

AFFDL-TR-75-16

Volume I

AD-A016 406

**DEVELOPMENT OF
FLIGHT-BY-FLIGHT FATIGUE TEST DATA
FROM STATISTICAL DISTRIBUTIONS OF
AIRCRAFT STRESS DATA**

*UNIVERSITY OF DAYTON
RESEARCH INSTITUTE
DAYTON, OHIO*

MAY 1975

TECHNICAL REPORT AFFDL-TR-75-16, VOLUME I
FINAL REPORT FOR PERIOD OCTOBER 1972 – JANUARY 1975

Approved for public release; distribution unlimited

AIR FORCE FLIGHT DYNAMICS LABORATORY, FBL
Air Force Systems Command
Wright-Patterson Air Force Base, Ohio

BEST
AVAILABLE COPY

20070919130

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (IO) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Darrell Simpkins
DARRELL SIMPKINS
Project Engineer

FOR THE COMMANDER

Gerald G. Leigh

GERALD G. LEIGH, Lt. Col., USAF
Chief, Structures Division
AF Flight Dynamics Laboratory

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER AFFDL-TR-75-16 Volume I	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) DEVELOPMENT OF FLIGHT-BY-FLIGHT FATIGUE TEST DATA FROM STATISTICAL DISTRIBUTIONS OF AIRCRAFT STRESS DATA		5. TYPE OF REPORT & PERIOD COVERED Final Report October 1972 to January 1975
7. AUTHOR(s) George J. Roth		6. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(s) F33615-73-C-3007
9. PERFORMING ORGANIZATION NAME AND ADDRESS University of Dayton Research Institute 300 College Park Avenue Dayton, Ohio 45469		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Project 1367 Task No. 0313
11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Flight Dynamics Laboratory Air Force Systems Command Wright-Patterson Air Force Base, Ohio		12. REPORT DATE May 1975
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 135
		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Fatigue Fatigue Testing Test Spectra Flight Loads		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Axially loaded specimens of 7075-T651 aluminum with a hole ($K_t = 2.54$) were fatigue tested using loading histories derived from strain gage data recorded on operational aircraft. For the baseline data the magnitude and order in which the loads occurred during a flight were preserved. The flight contained data from taxi, take-off, flight and landing strain histories.		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(*When Data Entered*)

The data was then processed by several counting techniques to obtain statistical distributions of the cyclic and mean stress amplitudes, as well as the number of stress cycles per flight for both the ground operations and the in-flight operations. These distributions were then used to generate a series of flight-by-flight test sequences. The sequences were obtained by randomly selecting from the distributions a ground mean, the number of cyclic stresses, and the magnitude of the cyclic stress for each stress cycle of the taxi and ground operations. The process was repeated for the flight operation. These sequences were used to program the closed-loop fatigue machines. Thousands of unique flights with hundred of thousands of stress cycles were generated.

Three different counting techniques were used to determine the statistical distribution of the cyclic stress for each of two aircraft types. Tests were also conducted wherein the cyclic stresses during operations on the ground were omitted, however, a distribution of preflight ground stresses were used as the starting point for each flight.

The report presents the results in terms of the number of flights to failure for 9 sequences of B-58 data and 6 sequences for the F-106 data. A total of 91 specimens were tested. The report concludes that simulated testing sequences can yield the same fatigue life as the original strain gage data recorded on operational aircraft.

FOREWORD

The efforts reported herein were performed by the Aerospace Mechanics Division of the University of Dayton Research Institute, Dayton, Ohio, under Air Force Contract F33615-73-C-3007, Project 1367, Task No. 0313. The program was sponsored by the Air Force Flight Dynamics Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio.

Technical and administrative support was provided by Mr. Darrell Simpkins, AFFDL/FBE, the Project Engineer for the Air Force.

The work reported herein was performed during the period October 1972 to September 1974. The draft of this technical report was submitted by the authors in January 1975.

The author gratefully acknowledges the fine cooperation and assistance of Mr. F. Kasischke and Mr. H. Jones of the Analog/Hybrid Computer Facility located at Wright-Patterson Air Force Base who converted the digital tapes to analog tapes.

TABLE OF CONTENTS

SECTION	PAGE
1 INTRODUCTION	13
2 RECORDED DATA	15
2.1 B-58 DATA	15
2.2 F-106 DATA	18
3 TEST SPECIMEN	20
4 TESTING PROCEDURE	22
4.1 GENERATION OF TEST SEQUENCE TAPES	22
4.2 SPECIMEN INSTALLATION	24
4.3 CYCLIC TESTING	24
5 SIMULATED TEST SEQUENCES	26
5.1 B-58 SIMULATION	26
5.1.1 Folded Distribution	26
5.1.2 Bivariate Distribution of Positive and Negative Primary Peaks	29
5.1.3 Limited Folded Distribution	30
5.2 F-106 STRESS SIMULATION	31
5.2.1 Bivariate Distribution of Mean and Alternating Stresses	31
5.2.2 Separate Positive and Negative Distributions	32
5.2.3 Limited Separate Positive and Negative Distributions	33
5.3 SIMULATIONS FOR DATA SETS B-58 SEQUENCES B, C, D AND F-106 SEQUENCE F	33
5.3.1 B-58 Simulations for Sequence B, C and D	34
5.3.2 F-106 Simulations for Sequence F	34
6 TEST RESULTS	35
6.1 FATIGUE LIFE	35
6.2 CRACK GROWTH	36
7 DISCUSSION	38
7.1 B-58 DATA	38
7.2 F-106 DATA	40
7.3 CRACK GROWTH CURVES	41
8 CONCLUSIONS	42
REFERENCES	43

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	Cyclic Test Specimen	44
2(a)	Typical Stress Sequence for B-58 Spectrum with Ground Loads	45
2(b)	Typical Stress Sequence for B-58 Spectrum without Ground Loads	46
2(c)	Typical Stress Sequence for F-106 Spectrum	47
3	Specimen Installation Procedure	48
4	Telescope Setup for Crack-Growth Measurements	49
5	Crack Length vs Flights, B-58 Sequence A Original Data	50
6	Crack Length vs Flights, B-58 Sequence A Folded Distribution Data	51
7	Crack Length vs Flights, B-58 Sequence A Bivariate Peak and Valley Simulation	52
8	Crack Length vs Flights, B-58 Sequence C Original Data	53
9	Crack Length vs Flights, B-58 Sequence C Bivariate Peak and Valley Simulation	54
10	Crack Length vs Flights, B-58 Sequence B Original Data	55
11	Crack Length vs Flights, B-58 Sequence B Bivariate Peak and Valley Simulation	56
12	Crack Length vs Flights, B-58 Sequence D Original Data	57
13	Crack Length vs Flights, B-58 Sequence D Bivariate Peak and Valley Simulation	58
14	Crack Length vs Flights, F-106 Sequence E Original Data	59
15	Crack Length vs Flights, F-106 Sequence E Bivariate Mean and Alternating Simulation	60

LIST OF ILLUSTRATIONS(Continued)

FIGURE	PAGE
16 Crack Length vs Flights, F-106 Sequence E Separate Peak and Valley Simulation	61
17 Crack Length vs Flights, F-106 Sequence E Limited Separate Peak and Valley Simulation	62
18 Crack Length vs Flights, F-106 Sequence F Original Data	63
19 Crack Length vs Flights, F-106 Sequence F Separate Peak and Valley Simulation	64
20 Test Results for All B-58 Data Sets	65
21 Test Results for All F-106 Data Sets	66
22 Pictorial Comparison of Time Histories of F-106 Simulations	67

LIST OF TABLES

TABLE		PAGE
1	Summary of Load Sequence for B-58 Data Original Strain Gage Data	68
2	Summary of Load Sequence for F-106 Data, Original Strain Gage Data	69
3	Specimen Assignment Chart	70
4	Determination of Static Tensile Properties for 7075-T651 Bare Plate Specimen Material	72
5	Cumulative Frequency Distributions for B-58 Sequence A Incremental Stress Peaks	73
6	Cumulative Probability for Positive Ground Peak Distribution Data, B-58 Sequence A	74
7	Cumulative Probability for Positive Airborne Peak Distribution Data, B-58 Sequence A	75
8	Cumulative Probability for Preflight Stress Distribution Data, B-58 Sequence A	76
9	Cumulative Probability for Ground 1-g Stress Distribution Data, B-58 Sequence A	77
10	Cumulative Probability for Number of Ground Peaks Per Flight Data, B-58 Sequence A	78
11	Cumulative Probability for Airborne 1-g Stress Distribution Data, B-58 Sequence A	79
12	Cumulative Probability for Number of Airborne Peaks Per Flight Data, B-58 Sequence A	80
13	Simulation Program Run on 05/16/74 at 20.11.12, Summary of Flights on Channel 1 - B-58 Sequence A Folded Distribution	81
14	Summary of Data on Each Channel, B-58 Sequence A Folded Distribution	82
15	Listing of Peaks and Valleys at Start of 3 FM Channels, B-58 Sequence A Folded Distribution	83
16	Frequency Distribution Table of Peak and Valley Stresses for Ground Data, B-58 Sequence A	84

LIST OF TABLES (Continued)

TABLE		PAGE
17	Frequency Distribution Table of Peak and Valley Stress for Airborne Data, B-58 Sequence A	84
18	Cumulative Probability for Peak Stresses for Ground Bivariate Table, B-58 Sequence A	85
19	Cumulative Probability Table of Peak and Valley Stresses for Ground Data, B-58 Sequence A	85
20	Cumulative Probability for Peak Stress for Airborne Bivariate Table, B-58 Sequence A	86
21	Cumulative Probability Table of Peak and Valley Stresses for Airborne Data, B-58 Sequence A	86
22	Simulation Program Run on 07/11/74 at 18.52.49, Summary of Flights on Channel 4, Bivariate Distribution of Positive and Negative Primary Peaks, B-58 Sequence A	87
23	Summary of Data on Each Channel, Bivariate Distribution of Positive and Negative Primary Peaks, B-58 Sequence A	88
24	Listing of Peaks and Valleys at Start of 3 FM Channels, Bivariate Distribution of Positive and Negative Primary Peaks, B-58 Sequence A	89
25	Cumulative Probability for Positive Ground Peak Distribution Data, B-58 Sequence A Limited Folded Distribution	90
26	Cumulative Probability for Positive Airborne Peak Distribution Data, B-58 Sequence A Limited Folded Distribution	90
27	Cumulative Probability for Number of Ground Peaks Per Flight Data, B-58 Sequence A Limited Folded Distribution	91
28	Cumulative Probability for Number of Airborne Peaks Per Flight Data, B-58 Sequence A Limited Folded Distribution	91
29	Cumulative Probability for Ground 1-g Stress Distribution Data, B-58 Sequence A Limited Folded Distribution	92

LIST OF TABLES (Continued)

TABLE		PAGE
30	Cumulative Probability for Airborne 1-g Stress Distribution Data, B-58 Sequence A Limited Folded Distribution	92
31	Cumulative Probability for Preflight Stress Distribution Data, B-58 Sequence A Limited Folded Distribution	93
32	Simulation Program Run on 05/16/74 at 20.29.19, Summary of Flights on Channel 7, B-58 Sequence A Limited Folded Distribution	94
33	Cumulative Probability for Number of Ground Cycles Per Flight, F-106 Sequence E Bivariate Distribution of Mean and Alternating Stresses	95
34	Cumulative Probability for Number of Airborne Cycles Per Flight, F-106 Sequence E Bivariate Distribution of Mean and Alternating Stresses	95
35	Cumulative Probability for Mean Stresses for Ground Bivariate Table, F-106 Sequence E Bivariate Distribu- tion of Mean and Alternating Stresses	96
36	Cumulative Probability Table of Mean and Alternating Stress for Ground Data, F-106 Sequence E Bivariate Distribution of Mean and Alternating Stresses	96
37	Cumulative Probability for Mean Stress for Airborne Bivariate Table, F-106 Sequence E Bivariate Distri- bution of Mean and Alternating Stresses	97
38	Cumulative Probability Table of Mean and Alternating Stress for Airborne Data, F-106 Sequence E Bivariate Distribution of Mean and Alternating Stresses	98
39	Simulation Program Run on 02/16/74 at 13.52.53, Summary of Flights on Channel 1, F-106 Sequence E Bivariate Distribution of Mean and Alternating Stresses	99
40	Summary of Data on Each Channel, F-106 Sequence E Bivariate Distribution of Mean and Alternating Stresses	100
41	Cumulative Probability for Negative Ground Peak Dis- tribution Data, F-106 Sequence E Separate Positive and Negative Distributions	100
42	Cumulative Probability for Positive Ground Peak Distri- bution Data, F-106 Sequence E Separate Positive and Negative Distributions	101

LIST OF TABLES (Continued)

TABLE		PAGE
43	Cumulative Probability for Negative Airborne Peak Distribution Data, F-106 Sequence E Separate Positive and Negative Distributions	101
44	Cumulative Probability for Positive Airborne Peak Distribution Data, F-106 Sequence E Separate Positive and Negative Distributions	102
45	Cumulative Probability for Number of Ground Peaks Per Flight Data, F-106 Sequence E Separate Positive and Negative Distributions	102
46	Cumulative Probability for Number of Airborne Peaks Per Flight Data, F-106 Sequence E Separate Positive and Negative Distributions	103
47	Simulation Program Run on 02/16/74 at 13.42.47, Summary of Flights on Channel 4, F-106 Sequence E Separate Positive and Negative Distributions	104
48	Summary of Data on Each Channel, F-106 Sequence E Separate Positive and Negative Distributions	105
49	Cumulative Probability for Negative Ground Peak Distribution Data, F-106 Sequence E Limited Separate Positive and Negative Distributions	105
50	Cumulative Probability for Positive Ground Peak Distribution Data, F-106 Sequence E Limited Separate Positive and Negative Distributions	106
51	Cumulative Probability for Negative Airborne Peak Distribution Data, F-106 Sequence E Limited Separate Positive and Negative Distributions	106
52	Cumulative Probability for Positive Airborne Peak Distribution Data, F-106 Sequence E Limited Separate Positive and Negative Distributions	107
53	Cumulative Probability for Number of Ground Peaks Per Flight Data, F-106 Sequence E Limited Separate Positive and Negative Distributions	107
54	Cumulative Probability for Number of Airborne Peaks Per Flight Data, F-106 Sequence E Limited Separate Positive and Negative Distributions	108

LIST OF TABLE (Continued)

TABLE		PAGE
55	Simulation Program Run on 02/16/74 at 14.03.37, Summary of Flights on Channel 7, F-106 Sequence E Limited Separate Positive and Negative Distributions	109
56	Summary of Data on Each Channel, F-106 Sequence E Limited Separate Positive and Negative Distributions	110
57	Cumulative Probability for Number of Airborne Peaks Per Flight Data, B-58 Sequence B Bivariate Distribution of Peaks and Valleys	111
58	Cumulative Probability for Ground 1-g Stress Dis- tribution Data, B-58 Sequence B Bivariate Distribu- tion of Peaks and Valleys	112
59	Cumulative Probability for Airborne 1-g Stress Distribution Data, B-58 Sequence B Bivariate Distribution of Peaks and Valleys	113
60	Cumulative Probability for Preflight Stress Distribution Data, B-58 Sequence B Bivariate Distribution of Peaks and Valleys	114
61	Frequency Distribution Table of Peak and Valley Stresses for Ground Data, B-58 Sequence B Bivariate Distribution of Peaks and Valleys	114
62	Frequency Distribution Table of Peak and Valley Stresses for Airborne Data, B-58 Sequence B Bivariate Distribution of Peaks and Valleys	115
63	Cumulative Probability for Peak Stress for Ground Bivariate Table, B-58 Sequence B Bivariate Distribu- tion of Peaks and Valleys	116
64	Cumulative Probability Table of Peak and Valley Stresses for Ground Data, B-58 Sequence B Bivariate Distribution of Peaks and Valleys	116
65	Cumulative Probability for Peak Stress for Airborne Bivariate Table, B-58 Sequence B Bivariate Distribution of Peaks and Valleys	117
66	Cumulative Probability Table of Peak and Valley Stresses for Airborne Data, B-58 Sequence B Bivariate Distribution of Peaks and Valleys	117

LIST OF TABLES (Continued)

TABLE		PAGE
67	Simulation Program Run on 08/05/74 at 18.33.21, Summary of Flights on Channel 4, B-58 Sequence B Bivariate Distribution of Peaks and Valleys	118
68	Summary of Data on Each Channel, B-58 Sequence B Bivariate Distribution of Peaks and Valleys	119
69	Simulation Program Run on 08/01/74 at 18.49.55, Summary of Flights on Channel 4, B-58 Sequence C Bivariate Distribution of Peaks and Valleys	120
70	Summary of Data on Each Channel, B-58 Sequence C Bivariate Distribution of Peaks and Valleys	121
71	Simulation Program Run on 08/01/74 at 18.50.02, Summary of Flights on Channel 4, B-58 Sequence D Bivariate Distribution of Peaks and Valleys	122
72	Summary of Data on Each Channel, B-58 Sequence D Bivariate Distribution of Peaks and Valleys	123
73	Cumulative Probability for Negative Ground Peak Distribution Data, F-106 Sequence F Separate Positive and Negative Strain Distributions	123
74	Cumulative Probability for Positive Ground Peak Distribution Data, F-106 Sequence F Separate Positive and Negative Strain Distributions	124
75	Cumulative Probability for Negative Airborne Peak Distribution Data, F-106 Sequence F Separate Positive and Negative Strain Distributions	124
76	Cumulative Probability for Positive Airborne Peak Distribution Data, F-106 Sequence F Separate Positive and Negative Distributions	125
77	Cumulative Probability for Number of Ground Peaks Per Flight Data, F-106 Sequence F Separate Positive and Negative Distributions	125
78	Cumulative Probability for Number of Airborne Peaks Per Flight Data, F-106 Sequence F Separate Positive and Negative Distributions	126
79	Simulation Program Run on 07/09/74 at 20.17.34, Summary of Flights on Channel 4, F-106 Sequence F Separate Positive and Negative Strain Distributions	127

LIST OF TABLES (Continued)

TABLE		PAGE
80	Summary of Data on Each Channel, F-106 Sequence F Separate Positive and Negative Strain Distributions	128
81	Test Results for B-58 Data Set, Original Strain Gage Data	129
82	Test Results for F-106 Data Set, Original Strain Gage Data	130
83	Test Results for Simulated B-58 Sequence A	131
84	Test Results for Simulated F-106 Sequence E	132
85	Test Results for Simulated B-58 Sequence B, C, and D	133
86	Test Results for Simulated F1-06 Sequence F	134
87	Test Data Summary	135

SECTION 1

INTRODUCTION

The introduction of closed-loop electrohydraulic fatigue machines in the last few years has made it practical to perform fatigue testing without restrictions on the order of loading or the number of consecutive load cycles of one amplitude. In fact, complete flight-by-flight load simulations are possible.

Schijve in Reference 1 presents a rather complete discussion on the subject of aircraft structure fatigue. The discussion covers the physical and empirical limitations associated with using a linear damage theory and supporting data for life assessment problems involving a variable amplitude load sequence. He noted that flight simulation testing was essential for accurate assessment of fatigue life and crack propagation rate.

The present effort is concerned with establishing methodology for developing simulation sequences. The approach taken included the development of strain based sequences from strain gage data recorded during bomber and fighter aircraft flight operations. During the development of these sequences, the strain gage data were edited to remove small cycles (less than 3800 psi peak to peak) and inactive portions of the flight, but the order in which the remaining peaks occurred during a flight was preserved. The stress magnitudes were expressed in terms of stress relative to zero, in the same manner as the data were recorded, so that there was no requirement to identify the mean and alternating parts of the cycles for these sequences.

The strain gage data was also reduced to obtain statistical data on parameters considered necessary to describe the intensity of the flight-by-flight data. Statistical distributions were obtained for preflight stress, ground and flight 1-g stresses, stress cycles per ground operation, stress

cycles per flight, flight and ground peak stresses. Different counting techniques were used to obtain three sets of distributions of peak stresses resulting from gust, maneuver and taxi induced loadings. These data were used to develop simulated flight-by-flight sequences. It should be noted that G. M. vanDijk in Reference 2 presents several methods whereby one can process flight loads data to obtain statistical parameters that can be used to generate simulated flight data.

The strain based and simulated sequences were applied to coupon specimens, and the resulting fatigue lives compared. Techniques were selected as a result of these comparisons for simulating bomber and fighter aircraft operational load histories. Additional strain based and simulation sequences were developed from alternate bomber and fighter strain gage data as a means of demonstrating the general applicability of the selected simulation techniques for a range of operational flight load intensities.

Volume I of this report provides a description of the data and procedures used to develop the flight-by-flight sequences, the experimental program and a discussion of the results. Volume II provides a description of the computer programs used in generating the simulation sequences.

SECTION 2

RECORDED DATA

2.1 B-58 DATA

The University of Dayton during the period 1965 to 1969 had frequency modulated (FM) magnetic tape recorders installed on 4 of the USAF B-58 bomber aircraft. These recorders were used to collect flight loads data from the aircraft as they were used in the normal operating manner.

The recording program collected time history data on airspeed, altitude, center-of-gravity acceleration, and eight strain gage locations. Several of the strain gage locations were duplicated on the left and right side of the aircraft. For the present effort the strain gage located on the lower side of the spar at wing station 438.3 and span station 56.5 was chosen for the source of data. The stress at this location is sensitive to wing bending loading and is negative when the aircraft is on the ground and is positive when the aircraft is in flight. The time-history strain gage data was processed in terms of stress relative to zero stress using a calibrated value of pre-flight stress, which varies as a function of the aircraft gross weight, as the initial stress value when the aircraft is parked on the ground. All B-58 flights were designated as operational training flights. The mission profiles included the normal mission segments of taxi, take-off, ascent, cruise, descent, and landing as well as special mission segments of supersonic dash, refueling, and low level. The low level mission segments included flights over specified low level courses at constant pressure altitudes and at fixed altitudes above the terrain.

It was decided, based on the mean stress level and the K_T of the test specimen, that the B-58 data could be truncated so that minimum range between one reversal and the next could be 3800 psi. The flight recordings were then processed such that the peak stress of any cycle and the minimum

stress of the cycle were written on digital tape. The position of a switch on the landing gear also was used to identify whether the stress peak occurred when the aircraft was on the ground or in-flight. As each flight was processed the statistical variance of the stress peaks and valleys was calculated by the equation:

$$\text{Stress Variance} = \frac{N \sum_{i=1}^N s_i^2 - \left(\sum_{i=1}^N s_i \right)^2}{N(N-1)} \quad (1)$$

where S is the value of the stress for a peak or valley.

One of the objectives of the project was to investigate the effect that a mild or severe load history might have on the accuracy of a simulation technique; therefore the flights were divided into two sets: a low intensity set and a high intensity set. The variance was used as the parameter to assign a particular flight to either the high or the low intensity set. A value for the variance of the airborne segment of a flight of 30.13×10^6 (psi)² was selected as the dividing point. Using this criteria the B-58 data set was divided so that 343 flights were assigned to the low intensity set, defined as Sequence A, and 282 flights were assigned to the high intensity set, defined as Sequence B.

The low intensity data contained 197,448 stress reversals or 98,724 complete cycles. Of these, 2097 were taxi cycles. The total data set contained 194,287 reversals which defined primary peaks (a peak between successive mean crossings) and a total of 3160 secondary reversals that were superimposed on the primary reversals. The average of the 1-g trim stress during the airborne portion of the flight was 12,920 psi with a variance of 12.1×10^6 (psi)². This average is the average of the 1-g stresses at the time of a stress reversal for the 193,255 peaks, see Table 1. The high intensity data set contained 86,121 stress reversals or 43,060 complete cycles, and 3226 of these cycles were associated with taxi or

ground operations. A total of 2499 reversals were secondary reversals. Table 1 is a summary of the statistical properties of the low and high intensity data sets for the B-58.

An examination of the table reveals some numbers that require additional explanation. As stated early the dividing line between the low and high intensity flights was based on a value of the variance of $30.13 \times 10^6 (\text{psi})^2$. That number is the variance of the stress reversals about the mean for that particular flight. The variance listed in Table 1 is the variance of all primary peaks about the mean of the entire data set (i.e., 190,438 points). When the variance is calculated for the stress reversals that are primary peaks and the deviation is measured from the instantaneous 1-g trim stress to the stress peak (or valley) then the variance for the Sequence A set is 19.8 ksi^2 and for the Sequence B set is 24.9 ksi^2 . These latter values labeled the 1.0G Variance were calculated as follows.

$$1.0G \text{ Variance} = \frac{\sum_{i=1}^M \sum_{j=1}^{N_i} (S_{ij} - G_i)^2}{\left(\sum_{i=1}^M N_i \right) - 1} \quad (2)$$

where

S_{ij} = value of j^{th} peak or valley stress in the i^{th} flight

N_i = number of stress peaks for flight segment (ground or airborne) for i^{th} flight

M = number of flights in data set

G_i = 1-g trim stress for flight i

Also some comments are required about the means. The mean of the primary peaks is just the simple average of the 190,438 peaks. The mean of the weighted 1-g flight stress is the average of the 1-g trim stress at the time of a stress reversal. The 1-g trim stress values were determined by measuring the average 1-g stress value just preceding each stress reversal

which yielded a time history of the 1-g trim stresses for the entire flight. The fact that the averages of the primary peaks and the weighted 1-g stress are essentially the same is an indication that the deviations of the stress from the 1-g value is the same for increasing and decreasing deviations (i.e., plus and minus incremental stresses). This does not imply that the individual cycles are symmetrical about the 1-g trim value but only that when the total data set is examined there is symmetry between the positive and negative peaks. The fact that the 1-g stress on the ground is different from the preflight stress indicates that some of the data are from landings and some are from the take-off run just prior to lift off. The fact that the mean of the ground data and the mean of the 1-g ground data are different indicates that there are larger negative peaks than positive peaks.

The preflight stress is the true magnitude of the wing stress when the aircraft is parked with engines off. These values were used as the starting point for processing of the strain gage data.

Test sequences were also developed wherein taxi loads were omitted; however one ground load equal to the preflight stress was inserted at the beginning of each flight. The Sequence A data without taxi loads is identified as Sequence C, and the Sequence B data without taxi loads is identified as Sequence D.

2.2 F-106 DATA

The University of Dayton during the period from August 1970 to September 1971 had digital tape recorders installed on four F-106 Interceptors. In addition to the usual VGH data, strain gage data was recorded from a gage on the lower shoulder of spar number four at wing station 472 at buttock line 44.25. The recordings began at engine startup and ended at engine shut down, and therefore include taxi, take-off, and landing as well as the airborne portion of the flight.

The strain gage location was inboard of the landing gear and therefore the stress was tension when the aircraft was on the ground as well as when it was in the air. Consequently the strain at this location was not characterized by the typical ground-air-ground stress reversal. In fact the stress on the ground and the 1-g stress in-flight were the same.

The data was divided into two sets: a low intensity and a high intensity set. The variance, Equation (1), of the stress history was used as the measure of severity. The dividing point between low and high was chosen as 19.36×10^6 psi².

The low intensity data set had 381 flights with 52,128 stress reversals; 51,462 of these occurred during the airborne portion of the flight, and 48,446 were primary peaks. The average number of primary peaks per flight was 127. The variance, Equation (2), of the airborne primary peaks about the 1-g trim stress was 11.18 (ksi)².

The high intensity data set had 236 flights with 39,752 stress reversals; 32,636 of the reversals were airborne primary peaks. The average number of stress reversals was 138 and hence there was an average of 76 complete cycles per flight. The variance, Equation (2), of the peaks and valleys about the 1-g trim stress was 28.2 (ksi)².

Table 2 is a summary of some of the more significant facts about the data sets. Sequence E was the low intensity set and Sequence F was the high intensity set.

SECTION 3

TEST SPECIMEN

The test specimen was machined from 7075-T651 aluminum plate. The specimens were machined to the dimensions shown in Figure 1. The stress riser hole in the center of the specimen was first drilled to 0.375-inch diameter on a numerically controlled vertical milling machine. It was later redrilled to 0.386-inch diameter on a bench drill press. The specimens were machined from 1/4 inch rolled plate without any additional machining on the flat faces. In order to eliminate any biasing of the test results due to specimen location within the two plates that were used, the specimens were assigned consecutive numbers from random locations in the plates. The specimen locations are shown in Table 3. The length is the roll direction of the plate which is the 11 inch dimension of the specimen. It was the intent of this effort to use the same specimen that was used on a previous program. That program, the results of which are reported in References 3 and 4, used a specimen that had a 0.375-inch drilled hole in the center. The specimen for the previous program had a fatigue life of 50,500 cycles when tested at a constant amplitude of +5 KSI to +25 KSI net section stress. However, the specimens from the current program with a 0.375-inch diameter drilled hole had a fatigue life in excess of 250,000 cycles for the same loading.

In an attempt to make the fatigue strength of the specimens from the two programs similar, the 0.375-inch hole was reamed to 0.386-inch diameter. This reaming reduced the fatigue life to 67,200 cycles for the constant amplitude loading. Since this life was still greater than the 50,500 from the previous program, the following additional modifications were attempted: (1) the drilled 0.375-inch diameter hole was stress relieved at 200°F for 24 hours, yielding a fatigue life of 105,200 cycles; (2) the 0.375-inch hole was drilled out to 0.386-inch diameter, yielding a fatigue life of

58,200 cycles; and (3) the 0.375-inch hole was drilled out to 0.386-inch diameter and then stress relieved at 200°F for 24 hours, yielding a fatigue life of 61,100 cycles. Since the stress relieving after redrilling did not cause any additional reduction in fatigue life the specimens were just redrilled to 0.386-inch diameter without stress relieving. The final configuration had a fatigue life of 58,200 cycles when tested at a constant amplitude of +5 KSI to +25 KSI.

The static material properties of the plates were determined and are presented in Table 4. Tensile specimens were machined from random locations throughout the plates. The results indicate that the plates were uniform in tensile properties.

SECTION 4

TESTING PROCEDURE

All cyclic testing was performed using the University's MTS closed-loop electrohydraulic fatigue test system which was programmed by signals from an FM recorder.

4.1 GENERATION OF TEST SEQUENCE TAPES

The loading spectra which resulted from the editing of the actual flight recordings was a digital tape of peak and valley stresses in the same sequence as they occurred during the flights. Now since 343 flights of Sequences A or C would not contain enough cycles to cause a failure, the 343 flights were arranged in a second and third order to give a test sequence of 1029 flights. The order of the cycles within a given flight was not rearranged. After the 1029 flights were applied to the specimens the same sequence was started again. For the B and D sequences, the 282 flights were rearranged into 5 additional orders to give a test sequence of 1410 flights. Again, the order of the cycles within a given flight was not changed. After the 1410 flights were applied to the specimens the sequence was restarted.

The same procedure was used for the F-106 data. The 381 flights of Sequence E were rearranged 11 times to give a test sequence of 4572 flights. The 236 flights of the Sequence F data were rearranged 14 times to give a test sequence of 3540 flights. As with the B-58 data the order of the cycles within a given flight was not changed during the rearrangement process.

As each flight of the B-58 data set was copied from the original edit files, the preflight stress and two calibration signals were inserted into the data. The preflight stress was inserted at the beginning of the ground

data and the calibrations signals between the ground and airborne data. For spectrums C and D which did not contain taxi cycles the preflight stress was followed immediately by the two calibration signals. Since the F-106 data did not have a negative strain for ground operations the calibration signals were inserted into the data differently. The preflight stress of +8360 psi was written 4 times at the beginning of each flight, a signal equal to +14,960 psi was written 4 times in succession once per flight if and when the stress peak following the calibration value exceeded 16,060 psi. The second calibration signal was inserted this way so that the calibration signal would not introduce an extra stress reversal. If a flight did not have a peak greater than 16,060 psi then the second calibration voltage was omitted for the flight.

After the digital tape was created it was used as an input to the Wright-Patterson Air Force Base Analog/Hybrid computer. The analog signal was generated by fitting half sine waves between the peaks and valleys. The output of the analog/hybrid computer which was in an analog voltage form was recorded on a frequency modulated (FM) tape recorder. The sinusoidal frequency during the digital to analog conversion was 80 Hz, however, when the FM tape was played back into the MTS testing system the tape was slowed down so that the testing frequency was 5 Hz.

Oscillograph playbacks of typical flights are presented in Figure 2. Figure 2(a) and 2(b) are the same B-58 flights with and without taxi cycles. Figure 2(c) is a section from an F-106 spectrum.

In an attempt to control the amount of plasticity at the edge of the stress riser hole the net section stress was limited to 30,000 psi tension. With a stress concentration factor of 2.54 on the net section stress this limited the maximum stress to 76,200 psi. The 0.2% offset yield stress was 75,600 psi. The net section compression stress was limited to -15,000 psi.

4.2 SPECIMEN INSTALLATION

The specimens were installed in the testing machines using the gripping device shown in Figure 3. During installation the bolts were tightened first while the specimen was loaded slightly in tension (100 pounds) then the wedges were tightened. During testing the tensile loads were transferred to the specimen by shear loads on the bolts and the compressive loads were transferred directly to the specimen by the wedges. The use of the wedges in combination with the bolts allowed tension-compression testing without any backlash in the bolt holes. Using the relatively stiff fixture and specimen it was possible to test the specimens without using an anti-buckling fixture.

4.3 CYCLIC TESTING

Cyclic testing was accomplished by using the FM tape signal as the command signal for the closed-loop testing system. The feedback signal for control was from a strain gage type load cell.

The FM recorder/reproducer used was a 14 channel system with two channels used for WOW and flutter compensation so 12 channels were used for test sequence data. Each test sequence (A, B, C, D, E, and F) was limited to approximately 300,000 cycles before the sequence was repeated. At a tape speed of 1.875 inches/second it required three channels to record the 300,000 cycles on 10.5 inch diameter reels. Each channel (track) of the tape contained approximately 100,000 cycles and provided 6 hours of testing time. Sequence A for example started on track 1 continued on track 2 and was completed on track 3. Sequence C started on track 4 continued on track 5 and was completed on track 6. Each track had a section of zero load recorded at the beginning and end of the test sequence. During testing the reproduce recorder would be started, and while the signal was at the zero load level, the output would be connected to the MTS system. After a track was reproduced, the output would be disconnected from the MTS system

while the signal was at zero load, and the tape rewound. The next track would then be used to program the machines. If after tracks 1, 2 and 3, for example, had been used and the specimen had not failed, then testing was continued by using track 1 over again and then track 2 again and so on.

Since the system used is completely analog, it is necessary to monitor the load/cell output to ensure that the gain of the FM system has not changed or that a DC offset has not occurred. The accuracy of the loadings was maintained by monitoring on an oscilloscope the calibration signals which were recorded periodically on the tape. In order to obtain a high sensitivity on the oscilloscope, the load cell output was input into a chopped-beam oscilloscope through two "Tektronic" Model 5A13N Differential Comparator Amplifiers. In using these Differential Comparator Amplifiers, the lower calibration voltage was set on one amplifier and the higher calibration voltage was set on the other amplifier. When the test spectrum was being applied to the specimen and when the periodic calibration pulses occurred, the difference between the actual load cell voltage feedback and the required calibration voltages was displayed on the oscilloscope screen. If both the gain and the DC level were correct then the output during the two calibration pulses would be zero. Since the output should be zero, the sensitivity (vertical deflection) of the oscilloscope could be set very high. The sensitivity was set so that 0.1 inches on the screen was equivalent to 30 psi net section stress. By frequent monitoring of the calibration pulses in the load cell output signal, the stress levels for the calibration signals were maintained within ± 60 psi.

Cyclic testing was conducted on a 24 hour a day 5 days a week basis. The specimens were maintained at zero load over the weekends.

SECTION 5

SIMULATED TEST SEQUENCES

The strain gage data was processed to obtain statistical information on parameters considered appropriate to characterize the intensity of the flight data. Initially these processing efforts were restricted to the strain data that was used in the development of Sequences A and E as explained in Section 4. The strain data was processed to obtain statistical distributions of preflight stress, ground and airborne 1-g stress, stress cycles per ground and airborne operations and peak stresses. It was contemplated that the information on stress peaks could significantly influence test life. Consequently, different counting methods were used to obtain alternate sets of peak stress distributions. Having obtained these data sequences were developed and applied to test specimens to simulate Sequences A and E. The stress peak counting method employed to develop the simulation sequences that produced test lives that correlated with the strain based Sequences A and E test lives was selected for additional evaluation. Sequences were then developed to simulate the strain based Sequences B, C, D, and F.

5.1 B-58 SIMULATIONS

5.1.1 Folded Distribution

The first method used to generate a simulated test spectrum was the folded distribution of combined positive and negative primary peaks. A primary peak is defined as the maximum (or minimum) value of stress occurring between two successive crossings of the 1-g stress level by a continuous stress time-history trace. In order to generate the input data for the simulation program, the actual strain gage data was processed by a computer program to generate statistical distributions, in the form of a cumulative frequency distribution, of incremental stress peaks and valleys.

In order to conserve testing time only those peaks (valleys) greater than ± 3000 psi were used. Thus, an incremental peak stress represents an alternating stress superimposed on a 1-g trim stress.

Separate distributions were generated for the ground operations and the airborne flight segments. The frequency distributions of incremental stress peaks for the B-58 Sequence A data set is presented in Table 5 for the ground operations and also for the airborne operations.

Table 6 is a listing of the folded distribution (i.e., the sum of the negative and positive peaks) for the ground data for the B-58 Sequence A data. Since the parameter that is needed to generate a simulated test sequence is the relative probability, Table 6 lists the sum of the positive and negative peaks for the frequency and cumulative frequency distributions from Table 5 rather than the average of the number of peaks and valleys. The probability listed is the probability of a peak being equal to or greater than the absolute value of the stress value listed. Table 7 is a listing of the same type of data for the airborne flight segments.

Folded distributions of the primary stress peaks were used to generate random test sequences. A flight within the sequence was assembled by the following sequential steps:

- (1) randomly select a preflight stress from the cumulative probability of preflight stress data (Table 8);
- (2) randomly select a ground 1-g trim stress (Table 9);
- (3) randomly select the number of stress cycles for the ground operations for that flight (Table 10);
- (4) randomly select the magnitude of the cyclic stress for the first ground stress cycle (Table 6), add and subtract this value from the ground 1-g trim stress selected in step (2), and continue to repeat step (4) until the number of ground cycles required by step (3) is obtained;

(5) randomly select a 1-g trim stress value from Table 11 for the airborne segment of the flight;

(6) randomly select the number of stress cycles for the airborne segment of that flight (Table 12);

(7) randomly select from Table 7 the magnitude of the cyclic stress for the first stress peak of the airborne segment of the flight, add and subtract this value from the 1-g trim stress selected in step (5) to form the first stress cycle, and repeat step (7) until the number of cycles selected in step (6) is obtained.

A random number between 0.0000000000 and 1.0000000000 was selected by a random number generator then used to interpolate in the appropriate probability table to select values for the parameters in steps (1) thru (7).

This procedure completes the first flight. Now go back to step (1) and repeat the entire procedure until enough flights and cycles are generated to fill one track of the FM tape. The procedure is repeated again for a second and third FM channel.

In the actual simulation of the B-58 Sequence A data the first channel contained 420 flights with 105,651 stress cycles, the second channel 439 flights with 105,393 stress cycles and the third channel 459 flights with 105,303 stress cycles.

Table 13 is a listing of a typical summary sheet for the first 50 flights. The summary sheet is self explanatory except for two items, i.e., the cumulative number of peaks and points. The number of peaks is the sum of the number of ground and airborne stress reversals (2 per cycle), the number of points is equal to the number of peaks plus the number of points used for the preflight stress (4) and the ground calibration pulse (4) and the airborne calibration pulse (4) so that each flight has 12 more points

than peaks except the first flight which has 8 points of zero stress at the beginning. A summary of the total data set on each of the three channels is presented in Table 14. Table 14 also contains the summary data for the entire data set.

Note that there are two variances listed in Table 14 for both the ground and the airborne data. The one labeled stress variance was based on Equation (1) and the one labeled 1.0G Variance was based on Equation (2).

Table 15 is a listing of stress reversals for the start of each channel. This print out is from the digital tape which was used as input to the hybrid computer. A continuous analog signal for each channel was obtained by forcing a half cycle of a sine wave between the digital peaks and valleys. The resulting signals were then recorded on FM tape and later used to program the fatigue machines.

5.1.2 Bivariate Distribution of Positive and Negative Primary Peaks

The second method of generating a simulated test spectrum requires the strain gage data to be processed by a different computer program which sorts the primary peak data into a bivariate distribution of the peak stress in a cycle and the immediately following minimum stress. Table 16 is a listing of the maximum stress and the corresponding minimum stress of each cycle of the ground data for the B-58 Spectrum A data set. In this data set only those cycles wherein the maximum stress was more than 3000 psi greater than the 1-g trim stress were retained. The immediately following minimum did not have to exceed a minimum threshold but could have any value provided it was less than the 1-g trim stress. Table 17 is a bivariate distribution of peaks and corresponding valleys for each cycle of airborne data.

Table 18 is a listing of the cumulative probabilities for the peak stresses of the ground operations data and Table 19 is a listing of the

cumulative probabilities for the immediately following minimum stress for each peak stress for the ground operations data.

Tables 20 and 21 are the same type of data for the airborne segment of the flights.

All other data is the same as that used for the folded distribution described in Paragraph 5.1.1.

The method for generation of a test sequence from this data is the same as described in Paragraph 5.1.1 except for steps 4 and 7. For the bivariate distribution of peaks and valleys method, one must first select a random number and then find the corresponding magnitude of the peak stress (Table 18 for step 4 and Table 20 for step 7). This value of cyclic stress is added to the 1-g trim stress obtained in steps 2 or 5. Next, with a second random number, one selects a minimum stress from the distribution of valleys for that magnitude of peak stress (Table 19 or Table 21). The magnitude of the valley is then subtracted from the 1-g trim stress to determine the extremes of a complete stress cycle.

A summary of the first 50 flights is presented in Table 22.

A summary of the three channels of data used for the simulation of the B-58 data Sequence A is presented in Table 23.

Table 24 is a listing of the start of the data as it appeared on the digital tape that was used as input for the Hybrid computer.

5.1.3 Limited Folded Distribution

The third method used to generate a simulated test spectrum was identified as the Limited Folded Distribution. This method is similar to the Folded Distribution (Paragraph 5.1.1) in that the cyclic stresses are selected from a folded distribution of the primary peaks and are applied symmetrically about the 1-g trim stress; however, the other parameters (preflight stress, number of ground stress peaks per flight, ground 1-g

stress, number of airborne stress peaks per flight and the 1-g stress for the airborne flight segment) were selected from a small discrete distribution. The input data had only a few values for these parameters and the program did not interpolate for intermediate values. Tables 25 through 31 list the input data for the simulation program. Table 32 is a summary listing of the first 50 flights generated by the program. Note that the number of stress reversals for the ground segments have discrete values of 0, 4, 8, 12, and 78 and the airborne segments 74, 238, 454, 784, and 1620, respectively. Also note that the preflight and 1-g trim stress have only a few discrete values.

5.2 F-106 STRESS SIMULATION

5.2.1 Bivariate Distribution of Mean and Alternating Stresses

The basic principle of this method is to form a stress cycle from mean and alternating stress values chosen randomly from a bivariate distribution of mean and alternating stresses. First, a mean stress value is randomly chosen from the cumulative distribution of mean stresses. Then an alternating stress value is randomly chosen from the cumulative distribution of alternating stresses for the chosen mean stress value. A stress cycle is then formed by adding the alternating stress to the mean stress thereby obtaining the peak value of the stress cycle and by subtracting the alternating stress value from the mean the minimum value of the stress cycle is obtained. Separate bivariate tables are used for the ground and airborne data. To complete the description of a flight, the number of ground cycles and the number of airborne cycles for the flight are randomly chosen from the distributions of the number of ground and airborne cycles per flight. The input data for the computer program which generated the simulated flights for the F-106 Sequence E (Low Intensity) data set are presented in Tables 33 through 38. The cumulative distributions are entered with random numbers which are equated to the probabilities.

Summary information for the first 50 flights is presented in Table 39. The variance, Equation (1), of the stress reversals about the mean of the reversals is less than the variance, Equation (2), of the reversals about the 1-g trim value. The 1-g trim stress was taken as a constant value of 8360 psi. The difference in the variance is due to the unsymmetrical nature of the loadings with the positive incremental stresses being larger than the negative incremental stresses. The mean of all of the peaks and valleys is 10,607 psi whereas the 1-g trim stress is 8360.

Using the bivariate distribution of mean and alternating stress 10,094 flights were generated which contained a total of 570,528 stress reversals or half that number of cycles.

The composite summary of all the flights is presented in Table 40.

5.2.2 Separate Positive and Negative Distributions

The second method used to generate simulated flights of the F-106 Sequence E data was identified as the Separate Positive and Negative Distributions. This method requires the random selection of a positive incremental stress and then a negative incremental stress from separate distributions of the primary peaks. The positive incremental stress is added to the 1-g trim stress (8360 psi) to obtain a stress peak and the negative incremental stress is added to the 1-g trim stress to obtain a stress minimum. Separate distributions are used to describe the ground and airborne data. To complete the description of a flight, the number of stress cycles for ground operations and the number of stress cycles for the airborne segment of the flight are selected randomly from distributions of the number of stress cycles for ground and airborne flight segments per flight.

The cumulative probabilities for the incremental stresses for the F-106 Sequence E data are presented in Tables 41 through 44. The

cumulative distribution of the number of stress reversals per flight (not cycles) is presented in Table 45 for the ground operations and in Table 46 for the airborne operations. A summary of the first 50 flights generated by this procedure is presented in Table 47. A summary of all the flights generated is presented in Table 48. There were 12,111 flights with 560,301 stress reversals used to fill three channels of the FM tape.

5.2.3 Limited Separate Positive and Negative Distributions

This method is similar to the method presented in Paragraph 5.2.2. The stress cycles are formed by randomly selecting a positive and a negative incremental stress from separate distributions and adding them to the constant 1-g trim stress 8360 psi. However, the number of cycles in the ground and airborne segments are chosen from a small discrete distribution.

The input data for the computer program is presented in Tables 49 through 54. A summary of the first 50 flights is presented in Table 55.

Table 56 is a presentation of the summary of all the flights for this method of simulation. A total of 12,495 flights with 552,579 stress reversals were generated.

5.3 SIMULATIONS FOR DATA SETS B-58 SEQUENCE B, C, D AND F-106 SEQUENCE F

After tests using the simulated sequences which were discussed in Paragraphs 5.1 and 5.2 were completed, the remaining data sequences were simulated using the best simulation technique for each type aircraft. For the B-58 that was the Bivariate Distribution of Positive and Negative Primary Peaks. For the F-106 the Separate Positive and Negative Distribution was used for the stress data.

5.3.1 B-58 Simulations for Sequence B, C, and D

The B-58 Sequence B data which were the high intensity flights were used to generate a test sequence using the bivariate distribution of peaks and corresponding valleys. This procedure is described in Paragraph 5.1.2. The input data is presented in Tables 57 through 66. The summary data of the simulated flights is presented in Table 67 for the first 50 flights and in Table 68 for the entire test sequence.

The simulated test spectra for the Sequence C and D data, which is really the B-58 low and high intensity data sets but without taxi cyclic stresses, used the same input data as the A and B sequences. The results of the simulation for the first 50 flights for Sequence C simulation is presented in Table 69 and the summary for all the flights in Table 70. The results of the simulation for the first 50 flights for Sequence D simulation is presented in Table 71 and the summary for all the flights in Table 72.

5.3.2 F-106 Simulations for Sequence F

The F-106 high intensity data, Sequence F, was used to generate a sequence of test loads using the method presented in Paragraph 5.2.2.

The input data which was obtained from processing the strain gage data into statistical parameters is presented in Table 73 through 78.

The summary of the first 50 flights is presented in Table 79 and the summary data for all of the Sequence F flights in Table 80.

SECTION 6

TEST RESULTS

All of the testing was conducted in the University's structural test laboratory at a temperature of approximately 72° F. The test specimens were assigned to the various tests in a chronological and sequential order starting with specimen number 1 (see Table 3) for test number 1.

In most instances six specimens were tested for each loading sequence. The final fracture was selected as the event to identify as the fatigue life of the specimen. The ratio of crack growth period to the total flights to failure varied from a minimum of approximately 0.07 (specimens with cracks growing on both sides of the starter hole) to a maximum of 0.22 (specimens with a single crack on one side of the starter hole). The basic test data indicates that on the average 85% of the fatigue life was used to initiate a visible fatigue crack at the starter hole.

6.1 FATIGUE LIFE

The fatigue life of each individual specimen tested with the original B-58 data sequences is presented in Table 81. Table 82 is the results of the F-106 original sequences.

The results of the fatigue tests using simulated test sequences are presented in Table 83 for the B-58 Sequence A and Table 84 for the F-106 Sequence E. The comparison of fatigue lives must be made on the basis of flights to failure, not cycles, since the number of cycles per flight varies with the simulation method and the threshold level.

Since the method which used the bivariate distribution of primary peaks and corresponding valleys (Paragraph 5.1.2) gave acceptable correlations for the B-58 Sequence A data, the limited distribution (Paragraph 5.1.3) was not tested. The remaining sequences of the B-58 data set were

simulated using the method of bivariate distribution of peaks and corresponding valleys. The results of the tests using the simulated spectra for Sequences B, C, and D for the B-58 are presented in Table 85.

The best correlation for the F-106 Sequence E data set was obtained for the limited separate peak and valley distributions; however, the regular separate peak and valley also gave acceptable correlation and since it was more complex (and therefore have broader application) we decided to use the regular separate peak and valley (Paragraph 5.2.2) distributions for the Sequence F simulations. The results for the F-106 simulations for Sequence F are presented in Table 86.

The average life of the tests for each sequence is presented in Table 87. Only the flights to failure are listed in the table since the number of cycles per flight varied depending on the simulation method and the truncation level. The comparison must be made only on the flights since this was the only criterion used in the simulations.

6.2 CRACK GROWTH

The length of the fatigue crack was measured on most of the specimens. The measurements were made with a 30x telescope mounted on a micrometer slide as shown in Figure 4.

The data presented in Figures 5 through 19 show the relationship of crack length versus flights for different test sequences after an initial crack length of 0.3 inch was established. A baseline crack length of 0.3 inch (distance from center of starter hole to crack tip) was selected to provide a common starting point since the start of visible crack growth occurred at different numbers of flights and cycles for the various test sequences. Crack length data is plotted versus flights rather than cycles since the criteria for the threshold stresses were different for each simulation

technique and for the original data. The plots were terminated when one side of the specimen fractured or when a visible crack was established on the opposite side of the starter hole.

SECTION 7

DISCUSSION

Perhaps the best way to visualize the objective and results of this program is to think of the program in two parts, the B-58 data and the F-106 data.

7.1 B-58 DATA CORRELATION

The results of all the testing using the B-58 data is presented pictorially in Figure 20. These results, also see Table 81, indicate that the average number of flights to failure was approximately the same when using the Sequence A or Sequence B spectra. However, Tables 20 and 65, which present the distribution of airborne peaks for Sequence A and Sequence B respectively, show that Sequence A contained over twice the number of peaks in comparison with Sequence B. These tables also show that approximately 50% of the peaks were less than 4,500 psi and that both data sets contained the same number of peaks above 8,000 psi. It would appear therefore that there was little difference in the severity of the Sequence A and Sequence B data sets and that the damage per cycle below stress levels of 5,000 psi was small or non-existent. It would also appear that the use of threshold values below 4,000 psi, in an effort to reduce the testing time requirements, did not significantly affect the fatigue lives.

It should be noted that the separation of the original data into low intensity (Sequence A) and high intensity (Sequence B) data sets was accomplished to demonstrate that the subsequent data simulation methods would be applicable when using different data sets. However, the separation of the B-58 data which is a more gust sensitive aircraft yielded data sets of approximately the same intensity (on a damage per flight basis) except that the low intensity data set contained a significantly larger number of low

value stress peaks. One could also conclude that the operational missions of the B-58 fleet were relatively consistent and that differences in resulting spectra were due to environmental atmospheric conditions.

Referring again to Figure 20 one can see that when the taxi cycles were omitted from the Sequence A original data that the fatigue life increased from 2,536 flights to 3,697 flights. This result was somewhat surprising at first; however, when one considers that when the taxi cycles were omitted the minimum stress on the ground was then the preflight stress and not as negative as the taxi cycles then it is not as surprising. Figure 2(a) and 2(b) depict the difference in the minimum ground stress very dramatically when the taxi cycles are omitted. We now believe that rather than using the preflight stress as the ground stress, if one is omitting taxi cycles, we should use the minimum stress in the ground mission segment (for that flight) as the ground stress. Reference 5 presents some data on this for crack growth but not for crack initiation. For simulations we suggest that one use a distribution of minimum stresses for the ground data rather than a distribution of preflight stresses. In other words, the stress that was used as the ground stress for the Sequence C simulation which is listed as preflight stress (Column 2) in Table 29 should be replaced by the minimum ground stress data (Column 7) of Table 22. Additional insight to the effect of ground cyclic stresses will be obtained as a result of a current testing program (AF 33615-74-C-3007).

The simulated D sequence does not follow the other trends, i.e., for all but the simulated D sequence the simulated sequences using the bivariate distribution of peaks and corresponding valleys have slightly shorter lives than the original strain gage data. No reason for this opposite result is known other than possibly experimental scatter.

The tests using the folded primary peak spectra yielded a much shorter fatigue life and as expected is a more damaging sequence than the real flight situation.

A general comment is in order about the maximum stress in the sequence. As stated before, the maximum net section stress was limited to 30,000 psi; however, at the start of testing we used a truncation level of 34,500 psi and also 33,000 psi. The Sequence A spectrum was used for testing and resulted in longer lives for some of the specimens but also much larger scatter in the fatigue lives. The use of a spectrum that has tensile stresses that induce notch yielding appears to cause residual compressive stresses that cause longer fatigue lives. This phenomenon of retarded crack growth rate and increased fatigue life due to tensile overloads has been well documented in the literature (see, for example, References 5, 6, 7, and 8). When one is using a test sequence that has stresses which could cause yielding at the notch it is very important not to exceed the maximum stress, even the normal scatter in the yield stress of the material may cause yielding in some specimens and not in others.

We believe that the results presented in Figure 20 for the B-58 are a correct representation of the fatigue life of the specimens. The best and also good correlation was obtained using a simulated test sequence wherein the loads were randomly selected from a bivariate distribution of positive primary peaks and corresponding primary valleys.

7.2 F-106 DATA

All of the F-106 data set test results are presented pictorially in Figure 21. The results clearly show the effect of the severity of the two sequences. The E sequence being more mild than the F. Table 44 which is the distribution of primary stress peaks for the E sequence lists 962 stress peaks greater than 10,000 psi whereas Table 76 lists 2419 peaks greater than 10,000 psi for the F sequence. Looking at the cumulative probability one can see that in the E sequence only 6.8% of the primary peaks are greater than 10,000 psi whereas for the F sequence 22.4% are greater than 10,000 psi.

The use of the bivariate distribution of mean and alternating stresses cause a much shorter fatigue life. This was due mostly to the shift in the mean stress from cycle to cycle during the simulation. This result is illustrated in Figure 22. The variance, Equation (2), of the incremental peaks and valleys of the cycles for the simulation using bivariate distributions of mean and alternating stresses was 28.5 KSI^2 as compared to the variance of 22.6 KSI^2 for the simulation using the separate positive and negative distributions of primary peaks. Both variances were calculated using a constant 1-g trim stress for 8360 psi.

The simulation tests using separate distributions of primary peaks and valleys resulted in fatigue lives that were only slightly greater than those using the original strain gage data. The difference in the average life is about 11%; however, there is overlap in the scatter bands as can be seen on Figure 21. The fact that the separate peak and valley and the limited separate peak and valley gave the same fatigue life is not surprising since the F-106 data did not have a variable 1-g trim stress or a GAG cycle.

7.3 CRACK GROWTH CURVES

The crack growth curves presented in Figures 5 through 19 are evidence that the rate of crack growth is dependent on the loading spectrum. The data also indicates that after the crack has propagated to the point where the plots were started there are very few areas where crack growth was arrested for a time.

SECTION 8
CONCLUSIONS

1. The use of a load sequence wherein the stress reversals were arranged by a random selection from a bivariate distribution of the primary peaks and the corresponding valleys yielded fatigue lives that were equivalent to the lives using the original strain gage data for a gust sensitive aircraft.
2. The use of a load sequence wherein the stress reversals were arranged by a random selection from separate distributions of the primary peaks and valleys yielded fatigue lives that were equivalent to the lives using the original strain gage data for a maneuver sensitive aircraft.
3. The proper representation of the minimum stress in a flight is necessary for good simulation. The minimum stress for a good simulation, in which ground cycles are omitted, is the minimum value of the ground stress and not the pre-flight trim stress.
4. Test sequences can be developed that provide proper simulation of strain history data. In addition to the distribution called for in 1 and 2 above, statistical distributions of the number of stress cycles per flight for ground and airborne operations and a distribution of 1-g trim stresses are required.

REFERENCES

1. Schijve, J., The Accumulation of Fatigue Damage in Aircraft Materials and Structures, AGARD-AG-157, January 1972, AD737-398.
2. van Dijk, G. M., Statistical Load Data Processing, National Aerospace Laboratory, the Netherlands, Report No. NLR MP 71007U, April 1971.
3. Simpkins, Darrell, Neulieb, Robert L. and Dennis J. Golden, "Fatigue - A Test Integrated Damage Modeling Approach," Journal of Aircraft, Vol. 11, No. 9, September 1974, pp. 563-570.
4. Roth, G.J., Test Report - Fatigue Design Methodology for Strategic and Tactical Aircraft Structures to Account for Load Amplitude and Sequence Effects, UDRI DR 73-01, January 1973.
5. Schijve, J., Jacobs, F.A., and P.J. Trump, Crack Propagation in Aluminum Alloy Sheet Materials Under Flight Simulation Loading, AFFDL-TR-69-50, September 1970.
6. Simpkins, D., Neulieb, R.L., and D.J. Golden, "Load Time Dependent Relaxation of Residual Stresses," Journal of Aircraft, Vol. 9, No. 12, December 1972.
7. Wei, R.P. and T.T. Shih, "Delay in Fatigue Crack Growth," International Journal of Fracture, Vol. 10, No. 1, March 1974.
8. Impellizzeri, L.F., Cumulative Damage Analysis in Structural Fatigue, ASTM STP462, American Society for Testing and Materials, 1970.

Figure 1. Cyclic Test Specimen.

Figure 2(a). Typical Stress Sequence for B-58 Spectrum with Ground Loads.

Figure 2(b). Typical Stress Sequence for B-58 Spectrum without Ground Loads.

Figure 2(c). Typical Stress Sequence for F-106 Spectrum.

Figure 3. Specimen Installation Procedure.

Figure 4. Telescope Setup for Crack-Growth Measurements.
49

Figure 5. Crack Length vs Flights, B-58 Sequence A Original Data.

Figure 6. Crack Length vs Flights, B-58 Sequence A Folded Distribution Data.

Figure 7. Crack Length vs Flights, B-58 Sequence A Bivariate Peak and Valley Simulation.

Figure 8. Crack Length vs Flights, B-58 Sequence C Original Data.

Figure 9. Crack Length vs Flights, B-58 Sequence C Bivariate Peak and Valley Simulation.

Figure 10. Crack Length vs Flights, B-58 Sequence B Original Data.

① Specimen No. 137

Figure 11. Crack Length vs Flights, B-58 Sequence B Bivariate Peak and Valley Simulation.

Figure 12. Crack Length vs Flights, B-58 Sequence D Original Data.

Figure 13. Crack Length vs Flights, B-58 Sequence D Bivariate Peak and Valley Simulation.

- Specimen No. 80
- Specimen No. 81
- ◎ Specimen No. 85

Figure 15. Crack Length vs Flights, F-106 Sequence E Bivariate Mean and Alternating Simulation.

Figure 16. Crack Length vs Flights, F-106 Sequence E Separate Peak and Valley Simulation.

.8

.7

.6

.5

.4

.3

.2

- Specimen No. 93
- Specimen No. 97
- △ Specimen No. 98

Figure 17. Crack Length vs Flight, F106 Sequence E Separate Peak and Valley Simulation.

Figure 18. Crack Length vs Flights, F-106 Sequence F Original Data.

- Specimen No. 113
- △ Specimen No. 114
- Specimen No. 115

Figure 19 Crack Length vs Flights, F-106 Sequence F Separate Peak and Valley Simulation.

Figure 20. Test Results for All B-58 Data Sets. (Each level represents one specimen.)

Figure 21. Test Results for All F-106 Data Sets. (Each level represents on specimen.)

(a) F106 Sequence E Bivariate Mean and Alternating Stress Simulation

(b) F106 Sequence E Separate Peak and Valley Simulation

Figure 22. Pictorial Comparison of Time Histories of F-106 Simulations.

TABLE 1
SUMMARY OF LOAD SEQUENCE FOR B-58 DATA
ORIGINAL STRAIN GAGE DATA

	<u>SEQUENCE A</u> Low Intensity 343 flights	<u>SEQUENCE B</u> High Intensity 282 flights
PRIMARY PEAKS		
Airborne Data		
No. of Peaks	190, 438	80, 727
Mean (psi)	12, 905	14, 780
Variance (psi) ²	33.2×10^6	41.8×10^6
Ground Data		
No. of Peaks	3849	2896
Mean (psi)	-8047	-8232
Variance (psi) ²	43.2×10^6	46.9×10^6
WEIGHTED 1-g FLIGHT STRESS		
Airborne Data		
No. of Peaks	193, 255	82, 895
Mean (psi)	12, 920	14, 690
Variance (psi) ²	12.1×10^6	17.6×10^6
Ground Data		
No. of Peaks	4193	3226
Mean (psi)	-6640	-6373
PREFLIGHT STRESS		
Mean (psi)	-8647	-8729
Variance (psi) ²	4.3×10^4	2.5×10^4
Mean of the No. of Airborne Primary Peaks Per Flight	555.21	286.27
Variance of Above	43.6×10^4	11.2×10^4
Mean of the No. of Ground Primary Peaks Per Flight	11.21	10.31
Variance of Above	447.5	69.7

TABLE 2
SUMMARY OF LOAD SEQUENCE FOR F-106 DATA
ORIGINAL STRAIN GAGE DATA

	<u>SEQUENCE E</u> Low Intensity	<u>SEQUENCE F</u> High Intensity
Number of Flights	381	236
Total No. of Stress Reversals	52, 128	39, 752
Airborne Primary Peaks	48, 446	32, 636
Variance of Primary Peaks	11.18(ksi) ²	28.20(ksi) ²
Stress Reversals (Ground Operations)	666	652
1-g Trim Stress (Constant)	8360psi	8360psi

TABLE 3
SPECIMEN ASSIGNMENT CHART

Specimen No. *	Specimen Location Code **	Specimen No. *	Specimen Location Code **	Specimen No. *	Specimen Location Code **
1	C 4-11	34	D 4-4	67	C 7-4
2	C 12-6	35	D 4-11	68	D 3-5
3	C 6-3	36	D 1-7	69	D 1-4
4	C 10-9	37	C 8-9	70	C 6-5
5	C 9-10	38	C 4-6	71	D 2-10
6	D 1-1	39	C 2-3	72	C 11-2
7	C 1-3	40	C 12-7	73	C 7-10
8	D 3-6	41	C 5-1	74	D 2-4
9	C 7-7	42	C 12-2	75	C 11-7
10	C 5-3	43	C 2-8	76	D 2-9
11	C 1-10	44	C 1-1	77	C 5-9
12	C 1-2	45	C 2-7	78	C 7-3
13	C 11-3	46	C 3-11	79	C 3-9
14	D 3-8	47	C 5-4	80	C 9-6
15	C 11-1	48	D 2-3	81	C 12-10
16	C 9-5	49	D 1-10	82	D 2-5
17	C 1-8	50	C 3-6	83	C 3-7
18	C 10-7	51	C 9-4	84	C 1-5
19	C 3-8	52	C 11-6	85	C 1-9
20	C 12-4	53	C 8-8	86	C 10-6
21	C 8-1	54	D 2-2	87	C 1-4
22	C 11-9	55	C 3-1	88	C 6-6
23	D 3-3	56	D 3-9	89	C 10-11
24	C 6-1	57	C 3-2	90	C 7-5
25	C 7-1	58	C 2-4	91	C 7-9
26	D 4-9	59	D 3-1	92	C 3-5
27	D 3-10	60	C 3-10	93	D 1-3
28	D 4-10	61	C 6-2	94	C 9-8
29	C 7-6	62	C 6-7	95	C 4-4
30	C 8-7	63	C 2-5	96	C 2-10
31	C 11-8	64	C 7-2	97	C 9-2
32	C 10-3	65	C 8-5	98	C 11-11
33	C 4-2	66	C 7-11	99	C 12-3

* Refers to specimen number in Test Plan.
** Plate number - row - column.

TABLE 3 (Continued)

Specimen No. *	Specimen Location Code **	Specimen No. *	Specimen Location Code **	Specimen No. *	Specimen Location Code **
100	C 1-6	126	D 3-4	152	C 4-5
101	C 11-4	127	C 10-2	153	C 9-1
102	C 4-10	128	C 5-10	154	D 4-5
103	C 5-7	129	C 12-9	155	C 2-1
104	C 9-9	130	D 3-7	156	D 1-6
105	C 5-11	131	C 6-8	157	C 6-4
106	C 9-11	132	C 10-5	158	C 12-1
107	C 4-3	133	C 11-5	159	C 6-9
108	C 10-4	134	C 2-2	160	C 8-11
109	C 4-9	135	C 5-8	161	C 11-10
110	C 12-8	136	C 9-3	162	C 3-4
111	D 4-2	137	C 12-11	163	C 4-8
112	D 2-7	138	C 8-4	164	D 4-3
113	D 1-9	139	C 10-10	165	C 2-11
114	C 5-5	140	D 3-2	166	D 1-8
115	D 1-11	141	C 3-3	167	D 4-8
116	D 4-7	142	C 8-10	168	C 4-1
117	C 9-7	143	C 8-3	169	C 1-7
118	C 1-11	144	C 10-8	170	D 2-1
119	D 1-2	145	D 3-11	171	D 2-11
120	D 2-6	146	C 5-6	172	C 8-6
121	C 6-10	147	C 5-2	173	C 12-5
122	C 4-7	148	C 7-8	174	C 8-2
123	C 6-11	149	C 2-9	175	D 4-6
124	D 2-8	150	D 4-1	176	C 2-6
125	C 10-1	151	D 1-5		

* Refers to specimen number in Test Plan.

** Plate number - row - column.

TABLE 4

Determination of Static Tensile Properties for 7075-T651 Bare Plate Specimen Material

Specimen Number	Width (in)	Thickness (in)	Maximum Load (lbs)	Yield Strength @ 0.2% (psi)	Ultimate Strength (psi)	Modulus of Elast. (x 10 ⁶ psi)	Total Elongation (%)
C-1-3	0.2498	0.2483	5050	75,000	81,400	9.97	17.3
C-2-6	0.2498	0.2495	5150	76,200	82,600	9.82	17.3
D-2-3	0.2507	0.2488	5100	75,400	81,800	10.6	20.0
C-4-11	0.2501	0.2483	5050	74,900	81,300	9.20	18.7
D-3-10	0.2505	0.2491	5100	75,300	81,700	8.74	20.0
C-6-3	0.2505	0.2493	5125	75,300	82,100	9.15	18.7
D-1-1	0.2508	0.2484	5075	75,400	81,500	10.4	20.0
C-9-5	0.2503	0.2480	5200	77,300	83,800	9.20	18.7
D-3-6	0.2505	0.2495	5200	76,800	83,200	9.60	17.3
C-12-6	0.2494	0.2493	5125	75,600	82,400	9.36	16.0
C-11-1	0.2490	0.2482	5025	75,200	81,300	11.2	20.0
C-10-9	0.2506	0.2490	5025	73,700	80,500	9.61	18.7
C-7-7	0.2500	0.2489	5050	76,300	81,200	10.1	17.3
C-3-8	0.2503	0.2490	5125	75,400	82,200	10.1	17.3
Average			75,600	81,900	9.79	18.4	

TABLE 5

CUMULATIVE FREQUENCY DISTRIBUTIONS FOR B-58 SEQUENCE A INCREMENTAL STRESS PEAKS

TYPE OF SIMULATION METHOD USED = -1
 WHERE 1 = FOLDED DISTRIBUTIONS
 2 = POSITIVE AND NEGATIVE DISTRIBUTIONS
 3 = LIMITED FOLDED DISTRIBUTION.
 4 = RANGE COUNT DISTRIBUTION

NUMBER OF ENTRIES IN EACH TYPE OF DISTRIBUTION:

GROUNDED DATA

TABLE NUMBER 1

14

TABLE NUMBER 2

14

TABLE NUMBER 3

15

TABLE NUMBER 4

15

AIRBORNE DATA

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

TABLE 6

CUMULATIVE PROBABILITY FOR POSITIVE GROUND PEAK DISTRIBUTION DATA
B-58 SEQUENCE A

VALUE	REQ DIST	CUM DIST	PROBABILITY
3000.	938	2589.	1.0000000
4000.	668	1642.	.63643411
5000.	392	974.	.37751938
6000.	227	582.	.22558140
7000.	113	355.	.13759690
8000.	65	242.	.09379845
9000.	53	177.	.06860465
10000.	59	124.	.04806202
12000.	31	65.	.02519380
14000.	11	34.	.01317829
16000.	12	23.	.00891473
18000.	4	11.	.00426357
20000.	7	7.	.00271318
25000.	0	0.	.000000000

TABLE 7
 CUMULATIVE PROBABILITY FOR POSITIVE AIRBORNE PEAK DISTRIBUTION DATA
 B-58 SEQUENCE A

VALUE	FREQ DIST	CUM DIST	PROBABILITY
3000.	54567	158592.	1.0000000
4000.	48429	104025.	.65592842
5000.	29660	55596.	.35055993
6000.	14532	25936.	.16353914
7000.	6420	11404.	.07190779
8000.	2667	4984.	.03142655
9000.	1243	2317.	.01460982
10000.	804	1074.	.00677209
12000.	154	270.	.00170248
14000.	55	116.	.00073144
16000.	26	61.	.00038463
18000.	17	35.	.00022069
20000.	14	18.	.00011350
25000.	4	4.	.00002522
30000.	0	0.	.00000000

TABLE 8

CUMULATIVE PROBABILITY FOR PREFLIGHT STRESS DISTRIBUTION DATA
B-58 SEQUENCE A

VALUE	FREQ	DIST	CUM DIST	PROBABILITY
-8950.	1		343.	1.0000000
-8900.	13		342.	.99708455
-8850.	27		329.	.95918367
-8800.	52		302.	.88046647
-8750.	47		250.	.72886297
-8700.	46		203.	.59183673
-8650.	52		157.	.45772595
-8600.	31		105.	.30612245
-8550.	17		74.	.21574344
-8500.	14		57.	.16618076
-8450.	9		43.	.12536443
-8400.	6		34.	.09912536
-8350.	2		28.	.08163265
-8300.	1		26.	.07580175
-8250.	2		25.	.07288630
-8200.	1		23.	.06705539
-8150.	1		22.	.06413994
-8100.	15		21.	.06122449
-8000.	3		6.	.01749271
-7800.	1		3.	.00874636
-7600.	2		2.	.00583090
-7400.	0		0.	.00000000

TABLE 9
CUMULATIVE PROBABILITY FOR GROUND 1-G STRESS DISTRIBUTION DATA
B-58 SEQUENCE A

VALUE	FREQ.	DIST.	CUM-DIST.*	PROBABILITY
-13000.	13		313.	1.00000000
-12000.	35		300.	.95846645
-11000.	25		265.	.84664537
-10500.	28		240.	.76677316
-10000.	18		212.	.67731629
-9500.	20		194.	.61980831
-9000.	13		174.	.55591054
-8500.	15		161.	.51437700
-8000.	17		146.	.46645367
-7500.	7		129.	.41214058
-7000.	9		122.	.38977636
-6500.	11		113.	.36102236
-6000.	12		102.	.32587859
-5500.	7		90.	.28753994
-5000.	7		83.	.26517572
-4500.	13		76.	.24281150
-4000.	7		63.	.20127796
-3500.	7		56.	.17891374
-3000.	9		49.	.15654952
-2500.	7		40.	.12779553
-2000.	8		33.	.10543131
-1000.	11		25.	.07987220
0.	5		14.	.04472843
1000.	9		9.	.02875399
2000.	0		0.	.00000000

* 30 flights did not have any cyclic stresses.

TABLE 10

CUMULATIVE PROBABILITY FOR NUMBER OF GROUND PEAKS PER FLIGHT DATA
B-58 SEQUENCE A

VALUE	FREQ	DIST	CUM DIST	PROBABILITY
0.	30	343.	1.00000000	
1.	36	313.	• 91253644	
2.	41	277.	• 80758017	
3.	31	236.	• 68804665	
4.	38	205.	• 59766764	
5.	20	167.	• 48688047	
6.	32	147.	• 42857143	
7.	16	115.	• 33527697	
8.	24	99.	• 28862974	
9.	19	75.	• 21865889	
10.	8	56.	• 16326531	
11.	7	48.	• 13994169	
12.	6	41.	• 11953353	
13.	6	35.	• 10204082	
14.	1	29.	• 08454810	
15.	4	28.	• 08163265	
16.	6	24.	• 06997085	
17.	2	18.	• 05247813	
18.	3	16.	• 04664723	
19.	1	13.	• 03790087	
20.	1	12.	• 03498542	
21.	5	11.	• 03206997	
26.	3	6.	• 01749271	
101.	2	3.	• 00874636	
201.	1	1.	• 00291545	
301.	0	0.	• 00000000	

TABLE 11

CUMULATIVE PROBABILITY FOR AIRBORNE 1-G STRESS DISTRIBUTION DATA
B-58 SEQUENCE A

VALUE	FREQ	DIST	CUM	DIST	PROBABILITY
4000.	3		342.	*	1.00000000
5000.	1		339.	*	99122807
6000.	4		338.	*	98830409
7000.	4		334.	*	97660819
8000.	11		330.	*	96491228
9000.	16		319.	*	93274854
10000.	19		303.	*	88596491
10500.	25		284.	*	83040936
11000.	24		259.	*	75730994
11500.	15		235.	*	68713450
12000.	16		220.	*	64327485
12500.	27		204.	*	59649123
13000.	16		177.	*	51754386
13500.	29		161.	*	47076023
14000.	17		132.	*	38596491
14500.	18		115.	*	33625731
15000.	17		97.	*	28362573
15500.	16		80.	*	23391813
16000.	11		64.	*	18713450
16500.	7		53.	*	15497076
17000.	7		46.	*	13450292
17500.	7		39.	*	11403509
18000.	18		32.	*	09356725
19000.	8		14.	*	04093567
20000.	4		6.	*	01754386
21000.	2		2.	*	00584795
25000.	0		0.	*	0.00000000

* One flight did not have any cyclic stresses.

TABLE 12

CUMULATIVE PROBABILITY FOR NUMBER OF AIRBORNE PEAKS PER FLIGHT DATA
B-58 SEQUENCE A

VALUE	FREQ	DIST	CUM-DIST	PROBABILITY
1.		18	342.*	1.00000000
26.		25	324.*	.94736842
51.		25	299.*	.87426901
76.		22	274.*	.80116959
101.		23	252.*	.73684211
126.		21	229.*	.66959064
151.		10	208.*	.60818713
176.		16	198.*	.57894737
201.		11	182.*	.53216374
226.		10	171.*	.50000000
251.		12	161.*	.47076023
276.		7	149.*	.43567251
301.		8	142.*	.41520468
326.		7	134.*	.39181287
351.		11	127.*	.37134503
401.		9	116.*	.33918129
451.		6	107.*	.31286550
501.		11	101.*	.29532164
601.		9	90.*	.26315789
701.		12	81.*	.23684211
801.		12	69.*	.20175439
901.		5	57.*	.16666667
1001.		6	52.*	.15204678
1126.		4	46.*	.13450292
1251.		15	42.*	.12280702
1501.		7	27.*	.07894737
1751.		10	20.*	.05847953
2001.		7	10.*	.02923977
2251.		2	3.*	.00877193
2501.		1	1.*	.00292398
3001.		0	0.*	0.00000000

* One flight did not have any cyclic stresses.

TABLE 13

SIMULATION PROGRAM RUN ON 05/16/74 AT 20.11.12. SUMMARY OF FLIGHTS ON
CHANNEL 1 - B-58 SEQUENCE A FOLDED DISTRIBUTION

PAGE 1

G R O U N D D A T A										A I R B O R N E D A T A										C U M U L A T I V E									
PFLT	PREFLT	NUM	1.0 G	STRESS	MEAN	VARIANCE	MINIMUM	MAXIMUM	NUM	1.0 G	STRESS	MEAN	VARIANCE	MINIMUM	MAXIMUM	NUM	1.0 G	STRESS	MEAN	VARIANCE	MINIMUM	MAXIMUM	NUM	PEAKS	POINTS				
1001	-8600.	6	-7322.	-112148.	-11092.	.5339E+08	-15000.	-4477.	142	13165.	-3.1085.	-14.68.	.2513E+08	-34.36.	-29.935.	84	232	264	2084.	.2036.	-2080.	2036.	2080.	2080.	148	168			
1002	-8603.	4	-1627.	-9895.	-3244E+08	-4252.	-5349.	80	14111.	1.4111.	-12.404E+08	-7.373.	-20.849.	.2510E+08	-5.093.	-5.093.	84	1280.	1280.	-2.467E+08	-2.467E+08	-2.467E+08	-2.467E+08	-2.467E+08	-2.467E+08	534	564		
1003	-8739.	0	0.	0.	0.	0.	0.	0.	1004	1.3735.	-1.3735.	-1.3735.	.2512E+08	-2.481E+08	-2.5231E+08	1280.	1236.	1236.	.2606.	.19865.	.18604.	.1804.	.1804.	.1804.	2036.	2036.			
1004	-8649.	8	-5155.	-5135.	-2056E+08	-10469.	.596.	172	11236.	1.1236.	-1.245E+08	-1.245E+08	-1.245E+08	.2512E+08	-1.245E+08	-1.245E+08	180.	1924.	1924.	.1924.	.1976.	.1976.	.1976.	.1976.	.1976.	.1976.	2216.	2216.	
1005	-8733.	5	-10720.	-8728.	.6140E+08	-15000.	.6765.	740	9124.	9.124.	-1.245E+08	-1.245E+08	-1.245E+08	.2512E+08	-1.245E+08	-1.245E+08	748.	1.9978.	1.9978.	.1976.	.1976.	.1976.	.1976.	.1976.	.1976.	2956.	2956.		
1006	-8735.	0	0.	0.	0.	0.	0.	0.	316	1.8758.	-1.8747.	-1.8747.	.2517E+08	-4.088.	-4.088.	4088.	3280.	3280.	.3000.	.316.	.316.	.316.	.316.	.316.	3360.	3360.			
1007	-8900.	10	-9095.	-9017.	.2519E+08	-15000.	.2789.	222	11942.	1.1942.	-2.4998E+08	-2.4998E+08	-2.4998E+08	.2517E+08	-2.4998E+08	-2.4998E+08	232.	1.23693.	1.23693.	.23693.	.232.	.232.	.232.	.232.	.232.	.232.	3512.	3512.	
1008	-8660.	2	-4327.	-4327.	.3657E+08	-8614.	-.40.	554	11188.	1.1188.	-1.2099E+08	-1.2099E+08	-1.2099E+08	.2510E+08	-1.2099E+08	-1.2099E+08	556.	2290.	2290.	.2290.	.2290.	.2290.	.2290.	.2290.	.2290.	4088.	4088.		
1009	-8633.	4	-1627.	-1627.	.3244E+08	-4252.	.705.	1.276.	1.2472.	1.2472.	-2.3037.	-2.3037.	-2.3037.	.2510E+08	-2.3037.	-2.3037.	534.	1280.	1280.	.1280.	.1280.	.1280.	.1280.	.1280.	.1280.	534.	564.		
1010	-8611.	4	-6975.	-6975.	.2467E+08	-11339.	.2112.	70	1.3716.	1.3716.	-2.485E+08	-2.485E+08	-2.485E+08	.2512E+08	-2.485E+08	-2.485E+08	74.	1.25518.	1.25518.	.125518.	.125518.	.125518.	.125518.	.125518.	.125518.	5422.	5550.		
1011	-7982.	6	419.	419.	.4844E+08	-7590.	.8438.	260	1.8861.	1.8861.	-1.4066E+08	-1.4066E+08	-1.4066E+08	.2512E+08	-1.4066E+08	-1.4066E+08	266.	1.1976.	1.1976.	.1976.	.1976.	.1976.	.1976.	.1976.	.1976.	5688.	5688.		
1012	-8527.	2	1734.	1734.	.4932E+08	-2729.	.6317.	306	1.0841.	1.0841.	-2.5775E+08	-2.5775E+08	-2.5775E+08	.2517E+08	-2.5775E+08	-2.5775E+08	308.	2.0404.	2.0404.	.20404.	.20404.	.20404.	.20404.	.20404.	.20404.	6148.	6148.		
1013	-8560.	12	-10251.	-9984.	.1963E+08	-15000.	-.2297.	586	20378.	20378.	-2.582E+08	-2.582E+08	-2.582E+08	.2517E+08	-2.582E+08	-2.582E+08	3000.	5760.	5760.	.5760.	.5760.	.5760.	.5760.	.5760.	.5760.	6594.	6594.		
1014	-7556.	0	0.	0.	0.	0.	0.	0.	158	1.2792.	-1.2745.	-1.2745.	.2512E+08	-1.2745.	-1.2745.	3000.	1.1862.	1.1862.	.1862.	.1862.	.1862.	.1862.	.1862.	.1862.	158.	158.			
1015	-8677.	10	-10576.	-9825.	.3017E+08	-15000.	-.2297.	162	1.7298.	1.7298.	-2.6715E+08	-2.6715E+08	-2.6715E+08	.2512E+08	-2.6715E+08	-2.6715E+08	172.	1.25518.	1.25518.	.125518.	.125518.	.125518.	.125518.	.125518.	.125518.	6924.	6924.		
1016	-8632.	2	9650.	9650.	.1800E+08	-15000.	.4183.	274	1.2474.	1.2474.	-2.6202E+08	-2.6202E+08	-2.6202E+08	.2512E+08	-2.6202E+08	-2.6202E+08	276.	1.2192.	1.2192.	.12192.	.12192.	.12192.	.12192.	.12192.	.12192.	7200.	7200.		
1017	-8599.	16	-10963.	-10310.	.2451E+08	-15000.	-.746.	1606	1.2716.	1.2716.	-2.5577E+08	-2.5577E+08	-2.5577E+08	.2512E+08	-2.5577E+08	-2.5577E+08	1822.	1.1976.	1.1976.	.1976.	.1976.	.1976.	.1976.	.1976.	.1976.	9022.	9234.		
1018	-8630.	14	6330.	6330.	.2661E+08	-12233.	.375.	670	1.5874.	1.5874.	-2.6098E+08	-2.6098E+08	-2.6098E+08	.2512E+08	-2.6098E+08	-2.6098E+08	684.	9.176.	9.176.	.176.	.176.	.176.	.176.	.176.	.176.	9706.	9930.		
1019	-8618.	12	-11246.	-10107.	.2710E+08	-15000.	-.2265.	134	1.0868.	1.0868.	-2.6723E+08	-2.6723E+08	-2.6723E+08	.2512E+08	-2.6723E+08	-2.6723E+08	146.	1.1526.	1.1526.	.1526.	.1526.	.1526.	.1526.	.1526.	.1526.	9852.	10080.		
1020	-8473.	24	-1524.	-1524.	.2711E+08	-12233.	.9186.	296	1.2895.	1.2895.	-2.7396E+08	-2.7396E+08	-2.7396E+08	.2512E+08	-2.7396E+08	-2.7396E+08	320.	1.2140.	1.2140.	.12140.	.12140.	.12140.	.12140.	.12140.	.12140.	10420.	10420.		
1021	-8605.	2	-10553.	-10553.	.2288E+08	-13921.	-.7186.	168	1.9567.	1.9567.	-2.7793E+08	-2.7793E+08	-2.7793E+08	.2512E+08	-2.7793E+08	-2.7793E+08	170.	1.1034.	1.1034.	.1034.	.1034.	.1034.	.1034.	.1034.	.1034.	10602.	10602.		
1022	-8486.	2	-246.	-246.	.8799E+08	-6878.	.6385.	178	1.1256.	1.1256.	-2.8172E+08	-2.8172E+08	-2.8172E+08	.2512E+08	-2.8172E+08	-2.8172E+08	180.	1.0794.	1.0794.	.10794.	.10794.	.10794.	.10794.	.10794.	.10794.	10522.	10794.		
1023	-7452.	0	0.	0.	0.	0.	0.	0.	628.	1.1597.	-1.5974.	-1.5974.	.2512E+08	-1.5974.	-1.5974.	828.	2.0406.	2.0406.	.20406.	.20406.	.20406.	.20406.	.20406.	.20406.	11350.	11634.			
1024	-8747.	2	-11558.	-10424.	.4188E+08	-15000.	-.5848.	120	1.2573.	1.2573.	-2.5252E+08	-2.5252E+08	-2.5252E+08	.2512E+08	-2.5252E+08	-2.5252E+08	122.	1.1472.	1.1472.	.1472.	.1472.	.1472.	.1472.	.1472.	.1472.	11768.	11768.		
1025	-8712.	4	-17127.	-9705.	.2356E+08	-15000.	-.5266.	50	1.4050.	1.4050.	-2.5813E+08	-2.5813E+08	-2.5813E+08	.2512E+08	-2.5813E+08	-2.5813E+08	122.	1.1863.	1.1863.	.1863.	.1863.	.1863.	.1863.	.1863.	.1863.	11550.	11834.		
1026	-8793.	6	-9895.	-9895.	.2200E+08	-14533.	-.5157.	18.	1.1539.	1.1539.	-2.6616E+08	-2.6616E+08	-2.6616E+08	.2512E+08	-2.6616E+08	-2.6616E+08	24.	1.1550.	1.1550.	.1550.	.1550.	.1550.	.1550.	.1550.	.1550.	11834.	11834.		
1027	-8619.	4	-4939.	-3173.	.1464E+09	-15000.	-.12185.	304	1.1561.	1.1561.	-2.6344E+08	-2.6344E+08	-2.6344E+08	.2512E+08	-2.6344E+08	-2.6344E+08	241.	1.2317.	1.2317.	.12317.	.12317.	.12317.	.12317.	.12317.	.12317.	12190.	12190.		
1028	-8894.	8	-9346.	-8655.	.3946E+08	-15000.	-.8139.	920	1.1028.	1.1028.	-2.6702E+08	-2.6702E+08	-2.6702E+08	.2512E+08	-2.6702E+08	-2.6702E+08	130.	1.1763.	1.1763.	.1763.	.1763.	.1763.	.1763.	.1763.	.1763.	12705.	13130.		
1029	-8773.	4	-1023.	-1023.	.4672E+08	-6661.	-.8107.	362.	1.14017.	1.14017.	-2.7272E+08	-2.7272E+08	-2.7272E+08	.2512E+08	-2.7272E+08	-2.7272E+08	130.	1.1395.	1.1395.	.1395.	.1395.	.1395.	.1395.	.1395.	.1395.	16356.	16356.		
1030	-8578.	0	0.	0.	0.	0.	0.	0.	64.	1.4594.	-1.4594.	-1.4594.	.2512E+08	-1.4594.	-1.4594.	64.	2.228E+08	2.228E+08	.228E+08.	.228E+08.	.228E+08.	.228E+08.	.228E+08.	.228E+08.	.228E+08.	222.	13374.		
1031	-8519.	10	-10327.	-3327.	.3564E+08	-12275.	-.5424.	278.	1.1039.	1.1039.	-2.7857.	-2.7857.	-2.7857.	.2512E+08	-2.7857.	-2.7857.	288.	1.13662.	1.13662.	.13662.	.13662.	.13662.	.13662.	.13662.	.13662.	14042.	14042.		
1032	-8522.	6	-10542.	-9563.	.3296E+08	-15000.	-.2160E+08	.890.	7263.	7263.	-2.3496E+08	-2.3496E+08	-2.3496E+08	.2512E+08	-2.3496E+08	-2.3496E+08	4087.	1.1905.	1.1905.	.1905.	.1905.	.1905.	.1905.	.1905.	.1905.	14550.	14550.		
1033	-8815.	0	0.	0.	0.	0.	0.	0.	188.	1.1309.	-1.1309.	-1.1309.	.2512E+08	-1.1309.	-1.1309.	4088.	2.2423E+08	2.2423E+08	.2423E+08.	.2423E+08.	.2423E+08.	.2423E+08.	.2423E+08.	.2423E+08.	.2423E+08.	14746.	15150.		
1034	-8773.	8	-5546.	-5546.	.4223E+08	-13638.	-.2564.	80	1.1293.	1.1293.	-2.887E+08	-2.887E+08	-2.887E+08	.2512E+08	-2.887E+08	-2.887E+08	446.	2.124.	2.124.	.2124.	.2124.	.2124.	.2124.	.2124.	.2124.	20732.	20732.		
1035	-8665.	4	-2641.	-2641.	.1737E+08	-6567.	-.1284.	64.	1.1329.	1.1329.	-2.905E+08	-2.905E+08	-2.905E+08	.2512E+08	-2.905E+08	-2.905E+08	465.	2.2139.	2.2139.	.2139.	.2139.	.2139.	.2139.	.2139.	.2139.	15250.	15250.		
1036	-8477.	22	-2326.	-2326.	.4339E+08	-11768.	-.11768.	0.	64.	1.1329.	1.1329.	-2.928E+08	-2.928E+08	-2.928E+08	.2512E+08	-2.928E+08	-2.928E+08	5505.	2.185.	2.185.	.185.	.185.	.185.	.185.	.185.	.185.	20312.	20312.	
1037	-8760.	2	-3327.	-2372.	.1384E+09	-15000.	-.46612.	194.	1.1653.	1.1653.	-2.944E+08	-2.944E+08	-																

TABLE 14
SUMMARY OF DATA ON EACH CHANNEL
B-58 SEQUENCE A FOLDED DISTRIBUTION

***** G-R O U N D D A T A *****										***** AIR BORNE DATA *****									
CHAN	NUM	NO. OF	NO. OF	NUM	MAX	MIN	NO. OF	STRESS	STRESS	1.0 G	MAX	MIN	NO. OF	STRESS	STRESS	1.0 G			
NO.	REC	PEAKS	POINTS	FLTS	STRESS	STRESS	PEAKS	MEAN	VARIANCE	STRESS	STRESS	PEAKS	MEAN	VARIANCE	MEAN	VARIANCE	VARIANCE		
1	2576	211302	216358	420	29069.	-15000.	2464	-7120.	.4094E+08	2765E+08	30000.	-14123.	208838	13422.	.3753E+08	.2526E+08			
2	2573	210786	216070	439	-16565.	-15000.	-2696	-7061.	.3923E+08	-2886E+08	-30000.	-15000.	208090	-13515.	.3306E+08	.2512E+08			
3	2573	210606	216130	459	21116.	-15000.	2730	-7287.	.3907E+08	.2844E+08	30000.	-15000.	207876	14159.	.3485E+08	.2524E+08			
TOT	7722	632694	640558	1318	21156.	-15000.	7890	-7157.	.3971E+08	*2833E+08	30000.	-15000.	624804	13699.	.3525E+08	.2521E+08			

TABLE 15

LISTING OF PEAKS AND VALLEYS AT START OF 3 FM CHANNELS
B-58 SEQUENCE A FOLDED DISTRIBUTION

RECORD NO.	1	
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
-1920	-1912	-1859
-1920	-1912	-1859
-1920	-1912	-1859
-1920	-1912	-1859
-916	-1022	-1553
-2796	-1022	-3200
995	-1022	-1022
-3333	-1022	-1022
-1014	1533	-1022
-2698	1533	-1022
-1022	1533	1533
-1022	1533	1533
-1022	3777	1533
-1022	1659	1533
1533	3479	3204
1533	1956	1337
1533	4224	4872
1533	1211	-361
5096	3826	3118
763	1610	1393
3990	4044	3363
1869	1391	1148
3697	3432	3401
2163	2004	1110
4190	4257	2931
1670	1168	1580
4197	3682	3044
1562	1754	1467
4019	4489	3336
1841	947	1175
3924	3667	3872
1935	1769	639
3982	4366	3067
1877	1070	1444
3877	3399	3179
1982	2037	1332
3807	3517	3301
2052	1919	1210
3789	3817	3296
2070	1618	1215
4405	3638	3153
1455	1797	1358
3832	3708	3146
2028	1728	1365
4316	4695	3047
1543	740	1464
4337	3988	3115
1522	1447	1396
4149	3900	3439
1711	1536	1072

Scaled Value
 $+9999 = +45,000 \text{ psi}$
 $-9999 = -45,000 \text{ psi}$

TABLE 16

FREQUENCY DISTRIBUTION TABLE OF PEAK AND VALLEY STRESSES FOR GROUND DATA
B-58 SEQUENCE A

PEAK STRESS	VALLEY STRESS										TOTAL
	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	
3000.	10	23	77	151	50	17	9	4	1	2	0
4000.	9	33	156	129	49	25	4	2	3	1	0
5000.	8	34	46	67	26	15	9	1	0	2	0
6000.	5	16	38	24	23	11	5	1	0	0	0
7000.	0	9	7	9	13	3	0	1	0	0	0
8000.	1	1	5	3	8	1	0	0	0	0	0
9000.	0	1	3	3	2	1	0	1	0	0	0
10000.	0	2	1	2	1	0	0	0	1	0	0
12000.	0	0	0	0	0	0	0	0	0	0	0
14000.	0	0	1	0	0	0	0	0	0	0	0
16000.	1	0	0	0	0	0	0	0	0	0	0
18000.	0	0	0	0	0	0	0	0	0	0	0
TOTAL	34	121	374	388	172	73	26	9	7	10	4

FREQUENCY DISTRIBUTION TABLE OF PEAK AND VALLEY STRESSES FOR AIRBORNE DATA
B-58 SEQUENCE A

PEAK STRESS	VALLEY STRESS										TOTAL
	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	
3000.	4	42	1266	10752	9028	4342	1719	650	239	104	59
4000.	8	285	3766	7614	5795	1321	532	187	73	50	16
5000.	77	1302	2625	3710	3010	1742	846	153	67	35	4
6000.	406	935	12772	1463	1288	620	410	204	88	41	2
7000.	321	453	558	625	524	368	190	109	47	23	5
8000.	155	195	228	249	215	152	90	49	33	12	10
9000.	84	114	122	116	97	84	54	20	10	9	1
10000.	68	75	77	71	65	55	35	14	7	3	1
12000.	16	13	15	10	17	9	8	4	1	1	0
14000.	6	8	5	5	6	4	1	0	0	0	0
16000.	3	2	9	2	1	0	1	0	0	0	0
18000.	2	1	3	2	0	2	0	0	0	0	0
20000.	3	1	3	2	0	1	0	0	0	0	0
25000.	1	0	1	1	0	0	0	0	0	0	0
30000.	0	0	0	0	0	0	0	0	0	0	0
TOTAL	1156	3426	9950	24625	20046	10714	4679	1451	765	333	202

TABLE 17

FREQUENCY DISTRIBUTION TABLE OF PEAK AND VALLEY STRESSES FOR GROUND DATA
B-58 SEQUENCE A

TABLE 18
CUMULATIVE PROBABILITY FOR PEAK STRESSES FOR GROUND BIVARIATE TABLE
B-58 SEQUENCE A

VALUE	FREQ	DIST	CUM	DIST	PROBABILITY
3000.	350		1227.		1.0000000
4000.	415		877.		.71475143
5000.	249		462.		.37652812
6000.	128		213.		.17359413
7000.	44		85.		.06927455
8000.	20		41.		.03341483
9000.	12		21		.01711491
10000.	7		9.		.00733496
11000.	0		2.		.00162999
12000.	1		2.		.00162999
13000.	1		1.		.00081500
14000.	0		0.		.00000000
15000.	0		0.		.00000000
16000.	0		0.		.00000000
18000.	0		0.		.00000000

TABLE 19
CUMULATIVE PROBABILITY TABLE OF PEAK AND VALLEY STRESSES FOR GROUND DATA
B-58 SEQUENCE A

PEAK	STRESS	9.	1000.	2000.	3000.	4000.	5000.	6000.	7000.	8000.	9000.	10000.	12000.	14000.	16000.	18000.	20000.	25000.
3000.	1.0000	.9714	.9057	.6857	.2563	.1114	.0629	.0371	.0229	.0171	.0057	.0000	.0000	.0000	.0000	.0000	.0000	
4000.	1.0000	.9783	.8988	.5229	.2120	.0940	.0337	.0241	.0193	.0145	.0072	.0048	.0000	.0000	.0000	.0000	.0000	
5000.	1.0100	.9679	.8713	.4859	.2169	.1124	.0522	.0161	.0120	.0080	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
6000.	1.0200	.9609	.8203	.5234	.3359	.1563	.0703	.0313	.0234	.0100	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
7000.	1.0200	.9795	.6364	.4718	.1364	.0682	.0455	.0455	.0455	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
8000.	1.0000	.9500	.9000	.6500	.1000	.0500	.0500	.0500	.0500	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
9000.	1.0000	1.0000	.9167	.6667	.4167	.2500	.1667	.0833	.0833	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
10000.	1.0000	1.0000	.7143	.5714	.2857	.1429	.1429	.1429	.1429	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
12000.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
14000.	1.0300	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
16000.	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
18000.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

TABLE 20

CUMULATIVE PROBABILITY FOR PEAK STRESS FOR AIRBORNE BIVARIATE TABLE
B-58 SEQUENCE A

VALUE	FREQ	DIST	CUM DIST	PROBABILITY
3000.		28230	77920.	1.0000000
4000.		22791	49690.	63770534
5000.		13947	26899.	34521304
6000.		6952	12952.	16622177
7000.		32356	6000.	0.97700205
8000.		1390	2764.	0.93547228
9000.		721	1374.	0.91763347
10000.		475	653.	0.0838039
12000.		94	178.	0.0228439
14000.		40	84.	0.0107803
16000.		20	44.	0.0056468
18000.		10	24.	0.0030801
20000.		10	14.	0.0017967
25000.		4	4.	0.0005133
30000.		0	0.	0.0000000

TABLE 21

CUMULATIVE PROBABILITY TABLE OF PEAK AND VALLEY STRESSES FOR AIRBORNE DATA
B-58 SEQUENCE A

PEAK STRESS	0.	1000.	2000.	3000.	4000.	5000.	6000.	7000.	VALLEY STRESS	0.	1000.	2000.	3000.	4000.	5000.	6000.	7000.
3000.	1.0000	.9993	.9996	.9994	.9993	.9935	.5727	.2529	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
4000.	1.0000	.9990	.9996	.9971	.9819	.4878	.2335	.0958	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
5000.	1.0000	.9945	.9945	.9014	.7129	.4669	.2311	.1062	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
5000.	1.0000	.9415	.8071	.6241	.4137	.2284	.1105	.0515	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
7000.	1.0000	.9008	.7508	.5884	.3952	.2333	.1195	.0609	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
8000.	1.0000	.8485	.7482	.5842	.4050	.2504	.1410	.0753	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
9000.	1.0000	.8835	.7254	.5562	.3953	.2607	.1442	.0693	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
10000.	1.0000	.8559	.6989	.5368	.3874	.2505	.1347	.0611	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
12000.	1.0000	.9298	.6915	.5319	.4255	.2447	.1489	.0638	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
14000.	1.0000	.6090	.6090	.4750	.2750	.1500	.1250	.0250	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
15000.	1.0000	.6500	.7500	.3900	.2000	.1500	.1000	.0500	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
16000.	1.0000	.4000	.4000	.4000	.2000	.0000	.0000	.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
20000.	1.0000	.7000	.6000	.3000	.1000	.0000	.0000	.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
25000.	1.0000	.7500	.5000	.3000	.0000	.0000	.0000	.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
30000.	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

TABLE 22
SIMULATION PROGRAM RUN ON 07/11/74 AT 18.52
BIVARIATE DISTRIBUTION OF POSITIVE A
B-58 SEQUENC

***** G R O U N D D A T A *****												***** A I R B O R N E D A T A *****																				
FLY	POEFLT	G R O U N D				A I R B O R N E				G R O U N D				A I R B O R N E				G R O U N D				A I R B O R N E										
		STRESS	PEAKS	MEAN	VARIANCE	STRESS	STRESS	PEAKS	STRESS	MEAN	VARIANCE	STRESS	STRESS	PEAKS	STRESS	MEAN	VARIANCE	STRESS	STRESS	PEAKS	STRESS	MEAN	VARIANCE	STRESS	STRESS	PEAKS	STRESS					
4-001	-9382.	4	-10013.	-9789.	.1609E+08	-14763.	.5926.	52	7716.	.7766.	.2527E+08	.18168.	.56	.56	.904	.1609E+08	.2513E+08	.57.	.57	.904	.1609E+08	.2513E+08	.56	.56	.904	.1609E+08	.2513E+08	.56				
4-002	-9418.	4	-81012.	-1966E+08	-12376.	-3140.	.844	11128.	.1884E+08	.2275E+08	.463.	.26812.	.848	.116.	.1020.	.1064.	.116.	.1020.	.1064.	.116.	.1020.	.1064.	.116.	.1020.	.1064.	.116.	.1020.	.1064.				
4-003	-9436.	8	-89431.	-9701.	-.1916E+08	-13149.	-.4086.	108	19442.	.1884E+08	-.2275E+08	-.9948.	-.27513.	.116.	.116.	.2117E+08	.2311E+08	.13149.	.13149.	.2117E+08	.2311E+08	.13149.	.13149.	.2117E+08	.2311E+08	.13149.	.13149.					
4-004	-9455.	4	-739.	1405.	.1922E+08	-2525.	.6113.	70	10547.	.1114E+08	.2206E+08	.2566.	.20212.	.74	.1094.	.1150.	.1150.	.1150.	.1150.	.1150.	.1150.	.1150.	.1150.	.1150.	.1150.	.1150.	.1150.	.1150.	.1150.			
4-005	-9338.	8	-11160.	-10423.	.1564E+08	-14632.	-.5841.	424	16482.	-.16521.	-.2211E+08	-.7174.	-.28356.	.432	.1525.	.1594.	.1594.	.1594.	.1594.	.1594.	.1594.	.1594.	.1594.	.1594.	.1594.	.1594.	.1594.	.1594.	.1594.			
4-006	-8527.	0	0.	0.	0.	0.	0.	134	1220.	.1290.	.2236E+08	.5334.	.23921.	.132.	.1662.	.1740.	.1740.	.1740.	.1740.	.1740.	.1740.	.1740.	.1740.	.1740.	.1740.	.1740.	.1740.	.1740.	.1740.			
4-007	-1603.	0	0.	0.	0.	0.	0.	200	17918.	.1925E+08	-.2231E+08	-.9302.	-.2941.	.200	.1860.	.1952.	.1952.	.1952.	.1952.	.1952.	.1952.	.1952.	.1952.	.1952.	.1952.	.1952.	.1952.	.1952.	.1952.	.1952.		
4-008	-8595.	24	-2801.	-2102.	.1407E+08	-12016.	-.3208.	240	16344.	.1639.	.2162E+08	.3564.	.18937.	.400.	.2505.	.2624.	.2624.	.2624.	.2624.	.2624.	.2624.	.2624.	.2624.	.2624.	.2624.	.2624.	.2624.	.2624.	.2624.	.2624.		
4-010	-9765.	4	-5621.	5031.	.3084E+08	-10371.	-.213.	730	14552.	.14883.	.2116E+08	.6277.	.27422.	.734	.3242.	.3370.	.3370.	.3370.	.3370.	.3370.	.3370.	.3370.	.3370.	.3370.	.3370.	.3370.	.3370.	.3370.	.3370.	.3370.		
4-011	-9424.	2	-6623.	-6551.	.2576E+08	-10104.	-.2932.	34	1335.	.13674.	.2799E+08	.2559.	.40.	.3242.	.3422.	.3422.	.3422.	.3422.	.3422.	.3422.	.3422.	.3422.	.3422.	.3422.	.3422.	.3422.	.3422.	.3422.	.3422.			
4-012	-9485.	0	0.	0.	0.	0.	0.	1005	11237.	.11522.	.2283E+08	.271.	.22831.	.1006.	.4288.	.4440.	.4440.	.4440.	.4440.	.4440.	.4440.	.4440.	.4440.	.4440.	.4440.	.4440.	.4440.	.4440.	.4440.	.4440.		
4-013	-9562.	0	0.	0.	0.	0.	0.	444	15763.	.16110.	.2180E+08	.7472.	.25422.	.444.	.4095.	.4732.	.4732.	.4732.	.4732.	.4732.	.4732.	.4732.	.4732.	.4732.	.4732.	.4732.	.4732.	.4732.	.4732.	.4732.		
4-014	-8717.	12	-10511.	-9374.	.2026E+08	-15000.	-.3522.	96	15269.	.15171.	.2183E+08	.3552.	.24797.	.110.	.4842.	.5013.	.5013.	.5013.	.5013.	.5013.	.5013.	.5013.	.5013.	.5013.	.5013.	.5013.	.5013.	.5013.	.5013.	.5013.		
4-015	-8330.	2	-5594.	-6594.	.1379E+09	-15000.	1607.	58	11112.	.11430.	.2281E+08	.3525.	.24525.	.1722.	.6652.	.6824.	.6824.	.6824.	.6824.	.6824.	.6824.	.6824.	.6824.	.6824.	.6824.	.6824.	.6824.	.6824.	.6824.	.6824.		
4-016	-9645.	6	-6150.	-5467.	.3254E+08	-15000.	-.236.	1716	12787.	.13085.	.2211E+08	.13085.	.13085.	.13085.	.13085.	.13085.	.13085.	.13085.	.13085.	.13085.	.13085.	.13085.	.13085.	.13085.	.13085.	.13085.	.13085.					
4-017	-9322.	4	-5322.	-4709.	.1567E+08	-8459.	0.	1046.	42	9973.	.19372.	.2288E+08	.328.	.3000.	.9576.	.6572.	.6892.	.6892.	.6892.	.6892.	.6892.	.6892.	.6892.	.6892.	.6892.	.6892.	.6892.	.6892.	.6892.	.6892.	.6892.	
4-018	-8786.	8	-3918.	0.	0.	0.	0.	20056E+08	-8339.	2198.	.83474.	.13854.	.2203E+08	.328.	.3000.	.9576.	.6572.	.6892.	.6892.	.6892.	.6892.	.6892.	.6892.	.6892.	.6892.	.6892.	.6892.	.6892.	.6892.	.6892.	.6892.	.6892.
4-019	-9821.	0	0.	0.	0.	0.	0.	178	14503.	.14592.	.2218E+08	.6579.	.24835.	.178.	.7975.	.7975.	.7975.	.7975.	.7975.	.7975.	.7975.	.7975.	.7975.	.7975.	.7975.	.7975.	.7975.	.7975.	.7975.	.7975.		
4-020	-9736.	18	-9408.	-9427.	.2190E+08	-14894.	-.1463.	128	13292.	.14591.	.2273E+08	.5545.	.22232.	.146.	.7895.	.8134.	.8134.	.8134.	.8134.	.8134.	.8134.	.8134.	.8134.	.8134.	.8134.	.8134.	.8134.	.8134.	.8134.	.8134.	.8134.	
4-021	-9501.	4	-10418.	-9738.	.1377E+08	-13174.	-.6062.	139	14206.	.14592.	.2273E+08	.5545.	.22309.	.1394.	.9283.	.9543.	.9543.	.9543.	.9543.	.9543.	.9543.	.9543.	.9543.	.9543.	.9543.	.9543.	.9543.	.9543.	.9543.	.9543.	.9543.	
4-022	-9579.	14	-10108.	-9327.	.2015E+08	-15000.	-.3821.	190	11666.	.12195.	.2211E+08	.20517.	.20517.	.204.	.9434.	.9755.	.9755.	.9755.	.9755.	.9755.	.9755.	.9755.	.9755.	.9755.	.9755.	.9755.	.9755.	.9755.	.9755.	.9755.	.9755.	
4-023	-9700.	0	0.	0.	0.	0.	0.	20676E+08	-15000.	0.	0.	0.	1815.	.2213E+08	.18519.	.18519.	.18519.	.18519.	.18519.	.18519.	.18519.	.18519.	.18519.	.18519.	.18519.	.18519.	.18519.	.18519.	.18519.	.18519.		
4-024	-8694.	14	-8010.	-7990.	.2067E+08	-15000.	-.2256.	180	14537.	.14538.	.2203E+08	.54993.	.23791.	.194.	.977.	.10065.	.10065.	.10065.	.10065.	.10065.	.10065.	.10065.	.10065.	.10065.	.10065.	.10065.	.10065.	.10065.	.10065.	.10065.	.10065.	
4-025	-9753.	0	-11952.	-11567.	.2195E+08	-15000.	-.6373.	324	15273.	.15273.	.2120E+08	.15273.	.2120E+08	.4544.	.326.	.10340.	.10340.	.10340.	.10340.	.10340.	.10340.	.10340.	.10340.	.10340.	.10340.	.10340.	.10340.	.10340.	.10340.	.10340.	.10340.	
4-026	-9440.	0	0.	0.	0.	0.	0.	230	12104.	.12104.	.2181E+08	.6199.	.23629.	.230.	.2307.	.16392.	.2307.	.16392.	.2307.	.16392.	.2307.	.16392.	.2307.	.16392.	.2307.	.16392.	.2307.	.16392.	.2307.	.16392.		
4-028	-9849.	0	0.	0.	0.	0.	0.	58	12229.	.12271.	.2147E+08	.5306.	.1906.	.58.	.10523.	.10797.	.10797.	.10797.	.10797.	.10797.	.10797.	.10797.	.10797.	.10797.	.10797.	.10797.	.10797.	.10797.	.10797.	.10797.	.10797.	
4-029	-9047.	0	0.	0.	0.	0.	0.	20606.	132.	19561.	.20060.	.2235AE+08	.11815.	.30100.	.138.	.10766.	.11122.	.11122.	.11122.	.11122.	.11122.	.11122.	.11122.	.11122.	.11122.	.11122.	.11122.	.11122.	.11122.	.11122.	.11122.	.11122.
4-030	-9600.	6	-11474.	-10138.	.1912E+08	-14696.	-.5236.	5803.	14291.	.14879.	.2224E+08	.915.	.29904.	.915.	.10965.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	
4-031	-9815.	24	-5391.	-4176.	.1872E+08	-9762.	-.5236.	140.	14182.	.14182.	.2020E+08	.9127.	.2020E+08	.5475.	.10965.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	.11254.	
4-032	-8685.	8	-2246.	-1974.	.24645F+08	-18329.	4970.	72	14200.	.14653.	.2637E+08	.6236.	.25922.	.80.	.11422.	.11422.	.11422.	.11422.	.11422.	.11422.	.11422.	.11422.	.11422.	.11422.	.11422.	.11422.	.11422.	.11422.	.11422.	.11422.		
4-033	-9540.	4	-11435.	-940.	.2463E+08	-14633.	-.4975.	286	13634.	.14329.	.2285E+08	.81429.	.2285.	.296.	.296.	.296.	.296.	.296.	.296.	.296.	.296.	.296.	.296.	.296.	.296.	.296.	.296.	.296.	.296.	.296.		
4-034	-9747.	0	-10050.	-7778.	.6410E+08	-13463.	-.215.	144.	18321.	.18541.	.2274E+08	.6729.	.28450.	.146.	.11465.	.11882.	.11882.	.11882.	.11882.	.11882.	.11882.	.11882.	.11882.	.11882.	.11882.	.11882.	.11882.	.11882.	.11882.	.11882.	.11882.	
4-035	-9587.	2	-10085.	-8291.	.4921E+08	-12993.	-.3589.	1852.	12773.	.13076.	.2224E+08	.915.	.29904.	.915.	.10965.	.13372.	.13372.	.13372.	.13372.	.13372.	.13372.	.13372.	.13372.	.13372.	.13372.	.13372.	.13372.	.13372.	.13372.	.13372.	.13372.	
4-036	-9867.	4	-8867.	-8010.	.1905E+08	-12233.	-.3846.	140.	14182.	.14182.	.2226E+08	.7624.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.			
4-037	-9504.	8	-10053.	-9333.	.3338E+08	-16409.	-.5848.	2264.	14624.	.15424.	.2262E+08	.7339.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.			
4-038	-9717.	8	-4106.	-3283.	.2251E+08	-9556.	2293.	103	154.	.15921.	.2453E+08	.7339.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.	.14524.			
4-039	-8429.	0	0.	0.	0.	0.	0.	0.	780	19970.	.2088.	.2228E+08	.10078.	.2088.	.780.	.1662.	.17102.	.17102.	.17102.	.17102.	.17102.	.17102.	.17102.	.17102.	.17102.	.17102.	.17102.	.17102.	.17102.	.17102.	.17102.	.17102.
4-040	-9733.	4	-6146.	-6101.	.1795E+08	-10048.	0.	0.	1299.	13211.	.13499.	.2228E+08	.1183.	.2228E+08	.1183.	.10965.	.17924.	.1														

TABLE 23

SUMMARY OF DATA ON EACH CHANNEL
 BIVARIATE DISTRIBUTION OF POSITIVE AND NEGATIVE PRIMARY PEAKS
 B-58 SEQUENCE A

D-A-T-A-O-R-N-E-A-T-R-B-O-R-N-E-D-A-T									
CHAN	NUM	NO. OF PEAKS	NO. OF POINTS	MAX	MIN	1.0 G	MAX	MIN	NO. OF STRESS PEAKS
4	2593	212230	217778	461	11194.	-15000.	3200	-6657.	*246E+08
5	2572	210136	216032	490	14491.	-15000.	3086	-6622.	*329E+08
6	2575	210818	216246	451	11309.	-15000.	2770	-6792.	*1925E+08
TOT	7740	633184	650056	1402	14491.	-15000.	9056	-6606.	*3076E+08

CHAN	NUM	NO. OF PEAKS	NO. OF POINTS	MAX	MIN	1.0 G	MAX	MIN	NO. OF STRESS PEAKS
4	2593	212230	217778	461	11194.	-15000.	3200	-6657.	*246E+08
5	2572	210136	216032	490	14491.	-15000.	3086	-6622.	*329E+08
6	2575	210818	216246	451	11309.	-15000.	2770	-6792.	*1925E+08
TOT	7740	633184	650056	1402	14491.	-15000.	9056	-6606.	*3076E+08

TABLE 24

LISTING OF PEAKS AND VALLEYS AT START OF 3 FM CHANNELS
 BIVARIATE DISTRIBUTION OF POSITIVE AND NEGATIVE PRIMARY PEAKS
 B-58 SEQUENCE A

—STEP 1 OF SIMULATION RUN COMPLETE — NEXT STEP COMBINES DATA FROM EACH CHANNEL ONTO TAPE —

RECORD NO.	1	
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
-1863	-1934	-1958
-1863	-1934	1958
-1863	-1934	-1958
-1863	-1934	1958
-1603	364	-1022
-3280	-869	1022
-1317	598	1022
-2245	-1381	1022
-1022	710	1533
-1022	-1143	1533
-1022	439	1533
-1022	-1357	1533
1533	-1022	3055
1533	-1022	1352
1533	-1022	2994
1533	-1022	566
2668	1533	2957
936	1533	1056
2905	1533	3388
774	1533	1310
2384	4768	3191
780	3006	1179
2491	4624	2908
362	1975	1144
4037	4741	2949
545	2648	1152
2440	4327	3390
585	2737	1091
7432	4319	3088
372	2763	-223
3417	4620	1299
1202	2745	1149
2981	4612	2823
734	2569	929
2410	4477	3180
1041	2514	1071
2560	5179	2922
408	2918	1300
2515	4494	3367
943	2689	1654
2733	4195	3020
1119	2424	1609
2706	4334	3658
213	2607	1578
2483	4907	3045
770	3517	1278
2396	4390	2928
491	2190	1713
3490	4260	2521
152	2744	1327
2623	4265	3115

TABLE 25

CUMULATIVE PROBABILITY FOR POSITIVE GROUND PEAK DISTRIBUTION DATA
B-58 SEQUENCE A LIMITED FOLDED DISTRIBUTION

VALUE	FREQ	DIST	CUM DIST	PROBABILITY
3000.		938	2580.	1.0000000
4000.		668	1642.	* 63643411
5000.		392	974.	* 37751938
6000.		227	582.	* 22558140
7000.		113	355.	* 13759690
8000.		65	242.	* 09379845
9000.		53	177.	* 06860465
10000.		59	124.	* 04806202
12000.		31	65.	* 02519380
14000.		11	34.	* 01317829
16000.		12	23.	* 00891473
18000.		4	11.	* 00426357
20000.		7	7.	* 00271318
25000.		0	0.	* 00000000

TABLE 26

CUMULATIVE PROBABILITY FOR POSITIVE AIRBORNE PEAK DISTRIBUTION DATA
B-58 SEQUENCE A LIMITED FOLDED DISTRIBUTION

VALUE	FREQ	DIST	CUM DIST	PROBABILITY
3000.		54567	158592.	1.0000000
4000.		48429	104025.	* 65592842
5000.		29660	55596.	* 35655993
6000.		14532	25936.	* 16353914
7000.		6420	11404.	* 07190779
8000.		2667	4984.	* 03142655
9000.		1243	2317.	* 01460982
10000.		804	1074.	* 00677209
12000.		154	270.	* 00170248
14000.		55	116.	* 00073144
16000.		26	61.	* 00038463
18000.		17	35.	* 00022069
20000.		14	18.	* 00011350
25000.		4	4.	* 00002522
30000.		0	0.	* 00000000

TABLE 27

CUMULATIVE PROBABILITY FOR NUMBER OF GROUND PEAKS PER FLIGHT DATA
B-58 SEQUENCE A LIMITED FOLDED DISTRIBUTION

VALUE	FREQ DIST	CUM-DIST	PROBABILITY
0.	66	343.	1.00000000
4.	162	277.	.80758017
8.	59	115.	.33527697
12.	45	56.	.16326531
78.	11	11.	.03206997
144.	0	0.	.00000000

TABLE 28

CUMULATIVE PROBABILITY FOR NUMBER OF AIRBORNE PEAKS PER FLIGHT DATA
B-58 SEQUENCE A LIMITED FOLDED DISTRIBUTION

VALUE	FREQ DIST	CUM-DIST	PROBABILITY
75.	134	342.	1.00000000
239.	81	208.	.60818713
455.	37	127.	.37134503
784.	38	90.	.26315789
1620.	52	52.	.15204678
2456.	0	0.	.00000000

TABLE 29

CUMULATIVE PROBABILITY FOR GROUND 1-G STRESS DISTRIBUTION DATA
B-58 SEQUENCE A LIMITED FOLDED DISTRIBUTION

VALUE	FREQ-DIST	CUM-DIST	PROBABILITY
-11100.	101	313.	1.00000000
-9060.	66	212.	.67731629
-6800.	56	146.	.46645367
-4250.	41	90.	.28753994
-630.	49	49.	.15654952
2990.	0	0.	0.00000000

TABLE 31

CUMULATIVE PROBABILITY FOR PREFLIGHT STRESS DISTRIBUTION DATA
 B-58 SEQUENCE A LIMITED FOLDED DISTRIBUTION

VALUE	FREQ	DIST	CUM-DIST	PROBABILITY
-8780.	140		343.	1.00000000
-8590.	175		203.	.59183673
-8030.	28		28.	.08163265
-7470.	0		0.	0.00000000

TABLE 32

SIMULATION PROGRAM RUN ON 05/16/74 AT 20.29.19, SUMMARY OF FLIGHTS ON CHANNEL 7
B-58 SEQUENCE A LIMITED FOLDED DISTRIBUTION

Ground Data										Airborne Data										Cumulative			
Flight		NUM		1.0 G		Minimum		Maximum		NUM		1.0 G		Mean		Variance		Stress		Peaks		Total	
ID	Stress	Peaks	Stress	Mean	Variance	Stress	Peaks	Stress	Peaks	Stress	Peaks	Stress	Peaks	Stress	Peaks	Stress	Peaks	Stress	Peaks	Num	Points		
7001	-8780.	0	0.	-11100.	-10958.	-1702E+08	-15000.	-6282.	0.	-74.	10960.	-10960.	-3073E+08	-1508.	-2043E+08	-1613.	-23533.	-1628.	1702	1734			
7002	-8780.	0	0.	-11100.	-10958.	-1702E+08	-15000.	-6282.	0.	-74.	10960.	-10960.	-2521E+08	-1620.	-3437.	-25357.	-1620.	-3322.	-3366.				
7003	-8590.	0	0.	-6830.	-6479.	-4816E+08	-15000.	-391.	74	10960.	-10960.	-2521E+08	-1620.	-82.	-8696.	-19000.	-82.	3404.	3460.				
7004	-8780.	0	0.	-6830.	-6479.	-3616E+08	-13597.	-5397.	74	10960.	-10960.	-2496E+08	-1620.	-82.	-9304.	-15000.	-82.	5032.	5100.				
7005	-8590.	0	0.	-4250.	-4250.	-2748E+08	-10500.	-1736.	74	10960.	-10960.	-2494E+08	-1620.	-82.	-6668.	-15000.	-82.	5274.	5354.				
7006	-8590.	4	-11100.	-16855.	-2274E+08	-15000.	-6469.	238	12750.	12750.	-2573E+08	-983.	-24517.	-242.	-78.	-5352.	-5444.	-78.	5352.	5444.			
7007	-8030.	4	-9056.	-9056.	-2160E+08	-13377.	-4743.	74	15040.	-15040.	-2569E+08	-7046.	-23034.	-23034.	-78.	-5352.	-5444.	-78.	5352.	5444.			
7008	-8590.	4	-11100.	-10493.	-2116E+08	-15000.	-5641.	454	15040.	15040.	-2374E+08	-7890.	-2890.	-2890.	-78.	-5352.	-5444.	-78.	5352.	5444.			
7009	-8780.	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	-2374E+08	-7890.	-30000.	-9326.	-30000.	-9326.	0.	0.			
7010	-8590.	4	-630.	-630.	-6678E+08	-9577.	-8317.	238	19000.	19000.	-28755.	-9245.	-28755.	-28755.	-78.	-6836.	-6964.	-78.	-6836.	-6964.			
7011	-8780.	78	-630.	-630.	-707E+08	-10503.	-11703.	74	15040.	15040.	-2587E+08	-6193.	-8887.	-8887.	-78.	-6988.	-7128.	-78.	-6988.	-7128.			
7012	-8590.	4	-11100.	-9987.	-3524E+08	-15030.	-33558.	74	15040.	15040.	-2318E+08	-6443.	-23637.	-23637.	-78.	-7066.	-7218.	-78.	-7066.	-7218.			
7013	-8590.	4	-6800.	-6800.	-1657E+08	-16063.	-2997.	238	12750.	12750.	-2757E+08	-334.	-25166.	-25166.	-78.	-7472.	-7538.	-78.	-7472.	-7538.			
7014	-8590.	4	-630.	-630.	-5135E+08	-7475.	-6215.	74	15040.	15040.	-2370E+08	-7845.	-22235.	-22235.	-78.	-7562.	-7652.	-78.	-7562.	-7652.			
7015	-9050.	4	-9050.	-9050.	-2156E+08	-13129.	-46976.	74	15040.	15040.	-2187E+08	-7594.	-22486.	-22486.	-78.	-7464.	-7552.	-78.	-7464.	-7552.			
7016	-8780.	4	-11100.	-10434.	-2815E+08	-15000.	-46976.	238	12750.	12750.	-2356E+08	-2633.	-22867.	-22867.	-78.	-7906.	-7906.	-78.	-7906.	-7906.			
7017	-8030.	8	-630.	-630.	-320E+08	-6803.	-5543.	238	88220.	88220.	-2571E+08	-2514.	-18954.	-18954.	-78.	-8164.	-8164.	-78.	-8164.	-8164.			
7018	-8590.	4	-9050.	-9050.	-1924E+08	-12927.	-5133.	454	10960.	10960.	-2466E+08	-1026.	-24946.	-24946.	-78.	-8634.	-8634.	-78.	-8634.	-8634.			
7019	-8590.	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	-2466E+08	-5861.	-24946.	-24946.	-78.	-8634.	-8634.				
7020	-8590.	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	-2314E+08	-5861.	-24946.	-24946.	-78.	-8634.	-8634.				
7021	-8590.	12	-11100.	-10926.	-1649E+08	-15000.	-6236.	1620.	15040.	15040.	-2478E+08	-2587.	-27493.	-27493.	-1632.	-10518.	-10778.	-1632.	-10518.	-10778.			
7022	-8030.	12	-9050.	-9047.	-193E+08	-15000.	-2967.	238	12750.	12750.	-2411E+08	-2315.	-23185.	-23185.	-78.	-10768.	-11040.	-78.	-10768.	-11040.			
7023	-8590.	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	-26751E+08	-6975.	-23105.	-23105.	-78.	-10842.	-11126.	-78.	-10842.	-11126.	
7024	-8590.	8	-9660.	-8529.	-3511E+08	-15000.	-273.	238	10960.	10960.	-2501E+08	-2565.	-19355.	-19355.	-78.	-11384.	-11384.	-78.	-11384.	-11384.			
7025	-8590.	4	-9060.	-9034.	-3288E+08	-15000.	-3017.	454	19000.	19000.	-25131E+08	-10132.	-27768.	-27768.	-78.	-11788.	-12108.	-78.	-11788.	-12108.			
7026	-8780.	4	-4250.	-2801.	-1393E+09	-15000.	-12295.	238	19000.	19000.	-25513E+08	-1032.	-24468.	-24468.	-78.	-13740.	-13740.	-78.	-13740.	-13740.			
7027	-8590.	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	-25513E+08	-6222.	-23858.	-23858.	-78.	-13650.	-13934.	-78.	-13650.	-13934.	
7028	-8590.	4	-9060.	-9060.	-1517E+08	-12513.	-5607.	238	15040.	15040.	-25131E+08	-6222.	-23858.	-23858.	-78.	-14794.	-15154.	-78.	-14794.	-15154.			
7029	-8780.	4	-11100.	-10923.	-222E+08	-15000.	-5654.	784	15040.	15040.	-2454E+08	-1077.	-20843.	-20843.	-78.	-14794.	-15154.	-78.	-14794.	-15154.			
7030	-8590.	0	-11100.	-10135.	-218E+08	-15000.	-5638.	1620.	10960.	10960.	-2454E+08	-2799.	-24719.	-24719.	-78.	-16056.	-16434.	-78.	-16056.	-16434.			
7031	-8590.	4	-11100.	-11400.	-1695E+08	-14878.	-7322.	454	10960.	10960.	-2463E+08	-984.	-22904.	-22904.	-78.	-16524.	-16904.	-78.	-16524.	-16904.			
7032	-8590.	8	-9060.	-9060.	-212E+08	-14706.	-3414.	238	88220.	88220.	-2468E+08	-435.	-16875.	-16875.	-78.	-17192.	-17192.	-78.	-17192.	-17192.			
7033	-8590.	4	-630.	-630.	-238E+08	-15000.	-3832.	1620.	10960.	10960.	-2542E+08	-4274.	-26194.	-26194.	-78.	-18394.	-18794.	-78.	-18394.	-18794.			
7034	-8590.	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	-2686E+08	-2135.	-27635.	-27635.	-78.	-18640.	-19056.	-78.	-18640.	-19056.	
7035	-8780.	8	-9060.	-9060.	-144E+08	-12780.	-5340.	74	10960.	10960.	-25193E+08	-1077.	-20843.	-20843.	-78.	-18722.	-19150.	-78.	-18722.	-19150.			
7036	-8590.	4	-4250.	-4250.	-2392E+08	-8834.	-334.	74	19000.	19000.	-2443E+08	-984.	-22904.	-22904.	-78.	-16804.	-17494.	-78.	-16804.	-17494.			
7037	-8590.	4	-11100.	-11100.	-1769E+08	-14916.	-7284.	238	12750.	12750.	-2622E+08	-2762.	-22738.	-22738.	-78.	-20666.	-21130.	-78.	-20666.	-21130.			
7038	-8590.	4	-11100.	-10976.	-244E+08	-15000.	-6706.	1620.	12750.	12750.	-2558E+08	-589.	-26099.	-26099.	-78.	-20908.	-21394.	-78.	-20908.	-21394.			
7039	-8030.	4	-11100.	-10118.	-3198E+08	-15000.	-4680.	238	12750.	12750.	-25737E+08	-1005.	-24495.	-24495.	-78.	-20220.	-20702.	-78.	-20220.	-20702.			
7040	-8590.	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	-2331E+08	-9298.	-28072.	-28072.	-78.	-21164.	-21634.	-78.	-21164.	-21634.	
7041	-8590.	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	-3133E+08	-3104.	-26976.	-26976.	-78.	-21220.	-21720.	-78.	-21220.	-21720.	
7042	-8780.	8	-11100.	-10619.	-2015E+08	-15000.	-5270.	74	15040.	15040.	-2733E+08	-4052.	-26028.	-26028.	-78.	-21312.	-21814.	-78.	-21312.	-21814.			
7043	-8590.	8	-11100.	-10136.	-2748E+08	-15000.	-3963.	238	10960.	10960.	-2653E+08	-569.	-24889.	-24889.	-78.	-22330.	-22702.	-78.	-22330.	-22702.			
7044	-8780.	8	-9060.	-8887.	-3016E+08	-15000.	-1736.	238	18000.	18000.	-2404E+08	-7675.	-30000.	-30000.	-78.	-241794.	-24794.	-78.	-241794.	-24794.			
7045	-8590.	78	-630.	-630.	-3076E+08	-11738.	-10748.	238	15040.	15040.	-2692E+08	-5440.	-24495.	-24495.	-78.	-22150.	-22659.	-78.	-22150.	-22659.			
7046	-8590.	12	-11100.	-9369.	-5425E+08	-15000.	-10004.	74	88220.	88220.	-2178E+08	-57.	-29523.	-29523.	-78.	-23564.	-24392.	-78.	-23564.	-24392.			
7047	-8590.	4	-11100.	-9490.	-4611E+08	-15000.	-1659.	1620.	15040.	15040.	-2511E+08	-1023.	-30020.	-30020.	-78.	-25564.	-26028.	-78.	-25564.	-26028.			
7048	-8780.	8	-6300.	-6300.	-2452E+08	-15000.	-11970.	1620.	15040.	15040.	-2374E+08	-8087.	-21993.	-21993.	-78.	-26122.	-26566.	-78.	-26122.	-26566.			
7049	-8590.	8	-11100.	-10867.	-2454E+08	-15000.	-5738.	74	15040.	15040.	-2374E+08	-8087.	-21993.	-21993.	-78.	-25566.	-26028.	-78.	-25566.	-26028.			
7050	-8590.	8	-4250.	-4250.	-4162E+08	-11048.	-2548.	74	15040.	15040.	-3853E+08	-3705.	-26375.	-26375.	-78.	-25568.	-26028.	-78.	-25568.	-26028.			

TABLE 33

CUMULATIVE PROBABILITY FOR NUMBER OF GROUND CYCLES PER FLIGHT
 F-106 SEQUENCE E BIVARIATE DISTRIBUTION OF MEAN AND ALTERNATING STRESSES

VALUE	FREQ	CUM DIST	CUM DIST	PROBABILITY
0.	322	381.	1.0000000	
1.	53	59.		.15485564
2.	5	6.		.01574813
3.	1	1.		.00262467
4.	0	0.		0.0000000

TABLE 34

CUMULATIVE PROBABILITY FOR NUMBER OF AIRBORNE CYCLES PER FLIGHT
 F-106 SEQUENCE E BIVARIATE DISTRIBUTION OF MEAN AND ALTERNATING STRESSES

VALUE	FREQ	DIST	CUM DIST	PROBABILITY
1.	34	381.	1.0000000	
5.	42	347.		.91076115
10.	57	305.		.80052433
15.	42	248.		.65091864
20.	35	206.		.54068241
25.	31	171.		.44881890
30.	31	140.		.36745417
35.	25	109.		.28608924
40.	18	84.		.22047244
45.	15	66.		.17322835
50.	8	51.		.13385827
55.	10	43.		.11286039
60.	10	33.		.08661417
65.	4	23.		.06036745
70.	4	19.		.04986877
75.	1	15.		.03937018
80.	1	14.		.03674541
90.	1	13.		.03412073
100.	5	12.		.03149616
120.	2	7.		.01837270
140.	2	5.		.01312336
160.	1	3.		.00787402
180.	2	2.		.00524934
225.	0	0.		0.0000000

TABLE 35

CUMULATIVE PROBABILITY FOR MEAN STRESSES FOR GROUND BIVARIATE TABLE
F-106 SEQUENCE E BIVARIATE DISTRIBUTION OF MEAN AND ALTERNATING STRESSES

VALUE	FREQ	DIST	CUM DIST	PROBABILITY
4.	4		66.	1.00000000
62.	4		62.	93939394
58.	1		58.	87873788
57.	4		57.	86363636
53.	19		53.	80303030
34.	25		34.	51515152
7.	7		9.	13636364
2.	1		2.	03030303
1.	0		1.	01515152
0.	0		0.	0.00000000

TABLE 36

CUMULATIVE PROBABILITY TABLE OF MEAN AND ALTERNATING STRESSES FOR GROUND DATA
F-106 SEQUENCE E BIVARIATE DISTRIBUTION OF MEAN AND ALTERNATING STRESSES

MEAN STRESS	ALTERNATING STRESS
2500.	3000.
3000.	3500.
3500.	4000.
4000.	4500.
4500.	5000.
5000.	5500.
5500.	6000.
6000.	6500.
6500.	7000.
7000.	7500.
7500.	8000.
8000.	8500.
8500.	9000.
9000.	9500.
9500.	10000.
10000.	11000.
11000.	12000.
12000.	13000.
13000.	14000.
14000.	15000.
15000.	16000.
16000.	17000.
17000.	18000.
18000.	19000.
19000.	20000.

TABLE 37

CUMULATIVE PROBABILITY FOR MEAN STRESS FOR AIRBORNE BIVARIATE TABLE
F-106 SEQUENCE E BIVARIATE DISTRIBUTION OF MEAN AND ALTERNATING STRESSES

VALUE	FREQ	DIST	CUM DIST	PROBABILITY
0.		1	10864.	1.0000000
2000.		6	10863.	.99990795
4000.		92	10357.	.99935557
6000.		1040	10765.	.99088733
8000.		3789	9725.	.89515832
10000.		3674	5936.	.54639175
12000.		1293	2252.	.20821050
14000.		530	969.	.08919367
16000.		239	439.	.04040859
18000.		194	200.	.01840943
20000.		57	96.	.00883652
22000.		22	39.	.00358984
24000.		9	17.	.00156480
26000.		8	8.	.00073638
28000.		6	0.	.00000000

TABLE 38

CUMULATIVE PROBABILITY TABLE OF MEAN AND ALTERNATING STRESS FOR AIRBORNE DATA
F-106 SEQUENCE BIVARIATE DISTRIBUTION OF MEAN AND ALTERNATING STRESSES

TABLE 39

SIMULATION PROGRAM RUN ON 02/16/74 AT 13.52.55, SUMMARY OF FLIGHTS ON CHANNEL 1
F-106 SEQUENCE E BIVARIATE DISTRIBUTION OF MEAN AND ALTERNATING STRESSES

G R O U N D D A Y A * * * * * A I R B O R N E D A T A * * * * * C U M M C U M M									
FLIGHT	NUM	STRESS PEAKS	MEAN	STRESS VARIANCE	MINIMUM STRESS	MAXIMUM STRESS	PEAKS	STRESS PEAKS	NUMBER PCINIS
1001	2	10489.	*1308E+08	*2214E+08	13046.	74	10524.	*310E+08	3635E+08
1002	2	10002.	*2861E+08	*3430E+08	6200.	13804.	14	*204E+08	*2195E+08
1003	3	0.	0.	0.	0.	0.	24	11234.	*196E+08
1004	0	0.	0.	0.	0.	0.	26	*1519E+08	*1522E+08
1005	0	0.	0.	0.	0.	0.	26	*2261E+08	*2244E+08
1006	0	0.	0.	0.	0.	0.	26	*2132E+08	*2330E+08
1007	0	0.	0.	0.	0.	0.	26	*566E+08	*4574E+08
1008	0	0.	0.	0.	0.	0.	26	*1046E.	*2453E+08
1009	2	12027.	*5464E+08	*8153E+08	6800.	17253.	38	*10983.	*2091E+08
1010	2	11500.	*2489E+08	*4473E+08	7983.	15038.	44	*2084.	*2494E+08
1011	0	0.	0.	0.	0.	0.	264	*10892.	*3514E+08
1012	0	0.	0.	0.	0.	0.	72	*936.	*2152E+08
1013	0	0.	0.	0.	0.	0.	45	*10173.	*2031E+08
1014	0	0.	0.	0.	0.	0.	23	*1033.	*1965E+08
1015	0	0.	0.	0.	0.	0.	118	*10113.	*2434E+08
1016	2	11029.	*3267E+08	*4692E+08	6987.	15071.	63	*10692.	*2847E+08
1017	0	0.	0.	0.	0.	0.	90	*1078.	*2587E+08
1018	0	0.	0.	0.	0.	0.	78	*1082.	*3030E+08
1019	0	0.	0.	0.	0.	0.	6	*880E.	*1629E+08
1020	0	0.	0.	0.	0.	0.	54	*10456.	*2033E+08
1021	0	0.	0.	0.	0.	0.	72	*10062.	*2195E+08
1022	0	0.	0.	0.	0.	0.	26	*928.	*2135E+08
1023	0	0.	0.	0.	0.	0.	36	*1145.	*3323E+08
1024	0	0.	0.	0.	0.	0.	32	*9907.	*1994E+08
1025	0	0.	0.	0.	0.	0.	98	*10577.	*2160E+08
1026	0	0.	0.	0.	0.	0.	18	*1114.	*2119E+08
1027	2	1366.	*1766E+08	*2745E+09	-8034.	10762.	10	*12123.	*3824E+08
1028	0	0.	0.	0.	0.	0.	54	*956.	*5315E+08
1029	0	0.	0.	0.	0.	0.	22	*1104.	*2553E+08
1030	0	0.	0.	0.	0.	0.	38	*11010.	*2283E+08
1031	0	0.	0.	0.	0.	0.	52	*1159.	*3307E+08
1032	0	0.	0.	0.	0.	0.	8	*1043.	*3565E+08
1033	0	0.	0.	0.	0.	0.	52	*1145.	*3181E+08
1034	0	0.	0.	0.	0.	0.	2	*3772.	*1067E+09
1035	0	0.	0.	0.	0.	0.	36	*19455.	*2094E+08
1036	0	0.	0.	0.	0.	0.	68	*1052.	*2978E+08
1037	0	0.	0.	0.	0.	0.	20	*1267.	*3384E+08
1038	0	0.	0.	0.	0.	0.	0.	*102.	*2240E+08
1039	0	0.	0.	0.	0.	0.	75	*9330.	*2079E+08
1040	0	0.	0.	0.	0.	0.	46	*1128.	*349E+08
1041	2	1102.	*2849E+08	*4265E+08	7247.	14795.	42	*1033.	*2171E+08
1042	4	1234.	*2406E+08	*4513E+08	6229.	16571.	68	*10381.	*2886E+08
1043	0	0.	0.	0.	0.	0.	70	*1071.	*2191E+08
1044	0	0.	0.	0.	0.	0.	114	*1081.	*2447E+08
1045	0	0.	0.	0.	0.	0.	82	*1062.	*2393E+08
1046	0	0.	0.	0.	0.	0.	44	*1045.	*3377E+08
1047	0	0.	0.	0.	0.	0.	28	*11650.	*3678E+08
1048	4	681.	*1355E+08	*1356E+09	-8839.	18781.	114	*10304.	*4600E+08
1049	2	9945.	*1162E+08	*2167E+08	7063.	12228.	63	*10631.	*2722E+08
1050	0	0.	0.	0.	0.	0.	64	*10872.	*3516E+08

TABLE 40

SUMMARY OF DATA ON EACH CHANNEL
F-106 SEQUENCE E BIVARIATE DISTRIBUTION OF MEAN AND ALTERNATING STRESSES

G R O U N D D A T A										A I R B O R N E D A T A						
CHAN	NUM	NO. OF PEAKS	NO. OF POINTS	MAX STRESS	MIN STRESS	NO. OF PEAKS	MEAN	VARIANCE	STRESS	MAX STRESS	MIN STRESS	PEAKS	MEAN	VARIANCE	STRESS	
1	2572	190012	216032	3336	23198.	-8486.	9414.	.3178E+08	.3289E+08	30000.	-9520.	10605.	.2333E+08	.2840E+08		
2	2573	190914	216092	3255	22989.	-9182.	9194.	.33382E+08	.34552E+08	30000.	-9387.	10603.	.2344E+08	.2848E+08		
3	2572	183532	216048	3453	23302.	-9115.	9377.	.3471E+08	.3574E+08	30000.	-9848.	10612.	.2355E+08	.2863E+08		
TOT	7717	570528	6+8172	10094	23302.	-9182.	3468	9334.	.3344E+08	.3439E+08	30000.	-9848.	567040	10607.	.2345E+08	.2850E+08

TABLE 41

CUMULATIVE PROBABILITY FOR NEGATIVE GROUND PEAK DISTRIBUTION DATA
F-106 SEQUENCE E SEPARATE POSITIVE AND NEGATIVE DISTRIBUTIONS

VALUER	FPEQ DIST	CUM DIST	PROBABILITY
-1500.	55	80.	1.0000000
-3000.	11	25.	.3125000
-4000.	2	14.	.1750000
-5000.	2	12.	.1500000
-7000.	2	10.	.1250000
-12000.	1	8.	.1000000
-14000.	7	7.	.0875000
-15000.	0	0.	.0000000

TABLE 42

CUMULATIVE PROBABILITY FOR POSITIVE GROUND PEAK DISTRIBUTION DATA
 F-106 SEQUENCE E SEPARATE POSITIVE AND NEGATIVE DISTRIBUTIONS

VALUE	FREQ DIST	CUM DIST	PROBABILITY
3000.	34	80.	1.00000000
4000.	38	46.	.57500000
5000.	3	8.	.10000000
5000.	1	5.	.06250000
7000.	1	4.	.05000000
8000.	1	3.	.03750000
12000.	1	2.	.02500000
14000.	1	1.	.01250000
16000.	0	0.	0.00000000

TABLE 43

CUMULATIVE PROBABILITY FOR NEGATIVE AIRBORNE PEAK DISTRIBUTION DATA
 F-106 SEQUENCE E SEPARATE POSITIVE AND NEGATIVE DISTRIBUTIONS

VALUE	FREQ DIST	CUM DIST	PROBABILITY
-1500.	11014	14107.	1.00000000
-3000.	1957	3093.	.21925285
-4000.	697	1136.	.09052740
-5000.	280	449.	.03182917
-5000.	99	169.	.01197997
-7000.	36	70.	.00495208
-8000.	17	34.	.00241015
-9000.	9	17.	.00120508
-10000.	6	8.	.00056709
-14000.	1	2.	.00014177
-15000.	1	1.	.00007089
-19000.	0	0.	0.00000000

TABLE 44

CUMULATIVE PROBABILITY FOR POSITIVE AIRBORNE PEAK DISTRIBUTION DATA
 F-106 SEQUENCE E SEPARATE POSITIVE AND NEGATIVE DISTRIBUTIONS

VALUF	FREQ DTST	CUM DTST	PROBABILITY
3000.	5688	14107.	1.00000000
4000.	3346	8419.	.50579592
5000.	1683	5073.	.35960479
6000.	1017	3390.	.24030523
7000.	671	2373.	.16321436
8000.	445	1702.	.12064932
9000.	295	1257.	.09910470
10000.	379	962.	.06919310
12000.	213	584.	.04139789
14000.	164	371.	.02629390
15000.	98	207.	.01467357
19000.	54	109.	.00772566
20000.	55	55.	.00389877
25000.	0	0.	0.00000000

TABLE 45

CUMULATIVE PROBABILITY FOR NUMBER OF GROUND PEAKS PER FLIGHT DATA
 F-106 SEQUENCE E SEPARATE POSITIVE AND NEGATIVE DISTRIBUTIONS

VALUF	FREQ DTST	CUM DTST	PROBABILITY
0.	325	321.	1.00000000
1.	43	56.	.14628163
2.	7	13.	.03412073
3.	3	6.	.01574903
4.	1	3.	.00787402
5.	1	2.	.00524934
11.	1	1.	.00262467
31.	0	0.	0.00000000

TABLE 46

CUMULATIVE PROBABILITY FOR NUMBER OF AIRBORNE PEAKS PER FLIGHT DATA
 F-106 SEQUENCE E SEPARATE POSITIVE AND NEGATIVE DISTRIBUTIONS

VALUF	FREQ DST	CUM DST	PROBABILITY
1.	147	381.	1.00000000
26.	109	274.	.61417323
51.	71	125.	.32808399
76.	22	54.	.14173228
131.	19	72.	.08393950
126.	6	14.	.03574541
151.	2	8.	.02093738
201.	3	6.	.01574903
251.	2	3.	.00787402
301.	1	1.	.00262467
501.	0	0.	0.00000000

TABLE 47

SIMULATION PROGRAM RUN ON 02/16/74 AT 13.42.47, SUMMARY OF FLIGHT ON CHANNEL 4
F-106 SEQUENCE SEPARATE POSITIVE AND NEGATIVE DISTRIBUTIONS

DATA												DATA														
FLT	MIN STRESS			MAX STRESS			MIN STRESS			MAX STRESS			MIN STRESS			MAX STRESS			MIN STRESS			MAX STRESS				
	MIN	STRESS	STRESS	MIN	STRESS	STRESS	MIN	STRESS	STRESS	MIN	STRESS	STRESS	MIN	STRESS	STRESS	MIN	STRESS	STRESS	MIN	STRESS	STRESS	MIN	STRESS	STRESS		
4.001	1	11665.	11665.	0.	0.	0.	0.	0.	0.	0.	10742.	10742.	0.	16835E+08	1733F+08	0.	2333E+08	24615E+08	0.	23802.	24615E+08	0.	51	51		
4.002	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	10458.	10458.	0.	10458.	10458.	0.	10458.	10458.	0.	15433.	15433.	0.	5	5		
4.003	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9415.	9415.	0.	16815E+08	17145E+08	0.	15745E+08	15745E+08	0.	17414.	17414.	0.	56	56		
4.004	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9754.	9754.	0.	1925E+08	1925E+08	0.	2245E+08	2245E+08	0.	23552.	23552.	0.	53	53		
4.005	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9567.	9567.	0.	15385E+08	1735E+08	0.	1735E+08	1735E+08	0.	2676.	16801.	0.	63	63		
4.006	1	0.	0.	0.	0.	0.	0.	0.	0.	0.	9594.	9594.	0.	15425E+08	1754E+08	0.	1754E+08	1754E+08	0.	5146.	19462.	0.	34	34		
4.007	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	10458.	10458.	0.	29215E+08	34025E+08	0.	34025E+08	4654.	0.	20035.	12.	0.	273.	273.		
4.008	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	1053.	1053.	0.	27495E+08	31212.	0.	25457.	35.	0.	314.	314.	0.	35.	35.		
4.009	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	11514.	11514.	0.	35255E+08	4417E+08	0.	5753.	21442.	0.	9.	9.	0.	323.	392.		
4.010	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9721.	9721.	0.	21395E+08	23285E+08	0.	1725.	21633.	0.	37.	37.	0.	350.	444.		
4.011	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	10158.	10158.	0.	29205E+08	3448E+08	0.	4361.	2917.	0.	69.	69.	0.	429.	521.		
4.012	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9443.	9443.	0.	17085E+08	1828E+08	0.	3384.	2293.	0.	53.	53.	0.	473.	573.		
4.013	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9295.	9295.	0.	29355E+08	32625E+08	0.	1673.	30001.	0.	74.	74.	0.	553.	661.		
4.014	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9762.	9762.	0.	19735E+08	2174E+08	0.	2147.	21207.	0.	41.	41.	0.	594.	711.		
4.015	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	10235.	10235.	0.	22305E+08	23545E+08	0.	3400.	14355.	0.	7.	7.	0.	601.	721.		
4.016	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9335.	9335.	0.	20217E+08	2155E+08	0.	4396.	17370.	0.	13.	13.	0.	614.	742.		
4.017	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9736.	9736.	0.	21315E+08	21595E+08	0.	5456.	16163.	0.	5.	5.	0.	623.	755.		
4.018	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	1053.	1053.	0.	21395E+08	22525E+08	0.	4339.	19233.	0.	13.	13.	0.	623.	777.		
4.019	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9613.	9613.	0.	14615E+08	14615E+08	0.	4312.	12943.	0.	4.	4.	0.	637.	735.		
4.020	1	12184.	12184.	0.	0.	0.	0.	0.	0.	0.	12194.	12194.	0.	17935E+08	1801E+08	0.	1801E+08	1801E+08	0.	1711.	13132.	0.	3.	3.	645.	797.
4.021	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9872.	9872.	0.	12655E+08	21795E+08	0.	2889.	20471.	0.	43.	43.	0.	693.	853.		
4.022	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9597.	9597.	0.	15913E+08	1744E+08	0.	3939.	18926.	0.	54.	54.	0.	747.	915.		
4.023	2	9062.	206515+19.	0.	21625E+09	5457.	12265.	0.	0.	0.	70.	9377.	9377.	0.	21505E+08	2164E+08	0.	409.	23949.	0.	72.	72.	0.	813.	935.	
4.024	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	10477.	10477.	0.	3035E+08	3369E+08	0.	3836.	29551.	0.	44.	44.	0.	853.	1047.		
4.025	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9718.	9718.	0.	18862E+08	20777E+08	0.	3437.	18354.	0.	27.	27.	0.	833.	1082.		
4.026	1	0.	0.	0.	0.	0.	0.	0.	0.	0.	9645.	9645.	0.	2132E+08	2509E+08	0.	4710.	2833.	0.	16.	16.	0.	905.	1105.		
4.027	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9005.	9005.	0.	23155E+08	2556E+08	0.	4650.	25674.	0.	23.	23.	0.	923.	1137.		
4.028	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	10113.	10113.	0.	20965E+08	3210E+08	0.	6510.	13715.	0.	2.	2.	0.	931.	1143.		
4.029	2	26497.	47717E+09	0.	240995+07.	56707.	120991.	0.	0.	0.	10316.	10316.	0.	29485E+08	3344E+08	0.	3832.	25176.	0.	32.	32.	0.	961.	1181.		
4.030	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9973.	9973.	0.	25125E+08	27755E+08	0.	506.	30000.	0.	205.	205.	0.	1167.	1335.		
4.031	1	13291.	13291.	0.	0.	0.	0.	0.	0.	0.	9751.	9751.	0.	22435E+08	2485E+08	0.	4387.	22893.	0.	52.	52.	0.	1213.	1455.		
4.032	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	12375.	12375.	0.	67225E+08	8955E+08	0.	4933.	25602.	0.	6.	6.	0.	1223.	1463.		
4.033	3	0.	0.	0.	0.	0.	0.	0.	0.	0.	50.	50.	0.	27305E+08	2953E+08	0.	2953.	26635.	0.	50.	50.	0.	1275.	1527.		
4.034	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9149.	9149.	0.	14935E+08	14582E+08	0.	2683.	15283.	0.	22.	22.	0.	1297.	1553.		
4.035	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9712.	9712.	0.	16965E+08	1944E+08	0.	4938.	14359.	0.	36.	36.	0.	1333.	1537.		
4.036	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	935.	935.	0.	22377E+08	2394E+08	0.	-170.	1735.	0.	19.	19.	0.	1462.	1753.		
4.037	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	10194.	10194.	0.	2019E+08	20495E+08	0.	-9159.	17715.	0.	75.	75.	0.	1537.	1841.		
4.038	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9916.	9916.	0.	1424E+08	1424E+08	0.	-4080.	17726.	0.	25.	25.	0.	1552.	1874.		
4.039	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	1019.	1019.	0.	14737.	14737.	0.	-3837.	14739.	0.	23.	23.	0.	1582.	1939.		
4.040	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9506.	9506.	0.	22595E+08	2417E+08	0.	-4065.	29613.	0.	56.	56.	0.	1638.	1935.		
4.041	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	949.	949.	0.	1049E+08	1074E+08	0.	-4182.	12984.	0.	13.	13.	0.	1655.	1994.		
4.042	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	10276.	10276.	0.	2535E+08	2955E+08	0.	-5507.	20026.	0.	8.	8.	0.	1655.	2027.		
4.043	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	938.	938.	0.	1539E+08	1540E+08	0.	-3014.	17521.	0.	68.	68.	0.	1732.	2025.		
4.044	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	1019.	1019.	0.	1424E+08	1424E+08	0.	-2721.	30000.	0.	220.	220.	0.	1952.	2304.		
4.045	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9917.	9917.	0.	2243E+08	2048E+08	0.	-2031.	25601.	0.	100.	100.	0.	2052.	2412.		
4.046	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9471.	9471.	0.	15445E+08	1719E+08	0.	-3063.	19832.	0.	57.	57.	0.	2109.	2477.		
4.047	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	9735.	9735.	0.	1589E+08	1604E+08	0.	-5419.	14072.	0.	11.	11.	0.	2120.	2492.		

TABLE 48
 SUMMARY OF DATA ON EACH CHANNEL
 F-106 SEQUENCE E SEPARATE POSITIVE AND NEGATIVE DISTRIBUTIONS

G R A N U L A T I O N										A T R 9 0 R N E D A T A									
CHAN	MAX	MIN	MEAN	STRESS	1.0 G	MAX	MIN	MEAN	STRESS	1.0 G	VARIANCE	VARIANCE	VARIANCE	VARIANCE	VARIANCE	VARIANCE	VARIANCE	VARIANCE	
NO.	PEAKS	PLATES	ONSETS	FLITS	STRESS	PEAKS	MEAN	STRESS	1.0 G	PEAKS	MEAN	STRESS	1.0 G	PEAKS	MEAN	STRESS	1.0 G	VARIANCE	
4	2672	14223	215038	23165	-7525	991	10701	*2024+06	*2578E+08	30000	-9537	165239	9754	*2075E+08	*2270E+08	*2270E+08	*2270E+08		
5	2572	147220	215024	3354	-7573	948	10792	*2191E+06	*2773E+08	30000	-9094	186372	9736	*2066E+08	*2255E+08	*2255E+08	*2255E+08		
6	2673	146691	216067	4075	-7409	991	10809	*2104E+06	*2703E+08	30000	-9301	185700	9750	*2072E+08	*2265E+08	*2265E+08	*2265E+08		
7	2717	567701	64129	12111	-74185	2930	10764	*2105E+06	*2683E+08	30000	-9537	557371	9747	*2071E+08	*2263E+08	*2263E+08	*2263E+08		

TABLE 49

CUMULATIVE PROBABILITY FOR NEGATIVE GROUND PEAK DISTRIBUTION DATA
 F-106 SEQUENCE E LIMITED SEPARATE POSITIVE AND NEGATIVE DISTRIBUTIONS

VALUE	PEAK DIST	CUM DIST	PROBABILITY
-1500.	5	80.	1.0000000
-3000.	11	25.	.71250000
-4000.	2	14.	.17500000
-5000.	2	12.	.15000000
-7000.	2	10.	.12500000
-12000.	1	9.	.10000000
-14000.	7	7.	.08750000
-16000.	0	0.	.0.00000000

TABLE 50

CUMULATIVE PROBABILITY FOR POSITIVE GROUND PEAK DISTRIBUTION DATA
F-106 SEQUENCE E LIMITED SEPARATE POSITIVE AND NEGATIVE DISTRIBUTIONS

VALUE	FREQ DIST	CUM DIST	PROBABILITY
3000.	34	99.	1.00000000
4000.	38	46.	.57500000
5000.	3	8.	.10000000
5200.	1	5.	.06250000
7000.	1	4.	.05000000
9000.	1	7.	.03750000
12000.	1	2.	.02500000
14000.	1	1.	.01250000
16000.	0	0.	0.00000000

TABLE 51

CUMULATIVE PROBABILITY FOR NEGATIVE AIRBORNE PEAK DISTRIBUTION DATA
F-106 SEQUENCE E LIMITED SEPARATE POSITIVE AND NEGATIVE DISTRIBUTIONS

VALUE	FREQ DIST	CUM DIST	PROBABILITY
-1500.	11014	14107.	1.00000000
-3000.	1957	3093.	.21925285
-4000.	687	1136.	.09052740
-5000.	280	449.	.03182817
-6000.	97	169.	.01197387
-7000.	35	70.	.00495208
-8000.	17	34.	.00241015
-9000.	9	17.	.00120503
-12000.	6	8.	.00056709
-14000.	1	2.	.00014177
-16000.	1	1.	.00007089
-18000.	0	0.	0.00000000

TABLE 52

CUMULATIVE PROBABILITY FOR POSITIVE AIRBORNE PEAK DISTRIBUTION DATA
F-106 SEQUENCE E LIMITED SEPARATE POSITIVE AND NEGATIVE DISTRIBUTIONS

VAL\JR	FREQ	DIST	CUM DIST	PROBABILITY
3000.	5688	14107.	1.	00000000
4000.	3346	8419.		59679592
5000.	1683	5073.		35960370
5000.	1017	3390.		24030523
7000.	671	2373.		16821436
8000.	465	1702.		12064932
9000.	295	1257.		08910470
10000.	378	962.		06819310
12000.	213	524.		04139799
14000.	164	371.		02629900
15000.	98	207.		01467357
18000.	54	109.		00772666
20000.	55	55.		00389877
25000.	0	0.		0.00000000

TABLE 53

CUMULATIVE PROBABILITY FOR NUMBER OF GROUND PEAKS PER FLIGHT DATA
F-106 SEQUENCE E LIMITED SEPARATE POSITIVE AND NEGATIVE DISTRIBUTIONS

VAL\JR	FREQ	DIST	CUM DIST	PROBABILITY
0.	325	381.	1.	00000000
2.	56	56.		14599163
4.	0	0.		0.00000000

TABLE 54

CUMULATIVE PROBABILITY FOR NUMBER OF AIRBORNE PEAKS PER FLIGHT DATA
 F-106 SEQUENCE E LIMITED SEPARATE POSITIVE AND NEGATIVE DISTRIBUTIONS

VAL _U	FREQ	NST	CUM	NST	PROBABILITY
27.	256		381.	1.	0.0000000
57.	117		125.	.	32808399
257.	9		8.	.	02099738
467.	0		0.	.	0.0000000

TABLE 55

SIMULATION PROGRAM RUN ON 02/16/74 AT 14.03.37, SUMMARY OF FLIGHTS ON CHANNEL 7
F-106 SEQUENCE E LIMITED SEPARATE POSITIVE AND NEGATIVE DISTRIBUTIONS

FLT	G 0 U 1			D 0 T 4			A 1 0 3 0 N F			D A T A			TOTAL			CUM		
	MIN	STRESS	VARIANCE	MIN	MAXIMUM	MEAN	STRESS	STRESS	1.0 G	MINIMUM	MAXIMUM	NUMBER	NUMBER	POINTS	STRESS	PEAKS	PEAKS	POINTS
7001	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	5401.	1.3750.	27	27	39	-	-	-	-
7002	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	2631.	2.3450.	27	54	74	-	-	-	-
7003	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	2295.	2.2955.	257	311	333	-	-	-	-
7004	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	919.0	919.0	-13	27851.	27851.	-	-	-	-
7005	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	67	919.3	3143.	2204.	414	0.1945E+08	3474.	3474.	414
7015	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9047.	3243.	27704.	405	0.1945E+08	3516.	3516.	449
7017	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	10528.	3524.	27303.	412	0.1945E+08	3516.	3516.	494
7018	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	10246.	3475.	26723.	459	0.2476E+08	3177.	3177.	513
7019	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9717.	1576.	15445.	486	0.1776E+08	4768.	4768.	550
7020	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	67	9012.	1934.	19502.	625	0.1915E+08	3474.	3474.	553
7021	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	67	9055.	15675.	17375.	620	0.15675E+08	3516.	3516.	700
7022	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	10370.	3075.	20392.	647	0.2497E+08	3075.	3075.	715
7023	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	67	9767.	2117.	24094.	67	0.2117E+08	3391.	3391.	810
7024	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	10503.	218E.	25069.	67	0.2318E+08	3218.	3218.	845
7025	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	67	9159.	332E.	27461.	741	0.2159E+08	5121.	5121.	920
7026	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	67	10156.	275E.	30000.	67	0.2170E+08	4481.	4481.	95
7027	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9551.	1956.	2005E.	85	0.2159E+08	3351.	3351.	95
7028	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	67	9539.	2157.	22039.	67	0.2157E+08	3440.	3440.	1030
7029	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9209.	12325.	13049.	792	0.13045E+08	3506.	3506.	1061
7030	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	67	10104.	3287.	35515.	795	0.3287E+08	27662.	27662.	1136
7031	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	10339.	2807E.	3215E.	1023	0.2807E+08	4481.	4481.	1171
7032	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9577.	1276E.	1433E.	1050	0.1276E+08	5389.	5389.	1471
7033	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9677.	2110E.	2234E.	1307	0.2110E+08	3475.	3475.	1471
7034	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9310.	1951E.	2117E.	1334	0.1951E+08	4551.	4551.	1505
7035	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	67	9751.	1453E.	1555E.	1401	0.1453E+08	3507.	3507.	1511
7036	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	10437.	2481E.	29299E.	1614	0.2481E+08	4503.	4503.	1614
7037	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	67	10054.	5919E.	5919E.	1497	0.5919E+08	1547.	1547.	1693
7038	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	10054.	1273E.	1433E.	1206	0.1273E+08	4130.	4130.	1724
7039	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9536.	2234E.	2384E.	1307	0.2234E+08	3475.	3475.	1724
7040	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9691.	2689E.	2689E.	1303	0.2689E+08	2037.	2037.	1603
7041	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9535.	2451E.	2594E.	1613	0.2451E+08	18733.	18733.	1633
7042	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	10025.	2356E.	2356E.	1645	0.2356E+08	1679.	1679.	1873
7043	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9942.	2474E.	2621E.	1674	0.2474E+08	3771.	3771.	1910
7044	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9943.	2273E.	25939.	1987	0.2273E+08	3317.	3317.	1987
7045	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9867.	1562E.	1742E.	1772	0.1562E+08	3752.	3752.	2024
7046	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9845.	1918E.	214E.	1762	0.1918E+08	3626.	3626.	2061
7047	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	10041.	1806E.	2039E.	2003	0.1806E+08	24396.	24396.	2111
7048	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9945.	2451E.	2594E.	1633	0.2451E+08	18733.	18733.	1633
7049	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	10025.	2356E.	2356E.	1645	0.2356E+08	1679.	1679.	1873
7050	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9942.	2474E.	2621E.	1674	0.2474E+08	3771.	3771.	1910
7051	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9943.	2273E.	25939.	1987	0.2273E+08	3317.	3317.	1987
7052	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9867.	1562E.	1742E.	1772	0.1562E+08	3752.	3752.	2024
7053	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9845.	1918E.	214E.	1762	0.1918E+08	3626.	3626.	2061
7054	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	10041.	1806E.	2039E.	2003	0.1806E+08	24396.	24396.	2111
7055	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9942.	2352E.	2526E.	2059	0.2352E+08	19583.	19583.	2131
7056	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9943.	1671E.	1671E.	2059	0.1671E+08	2316.	2316.	2156
7057	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9867.	1567E.	1859E.	2115	0.1567E+08	3436.	3436.	2115
7058	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9845.	2081E.	2315E.	2142	0.2081E+08	4557.	4557.	2142
7059	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	10041.	2451E.	28576.	2211	0.2451E+08	28576.	28576.	2211
7060	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9942.	1140E.	1140E.	2059	0.1140E+08	3208.	3208.	2131
7061	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9943.	1733E.	2006E.	2059	0.1733E+08	5242.	5242.	2131
7062	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9867.	1671E.	1671E.	2059	0.1671E+08	2316.	2316.	2131
7063	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9845.	2081E.	2315E.	2142	0.2081E+08	4557.	4557.	2142
7064	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	10041.	2451E.	28576.	2211	0.2451E+08	28576.	28576.	2211
7065	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9942.	1140E.	1140E.	2059	0.1140E+08	3208.	3208.	2131
7066	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9943.	1733E.	2006E.	2059	0.1733E+08	5242.	5242.	2131
7067	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9867.	1671E.	1671E.	2059	0.1671E+08	2316.	2316.	2131
7068	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9845.	2081E.	2315E.	2142	0.2081E+08	4557.	4557.	2142
7069	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	10041.	2451E.	28576.	2211	0.2451E+08	28576.	28576.	2211
7070	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9942.	1140E.	1140E.	2059	0.1140E+08	3208.	3208.	2131
7071	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9943.	1733E.	2006E.	2059	0.1733E+08	5242.	5242.	2131
7072	0	0	0	0	0	0	0.055E+03	1.055E+03	1.336E+08	27	9867.</td							

TABLE 56

SUMMARY OF DATA ON EACH CHANNEL
F-106 SEQUENCE E LIMITED SEPARATE POSITIVE AND NEGATIVE DISTRIBUTIONS

C-HAN		N-114		N-115		G-2		D-U-N-D		N-A-T-A		A-I-P-B-S-O-R-N-E		Data	
No.	NAME	No. OF DATA'S	MAX	No. OF PEAKS	MIN	STRESS	No. OF PEAKS	MAX	STRESS	No. OF PEAKS	MAX	STRESS	No. OF PEAKS	MAX	STRESS
7	2e73	474243	215057	4114	-7639	1172	9612	*2530E+08	*2536E+08	30000	-9562	183077	9605	*2074E+08	*2283E+08
8	2e72	146180	215084	6179	-7595	1154	4505	*2746E+08	*2749E+08	30000	-9633	182916	9403	*2072E+08	*2280E+08
9	2e72	194250	215014	4114	-7614	1198	4533	*2770E+08	*2773E+08	30000	-9607	183052	9300	*2067E+08	*2274E+08
TOT	7719	552573	649155	12477	24750*	8534	8550	*2595E+08	*2698E+08	30000	-9523	549045	9803	*2071E+08	*2279E+08

TABLE 57

CUMULATIVE PROBABILITY FOR NUMBER OF AIRBORNE PEAKS PER FLIGHT DATA
 B-58 SEQUENCE B BIVARIATE DISTRIBUTION OF PEAKS AND VALLEYS

VALUE	FREQ	DIST	CUM	DIST	PROBABILITY
1.	5	282.	1.	00000000	1.
26.	23	274.	37163121		
51.	23	246.	87234043		
76.	59	223.	79074014		
101.	25	193.	68439715		
126.	13	168.	59574468		
151.	21	150.	53191489		
176.	17	129.	45744681		
201.	15	112.	39716312		
226.	22	97.	34397163		
251.	8	75.	26595745		
276.	8	67.	23758865		
301.	2	59.	20221986		
326.	7	57.	20212766		
351.	3	50.	17730496		
401.	10	42.	14893617		
451.	5	32.	11347518		
501.	7	27.	09574468		
601.	3	20.	07042199		
701.	4	17.	05028369		
801.	2	13.	04609929		
901.	2	11.	03900709		
1001.	3	9.	03191439		
1126.	2	6.	02127669		
1251.	1	4.	01418440		
1501.	1	3.	01063830		
1751.	1	2.	00709220		
2001.	1	1.	00354610		
2251.	0	0.	00000000		

TABLE 58

CUMULATIVE PROBABILITY FOR GROUND 1-G STRESS DISTRIBUTION DATA
B-58 SEQUENCE B BIVARIATE DISTRIBUTION OF PEAKS AND VALLEYS

VALUE	FREQ DIST.	CUM DIST.	PROBABILITY
-14000.	1	270.	1.00000000
-13000.	9	269.	.39629630
-12000.	22	260.	.96296296
-11000.	14	238.	.38148148
-10500.	18	224.	.82962963
-10000.	17	206.	.76296296
-9500.	14	189.	.70000000
-9000.	15	175.	.64814815
-8500.	15	160.	.59259259
-8000.	13	145.	.53703704
-7500.	3	132.	.48888889
-7000.	10	129.	.47777778
-6500.	7	119.	.44074074
-6000.	13	112.	.41451481
-5500.	11	99.	.38666667
-5000.	9	86.	.32592593
-4500.	11	79.	.29259259
-4000.	8	68.	.25185185
-3500.	12	60.	.22222222
-3000.	3	48.	.17777778
-2500.	3	45.	.16666667
-2000.	10	37.	.13703704
-1000.	13	27.	.10000000
0.	5	14.	.05185185
1000.	9	9.	.03333333
2000.	0	0.	0.00000000

TABLE 59

CUMULATIVE PROBABILITY FOR AIRBORNE 1-G STRESS DISTRIBUTION DATA
B-58 SEQUENCE B BIVARIATE DISTRIBUTION OF PEAKS AND VALLEYS

VALUE	FREQ	VIST	CUM. DIST	PROBABILITY
5000.	1		282.	1.0000000
7000.	2		281.	.99645390
8000.	1		279.	.98936170
9000.	7		278.	.98581560
10000.	4		271.	.96099291
10500.	10		267.	.94680851
11000.	9		257.	.91134752
11500.	7		248.	.87943262
12000.	22		241.	.85460993
12500.	17		219.	.77659574
13000.	17		202.	.71531206
13500.	19		185.	.65602837
14000.	28		156.	.58865248
14500.	13		138.	.48936170
15000.	13		125.	.44326241
15500.	22		112.	.39716312
16000.	24		90.	.31914894
16500.	11		56.	.23404255
17000.	13		55.	.19503546
17500.	13		42.	.14993617
18000.	14		29.	.10283688
19000.	8		15.	.05319149
20000.	6		7.	.02462270
21000.	1		1.	.00354610
22000.	0		0.	.00000000

TABLE 60

CUMULATIVE PROBABILITY FOR PREFLIGHT STRESS DISTRIBUTION DATA
B-58 SEQUENCE B BIVARIATE DISTRIBUTION OF PEAKS AND VALLEYS

VALUÉ	FREQ	DIST	CUM. DIST	PROBABILITY
-8950.	2		282.	1.0000000
-8900.	16		290.	.99290780
-8850.	53		264.	.93617021
-8800.	54		211.	.74822695
-8750.	35		157.	.55673759
-8700.	45		122.	.43262411
-8650.	31		77.	.27304965
-8600.	19		46.	.16312057
-8550.	13		27.	.09574468
-8500.	4		14.	.04964539
-8450.	3		10.	.03546059
-8400.	2		7.	.02482270
-8250.	1		5.	.01773050
-8100.	3		4.	.01412440
-8000.	1		1.	.00354610
-7600.	0		0.	.00000000

TABLE 61

FREQUENCY DISTRIBUTION TABLE OF PEAK AND VALLEY STRESSES FOR GROUND DATA
B-58 SEQUENCE B BIVARIATE DISTRIBUTION OF PEAKS AND VALLEYS

PEAK STRESS	0	1000.	2000.	3000.	4000.	5000.	6000.	7000.	8000.	9000.	10000.	12000.	14000.	16000.	TOTAL
3000.	3	21	61	112	32	15	5	1	2	1	1	0	0	0	281
4000.	0	39	123	98	26	8	4	3	2	1	0	0	0	0	304
5000.	3	36	45	35	15	3	1	1	1	0	0	0	0	0	146
6000.	5	13	15	8	4	2	1	0	0	0	1	0	0	0	49
7000.	1	4	3	5	2	0	0	0	0	0	0	0	0	0	15
8000.	2	1	1	2	0	0	1	0	0	0	0	0	0	0	8
9000.	0	0	0	1	2	0	0	0	0	0	0	0	0	0	3
10000.	0	0	2	1	0	0	0	0	0	0	0	0	0	0	4
12000.	1	0	0	3	2	0	0	0	0	0	0	0	0	0	4
14000.	0	0	1	1	0	1	0	0	0	0	1	0	0	0	4
16000.	0	0	0	1	0	2	2	1	0	0	0	0	0	0	6
18000.	1	0	0	0	1	0	0	0	0	0	1	0	0	0	4
20000.	0	2	1	0	0	1	0	0	0	0	0	0	0	0	4
25000.	0	0	0	9	0	4	0	0	0	0	1	0	0	0	2
30000.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	-15	-116	-275	-268	-37	-32	-15	-12	-5	-6	-1	-3	-3	-3	438

TABLE 62

FREQUENCY DISTRIBUTION TABLE OF PEAK AND VALLEY STRESSES FOR AIRBORNE DATA
B-58 SEQUENCE B BIVARIATE DISTRIBUTION OF PEAKS AND VALLEYS

PEAK STRESS	VALLEY STRESS									
	5000.	4000.	3000.	2000.	1000.	8000.	9000.	10000.	12000.	14000.
30000.	0.	1000.	2000.	3000.	4000.	5000.	6000.	7000.	8000.	9000.
40000.	1.	34	421	3195	3195	1673	731	304	149	86
50000.	3	94	1510	2244	2244	622	254	122	56	46
60000.	26	501	1261	1709	1371	794	375	153	42	13
70000.	183	449	684	756	655	446	256	140	43	43
80000.	167	227	333	340	324	260	115	40	61	26
90000.	97	120	159	174	137	103	71	30	32	9
100000.	67	67	90	43	69	71	37	27	12	21
110000.	40	45	78	74	76	50	14	5	1	5
120000.	13	13	15	15	16	19	27	17	2	2
130000.	5	7	10	10	5	3	1	1	3	1
140000.	2	3	2	3	4	0	2	0	0	0
150000.	2	2	2	1	0	0	0	0	0	0
160000.	3	2	0	1	0	0	0	0	0	0
170000.	0	0	0	1	0	1	0	0	0	0
180000.	0	0	0	0	0	0	0	0	0	0
190000.	0	0	0	0	0	0	0	0	0	0
200000.	0	0	0	0	0	0	0	0	0	0
210000.	0	0	0	0	0	0	0	0	0	0
220000.	0	0	0	0	0	0	0	0	0	0
230000.	0	0	0	0	0	0	0	0	0	0
TOTAL	613	1571	4588	9906	-8118	-4744	2263	1073	515	299
PEAK	VALLEY STRESS									
30000.	10232	TOTAL	0.	0.	0.	0.	0.	0.	0.	0.
40000.	9464									
50000.	6432									
60000.	3715									
70000.	1940									
80000.	980									
90000.	551									
100000.	453									
110000.	156									
120000.	44									
130000.	18									
140000.	7									
150000.	0									
TOTAL	34010									

TABLE 63

CUMULATIVE PROBABILITY FOR PEAK STRESS FOR GROUND BIVARIATE TABLE
B-58 SEQUENCE B BIVARIATE DISTRIBUTION OF PEAKS AND VALLEYS

VALUE	FREQ.	DIST	CUM DIST	PROBABILITY
3000.	261	338.	1.0000000	
4000.	304	567.	.66467780	
5000.	456	253.	.30191931	
6000.	49	107.	.12764956	
7000.	15	58.	.06924241	
8000.	8	43.	.0513265	
9000.	3	35.	.0417611	
10000.	4	32.	.03816616	
12000.	6	2P.	.033412P9	
14000.	4	22.	.02622298	
15000.	8	18.	.02144971	
16000.	4	18.	.01193317	
20000.	4	6.	.00715920	
25000.	2	2.	.00233663	
30000.	0,	0.	.00000000	

TABLE 64

CUMULATIVE PROBABILITY TABLE OF PEAK AND VALLEY STRESSES FOR GROUND DATA
B-58 SEQUENCE B BIVARIATE DISTRIBUTION OF PEAKS AND VALLEYS

PEAK STRESS	0.	1000.	2000.	3000.	4000.	5000.	6000.	7000.	VALLEY STRESS
3000.	1.0000	.9833	.9149	.5253	.2273	.1139	.0405	.0000	.9000.
4000.	1.0000	1.0000	.8717	.5371	.1447	.0592	.0329	.0157	.0173
5000.	1.0000	.9795	.7323	.4141	.1433	.0411	.0205	.0064	.0033
6000.	1.0000	.8950	.6327	.3255	.1633	.0816	.0408	.0204	.0020
7000.	1.0000	.9333	.6547	.4547	.1333	.0400	.0100	.0000	.0000
8000.	1.0000	.7500	.6270	.5000	.3000	.2500	.1250	.0000	.0000
9000.	1.0000	1.0000	1.0000	1.0000	.6667	.5000	.3333	.2000	.0000
10000.	1.0000	1.0000	1.0000	1.0000	.5000	.2500	.1250	.0625	.0000
12000.	1.0000	.9333	.8333	.7333	.6333	.5000	.3333	.2000	.1250
14000.	1.0000	1.0000	1.0000	1.0000	.7500	.5000	.3333	.2000	.1250
16000.	1.0000	.7500	.7500	.7500	.6250	.4000	.2500	.1250	.0625
18000.	1.0000	.7500	.7500	.7500	.6250	.3750	.2500	.1250	.0625
20000.	1.0000	1.0000	1.0000	1.0000	.7500	.5000	.3333	.2000	.1250
25000.	1.0000	1.0000	1.0000	1.0000	.5000	.2500	.1250	.0625	.0312
30000.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

TABLE 65

CUMULATIVE PROBABILITY FOR PEAK STRESS FOR AIRBORNE BIVARIATE TABLE
B-58 SEQUENCE B BIVARIATE DISTRIBUTION OF PEAKS AND VALLEYS

PEAK STRESS	VALU:	FREQ	DIST	CUM DIST	PROBABILITY
3000.	3000.	10232	34010.	1.00000000	
4000.	4000.	9468	23778.	.69914731	
5000.	5000.	6432	14311.	.42075850	
6000.	6000.	3716	7878.	.23163775	
7000.	7000.	1540	1162.	.12237577	
8000.	8000.	960	2222.	.05533372	
9000.	9000.	551	1242.	.05515667	
10000.	10000.	458	691.	.02031755	
12000.	12000.	156	233.	.00685093	
14000.	14000.	44	77.	.00226404	
16000.	16000.	18	33.	.00097030	
18000.	18000.	7	15.	.00044105	
20000.	20000.	7	6.	.00023522	
25000.	25000.	1	1.	.00002940	
30000.	30000.	0	0.	.00000000	

TABLE 66

CUMULATIVE PROBABILITY TABLE OF PEAK AND VALLEY STRESSES FOR AIRBORNE DATA
B-58 SEQUENCE B BIVARIATE DISTRIBUTION OF PEAKS AND VALLEYS

PEAK STRESS	VALLEY STRESS
0.	0.
1.0000	2000.
2.000.	3000.
3.000.	4000.
4.000.	5000.
5.000.	6000.
6.000.	7000.
7.000.	8000.
8.000.	9000.
9.000.	10000.
10.000.	11000.
11.000.	12000.
12.000.	13000.
13.000.	14000.
14.000.	15000.
15.000.	16000.
16.000.	17000.
17.000.	18000.
18.000.	19000.
19.000.	20000.
20.000.	21000.
21.000.	22000.
22.000.	23000.
23.000.	24000.
24.000.	25000.
25.000.	26000.
26.000.	27000.
27.000.	28000.
28.000.	29000.
29.000.	30000.

TABLE 67

SIMULATION PROGRAM RUN ON 08/05/74 AT 18.33.21, SUMMARY OF FLIGHTS ON CHANNEL 4
B-58 SEQUENCE B BIVARIATE DISTRIBUTION OF PEAKS AND VALLEYS

G R O U P D A T A										A I R J O R N E D A T A										C U M U L A T I V E											
FLY	F25FLT	NUM	1.0 G	PEAKS	STRESS	4.0 A	VARIANCE	STRESS	STRESS	MINIMUM	MAXIMUM	NUM	1.0 G	STRESS	MEAN	STRESS	PEAKS	MINIMUM	MAXIMUM	NUM	1.0 G	STRESS	PEAKS	MINIMUM	MAXIMUM	NUM	1.0 G				
-	-	4.011	-8.815.	-6	-1222.	-11.12.	-1.12.	-1.12.	-1.12.	-15.00.	-15.00.	-7762.	-7762.	-12413.	-12413.	-13211.	-13211.	-2903.	-2903.	-170.	-170.	-190.	-	-	-	-	-	-			
-	-	4.002	-8.606.	6	-3.	-3.	-3.	-3.	-3.	-1.65.	-1.65.	-3631.	-3631.	-5753.	-5753.	-254.	-254.	-19392.	-19392.	-19701.	-19701.	-9416.	-9416.	-25557.	-25557.	-200.	-200.	-430.	-430.	-	
-	-	4.003	-8.646.	2	-5559.	-33.	-33.	-33.	-33.	-1.81.	-1.81.	-6952.	-6952.	-930.	-930.	-19489.	-19489.	-16941.	-16941.	-3061.	-3061.	-3430.	-3430.	-26034.	-26034.	-34.	-34.	-464.	-464.	-508.	-
-	-	4.004	-1.741.	4	-1615.	-13.	-13.	-13.	-13.	-1.92.	-1.92.	-4161.	-4161.	-214.	-214.	-13014.	-13014.	-13437.	-13437.	-2633.	-2633.	-2879.	-2879.	-218.	-218.	-682.	-682.	-739.	-		
-	-	4.005	-3.745.	4	-1915.	-12.	-12.	-12.	-12.	-6.32.	-6.32.	-9444.	-9444.	-44.	-44.	-15317.	-15317.	-16149.	-16149.	-25548.	-25548.	-2027.	-2027.	-48.	-48.	-730.	-730.	-798.	-		
-	-	4.006	-5.709.	4	-6839.	-6.	-6.	-6.	-6.	-1.65.	-1.65.	-15000.	-15000.	-98.	-98.	-16095.	-16095.	-16730.	-16730.	-3934.	-3934.	-2303.	-2303.	-208.	-208.	-1000.	-1000.	-1040.	-		
-	-	4.007	-8.652.	10	-681.	-8.	-8.	-8.	-8.	-2.16.	-2.16.	-4439.	-4439.	-6951.	-6951.	-125.	-125.	-12412.	-12412.	-12665.	-12665.	-2377.	-2377.	-3287.	-3287.	-136.	-136.	-1136.	-1136.	-1223.	-
-	-	4.008	-3.792.	8	-9388.	-10.	-10.	-10.	-10.	-2.02.	-2.02.	-13196.	-13196.	-2739.	-2739.	-100.	-100.	-15241.	-15241.	-25488.	-25488.	-104.	-104.	-1244.	-1244.	-1343.	-				
-	-	4.009	-3.723.	4	-6905.	-5.	-5.	-5.	-5.	-3.03.	-3.03.	-1004.	-1004.	-30.	-30.	-16614.	-16614.	-15252.	-15252.	-25498.	-25498.	-11670.	-11670.	-25568.	-25568.	-36.	-36.	-1280.	-1280.	-1396.	-
-	-	4.010	-3.713.	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.		
-	-	4.011	-3.753.	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
-	-	4.012	-3.553.	0	-11611.	-11.	-11.	-11.	-11.	-1.84.	-1.84.	-14743.	-14743.	-8335.	-8335.	-110.	-110.	-1729.	-1729.	-17532.	-17532.	-2577.	-2577.	-5331.	-5331.	-120.	-120.	-1420.	-1420.	-1560.	-
-	-	4.013	-5.750.	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
-	-	4.014	-3.773.	2	-10635.	-9.	-9.	-9.	-9.	-2.89.	-2.89.	-13723.	-13723.	-6109.	-6109.	-332.	-332.	-15707.	-15707.	-15810.	-15810.	-2559.	-2559.	-115.	-115.	-29903.	-29903.	-1076.	-1076.	-2608.	-
-	-	4.015	-3.664.	4	-9084.	-8.	-8.	-8.	-8.	-1.81.	-1.81.	-12147.	-12147.	-3395.	-3395.	-92.	-92.	-1358.	-1358.	-14198.	-14198.	-2198.	-2198.	-5412.	-5412.	-25984.	-25984.	-334.	-334.	-2942.	-
-	-	4.016	-3.676.	6	-8621.	-7.	-7.	-7.	-7.	-1.75.	-1.75.	-12317.	-12317.	-3837.	-3837.	-130.	-130.	-6364.	-6364.	-663.	-663.	-2123.	-2123.	-17086.	-17086.	-135.	-135.	-3174.	-		
-	-	4.017	-3.735.	4	-4176.	-3.	-3.	-3.	-3.	-5.61.	-5.61.	-12724.	-12724.	-9330.	-9330.	-56.	-56.	-13397.	-13397.	-13970.	-13970.	-2553.	-2553.	-5333.	-5333.	-2104.	-2104.	-3234.	-		
-	-	4.018	-3.747.	4	-11631.	-10.	-10.	-10.	-10.	-3033.	-3033.	-15000.	-15000.	-4625.	-4625.	-42.	-42.	-14357.	-14357.	-1434.	-1434.	-2338.	-2338.	-528.	-528.	-3280.	-				
-	-	4.019	-3.754.	4	-11585.	-11.	-11.	-11.	-11.	-1.65.	-1.65.	-15000.	-15000.	-7793.	-7793.	-80.	-80.	-17482.	-17482.	-18074.	-18074.	-2551.	-2551.	-9734.	-9734.	-29824.	-				
-	-	4.020	-3.555.	6	-1625.	-3.	-3.	-3.	-3.	-1.67.	-1.67.	-1063.	-1063.	-3230.	-3230.	-62.	-62.	-11503.	-11503.	-13235.	-13235.	-4543.	-4543.	-4376.	-4376.	-26861.	-				
-	-	4.021	-3.753.	12	-4359.	-3.	-3.	-3.	-3.	-3.25.	-3.25.	-15000.	-15000.	-5749.	-5749.	-68.	-68.	-10722.	-10722.	-16650.	-16650.	-2945.	-2945.	-6997.	-6997.	-25293.	-				
-	-	4.022	-3.744.	2	-4056.	-4.	-4.	-4.	-4.	-3.22.	-3.22.	-10830.	-10830.	-8630.	-8630.	-855.	-855.	-664.	-664.	-16134.	-16134.	-1495.	-1495.	-2473.	-2473.	-4978.	-				
-	-	4.023	-3.525.	6	-4616.	-3.	-3.	-3.	-3.	-2.47.	-2.47.	-10597.	-10597.	-1072.	-1072.	-253.	-253.	-13091.	-13091.	-19574.	-19574.	-2271.	-2271.	-30000.	-						
-	-	4.024	-3.529.	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.		
-	-	4.025	-5.725.	6	-5562.	-4.	-4.	-4.	-4.	-4.56.	-4.56.	-10500.	-10500.	-1036.	-1036.	-52.	-52.	-13607.	-13607.	-19948.	-19948.	-2528.	-2528.	-12121.	-						
-	-	4.026	-9.611.	6	-1049.	-10.	-10.	-10.	-10.	-1.94.	-1.94.	-14300.	-14300.	-4861.	-4861.	-144.	-144.	-14033.	-14033.	-14545.	-14545.	-2320.	-								
-	-	4.027	-3.744.	2	-2049.	-21.	-21.	-21.	-21.	-2.33.	-2.33.	-15000.	-15000.	-1237.	-1237.	-238.	-238.	-15607.	-15607.	-1562.	-1562.	-2919.	-								
-	-	4.028	-3.649.	2	-935.	-9.	-9.	-9.	-9.	-1.33.	-1.33.	-13197.	-13197.	-5539.	-5539.	-68.	-68.	-15533.	-15533.	-17397.	-17397.	-2547.	-								
-	-	4.029	-3.824.	8	-5032.	-3.	-3.	-3.	-3.	-1.65.	-1.65.	-8830.	-8830.	-865.	-865.	-114.	-114.	-12085.	-12085.	-15272.	-15272.	-2579.	-								
-	-	4.030	-8.749.	4	-1200.	-10.	-10.	-10.	-10.	-1.65.	-1.65.	-15000.	-15000.	-6210.	-6210.	-130.	-130.	-15727.	-15727.	-15981.	-										
-	-	4.031	-3.747.	8	-6555.	-5.	-5.	-5.	-5.	-2.93.	-2.93.	-13085.	-13085.	-2116.	-2116.	-13542.	-13542.	-13735.	-13735.	-27410.	-										
-	-	4.032	-4.513.	4	-9926.	-9.	-9.	-9.	-9.	-1.61.	-1.61.	-13087.	-13087.	-504.	-504.	-248.	-248.	-12510.	-12510.	-12951.	-										
-	-	4.033	-8.574.	4	-9636.	-5.	-5.	-5.	-5.	-3.28.	-3.28.	-15000.	-15000.	-3726.	-3726.	-13085.	-13085.	-17085.	-17085.	-6488.	-										
-	-	4.034	-3.755.	6	-6277.	-7.	-7.	-7.	-7.	-1.17.	-1.17.	-14352.	-14352.	-5733.	-5733.	-133.	-133.	-10866.	-10866.	-11114.	-										
-	-	4.035	-8.451.	4	-8891.	-7.	-7.	-7.	-7.	-1.17.	-1.17.	-12468.	-12468.	-573.	-573.	-202.	-202.	-14725.	-14725.	-15277.	-										
-	-	4.036	-8.655.	8	-6630.	-3.	-3.	-3.	-3.	-1.36.	-1.36.	-13080.	-13080.	-870.	-870.	-60.	-60.	-13390.	-13390.	-13605.	-										
-	-	4.037	-3.650.	4	-266.	-1.	-1.	-1.	-1.	-2.61.	-2.61.	-12719.	-12719.	-5372.	-5372.	-162.	-162.	-13416.	-13416.	-13673.	-										
-	-	4.038	-8.803.	8	-10528.	-7.	-7.	-7.	-7.	-9.50.	-9.50.	-15000.	-15000.	-8967.	-8967.	-1132.	-1132.	-13373.	-13373.	-13805.	-										
-	-	4.039	-8.701.	6	-2153.	-7.	-7.	-7.	-7.	-7.11.	-7.11.	-9478.	-9478.	-15416.	-15416.	-298.	-298.	-13151.	-13151.	-13706.	-										
-	-	4.040	-8.810.	10	-9544.	-9.	-9.	-9.	-9.	-1707.	-1707.	-15070.	-15070.	-5159.	-5159.	-80.	-80.	-1054.	-1054.	-1103.	-										
-	-	4.041	-8.855.	0	0.	0.	0.	0.	-1.71.	-1.71.	-15070.	-15070.	-12468.	-12468.	-573.	-573.	-1025.	-1025.	-2470.	-											
-	-	4.042	-8.642.	18	-7503.	-7.	-7.	-7.	-7.	-1.75.	-1.75.	-1325.	-1325.	-1535.	-1535.	-150.	-150.	-1416.	-1416.	-2482.	-										
-	-	4.043	-3.710.	2	-4.667.	-3.	-3.	-3.	-3.	-4.23.	-4.23.	-1325.	-1325.	-725.	-725.	-26.	-26.	-12932.	-12932.	-13135.	-										
-	-	4.044	-3.577.	4	-5071.	-4.	-4.	-4.	-4.	-2.61.	-2.61.	-10743.	-10743.	-1473.	-1473.	-4.	-4.	-1295.	-1295.	-13219.	-										
-	-	4.045	-3.530.	2	-2875.	-2.	-2.	-2.	-2.	-3.22.	-3.22.	-1207.	-1207.	-1325.	-1325.	-100.	-100.	-12798.	-12798.	-144.	-										
-	-	4.046	-8.704.	4	-7622.	-7.	-7.	-7.	-7.	-1.24.	-1.24.	-10235.	-10235.	-3452.	-3452.	-172.	-172.	-14203.	-14203.	-2234.	-										
-	-	4.047	-8.756.	6	-1372.	-3.	-3.	-3.	-3.	-1.28.	-1.28.	-1288.	-1288.	-3908.	-3908.	-102.	-102.	-15679.	-15679.	-14634.	-										
-	-	4.048	-3.611.	10	-5344.	-4.	-4.	-4.	-4.	-1.87.	-1.87.	-12725.	-12725.	-326.	-326.	-28.	-28.	-11705.	-11705.	-16228.	-										
-	-	4.049	-8.727.	0	0.	0.	0.	0.	-9.18.	-9.18.	-12885.	-12885.	-4392.	-4392.	-242.	-242.	-17527.	-17527.	-232.	-											
-	-	4.050	-8.714.	4	-9184.	-9.	-9.	-9.	-9.	-2000.	-2000.	-12885.	-12885.	-4392.	-4392.	-242.	-242.	-2239.	-2239.	-246.	-										

TABLE 68

SUMMARY OF DATA ON EACH CHANNEL
 B-58 SEQUENCE B BIVARIATE DISTRIBUTION OF PEAKS AND VALLEYS

CHAN HU#										GRUNDA DATA										AVERAGE DATA									
No.	REC	No. of Peaks	No. of Points	MIN	MAX	No. of Stress	Stress	Mean	Stress	1.0 G	MAX	MIN	No. of Stress	Stress	Mean	Stress	1.0 G												
4	2578	205020	216500	372	29449.	-15000.	5452	-573h	*3664e+08	*2374E+08	30000.	-15000.	200168	15054.	3258E+08	*3258E+08	*2545E+08												
5	2573	205224	216116	373	28247.	-15000.	5320	-5981.	*3469F+08	*2209E+08	30000.	-15000.	20094	14877.	*3258E+08	*3258E+08	*2535E+08												
6	2574	205574	216202	961	26080.	-15000.	5212	-6051.	*3508E-08	*2357E+08	30000.	-15000.	201362	15154.	*3354E+08	*3354E+08	*2533E+08												
TOT	7725	613818	648818	2456	29449.	-15000.	16384	-5844.	*3552E+08	*2315E+08	30000.	-15000.	602434	15031.	*3291E+08	*3291E+08	*2544E+08												

TABLE 69

SIMULATION PROGRAM RUN ON 08/01/74 AT 18.49.55, SUMMARY OF FLIGHTS ON CHANNEL 4
B-58 SEQUENCE C BIVARIATE DISTRIBUTION OF PEAKS AND VALLEYS

A I R H O R N E D A T A										C U M U L A T I V E	
F L T	G R C U N C			D A T A			M A X I M U M			T O T A L	
	P O E F L T	N U M	1.0 G	4 FAN	M I N I M U M	S T R E S S	N U M	V A R I A N C E	S T R E S S	P E A K S	P O I N T S
40001	-8751.	0	0.	0.	0.	0.	356	14017.	14223.	356	376
40002	-3647.	0	0.	0.	0.	0.	78	15041.	15272.	78	456
40003	-3571.	0	0.	0.	0.	0.	34	13671.	14520.	1975.	512
40004	-9559.	0	0.	0.	0.	0.	470	12778.	13137.	22649.	994
40005	-8557.	0	0.	0.	0.	0.	72	21765.	22005.	4791.	1073
40006	-8304.	0	0.	0.	0.	0.	138	14770.	15256.	72	1228
40007	-9875.	0	0.	0.	0.	0.	48	18754.	19198.	11458.	1629
40008	-3673.	0	0.	0.	0.	0.	18	12945.	13037.	26105.	15926
40009	-8715.	0	0.	0.	0.	0.	86	15605.	15931.	21275.	1714
40010	-9780.	0	0.	0.	0.	0.	58	18885.	19224.	22895.	2676
40011	-8672.	0	0.	0.	0.	0.	176	14839.	15019.	30000.	3214
40012	-8454.	0	0.	0.	0.	0.	170	11591.	12039.	30358.	3344
40013	-9557.	0	0.	0.	0.	0.	222	15655.	15925.	1561.	3716
40014	-3647.	0	0.	0.	0.	0.	384	13978.	14413.	22855.	3786
40015	-3221.	0	0.	0.	0.	0.	38	13654.	13605.	24015.	846
40016	-3734.	0	0.	0.	0.	0.	96	13654.	14224.	22895.	3214
40017	-8702.	0	0.	0.	0.	0.	182	20584.	20945.	10149.	3344
40018	-8750.	0	0.	0.	0.	0.	424	15343.	15698.	23495.	3344
40019	-3552.	0	0.	0.	0.	0.	82	19141.	19486.	20555.	4356
40020	-3656.	0	0.	0.	0.	0.	540	13986.	19114.	22855.	384
40021	-9549.	0	0.	0.	0.	0.	33	3643.	60381.	24015.	96
40022	-3643.	0	0.	0.	0.	0.	112	15125.	15435.	22313.	4454
40023	-3933.	0	0.	0.	0.	0.	384	12235.	12585.	23536.	5748
40024	-8544.	0	0.	0.	0.	0.	46	9642.	10945.	24525.	5850
40025	-8456.	0	0.	0.	0.	0.	48	13672.	13377.	20345.	6286
40026	-8515.	0	0.	0.	0.	0.	64	15539.	16133.	21655.	6380
40027	-9547.	0	0.	0.	0.	0.	652	13763.	14051.	21655.	6380
40028	-A917.	0	0.	0.	0.	0.	64	12624.	130387.	19995.	8578
40029	-8761.	0	0.	0.	0.	0.	38	15068.	15444.	23375.	8924
40030	-9410.	0	0.	0.	0.	0.	782	7542.	7839.	2179.	7754
40031	-8755.	0	0.	0.	0.	0.	523	6232.	6460.	20345.	7814
40032	-8747.	0	0.	0.	0.	0.	282	17916.	18135.	21715.	7338
40033	-5942.	0	0.	0.	0.	0.	13	15128.	15931.	22615.	8170
40034	-8065.	0	0.	0.	0.	0.	104	12333.	12683.	21237.	10585
40035	-8664.	0	0.	0.	0.	0.	260	13064.	13064.	22065.	10602
40036	-9498.	0	0.	0.	0.	0.	140	11503.	11767.	19395.	11234
40037	-9550.	0	0.	0.	0.	0.	13	12604.	1234.	19365.	10352
40038	-8566.	0	0.	0.	0.	0.	44	11357.	11329.	21237.	10282
40039	-8751.	0	0.	0.	0.	0.	260	9535.	8815.	20937.	18
40040	-4642.	0	0.	0.	0.	0.	124	13615.	14543.	22575.	10385.
40041	-9736.	0	0.	0.	0.	0.	82	9315.	9826.	20455.	10794.
40042	-9594.	0	0.	0.	0.	0.	194	15160.	15250.	22912.	11234
40043	-8537.	0	0.	0.	0.	0.	1.	12052.	12052.	10812.	11254
40044	-8720.	0	0.	0.	0.	0.	112	15861.	15885.	18298.	10856
40045	-8759.	0	0.	0.	0.	0.	282	13209.	13407.	22425.	11156
40046	-8703.	0	0.	0.	0.	0.	38	10582.	11436.	21925.	11728
40047	-9594.	0	0.	0.	0.	0.	182	4950.	5457.	24425.	12166
40048	-9857.	0	0.	0.	0.	0.	312	10631.	10405.	23385.	12152
40049	-8537.	0	0.	0.	0.	0.	314	10631.	10887.	23385.	12446
40050	-9890.	0	0.	0.	0.	0.	878	8072.	8307.	19139.	13970

TABLE 70

SUMMARY OF DATA ON EACH CHANNEL
 B-58 SEQUENCE C BIVARIATE DISTRIBUTION OF PEAKS AND VALLEYS

***** G R O U N D A T A *****										***** A I R B O R N E D A T A *****						
CHAN	NUM	NO. OF REC	NO. OF PEAKS	NO. OF POINTS	MAX STRESS	MIN STRESS	NO. OF PEAKS	MEAN	VARIANCE	MAX STRESS	MIN STRESS	NO. OF PEAKS	MEAN	VARIANCE	STRESS	1.0 G
4	2574	210158	216138	497	0.	0.	0.	0.	0.	30000.	-14106.	210158	1.3766.	*34000E+08	*2248E+08	
5	2585	211516	211442	435	0.	0.	0.	0.	0.	30000.	-12353.	211906	1.3865.	*3294E+08	*2250E+08	
6	2577	210674	216462	481	0.	0.	0.	0.	0.	30000.	-15000.	210674	1.3983.	*3294E+08	*2556E+08	
TOT	7737	532735	543742	1413	0.	0.	0.	0.	0.	30000.	-15000.	632738	1.3872.	*3330E+08	*2251E+08	

TABLE 71

SIMULATION PROGRAM RUN ON 08/01/74 AT 18.50.02, SUMMARY OF FLIGHTS ON CHANNEL 4
B-58 SEQUENCE D BIVARIATE DISTRIBUTION OF PEAKS AND VALLEYS

FLIGHT	G F C J N D DATA			A I R B O R N E DATA			CUMULATIVE								
	NUM ID	STRESS PEAKS	MEAN STRESS	MINIMUM STRESS	MAXIMUM STRESS	PEAKS	STRESS	MEAN	VARIANCE	STRESS	MINIMUM	MAXIMUM	PEAKS	PEAKS	POINTS
4.001	-84555.	0	0.	0.	0.	0.	244	15711.	16216.	25056E+08	5591.	27460.	244	244	264
4.002	-8774.	0	0.	0.	0.	0.	156	17632.	18107.	25166E+08	3293.	30000.	400	400	432
4.003	-3709.	0	0.	0.	0.	0.	63	15209.	16594.	24855E+08	5111.	27372.	63	468	512
4.004	-8836.	0	0.	0.	0.	0.	103	17140.	17127.	25585E+08	6031.	28102.	100	568	624
4.005	-8833.	0	0.	0.	0.	0.	123.	12464.	13303.	22114E+08	4330.	24384.	128	696	764
4.006	-8571.	0	0.	0.	0.	0.	76	13109.	13837.	27065E+08	2627.	24658.	76	772	852
4.007	-3583.	0	0.	0.	0.	0.	240	10664.	11011.	26144E+08	-1900.	23361.	248	1020	1112
4.008	-8755.	0	0.	0.	0.	0.	48	13001.	13615.	28155E+08	1173.	30000.	448	1468	1572
4.009	-8444.	0	0.	0.	0.	0.	102	12029.	12691.	25098E+08	2825.	30318.	102	1570	1686
4.010	-3525.	0	0.	0.	0.	0.	172	12404.	12671.	26755E+08	3477.	22166.	172	1742	1370
4.011	-8755.	0	0.	0.	0.	0.	106	16074.	16730.	24885E+08	9372.	26562.	106	1848	1933
4.012	-3754.	0	0.	0.	0.	0.	294	15956.	16321.	25121E+08	1074.	28502.	294	2142	2294
4.013	-3711.	0	0.	0.	0.	0.	162	12588.	15610.	25262E+08	5781.	27058.	162	2304	2453
4.014	-8849.	0	0.	0.	0.	0.	88	14547.	14946.	2356E+08	6409.	24737.	88	2392	2568
4.015	-9253.	0	0.	0.	0.	0.	106.	10250.	16635.	24655E+08	7259.	24552.	106	2498	2685
4.016	-9677.	0	0.	0.	0.	0.	566	10659.	11183.	24435E+08	-1765.	23568.	566	3064	3264
4.017	-8918.	0	0.	0.	0.	0.	216	12615.	13195.	24485E+08	1671.	26785.	216	3280	3492
4.018	-8331.	0	0.	0.	0.	0.	156	11925.	12442.	25475E+08	2610.	25576.	156	3436	3660
4.019	-8369.	0	0.	0.	0.	0.	85	19734.	19839.	2312E+08	930.	25044.	85	3522	3758
4.020	-8444.	0	0.	0.	0.	0.	249	14105.	14535.	2609E+08	1240.	28802.	249	3770	4018
4.021	-8534.	0	0.	0.	0.	0.	122	7611.	8158.	26715E+08	977.	2130.	122	3893	4152
4.022	-8775.	0	0.	0.	0.	0.	183	18972.	19527.	26966E+08	6955.	30000.	183	4080	4352
4.023	-8770.	0	0.	0.	0.	0.	142	16325.	17165.	22322E+08	6917.	25471.	142	4222	4515
4.024	-3342.	0	0.	0.	0.	0.	250	17053.	17451.	2517E+08	5175.	30000.	290	4512	4803
4.025	-8675.	0	0.	0.	0.	0.	20	15386.	15733.	1948E+08	9808.	21000.	20	4532	4840
4.026	-8649.	0	0.	0.	0.	0.	25	16510.	17350.	2854E+08	11187.	28350.	26	4558	4878
4.027	-8549.	0	0.	0.	0.	0.	952	7431.	7787.	2515E+08	-6251.	25456.	952	5510	5842
4.028	-8774.	0	0.	0.	0.	0.	80	15440.	15459.	2739E+08	3536.	26433.	80	5590	5934
4.029	-8544.	0	0.	0.	0.	0.	196	14675.	15330.	25445E+08	3262.	26516.	195	5786	6142
4.030	-8812.	0	0.	0.	0.	0.	28	14165.	14701.	23675E+08	5976.	22312.	28	5814	6142
4.031	-8610.	0	0.	0.	0.	0.	76	21619.	22115.	23415E+08	1374.	30000.	76	5850	6270
4.032	-8715.	0	0.	0.	0.	0.	108	15544.	16377.	2994E+08	6449.	30000.	109	5998	6330
4.033	-8527.	0	0.	0.	0.	0.	304	21052.	2149.	2543E+08	4333.	30000.	340	6331	6742
4.034	-8714.	0	0.	0.	0.	0.	36	13622.	13917.	22475E+08	7323.	23513.	36	6314	6740
4.035	-8775.	0	0.	0.	0.	0.	512	15277.	15801.	26105E+08	3737.	30000.	512	6395	6734
4.036	-8849.	0	0.	0.	0.	0.	88	19527.	19889.	24715E+08	8060.	2820.	88	6974	7414
4.037	-8578.	0	0.	0.	0.	0.	172	8200.	8555.	24975E+08	-2907.	21311.	172	7146	7598
4.038	-8478.	0	0.	0.	0.	0.	350	14337.	14709.	2614E+08	4580.	30000.	350	7496	7950
4.039	-8710.	0	0.	0.	0.	0.	32	1075.	16745.	20715E+08	10636.	2456.	32	7528	8004
4.040	-8778.	0	0.	0.	0.	0.	142	1610.	16504.	2465E+08	5671.	29718.	142	7670	8158
4.041	-8555.	0	0.	0.	0.	0.	178	1223.	12622.	23415E+08	4104.	2395.	178	7848	8348
4.042	-8759.	0	0.	0.	0.	0.	29	12875.	13115.	2193E+08	5924.	21311.	28	7876	8388
4.043	-8593.	0	0.	0.	0.	0.	88	13876.	14441.	2130E+08	7044.	22513.	88	7964	8488
4.044	-8637.	0	0.	0.	0.	0.	262	16103.	16628.	2532E+08	4537.	25977.	262	8226	8762
4.045	-8908.	0	0.	0.	0.	0.	124	11912.	12249.	2728E+08	1230.	23813.	124	8350	8898
4.046	-8625.	0	0.	0.	0.	0.	272	14333.	14721.	2581E+08	3527.	25431.	272	8622	9182
4.047	-9539.	0	0.	0.	0.	0.	150	14659.	15175.	2599E+08	6237.	30000.	28	8782	9354
4.048	-8506.	0	0.	0.	0.	0.	124	20335.	20674.	2533E+08	12024.	30000.	124	8906	9490
4.049	-8588.	0	0.	0.	0.	0.	190	15999.	16366.	27615E+08	5663.	27142.	190	9096	9692
4.050	-8703.	0	0.	0.	0.	0.	228	11866.	12426.	24205E+08	2208.	24447.	228	9324	9932

TABLE 72

SUMMARY OF DATA ON EACH CHANNEL
B-58 SEQUENCE D BIVARIATE DISTRIBUTION OF PEAKS AND VALLEYS

		G R O U N D F A T A										A I R B O R N E D A T A			
CHAN	NUM	NO. OF REC	NO. OF PEAKS	NLM	MAX STRESS	MIN STRESS	NO. OF PEAKS	MEAN STRESS	STRESS VARIANCE	1.0 G	MAX STRESS	MIN STRESS	NO. OF PEAKS	MEAN STRESS	VARIANCE
4	2572	205182	216010	901	0.	0.	0.	0.0.	0.	0.	30000.	-15000.	205182	15077.	*3262E+08 *2544E+08
5	2572	205060	216044	914	0.	0.	0.	0.0.	0.	0.	30000.	-15000.	205060	14691.	*3321E+08 *2552E+08
6	2577	205634	216454	817	0.	0.	0.	0.0.	0.	0.	30000.	-15000.	206634	15036.	*3218E+08 *2539E+08
TOT	7721	615876	648506	2632	0.	0.	0.	0.0.	0.	0.	30000.	-15000.	616876	14935.	*3270E+08 *2545E+08

TABLE 73

CUMULATIVE PROBABILITY FOR NEGATIVE GROUND PEAK DISTRIBUTION DATA
F-106 SEQUENCE F SEPARATE POSITIVE AND NEGATIVE STRAIN DISTRIBUTIONS

VALU_E	FREQ DIST	CUM DIST	PROBABILITY
-2000.	19	67.	1.0000000
-4000.	1	29.	.50574463
-12000.	1	27.	.57446909
-12000.	2	25.	.55349149
-14000.	12	24.	.51363830
-16000.	12	12.	.25531915
-18000.	0	0.	0.0000000

TABLE 74

CUMULATIVE PROBABILITY FOR POSITIVE GROUND PEAK DISTRIBUTION DATA
F-106 SEQUENCE F SEPARATE POSITIVE AND NEGATIVE STRAIN DISTRIBUTIONS

VALU	FREQUENCY	CUM. DIST.	PROBABILITY
3000.	22	47.	1.0000000
4000.	6	25.	.53191489
5000.	12	19.	.40425532
6000.	1	7.	.14893517
7000.	2	6.	.12765957
10000.	2	4.	.09516638
12000.	2	2.	.04255319
14000.	0	0.	.00000000

TABLE 75

CUMULATIVE PROBABILITY FOR NEGATIVE AIRBORNE PEAK DISTRIBUTION DATA
F-106 SEQUENCE F SEPARATE POSITIVE AND NEGATIVE STRAIN DISTRIBUTIONS

VALU	FREQUENCY	CUM. DIST.	PROBABILITY
-1500.	977	10793.	1.0000000
-3000.	1398	2716.	.25154458
-4000.	647	1318.	.12211619
-5000.	304	571.	.06216992
-6000.	157	357.	.03400352
-7000.	97	210.	.01945706
-9000.	42	113.	.01046975
-9900.	31	71.	.00657934
-10000.	24	40.	.00372611
-12000.	10	16.	.00143244
-14000.	3	6.	.0005592
-16000.	2	3.	.00027796
-20000.	1	1.	.00009265
-25000.	0	0.	.00000000

TABLE 76

CUMULATIVE PROBABILITY FOR POSITIVE AIRBORNE PEAK DISTRIBUTION DATA
F-106 SEQUENCE F SEPARATE POSITIVE AND NEGATIVE STRAIN DISTRIBUTIONS

VALUE	FREQ DIST	CUM DIST	PROBABILITY
3000.	3931	10793.	1.0000000
4000.	1943	7752.	.71916983
5000.	1112	5819.	.57914574
6000.	837	4757.	.43511609
7000.	629	3870.	.35855574
8000.	497	3261.	.30029722
9000.	325	2744.	.25423886
10000.	598	2419.	.22412675
12000.	411	1871.	.15964699
14000.	377	1420.	.13156676
16000.	287	1043.	.09663671
18000.	232	756.	.07304540
20000.	524	524.	.04854999
25000.	0	0.	.00000000

TABLE 77

CUMULATIVE PROBABILITY FOR NUMBER OF GROUND PEAKS PER FLIGHT DATA
F-106 SEQUENCE F SEPARATE POSITIVE AND NEGATIVE STRAIN DISTRIBUTIONS

VALUE	FREQ DIST	CUM DIST	PROBABILITY
0.	260	236.	1.0000000
1.	27	36.	.15254237
2.	2	9.	.03813559
3.	2	7.	.02966102
4.	1	5.	.02119644
7.	2	4.	.01694915
9.	1	2.	.00847458
11.	1	1.	.00423729
12.	0	0.	.00000000

TABLE 78

CUMULATIVE PROBABILITY FOR NUMBER OF AIRBORNE PEAKS PER FLIGHT DATA
F-106 SEQUENCE F SEPARATE POSITIVE AND NEGATIVE STRAIN DISTRIBUTIONS

VALUE	FREQ	NIST	CUM DIST	PRORAP TLTY
1.	40	236	1.0000000	
26.	81	196	• 83057947	
51.	59	116	• 49152542	
76.	33	57	• 24152542	
101.	11	24	• 10162492	
126.	5	13	• 05503475	
151.	5	8	• 03389931	
176.	1	3	• 01271196	
201.	?	2	• 00847458	
251.	0	0	0.0000000	

TABLE 79

SIMULATION PROGRAM RUN ON 07/09/74 AT 20.17.34, SUMMARY OF FLIGHTS ON CHANNEL 4
F-106 SEQUENCE F SEPARATE POSITIVE AND NEGATIVE STRAIN DISTRIBUTIONS

G R O U N D		D A T A		A T 2 B O R N E		D A T A		A T 2 B O R N E		D A T A		A T 2 B O R N E		D A T A		A T 2 B O R N E	
FLT	NUM PEAKS	STRESS	MAXIMUM	MINIMUM	MEAN	STRESS	MEAN	VARIANCE	STRESS	MINIMUM	MAXIMUM	MEAN	VARIANCE	STRESS	MINIMUM	MAXIMUM	MEAN
4.001	0	M-14	VAPTANCE	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.002	2	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.003	1	1.759	0.	0.	0.	1.759	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.004	7	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.005	6	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.006	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.007	2	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.008	1	1.429	0.	0.	0.	1.429	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.009	2	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.010	2	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.011	2	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.012	2	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.013	7	744.3	.5202F+08	-570.3	5231E+08	1.7473	55	1.7454	1.7454	1.7454	1.7454	1.7454	1.7454	1.7454	1.7454	1.7454	1.7454
4.014	9	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.015	1	2.2771	0.	0.	0.	2.2771	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.016	9	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.017	1	1.1662	0.	0.	0.	1.1662	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.018	6	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.019	6	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.020	6	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.021	6	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.022	2	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.023	1	1.1673	0.	0.	0.	1.1673	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.024	6	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.025	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.026	6	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.027	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.028	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.029	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.030	9	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.031	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.032	1	1.1693	0.	0.	0.	1.1693	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.033	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.034	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.035	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.036	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.037	6	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.038	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.039	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.040	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.041	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.042	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.043	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.044	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.045	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.046	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.047	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.048	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.049	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.050	0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.

TABLE 80
SUMMARY OF DATA ON EACH CHANNEL
F-106 SEQUENCE F SEPARATE POSITIVE AND NEGATIVE STRAIN DISTRIBUTIONS

G R O U P D A T A										A I R R O N E D A T A									
CHAN	MIN	No. OF	NO.	MAX	MIN	No. OF	STRESS	1.0 G	MIN	NO. OF	STRESS	1.0 G							
NO.	DEG	PEAKS	POINTS	FLTS	STRESS	P-PEAKS	MEAN	VARIANCE	STRESS	PEAKS	MEAN	VARIANCE							
4	2672	191265	71614	3253	27441.	1101	447	.6735E+28	.6762E+38	30000.	-15600.	.189165	.16734.	.4022E+08	.4586E+08				
5	2572	199465	216084	3190	22719.	1171	9417.	.6065E+08	.6126E+18	30000.	-14903.	.188245	.10728.	.4026E+08	.4586E+08				
6	2572	193817	215009	3323	27449.	1158	4944.	.6464E+08	.6498E+18	30000.	-15000.	.188659	.16737.	.4043E+08	.4607E+08				
TOT	7717	553539	644107	9956	22349.	3430	8992.	.6412E+08	.6452E+08	30000.	-15000.	.566109	.10732.	.4030E+08	.4593E+08				

TABLE 81
TEST RESULTS FOR B-58 DATA SET
ORIGINAL STRAIN GAGE DATA

Specimen Number	Sequence	Failure		Average No. Cycles/Flights
		Cycles	Flights	
13	A	564,937	1956	
14	A	782,822	2723	
15	A	767,827	2667	
16	A	559,334	1939	
17	A	1,166,998	3710	
18	A	<u>638,366</u>	<u>2221</u>	
Average		746,714	2536	294
19	C	1,139,028	4047	
21	C	1,036,393	3679	
22	C	976,482	3466	
23	C	864,875	3048	
24	C	1,153,512	4096	
25	C	<u>1,104,352</u>	<u>3850</u>	
Average		879,107	3697	237
26	B	367,520	2421	
29	B	398,787	2598	
30	B	344,768	2260	
31	B	389,847	2554	
32	B	388,495	2542	
33	B	<u>388,490</u>	<u>2542</u>	
Average		379,651	2486	152
34	D	369,141	2511	
35	D	401,207	2717	
36	D	340,371	2338	
37	D	422,166	2887	
38	D	478,542	3211	
39	D	<u>556,902</u>	<u>3786</u>	
Average		428,054	2908	147

Sequence A has a $\bar{\sigma}^2$ value of 19.8 ksi².

Sequence C same flight cycles as Spectrum A but ground (taxi) cycles removed. Ground stress set equal to pre-flight refueling stress.

Sequence B has a $\bar{\sigma}^2$ value of 24.9 ksi².

Sequence D same flight cycles as Spectrum B but ground (taxi) cycles removed. Ground stress set equal to pre-flight refueling stress.

TABLE 82
TEST RESULTS FOR F-106 DATA SET
ORIGINAL STRAIN GAGE DATA

Specimen Number	Sequence	Failure Cycles	Flights	Average No. Cycles/Flight
40	E	2, 180, 569	31, 882	
41	E	2, 855, 495	41, 743	
42	E	2, 430, 610	35, 052	
43	E	2, 850, 984	41, 703	
44	E	3, 337, 040	48, 777	
45	E	<u>2, 161, 772</u>	<u>31, 593</u>	
Average		<u>2, 636, 078</u>	<u>38, 458</u>	<u>68.5</u>
46	F	461, 041	5, 472	
47	F	465, 350	5, 530	
48	F	323, 386	3, 843	
49	F	704, 095	8, 371	
50	F	987, 347	11, 781	
51	F	682, 153	8, 092	
56	F	743, 264	8, 933	
57	F	<u>631, 791</u>	<u>7, 480</u>	
Average		<u>624, 803</u>	<u>7, 441</u>	<u>83</u>

Sequence E has a $\bar{\sigma}^2$ value of 18.23×10^6
 Sequence F has a $\bar{\sigma}^2$ value of 41.90×10^6

$\bar{\sigma}^2$ is a weighted average which was calculated by the following equation

$$\bar{\sigma}_{\text{weighted}}^2 = \frac{\sum_{i=1}^N \bar{\sigma}_i^2 n_i}{\sum_{i=1}^N n_i}$$

where

- $\bar{\sigma}_i^2$ = variance of flight i about the mean of the absolute stress peaks and valleys of flight i
- n_i = number of stress reversals in flight i
- N = number of flights in data set

TABLE 83
TEST RESULTS FOR SIMULATED B-58 SEQUENCE A

Specimen Number	Sequence	Failure Cycles	Average No. Cycles/Flight
75	A	414,810	1712
76	Folded	270,010	1127
77	See	320,866	1335
78	Paragraph	286,890	1197
79	5.1.1	<u>302,445</u>	<u>1262</u>
Average		319,004	1326
			<u>240</u>
107	A	471,162	2084
108	Bivariate	502,945	2219
109	Peak & Valley	540,842	2417
110	See	457,182	2018
111	Paragraph	497,683	2123
112	5.1.2	<u>532,120</u>	<u>2325</u>
Average		500,322	2198
			<u>227</u>

TABLE 84
TEST RESULTS FOR SIMULATED F-106 SEQUENCE E

Specimen Number	, Sequence	Failure Cycles	Average No. Cycles/Flight
80	Bivariate	536,792	
81	Mean &	676,273	
82	Alternating	595,466	
83	See	442,538	
84	Paragraph	683,415	
85	5.2.1	<u>716,849</u>	
	Average	608,555	28.5
	E		
86	Separate	1,065,420	
87	Peak &	1,410,488	
88	Valleys	799,311	
89	See	886,290	
91	Paragraph	661,348	
92	5.2.2	<u>1,137,803</u>	
	Average	993,443	23.1
	E		
93	Limited	785,727	
94	Separate	1,184,699	
95	Peak &	923,274	
96	Valley	786,942	
97	See	837,690	
98	Paragraph	1,052,178	
	5.2.3		
	Average	<u>928,418</u>	22.1

TABLE 85
TEST RESULTS FOR SIMULATED B-58 SEQUENCE B, C, AND D

Specimen Number	Sequence	Failure Cycles	Average No. Cycles/Flight
125	C	556,685	2487
126	Bivariate	910,042	4071
127	Peak and	888,343	3981
128	Valley	620,371	2770
130	See	581,368	2607
131	Paragraphs 5.1.2 and 5.4.1	505,582	2268
Average		677,065	223
132	B	264,329	2161
133	Bivariate	315,276	2547
134	Peak and	360,874	2959
135	Valley	243,023	1998
136	See	282,724	2295
137	Paragraphs 5.1.2 and 5.4.1	269,424	2201
Average		289,275	122
140	D	414,844	3564
141	Bivariate	499,617	4300
142	Peak and	385,938	3315
143	Valley See Paragraphs 5.1.2 and 5.4.1	397,527	3413
Average		424,481	116

TABLE 86
TEST RESULTS FOR SIMULATED F-106
SEQUENCE F

Specimen Number	Sequence	Failure Cycles	Average No. Cycles/Flight
113	F	192,248	6721
114	Separate	209,853	7344
115	Peak & Valleys	308,147	10736
116	See	175,749	6175
117	Paragraphs	158,982	5557
118	5.2.2 and 5.4.2	172,224	6043
Average		202,867	28.6

TABLE 87
TEST DATA SUMMARY

Method	Specimens	Cycles/ Flight	Tape, Channels to Failure	Average Flights to Failure
<u>B-58 DATA SET</u>				
B58 Seq. A	Original Data	13-18	294	21, 1-3
B58 Seq. A	Folded Dist. Simulation	75-79	240	25, 1-3
B58 Seq. A	Bivariate P&V Simulation	107-112	227	31, 12-14
B58 Seq. C	Original Data	19, 21-25	237	21, 4, 5
B58 Seq. C	Bivariate P&V Simulation	125-128, 130, 131	223	33, 1-3
B58 Seq. B	Original Data	26, 29-33	152	21, 8, 9, 11
B58 Seq. B	Bivariate P&V Simulation	132-137	122	33, 4-6
B58 Seq. D	Original Data	34-39	147	21, 12-14
B58 Seq. D	Bivariate P&V Simulation	140-143	116	33, 8, 9, 11
<u>F106 DATA SET</u>				
F106 Seq. E	Original Data	40-45	68.5	19, 1-3
F106 Seq. E	Bivariate Mean & Alt Sim.	80-85	28.5	26, 1-3
F106 Seq. E	Separate P&V Simulation	86-89, 91, 92	23.1	26, 4-6
F106 Seq. E	Limited Separate P&V Sim.	93-98	22.1	26, 8, 9, 11
F106 Seq. F	Original Data	46-51, 56, 57	83	19, 8, 9, 11
F106 Seq. F	Separate P&V Simulation	113-118	28.6	31, 1-3
				7, 441
				7, 096