시스템 정의서(프로젝트 요약서)		
티명	Toridos	
시스템 명칭 (주제)	(국문) AI를 활용한 자율주행 지팡이	
	(영문) Self-driving cane using Al	
Product Owner	성 명	김다민
	소 속	소프트웨어학부
	학 번	2023041066
Scrum Master	성 명	박조현
	소 속	소프트웨어학부
	학 번	2021053017
Tech Info Manager	성 명	배수연
	소 속	소프트웨어학부
	학 번	2023041053
지도교수		홍장의, 조희승

작품(주제)에 대한 요약		
시스템 설명	 1. 시스템 요약 a. 시각장애인·노약자 등 보행 약자를 위한 스마트 보행보조 기기. b. 장애물 알려주기 외에도, 주변 환경 인식 → 경로탐색·결정 → 보행 가이드까지 수행하는 지능형자율주행 지팡이입니다. 2. 핵심 동작 3가지 a. 자율주행 지팡이 - 주변 3D 인식 기반 최적 경로 안내 b. 전동 휠 지팡이 - 전동 이동체로 보행보조 c. 군중 회피형 스마트 지팡이 - 군중 밀집 상황에서안전한 경로 자동 탐색 	
시 운 방	 센싱 단계 (Edge) a. LiDAR / Depth Camera: 주변 3D 지도 생성 b. IMU, 보행 속도 센서: 사용자 상태 수집 c. 군중 센서: 인파 밀집도 측정 문석 단계 (Edge AI) a. 실시간 장애물/군중 감지 b. 보행 경로 탐색 알고리즘 실행 c. 지팡이 모드 ↔ 전동 보조 모드 전환 판단 피드백 단계 (User Interaction) a. 손잡이 진동 / 음성 안내 → 즉각 피드백 b. 전동 모드 시 자동 주행 시작 학습·최적화 단계 (Cloud) a. 누적된 보행 데이터 업로드 b. 군중 흐름, 사용자 보행 패턴 분석 c. 개선된 AI 모델 업데이트 후 지팡이에 배포 	

작품(주제)에 대한 요약 (계속)		
핵심 사용자	1. 시각 장애인 2. 노약자 3. 어린이	
개발 목적	보행 약자의 안전한 보행을 지원하는 지능형 보행 보조 기기.	
주요 핵심	 환경 인식 및 자율 경로 탐색 LiDAR·Depth Camera로 주변 공간을 3D 인식하고, AI가 장애물·보행자·차량을 감지하여 안전한 보행 경로를 자동 탐색하도록 합니다. 보행 가이드 제공 손잡이 진동 패턴과 음성 안내를 통해 직선 이동이나 회전, 장애물 회피 등의 직관적인 보행 피드백을 제공하여 보행자가 이동을 보다 안전하게 이동하도록 돕습니다. 모드 전환 일반 지팡이 모드와 바퀴 휠 모드 두 가지가 존재하며, 일반 평상시에는 바퀴 휠 모드로 보행자 보행이 보다 쉽도록 합니다. 하지만 계단이나 바퀴가 돌기 어려운 진흙이나 잔디밭의 경우에는 일반 지팡이 모드로 사용되도록 합니다. 군중 밀집 회피 카메라·센서로 군중 흐름 데이터를 수집하고, AI 시계열 분석으로 5초 뒤 이동 패턴을 예측하여 혼잡이 덜한 경로로 안내합니다. 엣지-클라우드 하이브리드 지팡이 자체(엣지)에서는 실시간 감지·경로 안내·모드 전환을 수행하고, 클라우드에서는 장기 보행 데이터를 분석하여 위험 패턴을 학습하고 개선된 모델을 업데이트합니다. 	
부가적 제약 사항	 엣지 ai 활용의 경제적 부담 하드웨어 프레임 제작 부담 무게 문제 배터리 지속 시간 안전성 	

작품(주제)에 대한 요약 (계속)		
	6. 법규제한 (전동 이동체 분류 가능성)	
기존 유사 시스템 분석	 [빅테크칼럼] 이종화 기자, 등록 2025.06.25 22:23:07, https://www.newsspace.kr/news/article.html?no=7845 최원광, 이민수, 정명서, 홍권호, 차동혁. 「시각장애인을 위한 반자율주행 스마트 지팡이」, 제38회 제어로봇시스템학회 학술대회 논문집, 2023.06, pp.618-620. (DBpia, NODE11480490, 접속일: 2025.09.11) 	