1 Notes

1.1 Discrete Fourier Transform

Assume we are working with an *N* length discrete signal and we would like to find its discrete frequencies. This is done through the Discrete Fourier Transform (DFT), which is simply a change of basis to what is called the DFT basis.

First, let us vectorize our signal. If x[n] is our input signal, we model it as a vector by letting the n^{th} coordinate be x[n]. In other words,

$$\vec{x} = [x[0], x[1], x[2], \dots, x[N-1]]^T$$

In order to decompose \vec{x} into its constituent frequencies, we must find the vector representation of these frequencies.

Given that we have an N length signal, we have N different discrete frequencies of the following form.

$$u_k[n] = \frac{1}{\sqrt{N}} e^{j\frac{2\pi}{N}kn}$$
 for $k = 0, 1, ... N - 1$

To simplify we let

$$W_N = e^{j\frac{2\pi}{N}}$$

and we rewrite

$$u_k[n] = \frac{1}{\sqrt{N}} W_N^{kn} \text{ for } k = 0, 1, \dots N - 1$$

In building up a frequency basis, we vectorize the above frequencies in a manner similar to how we vectorized \vec{x} . Define \vec{u}_k as follows.

$$\vec{u}_k = \frac{1}{\sqrt{N}} \left[1, W_N^k, W_N^{k(2)}, \dots, W_N^{k(N-1)} \right]^T$$

 $\{\vec{u}_k\}_{k=0}^{N-1}$ is an orthonormal set of vectors. Recall that an orthonormal set of vectors satisfies the following:

$$\langle \vec{u}_p, \vec{u}_q \rangle = \sum_{n=0}^{N-1} \overline{\vec{u}_p} \vec{u}_q = \left\{ \begin{array}{l} 0, p \neq q \\ 1, p = q \end{array} \right.$$

To see why this set is orthonormal, first consider arbitrary \vec{u}_p and \vec{u}_q such that $p \neq q$.

$$egin{aligned} \langle ec{u}_p, ec{u}_q
angle &= rac{1}{N} \sum_{n=0}^{N-1} e^{-jrac{2\pi}{N}pn} e^{jrac{2\pi}{N}qn} \ &= rac{1}{N} \sum_{n=0}^{N-1} e^{jrac{2\pi}{N}(q-p)n} \end{aligned}$$

Before we continue, let us remind ourselves about the sum of a finite geometric series. Let S be the sum of the series. Then,

$$S = 1 + a + a^2 + \cdots + a^{N-1}$$

Then,

$$aS = a + a^2 + a^3 + \cdots + a^N$$

Subtracting the two, we get,

$$(1-a)S = 1 - a^N \implies S = \frac{1 - a^N}{1 - a}$$

Applying this, we get,

$$\begin{split} \langle \vec{u}_p, \vec{u}_q \rangle &= \frac{1}{N} \sum_{n=0}^{N-1} \left(\underbrace{e^{j\frac{2\pi}{N}(q-p)}}_{a} \right)^n \\ &= \frac{1}{N} \left(\frac{1-a^N}{1-a} \right) \\ &= \frac{1}{N} \left(\frac{1-e^{j\frac{2\pi}{N}(q-p)N}}{1-e^{j\frac{2\pi}{N}(q-p)}} \right) \end{split}$$

Note that q - p is an non-zero integer. This means that,

$$e^{j\frac{2\pi}{N}(q-p)N} = e^{j2\pi(q-p)} = 1$$

Applying this, we get,

$$\langle \vec{u}_p, \vec{u}_q \rangle = 0$$

Finally, we also observe that, for a particular DFT basis vector,

$$\langle \vec{u}_p, \vec{u}_p \rangle = \frac{1}{N} \sum_{n=0}^{N-1} e^{-j\frac{2\pi}{N}pn} e^{j\frac{2\pi}{N}pn} = \frac{1}{N} \sum_{n=0}^{N-1} 1 = 1$$

Thus, $\{\vec{u}_k\}_{k=0}^{N-1}$ is an orthonormal set of vectors and is a valid basis. The coefficients of \vec{x} within this basis are called the frequency components of \vec{x} and are often denoted by \vec{X} .

$$\vec{X} = \left[\langle \vec{u}_0, \vec{x} \rangle, \langle \vec{u}_1, \vec{x} \rangle, \cdots, \langle \vec{u}_{N-1}, \vec{x} \rangle \right]^T$$

The k^{th} frequency component is the k^{th} coordinate of \vec{X} and is denoted as X[k]. If we want to get the component in the same space as \vec{x} , we compute the projection.

$$\operatorname{proj}_{\vec{u}_k} \vec{x} = X[k] \vec{u}_k$$

It is worthwhile to note that there is a conjugate property we often exploit.

$$e^{j\frac{2\pi}{N}pn} = e^{-j\frac{2\pi}{N}(N-p)n}$$

This means that,

$$\vec{u}_k = \overline{\vec{u}_{N-k}}$$

In fact, since we are using complex exponentials, there is a periodicity that can be succinctly expressed with the remainder operation (also called mod). Let p be any arbitrary integer.

$$\vec{u}_p = \vec{u}_{p \bmod N}$$

2 Questions

1. DFT of pure sinusoids

(a) Consider the continuous-time signal $x(t) = \cos\left(\frac{2\pi}{3}t\right)$. Suppose that we sampled it every 1 second to get (for n = 3 time steps):

$$\vec{x} = \left[\cos\left(\frac{2\pi}{3}(0)\right) \quad \cos\left(\frac{2\pi}{3}(1)\right) \quad \cos\left(\frac{2\pi}{3}(2)\right)\right]^T.$$

Compute \vec{X} and the basis vectors $\vec{u_k}$ for this signal.

Answer:

$$\vec{X} = \frac{\sqrt{3}}{2} \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$$

Solution: Directly apply $F^*\vec{x}$ to derive \vec{X} .

$$\vec{X} = \frac{\sqrt{3}}{2} \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$$

(b) Now for the same signal as before, suppose that we took n = 6 samples. In this case we would have:

$$\vec{x} = \left[\cos\left(\frac{2\pi}{3}(0)\right) \quad \cos\left(\frac{2\pi}{3}(1)\right) \quad \cos\left(\frac{2\pi}{3}(2)\right) \quad \cos\left(\frac{2\pi}{3}(3)\right) \quad \cos\left(\frac{2\pi}{3}(4)\right) \quad \cos\left(\frac{2\pi}{3}(5)\right)\right]^T.$$

Repeat what you did above. What are \vec{X} and the basis vectors $\vec{u_k}$ for this signal.

Answer:

$$\vec{X} = \frac{\sqrt{6}}{2} \begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}^T$$

Solution: Directly apply $F^*\vec{x}$ to derive \vec{X} .

$$\vec{X} = \frac{\sqrt{6}}{2} \begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}^T$$

(c) Let's do this more generally. For the signal $x(t) = \cos\left(\frac{2\pi k}{N}t\right)$, compute \vec{X} of its vector form in discrete time, \vec{x} , of length n = N:

$$\vec{x} = \left[\cos\left(\frac{2\pi k}{N}(0)\right) \quad \cos\left(\frac{2\pi k}{N}(1)\right) \quad \cdots \quad \cos\left(\frac{2\pi k}{N}(N-1)\right)\right]^T.$$

Answer:

$$X[k] = X[N-k] = \frac{\sqrt{N}}{2}$$
$$X[m] = 0 \text{ for } m \neq k, N-k.$$

Solution:

- i. Show that $\vec{u}_k + \vec{u}_{N-k} = \frac{2}{\sqrt{N}}\vec{x}$.
- ii. Then we have

$$X[k] = X[N-k] = \frac{\sqrt{N}}{2}$$
$$X[m] = 0 \text{ for } m \neq k, N-k.$$