

Machine Learning Engineer Nanodegree Program

Capstone Project

Starbucks Capstone Challenge

AHMED SAFWAT EWIDA

DEC ,2019

Table of Contents

1. DEFINITION

- 1. Project overview.
- 2. Problem statement.
- 3. Solution statement.
- 4. Evaluation Metrics.

2. ANALYSIS

- 1. Data Exploration
 - 1. Data sets and Inputs.
 - 2. Data sets cleaning and reframing.
- 2. Exploratory Visualization
 - 1. Exploratory Visualization before merging the Data sets
 - 1. Profile Data Set Exploratory Visualization
 - 2. Transcript Data Set Exploratory Visualization.
 - 3. Portfolio Data Set Exploratory Visualization.
 - 2. Exploratory Visualization after merging the Data sets.
 - 1. Exploratory Visualization for the Combined Data sets.
 - 2. Statistics for Combined Data Set.
- 3. Algorithms and Techniques
 - 1. Amazon Sage maker XG-Boost built in Algorithm
 - 2. LightGBM Model.
 - 3. CatBoost Model
 - 4. Random Forest Classifier
 - 5. Decision Tree Classifier
 - 6. K-neighbours Classifier

4. Benchmark Model

3. METHODOLOGY

- 1. Data Pre-processing
 - 1. Combined Data Preparation for Models training and testing.
 - 2. Modelled data Exploration.
 - 3. Modelled Data statistics.
 - 4. Modelled Data Preparation for training and testing sets.
- 2. Implementation.
 - 1. LOGISTIC REGRESSION MODEL (BENCHMARK MODEL).
 - 2. Random Forrest Classifier.
 - 3. Decision Tree Classifier.
 - 4. K-neighbors Classifier.
 - 5. Amazon Sage maker XG-Boost built in Algorithm.
 - 6. LightGBM Model.
 - 7. Cat Boost Model

3. Refinement

- 1. Amazon Sage maker XG-Boost built in Algorithm-Hyper parameter Tuning.
- 2. LightGBM Model -Hyper parameter Tuning.
- 3. CatBoost Model -Hyper parameter Tuning.

4. RESULTS

- 1. Models Evaluation and Validation.
- 2. Justification
- **5.** References

1. Definition:

1.1 Project overview:

Machine learning (ML) has become an increasingly important part of IT today. This effect is seen both in how IT leverages machine learning to improve operations and in how IT supports and enables the lines of business (LOBs). Still, organizations have limited understanding on its effective use and have made limited progress in associating it with business outcomes.

Admittedly, The Companies which will lead in the future are those who will be interested in implementing the machine learning algorithms on the enormous amount of data base which they have, they will be the pioneers in their field.

STARBUCKS is one of flagship Worldwide companies which has been established since 31st March 1971 and have worldwide coffeehouse chain, and has a tremendous database of users , that is why I am interested in implementing my capstone project for STARBUCKS Capstone Challenge as I believe that I can implement a good Machine Learning Model for one of the most Worldwide prestigious companies.

Customers' Concerns are the goal for all companies all over the world, what people like?, how much they want to pay?, when do they are capable to pay?, what is the gender and age of those people who are interested and capable to pay? are very important questions, and the answer comes from Historical data which we have to implement a deep learning algorithms to it, and building machine Learning Algorithms according to those Historical data to maximize Companies s' profits.

1.2 Problem Statement:

Machine learning (ML) has become an increasingly important part of IT today. This effect is seen both in how IT leverages machine learning to improve operations and in how IT supports and enables the lines of business (LOBs). Still, organizations have limited understanding on its effective use and have made limited progress in associating it with business outcomes.

Admittedly, The Companies which will lead in the future are those who will be interested in implementing the machine learning algorithms on the enormous amount of data base which they have, they will be the pioneers in their field.

STARBUCKS is one of flagship Worldwide companies which has been established since 31st March 1971 and have worldwide coffeehouse chain, and has a tremendous database of users , that is why I am interested in implementing my capstone project for STARBUCKS Capstone Challenge as I believe that I can implement a good Machine Learning Model for one of the most Worldwide prestigious companies.

Customers' Concerns are the goal for all companies all over the world, what people like?, how much they want to pay?, when do they are capable to pay?, what is the gender and age of those people who are interested and capable to pay? are very important questions, and the answer comes from Historical data which we have to implement a deep learning algorithms to it, and building machine Learning Algorithms according to those Historical data to maximize Companies s' profits.

1-The Below flow chart for the users Whom received , viewed ,completed the offer and make transaction within the offer period and those customers are our target .

2-we will track the amount of money which has been spent by customers within the offer period and till the offer completed, to track the profits that can be gained by each customer for each offer.

3-we will do our statistics analysis and data visualization to understand the role of the features which controlling our model ,such as: Customers 's gender, Customers 's age, customers 's membership, Customers 's income, offer durationetc.

4-We will do assumptions that all transactions executed within the offer period -for the customers whom completing the offers- will be through utilizing offers .

1.3 Solution statement:

We will Follow the below process in our Problem Solution:

• Fetching the Data:

The Data sets mentioned in the previous slide to be converted to CSV Files , and to be ready for next step.

• <u>Clean / preparation Data:</u>

- 1. Wrangle data and prepare it for training
- 2. remove duplicates, correct errors, deal with missing values, normalization, data type conversions, ...etc.)

• Data Visualizing and analysis:

- 1. Visualize data to help detect relevant relationships between variables.
- 2. Split into training and evaluation sets

Taring Model:

The goal of training is to make a prediction correctly as often as possible.

Evaluating the Model:

- 1. Uses some metric or combination of metrics to measure the performance of model.
- 2. shuffling the data and selecting 20/80 ratio for test/train data set.
- 3. Hyper-parameter tuning, which is a corner stone for Model efficiency and performance improvement.
- 4. Using test set data which have to predict the output.

1.4 Evaluation Metrics:

Our Problem is Classification Problem with imbalanced nature that will lead us to use the following Metrics:

<u>roc_auc_score</u>: Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.

<u>Precision:</u> The proportion of positive cases that were correctly identified.

Recall: The proportion of actual positive cases which are correctly identified.

The confusion matrix and the metrics that can be derived from it.

2. Analysis:

2.1 Data Exploration:

2.1.1 Data Sets and Inputs:

Our Data consists of three data sets (three json files), we will follow the hereunder process till reaching to our Modelled data which we will be used in our Model training and testing.

We have three JSON Files:

- portfolio.json containing offer ids and meta data about each offer (duration, type, etc.)
- profile.json demographic data for each customer
- transcript.json records for transactions, offers received, offers viewed, and offers completed

portfolio.json: shape (10 rows x 6 columns)

- id (string) offer id
- offer_type (string) type of offer ie BOGO, discount, informational
- difficulty (int) minimum required spend to complete an offer
- reward (int) reward given for completing an offer
- duration (int) time for offer to be open, in days
- channels (list of strings)

profile.json:shape (2175 rows x 5 columns) with 17000 unique users.

- age (int) age of the customer
- became_member_on (int) date when customer created an app account
- gender (str) gender of the customer (note some entries contain 'O' for other rather than M
 or F)
- id (str) customer id
- income (float) customer's income

transcript.json: (306534 rows x 4 columns)

- event (str) record description (ie transaction, offer received, offer viewed, etc.)
- person (str) customer id
- time (int) time in hours since start of test. The data begins at time t=0
- value (dict of strings) either an offer id or transaction amount depending on the record

2.1.2 Data Sets Cleaning and reframing:

Profile Data Set:

- 1-Dividing the age Column to five age groups:
 - -Child: less than 18 years old.
 - -Teen :between 30 and 18 years old.
 - -Young adults: between 50 and 30 years old.
 - -Middle age adults: between 70 and 50 years old.
 - -Elderly: between 70 and 50 years old.
- 2-Transform the became_member_on Column to Month / year Format.
- 3-Claculating the Customer subscription cumulative number of days since the customer has been started his subscription.
- 4-Dropping the NA Values.

		age	became_member_on	gender	customer	income	age_groups	member_launch_Cum_days	member_launch_year
	1	55	2017-07-15	F	0610b486422d4921ae7d2bf64640c50b	112000.0	middle_age_adults	16908	2017
	3	75	2017-05-09	F	78afa995795e4d85b5d9ceeca43f5fef	100000.0	elderly	16841	2017
	5	68	2018-04-26	M	e2127556f4f64592b11af22de27a7932	70000.0	middle_age_adults	17193	2018
	8	65	2018-02-09	M	389bc3fa690240e798340f5a15918d5c	53000.0	middle_age_adults	17117	2018
	12	58	2017-11-11	M	2eeac8d8feae4a8cad5a6af0499a211d	51000.0	middle_age_adults	17027	2017
	13	61	2017-09-11	F	aa4862eba776480b8bb9c68455b8c2e1	57000.0	middle_age_adults	16966	2017
	14	26	2014-02-13	М	e12aeaf2d47d42479ea1c4ac3d8286c6	46000.0	teen	15660	2014
	15	62	2016-02-11	F	31dda685af34476cad5bc968bdb01c53	71000.0	middle_age_adults	16388	2016
	16	49	2014-11-13	M	62cf5e10845442329191fc246e7bcea3	52000.0	young_adults	15933	2014
	18	57	2017-12-31	M	6445de3b47274c759400cd68131d91b4	42000.0	middle_age_adults	17077	2017

Transcript Data Set:

- 1-Dividing the value Column to offer id and amount columns.
- 2-changing the name of person Column to Customer Column.

		event	customer	time	offer_id	amount
	0	offer received	78afa995795e4d85b5d9ceeca43f5fef	0	9b98b8c7a33c4b65b9aebfe6a799e6d9	0
	1	offer received	a03223e636434f42ac4c3df47e8bac43	0	0b1e1539f2cc45b7b9fa7c272da2e1d7	0
	2	offer received	e2127556f4f64592b11af22de27a7932	0	2906b810c7d4411798c6938adc9daaa5	0
	3	offer received	8ec6ce2a7e7949b1bf142def7d0e0586	0	fafdcd668e3743c1bb461111dcafc2a4	0
	4	offer received	68617ca6246f4fbc85e91a2a49552598	0	4d5c57ea9a6940dd891ad53e9dbe8da0	0
	5	offer received	389bc3fa690240e798340f5a15918d5c	0	f19421c1d4aa40978ebb69ca19b0e20d	0
	6	offer received	c4863c7985cf408faee930f111475da3	0	2298d6c36e964ae4a3e7e9706d1fb8c2	0
	7	offer received	2eeac8d8feae4a8cad5a6af0499a211d	0	3f207df678b143eea3cee63160fa8bed	0
	8	offer received	aa4862eba776480b8bb9c68455b8c2e1	0	0b1e1539f2cc45b7b9fa7c272da2e1d7	0
	9	offer received	31dda685af34476cad5bc968bdb01c53	0	0b1e1539f2cc45b7b9fa7c272da2e1d7	0
1	0	offer received	744d603ef08c4f33af5a61c8c7628d1c	0	0b1e1539f2cc45b7b9fa7c272da2e1d7	0
1	1	offer received	3d02345581554e81b7b289ab5e288078	0	0b1e1539f2cc45b7b9fa7c272da2e1d7	0
1	2	offer received	4b0da7e80e5945209a1fdddfe813dbe0	0	ae264e3637204a6fb9bb56bc8210ddfd	0
1	3	offer received	c27e0d6ab72c455a8bb66d980963de60	0	3f207df678b143eea3cee63160fa8bed	0
1	4	offer received	d53717f5400c4e84affdaeda9dd926b3	0	0b1e1539f2cc45b7b9fa7c272da2e1d7	0

Portfolio Data Set:

- $\hbox{\bf 1-Dividing the Channels Column to Web, email\,,\,Mobile\,and\,Social\,media\,Columns\,.}$
- $\hbox{$2$-changing the name of id Column to offer id Column to mange the merging between the data set.}\\$
- 3-Dropping the Channels Column.

	difficulty	duration	offer_id	offer_type	reward	web	email	mobile	social
0	10	168	ae264e3637204a6fb9bb56bc8210ddfd	bogo	10	0	1	1	1
1	10	120	4d5c57ea9a6940dd891ad53e9dbe8da0	bogo	10	1	1	1	1
2	0	96	3f207df678b143eea3cee63160fa8bed	informational	0	1	1	1	0
3	5	168	9b98b8c7a33c4b65b9aebfe6a799e6d9	bogo	5	1	1	1	0
4	20	240	0b1e1539f2cc45b7b9fa7c272da2e1d7	discount	5	1	1	0	0
5	7	168	2298d6c36e964ae4a3e7e9706d1fb8c2	discount	3	1	1	1	1
6	10	240	fafdcd668e3743c1bb461111dcafc2a4	discount	2	1	1	1	1
7	0	72	5a8bc65990b245e5a138643cd4eb9837	informational	0	0	1	1	1
8	5	120	f19421c1d4aa40978ebb69ca19b0e20d	bogo	5	1	1	1	1
9	10	168	2906b810c7d4411798c6938adc9daaa5	discount	2	1	1	1	0

2.2 Exploratory Visualization:

We Will do data visualizing for the data sets before Combination and after combination, we will follow the below Process:

2.2.1 Exploratory Visualization before merging the Data sets:

2.2.1.1 Profile Data Set Exploratory Visualization:

Members age Distribution VS number of Profiles

Customers' member ship year VS number of Profiles

Customers' age Groups VS number of Profiles

Customers' gender VS number of Profiles

2.2.1.2 Transcript Data Set Exploratory Visualization:

offer id's of Completed offers VS number of Profiles

offer id's of Viewed offers VS number of Profiles

offer id's of Received offers VS number of Profiles

2.2.1.3 Portfolio Data Set Exploratory Visualization

2.2.2 Exploratory Visualization after merging the Data sets:

Now we will combine the three data sets, we will follow the below process, then we will do data visualization for the combined data set:

Combining the transcript and profile data set together then Combining the output with Portfolio data set.

Our output will be the below data frame:

```
Combined_all_data.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 272762 entries, 0 to 272761
Data columns (total 20 columns):
event
                           272762 non-null object
customer
                           272762 non-null object
time
                           272762 non-null int64
offer_
                           272762 non-null object
                           272762 non-null object
amount
                           272762 non-null int64
age
                           272762 non-null datetime64[ns]
became_member_on
gender
                           272762 non-null object
income
                           272762 non-null float64
                           272762 non-null category
age_groups
member_launch_Cum_days
member_launch_year
                           272762 non-null int64
                          272762 non-null int64
difficulty
                           148805 non-null float64
                           148805 non-null float64
duration
offer_type
                           148805 non-null object
reward
                           148805 non-null float64
web
                           148805 non-null float64
email
                           148805 non-null float64
                           148805 non-null float64
mobile
social
                           148805 non-null float64
dtypes: category(1), datetime64[ns](1), float64(8), int64(4), object(6)
memory usage: 41.9+ MB
```


2.2.2.1 Exploratory Visualization for the Combined Data sets:

That above figure showing that the completed offers are more than 2,000 offers and less than 4,000, while the received offers are more than 6,000 and less than 8,000 offers , the completed offers after receiving and viewing are only our concern.

Relation between offer types and age groups

The above figure showing that middle age groups are mainly interested in bogo and Discount offer type.

The above figure showing that middle age groups are the main portion whom are interested in offers.

Relation between Completed offers and age Groups

As Shown in the above figure, the most of Completed offers come from middle age groups.

Relation between Completed offers and Gender

As Shown in the above figure, the most of completed offers come from Males . However the Females are interested in offers as well , and we don't have a big gap between Males and Females.

Relation between Completed offers and Customers s' membership launching

As shown in the above figure, the most of completed offers come from Customers whom membership have been started in 2017.

2.2.2.2 Statistics for Combined Data Set:

For Females:

Number of offer received offers: 27456 offer, 43.1% of total offers.

Number of offer viewed offers: 20786 offer, 32.6% of total offers.

Number of offer completed offers: 15477 offer, 56.4% of received offers.

For Males:

Number of offer received offers: 38129 offer, 46.0% of total offers.

Number of offer viewed offers: 28301 offer, 34.1% of total offers.

Number of offer completed offers: 16466 offer, 43.2% of received offers.

The Maximum value to complete offer for Females: 428.0 Hours and the Value by days is: 17.8 days

The Maximum value to complete offer for Males: 434.0 Hours and the Value by days is: 18.1 days

The Statistics for the offer id's (10 offer ID) VS events type:

Offer ID: <u>0b1e1539f2cc45b7b9fa7c272da2e1d7</u> Total number of offers: 12327

Percentage is: 27.47 %

Offer ID: 0b1e1539f2cc45b7b9fa7c272da2e1d7 Total number of Viewed offers: 2215 and

Percentage is: 17.97 %

Offer ID: 0b1e1539f2cc45b7b9fa7c272da2e1d7 Total number of received offers: 6726 and

Percentage is: 54.56 %

Offer ID: 2298d6c36e964ae4a3e7e9706d1fb8c2 Total number of offers: 17920

Offer ID:2298d6c36e964ae4a3e7e9706d1fb8c2 Total number of Completed offers: 4886 and

Percentage is: 27.27 %

Offer ID:2298d6c36e964ae4a3e7e9706d1fb8c2 Total number of Viewed offers: 6379 and

Percentage is: 35.60 %

Offer ID: 2298d6c36e964ae4a3e7e9706d1fb8c2 Total number of received offers: 6655 and

Percentage is: 37.14 %

Offer ID: 2906b810c7d4411798c6938adc9daaa5 Total number of offers: 14002

Offer ID: 2906b810c7d4411798c6938adc9daaa5 Total number of Completed offers: 3911 and

Percentage is: 27.93 %

offer ID:2906b810c7d4411798c6938adc9daaa5 Total number of Viewed offers: 3460 and

Percentage is: 24.71%

Offer ID: 2906b810c7d4411798c6938adc9daaa5 Total number of received offers: 6631 and

Percentage is: 47.35%

Offer ID:3f207df678b143eea3cee63160fa8bed Total number of offers: 10144

Percentage is: 34.37 %

Offer ID: 3f207df678b143eea3cee63160fa8bed Total number of received offers: 6657 and

Percentage is: 65.62 %

Offer ID: 4d5c57ea9a6940dd891ad53e9dbe8da0 Total number of offers: 16232

Offer ID: 4d5c57ea9a6940dd891ad53e9dbe8da0 Total number of Completed offers: 3310 and

Percentage is: 20.39 %

Offer ID: $\frac{4d5c57ea9a6940dd891ad53e9dbe8da0}{2} \ \, \text{Total number of Viewed offers: 6329 } \ \, \text{and} \ \, \text{Total number of Viewed offers: 6329}$

Percentage is: 38.99 %

Offer ID:4d5c57ea9a6940dd891ad53e9dbe8da0 Total number of received offers: 6593 and

Percentage is: 40.61 %

Offer ID: <u>5a8bc65990b245e5a138643cd4eb9837</u> Total number of offers: 12516

Offer ID: 5a8bc65990b245e5a138643cd4eb9837 Total number of Viewed offers: 5873 and

Percentage is: 46.92 %

Offer ID: 5a8bc65990b245e5a138643cd4eb9837 Total number of received offers: 6643 and

Percentage is: 53.07 %

Offer ID:9b98b8c7a33c4b65b9aebfe6a799e6d9 Total number of offers: 14372

Offer ID: 9b98b8c7a33c4b65b9aebfe6a799e6d9 Total number of Completed offers: 4188 and

Percentage is: 29.13%

Offer ID: 9b98b8c7a33c4b65b9aebfe6a799e6d9 Total number of Viewed offers: 3499 and

Percentage is: 24.34%

Offer ID:9b98b8c7a33c4b65b9aebfe6a799e6d9 Total number of received offers: 6685 and

Percentage is: 46.51 %

Offer ID: ae264e3637204a6fb9bb56bc8210ddfd Total number of offers: 16241

Offer ID:ae264e3637204a6fb9bb56bc8210ddfd Total number of Completed offers: 3657 and

Percentage is: 22.51 %

Offer ID:ae264e3637204a6fb9bb56bc8210ddfd Total number of Viewed offers: 5901 and

Percentage is: 36.33 %

Offer ID:ae264e3637204a6fb9bb56bc8210ddfd Total number of received offers: 6683 and

Percentage is: 41.14%

Offer ID:f19421c1d4aa40978ebb69ca19b0e20d Total number of offers: 16989

Offer ID: f19421c1d4aa40978ebb69ca19b0e20d Total number of Completed offers: 4103 and

Percentage is: 24.15 %

Offer ID: f19421c1d4aa40978ebb69ca19b0e20d Total number of Viewed offers: 6310 and

Percentage is: 37.14%

Offer ID:f19421c1d4aa40978ebb69ca19b0e20d Total number of received offers: 6576 and

Percentage is: 38.70 %

Offer ID: fafdcd668e3743c1bb461111dcafc2a4 Total number of offers: 18062

Offer ID: fafdcd668e3743c1bb461111dcafc2a4 Total number of Completed offers: 5003 and

Percentage is: 27.69 %

Offer ID:fafdcd668e3743c1bb461111dcafc2a4 Total number of Viewed offers: 6407 and

Percentage is: 35.47 %

Offer ID: fafdcd668e3743c1bb461111dcafc2a4 Total number of received offers: 6652 and

Percentage is: 36.82 %

The offer ID: fafdcd668e3743c1bb461111dcafc2a4 is the most completed offer.

2.3 Algorithms and Techniques:

As we are implementing a Classification Problem, we will implement the models in the following slides, and by comparing the results and our Evaluation metrics to our Benchmark model, we can know which is the best model to be implemented to our Problem.

Admittedly, we will concentrate on the Gradient Boosting Models like XGBoost, Cat Boost and LightGBM which Often provides predictive accuracy that cannot be beat, Lots of flexibility can optimize on different loss functions and provides several hyperparameters tuning options that make the function fit very flexible, No data pre-processing required - often works great with categorical and numerical values as is and Handles missing data.

2.3.1 Amazon Sage maker XG-Boost built in Algorithm:

XGBoost (extreme gradient boosting) is a popular and efficient open-source implementation of the gradient-boosted trees algorithm. *Gradient boosting* is a machine learning algorithm that attempts to accurately predict target variables by combining the estimates of a set of simpler, weaker models. By applying gradient boosting to decision tree models in a highly scalable manner, XGBoost does remarkably well in machine learning competitions. It also robustly handles a variety of data types, relationships, and distributions. It provides a large number of hyperparameters—variables that can be tuned to improve model performance. This flexibility makes XGBoost a solid choice for various machine learning problems.

2.3.2 LightGBM Model:

LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed and efficient with the following advantages:

- -Faster training speed and higher efficiency.
- -Lower memory usage.
- -Better accuracy.
- -Support of parallel and GPU learning.
- -Capable of handling large-scale data.

2.3.3 CatBoost Model:

CatBoost is a recently open-sourced machine learning algorithm from Yandex. It can easily integrate with deep learning frameworks like Google's TensorFlow and Apple's Core ML. It can work with diverse data types to help solve a wide range of problems that businesses face today. To top it up, it provides best-in-class accuracy.

It is especially powerful in two ways:

It yields state-of-the-art results without extensive data training typically required by other machine learning methods, and Provides powerful out-of-the-box support for the more descriptive data formats that accompany many business problems.

2.3.4 Random Forest Classifier:

ensemble learning method for classification and other tasks that operates by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes (classification) or mean prediction (regression) of the individual trees.

2.3.5 Decision Tree Classifier

A Decision Tree is a simple representation for classifying examples. It is a Supervised Machine Learning where the data is continuously split according to a certain parameter

2.3.6 K-neighbours Classifier

A case is classified by a majority vote of its neighbors, with the case being assigned to the class most common amongst its K nearest neighbors measured by a distance function. If K = 1, then the case is simply assigned to the class of its nearest neighbor.

2.4 Benchmark Model:

We will use Logistic Regression model as a Benchmark in which to compare our models's performance to, because it is fast and simple to implement.

We will implement the roc_auc_score , Precision and Recall Metrics to Compare other Models 's Results.

3. METHODOLOGY

3.1 Data Pre-processing:

3.1.1 Combined Data Preparation for Models training and testing:

A)Dividing our Combined Data to three data sets:

- 1-received: extracting the items with event= offer received.
- 2-Viewed: extracting the items with event = offer viewed.
- 3-completed: extracting the items with event = offer completed.
- 4-transaction: extracting the items with event = transaction.

B)(1st output)extracting the persons who completes the received offers ,two new columns to be added to updated data set :

- -(forecast_finish) column which equals to (received offer time + offer duration) .
- -(finish) column which equals to (forecast_finish) value and received time value in case of the offer not completed or equals to completion time in case of offer completed.
- -(completed) column which equals to (1) in case of offer completed and equals to (0) in case of offer not completed.

C)(2nd output) extracting the person who completed the received offer (1st ouput) after viewing the offer within the offer period , three columns to be added

- -(success) Column which equals to (1) in case of offer completed after viewing the offer other wise equals to (0).
- -(viewing_time) Column which equals to viewed offer time
- -(Viewed) Column which equals to either (1) or (0).

D)(3rd output) profits calculation for the amount of money which is spent within the offer forecast completion time assuming that all transaction executed within the offer duration are using the offers

Eventually, we will get our Modelled data which will be used in our Models training and testing.

We will follow the below Process to get our modelled data starting from Combined data:

In the Modelled data we have a new column ("success"), which will be our output label and will be equal to "1" in case of offer Completed after receiving and viewing or "0" otherwise.

3.1.2 modelled data Exploration:

The relation between gender and age with customer member ship launching year for Successful offers only

The relation between income and age with customer member ship launching year for Successful offers only

The relation between gender and Customer spent until offer Completion with offer type for Successful offers only

For the successful offers, the Females are more interested in discount type rather than bogo type, while Males are interested than bogo type rather than discount type.

The relation between gender and Customer spent until offer Completion with offer id for Successful offers only

The relation between age_groups and Customer spent until offer Completion with offer id for Successful offers only

The relation between age_groups and Customer spent until offer Completion with offer type for Successful offers only

The elderly age group are more interested in discount offer type an which they spent are more than bogo offer type.

The relation between age_groups and Customer spent until offer Completion with member launch year for Successful offers only

The customers with membership in 2018 are utilizing Discount offer rather than bogo offers

3.1.3 Modelled Data statistics:

For Females:

Number of offer Succeeded: 11107 offer, 40.5% of Female received offers.

Number of offer Succeeded: 11107 offer, 16.7% of Total received offers.

For Males:

Number of offer Succeeded: 12413 offer, 32.6% of Male received offers.

Number of offer Succeeded: 12413 offer, 18.7% of Total received offers.

For Females:

Total Spent until offer Complete: 266395 USD, 53.8% of Total Female received offers.

For Males:

Total Spent until offer Complete: 263321 USD, 50.6% of Total Male received offers.

For Females:

Total Spent until offer Complete: 266395 USD, 25.9% of Total received offers.

For Males:

Total Spent until offer Complete: 263321 USD, 25.6% of Total received offers.

Top-10 customers whom they have successful offers and the amount they have spent until offer completion

TOP-10 Customers

[#1]

Person: 0cc6e8553c844c02ab525bc466aa569b

Number of Success Offers: 4 offers

Spent until complete: \$1754.0

[#2]

Person: 2fc5fa0b50f944e398b903b0be851678

Number of Success Offers: 3 offers

Spent until complete: \$1532.0

[#3]

Person: 8d31a8a4b5d24b10a54da118855f7132

Number of Success Offers: 4 offers

Spent until complete: \$1489.0

[#4]

Person: a2633655a62e4287a3b651d926a774a6

Number of Success Offers: 6 offers

Spent until complete: \$1439.0

[#5]

Person: e72ad19d4f6c4827b69b55c5e3a55bba

Number of Success Offers: 4 offers

Spent until complete: \$1271.0

[#6]

Person: 4d4216b868fe43ddb9c9f0b77212c0cb

Number of Success Offers: 6 offers

Spent until complete: \$1164.0

<u>[#7]</u>

Person: bfce6d50205a4f6982d87ce80e5d5356

Number of Success Offers: 4 offers

Spent until complete: \$1161.0

[#8]

Person: dce784e26f294101999d000fad9089bb

Number of Success Offers: 4 offers

Spent until complete: \$1074.0

[#9]

Person: 5dfdad4241764dfe959f51b7460e42b1

Number of Success Offers: 4 offers

Spent until complete: \$1029.0

[#10]

Person: 454b00bdd77c4f588eb9f6cafd81dc5d

Number of Success Offers: 1 offers

Spent until complete: \$1016.0

The above customers are our target to be concentrated on in our offers.

The heat map for the modelled data:

As shown in the above heat map the best features for the modelled data which they have a good bond with our target ('success') are as below in ascending order:

```
#Correlation with output variable
cor_target = abs(C_mat["success"])
#Selecting highly correlated features
relevant_features = cor_target[cor_target>0.15].sort_values()
relevant_features
spent_until_complete
                                     0.155922
2018
                                     0.158226
                                     0.163495
reward
                                     0.167122
web
2298d6c36e964ae4a3e7e9706d1fb8c2
                                     0.186246
difficulty
                                     0.190465
social
                                     0.197064
                                     0.209410
discount
fafdcd668e3743c1bb461111dcafc2a4
                                     0.210728
5a8bc65990b245e5a138643cd4eb9837
                                     0.249718
3f207df678b143eea3cee63160fa8bed
                                     0.250011
duration
                                     0.265026
                                     0.291399
viewing_time
spent_in_duration
                                     0.299669
informational
                                     0.374796
                                     1.000000
success
```


3.1.4 Modelled Data Preparation for training and testing sets:

The Modelled data which will be utilized in our Model training and testing :shape (66501 rows x 42 columns)

- Input features : 41 Features
- Output Label: 1 Column ("success") It will be either ("1") or ("0").
- We will follow the below Process for Dividing the Modelled Data to training, validation and testing Sets.

```
modeled_data.info(0)
 <class 'pandas.core.frame.DataFra
RangeIndex: 66501 entries, 0 to 6
Data columns (total 42 columns):
time
income</pre>
                                                                                                                                                             66501 non-null float64
66501 non-null uint8
 member_launch_Cum_days
difficulty
  duration
  reward
  web
  mobile
social
 social
forecast_finish
success
viewing_time
spent_in_duration
spent_until_complete
discount
informational
0b1e1539f2cc45b7b9fa7c272da2e1d7
2298d6c36e964ae4a3e7e9706d1fb8c2
2906b810c7d4411798c6938adc9daa63
3f207df678b143eea3cee63160fa8bed
4d5c57ea9a6940dd891ad53e9dbe8da0
5a8bc65990b245e5a138643cd4eb9837
5b98b8c7a33c4b65b9aebfe6a799e6d9
ae264e3637204a6fb9bb56bc8210ddfd
f19421c1d4aa40978ebb69ca19b0e20d
fafdcd668e3743c1bb461111dcafc2a4
child
elderly
middle_age_adults
teen
  discount
                                                                                                                                                                 66501 non-null uint8
                                                                                                                                                                66501 non-null uint8
66501 non-null uint8
66501 non-null uint8
                                                                                                                                                              66501 non-null uint8
66501 non-null uint8
66501 non-null uint8
66501 non-null uint8
66501 non-null uint8
66501 non-null uint8
66501 non-null uint8
66501 non-null uint8
66501 non-null uint8
66501 non-null uint8
66501 non-null uint8
66501 non-null uint8
66501 non-null uint8
  young_adults
2013
                                                                                                                                                                66501 non-null
                                                                                                                                                                66501 non-null uint8
  2014
                                                                                                                                                                66501 non-null uint8
  2015
                                                                                                                                                                66501 non-null
                                                                                                                                                                 66501 non-null uint8
66501 non-null uint8
  2016
  2017
                                                                                                                                                                66591
                                                                                                                                                                 66501 non-null uint8
  dtypes: float64(14), int64(1), uint8(27) memory usage: 9.3 MB
```

We will follow the below process for training and testing sets preparation:

3.2 Implementation:

Firstly - after the Preparation of our training and testing data sets -We Will implement our Benchmark model (Logistic regression Model) and calculating our Metrics that we have discussed before.

3.2.1 LOGISTIC REGRESSION MODEL (BENCHMARK MODEL):

```
from sklearn.linear_model import LogisticRegression
In [334]:
           from sklearn.metrics import accuracy score
           from sklearn.metrics import confusion matrix
           from sklearn.metrics import confusion matrix, classification report
           from sklearn.metrics import precision_score,recall_score,f1_score
           from sklearn.metrics import roc_auc_score
           classifier = LogisticRegression(random state = 0)
           classifier.fit(X_train, y_train)
           # Predicting the Test set results
           y_pred_LOG = classifier.predict(X_test)
           print( 'roc_auc_score:' , roc_auc_score(y_test, y_pred_LOG))
print('Precision Metric:',precision_score(y_test, y_pred_LOG))
           print('Recall Metric:',recall_score(y_test, y_pred_LOG))
           /home/ec2-user/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/sk
           t solver will be changed to 'lbfgs' in 0.22. Specify a solver to silen
             FutureWarning)
```

Roc_auc_score: 0.856
Precision: 0.821
Recall: 0.813

roc_auc_score: 0.855732621614278 Precision Metric: 0.8207803046108909 Recall Metric: 0.8129778879933871

Secondly, we will we will follow our Models training and testing:

3.2.2 Random Forrest Classifier:

```
from sklearn.ensemble import RandomForestClassifier
import math
rf = RandomForestClassifier(max_depth=10, random_state=0)

rf.fit(X_train, y_train)
y_pred_RF = rf.predict(X_test)
print( 'roc_auc_score:' , roc_auc_score(y_test, np.around(y_pred_RF)))
print('Precision Metric:',precision_score(y_test, np.around(y_pred_RF)))
print('Recall Metric:',recall_score(y_test, np.around(y_pred_RF)))

#print(accuracy_score(y_test, np.around(y_pred_RF)))
#print(confusion_matrix(y_test, np.around(y_pred_RF)))
#print('-'*100)
#print(classification_report(y_test, np.around(y_pred_RF)))

/home/ec2-user/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/sklearn/
value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
```

Roc_auc_score: 0.970
Precision: 0.933
Recall: 0.980

roc_auc_score: 0.9702271326258832 Precision Metric: 0.9338452451269935 Recall Metric: 0.9801611903285803

3.2.3 Decision Tree Classifier:

```
from sklearn.tree import DecisionTreeClassifier

dt = DecisionTreeClassifier()

dt.fit(X_train, y_train)
y_pred_tree = dt.predict(X_test)
print('roc_auc_score:', roc_auc_score(y_test, y_pred_tree))
print('Precision Metric:',precision_score(y_test, y_pred_tree))
print('Recall Metric:',recall_score(y_test, y_pred_tree))

#print(accuracy_score(y_test, y_pred_tree))
#print(confusion_matrix(y_test, y_pred_tree))
#print('-'*100)
#print(classification_report(y_test, y_pred_tree))
```

Roc_auc_score: 0.962
Precision: 0.952
Recall: 0.952

roc_auc_score: 0.962364001246666 Precision Metric: 0.9518694484610618 Recall Metric: 0.9522628642281463

3.2.4 K-neighbors Classifier:

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)
# Predicting the Test set results
y_pred_knn = knn.predict(X_test)

print( 'roc_auc_score:' , roc_auc_score(y_test, y_pred_knn))
print('Precision Metric:',precision_score(y_test, y_pred_knn))
print('Recall Metric:',recall_score(y_test, y_pred_knn))
#print(accuracy_score(y_test, y_pred_knn))
#print(confusion_matrix(y_test, y_pred_knn))
#print('-'*100)
#print(classification_report(y_test, y_pred_knn))
```

Roc_auc_score: 0.780
Precision: 0.719
Recall: 0.723

roc_auc_score: 0.7806063590805208 Precision Metric: 0.718865598027127 Recall Metric: 0.7228766274023558

3.2.5 Amazon Sage maker XG-Boost built in Algorithm:

```
# As stated above, we use this utility method to construct the image name for the training container. container = get_image_uri(session.boto_region_name, 'xgboost','0.90-1')
xgb = sagemaker.estimator.Estimator(container, # The location of the container we wish to use
                                                                                          # What is our current IAM Role
                                           role,
                                           train_instance_count=1,
                                                                                          # How many compute instances
                                           train_instance_type='ml.m4.xlarge',  # What kind of compute instances output_path='s3://{}/{)/output'.format(session.default_bucket(), prefix),
                                           sagemaker_session=session)
 # And then set the algorithm specific parameters.
xgb.set_hyperparameters(max_depth=2,
                             gamma=2.6,
                             min_child_weight=2,
                             subsample=0.65,
                            silent=0.
                             alpha=1.5.
                         # colsample_bylevel=0.5,
                          # colsample_bynode=0.5,
                           # colsample_bytree=0.5,
                             max_delta_step=3,
                             objective='binary:logistic',
                             early_stopping_rounds=100,
                             num_round=500)
```

```
Roc_auc_score: 0.957
Precision: 0.950
Recall: 0.942
```

```
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.metrics import precision_score,recall_score,f1_score
from sklearn.metrics import roc_auc_score,roc_curve,auc
false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, predictions)
print( 'roc_auc Metric:' , roc_auc_score(y_test, predictions))
print( 'AUC Metric:' , auc(false_positive_rate, true_positive_rate))
print( 'Precision Metric:',precision_score(y_test, predictions))
print('Recall Metric:',recall_score(y_test, predictions))
#print(accuracy_score(y_test, predictions))
#print(confusion_matrix(y_test, predictions))
#print('-'*100)
#print(classification_report(y_test, predictions))
```

roc_auc Metric: 0.956562528252559 AUC Metric: 0.956562528252559 Precision Metric: 0.9495728276724318 Recall Metric: 0.9417234965902046

3.2.6 LightGBM Model:

LightGBM Model(Features importance):

3.2.7 Cat Boost Model:

```
from catboost import CatBoostClassifier
 model_cat = CatBoostClassifier(iterations=4000, learning_rate=0.005, l2_leaf_reg=5, depth=4, rsm=0.98, loss_function= 'Logloss',
model_cat.fit(X_train,y_train,eval_set=(X_val,Y_val))
 preds = model_cat.predict_proba(X_test)
 pred = np.where(preds > 0.5, 1, 0) #Turn probability to 0-1 binary output
 predss= pred[:,1]
#CatBoostClassifier.plot_importance(model_cat, max_num_features=21, importance_type='split')
##CatBoostClassifter.plot _importance(model_cat, max_num_feature
auc_cat = roc_auc_score(y_test,preds_cat)
print('roc_auc_score of cATBOOST model:', auc_cat)
print('Precision Metric:',precision_score(y_test, preds_cat))
print('Recall Metric:',recall_score(y_test, preds_cat))
#Print Area Under Curve
plt.figure(figsize=(16, 10))
plt.figure(figsize=(16, 10))
false_positive_rate, recall, thresholds = roc_curve(y_test, preds_cat)
roc_auc = auc(false_positive_rate, recall)
plt.title('Receiver Operating Characteristic (ROC)')
plt.plot(false_positive_rate, recall, 'b', label = 'AUC = %0.3f' %roc_auc)
plt.legend(loc='lower right')
plt.plot([0,1], [0,1], 'r--')
plt.xlim([0.0,1.0])
plt.xlim([0.0,1.0])
plt.ylim([0.0,1.0])
plt.ylabel('Recall')
plt.xlabel('Fall-out (1-Specificity)')
plt.show()
#print('AUC score:', roc_auc)
print('roc_auc_score:', roc_auc_score(y_test,preds_cat))
#Print Confusion Matrix
plt.figure(figsize=(16, 10))
pit.tigure(figsize=(10, 10))
cm = confusion_matrix(y_test, preds_cat)
labels = ['No Default', 'Default']
plt.figure(figsize=(8,6))
sns.heatmap(cm, xticklabels = labels, yticklabels = labels, annot = True, fmt='d', cmap="Blues", vmin = 0.2);
plt.title('Confusion Matrix')
plt.ylabel('True Class')
plt.ylabel('True Class')
plt.xlabel('Predicted Class')
plt.show()
```

Roc_auc_score: 0.974
Precision: 0.963
Recall: 0.969

roc_auc_score of CATBOOST model: 0.974086648947443 Precision Metric: 0.9634346754313886 Recall Metric: 0.9692085141558173

Q

Name

eta

silent

3.3 Refinement:

We will work for improvement of our Models, and we will concentrate on XGB, LGB and CatBoost by tuning the hyper parameters.

3.3.1: Amazon Sage maker XG-Boost built in Algorithm-Hyper parameter Tuning:

Amazon Sage maker XG-Boost built in Algorithm- (metrics with best parameters):

```
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.metrics import precision_score,recall_score,f1_score
from sklearn.metrics import roc_auc_score,roc_curve,auc
false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, predictions)
print( 'roc_auc Metric:' , roc_auc_score(y_test, predictions))
print( 'AUC Metric:' , auc(false_positive_rate, true_positive_rate))
print('Precision Metric:',precision_score(y_test, predictions))
print('Recall Metric:',recall_score(y_test, predictions))
#print(accuracy_score(y_test, predictions))
#print(confusion_matrix(y_test, predictions))
#print('-'*100)
#print(classification_report(y_test, predictions))
```

roc_auc Metric: 0.9746620670340336 AUC Metric: 0.9746620670340336 Precision Metric: 0.962318246979316 Recall Metric: 0.9710684025625129

Better results than before

Roc_auc_score: 0.974
Precision: 0.962
Recall: 0.971

3.3.2: LightGBM Model -Hyper parameter Tuning:

```
# Create parameters to search
gridParams = {
    'learning_rate': [0.01,0.05,0.1,0.15],
    'n_estimators': [16,32,43,52],
    'num_leaves': [15,30,35,45,50,60],
    'boosting_type': [15,01],
    'objective': ['binary'],
    'random_state': [501],
    'colsample_bytree': [0.50,0.55,0.60,0.65, 0.70,0.75],
    'subsample': [0.4,0.5,0.6,0.7]
    #'reg_lambda': [1.2,1.2],
    #'reg_lambda': [1.2,1.4],
    }

# Create classifier to use
mdl = lgb.lGBMClassifier(boosting_type= 'gbdt',
    objective = 'binary',
    n_jobs = 5,
    silent = True,
    metric-'auc',
    max_depth = params['max_depth'],
    max_bin = params['max_depth'],
    subsample = params['subsample_for_bin'],
    subsample = params['subsample],
    subsample = params['subsample_freq'],
    min_split_gain = params['min_split_gain'],
    min_child_weight = params['min_child_weight'],
    min_child_weight = params['min_child_weight'],
    min_child_samples = params['min_child_samples'],
    scale_pos_weight = params['min_child_sample
```


{'boosting_type': 'gbdt', 'colsample_bytree': 0.75, 'learning_rate': 0.1, 'n_estimators': 48, 'num_leaves': 35, 'objective': 'b inary', 'random_state': 501, 'subsample': 0.5}
0.9741050387161935

<u>LightGBM Model -Hyper parameter Tuning (metrics with best parameters):</u>

```
from sklearn.metrics import confusion_matrix,accuracy_score, roc_curve, auc
lgb.plot_importance(lgbm, max_num_features=21, importance_type='split',figsize= (20,20))
#Print accuracy
auc_lgbm = roc_auc_score(y_test,predictions_lgbm_01)
print('roc_auc_score of Light GBM model:', auc_lgbm)
print('Precision Metric:',precision_score(y_test, predictions_lgbm_01))
print('Recall Metric:',recall_score(y_test, predictions_lgbm_01))
#Print Area Under Curve
plt.figure(figsize=(16, 10))
false_positive_rate, recall, thresholds = roc_curve(y_test, predictions_lgbm_prob)
roc_auc = auc(false_positive_rate, recall)
plt.title('Receiver Operating Characteristic (ROC)')
plt.plot(false_positive_rate, recall, 'b', label = 'AUC = %0.3f' %roc_auc)
plt.legend(loc='lower right')
plt.plot([0,1], [0,1], 'r--')
plt.xlim([0.0,1.0])
plt.ylim([0.0,1.0])
plt.ylabel('Recall')
plt.xlabel('Fall-out (1-Specificity)')
plt.show()
#roc_auc_score(y_test, predictions)
#print('AUC score:', roc_auc)
print('roc_auc_score:', roc_auc_score(y_test, predictions_lgbm_01))
#Print Confusion Matrix
plt.figure(figsize=(16, 10))
cm = confusion\_matrix(y\_test, predictions\_lgbm\_01) \\
labels = ['No Default', 'Default']
plt.figure(figsize=(8,6))
sns.heatmap(cm, xticklabels = labels, yticklabels = labels, annot = True, fmt='d', cmap="Blues", vmin = 0.2);
plt.title('Confusion Matrix')
plt.ylabel('True Class')
plt.xlabel('Predicted Class')
plt.show()
```

roc_auc_score of Light GBM model: 0.9746763047364562 Precision Metric: 0.960016319869441 Recall Metric: 0.9725149824343873

Better results than before

Roc_auc_score: 0.974
Precision: 0.960
Recall: 0.973

3.3.3: CatBoost Model -Hyper parameter Tuning:


```
The best parameters across ALL searched params: {'learning_rate': 0.1, 'l2_leaf_reg': 7, 'depth': 6}
```


<u>CatBoost Model -Hyper parameter Tuning (metrics with best parameters):</u>

```
#Print accuracy
#CatBoostClassifier.plot_importance(model_cat, max_num_features=21, importance_type='split')
auc_cat = roc_auc_score(y_test,preds_cat)
print('roc_auc_score of CATBOOST model:', auc_cat)
print('Precision Metric:',precision_score(y_test, preds_cat))
print('Recall Metric:',recall_score(y_test, preds_cat))
#Print Area Under Curve
plt.figure(figsize=(16, 10))
false_positive_rate, recall, thresholds = roc_curve(y_test, preds_cat)
roc_auc = auc(false_positive_rate, recall)
plt.title('Receiver Operating Characteristic (ROC)')
plt.plot(false_positive_rate, recall, 'b', label = 'AUC = %0.3f' %roc_auc)
plt.legend(loc='lower right')
plt.plot([0,1], [0,1], 'r--')
plt.xlim([0.0,1.0])
plt.ylim([0.0,1.0])
plt.ylabel('Recall')
plt.xlabel('Fall-out (1-Specificity)')
plt.show()
#print('AUC score:', roc_auc)
print('roc_auc_score:', roc_auc_score(y_test,preds_cat))
#Print Confusion Matrix
plt.figure(figsize=(16, 10))
cm = confusion_matrix(y_test, preds_cat)
labels = ['No Default', 'Default']
plt.figure(figsize=(8,6))
sns.heatmap(cm, xticklabels = labels, yticklabels = labels, annot = True, fmt='d', cmap="Blues", vmin = 0.2);
plt.title('Confusion Matrix')
plt.ylabel('True Class')
plt.xlabel('Predicted Class')
plt.show()
```

roc_auc_score of CATBOOST model: 0.9741754331106635

Precision Metric: 0.9644106150997737 Recall Metric: 0.9687952056209961

Better results than before

Roc_auc_score: 0.974
Precision: 0.964
Recall: 0.968

4. Results:

4.1 Models Evaluation and Validation:

Now, after finalizing the models hyper parameters tuning and getting the best parameters, we will Evaluate the all Models together to get the best Model according to roc_auc_Score:

	classifiertype	roc_auc_score	Precision Metric	Recall Metric
0	LGB	0.974676	0.960016	0.972515
1	XGBoost	0.974662	0.962318	0.971068
2	CatBoost	0.974175	0.964411	0.968795
3	Random_Forrest_classifier	0.970227	0.933845	0.980161
4	Decision_Tree_Classifier	0.962039	0.950124	0.952676
5	Logistic_regression	0.855733	0.820780	0.812978
6	KNeighborsClassifier	0.780606	0.718866	0.722877

As shown in the abovementioned figure, the best three models are the Boosting models LGB,XGB and CatBoost and their results are so incredibly close.

4.2 Justification:

Eventually, we can say that the Boosting Models have the Best results in our Problem comparing to our Benchmark Model (Logistic regression), especially LightGBM Model with the below features

we can achieve more improvement for our Boosting Models , by using ensembling stacking:

https://www.kaggle.com/arthurtok/introduction-to-ensembling-stacking-in-python I feel that we can get better results by applying that approach.

5. References:

- https://towardsdatascience.com/handling-imbalanced-datasets-in-machine-learning-7a0e84220f28
- https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc auc score.html
- https://aws.amazon.com/blogs/machine-learning/simplify-machine-learning-with-xgboost-and-amazon-sagemaker/
- http://uc-r.github.io/gbm regression
- https://www.analyticsvidhya.com/blog/2017/08/catboost-automated-categorical-data/
- https://en.wikipedia.org/wiki/Receiver operating characteristic
- https://www.kaggle.com/arthurtok/introduction-to-ensembling-stacking-in-python
- https://stackoverflow.com/questions/10373660/converting-a-pandas-groupby-object-to-dataframe

