UNIDADES DE ALMACENAMIENTO Y SU EQUIVALENCIA

Tabla con las unidades de almacenamiento de datos en bytes:

Unidad	Símbolo	Equivalencia en Bytes	
Bit	(b)	0.125 Bytes (1/8 de un Byte)	
Byte	(B)	8 Bits	
Kilobyte	(KB)	1,024 Bytes	
Megabyte	(MB)	1,024 KB = 1,048,576 Bytes	
Gigabyte	(GB)	1,024 MB = 1,073,741,824 Bytes	
Terabyte	(TB)	1,024 GB = 1,099,511,627,776 Bytes	
Petabyte	(PB)	1,024 TB = 1,125,899,906,842,624 Bytes	
Exabyte	(EB)	1,024 PB = 1,152,921,504,606,846,976 Bytes	
Zettabyte	(ZB)	1,024 EB = 1,180,591,620,717,411,303,424 Bytes	
Yottabyte	(YB)	1,024 ZB = 1,208,925,819,614,629,174,706,176 Bytes	

Estos valores corresponden al sistema binario, que es el utilizado en informática (múltiplos de 1024).

El **sistema binario** es un sistema de numeración que utiliza solo **dos dígitos: 0 y 1**. Es la base del funcionamiento de las computadoras y dispositivos digitales, ya que estos trabajan internamente con estados eléctricos que pueden representar dos valores: **encendido (1)** y **apagado (0)**.

¿Por qué se usa el sistema binario en computación?

Las computadoras están hechas de circuitos electrónicos que solo pueden tener dos estados (por ejemplo, con o sin corriente). Por eso, el sistema binario es ideal para representar y procesar información en ese contexto.

Relación con medidas de almacenamiento

En almacenamiento, el sistema binario también se aplica al contar los datos. Por ejemplo:

- 1 Kilobyte (KB) en binario = 2¹⁰ bytes = 1,024 bytes
- 1 Megabyte (MB) = 2²⁰ bytes = 1,048,576 bytes
- 1 Gigabyte (GB) = 2³⁰ bytes = 1,073,741,824 bytes

Esto se debe a que las potencias de 2 (como 2¹⁰, 2²⁰, etc.) se ajustan naturalmente a la arquitectura binaria de los sistemas digitales.

Diferencia entre sistema binario y decimal en almacenamiento

Unidad	Sistema Decimal (SI)	Sistema Binario (IEC)	
1 KB	1,000 bytes	1,024 bytes (2 ¹⁰)	
1 MB	1,000,000 bytes	1,048,576 bytes (2 ²⁰)	
1 GB	1,000,000,000 bytes	1,073,741,824 bytes (2 ³⁰)	

En resumen, **el sistema binario es fundamental** para entender cómo las computadoras almacenan y procesan datos.

ESCRIBE TU NOMBRE EN CÓDIGO BINARIO

Letra	Código Binario	Letra	Código Binario
Α	01000001	Ñ	01101001
В	01000010	0	01001111
С	01000011	P	01010000
D	01000100	Q	01010001
E	01000101	R	01010010
F	01000110	S	01010011
G	01000111	T	01010100
Н	01001000	U	01010101
1	01001001	V	01010110
J	01001010	W	01010111
K	01001011	X	01011000
L	01001100	Y	01011001
M	01001101	Z	01011010
N	01001110	(espacio)	00100000

"ASHLY" en binario es: 01000001 01010011 01001000 01001100 01011001