

Τ

Value Iteration Heuristic Search Methods Real-Time Dynamic programming Policy Iteration Reinforcement Learning

Policy Iteration

- 1. Policy Evaluation
- 2. Policy Improvement

5

Policy Iteration Overview

- Initialize $\pi(s)$ to random actions
- Repeat
 - Step 1: Policy evaluation: calculate $V^{\pi}(s)$ for each s
 - Step 2: Policy improvement: update policy using *one-step look-ahead*
- Until policy doesn't change

Part 1 - Policy Evaluation

7

Fixed Policies

Do the optimal action

Do what $\boldsymbol{\pi}$ says to do

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only **one action per state**
 - ... though the tree's value would depend on which policy we fixed

Computing Utilities for a Fixed Policy

- A new basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π : $V^{\pi}(s) = \text{expected total discounted rewards starting in s and following } \pi$

• Recursive relation (variation of Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \frac{\pi(s)}{\sigma(s)}, s') [R(s, \frac{\pi(s)}{\sigma(s)}, s') + \gamma V^{\pi}(s')]$$

9

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right

Always Go Forward

11

Iterative Policy Evaluation Algorithm

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

- Efficiency: O(S²) per iteration
 - Often converges in much smaller number of iterations compared to VI

12

 $\pi(s)$

 $s, \pi(s)$

s, π(s),s'

Linear Policy Evaluation Algorithm

- Another way to calculate the V's for a fixed policy π ?
- Idea 2: Without the maxes, the Bellman equations are just a *linear* system of equations

- $V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$
- Solve with Matlab (or your favorite linear system solver)
 - S equations, S unknowns = O(S³) and EXACT!
 - In large spaces, probably too expensive

13

Policy Iteration

- 1. Policy Evaluation
- 2. Policy Improvement

Policy Iteration

- Initialize $\pi(s)$ to random actions
- Repeat
 - Step 1: Policy evaluation: calculate $V^{\pi}(s)$ for each s % like we just discussed
 - Step 2: Policy improvement: update policy using one-step look-ahead For each s, what's the **best action** to execute, **assuming agent then follows** π ? Let $\pi'(s)$ = this best action.

 $\pi = \pi'$

Until policy doesn't change

15

Policy Iteration Details

- Initialize $\pi(s)$ to random actions
- Repeat
 - Step 1: Policy evaluation:
 - Initialize k=0; Forall s, V_0^{π} (s) = 0
 - Repeat until V^π converges
 - $\begin{tabular}{l} \blacksquare \mbox{ For each state s,} & V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s,\pi(s),s') [R(s,\pi(s),s') + \gamma V_k^\pi(s')] \\ \blacksquare \mbox{ Increment k} \end{tabular}$
 - Increment k
 - Step 2: Policy improvement:
 - For each state, s, $\pi'(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi}(s') \right]$
 - If $\pi == \pi'$ then it's optimal; return it.
 - Else set $\pi := \pi'$ and loop.

Example

Initialize π_0 to "always go right"

Perform policy evaluation

Perform policy improvement Iterate through states

Has policy changed?

Yes! i += 1

17

Example

 π_1 says "always go up"

Perform policy evaluation

Perform policy improvement Iterate through states

Has policy changed?

No! We have the optimal policy

Policy Iteration Properties

- Can we view PI as search?
 - Space of ...?
 - Search algorithm?
- Policy iteration finds the optimal policy, guaranteed (assuming exact evaluation)!
 - Why does hill-climbing yield optimum?!?
- Often converges (much) faster than VI

19

VI & PI Comparison

- Changing the search space.
- Policy Iteration
 - Search over the space of possible policies
 - Hill-climbing search
- Value Iteration
 - Search over the space of possible Real-valued value functions
 - Compute the resulting policy

23

How Big?

VI & PI Comparison Part II

- Both compute the same thing (V* and π^*) using Bellman Equations
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do fewer iterations
 - Each one is slower (must update all V^{π} and then choose new best π)
 - Modified policy iteration is faster per iteration, since approximate V^{π}
- Which is better?
 - Lots of actions? Choose Policy Iteration
 - Already got a good policy? Policy Iteration
 - Few actions, acyclic? Value Iteration
 - Best of both worlds Modified Policy Iteration

24

Modified Policy Iteration [van Nunen 76]

- initialize π_0 as a random policy
- Repeat

Approximate Policy Evaluation: Compute $V^{\pi_{n-1}}$

by running only few iterations of iterative policy eval.

Policy Improvement: Construct π_n greedy wrt $V^{\pi_{n-1}}$

- Until convergence
- return π_n

What's Next Part II? Reinforcement Learning!

- So far we've assumed agent knows T(s,a,s') and R(s,a,s')
- Often one doesn't know them, must interact to learn them!
 - PS4 (after midterm) will cover this