МІНІСТЕРСТВО ОСВІТИ І НАУКИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Інститут комп'ютерних наук та інформаційних технологій Кафедра систем штучного інтелекту

Лабораторна робота №1 з курсу "Дискретна математика"

> Виконав: ст. гр. КН-110 Петров Кирил

Викладач: Мельникова Н.І.

Тема:

"Моделювання основних логічних операцій"

Мета роботи:

Ознайомитись на практиці із основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинностні значення таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведень.

Теоретичні відомості:

1.1. Основні поняття математичної логіки. Логічні операції Просте висловлювання (атомарна формула, атом) — це розповідне речення, про яке можна сказати, що воно *істинне* (Т або 1) або *хибне* (F або 0), але не те й інше водночас.

Складне висловлювання — це висловлювання, побудоване з простих за допомогою логічних операцій (логічних зв'язок). Найчастіше вживаними операціями є 6: заперечення (читають «не», позначають \neg , \neg), кон'юнкція (читають «і», позначають \wedge), диз'юнкція (читають «або», позначають \vee), імплікація (читають «якщо ..., то», позначають \Rightarrow), альтернативне «або» (читають «додавання за модулем 2», позначають \oplus), еквівалентність (читають «тоді і лише тоді», позначають \Leftrightarrow).

Тавтологія — формула, що виконується у всіх інтерпретаціях (тотожно істинна формула). **Протиріччя** — формула, що не виконується у жодній інтерпретації (тотожно хибна формула). Формулу називають **нейтральною**, якщо вона не є ні тавтологією, ні протиріччям (для неї існує принаймні один набір пропозиційних змінних, на якому вона приймає значення Т, і принаймні один набір, на якому вона приймає значення F). **Виконана формула** — це формула, що не є протиріччям (інакше кажучи, вона принаймні на одному наборі пропозиційних змінних набуває значення T).

Варіант № 4

Завдання 1:

1. Формалізувати речення:

Якщо 2 — просте число, то це найменше просте число, якщо 2 — найменше просте число, то 1 не ε простим числом; число 1 не ε простим числом, отже 2 - просте число.

Нехай:

Число ε простим – P

Число ϵ найменшим – Q

$$x=2$$

$$y=1$$

Тоді формалізоване речення буде мати вигляд:

$$((P(x) \rightarrow (Q(x) \land P(x)) \rightarrow \neg P(y) \rightarrow P(x))$$

2. Побудувати таблицю істинності для висловлювань:

$$x \Rightarrow ((x \lor y) \lor z);$$

X	y	Z	x∨y	$(x \lor y) \lor z$	$x \rightarrow ((x \lor y) \lor z)$
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	1	1	1
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

3. Побудовою таблиць істинності вияснити чи висловлювання ε тавтологіями або суперечностями:

$$((p \to q) \land (\bar{q} \to r)) \lor (p \to \bar{r})$$

$$1.p \rightarrow q = A$$

$$2.q\rightarrow r=B$$

$$3.(p{\rightarrow}q){\wedge}(q{\rightarrow}r){=}A{\wedge}B$$

$$4.p\rightarrow !r=C$$

p	q	r	!q	!r	A	В	A∧B	С	(A∧B)∨C
0	0	0	1	1	1	0	0	1	1
0	0	1	1	0	1	1	1	1	1
0	1	0	0	1	1	1	1	1	1
0	1	1	0	0	1	1	1	1	1
1	0	0	1	1	0	0	0	1	1
1	0	1	1	0	0	1	0	0	0
1	1	0	0	1	1	1	1	1	1
1	1	1	0	0	1	1	1	1	1

Висловлювання не ε ні тавтологією, ні суперечністю.

4. За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи є тавтологіями висловлювання:

$$((p \lor q) \land (p \to r) \land (q \to s)) \to (r \lor s)$$

Висловлювання не є тавтологією, якщо хоча б у одному з випадків воно буде хибним. Для цього (($p \lor q$) \land ($p \to r$) \land ($q \to s$)) має дорівнювати 1, а ($r \lor s$) – 0. Але інтерпретації коли данна формула дорівнює 0 не існує, тому це висловлювання не є тавтологією.

5. Довести, що формули еквівалентні:

$$(p \to q) \to r$$
 to $p \to (q \to r)$

p	q	r	$p \rightarrow q$	$(p \rightarrow q) \rightarrow r$	q→r	$p \rightarrow (q \rightarrow r)$
0	0	0	1	0	1	1
0	0	1	1	1	1	1
0	1	0	1	0	0	1
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	0	0	0
1	1	1	1	1	1	1

Формули не еквівалентні.

Додаток 2

Програма:

$$x \Rightarrow ((x \lor y) \lor z)$$

У 5 рядку оголошуємо змінні типу int.

У 6 – 19 рядках просимо ввести значення змінних.

У 21 рядку присвоюємо змінній В значення висловлювання (x∨y)∨z мовою С.

У 22-28 рядках за допомогою if-else створюємо висловлювання $x \rightarrow ((x \lor y) \lor z)$

```
1 #include <stdio.h>
 2 #include <stdlib.h>
 3 int main()
 4 {
 5 int x,y,z,B;
 6 do{
 7 printf("x=");
 8 scanf("%d",&x);
 9 }
10 while(x>1 || x<0);
11 do{
12 printf("y=");
13 scanf("%d",&y);
14 }
15 while (y>1 | | y<0);
16 do{
17 printf("z=");
18 scanf("%d",&z);}
19 while(z>1 || z<0);
21 B=(x||y)||z;
22 if (x==1 \&\& B==0)
23 {
24 printf("Result is: 0\n");
25 }
26 else{
27 printf("Result is: 1\n");
29 return 0;
30 }
```

Результати:

Висновки:

Ми знайомились на практиці із основними поняттями математичної логіки, навчились будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинностні значення таблицями істинності, використовувати закони алгебри логіки, освоїли методи доведень.