Общая Алгебра IV семестр

Адамович Ольга Маратовна 22 мая 2020 г.

Содержание

Ле	кция №1	5
1	Линейный оператор простого типа	5
2	Корневое подпространство	8
3	Прямая сумма линейных подпространств	10
Ле	кция №2	12
1	Характерестический многочлен оператора A , ограниченно-	
	го на корневом подпространстве	13
2	Размерность корневого подпространства	15
3	Сумма корневых подпространств	16
4	Циклическое пространство, порождаемое корневым векто-	
	ром	18
Ле	кция №3	20
1	Канонический базис циклического пространства	20
2	Жорданов базис	21
3	Построение жорданова базиса в корневом пространстве	22
Ле	кция №4	26
1	Жорданова Форма	26
2	Действительный аналог жордановой формы	27
3	Единственность жордановой формы	28
4	Минимальный многочлен линейного оператора и его мат-	
	рицы	28
Ле	кция №5	33
1	Теорема Гамильтона-Кэли	33
2	Кольца и поля	34
3	Следствия аксиом	36
4	Подкольно	38

Содержание 2

	4.1 Критерии того, что подмножества кольца является подкольцом
По	кция №6 40
	•
1	Подполе
	1.1 Критерий того, что подмножество поля является
0	подполем
2	Целостное кольцо
3	Поле отношений целостного кольца
Ле	кция №7 40
1	Евклидово кольцо
2	Целые гауссовы числа
3	Наибольший общий делитель
4	Идеалы кольца
Ле	кция №8 53
1	Максимальный идеал кольца
2	Кольцо главных идеалов
3	Делимость в ЦК в терминах главных идеалов
4	Простые элементы в КГИ
5	Наибольший общий делитель в КГИ
6	Факториальность кольца главных идеалов
Лe	кция №9
1	Факторкольцо
2	Критерии того, что факторкольцо является полем 6
3	Нильпотентный радикал кольца 6
Лe	кция №10 65
1	Гомоморфизм колец
2	Изоморфизм колец
3	Теорема о гомоморфизме колец
4	Прямые суммы колец
	± ' ' '

Содержание 3

5	Идемпотенты. Критерий разложимости кольца в прямую
	сумму собственных подколец
Ле	кция №11 74
1	Китайская теорема об остатках(КТО)
2	Решение системы сравнений
3	Характеристика поля
Ле	кция №12
1	Простое подполе
2	Расширение поля. Степень расширения
Ле	кция №13
1	Алгебраические элементы расширения поля
2	Простое алгебраическое расширение поля
3	Минимальный многочлен алгебраического элемента рас-
	ширения поля
Ле	кция №14
1	Эндоморфизм Фробениуса
2	Производная многочлена над произвольным полем 96
3	Кратные корни многочленов
Ле	кция №15
1	Конечные подгруппы мультипликативной группы поля 100
2	Поле разложения многочлена
Ле	кция №16
1	Существование и единственность конечного поля порядка
	p^n - поля Галуа
2	Существование над полем \mathbb{F}_p неприводимых многочленов
	любой положительной степени

Содержание 4

Лекция №1

Линейный оператор простого типа

V — линейное пространство над полем K $A \in L(V, V)$ — линейный оператор в пространстве V

Опр. $v \in V$ называется собственным вектором A с собственным

значением
$$\lambda \in K \Leftrightarrow$$

$$\begin{cases} 1) \ v \neq \overline{0} \\ 2) \ Av = \lambda v \end{cases} \Leftrightarrow \begin{cases} 1) \ v \neq 0 \\ 2) \ (A - \lambda \varepsilon)v = \overline{0} \end{cases}$$

Если $\dim V = n < \infty$,

$$e = \langle e_1, ..., e_n \rangle$$
 — базис V ,

то $A \longmapsto A_e \in \mathbb{R}^{n \times n}$ матрица оператора A в базисе e

Если
$$f - < f_1, ..., f_n > -$$
 другой базис, то

$$A_f=T_{e\longmapsto f}^{-1}A_eT_{e\longmapsto f},\quad (det\ T\neq 0,T_{e\longmapsto f}$$
— матрица перехода) $A_f\sim A_e$

Опр. f — собственный базис оператора A - базис пр-ва V, состоящий из собственных векторов оператора A.

Опр. A - оператор простого типа, если существует собственный базис оператора A.

$$f$$
 - собственный базис $\Leftrightarrow A_f=egin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_k \end{pmatrix}=diag(\lambda_1,...,\lambda_n)$

 λ - собственное значение - корень характеристического многочлена

$$f_A(t) = det(A - t\varepsilon) = det(A_e - tE) \; \; \forall$$
 базиса с пр-ва V

$$f_A(t) = \det(A - t\varepsilon) = \det(A_e - tE) \ \, \forall \, \text{базиса c пр-ва } V$$

$$v \text{- собственный вектор c собственным значением } \lambda \, \Leftrightarrow \left\{ \begin{array}{l} v = eX \\ x \neq 0 \\ (A_e - \lambda E)X = 0 \end{array} \right.$$

 V_{λ} - собственное подпространство, отвечающее корню λ характеристиче-

ского уравнения

$$V_{\lambda} = \{v \in V : Av = \lambda v\} = Ker(A - \lambda \varepsilon)$$

 $\dim V_{\lambda} = \dim Ker(A - \lambda \varepsilon) = \det(A - \lambda \varepsilon) = \dim V - rk(A - \lambda \varepsilon) =$
 $= n - rk(A_e - \lambda E) = k_{\lambda}$ - геометрическая кратность корня λ .

 A_e называется диагонализуемой, если она подобна диагональной.

 A_e диагонализуема $\Leftrightarrow A$ — оператор простого типа.

Теорема 1.

Критерий того, что $A \in L(V,V)$, $\dim V = n < \infty$ является оператором простого типа.

$$\begin{cases} 1) \ f_A(t) = det(A - \lambda \varepsilon) = (t - \lambda_1)^{S_1}(t - \lambda_2)^{S_2}...(t - \lambda_k)^{S_k} \\ \text{расскладывается над } K \text{ на линейные множители } \lambda_i \in K, \\ s_i - \text{кратность корня, } \lambda_i \quad i = \overline{1, k} \\ 2) \ dim \ Ker(A - \lambda_1 \varepsilon) = s_{\lambda_i} \quad \forall i = \overline{1, k} \end{cases}$$

Если $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ выполняется, то \exists собственный базис f — объединение

базисов пространств V_{λ_i} $i = \overline{1, k}$

$$A_f = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_k \end{pmatrix}$$

Note. Если не выполняется условие 1), то можно расширить поле.

Например, $\mathbb{R} \subset \mathbb{C}$

Если не выполняется 2), найти собственный базис невозможно \Rightarrow невозможно диагонализовать матрицу оператора.

7

$$J_n(\lambda) = \begin{pmatrix} \lambda & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \dots & \lambda & 1 \\ 0 & \dots & \dots & \lambda \end{pmatrix} \in \mathbb{R}^{n \times n}$$
 - жорданова клетка
$$\det(J_n(\lambda) - tE) = \begin{vmatrix} \lambda - t & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda - t \end{vmatrix} = (\lambda - t)^n$$

$$t = \lambda, \quad s_{t=\lambda} = n$$

$$\begin{cases} X \neq 0 \\ (J_n(\lambda) - \lambda E)X = 0 \end{cases}$$

$$J_n(\lambda) - \lambda E = \begin{pmatrix} 0 & 1 & \dots & 0 \\ \vdots & 0 & \ddots & \vdots \\ \vdots & \ddots & 0 & 1 \\ 0 & \dots & \dots & 0 \end{pmatrix} = J_n(0) \ rk J_n(0) = n - 1 \Rightarrow$$

$$\Rightarrow k_{t=\lambda} = dim \; V_{\lambda} = 1 < s_{t=\lambda} = n,$$
 при $n > 1$

$$\begin{cases} X_2 = 0 \\ \vdots \\ X_n = 0 \end{cases}$$

$$X_{oo} = \begin{pmatrix} c \\ 0 \\ \vdots \\ 0 \end{pmatrix} = c \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \Phi CP = < \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} >, \quad v_{t=\lambda} = c \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad c \neq 0$$

$$n > 1 \Rightarrow \dim V_{\lambda} = 1 < S_{\lambda} = n$$

 $J_n(\lambda)$ диагонализовать невозможно.

Мы докажем, что в случае выполнения условия 1, матрица оператора подобна квазидиагональной матрице с клетками Жордана на диагонали.

$$A_e \sim \begin{pmatrix} J(\lambda_1) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & J(\lambda_k) \end{pmatrix}$$

2 Корневое подпространство

Опр. $v \in V$ называется корневым вектором оператора A, соответствующим $\lambda \in K$, если $\exists m \in \mathbb{Z}_+ = \mathbb{N} \cup \{0\} : (A - \lambda \varepsilon)^m v = 0$.

 $min \{ m \in \mathbb{Z}_+ : (A - \lambda \varepsilon)^m v = 0 \}$ называется высотой вектора v и обозначается $ht_\lambda(v)$

v - собственный вектор оператора A с собственым значением $\lambda \Rightarrow$

v - корневой вектор $ht_{\lambda}(v) = 1$,

 $\overline{0}$ - корневой вектор $ht_{\lambda}(0)=0 \ \ \forall \, \lambda$

Пример.

$$P_n = \{p(t) \in \mathbb{R}[t] : deg \, p(t) \leqslant n\}$$
 $A = \frac{d}{dt}, \quad \lambda = 0.$ — единственное собственное значение $ht_0(1) = 1$ $ht_0(t) = 2$ $ht_0(t^l) = l+1, \quad l = \overline{0,n}$

Утв. 1. Если v — корневой вектор оператора A высоты $ht_{\lambda}(v)=m,$ то $(A-\lambda\varepsilon)^{m-1}v$ — собственный вектор A

Доказательство:

1)
$$(A - \lambda \varepsilon)^{m-1} v \neq \overline{0}$$

2)
$$(A - \lambda \varepsilon)(A - \lambda \varepsilon)^{m-1}v = (A - \lambda \varepsilon)^m v = \overline{0}$$

Следствие.

 λ — собственное значение вектора $(A-\lambda\varepsilon)^{m-1}v$ оператора A — корень характеристического уравнения оператора A

Утв. 2.

Пусть λ - корень характеристичекого уравнения оператора A,

$$V^{\lambda} = \{ v \in V : \exists m \in \mathbb{Z}_+ : (A - \lambda \varepsilon)^m v = \overline{0} \} \Rightarrow$$

 V^{λ} — линейное подпространство пространства V.

Док-во:

0) $V^{\lambda} \neq \emptyset$, так как $\overline{0} \in V^{\lambda}$

Лекция №1

8

$$1) \ v_1, v_2 \in V^{\lambda}, \text{ то есть } \left\{ \begin{array}{l} \exists \ m_1 \in \mathbb{Z}_+ : (A - \lambda \varepsilon)^{m_1} v_1 = \overline{0} \\ \exists \ m_2 \in \mathbb{Z}_+ : (A - \lambda \varepsilon)^{m_2} v_2 = 0 \end{array} \right. \Rightarrow \\ \exists \ m_3 \Rightarrow m = \max\{m_1, m_2\} \\ (A - \lambda \varepsilon)^m (v_1 + v_2) = (A - \lambda \varepsilon)^m v_1 + (A - \lambda \varepsilon)^m v_2 = \overline{0} + \overline{0} = \overline{0} \Rightarrow v_1 + v_2 \in V^{\lambda} \\ 2) \ v \in V^{\lambda}, \text{ то есть } \exists \ m \in \mathbb{Z}_+ : (A - \lambda \varepsilon)^m v = 0 \Rightarrow \\ \forall \ \alpha \in k : (A - \lambda \varepsilon)^m (\alpha v) = \alpha (A - \lambda \varepsilon)^m v = \alpha \cdot \overline{0} = \overline{0} \Rightarrow \alpha v \in V^{\lambda} \\ 0) \\ 1) \\ 2) \right\} \Rightarrow V^{\lambda} - \text{линейное подпространство } V$$

Опр. V^{λ} называется корневым подпространством пространства V, отвечающим собственному значению λ .

Note: 1)
$$V_{\lambda} \subset V^{\lambda}$$

2) $V_{\lambda} = Ker(A - \lambda \varepsilon) \subset Ker(A - \lambda \varepsilon)^{2} \subset ... \subset Ker(A - \lambda \varepsilon)^{l} \subset ...$
 $Ker(A - \lambda \varepsilon)^{l} = \{v \in V^{\lambda} : ht_{\lambda}(v) \leq l\}$
3) $V^{\lambda} = \bigcup_{l=1}^{\infty} Ker(A - \lambda \varepsilon)^{l}$

Утв. 3. Если $\dim V = n < \infty,$ то $\exists q \in \mathbb{Z}_+ : V^{\lambda} = Ker(A - \lambda \varepsilon)^q$

Onp.
$$A \in L(V, V)$$
,

U — линейное подпространство пространства V

U — называется инвариантным подпространством относительно действия оператора A, если $\forall v \in U \quad Av \in U.$

Утв. 4. Пусть
$$A \in L(V, V), \ \alpha \in K$$
, тогда

U — инвариантное относительно A подпространство. \Leftrightarrow

U — инвариантное относительно A — $\alpha\varepsilon$ подпространство

Док-во:

$$v \in U, Av \in U$$

 $(A - \alpha \varepsilon)v = Av - \alpha v \in U \Rightarrow U$ — инвариантное относительно $A - \alpha \varepsilon$

Утв. 5.
$$v \in V^{\lambda}$$
 : $ht_{\lambda}(v) = m \Rightarrow w = (A - \lambda \varepsilon)v \in V^{\lambda}, ht_{\lambda}(w) = m - 1$ Док-во очевидно.

Следствие. V^{λ} - инвариантное относительно A подпространство V

Док-во: V^{λ} инвариантно относительно $A-\lambda \varepsilon \Rightarrow V^{\lambda}$ инвариантно относительно A

3 Прямая сумма линейных подпространств

Опр. (Внутр.) прямой суммы линейных пространств

V - линейное пространство

 $V_1, V_2, ..., V_k$ - его линейные подпространства

 $V = V_1 \oplus V_2 \oplus ... \oplus V_k$, если любой элемент $v \in V$ единственным образом представляется в виде суммы элементов V_i , $i = \overline{1, k}$, т.е.

$$\begin{cases} 1) \ \forall \ v \in V \ \exists \ v_i \in V_i \ \ i = \overline{1, k} : v = v_1 + \dots + v_k \\ 2) \ v = v_1 + \dots + v_k = v'_1 + \dots + v'_k, \ v_i, v'_i \in V_i \ \ i = \overline{1, k} \Rightarrow v_i = v'_i \ \forall \ i = \overline{1, k} \end{cases}$$

Утв. 6. V — линейное пространство,

 V_1, V_2 — его подпространства

$$V = V_1 \oplus V_2 \Leftrightarrow \begin{cases} 1) \ V = V_1 + V_2 \ (\forall v \ \exists v_1 \in V_1, v_2 \in V_2 : v = v_1 + v_2) \\ 2) \ V_1 \cap V_2 = \{0\} \end{cases}$$

Док-во:

$$\oplus 1) = 1$$

$$V = V_1 + V_2$$
 единственным образом $\Rightarrow V_1 \cap V_2 = \{0\}$

Пусть
$$v \in V_1 \cap V_2$$
 $v = v \in V_1 + 0 \in V_2 = 0 \in V_1 + v \in V_2$ одно пр. $\Leftrightarrow v = 0 \Rightarrow V_1 \cap V_2 = \{0\}$

$$(1) = 1$$

Пусть
$$v = v_1 + v_2 = v'_1 + v'_2$$

Пусть
$$V_1 \cap V_2 = \{0\}$$

$$V_1 \ni v_1 - v_1' = v_2' - v_2 \in V_2$$

$$v_1 - v_1' = v_2' - v_2 \in V_1 \cap V_2 = \{0\}$$

$$\begin{cases} v_1 - v_1' = 0 \\ v_2' - v_2 = 0 \end{cases} \Rightarrow \begin{cases} v_1 = v_1' \\ v_2' = v_2 \end{cases}$$

Утв. 7.

V - линейное пространство.

 $V_1,...,V_k$ - его подпространства

$$V = V_1 \oplus \ldots \oplus V_k$$

$$\begin{cases} 1) \forall v \in V \ \exists v_i \in V_i, \ i = \overline{1, k} : v = v_1 + \dots + v_k \\ 2') v_1 + \dots + v_k = \overline{0}, \ v_i \in V_i \ i = \overline{1, k} \Rightarrow v_i = \overline{0} \end{cases}$$

Док-во:

$$1) = 1$$

$$2) \Rightarrow 2'$$

 $\overline{0}$ представляется единственным образом $\Rightarrow v_i = \overline{0} \quad \forall i = \overline{1,k}$

$$2') \Rightarrow 2)$$

Пусть
$$v = v_1 + ... + v_k = v'_1 + ... + v'_k \Rightarrow$$

 $\Rightarrow (v_1 - v'_1) + (v_2 - v'_2) + ... + (v_k - v'_k) = \overline{0}$
 $v_i - v'_i \in V_i \ \forall i = \overline{1, k}$
 $\Rightarrow v_i - v'_i = \overline{0} \Rightarrow v_i = v'_i$

12

Лекция №2

Утв. 1. V - линейное пространство, $\dim V = n < \infty$ V_i - его подпространства, $i = \overline{1,k}$ e_i - базис V_i , $e_i = < e_{i1},...,e_{im}>$, $\dim V_i = n_i$, $e = e_1 \cup e_2 \cup ... \cup e_k$, $e = < e_{11},...,e_{1n_1},e_{21},...,e_{2n_2},...,e_{k1},...,e_{kn_k}>$, тогда $V = V_1 \oplus V_2 \oplus ... \oplus V_k$

e - базис пространства V

Док-во:

$$V = V_1 \oplus V_2 \oplus \ldots \oplus V_k \Leftrightarrow \left\{ \begin{array}{l} 1) \ \forall \ v \in V \ \exists \ v_i \in V_i, i = \overline{1,k} \ : \ v = v_1 + \ldots + v_k \\ 2') \ v_1 + \ldots + v_k = \overline{0}, \ v_i \in V_i, \quad i = \overline{1,k} \Rightarrow v_i = 0 \end{array} \right.$$

$$\left\{ \begin{array}{l} 1) \Leftrightarrow \text{полнота системы } e \\ 2') \Leftrightarrow \text{линейная независимость системы } e \end{array} \right\} \text{доказать самим.}$$

Утв. 2. V — линейное пространство, $dim~V=n<\infty,$ V_i — его подпространства, $i=\overline{1,k}$

тогда
$$V=V_1\oplus\ldots\oplus V_k\Leftrightarrow \left\{ \begin{array}{l} 1')\;dim\;V=\sum\limits_{i=1}^kdim\;V_i\\ 2')\;v_1+\ldots v_k=0\Rightarrow v_i=0\;\forall i=\overline{1,k} \end{array} \right.$$

Лок-во

Рассмотрим e_i — базис V_i , $dim\ V_i = n_i,\ e_i = < e_{i\,1},...,e_{i\,ni} > e = e_1 \cup ... \cup e_k$, количество векторов в e — $\sum_{i=1}^n dim V_i$, $V = V_1 \oplus ... \oplus V_k \Leftrightarrow e$ — базис $V \Leftrightarrow e$ — максимальная линейно н

$$V=V_1\oplus ...\oplus V_k\Leftrightarrow e$$
 — базис $V\Leftrightarrow e$ — максимальная линейно независимая система вектороов $\Leftrightarrow \left\{ egin{array}{l} 1')\ dim\ V=\sum\limits_{i=1}^n dim V_i \ 2')\ v_1+...v_k=0\Rightarrow v_i=0\ orall i$

Утв. 3. Пусть V — линейное пространство, $dim\ V=n<\infty,$ $A\in L(V,V)$ V_i — его инвариантные относительно A подпространства, $i=\overline{1,k}$ $V=V_1\oplus ...\oplus V_k$ e_i — базис V_i

$$e=e_1\cup\ldots\cup e_k$$
 — базис V

тогда A_e — блочно-диагональная (квазидиагональная матрица)

Док-во:

Т.к. $e = \langle e_{i1}, ..., e_{in_i} \rangle$ - базис инвариантного пространства V_i , $Ae_{ij} \in L[e_{i1}, ..., e_{in_i}]$

$$A_{e} = \begin{pmatrix} \begin{array}{c|ccc} e_{1} & e_{2} & & e_{k} \\ \hline n_{1} \times n_{1} & 0 & \cdot & 0 \\ \hline 0 & n_{2} \times n_{2} & \cdot & \cdot \\ & \cdot & \cdot & \cdot & \cdot \\ \hline 0 & \cdot & \cdot & n_{k} \times n_{k} \end{array} \right)$$

Вдоль диагонали стоят матрицы $A|_{V_ie_i} \in K^{n_j \times n_i}, i = \overline{1, k}$.

Характерестический многочлен оператора A, ограниченного на корневом подпространстве

Утв. 4.

Пусть V - линейное пространство, $\dim V = n < \infty$, $A \in L(V, V)$, λ - корень характеристического многочлена $f_A(t) = det(A - t\varepsilon)$ V^{λ} - корневое подпространство, соответсвтвующее $\lambda,$ $\dim V^{\lambda} = p$,

тогда
$$f_{A|_{V^{\lambda}}}(t) = det(A|_{V^{\lambda}} - \lambda \varepsilon) = (\lambda - t)^p$$

Док-во:
$$V^{\lambda} = \bigcup_{i=1}^{\infty} Ker(A - \lambda \varepsilon)$$

$$dim \ V = n < \infty \Rightarrow$$

$$V_{\lambda} = Ker(A - \lambda \varepsilon) \subset Ker(A - \lambda \varepsilon)^2 \subset ... \subset Ker(A - \lambda \varepsilon)^q = V^{\lambda},$$

$$q - \text{ минимальная такая степень m, что } Ker(A - \lambda \varepsilon)^m = V^{\lambda}$$

$$dim \ V^{\lambda} = p = dim \ Ker(A - \lambda \varepsilon)^q$$
 Пусть f_1 — базис $Ker(A - \lambda \varepsilon) = V_{\lambda}$
$$\exists f_2 - \text{ дополняет } f_1 \text{ до базиса } Ker(A - \lambda \varepsilon)^2 \Rightarrow f_1 \cup f_2 - \text{ базис } Ker(A - \lambda \varepsilon)^2$$

$$f=f_1\cup f_2\cup...\cup f_q$$
 — базис $Ker(A-\lambdaarepsilon)^q=V^\lambda$

 V^{λ} — инвариантное относительно A — подпространство \Rightarrow инвариантное относительно A — $\lambda \varepsilon$ подпространство

$$(A - \lambda \varepsilon)|_{V_f^{\lambda}}$$

v — собственный вектор

$$(A - \lambda \varepsilon)v = 0$$

$$(A - \lambda \varepsilon) f_1 \subset \{0\}$$

$$(A - \lambda \varepsilon) f_i \subset L[f_1 \cup ... \cup f_{i-1}]$$

$$(A - \lambda \varepsilon)|_{V_f^{\lambda}} = \begin{pmatrix} f_1 & f_2 & f_3 & f_i \\ 0_1 & & & \\ & 0_2 & & & \\ & & & 0_3 & & \\ & & & & & \\ 0 & & & & & & 0_p \end{pmatrix}$$

- верхняя треугольная матрица с нулями на диагонали (на диагонали стоят нулевые матрицы $o_i \in K^{r_i \times r_i}$, где $r_i = rk \ f_i = dim \ L[f_i], \ i = \overline{1,p}$).

$$A|_{V_f^{\lambda}} = \begin{pmatrix} \lambda E_1 & & & & & \\ \lambda E_1 & & & & & \\ & \lambda E_2 & & & & \\ & & \lambda E_2 & & & \\ & & & \lambda E_3 & & \\ & & & & \lambda E_3 & & \\ & & & & & \lambda E_p \end{pmatrix} \in K^{p \times p}, \quad \lambda E^i \in K^{r_i \times r_i}$$

- верхняя треугольная матрица с λ на диагонали $f_{A|_{V^\lambda}}(t)=det(A|_{V^\lambda}-t\mathcal{E})=det(A|_{V^\lambda_f}-tE)=(\lambda-t)^p$

Следствие:

 $\mu \in K$

 $(A-\mu\mathcal{E})|_{V^{\lambda}}$ невырожденный оператор $\Leftrightarrow \mu \neq \lambda$

Док-во:

 V^{λ} - инвариантное подпространство относительно $A - \mu \mathcal{E}$ $det(A - \mu \mathcal{E})|_{V^{\lambda}} = det(A|_{V^{\lambda}} - \mu \mathcal{E}) = f_{A|_{V^{\lambda}}}(\mu) = (\lambda - \mu)^p \neq 0 \quad \Leftrightarrow \quad \lambda \neq \mu.$

2 Размерность корневого подпространства

Теорема 1. Если V — линейное пространство, $dim\ V = n < \infty$, $A \in L(V,V),\ \lambda$ — корень $f_A(t)$ кратности s,

To $\dim V^{\lambda} = s$

Док-во:

 V^{λ} — инвариантное относительно A подпространство, $dim\ V^{\lambda} = p$

Пусть e_1 — его базис, $rk e_1 = p$

Базис e_1 можно дополнить до базиса всего пространства V системой e_2 $rk\,e_2=n-p$

$$e = e_1 \cup e_2$$
 — базис V

Если
$$W = L[e_2] = L[e_{p+1}, ..., e_n]$$

$$V' = V^{\lambda} \oplus W \Rightarrow V^{\lambda} \cap W = \{\overline{0}\}\$$

$$A_e = \left(\begin{array}{c|c} A_{V^{\lambda}e_1} & D \\ \hline 0 & C \end{array}\right)$$

$$f_A(t) = det(A_e - tE) = det(A|_{V^{\lambda}} - tE)det(C - tE) = (\lambda - t)^p det(C - tE) \Rightarrow p \leqslant s$$

Пусть $p \leqslant s$, то есть λ является корнем $det(C - \lambda E)$

Рассмотрим линейный оператор $C \in L(W, W)$,

матрица которого в базисе e_2 *C*

$$\exists w \in W : \begin{cases} w \neq \overline{0} \\ Cw = \lambda w \end{cases}$$

 $Aw = u + \lambda w$, где $u \in V^{\lambda}$

$$u = Aw - \lambda w = (A - \lambda \mathcal{E})w \in V^{\lambda} \ \Rightarrow \ w \in V^{\lambda} \Rightarrow$$

$$\Rightarrow \overline{0} \neq w \in V^{\lambda} \cap W \ \stackrel{\diamondsuit}{\nearrow} \ \Rightarrow \ p = s$$

3 Сумма корневых подпространств

Теорема 2. Пусть V — линейное пространство, $dim \ V = n < \infty,$ $A \in L(V,V),$

 V_i — корневое подпространство, соответсвующее корню λ_i характеристичего многочлена $f_A(t)$,

$$\lambda_i \neq \lambda_j, \ i \neq j, \ i, j = \overline{1, k}.$$

Тогда
$$v_1 + \ldots + v_k = \overline{0}, \quad v_i \in V_i \Rightarrow v_i = \overline{0}, \quad i = \overline{1, k},$$

(r.e.
$$V_1 + ... + V_k = V_1 \oplus ... \oplus V_k$$
).

Док-во:

Индукция по k.

Для k=1, очевидно,

$$v_1 = \overline{0} \Rightarrow v_1 = \overline{0}$$

Пусть утверждение теоремы верно для k-1 пространства, т.е.

$$v_1 + \dots + v_{k-1} = \overline{0} \Rightarrow v_i = \overline{0} \ i = \overline{1, k-1}$$

Докажем, что утверждение верно для k пространств.

Рассмотрим

$$v_1 + v_2 + \dots + v_k = \overline{0}$$
 (*),

$$v_k \in V^{\lambda_k}, \ ht_{\lambda_k}(v_k) = m$$

Применим к (*) $(A - \lambda_k \mathcal{E})^m$

$$(A - \lambda_k \mathcal{E})^m v_1 + (A - \lambda_k \mathcal{E})^m v_2 + \dots + (A - \lambda_k \mathcal{E})^m v_{k-1} + (A - \lambda_k \mathcal{E})^m v_k = \overline{0}$$

$$(A - \lambda_k \mathcal{E})^m v_k = \overline{0} \Rightarrow$$

$$\Rightarrow \sum\limits_{i=1}^{k-1}(A-\lambda_karepsilon)^mv_i=0,\ \ (A-\lambda_karepsilon)^mv_i\in V\Rightarrow$$
 \Rightarrow по предположению индукции

$$(A - \lambda_k \varepsilon)^m v_i = \overline{0} \quad \forall i = \overline{1, k - 1}$$

 $A-\lambda_k \varepsilon$ невырожденный оператор на $V_i=V^{\lambda_i}$ $i=\overline{1,k-1}\Rightarrow$

$$\Rightarrow v_i = 0 \quad \forall i = 1, k - 1$$

$$v_i = \overline{0} \quad i = \overline{1, k - 1}$$

$$v_1 + \dots + v_k = \overline{0}$$

$$\Rightarrow v_k = \overline{0} \Rightarrow v_i = \overline{0} \quad \forall i = \overline{1, k}$$

Теорема 3.

Пусть V — линейное пространство, $dim V = n < \infty$, $A \in L(V, V)$

$$f_A(t) = (t - \lambda_1)^{s_1} ... (t - \lambda_k)^{s_k},$$

$$\lambda_i \in K, \ \lambda_i \neq \lambda_i, \ i \neq j, \ i, j = \overline{1, k}.$$

Тогда
$$V = V^{\lambda_1} \oplus V^{\lambda_2} \oplus ... \oplus V^{\lambda_k}$$

Док-во:

1')
$$\dim V = n = \sum_{i=1}^{k} s_i = \sum_{i=1}^{k} \dim V^{\lambda_i}$$

2') $v_1 + v_2 + \dots + v_k = \overline{0}, \ v_i \in V^{\lambda_i} \implies v_i = \overline{0} \ \forall i = \overline{1, k}$

$$\begin{cases} 1') \\ 2') \end{cases} \Leftrightarrow V = V^{\lambda_1} \oplus \dots \oplus V^{\lambda_k}$$

Следствие: Если V - линейное пространтсво, $\dim V = n < \infty$,

$$A \in L(V, V),$$

$$f_A(t) = \prod_{i=1}^k (t - \lambda_i)^{s_i}, \quad \lambda_i \in k, \quad \lambda_i \neq \lambda_j, \quad i \neq j, \quad i, j = \overline{1, k},$$

 e_i - базис V^{λ_i} ,

 $e = e_1 \cup ... \cup e_k$

тогда e - базис V и матрица A_e - квазидиагональная (блочно диагональная).

Док-во:

$$V = V^{\lambda_1} \oplus ... \oplus V^{\lambda_k} \implies e$$
 - базис V

 V^{λ_i} - инвариантные пространства $i=\overline{1,k}$

На диагонали стоят матрицы $A|_{V^{\lambda_i}}$

Циклическое пространство, порождаемое корневым вектором

Опр. $v \in V^{\lambda}$ — корневой вектор оператора A, отвечающий $\lambda \in K$, $ht_{\lambda}(t) = m$

Рассмотрим оператор $(A - \lambda \mathcal{E}) = B$

$$< v, Bv, B^2v, ..., B^{m-1}v >$$

 $L[v, Bv, ..., B^{m-1}v]$ — циклическое подпространство корневого вектора vвысоты m.

Утв. 5. $L[v, Bv, ..., B^{m-1}v]$ — инвариантное относительно A линейное подпростариство V.

Док-во: очевидно $L[v, Bv, ..., B^{m-1}v]$ инвариантное подпространство относительно $B \Rightarrow$ и относительно A.

$$w = \alpha_0 v + \alpha_1 B v + \dots + \alpha_{m-1} B^{m-1} v$$

$$Bw = \alpha_0 Bw + \alpha_1 B^2 v + ... + \alpha_{m-1} \overline{0} \in L[v, Bv, ..., B^{m-1}v]$$

Лекция №3

1 Канонический базис циклического пространства

Утв. 1. Пусть V — линейное пространство, $A \in L(V, V)$,

 λ — собственное значение $A, v \in V^{\lambda}, ht_{\lambda}(v) = m$

$$B = A - \lambda \varepsilon$$

Тогда $v, Bv, B^2v, ..., B^{m-1}v$ — линейно независимы.

Док-во:

Пусть $\alpha_1 v + \alpha_2 B v + \dots + \alpha_m B^{m-1} v = \overline{0}$ (*)

$$ht_{\lambda}(t) = m \Rightarrow B^m v = \overline{0}, \text{ a } B^{m-1} v \neq \overline{0}$$

Подействуем на (*) B^{m-1}

$$(*) \Rightarrow \alpha_1 B^{m-1} v = \overline{0} \Rightarrow \alpha_1 = 0$$

Действуем на (*) B^{m-k} , $k=\overline{2,m-1}\Rightarrow\alpha_2=\alpha_3=\ldots=\alpha_{m-1}=0$ $\alpha_m B^{m-1}v=\overline{0}\Rightarrow\alpha_m=0\Rightarrow\alpha_i=0$ $i=\overline{1,m}$

Следствие. $< B^{m-1}v,...,Bv,v> = e$ - канонический базис циклического пространства, порождённого вектором v,

$$L_v = L[v, Bv, ..., B^{m-1}v]$$

Утв. 2. Пусть V - линейное пространство,

$$A \in L(V, V),$$

 λ - собственное значение A,

$$v \in V^{\lambda}, ht_{\lambda}(v) = m.$$

Тогда
$$A|_{L_{v_e}} = J_m(\lambda) = \begin{pmatrix} \lambda & 1 & \dots & 0 \\ \vdots & \lambda & \ddots & \vdots \\ \vdots & \ddots & \lambda & 1 \\ 0 & \dots & \dots & \lambda \end{pmatrix}$$

Док-во:

Рассмотрим $B|_{L_v} = (A - \lambda \varepsilon)|_{L_v}$.

Далее ограничение $B|_{L_v}$ обозначается B.

$$B(B^{m-1}v) = B^{m}v = \overline{0} = e \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\dots \dots$$

$$B(B^{m-k}v) = B^{m-(k-1)}v = e \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\dots$$

$$Bv = Bv = e \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}$$

$$m-1$$

$$0 \quad 0 \quad 1 \quad \dots \quad 0$$

$$0 \quad 0 \quad 1 \quad \dots \quad 0$$

$$0 \quad 0 \quad 0 \quad \dots \quad 1$$

$$0 \quad 0 \quad 0 \quad \dots \quad 1$$

$$0 \quad 0 \quad 0 \quad \dots \quad 0$$

$$A|_{L_{v_e}} = B|_{L_{v_e}} + \lambda E = J_m(\lambda).$$

2 Жорданов базис

Опр. Базис конечномерного линейного пространства V называется жордановым базисом линейного оператора, действующего в этом пространстве, если матрица оператора в этом базисе квазидиагональна (блочно-диагональная), на диагонали стоят клетки Жордана $J_l(\lambda_k)$, где λ_k — собственное значение оператора.

Такая матрица называется жордановой (нормальной) формой (матрицы) оператора.

"Привести матрицу оператора к жорданорвой форме" означает найти

жорданов базис и матрицу оператора в этом базисе.

3 Построение жорданова базиса в корневом пространстве

Теорема 1.

Пусть V - линейное пространство, $\dim V = n < \infty$,

 $A \in L(V, V),$

 λ - собственное значение A,

 V^{λ} - корневое подпространство, соответствующее λ .

Тогда \exists жорданов базис в V^{λ} для оператора $A|_{V^{\lambda}}$.

Док-во:

Рассмотрим $B = A - \lambda \varepsilon$ и $Ker B^k$ k = 1, ...

Пусть $dim Ker B^k = n_k = n - rk B^k = n - r_k, \quad r_k = rk B^k$

$$V_{\lambda} = Ker \, B \subset Ker \, B^2 \subset \dots \subset Ker \, B^q = V^{\lambda}$$

 $\dim V^{\lambda} = s_{\lambda}$

 $q = min\{k \in \mathbb{N} : dim Ker B^k = s_{\lambda}, \text{ r.e. } r_k = n - s_{\lambda}\}.$

Пусть e_k - базис пространства $Ker B^k$

Построим жорданов базис оператора $A|_{V^{\lambda}}$ в пространстве V^{λ} с помощью "жордановой лестницы".

На k-ом этапе этой лестницы будем располагать векторы $v: ht_{\lambda}(v) = k$

	$ht_{\lambda}(v)$								
f_q	q	f_q		_					
f_{q-1}	q-1	Bf_q	g_{q-1}						
f_{q-2}	q-2	$B^2 f_q$	Bg_{q-1}	g_{q-2}					
:	:				-				
f_k	k	$B^{q-k}f_q$			Bg_{k+1}	g_k			
f_{k-1}	k-1	$B^{q-(k-1)}$			B^2g_{k+1}	Bg_k	g_{k-1}		
:	:	i i						•	
f_1	1	$B^{q-1}f_q$						Bg_2	g_1

Рассмотрим $f_q = \langle f_{q_1}, f_{q_2} ... f_{q_{(n_q-n_{q-1})}} \rangle$ — систему линейно-независимых векторов, дополняющих базис e_{q-1} пространства $Ker\ B^{q-1}$ до базиса $Ker\ B^q$

$$e_{q-1}\cup f_q$$
 — базис $Ker\ B^q=V^\lambda$
$$ht_\lambda(f_{qj})=q\quad j=\overline{1,n_q-n_{q-1}}$$

$$V^\lambda=Ker\ B^q=Ker\ B^{q-1}\oplus L[f_q]\Rightarrow Ker\ B^{q-1}\cap L[f_q]=\{\overline{0}\}$$

Поместим f_q на этаже q.

Подействуем на все векторы f_q оператором B, получим систему

$$B f_q = \langle B f_{q1}, ..., B f_{q(n_q - n_{q-1})} \rangle \subset Ker B^{q-1},$$

высота этих векторов равна q-1

Рассмотрим $e_{q-2} \cup B f_q$ и докажем, что эта система линейно независима.

Пусть
$$\sum_{j=1}^{n_{q-2}} \alpha_j e_{(q-2)j} + \sum_{j=1}^{n_q-n_{q-1}} \beta_j B F_{qj} = \overline{0}$$
 (*)

Подействуем на (*) $B^{q-2} \Rightarrow$

$$\Rightarrow B^{q-1}(\sum_{j=1}^{n_q-n_{q-1}}\beta_j f_{qj}) = \overline{0}$$

$$\sum_{j=1}^{n_q - n_{q-1}} \beta_j f_{qj} \in Ker \, B^{q-1} \cap L[f_q] = \{ \overline{0} \}$$

$$\sum_{j=1}^{n_q-n_{q-1}} \beta_j f_{qj} = \overline{0} \ \Rightarrow \ \beta_j = 0 \ \forall \ j = \overline{1,n_q-n_{q-1}},$$
 т.к. f_q - линейно независимая система

$$(*)$$
 \Rightarrow $\sum_{j=1}^{n_{q-2}} \alpha_j e_{(q-2)j} = \overline{0}$ \Rightarrow $\alpha_j = 0$ $\forall j = \overline{1, n_{q-2}},$ т.к. e_{q-2} - линейно независимая система \Rightarrow

 \Rightarrow линейно-независимую систему $e_{q-2} \cup Bf_q$ можно дополнить до базиса всего пространства $Ker~B^{q-1}$

Пусть g_{q-1} — дополняет линейно-независимую систему векторов $e_{q-2}\cup Bf_q,$ $e_{q-2}\cup Bf_q\cup g_{q-1}$ — базис $Ker\ B^{q-1}$ g_{q-1} размещаем на этаже q-1

Обозначим $Bf_q \cup g_{q-1} = f_{q-1}$

Продолжаем спускаться вниз.

Если f_k — система на этаже k

$$e_{k-1} \cup f_k$$
 — базис $Ker B^k \Rightarrow$

$$Ker\ B^k = Ker\ B^{k-1} \oplus L[f_k] \Rightarrow Ker\ B^{k-1} \cap L[f_k] = \{0\}$$

 $\Rightarrow e_{k-2} \cup B f_k$ - линейно независимая система (доказываем с помощью действия B^{k-2} на линейную комбинацию векторов этой системы, равную $\overline{0}$).

Линейно независимую систему $e_{k-2} \cup B$ f_k дополняем до базиса Ker B^{k-1} и т.д. спускаемся вниз.

На этаже 1 получим $B\,f_2 \cup g_1 = f_1$ - базис $Ker\,B = V_\lambda$

$$\begin{split} V^{\lambda} &= Ker\,B^q = Ker\,B^{q-1} \oplus L[f_q] = Ker\,B^{q-2} \oplus L[f_{q-1}] \oplus L[f_q] \ldots = \\ &= Ker\,B \oplus L[f_2] \oplus \ldots \oplus L[f_q] = \\ &= L[f_1] \oplus L[f_2] \oplus \ldots \oplus L[f_q], \quad f_k \text{ - базис } L[f_k] \quad \Rightarrow \\ &\Rightarrow \quad f_1 \cup f_2 \cup \ldots \cup f_q = f \text{ - базис } V^{\lambda} \end{split}$$

В каждом столбце жордановой лестницы высоты k расположены векторы, образующие канонический базис циклическоого пространства вектора v, стоящего в этом столбце на последнем этаже k.

Можно перенумеровать векторы системы f, начиная с левого нижнего угла лестницы, двигаясь вверх по столбцу до конца, далее переходя к следующему столбцу на первом этаже.

Мы получим базис j_{λ} пространства V^{λ} - объединение канонических базисов циклических подпространства

В каждом из этих базисов матрица ограничения оператора A на соответствующее циклическое подпространство является жордановой клеткой. Базис j_{λ} будет жордановым базисом пространства V^{λ} .

 $A|_{V^{\lambda}j_{\lambda}}$ — жорданова форма с клетками Жордана $J_{k}(\lambda)$ на диагонали различного размера, отвечающими λ .

25

Следствие 1.

Число клеток Жордана в жордановой форме $A|_{V^{\lambda}}$ равно $k_{\lambda} = \dim V_{\lambda}$.

Док-во:

Это число совпадает с числом столбцов в жордановой лестнице \Rightarrow равно числу векторов на первом этаже.

На первом этаже стоит f_1 - базис $Ker\ B=V_\lambda,$ количество векторов в нём $\dim Ker\ B=\dim V_\lambda=k_\lambda$

Следствие 2.

Число жордановых клеток $J_k(\lambda)$, отвечающих λ , размера $k \times k$ в $A|_{V^{\lambda_{j_{\lambda}}}}$

$$N_{J_k(\lambda)}=r_{k+1}-2r_k+r_{k-1},$$
 где $r_k=rk(A-\lambda\mathcal{E})^k,\ k=\overline{1,q}$

Док-во:

 $N_{J_k(\lambda)}$ равно числу столбцов жордановой лестницы для V^{λ} высоты k, т.е. числу векторов в системе g_k

$$f_k = Bf_{k+1} \cup g_k$$

Система f_k содержит $n_k - n_{k-1}$ векторов $(n_k = \dim Ker(A - \lambda \mathcal{E})^k)$.

Система Bf_{k+1} , как и f_{k+1} , содержит $n_{k+1} - n_k$ векторов.

 \Rightarrow система g_k содержит

$$(n_k - nk - 1) - (n_{k+1} - n_k) = -n_{k+1} + 2n_k - n_{k-1} = -(n - r_{k+1}) + 2(n - r_k) - (n - r_{k-1}) = r_{k+1} - 2r_k + r_{k-1} = N_{J_k(\lambda)}, \quad k = \overline{1, q}$$

При этом
$$r_{q+1} = r_q$$
,

$$r_0 = rk(A - \lambda \mathcal{E})^0 = rk E = n.$$

Лекция №4

1 Жорданова Форма

Теорема 1.

Пусть V — линейное пространство надо полем K,

$$dim V = n < \infty, \quad A \in L(V, V)$$

Если $f_A(t) = (\lambda_1 - t)^{s_1} (\lambda_2 - t)^{s_2} ... (\lambda_k - t)^{s_k}$ — раскладывается над K на линейные множители, $\lambda_i \in K$ $i = \overline{1, k}, \quad \lambda_i \neq \lambda_j \quad i, j = \overline{1, k},$

то \exists жорданов базис j оператора A в пространстве V, в этом базисе матрица оператора A_j квазидиагональная, на диагонали - жордановы клетки $J(\lambda_i)$ $i=\overline{1,k}$ различных размеров.

Док-во:

 $V = V^{\lambda_1} \oplus ... \oplus V^{\lambda_k}$

В $\forall V^{\lambda_i}$ \exists жорданов базис j_i

 $j=j_1\cup j_2\cup ...\cup j_k$ - жорданов базис в пространстве V

 $A|_{V^{\lambda_i}}$ — квазидиагональная матрица, на диагонали жордановы клетки соответствуют λ_i

Следствие. В условиях теоремы 1

 $A_e \sim A_j$ - жордановой форме

(матрица оператора приводится к жордановой форме)

Теорема 2. V - линейное пространство над \mathbb{C} , $\dim V = n < \infty \Rightarrow \exists$ жорданов базис $\forall A \in L(V, V)$ в пространстве V.

Следствие. ∀ комплексная матрица подобна жордановой форме (приводится к жордановой форме).

Note. Если над полем K $f_A(t)$ не раскладывается на линейные множители, то \exists поле $L \supset K$:

 $f_A(t)$ раскладывается над L на линейные множители.

Из Т.1. $\Rightarrow \exists$ жорданов базис оператора A в пространстве V над полем

L.

(Если V над \mathbb{R} и $f_A(t)$ имеет комплексные корни, то V нужно рассмотреть над $\mathbb{C} \Rightarrow \exists$ жорданов базис A в V над \mathbb{C} .)

Действительный аналог жордановой формы 2

Утв. V — линейное пространство над \mathbb{R} $dim V = n < \infty$ $f_A(t)$ имеет корень $\lambda = \alpha + i\beta \in \mathbb{C}$ $\beta \neq 0$ то $f_A(t)$ имеет и корень $\overline{\lambda} = \alpha - i\beta \in \mathbb{C}$ $\forall J_k(\lambda) \longmapsto J_k(\overline{\lambda})$ и

$$C = \left(egin{array}{c|c} J_k(\lambda)_e & 0 \\ \hline 0 & J_k(\overline{\lambda})_e \end{array}
ight) \in \mathbb{C}^{2k \times 2k}$$
 в базисе $e \cup f$;

то \exists базис b в V над \mathbb{R} , в котором матрица C имеет вид:

Док-во:
$$\exists \ e = e_1...e_k : \begin{cases} Ae_1 = \lambda e_1 \\ Ae_i = \lambda e_i + e_{i-1} \end{cases}$$

$$\exists \ f = \overline{e} = \langle f_1...f_k \rangle = \langle \overline{e}_1,...,\overline{e}_k \rangle$$

$$\begin{cases} Af_1 = \lambda f_1 \\ Af_i = \overline{\lambda} f_i + f_{i-1} \\ e_j = g_j + ih_j \quad g_j, h_j \in \mathbb{R}^n \end{cases}$$

$$f = g_j - ih_j \quad \langle g_1, h_1, g_2, h_2, ..., g_k, h_k \rangle = b \text{ базис.}$$

Следствие.

 \forall матрицу над \mathbb{R} можно привести к квазидиагональному виду, где на диагонали стоят жордановы клетки, отвечающие действительным корням характерестического многочлена $f_A(t)$, и действительные аналоги жордановых клеток, отвечающих парам комплексных сопряженных корней $f_A(t)$.

3 Единственность жордановой формы

Теорема 3. Если \exists жорданова форма матрицы оператора, то она единственна с точностью до перестановки жордановых клеток.

Без доказательства.

4 Минимальный многочлен линейного оператора и его матрицы

V — линейное пространство над полем K, $dim\ V=n<\infty,\quad A\in L(V,V),\quad f(t)\in K[t],\quad f(A)\in L(V,V)$ Если e — базис $V,\ \exists \varPhi_e:A\longmapsto A_e$ — изоморфизм алгебр L(V,V) и $K^{n\times n}$ $f(A)_e=f(A_e)...$

Опр. $f(t) \in K[t]$ называется аннулирующим многочленом $A \in L(V,V)$ и $A_e \in K^{n \times n}$, если $f(A) = \overline{0} (\Leftrightarrow f(A_e) = \overline{0})$.

Утв. 1. Если $\dim V = n < \infty, \quad A \in L(V, V),$ то \exists аннулирующий многочлен для оператора A.

Док-во:

 $dim V = n < \infty \Rightarrow dim L(V, V) = n^2 < \infty.$ $\exists k \in \mathbb{N} : A^0 = E, A, ..., A^{k-1}$ - линейно независимы,

а $E,A,...,A^{k-1},A^k$ - линейно зависимы. $A^k=\alpha_1A^{k-1}+..+a_kE$ $f(t)=t^k-\alpha_1t^{n-1}-...-a_k$ - аннулирующий многочлен оператора A.

Опр. Назовём минимальным многочленом оператора A $m_A(t) \in K[t]$ - его аннулирующий многочлен минимальной степени.

Утв. 2. \forall аннулирующий многочлен оператора A делится на его минимальный многочлен.

Если
$$f(t) \in K[t] : f(A) = \overline{0} \Rightarrow f(t):m_A(t)$$

Доказательство:

$$K$$
 — поле $\Rightarrow k[t]$ — евклидово кольцо $\exists q(t), r(t): f(t) = m_A(t)q(t) + r(t),$ где $\begin{bmatrix} r(t) = 0 \\ deg \ r(t) < deg \ m_A(t) \end{bmatrix}$ Пусть $r(t) \neq 0 \Rightarrow f(A) = m_A(A)q(A) + r(A)$ $\overline{0} = \overline{0} + r(A)$ $r(A) = \overline{0}$, но $deg \ r(t) < deg \ m_A(t) \ \times r(t) = 0$

Следствие. Минимальные многочлены одного и того же оператора ассоциированы, т.е. отличаются друг от друга множителем $\alpha \in K^*$.

Док-во:

$$m_A^{(1)}(t), m_A^{(2)}(t)$$
 - минимальные многочлены
$$\begin{cases} m_A^{(1)}(t) \vdots m_A^{(2)}(t) \\ m_A^{(2)}(t) \vdots m_A^{(1)}(t) \end{cases} \Leftrightarrow m_A^{(1)}(t) \sim m_A^{(2)}(t)$$

Note. Если положить в $m_A(t)$ старший коэффициент равным 1, то $m_A(t)$ будет определён однозначно.

Опр. $m_A(t) \in K[t]$ - минимальный многочлен для A, если:

- 1) $m_A(A) = 0$,
- 2) $deg \, m_A(t) = min\{deg \, f(t): f(t) \in K[t]$ и $f(A) = \overline{0}\}$

30

3) Старший коэффициент $m_A(t)$ $\alpha_0 = 1$.

Note. $m_A(t) = m_{A_e}(t) \, \forall$ базиса e пространства V.

Примеры:

1)
$$A = O$$

 $m_O(t) = t = m_0(t)$
2) $A = \mathcal{E}$
 $m_{\mathcal{E}}(t) = t - 1 = m_E(t)$

Если
$$J_k(\lambda) = \begin{pmatrix} \lambda & 1 & \dots & 0 \\ \vdots & \lambda & \ddots & \vdots \\ \vdots & \ddots & \lambda & 1 \\ 0 & \dots & \dots & \lambda \end{pmatrix} \in K^{k \times k} \Rightarrow m_{J_k(\lambda)} = (t - \lambda)^k$$

Док-во:

 $J_K(\lambda)$ — матрица оператора A, действующего в циклическом пространстве L_v вектора $v \in V^{\lambda}$, $ht_{\lambda}(v) = k$, в каноническом базисе этого пространства $\langle B^{k-1}v, B^{k-2}v, ..., v \rangle = e$, где $B = (A - \lambda \mathcal{E})$ $B^k w = (A - \lambda \mathcal{E})^k w = \overline{0} \quad \forall w \in L_v \Rightarrow (A - \lambda \mathcal{E})^k = O \text{ B } L_v$ и $(A - \lambda \mathcal{E})^l v \neq \overline{0} \quad \forall l = \overline{1, k - 1} \Rightarrow (A - \lambda \mathcal{E})^l \neq O$ в L_v $(t - \lambda)^k = m_{J_k(\lambda)}(t)$

Утв. 4.

Если $V = V_1 \oplus ... \oplus V_k$,

 $dim V = n < \infty$, V_i - подпространство V, $i = \overline{1,k}$, V_i - инвариантно относительно A,

$$A \in L(V, V),$$

то
$$m_A(t) = \text{ HOK}\{m_{A|_{V_1}}(t), m_{A|_{V_2}}(t), \dots, m_{A|_{V_k}}(t)\}.$$

Док-во:

$$e_i$$
 - базис V_i

$$e=e_1\cup e_2\cup...\cup e_k$$
 - базис V

$$A_e = \begin{pmatrix} A|_{V_1e_1} & 0 \\ & \ddots & \\ 0 & A|_{V_1e_k} \end{pmatrix}$$

 $m_A(t)$ - аннулирующий многочлен для $A|_{V_i} \Rightarrow m_A(t)$: $m_{A|_{V_i}}(t), \;\; i=\overline{1,k}$ $\Rightarrow m_A(t) = \text{HOK}\{m|_{A_{V_1}}, \dots, m|_{A_{V_k}}\}$

Минимальный многочлен оператора A, действующего в корневом пространстве V^{λ} , $dim V^{\lambda} = s_{\lambda}$,

$$m_{A|_{V^{\lambda}}}(t)=(t-\lambda)^q$$
, где $q_{\lambda}=min\{k\in N\ :\ dim\ Ker(A-\lambda\mathcal{E})^k=s_{\lambda}\}$

- максимальный размер жордановой клетки, отвечающей λ .

Док-во:

 V^{λ} является прямой суммой циклических пространств.

В каждом из которых в каноническом базисе матрица оператора - жорданова клетка $J_k(\lambda)$

$$m_{J_k(\lambda)} = (t - \lambda)^k$$

 $m_{A|_{V^{\lambda}}}=(t-\lambda)^{q_{\lambda}},$ т.к. q_{λ} — максимальный размер соответсвующей жордановой клетки.

Теорема 4.

Если V - линейное пространство над K, $dim V = n < \infty$,

$$A \in L(V, V)$$
,

 $f_A(t)=(\lambda_1-t)^{S_1}...(\lambda_k-t)^{S_k}$ раскладывается на линейные множители, то $m_A(t)=\prod_{i=1}^k(t-\lambda_1)^{q_{\lambda_i}}$ Док-во: \Leftarrow утв. 4 и 5.

Следствие 1. Жорданова форма оператора A диагональна $\Leftrightarrow m_A(t)$ не имеет кратных корней.

Док-во:

Жорданова форма оператора A диагональна \Leftrightarrow все жордановы клетки

имеют размер $1 \Leftrightarrow q_i = 1, \quad i = \overline{1, k}$

Следствие 2. Если жорданова форма оператора A диагональна \Rightarrow жорданова форма его ограничения $A|_U$ на \forall инвариантное подпространство $U \subset V$ также диагональна.

Док-во:

Пусть U - инвариантное подпространство.

$$m_A(A) = \overline{0} \Rightarrow m_A(A|_U) = \overline{0}$$
 \Downarrow

$$m_A(t) \vdots m_{A|_U}(t)$$

жорданова форма оператора A диагональная \Rightarrow

 $\Rightarrow m_A(t)$ не имеет кратных корней, т.е.

$$m_A(t) = (t - \lambda_1)...(t - \lambda_k) \Rightarrow$$

 $\Rightarrow m_{A|_U}(t)$ не имеет кратных корней \Rightarrow

 \Rightarrow жорданова форма $A|_U$ диагональна.

Лекция №5

1 Теорема Гамильтона-Кэли

Если V - линейное пространство над $K,\ dim\, V=n<\infty,\ A\in L(V,V),$ то $f_A(A)=\overline{0}.$

Док-во:

$$m_A(t) = m_{A_e}(t)$$
 $f_A(t) = f_{A_e}(t)$ $f_A(t) = f_{A_e}(t)$ $f_A(t) = f_{A_e}(t)$

1) Пусть $f_A(t)$ раскладывается на линейные множитнии над K.

$$f_A(t) = (\lambda_1 - t)^{s_1} ... (\lambda_k - t)^{s_k}$$

 $\Rightarrow m_{A_i}(t) = m_A(t) = (t - \lambda_1)^{q_1} ... (t - \lambda_k)^{q_k}$, где $q_i \leqslant s_i$.
 $f_A(t) : m_A(t) \Rightarrow f_A(A) = 0$

2) Если $f_A(t)$ не раскладывается на линейные множители над K, то (докажем позже) \exists поле $L \supset K$: над L $f_A(t)$ раскладывается на линейные множители.

Рассмотрим V как линейное пространство над L, A_e как матрицу с элементами из L п.1) $\Rightarrow f_{A_e}(A_e) = \overline{0}$, но $f_{A_e}(t)$ не зависит от того, над L или над K мы рассмотрим A_e .

$$f_{A_e}(A_e) = \overline{0} \Rightarrow f_A(A) = 0$$

Пример:

$$A\in L(V,V), dim\ V=2$$

$$A^2-(tr\ A)A+(det\ A)E=\overline{0},\ {\rm т. K}\ f_A(t)=t^2-(tr\ A)t+det\ A$$

2 Кольца и поля

Опр.

A — множество с двумя операциями оператора $a,b\longmapsto \left\{\begin{array}{l} a+b\in A\\ ab\in A \end{array}\right.$ удовлетворяющими аксиомам

$$1) \quad a+b=b+a \ \forall \ a,b \in A$$

2)
$$(a+b) + c = a + (b+c) \forall a, b, c \in A$$

3)
$$\exists \overline{0} : a + \overline{0} = \overline{0} + a = a \ \forall a \in A$$

4)
$$\forall a \in A \exists (-a) : a + (-a) = (-a) + a = \overline{0}$$

5)
$$\begin{cases} a(b+c) = ab+bc \\ (a+b)c = ac+bc \end{cases} \forall a,b,c \in A$$
 дистрибутивность

1) - 5)
$$\Rightarrow A$$
 - кольцо

6)
$$ab = ba \quad \forall a, b \in A$$

1) - 6)
$$\Rightarrow$$
 A - коммутативное кольцо

7)
$$(ab)c = a(bc) \quad \forall a, b, c \in A$$

$$(1)$$
 - 5), 7) ⇒ A - ассоциативное кольцо

8)
$$\exists 1 \in A : 1a = a1 = a \quad \forall a \in A$$

1) - 5), 8)
$$\Rightarrow A$$
 - кольцо с 1

1) - 8)
$$\Rightarrow A$$
 - коммутативное ассоциативное кольцо с 1 $(A$ - KAK1)

9)
$$\forall a \in A \setminus \{\overline{0}\} \ \exists \ a^{-1} \in A: \ aa^{-1} = a^{-1}a = 1$$

10)
$$|A| > 1$$

$$\frac{1)-10)\Rightarrow A-$$
 поле $1)$ - 5), 7) - 10) $\Rightarrow A$ - тело

Примеры:

- 1) $(V^3, +, [,])$
 - 1) 5) выполняются
 - 6) не выполняется

$$[a,b] = -[b,a]$$
 антикоммутативность $\Leftrightarrow [a,a] = \overline{0}$ (*)

7) не выполняется, но

$$[[a,b],c]+[[b,c],a]+[[c,a],b]=\overline{0}$$
 тождество Якоби (**)

8) не выполняется

$$\forall a \in V^3 \setminus \{\overline{0}\}\$$

$$[a,b] \neq a \ \forall b \in V^3$$

 $(V^3,+,[\;])$ - некоммутативное, неассоциативное кольцо без 1 $\left\{ egin{array}{l} *) \\ ** \end{array}
ight. \Rightarrow$ - кольцо Ли

2) Q_8 - группа кватернионов

$$Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$$

$$\mathbb{H} = \{a + bi + cj + dk, \ a, b, c, d \in \mathbb{R}\}$$

$$(a_1 + b_1i + c_1j + d_1k) + (a_2 + b_2i + c_2j + d_2k) =$$

$$= (a_1 + a_2) + (b_1 + b_2)i + (c_1 + c_2)j + (d_1 + d_2)k$$

$$(a_1 + b_1i + c_1j + d_1k) (a_2 + b_2i + c_2j + d_2k) =$$

$$= a_1a_2 + b_1a_2i + c_1a_2j + d_1a_2j + a_1b_2i + \dots + d_1d_2k^2$$

ℍ - тело кватернионов

$$1 \mapsto E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad i \mapsto I = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix},$$
$$j \mapsto J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad k \mapsto K = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

$$\mathbb{H} = \left\{ \begin{pmatrix} a+bi & c+di \\ -c+di & a-bi \end{pmatrix}, \quad a,b,c,d \in \mathbb{R} \right\} =$$

$$= \left\{ \begin{pmatrix} \frac{\alpha}{-\beta} & \frac{\beta}{\alpha} \end{pmatrix}, \quad \alpha = a+ib, \ \beta = c+id \in \mathbb{C} \right\}.$$

1) - 5) выполняются.

6) не выполняется.

$$ij = k$$
 $ji = -k$

$$h = a + bi + cj + dk \neq \overline{0} \iff a^2 + b^2 + c^2 + d^2 \neq 0.$$

$$\forall h \in \mathbb{H} \backslash \{\overline{0}\} \quad \exists \ (a+bi+cj+dk)^{-1} =$$

$$= \frac{a - bi - cj - dk}{(a + bi + cj + dk)(a - bi - cj - dk)} = \frac{a - bi - cj - dk}{a^2 + b^2 + c^2 + d^2} \in \mathbb{H},$$

т.к.
$$(a + bi + cj + dk)(a - bi - cj - dk) = a^2 + abi + acj + adk - abi + b^2 + bck - bdi - acj - bck + c^2 + cdi - adk + bdj - cdi + d^2 = a^2 + b^2 + c^2 + d^2$$

	i	j	k
i	-1	k	-j
j	-k	-1	i
k	j	-i	-1

3 Следствия аксиом

- **1)** $\overline{0}$ единиствненный
- **2)** $\forall a \in A \ (-a)$ единственный
- 3) $\forall a, b \in A \exists !$ решение a + x = b x = b + (-a) = b a разность
- 1)-3) были доказаны в прошлом семестре как следствия аксиом группы.

$$\mathbf{4)} \quad \overline{0} \cdot a = a \cdot \overline{0} = \overline{0}$$

Док-во:

$$\overline{0} \cdot a = (\overline{0} + \overline{0})a = \overline{0}a + \overline{0}$$

$$\exists (-\overline{0} \cdot a) \in A$$

$$\overline{0} = \overline{0} \cdot a$$

Аналогично $a \cdot \overline{0} = \overline{0}$

5) Если $1 \in A$, то она единственная

Док-во:

Пусть e_1, e_2 - единицы,

$$e_1 = e_1 e_2 = e_2.$$

6) Если $\overline{0} = 1 \Rightarrow A = {\overline{0}}$

Док-во:

Пусть
$$a \neq 0$$
, $a \in A$

$$\overline{0} = \overline{0} \cdot a = 1 \cdot a = a \$$

7) (-a)b = a(-b) = -ab

Док-во:

$$ab + (-a)b = (a + (-a))b = 0 \cdot b = 0$$

$$(-a)b + ab = 0 \Rightarrow -ab = (-a)b$$

Аналогично a(-b) = -ab

8) Если A — ассоциативно-коммутативное кольцо с 1 и $\exists a^{-1}$, то a^{-1} единственный.

Док-во:

$$a_2^{-1} = 1a_2^{-1} = (a_1^{-1}a)a_2^{-1} = a_1^{-1}(a \ a_2^{-1}) = a_1^{-1}1 = a_1^{-1}$$

9) *A* - тело

 $\forall a, b \in A, \ a \neq 0$

 $\exists!$ решение ax = b, $x = a^{-1}b$

 $\exists !$ решение xa = b, $x = ba^{-1}$

Док-во: доказать самим. (доказывается стандартно)

4 Подкольцо

Опр. Непустое подмножество кольца называется подкольцом, если оно само является кольцом относительно операций, определенных в кольце и ограниченных на это поддмножество.

Note.

Пусть B — подкольцо кольца A, тогда

A — комутативное кольцо $\Rightarrow B$ — комутативное кольцо

A — ассоциативное кольцо $\Rightarrow B$ — ассоциативное кольцо

A — кольцо с $1 \Rightarrow B$ — может быть $1 \in A$, может быть своя единица,

B может вообще не иметь единицы.

Примеры: Пусть $A = (\mathbb{R}^{n \times n}, +, \cdot) = gl(\mathbb{R}, n)$ - некоммутативное ассоциативное кольцо с 1 = E.

1)
$$B = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}, a, b, c \in \mathbb{R} \right\}$$
 -

- некоммутативное ассоциативное кольцо с 1 = E

$$\mathbf{2)} \quad B = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}, \quad a \in \mathbb{R} \right\} -$$

- коммутативное ассоциативное кольцо с $1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \neq E$.

$$\mathbf{3)} \quad B = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}, \quad a, b \in \mathbb{R} \right\} -$$

- некоммутативное ассоциативное кольцо без 1, т.к.

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad \forall \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \in B$$

4.1 Критерий того, что подмножества кольца является подкольцом

Пусть A — кольцо, тогда

Лекпия №5

 $B\subset A$ является подкольцом A

 \updownarrow

- 1) $\overline{0} \in B$
- $2) b_1, b_2 \in B \Rightarrow b_1 + b_2 \in B$
- 3) $\forall b \in B \Rightarrow (-b) \in B$
- $4) \ \forall b_1, \ b_2 \in B \Rightarrow b_1 b_2 \in B$

Док-во: 1), 2), 3) \Leftrightarrow B — аддитивная подгруппа A (см. III семестр) Все аксиомы кольца A, выражаемые тождествами, верны в $B \subset A$

Лекция №6

1 Подполе

Опр. Подмножеством поля называется его подполе, если оно само является полем относительно операций, определённых в поле и ограниченных на это подмножество.

Утв. 1. Если A - поле, B - его подкольцо, $\widetilde{1}$ - единица B, то $\widetilde{1}=1\in A$. Док-во: $\widetilde{1} = \widetilde{1} \cdot \widetilde{1}$ (*) т.к. A - поле, \exists $\widetilde{1}^{-1}$, умножим (*) на $\widetilde{1}^{-1} \Rightarrow 1 = \widetilde{1}$.

1.1 Критерий того, что подмножество поля является подполем

Пусть A - поле, тогда $B \subset A$ является подполем $A \Leftrightarrow$ $\Leftrightarrow \begin{cases} 2) & \forall b_1, b_2 \in B \Rightarrow b_1 + b_2 \in B \\ 3) & \forall b \in B \Rightarrow (-b) \in B \\ 4) & b_1 b_2 \in B \\ 5) & 1 \in B \\ 6) & \forall b \in B \setminus \{\overline{0}\} \Rightarrow b^{-1} \in B \end{cases}$ Here we have

- 1), 2), 3) $\Leftrightarrow B$ аддитивная подгруппа A.
- 4), 5), 6) $\Leftrightarrow B \setminus \{\overline{0}\}$ мультипликативная подгруппа $A \setminus \{\overline{0}\}$.

Все аксиомы, выражаемые тождествами верны в $B \subset A$.

$\mathbf{2}$ Целостное кольцо

Напомним

Опр. Областью целостности, или целостным кольцом (ЦК), называется коммутативное ассоциативное кольцо с 1 (КАК1) без делителей нуля.

Note. Подразумевается, что в целостном кольце есть ненулевые элементы, т.е. число его элементов больше 1.

Утв. 2. Конечное целостное кольцо явдяется полем.

Док-во:

Пусть
$$A$$
 - ЦК и $|A| = n < \infty$.

Нужно доказать, что $\forall a \in A \setminus \{\overline{0}\}\ \exists a^{-1} \in A : aa^{-1} = a^{-1}a = 1.$

Пусть
$$A = \{a_1, a_2, ..., a_n\}, \ a_i \neq a_j$$
 при $i \neq j, \ i, j = \overline{1, n} \Rightarrow$

$$\Rightarrow \ \forall \, a \in A^{\widehat{}}\{\overline{0}\} \ \ aa_i \neq aa_j$$
 при $i \neq j, \ i,j = \overline{1,n},$ т.к.

в области целостности A возможно "сокращение". \Rightarrow

$$\Rightarrow \{aa_1, aa_2, ..., aa_n\} = A \ni 1 \Rightarrow$$

$$\Rightarrow \exists \ k \in \{1, 2, ..., n\} : aa_k = 1 \Rightarrow a_k = a^{-1}.$$

3 Поле отношений целостного кольца

Мы покажем, что любую область целостности A можно вложить в некоторое поле $Quot\,A$ - её поле отношений подобно тому, как $\mathbb{Z}\subset\mathbb{Q}=Quot\,\mathbb{Z}.$

(В случае конечной области целостности A = Quot A)

Опр. Пусть
$$A$$
 - ЦК, $(a_i,b_i)\in A\times (A^{\widehat{}}\{\overline{0}\}),\ i=\overline{1,2}$ Получим $(a_1,b_1)\sim (a_2,b_2)\Leftrightarrow a_1b_2=b_1a_2$

Утв. 1. " \sim " является отношением эквивалентности.

Док-во:

1) рефлексивность

$$ab = ba \Rightarrow (a, b) \sim (b, a)$$

2) симметричность

$$(a_1, b_1) \sim (a_2, b_2) \Leftrightarrow a_1b_2 = a_2b_1 \Leftrightarrow a_2b_1 = a_1b_2 \Leftrightarrow (a_2, b_2) \sim (a_1, b_1)$$

3) транзитивность

$$\begin{cases} (a_1, b_1) \sim (a_2, b_2) \Leftrightarrow a_1b_2 = b_1a_2 \Leftrightarrow a_1b_2b_3 = b_1a_2b_3 \\ (a_2, b_2) \sim (a_3, b_3) \Leftrightarrow a_2b_3 = b_2a_3 \Leftrightarrow a_2b_3b_1 = b_2a_3b_1 \\ \Rightarrow a_1b_2b_3 = b_2a_3b_1 \Rightarrow a_1b_3 = a_3b_1 \Rightarrow (a_1, b_1) \sim (a_3, b_3) \end{cases} \Rightarrow$$

1) 2)
$$\Rightarrow$$
 " \sim " - отношение эквивалентности 3)

Следствие. Отношение эквивалетности " \sim " разбивает множество пар $A \times (A \setminus \{\overline{0}\})$ на непересекающиеся классы эквивалентности.

Обозначим $\frac{a}{b}$ класс эквивалентности пары (a,b), а множество всех классов эквивалентности $Quot\ A=\left\{\frac{a}{b}\right\}$.

$$(a,b) \sim (ca,cb) \ \forall c \in A \setminus \{\overline{0}\}\$$

Док-во:

$$ab = ba \Rightarrow cab = cba \ \ \forall \, c \in A^{\diagdown}\{\overline{0}\} \Rightarrow (ca,cb) \sim (a,b) \ \forall \, c \in A^{\diagdown}\{\overline{0}\}$$

Утв. 6.

$$(a_1,b_1) \sim (a_2,b_2) \Leftrightarrow (b_2a_1,b_1b_2) \sim (b_1a_2,b_1b_2)$$
 Док-во: $(a_1,b_1) \sim (a_2,b_2) \Leftrightarrow a_1b_2 = b_1a_2 \Leftrightarrow a_1b_2(b_1b_2) = b_1a_2(b_1b_2) \Leftrightarrow (a_1b_2,b_1b_2) \sim (b_1a_2,b_1b_2)$

Опр. Введём на множестве пар $A \times (A \setminus \{\overline{0}\})$ операции сложения и умножения: $(a_1,b_1)+(a_2,b_2)=(a_1b_2+b_1a_2,b_1b_2),$ $(a_1,b_1)(a_2,b_2)=(a_1a_2,b_1b_2).$

Покажем, что введённые операции согласованы с отношением эквивалетности.

Утв. 7.
$$\begin{cases} (a_1,b_1) \sim (a_1',b_1') \\ (a_2,b_2) \sim (a_2',b_2') \\ Док-во: \end{cases} \Rightarrow (a_1,b_1) + (a_2,b_2) \sim (a_1',b_1') + (a_2',b_2') \\ (a_1,b_1) + (a_2,b_2) = (a_1b_2 + b_1a_2,b_1b_2) \sim \left((a_1b_2 + b_1a_2)b_1', (b_1b_2)b_1' \right) = (a_1b_2 + b_1a_2,b_1b_2) \sim \left((a_1b_2 + b_1a_2)b_1', (b_1b_2)b_1' \right) = (a_1b_2 + b_1a_2,b_1b_2) \sim \left((a_1b_2 + b_1a_2)b_1', (b_1b_2)b_1' \right) = (a_1b_2 + b_1a_2,b_1b_2) \sim \left((a_1b_2 + b_1a_2)b_1', (b_1b_2)b_1' \right) = (a_1b_2 + b_1a_2,b_1b_2) \sim \left((a_1b_2 + b_1a_2)b_1', (b_1b_2)b_1' \right) = (a_1b_2 + b_1a_2,b_1b_2) \sim \left((a_1b_2 + b_1a_2)b_1', (b_1b_2)b_1' \right) = (a_1b_2 + b_1a_2,b_1b_2) \sim \left((a_1b_2 + b_1a_2)b_1', (b_1b_2)b_1' \right) = (a_1b_2 + b_1a_2,b_1b_2) \sim \left((a_1b_2 + b_1a_2)b_1', (b_1b_2)b_1' \right) = (a_1b_2 + b_1a_2,b_1b_2) \sim \left((a_1b_2 + b_1a_2)b_1', (b_1b_2)b_1' \right) = (a_1b_2 + b_1a_2,b_1b_2) \sim \left((a_1b_2 + b_1a_2)b_1', (b_1b_2)b_1' \right) = (a_1b_2 + b_1a_2,b_1b_2) = (a_1b_2 + b_1a_2,b_1b$$

$$= (a_1b_2b_1' + b_1a_2b_1', b_1b_2b_1') \stackrel{\text{\tiny T.K.}}{=} a_1b_1' = a_1'b_1 \\ = ((a_1'b_1 + a_2b_1', b_1b_2b_1')) = \\ = ((a_1'b_2 + a_2b_1')b_1, b_1(b_2b_1')) \sim (a_1'b_2 + a_2b_1', b_1'b_2) = (a_1', b_1') + (a_2, b_2)$$

Т.о., $(a_1,b_1)+(a_2,b_2)\sim (a_1',b_1')+(a_2,b_2)$, т.е. суммы пар будут эквивалентными, если одно из слагаемых заменить на эквивалентное. \Rightarrow $\Rightarrow (a_1,b_1)+(a_2,b_2)\sim (a_1',b_1')+(a_2,b_2)\sim (a_1',b_1')+(a_2',b_2')$

Утв. 8.
$$\begin{cases} (a_1,b_1)\sim(a_1',b_1')\\ (a_2,b_2)\sim(a_2',b_2')\\ Док-во: \end{cases} \Rightarrow (a_1,b_1)(a_2,b_2)\sim(a_1',b_1')(a_2',b_2')\\ = (a_1,b_1)(a_2,b_2)=(a_1a_2,b_1b_2)\sim(a_1a_2b_1',b_1b_2b_1')\stackrel{a_1b_1'=a_1'b_1}{=}\\ = (a_1'b_1a_2,b_1b_2b_1')\sim(a_1'a_2,b_2b_1')=(a_1',b_1')(a_2,b_2) \end{cases}$$

Т.о., $(a_1,b_1)(a_2,b_2) \sim (a'_1,b'_1)(a_2,b_2)$, т.е. произведения пар будет эквивалентными, если один из сомножителей заменить на эквивалентный. $\Rightarrow (a_1,b_1)(a_2,b_2) \sim (a'_1,b'_1)(a_2,b_2) \sim (a'_1,b'_1)(a'_2,b'_2)$

Опр. Определим операции сложения и умножения на множестве классов эквивалентности $Quot\ A = \left\{ \frac{a}{b} \right\}$:

$$\frac{a_1}{b_1} + \frac{a_2}{b_2} = \frac{a_1b_2 + b_1a_2}{b_1b_2},$$

$$\frac{a_1}{b_1} \cdot \frac{a_2}{b_2} = \frac{a_1a_2}{b_1b_2}$$

Из утверждений 7,8 следует, что это определение корректно.

Утв. 9. $Quot\ A$ с введенными операциями сложения и умножения является полем.

Док-во: Проверим выполнение аксиом поля.

1)
$$\frac{a_1}{b_1} + \frac{a_2}{b_2} = \frac{a_1b_2 + b_1a_2}{b_1b_2} = \frac{a_2}{b_2} + \frac{a_1}{b_1}$$

2)
$$\left(\frac{a_1}{b_1} + \frac{a_2}{b_2}\right) + \frac{a_3}{b_3} = \frac{a_1b_2 + b_1a_2}{b_1b_2} + \frac{a_3}{b_3} = \frac{a_1b_2b_3 + b_1a_2b_3 + a_3b_1b_2}{b_1b_2b_3} = \frac{a_1}{b_1} + \frac{a_2b_3 + b_2a_3}{b_2b_3} = \frac{a_1}{b_1} + \left(\frac{a_2}{b_2} + \frac{a_3}{b_3}\right)$$

3)
$$\frac{0}{1} \in Quot \ A : \frac{a}{b} + \frac{0}{1} = \frac{a+0}{1 \cdot b} = \frac{0+a}{1 \cdot b} = \frac{a}{b}$$

4)
$$\forall \frac{a}{b} \in Quot \ A \quad \exists (-\frac{a}{b}) = \frac{(-a)}{b} \in Quot \ A :$$

$$\frac{a}{b} + \frac{(-a)}{b} = \frac{ab + (-a)b}{b \cdot b} = \frac{0 \cdot b}{b^2} = \frac{0}{b} = \frac{0}{1}$$

$$5) \ \frac{a_1}{b_1} \left(\frac{a_2}{b_2} + \frac{a_3}{b_3} \right) = \frac{a_1}{b_1} \cdot \frac{a_2b_3 + b_2a_3}{b_2b_3} = \frac{a_1a_2b_3 + a_1a_3b_2}{b_1b_2b_3} = \frac{a_1a_2b_3}{b_1b_2b_3} + \frac{a_1a_3b_2}{b_1b_2b_3} = \frac{a_1a_2b_3}{b_1b_2b_3} + \frac{a_1a_2b_3}{b_1b_2b_3} + \frac{a_1a_2b_3}{b_1b_2b_3} = \frac{a_1a_2b_3}{b_1b_2b_3} + \frac{a_1a_2b_3}{b$$

$$=\frac{a_1a_2}{b_1b_2}+\frac{a_1a_3}{b_1b_3}=\frac{a_1}{b_1}\cdot\frac{a_2}{b_2}+\frac{a_1}{b_1}\cdot\frac{a_3}{b_3}$$

Аналогично,
$$\left(\frac{a_1}{b_1} + \frac{a_2}{b_2}\right) \cdot \frac{a_3}{b_3} = \frac{a_1}{b_1} \cdot \frac{a_3}{b_3} + \frac{a_2}{b_2} \cdot \frac{a_3}{b_3}$$

6)
$$\frac{a_1}{b_1} \cdot \frac{a_2}{b_2} = \frac{a_1 a_2}{b_1 b_2} = \frac{a_2}{b_2} \cdot \frac{a_1}{b_1}$$

$$7) \left(\frac{a_1}{b_1} \cdot \frac{a_2}{b_2} \right) \cdot \frac{a_3}{b_3} = \frac{a_1 a_2}{b_1 b_2} \cdot \frac{a_3}{b_3} = \frac{a_1 a_2 a_3}{b_1 b_2 b_3} = \frac{a_1}{b_1} \cdot \frac{a_2 a_3}{b_2 b_3} = \frac{a_1}{b_1} \cdot \left(\frac{a_2}{b_2} \cdot \frac{a_3}{b_3} \right)$$

8)
$$\frac{1}{1} \in Quot \ A : \frac{a}{b} \cdot \frac{1}{1} = \frac{1}{1} \cdot \frac{a}{b} = \frac{a}{b}$$

9)
$$\forall \frac{a}{b} \in Quot \ A \setminus \left\{ \frac{0}{1} \right\} \quad \exists \left(\frac{a}{b} \right)^{-1} = \frac{b}{a} \in Quot \ A, \text{ т.к.}$$

$$\frac{a}{b} \neq \frac{0}{1} \Leftrightarrow a \neq 0, \text{ поскольку } \frac{a}{b} = \frac{0}{1} \Leftrightarrow (a,b) = (0,1) \Leftrightarrow (a,b) = (0,1) \Leftrightarrow$$

$$\Leftrightarrow a \cdot 1 = b \cdot 0 \Leftrightarrow a = 0 \text{ M} \frac{a}{b} \cdot \frac{b}{a} = \frac{b}{a} \cdot \frac{a}{b} = \frac{ab}{ab} = \frac{1}{1}$$

$$10) \ \frac{0}{1} \neq \frac{1}{1}, \text{ t.k. } (0,1) \sim (1,1) \Leftrightarrow 0 \cdot 1 = 1 \cdot 1 \Leftrightarrow 0 = 1, \Rightarrow |Quot \ A| > 1$$

Утв. 10. Отображение $\varphi:A\to Quot\ A:\varphi(a)=\frac{a}{1}\in Quot\ A\quad \forall a\in A$ является мономорфизмом колец.

Док-во:

$$\varphi(a_1 + a_2) = \frac{a_1 + a_2}{1} = \frac{a_1 \cdot 1 + a_2 \cdot 1}{1 \cdot 1} = \frac{a_1}{1} + \frac{a_2}{1} = \varphi(a_1) + \varphi(a_2)$$

$$\varphi(a_1 a_2) = \frac{a_1 a_2}{1} = \frac{a_1 a_2}{1 \cdot 1} = \frac{a_1}{1} \cdot \frac{a_2}{1} = \varphi(a_1) \cdot \varphi(a_2)$$

$$Ker \ \varphi = \left\{ a \in A : \ \varphi(a) = \frac{0}{1} \Leftrightarrow \frac{a}{1} = \frac{0}{1} \Leftrightarrow a = 0 \right\} = \{0\}$$

Note:

arphi является вложением A в $Quot\ A$, можно отождествить $a\in A$ с $\frac{a}{1}\in Quot\ A$. Тогда уравнение xb=a может быть переписано в поле $x\frac{b}{1}=\frac{a}{1}\Rightarrow$ в поле $Quot\ A$ оно имеет единственное решение $x=\frac{a}{1}\cdot\left(\frac{b}{1}\right)^{-1}=\frac{a}{1}\cdot\frac{1}{b}=\frac{a}{b},$ аналогично и bx=a имеет единственное решение $\frac{a}{b}$.

Утв. 11. $Quot\ A$ — наименьшее по включению поле, содержащее A. Док-во:

Пусть
$$F$$
 — поле : $F \supset A$ $\forall a \in A \Rightarrow \frac{a}{1} \in F$
$$\forall b \in A^{\setminus}\{0\} \Rightarrow \frac{b}{1} \in F \Rightarrow \frac{1}{b} \in F$$
 $\Rightarrow \frac{1}{b} \in F \Rightarrow Quot \ A \subset F$

Примеры:

- 1) $\mathbb{Z} \coprod K \Rightarrow Quot \ \mathbb{Z} = \mathbb{Q}$ поле рациональных чисел
- 2) K поле $\Rightarrow K[x]$ ЦК $\Rightarrow Quot\ K[x] = K(x)$ поле рациональных функций.

Лекция №7

1 Евклидово кольцо

Вспомним:

Опр. Целостное кольцо(ЦК) A называется евклидовым(ЕК), если \exists функция, называемая нормой (высотой): $N:A^{\searrow}\{\overline{0}\} \to \mathbb{Z}_+ = \mathbb{N} \cup \{0\}$:

- 1) $N(ab) \geqslant N(a) \quad \forall \ a,b \in A$, причём $N(ab) = N(a) \iff b \in A^*$
- $2) \ \forall \ a, b \in A, \quad b \neq 0$

$$\exists \ q,r \in A: \ a=qb+r,$$
 где $\left[egin{array}{c} r=\overline{0} \\ N(r) < N(b) \end{array}
ight.$

Нам хорошо известны примеры евклидовых колец:

- 1) \mathbb{Z} EK c $N(a) = |a| \quad \forall a \in \mathbb{Z} \setminus \{\overline{0}\},$
- 2) K поле, K[x] EK с $N(p(x)) = deg \ p(x) \quad \forall p(x) \in K[x] \setminus \{\overline{0}\}$

Ещё один интересный пример ЕК представляют.

2 Целые гауссовы числа

Рассмотрим множество целых гауссовых чисел

$$\mathbb{Z}[i] = \{a + ib : a, b \in \mathbb{Z}\} \subset \mathbb{C}$$

На комплексной плоскости они располагаются в узлах сетки квадратов со стороной 1.

46

Легко видеть, что $\mathbb{Z}[\,i\,]\subset\mathbb{C}$ удовлетворяет критерию подкольца и содержит 1=1+0i

$$\mathbb{C}$$
 — поле $\Rightarrow \mathbb{Z}[i]$ — ЦК

Найдём $(\mathbb{Z}[i])^*$.

Пусть
$$z \in \mathbb{Z}[i] \setminus \{0\}$$
 : $\exists z^{-1} \in \mathbb{Z}[i] : z \cdot z^{-1} = 1 \Rightarrow$
 $\Rightarrow |z| \cdot |z^{-1}| = 1$, но $|z|, |z^{-1}| \geqslant 1 \Rightarrow |z| = 1 \Rightarrow z \in \{1, -1, i, -i\}$

Очевидно, 1, -1, i, -i являются обратимыми в $\mathbb{Z}[i] \Rightarrow (\mathbb{Z}[i])^* = \{1, -1, i, -i\}$

Рассмотрим функцию нормы

$$z = a + ib \longrightarrow N(z) = N(a + ib) = a^2 + b^2 = |z|^2$$

Будем считать, что N(z) определена на $\mathbb{Z}[i] \setminus \{0\}$

$$N: \mathbb{Z}[i] \setminus \{0\} \to \mathbb{Z}_+$$

$$(\forall z \in \mathbb{Z}[i] \setminus \{0\} \ N(z) \geqslant 1)$$

Проверим условия для N(z) из определения EK:

1)
$$N(z_1 z_2) = |z_1 z_2|^2 = |z_1|^2 \cdot |z_2|^2 = N(z_1)N(z_2) \geqslant N(z_1),$$

причём
$$N(z_1z_2)=N(z_1)N(z_2)=N(z_1)\Leftrightarrow$$

$$\Leftrightarrow N(z_2) = |z_2|^2 = 1 \Leftrightarrow z_2 \in (\mathbb{Z}[i])^*$$

2) Покажем, что

$$\forall z_1, z_2 \in \mathbb{Z}[i], z_2 \neq 0 \ \exists q, r \in \mathbb{Z}[i] : z_1 = qz_2 + r, \begin{bmatrix} r = 0 \\ N(r) < N(z_2) \end{bmatrix}$$

Пусть
$$\frac{z_1}{z_2} = z \in \mathbb{C}$$
.

Точка z находится в каком-то квадрате $c_1c_2c_3c_4$ со стороной 1, $c_j \in \mathbb{Z}[i], \ j = \overline{1,4}.$

Диагональ квадрата имеет длину $\sqrt{2}$. \Rightarrow 4 круга радиуса $\frac{\sqrt{2}}{2}$ с центрами в вершинах полностью покрывают квадрат. \Rightarrow Среди вершин квадрата есть хотя бы одна, расстояние от которой до точки z не превосходит $\frac{\sqrt{2}}{2}$. Назовём эту вершину $q \in \mathbb{Z}[i]$.

$$|z-q| \leqslant \frac{\sqrt{2}}{2} \Leftrightarrow \left|\frac{z_1}{z_2} - q\right|^2 \leqslant \frac{1}{2}$$

$$r=z_1-qz_2\in\mathbb{Z}[\,i\,]$$
 Если $r\neq 0$, то $N(r)=|r|^2=|z_1-qz_2|^2=\left|z_2\left(rac{z_1}{z_2}-q
ight)
ight|^2=$ $=|z_2|^2\left|rac{z_1}{z_2}-q
ight|^2\leqslant |z_2|^2rac{1}{2}=rac{N(z_2)}{2}< N(z)$

Т.о.,
$$\mathbb{Z}[\,i\,]-$$
 ЕК Чтобы найти $q:\left|\frac{z_1}{z_2}-q\right|\leqslant \frac{1}{2}$, для $\frac{z_1}{z_2}=z=x+iy,\ x,y\in\mathbb{R},$

рассмотрим x_1 — ближайшее к x целое число, y_1 — ближайшее к y целое число,

тогда
$$\begin{cases} x = x_1 + x_2, \text{ где } x_1 \in \mathbb{Z}, & |x_2| \leqslant \frac{1}{2} \\ y = y_1 + y_2, \text{ где } y_1 \in \mathbb{Z}, & |y_2| \leqslant \frac{1}{2} \end{cases}$$

$$\frac{z_1}{z_2} = (x_1 + iy_1) + (x_2 + iy_2)$$

Положим
$$q = x_1 + iy_1 \Rightarrow \frac{z_1}{z_2} - q = x_2 + iy_2 \Rightarrow$$

$$\Rightarrow \left| \frac{z_1}{z_2} - q \right|^2 = |x_2 + iy_2|^2 = |x_2|^2 + |y_2|^2 \le \frac{1}{4} + \frac{1}{4} \le \frac{1}{2}$$

Пример: Разделим $z_1 = 1 - 3i \in \mathbb{Z}[i]$ на $z_2 = 3 - 2i$ с остатком.

$$\frac{z_1}{z_2} = \frac{1-3i}{3-2i} = \frac{(1-3i)(3+2i)}{13} = \frac{9}{13} - i\frac{7}{13} =
= \left(1 - \frac{4}{13}\right) + i\left(-1 + \frac{6}{13}\right) = (1-i) + \left(-\frac{4}{13} + i\frac{6}{13}\right)
\begin{cases} q = 1 - i \\ r = z_1 - qz_2 = 1 - 3i - (1-i)(3-2i) = 1 - 3i - (1-5i) = 2i \end{cases}$$

$$z_2 = qz_1 + r$$

$$1 - 3i = (1-i)(3-2i) + 2i$$

3 Наибольший общий делитель

Вспомним

Опр. Пусть A - ЦК. Наибольшим общим делителем $a,b \in A$ НОД $\{a,b\} = (a,b)$ называется общий делитель a и b, который делится на любой их общий делитель.

Пример.

В ЦК 2 элемента могут не иметь наибольшего общего делителя.

Рассмотрим M - множество многочленов над \mathbb{R} , в которых отсутствуют члены первой степени

$$M = \{a_0 + a_2 x^2 + \dots + a_n x^n : a_i \in \mathbb{R} \ i = 0, 2, 3\dots\} \subset \mathbb{R}[x].$$

Легко доказать, что M - ЦК.

$$x^5, x^6 \in M$$
. Найдём НОД $\{x^5, x^6\}$ в M .

Общие делители x^5, x^6 в $\mathbb{R}[x]: 1, x, x^2, x^3, z^4, x^5, x^6 \in \mathbb{R}[x]$.

Общие делители x^5, x^6 в $M: 1, x^2, x^3$.

(поскольку $x \not\in M$, x^5 не делится на x^4 , x^6 не делится на x^5).

Ни один из общих делителей x^5, x^6 в M не делится в M на все их общие делители $\Rightarrow \mathbb{Z} HOД\{x^5, x^6\}$ в M.

Нам известна

Теорема 1.

Если A - ЕК, то $\forall a, b \in A \ \exists (a, b)$ и (a, b) = au + bv, где $u, v \in A$.

В ЕК можно найти (a, b) с помощью алгоритма Евклида.

Пример. Найдём
$$(z_1,z_2)=(1-3i,3-2i)$$
 в $\mathbb{Z}[i]$.
$$\frac{z_1}{z_2}=q_1z_2+r_1,\ q_1=1-i,\ r_1=2i\ (\text{см. пример, разобранный выше})$$

$$\frac{z_2}{r_1}=\frac{3-2i}{2i}=-1-\frac{3}{2}i=(-1-i)-\frac{1}{2}i,\ q_2=-1-i,$$

$$r_2=z_2-q_2r_1=3-2i-(-1-i)2i=3-2i+2i-2=1$$

$$\frac{r_1}{r_2}=\frac{2i}{1}=2i\in\mathbb{Z}[i],\ q_3=2i,\ r_3=0\Rightarrow$$

$$\Rightarrow (1-3i,3-2i)=1,\ \text{т.e. }1-3i,\ 3-2i$$
 - взаимно простые целые гауссовы числа.

Заметим, что частное и остаток задаются в $\mathbb{Z}[i]$ неоднозначно. Например, разделить z_2 на r_1 с остатком можно так:

$$\frac{z_1}{r_1} = -1 - \frac{3}{2}i = -1 + \left(-2 + \frac{1}{2}\right)i = -1 - 2i + \frac{1}{2}i, \quad q_2' = -1 - 2i$$

$$r'_2 = z_2 - q'_2 r_1 = 3 - 2i - (-1 - 2i)2i = 3 - 2i - (-2i + 4) = -1$$

$$\frac{r_1}{r_2'} = \frac{2i}{-1} = -2i \in \mathbb{Z}[i], \quad q_3' = -2i, \quad r_3' = 0 \Rightarrow (1 - 3i, 3 - 2i) = -1 \sim 1$$

(НОД определён однозначно с точностью до ассоциированности, т.е. умножения на обратимый элемент)

4 Идеалы кольца

Опр. Подмножество $I \subset A$ кольца A, являющееся подгруппой аддитивной группы кольца (A,+), называется левым идеалом кольца A, если $\forall x \in I \quad \forall a \in A \quad ax \in I$, т.е. $AI \subset I$,

правым идеалом кольца A, если

$$\forall x \in I \quad \forall a \in A \quad xa \in I, \text{ r.e. } IA \subset I,$$

двусторонним идеалом кольца
$$A,$$
 если
$$\left\{ \begin{array}{l} AI \subset I \\ IA \subset I \end{array} \right.$$

Для двусторонних идеалов используется обозначение $I \lhd A$

В случае коммутативного кольца A употребляется просто термин "идеал", т.к. в силу коммутативности понятия левого, правого и двустороннего идеала совпадают.

В любом кольце A есть два несобственных двусторонних идеала : $I_1 = \{\overline{0}\} \lhd A$ и $I_2 = A \lhd A$. Другие двусторонние идеалы называют собственными.

Примеры:

1) $M^j=\{A\in \mathfrak{g}l(n,\mathbb{R}): A^i=0$ при $i\neq j,\ i=\overline{1,n}\}$ - множество матриц, в которых все столбцы, кроме A^j , нулевые. M^j - левый идеал в $\mathfrak{g}l(n,\mathbb{R})$.

- **2)** $M_i = \{A \in \mathfrak{gl}(n,\mathbb{R}) : A_j = 0 \text{ при } i \neq j, \ j = \overline{1,n} \}$ множество матриц, в которых все строки, кроме A_i , нулевые. M_i правый идеал в $\mathfrak{gl}(n,\mathbb{R})$.
- 3) В $\mathfrak{g}l(n,\mathbb{R})$ нет собственных двусторонних идеалов.

Пусть
$$I \triangleleft \mathfrak{g}l(n,\mathbb{R}), \quad I \neq \{\overline{0}\} \Rightarrow \exists A \in I : A \neq \overline{0}.$$

Пусть $a_{ij} \neq 0 \Rightarrow E_{ki}AE_{jk} = (a_{ij}E_{kk}) \in I \quad \forall k = \overline{1,n} \Rightarrow$

$$\Rightarrow \sum_{k=1}^{n} (a_{ij}E_{kk}) = (a_{ij}E) \in I \Rightarrow (a_{ij}^{-1}E)(a_{ij}E) \in I \Rightarrow E \in I \Rightarrow$$

$$\Rightarrow \forall B \in \mathfrak{g}l(n,\mathbb{R}) \ BE = B \in I \Rightarrow I = \mathfrak{g}l(n,\mathbb{R}).$$

Утв. 1. Если
$$A$$
 - KAK1, $x_1, x_2, ..., x_m \in A$, $(x_1, x_2, ..., x_m) = \{a_1x_1 + a_2x_2 + ... + a_mx_m : a_i \in A, i = \overline{1, m}\}$, то $(x_1, x_2, ..., x_m) \triangleleft A$.

Док-во:

Очевидно,
$$(x_1, x_2, ..., x_m) < (A, +)$$
 - аддитивная подгруппа A и $\forall a \in A \ a(\sum_{i=1}^m a_i x_i) = \sum_{i=1}^m a a_i x_i \in (x_1, x_2, ..., x_m).$

Утв. 2. Если A - KAK1, $x_1, x_2, ..., x_m \in A$,

то $(x_1, x_2, ..., x_m) \triangleleft A$ - наименьший по включению идеал A, содержащий $x_1, x_2, ..., x_m$.

Док-во:

Пусть
$$I \triangleleft A : x_1, x_2, ..., x_m \in I \Rightarrow$$

$$\Rightarrow \sum_{i=1}^m a_i x_i \in I \ \forall a_i \in A \ i = \overline{1, m} \Rightarrow (x_1, x_2, ..., x_m) \subset I.$$

Опр. Пусть
$$A - \text{KAK1}, x_1, x_2, ..., x_m \in A$$
.

Идеал $(x_1, x_2, ..., x_m) \triangleleft A$ называется идеалом в A, порождённым элементами $x_1, x_2, ..., x_m$.

Идеал $(x) = xA \triangleleft A$, порождённый одним элементом $x \in A$, называется главным идеалом.

Примеры:

1) В \mathbb{Z} любая аддитивная подгруппа является циклической, имеет вид

 $< m >= m\mathbb{Z}$ и является главным идеалом (m), порожденным элементом m.

2) В \mathbb{Z}_n любая аддитивная подгруппа является циклической, имеет вид $<\overline{m}>=\overline{m}\mathbb{Z}_n$ и является главным идеалом (m), порожденным элементом \overline{m} , т.к $\overline{m}\overline{k}=\underbrace{\overline{m}+\overline{m}+...+\overline{m}}_{k\ \mathrm{pas}}\in<\overline{m}>$

Утв. 3.

Если A - кольцо с 1, $I \triangleleft A$ и $\exists \ a \in I : a \in A^*(a \in I \cap A^*) \Rightarrow I = A$.

Док-во:

Пусть $a \in I \cap A^* \Rightarrow aa^{-1} = 1 \in I \Rightarrow \forall b \in A \ b1 = b \in I \Rightarrow A = I.$

Теорема 2.

A - KAK1, содержащее более одного элемента, является полем.

A не имеет собственных идеалов.

Док-во:

 \mathbb{O} Пусть A - поле, $I \triangleleft A : I \neq \{\overline{0}\} \Rightarrow$

$$\Rightarrow \exists \ a \in I : a \neq \overline{0} \Rightarrow a \in A^* \Rightarrow I = A.$$

 $\bigcap \Pi$ усть A не имеет собственных идеалов \Rightarrow

$$\Rightarrow \forall a \in A \setminus \{\overline{0}\} \Rightarrow (a) \triangleleft A$$
 - несобственный идеал,

но
$$(a) \neq \{\overline{0}\} \Rightarrow (a) = A \Rightarrow$$

$$\Rightarrow 1 \in (a) \Rightarrow \exists b \in A : 1 = ab \Rightarrow b = a^{-1} \in A \Rightarrow A$$
 - поле.

Лекция №8

1 Максимальный идеал кольца

Опр. Собственный идеал I кольца A $I \triangleleft A$ называется максимальным идеалом, если он не содержится ни в каком другом собственном идеале кольца A, т.е.

$$\left\{ \begin{array}{l} I, \ I' \lhd A \\ I \subset I' \end{array} \right. \Rightarrow \left[\begin{array}{l} I' = I \\ I' = A \end{array} \right.$$

Утв. 1. Пусть A - KAK 1.

Если любой идеал A является главным, то в A не существует бесконечной цепочки строго возврастающих идеалов:

$$I_1 \subset I_2 \subset ... \subset I_k \subset ...$$
, где $I_k \triangleleft A$, $I_k \neq I_{k+1}$, $\forall k \in \mathbb{N}$

Док-во:

Пусть $I_1\subset I_2\subset \ldots\subset I_k\subset \ldots$ — такая цепочка, $I_k\neq I_{k+1}$

Рассмотрим $I = \bigcup_{j=1}^{\infty} I_j$ и заметим, что

- 1) $\overline{0} \in I_1 \subset I \Rightarrow \overline{0} \in I$,
- 2) $a, b \in I \Rightarrow \exists j \in \mathbb{N} : a, b \in I_j \Rightarrow a + b \in I_j \subset I \Rightarrow a + b \in I$,
- 3) $a \in I \Rightarrow \exists j \in \mathbb{N} : a \in I_j \Rightarrow (-a) \in I_j \subset I \Rightarrow (-a) \in I$,
- 4) $a \in I, b \in A \Rightarrow \exists j \in \mathbb{N} : a \in I_j \Rightarrow ab \in I_j \subset I \Rightarrow ab \in I$.
- $1),2),3),4)\Rightarrow I\lhd A.$

Поскольку $A - \mathrm{K}\Gamma\mathrm{U}$, $\exists a \in A : I = (a) \Rightarrow \exists k \in \mathbb{N} : a \in I_k \Rightarrow$

$$\Rightarrow$$
 $(a) \subset I_k \subset I = (a) \Rightarrow I_k = (a) \Rightarrow (a) = I_k \subset I_{k+1} \subset I = (a) \Rightarrow (a) \subset I_k \subset I_{k+1} \subset I = (a) \Rightarrow (a) \subset I_k \subset I_{k+1} \subset I = (a) \Rightarrow (a) \subset I_k \subset I_{k+1} \subset I = (a) \Rightarrow (a) \subset I_k \subset I_{k+1} \subset I = (a) \Rightarrow (a) \subset I_k \subset I_{k+1} \subset I = (a) \Rightarrow (a) \subset I_k \subset I_{k+1} \subset I = (a) \Rightarrow (a) \subset I_k \subset I_{k+1} \subset I = (a) \Rightarrow (a) \subset I_k \subset I_{k+1} \subset I = (a) \Rightarrow (a) \subset I_k \subset I_{k+1} \subset I = (a) \Rightarrow (a) \subset I_k \subset I_{k+1} \subset I = (a) \Rightarrow (a) \subset I_k \subset I_{k+1} \subset I = (a) \Rightarrow (a) \subset I_k \subset I_{k+1} \subset I = (a) \Rightarrow (a) \subset I_k \subset I_{k+1} \subset I = (a) \Rightarrow (a) \subset I_k \subset I_k$

 $\Rightarrow I_{k+1} = (a) \Rightarrow I_k = I_{k+1} \quad X$

Следствие. Пусть A - KAK 1. Если любой идеал A является главным, то любой собственный идеал содержится в некотором максимальном идеале.

Пример.

Все собственные идеалы \mathbb{Z}_{20} : (2), (4),(5), (10),

причем $(4) \subset (2), (10) \subset (2), (10) \subset (5).$

Идеалы (2) и (5) являются максимальными.

2 Кольцо главных идеалов

Опр. Кольцо A называется кольцом главных идеалов (КГИ), если

- 1) A ЦK,
- 2) любой идеал в A является главным.

Примеры:

- 1) \mathbb{Z} КГИ.
- 2) Если n не является простым числом, то \mathbb{Z}_n не является КГИ, т.к. хотя любой идеал в этом кольце является главным, \mathbb{Z}_n содержит делители нуля.
- (В случае простого $n \mathbb{Z}_n$ является полем)
- 3) $\mathbb{Z}[x]$ не является КГИ, т.к. хотя $\mathbb{Z}[x]$ ЦК, но не все идеалы $\mathbb{Z}[x]$ главные.

Докажем, что идеал (2, x) не является главным от противного.

Пусть
$$(2,x)=(p(x)),\ p(x)\in\mathbb{Z}[x]\Rightarrow$$

$$\Rightarrow\begin{cases} 2=p(x)q_1(x)\Rightarrow deg\ p(x)=0,\ deg\ q_1(x)=0\\ &\forall \qquad \Rightarrow\\ x=p(x)q_2(x)\Rightarrow deg\ q_2(x)=1 \end{cases}$$

$$\Rightarrow\begin{cases} p(x)=c\neq 0\\ q_2(x)=ax+b,\ a\neq 0 \end{cases} \Rightarrow x=c(ax+b)\ (*)$$
Положим в $(*)\ x=0\Rightarrow 0=cb\Rightarrow b=0\Rightarrow x=cax\Rightarrow 1=ca\Rightarrow \Rightarrow 1\in (c)=(p(x))=(2,x)\Rightarrow$

$$\Rightarrow\exists\ g_1(x),\ g_2(x)\in\mathbb{Z}[x]:1=2g_1(0)+xg_2(x)\ (**)$$
Положим в $(**)\ x=0\Rightarrow 1=2g_1(0)\Rightarrow 2\in\mathbb{Z}^*$

Теорема 1. Евклидово кольцо является кольцом главных идеалов.

$$A$$
 - EK \Rightarrow A - KГИ

Док-во:

- 1) $A EK \Rightarrow A ЦК$
- 2) Докажем, что $\forall I \lhd A$ является главным.

Если $I = {\overline{0}}$, то $I = ({\overline{0}})$ является главным.

Если $I \neq \{\overline{0}\}$, рассмотрим $b \in I^{\widehat{0}} : N(b) \leqslant N(c) \quad \forall c \in I^{\widehat{0}} \}.$

$$orall a\in I \quad \exists q,r\in A: a=qb+r,$$
 где $\left[egin{array}{c} r=\overline{0} \\ N(r)< N(b) \end{array}
ight],$ но $r=a-qb\in I\Rightarrow N(r)< N(b)$ невозможно $\Rightarrow r=\overline{0}\Rightarrow a=qb\Rightarrow$ $\Rightarrow I=(b)$ — главный идеал.

Пример.

- 1) $\mathbb{Z} \mathrm{EK} \Rightarrow \mathbb{Z} \mathrm{K}\Gamma\mathrm{M}$
- 2) K поле $\Rightarrow K[x]$ EK $\Rightarrow K[x]$ КГИ
- 3) $\mathbb{Z}[i] \mathrm{EK} \Rightarrow \mathbb{Z}[i] \mathrm{K}\Gamma\mathrm{M}$

3 Делимость в ЦК в терминах главных идеалов

Утв. 2. Если
$$A-$$
 ЦК, $a,b\in A,$ то $b|a\Leftrightarrow (a)\subset (b)$ Док-во:

$$\Leftrightarrow b|a \Rightarrow \exists c \in (A) : a = bc \Rightarrow a \in (b) \Rightarrow (a) \subset (b)$$

$$\Leftrightarrow$$
 $(a) \subset (b) \Rightarrow a \in (b) \Rightarrow \exists \in A : a = bc$

Утв. 3. Если
$$A-$$
 ЦК, $a,b\in A$, то $a\sim b\Leftrightarrow (a)=(b)$

Док-во:

$$a \sim b \Leftrightarrow \exists q \in A^* : a = qb \Leftrightarrow \begin{cases} a|b \\ b|a \end{cases} \Leftrightarrow (a) = (b)$$

4 Простые элементы в КГИ

Утв. 4. Если $A - \mathrm{K}\Gamma\mathrm{M}, \, a \in A, \, \mathrm{тo} \, a - \mathrm{простой}$ элемент $\mathrm{A} \Leftrightarrow$

 \Leftrightarrow (a) — максимальный идеал A

Док-во:

 \bigoplus Пусть a — простой элемент, но (a) не является максимальным идеалом,

T.e.
$$\exists (b) \lhd A : \begin{cases} (b) \neq A \\ (b) \neq (a) \end{cases}$$
, $(a) \subset (b) \Rightarrow$

$$\Rightarrow \exists \ c \in A : a = bc$$
, причём $\left\{ egin{array}{l} b \not \in A^* \ (\mbox{иначе} \ (b) = A) \\ c \not \in A^* \ (\mbox{иначе} \ (b) = (a)) \end{array} \right. \Rightarrow$

 $\Rightarrow a$ не является простым X

5 Наибольший общий делитель в КГИ

В КГИ верна Теорема 2, аналогичная Теореме 1 леции 7.

Теорема 2.

Если
$$A$$
 - КГИ, то $\forall\,a,b\in A\;\exists\;\mathrm{HOД}\{a,b\}=(a,b)$ и $(a,b)=au+bv$, где $u,v\in A$.

Док-во:

Note. В КГИ одно и то же обозначение (a, b) для идеала, порождённого элементами a и b, и для НОД $\{a, b\}$, который порождает тот же самый идеал, является обоснованным.

6 Факториальность кольца главных идеалов

Теорема 2. КГИ является факториальным кольцом, т.е. если A - КГИ, то $\forall a \in A \setminus (A^* \cup \{\overline{0}\})$ можно разложить на простые множители $a = p_1 p_2 ... p_n$, где p_i - простой элемент $A, i = \overline{1, n}$, причём это разложение единственно с точностью до ассоцированности.

Док-во:

1) \exists разложения $\forall a \in A^{\sim}(A^* \cup \{\overline{0}\})$ на простые множители докажем от

57

противного.

Пусть $\exists \ a_0 \in A^{\sim}(A^* \cup \{\overline{0}\}) : a_0$ нельзя разложить на простые множители. Назовём такие элементы плохими.

 a_0 — плохой элемент \Rightarrow он не простой $\Rightarrow a_0 = a_1b_1, \quad a_1, b_1 \not\in A^*$

Если a_1, b_1 — хорошие элементы $\Rightarrow a_0$ — хороший. $\Re \Rightarrow$

 \Rightarrow Хотя бы один из a_1, b_1 — плохой. Пусть a_1 — плохой.

 $(a_0) \subset (a_1)$ — цепочка строго возрастающих идеалов.

 $a_1=a_2b_2,\ a_2,b_2\not\in A^*$. Если a_2,b_2 — хорошие, то a_1 — хороший. $\stackrel{\wedge}{\times}\Rightarrow$

 \Rightarrow Хотя бы один из a_2, b_2 — плохой. Пусть a_2 — плохой.

 $(a_0) \subset (a_1) \subset (a_2)$ — цепочка строго возрастающих идеалов.

Продолжая аналогичные рассуждения, получим

$$(a_0) \subset (a_1) \subset ... \subset (a_k) \subset ... -$$

бесконечную цепочку строго возрастающих идеалов в КГИ. 🗴

2) доказательство единственности разложения на простые множители в КГИ идентично доказательству единственности разложения на простые множители в ЕК (см. 2-ую Лекцию 3-его семестра)

Примеры.

- 1) \mathbb{Z} факториальное кольцо.
- 2) K поле $\Rightarrow K[x]$ факториальное кольцо

(Напомним, что простые элементы кольца многочленов называются неприводимыми многочленами)

 $3) \mathbb{Z}[i]$ — факториальное кольцо.

Разберём пример разложения на простые множители в $\mathbb{Z}[\,i\,]$

$$(\mathbb{Z}[i])^* = \{1, -1, i, -i\}, z \in (\mathbb{Z}[i])^* \Leftrightarrow N(z) = 1$$

Рассмотрим $2 \in \mathbb{Z}[i]$.

$$2 = (1+i)(1-i), \quad 1+i \not\in (\mathbb{Z}[i])^*, \quad 1-i \not\in (\mathbb{Z}[i])^* \Rightarrow$$

 \Rightarrow 2 не является простым элементом $\mathbb{Z}[i]$.

Докажем, что 1+i является простым элементом в $\mathbb{Z}[i]$.

Пусть
$$1+i=z_1z_2 \Rightarrow N(1+i)=N(z_1)N(z_2) \Rightarrow$$

$$\Rightarrow 2 = N(z_1)N(z_2) \Rightarrow \begin{bmatrix} \begin{cases} N(z_1) = 1 \\ N(z_2) = 2 \end{cases} \Leftrightarrow z_1 \in (\mathbb{Z}[i])^* \\ \begin{cases} N(z_1) = 2 \\ N(z_2) = 1 \end{cases} \Leftrightarrow z_2 \in (\mathbb{Z}[i])^*$$

Аналогично доказывается, что 1-i является простым элементом в $\mathbb{Z}[i]$. Следовательно, 2 = (1+i)(1-i) является разложением $2 \in \mathbb{Z}[i]$ на простые множители.

2 = (-1 - i)(-1 + i) - такое же с точностью до ассоциированности разложение.

4) $\mathbb{Z}[\sqrt{-3}] = \{a + i\sqrt{3}b : a, b \in \mathbb{Z}\}$ не является факториальным кольцом.

Покажем, что в этом кольце разложение на простые множители неоднозначно.

$$\begin{split} z &= a + i\sqrt{3}b \Rightarrow |z|^2 = a^2 + 3b^2 \in \mathbb{Z}_+ \\ z &= a + i\sqrt{3}b \in (\mathbb{Z}[\sqrt{-3}])^* \Leftrightarrow zz^{-1} = 1 \Leftrightarrow \left\{ \begin{array}{l} |z|^2|z^{-1}|^2 = 1 \\ |z| \in \mathbb{Z}_+ \end{array} \right. \Leftrightarrow \\ \Leftrightarrow |z|^2 &= 1 \Leftrightarrow a^2 + 3b^2 = 1 \Leftrightarrow \left\{ \begin{array}{l} a = \pm 1 \\ b = 0 \end{array} \right. \Leftrightarrow z = \pm 1, \\ \text{T.e. } (\mathbb{Z}[\sqrt{-3}])^* &= \{\pm 1\} \end{split}$$

Рассмотрим $4 \in \mathbb{Z}[\sqrt{-3}]$

4 не является простым элементом $\mathbb{Z}[\sqrt{-3}]$, поскольку

$$4=2\cdot 2$$
 (*) и $4=(1+i\sqrt{3})(1-i\sqrt{3})$ (**).

(*) - разложение $4 \in \mathbb{Z}[\sqrt{-3}]$ на простые множители.

$$(*)$$
 - разложение $4 \in \mathbb{Z}[V]$ - 5] на простые множители.
 2 - простой элемент, т.к. если $2 = z_1 z_2 \Rightarrow |2|^2 = |z_1|^2 = |z_1|^2 |z_2|^2 \Leftrightarrow$
$$\begin{cases} |z_1|^2 = 2 \Leftrightarrow a_1^2 + 3b_1^2 = 2 \text{ невозможно} \\ |z_2|^2 = 2 \Leftrightarrow a_2^2 + 3b_2^2 = 2 \text{ невозможно} \end{cases}$$
 $\Leftrightarrow 4 = |z_1|^2 |z_2|^2 \Leftrightarrow$
$$\begin{cases} |z_1|^2 = 1 \\ |z_2|^2 = 4 \\ |z_2|^2 = 1 \end{cases} \Rightarrow$$

$$\Rightarrow \left[\begin{array}{c} z_1 \in (\mathbb{Z}[\sqrt{-3}])^* \\ z_2 \in (\mathbb{Z}[\sqrt{-3}])^* \end{array}\right.$$

(**) — также разложение $4 \in \mathbb{Z}[\sqrt{-3}]$ на простые множители $1+i\sqrt{3}$ — простой элемент, т.к. если $1+i\sqrt{3}=z_1z_2 \Rightarrow$

$$\Rightarrow |1 + i\sqrt{3}|^2 = |z_1|^2 |z_2|^2 \Leftrightarrow 4 = |z_1|^2 |z_2|^2 \Rightarrow \begin{bmatrix} z_1 \in (\mathbb{Z}[\sqrt{-3}])^* \\ z_2 \in (\mathbb{Z}[\sqrt{-3}])^* \end{bmatrix},$$

как мы видели выше.

Аналогично доказывается, что $1 - i\sqrt{3}$ — простой элемент.

$$\left\{\begin{array}{ll} 1+i\sqrt{3}\nsim 2\\ 1-i\sqrt{3}\nsim 2 \end{array}\right.$$
 в кольце $\mathbb{Z}[\sqrt{-3}]\Rightarrow$

 \Rightarrow (*) и (**) — два различных разложения $4 \in \mathbb{Z}[\sqrt{-3}]$ на простые множители. $\Rightarrow \mathbb{Z}[\sqrt{-3}]$ не является факториальным кольцом \Rightarrow

 $\Rightarrow \mathbb{Z}[\sqrt{-3}]$ не является КГИ \Rightarrow

 $\Rightarrow \mathbb{Z}[\sqrt{-3}]$ не является ЕК.

Лекция №9

1 Факторкольцо

Если A — кольцо, I < A — его аддитивная подгруппа \Rightarrow $\Rightarrow (I, +)$ — нормальная подгруппа (A, +). $a_1 \equiv a_2 \pmod{I} \Leftrightarrow a_2 - a_1 \in I$

Определено сложение смежных классов:

$$(a+I)+(b+I)=(a+b)+I\Rightarrow (A/I,+)$$
 — факторгруппа

A/I превратится в кольцо, если ввести операцию умножения смежных классов : (a+I)(b+I) = ab+I.

Это можно сделать корректно \Leftrightarrow умножение в A согласовано с отношением эквивалентности по $mod\ I$,

T.e.
$$\begin{cases} a_1 \equiv a_2 \pmod{I} \\ b_1 \equiv b_2 \pmod{I} \end{cases} \Rightarrow a_1b_1 = a_2b_2 \pmod{I}$$

Утв. 1. Умножение в кольце A согласовано с отношением эквивалентности по $mod\ I \Leftrightarrow I \lhd A$ — двусторонний идеал A.

Лок-во:

 \bigoplus Пусть умножение согласовано с отношением эквивалентности по $mod\ I$.

$$x\in I\Leftrightarrow x\equiv \overline{0}(mod\ I)\Rightarrow \forall a\in A\ ax=a0(mod\ I),$$
 т.к. $a\equiv a(mod\ I)\Rightarrow \forall a\in A\ ax\equiv 0(mod\ I)\Leftrightarrow \forall a\in A\ ax\in I\Rightarrow I$ — левый идеал A Аналогично, I — правый идеал A .

Следовательно, $I \triangleleft A$.

$$\bigoplus$$
 Пусть $I \lhd A$

Если
$$\begin{cases} a_1 \equiv a_2 \pmod{I} \\ b_1 \equiv b_2 \pmod{I} \end{cases}$$
, т.е.
$$\begin{cases} a_2 = a_1 + x, \text{ где } x \in I \\ b_2 = b_1 + y, \text{ где } y \in I \end{cases}$$
, то

$$a_2b_2 = (a_1 + x)(b_1 + y) = a_1b_1 + xb_1 + a_1y + xy \Rightarrow$$

 $\Rightarrow a_2b_2 - a_1b_1 = xb_1 + a_1y + xy \in I \ \forall x, y \in I, \ \forall a, b \in A,$ т.к. $I \lhd A \Rightarrow$
 $\Rightarrow a_1b_1 \equiv a_2b_2 \pmod{I}$.

Лекния №9

Утв. 2. Пусть A — кольцо, $I \triangleleft A$ — его двусторонний идеал, на A/I определены операции сложения и умножения

$$(*) \begin{cases} (a+I) + (b+I) = (a+b) + I \in A/I \\ (a+I)(b+I) = ab + I \in A/I \end{cases} \quad \forall (a+I), (b+I) \in A/I,$$

тогда A/I с этими операциями является кольцом.

Док-во:

(A/I,+) - группа по сложению.

Проверим дистрибутивность в A/I.

$$(a+I)((b+I)+(c+I)) = (a+I)((b+c)+I) = a(b+c)+I = (ab+ac)+I = (ab+I)+(ac+I) = (a+I)(b+I)+(a+I)(c+I)$$

При перестановке сомножителей дистрибутивность проверяется аналогично.

Опр. Если A - кольцо, $I \lhd A$ - его двусторонний идеал, то кольцо A/I с операциями, определяемыми (*), называется факторкольцом кольца A по идеалу I.

Пример.

$$\forall (m) = m\mathbb{Z} \lhd \mathbb{Z} \quad \mathbb{Z}/m\mathbb{Z} = \mathbb{Z}/(m) = \mathbb{Z}_m$$
 - кольцо вычетов по модулю m .

Note. Пусть A - кольцо, $I \lhd A$. Тогда

A - ассоциативное кольцо \Rightarrow $^{A}/_{I}$ - ассоциативное кольцо,

A - коммутативное кольцо $\Rightarrow A/I$ - коммутативное кольцо,

A - кольцо с единицей $1 \Rightarrow A/I$ - кольцо с единицей (1+I).

2 Критерии того, что факторкольцо является полем

Лемма 1.

Пусть A - кольцо, $I \triangleleft A$, $I \subset I' \triangleleft A$, тогда $I'/I \triangleleft A/I$.

Док-во:

$$I \lhd A, \ I \subset I' \lhd A \Rightarrow I \lhd I', \ \ ^{I'}/_{I} \subset ^{A}/_{I}$$

 $a+I \in ^{I'}/_{I} \Leftrightarrow a \in I'$

1)
$$0 + I \in I'/I$$
,

2)
$$(a+I)$$
, $(b+I) \in I'/I \Rightarrow a, b \in I' \Rightarrow a+b \in I' \Rightarrow$

$$\Rightarrow$$
 $(a+I) + (b+I) = (a+b) + I \in I'/I$,

3)
$$a + I \in I'/I \Rightarrow a \in I' \Rightarrow (-a) \in I' \Rightarrow -(a + I) = (-a) + I \in I'/I$$
,

4)
$$b+I \in A/I$$
, $a+I \in I'/I \Rightarrow b \in A$, $a \in I' \Rightarrow ba \in I' \Rightarrow$

$$\Rightarrow (b+I)(a+I) = ba + I \in I'/I,$$

аналогично, $(a+I)(b+I) \in I'/I$.

1), 2), 3), 4)
$$\Rightarrow I'/I \triangleleft A/I$$
.

Пример.

$$(20) \subset (10) \subset \mathbb{Z}, \ \mathbb{Z}/_{(20)} = \mathbb{Z}_{20}, \ (10)/_{(20)} = (\overline{10}) \triangleleft \mathbb{Z}_{20}.$$

Лемма 2. Пусть A — кольцо, $I_1, I_2 \triangleleft A$, тогда

$$I_1 + I_2 = \{a_1 + a_2 : a_1 \in I_1, a_2 \in I_2\} \triangleleft A$$

Док-во:

- 1) $\overline{0} = \overline{0} + \overline{0} \in I_1 + I_2$
- 2) $a_1 + a_2$, $b_1 + b_2 \in I_1 + I_2$, $a_1, b_1 \in I_1$, $a_2, b_2 \in I_2 \Rightarrow$

$$\Rightarrow$$
 $(a_1 + a_2) + (b_1 + b_2) = (a_1 + b_1) + (a_2 + b_2) \in I_1 + I_2$

- 3) $a_1 + a_2 \in I_1 + I_2$, $a_1 \in I_1$, $a_2 \in I_2 \Rightarrow -(a_1 + a_2) = (-a_1) + (-a_2) \in I_1 + I_2$
- 4) $b \in A$, $a_1+a_2 \in I_1+I_2$, $a_1 \in I_1$, $a_2 \in I_2 \Rightarrow b(a_1+a_2) = ba_1+ba_2 \in I_1+I_2$, аналогично, $(a_1+a_2)b \in I_1+I_2$
- $(1), (2), (3), (4) \Rightarrow I_1 + I_2 \triangleleft A$

Теорема 1. Если A - KAK1, $I \triangleleft A$ — собственный идеал, то A/I - поле $\Leftrightarrow I$ — максимальный идеал A.

Док-во:

- \bigoplus Пусть A/I поле и $I \subset I' \lhd A: I' \neq A \Rightarrow I'/I \lhd A/I: I'/I \neq A/I$
- В поле A/I нет собственных идеалов $\Rightarrow I'/I = {\overline{0} + I} \Leftrightarrow I' = I \Rightarrow$
- $\Rightarrow I$ максимальный идеал A.
- \bigoplus Пусть I максимальный идеал A, тогда
 - 1) $A KAK1 \Rightarrow A/I KAK1$
 - 2) I собственный идеал $\Rightarrow I \neq A \Rightarrow |A/I| > 1$

$$3) \ a+I \in A/I^{\searrow} \{\overline{0}+I\} \Leftrightarrow a \not\in I \Rightarrow I \subset (a)+I \lhd A$$
, при этом $I \neq a+I$, I — максимальный идеал $A \Rightarrow (a)+I = A \Rightarrow 1 \in (a)+I \Rightarrow \Rightarrow 1 = ab+x$, где $b \in A$, $x \in I \Rightarrow 1 \equiv ab (mod\ I) \Rightarrow \Rightarrow ab+I = 1+I$, т.е. $(a+I)(b+I) = 1+I$, т.е. $(b+I) = (a+I)^{-1} \in A/I$ $(a+I)(a+I)(a+I) = 1+I$, т.е. $(a+I)(a+I)(a+I)(a+I) = 1+I$, т.е. $(a+I)(a+I)(a+I)(a+I)(a+I)(a+I)(a+I)$

Теорема 2. Если $A-\mathrm{K}\Gamma\mathrm{M},\,a\in A^{\ \diagdown}(A^*\cup\{\overline{0}\}),$ то A/(a) - поле $\Leftrightarrow a$ - простой элемент A.

Док-во:

 $a \in A^{\sim}(A^* \cup \{\overline{0}\}) \Rightarrow (a)$ — собственный идеал A.

A/(a) - поле \Leftrightarrow (a) - максимальный идеал.

В КГИ (a) - максимальный идеал $\Leftrightarrow a$ - простой элемент A.

Следствие. Если K - поле, $p(x) \in K[x]: deg \, p(x)>0$, то K[x]/(p(x)) - поле $\Leftrightarrow p(x)$ - неприводимый многочлен.

3 Нильпотентный радикал кольца

Опр. Пусть A - кольцо, $a \in A$ называется нильпотентным элементом A (нильпотентом), если $\exists n \in \mathbb{N} : a^n = \overline{0}. \ \overline{0} \in A$ называется тривиальным нильпотентом.

Опр. Нильпотентным радикалом (нильрадикалом) кольца A называется множество всех его нильпотентов.

$$Rad A = \{ a \in A : \exists \ n_a \in \mathbb{N} : a^{n_a} = \overline{0} \}.$$

Утв. 3.

Пусть A - KAK1, тогда $Rad A \triangleleft A$.

Док-во:

1) $\overline{0} \in Rad A$.

$$2) \left\{ \begin{array}{l} a_1 \in Rad\,A, \text{ t.e. } \exists \; n \in \mathbb{N} : a_1^n = \overline{0} \\ a_2 \in Rad\,A, \text{ t.e. } \exists \; m \in \mathbb{N} : a_2^m = \overline{0} \end{array} \right. \Rightarrow$$

$$\Rightarrow (a_1+a_2)^{n+m} = \sum_{k=0}^{n+m} C_{n+m}^k a_1^k a_2^{n+m-k} = \overline{0}, \text{ т.к.}$$
 при $k=0,1,...,n$ $a_1^k a_2^{n+m-k} = \overline{0},$ поскольку $a_2^m = \overline{0},$ при $k=n+1,n+2,...,n+m$ $a_1^k a_2^{n+m-k} = \overline{0},$ поскольку $a_1^n = \overline{0} \Rightarrow a_1+a_2 \in Rad A.$
3) $a \in Rad A,$ т.е. $\exists n \in \mathbb{N} : a^n = \overline{0} \Rightarrow (-a)^n = (-1)^n a^n = \overline{0} \Rightarrow (-a) \in Rad A.$
4) $b \in A, \quad a \in Rad A,$ т.е. $\exists n \in \mathbb{N} : a^n = \overline{0} \Rightarrow (ba)^n = b^n a^n = \overline{0} \Rightarrow ba \in A.$
1), 2), 3), 4) $\Rightarrow Rad A \lhd A.$

Утв. 4. Пусть A - КАК1, тогда A/RadA - кольцо, в котором нет нетривиальных нильпотентов.

Док-во:

Пусть $a+Rad\,A\in {}^A/_{Rad\,A}$ и $\exists~n\in\mathbb{N}:(a+Rad\,A)^n=a^n+Rad\,A=$ $=\overline{0}+Rad\,A\Leftrightarrow a^n\in Rad\,A,$ т.е. $\exists~m\in\mathbb{N}:(a^n)^m=\overline{0}\Leftrightarrow a^{mn}=\overline{0}\Rightarrow$ $\Rightarrow~a\in Rad\,A\Rightarrow a+Rad\,A=Rad\,A=\overline{0}+Rad\,A$ - тривиальный нильпотент в ${}^A/_{Rad\,A}$.

Утв. 5. Пусть $A - \text{K}\Gamma\text{И}, b \in A^{\sim}(A^* \cup \{\overline{0}\}),$ $b = p_1^{k_1} p_2^{k_2} \dots p_s^{k_s} - \text{разложение } b \text{ на простые множители},$ $p_i \neq p_j$ при $i \neq j, \quad i, j = \overline{1, s}, \text{ тогда } Rad(A/(b)) = (p_1 p_2 \dots p_s)/(b).$ Док-во: $a + (b) \in Rad(A/(b)) \Leftrightarrow \exists n \in \mathbb{N} : (a + (b))^n = a^n + (b) = 0 + (b), \text{ т.е. } a^n \in (b)$ 1) Если $a + (b) \in Rad(A/(b)) \Rightarrow a^n \in (b) \subset (p_1 p_2 \dots p_s) \Rightarrow a \in (p_1 p_2 \dots p_s)/(b), \text{ т.е. } Rad(A/(b)) \subset (p_1 p_2 \dots p_s)/(b).$ 2) Если $a + (b) \in (p_1 p_2 \dots p_s)/(b) \Rightarrow a \in (p_1 p_2 \dots p_s)/(b) \Rightarrow a \oplus (p_1 p_2 \dots p_s)/(b) \Rightarrow a \oplus (p_1 p_2 \dots p_s)/(b) \Rightarrow a \oplus (p_1 p_2 \dots p_s)/(b)$ $\Rightarrow a + (b) \in Rad(A/(b)), \text{ т.е. } (p_1 p_2 \dots p_s)/(b) \subset Rad(A/(b)).$ $1), 2) \Rightarrow Rad(A/(b)) = (p_1 p_2 \dots p_s)/(b).$

Пример. Найдём $Rad \mathbb{Z}_{20}$. $\mathbb{Z}_{20} = \mathbb{Z}/(20)$, $20 = 2^2 \cdot 5$. $Rad \mathbb{Z}_{20} = Rad(\mathbb{Z}/(20)) = (2 \cdot 5)/(20) = (10)/(20) = (\overline{10})$.

Лекция №10

1 Гомоморфизм колец

Опр. Отображение колец $f:A\longmapsto B$ называется гомоморфизмом колец, если $\begin{cases} f(a_1+a_2)=f(a_1)+f(a_2)\\ f(a_1a_2)=f(a_1)f(a_2) \end{cases} \forall a_1,\ a_2\in A$

Пример. Пусть $A, B - KAK1, A \subset B, A[x]$ — кольцо многочленов над A,

Рассмотрим $f: A[x] \longmapsto B$ — отображение подстановки:

$$b \in B, \ f(p(x)) = p(b) \in B \ \forall p(x) \in A[x].$$

f — гомоморфизм, т.к.

$$\begin{cases} f(p_1(x) + p_2(x)) = p_1(c) + p_2(c) = f(p_1(x)) + f(p_2(x)) \\ f(p_1(x)p_2(x)) = p_1(c)p_2(c) = f(p_1(x))f(p_2(x)) \end{cases}$$

Note. Гомоморфизм колец $f: A \longmapsto B$ является гомоморфизмом их аддитивных групп $f: (A, +) \longmapsto (B, +)$.

Опр. Образом гомоморфизма колец $f:A\longmapsto B$ называется $Im\ f=\{b\in B:\exists\ a\in A:f(a)=b\}$

Утв. 1. Пусть $f:A\longmapsto B$ - гомоморфизм колец, тогда $Im\ f$ — подкольцо B.

Док-во:

1) $Im \ f < (B, +) -$ подгруппа аддитивной группы.

2) Пусть
$$\begin{cases} b_1 \in Im \ f, \text{ т.е } \exists \ a_1 \in A : b_1 = f(a_1) \\ b_2 \in Im \ f, \text{ т.е } \exists \ a_2 \in A : b_2 = f(a_2) \end{cases} \Rightarrow b_1b_2 = f(a_1)f(a_2) = f(a_1a_2) \Rightarrow b_1b_2 \in Im \ f$$

 $(1), (2) \Rightarrow Im \ f$ — подкольцо B.

Note.

Если A — коммутативное кольцо \Rightarrow $Im\ f$ — коммутативное кольцо.

Если A — ассоциативное кольцо \Rightarrow $Im\ f$ — ассоциативное кольцо.

Лекция №10 65

Опр. Ядром гомоморфизма колец $f:A\longmapsto B$ называется $Ker\ f=\{a\in A: f(a)=\overline{0}\in B\}$

Утв. 2. Пусть $f:A\longmapsto B$ — гомоморфизм колец, тогда $Ker\ f\triangleleft A$ — двусторонний идеал A.

Док-во:

- 1) Ker f < (A, +)
- 2) Пусть $c \in A$, $a \in Ker f$, т.е. $f(a) = 0 \Rightarrow \begin{cases} f(ca) = f(c)f(a) = f(c)\overline{0} = \overline{0} \\ f(ac) = f(a)f(c) = \overline{0}f(c) = \overline{0} \end{cases} \Rightarrow \begin{cases} ca \in Ker f \\ ac \in Ker f \\ 1), 2) \Rightarrow Ker f \lhd A$ двусторонний идеал A.
- **Опр.** Сюръективный гомоморфизм колец $f:A\to B$ называется эпиморфизмом.

Гомоморфизм $f:A\to B$ является эпиморфизмом $\Leftrightarrow Im\ f=B.$

Опр. Инъективный гомоморфизм $f:A\to B$ называется мономорфизмом.

Гомоморфизм $f:A\to B$ является мономорфизмом $\Leftrightarrow Ker\ f=\{\overline{0}\}.$

Note. Если $f:A\to B$ гомоморфизм колец, A - кольцо с 1_A , то $f(1_A)$ может не быть единицей в кольце B.

Например,
$$f: \mathbb{Z}_{20} \to \mathbb{Z}_{20}: f(\overline{z}) = \overline{5}\overline{z} \ \forall \overline{z} \in \mathbb{Z}_{20}, \ f(\overline{1}) = \overline{5}.$$

$$f(\overline{z}_1 + \overline{z}_2) = \overline{5}(\overline{z}_1 + \overline{z}_2) = \overline{5}\overline{z}_1 + \overline{5}\overline{z}_2 = f(\overline{z}_1) + f(\overline{z}_2),$$

$$f(\overline{z}_1 \cdot \overline{z}_2) = \overline{5}\overline{z}_1\overline{z}_2 = \overline{25}\overline{z}_1\overline{z}_2 = \overline{5}\overline{z}_1 \cdot \overline{5}\overline{z}_2 = f(\overline{z}_1)f(\overline{z}_2)$$

Утв. 3. Если $f:A\to B$ - эпиморфизм колец, A - кольцо с единицей 1_A , то и B - кольцо с единицей $1_B=f(1_A)$.

Док-во:

$$f - эпиморфизм $\Rightarrow \forall b \in B \ \exists a \in A : f(a) = b \Rightarrow$
$$\Rightarrow \begin{cases} b = f(a) = f(a \cdot 1_A) = f(a)f(1_A) = bf(1_A) \\ b = f(a) = f(1_A \cdot a) = f(1_A)f(a) = f(1_A)b \end{cases} \Rightarrow f(1_A) = 1_B$$$$

Лекция №10 66

Утв. 4. Если $f:A\to B$ гомоморфизм колец и A является полем, то либо f - мономорфизм, т.е. $Ker\ f=\{\overline{0}\},$ либо f - тривиальный гомоморфизм, т.е. $Ker\ f=A$.

Док-во:

Пусть f не является мономорфизмом, т.е. $Ker f \neq \{\overline{0}\}$.

Пусть
$$a \in Ker f$$
 и $a \neq \overline{0} \Rightarrow \exists a^{-1} \in A \Rightarrow$

$$\Rightarrow f(1) = f(aa^{-1}) = f(a)f(a^{-1}) = \overline{0}f(a^{-1}) = \overline{0} \Rightarrow$$

$$\Rightarrow 1 \in Ker f \Rightarrow Ker f = A$$
,

т.е. f - тривиальный гомоморфизм.

2 Изоморфизм колец

Опр. Отображение колец $f:A\to B$ называется изоморфизмом, если $\left\{ \begin{array}{l} 1)\ f$ - гомоморфизм, $\\ 2)\ f$ - биекция.

Следовательно,
$$f$$
 - изоморфизм $\Leftrightarrow \left\{ \begin{array}{l} f$ - гомоморфизм,
$$Im \ f=B,\\ Ker \ f=\{\overline{0}\}. \end{array} \right.$$

Опр. Кольца A и B называются изоморфными ($A \simeq B$), если существует изоморфизм $f: A \longmapsto B$. Поля A и B называются изоморфными, если они изоморфны как кольца.

Утв. 5. Если $f:A\longmapsto B$ — изоморфизм колец, то $\exists \ f^{-1}:B\longmapsto A$ — тоже изоморфизм колец.

Док-во:

- 1) f биекция $\Rightarrow \exists f^{-1}$,
- 2) $f^{-1}:(B,+)\longmapsto(A,+)$ изоморфизм аддитивных групп,
- 3) $f^{-1}(b_1b_2) = f^{-1}((f \circ f^{-1})(b_1)(f \circ f^{-1})(b_2)) = f^{-1}(f(f^{-1}(b_1))f(f^{-1}(b_2))) = f^{-1}(f(f^{-1}(b_1))f^{-1}(b_2)) = (f^{-1} \circ f)(f^{-1}(b_1)f^{-1}(b_2)) = f^{-1}(b_1)f^{-1}(b_2).$
- $(1),2),3)\Rightarrow\exists f^{-1}:B\longmapsto A$ изоморфизм.

Note.

Изоморфизм колец $A \simeq B$ является отношением эквивалентности.

Утв. 6. Пусть A и B изоморфные кольца $(A \simeq B)$ и одно из колец является полем, тогда и второе кольцо является полем.

Док-во:

Пусть $f:A \longmapsto B$ изоморфизм, A — поле, тогда

- 1) Im f = B KAK1,
- 2) $|A| > 1 \Rightarrow |B| > 1$,

3)
$$\forall b \in B \setminus \{\overline{0}_B\} \ \exists \ a \in A \setminus \{\overline{0}_A\} : f(a) = b \Rightarrow 1_B = f(1_A) = f(aa^{-1}) = f(a)f(a^{-1}) = bf(a^{-1}) \Rightarrow \exists b^{-1} = f(a^{-1}) \in B$$

$$(1), (2), (3) \Rightarrow B - поле$$

Если B — поле, то рассмотрим изоморфизм $f^{-1}: B \longmapsto A$ и аналогично получим, что A также является полем.

3 Теорема о гомоморфизме колец

Теорема 1. Пусть $f:A\to B$ - гомоморфизм колец, тогда $A/_{Ker\ f}\simeq Im\ f.$

Док-во:

Построим отображение $F: A/Ker f \to Im f: F(a+Ker f) = f(a)$.

В теореме о гомоморфизме групп в прошлом семестре было доказано, что 1) F определено корректно,

2) F - изоморфизм аддитивных групп $(A/Ker\ f, +) \simeq (Im\ f, +)$.

Остаётся проверить, что F сохраняет операцию умножения

3)
$$F((a_1+Ker f)(a_2+Ker f)) = F(a_1a_2+Ker f) = f(a_1a_2) = f(a_1)f(a_2) = F(a_1+Ker f)F(a_2+Ker f).$$

$$(1),2),3)\Rightarrow F$$
 - изоморфизм колец.

Примеры:

(1) Пусть K - поле, $f:K[x]\to K$ - гомоморфизм подстановки : $\forall\, p(x)\in K[x]\quad f\bigl(p(x)\bigr)=p(c)\in K,$ где $c\in K,$ тогда

1) f - гомоморфизм колец;

2)
$$Im \ f = K$$
, т.к. очевидно, что $Im \ f \subset K$, и $\forall r \in K \ \exists \ p(x) = r \in K[x] \Rightarrow f(p(x)) = f(r) = r \Rightarrow r \in Im \ f \Rightarrow$ $\Rightarrow K \subset Im \ f$; 3) $Ker \ f = \{p(x) : p(c) = 0\} = \{p(x) : p(x) = (x - c)q(x), \ q(x) \in K[x]\} =$ $= (x - c)K[x] = (x - c) \triangleleft K[x].$

Из 1),2),3) по теореме о гомоморфизме колец следует, что $K[x]/(x-c)\simeq K \ \ \forall \, c\in K.$

В частности, $\mathbb{R}[x]/(x-c) \simeq \mathbb{R} \ \forall c \in \mathbb{R}$.

- (2) Пусть $f: \mathbb{R}[x] \longmapsto \mathbb{C}$ гомоморфизм подстановки: $\forall p(x) \in \mathbb{R}[x] \ f(p(x)) = p(i) \in \mathbb{C}$, тогда
- 1) f гомоморфизм колец;
- $2)\ Im\ f=\mathbb{C},\ \text{т.к.}$ очевидно, что $Im\ f\subset\mathbb{C},\$ и $\forall z=a+ib\in\mathbb{C}\ \exists\ p(x)=a+bx\in\mathbb{R}[x]:f(p(x))=a+ib=z\Rightarrow$ $\Rightarrow z\in Im\ f\Rightarrow\mathbb{C}\subset Im\ f;$ $3)\ Ker\ f=\{p(x):p(i)=0\}=\{p(x):p(i)=0,\ p(-i)=0\}=\{p(x):p(x)=(x-i)(x+i)q(x),\ q(x)\in\mathbb{R}[x]\}=$ $=\{p(x):p(x)=(x^2+1)q(x),\ q(x)\in\mathbb{R}[x]\}=(x^2+1)\mathbb{R}[x]=(x^2+1)\neq\mathbb{R}[x]$
- Из 1), 2), 3) по теореме о гомоморфизме колец следует, что $\mathbb{R}[x]/(x^2+1) {\simeq \mathbb{C}}$

4 Прямые суммы колец

- **Опр.** Внешней прямой суммой колец $A_1, A_2, ..., A_m$ называется множество $A_1 \oplus A_2 \oplus ... \oplus A_m = \{(a_1, a_2, ..., a_m) : a_i \in A_i, i = \overline{1,m}\}$ с операциями сложения и умножения, определёнными поэлементно.
 - **Утв. 7** Если $A_1,\ A_2,...,\ A_m$ кольца, то $A_1\oplus A_2\oplus...\oplus A_m$ кольцо. Док-во: проверьте это самостоятельно.
- **Опр.** Кольцо A называется внутренней прямой суммой собственных подколец $A_1, A_2, ..., A_m \subset A, A_i \neq \{0\}, A_i \neq A, i = \overline{1,m}$ и обозначает-

ся
$$A = A_1 \oplus A_2 \oplus \ldots \oplus A_m$$
, если

 $\begin{cases} 1) \ (A,+) = (A_1 \oplus A_2 \oplus ... \oplus A_m, +), & \text{ т.е. аддитивная группа кольца } A \\ \text{является внутренней прямой суммой своих собственных подгрупп} \\ (см. Лекцию 12 прошлого семестра); \\ 2) \ a_i a_j = \overline{0} \ \text{при } i \neq j, \ a_i \in A_i, \ a_j \in A_j, \ i, j = \overline{1,m} \end{cases}$

2)
$$a_ia_j=\overline{0}$$
 при $i\neq j,\ a_i\in A_i,\ a_j\in A_j,\ i,j=\overline{1,m}$

Note. Если $a,b\in A=A_1\oplus A_2\oplus ...\oplus A_m$, где A_i — подкольцо $A, i = \overline{1,m}, \text{ то из } \begin{cases} 1) \\ 2) \end{cases} \Rightarrow ab = (a_1 + a_2 + \dots + a_m)(b_1 + b_2 + \dots + b_m) = 0$

Понятия внутренней и внешней прямой суммы колец связаны между собой так же, как соотвествующие понятия для групп.

Утв. 8. Пусть A - кольцо, $A_1, A_2, ..., A_m$ - его собственные подкольца, тогда $A = A_1 \oplus A_2 \oplus ... \oplus A_m$

$$\uparrow$$

Заметим, что 1) \Leftrightarrow 1'), т.к. (A, +) - абелева группа.

Покажем, что
$$\left\{ \begin{array}{l} 1) \\ 2) \end{array} \Rightarrow 2' \right)$$
.

$$\forall b \in A \ b = b_1 + b_2 + \dots + b_m, \ b_j \in A_j, \ j = \overline{1, m}$$

$$\forall b \in A \ b = b_1 + b_2 + \dots + b_m, \ b_j \in A_j, \ j = \overline{1, m}$$

$$\forall a \in A_i \ \forall b \in A \left\{ \begin{array}{l} ba_i = (\sum\limits_{j=1}^m b_j)a_i = b_i a_i \in A_i \Rightarrow ba_i \in A_i, \\ \text{аналогично}, \ a_i b \in A_i \end{array} \right. \Rightarrow$$

$$\Rightarrow A_i \triangleleft A, \ i = \overline{1, m}.$$

Покажем, что
$$\left\{ \begin{array}{l} 1') \\ 2' \end{array} \right. \Rightarrow 2).$$

Пусть $a_i \in A_i$, $a_j \in A_j$, $i \neq j$, $i, j = \overline{1, m}$,

тогда $a_i a_j \in A_i \cap A_j$, т.к. $A_i, A_j \triangleleft A$.

Если $a_i a_j \neq \overline{0}$, то этот элемент двумя способами представляется в виде суммы элементов подколец $A_1, ..., A_m$:

$$a_ia_j=\overline{0}+\ldots+\overline{0}+a_ia_j+\overline{0}+\ldots+\overline{0},$$
 где $a_ia_j\in A_i,$

$$a_ia_j=\overline{0}+\ldots+\overline{0}+a_ia_j+\overline{0}+\ldots+\overline{0},$$
 где $a_ia_j\in A_j.$ $\stackrel{\wedge}{\nearrow}\Rightarrow a_ia_j=\overline{0}$ при $i\neq j,\ i,j=\overline{1,m}.$

Утв. 9. Пусть A - кольцо, A_1, A_2 - его собственные подкольца,

тогда
$$A=A_1\oplus A_2\Leftrightarrow \left\{ egin{array}{ll} 1'') & A=A_1+A_2 \\ 2'') & A_1\cap A_2=\{\overline{0}\} \\ 3'') & A_1,A_2\lhd A. \end{array} \right.$$

Док-во:

Т.к. A_1, A_2 - собственные подгруппы аддитивной группы $A, \left\{ \begin{array}{l} 1'') \\ 2'' \end{array} \Leftrightarrow 1' \right)$. Условия 3'') и 2') совпадают.

5 Идемпотенты. Критерий разложимости кольца в прямую сумму собственных подколец.

Опр.

Пусть A - кольцо, $a \in A$ называется идемпотентом, если $a^2 = a$.

Note.

В любом кольце с 1 существуют тривиальные идемпотенты $\overline{0}$ и 1.

Утв. 10. Если e - нетривиальный идемпотент кольца с 1, то e - делитель нуля.

Док-во:
$$\begin{cases} e^2 = e \\ e \neq \overline{0} \end{cases} \Rightarrow \begin{cases} e(e-1) = \overline{0} \\ e \neq \overline{0} \\ e = 1 \end{cases}$$

Утв. 11. Если e_1 - нетривиальный идемпотент кольца A с 1, то $e_2=1-e_1$ - также нетривиальный идемпотент A и $e_1e_2=\overline{0}$.

Док-во:

$$e_2^2 = (1 - e_1)^2 = 1 - 2e_1 + e_1^2 = 1 - 2e_1 + e_1 = 1 - e_1 = e_2,$$

 $e_1e_2 = e_1(1 - e_1) = e_1 - e_1^2 = \overline{0}.$

Лекция №10 71

Теорема 2. Критерий разложимости КАК1 в прямую сумму собственных подколец.

Пусть A - KAK1, A_1, A_2 - собственные подкольца A, тогда

 $A = A_1 \oplus A_2 \Leftrightarrow \exists$ нетривиальный идемпотент $e \in A$.

Док-во:

 \bigoplus Пусть $A = A_1 \oplus A_2 \Rightarrow A_1, A_2$ - собственные идеалы A.

$$\exists e_1 \in A_1, e_2 \in A_2 : 1 = e_1 + e_2 (*), e_1 e_2 = \overline{0}.$$

Умножим (*) на
$$e_1 \Rightarrow e_1 = e_1^2 + e_1 e_2 = e_1^2 \Rightarrow$$

 $\Rightarrow e_1 = e_1^2$, при этом:

 $e_1 \neq \overline{0}$, т.к. иначе $e_2 = 1 \Rightarrow A_2 = A \Rightarrow A_2$ - несобственный идеал X,

 $e_1 \neq 1$, т.к. иначе $A_1 = A \Rightarrow A_1$ - несобственный идеал X,

т.е. $e=e_1$ - нетривиальный идемпотент в A.

 \bigoplus Пусть $e \in A$ — нетривиальный идемпотент. $\Rightarrow (1-e)$ — нетривиальный идемпотент. Обозначим $e_1 = e, \ e_2 = 1 - e \Rightarrow e_1 e_2 = \overline{0}$

Рассмотрим $A_1 = (e_1) \triangleleft A$, $A_2 = (e_2) \triangleleft A$.

 $A_1, \ A_2$ — собственные идеалы A, поскольку $A_i \neq \{0\}$ и $A_i \neq A, \ i = 1, 2,$

т.к. иначе $1=e_ix\Rightarrow e_i\in A^*,\;i=1,2,$ но e_i — делитель нуля X

1") $A = A_1 + A_2$, т.к. $\forall a \in A \ a = a1 = a(e_1 + e_2) = ae_1 + ae_2$,

 $ae_1 \in A_1, \ ae_2 \in A_2,$

(2'') $A_1 \cap A_2 = \{\overline{0}\}$, т.к. если $a \in A_1 \cap A_2$, то $a = e_1 x = e_2 y$,

где $x,y \in A \Rightarrow a = e_1^2 x = e_1 e_2 y = \overline{0}$

 $3'') A_1, A_2 \triangleleft A$

1"), 2"), 3") $\Rightarrow A = A_1 \oplus A_2$ — прямая сумма собственных подколец

Note. Пусть A - KAK1, $A = A_1 \oplus A_2$, $A_1 = (e_1)$, $A_2 = (e_2)$, где e_1, e_2 - нетривиальные идемпотенты в A, тогда $a = a_1 + a_2 = ae_1 + ae_2 = ae_1^2 + ae_2^2 = (ae_1)e_1 + (ae_2)e_2 = a_1e_1 + a_2e_2$.

Пример.

Рассмотрим \mathbb{Z}_n , n = mk, (m, k) = 1.

 $\exists x, y \in \mathbb{Z} : mx + ky = 1 \ (*),$

если (x_0, y_0) - частное решение (*), то $[mx_0]_n + [ky_0]_n = [1]_n$ (**) в \mathbb{Z}_n .

Тогда $e_1=[mx_0]_n$ - нетривиальный идемпотент в $\mathbb{Z}_n,$

т.к. умножив (**) на $[mx_0]_n$, получаем $[mx_0]_n^2 + [ky_0]_n [mx_0]_n = [mx_0]_n \Rightarrow$

 $\Rightarrow [mx_0]_n^2 = [mx_0]_n$, r.e. $e_1^2 = e_1$,

 $e_2 = [ky_0]_n$ - второй нетривиальный идемпотент в \mathbb{Z}_n .

Рассмотрим идеалы $(e_1) = ([mx_0]_n) \triangleleft \mathbb{Z}_n, (e_2) = ([ky_0]_n) \triangleleft \mathbb{Z}_n.$

 $\mathbb{Z}_n=(e_1)\oplus (e_2)=([mx_0]_n)\oplus ([ky_0]_n)$ - внутренняя прямая сумма.

 $(e_1) = ([mx_0]_n) \simeq \mathbb{Z}_k, \ (e_2) = ([ky_0]_n) \simeq \mathbb{Z}_m$

 $\mathbb{Z}_n \simeq \mathbb{Z}_k \oplus \mathbb{Z}_m$ - внешняя прямая сумма.

Если $f:\mathbb{Z}_n o \mathbb{Z}_k \oplus \mathbb{Z}_m$ - изоморфизм,

то $\forall [z]_n \in \mathbb{Z}_n \ f([z]_n) = ([z]_k, [z]_m),$

 $\forall ([r_1]_k, [r_2]_m) \in \mathbb{Z}_k \oplus \mathbb{Z}_m \ f^{-1}([r_1]_k, [r_2]_m) = [r_1 m x_0 + r_2 k y_0]_n.$

Лекция №11

1 Китайская теорема об остатках(КТО)

Теорема 1. КТО в классической формулировке.

Для любого набора остатков $r_1, r_2, ..., r_n$ от деления на попарно взаимно простые числа $m_1, m_2, ..., m_n \in \mathbb{N}$ можно найти целое число, которое даёт остаток r_i при делении на m_i для каждого i от 1 до n, причём два таких числа отличаются друг от друга на целое кратное числа $m_1m_2...m_n$.

Мы докажем Теорему 2 для КГИ. Теорема 1 будет её частным случаем.

Лемма 1. Пусть
$$A - \mathrm{K}\Gamma\mathrm{M},\ a_1,\ a_2 \in A: (a_1,a_2) = 1,$$
 тогда $(a_1) \cap (a_2) = (a_1a_2).$

Док-во:

1) Пусть
$$c \in (a_1) \cap (a_2) \Rightarrow c = a_1 u = a_2 v, \quad u, v \in A$$

$$(a_1, a_2) = 1 \Rightarrow \exists x, y \in A : a_1 x + a_2 y = 1 \Rightarrow$$

$$\Rightarrow ca_1x + ca_2y = c \Rightarrow$$

$$\Rightarrow a_2va_1x + a_1ua_2y = c \Rightarrow$$

$$\Rightarrow a_1 a_2 (vx + uy) = c \Rightarrow$$

$$\Rightarrow c \in (a_1 a_2) \Rightarrow (a_1) \cap (a_2) \subset (a_1 a_2)$$

2) Очевидно, $(a_1a_2) \subset (a_1) \cap (a_2)$

$$(1), 2) \Rightarrow (a_1) \cap (a_2) = (a_1 a_2)$$

Лемма 2. Пусть A- КГИ, $a,\ a_1,\ a_2,...,\ a_m\in A:(a,a_i)=1,$ $i=\overline{1,m},$ тогда $(a,\ a_1a_2...a_m)=1$

Док-во:

$$(a, a_i) = 1 \Rightarrow \exists x_i, y_i \in A : ax_i + a_i y_i = 1, i = \overline{1, m} \Rightarrow \prod_{i=1}^m (ax_i + a_i y_i) = 1 (*)$$

Перемножив выражения в левой части (*), получим сумму элементов кольца A, один из которых равен $a_1a_2...a_my_1y_2...y_m$, а все остальные содержат множитель $a. \Rightarrow$

Лекция №11 74

$$\Rightarrow \prod_{i=1}^m (ax_i + a_iy_i) = aX + a_1a_2...a_mY = 1$$
, где $X, Y \in A \Rightarrow (a, a_1a_2...a_m) = 1$

Теорема 2. КТО для КГИ.

Пусть
$$A - \mathrm{K}\Gamma\mathrm{H}, \ a_1, \ a_2, ..., \ a_n \in A : (a_i, a_j) = 1$$
 при $i \neq j, \ i, j = \overline{1, n},$ тогда $A/(a_1a_2...a_n) \simeq A/(a_1) \oplus A/(a_2) \oplus ... \oplus A/(a_n)$

Док-во:

Докажем теорему индукцией по n.

1)
$$n = 2$$
, $a_1, a_2 \in A : (a_1, a_2) = 1 \Rightarrow A/(a_1 a_2) = A/(a_1) \oplus A/(a_2)$

Рассмотрим
$$\varphi: A \longmapsto A/(a_1) \oplus A/(a_2):$$
 $\forall u \in A \ \varphi(u) = (u + (a_1), \ u + (a_2)).$

а) Покажем, что φ является гомоморфизмом колец.

$$\varphi(u+v) = (u+v+(a_1), u+v+(a_2)) =$$

$$= (u+(a_1), u+(a_2)) + (v+(a_1), v+(a_2)) = \varphi(u) + \varphi(v)$$

$$\varphi(uv) = (uv+(a_1), uv+(a_2)) =$$

$$= (u+(a_1), u+(a_2))(v+(a_1), v+(a_2)) = \varphi(u)\varphi(v)$$

б)
$$Im \varphi = A/(a_1) \oplus A/(a_2)$$

Очевидно, что $Im \varphi \subset A/(a_1) \oplus A/(a_2)$.

Покажем, что $A/(a_1) \oplus A/(a_2) \subset Im \varphi$.

$$(a_1, a_2) = 1 \Rightarrow \exists x, y \in A : a_1 x + a_2 y = 1 \Rightarrow \begin{cases} \varphi(a_2 y) = (1 + (a_1), \ 0 + (a_2)) \\ \varphi(a_1 x) = (0 + (a_1), \ 1 + (a_2)) \end{cases}$$

$$\forall (r + (a_1), s + (a_2)) \in A/(a_1) \oplus A/(a_2) \quad \exists u = ra_2y + sa_1x \in A :$$

$$\varphi(u) = \varphi(ra_2y + sa_1x) = \varphi(r)\varphi(a_2y) + \varphi(s)\varphi(a_1x) =$$

$$= (r + (a_1), r + (a_2))(1 + (a_1), 0 + (a_2)) + (s + (a_1), s + (a_2))(0 + (a_1), 1 + (a_2)) =$$

$$= (r + (a_1), 0 + (a_2)) + (0 + (a_1), s + (a_2)) = (r + (a_1), s + (a_2)) \Rightarrow$$

$$\Rightarrow (r + (a_1), s + (a_2)) \in Im \ \varphi \Rightarrow A/(a_1) \oplus A/(a_2) \subset Im \ \varphi$$

B)
$$Ker \varphi = (a_1 a_2)$$

 $Ker \varphi = \{u \in A : \varphi(u) = (0 + (a_1), 0 + (a_2))\} =$
 $= \{u \in A : u \in (a_1), u \in (a_2)\} = (a_1) \cap (a_2) = (a_1 a_2)$

Из а),б),в) по теореме о гомоморфизме колец \Rightarrow $A/(a_1a_2) \simeq A/(a_1) \oplus A/(a_2)$.

2) Пусть утверждение теоремы верно для (n-1), докажем, что оно верно для n.

$$(a_n,a_i)=1, \ i=\overline{1,n-1}\Rightarrow (a_n,a_1a_2...a_{n-1})=1\Rightarrow$$
 из $1)\Rightarrow {A}/(a_1a_2...a_{n-1}a_n)\simeq {A}/(a_1a_2...a_{n-1})\oplus {A}/(a_n).$

По предположению индукции

$$A/(a_1a_2...a_{n-1}) \simeq A/(a_1) \oplus A/(a_2) \oplus ... \oplus A/(a_{n-1}) \Rightarrow$$

$$\Rightarrow A/(a_1a_2...a_{n-1}a_n) \simeq A/(a_1) \oplus A/(a_2) \oplus ... \oplus A/(a_{n-1}) \oplus A/(a_n)$$

Примеры:

(1)
$$K$$
 - поле $\Rightarrow K[x]$ - КГИ

$$c_i \in K, c_i \neq c_j$$
 при $i \neq j, i, j = \overline{1, n} \Rightarrow$
 $\Rightarrow ((x - c_i), (x - c_j)) = 1$ при $i \neq j, i, j, = \overline{1, n}$

$$K[x]/((x-c_1)(x-c_2)...(x-c_n)) \simeq$$

$$\simeq K[x]/(x-c_1) \oplus K[x]/(x-c_2) \oplus ... \oplus K[x]/(x-c_n),$$

$$K[x]/(x-c_i) \simeq K \Rightarrow$$

$$\Rightarrow K[x]/((x-c_1)(x-c_2)...(x-c_n)) \simeq K \oplus K \oplus ... \oplus K$$

(2)
$$R[x]/(x^4-1) = R[x]/((x-1)(x+1)(x^2+1)) \simeq$$

$$\simeq R[x]/(x-1) \oplus R[x]/(x+1) \oplus R[x]/(x^2+1) \simeq \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{C}$$

Note. Теорема 1 является частным случаем Теоремы 2 при $A=\mathbb{Z},\ a_i=m_i,\ i=\overline{1,n}.$

2 Решение системы сравнений

Пусть
$$m_1, m_2, ..., m_n \in \mathbb{N} : (m_i, m_j) = 1$$
 при $i \neq j, i, j = \overline{1, n}$ Найдём $z \in \mathbb{Z} :$
$$\begin{cases} z \equiv r_1 (mod \, m_1) \\ z \equiv r_2 (mod \, m_2) \\ \\ z \equiv r_n (mod \, m_n) \end{cases} \Rightarrow z \equiv r_i (mod \, m_i), \quad i = \overline{1, n} \Leftrightarrow [z]_{m_i} = [r_i]_{m_i}, \quad i = \overline{1, n} \\ z \equiv r_n (mod \, m_n) \end{cases}$$

$$(m_i, m_j) = 1$$
 при $i \neq j, \quad i, j = \overline{1, n} \Rightarrow (m_i, \prod_{\substack{j=1 \\ j \neq i}}^n m_j) = 1$ (по лемме $2) \Rightarrow$
$$\Rightarrow \exists \, x_i, y_i \in \mathbb{Z} : m_i x_i + (\prod_{\substack{j=1 \\ j \neq i}}^n m_j) y_i = 1.$$

$$\left[(\prod_{\substack{j=1 \\ j \neq i}}^n m_j) y_i \right]_{m_i} = [l_i]_{m_i} = [1]_{m_i} \right]$$

$$\left[(\prod_{\substack{j=1 \\ j \neq i}}^n m_j) y_i \right]_{m_j} = [l_i]_{m_j} = [\overline{0}]_{m_j}$$
 при $j \neq i, \quad j = \overline{1, n} \Rightarrow$
$$\Rightarrow \left[r_i l_i \mid_{m_i} = [r_i]_{m_i} [l_i]_{m_j} = [\overline{0}]_{m_j}$$
 при $j \neq i, \quad j = \overline{1, n} \Rightarrow$
$$\Rightarrow [r_1 l_1 + r_2 l_2 + ... + r_n l_n]_{m_i} = [r_i]_{m_i}, \quad i = \overline{1, n} \Rightarrow$$

$$\Rightarrow z = r_1 l_1 + r_2 l_2 + ... + r_n l_n + k (m_1 m_2 ... m_n),$$
 где $k \in \mathbb{Z}.$

Пример. Найти наименьшее положительное $z \in \mathbb{Z}$:

$$(*) \begin{cases} z \equiv 2 \pmod{57} \\ z \equiv 7 \pmod{91} \\ z \equiv 43 \pmod{179} \end{cases}$$

Лекция №11 77

$$m_1=57,\ m_2=91,\ m_3=179$$

$$r_1=2,\ r_2=7,\ r_3=43$$

$$(m_1,m_2m_3)=1\Rightarrow\exists\ x_1,y_1\in\mathbb{Z}:m_1x_1+m_2m_3y_1=1,\ \text{r.e.}$$

$$51x_1+91\cdot179y_1=1.$$

Решаем это диофантово уравнение, чтобы найти $l_1 = m_1 m_2 y_1$

$$A = \begin{pmatrix} 57 & 91 \cdot 179 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \xrightarrow{-179A^1 + A^2} \begin{pmatrix} 57 & 34 \cdot 179 \\ 1 & -179 \\ 0 & 1 \end{pmatrix} \xrightarrow{-3 \cdot 34A^1 + A^2} \begin{pmatrix} 57 & 34 \cdot 8 \\ \vdots & \vdots & \vdots \\ 0 & 1 \end{pmatrix} \longrightarrow$$

Поскольку нас интересует только y_1 , мы можем не следить за второй строчкой матрицы.

Аналогично находятся $l_2 = m_1 m_3 y_2 = (57 \cdot 179)(-33)$,

$$l_3 = m_1 m_2 y_3 = (57 \cdot 91)(-45) \Rightarrow$$

$$\Rightarrow z = r_1 l_1 + r_2 l_2 + r_3 l_3 + k m_1 m_2 m_3 =$$

$$= 2(91 \cdot 179)(-22) + 7(57 \cdot 179)(-33) + 43(57 \cdot 91)(-45) + k \cdot 57 \cdot 91 \cdot 179 =$$

$$= -(716716 + 2356893 + 10036845) + k928473 =$$

$$=-13110454+k928473$$
 - общее решение (*)

$$z > 0 \Leftrightarrow k > \frac{13110454}{928473} \approx 14, 1$$

Наименьшее положительное z получается при k = 15.

$$z = -13110454 + 15 \cdot 928473 = 816641.$$

3 Характеристика поля

Опр. Характеристикой $char\,K$ поля K называется наименьшее натуральное число $n\in\mathbb{N}: \underbrace{1+1+...+1}_{}=\overline{0}.$

Лекция №11 78

Если такого числа $n \in \mathbb{N}$ не существует, то char K = 0.

T.o., $char K = ord_+1$, если $ord_+1 < \infty$ и char K = 0, если $ord_+1 = \infty$.

Примеры:

- (1) $\mathbb{F}_p = \mathbb{Z}_p$, p простое число $\Rightarrow char \, \mathbb{F}_p = p$.
- (2) $\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$, $char \mathbb{Q} = char \mathbb{R} = char \mathbb{C} = 0$.
- (3) $\mathbb{F}_p(x) = Quot \, \mathbb{F}_p[x]$ поле рациональных функций над \mathbb{F}_p бесконечное поле ненулевой характеристики, $char \, \mathbb{F}_p(x) = p$.

Утв. 1. Пусть K - поле, $char K \neq 0$, тогда $\forall a \in K \setminus \{\overline{0}\}\ ord_+a = char K.$

Док-во:

$$\begin{cases} a \neq \overline{0} \\ \underline{a+a+\ldots+a} = \overline{0} \iff \begin{cases} a \neq \overline{0} \\ a(\underbrace{1+1+\ldots+1}_{m}) = \overline{0} \iff \underbrace{1+1+\ldots+1}_{m} = \overline{0} \Rightarrow \\ \Rightarrow ord_{+}a = ord_{+}1 = char K. \end{cases}$$

Утв. 2. Пусть K - поле, $char \, K = n \neq 0$, тогда n - простое число. Док-во:

Пусть char K = n = ml, где $n, m, l \in \mathbb{N}$, m, l < n.

$$\underbrace{1+1+\ldots+1}_{n=ml} = \underbrace{(1+1+\ldots+1)}_{m} \underbrace{(1+1+\ldots+1)}_{l} = \overline{0} \Rightarrow \begin{bmatrix} \underbrace{1+1+\ldots+1}_{m} = \overline{0} \\ \underbrace{1+1+\ldots+1}_{l} = \overline{0} \end{bmatrix} \Rightarrow \begin{bmatrix} \underbrace{1+1+\ldots+1}_{m} = \overline{0} \\ \underbrace{1+1+\ldots+1}_{l} = \overline{0} \end{bmatrix}$$

Лекция №12

1 Простое подполе

Опр. Подполе F поля K называется его простым подполем, если F не содержит никакого другого подполя K, т.е. является его наименьшим по включению подполем.

Утв. 1. Если L — подполе поля K, то $\overline{0},1$ поля K принадлежат L. Док-во:

 $\overline{0} \in K \Rightarrow \overline{0} \in L$, поскольку (L, +) — подгруппа (K, +).

Докажем, что единица e поля L совпадает с $1 \in K$.

$$e^2=e\Rightarrow e(e-1)=\overline{0}\Rightarrow$$
 поскольку в поле нет делителей нуля $\left[egin{array}{c} e=\overline{0} & \nearrow\\ e=1 & \end{array}
ight.\Rightarrow e=1\Rightarrow 1\in L$

Утв. 2. Простое подполе в любом поле единственно.

Док-во:

Пусть F_1, F_2 — два простых подполя поля K.

Рассмотрим $F_1 \cap F_2$.

 $\overline{0},1\in F_1\cap F_2$, легко видеть $F_1\cap F_2$ является подполем поля K.

$$\left\{\begin{array}{ll} F_1\cap F_2\in F_i & i=\overline{1,2}\\ F_i-\text{простое подполе} \end{array}\right. \Rightarrow F_i=F_1\cap F_2\Rightarrow F_1=F_2$$

Теорема 1. Пусть K — поле, F — его простое подполе, тогда

- 1) char $K = p \neq 0 \Leftrightarrow F \simeq \mathbb{F}_p$,
- 2) char $K = 0 \Leftrightarrow F \simeq \mathbb{Q}$.

Док-во: Рассмотрим отображение $\psi: \mathbb{Z} \longmapsto F, \ \forall n \in \mathbb{N}$

$$\psi(n) = \underbrace{1+1+\ldots+1}_{n} \in F$$

$$\psi(0) = \overline{0} \in F$$

$$\psi(-n) = \underbrace{(-1) + (-1) + \dots + (-1)}_{n} \in F.$$

Докажем, что ψ – гомоморфизм колец

a)
$$m, n \in \mathbb{N}, m \geqslant n$$

$$\psi(m+n) = \underbrace{1+1+\ldots+1}_{m+n} = \underbrace{1+1+\ldots+1}_{m} + \underbrace{1+1+\ldots+1}_{n} = \psi(m) + \psi(n);$$

$$\psi(m+(-n)) = \psi(m-n)) = \underbrace{1+1+\ldots+1}_{m-n} = \underbrace{1+1+\ldots+1}_{m-n} = \underbrace{1+1+\ldots+1}_{m-n} = \underbrace{1+1+\ldots+1}_{m-n} = \underbrace{(-1)+(-1)+(-1)+\ldots+(-1)}_{m} = \underbrace{(-1)+(-1)+\ldots+(-1)}_{m} = \underbrace{(-1)+(-1)+\ldots+(-1)}_{m} = \underbrace{(-1)+(-1)+\ldots+(-1)}_{m} = \underbrace{(-1)+(-1)+\ldots+(-1)}_{m} = \underbrace{(-1)+(-1)+\ldots+(-1)}_{m} = \underbrace{(-1)+(-1)+\ldots+(-1)}_{n} = \underbrace{(-1)+(-1)+\ldots+(-1)}_{n} = \psi(-m)+\psi(n);$$

$$\psi(mn) = \underbrace{1+1+\ldots+1}_{m} = \underbrace{(1+1+\ldots+1)(1+1+\ldots+1)}_{m} = \psi(m)\psi(n);$$

$$\psi((-m)n) = \psi(-mn) = \underbrace{(-1)+(-1)+\ldots+(-1)}_{m} =$$

Лекция №12

 $\psi((-m)(-n)) = \psi(mn) = \underbrace{1 + 1 + \dots + 1}_{mn} =$

$$=\underbrace{((-1)+(-1)+\ldots+(-1))}_{m}\underbrace{((-1)+(-1)+\ldots+(-1))}_{n}=\psi(-m)\psi(-n);$$

$$l \in \mathbb{Z}$$
 $\psi(l \cdot 0) = \psi(0) = \overline{0} = \psi(l)\psi(0)$

 $1) \Leftrightarrow$

Если $char\ K=p\neq 0$, то $Ker\ \psi=\{kp:k\in\mathbb{Z}\}=(p)\lhd\mathbb{Z}.$

По теореме о гомоморфизме $Im\ \psi \simeq^{\mathbb{Z}}/(p)=\mathbb{Z}_p=\mathbb{F}_p\Rightarrow$

 \Rightarrow $Im \psi$ — поле, $Im \psi \subset F \Rightarrow F = Im \psi$, т.к. F — простое подполе \Rightarrow

$$\Rightarrow F \simeq \mathbb{F}_p$$

 $2) \Leftrightarrow$

Если $char\ K=0$, то $Ker\ \psi=\{\overline{0}\}.$

По теореме о гомоморфизме $Im\ \psi \simeq \mathbb{Z} \Rightarrow$

 \Rightarrow $Im \ \psi$ — кольцо, $Im \ \psi \subset F$

Рассмотрим $\mathbb{Q} = Quot \mathbb{Z}$ и распространим ψ на \mathbb{Q} , построив $\Psi : \mathbb{Q} \longmapsto F$.

Определим $\Psi(\frac{m}{n}) \ \forall \frac{m}{n} \in \mathbb{Q}$:

$$\Psi(\frac{m}{n}) = \frac{\psi(m)}{\psi(n)}, \quad m \in \mathbb{Z}, \in \mathbb{Z}^{\setminus}\{0\}.$$

$$\Psi(\frac{m}{1}) = \frac{\psi(m)}{\psi(1)} = \psi(m)$$
, r.e. $\Psi|_{\mathbb{Z}} = \psi$.

Проверим, что Ψ определено корректно.

$$\frac{m}{n} = \frac{m_1}{n_1} \Leftrightarrow mn_1 = nm_1 \Rightarrow \psi(mn_1) = \psi(nm_1) \Leftrightarrow \psi(m)\psi(n_1) = \psi(n)\psi(m_1) \ (*)$$

Умножим (*) на
$$(\psi(n))^{-1}(\psi(n_1))^{-1} \Rightarrow \frac{\psi(m)}{\psi(n)} = \frac{\psi(m_1)}{\psi(n_1)} \Rightarrow \Psi(\frac{m}{n}) = \Psi(\frac{m_1}{n_1})$$

Проверим, что Ψ - гомоморфизм:

a)
$$\Psi(\frac{m}{n} + \frac{s}{t}) = \Psi(\frac{mt+sn}{nt}) = \frac{\psi(mt+sn)}{\psi(nt)} = \frac{\psi(m)\psi(t) + \psi(s)\psi(n)}{\psi(n)\psi(t)} = \frac{\psi(m)\psi(t) + \psi(s)\psi(n)}{\psi(n)\psi(t)} = \frac{\psi(mt+sn)}{\psi(n)\psi(t)} = \frac{\psi(mt+sn)}{\psi(n)\psi(n)} = \frac{\psi(mt+sn)}{\psi(n)} = \frac{\psi(mt+sn)}{\psi$$

$$\frac{\psi(m)}{\psi(n)} + \frac{\psi(s)}{\psi(t)} = \varPsi(\tfrac{m}{n}) + \varPsi(\tfrac{s}{t})$$

$$\text{6) } \varPsi(\tfrac{m}{n} \cdot \tfrac{s}{t}) = \varPsi(\tfrac{ms}{nt}) = \frac{\psi(ms)}{\psi(nt)} = \frac{\psi(m)\psi(s)}{\psi(n)\psi(t)} = \frac{\psi(m)}{\psi(n)} \cdot \frac{\psi(s)}{\psi(t)} = \varPsi(\tfrac{m}{n}) \cdot \varPsi(\tfrac{s}{t})$$

 $Ker\,\Psi=\{\overline{0}\},$ т.к. Ψ - нетривиальный гомоморфизм поля $\mathbb Q$ в F.

По теореме о гомоморфизме $Im\Psi\simeq\mathbb{Q}\Rightarrow$

$$\Rightarrow Im\Psi$$
 - поле, $Im\Psi\subset F\Rightarrow F=Im\Psi$, т.к. F - простое подполе \Rightarrow

$$\Rightarrow F \simeq \mathbb{O}.$$

Мы доказали
$$\begin{cases} 1) \bigoplus, \text{ т.е. } \begin{cases} \text{ если } char \ K = p \neq 0 \Rightarrow F \simeq \mathbb{F}_p, \\ \text{ если } char \ K = 0 \Rightarrow F \simeq \mathbb{Q}, \end{cases}$$

а поскольку условия $\operatorname{char} K = p \neq 0$ и $\operatorname{char} K = 0$ являются взаимоисключающими, отсюда следует

- 1) $char K = p \neq 0 \Leftrightarrow F \simeq \mathbb{F}_p$,
- 2) $char K = 0 \Leftrightarrow F \simeq \mathbb{Q}$.

Note. Из доказательства теоремы ясно, что простое подполе F поля K изоморфно $Im\,\psi$ или $Im\,\Psi$, т.е. в любом случае ненулевыми элементами F являются кратные 1, кратные (-1) и их отношения.

Следствие. Если F - простое подполе поля K, $\varphi: K \to K$ автоморфизм, то $\varphi|_F = id$. (Любой автоморфизм поля оставляет на месте все элементы его простого подполя.)

Док-во:

$$\varphi \text{ - автоморфизм} \Rightarrow \left\{ \begin{array}{l} \varphi(\overline{0}) = \overline{0} \\ \varphi(1) = 1 \\ \varphi(\underline{1+1+\ldots+1}) = \underline{1+1+\ldots+1} \\ m \end{array} \right. \Rightarrow \\ \varphi(-1) = -1 \\ \varphi(-a) = -\varphi(a) \\ \varphi(b^{-1}) = (\varphi(b))^{-1} \end{array} \right.$$

$$\Rightarrow \forall a \in F \Rightarrow \varphi(a) = a$$

2 Расширение поля. Степень расширения.

Опр. Если поле K является подполем поля L, то поле L называется расширением поля K.

Поле L можно рассматривать как линейное пространство над полем K. (Элементы L - «векторы», а элементы K - «числа».)

Определены линейные операции в L над K:

$$\forall x, y \in L \Rightarrow x + y \in L,$$

$$\forall x \in L, \ \forall \alpha \in K \Rightarrow \alpha x \in L,$$

выполняются аксиомы линейного пространства:

- 1) $x + y = y + x \ \forall x, y \in L$,
- 2) $(x+y) + x = x + (y+z) \ \forall x, y, z \in L$,
- 3) $\exists \overline{0} \in L : \overline{0} + x = x + \overline{0} = x \ \forall x \in L$,
- 4) $\forall x \in L \ \exists (-x) \in L : x + (-x) = (-x) + x = \overline{0},$
- $5) \quad 1x = x \ \forall x \in L, \ 1 \in K,$
- 6) $(\alpha \beta)x = \alpha(\beta x) \ \forall x \in L, \ \forall \alpha, \beta \in K,$
- 7) $\alpha(x+y) = \alpha x + \alpha y \ \forall x, y \in L, \ \forall \alpha \in K,$
- 8) $(\alpha + \beta)x = \alpha x + \beta x \ \forall x \in L, \ \forall \alpha, \beta \in K.$

Обозначим $dim_K L$ размерности линейного пространства L над K.

Опр. Если $dim_K L < \infty$, то поле L называется конечным расширением поля K, а $dim_K L$ называется степенью расширения L над K.

Примеры:

- (1) $\mathbb{R} \subset \mathbb{C}$, \mathbb{C} конечное раширение \mathbb{R} степени 2, т.к. $\mathbb{C} = \{a+ib: a,b \in \mathbb{R}\}, <1,i>$ базис \mathbb{C} над $\mathbb{R} \Rightarrow dim_{\mathbb{R}}\mathbb{C} = 2$.
- (2) $\mathbb{Q} \subset \mathbb{R}$, \mathbb{R} не является конечным расширением \mathbb{Q} , т.к. если бы $dim_{\mathbb{Q}}\mathbb{R} = n < \infty$, то существовало бы биективное соответствие между \mathbb{R} и \mathbb{Q}^n , следовательно, \mathbb{R} было бы счётным множеством. 2.
- **Утв. 3.** Если K конечное поле $(|K| < \infty)$, а L его конечное расширение степени n $(dim_K L = n < \infty)$, то L конечное поле и $|L| = |K|^n$.

Док-во:

$$dim_K L=n\Rightarrow\exists< e_1,e_2,...,e_n>$$
 - базис L над $K\Rightarrow$ \Rightarrow $\forall\,x\in L\ \exists\,\alpha_1,\alpha_2,...,\alpha_n\in K: x=\alpha_1e_1+\alpha_2e_2+...+\alpha_ne_n,$ α_i может принимать любое из $|K|$ значений, $i=\overline{1,n}\Rightarrow |L|=|K|^n.$

Следствие. Если L - конечное поле, F - его простое подполе, то $|L|=p^n$, где $p=char\,L$ - простое число, $n=dim_FL\in\mathbb{N}.$

Док-во:

 $|L| < \infty \Rightarrow ord_+1 < \infty \Rightarrow char \ L \neq 0 \Rightarrow char \ L = p$ - простое число \Rightarrow простое подполе поля L $F \simeq \mathbb{F}_p \Rightarrow |F| = |\mathbb{F}_p| = p$, $F \subset L, \ |L| < \infty \Rightarrow dim_F L = n < \infty, \ n \in N \Rightarrow |L| = |F|^n = p^n$.

Теорема 2. Если L - конечное расширение поля K, а M - конечное расширение поля L, то M - конечное расширени поля K и $dim_K M = dim_K L \, dim_L M$.

$$\begin{cases} K, L, M \text{ - поля,} \\ K \subset L \subset M, \\ dim_K L < \infty, \\ dim_L M < \infty \end{cases} \Rightarrow dim_K M = dim_K L \cdot dim_L M.$$

Пусть
$$\begin{cases} dim_K L = l \Rightarrow \exists < f_1, f_2, ..., f_l > \text{- базис } L \text{ над } K \\ dim_L M = m \Rightarrow \exists < g_1, g_2, ..., g_m > \text{- базис } M \text{ над } L \end{cases} \Rightarrow$$
$$\Rightarrow < f_1 g_1, f_1 g_2, ..., f_l g_m > \text{- базис } M \text{ над } K.$$

0) $f_1g_1, f_1g_2, ..., f_lg_m \in M$

1) Пусть
$$\sum_{\substack{i=\overline{1,l}\\j=\overline{1,m}}} x_{ij} f_i g_j = \overline{0} \Leftrightarrow \sum_{j=1}^m \left(\sum_{i=1}^l x_{ij} f_i\right) g_j = \overline{0}$$

 $g_1, g_2, ..., g_m$ - линейно независимая система $\Rightarrow \sum_{i=1}^l x_{ij} f_i = \overline{0} \ \forall j = \overline{1,m};$ $f_1, f_2, ..., f_l$ - линейно независимая система \Rightarrow $\Rightarrow x_{ij} = \overline{0} \ \forall i = \overline{1,l} \ , \ \forall j = \overline{1,m} \Rightarrow f_1 g_1, f_2 g_2, ..., f_l g_m$ - линейно независимая система.

$$\forall y_j \in L, \ j = \overline{1,m} \ \exists x_{1j}, x_{2j}, ..., x_{lj} \in K : y_j = \sum_{i=1}^l x_{ij} f_i,$$
 т.к. $\langle f_1, f_2, ..., f_m \rangle$ - базис L над $K \Rightarrow$

$$\Rightarrow a = \sum\limits_{j=1}^m ig(\sum\limits_{i=1}^l x_{ij} f_iig)g_j = \sum\limits_{\substack{i=\overline{1,l} \ j=\overline{1,m}}} x_{ij} f_i g_j \Rightarrow$$
 $0),1),2) \Rightarrow \langle f_1 g_1, f_1 g_2, ..., f_l g_m \rangle$ - базис M над $K \Rightarrow Adm_K M = l \cdot m = dim_K L \cdot dim_L M$.

Утв. 4. Если M — конечное расширение своего простого подполя F, K — подполе $M \Rightarrow K$ — конечное расширение F и $dim_F K | dim_F M$.

Док-во:

$$F\cap K$$
 — подполе $F\Rightarrow F=F\cap K\Rightarrow F\subset K\subset M\Rightarrow$ $\Rightarrow K$ — линейное подпространство пространства M над $F\Rightarrow$ $\Rightarrow dim_FK\leqslant dim_FM=n<\infty$ $dim_FM=n<\infty\Rightarrow \exists < e_1,...,e_n>$ — базис M над $F\Rightarrow M=L_F[e_1,e_2,...,e_n]=L_K[e_1,e_2,...,e_n]$ $dim_FM=rk_F\{e_1,e_2,...,e_n\},$ $dim_KM=rk_K\{e_1,e_2,...,e_n\}\Rightarrow dim_KM\leqslant dim_FM=n<\infty\Rightarrow$ \Rightarrow по теореме $2\ dim_FM=dim_FK\cdot dim_KM$

Следствие. Если M — поле, F — его простое подполе, $dim_F M$ — простое число, то F — единственное собственное подполе поля M.

Док-во:

Пусть K — подполе $M \Rightarrow F \subset K \subset M$ и $dim_F M = dim_F K \cdot dim_K M$

Поскольку
$$dim_F M$$
 — простое число, то
$$\begin{bmatrix} dim_F K = dim_F M \Rightarrow K = M \\ dim_F K = 1 \Rightarrow K = F \end{bmatrix}$$

Лекция №13

1 Алгебраические элементы расширения поля

Опр. Пусть K, L — поля, $K \subset L$. Элемент $u \in L$ называется алгебраическим над K, если u является корнем некоторого нетривиального многочлена над K, т.е. существует $f(x) \in K[x]^{\searrow}\{\overline{0}\}: f(u) = \overline{0}$. Если такого многочлена не существует, то элемент $u \in L$ называется транцендентным над K.

Note. $\forall a \in K \subset L$ является алгебраическим элементом над K, т.к. a является корнем многочлена $x - a \in K[x] \setminus \{\overline{0}\}$.

Примеры:

- (1) $\mathbb{Q} \subset \mathbb{R}$, $\sqrt{2} \in \mathbb{R}$ является алгебраическим элементом над \mathbb{Q} , т.к. $\sqrt{2}$ корень $x^2-2 \in \mathbb{Q}[x] \setminus \{\overline{0}\}$
- (2) $\mathbb{R} \subset \mathbb{C}$, $i \in \mathbb{C}$ является алгебраическим элементом над \mathbb{R} , т.к. i корень $x^2+1 \in \mathbb{R}[x] \setminus \{\overline{0}\}$

Опр. Пусть K, L — поля, $K \subset L$. Поле L называется алгебраическим расширением поля K, если любой элемент поля L является алгебраическим над K.

2 Простое алгебраическое расширение поля.

Опр. Пусть K, L — поля, $K \subset L$. Поле L называется простым алгебраическим расширением поля K, если $L = K[u] = \{p(u) : p(x) \in K[x], \ u \in L : \exists f(x) \in K[x] \setminus \{\overline{0}\} : f(u) = \overline{0}\},$ алгебраический элемент $u \in L$ называется примитивным элементом этого расширения.

Теорема 1. Пусть K — поле, $f(x) \in K[x]$ — неприводимый многочлен, $deg\ f(x)=n>1$. Тогда L=K[x]/(f(x)) — поле, $K\subset L$,

 $dim_K L = n$ и L — простое алгебраическое расширение K.

Док-во:

L — поле, поскольку f(x) — неприводимый многочлен.

Обозначим
$$[p(x)]$$
 смежный класс $p(x) + (f(x)) \in K[x]/(f(x)) = L$.

При этом смежный класс [a] многочлена $a,\ deg\ a\leqslant 0$ можно отождествить с $a\in K$, поскольку если $a,b\in K: a\neq b,$ то $[a]\neq [b]. \Rightarrow K\subset L.$

T.K.
$$\forall p(x) \in K[x] \ p(x) = f(x)q(x) + r(x),$$

где
$$q(x), r(x) \in K[x], deg r(x) < deg f(x) = n \Rightarrow$$

$$\Rightarrow r(x) = a_0 x^{n-1} + a_1 x^{n-2} + \dots + a_{n-2} x + a_{n-1}, \ a_i \in K, \ i = \overline{0, n-1} \Rightarrow$$

$$\Rightarrow \forall [p(x)] \in L \quad [p(x)] = [a_0 x^{n-1} + a_1 x^{n-2} + \dots + a_{n-2} x + a_{n-1}] =$$

$$= [a_0][x]^{n-1} + [a_1][x]^{n-2} + \dots + [a_{n-2}][x] + [a_{n-1}] =$$

$$=a_0[x]^{n-1}+a_1[x]^{n-2}+\ldots+a_{n-2}[x]+a_{n-1},\ \ a_i\in K,\ \ i=\overline{0,n-1}.$$

Докажем, что $<[x]^{n-1},[x]^{n-2},...,1>$ — базис линейного пространства L над полем K.

$$0)\;[x]^{n-1},[x]^{n-2},...,1\in L$$

1) Пусть
$$a_0[x]^{n-1} + a_1[x]^{n-2} + \dots + a_{n-2}[x] + a_{n-1}1 = \overline{0} \in L \Leftrightarrow a_0x^{n-1} + a_1x^{n-2} + \dots + a_{n-2}x + a_{n-1}1 = f(x)g(x), \ g(x) \in K[x]$$
 Если $g(x) \neq \overline{0}$, то $deg\ f(x)g(x) \geqslant n$, а $deg(a_0x^{n-1} + a_1x^{n-2} + \dots + a_{n-2}x + a_{n-1}1) < n$ $\Rightarrow g(x) = \overline{0} \Rightarrow a_0x^{n-1} + a_1x^{n-2} + \dots + a_{n-2}x + a_{n-1} = \overline{0} \Rightarrow a_i = \overline{0} \quad i = \overline{0, n-1} \Rightarrow x = [x]^{n-1}, [x]^{n-2}, \dots, 1$ — линейно независимая система векторов линейного пространства L над K .

2)
$$\forall \ [p(x)] \in L \ p(x) = a_0[x]^{n-1} + a_1[x]^{n-2} + \ldots + a_{n-2}[x] + a_{n-1},$$
 $a_i \in K, \ i = \overline{0, n-1} \Rightarrow [x]^{n-1}, [x]^{n-2}, \ldots, 1$ — полная система в L над K

 $(0),1),2) \Rightarrow <[x]^{n-1},[x]^{n-2},...,1>$ — базис линейного пространства L над полем $K.\Rightarrow dim_K L=n=deg\ f(x).$

Элемент $u=[x]\in L$ является корнем f(x), т.к. $f([x])=[f(x)]=\overline{0}\in L$,

 $L = K[u] = \{a_0 u^{n-1} + a_1 u^{n-2} + \dots + a_{n-2} u + a_{n-1}, a_i \in K, \ f(u) = \overline{0}\} \Rightarrow$ $\Rightarrow L$ – простое алгебраическое расширение K,

u = [x] — примитивный элемент этого расширения.

Говорят, что поле L = K[x]/(f(x)) получено из поля K с помощью присоединения корня неприводимого многочлена f(x).

Примеры:

- (1) $\mathbb{Q}[\sqrt{2}] \simeq \mathbb{Q}[x]/(x^2-2)$ простое алгебраическое расширение \mathbb{Q} , $\sqrt{2}$ — примитивный элемент расширения, корень неприводимого над $\mathbb Q$ многочлена $x^2 - 2$, $dim_{\mathbb{Q}}\mathbb{Q}[\sqrt{2}] = 2 = deq(x^2 - 2)$.
- (2) $\mathbb{C} \simeq \mathbb{R}[x]/(x^2+1) = \mathbb{R}[i]$ простое алгебраическое расширение \mathbb{R} , i — примитивный элемент расширения, корень неприводимого над $\mathbb R$ многочлена $x^2 + 1$, $dim_{\mathbb{R}}\mathbb{C} = 2 = deg(x^2 + 1)$.

3 Минимальный многочлен алгебраического элемента расширения поля

Опр.

Пусть K, L - поля, $K \subset L, u \in L$ - алгебраический элемент над K. Минимальным многочленом $u \in L$ называется $m_u(x) \in K[x] \setminus \{\overline{0}\}$:

- 1) $m_u(u) = \overline{0}$, 2) $deg \, m_u(x) = min \big\{ deg \, f(x) : f(x) \in K[x] \setminus \{\overline{0}\}, \ f(u) = \overline{0} \big\}$, 3) старший коэффициент $m_u(x)$ равен 1.

Очевидно, что для любого алгебраического элемента u существует минимальный многочлен $m_u(x)$, причём из 3) следует, что он определён однозначно.

Утв. 1. Пусть K, L - поля, $K \subset L, u \in L$ - алгебраический элемент над $K \Rightarrow I_u = \{f(x) \in K[x] : f(u) = \overline{0}\} \triangleleft K$ и $I_u \neq \{\overline{0}\}.$

Док-во:

 $I_u \neq {\overline{0}}$, т.к. I_u содержит $f(x) \in K[x] \setminus {\overline{0}} : f(u) = {\overline{0}}$.

Рассмотрим $\varphi:K[x]\to L$ - гомоморфизм подстановки,

$$\forall p(x) \in K[x] \ \varphi(p(x)) = p(u) \in L$$

Тогда $I_u = Ker \varphi \lhd K[x].$

Утв. 2. Пусть K, L - поля, $K \subset L$, $u \in L$ - алгебраический элемент над $K \Rightarrow I_u = (m_u(x))$.

Док-во:

K - поле $\Rightarrow K[x]$ - КГИ; $I_u \triangleleft K[x]$, $I_u \neq \{\overline{0}\} \Rightarrow$ $\Rightarrow \exists h(x) \in K[x] \setminus \{\overline{0}\} : I_u = (h(x)), h(x)$ определён однозначно с точностью до ассоцированности.

- 1) $h(u) = \overline{0}$
- 2) $\forall f(x) \in I_u \setminus \{\overline{0}\}$ $f(x) = h(x)g(x), g(x) \neq \overline{0} \Rightarrow deg h(x) \leqslant deg f(x)$ Пусть старший коэффициент h(x) равен $a_0 \Rightarrow \frac{1}{2} h(x) = m_1(x)$ $h(x) \sim m_2(x) \Rightarrow I_1 = (m_1(x))$

 $\Rightarrow \frac{1}{a_0}h(x) = m_u(x), \ h(x) \sim m_u(x) \Rightarrow I_u = (m_u(x)).$

Утв. 3. Пусть K, L - поля, $K \subset L$, $u \in L$ - алгебраический элемент над $K \Rightarrow m_u(x) \in K[x]$ - неприводимый многочлен.

Док-во:

 $m_u(x) \neq \overline{0}$, пусть $m_u(x)$ - приводимый многочлен, тогда $m_u(x) = h(x)g(x)$, где $h(x), g(x) \in K[x]$: $\begin{cases} 0 < \deg h(x) < \deg m_u(x) \\ 0 < \deg g(x) < \deg m_u(x) \end{cases}$ $m_u(u) = h(u)g(u) = \overline{0} \Rightarrow \begin{bmatrix} h(u) = \overline{0} \\ g(u) = \overline{0} \end{cases}$ но $\deg m_u(x) = \min\{\deg f(x) : f(x) \in K[x] \setminus \{\overline{0}\}, \ f(u) = \overline{0}\} \not \gg \Rightarrow m_u(x)$ - неприводимый многочлен.

Утв. 4. Пусть K, L - поля, $K \subset L$, $u \in L$ - алгебраический элемент над K, $p(x) \in K[x]$ - неприводимый многочлен, $p(u) = \overline{0}$, тогда $p(x) \sim m_u(x)$, а если старший коэффициент p(x) равен единице, то $p(x) = m_u(x)$.

Док-во:

 $p(u)=\overline{0}\Rightarrow p(x)\in I_u=(m_u(x))\Rightarrow p(x)=m_u(x)q(x),$ но p(x) неприводимый многочлен $\Rightarrow q(x)\in \big(K[x]\big)^*=K^*\Rightarrow p(x)\sim m_u(x).$

Примеры:

- (1) $m_{\sqrt{2}}(x) = x^2 2$, т.к. $x^2 2 \in \mathbb{Q}[x]$ неприводимый аннулирующий многочлен $\sqrt{2} \in \mathbb{Q}[\sqrt{2}], \ \mathbb{Q} \subset \mathbb{Q}[\sqrt{2}].$
- **(2)** $m_i(x) = x^2 + 1$, т.к. $x^2 + 1 \in \mathbb{R}[x]$ неприводимый аннулирущий многочлен $i \in \mathbb{C}, \ \mathbb{R} \subset \mathbb{C}$.

Теорема. Пусть K, L - поля, $K \subset L$, тогда $u \in L$ является алгебраическим элементом над $K \Leftrightarrow dim_K K[u] < \infty$.

Док-во:

- \bigoplus Пусть $dim_K K[u] = n < \infty$, тогда система $u^n, u^{n-1}, ..., u, 1$, состоящая из (n+1) элемента, является линейно зависимой \Rightarrow
- $\Rightarrow \exists a_0, a_1, ..., a_n \in K$, не все равные нулю одновременно:

$$a_0 u^n + a_1 u^{n-1} + \dots + a_{n-1} u + a_n = \overline{0} \Rightarrow$$

$$\Rightarrow u$$
 - корень $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_n \in K[x] \setminus \{\overline{0}\}$, т.е.

u - алгебраический элемент над K.

- \Leftrightarrow Пусть $u \in L$ алгебраический элемент над $K \Rightarrow$
- $\Rightarrow \exists m_u(x) \in K[x] \setminus \{\overline{0}\}$, пусть $deg m_u(x) = n, \ m_u(x) = x^n + a_1 x^{n-1} + ... + a_n$ $m(u) = \overline{0} \Rightarrow u^n = -a_1 u^{n-1} - a_2 u^{n-2} - ... - a_n 1 \Rightarrow$
- \Rightarrow любая степень элемента uлинейно выражается через $u^{n-1}, u^{n-2}, ..., u, 1 \Rightarrow$
- $\Rightarrow K[u]$ принадлежит линейной оболочке $u^{n-1}, n^{n-2}, ..., u, 1 \Rightarrow$
- $\Rightarrow dim_K K[u] \leqslant rk\{u^{n-1}, u^{n-2}, ..., u, 1\} \leqslant n < \infty.$

Следствие. Пусть K, L - поля, $K \subset L, \ dim_K L < \infty,$ тогда L - алгебраическое расширение K.

Док-во:

 $\forall \ u \in L \ K[u]$ - линейное подпространство линейного пространства L над $K \Rightarrow dim_K K[u] \leqslant dim_K L < \infty \Rightarrow u$ является алгебраическим элементом над K.

Утв. 5. Пусть K, L - поля, $K \subset L$, $u \in L$ - алгебраический элемент над $K \Rightarrow K[u] \simeq {K[x]}/{(m_u(x))}$ - поле и $dim_K K[u] = deg \, m_u(x)$.

Док-во:

Рассмотрим $\varphi:K[x]\to L$ - гомоморфизм подстановки,

 $\forall \ p(x) \in K[x] \ \ \varphi(p(x)) = p(u).$

 $Ker \varphi = I_u = (m_u(x)).$

 $Im\,\varphi=K[u].$

По теореме о гомоморфизме колец $K[x]/(m_u(x)) \simeq K[u].$

 $m_u(x) \in K[x]$ - неприводимый многочлен $\Rightarrow K[u]$ - поле.

По теореме 1 $dim_K K[u] = deg m_u(x)$.

Лекция №14

1 Эндоморфизм Фробениуса

Теорема 1. Пусть K – поле, $char\ K = p \neq 0$,

$$\Phi: K \longmapsto K, \ \forall u \in K \ \Phi(u) = u^p \in K, \ \text{тогда}$$

 Φ является эндоморфизмом поля K.

Док-во:

1)
$$\Phi(a+b) = (a+b)^p = \sum_{m=0}^p C_p^m a^m b^{p-m} = a^p + b^p = \Phi(a) + \Phi(b)$$
, t.k.
$$\begin{cases} p - \text{простое} \Rightarrow (p,l) = 1, \ l = \overline{1,p-1} \Rightarrow (p,m!) = 1, \ m = \overline{1,p-1} \\ C_p^m = \frac{p!}{m!(p-m)!} = \frac{p(p-1)...(p-m+1)}{1 \cdot 2...m} \in \mathbb{Z}, \ m = \overline{1,p-1} \end{cases} \Rightarrow$$

$$\Rightarrow \frac{(p-1)(p-2)...(p-m+1)}{1\cdot 2...m} \in \mathbb{Z}, \ m = \overline{1,p-1} \Rightarrow C_p^m \vdots p, \ m = \overline{1,p-1} \Rightarrow$$

$$\Rightarrow C_p^{\,m} = \overline{0} \text{ B } K, \ m = \overline{1,p-1}$$

2)
$$\Phi(ab) = (ab)^p = a^p b^p = \Phi(a)\Phi(b)$$

 $(1),2)\Rightarrow \Phi$ — гомоморфизм K в себя $\Rightarrow \Phi$ — эндоморфизм K.

Ф называется эндоморфизмом Фробениуса

Следствие 1. Эндоморфизм Фробениуса является мономорфизмом. Док-во:

$$K$$
 — поле, Φ — нетривиальный гомоморфизм, т.к. $\Phi(1)=1\neq \overline{0}\Rightarrow \Rightarrow Ker\ \Phi=\{\overline{0}\}\Rightarrow \Phi$ — мономорфизм.

Следствие 2. Если K — конечное поле, то эндоморфизм Фробениуса является автоморфизмом.

Док-во:

- 1) $Ker \Phi = {\overline{0}}.$
- 2) По теореме о гомоморфизме $Im \Phi \simeq K/Ker \Phi = K \Rightarrow$

$$\Rightarrow K \simeq Im \ \Phi \subset K$$
, ho $|K| < \infty \Rightarrow |Im \ \Phi| = |K| \Rightarrow Im \ \Phi = K$.

 $(1),2)\Rightarrow \Phi$ — автоморфизм поля K.

Лекция №14 93

Note. Вообще нетривиальный эндоморфизм конечного поля является его автоморфизмом. Доказывается аналогично.

Утв. 1. Пусть K - поле, $char\ K=p\neq 0,\ F$ - простое подполе K, $\Phi:K\to K$ - эндоморфизм Фробениуса, тогда $\left.\Phi\right|_F=id.$

Док-во:

$$F\simeq \mathbb{F}_p\Rightarrow |F^*|=p-1\Rightarrow$$
 $\Rightarrow \forall\, a\in F^*\ a^{p-1}=1$ (малая теорема Ферма) $\Rightarrow \forall\, a\in F\ a^p=a,$ т.е. $\forall\, a\in F\ \Phi(a)=a.$

Будем далее отождествлять простое подполе $F \simeq \mathbb{F}_p$ с полем \mathbb{F}_p .

Утв. 2. Пусть K - поле, $char K = p \neq 0$, тогда эндоморфизм Фробениуса поля K - линейный оператор в линейном пространстве K над простым подполем \mathbb{F}_p .

Док-во:

- $0) \Phi: K \to K$
- 1) $\Phi(a+b) = \Phi(a) + \Phi(b) \ \forall a, b \in K$,
- 2) $\Phi(\lambda a) = \Phi(\lambda)\Phi(a) = \lambda\Phi(a) \ \forall a \in K, \ \forall \lambda \in \mathbb{F}_p$.

Утв. 3.

Пусть $f(x) \in \mathbb{F}_p[x]$, p - простое число, тогда $(f(x))^p = f(x^p)$.

Док-во:

$$f(x) \in \mathbb{F}_p[x] \subset \mathbb{F}_p(x) = Quot \, \mathbb{F}_p[x].$$

Рассмотрим $\Phi: \mathbb{F}_p(x) \to \mathbb{F}_p(x)$ - эндоморфизм Фробениуса поля $\mathbb{F}_p(x)$. Пусть

$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n = \sum_{m=0}^n a_m x^{n-m}, \ a_m \in \mathbb{F}_p, \ m = \overline{0, n}.$$

$$(f(x))^p = \Phi(f(x)) = \sum_{m=0}^n \Phi(a_m) \Phi(x^{n-m}) = \sum_{m=0}^n a_m (\Phi(x))^{n-m} = f(\Phi(x)) = f(x^p).$$

Следствие.

Пусть K - поле, $char K = p \neq 0, \ f(x) \in \mathbb{F}_p[x], \ u \in K$ - корень f(x),

тогда u^p - тоже корень f(x).

Док-во:

$$f(u) = {\overline{0}} \Rightarrow f(u^p) = (f(u))^p = ({\overline{0}})^p = {\overline{0}}.$$

Утв. 4. Пусть K - конечное поле, $char \, K = p, \; dim_{\mathbb{F}_p} K = n,$ $\Phi: K \to K$ автоморфизм Фробениуса, тогда $\Phi^n = id, \; \Phi^k \neq id \; \forall \; k = \overline{1, n-1}.$

Док-во:

$$|K|=p^n\Rightarrow |K^*|=p^n-1\Rightarrow \forall\,a\in K^*\,\,a^{p^n-1}=1\Rightarrow$$
 $\Rightarrow\,\forall\,a\in K\,\,\,a^{p^n}=a\Rightarrow\Phi^n(a)=a\quad\forall\,a\in K\Rightarrow\Phi^n=id.$ Пусть $0< k< n-1,\,\,\Phi^k=id,\,\,\mathrm{т.e.}\,\,\Phi^k(a)=a\quad\forall a\in K,$ т.е. $a^{p^k}=a\quad\forall a\in K\Leftrightarrow\forall a\in K\,\,$ является корнем многочлена $x^{p^k}-x\in\mathbb{F}_p[x]$ степени $p^k.$

Следовательно, многочлен степени p^k имеет в поле K p^n различных корней $\Rightarrow p^n \leqslant p^k \Rightarrow n \leqslant k$ $\stackrel{\wedge}{\nearrow} \Rightarrow \Phi^k \neq id \ \forall \ k = \overline{1, n-1}.$

Note. Утв.4 означает, что $ord \ \Phi = n$ в группе автоморфизмов конечного поля $K: |K| = p^n$.

Теорема 2. Пусть $f(x) \in \mathbb{F}_p[x]$ — неприводимый многочлен, $deg\ f(x) = n, \quad u$ — корень f(x) в поле K — расширении \mathbb{F}_p , тогда $u, u^p, u^{p^2}, ..., u^{p^{k-1}}$ — различные корни f(x) в K.

Док-во:

$$u$$
 - корень $f(x)\Rightarrow u^p$ - корень $f(x)\Rightarrow u^{p^2}=(u^p)^p$ - корень $f(x)$ и т.д. \Rightarrow $\Rightarrow u^{p^k}$ - корень $f(x)$ $\forall \ k=\overline{0,n-1}$

Заметим, что $u^{p^k} \in \mathbb{F}_p[u] = \mathbb{F}_p[x]/(f(x)) \subset K$.

f(x) - неприводимый многочлен $\Rightarrow \mathbb{F}_p[u]$ - конечное поле, $dim_{\mathbb{F}_p}\mathbb{F}_p[u]=n.$

Рассмотрим $\Phi : \mathbb{F}_p[u] \longmapsto \mathbb{F}_p[u]$ - автоморфизм.

Докажем, что $u^{p^m} \neq u^{p^l}$, при $m \neq l$, $m, l = \overline{0, k-1}$.

Заметим, что $u^{p^k} = \Phi^k(u), \ k = \overline{0, n-1}.$

Пусть
$$\Phi^m(u) = \Phi^l(u), \ m > l, \ m, l = \overline{0, k-1} \Rightarrow \Phi^{m-l}(u) = u.$$

Обозначим
$$k=m-l$$
, тогда $\Phi^k(u)=u\Rightarrow \Phi^k(g(u))=g(\Phi^k(u))=$

$$=g(u) \ \forall \ g(u) \in \mathbb{F}_p[u] \Rightarrow \Phi^k = id$$
 на $\mathbb{F}_p[u], \ 0 < k < n \ \stackrel{\wedge}{\searrow} \ \Rightarrow$ все корни u^{p^k}

Лекция №14 95

при разных $k = \overline{0, n-1}$ различны между собой.

Пример:

 $f(x) = x^2 + x - 1 \in \mathbb{F}_3[x]$ — неприводимый многочлен, т.к. f(x) не имеет корней в \mathbb{F}_3 .

u=[x] — корень f(x) в $K=\mathbb{F}_3[u]=\mathbb{F}_3[x]/_{(f(x))}\Rightarrow u^3$ — второй корень

$$u^3 = u \cdot u^2 = u(1-u) = u - u^2 = u - (1-u) = 2u - 1 = -u - 1$$
, т.к. $u^2 + u - 1 = 0$.

 $f(x) = (x-u)(x-u^3) = (x-u)(x+u+1)$ — разложение f(x) на линейные множители над K.

Проверка: $f(x) = (x-u)(x+u+1) = x^2 + yx + x - yx - u^2 - u = x^2 + x - 1$.

2 Производная многочлена над произвольным полем

В математическом анализе $\forall f(x) \in \mathbb{R}[x]$ определена производная $f'(x) \in \mathbb{R}[x]$. Отображение $D: \mathbb{R}[x] \to \mathbb{R}[x]$, ставящее $\forall f(x) \in \mathbb{R}[x]$ в соответствие его производную, обладает свойствами:

- 1) линейности,
- 2) $D(fg) = Df \cdot g + f \cdot Dg \ \forall f, g \in \mathbb{R}[x],$
- 3) Dx = 1.

Можно распространить понятие производной на многочлены над любым полем, хотя определение производной из математического анализа не будет иметь смысла в этом случае.

Теорема 3. Пусть K - поле, тогда $\exists!$ отображение $D:K[x]\to K[x]$, обладающее свойствами:

- 1) линейности, т.е. $\begin{cases} D(f+g) = Df + Dg \ \forall \ f, g \in K[x] \\ D(af) = aDf \ \forall \ f \in K[x], \ \forall \ a \in K \end{cases},$
- 2) $D(fg) = Df \cdot g + f \cdot Dg \quad \forall f$
- 3) Dx = 1.

Док-во:

①Пусть $D:K[x]\to K[x]$, обладающее свойствами 1)-3), тогда $D(1)=D(1\cdot 1)=D(1)\cdot 1+1D(1)=D(1)+D(1)\Rightarrow D(1)=\overline{0}$. Докажем по индукции, что $Dx^n=nx^{n-1}$. При n=1 Dx=1 - это свойство 3). Пусть $Dx^{n-1}=(n-1)x^{n-2}$, тогда $Dx^n=D(x^{n-1}x)=$ $=(Dx^{n-1})x+x^{n-1}Dx=(n-1)x^{n-2}x+x^{n-1}=(n-1)x^{n-1}+x^{n-1}=nx^{n-1}\Rightarrow$ $\Rightarrow D$ однозначно определено на $x^n,\ n=0,1,2,\ldots\Rightarrow \forall\ f(x)\in K[x]$.

(\exists) Определим отображение D на $x^n,\ n=0,1,2,\ldots$: $D(1)=\overline{0},$ $D(x^n)=nx^{n-1}\ \forall\ n\in\mathbb{N},$

распространим его $\forall f(x) \in K[x]$ с помощью линейности:

$$f(x)=a_0x^n+a_1x^{n-1}+\ldots+a_{n-1}x+a_n.\Rightarrow D\,f(x)=$$
 $=D(a_0x^n+a_1x^{n-1}+\ldots+a_{n-1}x+a_n)=a_0nx^{n-1}+a_1(n-1)x^{n-1}+\ldots+a_{n-1}.$ Таким образом, свойства 1) и 3) для отображения D выполнены.

Проверим свойство 2). В силу линейности D достаточно его проверить для $f(x) = x^m$, $g(x) = x^l$.

$$D(fg) = D(x^m x^l) = D(x^{m+l}) = (m+l)x^{m+l-1} = mx^{(m-1)+l} + lx^{m+(l-1)} = mx^{m-1}x^l + x^m lx^{l-1} = D(x^m)x^l + x^m D(x^l) = Df \cdot g + f \cdot Dg.$$

Опр.

Производной f'(x) многочлена $f(x) \in K[x]$ назвается $Df(x) \in K[x]$, т.е. для $f(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n \in K[x]$ $f'(x) = a_0 n x^{n-1} + a_1 (n-1) x^{n-2} + \ldots + a_{n-1}.$

3 Кратные корни многочленов

Опр. Пусть L, K - поля, $K \subset L$. $u \in L$ назвается корнем $f(x) \in K[x]$ кратности m, если $f(x) = (x-u)^m g(x)$, где $g(x) \in K[x] : g(u) \neq \overline{0}$. Корень кратности $m \geqslant 2$ называется кратным,

Лекция №14 97

а корень кратности m = 1 - простым корнем.

Утв. 5. Пусть K,L - поля, $K\subset L$, тогда $u\in L$ является кратным корнем $f(x)\in K[x]\Leftrightarrow \left\{ \begin{array}{l} f(u)=\overline{0}\\ f'(u)=\overline{0} \end{array} \right.$

Док-во:

$$\bigoplus$$
 Пусть u - кратный корень $f(x) \Rightarrow f(x) = (x-u)^2 g(x), \ g(x) \in K[x] \Rightarrow f'(x) = 2(x-u)g(x) + (x-u)^2 g'(x) \Rightarrow \begin{cases} f(u) = \overline{0} \\ f'(u) = \overline{0} \end{cases}$.

$$\bigoplus$$
 Пусть $\begin{cases} f(u) = \overline{0} \\ f'(u) = \overline{0} \end{cases}$, но u - простой корень $f(x)$, т.е. $f(x) = (x - u)g(x), \ g(u) \neq \overline{0} \Rightarrow f'(x) = g(x) + (x - u)g'(x) \Rightarrow f'(u) = g(u) \neq \overline{0} \ \ \otimes \Rightarrow u$ - кратный корень $f(x)$.

Утв. 6. Если K, L - поля, $K \subset L, u \in L$, то u - общий корень $f(x), g(x) \in K[x] \Leftrightarrow u$ - корень $(f(x), g(x)) \in K[x]$. Док-во:

Пусть (f(x), g(x)) = d(x), тогда $f(x) = d(x)f_1(x)$, $g(x) = d(x)g_1(x)$, $d(x) = f(x)q_1(x) + g(x)q_2(x)$.

$$\Leftrightarrow \begin{cases}
d(x) = f(x)q_1(x) + g(x)q_2(x) \\
f(u) = 0 \\
g(u) = 0
\end{cases} \Rightarrow d(u) = 0,$$

$$\bigoplus \begin{cases}
f(x) = d(x)f_1(x) \\
g(x) = d(x)g_1(x) \\
d(u) = 0
\end{cases} \Rightarrow \begin{cases}
f(u) = 0 \\
g(u) = 0
\end{cases}.$$

Следствие. Пусть K, L - поля, $K \subset L, u \in L$, тогда u - кратный корень $f(x) \in K[x] \Leftrightarrow u$ - корень $(f(x), f'(x)) \in K[x]$.

Утв. 7. Пусть K - поле, $|K| < \infty$, char K = p, $f(x) \in K[x]$, тогда $f'(x) = \overline{0} \Leftrightarrow \exists \ g(x), h(x) \in K[x] : f(x) = g(x^p) = (h(x))^p$.

Док-во:

Пусть
$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n = \sum_{m=0}^n a_m x^{n-m} \Rightarrow$$

$$\Rightarrow f'(x) = a_0 n x^{n-1} + a_1 (n-1) x^{n-2} + \dots + a_{n-1} = \sum_{m=0}^{n-1} a_m (n-m) x^{n-m-1}.$$

$$f'(x) = \overline{0} \Leftrightarrow a_m (n-m) = \overline{0} \ \forall \ m = \overline{0, n-1}$$

 \bigoplus Если $a_m \neq 0 \Rightarrow n-m=pl \Rightarrow f(x)$ содержит только степени x^p , т.е. $f(x)=g(x^p)$, где $g(x)\in K[x]$.

Рассмотрим эндоморфизм Фробениуса

$$\begin{split} \Phi: K(x) &\to K(x), \ \ (K(x) = Quot \ K[x]). \\ |K| &< \infty \Rightarrow \Phi|_K \text{ - автоморфизм} \Rightarrow \ \exists \ (\Phi|_K)^{-1}: K \to K. \\ \text{Если } g(x) &= b_0 x^s + b_1 x^{s-1} + \ldots + b_{s-1} x + b_s \in K[x], \ \text{рассмотрим} \\ h(x) &= (\Phi|_K)^{-1} (b_0) x^s + (\Phi|_K)^{-1} (b_1) x^{s-1} + \ldots + (\Phi|_K)^{-1} (b_s) \in K[x]. \end{split}$$

Тогда
$$\Phi(h(x)) = (h(x))^p = b_0(x^p)^s + b_1(x^p)^{s-1} + \dots + b_s = g(x^p) = f(x).$$

 \bigoplus Очевидно, если $f(x) = (h(x))^p = g(x^p)$, то $f'(x) = \overline{0}$.

Утв. 8. Если K - поле нулевой характеристики или конечное поле, $f(x) \in K[x]$ - неприводимый многочлен, то $f'(x) \neq \overline{0}$.

Док-во:

1) Пусть K : char K = 0.

f(x) - неприводимый $\Rightarrow deg \ f(x) \geqslant 1 \Rightarrow deg \ f'(x) \geqslant 0 \Rightarrow f'(x) \neq \overline{0}$

2) Пусть $K: |K| < \infty \Rightarrow char K = p \neq 0.$

Пусть
$$f'(x) = \overline{0} \Rightarrow \exists h(x) \in K[x] : f(x) = (h(x))^p$$
,

но f(x) - неприводимый $\stackrel{\wedge}{\searrow} \Rightarrow f'(x) \neq \overline{0}.$

Утв. 9. Если K — поле нулевой характеристики или конечное поле, $f(x) \in K[x]$ — неприводимый многочлен, то f(x) не имеет кратных корней ни в каком расширении L поля K.

Пок-во

$$\left\{ \begin{array}{l} f(x) - \text{ неприводимый} \Rightarrow f'(x) \neq 0 \\ deg \ f'(x) < deg \ f(x) \end{array} \right. \Rightarrow (f(x), f'(x)) = 1 \Rightarrow$$

 $\Rightarrow (f(x), f'(x))$ не имеет корней ни в каком поле $L \supset K \Rightarrow$

 $\Rightarrow f(x)$ не имеет кратных корней ни в каком поле $L\supset K$.

Лекция №15

1 Конечные подгруппы мультипликативной группы поля

Лемма 1. Пусть G — группа, $a,b \in G: ab = ba, (ord a, ord b) = 1,$ тогда $ord(ab) = ord a \ ord b$.

Док-во:

Пусть ord a = m, ord b = k, ord(ab) = s. $(ab)^{mk} = (a^m)^k (b^k)^m = e \in G \Rightarrow s | mk$ (1). $(ab)^s = a^s b^s = e \Rightarrow a^s = b^{-s}$. $ord a^s = \frac{m}{(m,s)}$, $ord b^{-s} = ord b^s = \frac{k}{(k,s)} \Rightarrow \frac{m}{(m,s)} = \frac{k}{(k,s)}$. (*)

Пусть $d_1 = (m,s) \Rightarrow \begin{cases} m = d_1 \widetilde{m} \\ s = d_1 s_1 \end{cases}$, пусть $d_2 = (k,s) \Rightarrow \begin{cases} k = d_2 \widetilde{k} \\ s = d_2 s_2 \end{cases}$ $(*) \Leftrightarrow \widetilde{m} = \widetilde{k} \Rightarrow \begin{cases} m = d_1 \widetilde{m} \\ k = d_2 \widetilde{k} = d_2 \widetilde{m} \end{cases}$, но $(m,k) = 1 \Rightarrow \begin{cases} \widetilde{m} = 1 \\ \widetilde{k} = 1 \end{cases} \Rightarrow \begin{cases} m = d_1 \\ k = d_2 \end{cases} \Rightarrow \begin{cases} s = m s_1 \\ s = k s_2 \end{cases} \Rightarrow \begin{cases} m | s \\ k | s \\ m > 1 \end{cases}$ $(1), (2) \Rightarrow s = mk$, the $ord(ab) = ord a \ ord b$

Теорема 1. Пусть K — поле, $G < K^* : |G| = n < \infty \Rightarrow G$ — циклическая группа. (Любая конечная подгруппа мультипликативной группы поля является циклической).

Док-во:

Пусть $G = \{g_1, g_2, ...g_n\}$

Рассмотрим $m = HOK\{ord g_1, ord g_2, ..., ord g_n\}.$

Докажем, что $\exists a \in G : ord a = m$.

Пусть $m=p_1^{s_1}p_2^{s_2}...p_k^{s_k},\ p_i$ — простое число, $p_i\neq p_j$ при $i\neq j,\ i,j=\overline{1,k}$. Из определения $m\Rightarrow \forall i=\overline{1,k}\ \exists\ a_i\in G: ord\ a_i=p_i^{s_i}l_i,\ (p_i,l_i)=1\Rightarrow$ $\Rightarrow ord\ a_i^{l_i}=p_i^{s_i},\ (ord\ a_i^{l_i}, ord\ a_i^{l_j})=1$ при $i\neq j,\ i,j=1,k$.

Рассмотрим $a = a_1^{l_1} a_2^{l_2} ... a_k^{l_k}$. Из леммы \Rightarrow $ord\ a = ord\ a_1^{l_1}\ ord\ a_2^{l_2} ... ord\ a_k^{l_k} = p_1^{s_1} p_2^{s_2} ... p_k^{s_k} = m$. $ord\ a \leqslant ord\ G \Rightarrow m \leqslant n\ (1)$ $m \ : \ ord\ g_j,\ j = \overline{1,n} \Rightarrow g^m = 1\ \forall\ g \in G < K^* \Rightarrow$ \Rightarrow многочлен $x^m - 1$ имеет в поле K n корней, но $deg(x^m - 1) = m \Rightarrow n \leqslant m\ (2)$ $(1),\ (2) \Rightarrow n = m$, т.е. $|G| = ord\ a \Rightarrow G = < a >$.

Следствие. Мультипликативная группа K^* конечного поля K циклическая.

Пример.
$$K$$
 - поле, $|K| = p^n \Rightarrow$
 $\Rightarrow (K^*, \cdot) \simeq \mathbb{Z}_{p^n-1}, \ (K, +) \simeq \mathbb{Z}_p \times \mathbb{Z}_p \times ... \times \mathbb{Z}_p.$

2 Поле разложения многочлена

Опр. Пусть K, L - поля, $K \subset L$, $u_1, u_2, ..., u_n \in L$, тогда подполем $K(u_1, u_2, ..., u_n)$, порождённым над K элементами $u_1, u_2, ..., u_n$, называется $K(u_1, u_2, ..., u_n) = Quot K[u_1, u_2, ..., u_n]$.

Note. $K(u_1, u_2, ..., u_n)$ - наименьшее по включению подполе L, содержащее элементы $u_1, u_2, ..., u_n$.

Если $u \in L$ - алгебраический над K элемент, то K(u) = K[u].

Утв. 1. Если K - поле, $u_1, u_2, ..., u_n$ - алгебраические над K элементы, $L = K(u_1, u_2, ..., u_n)$, то L - конечное расширение поля K.

Док-во:

Докажем, что $K(u_1, u_2, ..., u_m) = K(u_1, u_2, ..., u_{m-1})(u_m)$. $K(u_1, u_2, ..., u_{m-1})(u_m)$ - множество рациональных функций от u_m с рациональными коэффициентами из $K(u_1, u_2, ..., u_{m-1})$. Приведя эти коэффициенты к общему знаменателю, увидим, что $K(u_1, u_2, ..., u_{m-1})(u_m) \subset K(u_1, u_2, ..., u_m)$.

 $K(u_1,u_2,...,u_{m-1})(u_m)$ - поле, содержащее $u_1,u_2,...,u_{m-1},u_m$, но $K(u_1,u_2,...,u_m)$ - наименьшее поле, содержащее эти элементы \Rightarrow $K(u_1,u_2,...,u_{m-1})(u_m)=K(u_1,u_2,...,u_m)$.

Если u_m - алгебраический элемент над K, то u_m - алгебраический элемент над $K(u_1,u_2,...,u_{m-1}) \Rightarrow$

 $\Rightarrow K(u_1,u_2,...,u_m)$ является конечным расширением $K(u_1,u_2,...,u_{m-1}).$ В цепочке расширений

 $K \subset K(u_1) \subset K(u_1, u_2) \subset ... \subset K(u_1, u_2, ..., u_m) \subset ... \subset K(u_1, u_2, ..., u_n) = L$ каждое расширение является конечным над предыдущим подполем \Rightarrow $L = K(u_1, u_2, ..., u_n)$ является конечным расширением поля K.

Опр. Расширение L поля K называется полем разложения многочлена $f(x) \in K[x]$, если L - наименьшее по включению поле, над которым f(x) раскладывается на линейные множители.

Note. Поле L разложения многослена $f(x) \in K[x]$ порождается над K его корнями.

Теорема 2. Пусть K - поле, тогда для любого многочлена $f(x) \in K[x]$ существует поле разложения.

Док-во:

Построим поле L - поле разложения $f(x) \in K[x]$.

Разложим f(x) на неприводимые множители.

Если все эти множители первой степени, то L = K.

Если среди неприводимых множителей f(x) есть многочлен $f_1(x): deg \, f_1(x) > 1$, то присоединим к K корень этого многочлена α_1 , получим $K_1 = K[\alpha_1] = K[x]/(f_1(x)), \, K \subset K_1$.

Разложим $f(x) \in K[x] \subset K_1[x]$ на неприводимые множители над $K_1 = K[\alpha_1]$. Среди них есть линейный множитель $(x - \alpha_1)$.

Если все неприводимые множители теперь имеют степень 1, то $L=K[lpha_1].$

Если среди неприводимых множителей есть $f_2(x) \in K_1[x]$: $deg f_1(x) > 1$, то присоединяя к K_1 его корень α_2 , получим

Лекция №15 102

$$K_2=K_1[\alpha_2]=K_1[x]/(f_2(x)),\ K_2=K_1[\alpha_2]=K[\alpha_1,\alpha_2]$$
 и т.д. Получим цепочку расширений $K=K_0\subset K_1\subset ...\subset K_{m-1}\subset K_m\subset ...$ где $K_m=K_{m-1}[\alpha_m],\ \alpha_m$ - корень неприводимого многочлена $f_m(x)\in K_{m-1}[x]:deg\ f_m(x)>1,\ f_m(x)$ - делитель $f(x)$. $\exists\ s\in\mathbb{N},\ s\leqslant deg\ n:L=K[\alpha_1,\alpha_2,...,\alpha_s]$ - поле разложения $f(x)$.

Следствие 1.

Поле разложения $f(x) \in K[x]$ - конечное расширение поля K.

Следствие 2.

Если K - конечное поле, то поле разложения $f(x) \in K[x]$ - конечное поле.

Note. Если F, \widetilde{F} - поля, $\varphi: F \to \widetilde{F}$ - гомоморфизм, то φ можно продолжить до гомоморфизма $\varphi: F[x] \to \widetilde{F}[x]$, определив $\forall \ p(x) = a_0 x^m + a_1 x^{m-1} + ... + a_m \in F[x]$ $\varphi(p(x)) = \varphi(a_0 x^m + a_1 x^{m-1} + ... + a_m) = \varphi(a_0) x^m + \varphi(a_1) x^{m-1} + ... + \varphi(a_m) \in \widetilde{F}[x]$. Очевидно, что $\varphi: F[x] \to \widetilde{F}[x]$ и φ сохраняет операции сложения и умножения многочленов.

Обозначим $\varphi(p(x)) = \widetilde{p}(x)$.

Лемма 2. Пусть F,\widetilde{F} - поля, $\varphi:F\to\widetilde{F}$ - гомоморфизм. $F[\alpha]$ - расширение поля F, полученное присоединением корня неприводимого многочлена $f(x)\in F[x].$

Тогда

- 1) если $\Psi: F[\alpha] \to \widetilde{F}$ гомоморфизм : $\Psi|_F = \varphi, \ \beta = \Psi(\alpha),$ то $\widetilde{f}(\beta) = \overline{0};$
- 2) если $\beta \in \widetilde{F}$ корень $\widetilde{f}(x) \in \widetilde{F}[x]$, то отображение $\Psi : F[\alpha] \to \widetilde{F}$, определённое по правилу $\Psi(p(\alpha)) = \widetilde{p}(\beta) \ \forall \ p(\alpha) \in F[\alpha]$, является гомоморфизмом и $\Psi|_F = \varphi$.

Док-во:

1) Пусть
$$\Psi: F[\alpha] \to \widetilde{F}$$
 - гомоморфизм : $\Psi|_F = \varphi$. $\Rightarrow \Psi(p(\alpha)) = \Psi(a_0\alpha^m + a_1\alpha^{m-1} + ... + a_m) =$

$$= \Psi(a_0)(\Psi(\alpha))^m + \Psi(a_1)(\Psi(\alpha))^{m-1} + \dots + \Psi(a_m) =$$

$$= \varphi(a_0)\beta^m + \varphi(a_1)\beta^{m-1} + \ldots + \varphi(a_m) = \widetilde{p}(\beta),$$
 где $\beta = \Psi(\alpha). \Rightarrow$

$$\Rightarrow$$
 t.k. $f(\alpha) = \overline{0} \Rightarrow \Psi(f(\alpha)) = \widetilde{f}(\beta) = \overline{0}$.

2) Покажем, что Ψ определено корректно.

Пусть
$$p_1(\alpha) = p_2(\alpha) \Leftrightarrow p_1(x) = p_2(x) + f(x)g(x)$$
, где $g(x) \in F[x] \Rightarrow \widetilde{p_1}(x) = \widetilde{p_2}(x) + \widetilde{f}(x)\widetilde{g}(x)$, где $\widetilde{g}(x) \in \widetilde{F}(x) \Rightarrow \widetilde{p_1}(\beta) = \widetilde{p_2}(\beta) \Leftrightarrow \Leftrightarrow \Psi(p_1(\alpha)) = \Psi(p_2(\alpha))$.
Ясно, что $\Psi: F[\alpha] \to \widetilde{F}$ является гомоморфизмом и $\Psi|_F = \varphi$.

Опр. Пусть L_1, L_2 - расширения поля $K, \varphi: L_1 \to L_2$ гомоморфизм. φ называется гомоморфизмом над K, если $\varphi|_K = id.$

Теорема 3. Пусть K - поле, $f(x) \in K[x]$, тогда поле разложения многочлена f(x) единственно с точностью до изоморфизма над K.

Док-во:

Пусть L - поле разложения $f(x) \in K[x]$, построенное в теореме 2, а \widetilde{L} - другое поле разложения f(x).

$$K = K_0 \subset K_1 \subset ... \subset K_{m-1} \subset K_m \subset ... \subset K_s = L.$$

Построим последовательность гомоморфизмов

$$\varphi_m:K_m\to\widetilde{L},\ m=0,1,...,s$$
 такую, что $\varphi_0=id,\left.^{\varphi_m}\right|_{K_{m-1}}=\varphi_{m-1}.$

 $K_m=K_{m-1}[lpha_m]$, где $lpha_m$ - корень неприводимого многочлена

$$f_m(x) \in K_{m-1}[x], \ f(x) \vdots f_m(x)$$
 над K_{m-1} .

Если гомоморфизм $\varphi_{m-1}:K_{m-1}\to \widetilde{L}$ уже построен и продолжен до гомоморфизма $\varphi_{m-1}:K_{m-1}[x]\to \widetilde{L}[x],$

$$\widetilde{p}(x) = \varphi_{m-1}(p(x)) \ \forall \ p(x) \in K_{m-1}[x], \text{ то } \widetilde{f}(x) = f(x) \vdots \widetilde{f_m}(x) \text{ над } \widetilde{L}.$$

f(x) раскладывается на линейные множители над $\widetilde{L} \Rightarrow$

$$\Rightarrow \exists \beta_m \in \widetilde{L} : \widetilde{f_m}(\beta_m) = \overline{0}.$$

Положим $\varphi_m(p(\alpha_m)) = \widetilde{p}(\beta_m) \ \forall \ p(\alpha_m) \in K_{m-1}[\alpha_m].$

Из леммы $2\Rightarrow \varphi_m:K_m\to \widetilde{L}$ - гомоморфизм, $\left. \varphi_m \right|_{K_{m-1}}=\varphi_{m-1},\left. \varphi_m \right|_K=\mathrm{id}.$ $L=K_s=K[\alpha_1,\alpha_2,...,\alpha_s].$

 $\varphi_s:L\longmapsto \widetilde{L}$ гомоморфизм нетривиальный, т.к. $\left.\varphi_s\right|_{_K}=id\Rightarrow$

- \Rightarrow Поскольку L поле, φ_s мономорфизм. \Rightarrow
- \Rightarrow По теореме о гомоморфизме $L \simeq Im \varphi_s \Rightarrow$
- $\Rightarrow Im \, \varphi_s \simeq L$ является подполем поля разложения \widetilde{L} , над которым f(x)

105

раскладывается на линейные множители, но \widetilde{L} - наименьшее такое поле $\Rightarrow Im \, \varphi_s = \widetilde{L} \Rightarrow \widetilde{L} \simeq L.$

Примеры:

(1) $f(x) = x^3 - 2 \in \mathbb{F}_7[x]$ — неприводимый многочлен, т.к. deg f(x) = 3 и f(x) не имеет корней в \mathbb{F}_7 .

Рассмотрим $\mathbb{F}_7[\alpha] \simeq \mathbb{F}_7[x]/(x^3-2)$, $\alpha = [x]$ — корень $f(x) = x^3-2 \Rightarrow \alpha, \alpha^7, \alpha^{49}$ — корни f(x), различные между собой.

 $\alpha, \alpha^7, \alpha^{49} \in \mathbb{F}_7[\alpha] \Rightarrow \mathbb{F}_7[\alpha]$ — поле, над которым f(x) раскладывается на линейные множители, и $\mathbb{F}_7[\alpha]$ — минимальное из таких полей, поскольку $\mathbb{F}_7[\alpha]$ — наименьшее поле, содержащее $\alpha. \Rightarrow$

 $\Rightarrow \mathbb{F}_7[lpha] \simeq \mathbb{F}_7[x]/(x^3-2)$ — поле разложения f(x).

 $dim_{\mathbb{F}_7}\mathbb{F}_7[\alpha]=deg\,f(x)=3\Rightarrow$ Поле разложения $f(x)=x^3-2$ над \mathbb{F}_7 имеет степень расширения 3.

Разложим f(x) на линейные множители над $\mathbb{F}_7[\alpha]$.

$$f(x) = (x - \alpha)(x - \alpha^{7})(x - \alpha^{49}) = (x - \alpha)(x + 3\alpha)(x - 2\alpha).$$

$$\alpha^{3} = 2 \Rightarrow \alpha^{6} = -3 \Rightarrow \alpha^{7} = -3\alpha, \ \alpha^{49} = (\alpha^{6})^{8}\alpha = (-3)^{8}\alpha = 2\alpha.$$

Сделаем проверку:

$$f(x) = (x - \alpha)(x + 3\alpha)(x - 2\alpha) = (x - \alpha)(x^2 + \alpha x + \alpha^2) =$$

= $x^3 + \alpha x^2 + \alpha^2 x - \alpha x^2 - \alpha^2 x - \alpha^3 = x^3 - 2$

(2) $f(x) = x^3 - 2 \in \mathbb{Q}[x]$ — неприводимый многочлен, т.к. $deg \ f(x) = 3$ и f(x) не имеет корней в \mathbb{Q} .

Рассмотрим $\mathbb{Q}[\alpha] \simeq \mathbb{Q}[x]/(x^3-2)$, $\alpha = \sqrt[3]{2}$ – корень f(x), $\alpha^3 = 2$.

$$\mathbb{Q}[\alpha] = \mathbb{Q}[\sqrt[3]{2}] = \{a + b\sqrt[3]{2} + c\sqrt[3]{2^2} : a, b, c \in \mathbb{Q}\} \subset \mathbb{R}.$$

$$f(x) = x^3 - (\sqrt[3]{2})^3 = (x - \sqrt[3]{2})(x^2 + x\sqrt[3]{2} + \sqrt[3]{2^2}).$$

Квадратный трехчлён $x^2+x\sqrt[3]{2}+\sqrt[3]{2^2}$ не имеет действительных корней, поскольку $D=-3\sqrt[3]{2^2}<0.\Rightarrow f(x)$ не раскладывается на линейные множители над $\mathbb{Q}[\alpha]\subset\mathbb{R}.$

Рассмотрим $x^2 + x\sqrt[3]{2} + \sqrt[3]{2^2} = x^2 + \alpha x + \alpha^2$ над $\mathbb{Q}[\alpha]$, этот многочлен имеет степень 2 и не имеет корней в $\mathbb{Q}[\alpha] \Rightarrow$ он неприводим над $\mathbb{Q}[\alpha]$. Рассмотрим $\mathbb{Q}[\alpha][\beta] \simeq \mathbb{Q}[\alpha][x]/(x^2 + \alpha x + \alpha^2) = \mathbb{Q}[\alpha, \beta]$,

где
$$\beta^2 + \alpha\beta + \alpha^2 = 0$$
,
$$\beta = \frac{-\alpha + i\alpha\sqrt{3}}{2} - \text{ корень } x^2 + \alpha x + \alpha^2, \ \beta \in \mathbb{Q}[\alpha,\beta] \subset \mathbb{C},$$

$$\overline{\beta} = \frac{-\alpha - i\alpha\sqrt{3}}{2} - \text{ второй корень } x^2 + \alpha x + \alpha^2, \ \overline{\beta} \in \mathbb{Q}[\alpha,\beta] \subset \mathbb{C},$$

$$\overline{\beta} = -\alpha - \beta \Rightarrow \mathbb{Q}[\alpha,\beta] - \text{ поле разложения } f(x), \text{ т.к. } \mathbb{Q}[\alpha,\beta] - \text{ наименьшее поле, над которым } f(x) \text{ раскладывается на линейные множители.}$$

$$f(x) = (x - \alpha)(x - \beta)(x - \overline{\beta}) = (x - \alpha)(x - \beta)(x + \alpha + \beta) - \text{ разложение на линейные множители над } \mathbb{Q}[\alpha,\beta].$$

Сделаем проверку:

$$f(x) = (x - \alpha)(x - \beta)(x + \alpha + \beta) = (x - \alpha)(x^2 + \alpha x + \beta x - \beta x - \alpha \beta - \beta^2) =$$

$$= (x - \alpha)(x^2 + \alpha x + \alpha^2) = x^3 - \alpha^3 = x^3 - 2.$$

$$\mathbb{Q} \subset \mathbb{Q}[\alpha] \subset \mathbb{Q}[\alpha, \beta]$$

$$\dim_{\mathbb{Q}}\mathbb{Q}[\alpha] = 3, \text{ t.k. } \mathbb{Q}[\alpha] \simeq \mathbb{Q}[x]/(x^3 - 2), \quad \deg(x^3 - 2) = 3.$$

$$\dim_{\mathbb{Q}[\alpha]}\mathbb{Q}[\alpha, \beta] = 2, \text{ t.k. } \mathbb{Q}[\alpha, \beta] = \mathbb{Q}[\alpha][\beta] \simeq \mathbb{Q}[\alpha][x]/(x^2 + \alpha x + \alpha^2),$$

$$\deg(x^2 + \alpha x + \alpha^2) = 2.$$

$$\dim_{\mathbb{Q}}\mathbb{Q}[\alpha, \beta] = \dim_{\mathbb{Q}}\mathbb{Q}[\alpha] \dim_{\mathbb{Q}[\alpha]}\mathbb{Q}[\alpha, \beta] = 3 \cdot 2 = 6.$$

Поле разложения многочлена $f(x) = x^3 - 2$ над полем $\mathbb Q$ имеет степень расширения 6.

Лекция №16

1 Существование и единственность конечного поля порядка p^n - поля Галуа.

Лемма. Пусть $\varphi: K \longmapsto K$ — нетривиальный эндоморфизм поля $K, \ L = \{a \in K: \varphi(a) = a\}$ — множество неподвижных точек $\varphi,$ тогда L — подполе K.

Док-во:

 $L\subset K\Rightarrow$ все свойства K, выражаемые тождествами, выполняются в L. 1) $\varphi(\overline{0})=\overline{0}\Rightarrow\overline{0}\in L$,

$$2) \ a,b \in L, \text{ t.e. } \left\{ \begin{array}{l} \varphi(a) = a \\ \varphi(b) = b \end{array} \right. \Rightarrow \varphi(a+b) = \varphi(a) + \varphi(b) = a+b \Rightarrow a+b \in L,$$

3)
$$a \in L$$
, t.e. $\varphi(a) = a \Rightarrow \varphi(-a) = -\varphi(a) = -a \Rightarrow (-a) \in L$,

4)
$$a, b \in L$$
, t.e.
$$\begin{cases} \varphi(a) = a \\ \varphi(b) = b \end{cases} \Rightarrow \varphi(ab) = \varphi(a) \varphi(b) = ab \Rightarrow ab \in L,$$

5) $\varphi(1)=1$, т.к. φ — нетривиальный эндоморфизм поля $K\Rightarrow 1\in L,$

6)
$$\varphi(1) \neq \varphi(\overline{0}) \Rightarrow 0 \neq 1$$
, r.e. $|L| > 1$,

7)
$$\forall a \in L \setminus \{\overline{0}\}\ 1 = \varphi(1) = \varphi(aa^{-1}) = a\varphi(a^{-1}) \Rightarrow \varphi(a^{-1}) = a^{-1} \Rightarrow a^{-1} \in L.$$

$$(1) - 7) \Rightarrow L -$$
подполе K.

Теорема 1. Для любого простого числа p и любого натурального числа n существует единственное с точностью до изоморфизма поле, состоящее из p^n элементов.

Док-во:

 \bigcirc Пусть K — поле: $|K| = p^n$. Докажем, что такое поле единственно с

точностью до изоморфизма.

$$K$$
 – поле $\Rightarrow |K^*| = p^n - 1 \Rightarrow \forall a \in K^* \ a^{p^n - 1} = 1 \Rightarrow \forall a \in K \ a^{p^n} = a$, т.е.

 $\forall a \in K$ является корнем многочлена $q(x) = x^{p^n} - x \in \mathbb{F}_p[x].$

 $deg q(x) = p^n \Rightarrow q(x)$ имеет не более p^n корней. \Rightarrow

- \Rightarrow Множество корней q(x) совпадает с полем $K. \Rightarrow$
- $\Rightarrow K$ минимальное поле, над которым q(x) раскладывается на линейные множители, т.е. K поле разложения многочлена $q(x) \in \mathbb{F}_p[x] \Rightarrow$
- \Rightarrow Поле разложения K единственно с точностью до изоморфизма над \mathbb{F}_p , но \mathbb{F}_p простое подполе K, следовательно любой изоморфизм K оставляет на месте все элементы \mathbb{F}_p , т.е. является изоморфизмом над \mathbb{F}_p \Rightarrow
- $\Rightarrow K$ единственно с точностью до изоморфизма.
- (\exists) Докажем, существание поля $K: |K| = p^n$.

Рассмотрим многочлен $q(x) = x^{p^n} - x \in \mathbb{F}_p[x]$.

 \exists поле разложения этого многослена K (конечное поле).

В K лежат все корни многочлена q(x).

Множество его корней $L = \{a \in K : a^{p^n} - a = 0\} = \{a \in K : \Phi^n(a) = a\}$ есть множество неподвижных точек автоморфизма Φ^n , где Φ - автоморфизм Фробениуса поля K.

Из леммы $\Rightarrow L$ - подполе K.

Над L q(x) раскладывается на линейные множители \Rightarrow

 $\Rightarrow K = L \Rightarrow |K|$ равен числу различных корней q(x).

 $q'(x)=p^nx^{p^n-1}-1=-1\Rightarrow q'(x)$ не имеет корней ни в каком поле \Rightarrow

 $\Rightarrow q(x)$ не имеет кратных корней ни в каком поле \Rightarrow

 $\Rightarrow |K| = deg q(x) = p^n$.

Опр. Любое конечное поле $K: |K| = p^n$ называется полем Галуа и обозначается $GF(p^n)$ или \mathbb{F}_{p^n} .

Следствие. Если $f(x), g(x) \in \mathbb{F}_p[x]$ - неприводимые многочлены : $\deg f(x) = \deg g(x), \text{ то } \mathbb{F}_p[x]/(f(x)) \simeq \mathbb{F}_p[x]/(g(x))$.

Док-во:

Пусть deg f(x) = deg g(x) = n.

Тогда $\mathbb{F}_p[x]/(f(x))$ и $\mathbb{F}_p[x]/(g(x))$ - поля, содержащие p^n элементов.

Лекция №16 108

Пример.

$$f(x)=x^2+1,\ g(x)=x^2+x-1\in \mathbb{F}_3[x]$$
 - неприводимые многочлены. $\mathbb{F}_3[\alpha]=\{a+b\alpha:\alpha^2+1=\overline{0},\ a,b\in \mathbb{F}_3\}\simeq \mathbb{F}_3[x]/(x^2+1)$ $\mathbb{F}_3[\gamma]=\{a+b\gamma:\gamma^2+\gamma-1=\overline{0},\ a,b\in \mathbb{F}_3\}\simeq \mathbb{F}_3[x]/(x^2+x-1)$ $\mathbb{F}_3[\alpha]\simeq \mathbb{F}_3[\gamma].$

Построим изоморфизм $\varphi: \mathbb{F}_3[\alpha] \to \mathbb{F}_3[\gamma]$ явно.

Для этого найдём корень многочлена $x^2 + 1$ в поле $\mathbb{F}_3[\gamma]$.

$$(a + b\gamma)^2 + 1 = \overline{0}$$

$$a^2 + 2ab\gamma + b^2\gamma^2 + 1 = \overline{0}$$

$$a^2 + 2ab\gamma + b^2(1-\gamma) + 1 = \overline{0}$$

$$a^2 + b^2 + 1 + \gamma(2ab - b^2) = \overline{0}.$$

$$\begin{cases} a^{2} + b^{2} + 1 = \overline{0} \\ b(2a - b) = \overline{0} \end{cases} \begin{cases} b = \overline{0} \varnothing \\ b = -a \\ a^{2} + b^{2} = -1 \end{cases} \begin{cases} b = -a \\ 2a^{2} = -1 \end{cases} \begin{cases} b = -a \\ a^{2} = 1 \end{cases}$$

Положим $\varphi(1) = 1, \varphi(\alpha) = 1 - \gamma$.

Определим $\varphi : \mathbb{F}_3[\alpha] \longmapsto \mathbb{F}_3[\alpha].$

$$\varphi$$
 — гомоморфизм $\Rightarrow \varphi(p(\alpha)) = p(\varphi(\alpha)) = p(1-\alpha) \quad \forall p(\alpha) \in \mathbb{F}_3[\alpha].$

$$f(\alpha) = \overline{0}, \quad \varphi(f(\alpha)) = f(\varphi(\alpha)) = \varphi(\alpha^2 + 1) = (1 - \gamma)^2 + 1 = 1 - 2\gamma + \gamma^2 + 1 = 1 -$$

 φ определено корректно, т.к.

$$p_1(\alpha) = p_2(\alpha) \Leftrightarrow p_1(\alpha) = p_2(\alpha) + f(\alpha)q(\alpha) \Rightarrow$$

$$\Rightarrow \varphi(p_1(\alpha)) = \varphi(p_2(\alpha)) + \varphi(f(\alpha))\varphi(g(\alpha)) \Rightarrow$$

$$\Rightarrow p_1(\varphi(\alpha)) = p_2(\varphi(\alpha)) + f(\varphi(\alpha))q(\varphi(\alpha)) \Rightarrow p_1(1-\gamma) = p_2(1-\gamma).$$

 φ сохраняет операции сложения и умножения.

Лекция №16 109

2 Существование над полем \mathbb{F}_p неприводимых многочленов любой положительной степени

Теорема 2. Для любого простого p и любого натурального n существует неприводимый многочлен степени n над \mathbb{F}_p .

Док-во:

Существует поле \mathbb{F}_{p^n} , его мультипликативная группа $\mathbb{F}_{p^n}^*$ - циклическая. Пусть $\mathbb{F}_{p^n}^* = \langle \alpha \rangle \Rightarrow \mathbb{F}_{p^n} = \mathbb{F}_p[\alpha] \Rightarrow \exists \ m_{\alpha}(x) \in \mathbb{F}_p[x] : m_{\alpha}(x)$ - неприводимый многочлен и $\deg m_{\alpha}(x) = n$.

Note. Над другими полями могут не существовать неприводимые многочлены любой положительной степени. Например, над $\mathbb C$ все неприводимые многочлены имеют степень один, а над $\mathbb R$ - один или два.