PHYSICS DEPARTMENT, IIT DELHI (MINOR II, PHL 110, Oct. 10, 2011)

Note: Attempt all questions.

Max. Marks: 25
Time: 1 hour

	2019-02	
1	. An infinitely long cylinder, of radius R, carries a "frozen-in" magnetization, parallel to the	axis giver
	by $\overline{M} = ks \hat{z}$, where k is a constant and s is the distance from the axis; there is no free current anyw	
	all the bound currents and calculate the field they produce.	(5)
2	A long cable carries current in one direction uniformly distributed over its (circular) cross section. To returns along the surface (there is a thin insulating sheath of negligible thickness separating the two Find the energy stored in the magnetic field and the self-inductance per unit length.	he currents) (5)
	and the energy stored in the magnetic field and the self-inductance per unit length.	(3)
3	3. The electric field of a plane wave travelling in free space is described by the following expression:	
	$\vec{E} = (\hat{x} + \alpha \hat{y}) \exp \left[i \left\{ \frac{\sqrt{2}\pi}{\lambda_0} (x + \beta y) - \omega t \right\} \right]$	
	If the above wave represents an electromagnetic wave, obtain values of α and β .	(5)
4	Two coherent plane waves of equal amplitude travelling at an angle θ with respect to each other, ar	e incident
	on a screen, placed normal to one of them. Obtain the intensity variation of the resulting interference the screen. Also estimate the fringe width.	pattern on (5)
5	Each part of this question has one correct answer. Write the correct option each part.	
	(i) A magnetic material is placed in an external magnetic field. If the total field (\vec{B}) inside the material the value of magnetic susceptibility (χ_m) is	ial is zero, (1)
	(a) -1.0 (b) 0.0 (c) 0.5 (d) 1.0	
	(ii) For a time varying field \vec{B} parallel to \hat{z} , the induced electric field will be along	(1)
	(a) $\pm \hat{\theta}$ (b) $\pm \hat{\phi}$ (c) $\pm \hat{r}$ (d) $\pm \hat{z}$	
	(iii) The energy of a travelling electromagnetic wave is stored	(1)
	 (a) entirely in its electric field. (b) entirely in its magnetic field. (c) mostly in its electric field. (d) equally in its electric and magnetic fields. 	
	(iv) When an electromagnetic wave is incident on an interface separating two dielectric media, the	(1)
	(a) normal component of \vec{E} is continuous.	
10 m	(b) tangential component of \vec{D} is continuous.	

- (v) A plane electromagnetic wave (travelling in a dielectric medium of refractive index $\sqrt{3}$) is incident on the dielectric/air interface. The electric field vector of the wave lies in the plane of incidence. In order to achieve 100% transmission, the angle of incidence should be
 - (a) 0°
- (b) 30°

(c) tangential component of \vec{H} is continuous. (d) normal component of \vec{H} is continuous.

- (c) 60°
- (d) 90°.