

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΉΣ

Ηλεκτρονική III

Ακαδημαϊκό Έτος 2022-2023

2η Εργαστηριακή Σειρά Ασκήσεων

Καθ. Παύλος-Πέτρος Σωτηριάδης

Επικουρία: Νικόλαος Βουδούκης, ΕΔΙΠ

Χρήστος Δήμας, Δρ.

Οδηγίες

- Οι ασκήσεις είναι αυστηρά ατομικές.
- Η παράδοση γίνεται στις εργασίες στο helios.
- Παραδοτέα: ένα αρχείο .rar ή .zip το οποίο περιλαμβάνει:
 - 1. Μια τεχνική αναφορά με τις απαντήσεις, τις γραφικές παραστάσεις και τις κατάλληλες περιγραφές/ αιτιολογήσεις
 - 2. Τα κατάλληλα αρχεία προσομοιώσεων .asc του LT Spice
- Αξιολογούνται η ορθότητα, η τεχνική και επιστημονική τεκμηρίωση, η ποιότητα και η πληρότητα των εργασιών.
- Προσθεμία παράδοσης μέχρι και Κυριακή 27 Νοεμβρίου 2022.
- Οι προθεσμίες παράδοσης είναι αυστηρές και δεν θα δοθούν παρατάσεις.
- Η παράδοση των ασκήσεων προσομοίωσης SPICE ΔΕΝ είναι υποχρεωτική.

Ασκηση 1^{η} (30%)

Για το παρακάτω κύκλωμα δίνονται V_{CC} =10V , R_1 =1k Ω , R_2 =50 Ω , R_3 =1k Ω , C_1 = C_2 =100μF, I_1 =50mA, I_2 =25μA, I_3 =1mA και V_3 =5V. Για τα Q_1 , Q_2 , Q_3 και Q_4 , χρησιμοποιείστε το διπολικό τρανζίστορ 2N2222.

Ερώτημα 1: Να σχεδιαστεί το διάγραμμα Bode ενίσχυσης και φάσης σε κατάλληλο εύρος συχνοτήτων. Ποια η συχνότητα f-3dB του παραπάνω ενισχυτή;

Ερώτημα 2: Να σχεδιαστεί το διάγραμμα της αντίστασης εισόδου του ενισχυτή (όπως υποδεικνύεται στο σχήμα) σε κατάλληλο εύρος συχνοτήτων. Οι τιμές του διαγράμματος να είναι σε Ohm (γραμμικός y άξονας) και ο άξονας συχνοτήτων λογαριθμικός. Ποια η αντίσταση εισόδου rin του παραπάνω ενισχυτή στην συχνότητα $f = 10 \mathrm{kHz}$;

Ερώτημα 3: Να σχεδιαστεί το διάγραμμα της αντίστασης εξόδου του ενισχυτή (όπως υποδεικνύεται στο σχήμα) σε κατάλληλο εύρος συχνοτήτων. Οι τιμές του διαγράμματος να είναι σε Ohm (γραμμικός y άξονας) και ο άξονας συχνοτήτων λογαριθμικός. Ποια η αντίσταση εξόδου rout του παραπάνω ενισχυτή στην συχνότητα f = 10 kHz;

Ασκηση 2^{\eta} (20%)

Για τα κυκλώματα του σχήματος 1, δίνονται $R_1=R_2=R_3=100\Omega$ και $C_1=C_2=1\mu F$

Ερώτημα 1: Για το κύκλωμα 1 ποια η RMS τάση θορύβου στην έξοδο στο φάσμα 1Hz – 100kHz.

Ερώτημα 2: Για το κύκλωμα 2 ποια η RMS τάση θορύβου στην έξοδο στο φάσμα 1Hz – 100kHz.

Ερώτημα 3: Για το κύκλωμα 1 ποια RMS τάση θορύβου στην έξοδο στο φάσμα 1Hz - 100kHz για θερμοκρασία 65°C .

Ερώτημα 4: Για το κύκλωμα 2 ποια η RMS τάση θορύβου στην έξοδο στο φάσμα 1 Hz - 100 kHz για θερμοκρασία 65°C . Να σχεδιαστούν οι γραφικές παραστάσεις θορύβου των ερωτημάτων 1 και 2.

Ασκηση 3^{η} (30%)

Για το κύκλωμα του σχήματος 2 δίνονται $V_{CC} = 10V$, $I_1 = 200\mu A$, $V_2 = V_{CM} = 5V$.

Για τα Q_1 και Q_2 χρησιμοποιείστε το διπολικό τρανζίστορ 2N3906 ενώ για τα Q_3 και Q_4 χρησιμοποιείστε το 2N3904.

Ερώτημα 1: Ποια πρέπει να είναι η DC τάση της V_3 , ώστε η τάση στην έξοδο να είναι 3.3V.

Ερώτημα 2: Ποια η συχνότητα f_{-3dB} του παραπάνω ενισχυτή;

Ερώτημα 3: Ποιο το κέρδος χαμηλών συχνοτήτων του παραπάνω ενισχυτή;

Ερώτημα 4: Ποια η ισοδύναμη RMS τάση θορύβου στην είσοδο (Input Referred Noise) για $I_1 =$ 200μΑ στο φάσμα 1Hz – 100kHz;

Ερώτημα 5: Ποια η ισοδύναμη RMS τάση θορύβου στην είσοδο (Input Referred Noise) για $I_1 =$ 600μA στο φάσμα 1Hz – 100kHz;

Ερώτημα 6: Ποια η ισοδύναμη RMS τάση θορύβου στην είσοδο (Input Referred Noise) για $I_1 = 1200 \mu A$ στο φάσμα 1 Hz - 100 kHz;

Να σχεδιαστούν:

- Τα διαγράμματα Bode πλάτους και φάσης για τον παραπάνω ενισχυτή.
- Διάγραμμα ισοδύναμου θορύβου στην είσοδο για τα ερωτήματα 3,4 και 5.

Ασκηση 4 $^{\eta}$ (20%)

Για τα παρακάτω κυκλώματα δίνονται $V_+ = -V_- = 5V$, $R_1 = R_4 = 9k\Omega$, $R_2 = R_5 = 1k\Omega$, $R_3 = R_6 = 100\Omega$.

Ερώτημα 1: Ποια η ισοδύναμη RMS τάση θορύβου στην είσοδο (Input Referred Noise) για τον ενισχυτή 1 στο φάσμα 1Hz – 100kHz;

Ερώτημα 2: Ποια η ισοδύναμη RMS τάση θορύβου στην είσοδο (Input Referred Noise) για τον ενισχυτή 2 στο φάσμα 1Hz -100kHz; Για τα επόμενα ερωτήματα θεωρείστε $\mathbf{R}_3 = \mathbf{R}_6 = \mathbf{10}\mathbf{k}\Omega$.

Ερώτημα 3: Ποια η ισοδύναμη RMS τάση θορύβου στην είσοδο (Input Referred Noise) για τον ενισχυτή 1 στο φάσμα 1Hz – 100kHz;

Ερώτημα 4: Ποια η ισοδύναμη RMS τάση θορύβου στην είσοδο (Input Referred Noise) για τον ενισχυτή 2 στο φάσμα 1Hz – 100kHz;

Σε κάθε περίπτωση, σχολιάστε και συγκρίνετε τα αποτελέσματα.