模拟电子技术基础期中试题A

自动化系 2017 级 2018.04 18

一、(10分)判断下列说法的正误,在括号内画√表示正确,画×表示错误。

- (1) 在 N 型半导体中,空穴浓度大于电子浓度。(X)
- (2) PN 结外加正向电压变化时, 其等效电容为扩散电容。(✓)
- (3) 共集放大电路电压放大倍数小于 1, 所以不能实现功率放大。(>>)
- (4) 直接耦合多级放大电路 Q 点相互影响,不便于设计和调试。(\checkmark)
- (5) 阻容耦合放大电路只能放大交流信号,不能放大直流信号。()
- (6) 在典型静态工作点稳定电路中, R_e 的阻值越大,负反馈越强,Q 点越稳定,因此 R_e 的阻值越大越好。(X)
- (7) 仿真测量电压放大倍数时,不需要用示波器监测输出电压波形,直接用万用表的交流电压档测量输入电压和输出电压的有效值即可(×)。
- (8) 测量放大电路带宽时,应加入幅值固定、频率变化的输入信号()。
- (9) 集成运放的 SR 是衡量运放输入为小信号时的输出信号的最大变化速率。(X)
- (10) 不能用万用表的欧姆档测量放大电路的输入电阻 (🗸)。

二、(15分)选择填空(可为单选或多选)

$$\begin{array}{c|c}
C & \xrightarrow{R_1} & \\
\downarrow & \downarrow \\
u_i & \downarrow \\
VD & \downarrow \\
V & \downarrow \\
10 \text{k}\Omega
\end{array}$$

2. 设下图中的二极管、稳压管和晶体管发射结导通电压均为 0.7V,稳压管的 $U_z=5V$ 、 $I_z=1$ mA、 $I_{ZM}=50$ mA,晶体管的 β 均为 100。则判断各晶体管的工作状态分别为:

- 3. 下图电路不能正常放大输入信号的有图 (パ)(ン)(み) 并选择不能正常放大的原因 (A、B、C、D或E中的一个)填入以下空中。
 - 若图(1)不能正常放大,则原因是
 - 若图(2)不能正常放大,则原因是
 - 若图(3)不能正常放大,则原因是
 - A. V_{CC} 极性不正确;
 - B. 输入回路偏置不正确;
 - C. 输入信号被短路;
 - D. 输出信号被短路;
 - E. 通电后, 晶体管将因过流而损坏。

- 4. 组成两级放大电路,已知负载为 $1k\Omega$,为了将 1mV、内阻为 $100k\Omega$ 的电压信号源放大 300 倍,则第一级应选用_//,第二级应选用_// 放大电路;已知负载为 100Ω,为了 将 1mV、内阻为 $1k\Omega$ 的电压信号源放大 100 倍,则第一级应选用 A ,第二级应选用 り放大电路。
 - A. 共射
- B. 共集
- C. 共基
- D. 共源 E. 共漏

- 三、填空、计算(22分)
- 1. 电路如下图所示,已知晶体管的 $U_{\text{BEQ}}=0.6\text{V}$, $\beta=100$, $r_{\text{bb}}=100\Omega$,电容的容值均为 10uF。设电路参数变化时电路始终处于放大状态。

UBER = 0.6V P=100 Tbb' = 100ss C=10mF

(1) 估算静态工作点 I_{BQ} 、 U_{CEQ} ;

(2) 估算最大不失真输出电压有效值 U_{om} ;

- (3) 为获得尽可能大的不失真输出电压, Rb应_____(填增大、减小);
- (4) 若 C_e开路, 中频电压放大倍数| A_{um}|将 水小、R_i将 <u>增大</u>、R_o将 不变

(填增大、减小、不变);

- (5) 对放大电路下限截止频率 f_L 起决定性作用的电容为 Ce (填 C_1 、 C_2 、 C_e);
- (6) 若 , 增大, | À_{um} | 将 <u>水小</u>,上限截止频率 f_H 将 <u>- 掩大</u> (填增大、减小、不变)。
- 2. 己如放大电路频率响应特性如下图所示,中频时 A_{um} 相位为 0。回答下列问题:

(1) 下限截止频率 f_L≈ <u>[00</u> Hz, 上限截止频率 f_H≈ <u>64287</u> Hz。

(2) 电路的电压放大倍数的表达式为

$$\dot{A}_{u} = \frac{1000}{(1+\frac{10^{2}}{3f})(1+\frac{10^{2}}{10^{5}})^{2}}$$

(3)当 f=10Hz 时输出电压相位约为 135° , 当 $f=10^{5}$ Hz 时输出电压相位约为 -90°

四、(8分)选择填空

1. 电路(a)为场效应管共源放大电路,判断图中圆圈内管子可能的类型为 (若存在多种可能,要选出全部可能的类型),再任选一种画入图中相应位置。

A.N 沟道 JFET Q.P沟道增强型 MOS 管 BP 沟道 JFET

XN沟道增强型 MOS 管 EN 沟道耗尽型 MOS 管 VF.P 沟道耗尽型 MOS 管

2. 电路(b)为准互补输出级电路,已知静态时 u_0 =0V,输入电压 u_i 为正弦波, T_1 、 T_2 、 T_4 、 T_5 参数相同, T_3 与 T_4 参数对称。

(1) T₃和 T₄组成的复合管等效为____

B. PNP管 A. NPN 管

(2)已知静态时 $u_0=0$,电路能正常工作,则 R_3 与 R_4 的比值 $R_3:R_4$ 约为

A. 1 B. 2 C. 3

(3) 若静态时 $u_0>0V$,则应增大

A. R_1 B. R_2 C. R_3

(4) 当输入为正弦波时,若 R₃ 短路,则输出电压 _____;若 R₁ 开路,则 输出电压 ★ ○。

A. 产生交越失真 B. 仅有正半波 C. 仅有负半波 D. $u_0 = 0$

五、(15 分) 解答下列各题

放大电路如图所示,已知电源电压 $V_{CC}=12V$, T_1 的 $U_{GS(off)}=-4V$, $I_{DSS}=8mA$, $I_{DQI}=2mA$; T_2 的 β =100, U_{BEQ1} =0.7V, I_{CQ1} =2mA, r_{bb} =0Ω; R_1 =1MΩ, R_2 =1kΩ, R_4 =1kΩ, R_5 = 2kΩ; 各电容对交流信号均可视为短路。解答下列各题。

- 1. 估算静态工作点 U_{GSQI} 、 U_{DSQI} 、 U_{CEQ2} ;
- 2. 分析 T₁、T₂分别组成什么接法的单管放大电路;
- 3. 画出交流等效电路:

4. 计算电压放大倍数
$$\dot{A}_{u1} = \frac{\dot{U}_{o1}}{\dot{U}_{i}}$$
, $\dot{A}_{u} = \frac{\dot{U}_{o}}{\dot{U}_{i}}$;

5. 计算输入电阻 R_i ,输出电阻 R_o 。

2. Ti: 艾漏 Ts: 共募

4.
$$V_{be} = V_{bb}' + \beta \frac{U_T}{I_{CQ}} = 1.3 km$$

$$g_m = -\frac{2}{U_{GWOH}} \cdot \sqrt{I_{DSS}} \cdot I_{DQ} = Z_{mS}$$

$$A_{m} = \frac{g_m(R_2 I/R_4 I/\frac{\Gamma_{be}}{1+\beta})}{1+\beta} \approx 0.02$$

$$Au = \frac{G_{\text{m}}(R_{\text{m}} | F_{\text{be}})}{G_{\text{m}}(R_{\text{m}} | F_{\text{be}})} \approx 0.024$$

$$Au = Au \cdot \frac{B \cdot R_{\text{m}}}{|F_{\text{be}}|} \approx 3.69$$

19

六、(22 分)场效应管多级放大电路如图 7 所示,已知+ V_{DD} =10V,- V_{SS} = -10V;增强型 NMOS 管 T_1 、 T_2 、 T_5 、 T_6 参数均为 $U_{GS(th)}$ =1V, I_{DO} =0.25mA;增强型 PMOS 管 T_3 、 T_4 参数均为 $U_{GS(th)}$ = - 1V, I_{DO} =-0.25mA。晶体管 T_7 、 T_8 、 T_9 的 β 均相等。静态时 T_1 、 T_2 管的漏极电流 I_{DQ1} = I_{DQ2} =0.5mA,电流源 I_1 =1mA。

回答下列各题:
1. 从以下答案中选择正确答案的序号填入以下各题空格:
A. 共射 B. 共集 C. 共源 D. 共漏 E. 镜像电流源 F. 微电流源 G. 有源负载 H. 作为偏置电路设置静态电流
(1) T ₇ 与 T ₈ 组成电路, T ₉ 组成电路。
(2) T ₃ 与 T ₄ 组成
T ₅ 与T ₆ 组成
2. 计算电阻 R1 为: (1) 28 (1) (1) (1)
In I I want I Took I who was a start of the
Zors = Zoo (Ugsub) => UGS = 3VA- AT - MADI - SIV
VDD - IDDS - RI - (-VSS) = UGS => RI = 17KM
SUMI = G = 17 3 CMP MARKET MAKET S
5045 - 27 = 08 PL (1867) 350 PL
3. 已知电流源 I_1 、 I_2 动态电阻为无穷大,所有 MOS 管的输出端动态电阻 r_{ds} 均为无穷大,晶体管的输出端动态电阻 r_{ce} 均为无穷大。已知所有晶体管的 β 均相等,发射结动态电阻为 r_{bei} ; MOS 管的低频跨导为 g_{mi} ,其中 i 为管子序号。
写出输入差模信号时的电压放大倍数表达式 $\dot{A}_{u}=\dot{U}_{o}/\dot{U}_{i}=\dot{A}_{d1}\times\dot{A}_{u2}\times\dot{A}_{u3}$
= - gm· Riz 11 (4) Bot contitled 1 * Toe7+(HB) Poe8+(HB) Pois
(1+β)RL *
写出输入共模信号时的电压放大倍数 $A_c ==$

Α6

- 4. 在输入端标出同相端和反相端。
- 5. 请设计一个最简电路代替电流源 I_1 ,请在图中画出来。要求增加的元器件的数量和种 类都尽可能少。

七、(8分)某热敏电阻的阻值 R_T 随温度 t 升高而增大,已知在常温(27°C)下其电阻值 为 $10k\Omega$,温度每升高 1 °C 其阻值增加 4Ω 。为了测量温度,希望将温度的变化转换为电 压的变化。请用热敏电阻设计一个电路,将温度的变化转换为电压的变化,当温度升高 25 ℃ 时电压变化约为 0.25V。可选元件如下: 一个+10V 直流电源, 若干热敏电阻, 若 干晶体管 (r_{bb} =0, β 小于等于 200), 若干电阻 (阻值小于等于 $1M\Omega$), 各元件在温度变 化时都能正常工作。已知晶体管发射结导通电压为 0.7V。

- 1. 画出具体电路, 标明元件参数, 要求电路尽可能简单;
- 2. 详细说明电路的工作原理,并计算必要的参数。

To R= 4km. Re 2

$$I_{cl} = \frac{U_T}{Re} T_{l} \frac{R^2 I_R}{I_{cl}}$$