Immediate SUBtract

flags

Immediate & Set

SUBtract & Set

Single Floating-point MULtiply

Double Floating-point SUBtract

opcode

opcode

opcode

LEGv	8	Refe	rence l	Data 🔾	
CORE INSTRUCT					
			OPCODE (9		Matas
NAME, MNE	MONIC	MAT	(Hex)	OPERATION (in Verilog)	Notes
ADD	ADD	R	458	R[Rd] = R[Rn] + R[Rm]	
ADD Immediate	ADDI	I	488-489	R[Rd] = R[Rn] + ALUImm	(2,9)
ADD Immediate & Set flags	ADDIS	I	588-589	R[Rd], FLAGS = R[Rn] + ALUImm	(1,2,9)
ADD & Set flags	ADDS	R	558	R[Rd], $FLAGS = R[Rn] + R[Rm]$	(1)
AND	AND	R	450	R[Rd] = R[Rn] & R[Rm]	
AND Immediate	ANDI	I	490-491	R[Rd] = R[Rn] & ALUImm	(2,9)
AND Immediate & Set flags	ANDIS	I	790-791	R[Rd], FLAGS = R[Rn] & ALUImm	(1,2,9)
AND & Set flags	ANDS	R	750	R[Rd], $FLAGS = R[Rn] & R[Rm]$	(1)
3ranch	В	В	0A0-0BF	PC = PC + BranchAddr	(3,9)
Branch onditionally	B.cond	CB	2A0-2A7	if(FLAGS==cond) PC = PC + CondBranchAddr	(4,9)
Branch with Link	BL	В	4A0-4BF	R[30] = PC + 4; PC = PC + BranchAddr	(3,9)
Branch to Register	BR	R	6B0	PC = R[Rt]	
Compare & Branch f Not Zero	CBNZ	СВ	5A8-5AF	if(R[Rt]!=0) PC = PC + CondBranchAddr	(4,9)
Compare & Branch f Zero	CBZ	CB	5A0-5A7	if(R[Rt]==0) PC = PC + CondBranchAddr	(4,9)
Exclusive OR	EOR	R	650	$R[Rd] = R[Rn] \land R[Rm]$	
Exclusive OR mmediate	EORI	I	690-691	$R[Rd] = R[Rn] \wedge ALUImm$	(2,9)
oaD Register Jnscaled offset	LDUR	D	7C2	R[Rt] = M[R[Rn] + DTAddr]	(5)
oaD Byte Unscaled offset	LDURB	D	1C2	R[Rt]={56'b0, M[R[Rn] + DTAddr](7:0)}	(5)
LoaD Half Unscaled offset	LDURH	D	3C2	R[Rt]={48'b0, M[R[Rn] + DTAddr] (15:0)}	(5)
LoaD Signed Word Unscaled offset	LDURSW	D	5C4	R[Rt] = { 32{ M[R[Rn] + DTAddr] [31]}, M[R[Rn] + DTAddr] (31:0)}	(5)
.oaD eXclusive Register	LDXR	D	642	R[Rd] = M[R[Rn] + DTAddr]	(5,7)
ogical Shift Left	LSL	R	69B	$R[Rd] = R[Rn] \ll shamt$	
ogical Shift Right	LSR	R	69A	R[Rd] = R[Rn] >>> shamt	
MOVe wide with Keep	MOVK	IM	794-797	R[Rd] (Instruction[22:21]*16: Instruction[22:21]*16-15) = MOVImm	(6,9)
MOVe wide with Zero	MOVZ	IM	694-697	R[Rd] = { MOVImm << (Instruction[22:21]*16) }	(6,9)
nclusive OR	ORR	R	550	$R[Rd] = R[Rn] \mid R[Rm]$	
nclusive OR mmediate	ORRI	I	590-591	R[Rd] = R[Rn] ALUImm	(2,9)
Tore Register Unscaled offset	STUR	D	7C0	M[R[Rn] + DTAddr] = R[Rt]	(5)
Tore Byte Inscaled offset	STURB	D	1C0	M[R[Rn] + DTAddr](7:0) = R[Rt](7:0)	(5)
Tore Half Unscaled offset	STURH	D	3C0	M[R[Rn] + DTAddr](15:0) = R[Rt](15:0)	(5)
Tore Word Unscaled offset	STURW	D	5C0	M[R[Rn] + DTAddr](31:0) = R[Rt](31:0)	(5)
Tore eXclusive Register	STXR	D	640	M[R[Rn] + DTAddr] = R[Rt]; R[Rm] = (atomic) ? 0 : 1	(5,7)
SUBtract	SUB	R	658	R[Rd] = R[Rn] - R[Rm]	
SUBtract Immediate	SUBI	I	688-689	R[Rd] = R[Rn] - ALUImm	(2,9)

(10) If neither is operand a NaN and Value1 == Value2, FLAGS = 4'b0110; If neither is operand a NaN and Value1 < Value2, FLAGS = 4'b1000; If neither is operand a NaN and Value1 > Value2, FLAGS = 4'b0010; If an operand is a Nan, operands are unordered ARITHMETIC CORE INSTRUCTION SET

FMULD

FSUBS R

NAME, MNEMONI	С	FOR- MAT	OPCODE/ SHAMT (Hex)	OPERATION (in Verilog)
Floating-point ADD Single	FADDS	R	0F1 / 0A	S[Rd] = S[Rn] + S[Rm]
Floating-point ADD Double	FADDD	R	0F3 / 0A	D[Rd] = D[Rn] + D[Rm]
Floating-point CoMPare Single	FCMPS	R	0F1 / 08	FLAGS = (S[Rn] vs S[Rm])
Floating-point CoMPare Double	FCMPD	R	0F3 / 08	FLAGS = (D[Rn] vs D[Rm])
Floating-point DIVide Single	FDIVS	R	0F1 / 06	S[Rd] = S[Rn] / S[Rm]
Floating-point DIVide Double	FDIVD	R	0F3 / 06	D[Rd] = D[Rn] / D[Rm]
Floating-point MULtiply	FMULS	R	0F1 / 02	S[Rd] = S[Rn] * S[Rm]

2

Notes

(1,10)

(1,10)

Rd

Rt

0

5 4

Single Floating-point SUBtract Double 0F3 / 0E D[Rd] = D[Rn] - D[Rm]R LoaD Single floating-point 7C2 S[Rt] = M[R[Rn] + DTAddr](5) LoaD Double floating-point LDURD 7C0 D[Rt] = M[R[Rn] + DTAddr](5) MULtiply 4D8 / 1F R[Rd] = (R[Rn] * R[Rm]) (63:0)Signed DIVide SDIV R[Rd] = R[Rn] / R[Rm]Signed MULtiply High SMULH 4DA R[Rd] = (R[Rn] * R[Rm]) (127:64) STore Single floating-point STURS R 7E2 M[R[Rn] + DTAddr] = S[Rt](5) STore Double floating-point STURD R 7E0 M[R[Rn] + DTAddr] = D[Rt](5) Unsigned DIVide UDIV R 4D6 / 03 R[Rd] = R[Rn] / R[Rm](8) Unsigned MULtiply High HATTIMIT 4DE R[Rd] = (R[Rn] * R[Rm]) (127:64)(8) CORE INSTRUCTION FORMATS R opcode Rm shamt Rn Rd 21 20 16 15 10 9

0F3 / 02

D[Rd] = D[Rn] * D[Rm]

10 9

op

12 11 10 9

BR_address

0F1 / 0E S[Rd] = S[Rn] - S[Rm]

COND_BR_address Opcode Rt 24 23 5 4 MOV immediate opcode Rd 21.20 5.4 PSEUDOINSTRUCTION SET $\begin{aligned} & OPERATION \\ & FLAGS = R[Rn] - R[Rm] \\ & FLAGS = R[Rn] - ALUImm \\ & R[Rd] = R[Rn] + DTAddr \end{aligned}$ MNEMONIC CMP CMPI NAME CoMPare CoMPare Immediate LoaD Address LDA

ALU_immed

RI

MOVe			MOV $R[Rd] = I$	R[Rn]
EGIS	STER NAME	, NUMBER, U	USE, CALL CONVENTION	
	NAME	NUMBER	USE	PRESERVED ACROSS A CALLS
	X0 - X7	0-7	Arguments / Results	No
	X8	8	Indirect result location register	No
	X9 - X15	9-15	Temporaries	No
	X16 (IP0)	16	May be used by linker as a scratch register; other times used as temporary register	No
	X17 (IP1)	17	May be used by linker as a scratch register; other times used as temporary register	No
	X18	18	Platform register for platform independent code; otherwise a temporary register	No
	X19-X27	19-27	Saved	Yes
	X28 (SP)	28	Stack Pointer	Yes
	X29 (FP)	29	Frame Pointer	Yes
	X30 (LR)	30	Return Address	Yes
	XZR	31	The Constant Value 0	N.A.

FLAGS are 4 condition codes set by the ALU operation: Negative, Zero, oVerflow, Carry ALUImm = { 52'b0, ALU_immediate } BranchAddr = { 56'BR_address [25]}, BR_address, 2'b0 } CondBranchAddr = { 43'COND_BR_address [25]}, COND_BR_address, 2'b0 } DTAddr = { 55'[DT_address [8]}, DT_address } MOVImm = { 48'b0, MOV_immediate } Atomic test&set pair, R[Rm] = 0 if pair atomic, 1 if not atomic Operands considered unsigned numbers (vs. 2's complement)
Since IR_and CR_instruction formats have procedes narrower than II bits, they occurry a

R[Rd], FLAGS = R[Rn] - ALUImm

R[Rd], FLAGS = R[Rn] - R[Rm]

758

R

(1,2,9)

⁽¹⁾ (2)

⁽³⁾ (4) (5)

Since I, B, and CB instruction formats have opcodes narrower than 11 bits, they occupy a range of 11-bit opcodes

^{© 2017} Elsevier Inc. All rights reserved. From Patterson and Hennessy, Computer Organization and Design: The Hardware/Software Interface ARM® Edition

LEGv8 Reference Data Card ("Green Card")

4

NaN

TM

R R R

Ι

IM

D

D

UBI:

ANDI:

STUR

opcodes.

a

10

10

Q

110100101

11101010000

1111000100

1111001000

111100101

Since I, B, and CB instruction formats have opcodes narrower than 11 bits, they occupy a range of 11-bit opcodes, e.g., the 6-bit B format occupies 32 (25) 11-bit

11111000000

11111000010

IEEE 754 FLOATING-POINT STANDARD

IE<u>EE 754 Symbols</u> Exponent Fraction Object (-1)^s × (1 + Fraction) × 2^(Exponent - Bias) ± 0 where Single Precision Bias = 127, ± Denorm 1 to MAX ± F1. Pt. Num. anything MAX 0 $\pm \infty$

MAX

≠ 0

Double Precision Bias = 1023 IEEE Single Precision and

Double Precision Formats: S.P. MAX 255, D.P. MAX = 204 Exponent Fraction 31 30 23 22 0 Exponent Fraction 52 51 0

DATA ALIGNMENT

Double Word							
	Wo	ord		Word			
Halfword Halfword		Halfword		Halfword			
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte
0	1	2	3	4	5	6	7
Valu	Value of three least significant bits of byte address (Big Endian)						

EXC	EXCEPTION SYNDROME REGISTER (ESR)							
	xception ass (EC)	Instruction Length (IL)	Instruction Specific Syndrome field (ISS)					
31	26	25	24	0				

EXCEPTION CLASS

EC	Class	Cause of Exception	Number	Name	Cause of Exception
0	Unknown	Unknown	34	PC	Misaligned PC
					exception
7	SIMD	SIMD/FP registers	36	Data	Data Abort
		disabled			
14	FPE	Illegal Execution	40	FPE	Floating-point
		State			exception
17	Sys	Supervisor Call	52	WPT	Data Breakpoint
		Exception			exception
32	Instr	Instruction Abort	56	BKPT	SW Breakpoint
					Exception

SIZE PREFIXES AND SYMBOLS

SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL
10^{3}	Kilo-	K	210	Kibi-	Ki
10 ⁶	Mega-	M	2 ²⁰	Mebi-	Mi
10 ⁹	Giga-	G	230	Gibi-	Gi
10 ¹²	Tera-	T	2 ⁴⁰	Tebi-	Ti
10 ¹⁵	Peta-	P	250	Pebi-	Pi
10 ¹⁸	Exa-	Е	2^{60}	Exbi-	Ei
10 ²¹	Zetta-	Z	270	Zebi-	Zi
10^{24}	Yotta-	Y	280	Yobi-	Yi
10 ⁻³	milli-	m	10-15	femto-	f
10 ⁻⁶	micro-	μ	10-18	atto-	a
10 ⁻⁹	nano-	n	10-21	zepto-	Z
10-12	pico-	р	10-24	yocto-	y

604

788

790

704

7C0

607

789

791

797

STURB	D	11	00111000000	1C0	
LDURB	D	11	00111000000	1C0	* MSB; op[3L]
STURH	D	11	01111000000	3C0	
LDURH	D	11	01111000010	3C2	
STURW	D	11	10111000000	5C0	
LDURSW	D	11	10111000100	5C4	
STXR	D	11	11001000000	640	D-+410: 00 [27 , 247 & 0. [21]
LDXR	D D	11 11	11001000010 11111000000	642 7C0	D-type; op[27;24] & op[21]
STUR	D	11	11111000000	7C0 7C2	1
LDOK	Ь	11	111111000010	702	l
ADDI	I	10	1001000100	488 489	T 1 . TO 1 7 & TO 2 0 (7 8 TO 9:007
ANDI	I	10 10	1001001000	490 491 588 589	I-type: 0 p [31] & op [28:26] & op [23:22]
ADDIS	I	10	1011001000	590 591	
SUBI	I	10	1101000100	688 689	
EORI	I	10	1101001000	690 691	
SUBIS	I	10	1111000100	788 789	
ANDIS	I	10	1111001000	790 791	
B.cond	СВ	8	01010100	2A0 2A7	
CBZ	CB	8	10110100	2A0 2A7 5A0 5A7	1012-type 1015 0.8.9.57
CBNZ	CB	8	10110101	5A8 5AF	CB-type: 0, [28:25]
MOTER	TM	0	110100101	604 607	
MOVZ	IM IM	9	110100101 111100101	694 697 794 797	M. tur 1 1 2 1 2 1 2 1 2 1 2 1
MOVK	IIVI	,	[1][[00][01]	1 /24 /2/	IM-type: op [31:30] & o, [28:23]
D.	В	6	(00101)	0A0 0BF	$10 + 1 + 50 \cdot 0 / 7$
B BL	В	6	100101	4A0 4BF	1B-type: op [30:26]
D1			100101	1110	-
			کام ہ) 1	
			, ,		o / [30]
			_		<i>b</i>
	op [3	1:30] }	· [28:23]_	0 C 30: 26]
	l				64 ,
					5:3n Ext (p[25:0]) 67
		,, C	[85]	- 0	
		η, –	<u> </u>	7	64 64 0
		_	1		signExtCop[20:5])
] ب ق	28:25	.] ——			
1					67 (4)
			L-0)		5: yn Ext (op [23;5]) / 1
			/		
D-type; op[27:2+7	& o. [2L	J		
	-	1	OFEZ7]		, , , , , , , , , , , , , , , , , , ,
		_	0		
			(V (, 4
			—o		1 * '
				-	
		_	ϕ	s i gn Extlop [1	0 (17)
			ı	s ignoritant	
				s; yn Ext lopi	TU:101) -/- 0
				2.372.1.65	(4)
					6-1