אלגברה לינארית 1א אלגברה מטלה 2span מטלה 4: מרחבים וקטוריים, תתי

2023 באפריל 2023

- $\mathbb R$ בסעיפים הבאים קבעו האם הקבוצה הנתונה V בצירוף בפעולות הנתונות $+,\cdot$ מהווים מרחב וקטורי מעל השדה \pm
 - עם פעולות כפל וחיבור של מספרים ממשיים. $V=\mathbb{Q}$ (א)
 - .בור של מספרים ממשיים. עם פעולות כפל וחיבור על $V=\mathbb{C}$
 - (ג) פונקציות **חסומות** מ־ $\mathbb R$ ל־ $\mathbb R$ עם חיבור וכפל בסקלר של פונקציות. $\forall a\in\mathbb R:|f\left(a\right)|\leq C$ עד כך ש־ $C\in\mathbb R$ היא חסומה אם קיים $\mathbb R$ כך ש־ $C\in\mathbb R$ כד ש-
- (ד) עם חיבור וכפל בסקלר של פונקציות. ($f\left(17
 ight)=0$ עם מציבים בהן דו מקבלים עם מציבים בהן לו מקבלים מציבים בהן דו מקבלים אונקציות מ־ \mathbb{R}
 - (ה) פונקציות f מ־ \mathbb{R} ל־ \mathbb{R} כך שf (17) עם חיבור וכפל בסקלר של פונקציות.
- עם חיבור וכפל בסקלר של $p''\left(17\right)=p'\left(17\right)=p\left(17\right)=0$ שמקיימים ממשיים ממשיים עם הפולינומים עם קבוצת כל הפולינומים פונקציות.
 - (ז) הקבוצה

$$\left\{ \begin{pmatrix} a \\ b \\ a - b \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$$

 \mathbb{R}^3 עם חיבור וכפל בסקלר של

(ח) הקבוצה

$$\left\{ \begin{pmatrix} a \\ a^2 \\ a \end{pmatrix} \mid a \in \mathbb{R} \right\}$$

 \mathbb{R}^3 עם חיבור וכפל בסקלר של

- 2. יהי חטבעי. הוכיחו ש־V הנתון הוא מרחב וקטורי מעל \mathbb{Z}_2 קבוצת כל תתי הקבוצות של $\{1,2,3,...,n\}$. עבור שתי קבוצות $S_1,S_2\in V$ (אלו שני הסקלרים $S_1+S_2:=S_1\triangle S_2$ וכפל בסקלר על ידי $S_1,S_2\in V$ (אלו שני הסקלרים בשדה).
 - $.A\triangle B=(A\setminus B)\cup (B\setminus A)=\{a\in A|a\not\in B\}\cup \{b\in B|b\not\in A\}$ הסימטרי מוגדר להיות החפרש
 - .3 מרחב וקטורי מעל $U = U \Rightarrow v + u \in U$ שמתקיים עד שמתקיים עד תת קבוצה עד תת ער $U \subseteq V$ היה עד מרחב וקטורי מעל $U \subseteq V$ תת קבוצה לא ריקה כך שמתקיים עד מרחב וקטורי מעל $U \subseteq V$
 - U או מרחב של U עבור p ראשוני כלשהו אז $\mathbb{F}=\mathbb{Z}_p$ עבור או הוכיחו
 - V בא תת מרחב אבל על מתקיים אבל כך הוכיחו כך באופן כללי, כלומר ענו דוגמה ל־ \mathbb{F},V,U כך שהנתון אונים אבל לא נכונה באופן כללי, כלומר ענו דוגמה ל-
- .4 ניזכר במרחב המטריצות $M_n(\mathbb{F})$ אלו כל המטריצות $n \times n$ עם ערכים בשדה $M_n(\mathbb{F})$ עוגדר חיבור איבר־איבר וכפל $M_n(\mathbb{F})$ מוגדר חיבור איבר־איבר וכפל $M_n(\mathbb{F})$ בסקלר כאופן הרגיל: אם $M_n(\mathbb{F})$ ו $M_n(\mathbb{F})$ אז $M_n(\mathbb{F})$ או לכל $M_n(\mathbb{F})$ לכל $M_n(\mathbb{F})$ לכל $M_n(\mathbb{F})$ לכל $M_n(\mathbb{F})$ בסקלר כאופן הרגיל: אם $M_n(\mathbb{F})$ או $M_n(\mathbb{F})$ או $M_n(\mathbb{F})$ את קבוצת המטריצות האנטיסימטריות. $M_n(\mathbb{F})$ את קבוצת המטריצות האנטיסימטריות.
 - . מרחבים את ומצאו $M_n(\mathbb{F})$ שלהם תתי מרחבים $Sym_n(\mathbb{F}), ASym_n(\mathbb{F})$ ומצאו הוכיחו (א)
 - $A=A_s+A_{as}$ כך ש $A_s\in Sym_n(\mathbb{F}), A_{as}\in ASym_n(\mathbb{F})$ ב) בי מטריצות שתי מטריצות $A\in M_n(\mathbb{F})$

- (א) ניזכר ש $\mathbb R$ הוא מרחב וקטורי מעל $\mathbb Q$ עם החיבור והכפל הסטנדרטים. הראו ש
- (ב) תת מרחב ש $\mathbb R$ הוא מרחב וקטורי מעל $\mathbb R$ עצמו עם החיבור והכפל הסטנדרטים. האם עכשיו
 - הפריכו: מ"ו ו־V מ"ו ו- $S,T\subseteq V$ קבוצות סופיות. הוכיחו או הפריכו:
 - $\mathrm{span}\left(S\cap T\right)\subseteq\mathrm{span}\left(S\right)\cap\mathrm{span}\left(T\right)$ (X)
 - $\operatorname{span}\left(S\cap T\right)\supseteq\operatorname{span}\left(S\right)\cap\operatorname{span}\left(T\right)$ (2)
 - $\operatorname{span}(S \cup T) = \operatorname{span}(S) \cup \operatorname{span}(T)$ (x)
 - הוכיחו: הוכיחו. איהי V מ"ו ו־ $S,T\subseteq V$ קבוצות סופיות. הוכיחו: * .7
 - $\operatorname{span}\left(S\right)\subseteq\operatorname{span}\left(T\right)$ אז $S\subseteq T$ אז (א)
 - $S\subseteq \mathrm{span}\,(T)$ אם $T\subseteq \mathrm{span}\,(S)$ אם ורק אם $\mathrm{span}\,(S)=\mathrm{span}\,(T)$ (ב)