# **Algorithm Y**

### Part 1

### Assess the desiderata

- 1. Mutual exclusion
  - Passed using LTL claim **mutex**
- 2. Eventual entry
  - Passed for P using waitp
  - Failed for Q using waitq
- 3. Absence of deadlock
  - Passed by selecting *invalid endstats (deadlock)* option under Safety tab
- 4. Absence of unnecessary delay
  - Passed using **absp** and **absq**

### Part 2

## **Transition Diagram**





Transition diagram for Q

### Assertion network

 $p_0$ :  $b_0 = 0 \land b_1 = 0$ 

 $p_1$ :  $b_0 = 0$ 

 $p_2$ :  $b_0 = 1$ 

 $p_3$ :  $b_0 = 1$ 

 $p_4$ :  $b_0 = 1 \land b_1 \neq 1 \land P@p_4$ 

 $p_5$ :  $b_0 = 0$ 

 $q_0$ :  $b_0 = 0 \land b_1 = 0$ 

 $q_1$ :  $b_1 = 0$ 

 $q_2$ :  $b_1 = 1$ 

 $q_3$ :  $b_0 = 1 \land b_1 = 0$ 

 $q_4$ :  $b_0 = 0 \land Q@q_4$ 

 $q_5$ :  $b_1 = 0$ 

In this assertion network,  $p_4$  and  $q_4$  are the locations that represent the critical sections. Take the conjunction of  $p_4$  and  $q_4$  we have:

$$\begin{split} b_0 &= 1 \wedge b_1 \neq 1 \wedge P@p_4 \wedge b_0 = 0 \wedge Q@q_4 \\ \Leftrightarrow (b_0 &= 0 \wedge b_0 = 1) \wedge b_1 \neq 1 \wedge P@p_4 \wedge Q@q_4 \\ \Leftrightarrow &\bot \wedge b_1 \neq 1 \wedge P@p_4 \wedge Q@q_4 \\ \Leftrightarrow &\bot \end{split}$$

Which can never be true, which means that only one critical section can be alive at the same time.

#### Proof of inductive

```
\begin{aligned} p_0 &\to p_1\colon p_0 \land g\colon b_0 = 0 \land b_1 = 0 \Longrightarrow b_1 = 0, f\colon non\_cs \\ p_1 &\to p_2\colon p_1\colon b_0 = 0, g = \top f\colon set\ b_0 = 1. \text{ After f, the value of }\ b_0 \text{ becomes 1.} \\ p_2 &\to p_3\colon p_2 \land g\colon b_0 = 1 \land b_1 = 1, \ f\colon set\ b_0 = 1. \text{ After f, the value of }\ b_0 \text{ is still 1} \\ p_3 &\to p_2\colon p_3 \land g\colon b_0 = 1 \land b_0 = 1 \Longrightarrow b_0 = 1, f\colon set\ b_0 = 1. \text{ After f, }\ b_0 \text{ is still 1.} \\ p_2 &\to p_4\colon p_2 \land g\colon b_0 = 1 \land b_1 \neq 1 \Longrightarrow b_0 = 1 \land b_1 \neq 1, f\colon csp, \text{ f has no effect on }\ b. \\ p_4 &\to p_5\colon p_4\colon b_0 = 1, g\colon \mathsf{T}, f\colon set\ b_0 = 0. \text{ After f, the value of }\ b_0 \text{ becomes 0.} \\ p_5 &\to p_1\colon p_t \land g\colon b_0 = 0 \land \mathsf{T} \Longrightarrow b_0 = 0, f\colon non\_cs \\ q_0 &\to q_1\colon q_0 \land g\colon b_0 = 0 \land b_1 = 0 \Longrightarrow b_0 = 0, f\colon non\_cs \\ q_1 &\to q_2\colon q_1\colon b_1 = 0, g = \mathsf{T}\ f\colon set\ b_1 = 1. \text{ After f, the value of }\ b_1 \text{ becomes 1.} \\ q_2 &\to q_3\colon q_2 \land g\colon b_1 = 1 \land b_0 = 1, \ f\colon set\ b_1 = 0. \text{ After f, the value of }\ b_1 \text{ becomes 0.} \\ q_3 &\to q_2\colon q_3 \land g\colon b_1 = 0, f\colon set\ b_1 = 1. \text{ After f, b_0 is becomes 1.} \\ q_2 &\to q_4\colon q_2 \land g\colon b_1 = 1 \land b_0 = 0 \Longrightarrow b_0 = 0, f\colon csq, \text{ f has no effect on }\ b. \\ q_4 &\to q_5\colon q_4\colon b_0 = 0, g\colon \mathsf{T}, f\colon set\ b_1 = 0. \text{ After f, the value of }\ b_1 \text{ becomes 0.} \\ q_5 &\to q_1\colon q_t \land g\colon b_0 = 0 \land \mathsf{T} \Longrightarrow b_0 = 0. f\colon non\_cs \end{aligned}
```

Thus, we the assertion network is proved inductive.

### Part 3

Code line p4 to p6 can be directly replaced by skip, because this line is represented by  $p_3$  in the transition diagram. The cycle  $p_2 \rightarrow p_3 \rightarrow p_2$  in the diagram can be replaced by a self-pointing cycle without changing the behaviour of the process.

p3: while 
$$b[1] = 1$$
  
p4:  $b[0] \leftarrow 1$   
p5: await  $(b[0] = 1)$   
p6:  $b[0] \leftarrow 1$ 

Superfluous code piece



Fragment of transition diagram

In addition, according to the transition network, the location  $p_2$  and  $p_3$  both specifies  $b_0 = 1$ . So, the changes will not affect the behaviour of the algorithm.

Thus, code p3 to p6 can be simplified as:

p3: await b[1] = 0