OLLSCOIL NA hÉIREANN, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK

COLÁISTE NA HOLLSCOILE, CORCAIGH UNIVERSITY COLLEGE, CORK

AUTUMN EXAMINATIONS, 2013

B.E. DEGREE (ELECTRICAL and ELECTRONIC)

TELECOMMUNICATIONS

EE4004

Dr. N.L. Seed Prof. N. Riza Dr. K. G. McCarthy Dr. C. Murphy

Time allowed: 3 hours

Answer *five* questions. All questions carry equal marks.

The use of departmental approved calculators is permitted.

1.	(a)	Illustrate	a s	simple	wide	e area	net	work (W	/AN)	cons	sisting	g of a	i collection	n of
		switches	and	links	and	using	this	diagram	desc	ribe	the t	ypical	operation	and
		functions associated with wide area networks.												

[10 marks]

(b) (i) Illustrate the timing of the packet and acknowledgement transfers for a data-link which uses a "go-back-N" ARQ scheme and from this determine an expression for the utilization, U, of the data-link.

[6 *marks*]

(ii) For a 250km data-link with a data rate of 500Mbps, determine the minimum frame window, N, which is needed to guarantee a utilization of 100% assuming an error-free line. The packet size is 10,000 bits, the acknowledgement size is 300 bits and the propagation delay is $5\mu s/km$.

[4 marks]

2. (a) Draw two protocol stacks to compare the functions of the OSI and TCP/IP systems for wide area networks. Clearly label each layer in the diagram and briefly describe the function of each layer.

[9 marks]

- (b) Briefly describe the following aspects of TCP/IP:
 - (i) IP Addressing

[4 *marks*]

(ii) The Domain Name System

[3 marks]

(iii) The format of an IP packet.

[4 marks]

3. (a) Illustrate the architecture of a UMTS Radio-Access Network including the core network and the radio network sub-system and briefly describe the function of the main blocks.

[8 marks]

(b) Illustrate a typical FHSS (Frequency Hopping Spread Spectrum) system (both transmitter and receiver sides) and comment briefly on why FHSS systems have advantages with respect to immunity to interference and privacy.

[7 *marks*]

(c) Illustrate and briefly describe the 3 most common architectures for wireless networks and specify which architecture is most suitable if the network spans a range of geographic regions.

[5 marks]

4. The channel matrix for the binary symmetric erasure channel (BSEC) is shown below:

$$\left[P \Big(Y \ \Big| X \Big) \right] = \begin{bmatrix} 1 - \delta - \varepsilon & \delta & \varepsilon \\ & & \delta & 1 - \delta - \varepsilon \end{bmatrix}.$$

(a) Show that $H(Y|X) = -(\delta \log_2[\delta] + \varepsilon \log_2[\varepsilon] + (1 - \delta - \varepsilon) \log_2[1 - \delta - \varepsilon])$.

[8 marks]

(b) If the input symbols x_i , $1 \le i \le 2$ are equiprobable, show that the channel capacity, C_{BSEC} , in this case is given by:

$$C_{BSEC} = \left(\delta - 1\right) \log_2 \left[\frac{1 - \delta}{2}\right] + \varepsilon \log_2 \left[\varepsilon\right] + \left(1 - \delta - \varepsilon\right) \log_2 \left[1 - \delta - \varepsilon\right].$$

[8 *marks*]

(c) By considering the case $\delta \rightarrow 0$, or otherwise, deduce the channel capacity of the binary symmetric channel (BSC).

[2 *marks*]

(d) By considering the case $\varepsilon \to 0$, or otherwise, deduce the channel capacity of the binary erasure channel (BEC).

[2 *marks*]

5. A baseband digital communications system uses the following signals to represent its three symbols, respectively denoted x_1 , x_2 and x_3 :

$$s_{i}(t) = \begin{cases} -A & 0 \le t \le T & symbol \ x_{1} \\ 0 & 0 \le t \le T & symbol \ x_{2} \\ A & 0 \le t \le T & symbol \ x_{3}, \end{cases}$$

where T denotes the bit signalling interval. The communications are affected by additive white Gaussian noise (AWGN) whose probability density function (pdf) $f_n(v)$ is given by:

$$f_n(v) = \frac{e^{\frac{-v^2}{2\sigma^2}}}{\sqrt{2\pi\sigma^2}}.$$

The receiver takes a single sample, z, of the received signal during the bit signalling time and makes the detection decision according to the rule: -

$$decision = \begin{cases} symbol \ x_1 & if \ z \le -\tau \\ symbol \ x_2 & if \ -\tau < z < \tau \\ symbol \ x_3 & if \ z \ge \tau \end{cases}$$

where the threshold τ satisfies $0 < \tau < A$.

(a) Show that, having sent symbol x_2 , the probability of error, denoted P_{e,x_2} , is given by

$$P_{e,x_2} = 1 - erf \left[\frac{\tau}{\sigma \sqrt{2}} \right],$$

where: -

$$erf[x] = \frac{2}{\sqrt{\pi}} \int_0^x e^{-y^2} dy.$$
 [8 marks]

(b) Given that the overall average probability of error for the communications system, P_e , is given by: -

$$P_{e} = \left(\frac{1 + P(x_{2})}{2}\right) + erf\left[\frac{A - \tau}{\sigma\sqrt{2}}\right] \left(\frac{P(x_{2}) - 1}{2}\right) - erf\left[\frac{\tau}{\sigma\sqrt{2}}\right] P(x_{2})$$

where $P(x_2)$ denotes the probability of sending symbol x_2 , prove that the value of τ minimising P_e , denoted τ_{MIN} , is given by:

$$\tau_{MIN} = \frac{A}{2} - \frac{\sigma^2}{A} \ln \left[\frac{1 - P(x_2)}{2P(x_2)} \right]$$

(Hint: It may be helpful to note that

$$\frac{d}{dx} \left[\int_{0}^{x} G[y] dy \right] = G[x].$$
 [9 marks]

(c) Prove that, in the equiprobable case, the minimum attainable probability of error, P_e^{MIN} , is given by:

$$P_e^{MIN} = \frac{2}{3} \left(1 - erf \left[\frac{A}{2\sqrt{2}\sigma} \right] \right).$$
 [3 marks]

6. (a) Using the Schwarz inequality, which states: -

$$\left|\int_{-\infty}^{\infty} f_1(\omega) f_2(\omega) d\omega\right|^2 \leq \int_{-\infty}^{\infty} \left|f_1(\omega)\right|^2 d\omega \int_{-\infty}^{\infty} \left|f_2(\omega)\right|^2 d\omega,$$

or otherwise, show that the signal to noise ratio (SNR) at the output of a linear filter subject to an input signal s(t), with Fourier transform $S(\omega)$, and input coloured noise with power spectral density $S_{nn}(\omega)$ satisfies: -

$$\left(\frac{S}{N}\right)_{o} \le \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\left|S(\omega)\right|^{2}}{S_{nn}(\omega)} d\omega$$

and state the equation for the matched filter for this coloured noise.

[10 marks]

(b) Hence, or otherwise, deduce the maximum attainable SNR if the input noise is additive white Gaussian (AWGN) with a power spectral density of $\eta/2$ W/Hz.

[3 marks]

(c) The matched filter for an input signal s(t), with Fourier transform $S(\omega)$, and additive white Gaussian noise (AWGN) with a power spectral density $\eta/2$ W/Hz is implemented in a receiver. The actual noise, however, is coloured with a power spectral density of $S_{nn}(\omega)$ (i.e. the system was designed for white noise but, in practice, coloured noise affects the receiver). Show that, in this case, the SNR, $\left(\frac{S}{N}\right)_{0}$, is given by:

$$\left(\frac{S}{N}\right)_{o} = \frac{2\pi E^{2}}{\int_{-\infty}^{\infty} S_{nn}(\omega) |S(\omega)|^{2} d\omega}$$

where E denotes the energy content of s(t) (assuming a 1Ω reference resistor).

[7 marks]

- 7. (a) Using the primitive polynomial $p(x) = x^5 + x^2 + 1$, generate the field $GF(2^5)$. [9 marks]
 - (b) Show that for the (31,21) double error correcting code primitive BCH code based upon $GF(2^5)$: -
 - (i) The minimal polynomial $m_1(x)$ is given by: -

$$m_1(x) = x^5 + x^2 + 1$$
.

[4 marks]

(ii) The minimal polynomial $m_3(x)$ is given by:

$$m_3(x) = x^5 + x^4 + x^3 + x^2 + 1$$
.

[4 *marks*]

(iii) The corresponding generator polynomial, g(x), satisfies: -

$$g(\alpha) = g(\alpha^3) = 0.$$

[3 marks]