#### Lernen ist induktiv!

Aus Menge von Lernbeispielen  $\langle X, (0,0) \rangle$ 

leite Fkt. *h* (Hypothese) ab, die Zielfunktion *f* approximiert! 

→ Induktives statt deduktivem Schließen

#### Vereinfachende Annahmen, Beispiele

- Genau diese Funktion ist zu lernen
- Lernbeispiele sind vorgegeben, fehlerfrei
- Kein Vorwissen ist zu berücksichtigen ("tabula rasa")
- Umgebung ist deterministisch und beobachtbar



überwacht



Bekanntlich n Werte ausdrückbar durch Polynom (n-1)-ten Grades, doch führt das automatisch zur besten Zielfunktion?



# Erinnerung: Definitionen aus der Statistik

$$\mathbf{x}^1 = \left\langle x_1^1, x_2^1, \dots, x_n^1 \right\rangle$$

#### **Ausgangsmaterial**:

*N* Datensätze, je *n*-dimensional

$$\mathbf{x}^N = \left\langle x_1^N, x_2^N, \dots, x_n^N \right\rangle$$

Mittelwert der i-ten Dimension

$$\overline{x}_i = \frac{1}{N} \sum_{p=1}^{N} x_i^p$$

Standardabweichung 
$$s_i = \sqrt{\frac{1}{N} \sum_{p=1}^{N} (x_i^p - \overline{x}_i)^2}$$

Varianz 
$$\sigma_i = s_i^2 = \frac{1}{N} \sum_{p=1}^N (x_i^p - \overline{x}_i)^2$$

#### Korrelationskoeffizient

**Kovarianz** 
$$\sigma_{ij} = \frac{1}{N} \sum_{p=1}^{N} (x_i^p - \overline{x}_i) (x_j^p - \overline{x}_j)$$

$$K_{ij} = \frac{\sigma_{ij}}{s_i \cdot s_j}$$

## Erinnerung: Abstandsmaße im $\mathcal{R}^n$

Für Punkte  $\mathbf{x},\mathbf{y} \in \mathbb{R}^n$ 

Euklidischer Abstand 
$$d(\mathbf{x}, \mathbf{y}) = |\mathbf{x} - \mathbf{y}| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

#### Gewichteter Euklidischer Abstand

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{n} w_i (x_i - y_i)^2}$$

#### 5.1 Überwachte Lernverfahren

#### **Erinnerung Folie 228**

- Überwachtes Lernen: Gegeben Paare (In, Erwartet\_Out), leite Fkt. f ab, sodass für neue Eingaben gilt f(In')=Erwartet\_Out'
- Ist Bildbereich von f endlich/diskret → Klassifikation.
   Sonst Regression (kontinuierlich)

#### Hier behandelte Verfahren

- Perzeptron
- Nearest-Neighbor-Verfahren
- Entscheidungsbaum-Lernen
- Naive Bayes-Klassifikation



#### Perzeptron, Definition

**Definition 8.8** Sei  $\mathbf{w} = (w_1, \dots, w_n) \in \mathbb{R}^n$  ein Gewichtsvektor und  $\mathbf{x} \in \mathbb{R}^n$  ein Eingabevektor. Ein **Perzeptron** stellt eine Funktion  $P : \mathbb{R}^n \to \{0, 1\}$  dar, die folgender Regel entspricht:

$$P(\boldsymbol{x}) = \begin{cases} 1 \text{ falls} & \boldsymbol{w} \ \boldsymbol{x} = \sum_{i=1}^{n} w_i x_i > 0 \\ 0 \text{ sonst} \end{cases}$$

- Die Eingabevariablen  $x_i$  heißen Merkmale (features)
- genau die Punkte  $\mathbf{x}$  oberhalb (n-1)-dimensionaler Hyperebene  $\sum w_i x_i = 0$  werden positiv klassifiziert  $(P(\mathbf{x})=1)$
- Meist füge künstlichen "bias input"  $x_{n+1}$ =-1 mit Gewicht (bias, Verschiebung)  $\theta \in \mathcal{R}$  hinzu (x bezeichne weiter  $x_1, \dots, x_n$ )
  - Perzeptron könnte x=0 ohne bias nicht frei klassifizieren!
  - bias wirkt wie variabler Schwellwert (statt >0 effektiv >θ)



## Das Perzeptron als Neuronales Netz

 Manche finden es hilfreich, sich das Perzeptron als "Neuronales Netz" vorzustellen (und so ist es historisch auch entstanden)



- Mehr dazu in 5.3
- Oft modelliert man mehrere Klassifikatoren  $P_1(\mathbf{x}), P_2(\mathbf{x}), P_3(\mathbf{x})$  derselben Merkmale  $\mathbf{x}$  im selben Netz (dann mit  $w_{ii}$ )
- Es gibt auch mehrlagige Perzeptrons

## Die Perzeptron-Lernregel

```
\begin{array}{ll} \textbf{\textit{w}} = \mathsf{beliebiger} \ \mathsf{Vektor} \ \mathsf{reeller} \ \mathsf{Zahlen} \ \mathsf{ungleich} \ \mathsf{0} \\ \textbf{Repeat} & \mathbf{x} \ \mathsf{und} \ \mathbf{w} \ \mathsf{sollen} \ \mathsf{hier} \ \mathsf{den} \\ \textbf{For all} \ \textbf{\textit{x}} \in M_{+} & \mathit{bias} \ \mathsf{einschließen!} \\ \textbf{If} \ \textbf{\textit{w}} \ \textbf{\textit{x}} \leq 0 \ \mathsf{Then} \ \textbf{\textit{w}} = \textbf{\textit{w}} + \textbf{\textit{x}} \\ \textbf{For all} \ \textbf{\textit{x}} \in M_{-} \\ \textbf{If} \ \textbf{\textit{w}} \ \textbf{\textit{x}} > 0 \ \mathsf{Then} \ \textbf{\textit{w}} = \textbf{\textit{w}} - \textbf{\textit{x}} \\ \textbf{Until alle} \ \textbf{\textit{x}} \in M_{+} \cup M_{-} \ \mathsf{werden} \ \mathsf{korrekt} \ \mathsf{klassifiziert} \\ \end{array}
```

- Spezialfall f
  ür Perzeptron mit genau 1 Klassifikator
- Üblicherweise update durch  $w\pm\alpha x$  für Lernrate  $0<\alpha<1$
- Lernt das beliebige Zielfunktionen?
- Ist Terminierung gewährleistet?

## Beispiel aus Ertel 1/2

Hier ein Perzeptron mit 2 Merkmalen ohne bias!

→ Hyperebene (Gerade) geht durch Nullpunkt!

#### Seien



# Beispiel aus Ertel 2/2





## Lineare Separierbarkeit

... führt zur Charakterisierung der Leistung des Perzeptrons!

Eine (n-1)-dimensionale Hyperebene im  $\mathbb{R}^n$  ist für reelles  $\theta$  gegeben durch

 $\sum_{i=1}^{n} a_i x_i = \theta$ 

**Definition 8.2** Zwei Mengen  $M_1 \subset \mathbb{R}^n$  und  $M_2 \subset \mathbb{R}^n$  heißen linear separabel, wenn reelle Zahlen  $a_1, \ldots, a_n, \theta$  existieren mit

$$\sum_{i=1}^n a_i x_i > \theta \quad \text{ für alle } \boldsymbol{x} \in M_1 \quad \text{ und } \quad \sum_{i=1}^n a_i x_i \leq \theta \quad \text{ für alle } \boldsymbol{x} \in M_2.$$

Der Wert  $\theta$  wird als Schwelle bezeichnet.

## **Beispiel Lineare Separierbarkeit**

Seien im  $\mathcal{R}^2$  die Punkte  $\bullet$  in  $M_+$  und die  $\bigcirc$  in  $M_-$ 





AND ist linear separierbar, XOR nicht!

## Konvergenz der Perzeptron-Lernregel

**Satz 8.2** Es seien die Klassen  $M_+$  und  $M_-$  linear separabel durch eine Hyperebene  $\mathbf{w} \ \mathbf{x} = 0$ . Dann konvergiert die PERZEPTRONLERNEN für jede Initialisierung ( $\neq 0$ ) des Vektors w. Das Perzeptron P mit dem so berechneten Gewichtsvektor trennt die Klassen  $M_+$  und  $M_-$ , d.h.

$$P(\boldsymbol{x}) = 1 \Leftrightarrow \boldsymbol{x} \in M_+$$

und

$$P(\mathbf{x}) = 0 \Leftrightarrow \mathbf{x} \in M_{-}.$$

#### Beweisidee (Rosenblatt 1958)

Zeige, dass die Lernregel den Betrag des Fehlers im Mittel in jedem Schritt um einen Mindestbetrag reduziert. (Gradientenabstieg)

## **Das Perzeptron-Theorem**

**Satz 8.2** Eine Funktion  $f: \mathbb{R}^n \to \{0,1\}$  kann von einem Perzeptron genau dann dargestellt werden, wenn die beiden Mengen der positiven und negativen Eingabevektoren linear separabel sind.

Beweis: Nach Konstruktion der Perzeptron-Definition mit bias

- Dass das Perzeptron "nur" linear separieren kann, hat das Gebiet Neuronale Netze für ca 15 Jahre fast stillgelegt!
- Andere, ausdrucksmächtigere Neuronale Netze und Lernregeln s. 5.3