LAPORAN KELOMPOK "STRUKTUR DATA" D4 MANAJEMEN INFORMATIKA

ALVIN NOOR HIDAYAH
21091397016
ACHMAD NURS SYURURI ARIFIN
21091397024
MUHAMMAD DHAFA JAWADIL UBAID
21091397058
MUHAMMAD AL FAIZ PUTRA J.
21091397072
TEGUH ALDIANTO
21091397076

a. Codingan insertion sort

```
#include <iostream>
using namespace std;
int main(){
        cout << "masukan banyak array:";
        cin>>y;
        int x[y];
        // disini 5-8 itu inputan dari user dimana variabel y banyak data//
        // dan array X wadah untuk data yang akan diinputkan//
        for(int i=0; i<y; i++){
                cout<<"masukan angka ke "<<i<" :";
                //disini saya melakukan perulangan untuk mengisi index
                // dari setiap array mulai dari array ke 0//
                cin>>x[i];
                cout<<endl;
        for(int i=1; i< y; i++){
                int key = x[i];
                int j = i-1;
                while(j \ge 0 \&\& x[j] > key){
                        x[j+1] = x[j];
                        j--;
                        //disini pertama akan mulai perulangan
                        //dari indeks ke 1 yaitu variabel i
                        //variabel i akan menajdi kunci untuk dibandingkan sebelumnya
                        //jika bilangan sebelumnya lebih besar, maka key akan kembali
                        //key kembali dibandingkan dengan bil. ke 2 hingga menemukan
                        // sampai key menemukan bilangan yang diinginkan
                        //untuk menghasilkan nilai shortingan yang diinginkan disini nilai harus
berada disebelah paling kanan//
                        //yaitu harus di variabel key tersebut//
                x[j+1] = \text{key};
                cout << "proses sorting" << endl;
                //disni akan terjadi proses sort yang akan menghitung angka//
                //kemudian melakukan proses sorting angka yang diinginkan//
                for(int m=0;m<y;m++){
                cout << x[m] << " ";
          }
          cout<<endl;
        cout<<"hasil akhir"<<endl;
        for(int m=0;m< y;m++){
                cout << x[m] << " ";
        }
}
```

```
■ D:\INSERT SHORT FIX.exe
                                                                                                                                                  \times
masukan banyak array:5
masukan angka ke 0 :4
masukan angka ke 1 :20
masukan angka ke 2 :3
masukan angka ke 3 :9
masukan angka ke 4 :13
 roses sorting
4 20 3 9 13
proses sorting
3 4 20 9 13
proses sorting
3 4 9 20 13
3 4 9 20 13
proses sorting
3 4 9 13 20
hasil array yang sudah di sorting adalah
[3 ][4 ][9 ][13 ][20 ]
 Process exited after 25.36 seconds with return value 0
Press any key to continue \dots
```

b. codingan selection sort

```
for(i = 0; i < size-1; i++){
                 imin = i;
                                  //mendapatkan indeks data minimum
                 for(j = i+1; j < size; j++)
                          if(array[j] < array[imin])</pre>
                                  imin = j;
                          //menempatkan di posisi yang benar
                          swap(array[i], array[imin]);
        }
}
int main(){
        int n;
        cout << "Masukkan jumlah elemen:";</pre>
        cin >> n;
                                           //membuat array dengan jumlah elemen yang diberikan
        int arr[n];
        cout << "Masukkan elemen:" << endl;</pre>
        for(int i = 0; i < n; i++){
                 cin >> arr[i];
        }
        cout << "Array sebelum sorting:";</pre>
        display(arr, n);
        selectionSort(arr, n);
        cout << "Array sesudah sorting:";</pre>
        display(arr, n);
}
```

E:\Tugas\Struktur Data\Project\void 1.exe

c. codingan merge sort

```
#include <iostream>
    using namespace std;

void merge(int arr[], int l, int m, int r)
{
    int i, j, k;
    int n1 = m - 1 + 1;
    int n2 = r - m;

int L[n1], R[n2];

for (i = 0; i < n1; i++)
    L[i] = arr[l + i];

for (j = 0; j < n2; j++)
    R[j] = arr[m + 1 + j];
```

```
j = 0;
k = 1;
while (i < n1 \&\& j < n2)
  if (L[i] \le R[j])
     arr[k] = L[i];
    i++;
   }
  else
     arr[k] = R[j];
    j++;
  k++;
while (i < n1)
  arr[k] = L[i];
  i++;
  k++;
while (j < n2)
  arr[k] = R[j];
  j++;
  k++;
```

```
}
void mergeSort(int arr[], int 1, int r)
  if (l < r)
  {
     int m = 1 + (r - 1) / 2;
     mergeSort(arr, 1, m);
     mergeSort(arr, m + 1, r);
     merge(arr, l, m, r);
  }
}
void show(int A[], int size)
{
  int i;
  for (i = 0; i < size; i++)
     cout << A[i] << " ";
}
int main()
{
  int size;
  cout << "\nMasukan Banyak Data : ";</pre>
  cin >> size;
```

```
int \ arr[size]; \\ for (int \ i = 0; \ i < size; ++i) \\ \{ \\ cout << "\nMasukan Data \ array \ ke "<<i<" :"; \\ cin >> arr[i]; \\ \} \\ mergeSort(arr, 0, size); \\ cout << "Hasil\n"; \\ show(arr, size); \\ return 0; \\ \\
```

}

d. codingan buble sort

```
#include <iostream>
#include <conio.h>
using namespace std;
main()
{
        int data [100];
        int i, j, k, tmp;
       cout<<"Pengurutan Bilangan Buble Sort \n\n";</pre>
       cout<<"Masukkan Jumlah Bilangan: ";cin>>k;
        for(i=0; i<k; i++)
        {
                cout<<"Masukkan Angka Ke "<<(i+1)<<": ";
                cin>>data[1];
        }
        cout<<"\nAngka Sebelum Diurutkan : "<<endl;</pre>
        for(i=0; i<k; i++)
        {
                cout<<data[i]<<" ";
        }
        cout<<endl;
        for(i=0; i<k; i++)
        {
                for(j=i+1; j< k; j++)
                        if(data[i]>data[j])
                        {
                                tmp=data[i];
                                data[i]=data[j];
                                data[j]=tmp;
```

```
■ EAKUULIAH\Semester 2\Struktur Data\praktek\Buble Sort.exe

Pengurutan Bilangan Buble Sort

Masukkan Jumlah Bilangan : 5
Masukkan Angka Ke 1 : 2
Masukkan Angka Ke 2 : 4
Masukkan Angka Ke 3 : 6
Masukkan Angka Ke 3 : 6
Masukkan Angka Ke 4 : 8
Masukkan Angka Ke 5 : 10

Angka Sebelum Diurutkan :
4744512 10 4647056 0 4746696

Angka Setelah Diurutkan :
0 10 4647056 4744512 4746696
```

e. Codingan Shell Sort

```
#include<iostream>
using namespace std;
// sebuah fungsi yang mengimplementasikan shellshort.
void ShellSort(int a[], int n)
{
        int i, j, k, temp;
        // celah 'i' antara indeks elemen yang akan dibandingkan awalnya n/2.
        for(i = n/2; i > 0; i = i/2)
        {
                for(j = i; j < n; j++)
                {
                         for(k = j-i; k >= 0; k = k-i)
                         {
                                 // jika nilai pada indeks yang lebih tinggi lebih besar, maka putuskan
loop.
                                 if(a[k+i] >= a[k])
                                 break;
                                 // ganti nilai sebaliknya.
                                 else
                                 {
                                         temp = a[k];
                                         a[k] = a[k+i];
                                         a[k+i] = temp;
                                 }
                         }
                }
        }
```

```
}
int main()
{
        int n, i;
        cout<<"\nmasukkan jumlah elemen data yang akan diurutkan: ";
        cin>>n;
        int arr[n];
        for(i = 0; i < n; i++)
        {
                cout<<"masukkan elemen "<<i+1<<": ";
                cin>>arr[i];
        }
        ShellSort(arr, n);
       // mencetak data yang diurutkan.
        cout<<"\ndata yang diurutkan ";</pre>
        for (i = 0; i < n; i++)
                cout<<"->"<<arr[i];
        return 0;
}
```

KESIMPULAN

Berdasarkan hasil output dari kodingan diatas maka dapat disimpulkan bahwa sortingan paling cepat adalah Insertion Sort dan sortingan paling lama adalah Bubble Sort.