Classifying Tweets Based on Climate Change Stance

Motivation

Climate change has become an increasingly polarizing topic in popular and political media. Using Twitter, we seek to develop a classifier that can discriminate between text that shows belief vs. disbelief in human-caused climate change. We use semisupervised classification with Quasi-Newton Semi-SVM implementation (QN-S3VM) and Multinomial Naive Bayes with Expectation Maximization (MNB-EM) into positive, neutral, and negative categories. Our results show that semisupervised learning does not offer significant improvements over supervised learning.

Data Set

- Three categories: positive, neutral, negative belief of human-caused climate change
- Manually labeled training/
 validation/test set of ~14K tweets
- Unlabeled set of ~38K tweets related to climate change/global warming collected using TweePy
- Data split into 70/20/10 train/test/val

Tweet	Clas
"climate change, a factor in texas floods, largely ignored"	1
"global warming on mars"	0
"scientists were attempting the same global warming scam 60 years ago"	-1

Methods

Supervised Learning

Multinomial Naive Bayes

$$L = \prod_{i=1}^{n} \left(\prod_{j=1}^{d_i} p\left(x_j^{(i)} \middle| y^{(i)}; \phi_{k|y} \right) \right) p(y^{(i)}; \phi_y)$$

- Unigram: $x_j^{(i)}$ is each word
- Bigram: $x_i^{(i)} = (z_i^{(i)}, z_{i+1}^{(i)})$ pair of words
- Assume independence of all words/pairs within and between each example

Semisupervised Learning

Self Training

QN-S3VM

- Maximum-margin classification algorithm
- Find the optimal **y** for the unlabeled data

$$\underset{f \in \mathcal{H}, \mathbf{y} \in \{-1, +1\}^{u}}{\text{minimize}} \frac{1}{l} \sum_{i=1}^{l} \mathcal{L}(y'_{i}, f(\mathbf{x}_{i})) \\
+ \lambda' \frac{1}{u} \sum_{i=1}^{u} \mathcal{L}(y_{i}, f(\mathbf{x}_{l+i})) + \lambda ||f||_{\mathcal{H}}^{2}$$

MNB-EM

$$L = \left(\sum_{i=1}^{n} \left(\sum_{j=1}^{d_{i}} \log p \left(x_{j}^{(i)} \middle| y^{(i)}; \phi_{k|y} \right) \right) + \log p \left(y^{(i)}; \phi_{y} \right) \right) *$$

$$\alpha \left(\sum_{i=1}^{k} \log \left(\sum_{y^{(l)}} Q_{l}(y^{(l)}) \frac{\prod_{m=1}^{d_{l}} p \left(x_{m}^{(l)} \middle| y^{(l)}; \phi_{k|y} \right) p(y^{(i)}; \phi_{y})}{Q_{l}(y^{(l)})} \right) \right)$$

- E-step:

$$Q_{l}(y^{(l)}) = \frac{\prod_{m=1}^{d_{l}} p\left(x_{m}^{(l)} \middle| y^{(l)}; \phi_{k|y}\right) p(y^{(i)}; \phi_{y})}{\sum_{y^{(l)}} \prod_{m=1}^{d_{l}} p\left(x_{m}^{(l)} \middle| y^{(l)}; \phi_{k|y}\right) p(y^{(i)}; \phi_{y})}$$

- M-step:

$$\phi_{k|y} = \frac{1 + \alpha \sum_{i=1}^{n} \sum_{j=1}^{d_i} 1(x_j^{(i)} = k \wedge y^{(i)} = c) + \sum_{l=1}^{k} Q_l(y^{(l)}) \sum_{m=1}^{d_l} 1(x_m^{(l)} = k)}{v + \alpha \sum_{i=1}^{n} \sum_{j=1}^{d_i} 1(y^{(i)} = c) + \sum_{l=1}^{k} Q_l(y^{(l)}) \sum_{m=1}^{d_l} 1}$$

$$\phi_y = \frac{1 + \alpha \sum_{i=1}^n 1(y^{(i)} = c) + \sum_{l=1}^k Q_l(y^{(l)})}{C + \alpha n + k}$$

Results

Comparing Algorithms

Model	Training Acc	Validation Acc	Test Acc
MNB Unigram	76.8	67.6	66.4
MNB Bigram	72.8	62.5	60.6
Naive Bayes Self- Training	66.7	60.9	61.6
QN-S3VM	59.2	59.0	55.0
MNB-EM	81.9	62.5	63.9

Accuracy Per Class

Model Tuning

Kernel	Training Acc	Validation Acc
RBF	59.2	59.0
Linear	52.9	49.2
Alpha	Training Acc	Validation Acc
1	67.3	60.7
5	76.8	62.3
20	81.9	65.2
50	82.6	65.1
100	82.9	64.5

Data Downsampling

Question: how much would unlabeled data help if we had less labeled data?

Conclusions

Conclusions

- Unigram Multinomial Naive Bayes model performs best
- Semisupervised learning with NB performs well, likely since underlying NB model fits data well
- More data would improve predictions

In future

- Incorporate more recently labeled data
- Attempt classification with DL models