Производная

- 1. P(x) многочлен третьей степени. Докажите, что существует такое $k \in \mathbb{N}$, что многочлен $P(x) + P(x+1) + \ldots + P(x+k)$ имеет ровно один вещественный корень.
- 2. Дан ненулевой многочлен Q(x). Докажите, что для всех натуральных n многочлен $P(x) = (x-1)^n Q(x)$ имеет не менее n+1 ненулевых коэффициентов.
- 3. Для произвольного многочлена $P(x)=(x-x_1)(x-x_2)\dots(x-x_n)$ докажите неравенство $(P'(x))^2\geqslant P(x)P''(x)$
- 4. **(Ньютон)**Докажите, что если все корни многочлена $P(x) = a_0 x^n + \ldots + a_n$ вещественны и различны, то $a_i^2 > \frac{n-i+1}{n-i} \cdot \frac{i+1}{i} a_{i-1} a_{i+1}, i = \overline{1,n-1}.$
- 5. Через Σ_k обозначим симметрический многочлен σ_k/C_n^k . Докажите, что значения Σ_k , вычисленное для корней многочлена и его производной совпадают.
- 6. (**Неравенства Маклорена**) Для положительных $x_1, ..., x_n$ докажите цепочку неравенств $\Sigma_1 \geqslant \sqrt{\Sigma_2} \geqslant \sqrt[3]{\Sigma_3} \geqslant ... \geqslant \sqrt[n]{\Sigma_n}$.
- 7. (**Неравенства Ньютона**) Для всех $k = \overline{1, n-1}$ докажите неравенство $\Sigma_k^2 \geqslant \Sigma_{k-1} \Sigma_{k+1}$.

Теорема о среднем значении

Теорема Коши. Если функции f и g непрерывны на отрезке [a,b], дифференцируемы на (a,b), производные f' и g' не обращаются в нуль одновременно ни в одной точке интервала (a,b) и $g(a) \neq g(b)$, то найдётся точка $c \in (a,b)$ такая, что $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$.

Формула Тейлора. Пусть функция $f:[a,b]\to\mathbb{R}$ по крайней мере n раз непрерывно дифференцируема на интервале (a,b), тогда между любыми $x,y\in(a,b)$ найдётся точка c такая, что $f(y)=f(x)+\frac{f'(x)}{1!}(y-x)+\frac{f''(y)}{2!}(y-x)^2+\ldots+\frac{f^{(n-1)}(y)}{(n)!}(y-x)^{n-1}+\frac{f^{(n)}(c)}{(n)!}(y-x)^n.$

Задачи

- 8. Существуют ли непостоянные многочлены P(x) и Q(x) с вещественными коэффициентами, удовлетворяющие равенству $P(x)^{10} + P(x)^9 = Q(x)^{21} + Q(x)^{20}$?
- 9. Докажите, что многочлен P(x)(P(x)+1) имеет по крайней мере n+1 различных комплексных корней, где $n=\deg P$. Выведите утверждение предыдущей задачи.
- 10. Докажите, что для любого натурального числа n найдутся положительные вещественные числа a_0, a_1, \ldots, a_n такие, что при любом выборе знаков многочлен $\pm a_n x^n \pm a_{n-1} x^{n-1} \pm \ldots \pm a_1 x \pm a_0$ имеет n различных вещественных корней.
- 11. Два многочлена $f,g \in \mathbb{R}[x]$ одинаковой степени таковы, что при любом $x \in \mathbb{R}$ из $f(x) \in \mathbb{Z}$ следует, что $g(x) \in \mathbb{Z}$. Докажите, что найдутся целые числа m и n такие, что g(x) = mf(x) + n для всех $x \in \mathbb{R}$.
- 12. Даны вещественные числа $A \neq \pm 1$ и B. Найдите все многочлены степени d такие, что $A^d P(x) = P(Ax + B)$.
- 13. Найдите все многочлены $P \in \mathbb{R}[x]$, при которых существует число $a \in (1, +\infty)$ такое, что для любого целого x найдётся целое z с условием aP(x) = P(z).
- 14. Найдите все приведённые многочлены $f \in \mathbb{Z}[x]$ такие, что множество $f(\mathbb{Z})$ замкнуто относительно умножения (произведение двух элементов $f(\mathbb{Z})$ тоже элемент $f(\mathbb{Z})$).
- 15. Найдите все приведённые многочлены $P \in \mathbb{Z}[x]$ при которых, что для любого натурального m найдётся натуральное n такое, что P(m)P(m+1) = P(n).