

The Biomechanical Model

Sébastien Portalier University of Ottawa

From The mechanics of predator-prey interactions:
first principles of physics predict predator-prey size ratios

Portalier S., Fussmann G., Loreau M., & Cherif M.

Functional Ecology 33(2), 2019

Workshop on the eco-mechanics of food webs, Leipzig, oct 2019

Mechanical factors

The model

Search prey

Capture prey

Handle prey

The model considers physiological and mechanical costs associated to predation

$$G = E - (C_s + C_c + C_h)$$

Where

G: predation gain

E: energy from the prey

 C_s : search cost

C_c: capture cost

C_h: handling cost

Energy given by the prey increases with prey size

 $E \propto M_b$

Search, Capture and handling costs involve cost for motion and cost for metabolism

$$\{C_s, C_c, C_h\} = \text{Cost}_{motion} + \text{Cost}_{metabolism}$$

Species motion can be represented as an oscillatory process

Bejan and Marden, 2006, J. Exp. Biol.

Motion is split into vertical and horizontal components

Three sequences

Search prey

Capture prey

Handle prey

Search

- The predator scans the medium to detect prey
- Motion is done at speciesspecific speed
 - The predator optimizes the Speed/Cost ratio

Capture

Archimedes' force

Chase

Inertia

Thrust

Ddetec

Weight

- The predator jumps and tries to catch the prey
- The predator uses its maximal muscular output and maximizes the distance covered

Capture

- The prey jumps and tries to escape
- If the prey is reached:
 - Capture probability
 depends on the ratio
 between predator/prey
 speeds (at that moment)

$$P_{\text{suc}} = \frac{1}{1 + \frac{v_{\text{Prey}}}{v_{\text{Pred}}}}$$

Handling

- The predator tries to maintain its position in the column
- The predator moves only along the vertical plan, with the minimal cost

Main assumptions

- Predators consume one prey at a time
- Prey try to escape
- Speed is only determined by body size
- Predators stay in the column during all predation phases

Results

Mechanical limit sets upper prey size, Energetic limits set lower prey size

Other assumptions

- The model focuses on motion and metabolism
 - What about other physiological functions (e.g., growth, reproduction, excretion)?
- Temperature is constant
 - Temperature affects both mechanical factors and metabolism

Other assumptions

 Capture success is determined by predator-prey relative speed at capture time, while many studies emphasized the role played by ability to change direction during chase

Dominici et al., 2011, J. Exp. Bio.

Other assumptions

- Predators stay in the column (water/air) during search, capture and handling times: pelagic predators and insectivorous birds/bats
- Open water/air are open spaces: predator and prey can detect each other without interference

Next step(s)?

- Change assumptions about capture efficiency?
- Develop a more detailed energy budget model?
- Consider the *bottom* of the system (benthic, ground)?
- Consider other factors acting on speed (other than size)?
- Include temperature?

