資料探索與分析中的 Tidy 格式

Sung-Chien Lin 2018年8月27日

課程簡介

課程簡介

- 本次課程為介紹近來利用 R 語言進行資料分析時常見的 tidy data format
- 本課程將首先介紹 tidy data format 與其套件
- 然後以上次的空氣品質指標資料為例,說明一些常用的資料分析方法

學習目標

- 能夠安裝套件,並且在需要時載入。
- 能夠說明使用 tidy data format 的優點,並將輸入資料表示成 tidy data format。
- 能夠運用 tidyverse 套件中常用的指令進行資料分析

tidy data format

data frame 與資料探索與分析

- 在前一單元,我們已經知道在 R 語言的資料探索與分析中, data frame 是相當重要的角色
- 但仍有許多處理,無法在 data frame 上完成,需要利用 vector 及 list 等資料型態
- 為此緣故,近來 R 語言的資料科學家發展出一套方式,可以在 data frame 類似的格式上完成絕大多數的資料探索與分析 --> tidy data format

tidy data format

- 較容易進行處理
- 較容易進行視覺化
- 較容易應用資料模型

package: tidyverse

- 目前在 R 語言已經有許多套件可以支援 tidy data format
- 所以有人將比較常用的套件集合起來,成為一個套件 tidyverse
- 注意:如果**第一次**使用 tidyverse 套件,需要在 Console 上先安裝該套件
- 在 Console 上輸入

install.packages("tidyverse")

- 完成安裝後,載入套件
- 注意:以後每次開啟 RStudio,便需要重新載入

wide data format vs. long data format

- data frame 依據其上的資料欄位形式分為:
- wide data format:
 - 例如:每一年各城市的平均氣溫

##	year	Taipei	Taichung	Kaohsiung	Hualien
## 1	2015	26	31	28	22
## 2	2016	27	34	24	33
## 3	2017	24	21	27	23

long data format

##	year	city	ten
## 1	2015	Taipei	26
## 2	2016	Taipei	27
## 3	2017	Taipei	24
## 4	2015	Taichung	31
## 5	2016	Taichung	34
## 6	2017	Taichung	21
## 7	2015	Kaohsiung	28
##8	2016	Kaohsiung	24
## 9	2017	Kaohsiung	27
## 10	2015	Hualien	22
## 11	2016	Hualien	33
## 12	2017	Hualien	23

在 long data format 上,每一行上只有一個觀測結果,在上面的例子中是每一年各城市的平均氣溫(temp)

R語言中使用 tidy data format

- 盡量以 long data format 為主
- 若是原本的資料為 wide format,可以改為 long format

tidy data format 使用的資料型態: tibble

- tibble 類似 data frame, 但兩者間仍有不同
- 在運用 tidyverse 套件時,data frame 自動轉換為 tibble

預備工作

設定工作目錄

- 以檔案總管在「我的文件」下的「rCourse」目錄內新增工作目錄「03」
- 開啟新的 Script
- 在 Script 上,設定工作目錄

setwd("rCourse/03")

載入套件

• 載入 tidyverse 套件

library(tidyverse)

讀取空氣品質指標資料進行資料分析

- 將上次課程的空氣品質指標資料複製到新工作目錄中
- 讀取空氣品質指標資料的 CSV 檔案
- 在 Script 上輸入

df <- read.csv(file="AQI_20180128061645.csv",

fileEncoding="UTF-8-BOM",

stringsAsFactors=FALSE)

• 執行後,可先在 Console 或 Environment 上查看 df

tidy data format 的資料分析方法

幾個常用的 tidyverse 方法

- 選取 tibble 中的幾個欄位: select()
- 依照紀錄位置選取 tibble 中的紀錄: slice()
- 根據條件選取 tibble 中的紀錄: filter()
- 增加或修改 tibble 的欄位: mutate()

幾個常用的 tidyverse 方法

- 依照某個欄位的資料數值排列紀錄: arrange()
- 依照某個欄位的資料數值選出前幾筆: top_n()
- 依照某個欄位的資料數值將紀錄分群: group_by()
- 對紀錄進行彙整(加總、平均、...): summarise()

應用 tidyverse 進行分析

範例練習

- 回答以下幾個問題
 - 選取空氣品質指標資料中的縣市、偵測站與空氣品質指標
 - 選取空氣品質指標資料中前五筆及後五筆
 - 選取空氣品質指標資料中 AQI 值大於或等於 120 的紀錄
 - 按照 AQI 的值,由大到小排序空氣品質指標資料
 - 選取空氣品質指標資料中 AQI 值最大的五筆紀錄
 - 計算各縣市的偵測站數目

選取空氣品質指標資料中的縣市、偵測站與空氣品質指標

- 提示:選取縣市、偵測站與空氣品質指標等三個欄位
- 先前的做法(利用 data frame 上的欄位名稱)

df[, c("County", "SiteName", "AQI")]

• 在 tidy 的做法(利用 select()方法,加上欄位名稱)

select(df, County, SiteName, AQI)

選取空氣品質指標資料中前五筆及後五筆

- 提示:依照前五筆及後五筆等位置選取紀錄
- 先前的做法(根據 data frame 上的位置)

df[c(1:5, (nrow(df)-4):nrow(df)),]

• 在 tidy 的做法(利用 slice()方法,加上紀錄的位置)

slice(df, c(1:5, (nrow(df)-4):nrow(df)))

選取空氣品質指標資料中 AQI 值大於或等於 120 的紀錄

- 提示:根據條件「AQI 值大於或等於 120」選取紀錄
- 先前的做法(利用條件索引)

df[df\$AQI>=120,]

• 在 tidy 的做法(利用 filter()方法與條件)

filter(df, AQI>=120)

按照 AQI 的值,由大到小排序空氣品質指標資料

- 提示:依照 AQI 欄位的數值排列紀錄
- 先前的做法
 - order(): 資料的大小順序, decreasing=TRUE 表示由大到小

df[order(df\$AQI, decreasing=TRUE),]

在 tidy 的做法

arrange(df, desc(AQI))

選取空氣品質指標資料中AQI值最大的五筆紀錄

- 提示:依照 AQI 欄位的數值選出前幾筆
- 先前的做法 (利用 order()找出資料大小順序,選出最前面的五筆)

df[order(df\$AQI, decreasing=TRUE)[1:5],]

• 在 tidy 的做法 (利用 top_n()方法)

top_n(df, 5, AQI)

組合多個函數

%>%(pipe)

- 當較複雜的運算,無法只用單一函數完成時,tidyverse 提供了一個方法可以 組合多個函數
- %>% (稱為 pipe) 是 tidy 中相當重要的方法,可以將多個函數串接使用
- %會將函數的運算結果導入下一個函數,做為下一個函數的第一個參數
- 例如以上面的「選取空氣品質指標資料中 AQI 值最大的五筆紀錄」為例
 - 先依照 AQI 欄位的數值排列紀錄
 - 再依據前五筆的位置取出紀錄

arrange(df, desc(AQI)) %>%

slice(5)

計算各縣市的偵測站數目

• 提示: 先依照縣市欄位的資料將紀錄分群, 再彙整統計每一分群的資料數量

group_by(df, County) %>%
summarise(count=n())

- 說明:計算各縣市的偵測站數目時,首先將 tibble 資料依照各縣市分群,然 後統計每一個分群上的資料數量。
 - group_by(df, County): 依照各縣市將資料分群
 - %>%:將資料分群的結果導入下一個函數
 - **n()**:統計資料數量
 - **summarise**(count=**n**()):統計每一個分群上的資料數量
 - summarise()的第一個參數是 group_by()的計算結果

對各縣市偵測站數目的結果依大小排序

- 先依照縣市欄位的資料將紀錄分群,其次彙整統計每一分群的資料數量,最後 依據資料數量大小排序
- 將前面各縣市的偵測站數目的計算結果導入排序
 - arrange(desc(count)): 依據 count 的大小,由大到小排序
 - 注意:arrange()的第一個參數是各縣市的偵測站數目的計算結果
 - desc(count):由大到小排序

```
group_by(df, County) %>%
summarise(count=n()) %>%
arrange(desc(count))
```


編輯 tibble 資料

將縣市欄位改為 factor 型態

- 提示:修改 tibble 上的縣市欄位
- 在 Script 上輸入並執行

df <- mutate(df, County=factor(County))

• mutate(df, County=factor(County)): 將 County 上的資料改為 factor 型態

將空氣品質狀態欄位改為有順序的 factor 型態

- 提示:修改 tibble 上的空氣品質狀態欄位
- 在 Script 上輸入並執行

df <- mutate(df, Status=factor(Status, levels=c("良好", "普通", "對敏感族群不健康", "對所有族群不健康"), ordered=TRUE))

• factor(Status, levels=c("良好", "普通", "對敏感族群不健康", "對所有族群不健康"), ordered=TRUE)):將 Status 上的資料,設為 factor 型態,並且依照 levels 上的次序("良好", "普通", "對敏感族群不健康", "對所有族群不健康")設定其順序。

資料分析

回答以下幾個問題

- 針對某一縣市,找出它有哪幾個偵測站?
 - 關鍵點:選擇偵測站所在縣市
 - 提示: 1. 根據 XXX 條件選取紀錄 2. 選取欄位
- 空氣品質最糟糕的偵測站?
 - 關鍵點:空氣品質指數最高的紀錄是第幾筆
 - 提示: 1. 依照某個欄位的資料數值選出前幾筆 2. 選取欄位
- 找出汙染物是細懸浮微粒的偵測站數量?
 - 關鍵點:選擇汙染物是細懸浮微粒的偵測站,然後計算它的數量
 - 提示:______
- 計算各種空氣品質狀態的偵測站數量?
 - 關鍵點:對各種空氣品質狀態統計
 - 提示:______

雲林縣有哪幾個偵測站

- 找出雲林縣的紀錄
- 選擇偵測站名稱

```
filter(df, County=="雲林縣") %>%
select(SiteName)
```


練習

- 新北市各偵測站的空氣品質指數分別是多少
 - 提示:

哪個偵測站偵測到的空氣品質最糟糕

- 找到 AQI 最高的偵測站
- 列出偵測站名稱及 AQI 值

top_n(df, 1, AQI) %>%
select(SiteName, AQI)

練習

- 空氣品質最糟糕的偵測站偵測到的 PM10 和 PM2.5 指數各是多少?
 - 提示:

哪幾個偵測站偵測到的空氣品質超過 100

- 找到 AQI 值超過 100 的紀錄
- 選擇偵測站名稱與 AQI 值

filter(df, AQI>=100) %>%
select(SiteName, AQI)

練習

- 空氣品質指標超過 100 的偵測站都在哪幾個縣市?
 - 提示:

多少個偵測站的汙染物是細懸浮微粒

- 找到汙染物是細懸浮微粒的紀錄
- 計算記錄筆數

filter(df, Pollutant=="細懸浮微粒") %>%
summarise(count=n())

各種 AQI 狀態分別有多少偵測站?

- 根據空氣品質狀態欄位進行分群
- 統計各種狀態上的數量

group_by(df, Status) %>%
summarise(count=n())

本次課程小結

小結

- 資料分析時,通常將要分析的資料整理成具有相同欄位的紀錄集合,稱為結構 性資料表
- 常見的結構性資料表,如 Excel 的格式
- 在 R 語言中以 data frame 或是 tibble(tidy data format)的方式表示結構性資料表
- 特別要注意的是結構性資料表中,最好每一個紀錄代表一次的觀察資料

小結

- 針對要分析的問題,先思考分析步驟,利用自己的語言將它表示出來
- 將每個分析步驟,表示成一個 tibble 方法
- 如果某個步驟無法用一個方法表示,也許這個步驟可以再細分成兩個以上的子步驟
- 然後利用 pipe(%>%)將方法串接起來

小結

- 選取特定欄位
 - select()
- 選取特定紀錄
 - slice()按照位置
 - filter()按照索引條件
 - · top_n()按照索引條件,並只選出前幾筆紀錄
- 排序
 - arrange()
- 將記錄分成群組
 - group_by()
- 彙整(對整個資料表或紀錄群組進行統計)
 - summarise()

小結

- 不需要強記各種方法,經常練習運用,便會自然熟練
- 有需要時,可參考懶人包 https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

延伸思考

- 1. 就你自己的體會,當面對一個問題時,如何將它轉換成一步步的步驟,來解決這個問題?
- 2. 什麼時候適合使用 long data format? 什麼時候適合使用 wide data format?