Universidad de San Andrés

Práctica 9: Suscesiones y Series

Con Resultados

- 1. Escribir los primeros 7 términos ...
- 2. Para cada una de las siguientes ...

n =	1	2	3	4	5	6	7
a_n	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{3}{4}$	$\frac{4}{5}$	$\frac{5}{6}$	$\frac{6}{7}$	$\frac{7}{8}$
b_n	$\frac{1}{2}$	$\frac{\sqrt{2}}{3}$	$\frac{\sqrt{3}}{4}$	$\frac{2}{5}$	$\frac{\sqrt{5}}{6}$	$\frac{\sqrt{6}}{7}$	$\frac{\sqrt{7}}{8}$
c_n	$-\frac{1}{2}$	$\frac{1}{3}$	$-\frac{1}{4}$	$\frac{1}{5}$	$-\frac{1}{6}$	$\frac{1}{7}$	$-\frac{1}{8}$
d_n	1	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{24}$	$\frac{1}{120}$	$\frac{1}{720}$	$\frac{1}{5040}$
e_n	-1	$\frac{1}{2}$	$-\frac{1}{3}$	$\frac{1}{4}$	$-\frac{1}{5}$	$\frac{1}{6}$	$-\frac{1}{7}$
f_n	1	$\frac{2}{27}$	$\frac{4}{125}$	$\frac{8}{343}$	$\frac{16}{729}$	$\frac{32}{1331}$	$\frac{64}{2197}$

	a_n	$\lim_{n\to+\infty}a_n$	Covergente?
(a)	n	$+\infty$	Divergente
(b)	2n - 1	$+\infty$	Divergente
(c)	$-\frac{1}{n}$	0	Convergente
(d)	$\frac{(-1)^{n+1}}{n}$	0	Convergente
(e)	$-\frac{1}{2^n}$	0	Convergente
(f)	$\frac{n+1}{n}$	1	Convergente
(g)	$\frac{1+(-1)^n}{2}\frac{1}{n}$	0	Convergente

- 3. Analizar la existencia de los siguientes límites de sucesiones. Si existen, calcular su valor.
 - (a) $-\frac{6}{5}$,

- (g) 1,

(b) 5,

- (c) 0, (e) e^{10} , (d) $\frac{1}{3}$, (f) 1,

- (h) 1.
- 4. Determinar si la siguientes series geométricas convergen o no. En caso de que ...
 - (a) $+\infty$, diverge.

(e) $-\frac{3}{4}$, converge.

(b) No tiene límite, diverge.

(f) $\frac{4}{3}$, converge.

(c) $+\infty$, diverge.

(g) -26, converge.

(d) 6, converge.

- (h) 3, converge.
- 5. Hallar, cuando sea posible, todos los valores de $a \in \mathbb{R}$ para los que se cumple:
 - (a) |a| < 9,

(c) a = 3,

(b) a = 5,

- (d) no hay a posible.
- 6. Calcular todos los valores de $a \in \mathbb{R}$ para que $\sum_{n=0}^{\infty} \frac{1+2^n}{a^n} = \frac{35}{12}$. a = 5.

- 7. A partir de la igualdad $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$, para |x| < 1, deducir las siguientes fórmulas ... Sin respuesta.
- 8. Hallar todos los valores de x para los que cada una de las siguientes series convergen ...
 - (a) Converge con $|x| < 7 \Leftrightarrow x \in (-7,7)$ y con $x_0 = 2$ la suma da 2.
 - (b) Converge con $|x-3| < 1 \Leftrightarrow x \in (2,4)$ y con $x_0 = \frac{5}{2}$ la suma da $\frac{1}{6}$.
 - (c) Converge con $|2x-1| < 1 \Leftrightarrow x \in (0,1)$ y con $x_0 = \frac{1}{4}$ la suma da $\frac{2}{3}$.
 - (d) Converge con $|x-2| < 8 \Leftrightarrow x \in (-6,10)$ y con $x_0 = 5$ la suma da $\frac{8}{5}$.
 - (e) Converge con $|x| > 4 \Leftrightarrow x \in (-\infty, -4) \cup (4, +\infty)$ y con $x_0 = 6$ la suma da 32.
- 9. Para cada una de las series del Ejercicio 8 hallar la fórmula de la suma en términos de x.

(a)
$$\frac{5x}{7-x}$$
, (c) $\frac{1}{2(1-x)}$,

(b)
$$\frac{(x-3)^2}{4-x} = \frac{x^2-6x+9}{4-x} = 2-x+$$
 (d) $\frac{8}{10-x}$, $\frac{1}{4-x}$, (e) $\frac{64}{x-4}$.

- 10. Utilizar el criterio de la integral para analizar si las siguientes series son convergentes o no. Recordar revisar en cada caso que a_n es monótona decreciente a partir de un momento.
 - (a) $\int_{1}^{+\infty} \frac{1}{x^2} dx = 1$, la serie converge.
 - (b) $\int_{1}^{+\infty} \frac{1}{x^2+1} dx = \frac{\pi}{4}$, la serie converge.
 - (c) $\int_{2}^{+\infty} \frac{1}{x(\ln(x))^3} dx = \frac{1}{2(\ln(2))^2}$, la serie converge.
 - (d) $\int_{1}^{+\infty} xe^{-x} dx = \frac{2}{e}$, la serie converge.
 - (e) $\int_{1}^{+\infty} \frac{1}{\sqrt[4]{2x+1}} dx = +\infty$, la serie diverge.
 - (f) $\int_{1}^{+\infty} \frac{1}{x\sqrt{\ln(x)}} dx = +\infty$, la serie diverge.
 - (g) $\int_{1}^{+\infty} \frac{\ln(x)}{x} dx = +\infty$, la serie diverge.
- 11. Utilizar el criterio de la integral para determinar para cuales $p \in \mathbb{R}_{\geq 0}$...
 Sugerencia: ver el ejercicio 2 de la Práctica 8 (Integrales impropias). Converge con p > 1y diverge con $p \leq 1$.