El Bootstrap es un método estadístico que vuelve a tomar muchas muestras de tus propios datos, con reemplazo, para estimar cómo variaría tu resultado si repitieras el estudio muchas veces.

Error Estándar (SE)

Es la desviación estándar de los resultados que obtuviste al repetir el remuestreo. Te dice qué tan preciso es tu estimador: mientras más pequeño el SE, más confiable es tu resultado.

Sesgo (bias)

El Sesgo (bias) refleja la diferencia sistemática entre el valor esperado del estimador y el valor real del parámetro poblacional. Con bootstrap se puede estimar comparando el promedio de los estadísticos remuestreados con el estimador observado.

Intervalo de Confianza con Bootstrap

El Bootstrap es un método estadístico que vuelve a tomar muchas muestras de tus propios datos, con reemplazo, para estimar cómo variaría tu resultado si repitieras el estudio muchas veces.

Error Estánda

Es la desviación estándar de los resultados que obtuviste al repetir el remuestreo. Te dice qué tan preciso es tu estimador: mientras más pequeño el SE, más confiable es tu resultado.

Sesgo (bias)

El Sesgo (bias) refleja la diferencia sistemática entre el valor esperado del estimador y el valor real del parámetro poblacional. Con bootstrap se puede estimar comparando el promedio de los estadísticos remuestreados con el estimador observado.

Intervalo de Confianza con Bootstrap

El Bootstrap es un método

$$SE = \sqrt{\frac{1}{B-1} \sum_{b=1}^{B} \left(\tilde{\theta}_b^* - \overline{\tilde{\theta}^*}\right)^2}$$

lar (SE)

Es la desviación estándar de los resultados que obtuviste al repetir el remuestreo. Te dice qué tan preciso es tu estimador: mientras más pequeño el SE, más confiable es tu resultado.

Sesgo (bias)

El Sesgo (bias) refleja la diferencia sistemática entre el valor esperado del estimador y el valor real del parámetro poblacional. Con bootstrap se puede estimar comparando el promedio de los estadísticos remuestreados con el estimador observado.

Intervalo de Confianza con Bootstrap

El Bootstrap es un método estadístico que vuelve a tomar muchas muestras de tus propios datos, con reemplazo, para estimar cómo variaría tu resultado si repitieras el estudio muchas veces.

Error Estándar (SE)

los resultados que obtuviste al repetir el remuestreo.
Te dice qué tan preciso es tu estimador: mientras más pequeño el SE, más confiable es tu resultado.

Es la desviación estándar de

$$Bias = \tilde{\theta}^* - \tilde{\theta}_{obs}$$

(bias)

El Sesgo (bias) refleja la diferencia sistemática entre el valor esperado del estimador y el valor real del parámetro poblacional. Con bootstrap se puede estimar comparando el promedio de los estadísticos remuestreados con el estimador observado.

Intervalo de Confianza con Bootstrap

El Bootstrap es un método estadístico que vuelve a tomar muchas muestras de tus propios datos, con reemplazo, para estimar cómo variaría tu resultado si repitieras el estudio muchas veces.

Error Estándar (SE)

Es la desviación estándar de los resultados que obtuviste al repetir el remuestreo. Te dice qué tan preciso es tu estimador: mientras más pequeño el SE, más confiable es tu resultado.

Sesgo (bias)

El Sesgo (bias) refleja la diferencia sistemática entre el valor esperado del estimador y el valor real del parámetro poblacional. Con bootstrap se puede estimar comparando el promedio de los estadísticos remuestreados con el estimador observado.

$IC_{95\%} = \left[\tilde{X}_{obs} - z_{1-\alpha/2} \cdot SE, \ \tilde{X}_{obs} + z_{1-\alpha/2} \cdot SE \right]$

Interval

con Bootstrap

