1. Найти порядок элемента группы:

a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 4 & 3 & 7 & 1 & 2 & 5 & 6 & 10 & 9 & 8 \end{pmatrix} \in S_{10};$$

6) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 7 & 5 & 4 & 1 & 6 & 2 & 3 & 9 & 8 & 11 & 12 & 10 \end{pmatrix} \in S_{12};$

- 2. Доказать, что в группе кватернионов Q_8 все подгруппы, кроме самой Q_8 , являются циклическими.
- 3. Доказать, что порядок подгруппы всегда делит порядок группы.
- 4. Доказать, что $\mathbb{R}^+ \cong \mathbb{R}$ и $\mathbb{Q}^+ \ncong \mathbb{Q}$. (Здесь $\mathbb{R}^+ = \{a \in \mathbb{R} \mid a > 0\}$)
- 5. Пусть конечная группа содержит ровно n элементов порядка p, где p простое число. Докажите, что или n=0, или p делит n+1.
- 6. Найдите в S_{n+2} при $n \geqslant 2$ подгруппу, изоморфную S_n и не имеющую неподвижных точек (то есть таких i, что g(i)=I для всех g из этой подгруппы).
- 7. Пусть на множестве G задано две бинарные операции * и \circ , которые наделяют G структурой группы, причем имеет место «совместная ассоциативность»: $a * (b \circ c) = (a * b) \circ c$ и $a \circ (b * c) = (a \circ b) * c$ для любых $a, b, c \in G$. Докажите, что группы (G, *) и (G, \circ) изоморфны.
- 8. Студент решил возвести все матрицы 17х17 над полем из семнадцати элементов в сотую степень, сложить результаты и посмотреть, что получится, но у него сломался компьютер. Помогите ему.
- 9. (*) Имеется группа G и два взаимно простых числа m и n, такие, что $x^ny^n=y^nx^n$ и $x^my^m=y^mx^m$ для любых $x,y\in G$. Докажите, что группа G абелева (коммутативна).

Подсказка: нужно знать что-то про центр группы и факторгруппы.