Celo Light Client

1 Introduction

We assume we are given groups of prime order $r \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_t$, and denote by \mathbb{F} the finite field of the same size. We are also given generators $g_1 \in \mathbb{G}_1$, $g_2 \in \mathbb{G}_2$. We write \mathbb{G}_1 and \mathbb{G}_2 additively, and \mathbb{G}_t multiplicatively.

We denote by H a hash function taking as input strings of arbitrary length and outputting elements of \mathbb{G}_2 . We model H as a random oracle in the security proof, mainly as that is needed for security of the BLS signature scheme.

BLS signature scheme:

- The message m is an arbitrary string
- The secret key sk is a uniformly chosen element of \mathbb{F} , and the corresponding public key is $pk := sk \cdot g_1$.
- The signature σ of m under sk is

$$\sigma = \mathbf{Sign}(\mathsf{m}, \mathsf{sk}) := \mathsf{sk} \cdot H(\mathsf{m})$$

BLS has the extremely useful property that $\mathbf{Sign}(\mathsf{m},\mathsf{sk}_1+\ldots\mathsf{sk}_t)=\sum_{i\in[t]}\mathbf{Sign}(\mathsf{m},\mathsf{sk}_i)$ Thus, a set of users with private keys $\{\mathsf{sk}_i\}_{i\in[t]}$ and public keys $\{\mathsf{pk}_i\}_{i\in[t]}$ can sign m separately and their signatures can be aggregated to a single signature under public key $\mathsf{pk}_{\mathsf{agg}}:=\sum_{i\in[t]}\mathsf{pk}_i$.

Registered key owners: To avoid the so-called "rogue key-attack" when aggregating BLS signatures, we must only allow signatures with public keys pk_i such that a proof of knowledge of sk has been provided. Thus, when a key pk is authorized to participate in committees, such a zk proof of knowledge of sk, e.g. Schnorr, must be provided.

2 The light client protocol

We refer to stake holders by their registered public key. Thus, when we refer to a *committee*, we mean a set of public keys $\{pk\}$.

Denote by C_i the committee of the *i*'th epoch.¹ The light client **V** will only verify the identity of the current epoch committee. It will satisfy the following completeness and soundness properties

¹We are assuming here an idealized consensus functionality where this value is well-defined; e.g. not dealing with forks when describing the light client.

Completeness (liveness): If all committees up to epoch T have had a 2/3-honest majority, then \mathbf{V} will obtain the correct value C_T

Soundness: If all committees $\{C_i\}_{\in [T]}$ have more than 1/3 honest players then **V** will not be convinced of a wrong value C_T .

Last block header of epoch The structure of the *n*'th block header of an epoch is important for the light client protocol; and so we describe some of its details.

- 1. It will contain a string $\mathsf{m}^* = (S_1, S_2)$, for the two sets $S_1 = \{\mathsf{pk}_i\}_{i \in [s]}, S_2 = \{\mathsf{pk}_i'\}_{i \in [s]}$ of the keys we add and remove from the validator set, i.e. $C_T = (C_{T-1} \setminus S_1) \cup S_2$.
- 2. It will contain a string $x \in \{0,1\}^t$ signifying what validators from C_{T-1} signed $\mathbf{m} := (n, \mathbf{m}^*)$.
- 3. Let $\mathsf{pk}_{\mathsf{agg}} := \sum_{i \in [t]} \mathsf{pk}_i$, where $C_{T-1} = \{pk_i\}_{\in [t]}$. The header contains the signature $\sigma = \mathbf{Sign}(\mathsf{m}, \mathsf{sk}_{\mathsf{agg}})$.

Light client verification V receives, for $i \in [T-1]$

- 1. A message $m_i = (S_{i,1}, S_{i,2})$.
- 2. A string $x_i \in \{0, 1\}^t$
- 3. A signature σ_i .

V starts with the validator set C_1 which we assume is hard coded in the genesis block and agreed upon.

For each $i \in \{2, \ldots, T\}$ V

- 1. Checks that x_i has at least $2/3 \cdot t$ set bits, and sets $D_i \subset [t]$ to be the indices of the set bits of x_i .
- 2. Computes $pk := \sum_{j \in D_i} pk_j$.
- 3. computes $C_{i+1} = (C_i \setminus S_{i,1}) \cup S_{i,2}$.

3 Hash to group

The BLS signature scheme uses $H: \{0,1\}^* \to \mathbb{G}_2$ as a hash function that outputs random elements in \mathbb{G}_2 . It is modeled as a random oracle.

It is instantiated using a composition of a Pedersen hash defined over the curve $E_{Ed/CP}$ from [BCG⁺18], and a few Blake2 hashes.

Pedersen hash The Pedersen hash takes input strings of arbitrary length and outputs elements in the group $G_{E_{\mathsf{Ed}/\mathsf{CP}}}$ of $E_{\mathsf{Ed}/\mathsf{CP}}$ - **PedersenHash** : $\{0,1\}^*->G_{E_{\mathsf{Ed}/\mathsf{CP}}}$. Each group element is defined by $(x,y)\in\mathbb{F}_p^2$, where p has a bit size of 377, and therefore a byte size of 48. We then define $\mathbf{ULPSerialize}(x,y):\mathbb{F}_p^2\to\{0,1\}^{392}$ as $\mathbf{ULPSerialize}(x,y):=x$. Finally, we define $\mathbf{ULPdedersenHash}:\{0,1\}^*\to\{0,1\}^{392}$ as $\mathbf{ULPSerialize}\circ\mathbf{PedersenHash}$.

Hash to field To hash into the group \mathbb{G}_2 , where each element in defined by $(x,y) \in \mathbb{F}_{p^2}^2$, we first have to hash into the field \mathbb{F}_{p^2} . We invoke **Blake2s** multiple times to get enough random-looking bits to generate $x = (x_0, x_1)$ and take each inner element modulo p. We generate extra bits reduce modulo bias. Then, we see if x is a valid x on the curve, by trying to find a matching y.

Specifically, given a function we define **ULFieldHash** $(m): \{0,1\}^* \to \mathbb{F}_p$ as follows: First, we calculate 1024 random-looking bits using:

We then divide it into two 512 bits for x_0 and x_1 , and for each we parse the bits as a little-endian integer and take it mod p.

Hash to \mathbb{G}_2 We use the try-and-increment method - we initialize a counter, hash the counter together with the message as a possible x value, attempt to find a matching y and if we succeed, we multiply by the cofactor.

Algorithm 1: Try-and-increment hashing to the group

Input: m, a message

- 1 hm := ULPedersenHash(m)
- 2 Initialize c := 0
- 3 Serialize c as a little-endian 32-bit unsigned integer, and store in cb
- 4 $x := \mathbf{ULFieldHash}(c||hm)$
- 5 Attempt finding a matching y by calculating $\sqrt{x^2+1}$. If not successful, increment c and go back to step 2.
- 6 If successful, take the larger y, and return $cofactor \cdot (x,y)$...

References

[BCG⁺18] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu. Zexe: Enabling decentralized private computation. *IACR ePrint*, 962, 2018.