mit $f(x_+) = \sup f(X_1)$ und $f(x_-) = \inf f(X_1)$.

Satz 1.5.6. Sei (X_1, d_1) ein kompakter metrischer Raum, (X_2, d_2) ein metrischer Raum, sowie $f: X_1 \to X_2$ stetig. Dann ist f gleichmäßig stetig, d. h.

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in X_1 : d_1(x, y) < \delta \implies d_2(f(x), f(y)) < \varepsilon \ .$$

Kapitel 2

Maß- und Integrationstheorie

2.1 Grundlegende Konstruktionen

Definition 2.1.1. Sei $\Omega \neq \emptyset$. Dann heißt $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ σ -Algebra, falls

- 1. $\Omega \in \mathcal{F}$
- 2. $\forall A \subseteq \mathcal{P}(\Omega) : A \in \mathcal{F} \implies A^C \in \mathcal{F}$
- 3. $\forall (A_n)_{n\in\mathbb{N}}, \forall n\in\mathbb{N} A_n\in\mathcal{F}: \bigcup_{n\in\mathbb{N}}\in\mathcal{F}$

Bezeichne (Ω, \mathcal{F}) als messbaren Raum.

Bemerkung 2.1.1. Sei (X, d) ein metrischer Raum, dann ist die σ-Algebra $\mathcal{B}(X)$ der Borelmengen die kleinste σ-Algebra, die alle offenen Mengen von X enthält. Bez. $\mathcal{B}(\mathbb{R}) =: \mathcal{B}$ und $\mathcal{B}(\mathbb{R}^n) = \mathcal{B}^n$.

Definition 2.1.2. Sei Ω, \mathcal{F} ein messbarer Raum. Dann ist $\mu : \mathcal{F} \to [0, \infty]$ ein Maß, falls

- 1. $\mu(\emptyset) = 0$
- 2. $\forall (A_n)_{n \in \mathbb{N}}, \forall n \in \mathbb{N} : A_n \in \mathcal{F}, \forall i, j \in \mathbb{N}, i \neq j : A_i \cap A_j = \emptyset : \mu(\cup_{n \in \mathbb{N}} A_n) = \sum_{n \in \mathbb{N}} \mu(A_n)$

Wir bezeichnen $(\Omega, \mathcal{F}, \mu)$ als Maßraum.

Definition 2.1.3. Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum. Das Maß μ wird als σ -endlich bezeichnet, falls gilt

$$\exists A_1, A_2, \ldots \in \mathcal{F}, \ A_1 \subseteq A_2 \subseteq \ldots \ \ \mathrm{mit} \ \ \forall n \in \mathbb{N} : \mu(A_n) < \infty \ \mathrm{und} \ \bigcup_{n \in \mathbb{N}} A_n = \Omega \ .$$

Definition 2.1.4. Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum. Ein Maß $\nu : \mathcal{F} \to [0, \infty]$ heißt absolut stetig bzgl. μ (bez. $\nu \ll \mu$), falls

$$\forall A \in \mathcal{F} : \mu(A) = 0 \implies \nu(A) = 0$$
.

Beispiel 2.1.1. Sei Ω beliebig und $\mathcal{F} = \mathcal{P}(\Omega)$. Dann können wir das Zählmaß μ definieren mit $A \in \mathcal{P}(\Omega)$

$$\mu(A) = \begin{cases} |A| & \text{A endlich} \\ \infty & \text{sonst} \end{cases}$$

Dabei ist Ω meist abzählbar, z. B. $\Omega = \mathbb{N}$ oder $\Omega = \mathbb{Z}$

Beispiel 2.1.2. Sei $\Omega = \mathbb{R}^n$ und $\mathcal{F} = \mathcal{B}^n$. Dann definieren wir das Lebesgue-Maß l^n mit

$$l^n\left(\underset{i=1}{\overset{n}{\times}} [a_i, b_i) \right) = \prod_{i=1}^n (b_i - a_i) .$$

Für l = 1 gilt damit insbesondere $l^1([a, b)) =: l([a, b)) = b - a$.

2.2 Integration

Definition 2.2.1. Sei (Ω, \mathcal{F}) ein messbarer Raum, $f : \Omega \to \mathbb{C}$ heißt messbar (bez. $f \in \mathcal{M}(\Omega, \mathcal{F}, \mathbb{C})$), falls

$$\forall r > 0, z \in \mathbb{C} : f^{-1}(K_r(z)) \in \mathcal{F} \ [\iff \forall U \in \mathcal{B}(\mathbb{C}) : f^{-1}(U) \in \mathcal{F}].$$

Analog ist $f: \Omega \to \mathbb{R}$ messbar (bez. $f \in \mathcal{M}(\Omega, \mathcal{F}, \mathbb{R})$), falls

$$\forall U \in \mathcal{B}(\mathbb{R}) : f^{-1}(U) \in \mathcal{F}$$

Bemerkung 2.2.1. Wir bezeichnen weiterhin $\mathcal{M}(\Omega, \mathcal{F}, [0, \infty)) := \mathcal{M}_{+}(\Omega)$.

Bemerkung 2.2.2. Sei Ω, \mathcal{F} ein messbarer Raum, $f: \Omega \to \mathbb{R}$. Dann ist f messbar

$$\iff \forall c \in \mathbb{R} : \{f > c\} := \{x \in \Omega | f(x) > c\} \in \mathcal{F} .$$

Definition 2.2.2. Sei A eine Menge. Eine Funktion der Form

$$1_A(\omega) \begin{cases} 1 & \omega \in A \\ 0 & \omega \notin A \end{cases}$$

heißt Indikatorfunktion der Menge A.

Satz 2.2.1 (Integral für nichtnegative, messbare Funktionen). Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum. Dann gibt es genau eine Abbildung $\varphi : \mathcal{M}_+(\Omega) \to [0, \infty]$ mit:

- 1. $\forall A \in \mathcal{F} : \varphi(1_A) = \mu(A)$
- 2. $\forall f, g \in \mathcal{M}_+(\Omega), \lambda \in [0, \infty] : \varphi(\lambda f + g) = \lambda \varphi(f) + \varphi(g)$
- 3. $\forall (f_n)_{n \in \mathbb{N}}, \ \forall n \in \mathbb{N} f_{n+1} \ge f_n \ge 0 : \varphi(\lim_{n \to \infty} f_n) = \lim_{n \to \infty} \varphi(f_n)$

Wir schreiben $\varphi(f) =: \int f d\mu =: \int f(\omega) d(\omega) =: \int f(\omega) \mu(d\omega).$

Bemerkung 2.2.3. 3. ist auch als Satz von Beppo Levi über monotone Konvergenz bekannt.

Bemerkung 2.2.4. Wir können in 2. $\lambda \in [0, \infty]$ wählen unter Beachtung, dass auf den erweiterten reellen Zahlen $\mathbb{R} := \mathbb{R} \cup \{-\infty, \infty\}$ gilt:

$$0 \cdot (\pm \infty) = (\pm \infty) \cdot 0 := 0 \text{ und } (+\infty) + (-\infty) = (-\infty) + (+\infty) = 0.$$

Definition 2.2.3 (Integral für messbare Funktionen). Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum, $f \in \mathcal{M}(\Omega, \mathcal{F}, \mathbb{R})$. Dann definieren wir

$$f^+ := \max\{f, 0\}, \quad f^- := \max\{-f, 0\} \implies f = f^+ - f^- \text{ und } |f| = f^+ + f^-.$$

Somit erhalten wir als Definition für das Integral (für integrierbare Funktionen, siehe Def. 2.2.4):

$$\int f d\mu := \int f^+ d\mu - \int f^- d\mu .$$

Sei nun $f \in \mathcal{M}(\Omega, \mathcal{F}, \mathbb{C})$, dann folgt $\Re(f), \Im(f) \in \mathcal{M}(\Omega, \mathcal{F}, \mathbb{R})$. Somit können wir definieren:

$$\int f d\mu := \int \Re(f) d\mu + i \cdot \int \Im(f) d\mu .$$

Definition 2.2.4. Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum. Dann bezeichnen wir $f : \Omega \to \mathbb{C}$ als $(\mu$ -)integrierbar, falls $f \in \mathcal{L}^1$, wobei gilt

$$\mathcal{L}^1(\Omega, \mathcal{F}, \mu, \mathbb{C}) := \left\{ f \in \mathcal{M}(\Omega, \mathcal{F}, \mathbb{C}) \middle| \int |f| \, d\mu < \infty \right\} .$$

Wir schreiben kurz auch $\mathcal{L}^1(\Omega, \mathcal{F}, \mu)$.

Bemerkung 2.2.5. Analog definiert man $\mathcal{L}^1(\Omega, \mathcal{F}, \mu, \mathbb{R})$. Somit:

$$\int \cdot d\mu : \mathcal{L}^1(\Omega, \mathcal{F}, \mu, \mathbb{R} \ [\mathbb{C}]) \to \mathbb{R} \ [\mathbb{C}]$$

Bemerkung 2.2.6. Für $f:\Omega\to\mathbb{C}$ gilt insbesondere $|f|\geq\Re(f),\,|f|\geq\Im(f),$ d. h. das Integral ist wohldefiniert.

Satz 2.2.2. Seien $f, g \in \mathcal{L}^1(\Omega, \mathcal{F}, \mu)$ sowie eine Folge $(f_n)_{n \in \mathbb{N}}$, $\forall n \in \mathbb{N} : f_n \in \mathcal{L}^1(\Omega, \mathcal{F}, \mu)$ sowie $\lambda \in \mathbb{C}$. Dann gilt:

- 1. $\left| \int f d\mu \right| \leq \int \left| f \right| d\mu$
- 2. $\int \lambda f + g d\mu = \lambda \int f d\mu + \int g d\mu$
- 3. $\mu(\{\omega \in \Omega | f(\omega) \neq g(\omega)\}) = 0 \implies \int f d\mu = \int g d\mu \implies \int |f g| d\mu = 0$
- 4. $\mu(\{\omega \in \Omega | |f(\omega)| = \infty\}) = 0$
- 5. $\exists h: \Omega \to [0,\infty], h \in \mathcal{L}^1(\Omega,\mathcal{F},\mu) \ \forall n \in \mathbb{N}: |f_n| \leq h \text{ und } \lim_{n \to \infty} f_n = f \implies \int f d\mu = \int \lim_{n \to \infty} f_n d\mu = \lim_{n \to \infty} \int f_n d\mu$

Bemerkung 2.2.7. 5. ist auch als Satz von Lebesgue über die majorisierte Konvergenz bekannt.

Definition 2.2.5. Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum, $\nu : \mathcal{F} \to [0, \infty]$ ein Maß. Dann besitzt ν eine Dichte bzgl. μ , falls

$$\exists f: \Omega \to [0, \infty) \text{ messbar}: \forall A \in \mathcal{F}: \nu(A) = \int_A f d\mu.$$

Satz 2.2.3 (Satz von Radon-Nikodym). Sei $(\Omega, \mathcal{F}, \mu)$ ein σ -endlicher Maßraum und $\nu : \mathcal{F} \to [0, \infty]$ ein Maß mit $\nu \ll \mu$. Dann besitzt ν eine Dichte bzgl. μ .

Kapitel 3

Normierte Räume

3.1Definitionen

Bemerkung 3.1.1. Wir betrachten hier Vektorräume über den Körpern $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$.

Definition 3.1.1. Eine *Norm* über einem \mathbb{K} -Vektorraum V ist eine Abbildung $\|\cdot\|: V \to \mathbb{R}_{\geq 0}$ mit:

- 1. $\forall x \in V, \lambda \in \mathbb{K} : ||\lambda x|| = |\lambda| ||x||$
- 2. $\forall x, y \in V : ||x + y|| \le ||x|| + ||y||$ 3. $||x|| = 0 \iff x = 0$

Dann heißt $V, \|\cdot\|$ normierter Raum.

Bemerkung 3.1.2. Falls 3. nicht gilt, bezeichnen wir die Abbildung als Halbnorm.

Satz 3.1.1. Ein normierter Raum $(V, \|\cdot\|)$ ist ein metrischer Raum mit der Metrik d, definiert durch

$$\forall x, y \in V : d(x, y) = ||x - y||.$$

Beispiel 3.1.1. In diesem Fall gilt für die Operationen $+: V \times V \to V$ und $\cdot: \mathbb{K} \times V \to V$ (mit $\lambda \in \mathbb{K}, \ x, y, x, y' \in V$):

$$d(x' + y', x + y) = ||x' + y' - (x + y)|| \le ||x' + y'|| + ||x + y||$$

$$d(\lambda x, \lambda x') = ||\lambda(x - x')|| = |\lambda| ||x - x'|| = |\lambda| d(x, x')$$

Definition 3.1.2. Ein *Banachraum* ist ein vollständiger normierter Raum.

3.2Vervollständigung

Satz 3.2.1. Sei $(V, \|\cdot\|)$ ein normierter Raum, dann existiert eine Vervollständigung $(\hat{V}, \|\cdot\|)$, d. h. Vkann in einen Banachraum eingebettet werden.

Beweis. Definiere Analog zu Satz 1.4.4:

$$\hat{V}_0 := \{(x_n)_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N} : x_n \in V, \ (x_n)_{n \in \mathbb{N}} \text{ Cauchyfolge} \}.$$

Äquivalenzrelation $\sim \text{ auf } \hat{V}_0 : \ (x_n)_{n \in \mathbb{N}} \sim (y_n)_{n \in \mathbb{N}} : \iff \lim_{n \to \infty} \|x_n, y_n\| = 0$

Menge aller Äquivalenzklassen:
$$\hat{V} = \hat{V}_0 / \sim = \{ [(x_n)_{n \in \mathbb{N}}] \mid (x_n)_{n \in \mathbb{N}} \in \hat{X}_0 \}$$

Dabei ist \hat{V} ein Vektorraum mit $\forall \lambda \in \mathbb{K}, (x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}} \in \hat{V}_0$:

$$\lambda\left[(x_n)_{n\in\mathbb{N}}\right]:=\left[(\lambda x_n)_{n\in\mathbb{N}}\right] \text{ und } \left[(x_n)_{n\in\mathbb{N}}\right]+\left[(y_n)_{n\in\mathbb{N}}\right]=\left[(x_n+y_n)_{n\in\mathbb{N}}\right].$$

Als Norm auf \hat{V} definieren wir

$$\hat{\parallel} \left[(x_n)_{n \in \mathbb{N}} \right] \hat{\parallel} = \lim_{n \to \infty} \|x_n\| .$$

Zeige zunächst die Wohldefiniertheit. Der obige Grenzwert existiert, da für $(x_n)_{n\in\mathbb{N}}\in\hat{V}_0$ die Folge $(\|x_n\|)_{n\in\mathbb{N}}$ eine Cauchyfolge ist, mit

$$\lim_{n,m\to\infty} |||x_n|| - ||x||_m| \le \lim_{n,m\to\infty} ||x_n - x_m|| = 0.$$

Betrachte nun $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}\in \hat{V}_0$, $(x_n)_{n\in\mathbb{N}}\sim (y_n)_{n\in\mathbb{N}}$, dann

$$\lim_{n \to \infty} |||x_n|| - ||y_n||| \le \lim_{n \to \infty} ||x_n - y_n|| = 0$$

und somit ist $\|\cdot\|$ unabhängig vom Repräsentanten. Für die Normeigenschaften zeige hier nur die Dreiecksungleichung und Definitheit (1. Eigenschaft trivial):

$$\hat{\|} [(x_n)_{n \in \mathbb{N}}] + [(y_n)_{n \in \mathbb{N}}] \hat{\|} = \lim_{n \to \infty} \|x_n + y_n\| \le \lim_{n \to \infty} \|x_n\| + \|y_n\|$$

$$= \lim_{n \to \infty} \|x_n\| + \lim_{n \to \infty} \|y_n\| = \hat{\|} [(x_n)_{n \in \mathbb{N}}] \hat{\|} + \hat{\|} [(y_n)_{n \in \mathbb{N}}] \hat{\|}$$

Weiterhin:

$$\hat{\parallel} \left[(x_n)_{n \in \mathbb{N}} \right] \hat{\parallel} = 0 \iff \lim_{n \to \infty} \|x_n\| = 0 \iff (x_n)_{n \in \mathbb{N}} \sim (0)_{n \in \mathbb{N}} \iff \left[(x_n)_{n \in \mathbb{N}} \right] = \left[(0)_{n \in \mathbb{N}} \right] = 0$$

3.3 L^p -Räume

Definition 3.3.1. Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum, $p \in [1, \infty)$, dann definieren wir

$$\mathcal{L}^p(\Omega,\mathcal{F},\mu) := \left\{ f: \Omega \to \mathbb{K} | f \in \mathcal{M}(\Omega,\mathcal{F}), \ \int_{\Omega} |f|^p < \infty \right\} \ .$$

Wir schreiben kurz auch $\mathcal{L}^p(\mu)$.

Bemerkung 3.3.1. $\mathcal{L}^p(\Omega, \mathcal{F}, \mu)$ definiert einen K-Vektorraum.

Satz 3.3.1. $\|\cdot\|_p: \mathcal{L}^p(\mu) \to \mathbb{K}, \ \|f\|_p:=\left(\int_{\Omega}|f|^p\,d\mu\right)^{1/p}$ ist eine Halbnorm.

Beweis. Siehe nach Satz 3.3.2.

Bemerkung 3.3.2. $\|\cdot\|_p$ ist keine Norm.

Beispiel 3.3.1. Betrachte $\Omega = \mathbb{R}$, $f = 1_C \neq 0$, $\mu = l$, wobei C die Cantormenge und l das Lebesgue-Maß sind. Dann gilt:

$$||f||_p = \left(\int_{\Omega} (1_C)^p dl\right)^{\frac{1}{p}} = l(C)^{\frac{1}{p}} = 0$$

Lemma 3.3.1 (Youngsche Ungleichung). Seien $u, v \in \mathbb{R}_{\geq 0}, p, q \in \mathbb{R}_{>1}, \frac{1}{p} + \frac{1}{q} = 1$. Dann gilt

$$u \cdot v \le \frac{u^p}{p} + \frac{v^q}{q} \ .$$

Satz 3.3.2 (Hölder Ungleichung). Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum, $p, q \in (1, \infty), \frac{1}{p} + \frac{1}{q} = 1$ und $f \in \mathcal{L}^p(\mu), g \in \mathcal{L}^q(\mu)$. Dann gilt $fg \in \mathcal{L}^1(\mu)$ und $\|fg\|_1 \leq \|f\|_p \|g\|_q$.

Beweis. Nehmen o B. d. A. an $f,g\geq 0,\ \|f\|_p=\|g\|_q=1.$ Mit Lemma 3.3.1 gilt

$$\begin{split} \|fg\|_1 &= \int_{\Omega} f(x)g(x)\mu(dx) \leq \int_{\Omega} \frac{f(x)^p}{p} + \frac{g(x)^q}{q}\mu(dx) = \frac{1}{p} \int_{\Omega} f(x)^p \mu(dx) + \frac{1}{q} \int_{\Omega} g(x)^q \mu(dx) \\ &= \frac{1}{p} + \frac{1}{q} = 1 = \|f\|_p \cdot \|g\|_q \end{split}$$

Zu Satz 3.3.1. 1. Eigenschaft ist trivial. Zeige nun noch die Dreiecksungleichung. Seien dafür $f, g \in \mathcal{L}^p(\mu)$. Dann gilt auch die Abschätzung:

$$|f+g|^p = |f+g|^{p-1} |f+g| \le |f+g|^{p-1} |f| + |f+g|^{p-1} |g|$$
.

Sei $q \in \mathbb{R}$ so gewählt, dass $\frac{1}{p} + \frac{1}{q} = 1 \iff p + q = pq$. Dann gilt $|f + g|^{p-1} \in \mathcal{L}^q(\mu)$, da

$$(|f+g|^{p-1})^q = |f+g|^{pq-q} = |f+g|^p$$

Dies ist in der Tat integrierbar, da $|f+g|^p \le |f|^p + |g|^p$ und nach Voraussetzung $f,g \in \mathcal{L}^p(\mu)$. Somit erhalten wir

$$\|f+g\|_p^p = \int_{\Omega} |f+g|^p \, d\mu \leq \int_{\Omega} |f+g|^{p-1} \, |f| + |f+g|^{p-1} \, |g| \, d\mu = \left\| (f+g)^{p-1} f \right\|_1 + \left\| (f+g)^{p-1} g \right\|_1 \, .$$

Anwenden der Hölder Ungleichung ergibt

$$\leq \|f+g\|_{q} \|f\|_{p} + \|f+g\|_{q} \|g\|_{p} = \left(\int_{\Omega} |f+g|^{(p-1)q}\right)^{\frac{1}{q}} (\|f\|_{p} + \|g\|_{p}) = \left(\int_{\Omega} |f+g|^{p}\right)^{\frac{1}{q}} (\|f\|_{p} + \|g\|_{p}) \; .$$

Sei o. B. d. A. $f + g \neq 0$ fast überall (sonst Beh. trivial), dann gilt:

$$\|f+g\|_p^p \leq \|f+g\|_p^{p/q} \left(\|f\|_p + \|g\|_p\right) \iff \|f+g\|_p^{p(1-1/q)} \leq \|f\|_p + \|g\|_p \iff \|f+g\|_p \leq \|f\|_p + \|g\|_p$$

Definition 3.3.2. Sei Ω, \mathcal{F}, μ ein Maßraum sowie $f, g: \Omega \to \mathbb{K}$. Dann definieren wir

$$f \stackrel{\mu}{=} g : \iff \mu(\{\omega \in \Omega | f(\omega) \neq g(\omega)\} =: \mu(\{f \neq g\}) = 0$$
.

Man sagt auch $f = g \mu$ -fast überall.

Bemerkung 3.3.3. Die Relation $\stackrel{\mu}{=}$ ist eine Äquvialenzrelation.

П

Satz 3.3.3. Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum sowie $f \in \mathcal{L}^p(\mu), g : \Omega \to \mathbb{K}$. Dann gilt

$$f \stackrel{\mu}{=} g \implies g \in \mathcal{L}^p(\mu) \text{ und } ||f||_p = ||g||_p$$
.

Beweis. Gelte o. B. d. A. $g \stackrel{\mu}{=} 0$.Betrachte hier $g: \Omega \to \mathbb{K} \cup \{-\infty, \infty\}$, sei $A := \{\omega \in \Omega | g(\omega) \neq 0\}$. Nach Voraussetzung gilt $\mu(A) = 0$ und somit

$$|g| \le \infty \cdot 1_A \implies \int_{\Omega} |g|^p d\mu \le \infty \cdot \int_{\Omega} 1_A d\mu = \infty \cdot 0 = 0.$$

Folglich gilt also in der Tat $g \in \mathcal{L}^p$. Zeige nun $||f||_p = ||g||_p$. Dabei nutzen wir $f \stackrel{\mu}{=} g \iff g - f \stackrel{\mu}{=} 0 \implies ||g - f||_p = 0$. Es folgt

$$||g||_p = ||f + (g - f)||_p \le ||f||_p + ||g - f||_p = ||f||_p$$

Analog erhalten wir $||f||_p \le ||g||_p$ und somit in der Tat $||f||_p = ||g||_p$.

Satz 3.3.4. Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum, dann wird $\mathcal{L}^p(\mu)/\underline{\underline{\mu}}$ mit $\forall f \in \mathcal{L}^p(\mu) : \|[f]\|_p := \|f\|_p$ ein normierter Raum.

Beweis. Die Wohldefiniertheit der Norm folgt aus Satz 3.3.3. Weiterhin lässen sich die Halbnormeigenschaften auf Satz 3.3.1 zurückführen. Es g. z. z., dass $\|\cdot\|_p$ auf $\mathcal{L}^p(\mu)/\underline{\mu}$ definit ist. Angenommen für $[f] \in \mathcal{L}^p(\mu)/\underline{\mu}$ gilt $\|[f]\|_p = 0 \iff \int_{\Omega} |f|^p = 0$. Nehme weiterhin an, dass $f \neq 0 \iff 0 < \mu(\{|f| > 0\})$. Somit

$$0 < \mu(\{|f| > 0\}) = \mu\left(\bigcup_{n \in \mathbb{N}} \left\{|f| > \frac{1}{n}\right\}\right) = \lim_{n \to \infty} \mu\left(|f| > \frac{1}{n}\right).$$

Folglich $\exists c > 0 : \mu(\{|f| \ge c\}) > 0$. Damit erhalten wir mit $A := \{|f| > c\}$

$$|f|^p \ge c^p \cdot 1_A \implies \int |f|^p \ge c^p \mu(A) > 0$$
.

Dies ist ein Widerspruch und folglich gilt $f \stackrel{\mu}{=} 0$.

Definition 3.3.3. Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum, dann

$$L^p(\mu) := L^p(\Omega, \mathcal{F}\mu) := \mathcal{L}^p(\Omega, \mathcal{F}, \mu)/\underline{\mu}$$

Wir schreiben meist $L^p(\mu)$ für $\mathbb{K} = \mathbb{R}$ und $L^p(\mu, \mathbb{C})$ für $\mathbb{K} = \mathbb{C}$.

Bemerkung 3.3.4. Statt $[f] \in L^p$ schreiben wir nur $f \in L^p$.

Definition 3.3.4. $f \in \mathcal{M}(\Omega, \mathcal{F}, \mu)$ heißt wesentlich beschränkt $(:\iff f \in \mathcal{L}^{\infty}(\mu))$, falls

$$\exists c \in \mathbb{R}_{>0} : \mu(\{\omega \in \Omega | |f(\omega)| > c\}) = 0.$$

Dann definieren wir

$$||f||_{\infty} := \inf \{ c \mid \mu(\{\omega \in \Omega | |f(\omega)| > c\}) = 0 \}$$
.

Satz 3.3.5. $\|\cdot\|_{\infty}$ ist eine Halbnorm und es gilt $f \stackrel{\mu}{=} g \iff \|f - g\|_{\infty} = 0$.

Beweis. Die 1. Eigenschaft und die zweite Aussage sind trivial, wir zeigen hier wieder nur die Dreiecksungleichung. Seien $f, g \in \mathcal{M}(\Omega, \mathcal{F}, \mu)$ wesentlich beschränkt, c, d > 0 und $A := \{\omega \in \Omega \mid |f(\omega)| > c\}$, $B := \{\omega \in \Omega \mid |g(\omega)| > d\}$. Somit

$$\mu(A) = \mu(B) = 0 \implies \mu(A \cup B) \le \mu(A) + \mu(B) = 0$$
.

Es gilt

$$D := \{ \omega \in \Omega \mid |f(\omega) + g(\omega)| > c + d \} \subseteq A \cup B$$

und somit auch $\mu(D) = 0$. Sei nun $\omega \in (A \cup B)^C$, dann

$$|f(\omega)| \le c \land |g(\omega)| \le d \implies |f(\omega) + g(\omega)| \le |f(\omega)| + |g(\omega)| \le c + d$$
.

D. h. f+g ist wesentlich durch c+d beschränkt und somit folgt in der Tat

$$||f + g||_{\infty} \le c + d \le ||f||_{\infty} + ||g||_{\infty}$$
.

Satz 3.3.6. Sei Ω, \mathcal{F}, μ ein Maßraum. Dann ist $\mathcal{L}^{\infty}(\mu)/\underline{\underline{\mu}}$ mit $\forall f \in \mathcal{L}^{\infty}(\mu) : ||[f]||_{\infty} = ||f||_{\infty}$ ein normierter Raum.

Definition 3.3.5. Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum, dann

$$L^{\infty}(\mu) := L^{\infty}(\Omega, \mathcal{F}, \mu) := \mathcal{L}^{\infty}(\Omega, \mathcal{F}, \mu)/\underline{\mu}$$
.

Wir schreiben meist $L^{\infty}(\mu)$ für $\mathbb{K} = \mathbb{R}$ und $L^{\infty}(\mu, \mathbb{C})$ für $\mathbb{K} = \mathbb{C}$.

Bemerkung 3.3.5. $L^p(\mu)$ für $p \in [1, \infty]$ sind keine direkten Funktionenräume.

 $\mathbf{Satz} \ \mathbf{3.3.7.} \ \mathrm{Sei} \ (\Omega, \mathcal{F}, \mu) \ \mathrm{ein} \ \mathrm{Maßraum}, \ \mathrm{dann} \ \mathrm{ist} \ (L^p(\mu), \left\| \cdot \right\|_p) \ \mathrm{ein} \ \mathrm{Banachraum} \ \mathrm{f\"{u}r} \ p \in [1, \infty].$

Beweis. Betrachte hier nur den Fall p=1. Sei $(f_n)_{n\in\mathbb{N}}$ eine Cauchyfolge in $L^p(\mu)$, d. h.

$$\forall \varepsilon > 0 \ \exists N_0 \in \mathbb{N} \ \forall m, n \ge N_0 : ||f_m - f_n||_p < \varepsilon.$$

Daher gilt insbesondere

$$\forall k > 0 \ \exists n_k \ \forall m \ge n_k : \|f_m - f_{n_k}\|_p < 2^{-k} \ .$$

Somit können wir solche n_k mit $n_{k+1} > n_k$ wählen und erhalten eine Teilfolge $(f_{n_k})_{k \in \mathbb{N}}$ mit $||f_{n_{k+1}} - f_{n_k}||_p < 2^{-k}$. Für p = 1 mit Beppo-Levi und $g_k := |f_{n_{k+1}} - f_{n_k}|$:

$$\sum_{k \in \mathbb{N}} \|f_{n_{k+1}} - f_{n_k}\|_1 = \sum_{k \in \mathbb{N}} \int_{\Omega} g_k d\mu = \int_{\Omega} \sum_{k \in \mathbb{N}} g_k d\mu < \infty.$$

Somit gilt insbesondere

$$\mu\left(\left\{\omega\in\Omega\Big|\sum_{k\in\mathbb{N}}g_k(\omega)=\infty\right\}\right)=0$$
.

Nehmen hier o. B. d. A. an, dass $\forall \omega \in \Omega : \sum_{k \in \mathbb{N}} g_k(\omega) < \infty$. Somit bildet $\forall \omega \in \Omega$ die Folge $(f_{n_k})_{k \in \mathbb{N}}$ eine Cauchyfolge und ist somit konvergent, d. h. $\forall \omega \in \Omega : f(\omega) := \lim_{k \to \infty} f_{n_k}(\omega)$ existiert. Somit gilt

$$\lim_{k \to \infty} f_{n_0}(\omega) - f_{n_k}(\omega) = f_{n_0}(\omega) - f(\omega)$$

Wir können eine integrierbare Majorante für die $f_{n_0}(\omega) - f_{n_k}(\omega)$ finden mit

$$|f_{n_0}(\omega) - f_{n_k}(\omega)| \le \sum_{l=0}^{k-1} |f_{n_l}(\omega) - f_{n_{l+1}}(\omega)| \le \sum_{k \in \mathbb{N}} g_k(\omega) =: g(\omega) \text{ mit } \int_{\Omega} g d\mu < \infty.$$

Nach dem Satz von Lebesgue folgt somit, dass f integrierbar (d. h. $f \in L^1(\mu)$) und

$$\lim_{k\to\infty} \int_{\Omega} |f_{n_0}(\omega) - f_{n_k}(\omega) - (f_{n_0}(\omega) - f(\omega))| = 0 \iff \lim_{k\to\infty} ||f_{n_k} - f||_1 = 0.$$

Also ist $L^1(\mu)$ in der Tat vollständig.

3.4 Beispiele für normierte Räume

Beispiel 3.4.1. Betrachte

$$\Omega = \{1, \dots, n\}, \ n \in \mathbb{N}_{>0} \text{ mit } \forall A \subseteq \Omega : \mu(A) = |A|.$$

Dann gilt wegen der Korrespondenz als Vektorraum

$$L^p(\mu) = \mathbb{R}^n \text{ und } L^p(\mu, \mathbb{C}) = \mathbb{C}^n$$

wegen der Korrespondenz

$$f: \{1, \dots, n\} \to \mathbb{K} \longleftrightarrow \begin{pmatrix} f(1) \\ \dots \\ f(n) \end{pmatrix}.$$

Beispiel 3.4.2 (Folgenräume). Folgende Vektorräume

$$c_0 := \left\{ (a_n)_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N} : a_n \in \mathbb{K}, \lim_{n \to \infty} a_n = 0 \right\}$$
$$c := \left\{ (a_n)_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N} : a_n \in \mathbb{K}, \lim_{n \to \infty} a_n \text{ existiert} \right\}$$
$$\ell^{\infty} = \ell^{\infty}(\mathbb{N}) := \left\{ (a_n)_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N} : a_n \in \mathbb{K}, \exists c > 0 \ \forall n \in \mathbb{N} : |a_n| \le c \right\}$$

sind normierte Vektorräume (insbesondere Banachräume) mit der Supremumsnorm

$$\|(a_n)_{n\in\mathbb{N}}\|_{\infty} = \sup_{n\in\mathbb{N}} |a_n|.$$

Betrachte weiterhin die Folgenräume l^p mit $p \in [1, \infty)$, wobei μ das Zählmaß:

$$\ell_{\mathbb{K}}^{p} = L^{p}(\mathbb{N}, \mu, \mathbb{K}) = \left\{ (a_{n})_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N} : a_{n} \in \mathbb{K}, \sum_{n=1}^{\infty} |a_{n}|^{p} < \infty \right\}$$

mit der Norm $\left\| \cdot \right\|_p$ definiert durch

$$\forall (a_n)_{n \in \mathbb{N}} \in \ell^p : ||(a_n)_{n \in \mathbb{N}}||_p = \left(\sum_{n=1}^{\infty} |a_n|^p\right)^{\frac{1}{p}}.$$

Dabei sind $(\ell^p, \left\| \cdot \right\|_p)$ für $p \in [1, \infty)$ Banachräume.

Beispiel 3.4.3. Betrachte

$$\Omega = \mathbb{R}$$
bzw. $\Omega = \mathbb{R}^d$ mit Lebesgue-Maß l bzw. l^d .

mit den entsprechenden Räumen $L^p(l)$, $L^p(l,\mathbb{C})$ bzw. $L^p(l^d)$ und den bekannten Normen. Betrachte

$$\Omega = [0,1]$$
mit Lebesgue-Maß l

dann ergibt sich

$$L^p([0,1],l)$$
 mit $\forall f \in L^p([0,1],l) : ||f||_p = \int_0^1 |f(x)|^p dx$

Der normierte Raum $(C^0([0,1]), \|\cdot\|_{\infty})$ ist ein Banachraum, wobei

$$C^0([0,1]) := \{ f : [0,1] \to \mathbb{K} \mid f \text{ stetig} \} \quad \text{und} \quad \forall f \in C^0([0,1]) : \left\| f \right\|_{\infty} = \sup \left\{ |f(t)| \mid t \in [0,1] \right\}$$

Hingegen ist $C^0([0,1])$ nicht vollständig bzgl. der Norm $||f||_p = \int_0^1 |f(t)|^p dt$. Der Raum $(C^r([0,1]), ||\cdot||_{k,\infty})$

$$C^r([0,1]) = \left\{ f \in C^0([0,1]) \mid f \text{ r-mal stetig differenzierbar} \right\} \quad \text{und} \quad \forall f \in C^r([0,1]) : \left\| f \right\|_{k,\infty} = \sum_{j=0}^r \left\| f^{(j)} \right\|_{\infty}$$

ist ein Banachraum. Man kann auch weitere Normen auf $C^r([0,1])$ definieren, bspw. für r=1 und $f\in C^1([0,1])$

$$\|\cdot\|_{1,p} = \|f\|_p + \|f'\|_p \text{ oder } \|f\|_{1,p} = \left(\int_0^1 |f'(x)|^p + |f(x)|^p\right).$$

Bemerkung 3.4.1. Es gibt eine Inklusion $C^0([0,1]) \hookrightarrow L^p([0,1])$, da in jeder Äquivalenzklasse nur eine stetige Funktion ist.

3.5 Äquivalenz von Normen

Definition 3.5.1. Sei V ein \mathbb{K} -Vektorraum und $\|\cdot\|$, $\|\cdot\|$: $V \to \mathbb{R}_{\geq 0}$ Normen. Diese heißen äquivalent, falls

$$\exists 0 < c_1 < c_2 \ \forall x \in V : c_1 \|x\| \le \|x\| \le c_2 \|x\|.$$

Beispiel 3.5.1. Betrachte \mathbb{R}^n mit den Normen $(x \in \mathbb{R}^n)$: $||x||_{\infty} = \max\{|x_1|, \dots, |x_n|\}$ und $||x||_1 = \sum_{i=1}^n |x_1|$, dann gilt $\forall x \in \mathbb{R}^n$

$$||x||_{\infty} \le ||x||_1 \le n \cdot ||x||_{\infty}$$

d. h. $\|\cdot\|_{\infty}$ und $\|\cdot\|_{1}$ sind äquivalent.

Beispiel 3.5.2. Betrachte $C^1([0,1])$ mit den Normen $\|\cdot\|_{\infty}$ und $\|\cdot\|_{1,\infty}$, wie in Bsp. 3.4.3 definiert. Diese sind nicht äquivalent. Definiere $f_n(x) = x^n \in C^1([0,1])$, somit $f'_n(x) = n \cdot x^{n-1}$. Folglich

$$||f_n||_{\infty} = 1 \text{ und } ||f_n||_{1,\infty} = ||f_n||_{\infty} + ||f'_n||_{\infty} = 1 + n$$

und es existieren offensichtlich keine Konstanten $0 < c_1 < c_2$ mit

$$\forall n \in \mathbb{N} : c_1 \leq n+1 \leq c_2$$
.

Satz 3.5.1. Sei V ein K-Vektorraum mit $\dim_{\mathbb{K}} V < \infty$. Dann sind alle Normen auf V äquivalent und jeder solche normierte Vektorraum ist ein Banachraum.

Kapitel 4

Hilberträume

4.1 Definitionen

Definition 4.1.1. Sei H ein \mathbb{K} -Vektorraum. Für $\mathbb{K} = \mathbb{R}$ heißt eine Abbildung $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{R}$ Skalarprodukt (oder inneres Produkt), falls

- 1. $\forall x \in H : \langle x, \cdot \rangle, \langle \cdot, x \rangle : H \to \mathbb{R}$ sind linear
- 2. $\forall x \in H : \langle x, x \rangle \ge 0$
- 3. $\forall x \in H : \langle x, x \rangle = 0 \implies x = 0$
- 4. $\forall x, y \in H : \langle x, y \rangle = \langle y, x \rangle$

Für $\mathbb{K} = \mathbb{C}$ muss gelten:

- 1. $\forall x \in H: \langle x, \cdot \rangle: H \to \mathbb{C}$ ist linear, $\langle \cdot, x \rangle: H \to \mathbb{C}$ ist antilinear, d. h. $\forall y, z \in H, \lambda \in \mathbb{C}: \langle \lambda x + y, z \rangle = \overline{\lambda} \langle y, x \rangle + \langle z, x \rangle$
- 2. $\forall x \in H : \langle x, x \rangle \ge 0$
- 3. $\forall x \in H : \langle x, x \rangle = 0 \implies x = 0$
- 4. $\forall x, y \in H : \langle x, y \rangle = \overline{\langle y, x \rangle}$

Bemerkung 4.1.1. Für das Skalarprodukt über \mathbb{C} kann nur Sesquilinearität und keine Bilinearität gefordert werden, um die positive Deinitheit beizubehalten. Angenommen das Skalarprodukt über \mathbb{C} wäre bilinear und positiv definit, dann

$$\forall x \in H : \langle x, x \rangle \ge 0 \implies 0 \le \langle ix, ix \rangle = -\langle x, x \rangle \le 0 \implies \langle x, x \rangle = 0$$
.

Satz 4.1.1 (Cauchy-Schwarzsche Ungleichung). Sei H ein \mathbb{K} -Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$, dann gilt

$$\forall x,y \in H: \left| \langle x,y \rangle \right|^2 \leq \langle x,x \rangle \cdot \langle y,y \rangle \ .$$

Bemerkung 4.1.2. Mit Satz 4.1.2 schreibt man die Cauchy-Schwarzsche Ungleichung auch als

$$|\langle x,y\rangle| \leq ||x|| \cdot ||y||$$
.

Satz 4.1.2. Sei $(H, \langle \cdot, \cdot \rangle)$ ein Raum mit Skalarprodukt. Dann ist $\|\cdot\| : H \to \mathbb{R} \ge 0$ mit $\|x\| = \sqrt{\langle x, x \rangle}$ für $x \in H$ eine Norm auf H.

Beweis. Die 1. und 3. Eigenschaft sind trivial, zeige hier nur die Dreiecksungleichung. Es gilt für $x,y\in H$

$$||x + y||^2 = \langle x + y, x + y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle = ||x||^2 + 2\Re(\langle x, y \rangle) + ||y||^2$$
.

Mit $\Re(\langle x,y\rangle) \leq |\langle x,y\rangle|$ und der Cauchy-Schwarz-Ungleichung erhalten wir in der Tat:

$$||x + y||^2 \le ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2$$
.

Definition 4.1.2. Ein Raum $(H, \langle \cdot, \cdot \rangle)$ mit Skalarprodukt heißt *Hilbertraum*, wenn er bzgl. der vom Skalarprodukt induzierten Norm $\| \cdot \|$ vollständig ist.

Lemma 4.1.1 (Polarisationsformel). Sei $(H, \langle \cdot, \cdot \rangle)$ ein Raum mit Skalarprodukt und induzierter Norm $||x|| = \sqrt{\langle x, x \rangle}$ für $x \in H$. Dann gilt für $\mathbb{K} = \mathbb{R}$:

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$$

und für $\mathbb{K} = \mathbb{C}$:

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2 + i \|x + iy\|^2 - i \|x - iy\|^2).$$

Satz 4.1.3 (Parallelogrammgleichung). Ein normierter Raum $(V, \|\cdot\|)$ (mit V ein \mathbb{K} -Vektorraum) ist ein Raum mit Skalarprodukt $(V, \langle \cdot, \cdot \rangle)$, wobei $\langle \cdot, \cdot \rangle$ die Norm induziert, genau dann wenn

$$\forall x, y \in V : ||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Beweis. (\Longrightarrow) Es gilt:

$$||x+y||^2 = \langle x+y, x+y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$
$$||x-y||^2 = \langle x-y, x-y \rangle = \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle$$
$$\implies ||x+y||^2 - ||x-y||^2 = 2\langle x, x \rangle + 2\langle y, y \rangle$$

(\Leftarrow) Man setzt für $\mathbb{K} = \mathbb{R}$ bzw. $\mathbb{K} = \mathbb{R}$ das Skalarprodukt gemäß der Polarisationsformeln nach Lemma 4.1.1 an und zeigt unter Ausnutzung der Parallelogrammgleichung, dass dies die Eigenschaften eines Skalarprodukts empfiehlt (explizit im Werner S. 222).

4.2 Beispiele

Beispiel 4.2.1. Betrachte \mathbb{R}^n und \mathbb{C}^n . Diese sind mit den Standardskalarprodukten Hilberträume, wobei für $x, y \in \mathbb{R}^n$, $u, v \in \mathbb{C}^n$

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i \text{ und } \langle u, v \rangle = \sum_{i=1}^{n} \overline{u_i} v_i$$

Beispiel 4.2.2. $\ell_{\mathbb{K}}^2$ ist ein Hilbertraum, wobei die Norm von folgendem Skalarprodukt induziert wird

$$\langle (a_i)_{i \in \mathbb{N}}, (b_i)_{i \in \mathbb{N}} \rangle = \sum_{i=1}^{\infty} a_i b_i.$$

Beispiel 4.2.3. Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum. Dann ist $L^2(\mu, \mathbb{K})$ ein Maßraum mit dem Skalarprodukt $(f, g \in L^2(\mu, \mathbb{K}))$

$$\langle f,g\rangle = \int_{\Omega} fg \ d\mu \ \text{ für } \mathbb{K} = \mathbb{R} \ \text{ bzw. } \langle f,g\rangle = \int_{\Omega} \overline{f}g \ d\mu \ \text{ für } \mathbb{K} = \mathbb{C} \ .$$

Beispiel 4.2.4. Betrachte $C^0([0,1])$, dann ist für $f,g \in C^0([0,1])$

$$\langle f, g \rangle = \int_0^1 \overline{f(t)} g(t) dt$$

ein Skalarprodukt aber $(C^0([0,1]), \langle \cdot, \cdot \rangle)$ kein Hilbertraum.

Beispiel 4.2.5. (Bergmanraum) Sei $\mathbb{D} = \{z \in \mathbb{C} | |z| < 1\}$. Dann ist $(H, \langle \cdot, \cdot \rangle)$ ein Hilbertraum, wobei mit $f, g \in H$, $x := \Re(z)$, $y := \Im(z)$ gilt

$$H = \left\{ f: \mathbb{D} \to \mathbb{C} \;\middle|\; f \text{ holomorph, } \int_{\mathbb{D}} |f(z)|^2 \;dxdy < \infty \right\} \text{ und } \langle f,g \rangle = \int_{\mathbb{D}} \overline{f(z)} g(z) \;dxdy \;.$$

Bemerkung 4.2.1. Eine Funktion $f:U\to\mathbb{C}$ mit $U\subseteq\mathbb{C}$ offen heißt holomorph, falls f komplex differenzierbar an allen Punkten $z_0\in U$, d. h. falls folgender Grenzwert existiert

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$
.

4.3 Orthogonalbasen

Definition 4.3.1. Sei $(H, \langle \cdot, \cdot \rangle)$ ein Raum mit Skalarprodukt. Wir bezeichnen $x, y \in H$ orthogonal, bzw. $x \perp y$, falls $\langle x, y \rangle = 0$. Zwei Teilmengen $X, Y \subseteq H$ heißen orthogonal, bzw. $X \perp Y$, falls $\forall x \in X, y \in Y : \langle x, y \rangle = 0$.

Lemma 4.3.1 (Satz des Pythagoras). Sei $(H, \langle \cdot, \cdot \rangle)$ ein Raum mit Skalarprodukt. Dann ergibt sich direkt aus der Definition für $x, y \in H$

$$x \perp y \implies ||x||^2 + ||y||^2 = ||x + y||^2$$
.

Definition 4.3.2. Sei $(H, \langle \cdot, \cdot \rangle)$ ein Hilbertraum. Eine Familie $(e_s)_{s \in S}, \forall s \in S : e_s \in H$ heißt *Orthonormalsystem*, falls

$$\forall s, t \in S : \langle e_s, e_t \rangle = \delta_{st}$$
.

Eine Familie $(e_s)_{s \in S}$, $\forall s \in S : e_s \in H$ heißt vollständig, falls

$$\forall y \in H : y \perp \{e_s \mid s \in S\} \implies y = 0.$$

Ein vollständiges Orthonormalsystem heißt Orthonormalbasis.

Beispiel 4.3.1. Betrachte den Hilbertraum $l_{\mathbb{C}}^2(\mathbb{R}) := \{(a_t)_{t \in \mathbb{R}} \mid \forall t \in \mathbb{R} : a_t \in \mathbb{C}, \sum_{t \in \mathbb{R}} |a_t|^p < \infty \}$. Dabei ist das Skalarprodukt definiert als

$$\forall (a_t)_{t \in \mathbb{R}}, (b_t)_{t \in \mathbb{R}} \in l_{\mathbb{C}}^2(\mathbb{R}) : \langle (a_t)_{t \in \mathbb{R}}, (b_t)_{t \in \mathbb{R}} \rangle = \sum_{t \in \mathbb{R}} \overline{a_t} b_t .$$

Definiere $e_t = (\delta_{s,t})_{s \in \mathbb{R}} \in l^2_{\mathbb{C}}(\mathbb{R})$. Dann ist $(e_t)_{t \in \mathbb{R}}$ eine Orthonormalbasis, da für $a := (a_t)_{t \in \mathbb{R}} \in l^2_{\mathbb{C}}(\mathbb{R})$

$$a \perp \{e_t \mid t \in \mathbb{R}\} \iff \forall t \in \mathbb{R} : \langle a, e_t \rangle = \overline{a_t} = 0 \iff a = 0.$$

Beispiel 4.3.2. Betrachte den Hilbertraum $H = L^2([0,1], l, \mathbb{C})$. Dann erhalten wir die (vollständige) Fourierbasis

$$(f_k(x))_{k\in\mathbb{Z}}$$
 mit $f_k(x) := \exp(2\pi i k x)$.

Die Orthogonalität kann man wie folgt zeigen (mit $k, l \in \mathbb{Z}$)

$$\int_0^1 \exp(-2\pi i k x) \exp(2\pi i l x) \, dx = \int_0^1 \exp(2\pi i (l - k) x) \, dx = \delta_{kl}$$

Satz 4.3.1. Sei $(H, \langle \cdot, \cdot \rangle)$ ein Hilbertraum, $(e_s)_{s \in S}$, $\forall s \in S : e_s \in H$ ein Orthonormalsystem. Dann existiert für jedes $\lambda := (\lambda_s)_{s \in S} \in \ell^2_{\mathbb{C}}(S) := \left\{ (a_s)_{s \in S} \mid \forall s \in S : a_s \in \mathbb{C}, \sum_{s \in S} |a_s|^2 < \infty \right\}$ ein abzählbares $S_0 \subseteq S$ mit $|\lambda_s| > 0 \implies s \in S_0$. Sei $S_0 := \{s_n \mid n \in \mathbb{N}\}$ und $x_n = \sum_{m=0}^n \lambda_{s_m} e_{s_m}$. Dann existiert ein $x \in H$ mit $\lim_{n \to \infty} x_n = x$, wir schreiben $x = \sum_{s \in S} \lambda_s e_s$.

Beweis. Wir zeigen hier nur den 2. Teil des Satzes (???). Da H vollständig, g. z. z., dass $(x_n)_{n\in\mathbb{N}}$ eine Cauchyfolge ist. Dabei ist bekannt (unter Ausnutzung von Teil 1 des Satzes)

$$\|\lambda\|_{\ell^2(S)}^2 = \sum_{m=0}^{\infty} |\lambda_{s_m}|^2 < \infty.$$

Sei $\varepsilon > 0$, $N \in \mathbb{N}$ hinreichend groß, sodass $\sum_{m=N+1}^{\infty} |\lambda_{s_m}|^2 < \varepsilon^2$. Seien nun $n_1, n_2 \in \mathbb{N}$, $n_1, n_2 \geq N$, $n_1 < n_2$. Dann

$$||x_{n_2} - x_{n_1}||^2 = \left| \sum_{m=n_1+1}^{n_2} \lambda_{s_m} \cdot e_{s_m} \right|.$$

Dabei gilt für $k, l \in \mathbb{N}, k \ge l$

$$\left\| \sum_{i=l}^{k} \lambda_{s_i} e_{s_i} \right\|^2 = \left\langle \sum_{i=l}^{k} \lambda_{s_i} e_{s_i}, \sum_{j=l}^{k} \lambda_{s_j} e_{s_j} \right\rangle = \sum_{i,j=l}^{k} \overline{\lambda_i} \lambda_j \left\langle e_i, e_j \right\rangle = \sum_{i,j=l}^{k} \overline{\lambda_i} \lambda_j \delta_{ij} = \sum_{i=l}^{k} |\lambda_i|^2.$$

Somit ergibt sich

$$||x_{n_2} - x_{n_1}||^2 = \sum_{m=n_1+1}^{n_2} |\lambda_{s_m}|^2 < \varepsilon^2.$$

Folglich ist $(x_n)_{n\in\mathbb{N}}$ eine Cauchyfolge und $x=\lim_{n\to\infty}x_n\in H$ existiert.

Bemerkung 4.3.1 (Motivation). Falls $(e_s)_{s\in S}$ eine Orthonormalbasis von H. Dann ist die Abbildung $F: H \to \ell^2_{\mathbb{C}}(S), \ x \mapsto (\langle x, e_s \rangle)_{s\in S}$ ein unitärer Isomorphismus. In diesem Fall gibt es eine Korrespondenz zwischen $\lambda \in \ell^2_{\mathbb{C}}(S)$ und den Koeffizienten von x bzgl. der Orthonormalbasis $(e_s)_{s\in S}$.

Lemma 4.3.2 (Besselsche Ungleichung). Sei $(H, \langle \cdot, \cdot \rangle)$ ein Hilbertraum, $(e_n)_{n \in \mathbb{N}}$ ein Orthonormalsystem und $x \in H$. Dann gilt

$$\sum_{n=0}^{\infty} |\langle x, e_n \rangle|^2 \le ||x||^2.$$

Bemerkung 4.3.2. Mit Satz 4.3.1 folgt die allgemeine Besselsche Ungleichung für Orthonormalsysteme. Sei $(e_s)_{s \in S}$, $\forall s \in S : e_s \in H$ ein Orthonormalsystem und $x \in H$, dann

$$\sum_{s \in S} \left| \langle x, e_s \rangle \right|^2 \le \|x\|^2 \ .$$

Satz 4.3.2. Sei $(H, \langle \cdot, \cdot \rangle)$ ein Hilbertraum, $(e_s)_{s \in S}$ ein Orthonormalsystem. Dann ist $(e_s)_{s \in S}$ vollständig, genau dann wenn für jedes $x \in H$ ein $\lambda := (\lambda_s)_{s \in S} \in \ell^2_{\mathbb{C}}(S)$ existiert mit $x = \sum_{s \in S} \lambda_s e_s$. In diesem Fall ist λ eindeutig bestimmt.

Beweis. (Eindeutigkeit) Seien $S_0 \subseteq S$ sowie $x_n \in H$ wie in Satz 4.3.1. Sei $\hat{s} \in S$, dann

$$\langle e_{\hat{s}}, x \rangle = \lim_{n \to \infty} \langle e_{\hat{s}}, x_n \rangle = \lim_{n \to \infty} \left\langle e_{\hat{s}}, \sum_{m=0}^{n} \lambda_{s_m} e_{s_m} \right\rangle = \begin{cases} 0 & \hat{s} \notin S_0 \\ \lambda_{\hat{s}} & \hat{s} \in S_0 \end{cases}$$

Somit folgt die Eindeutigkeit aus der Eindeutigkeit der Darstellung der x_n .

(Existenz) Angenommen $(e_s)_{s\in S}$ ist vollständig und x ist nicht durch die Orthonormalbasis darstellbar. Bezeichne die Menge der darstellbaren Elemente in H mit

$$H_0 = \left\{ \sum_{s \in S} \lambda_s e_s \mid (\lambda_s)_{s \in S} \in \ell_{\mathbb{C}}^2(S) \right\} .$$

Für eine Folge $(y_n)_{n\in\mathbb{N}}$, $\forall n\in\mathbb{N}: y_n\in H_0$ gilt $\lim_{n\to\infty}y_n=y\implies y\in H_0$. Setze $\mu_s=\langle e_s,x\rangle$. Sei $S_0\subseteq S$ höchstens abzählbar, dann gilt mit Satz 4.3.2

$$\sum_{s \in S_0} |\mu_s|^2 = \sum_{s \in S_0} |\langle e_s, x \rangle|^2 \le ||x||^2 < \infty.$$

Für $t \in S_0$ gilt weiterhin

$$\left\langle e_t , x - \sum_{s \in S_0} \mu_s e_s \right\rangle = \left\langle e_t, x \right\rangle - \sum_{s \in S_0} \left\langle e_t, \left\langle e_s, x \right\rangle e_s \right\rangle = 0.$$

Dieser Beweis muss noch beendet werden.

Satz 4.3.3. Sei $(H, \langle \cdot, \cdot \rangle)$ ein Hilbertraum. Dann existiert eine abzählbare Orthonormalbasis, genau dann wenn H separabel ist.

Beweisidee. Man wendet das Gram-Schmidt-Verfahren aus einer dichten Teilmenge an. \Box

Bemerkung 4.3.3. Ein metrischer Raum (X, d) heißt separabel, falls ein $A \subseteq X$ existiert, sodass A abzählbar und A dicht in X.

4.4 Projektionen

Satz 4.4.1. Sei $(H, \langle \cdot, \cdot \rangle)$ ein Hilbertraum, $K \subseteq H$ nicht leer, konvex und abgeschlossen. Dann existiert für jedes $x \in H$ genau ein $y \in K$ mit

$$||y - x|| = \inf \{||z - x|| \mid z \in K\}$$
.

Beweis. Nehmen o. B. d. A. an $x \notin K$ (sonst wähle y = x) und x = 0 (sonst verschiebe um -x). (Existenz) Setze $d := \inf \{ ||z - x|| \mid z \in K \} = \inf \{ ||z|| \mid z \in K \}$. Dann existiert eine Folge $(y_n)_{n \in \mathbb{N}}$, $\forall n \in \mathbb{N} : y_n \in K$ mit

$$\forall n \in \mathbb{N} : ||y_n|| < d + \frac{1}{n} \implies \lim_{n \to \infty} ||y_n|| = d$$
.

Wir zeigen nun, dass $(y_n)_{n\in\mathbb{N}}$ eine Cauchyfolge ist. Mit der Parallelogrammgleichung gilt für $n, m \in \mathbb{N}$:

$$\left\| \frac{y_n + y_m}{2} \right\|^2 + \left\| \frac{y_n - y_m}{2} \right\|^2 = \frac{1}{2} (\|y_n\|^2 + \|y_m\|^2).$$

Da K konvex, gilt $\frac{1}{2}(y_n + y_m) \in K$ und folglich $\left\| \frac{1}{2}(y_n + y_m) \right\| \ge d^2$. Da

$$\frac{1}{2}(\|y_n\|^2 + \|y_m\|^2) \le \frac{1}{2}\left(\left(d + \frac{1}{n}\right)^2 + \left(d + \frac{1}{m}\right)^2\right) \stackrel{n,m \to \infty}{\longrightarrow} d^2$$

folgt also $||y_n - y_m|| \to 0$, d. h. $(y_n)_{n \in \mathbb{N}}$ ist in der Tat eine Cauchyfolge und da H ein Hilbertraum, existiert $y := \lim_{n \to \infty} y_n \in H$. Da K abgeschlossen ist, gilt $y \in K$. Weiterhin gilt ||y|| = d, da

$$||y|| \ge d \operatorname{da} y \in K \text{ und } ||y|| = \lim_{n \to \infty} ||y_n|| \le d + \frac{1}{n} \stackrel{n \to \infty}{\longrightarrow} d.$$

(Eindeutigkeit) Angenommen für $y, \tilde{y} \in K$ gilt

$$||y|| = ||\tilde{y}|| = \inf\{||z|| \mid z \in K\} = d.$$

Sei $\lambda \in [0, 1]$ wegen der Konvexität von K gilt

$$\lambda y + (1 - \lambda)\tilde{y} \in K \implies ||\lambda y + (1 - \lambda)\tilde{y}|| \ge d$$
.

Weiterhin gilt

$$\|\lambda y + (1 - \lambda)\tilde{y}\| \le \lambda \|y\| + (1 - \lambda) \|\tilde{y}\| = d$$

und folglich $\|\lambda y + (1 - \lambda)\tilde{y}\| = d$. Somit

$$\begin{split} d^2 &= \left\| \lambda y + (1 - \lambda) \tilde{y} \right\|^2 = \lambda^2 \left\langle y, y \right\rangle + 2\lambda (1 - \lambda) \Re(\left\langle y, \tilde{y} \right\rangle) + (1 - \lambda)^2 \left\langle \tilde{y}, \tilde{y} \right\rangle \\ &= \lambda^2 (\left\langle y, y \right\rangle - 2\Re(\left\langle y, \tilde{y} \right\rangle) + \left\langle \tilde{y}, \tilde{y} \right\rangle) + \left\langle \tilde{y}, \tilde{y} \right\rangle + 2\lambda (\Re(\left\langle y, \tilde{y} \right\rangle) - \left\langle \tilde{y}, \tilde{y} \right\rangle) \\ &= \lambda^2 \left\| y - \tilde{y} \right\|^2 + \left\langle \tilde{y}, \tilde{y} \right\rangle - \lambda \left\langle \tilde{y}, \tilde{y} \right\rangle + \lambda \left\langle y, y \right\rangle - \lambda (\left\langle \tilde{y}, \tilde{y} \right\rangle - 2\Re(\left\langle y, \tilde{y} \right\rangle + \left\langle y, y \right\rangle)) \\ &= (\lambda^2 - \lambda) \left\| y - \tilde{y} \right\|^2 + d^2 \end{split}$$

Dies muss insbesondere auch für $\lambda \in (0,1) \implies \lambda^2 \neq \lambda$ gelten und somit folgt in der Tat. $||y - \tilde{y}|| = 0 \iff y = \tilde{y}$.

Beispiel 4.4.1. Betrachte $(\mathbb{R}^2, \|\cdot\|_{\infty})$ sowie x = (0,0) und $K = \{(y_1, y_2) \in \mathbb{R}^2 \mid y_1 \geq 1\}$. Dies ist kein Hilbertraum und die Projektion ist hier auch nicht eindeutig, da

$$P = \left\{ (y_1, y_2) \in \mathbb{R}^2 \mid y_1 = 1, \ y_2 \in [-1, 1] \right\} \implies \forall p \in P : \|x - p\|_{\infty} = 1 = \inf \left\{ \|x - z\|_{\infty} \mid z \in K \right\} .$$

Beispiel 4.4.2. Betrachte \mathbb{R}^{2n} , $\|\cdot\|_1$ sowie

$$K = \left\{ \lambda \cdot \begin{pmatrix} 1 \\ \dots \\ 1 \end{pmatrix} =: \lambda \cdot \hat{y} \in \mathbb{R}^{2n} \mid \lambda \in \mathbb{R} \right\}, \ x := \begin{pmatrix} x_1 \\ \dots \\ x_{2n} \end{pmatrix} \in \mathbb{R}^{2n}.$$

Sei $m := \text{med } \{x_1, \dots, x_{2n}\}, d. h.$

$$m = \underset{a}{\operatorname{argmin}} \sum_{i=1}^{2n} |x_i - a| = \underset{a}{\operatorname{argmin}} ||x - a\hat{y}||_1.$$

Dann gilt $||x - m\hat{y}||_1 = \inf\{||x - z||_1 \mid z \in K\}.$

Definition 4.4.1. Sei $(H, \langle \cdot, \cdot \rangle)$ ein Raum mit Skalarprodukt und $X \subseteq H$. Dann heißt

$$X^{\perp} := \{ y \in H \mid \forall x \in X : x \perp y \}$$

 $orthogonales\ Komplement\ von\ X.$

Satz 4.4.2. Sei $(H, \langle \cdot, \cdot \rangle)$ ein Hilbertraum, $U \subseteq H$ ein abgeschlossener Unterraum. Dann gibt es für alle $x \in H$ eindeutig bestimmte $y_1 \in U, y_2 \in U^{\perp}$ mit $x = y_1 + y_2$.

Beweis. (Existenz) Da U ein Unterraum ist, ist U insbesondere konvex und nichtleer. Somit wählen wir $y_1 \in U$ eindeutig (nach Satz 4.4.1) mit

$$||y_1 - x|| = \inf \{||x - u|| \mid u \in U\}$$
.

Wir zeigen nun $x - y_1 \in U^{\perp}$. Seien $u \in U, \lambda \in \mathbb{K}$, dann

$$||x - y_1||^2 \le ||x - y_1 - \lambda u||^2 = ||x - y_1||^2 - 2\lambda \Re(\langle x - y_1, u \rangle) + |\lambda|^2 ||u||^2$$

Da λ, u beliebig, muss also in der Tat $\langle x - y_1, u \rangle = 0$ gelten.

(Eindeutigkeit) Angenommen $x=\hat{y}_1+\hat{y}_2$ mit $\hat{y}_1\in U,\ \hat{y}_2\in U^\perp.$ Sei $u\in U,$ dann gilt wegen der Orthogonalität

$$||x - (\hat{y}_1 + u)||^1 = ||x - \hat{y}_1||^2 + ||u||^2 \ge ||x - \hat{y}_1||^2$$
.

Dies ist nur erfüllt, wenn wir $\hat{y}_1 = y_1$ nach Satz 4.4.1 wählen, woraus die Eindeutigkeit folgt.

Beispiel 4.4.3. Betrachte $L^2([0,1])$, dann ist $U = C^0(S^1) = \{u : [0,1] \to \mathbb{K} \mid u(0) = u(1)\}$ dicht.

Kapitel 5

Lineare Operatoren

5.1 Definitionen

Definition 5.1.1. Seien $(V_1, \|\cdot\|)$ und $(V_2, \|\cdot\|')$ normierte Räume, dann heißt eine lineare Abbildung (Operator) $A: V_1 \to V_2$ beschränkt, wenn gilt:

$$\exists c \ge 0 \forall v \in V_1 : \|Av\|' \le c \|v\|$$

Bemerkung 5.1.1. $B(V_1, V_2) = \{A : V_1 \rightarrow V_2 | A \text{ linear beschränkt} \}$

Satz 5.1.1. In dieser Situation sind äquivalent:

- 1. $A \in B(V_1, V_2)$
- 2. A ist stetig
- 3. A ist gleichmäßig stetig
- 4. A ist Lipschitz-stetig
- 5. A ist stetig in 0

Beweis: Siehe Analysis 2.

???

Satz 5.1.2. Jedes lineare Funktional $A: \mathbb{K}^n \to \mathbb{K}^m$ ist beschränkt.

Beweis: Dieser Beweis wurde in der Vorlesung übersprungen.

Beispiel 5.1.1. Betrachte $C^0([0,1]), ||A||_{\infty}$, wobei

$$I: C^0([0,1]) \to C^0([0,1]), f(z) \mapsto \int_0^z f(x)dx.$$

Dann gilt

$$|I(f(z))| = \left| \int_0^z f(x) dx \right| = ||f||_{\infty} \cdot t \le ||f||_{\infty}$$

und mit

$$||If|| = \sup |If(z)| : t \in [0,1] \le ||f||_{\infty}$$

ist die Operatornorm $||I|| \le 1$. Wähle nun $f_{[0,1]}$, dann ist If(t) = t und damit ||I|| = 1.

Beispiel 5.1.2. Sei $V_1 = C^1([0,1])$ mit $\|\cdot\|_{\infty}$ und $V_2 = C^0([0,1])$ mit $\|\cdot\|_{\infty}$ sowie eine Abbildung

$$D: V_1 \to V_2, f(t) \mapsto f'(t)$$

Definiere $f_n(t) = t^n$, dann ist $||f_n||_{\infty} = 1$ und da $f'_n(t) = n \cdot t^{n-1}$ auch $||Df_n|| = n$??

Satz 5.1.3. Seien und $W, \|\cdot\|_W$ normierte Räume mit $A \in B(V, W)$ mit

$$||A||_{VW} = \inf \{ c \in \mathbb{R} | \forall v \in V : ||Av||_W \le c \}$$

Dann gilt:

$$1. \ \|A\| = \sup \left\{ \|Av\|_W : \|v\|_V = 1 \right\} = \sup \left\{ \|Av\|_w : \|v\|_V \le 1 \right\} = \sup \left\{ \frac{\|Av\|_W}{\|v\|_W}, v \in V, v \ne 0 \right\}$$

2.
$$B \in B(V, W) : ||A + B|| = ||A|| + ||B||$$
 sowie $||\lambda A|| = |\lambda| ||A||$

3. Sei $(X, \left\| \cdot \right\|_X)$ normierter Raum, $B \in B(W, X),$ dann gilt

$$||AB||_{V,X} \le ||A||_{V,W} \cdot ||B||_{W,X}$$

Beweis: 1. Sei $M := \sup \left\{ \frac{\|Av\|_W}{\|v\|_V}, v \in V, v \neq 0 \right\}$. Für v = 0, gilt $\|Av\| = 0$, für $v \neq 0$ gilt:

$$\frac{\|Av\|_w}{\|v\|_V} \leq M \implies \|Av\|_W \leq M \, \|v\|_V \implies M \geq \|A\|$$

Andererseits gilt für alle $v \neq 0$:

$$\frac{\|Av\|_W}{\|v\|_V} \le \|A\| \implies M \le \|A\|$$

2. Wir nutzen die Supremums- und Dreiecksungleichung aus:

$$\begin{split} \|A+B\| &= \sup \left\{ \|(A+B)v\|_W : \|v\| = 1 \right\} \leq \sup \left\{ \|Av\|_W + \|Bv\|_W : \|v\| = 1 \right\} \\ &\leq \sup \left\{ \|Av\|_W : \|v\| = 1 \right\} + \sup \left\{ \|Bv\|_W : \|v\| = 1 \right\} = \|A\| + \|B\| \end{split}$$

3. Gilt, da $||BAv|| \le ||B|| \cdot ||Av||_W \le ||B|| \, ||A|| \, ||v||_V$

Beispiel 5.1.3. Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum, $\phi \in L^2(\mu)$ und

$$M_{\phi}: L^2(\mu) \to L^2(\mu), f \mapsto \phi \cdot f$$
 mit $M_{\phi} \cdot M_{\psi} = M_{\psi} \cdot M_{\phi} = M_{\phi \cdot \psi}$

Dann gilt:

$$||M_{\phi}f||^{2} = \int |\phi(x)|^{2} |f(x)|^{2} dx \le \int ||\phi||_{\infty}^{2} |f(x)|^{2} dx = ||\phi||_{\infty}^{2} ||f||^{2} \le ||\phi||_{\infty}^{2} \mu - \text{ fast "überall"}$$

Wir haben also $M_{\phi} \in B(L^2(\mu), L^2(\mu))$ und $||M_{\phi}|| \leq ||\phi||_{\infty}$.

Gleichheit gilt tatsächlich für $\mu(\Omega) < \infty$.

Sei $\alpha < \|\phi\|_{\infty}$ und definiere

$$E = \{x : |\phi(x) > \alpha|\}$$

dann ist $\mu(E) > 0$. Sei nun $f = 1_E$, dann

$$||M_{\phi}f||^2 = \int_E ||\phi(x)||^2 \ge \alpha \mu(E) = \alpha ||1_E||^2$$

Bemerkung 5.1.2. Nach Konvention gilt B(V, V) = B(V).

Satz 5.1.4. Sei $(H, \langle \cdot, \cdot \rangle)$ ein Hilbert Raum, $U \subseteq H$ abgeschlossener Unterraum, dann gibt es $P, Q \in B(H)$ so, dass:

- 1. $\forall v \in H : Pv \in U \text{ und } Qv \in U^{\perp}$
- 2. $\forall v \in H : Pv + Qv = v$

Außerdem gilt:

$$||P|| = \begin{cases} 1 & U \neq \{0\} \\ 0 & U = \{0\} \end{cases}$$

Beweis: Da U abgeschlossener Unterraum von H, gibt es für jedes $v \in H$ eine eindeutige Zerlegung von $u \in U, u^{\perp} \in U^{\perp}$ mit $v = u + u^{\perp}$. Wir verwenden die Definitionen $Pv = u, Qv = u^{\perp}$ mit $v, w \in H$ und v = Pv + Qv, w = Pw + Qw. Betrachte:

$$v+w=\underbrace{(Pv+Pw)}_{\in U}+\underbrace{(Qv+Qw)}_{\in U^\perp}$$

Folglich

$$P(v+w) = Pv + Pw$$
 und $Q(v+w) = Qv + Qw$.

 $(\lambda v \text{ geht analog.})$ Wir setzen für $v \in H$ nun

$$||v||^2 = ||Pv + Qv||^2 = ||Pv||^2 + ||Qv||^2$$
 da $\langle Pv, Qv \rangle = 0$

Daraus folgt $\|Pv\|^2 \le \|v\|^2$ und $\|P\|$, $\|Q\| \le 1$. Sei $v \in U, v \ne 0$, dann Pv = v und damit $\|Pv\| = \|v\|$, also $\|P\| \ge 1$.

Satz 5.1.5. Sei V ein normierter Raum, W ein Banachraum, dann ist B(V, W) ein Banachraum mit der Operatornorm.

Beweis: Sei $(A_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge in B(V,W), dann $\lim_{n,m\to\infty} \|A_n-A_m\|=0$. Sei nun $v\in V$, dann

$$\lim_{n,m\to\infty} \|A_n v - A_m v\| \le \lim_{n,m\to\infty} \|A_n - A_m\| \|v\|$$

und damit ist $(A_n v)_{n \in \mathbb{N}}$ eine Cauchy-Folge in W. Somit ist $Av = \lim_{n \to \infty} A_n v$. Definiere $A: V \to W$ nun als Abbildung aus diesem Grenzwert.

Hier gab es in der Vorlesung einen Nachtrag, allerdings sollte es so auch gehen.

Damit gilt schon

$$||A - A_n|| = \sup_{\|v\| \le 1} \{||Av - A_nv||\} \xrightarrow{n \to \infty} 0$$

Sein nun $v, w \in V$, dann sehen wir die Linearität wie folgt:

$$A(v+w) = \lim_{n \to \infty} A_n(v+w) = \lim_{n \to \infty} A_nv + A_nw = \lim_{n \to \infty} A_nv + \lim_{n \to \infty} A_nw = Av + Aw \text{ (für } A(\lambda v) \text{ genauso)}$$

Zur Beschränktheit:

$$|||A_n|| - ||A_m||| \le ||A_n - A_m|| \xrightarrow{n,m \to \infty} 0 \implies \lim_{n \to \infty} ||A_n|| =: c$$

Betrachte nun:

$$||Av|| = \lim_{n \to \infty} ||A_n v|| \le \lim_{n \to \infty} ||A_n|| \, ||v|| = c \, ||v||$$

und damit $A \in B(V, W)$.

Bemerkung 5.1.3. Es gibt soetwas wie eine Rückrichtung: Falls B(V, W) ein Banachraum ist, wobei V nicht der triviale Vektorraum ist, so ist auch W ein Banachraum. (Wäre V der Nullvektorraum, so gäbe es mit der Nullabbildung nur eine lineare Abbildung, damit wäre B(V, W) immer vollständig.)

5.2 Das Dual

Definition 5.2.1. Sei $(V, \|\cdot\|_V)$ ein Banachraum. Dann wird $V' = B(V, \mathbb{K})$ als Dualraum von V bezeichnet. $\phi \in V'$ heißt auch linear beschränktes Funktional.

Definition 5.2.2.

Beispiel 5.2.1. Wir untersuchen den Dualraum von $V = L^p(\mu)$. Mittels der Hölderungleichung erhalten wir mit $f \in L^p(\mu), g \in L^q(\mu)$:

$$\left| \int fg d\mu \right| \le \left(\int |f|^p d\mu \right)^{\frac{1}{p}} \left(\int |g|^q d\mu \right)^{\frac{1}{q}} \text{ mit } \frac{1}{p} + \frac{1}{q} = 1$$

Sei nun $\varphi_g := \int g d\mu \in V'$. Da

$$|\varphi_g| \le ||f||_p \, ||g||_q$$

ist φ_g beschränkt und $\{\varphi_g:g\in L^p\}=(L^p(\mu))'$ und damit $L^p(\mu)''\simeq L^P(\mu).$

Satz 5.2.1. Jedes beschränkte lineare Funktional φ auf dem Hilberraum $(H, \langle \cdot, \cdot \rangle)$ hat die Form $\varphi(x) = \langle h_0, x \rangle$ für ein eindeutiges $h_0 \in H$ und $\|\varphi\|_{H'} = \|h_0\|$ und $h_0 \to \varphi$ anti-linear.

Beweis: Existenz Sei O.b.d. A $\varphi \neq 0$, d.h. $\ker \varphi = \{x \in H | \varphi(x) = 0\}$ ist ein echter abgeschlossener Teilraum. Dann muss aber auch $\ker \varphi^{\perp} \neq \{0\}$. Sei $z \in \ker \varphi$ mit $\|z\| > 0$ und o.B.d. A $\varphi(z) = 1$. Sei $h \in H$ beliebig, dann sehen wir

$$\varphi(\underbrace{\varphi(h)z-h}_{\in \ker \varphi \perp z}) = \varphi(h)\varphi(z) - \varphi(h) = 0.$$

Damit ist $z \perp \varphi(h)z - h$ und äquivalent dazu

$$0 = \langle z, \varphi(h)z - h \rangle = \varphi(h) \|z\|^2 - \langle z, h \rangle \text{ also } \varphi(h) = \left\langle \frac{z}{\|z\|^2}, h \right\rangle.$$

Eindeutigkeit

Nehmen wir an, dass $\langle h_1, h \rangle = \langle h_2, h \rangle$ mit $h = h_1 - h_2$ und sei

$$0 = \langle h_1 - h_2, h \rangle = ||h_1 - h_2||^2 \implies h_1 = h_2.$$

Über die CBS-Ungleichung gilt außerdem:

$$|\langle h_0, h \rangle| \le ||h_0|| \, ||h|| \implies ||\varphi||_{H'} \le ||h_0||.$$

Da aber

$$|\varphi(h_0)| = \langle h_0, h_0 \rangle = ||h_0||^2 = ||h_0|| ||h_0|| \implies ||\varphi|| = ||h_0||.$$

Beispiel 5.2.2. Sei $L^q(\mu) \subseteq L^p(\mu)'$ mit $\mu(\omega) < \infty$ und $\Omega = \bigcup_{n \in \mathbb{N}} \Omega_n$ und jeweils $\mu(\Omega_n) < \infty$. Sei $\varphi = \varphi^+ - \varphi^-$ und $g \ge 0$, dann $\varphi^{\pm}(g) \ge 0$.

Sei o.B.d.A $\varphi \geq 0$. Dann ist $v_{\varphi} : \mathcal{F} \to [0, \infty], v_{\varphi}(E) = \varphi(1_E)$ ein Maß. Wenn $\varphi(E) = 0$, dann $v_{\varphi}(E) = 0$. Mit dem Satz von Radon-Nikodim (LABEL???) folgt, dass es ein $h \in \mathcal{M}(\Omega, \mathbb{R}_{\geq 0})$ mit

$$\varphi(1_E) = v_{\varphi}(E) = \int 1_E h d\mu$$

Damit erhalten wir $\varphi(f) = \int fhd\mu$ und die Hölderungleichung.

Satz 5.2.2. Die Abbildung $\psi: H \to H', h \mapsto \langle h, \cdot \rangle$ ist eine (anti-lineare) isometrische Projektion.

Beweis: Wurde in der Vorlesung übersprungen.

Bemerkung 5.2.1. In der Physik schreibt man auch:

$$\langle u| := \langle u, \cdot \rangle \ bra$$

$$|h\rangle := h, ket$$

Unter Ausnutzung von Notation gilt dann $\langle u|h\rangle := \langle u,h\rangle$

Definition 5.2.3. Seien H,K Hilberträume, dann heißt eine Sesquilinearform $u:H\times K\to \mathbb{K}$ beschränkt genau dann wenn

$$\exists M>0, \forall h\in H, k\in \mathbb{K}: \left|u(h,k)\right|\leq M\left\|h\right\|_{H}\left\|k\right\|_{K}$$

Satz 5.2.3. Ein Operator u wie in 5.2.3 ist genau dann beschränkt, wenn

$$\exists A \in B(K, H) : \forall h \in H, \forall k \in K : u(h, k) = \langle h, Ak \rangle$$

Beweis: (\Longrightarrow)

Sei k fixiert, $u(\cdot, k) \in H'$, da:

$$|u(h,k)| \le M \|h\|_H \|k\|_K \le (M \|k\|_K) \|h\|_H$$
.

Mit 5.2.2 folgt:

$$\exists ! A(k) \in H : \overline{u(\cdot, k)} = \langle A(k), \cdot \rangle \text{ bzw. } \forall h \in H : u(h, k) = \langle h, A(k) \rangle$$

Sei nun $k_1, k_2 \in K$, dann haben wir:

$$\langle h, A(k_1 + k_2) \rangle = u(h, k_1 + k_2) = u(h, k_1) + u(h, k_2) = \langle h, A(k_1) + A(k_2) \rangle$$

Sei nun $\lambda \in \mathbb{K}, k \in K$, so folgt:

$$\langle h, A(\lambda k) \rangle = u(h, \lambda k) = \lambda u(h, k) = \lambda \langle h, A(k) \rangle = \langle h, \lambda A(k) \rangle$$

Damit ist A linear.

Wir wissen für $||h|| \le 1$:

$$\left|\left\langle h,Ak\right\rangle \right|=\left|u(h,k)\right|\leq M\left\|h\right\|\left\|k\right\|\leq M\left\|k\right\|$$

Damit folgt $||Ak|| \le M ||k||$ also ist A beschränkt. Folglich $A \in B(H, K)$.

(⇐=)

Sei $A \in B(K, H)$, dann haben wir folgende Abschätzung mittels CBS-Ungleichung:

$$|\langle h, Ak \rangle| < ||h|| \, ||Ak|| < ||A|| \, ||h|| \, ||k||$$

Satz 5.2.4. Für alle $A \in B(K, H)$ gibt es $A^* \in B(H, K)$ mit der Eigenschaft

$$\forall h \in H, k \in K : \langle h, Ak \rangle = \langle A^*h, k \rangle.$$

Dieser adjungierte Operator hat folgende Eigenschaften:

- 1. $A \to A^*$ ist antilinear
- 2. $A^{**} = A$
- 3. $(AB)^* = B^*A^*$
- 4. $||A^*|| = ||A|| \text{ und } ||A^*A|| = ||A||^2 (C^* Axiom)$

Beweis: Existenz:

Mittel der CBS-Ungleichung erhalten wir:

$$|\langle h, Ak \rangle| \le ||h|| \, ||Ak|| \le ||A|| \, ||h|| \, ||k||.$$

Aber es gilt $|\langle h, Ak \rangle| = |\langle Ah, k \rangle|$ Damit ist $u(k, h) := \langle Ak, h \rangle$ sesquilinear auf $K \times H$. Damit gibt es aber ein eindeutiges A^* mit

$$\overline{\langle Ak, h \rangle} = \overline{u(h, k)} = \overline{\langle k, A^*h \rangle}$$

zu 1: Es gilt
$$\langle (\lambda A)^*h, k \rangle = \langle h, \lambda Ak \rangle = \lambda \langle h, Ak \rangle = \langle \overline{\lambda} A^*h, k \rangle$$

 $zu \ 2: \langle A^{**}k, h \rangle = \langle k, A * h \rangle = \overline{\langle A^*h, k \rangle} = \overline{\langle h, Ak \rangle} = \overline{\langle Ak, h \rangle}$ mit $h = A^{**} - Ak$. Dann:

$$0 = \langle A^{**}k, h \rangle - \langle Ak, h \rangle = \langle (A^{**} - A)k, (A^{**} - A)k \rangle \implies ||A^{**}k - Ak|| = 0$$

Damit gilt dann die Gleichheit.

zu 3: Sei $A \in B(K, H), B \in B(L, K)$ und $AB \in B(L, H)$. Außerdem gilt: $||AB|| \le ||A|| \, ||B||$. Des Weiteren:

$$\forall h \in H, l \in L : \langle (AB)^*, l \rangle = \langle h, A(Bl) \rangle = \langle A^*l, Bl \rangle = \langle B^*A^*h, l \rangle$$

zu 4: Sei $k \in K$ mit ||k|| = 1. Dann gilt mit der CBS-Ungleichung

$$||Ak||^2 = \langle Ak, Ak \rangle = \langle A*Ak, k \rangle < ||A*A|| < ||A*|| ||A||$$

Auf der anderen Seite:

$$\sup_{\|k\| \le 1} \|Ak\| = \|A\|^2 \le \|A^*\| \|A\| \implies \|A^*\| \ge \|A\|$$

Aufgrund von 2. haben wir auch hier Gleichheit. Damit haben wir dann:

$$||A||^2 \le ||A^*A|| \le ||A^*|| \, ||A|| = ||A||^2$$

Beispiel 5.2.3. "bra's adjoined"

Sei nun $A := \langle v | : H \to \mathbb{K}$ und wir betrachten den dazu adjungierten Operator $A^* : \mathbb{K} \to H$. Wir haben:

$$\forall h \in H, \lambda \in \mathbb{K} : \langle A^* \lambda, h \rangle = \langle \lambda, Ah \rangle_{\mathbb{K}} = \langle \lambda, Ah \rangle_{\mathbb{K}} = \overline{\lambda} Ah = \overline{\lambda} \langle v, h \rangle = \lambda \langle v, h \rangle.$$

Daraus folgt dann $A^*\lambda = \lambda v$ und damit $|langev| = |v\rangle$

Beispiel 5.2.4. Sei H ein Hilbertraum, $K \subseteq H$ ein abgeschlossener Unterraum. Sei des Weiteren noch $P,Q \in B(H)$ mit $Ph \in K, Qh \in K^{\perp}, P+Q=I_H$ wobei I_H der Identitätsoperator ist. Gesucht ist nun P^* .

Betrachten wir dazu:

$$\langle P^*h,h'\rangle = \langle h,Ph'\rangle = \langle Ph,Ph\rangle + \underbrace{\langle Qh,Ph'\rangle}_{=0} = \langle P^*Ph,h'\rangle\,.$$

Damit haben wir $P^* = P^*P$ und da

$$P = (P^*P)^* = P^*P^{**} = P^*P = P^*$$
 und damit $P = P^* = P^2$

Des Weiteren haben wir $h - Ph \perp Ph$:

$$\langle h - Ph, Ph \rangle = \langle Ph \rangle - \langle h, P^*Ph \rangle = 0$$

(Für Q analog.)

Definition 5.2.4. Sei $A \in B(H)$, dann heißt A:

- selbstadjungiert, falls $A^* = A$
- normal, falls $A^*A = AA^*$
- unitär, falls $A^*A = \mathrm{Id}_H = AA^*$

Beispiel 5.2.5. Wir betrachten den $L^2(\mu)$ mit dem Multiplikationsoperator $M_{\varphi}f(x) = \varphi(x)f(x)$. Dann gilt:

$$\left\langle M_{\varphi}^*h,f\right\rangle = \left\langle h,M_{\varphi}f\right\rangle = \int \bar{h}(x)\varphi(x)f(x)\mu(dx) = \int \overline{\bar{\varphi}(x)h(x)}f(x)\mu(dx) = \left\langle M_{\bar{\varphi}}h,f\right\rangle.$$

Somit erhalten wir $M_{\varphi}^* = M_{\bar{\varphi}}$. Falls außerdem $\operatorname{Im} \varphi \subseteq \mathbb{R}$, dann ist der Operator selbstadjungiert. Des Weiteren ist er normal, da:

$$M_{\varphi}^* M_{\varphi} = M_{\bar{\varphi}} M_{\varphi} = M_{|\varphi|^2} = M_{\varphi} M_{\varphi}^*$$

5.3 Der Satz von Hahn-Banach

Definition 5.3.1. Eine partielle Ordnung auf einer Menge X ist eine Relation \leq , sodass für alle $a,b,c\in X$ gilt:

- 1. Transitivität: $a \le b \land b \le c \implies a \le c$
- 2. Reflexivität: $a \leq a$
- 3. Anti-Symmetrie: $a \le b \land b \le a \implies a = b$

Falls für alle $a, b \in X$ gilt $a \le b \lor b \le a$, dann wird X als total geordnet bezeichnet.

Satz 5.3.1 (Lemma von Zorn). Sei (Z, \leq) eine partiell geordnete Menge mit der Eigenschaft, dass jede total geordnete Teilmenge (bez. Kette) eine obere Schranke in Z hat. Dann hat Z ein maximales Element.

Lemma 5.3.1. Sei $(V, \|\cdot\|)$ ein normierter Vektorraum, $U \subseteq V$ ein Unterraum, $z \in V \setminus U$ so, dass $V = \text{span}\{U \cup \{z\}\}$ sowie $\varphi_0 \in U'$. Dann gibt es $\varphi \in V'$ mit $\forall u \in U : \varphi(u) = \varphi_0(u)$ und $\|\varphi\| = \|\varphi_0\|$.

In der Vorlesung wurde im Lemma $\|\varphi\| \ge \|\varphi_0\|$ angegeben, aber dies sollte direkt aus $\varphi|_U = \varphi_0$ folgen und wir zeigen im Lemma \le und somit Gleichheit, oder?

Beweis. Wir zeigen hier nur den Fall $\mathbb{K} = \mathbb{R}$. Nehmen o. B. d. A. an, dass $\varphi_0 \neq 0$ (ansonsten setze $\varphi = 0$) und $\|\varphi_0\| = 1$. Weiterhin gilt nach Voraussetzung

$$V = \operatorname{span} \{ U \cup \{z\} \} = \{ u + \alpha z \mid u \in U, \alpha \in \mathbb{R} \} = \{ \alpha z - u \mid u \in U, \alpha \in \mathbb{R} \} .$$

Zeige nun, dass für $v=\alpha z-u\in V$ mit $u\in U, \alpha\in\mathbb{R}$ eindeutig ist. Angenommen für $u_1,u_2\in U, \alpha_1,\alpha_2\in\mathbb{R}$ gilt $v=u_1+\alpha_1z=u_2+\alpha_2z$, dann folgt

$$u_1 + \alpha_1 z = u_2 + \alpha_2 z \iff \overbrace{(\alpha_2 - \alpha_1)z}^{\notin U} = \underbrace{u_1 - u_2}_{=U} \implies \alpha_1 = \alpha_2 \implies u_1 = u_2.$$

Betrachte nun $x, y \in U$, dann gilt (mit $\|\varphi_0\| = 1$)

$$\overbrace{\varphi_0(x) - \varphi_0(y)}^{\in \mathbb{R}} \le |\varphi_0(x) - \varphi_0(y)| = |\varphi_0(x) - \varphi_0(y)|
= |\varphi_0(x - y)| \le ||\varphi_0|| ||x - y|| = ||x - y|| \le ||x - z|| + ||y - z||
\iff \varphi(x) - ||x - z|| \le \varphi_0(y) + ||y - z||.$$

Somit existiert $c \in \mathbb{R}$ mit

$$\sup_{x \in U} \varphi_0(x) - \|x - z\| \le c \le \inf_{y \in U} \varphi_0(y) + \|y - z\|.$$

Damit können wir nun die Forsetzung definieren, wobei für $v \in V$ (wie oben) gilt

$$\varphi(v) = \varphi(\alpha z - u) := \alpha c - \varphi_0(u)$$
.

Wir prüfen nun die geforderten Eigenschaften. Es gilt offensichtlich $\varphi|_U = \varphi_0$ (setzen $\alpha = 0$ in eindeutiger Darstellung) und somit automatisch $\|\varphi\| \ge \|\varphi_0\|$. Zeige nun die Normabschätzung. Zunächst gilt $\forall \tilde{u} \in U$

$$\varphi_0(\tilde{u}) - \|\tilde{u} - z\| \le c \le \varphi_0(\tilde{u}) + \|\tilde{u} - z\|$$

$$\iff -\|\tilde{u} - z\| \le c - \varphi_0(\tilde{u}) \le \|\tilde{u} - z\|$$

$$\iff |c - \varphi_0(\tilde{u})| \le \|\tilde{u} - z\|$$

Somit erhalten wir $\forall \alpha \in \mathbb{R}, \alpha \neq 0, u \in U$ (d.h. für $v \in V \setminus U$)

$$|\varphi(\alpha z - u)| = |\alpha| \left| \varphi\left(z - \frac{u}{\alpha}\right) \right| = |\alpha| \cdot \left| c - \varphi_0\left(\frac{u}{\alpha}\right) \right| \le |\alpha| \left\| \frac{u}{\alpha} - z \right\| = \|\alpha z - u\|.$$

Folglich gilt $|\varphi(\alpha z - u)| \le ||\varphi_0|| ||az - u|| \implies ||\varphi|| \le ||\varphi_0||$ und es folgt Normgleichheit.

Satz 5.3.2 (Hahn-Banach). Sei V, $\|\cdot\|$ ein normierter Vektorraum, $U \subseteq V$ ein Unterraum und $\varphi_0 \in U'$. Dann gibt es ein $\varphi \in V'$ mit $\varphi|_U = \varphi_0$ und $\|\varphi\|_{V'} = \|\varphi_0\|_{U'}$. D. h. jedes beschränkte, lineare Funktional kann normgleich fortgesetzt werden.

Beweis. O. B. d. A $\|\varphi_0\| = 1$. Wir setzen

$$Z := \{(W, \psi) \mid U \subseteq W \subseteq V \text{ Unterraum}, \ \psi \in W', \ \psi|_U = \psi_0, \ \|\psi\| = \|\varphi_0\| = 1\}.$$

Definieren partielle Ordnung auf Z über

$$(W,\psi) \le (\tilde{W},\tilde{\psi}) : \iff W \subseteq \tilde{W} \text{ und } \tilde{\psi}|_W = \psi$$
.

Sei nun $Z_0 \subseteq Z$ eine total geordnete Teilmenge, womit wir $W^* \subseteq V$ wie folgt definieren

$$Z_0 := \{(W_i, \psi_i) \mid i \in I\} \text{ und } W^* := \bigcup_{i \in I} W_i .$$

Dabei ist W^* ein Unterraum, da für $x, y \in W^*$ existieren $i_1, i_2 \in I$, sodass $x \in W_{i_1}$ und $y \in W_{i_2}$. Sei o. B. d. A. $(W_{i_2}, \psi_{i_2}) \ge (W_{i_1}, \psi_{i_1})$, dann gilt nach Voraussetzung auch $x \in W_{i_2}$, dies ist ein Unterraum und somit $x + y \in W^*$. Wir definieren nun ein lineares Funktional ψ^* auf W^* , wobei für $w \in W^*$

$$\exists \hat{i} \in I : w \in W_{\hat{i}} \text{ und somit } \psi^*(w) := \psi_{\hat{i}}(w) .$$

Zeige nun, dass ψ^* wohldefiniert ist. Seien $(W_{i_j}, \psi_{i_j}) \in Z_0$, $j \in \{1, 2\}$, $w \in W_{i_1}$, o. B. d. A. $W_{i_1} \subseteq W_{i_2}$ und $\psi_{i_2}|_{W_{i_1}} = \psi_{i_1}$. Dann gilt $\psi_{i_2}(w) = \psi_{i_1}(w)$, d. h. ψ^* ist wohldefiniert. Weiterhin existiert für alle $w \in W^*$ ein $i^* \in I$ mit

$$|\psi^*(w)| = |\psi_{i^*}(w)| \le ||\psi_{i^*}|| \, ||w|| = ||\varphi_0|| \, ||w|| = ||w|| \implies ||\psi^*|| \le 1.$$

Da offensichtlich $\|\psi^*\| \ge \|\varphi_0\|$ (wegen $\psi^*|_U = \varphi_0$), folgt $\|\psi^*\| = 1$. Somit $(W^*, \psi^*) \in Z$ und für $(W, \psi) \in Z_0$ beliebig gilt nach Konstruktion

$$W \subseteq W^*$$
 und $\forall w \in W : \psi^*(w) = \psi(w) \implies (W, \psi) \le (W^*, \psi^*)$.

Somit ist (W^*, ψ^*) eine obere Schranke von Z_0 . Nach dem Lemma von Zorn hat Z_0 also ein Maximum, bez. dieses mit (W_0, ψ_0) . Angenommen $W_0 \neq V$. Dann können wir für $z \in V \setminus W_0$ Lemma 5.3.1 anwenden auf $W_1 := \operatorname{span} \{W_0 \cup \{z\}\}$, d. h.

$$\exists \eta \in W_1' : \eta|_{W_0} = \psi_0 \text{ und } \|\eta\| = \|\psi_0\| = \|\varphi_0\|.$$

Dann folgt jedoch $(W_1, \eta) \in Z$ mit $(W_1, \eta) > (W_0, \psi_0)$, was ein Widerspruch dazu ist, dass (W_0, ψ_0) eine obere Schranke ist. Somit leistet $W_0 = V$ und $\varphi := \psi_0$ das Verlangte.

Beispiel 5.3.1. Sei V ein \mathbb{K} -Vektorraum, $U \subseteq V$ ein dichter Teilraum von V und $\varphi_0 \in U'$. Nach Voraussetzung existiert für jedes $x \in V$ eine Cauchyfolge $(x_n)_{n \in \mathbb{N}}$, $\forall n \in \mathbb{N} : x_n \in U$ mit $\lim_{n \to \infty} x_n = x$. Da φ_0 beschränkt und linear (und somit stetig), folgt, dass auch $(\varphi_0(x_n))_{n \in \mathbb{N}}$ eine Cauchyfolge auf

 $\mathbb{K}=\mathbb{R}$ oder $\mathbb{K}=\mathbb{C}$ (und somit konvergent) ist. Wir definieren die (eindeutige) Fortsetzung $\varphi\in V'$ mit

$$\forall x \in V' : \varphi(x) = \lim_{n \to \infty} \varphi_0(x_n)$$
.

Weiterhin gilt

$$\lim_{n \to \infty} \varphi_0(x_n) \le \lim_{n \to \infty} \|\varphi_0\| \|x_n\| = \|\varphi_0\| \|x\|.$$

Es ist nicht ganz klar, wozu die letzte Abschätzung nötig ist und wieso die Eindeutigkeit gilt.

Satz 5.3.3. Sei $(V, \|\cdot\|)$ ein normierter Raum, wobei $V \neq \{0\}$. Dann gibt es für jedes $x_0 \neq 0 \in V$ ein $\varphi \in V'$ mit $\varphi(x_0) = \|x_0\|$ und $\|\varphi\| = 1$.

Beweis. Wir setzen $U := \{\alpha x_0 \mid \alpha \in \mathbb{K}\}$, damit ist $U \subseteq V$ ein Unterraum. Definieren $\varphi_0 \in U'$ über

$$\forall \alpha \in \mathbb{K} : \varphi_0(\alpha x_0) = \alpha \|x_0\| \implies \varphi_0(x_0) = \|x_0\|.$$

Weiterhin gilt

$$\|\varphi_0\| = \sup \{ |\varphi_0(\alpha x_0)| \mid \alpha \in \mathbb{K}, |\alpha| \|x_0\| \le 1 \} = \sup \{ |\alpha| \|x_0\| \mid |\alpha| \|x_0\| \le 1 \} = 1.$$

Nach dem Satz von Hahn-Banach können wir nun φ_0 normgleich nach V' fortsetzen und erhalten somit die geforderten Eigenschaften.

Satz 5.3.4. Sei $(V, \|\cdot\|)$ ein normierter Raum. Dann ist

$$\psi: V \to V'', \ x \mapsto (x'': \varphi \mapsto \varphi(x))$$

eine isometrische Abbildung.

Beweis. Es gilt

$$||x''|| = \sup \{|\varphi(x)| \mid \varphi \in V', ||\varphi|| \le 1\}$$

Dabei gilt $|\varphi(x)| \leq ||\varphi|| ||x|| \leq ||x||$ für $||\varphi|| \leq 1$. Somit $||x''|| \leq ||x||$. Da $\varphi_x \in V'$ mit $\varphi_x(x) := ||x||$, folgt die Gleichheit ||x''|| = ||x||.