

Requisitos y Versión Inicial del Software Proyecto: SoftWarrior

Integrantes:

Nombres y Apellidos	Email	ROL USM
Paul Rojas Ojeda	paul.rojas@sansano.usm.cl	201573063-6
Beatriz Segura Pastén	beatriz.segura@sansano.usm.cl	201573041-5
Gabriela Sepúlveda Bravo	gabriela.sepulvedab@sansano.usm.cl	201573012-1

Contexto del proyecto

Objetivo de proyecto

Crear un programa que modele procesos estocásticos de un conjunto de datos con el fin de calcular valoración de opciones sobre acciones.

Resumen del Proyecto

El proyecto consta de la elaboración de un programa ejecutable de escritorio que tiene como fin modelar el comportamiento de las acciones de una compañía mediante procesos estocásticos sobre los datos históricos de ésta. Los datos serán extraídos de "Yahoo! Finance" con el fin de que estos sean fidedignos, y de ésta manera entregar gráficos y resultados numéricos lo más realistas posibles. Este proyecto se considerará exitoso si se logra la correcta implementación del mecanismo de valoración de opciones sobre acciones, el cual se realiza mediante la utilización adecuada y exitosa de teoremas como los de Black-Scholes-Merton y Feynman-Kac.

Para poder abordar el proyecto es que se ha decidido trabajar con Python, esto se debe principalmente a que Python es un lenguaje muy versátil dotado de numerosas ventajas en el mundo de la programación (Fácil sintaxis, integración con otros lenguajes, eficiencia y productividad), además cuenta con librerías como 'pandas' y 'numpy', las cuales nos proveen de herramientas para el análisis de datos financieros y la conexión que necesitamos realizar con "Yahoo! Finance" para la extracción de datos.

Si los módulos de Python no alcanzan para los cálculos financieros necesarios que necesita el proyecto, se maneja de forma alternativa la posibilidad de utilizar R, el cual es un lenguaje de programación que nos provee de poderosas herramientas para el análisis estadístico y financiero. Ambos lenguajes, Python y R, poseen una buena cantidad de librerías documentadas que nos permiten integrarlos entre sí.

Modelo de Dominio (Inicial)

A continuación se presenta el Modelo de Dominio que inicialmente se ha determinado.

Figura 1: Modelo de Dominio del Proyecto

Tabla 1: Entidades del Dominio

Entidad	Descripción
Usuario	Persona(s) que manipulará(n) directamente el software
País	Lugar donde pertenece la empresa y la tasa de interés elegida por el
	usuario
Empresa	Entidad a la que pertenecen las acciones a solicitar por el usuario
Opción	Operación elegida por el usuario que se aplicará sobre las acciones
Tasa de Interés	Monto perteneciente a cada país y será proporcionado por el usuario
Acción	Activos pertenecientes a cada empresa cuya valoración es sobre estas

Requisitos clave Funcionales y Extra-Funcionales

Tabla 2: Requisitos Funcionales del Proyecto

Req. funcional	Descripción y medición
El sistema permitirá al	El usuario puede ingresar un archivo con extensión CSV con
usuario ingresar un	los datos a trabajar con un tamaño máximo 1MB y formato
archivo con los datos a	adecuado.
analizar	
El usuario ingresará la	El usuario debe ingresar los parámetros solicitados con un
empresa, el intervalo	máximo de tiempo de maduración 10 años.
de maduración y la tasa	
de riesgo.	
El sistema entregará el	Se entregará un resultado numérico para la valoración de
resultado de la	opciones sobre la acción solicitada en base a los teoremas
valoración de opciones	de Black-Scholes-Merton y Feynman-Kac.
sobre las acciones	
solicitadas.	
El programa permitirá	La trayectoria obtenida para la valoración de opciones se
la visualización de	podrá visualizar en un gráfico 2D.
gráficos.	
Se extraerán los datos	Todos los datos solicitados por el usuario se extraerán del
de "Yahoo! Finance"	sitio web de Yahoo! Finance para tener fidelidad de los
	datos.

Tabla 3: Requisitos Extra-Funcionales del Proyecto

Req. extra-funcional	Descripción y medición
El programa debe ser	Se programará en el lenguaje Python, el cual mediante una
un .exe capaz de	librería específica (Py2Exe) nos permitirá realizar un
ejecutarse en Linux y	ejecutable del programa.
en Windows	
Se desean utilizar	Para calcular la valoración de opciones sobre los datos es
comandos específicos	deseable utilizar funciones que provee el lenguaje R
del lenguaje R	

Casos de Uso y Diagrama

Caso de uso 1: Solicitar Datos

Figura 2: Modelo del CU "Solicitar Datos"

Tabla 4: Actores del CU "Solicitar Datos"

Nombre	Solicitar Datos
Actores	Usuario, Yahoo! Finance
Pre-condiciones	Ingresar la empresa, tasa de interés y tiempo de maduración
Post-condiciones	Almacenar datos
Flujo normal	Extracción de datos de Yahoo Finance
Cursos	Yahoo Finance no tiene los datos solicitados, pedir datos al
alternativo	usuario

Priorización de requisitos

Mediante la elaboración de un árbol de Utilidades se realizó la priorización de los requisitos.

Estimación

Para elaborar la estimación de esfuerzo se realizó un análisis de las funcionalidades pedidas por el cliente y la experiencia del grupo desarrollando software. En base a ello es que se obtuvieron los siguientes puntos:

- El equipo viene trabajando en conjunto a lo largo de varios ramos de la carrera, por lo que se conoce (sabiendo fortalezas y debilidades de cada integrante).
 Esto permite una mejor distribución de tareas.
- El programa contará tanto con entrada remota de datos, como también la captura de datos desde un sitio web externo (Yahoo! Finance). El lenguaje utilizado en el proyecto, Python, consta de varia librerías que permiten la extracción de datos del sitio deseado, por lo que el esfuerzo no radica en la obtención de los datos, sino más bien en su tratamiento.
- En base al punto anterior es que se ha detectado que la mayor complejidad del proyecto recaerá en entender cómo modelar mediante procesos estocásticos las valoraciones de las opciones. Para ello gran cantidad del esfuerzo será utilizado en entender cómo funcionan y cómo se aplican los teoremas de Black-Scholes-Merton y Feynman-Kac, que son los que el cliente solicitó que se utilizaran.
- Dado que el sistema es totalmente centralizado, es decir, no tiene como objetivo el transferir datos a otro sistema, no se necesitará mayor esfuerzo en crear el programa como tal.
- La interfaz supondrá un esfuerzo medio, ya que si bien ya se ha trabajado con interfaces en proyectos anteriores, no se tiene un mayor conocimiento en ésta área.

Dado los puntos anteriores, se planea trabajar semanalmente en el proyecto, poniendo énfasis en esta etapa inicial en el tratamiento de los datos extraídos.

Identificación preliminar de riesgos para el proyecto

Haciendo un análisis de cómo se desarrollará el proyecto es que se han detectado los siguientes riesgos principales:

- 1. **Riesgo 1:** El mayor riesgo del proyecto es no lograr poder determinar una valoración de las opciones sobre las acciones que desee el usuario. Punto clave para mitigar este riesgo es leer la bibliografía otorgada por el cliente y realizar todas las consultas correspondientes. También es importante leer la documentación de las librerías a utilizar, pues éstas traen funcionalidades para aplicar las matemáticas financieras necesarias.
- 2. **Riesgo 2:** Yahoo! Finance no consta con los datos solicitados por el usuario. Este riesgo es importante pues la web proporcionada por el cliente es la principal fuente de datos. Para mitigar este problema es que se ha decidido implementar la funcionalidad de que el usuario pueda otorgar un archivo .CVS con los datos necesarios.

- 3. **Riesgo 3:** Elevado tiempo de ejecución/espera para la obtención de la valoración de opciones. Una mala optimización de los cálculos necesarios, un excesivo peso de los datos extraídos o un tiempo de latencia muy elevado pueden contribuir a que el tiempo de ejecución/espera para obtener la valoración deseada sea muy elevado. Para ello son varias las opciones que se han manejado, como:
 - a. Utilizar librerías especializadas en funciones estadísticas y financieras, como pandas, numpy, zipline, etc. Además de ello, siempre está el lenguaje R como opción. Ya que así se asegura que los cálculos estén optimizados.
 - b. Se pondrá una restricción de peso para los archivos que suba el usuario (1 MB), además de exigir un formato (.CVS).
 - c. También se restringirá el tiempo de latencia a un máximo de 10 años y un mínimo de 3 meses.
- 4. **Otros riesgos:** Se detectaron también otros posibles riesgos y las medidas para mitigarlos.
 - Requisitos: Agregar funcionalidades extras por parte del cliente. La versatilidad de Python no
 - Escabilidad: Que el cliente decida escalar el programa a una aplicación móvil. Para ello se ha investigado sobre el framework Kivy, que permite desarrollar aplicaciones en python que pueden ser corridas en Android.
 - Comunicación: Poco acceso al cliente. Si el medio más cómodo de comunicación falla (correo electrónico), se debe aprovechar el hecho de que el cliente tenga su oficina en la misma Universidad para agendar citas presenciales con él.