AI1110 Assignment 11

MANIKANTA UPPULAPU (BT05)

June 3, 2022

Outline

Question

Solution

Problem Statement

Question:

Given a discrete type random variable n taking the values 1,2,... and a sequence of random variables X_k independent of n, we form the sum

$$S = \sum_{k=1}^{n} x_k$$

This sum is a random variable specified as follows: For a specific ζ ,n(ζ) is an integer and s(ζ) equals the sum of the numbers $X_k(\zeta)$ for k from 1 to n(ζ). We maintain that if the random variables X_k have the same mean, then

$$E{s} = \eta E{n}$$
, where $E{x_k} = \eta$

Solution

Clearly, $E\{x_k|n=n\}=E\{X_k\}$ beacuse x_k is independent of n. Hence

$$E\{s|n=n\} = E\left\{\sum_{k=1}^{n} x_k|n=n\right\} = \sum_{k=1}^{n} E\{x_k\} = \eta n$$
 (1)

from (1) and $E\{g(x,y)|x\} = \int_{-\infty}^{\infty} g(x,y)f(y|x)dy$

$$E\{s\} = E\{E\{s|n\}\} = E\{\eta n\}$$
 (2)

Solution

if the random variables x_k are uncorrelated with the same variance σ^2 , then

$$E\{s^2\} = \eta^2 E\{n^2\} + \sigma^2 E\{n\}$$
 (3)

$$\implies E\{s^2|n=n\} = \sum_{i=1}^n \sum_{k=1}^n E\{x_i x_k\}$$
 (4)

where
$$E\{x_ix_k\} = \begin{cases} \sigma^2 + \eta^2 & i = k \\ \eta^2 & i \neq k \end{cases}$$
 (5)

Solution

with i = k and $n^2 - n$ terms with i $\neq k$

$$\implies (\sigma^2 + \eta^2)n + \eta^2(n^2 - n) = \eta^2 n^2 + \sigma^2 n \tag{6}$$

this yields because

$$E\{s^2\} = E\{E\{s^2|n\}\} = E\{\eta^2 n^2 + \sigma^2 n\}$$
 (7)