procedure SGA($f : X \mapsto \mathbb{R}^+$, ps. cr) > for maximization! $x_{\rm B} \leftarrow \emptyset$: $y_{\rm B} \leftarrow -\infty$: ▷ best-so-far solution for $i \in 1 \dots ps$ do > random initial population randomly sample $S_0[j].x$ from X; $S_0[j].y \leftarrow f(S_0[j].x)$; for $i \in 0 \dots \infty$ do b iterate "generations" for $i \in 1 \dots ps$ do \triangleright new pop. via mutation and crossover

$$\begin{split} & \text{if } \mathfrak{R}^1_0 < cr \text{ then } N_i[j].x \leftarrow \text{binary}(S_i[\lfloor \mathfrak{R}^{p_r}_i \rfloor].x, S_i[\lfloor \mathfrak{R}^{p_r}_i \rfloor].x); \\ & \text{else } N_i[j].x \leftarrow \text{move}(S_i[\lfloor \mathfrak{R}^{p_r}_i \rfloor].x); \\ & N_i[j].y \leftarrow f(N_i[j].x); \end{split}$$

 $S_{i+1} \leftarrow Roulette \ Wheel: select \ ps \ records \ from \ P_i = S_i \cup N_i$ such that, for each of the ps slots, the probability

of $P_i[j]$ to be chosen is **proportional to P_i[j].y.**