Image Formation

Pinhole Camera

Pinhole camera - Perspective Projection

Figure 5.9: Perspective projection equations derived geometrically. From similar triangles, we have x/f = X/Z and y/f = Y/Z. Similar triangles are indicated by the same color.

Perspective Projection

1. Perspective equations $x=f\frac{X}{Z}$

$$y = f\frac{Y}{Z} \tag{5.7}$$

- 2. "Under perspective projection, distant objects become smaller, through the inverse scaling by Z."
- 3. Magnification = f/Z

Perspective Projection - Magnification

- 1. Magnification m = f / Z
- 2. Area_{image} = Area_{object} * m 2

Vanishing Point

All parallel lines share the same vanishing point

Vanishing Point in Art

Use of Vanishing Point in Art

The Music Lesson, Johannes Vermeer, c. 1662-1664

Vanishing Point in Art

False Perspective

Galleria Spada, Francesco Borromini, 1652

What is the Ideal Pinhole Size?

The pinhole must be tiny, but if it's too tiny it will cause diffraction.

What about Exposure Time?

Pinholes pass less light and hence require long exposures to capture bright images.

$$f = 73 \, mm, \, d = 0.2 \, mm,$$

Exposure, $T = 12 \, s$

Orthographic Projection

References

- 1. Foundations of Computer Vision Chapter 5
- 2. Columbia University https://fpcv.cs.columbia.edu