Temperature and Heat.
What is temperature, T.? (in our perspective)
T quantifies physical properties of matter consists of numerous particles / molecules. T ===================================
particles/molecules.
characterised by macroscopic
quantities: Pressure Volume, restitance
e.g. thermometer:
e.g. thermometer: T > Volume of liquid. 71 V1.
P+
Resistor in corcuit T => resistance. 71 RA
Thermal Equilibrium
Thermal contact - energy transfer is allowed between two system
When the states of two thermally contacting systems remain
being 12 // 2
unchanged, the systems are called, in thermal equilibrium.
e.g. a themometer in water
after some times Thermometer & water are on thermal againlibrium
+-+
we also say that
they have the same Temperature!

Thermal Egnilibrium = same temperature. Zero-th Law of Thermodynamics If A & B are each in thermal egilibrium with C, then A & B are in themal equilibrium with each other. Different units/scales of temperature. Celsons (Tc) Kelvin (7) Fahrenheit (TF) Freezeng pont of water 32°F · Lovest possible temp. · Freezeng point of water Boiling point of water · Boiling point of water · Tiple pt. of water 273,16 K (=0,012) @ p=0.00 latm. human body temp. ~ 96°F human body temp.
~ 37.5 °c most objective scale (more in Lecture 23-24) set to fit human body temp. set to fit water freezing & bily pt. Conversion: $T_{F} = \frac{9}{5}T_{c} + 32$ Tc = T - 273,15K

Thermal Expansion Linear expansion fractional change

fractional =
$$\Delta L \propto \Delta T$$

change

 $\Rightarrow \Delta L = \propto \Delta T$

infinitesimal
change $\Delta L = \alpha dT$
 $Coefficient$ of Innear expansion.

open cold jar lid >> warm the lid.

lød expands more than
glass.

Volume expansion.

me expansion.

$$\frac{\Delta V}{V} = \beta \Delta T \longrightarrow \frac{dV}{V} = \beta dT$$

e.g.
$$V = L^3$$
 (cube) $\Rightarrow \frac{dV}{V} = \frac{1}{L^3} 3L^2 dL = 3\frac{dL}{L} = 3\alpha dT$

$$\equiv \beta dT$$

$$\beta = 3\alpha$$

Heat = energy transfer due to temperature différence. (instead of work) Heat and temperature change Heat AQ >0 if Heat enters to the system DQ <0 if Heat exits from the system nect capacit.

of the object,
which can be a
mixture of different
materials (111) for single moteral $\Delta Q = mc \Delta T, \quad C = specific heat of the material eq. water Co ~ 4200 J/kg/k$ for gas $\Delta G = n C_{mol} \Delta T$, $C_{mol} = moler heat capacity$ Latent Heat - Amount of heat per one unit of mass to change the sustance from one phase to
e.g. ges, liquid, solid...
another. · During the phase change transition, $\Delta T = 0$ e.g. vapourstation, freezing ...

Find mz.

$$\Delta Q_{ICF} = \Delta Q_{meltry} + \Delta Q_{T_I} \rightarrow T_f$$

$$= + m_I L_{fusion} + m_I C_I (T_f - T_i)$$
Ice absorbs

$$e^{my} i^n$$
melting

$$\Rightarrow m_{I} = \frac{m_{\omega} C_{\omega} (T_{f} - T_{\omega})}{C_{I}(T_{f} - T_{\Sigma}) + L_{fistom}}$$

Example conducting heat with two materials. The=100°C | Te=0°C | Te=0°C | Te=0°C | Te=10°C ks = 50,2 W/K , ke = 385.0 W/m/K Hert flow along the steel = Hs = Ks A Tu-T Ls Heat flow along the copper = Hc = Kc A T-Tc At steady state, Hs = Hs otherwise there is net heat flowing on or away at the boundary. $\Rightarrow H_{s} = H_{c}$ $\Rightarrow k_{s}(T_{i}-T) = k_{c}(T-T_{e})$ $\Rightarrow L_{s}$ $\Rightarrow L_{s}$

Radiction
Any body (T > 0 K) radiates energy. Surface Area, A Radiation Power Hrad = Ae&T4 [w] 0 = Stefan - Boltzmann Constant (universal) = 5.6704 × 10-8 W/m²/k4 T_s e = emissivity of object. 0 > e > 1 A = Total Surface area. The environment surrounding (Ts) the object also radiates. The object will absorb the radiation according to. Hals = Aed Ts > The net heat flow due to radiation is Hret = Hred - Hols = Aco (T4-Ts4) Human body at T=50°C with surface area 1.2 m² and emissivity e=1 surrounded by temperature 20°C. $H_{\text{ret}} = Ae\delta \left(T^4 - T^4 \right)$ $= (1.2)(1) \left(5. (7 \times \omega^{-8}) \cdot \left(363^4 - 293^4 \right) \right)$ Te. The human needs to generate 72W to keep the body

temp.