Höhere Analysis

Dr. Philipp Reiter WS 16/17 Universität Heidelberg

16. November 2016

gesetzt in \LaTeX von Sebastian Blänsdorf, Fabian Krautgasser & Marvin Sipp

Dies ist das Vorlesungsskript zur Vorlesung *Höhere Analysis* bei Dr. Philipp Reiter im Wintersemester 16/17 an der Universität Heidelberg. Da dieses Skript von Studenten angefertigt wird, ist keine Garantie auf Exaktheit und Vollständigkeit gegeben. Ebenso ist dies kein Anspruch auf Originalität, da sich die Inhalte aus vielerlei Fachbüchern zusammen setzen. Wir bitten zu entschuldigen, dass diese nicht explizit angegeben sind.

Inhaltsverzeichnis

1	Maßtheorie	4
2	Integration	19

1 Maßtheorie

Definition 1 (Algebra). Eine Algebra \mathcal{A} ist eine Familie von Teilmengen einer gegebenen Menge X mit folgenden Eigenschaften:

- $\cdot X \in \mathcal{A}$
- $\cdot \ A \in \mathcal{A} \Rightarrow A^{\mathbf{C}} \coloneqq X \setminus A \in \mathcal{A}$
- $A_1, ..., A_N \in \mathcal{A}, N \in \mathbb{N} \Rightarrow \bigcup_{k=1}^N A_k \in \mathcal{A}$

Wir sprechen von einer σ -Algebra, wenn $N=\infty$ zulässig ist.

Lemma 2. Sei X eine Menge. A eine σ -Algebra, $(A_k)_{k \in \mathbb{N}} \subset A$. Dann gehören auch $\bigcap_{k=1}^{\infty} A_k$ und beispielsweise $A_1 \setminus A_2$ zu A.

Beweis. Wir haben

$$\bigcap_{k \in \mathbb{N}} A_k = \underbrace{\left(\bigcup_{k \in \mathbb{N}} \underbrace{A_k^{\mathrm{C}}}_{\in \mathcal{A}}\right)^{\mathrm{C}}}_{\in \mathcal{A}} \in \mathcal{A}$$

Weiter ist
$$A_1 \setminus A_2 = A_1 \cap \underbrace{A_2^{\mathrm{C}}}_{\in \mathcal{A}} \in \mathcal{A}$$

Beispiel. Für $X = \{1, 2, 3\}$ ist $A = \{\emptyset, X, \{1\}, \{2, 3\}\}$

Definition 3. Allgemein ist $\mathfrak{P}(X)$ (=Potenzmenge, Menge aller Teilmengen von X) die größte und $\{\emptyset, X\}$ die kleinste σ -Algebra. Sei $S \subset \mathfrak{P}(X)$, dann stellt

$$\Sigma(S) = \bigcap \left\{ \mathcal{A} \mid \mathcal{A} \text{ σ-Algebra mit } S \in \mathcal{A} \right\}$$

tatsächlich eine σ -Algebra dar. Es ist die kleinste σ -Algebra die S enthält und wird als die von S erzeugte σ -Algebra bezeichnet. $\Sigma(S)$ ist eindeutig bestimmt.

Ist X eine Menge mit σ -Algebra \mathcal{A} und $Y \subset X$. Dann bezeichnen wir

$$\mathcal{A} \cap Y := \{A \cap Y \mid A \in \mathcal{A}\}$$

als relative σ -Algebra. Sie ist in der Tat eine σ -Algebra auf Y.

Lemma 4. Die erzeugte und die relative σ -Algebra sind wohldefiniert, also eindeutig bestimmt, und tatsächlich σ -Algebren.

Behauptung. Falls $S \subset \mathfrak{P}(X)$ die σ -Algebra $\Sigma = \Sigma (S \mid X)^1$ erzeugt, dann erzeugt für $Y \subset X$ die Menge $S \cap Y$ die σ -Algebra $\Sigma (S \cap Y \mid Y)$, und

$$\Sigma(S \cap Y \mid Y) = \Sigma(S \mid X) \cap Y$$

Beweis.

" \Leftarrow " Weil $\Sigma \cap Y$ die Mengen aus $S \cap Y$ enthält, gilt $\Sigma(S \cap Y) \subset \Sigma \cap Y$

"⇒" Betrachte die Menge

$${A \subset \Sigma(S) \mid A \cap Y \in \Sigma(S \cap Y)}$$

Dies ist eine σ -Algebra, weil diese die Menge S enthält, folgt

$$\Sigma(S) \subset \{A \in \Sigma(S) \mid A \cap Y \in \Sigma(S \cap Y)\} \subset \Sigma(S)$$

also Gleichheit und folglich $\Sigma(S)\cap Y=\{A\in\Sigma(S)\mid A\cap Y\in\Sigma(S\cap Y)\}\cap Y\subset\Sigma(S\cap Y)$

Definition 5 (Topologischer Raum). Sei X eine Menge. Es gibt ein System von Teilmengen $\mathbb{O} \subset X$ mit $\emptyset, X \in \mathbb{O}$, das abgeschlossen ist unter endlichen Schnitten und abzählbaren Vereinigungen. Dieses System (X,\mathbb{O}) heißt *topologischer Raum*. Formal muss gelten:

- $\cdot \emptyset, X \in \mathcal{O}$
- $U, V \in \mathcal{O} \Rightarrow U \cap V \in \mathcal{O}$
- $\cdot \{U_i\}_{i \in I}, U_i \in \mathcal{O} \Rightarrow \bigcup_{i \in I} U_i \in \mathcal{O}$

Definition 6 (Borel- σ -Algebra). Ist X ein topologischer Raum, $\emptyset \subset X$, so ist $\mathfrak{B}(X)$ diejenige σ -Algebra, die von \emptyset erzeugt wird (also die kleinste σ -Algebra, die die offenen Mengen von (X, \emptyset) enthält). Wir bezeichnen $\mathfrak{B}(X)$ als *Borel-\sigma-Algebra*, und die Mengen in \mathfrak{B} heißen *Borel-Mengen*.

Notation:

$$\mathfrak{B}^n = \mathfrak{B}(\mathbb{R}^n), \ \mathfrak{B} = \mathfrak{B}^1$$

Bemerkung. Die Familie aller endlichen offenen Intervalle $\subset \mathbb{R}$ erzeugt bereits \mathcal{B} .

Definition 7 (Maßraum, Maß). Eine Menge X mit einer σ -Algebra $A \subset \mathfrak{P}(X)$ heißt Maßraum. Ein Maß ist eine Abbildung $\mu \colon A \longrightarrow [0, \infty]$ mit:

$$\cdot \mu(\emptyset) = 0$$

¹Hier bezeichnet X den "Raum", der für Σ von Bedeutung ist.

· σ -Additivität: Für eine Folge 2 paarweise disjunkter 3 Mengen $(A_k)_{k\in\mathbb{N}}\subset\mathcal{A}$ ist $\mu\left(\bigcup_{k\in\mathbb{N}}A_k\right)=\sum_{k\in\mathbb{N}}\mu(A_k)$

Die Elemente in \mathcal{A} heißen *messbar*, und das Tripel (X, \mathcal{A}, μ) heißt somit *Maßraum*.

Definition 8 (σ-Finitheit). Ein Maß heißt σ-finit, falls es eine abzählbare Überdeckung $\{X_k\}_{k\in\mathbb{N}}\subset \mathcal{A}$ von X gibt, also $X=\bigcup_{k\in\mathbb{N}}X_k$, sodass $\mu(X_k)<\infty$ $\forall k$. μ heißt endlich, falls $\mu(X)<\infty$, und Wahrscheinlichkeitsmaß, falls $\mu(X)=1$.

Beispiel 9.

(a) **Zählmaß**: Für X und $A = \mathfrak{P}(X)$ setze

$$\mu(A) = \begin{cases} \#A & : A \; endlich \\ \infty & : sonst \end{cases} \; \forall A \in \mathcal{A}$$

 μ ist endlich, wenn X endlich, und σ -finit, wenn X abzählbar ist.

(b) **Dirac-Maß**: Für einen fest gewählten Punkt $x_0 \in X$ und $A = \mathfrak{P}(X)$ setze für $A \subset X$

$$\mu(A) = \begin{cases} 0 & : x_0 \notin A \\ 1 & : x_0 \in A \end{cases}$$

(c) **Positive Linearkombinationen**: Seien μ_1, μ_2 Maße auf(X, A). Dann erhalten wir durch $\mu := \alpha_1 \mu_1 + \alpha_2 \mu_2$ für $\alpha_1, \alpha_2 > 0$ wieder ein Maß.

Beispiel 10. Sei μ ein Maß $auf(X,\mathcal{A})$ und $Y \in \mathcal{A}$. Dann ist $\mu_{|_Y}(A) \coloneqq \mu(A \cap Y)$ wieder ein Maß $auf(X,\mathcal{A})$.

Bemerkung. Für $Y \in A$ können wir die σ -Algebra A zu

$$\mathcal{A}_{|_{Y}} = \{ A \in \mathcal{A} \mid A \subset Y \}$$

einschränken. Dann ist $\mu_{|Y}(A) = \mu(A \cap Y)$, $A \cap Y \in \mathcal{A}$, ein Maß (siehe oben) und $(Y, \mathcal{A}_{|Y}, \mu_{|Y})$ ein Maßraum und dieser ist μ -finit, falls (X, \mathcal{A}, μ) σ -finit ist.

Notation 11.

$$A_k \nearrow A$$
, falls $A_k \subset A_{k+1} \ \forall k \in \mathbb{N} \ \text{und} \ A = \bigcup_{k \in \mathbb{N}} A_k$

$$A_k \searrow A$$
, falls $A_k \supset A_{k+1} \ \forall k \in \mathbb{N} \ \text{und} \ A = \bigcap_{k \in \mathbb{N}} A_k$

Satz 12. Für jeden Maßraum (X, \mathcal{A}, μ) und $(A_k)_{k \in \mathbb{N}} \subset \mathcal{A}$ gilt:

(i)
$$A \subset B \Rightarrow \mu(A) \leq \mu(B)$$
 (Monotonie)

(ii)
$$\mu\left(\bigcup_{k\in\mathbb{N}}\right) \leq \sum_{k\in\mathbb{N}} \mu(A_k)$$
 (σ -Subadditivität)

 $^{^2}$ Folgen sind indizierbar mit $\mathbb N.$ Im Unterschied dazu können Familien auch überabzählbar sein.

 $^{{}^{3}}A_{j} \cap A_{k} = \emptyset$ für $j \neq k$

(iii)
$$A_k \nearrow A \Rightarrow \mu(A_k) \nearrow \mu(A)$$

(iv)
$$A_k \searrow A \Rightarrow \mu(A_k) \searrow \mu(A)$$
, für $\mu(A_1) < \infty$

Beweis.

(i) $A, B \in \mathcal{A}, A \subset B \Rightarrow B = A \cup (B \setminus A), B \setminus A \in \mathcal{A}$, woraus folgt

$$\mu(B) = \mu(A) + \mu(B \setminus A)$$

$$\geq \mu(A)$$

(ii) Wir definieren $(B_k)_{k\in\mathbb{N}}\subset\mathcal{A}$ induktiv durch $B_1:=A_1, B_{k+1}=A_{k+1}\setminus\bigcup_{j=1}^kA_k\in\mathcal{A}$, woraus folgt

$$\bigcup_{k=1}^{K} B_k = \bigcup_{n=1}^{K} A_k \, \forall k \in \mathbb{N}$$

Nach Definition gilt:

$$\mu\left(\bigcup_{k\in\mathbb{N}}A_k\right) = \mu\left(\bigcup_{k\in\mathbb{N}}B_k\right) = \sum_{k\in\mathbb{N}}\mu(B_k) \stackrel{(i)}{\leq} \sum_{k\in\mathbb{N}}\mu(A_k)$$

(iii) Definiere $(C_k)_{k\in\mathbb{N}}\subset\mathcal{A}$ durch $C_1\coloneqq A_1,\ C_{k+1}\coloneqq A_{k+1}\setminus A_k$. Demnach ist

$$\bigcup_{k\in\mathbb{N}}C_k=\bigcup_{k\in\mathbb{N}}A_k=A$$

Die σ -Additivität liefert

$$\mu(A_k) = \sum_{j=1}^k \mu(C_j) \xrightarrow{k \to \infty} \underbrace{\sum_{k \in \mathbb{N}} \mu(C_k)}_{=\mu(A)} \left(\leq \sum_{k \in \mathbb{N}} \mu(A_k) \right)$$

(iv) $D_k \coloneqq A_1 \setminus A_k \forall k \in \mathbb{N}$. Damit ist $D_k \nearrow A_k \setminus A$, und wir haben

$$\mu(A_1) - \mu(A_k) = \mu(A_1 \setminus A_k) \xrightarrow[(iii)]{k \to \infty} \mu(A_1 \setminus A) - \mu(A)$$

Subtraktion von $\mu(A_1) < \infty$ liefert die Behauptung.

Bemerkung 13. Zählmaß μ auf $X=\mathbb{N}$ und $A_k=\{j\in\mathbb{N}\mid j\geq k\}$, $A_k\searrow\emptyset$, $\mu(A_k)=\infty\ \forall k\in\mathbb{N},\ \mu(\emptyset)=0$. Hieraus erkennt man, dass die Bedingung $\mu(A_1)<\infty$ in Satz $12_{\text{(iv)}}$ wesentlich ist.

Definition 14 (Borel-Maß). Sei X ein topologischer Raum mit Borel- σ -Algebra $\mathcal{B}(X)$. Ein Maß μ auf $(X, \mathcal{B}(X))$ heißt *Borel-Maß*, falls es auf Kompakten⁴ stets endliche Werte annimmt.

Beispiel 15. Sei $X = \mathbb{R}$, $A = \mathcal{B}$. Das Dirac-Maß ist ein Borel-Maß, das Zählmaß hingegen nicht.

Definition 16 (Regularität). Sei X ein topologischer Raum, (X, \mathcal{A}, μ) ein Maßraum. Das Maß μ heißt regulär von außen, wenn gilt:

$$\mu(A) = \inf \{ \mu(U) \mid A \subset U, U \text{ offen} \} \forall A \in \mathcal{A}$$

Außerdem heißt das Maß μ regulär von innen, wenn gilt:

$$\mu(A) = \sup \{ \mu(K) \mid K \subset A, K \text{ kompakt} \} \, \forall A \in \mathcal{A}$$

Ein Maß heißt regulär, wenn es regulär von innen und außen ist.

Beispiel 17. Das Zählmaß ist regulär von innen, jedoch nicht von außen. Das Dirac-Maß ist regulär (X, \mathcal{A}) wie in Beispiel 15).

Strategie:

- 1. Starte mit einem sogenannten Prämaß λ auf der Algebra endlicher, disjunkter Vereinigungen von Intervallen, $\lambda =$ Summe der Längen.
- 2. Dies kann zu einem "äußeren Maß" auf $\mathfrak{P}(\mathbb{R})$ fortgesetzt werden (keine σ -Additivität).
- 3. Einschränkung auf Borel- σ -Algebren liefert ein Maß.

Definition 18 (Dynkin-System). Eine Familie $\mathcal{D} \subset \mathfrak{P}(X)$, X eine Menge, heißt *Dynkin-System*, falls gilt:

- $X \in \mathcal{D}$
- $A \in \mathcal{D} \Rightarrow A^{\mathcal{C}} \in \mathcal{D}$
- $(A_k)_{k\in\mathbb{N}}\subset\mathcal{D},\ A_k\cap A_m=\emptyset\ \forall k,m,\ k\neq m\Rightarrow \bigcup_{k\in\mathbb{N}}A_k\in\mathcal{D}$

Bemerkung 19.

(i) Ein Dynkin-System ist abgeschlossen unter Mengensubtraktion:

$$A,B\in \mathcal{D},\; B\subset A\Rightarrow A\setminus B=A\cap B^{\mathcal{C}}=\left(A^{\mathcal{C}}\cup B\right)^{\mathcal{C}}\in \mathcal{D}$$

$$\textit{da} \ B^{\rm C}, A^{\rm C} \in \mathcal{D}, \textit{und} \ A^{\rm C} \cup B \in \mathcal{D}, \textit{denn} \ B \cap A^{\rm C} \subset A \cap A^{\rm C} = \emptyset$$

(ii) Ist $S \subset \mathfrak{P}(X)$, so ist

$$\mathfrak{D}(S) = \bigcap \left\{ \mathfrak{D} \mid \mathfrak{D} \text{ ist Dynkin-System, } S \in \mathfrak{D} \right\}$$

das von S erzeugte Dynkin-System.

⁴Ein topologischer Raum (X, 0) heißt kompakt, wenn jede offene Überdeckung $X = \bigcup_{i \in I} U_i$ mit $U_i \in 0$ eine endliche Teilüberdeckung $X = U_{i_1} \cup U_{i_2} \cup \cdots \cup U_{i_n}$ mit $i_1, \ldots, i_n \in I$ besitzt.

(iii) Das von S erzeugte Dynkin-System ist wohldefiniert, das heißt es ist eindeutig und tatsächlich ein Dynkin-System.

Lemma 20. *Ist* \mathcal{D} *abgeschlossen unter endlichen Schnitten oder alternativ unter beliebigen (also nicht notwendigerweise disjunkten) endlichen Vereinigungen, so ist* \mathcal{D} *eine* σ -Algebra.

Beweis. In der Übung. □

Lemma 21. Sei S eine (nichtleere) Familie, von Teilmengen einer Menge X, die abgeschlossen ist unter endlichen Schnitten. Dann folgt $\mathcal{D}(S) = \Sigma(S)$.

Beweis. Nach Definition gilt $\mathcal{D}(S) \subset \Sigma(S)$. Die andere Inklusion, $\Sigma(S) \subset \mathcal{D}(S)$, folgt sofort, wenn wir zeigen, dass $\mathcal{D}(S)$ eine σ -Algebra ist. Nach Lemma 20 genügt hierzu der Nachweis, dass $\mathcal{D}(S)$ abgeschlossen ist unter endlichen Schnitten. Hierzu definieren wir für ein festes $A \in \mathcal{D} \coloneqq \mathcal{D}(S)$:

$$D(A) = \{ B \in \mathcal{D} \mid A \cap B \in \mathcal{D} \} \subset \mathcal{D}$$

Ziel: $D(A) = \mathcal{D} \ \forall A \in \mathcal{D}$

Behauptung. D(A) ist ein Dynkin-System für beliebige $A \in \mathcal{D}$.

Beweis.

- $X \in \mathcal{D}, A \cap X = A \in \mathcal{D} \Rightarrow X \in D(A)$
- $\begin{array}{l} \cdot \ B \in D(A) \Rightarrow B \in \mathfrak{D}, \ A \cap B \in \mathfrak{D}. \\ \text{Hieraus folgt: } A \cap B^{\mathbf{C}} = A \setminus (B \cap A) \in \mathfrak{D}\left(\textit{vgl. Bem. 19}_{(i)}\right) \end{array}$
- · $B = \bigcup_{k \in \mathbb{N}} B_k$, $B_k \in D(A) \Rightarrow B_k \in \mathcal{D}$, $A \cap B_k \in \mathcal{D}$. Hieraus folgt: $B \in \mathcal{D}$, $B \cap A = \bigcup (B_k \cap A) \in \mathcal{D} \Rightarrow B \in D(A)$ (da $B_k \cap A \in \mathcal{D}$)

Behauptung. $A \in S \Rightarrow S \subset D(A)$, denn $B \in S \Rightarrow A \cap B \in S \subset \mathcal{D} \Rightarrow B \in D(A)$. Da $\mathcal{D} = \mathcal{D}(S)$ das kleinste Dynkin-System ist, das S enthält, folgt

$$\mathfrak{D}\subset D(A)\Rightarrow \mathfrak{D}=D(A)$$

Für beliebige $U \in S, \mathcal{V} \in \tilde{\mathcal{D}} \coloneqq D(U)$ folgt nach Definition $U \cap \mathcal{V} \in \mathcal{D}$. Dies impliziert $U \in D(\mathcal{V})$, also $S \subset D(\mathcal{V}) \ \forall \mathcal{V} \in \mathcal{D}$. Wie eben ist $D(\mathcal{V}) \subset \mathcal{D}$, also $D(\mathcal{V}) = \mathcal{D} \ \forall \mathcal{V} \in \mathcal{D}$. Folglich ist \mathcal{D} abgeschlossen unter endlichen Schnitten.

Bemerkung 22. Lemma 21 lässt sich wie folgt anwenden:

· Verifiziere eine Eigenschaft ε auf einer Menge $S \subset \mathfrak{P}(X)$, die abgeschlossen unter endlichen Schnitten ist.

- · Zeige, dass die Menge aller Mengen in $\mathfrak{P}(X)$, die ε enthalten, ein Dynkin-System bildet.
- · Schließe, dass ε auf $\Sigma(S)$ gilt.

Lemma 21 gilt auch unter der Voraussetzung "Abgeschlossenheit unter beliebigen endlichen Vereinigungen" (statt der Schnitte).

Satz 23 (Eindeutigkeit der Maße). $Sei(X, \Sigma, \mu)$ ein Maßraum, und $S \subset \mathfrak{P}(X)$ eine Familie von Mengen, die abgeschlossen unter endlichen Schnitten ist, und $\Sigma(S) = \Sigma$. Weiter enthält S eine Folge aufsteigender Mengen $(X_k)_{k \in \mathbb{N}} \subset S$ mit $X_k \nearrow X$ und $\mu(X_k) < \infty \ \forall k \in \mathbb{N}$. Dann ist μ auf $\Sigma = \Sigma(S)$ durch die Werte auf S eindeutig bestimmt.

Beweis. Sei μ ein weiteres Maß mit $\tilde{\mu} = \mu$ auf S (Ziel: $\mu = \tilde{\mu}$ überall). Zunächst ist $\tilde{\mu}(X) \stackrel{\text{Satz 12}}{=} \lim_{k \to \infty} \tilde{\mu}(\underbrace{X_k}) = \lim_{k \to \infty} \mu(X_k) \stackrel{\text{Satz 12}}{=} \mu(X)$

Sei nun $\mu < \infty$

Behauptung. $\mathcal{D} = \{A \in \Sigma \mid \tilde{\mu}(A) = \mu(A)\}\$ ist ein Dynikn-System (Ziel $\mathcal{D} = \Sigma(S)$)

Beweis. $X \in \mathcal{D}$ wie gesehen. Für $A \in \mathcal{D}$ ist

$$\tilde{\mu}\underbrace{(A^c)}_{\in \Sigma} = \tilde{\mu}(X) - \tilde{\mu}(A) = \mu(X) - \mu(A) = \mu(A^c) \Rightarrow A^c \in \mathcal{D}$$

Abgeschlossenheit unter abzählbaren disjunkten Vereinigungen. Betrachte $(B_k)_{k\in\mathbb{N}}$, $B_j\cap B_k=\emptyset\ \forall j,k\in\mathbb{N},B_k\in\mathbb{D},B=\bigcup_{k\in\mathbb{N}}B_k$

$$\tilde{\mu}(B) = \sum_{k \in \mathbb{N}} \tilde{\mu}(B_k) = \sum_{k \in \mathbb{N}} \mu(B_k) = \mu(B)$$

Nach Lemma 21 folgt nun $\Sigma(S) = \mathcal{D}(S) \subset \mathcal{D} \subset \Sigma \Rightarrow \mathcal{D} = \Sigma$. Dies zeigt die Behauptung im

Fall
$$\mu(X) < \infty$$
.

Im allgemeinen Fall erhalten wir für jedes $A \in \Sigma$

$$\tilde{\mu}(a) = \lim_{k \to \infty} \tilde{\mu}(A \cap X_k) = \lim_{k \in \infty} \mu(A \cap X_k) = \mu(A)$$

Definition 24 (Prämaß). Sei X eine Menge und $\mathcal{A} \subset \mathfrak{P}(X)$ eine Algebra. Ein *Prämaß* auf X ist eine σ -additive Abbildung $\mu(\mathcal{A}) \to [0, \infty]$ und $\mu(\emptyset) = 0$.

Bemerkung. Brauche hier σ -Additivität nur für solche (paarweise disjunkten) Folgen $(A_k)_{k\in\mathbb{N}}\subset\mathcal{A}$ gewährleisten, deren Vereinigung $\bigcup_{k\in\mathbb{N}}A_k$ in \mathcal{A} liegt. Ein Präma β auf einer σ -Algebra ist ein Ma β .

⁵Argumentation angewendet auf $X_k(\mu(X_k) < \infty)$

Corollar 25. Sei μ ein σ -finites Prämaß auf einer Algebra A. Dann gibt es höchstens eine Forsetztung auf $\Sigma(A)$

Beweis. Setzte $S=\mathcal{A}$ wie in Satz 23. Offenbar ist S abgeschlossen unter endlichen Schnitten. Da X σ-finit ist, gibt es eine Folge $(X_k)_{k\in\mathbb{N}}$ mit $X=\bigcup_{k\in\mathbb{N}}X_k$ und $\mu(X_k)<\infty$. Für $A_k:=\bigcup_{j=1}^kX_j$ ist $A_k\nearrow X$ und $\mu(A_k)\leq \sum_{j=1}^k\mu X_j<\infty$. Wenn es ein Maß auf (X,σ) gibt,

ist es eindeutig (*Satz 23*). □

Beispiel 26. Die Menge S aller Intervalle der Form [a,b), $-\infty \leq a \leq b \leq +\infty$, erzeugt unter endlichen Vereinigungen eine Algebra A. Wir setzten $\mu(\emptyset) := 0$, $\mu([a,b)) = \infty$ (für $a \neq b$). Dies definiert ein Prämaß auf A. Es gibt (mindestens) zwei Fortsetztungen auf $\Sigma(S)$. a) mit dem $\Sigma(S)$ and $\Sigma(S)$ are $\Sigma(S)$ and $\Sigma(S)$ and $\Sigma(S)$ are $\Sigma(S)$ and $\Sigma(S)$ are $\Sigma(S)$ and $\Sigma(S)$ and $\Sigma(S)$ are $\Sigma(S)$ are $\Sigma(S)$ and $\Sigma(S)$ are $\Sigma(S)$ and $\Sigma(S)$ are $\Sigma(S)$ are $\Sigma(S)$ are $\Sigma(S)$ and $\Sigma(S)$ are $\Sigma(S)$ are $\Sigma(S)$ are $\Sigma(S)$ are $\Sigma(S)$ and $\Sigma(S)$ are $\Sigma($

Definition 27 (Äußere Maße). Eine Funktion $\mu^* \colon \mathfrak{P}(X) \longrightarrow [0, \infty]$ ist ein *äußeres Maß*⁶ auf X, falls $\forall (A_k)_{k \in \mathbb{N}} \subset \mathfrak{P}(x)$ die folgenden Eigenschaften erfüllt sind.

- $\cdot \ \mu^*(\emptyset) = 0$
- · $\mu^*(A_1) \le \mu^*(A_2)$, falls $A_1 \subset A_2$ (Monotonie)
- · $\mu^*(\bigcup_{k\in\mathbb{N}} A_k) \leq \sum_{k\in\mathbb{N}} \mu^*(A_k)$ (σ -Subadditivität)

Satz 28 (Fortsetzung äußere Maße). Sei μ^* ein äußeres Maß auf einer Menge X. Wir sagen, die Menge $A \subset X$ erfülle die Carathéodory-Bedingung, falls

$$\mu^*(E) = {}^{7}\mu^*(E \cap A) + \mu^*(E \cap A^c) \forall E \cap X$$

gilt. Die Familie Σ aller Mengen $A\subset X$, die die Carathéodory-Bedingung erfüllen, bildet eine σ -Algebra Σ und $\mu^*|_{\Sigma}$ ist ein Ma β .

Bemerkung. Maße erfüllen wegen Additivität die Carathéodory-Bedingung

Beweis.

a) **Behauptung.** Σ ist eine Algebra.

Beweis. Offenbar ist $X \in \Sigma$. Abgeschlossenheit unter Komplementbildung ist klar. Für endliche Vereinigungen betrachte $A, B \in \Sigma$. Sei $E \subset X$ beliebig.

$$\mu^*((A \cup B) \cap E) \overset{Subadd}{\leq} \mu^*(A \cap B^c \cap E) + \mu^*(A^c \cap B \cap E) + \mu^*(A \cap B \cap E)$$

Zweifache Anwendung der Carathéodory-Bedingung liefert

$$\mu^*(E) \stackrel{A \in \Sigma}{=} \mu^*(E \cap A) + \mu^*(E \cap A^c)$$

$$\stackrel{B \in \Sigma}{=} \mu^*(E \cap A \cap B) + \mu^*(E \cap A \cap B^C) + \mu^*(E \cap A^c \cap B) + \mu^*(E \cap A^c \cap B^c)$$

⁶Jedes Maß ist ein äußeres Maß

 $^{^7 \}le$ gilt wegen Subbadditivität

Mit der obigen Abschätzung erhalten wir

$$\mu^* \ge \mu^*((A \cup B) \cap E) + \mu^*(E \cap \underbrace{A^c \cap B^c}_{(A \cup B)^c})$$

b) **Behauptung.** Σ ist eine σ -Algebra.

Beweis. Sei also $(A_k)_{k\in\mathbb{N}}\subset\Sigma$ (Ziel $\bigcup_{k\in\mathbb{N}}A_k\in\Sigma$). Wir können ohne Einschränkung annehmen, dass die A_k paarweise disjunkt sind (vgl. Satz 12). Setze $B_k=\bigcup_{j=1}^kA_j\in\Sigma$, also $B_k\nearrow\bigcup_{k\in\mathbb{N}}A_k$. Nun ist für jedes $E\subset X$

$$\mu^* \underbrace{(B_k \cap E)}_{\subset X} \stackrel{A \in \Sigma}{=} \mu^* \underbrace{(B_k \cap E \cap A_k)}_{E \cap A_k} + \mu^* \underbrace{(B_k \cap E \cap A_k^c)}_{=E \cap B_{k-1}} \operatorname{da}(A_k)_{k \in \mathbb{N}} \operatorname{paarweise disjunkt}^{10}$$

$$= \sum_{j=1}^k \mu^* (E \cap A_j)$$

also haben wir:

$$\mu^*(E) \stackrel{B \in \Sigma}{=} \mu^*(E \cap B_k) + \mu^*(E \cap B_k^c) \geq \left(\sum_{j=1}^k \mu^*(E \cap A_j)\right) + \mu^*(E \cap A^c)$$

Mit $k \to \infty$ und Subadditivität erhalten wir

$$\mu^{*}(E) \geq \left(\sum_{k \in \mathbb{N}} \mu^{*}(A \cap A_{k})\right) + \mu^{*}(E \cap A^{c})$$

$$\geq \mu^{*}\left(\bigcup_{k \in \mathbb{N}} (E \cap A_{k})\right) + \mu^{*}(E \cap A^{c}) \stackrel{Subadd}{\geq} \mu^{*}(E)$$

Also gilt $A=\bigcup_{k\in\mathbb{N}}A_k\in\Sigma$, und folglich ist Σ eine σ -Algebra (*)

c) Behauptung. $\mu|_{\Sigma}$ ist ein Maß.

Beweis. Hierzu betrachte eine Folge $(A_k)_{k\in\mathbb{N}}$ paarweise disjunkte Mengen in Σ . $\mu^*(\emptyset)=0$ haben wir schon. Aus (*) folgt mit $E=A\coloneqq\bigcup_{k\in\mathbb{N}}A_k$

$$\mu^*(A) = \sum_{k \in \mathbb{N}} \mu^* \underbrace{(A \cap A_k)}_{A_K} + \mu^* \underbrace{(A \cap A^c)}_{\emptyset} = \sum_{k \in \mathbb{N}} \mu^*(A_k)$$

 $\overline{ ^{10}B_k \cap A) \coloneqq \bigcup_{k \in \mathbb{N}} A_k = \bigcup_{k \in \mathbb{N}} B_k \Rightarrow B_k^c \supset A^c }$

Bemerkung 29. Das soeben konstruierte Ma $\beta \mu^*|_{\Sigma}$ ist vollständig d.h. jede Teilmenge einer Nullmenge¹¹ ist messbar.

Beweis. Sei $A \in \Sigma$ $\mu(A) = 0$, $B \subset A$. Ziel $B \in \Sigma$ ($\Rightarrow \mu(B) = 0$ wg. Monotonie). Sei $E \cap X$

$$\mu^* \underbrace{E \cap B}_{\subseteq B \subseteq A} \le \underbrace{\mu^*(A)}_{=0} \ \mu^* (\underbrace{E \cap B^c}_{\subseteq E}) \le \mu^*(E)$$

Insofern ist $\mu^*(E) \ge \mu^*(E \cap B) + \mu^*(E \cap B^c)$, also $B \in \Sigma$.

Lebesgue-Maß

- (1) Für ein verallgemeinertes Integral I der Form (a,b), (a,b], [a,b), [a,b] mit $-\infty \le a \le b \le +\infty$ setzen wir $\lambda(I) \coloneqq b a \in [0,\infty]$
- (2) (TODO)

Lemma 31. Dies ergibt ein eindeutiges σ -finites Prämaß auf der Algebra A, die aus endlichen Vereinigungen disjunkter Intervalle im obigen Sinne besteht.

Wir setzen
$$\lambda\left(\bigcup_{j=1}^{k} I_j\right) = \sum_{j=1}^{k} \lambda(I_j)$$
.

- (3) (TODO) Wir erhalten zunächst eine Fortsetzung von λ zu einem äußeren Maß λ^* , also $\lambda^* = \lambda$ auf \mathcal{A} , wobei jede Menge aus \mathcal{A} die Carathéodory-Bedingung erfüllt.
- (4) Satz 28 liefert eine σ -Algebra $\Lambda \supset \mathcal{A}$, sodass $\lambda := \lambda^*|_{\Lambda}$ ein Maß ist.
- (5)

Definition 32. Die Elemente von Λ heißen **Lebesgue-messbare** Mengen (bzw. **Lebesgue-Mengen**) und λ ist das **Lebesgue-Maß**.

Lemma 30 (Ad 3). Sei μ ein Prämaß auf einer Algebra $\mathcal{A} \subset \mathfrak{P}(X)$. Wir setzen für $A \subset X$

$$\mu^*(A) = \inf \left\{ \sum_{k \in \mathbb{N}} \mu(A_k) \mid (A_k)_{k \in \mathbb{N}} \subset A, \quad A \subset \bigcup_{k \in \mathbb{N}} A_k \right\}$$

Dies definiert ein äußeres Maß μ^* mit $\mu^* = \mu$ auf $\mathcal A$ und jede Menge aus $\mathcal A$ erfüllt die Carathéodory-Bedingung.

Beweis.

1. Teil: Übungsaufgabe 5.

2. Teil: (Carathéodory-Eigenschaft): Sei $E \subset X$ beliebig und $A \subset A$. (Ziel: $\mu^*(E) \ge \mu^*(E \cap A^{\mathbb{C}}) + \mu^*(E \cap A)$, \le folgt sofort aus der Subadditivität).

 $^{^{11}}A \in \Sigma$ mit $\mu(A) = 0$

Wir betrachten eine beliebige Überdeckung von E durch

$$(B_k)_{k\in\mathbb{N}}\subset\mathcal{A},\quad B:=\bigcup_{k\in\mathbb{N}}B_k\supset E.$$

Dann ist zunächst auch $(B_k \cap A)_{k \in \mathbb{N}}$ eine Überdeckung von $E \cap A$ und entsprechend $(B_k \cap A^{\mathbf{C}})_{k \in \mathbb{N}}$ eine Überdeckung von $E \cap A^{\mathbf{C}}$.

Wir erhalten hieraus

$$\sum_{k \in \mathbb{N}} \mu(B_k) = \sum_{k \in \mathbb{N}} \mu(B_k \cap A) + \sum_{k \in \mathbb{N}} \mu(B_k \cap A^{\mathcal{C}}) \ge \mu^*(E \cap A) + \mu^*(E \cap A^{\mathcal{C}})$$

Indem wir das Infimum über $(B_k)_{k\in\mathbb{N}}$ mit $\bigcup_{k\in\mathbb{N}} B_k \supset E$ nehmen, folgt

$$\mu^*(E) \ge \mu^*(E \cap A) + \mu^*(E \cap A^{\mathcal{C}}).$$

Dies erledigt (3). Für (2) erbringen wir

Beweis von Lemma 31.

- (a) \mathcal{A} ist eine Algebra. In der Tat, $\mathbb{R}=(-\infty,\infty)$. Das Komplement einer endlichen Vereinigung disjunkter Intervalle (möglicherweise verallgemeinert) besitzt wieder diese Form. Für den Fall endlicher Vereinigungen betrachte zunächst den Fall zweier aus je einem Intervall bestehender Mengen (\rightarrow entweder disjunkte Vereinigung oder neues Intervall) und fahre induktiv fort.
- (b) Offenbar gilt $\lambda(\emptyset) = 0$. Für σ -Additivität ist $\lambda(\bigcup_{k \in \mathbb{N}} I_k) = \sum_{k \in \mathbb{N}} \lambda(I_k)$ für alle paarweise disjunkten Folgen $(I_k)_{k \in \mathbb{N}} \subset \mathcal{A}$ zu zeigen.
 - · Weil jedes I_k eine endliche Vereinigung disjunkter Intervalle ist, können wir umsortieren und umnummerieren und somit ohne Einschränkungen voraussetzen, dass jedes I_k ein Intervall ist (Nach wie vor $(I_k)_{k\in\mathbb{N}}$ paarweise disjunkt).
 - · Weiter können wir voraussetzen, dass $I := \bigcup_{k \in \mathbb{N}} I_k$ (= disjunkte Vereinigung endlich vieler Intervalle, da $\in \mathcal{A}$) aus genau einem Intervall besteht (betrachte jede Komponente der Vereinigung separat).

Wir haben erreicht:

$$\sum_{j=1}^{\infty} \lambda(I_j) \longleftarrow \sum_{j=1}^{k} \lambda(I_j) \xrightarrow{\text{Add.}} \lambda \left(\bigcup_{j=1}^{k} I_j \right) \overset{\text{Monot.}^{12}}{\leq} \lambda \left(\bigcup_{j=1}^{\infty} I_j \right) = \lambda(I)$$

Für die andere Richtung wählen wir zunächst für jedes $k \in \mathbb{N}$ ein offenes $J_k \supset I_k$ mit

$$\lambda(J_k) \le \lambda(I_k) + \frac{\epsilon}{2^k}$$

 $^{^{-12}\}lambda\left(igcup_{j=1}^kB_j
ight)=\sum_{k\in\mathbb{N}}^k\lambda(B_j)$ vgl. Beweis zu *Satz 12(i)*.

für ein zu bestimmendes $\epsilon > 0$.

Sei zunächst I kompakt. Dann können wir endlich viele J_k auswählen, sodass diese I überdecken¹³. Wir können durch Umnummerierung erreichen, dass dies die ersten K Elemente sind und wir haben

$$\lambda(I) \stackrel{\text{Monot.}^{12}}{\leq} \lambda \left(\bigcup_{j=1}^{K} J_j \right) \stackrel{\text{Subadd.}}{\leq} \sum_{j=1}^{K} \lambda(J_j) \stackrel{\text{Konstr.}}{\leq} \epsilon + \sum_{j=1}^{K} \lambda(I)$$

Mit $\epsilon \searrow 0$ folgt σ -Additivität für kompakte I. Da wir mit Additivität und $\lambda(\{x\}) = \lambda([x,x]) = 0 \ \forall x \in \mathbb{R}$ Endpunkte an Intervalle hinzufügen / entfernen können, folgt die Behauptung auch für beschränkte I.

Sei I nun ein unbeschränktes Intervall, damit ist $\lambda(I)=\infty.$

Zu zeigen ist, $\sum_{j=1}^{\infty} \lambda(I_j) = \infty$.

Sei $\xi \in I$. Durch Hinzufügen eines Punktes (sofern erforderlich) können wir erreichen, dass I abgeschlossen ist. Damit ist $I \cap [-x, x]$ kompakt für jedes $x \in \mathbb{R}$ und wird folglich von den ersten K Elementen überdeckt, $K = K(\xi)$.

Demnach erhalten wir

$$\sum_{j=1}^{\infty} \lambda(I_j) \ge \sum_{j=1}^{K} \lambda(I_j) \stackrel{\text{Konstr. } J_k}{\ge} \left(\sum_{j=1}^{K} \lambda(J_j) \right) - \epsilon \stackrel{\text{s. o.}}{\ge} \lambda(I \cap [-x, x]) - \epsilon \ge x - |\xi| - \epsilon$$

Hieraus folgt

$$\sum_{j=1}^{\infty} \lambda(I_j) \ge x - |\xi| - \epsilon \xrightarrow{x \to \infty} \infty.$$

¹³Satz von Heine-Borel

Riemann-Integral

$$\int f \approx \sum_{j=1}^{k} (x_j - x_{j-1}) f(x_j)$$

Kriterium

 $(Obersumme - Untersumme) \rightarrow 0$

fmuss hinreichend "schön" sein (z. B. nicht überabzählbar viele Sprünge).

z. B. nicht Riemann-integrierbar: $\chi_{\mathbb{O}}$

Definition 33. Seien (X, Σ_X) , (Y, Σ_Y) Messräume.

Eine Funktion
$$f \colon X \to Y$$
 heipt **messbar** (eigentlich Σ_X - Σ_Y -messbar), falls $f^{-1}(A) \in \Sigma_X \quad \forall A \in \Sigma_Y$.

Ist X ein topologischer Raum und Σ_X die entsprechende Borel- σ -Algebra, so nennen wir eine messbare Funktion **Borel-Funktion**.

Bemerkung 34. Es genügt, Messbarkeit für ein Messystem $S \subset \mathfrak{P}(Y)$ mit $\Sigma(S) = \Sigma_Y$ zu überprüfen.

In der Tat ist $f^{-1}(A) \in \Sigma_X$ für jedes $A \in S$, es folgt

$$f^{-1}(A^{\mathcal{C}}) = f^{-1}(Y \setminus A) = X \setminus f^{-1}(A) = (f^{-1}(A))^{\mathcal{C}} \in \Sigma_X.$$

Weiter ist

$$f^{-1}\left(\bigcup_{k\in\mathbb{N}}A_k\right)=\bigcup_{k\in\mathbb{N}}\underbrace{f^{-1}(A_k)}_{\in\Sigma_X}\in\Sigma_X.$$

Im Folgenden häufig $(Y, \Sigma) = (\mathbb{R}^n, \mathcal{B}^n)$.

Lemma 35. Eine Funktion $f:(X,\Sigma)\longrightarrow (\mathbb{R}^n,\mathbb{B}^n)$ ist genau dann messbar, wenn

$$f^{-1}(I) \in \Sigma \, \forall I = \sum_{j=1}^{n} (a_j, \infty), \ a_1, \dots, a_n \in \mathbb{R}$$

$$\int f \approx \sum_{k \in \mathbb{N}} h_k \, \lambda \Big(f^{-1} \big([h_k, h_{k+1}] \big) \Big)$$

Hierfür müssen die Urbilder der Intervalle messbar sein.

Insbesondere ist f genau dann messbar, wenn jede seiner Komponenten $x \mapsto \langle f(x), e_{\ell} \rangle$, $\ell = 1, \ldots, n$ messbar ist, und eine komplexwertige Funktion ist messbar genau dann, wenn Real- und Imaginärteil messbar sind.

Beweis. Die σ -Algebra, die von den verallgemeinerten Quadern I erzeugt wird, enthält sämtliche Quader der Form $\times_{j=1}^n (a_j,b_j)$, $-\infty < a_j < b_j < \infty$. Diese bilden eine Basis für die Topologie und führen somit auf \mathcal{B}^n . Hieraus folgt unmittelbar die zweite Aussage.

Die Intervalle (a_j, ∞) können äquivalent durch $[a_j, \infty)$ beziehungsweise $(-\infty, a_j)$ und $(-\infty, a_j]$ ersetzt werden.

Lemma 36. Seien (X, Σ_X) , (Y, Σ_Y) , (Z, Σ_Z) Maßräume. Sind $f: X \longrightarrow Y$, $g: Y \longrightarrow Z$ messbar, dann ist auch $g \circ f: X \longrightarrow Z$ messbar. Sind Σ_X, Σ_Y Borel- σ -Algebran und X, Y entsprechend topologische Räume, so ist jede stetige Funktion $f: X \longrightarrow Y$ messbar.

Beweis. Das Urbild offener Mengen (diese erzeugen die Borel- σ -Algebra Σ_Y) ist aufgrund der Stetigkeit offen, also messbar (da Σ_X alle offenen Mengen enthält). Ist $C \in \Sigma_Z$ messbar, so ist es auch $B \coloneqq g^{-1}(C) \in \Sigma_Y$ und $A \coloneqq f^{-1}(B) \in \Sigma_X$.

Lemma 37. Sind $f, g: (X, \Sigma) \longrightarrow (\mathbb{R}, \mathcal{B})$ messbar, so auch f + g und $f \cdot g$.

Beweis. Addition und Multiplikation sind stetige Abbildungen

$$(\mathbb{R}, \mathcal{B}) \times (\mathbb{R}, \mathcal{B}) \longrightarrow (\mathbb{R}, \mathcal{B})$$
.

Somit folgt die Behauptung nach *Lemma 36*.

Notation 38. Gelegentlich möchte man die Werte $\pm \infty$ zulassen; wir setzen $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$. Wir nennen $A \subset \overline{\mathbb{R}}$ Borel-Menge, wenn $A \subset \mathbb{R}$ eine Borel-Menge ist. Entsprechend ist $f \colon X \longrightarrow \overline{\mathbb{R}}$ eine Borel-Funktion, wenn $f^{-1}(\{-\infty,\infty\})$ beide Borel-Mengen sind und $f|_{X\setminus f^{-1}(\{\pm\infty\})}$ eine Borel-Funktion ist. Die entsprechende Borel- σ -Algebra zu $\overline{\mathbb{R}}$ wird mit $\overline{\mathcal{B}}$ bezeichnet.

Bemerkung 39. Wegen $\{+\infty\} = \bigcap_{k \in \mathbb{N}} (k, +\infty]$, $\{-\infty\} = \overline{\mathbb{R}} \setminus \bigcup_{k \in \mathbb{N}} (-k, +\infty]$ ist $f \colon X \longrightarrow \overline{\mathbb{R}}$ messbar genau dann, wenn $f((a, +\infty]) \in \Sigma \ \forall a \in \mathbb{R}$. Auch hier können wir alternativ $[a, +\infty]$ beziehungsweise $[-\infty, a]$ oder $[-\infty, a]$ verwenden. Insofern gilt Lemma 37 auch für $f, g \colon (X, \Sigma) \longrightarrow (\overline{\mathbb{R}}, \overline{\mathbb{B}})$, wenn man Ausdrücke der Form $\infty - \infty$ beziehungsweise $0 \cdot \infty$ vermeidet. In der Regel setzt man $\infty - \infty = 0, \ 0 \cdot \infty = 0$.

Wichtig: Die Menge der messbaren Funktionen ist unter Grenzwertbildung abgeschlossen, genauer:

Lemma 40. Sei $(f_k)_{k \in \mathbb{N}}$ eine Folge messbarer Funktionen $(X, \Sigma) \longrightarrow (\overline{\mathbb{R}}, \overline{\mathcal{B}})$. Dann sind auch $\sup_{k \in \mathbb{N}} f_k$, $\inf_{k \in \mathbb{N}} f_k$, $\lim \sup_{k \to \infty} f_k$, $\lim \inf_{k \to \infty} f_k$ messbar ¹⁴.

 $^{^{14}}$ Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge reeller Zahlen. Dann ist der Limes inferior von $(x_n)_{n\in\mathbb{N}}$ definiert als $\liminf_{n\to\infty}x_n\coloneqq\sup_{n\in\mathbb{N}}\inf_{k\geq n}x_k$. Analog ist der Limes superior von $(x_n)_{n\in\mathbb{N}}$ definiert als $\limsup_{n\to\infty}x_n\coloneqq\inf_{n\in\mathbb{N}}\sup_{k>n}x_k$.

Beweis. Wir haben

$$\left(\sup_{k\in\mathbb{N}}f_k\right)^{-1}((a,\infty])\stackrel{(*)}{=}\bigcup_{k\in\mathbb{N}}f_k^{-1}((a,\infty])$$

und dies ist $\forall a \in \mathbb{R}$ messbar. Hierbei wurde

$$x \in \left(\sup_{k \in \mathbb{N}} f_k\right)^{-1} ((a, \infty]) \stackrel{(*)}{\Longleftrightarrow} \sup_{k \in \mathbb{N}} f_k(x) > a \iff \exists k_0 \in \mathbb{N} \colon f_{k_0}(x) > a$$

verwendet. Die restlichen Aussagen folgen mit

$$\inf_{k\in\mathbb{N}}f_k=-\sup_{k\in\mathbb{N}}(-f_k)\,,\; \liminf_{n\to\infty}f_k=\sup_{k\in\mathbb{N}}\inf_{j\geq k}f_j,\; \limsup_{n\to\infty}f_k=\inf_{n\in\mathbb{N}}\sup_{j\geq k}f_j.$$

Zusatz zu Lemma 40: Für messbare f,g sind auch $\min(f,g)$, $\max(f,g)$, $|f|=\max(f,-f)$, $f^{\pm}=\max(\pm f,0)$ (≥ 0) sowie alle punktweisen Limites messbarer Funktionen messbar.

2 Integration

Im Folgenden sei (X, Σ, μ) ein Maßraum.

Definition 41. Eine messbare Funktion $f: (X, \Sigma) \longrightarrow (\mathbb{R}, \mathcal{B})$ heißt *einfach*, wenn ihr Bild endlich ist, das heißt, es gibt Mengen $A_1, \ldots, A_m \in \Sigma, \alpha_1, \ldots, \alpha_m \in \mathbb{R}$ mit

$$f = \sum_{j=1}^{m} a_j \chi_{A_j},$$

wobei χ_M die charakteristische Funktion

$$\chi_M(x) = \begin{cases} 0 & : x \notin M \\ 1 & : x \in M \end{cases}$$

bezeichnet. Wir können fordern, dass die A_j paarweise disjunkt sind, die α_j paarweise verschieden und $\bigcup A_j = X$ gilt: in diesem Fall ist $f(X) = \{\alpha_1, \dots, \alpha_m\}$ und $f^{-1}(\{\alpha_j\}) = A_j \ \forall j = 1, \dots, m$ und diese Darstellung ist eindeutig. Der Vektorraum einfacher Funktionen wird mit $S(X, \mu)$ bezeichnet.

Definition 42 (Integral). Das Integral einer nicht-negativen, einfachen Funktion über der Menge $A \in \Sigma$ wird durch

$$\int_{A} f \, \mathrm{d}\mu := \sum_{j=1}^{m} \alpha_{j} \mu(A_{j} \cap A)$$

erklärt, wobei wir $0 \cdot \infty = 0$ vereinbaren.

Lemma 43. Das Integral hat die folgenden Eigenschaften:

(i)
$$\int_A f \, \mathrm{d}\mu = \int_X f \chi_A \, \mathrm{d}\mu$$
, $f \in S(X, \mu)$, $f \ge 0$, $A \in \Sigma$

(ii)
$$\int_{\bigcup_{k\in\mathbb{N}}B_k}f\,\mathrm{d}\mu=\sum_{k\in\mathbb{N}}\int_{B_k}f\,\mathrm{d}\mu$$
, für paarweise disjunkte $(B_k)_{k\in\mathbb{N}}\subset\Sigma$

(iii)
$$\int_A \alpha f \; \mathrm{d}\mu = \alpha \int_A f \; \mathrm{d}\mu \, \mathit{f\"{u}r} \, \alpha \geq 0$$

(iv)
$$\int_A (f+g) \ \mathrm{d}\mu = \int_A f \mu \mu + \int_A g \ \mathrm{d}\mu, \ g \in S(X,\mu)$$

(v)
$$A \subset B$$
, $B \in \Sigma \Rightarrow \int_A f \, \mathrm{d}\mu \le \int_B f \, \mathrm{d}\mu$

(vi)
$$f \leq g \Rightarrow \int_A f \, \mathrm{d}\mu \leq \int_A g \, \mathrm{d}\mu \, f\ddot{u}r \, g \in S(X,\mu) \,, \; g \geq 0$$

Beweis.

- (i) folgt sofort aus Definition 42, denn $\sum_{j=1}^m \alpha_j \mu(A_j \cap A) = \sum_{j=1}^m B_j \mu(A_j)$ für B_j , die auf $f \cdot \chi_{A_j}$ angepasst sind.
- (ii) $\mu(A_j \cap \bigcup_{n \in \mathbb{N}} B_n) = \sum_{k \in \mathbb{N}} \mu(A_j \cap B_k)$ (man darf Reihe über nicht negative Zahlen beliebig umsortieren.)
- (iii) klar.
- (iv) Für $f=\sum_{j=1}^m\alpha_j\chi_{A_j},\ g=\sum_{k=1}^n\beta_k\chi_{B_k}$ (wie in *Definition 42*) haben wir mit $C_{jk}=A_j\cap B_k$

$$\int_{A} (f+g) d\mu \stackrel{(ii)}{=} \sum_{j,k} \int_{C_{jk}} (f+g) d\mu = \sum_{j,k} (\alpha_j + \beta_k) \mu(C_{jk})$$

$$= \sum_{j,k} \alpha_j \mu(C_{jk}) + \sum_{j,k} \beta_k \mu(C_{jk}) = \int_{A} f d\mu + \int_{A} g d\mu$$

$$= \sum_{j=1}^{m} \alpha_j \mu(A_j)$$

- (v) folgt aus der Monotonie von μ
- (vi) erhält man wie in (iv) mit

$$\int_A f \, \mathrm{d}\mu = \sum_{j,k} \alpha_j \mu(C_{jk}) \stackrel{(*)}{\leq} \sum_{j,k} \beta_k \mu(C_{jk}) = \int_A g \, \mathrm{d}\mu,$$

wobei für (*) gilt: auf C_{jk} : $\alpha_j \leq \beta_k$ (wegen f < g, C_{jk} paarweise disjunkt).

Definition 44 (Integral). Sei (X, Σ, μ) ein Maßraum, $A \in \Sigma$, $f \colon (X, \Sigma) \longrightarrow (\mathbb{R}, \mathcal{B})$ messbar und nicht negativ. Dann ist

$$\int_A f \, \mathrm{d}\mu \coloneqq \sup \left\{ \int g \, \mathrm{d}\mu \; \middle|\; g \in S(X,\mu), g \le f, g \ge 0 \right\}$$

Bis auf (ii) und (iv) übertragen sich die Aussagen aus *Lemma 43* auf bel. nicht-negtive messbare Funktionen durch Approximation.

Satz 45 (Monotone Konvergenz/ Beppo Levi). Sei $(f_k)_{k\in\mathbb{N}}$ eine Folge messbarer nicht-negativer Funktionen $f_k\colon (X,\Sigma)\longrightarrow (\mathbb{R},\mathcal{B})$ mit $f_k\nearrow f$. Dann ist für $A\in\Sigma$

$$\int_A f_k \, \mathrm{d}\mu \longrightarrow \int_A f \, \mathrm{d}\mu$$

Beweis. (f messbar wegen Lemma 40). Aus Lemma 43 (vi) erhalten wir zunächst die Monotonie von $\int_A f_k \, \mathrm{d}\mu$ und hieraus die Konvergenz gegen ein $\varphi \in [0,\infty]$. Aus $f_k \leq f$ und 43(vi) folgt $\varphi \leq \int_A f \, \mathrm{d}\mu$. Für die Umkehrung wählen wir ein $g \in S(X,\mu), \ g \geq 0, \ g \leq f$. Mit

 $A_K := \{x \in A \mid f_k(x) \geq \vartheta \cdot g(x)\}$ für ein festes $\vartheta \in (0,1)$. Nun ist $A_k \nearrow A$ $(\bigcup_{k \in \mathbb{N}} A_k \supset A \text{ erfordert } \varphi \in (0,1))$ und hieraus

$$\underbrace{\int_{A} f_{k} \, \mathrm{d}\mu}_{k \longrightarrow \infty} \stackrel{43 \mathrm{(v)}}{\geq} \int_{A_{k}} f_{k} \, \mathrm{d}\mu \geq \int_{A_{k}} \varphi \, g \, \mathrm{d}\mu \stackrel{43 \mathrm{(ii)}}{=} \varphi \int_{A_{k}} g \, \mathrm{d}\mu \longrightarrow \varphi \int_{A} g \, \mathrm{d}\mu$$

Insbesondere gilt dies auch für $\varphi=1$, also $\varphi\geq\int_A g\,\mathrm{d}\mu$. Durch Supremumsbildung erhalten wir $\varphi=\int_A f\,\mathrm{d}\mu$.

Bemerkung 46. Für jede nicht-negative Funktion f mit einer monoton steigenden Folge nicht-negativer, einfacher Funktionen $(g_k)_{k\in\mathbb{N}},\ g_k\nearrow f$ ist $\int_A g_k\,\mathrm{d}\mu\nearrow\int_A f\,\mathrm{d}\mu$. Eine geeignete Folge $(g_k)_{k\in\mathbb{N}}$ lässt sich folgendermaßen konstruieren:

$$g_k(x) := \sum_{j=0}^{k2^k} \frac{j}{2^k} \chi_{f^{-1}(A_j)}(x) \text{ mit } A_j = \begin{cases} \left[\frac{j}{2^k}, \frac{j+1}{2^k}\right), & j = 0, ..., k2^k - 1\\ [k, \infty), & j = k2^k \end{cases}$$
 (2.1)

Ist f (gleichmäßig¹) beschränkt, so konvergiert $(g_k)_{k\in\mathbb{N}}$ gleichmäßig, denn $f\subset M$ impliziert $0\leq f-g_k<\frac{1}{2^k}$ für k>M. Mit Satz 45 überträgt man auch 43(ii) und (iv), da Grenzwerte über nicht-negative Größen vertauschen.

Lemma 47. Ist $f \ge 0$ messbar, so wird durch $\nu(A) := \int_A f \, \mathrm{d}\mu$ ein Maß mit $\int g \, \mathrm{d}\nu = \int g f \, \mathrm{d}\mu$ für jedes messbare $g \ge 0$ definiert und wir schreiben $\mathrm{d}\nu = f \, \mathrm{d}\mu$

Beweis.

$$\nu(\emptyset) = \int_{\emptyset} f \, \mathrm{d}\mu \stackrel{(i)}{=} \int \underbrace{\chi_{\emptyset}}_{=0} f \, \mathrm{d}\mu \stackrel{(i)}{=} 0 \cdot \int f \, \mathrm{d}\mu \stackrel{0 \cdot \infty = 0}{=} 0$$

Weiterhin ist

$$\nu(A \cup B) = \int_{(A \cup B)} f \, \mathrm{d}\mu \stackrel{(ii)}{=} \int_A f \, \mathrm{d}\mu \, + \, \int_B f \, \mathrm{d}\mu = \nu(A) + \nu(B) \text{ für } (A \cup B) = \emptyset$$

Für abzählbare Vereinigungen liefert Satz 45

$$\nu(\bigcup_{k\in\mathbb{N}} A_k) = \int_{\bigcup A_k} f \, \mathrm{d}\mu \stackrel{(ii)}{=} \sum_{k\in\mathbb{N}} \int_{A_k} f \, \mathrm{d}\mu = \sum_{k\in\mathbb{N}} \nu(A_k)$$

Ist g
 einfach und nicht-negativ), so gilt $g = \sum_{j=1}^m \alpha_j \chi_{B_j}$ für disjunkte $B_j \in \sum, \bigcup B_j = X$ und $\alpha_j \geq 0$, und wir haben

$$\int g \, \mathrm{d}\nu = \sum_{j=1}^m \alpha_j \nu(A_j) = \sum_{j=1}^m \alpha_j \int_{B_j} f \, \mathrm{d}\mu \stackrel{43(iii)}{=} \sum_{j=1}^m \int \alpha_j f \chi_{B_j} \, \mathrm{d}\mu \stackrel{43(iv)}{=} \int \underbrace{\left(\sum_{j=1}^m \alpha_j \chi_{B_j}\right)}_{=q} f \, \mathrm{d}\mu$$

Approximation liefert die Behauptung für beliebige $g \ge 0$ mit Satz 45.

 $^{^1}$ Sei Xeine beliebige Menge. Dann heißt eine Familie $\mathcal F$ von auf X definierten, reellwertigen Funktionen gleichmäßig beschränkt, wenn es eine reelle Zahl S gibt, für die gilt: $\forall x\in X\ \forall f\in \mathcal F\colon |f(x)|\leq S.$ Das heißt, S ist eine gemeinsame obere Schranke für die Werte der Beträge aller Funktionen aus $\mathcal F.$

Satz 48 (Lemma von Fatou). Sei (X, Σ, μ) ein Maßraum. Ist $(f_k)_{k \in \mathbb{N}}$ eine Folge nicht-negativer Funktionen $(X, \Sigma) \longrightarrow (\mathbb{R}, \mathcal{B})$, so haben wir für ein beliebiges $A \in \Sigma$

$$\int_{A} \liminf_{k \to \infty} f_k \, \mathrm{d}\mu \le \liminf_{k \to \infty} \int_{A} f_k \, \mathrm{d}\mu$$

Bemerkung 49. Im Allgemeinen können wir keine Gleichheit erwarten. Z.B. ist für $f_k = \chi_{[k,k+1]} k \in \mathbb{N}$, einerseits $f_k(X) \xrightarrow{k \to \infty} 0 \ \forall x \in \mathbb{R}$ nicht gleichmäßig, andererseits $\int_{\mathbb{R}} f_k \ \mathrm{d}x = 1$. Genauso für $f_k = k\chi_{(0,1)}$ und $f_k = \frac{1}{k}\chi_{(0,k)}$ (in letzterem Fall haben wir sogar gleichmäßige Konvergenz).

Beweis: Lemma von Fatou. Wir setzten $g_k := \inf_{j \ge k} f_j$, also $g_k \nearrow \lim_{j \longrightarrow \infty} f_j$. Weiterhin $g_k \le f_k \ \forall k \in \mathbb{N}$, folglich $\int_A g_k \ \mathrm{d}\mu \le \int_A f_k \ \mathrm{d}\mu$ nach Lemma 43(vi). Übergang zum $\lim_{k \longrightarrow \infty} \inf$ liefert

$$\lim_{k \to \infty} \inf \int g_k \, \mathrm{d}\mu = \lim_{k \to \infty} \int g_k \, \mathrm{d}\mu \stackrel{Satz}{=} {}^{45} \int_A g_k \, \mathrm{d}\mu = \int_A \liminf_{k \to \infty} f_k \, \mathrm{d}\mu$$

Definition 50 (Nochmal Integral). Sei (X, Σ, μ) ein Maßraum $A \in \Sigma$ $f: (X, \Sigma) \longrightarrow (\mathbb{R}, \mathcal{B})$ messbar. Ist $\int_A f^{\pm} d\mu < \infty$, so nennen wir f über A integrierbar und wir setzten

$$\int_A f \, \mathrm{d}\mu := \int_A f^+ \, \mathrm{d}\mu - \int_A f^- \, \mathrm{d}\mu \in \mathbb{R}$$

Die Menge der über A integrierbaren Funktionen bezeichnen wir $\mathcal{L}^1(A,\mu)$

Lemma 51. Unter der Bedingung von Definition 50 ist das Integral linear und erfüllt sämtliche Eigenschaften aus Lemma 43. Eine Funktion ist genau dann integrierbar, wenn ihr Betrag integrierbar ist. Darüber hinaus gilt für integrierbare Funktionen $f, g: X \longrightarrow \mathbb{R}$

$$\left| \int_{A} f \, \mathrm{d}\mu \right| \leq \int_{A} |f| \, \mathrm{d}\mu$$

und die Dreiecksungleichung

$$\int |f + g| \,\mathrm{d}\mu \le \int_{A} |f| \,\mathrm{d}\mu + \int_{A} |f| \,\mathrm{d}\mu$$

Beweis. Linearität und Lemma 43 verifiziert man unmittelbar. Setzte $\varphi\coloneqq\int f\,\mathrm{d}\mu$, dann ist

$$|\varphi| = (\operatorname{sign} \varphi) \varphi \stackrel{\operatorname{Linearit"at}}{=} \int_{A} (\operatorname{sign} \varphi) f \, \mathrm{d}\mu \stackrel{43(vi)}{\leq} \int_{A} |f| \, \mathrm{d}\mu$$

Die Dreiecksungleichung folgt mit $|f+g| \leq |f| + |g|$ aus der Linearität des Integrals. \square

Lemma 52. Sei (X, Σ, μ) ein Maßraum, $F: X \longrightarrow \mathbb{R}$, messbar

(i) Wir haben $\int_X |f| d\mu = 0 \Leftrightarrow f(x) = 0$ für μ -fast alle $x \in X$

(ii) Ist f außerdem integrierbar oder nicht negativ und $A \in \Sigma$, so ist

$$\mu(A) = 0 \Rightarrow \int_A f \,\mathrm{d}\mu$$

Beweis. ÜZ3/A10

Insofern ändert sich der Wert eines Integranten nicht, wenn wir den Integranten auf einer Nullmenge abändern.

Lemma 53 (Noch Fatou). Sei (X, Σ, μ) ein Maßraum, $A \in \Sigma$, $(f_k)_{k \in \mathbb{N}}$ eine Folge messbarer Funktionen $X \longrightarrow \mathbb{R}$ und $g \colon X \longrightarrow \mathbb{R}$ integrierbar, dann gilt

$$\int_{A} \liminf_{k \to \infty} f_k \, \mathrm{d}\mu \le \liminf_{k \to \infty} \int_{A} f_k \, \mathrm{d}\mu, \text{ falls } g \le f_k \forall k \in \mathbb{N}$$
$$\limsup_{k \to \infty} \int_{A} f_k \, \mathrm{d}\mu \le \int_{A} \limsup_{k \to \infty} f_k \, \mathrm{d}\mu, \text{ falls } f_k \le g \forall k \in \mathbb{N}$$

Beweis. Man wende für die erste Ungleichung das Fatou-Lemma auf $f_k - g$ an und subtrahiere $\int_A g \, \mathrm{d}\mu$ auf beiden Seiten.

Die zweite Aussage folgt mit
$$\liminf_{k \to \infty} (-f_k) = -\limsup_{k \to \infty} f_k$$

Satz 54 (Dominierte Konvergenz). Sei (X, Σ, μ) ein Maßraum, $A \in \Sigma$, $(f_k)_k \in \mathbb{N}$ eine Folge messbarer Funktionen $X \longrightarrow \mathbb{R}$, die punktweise² fast überall, d.h. bis auf μ -Nullmengen gegen $f:X\longrightarrow \mathbb{R}$ konvergiere. Gibt es eine Majorante, das heißt ein integrierbares $g\colon X\longrightarrow \mathbb{R}$ mit $\sup |(f_k)_{k \in \mathbb{N}}| \leq g$, so ist auch f integrierbar und wir haben $\int_A f_k d\mu \xrightarrow{k \to \infty} \int_A f d\mu$.

Beweis. Nach Voraussetzung ist $-g \leq f_k \leq g \ \forall k \in \mathbb{N}$, folglich erhalten wir mit Lemma 53

$$\int_{A} f \, \mathrm{d}\mu = \int_{A} \liminf_{k \to \infty} f_{k} \, \mathrm{d}\mu \stackrel{53}{\leq} \liminf_{k \to \infty} \int_{A} f_{k} \, \mathrm{d}\mu \leq \limsup_{k \to \infty} \int_{A} f \, \mathrm{d}\mu \stackrel{53}{\leq} \int_{A} \underbrace{\limsup_{k \to f_{k}} f_{k}}_{\lim f_{k} = f} \, \mathrm{d}\mu$$

Zur Notwendigkeit der Voraussetzung an g, vergleiche Beispiel 46.

Beispiel 63. Sei $X=\mathbb{R}^2,\ \Sigma=\mathbb{B}^2,\ f(x,y)=\frac{x-y}{(x+y)^3}$. Wir betrachten das Riemann-Integral

$$\int_0^1 \int_0^1 f(x,y) \, dx \, dy \stackrel{3}{=} - \int_0^1 \frac{dy}{(1+y)^2} = \frac{1}{1+y} \Big|_0^1 = -\frac{1}{2}$$

Wäre $f \in \mathcal{L}^1([0,1]^2)$, so folge aus dem Satz 62 (Fatou) zunächst die Integrierbarkeit der Funktionen

$$\int_{(0,1)} f(x_1,\cdot) \, d\lambda(x_1), \, \int_{(0,1)} f(\cdot,x_2) \, d\lambda(x_2)$$

²Sei $(f_n)_{n\in\mathbb{N}}, f_n\colon D\longrightarrow \mathbb{R}$ eine Funktionenfolge. Die Funktionenfolge heißt punktweise konvergent gegen eine Funktion $f\colon D\longrightarrow \mathbb{R}$, wenn $\forall x\in D$ gilt: $\lim_{n\to\infty}f_n(x)=f(x)$ ³ $\frac{\mathrm{d}}{\mathrm{d}x}\frac{x}{(x+y)^2}=\frac{1}{(x+y)^2}-2\frac{x}{(x+y)^3}=\frac{x-y}{(x+y)^3}$ und $\int_0^1\int_0^1f(x,y)\,\mathrm{d}x\,\mathrm{d}y=\frac{1}{2}$

und da f auf $(0,1) \times (0,1)$ stetig ist, erhalten wir Übereinstimmung von Lebesgue- und Riemann-Integral und erneut mit Satz 62

$$\iint f(x_1, x_2) \, \mathrm{d}x_1 \, \mathrm{d}x_2 = \iint f(x_1, x_2) \, \mathrm{d}x_2 \, \mathrm{d}x_1. \quad \notin$$

Lemma 64. Seien (X_1, Σ_1) , (X_2, Σ_2) Messräume und $S_1 \subset \Sigma_1$, $S_2 \subset \Sigma_2$ mit $\Sigma_{X_1}(S_1) = \Sigma_1$, $\Sigma_{X_2}(S_2) = \Sigma_2$. Dann gilt

$$\underbrace{\sum_{1} \otimes \Sigma_{2}}_{ \sigma\text{-Algebra erzeugt von}} \overset{\supset haben \ wir \ schon}{\underset{A_{1} \times A_{2}, \ A_{j} \in \Sigma_{j}}{ }} \overset{\sum_{X_{1} \times X_{2}} \left(S_{1} \times S_{2}\right)}{\underbrace{\sum_{X_{1} \times X_{2}} \left(S_{1} \times S_{2}\right)}_{ \sigma\text{-Algebra erzeugt von}} \Sigma, =:$$

wobei $S_1 \times S_2 = \{A_1 \times A_2 \mid A_1 \in S_1, A_2 \in S_2\}.$

Beweis.

"⊃" klar.

"C" Die Menge $\{A_1 \in \Sigma_1 \mid A_1 \times X_1 \in \Sigma\}$ ist eine σ-Algebra (nachrechnen!), die S_1 enthält, also identisch mit Σ_1 . Insbesondere mit $\Sigma_1 \times X_2 \stackrel{\text{def}}{=} \{A_1 \times X_2 \mid A_1 \in \Sigma_1\} \subset \Sigma$, ebenso gilt $X_1 \times \Sigma_2 \subset \Sigma$. Nun folgt

$$\Sigma_1 \times \Sigma_2 = \{ A_1 \times A_2 \mid A_1 \in \Sigma_1, \ A_2 \in \Sigma_2 \}$$

$$= \{ (A_1 \times X_2) \cap (X_1 \times A_2) \mid A_1 \in \Sigma_1, \ A_2 \in \Sigma_2 \}$$

$$\stackrel{\text{def}}{=} (\Sigma_1 \times X_2) \cap (X_1 \times \Sigma_2) \subset \Sigma$$

Weil Σ eine σ -Algebra ist, folgt $\Sigma_1 \otimes \Sigma_2 \subset \Sigma$.

Lemma 65. Gegeben seien Maßräume (X_j, Σ_j, μ_j) , j = 1, 2, 3, mit σ -finiten Maßen. Dann gilt $(\Sigma_1 \otimes \Sigma_2) \otimes \Sigma_3 = \Sigma_1 \otimes (\Sigma_2 \otimes \Sigma_3)$ und $(\mu_1 \otimes \mu_2) \otimes \mu_3 = \mu_1 \otimes (\mu_2 \otimes \mu_3)$.

Beweis. Die erste Identität folgt, weil beide Seiten jeweils von Mengen $A_1 \times A_2 \times A_3, \ A_j \in \Sigma_j$ erzeugt werden. Darüber hinaus stimmen die beiden Maße wegen

$$((\mu_1 \otimes \mu_2) \otimes \mu_3)(A_1 \times A_2 \times A_3) = \mu_1(A_1)\mu_2(A_2)\mu_3(A_3)$$

= $(\mu_1 \otimes (\mu_2 \otimes \mu_3))(A_1 \times A_2 \times A_3)$

auf allen "Rechtecken" überein und damit nach Satz 23 (Eindeutigkeit) überall. □

Satz 66 (Lebesgue-Maß). Das durch $\lambda^n := \lambda_1 \otimes \lambda_2 \otimes \ldots \otimes \lambda_n$ definierte Lebesgue-Maß auf \mathbb{R}^n besitzt die folgenden Eigenschaften (im Folgenden verwenden wir immer die Borel- σ -Algebra)

(i) Durch die Werte auf der Menge I sämtlicher Quader der Form $I = \times_{j=1}^{n} I_j$, wobei I_j Intervalle sind, ist λ^n eindeutig bestimmt.

(ii) Für jedes $B \in \mathbb{B}^n$ gilt:

$$\lambda^n(B) = \inf \left\{ \sum_{k \in \mathbb{N}} \lambda^n(A_k) \mid (A_k)_{k \in \mathbb{N}} \subset \mathfrak{I}, \ B \subset \bigcup_{k \in \mathbb{N}} A_k \right\}$$

(vgl. Lemma 30).

(iii) Das Maß λ^n ist translationsinvariant und bis auf Normierung das einzige Borelmaß mit dieser Eigenschaft.

Bemerkung. Das Produktmaß zweier vollständiger Maße (Bem. 29) ist i.A. nicht vollständig. Beweis Lebesgue-Maß.

- (i) Da \mathcal{I} unter Schnitten abgeschlossen ist, und wegen Lemma 64 die Borel- σ -Algebra \mathcal{B}^n erzeugt, folgt die Behauptung mit dem Eindeutigkeitssatz (23).
- (ii) Sei $\mathcal A$ die Algebra (nachrechnen!) endlicher Vereinigungen disjunkter Quader aus $\mathcal I$. Nun ist $\mu \coloneqq \lambda^n|_{\mathcal A}$ ein Prämaß. Die angegebene Formel ist gerade die Konstruktion des äußeren Maßes in Lemma 30, und mit Satz 28 erhalten wir eine σ -Algebra Σ mit $\mathcal A \in \Sigma$, sodass $(\mathbb R^n, \Sigma, \mu^*|_{\Sigma})$ ein Maßraum ist. Weil $\mathcal A$ sämtliche offenen Quader $\times_{j=1}^n (a_j, b_j)$ enthält, folgt $\mathcal B^n = \Sigma_{\mathbb R^n}(\mathcal A) \subset \Sigma$ und $\mu^*|_{\mathcal B^n}$ ist ein Maß auf $\mathcal B^n$, was zu zeigen war.
- (iii) Die Translationsinvarianz ergibt sich unmittelbar aus (ii). Sei nun μ ein weiteres translationsinvariantes Maß auf $(\mathbb{R}^n, \mathcal{B}^n)$. Sei Q_r ein halboffener Würfel mit Seitenlänge r. Wir nehmen Œ $\mu(Q_1)=1$ an. Weil wir Q_1 in m^n Würfel der Kantenlänge $\frac{1}{m}$ zerlegen können, folgt mit Translationsinvarianz und Additivität des Maßes:

$$1 = \mu(Q_1) = m^n \mu\left(Q_{\frac{1}{m}}\right) = m^{-n}.$$

Hieraus folgt $\mu(Q_r) = r^n \ \forall r \in \mathbb{Q} \cap (0, \infty)$. Mit Satz 12(iii) folgt das $\forall r > 0$. Hieraus erhält man $\mu = \lambda^n$ auf \mathfrak{I} und, mit (i), auf \mathfrak{B}^n .

Lemma 67 (Bildmaß). Seinen (X, Σ_X) , (Y, Σ_Y) Messräume auf $f: X \longrightarrow Y$ messbar. Ist μ ein Maß auf (X, Σ_X) so wird durch

$$(f_*\mu)(B) := \mu\underbrace{(f^{-1}(B))}_{\stackrel{\text{def}}{=} \{x \in X | f(x) \in B\}}, B \in \Sigma_Y$$

ein Maß auf Y definiert, das Bildmaß von μ bezüglich f. Wir haben $(f_*\mu)(B)=0 \ \forall B\in \Sigma_Y$ mit $B\cap f(X)=\emptyset$.

Beweis. Wir haben $f_*\mu(\emptyset) = \mu(f^{-1}(\emptyset)) = 0$, da $f^{-1}(\emptyset) = \emptyset$ und $(f_*\mu)\left(\bigcup_{k\in\mathbb{N}}B_k\right) = \mu\left(f^{-1}\left(\bigcup_{k\in\mathbb{N}}B_k\right)\right)$ für eine Folge paarweise disjunkter Mengen $(B_k)_{k\in\mathbb{N}}\subset\Sigma_Y$. Dann wird durch $A_k:=f^{-1}(B_k)$ ebenfalls wieder eine Folge paarweise disjunkter Mengen erzeugt (nachrechnen!) und wir haben wegen $f^{-1}\left(\bigcup_{k\in\mathbb{N}}B_k\right) = \bigcup_{k\in\mathbb{N}}f^{-1}(B_k)$ und σ -Additivität

$$(f_*\mu)\left(\bigcup_{k\in\mathbb{N}}B_k\right) = \mu\left(\bigcup_{k\in\mathbb{N}}f^{-1}(B_k)\right) = \sum_{k\in\mathbb{N}}\mu(f^{-1}(B_k)) = \sum_{k\in\mathbb{N}}(f_*\mu)(B_k).$$

Ist
$$B \in \Sigma_Y$$
 mit $B \cap f(X) = \emptyset$, so folgt $(f_*\mu)(B) = \mu(f^{-1}(B)) = \mu(\emptyset) = 0$.

Satz 68. Sei (X, Σ, μ) ein Maßraum, Y ein topologischer Raum, $f(X, \Sigma) \longrightarrow (Y, \mathcal{B}(Y))$, $g \colon (Y, \mathcal{B}(Y)) \longrightarrow (\mathbb{R}, \mathcal{B})$ messbar. Nun ist $g \circ f \colon X \longrightarrow \mathbb{R}$ genau dann μ -fast überall nichtnegativ oder integrierbar, wenn das auf g bzgl. $f_*\mu$ zutrifft, und in diesem Fall gilt:

$$\int_{Y} g \, \mathrm{d}(f_* \mu) = \int_{X} (g \circ f) \, \mathrm{d}\mu.$$

Beweis. Für $A=\{x\in X\mid (g\circ f)(x)\geq 0\}$ und $B=\{y\in Y\mid g(x)\geq 0\}$ gilt:

$$(f_*\mu)(B) = \mu(f^{-1}(B)) = \mu(\{x \in X \mid f(x) \in B\}) = \mu(A).$$

Also $(f_*\mu)(B^{\mathbf{C}})=\mu(A^{\mathbf{C}})$. Für die Integrierbarkeit betrachten wir zunächst einfache Funktionen g. Sei also $g=\sum_{j=1}^k \alpha_j \chi_{B_j}, \ \alpha_j \geq 0, \ B_j \in \mathcal{B}(Y), \ B_i \cap B_j = \emptyset, \ Y=\bigcup_{j=1}^k B_j$. Zunächst ist $\chi_{B_j} \circ f = \chi_{f^{-1}(B_j)}$. Damit erhalten wir

$$\int_{Y} g \, d(f_{*}\mu) = \sum_{j=1}^{k} \alpha_{j} \int_{Y} \chi_{B_{j}} \, d(f_{*}\mu) = \sum_{j=1}^{k} \alpha_{j} \mu(f^{-1}(B_{j}))$$

$$= \sum_{j=1}^{k} \alpha_{j} \int_{X} \chi_{f^{-1}(B_{j})} \, d\mu = \sum_{j=1}^{k} \alpha_{j} \int_{X} \chi_{B_{j}} \circ f \, d\mu = \int_{X} (g \circ f) \, d\mu$$

Sei g eine messbare, nicht-negative Funktion. Wie in Bem. 55 konstruieren wir eine Folge nicht negativer Funktionen $(g_k)_k \subset S(Y, f_*\mu)$ mit $g_k \nearrow g$. Dann ist (wie eben gezeigt) auch $g_k \circ f$ eine Folge nicht-negativer Funktionen mit $g_k \circ f \nearrow g \circ f$. Der $Satz \ 45$ über monotone Konvergenz liefert

$$\int_{Y} g_k \circ f \nearrow \int_{Y} g \circ f, \quad \int_{Y} g_k \, \mathrm{d}(f_* \mu) \nearrow \int_{Y} g \, \mathrm{d}(f_* \mu).$$

Mit $g = g^+ - g^-$ folgt die Identität im allgemeinen Fall, aus der sich ebenfalls die Äquivalenz der Integrierbarkeit ergibt.