Multi-class Logistic Regression

Mengdi Huai 11/08/2017

Aims

- Suppose there are N M-dimensional training data
 - N: the number of training
 - M: dimensions
- Our goal is to classify into one of K multiple exclusive categories (i.e., class)
 - e.g. $K = \{1, 2, 3, ..., K\}$

Multi-class Logistic Regression

 For K classes, we work with soft-max function instead of logistic sigmoid.

$$-p(C_k|\phi) = y_k(\phi) = \frac{\exp(a_k)}{\sum_{j=1}^K \exp(a_j)}$$

- where $a_k = \mathbf{w}_k^T \phi + b_k$, k=1,2,3,...,K
- $-\phi$ denotes the feature vectors
- $-\mathbf{w}_{k} = [w_{k1}, w_{k2}, ..., w_{kM}]^{T}$ and $a = \{a_{1}, ..., a_{K}\}$
- We need to learn a set of K weight vectors (w.

Objective Function

- We use maximum likelihood to determine the parameters $\{w_1, w_2, ..., w_K\}$
 - N: the number of classes
- Objective Function: negative log-likehood Cross-entropy error

$$E(w_1, ..., w_K) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} ln y_{nk}.$$

Where t_{nk} corresponds to sample n and class k. And, $y_{nk} = y_k(\phi_n) = \frac{\exp(w_k^T\phi_n)}{\sum_{j=1}^K \exp(w_k^T\phi_n)}$, where ϕ_n denotes the n-th feature vector.

Gradient

• Gradient of the above error function wrt parameter $oldsymbol{w}_k$

$$\nabla_{w_k} E(w_1, ..., w_K) = -\sum_{n=1}^N (y_{nk} - t_{nk}) \phi_n$$

Where t_{nk} corresponds to sample n and class k. And, $y_{nk} =$

$$y_k(\phi_n) = \frac{\exp(w_k^T \phi_n)}{\sum_{j=1}^K \exp(w_k^T \phi_n)}$$
, where ϕ_n denotes the n -th

feature vector.

Gradient Descent

 We can use the sequential algorithm in which inputs are presented one at a time in which the weight vector is updated using

$$w_k^{\tau+1} = w_k^{\tau} - \eta * \nabla_{w_k} E(w_1, ..., w_K)$$

where τ denotes the iteration number and η denotes the size of step to be used for gradient descent.

Pseudocode

- 1. Initialize w_j^0 , j=1,2,3,...,K 2. for τ from 1 to IteNum 3. for k from 1 to K 4. $w_k^{\tau+1} = w_k^{\tau} \eta * \nabla_{w_k} E(w_1, ..., w_K)$

4.
$$W_k^{\tau+1} = W_k^{\tau} - \eta * \nabla_{w_k} E(w_1, ..., w_K)$$

- 5. endfor
- 6. endfor

^{*}Note that IteNum denotes the number of iterations.

Experiments

Here, we use sklearn.datasets.make_classification()
to generate 3 datasets, each of which contains 100
2-dimensional data points with 3 classes.

- In the following, we give some experiments results.
 - The error cost over iterations
 - How well the final model discriminates the data points

Dataset 1

Loss and Boundaries

Dataset 2

Loss and Boundaries

Dataset 3

Loss and Boundaries

One-hot Matrix

- One-hot vector representation
 - -For each training, its class label is represented as a K-dimensional binary vector, e.g. (0,1,0).

Plot Boundaries Function

```
#nice plotting code from before
def plot contour scatter(X, Y, model, title text, binarizer):
    #sample from a lattice (for the nice visualization)
    x1, x2 = meshgrid(arange(-5,5,0.1), arange(-5,5,0.1))
    Xnew = vstack((x1.ravel(), x2.ravel())).T
    Z = model.predict(Xnew).reshape((Xnew.shape[0],-1))
    Zc = binarizer.inverse transform(Z)
    y = binarizer.inverse transform(Y)
    #plot - contour plot and scatter superimposed
    contourf(arange(-5,5,0.1), arange(-5,5,0.1), Zc.reshape(x1.shape),
             cmap ='Paired',levels=arange(0,4,0.1))
    c_dict = {0:'b', 1:'g', 2:'r', 3:'y', 4:'m', 5:'k', 6:'c'}
    colorsToUse= [c dict[yi] for yi in y]
    scatter(X[:,0], X[:,1], c=colorsToUse)
    title(title text)
    show()
```

