Lecture 6: Optimization

Yuya Takahashi

April 23, 2019

1 Introduction

- Optimization is the central behavioral assumption in economics. But it is rare that we have a closed-form solution for optimality. Thus, we need to find a minimum/maximum by computation.
- There are many different methods: derivative-free methods (e.g., Nelder-Mead), direction set methods (e.g., Newton), stochastic search (simulated annealing). There is no method that performs the best in all situations.
- In practice, we often combine more than one methods to find the optimum.
- We focus on unconstrained optimization.

2 Derivative-Free Methods

- A standard problem is

$$\min_{x} f(x) \tag{1}$$

where x could be either a scaler or a vector.

- Maximization problems can be written in this form.
- Problems are often accompanied by equality or inequality constraints

- One of the widely used methods is Nelder-Mead method. To fix the idea, consider an example where x is of two dimensions. Assume we have three points B (best), M (middle), and W (worst).

- In the standard Nelder-Mead method, we keep track of n+1 points of interest in \mathbb{R}^n , whose convex full forms a simplex.
- Denote n+1 vertices of the current simplex by $\{x_1,x_2,...,x_{n+1}\}$ where the ordering is such that

$$f(x_1) \le f(x_2) \le \cdots \le f(x_{n+1}).$$

- The basic idea is to remove the vertex with the "worst" function value and replace it with another point with a better value.
- The centroid of the best n points

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Points along the line that joins \bar{x} and the worst vertex x_{n+1} are denoted by

$$\bar{x}(t) = \bar{x} + t(x_{n+1} - \bar{x}).$$

- In the previous example, reflection, expansion, outside contraction, inside contraction corresponds to $-1, -2, -\frac{1}{2}$, and $\frac{1}{2}$, respectively.

- The Nelder-Mead Simplex Algorithm

Compute the reflection point $\bar{x}(-1)$ and evaluate $f_{-1} = f(\bar{x}(-1))$.

- If
$$f(x_1) \le f_{-1} < f(x_n)$$
,

- replace x_{n+1} by $\bar{x}(-1)$ and go to next iteration;
- Else if $f_{-1} < f(x_1)$

- Compute the expansion point $\bar{x}(-2)$ and evaluate $f_{-2} = f(\bar{x}(-2))$.
 - If $f_{-2} < f_{-1}$
 - replace x_{n+1} by x_{-2} and go to the next iteration.
 - else
 - replace x_{n+1} by x_{-1} and go to the next iteration.
- else if $f_{-1} \ge f(x_n)$
 - if $f(x_n) \le f_{-1} < f(x_{n+1})$
 - evaluate $f_{-1/2} = f(\bar{x}(-1/2))$;
 - if $f_{-1/2} \le f_{-1}$

replace x_{n+1} by $x_{-1/2}$ and go to next iteration;

- else

- ullet evaluate $f_{1/2}=f\left(ar{x}\left(1/2\right)
 ight)$;
 - if $f_{1/2} \le f_{n+1}$

replace x_{n+1} by $x_{1/2}$ and go to next iteration;

- If neither outside nor inside contraction was acceptable, shrink the simplex toward $x_{\mathbf{1}}$
 - $x_i \leftarrow (1/2)(x + x_i)$ for i = 2, 3, ..., n + 1.

Remarks • Unless a shrinkage is performed, the average function value decreases at each step

- This algorithm works reasonably well in many situations:
 - where the function is not continuous
 - where the function has a lot of kinks

- But stagnation often occurs at nonoptimal points
- This method is local in nature
- Convergence is slow
- One way to choose initial vertices: for $(a_1, ..., a_n)$, we can construct additional n points by

$$(a_1 + \frac{1}{2}|a_1|, a_2, ..., a_n)$$

 $(a_1, a_2 + \frac{1}{2}|a_2|, ..., a_n)$
 $(a_1, a_2, ..., a_n + \frac{1}{2}|a_n|)$

3 Newton Methods

- Let

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), ..., \frac{\partial f}{\partial x_n}(x)\right)$$

and

$$H(x) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(x) \end{pmatrix}$$

- If $f(x) = \frac{1}{2}x^TAx + b^Tx$ where A is symmetric positive definite, the minimum is at

$$x^* = -A^{-1}b. (2)$$

- If f is convex but not quadratic, we generally cannot directly solve for its minimum as above.

- But we can replace f locally with a quadratic approximation and apply the solution (2).
- At x^k , we define

$$g(x) = f(x^k) + \nabla f(x^k)(x - x^k) + \frac{1}{2}(x - x^k)^T H(x^k)(x - x^k)$$

- If f is convex, $H(x^k)$ is positive definite, and g(x) has a minimum at $x^k - H(x^k)^{-1} \left(\nabla f(x^k)\right)^T$. Naturally, Newton's method iterates based on this:

$$x^{k+1} = x^k - H(x^k)^{-1} (\nabla f(x^k))^T.$$

- Newton's method applies this update even when $H(x^k)$ is not positive definite.
- Newton's method is a local method

- Implementation can be expensive because computing and storing the Hessian is time- and space-consuming
- In practice, we never calculate $H\left(x^k\right)^{-1}$. Instead, we solve the linear problem $H(x^k)s^k = -\left(\nabla f(x^k)\right)^T$ for s^k and set $x^{k+1} = x^k + s^k$.
- Even with a positive-definite Hessian, x^k could be moving uphill.
- Convergence is faster than simplex methods.
- After convergence, we should check if H(x) satisfies the second order condition.

4 Direction Set Methods

- The basic idea is to find a sequence of directions. In each direction, we repeat one-dimensional minimization.
- Introduce *line search*: choose a direction p_k and searches along this direction from the current iterate x^k for new iterate with a lower function value
- The distance to move along p_k can be found by solving

$$\min_{\alpha > 0} f\left(x^k + \alpha p_k\right)$$

- Note this is a one-dimensional minimization problem.
- Suppose for now that we know a sequence of directions s^k .

- Generic Direction Method Algorithm:
 - 1. Choose initial guess x^0 and $\delta, \varepsilon > 0$.
 - 2. Compute a search direction s^k .
 - 3. Solve $\lambda_k = \arg\min_{\lambda} f\left(x^k + \lambda s^k\right)$.
 - 4. Set $x^{k+1} = x^k + \lambda_k s^k$.
 - 5. If $||x^k x^{k+1}|| \le \varepsilon \left(1 + ||x^k||\right)$, go to the next step. Otherwise, go back to step 2.
 - 6. If $||\nabla f(x^k)|| \leq \delta(1 + f(x^k))$, stop and declare "success". Otherwise, stop and report "converge to a nonoptimal point".
- The question is, "how do we choose a direction?"

- Coordinate Directions: cycle through the n coordinate directions $e_1, e_2, ..., e_n$, obtaining new iterates by performing a line search along each direction in turn.
- Steepest Descent Directions: take the direction along which f falls most rapidly per unit length.
- The search direction is

$$s^{k+1} = -(\nabla f\left(x^k\right))^T$$

- These are generally a slow algorithm. For example, in the steepest descent method the sequence zigzags into the solution; "lack of multivariate view".
- Is there any way to find better directions?

- Newton's Method with Line Search: the newton method is a special case of a direction set method with

$$s^{k} = -H(x^{k})^{-1} \nabla (f(x^{k}))^{T}$$

and $\lambda_k = 1$.

- Basic idea: Newton method gives good directions, but the quality of approximation gets worse as we move away from x^k . Thus, we take the Newton step direction and use line search to find the best point in that direction.
- Newton's method ($\lambda_k=1$) may overshoot the best point in the Newton direction and push the iteration uphill. On the other hand, if f is smooth, Newton's method with line search guarantees convergence to a local minimum.
- Newton's method ($\lambda_k=1$) has quadratic convergence. Thus, as we approach a solution, it is better to switch to Newton's method.

5 Quasi-Newton Methods

- Take Newton method with line search and replaces the Hessian with another matrix of the same size, which generates the search direction as Hessian did.
- The approximate Hessian should be:
 - 1. positive semidefinite
 - 2. easier to compute and invert
- One well known method to construct H_k is called Broyden-Fletcher-Goldfarb-Shanno (BFGS) updates.
- BFGS Algorithm:
 - 1. Choose initial guess x^0 , initial Hessian guess H^0 , and $\delta, \varepsilon > 0$.

- 2. Solve $H_k s^k = -(\nabla f(x^k))^T$ to find the search direction s^k .
- 3. Solve $\lambda_k = \arg\min_{\lambda} f\left(x^k + \lambda s^k\right)$.
- 4. Set $x^{k+1} = x^k + \lambda s^k$.
- 5. Let

$$z_k = x^{k+1} - x^k$$

$$y_k = (\nabla f(x^{k+1}))^T - (\nabla f(x^k))^T$$

and update H_{k+1} by

$$H_{k+1} = H_k - \frac{H_k z_k z_k^T H_k}{z_k^T H_k z_k} + \frac{y_k y_k^T}{y_k^T z_k}$$

- 6. If $||x^k x^{k+1}|| \le \varepsilon (1 + ||x^k||)$, go to the next step. Otherwise, go back to step 2.
- 7. If $||\nabla f(x^k)|| \leq \delta(1 + f(x^k))$, stop and declare "success". Otherwise, stop and report "converge to a nonoptimal point".

- H_k is positive definite and symmetric as long as H_0 is. This implies we can apply Cholesky factorization in step 2.
- H_k sequence does not necessarily converge to the true Hessian at the solution.
- We want to switch to Newton's method near the solution. This is necessary especially when we use H_k for inference purpose (e.g., MLE).

6 Stochastic Search

- Simulated Annealing is a method that uses the objective function to create a nonhomogeneous Markov chain process that will asymptotically converge to the minimum of f(x).
- Construct a Markov process in the following way:
 - 1. For given x^k , draw a $y \in V_x$ where V_x is the set of points in neighborhood x.
 - 2. If $f(y) < f(x_k)$, then $x_{k+1} = y$
 - 3. If $f(y) \ge f(x_k)$, then

$$\left\{ \begin{array}{l} \Pr\left\{ x_{k+1} = y \right\} = e^{-(f(y) - f(x_k))/T_k} \\ \Pr\left\{ x_{k+1} = x_k \right\} = 1 - \Pr\left\{ x_{k+1} = y \right\}. \end{array} \right.$$

- In words, if $f(y) < f(x_k)$, we jump to y. But if $f(y) \ge f(x_k)$, we do so only probabilistically.

- T_k is called the temperature, and controls the probability of jump.

- This is a **global** search.

- Slow in conventional optimization problems (say f is continuous), but works well where conventional methods do not apply