Politecnico di Milano – Facoltà di Ingegneria Industriale e dell'Informazione – A.A. 2019/2020 Corso di Laurea in Ingegneria Fisica ESAME DI ANALISI III A DISTANZA, 1/9/2020 – Prof. I. FRAGALÀ

TEST 1. (8 punti) Scrivere solo le risposte, e.g. (a) Vero/Falso (b) Vero/Falso etc.

Stabilire quali delle seguenti affermazioni sono vere, dove le funzioni f e g sono definite per $x \in \mathbb{R}$ da

$$f(x) = \frac{\cos x}{1 + x^2},$$
 $g(x) = \frac{\sin x}{1 + x^4}$

(a) $f * g \in L^1(\mathbb{R})$

VERO, poiché f e g appartengono a $L^1(\mathbb{R})$

(b) $f * f \in L^1(\mathbb{R})$

VERO, poiché f appartiene a $L^1(\mathbb{R})$

(c) $g * g \in L^1(\mathbb{R})$

VERO, poiché g appartiene a $L^1(\mathbb{R})$

(d) $(f * g) * (f * g) \in L^1(\mathbb{R})$

VERO, poiché f * g appartiene a $L^1(\mathbb{R})$

TEST 2. (8 punti) Scrivere solo le risposte, e.g. (e) Vero/Falso (f) Vero/Falso etc.

Stabilire quali delle seguenti affermazioni sono vere:

- (e) L'operatore lineare $T: L^2(0,1) \to L^2(0,1)$ dato da $T(u) = \int_0^1 x^2 u(x) dx$ non è continuo. FALSO, T è continuo per la disuguaglianza di Hölder
- (f) L'operatore lineare $T: L^2(0,1) \to L^2(0,1)$ dato da $T(u) = \int_0^1 x^2 u(x) dx$ è continuo e ha norma 1. FALSO, $||T|| = ||x^2||_{L^2(0,1)} = 1/\sqrt{3}$
- (g) Data $g \in L^1(\mathbb{R})$, l'operatore lineare $T: L^1(\mathbb{R}) \to L^1(\mathbb{R})$ dato da $T(u) = \int_{\mathbb{R}} g * u$ è continuo o meno a seconda della scelta di g.

FALSO, T è continuo per ogni scelta di g, poiché $||T(u)||_{L^1} \leq ||g||_{L^1} ||u||_{L^1}$

(h) Data $g \in L^1(\mathbb{R})$, l'operatore lineare $T: L^1(\mathbb{R}) \to L^1(\mathbb{R})$ dato da $T(u) = \int_{\mathbb{R}} g * u$ è continuo e la sua norma non dipende della scelta di g.

FALSO, poiché $||T|| = ||g||_{L^1}$ dipende da g

TEORIA. (5 punti) Scrivere coincisamente le risposte, 2-3 righe per punto

(i) Esibire una funzione $u \in L^1_{loc}(\mathbb{R})$ la cui derivata distribuzionale sia data da $u' = x + 3\delta_5$, dove δ_5 è la delta di Dirac nel punto $x_0 = 5$.

$$u(x) = \begin{cases} \frac{1}{2}x^2 & \text{per } x \le 5\\ \frac{1}{2}x^2 + 3 & \text{per } x > 5 \end{cases}$$

(1) Esibire un esempio di uno spazio vettoriale munito di un prodotto scalare, che non risulti uno spazio di Hilbert.

 $X = C^0([-1, 1])$ munito del prodotto scalare $\int_{-1}^1 fg$ (non è di Hilbert perche' una successione di funzioni continue che approssima la funzione segno è di Cauchy ma non converge).

ESERCIZIO (10 punti) Scrivere le risposte E le loro motivazioni (in forma coincisa)

Sia f la funzione definita per $x \in \mathbb{R}$ da

$$f(x) := \begin{cases} \cos x & \text{se } |x| \le \pi \\ 0 & \text{se } |x| > \pi \,, \end{cases}$$

e sia \widehat{f} la sua trasformata di Fourier.

- (m) Senza calcolare \widehat{f} , stabilire a priori (giustificando la risposta) se $\widehat{f} \in L^{\infty}(\mathbb{R})$.
- (n) Senza calcolare \widehat{f} , stabilire a priori (giustificando la risposta) se $\widehat{f} \in L^2(\mathbb{R})$.
- (o) Senza calcolare \widehat{f} , stabilire a priori (giustificando la risposta) per quali $k \in \mathbb{N}$ si ha $\widehat{f} \in C^k(\mathbb{R})$.
- (p) Senza calcolare \widehat{f} , stabilire a priori (giustificando la risposta) se $\widehat{f} \in \mathcal{S}(\mathbb{R})$.
- (q) Senza calcolare \widehat{f} , stabilire a priori (giustificando la risposta) se $\widehat{f} \in \mathcal{S}'(\mathbb{R})$.
- (r) Senza calcolare \widehat{f} , calcolare $\|\widehat{f}\|_{L^2(\mathbb{R})}$.

Soluzione.

- (m) $\widehat{f} \in L^{\infty}(\mathbb{R})$, poiché $f \in L^{1}(\mathbb{R})$.
- (n) $\widehat{f} \in L^2(\mathbb{R})$, poiché $f \in L^2(\mathbb{R})$.
- (o) $\widehat{f}\in C^k(\mathbb{R})$ per ogni $k\in\mathbb{N},$ poiché $x^kf\in L^1(\mathbb{R})$ per ogni $k\in\mathbb{N}.$
- (p) $\widehat{f} \notin \mathcal{S}(\mathbb{R})$ poiché $f \notin \mathcal{S}(\mathbb{R})$
- (q) $\widehat{f} \in \mathcal{S}'(\mathbb{R})$ poiché $f \in L^1(\mathbb{R}) \subset \mathcal{S}'(\mathbb{R})$
- (r) Per l'identità di Parseval, si ha $\|\widehat{f}\|_{L^2(\mathbb{R})} = \sqrt{2\pi} \|f\|_{L^2(\mathbb{R})} = \pi \sqrt{2}$