Network analysis; an introduction (with igraph in R)

Ali (Aliakbar Akbaritabar)

Email: Akbaritabar@gmail.com

21/11/2019 - Humboldt University of Berlin

• What is relational view and network analysis?

- 1 What is relational view and network analysis?
- 2 Ethnography of network ties! Context of interactions

- 1 What is relational view and network analysis?
- 2 Ethnography of network ties! Context of interactions
- 3 How to gather and use network data?

- 1 What is relational view and network analysis?
- 2 Ethnography of network ties! Context of interactions
- 3 How to gather and use network data?
- 4 Possible questions to ask!

- 1 What is relational view and network analysis?
- 2 Ethnography of network ties! Context of interactions
- 3 How to gather and use network data?
- 4 Possible questions to ask!
- **5** A real life example from science studies!

- 1 What is relational view and network analysis?
- 2 Ethnography of network ties! Context of interactions
- 3 How to gather and use network data?
- 4 Possible questions to ask!
- **5** A real life example from science studies!
- 6 Where to next?!

What is this?!

Now what?!

ID	Name	Age	Political view	Education
1	Tom	24	left	NA
2	Sara	22	right	ВА
3	Bill	30	neutral	MA
4	Margaret	31	NA	PhD

A poll/survey results?

Variables/attributes

ID	Name	Age	Political view	Education
1	Tom	24	left	NA
2	Sara	22	right	ВА
3	Bill	30	neutral	МА
4	Margaret	31	NA	PhD

A variable by observation table

		Variables/attributes							
	ID	Name	Age	Political view	Education				
Respondents/ Observations	1	Tom	24	left	NA				
	2	Sara	22	right	ВА				
	3	Bill	30	neutral	МА				
	4	Margaret	31	NA	PhD				

What if respondents know each other?!

Different contexts of familiarity

• Family, college, gym, . . .

Stories behind ties!

• Independence of observations? (in many cases it is violated!)

Adjacency (familiarity) matrix

Respondents/ Observations

Respondents/ Observations Tom Sara Bill Margaret Tom 0 0 Sara 0 Bill Margaret 0 0 1

Read Edge List as CSV (to construct a network)

```
edge_list2_use <- read_csv("../1_data/humans_ties.csv")
kable(edge_list2_use)</pre>
```

source	target	weight	label
Tom	Sara	0.5	Acquaintance
Sara	Bill	1.0	Sibling
Sara	Margaret	0.5	Acquaintance
Bill	Tom	0.5	Acquaintance
Bill	Sara	1.0	Sibling
Bill	Margaret	1.0	Friend
Margaret	Bill	0.5	Acquaintance

Convert it to a (network) graph object¹

```
gg = graph_from_data_frame(d = edge_list2_use, directed = TRUE)

print(gg)

## IGRAPH 1464730 DNW- 4 7 --

## + attr: name (v/c), weight (e/n), label (e/c)

## + edges from 1464730 (vertex names):

## [1] Tom ->Sara Sara ->Bill Sara ->Margaret Bill ->Tom

## [5] Bill ->Sara Bill ->Margaret Margaret->Bill
```

¹Python users, check script "09_example_network_igraph_python.py" in code directory

Plot the graph with a layout (directed)

```
set.seed(2225235)
gg_layout = layout.fruchterman.reingold(graph = gg)
plot(gg, layout = gg_layout, edge.label = NA, vertex.size=8)
```


Plot the graph with a layout (un-directed)

```
gg_undirected = graph_from_data_frame(d = edge_list2_use, directed = F)
gg_undirected = simplify(graph = gg_undirected, remove.multiple = T)
plot(gg_undirected, layout = gg_layout, edge.label = NA, vertex.size=8)
```


Add a new attribute to nodes?

```
print(V(gg))
## + 4/4 vertices, named, from 1464730:
## [1] Tom
               Sara
                        Bill
                                 Margaret
V(gg)$gender <- c('male', 'female', 'male', 'female')</pre>
V(gg)$shape <- c('circle', 'square', 'circle', 'square')
print(gg)
## TGRAPH 1464730 DNW- 4 7 --
## + attr: name (v/c), gender (v/c), shape (v/c), weight (e/n), label
## | (e/c)
## + edges from 1464730 (vertex names):
## [1] Tom ->Sara
                         Sara
                                 ->Bill
                                           Sara
                                                  ->Margaret Bill
                                                                     ->Tom
## [5] Bill ->Sara
                         Bi11
                               ->Margaret Margaret->Bill
```

Color and shape of nodes based on gender

Name ties based on types

```
plot(gg, edge.label = E(gg)$label, layout = gg_layout, vertex.size=8)
```


Weight ties based on importance

```
plot(gg, edge.width = E(gg)$weight*5, edge.label = E(gg)$weight, layout = gg_layout, vertex.size=8)
```


Mixture of weight/label

```
plot(gg, edge.label = E(gg)$label, edge.width = E(gg)$weight*5, layout = gg_layout, vertex.size=8)
```


A glimpse to more serious analysis

- After simple visualization (if possible), a five number summary!
 - **1** Size: V, E (N of vertices/nodes and ties/edges, respectively)
 - **2 Density** (ratio of ties to possible ties, 1 = fully connected)
 - **3 Components** & (dis)connectivity (more connection inside groups, less among them)
 - **4 Diameter** (how compact the network is?)
 - **5** Clustering Coefficient (transitivity and triangles)
- Centrality in network (different measures of importance in structure)
 - Degree, Closeness, Betweenness, Eigenvector, . . .

In-degree of a node (incoming ties)

```
plot(gg, edge.label = NA, edge.width = E(gg)$weight*5,
    vertex.label = degree(gg, mode = 'in'), layout = gg_layout, vertex.size=8)
```


Out-degree of a node (outgoing ties)

```
plot(gg, edge.label = NA, edge.width = E(gg)$weight*5,
    vertex.label = degree(gg, mode = 'out'), layout = gg_layout, vertex.size=8)
```


Degree of a node (both incoming/outgoing ties)

```
plot(gg, edge.label = NA, edge.width = E(gg)$weight*5,
    vertex.label = degree(gg, mode = 'all'), layout = gg_layout, vertex.size=8)
```


Sociological theories (& SNA conceptualization)²

- Matteo effect, winner takes all?
 - Highly prolific scientists attract higher collaborations from other scientists?
 - Attaching preferably to a few star scientists/leaders?
- Fragmentation of ideas, sociology as a interstitial science?
 - Methodologists bridging the islands?
- [Sociological] **small world** of disconnected islands?
- Core of leaders and periphery of followers?

²Akbaritabar, A., Traag, V. A., Caimo, A., & Squazzoni, F. (2020). Italian Sociologists: A Community of Disconnected Groups. Scientometrics. https://doi.org/10.1007/s11192-020-03555-w

Coauthorship of Italian sociologists

Communities in the giant component

What can we learn from these communities? $(1/2)^3$

Table 2: Gender composition and internationality of members of the communities detected from the giant component (Percentages are calculated by rows separately for gender and country)

		Gender			Country			
Community	# members	Female	Male	Missing Gender	Europe	Italy	Other	Missing Country
0	254	43%	54%	3%	54%	29%	11%	5%
1	142	50%	49%	1%	36%	55%	6%	3%
2	122	38%	61%	1%	37%	56%	3%	4%
3	103	45%	54%	1%	41%	44%	5%	11%
4	91	47%	49%	3%	32%	57%	9%	2%

Table 3: Sectors composition of members of the communities detected from the giant component (Percentages are calculated by rows)

		Scientific Disciplinary Sectors						
Community	# members	postdoc	SPS/07	SPS/08	SPS/09	SPS/10	SPS/11	Missing Sector
0	254	2%	1%	5%	0	0%	0%	91%
1	142	2%	6%	3%	8%	1%	1%	78%
2	122	5%	10%	1%	7%	0	1%	76%
3	103	2%	4%	2%	12%	1%	0	80%
4	91	1%	7%	7%	0	1%	2%	82%

³Akbaritabar, A., Traag, V. A., Caimo, A., & Squazzoni, F. (2020). Italian Sociologists: A Community of Disconnected Groups. Scientometrics. https://doi.org/10.1007/s11192-020-03555-w

What can we learn from these communities? $(2/2)^4$

- 65% foreigners
- Medium, science communication, social medium, internet, political communication & public opinion

⁴Akbaritabar, A., Traag, V. A., Caimo, A., & Squazzoni, F. (2020). Italian Sociologists: A Community of Disconnected Groups. Scientometrics. https://doi.org/10.1007/s11192-020-03555-w

Where to next?!

Awesome network analysis list: https://github.com/briatte/awesome-network-analysis

