

INDEX

001 머신 러닝

002 (Simple) Linear Regression

003 Bias & Variance

004 Multiple Linear Regression

005 Logistic Regression

006 과제 및 참고

데이터를 반복적으로 학습해 데이터에 숨어있는 패턴을 찾아내는 것!

Artificial Intelligence

인공지능

사고나 학습등 인간이 가진 지적 능력을 컴퓨터를 통해 구현하는 기술

Machine Learning

머신러닝

컴퓨터가 스스로 학습하여 인공지능의 성능을 향상 시키는 기술 방법

Deep Learning

딥러닝

인간의 뉴런과 비슷한 인공신경망 방식으로 정보를 처리

데이터를 반복적으로 학습해 데이터에 숨어있는 패턴을 찾아내는 것!

종속 변수의 형태가 무엇이냐에 따라

1. Regression 회귀

예) 집값 예측, GDP 예측 등

2. Classification 분류

예) 스팸 분류기, 악성종양 판별 등

2. (Simple) Linear Regression

Simple Linear Regression 단순선형회귀 : 입력 변수 X가 1개일 때

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

$$\hat{y} = b_0 + b_1 x$$

<가정>

회귀 모형은 모수에 대해 선형인 모형이다 오차항의 평균은 0이고, 분산은 σ 2이다. ($E\varepsilon i=0,Var(\varepsilon i)=\sigma$ 2) 오차항은 독립이다. $Cov(\varepsilon i,\varepsilon j)=0,i\neq j$ 오차항은 정규분포를 따른다. 독립변수 X는 비 확률(nonstochastic) 변수이다.

수많은 직선 중 무엇을 골라야 할까?

Ordinary Least Square Error(OLSE) 최소 제곱법

$$y = \beta_0 + \beta_1 x_k + \epsilon_k, \quad k=1, \dots, n, \quad (x_k, y_k) \in k \text{th } \frac{1}{2} \text{th}$$

$$(y-g) \text{ h of and in P line}$$

$$\sum_{k=1}^{n} \epsilon_k^2 = \sum_{k=1}^{n} (y_k - \beta_0 - \beta_1 x_k)^2$$

$$S(\beta), \quad \beta = (\beta_0, \beta_1)$$

$$\hat{\beta} = \arg \min_{\beta} S(\beta), \quad \text{where } \hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1)$$

Ordinary Least Square Error(OLSE) 최소 제곱법

βo~N(βo, 82(1+ x2))

$$\widehat{\beta}_{1} = \frac{\bigcap ZX_{1}Y_{1} - ZX_{2}Z_{1}}{\bigcap ZX_{2}^{2} - (ZX_{2})^{2}} = \frac{Z(2Q_{2} - \overline{Z})(Y_{1} - \overline{Y})}{Z(2Q_{2} - \overline{Z})^{2}} = \frac{SZY_{2}}{SZZ_{2}}$$

$$\widehat{\beta}_{0} = \frac{1}{n} \overline{Z}Y_{2} - \frac{1}{n} \overline{Z}X_{2}\widehat{\beta}_{1} = \overline{Y} - \widehat{\beta}_{1}\overline{Z}. \qquad (\widehat{\beta}_{1} + \underline{Y} = con^{2} + \underline{Y}_{2})$$

$$Z = \widehat{\beta}_{0} = \frac{1}{n} \overline{Z}Y_{2} - \frac{1}{n} \overline{Z}X_{2}\widehat{\beta}_{1} = \overline{Y} - \widehat{\beta}_{1}\overline{Z}. \qquad (\widehat{\beta}_{1} + \underline{Y}_{2} = con^{2} + \underline{Y}_{2})$$

$$Z = \widehat{\beta}_{0} = \frac{1}{n} \overline{Z}Y_{2} - \frac{1}{n} \overline{Z}X_{2}\widehat{\beta}_{1} = \overline{Y} - \widehat{\beta}_{1}\overline{Z}. \qquad (\widehat{\beta}_{1} + \underline{Y}_{2} = con^{2} + \underline{Y}_{2})$$

$$Z = \widehat{\beta}_{0} = \frac{1}{n} \overline{Z}Y_{2} - \frac{1}{n} \overline{Z}X_{2}\widehat{\beta}_{1} = \overline{Y} - \widehat{\beta}_{1}\overline{Z}. \qquad (\widehat{\beta}_{1} + \underline{Y}_{2} = con^{2} + \underline{Y}_{2})$$

$$Z = \widehat{\beta}_{0} = \frac{1}{n} \overline{Z}Y_{2} - \frac{1}{n} \overline{Z}X_{2}\widehat{\beta}_{1} = \overline{Y} - \widehat{\beta}_{1}\overline{Z}. \qquad (\widehat{\beta}_{1} + \underline{Y}_{2} = con^{2} + \underline{Y}_{2})$$

$$Z = \widehat{\beta}_{0} = \frac{1}{n} \overline{Z}Y_{2} - \frac{1}{n} \overline{Z}X_{2}\widehat{\beta}_{1} = \overline{Y} - \widehat{\beta}_{1}\overline{Z}. \qquad (\widehat{\beta}_{1} + \underline{Y}_{2} = con^{2} + \underline{Y}_{2})$$

$$Z = \widehat{\beta}_{0} = \frac{1}{n} \overline{Z}Y_{2} - \frac{1}{n} \overline{Z}X_{2}\widehat{\beta}_{1} = \overline{Y} - \widehat{\beta}_{1}\overline{Z}. \qquad (\widehat{\beta}_{1} + \underline{Y}_{2} = con^{2} + \underline{Y}_{2})$$

$$Z = \widehat{\beta}_{1} = \overline{Y} - \widehat{\beta}_{1}\overline{Z}. \qquad (\widehat{\beta}_{1} + \underline{Y}_{2} = con^{2} + \underline{Y}_{2})$$

$$Z = \widehat{\beta}_{1} = \overline{Y} - \widehat{\beta}_{1}\overline{Z}. \qquad (\widehat{\beta}_{1} + \underline{Y}_{2} = con^{2} + \underline{Y}_{2})$$

$$Z = \widehat{\beta}_{1} = \overline{Y} - \widehat{\beta}_{1}\overline{Z}. \qquad (\widehat{\beta}_{1} + \underline{Y}_{2} = con^{2} + \underline{Y}_{2})$$

$$Z = \widehat{\beta}_{1} = \overline{Y} - \widehat{\beta}_{1}\overline{Z}. \qquad (\widehat{\beta}_{1} + \underline{Y}_{2} = con^{2} + \underline{Y}_{2})$$

$$Z = \widehat{\beta}_{1} = \overline{Y} - \widehat{\beta}_{1}\overline{Z}. \qquad (\widehat{\beta}_{1} + \underline{Y}_{2} = con^{2} + \underline{Y}_{2})$$

$$Z = \widehat{\beta}_{1} = \overline{Y} - \widehat{\beta}_{1}\overline{Z}. \qquad (\widehat{\beta}_{1} + \underline{Y}_{2} = con^{2} + \underline{Y}_{2} = co$$

- $S(\beta 0, \beta 1)$ 을 최소로 하는 회귀 계수 확인
- 잔차들의 합과 잔차*x들의 합이 0이라는 식
 을 유도할 수 있다.
- 추정된 $\beta 0$, $\beta 1$ 의 평균과 표준오차를 구하여 분포를 알면, 검정통계량을 구할 수 있다.

선형 회귀 식 정확도 평가 방법

- 1. MSE(Mean Squared Error) = $\frac{SSE}{n-2}$
- 2. RMSE(Mean Squared Error) = \sqrt{MSE}

3. R-Squared =
$$\frac{SSR}{SST}$$

$$y_i - \bar{y} = y_i - \hat{y}_i + \hat{y}_i - \bar{y}$$

$$\sum_{i=1}^n (y_i - \bar{y})^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \sum_{i=1}^n (\hat{y}_i - \bar{y})^2$$

$$\frac{SST}{SSE} = \frac{SSR}{SSR}$$
(Total sum of squares) (Regression sum of squares)

입력 변수로 설명할 수 없는 변동 비율
$$R^2 = \frac{SST - SSR}{SST} = 1 - \frac{SSE}{SST} + \frac{SSR}{SST} \quad where SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

1. Bias

실제 값에서 멀어진 척도 예측 값과 실제 값 간의 발생하는 차이

$$Bias = E[f^{pred}(x)] - f(x)$$

2. Variance

예측값끼리 서로 얼마나 떨어져 있는가 추정 값들의 흩어진 정도

$$Variance = E[f^{pred}(x) - E[f^{pred}(x)]]^{2}$$

3. 오버피팅과 언더피팅

구분	Flexibility	Fitting
Low Bias & High Variance	Flexible	Overfitting 오버피팅
High Bias & Low Variance	Inflexible	Underfitting 언더피팅

Under- and Over-fitting examples

High bias & Low variance

Regression:

predictor too inflexible: cannot capture pattern

predictor too flexible: fits noise in the data

Low bias & High variance

Classification:

Copyright © 2014 Victor Lavrenko

4. 우리의 목표! COST(MSE)=bias^2+Variance이고 Bias와 Variance는 trade off COST가 최저가 되기 위해서는 bias와 Variance가 균형을 이루어야 한다

4. 우리의 목표! Feature Scaling = Data normalization

	표준화(standardization)	정규화(normalization)	
공통점	데이터 rescaling		
정의 &목적	데이터가 <u>평균으로부터 얼마나 떨어져있는지</u> 나 타내는 값으로, 특정 범위를 벗어난 데이터는 outlier로 간주, 제거	데이터의 <u>상대적 크기에 대한 영향을 줄이기</u> 위해 데이터범위를 0~1로 변환	
값의 범위	±1.96(또는 ±2) 데이터만 선택	0~1	
공식	$z=rac{x-x}{\sigma}$ (분모가 표준편차)	$X_{new} = \frac{X - X_{min}}{X_{max} - X_{min}}$ (분모가 max값)	

4. 우리의 목표 ! 언더피팅, 오버피팅 해결하기

언더피팅 해결하기

- 1. Feature 수 늘리기. 더 많이 반영 필요
- 2. Variance 높이기

오버피팅 해결하기

- 1. Feature 수 줄이기
- 2. 더 많은 데이터 모으기
- 3. Cross Validation 사용하기
- 4. Early Stopping, Dropout(딥러닝)
- 5. Model에 제약 걸기(L1 / L2 regularization)

4. 우리의 목표! Regularization - Cross Validation 교차 검증

4. 우리의 목표! Regularization - Early Stopping, Dropout (딥러닝)

Validation set의 accuracy가 더이상 올라가지 않을 때 stop한다.

전체 train 데이터 중 일부를 drop-out 하고 train한다.

4. 우리의 목표!

Regularization – L1(Lasso), L2(Ridge)

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|.$$

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

4. 우리의 목표! Regularization - L1. L2

Elastic Net Regression =
$$RSS(\beta) + \lambda_1 \sum_{j=1}^{p} \beta_j^2 + \lambda_2 \sum_{j=1}^{p} |\beta_j|$$

4. 우리의 목표! Regularization - L1, L2

Lasso L1-norm regularization	Ridge L2-norm regularization	Elastic net Lasso + Ridge
변수 선택 가능	변수 선택 불가능 독립 변수들 간 variance 감소	변수 선택 가능 독립 변수들 간 variance 감소
Closed form solution 존재 X (numerical optimization 이용)	Closed form solution 존재 0 (미분으로 구함)	
변수 간 상관관계가 높은 상황에서 릿 지에 비해 상대적으로 예측 성능이 떨 어짐	변수 간 상관관계가 높은 상황에서 좋 은 예측 성능	변수 간 상관관계 반영
크기가 큰 변수 먼저 줄이기	중요하지 않은 변수 먼저 없애기	모두 가능

Multiple Linear Regression 다중선형회귀: 입력변수 X가 여러 개일 때

$$Y = \beta 0 + \beta 1 \times 1 + \beta 2 \times 2 + \cdots + \beta p \times p + \mathcal{E}$$

$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \times = \begin{pmatrix} 1 & x_{11} & \dots & x_{1p} \\ \vdots & x_{21} & \dots & x_{2p} \\ \vdots & \vdots & \vdots \\ 1 & x_{11} & \dots & x_{np} \end{pmatrix} \quad \beta = \begin{pmatrix} \beta \infty \\ \beta 1 \\ \vdots \\ \beta p \end{pmatrix} \quad \mathcal{E} = \begin{pmatrix} \mathcal{E}_1 \\ \vdots \\ \mathcal{E}_n \end{pmatrix}$$

$$= [1 \times 1 - \dots \times p]$$

$$\text{design matrix}$$

<가정>

추정치는 선형관계여야 한다 독립변수간 다중공선성은 없어야 한다 자기상관이 없어야 한다 등분산이여야 한다 잔차의 가정은 단순선형회귀와 동일

다중공선성 (Multicolinearlity) : 독립변수들 간에 강한 상관관계가 나타나는 문제

(예)

- x1 월평균 음주량
- x2 혈중 알코올 농도
- Y 학업 성취도
- -> X1과 x2는 독립적이라고 보기 어렵다
- -> 회귀선의 판단 능력 저하!
- -> 회귀 계수에 대한 분산 증가!

다중공선성 판단하기 - VIF (Variance Inflation Factor) 사용

Xi를 제외한 다른 X 변수들이 Xi를 잘 설명하는 지를 평가한다. VIF가 10 이상인 경우, 다중공선성이 있다고 판단한다.

로지스틱 회귀: 종속변수가 범주형 일 때 확률 값을 구하고 label을 예측한다.

 $p(X) = P(success | X_1, \dots, X_k) = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + randome \ error(\varepsilon)$ 로짓변환 $ln(p(X)) = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + \varepsilon$ $logit = ln\left(\frac{p(X)}{1 - p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + \varepsilon$ $Y = p(X) = \frac{e^{\beta_0 + \beta_1 X + \dots + \beta_k X_k}}{1 + e^{\beta_0 + \beta_1 X + \dots + \beta_k X_k}}$

로지스틱 회귀분석

로지스틱 회귀식 파라미터 추정 방법 : MLE (Maximum Likelihood Estimator, 최대 우도 추정법) 어떤 모수가 주어졌을 때 원하는 값들이 나올 가능도를 최대로 만드는 모수를 추정하는 점 추 정 방법

여기서 우도, 가능도, Likelihood란? 관측 값이 어떤 분포에 해당 활 확률!

<-> 확률 : 모수로부터 다음과 같이 관측될 확률 !

로지스틱 회귀식 파라미터 추정 방법

Likelihood function : 전체 표본 집합의 결합확률밀도 함수

$$P(x| heta) = \prod_{k=1}^n P(x_k| heta)$$

$$\frac{\partial}{\partial heta} L(heta|x) = \frac{\partial}{\partial heta} \log P(x| heta) = \sum_{i=1}^n \frac{\partial}{\partial heta} \log P(x_i| heta) = 0$$
 $L(heta|x) = \log P(x| heta) = \sum_{i=1}^n \log P(x_i| heta)$

로지스틱 회귀식 mle 유도 예시 (정규분포)

6. 과제 및 참고

6. 과제

이번주 과제는 오늘 배운 내용의 코드를 구글링해서 직접 수행하고 결과를 정리, 해석하기입니다 ③

선형, 다중선형, 로지스틱회귀 예제를 한 개씩 총 3개를 정리하시면 됩니다. 최대한 다른 분들과 안 겹치는 것을 해주세요!

예를 들어 임의의 X data를 만들거나 가져와서 LinearRegression을 수행한 다음, 추정회귀식을 구하고 회귀직선도 그려보고, 변수 간 상관관계의 유무 확인 & 오버피팅, 언더피팅은 없는지 등의 분석을 수행하고 해석도 해주시면 됩니다!

6. 참고

https://m.blog.naver.com/x3x1121/222139532976

https://www.youtube.com/watch?v=dBLZg-RqoLg

https://m.blog.naver.com/ckdgus1433/221599517834

https://m.blog.naver.com/jeonghj66/222004874975

https://m.blog.naver.com/PostView.nhn?blogId=wjddudwo209&logNo=220177096998&proxyReferer=https://2F%2Fwww.google.com%2F

https://soobarkbar.tistory.com/30

https://laoonlee.tistory.com/12

감사합니다 ②