axis_fifo.v

AUTHORS

JAY CONVERTINO

DATES

2021/06/29

INFORMATION

Brief

Wraps the standard FIFO with an axi streaming interface.

License MIT

Copyright 2021 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

axis fifo

```
module axis_fifo #(
parameter
FIFO_DEPTH
=
256,
parameter
COUNT_WIDTH
=
8,
parameter
BUS_WIDTH
=
1,
parameter
```

```
USER_WIDTH

=
1,
parameter
DEST_WIDTH

=
1,
parameter
RAM_TYPE

=
"block",
parameter
PACKET_MODE

=
0,
parameter
COUNT_DELAY

=
1,
parameter
COUNT_ENA
=
1)
( input m_axis_aclk, input m_axis_arstn, output m_axis_tvalid, input m_axis_arstn)
```

AXIS fifo

Parameters

FIFO_DEPTH Depth of the fifo, must be a power of two number(divisable aka 256 = 2^8). Any non-

parameter power of two will be rounded up to the next closest.

COUNT_WIDTH Data count output width in bits. Should be the same power of two as fifo depth(256 for

arameter fifo depth... this should be 8).

BUS_WIDTH Width of the axis data bus input/output in bytes.

parameter

USER_WIDTH Width of the axis user bus input/output in bits.

parameter

DEST_WIDTH Width of the axis dest bus input/output in bits.

parameter

RAM_TYPE RAM type setting.

parameter

PACKET_MODE Set axis fifo to wait for tlast before allowing a read on master port output.

parameter

COUNT_DELAY Delay count by one clock cycle of the data count clock.

parameter

parameter

COUNT_ENA Enable count, set this to 0 to disable (only disable if read/write/data_count are on the

same clock domain!).

Ports

m_axis_aclk Clock for AXIS

m_axis_arstn Negative reset for AXIS

 $\begin{tabular}{ll} \textbf{m_axis_tvalid} & \textbf{When active high the output data is valid} \\ \end{tabular}$

m_axis_tready When set active high the output device is ready for data.

m_axis_tdata Output data

m_axis_tkeep Output valid byte indicator
m_axis_tlast Indicates last word in stream.

m_axis_tuser Output user bus

 m_axis_tdest Output destination s_axis_aclk Clock for AXIS Negative reset for AXIS s_axis_arstn When set active high the input data is valid s_axis_tvalid When active high the device is ready for input data. s_axis_tready s_axis_tdata Input data s_axis_tkeep Input valid byte indicator s_axis_tlast Is this the last word in the stream (active high). s_axis_tuser Input user bus s_axis_tdest Input desitination data_count_aclk Clock for data count data_count_arstn Negative edge reset for data count. data_count Output that indicates the amount of data in the FIFO.

INSTANTIATED MODULES

axis fifo

```
fifo #(
FIFO_DEPTH
                                                                           (
c_FIFO_DEPTH),
BYTE_WIDTH
c_FIFO_WIDTH),
COUNT_WIDTH
                                                                           (
COUNT_WIDTH),
FWFT
                                                                           (
1),
RD_SYNC_DEPTH
                                                                           (
0),
WR_SYNC_DEPTH
                                                                           (
0),
DC_SYNC_DEPTH
                                                                           (
0),
COUNT_DELAY
                                                                           (
COUNT_DELAY),
COUNT_ENA
                                                                           (
COUNT_ENA),
```

```
DATA_ZERO

(
1),

ACK_ENA

(),

RAM_TYPE

RAM_TYPE)

) axis_fifo ( .rd_clk (m_axis_aclk), .rd_rstn (m_axis_arstn), .rd_en (s_rd_e)
```

Generic FIFO that acts like a Xilinx FIFO.

axis_control

```
axis_fifo_ctrl #(

BUS_WIDTH

(BUS_WIDTH),

FIFO_WIDTH

(__FIFO_WIDTH),

USER_WIDTH)

(__USER_WIDTH),

DEST_WIDTH

(__DEST_WIDTH),

PACKET_MODE(PACKET_MODE)
) axis_control ( .m_axis_aclk (m_axis_aclk), .m_axis_arstn (m_axis_arstn),
```

Create signals to control FIFO and provide AXIS interace.