MÉTODOS NUMÉRICOS Curso 2020–2021

Prácticas

Hoja 2. Complementos de álgebra matricial

1 (Multiplicación de matrices por bloques) Comprobar que si $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ y $N = \begin{pmatrix} E & F \\ G & H \end{pmatrix}$ son particiones coherentes por bloques de las matrices M y N (es decir, $A, E \in \mathcal{M}_{n_1}$ y $D, H \in \mathcal{M}_{n_2}$ con $n_1 + n_2 = n$), entonces

$$MN = \begin{pmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{pmatrix}.$$

2 Comprobar, para matrices arbitrarias $A, B \in \mathcal{M}_n$, las siguientes propiedades:

a)
$$\det(AB) = \det(BA) = \det(A)\det(B)$$
 b) $\det(\lambda A) = \lambda^n \det(A)$
c) $\det(A^*) = \overline{\det(A)}$ d) $\det(A) = \prod_{i=1}^n \lambda_i(A)$

siendo $\operatorname{sp}(A) = \{\lambda_1(A), \lambda_2(A), \dots, \lambda_n(A)\}$. <u>Indicación</u>: utilizar los comandos det y eig de MATLAB.

- 3 Escribir un programa que calcule las normas uno, infinito y Fröbenius de una matriz dada. Comparar los resultados con los obtenidos con el comando norm de MATLAB.
- **4** Escribir un programa específico para el producto de una matriz triangular superior (resp. inferior) por un vector y el producto de dos matrices triangulares superiores (resp. inferiores).
- 5 Escribir un programa que calcule las potencias sucesivas de una matriz A, verificando previamente si $|||A|||_1$, $|||A|||_{\infty}$ o $|||A|||_F$ es menor que uno.
- 6 Utilizar el comando eig de MATLAB para calcular $\operatorname{cond}_2(A)$ siendo A la matriz de Wilson

$$\left(\begin{array}{cccc}
10 & 7 & 8 & 7 \\
7 & 5 & 6 & 5 \\
8 & 6 & 10 & 9 \\
7 & 5 & 9 & 10
\end{array}\right).$$

Calcular también, usando el comando cond de MATLAB, los condicionamientos de dicha matriz respecto a las normas $\|\cdot\|_1$, $\|\cdot\|_{\infty}$ y $\|\cdot\|_F$; comprobar que los tres son mayores que $\operatorname{cond}_2(A)$.