

Schwingungen

Jetzt wird's harmonisch

17.04.2024 Schwingungen

Themen nach Erlass für LA 2025

- Hinweise zur Vorbereitung auf die schriftlichen Abiturprüfungen im Landesabitur 2025 grundlegendes Niveau (Grundkurs)
- Q2.1 Schwingungen
- Q2.2 Wellen
- Q2.4 Dopplereffekt, Schwebung

17.04.2024 Integral rechnung

Entstehung von Schall

Experimente:

- Schwingendes Lineal
- Stimmgabel

06 Die Stimmgabel schwingt so schnell, dass das Wasser aus dem Glas spritzt.

Vibration deiner Stimmbänder.

07 Du spürst die

Merke: Damit ein hörbarer Ton (Schall) entsteht, muss ein Gegenstand genügend schnell schwingen.

Wichtige Kenngrößen ein Schwingung

Merke: Die Amplitude A einer Schwingung gibt die Länge der Strecke vom Mittelpunkt der Schwingung bis zu einem der beiden Umkehrpunkte an.

Merke: Die Frequenz f einer Schwingung gibt an, wie viele Hin- und Herbewegungen in einer Sekunde erfolgen. Die Einheit ist ein Hertz (1 Hz) und es gilt: $f = \frac{n}{t}$

n = Anzahl der Hin- und Herbewegungent = dafür benötigte Zeit in Sekunden

Die Zeit für ein Mal hin- und herschwingen nennt man Schwingungsdauer T. Es gilt:

$$f = \frac{1}{T}$$

Und damit auch:

$$T = \frac{1}{f}$$

Berechne die Frequenz eines schwingenden Lineals, das für 60 Schwingungen 3 s benötigt.

Zum Weiterdenken: Beeinflusst die Amplitude die Lautstärke oder die Tonhöhe?

Schwingungsbilder

• Schwingungen kann man als Graph darstellen:

Beschreibe stichwortartig mit Hilfe der Abbildungen, wie man das Schwingungsbild eines schwingenden Körpers gewinnen kann.

Eigenschaften des Schalls

<u>Amplitude</u> → <u>laut und leise</u>

 Merke: Je lauter der Ton, desto größer ist die Amplitude der Schwingung.

Frequenz → hoch und tief

- Merke: Je höher der Ton, desto größer ist die Frequenz der Schwingung.
- Die besondere Form des Graphen wird als sinusförmig bezeichnet.

Skizziere das Schwingungsbild eines Tons in dein Heft, der...

- a) leiser wird nach 3Millisekunden.
- b) höher wird nach 2 Millisekunden.
- c) nach 3 Millisekunden tiefer und lauter wird.

2) **Berechne** die Frequenz der beiden unteren Schwingungen A) und B)!

Arten von Schall

Ton

Die Schwingung ist sinusförmig.

Eine angeschlagene Stimmgabel erzeugt einen ganz klaren Ton.

Klang

Die Schwingung ist periodisch, aber nicht sinusförmig.

Mit Musikinstrumenten kann man verschiedene Klänge erzeugen.

Geräusch

Die Schwingung ist unregelmäßig.

Geräusche entstehen z.B. bei Fahrzeugen und Maschinen.

Knall

Die Schwingung hat eine große Amplitude und klingt schnell ab.

Beim Explodieren eines Feuerwerkskörpers entsteht ein Knall.

Übungen zu Schwingungsbildern

Beschreibe die Schwingungsbilder 1) und 2) mithilfe der Größen Amplitude und Frequenz und gehe darauf ein, wie sich Tonhöhe und Lautstärke jeweils ändern.

Berechne für die Schwingungen 3) und 4) jeweils die Frequenz des Klangs.

Charakteristische Größen einer periodischen Schwingung Beispiel "Federpendel"

- ➤ Elongation = Entfernung zur Ruhelage in m: s
- \rightarrow Amplitude = maximale Elongation in m: \hat{s}
- ➤ Schwingungsdauer = Dauer einer Periode in s:

$$T = \frac{1}{f}$$

- \triangleright Frequenz = Anzahl der Schwingungsperioden pro Sek. in Hz (Hertz): f
- ightharpoonup Kreisfrequenz = Phasenwinkel der Schwingung pro Sek. in s⁻¹: ω heißt Winkelgeschwindigkeit

Dabei hat ein Kreis einen Phasenwinkel von $2\pi \rightarrow \omega = 2\pi f$

17.04.2024 Schwingungen