10th CBSE MATHEMATICS

2020-21

1 SECTION A

- 1.1 The value(s) of k for which the quadratic equation $2x^2 + kx + 2 = 0$ has equal roots, is
 - (a) 4
 - (b) ± 4
 - (c) -4
 - (d) 0
- 1.2 Which of the following is not an A.P. ?
 - (a) -1.2, 0.8, 2.8...
 - (b) $3, 3 + \sqrt{2}, 3 + 2\sqrt{2}, 3 + 3\sqrt{2}...$
 - (c) $\frac{4}{3}, \frac{7}{3}, \frac{9}{3}.\frac{12}{3}...$
 - (d) $\frac{-1}{5}, \frac{-2}{5}, \frac{-3}{5}$
- 1.3 The radius of a sphere (in cm), whose volume is $12\pi cm^3$, is
 - (a) 3
 - (b) $3\sqrt{2}$
 - (c) $3^{\frac{2}{3}}$
 - (d) $3^{\frac{1}{3}}$
- 1.4 The distance between the points (m, -n) and (-m, n) is
 - (a) $\sqrt{m^2 + n^2}$
 - (b) m + n

- (c) $2\sqrt{m^2+n^2}$
- (d) $\sqrt{2m^2 + 2n^2}$
- 1.5 In Fig 1 ,from an external point P, two tangents \vec{PQ} and \vec{PR} are drawn to a circle of radius 4cm with center O. If $\angle QPR = 90^{\circ}$, then length of \vec{PQ} is
 - (a) 3
 - (b) 4
 - (c) 2
 - (d) $2\sqrt{2}$

Fig. 1.

- 1.6 On dividing a polynomial p(x) by $x^2 4$, the quotient and remainder are found to be x and 3 respectively. The polynomial p(x)
 - (a) 3
 - (b) 4

- (c) 2
- (d) $2\sqrt{2}$
- 1.7 In Fig 2 , $DE \parallel BC$. If $\frac{AD}{DB} = \frac{3}{2}$ and AE = 2.7cm, then EC is equal to
 - (a) 2.0cm
 - (b) 1.8cm
 - (c) 4.0cm
 - (d) 2.7cm

Fig. 2.

- 1.8 a) The point on the x axis which is equidistant from (-4,0) and (10,0)
 - (a) (7,0)
 - (b) (5,0)
 - (c) (0,0)
 - (d) (3,0)
 - b) The center of a circle whose end points of a diameter are (-6,3) and (6,4) is
 - (a) (8,-1)
 - (b) (4,7)
 - (c) $(0, \frac{7}{2})$
 - (d) $(4, \frac{7}{2})$
- 1.9 The pair of linear equations,

$$\frac{3x}{2} + \frac{5y}{3}$$
 and $9x + 10y = 14$ is

- (a) consistent
- (b) inconsistent
- (c) consistent with one solution
- (d) consistent with many solutions
- 1.10 In Fig 3, (PQ) is tangent to the circle with center at O, at the point B. If $\angle AOB = 100^{\circ}$, then $\angle ABP$ is equal to
 - (a) 50°
 - (b) 40°
 - (c) 60°
 - (d) 80°

Fig. 3.

- 2.1 What is the simplest form of $\frac{1+\tan^2 A}{1+\cot^2 A}$
- 2.2 If the probability of an event E happening is 0.023, then $P\left(\vec{E}\right)$
- 2.3 All concentric circles are ______ to each other
- 2.4 The probability of an event that is sure to happen is, _____
- 2.5 AOBC is a rectangle whose 3 vertices are A = (0, -3), O = (0, 0) and B = (4, 0). The length of the diagonal is _____
- 2.6 Write the value of $sin^230^{\circ} + cos^260^{\circ}$
- 2.7 a) Form a quadratic polynomial, the sum and product of whose zeros are (-3) and 2 respectively.

- b) Can (x^2-1) be a remainder while dividing x^4-3x^2+5x-9 by (x^2+3) ? Justify the reasons.
- 2.8 Find the sum of the first 100 natural numbers.
- 2.9 The LCM of 2 numbers is 182 and their HCF is 13. If one of the numbers is 26.
- 2.10 In Fig 4 the angle of elevation from the top of a tower from a point C on the ground, which is 30m away from the foot of the tower is 30°. Find the height of the tower.

Fig. 4.

2 SECTION B

- 3.1 A cone and a cylinder have the same radii, but the height of the cone is 3 times that of the cylinder. Find the ratio of their volumes
- 3.2 a) In Fig 5, a quadrilateral ABCD is drawn to circumscribe a circle. Prove that $\vec{AB} + \vec{CD} = \vec{BC} + \vec{AD}$.

Fig. 5.

b) In Fig 6, find the perimeter of $\triangle ABC$ if $\overrightarrow{AP} = 12cm$

Fig. 6.

3.3 Find the mode of the following distribution:

Marks	0-10	10-20	20-30	30-40	40-50	50-60
Number of Students	4	6	7	12	5	6

3.4 In Fig 7 if $\vec{PQ} \parallel \vec{BC}$ and $\vec{PR} \parallel \vec{CD}$, prove that $\frac{\vec{QB}}{AQ} = \frac{DR}{AR}$.

Fig. 7.

- 3.5 a) Show that $5+2\sqrt{7}$ is an irrational number, where $\sqrt{7}$ is given to be an irrational number.
 - b) Check whether 12^n can end with the digit 0 for any natural number n.
- 3.6 If A, B and C are interior angles of $\triangle ABC$, then show that $\cos\left(\frac{B+C}{2}\right) = \sin\left(\frac{A}{2}\right)$.

3 SECTION C

3.7 Prove that: $(\sin^4 - \cos^4 + 1) \csc^2 \theta = 2$

3.8 Find the sum:
$$(-5) + (-8) + (-11) + ... + (-230)$$

- 3.9 a) Construct a $\triangle ABC$ with sides $\overrightarrow{BC} = 6cm$, $\overrightarrow{AB} = 5cm$ and $\angle ABC = 60^{\circ}$. Then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of $\triangle ABC$.
 - b) Draw a circle of radius 3.5cm. Take a point P outside the circle at a distance of 7cm from the centre of the circle and construct a pair of tangents to the circle from that point.
- 3.10 In Fig 8, ABCD is a parallelogram. A semicircle with centre O and the diameter AB has been drawn and it passes through D. If $\overrightarrow{AB} = 12$ and $\overrightarrow{OD} \perp \overrightarrow{AB}$, then find the area of the shaded region. Use $(\pi = 3.14)$

Fig. 8.

4.1 A game in a booth at a Diwali Fair involves using a spinner first. Then, if the spinner stops on an even number, the player is allowed to pick a marble from a bag. The spinner and the marbles in the bag are represented in Fig 9.

Prizes are given, when a black marble is picked. Shweta plays the game once.

Fig. 9.

- i) What is the probability that she will be allowed to pick a marble from the bag?
- ii) Suppose she is allowed to pick a marble from the bag, what is the probability of getting a prize, when it is given that the bag contains 20 balls out of which 6 are black?

- 4.2 a) A fraction becomes $\frac{1}{3}$ when 1 is subtracted from the numerator and it becomes $\frac{1}{4}$ when 8 added to its denominator. Find the fraction.
 - b) The present age of a father is three years more than three times the age of his son. Three years hence the father's age will be 10 years more than twice the age of the son. Determine their present ages.
- 4.3 a) Find the ratio in which the y-axis divides the line segment joining the points (6,-4) and (-2,-7). Also find the point of intersection
 - b) Show that the points (7,10), (-2,5) and (3,-4) and vertices of an isosceles right triangle.
- 4.4 Use Euclid Division Lemma to show that the square of any positive integer is either in the form 3q or 3q + 1 for some integer q.

4 SECTION D

- 4.5 a) Sum of the areas of two squares is $544m^2$. If the difference of their perimeters is 32m, find the sides of the two squares.
 - b) A motorboat whose speed is 18 kmph in still water takes 1 hour more to go 24 km upstream than to return downstream than to return downstream to the same spot. Find the speed of the stream.
- 4.6 a) For the following data, draw a 'less than' ogive and hence find the median of the distribution.

Age	0-10	10-20	20-30	30-40	40-50	50-60	60-70
Number of people	5	15	20	25	15	11	9

b) The distribution given below shows the number of wickets taken by bowlers in one-day cricket matches. Find the mean and the median of the number of wickets. Find the mean and the median of the number of wickets taken.

Number of wickets	0-10	10-20	20-30	30-40	40-50	50-60	60-70
Number of bowlers	5	15	20	25	15	11	9

- 4.7 A statue 1.6m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 45° . Find the height of the pedestal.Use $(\sqrt{3} = 1.73)$
- 4.8 a) Obtain other zeros of the polynomial $p(x) = 2x^4 x^3 11x^2 + 5x + 5$ if the two of its zeros are $\sqrt{5}$ and $-\sqrt{5}$
 - b) What minimum must be added to $2x^3-3x^2+6x+7$ so that the resulting polynomial will be divisible by x^2-4x+8
- 4.9 In a cylindrical vessel of radius 10cm, containing some water, 9000 small spherical balls are dropped which are completely immersed in water which raises the water level. If each spherical ball is of radius 0.5 cm then find the rise in the level of water in the vessel.
- 4.10 If a line is drawn parallel to one side of a triangle to intersect the other two sides at distinct points, prove that the other two sides are divided in the same ratio.