Teoría General de Sistemas

Unidad 1: Sistemas y Paradigmas.

Sesión 6: Diagramas de Forrester: Herramientas para la construcción de diagramas de Forrester.

Docente: Carlos R. P. Tovar

INICIO Objetivo de la Sesión

Al finalizar la sesión el estudiante identifica y aplica las herramientas básicas para la construcción de diagramas de Forrester, comprendiendo sus componentes y su utilidad en la representación de la dinámica de sistemas.

UTILIDAD ¿Por qué son importantes los Diagramas de Forrester?

- Permite modelar el comportamiento dinámico de un sistema.
- Facilita la identificación de acumulaciones y flujos de información, recursos o materiales.
- Ayuda a predecir escenarios futuros.
- Es una herramienta clave en la simulación de sistemas complejos.

TRANSFORMACIÓN ¿Qué es un diagrama de Forrester?

- También llamado diagrama de flujo y nivel.
- Representa gráficamente: niveles, flujos y variables auxiliares.
- Explica cómo cambian las variables del sistema a lo largo del tiempo.

Componentes principales

Símbolos fundamentales:

- Niveles (Stocks): Rectángulos Variables de acumulación
- Flujos (Flows): Válvulas/rombos Tasas de cambio
- Variables Auxiliares: Círculos Parámetros intermedios
- Conectores: Flechas Relaciones de influencia

Visual: Diagrama con leyenda de símbolos

¿Qué es un diagrama de Forrester?

https://www.researchgate.net/publication/374499621_Implementacion_de_una_red_neuronal_y_un_modelo_de_forrester_para_la_prediccion_entre_factores_demograficos_y_ag_entes_contaminantes

Ejemplo simple

- Sistema: Inventario de productos en una tienda.
 - Nivel: Inventario.
 - Flujo de entrada: Producción o compras.
 - Flujo de salida: Ventas.
 - Variable auxiliar: Demanda del mercado.

Ejemplo simple

Herramientas de construcción

- Software especializado: Vensim, Stella, iThink, AnyLogic.
- Alternativas simples: PowerPoint, draw.io, Lucidchart.
- Pasos:
 - Definir el problema.
 - Identificar niveles y flujos.
 - Establecer relaciones causales.
 - Validar con datos reales.

Buenas prácticas

- Empezar con diagramas simples.
- Usar nombres claros para variables.
- Validar supuestos con datos reales.
- · No confundir correlación con causalidad.

PRACTICA Ejercicio: Modelar "Crecimiento de estudiantes en un curso universitario".

- Nivel: Número de estudiantes.
- Flujo de entrada: Nuevas matrículas.
- Flujo de salida: Egresos o retiros.
- Representar el diagrama de Forrester correspondiente.

CIERRE Conclusiones

- Representan la dinámica de acumulaciones y flujos en un sistema.
- Esenciales para la simulación y análisis de escenarios.
- Comprender su estructura es clave para modelación avanzada.
- La práctica fortalece la identificación de variables y relaciones.

