Homework #4

Jingyi Guo Pittsburgh Campus

Problem 1: Conditional Monte Carlo

```
a) Standard Monte Carlo
```

```
Code:
```

```
n=10000;
S0=100;
K=100;
r=0.05;
T=1;
v0square=0.04;
N=50;
alpha=0.1;
phi=0.1; % or 1.0
delta=T/N;
S=S0*ones(n,1);
vsquare=v0square*ones(n,1);
for i=1:N
   z=randn(n,2);
   S=S+r*delta*S+sqrt(delta)*sqrt(vsquare).*S.*z(:,1);
   vsquare=vsquare+alpha*delta.*vsquare+phi*sqrt(delta).*vsqu
are.*z(:,2);
end
C a=exp(-r*T).*max(S-K,0);
Cbar_a=mean(C_a)
Cstderr a=std(C a)/sqrt(n)
```

Result:

	$(\alpha, \psi) = (0.10, 0.10)$	$(\alpha, \psi) = (0.10, 1.0)$
Estimation	10.6588	10.3911
Std. Error	0.1480	0.1557

b) Conditional Monte Carlo

Code:

```
vsquare2=zeros(N+1,n);
vsquare2(1,:)=v0square*ones(1,n);
```

```
for i=1:N
   z=randn(1,n);
   vsquare2(i+1,:)=vsquare2(i,:)+alpha*delta.*vsquare2(i,:)+p
hi*sqrt(delta).*vsquare2(i,:).*z;
end
vol=zeros(1,n);
for i=2:(N+1)
   vol=vol+vsquare2(i,:);
end
vol=sqrt(vol./N);
% Black-Scholes formula:
dplus=1./(vol.*sqrt(T)).*(log(S0/K)+(r+1/2.*vol.^2)*T);
dminus=1./(vol.*sqrt(T)).*(log(S0/K)+(r-1/2.*vol.^2)*T);
C b=S0*normcdf(dplus)-normcdf(dminus)*K*exp(-r*T);
Cbar b=mean(C b)
Cstderr b=std(C b)/sqrt(n)
```

Result:

	$(\alpha, \psi) = (0.10, 0.10)$	$(\alpha, \psi) = (0.10, 1.0)$	
Estimation	10.6469	10.2933	
Std. Error	0.0023	0.0225	

The estimation in b) is less than that in a), and the standard error of b) is less than that of a).

Problem 2: Interest rates derivatives and CIR

a) Pricing zero coupon bond

Code:

```
alpha=0.2;
sig=0.1;
b=0.05;
r0=0.04;
n=1000;
N=50;
T=1;
delta=T/N;
r=zeros(n,N+1);
r(:,1)=r0*ones(n,1);
sumr=zeros(n,1);
```

```
for i=2:(N+1)
           d=4*alpha*b/(sig^2);
           lam=4*alpha*exp(-alpha*delta)/(sig^2*(1-exp(-
       alpha*delta))).*r(:,i-1);
           chi=random('ncx2',d,lam);
           r(:,i)=(sig^2*(1-exp(-alpha*delta))))/(4*alpha).*chi;
           sumr=sumr+r(:,i);
      end
       ZCB=exp(-delta.*sumr);
       ZCB bar=mean(ZCB)
       ZCB stderr=std(ZCB)/sqrt(n)
Result:
      ZCB_bar =
           0.9599
      ZCB stderr =
          3.3057e-04
The estimated price of zero coupon bond is 0.9599, the standard error is 3.3057e-04.
b) Pricing caplet
Code:
      t=1;
      del=1/12;
      L=1;
      R=0.05;
      payoff=L*del*max(0,r(:,N+1)-R);
       caplet=exp(-delta.*sumr).*payoff;
       caplet bar=mean(caplet)
      caplet stderr=std(caplet)/sqrt(n)
Result:
      caplet_bar =
          3.4216e-04
      caplet stderr =
          2.4002e-05
The estimated price of caplet is 3.4216e-04, the standard error is 2.4002e-05.
```

Problem 3: Replicating Broadie and Glasserman "Greeks" methodology

```
Code:
      r=0.1;
     K=100;
      q=0.03;
      sig=0.25;
      T=0.2;
     n=10000;
     h=0.0001;
      S0 = 90;
      %European call with dividend
      %% resimulation
      % without control
      z=randn(n,1);
      S=S0*exp((r-q-1/2*sig^2)*T+sig*sqrt(T).*z);
      C=\exp(-r*T)*\max(S-K,0);
      Sh=(S0+h)*exp((r-q-1/2*sig^2)*T+sig*sqrt(T).*z);
      Ch=exp(-r*T)*max(Sh-K,0);
      delta=(Ch-C)./h;
      delta bar=mean(delta)
      delta_stderr=std(delta)/sqrt(n)
      Sv=S0*exp((r-q-1/2*(sig+h)^2)*T+(sig+h)*sqrt(T).*z);
      Cv=exp(-r*T)*max(Sv-K,0);
      vega=(Cv-C)./h;
      delta bar=mean(vega)
      delta stderr=std(vega)/sqrt(n)
      % with control
      Yd=delta;
      X=S;
     EX=exp((r-q)*T)*S0*ones(n,1);
      deltac=Yd+(-corr(Yd,X)*std(Yd)/std(X))*(mean(X)-EX);
      deltac bar=mean(deltac)
      deltac stderr=std(deltac)/sqrt(n)*sqrt(1-(corr(Yd,X))^2)
      Yv=vega;
      vegac=Yv+(-corr(Yv,X)*std(Yv)/std(X))*(mean(X)-EX);
      vegac bar=mean(vegac)
      vegac stderr=std(vegac)/sqrt(n)*sqrt(1-(corr(Yv,X))^2)
```

```
%% pathwise
z=randn(n,1);
S=S0*exp((r-q-1/2*sig^2)*T+sig*sqrt(T).*z);
% without control
delta1=zeros(n,1);
vega1=zeros(n,1);
for i=1:n
   if (S(i)>=K)
       delta1(i) = exp(-r*T)*S(i)/S0;
       vega1(i)=exp(-r*T)*S(i)/sig*(log(S(i)/S0)-(r-
q+1/2*sig^2)*T;
   end
end
delta1_bar=mean(delta1)
delta1 stderr=std(delta1)/sqrt(n)
vega1_bar=mean(vega1)
vega1 stderr=std(vega1)/sqrt(n)
% with control
Y1d=delta1;
X=S;
EX=exp((r-q)*T)*S0*ones(n,1);
add=-corr(Y1d,X)*std(Y1d)/std(X);
delta1c=Y1d+add*(mean(X)-EX);
delta1c bar=mean(delta1c)
delta1c_stderr=std(delta1c)/sqrt(n)*sqrt(1-(corr(Y1d,X))^2)
Y1v=vega1;
adv=-corr(Y1v,X)*std(Y1v)/std(X);
vega1c=Y1v+adv*(mean(X)-EX);
vega1c_bar=mean(vega1c)
vegalc_stderr=std(vegalc)/sqrt(n)*sqrt(1-(corr(Y1v,X))^2)
%% loglikelihood
% without control
z=randn(n,1);
S=S0*exp((r-q-1/2*sig^2)*T+sig*sqrt(T).*z);
delta2=exp(-r*T)*max(S-K,0)*1/(S0*sig^2*T).*(log(S./S0)-(r-q-
0.5*sig^2)*T);
```

```
delta2 bar=mean(delta2)
delta2 stderr=std(delta2)/sqrt(n)
d=(log(S./S0)-(r-q-sig^2/2)*T)/(sig*sqrt(T));
dd_over_dsig=(log(S0./S)+(r-q+sig^2)*T)/(sig^2*sqrt(T));
dlogg over dsig=-d.*dd over dsig-1/sig;
vega2=exp(-r*T).*max(S-K,0).*dlogg_over_dsig;
vega2 bar=mean(vega2)
vega2 stderr=std(vega2)/sqrt(n)
% with control
Y2d=delta2;
X=S;
EX=exp((r-q)*T)*S0*ones(n,1);
ad2=-corr(Y2d,X)*std(Y2d)/std(X);
delta2c=Y2d+ad2*(mean(X)-EX);
delta2c bar=mean(delta2c)
delta2c stderr=std(delta2c)/sqrt(n)*sqrt(1-(corr(Y2d,X))^2)
Y2v=vega2;
adv2=-corr(Y2v,X)*std(Y2v)/std(X);
vega2c=Y2v+adv*(mean(X)-EX);
vega2c bar=mean(vega2c)
vega2c stderr=std(vega2c)/sqrt(n)*sqrt(1-(corr(Y2v,X))^2)
```

Result:

	Delta Est.	Delta Std. Err	Vega Est.	Vega Std. Err
Resimulation	0.2145	0.0045	11.5976	0.2697
Resimulation with control	0.2179	0.0031	11.8078	0.1772
Pathwise	0.2247	0.0046	12.2323	0.2773
Pathwise with control	0.2263	0.0031	12.3347	0.1787
Likelihood	0.2136	0.0075	10.5798	0.5827
Likelihood with control	0.2142	0.0059	10.6044	0.5171

Problem 4: Greeks of Digital Options

a) In Problem3, Assignment 3, we have deduced the pricing formula for digital option as follows:

$$P(S_0, K, r, \sigma, T) = e^{-rT} N\left(\frac{1}{\sigma\sqrt{T}} \left(log\left(\frac{S_0}{K}\right) + \left(r - \frac{1}{2}\sigma^2\right)T\right)\right)$$

So delta is:

$$\begin{split} Delta &= \frac{\partial}{\partial S_0} P(S_0, K, r, \sigma, T) = e^{-rT} N' \left(\frac{1}{\sigma \sqrt{T}} \left(log \left(\frac{S_0}{K} \right) + \left(r - \frac{1}{2} \sigma^2 \right) T \right) \right) \cdot \frac{1}{\sigma \sqrt{T}} \cdot \frac{1}{S_0} \\ &= e^{-rT} \cdot pdf(d_-) \cdot \frac{1}{\sigma \sqrt{T}} \cdot \frac{1}{S_0} \end{split}$$

where
$$d_{-} = \frac{1}{\sigma\sqrt{T}} \left(log \left(\frac{S_0}{K} \right) + \left(r - \frac{1}{2} \sigma^2 \right) T \right)$$

Code:

```
S0=95;
K=100;
r=0.05;
sig=0.2;
T=1;
n=10000;
h=0.0001;
d_minus=1/(sig*sqrt(T))*(log(S0/K)+(r-1/2*sig^2)*T);
delta_a=exp(-r*T)*normpdf(d_minus)*1/(sig*sqrt(T))*1/S0
```

Result:

delta_a =

0.0199

So the delta of digital option is 0.0199.

b) Resimulation method

Code:

```
z=randn(n,1);
S=S0*exp((r-1/2*sig^2)*T+sig*sqrt(T).*z);
C=exp(-r*T)*max(S-K,0)./abs(S-K); % pays 1 or 0
Sh=(S0+h)*exp((r-1/2*sig^2)*T+sig*sqrt(T).*z);
Ch=exp(-r*T)*max(Sh-K,0)./abs(Sh-K);
delta=(Ch-C)./h;
delta_bar=mean(delta)
delta_stderr=std(delta)/sqrt(n)
```

Result:

delta_b_bar =

```
5.9952e-15
delta_b_stderr =
```

5.2333e-15

2.9544e-04

So the estimation of delta is 5.9952e-15 and its standard error is 5.2333e-15.

c) Likelihood method

Formula is:
$$Delta$$
: $e^{-rT}I_{\{S_T \ge K\}} \frac{1}{S_0 \sigma^2 T} \times (ln\left(\frac{S_T}{S_0}\right) - (r - \frac{1}{2}\sigma^2)T)$

Code: $z = randn(n,1)$; $s = s0 * exp((r-1/2*sig^2)*T + sig*sqrt(T).*z)$; $delta_c = exp(-r*T)*max(s-K,0)./abs(s-K)*1/(s0*sig^2*T).*(log(s./s0)-(r-0.5*sig^2)*T)$; $delta_c_bar = mean(delta_c)$ $delta_c_stderr = std(delta_c)/sqrt(n)$

Result: $delta_c_bar = 0.0200$

So the estimation of delta is 0.02 and its standard error is 2.9544e-04.