Transformerを詳しく学ぼう!

Section2

講座の内容

Section1. Transformerの概要

Section 2. Attention の仕組み

Section3. Transformerにおける埋め込み

Section 4. Transformer を組み立てる

今回の内容

- 1. Section2の概要
- 2. Attentionの概要
- 3. Scaled Dot-Product Attention
- 4. Multi-HeadAttention
- 5. 演習

教材の紹介

・Pythonの基礎:

python_basic

·Section2の教材

01_scaled_dot_product _attention.ipynb

02_multi_head_attention.ipynb

03_exercise.ipynb

https://github.com/yukinaga/learning_transformer/

Section1演習の解答例

• 03_exercise.ipynb

ChatGPT に聞いてみる

「Transformerで使われるAttentionって何ですか?」

https://chat.openai.com/

Attentionとは?

• Attentionとは?

- → 文章中のどの単語に注目すればいいかを表すスコア
- → Query、Key、Valueの3つのベクトルで計算される

Query

→ Inputのうち「検索をかけたいもの」

Key

→ 検索対象とQueryの近さを測る

Value

→ Keyに基づき、適切なValueを出力する

Attentionとは?

Input & Memory

Attention weightの計算

Valueとの内積

 Input:
 得意 な スポーツ は ?
 内積 = Value(野球)×0.6

 +Value(が)×0.02

 Memory:
 野球 が 得意
 +Value(得意)×0.38

Self-Attention

SourceTarget-Attention

Scaled Dot-Product Attention

Scaled Dot-Product Attention

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

Mask

→ 入力した単語が「先読み」されるのを防ぐために、特定の key に対して

Attention weight を0にする

Multi-Head Attention

Multi-Head Attention

- → Attentionを並行に並べる
- → それぞれのAttentionはHeadと呼ばれる
- → 「Attention Is All You Need」では

Multi-Head化による性能の向上が述べられている

MultiHead(Q, K, V) = Concat(head₁, ..., head_h) W^O where head_i = Attention (QW_i^Q, KW_i^K, VW_i^V)

Attentionの可視化

異なる色は異なるAttentionのHeadを表す Attention Is All You Need, Ashish, V. et al. (2017) より引用

Scaled Dot-Product Attention

Scaled Dot-Product Attention

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

Mask

→ 入力した単語が「先読み」されるのを防ぐために、特定の key に対して

Attention weight を0にする

Scaled Dot-Product Attention

•01_scaled_dot_product _attention.ipynb

Multi-Head Attention

Multi-Head Attention

- → Attentionを並行に並べる
- → それぞれのAttentionはHeadと呼ばれる
- → 「Attention Is All You Need」では

Multi-Head化による性能の向上が述べられている

MultiHead(Q, K, V) = Concat(head₁, ..., head_h) W^O where head_i = Attention (QW_i^Q, KW_i^K, VW_i^V)

Multi-HeadAttention

•02_multi_head_attention.ipynb

演習

• 03_exercise.ipynb

次回の内容

Section1. Transformerの概要

Section 2. Attention の仕組み

Section 4. Transformer を組み立てる