#### Financial Risk Management

Spring 2016

Dr. Ehud Peleg

Market VaR I



### Modeling Market VaR

- Parametric Models
  - Delta-Gamma
  - Monte Carlo Simulation
- Non-Parametric Simulation
  - Historical VaR
  - Semi-parametric: time and volatility weighting
- Simulations: Allocation and Confidence Intervals
- We look at 1-day VaR, unless stated otherwise

# Model-Building / Parametric Approach

#### Model-based or Parametric VaR

- 1. Select a set of market variables or factors that underlie the prices and values of the portfolio
  - E.g. stock indices, interest rates, principal components
- Assume returns of factors follow certain stochastic processes, i.e. changes in their value in the next day have certain probability distributions
  - E.g. daily stock returns are Normal
- 3. Estimate parameters for the underlying processes
  - E.g. use GARCH(1,1) to estimate exchange rate volatility
- 4. Figure out the distribution of daily changes of the portfolio based on the distribution of underlying factors
  - Closed-form or by simulation
- 5. Find the appropriate percentile of the distribution

#### Linear-Normal Model Assumptions

- Daily change in the value of a portfolio is linearly related to the daily returns of market variables or factors
- Returns on factors are normally distributed, with mean zero, and a covariance matrix
  - Each factor return, i, has variance  $\sigma_i$
  - Every 2 factor returns, i and j, have covariance  $cov_{ij}$
- Under these assumptions, returns on the portfolio are also Normal with mean zero.
- To find VaR, we need only find the portfolio Variance

#### Linear Model / Delta Method

- Define returns on market variables:  $\Delta x_i = \frac{\Delta S_i}{S_i}$
- And deltas of the portfolio with respect to asset i:

$$\delta_i = \frac{\partial P}{\partial S_i}$$

Then changes in portfolio value are approximated by:

$$\Delta P = \sum_{i} S_{i} \delta_{i} \, \Delta x_{i}$$

#### Variance of Portfolio Value

$$\Delta P = \sum_{i=1}^{n} S_{i} \delta_{i} \Delta x_{i}$$

$$\sigma_{P}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} S_{i} \delta_{i} S_{j} \delta_{j} \sigma_{i} \sigma_{j}$$

$$\sigma_{P}^{2} = \sum_{i=1}^{n} (S_{i} \delta_{i})^{2} \sigma_{i}^{2} + 2 \sum_{i < j} \rho_{ij} S_{i} \delta_{i} S_{j} \delta_{j} \sigma_{i} \sigma_{j}$$

$$\sigma_{P}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} \text{cov}_{ij} S_{i} \delta_{ij} S_{j} \delta_{j}$$

How should we apply this method to:

- 1. Portfolio of Options
- 2. Portfolio of Bonds

#### Delta Method – Example w/options

- 1. Consider an investment in options on Microsoft and AT&T. Suppose the stock prices are \$120 and \$30 respectively and the deltas of the portfolio with respect to the two stock prices are 1 and 20 respectively.
- Approximate the change in portfolio value as function of  $\Delta x_1$  and  $\Delta x_2$ , the returns on the two stocks:

$$\Delta P = 120 \cdot 1 \cdot \Delta x_1 + 30 \cdot 20 \cdot \Delta x_2$$

### Delta Method Example - Cont

- 2. Assume daily return volatility for Microsoft is 2% and that of AT&T is 1%, correlation between the two is 0.3, what is the 5-day 95% VaR?
- The variance of the portfolio is:

$$\sigma_P^2 = (120*0.02)^2 + (600*0.01)^2 + 2*120*0.02*600*0.01*0.3 = 50.40$$

The five-day 95% VaR is

$$VaR = \Phi^{-1}(0.95) \times \sqrt{T} \times \sigma_P = 1.65 \times \sqrt{5} \times \sqrt{50.4} = 26,193$$

#### Delta – Gamma

- The linear model will not be accurate because option prices are <u>linear only for small changes</u> in the underlying.
- We can improve our estimation by using gamma as well:

$$\Delta P \approx \delta \cdot \Delta S + \frac{1}{2} \gamma \cdot (\Delta S)^2$$

## Translation of Asset Price Changes to Price Changes for Long Call



Normal distribution for underlying asset

## Translation of Asset Price Change to Price Change for Short Call



### Impact of Gamma



**Positive Gamma** 

**Negative Gamma** 

### Quadratic / Delta-Gamma Model

- For a portfolio dependent on a single asset price it is approximately true that
- so that  $\Delta P = \delta \Delta S + \frac{1}{2} \gamma (\Delta S)^{2}$  $\Delta P = S\delta \Delta x + \frac{1}{2} S^{2} \gamma (\Delta x)^{2}$

• Recall  $\Delta x \sim N(0, \sigma^2)$ , hence:

$$\mu_{P} = E(\Delta P) = 0.5S^{2}\gamma\sigma^{2}$$

$$E(\Delta P^{2}) = S^{2}\delta^{2}\sigma^{2} + 0.75S^{4}\gamma^{2}\sigma^{4}$$

$$Var(\Delta P) = E(\Delta P^{2}) - E(\Delta P)^{2} = \delta^{2}S^{2}\sigma^{2} + \frac{1}{2}\gamma^{2}(S^{2}\sigma^{2})^{2} = \frac{\delta^{2}Var(\Delta S) + \frac{1}{2}\gamma^{2}[Var(\Delta S)]^{2}}{E(\Delta P^{3})} = 4.5S^{4}\delta^{2}\gamma\sigma^{4} + 1.875S^{6}\gamma^{3}\sigma^{6}$$

15

#### Quadratic Model

- When there are a small number of underlying market variable moments can be calculated analytically from the delta/gamma approximation
- The Cornish Fisher expansion can then be used to convert moments to quantiles

## Quadratic Model – Estimating Quantiles

Use Moments to find skewness:

$$\xi_P = \frac{1}{\sigma_P^3} E[(\Delta P - \mu_P)^3] = \frac{E[(\Delta P)^3] - 3E[(\Delta P)^2]\mu_P + 2\mu_P^3}{\sigma_P^3}$$

• Cornish – Fisher: The q percentile is  $\mu_p + w_q \sigma_p$ 

where 
$$W_q = z_q + \frac{1}{6}(z_q^2 - 1)\xi_p$$

 $Z_q$  is the relevant quantile of the standard normal. For example, if we're looking for VaR<sub>95%</sub> then it will be N<sup>-1</sup>(0.05)=-1.645.

#### Delta-Gamma Example

- The current value of a stock index is \$1,500, and its daily volatility is 2%
- A portfolio of options on the index has delta=0.5, gamma=0
- Use the delta-gamma method to estimate the mean, variance and skewness of dollar returns of the portfolio.
- What is 1-day VaR-95%?

#### Delta-Gamma Example

- Mean=0
- Variance= $\delta^2 S^2 \sigma^2 = (0.5)^2 * 1500^2 * (0.02)^2 = 225$
- Skewness=0
- The 5%-ile is:  $0-1.645 \cdot \sqrt{225} = -25$
- VaR-95%=|-25|=25

#### Effect of Gamma on Portfolio and VaR

What if Portfolio Gamma = 0.07? Gamma = -0.07?

| Gamma            | 0.07   | 0      | -0.07  |
|------------------|--------|--------|--------|
| Ε(ΔΡ)            | 31.5   | 0      | -31.5  |
| var(∆P)          | 2,210  | 225    | 2,210  |
| skewness         | 2.817  | 0.000  | -2.817 |
| $\mathbf{w}_{q}$ | -0.844 | -1.645 | -2.446 |
| 5%-ile           | -8     | -25    | -146   |

#### Modeling Bonds in Linear Model

- Duration Approach: Linear relation between  $\Delta P$  and  $\Delta y$  (allows parallel shifts only)
- Zero Coupon Bonds: Underlying variables are zero-coupon bond returns with many different maturities
- Principal Components Approach: 2 or 3 independent shifts with their own volatilities, capture most of the variance in term-structure moves

### **Duration Approach**

- Recall  $\frac{\Delta P}{P} \sim -Duration \cdot \Delta y$
- Therefore:  $\Delta P \approx -P \cdot Duration \cdot \Delta y = -Dollar Duration \cdot \Delta y$
- Assume yield follows:  $\Delta y \sim N(\mu_y, \sigma_y^2)$
- Then the price will follow:  $\Delta P \sim N(\mu_P, \sigma_P^2)$

s.t. 
$$\mu_P = -DD \cdot \mu_v$$
  $\sigma_P = DD \cdot \sigma_v$ 

$$VaR_{95\%} = -(\mu_P - 1.645 \times \sigma_P) = DD \cdot (\mu_y + 1.645 \times \sigma_y)$$

#### **Duration Approach**

- Suppose that the volatility of daily changes in interest rates is 0.1% with mean=0
- Our Portfolio is worth \$820 and has duration of 5
- Using the normal-linear approach find the 1day VaR<sub>95%</sub>:
  - The dollar duration is 820\*5=4,100
    - Portfolio value will drop by \$41 for 1% rise in yield.
  - $VaR_{95\%} = 4100*[0+1.645*0.001] = $6.74$

### **Duration Approach Caveats**

- The duration approximation is for small changes in yield, VaR might involve large changes, where the approximation fails
  - Include convexity and use delta-gamma.
- The portfolio might be affected by nonparallel shifts in the yield curve.

## Zero-coupon Bond Returns as Underlying Variables

- We can choose as market variables zero-coupon bond price changes with standard maturities (for example: 1m, 3m, 6m, 1yr, 2yr, 5yr, 7yr, 10yr, 30yr)
- We need to estimate the covariance matrix of all these bond price returns.
- We need to map the portfolio to each of the maturities.
- Suppose we have *n* maturities:

$$\sigma_P^2 = \sum_{i=1}^n \sum_{j=1}^n \operatorname{cov}_{ij} P_i P_j$$

### **Bond Portfolio Example**

- Consider a portfolio invested \$37,397 in 3mm, \$331,382 in 6mm and \$678,074 in 1-yr bonds
- Rates, vols and correlations for bond prices:

|                               | 3-Month                           | 6-Month         | 1-Year         |  |
|-------------------------------|-----------------------------------|-----------------|----------------|--|
| Zero rate (% with ann. comp.) | 5.50                              | 6.00            | 7.00           |  |
| Bond price vol (% per day)    | 0.06                              | 0.10            | 0.20           |  |
|                               | Correlation between daily returns |                 |                |  |
|                               | 3-Month<br>Bond                   | 6-Month<br>Bond | 1-Year<br>Bond |  |
| 3-month bond                  | 1.0                               | 0.9             | 0.6            |  |
| 6-month bond                  | 0.9                               | 1.0             | 0.7            |  |
| 1-year bond                   | 0.6                               | 0.7             | 1.0            |  |

#### Example – cont.

```
Portfolio Variance =
37,397^{2}*(0.06\%)^{2}+331,382^{2}*(0.10\%)^{2}+
678,0742*(0.20%)2+2*37,397*331,382*(0.06%)*
(0.10\%)*0.9+2*331,382*678,074*(0.10\%)*(0.20)
%)*0.7+2*37,397*678,074*(0.06%)*(0.20%)*0.
6 = 2,628,518 = 1,621.3^{2}
10-day VaR-99% =
1621.3*2.33*sqrt(10)=$11,946
```

## Zero-Coupon Bond Return Disadvantages

- Requires many underlying variables
- We need to map bond cash flows that arrive at times different than our underlying bonds.

#### Using PCA to Calculate VaR

- We can use 2 or 3 PCAs as underlying factors.
- It requires:
  - Portfolio sensitivities to those factors
  - Volatilities of the factors
- We estimate less deltas and don't need covariance matrix as PCs are orthogonal

#### **Table 8.8** Standard Deviation of Factor Scores

| PC1   | PC2  | PC3  | PC4  | PC5  | PC6  | PC7  | PC8  |
|-------|------|------|------|------|------|------|------|
| 17.55 | 4.77 | 2.08 | 1.29 | 0.91 | 0.73 | 0.56 | 0.53 |

#### PCA Example

Suppose a portfolio has the following sensitivities to 1-basis-point rate moves, in \$ millions:

| 3-Year | 4-Year | 5-Year | 7-Year | 10-Year |
|--------|--------|--------|--------|---------|
| Rate   | Rate   | Rate   | Rate   | Rate    |
| +10    | +4     | -8     | -7     | +2      |

What are the portfolio sensitivities to PC1 and PC2?

PC1: 
$$10 \times 0.372 + 4 \times 0.392 - 8 \times 0.404 - 7 \times 0.394 + 2 \times 0.376 = -0.05$$

PC2: 
$$10 \times (-0.267) + 4 \times (-0.110) - 8 \times 0.019 - 7 \times 0.194 + 2 \times 0.371 = -3.87$$

#### PCA Example – Cont.

We get:

$$\Delta P = -0.05f_1 - 3.87f_2$$
 where  $f_1$  is the first factor and  $f_2$  is the second factor

• If the SD of the factor scores are 17.55 and 4.77 the SD of  $\Delta P$  is

$$\sqrt{0.05^2 \times 17.55^2 + 3.87^2 \times 4.77^2} = 18.48$$

## **Thanks**