```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report,confusion_matrix
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import StandardScaler
```

column_names = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction' df= pd.read_csv('/content/diabetes_prediction_dataset.csv', names=column_names)

<ipython-input-35-46932afbe04d>:2: DtypeWarning: Columns (1,2,3,5,6,7,8) have mixed types. Specify dtype option on import or set low df= pd.read_csv('/content/diabetes_prediction_dataset.csv', names=column_names)

df ₹

•	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcom
0	gender	age	hypertension	heart_disease	smoking_history	bmi	HbA1c_level	blood_glucose_level	diabete
1	Female	80.0	0	1	never	25.19	6.6	140	
2	Female	54.0	0	0	No Info	27.32	6.6	80	
3	Male	28.0	0	0	never	27.32	5.7	158	
4	Female	36.0	0	0	current	23.45	5.0	155	
99996	Female	80.0	0	0	No Info	27.32	6.2	90	
99997	Female	2.0	0	0	No Info	17.37	6.5	100	
99998	Male	66.0	0	0	former	27.83	5.7	155	
99999	Female	24.0	0	0	never	35.42	4.0	100	
100000	Female	57.0	0	0	current	22.43	6.6	90	
100001 rows × 9 columns									>

df.dtypes

```
Pregnancies
                               object
 Glucose
                               object
 BloodPressure
                               object
 SkinThickness
                               object
 Insulin
                               obiect
 BMI
                               object
 {\tt DiabetesPedigreeFunction}
                               object
 Age
                               object
 Outcome
                               object
 dtype: object
```

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
lst =['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age',
for i in 1st:
    if df[i].apply(type).nunique() > 1:
        print(f"Column '{i}' contains mixed types. Handling required.")
        df[i] = df[i].astype(str)
    df[i] = le.fit_transform(df[i])
→ Column 'Glucose' contains mixed types. Handling required.
    Column 'BloodPressure' contains mixed types. Handling required.
    Column 'SkinThickness' contains mixed types. Handling required.
    Column 'BMI' contains mixed types. Handling required.
```

 ${\tt Column~'DiabetesPedigreeFunction'~contains~mixed~types.~Handling~required.}$

Column 'Age' contains mixed types. Handling required.

Column 'Outcome' contains mixed types. Handling required.

```
df.dtypes
→ Pregnancies
                              int64
    Glucose
                              int64
                              int64
    BloodPressure
    SkinThickness
                              int64
    Insulin
                              int64
    BMI
                              int64
    DiabetesPedigreeFunction
                              int64
    Age
                              int64
    Outcome
                              int64
    dtype: object
X = df.drop('Outcome', axis=1)
y = df['Outcome']
from sklearn.preprocessing import MinMaxScaler
minmax=MinMaxScaler()
X=minmax.fit transform(X)
Χ
→ array([[1.
                     , 1.
                                , 1.
                                            , ..., 1. , 1.
           1.
                    ],
                     , 0.98039216, 0.
                                            , ..., 0.31410407, 0.61111111,
           [0.
            0.16666667],
                     , 0.69607843, 0.
                                            , ..., 0.36425712, 0.61111111,
           [0.
            0.83333333],
           [0.33333333, 0.82352941, 0.
                                            , ..., 0.3762656 , 0.27777778,
            0.27777778],
                    , 0.37254902, 0.
                                            , ..., 0.55497999, 0.05555556,
           [0.
           0.
                    ],
                     , 0.7254902 , 0.
                                            , ..., 0.24911702, 0.61111111,
           Γ0.
            0.94444444]])
\label{eq:continuous} X\_train, X\_test, y\_train, y\_test=train\_test\_split(X,y,test\_size=0.3, random\_state=1)
models = {
    'Random Forest': RandomForestClassifier(),
    'AdaBoost': AdaBoostClassifier(),
    'K-Neighbors': KNeighborsClassifier(),
    #'Linear Regression': LinearRegression(),
    'Decision Tree': DecisionTreeClassifier()
}
for name, model in models.items():
    model.fit(X_train, y_train)
    predictions = model.predict(X_test)
    accuracy = accuracy_score(y_test, predictions)
    report = classification_report(y_test, predictions)
    cm = confusion_matrix(y_test, predictions)
    print(f"{name}:")
    print(f" Accuracy Score: {accuracy}")
    print(" Classification Report:")
    print(report)
    print(" Confusion Matrix:")
    print(cm)
    print()
              1
                      0.94
                               0.67
                                         0.79
                                                  2488
→
                                         0.97
                                                  30001
        accuracy
                      0.96
                                0.84
                                                  30001
       macro avg
                                         0.89
    weighted avg
                      0.97
                                0.97
                                         0.97
```

Confusion Matrix: [27415 98]

[[27415 98] [812 1676]]

2:46 PM												
	1	T.00	0.00	0.80	2488							
accui	racv			0.97	30001							
macro	-	0.99	0.83	0.89	30001							
weighted	-	0.97	0.97	0.97	30001							
Confus: [[27513 [846	ion Matrix 0] 1642]]	< :										
K-Neighb	ors:											
Accuracy Score: 0.9570680977300756												
Classification Report:												
		cision	recall	f1-score	support							
	0	0.96	0.99	0.98	27513							
	1	0.87	0.56	0.69	2488							
	-	0.07	0.50	0.05	2.00							
accui	racy			0.96	30001							
macro	avg	0.92	0.78	0.83	30001							
weighted	avg	0.95	0.96	0.95	30001							
Confus: [[27308 [1083	ion Matrix 205] 1405]]	« :										
Decision												
	cy Score:		828105729	81								
Classi-	fication F			64								
	pred	cision	recall	f1-score	support							
	0	0.98	0.97	0.97	27513							
	1	0.70	0.73	0.71	2488							
				0.05	20001							
accui	-	0.04	0.05	0.95	30001							
macro	_	0.84	0.85	0.84	30001							
weighted	avg	0.95	0.95	0.95	30001							
Confus: [[26742 [682	ion Matrix 771] 1806]]	c :										