Pitch -Vem Ser Tech iFood

Turma: 1104

Tabela de Conteúdos

02

Contextualização do Problema

Solução Proposta

04

Diferencial Competitivo

05

Funcionamento do Produto

06

Impacto no Mercado & Modelo de Negócios

Investimentos e Recursos

Quem nós somos?

Matheus Muniz	GitHub / Linkedin
Felipe Franco	GitHub / Linkedin
Anna Schuenck	GitHub / Linkedin
Maria Vitória Vasconcelos	GitHub / Linkedin

Você pode visitar o github onde está o notebook do projeto neste <u>Link</u>.

Nosso projeto se baseia em uma solução pronta chamada <u>Mediapipe</u>.

Contextualização do Problema

Imagine o cenário onde pessoas tem que se comunicar por gestos. Essa é a realidade que nossa equipe se propôs a analisar e a transformar. Ao analisar cuidadosamente os gestos através dos vetores e áreas da bounding box, nossa solução busca dar maior entendimento para essas pessoas que preferem ou tem mesmo que se comunicar por gestos.

7

```
Frame: 1
Bbox1: [167, 423, 53, 52]
Bbox2: [105, 429, 36, 48]
Gesture: Thumb Up
Frame: 2
Bbox1: [137, 355, 48, 56]
Bbox2: [72, 347, 40, 62]
Gesture: Thumb Up
Frame: 3
Bbox1: [0, 0, 0, 0]
Bbox2: [0, 0, 0, 0]
Gesture: None
Frame: 4
Bbox1: [411, 280, 72, 95]
Bbox2: [539, 275, 62, 86]
Gesture: Thumb Down
```

Solução Proposta

Ao analisarmos nosso problema chegamos a uma solução que funciona ao recebermos um arquivo JSON com uma matriz que contém valores da bounding box e nos utilizamos uma função para calcular a área média, mínima e máxima das bounding boxes, permitindo-nos identificar gestos de maneira mais eficaz. As métricas extraídas são salvas em um arquivo CSV para uma divulgação mais eficiente do nosso projeto.

```
1 # comparativo de tempo de processamento
 2 # 12 itens
 3 %timeit -n 1000 -r 100 %timeit
4 media um = media area(remover area zero(gestures))
6.58 \mus \pm 592 ns \,per loop (mean \pm std. dev. of 100 runs, 1000 loops each)
1 # comparativo de tempo de processamento
 2 # 1200 itens
 3 %timeit -n 1000 -r 100 %timeit
 4 media cem = media area(remover area zero(gestures cem))
6.7 \mu s \pm 936 ns per loop (mean \pm std. dev. of 100 runs, 1000 loops each)
1 # comparativo de tempo de processamento
 2 # 120000 itens
 3 %timeit -n 1000 -r 100 %timeit
 4 media dez mil = media area(remover area zero(gestures dez mil))
6.81~\mu s~\pm~968~ns per~loop~(mean~\pm~std.~dev.~of~100~runs,~1000~loops~each)
```

Diferencial Competitivo

O que nos diferencia é a capacidade de analisar rapidamente as matrizes contidas nos arquivos JSON para podermos calcular as áreas da bounding box sem o uso de bibliotecas complexas, focamos desde o início em usar as funções nativas do python. Essa abordagem nos proporciona um reconhecimento mais preciso e eficiente dos gestos, permitindo-nos alcançar melhores resultados. Conseguimos também processar um boa quantidade de arquivos sem consumir muito tempo.


```
[13] 1 # importações
      2 import json
      3 import timeit
      4 from functools import reduce
      5 import csv
      7 # arquivo json que devera ser carregado
      8 # https://drive.google.com/file/d/1YP2sXI3 7JMty-2MAL60 Y2S61SbfjGU/view?us
     1 def carrega_dados(path:str = 'gestures.json') -> list[dict]:
                with open(path, 'r') as arquivo:
                    dados = arquivo.read()
                    return ison.loads(dados)
            except FileNotFoundError:
                return []
     1 gestures = carrega dados()
```

Funcionamento do Produto

- Em vez de receber imagens que são pesadas, nossa solução recebe um arquivo JSON, contendo informações como o gesto, frame e a matriz de cada bounding box.
- Nosso programa consegue ler, inserir e deletar os dados mantendo o JSON sempre atualizado.
- Também usamos funções integradas do python como o map para calcular a menor e maior área, o filter para filtrar os frames que não tiveram detecção de nenhuma mão e por último usamos o reduce para o cálculo das médias.
- Nosso programa também consegue salvar essas estatísticas em um arquivo .csv para melhor análise.

Impacto no Mercado

O impacto potencial é significativo. Ao trabalhar com a detecção de gestos, estamos promovendo uma comunicação mais eficaz e uma maior inclusão. Nós buscamos impactar positivamente na vida das pessoas focando em sempre incluir o máximo de pessoas possível.

Modelo de Negócios

Nosso modelo de negócios foca na aplicação prática da nossa solução em situações do mundo real. Planejamos futuramente em uma próxima versão implementar, testar e escalar nossa solução para maximizar seu impacto e acessibilidade. Para gerar renda futuramente podemos aplicar um Modelo de Negócios no estilo Freemium ou podemos exibir anúncios em nosso app.

Investimentos e Recursos

- Embora o foco desse Pitch não seja investimentos financeiros, o nosso objetivo foi impactar nossos ouvintes, inspirando-os a considerar a possibilidade de impactar positivamente outras vidas, acho que isso no mundo de hoje conta mais que muito investimento financeiro.
- Nossa própria equipe está investindo diversos recursos como tempo e conhecimento para melhorar o entendimento de diversas pessoas. Acreditamos que nosso esforço é um investimento valioso para o futuro.

Obrigado!

Queremos agradecer por escutarem a gente até aqui e pela oportunidade de poder compartilhar nosso projeto com todos vocês, agora daremos início as perguntas caso vocês tenham alguma dúvida.

Fontes e cores usadas.

Foi utilizada as seguintes fontes nessa apresentação:

Aldrich

(https://fonts.google.com/specimen/Aldrich)

Lato

(https://fonts.google.com/specimen/Lato)

#2d3142 #d7d7d7 #fffffff #9df6f6