Topic: Exploratory Data Analysis (EDA)

Linear Transformations

School of Mathematics and Applied Statistics

Ethics

Nature of the question to be answered (Transforms – data from different perspectives) Context/ Expertise

Design: Experiments Vs Observation Sampling Measurement

Description and Analysis Conclusions & Decision Making

Linear Transformations 2/9 **Exploratory Data Analysis**

Activity: Transformation of Measurement Units

A sample of data was collected from students: an excerpt is shown

Shoe Size	Sex
8	f
11	m
15	m
9.5	m
	8 11 15

Discuss:

• What do you notice?

• How could you fix the problem?

• What do you need to know to fix the problem?

Activity: Transforming Height

Linear Transformations

We know: 1 inch = 2.54 cm and 1 foot = 12 inches

6 feet =
$$6 \times (2 = 72)$$
 inches

$$= 72 \times 2.56 = 182.9$$
 cm

This is an example of a linear transformation or a rescaling of measurements

Discuss: What happens to the mean if each data value x_i is rescaled by a linear transformation $a + bx_i$?

Example:

- Values of x: {1, 2, 3}, then $\bar{x}_{\bullet} = 2$
- Let $y_i = a + bx_i$ with a = 10 and b = 3

then values of
$$y$$
:

$$\{10+3\times1, 10+3\times2, 10+3\times3\} = \{13, 16, 19\},\$$

and
$$\bar{y} = \frac{13 + 16 + 19}{3} = \frac{48}{3} = 16$$
.

So, the mean is rescaled in the $\frac{same}{}$ way as the values of x

Rescaling Data: Prove mathematically for mean

If each data value x_i , $i = 1 \dots n$ is rescaled by a linear transformation such that $y_i = a + bx_i$, show that $\bar{y} = a + b\bar{x}$

Start
$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$= \frac{1}{n} \sum_{i=1}^{n} (a + b_{n}i)$$

$$= \frac{1}{n} \left(\frac{1}{n} + b \sum_{i=1}^{n} x_i \right)$$

$$= \frac{1}{n} \left(\frac{1}{n} + b \sum_{i=1}^{n} x_i \right)$$

$$= \frac{1}{n} \left(\frac{1}{n} + b \sum_{i=1}^{n} x_i \right)$$

$$= \frac{1}{n} \left(\frac{1}{n} + b \sum_{i=1}^{n} x_i \right)$$

$$= \frac{1}{n} \left(\frac{1}{n} + b \sum_{i=1}^{n} x_i \right)$$

- What happens to the standard deviation when a constant is added to or subtracted from each data value?
- Eq. the standard deviation of $\{2,4,6\}$ compared with the standard deviation of $\{1, 3, 5\}$ or $\{8, 10, 12\}$.

Linear Transformations 7/9 **Exploratory Data Analysis**

- What happens to the standard deviation when a constant is added to or subtracted from each data value?
- Eq. the standard deviation of $\{2,4,6\}$ compared with the standard deviation of $\{1, 3, 5\}$ or $\{8, 10, 12\}$.

- What happens to the standard deviation when a constant is added to or subtracted from each data value?
- Eq. the standard deviation of $\{2,4,6\}$ compared with the standard deviation of $\{1, 3, 5\}$ or $\{8, 10, 12\}$.

- What happens to the standard deviation when a constant is added to or subtracted from each data value?
- Eq. the standard deviation of $\{2,4,6\}$ compared with the standard deviation of $\{1, 3, 5\}$ or $\{8, 10, 12\}$.

- What happens to the standard deviation when a constant is added to or subtracted from each data value?
- Eq. the standard deviation of $\{2,4,6\}$ compared with the standard deviation of $\{1, 3, 5\}$ or $\{8, 10, 12\}$.

- The standard deviation of $\{2,4,6\}$ is the _____ as the standard deviation of $\{1, 3, 5\}$ or $\{8, 10, 12\}$.
- Standard deviation is vasfire ted when a constant is added to or subtracted from each data value.
- Prove mathematically...

- What happens to the standard deviation when each data value is multiplied by a constant c?
- Eg. if data values {1, 3, 5} are multiplied by 3: {3, 9, 15}.

- What happens to the standard deviation when each data value is multiplied by a constant c?
- Eg. if data values {1, 3, 5} are multiplied by 3: {3, 9, 15}.

- What happens to the standard deviation when each data value is multiplied by a constant c?
- Eg. if data values {1, 3, 5} are multiplied by 3: {3, 9, 15}.

- What happens to the standard deviation when each data value is multiplied by a constant c?
- Eg. if data values {1, 3, 5} are multiplied by 3: {3, 9, 15}.

• For example, the standard deviation of $\{1,3,5\}$ is 2, the standard deviation of ${3, 9, 15}$ is 6.

- What happens to the standard deviation when each data value is multiplied by a constant c?
- Eg. if data values {1, 3, 5} are multiplied by 3: {3, 9, 15}.

- For example, the standard deviation of $\{1,3,5\}$ is 2, the standard deviation of ${3, 9, 15}$ is 6.
- In fact, the standard deviation is $\frac{1}{2}$ by the constant |c|

$$s_{\text{new}} = |c| \times s_{\text{old}}$$

Prove mathematically...

Rescaling Data: Prove mathematically for sd

If each data value x_i , $i = 1 \dots n$ is rescaled by a linear transformation such that $y_i = a + bx_i$, show that $s_y = \sqrt{b^2 s_x^2} = |b| s_x$

$$sy^{2} = \frac{1}{1 - 1} \sum_{i=1}^{\infty} (y_{i} - \overline{y})^{2} \qquad \overline{y} = \alpha + b\overline{z}$$

$$= \frac{1}{1 - 1} \sum_{i=1}^{\infty} (a + bx_{i} - b - b\overline{z})^{2}$$

$$= \frac{1}{1 - 1} \sum_{i=1}^{\infty} (b(x_{i} - \overline{x}))^{2}$$

$$= b^{2} \times \frac{1}{1 - 1} \sum_{i=1}^{\infty} (x_{i} - \overline{x})^{2}$$

$$sy^{2} = b^{2} \times s_{x}^{2}$$

$$Sy = + \int b^2 Sx^2$$

$$= |b| \times Sx$$

$$Cequired.$$

$$Sx > 0.$$

$$Sy > 0.$$