

Itens Para Testes de Avaliação | 2.º Período

MATEMÁTICA A | 10.º ANO

Temas: Geometria Analítica e Cálculo Vetorial no Plano e no Espaço, Generalidades Sobre Funções, Transformações e Função Quadrática

1. Considera, em referencial o.n. Oxy, as retas $r \in S$, definidas, respetivamente por

$$r:(x,y)=(0,1)+k(-1,4)$$
, $k \in \mathbb{R}$ e $s:2y+ax=4$, com $a \in \mathbb{R}$

$$s: 2y + ax = 4$$
, com $a \in \mathbb{R}$

Sabendo que r e s são paralelas, qual é o valor de a?

$$\boxed{\mathbf{A}} \quad \frac{1}{4}$$

$$\mathbf{B} \frac{1}{2}$$

2. Na figura, está representado, em referencial o.n. Oxy, o gráfico da função g, de domínio]-3,4].

- **2.1** Determina os valores reais de k de modo que a equação g(x)-k=0 tenha exatamente uma solução.
- **2.2** Qual é o domínio da função f, definida por f(x) = g(-x+2)?

$$[-2,5]$$

$$[D] -2,5]$$

3. Considera a função quadrática g, de domínio \mathbb{R} , definida por $g(x) = ax^2 + (2-a)x + 2$, com $a \neq 0$.

Sabe-se que o gráfico da função $\,g\,$ tem a concavidade voltada para cima e que a abcissa do seu vértice inferior a $\,-1\,$.

Quais podem ser os valores de a?

$$\boxed{\mathbf{A}} \quad \left] 0, \frac{2}{3} \right[$$

$$\boxed{\mathbf{D}} \left[0, \frac{2}{3}\right]$$

4. Qual dos seguintes não pode ser o domínio de uma função ímpar?

$$\mathbf{A}$$
 \mathbb{R}

$$\boxed{\mathbf{C}} \]-\infty,-1\big[\cup \big[1,+\infty\big[$$

$$\mathbf{B}$$
] $-\infty$, -1 [\cup]1,+ ∞ [

$$\mathbf{D} \quad \mathbb{R} \setminus \{0\}$$

5. Na figura, está representada, em referencial o.n. *Oxyz* , a pirâmide [*ABCDE*] .

Sabe-se que:

- o ponto B pertence ao plano xOz;
- o ponto D pertence ao eixo Oy;
- $\overrightarrow{BE}(-3,8,1)$ e $\overrightarrow{DE}(1,7,5)$.
- **5.1** Verifica se o ponto E pertence ao plano mediador do segmento de reta [BD].

5.2 Qual das seguintes é uma equação vetorial da reta paralela à reta BE e que contém a origem do referencial?

A
$$(x, y, z) = (0,0,0) + k(-3,8,0), k \in \mathbb{R}$$

$$(x, y, z) = (0,0,0) + k(1,7,5), k \in \mathbb{R}$$

B
$$(x, y, z) = (-6, 16, 2) + k(3, -8, -1), k \in \mathbb{R}$$

B
$$(x, y, z) = (-6, 16, 2) + k(3, -8, -1), k \in \mathbb{R}$$
 D $(x, y, z) = (-\frac{3}{2}, 4, 4) + k(-6, 16, 2), k \in \mathbb{R}$

- **5.3** Mostra que as coordenadas do ponto B são (4,0,4) e que as do ponto D são (0,1,0).
- **5.4** Escreve a equação reduzida da superfície esférica de diâmetro [BE]. Deves considerar B(4,0,4).
- **6.** Na figura, está representado, em referencial o.n. Oxy, o gráfico de função f de domínio $\mathbb R$.

Sabe-se que para $x \ge 0$ o gráfico de f é parte de uma parábola.

- **6.1** Estuda a função f quanto à monotonia e à existência de extremos. Caso existam extremos, indica--os.
- **6.2** Considera a função g, definida por $g(x) = 4 + 2f\left(\frac{x}{2}\right)$.

Determina, para $x \ge 0$, os zeros da função g.

6.3 Mostra que, para
$$x \ge 0$$
, $f(x) = -\frac{x^2}{2} + \frac{5}{2}x - 2$.

6.4 Determina o conjunto-solução da inequação $f(x) \ge 1$. Para $x \ge 0$, deves considerar a expressão da alínea anterior.

7. O João tem, nas traseiras da sua casa, um terreno retangular onde pretende construir um pequeno lago. O terreno e o lago estão representados na figura seguinte, respetivamente, pelo retângulo $\begin{bmatrix} ABCD \end{bmatrix}$ e pelo losango $\begin{bmatrix} EFGH \end{bmatrix}$.

O João pretende que o centro do lago coincida com o centro do terreno e que as diagonais do losango sejam paralelas aos lados do terreno.

•
$$\overline{PF} = \overline{QH} = x$$
 m, com $x \in]0,4[$, sendo $P \in Q$ os pontos médios do lados $[BC] \in [AD]$, respetivamente;

• a diagonal $\left[EG \right]$ excede em três metros do dobro do comprimento de $\left[PF \right]$.

Seja A a função que dá a área, em m^2 , do lago, em função de x.

7.1 Mostra que
$$A(x) = -2x^2 + 5x + 12$$
, $x \in]0,4[$.

- **7.2** Determina x de modo que a área do lago seja máxima. Indica o valor dessa área e justifica que, nesse caso, o lago tem a forma de um quadrado.
- 7.3 Determina os valores de x para os quais a área do lago não é superior a 14 m^2 .
- **8.** Considera a função f, de domínio \mathbb{R} , definida por $f(x) = (4k^2 + 4k + 1)x + 1$, com $k \in \mathbb{R}$.

Mostra que a função f é crescente para todo o $k \in \mathbb{R} \setminus \left\{-\frac{1}{2}\right\}$.

FIM

Sugestão de cotações

1.	2.1	2.2	3.	4.	5.1	5.2	5.3	5.4	6.1	6.2	6.3	6.4	7.1	7.2	7.3	8.	Total
10	10	10	10	10	12	10	13	13	12	13	13	13	13	13	13	12	200

Propostas de resolução

1. As reta $r \in s$ são paralelas se tiverem o mesmo declive (neste caso, não são coincidentes, dado que a ordenada na origem da reta $r \notin 1$ e a ordenada na origem da reta $s \notin 2$).

Um vetor diretor da reta $r \notin \vec{u}(-1,4)$, pelo que o declive da reta $r \notin \frac{4}{-1} = -4$. Por outro lado, tem-se $2y + ax = 4 \Leftrightarrow 2y = -ax + 4 \Leftrightarrow y = -\frac{a}{2}x + 2$, pelo que o declive da reta $s \notin -\frac{a}{2}$.

Logo,
$$-\frac{a}{2} = -4 \Leftrightarrow a = 8$$
.

Resposta: D

2.1 Tem-se que $g(x)-k=0 \Leftrightarrow g(x)=k$. Esta equação tem exatamente uma solução se a reta de equação y=k, que é uma reta paralela ao eixo Ox, intersetar o gráfico de g exatamente uma vez. Ora isso acontece se k=-2 ou se $k\in \left]0,3\right[$. Portanto, a equação g(x)-k=0 tem exatamente uma solução se $k\in \{-2\}\cup \left]0,3\right[$.

2.2 Tem-se:

• $f_1(x) = g(x+2)$ representa uma translação de vetor $\vec{u}(-2,0)$, pelo que o seu domínio é:

$$]-3-2,4-2]=]-5,2]$$

• $f(x) = f_1(-x) = g(-x+2)$ representa uma reflexão em relação ao eixo Oy, pelo que o domínio de f é [-2,5].

Outra maneira: o domínio da função $g \notin]-3,4]$, pelo que:

$$-3 < -x + 2 \le 4 \Leftrightarrow -x + 2 \le 4 \land -x + 2 > -3 \Leftrightarrow -x \le 2 \land -x > -5 \Leftrightarrow x \ge -2 \land x < 5 \Leftrightarrow -2 \le x < 5$$

Logo, o domínio de $f \in [-2,5]$.

Resposta: C

3. Como o gráfico de g tem a concavidade voltada para cima, conclui-se que a > 0.

Para determinar a abcissa do vértice, pode-se determinar as soluções da equação g(x) = 2. A abcissa será o valor médio das duas soluções.

Assim:

$$g(x) = 2 \Leftrightarrow g(x) = ax^{2} + (2-a)x + 2 = 2 \Leftrightarrow x(ax+2-a) = 0 \Leftrightarrow x = 0 \lor ax + 2 - a = 0 \Leftrightarrow$$
$$\Leftrightarrow x = 0 \lor ax = a - 2 \Leftrightarrow x = 0 \lor x = \frac{a-2}{a}$$

Então, a abcissa do vértice do gráfico de g (que é uma parábola com a concavidade voltada para cima)

é dada por
$$\frac{0 + \frac{a-2}{a}}{2} = \frac{a-2}{2} = \frac{a-2}{2a}$$
.

Logo,
$$\frac{a-2}{2a} < -1 \Leftrightarrow a-2 < -2a \Leftrightarrow 3a < 2 \Leftrightarrow a < \frac{2}{3}$$
.

Portanto, como a > 0 e $a < \frac{2}{3}$, vem que $a \in \left]0, \frac{2}{3}\right[$.

Resposta: A

4. A resposta correta é a **C**, dado que, numa função ímpar (ou par), se x pertencer ao seu domínio, então o seu simétrico, -x, também tem de pertencer. Neste caso, 1 pertence ao domínio, mas o seu simétrico, -1, não pertence, pelo que $]-\infty,-1[\cup[1,+\infty[$ não pode ser o domínio de uma função ímpar (nem de uma função par).

Resposta: C

5.1 O ponto E pertence ao plano mediador do segmento de reta [BD] se $\overline{EB} = \overline{ED} \Leftrightarrow ||\overline{BE}|| = ||\overline{DE}||$.

Assim,
$$\|\overrightarrow{BE}\| = \sqrt{(-3)^2 + 8^2 + 1^2} = \sqrt{9 + 64 + 1} = \sqrt{74} \text{ e } \|\overrightarrow{DE}\| = \sqrt{1^2 + 7^2 + 5^2} = \sqrt{1 + 49 + 25} = \sqrt{75}.$$

Logo, como $\|\overrightarrow{BE}\| \neq \|\overrightarrow{DE}\|$, o ponto E não pertence ao plano mediador do segmento de reta [BD].

5.2 Um vetor diretor da reta $BE \notin \overrightarrow{BE}(-3,8,1)$. Assim, podemos começar por eliminar as opções $\mathbf{A} \in \mathbf{C}$, dado que, apesar de ambas as retas conterem a origem, o vetor de coordenadas (-3,8,0) não é colinear a \overrightarrow{BE} , assim como também não é colinear a \overrightarrow{BE} o vetor de coordenadas (1,7,5).

Analisando a opção B:

O vetor de coordenadas (-6,16,2) é colinear \overrightarrow{BE} , dado que $(-6,16,2) = 2\overrightarrow{BE}$. Vejamos se a origem do referencial pertence à reta definida por esta equação. Substituindo (0,0,0) na equação, tem-se:

$$(0,0,0) = (-6,16,2) + k(3,-8,-1), k \in \mathbb{R} \Leftrightarrow \begin{cases} 0 = -6+3k \\ 0 = 16-8k \\ 0 = 2-k \end{cases} \Leftrightarrow \begin{cases} 6 = 3k \\ 8k = 16 \Leftrightarrow \begin{cases} k = 2 \\ k = 2 \end{cases} \end{cases}$$

Logo, a reta definida por (x, y, z) = (-6,16,2) + k(3,-8,-1), $k \in \mathbb{R}$ é paralela e BE e contém a origem do referencial. Procedendo da mesma forma para a opção \mathbf{D} , concluiríamos que esta não era a opção correta.

Resposta: B

5.3 O ponto B pertence ao plano xOz, pelo que as suas coordenadas são da forma $(x_B, 0, z_B)$. O ponto D pertence ao eixo Oy, pelo que as suas coordenadas são da forma $(0, y_D, 0)$.

Por um lado, tem-se que $\overrightarrow{BD} = \overrightarrow{BE} + \overrightarrow{ED}$. Assim, \overrightarrow{BD} tem coordenadas (-3-1,8-7,1-5) = (-4,1,-4).

Por outro, $\overrightarrow{BD} = D - B$, pelo que as coordenadas de \overrightarrow{BD} também são dadas por:

$$(0-x_B, y_D-0, 0-z_D) = (-x_B, y_D, -z_B)$$

Portanto,
$$(-x_B, y_D, -z_B) = (-4, 1, -4) \Leftrightarrow$$

$$\begin{cases}
-x_B = -4 \\
y_D = 1
\end{cases} \Leftrightarrow \begin{cases}
x_B = 4 \\
y_D = 1, \text{ pelo que } B(4, 0, 4) \text{ e } D(0, 1, 0). \\
z_B = -4
\end{cases}$$

5.4 Tem-se que $E = B + \overrightarrow{BE} = (4,0,4) + (-3,8,1) = (1,8,5)$.

A superfície esférica de diâmetro [BE] tem centro no ponto médio deste segmento de reta. As coordenadas do ponto médio de [BE] são dadas por $\left(\frac{4+1}{2},\frac{0+8}{2},\frac{4+5}{2}\right)$, ou seja, $M_{[DE]}\left(\frac{5}{2},4,\frac{9}{2}\right)$.

A medida do raio da superfície esférica é igual a $\frac{\overline{BE}}{2} = \frac{\|\overrightarrow{BE}\|}{2} = \frac{\sqrt{(-3)^2 + 8^2 + 1^2}}{2} = \frac{\sqrt{9 + 64 + 1}}{2} = \frac{\sqrt{74}}{2}$.

Portanto, a equação reduzida da superfície esférica de diâmetro $\left[BE\right]$ é:

$$\left(x - \frac{5}{2}\right)^2 + \left(y - 4\right)^2 + \left(z - \frac{9}{2}\right)^2 = \left(\frac{\sqrt{74}}{2}\right)^2 \Leftrightarrow \left(x - \frac{5}{2}\right)^2 + \left(y - 4\right)^2 + \left(z - \frac{9}{2}\right)^2 = \frac{37}{2}$$

6.1 A função f é decrescente em $]-\infty,-2[$ e em $\left[\frac{5}{2},+\infty\right[$, é crescente em $\left[0,\frac{5}{2}\right]$ e é constante em $\left[-2,0\right[$. A função f tem máximo relativo igual a 0 em $x \in \left[-2,0\right[$ e igual a $\frac{9}{8}$ em $x=\frac{5}{2}$. Tem mínimo relativo igual a -2 em x=0 e igual a 0 em $x \in \left]-2,0\right[$.

6.2 Tem-se que
$$g(x) = 0 \Leftrightarrow 4 + 2f\left(\frac{x}{2}\right) = 0 \Leftrightarrow 2f\left(\frac{x}{2}\right) = -4 \Leftrightarrow f\left(\frac{x}{2}\right) = -2$$
.

Para $x \ge 0$, e tendo em conta a simetria da parábola em relação ao seu eixo de simetria, a reta de equação $x = \frac{5}{2}$, $f(x) = -2 \Leftrightarrow x = 0 \lor x = 5$. Assim, como $y = f\left(\frac{x}{2}\right)$ representa uma dilatação horizontal de fator $\frac{1}{\frac{1}{2}} = 2$, as soluções da equação $f\left(\frac{x}{2}\right) = -2$ são $0 \times 2 = 0$ e $5 \times 2 = 10$.

Logo, para $x \ge 0$, os zeros da função g são 0 e 10.

6.3 Para $x \ge 0$, o gráfico da função f é parte de uma parábola com vértice no ponto de coordenadas $\left(\frac{5}{2},\frac{9}{8}\right)$, pelo que $f\left(x\right) = a\left(x-\frac{5}{2}\right)^2 + \frac{9}{8}$, com a < 0.

Como o ponto de coordenadas (0,-2) pertence à parábola, vem que:

$$f(0) = -2 \Leftrightarrow a\left(0 - \frac{5}{2}\right)^2 + \frac{9}{8} = -2 \Leftrightarrow \frac{25a}{4} = -2 - \frac{9}{8} \Leftrightarrow \frac{25a}{4} = -\frac{25}{8} \Leftrightarrow a = -\frac{4}{8} \Leftrightarrow a = -\frac{1}{2}$$

Logo,
$$f(x) = -\frac{1}{2}\left(x - \frac{5}{2}\right)^2 + \frac{9}{8} = -\frac{1}{2}\left(x^2 - 5x + \frac{25}{4}\right) + \frac{9}{8} = -\frac{x^2}{2} + \frac{5}{2}x - \frac{25}{8} + \frac{9}{8} = -\frac{x^2}{2} + \frac{5}{2}x - 2$$
.

6.4 Consideremos a seguinte figura, onde se representou a reta de equação y = 1.

Assim, $f(x) \ge 1 \Leftrightarrow x \in]-\infty, a] \cup [b, c]$. Resta-nos determinar os valores de a, b e c, que são as abissas dos pontos de interseção do gráfico de f com a reta de equação y = 1.

• Para
$$x \ge 0$$
, tem-se que $f(x) = 1 \Leftrightarrow -\frac{x^2}{2} + \frac{5}{2}x - 2 = 1 \Leftrightarrow -\frac{x^2}{2} + \frac{5}{2}x - 3 = 0 \Leftrightarrow -x^2 + 5x - 6 = 0 \Leftrightarrow -x$

$$\Leftrightarrow x = \frac{-5 \pm \sqrt{5^2 - 4 \times (-1) \times (-6)}}{2 \times (-1)} \Leftrightarrow x = \frac{-5 \pm 1}{-2} \Leftrightarrow x = 2 \lor x = 3$$

Logo, b = 2 e c = 3.

■ Para $x \le -2$, o gráfico de f é uma semirreta. Como os pontos de coordenadas (-4,0) e (-2,-3) pertencem à reta que contém o gráfico de f, para $x \le -2$, vem que o seu declive é dado por:

$$\frac{-3-0}{-2-(-4)} = \frac{-3}{-2+4} = -\frac{3}{2}$$

Logo, a equação reduzida da reta que contém o gráfico de f, para $x \le -2$, é da forma $y = -\frac{3}{2}x + b$. Como o ponto de coordenadas (-4,0) pertence à reta, então $0 = -\frac{3}{2} \times (-4) + b \Leftrightarrow b = -6$.

Logo, para $x \le -2$, $f(x) = -\frac{3}{2}x - 6$, e, portanto:

$$f(x)=1 \Leftrightarrow -\frac{3}{2}x-6=1 \Leftrightarrow -\frac{3}{2}x=7 \Leftrightarrow -3x=14 \Leftrightarrow x=-\frac{14}{3}$$

Assim, $a = -\frac{14}{3}$ e o conjunto-solução da inequação $f(x) \ge 1$ é $\left] -\infty, -\frac{14}{3} \right] \cup \left[2,3\right]$.

7.1 A área do lago é dada por $\frac{\overline{FH} \times \overline{EG}}{2}$.

Tem-se que $\overline{FH} = 8 - 2x$ e como a diagonal [EG] excede em três metros do dobro do comprimento de [PF], vem que $\overline{EG} = 2\overline{PF} + 3 = 2x + 3$.

Assim,
$$A(x) = \frac{\overline{FH} \times \overline{EG}}{2} = \frac{(8-2x)\times(2x+3)}{2} = \frac{\cancel{2}(4-x)\times(2x+3)}{\cancel{2}} = 8x+12-2x^2-3x = -2x^2+5x+12.$$

7.2 O gráfico da função que dá a área do lago é parte de uma parábola com a concavidade voltada para baixo, dado que o coeficiente do termo em x^2 é negativo. Logo, se a abcissa do vértice pertencer ao domínio da função, a sua ordenada corresponde ao valor máximo da função e a sua abcissa ao maximizante.

Para determinar a abcissa do vértice, pode-se determinar as soluções da equação A(x) = 12. A abcissa será o valor médio das duas soluções.

Assim,
$$A(x) = 12 \Leftrightarrow -2x^2 + 5x + \cancel{12} = \cancel{12} \Leftrightarrow x(-2x+5) = 0 \Leftrightarrow x = 0 \lor -2x + 5 = 0 \Leftrightarrow x = 0 \lor x = \frac{5}{2}$$
.

Logo, a abcissa do vértice é $\frac{0+\frac{5}{2}}{2} = \frac{5}{4} = 1,25$, que pertence ao domínio da função, pelo que a ordenada é:

$$A(1,25) = -2 \times (1,25)^2 + 5 \times 1,25 + 12 = -2 \times 1,5625 + 6,25 + 12 = -3,125 + 6,25 + 12 = 15,125$$

Portanto, a área do lago é máxima se x = 1,25 m e o valor máximo dessa área é 15,125 m².

Finalmente, o lago tem a forma de um quadrado se as diagonais forem iguais. Neste caso, x = 1,25 m, vem que $\overline{FH} = 8 - 2 \times 1,25 = 5,5 \text{ m}$ e $\overline{EG} = 2 \times 1,25 + 3 = 5,5 \text{ m}$, pelo que lago tem a forma de um quadrado.

7.3
$$A(x) \le 14 \Leftrightarrow -2x^2 + 5x + 12 \le 14 \Leftrightarrow -2x^2 + 5x - 2 \le 0$$
.

Tem-se
$$-2x^2 + 5x - 2 = 0 \Leftrightarrow x = \frac{-5 \pm \sqrt{5^2 - 4 \times (-2) \times (-2)}}{2 \times (-2)} \Leftrightarrow$$

$$\Leftrightarrow x = \frac{-5 \pm \sqrt{9}}{-4}$$

$$\Leftrightarrow x = \frac{-5-3}{-4} \lor x = \frac{-5+3}{-4}$$

$$\Leftrightarrow x = 2 \lor x = \frac{1}{2}$$

O gráfico da função definida por $y = -2x^2 + 5x - 2$ é uma parábola com a concavidade voltada para baixo:

Assim, como o domínio é $\left]0,4\right[$, a área do lago não é superior a $14~\text{m}^2~\text{se}~x \in \left]0,\frac{1}{2}\right] \cup \left[2,4\right[$.

8. Tem-se $f(x) = (4k^2 + 4k + 1)x + 1$.

f é uma função afim e, portanto, é crescente se o coeficiente de x for positivo. Por outras palavras, se o declive da reta que é o seu gráfico for positivo.

O coeficiente de $x \notin 4k^2 + 4k + 1$ e $4k^2 + 4k + 1 = (2k+1)^2$, que é sempre positivo, exceto no caso em que $2k+1=0 \Leftrightarrow k=-\frac{1}{2}$ (neste caso, f seria constante).

Portanto, a função f é crescente para todo o $k \in \mathbb{R} \setminus \left\{-\frac{1}{2}\right\}$.

FIM