Saarland University Faculty of Natural Sciences and Technology I Department of Mathematic

Mitschrift

Stochastik 1

gehalten von
Prof. Dr. Christian Bender
Sommersemester 2019

Inhaltsverzeichnis

	Grundlagen	1
1	Einführung und Notationen	2
	1.1 Zufallsexperimente	2

Teil I Grundlagen

Einführung und Notationen

1.1 Zufallsexperimente

Unter Zufallsexperimenten verstehen wir Experimente, deren Ausgänge zufälligen Einflüssen unterliegen, z.B.:

- das Würfeln mit einem 6-seitigen Würfel
- das Drehen eines Glücksrades
- der Verlauf eines Aktienkurses (im kommenden Jahr)

Frage:

Wie kann man derartige Zufallsexperimente mathematisch modellieren? Es bezeichne Ω eine nicht-leere Menge, die alle möglichen Ergebnisse des Zufallsexperimentes umfasst. Ω wird **Stichprobenraum**, **Ergebnismenge** oder **Grundraum** genannt. Die Elemente $\omega \in \Omega$ heißen **Ergebnisse**.

Beispiele:

- Beim Würfeln kann man $\Omega = \{1, 2, 3, 4, 5, 6\}$ wählen.
- Beschreibt man die Position des Glücksrades durch den Winkel zur x-Achse, so bietet sich hier $\Omega=(0,2\pi]$
- Der Aktienverlauf im kommenden Jahr kann als Funktion von [0,1] nach \mathbb{R} aufgefasst werden, sodass hier gilt:

 $\Omega = \mathbb{R}^{[0,1]} := \{ \omega \mid \omega : [0,1] \to \mathbb{R} \}$

Teilmengen $a \subset \Omega$ nennen wir **Ereignisse**. Zum Beispiel beschreibt beim Würfeln mit einem echten Würfel (6 seitig und fair) $A = \{1, 3, 5\}$ das Ereignis Ës fällt eine ungerade Zahl". Wir sagen, ein Ereignis A tritt ein, falls bei einem Zufallsexperiment ein $\omega \in A$ realisiert wird. Wichtige Ereignisse sind:

- \emptyset : unmögliches Ereignis
- Ω : sicheres Ereignis
- $\{\omega\}, \omega \in \Omega$: Elementarereignis