Signals & Networks Laboratory Experiment Manual

Department of Electrical Engineering, I.I.T. Kharagpur

Experiment No.: 1

Maximum power transfer and Reciprocity theory

Objective: Verification of Maximum Power Transfer theorem and Reciprocity theorem.

Theory: Maximum power is transfer from a source of given voltage and an initial impedance to the load impedance Z_C in a circuit (Fig. 1) under three different condition.

a) When only Xi is adjustable:

Under this condition the power consumed by the load (PR_L) is maximum, when I is maximum, since R_L is constant.

$$I = \frac{V_S}{R_i + jX_i + R_L + JX_L}$$

$$\implies |I|_{\text{max}} = \frac{V_S}{R_i + R_L}$$

$$\text{Where, } X_i = -X_L$$

$$(1)$$

This means that if the Load reactance X_L is made equal in magnitude and opposite in sign to the internal reactance X_i , the power is transferred maximum.

b) When only R_L are adjustable:

From equation (1) in section (a), one may write,

$$P = |I^{2}| R_{L}$$

$$= \frac{V_{S}^{2}}{(R_{i} + R_{L})^{2} + (X_{i} + X_{L})^{2}} * R_{L}$$

$$Z_{i}$$

$$Z_{L} = R_{L} + jX_{L}$$
Fig. 1

Differentiating equation (3) w.r.t. R_L and equating to zero, one obtains,

$$R_L = \sqrt{R_i^2 + (X_i + X_L)^2}$$
(4)

c) When both R_L and X_L are adjustable:

Under this condition both equation (2) and (4) are valid simultaneously and one obtains,

$$R_L = R_i$$
, $X_L = -X_i$

Procedure: (A)

- i) Take a suitable set of values of V_s , R_i and X_i as shown in fig. (2). You can choose X_i to be inductive (assume the resistive loss of the coil to be negligible).
- ii) Next choose a suitable load resistance R_L and a variable capacitance C such that the critical value of C, ($C_0 = \frac{1}{4\pi^2 f^2 L}$) falls within the range of the values of C, available (decade box) in steps. This is to ensure that for a particular frequency, we can obtain the condition;

$$\mid X_C \mid = \mid X_L \mid$$
 or, $\frac{1}{\omega C} = \omega L$, for some value of C within the range provided.

Now for different value of C note down V_3 and V_1 ,

$$P_L = I^2 R_L = I.IR_L = \frac{V_1}{100}$$
. $V_3 = K.V_1 V_3$ where $K = \frac{1}{100} = \frac{1}{R_i}$

Enter the values of the voltage for different values of C and obtain the set corresponding to the maximum value of (V_1V_3) . Verify that for this set

$$V_2 = V_4$$
.

Fig. 2

Enter the data in the following table:

SL. No.	C ,	V_1	V_3	(V ₁ .V ₃)	Max. value (V ₁ .V ₃)
1					
2					
3					
4					
5					~

(B) Repeat the procedure of part (A), with C fixed and R_L varied. At the point of maximum power, check

$$R_L = \sqrt{R_i^2 + (X_i + X_L)^2}$$
(4)

(C) Repeat the procedure of part (B), varying C and obtain the maximum power condition. Check under this condition;

$$V_{RL} = V_{Ri}$$

$$V_{RL} = V_{Ri}$$
 i.e. $V_1 = V_3$

and
$$V_{XL} = V_{XL}$$

$$V_{XL} = V_{Xi}$$
 i.e. $V_2 = V_4$

RECIPROCITY THEOREM

<u>Theory</u>: Consider 2-Port (4-terminal) linear bilateral passive networks as shown in Fig.3. Apply a voltage V_S across terminals 1-1' and I_3 flows through the ammeter connecting terminals 2-2'. Next interchange the positions of the ammeter and the source voltage. The magnitude of the source voltage in this new position is set to V_S . Measure the corresponding current I_1 . The reciprocity theorem states that for passive bilateral network;

$$\frac{V_{\mathcal{S}}}{I_{\mathcal{S}}} = \frac{V_{\mathcal{S}'}}{I_{\mathcal{I}'}} \,.$$

<u>Procedure</u>: Connect the given resistive network. Apply 220V, single phase phase 50 Hz AC voltage at 1-1' and measure the ammeter current I_3 through 2-2'. Check the ratio V_S/I_3 . Now apply the AC voltage across 2-2' with $V_s=110$ V and measure the current I_1 through 1-1' by ammeter. Find the ratio $V_{S'}/I_{I'}$. These two ratio should be identical and calculate branch currents and node voltages for two circuit configurations.

Enter the data in the following table:

V_S	I_3	V_S/I_3	$V_{S'}$	I_1 ,	$V_{S'}/I_1$
1 3 4 3					