CS M51A, Winter 2021, Assignment 8 (Total Mark: 120 points, 12%)

Due: Wed Mar 3rd, 10:00 AM Pacific Time Student Name: Student ID:

Note: You must complete the assignments entirely on your own, without discussing with others.

1. We would like to analyze the following sequential network. It has two input bits x_1 and x_0 , with a single output bit z. Note, both Flip-flops connect to the same CLK, not shown in the figure for simplicity.

(a) (6 Points) Write expressions for z, $y_1(t+1)$ and $y_0(t+1)$ in terms of inputs $(x_1$ and $x_0)$ and present states $(y_1$ and $y_0)$.

(b) (8 Points) Using the expressions, fill in the table below.

PS		Output			
$y_1(t)y_0(t)$	00	01	10	11	z
00					
01					
10					
11					
		$y_1(t+1)$	$y_0(t+1)$		
		IV	^{r}S		

- (c) (4 Points) Is this a Moore or Mealy machine?
- (d) (8 Points) Draw the state diagram for this system

2. We would like to analyze the sequential system shown below. It is a autonomous counter which outputs a fixed string of numbers. The system does not have any input and the output changes at every clock cycle.

a) (6 Points) Write the expressions for T2, T1, and T0.

b) (10 points) Show the state transition table for the system, indicating the next states for each present state.

c) (4 points) Draw the state transition diagram of the system.

 $3. \ \,$ The following sequential system implements a pattern detector.

(4 Points) What pattern does this system detect?

4.	Using D flip-flops, design a sequential system with one binary input $x(t)$ and one binary
	output $z(t)$. The output is 1 whenever pattern 110 are observed; otherwise the output
	is 0 .

a) (4 Points) Draw the state diagram for this system

b) (6 Points) Draw the state transition table

c) (6 Points) Draw the K-maps for each D (input of D flip-flops) and output z
d) (6 Points) Write switching expressions for each D (input of D flip-flops) and output
e) (4 Points) Draw your gate-level design (using gates and D flip-flops)

Using T fli period 6 as			_				-	-	of
	_	_		_	_	_			

The counter does not have an input signal, but moves to the appropriate next state at every clock. Code the states so that the output at each state will be the same as the state assignment, in other words, $z(t) = s(t) \ (z(t), s(t))$ are output and state assignment at time t respectively). Assume that the counter will always start at 000 and will never enter an unused state.

a) (4 Points) Draw the state diagram for this system

b) (6 Points) Show the state transition table

c) (6 Points) Draw the K-maps for each T (input of T flip-flops)

d)	(6	Points)	Write	switching	expressions	for each	T (input	of T	flip-flops)
e)	(6	Points)	Draw	your gate	level design	(using ga	ates and T	Γ flip-	-flops)

6. (6 Points) Using the following decoder, AND and OR Gates, implement the following function. Please show which decoder's input must be connected to x, y and z.

$$z_1 = xyz+xyz'+x'yz$$

 $z_2 = xy'z+xyz'+x'yz$

7. (10 Points) Design a 4-to-16 decoder using only 3-to-8 decoders and NOT gates. Draw your design below. For decoder, please use the same symbol as question 6.