Задания

13 апреля 2021 г.

- 1. Докажите, что вложение Йонеды сохраняет пределы.
- 2. Докажите, что вложение Йонеды сохраняет экспоненты. То есть, если a, b объекты \mathbf{C} такие, что b^a существует, то $\mathbf{y}(b)^{\mathbf{y}(a)}$ тоже существует и определяется как $\mathbf{y}(b^a)$.
- 3. Докажите, что коллекция объектов вида ya является генератором для категории предпучков.

$$\mathbf{y}a \xrightarrow{s} F \xrightarrow{f} G$$

$$Hom(\mathbf{y}a, F) \simeq F_a, \quad Hom(\mathbf{y}a, G) \simeq G_a.$$

 $f \simeq f' : F_a \to G_a, \quad g \simeq g' : F_a \to G_a$
 $\forall s' \in F_a : f'(s') = g'(s') \Rightarrow f' = g' \Rightarrow f = g$

4. Определите категорию ${f C}$, такую что ${f Set}^{{f C}^{\rm op}}$ эквивалентна категори рефлексивных графов.

 G_E — ребра, G_V — вершины. $dst, src: G_E o G_V$ $i: G_V o G_E$ dst o i = id src o i = id i o dst = r i o src = l src o l = src dst o l = src dst o r = dst src o r = dst

$$l \circ i = i$$
$$r \circ i = i$$

5. Докажите, что функтор $F:\mathbf{Set}^{\mathbf{C}^{\mathrm{op}}}\to\mathbf{D}$ является левым сопряженным тогда и только тогда, когда он сохраняет копределы.

Достаточно доказать, что если он сохраняет копределы, то он левый сопряженный.

Пусть $X \in \mathbf{Set}^{\mathbf{C}^{op}}$. Тогда по ко-лемме $X = colim_a \ \mathbf{y} a$. $\mathrm{Hom}(F(X),Y) = \mathrm{Hom}(F(colim_a \ \mathbf{y} \ a),Y) =$ $= \mathrm{Hom}(colim_a \ F(\mathbf{y} \ a),Y) = lim_a\mathrm{Hom}(F(\mathbf{y} \ a),Y) =$ $= lim_a\mathrm{Hom}(\mathbf{y} \ a, Hom(F(\mathbf{y} \ _),Y)) =$ $= \mathrm{Hom}(colim_a \ \mathbf{y} \ a, Hom(F(\mathbf{y} \ _),Y)) = \mathrm{Hom}(X, Hom(F(\mathbf{y} \ _),Y)) =$ $= \mathrm{Hom}(X,U(Y))$

$$U = \operatorname{Hom}(F(\mathbf{y}),) : D \to \mathbf{Set}^{C^{op}} -$$
правый сопряженный

6. Докажите, что функтор $\mathbf{Set}^{\mathbf{C}^{\mathrm{op}}}$ является свободным копополнением \mathbf{C} , то есть, что для любой кополной категории \mathbf{D} и любого функтора $F:\mathbf{C}\to\mathbf{D}$ существует уникальный (с точностью до изоморфизма) функтор $\widetilde{F}:\mathbf{Set}^{\mathbf{C}^{\mathrm{op}}}\to\mathbf{D}$, сохраняющий копределы, и такой, что следующая диаграмма коммутирует (с точностью до изоморфизма функторов):

Пусть такой \widetilde{F} существует и пусть $X \in \mathbf{Set}^{\mathbf{C}^{op}} = colim_a \mathbf{y} \ a$. Тогда $\widetilde{F}(X) = \widetilde{F}(colim_a \mathbf{y} \ a) = colim_a \ (\widetilde{F}(\mathbf{y} \ a)) = colim_a \ F_a$.

Тогда можно взять $\widetilde{F}(X) = colim_a \ F_a$ как определение \widetilde{F} . Оно корректно, так как в \mathbf{D} существуют копределы.