Assignment 1 Cyclic Redundant Check

Grupo 5 Turma 1 Paulo Gil - 76361 Josué - 121851

Encoder

- Approach using the Properties of the Remainder
 - 58 XOR gates needed
 - 9 XOR propagation time delays in the worst case
- Optimized solution
 - By doing the most common operations in parallel:
 - 38 XOR gates
 - 4 XOR propagation time delay in the worst case (r1,r5,r6)

Encoder

	15 1	4 13	12	11	10	9 8	7 6	5 4	1 3	2 1	0	a0+a13	a1+a6	a1+a12	a2+a4	a2+a5	a3+a5	a3+a10	a4+a6	a7+a9	a8+a14	a8+a15	a10+a12	a11+a15	a10+a12+a14	a11+a13+a15	a8+a11+a14	a3+a5+a7	a1+a2+a4+a6	a0+a7+a9+a13
7	0 0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
6	0 0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0
5	0 0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0
4	0 0	0	1	0	0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0
3	0 0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0
2	0 0	0	0	0	1	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
1	0 0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	1
0	0 0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0

Encoder

Checker

 After some reading, we followed what Allegro Microsystems does in their SPI and I2C sensors: a Linear Feedback Shift Register

Checker

- Implementation cost
 - 5 bit binary counter
 - 3 AND gates
 - 4 XOR gates
 - 5 DFlipFlop
 - Control Unit
 - 4 NAND gates
 - 1 NOR gate
 - LSFR
 - 5 XOR gates
 - 8 DFlipFlop
 - 7 OR gates (for the gateOr8)
 - o 1 DFlipFlop

Figure 2: Post-Multiply LFSR for G₁ = 11001 (PST-LFSR1).