TESTE DE MATEMÁTICA DISCRETA/FINITA - 27/4/2017

Duração: 50 minutos

NOME COMPLETO	Solução	NÚMERO
	(

I (8 valores)

- $\bf 1)$ Diga, JUSTIFICANDO (e apresentando os cáculos que fizer), se as seguintes afirmações são verdadeiras ou falsas:
- a) $4310 \equiv 120 \pmod{37}$
- b) $4310^{36} \equiv 1 \pmod{37}$
- c) Há exactamente 120 números menores do que 440 e relativamente primos com 440.
- d) Se $a \equiv 3 \pmod{5}$ e $b \equiv 5 \pmod{7}$ então $a+b \equiv 8 \pmod{12}$.

Teolema de Fermat
$$4310 \equiv 1 \pmod{31}$$

C) $FALSA$
 $440 \mid 2$
 $220 \mid 2$

primos com $440 \le 0 \pmod{440}$. Ora

 $110 \mid 11$
 1111

Considere - ce por exemplo $0 = 3$
 1111
 1111

Considere - ce por exemplo $0 = 3$
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111

II (8 valores)

- 2) Determine todas as soluções da equação $\overline{7}x = \overline{21}$ em $\mathbf{Z_{42}}$
- 3) Mostre que existe um único número natural N menor do que 100 que dividido por 9 dá resto 7 e por 13 dá resto 3.

dividido por 9 dá resto 7 e por 13 dá resto 3.

$$7 = 21 \quad \text{2m} \quad \text{Z}_{42}$$
resolución 1:
$$7 = 21 + 42 \quad \text{(=)} \quad \text{x} = 3 + 6 \quad \text{(com)} \quad 42 = 6 \times 7 \quad \text{as solución}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{i.e.}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{(com)}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{(com)}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{y} = 0,1,2,...,6 \quad \text{(com)}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{(com)} \quad \text{(com)} \quad \text{(com)}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{(com)} \quad \text{(com)} \quad \text{(com)}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{(com)} \quad \text{(com)} \quad \text{(com)}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text{(com)}$$

$$8 = 3 + 6 \quad \text{(com)} \quad \text$$

Sol. genal de (B): (x,y) = (3,0) + (6t,t) = (3+6t,t)7=3+6t t=0,1,2,.,6 como ma solução 1.

3) ①
$$N = 9x + 7$$
 Estudamoi as coluções internas de $9x + 7 = 13y + 3$ $= 13y$

Sol. partiular de (*) (x0, y0) = (1, 1) sol. geral da eq. homogenea 9 x - 13 y = 0: (x, y) = t (13, 9) Sol genal de (*) :(*))=(1,1)+t(13,9) = (1+13t, 1+9t) te 2 sta é a forma geral das soluções inteiras de (*). Substituindo em @ x por 1+13t (ou em @ y por 1+9t) temes N=9 (1+13t)+7=16+117t teZ. A vínica solução positiva menor do que 100 é poi 9 N=16

NOME Solucar

III (4 valores)

- 4) Considere a função Φ de Euler. E sejam $m, n \in \mathbb{N}$. Mostre:
- a) Se mdc(m, n) = 1 a função Φ satisfaz a igualdade seguinte;

$$\Phi(m \times n) = \Phi(m) \times \Phi(n)$$

b) Diga, justificando, qual das desigualdades (1) ou (2) é válida para quaisquer $m, n \in \mathbb{N}$:

(1) $\Phi(m \times n) \ge \Phi(m) \times \Phi(n)$ ou (2) $\Phi(m \times n) \le \Phi(m) \times \Phi(n)$ Courideremos à de composição em factores primos de medem a) se mhc (m, m)=1 m e n nou Jen factores primos em comum q's +p's e $m = p_1 \cdots p_j$ $m = q_1 \cdots q_k$ $\phi(m) = m \left(1 - \frac{1}{q_1}\right) \cdots \left(1 - \frac{1}{q_k}\right) \qquad \phi(m) = m \left(1 - \frac{1}{q_1}\right) \cdots \left(1 - \frac{1}{q_k}\right)$ mm = p1 ... pij q1 ... 9k $\phi(mm) = mm \left(1 - \frac{1}{p_1}\right) \cdot \cdot \cdot \left(1 - \frac{1}{q_1}\right) \cdot \cdot \cdot \left(1 - \frac{1}{q_K}\right) = \phi(m)\phi(m)$ comutatividade de x. b) No caso de menterem factores primos em comum 7,5 " le temos m= []... [e p1... p] m= [1... [e, 91... 9k eom [;] []] Ф(m) = m (1-+)··· (1-+)(1-+)(1-+)··· (1-+)) > φ(m) = m (1-7)... (1-7e) (1-7)... (1-7e) e $\phi(mm) = mm \left(1 - \frac{1}{4}\right) \cdots \left(1 - \frac{1}{4}\right) \cdots \left(1 - \frac{1}{9}\right) \left(1 - \frac{1}{9}\right) \cdots \left(1 - \frac{1}{9}\right) \cdots \left(1 - \frac{1}{9}\right)$

poque (1-1.) <1 de a) e desta ultima doniqualdade concluímos que é a $= \phi(m) \times \phi(m)$ den gualdade (1) $\phi(mm) \ge \phi(m) \phi(n)$ que é valida $\forall m, m \in \mathbb{N}$.