

XGBoost: the algorithm that wins every competition

Poznań Univeristy of Technology; April 28th, 2016 meet.ml #1 - Applied Big Data and Machine Learning

By Jarosław Szymczak jarek.szymczak@gmail.com

Data science competitions

(Binary classification problem)

otto group

Product Classification Challenge (Multi-label classification problem)

Store Sales (Regression problem)

Features:

Features:

CTR – click through rate (~ equal to probability of click)

R SSMANN

Features:

- store id
- date
- school and state holidays
- store type
- assortment
- promotions
- competition

Sales prediction for store at certain date

Solutions evaluation

- Root Mean Square
 Percentage Error (RMSPE)
- Binary logarithmic loss (loss is capped at ~35 for a single observation)
- Multi-class logarithmic loss

logarithmic loss for positive example

What algorithms we tackle the problems with?

Shall we play tenis?

Outlook	Temperature	Humidity	Wind	Play tennis?	
Sunny	Hot	High	Weak	No	
Sunny	Hot	High	Strong	No	
Overcast	Hot	High	Weak	Yes	
Rain	Mild	High	Weak	Yes	
Rain	Cool	Normal	Weak	Yes	
Rain	Cool	Normal	Strong	No	
Overcast	Cool	Normal	Strong	Yes	
Sunny	Mild	High	Weak	No	
Sunny	Cool	Normal	Weak	Yes	

Decision tree standard example – shall we play tenis?

- variance
- bias

Bagging – bootstrap aggregation

Our initial dataset:	1 2 3 4 5 6	
First draw:	1 2 2 2 3 5	Model 1
Second draw:	1 1 3 4 4 6	Model 2
Third draw:	2 3 3 4 5 5	Model 3
Fourth draw:	2 4 4 5 5 6	Model 4

Average: Final model

Random forest

AdaBoost – adaptive boosting

AdaBoost – adaptive boosting

$$h_1$$
 $\epsilon_1 = 0.30$
 $\alpha_1 = 0.42$

$$h_2$$
 $\epsilon_2 = 0.21$
 $\alpha_2 = 0.65$

$$h_3$$
 $\epsilon_3 = 0.14$
 $\alpha_3 = 0.92$

$$H = 0.42h_1 + 0.65h_2 + 0.92h_3$$

Another boosting approach

What if we, instead of reweighting examples, made some corrections to prediction errors directly?

We add new model, to the one we already have, so:

$$Y_{pred} = X1(Y) + NEW(Y)$$

 $NEW(Y) = X1(Y) - Y_{pred}$

our residual

Note:

Residual is a gradient of single observation error contribution in one of the most common evaluation measure for regression: root mean squared error (RMSE)

Gradient descent

Gradient boosting

Fit model to initial data

It can be:

- same algorithm as for further steps
- or something very simple (like uniform probabilities or average target in regression)

Fit pseudo-residuals

For any function that:

- agrregates the error from examples (e.g. log-loss, RMSE, but not AUC)
- you can calculate gradient on example level (it is called pseudo-residual)

Finalization

Sum up all the models

XGBoost

XGBoost – handling the features

Numeric values

- for each numeric value, XGBoost finds the best available split (it is always a binary split)
- algorithm is designed to work with numeric values only

Nominal values

- need to be converted to numeric ones
- classic way is to perform one-hot-encoding / get dummies (for all values)
- for variables with large cardinality, some other, more sophisticated methods may need to be used

Missing values

- XGBoost handles missing values separately
- missing value is always added to a branch in which it would minimize the loss (so it is either treated as very large / very small value)
- it is a great advantage over, e.g. scikit-learn gradient boosting implementation

XGBoost – loss functions

Used as optimization objective

- logloss (optimized in complicated manner) for objectives binary:logistic and reg:logistic (they only differ by evaluation measure, all the rest is the same)
- softmax (which is logloss transofrmed to handle multiple classes) for objective multi:softmax
- RMSE (root mean squared error) for objective reg:linear

Only measured

- AUC area under ROC curve
- MAE mean absolute error
- error / merror error rate for binary / multi-class classification

Custom

- only measured
 - simply implement the evaluation function
- used as optimization objective
 - provided that you have a measure that is aggregation of element-wise losses and is differentiable
 - you create a function for element-wise gradient (derivative of prediction function)
 - then hessian (second derivative of prediction function)
 - that's it, algorithm will approximate your loss function with Taylor series (pre-defined loss functions are implemented in the same manner)

XGBoost – setup for Python environment

Installing XGBoost in your environment

Check out this wonderful tutorial to install Docker with kaggle Python stack:

http://goo.gl/wSCkmC

http://xgboost.readthedocs.org/en/latest/build.html

Link as above, expect potential troubles

Clone: https://github.com/dmlc/xgboost
At revision: 219e58d453daf26d6717e2266b83fca0071f3129
And follow the instructions in it (it is of course older version)

XGBoost code example on Otto data

Train dataset

	id	feat_1	feat_2	feat_3	feat_4		feat_90	feat_91	feat_92	feat_93	target
0	1	1	0	0	0	:	0	0	0	0	Class_1
1	2	0	0	0	0		0	0	0	0	Class_1
2	3	0	0	0	0		0	0	0	0	Class_1

3 rows × 95 columns

Test dataset

		id	feat_1	feat_2	feat_3	feat_4	 feat_89	feat_90	feat_91	feat_92	feat_93
()	1	0	0	0	0	 0	0	0	0	0
1	ı	2	2	2	14	16	 4	0	0	2	0
2	2	3	0	1	12	1	 0	0	0	0	1

3 rows × 94 columns

Sample submission

		id	Class_1	Class_2	Class_3	 Class_6	Class_7	Class_8	Class_9
0)	1	1	0	0	 0	0	0	0
1	ı	2	1	0	0	 0	0	0	0
2	2	3	1	0	0	 0	0	0	0

3 rows × 10 columns

XGBoost – simple use example (direct)


```
import pandas as pd
import numpy as np
import xgboost as xgb
train = pd.read_csv("../input/train.csv")
test = pd.read csv("../input/test.csv")
submission = pd.read_csv("../input/sampleSubmission.csv")
#target is class_1, ..., class_9 - needs to be converted to 0, ..., 8
train['target'] = train['target'].apply(lambda val: np.int64(val[-1:]))-1
                                                                                                               scikit-learn
Xy_train = train.as_matrix()
                                                                                                               conventional
X \text{ train} = Xy \text{ train}[:,1:-1]
                                                                                                               names
y_train = Xy_train[:,-1:].ravel()
                                                                                                         to account for
X_test = test.as_matrix()[:,1:]
                                                                                                         examples importance
dtrain = xgb.DMatrix(X_train, y_train, missing=np.NaN)
                                                                                                         we can assign weights
dtest = xgb.DMatrix(X test, missing=np.NaN)
                                                                                                         to them in DMatrix
params = {"objective": "multi:softprob", "eval metric": "mlogloss", "booster" : "gbtree",
                                                                                                         (not done here)
          "eta": 0.05, "max depth": 3, "subsample": 0.6, "colsample bytree": 0.7, "num class": 9}
num boost round = 100
                                                                                                               for direct use
                                                                                                               we need to
gbm = xgb.train(params, dtrain, num_boost_round)
                                                                                                               specify
pred = gbm.predict(dtest)
                                                                                                               number
print(gbm.eval(dtrain))
                                                                                                               of classes
submission.iloc[:,1:] = pred
submission.to_csv("submission.csv", index=False)
b'[0]\teval-mlogloss:0.761362'
```

Link to script: https://goo.gl/vwQeXs

XGBoost – feature importance


```
%matplotlib inline
importance = gbm.get_fscore()

fdict = {}
for key, name in enumerate(train.columns[1:-1]):
    fdict['f{0}'.format(key)] = name

importance_with_names = []

for key, value in importance.items():
    importance_with_names.append((fdict[key], value))

pd.DataFrame(importance_with_names, columns=['feature', 'fscore']).\
set_index('feature').sort_values(['fscore'], ascending=[0])[:20].\
plot(kind="barh", legend=False, figsize=(6, 10))
```

Link to script: http://pastebin.com/uPK5aNkf

XGBoost – simple use example (in scikit-learn style)


```
import pandas as pd
import numpy as np
import xgboost as xgb
from sklearn.metrics import log loss
train = pd.read_csv("../input/train.csv")
test = pd.read csv("../input/test.csv")
submission = pd.read csv("../input/sampleSubmission.csv")
#target is class 1, ..., class 9 - needs to be converted to 0, ..., 8
train['target'] = train['target'].apply(lambda val: np.int64(val[-1:]))-1
Xy train = train.as matrix()
X train = Xy train[:,1:-1]
y_train = Xy_train[:,-1:].ravel()
X_test = test.as_matrix()[:,1:]
num boost round = 100
gbm = xgb.XGBClassifier(max depth=3, learning rate=0.05, objective="multi:softprob", subsample=0.6,
                  colsample bytree=0.7, n estimators=num boost round)
gbm = gbm.fit(X train, y train)
pred = gbm.predict proba(test)
y_hat_train = gbm.predict_proba(X_train)
print(log loss(y train, y hat train))
submission.iloc[:,1:] = pred
submission.to csv("submission sklearn.csv", index=False)
```

Link to script: https://goo.gl/IPxKh5

0.758585101098

XGBoost – most common parameters for tree booster

subsample

- ratio of instances to take
- example values: 0.6, 0.9

colsample_by_tree

- ratio of columns used for whole tree creation
- example values: 0.1, ..., 0.9

colsample_by_level

- ratio of columns sampled for each split
- example values: 0.1, ..., 0.9

eta

- how fast algorithm will learn (shrinkage)
- example values: 0.01, 0.05, 0.1

max_depth

- maximum numer of consecutive splits
- example values: 1, ..., 15 (for dozen or so or more, needs to be set with regularization parametrs)

min_child_weight

- minimum weight of children in leaf, needs to be adopted for each measure
- example values: 1 (for linear regression it would be one example, for classification it is gradient of pseudo-residual)

XGBoost – regularization parameters for tree booster

alpha

 L1 norm (simple average) of weights for whole objective function

lambda

 L2 norm (root from average of squares) of weights, added as penalty to objective function

gamma

 L0 norm, multiplied by numer of leafs in a tree is used to decide whether to make a split

Instance index gradient statistics

1

g1, h1

g2, h2

3

q3, h3

4

g4, h4

5

g5, h5

The smaller the score is, the better the structure is

lambda is in denominator because of various transformation, in original objective it is "classic" L2 penalty

XGBoost – some cool things not necesarilly present elswhere

Last, but not least – who won?

Winning solutions

R®SSMANN

The winning solution consists of over 20 xgboost models that each need about two hours to train when running three models in parallel on my laptop. So I think it could be done within 24 hours. Most of the models individually achieve a very competitive (top 3 leaderboard) score.

by Gert Jacobusse

I did quite a bit of manual feature engineering and my models are entirely based on xgboost. Feature engineering is a combination of "brutal force" (trying different transformations, etc that I know) and "heuristic" (trying to think about drivers of the target in real world settings). One thing I learned recently was entropy based features, which were useful in my model.

by Owen Zhang

Winning solutions

by Gilberto Titericz Jr and Stanislav Semenov

Even deeper dive

- XGBoost:
 - https://github.com/dmlc/xgboost/blob/master/demo/README.md
- More info about machine learning:
 - Uczenie maszynowe i sieci neuronowe. Krawiec K., Stefanowski J., Wydawnictwo PP, Poznań, 2003. (2 wydanie 2004)
 - The Elements of Statistical Learning: Data Mining, Inference, and Prediction by Trevor Hastie, Robert Tibshirani, Jerome Friedman (available on-line for free)
- Sci-kit learn and pandas official pages:
 - http://scikit-learn.org/
 - http://pandas.pydata.org/
- Kaggle blog and forum:
 - http://blog.kaggle.com/ (no free hunch)
 - https://www.datacamp.com/courses/kaggle-python-tutorial-on-machine-learning
 - https://www.datacamp.com/courses/intro-to-python-for-data-science
- Python basics:
 - https://www.coursera.org/learn/interactive-python-1
 - https://www.coursera.org/learn/interactive-python-2