

Art of Problem Solving 2009 Sharygin Geometry Olympiad

Sharygin Geometry Olympiad 2009

1	Points B_1 and B_2 lie on ray AM , and points C_1 and C_2 lie on ray AK . The circle with center O is inscribed into triangles AB_1C_1 and AB_2C_2 . Prove that the angles B_1OB_2 and C_1OC_2 are equal.
2	Given nonisosceles triangle ABC . Consider three segments passing through different vertices of this triangle and bisecting its perimeter. Are the lengths of these segments certainly different?
3	The bisectors of trapezoid's angles form a quadrilateral with perpendicular diagonals. Prove that this trapezoid is isosceles.
4	Let P and Q be the common points of two circles. The ray with origin Q reflects from the first circle in points A_1, A_2, \ldots according to the rule "the angle of incidence is equal to the angle of reflection". Another ray with origin Q reflects from the second circle in the points B_1, B_2, \ldots in the same manner. Points A_1, B_1 and P occurred to be collinear. Prove that all lines A_iB_i pass through P .
5	Given triangle ABC . Point O is the center of the excircle touching the side BC . Point O_1 is the reflection of O in BC . Determine angle A if O_1 lies on the circumcircle of ABC .
6	Find the locus of excenters of right triangles with given hypotenuse.
7	Given triangle ABC . Points M , N are the projections of B and C to the bisectors of angles C and B respectively. Prove that line MN intersects sides AC and AB in their points of contact with the incircle of ABC .
8	Some polygon can be divided into two equal parts by three different ways. Is it certainly valid that this polygon has an axis or a center of symmetry?
9	Given n points on the plane, which are the vertices of a convex polygon, $n>3$. There exists k regular triangles with the side equal to 1 and the vertices at the given points. - Prove that $k<\frac{2}{3}n$ Construct the configuration with $k>0.666n$.

www.artofproblemsolving.com/community/c3681

Contributors: April

Art of Problem Solving 2009 Sharygin Geometry Olympiad

10	Let ABC be an acute triangle, CC_1 its bisector, O its circumcenter. The perpendicular from C to AB meets line OC_1 in a point lying on the circumcircle of AOB . Determine angle C .
11	Given quadrilateral $ABCD$. The circumcircle of ABC is tangent to side CD , and the circumcircle of ACD is tangent to side AB . Prove that the length of diagonal AC is less than the distance between the midpoints of AB and CD .
12	Let CL be a bisector of triangle ABC . Points A_1 and B_1 are the reflections of A and B in CL , points A_2 and B_2 are the reflections of A and B in L . Let O_1 and O_2 be the circumcenters of triangles AB_1B_2 and BA_1A_2 respectively. Prove that angles O_1CA and O_2CB are equal.
13	In triangle ABC , one has marked the incenter, the foot of altitude from vertex C and the center of the excircle tangent to side AB . After this, the triangle was erased. Restore it.
14	Given triangle ABC of area 1. Let BM be the perpendicular from B to the bisector of angle C . Determine the area of triangle AMC .
15	Given a circle and a point C not lying on this circle. Consider all triangles ABC such that points A and B lie on the given circle. Prove that the triangle of maximal area is isosceles.
16	Three lines passing through point O form equal angles by pairs. Points A_1 , A_2 on the first line and B_1 , B_2 on the second line are such that the common point C_1 of A_1B_1 and A_2B_2 lies on the third line. Let C_2 be the common point of A_1B_2 and A_2B_1 . Prove that angle C_1OC_2 is right.
17	Given triangle ABC and two points X , Y not lying on its circumcircle. Let A_1 , B_1 , C_1 be the projections of X to BC , CA , AB , and A_2 , B_2 , C_2 be the projections of Y . Prove that the perpendiculars from A_1 , B_1 , C_1 to B_2C_2 , C_2A_2 , A_2B_2 , respectively, concur if and only if line XY passes through the circumcenter of ABC .
18	Given three parallel lines on the plane. Find the locus of incenters of triangles with vertices lying on these lines (a single vertex on each line).
19	Given convex n -gon $A_1 ldots A_n$. Let P_i $(i = 1,, n)$ be such points on its boundary that $A_i P_i$ bisects the area of polygon. All points P_i don't coincide with any vertex and lie on k sides of n -gon. What is the maximal and the minimal value of k for each given n ?

www.artofproblemsolving.com/community/c3681

Contributors: April

Art of Problem Solving 2009 Sharygin Geometry Olympiad

20	Suppose H and O are the orthocenter and the circumcenter of acute triangle ABC ; AA_1 , BB_1 and CC_1 are the altitudes of the triangle. Point C_2 is the reflection of C in A_1B_1 . Prove that H , O , C_1 and C_2 are concyclic.
21	The opposite sidelines of quadrilateral $ABCD$ intersect at points P and Q . Two lines passing through these points meet the side of $ABCD$ in four points which are the vertices of a parallelogram. Prove that the center of this parallelogram lies on the line passing through the midpoints of diagonals of $ABCD$.
22	Construct a quadrilateral which is inscribed and circumscribed, given the radii of the respective circles and the angle between the diagonals of quadrilateral.
23	Is it true that for each n , the regular $2n$ -gon is a projection of some polyhedron having not greater than $n+2$ faces?
24	A sphere is inscribed into a quadrangular pyramid. The point of contact of the sphere with the base of the pyramid is projected to the edges of the base. Prove that these projections are concyclic.

www.artofproblemsolving.com/community/c3681

Contributors: April