Отчёт по индивидуальному проекту. Этап 1.

Архитектура компьютера и операционные системы

Рогожина Надежда Александровна, НКАбд-02-22

Содержание

1	Цель работы	6
2	Задание	7
3	Теоретическое введение 3.1 Примеры использования git:	8 8
4	Выполнение лабораторной работы	10
5	Выводы	26
Сп	исок литературы	27

Список иллюстраций

4.1	Загрузка нужной нам версии	10
4.2	Скачивание	10
4.3		11
4.4	Извлечение - выбор папки	11
4.5	Проверка извлечения	12
4.6		12
4.7	Перенос файла	13
4.8	Создание репозитория	13
4.9	Создание репозитория	14
4.10	Проверка	14
	Клонирование репозитория	15
4.12	Проверка	15
4.13	Hugo	15
4.14	Доустановка модуля "GO"	16
4.15	HUGO	16
4.16	Проверка	16
		17
4.18		17
		17
4.20	Шаблон сайта	18
		18
4.22	Github	18
		19
4.24	Клонирование репозитория	19
		19
4.26		20
		20
		20
		21
4.30		21
		22
		22
	•	22
		23
		23
		23
	1,	21

4.38	Шаблон сайта	готовый	_																								2	:5
1.00	macviori carria	IOIODDIII	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		

Список таблиц

3.1	Описание некоторых команд системы кон	троля версий Git	8
J. I	Olivicativic fickoloppia komania cvici cmbi kon		

1 Цель работы

• Создать свой сайт (разместить на Github pages заготовки для персонального сайта)

2 Задание

- Установить необходимое программное обеспечение.
- Скачать шаблон темы сайта.
- Разместить его на хостинге git.
- Установить параметр для URLs сайта.
- Разместить заготовку сайта на Github pages.

3 Теоретическое введение

3.1 Примеры использования git:

- Система контроля версий Git представляет собой набор программ командной строки. Доступ к ним можно получить из терминала посредством ввода команды git с различными опциями.
- Благодаря тому, что Git является распределённой системой контроля версий, резервную копию локального хранилища можно сделать простым копированием или архивацией.

3.2 Основные команды git:

Например, в табл. 3.1 приведено краткое описание основных команд Git.

Таблица 3.1: Описание некоторых команд системы контроля версий Git

Команда	Описание команды									
git init	Создание основного дерева репозитория									
git pull	Получение обновлений (изменений текущего дерева из									
	центрального репозитория									
git push	Отправка всех произведённых изменений локального дерева в									
	центральный репозиторий									
git status	Просмотр списка изменённых файлов в текущей директории									

Команда	Описание команды
git diff	Просмотр текущих изменений
git add.	Добавление все изменённые и/или созданные файлы и/или
	каталоги
git rm име-	Удаление файлов и/или каталогов из индекса репозитория
на_файлов	
git commit	Сохранение всех добавленных изменений и всех изменённых
-am	файлов
'Описание	
коммита'	
git commit	Сохранение добавленный изменений с внесением комментария
	через встроенный редактор
git	Создание новой ветки, базирующейся на текущей
checkout	
-b	
имя_ветки	
git branch	Удаление локальной уже слитой с основным деревом ветки
-d	
имя_ветки	
git branch	Принудительное удаление локальной ветки
-D	
имя_ветки	

Полный список команд можно посмотреть на официальном сайте: Github.com

4 Выполнение лабораторной работы

Загружаем последнюю версию hugo (рис. 4.1):

Рис. 4.1: Загрузка нужной нам версии

Файл скачивается в папку "Загрузки" (рис. 4.2):

Рис. 4.2: Скачивание

По завершении скачивания извлекаем архив в ту же папку, в которой мы находимся:

Рис. 4.3: Извлечение

Рис. 4.4: Извлечение - выбор папки

Рис. 4.5: Проверка извлечения

После извлечения файла, нам его необходимо вырезать и вставить в папку /usr/local/bin:

Рис. 4.6: Вырезание файла

Рис. 4.7: Перенос файла

Далее открываем наш **github** и создаем репозиторий на основе данного нам: Репозиторий

Рис. 4.8: Создание репозитория

При создании даём ему имя *blog*:

Рис. 4.9: Создание репозитория

Проверка:

Рис. 4.10: Проверка

После клонируем данный репозиторий в путь /home/narogozhina/work:

```
[narogozhina@narogozhina work]$ git clone --recursive git@github.com:MikoGreen/blog.git blog
Клонирование в «blog»...
remote: Enumerating objects: 103, done.
Remote: Counting objects: 100% (103/103), done.
remote: Compressing objects: 100% (91/91), done.
remote: Total 103 (delta 3), reused 80 (delta 0), pack-reused 0
Glonyveture oбъектов: 100% (103/103), 5.88 Mu6 | 1.28 Mu6/c, готово.
Определение изменений: 100% (3/3), готово.
[пагодоzhina@narogozhina work]$

S
```

Рис. 4.11: Клонирование репозитория

Рис. 4.12: Проверка

Переходим в папку blog и запускаем hugo:

```
[narogozhina@narogozhina blog]$ hugo
Error: failed to download modules: binary with name "go" not found
Total in 2 ms
[narogozhina@narogozhina blog]$ dnf i
```

Рис. 4.13: Hugo

Так как выдало ошибку, доустановим модуль **go** из-под суперпользователя:

```
[narogozhina@narogozhina blog]$ sudo -i
[sudo] пароль для narogozhina:
[root@narogozhina ~]# dnf install go
```

Рис. 4.14: Доустановка модуля "GO"

Возвращаемся в папку blog и запускаем hugo:

```
енем пользователя root).
[narogozhina@narogozhina blog]$ hugo
hugo: downloading modules —
hugo: collected modules in 44630 ms
Start building sites —
hugo ve.lli0.0-e323493b7826d02763c3b79623952e625402b168+extended linux/amd64 BuildDate=2023-01-17T12:
16:09Z VendorInfo=gohugoio

| EN
| Pages | 55
| Paginator pages | 0
Non-page files | 16
Static files | 9
| Processed images | 37
Aliases | 15
Sitemaps | 1
D Cleaned | 0
Total in 51052 ms
[narogozhina@narogozhina blog]$ | ]
```

Рис. 4.15: HUGO

После установки необходимых модулей проверяем создание папок и файлов:

Рис. 4.16: Проверка

Удаляем каталог public с помощью mc:

Рис. 4.17: Удаляем public

Запускаем hugo server:

```
[narogozhina@narogozhina blog]$ mc
```

Рис. 4.18: Запуск hugo server

```
Cleaned | 0
Built in 1018 ms
Watching for changes in /home/narogozhina/work/blog/{assets,content,data,static}
Watching for changes in /tmp/hugo_cache/modules/filecache/modules/pkg/mod/github.com/wowchemy/wowchemy-hugo-themes/mo
dules/wowchemy/vSev5.7.1-0.20221127215619-58b270a3e103/{archetypes,assets,data,i18n,layouts,static}
Watching for config changes in /home/narogozhina/work/blog/config/_cdfault, /tmp/hozocache/modules/filecache/modules
/pkg/mod/github.com/wowchemy-wowchemy-hugo-themes/modules/wowchemy/v5ev5.7.1-0.20221127215619-58b270a3e103/config_.yam
l, /home/narogozhina/work/blog/go.mod
Environment: "development"
Serving pages from memory
Running in Fast Render Mode. For full rebuilds on change: hugo server --disableFastRender
Web Server is available at http://localhost:1313/ (bind address 127.0.0.1)
Press Ctrl+C to stop
```

Рис. 4.19: Запуск hugo server

Открываем ссылку в браузере и видим сайт:

Рис. 4.20: Шаблон сайта

После проверки в браузере закроем сервер:

```
Web Server is available at http://localhost:13
Press Ctrl+C to stop
^C[narogozhina@narogozhina blog]$
```

Рис. 4.21: Закрытие hugo server

Создание нового репозитория:

Рис. 4.22: Github

Название репозитория должно полностью совпадать с именем владельца + github.io:

Рис. 4.23: Создаем новый репозиторий

Возвращаемся в терминал, в папку work и клонируем туда наш репозиторий (свежесозданный):

Рис. 4.24: Клонирование репозитория

Рис. 4.25: Проверка

Переключаемся на ветку "main":

```
[narogozhina@narogozhina MikoGreen.github.io]$ git checkout -b main
Переключились на новую ветку «main»
[narogozhina@narogozhina MikoGreen github io]$
```

Рис. 4.26: Переключаемся на ветку "main"

Создаем пустой файл README.md, а затем коммитим все изменения и отправляет на github:

```
[narogozhina@narogozhina MikoGreen.github.io]$ touch README.md
[narogozhina@narogozhina MikoGreen.github.io]$ dit add .
bash: dit: команда не найдена...
Aналогичная команда: 'dot'
[narogozhina@narogozhina MikoGreen.github.io]$ git add .
[narogozhina@narogozhina MikoGreen.github.io]$ git commit -am 'Добавили README.md'
[main (корневой коммит) 31cd8bd] Добавили README.md

1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 README.md
[narogozhina@narogozhina MikoGreen.github.io]$ git push origin main
Перечисление объектов: 3, готово.
Подсчет объектов: 100% (3/3), готово.
Запись объектов: 100% (3/3), 904 байта | 904.00 КиБ/с, готово.
Всего 3 (изменений 0), повторно использовано 0 (изменений 0), повторно использовано пакетов 0
То github.com:MikoGreen/MikoGreen.github.io.git
  * [new branch] main -> main
[narogozhina@narogozhina MikoGreen.github.io]$
```

Рис. 4.27: Создание пустого файла и отправка изменений

Рис. 4.28: Проверка

Создаем ветку подмодуля, клонируя репозиторий с нашего Github:

```
[narogozhina@narogozhina blog]$ git submodule add -b main git@github.com:MikoGreen/MikoGreen.github.io.git public 
Клонирование в «/home/narogozhina/work/blog/public»... 
remote: Inumerating objects: 3, done. 
remote: Counting objects: 100% (3/3), done. 
remote: Total 3 (delta 0), reused 3 (delta 0), pack-reused 0 
Получение объектов: 100% (3/3), готово. 
Следующие пути игнорируются одним из ваших файлов .gitignore: 
public 
подсказка: Use -f if you really want to add them. 
подсказка: Turn this message off by running 
подсказка: Turn this message off by running 
подсказка: "git config advice.addIgnoredFile false" 
fatal: Failed to add submodule 'public' 
[narogozhina@narogozhina blog]$
```

Рис. 4.29: Создаем новую ветку

Так как вылезает ошибка .gitignore, то нужно её исправить прежде чем идти дальше - в файле .gitignore закомментим папку public, чтобы этот путь не игнорировался:

Рис. 4.30: Исправление ошибки .gitignore

```
[narogozhina@narogozhina blog]$ cat .gitignore
# IDEs
.idea/
# Hugo
resources/
#public/
jsconfig.json
node_modules/
go.sum
.hugo_build.lock
[narogozhina@narogozhina blog]$
```

Рис. 4.31: Проверка

Повторяем команду:

Рис. 4.32: Повтор введенной команды

После выполнения запускаем hugo:

Рис. 4.33: HUGO

Проверим подключение каталога к репозиторию командой git remote -v:

```
remote
[narogozhina@narogozhina public]$ git remote -v
origin git@github.com:MikoGreen/MikoGreen.github.io.git (fetch)
origin git@github.com:MikoGreen/MikoGreen.github.io.git (push)
[narogozhina@narogozhina public]$
```

Рис. 4.34: Проверка

Добавим изменения на github:

Рис. 4.35: Загружаем обновления

```
create mode 100644 webfonts/fa-v4compatibility.woff2
[пагодографисация public]$ git push origin main
Перечисление объектов: 237, готово.
Подсчет объектов: 100% (237/237), готово.
Сжатие объектов: 100% (237/237), готово.
Запись объектов: 100% (236/236), 6.88 МиБ | 998.00 КиБ/с, готово.
Всего 236 (изменений 56), повторно использовано 0 (изменений 0), повторно использовано пакетов 0 гемотсе: Resolving deltas: 100% (56/56), done.
To github.com:MikoGreen/MikoGreen.github.io.git
    31cd8bd..f37cf85 main -> main
[narogozhina@narogozhina public]$
```

Рис. 4.36: Загружаем обновления

Проверка обновлений:

Рис. 4.37: Проверка github

Открываем наш сайт:

Рис. 4.38: Шаблон сайта готовый

5 Выводы

В ходе данной лабораторной работы я создала шаблон своего сайта, который в будущем буду дорабатывать, а также запрепила навыки работы с системой контроля версий Git.

Список литературы

- 1. Этапы реализации проекта
- 2. Техническая реализация проекта
- 3. Руководство по выполнению первого этапа индивидуального проекта
- 4. Инструменты Git Подмодули