PROGETTO di Architettura di rete aziendale con piccola sede esterna

Contesto

Una **media impresa** composta da 3 edifici (CAPANNONE con Produzione al piano terra e Uffici al secondo piano, CED con i server principali e PALAZZINA Tecnica con gli apparati di rete centrali) collocata su un'area privata di dimensione inferiore ai 10000 mq, ha la necessità di mettere a disposizione i propri servizi digitali interni a dipendenti che lavorano anche in piccole sedi remote. A tal fine acquista connettività internet da un ISP richiedendo un indirizzo IP statico per il proprio gateway. Per la sede periferica è invece richiesta una connettività retail con IP dinamico assegnato al momento della connessione da servizio DHCP.

Architettura FISICA (cablaggio e/o rete wifi e apparati di rete) - ISO/OSI L1 e L2

LAN Azienda

L1 - Costruzione della rete (cablaggio)

La sede centrale è una realtà complessa con molti utenti (produzione, uffici, CED) che necessitano di connettività ad un'unica LAN FISICA per condividere i dati aziendali. La sede occupa un'area vasta che non può essere facilmente coperta con una soluzione a topologia a stella. Quando dobbiamo realizzare una grande rete LAN che occupa un'area vasta che connette tantissimi utenti non possiamo farci guidare dall'improvvisazione. Esiste una opportuna **normativa standard internazionale** che mi aiuta nella progettazione di questa rete. La normativa **En**

50173 europea derivata da quella internazionale **OSI 11801** prescrive come deve essere fatta una rete per un **campus aziendale**.

Questa normativa impone come scelta topologica una forma a stella estesa gerarchica su massimo 3 livelli. Quindi essendo l'area coperta da due edifici risulta necessario l'utilizzo di tutti e 3 i livelli installando 3 armadi di piano (FD) per servire le singole aree di piano e due armadi di edificio (BD). I due rami sviluppati nei due edifici si uniscono attraverso un armadio di campus (CD) (centro della stella estesa gerarchica).

Per quanto riguarda la scelta dei cavi per il cablaggio orizzontale di ciascun piano la scelta di cavi di rame di UTP categoria 6 o superiore mi garantisce che in futuro potrò servire applicativi di rete più esigenti. I cavi di dorsale di edificio e quelle di campus vanno dimensionati in modo da raccogliere e convogliare tutto il traffico proveniente dalle stelle di ogni singolo piano. Questo non significa che il calcolo sia una banale operazione di moltiplicazione della banda riservata ad ogni host per il numero di host. Sappiamo infatti che il traffico di pacchetti generato dai singoli host non è un flusso continuo e ben determinato ma al contrario si caratterizza per essere di natura discontinua a sprazzi e di breve durata. Quindi dotare le dorsali di capacità di banda multipla di un fattore 10 sia più che sufficiente. Scegliere dorsali in fibra

ottica multimodale sembra un ottimo compromesso per soddisfare la duplice esigenza della banda da garantire e quella di coprire distanze più lunghe rispetto ai cavi in rame che lo standard prevede non siano più lunghi di 100 metri.

L2 - Scelta dei dispositivi di rete da collocare negli armadi

La tecnologia che si è imposta nell'ambito delle rete locali è **Ethernet**. Questa tecnologia si è evoluta nel tempo adattandosi per usufruire meglio dei miglioramenti determinati dalla qualità dei cavi e dei dispositivi di interconnessione passivi. La tabella sottostante fotografa la lunga corsa fatta da questa tecnologia. Anche in questo caso si sono impostati degli standard internazionali normati dall **IEEE** nel documento **802.3**. La tabella seguente riporta nel campo **Tipo Etherne**t le sigle che il documento usa per indicare le diverse versioni tutte retrocompatibili.

Tipo Ethernet	Banda	802	Tipo di cablaggio	Duplex	Distanza massima
10Base-5	10 Mbps	.3	Coassiale Thick	Half	500 m
10Base-2	10 Mbps	.3a	Coassiale Thin	Half	185 m
10Base-T	10 Mbps	.3i	UTP Cat3-Cat5	Half	100 m
100Base-TX	100 Mbps	.3u	UTP Cat5	Half	100 m
100Base-TX	200 Mbps	.3u	UTP Cat5	Full	100 m
100Base-FX	100 Mbps	.3u	Fibra Multimode	Half!	400 m
100Base-FX	200 Mbps	.3u	Fibra Single-Mode	Full	2-3 Km
1000Base-SX	1 Gbps	.3z	Fibra Multimode	Full	550 m
1000Base-LX	1 Gbps	.3z	Fibra Single-Mode	Full	2 o 5 Km (?)
1000Base-ZX	1 Gbps	n.a.	Fibra Single-Mode	Full	70 Km (da un esame!)
1000Base-T	1 Gbps	.3ab	UTP Cat5e	Full	100 m
1000Base-TX	1 Gbps	.3ab	UTP Cat6	Full	100 m
10GBase-SR	10 Gbps	.3ae	Fibra Multimode	Full	300 m
10GBase-SX4	10 Gbps	.3ae	Fibra Multimode	Full	550 m
10GBase-LX4	10 Gbps	.3ae	Fibra Single-Mode	Full	10 Km
10GBase-LR/ER	10 Gbps	.3ae	Fibra Single-Mode	Full	40 Km
10GBase-CX4	10 Gbps	.3ak	STP Twin-axial	Full	100 m
10GBase-T	10 Gbps	.3an	UTP Cat6-Cat7	Full	100 m

Gli apparati switch da collocare negli armadi sono quindi da scegliere in base al livello in cui sono collocati:

- per il livello dell'ACCESSO (armadi di piano FD) al servizio meglio utilizzare switch con molte porte in grado di utilizzare al meglio il cablaggio orizzontale. Sui cavi di categoria 6 posso far viaggiare Ethernet fino a 10Gbit.
- 2. per il livello della DISTRIBUZIONE (armadi di edificio BD) del servizio
- 3. per il livello CORE (armadio di campus CD)

LAN sede periferica

L1 - Costruzione della rete LAN (cablaggio+wifi)

Per decidere come strutturare queste rete è fondamentale partire dai bisogni. In questo caso gli host da servire sono veramente pochi. Visto che la sede periferica non è di proprietà non conviene investire in una grande rete cablata. La più piccola ipotizzabile è quella costituita da una sola stella. Esiste in commercio l'offerta di dispositivi multifunzione per retail chiamati erroneamente router di casa. Questo dispositivo ha la caratteristica di contenere un piccolo switch ethernet con 4 / 5 porte che soddisfa pienamente la nostra necessità. Questo switch di solito ha porte con tecnologia fastEthernet 100BASE-TX che usa cavi patch UTP di categoria almeno 5e per allacciare le singole postazioni.

Se il nostro dipendente avesse poi la necessità di collegare un portatile in mobilità si può utilizzare l'access point inserito nel medesimo dispositivo. Questo mi garantisce una piccola area coperta di diametro almeno di 50 mt (non tenendo conto di ipotetici ostacoli di natura elettromagnetica). La banda garantita da questo access point è di solito almeno 100Mbit.

WAN tra le due reti LAN

L1 - Costruzione della rete WAN (cablaggio)

Le due reti LAN per connettersi tra loro hanno bisogno di una rete WAN ad accesso pubblico come INTERNET.

La **sede centrale** deve quindi stabilire un contratto con un ISP che soddisfi le sue esigenze di servizio: rendere accessibili alle sedi distaccate un server WEB pubblico. Installare una connessione in fibra ottica **FTTH** (Fiber To The Home) può essere la soluzione che garantisce un'ampia banda di almeno 1Gbit. Questa banda deve essere equamente ripartita tra i flussi che entrano ed escono (soluzione con **BANDA SIMMETRICA**)

Per quanto riguarda la **sede periferica**, opterei per una soluzione più economica. Una buona soluzione in Italia è l'**ADSL**, in grado di utilizzare il **cavo telefonico in rame di categoria 3**, già disponibile presso gli uffici e le abitazioni.

L2 - Scelta dei dispositivi di rete

Il dispositivo multifunzione scelto è dotato anche di un **modem ADSL** in grado di connettersi alla presa telefonica.

L'unico protocollo che riesce a passare nel cavo telefonico è l'ADSL. Il protocollo Ethernet non è trasmissibile su un cavo di una categoria molto bassa.

L'offerta di banda in soluzione **ASIMMETRICA** con l'ADSL varia da un minimo di 8Mbit fino ad un massimo di 200Mbit. Purtroppo non sempre si può scegliere la soluzione ottimale perché spesso alcune zone del territorio italiano non sono servite per garantire il massimo di banda.

Grazie al cavo telefonico della Telecom riesco a raggiungere i router dell'ISP (Internet Service Provider) per far trasportare i miei dati dal suo AS(Autonomous System) con i suoi i vari router regionali e protocolli di routing (BGP) che si collegano ai router internazionali.

Architettura LOGICA (suddivisione in reti e sottoreti IP) - ISO/OSI L3

L3 - Reti logiche sede centrale

Piano di indirizzamento IP LAN sede centrale

Rete LAN Privata					Produzione
RETE	192.168.1.0	255.255.25 5.0			
PR1	192.168.1.1	255.255.25 5.0	nic pc		
router azienda	192.168.1.2 54	255.255.25 5.0	GI1/0 router		
Broadcast	192.168.1.2 55	255.255.25 5.0			
Rete LAN Privata					Uffici
RETE	192.168.2.0	255.255.25 5.0			
UF1	192.168.2.1	255.255.25 5.0	nic	рс	
router azienda	192.168.2.2 54	255.255.25 5.0	GI3/0	GI3/0 router	
Broadcast	192.168.2.2 55	255.255.25 5.0			
Rete LAN Privata					CED
RETE	192.168.3.0	255.255.25 5.0			
server	192.168.3.1	255.255.25 5.0	nic	рс	
router azienda	192.168.3.2 54	255.255.25 5.0	Gl2/0	router	
Broadcast	192.168.3.2 55	255.255.25 5.0			

L3 - Reti logiche sede periferica

Una piccola rete LAN, non ha bisogno di essere suddivisa in diverse reti logiche. Questa deve all'acciare al massimo una decina di host.

La scelta di usare un dispositivo multifunzione mi garantisce l'uso di un **servizio DHCP** che assegna dinamicamente gli indirizzi IP prelevandoli da un **pool di indirizzi** ritagliato all'interno dello spazio di indirizzi della rete assegnata.

Piano di indirizzamento IP LAN sede periferica

Un possibile **indirizzo di rete** privata configurabile su questo dispositivo è il 192.168.1.0/24. Questa rete IP PRIVATA mi garantisce uno spazio di 254 host da cui posso ritagliare il pool per il servizio DHCP

indirizzo IPv4	Subnet	Porta	Dispositivo	LAN
Rete LAN Privata				Produzione
RETE				
Broadcast				

L3 - Reti logiche PUBBLICHE per accesso ad INTERNET

Piano di indirizzamento IP WAN tra le due reti LAN Sede centrale

indirizzo IPv4	Subnet	Porta	Dispositivo	WAN
Rete WAN PUBBLIC	ISP			
RETE	81.88.255.0/30	GI1/0	router	
Router POP ISP				
Router LAN				
Broadcast	255.255.255			
Rete WAN PUBBLIC	ISP			
RETE	81.88.255.4/30	GI1/0	router	
Router POP ISP				
Router LAN				
Broadcast	255.255.255.2 55			

Il progetto prosegue