Dimensionality Reduction

Machine Learning (AIM 5002-41)

Joon Hee Choi Sungkyunkwan University

Motivation I: Data Compression

Data Compression

Reduce data from 2D to 1D

Data Compression

Reduce data from 2D to 1D

$$x^{(1)} \in \mathbb{R}^2 \longrightarrow z^{(1)} \in \mathbb{R}$$
$$x^{(2)} \in \mathbb{R}^2 \longrightarrow z^{(2)} \in \mathbb{R}$$

$$x^{(m)} \in \mathbb{R}^2 \longrightarrow z^{(m)} \in \mathbb{R}$$

Data Compression

Reduce data from 3D to 2D

Andrew Ng

Motivation II: Data Visualization

 $x \in \mathbb{R}^{50} \qquad x^{(i)} \in \mathbb{R}^{50}$

Data Visualization

	x_1	x_2	x_3	x_4	x_5	x_6	1
Country	GDP (trillions of US\$)	Per capita GDP (thousands of intl. \$)	Human Develop- ment Index	Life expectancy	Poverty Index (Gini as percentage)	Mean household income (thousands of US\$)	
Canada	1.577	39.17	0.908	80.7	32.6	67.293	
China	5.878	7.54	0.687	73	46.9	10.22	
India	1.632	3.41	0.547	64.7	36.8	0.735	
Russia	1.48	19.84	0.755	65.5	39.9	0.72	
Singapore	0.223	56.69	0.866	80	42.5	67.1	
USA	14.527	46.86	0.91	78.3	40.8	84.3	

Data Visualization

$_{7}(i)$	_	_{ID} 2
$Z^{(c)}$	\vdash	\mathbb{W}_{-}

Country	z_1	z_2	_	
Canada	1.6	1.2		
China	1.7	0.3		
India	1.6	0.2	Reduce data from 50D to 2D	
Russia	1.4	0.5		
Singapore	0.5	1.7		
USA	2	1.5		
•••	•••			

Principal Component Analysis problem formulation

Principal Component Analysis (PCA) problem formulation

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)} \in \mathbb{R}^n$) onto which to project the data so as to minimize the projection error.

Reduce from n-dimension to k-dimension: Find k vectors $u^{(1)}, u^{(2)}, \ldots, u^{(k)}$ onto which to project the data, so as to minimize the projection error.

Principal Component Analysis algorithm

Data preprocessing

Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)}$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$
 Replace each $x_j^{(i)}$ with $x_j - \mu_j$.

If different features on different scales (e.g., $x_1 =$ size of house, $x_2 =$ number of bedrooms), scale features to have comparable range of values.

$$x_j^{(i)} \leftarrow \frac{x_j^{(i)} - \mu_j}{s_j}$$

Principal Component Analysis (PCA) algorithm

Reduce data from 2D to 1D

Reduce data from 3D to 2D

Principal Component Analysis (PCA) algorithm

Reduce data from n-dimensions to k-dimensions

Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} \underbrace{(x^{(i)})(x^{(i)})^T}_{n \times 1} \xrightarrow{n \times n}$$

→ Singular value decomposition

Compute "eigenvectors" of matrix Σ :

$$U = \begin{bmatrix} \begin{vmatrix} & & & & & \\ u^{(1)} & u^{(2)} & \dots & u^{(n)} \\ & & & & \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Principal Component Analysis (PCA) algorithm

From [U,S,V] = svd(Sigma), we get:

$$U = \begin{bmatrix} 1 & 1 & 1 \\ u^{(1)} & u^{(2)} & \dots & u^{(n)} \\ 1 & 1 & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

$$z^{(i)} = \begin{bmatrix} 1 & 1 & 1 \\ u^{(1)} & u^{(2)} & \dots & u^{(k)} \\ 1 & 1 & 1 \end{bmatrix}^{T} x^{(i)}$$

$$x^{(i)} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x^{(i)}$$

 $k \times 1$

Principal Component Analysis (PCA) algorithm summary

After mean normalization (ensure every feature has zero mean) and optionally feature scaling:

```
Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)})(x^{(i)})^{T}
[U,S,V] = \text{svd}(\text{Sigma});
\text{Ureduce} = U(:,1:k);
z = \text{Ureduce}' *x;
```

Reconstruction from compressed representation

Reconstruction from compressed representation

Choosing the number of principal components

Choosing k (number of principal components)

Average squared projection error: $\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2$ Total variation in the data: $\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2$

Typically, choose k to be smallest value so that

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01$$
 (1%)

"99% of variance is retained"

Choosing k (number of principal components)

Algorithm:

Try PCA with k = 1

Compute $U_{reduce}, z^{(1)}, z^{(2)},$

$$\ldots, z^{(m)}, x^{(1)}_{approx}, \ldots, x^{(m)}_{approx}$$

Check if

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01?$$

[U,S,V] = svd(Sigma)

Choosing k (number of principal components)

$$[U,S,V] = svd(Sigma)$$

Pick smallest value of k for which

$$\frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{m} S_{ii}} \ge 0.99$$

(99% of variance retained)

Advice for applying PCA

Supervised learning speedup

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

Extract inputs:

Unlabeled dataset: $x^{(1)}, x^{(2)}, \dots, x^{(m)} \in \mathbb{R}^{10000}$

$$\downarrow PCA$$

$$z^{(1)}, z^{(2)}, \dots, z^{(m)} \in \mathbb{R}^{1000}$$

New training set:

$$(z^{(1)}, y^{(1)}), (z^{(2)}, y^{(2)}), \dots, (z^{(m)}, y^{(m)})$$

Note: Mapping $x^{(i)} \to z^{(i)}$ should be defined by running PCA only on the training set. This mapping can be applied as well to the examples $x_{cv}^{(i)}$ and $x_{test}^{(i)}$ in the cross validation and test sets.

Application of PCA

- Compression
 - Reduce memory/disk needed to store data
 - Speed up learning algorithm

- Visualization

Bad use of PCA: To prevent overfitting

Use $z^{(i)}$ instead of $x^{(i)}$ to reduce the number of features to k < n.

Thus, fewer features, less likely to overfit.

This might work OK, but isn't a good way to address overfitting. Use regularization instead.

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2$$