

Introduction

- Problem Statement: Efficiently allocating resources to strike a balance between minimizing costs and maximizing overall satisfaction among agents
- **Significance:** Improving productivity and employee morale while simultaneously reducing costs

Premise

- Several real-world situations arise where an overseer should assign a list of tasks to her employees.
- Overseer would want to minimize the overall cost, while also appeasing the employees with their preferred tasks
- The 2 objectives often act as tradeoffs to one another

Assumptions

- **Cost variables :** Time required by each agent to complete a task
- Valuation variables: Degree of preference of each agent for a task
- Cost and valuations are **independent** of each other
- Cost and Valuation matrices consists of random value between 0 and 1
- Number of tasks >= Number of agents
- Valuations and costs are additive

Notations

- Let N be the set of agents and M be the set of goods.
- Let c_{ij} be the cost of allocating good $j \in M$ to agent $i \in N$
- Let each agent i ∈ N evaluate good j ∈ M at v_{ii}.
- Let A_i be the bundle allocated to agent i.

Formulation

- The problem can be stated as:
 - min $\Sigma_{i \in N, j \in M} c_{ij} x_{ij}$
 - s.t. $\Sigma_{i \in N} x_{ij} = 1 \quad \forall j \in M$
 - $\exists g \in A_k: v_i(A_i) \ge v_i(A_k \backslash g) \ \forall \ k \in N$
 - $x_{ij} \in \{0,1\} \ \forall \ i \in N, j \in M$
- Note: We can directly solve the above problem using an optimization solver (or using a greedy approach) if the EF1 constraint is omitted.

Approaches

Random assignment

Minimum Cost assignment

Round-robin assignment

Min Cost assignment with Envy Cycle Elimination

Bang for Buck Round-robin assignment

Approaches

> Min Cost assignment with Envy Cycle Elimination

- Use optimization solver (Gurobi) to assign min cost allocation
- Construct envy graph
- If there are envy cycles, swap the bundles along the cycle
- Repeat until there is no cycle

> Bang for Buck Round-robin assignment

- Start with empty allocations
- Arbitrarily order the agents
- Let the remaining goods be R
- Repeat while there are remaining goods:
 - Let each agent pick one good from the remaining goods
 - Assign to each agent i ∈ N, the following good:
 argmax_{j∈R} v_{ij} / c_{ij}

Experiment Setup

Agents and tasks

- Consider number of agents: |N| = {10,20,30,40,50,60}
- Consider number of tasks:|M| = {60,80,100,120,140}
- Iterate over every combination of agents and goods

Cost and values

For each (|N|, |M|) combination:

- Randomly sample each cost c_{ii}~U(0,1)
- Randomly sample valuations v_{ii}~U(0,1)
- For each of the 5
 approaches, run 1000

Simulations

Cost Analysis

- Benchmark: Min cost assignment (through BIP optimization)
- Cost implies total cost incurred after assignment
- Compare other approaches against benchmark:

$$\left(\frac{\sum_{i} \text{Cost}_{\text{other approach,i}}}{\sum_{i} \text{Cost}_{\text{min,i}}} - 1\right) \times 100\%$$

Value Analysis

- Consider value as the valuation of every agent's own goods
- In a relative comparative setting, higher self-valuation implies less envy
- Valuation implies total self-valuation of all agents
- Benchmark: Round-Robin assignment (EF1 guarantee)
- Compare other approaches against benchmark:

$$\left(1 - \frac{\sum_{i} \text{Value}_{\text{other approach,i}}}{\sum_{i} \text{Value}_{\text{round-robin,i}}}\right) \times 100\%$$

Result: Cost

Result: Value

Cost

Value

Results

N	ΙΜΙ	Mean % cost difference w.r.t. min cost allocation				Standard deviation of % cost difference w.r.t. min cost allocation				
		Modified envy cycle	Round robin	Random	Bang per buck	Modified envy cycle	Round robin	Random	Bang per buck	
10	60	267.67	457.61	455.15	66.76	115.04	74.56	75.29	17.09	
10	80	268.21	453.15	451.85	59.08	109.45	61.98	61.56	13.01	
10	100	265.33	453.79	453.95	54.65	115.80	58.05	57.71	10.84	
30	60	1142.78	1477.02	1477.87	184.66	259.22	226.97	236.50	43.85	
30	80	1143.28	1476.27	1470.48	152.54	240.79	200.50	197.70	33.55	
30	100	1146.28	1469.98	1471.08	132.89	215.47	173.48	176.32	26.28	
50	60	2081.53	2518.57	2517.86	322.78	416.79	394.87	392.26	75.15	
50	80	2085.99	2506.19	2514.22	262.15	368.83	339.57	335.52	55.83	
50	100	2097.85	2488.21	2501	216.87	323.51	302.87	298.06	44.51	

Results

INII	M	Mean % valuation difference w.r.t. min cost allocation				Standard deviation of % valuation difference w.r.t. min cost allocation			
N		Modified envy cycle	Min cost	Random	Bang per buck	Modified envy cycle	Min cost	Random	Bang per buck
10	60	34.48	43.32	43.28	25.22	3.57	4.25	4.17	3.56
10	80	36.25	43.95	43.9	25.6	2.91	3.48	3.52	2.96
10	100	37.2	43.94	43.99	25.57	2.68	3.14	3.12	2.55
30	60	25.13	46.37	46.19	29.03	2.99	4	4.01	3.36
30	80	27.7	46.53	46.54	29.41	2.54	3.46	3.53	2.86
30	100	29.64	46.84	47.12	29.79	2.3	3.1	3.26	2.52
50	60	19.02	46.7	46.57	29.68	2.92	3.88	3.96	3.45
50	80	21.3	47.03	47.17	30.29	2.49	3.39	3.29	2.92
50	100	23.39	47.33	47.48	30.58	2.15	2.94	3.07	2.51

Observations: Based on Cost

- Round-Robin gives a cost as bad as Random assignment
- Bang for Buck consistently performs the best
- Min-cost assignment with Envy cycle elimination performs slightly better than random assignment, yet considerably bad at higher number of agents
- All approaches worsen with increasing number of agents.

Observations : Based on Value

- Min cost assignment gives a valuation as bad as Random assignment
- Bang for Buck is the most robust among the other assignments and performs relatively well
- Min-cost assignment with Envy cycle elimination performs the best with high number of agents and low number of tasks (better than Bang for Buck)
- However, for low number of agents and high number of tasks cause Envy cycle elimination approach is outperformed by Bang for Buck
- Envy cycle elimination approach's performance:
 - directly proportional to the number of agents
 - inversely proportional to the number of goods

Conclusion

- Min Cost assignment and Round Robin approaches are the most imbalanced
- Envy-Cycle elimination approach is not suitable due to the massive cost repercussions for high number of agents
- ❖ Bang for Buck variation on Round Robin approach seems to perform the best in both settings and is the most robust and balanced among all

Thank you