ML-модель принятия решений для торговли опционами на S&P 500

Гальперин Д. И. Беркимбаев Р. М.

2025 г.

Опционы Call и Put

- Call право купить актив по цене страйка.
- Put право продать актив по цене страйка.
- Типы опционов: *American* (до экспирации) и *European* (только в дату экспирации).

Индекс S&P 500

- Составной индекс 500 крупнейших компаний США.
- Барометр состояния рынка акций и экономики.

Описание датасета

- Записи: 256480 (3 янв 2011 15 апр 2024).
- Опционы: недельные или с оставшимся временем до экспирации < 1 недели.
- Поля:
 - Date, option_symbol, dte, expiration_date
 - call_put, price_strike
 - Цены: price_open, price_high, price_low, price, Bid, Ask
 - volume, openinterest
 - iv, delta, gamma, theta, vega, rho
 - underlying_price

Постановка задачи

- Это задача многоклассовой классификации с учителем.
- Каждому опциону присваивается метка в зависимости от его доходности за всё время до экспирации:

$$\mathsf{label} = \begin{cases} -1, & \mathsf{если} \ \mathsf{доходность} \ \leq -0.21, \\ +1, & \mathsf{если} \ \mathsf{доходность} \ \geq +0.07, \\ 0, & \mathsf{иначe} \end{cases}$$

Скользящие статистики (5 дней)

$$\begin{split} \operatorname{ret}_t &= \frac{P_t - P_{t-1}}{P_{t-1}}, \\ \operatorname{volatility}_{5d,t} &= \operatorname{std}(\operatorname{ret}_{t-4}, \dots, \operatorname{ret}_t), \\ \operatorname{return}_{5d,t} &= \frac{P_t - P_{t-5}}{P_{t-5}}, \\ \operatorname{vol_to_ret_ratio}_t &= \frac{\operatorname{volatility}_{5d,t}}{|\operatorname{return}_{5d,t}| + \varepsilon}. \end{split}$$

Динамика греков

- ullet Формула: $g_t^{\mathsf{chg}} = g_t g_{t-1}$
- Где $g \in \{\delta, \gamma, \mathsf{vega}, \theta, \rho\}$:
 - ullet δ чувствительность к цене базового актива
 - γ чувствительность δ к цене актива
 - vega чувствительность к волатильности
 - \bullet θ временной распад
 - ullet ho чувствительность к процентной ставке

Индикатор «скачка»

$$\mathsf{jump_flag}_t = \begin{cases} 1, & \mathsf{если} \; |\mathsf{ret}_t| > 2 \cdot \mathsf{std}(\mathsf{ret}_{t-19}, \dots, \mathsf{ret}_t), \\ 0, & \mathsf{иначe} \end{cases}$$

ATR-подобные признаки

- price range: $Bid_t Ask_t$.
- range_std: $std(price_range_{t-4}, ..., price_range_t)$.
- $\bullet \ \, \mathbf{range_mean} \colon \operatorname{mean}(\operatorname{price_range}_{t-4}, \dots, \operatorname{price_range}_t).$

Режим рынка

$$\operatorname{regime}_t = egin{cases} +1, & \operatorname{если} \ \operatorname{return}_{5d,t} > 0.01, \ -1, & \operatorname{если} \ \operatorname{return}_{5d,t} < -0.01, \ 0, & \operatorname{иначе} \end{cases}$$

Фракционная дифференциация (d = 0.5)

$$x_t^{(d)} = \sum_{k=0}^K w_k x_{t-k}, \quad w_k = \frac{(-1)^k \prod_{j=0}^{k-1} (d-j)}{k!}, \quad d = 0.5$$

Выбор модели

Для решения задачи классификации мы выбрали модель **LightGBM** — одну из самых быстрых и эффективных реализаций градиентного бустинга.

Характеристика	LightGBM	Random Forest
Тип ансамбля	Градиентный бустинг	Бэггинг
Скорость обучения	Быстрая	Медленнее
Склонность к переобучению	Низкая	Средняя
Обработка пропусков	Есть	Нет
Категориальные признаки	Встроенная	One-hot

Разделение данных и балансировка классов

• Данные делились по дате:

• **Train**: записи до 1 января 2021

• **Test**: записи с 1 января 2021 и позже

Балансировка классов

- Использовали встроенную балансировку весов в LightGBM: class_weight='balanced'
- Классические веса рассчитывались автоматически по обратной частоте каждого класса:

$$w_i = \frac{N}{k \cdot N_i},$$

где N — общее число примеров, k — число классов, N_i — число примеров класса i.

Результаты на обучающей выборке

• Accuracy: 0.80

• Macro F1-score: 0.69

• Weighted F1-score: 0.81

Класс	Precision	Recall	F1-score	Support
-1	0.75	0.58	0.65	32356
0	0.93	0.90	0.91	74649
1	0.36	0.88	0.51	6754

Результаты на тестовой выборке

• Accuracy: 0.73

• Macro F1-score: 0.61

• Weighted F1-score: 0.73

Класс	Precision	Recall	F1-score	Support
-1	0.64	0.51	0.57	43095
0	0.84	0.86	0.85	86028
1	0.32	0.56	0.40	9701

Матрица ошибок на тестовой выборке

- По оси Y реальные метки классов.
- ullet По оси X предсказанные моделью метки.

ROC-кривые (One-vs-Rest)

- Для многоклассовой классификации ROC-кривые можно построить по схеме один против всех:
 - Для каждого класса считается, насколько хорошо модель отличает его от остальных.

Метрика ROC AUC (многоклассовый случай)

- ROC AUC это площадь под ROC-кривой: отражает качество ранжирования модели.
- В многоклассовой задаче используется схема One-vs-Rest (OVR):
 - Строятся 3 ROC-кривые: для каждого класса против всех остальных.
- Итоговое значение считается как средневзвешенное:

ROC AUC_{weighted} =
$$\sum_{i=1}^{3} \frac{n_i}{N} \cdot AUC_i$$

где n_i — число примеров класса i, N — общее число.

• Чем ближе ROC AUC к 1, тем лучше модель различает классы.

Log Loss (логарифмическая функция потерь)

- Log Loss измеряет «насколько уверена» модель в своих вероятностях.
- Наказывается неуверенность и особенно уверенные ошибки.
- Чем меньше log loss, тем лучше.

$$LogLoss = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{K} y_{i,j} \cdot log(p_{i,j})$$

- N число наблюдений, K число классов
- $y_{i,j} = 1$, если объект i относится к классу j, иначе 0
- ullet $p_{i,j}$ предсказанная вероятность класса j для объекта i

Сравнение метрик на Train и Test

- Сравниваются значения ключевых метрик на обучающей и тестовой выборках:
 - Accuracy доля правильных предсказаний
 - ROC AUC качество ранжирования
 - Log Loss штраф за ошибочные вероятности
- Наблюдается некоторое переобучение, но в разумных пределах.

SHAP: Важность признаков

• SHAP рассчитывает вклад каждого признака f_j в предсказание модели на основе теории игр:

$$\phi_j = \sum_{S \subseteq F \setminus \{j\}} \frac{|S|! (|F| - |S| - 1)!}{|F|!} \left[f_{S \cup \{j\}}(x) - f_S(x) \right]$$

- Где:
 - ϕ_j значение SHAP для признака f_j ,
 - F множество всех признаков,
 - S подмножество признаков, не включающее j,
 - $f_S(x)$ предсказание модели, построенной только на призн. из S
- Итоговая важность среднее по абсолютным значениям SHAP:

$$\mathsf{Importance}(f_j) = \frac{1}{n} \sum_{i=1}^n |\phi_j^{(i)}|$$

Важнейший признак модели: price_open

• Согласно SHAP-анализу, наиболее существенный вклад в предсказания модели даёт признак price_open — цена открытия опциона.

Заключение и перспективы

- Модель LightGBM демонстрирует разумное качество:
 - Ассигасу на тесте: 73%
 - ROC AUC: от 0.81 до 0.89 в зависимости от класса
 - Наилучшая точность у нейтральных опционов
- Возможные пути улучшения модели:
 - Учёт корпоративных событий: отчётностей, дивидендов, сплитов
 - Добавление новостных и юридических факторов (регуляторные риски, экономические отчёты)
 - Использование временных моделей
 - Интеграция с торговыми стратегиями, основанными на вероятностях