Texture Synthesis for Material Recognition Master's Thesis in Articial Intelligence — Intelligent Systems

Jasper van Turnhout Student no. 0312649 jturnhou@science.uva.nl

November 15, 2011

- Task Description
- Preliminary Steps
 - People-detection System & Camera Calibration
 - Data Preprocessing
- Feature Extraction
 - Description of the Extracted Features
- 4 Learners
 - Learners for classification and regression
 - The Gaussian process
- Experiments
 - Data Description
 - Experimental Setup & Results
- 6 Conclusions

Task Description

What is the goal of this thesis?

Orientation estimation — direction in which a person is looking — using a single ceiling-mounted camera.

Why do we want to estimate orientations?

Useful for analyzing social interaction or as a part of a surveillance system, or even for targeted advertisement.

Why is this difficult?

The large *variance* in data due to the positioning of the camera, the changes in the *illumination*, the *low quality* of the images.

People-detection System & Camera Calibration

- Backproject the feet location from 2D to 3D.
- Build a 3D bounding box in real-world considering the average human height.
- Project the 3D bounding box in the image plane.

Data Preprocessing

We extract the foreground by thresholding the *background mask* or using the ground-truth annotations. We rotate the foreground area and the target angles with θ' :

$$\theta' = \frac{\pi}{2} + \theta$$
 where $\theta = \arctan(\frac{y_{head} - y_{feet}}{x_{head} - x_{feet}})$

Feature Extraction

- We can extend the data with the horizontally flipped versions of the rotated images.
- We add the distance between the projection of the camera coordinates and the person to each feature vector.
- 3 The motion direction can also be added to the feature vector.
- Multiple features can be concatenated and PCA employed.
- The feature vectors are normalized to have zero mean and identity covariance.

Gabor responses

We convolve the input image with a set of symmetrical, small-scale *Gabor filters* with the orientations: $\frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{5\pi}{6}$. The resulted *Gabor responses*

are horizontally concatenated.

Template Matching

- 8 head-templates are created for the orientations: $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$.
 - They are resized to the head size given by the detection-templates.
 - Are matched against overlapping regions in the input image using the OpenCV template-matching function.

Raw pixel values

For this case multiple situations have been tested:

- Using the grayscale image.
- Using the *saturation channel* of the *HSV* colorspace
- Using the concatenated color channels of the *BGR* colorspace.

Grayscale image, saturation channel & concatenated color channels

Other features

Other implemented features are:

- Grid of interest points uses Harris corner detector and MSERs (maximally-stable extremal regions)
- Mask of skin pixels
- Edges and contours use Canny edge detector
- SURF (speeded up robust features) descriptors rely on Haar-wavelet responses
- SIFT (scale invariant feature transform) descriptors and the codebook method
- HoG (histograms of oriented gradients) descriptors

Classification vs. Regression

Classification

Assigns each input vector to one of a finite number of discrete classes.

Regression

Learns to predict one or more continuous variables.

The longitudinal orientation is a continuous variable in [0, 360).

Due to the discontinuity between 360 degrees and 0 degrees, we learn on the *sine* and *cosine* of the target angles.

Learners for classification and regression

Implemented learners for classification:

- K-nearest neighbor, for the experiments k is set to 3
- Eigen-orientations

Implemented learners for regression:

- Multi-layer perceptron 2 layers of hidden units, 100 nodes in each layer
- Gaussian process

Regression — Gaussian Process

"The Gaussian process gives a prior probability to every possible function where higher probabilities are given to functions we consider more likely".

[Rasmussen and Williams, 2006]

A Gaussian process established a distribution over functions evaluated at a set of points \mathbf{X}_* : $\mathbf{f}^* \sim \mathcal{N}(0, \mathbf{K}(\mathbf{X}_*, \mathbf{X}_*))$.

A Gaussian process is completely specified by the:

- The mean function: m(x) usually taken to be 0.
- The covariance function: $k(\mathbf{x}_i, \mathbf{x}_j)$ the elements on row i and column j of the covariance matrix \mathbf{K} .

Regression — Gaussian Process

We train 2 *Gaussian processes* — for the *sine* and the *cosine* of the prediction, α , and the optimal prediction is $\frac{\sin \alpha}{\cos \alpha}$.

The kernel function investigated are: the squared-exponential, the exponential covariance (Matérn covariance with $\nu=0.5$), the Matérn covariance with $\nu=1.5$, the Matérn covariance with $\nu=2.5$.

Different *kernel functions* can be employed provided that they correspond to a *positive definite* covariance matrix.

We weight the distance to the camera more than the rest of the feature by increasing the value of the *lengthscale*, in the covariance function, on the corresponding position in the feature vector.

Challenges of the Data

- 1 The data is *noisy* and of *low quality*.
- ② Usually, the faces of the people can not be observed.
- People can be occluded by background objects and this makes the detection-system fail in the position estimation.
- A large variance in the data is generated by the positions of the people with respect to the camera.
- It is difficult to correctly align the foreground areas.

Dataset 1

It contains images of *2 people* at 4-5 locations in the ground plane and having orientations in the range [0, 360).

A number of 1345 images are used in the experimental part

Dataset 2

- 14 people and 8 directions: {0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°}
- 72 images annotated for each person 9 different positions
- The camera is positioned at at higher altitude, thus the quality of the images is lower
- Some of the people can be *very distinct* from the rest.

Dataset 3

Data used in [Ozturk and Aizawa, 2009] — was recorded in an airport with a single elevated sideway camera.

Usually, the people are walking in a specific direction throughout the whole sequence in which they appear.

Artificial dataset

Artificial data contains: 2 models of men and 2 models of women with 5 different appearances.

- 605 images close to camera's position
- 593 images farther from the camera's position
- 592 images far from the camera's position

Experimental Setup

The performance evaluation methods implemented are:

- the RMS (root-mean-squared error): $\sqrt{\frac{\sum_i |\theta_i \theta_i'|^2}{N}}$
- the normalized RMS: $\sqrt{\frac{\sum_{i} \frac{|\theta_{i} \theta'_{i}|^{2}}{\pi^{2}}}{N}}$
- the average difference between the target angles and the predictions: $\sum_{i} |\theta_i \theta_i'|$

If $\Delta_i = |\theta_i - \theta_i'|$ is larger than π , the quantity: $\Delta_i \leftarrow (2\pi - \Delta_i)$ is used instead.

These differences, Δ_i , are binned in 18 bins and plotted.

Results 1 — Comparison of learning methods

Dataset 2 (12-fold cross-validation), concatenated color channels on the upper half of the body

Learner	Experimental Settings	RMS Error (Normalized RMS)
NN	1 network, 2 outputs	1.08 (0.34) — 62 degrees
NN	2 networks, 1 output each	1.13 (0.36) — 64 degrees
NN	1 network, 4 outputs	1.20 (0.38) — 68 degrees
k-NN	2 separate classifiers	1.08 (0.34) — 60 degrees
GP	2 separate learners	1.01 (0.32) — 57 degrees

Results 3 — Generalization over people and positions

Gaussian process on the concatenated color channels over the predicted head area

Generalization	Dataset	Training/ Evaluation pts.	RMS Error (Normalized)
Over people	Dataset 2	11/1 (12-folds)	0.98 (0.31) 56 degrees
Over positions	Dataset 1	1/1 (4 folds)	0.84 (0.26) 48 degrees
Over positions	Dataset 2	12/12	0.82 (0.26) 47 degrees

Results 5 — Results for different setups

Dataset 2 (12-fold cross-validation), learning on the Gaussian process over the concatenated color channels of the head area

Experimental setup	RMS Error (Normalized RMS)
Baseline	0.98 (0.31) — 56 degrees
Artificial data is added	1.03 (0.32) — 59 degrees
Horizontally flipped version of the images are added	0.98 (0.31) — 56 degrees
The images & targets are not rotated wrt. camera	1.28 (0.40) — 73 degrees

Results 6 — Generalization over orientations

- The training is done on *dataset 1*, the images are randomized and a *5-fold cross-validation* method is used.
- The concatenated color channels corresponding to the head area are used.
- Two *Gaussian processes* are used for learning the *sine*, respectively the *cosine*.

Training/ evaluation points	RMS Error (Normalized RMS)	Standard deviation
1/1 (5-fold cross-validation)	0.59 (0.18) 34 degrees	0.11 radians 6 degrees

Results 7 — Performance on dataset 3

Dataset 2 & Dataset 3, learning on the Gaussian process over the concatenated color channels of the head area

Training/evaluation people	RMS Error (Normalized RMS)
864/150 people	1.07 (0.34) — 61 degrees

Conclusions & Future Work

- The experiments prove that learning is possible and that the correct solution to this problem is a *regression method*.
- ② For this problem the *upper half* of the body and the *head area* are more indicated for feature extraction.
- Better quality of the images, a larger number of people present in the data and images corresponding to more orientations, would definitely improve the results.
- The ability of training both the cosine and the sine on the same Gaussian process (and maybe the latitudinal angles also) could improve the results.
- Having an automatic way for determining specialized lengthscales for different parts of the features is another extension that could improve the performance.

Demo

The Matérn covariance function

This function becomes simpler if the $\nu = 1/2 + p$ where $p \ge 0$.

$$k_{\nu=p+1/2}(r) = \exp\left(\frac{-\sqrt{2\nu}r}{I}\right) \frac{\Gamma(p+1)}{\Gamma(2p+1)} \sum_{i=0}^{p} \frac{(p+i)!}{i!(p-i)!} \left(\frac{\sqrt{8\nu}r}{I}\right)^{p-i}$$

where $r = \sqrt{\sum_{i} (\mathbf{x}_{i} - \mathbf{x}'_{i})^{2}}$ and $\Gamma(n) = (n-1)!$.

- Matérn covariance with $\nu = 0.5$ $\exp(-\frac{1}{7}\sqrt{\sum_{i}(\mathbf{x}_{i} - \mathbf{x}_{i}')^{2}})$
- Matérn covariance with $\nu = 1.5$

$$(1+rac{\sqrt{3}\sqrt{\sum_i(\mathbf{x}_i-\mathbf{x}_i')^2}}{I})\exp(-rac{\sqrt{3}\sqrt{\sum_i(\mathbf{x}_i-\mathbf{x}_i')^2}}{I})$$

• Matérn covariance with $\nu = 2.5$

$$\big(1 + \tfrac{\sqrt{5}\sqrt{\sum_{i}(\textbf{x}_{i} - \textbf{x}_{i}')^{2}}}{I} + \tfrac{5\sum_{i}(\textbf{x}_{i} - \textbf{x}_{i}')^{2}}{3I^{2}}\big) \exp\big(-\tfrac{\sqrt{5}\sqrt{\sum_{i}(\textbf{x}_{i} - \textbf{x}_{i}')^{2}}}{I}\big)$$

