Appl. No. 09/939,166

Amdt. Date February 14, 2005

Response to Office Action dated December 13, 2004

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (previously presented): A system for stimulating the healing of tissue, comprising:
- a porous pad;
- an airtight dressing;
- a distal end of a conduit connected to the dressing;
- a canister removably connected to a proximal end of the conduit;
- an electric pump for applying negative pressure to a wound site;
- a hydrophobic filter positioned between said canister and said electric pump; and
- an odor vapor filter positioned between said hydrophobic filter and said electric pump.
- 2. (previously presented): The system of claim 1 wherein said hydrophobic filter and said odor vapor filter are incorporated as an integral part of said canister.
- 3. (previously presented): The system of claim 1 further comprising an access port for sampling wound fluids, said access port being connected to said conduit and having a resealable membrane operable to maintain a seal after being punctured.
- 4. (previously presented): The system of claim 1 further comprising a clamp for securing said system to a pole.
- 5. (previously presented): The system of claim 1, further comprising a portable housing for said electric pump, said portable housing having a clamp for securing said system to a pole.
 - 6. (canceled).

Appl. No. 05/555,100
Anult. Date February 14, 2005

Response to Office Action dated December 13, 2004

7 (original): The system of claim 1 wherein said porous pad is comprised of an open cell-polymer.

- 8. (previously presented): The system of claim 1, further comprising means for deactivating a backlight to a display after a predetermined interval.
- 9. (previously presented): The system of claim 1, further comprising a motor control that determines a tentative motor drive power for reaching a target pressure and which withholds electric power from an electric motor unless the tentative motor drive power is sufficient to activate said motor.
- 10. (original): The system of claim 1 wherein said conduit is comprised of longitudinal partitions that form a drainage conduit and a pressure detection conduit.
- 11. (original): The system of claim 10 wherein a plurality of said detection conduits are arranged about said drainage conduit.
- 12. (previously presented): The system of claim 10, further comprising a resealable access port for sampling fluids, said access port comprising an appendage of said drainage conduit.
- 13. (currently amended): A system for stimulating the healing of tissue, comprising: a porous pad; an airtight dressing; a distal end of a drainage tube connected to said dressing; a canister removably connected to a proximal end of the drainage tube; a self-contained pumping mechanism for applying negative pressure to the wound site; the pumping mechanism including an electric motor; and a power management motor control that determines a tentative motor drive power for reaching a target pressure and which withholds electric power from the electric motor unless the tentative motor drive power is sufficient to activate said electric motor; and an access port for sampling wound fluids, said access port being connected to said drainage tube and having a resealable membrane operable to maintain a seal after being punctured.

Amdt: Date February 14, 2005

- 14. (previously presented): The system of clam 13, further comprising means for deactivating a backlight to a display after a predetermined interval.
 - 15. (canceled).
 - 16. (canceled).
- 17. (previously presented): The system of claim 13 further comprising a clamp for securing said system to a pole.
- 18. (previously presented): The system of claim 13 wherein said porous pad is comprised of a polyvinyl alcohol foam.
 - 19. (currently amended): A system for stimulating the healing of tissue, comprising:
 - a porous pad;
 - an airtight dressing;
 - an electric pump for applying negative pressure to a wound site;
 - a canister removably connected to said electric pump;
 - a housing for containment of said canister and said electric pump;
 - a clamp for securing said housing to a pole; and
- a power management motor control that determines a tentative drive power for reaching a target pressure and which withholds electric power from said electric pump unless the tentative drive power is sufficient to activate said electric pump; and
- a resealable access port for sampling wound fluids, said access port being connected to said conduit and having a resealable membrane operable to maintain a seal after being punctured.
 - 20. (canceled).

Amdt. Dete February 14, 2005

- 21. (previously presented): The system of claim 19, further comprising a portable power unit for supplying power to said electric pump.
 - 22. (canceled).
- 23. (previously presented): The system of claim 19, further comprising means for deactivating a backlight to a display on said housing after a predetermined interval.
 - 24. (canceled).
- 25. (original): The system of claim 19 wherein said porous pad is comprised of a polyvinyl alcohol foam.
- 26. (previously presented): The system of claim 19 further comprising a conduit having a proximal end and a distal end, and wherein said proximal end is removably connected to said canister and said distal end is in fluid communication with the wound site.
- 27. (original): The system of claim 26 wherein said conduit is comprised of longitudinal partitions that form a drainage conduit and a pressure detection conduit.
- 28. (previously presented): The system of claim 27 wherein a plurality of said detection conduits are arranged about said drainage conduit.
 - 29. (canceled).
- 30 (currently amended): The system of claim 29 19 wherein said resealable access port comprises an appendage of said conduit.
 - 31-40. (canceled)

Appl. No. 09/939,166

And: Date February 14, 2005

- 41. (New) The system of claim 1, wherein said electric pump is a variable frequency pump.
- 42. (New) The system of claim 41, further comprising a control system to determine an optimum drive frequency for driving the variable frequency pump in order to maximize pump flow.
- 43. (New) The system of claim 41, further comprising a pressure sensor for measuring pressure across said pump.
- 44. (New) The system of claim 42, further comprising a variable frequency drive circuit for driving said pump at said optimum drive frequency.
- 45. (New) The system of claim 13, further comprising a control system to determine an optimum drive frequency for driving the variable frequency pump in order to maximize pump flow.
- 46. (New) The system of claim 45, further comprising a variable frequency drive circuit for driving said pump at said optimum drive frequency.
- 47. (New) The system of claim 45, further comprising a pressure sensor for measuring pressure across said pump.
- 48. (New) The system of claim 46, further comprising a variable frequency drive circuit for driving said pump and said optimum drive frequency.
- 49. (New) The system of claim 19, wherein said electric pump is a variable frequency pump.

Appl. No. 09/939,166

Amdt. Date February 14, 2005

- 50. (New) The system of claim 49, further comprising a control system to determine an optimum drive frequency for driving the variable frequency pump in order to maximize pump flow.
- 51. (New) The system of claim 50, further comprising a variable frequency drive circuit for driving said pump at said optimum drive frequency.
- 52. (New) The system of claim 49, further comprising further comprising a pressure sensor for measuring pressure across said pump.