STABILITY OF BRANCHED PULL-BACK PROJECTIVE FOLIATIONS

COSTA E SILVA, W.

ABSTRACT. We prove that, if $n \geq 3$, a singular foliation $\mathcal F$ on $\mathbb P^n$ which can be written as pull-back, where $\mathcal G$ is a foliation in $\mathbb P^2$ of degree $d \geq 2$ with one or three invariant lines in general position and $f: \mathbb P^n \dashrightarrow \mathbb P^2$, $deg(f) = \nu \geq 2$, is an appropriated rational map, is stable under holomorphic deformations. As a consequence we conclude that the closure of the sets $\{\mathcal F = f^*(\mathcal G)\}$ are new irreducible components of the space of holomorphic foliations of certain degrees.

Contents

1. Introduction	1
2. Branched rational maps	
3. Foliations with one invariant line	4
3.1. Basic facts	4
4. Ramified pull-back components - Generic conditions	5
5. Description of generic ramified pull-back foliations on \mathbb{P}^n	6
5.1. The Kupka set	6
5.2. Generalized Kupka and quasi-homogeneous singularities	7
5.3. Deformations of the singular set	9
6. Proof of theorem A	9
6.1. End of the proof of Theorem A	9
References	

1. Introduction

Let \mathcal{F} be a holomorphic singular foliation on \mathbb{P}^n of codimension 1, $\Pi_n: \mathbb{C}^{n+1}\setminus\{0\} \to \mathbb{P}^n$ be the natural projection and $\mathcal{F}^* = \Pi_n^*(\mathcal{F})$. It is known that \mathcal{F}^* can be defined by an integrable 1-form $\Omega = \sum_{j=0}^n A_j dz_j$ where the $A_j's$ are homogeneous polynomials of the same degree k+1 satisfying the Euler condition:

$$(1.1) \sum_{j=0}^{n} z_j A_j \equiv 0.$$

²⁰⁰⁰ Mathematics Subject Classification. 32S65.

Key words and phrases. holomorphic foliations, Kupka phenomena's, weighted blow-up, weighted projective spaces.

The first author is supported by Capes-Brazil.

The singular set $S(\mathcal{F})$ is given by $S(\mathcal{F}) = \{A_0 = ... = A_n = 0\}$ and is such that $\operatorname{codim}(S(\mathcal{F})) \geq 2$. The integrability condition is given by

$$(1.2) \Omega \wedge d\Omega = 0.$$

The form Ω will be called a homogeneous expression of \mathcal{F} . The degree of \mathcal{F} is, by definition, the number of tangencies (counted with multiplicities) of a generic linearly embedded \mathbb{P}^1 with \mathcal{F} . If we denote it by $deg(\mathcal{F})$ then $deg(\mathcal{F}) = k$. The set of homogeneous 1-forms which satisfy (1.1) and (1.2) will be denoted by $\tilde{\Omega}^1(n, k+1)$. We denote the space of foliations of a fixed degree k in \mathbb{P}^n by $\mathbb{F}ol(k,n)$. Due to the integrability condition and the fact that $S(\mathcal{F})$ has codimension ≥ 2 , we see that $\mathbb{F}ol(k,n)$ can be identified with a Zariski's open set in the variety obtained by projectivizing the space of forms Ω which satisfy (1.1) and (1.2), i.e $\mathbb{P}\tilde{\Omega}^1(n, k+1)$. It is in fact an intersection of quadrics. To obtain a satisfactory description of $\mathbb{F}ol(k;n)$ (for example, to talk about deformations) it would be reasonable to know the decomposition of $\mathbb{F}ol(k;n)$ in irreducible components. This leads us to the following:

<u>Problem:</u> Describe and classify the irreducible components of $\mathbb{F}ol(k;n)$ $k \geq 3$ on \mathbb{P}^n , $n \geq 3$.

One can exhibit some kind of list of components in every degree, but this list is incomplete. In the paper [C.LN1], the authors proved that the space of holomorphic codimension one foliations of degree 2 on \mathbb{P}^n , $n \geq 3$, has six irreducible components, which can be described by geometric and dynamic properties of a generic element. We refer the curious reader to [C.LN1] and [LN0] for a detailed description of them. There are known families of irreducible components in which the typical element is a pull-back of a foliation on \mathbb{P}^2 by a rational map. Given a generic rational map $f: \mathbb{P}^n \dashrightarrow \mathbb{P}^2$ of degree $\nu \geq 1$, it can be written in homogeneous coordinates as $f = (F_0, F_1, F_2)$ where F_0, F_1 and F_2 are homogeneous polynomials of degree ν . Now consider a foliation \mathcal{G} on \mathbb{P}^2 of degree $d \geq 2$. We can associate to the pair (f, \mathcal{G}) the pull-back foliation $\mathcal{F} = f^*\mathcal{G}$. The degree of the foliation \mathcal{F} is $\nu(d+2)-2$ as proved in [C.LN.E]. Denote by $PB(d,\nu;n)$ the closure in \mathbb{F} ol $(\nu(d+2)-2,n)$, $n \geq 3$ of the set of foliations \mathcal{F} of the form $f^*\mathcal{G}$. Since $(f,\mathcal{G}) \to f^*\mathcal{G}$ is an algebraic parametrization of $PB(d,\nu;n)$ it follows that $PB(d,\nu;n)$ is an unirational irreducible algebraic subset of \mathbb{F} ol $(\nu(d+2)-2,n)$, $n \geq 3$. We have the following result:

Theorem 1.1. $PB(d, \nu; n)$ is a unirational irreducible component of $\mathbb{F}ol(\nu(d+2)-2, n)$; $n \geq 3$, $\nu \geq 1$ and $d \geq 2$.

The case $\nu=1$, of linear pull-backs, was proven in [Ca.LN], whereas the case $\nu>1$, of nonlinear pull-backs, was proved in [C.LN.E]. The search for new components of pull-back type was started in the Ph.D thesis of the author [CS]. There we began to consider branched rational maps and foliations with algebraic invariant sets of positive dimensions.

Let \mathcal{F} be a holomorphic foliation on \mathbb{P}^n which can be written as $\mathcal{F} = f^*(\mathcal{G})$, where \mathcal{G} is a foliation in \mathbb{P}^2 of degree $d \geq 2$ with three invariant lines in general position, say (XYZ) = 0, and $f: \mathbb{P}^n \dashrightarrow \mathbb{P}^2$, $deg(f) = \nu \geq 2$, $f = \left(F_0^{\alpha}: F_1^{\beta}: F_2^{\gamma}\right)$. Denote by $PB(k, \nu, \alpha, \beta, \gamma)$ the closure in \mathbb{F} ol $(k, n), n \geq 3$ of the set of foliations \mathcal{F} of the form $f^*\mathcal{G}$. The degree of the foliation \mathcal{F} is $k = \nu \left[(d-1) + \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}\right] - 2$, as proved in [CS]. Since $(f, \mathcal{G}) \to f^*\mathcal{G}$ is an algebraic parametrization of

 $PB(k, \nu, \alpha, \beta, \gamma)$ it follows that $PB(k, \nu, \alpha, \beta, \gamma)$ is an unirational irreducible algebraic subset of $\mathbb{F}ol(k, n)$, $n \geq 3$. In [CS] we proved the following result:

Theorem 1.2. $PB(k, \nu, \alpha, \beta, \gamma)$ is a unirational irreducible component of $\mathbb{F}ol(k, n)$ for all $n \geq 3$, $deg(F_0).\alpha = deg(F_1).\beta = deg(F_2).\gamma = \nu \geq 2$, $(\alpha, \beta, \gamma) \in \mathbb{N}^3$ such that $1 < \alpha < \beta < \gamma$ and $d \geq 2$.

In this paper we continue looking for new components of branched pull back-type. In this direction will extend the previous result to case where $\alpha=\beta\geq 1$. We observe that in the case $\alpha=\beta>1$ we continue dealing with foliations in \mathbb{P}^2 with three invariant lines in general position. On the other hand, in the situation $\alpha=\beta=1$ we need to consider another set of foliations in \mathbb{P}^2 . That is, we need foliations with one invariant line. Let us describe this last case: Let \mathcal{G} be a foliation on \mathbb{P}^2 with one invariant straight line, say ℓ . Consider coordinates $(X,Y,Z)\in\mathbb{C}^3$ such that $\ell=\Pi_2(Z=0)$, where $\Pi_2:\mathbb{C}^3\setminus\{0\}\to\mathbb{P}^2$ is the natural projection. The foliation \mathcal{G} can be represented in these coordinates by a polynomial 1-form of the type $\Omega=ZA(X,Y,Z)\,dX+ZB(X,Y,Z)\,dY+C(X,Y,Z)\,dZ$ where by (1) XA+YB+C=0. Let $f:\mathbb{P}^{n_-\to\mathbb{P}^2}$ be a rational map represented in the coordinates $(X,Y,Z)\in\mathbb{C}^3$ and $W\in\mathbb{C}^{n+1}$ by $\tilde{f}=(F_0,F_1,F_2^\gamma)$ where F_0,F_1 and $F_2\in\mathbb{C}[W]$ are homogeneous polynomials without common factors satisfying

$$deg(F_0) = deg(F_1) = \gamma . deg(F_2) = \nu.$$

The pull back foliation $f^*(\mathcal{G})$ is then defined by

$$\tilde{\eta}_{\left[f,\mathcal{G}\right]}\left(W\right)=\left[F_{2}\left(A\circ F\right)dF_{0}+F_{2}\left(B\circ F\right)dF_{1}+\gamma\left(C\circ F\right)dF_{2}\right],$$

where each coefficient of $\tilde{\eta}_{[f,\mathcal{G}]}(W)$ has degree $\Gamma = \nu \left[d+1+\frac{1}{\gamma}\right]-1$. The crucial point here is that the mapping f sends the hypersurface $(F_2=0)$ contained in its critical set over the line invariant by \mathcal{G} .

Let $PB\left(\Gamma-1,\nu,\alpha,\gamma\right)$ be the closure in $\mathbb{F}ol\left(\Gamma-1,n\right)$ of the set $\left\{\left[\tilde{\eta}_{[f,\mathcal{G}]}\right]\right\}$. It is an unirational irreducible algebraic subset of $\mathbb{F}ol\left(\Gamma-1,n\right)$. We will return to this point in Section 4. We observe that the arguments for the cases $\alpha=\beta=1$ and $\alpha=\beta>1$ are similar. Hence we can unify the two situations in a unique statement. The main result of this work is:

Theorem A. $PB(\Gamma - 1, \nu, \alpha, \gamma)$ is a unirational irreducible component of $\mathbb{F}ol(\Gamma - 1, n)$ for all $n \geq 3$, $deg(F_0).\alpha = deg(F_1).\alpha = deg(F_2).\gamma = \nu \geq 2$, such that $\alpha \geq 1$, $\gamma \geq 2$, $\nu \geq 2$ and $d \geq 2$ are integers.

2. Branched rational maps

Let $f: \mathbb{P}^n \dashrightarrow \mathbb{P}^2$ be a rational map and $\tilde{f}: \mathbb{C}^{n+1} \to \mathbb{C}^3$ is it natural lifting in homogeneous coordinates. The *indeterminacy locus* of f is, by definition, the set $I(f) = \Pi_n\left(\tilde{f}^{-1}(0)\right)$. We characterize the set of rational maps used throughout this text as follows:

Definition 2.1. We denote by $BRM(n, \nu, \alpha, \gamma)$ the set of maps $\{f: \mathbb{P}^n \dashrightarrow \mathbb{P}^2\}$ of degree ν given by $f = (F_0^{\alpha}: F_1^{\alpha}: F_2^{\gamma})$ where F_0, F_1 and F_2 are homogeneous polynomials without common factors, with $deg(F_0).\alpha = deg(F_1).\alpha = deg(F_2).\gamma = \nu$, where $\nu \ge 2$, $\alpha \ge 1$ and $\gamma \ge 2$ are integers.

Let us fix some coordinates $(z_0, ..., z_n)$ on \mathbb{C}^{n+1} and (X, Y, Z) on \mathbb{C}^3 and denote by $(F_0^{\alpha}, F_1^{\alpha}, F_2^{\gamma})$ the components of f relative to these coordinates. Let us note that the indeterminacy locus I(f) is the intersection of the three hypersurfaces $(F_0 = 0)$, $(F_1 = 0)$ and $(F_2 = 0)$.

Definition 2.2. We say that $f \in BRM(n, \nu, \alpha, \gamma)$ is generic if for all $p \in \tilde{f}^{-1}(0) \setminus \{0\}$ we have $dF_0(p) \wedge dF_1(p) \wedge dF_2(p) \neq 0$.

This is equivalent to saying that $f \in BRM$ (n, ν, α, γ) is generic if I(f) is the transverse intersection of the 3 hypersurfaces $(F_0 = 0)$, $(F_1 = 0)$ and $(F_2 = 0)$. As a consequence we have that the set I(f) is smooth. For instance, if n = 3, f is generic and $deg(f) = \nu$, then by Bezout's theorem I(f) consists of $\frac{\nu^3}{\alpha^2 \gamma}$ distinct points with multiplicity $\alpha^2 \gamma$. If n = 4, then I(f) is a smooth connected algebraic curve in \mathbb{P}^4 of degree $\frac{\nu^3}{\alpha^2 \gamma}$. In general, for $n \geq 4$, I(f) is a smooth connected algebraic submanifold of \mathbb{P}^n of degree $\frac{\nu^3}{\alpha^2 \gamma}$ and codimension three.

Denote $\nabla F_k = (\frac{\partial F_k}{\partial z_0}, ..., \frac{\partial F_k}{\partial z_n})$. Consider the derivative matrix

$$M = \begin{bmatrix} \alpha \begin{pmatrix} F_0^{\alpha - 1} \end{pmatrix} \nabla F_0 \\ \alpha \begin{pmatrix} F_1^{\alpha - 1} \end{pmatrix} \nabla F_1 \\ \gamma \begin{pmatrix} F_2^{\gamma - 1} \end{pmatrix} \nabla F_2 \end{bmatrix}.$$

The critical set of \tilde{f} is given by the points of $\mathbb{C}^{n+1}\setminus 0$ where $\operatorname{rank}(M)\leq 3$; it is the union of two sets. The first is given by the set of $\{P\in\mathbb{C}^{n+1}\setminus 0\}=X_1$ such that the rank of the following matrix

$$N = \begin{bmatrix} \nabla F_0 \\ \nabla F_1 \\ \nabla F_2 \end{bmatrix}$$

is smaller than 3. The second is the subset

$$X_2 = \left\{P \in \mathbb{C}^{n+1} \backslash \left\{0\right\} | \left(F_0^{\alpha-1}\right) \left(F_1^{\alpha-1}\right) \left(F_2^{\gamma-1}\right) (P) = 0\right\}.$$

Denote $P(f) = \Pi_n(X_1 \cup X_2)$. The set of generic maps will be denoted by $Gen(n, \nu, \alpha, \gamma)$. We state the following result whose proof is standard in algebraic geometry:

Proposition 2.3. Gen (n, ν, α, γ) is a Zariski dense subset of BRM (n, ν, α, γ) .

Once the case of foliations which are pull-backs of three invariant straight have been already discussed in [CS]. We will concentrate only on the case where $\alpha=1$. The case $\alpha>1$ is obtained following the same ideas.

3. Foliations with one invariant line

3.1. **Basic facts.** Denote by $I_1(d,2)$ the set of the holomorphic foliations on \mathbb{P}^2 of degree $d \geq 2$ that leaves the line Z=0 invariant. We observe that any foliation which has 1 invariant straight line can be carried to one of these by a linear automorphism of \mathbb{P}^2 . The relation XA + YB + C = 0 enables to parametrize I(d,2) as follows

$$\mathbf{H}^{0}(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(d-1))^{\times 2} \to \mathbf{H}^{0}(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(d-1))^{\times 3}$$
$$(A, B) \mapsto (A, B, -XA - YB).$$

We let the group of linear automorphisms of \mathbb{P}^2 act on $I_1(d,2)$. After this procedure we obtain a set of foliations of degree d that we denote by $Il_1(d,2)$.

We are interested in making deformations of foliations and for our purposes we need a subset of $Il_1(d,2)$ with good properties (foliations having few algebraic invariant curves and only hyperbolic singularities). We explain this properties in detail. Let $q \in U$ be an isolated singularity of a foliation \mathcal{G} defined on an open subset of $U \subset \mathbb{C}^2$. We say that q is nondegenerate if there exists a holomorphic vector field X tangent to \mathcal{G} in a neighborhood of q such that DX(q) is nonsingular. In particular q is an isolated singularity of X. Let q be a nondegenerate singularity of \mathcal{G} . The characteristic numbers of q are the quotients λ and λ^{-1} of the eingenvalues of DX(q), which do not depend on the vector field X chosen. If $\lambda \notin \mathbb{Q}_+$ then \mathcal{G} exhibits exactly two (smooth and transverse) local separatrices at q, S_q^+ and S_q^- with eigenvalues λ_q^+ and λ_q^- and which are tangent to the characteristic directions of a vector field X. The characteristic numbers (also called Camacho-Sad index) of these local separatrices are given by

$$I(\mathcal{G}, S_q^+) = \frac{\lambda_q^-}{\lambda_q^+} \text{ and } I(\mathcal{G}, S_q^-) = \frac{\lambda_q^+}{\lambda_q^-}.$$

The singularity is *hyperbolic* if the characteristic numbers are nonreal. We introduce the following spaces of foliations:

- (1) $ND(d,2) = \{ \mathcal{G} \in \mathbb{F}ol(d,2); \text{ the singularities of } \mathcal{G} \text{ are nondegenerate} \},$
- (2) $\mathcal{H}(d,2) = \{ \mathcal{G} \in ND(d,2); \text{ any characteristic number } \lambda \text{ of } \mathcal{G} \text{ satisfies } \lambda \in \mathbb{C}\backslash\mathbb{R} \}.$

It is a well-known fact [LN2] that $\mathcal{H}(d,2)$ contains an open and dense subset of $\mathbb{F}ol(d,2)$. Denote by $A(d) = Il_1(d,2) \cap \mathcal{H}(d,2)$. Observe that A(d) is a Zariski dense subset of $Il_1(d,2)$. Concerning the set ND(d,2), we have the following result, proved in [LN2].

Proposition 3.1. Let $\mathcal{G}_0 \in ND(d,2)$. Then $\#Sing(\mathcal{G}_0) = d^2 + d + 1 = N(d)$. Moreover if $Sing(\mathcal{G}_0) = \{p_1^0, ..., p_N^0\}$ where $p_i^0 \neq p_j^0$ if $i \neq j$, then there are connected neighborhoods $U_j \ni p_j$, pairwise disjoint, and holomorphic maps $\phi_j : \mathcal{U} \subset ND(d,2) \to U_j$, where $\mathcal{U} \ni \mathcal{G}_0$ is an open neighborhood, such that for $\mathcal{G} \in \mathcal{U}$, $(Sing(\mathcal{G}) \cap U_j) = \phi_j(\mathcal{G})$ is a nondegenerate singularity. In particular, ND(d,2) is open in $\mathbb{F}ol(2,d)$. Moreover, if $\mathcal{G}_0 \in \mathcal{H}(d,2)$ then the two local separatrices as well as their associated eigenvalues depend analytically on \mathcal{G} .

In the paper [LN.S.Sc] which is related to the topological rigidity of foliations on \mathbb{P}^2 in the spirit of Ilyashenko's works. The authors have proved the following useful result see[LN.S.Sc, Theorem 3, p.385].

Theorem 3.2. Let $d \geq 2$. There exists an non empty open and dense subset $M(d) \subset A(d)$, such that if $\mathcal{G} \in M(d)$ then the only algebraic invariant curve of \mathcal{G} is the line.

4. Ramified Pull-back components - Generic conditions

Let us fix a coordinate system (X,Y,Z) on \mathbb{P}^2 and denote by ℓ the straight line that corresponds to the plane Z=0 in \mathbb{C}^3 , respectively. Let us denote by $\tilde{M}(d)$ the subset $M(d) \cap I_1(d,2)$.

Definition 4.1. Let $f \in Gen(n, \nu, 1, \gamma)$. We say that $\mathcal{G} \in M(d)$ is in generic position with respect to f if $[Sing(\mathcal{G}) \cap Y_2] = \emptyset$, where

$$Y_{2}(f) = Y_{2} := \Pi_{2} \left[\tilde{f} \left\{ w \in \mathbb{C}^{n+1} | dF_{0}(w) \wedge dF_{1}(w) \wedge dF_{2}(w) = 0 \right\} \right]$$

and ℓ is \mathcal{G} -invariant.

In this case we say that (f,\mathcal{G}) is a generic pair. In particular, when we fix a map $f \in Gen(n,\nu,1,\gamma)$ the set $\mathcal{A} = \{\mathcal{G} \in M(d) | Sing(\mathcal{G}) \cap Y_2(f) = \emptyset\}$ is an open and dense subset in M(d) [LN.Sc], since VC(f) is an algebraic curve in \mathbb{P}^2 . The set $U_1 := \{(f,\mathcal{G}) \in Gen(n,\nu,1,\gamma) \times \tilde{M}(d) | Sing(\mathcal{G}) \cap Y_2(f) = \emptyset\}$ is an open and dense subset of $Gen(n,\nu,1,\gamma) \times \tilde{M}(d)$. Hence the set $\mathcal{W} := \{\tilde{\eta}_{[f,\mathcal{G}]} | (f,\mathcal{G}) \in U_1\}$ is an open and dense subset of $PB(\Gamma - 1, \nu, 1, \gamma)$.

Proposition 4.2. If \mathcal{F} comes from a generic pair, then the degree of \mathcal{F} is

$$\nu \left[d + 1 + \frac{1}{\gamma} \right] - 2.$$

The proof of this fact can be obtained as in the case treated in [CS]. Consider the set of foliations $Il_1(d, 2)$, $d \ge 2$, and the following map:

$$\Phi: BRM(n, \nu, 1, \gamma) \times Il_1(d, 2) \rightarrow \mathbb{F}ol(\Gamma - 1, n)$$

$$(f, \mathcal{G}) \rightarrow f^*(\mathcal{G}) = \Phi(f, \mathcal{G}).$$

The image of Φ can be written as:

$$\Phi\left(f,\mathcal{G}\right) = \left[F_2\left(A\circ F\right)dF_0 + F_2\left(B\circ F\right)dF_1 + \gamma\left(C\circ F\right)dF_2\right].$$

Recall that $\Phi(f,\mathcal{G}) = \tilde{\eta}_{[f,\mathcal{G}]}$. More precisely, let $PB(\Gamma - 1, n, \nu, 1, 1, \gamma)$ be the closure in \mathbb{F} ol $(\Gamma - 1, n)$ of the set of foliations \mathcal{F} of the form $f^*(\mathcal{G})$, where $f \in BRM(n,\nu,1,\gamma)$ and $\mathcal{G} \in Il_1(2,d)$. Since $BRM(n,\nu,1,\gamma)$ and $Il_1(2,d)$ are irreducible algebraic sets and the map $(f,\mathcal{G}) \to f^*(\mathcal{G}) \in \mathbb{F}$ ol $(\Gamma - 1, n)$ is an algebraic parametrization of $PB(\Gamma - 1,\nu,1,\gamma)$, we have that $PB(\Gamma - 1,\nu,1,\gamma)$ is an irreducible algebraic subset of \mathbb{F} ol $(\Gamma - 1,n)$. Moreover, the set of generic pull-back foliations $\{\mathcal{F}; \mathcal{F} = f^*(\mathcal{G}), \text{ where } (f,\mathcal{G}) \text{ is a generic pair}\}$ is an open (not Zariski) and dense subset of $PB(\Gamma - 1,\nu,1,\gamma)$ for $\gamma \geq 2 \in \mathbb{N}$, $\nu \geq 2 \in \mathbb{N}$ and $d \geq 2 \in \mathbb{N}$.

5. Description of generic ramified pull-back foliations on \mathbb{P}^n

5.1. The Kupka set. Let τ be a singularity of \mathcal{G} and $V_{\tau} = \overline{f^{-1}(\tau)}$. If (f,\mathcal{G}) is a generic pair then $V_{\tau} \setminus I(f)$ is contained in the Kupka set of \mathcal{F} . As an example we detail the case where τ is a singularity over the invariant line, say $\tau = [1:0:0]$. Fix $p \in V_{\tau} \setminus I(f)$. There exist local analytic coordinate systems such that $f(x,y,z) = (x,y^{\gamma}) = (u,v)$. Suppose that \mathcal{G} is represented by the 1-form ω ; the hypothesis of \mathcal{G} being of Hyperbolic-type implies that we can suppose $\omega(u,v) = \lambda_1 u(1+R(u,v))dv - \lambda_2 v du$, where $\frac{\lambda_2}{\lambda_1} \in \mathbb{C} \setminus \mathbb{R}$. We obtain $\tilde{\omega}(x,y) = f^*(\omega) = (y^{\gamma-1})(\lambda_1 \gamma x (1+R(x,y^{\gamma})dy - \lambda_2 y dx) = (y^{\gamma-1})\hat{\omega}(x,y)$ and so $d\hat{\omega}(p) \neq 0$. Therefore if p is as before it belongs to the Kupka-set of \mathcal{F} . For the other points the argumentation is analogous. This is the well known Kupka-Reeb phenomenon, and we say that p is contained in the Kupka-set of \mathcal{F} . It is known that this local product structure is stable under small perturbations of \mathcal{F} for instance, see [K],[G.LN].

5.2. Generalized Kupka and quasi-homogeneous singularities. In this section we will recall the quasi-homogeneous singularities of an integrable holomorphic 1-form. They appear in the indeterminacy set of f and play a central role in great part of the proof of Theorem B.

Definition 5.1. Let ω be an holomorphic integrable 1-form defined in a neighborhood of $p \in \mathbb{C}^3$. We say that p is a Generalized Kupka(GK) singularity of ω if $\omega(p) = 0$ and either $d\omega(p) \neq 0$ or p is an isolated zero of $d\omega$.

Let ω be an integrable 1-form in a neighborhood of $p \in \mathbb{C}^3$ and μ be a holomorphic 3-form such that $\mu(p) \neq 0$. Then $d\omega = i_{\mathcal{Z}}(\mu)$ where \mathcal{Z} is a holomorphic vector field.

Definition 5.2. We say that p is a quasi-homogeneous singularity of ω if p is an isolated singularity of \mathcal{Z} and the germ of \mathcal{Z} at p is nilpotent, that is, if $L = D\mathcal{Z}(p)$ then all eigenvalues of L are equals to zero.

This definition is justified by the following result that can be found in [LN2] or [C.CA.G.LN]:

Theorem 5.3. Let p be a quasi-homogeneous singularity of an holomorphic integrable 1-form ω . Then there exists two holomorphic vector fields S and Z and a local chart $U := (x_0, x_1, x_2)$ around p such that $x_0(p) = x_1(p) = x_2(p) = 0$ and:

- (a) $\omega = \lambda i_S i_Z (dx_0 \wedge dx_1 \wedge dx_2), \ \lambda \in \mathbb{Q}_+ \ d\omega = i_Z (dx_0 \wedge dx_1 \wedge dx_2) \ and \ \mathcal{Z} = (rot(\omega));$
- (b) $S = p_0 x_0 \frac{\partial}{\partial x_0} + p_1 x_1 \frac{\partial}{\partial x_1} + p_2 x_2 \frac{\partial}{\partial x_2}$, where, p_0 , p_1 , p_2 are positive integers with $g.c.d(p_0, p_1, p_2) = 1$;
- (c) p is an isolated singularity for \mathcal{Z} , \mathcal{Z} is polynomial in the chart $U := (x_0, x_1, x_2)$ and $[S, \mathcal{Z}] = \ell \mathcal{Z}$, where $\ell \geq 1$.

Definition 5.4. Let p be a quasi-homogeneous singularity of ω . We say that it is of the type $(p_0: p_1: p_2; \ell)$, if for some local chart and vector fields S and \mathcal{Z} the properties (a), (b) and (c) of the Theorem 5.3 are satisfied.

We can now state the stability result, whose proof can be found in [C.CA.G.LN]:

Proposition 5.5. Let $(\omega_s)_{s\in\Sigma}$ be a holomorphic family of integrable 1-forms defined in a neighborhood of a compact ball $B=\{z\in\mathbb{C}^3; |z|\leq\rho\}$, where Σ is a neighborhood of $0\in\mathbb{C}^k$. Suppose that all singularities of ω_0 in B are GK and that $sing(d\omega_0)\subset int(B)$. Then there exists $\epsilon>0$ such that if $s\in B(0,\epsilon)\subset\Sigma$, then all singularities of ω_s in B are GK. Moreover, if $0\in B$ is a quasi-homogeneous singularity of type $(p_0:p_1:p_2;\ell)$ then there exists a holomorphic map $B(0,\epsilon)\ni s\mapsto z(s)$, such that z(0)=0 and z(s) is a GK singularity of ω_s of the same type (quasi-homogeneous of the type $(p_0:p_1:p_2;\ell)$, according to the case).

Let us describe $\mathcal{F} = f^*(\mathcal{G})$ in a neighborhood of a point $p \in I(f)$. It is easy to show that there exists a local chart $(U,(x_0,x_1,x_2,y)\in\mathbb{C}^3\times\mathbb{C}^{n-2})$ around p such that the lifting \tilde{f} of f is of the form $\tilde{f}|_U = (x_0,x_1,x_2^{\gamma}):U\to\mathbb{C}^3$. In particular $\mathcal{F}|_{U(p)}$ is represented by the 1-form

(5.1)
$$\eta(x_0, x_1, x_2, y) = x_2 \cdot A(x_0, x_1, x_2^{\gamma}) dx_0 + x_2 \cdot B(x_0, x_1, x_2^{\gamma}) dx_1 + \gamma C(x_0, x_1, x_2^{\gamma}) dx_2.$$

Let us now obtain the vector field S as in Theorem 5.3. Consider the radial vector field $R = X \frac{\partial}{\partial X} + Y \frac{\partial}{\partial Y} + Z \frac{\partial}{\partial Z}$. Note that in the coordinate system above it transforms into

$$x_0\frac{\partial}{\partial x_0} + x_1\frac{\partial}{\partial x_1} + \frac{1}{\gamma}x_2\frac{\partial}{\partial x_2}.$$

Since the eigenvalues of S have to be integers, after a multiplication by γ we obtain

$$S = \gamma x_0 \frac{\partial}{\partial x_0} + \gamma x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2}.$$

Let us concentrate in the case n = 3.

Lemma 5.6. If η and S are as above then we have $L_S \eta = [1 + \gamma(1+d)]\eta$.

Proof. We just have to use Cartan's formula for the Lie's derivative, $L_S \eta = i_S d\eta + d(i_S \eta)$. The details are left for the reader.

Lemma 5.7. If $p \in I(f)$ then p is a quasi-homogeneous singularity of η .

Proof. First of all note that $i_S \eta = 0$. From the computations obtained in lemma 5.6, we have that $L_S \eta = m \eta$, where $m = [1 + \gamma(1+d)]$. This implies that the singular set of η is invariant under the flow of S. The vector field \mathcal{Z} such that $\eta = i_S i_{\mathcal{Z}}(dx_0 \wedge dx_1 \wedge dx_2)$ is given by

$$\mathcal{Z} = \mathcal{Z}_0(x_0, x_1, x_2) \frac{\partial}{\partial x_0} + \mathcal{Z}_1(x_0, x_1, x_2) \frac{\partial}{\partial x_1} + \mathcal{Z}_2(x_0, x_1, x_2) \frac{\partial}{\partial x_2}$$

where for i = 0, 1 we have $\mathcal{Z}_i(x_0, x_1, x_2) = \tilde{A}_i(x_0, x_1, x_2^{\gamma})$ and $\mathcal{Z}_2(x_0, x_1, x_2) = x_2.\tilde{A}_2(x_0, x_1, x_2^{\gamma})$ moreover for i = 0, 1 the polynomials $\tilde{A}_i(0, 0, 0) = 0$ and $\tilde{A}_2(0, 0, 0) = 0$. We observe that these polynomials are not unique. On the other hand, they have to satisfy the following relations:

$$A(x_0, x_1, x_2^{\gamma}) = \gamma x_1 \tilde{A}_2(x_0, x_1, x_2^{\gamma}) - \tilde{A}_1(x_0, x_1, x_2^{\gamma})$$

$$B(x_0, x_1, x_2^{\gamma}) = \tilde{A}_0(x_0, x_1, x_2^{\gamma}) - \gamma x_0 \tilde{A}_2(x_0, x_1, x_2^{\gamma})$$

$$C(x_0, x_1, x_2^{\gamma}) = x_0 \tilde{A}_1(x_0, x_1, x_2^{\gamma}) - x_1 \tilde{A}_1(x_0, x_1, x_2^{\gamma})$$

We must show that the origin is an isolated singularity of \mathcal{Z} and all eigenvalues of $D\mathcal{Z}(0)$ are 0. By straightforward computation we find that the Jacobian matrix $D\mathcal{Z}(0)$ is the null matrix, hence all its eigenvalues are null. Since all singular curves of \mathcal{F} in a neighborhood $(U,(x_0,x_1,x_2))$ of 0 are of Kupka type, as proved in Section 5.1, it follows that the origin is an isolated sigularity of \mathcal{Z} . Note that the unique singularities of η in the neighborhood $(U,(x_0,x_1,x_2))$ of 0 come from $\tilde{f}^*Sing(\mathcal{G})$; this follows from the fact that $Sing(\mathcal{G}) \cap (VC(f)\backslash \ell) = \emptyset$. On the other hand we have seen that $(f)^{-1}(sing(\mathcal{G}))\backslash I(f)$ is contained in the Kupka set of \mathcal{F} . Hence the point p is an isolated singularity of $d\eta$ and thus an isolated singularity of \mathcal{Z} .

As a consequence, in the case n=3 any $p\in I(f)$ is a quasi-homogeneous singularity of type $[\gamma:\gamma:1]$. In the case $n\geq 4$ the argument is analogous. Moreover, in this case there will be a local structure product near any point $p\in I(f)$. In fact in the case $n\geq 4$ we have:

Corollary 5.8. Let (f, \mathcal{G}) be a generic pair. Let $p \in I(f)$ and η an 1-form defining \mathcal{F} in a neighborhood of p. Then there exists a 3-plane $\Pi \subset \mathbb{C}^n$ such that $d(\eta)|_{\Pi}$ has an isolated singularity at $0 \in \Pi$.

Proof. Immediate from the local product structure.

5.3. **Deformations of the singular set.** In this section we give some auxiliary lemmas which assist in the proof of Theorem A. We have constructed an open and dense subset W inside $PB(\Gamma - 1, \nu, 1, 1, \gamma)$ containing the generic pull-back foliations. We will show that for any foliation $\mathcal{F} \in W$ and any germ of a holomorphic family of foliations $(\mathcal{F}_t)_{t \in (\mathbb{C},0)}$ such that $\mathcal{F}_0 = \mathcal{F}$ we have $\mathcal{F}_t \in PB(\Gamma - 1, \nu, 1, 1, \gamma)$ for all $t \in (\mathbb{C}, 0)$.

Lemma 5.9. There exists a germ of isotopy of class C^{∞} , $(I(t))_{t \in (\mathbb{C},0)}$ having the following properties:

- (i) $I(0) = I(f_0)$ and I(t) is algebraic and smooth of codimension 3 for all $t \in (\mathbb{C}, 0)$.
- (ii) For all $p \in I(t)$, there exists a neighborhood U(p,t) = U of p such that \mathcal{F}_t is equivalent to the product of a regular foliation of codimension 3 and a singular foliation $\mathcal{F}_{p,t}$ of codimension one given by the 1-form $\eta_{p,t}$.

Remark 5.10. The family of 1-forms $\eta_{p,t}$, represents the quasi-homogeneous foliation given by the Proposition 5.5.

Description of Con It NO	, lema 2.3.2, p.81].	
Proof. See Linu.	. iema 2.5.2. b.om.	

Remark 5.11. In the case n > 3, the variety I(t) is connected since $I(f_0)$ is connected. The local product structure in I(t) implies that the transversal type of \mathcal{F}_t is constant. In particular, $\mathcal{F}_{p,t}$, does not depend on $p \in I(t)$. In the case n = 3, $I(t) = p_1(t), ..., p_j(t), ..., p_{\frac{\nu^3}{\gamma}}(t)$ and we can not guarantee a priori that $\mathcal{F}_{p_i,t} = \mathcal{F}_{p_j,t}$, if $i \neq j$.

The singular set of \mathcal{G}_0 can be divided in two subsets $\mathcal{S}_W(\mathcal{G}_0)$, $\mathcal{S}_\ell(\mathcal{G}_0)$. We know that $\#\mathcal{S}_W(\mathcal{G}_0) = d^2$, $\#\mathcal{S}_\ell(\underline{\mathcal{G}_0}) = (d+1)$. Let $\tau \in Sing(\mathcal{G}_0)$ and $K(\mathcal{F}_0) = \bigcup_{\tau \in Sing(\mathcal{G}_0)} V_\tau \setminus I(f_0)$ where $V_\tau = \overline{f_0^{-1}(\tau)}$. As in Lemma 5.9, let us consider a representative of the germ $(\mathcal{F}_t)_t$, defined on a disc $D_\delta := (|t| < \delta)$.

Lemma 5.12. There exist $\epsilon > 0$ and smooth isotopies $\phi_{\tau} : D_{\epsilon} \times V_{\tau} \to \mathbb{P}^{n}, \tau \in Sing(\mathcal{G}_{0})$, such that $V_{\tau}(t) = \phi_{\tau}(\{t\} \times V_{\tau})$ satisfies:

- (a) $V_{\tau}(t)$ is an algebraic subvariety of codimension two of \mathbb{P}^n and $V_{\tau}(0) = V_{\tau}$ for all $\tau \in Sing(\mathcal{G}_0)$ and for all $t \in D_{\epsilon}$.
- (b) $I(t) \subset V_{\tau}(t)$ for all $\tau \in Sing(\mathcal{G}_0)$ and for all $t \in D_{\epsilon}$. Moreover, if $\tau \neq \tau'$, and $\tau, \tau' \in Sing(\mathcal{G}_0)$, we have $V_{\tau}(t) \cap V_{\tau'}(t) = I(t)$ for all $t \in D_{\epsilon}$ and the intersection is transversal.
- (c) $V_{\tau}(t)\backslash I(t)$ is contained in the Kupka-set of \mathcal{F}_t for all $\tau \in Sing(\mathcal{G}_0)$ and for all $t \in D_{\epsilon}$. In particular, the transversal type of \mathcal{F}_t is constant along $V_{\tau}(t)\backslash I(t)$.

Proof. See [LN0, lema 2.3.3, p.83].

6. Proof of theorem A

6.1. End of the proof of Theorem A. We divide the end of the proof of Theorem A in two parts. In the first part we construct a family of rational maps $f_t : \mathbb{P}^n \dashrightarrow \mathbb{P}^2$, $f_t \in Gen(n, \nu, 1, \gamma)$, such that $(f_t)_{t \in D_{\epsilon}}$ is a deformation of f_0 and the subvarieties V_{τ} , $\tau \in Sing(\mathcal{G}_0)$, are fibers of f_t for all t. In the second part we show that there exists a family of foliations $(\mathcal{G}_t)_{t \in D_{\epsilon}}$, $\mathcal{G}_t \in \mathcal{A}$ (see Section 4) such that $\mathcal{F}_t = f_t^*(\mathcal{G}_t)$ for all $t \in D_{\epsilon}$.

6.1.1. Part 1. Let us define the family of candidates that will be a deformation of the mapping f_0 . Set $V_a = \overline{f_0^{-1}(a)}$, $V_b = \overline{f_0^{-1}(b)}$, $V_c = \overline{f_0^{-1}(c)}$, where a = [0:0:1], b = [0:1:0] and c = [1:0:0] and denote by $V_{\tau^*} = \overline{f_0^{-1}(\tau^*)}$, where $\tau^* \in Sing(\mathcal{G}_0) \setminus \{a,b,c\}$. In this coordinate system the points b and c belong to ℓ .

Proposition 6.1. Let $(\mathcal{F}_t)_{t\in D_{\epsilon}}$ be a deformation of $\mathcal{F}_0 = f_0^*(\mathcal{G}_0)$, where (f_0, \mathcal{G}_0) is a generic pair, with $\mathcal{G}_0 \in \mathcal{A}$, $f_0 \in Gen(n, \nu, 1, \gamma)$ and $deg(f_0) = \nu \geq 2$. Then there exists a deformation $(f_t)_{t\in D_{\epsilon}}$ of f_0 in $Gen(n, \nu, 1, \gamma)$ such that:

- (i) $V_a(t), V_b(t)$ and $V_c(t)$ are fibers of $(f_t)_{t \in D_{e'}}$.
- (ii) $I(t) = I(f_t), \forall t \in D_{\epsilon'}.$

Proof. Let $\tilde{f}_0 = (F_0, F_1, F_2^{\gamma}) : \mathbb{C}^{n+1} \to \mathbb{C}^3$ be the homogeneous expression of f_0 . Then V_c , V_b , and V_a appear as the complete intersections $(F_1 = F_2 = 0)$, $(F_0 = F_2 = 0)$, and $(F_0 = F_1 = 0)$ respectively. Hence $I(f_0) = V_a \cap V_b = V_a \cap V_c = V_b \cap V_c$. It follows from [Ser, section 4.6, p.235-236] that $V_a(t)$ is a complete intersection, say $V_a(t) = (F_0(t) = F_1(t) = 0)$, where $(F_0(t))_{t \in D_{\epsilon'}}$ and $(F_1(t))_{t \in D_{\epsilon'}}$ are deformations of F_0 and F_1 and $D_{\epsilon'}$ is a possibly smaller neighborhood of 0. Moreover, $F_0(t) = 0$ and $F_1(t) = 0$ meet transversely along $V_a(t)$. In the same way, it is possible to define $V_c(t)$ and $V_b(t)$ as complete intersections, say $(\hat{F}_1(t) = F_2(t) = 0)$ and $(\hat{F}_0(t) = \hat{F}_2(t) = 0)$ respectively, where $(F_j(t))_{t \in D_{\epsilon'}}$ and $(\hat{F}_j(t))_{t \in D_{\epsilon'}}$ are deformations of F_j , $0 \le j \le 2$.

We will prove that we can find polynomials $P_0(t)$, $P_1(t)$ and $P_2(t)$ such that $V_c(t) = (P_1(t) = P_2(t) = 0)$, $V_b(t) = (P_0(t) = P_2(t) = 0)$ and $V_a(t) = (P_0(t) = P_1(t) = 0)$. Observe first that since $F_0(t)$, $F_1(t)$ and $F_2(t)$ are near F_0 , F_1 and F_2 respectively, they meet as a regular complete intersection at:

$$J(t) = (F_0(t) = F_1(t) = F_2(t) = 0) = V_a(t) \cap (F_2(t) = 0).$$

Hence $J(t) \cap (\hat{F}_1(t) = 0) = V_c(t) \cap V_a(t) = I(t)$, which implies that $I(t) \subset J(t)$. Since I(t) and J(t) have $\frac{\nu^3}{\gamma}$ points, we have that I(t) = J(t) for all $t \in D_{\epsilon'}$.

Remark 6.2. In the case $n \geq 4$, both sets are codimension-three smooth and connected submanifolds of \mathbb{P}^n , implying again that I(t) = J(t). In particular, we obtain that

$$I(t) = (F_0(t) = F_1(t) = F_2(t) = 0) \subset (\hat{F}_i(t) = 0), 0 \le j \le 2.$$

We will use the following version of Noether's Normalization Theorem (see [LN0] p 86):

Lemma 6.3. (Noether's Theorem) Let $G_0, ..., G_k \in \mathbb{C}[z_1, ..., z_m]$ be homogeneous polynomials where $0 \le k \le m$ and $m \ge 2$, and $X = (G_0 = ... = G_k = 0)$. Suppose that the set $Y := \{p \in X | dG_0(p) \land ... \land dG_k(p) = 0\}$ is either 0 or \emptyset . If $G \in \mathbb{C}[z_1, ..., z_m]$ satisfies $G|_X \equiv 0$, then $G \in G_0, ..., G_k > 0$.

Take k=2, $G_0=F_0(t)$, $G_1=F_1(t)$ and $G_2=F_2(t)$. Using Noether's Theorem with Y=0 and the fact that all polynomials involved are homogeneous, we have $\hat{F}_1(t) \in \langle F_0(t), F_1(t), F_2(t) \rangle$. Since $deg(F_0(t)) = deg(F_1(t)) \rangle deg(F_2(t))$, we conclude that $\hat{F}_1(t) = F_1(t) + g(t)F_2(t)$, where g(t) is a homogeneous polynomial of degree $deg(F_1(t)) - deg(F_2(t))$. Moreover observe that $V_c(t) = V(\hat{F}_1(t), F_2(t)) = V(F_1(t), F_2(t))$, where $V(H_1, H_2)$ denotes the projective algebraic variety defined by $(H_1 = H_2 = 0)$. Similarly for $V_b(t)$ we have that $\hat{F}_2(t) \in \langle F_0(t), F_1(t), F_2(t) \rangle$. On the other hand, since $\hat{F}_2(t)$ has the lowest degree, we can assume that $\hat{F}_2(t) = F_2(t)$.

In an analogous way we have that $\hat{F}_0(t) = F_0(t) + m(t)F_1(t) + n(t)F_2(t)$ for the polynomial $\hat{F}_0(t)$. Now observe that $V(\hat{F}_0(t), \hat{F}_2(t)) = V(F_0(t) + m(t)F_1(t), F_2(t))$ where $m(t) \in \mathbb{C}$ satisfying m(0) = 0. Hence we can define the family of polynomials as being $P_0(t) = F_0(t) + m(t)F_1(t)$, $P_1(t) = F_1(t)$ and $P_2(t) = F_2(t)$. This defines a family of mappings $(f_t)_{t \in D_{\epsilon'}} : \mathbb{P}^3 - \rightarrow \mathbb{P}^2$, and $V_a(t), V_b(t)$ and $V_c(t)$ are fibers of f_t for fixed t. Observe that, for ϵ' sufficiently small, $(f_t)_{t \in D_{\epsilon'}}$ is generic in the sense of definition 3.2, and its indeterminacy locus $I(f_t)$ is precisely I(t). Moreover, since $Gen(3, \nu, 1, \gamma)$ is open, we can suppose that this family $(f_t)_{t \in D_{\epsilon'}}$ is in $Gen(3, \nu, 1, \gamma)$. This concludes the proof of proposition 5.10.

We observe that this family can be considered also as a family of mappings $(\overline{f}_t)_{t\in D_{\epsilon'}}: \mathbb{P}^3 \dashrightarrow \mathbb{P}^2_{[\gamma,\gamma,1]}$, where $\overline{f}_t = (P_0(t), F_1(t), F_2(t))$ where $\mathbb{P}^2_{[\gamma,\gamma,1]}$ denotes the weighted projective plane with weights $(\gamma, \gamma, 1)$. Moreover, using the map

$$f_w : \mathbb{P}^2_{[\gamma,\gamma,1]} \to \mathbb{P}^2$$

 $(x_0 : x_1 : x_2) \to (x_0 : x_1 : x_2^{\gamma})$

we can factorize f_t as being $f_t = f_w \circ \overline{f_t}$ as shown in the diagram below:

Now we will prove that the remaining curves $V_{\tau}(t)$ are also fibers of f_t . In the local coordinates $X(t) = (x_0(t), x_1(t), x_2(t))$ near some point of I(t) we have that the vector field S is diagonal and the components of the map f_t are written as follows:

(6.1)
$$P_{0}(t) = u_{0t}x_{0}(t) + x_{1}(t)x_{2}(t)h_{0t}$$

$$P_{1}(t) = u_{1t}x_{1}(t) + x_{0}(t)x_{2}(t)h_{1t}$$

$$P_{2}(t) = u_{2t}x_{2}(t) + x_{0}(t)x_{1}(t)h_{2t}$$

where the functions $u_{it} \in \mathcal{O}^*(\mathbb{C}^3, 0)$ and $h_{it} \in \mathcal{O}(\mathbb{C}^3, 0), 0 \leq i \leq 2$. Note that when the parameter t goes to 0 the functions $h_i(t), 0 \leq i \leq 2$ also goes to 0. We want to show that an orbit of the vector field S in the coordinate system X(t) that extends globally like a singular curve of the foliation \mathcal{F}_t is a fiber of f_t .

Lemma 6.4. Any generic orbit of the vector field S that extends globally as singular curve of the foliations \mathcal{F}_t is also a fiber of f_t for fixed t.

Proof. To simplify the notation we will omit the index t. Let $\delta(s)$ be a generic orbit of the vector field S (here by a generic orbit we mean an orbit that is not a coordinate axis). We can parametrize $\delta(s)$ as $s \to (as^{\gamma}, bs^{\gamma}, cs), a \neq 0, b \neq 0, c \neq 0$. Without loss of generality we can suppose that a = b = c = 1. We have

$$f_t(\delta(s)) = [(s^{\gamma}u_0 + s^{(1+\gamma)}h_0) : (s^{\gamma}u_1 + s^{(1+\gamma)}h_1) : (su_2 + s^{2\gamma}h_2)^{\gamma}].$$

Hence we can extract the factor s^{γ} from $f_t(\delta(s))$ and we obtain

(6.2)
$$f_t(\delta(s)) = [(u_0 + sh_0) : (u_1 + s^l h_1) : (u_2 + s^{2\gamma} h_2)^{\gamma}].$$

Since V_{τ} is a fiber, $f_0(V_{\tau}) = [d:e:f] \in \mathbb{P}^2$ with $d \neq 0, e \neq 0, f \neq 0$. If we take a covering of $I(f) = \{p_1, ..., p_{\frac{\nu^3}{2}}\}$ by small open balls $B_j(p_j), 1 \leq j \leq \frac{\nu^3}{\gamma}$,

the set $V_{\tau} \setminus \bigcup_j B_j(p_j)$ is compact. For a small deformation f_t of f_0 we have that $f_t[V_{\tau}(t) \setminus \bigcup_j B_j(p_j)(t)]$ stays near $f[V_{\tau} \setminus \bigcup_j B_j(p_j)]$. Hence for t sufficiently small the components of expression 6.2 do not vanish both inside as well as outside of the neighborhood $\bigcup_j B_j(p_j)(t)$.

This implies that the components of f_t do not vanish along each generic fiber that extends locally as a singular curve of the foliation \mathcal{F}_t . This is possible only if f_t is constant along these curves. In fact, $f_t(V_\tau(t))$ is either a curve or a point. If it is a curve then it cuts all lines of \mathbb{P}^2 and therefore the components should be zero somewhere. Hence $f_t(V_\tau(t))$ is constant and we conclude that $V_\tau(t)$ is a fiber.

Observe also that when we make a blow-up with weights $(\gamma, \gamma, 1)$ at the points of $I(f_t)$ we solve completely the indeterminacy points of the mappings f_t for each t.

6.1.2. Part 2. Let us now define a family of foliations $(\mathcal{G}_t)_{t\in D_{\epsilon}}$, $\mathcal{G}_t \in \mathcal{A}$ (see Section 4) such that $\mathcal{F}_t = f_t^*(\mathcal{G}_t)$ for all $t \in D_{\epsilon}$. Firstly we consider the case n = 3. Instead of utilize the foliation \mathcal{F} obtained as the foliation $f^*\mathcal{G}$, the idea that we will utilize in this part of the proof is to consider \mathcal{F} on \mathbb{P}^n defined as the foliation pull-back foliation from \mathbb{P}^n to $\mathbb{P}^2_{[\gamma,\gamma,1]}$.

$$\overline{f}: \mathbb{P}^n \to \mathbb{P}_{[\gamma, \gamma, 1]}$$
$$\overline{f}^* \eta \to \eta.$$

once they define the same foliation. Let $M_{[\gamma,\gamma,1]}(t)$ be the family of "complex algebraic threefolds" obtained from \mathbb{P}^3 by blowing-up with weights $(\gamma,\gamma,1)$ at the $\frac{\nu^3}{\gamma}$ points $p_1(t),...,p_j(t),...,p_{\frac{\nu^3}{\gamma}}(t)$ corresponding to I(t) of \mathcal{F}_t ; and denote by

$$\pi_w(t): M_{[\gamma,\gamma,1]}(t) \to \mathbb{P}^3$$

the blowing-up map. The exceptional divisor of $\pi_w(t)$ consists of $\frac{\nu^3}{\gamma}$ orbifolds $E_j(t) = \pi_w(t)^{-1}(p_j(t)), \ 1 \le j \le \frac{\nu^3}{\gamma}$, which are weighted projective planes of the type $\mathbb{P}^2_{[\gamma,\gamma,1]}$. More precisely, if we blow-up \mathcal{F}_t at the point $p_j(t)$, then the restriction of the strict transform $\pi_w^* \mathcal{F}_t$ to the exceptional divisor $E_j(t) = \mathbb{P}^2_{[\gamma,\gamma,1]}$ is the same quasi-homogeneous 1-form that defines \mathcal{F}_t at the point $p_j(t)$. Using the map

$$f_w : \mathbb{P}^2_{[\gamma,\gamma,1]} \to \mathbb{P}^2$$

 $(x_0 : x_1 : x_2) \to (x_0 : x_1 : x_2^{\gamma})$

it follows that we can push-forward the foliation to \mathbb{P}^2 . Let us denote by $\mathbb{F}ol_2'[d',2,(\gamma,\gamma,1)]$ the set of $\{\hat{\mathcal{G}}\}$ saturated foliations of degree $d'=\gamma(d+1)+1$ on $\mathbb{P}^2_{[\gamma,\gamma,1]}$ with one invariant line in general position and $Il_1(d,2)$ the subsets of saturated foliations with an invariant line in \mathbb{P}^2 respectively. The mapping $f_w: \mathbb{P}^2_{[\gamma,\gamma,1]} \to \mathbb{P}^2$ induces a natural isomorphism $(f_w)_*: Il_1(d,2) \to \mathbb{F}ol_2'[d',2,(\gamma,\gamma,1)]$. With this process in mind we produce a family of holomorphic foliations in $\mathcal{A} \subset Il_1(d,2)$. This family is the "holomorphic path" of candidates to be a deformation of \mathcal{G}_0 . In fact, since $(\mathcal{A}'=f_w)_*(\mathcal{A})$ is an open set inside $\mathbb{F}ol_2'[d',2,(\gamma,\gamma,1)]$ we can suppose that this family is inside \mathcal{A} . Hence using the mapping f_{w*} we can transport holomorphic from \mathcal{A} to \mathcal{A}' and vice-versa.

We fix the exceptional divisor $E_1(t)$ to work with and we denote by $\hat{\mathcal{G}}_t \in \mathcal{A}'$ the restriction of $\pi_w^* \mathcal{F}_t$ to $E_1(t)$. As we have seen, this process produces foliations in \mathcal{A}' up to a linear automorphism of $\mathbb{P}^2_{[\gamma,\gamma,1]}$. Consider the family of mappings

 $\overline{f}_t: \mathbb{P}^3 \dashrightarrow \mathbb{P}^2_{[\gamma,\gamma,1]}, \ t \in D_{\epsilon'}$ defined in Proposition 6.1. We will consider the family $(\overline{f}_t)_{t \in D_{\epsilon}}$ as a family of rational maps $\overline{f}_t: \mathbb{P}^3 \dashrightarrow E_1(t)$; we decrease ϵ if necessary. Note that the map

$$\overline{f}_t \circ \pi_w(t) : M_{[\gamma,\gamma,1]}(t) \setminus \bigcup_j E_j(t) \to E_1(t) \simeq P^2_{[\gamma,\gamma,1]}$$

extends holomorphically, that is, as an orbifold mapping, to

$$\hat{f}_t: M_{[\gamma,\gamma,1]}(t) \to E_1(t) \simeq \mathbb{P}^2_{[\gamma,\gamma,1]}.$$

This is due to the fact that each orbit of the vector field S_t determines an equivalence class in $\mathbb{P}^2_{[\gamma,\gamma,1]}$ and is a fiber of the map

$$(x_0(t), x_1(t), x_2(t)) \to (x_0(t), x_1(t), x_2^{\gamma}(t)).$$

The mapping \overline{f}_t can be interpreted as follows. Each fiber of \overline{f}_t meets $p_j(t)$ once, which implies that each fiber of \hat{f}_t cuts $E_1(t)$ once outside of the singular line in $[M_{[\gamma,\gamma,1]}(t)\cap E_1(t)]$. Since $M_{[\gamma,\gamma,1]}(t)\setminus \cup_j E_j(t)$ is biholomorphic to $\mathbb{P}^3\setminus I(t)$, after identifying $E_1(t)$ with $\mathbb{P}^2_{[\gamma,\gamma,1]}$, we can imagine that if $q\in M_{[\gamma,\gamma,1]}(t)\setminus \cup_j E_j(t)$ then $\hat{f}_t(q)$ is the intersection point of the fiber $\hat{f}_t^{-1}(\hat{f}_t(q))$ with $E_1(t)$. We obtain a mapping

$$\hat{f}_t: M_{[\gamma,\gamma,1]}(t) \to \mathbb{P}_{[\gamma,\gamma,1]}.$$

It can be extended over the singular set of $M_{[\gamma,\gamma,1]}(t)$ using Riemann's Extension Theorem. This is due to the fact that the orbifold $M_{[\gamma,\gamma,1]}(t)$ has singular set of codimension 2 and these singularities are of the quotient type; therefore it is a normal complex space. We shall also denote this extension by \hat{f}_t to simplify the notation. We remark that the blowing-up with weights $(\gamma,\gamma,1)$ can completely solve the indeterminacy set of \overline{f}_t or f_t for each t as the reader can check. With all these ingredients we can define the foliation $\tilde{\mathcal{F}}_t = \overline{f}_t^*(\hat{\mathcal{G}}_t) = f_t^*(\mathcal{G}_t) \in PB(\Gamma-1,\nu,1,1,\gamma)$. This foliation is a deformation of \mathcal{F}_0 . Based on the previous discussion let us denote $\mathcal{F}_1(t) = \pi_w(t)^*(\mathcal{F}_t)$ and $\hat{\mathcal{F}}_1(t) = \pi_w(t)^*(\tilde{\mathcal{F}}_t)$.

Lemma 6.5. If $\mathcal{F}_1(t)$ and $\hat{\mathcal{F}}_1(t)$ are the foliations defined previously, we have that

$$\mathcal{F}_{1}(t)|_{E_{1}(t) \cong \mathbb{P}^{2}_{[\gamma,\gamma,1]}} = \hat{\mathcal{G}}_{t} = \hat{\mathcal{F}}_{1}(t)|_{E_{1}(t) \cong \mathbb{P}^{2}_{[\gamma,\gamma,1]}}$$

where $\hat{\mathcal{G}}_t$ is the foliation induced on $E_1(t) \simeq \mathbb{P}^2_{[\gamma,\gamma,1]}$ by the quasi-homogeneous 1-form $\eta_{p_1(t)}$.

Proof. In a neighborhood of $p_1(t) \in I(t)$, \mathcal{F}_t is represented by the quasi-homogeneous 1-form $\eta_{p_1(t)}$. This 1-form satisfies $i_{S_t}\eta_{p_1(t)}=0$ and therefore naturally defines a foliation on the weighted projective space $E_1(t)\simeq \mathbb{P}^2_{[\gamma,\gamma,1]}$. This proves the first equality. The second equality follows from the geometrical interpretation of the mapping $\hat{f}_t: M_{[\gamma,\gamma,1]}(t) \to \mathbb{P}^2_{[\gamma,\gamma,1]}$, since $\hat{\mathcal{F}}_1(t) = \hat{f}_t^*(\hat{\mathcal{G}}_t)$.

Now we choose an afine chart of the space $\mathbb{P}^2_{[\gamma,\gamma,1]}$. This afine chart is biholomorphic to \mathbb{C}^2 . In this affine chart for each t the foliation $(\hat{\mathcal{G}}_t)$ has d^2 singular points.

Let $\tau_1(t)$ be a singularity of $\hat{\mathcal{G}}_t$ outside of the line at infinity. Since the map $t \to \tau_1(t) \in \mathbb{P}^2_{[\gamma,\gamma,1]}$ is holomorphic, there exists a holomorphic family of automorphisms of $\mathbb{P}^2_{[\gamma,\gamma,1]}$, $t \to H(t)$ such that $\tau_1(t) = [0:0:1] \in E_1(t) \simeq \mathbb{P}^2_{[\gamma,\gamma,1]}$ is kept fixed. Observe that such a singularity has non algebraic separatrices at this point. Fix

a local analytic coordinate system (x_t, y_t) at $\tau_1(t)$ such that the local separatrices are $(x_t = 0)$ and $(y_t = 0)$, respectively. Here we are considering the affine chart of $\mathbb{P}^2_{[\gamma,\gamma,1]}$ which is biholomorphic to \mathbb{C}^2 . This is useful because the foliations \mathcal{G}_t and $\hat{\mathcal{G}}_t$ in this local coordinates are at least bihomolomorphic equivalents. Observe that the local smooth hypersurfaces along $\hat{V}_{\tau_1(t)} = \hat{f}_t^{-1}(\tau_1(t))$ defined by $\hat{X}_t := (x_t \circ \hat{f}_t = 0)$ and $\hat{Y}_t := (y_t \circ \hat{f}_t = 0)$ are invariant for $\hat{\mathcal{F}}_1(t)$. Furthermore, they meet transversely along $\hat{V}_{\tau_1(t)}$. On the other hand, $\hat{V}_{\tau_1(t)}$ is also contained in the Kupka set of $\mathcal{F}_1(t)$. Therefore there are two local smooth hypersurfaces $X_t := (x_t \circ \hat{f}_t = 0)$ and $Y_t := (y_t \circ \hat{f}_t = 0)$ invariant for $\mathcal{F}_1(t)$ such that:

- (1) X_t and Y_t meet transversely along $\hat{V}_{\tau_1(t)}$.
- (2) $X_t \cap \pi_w(t)^{-1}(p_1(t)) = (x_t = 0) = \hat{X}_t \cap \pi_w(t)^{-1}(p_1(t))$ and $Y_t \cap \pi_w(t)^{-1}(p_1(t)) = (y_t = 0) = \hat{Y}_t \cap \pi_w(t)^{-1}(p_1(t))$ (because $\mathcal{F}_1(t)$ and $\hat{\mathcal{F}}_1(t)$) coincide on $E_1(t) \simeq \mathbb{P}^2$).
- (3) X_t and Y_t are deformations of $X_0 = \hat{X}_0$ and $Y_0 = \hat{Y}_0$, respectively.

Lemma 6.6. $X_t = \hat{X}_t$ for small t.

Proof. Let us consider the projection $\hat{f}_t: M_{[\gamma,\gamma,1]}(t) \to \mathbb{P}^2_{[\gamma,\gamma,1]}$ on a neighborhood of the regular fibre $\hat{V}_{\tau_1(t)}$, and fix local coordinates x_t, y_t on $\mathbb{P}^2_{[\gamma,\gamma,1]}$ such that $X_t := (x_t \circ \hat{f}_t = 0)$. For small ϵ , let $H_{\epsilon} = (y_t \circ \hat{f}_t = \epsilon)$. Thus $\hat{\Sigma}_{\epsilon} = \hat{X}_t \cap H_{\epsilon}$ are (vertical) compact curves, deformations of $\hat{\Sigma}_0 = \hat{V}_{\tau_1(t)}$. Set $\Sigma_{\epsilon} = X_t \cap \hat{H}_{\epsilon}$. The $\Sigma'_{\epsilon}s$, as the $\hat{\Sigma}'_{\epsilon}s$, are compact curves (for t and ϵ small), since X_t and \hat{X}_t are both deformations of the same X_0 . Thus for small t, X_t is close to \hat{X}_t . It follows that $\hat{f}_t(\Sigma_{\epsilon})$ is an analytic curve contained in a small neighborhood of $\tau_1(t)$, for small ϵ . By the maximum principle, we must have that $\hat{f}_t(\Sigma_{\epsilon})$ is a point, so that $\hat{f}_t(X_t) = \hat{f}_t(\cup_{\epsilon} \Sigma_{\epsilon})$ is a curve C, that is, $X_t = \hat{f}_t^{-1}(C)$. But X_t and \hat{X}_t intersect the exceptional divisor $E_1(t) = \mathbb{P}^2_{[\gamma,\gamma,1]}$ along the separatrix $(x_t = 0)$ of \mathcal{G}_t through $\tau_1(t)$. This implies that $X_t = \hat{f}_t^{-1}(C) = \hat{f}_t^{-1}(x_t = 0) = \hat{X}_t$.

We have proved that the foliations \mathcal{F}_t and $\tilde{\mathcal{F}}_t$ have a common local leaf: the leaf that contains $\pi_w(t) \left(X_t \backslash \hat{V}_{\tau_1(t)} \right)$ which is not algebraic. Let $D(t) := Tang(\mathcal{F}(t), \hat{\mathcal{F}}(t))$ be the set of tangencies between $\mathcal{F}(t)$ and $\hat{\mathcal{F}}(t)$. This set can be defined by $D(t) = \{Z \in \mathbb{C}^4; \Omega(t) \land \hat{\Omega}(t) = 0\}$, where $\Omega(t)$ and $\hat{\Omega}(t)$ define $\mathcal{F}(t)$ and $\hat{\mathcal{F}}(t)$, respectively. Hence it is an algebraic set. Since this set contains an immersed non-algebraic surface X_t , we necessarily have that $D(t) = \mathbb{P}^3$. This proves Theorem B in the case n = 3.

Suppose now that $n \geq 4$. The previous argument implies that if Υ is a generic 3-plane in \mathbb{P}^n , we have $\mathcal{F}(t)_{|\Upsilon} = \hat{\mathcal{F}}(t)_{|\Upsilon}$. In fact, such planes cut transversely every strata of the singular set, and I(t) consists of $\frac{\nu^3}{\gamma}$ points. This implies that f_t is generic for |t| sufficiently small. We can then repeat the previous argument, finishing the proof of Theorem A.

Recall from Definition 2.2 the concept of a generic map. Let $f \in BRM(n, \nu, 1, 1, \gamma)$, I(f) its indeterminacy locus and \mathcal{F} a foliation on \mathbb{P}^n , $n \geq 3$. Consider the following properties:

- \mathcal{P}_1 : If n=3, at any point $p_j \in I(f)$ \mathcal{F} has the following local structure: there exists an analytic coordinate system (U^{p_j}, Z^{p_j}) around p_j such that $Z^{p_j}(p_j) = 0 \in (\mathbb{C}^3, 0)$ and $\mathcal{F}|_{(U^{p_j}, Z^{p_j})}$ can be represented by a quasi-homogenous 1-form η_{p_j} (as described in the Lemma 5.7) such that
 - (a) $Sing(d\eta_{p_i}) = 0$,
- (b) 0 is a quasi-homogeneous singularity of the type $[\gamma:\gamma:1]$.

If $n \geq 4$, \mathcal{F} has a local structure product: the situation for n=3 "times" a regular foliation in \mathbb{C}^{n-3} .

 \mathcal{P}_2 : There exists a fibre $f^{-1}(q) = V(q)$ such that $V(q) = f^{-1}(q)\backslash I(f)$ is contained in the Kupka-Set of \mathcal{F} and V(q) is not contained in $(F_2 = 0)$.

 $\mathcal{P}_3: V(q)$ has transversal type X, where X is a germ of vector field on $(\mathbb{C}^2, 0)$ with a non algebraic separatrix and such that $0 \in \mathbb{C}^2$ is a non-degenerate singularity with eigenvalues λ_1 and $\lambda_2, \frac{\lambda_2}{\lambda_1} \notin \mathbb{R}$.

Lemma 6.6 allows us to prove the following results:

Theorem B. In the conditions above, if properties \mathcal{P}_1 , \mathcal{P}_2 and \mathcal{P}_3 hold then \mathcal{F} is a pull back foliation, $\mathcal{F} = f^*(\mathcal{G})$, where \mathcal{G} is of degree $d \geq 2$ on \mathbb{P}^2 with one invariant line.

Let us denote by $\mathbb{F}ol_2'[d', 2, (\gamma, \gamma, 1)]$ the set of $\{\hat{\mathcal{G}}\}$ saturated foliations of degree d' on $\mathbb{P}^2_{[\gamma,\gamma,1]}$ with one invariant line. According to this notation the previous Thereom can be re-written as:

Theorem C. In the conditions above, if properties \mathcal{P}_1 , \mathcal{P}_2 and \mathcal{P}_3 hold then \mathcal{F} is a pull back foliation, $\mathcal{F} = \overline{f}^*(\hat{\mathcal{G}})$, where $\hat{\mathcal{G}} \in \mathbb{F}ol_2'[d', 2, (\gamma, \gamma, 1)]$

References

- [Bea] A.Beauville. "Complex Algebraic Surfaces"; London Mathematical Society Lecture Notes Series 68, Cambridge University Press (1983).
- [B.M.O-G] E. Artal Bartolo; J. Martn Morales, J. Ortigas-Galindo. "Intersection theory on abelian-quotient V-surfaces and Q-resolutions"; Journal of Singularities 8 (2014) 11-30.
- [Bru] M. Brunella. "Birational geometry of foliations"; Monografias de Matemática, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro (2000).
- [C.CA.G.LN] O. Calvo-Andrade, D. Cerveau, L. Giraldo, A. Lins Neto. "Irreducible components of the space of foliations associated to the affine Lie algebra"; Ergodic Theory Dynam. Systems 24, no. 4 (2004) 987-1014.
- [Ca.LN] C. Camacho, A. Lins Neto. "The topology of integrable differential forms near a singularity"; Inst. Hautes Études Sci. Publ. Math. 55 (1982) 5-35.
- [C.LN0] D. Cerveau, A. Lins-Neto. "Holomorphic foliations in \mathbb{P}^2 having an invariant algebraic curve"; Ann. Inst. Fourrier 41, no.4 (1991) 883-903.
- [C.LN1] D. Cerveau, A. Lins-Neto. "Irreducible components of the space of holomorphic foliations of degree two in \mathbb{P}^n "; Annals of Mathematics 143, no.2 (1996) 577-612.
- [C.LN.E] D. Cerveau, A. Lins-Neto, S.J. Edixhoven. "Pull-back components of the space of holomorphic foliations on \mathbb{CP}^n , $n \geq 3$ "; J. Algebraic Geom. 10, no. 4 (2001) 695-711.
- [CS] W. Costa e Silva, "Branched pull-back components of the space of holomorphic foliations on \mathbb{CP}^n ; Submitted
- [LN1] A. Lins Neto, "Finite determinacy of germs of integrable 1-forms in dimension 3 (a special case)"; Geometric Dynamics, Springer Lect. Notes in Math. 1007 no. 6 (1981) 480-497.
- [Fa.Pe] C. Favre, J.V. Pereira. "Foliations invariant by rational maps"; Math. Z. 268, no. 3-4 (2011) 753-770.

- [G.LN] X. Gomez-Mont, A. Lins Neto. "Structural stability of singular holomorphic foliations having a meromorphic first integral"; Topology, 30, no. 3 (1991) 315-334.
- [Hi] Morris W. Hirsch. "Differential Topology"; Springer-Verlag, New York, (1976). Graduate Texts in Mathematics, No. 33.
- [K] I. Kupka. "The singularities of integrable structurally stable Pfaffian forms"; Proc. Nat. Acad. Sci. U.S.A, 52 no.6 (1964) 1431-1432.
- [LN0] A. Lins Neto; "Componentes Irredutíveis dos Espaços de Folheações"; 26 Colóquio Brasileiro de Matemática, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, (2007).
- [LN1] A. Lins Neto, "Finite determinacy of germs of integrable 1-forms in dimension 3 (a special case)"; Geometric Dynamics, Springer Lect. Notes in Math. 1007 no. 6 (1981) 480-497.
- [LN2] A. Lins Neto. "Algebraic solutions of polynomial differential equations and foliations in dimension two"; Holomorphic Dynam., Springer Lect. Notes in Math. 1345 (1988) 192-232.
- [LN.Sc] A. Lins Neto, B.A. Scárdua. "Folheações Algébricas Complexas"; 21º Colóquio Brasileiro de Matemática, IMPA (1997).
- [LN.S.Sc] A. Lins Neto, P. Sad, B.A. Scárdua. "On topological Rigidity of projective foliations"; Bull. Soc. math. France. no.126, (1998) 381-406.
- [MM] J. Martín-Morales. "Monodromy Zeta Function Formula for Embedded Q-Resolutions"; Rev. Mat. Iberoam. 29, no.3 (2013) 939-967.
- [EM] E. Mann. "Orbifold quantum cohomology of weighted projective spaces"; J. Algebraic Geom. 17, no.1 (2008) 137-166.
- $[{\rm EM}]$ E. Mann. "Cohomologie quantique orbifold des espaces projectifs à poids"; arXiv:math.AG/0510331
- [M] R. Monge. "Weighted Projective Planes and Irreducible Components of the Space of Foliations"; Tesis IMPA 2014 http://preprint.impa.br/visualizar?id=5943
- [Ser] E.Sernesi. "Deformations of Algebraic Schemes"; Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 334. Springer-Verlag, 2006.
- $Current\ address$: IRMAR Université de Rennes 1, Campus de Beaulieu 35042 Rennes Cedex France

 $E ext{-}mail\ address:$ wancossil@gmail.com