

Machine Translation. Attention. Transformers

MIPT 4.03.2021 Anton Emelianov, Alena Fenogenova.

Today

- Machine Translation
- Seq2Seq
- Attention
- Early attention models
- Transformer
 - High-level
 - Deeper

$$x=(x_1,x_2,...,x_(T_x))$$
 $y=(y_1,y_2,...,y_(T_y))$

Translation task => finding the target sequence that is the most probable given the input;

the target sequence that maximizes the conditional probability: $y^* = rg \max_y p(y|x)$

Machine translation:

- between natural languages
- between programming languages
- any sequences of tokens

by Machine translation we will mean any general sequence-to-sequence task

Machine translation systems learn a function: $p(y|x, \theta)$

We try to find target sequence that maximizes the conditional probability:

$$y = argmax_y p(y|x, \theta)$$

where θ – model parameters that determine probability distibution

What to do?

- 1. modeling how does the model for $p(y|x,\theta)$ look like?
- 2. learning how to find the parameters θ ?
- 3. inference how to find the best y?

Seq2Seq

Introduced by Google in 2014

Encoder - reads source sequence and produces its representation;

Decoder - uses source representation from the encoder to generate the target sequence.

Maps variable-length sequences to fixed-length memory Commonly used LSTMs, GRUs in encoder, decoder

Machine translation. Conditional LM

Language models estimate the *unconditional probability* p(y) of a sequence y, Sequence-to-sequence models need to estimate the *conditional probability* p(y|x) of a sequence y given a <u>source</u> x

Pipeline:

- feed source and previously generated target words into a network;
- get vector representation of context (both source and previous target) from the networks decoder;
- from this vector representation, predict a probability distribution for the next token.

Training:

we train to predict probability distributions of the next token given previous context (source and previous target tokens). At each step we maximize the probability a model assigns to the correct token.

Cross-entropy: looking for parameters

$$Loss(p^*,p) = -p^*\log(p) = -\sum_{i=1}^{|V|} p_i^*\log(p_i)$$

Seq2seq is optimized as a single system. Backpropagation operates "end-to-end"

Machine translation. Inference

Ok, everything is great, but **how to generate**?

How to find argmax?
$$y' = \arg \max_{y} p(y|x) = \arg \max_{y} \prod_{t=1}^{n} p(y_t|y_{< t}, x)$$

Actually, the total number of hypotheses is |V|ⁿ

We don't try to find exact solution, we approximate it.

There are several methods to do it ...

Machine translation. Inference

Greedy Decoding:

At each step, pick the most probable token

Take argmax on each step of the decoder

Problems:

- the best next token != best sequence
- has no way to undo decisions

Machine translation. Inference

Beam Search: -4.8 -4.0in tart Keep -2.8 -4.3 probable pie with -1.7 а pie translations -3.4-4.5 -0.7hit me (hypotheses) he tart -3.3 -3.7struck -2.5 with -4.6 -2.9 <START> -2.9on one -5.0 (in practice 4 to 10) -1.6 hit -3.5 -4.3 pie was struck tart Example: got -3.8 -5.3 -0.9

-1.8

$$score(y_1, ..., y_t) = \sum_{i=1}^{t} log P_{LM}(y_i|y_1, ..., y_{i-1}, x)$$

beam size k = 2

Machine translation. Evaluation

BLEU (Bilingual Evaluation Understudy)

BLEU compares the machine-written translation to one or several human-written translation(s), and computes a similarity score based on:

- n-gram precision (usually for 1, 2, 3 and 4-grams)
- Plus a penalty for too-short system translations

(Sum over unique n-gram counts in the candidate)

(total # of words in candidate)

<u>Limitations</u>: semantics, the order of the n-grams in the sentence.

ROUGE (Recall Oriented Understudy for Gisting Evaluation)

[check quality of machine text for machine translation or summarization]

calculates precision and recall for machine texts by counting the n-gram overlap between the machine texts and a reference text

<u>Limitations</u>: meaning (does not understan concepts and themes)

Machine translation. Limitations

- for the encoder, it is hard to compress the sentence;
- for the decoder, different information may be relevant at different steps;
- how far we can see in the past is finite.
 RNN's tend to forget information from timesteps that are far behind.

The intermediate representation z cannot encode information from all the input timesteps **bottleneck problem**.

The stacked RNN layers usually create **vanishing** gradient problem

Attention:

At different steps, let a model "focus" on different parts of the source tokens (more relevant ones).

Core idea:

on each step of the decoder, use direct connection to the encoder to focus on a particular part of the source sequence

At each decoder step, attention:

- receives attention input
- computes attention scores
- computes attention weights:
 a probability distribution softmax applied to attention
 scores;
- computes attention output:
 the weighted sum of encoder
 states with attention weights.

Attention variants

There are sevaral ways to compute attention score:

Name	Alignment score function
Content-base attention	$ ext{score}(oldsymbol{s}_t, oldsymbol{h}_i) = ext{cosine}[oldsymbol{s}_t, oldsymbol{h}_i]$
Additive(*)	$ ext{score}(oldsymbol{s}_t, oldsymbol{h}_i) = \mathbf{v}_a^ op anh(\mathbf{W}_a[oldsymbol{s}_t; oldsymbol{h}_i])$
Location- Base	$lpha_{t,i} = \mathrm{softmax}(\mathbf{W}_a \mathbf{s}_t)$ Note: This simplifies the softmax alignment to only depend on the target position.
General	$ ext{score}(m{s}_t, m{h}_i) = m{s}_t^ op \mathbf{W}_a m{h}_i$ where \mathbf{W}_a is a trainable weight matrix in the attention layer.
Dot-Product	$ ext{score}(oldsymbol{s}_t, oldsymbol{h}_i) = oldsymbol{s}_t^ op oldsymbol{h}_i$
Scaled Dot- Product(^)	$\mathrm{score}(s_t, h_i) = \frac{s_t^{\scriptscriptstyle \top} h_i}{\sqrt{n}}$ Note: very similar to the dot-product attention except for a scaling factor; where n is the dimension of the source hidden state.

- dot-product the simplest method;
- general or bilinear function (aka "Luong attention") from Effective Approaches to Attention-based Neural Machine Translation;
- additive or multi-layer perceptron (aka "<u>Bahdanau attention</u>");
- actually any function you want =).

Early attention models

Bahdanau attention (paper

Neural Machine Translation by

Jointly Learning to Align and

Translate by Dzmitry Bahdanau,

KyungHyun Cho and Yoshua

Bengio);

Luong attention (the paper

Effective Approaches to

Attention-based Neural

Machine Translation by

Minh-Thang Luong, Hieu Pham,

Christopher D. Manning.

Luong Attention Mechanism

$$\mathbf{h}_t \to \mathbf{a}_t \to \mathbf{c}_t \to \tilde{\mathbf{h}}_t$$

$$\mathbf{a}_{t}(s) = \operatorname{align}(\mathbf{h}_{t}, \bar{\mathbf{h}}_{s})$$

$$\mathbf{c}_{t} = \sum a_{t} \mathbf{h}_{s}$$

$$\tilde{\mathbf{h}}_{t} = \operatorname{tanh}(W_{c}[\mathbf{c}_{t}; \mathbf{h}_{t}])$$

Bahdanau Attention Mechanism

$$\mathbf{h}_{t-1} \to \mathbf{a}_t \to \mathbf{c}_t \to \mathbf{h}_t$$

$$\mathbf{a}_{t}(s) = \operatorname{align}(\mathbf{h}_{t-1}, \bar{\mathbf{h}}_{s})$$

$$\mathbf{c}_{t} = \sum a_{t} \mathbf{h}_{s}$$

$$\mathbf{h}_{t} = \operatorname{RNN}(\mathbf{h}_{t-1}^{l-1}, [\mathbf{c}_{t}; \mathbf{h}_{t-1}])$$

Attention is good

- Attention significantly improves NMT performance
 - It's very useful to allow decoder to focus on certain parts of the source
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- how are the results

 wie sind die Ergebnisse

- Attention helps with vanishing gradient problem
 - Provides shortcut to faraway states
- Attention provides some interpretability
 - attention distribution shows what the decoder was focusing on
 - Alignment

Transformer

Transformers

Attention is all you need =) 2017

Previously:

- RNN encoder + RNN decoder, interaction
 via fix-sized vector
- RNN encoder + RNN decoder, interaction
 via fix-sized vector

NOW:

attention + attention+ attention

Transformers. High-level

Transformers. Self-attention

Previously - one decoder state looked at all encoder states

NOW - each state looks at each other states

Self-attention:

- tokens interact with each other
- each token "looks" at other tokens
- gathers context
- updates the previous representation of

Tokens try to understand themselves better in context of each other

Layer k

Layer k+1

"I" "saw" "cat" "on" "mat" <eos>

Я видел котю на мате <eos>
"I" "saw" "cat" "on" "mat"

In Parallel!

Transformers. Self-attention

Query, Key and Value vectors:

Each vector (512 dim) receives three representations:

- query asking for information;
- key saying that it has some information;
- value giving the information.

These matrices allow different aspects of the *x* vectors to be used/emphasized in each of the three roles

Attention matches the key and query by assigning a value to the place the key is most likely to be.

Transformers. Masked self-attention

Decoder has different self-attention =>

Masked self-attention

- we generate one token at a time (we don't have all source tokens at once like in encoder):
 during generation, we don't know which tokens we'll generate in future.
- to enable parallelization we forbid the decoder to look ahead future tokens are masked out
 (setting them to -inf) before the softmax step in the self-attention calculation

Transformers. Multi-head attention

- We need to know different relationships between tokens in a sentence: syntactic relationships, lexical preferences, order, grammar issues like case or gender agreement.
- Instead of having one attention mechanism, multi-head attention has several "heads" which work independently and focus on different things.
- Heads works independently

 $ext{where head }_{ ext{i}} = ext{ Attention } \left(\mathbf{Q} \mathbf{W}_i^Q, \mathbf{K} \mathbf{W}_i^K, \mathbf{V} \mathbf{W}_i^V
ight)$

Transformers. Positional encoding

positional encoding provides order information to the model

The fixed positional encodings

used in the Transformer

$$PE(i, \delta) = \begin{cases} \sin(\frac{i}{10000^{2\delta'/d}}) & \text{if } \delta = 2\delta' \\ \cos(\frac{i}{10000^{2\delta'/d}}) & \text{if } \delta = 2\delta' + 1 \end{cases}$$

Transformers. Extra

Feed-forward blocks

each layer has a block: two linear layers with ReLU non-linearity between them $FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$.

Residual connection (train better)

Residual connections => add a block's input to its output

They ease the gradient flow through a network and allow stacking a lot of layers

Normalization (train faster) Layer **Normalizes** vector representation each example batch. **Improves** stability in convergence Idea: cut down on uninformative variation in hidden vector values by normalizing to unit mean and standard deviation within each layer 38

^{*} In the Transformer in the "Add & Norm" part, the "Add" part stands for the residual connection.

Transformers. One more time

Transformers

Why are transformers good?

- No recurrence, distributed and independent representations at each block (all tokens can be processed at once)
- No long relations: for recurrent models one training step requires O(len(source) + len(target)) steps, for Transformer, it's O(1), since all words interact at every layer.
- Fast learning: encoder and decoder can be parallel
- Self-Attention: model does not need to remember too much.
- Multi-head attention allows to pay attention to different aspects
- The meaning heavily depends on the context

References

Transformers

Attention is all you need Transformer survey

High-level

Jay Alammar:

- Transformers http://jalammar.github.io/illustrated-transformer/
- Seq2seq with attention https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Al Summer https://theaisummer.com/transformer/

Deeper

- Stanford Lectures https://www.youtube.com/watch?v=IxQtK2SjWWM&ab_channel=StanfordUniversitySchoolofEngineering
- Lena Voita https://lena-voita.github.io/nlp course/seq2seq and attention.html
- https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html

With code:

- https://nlp.seas.harvard.edu/2018/04/03/attention.html
- https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/text/transformer.ipynb#scrollTo=1kLC la68EloE