JIUHONG XIAO

917-353-3447 \$\dipsimum \text{jx1190@nyu.edu} \$\dipsimum \text{https://xjh19971.github.io/}

EDUCATION

New York University

Jan 2020 - Dec 2020

M.S. in Computer Science

GPA: 3.94/4.0

University of Science and Technology Beijing

Sep 2015 - Jun 2019

B.Eng. in Intelligence Science and Technology

GPA: 3.65/4.0, Major GPA: 3.84/4.0

RESEARCH INTERESTS

Computer Vision, Robotics, Deep reinforcement learning, Multi-view perception.

PUBLICATIONS

Multi-Robot Collaborative Perception with Graph Neural Networks

2021

Yang Zhou, **Jiuhong Xiao**, Yue Zhou, Giuseppe Loianno

Under review.

Toward Coordination Control of Multiple Fish-Like Robots: Real-Time Vision-Based Pose Estimation and Tracking via Deep Neural Networks

2021

Tianhao Zhang, **Jiuhong Xiao**, Liang Li, Chen Wang, Guangming Xie

IEEE/CAA Journal of Automatica Sinica 8, no. 12 (2021), 1964-1976.

Image Encryption Algorithm Based on Memristive BAM Neural Networks

2018

Jiuhong Xiao, Weiping Wang, Meiqi Wang

IEEE 3rd International Conference on Data Science in Cyberspace (2018), 205-212.

The Stability of Memristive Multidirectional Associative Memory Neural Networks With Time-varying Delays in the Leakage Terms via Sampled-data Control

2018

Weiping Wang, Xin Yu, Xiong Luo, Long Wang, Lixiang Li, Juergen Kurths, Wenbing Zhao, **Jiuhong Xiao** PLOS ONE 13, no. 9 (2018), e0204002.

EXPERIENCE

New York University

Sep 2021 - Present

Graduate Teaching Assistant

- Supported Deep Learning course with 100+ students.
- Created the homework materials, graded assignments, and answered students' questions for homework and lectures.

Amazon May 2021 - Aug 2021

Applied Scientist Intern

- \bullet Developed a VAE-based compression method specific to face images, achieving $\mathbf{5x}$ compression ratio than High Efficiency Video Coding (HEVC) format.
- \bullet Jointly optimized compression model with a downstream task, and reduced the file size to 27.4% of HEVC with good downstream performance.

New York University

May 2020 - May 2021

Research Assistant (advised by Alfredo canziani, Yann LeCun)

- Implemented an offline autonomous driving policy-training pipeline based on annotated lane maps with limited historical driving data.
- Designed the training strategy and specific loss functions to reduce lane annotation cost and improve the generalization performance of the policy for different lane layouts.

Intelligent Biomimetic Design Laboratory, Peking University

Jun 2019 - Jan 2020

Research Assistant (advised by Guangming Xie)

- Implemented a fish pose estimation method fusing top-down and bottom-up paradigms, increasing mAP by 7.9% and 10.9% compared with classical methods using single paradigm.
- Developed a fish pose tracking system based on keypoint matching, reducing tracking error by 72.7%.
- Built a robotic fish dataset with over 1,300 annotated frames as the benchmark for robotic fish pose estimation and the foundation of fish group control.

SELECTED PROJECTS

Multi-robot Perception with Graph Convolution Network

Sep 2020 - Dec 2020

Advisor: Rob Fergus. New York University

• Developed a GNN-based system to improve the perception ability of a single robot by sharing information across the robot network.

GPU Accelerated Applications with CUDA and OpenMP

Sep 2020 - Dec 2020

Advisor: Mohamed Zahran. New York University

Compared the performance of different GPU-friendly algorithms on CUDA and OpenMP-GPU.

Autodetection: An End-to-end Autonomous Driving Detection System

Jan 2020 - May 2020

Advisors: Yann LeCun, Alfredo Canziani. New York University

- Won 2nd place in general ranking on roadmap prediction and object detection task.
- Built an end-to-end autonomous driving detection system to predict bird-view roadmap and objects from multi-view images without measurement of camera parameters.
- Improved model performance with feature pyramid network and self-supervised learning by 7.72% mAP on roadmap and 14.35% mAP on detection.

A Survey of Bayesian Methods for Deep Learning

Jan 2020 - May 2020

Advisor: Joan Bruna. New York University

- Surveyed recent works that apply principles of Bayesian inference to deep learning and noted special applications of Bayesian deep learning.
- Implemented PyTorch version of Bayesian methods like SGLD, Deep Ensembles, and MCDropout.

HONORS AND AWARDS

Excellence Award for Undergraduate Thesis, USTB	2019
Third Prize, Chinese College Students Intelligence Design Contest, Beijing	2018
Peoples Scholarship, USTB	2015 - 2018
First Prize, Mathematical Modeling Competition, Beijing	2017
Excellence Award, Boer National College Students Innovation Entrepreneurship	2017
Competition, Beijing	
Second Prize, Sensor Design Competition, USTB	2016
Third Prize, iCAN International Contest of Innovation, China	2016

SKILLS

Programming	C/C++, Java, Python, Matlab, SQL.
Platform/tools	Opency, Pytorch, MySQL, CUDA.
Languages	English, Mandarin.