1 Fiber and Fibration

I am trying to understand fiber, fibration and pullback with my stupid brain.

1.1 Fiber

I will use "intuitive" rather than "definition" cause I really don't understand fiber.

Intuitive 1.1 (Fiber). Suppose we are in a space (i.e. **Set**), and a mapping $f: A \to B$, then for some point $b \in B$, the inverse image of b, which is exactly $f^{-1}(b)$, is called a fiber.

We can treat a product as a pullback with apex 1, the terminal object:

We can treat A as the fiber against to the only point in 1, same for B. Now, what if we replace 1 with something else?

For every point $i \in I$, we have fiber $A_i \subseteq A$ and $B_i \subseteq B$, which can form a product $A_i \times B_i$. We may sum all these products, and finally get $A \times_I B$, this is why the pullback is sometimes called *fiber product*.

We can also pick certain fiber from this pullback:

The morphism $x:1\to B$ is a global element, which "pick" an element of B, then i must maps φ to the fiber of f over point x, which should be a injection.

The collection of fiber (the source of the morphism/the domain of the function) is called *fiber bundle*.

1.2 Fibration

Some intuitive comes from this article.

Intuitive 1.2. A fibration works like an indexed family (i.e. a function $I \to A$), but do it in fiber way (i.e. a function $A \to I$).

1.3 Base-change Functor

These section is related to The Dao of FP

We can also treat the morphism on right-hand side as a fibration, and the bottom-left corner a base (the target of a fibration):

Then we can treat $E \xrightarrow{p} B$ as an object in the slice category \mathcal{C}/B , similarly, the left-hand side morphism an object in \mathcal{C}/A . Then we can define a base-change functor $f^*: \mathcal{C}/B \to \mathcal{C}/A$ such that:

$$\begin{array}{cccc}
f^*E & \xrightarrow{g} & E \\
f^*p & \downarrow & \downarrow p \\
A & \xrightarrow{f} & B
\end{array}$$

a pullback.

We denote f^*E as the source of f^*p , it doesn't mean that f^* accept a object in \mathcal{C} .

We need to define the action of base-change functor on the morphism of \mathcal{C}/B :

Two commute triangles are the morphisms in \mathcal{C}/A and \mathcal{C}/B .

Since f^*E' is a pullback of $A \xrightarrow{B} \xleftarrow{E'}$, it tips us that we can find the commute square below to get the morphism we want:

If we look the last diagram carefully, we can find this square commutes:

therefore

The functoriality follows the fact that f^*e is unique that makes the diagram commutes.