Revue 1

⊀ Sélection et justification des composants pour le projet de traitement des fumées en aciérie ASCOVAL **¼**

Objectif du projet :

Développer un système de surveillance et de régulation des fumées en aciérie permettant :

- ✓ La mesure en temps réel des paramètres critiques (Température, CO₂, Débit, Humidité).
- La transmission fiable des données via un réseau 5G industriel.
- L'archivage et l'analyse des données pour optimiser la combustion et minimiser les émissions.
- Le pilotage automatique des actionneurs pour réguler la température et le débit des fumées.
- ✓ L'alerte en cas de dépassement des seuils définis.

🚺 Comparaison et sélection des capteurs 📊

Paramètre à mesurer	Composant 1	Composant 2	Composant sélectio
Température des fumées	PT100 (RTD)	PT1000 + MAX31865	▼ PT1000 + MAX31865
Taux de CO2 dans les fumées	MH-Z19B (NDIR)	Senseair K30 (NDIR)	▼ Senseair K30
Débit des fumées	Anémomètre mécanique	ABB 266DSH (Pression différentielle)	▼ ABB 266DSH
Humidité des fumées	SHT85 (Capacitif)	EE75 (Capteur industriel IP65)	▼ EE75

- ◆ Pourquoi ne pas avoir retenu PT100 ? → Risque d'erreur sur longue distance, moins précis que PT1000.
- ◆ Pourquoi ne pas utiliser un anémomètre ? → Sensibilité aux fumées et encrassement rapide, risque d'entretien fréquent.
- ▼ Tous les capteurs sélectionnés sont compatibles avec une API industrielle et la transmission 5G.

2 Comparaison des solutions de transmission (5G vs autres technologies)

Technologie	Portée	Débit	Fiabilité industrielle
WiFi industriel	100 - 300 m	Élevé (100 Mbps - 1 Gbps)	⚠ Risque d'interférences
LoRaWAN	2 - 10 km	Faible (~50 kbps)	▼ Très fiable
Modbus RTU (RS485) (Filaire)	Jusqu'à 1200m	Moyen (~100 kbps)	▼ Très fiable
5G industrielle	Plusieurs km	Très élevé (~100 Mbps - 10 Gbps)	▼ Très fiable

▼ Solution retenue : 5G industrielle ▼

- * Résiste aux interférences métalliques (contrairement au WiFi).
- Caramission en temps réel et en continu (contrairement à LoRaWAN).
- N Portée adaptée à un grand site industriel comme ASCOVAL.

3 Comparaison des solutions de stockage et d'affichage des données **■**

Besoin	Solution 1	Solution 2	Solution retenue
Stockage des mesures (Historian)	MySQL (Classique, SQL)	InfluxDB (Optimisé séries temporelles)	▼ InfluxDB
Affichage des mesures en temps réel	Tableau Excel / Interface locale	Grafana (Web, dynamique, évolutif)	✓ Grafana
Gestion des alarmes et automatisation	Alertes via Grafana	SCADA industriel (VTScada, Rapid SCADA)	SCADA (VTScada)

✓ InfluxDB + Grafana + SCADA = meilleure combinaison pour un suivi efficace.

💶 Sélection finale des composants et coûts 💰

Catégorie	Composant sélectio	Prix estimé (€)
Capteur de température	PT1000 + MAX31865	20 - 40
Capteur de CO ₂	Senseair K30 (NDIR)	80 - 120
Capteur de débit des fumées	ABB 266DSH (Pression différentielle)	200 - 250
Capteur d'humidité	EE75 (E+E Elektronik)	250 - 300
Automate industriel	Siemens LOGO! 8 (Modbus RTU + relais intégrés)	120 - 150
Transmission sans fil	Routeur 5G Industriel (ex: Teltonika RUTX50, Siemens SCALANCE)	500 - 3000
Stockage et affichage	InfluxDB + Grafana + SCADA (VTScada)	Gratuit à 500

§ Total estimé: 1500 € - 4500 € selon l'infrastructure réseau 5G choisie.

★ Conclusion : Pourquoi cette architecture est idéale ?

- 🔽 Les capteurs sont adaptés à une aciérie (haute température, poussières, humidité).
- La transmission 5G permet un suivi en continu et en temps réel.
- ✓ InfluxDB + Grafana + SCADA offrent un stockage et un affichage modernes.
- L'automate Siemens LOGO! 8 assure le pilotage et la régulation des fumées.
- 🚀 Cette solution est moderne, robuste et adaptée aux exigences du projet.

Pour garantir un stockage sécurisé des données, une visualisation en temps réel et une gestion fluide des alertes et des capteurs, il est crucial de choisir un bon serveur web et un hébergeur performant.

1 Comparaison des technologies de serveur web : Nginx vs Apache vs Autres

Critère	Nginx	Apache	Lighttpd
Performance	✓ Très rapide (idéal pour API et dashboards)	⚠ Moins performant sous forte charge	▼ Rapide pour sites statiques
Scalabilité	▼ Excellente	⚠ Moins bonne sur gros volumes	Bonne
Consommation mémoire	▼ Faible	X Élevée	▼ Très faible
Facilité de configuration	/ Moyenne	▼ Simple	↑ Moyenne
Compatibilité avec InfluxDB + Grafana	✓ Oui	♥ Oui	⚠ Possible

Meilleur choix : Nginx

Pourquoi?

- ✔ Plus performant et rapide qu'Apache pour les API et les dashboards (comme Grafana).
- ✔ Consomme moins de ressources (important pour les serveurs de monitoring).
- ✓ Mieux adapté aux gros volumes de requêtes en temps réel.

Comparaison des hébergeurs adaptés au projet

Hébergeur	Infrastructure	Stockage & Perform	Fiabilité
OVH Cloud	■ Serveurs en France	▼ SSD, bonne puissance CPU	▼ Très fiable (ISO 27001)
Scaleway	■ Serveurs en France	▼ Performant avec options scalables	✓ Bon support et sécurité
AWS (Amazon Web Services)	Monde entier	✓ Élastique, ultra- performant	▼ Excellente résilience
Google Cloud	Monde entier	✓ Très puissant	▼ Très fiable
Hetzner	Allemagne	▼ Très bon rapport qualité/prix	Fiable mais support limité

Meilleur choix pour ASCOVAL : OVH Cloud ou Scaleway

Pourquoi?

- ✓ Serveurs en France → Plus rapide pour la latence et respect des normes RGPD.
- ✓ Coût raisonnable → Moins cher que AWS/Google Cloud pour un projet industriel.

ᢃ Architecture finale du serveur 🕌

- Capteurs industriels (Température, CO₂, Débit, Humidité) → API Siemens LOGO! 8 (Lecture des valeurs via Modbus RTU).
- Transmission 5G industrielle vers un serveur cloud (OVH Cloud ou Scaleway).
- Serveur web Nginx sur Linux pour héberger InfluxDB + Grafana + SCADA.
- Dashboard accessible à distance pour le monitoring et les alertes. Toute l'architecture est sécurisée et évolutive.

Coût final estimé

Élément	Prix estimé (€)
Serveur OVH Cloud ou Scaleway	50 - 150 €/mois
Configuration serveur Nginx/Linux	Gratuit (open-source)
Stockage InfluxDB + Grafana	Gratuit
Maintenance et support technique	100 - 300 €/mois selon contrat

S Coût total: 50 - 450 €/mois selon les besoins en puissance et en support.

★ Conclusion: Meilleure solution pour le projet ASCOVAL

- Serveur Nginx sur OVH Cloud ou Scaleway pour un bon rapport qualité/prix et performance.
- ▼ Stockage et visualisation des données via InfluxDB + Grafana.
- ▼ Transmission 5G pour garantir un suivi en temps réel et fiable.
- 🔽 Architecture évolutive pouvant gérer un grand volume de capteurs. 🖓