

AN2581

操作说明书

STM32F10xxx TIM 应用示例

介绍

这篇操作说明书是为了提供关于 STM32F10xxx TIM 外设使用的应用示例。

这篇文档,它相关的固件库 和其他这样的操作说明书是为和 STM32F10xxx 固件库配套而写的。

这些都可从 ST 的网站上下载: www.st.com.

AN	N2581		1
操	作说明书.		1
ST	M32F10xx	xx TIM应用示例	1
1	STN	M32F10xxx TIMx输出比较模式	4
	1.1	概述	4
	1.1.	固件描述	4
	1.2.	TIMx输出信 号 行为	5
2	TIMx输出比较活动模式中延迟的产生		6
	1.3.	概述	6
	1.4.	固件描述	6
	1.5.	TIMx输出信号行为	7
3	STM32F10xxxTIM输出比较非活跃模式		8
	1.6.	概述	8
	1.7.	固件描述	8
	1.8.	TIMx输出信号行为	9
4	STM32F10xxx TIMx PWM模式		10
	1.9.	概述	10
	1.10.	固件描述	10
	1.11.	TIMx输出信 号 行为	11
5	TIMx输出比较定时模式:时基的生成		12
	1.12.	概述	12
	1 13	固件描述	12

	1.14.	输出信 号 行为	14
6	S	STM32F10xxx TIMx PWM输入模式	14
	1.15.	概述	14
	1.16.	固件描述	15
7	Т	ΓΙΜx ΤΙx输入出现边沿后生成OPM波形	15
	1.17.	概述	15
	1.18.	TIMx输出信号行为	16
8	存	午并行模式下同步TIMx外设	17
	1.19.	概述	17
	1.20.	固件描述	17
9	约	级联模式下同步TIMx外设	19
	1.21.	概述	19
	1.22.	固件描述	19
10		同步几个定时器TIMx到一个外部触发器(Synchronizing several timers TIMx	to an external
trigg	ger)	21	
	1.23.	概述	21
	1.24.	固件描述	22
	1.25.	输出信 号 行为	23
11		修订记录	24
12		版权吉明:	25

1 STM32F10xxx TIMx输出比较模式

1.1 概述

这一节介绍了如何将 TIM 外设设置为输出比较模式,以产生四个不同频率的不同信号.

1.2 **固件描述**

提供的固件包括 TIMx 驱动器,它通过一系列的函数支持所有的 TIM 功能。还提供了一个使用了大部分功能的示例。

TIMxCLK 频率设置为 36MHz, 预分频设置为 0x2 并在输出比较触发模式下使用。

TIM2 计数器时钟=TIMxCLK/(预分频+1)=12MHz

TIM2_CCR1 寄存器的值等于 0x8000;

CC1 更新频率=TIM2 计数器时钟/CCR1_VAL=366.2Hz

因此 TIM2_CH1 产生一个频率为 183.1 Hz 的周期信号。.

TIM2 CCR2 寄存器的值为 0x4000:

CC2 更新频率 = TIM2 计数器时钟 / CCR2 Val = 732.4 Hz

因此 TIM2_CH2 产生一个频率为 366.3 Hz.的周期信号

TIM2 CCR3 寄存器的值是 0x2000:

CC3 更新频率= TIM2 计数器时钟 / CCR3_Val = 1464.8 Hz

因此 TIM2_CH3 产生一个频率为 732.4 Hz 的周期信号.

TIM2 CCR4 寄存器的值为 0x1000:

CC4 更新频率 = TIM2 计数器时钟 / CCR4_Val = 2929.6 Hz

因此 TIM2 CH4 产生一个频率为 1464.8 Hz 的周期信号.

可参见 ST 网站上 STM32F 10xxx 固件库的 TIM 示例一.

1.3 TIMx输出信号行为

为了显示四个信号(见图 1),将下列引脚连接到一个示波器上.

PA0 (TIM2_CHC1)

PA1 (TIM2_CHC2)

PA2 (TIM2 CHC3)

PA3 (TIM2_CHC4)

Figure 1. TIM2 output signals

2 TIMx输出比较活动模式中延迟的产生

2.1 概述

这一节介绍了如何配置 TIM 外设产生有不同延时的四个不同信号。

2.2 **固件描述**

提供的固件包括 TIMx 驱动器,它通过一系列的函数支持所有的 TIM 功能。还提供了一个使用了大部分功能的示例。

TIMxCLK 频率设置为 36 MHz, 预分频为 35999 并用于输出比较活动模式下。

TIM2 计数器时钟= TIMxCLK / (预分频 +1) = 1 kHz

TIM2_CCR1 寄存器的值为 1000:

TIM2 CH1 延迟 = CCR1 Val/TIM2 计数器时钟 = 1000 ms

所以 TIM2_CH1 产生的信号延迟为 1000 ms.

TIM2 CCR2 寄存器的值为 500:

TIM2_CH2 延迟 = CCR2_Val/TIM2 计数器时钟= 500 ms

所以 TIM2_CH2 产生的信号延迟为 500 ms.

TIM2_CCR3 寄存器的值为 250:

TIM2 CH3 延迟 = CCR3 Val/TIM2 计数器时钟= 250 ms

所以 TIM2_CH3 产生的信号延迟为 250 ms.

TIM2 CCR4 寄存器值为 125:

TIM2 CH4 延迟= CCR4 Val/TIM2 计数器时钟= 125 ms

所以 TIM2_CH4 产生信号延迟为 125 ms.

延迟时间与 PC6 信号上升沿和 TIM2_CHx 信号上升沿之间的时间差是对应的。

可参见 ST 网站上 STM32F 10xxx 固件库的 TIM 示例二。

2.3 TIMx输出信号行为

为了显示四个不同的信号(见图 2),连接示波器到

PC6

PAO (TIM2 CH1)

PA1 (TIM2_CH2)

PA2 (TIM2 CH3)

PA3 (TIM2_CH4)

Figure 2. TIM2 output signals

3 STM32F10xxxTIM输出比较非活跃模式

3.1 概述

本节介绍了在每个通道有相应的中断请求情形下,如何在输出比较非活动的模式下配置 TIM 外设.

3.2 **固件描述**

提供的固件包括 TIMx 驱动器,它通过一系列的函数支持所有的 TIM 功能。还提供了一个使用了大部分功能的示例。

TIMxCLK 频率设置为 36 MHz,预分频为 35999 并用于输出比较非活动模式下.

TIM2 计数器时钟= TIMxCLK / (预分频+1) = 1 kHz

TIM2_CCR1 寄存器的值为 1000:

TIM2 CC1 延迟= CCR1 Val/TIM2 计数器时钟= 1000 ms

延迟 1000ms 后 PC6 复位

TIM2_CCR2 寄存器的值为 500:

TIM2_CC2 延迟= CCR2_Val/TIM2 计数器时钟 = 500 ms

所以延迟 500ms 后 PC7 复位

TIM2_CCR3 寄存器的值为 250:

TIM2 CC3 延迟 = CCR3 Val/TIM2 计数器时钟= 250 ms

延迟 250ms 后 PC8 复位

TIM2 CCR4 寄存器的值为 125:

TIM2 CC4 延迟 = CCR4 Val/TIM2 计数器时钟= 125 ms

PC9 在延迟 125ms 后复位

当计数器的值小于决定输出延迟的输出比较寄存器的值时,PC6, PC7, PC8 and PC9 引脚电平被拉

高.

当计数器的值到达输出比较寄存器的值时,输出比较中断产生。在处理程序中这些引脚电平被拉

低。

可参见 ST 网站上 STM32F 10xxx 固件库的 TIM 示例三.

3.3 TIMx输出信号行为

为了显示四个不同的信号(见图 2),连接示波器到

PC6(CH1)

PC7(CH2)

PC8(CH3)

PC9(CH4)

Figure 3. GPIOC: PC6, PC7, PC7 and PC9 signals

4 STM32F10xxx TIMx PWM模式

4.1 概述

介绍如何在 PWM(pulse width modulation)模式下配置 TIM 外设.

4.2 **固件描述**

提供的固件包括 TIMx 驱动器,它通过一系列的函数支持所有的 TIM 功能。还提供了一个使用了大部分功能的示例。

TIMxCLK 频率为 36 MHz、预分频为 0 , 因此 TIM3 计数器时钟

频率为 36 MHz. TIM3 运行在 36 kHz 的频率下:

TIM3 频率 = TIM3 计数器时钟/(TIM3 ARR + 1)

TIM3_CCR1 寄存器的值为 0x1F4, 因此 TIM3_CH1 产生一个频率为 36kHz PWM 占空比为 50%的 PWM 信号:

TIM3 CH1 占空比 = TIM3 CCR1/(TIM3 ARR + 1) × 100 = 50%

TIM3_CCR2 寄存器的值为 0x177, 因此 TIM3_CH2 产生一个频率为 36kHz , 占空比为 37.5%的 PWM 信号

TIM3 CH2 占空比= TIM3 CCR2/(TIM3 ARR + 1) × 100 = 37.5%

TIM3_CCR3 寄存器的值为 0xFA,因此 TIM3_CH3 产生一个频率为 36KHz 的占空比为 25%的 PWM 信号

TIM3_CH3 占空比 = TIM3_CCR3/(TIM3_ARR + 1) × 100 = 25%

TIM3_CCR4 寄存器的值为 0x7D, 因此 TIM3_CH4 产生一个频率为 36kHz 的占空比为 12.5%的 PWM 信号

TIM3_CH4 占空比= TIM3_CCR4/ (TIM3_ARR + 1) × 100 = 12.5%

可参见 ST 网站上 STM32F 10xxx 固件库的 TIM 示例四。

4.3 TIMx输出信号行为

为了显示这四个不同的信号(见图 4),示波器连接到

PA6 (TIM3 CH1)

PA7 (TIM3_CH2)

PB0 (TIM3 CH3)

©2007 MXCHIP Corporation. All rights reserved. www.mxchip.com 021-52655026/025

PB1 (TIM3 CH4)

Figure 4. TIM3 output signals

5 TIMx输出比较定时模式:时基的生成

5.1 概述

本节介绍了在每个通道有相应的中断请求情形下,如何在输出比较定时模式下配置 TIM 外设以产生 4 个不同的时基.

5.2 **固件描述**

大部分功能的示例。

TIMxCLK 频率设置为 36 MHz, 预分频为 0x4, 因此 TIM2 计数器时钟

频率为 7.2 MHz.

TIM2_CCR1 寄存器的值为 0xC000

CC1 更新频率 = TIM2 计数器时钟 / CCR1_Val = 146.48 Hz,

所以 TIM2 CH1 每 6.8 ms 产生一个中断

TIM2_CCR2 寄存器的值为 0x8000,

CC2 更新频率= TIM2 计数器时钟 / CCR2 Val = 219.7 Hz,

所以 TIM2 CH2 每 4.55 ms 产生一个中断

TIM2_CCR3 寄存器的值为 0x4000,

CC3 更新频率= TIM2 计数器时钟 / CCR3 Val = 439.4Hz,

所以 TIM2_CH3 每 2.27 ms 产生一个中断

TIM2 CCR4 寄存器的值为 0x2000,

CC4 更新频率= TIM2 计数器时钟 / CCR4 Val = 878.9 Hz,

所以 TIM2_CH4 每 1.13 ms 产生一个中断.

当计数器的值到达输出比较寄存器的值时,产生输出比较中断,在中断处理程序中,4个引脚(PC6, PC7, PC8 和 PC9)以如下的频率触发:

- PC6: 73.24 Hz (CC1)
- PC7: 109.8 Hz (CC2)
- PC8: 219.7 Hz (CC3)
- PC9: 439.4 Hz (CC4)

可参见 ST 网站上 STM32F 10xxx 固件库的 TIM 示例五

5.3 输出信号行为

将 PC6, PC7, PC8 和 PC9 连接到一个示波器上,以显示图 5 所示的不同时基的信号.

Figure 5. GPIOD signals: PC6, PC7, PC8 and PC9

6 STM32F10xxx TIMx PWM输入模式

6.1 概述

介绍如何使用 TIM 外设来测量外部信号的频率和占空比

6.2 **固件描述**

提供的固件包括 TIMx 驱动器,它通过一系列的函数支持所有的 TIM 功能。还提供了一个使用了大部分功能的示例。

TIMxCLK 频率设置为 72MHz, 预分频为 0x0, 因此 TIM2 计数器时钟频率为 72MHz。所以测量的最小的频率为 1100Hz

TIM2 配置在 PWM 输入模式,外部信号连接到 TIM2_CH2(PA1)上,用来作为输入引脚。为了测量频率和占空比,要使用 TIM2_CC 的中断请求,因此在 TIM2_IRQ 处理程序中计算外部信号的频率和占空比。

外部信号的频率=TIM2 计数器时钟/TIM2_CCR2

占空比=(TIM2_CCR1*100)/(TIM2_CCR2)

可参见 ST 网站上 STM32F 10xxx 固件库的 TIM 示例六.

7 TIMx TIx输入出现边沿后生成OPM波形

7.1 概述

本节介绍定时器的输入引脚接受到一个外部信号的上升沿后,如何使用 TIM 外设来生成一个 OPM(one pulse mode)波形.

固件描述

提供的固件包括 TIMx 驱动器,它通过一系列的函数支持所有的 TIM 功能。还提供了一个使用了

大部分功能的示例。

TIMxCLK 频率为 72 MHz,预分频为 0x1, 因此 TIM2 计数器时钟频率为 36 MHz.

自动重置值为 0xFFFF (TIM2_ARR),所以触发 TIM2 输入的最大频率为 500 Hz.

TIM2 按如下配置: 使用单脉冲模式, 外部信号连接到 TIM2_CH2 引脚(PA1),上升沿为活动边沿,

TIM2_CH1 (PA0)上输出单脉冲信号

TIM_Pulse 定义了固定的延时值:455.08 μs

延迟= CCR1/TIM2 计数器时钟 = 455.08 μs

(TIM_Period - TIM_Pulse) 定义了固定的单脉冲值:1.365 ms

One-pulse value = (TIM Period - TIM Pulse)/TIM2 计数器时钟 = 1.365 ms

可参见 ST 网站上 STM32F 10xxx 固件库的 TIM 示例七.

7.2 **TIMx输出信号行为**

把要测量的外部信号连接到 TIM2_CH2 引脚 (PA1).将 TIM2_CH1 引脚 (PA0)连接到示波器上来观察波形。

在图 6中,CH1 代表了触发 TIM2 的输入信号,CH2 连接到 TIM2_CH2,代表 TIM2 单脉冲信号.

Figure 6. TIM2 output signal

8 在并行模式下同步TIMx外设

8.1 概述

介绍在并行模式如何同步 TIMx 外设。

8.2 **固件描述**

提供的固件包括 TIMx 驱动器,它通过一系列的函数支持所有的 TIM 功能。还提供了一个使用了

大部分功能的示例。

并行模式下的定时器同步:

- 1 TIM2 配置为主定时器
 - ----使用 PWM 模式
 - ----TIM2 更新事件用作触发输出
- 2 TIM3 和 TIM4 作为 TIM2 的从定时器
 - ----使用 PWM 模式
 - ----ITR1 (TIM2)作为两个从定时器的输入触发
 - ----使用门控模式,从计数器的开始和停止由主定时器的触发输出信号控制

主定时器 TIM2,运行在 281.250 kHz 频率下,占空比为 25%.

TIM3 运行频率为:

(TIM2 频率)/(TIM3 周期 + 1) = 28.1250 kHz

它的占空比为:

 $TIM3_CCR1/(TIM3_ARR + 1) = 30\%$

TIM4 运行频率:

(TIM2 频率)/(TIM4 周期 +1)=56.250 kHz

它的占空比:

TIM4 CCR1/(TIM4 ARR + 1) = 60%

可参见 ST 网站上 STM32F 10xxx 固件库的 TIM 示例八.

8.3 TIMx 输出信号行为

连接 TIM2_CH1 (PA0), TIM3_CH1 (PA6) 和 TIM4_CH1 (PB6)引脚到示波器上以观察波形(见图

7)。

Figure 7. TIM2_CH1 (PA0), TIM3_CH1 (PA6) and TIM4_CH1 (PB6) output signals

9 级联模式下同步TIMx外设

9.1 概述

介绍级联模式下的 TIMx 外设如何同步。

9.2 **固件描述**

提供的固件包括 TIMx 驱动器,它通过一系列的函数支持所有的 TIM 功能。还提供了一个使用了大部分功能的示例。

级联模式下定时器同步:

- 1 TIM2 配置为主定时器
 - ----使用 PWM 模式
 - ----TIM2 更新事件用作触发输出
- 2 TIM3 作为 TIM2 的从定时器,同时作为 TIM4 的主定时器。
 - ----使用 PWM 模式
 - ----ITR1 (TIM2)作为两个从定时器的输入触发
 - ----使用门控模式,从计数器的开始停止由主定时器的触发输出信号(TIM2更新事件)控制
 - ---- TIM3 更新事件用作触发输出
- 3 TIM4 为 TIM3 的从定时器
 - ----使用 PWM 模式
 - ----ITR1 (TIM3)作为输入触发
- ----使用门控模式,从定时器的开始停止由主定时器的触发输出信号(TIM3更新事件)控制 TIMxCLK 固定为 72 MHz, TIM2 计数器时钟频率为 72 MHz.

主定时器 TIM2 工作频率为:

TIM2 频率 = (TIM2 计数器时钟)/(TIM2 周期 + 1) = 281.250 kHz

占空比= TIM2_CCR1/(TIM2_ARR + 1) = 25%.

TIM3 运行频率为

(TIM2 频率)/(TIM3 周期 + 1) = 70.312 kHz and

占空比为 = TIM3_CCR1/(TIM3_ARR + 1) = 25%

TIM4 运行频率为:

(TIM3 频率)/(TIM4 周期 + 1) = 17.578 Hz and

占空比为 = TIM4_CCR1/(TIM4_ARR + 1) = 25%

可参见 ST 网站上 STM32F 10xxx 固件库的 TIM 示例九。

9.3 输出信号行为

连接 TIM2 CH1 (PA0), TIM3 CH1 (PA6) and TIM4 CH1 (PB6)引脚到示波器上以观察波形。

Figure 8. TIM2_CH1 (PA0), TIM3_CH1 (PA6) and TIM4_CH1 (PB6) signals

同步几个定时器TIMx到一个外部触发器 10 (Synchronizing several timers TIMx an external trigger)

10.1 概述

10.2 固件描述

提供的固件包括 TIMx 驱动器,它通过一系列的函数支持所有的 TIM 功能。还提供了一个使用了大部分功能的示例。

级联模式下,有外部触发器的定时器同步:

- 1. TIM2 作为主定时器:
- 使用触发模式
- TIM2 使能事件作为触发输出
- 2. TIM2 作为连接到 TIM2 TI2 引脚(TIM2_CH2 配置为输入引脚)的外部触发器的从定时器:
- TIM2 TI2FP2 作为触发输入
- 上升沿用来使能和停止 TIM2: 门控模式
- 3. TIM3 作为 TIM2 的从定时器,同时又为 TIM4 的主定时器,
- 使用触发模式
- ITR1 (TIM2)作为输入触发
- 使用门控模式,从计数器的开始和停止由主定时器触发输出信号(TIM2 使能事件)控制
- TIM3 使能事件作为触发输出。
- 4. TIM4 为 TIM3 的从定时器
- 使用触发模式
- ITR2 (TIM3)作为输入触发
- 使用门控模式,从计数器的开始和停止由主定时器触发输出信号(TIM3 使能事件)控制 TIMxCLK 频率固定为72 MHZ, 预分频等于0x2,因此TIMx 的时钟计数器频率为24 MHz.
- 三个定时器运行的频率为 t:

TIMx 频率 = TIMx 时钟计数器/2×(TIMx Period + 1) = 162.1 kHz

TIM2 计数器的开始和停止由外部触发器控制. TIM3 开始和停止由 TIM2 控制, TIM4 开始和停止由 TIM3 控制。由 TIM3 控制

可参见 ST 网站上 STM32F 10xxx 固件库的 TIM 示例十.

10.3 输出信号行为

将频率低于或等于 40KHz 的外部触发器连接到 TIM2_CH2 引脚。在这个例子中频率为 5KHz. 连接 TIM2_CH1(PA0), TIM3_CH1(PA6), TIM4_CH1(PB60)引脚到一个示波器以观察波形。

11 修订记录

表 1 修订记录

日期	修订	改变
2007-6-14	1	初次发布

12 版权声明:

MXCHIP Corporation 拥有对该中文版文档的所有权和使用权

意法半导体(ST)拥有对英文原版文档的所有权和使用权

本文档上的信息受版权保护。除非经特别许可,否则未事先经过 MXCHIP Corporation 书面许可,不得以任何方式或形式来修改、分发或复制本文档的任何部分。