Extension Headers

	()	1	L	2	2	3	3
	NH		Length		Options			
0								
1	Options							
1								

NH: Next Header following this Extension header. Length: Length of this header in 8 byte units.

0 = 8 bytes

Options: depends on header type.

Extension Headers

Dec.	Hex	Header			
0	0x00	Hop-By-Hop (HH)			
43	0x2b	Routing Header (RH)			
44	0x2c	Fragmentation Header (FH)			
50	0x32	Encap. Security Payload (ESP)			
51	0x33	Authentication Header (AH)			
58	0x3a	ICMPv6 (ICMP6)			
59	0x3b	No Next Header			
60	0x3c	Destination Options (DH)			

Note: TCP(6), UDP (17,0x11), and any other protocols must be the LAST header. Each extension header, but the destination header, may only appear once. The Hop-By-Hop header must be first. The order of the other headers is only recommended.

Options (HH, RH, DH)

	- \					
()	1	l			
Ту	ре	Len	gth	Value		

Length in bytes without type/length bytes.
Padding may be needed to fill multiple of 8 bytes.

Type 0: Pad 1 (Pad 1 byte)

Type 1: Pad n (pad multiple bytes)

The best. Made better.

The SANS Technology Institute develops leaders to strengthen enterprise and global information security. STI educates managers and engineers in information security practices and techniques, attracts top scholar-practitioners as faculty, and engages both students and faculty in real-world applied research.

Learn more at https://www.sans.edu

A collaborative network security community. Learn about current issues, correlate your logs with others, free API and other resources to enhance your understanding of current threats. https://isc.sans.edu

IPv6 Pocket Guide

Version January 2024

POCKET REFERENCE GUIDE

Please submit comments and corrections to jullrich@sans.edu https://www.sans.org/posters/ipv6-pocket-guide

COURSES & GIAC CERTIFICATIONS

SEC 503 Network Monitoring and Threat Detection In-Depth

Security Essentials - Network, Endpoint, and Cloud

SEC 573

Automating Information Security with Python

SEC 560

Enterprise Penetration

Testing

FOR 572 Network Forensics

LDR 512 Security Leadership Essentials for Managers

UDP

tcpdump usage

Avoid using "proto" as filter. "proto" will only check the IPv6 header's "Next Header" field and the NH field of a fragment header. Use "protochain" instead.

Avoid the use of tcp[] / icmp6[] / udp[]

use 'ip6' instead of 'ip' and 'icmp6' instead of 'icmp' (ip and icmp are IPv4 only)

src/net works for IPv6 addresses.

	Acronyms
AH	Authentication Header (RFC 2402)
ARP	Address Resolution Protocol (RFC 826)
BGP	Border Gateway Protocol (RFC 1771)
CWR	Congestion Window Reduced (RFC 2481)
DF	Do not fragment flag (RFC 791)
DHCP	Dynamic Host Configuration Protocol (RFC 2131)
DNS	Domain Name System (RFC 1035)
ECN	Explicit Congestion Notification (RFC 3168)
ESP	Encapsulating Security Payload (RFC 2406)
FTP	File Transfer Protocol (RFC 959)
GRE	Generic Route Encapsulation (RFC 2784)
HTTP	Hypertext Transfer Protocol (RFC 1945)
ICMP	Internet Control Message Protocol (RFC 792)
IGMP	Internet Group Management Protocol (RFC 2236)
IMAP	Internet Message Access Protocol (RFC 2060)
IP	Internet Protocol (RFC 791)
ISAKMP	Internet Sec. Assoc. & Key Mngm Proto. (RFC 7296)
L2TP	Layer 2 Tunneling Protocol (RFC 2661)
MLD	Multicast Listener Discover
NDP	Neighbor Discovery Protocol
NH	Next Header
OSPF	Open Shortest Path First (RFC 1583)
POP3	Post Office Protocol v3 (RFC 1460)
RFC	Request for Comments
SMTP	Simple Mail Transfer Protocol (RFC 821)
SSH	Secure Shell (RFC 4253)
SSL	Secure Sockets Layer (RFC 6101)
TCP	Transmission Control Protocol (RFC793)
TLS	Transport Layer Security (RFC 5246)
TFTP	Trivial File Transfer Protocol (RFC 1350)
TOS	Type of Service (RFC 2474)

User Datagram Protocol (RFC 768)

ICMPv6

	0	1	2	3	3	
0	Туре	Code	Checksum			
4	Addtl. information depending on type/code					

Type/Code: errors < 128; > 127 informational

Checksum: IPv6 pseaudoheader

Туре	Code	Name			
0		Reserved			
1	0	No route to destination			
	1	Admin prohibited			
	2	Beyond scope of source address			
	3	Address unreachable			
	4	Port unreachable			
	5	Souce address failed ingress/egress policy			
	6	Reject route to destination			
	7	Error in Source Routing Header			
2	0	Packet to Big			
3	0	Hop limit exceeded in transit			
	1	Fragment reassembly time exceeded			
4	0	Erroneous header field encountered			
	1	Unrecognized next header type			
	2	Unrecognized IPv6 Option Encountered			
	3	1st Fragment has incomplete IPv6 hdr chain			
128	0	Echo Request			
129	0	Echo Reply			
130	0	Multicast Listener Query			
131	0	Multicast Listener Report			
132	0	Multicast Listener Done			
133	0	Router Solicitation			
134	0	Router Advertisement			
135	0	Neighbor Solicitation			
136	0	Neighbor Advertisement			
137	0	Redirect			

ICMPv6 includes MLD Protocol (replaces IGMP) and NDP Protocol (replaces ARP)

Type <128: Errors. Must route

128, 129: Echo Request/Reply may route

Type>130: Most not route

IPv6 Header

Offset: Add column+row. e.g. Next Header=6 ip6[6] = "IPv6 header offset 6" or the next header field

	()	:	1	2	2	3	3	
	Ver Traffic		ic Cl.	ic Cl.		Flow Lab		el	
0	6								
_	P	ayload	Lengt	:h	Next	.Hdr	Hopl	Limit	
4									
		Sou	ırce IP	Netw	ork Pa	rt 1 st H	lalf		
8									
		Sourc	e IP N	etwor	k Part :	2 nd Ha	lf /64		
12									
4.0	Source IP Interface Part 1st Half								
16									
	Source IP Interface Part 2 nd Half /128								
20									
	Target IP Network Part 1st Half								
24									
	Target IP Network Part 2 nd Half /64								
28									
22		Tar	get IP	Interf	ace Pa	rt 1st F	lalf		
32									
2.5		Targe	t IP Int	erface	Part 2	nd Half	f /128		
36									

IPv6 Addresses

2001	0db8	1234	5678	abcd	abcd	abcd	abcd	
Network				Interface				
/16	/32	/48	/64	/80	/96	/112	/128	

 $2001{:}\theta db8{:}\theta 000{:}1234{:}\theta 000{:}\theta 000{:}\theta 000{:}\theta 000$

abbreviated: 2001:db8:0:1234::1

::1/128	loopback
::/128	unspecified
::ffff:0:0/96	IPv4-mapped
fe80::/10	link-local unicast
fc00::/7	uniq-local unicast
2001:db8::/32	documentation
2002::/16	6to4
2001::/32	Teredo
Ff00::/8	multicast
2000::/3	global routable

Special Multicast Addresses

ff02::1	All Local Hosts
ff02::2	All Routers
ff02::16	MLDv2 capable
	Routers
ff02::1:2	All DHCP
	Rouers/Servers
ff02::1:3	All LLMNR Hosts
ff02::fb	Multicast DNS

Multicast Address Format:

Byte 1	Byte 2		Byte 3-8
FF	Flags	Scope	Group ID

Scopes:

- 1 Interface local
- 2 Link Local
- 4 Admin Local
- 5 Site Local
- 8 Organization Local
- E Global

Solicited Multicast Address: ff02:0:0:0:0:1:ffXX:XXXX. (XX:XXXX is last three bytes of IPv6 address)

Abbreviating Addresses

2001:0db8:0000:abcd:0000:0000:0000:0001

2001:db8:0:abcd:0:0:0:1 (remove leading 0's, replace "0000" groups with :: once)

Hop-by-Hop Header

Options:

- 5 Router Alerts
 - 1 Multicast Listener Discovery
 - 2 RSVP
- 194 Jumbogram (> 64kByte Payload)

Routing Header

0	1	2	3
NH	Length	Туре	data

Routing Type 0: (source routing)

	0	1	2	3		
0	NH	Length	0	Seg. Left		
				Left		
4	Reserved					
8	Address 1 (1 st half					
12	Address 1 (2 nd half)					
	additional addresses					

Fragment Header

	0	1	2	3			
0	NH	Reserved	Offset	Offset	F		
4	Fragment ID						

Just like in IPv4, 13 bits are used for the offset (and need to be multiplied by 8). Out of the three flag bits, only one is used (More Fragments)