



# Skeleton Aware Multi-modal Sign Language Recognition

#### **SAM-SLR**

Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu
Department of Electrical and Computer Engineering
Northeastern University, Boston MA, USA

Speaker: Songyao Jiang



### Agenda

- Introduction and motivation
- Pipelines of SAM-SLR
  - Preprocessing of modalities
  - SL-GCN
  - 3DCNN
  - SSTCN
- Experimental results
- Conclusion





### Introduction and Motivation

- Sign Language Recognition (SLR) is a more challenging problem:
  - Sign language requires both global body motion and delicate arm/hand gestures to distinctly and accurately express its meaning.
  - Similar gestures can even impose various meanings depending on the number of repetitions.
  - Different signers may perform sign language differently (e.g., speed, localism, left-handers, right-handers, body shape)
- Preliminary findings and our assumptions:
  - Skeleton based methods become popular in action recognition.
  - Skeleton based methods act as strong complements to RGB / RGB-D based methods.
  - Different modalities contain different valuable information. Their ensembles always improve the overall performance. (e.g. RGB + Optical flow)
- Problem: no ground-truth keypoints provided.
- Basic ideas:
  - Use whole-body pose estimator to provide whole-body skeleton keypoints.
  - Use as many modalities as we can to improve the overall accuracy.



### Pipelines of SAM-SLR Framework



Three types of models

- SL-GCN
- SSTCN
- 3DCNN

#### **RGB Track:**

- Skeleton
- Pose Feature
- RGB
- Optical Flow

#### **RGB-D Track:**

- Skeleton
- Pose Feature
- RGB
- Optical Flow
- HHA
- Depth Flow

Code available on GitHub: <a href="https://github.com/jackyjsy/CVPR21Chal-SLR">https://github.com/jackyjsy/CVPR21Chal-SLR</a>



### Visualization of Modalities Used





### Whole-body Pose Estimation

- Traditional 2D human pose estimation:
  - 16 points or 17 points only
  - Does not include hand keypoints
- Problems using separate hand pose model:
  - Hand pose estimator cannot work without detector.
  - Hand detector fails due to motion blur / low resolution.
- 133-point whole-body keypoints[1]:

• Face: 68 points

• Body: 17 points

• Hands: 34 points

• Feet: 6 points

- Advantages of whole-body keypoints estimator:
  - Consistent and faithful estimation of hand keypoints
  - Resistant to motion blurs













### Sign Language Skeleton Graph Construction

Spatial and Temporal Graph

$$\mathbf{A}_{i,j} = \begin{cases} 1 & \text{if } d(v_i, v_j) = 1 \\ 0 & \text{else} \end{cases}$$

where  $d(v_i, v_j)$  calculate the minimum distance between skeleton node  $v_i$  and  $v_j$ .

- Graph Reduction
  - Motivation: too many nodes introduce extra noise into the spatio-temporal graph.
  - 133 nodes are trimmed to 27 nodes.
  - The remaining graph contains 10 nodes for each hand and 7 nodes for the upper body.





### Sign Language GCN Framework (SL-GCN)

#### **Basic SL-GCN Block:**

- ST-GCN Modules [2]
- Decouple SCN [3]
- Drop Graph Module [3]

#### STC Attention Module [4]:

- Spatial Attention
- Temporal Attention
- Channel Attention

#### Multi-stream Workflow:

- Joint
- Bone
- Joint Motion
- Bone Motion



<sup>[2]</sup> Yan et al., Spatial temporal graph convolutional networks for skeleton-based action recognition. In AAAI, 2018.

<sup>[3]</sup> Cheng et al., Decoupling GCN with DropGraph module for skeleton-based action recognition. In ECCV, 2020.

<sup>[4]</sup> Shi et al., Skeleton-based action recognition with directed graph neural networks. In CVPR, 2019.



### Performance of SL-GCN

#### Recognition rate on AUTSL validation set is shown below:

Multi-stream performance on val set

| Streams      | Top-1 | Top-5 |
|--------------|-------|-------|
| Joint        | 95.02 | 99.21 |
| Bone         | 94.70 | 99.14 |
| Joint Motion | 93.01 | 98.85 |
| Bone Motion  | 92.49 | 98.78 |
| Multi-stream | 95.45 | 99.25 |

#### Ablation studies of SL-GCN

| Variations                 | Top-1 |
|----------------------------|-------|
| SL-GCN (Joint)             | 95.02 |
| w/o Graph Reduction        | 63.69 |
| w/o Decouple GCN           | 94.66 |
| w/o Drop Graph             | 94.81 |
| w/o Keypoints Augmentation | 90.16 |
| w/o STC Attention          | 93.53 |

### Separable Spatial-Temporal Convolution Network (SSTCN)

#### Motivation:

 Factorization of 3D convolution will be easier to optimize compared to full 3D filters where appearance and dynamics are jointly intertwined.

#### Basic SSTCN block contains 4 stages:

- Stage 1: Extract features along temporal dimension
- Stage 2: Extract features along temporal dimension grouped by joints
- Stage 3: Extract features along joints dimension grouped by frames.
- Stage 4: Extract features through fully convolutional layers



### Pros and Cons of Skeleton-based SLR

#### Pros:

- Accuracy is high.
- No interference of background.
- Signer-invariant.
- Light-weight network, easy to train.

#### Cons:

Finger keypoints estimation may not be accurate.

#### Solution:

 Those inaccurate keypoints may be corrected by other modalities in ensemble models. Example: that figure was not captured



### 3D Convolutions Neural Networks (3DCNN)

- Popular 3D CNNs in video classification:
  - I3D, ResNet3D, SlowFast,
- Baseline: ResNet2+1D-18
- Swish Activation:  $f(x) = x \cdot \text{Sigmoid}(x)$ .

- Label smoothing:  $q'(k|x) = (1 \epsilon)\delta_{k,y} + \epsilon u(k)$ ,
- Corresponding Cross-entropy

$$H(q', p) = -\sum_{k=1}^{K} \log p(k)q'(k) = (1 - \epsilon)H(q, p) + \epsilon H(u, p),$$

### Training 3DCNNs (RGB Modality)

#### Pretraining 3DCNNs:

- Import weights trained on Kinectic-300 action recognition datasets.
- Pretrain on Chinese Sign Language (CSL) dataset

#### Ablation studies:

- w/o label smoothing
- w/o swish activation
- w/o pretraining on CSL
- Use ResNet3D-18 backbone instead

| 3D CNN Variations       | Top-1 |
|-------------------------|-------|
| Ours (RGB Frame)        | 94.77 |
| w/o Label Smoothing     | 93.75 |
| w/o Swish Activation    | 92.88 |
| w/o Pretraining on CSL  | 93.41 |
| w/ ResNet3D-18 Backbone | 93.10 |

Table 5. Ablation studies on 3D CNN using RGB frames.

### Multi-modal Ensemble

• Simple ensemble by adding up class scores with weights:

$$q_{\text{RGB}} = \alpha_1 q_{\text{skel}} + \alpha_2 q_{\text{RGB}} + \alpha_3 q_{\text{flow}} + \alpha_4 q_{\text{feat}}, \quad (6)$$

$$q_{\text{RGB-D}} = \alpha_1 q_{\text{skel}} + \alpha_2 q_{\text{RGB}} + \alpha_3 q_{\text{flow}} + \alpha_4 q_{\text{feat}} + \alpha_5 q_{\text{HHA}} + \alpha_6 q_{\text{depthflow}},$$
(7)

- Other ensemble methods tried:
  - Using fully-connected layers before or after class scores.
  - Problem: introduces too many parameters.
- Hyper-parameter tuning:
  - Hyper parameters are tuned on validation set.
  - Rule of thumb: higher-accuracy model is given larger weights.
  - Introduce new model one by one while keeping the existing weights fixed.

### Overall Performance: Multi-modal and Ensembles

| Modality       | Top-1 | Top-5 |
|----------------|-------|-------|
| Baseline RGB   | 42.58 | -     |
| Baseline RGB-D | 63.22 | -     |
| Keypoints      | 95.45 | 99.25 |
| Features       | 94.32 | 98.84 |
| RGB Frames     | 94.77 | 99.48 |
| RGB Flow       | 91.65 | 98.76 |
| Depth HHA      | 95.13 | 99.25 |
| Depth Flow     | 92.69 | 98.87 |

| Table 6. Results of single i | modalities on AUT | SL validation set. |
|------------------------------|-------------------|--------------------|
|------------------------------|-------------------|--------------------|

| Ensemble | K | F | R | O | Н | D | Top-1 | Top-5 |
|----------|---|---|---|---|---|---|-------|-------|
| Skeleton | ✓ | ✓ |   |   |   |   | 96.11 | 99.43 |
| RGB+Flow |   |   | ✓ | ✓ |   |   | 95.77 | 99.52 |
| RGB All  | ✓ | ✓ | ✓ | ✓ |   |   | 96.96 | 99.68 |
| Depth    |   |   |   |   | ✓ | ✓ | 95.76 | 99.41 |
| RGB+D    |   |   | ✓ | ✓ | ✓ | ✓ | 96.27 | 99.66 |
| RGBD All | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 97.10 | 99.73 |

Performance of multi-modal ensembles on val set

### Overall Performance: Test Phase

- During test phase, we finetune our models using the validation set.
- The finetuned results further improve the recognition rate.

• RGB: 98.42%

• RGB-D: 98.53%

• The above results won the 1<sup>st</sup> rank in both RGB and RGB-D tracks.

|          | Finetune | Track | Top-1 |
|----------|----------|-------|-------|
| Baseline | -        | RGB   | 49.23 |
| Baseline | -        | RGB-D | 62.03 |
| Ensemble | No       | RGB   | 97.51 |
| Ensemble | No       | RGB-D | 97.68 |
| Ensemble | w/ Val   | RGB   | 98.42 |
| Ensemble | w/ Val   | RGB-D | 98.53 |

Performance of submissions in the challenge test set

### Conclusions

- We proposed a novel Skeleton Aware Multimodal SLR framework (SAM-SLR) to take advantage of multi-modal information towards effective SLR.
- Our frameworks includes:
  - SL-GCN for skeleton keypoints modality.
  - SSTCN for skeleton features modality.
  - 3DCNN baselines for RGB, Optical Flow and Depth modalities.
- Our multi-modal ensemble results achieves the state-of-the-art performance and won the challenge in both RGB and RGB-D tracks.

## Thank you!

