MAE C163C / C263C Mini-Lab #1

(Due via Gradescope by 11:59pm on Friday, 4/25)

Mini-Lab #1: Hands-on Dynamixel motor tutorial

1. PID control – Building intuition

A PID controller involves a proportional gain K_P , integral gain K_I , and derivative gain K_D . Describe the effects of individually increasing each of these terms while keeping the other two constant.

2. PID control - Analysis of time history plots

a) Choose three distinct sets of proportional K_P , integral K_I , and derivative K_D gains. Each gain $(K_P, K_I, \text{ and/or } K_D)$ must be nonzero for at least one set of gains (small gain values are acceptable for the K_D term). Create a table containing the three distinct sets of gains chosen.

Set	K_P	K _I	K _D
1			
2			
3			

- b) For each set of distinct gains, provide an individual plot of motor angle (in degrees) versus time (in seconds) generated using the Dynamixel hardware and Python code in *minilab1.py*. All plots should have axis labels, a title, and a red dashed line at the set-point/reference of 90 deg.
- c) For each of the three plots, explain why the corresponding choice of gains results in the system time response displayed in the plot.