mvord: An R Package for Fitting Multivariate Ordinal Regression Models

Rainer Hirk WU Wirtschaftsuniversität Wien **Kurt Hornik** WU Wirtschaftsuniversität Wien Laura Vana WU Wirtschaftsuniversität Wien

Abstract

The R package **mvord** implements composite likelihood estimation in the class of multivariate ordinal regression models with probit and logit link. A flexible modeling framework for ordinal repeated measurements on the same subject is set up, which takes into consideration the dependence among the multiple observations by employing different error structures. Heterogeneity in the error structure across the subjects can be accounted for by the package, which allows for covariate dependent error structures. In addition, regression coefficients and threshold parameters are varying across the multiple response dimensions in the default implementation. However, constraints can be defined by the user if a reduction of the parameter space is desired.

Keywords: Composite likelihood, Multivariate ordered logit, Multivariate ordered probit, R package.

1. Model Class

Multivariate ordinal regression models are based on cumulative link models (Tutz 2012) which are amongst the most popular models for univariate ordinal data analysis. In cumulative link models the observed ordinal outcome Y is assumed to be a coarser (categorized) version of a latent continuous variable \widetilde{Y} . If multiple observations on the same subject are observed, univariate cumulative link models can be extended to a multivariate framework. These repeated measurements for each subject may take place either at the same time yielding a cross-sectional multivariate ordinal regression model or at different points in time yielding a longitudinal multivariate ordinal regression model.

1.1. Model formulation

Let Y_{ij} denote the ordinal observation and x_{ij} be a p-dimensional vector of covariates for subject i and outcome j, where i = 1, ..., n and $j \in J_i$, for J_i a subset of all available outcomes J in the data set. Moreover, we denote by q = |J| and $q_i = |J_i|$ the number of elements in the set J and J_i , respectively. Following the cumulative link modeling approach (Agresti 2002), the ordinal response Y_{ij} is assumed to be a coarser (categorized) version of a latent continuous variable \widetilde{Y}_{ij} . The observable categorical outcome Y_{ij} and the unobservable

latent variable \widetilde{Y}_{ij} are connected by:

$$Y_{ij} = r_{ij} \quad \Leftrightarrow \quad \theta_{j,r_{ij}-1} < \widetilde{Y}_{ij} \le \theta_{j,r_{ij}}, \qquad r_{ij} \in \{1,\dots,K_j\}$$

where r_{ij} is a category out of K_j ordered categories and $\boldsymbol{\theta}_j$ is a vector of suitable threshold parameters for outcome j with the following restriction: $-\infty < \theta_{j,1} < \cdots < \theta_{j,K_j-1} < \infty$. Note that in this setting binary observations can be treated as ordinal observations with two categories $(K_j = 2)$.

For the relationship between the latent variable \widetilde{Y}_{ij} and the vector of covariates \boldsymbol{x}_{ij} we assume the following linear model:

$$\widetilde{Y}_{ij} = \beta_{j0} + \boldsymbol{x}_{ij}^{\mathsf{T}} \boldsymbol{\beta}_j + \epsilon_{ij}, \tag{1}$$

where β_{j0} is an intercept term, $\boldsymbol{\beta}_j = (\beta_{j1}, \dots, \beta_{jp})^{\top}$ is a vector of regression coefficients, both corresponding to outcome j, and ϵ_{ij} is a mean zero error term. The number of ordered categories K_j as well as the threshold parameters $\boldsymbol{\theta}_j$ and the regression coefficients $\boldsymbol{\beta}_j$ are allowed to vary across outcome dimensions $j \in J$ to account for possible heterogeneity across the response variables. We further assume the n subjects to be independent and that the error terms are uncorrelated with the covariates.

The dependence among the different responses is accounted for by assuming the vector of error terms for each subject $\epsilon_i = [\epsilon_{ij}]_{j \in J_i}$ to follow a multivariate distribution. The multivariate distribution functions we consider are the multivariate normal distribution $\epsilon_i \sim N(\mathbf{0}, \Sigma_i)$, which corresponds to the probit link, and the multivariate logistic distribution $\epsilon_i \sim \mathcal{L}(\mathbf{0}, \Sigma_i)$ yielding the logit link, where the covariance matrix Σ_i captures the correlation between the vector of responses for subject i. For the logit link we approximate the multivariate logistic distribution by a multivariate t-distribution with fixed degrees of freedom (following the approach of O'Brien and Dunson 2004). More details can be found in Hirk, Hornik, and Vana (2017).

1.2. Identifiability Issues

As the absolute scale and the absolute location are not identifiable in ordinal models further restrictions on the parameter set need to be imposed. Assuming Σ_i is a covariance matrix with diagonal elements $[\sigma_{ij}^2]_{j\in J_i}$, only the quantities β_j/σ_{ij} and $(\theta_{j,r_{ij}}-\beta_{j0})/\sigma_{ij}$ are identifiable in the model in Equation 1. The scale can be fixed either by restricting the full variance-covariance matrix Σ_i to be a correlation matrix R_i , by fixing two threshold parameters, or the intercept and a threshold parameter. In order to fix the location either the intercept β_{j0} or one threshold parameter has to be set to some value. Hence, in order to obtain an identifiable model the parameter set is typically constrained in one of the following ways:

- Fixing the intercept β_{j0} (e.g., to zero), using flexible thresholds $\boldsymbol{\theta}_j$ and fixing σ_{ij} (e.g., to unity) $\forall j \in J_i, \forall i \in \{1, \dots, n\}$;
- Leaving the intercept β_{j0} unrestricted, fixing one threshold parameter (e.g., $\theta_{j,1} = 0$) and fixing σ_{ij} (e.g., to unity) $\forall j \in J_i, \forall i \in \{1, ..., n\}$;
- Fixing the intercept β_{j0} (e.g., to zero), fixing one threshold parameter (e.g., $\theta_{j,1} = 0$) and leaving σ_{ij} unrestricted $\forall j \in J_i, \forall i \in \{1, ..., n\}$;

• Leaving the intercept β_{j0} unrestricted, fixing two threshold parameters (e.g., $\theta_{j,1} = 0$ and $\theta_{j,2} = 1$) and leaving σ_{ij} unrestricted $\forall j \in J_i, \forall i \in \{1, ..., n\}$ (note that this parameterization cannot be applied to the binary case).

Note that the first two options are the most commonly used in the literature. All of these alternative parameterizations of the models are supported by the **mvord** package, allowing the user to choose the most convienient one for each specific application. Table 2.5.2 gives an overview on all identifiable model parameterizations.

1.3. Error Structures

We mainly distinguish between two different model types with different parameterizations, one with standardized error variances (correlation error structure) and one with unrestricted error variances (covariance error structure). For both model types we allow for a factor dependent error structure and in case of a correlation error structure we additionally allow for a covariate dependent equicorrelation and AR(1) error structures. For the sake of notation we assume in the following that the number of repeated measurements is equal for all subjects and denoted by q. In the case of $q_i \neq q$, the matrices presented below will be subsetted by picking the rows and columns corresponding to $j \in J_i$.

Correlation error structure

• General correlation structure

In this parameterization we fix the scale by restricting the full variance-covariance to be a correlation matrix and obtain the following error distribution:

$$\boldsymbol{\epsilon}_{i} = (\epsilon_{i1}, \epsilon_{i2}, \dots, \epsilon_{iq})^{\top} \sim F_{q} \begin{pmatrix} \mathbf{0}, \begin{pmatrix} 1 & \rho_{12} & \cdots & \rho_{1q} \\ \rho_{12} & 1 & \cdots & \rho_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{1q} & \rho_{2q} & \cdots & 1 \end{pmatrix} \end{pmatrix}. \tag{2}$$

As absolute location is not identifiable in this model one of the following constraints need to be imposed for all $j \in J$:

- the intercept β_{j0} is fixed to some constant c (e.g., the default value is zero), or
- the first threshold $\theta_{i,1}$ is fixed to some value.

• Factor dependent correlation structure

In order to account for heterogeneity in the error terms, a first model extension allows for factor-varying correlation structures. To be more precise, we allow for different correlation matrices in the errors for each subject i, depending on some factor f(i) which is assumed to be constant across repeated measurements j. The factor dependent error structure for a correlation structure has the following form:

$$\boldsymbol{\epsilon}_i = (\epsilon_{i1}, \epsilon_{i2}, \dots, \epsilon_{iq})^{\top} \sim F_q(\mathbf{0}, \boldsymbol{R}_{f(i)}).$$

• Covariate dependent equicorrelation structure

We improve the complexity of the model by allowing a covariate dependent equicorrelation structure. In this setting, we assume that correlations are equal across all pairs, but differ across subjects i. The correlation parameter ρ_i of each subject i is assumed to depend on a vector of covariates \mathbf{s}_i . Fisher's z-transformation allows us to reparameterize the linear term $\alpha_0 + \mathbf{s}_i^{\mathsf{T}} \boldsymbol{\alpha}$ in terms of a correlation parameter for each subject:

$$\frac{1}{2}\log\left(\frac{1+
ho_i}{1-
ho_i}
ight) = lpha_0 + oldsymbol{s}_i^{ op}oldsymbol{lpha}.$$

Solving for ρ_i gives us the following re-transformation:

$$\rho_i = \frac{e^{2(\alpha_0 + s_i \alpha)} - 1}{e^{2(\alpha_0 + s_i \alpha)} + 1}.$$

As a consequence, this transformation allows for subject-varying correlations which depend on subject-specific covariates that have to be constant across repeated measurements j. We obtain an equicorrelation structure that is able to account for heterogeneity in the errors:

$$\boldsymbol{\epsilon}_i = (\epsilon_{i1}, \epsilon_{i2}, \dots, \epsilon_{iq})^{\top} \sim F_q \begin{pmatrix} 1 & \rho_i & \cdots & \rho_i \\ \rho_i & 1 & \cdots & \rho_i \\ \vdots & \vdots & \ddots & \vdots \\ \rho_i & \rho_i & \cdots & 1 \end{pmatrix}$$
.

• AR(1) correlation structure

For given consecutive equi-spaced time points t_1, \ldots, t_T we assume an autoregressive error structure of order one with $corr(\epsilon_{it_k}, \epsilon_{it_l}) = \rho^{|t_l - t_k|}$ for each subject i. In this case the correlation structure has the following form:

$$\boldsymbol{\epsilon}_{i} = (\epsilon_{it_{1}}, \epsilon_{it_{2}}, \dots, \epsilon_{it_{T}})^{\top} \sim F_{T} \begin{pmatrix} 1 & \rho^{|t_{2}-t_{1}|} & \dots & \rho^{|t_{T}-t_{1}|} \\ \rho^{|t_{2}-t_{1}|} & 1 & \dots & \rho^{|t_{T}-t_{2}|} \\ \vdots & \vdots & \ddots & \vdots \\ \rho^{|t_{T}-t_{1}|} & \rho^{|t_{T}-t_{2}|} & \dots & 1 \end{pmatrix} \end{pmatrix}.$$

This AR(1) correlation structure can be extended to a covariate dependent setting in analogy to the equicorrelation structure.

Covariance error structure

• General covariance structure

In a further parameterization we leave the variance-covariance matrix unrestricted and obtain the following error distribution:

$$\boldsymbol{\epsilon}_{i} = (\epsilon_{i1}, \epsilon_{i2}, \dots, \epsilon_{iq})^{\top} \sim F_{q} \begin{pmatrix} \boldsymbol{\sigma}_{1}^{2} & \rho_{12}\sigma_{1}\sigma_{2} & \cdots & \rho_{1q}\sigma_{1}\sigma_{q} \\ \rho_{1}\sigma_{1}\sigma_{2} & \sigma_{2}^{2} & \cdots & \rho_{2q}\sigma_{2}\sigma_{q} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{1q}\sigma_{1}\sigma_{q} & \rho_{2q}\sigma_{2}\sigma_{q} & \cdots & \sigma_{q}^{2} \end{pmatrix} \right).$$
(3)

In this model we again need further restrictions on the parameter set in order to obtain an identifiable scale and location. We either fix

- the first two thresholds $\theta_{j,1}$ and $\theta_{j,2}$ to some value (e.g., in the default case we set $\theta_{j,1} = 0$ and $\theta_{j,2} = 1$),
- the first threshold $\theta_{j,1}$ and the last threshold θ_{j,K_j-1} to some value, or
- the intercept β_{j0} and the first threshold $\theta_{j,1}$ to some value

for all repeated measurements $j \in J$.

• Factor dependent covariance structure

In order to account for some heterogeneity in the error terms, we allow for different covariance matrices in the errors for each subject i, depending on some factor f(i). In this case the factor dependent covariance structure has the following form:

$$\boldsymbol{\epsilon}_i = (\epsilon_{i1}, \epsilon_{i2}, \dots, \epsilon_{iq})^{\top} \sim F_q(\mathbf{0}, \boldsymbol{\Sigma}_{f(i)}).$$

1.4. Composite Likelihood Estimation

In order to estimate the model parameters we use a composite likelihood approach, where the full likelihood is approximated by a pseudo-likelihood which is constructed from lower dimensional marginal distributions, more specifically by "aggregating" the likelihoods corresponding to pairs of observations (Varin, Reid, and Firth 2011).

For a given parameter vector Γ , which contains the threshold parameters, the regression coefficients and the correlation (and variance) parameters, the likelihood is given by:

$$\mathscr{L}(\mathbf{\Gamma}|[X_i]_{i=1:n},Y) = \prod_{i=1}^n \mathsf{P}(\cap_{j\in J_i} Y_{ij} = r_{ij}|\mathbf{\Gamma},X_i)^{w_i} = \prod_{i=1}^n \left(\int_{D_i} f_{q_i}(\widetilde{\mathbf{Y}}_i|\mathbf{\Gamma},X_i) d^{q_i}\widetilde{\mathbf{Y}}_i\right)^{w_i},$$

where X_i is a $q_i \times p$ matrix of covariates, $D_i = \prod_{j \in J_i} (\theta_{j,r_{ij}-1}, \theta_{j,r_{ij}})$ is a Cartesian product, w_i are are subject specific non-negative weights, which are set to one in the default case, and f_{q_i} is the q_i -dimensional density of the error terms ϵ_i .

We approximate the full likelihood by a pseudolikelihood which is constructed from bivariate marginal distributions. If the number of observed outcomes for subject i is less than two $(q_i < 2)$, then the univariate marginal distribution enters the likelihood. For the sake of notation we introduce an $n \times q$ binary index matrix Z, where each element z_{ij} takes a value of 1 if $j \in J_i$ and 0 otherwise. The pairwise log-likelihood function is obtained by:

$$p\ell(\mathbf{\Gamma}|Y) = \sum_{i=1}^{n} w_i \left[\sum_{k=1}^{q-1} \sum_{l=k+1}^{q} \mathbb{1}_{\{z_{ik}z_{il}=1\}} \log \left(\mathsf{P}(Y_{ik} = r_{ik}, Y_{il} = r_{il} | \mathbf{\Gamma}) \right) + \mathbb{1}_{\{q_i=1\}} \sum_{k=1}^{q} \mathbb{1}_{\{z_{ik}=1\}} \log \left(\mathsf{P}(Y_{ik} = r_{ik}, | \mathbf{\Gamma}) \right) \right]. \tag{4}$$

Denoting by $U_{ij} = (\theta_{j,r_{ij}} - \beta_{j0} - \boldsymbol{x}_{ij}^{\top}\boldsymbol{\beta}_{j})/\sigma_{ij}$ the upper and by $L_{ij} = (\theta_{j,r_{ij}-1} - \beta_{j0} - \boldsymbol{x}_{ij}^{\top}\boldsymbol{\beta}_{j})/\sigma_{ij}$ the lower integration bounds, the uni- and bivariate probabilities are given by:

$$\begin{split} \mathsf{P}(Y_{ik} = r_{ik}, Y_{il} = r_{il}|\cdot) &= \int_{L_{ik}}^{U_{ik}} \int_{L_{il}}^{U_{il}} f_2(v_{ik}, v_{il}|\cdot) dv_{ik} dv_{il}, \\ \mathsf{P}(Y_{ik} = r_{ik}|\cdot) &= \int_{L_{ik}}^{U_{ik}} f_1(v_{ik}) dv_{ik}. \end{split}$$

The maximum pairwise likelihood estimates $\hat{\Gamma}_{PL}$ are obtained by direct maximization of the composite likelihood given in Equation 4. The parameters to be estimated are reparametrized (where needed) such that unconstrained optimization can be performed. First, we reparametrize the threshold parameters in order to achieve monotonicity. Second, for all unrestricted correlation (and covariance) matrices we use the spherical parameterization of Pinheiro and Bates (1996). This parameterization has the advantage that it can be easily applied to correlation matrices. Third, if we assume to have equicorrelated or AR(1) errors, we use the hyperbolic tangent transformation.

Computation of the standard errors is needed in order to quantify the uncertainty of the maximum pairwise likelihood estimates. Under certain regularity conditions, the maximum pairwise likelihood estimates are consistent as the number of responses is fixed and $n \to \infty$. In addition, the maximum pairwise likelihood estimator is asymptotically normal with asymptotic mean Γ and a covariance matrix which equals the inverse of the Godambe information matrix:

$$G(\mathbf{\Gamma})^{-1} = H^{-1}(\mathbf{\Gamma})V(\mathbf{\Gamma})H^{-1}(\mathbf{\Gamma}),$$

where $G(\Gamma)$ denotes the Godambe information matrix, $H(\Gamma)$ the Hessian (sensitivity matrix) and $V(\Gamma)$ the variability matrix. The Hessian $H(\Gamma)$ and variability matrix $V(\Gamma)$ can be estimated as follows:

$$\hat{V}(\mathbf{\Gamma}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial p \ell_{i}(\hat{\mathbf{\Gamma}}_{\mathrm{PL}} | \mathbf{Y}_{i})}{\partial \mathbf{\Gamma}} \left(\frac{\partial p \ell_{i}(\hat{\mathbf{\Gamma}}_{\mathrm{PL}} | \mathbf{Y}_{i})}{\partial \mathbf{\Gamma}} \right)^{\top}, \ \hat{H}(\mathbf{\Gamma}) = -\frac{1}{n} \sum_{i=1}^{n} \frac{\partial^{2} p \ell_{i}(\hat{\mathbf{\Gamma}}_{\mathrm{PL}} | \mathbf{Y}_{i})}{\partial \mathbf{\Gamma} \partial \mathbf{\Gamma}^{\top}},$$

where $p\ell_i(\Gamma|Y_i)$ is the component of the pairwise log-likelihood corresponding to subject *i*. It is possible to avoid the computation of the second-order derivatives, as the Hessian can be computed as:

$$\hat{H}(\mathbf{\Gamma}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{k < l, k, l \in J_i} \left(\frac{\partial p \ell_i(\hat{\mathbf{\Gamma}}_{\mathrm{PL}}|Y_{ik}, Y_{il})}{\partial \mathbf{\Gamma}} \right) \left(\frac{\partial p \ell_i(\hat{\mathbf{\Gamma}}_{\mathrm{PL}}|Y_{ik}, Y_{il})}{\partial \mathbf{\Gamma}} \right)^{\top}.$$

In order to compare different models, the composite likelihood information criterion can be used: $\mathrm{CLIC}(\Gamma) = -2 \ p\ell(\hat{\Gamma}_{\mathrm{PL}}|X,Y) + k \ \mathrm{tr}(\hat{V}(\Gamma)\hat{H}(\Gamma)^{-1})$ (where k=2 corresponds to CLAIC and $k=\log(n)$ corresponds to CLBIC). A comprehensive overview and further details on the properties of the maximum composite likelihood estimates is provided in Varin (2008).

2. Implementation

Multivariate ordinal regression models in the R package **mvord** are fitted using the function multord()

```
+ response.names = NULL,
+ response.levels = NULL,
+ coef.constraints = NULL,
+ threshold.constraints = NULL,
+ threshold.values = NULL,
+ weights = NULL,
+ se = TRUE,
+ start.values = NULL,
+ solver = "BFGS",
- control = list(maxit=200000, trace = 1, kkt = FALSE)
+ )
```

Two link functions and different error structures are implemented in multord(). By default, threshold parameters and regression coefficients are allowed to be outcome specific. However, this can be restricted by the user, who can specify constraints on the threshold parameters and/or on the regression coefficients.

All features are illustrated by means of a simulated data set which corresponds to an application in credit risk modeling.

 $R > head(data_cr_multord, n = 3)$

```
firm_id rater_id rating
                                ICR
                                           LR
                                                  LEV1
                                                             LEV2
                        D 1.546318 0.2484137 3.782934 0.92053787
1
        1
                R1
2
        2
                R.1
                        B 8.723779 0.1506502 1.033042 0.05305052
3
        3
                R1
                        D 4.726520 0.5187664 8.942818 0.97001785
         PR
                1RSIZE
                           1SYSR BSEC
1 0.2743184 -11.202807 -3.691023 BSEC3
2 0.1182763
             -8.815116 -4.270618 BSEC3
3 0.2871493 -9.548691 -3.895642 BSEC6
R> str(data_cr_multord, vec.len = 3)
'data.frame':
                     4566 obs. of 11 variables:
$ firm_id : Factor w/ 1665 levels "1","2","3","4",...: 1 2 3 4 5 6 7 8 ...
 $ rater_id: Factor w/ 4 levels "R1", "R2", "R3",..: 1 1 1 1 1 1 1 1 ...
                  "D" "B" "D" ...
 $ rating
          : chr
 $ ICR
                  1.55 8.72 4.73 4.08 ...
           : num
 $ LR
           : num 0.248 0.151 0.519 0.168 ...
           : num 3.78 1.03 8.94 2.19 ...
 $ LEV1
$ LEV2
           : num 0.9205 0.0531 0.97 2.8743 ...
$ PR
           : num 0.2743 0.1183 0.2871 0.0821 ...
 $ 1RSIZE
                  -11.2 -8.82 -9.55 -8.66 ...
           : num
           : num -3.69 -4.27 -3.9 -5.13 ...
 $ 1SYSR
           : Factor w/ 8 levels "BSEC1", "BSEC2", ...: 3 3 6 4 3 1 6 4 ...
 $ BSEC
```

2.1. Data structure

We use the long format for the input of data, where each row contains a subject index i (firm_id), a repeated measurement index j (rater_id), an ordinal response (rating) and all the covariates (ICR, LR, LEV1, LEV2, PR, 1RSIZE and 1SYSR). This long format data stucture is internally transformed to a matrix of responses Y (which contains NA in the case of missing entries) and a list of covariate matrices X_j for all $j \in J^1$. In order to construct these objects, subject index i and the repeated measurement index j should be specified. This can be performed by an optional argument index, a character vector of length two, specifying the column names of the subject index and the repeated measurement index in data. In the credit risk example we set:

```
R> index <- c("firm_id", "rater_id")
R> index
[1] "firm_id" "rater_id"
```

The default value of index is NULL assuming that the first column of data contains the subject index i and the second column the repeated measurement index j. If specific constraints are imposed on the threshold parameters and/or on the regression coefficients, it is important to know which level of the repeated measurement index j corresponds to the first dimension, second dimension and so on. Hence, a well defined index $j \in J$ for the repeated measurements is needed. Therefore, a vector response.names is used to define the index number of the repeated measurements:

```
R> response.names <- c("R1", "R2", "R3", "R4")
R> response.names
[1] "R1" "R2" "R3" "R4"
```

The default value of response.names is NULL giving the natural ordering of the levels of the factor variable for all the repeated measurements. The ordering of response.names always specifies the index of the repeated measurement unit $j \in J$. This ordering is essential when putting constraints on the parameters and when setting response.levels:

¹In order to avoid numerical instabilities we suggest to standardize the covariates x_{ij} .

```
[1] "F" "E" "D" "C" "B" "A"

$R3

[1] "M" "L" "K" "J" "I" "H" "G"

$R4

[1] "O" "N"
```

If the categories differ across repeated measurements (either the number of categories and/or the category labels) one needs to specify the response.levels explicitly. This is performed by a list of length J (number of repeated measurements), where each element contains the names of the levels of the ordered categories in ascending (or if desired descending) order.

2.2. Formula

The ordinal responses Y (rating) and the covariates are passed by a formula object. Intercepts can be included or excluded in the model depending on the model parameterization chosen in order to ensure identifiability:

Model without intercept If the intercept should be removed, the formula of a given response (rating) and covariates (ICR, LR, LEV1, LEV2, PR, 1RSIZE and 1SYSR) has the following form:

```
R> formula <- rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + 1RSIZE + 1SYSR
```

Model with intercept If one wants to include an intercept in the model, there are two equivalent possibilities to set the model formula. Either the intercept is included explicitly by:

```
R> formula <- rating ~ 1 + ICR + LR + LEV1 + LEV2 + PR + 1RSIZE + 1SYSR or by R> formula <- rating ~ ICR + LR + LEV1 + LEV2 + PR + 1RSIZE + 1SYSR
```

2.3. Link function

We allow for two different link functions, the probit link (link = "probit") and the logit link (link = "logit"). For the probit link a multivariate normal distribution for the errors is applied, while for the logit link an approximate multivariate logistic distribution is used. The normal bivariate probabilities which enter the pairwise log-likelihood are computed with the R package **pbivnorm** (Genz and Kenkel 2015). The bivariate t probabilities are computed using Fortran code from Alan Genz (Genz and Bretz 2009).

2.4. Error structures

We allow for several different error structures depending on the model parameterization:

• Correlation

corGeneral

The most common parameterization is the general correlation matrix given in Equation 2. This error structure is applied by:

```
R> error.structure <- corGeneral(~ 1)</pre>
```

This paramterization can be extended by allowing a factor dependent correlation structure, where the correlation of each subject i depends on a given factor f.

```
R> error.structure = corGeneral(~ f)
```

The factor f is not allowed to vary across repeated measurements j for the same subject i and due to numerical constraints only up to maximum 30 levels are allowed.

corEqui

A covariate dependent equicorrelation structure, where the correlations are equal across all q dimensions and depend on some covariates S1, ..., Sm, is used by:

```
R> error.structure <- corEqui(~ S1 + ... + Sm)
```

It has to be noted that these covariates $S1, \ldots, Sm$ as well as the factor f are not allowed to vary across repeated measurements j for the same subject i.

- corAR1

An autoregressive error structure of order one AR(1) is obtained by:

```
R> error.structure = corAR1(~ 1)
```

In order to account for some heterogeneity the AR(1) error structure is allowed to depend on covariates S1, ..., Sm that are constant over time for each subject i

```
R> error.structure = corAR1(~ S1 + ... + Sm)
```

• Covariance

- covGeneral

In case of a full variance-covariance parameterization given in Equation 3 the standard parameterization with a full variance-covariance is obtained by:

```
R> error.structure = covGeneral(~ 1)
```

This parameterization can be extended to the factor dependent covariance structure, where the covariance of each subject depends on a given factor f:

```
R> error.structure = covGeneral(~ f)
```

2.5. Constraints on threshold coefficients

The package supports constraints on the threshold parameters. Firstly, the user can specify whether the threshold parameters should be equal across some or all response dimensions. Secondly, the values of some of the threshold parameters can be fixed. This feature is important for the users who wish to further restrict the parameter space of the thresholds or who wish to specify values for the threshold parameters other than the default values used in the package. Note that fixing some of the thresholds is needed for some of the parameterizations presented in Table 2.5.2 in order to ensure identifiability of the model.

error.structure	Cov. structure	Corr. structure	Factor	Covariate
	$(oldsymbol{\Sigma})$	(\boldsymbol{R})	dependent	dependent
corGeneral(~1)		✓		
corGeneral(~f)		✓	✓	
covGeneral(~1)	✓			
covGeneral(~f)	✓		✓	
corEqui(~1)		✓		
corEqui(~S)		✓		✓
corAR1(~1)		✓		
corAR1(~S)		✓		✓

Table 1: This table gives an overview on the error structures in **mvord**.

Threshold constraints across responses

Such constraints can be imposed by a vector of positive integers threshold.constraints, where dimensions with equal threshold parameters obtain the same integer. When restricting two outcome dimensions to be the same, one has to be careful that the number of categories in the two outcome dimensions must be the same. In our example with q=4 different outcomes, if one wishes to restrict the threshold parameters of R1 and R2 to be equal, i.e.:

```
- \boldsymbol{\theta}_1 = \boldsymbol{\theta}_2;
- \boldsymbol{\theta}_3, \, \boldsymbol{\theta}_4 arbitrary.
```

These constraints on the threshold parameters are specified by:

```
R> threshold.constraints <- c(1, 1, 2, 3)
R> names(threshold.constraints) <- response.names
R> threshold.constraints
R1 R2 R3 R4
```

Fixing threshold values

1 1 2

Values for the threshold parameters can be specified by the argument threshold.values. For this purpose the user can pass a list with q elements, where each element is a vector of length $K_j - 1$ (where K_j is number of ordered categories for ordinal outcome j). A numeric value in this vector fixes the corresponding threshold parameter to the specified value while NA leaves the parameter flexible and indicates it should be estimated.

After specifying the error structure (through the error.structure argument) and whether an intercept should be estimated or not (in the formula argument), the user can choose among five possible options for fixing the thresholds:

- leaving all thresholds flexible;
- fixing, for all $j \in J$, the first threshold $\theta_{i,1}$ to a constant a_i ;

- fixing, for all outcomes with $K_j > 2$, the first and second thresholds $\theta_{j,1} = a_j$, $\theta_{j,2} = b_j$;
- fixing, for all outcomes with $K_j > 2$, the first and last thresholds $\theta_{j,1} = a_j$, $\theta_{j,K_j-1} = b_j$;
- an extra option is fixing all of the threshold parameters, for all $j \in J$.

Note that the option chosen needs to be consistent across the different outcomes (e.g., it is not allowed to fix first and last threshold for one outcome and first and second threshold for a different). Table 2.5.2 provides information about the options available for each combination error structure and intercept, as well as about the default values in case the user does not specify any threshold values.

		Thresholds					
Error Structure	Intercept	all flexible	one fixed	two fixed	two fixed	all fixed	
			$\theta_{j,1} = a_j$	$\theta_{j,1} = a_j$ $\theta_{j,2} = b_j$	$\begin{vmatrix} \theta_{j,1} = a_j \\ \theta_{j,K_j-1} = b_j \end{vmatrix}$		
				$\theta_{j,2} = b_j$	$\theta_{j,K_j-1} = b_j$		
cor	no	✓	✓	✓	✓	\checkmark	
	yes		\checkmark	✓	✓	\checkmark	
cov	no		√	✓	✓	✓	
	yes			\checkmark	✓	\checkmark	

Table 2: This table displays different model parameterizations in the presence of truly ordinal observations $(K_j > 2 \ \forall j \in J)$. The row cor includes error structures corGeneral, corEqui and corAR1, while row cov includes the error structure covGeneral. The minimal restrictions (default) to ensure identifiability are given in green. The default threshold values (in case threshold.values = NULL) are always $a_j = 0$ and $b_j = 1$.

In the presence of binary observations ($K_j = 2$) in connection with a covariance error structure, the intercept has always to be fixed to some value due to identifiability constraints. In a correlation structure setting no further restrictions are required.

For example, the following restrictions on the threshold parameters

- $\theta_{11} = -4 < \theta_{12} < \theta_{13} < \theta_{14} < \theta_{15} < \theta_{16}$;
- $\theta_{21} = -4 \le \theta_{22} \le \theta_{23} \le \theta_{24} \le \theta_{25} \le \theta_{26}$;
- $\theta_{31} = -5 \le \theta_{32} \le \theta_{33} \le \theta_{34} \le \theta_{35} \le \theta_{36} \le \theta_{37}$;
- $\theta_{41} = 0$.

are implemented as:

```
$R1

[1] -4 NA NA NA NA NA NA

$R2

[1] -4 NA NA NA NA NA NA

$R3

[1] -5 NA NA NA NA NA NA NA

$R4

[1] O
```

2.6. Constraints on Coefficients

Similar to the threshold parameters, the package supports constraints on the regression coefficients. Firstly, the user can specify whether the regression coefficients should be equal across some or all response dimensions. Secondly, the values of some of the regression coefficients can be fixed.

Coefficient constraints across responses

Such constraints can be specified by a vector or a matrix coef.constraints, which can be either a vector or a matrix of integer values.

If vector constraints of the type $\beta_k = \beta_l$, are desired, which should hold for all p regression coefficients corresponding to outcome k and l, the easiest way to specify this is by means of a vector of integers of dimension q, where outcomes with equal vectors of regression coefficients get the same integer.

For example, for q = 4, a model where the regression coefficients of the first and second outcomes are equal $(\beta_1 = \beta_2)$, while the coefficients of outcomes three and four are unrestricted, can be specified as:

```
R> coef.constraints <- c(1, 1, 2, 3)
R> names(coef.constraints) <- response.names
R> coef.constraints
R1 R2 R3 R4
```

A more flexible framework allows the user to specify such constraints for each of the regression coefficients of the p covariates, not only for the whole vector. Such constraints will be specified by means of a matrix of dimension $q \times p$, where each column specifies constraints for one of the p covariates in the same way presented above. Moreover, a value of NA indicates that the corresponding coefficient is fixed (as we will show below) and should not be estimated.

The following constraints on the regression coefficients:

-
$$\beta_{12} = \beta_{22} = \beta_{32}$$
;

```
- \beta_{13} = 0, \beta_{23} = 0, \beta_{33} = 0;

- \beta_{14} = \beta_{24} = \beta_{34}, \beta_{44} = 0;

- \beta_{15} = \beta_{25} = \beta_{35} = \beta_{45} = 2;
```

give rise to the following model:

$$\begin{split} \widetilde{Y}_{i1} &= \beta_{11} x_{i1} + \beta_{12} x_{i2} \\ \widetilde{Y}_{i2} &= \beta_{21} x_{i1} + \beta_{12} x_{i2} \\ \widetilde{Y}_{i3} &= \beta_{31} x_{i1} + \beta_{12} x_{i2} \\ \widetilde{Y}_{i4} &= \beta_{41} x_{i1} + \beta_{42} x_{i2} + \beta_{43} x_{i3} \end{split} + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{16} x_{i6} + \beta_{27} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{14} x_{i4} + 2 x_{i5} + \beta_{36} x_{i6} + \beta_{37} x_{i7}, \\ + \beta_{37} x_{i7} + \beta_{37} x_{i7} + \beta_{37} x_{i7}$$

These restrictions on the parameter set of the regression coefficients are imposed by:

```
coef.constraints = cbind(c(1, NA, 1, NA),
                              c(NA, NA, NA, 1),
                              c(1, 1, 1, NA),
                              c(1, 2, 3, 4),
                              c(1, 1, 1, 4),
                              c(1, 2, 3, 4),
                              c(NA, NA, NA, 1))
R> rownames(coef.constraints) <- response.names</pre>
   colnames(coef.constraints) <- c("ICR", "LR", "LEV1", "LEV2", "PR",
                                      "1RSIZE", "1SYSR")
R> coef.constraints
   ICR LR LEV1 LEV2 PR 1RSIZE 1SYSR
R1
     1 NA
                      1
                              1
                                   NA
R2
    NA NA
                   2
                      1
                              2
                                   NA
              1
R3
                      1
                              3
                                   NA
     1 NA
              1
                   3
    NA
                   4
                      4
                              4
R4
        1
             NA
                                     1
```

Specific values of coefficients can be fixed through the coef.values argument, as we will show in the following.

Fixing coefficient values

In addition, specific values on regression coefficients can be set in the $q \times p$ matrix coef.values. Again each column corresponds to the regression coefficients of one covariate. This feature is to be used if some of the covariates have known slopes, but also for excluding covariates from the mean model of some of the outcomes (by fixing the regression coefficient to zero).

By default, if no coef.values are passed by the user, all the regression coefficients which receive an NA in coef.constraints will be set to zero. NA in the coef.values matrix indicates the regression coefficient ought to be estimated. For the example above, we have:

```
R> coef.values <- cbind(c(NA, NA, NA, NA),
                         c(NA, NA, NA, NA),
+
                         c(0, 0, 0, NA),
                         c(NA, NA, NA, O),
                         c(2, 2, 2, 2),
                         c(NA, NA, NA, NA),
                         c(NA, NA, NA, NA))
R> rownames(coef.values) <- response.names</pre>
R> colnames(coef.values) <- c("ICR", "LR", "LEV1", "LEV2", "PR",
                                "lRSIZE", "lSYSR")
R> coef.values
   ICR LR LEV1 LEV2 PR 1RSIZE 1SYSR
R1
   NA NA
             0
                 NA
                      2
                            NA
                                   NA
R2 NA NA
             0
                 NA
                      2
                            NA
                                   NA
R3
   NA NA
             0
                 NA 2
                            NA
                                   NA
   NA NA
                   0
                     2
                            NA
                                   NA
            NA
```

Note on interaction terms and factor covariates When constraints on the regression coefficients should be specified in models with interaction terms or factor covariates, the coef.constraints matrix has to be constructed appropriately. If the order of the terms in the covariate matrix is not clear to the user, it is helpful to call the function model.matrix() before constructing the coef.constraints and coef.values matrices. The command

will give the names of each column in the covariate matrix and should be used when setting up the coefficient constraints.

2.7. Additional arguments

Weights

Weights on each subject i can be chosen in a way that they are constant across repeated measurements. Weights should be part of the data. The column name of the weights in data should be passed to this argument. Negative weights are not allowed.

Solver

All general-purpose optimizers of the R package **optimx** can be used for maximization of the composite log-likelihood. These are "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "nlm", "nlminb", "spg", "ucminf", "newuoa", "bobyqa", "nmkb", "hjkb", "Rcgmin" and "Rvmmin" (Nash and Varadhan 2011; Nash 2014). The default is the "BFGS" solver. However,

also the "newuoa" solver performed very well in terms of convergence in our experiments. Moreover, if the user desires a specific solver which is not implemented in the R package optimx, other applicable solvers can be used by using a wrapper function with arguments starting.values, objFun, control of the following form:

The output of the solver.function has to be a list of vector of length of the starting.values (threshold parameters, regression coefficients and error structure parameters) and value of the objective function.

Standard errors

If se = TRUE standard errors are computed using the Godambe information matrix (see Section 1.4).

Starting values

A list of starting values for threshold as well as regression coefficients can be passed by the argument start.values. This list contains a list (with a vector of starting values for each dimension) theta of all flexible threshold parameters and a list beta of all flexible regression parameters. All fixed values need to be excluded and in case of constraints on a whole dimension (e.g., threshold.constraints = c(1,1,2,3)), the element can be either skipped or a vector of length zero can be set. Starting values for Example 1 in Section 3 are for example:

```
R> start.values = list(theta = list(c(-3,-1,0,0.5,2.5), c(-3,-1,0,0.5,2,3.5), c(0), + c(0), beta = list(c(0.05,-0.05,-0.8,1,0.2), + c(-0.5,0.2), + c(-0.3,0.3), c(0.5,-1.1,0.7,0.3,-1.2)))
```

2.8. Methods for class "multord"

Several methods are implemented for the class "multord". These methods include a summary() and a print() function to represent the estimation results, a coef() function to extract the regression coefficients, a thresholds() function to extract the threshold coefficients and a function get.error.struct() to extract the estimated parameters of the correlation/covariance structure of the errors. In addition, the pairwise log-likelihood can be extracted by logPL() as well as information critera like CLAIC by claic() and CLBIC by clbic().

2.9. Output

The function multord returns an object of class "multord", which is a list containing the following components:

```
a named matrix of regression coefficients
beta
theta
                   a named list of threshold parameters
                   a named list of correlation (covariance) matrices, or a vector of coef-
error.struct
                   ficients in the corEqui or corAR1 setting
                   a named matrix of the standard errors of the regression coefficients
sebeta
                   a named list of the standard errors of the threshold parameters
setheta
                   a named list of the standard errors of the correlation (covariance)
seerror.struct
                   matrices, or a vector of the standard errors of the coefficients in the
                   corEqui or corAR1 setting
rho
                   a list of all objects that are used in multord
```

2.10. Implementation multord2()

Additionally, a second function multord2() is implemented, for the setting where the covariates do not vary between the repeated measurements ($x_{i1} = \cdots = x_{iq}$):

This function uses a slightly simplified data structure, where the repeated ordinal observations as well as the covariates are stored as columns in a data.frame. Each subject i corresponds to one row of the data frame, where all outcomes Y_{i1}, \ldots, Y_{iq} (with missing observations set to NA) and all the covariates x_{i1}, \ldots, x_{ip} are stored in different columns. Each outcome must be of type Ord.factor.

R> head(data_cr_multord2, n = 3)

```
firm_id R1
               R2
                    R3 R4
                               ICR
                                                  LEV1
                                                             LEV2
                                           LR
1
        1
          D <NA>
                     K
                        N 1.546318 0.2484137 3.782934 0.92053787
2
          B <NA> <NA>
                        N 8.723779 0.1506502 1.033042 0.05305052
        3 D <NA> <NA>
                        N 4.726520 0.5187664 8.942818 0.97001785
         PR
                1RSIZE
                           1SYSR BSEC
1 0.2743184 -11.202807 -3.691023 BSEC3
```

```
2 0.1182763 -8.815116 -4.270618 BSEC3
3 0.2871493 -9.548691 -3.895642 BSEC6
```

In order to specify the mean model we use a multivariate formula object of the form:

```
R> formula <- cbind(R1, R2, R3) ~ 0 + X1 + ... + Xp
```

The error.structure and the constraints on the regression and threshold parameters are set in analogy to multord(), however, the ordering of the responses is given by the ordering in the model formula. In addition, the link, subject weights, se and the solver are chosen in the same way as in multord().

3. Examples

The motivation of this package lies in a credit risk application, where multiple credit ratings are assigned by various credit rating agencies (CRAs) to firms over several years. CRAs have an important role in financial markets, as they deliver (subjective) assessments or opinions of an entity's (typically firm or sovereign) creditworthiness, which are then used by other players on the market, such as investors and regulators, in their decision making process. Entities are assigned to rating classes by CRAs on an ordinal scale by using both quantitative and qualitative criteria. This setting is an example of an application where correlated ordinal data arises naturally. On the one hand, multiple ratings for one firm at the same point in time can be assumed to be correlated and on the other hand, given the longitudinal dimension of the data, for each rater, there is serial dependence in the ratings assigned over several periods.

The data set used in the original credit risk application cannot be made available due to proprietary reasons. We therefore resort to the simulation of data sets which have a similar structure to the original data.

3.1. Example 1 – ratings assigned by multiple raters to a cross-section of firms

The first example presents a multivariate ordinal logit regression model with a general correlation error structure (corGeneral(~ 1)). The simulated data set contains the credit risk measure rating (ratings assigned by raters R1, R2, R3 and R4) and 8 covariates for a cross-section of 1665 firms. The number of firm-ratings is 4566.

R> head(data_cr_multord, n = 3)

```
firm_id rater_id rating
                                ICR
                                           LR
                                                   LEV1
                                                              LEV2
1
        1
                R1
                         D 1.546318 0.2484137 3.782934 0.92053787
        2
2
                         B 8.723779 0.1506502 1.033042 0.05305052
                R1
3
        3
                R1
                         D 4.726520 0.5187664 8.942818 0.97001785
         PR
                1RSIZE
                            1SYSR BSEC
1 0.2743184 -11.202807 -3.691023 BSEC3
             -8.815116 -4.270618 BSEC3
2 0.1182763
3 0.2871493
             -9.548691 -3.895642 BSEC6
```

```
R> str(data_cr_multord, vec.len = 3)
```

```
'data.frame':
                    4566 obs. of 11 variables:
$ firm_id : Factor w/ 1665 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 ...
$ rater_id: Factor w/ 4 levels "R1","R2","R3",..: 1 1 1 1 1 1 1 1 ...
                 "D" "B" "D" ...
$ rating : chr
$ ICR
          : num 1.55 8.72 4.73 4.08 ...
$ LR
          : num 0.248 0.151 0.519 0.168 ...
$ LEV1
          : num 3.78 1.03 8.94 2.19 ...
$ LEV2
          : num 0.9205 0.0531 0.97 2.8743 ...
$ PR
          : num 0.2743 0.1183 0.2871 0.0821 ...
$ 1RSIZE : num -11.2 -8.82 -9.55 -8.66 ...
$ 1SYSR : num -3.69 -4.27 -3.9 -5.13 ...
          : Factor w/ 8 levels "BSEC1", "BSEC2", ...: 3 3 6 4 3 1 6 4 ...
$ BSEC
```

The panel of ratings is unbalanced:

```
R> nfirms <- length(unique(data_cr_multord$firm_id))
R> table(data_cr_multord$rater_id)/nfirms
```

```
R1 R2 R3 R4 0.9459459 0.1387387 0.6576577 1.0000000
```

We observe that rater R1 rates 95% of the firms, rater R2 rates only 14% of the firms, rater R3 rates 66% of the firms and rater R4 rates all the firms in the sample.

The distribution of the ratings classes for the four raters is:

```
R> by(data_cr_multord, data_cr_multord$rater_id,
+ function(x) table(x$rating))

data_cr_multord$rater_id: R1

A B C D E F
89 450 605 281 89 61

data_cr_multord$rater_id: R2

A B C D E F
12 74 79 51 9 6
```

```
data_cr_multord$rater_id: R3
```

```
G H I J K L M
40 163 169 209 404 88 22
```

data_cr_multord\$rater_id: R4

```
N 0
1067 598
```

We include 7 financial ratios as covariates in a model without intercept by the formula:

```
R> formula <- rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + lRSIZE + lSYSR R> formula
```

```
rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + 1RSIZE + 1SYSR
```

The subject index i is stored in the column firm_id and the multiple measurement index j, which indicates the rater, is given by rater_id:

```
R> index <- c("firm_id", "rater_id")
R> index
```

```
[1] "firm_id" "rater_id"
```

An optional vector response.names is used to specify all the raters to be included in the model. The ordering of this vector is essential when constraints on the parameter set want to be imposed:

```
R> response.names <- c("R1", "R2", "R3", "R4")
R> response.names
[1] "R1" "R2" "R3" "R4"
```

Due to the fact that the categories differ across raters we specify the response.levels by:

If no response.levels are passed, the natural ordering is used and could lead to an incorrect labeling. The rating classes assigned by the raters are here in order from worst to best indicating that lower values of the latent variables indicate lower creditworthiness or increased credit risk.

We fit a model to these data which:

• assumes that R1 and R2 use the same rating scale by setting the following constraints on the threshold parameters:

```
R> threshold.constraints <- c(1,1,2,3)
R> names(threshold.constraints) <- response.names
R> threshold.constraints
R1 R2 R3 R4
1 1 2 3
```

• assumes that some covariates are equal for some raters. For example, we assume that the coefficient of ICR is equal for R1 and R3, or that the coefficients of LEV1 and PR are the same for the raters R1, R2 and R3. In addition, some of the regression coefficients are set to zero like ICR for R1 and R3, or 1SYSR for the raters R1, R2 and R3. All the constraints above and some additional constraints are performed by the following restrictions on the regression coefficients by using the advanced method:

```
R > coef.constraints = cbind(c(1,NA,1,NA),
                              c(NA,NA,NA,1),
+
                              c(1,1,1,NA),
                              c(1,2,3,4),
                              c(1,1,1,4),
                              c(1,2,3,4),
                              c(NA,NA,NA,1))
R> rownames(coef.constraints) <- response.names</pre>
R> colnames(coef.constraints) <- c("ICR", "LR", "LEV1", "LEV2",
                                "PR", "IRSIZE", "ISYSR")
R> coef.constraints
   ICR LR LEV1 LEV2 PR 1RSIZE 1SYSR
R1
     1 NA
              1
                   1
                     1
                              1
                                   NA
   NA NA
                   2
                     1
                              2
                                   NA
              1
                   3
                              3
R3
     1 NA
              1
                      1
                                   NA
R4 NA
        1
             NA
                   4
                      4
                              4
                                    1
```

The NAs in coef.constraints have to be fixed to some value. If no matrix coef.values is provided, the coefficients are set by default to zero automatically. This automatically generated coef.values matrix, looks like:

```
R> coef.values <- cbind(c(NA, 0, NA, 0),
+ c(0, 0, 0, NA),
+ c(NA, NA, NA, NA),
```

```
c(NA, NA, NA, O),
                         c(NA, NA, NA, NA),
                         c(NA, NA, NA, NA),
                         c(0, 0, 0, NA))
R> rownames(coef.values) <- response.names</pre>
R> colnames(coef.values) <- c("ICR", "LR", "LEV1", "LEV2",
                                "PR", "1RSIZE", "1SYSR")
R> coef.values
   ICR LR LEV1 LEV2 PR 1RSIZE 1SYSR
  NA
            NA
                 NA NA
R1
R2
     0
        0
            NA
                 NA NA
                            NA
                                   0
R3 NA O
                 NA NA
                            NA
                                   0
            NA
R.4
     O NA
            NA
                   O NA
                            NA
                                  NA
```

The specified coef.constraints together with coef.values give the following model:

$$\begin{split} \widetilde{Y}_1 &= \beta_{11} \text{ICR} + & \beta_{13} \text{LEV1} + \beta_{14} \text{LEV2} + \beta_{15} \text{PR} + \beta_{16} \text{IRSIZE}, \\ \widetilde{Y}_2 &= & \beta_{13} \text{LEV1} + \beta_{24} \text{LEV2} + \beta_{15} \text{PR} + \beta_{26} \text{IRSIZE}, \\ \widetilde{Y}_3 &= \beta_{11} \text{ICR} + & \beta_{13} \text{LEV1} + \beta_{34} \text{LEV2} + \beta_{15} \text{PR} + \beta_{36} \text{IRSIZE}, \\ \widetilde{Y}_4 &= & \beta_{42} \text{LR} + & \beta_{44} \text{LEV2} + \beta_{45} \text{PR} + \beta_{46} \text{IRSIZE} + \beta_{47} \text{ISYSR}. \end{split}$$

As a link function we choose the logit link:

```
R> link <- "logit"
```

For simplicity, we use a general correlation structure which is constant for all subjects:

```
R> error.structure <- corGeneral(~ 1)
R> error.structure

$type
[1] "corGeneral"

$formula
~1
```

In order to avoid numerical instabilities, we standardize our data for each rater:

The estimation can now be performed by the function multord():

```
R> res_cor_logit <- multord(</pre>
     formula = rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + 1RSIZE + 1SYSR,
     error.structure = corGeneral(~ 1),
     link = "logit",
     data = data_cr_multord_scaled,
     index = c("firm_id", "rater_id"),
     response.names = c("R1", "R2", "R3", "R4"),
     response.levels = list(rev(LETTERS[1:6]),
                            rev(LETTERS[1:6]),
                            rev(LETTERS[7:13]),
                            rev(LETTERS[14:15])),
     coef.constraints = cbind(c(1,NA,1,NA),
                              c(NA,NA,NA,1),
                              c(1,1,1,NA),
+
                              c(1,2,3,4),
                              c(1,1,1,4),
                              c(1,2,3,4),
                              c(NA,NA,NA,1)),
     threshold.constraints = c(1,1,2,3))
The results are displayed either by the function summary():
R> summary(res_cor_logit, call = FALSE)
Formula: rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + 1RSIZE + 1SYSR
 link threshold nsubjects ndim
                                  logPL
                                          CLAIC
                                                   CLBIC fevals
                             4 -7995.33 16121.2 16474.83
logit flexible
                     1665
                                                             358
Threshold parameters:
          Estimate Std. Error
                                  z value
                                               Pr(>|z|) signif
R1 F|E -4.84882521 0.21246069 -22.8222224 2.759174e-115
R1 E|D -3.19261718 0.13597584 -23.4792974 6.638998e-122
R1 D|C -1.10858835 0.07317162 -15.1505243 7.516458e-52
                                                            ***
R1 C|B 0.94717024 0.06555248 14.4490366 2.542168e-47
                                                            ***
R1 B|A 3.38129642 0.12803640 26.4088682 1.083763e-153
                                                            ***
R3 M|L -6.14130711 0.32082572 -19.1421908 1.124414e-81
                                                            ***
R3 L|K -3.18193062 0.14945190 -21.2906663 1.385443e-100
                                                            ***
R3 K|J 0.02328815 0.07060703 0.3298277 7.415302e-01
R3 J|I 1.06403373 0.07516952 14.1551230 1.736338e-45
                                                            ***
R3 I|H 2.05389139 0.08979632 22.8727781 8.673229e-116
                                                            ***
R3 H|G 3.96195911 0.17336527 22.8532459 1.356722e-115
                                                            ***
R4 O|N -0.98345892 0.08487255 -11.5874799 4.769600e-31
                                                            ***
Coefficients:
            Estimate Std. Error
                                  z value
                                               Pr(>|z|) signif
ICR R1
           0.3542920 0.03839647 9.227203 2.777908e-20
```

```
ICR R2
           0.0000000 0.00000000
                                                            <NA>
                                         NA
                                                       NA
TCR. R.3
           0.3542920 0.03839647
                                   9.227203 2.777908e-20
                                                             ***
ICR R4
           0.0000000 0.00000000
                                         NA
                                                            <NA>
LR R1
           0.0000000 0.00000000
                                         NA
                                                       NA
                                                            <NA>
LR R2
           0.0000000 0.00000000
                                         NA
                                                       NA
                                                            <NA>
LR R3
           0.0000000 0.00000000
                                         NA
                                                       NA
                                                            <NA>
LR R4
          -0.3808375 0.06241727
                                  -6.101476 1.050931e-09
                                                             ***
          -0.1795457 0.04588253
                                  -3.913160 9.109630e-05
LEV1 R1
                                                             ***
LEV1 R2
          -0.1795457 0.04588253
                                  -3.913160 9.109630e-05
                                                             ***
LEV1 R3
          -0.1795457 0.04588253
                                  -3.913160 9.109630e-05
                                                             ***
           0.0000000 0.00000000
LEV1 R4
                                         NA
                                                       NA
                                                            <NA>
LEV2 R1
          -1.3901375 0.07034796 -19.760878 6.466964e-87
                                                             ***
LEV2 R2
          -1.0021188 0.09383600 -10.679471 1.269931e-26
                                                             ***
LEV2 R3
          -1.4644950 0.08241302 -17.770189 1.202840e-70
                                                             ***
LEV2 R4
          -1.7185313 0.12278884 -13.995827 1.652955e-44
                                                             ***
PR R1
           0.5546747 0.05009754
                                  11.071895 1.717304e-28
PR R2
           0.5546747 0.05009754
                                  11.071895 1.717304e-28
                                                             ***
PR R3
           0.5546747 0.05009754
                                  11.071895 1.717304e-28
                                                             ***
PR R4
           2.1770281 0.12171745
                                  17.885917 1.518342e-71
                                                             ***
1RSIZE R1
           0.2522814 0.05161464
                                   4.887787 1.019756e-06
                                                             ***
1RSIZE R2
           0.4092883 0.09066342
                                   4.514371 6.350495e-06
                                                             ***
1RSIZE R3
           0.4750829 0.05675575
                                   8.370656 5.729847e-17
                                                             ***
1RSIZE R4
           0.1652422 0.07448297
                                   2.218523 2.651922e-02
           0.0000000 0.00000000
1SYSR R1
                                         NA
                                                       NA
                                                            <NA>
1SYSR R2
           0.0000000 0.00000000
                                         NA
                                                       NA
                                                            <NA>
1SYSR R3
           0.0000000 0.00000000
                                         NA
                                                       NA
                                                            <NA>
1SYSR R4
         -0.1985668 0.06601729
                                  -3.007801 2.631458e-03
                                                              **
```

Error Structure:

```
Estimate Std. Error z value Pr(>|z|) signif corr R1 R2 0.9035414 0.02189504 41.266946 0.000000e+00 ***

corr R1 R3 0.6929071 0.02182114 31.753936 2.801830e-221 ***

corr R1 R4 0.4933093 0.03841571 12.841340 9.619454e-38 ***

corr R2 R3 0.7340554 0.04366159 16.812382 1.980517e-63 ***

corr R2 R4 0.5983776 0.10503523 5.696923 1.219892e-08 ***

corr R3 R4 0.7702408 0.03152657 24.431478 7.919559e-132 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

or by the function print():

```
R> print(res_cor_logit, call = FALSE)
```

Threshold parameters:

\$R1

```
F|E E|D D|C C|B B|A
-4.8488252 -3.1926172 -1.1085883 0.9471702 3.3812964
```

```
$R2
                              DIC
       FIE
                  EID
                                          CIB
                                                     BIA
-4.8488252 -3.1926172 -1.1085883 0.9471702 3.3812964
$R3
        M \mid L
                     L|K
                                 K|J
                                              J|I
                                                           I|H
-6.14130711 -3.18193062 0.02328815
                                      1.06403373 2.05389139
        H | G
3.96195911
$R4
       ON
-0.9834589
```

Coefficients:

R4 -0.1985668

Sigma:

R1 R2 R3 R4

R1 1.0000000 0.9035414 0.6929071 0.4933093

R2 0.9035414 1.0000000 0.7340554 0.5983776

R3 0.6929071 0.7340554 1.0000000 0.7702408

R4 0.4933093 0.5983776 0.7702408 1.0000000

An extended summary, where all thresholds and regression coefficients are shown, even though they are duplicated, can be obtained by:

```
R> summary(res_cor_logit, short = FALSE, call = FALSE)
```

Formula: rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + 1RSIZE + 1SYSR

link threshold nsubjects ndim logPL CLAIC CLBIC fevals logit flexible 1665 4 -7995.33 16121.2 16474.83 358

Threshold parameters:

Estimate Std. Error z value Pr(>|z|) signif R1 F|E -4.84882521 0.21246069 -22.8222224 2.759174e-115 ***

```
R1 E|D -3.19261718 0.13597584 -23.4792974 6.638998e-122
R1 D|C -1.10858835 0.07317162 -15.1505243 7.516458e-52
                                                          ***
R1 C|B 0.94717024 0.06555248 14.4490366 2.542168e-47
                                                          ***
R1 B|A 3.38129642 0.12803640 26.4088682 1.083763e-153
                                                          ***
R2 F|E -4.84882521 0.21246069 -22.8222224 2.759174e-115
R2 E|D -3.19261718 0.13597584 -23.4792974 6.638998e-122
                                                          ***
R2 D|C -1.10858835 0.07317162 -15.1505243 7.516458e-52
                                                          ***
R2 C|B 0.94717024 0.06555248 14.4490366 2.542168e-47
                                                          ***
R2 B|A 3.38129642 0.12803640 26.4088682 1.083763e-153
                                                          ***
R3 M|L -6.14130711 0.32082572 -19.1421908 1.124414e-81
R3 L|K -3.18193062 0.14945190 -21.2906663 1.385443e-100
R3 K|J 0.02328815 0.07060703
                             0.3298277 7.415302e-01
R3 J|I 1.06403373 0.07516952 14.1551230 1.736338e-45
                                                          ***
R3 I|H 2.05389139 0.08979632 22.8727781 8.673229e-116
                                                          ***
R3 H|G 3.96195911 0.17336527 22.8532459 1.356722e-115
                                                          ***
R4 O|N -0.98345892 0.08487255 -11.5874799 4.769600e-31
                                                          ***
```

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	signif
ICR R1	0.3542920	0.03839647	9.227203	2.777908e-20	***
ICR R2	0.0000000	0.00000000	NA	NA	<na></na>
ICR R3	0.3542920	0.03839647	9.227203	2.777908e-20	***
ICR R4	0.0000000	0.00000000	NA	NA	<na></na>
LR R1	0.0000000	0.00000000	NA	NA	<na></na>
LR R2	0.0000000	0.0000000	NA	NA	<na></na>
LR R3	0.0000000	0.00000000	NA	NA	<na></na>
LR R4	-0.3808375	0.06241727	-6.101476	1.050931e-09	***
LEV1 R1	-0.1795457	0.04588253	-3.913160	9.109630e-05	***
LEV1 R2	-0.1795457	0.04588253	-3.913160	9.109630e-05	***
LEV1 R3	-0.1795457	0.04588253	-3.913160	9.109630e-05	***
LEV1 R4	0.0000000	0.00000000	NA	NA	<na></na>
LEV2 R1	-1.3901375	0.07034796	-19.760878	6.466964e-87	***
LEV2 R2	-1.0021188	0.09383600	-10.679471	1.269931e-26	***
LEV2 R3	-1.4644950	0.08241302	-17.770189	1.202840e-70	***
LEV2 R4	-1.7185313	0.12278884	-13.995827	1.652955e-44	***
PR R1	0.5546747	0.05009754	11.071895	1.717304e-28	***
PR R2	0.5546747	0.05009754	11.071895	1.717304e-28	***
PR R3	0.5546747	0.05009754	11.071895	1.717304e-28	***
PR R4	2.1770281	0.12171745	17.885917	1.518342e-71	***
1RSIZE R1	0.2522814	0.05161464	4.887787	1.019756e-06	***
1RSIZE R2	0.4092883	0.09066342	4.514371	6.350495e-06	***
1RSIZE R3	0.4750829	0.05675575	8.370656	5.729847e-17	***
1RSIZE R4	0.1652422	0.07448297	2.218523	2.651922e-02	*
1SYSR R1	0.0000000	0.0000000	NA	NA	<na></na>
1SYSR R2	0.0000000	0.0000000	NA	NA	<na></na>
1SYSR R3	0.0000000	0.00000000	NA	NA	<na></na>
1SYSR R4	-0.1985668	0.06601729	-3.007801	2.631458e-03	**

```
Error Structure:
            Estimate Std. Error
                                   z value
                                                 Pr(>|z|) signif
corr R1 R2 0.9035414 0.02189504 41.266946 0.000000e+00
corr R1 R3 0.6929071 0.02182114 31.753936 2.801830e-221
corr R1 R4 0.4933093 0.03841571 12.841340 9.619454e-38
                                                              ***
corr R2 R3 0.7340554 0.04366159 16.812382 1.980517e-63
                                                              ***
corr R2 R4 0.5983776 0.10503523 5.696923 1.219892e-08
                                                              ***
corr R3 R4 0.7702408 0.03152657 24.431478 7.919559e-132
                                                              ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The threshold coefficients can be extracted by the function thresholds():
R> thresholds(res_cor_logit)
$R.1
       FIE
                  EID
                              DIC
                                          CIB
                                                     BIA
-4.8488252 -3.1926172 -1.1085883 0.9471702 3.3812964
$R2
                              DIC
                                         CIB
       FIE
                  E|D
                                                     BIA
-4.8488252 -3.1926172 -1.1085883 0.9471702 3.3812964
$R3
        M \mid L
                     L|K
                                 K|J
                                              J|I
                                                          I | H
-6.14130711 -3.18193062 0.02328815
                                      1.06403373 2.05389139
        HIG
 3.96195911
$R4
       ON
-0.9834589
The regression coefficients are obtained by the function coef():
R> coef(res_cor_logit)
```

The error structure is displayed by the function get.error.struct():

```
R> get.error.struct(res_cor_logit)
```

```
R1 R2 R3 R4
R1 1.0000000 0.9035414 0.6929071 0.4933093
R2 0.9035414 1.0000000 0.7340554 0.5983776
R3 0.6929071 0.7340554 1.0000000 0.7702408
R4 0.4933093 0.5983776 0.7702408 1.0000000
```

Fitting the model with the function multord2()

Due to the fact that the covariates do not change across the repeated measurements (the covariates are firm specific and do not vary across raters), we can alternatively fit the model by the function multord2(). In multord2(), a slightly different format of data is used and the ordering of the responses is defined by a multivariate formula object. The repeated measurements are stored in different columns as ordered factors:

```
R> head(data_cr_multord2, n = 3)
```

```
firm_id R1
               R2
                    R3 R4
                                ICR
                                           LR
                                                  LEV1
                                                              LEV2
           D < NA >
                        N 1.546318 0.2484137 3.782934 0.92053787
1
                     K
2
           B <NA> <NA>
                        N 8.723779 0.1506502 1.033042 0.05305052
                        N 4.726520 0.5187664 8.942818 0.97001785
3
        3
          D <NA> <NA>
         PR
                1RSIZE
                            1SYSR BSEC
1 0.2743184 -11.202807 -3.691023 BSEC3
2 0.1182763
            -8.815116 -4.270618 BSEC3
3 0.2871493
            -9.548691 -3.895642 BSEC6
R> str(data_cr_multord2, vec.len = 2)
'data.frame':
                     1665 obs. of 13 variables:
$ firm_id: Factor w/ 1665 levels "1","2","3","4",..: 1 2 3 4 5 ...
          : Ord.factor w/ 6 levels "F"<"E"<"D"<"C"<...: 3 5 3 1 5 ...
$ R1
$ R2
          : Ord.factor w/ 6 levels "F"<"E"<"D"<"C"<..: NA NA NA NA NA ...
          : Ord.factor w/ 7 levels "M"<"L"<"K"<"J"<...: 3 NA NA 1 NA ...
$ R3
          : Ord.factor w/ 2 levels "O"<"N": 2 2 2 1 2 ...
$ R4
$ ICR
          : num
                1.55 8.72 ...
                 0.248 0.151 ...
$ LR
          : num
$ LEV1
                 3.78 1.03 ...
          : num
 $ LEV2
          : num
                 0.9205 0.0531 ...
                 0.274 0.118 ...
$ PR
          : num
$ 1RSIZE : num
                 -11.2 -8.82 ...
                -3.69 -4.27 ...
$ 1SYSR
          : num
          : Factor w/ 8 levels "BSEC1", "BSEC2", ...: 3 3 6 4 3 ...
$ BSEC
```

Again, we standardize the data to avoid numerical instabilities:

```
R> data_cr_multord2[, covar_names] <- scale(data_cr_multord2[, covar_names])</pre>
```

The estimation is performed by calling the function multord2():

yielding equivalent results to the fit of multord().

3.2. Example 2 – ratings assigned by one rater to a panel of firms

In a second example we present a longitudinal multivariate ordinal probit regression model with a covariate dependent AR(1) error structure. The simulated data set contains the credit risk measure rating (ratings assigned by rater R1) and 8 covariates for a panel of 1665 firms over ten years. The number of firm-year observations is 11431:

```
R> str(data_cr_panel, vec.len = 3)
'data.frame':
                     11431 obs. of 11 variables:
 $ firm_id: Factor w/ 1665 levels "1", "2", "3", "4", ...: 1 2 3 4 5 6 7 8 ...
         : Factor w/ 10 levels "year1", "year2", ...: 1 1 1 1 1 1 1 1 ...
 $ rating : Ord.factor w/ 6 levels "F"<"E"<"D"<"C"<...: 3 5 3 1 5 3 4 5 ...</pre>
 $ ICR
          : num 1.55 8.72 4.73 4.08 ...
 $ LR
          : num 0.248 0.151 0.519 0.168 ...
          : num 3.78 1.03 8.94 2.19 ...
 $ LEV1
 $ LEV2
          : num 0.9205 0.0531 0.97 2.8743 ...
 $ PR
          : num 0.2743 0.1183 0.2871 0.0821 ...
 $ 1RSIZE : num -11.2 -8.82 -9.55 -8.66 ...
 $ 1SYSR : num -3.69 -4.27 -3.9 -5.13 ...
 $ BSEC
          : Factor w/ 8 levels "BSEC1", "BSEC2", ...: 3 3 6 4 3 1 6 4 ...
R> head(data_cr_panel, n = 3)
  firm_id year rating
                             ICR
                                        LR
                                               LEV1
                                                          LEV2
                     D 1.546318 0.2484137 3.782934 0.92053787
        1 year1
```

The panel is highly unbalanced. The distribution of the number of ratings per firm assigned by rater R1 over the 10 years is given by:

```
R> summary(rowSums(with(data_cr_panel, table(firm_id, year))))
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 1.000 4.000 8.000 6.865 10.000 10.000
```

Per year the number of ratings decreases:

```
R> with(data_cr_panel, table(year))
```

```
year
 year1
        year2 year3 year4 year5
                                    year6 year7
                                                   year8
                                                          year9
  1665
         1487
                1377
                       1250
                              1135
                                      1048
                                              948
                                                     888
                                                            832
year10
   801
```

We include the 7 financial ratios as covariates in a model without intercept by the formula:

```
R> formula <- rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + 1RSIZE + 1SYSR R> formula
```

```
rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + 1RSIZE + 1SYSR
```

The subject index+i is stored in the column firm_id while the repeated measurement index j is given in the column year:

```
R> index <- c("firm_id", "year")
R> index
[1] "firm_id" "year"
```

If we wish to estimate the model only for the last eight years of the sample, this can be done by specifing the names of each dimension ordered response which should enter the model:

```
R> response.names <- paste0("year", 3:10)
R> response.names

[1] "year3" "year4" "year5" "year6" "year7" "year8"
[7] "year9" "year10"
```

The rating classes assigned by rater R1 are:

```
R> levels(data_cr_panel$rating)
[1] "F" "E" "D" "C" "B" "A"
```

with the sixth rating class F being the worst class and the first rating class A being the best rating class. We specify the response levels, in the order from worst to best, for each of the 10 outcome dimensions through the response.level argument. Ordering the classes from worst to best indicates that lower values of the latent variables indicate lower creditworthiness or increased credit risk. The rating classes and labels do not change over the ten years:

```
R> response.levels <- rep(list(levels(data_cr_panel$rating)),</pre>
                           length(response.names))
R> names(response.levels) <- response.names</pre>
R> response.levels
$vear3
[1] "F" "E" "D" "C" "B" "A"
$year4
[1] "F" "E" "D" "C" "B" "A"
$year5
[1] "F" "E" "D" "C" "B" "A"
$year6
[1] "F" "E" "D" "C" "B" "A"
$year7
[1] "F" "E" "D" "C" "B" "A"
$year8
[1] "F" "E" "D" "C" "B" "A"
[1] "F" "E" "D" "C" "B" "A"
$year10
[1] "F" "E" "D" "C" "B" "A"
```

Additionally, the model has the following features:

• we assume the rating agencies do not change their methodology over the sample period. This means the threshold parameters are constant over the years. This can be specified through the argument threshold.constraints:

• we assume there is a breakpoint in the regression coefficients after year5 in the sample (this could correspond to the beginning of a crisis in a real case application). Hence, we use one set of regression coefficients for years year3, year4 and year5 and a different set for year6, year7, year8, year9, year10. This can be specified through the argument coef.constraints:

```
R> coef.constraints = c(rep(1, 3), rep(2, 5))
R> names(coef.constraints) <- response.names
R> coef.constraints

year3 year4 year5 year6 year7 year8 year9 year10
1 1 1 2 2 2 2 2 2
```

• allows for different correlation parameters in the AR(1) structure for the different business sectors.

```
R> error.structure = corAR1(~ BSEC)
R> error.structure

$type
[1] "corAR1"

$formula
~BSEC
```

The estimation is performed by calling the function multord(): As before, we standardize our covariates on a yearly basis:

```
The results are displayed either by the function summary():

R> summary(res_AR1_probit, short = TRUE, call = FALSE, digits = 6)
```

Formula: rating \sim 0 + ICR + LR + LEV1 + LEV2 + PR + 1RSIZE + 1SYSR

link threshold nsubjects ndim logPL CLAIC CLBIC fevals probit flexible 1392 8 -52751.13 105820.97 106655.76 222

Threshold parameters:

```
Estimate Std. Error
                                 z value
                                             Pr(>|z|) signif
year3 F|E -4.0902846 0.0994663 -41.12230 0.00000e+00
year3 E|D -1.0098087
                     0.0325721 -31.00229 5.02033e-211
year3 D|C 0.0203523
                     0.0278756
                                 0.73011 4.65323e-01
year3 C|B 1.0260948
                     0.0326125
                                31.46328 2.76294e-217
                                                         ***
year3 B|A 3.0498425 0.0695938
                                43.82347 0.00000e+00
                                                         ***
```

Coefficients:

```
Estimate Std. Error
                                    z value
                                                Pr(>|z|) signif
ICR year3
             0.1663783 0.0137447
                                   12.10492 9.94626e-34
ICR year6
             0.0919790
                        0.0120313
                                    7.64495 2.09024e-14
                                                            ***
LR year3
             0.0242913 0.0132655
                                    1.83116 6.70774e-02
LR year6
                        0.0127358 -14.82340 1.03408e-49
                                                            ***
            -0.1887875
LEV1 year3
            -0.0906768 0.0135194 -6.70715 1.98461e-11
                                                            ***
LEV1 year6
            -0.2941070 0.0126544 -23.24156 1.73168e-119
                                                            ***
LEV2 year3
            -0.7025465
                        0.0217684 -32.27375 1.63368e-228
                                                            ***
LEV2 year6
            -1.6211075 0.0340118 -47.66310 0.00000e+00
                                                            ***
PR year3
             0.2732929 0.0140069 19.51129 8.80340e-85
                                                            ***
PR year6
             0.4133250 0.0141526
                                   29.20498 1.67643e-187
                                                            ***
lRSIZE year3 0.1104956 0.0134466
                                    8.21734 2.08064e-16
                                                            ***
1RSIZE year6 0.5331242
                        0.0154265
                                   34.55895 1.04576e-261
1SYSR year3
            -0.0309864
                        0.0132937
                                   -2.33091
                                             1.97583e-02
1SYSR year6 -0.1976489 0.0126467 -15.62843 4.66113e-55
                                                            ***
```

Error Structure:

```
Estimate Std. Error
                                  z value
                                            Pr(>|z|) signif
(Intercept)
            1.3700044 0.0668721 20.486921 2.81652e-93
                                                       ***
           -0.6047990 0.0851659 -7.101423 1.23478e-12
BSECBSEC2
BSECBSEC3
            0.1152617 0.0794137
                                 1.451408 1.46666e-01
            0.1429737 0.0764200
                                 1.870892 6.13600e-02
BSECBSEC4
BSECBSEC5
            0.0194572 0.0928413
                                 0.209575 8.34000e-01
                                -5.460901 4.73724e-08
BSECBSEC6
           -0.4795777 0.0878203
BSECBSEC7
           -0.9067004  0.0852025  -10.641714  1.90590e-26
                                                       ***
BSECBSEC8
           ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

or by the function print():

```
R> print(res_AR1_probit, call = FALSE, digits = 4)
```

```
Threshold parameters:
```

\$year3

F|E E|D D|C C|B B|A -4.09028 -1.00981 0.02035 1.02609 3.04984

\$year4

F|E E|D D|C C|B B|A -4.09028 -1.00981 0.02035 1.02609 3.04984

\$year5

F|E E|D D|C C|B B|A -4.09028 -1.00981 0.02035 1.02609 3.04984

\$year6

F|E E|D D|C C|B B|A -4.09028 -1.00981 0.02035 1.02609 3.04984

\$year7

F|E E|D D|C C|B B|A -4.09028 -1.00981 0.02035 1.02609 3.04984

\$year8

F|E E|D D|C C|B B|A -4.09028 -1.00981 0.02035 1.02609 3.04984

\$year9

F|E E|D D|C C|B B|A -4.09028 -1.00981 0.02035 1.02609 3.04984

\$year10

F|E E|D D|C C|B B|A -4.09028 -1.00981 0.02035 1.02609 3.04984

Coefficients:

 ICR
 LR
 LEV1
 LEV2
 PR 1RSIZE
 1SYSR

 year3
 0.16638
 0.02429
 -0.09068
 -0.7025
 0.2733
 0.1105
 -0.03099

 year4
 0.16638
 0.02429
 -0.09068
 -0.7025
 0.2733
 0.1105
 -0.03099

 year5
 0.16638
 0.02429
 -0.09068
 -0.7025
 0.2733
 0.1105
 -0.03099

 year6
 0.09198
 -0.18879
 -0.29411
 -1.6211
 0.4133
 0.5331
 -0.19765

 year8
 0.09198
 -0.18879
 -0.29411
 -1.6211
 0.4133
 0.5331
 -0.19765

 year9
 0.09198
 -0.18879
 -0.29411
 -1.6211
 0.4133
 0.5331
 -0.19765

 year10
 0.09198
 -0.18879
 -0.29411
 -1.6211
 0.4133
 0.5331
 -0.19765

alpha parameters error.structure:

(Intercept)	BSECBSEC2	BSECBSEC3	BSECBSEC4	BSECBSEC5
1.37000	-0.60480	0.11526	0.14297	0.01946
BSECBSEC6	BSECBSEC7	BSECBSEC8		
-0.47958	-0.90670	-0.59223		

An extended summary, where all thresholds and regression coefficients are shown, even though they are duplicated, can be obtained by:

The threshold coefficients can be extracted by the function thresholds():

R> thresholds(res_AR1_probit)

EID	DIC	CIB	BIA
-1.00980868	0.02035227	1.02609482	3.04984253
FID	חוכ	CIR	RIA
EID	DIC	CIP	DIA
-1.00980868	0.02035227	1.02609482	3.04984253
EID	DIG	CID	DIA
-1.00980868	0.02035227	1.02609482	3.04984253
n n	DIG	al p	DIA
715	210	715	7.14
-1.00980868	0.02035227	1.02609482	3.04984253
	-1-		
	-1.00980868 E D -1.00980868	E D D C -1.00980868 0.02035227 E D D C -1.00980868 0.02035227	E D D C C B -1.00980868 0.02035227 1.02609482 E D D C C B -1.00980868 0.02035227 1.02609482 E D D C C B -1.00980868 0.02035227 1.02609482 E D D C C B -1.00980868 0.02035227 1.02609482 E D D C C B -1.00980868 0.02035227 1.02609482 E D D C C B -1.00980868 0.02035227 1.02609482

The regression coefficients are obtained by the function coef():

```
R> coef(res_AR1_probit)
```

```
ICR
                           LR
                                                             PR
                                     LEV1
                                                LEV2
year3 0.16637829 0.02429127 -0.0906768 -0.7025465 0.2732929
                   0.02429127 -0.0906768 -0.7025465 0.2732929
year4 0.16637829
year5 0.16637829 0.02429127 -0.0906768 -0.7025465 0.2732929
year6 0.09197896 -0.18878750 -0.2941070 -1.6211075 0.4133250
year7 0.09197896 -0.18878750 -0.2941070 -1.6211075 0.4133250
year8 0.09197896 -0.18878750 -0.2941070 -1.6211075 0.4133250
year9 0.09197896 -0.18878750 -0.2941070 -1.6211075 0.4133250
year10 0.09197896 -0.18878750 -0.2941070 -1.6211075 0.4133250
          1RSIZE
                       1SYSR
year3 0.1104956 -0.03098645
year4 0.1104956 -0.03098645
year5 0.1104956 -0.03098645
year6 0.5331242 -0.19764887
year7 0.5331242 -0.19764887
year8 0.5331242 -0.19764887
year9 0.5331242 -0.19764887
year10 0.5331242 -0.19764887
The error structure is displayed by the function get.error.struct():
R> get.error.struct(res_AR1_probit)
(Intercept)
                          BSECBSEC3
                                       BSECBSEC4
                                                   BSECBSEC5
              BSECBSEC2
 1.37000442 -0.60479901
                         0.11526167
                                      0.14297368 0.01945718
  BSECBSEC6
              BSECBSEC7
                          BSECBSEC8
-0.47957770 -0.90670039 -0.59223175
In addition, the correlation parameters \rho_i for each firm are obtained by:
R> head(get.error.struct(res_AR1_probit, type = "corr"), n = 3)
  Correlation
1
    0.9024499
2
    0.9024499
    0.7116044
Moreover, the correlation matrices for each specific firm are obtained by:
R> head(get.error.struct(res_AR1_probit, type = "sigmas"), n = 1)
$`1`
           year3
                     year4
                                year5
                                          year6
                                                    year7
year3 1.0000000 0.9024499 0.8144159 0.7349696 0.6632733
```

year4 0.9024499 1.0000000 0.9024499 0.8144159 0.7349696

```
0.8144159 0.9024499 1.0000000 0.9024499 0.8144159
year5
      0.7349696 0.8144159 0.9024499 1.0000000 0.9024499
year6
      0.6632733 0.7349696 0.8144159 0.9024499 1.0000000
year7
year8
      0.5985709 0.6632733 0.7349696 0.8144159 0.9024499
year9 0.5401803 0.5985709 0.6632733 0.7349696 0.8144159
year10 0.4874857 0.5401803 0.5985709 0.6632733 0.7349696
           year8
                     year9
                              year10
year3 0.5985709 0.5401803 0.4874857
year4 0.6632733 0.5985709 0.5401803
year5 0.7349696 0.6632733 0.5985709
year6 0.8144159 0.7349696 0.6632733
year7 0.9024499 0.8144159 0.7349696
year8 1.0000000 0.9024499 0.8144159
year9 0.9024499 1.0000000 0.9024499
year10 0.8144159 0.9024499 1.0000000
```

References

- Agresti A (2002). Categorical Data Analysis (2nd ed.). Wiley series in Probability and mathematical Statistics.
- Genz A, Bretz F (2009). Computation of Multivariate Normal and T Probabilities. 1st edition. Springer Publishing Company, Incorporated. ISBN 364201688X, 9783642016882.
- Genz A, Kenkel B (2015). pbivnorm: Vectorized Bivariate Normal CDF. R package version 0.6.0, URL https://CRAN.R-project.org/package=pbivnorm.
- Hirk R, Hornik K, Vana L (2017). "Multivariate Ordinal Regression Models: An Analysis of Corporate Credit Ratings." Research Report Series / Department of Statistics and Mathematics 132, WU Vienna University of Economics and Business, Vienna. URL http://epub.wu.ac.at/5389/.
- Nash JC (2014). "On Best Practice Optimization Methods in R." Journal of Statistical Software, 60(2), 1–14. doi:10.18637/jss.v060.i02.
- Nash JC, Varadhan R (2011). "Unifying Optimization Algorithms to Aid Software System Users: optimx for R." *Journal of Statistical Software*, **43**(9), 1–14. doi:10.18637/jss. v043.i09.
- O'Brien SM, Dunson DB (2004). "Bayesian Multivariate Logistic Regression." *Biometrics*, **60**(3), 739–746. ISSN 1541-0420. doi:10.1111/j.0006-341X.2004.00224.x.
- Pinheiro JC, Bates DM (1996). "Unconstrained parametrizations for variance-covariance matrices." Statistics and Computing, 6(3), 289–296. ISSN 1573-1375. doi:10.1007/BF00140873.
- Tutz G (2012). Regression for Categorical Data. Springers Series in Statistics. Cambridge University Press.

Varin C (2008). "On composite marginal likelihoods." AStA Advances in Statistical Analysis, 92(1), 1. ISSN 1863-818X. doi:10.1007/s10182-008-0060-7.

Varin C, Reid N, Firth D (2011). "An Overview of Composite Likelihood Methods." *Statistica Sinica*, **21**(1), 5–42. ISSN 10170405, 19968507. URL http://www.jstor.org/stable/24309261.

Affiliation:

Rainer Hirk Institute for Statistics and Mathematics WU Wirtschaftsuniversität Wien 1020 Vienna, Austria

E-mail: rainer.hirk@wu.ac.at

Kurt Hornik Institute for Statistics and Mathematics WU Wirtschaftsuniversität Wien 1020 Vienna, Austria

E-mail: kurt.hornik@wu.ac.at

Laura Vana Institute for Statistics and Mathematics WU Wirtschaftsuniversität Wien 1020 Vienna, Austria

E-mail: laura.vana@wu.ac.at