Multi-field categorical data encodings

Adrien Pavao

June 22 2018

Laboratoire de Recherche en Informatique

Table of contents

- 1. Introduction
- 2. Encodings
- 3. Benchmark
- 4. Conclusion

Introduction

Introduction

Definitions

Categorical variable: variable that can take on one of a limited of possible values among nominal categories.

Multi-field: several variables.

Categorical variables are very common, especially in medical records.

Introduction

Problems:

- High cardinality
- Algorithms (mainly) take numerical variables as input
- Need a smart encoding because the machine does not have context about an information

Encodings

Encodings: None (baseline)

As a baseline, categorical variables are simply removed.

Color	Age
Green	38
Blue	24
Red	21

Age
38
24
21

Table 1: Data with and without categorical variable

Encodings: Label

Each category is arbitrarily replaced by a numerical value.

Order: dataset, alphabetical or random.

Color	Color encoded
Green	0
Blue	1
Red	2
Blue	1

Table 2: Variable (left) and its label encoding (right)

Encodings: One-hot

Each category value is turned into a binary vector where all columns are equal to zero besides the category column.

Color	Green	Blue	Red
Green	1	0	0
Blue	0	1	0
Red	0	0	1
Blue	0	1	0

Table 3: Variable (left) and its one-hot encoding (right)

Issue: dimensionality

Encodings: One-hot with rare values

If occurence < average occurence * coefficient Then the category is replaced by "RARE"

Color	Green	Blue	RARE
Green	1	0	0
Blue	0	1	0
Blue	0	1	0
Blue	0	1	0
Green	1	0	0
Red	0	0	1
Blue	0	1	0
Green	1	0	0
Green	1	0	0
Purple	0	0	1

Table 4: Variable (left) and its one-hot encoding (right)

Encodings: Feature hashing

Feature hashing:

- Fix vector size
- For every categorical feature: use a hash function to map values to indices of the feature vector (and one-hot the indice)
- Sum all vectors into one

Encodings: Target

A numerical variable is defined as the target.

Each category is replaced by its mean target value.

Color	Target	Encoded Color
Green	12.5	13.25
Blue	7	8.83
Red	21	21
Blue	9.5	8.83
Blue	10	8.83
Green	14	13.25

Table 5: Variables (left) and target encoding (right)

Likelihood encoding: Target encoding on the principal component of the continuous variables.

Encodings: Frequency

Categories are replaced by their number of occurrences.

Color	Encoded Color
Green	2
Blue	3
Red	1
Blue	3
Blue	3
Green	2
Purple	1

Table 6: Variable (left) and its frequency encoding (right)

Note that frequencies can be transformed into probabilities with a normalization.

Encodings: Deep category embedding

Figure 1: Deep category embedding scheme

Encodings: Word2Vec

Figure 2: Word2Vec scheme

Encodings: Cat2Vec

Figure 3: Cat2Vec training scheme

Benchmark

Data and model

Adult dataset

- Features about people: Age, gender, nationality, education, work hours per week, etc.
- Binary classification task: annual income less or greater than 50k
- 6 numerical, 8 categorical variables
- 50 000 instances

Models

- Logistic regression
- Random Forest with 100 estimators

Tuning: Rare one-hot

Figure 4: Dimensionality (left) and log loss (right) versus rarity coefficient

Chosen coefficient: 0.2

Tuning: Feature hashing

Figure 5: Log loss versus number of features

Chosen number of features: 20

Tuning: Target encoding

 $\textbf{Figure 6:} \ \, \mathsf{Log} \ \, \mathsf{loss} \ \, \mathsf{for each target column}$

Tuning: Word2Vec

Figure 7: Log loss versus size and window

Chosen parameters: Size 8, window 10 (logloss = 6.19)

Comparison: Number of features

Figure 8: Number of features depending on encoding

Comparison: Computation time

Figure 9: Computation time of encoding and classification

Comparison: Performance

 $\textbf{Figure 10:} \ \, \textbf{Encodings performance comparison}$

Conclusion

Conclusion

To go further:

- Try deep embeddings
- Evaluate on other datasets
- Evaluate on data generation

References

- [1] Entity Embeddings of Categorical Variables, *Cheng Guo and Felix Berkhahn* (2016)
- [2] Cat2Vec: Learning distributed representation of multi-field categorical data, *Ying Wen, Jun Wang, Tianyao Chen and Weinan Zhang* (ICLR 2017)
- [3] Feature Hashing for Large Scale Multitask Learning, Kilian Weinberger, Anirban Dasgupta, Josh Attenberg, John Langford and Alex Smola (2010)