CS407 GROUP REPORT

A FRAMEWORK FOR AUTONOMOUS DRONE NETWORKS

Authors:

William SEYMOUR,

Jon Gibson,

Alex Henson,

Ben DE IVEY

Supervisor:

Dr. Arshad Jhumka

Department of Computer Science
University of Warwick
Summer 2016

Contents

1	Ope	ening	2
	1.1	Key Words	2
	1.2	Word Count	2
	1.3	Acknowledgements	2
	1.4	Introduction	2
2	Bac	kground	4
	2.1	Definitions	4
	2.2	Quadcopters	4
	2.3	Sensor Networks	4
		2.3.1 The Internet of Things	4
	2.4	Drone Networks	4
	2.5	Just an example of how we might break them down	4
3	Spe	cification	5
	3.1	Description of the Problem	5
	3.2	Objectives	5
		3.2.1 Quantitative Objectives	5
		3.2.2 Qualitative Objectives	5
	3.3	Justification	5
	3.4	Stakeholder Analysis	5
	3.5	Feasibility Study	5
	3.6	Requirements Identification	5
		3.6.1 Functional Requirements	5

		3.6.2 Non-functional Requirements	 5
	3.7	Project Deliverables	 5
	3.8	Changes From Original Specification	 5
4	Lite	erature Review	6
	4.1	Existing Solutions	 6
	4.2	Social and Ethical Issues	 6
	4.3	Physical Routing	 6
	4.4	MANETS	 6
	4.5	Drones	 6
5	Des	sign	7
	5.1	Methodology	 7
	5.2	System Architecture	 7
		5.2.1 Network Simulation	 7
		5.2.2 Communications Routing	 7
		5.2.3 Physical Routing	 7
		5.2.4 Physical Deployment	 7
6	Sim	nulation Software	8
	6.1	Existing Software	 9
		6.1.1 NS3	 9
		6.1.2 NS2	 9
		6.1.3 Some	 9
		6.1.4 other	 9
		6.1.5 stuff	 9
	6.2	Summary of Existing Software	 9
	6.3	Development Methodology	 9
	6.4	Code Structure	 9
		6.4.1 The Environment	 9
		6.4.2 Communication Modules	 9
		643 Drone	g

		6.4.4 Base Station	9
	6.5	Results	9
	6.6	Optimisation	9
	6.7	Review Against Original Objectives	9
	6.8	User Manual	9
7	Phy	sical Routing	10
8	Con	nmunications Routing	11
9	Phy	sical Deployment	12
	9.1	Objectives	12
	9.2	Equipment and Feasability	12
		9.2.1 Arduino	12
		9.2.2 RaspberryPi	12
		9.2.3 Something else	12
	9.3	Adapting the Simulator Code	12
	9.4	Results	12
	9.5	Review Against Original Objectives	12
10	Test	ing	13
	10.1	Unit Testing	13
	10.2	Client Application Testing	13
	10.3	Usability Testing	13
	10.4	Performance Testing	13
	10.5	System Testing	13
	10.6	User Acceptance Testing	13
		Risk Assessment	13
11	Pro	ject Management	14
	11.1	Team Structure	14
	11.2	Progress Tracking	14
		Source Control	14

	Time Management	14
11.5	Collaboration Tools	14
	11.5.1 GitHub	14
	11.5.2 Google Drive	14
11.6	Risk Management	14
12 Pro	ject Outcome	15
12 1 10	•	10
12.1	Projects Deliverables	15
	Projects Deliverables	
12.2	Ť	15
12.2 12.3	Review Against Original Objectives	15 15

List of Figures

List of Tables

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

CHAPTER 1. Opening

1.1 Key Words

Autonomous Drones, Sensor Networks, Network Simulation, Pathfinding, Physical Routing, Communications Routing

1.2 Word Count

The document contains 30,000 words. This number was calculated from the document source by TeXstudio.

1.3 Acknowledgements

We would like to thank our project supervisor Arshad Jhumka for guiding us and giving us advice on available technologies, methods and tools for wireless sensor network implementation, and for his continued support, even when we decided to change the foundational software basis of our project. Finally, we would also like to thank him for his critique during meetings and the poster presentation on our implementation of routing and research into the field.

1.4 Introduction

This report will provide a comprehensive analysis of the project undertaken by our group on the subject of autonomous drones in sensor networks. There will be a background summary of the key components in this field, as well as a discussion of the ongoing research, development and production being carried out. We will supply an analysis of the potential problems for which a solution can be found in drone networks, and a justification for the resulting aims and objectives of our group. The report will detail the design, implementation and testing of the solution, including considerations for the management of the project. Finally, the project outcome will be evaluated, followed by a conclusion reflecting on the success of the project and considerations for future works.

CHAPTER 2. Background

- 2.1 Definitions
- 2.2 Quadcopters
- 2.3 Sensor Networks
- 2.3.1 The Internet of Things
- 2.4 Drone Networks
- 2.5 Just an example of how we might break them down

CHAPTER 3. Specification

- 3.1 Description of the Problem
- 3.2 Objectives
- 3.2.1 Quantitative Objectives
- 3.2.2 Qualitative Objectives
- 3.3 Justification
- 3.4 Stakeholder Analysis
- 3.5 Feasibility Study
- 3.6 Requirements Identification
- 3.6.1 Functional Requirements
- 3.6.2 Non-functional Requirements
- 3.7 Project Deliverables
- 3.8 Changes From Original Specification

CHAPTER 4. Literature Review

- 4.1 Existing Solutions
- 4.2 Social and Ethical Issues
- 4.3 Physical Routing
- 4.4 MANETS
- 4.5 Drones

CHAPTER 5. Design

- 5.1 Methodology
- 5.2 System Architecture
- 5.2.1 Network Simulation

Fundamental Structure

Environment

Application Programming Interfaces (API)

- 5.2.2 Communications Routing
- 5.2.3 Physical Routing
- 5.2.4 Physical Deployment

Libraries

CHAPTER 6. Simulation Software

6.1	Existing	Software
-----	----------	----------

- 6.1.1 NS3
- 6.1.2 NS2
- 6.1.3 Some
- 6.1.4 other
- 6.1.5 stuff
- 6.2 Summary of Existing Software
- 6.3 Development Methodology
- 6.4 Code Structure
- 6.4.1 The Environment
- 6.4.2 Communication Modules
- **6.4.3** Drone
- 6.4.4 Base Station
- 6.5 Results
- 6.6 Optimisation
- 6.7 Review Against Original Objectives
- 6.8 User Manual

CHAPTER 7. Physical Routing

CHAPTER 8. Communications Routing

CHAPTER 9. Physical Deployment

- 9.1 Objectives
- 9.2 Equipment and Feasability
- 9.2.1 Arduino
- 9.2.2 RaspberryPi
- 9.2.3 Something else
- 9.3 Adapting the Simulator Code
- 9.4 Results
- 9.5 Review Against Original Objectives

CHAPTER 10. Testing

- 10.1 Unit Testing
- 10.2 Client Application Testing
- 10.3 Usability Testing
- 10.4 Performance Testing
- 10.5 System Testing
- 10.6 User Acceptance Testing
- 10.7 Risk Assessment

CHAPTER 11. Project Management

- 11.1 Team Structure
- 11.2 Progress Tracking
- 11.3 Source Control
- 11.4 Time Management
- 11.5 Collaboration Tools
- 11.5.1 GitHub
- 11.5.2 Google Drive
- 11.6 Risk Management

CHAPTER 12. Project Outcome

- 12.1 Projects Deliverables
- 12.2 Review Against Original Objectives
- 12.3 Project Appraisal
- 12.4 Future Work

CHAPTER 13. Conclusion