Forest Fire Detector Network

Group 41

Ian Wallace

Computer Engineering
ian.wallace@knights.ucf.edu

Paul Wood

Computer Engineering

pwood9@knight.ucf.edu

Parke Benjamin

Electrical Engineering

parke.benjamin1@gmail.com

Randy Alvarez
Electrical Engineering
ralvarez129@knights.ucf.edu

1 Introduction

1.1 Narrative Description and Motivation

For this project, we plan to create a sensor network used for detecting forest fires. The sensor network will consist of multiple identical nodes. These nodes will be physically mounted on trees and evenly spread throughout the area to be monitored. Each node will contain sensors that will be used to detect a fire. Each node will also contain a LoRa transceiver that will be used to propagate data through the sensor network to the base station. This base station will process the data to determine if there is a fire and can relay that information to a human operator. This network should help detect forest fires early, before they become too large and difficult to contain.

1.2 Project Goals

- The sensor nodes should be low cost.
- The sensor nodes should be lightweight.
- The sensor nodes should be able to read data in from the environment and that data through other nodes to the base station.
- The sensors nodes should be able to communicate over a large enough distance in order to make it feasible to cover large enough area with nodes.
- The nodes should require little to no maintenance i.e. "place and forget".
- The sensors nodes should be easy to install.
- The base station should be able to connect to the internet to notify an operator about a forest fire.

2 Requirements and Constraints

2.1 Requirements

Requirement	Value	Units
The nodes shall use LoRa as the communication protocol.	N/A	N/A
The nodes shall be able connect to a computer and be controlled using a command line	N/A	N/A
interface.		
The nodes shall meet the IP54 requirements.	N/A	N/A
The nodes shall not consume more than 250 mW.	250	mW
The nodes shall last 1-2 years before a battery replacement becomes necessary.	1-2	years
The nodes shall use solar panels.	N/A	N/A
The base station shall be able to connect to the internet.	N/A	N/A
The base station shall be able to alert a human operator about a fire.	N/A	N/A
The base station shall be to run a server instance.	N/A	N/A
The base station shall be have an Ethernet module.	N/A	N/A
The base station shall be able to control and receive data from the nodes.	N/A	N/A
The base station shall be able to display information to the user via a GUI.	N/A	N/A
The base station shall have a long range transmitter and antenna in order to communicate	15	km
with nodes up to 15 km away.		
The base station shall have a powerful enough processor in order to maintain communi-	N/A	N/A
cation with nodes and run a server instance.		

2.2 Constraints

Constraint	Value	Units
The nodes must be light enough so that they can be affixed to a tree or other tall structure	N/A	N/A
and not be of a concern to fall off.		
The nodes must cost lower than or the same as alternative forest fire monitoring methods.	N/A	N/A
The nodes must be able to withstand water from rainfall.	N/A	N/A
The nodes must be able to withstand high winds.	N/A	N/A
The nodes must be able to withstand temperature extremes.	N/A	N/A
The nodes must be able to support a communication range of 3 to 4 miles in order to	3-4	miles
cover a larger area with a low node density.		
The nodes must be able to operate on less power than what one solar panel could generate	N/A	N/A
in a single day to allow for operation when there is no sunlight present.		
The base station must be able to operate off of mains power.	N/A	N/A

3 Block Diagram

Figure 1: The block diagram for the sensor node hardware.

Figure 2: The block diagram for the base station hardware.

Figure 3: The block diagram for the node software.

Table 1: A description of each block in the sensor node hardware block diagram.

Block Name	Description
Battery	The battery will take in power from the power subsystem and will store whatever
	is left over from the consumption by the system controller.
Power Subsystem	The power subsystem will take in and regulate power from the solar panel charging
	the battery as well as taking power from the battery for whatever needs the system
	controller requires. The power subsystem will also invert the DC power from the
	solar panel and battery to AC if required.
Solar Panel	The solar panel will feed power to the power subsystem where a solar power con-
	troller will be placed to take in the generated power.
System Controller	The system controller take in and process data from the sensors and output data
	to the LoRa transceiver.
Humidity Sensor	The humidity sensor will take a measurement of the relative humidity and send it
	to the system controller.
Temperature Sensor	The temperature sensor will take a measurement of the current temperature and
	send it to the system controller.
Camera	The camera will capture an image and send it to the system controller.
LoRa	The LoRa transceiver will receive data from the system controller and send that
	data to either another sensor node or the base station.

Table 2: A description of each block in the base station hardware block diagram.

Block Name	Description
Power Subsystem	The power subsystem will take in power from the battery for whatever needs the
	development board requires. The power subsystem will also invert the DC power
	from the solar panel and battery to AC if required.
Mains Power	This is the AC power coming from a wall outlet.
Ethernet	The Ethernet module will alow the development board to connect to the internet.
LoRa	The LoRa transceiver will receive data from the sensor nodes and send that data
	to the development board.
Development Board	The development board will process the sensor data recieve from the sensor nodes
	and will determine if that data indicates a forest fire. If a forest fire is detected, it
	will send a signal to a human operator over the internet.

Table 3: A description of each block in the sensor node hardware block diagram.

Block Name	Description
Power Management	This software will responsible for controlling and monitoring the power subsystem.
Data Management	This software will be responsible for processing data received from the sensors.
Sleeping Logic	This software will handle the logic for switching between taking sensor measure-
	ments and residing in a low-power "sleep" mode between sensor measurements.
LoRa	This is a device driver for the LoRa transceiver.
Camera	This is a device driver for the camera.
Temperature Sensor	This is a device driver for the temperature sensor.
Humidity Sensor	This is a device driver for the humidity sensor.
LoRaWAN	This handles the networking for the LoRa networking.
Multi-hop Routing	This software will control how traffic is routed around the sensor node network.

4 Estimated Budget

Component	Approx. Unit Cost	Quantity	Total Cost
Solar Panel	\$30.00	1	\$30.00
Solar Charge Regulator	\$20.00	1	\$20.00
Battery	\$10.00	1	\$10.00
Electronic Components	\$10.00	1	\$10.00
LoRa Transceiver	\$30.00	1	\$30.00
Microcontroller	\$3.00	1	\$3.00
PCB	\$10.00	5	\$10.00
Electronic Components	\$10.00	1	\$10.00
Humidity	\$3.00	1	\$3.00
Temperature	\$7.00	1	\$7.00
Camera	\$20.00	1	\$20.00
		Total	\$153

Table 4: The budget for each node.

Component	Approx. Unit Cost	Quantity	Total Cost
Power Subsystem Components	\$10.00	1	\$10.00
LoRa Transceiver	\$30.00	1	\$30.00
Raspberry Pi 4	\$35.00	1	\$35.00
Electronic Components	\$10.00	1	\$10.00
		Total	\$85

Table 5: The budget for the base station.

5 Milestones

5.1 Fall Semester

Date	Milestone	Deliverables
Sep. 2nd, 2021	Sensing mechanism finalized	Sensor requirements document
Oct. 1st, 2021	MCU and LoRa module finalized	Order confirmation and, if available, ship-
		ment information.
Oct. 8th, 2021	Sensors finalized	Order confirmation and, if available, ship-
		ment information.
Nov. 5th, 2021	Software alpha 1.0	Software alpha 1.0 node and base-station
		release binaries.
Nov. 19th, 2021	Prototype v1.0 PCB	PCB masks, fab order confirmation and,
		if available, shipment information
Dec 3rd, 2021	Prototype v1.5 PCB	PCB masks, fab order confirmation and,
		if available, shipment information
Dec 10th, 2021	Software alpha 1.5	Software alpha 1.5 node and base-station
		release binaries.

Table 6: Fall milestones

Project Milestone	Description	
Sensing mechanism finalized	Finish research and create design requirements for accurately detect-	
	ing wildfires in a cost effective way.	
MCU and LoRa module finalized	The MCU, LoRa module/daughter-boards, and Raspberry Pi's are	
	chosen, and multiple developer boards have been ordered to design	
	and test mesh networking.	
Sensors finalized	The required sensors are chosen, and multiple parts/developer-boards	
	have been ordered.	
Software alpha 1.0	The nodes can communicate and route packets to the base station,	
	and the base station can communicate with all or specific nodes on	
	the network. There also exists some sort of command line interface	
	on the base station to talk to the nodes, but there are no required	
	internet capabilities of the base, yet. The nodes can go to sleep, but	
	a sleep routine isn't configured optimally.	
Prototype v1.0 PCB	A PCB first version prototype PCB has been designed and ordered	
	from a fast-turnaround PCB fab containing all required functionali-	
	ties: power subsystem, MCU, LoRa module connectivity, battery and	
	solar I/O, and sensor I/O with adequate noise isolation and filtering.	
Prototype v1.5 PCB	PCB prototype with, if any, major issues fixed. Should also include	
	sensor daughter boards.	
Software alpha 1.5	The software works on the prototype PCB	

Table 7: Fall milestone descriptions

5.2 Spring Semester

Date	Milestone	Deliverables
Jan. 19th, 2022	Prototype v2.0 PCB	PCB masks, fab order confirma-
		tion and, if available, shipment
		information
Jan. 19th, 2022	Enclosure prototype	Model and 3D printed enclosure
Jan. 29th, 2022	Software alpha 2.0	Software alpha 2.0 node and
		base-station release binaries
Feb. 18th, 2022	REST API created	REST API documentation and
		testing/validation scripts
Feb. 18th, 2022	Enclosure finalized	Model and 3D printed enclosure
Feb. 25th, 2022	Final v1.0 PCB	PCB masks, fab order confirma-
		tion and, if available, shipment
		information
Mar. 1st, 2022	Software release v1.0	Software v1.0 node and base-
		station release binaries.
Mar. 18st, 2022	Software release v1.1	Software v1.1 node and base-
		station release binaries.
Mar. 18st, 2022	Final v1.1 PCB	PCB masks, fab order confirma-
		tion and, if available, shipment
		information
Mar. 25th, 2022	Simple website to visualize re-	Website front-end and back-end
	sults	files, and website URL or IP

Table 8: Spring milestones

Project Milestone	Description	
Prototype v2.0 PCB	This version should fix most or all remaining hardware bugs, and	
	ensure accurate sensor readings. It should also be mountable in an	
	enclosure.	
Enclosure prototype	An enclosure O-rings, or some other kind of sealant, to keep out	
	dust and water splashes. It should be able to mount the sensors	
	to get environmental readings, and provide space for top-mounted	
	solar-panel.	
Software alpha 2.0	The base station should be able to set the node's sleep routine set-	
	tings, and schedule any specific times to wake up at. The command-	
	line utility should be robust enough with minimal bugs.	
REST API created	The base station should run a server and/or relay to bigger server to	
	provide a REST API for clients to query data about environmental	
	readings pertaining to wildfires.	
Enclosure finalized	The enclosure that can house a PCB and mostly not get wet should	
	be good enough.	
Final v1.0 PCB	A PCB should be bug-free, and sent to a proper fab to have high-	
	quality board material and a water resistant coating.	
Software release v1.0	The software should be able to handle errors gracefully, reliably es-	
	tablish connections on the mesh network, and reliably wake-up and	
	transmit data.	
Software release v1.1	Bug fixes and minor improvements.	
Final v1.1 PCB	Only if needed. Bug fixes and minor improvements.	
Simple website to visualize results	The website doesn't need to look pretty, but it should provide a nice	
	visualization of the nodes deployed plus data readings over time	
	displayed in a graph.	

Table 9: Spring milestone descriptions

6 Decision Matrix

Project Idea Name	Cost	Practicality	Familiarity
Forest Fire Sensor Network	Large number of	Difficult to verify	Team members not
	nodes may lead	functionality of	familiar with work-
	to higher cost.	design i.e. need way	ing with LoRa and
	Required sensors	to replicate forest	complex networking
	(humidity, camera)	fire, may require	
	are more expensive.	setting up nodes in	
		an actual forest	
Smart Aeroponics System	Requires building	Straightforward ver-	Standard net-
	only one system.	ification of function-	working require-
	Less expensive	ality. Very central-	ments (client/server
	sensors.	ized system.	model).
Smart Home Management System	Requires lots of	Straightforward ver-	Standard net-
	WiFi transceivers,	ification, and pro-	working require-
	along with bright	vides utility after se-	ments (client/server
	RBG LEDs for light	nior design	model).
	fixtures. Relatively		
	inexpensive (I hope).		
Power Line Protection	Requires a 300 and 2	This would combine	Team members
	400 series micropro-	the speed of a 400	would have to learn
	cessor relays as well	line differential pro-	about power line
	as a varying amount	tection scheme with	protection schemes
	of fiber optic cable	the utility of a step	to complete project
	which would be very	distance relay	
	expensive		

Table 10: A decision matrix of potential project ideas.

Project Idea Name	Description
Forest Fire Sensor Network	A network of sensor nodes designed to detect a forest fire early and
	alert the appropriate people before it can spread.
Smart Aeroponics System	This would be a smart aeroponics system that utilizes various sensors
	and data processing to grow plants. Would contain sensors such as
	moisture and light. Could be remotely monitored and controlled
	via a website/app. Could utilize machine learning to detect various
	potential plant issues.
Smart Home Management System	Create a personalized smart-home experience where preferences are
	stored for each person in the house, and profiles are chosen based on
	the connect WiFi devices and/or facial detection when entering the
	door. Positions in the house can be tracked to automatically turn
	on lights where you walk, and to play music and set an ambiance
	when you get home.
Power Line Protection	Creating a new protection relay that combines the functionality of 2
	other protection schemes. It combines line differential which requires
	fiber optic between 2 substations that allows the relays to detect and
	solve problems almost instantly. It also uses step distance which uses
	a mathematical formula to calculate the position of a power line fault
	giving field crews the ability to know exactly where a problem is on
	a power line as they come up.

Table 11: A description of each project idea.