Broadcast Encryption and Attribute Based Encryption

Ratna Dutta

Associate Professor Department of Mathematics Indian Institute of Technology Kharagpur Kharagpur-721302, India

Email: ratna@maths.iitkgp.ernet.in

Public Key Encryption (PKE)

• 1-to-1

Example

- Encryption Rabin, RSA, Merkle-Hellman, Paillier, Goldwasher-Micali, ElGamal, Generalised ElGamal
- Signature RSA, ElGamal, DSA
- Key agreement Diffie-Hellman

Identity Based Encryption (IBE)

- 1-to-1
- no need to maintain public directory
- *ID*_U is the public key of user *U* (email id, biometric, etc.)

Example

- Boneh-Franklin's Identity-Based Encryption, Crypto 2001
- Boneh- Boyen's Secure identity based encryption without random oracles, Crypto 2004
- Sahai-Waters' Fuzzy Identity Based Encryption Eurocrypt 2005.

Broadcast Encryption (BE)

Bilinear Map

Let \mathbb{G}_1 , \mathbb{G}_2 , \mathbb{G}_T be multiplicative cyclic groups of prime order p. A map $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ satisfying the following properties is called a *bilinear map* or *bilinear pairing*.

- $e(u^a, v^b) = e(u, v)^{ab}, \forall u \in \mathbb{G}_1, v \in \mathbb{G}_2, a, b \in \mathbb{Z}_p,$
- if $g_1 \neq 1_{\mathbb{G}_1}$ and $g_2 \neq 1_{\mathbb{G}_2}$, then $e(g_1, g_2) \neq 1_{\mathbb{G}_T}$,
- e(u, v) is efficiently computable for all $u \in \mathbb{G}_1, v \in \mathbb{G}_2$.

Example: Weil pairing, Tate pairing, Ate pairing, Eta pairing.

Types

Some researchers classify pairing instantiations into three types:

- Type 1: $G_1 = G_2$;
- Type 2: $G_1 \neq G_2$ but there is an efficiently computable homomorphism $\phi: G_2 \rightarrow G_1$
- Type 3: $G_1 \neq G_2$ and there are no efficiently computable homomorphisms between G_1 and G_2

Setup(t)

- Sets a polynomial f(x) of degree t-1.
- Sends secret key f(i) to user i securely.

Encrypt(R, f(x))

- Sets a polynomial $r(x) = (x r_1)(x r_2) \dots (x i_l)$ for a group of revoked users $R = \{u_{r_1}, \dots, u_{r_l}\}$.
- Selects session key K and sets h(x) = r(x)K + f(x).
- Broadcasts (R, h(x)).

$Decrypt(u_i, f(i))$

- If user $u_i \notin R$, then recovers $K = \frac{h(i) f(i)}{r(i)}$.
- If user $u_i \in R$, then r(i) = 0 and unable to recover K.

Security

- Secure as long as less than t user colludes.
- If more than t user collides then f(x) can be recovered using Lagrange's interpolation formulae. As a result K will be revealed.

Setup(t)

- Sets a polynomial f(x) of degree t-1.
- Sends secret key f(i) to user i securely.

Encrypt(S, f(x))

- Selects a group of users $S = \{u_{i_1}, \dots, u_{i_l}\}$ and sets a polynomial $a(x) = 1 + (x \theta)(x i_1)(x i_2) \dots (x i_l)$.
- Selects session key K and sets h(x) = a(x)K + f(x).
- Broadcasts (S, h(x)).

$Decrypt(u_i, f(i))$

- If user $u_i \in S$, then recovers K = h(i) f(i).
- If user $u_i \notin S$, then $a(i) \neq 0$ and recovers a random key as $K = \frac{h(i) f(i)}{a(i)}$.

Security

- Secure as long as less than t user collides.
- If more than t user collides then f(x) can be recovered using Lagrange's interpolation formulae. As a result K will be revealed.

$(PP, MK) \leftarrow BE.Setup(N, \lambda)$:

- Chooses a prime order bilinear group system $\mathbb{S} = (p, \mathbb{G}, \mathbb{G}_1, e)$, where $e : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_1$ is a bilinear mapping.
- Selects $\alpha, \gamma \in_R \mathbb{Z}_p$ and sets $\mathsf{MK} = (\alpha, \gamma)$, $\mathsf{PP} = (\mathbb{S}, g, g_1, \dots, g_N, g_{N+2}, \dots, g_{2N}, v = g^{\gamma})$, where $g_i = g^{\alpha^i}$ for $i \in [1, N] \cup [N+2, 2N]$.
- Keeps MK secret to itself and makes PP public.

$$(sk_u)\leftarrow BE.KeyGen(PP, MK, u)$$
:

• For each user $u \in [N]$, PKGC generates a secret key as $sk_u = (g_u)^{\gamma}$.

 $(Hdr, K) \leftarrow BE.Encrypt(G, PP)$:

• Extracts g_N from PP, chooses an integer $s \in_R \mathbb{Z}_p$ and computes a header Hdr as

$$\mathsf{Hdr} = (C_1, C_2) = \Big((v \prod_{j \in G} g_{N+1-j})^s, (g)^s \Big).$$

• Sets a session key *K* as

$$K = e(g_N, g_1)^s = e(g_{N+1}, g)^s,$$

• Finally, publishes Hdr and keeps K secret to itself.

 $(K)\leftarrow \mathsf{BE}.\mathsf{Decrypt}(\mathsf{PP},sk_u,\mathsf{Hdr},G,u)$: A subscribed user u recovers the session key K as

$$K = \frac{e(g_u, C_1)}{e(sk_u, \prod_{j \in G, j \neq u} g_{N+1-j+u}, C_2)}.$$

Correctness: The correctness of BE.Decrypt algorithm is as follows:

$$K = \frac{e(g_u, C_1)}{e\left(sk_u \cdot \prod_{j \in G, j \neq u} g_{N+1-j+u}, C_2\right)}$$

$$= \frac{e\left(g, g\right)^{s\alpha^u(\gamma + \sum\limits_{j \in G, j \neq u} \alpha^{N+1-j})}}{e\left(g, g\right)^{s\alpha^u(\gamma + \sum\limits_{j \in G, j \neq u} \alpha^{N+1-j})}}$$

$$= e(g, g)^{s\alpha^{N+1}} = e(g_{N+1}, g)^s.$$

Security

Theorem

The broadcast encryption scheme achieves selective semantic security as per the key indistinguishability security model under *N*-DBDHE assumption.

Security

l-Decisional Bilinear Diffie-Hellman Exponent (*l*-DBDHE) Problem:

Input: $\langle Z = (\mathbb{S}, h, g, g^{\alpha}, \dots, g^{\alpha^{l}}, g^{\alpha^{l+2}}, \dots, g^{\alpha^{2l}}), K \rangle$, where $h \in_{R} \mathbb{G}, \alpha \in_{R} \mathbb{Z}_{p}, K$ is either $e(g, h)^{\alpha^{l+1}}$ or a random element $X \in \mathbb{G}_{1}$.

Output: 0 if $K = e(g, h)^{\alpha^{l+1}}$; 1 otherwise.

BE with Revocation (Lewko, Sahai, Waters [4])

$Setup(\lambda)$

- $(p, \mathbb{G}, g, \mathbb{G}_T, e)$.
- params = $[p, e, g, Y = e(g, g)^{\alpha}, T_1 = g^b, T_2 = g^{b^2}, T = h^b]$, where $\alpha, b \stackrel{R}{\leftarrow} \mathbb{Z}_p, h \stackrel{R}{\leftarrow} \mathbb{G}$
- MK = $[\alpha, b]$.

BE with Revocation (Lewko, Sahai, Waters [4])

Encrypt(params = $[p, e, g, Y, T_1, T_2, T]$, msg $\in \mathbb{G}_T, R = \{ID_1, \dots, ID_r\}$)

• $\mathsf{CT}_R = [R, C, C_0, \{C_{i,1}, C_{i,2}\}_{i=1}^r]$, where $C = \mathsf{msg} \cdot Y^s, C_0 = g^s, C_{i,1} = T_1^{s_i}, C_{i,2} = (T_2^{ID_i}T)^{s_i}, s, s_1, \ldots, s_r \overset{R}{\leftarrow} \mathbb{Z}_p$ such that $s = s_1 + \cdots + s_r$.

 $\mathsf{Decrypt}(\mathsf{params},\mathsf{SK}_{\mathit{ID}} = [\mathit{ID},d_0,d_1,d_2],\mathsf{CT}_{\mathit{R}})$

- If $ID \in R$, then decryption will fail.
- $\textbf{ If } ID \notin R \text{ (i.e., } ID \neq ID_i, \forall i=1,\ldots,r) \text{, then } \\ Y^s = \frac{e(C_0,d_0)}{e\left(d_1,\prod_{i=1}^r C_{i,1}^{1/(ID-ID_i)}\right) \cdot e\left(d_2,\prod_{i=1}^r C_{i,2}^{1/(ID-ID_i)}\right)} \\ \textbf{msq} = C/Y^s.$

Correctness

RHS =
$$\frac{e(C_0, d_0)}{e(d_1, \prod_{i=1}^r C_{i,1}^{1/(ID-ID_i)}) \cdot e(d_2, \prod_{i=1}^r C_{i,2}^{1/(ID-ID_i)})}$$
=
$$\frac{e(C_0, d_0)}{\prod_{i=1}^r \left\{ e(d_1, C_{i,1}) \cdot e(d_2, C_{i,2}) \right\}^{1/(ID-ID_i)}}$$

Now,

$$e(d_{1}, C_{i,1}) \cdot e(d_{2}, C_{i,2}) = e(g^{btID}h^{t}, g^{bs_{i}}) \cdot e(g^{-t}, g^{b^{2}s_{i}ID_{i}}h^{bs_{i}})$$

$$= e(g, g)^{b^{2}ts_{i}ID} \cdot e(h, g)^{tbs_{i}}$$

$$\cdot e(g, g)^{-b^{2}ts_{i}ID_{i}} \cdot e(g, h)^{-tbs_{i}}$$

$$= e(g, g)^{b^{2}ts_{i}(ID-ID_{i})}.$$

BE with Revocation

$$\prod_{i=1}^{r} \left\{ e(d_1, C_{i,1}) \cdot e(d_2, C_{i,2}) \right\}^{1/(ID - ID_i)}$$

$$= \prod_{i=1}^{r} \left\{ e(g, g)^{b^2 t s_i (ID - ID_i)} \right\}^{1/(ID - ID_i)}$$

$$= e(g, g)^{b^2 t \sum_{i=1}^{r} s_i} = e(g, g)^{b^2 t s}.$$

RHS =
$$\frac{e(g^{s}, g^{\alpha}g^{b^{2}t})}{e(g, g)^{b^{2}ts}}$$

= $\frac{e(g, g)^{\alpha s} \cdot (g, g)^{b^{2}ts}}{e(g, g)^{b^{2}ts}} = e(g, g)^{\alpha s}$.

BE with Revocation

Therefore,

$$\begin{array}{rcl} \frac{C}{e(g,g)^{\alpha s}} & = & \frac{\mathsf{msg} \cdot e(g,g)^{\alpha s}}{e(g,g)^{\alpha s}} \\ & = & \mathsf{msg}. \end{array}$$

Key Encapsulation Mechanism (KEM)

Encapsulation(params = $[p, e, g, Y, T_1, T_2, T], R = \{ID_1, \dots, ID_r\}$)

- $\mathsf{EP}_R = [R, C_0, \{C_{i,1}, C_{i,2}\}_{i=1}^r]$, where $C_0 = g^s$, $C_{i,1} = T_1^{s_i}, C_{i,2} = (T_2^{ID_i}T)^{s_i}, s, s_1, \dots, s_r \stackrel{R}{\leftarrow} \mathbb{Z}_p$ such that $s = s_1 + \dots + s_r$.
- Encapsulation of the key $Key = Y^s$ is EP_R

 $Decapsulation(params, SK_{ID} = [ID, d_0, d_1, d_2], EP_R)$

- If $ID \in R$, then decapsulation fails.
 - If $ID \notin R$ (i.e., $ID \neq ID_i$, $\forall i = 1, ..., r$), then $\mathsf{Key} = \frac{e(C_0, d_0)}{e(d_1, \prod_{i=1}^r C_{i,1}^{1/(ID-ID_i)}) \cdot e(d_2, \prod_{i=1}^r C_{i,2}^{1/(ID-ID_i)})}$

Security

Theorem

The BE scheme with revocation is semantically secure in selective set model assuming q-Decisional Multi-Exponent Bilinear Diffie-Hellman (q-DMEDH) problem is hard in (\mathbb{G}, \mathbb{G}_T), where the challenge ciphertext is encrypted to $r \leq q$ revoked users.

Security

q-Decisional Multi-Exponent Bilinear Diffie-Hellman (*q*-DMEDH) Problem

Given

$$egin{aligned} g,g^s,e(g,g)^lpha,\ orall 1\leq i,j\leq q & g^{a_i},g^{a_is},g^{a_ia_j},g^{lpha/a_i^2},\ orall \leq i,j,k\leq q,i
eq j & g^{a_ia_js},g^{lpha a_j/a_i^2},g^{lpha a_ia_j/a_k^2},g^{lpha a_i^2/a_j^2},\ Z\in\mathbb{G}_T, \end{aligned}$$

for some $s, \alpha, a_1, \dots, a_q \in \mathbb{Z}_p$, to decide whether $Z = e(g, g)^{\alpha s}$ or a random element in \mathbb{G}_T .

Attribute Based Encryption (ABE)

- 1-to-many
- fine grained access control

ABE (Sahai and Waters [5])

Setup(n, λ)

- $(p, \mathbb{G}, g, \mathbb{G}_T, e)$.
- $U = \{att_1, att_2, \dots, att_n\} = \{1, 2, \dots, n\}.$
- params = $[p, g, e, g_2, h, Y = e(g, g_2)^{\alpha}, T_1, T_2, \dots, T_n],$ where $\alpha \stackrel{R}{\leftarrow} \mathbb{Z}_p, g_2, h, T_i \stackrel{R}{\leftarrow} \mathbb{G}.$
- MK ~

$$\mathsf{SK}_L = [L, d_1 = g^r, d_2 = g_2^{lpha} h^r, d_i = T_i^r, orall i \in L], ext{ where } r \overset{R}{\leftarrow} \mathbb{Z}_n$$

ABE (Sahai and Waters [5])

Encrypt(params[$p, g, e, g_2, h, Y = e(g, g_2)^{\alpha}, T_1, T_2, \dots, T_n$], $W = i_1 \wedge i_2 \wedge \ldots \wedge i_k$, msg $\in \mathbb{G}_T$)

$$\bullet \ \mathsf{CT} = [W, C_1, C_2, C_3],$$
 where $C_1 = \mathsf{msg} \cdot Y^s, C_2 = g^s, C_3 = (h \prod_{j=1}^k T_{i_j})^s, s \overset{R}{\leftarrow} \mathbb{Z}_p$

 $Decrypt(params,SK_L = [L, d_1, d_2, d_i, \forall i \in L], CT =$

$$[W,C_1,C_2,C_3])$$

- If $\{i_1, i_2, \dots, i_k\} \not\subset L$, decryption fails
- If $\{i_1, i_2, \dots, i_k\} \subset L$, then $d = d_2 \prod_{i=1}^k d_{i_i}$ and $\mathsf{msg} = \frac{C_1 \cdot e(d_1, C_3)}{e(d, C_2)}$

ABE (Sahai and Waters [5])

Correctness

- $\mathsf{SK}_L = [L, d_1 = g^r, d_2 = g_2^{\alpha} h^r, d_i = T_i^r, \forall i \in L]$
- CT = $[W, C_1 = \text{msg} \cdot Y^s, C_2 = g^s, C_3 = (h \prod_{j=1}^k T_{i_j})^s],$ where $Y = e(g, g_2)^{\alpha}$ and $d = d_2 \prod_{j=1}^k d_{i_j}$

$$\begin{split} \frac{C_1 \cdot e(d_1, C_3)}{e(d, C_2)} &= \frac{\mathsf{msg} \cdot e(g, g_2)^{\alpha s} \cdot e(g^r, (h \prod_{j=1}^k T_{i_j})^s)}{e(g_2^{\alpha} h^r \prod_{j=1}^k T_{i_j}^r, g^s)} \\ &= \frac{\mathsf{msg} \cdot e(g, g_2)^{\alpha s} \cdot e(g, h \prod_{j=1}^k T_{i_j})^{rs}}{e(g_2^{\alpha}, g^s) \cdot e(h \prod_{j=1}^k T_{i_j}, g)^{rs}} \\ &= \mathsf{msg} \end{split}$$

Security

Theorem

The ABE is semantically secure in selective attribute model, assuming DBDH problem is hard in $(\mathbb{G}, \mathbb{G}_T)$.

Decisional Bilinear Diffie-Hellman (DBDH) Problem

Given $(p, e, g, g^x, g^y, g^z, e(g, g)^{\theta})$ for some $x, y, z \in \mathbb{Z}_p$, decide whether $\theta = xyz$ or a random element in \mathbb{Z}_p .

Conclusion

- IBE is the poster child for PBC
- Pairings a piece of nice mathematics looking for some good uses
- More flexible, more exploitable structure, than methods based on Integer factorization and discrete log

References I

- D. Boneh and X. Boyen. Secure identity based encryption without random oracles. In Proceedings of the Advances in Cryptology (CRYPTO 04), 2004.
- [2] D. Boneh, M. Franklin. Identity Based Encryption from the Weil Pairing. SIAM J. of Computing, Vol. 32, No. 3, pp. 586–615, 2003, Extended Abstract in Crypto 2001.
- [3] D. Boneh, C. Gentry, B. Waters: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258275. Springer 2005.
- [4] A. Lewko, A. Sahai, B. Waters, Revocation systems with very small private keys, in: IEEE Symposium on Security and Privacy, S&P, pages 273–285, 2010.
- [5] A. Sahai and B.Waters.: Fuzzy Identity Based Encryption. In: Advances in Cryptology -Eurocrypt, volume 3494 of LNCS, pages 457-473. Springer, 2005.

Thank You