16 Dicembre 2021			
Cognome e nome:			
Numero di matricola:			
$\underline{\text{IMPORTANTE:}}$ Scrivere il nome su ogni foglio. Mettere $\underline{\textbf{TASSATIVAMENTE}}$ nei riquadri le risposte, e nel resto del foglio lo svolgimento.			
Esercizio 1. Consideriamo i seguenti vettori colonna			
$v_{1} = \begin{bmatrix} 1\\2\\-2\\0 \end{bmatrix} v_{2} = \begin{bmatrix} t\\3t\\1-2t\\t \end{bmatrix} v_{3} = \begin{bmatrix} -1\\t^{2}-2\\t+2\\4 \end{bmatrix}$			
dove $t \in \mathbb{R}$ è un parametro reale. Per quali valori di t si ha che v_1, v_2, v_3 sono vettori indipendenti?.			

valori di \boldsymbol{t}

Esercizio 2. Consideriamo un'applicazione lineare
$$F: \mathbb{R}^2 \to \mathbb{R}^2$$
 tale che
$$F\begin{bmatrix}2\\5\end{bmatrix} = \begin{bmatrix}1\\0\end{bmatrix} \qquad \text{e} \qquad F\begin{bmatrix}1\\3\end{bmatrix} = \begin{bmatrix}0\\1\end{bmatrix}.$$
 (1) Scrivere la matrice di F rispetto alle basi standard. (2) Scrivere la matrice di $F^{-1} \circ F^{-1}$ rispetto alle basi standard.

F	$F^{-1}\circ F^{-1}$

Esercizio 3. Consideriamo \mathbb{R}^3 col prodotto scalare standard. Sia $A:\mathbb{R}^3\to\mathbb{R}^3$ l'applicazione lineare che nella base standard è rappresentata dalla matrice

$$A = \left(\begin{array}{ccc} 0 & 0 & -2\\ 0 & -2 & 0\\ -2 & 0 & 3 \end{array}\right)$$

- 1) Trovare gli autovalori di A.2) Trovare una base ortonormale di \mathbb{R}^3 che diagonalizzi A.

Autovalori	Base

Esercizio 4. Consideriamo la matrice a coefficienti in $\mathbb R$

$$B=\left(\begin{array}{cc}-1&1\\4&4\end{array}\right)$$

Sia V lo spazio vettoriale delle matrici 2×2 a coefficienti in \mathbb{R} . Calcolare la dimensione del nucleo e dell'immagine dell'applicazione lineare $L:V \to V$ tale che per ogni matrice X vale

$$L(X) = XB - BX$$

dimensione nucleo	dimensione immagine