

Use of Surrogate-based Model Search for Parallel Blackbox Optimization

Optimization Days 2019 Blackbox optimization session (TD6) May 14, 2019

Stéphane Alarie Institut de recherche d'Hydro-Québec

Outline

- > Problem context
- > Proposed solution
- > Numerical results
- > Conclusion

This is a joint work with **Bastien Talgorn** and **Michael Kokkolaras** from McGill University

2

Problem context

Problem

> Let (P) be

$$\min_{x \in \Omega} f(x)$$
s.t. $c_j(x) \le 0, \ j = 1, 2, ..., m$

- > We assume that f(x) and $c_j(x)$ are evaluated by simulators (or others)
- > (P) is solved by blackbox approaches here, in particular, with NOMAD (MADS)

Groupe – Technologie

Q Hydro Québec

MADS

Algorithm 1: High-level presentation of MADS

Initialization: Let $x_0 \in \mathbb{R}^n$ be an initial point and set the iteration counter $k \leftarrow 0$ Main loop:

repeat

SEARCH on the mesh to find a better solution than x_k

if the SEARCH failed then

 $oxedsymbol{oxed}$ POLL on the mesh to find a better solution than x_k

if a better solution than x_k was found by either the <code>SEARCH</code> or the <code>POLL</code> then

 \mid call it x_{k+1} and coarsen the mesh

else

 \lfloor set $x_{k+1} = x_k$ and refine the mesh

Update parameters and set $k \leftarrow k+1$

until Stopping criteria is satisfied;

* S. Le Digabel, C. Tribes, V. Rochon Montplaisir and C. Audet, NOMAD User Guide Version 3.9.1, 2018.

5

Groupe - Technologie

Evaluation distribution with Blocks

> POLL

 natively generate 2N points at each iteration (excepted if some already in cache)

> SEARCH

- mix of search strategies (speculative, quadratic, VNS, Nelder-Mead, LHS)
- usually one point, one search after the other (mostly sequential ⇒ bad use of CPUs + lost of time)
- except LHS, which can generate 2N points (good for CPUs, but quickly useless ⇒ lost of time)

Groupe – Technologie

Hydro

6

What is wanted...

- > CPUs are unlimited
- > The SEARCH should be as effective as the POOL in the use of CPUs
- > But this, in a smart manner
 - not randomly (cf. LHS)
 - want to identify new potential optima and/or accelerate the overall search

Groupe - Technologie

New model search for parallel computing

Proposed SEARCH

- > Let's be (S), a surrogate of (P)
- > Let's solve (S) by blackbox techniques to get a large number of points (|S| > 5000)
 - LHS to get points widely spread in Ω
 - · VNS to explore multiple local optima
- > Let's take q diversified points (2N) from S and evaluate them (simulators or others)

9

Groupe - Technologie

Resulting MADS

```
Algorithm 2: The MADS algorithm with model searches.
 [1] Initialization
      Set initial poll and mesh sizes \Delta_0^p \ge \Delta_0^m > 0
      Initialize X_0 with starting points
      Evaluate \{f(\mathbf{x}), c_1(\mathbf{x}), c_2(\mathbf{x}), ..., c_m(\mathbf{x})\} \forall \mathbf{x} \in \mathbf{X}_0
 [2] Model SEARCH
      Use \mathbf{X}_t to build \hat{f} and \{\hat{c}_j\}_{j\in J}
      Solve surrogate problem (S)
      S_t \leftarrow Set of points evaluated with surrogate model while solving (S)
      \mathbf{T}_t \leftarrow \text{Selection of } q \text{ points in } \mathbf{S}_t
      \mathbf{T}_t \leftarrow \text{Projection of the points of } \mathbf{T}_t \text{ onto mesh } \mathcal{M}_t
      Parallel evaluation of \{f(\mathbf{x}), c_1(\mathbf{x}), c_2(\mathbf{x}), ..., c_m(\mathbf{x})\} \forall \mathbf{x} \in \mathbf{T}_t
      If success, goto [4]
 [3] POLL
      Build poll set P_t
      Sort P_t according to \hat{f} and \{\hat{c}_j\}_{j\in J}
      Parallel evaluation of \{f(\mathbf{x}), c_1(\mathbf{x}), c_2(\mathbf{x}), ..., c_m(\mathbf{x})\} \forall \mathbf{x} \in \mathbf{P}_t
 [4] Updates
       t \leftarrow t + 1
      Update \Delta_t^m, \Delta_t^p, \mathbf{x}_t^* and \mathbf{X}_t
      If no stopping condition is met, goto [2]
```

Q Hydro Québec

Selection of interesting points $s \in S$

- **> 6 ways to select points** (not yet in $X \cup T$)
 - Best point s
 - Most distant point s from $X \cup T$
 - Best point s at d_{\min} from $X \cup T$
 - Best feasible point s
 - Most isolated point s
 - Point s in the most populated area
- > If one fails, go to the next one
- Repeated until to get q points in T

11

Groupe - Technologie

Preliminary definitions

- > Constraint penalty: $h(x) = \sum_{j=1}^{m} \max\{0, c_j(x)\}^2$
- > Order: $x \prec y \Leftrightarrow \begin{cases} h(x) < h(y) \text{ whatever } f(x) \text{ and } f(y) \\ h(x) = h(y) \text{ and } f(x) < f(y) \end{cases}$
- > **Distance:** $d(X,Y) = \min_{x \in X} \min_{y \in Y} ||x y||_2$ $d(x,Y) > 0 \iff x \notin Y$

$$d(X,\emptyset) = d(\emptyset,\emptyset) = +\infty$$

12

Methods 1 and 2

> Best point s

Find
$$s^*$$
 s.t. $s^* \prec s \quad \forall s \in S$
and $d(s^*, X \cup T) > 0$

> Most distant point s from $X \cup T$

Find
$$s^*$$
 s.t. $d(s^*, X \cup T) > d(s, X \cup T) \quad \forall s \in S$

13

Groupe - Technologie

Method 3

> Best point s at d_{\min} from $X \cup T$

Find
$$s^*$$
 s.t. $s^* \prec s$ and $d(s^*, X \cup T) \ge d_{\min} \ \forall s \in S$ where $d_{\min} \leftarrow 0$ as initial value and $d_{\min} \leftarrow d_{\min} + \Delta_{\text{mesh}}$ the next application

> May fail if d_{\min} becomes too large...

14

Method 4

> Best feasible point s

Find
$$s^*$$
 s.t. $c_{\text{max}}(s^*) \le c_{\text{margin}}$ and $f(s^*) < f(s)$ $\forall s \in S$

$$\begin{aligned} &\text{where} & \ c_{\max}(s) = \max_{j=1,\dots,m} c_j(s) \\ &\text{and} & \ c_{\max} \leftarrow \max_{\substack{s \in S \\ c_{\max}(s) < 0}} c_{\max}(s) \text{ as initial value} \\ &\text{and} & \ c_{\max} \leftarrow 2c_{\max}(s^*) \text{ the next application} \end{aligned}$$

> May fail if $c_{
m margin}$ becomes too small...

15

Groupe - Technologie

Method 5

> Most isolated point s

Find
$$s^*$$
 s.t. $n_{\text{isolated}}(s^*) > n_{\text{isolated}}(s) \quad \forall s \in S$

where
$$n_{\text{isolated}}(s) = \operatorname{card}\{s' : s' \in S, d(s, s') < d_{\text{isolated}}(s)\}$$

and $d_{\text{isolated}}(s) = \min_{\substack{s' \in S \\ s' \prec s}} d(s, s')$ where s' is the closest better point from s

16

Method 6

> Point s in the most populated area

Find
$$s^*$$
 s.t. $n_{\text{density}}(s^*) > n_{\text{density}}(s) \quad \forall s \in S$

where

$$n_{\text{density}}(s) = \operatorname{card}\{s' : s' \in S, d(s, s') < d(s, X \cup T)\}$$

17

Groupe - Technologie

Numerical Results

Tested algorithms

Algorithms	Type of Search	Selection Methods
MADS	Ortho 2N & Block(q)	N.A.
Multi-Start	q MADS & Block(1)	N.A.
LH Search	Latin Hypercube(q)	N.A.
Lowess-A	Model Search(q)	{0,1}
Lowess-B	Model Search(q)	{2,3,4,5}

Lowess¹ is taken from SGTELIB²:

TYPE Lowess DEGREE 1 RIDGE 0 SHAPE_COEFF OPTIM KERNEL_TYPE OPTIM

Groupe – Technologie

Design optimization problems

Problems	# var.	# const.	Int. var.?	Inf. Bounds?
TCSD ¹	3	4	No	No
Vessel ¹	4	4	No	No
Welded ¹	4	6	No	No
Solar1 ²	9	5	Yes	Yes
Solar7 ²	7	6	Yes	Yes

TCSD: min spring weight under mechanical constraints

Vessel: compressed air storage tank design

Welded: min cost of a beam under stress and constraints

Solar1: max energy received

Solar7: max energy transferred to the molten salt

Groupe – Technologie

A Hydro

20

¹ B. Talgorn et al., Optimization and Engineering, 19(1), 2018.

² https://github.com/bastientalgorn/sgtelib.

 $^{^{\}rm 1}$ H. Garg, Journal of Industrial and Management Optimization, 10(3), 2014.

² M.L. Garneau, Master's thesis, École Polytechnique de Montréal, 2015.

Results

- > For each prob/solver, 50 optimization runs from LH
- > 100 blocks for TCSD, Vessel and Welded 200 blocks for Solar 1 and Solar7
- > Block size for all runs, $q \in \{1, 2, 4, 8, 16, 32, 64\}$

Conclusion

- > Lowess-B outperforms all other solvers
 - seems to be due to methods 5 and/or 6
 - they are more about the points visited along the optimization than the surrogate itself
 - they are not about the value of f(s) and $c_j(s)$, but how an optimization process spent time and effort to explore deeply some areas of (S)
- > This is new and deserves attention...

