+/- Mikor mondjuk, hogy az S program megoldja az F feladatot (a definíció szerint)?

1.
$$O_{\mp} \subseteq D_{\rho(5)}$$

2.
$$\forall \alpha \in D_{\mp}: p(S)(\alpha) \subseteq \mp(\alpha)$$

A tetribleges bleapution

$$\forall \alpha \in A : SKIP(\alpha) = \{ \langle \alpha \rangle \}$$

1. Mely feladatokat oldja meg az ABORT program egy adott A állapottéren?

1.
$$D_{+} \subseteq D_{p(S)}$$
 $D_{p(ABORT)} = \phi$

2.
$$\forall a \in D_T : p(A \otimes LT)(a) \subseteq F(a)$$

 $\forall a \in \mathcal{G} : -(a)$

2. feedatsor 5/c. ...

S van detruiniation => p(S) van detruiniations.

ellenpélde

$$\rho(s) = \{ (\lambda_1 2) \}$$

- 2. Legyen A tetszőleges állapottér, $S_1, S_2 \subseteq A \times (\bar{A} \cup \{fail\})^{**}$ programok, úgy hogy $S_1 \subseteq S_2$ teljesül.
 - (a) Igaz-e hogy ekkor $D_{p(S_1)} \subseteq D_{p(S_2)}$?
 - (b) Igaz-e hogy ekkor $D_{p(S_2)} \subseteq D_{p(S_1)}$?
 - a) Ellenpérda:

$$S_1 = \{x \rightarrow (17) \}$$
 $C = \{x \rightarrow (17) \}$
 $C = \{x \rightarrow (17) \}$
 $C = \{x \rightarrow (17) \}$
 $C = \{x \rightarrow (17) \}$

- 2. Legyen A tetszőleges állapottér, $S_1, S_2 \subseteq A \times (\bar{A} \cup \{fail\})^{**}$ programok, úgy hogy $S_1 \subseteq S_2$ teljesül.
 - (a) Igaz-e hogy ekkor $D_{p(S_1)} \subseteq D_{p(S_2)}$?
 - (b) Igaz-e hogy ekkor $D_{p(S_2)} \subseteq D_{p(S_1)}$? igoz-

b)
$$S_1 \subseteq S_2$$
: $\forall a \in A$: $S_A(a) \subseteq S_2(a)$
 $l_P(S_2) \subseteq l_P(S_A)$
 $l_{COMB} = \{a \in A \mid S_A(a) \subseteq \overline{A}^*\}$ (A program definició for $l_P(S_A) = \{a \in A \mid S_A(a) \subseteq \overline{A}^*\}$ alapjan $\forall a \in A$.

 $l_P(S_2) = \{a \in A \mid S_2(a) \subseteq \overline{A}^*\}$ $l_P(S_2) = \{a \in A \mid S_2(a) \subseteq \overline{A}^*\}$

Tudjur:
$$S_2(x) \subseteq \overline{A}^*$$
 $S_2(x) \subseteq \overline{A}^*$
 $S_2(x) \subseteq S_2(x)$
 $S_2(x) \subseteq S_2(x) \subseteq \overline{A}^*$
 $S_2(x) \subseteq S_2(x) \subseteq \overline{A}^*$
 $S_2(x) \subseteq S_2(x) \subseteq \overline{A}^*$

Et rellet believe

1. feladotsor 8/C bemleltessir a feladottot:

(c) Adjuk meg egy olyan prímet, ami közelebb van a végponthoz, mint bármely az

{m: 2, n: 5, p: 7} intervallumban lévő prímszám. A = (w:N, w:N, p:N)Ŧ to ver detruinint he =(1,16,11) (1,10,13) $\mathbf{>}$ (λ 3, λ 8, λ 5) (13,28,30) (12,18,20)

prim:
$$N \rightarrow \bot$$

 $prim(x) = (x \neq 0 \land x \neq 1 \land \forall g \in [2...x-1]: g \nmid x)$