Whong Bioinformatik & Multiple Sequence Alignment

Marihera feistner 30.8.2022 (5562003)

4.1 $N \times (N-1)/2 = 6$

AATCG AACG CG

@ AATCG 2 AA - CG

@ AATCG

1 AATCG

2 AACG 3 -- 26

Q AA (G G AA - -

3 Sm - - CG

9 AA - -

P= P

p(1-2)= == 0,2 p(1-3) = = = 0,6 P(1-4)= = = 0,6 p(2-3)= 1 = 0.5 p(2-4)= 1 = 0,5

P (3-4)=1 = 1

	1	12	3	4	
1	-	0,2	0,6	0,6	
2	0,2	-	0,5	0,5	
3	4,6	0,5	-	1	

4 0,6 9,5 1 -

2= 1,2 $d(2,3) = \frac{1}{2} (d(1,3) + d(2,3)) = \frac{1}{2} = 0.55$

d(2,4)= 1 (0,6+0,5)=0,55

Y= 2,3 a(V,4)= 1 (1+0,5+0,6)=0,7

- Konsensalignment

0=2-4-4-4-4-11-10=-24

4.2 PIG→ Pig

SMICR → Dickschwänzig Schnalfüßbeuklmaus

ORNAN → Schnabelhier

BRATR → (Weißkehl) Faulfier

CHICK → Chicken

VICPA → Albala

DANRE→ Zebrafisch

LIPTU → Kelp Snail Sish

Die beiden Fische LIPTU & DA NRE bilden wie zu erwarten ein Clustersowie die beiden Säugetiere VICPA & PIGT Loes ergibt sinn, dass die Sequenzen der Hämoglobinunkreinleit in nahe verwand ten Spezies sehr ähnlich sind Sokann man sagen = je länger entfernter die Verwandt chaft, dest mehr Zeit un liegt zur den Organismen und mehr Mutahonen in der Sequenz konnten stallfinden