CSCI 305 HW 3

Isaac Boaz

October 9, 2023

Problem 1

Show that 5n + 12 = O(n) directly from the definition.

Proof.
$$5n + 12 = O(n) \implies 5n + 12 < cn$$

Suppose $c = 6$, then

$$5n + 12 < 6n$$
$$12 < n$$

which shows us that 5n + 12 = O(n) for $n_0 = 12, c = 6$.

Problem 2

Show that $2n + 100 \log n = \Omega(n)$

Proof.
$$2n + 100 \log n = \Omega(n) \implies 2n + 100 \log n > cn$$

Suppose $c = 2$, then

$$2n + 100\log n > 2n$$
$$100\log n > 0$$

which holds true for all n > 1, showing us that $2n + 100 \log n = \Omega(n)$ for $n_0 = 1, c = 2$.

Problem 3

Show that $\lceil 2n \rceil + 5/n = \Theta(n)$.

Proof.

$$\lceil 2n \rceil + 5/n = \Theta(n) \implies$$
$$\lceil 2n \rceil + 5/n = O(n)$$
$$\wedge \lceil 2n \rceil + 5/n = \Omega(n)$$

Part 1

 $\lceil 2n \rceil + 5/n = O(n) \implies \lceil 2n \rceil + 5/n < cn \text{ for some } c.$ Suppose c=3, then

$$\lceil 2n \rceil + 5/n < 3n \rightarrow \lceil 2n \rceil + 5/n \le 2n + 1 + 5/n$$
$$2n + 1 + 5/n < 3n$$
$$1 + 5/n < n$$

which holds true for all $n \geq 5$, showing us that $\lceil 2n \rceil + 5/n = O(n)$ for $n_0 = 5, c = 3$.

Part 2

 $\lceil 2n \rceil + 5/n = \Omega(n) \implies \lceil 2n \rceil + 5/n > cn$ for some c. Suppose c=1, then

$$\lceil 2n \rceil + 5/n > n \to \lceil 2n \rceil + 5/n \ge 2n + 1 + 5/n$$
$$2n + 1 + 5/n > n$$
$$n + \frac{5}{n} > -1$$

which holds true for all $n \ge 0$, showing us that $\lceil 2n \rceil + 5/n = \Omega(n)$ for $n_0 = 0, c = 1$.