这是标题

陈烁龙 2022 年 9 月 16 日

目录

1	概述											1						
2	前置知识 2.1 贝塞尔曲线																1 1	
		B样		•														1
插	图																	
	1	贝塞	尔曲:	线														1
	2	准 B	样条	曲	线													2

表格

1 概述

本次论文为:《Targetless Calibration of LiDAR-IMU System Based on Continuous-time Batch Estimation》,其是一篇关于传感器标定的文章。其使用 B 样条曲线,在连续时间上对传感器的轨迹进行建模 (主要是 IMU 和激光雷达)。其不需要靶标,适应的场景较多。

2 前置知识

2.1 贝塞尔曲线

贝塞尔曲线主要用于二维图形应用程序中的数学曲线,曲线由起始点,终止点(也称锚点)和控制点组成,通过调整控制点,通过一定方式绘制的贝塞尔曲线形状会发生变化¹。

贝塞尔曲线的性质: 曲线总是通过第一个点和最后一个点; 第一个点的切线即为第一个点和第二个点的连线; 最后一个点的切线即为最后一个点和倒数第二个点的连线。

对于 n 次的贝塞尔曲线, 其有 n+1 个控制点, 曲线上点的位置由控制点和参数 $t \in [0,1]$ 决定。其公式为:

$$B_n(t) = \sum_{i=0}^{n} C_n^i (1-t)^{n-i} t^i P_i \quad t \in [0,1]$$

其中:

$$C_n^i = \frac{n!}{(n-i)! \cdot i!}$$

例如,对于 3次的贝塞尔曲线,其公式为:

$$B_3(t) = (1-t)^3 P_0 + 3t(1-t)^2 P_1 + 3t^2 (1-t) P_2 + t^3 P_3$$

另外,对于计算机适合的计算贝塞尔曲线递推方 法为:

$$B_n(t|P_0, P_1, \dots, P_n) =$$

$$(1-t)B_{n-1}(t|P_0, P_1, \dots, P_{n-1})$$

$$+ tB_{n-1}(t|P, P_1, \dots, P_n)$$

比如,同样对于3阶的贝塞尔曲线,其公式为:

$$\begin{cases} B_3(t|P_0, P_1, P_2, P_3) = (1 - t)B_2(t|P_0, P_1, P_2) \\ + tB_2(t|P_1, P_2, P_3) \end{cases}$$

$$B_2(t|P_0, P_1, P_2) = (1 - t)B_1(t|P_0, P_1) + tB_1(t|P_1, P_2)$$

$$B_2(t|P_1, P_2, P_3) = (1 - t)B_1(t|P_1, P_2) + tB_1(t|P_2, P_3)$$

$$B_1(t|P_i, P_j) = (1 - t)B_0(t|P_i) + tB_0(t|P_j) = (1 - t)P_i + tP_j$$

贝塞尔曲线如下图所示:

图 1: 贝塞尔曲线

2.2 B 样条曲线

B 样条是通过一组指定点集而生成平滑曲 线的柔性带。简单地说, B 样条曲线就是通过控 制点局部控制形状的曲线²。

对于 k 次³的 B 样条曲线, 其有 n+1 个控制点、m+1=(n+k+1)+1 个节点, 即: $t_0<\cdots< t_m$ 。其公式为:

$$B_{n,k}(t) = \sum_{i=0}^{n} P_i \cdot b_{i,k}(t) \quad t \in [t_{k-1}, t_{m-k+1}]$$

¹注意是整体曲线, 这和后面的 B 样条曲线不同。

 $^{^{2}}$ 注意是局部控制,因为其多项式的次数 (k) 独立于控制点的数目 (n+1),但是有一定的限制。

³阶数等于次数加1。

其中 $b_{i,n}(t)$ 可以通过 de Boor 递归公式得到:

$$b_{i,0}(t) = \begin{cases} 1 & t_i \le t \le t_{i+1} \\ 0 & \dots \end{cases}$$
$$b_{i,k}(t) = \frac{t - t_i}{t_{i+k} - t_i} b_{i,k-1}(t) + \frac{t_{i+k+1} - t}{t_{i+k+1} - t_{i+1}} b_{i+1,k-1}(t)$$

当节点等距,称 B 样条为均匀。如果节点的重复度为 k+1(即 $t_0=\cdots=t_k,t_{m-k}=\cdots=t_m$)时,为准 B 样条均匀。

(a) degree = 1

(b) degree = 2

(c) degree = 3

图 2: 准 B 样条曲线