Ce qu'il y a de plus beau dans la vie, et dans toute espèce de vie, c'est sa continuité. 4ème Math

Exercice1:

Calculer les limites suivantes :

$$\lim_{x\to +\infty}\sin\frac{\pi(x+1)}{2x}\,,\, \lim_{x\to +\infty}\frac{2x+\sin x}{x}\,;\, \lim_{x\to +\infty}\frac{\cos x}{1-x}\,\,,$$

$$\lim_{x \to +\infty} (\sqrt{x} - \sin x) \lim_{x \to +\infty} \cos(\frac{1}{x});$$

$$\lim_{x \to +\infty} (x^2 - 2\sin x), \quad \lim_{x \to +\infty} \frac{1 + 2\sin x}{1 + \sqrt{x}}$$

$$\lim_{x \to +\infty} (x^2 - 2\sin x), \quad \lim_{x \to +\infty} \frac{1 + 2\sin x}{1 + \sqrt{x}}$$

Exercice:2

b∈ IR et f une fonction définie et dérivable sur

[b, $+\infty$ [, telle que $\forall x \ge b$, on a : $f'(x) \ge 2$.

1)Mque $\forall x \ge b, f(x) \ge 2(x-b) + f(b)$

2)En déduire la limite de f en +∞.

3) Mque l'on peut déterminer des réels m et M que l'on précisera, tels que

$$\forall x \in IR : m \le \frac{1}{2-sinx} \le M$$

En, déduire
$$\lim_{x \to \infty} \frac{x}{2 - \sin x}$$

Exercice 3:
Soit
$$f(x) = \frac{3x + \sin x}{x-1}$$
 sur $[2, +\infty[$

a)Mque
$$|f(x)-3| \le \frac{4}{x-1}$$

b)En déduire la limite de f en +∞

Exercice 4:

Vrai ou Faux

La fonction f est donnée par son tableau de variation et tel que f(0)=2 et f(2)=0

X	$-\infty$	1	+∞
f(x)	0 7	3	√ -∞

- g est la fonction définie par : $g(x) = \frac{\sqrt{1+x^2}+1}{x}$ alors :
 - a)gof est continue sur IR-;
- b)gof est continue sur IR
- c) fog est continue sur IR*
- $\mathsf{d)} \lim_{-\infty} gof(x) = -\infty$
- e) $\lim_{+\infty} gof(x) = -1$; f) gof est prolongeable par continuité en 2

Exercice 5 (5 points)

Soit la fonction f définie sur IR par

$$f(x) = \begin{cases} \frac{1 + \cos(\pi x)}{(1+x)\pi} & \text{si } x > -1 \\ \sqrt{x^2 + x} & \text{si } x \le -1 \end{cases}$$

1)Calculer les limites suivantes :

$$\lim_{x \to -\infty} f(x)$$
; $\lim_{x \to -\infty} \frac{f(x)}{x}$ et $\lim_{x \to -\infty} (f(x) + x)$.

2) Montrer que si $x \in]-1, +\infty[$, on a

$$0 \le f(x) \le \frac{2}{(x+1) \pi}.$$

- 3) déduire : $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f \circ f(x)$.
- 4) Etudier la continuité de f en -1.
- 5) Montrer que l'équation f(x) = 2x admet au moins une solution $\alpha \in]0, \frac{1}{2}[$.

Exercice 6:

- 1) Montrer que l'équation (E) $x^7 x^2 + 1 = 0$, a une seule solution sur I = [-2, 0]
- 2) M que : $f(x) = x^3 + 2x + 1$ s'annule dans IR. 3)Mque l'équation $2\cos x = x-1$ admet au moins
- une solution dans IR.
- 4) Mque l'équation $\sqrt{x} = \frac{5}{x-2}$ admet une unique

solution dans IR. Exercice 7; VRAI – FAUX

Soit f une fonction d'ensemble de définition [a, b] où a et b sont deux réels tels que

$$f(a)=2 \text{ et } f(b)=-1$$

- 1)L'équation f(x)=1 admet au moins une solution dans [a,b]
- 2)Si f est continue sur I, alors l'équation f(x)=1 admet au moins une solution dans [a,b]
- 3)Si f est strictement décroissante sur I, alors l'équation f(x)=1 admet au plus une solution dans [a, b]

Exercice 8:

 $\forall n \geq 2$, soit $f_n(x) = x^n - nx + 1$; $x \in [0, 1]$

- 1)Etudier la position relative de C_n et C_{n+1}
- 2)Dque l'équation $f_n(x)=0$ admet une unique solution α .

Quel est la monotonie de la suite (α_n)

Exercice 9:

 $n \in IN$, soit $f_n(x) = x^3 + 3(n+1)x + 1$, $x \in IR$ 1)M qu'il existe unique réel $u_n \in]-1, 0[$

tel que $f_n(u_n) = 0$.

2)Mque $\forall x \in]-1, 0[$ et $\forall n \in IN, f_{n+1}(x) < f_n(x)$ 3)Déduire que la suite u est convergente vers

une limite que l'on calculera

Exercice 10:

Soit $f_n(x) = x^{n+1} - 2x^n + 1$,

où n un entier naturel supérieur ou égal à 2.

1)a) Dresser le tableau de variations de f n sur [1, +∞[

- b) En déduire le signe de f_n $(\frac{2n}{n+1})$
- 2)a) M que l'équation $f_n(x) = 0$ admet dans $\frac{2n}{n+1}$, + ∞ [une seule solution qu'on notera U_n

Ce qu'il y a de plus beau dans la vie, et dans toute espèce de vie, c'est sa continuité. 4ème Math [Sylvie Angel]

b) Vérifier que $\frac{2n}{n+1} < U_n < 2$, $n \ge 2$

c) En déduire la limite de la suite (Un) 3)a) Montrer que pour tout $x \in [1,2]$, on a :

 $f_{n+1}(x) \le f_n(x)$

b) En déduire que la suite (Un) est croissante

Exercice 11:

Soit n ≥1. on considère la fonction f_n définie par $f_n(x) = x^n + x^{n-1} + \dots + x-1$

1)Montrer que l'équation $f_n(x) = 0$ admet une unique solution a_n dans [0, 1]

2)a) Vérifier que $f_{n+1}(a_n)$ ≥0.

b) Etudier alors la monotonie de la suite (a_n).

c) En déduire que la suite (a_n) est convergente.

3)a)Montrer que pour tout n, $a_n - \frac{1}{2} = \frac{a_n^{n+1}}{2}$

b)En déduire la limite de la suite (a_n) (on pourra vérifier que $a_n \le 0.7$ pour n≥2)

Exercice 12:

Soit f(x)= x + 1 -
$$\frac{1}{1+x^3}$$

1) Dresser le tableau de variation de f

b) Soit $n \in IN^*$, montrer que l'équation f(x)=n admet une solution x_n dans l'intervalle] n-1, n[

c)Mque la suite (x_n) est strictement croissante.

d) En déduire que (x_n) est non majorée.

2) Soit
$$g(x)=f(\frac{\sin x}{x})$$
; $x \in]0,\pi]$ et $g(0)=\frac{3}{2}$

Montrer que g est continue sur $[0,\pi]$

Exercice 13:

Pour tout $n \in IN^*$, on définit sur $[0, \frac{\pi}{2}]$ la fonction f_n par : $f_n(x) = x - ntan(x)$.

1) a)Mque pour tout n > 0, l'équation $f_n(x) = -n$ admet dans $[0, \frac{\pi}{2}[$ une solution unique qu'on note \mathbf{u}_{n}

b) Vérifier que pour tout
$$n > 0$$
, $u_n \in]\frac{\pi}{4}, \frac{\pi}{2}[$ et que $tan(u_n) = 1 + \frac{u_n}{n}.$

2) a) Mque pour tout n > 0 et pour tout $x \in J^{\frac{\pi}{4}}, \frac{\pi}{2}$

on a : $1 + f_{n+1}(x) < f_n(x)$

b) Déduire alors que la suite (un) est strictement décroissante, et qu'elle converge vers une limite que l'on précisera.

Exercice 14.

La courbe ci-contre est la représentation graphique d'une fonction f définie et continue sur IR. C_f admet en $-\infty$ une asymptote d'équation

y = 0, C_f admet en + ∞ une branche infinie de direction la droite y = x

1°) Donner chacune des limites

suivantes: $\lim f(x)$, $\lim f(x)$,

 $\lim_{x \to +\infty} \overline{f(x) - x}$

et
$$\lim_{x\to +\infty} \frac{f(x)}{x}$$
.

Déterminer chacune des

limites suivantes:

$$\lim_{x\to +\infty} f(\frac{x+1}{x}), \ \lim_{x\to -\infty} f(x^2) \ \text{et} \ \lim_{x\to 1^+} \ \frac{sin[f(x)]}{\sqrt{f(x)}}$$

3°) Soit g la fonction définie par $g(x) = \frac{1}{f(x)}$

a) Déterminer l'ensemble de définition de g.

b) Montrer que C_g admet au moins trois asymptotes.

c) Déterminer l'image par g de l'intervalle [-1, 0[Exercice 15 (3 points)

Soit f une fonction continue

sur] 0, + ∞ [dont la courbe est la suivante : Calculer les

limites suivantes:

$$\lim_{x \to +\infty} f\left(\frac{3x+5}{x-1}\right);$$

$$x \xrightarrow{\lim}_{-\infty} f(\sqrt{1-x});$$

$$\lim_{X \to -\infty} x f\left(\frac{1+x}{x}\right)$$

Exercice 16:

Soit f la fonction définie sur]-∞,1]\{0} par :

Les droites D: y = 1 et Δ : x = 0 sont asymptotes à

a) Etudier la limite de f en 0 et en -∞

Ce qu'il y a de plus beau dans la vie, et dans toute espèce de vie, c'est sa continuité. 4ème Math

b) En déduire $\lim_{x\to 0} \frac{-1+\sqrt{1-\sin x}}{\sin x}$.

2) a) Monter que pour tout $x \in]-\infty,1]\setminus\{0\}$: $f(x) = x \Leftrightarrow x^3 + 2x + 1 = 0$

- b) Déduire que l'équation f (x) = x admet une seule solution $\alpha \in]-1,0[$
- c) A l'aide de la calculatrice donner un encadrement de α d'amplitude 10⁻¹
- 3) a) Etudier les limites suivantes :

$$\lim_{x \to -\infty} f \circ g(x); \lim_{x \to +\infty} f \circ g(x) .$$
$$\lim_{x \to -1+} f \circ g(x)$$

b) f o g est –elle continue sur]-∞, 0[?,(Justifie)

4) f o g est-elle prolongeable par continuité en -1.

Exercice17:

(QCM)

Pour chaque question choisir la seule réponse correcte

1)Soit f une fonction continue sur]- 1, +∞[

et dont la courbe est donnée ci-dessus.

$$\lim_{x \to -\infty} f\left(\sqrt{1-x}\right) = +\infty$$

$$\lim_{x\to +\infty} f\left(\frac{2-x}{x}\right) = -1$$

$$\lim_{x \to +\infty} x.f\left(\frac{1-x}{2x}\right) = -\infty$$

2)La courbe ci-contre Est la représentation graphique d'une fonction f définie et continue sur IR. Cf admet au voisinage de:

- $-\infty$ une asymptote d'équation y = 0
- $+\infty$ une branche infinie parabolique de direction la droite x = 0

$$a)\quad \lim_{x\to +\infty}\frac{xf(x)}{1-x^2}=0\;.\quad b)\;\lim_{x\to 0^+}xf\left(\frac{1}{x}\right)=-\infty$$

Exercice 18:

On a tracé ci-contre, dans le plan muni d'un repère

orthonormé, les courbes C_f et C_g

représentatives de deux fonctions f et g.

- 1) Déterminer
 - **a)** L'image de]-∞; 1[par f.
 - b) Le domaine de définition de g o f.
- 2) Résoudre graphiquement gof(x) = 0.
- 3) Calculer: a) $\lim_{x\to 1^+} gof(x)$, b) $\lim_{x\to +\infty} gof(x)$.
 - **c)** (gof)'(2).
- 4) Dresser le tableau de variation de g o f.
- **5)** Soit l'équation (E): g o $f(x) = \frac{1}{n}$, où $n \ge 3$
- a) Montrer que l'équation (E) admet une solution unique $a_n \in]1,2[et une solution unique$ $b_n > 2$.
- **b)** Montrer que les suites (a_n) et (b_n) sont convergentes.
- c) Montrer alors que (a_n) et (b_n) sont adjacentes.

Exercice 19: (5points)

La courbe ci-dessous est la représentation graphique d'une fonction f définie sur R \ {0,2} et tels que $f(-\frac{1}{2}) = 1$

La droite Δ et les droites d'équations respectives x = 0, x = 2 et y = 0 sont des asymptotes à la courbe C

1) Déterminer graphiquement.

a)
$$\lim_{x \to +\infty} f(\frac{2}{x}), \text{ b}$$

$$\lim_{x \to +\infty} (f(x) + x - 1), \text{ c}$$

$$\lim_{n \to +\infty} f(\frac{3^{n+1}}{4^{n+5}})$$

$$\lim_{n\to+\infty} f(\frac{3^{n+1}}{4^{n+5}})$$

- 2) a) Montrer que f o f est continue sur]- ∞ , $-\frac{1}{2}$].
 - b) Etudier les variations de f o f sur]- ∞ , $-\frac{1}{2}$]
- c) Déduire que l'équation f o f(x) = 0 admet une seule solution dans]- ∞ , $-\frac{1}{2}$ [

Exercice 20:(5 points)

Dans le graphique ci-dessous on a tracé les courbes Cf et Cg représentatives respectivement les fonctions f et g.

Ce qu'il y a de plus beau dans la vie, et dans toute espèce de vie, c'est sa continuité. 4ème Math

[Sylvie Angel]

Cf admet

- une branche infinie de direction (oy) au voisinage de $-\infty$.
- l'axe (ox) asymptote au voisinage de +∞

Cg admet

- l'axe (ox) une asymptote au voisinage de $\pm \infty$
- 1) Calculer les limites suivantes : $\lim_{x\to -\infty} (gof)$; $\lim_{x\to +\infty} (goh)$; $\lim_{x\to -\infty} \frac{xf(x)}{x^2+1}$; $\lim_{x\to +\infty} f(2^n+\sin(n))$
- 2) Soit u et v les suites définies sur IN par $u_n = f(n)$ et $v_n = g(n)$ Montrer que les suites u et v sont adjacentes
- 3) a) Montrer que f o g est continue sur IR
 - b) Montrer que l'équation f o g(x) = x admet au moins une solution a dans IR-.

Exercice21:

Soient $g:[0,1] \rightarrow [0,1]$ une application continue et strictement décroissante.

- f : la fonction dont la représentation graphique est donnée ci-dessous.
- \underline{II} 1) Déterminer le domaine de définition de la fonction g o f.
- 2) Dresser le tableau de variations de g o f sur [-2, 0].
 - 3) Calculer les limites éventuelles suivantes :

$$\lim_{x \to +\infty} (f(x) - \frac{2x}{x+1}),$$

 $\lim_{x\to 0} f(\frac{\sin x + \tan 2x}{3x}) ; \quad \lim_{x\to -2^+} gof(x)$

Exercice 22 (4,5 points)

A) <u>Répondre par vrai ou faux. Aucune</u> justification n'est demandée.

Soit f une fonction définie sur [-1, 5]. Si f est continue sur]- 1, 5[et si f(-1).f(5) <

0 alors l'équation f(x) = 0 admet au moins une solution dans l'intervalle]- 1, 5[.

- B) On a représenté ci-contre la courbe d'une fonction f définie et continue sur IR.
 - La droite D : y = 1 est une asymptote à (C) au voisinage de - ∞.
 - La droite ∆: y = -x + 1 est une asymptote
 à (C) au voisinage de + ∞.
 - Pour tout réel x < 1, f(x) > 1.
 - $f(2) = -\frac{1}{2}$

En utilisant le graphique, répondre aux questions suivantes.

1°) a) Déterminer les limites suivantes $\lim_{x \to -\infty} f(x)$,

$$\lim_{x \to +\infty} \frac{f(x)}{x} \text{ et } \lim_{x \to +\infty} f(x) + x$$

- b) Calculer $\lim_{x \to -\infty} \frac{f(x)}{f(x) 1}$ et $\lim_{x \to 0^+} (\sqrt{x}) f\left(\frac{2}{\sqrt{x}}\right)$.
- c) Calculer $\lim_{x\to 0} f\left(\frac{x-1}{x^2}\right)$ et $\lim_{x\to +\infty} fof(x)$
- 2°) Déterminer : f(]-2, + ∞ [) et fof(]- ∞ , + ∞ [)