OFFICE OF NAVAL RESEARCH

Contract N00014-86-K-0043

TECHNICAL REPORT No. 92

Photoabsorption of Molecules at Corrugated Thin Metal Films

by

P. T. Leung, Young Sik Kim and Thomas F. George

Prepared for Publication

in

Journal of Chemical Physics

Departments of Chemistry and Physics State University of New York at Buffalo Buffalo, New York 14260

February 1989

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

REPORT DOCUMENTATION PAGE						Form Approved OMB No. 0704-0188			
1a. REPORT SI	CURITY CLASS			1b. RESTRICTIVE MARKINGS					
72 SECTIONTY	Unclassi	Tied N AUTHORITY		3 DISTRIBUTION	/AVAILABILITY OF	REPORT			
CO. SECURITY	CLASSIFICATIO	A AUTHORIT					distribution		
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE				Approved for public release; distribution unlimited					
4. PERFORMIN	G ORGANIZAT	ION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION RE	PORT NU	MBER(S)		
UBUFFALO/DC/89/TR-92									
6a. NAME OF	PERFORMING	ORGANIZATION	ZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION						
Depts. Chemistry & Physics			(If applicable)	į.					
State U	niversity	of New York							
6c. ADDRESS (City, State, and ZIP Code)				7b. ADDRESS (City, State, and ZIP Code)					
Fronczak Hall, Amherst Campus				Chemistry Program					
Buffalo, New York 14260				800 N. Quincy Street					
					ı, Virginia 2				
	FUNDING / SPC	INSORING	8b. OFFICE SYMBOL	9. PROCUREMENT	T INSTRUMENT IDE	NTIFICATI	ON NUMBER		
ORGANIZA		_	(If applicable)	Contract N00014-86-K-0043					
	or Naval								
	City, State, and				UNDING NUMBERS				
	ry Program			PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO	WORK UNIT ACCESSION NO.		
	Quincy St					.10	ACCESSION NO.		
	on, Virgi			ــــــــــــــــــــــــــــــــــــــ					
11. TITLE (Inci	•		Molecules at C	orrugated Th	in Metal Fil	ms	<u>.</u>		
12. PERSONAL	AUTHOR(\$)		Young Sik Kim						
13a. TYPE OF REPORT 13b. TIME C FROM		13b. TIME CO FROM	OVERED	14. DATE OF REPORT (Year, Month, Day) 15. PA February 1989		PAGE COUNT 25			
16. SUPPLEME	NTARY NOTAT	TION	j						
]	Prepared f	or publicatio	n in the Journa						
17.	COSATE	CODES	18. SUMECT TERMS	Continue on revers	e if necessary and	identify l	by block number)		
FIELD	GROUP	SUB-GROUP	MOLECULAR PHOT						
			THIN METAL FIL	MS)	MOLECULAR	DIPOLE)		
			CORRUGATED		ENHANCED S	ELECTI	VE PHOTOCHEMISTRY		
19. ABSTRACT	(Continue on	reverse if necessary	and identify by block r	umber)			· · · · · · · · · · · · · · · · · · ·		
,		A phenomenologi	cal study has been	carried out for	the photoabsor	tion of	migra		
molecules in the vicinity of a corrugated thin metal film. In particular,									
	mole	cules in the v	icinity of a corru	gated thin metal	i film. In part	icular,			
	pert	urbative results	for a grating silve	r film have bee	en obtained to	first	:		
	orde	r in the corru	gation parameter,	where the effect	t of the incider	t field			
	c oup	led with the lon	g-range surface p	lasmon is obse	erved. Based	on the			
different coupling nature between the radiations from the incident plane wave									
	and from the molecular dipole to the substate film, it is proposed that.								
through control of the various parameters of the film, enhanced selective									
photoabsorption may be achieved.									
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION									
™ UNCLAS	☑ UNCLASSIFIED/UNLIMITED ☑ SAME AS RPT ☐ DTIC USERS Unclassified								
	F RESPONSIBLE				include Area Code)	22c. OF	FICE SYMBOL		
Dr. David L. Nelson (202) 696-4410									

Photoabsorption of molecules at corrugated thin metal films

P. T. Leung
Department of Physics
Portland State University
P. O. Box 751
Portland, Oregon 97201

Young Sik Kim* and Thomas F. George
Departments of Chemistry and Physics & Astronomy
239 Fronczak Hall
State University of New York at Buffalo
Buffalo, New York 14260

<u>Abstract</u>

A phenomenological study has been carried out for the photoabsorption of molecules in the vicinity of a corrugated thin metal film. In particular, perturbative results for a grating silver film have been obtained to first order in the corrugation parameter, where the effect of the incident field coupled with the long-range surface plasmon is observed. Based on the different coupling nature between the radiations from the incident plane wave and from the molecular dipole to the substate film, it is proposed that, through control of the various parameters of the film, enhanced selective photoabsorption may be achieved.

* Present address: Department of Chemistry, Princeton University Princeton, New Jersey 08544

I. <u>INTRODUCTION</u>

Since the discovery of surface-enhanced Raman scattering, there has been in the past ten years a large number of investigations on the possibility for enhancing other photochemical processes at rough surfaces. In particular, processes such as photolysis and photochemical degradation have been studied in great detail, both experimentally and through theoretical models which include both the cases of localized and extended surface structures. By now, it has become clear that for a first-order process, such as photoabsorption which includes photodissociation (direct dissociation) and resonance fluorescence, the ultimate outcome for the enhancement of the process generally depends on two competing factors: the enhanced surface electromagnetic field and the surface-induced decay rates for the admolecules. Detailed reviews of this subject are available in the recent literature. 2,6

Still another substrate of great interest is the case of a corrugated thin metal film. Although the problem of light scattering from such a film has been intensively studied within the past few years, $^{7-14}$ and to a less extent the problem of molecular decay, $^{15-17}$ the possibility of new photochemical processes in the vicinity of such a film has not been addressed.

In this work, we present a phenomenological study of the photoabsorption of molecules located near a corrugated thin metal film. Specifically, we shall consider the photoabsorption of a two-level system (modeled as a point dipole) above a metallic (taken as Ag throughout) grating film, with an incident laser field at an angle θ and a molecular dipole assumed to be oriented normal to the film (see Fig. 1). Our formulation will be based on a generalization of our previous model for a single grating surface and an application of our recent work on the decay rates of molecules at such film systems. As pointed out before, the full dynamics of the problems must be

taken into account in order to treat the morphological induced effects. ^{17,18} We shall see that due to the different coupling natures of the radiations from the molecular dipole and the incident plane wave with the surface plasmons of the film, there is a possibility of achieving enhanced selective photoabsorption for the admolecules.

II. ABSORPTION CROSS SECTION

The configuration of our problem is shown in Fig. 1, where the molecule of dipole moment $\vec{\mu}$ is located at z=d above a thin metal (Ag) film bounded by two grating surfaces located at z=0 and z=-t, respectively. Thus the profile functions take the forms

$$\zeta_1 = \zeta_{o_1} e^{iQ_1 x} , \qquad \zeta_2 = \zeta_{o_2} e^{iQ_2 x} , \qquad (1)$$

where we shall assume small corrugations ($\zeta_0^Q_i^Q < 1$) so that perturbation theory can be applied. The optical properties of the three media are described by their dielectric functions ϵ_1 , $\epsilon_2 = \epsilon'(\omega) + i\epsilon''(\omega)$ and ϵ_3 . Let us consider p-polarized laser light of the form

$$\vec{E}_{in} = (E_{ox}\hat{e}_{x} + E_{oz}\hat{e}_{z}) e^{i(k_{z}^{(0)}z - \omega t)} e^{i\vec{k}_{\parallel}^{(0)} \cdot \vec{r}}$$

$$\vec{k}_{0}^{(0)} \cdot \vec{r}_{\parallel}$$

$$\vec{E}_{0}(\omega|z) e \qquad (2)$$

$$\vec{k}_{\parallel}^{(0)} - k_{x}^{(0)} \hat{e}_{x}$$
, $\vec{r}_{\parallel} = (x,y)$,

which is incident on the system at an angle θ with respect to the normal direction. We want to calculate the absorption cross section of the molecule. For simplicity, we assume that $\vec{\mu}$ is oriented perpendicular $(\vec{\mu} = \mu \hat{e}_z)$ to the film.

According to the phenomenological model, $^{3-5}$ the absorption cross section for the free-molecule case (σ_0) can be obtained in Lorentzian form as

$$\sigma_{o}(\omega) = A \left| \vec{E}_{in} \right|^{2} \sin^{2}\theta \frac{\gamma_{M}^{o}}{\left(\omega - \omega_{M}^{o}\right)^{2} + \left(\gamma_{M}^{o}/2\right)^{2}} , \qquad (4)$$

where A is a proportionality constant, and ω_{M}° and γ_{M}° denote the natural frequency and width, respectively, of the excited state of the free molecule.⁴ In the presence of the substrate film, Eq. (4) then becomes

$$\sigma(\omega) = A \left| E_z(d, \omega) \right|^2 \frac{\gamma_M}{(\omega - \omega_M)^2 + (M/2)^2} , \qquad (5)$$

where $E_z(d,\omega)$ is now the total field driving the dipole, and ω_M and γ_M denote the dressed values for the frequency and width, respectively, due to the presence of the film substrate. Since these are usually dependent on the driving frequency ω , Eq. (5) is in general distorted from a Lorentzian shape. Moreover, it is known that the induced frequency shift can most of the time be neglected compared to the induced decay rate. If and hence in the following we shall assume $\omega_M \approx \omega_M^0$ and take into account only the substrate-induced rate $\gamma(\omega)$. The remaining job then is to calculate $E_z(d,\omega)$ in Eq. (5). Following the perturbative approach of Maradudin and Mills, 20,21 we obtain to first order of roughness

1

$$E_{z}(d,\omega) = (1 + R e^{2ik_{1}d}) E_{in} \sin\theta + E_{z}^{(s)}(d,\omega) e^{ik_{1}d}, \qquad (6)$$

where R is the Fresnel reflectance for a flat film, 22 $k_1 = \sqrt{\epsilon_1} \omega/c$ is the wave number in the first medium, and $E_z^{(s)}$ is the contribution from the roughness to the scattered field, whose μ -th component is given by 20,21

$$E_{\mu}^{(s)}(\vec{r};\omega) = -\frac{k^{2}}{16\pi^{3}} \int d^{2}k_{\parallel} e^{i\vec{k}_{\parallel} \cdot \vec{r}_{\parallel}} \int dz' d_{\mu\nu}(\vec{k}_{\parallel}\omega|zz') \left(\left[\epsilon_{2}\theta(z'+t) - \epsilon_{1} \left[\delta(z') \right] \right] \left(\vec{k}_{\parallel} - \vec{k}_{\parallel}^{(0)} \right) + \left[\epsilon_{3} - \epsilon_{2}\theta(-z') \right] \delta(z'+t) \right) \times \left[\delta_{2}(\vec{k}_{\parallel} - k_{\parallel}^{(0)}) + t \right] \left\{ E_{\nu}^{(0)}(\vec{k}_{\parallel}^{(0)}\omega|z') \right\},$$
(7)

where $k = \omega/c$, $d_{\mu\nu}$ and f are the Fourier transform of the "flat" propagators and profile functions, respectively, $E_{\nu}^{(0)}$ is the <u>total</u> field in the various media in the case of a flat film, and θ is the Heaviside step function. The integrals involving the δ -functions must be carefully performed since $E_{\nu}^{(0)}$ is in general discontinuous across the various boundaries.

We have recently developed a method ²³ of handling these integrals by applying the formalism of Agarwal, ²⁴ from which we have obtained results which are a modified version of those in the original work of Maradudin and Mills ²⁰ and are in agreement with those obtained from other approaches, including Mills, ²⁵ subsequent modifications by applying the work of Juranek. ²⁶ It is straightforward to show that such modifications for a single interface can be extended to the case of a multilayer structure. For the simplest case of a replicating grating film where we have

$$\zeta_{1}(\vec{r}_{\parallel}) = \zeta_{2}(\vec{r}_{\parallel}) + t = \zeta_{0}e^{i\vec{Q}\cdot\hat{e}_{x}},$$
(8)

we obtain from Eq. (7)

$$\begin{split} E_{z}^{(s)}(d,\omega) &= -\frac{k^{2}}{4\pi} \int_{0}^{\infty} \left\{ (\epsilon_{2} - \epsilon_{1}) [d_{zx}(\vec{k}_{\parallel}\omega|d,0_{\perp}) E_{x}^{(0)}(\omega|0_{+}) \right. \\ &+ d_{zz}(\vec{k}_{\parallel}\omega|d,0_{\perp}) E_{z}^{(0)}(\omega|0_{+})] \\ &+ (\epsilon_{3} - \epsilon_{2}) [d_{zx}(\vec{k}_{\parallel}\omega|d,-t_{+}) E_{x}^{(0)}(\omega|-t_{\perp}) + d_{zz}(\vec{k}_{\parallel}\omega|d,-t_{+}) \\ &\times E_{z}^{(0)}(\omega|-t_{\perp})] \right\} , \end{split}$$

$$(9)$$

$$\vec{k}_{\parallel} = \vec{Q} + \vec{k}_{\parallel}^{(0)} ,$$

The expressions for the propagators $d_{\mu\nu}$ can be found in Ref. 21, and the results for various $E^{(0)}$, s for a flat film are also available in the literature. Using these available results, we can finally compute $E_z(d,\omega)$ in Eq. (6) in terms of E_{in} (see the Appendix), and together with the relation between γ_M and γ_M^0 which we have obtained in a previous work, γ_M^{17} we can finally calculate the absorption cross section $\sigma(\omega)$ in Eq. (5) in the presence of the substrate film in comparison to a given free-molecule absorption profile $\sigma_0(\omega)$.

III. POSSIBILITY OF ENHANCED SELECTIVE PHOTOABSORPTION

Instead of showing some straightforward model calculation based on Eqs. (4) and (5), here we shall pay attention to a very interesting feature of the problem which may lead to the realization of a mechanism for enhanced selective photoabsorption for adsorbed molecules. In a recent study of the decay rate spectrum for admolecules near such a grating film, 17 we pointed out that the coupling of the molecular fluorescence radiation to the two thin film surface plasmons is governed by a very different dispersion relation as compared to those in the case of plane wave light scattering experiments. 15,16 The difference arises from the dipole nature of the molecular emission which consists of a superposition of all the plane wave harmonics. Hence the resonance peaks due to the cross-coupling of the plasmons on the two film surfaces into the long-(and short-)range surface plasmons in the decay-rate spectrum are in general at different positions as compared to those in the light scattering spectrum. 17 Since these peak positions (in both spectrums) are very sensitive to the geometrical (roughness, thickness,...) and dielectric properties of the film, for a given absorption level one can then try to adjust these parameters so that the cross-coupling peak of the scattered field lies close to the natural frequency $\omega_{_{\mathbf{M}}}^{^{\mathbf{O}}}$ of the system, and that of the induced decay rate stays away from $\omega_{_{\mathbf{M}}}^{^{\mathbf{O}}}$. Under optimal conditions enhanced selective photoabsorption of this particular level (ω_{M}^{0}) may be achieved, since the other levels close to $\omega_{_{\mathbf{M}}}^{^{\mathbf{O}}}$ would now be strongly damped due to the fact that they can experience large induced decay rates. We shall illustrate this below through a numerical model calculation.

IV. NUMERICAL ILLUSTRATIONS

To illustrate the sensitivity of the cross-coupling peaks to the film parameters, let us first study the intensity of the total field at the molecule site (z = d). Defining $I(\omega) = |E_z(d,\omega)|^2$ with E_z given in Eq. (6), Fig. 2 shows the spectrum of $I(\omega)$ at d = 150 Å for different grating periods Q for a supported (asymmetrically-bound) film. It shows, aside from the wellknown "dip" at $\omega \sim 3.6$ eV for Ag due to the excitation of the non-radiative surface plasmon mode, that the long-range evanescent surface plasmon (LRSP) mode due to the cross-coupling is manifested clearly in the spectrum, where its peak moves as Q is varied. At such a distance, the short-range crosscoupling mode almost vanishes completely. Figure 3 shows similar variation of this LRSP peak with the thickness (t) of the film for a fixed value of Q, where the peak is seen to disappear as t tends to infinity. Figure 4 shows similar effects as in Fig. 2, except that we now have a free-standing (symmetrically-bound) film, which is known to be a very efficient system for cross-coupling between the two film surface plasmons. 16,17 Figure 5 shows similar effects as in Fig. 3 for the free-standing film in Fig. 4. To illustrate the possible selective enhanced mechanism as discussed in Sec. III, we consider a hypothetical molecular system with Lorentzian absorption lines $\sigma_{\alpha}(\omega)$ as illustrated in Fig. 6. Let us consider the photoabsorption spectrum of this system when being located at d = 150 Å from a supported grating film as that in Figs. 2 and 3, and with $Q = 1.5 \times 10^{-3} \text{ Å}^{-1}$. Using the results for the decay rate worked out previously, 17 the decay rate spectrum for the same grating film system is plotted in Fig. 7, from which the peak due to crosscoupling into LRSP located at $\omega \sim 1.1$ eV is clearly seen to be located at a different position than that for light scattering in Fig. 1 where the spectrum peaks at $\omega \sim 1.6$ eV. Figure 8 shows the distorted absorption line shape $\sigma(\omega)$

for the molecular system in Fig. 6 located in the vicinity of the above grating film. It can be seen that one of the absorption lines is suppressed while only the one with $\omega_{\rm M}^0$ – 1.5 eV is excited. Moreover, there is not much enhancement for this line since the corrugation amplitude $\zeta_{\rm O} \simeq 40$ Å used in this calculation is too small. We have tried to increase this to go beyond 100 Å where we do have enhancement, but then the result is not very meaningful due to the limitation of the present perturbative approach. Nevertheless, the present results do give very strong indications that such selective enhanced photoabsorption may indeed be possible for deeper grating films, in which case a non-perturbative treatment must be adopted. We plan to reformulate this problem using a non-perturbative approach to calculate the fields and decay rates in the future.

V. CONCLUSION

In this paper, we have studied phenomenologically the photoabsorption of a molecule in the vicinity of a grating film. Our main result here is the speculation of the possibility of enhanced selective photoabsorption. It is well known that due to its monochromaticity and tunability, the laser has found great applications in various selective photochemical processes. Nevertheless, to have the selective absorption enhanced, one requires a highly-intense laser source, which may then lead to multiphoton processes and hence weakens the selectivity in the photoprocess. In this present mechanism which we are proposing, however, we have made use of the fact that the induced decay rate and the enhanced LRSP field have very different resonance structures, and hence the excitation of other levels may be suppressed by the enhanced decay rates at their natural frequencies. Hence, we conclude that it is worth pursuing the problem further using a non-perturbative approach to

allow large grating amplitudes for the film and to recalculate $\sigma(\omega)$ for such a system, so that a realistic enhanced selective photoabsorption may be exhibited.

ACKNOWLEDGMENTS

The authors would like to thank the referee for informing them of the work of Mills in Ref. 25. This research was supported by the Office of Naval Research, the National Science Foundation under Grant CHE-8620274 and the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract F49620-86-C-0009. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.

APPENDIX

Here we give a brief account on how the final expression for $E_{\rm Z}^{(s)}({\tt d},\omega)$ may be obtained from Refs. 21 and 22. From Ref. 22 it is straightforward to show that

$$E_{x}^{(0)}(\omega|0_{+}) = (1 - R) E_{in}^{(0)}\cos\theta ; E_{z}^{(0)}(\omega|0_{+}) = (1 + R) E_{in}^{(0)}\sin\theta$$

$$E_{x}^{(0)}(\omega|-t_{-}) = TE_{in}^{(0)}\cos\theta ; E_{z}^{(0)}(\omega|-t_{-}) = TE_{in}^{(0)}\sin\theta .$$
(A1)

where

$$R = \frac{(1-\Delta_{1})(1+\Delta_{2}) e^{-ik_{2}t \cos\alpha} - (1+\Delta_{1})(1-\Delta_{2}) e^{-ik_{2}t \cos\alpha}}{-ik_{2}t \cos\alpha} + \frac{ik_{2}t \cos\alpha}{(1+\Delta_{1})(1+\Delta_{2}) e^{-ik_{2}t \cos\alpha}}, \quad (A2)$$

and

$$T = \frac{-ik_{3}t \cos \beta}{-ik_{2}t \cos \alpha}, \quad (A3)$$

$$(1+\Delta_{1})(1+\Delta_{2}) e - (1-\Delta_{1})(1-\Delta_{2}) e$$

$$\Delta_{1} = \frac{k_{1}\cos\alpha}{k_{2}\cos\theta} , \quad \Delta_{2} = \frac{k_{3}\cos\alpha}{k_{2}\cos\beta} , \quad k_{i} = \sqrt{\epsilon_{i}} \frac{\omega}{c} , \quad (A4)$$

and θ , α and β are the angles made by the light rays with respect to the normal direction in media 1, 2 and 3, respectively. By using the Green dyadics worked out in Ref. 21, we obtain

$$E_{z}^{(s)}(d,\omega) = -\frac{k^{2}}{4\pi} \int_{0}^{\infty} \{(\epsilon_{2} - \epsilon_{1})[C_{1}C_{2}E_{x}^{(0)}(\omega|0_{+}) + C_{4}E_{z}^{(0)}(\omega|0_{+})] + (\epsilon_{3} - \epsilon_{2})[C_{1}C_{3}E_{x}^{(0)}(\omega|-t_{-}) + C_{5}E_{z}^{(0)}(\omega|-t_{-})]\}e^{i\alpha_{1}d}, \quad (A5)$$

where the coefficients C_{i} are given by:

$$C_{1} = \frac{k_{1}\sin\theta}{Q + k_{1}\sin\theta} . \tag{A6}$$

$$C_{2} = \frac{\frac{2\alpha_{2}\epsilon_{2}\rho(1 + \frac{\alpha_{3}\epsilon_{2}-\alpha_{2}\epsilon_{3}}{\alpha_{3}\epsilon_{2}+\alpha_{2}\epsilon_{3}}e^{-2i\alpha_{2}t})}{2\alpha_{2}\epsilon_{1} - (\alpha_{2}\epsilon_{1} + \alpha_{1}\epsilon_{2})(1 - \frac{\alpha_{3}\epsilon_{2}-\alpha_{2}\epsilon_{3}}{\alpha_{3}\epsilon_{2}+\alpha_{2}\epsilon_{3}}e^{-2i\alpha_{2}t})}, \quad (A7)$$

$$c_{3} = \frac{2\alpha_{2}\epsilon_{2}^{\rho} e^{-i\alpha_{2}t} \left(1 + \frac{\alpha_{3}\epsilon_{2}^{-\alpha_{2}\epsilon_{3}}}{\alpha_{3}\epsilon_{2}^{+\alpha_{2}\epsilon_{3}}}\right)}{2\alpha_{2}\epsilon_{1}^{-(\alpha_{2}\epsilon_{1}^{+\alpha_{1}\epsilon_{2}})\left(1 - \frac{\alpha_{3}\epsilon_{2}^{-\alpha_{2}\epsilon_{3}}}{\alpha_{3}\epsilon_{2}^{+\alpha_{2}\epsilon_{3}}} e^{-2i\alpha_{2}t}\right)},$$
(A8)

$$C_{4} = \frac{4\pi}{i\alpha_{1}} \left(\frac{c^{2}}{\epsilon_{2}\omega^{2}} \alpha_{2}^{2} - 1\right) \left(\frac{\epsilon_{2}}{\epsilon_{1}}\right) = \frac{\left(\frac{\epsilon_{2}}{\epsilon_{3}} + \frac{\alpha_{2}}{\alpha_{3}}\right) e^{i\alpha_{2}t} - \left(\frac{\epsilon_{2}}{\epsilon_{3}} - \frac{\alpha_{2}}{\alpha_{3}}\right) e^{-i\alpha_{2}t}}{\left(\frac{\alpha_{2}}{\alpha_{1}} - \frac{\epsilon_{2}}{\epsilon_{1}}\right) \left(\frac{\alpha_{2}}{\alpha_{3}} + \frac{\epsilon_{2}}{\epsilon_{3}}\right) e^{-i\alpha_{2}t}} ,$$

$$\left(\frac{\alpha_{2}}{\alpha_{1}} - \frac{\epsilon_{2}}{\epsilon_{1}}\right) \left(\frac{\alpha_{2}}{\alpha_{3}} + \frac{\epsilon_{2}}{\epsilon_{3}}\right) e^{-i\alpha_{2}t} - \left(\frac{\alpha_{2}}{\alpha_{1}} + \frac{\epsilon_{2}}{\epsilon_{1}}\right) \left(\frac{\alpha_{2}}{\alpha_{3}} - \frac{\epsilon_{2}}{\epsilon_{3}}\right) e^{-i\alpha_{2}t} ,$$

$$\left(\frac{\alpha_{2}}{\alpha_{1}} - \frac{\epsilon_{2}}{\epsilon_{1}}\right) \left(\frac{\alpha_{2}}{\alpha_{3}} + \frac{\epsilon_{2}}{\epsilon_{3}}\right) e^{-i\alpha_{2}t} ,$$

$$\left(\frac{\alpha_{2}}{\alpha_{1}} - \frac{\epsilon_{2}}{\epsilon_{1}}\right) \left(\frac{\alpha_{2}}{\alpha_{3}} + \frac{\epsilon_{2}}{\epsilon_{3}}\right) e^{-i\alpha_{2}t} ,$$

$$\left(\frac{\alpha_{2}}{\alpha_{1}} - \frac{\epsilon_{2}}{\epsilon_{1}}\right) \left(\frac{\alpha_{2}}{\alpha_{3}} + \frac{\epsilon_{2}}{\epsilon_{3}}\right) e^{-i\alpha_{2}t} ,$$

$$\left(\frac{\alpha_{2}}{\alpha_{1}} - \frac{\epsilon_{2}}{\epsilon_{1}}\right) \left(\frac{\alpha_{2}}{\alpha_{3}} - \frac{\epsilon_{2}}{\epsilon_{3}}\right) e^{-i\alpha_{2}t} ,$$

$$\left(\frac{\alpha_{2}}{\alpha_{1}} - \frac{\epsilon_{2}}{\epsilon_{1}}\right) \left(\frac{\alpha_{2}}{\alpha_{2}} - \frac{\epsilon_{2}}{\epsilon_{3}}\right) e^{-i\alpha_{2}t} ,$$

$$\left(\frac{\alpha_{2}}{\alpha_{1}} - \frac{\epsilon_{2}}{\epsilon_{1}}\right) \left(\frac{\alpha_{2}}{\alpha_{2}} - \frac{\epsilon_{2}}{\epsilon_{3}}\right) e^{-i\alpha_{2}t} ,$$

$$\left(\frac{\alpha_{2}}{\alpha_{1}} - \frac{\epsilon_{2}}{\epsilon_{2}}\right) \left(\frac{\alpha_{2}}{\alpha_{2}} - \frac{\epsilon_{2}}{\epsilon_{3}}\right) e^{-i\alpha_{2}t} ,$$

$$\left(\frac{\alpha_{2}}{\alpha_{2}} - \frac{\epsilon_{2}}{\epsilon_{3}}\right) \left(\frac{\alpha_{2}}{\alpha_{2}} - \frac{\epsilon_{2}}{\epsilon_{3}}\right) e^{-i\alpha_{2}t} ,$$

$$\left(\frac{\alpha_{2}}{\alpha_{2}} - \frac{\epsilon_{2}}{\epsilon_{3}}\right) \left(\frac{\alpha_{2}}{\alpha_{2}} - \frac{\epsilon_{2}}{\epsilon_{3}}\right) e^{-i\alpha_{2}t} ,$$

$$\left(\frac{\alpha_{2}}{\alpha_{2}} - \frac{\epsilon_{2}}{\epsilon_{3}}\right) \left(\frac{\alpha_{2}}{\alpha_{2}} - \frac{\epsilon_{2}}{\epsilon_{3}}\right) e^{-i\alpha_{2}t}$$

$$C_{5} = \frac{4\pi}{i\alpha_{1}} \left(\frac{c^{2}}{\epsilon_{2}\omega^{2}} \alpha_{2}^{2} - 1\right) \left(\frac{\epsilon_{2}}{\epsilon_{1}}\right) \frac{2\frac{\alpha_{2}}{\alpha_{3}}}{\left(\frac{\alpha_{2}}{\alpha_{1}} - \frac{\epsilon_{2}}{\epsilon_{1}}\right) \left(\frac{\alpha_{2}}{\alpha_{3}} + \frac{\epsilon_{2}}{\epsilon_{3}}\right) e^{i\alpha_{2}t} - \left(\frac{\alpha_{2}}{\alpha_{1}} + \frac{\epsilon_{2}}{\epsilon_{1}}\right) \left(\frac{\alpha_{2}}{\alpha_{3}} + \frac{\epsilon_{2}}{\epsilon_{3}}\right) e^{-i\alpha_{2}t}$$

(A10)

where

$$\rho = \frac{2\pi i c^2}{\epsilon_2 \omega^2} (Q + k_1 \sin \theta) , \qquad (A11)$$

and $\alpha_i^2 = \epsilon \frac{\omega^2}{i_c^2} - (Q + k_1 \sin \theta)^2$, with the sign of α_i being carefully taken to meet various boundary conditions at infinity.

REFERENCES

- 1. M. Fleischmann, P. J. Handra and A. J. McQuillan, Chem. Phys. Lett. <u>26</u>, 163 (1974).
- 2. For reviews, see, e.g., G. M. Goncher, C. A. Parsons and C. B. Harris, J. Phys. Chem. <u>88</u>, 4200 (1984); D. A. Jelski, P. T. Leung and T. F. George, Int. Rev. Phys. Chem. <u>7</u>, 179 (1988).
- 3. J. I. Gersten and A. Nitzan, Surf. Sci. <u>158</u>, 165 (1985), and references therein.
- 4. P. T. Leung and T. F. George, J. Chem. Phys. 85, 4729 (1986).
- 5. P. T. Leung and T. F. George, Chem. Phys. Lett. <u>134</u>, 375 (1987).
- 6. See also, P. T. Leung and T. F. George, Spectroscopy 4, 35 (1989).
- 7. I. Pockrand, Opt. Commun. <u>13</u>, 311 (1975); I. Pockrand and H. Raether, Appl. Opt. <u>16</u>, 1784 (1977).
- 8. D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).
- 9. G. S. Agarwal, Phys. Rev. B <u>31</u>, 3534 (1985); S. D. Gupta, G. V. Varada and G. S. Agarwal, Phys. Rev. B <u>36</u>, 6331 (1987).
- 10. M. G. Weber and D. L. Mills, Phys. Rev. B <u>32</u>, 5057 (1985).
- 11. T. Inagaki, M. Motosuga, E. T. Arakawa and J. P. Goudonnet, Phys. Rev. B 31, 2548 (1985); 32, 6238 (1985).
- 12. I. A. Avrutskii, A. S. Svarhin and V. A. Sychugov, Opt. Spectrosc. (USSR) 63, 198 (1987).
- 13. M. G. Cavalcante, G. A. Farias and A. A. Maradudin, J. Opt. Soc. Am. B $\underline{4}$, 1372 (1987).
- 14. Z. Chen and H. J. Simon, J. Opt. Soc. Am. B 5, 1396 (1988).
- R. W. Gruhlke, W. R. Holland and D. G. Hall, Phys. Rev. Lett. <u>56</u>, 2838 (1986); Opt. Lett. <u>12</u>, 364 (1987).
- 16. R. W. Gruhlke and D. G. Hall, Appl. Phys. Lett. <u>53</u>, 1041 (1988).
- 17. T. Leung, Y. S. Kim and T. F. George, Phys. Rev. B, submitted.
- P. T. Leung, Y. S. Kim and T. F. George, Phys. Rev. B <u>38</u>, 10032 (1988);
 Y. S. Kim, P. T. Leung and T. F. George, Chem. Phys. Lett. <u>152</u>, 453 (1988).
- 19. See, e.g., R. R. Chance, A. Prock and R. Silbey, Adv. Chem. Phys. <u>37</u>, 1 (1978).
- 20. A. A. Maradudin and D. L. Mills, Phys. Rev. B 11, 1392 (1975).

- 21. D. L. Mills and A. A. Maradudin, Phys. Rev. B 12, 2943 (1975).
- 22. See, e.g., L. N. Hadley and D. M. Dennison, J. Opt. Soc. Am. <u>37</u>, 451 (1947).
- 23. P. T. Leung and T. F. George, Phys. Rev. <u>36</u>, 4664 (1987).
- 24. G. S. Agarwal, Phys. Rev. B <u>14</u>, 846 (1976).
- 25. D. L. Mills, Phys. Rev. B <u>12</u>, 4036 (1975).
- 26. E. Juranek, Z. Phys. 233, 324 (1970).
- See also, M. Born and E. Wolf, <u>Principles of Optics</u>, 6th Ed. (Pergamon, New York, 1980).

FIGURE CAPTIONS

- 1. Configuration of the photoabsorption problem at a corrugated thin film.
- 2. Intensity of the electric field at z=d=150 Å from a supported grating film ($\epsilon_1=1.0$, $\epsilon_3=3.6$) as a function of frequency at fixed film thickness t=100 Å and grating amplitude $\zeta_0=40$ Å. The angle of incidence θ is set at 1 radian, and the grating wave number is varied as: $Q=1.0\times 10^{-3}$ Å⁻¹ (solid line); $Q=1.5\times 10^{-3}$ Å⁻¹ (dotted line); and $Q=2.0\times 10^{-3}$ Å⁻¹ (dashed line). The y-axis on each graph is in arbitrary units.
- 3. Same as Fig. 2, except that Q is fixed at $2.0 \times 10^{-3} \text{ Å}^{-1}$ and t is varied: dotted line 2 (t = 50 Å); dashed line (t = 100 Å); dotted line 1 (t = 200 Å); solid line (t $\rightarrow \infty$).
- 4. Same as in Fig. 2, except that the results are for a free-standing film, $\epsilon_1 = \epsilon_3 = 1.0$.
- 5. Same as Fig. 3, except that the results are for a free-standing film, $\epsilon_1 = \epsilon_3 = 1.0$.
- 6. Hypothetical molecular system with two Lorentzian absorption lines.
- 7. Decay rate spectrum for the system as in Figs. 2 and 3 with Q = 1.5×10^{-3} Å and t = 100 Å.
- 8. Distorted photoabsorption line shape for the molecular system in Fig. 6 in the presence of the grating film as described in Fig. 7.

01/1113/86/2

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	No. Copies	•	No. Copies
Office of Naval Research Attn: Code 1113 800 N. Quincy Street Arlington, Virginia 22217-5000	2	Dr. David Young Code 334 NORDA NSTL, Mississipp: 39529	1
Dr. Bernard Douda Naval Weapons Support Center Code 50C Crane, Indiana 47522-5050	1	Naval Weapons Center Attn: Dr. Ron Atkins Chemistry Division China Lake, California 93555	1
Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko, Code L52 Port Hueneme, California 93401	1	Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, D.C. 20380	1
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12 high quality	U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 12211 Research Triangle Park, NC 27709	1
DTNSRDC Attn: Or. H. Singerman Applied Chemistry Division Annapolis, Maryland 21401	1	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112	1
Dr. William Tolles Superintendent Chemistry Division, Code 6100 Naval Research Laboratory	1	Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232	1
Washington, D.C. 20375-5000		Dr. David L. Nelson Chemistry Division Office of Naval Research 800 North Quincy Street Arlington, Virginia 22217	1

Dr. J. E. Jensen Hughes Research Laboratory 3011 Malibu Canyon Road Malibu, California 90265

Dr. J. H. Weaver
Department of Chemical Engineering
and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. A. Reisman Microelectronics Center of North Carolina Research Triangle Park, North Carolina 27709

Dr. M. Grunze
Laboratory for Surface Science and
Technology
University of Maine
Orono, Maine 04469

Dr. J. Butler Naval Research Laboratory Code 6115 Washington D.C. 20375-5000

Dr. L. Interante Chemistry Department Rensselaer Polytechnic Institute Troy, New York 12181

Dr. Irvin Heard Chemistry and Physics Department Lincoln University Lincoln University, Pennsylvania 19352

Dr. K.J. Klaubunde Department of Chemistry Kansas State University Manhattan, Kansas 66506 Dr. C. B. Harris Department of Chemistry University of California Berkeley, California 94720

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
Cookesville, Tennessee 38501

Dr. D. Dilella Chemistry Department George Washington University Washington D.C. 20052

Dr. R. Reeves Chemistry Department Renssaeler Polytechnic Institute Troy, New York 12181

Dr. Steven M. George Stanford University Department of Chemistry Stanford, CA 94305

Dr. Mark Johnson Yale University Department of Chemistry New Haven, CT 06511-8118

Dr. W. Knauer Hughes Research Laboratory 3011 Malibu Canyon Road Malibu, California 90265

Dr. G. A. Somorjai Department of Chemistry University of California Berkeley, California 94720

Dr. J. Murday Naval Research Laboratory Code 6170 Washington, D.C. 20375-5000

Dr. J. B. Hudson Materials Division Rensselaer Polytechnic Institute Troy, New York 12181

Dr. Theodore E. Madey Surface Chemistry Section Department of Commerce National Bureau of Standards Washington, D.C. 20234

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. M. G. Lagally
Department of Metallurgical
and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. R. P. Van Duyne Chemistry Department Northwestern University Evanston, Illinois 60637

Dr. J. M. White Department of Chemistry University of Texas Austin, Texas 78712

Dr. D. E. Harrison Department of Physics Naval Postgraduate School Monterey, California 93940 Dr. R. L. Park
Director, Center of Materials
Research
University of Maryland
College Park, Maryland 20742

Dr. W. T. Peria Electrical Engineering Department University of Minnesota Minneapolis, Minnesota 55455

Dr. Keith H. Johnson
Department of Metallurgy and
Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Arnold Green Quantum Surface Dynamics Branch Code 3817 Naval Weapons Center China Lake, California 93555

Dr. A. Wold Department of Chemistry Brown University Providence, Rhode Island 02912

Dr. S. L. Bernasek Department of Chemistry Princeton University Princeton, New Jersey 08544

Dr. W. Kohn Department of Physics University of California, San Diego La Jolla, California 92037

Dr. F. Carter Code 6170 Naval Research Laboratory Washington, D.C. 20375-5000

Dr. Richard Colton Code 6170 Naval Research Laboratory Washington, D.C. 20375-5000

Dr. Dan Pierce National Bureau of Standards Optical Physics Division Washington, D.C. 20234

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. R. P. Messmer Materials Characterization Lab. General Electric Company Schenectady, New York 22217

Dr. Robert Gomer Department of Chemistry James Franck Institute 5640 Ellis Avenue Chicago, Illinois 60637

Or. Ronald Lee R301 Naval Surface Weapons Center White Oak Silver Spring, Maryland 20910

Dr. Paul Schoen Code 6190 Naval Research Laboratory Washington, D.C. 20375-5000 Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Greene Code 5230 Naval Research Laboratory Washington, D.C. 20375-5000

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. K. C. Janda University of Pittsburg Chemistry Building Pittsburg, PA 15260

Dr. E. A. Irene Department of Chemistry University of North Carolina Chapel Hill, North Carolina 27514

Dr. Adam Heller Bell Laboratories Murray Hill, New Jersey 07974

Dr. Martin Fleischmann Department of Chemistry University of Southampton Southampton 509 5NH UNITED KINGDOM

Dr. H. Tachikawa Chemistry Department Jackson State University Jackson, Mississippi 39217

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and
Solid State Physics
Ithaca, New York 14853

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. D. Ramaker Chemistry Department George Washington University Washington, D.C. 20052

Dr. J. C. Hemminger Chemistry Department University of California Irvine, California 92717

Dr. T. F. George Chemistry Department University of Rochester Rochester, New York 14627

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Horia Metiu Chemistry Department University of California Santa Barbara, California 93106

Dr. W. Goddard

Department of Chemistry and Chemical
Engineering
California Institute of Technology
Pasadena, California 91125

Dr. P. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. J. Baldeschwieler
Department of Chemistry and
Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. J. T. Keiser Department of Chemistry University of Richmond Richmond, Virginia 23173

Dr. R. W. Plummer Department of Physics University of Pennsylvania Philadelphia, Pennsylvania 19104

Dr. E. Yeager Department of Chemistry Case Western Reserve University Cleveland, Ohio 41106

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. Roald Hoffmann Department of Chemistry Cornell University Ithaca, New York 14853

Or. A. Steckl
Department of Electrical and
Systems Engineering
Rensselaer Polytechnic Institute
Troy, NewYork 12181

Dr. G.H. Morrison Department of Chemistry Cornell University Ithaca, New York 14853