Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο:	Χαράλαμπος Αναστασίου	AM:	1093316	Έτος:	30
--------	--------------------------	-----	---------	-------	----

Ασκηση 1

(α) Υπολογίστε την στοχαστική μέση τιμή της διαδικασίας.

Απάντηση:

- Για να υπολογίσουμε τη στοχαστική μέση τιμή της διαδικασίας, αρκεί να υπολογίσουμε τον μέσο όρο της τυχαίας μεταβλητής A(θ) για το δοσμένο διάστημα [-1/2, 1/2], ο οποίος είναι 0.
- (β) Χρησιμοποιώντας τη συνάρτηση $rand(\cdot)$ της MATLAB δημιουργήστε Κ υλοποιήσεις της διαδικασίας και εκτιμήστε, υπολογίζοντας την αριθμητική μέση τιμή κάθε χρονική στιγμή, την στοχαστική μέση τιμή της. Τι παρατηρείτε καθώς αυξάνει ο αριθμός των υλοποιήσεων της διαδικασίας που χρησιμοποιούνται στην εκτίμηση της στοχαστικής μέσης τιμής; Απεικονίστε την μέση υλοποίηση στον παρακάτω πίνακα.

Απάντηση:

- Για μικρό αριθμό υλοποιήσεων (π.χ. K = 1 ή 10), η στοχαστική μέση τιμή είναι ασταθής και εμφανίζει μεγάλη διακύμανση.
- Καθώς αυξάνεται ο αριθμός των υλοποιήσεων (π.χ. K = 100 ή 1000), η στοχαστική μέση τιμή αρχίζει να σταθεροποιείται και να πλησιάζει τη θεωρητική μέση τιμή της διαδικασίας (μηδέν).
- Αυτό δείχνει την ιδιότητα του "Νόμου των Μεγάλων Αριθμών", όπου η μέση τιμή των ανεξάρτητων και ομοίως κατανεμημένων τυχαίων μεταβλητών συγκλίνει στη θεωρητική μέση τιμή τους όσο αυξάνεται ο αριθμός των δειγμάτων.

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο:	Χαράλαμπος Αναστασίου	AM:	1093316	Έτος:	30
--------	--------------------------	-----	---------	-------	----

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο:	Χαράλαμπος Αναστασίου	AM:	1093316	Έτος:	30
--------	--------------------------	-----	---------	-------	----

Ακολουθεί αναπαράσταση της στοχαστικής μέσης τιμής και σε εικόνες. Για Κ=1000 παρατηρείται επικράτηση της τιμής 0 (χρώμα μπλε) στην εικόνα.

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο: Χαράλαμπο Αναστασίο	$^{\circ}$ AM:	1093316	Έτος:	30
-------------------------------	------------------	---------	-------	----

(γ) Υπολογίστε και απεικονίστε την ακολουθία αυτοσυσχέτισης της διαδικα αυξάνει ο αριθμός Κ των υλοποιήσεων της διαδικασίας που χρησιμοπο ακολουθίας αυτοσυσχέτισης;	
(δ) Είναι η παραπάνω διαδικασία "λευκή"; Αιτιολογείστε την απάντησή σας. Απάντηση:	
(ε) Υπολογίστε και απεικονίστε την Πυκνότητα Φάσματος (Spectral Density) κ	της διαδικασίας. Πόσο κοντά
στην ιδανική πυκνότητα είναι η εκτίμησή της από την ακολουθία αυτοσυσχέ πως επηρεάζεται από το Κ;	
Απάντηση:	

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο:	Χαράλαμπος Αναστασίου	AM:	1093316	Έτος:	30
--------	--------------------------	-----	---------	-------	----

Ασκηση 2

(α)	Υπολογίστε την	στοχαστική	μέση	τιμή	της	διαδικασία	ς.
١,	,		//					Э.

Απάντηση:

(β) Χρησιμοποιώντας τη συνάρτηση $randn(\cdot)$ της MATLAB δημιουργήστε Κ υλοποιήσεις της διαδικασίας και εκτιμήστε, υπολογίζοντας την αριθμητική μέση τιμή κάθε χρονική στιγμή, την στοχαστική μέση τιμή της. Τι παρατηρείτε καθώς αυξάνει ο αριθμός των υλοποιήσεων της διαδικασίας που χρησιμοποιούνται στην εκτίμηση της στοχαστικής μέσης τιμής; Απεικονίστε την μέση υλοποίηση στον παρακάτω πίνακα.

Απάντηση:

- (γ) Υπολογίστε και απεικονίστε την ακολουθία αυτοσυσχέτισης της διαδικασίας. Τι παρατηρείτε καθώς αυξάνει ο αριθμός Κ των υλοποιήσεων της διαδικασίας που χρησιμοποιούνται στην εκτίμηση της ακολουθίας αυτοσυσχέτισης;
- (δ) Είναι η παραπάνω διαδικασία "λευκή"; Αιτιολογείστε την απάντησή σας.

Απάντηση:

(ε) Υπολογίστε και απεικονίστε την Πυκνότητα Φάσματος (Spectral Density) της διαδικασίας. Πόσο κοντά στην ιδανική πυκνότητα είναι η εκτίμησή της από την ακολουθία αυτοσυσχέτισης του Ερωτήματος 4 και πως επηρεάζεται από το K;

1	Απαντήσεις στο	τέταρτο σε	τ εργαστηρια	κών ασκήσει	ov
Ον/μο:	Χαράλαμπος Αναστασίου	AM:	1093316	Έτος:	30
Απάντη	լσղ։				
<u> Ασκηση 3</u>					
, , , , ,	ιήστε αποδοτικά τον ακολουθία. Εκτιμή	•		•	•
Απάντη	լση:				
	ιώντας την εικόνα π	ου αποκαλύψ	ατε, επιβεβαιώστ	ε το Κεντρικό Ο	ριακό Θεώρημο
Απάντη	լση:				
<u> Ασκηση 4</u>					
δημιουργήστε μ	ιδικασία περιγράφει η ιερικές υλοποιήσεις τ ωνούν με τα θεωρητικ	ης. Υπολογίστ	ε τα φασματικά χ		
Απάντη	ι ση:				

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο:	Χαράλαμπος Αναστασίου	AM:	1093316	Έτος:	30
--------	--------------------------	-----	---------	-------	----

Ον/μο:	Αναστασίου	AM:	1093316	Έτος:	30
(β) Ποιά η λειτοι	υργία του Συστήμα	τος Λεύκανσης; Ι	Καταγράψτε την α	πάντησή σας.	
Απάντη	ση:				
(γ) Η πηγή του σ σας.	ήματος της Σχέσης	; (1) είναι ντετερμ	ινιστική ή στοχασ	τική; Δικαιολογή	στε την απάντησή
Χρησιμοποιώντο	του σήματος είνο ας τη συνάρτηση ας απαντήσεις σα ας.	rand(·), δημιο	υργείστε υλοποιι	ήσεις της και	προσπαθήστε να
Απάντη	ση:				

(ε) Εκφράστε την έξοδο του FIR φίλτρου Wiener μήκους Μ συναρτήσει των συντελεστών της κρουστικής του απόκρισης και του χρωματισμένου θορύβου.

Απάντηση:

(στ) Σχεδιάστε το βέλτιστο FIR φίλτρο Wiener μήκους 2 και υπολογίστε το μέσο τετραγωνικό σφάλμα.

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο:	Χαράλαμπος Αναστασίου	AM:	1093316	Έτος:	30
--------	--------------------------	-----	---------	-------	----

Απάντηση:

(ζ) Επαναλάβετε την Ερώτηση 5 για φίλτρα μήκους 3, 4, 5, 6, υπολογίστε τα αντίστοιχα μέσα τετραγωνικά σφάλματα. Τι παρατηρείτε;

M = 3	M =4	M = 5	$\mathbf{M} = 6$

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο:	Χαράλαμπος Αναστασίου	AM:	1093316	Έτος:	30
--------	--------------------------	-----	---------	-------	----

ПАРАРТНМА

Κώδικας Άσκησης 1

```
clear;clc;close all
%% ΕΡΩΤΗΜΑ β)
% Parameters
K = 10;
n = [-2000:4000]';
% Generating random amplitudes
A = rand(1,K) - 1/2;
% Generating the signal
x = A \cdot ((n > 0) - (n - 1999 > 0));
% Plotting the signal
figure; plot(n,x);
% Calculate the stochastic mean at each time step
stochastic_mean = mean(x, 2);
% Plotting the stochastic mean
figure;
plot(n, stochastic mean);
title('Stochastic Mean of the Process');
xlabel('Time (n)');
ylabel('Stochastic Mean');
% Plotting the stochastic mean as an image
figure; imagesc(n,n,stochastic mean); colorbar;
```

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο:	Χαράλαμπος Αναστασίου	AM:	1093316	Έτος:	30
--------	--------------------------	-----	---------	-------	----

```
% ΕΡΩΤΗΜΑ \gamma)
% Computing the autocorrelation matrix
Acor = x*x'/K;
% Calculate the mean autocorrelation at each time step
mean_autocorr = mean(Acor, 2);
% Plotting the mean autocorrelation
figure;
plot(n, mean_autocorr);
title('Mean Autocorrelation of the Process');
xlabel('Lag');
ylabel('Autocorrelation');
% Plotting the autocorrelation matrix as an image
figure; imagesc(n,n,Acor); colorbar;
% ΕΡΩΤΗΜΑ δ)
% Computing the spectral density
Sd = 20*log10(fftshift(abs(fft2(Acor))));
% Plotting the spectral density as an image
figure; imagesc(Sd);
```