Package 'AIUQ'

July 2, 2024

Type Package

Title Ab Initio Uncertainty Quantification
Version 0.5.3
Author Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
Maintainer Mengyang Gu <mengyang@pstat.ucsb.edu></mengyang@pstat.ucsb.edu>
Description Uncertainty quantification and inverse estimation by probabilistic generative models from the beginning of the data analysis. An example is a Fourier basis method for inverse estimation in scattering analysis of microscopy videos. It does not require specifying a certain range of Fourier bases and it substantially reduces computational cost via the generalized Schur algorithm. See the reference: Mengyang Gu, Yue He, Xubo Liu and Yimin Luo (2023), <doi:10.48550 arxiv.2309.02468=""></doi:10.48550>
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.2.3
Imports fftwtools (>= 0.9.11), SuperGauss (>= 2.0.3), methods, plot3D (>= 1.4)
NeedsCompilation no
Suggests knitr, rmarkdown
VignetteBuilder knitr
Repository CRAN
Date/Publication 2024-07-02 07:30:08 UTC
Contents
aniso_SAM2aniso_SAM-class5aniso_simulation6aniso_simulation-class8get_dqt9

2 aniso_SAM

modeled_dqt 11 modeled_isf 12 plot_intensity 13 plot_MSD 14 plot_traj 15 SAM 16 SAM-class 19 show.aniso_sam 20 show.aniso_simulation 21 show.sam 22 show.simulation 23 simulation 24 simulation-class 26
--

aniso_SAM

Scattering analysis of microscopy for anisotropic processes

Description

Fast parameter estimation in scattering analysis of microscopy for anisotropic processes, using AIUQ method.

Usage

Index

```
aniso_SAM(
  intensity = NA,
  intensity_str = "T_SS_mat",
  pxsz = 1,
  sz = c(NA, NA),
 mindt = 1,
 AIUQ\_thr = c(1, 1),
 model_name = "BM",
  sigma_0_2_ini = NaN,
  param_initial = NA,
  num\_optim = 1,
  msd_fn = NA,
 msd\_grad\_fn = NA,
  num_param = NA,
  uncertainty = FALSE,
 M = 50,
  sim_object = NA,
  msd_truth = NA,
 method = "AIUQ",
  index_q_AIUQ = NA,
 message_out = TRUE,
```

aniso_SAM 3

```
square = FALSE
)
```

Arguments

intensity intensity profile. See 'Details'.

intensity_str structure of the intensity profile, options from ('SST_array','S_ST_mat','T_SS_mat').

See 'Details'.

pxsz size of one pixel in unit of micron, 1 for simulated data

frame size of the intensity profile in x and y directions, number of pixels con-

tained in each frame equals sz_x by sz_y.

mindt minimum lag time, 1 for simulated data

AIUQ_thr threshold for wave number selection, numeric vector of two elements with val-

ues between 0 and 1. See 'Details'.

model_name fitted model, options from ('BM','OU','FBM','OU+FBM', 'user_defined'), with

Brownian motion as the default model. See 'Details'.

sigma_0_2_ini initial value for background noise. If NA, use minimum value of absolute square

of intensity profile in reciprocal space.

param_initial initial values for param estimation.

num_optim number of optimization.

msd_fn user defined mean squared displacement(MSD) structure, a function of parame-

ters and lag times. NA if model_name is not 'user_defined'.

msd_grad_fn gradient for user defined mean squared displacement structure. If NA, then

numerical gradient will be used for parameter estimation in 'user_defined'

model.

num_param number of parameters need to be estimated in the intermediate scattering func-

tion, need to be non-NA value for user_defined' model.

uncertainty a logical evaluating to TRUE or FALSE indicating whether parameter uncer-

tainty should be computed.

M number of particles. See 'Details'.

sim_object NA or an S4 object of class simulation.

msd_truth true MSD or reference MSD value.

method methods for parameter estimation, options from ('AIUQ', 'DDM').

index_q_AIUQ index range for wave number when using AIUQ method. See 'Details'.

message_out a logical evaluating to TRUE or FALSE indicating whether or not to output the

message.

square a logical evaluating to TRUE or FALSE indicating whether or not to crop the

original intensity profile into square image.

4 aniso_SAM

Details

For simulated data using aniso_simulation in AIUQ package, intensity will be automatically extracted from aniso_simulation class.

By default intensity_str is set to 'T_SS_mat', a time by space×space matrix, which is the structure of intensity profile obtained from aniso_simulation class. For intensity_str='SST_array', input intensity profile should be a space by space by time array, which is the structure from loading a tif file. For intensity_str='S_ST_mat', input intensity profile should be a space by space×time matrix.

By default AIUQ_thr is set to c(1,1), uses information from all complete q rings. The first element affects maximum wave number selected, and second element controls minimum proportion of wave number selected. By setting 1 for the second element, if maximum wave number selected is less than the wave number length, then maximum wave number selected is coerced to use all wave number unless user defined another index range through index_q_AIUQ.

If model_name equals 'user_defined', or NA (will coerced to 'user_defined'), then msd_fn and num_param need to be provided for parameter estimation.

Number of particles M is set to 50 or automatically extracted from simulation class for simulated data using simulation in AIUQ package.

By default, using all wave vectors from complete q ring for both AIUQ, unless user defined index range through index_q_AIUQ.

Value

Returns an S4 object of class aniso_SAM.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.

Examples

```
library(AIUQ)
# Example 1: Estimation for simulated data
set.seed(1)
aniso_sim = aniso_simulation(sz=100,len_t=100, model_name="BM",M=100,sigma_bm=c(0.5,0.3))
show(aniso_sim)
plot_traj(object=aniso_sim)
aniso_sam = aniso_SAM(sim_object=aniso_sim, model_name="BM",AIUQ_thr = c(0.999,0))
show(aniso_sam)
plot_MSD(aniso_sam,msd_truth = aniso_sam@msd_truth)
```

aniso_SAM-class 5

aniso_SAM-class

Anisotropic SAM class

Description

S4 class for fast parameter estimation in scattering analysis of microscopy for anisotropic processes, using either AIUQ or DDM method.

Slots

pxsz numeric. Size of one pixel in unit of micron with default value 1.

mindt numeric. Minimum lag time with default value 1.

sz vector. Frame size of the intensity profile in x and y directions, number of pixels contained in each frame equals sz_x by sz_y.

len_t integer. Number of time steps.

len_q integer. Number of wave vector.

q vector. Wave vector in unit of um^-1.

d_input vector. Sequence of lag times.

B_est_ini numeric. Estimation of B. This parameter is determined by the noise in the system. See 'References'.

A_est_ini vector. Estimation of A(q). Note this parameter is determined by the properties of the imaged material and imaging optics. See 'References'.

I_o_q_2_ori vector. Absolute square of Fourier transformed intensity profile, ensemble over time.

q_ori_ring_loc_unique_index list. List of location index of non-duplicate values for each q
ring.

model_name character. Fitted model, options from ('BM','OU','FBM','OU+FBM', 'user_defined'). param_est matrix. Estimated parameters contained in MSD.

sigma_2_0_est vector. Estimated variance of background noise.

msd_est matrix. Estimated MSD.

uncertainty logical. A logical evaluating to TRUE or FALSE indicating whether parameter uncertainty should be computed.

msd_truth matrix. True MSD or reference MSD value.

sigma_2_0_truth vector. True variance of background noise, non NA for simulated data using simulation.

param_truth matrix. True parameters used to construct MSD, non NA for simulated data using aniso_simulation.

index_q vector. Selected index of wave vector.

I_q matrix. Fourier transformed intensity profile with structure 'SS_T_mat'.

AIC numeric. Akaike information criterion score.

mle numeric. Maximum log likelihood value.

6 aniso_simulation

```
msd_x_lower vector. Lower bound of 95% confidence interval of MSD in x directions. msd_x_upper vector. Upper bound of 95% confidence interval of MSD in x directions. msd_y_lower vector. Lower bound of 95% confidence interval of MSD in y directions. msd_y_upper vector. Upper bound of 95% confidence interval of MSD in y directions. param_uq_range matrix. 95% confidence interval for estimated parameters.
```

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.

aniso_simulation

Simulate anisotropic 2D particle movement

Description

Simulate anisotropic 2D particle movement from a user selected stochastic process, and output intensity profiles.

Usage

```
aniso_simulation(
  sz = c(200, 200),
 len_t = 200,
 M = 50,
 model_name = "BM",
 noise = "gaussian",
  10 = 20,
  Imax = 255,
  pos0 = matrix(NaN, nrow = M, ncol = 2),
  rho = c(0.95, 0.9),
 H = c(0.4, 0.3),
  sigma_p = 2,
  sigma_bm = c(1, 0.5),
  sigma_ou = c(2, 1.5),
  sigma_fbm = c(2, 1.5)
)
```

aniso_simulation 7

Arguments

sz	frame size of simulated image with default c(200, 200).
len_t	number of time steps with default 200.
М	number of particles with default 50.
model_name	stochastic process simulated, options from ('BM','OU','FBM','OU+FBM'), with default 'BM'.
noise	background noise, options from ('uniform', 'gaussian'), with default 'gaussian'.
10	background intensity, value between 0 and 255, with default 20.
Imax	maximum intensity at the center of the particle, value between 0 and 255, with default 255.
pos0	initial position for M particles, matrix with dimension M by 2.
rho	correlation between successive step and previous step in O-U process, in x , y-directions. A vector of length 2 with values between 0 and 1, default $c(0.95,0.9)$.
Н	Hurst parameter of fractional Brownian Motion, in x , y -directions. A vector of length 2, value between 0 and 1, default $c(0.4,0.3)$.
sigma_p	radius of the spherical particle (3sigma_p), with default 2.
sigma_bm	distance moved per time step of Brownian Motion, in x,y-directions. A vector of length 2 with default $c(1,0.5)$.
sigma_ou	distance moved per time step of Ornstein–Uhlenbeck process, in x , y -directions. A vector of length 2 with default $c(2,1.5)$.

distance moved per time step of fractional Brownian Motion, in x, y-directions.

Value

sigma_fbm

Returns an S4 object of class anisotropic_simulation.

A vector of length 2 with default c(2,1.5).

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.

Examples

```
library(AIUQ)
 # -----
 # Example 1: Simple diffusion for 200 images with
      200 by 200 pixels and 50 particles
 aniso_sim_bm = aniso_simulation()
 show(aniso_sim_bm)
 # Example 2: Simple diffusion for 100 images with
          100 by 100 pixels and slower speed
 aniso_sim_bm = aniso_simulation(sz=100,len_t=100,sigma_bm=c(0.5,0.1))
 show(aniso_sim_bm)
 # -----
 # Example 3: Ornstein-Uhlenbeck process
 aniso_sim_ou = aniso_simulation(model_name="0U")
 show(aniso_sim_ou)
aniso_simulation-class
                     Anisotropic simulation class
```

Description

S4 class for anisotropic 2D particle movement simulation.

Details

```
intensity should has structure 'T_SS_mat', matrix with dimension len_t by sz \times sz. pos should be the position matrix with dimension M \times len_t. See bm_particle_intensity, ou_particle_intensity, fbm_particle_intensity, fbm_ou_particle_intensity.
```

Slots

```
sz vector. Frame size of the intensity profile, number of pixels contained in each frame equals sz[1] by sz[2].
len_t integer. Number of time steps.
noise character. Background noise, options from ('uniform','gaussian').
model_name character. Simulated stochastic process, options from ('BM','OU','FBM','OU+FBM').
M integer. Number of particles.
pxsz numeric. Size of one pixel in unit of micron, 1 for simulated data.
mindt numeric. Minimum lag time, 1 for simulated data.
```

get_dqt 9

```
pos matrix. Position matrix for particle trajectory, see 'Details'. intensity matrix. Filled intensity profile, see 'Details'. num_msd matrix. Numerical mean squared displacement (MSD). param matrix. Parameters used to construct MSD. theor_msd matrix. Theoretical MSD. sigma_2_0 vector. Variance of background noise.
```

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.

get_dqt

Compute observed dynamic image structure function

Description

Compute observed dynamic image structure function (Dqt) using object of SAM class.

Usage

```
get_dqt(object, index_q = NA)
```

Arguments

object an S4 object of class SAM

index_q wavevector range used for computing Dqt

Value

A matrix of observed dynamic image structure function with dimension len_q by len_t-1.

Author(s)

10 get_isf

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.

Examples

```
## Not run:
library(AIUQ)
sim_bm = simulation(len_t=100,sz=100,sigma_bm=0.5)
show(sim_bm)
sam = SAM(sim_object = sim_bm)
show(sam)
Dqt = get_dqt(object=sam)
## End(Not run)
```

get_isf

Compute empirical intermediate scattering function

Description

Compute empirical intermediate scattering function (ISF) using object of SAM class.

Usage

```
get_isf(object, index_q = NA, msd_truth = NA)
```

Arguments

object an S4 object of class SAM

index_q wavevector range used for computing ISF

msd_truth true or reference MSD

Value

A matrix of empirical intermediate scattering function with dimension len_q by len_t-1.

Author(s)

modeled_dqt 11

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.

Examples

```
## Not run:
library(AIUQ)
sim_bm = simulation(len_t=100,sz=100,sigma_bm=0.5)
show(sim_bm)
sam = SAM(sim_object = sim_bm)
show(sam)
ISF = get_isf(object=sam)
## End(Not run)
```

modeled_dqt

Compute modeled dynamic image structure function

Description

Compute modeled dynamic image structure function (Dqt) using object of SAM class.

Usage

```
modeled_dqt(object, index_q = NA, uncertainty = FALSE)
```

Arguments

object an S4 object of class SAM

index_q wavevector range used for computing Dqt

uncertainty logic evalution

Value

A matrix of modeled dynamic image structure function with dimension len_q by len_t-1.

Author(s)

modeled_isf

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.

Examples

```
library(AIUQ)
sim_bm = simulation(len_t=100,sz=100,sigma_bm=0.5)
show(sim_bm)
sam = SAM(sim_object = sim_bm)
show(sam)
modeled_Dqt = modeled_dqt(object=sam)
```

modeled_isf

Compute modeled intermediate scattering function

Description

Compute modeled intermediate scattering function (ISF) using object of SAM class.

Usage

```
modeled_isf(object, index_q = NA)
```

Arguments

object an S4 object of class SAM

index_q wavevector range used for computing ISF

Value

A matrix of modeled intermediate scattering function with dimension len_q by len_t-1.

Author(s)

plot_intensity 13

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.

Examples

```
library(AIUQ)
sim_bm = simulation(len_t=100,sz=100,sigma_bm=0.5)
show(sim_bm)
sam = SAM(sim_object = sim_bm)
show(sam)
modeled_ISF = modeled_isf(object=sam)
```

plot_intensity

Plot 2D intensity

Description

Function to plot 2D intensity profile for a certain frame, default is to plot the first frame. Input can be a matrix (2D) or an array (3D).

Usage

```
plot_intensity(
   intensity,
   intensity_str = "T_SS_mat",
   frame = 1,
   sz = NA,
   title = NA,
   color = FALSE
)
```

Arguments

intensity	intensity profile
intensity_str	structure of the intensity profile, options from ('SST_array','S_ST_mat','T_SS_mat', 'SS_T_mat'). See 'Details'.
frame	frame index
SZ	frame size of simulated image with default c(200, 200).
title	main title of the plot. If NA, title is "intensity profile for frame n" with n being the frame index in frame.
color	a logical evaluating to TRUE or FALSE indicating whether a colorful plot is generated

14 plot_MSD

Details

By default intensity_str is set to 'T_SS_mat', a time by space×space matrix, which is the structure of intensity profile obtained from simulation class. For intensity_str='SST_array', input intensity profile should be a space by space by time array, which is the structure from loading a tif file. For intensity_str='S_ST_mat', input intensity profile should be a space by space×time matrix. For intensity_str='SS_T_mat', input intensity profile should be a space×space by time matrix.

Value

2D plot in gray scale (or with color) of selected frame.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

Examples

```
library(AIUQ)
sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5)
show(sim_bm)
plot_intensity(sim_bm@intensity, sz=sim_bm@sz)
```

plot_MSD

Plot estimated MSD with uncertainty from SAM class

Description

Function to plot estimated MSD with uncertainty from SAM class, versus true mean squared displacement(MSD) or given reference values.

Usage

```
plot_MSD(object, msd_truth = NA, title = NA, log10 = TRUE)
```

Arguments

object an S4 object of class SAM

msd_truth a vector/matrix of true MSD or reference MSD value, default is NA

title main title of the plot. If NA, title is "model_name" with model_name being a field

in SAM class representing fitted model.

log10 a logical evaluating to TRUE or FALSE indicating whether a plot in log10 scale

is generated

Value

A plot of estimated MSD with uncertainty versus truth/reference values.

plot_traj 15

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Examples

```
library(AIUQ)

## Simulate BM and get estimated parameters with uncertainty using BM model
# Simulation
set.seed(1)
sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5)
show(sim_bm)

# AIUQ method: fitting using BM model
sam = SAM(sim_object=sim_bm, uncertainty=TRUE,AIUQ_thr=c(0.999,0))
show(sam)

plot_MSD(object=sam, msd_truth=sam@msd_truth) #in log10 scale
plot_MSD(object=sam, msd_truth=sam@msd_truth,log10=FALSE) #in real scale
```

plot_traj

Plot 2D particle trajectory

Description

Function to plot the particle trajectory after the simulation class has been constructed.

Usage

```
plot_traj(object, title = NA)
```

Arguments

object an S4 object of class simulation

title main title of the plot. If NA, title is "model_name with M particles" with model_name

and M being field in simulation class.

Value

2D plot of particle trajectory for a given simulation from simulation class.

16 SAM

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

Examples

```
library(AIUQ)
sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5)
show(sim_bm)
plot_traj(sim_bm)
```

SAM

Scattering analysis of microscopy

Description

Fast parameter estimation in scattering analysis of microscopy, using either AIUQ or DDM method.

Usage

```
SAM(
  intensity = NA,
  intensity_str = "T_SS_mat",
 pxsz = 1,
  sz = c(NA, NA),
 mindt = 1,
 AIUQ_{thr} = c(1, 1),
 model_name = "BM",
  sigma_0_2_ini = NaN,
 param_initial = NA,
  num\_optim = 1,
 msd_fn = NA,
 msd_grad_fn = NA,
 num_param = NA,
 uncertainty = FALSE,
 M = 50,
  sim_object = NA,
 msd_truth = NA,
 method = "AIUQ",
  index_q_AIUQ = NA,
  index_q_DDM = NA,
 message_out = TRUE,
 A_neg = "abs",
  square = FALSE,
  output_dqt = FALSE,
  output_isf = FALSE,
 output_modeled_isf = FALSE,
  output_modeled_dqt = FALSE
)
```

SAM 17

Arguments

intensity intensity profile. See 'Details'.

intensity_str structure of the intensity profile, options from ('SST_array', 'S_ST_mat', 'T_SS_mat').

See 'Details'.

pxsz size of one pixel in unit of micron, 1 for simulated data

sz frame size of the intensity profile in x and y directions, number of pixels con-

tained in each frame equals sz_x by sz_y.

mindt minimum lag time, 1 for simulated data

AIUQ_thr threshold for wave number selection, numeric vector of two elements with val-

ues between 0 and 1. See 'Details'.

model_name fitted model, options from ('BM','OU','FBM','OU+FBM', 'user_defined'), with

Brownian motion as the default model. See 'Details'.

sigma_0_2_ini initial value for background noise. If NA, use minimum value of absolute square

of intensity profile in reciprocal space.

param_initial initial values for param estimation.

num_optim number of optimization.

msd_fn user defined mean squared displacement(MSD) structure, a function of parame-

ters and lag times. NA if model_name is not 'user defined'.

msd_grad_fn gradient for user defined mean squared displacement structure. If NA, then

numerical gradient will be used for parameter estimation in 'user_defined'

model.

num_param number of parameters need to be estimated in the intermediate scattering func-

tion, need to be non-NA value for user_defined' model.

uncertainty a logical evaluating to TRUE or FALSE indicating whether parameter uncer-

tainty should be computed.

M number of particles. See 'Details'.

sim_object NA or an S4 object of class simulation.

msd_truth true MSD or reference MSD value.

method methods for parameter estimation, options from ('AIUQ','DDM fixedAB','DDM estAB').

index_q_DDM index range for wave number when using AIUQ method. See 'Details'. index_q_DDM method. See 'Details'.

message_out a logical evaluating to TRUE or FALSE indicating whether or not to output the

message.

A_neg controls modification for negative A(q), options from ('abs', 'zero'), with setting

negative A(q) to its absolute value as the default.

square a logical evaluating to TRUE or FALSE indicating whether or not to crop the

original intensity profile into square image.

output_dqt a logical evaluating to TRUE or FALSE indicating whether or not to compute

observed dynamic image structure function(Dqt).

output_isf a logical evaluating to TRUE or FALSE indicating whether or not to compute

empirical intermediate scattering function(ISF).

18 SAM

output_modeled_isf

a logical evaluating to TRUE or FALSE indicating whether or not to compute modeled intermediate scattering function(ISF).

output_modeled_dqt

a logical evaluating to TRUE or FALSE indicating whether or not to compute modeled dynamic image structure function(Dqt).

Details

For simulated data using simulation in AIUQ package, intensity will be automatically extracted from simulation class.

By default intensity_str is set to 'T_SS_mat', a time by space×space matrix, which is the structure of intensity profile obtained from simulation class. For intensity_str='SST_array', input intensity profile should be a space by space by time array, which is the structure from loading a tif file. For intensity_str='S_ST_mat', input intensity profile should be a space by space×time matrix.

By default AIUQ_thr is set to c(1,1), uses information from all complete q rings. The first element affects maximum wave number selected, and second element controls minimum proportion of wave number selected. By setting 1 for the second element, if maximum wave number selected is less than the wave number length, then maximum wave number selected is coerced to use all wave number unless user defined another index range through index_q_AIUQ.

If model_name equals 'user_defined', or NA (will coerced to 'user_defined'), then msd_fn and num_param need to be provided for parameter estimation.

Number of particles M is set to 50 or automatically extracted from simulation class for simulated data using simulation in AIUQ package.

By default, using all wave vectors from complete q ring, unless user defined index range through index_q_AIUQ or index_q_DDM.

Value

Returns an S4 object of class SAM.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.

SAM-class 19

Examples

```
library(AIUQ)
# Example 1: Estimation for simulated data
sim_bm = simulation(len_t=100,sz=100,sigma_bm=0.5)
show(sim_bm)
sam = SAM(sim_object = sim_bm)
show(sam)
```

SAM-class

SAM class

Description

S4 class for fast parameter estimation in scattering analysis of microscopy, using either AIUQ or DDM method.

Slots

pxsz numeric. Size of one pixel in unit of micron with default value 1.

mindt numeric. Minimum lag time with default value 1.

sz vector. Frame size of the intensity profile in x and y directions, number of pixels contained in each frame equals sz_x by sz_y.

len_t integer. Number of time steps.

len_q integer. Number of wave vector.

q vector. Wave vector in unit of um^-1.

d_input vector. Sequence of lag times.

B_est_ini numeric. Estimation of B. This parameter is determined by the noise in the system. See 'References'.

A_est_ini vector. Estimation of A(q). Note this parameter is determined by the properties of the imaged material and imaging optics. See 'References'.

I_o_q_2_ori vector. Absolute square of Fourier transformed intensity profile, ensemble over time.

q_ori_ring_loc_unique_index list. List of location index of non-duplicate values for each q
 ring.

model_name character. Fitted model, options from ('BM','OU','FBM','OU+FBM', 'user_defined').

param_est vector. Estimated parameters contained in MSD.

sigma_2_0_est numeric. Estimated variance of background noise.

msd_est vector. Estimated MSD.

uncertainty logical. A logical evaluating to TRUE or FALSE indicating whether parameter uncertainty should be computed.

msd_lower vector. Lower bound of 95% confidence interval of MSD.

msd_upper vector. Upper bound of 95% confidence interval of MSD.

20 show.aniso_sam

msd_truth vector. True MSD or reference MSD value.

sigma_2_0_truth vector. True variance of background noise, non NA for simulated data using simulation.

param_truth vector. True parameters used to construct MSD, non NA for simulated data using simulation.

index_q vector. Selected index of wave vector.

Dqt matrix. Dynamic image structure function D(q,delta t).

ISF matrix. Empirical intermediate scattering function f(q,delta t).

I_q matrix. Fourier transformed intensity profile with structure 'SS_T_mat'.

AIC numeric. Akaike information criterion score.

mle numeric. Maximum log likelihood value.

param_uq_range matrix. 95% confidence interval for estimated parameters.

modeled_Dqt matrix. Modeled dynamic image structure function D(q,delta t).

modeled_ISF matrix. Modeled intermediate scattering function f(q,delta t).

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.

show.aniso_sam

Show scattering analysis of microscopy for anisotropic processes (aniso_SAM) object

Description

Function to print the aniso_SAM class object after the aniso_SAM model has been constructed.

Usage

```
show.aniso_sam(object)
```

Arguments

object

an S4 object of class aniso_SAM

show.aniso_simulation 21

Value

Show a list of important parameters in class aniso_SAM.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Examples

```
library(AIUQ)

## Simulate BM and get estimated parameters using BM model

# Simulation
aniso_sim_bm = aniso_simulation(sz=100,len_t=100,sigma_bm=c(0.5,0.3))
show(aniso_sim_bm)

# AIUQ method: fitting using BM model
aniso_sam = aniso_SAM(sim_object=aniso_sim_bm, AIUQ_thr=c(0.99,0))
show(aniso_sam)
```

show.aniso_simulation Show anisotropic simulation object

Description

Function to print the aniso_simulation class object after the aniso_simulation model has been constructed.

Usage

```
show.aniso_simulation(object)
```

Arguments

object

an S4 object of class aniso_simulation

Value

Show a list of important parameters in class aniso_simulation.

show.sam

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Examples

```
library(AIUQ)
```

```
# Simulate simple diffusion for 100 images with 100 by 100 pixels aniso_sim_bm = aniso_simulation(sz=100,len_t=100,sigma_bm=c(0.5,0.1)) show(aniso_sim_bm)
```

show.sam

Show scattering analysis of microscopy (SAM) object

Description

Function to print the SAM class object after the SAM model has been constructed.

Usage

```
show.sam(object)
```

Arguments

object

an S4 object of class SAM

Value

Show a list of important parameters in class SAM.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

show.simulation 23

Examples

```
library(AIUQ)

## Simulate BM and get estimated parameters using BM model
# Simulation
sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5)
show(sim_bm)

# AIUQ method: fitting using BM model
sam = SAM(sim_object=sim_bm)
show(sam)
```

show.simulation

Show simulation object

Description

Function to print the simulation class object after the simulation model has been constructed.

Usage

```
show.simulation(object)
```

Arguments

object

an S4 object of class simulation

Value

Show a list of important parameters in class simulation.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Examples

```
library(AIUQ)
# Simulate simple diffusion for 100 images with 100 by 100 pixels
sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5)
show(sim_bm)
```

24 simulation

simulation

Simulate 2D particle movement

Description

Simulate 2D particle movement from a user selected stochastic process, and output intensity profiles.

Usage

```
simulation(
  sz = c(200, 200),
 len_t = 200,
 M = 50,
 model_name = "BM",
 noise = "gaussian",
 I0 = 20,
 Imax = 255,
 pos0 = matrix(NaN, nrow = M, ncol = 2),
 rho = 0.95,
 H = 0.3,
  sigma_p = 2,
  sigma_bm = 1,
 sigma_ou = 2,
  sigma_fbm = 2
)
```

Arguments

sz	frame size of simulated image with default c(200, 200).
len_t	number of time steps with default 200.
М	number of particles with default 50.
model_name	stochastic process simulated, options from ('BM','OU','FBM','OU+FBM'), with default 'BM'.
noise	background noise, options from ('uniform', 'gaussian'), with default 'gaussian'.
10	background intensity, value between 0 and 255, with default 20.
Imax	maximum intensity at the center of the particle, value between 0 and 255, with default 255.
pos0	initial position for M particles, matrix with dimension M by 2.
rho	correlation between successive step and previous step in O-U process, value between 0 and 1, with default 0.95.
Н	Hurst parameter of fractional Brownian Motion, value between 0 and 1, with default 0.3.
sigma_p	radius of the spherical particle (3sigma_p), with default 2.

simulation 25

sigma_bm	distance moved per time step in Brownian Motion, with default 1.
sigma_ou	distance moved per time step in Ornstein-Uhlenbeck process, with default 2.
sigma_fbm	distance moved per time step in fractional Brownian Motion, with default 2.

Value

Returns an S4 object of class simulation.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.

Examples

26 simulation-class

simulation-class

Simulation class

Description

S4 class for 2D particle movement simulation.

Details

intensity should has structure 'T_SS_mat', matrix with dimension len_t by sz×sz.

pos should be the position matrix with dimension M×len_t. See bm_particle_intensity, ou_particle_intensity, fbm_particle_intensity.

Slots

```
sz vector. Frame size of the intensity profile, number of pixels contained in each frame equals sz[1] by sz[2].

len_t integer. Number of time steps.

noise character. Background noise, options from ('uniform','gaussian').

model_name character. Simulated stochastic process, options from ('BM','OU','FBM','OU+FBM').

M integer. Number of particles.

pxsz numeric. Size of one pixel in unit of micron, 1 for simulated data.

mindt numeric. Minimum lag time, 1 for simulated data.

pos matrix. Position matrix for particle trajectory, see 'Details'.

intensity matrix. Filled intensity profile, see 'Details'.

num_msd vector. Numerical mean squared displacement (MSD).

param vector. Parameters for simulated stochastic process.

theor_msd vector. Theoretical MSD.

sigma_2_0 vector. Variance of background noise.
```

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.

Index

```
* classes
    aniso_SAM-class, 5
    \verb"aniso_simulation-class", 8
    SAM-class, 19
    simulation-class, 26
aniso_SAM, 2
aniso_SAM-class, 5
aniso_simulation, 6
\verb"aniso_simulation-class", 8
bm_particle_intensity, 8, 26
fbm\_ou\_particle\_intensity, 8, 26
{\tt fbm\_particle\_intensity}, 8, 26
get_dqt, 9
get_isf, 10
modeled_dqt, 11
modeled_isf, 12
ou_particle_intensity, 8, 26
plot_intensity, 13
plot_MSD, 14
plot_traj, 15
SAM, 16
SAM-class, 19
\verb|show.aniso_sam|, 20|
show.aniso_simulation, 21
show.sam, 22
show.simulation, 23
simulation, 24
simulation-class, 26
```