Theorem 1.1: Function sort (list, n) correctly sorts a set of n/ 1 integers. The result remains in list[0],, list[n-1] set. list[0] (list[1] (
The result remains in list[0],, list[n-1] sot. list[0] \ [n-1]
Proof: We first prove the correctness of the inner loop the 1st land of the 1st loop in lines 7-9 always finds out the min. Value in the range [list[i], list[n-1]]. The min. value in the range [list[i], list[n-1]].
[Claim: The loop in lines 7-9 always fines out to
Proof: In line 6, initially, the min value index is initialized to i.
1 6. I industry Oh, My (VILLE 1000)
Base Case: m=0: i=(n-1). On line 7, j is initialized to (n-1)+1=n
base Case: m=C: i=(n-1). On line 7, j is initialized to (n-1)+1=n which is not less than n The loop doesn't proceed further and min we index is i, which is correct (Easy to see)
the st min volet ut
· Now, tots check for the value Mitt. Collins of
Claim: Before the correct Heration of the loop, the 1st index having the min. value in the range [list[i], list[i]] has been found.
Froof: The proof is by induction on j, where it is no
Bres Cose: [=it]. In lines 8-9, we compare list[i] and list[i]
Base Case: j=i+1. In lines 8-9, we compare list[i] and list[i] and store the index of the min. value in min.
Induction Step: Let our claim hold for an arbitrary j.
Induction Step: Let our claim hold for an arbitrary j. : min stores the let index having the min. value in the range [list[i], list[i]].