Basics of Convolutional Neural Network (CNN)

EE 5179: Deep learning for Imaging Instructor: Kaushik Mitra

2. Convolutional Neural Networks (CNNs)

CNNs vs MLPs

- Naively using MLP to classify 224x224x3 (~ 3 x 40,000) typical ImageNet image -> parameter explosion
 - Doesn't exploit local spatial information
- Can we build special neural nets for images exploiting
 - ☐ 2D topology of pixels
 - □ Achieve invariance to translation?

Convolutional networks leverage these ideas,

- \ □ \ Local connectivity
 - □ \ Parameter sharing ✓
 - ☐ Pooling/Subsampling
 - ☐ ReLu (rectifier) nonlinearity

Topics

General and biological motivation.

CNNs over fully connected networks.

Different layers in architecture (pooling, relu, etc.)

Biological motivation - Mammalian vision system.

Hubel and Wiesel (1959)

Experimental setup

Suggested a 'hierarchy' of feature detectors in the mammalian visual cortex.

Biological motivation - Mammalian vision system.

Simple cells:

- 1. Activity characterized by a linear function of the image.
- 2. Operates in a spatially localized (SL) receptive field.
- 3. Each set responds to edges of different orientation.

Complex cells:

- 1. Operates in large SL receptive field
- 2. Receive input from lower level simple cells.
- 3. Acts as motion detectors

Hyper-complex cells:

- 1. Larger receptive field
- 2. Receive input from lower level complex cells.
- 3. Acts as angle detectors

Biological motivation - Mammalian vision system.

Biological motivation - Grandmother cell

The grandmother cell is a hypothetical neuron that represents a complex but specific concept or object proposed by cognitive scientist Jerry Letvin in 1969.

But this hypothesis is currently being doubted since the number of objects/concepts is larger

than number of neurons.

Biological motivation - Biological NN to Artificial NN.

Neocognitron [Fukushima, Biological Cybernetics 1980]

Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

- 1. But neuroscience has told us relatively less about how to train networks.
- 2. Neocognitron used layer-wise unsupervised pretraining algorithm.

Biological motivation - CNN.

Back-propagation [Lang and Hinton, 1988], and modern CNN [LeCun et al., 1989]

CNN proposed by LeCun et al. for document recognition.

Simple cells and low-level filters in a CNN

Marčelja, S. [1980] suggests that simple cells in visual cortex can be modeled as

CNN for document recognition [LeCun et al., 1989].

All images are 28x28 grayscale.

60k training examples.

10k test examples

Output value is integer from 0-9

CNN for document recognition [LeCun et al., 1989]. LeNet

Rotation invariance

Translation invariance

Squeeze invariance

Stroke-width invariance

Noise invariance

Then why DL didn't take-off in 90's?

- 1. Limited big data availability
- 2. Limited computational power to crunch data

Why DL is trending now?

Big data availability

One trillion images.

350 million images uploaded **per day**.

100 hrs of video uploaded **per minute**.

2.5 Petabytes data every minute.

Computational power to crunch data CPU **GPU** MULTIPLE CORES THOUSANDS OF CORES

Parallel processing units - GPUs

When/how was deep-learning reclaimed?

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - 100k test.

ImageNet Classification

1000 categories and 1.2 million training images

Li Fei-Fei: ImageNet Large Scale Visual Recognition Challenge, 2014 http://image-net.org/

Topics

General and biological motivation.

CNNs over fully connected networks.

Different layers in architecture (pooling, relu, etc.)

Topics

General and biological motivation.

CNNs over multi-layer neural networks.

Different layers in architecture (pooling, relu, etc.)

CNNs over Multi-layer neural networks (MLNN)

CNNs are multi-layer neural network with two constraints:

- Local connectivity
- 2. Parameter sharing / = spatial in moment

CNN: Local connectivity (LC)

In general for a level with m input and n output nodes and CNN-local connectivity of k nodes (k < m):

MLNN have,

- 1. m x n parameters to store.
- 2. $O(m \times n)$ runtime

MLNN-LC have:

- 1. k x n parameters to store.
- 2. $O(\overline{k} \times n)$ runtime

CNN: Parameter sharing (PS)

MLNN (21 parameters)

MLNN-LC ($3 \times 3 = 9$ parameters) 2.3X runtime and storage efficient.

MLNN-LC-PS (3 parameters)
2.3X faster,
& 7X storage efficient.

In general for a level with m input and n output nodes and CNN-local connectivity of k nodes (k < m):

MLNN have

- 1. *m* x *n* parameters to store.
- 2. $O(m \times n)$ runtime

MLNN-LC have:

- 1. k x n parameters to store.
- 2. $O(k \times n)$ runtime

MLNN-LC-PS have:

- 1. k parameters to store.
- 2. $O(k \times n)$ runtime

CNN with multiple input channels

Channels

Single input channel

CNN with multiple output maps

Single output map

A generic level of CNN

Topics

General and biological motivation.

CNNs over multi-layer neural networks.

Different layers in CNN architecture (pooling, relu, etc.)

Different layers of CNN architecture

CNN: Convolutional layer

1,	1,0	1,	0	0
O _{×0}	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

a (+)

Convolved Feature

- 1. To reduce the number of weights (through local connectivity).
- 2. To provide spatial invariance (through parameter sharing).

Hyper parameters for convolutional layer.

1. Zero padding (to control input size spatially.)

Hyper parameters for convolutional layer.

2. Stride (to produce smaller output volumes spatially.)

Hyper parameters for convolutional layer.

Both padding and stride

$$N \rightarrow 1/P$$
 width $F \rightarrow kernel aige$ $P \rightarrow Porth$:
 $S \rightarrow Stride$

$$0 = \frac{W + 2P - F}{S} + 1$$

Without padding and stride

With padding [1,1] & stride [2,2]

CONVOLUTIONAL LAYER

- 1. Accepts a volume of size W1 X H1 X D1.
- 2. Requires four hyperparameters:
 - a. Number of filters K
 - b. their spatial extent *F*
 - c. their stride S
 - d. the amount of zero padding P

3. Produces an output volume of size **W2 X H2 X D2** where:

$$W2=(W1-F+2P)/S+1$$
, $H2=(H1-F+2P)/S+1$, $D2=K$

- 1. With parameter sharing, it introduces **F·F·D1** weights per filter, for a total of **(F·F·D1)·K** weights and **K** biases.
- 2. In the output volume, the **d**-th depth slice (of size **W2 X H2**) is the result of performing a valid convolution of the **d**-th filter over the input volume with a stride of **S**, and then offset by **d**-th bias.

Different layers of CNN architecture

CNN: Pooling layer

- 1. To reduce the spatial size of the representation to reduce the amount of parameters and computation in the network.
- 2. Average pooling or L2 pooling can also be used, but not popular like max pooling.

POOLING LAYER

- 1. Accepts a volume of size **W1** X **H1** X **D1**.
- 2. Requires two hyperparameters:
 - a. their spatial extent **F**
 - b. their stride **S**
 - c. the amount of zero padding P (commonly P = 0).
- 3. Produces an output volume of size W2 X H2 X D2 where:

$$W2=(W1-F+2P)/S+1$$
, $H2=(H1-F+2P)/S+1$, $D2=D1$

1. Introduces zero parameters since it computes a fixed function of the input.

Different layers of CNN architecture

Different layers of CNN architecture

Flattening, fully connected (FC) layer and softmax

Flattening

1. Vectorization (converting **M X N X D** tensor to a **MND X 1** vector).

FC layer

- 1. Multilayer perceptron.
- 2. Generally used in final layers to classify the object.
- 3. Role of a classifier.

Softmax layer

1. Normalize output as discrete class probabilities.

$$z_n = \frac{e^{x_n}}{\sum_{i=1}^K e^{x_i}}$$