Iniciado em	domingo, 21 mai. 2023, 19:26
Estado	Finalizada
Concluída em	domingo, 21 mai. 2023, 21:52
Tempo empregado	2 horas 26 minutos
Avaliar	10,00 de um máximo de 10,00(100 %)

Questão 1

Correto

Atingiu 1,00 de 1,00

Gêmeos Pitá e Goras

Pitá e Goras são irmãos gêmeos que amam matemática e gostam de aplicá-la em tudo o que vão fazer. Até mesmo na hora de comer eles utilizam números para definir o que vão jantar. Sua tarefa é ajudar os irmãos a implementarem um <u>programa</u> que os ajude a tomar a decisão do que irão jantar conforme o critério que eles estabeleceram. Para isso, os gêmeos decidiram que se a quantidade de minutos do relógio for um número par na hora que eles forem comer, então eles irão jantar arroz e feijão, mas se for um número ímpar eles irão fazer apenas um lanche.

A Entrada consiste de:

• Uma $\underline{\text{variável}}\ M$ do tipo inteiro representando os minutos do relógio.

A Saída deve apresentar:

• 1 linha contendo a frase "Fome de comida! Queremos arroz e feijão" para casos com números pares ou a frase "Só um lanchinho cai bem!" para os casos ímpares, sem as aspas conforme apresentado nos exemplos.

Observações:

• Para a <u>variável</u> **M** serão considerados apenas valores entre 0 e 60 inclusive.

Descrição dos Exemplos:

• No primeiro exemplo, a saída corresponde ao caso da entrada par conforme solicitado no enunciado.

For example:

Input	Result				
0	Fome de comida! Queremos arroz e feijão				
2	Fome de comida! Queremos arroz e feijão				
15	Só um lanchinho cai bem!				

Answer: (penalty regime: 0, 0, 10, 20, ... %)

```
num = int(input())
res = num%2
if res == 0:
    print("Fome de comida! Queremos arroz e feijão")
else:
    print("Só um lanchinho cai bem!")
```


	Input	Expected	Got	
~	0	Fome de comida! Queremos arroz e feijão	Fome de comida! Queremos arroz e feijão	~
~	2	Fome de comida! Queremos arroz e feijão	Fome de comida! Queremos arroz e feijão	~
~	15	Só um lanchinho cai bem!	Só um lanchinho cai bem!	~
~	25	Só um lanchinho cai bem!	Só um lanchinho cai bem!	~
~	40	Fome de comida! Queremos arroz e feijão	Fome de comida! Queremos arroz e feijão	~
~	59	Só um lanchinho cai bem!	Só um lanchinho cai bem!	~

Para resolver essa questão atente para o uso da divisão pelo módulo.

Correto
Notas para este envio: 1,00/1,00.

Correto

Atingiu 2,00 de 2,00

Filtro de Códigos

Para programar existem alguns requisitos que nossos <u>códigos</u> devem atender independente do problema. Para isso, algumas perguntas podem ser feitas durante a implementação de um <u>programa</u>, conforme demonstra o guia abaixo. Sua tarefa é implementar um <u>programa</u> que ajude os programadores a avaliarem seus <u>códigos</u> da mesma forma que o guia. A figura apresenta a <u>ordem</u> das perguntas que deverão ser feitas.

A Entrada consiste de:

• Após cada pergunta é lida uma <u>String</u> que pode ser do tipo 'SIM' ou 'NÃO'.

A Saída deve apresentar:

• Todas as perguntas de acordo com as respostas do usuário e por fim uma das cinco possíveis respostas finais.

Observações:

• Não é necessário validar se os valores de entrada são do tipo definido.

Descrição dos Exemplos:

• Os exemplo são auto explicativos.

For example:

Input	Result
SIM SIM	O programa funciona? Você entende o que fez? Ótimo. Então não mexe!
SIM NÃO SIM	O programa funciona? Você entende o que fez? Já foi na tutoria? Choremos!
SIM NÃO NÃO	O programa funciona? Você entende o que fez? Já foi na tutoria? Temos um time a disposição!


```
resp1 = input("O programa funciona?\n")
 2 v if resp1 == "SIM":
        resp2 = input("Você entende o que fez?\n")
3
4 🔻
        if resp2 =="SIM":
 5
            print("Ótimo. Então não mexe!\n")
 6
        else:# resp2 != SIM
7
            resp6 = input("Já foi na tutoria?\n")
8 🔻
            if resp6 == "SIM":
                print("Choremos!\n")
9
10 •
            else: #resp 6 != "SIM"
11
                print("Temos um time a disposição!\n")
12
13 v else:#resp1 != SIM
        resp3 = input("Você sabe onde está o erro?\n")
14
        if resp3 == "SIM":
15 •
            resp4 = input("Acha que pode solucionar sozinho?\n")
16
17
            if resp4 == "SIM":
                print("Então mão na massa!\n")
18
            else:#resp4 != "SIM"
19
                resp5 = input("Já pesquisou no Google?\n")
20
21 🔻
                if resp5 == "SIM":
                    resp6 = input("Já foi na tutoria?\n")
22
                    if resp6 == "SIM":
23 🔻
                        print("Choremos!\n")
24
                    else: #resp 6 != "SIM"
25
                        print("Temos um time a disposição!\n")
26
27 🔻
                else: #resp5 != "SIM"
                    print("Corre lá então!\n")
28
29 🔻
        else: #resp3 == "SIM"
30
            resp6 = input("Já foi na tutoria?\n")
            if resp6 == "SIM":
31
                print("Choremos!\n")
32
33 ▼
            else: #resp 6 != "SIM"
34
                print("Temos um time a disposição!\n")
35
36
37
38
```

	Input	Expected	Got	
✓ SIM SIM		O programa funciona? Você entende o que fez? Ótimo. Então não mexe!	O programa funciona? Você entende o que fez? Ótimo. Então não mexe!	
~	SIM NÃO SIM	O programa funciona? Você entende o que fez? Já foi na tutoria? Choremos!	O programa funciona? Você entende o que fez? Já foi na tutoria? Choremos!	~
~	SIM NÃO NÃO	O programa funciona? Você entende o que fez? Já foi na tutoria? Temos um time a disposição!	O programa funciona? Você entende o que fez? Já foi na tutoria? Temos um time a disposição!	~
*	NÃO NÃO SIM	O programa funciona? Você sabe onde está o erro? Já foi na tutoria? Choremos!	O programa funciona? Você sabe onde está o erro? Já foi na tutoria? Choremos!	~
NÃO Já foi na tutoria? Já foi na tutoria?		Você sabe onde está o erro?	~	
~	NÃO SIM SIM	O programa funciona? Você sabe onde está o erro? Acha que pode solucionar sozinho? Então mão na massa!	O programa funciona? Você sabe onde está o erro? Acha que pode solucionar sozinho? Então mão na massa!	~

Correto

Notas para este envio: 2,00/2,00.

Correto

Atingiu 1,00 de 1,00

Carêncio está carente

Nem sempre é fácil encontrar o amor da sua vida. Para Carêncio, um jovem solteiro que está se sentindo sozinho, aparentemente o mar não está para peixe. Como ele não possui uma vida movimentada o suficiente para encontrar alguém facilmente, seu amigo lhe indicou um aplicativo de namoro, o revolucionário "**LovePertin**". O aplicativo mostra sua localização e a de pessoas em uma raio de 1 km que podem se interessar pelo seu perfil. Porém, Carêncio acredita que o amor deve ser algo fácil e não tem tanta paciência para lutar por uma paixão, então decidiu que, a depender da distância que a pessoa estiver, não valeria a pena investir em um encontro. Sendo D a distância entre ele e a pessoa, ele determinou os seguintes critérios:

D ≤ 100 : "É o amor da minha vida!"

• 100 < D ≤ 200 : "Talvez dê certo"

• D > 200 : "Não vale a pena investir"

Como Carêncio tem feito sucesso no aplicativo, ele pediu sua ajuda na classificação de cada match que recebeu. Para isso implemente um <u>programa</u> que de acordo com a distância entre eles determina se vale ou não a pena investir no encontro respeitando os critérios estabelecidos por Carêncio.

A Entrada consiste de:

4 linhas, todas com variáveis do tipo inteiro, sendo as duas primeiras (x₁,y₁) a localização de Carêncio e as duas últimas (x₂,y₂) a localização de sua mais nova paquera.

A Saída deve apresentar:

• Umas das três frases ("É o amor da minha vida!", "Talvez dê certo", "Não vale a pena investir") de acordo com a distância.

Observações:

- Não é necessário validar se os valores de entrada são do tipo definido.
- Para solucionar a questão atente para o uso da fórmula da distância entre dois pontos
- Em <u>python</u> você pode utilizar a <u>função</u> math.sqrt(x) para retirar raiz quadrada

Descrição dos Exemplos:

• No primeiro exemplo, a distância entre Carêncio e sua paquera é de aproximadamente 145m, por ser um valor entre 100 e 200 a saída é a segunda frase.

For example:

Input	Result
10 5 15 150	Talvez dê certo
3 7 15 20	É o amor da minha vida!
0 0 100 15	Talvez dê certo

Answer: (penalty regime: 0, 0, 10, 20, ... %)

```
1  def distancia(x1,y1,x2,y2):
2     D = ((x1-x2)**2 +(y1-y2)**2)**(0.5)
3     return D
4  #inicio do programa
5     x1 =int(input())
6     y1 =int(input())
7     x2 =int(input())
```


	Input	Expected	Got	
*	10 5 15 150	Talvez dê certo	Talvez dê certo	~
*	3 7 15 20	É o amor da minha vida!	É o amor da minha vida!	~
*	0 0 100 15	Talvez dê certo	Talvez dê certo	~
*	0 7 10 0	É o amor da minha vida!	É o amor da minha vida!	~
*	200 8 1000 0	Não vale a pena investir	Não vale a pena investir	~
*	185 5 385 5	Talvez dê certo	Talvez dê certo	~

Correto

Notas para este envio: 1,00/1,00.

10

Correto

Atingiu 3,00 de 3,00

Média Aritmética, Ponderada e Harmônica

Escreva um <u>programa</u> que leia 3 números inteiros positivos e efetue o cálculo das médias Aritmética (A), Ponderada (P) e Harmônica (H) dependendo da letra dada pelo usuário, mostre qual o tipo de média e qual o valor da média. No caso do usuário digitar qualquer outro caractere, apresente a mensagem 'Operacao inexistente'.

A Entrada consiste de:

- Linha contendo as três notas que são três números reais positivos.
- Linha contendo um caractere (para determinar qual a média), sendo (P) Ponderada, (H) Harmônica e (A) Aritmética
- Caso o caractere seja 'P', deve-se solicitar os três pesos de cada nota enviada, que são números positivos inteiros.

A Saída deve apresentar:

- Na primeira linha, o tipo de média que ele fez ("Harmonica", "Ponderada", "Aritmetica" ou "Operacao inexistente")
- Na segunda linha, caso tenha sido digito um caractere válido, o resultado da média com precisão de 2 casas decimais.

Observações:

• Não é necessário validar se os valores de entrada estão dentro dos intervalos e tipos definidos.

Descrição dos Exemplos:

• Os exemplos são autoexplicativos.

For example:

Input	Result
1 2 3 P 5 6 7	Ponderada 2.11
1 4 3 G	Operacao inexistente
5 3 8 H	Harmonica

Answer: (penalty regime: 0, 0, 10, 20, ... %)

```
1 ▼ def medP(x1,x2,x3,a,b,c):
        return (x1*a+x2*b+x3*c)/(a+b+c)
 2
3 ▼
    def medA(x1,x2,x3):
4
       return medP(x1,x2,x3,1,1,1)
 5 \neq def medH(x1,x2,x3):
        return 3/(1/x1 + 1/x2 + 1/x3)
6
8
    x1,x2,x3 = input().split()
    x1,x2,x3 = float(x1),float(x2),float(x3)
9
10
    opcao = input()
11
12 v if opcao == "A":
13
       print("Aritmetica")
        print(f"{medA(x1,x2,x3):.2f}")
14
    elif opcao == "P"
15 🔻
16
        a,b,c = input().split()
17
        a,b,c = int(a),int(b),int(c)
        print("Ponderada")
18
19
        print(f"{medP(x1,x2,x3,a,b,c):.2f}")
20 v elif opcao == "H":
        print("Harmonica")
21
22
        print(f"{medH(x1,x2,x3):.2f}")
23 v else:
24
        print("Operacao inexistente")
25
```

	Input	Expected	Got	
~	1 2 3 P 5 6 7	Ponderada 2.11	Ponderada 2.11	~
~	1 4 3 G	Operacao inexistente	Operacao inexistente	~
~	5 3 8 H	Harmonica 4.56	Harmonica 4.56	~
~	5 6 7 A	Aritmetica 6.00	Aritmetica 6.00	~
~	10 15 20 C	Operacao inexistente	Operacao inexistente	~
~	80 38 54 P 4 7 2	Ponderada 53.38	Ponderada 53.38	~

Para resolver esta questão implemente as condicionais e as equações que realizam os tipos de médias solicitados no enunciado.

Correto

Notas para este envio: 3,00/3,00.

11

Questão **5**

Correto

Atingiu 3,00 de 3,00

Debugando estruturas de decisão

Inácio, dono de uma empresa de eletrodomésticos, estava preocupado com a quantidade de reclamações que seus produtos e serviços tinham na Internet. Por isso, resolveu criar um indicador para melhor acompanhar estas reclamações, o índice de insatisfação (ii) do cliente.

O índice de insatisfação, chamado de ii, é composto por vários outros índices, tais como, o índice de reclamação, o índice de indisponibilidade, além do número de cancelamentos, de acordo com a descrição a seguir.

Ele definiu que o índice de reclamações seria uma escala de 0 a 100. Se o cliente é atendido imediatamente após ligar ao call center zero é adicionado ao ii e 100 se esperam em média mais de 100 minutos para serem atendidos. Se 60% ou mais das reclamações são resolvidas na primeira ligação, o ii baixa 5 pontos. Caso contrário aumenta 15 pontos.

Sobre o ii, é feita a seguinte alteração:

a) se o número de cancelamentos do serviços é maior ou igual a 10% do total dos clientes, o ii aumenta 80 pontos se o cancelamento foi por problemas nos serviços prestados ou diminui 30 pontos caso contrário.

b) se o número de cancelamentos dos serviços é menor do que 10% do total dos clientes, o ii aumenta 50 pontos se o cancelamento foi por problemas nos serviços prestados ou diminui 10 pontos caso contrário.

Depois disso, é computado o índice de indisponibilidade do serviço que varia de 0 a 100. Se os seus serviços ficaram fora do ar 10% ou mais do tempo em um mês, seu ii total será aumentado de 70 pontos, caso contrário, seu ii será rebaixado de 20 pontos.

Para isto, Inácio, que está aprendendo a programação, escreveu o seguinte programa em Python:

```
indiceReclamacao = int(input())
percentReclamResolPrim = int(<u>input())</u>
percentCliCancel = int(input())
indiceIndisponibilidade = int(input())
canceladoPorProblema = int(input())
if (percentReclamResolPrim > 60):
   indice = indiceReclamacao - 5
   indice = indiceReclamacao + 15
print(f'{indice}')
if ( percentCliCancel <= 10):
   if (canceladoPorProblema==0):
       indice = indice + 80
   else:
        indice = indice - 30
else:
   if (canceladoPorProblema == 0):
       indice = indice + 50
       indice = indice - 10
print(f'{index}');
if (indiceIndisponibilidade> 10):
   indice = indice - 70
else:
   indice = indice + 20
print(f'{indice}');
```

Corrija os erros do programa sabendo que:

A Entrada consiste de 5 valores inteiros, um por linha:

- o índice de reclamações;
- a porcentagem das reclamações resolvidas na primeira ligação;
- a porcentagem dos clientes que solicitaram o cancelamento;

- o índice de disponibilidade; e
- um número inteiro que pode ser 0 ou 1, conforme se segue:
 - 1 cancelamento por problemas no serviço;
 - 0 caso contrário.

A Saída deve apresenta três valores inteiros, um por linha:

- o índice de insatisfação da empresa levando-se em conta o índice de reclamações e a porcentagem de reclamações resolvidas na primeira ligação
- o ii final, depois de computado o índice de disponibilidade
- o valor da ii computando os cancelamentos e seus motivos.

Observações:

• Teste todos os intervalos possíveis para ver se o programa está certo, principalmente os casos que estão no limite dos intervalos.

Descrição dos Exemplos:

• Os casos de testes são autoexplicativos.

For example:

Input	Result
100	95
60	65
15	45
5	
0	
100	95
70	175
10	155
5	
1	
100	115
45	85
20	155
10	
0	

Answer: (penalty regime: 0, 0, 10, 20, ... %)

RESET ANSWER

```
indiceReclamacao = int(input())
2
    percentReclamResolPrim = int(input())
3
    percentCliCancel = int(input())
    indiceIndisponibilidade = int(input())
5
    canceladoPorProblema = int(input())
7 ▼
    if (percentReclamResolPrim >= 60):
8
        indice = indiceReclamacao - 5
9 🔻
    else:
10
        indice = indiceReclamacao + 15
    print(f'{indice}')
11
12
13 v if ( percentCliCancel >= 10):
14 ▼
        if (canceladoPorProblema==1):
15
            indice = indice + 80
16 •
        else:
            indice = indice - 30
17
18 ▼ else:
        if (canceladoPorProblema==1):
19 🔻
            indice = indice + 50
20
        else:
21 ▼
            indice = indice - 10
22
    print(f'{indice}');
23
24
25 v if (indiceIndisponibilidade >= 10):
26
        indice = indice + 70
```


	Input	Expected	Got	
*	100 60 15 5	95 65 45	95 65 45	~
*	100 70 10 5	95 175 155	95 175 155	~
•	100 45 20 10	115 85 155	115 85 155	~
~	100 80 30 10	95 175 245	95 175 245	~
•	50 60 20 30 0	45 15 85	45 15 85	~
*	70 70 20 15	65 145 215	65 145 215	~

Para resolver esta questão copie o código Python no IDE e tente executar.

Ele vai dar um erro de <u>sintaxe</u>. Leia o erro de <u>sintaxe</u> e corrija-o.

Faça isto até o <u>código</u> não ter mais erros de <u>sintaxe</u>.

Não tendo mais erros de <u>sintaxe</u>, o <u>código</u> será executado pelo <u>interpretador Python</u> até o fim e apresentará a saída.

Verifique se a saída está correta. Se a saída estiver errada, leia atentamente o <u>programa</u> procurando por erros semânticos. Para verificar o bom funcionamento do <u>programa</u>, o aluno deve testar o <u>programa</u> com varias entradas diferentes, simulando todas as possibilidades que podem ocorrer. Em particular, verificar se o <u>programa</u> passa por todos os trechos de <u>códigos</u> que estão aninhados nas estruturas condicionais verificando se as condições para executar este <u>código</u> estão corretas.

Correto

Notas para este envio: 3,00/3,00.

11