1、代码库功能

- 1.1、MediaPipe
- 1.2、半自动手部关键点标注工具
- 2、目录结构
- 3、标注流程
- 4、get_image_pose.py
- 5, get_video_pose.py

1、代码库功能

使用谷歌的MediaPipe 算法库获取单人图像/视频的边界框和关键点伪标签信息。由于MediaPipe 提供接口比较丰富,且算法精度高,所以得到伪标签一般质量都比较高。

1.1、MediaPipe

- <u>MidiaPipe官网</u>
- <u>GitHub仓库</u>

ML solutions in MediaPipe

	Android	iOS	C++	Python	JS	Coral
Face Detection	~	✓	✓	✓	✓	✓
Face Mesh	~	<u> </u>	✓	✓	~	
Iris	~	✓	✓			
Hands	~	✓	✓	✓	✓	
Pose	~	✓	✓	✓	✓	
Holistic	~	<u> </u>	✓	✓	~	
Selfie Segmentation	<u> </u>	✓	✓	✓	✓	
Hair Segmentation	<u> </u>		✓			
Object Detection	<u>~</u>	✓	✓			✓
Box Tracking	<u> </u>	✓	✓			
Instant Motion Tracking	~					
Objectron	~		✓	<u>~</u>	~	
KNIFT	~					
AutoFlip			<u> </u>			
MediaSequence			✓			
YouTube 8M			~			

See also MediaPipe Models and Model Cards for ML models released in MediaPipe.

1.2、半自动手部关键点标注工具

<u>GitHub:LabelKPs</u>

项目路径: \\192.168.16.105\data_huangzhiyong\annotation_tools\LabelKPS

上图所示是之前为亿智手势数据集标注关键点开发的标注工具,同样是基于MediaPipe进行手部关键点检测,在获取图片数据集的关键点伪标签后,读入伪标签进行检查和修改。

如上图所示,500张图片的统计数据中,去除模糊和手部漏检等图片后,能保留下来的可用图片大概占94.1%,而在可用图片上进行关键点修改的比例大概是33.5%,说明基于MediaPipe的标注工具,可以有效节省标注工作量,目前这个工具在申请亿智的发明专利。

原本打算在这个项目的基础上进行修改,让其支持人体关键点,但由于时间问题,目前项目还有些 bug,后续会增加对人体关键点的支持。所以,下面采用了一种更简单直接的方法,不修改伪标签,只 保留高质量的伪标签。

2、目录结构

 $\102.168.16.105\data_huangzhiyong\annotation_tools\mediapipe_pose$

编号	文件或目录	功能
1	vis_images/	存放视频可视化的帧图像(jpg格式)的默认目录
2	annotations/	存放可视化帧的标注文件(json格式)的默认目录
3	videos/	存放所有待处理的视频的默认目录
4	merge_datasets/	存放最终数据集的默认目录
5	get_image_pose.py	获取指定路径下所有图片的伪标签
6	get_video_pose.py	获取指定路径下所有视频的伪标签
7	generate_dataset.py	生成最终数据集,包括原图和高质量伪标签
8	my_coco_tools.py	读入和解析COCO数据集格式的标注文件
9	extract_videos.py	递归地将源目录下所有的视频拷贝到目的目录
10	video_pose_utils.py	工具类
11	checkup.py	检查生成的数据集标注信息是否正确,即原图与伪标签是否 对应
12	mediapipe_modules.zip	存放mediapipe模型文件的压缩包,选择不同等级的检测模型时,按需提取。

3、标注流程

- 1. **获取伪标签和可视化图片帧**,执行 get_image_pose.py 或 get_video_pose.py
 - 1. 执行脚本前,先清空输出目录,如 annotations/和 vis_images/
 - 2. 可以先加如 --show 观察伪标签生成是否正确,再加上 --save 参数保存伪标签
- 2. **筛选可视化图片帧**,推荐使用Windows图片查看器去除检测结果质量低的图片,快捷键: '→'键 下一张, 'Del'键 删除当前图片。
- 3. **生成最终数据集**,完成步骤2去除低质量帧后,执行 generate_dataset.py ,该脚本会根据保留下来的高质量伪标签,生成最终数据集。

4、get_image_pose.py

该Python脚本用于获取图片数据集的伪标签,下面对该脚本的参数说明:

编号	参数名	功能
1	img	待处理的图片数据集目录
2	interval	图片采样间隔,用于跳过相似的连续视频帧,默认值为1
3	auto- interval	使能自动采样间隔,默认为假。自动计算当前帧与后续帧的关键点相似度,相似度高的直接跳过。
4	show	可视化,边生成伪标签,边观察伪标签生成是否正确,默认为假。按'q'退出观察。
5	save	保存伪标签,默认为假;
6	save- img-root	save起用时,输出可视化图片的路径,默认值为"./vis_images"
7	save- ann-root	save起用时,输出关键点标注文件的路径,默认值为"./annotations"

```
1 # 例子1: 先观察伪标签生成,确定interval/auto-interval参数的作用
```

- python get_image_pose.py --img your/imgs_dir --show
- 3 # 例子2: 保存伪标签
- 4 python get_image_pose.py --img your/imgs_dir --save

5、 get_video_pose.py

该Python脚本用于获取视频数据集的伪标签,下面对该脚本的参数说明:

编号	参数名	功能
1	file	待处理的单个视频文件或多个视频所在的根目录
2	video- dir	默认的视频读入目录,如果file是目录,且与video-dir不同时,将file里的所有视频,拷贝到video-dir目录下,默认值为'videos'
3	 interval	图片采样间隔,用于跳过相似的连续视频帧,默认值为4
4	auto- interval	使能自动采样间隔,默认为假。自动计算当前帧与后续帧的关键点相似度,相似度高的直接跳过。
5	show	可视化,边生成伪标签,边观察伪标签生成是否正确,默认为假。按'q'退出观察。
6	save	保存伪标签,默认为假;
7	save- img- root	save起用时,输出可视化图片的路径,默认值为"./vis_images"
8	save- ann- root	save起用时,输出关键点标注文件的路径,默认值为"./annotations"

例子:

1 | python .\get_video_pose.py --file .\videos\1.mp4 --show