ANKUSH HOMMERICH-DUTT

@ ahommeri@caltech.edu in linkedin.com/in/ankushhommerich-dutt

5 757-778-2549

github.com/ankush1717 % ankush1717.github.io

EXPERIENCE

Research Intern - Machine Learning

Cadence Design Systems - Special Projects Team

June 2019 - September 2019

- San Jose, CA
- Worked with a team on accelerating convolutional neural network inference
- Developed entire software stack to obtain neural network from high-level ML frameworks, use quantization to reduce storage and bandwidth costs, and convert to a representation for the accelerator
- Helped design a 2D grid of processors on the accelerator, which involved writing the algorithms for the movement of data between processors for the various neural network layers (convolution, pooling, etc.)
- Wrote a scheduler to assign instructions to the grid of processors to optimize communication and timing constraints during inference

Research Intern - Distributed Computing

College of William and Mary

June 2018 - September 2018

- Williamsburg, VA
- Researched into parallelizing a randomized SVD algorithm across a cluster by distributing the matrix multiplication and QR factorization operations
- Implemented the parallelized algorithm in the Apache Spark framework using its distributed data structures, with extensive work into optimizing code that runs on the Java Virtual Machine
- Work was part of an open-source eigensolver package name PRIMME
- Presented research at SURF Seminar Day at Caltech

Research Intern – Applied Math

NASA Langley Research Center

Mark September 2016 - June 2017

- Hampton, VA
- Analyzed the computational error of several finite difference approximation algorithms for the 1D heat equation to determine the optimal algorithm to use given a certain mesh spacing and time step
- Implemented many finite difference method algorithms for the Aircraft Noise Prediction Program (ANOPP2) software

PROJECTS

GPU Accelerated AI

 Developed an AI for the Gomoku board game and sped up the tree searching of the minimax algorithm by a factor of 90x on the GPU (compared to CPU)

ML Class Projects

- Deep Generative Models: Modified a variational autoencoder to help create an active map searching algorithm that optimizes bandwidth usage
- Kaggle: Examined survey data to predict voter turnout using random forests and gradient boosting, finished in top 20%
- ML applications: Used Hidden Markov Models and recurrent neural networks to generate Shakespeare poems with rap lyrics

EDUCATION

B.S. - Computer Science Minor - Data Science

California Institute of Technology

Pasadena, CA

High School Valedictorian

Hampton High School / Governor's School for Science and Technology

2013-2017

LANGUAGES

Python, C, C++, MATLAB Scala, SQL, OCaml, Verilog Java, HTML, x86 Assembly

TECHNICAL SKILLS

Tensorflow Pytorch Keras **CUDA** Scikit-learn Numpy Linux Bash Apache Spark Mathematica MySQL LaTeX **AWS** OpenCL

COURSEWORK

- ML Theory
- ML Applications
- GPU Programming
- Algorithms
- Data Structures
- Digital Electronics
- Complexity Theory
- Operating Systems
- Databases
- Networking
- Finance
- Computer Graphics
- Applied Linear Alg.
- Distributed Comp.

EXTRA-CURRICULAR

- Was ranked #1 in Virginia for speed-solving the Rubik's cube with an average of 9.24 seconds
- Co-organized 6 large-scale Rubik's Cube competitions at Old Dominion University (with an average attendance of 75 competitors)
- Tutoring high-schoolers in mathematics
- Playing racquetball, watching NBA basketball