```
In [1]: import pandas as pd
    df=pd.read_csv("salaries.csv")
    print(df)
```

	company	job	degree	salary_more_then_100k
0	google	sales executive	bachelors	0
1	google	sales executive	masters	0
2	google	business manager	bachelors	1
3	google	business manager	masters	1
4	google	computer programmer	bachelors	0
5	google	computer programmer	masters	1
6	abc pharma	sales executive	masters	0
7	abc pharma	computer programmer	bachelors	0
8	abc pharma	business manager	bachelors	0
9	abc pharma	business manager	masters	1
10	facebook	sales executive	bachelors	1
11	facebook	sales executive	masters	1
12	facebook	business manager	bachelors	1
13	facebook	business manager	masters	1
14	facebook	computer programmer	bachelors	1
15	facebook	computer programmer	masters	1

```
In [2]: x=df.drop("salary_more_then_100k",axis="columns")
y=df["salary_more_then_100k"]
print(x)
print(y)
```

```
company
                                  job
                                          degree
0
                     sales executive
                                       bachelors
        google
1
        google
                     sales executive
                                         masters
2
        google
                    business manager
                                       bachelors
3
        google
                    business manager
                                         masters
4
        google computer programmer
                                       bachelors
5
        google
                 computer programmer
                                         masters
6
    abc pharma
                     sales executive
                                         masters
7
    abc pharma
                 computer programmer
                                       bachelors
    abc pharma
8
                    business manager
                                       bachelors
9
    abc pharma
                    business manager
                                         masters
10
      facebook
                     sales executive
                                       bachelors
11
      facebook
                     sales executive
                                         masters
      facebook
12
                    business manager
                                       bachelors
13
      facebook
                    business manager
                                         masters
14
      facebook
                 computer programmer
                                       bachelors
15
      facebook
                 computer programmer
                                         masters
0
      0
1
      0
2
      1
3
      1
4
      0
5
      1
6
      0
7
      0
8
      0
9
      1
10
      1
      1
11
12
      1
13
      1
14
      1
15
      1
Name: salary_more_then_100k, dtype: int64
```

```
In [3]: x.head()
y.head()
```

```
Out[3]: 0 0
1 0
2 1
3 1
4 0
```

Name: salary_more_then_100k, dtype: int64

```
In [4]: from sklearn.preprocessing import LabelEncoder
s=LabelEncoder()
x["new_company"]=s.fit_transform(df["company"])
print(x)
```

```
company
                                 job
                                         degree
                                                 new_company
0
        google
                     sales executive
                                      bachelors
                                                            2
                                                            2
1
        google
                    sales executive
                                        masters
2
                                                            2
        google
                   business manager
                                      bachelors
                                                            2
3
        google
                   business manager
                                        masters
        google computer programmer
4
                                      bachelors
                                                            2
5
        google
                computer programmer
                                                            2
                                        masters
    abc pharma
6
                                                            0
                     sales executive
                                        masters
7
    abc pharma
                                                            0
                computer programmer
                                      bachelors
    abc pharma
8
                   business manager
                                                            0
                                      bachelors
9
    abc pharma
                   business manager
                                        masters
                                                            0
10
      facebook
                     sales executive
                                                            1
                                      bachelors
11
      facebook
                    sales executive
                                        masters
                                                            1
                                                            1
12
      facebook
                   business manager
                                      bachelors
13
      facebook
                   business manager
                                                            1
                                        masters
14
      facebook
                computer programmer
                                                            1
                                      bachelors
15
      facebook
                computer programmer
                                                            1
                                        masters
```

```
In [5]: x["new_jobs"]=s.fit_transform(df["job"])
print(x)
```

	company	job	degree	new_company	new_jobs
0	google	sales executive	bachelors	2	2
1	google	sales executive	masters	2	2
2	google	business manager	bachelors	2	0
3	google	business manager	masters	2	0
4	google	computer programmer	bachelors	2	1
5	google	computer programmer	masters	2	1
6	abc pharma	sales executive	masters	0	2
7	abc pharma	computer programmer	bachelors	0	1
8	abc pharma	business manager	bachelors	0	0
9	abc pharma	business manager	masters	0	0
10	facebook	sales executive	bachelors	1	2
11	facebook	sales executive	masters	1	2
12	facebook	business manager	bachelors	1	0
13	facebook	business manager	masters	1	0
14	facebook	computer programmer	bachelors	1	1
15	facebook	computer programmer	masters	1	1

In [6]: x["new_degree"]=s.fit_transform(df["degree"])
x

\sim .			Ι.
CHI		l n	
~ ~	-		

	company	job	degree	new_company	new_jobs	new_degree
0	google	sales executive	bachelors	2	2	0
1	google	sales executive	masters	2	2	1
2	google	business manager	bachelors	2	0	0
3	google	business manager	masters	2	0	1
4	google	computer programmer	bachelors	2	1	0
5	google	computer programmer	masters	2	1	1
6	abc pharma	sales executive	masters	0	2	1
7	abc pharma	computer programmer	bachelors	0	1	0
8	abc pharma	business manager	bachelors	0	0	0
9	abc pharma	business manager	masters	0	0	1
10	facebook	sales executive	bachelors	1	2	0
11	facebook	sales executive	masters	1	2	1
12	facebook	business manager	bachelors	1	0	0
13	facebook	business manager	masters	1	0	1
14	facebook	computer programmer	bachelors	1	1	0
15	facebook	computer programmer	masters	1	1	1

```
In [7]: a=df.drop(["company","job","degree"],axis="columns")
    print(a)
```

	salary_more_then_100k
0	0
1	0
2	1
3	1
4	0
5	1
6	0
7	0
8	0
9	1
10	1
11	1
12	1
13	1
14	1
15	1

```
In [8]: from sklearn.tree import DecisionTreeClassifier
    model=DecisionTreeClassifier()
    model.fit(a.values,y)
```

Out[8]: DecisionTreeClassifier()

```
In [9]: print(model.score(a,y))
```

1.0

D:\anaconda\lib\site-packages\sklearn\base.py:443: UserWarning: X has feature names, but DecisionTreeClassifier was fitted without feature names warnings.warn(

```
In [10]: import pandas as pd
    df=pd.read_csv("salaries.csv")
    df
```

masters

1

Out[10]:		company	job	degree	salary_more_then_100k
	0	google	sales executive	bachelors	0
	1	google	sales executive	masters	0
	2	google	business manager	bachelors	1
	3	google	business manager	masters	1
	4	google	computer programmer	bachelors	0
	5	google	computer programmer	masters	1
	6	abc pharma	sales executive	masters	0
	7	abc pharma	computer programmer	bachelors	0
	8	abc pharma	business manager	bachelors	0
	9	abc pharma	business manager	masters	1
	10	facebook	sales executive	bachelors	1
	11	facebook	sales executive	masters	1
	12	facebook	business manager	bachelors	1
	13	facebook	business manager	masters	1
	14	facebook	computer programmer	bachelors	1

facebook computer programmer

15

```
In [11]: x=df.drop("salary_more_then_100k",axis="columns")
         y=df["salary_more_then_100k"]
          Χ
         У
Out[11]: 0
                0
                0
          2
                1
          3
                1
          4
                0
          5
                1
          6
                0
          7
                0
          8
                0
          9
                1
          10
                1
          11
                1
          12
                1
          13
                1
          14
                1
          15
                1
          Name: salary_more_then_100k, dtype: int64
In [12]: from sklearn.preprocessing import LabelEncoder
          z=LabelEncoder()
          x["company_new"]=z.fit_transform(df["company"])
          Х
```

Out[12]:

	company	job	degree	company_new
0	google	sales executive	bachelors	2
1	google	sales executive	masters	2
2	google	business manager	bachelors	2
3	google	business manager	masters	2
4	google	computer programmer	bachelors	2
5	google	computer programmer	masters	2
6	abc pharma	sales executive	masters	0
7	abc pharma	computer programmer	bachelors	0
8	abc pharma	business manager	bachelors	0
9	abc pharma	business manager	masters	0
10	facebook	sales executive	bachelors	1
11	facebook	sales executive	masters	1
12	facebook	business manager	bachelors	1
13	facebook	business manager	masters	1
14	facebook	computer programmer	bachelors	1
15	facebook	computer programmer	masters	1

In [13]: x["job_new"]=z.fit_transform(df["job"])
x

Out[13]:

	company	job	degree	company_new	job_new
0	google	sales executive	bachelors	2	2
1	google	sales executive	masters	2	2
2	google	business manager	bachelors	2	0
3	google	business manager	masters	2	0
4	google	computer programmer	bachelors	2	1
5	google	computer programmer	masters	2	1
6	abc pharma	sales executive	masters	0	2
7	abc pharma	computer programmer	bachelors	0	1
8	abc pharma	business manager	bachelors	0	0
9	abc pharma	business manager	masters	0	0
10	facebook	sales executive	bachelors	1	2
11	facebook	sales executive	masters	1	2
12	facebook	business manager	bachelors	1	0
13	facebook	business manager	masters	1	0
14	facebook	computer programmer	bachelors	1	1
15	facebook	computer programmer	masters	1	1

In [14]: x["degree_new"]=z.fit_transform(df["degree"])
x

Out[14]:

	company	job	degree	company_new	job_new	degree_new
0	google	sales executive	bachelors	2	2	0
1	google	sales executive	masters	2	2	1
2	google	business manager	bachelors	2	0	0
3	google	business manager	masters	2	0	1
4	google	computer programmer	bachelors	2	1	0
5	google	computer programmer	masters	2	1	1
6	abc pharma	sales executive	masters	0	2	1
7	abc pharma	computer programmer	bachelors	0	1	0
8	abc pharma	business manager	bachelors	0	0	0
9	abc pharma	business manager	masters	0	0	1
10	facebook	sales executive	bachelors	1	2	0
11	facebook	sales executive	masters	1	2	1
12	facebook	business manager	bachelors	1	0	0
13	facebook	business manager	masters	1	0	1
14	facebook	computer programmer	bachelors	1	1	0
15	facebook	computer programmer	masters	1	1	1

```
In [15]: s=x.drop(["company","job","degree"],axis="columns")
```

```
Out[15]:
              company_new job_new degree_new
                         2
            1
                         2
                                  2
                                             1
                         2
            2
                                  0
                                             0
            3
                                             1
                         2
                                             0
                         2
            6
                         0
                                  2
                                             1
            7
                         0
                                             0
            8
                         0
                                             0
                         0
                                  0
            9
                                             1
           10
           11
                         1
                                  2
                                  0
                                             0
           12
           13
           14
                         1
                                             0
           15
In [16]: | from sklearn.tree import DecisionTreeClassifier
          c=DecisionTreeClassifier()
          c.fit(s,y)
Out[16]: DecisionTreeClassifier()
In [17]: |print(c.predict([[2,1,0]]))
          [0]
          D:\anaconda\lib\site-packages\sklearn\base.py:450: UserWarning: X does not ha
```

```
ve valid feature names, but DecisionTreeClassifier was fitted with feature na
mes
```

warnings.warn(

```
In [18]: print(c.score(s,y))
```

1.0

randomforest classifier

```
In [19]: from sklearn.datasets import load_iris
         iris=load iris()
         print(dir(iris))
         ['DESCR', 'data', 'data_module', 'feature_names', 'filename', 'frame', 'targe
         t', 'target_names']
In [20]: | iris.data
Out[20]: array([[5.1, 3.5, 1.4, 0.2],
                 [4.9, 3., 1.4, 0.2],
                 [4.7, 3.2, 1.3, 0.2],
                 [4.6, 3.1, 1.5, 0.2],
                 [5., 3.6, 1.4, 0.2],
                 [5.4, 3.9, 1.7, 0.4],
                [4.6, 3.4, 1.4, 0.3],
                 [5., 3.4, 1.5, 0.2],
                 [4.4, 2.9, 1.4, 0.2],
                 [4.9, 3.1, 1.5, 0.1],
                 [5.4, 3.7, 1.5, 0.2],
                 [4.8, 3.4, 1.6, 0.2],
                 [4.8, 3., 1.4, 0.1],
                 [4.3, 3., 1.1, 0.1],
                 [5.8, 4., 1.2, 0.2],
                 [5.7, 4.4, 1.5, 0.4],
                 [5.4, 3.9, 1.3, 0.4],
                 [5.1, 3.5, 1.4, 0.3],
                 [5.7, 3.8, 1.7, 0.3],
In [21]: | iris.data_module
Out[21]: 'sklearn.datasets.data'
In [22]: iris.feature names
Out[22]: ['sepal length (cm)',
           'sepal width (cm)',
          'petal length (cm)',
           'petal width (cm)']
In [23]: |iris.filename
Out[23]: 'iris.csv'
In [24]: iris.frame
```

```
In [25]: iris.target
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
          In [26]: iris.target names
Out[26]: array(['setosa', 'versicolor', 'virginica'], dtype='<U10')</pre>
In [27]: |print(len(iris.data))
     150
     df=pd.DataFrame(iris.data,columns=iris.feature names)
In [28]:
Out[28]:
        sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
       0
               5.1
                       3.5
                                1.4
                                        0.2
       1
               4.9
                       3.0
                                1.4
                                        0.2
       2
               4.7
                       3.2
                                1.3
                                        0.2
       3
               4.6
                       3.1
                                1.5
                                        0.2
       4
               5.0
                       3.6
                                1.4
                                        0.2
      145
               6.7
                       3.0
                                5.2
                                        2.3
      146
               6.3
                       2.5
                                5.0
                                        1.9
```

3.0

3.4

3.0

5.2

5.4

5.1

2.0

2.3

1.8

150 rows × 4 columns

6.5

6.2

5.9

147

148

149

```
In [29]: df["target"]=iris.target
df
```

Out[29]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	
	0	5.1	3.5	1.4	0.2	0	
	1	4.9	3.0	1.4	0.2	0	
	2	4.7	3.2	1.3	0.2	0	
	3	4.6	3.1	1.5	0.2	0	
	4	5.0	3.6	1.4	0.2	0	
	145	6.7	3.0	5.2	2.3	2	
	146	6.3	2.5	5.0	1.9	2	
	147	6.5	3.0	5.2	2.0	2	
	148	6.2	3.4	5.4	2.3	2	
	149	5.9	3.0	5.1	1.8	2	
	150 rd	ows × 5 columns					
In [30]:	print	(df[df.target=	==0].head())				
	Se	epal length (cm	n) sepal widtl	n (cm) petal :	length (cm) p	petal width	(cm)
	\						
	0 1	5. 4.		3.5 3.0	1.4 1.4		0.2 0.2
	2	4.		3.2	1.3		0.2
	3	4.	. 6	3.1	1.5		0.2
	4	5.	.0	3.6	1.4		0.2
	ta	arget					
	0	0					
	1	0					
	2	0					
	3	0					
	4	0					
In [31]:	print	(len(df[df.tar	rget==0]))				
	50						
In [32]:	len(d	df[df.target==1	L])				
Out[32]:							
In [33]:	lonta	1f[df +2ngo+) 1 \				
TII [22]:	Tell(df[df.target==2	-1)				
Out[33]:	50						

Out[34]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
0	5.1	3.5	1.4	0.2	0	setosa
1	4.9	3.0	1.4	0.2	0	setosa
2	4.7	3.2	1.3	0.2	0	setosa
3	4.6	3.1	1.5	0.2	0	setosa
4	5.0	3.6	1.4	0.2	0	setosa
145	6.7	3.0	5.2	2.3	2	virginica
146	6.3	2.5	5.0	1.9	2	virginica
147	6.5	3.0	5.2	2.0	2	virginica
148	6.2	3.4	5.4	2.3	2	virginica
149	5.9	3.0	5.1	1.8	2	virginica

150 rows × 6 columns

Out[35]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
0	5.1	3.5	1.4	0.2	0	setosa
1	4.9	3.0	1.4	0.2	0	setosa
2	4.7	3.2	1.3	0.2	0	setosa
3	4.6	3.1	1.5	0.2	0	setosa
4	5.0	3.6	1.4	0.2	0	setosa
145	6.7	3.0	5.2	2.3	2	virginica
146	6.3	2.5	5.0	1.9	2	virginica
147	6.5	3.0	5.2	2.0	2	virginica
148	6.2	3.4	5.4	2.3	2	virginica
149	5.9	3.0	5.1	1.8	2	virginica

150 rows × 6 columns

1.4

0.2

0

setosa

```
In [36]: setosa_50=df[0:50]
setosa_50.head()
```

Out[36]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
	0	5.1	3.5	1.4	0.2	0	setosa
	1	4.9	3.0	1.4	0.2	0	setosa
	2	4.7	3.2	1.3	0.2	0	setosa
	3	4.6	3.1	1.5	0.2	0	setosa

3.6

In [37]: versicolor_50=df[50:100]
 versicolor_50.head()

5.0

Out[37]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
	50	7.0	3.2	4.7	1.4	1	versicolor
	51	6.4	3.2	4.5	1.5	1	versicolor
	52	6.9	3.1	4.9	1.5	1	versicolor
	53	5.5	2.3	4.0	1.3	1	versicolor
	54	6.5	2.8	4.6	1.5	1	versicolor

In [38]: virginica_50=df[100:150]
virginica_50.head()

Out[38]: sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target flower_name 100 6.3 3.3 6.0 2 virginica 2.5 101 5.8 2.7 5.1 1.9 2 virginica 102 2 7.1 3.0 5.9 2.1 virginica 2 103 2.9 virginica 6.3 5.6 1.8 104 2 6.5 3.0 5.8 2.2 virginica

In [39]: from sklearn.model_selection import train_test_split
X=df.drop(["target","flower_name"],axis="columns")
y=df.target
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2)

In [40]: from sklearn.ensemble import RandomForestClassifier
model=RandomForestClassifier(n_estimators=40)
model.fit(X_train,y_train)

Out[40]: RandomForestClassifier(n_estimators=40)