Міністерство освіти і науки України
Національний технічний університет України «Київський Політехнічний
Інститут ім. І. Сікорського»

Інститут прикладного системного аналізу
Кафедра математичних методів системного аналізу

Дипломна робота на тему:

Порівняння деяких методів машинного навчання для аналізу текстової інформації

Виконала:

Камінська О.М., КА-31

Науковий керівник:

к. ф.-м. н., доц. Каніовська І. Ю.

Дипломна робота

- Об'єкт дослідження алгоритми машинного навчання для аналізу текстової інформації.
- Предмет дослідження застосування методів аналізу текстової інформації в задачі класифікації спаму.
- Мета роботи порівняти деякі методи машинного навчання при аналізі текстової інформації на прикладі задачі класифікації спаму.

Актуальність задачі

• Технологія глибинного аналізу текстів здатна «просіювати» великі обсяги неструктурованої інформації, такої як звіт чи повідомлення, і виявляти в них лише цінну інформацію, щоб людина не витрачала час на проведення аналізу «вручну». Саме тому пошук оптимальних методів машинного навчання для розв'язання різних типів задач аналізу текстової інформації є актуальним напрямом досліджень.

Постановка задачі

- Розглядається задача класифікації, що визначає, які повідомлення з набору повідомлень є спамом, а які ні.
- Порівнюються кілька методів машинного навчання на прикладі розв'язання задачі класифікації повідомлень «спам не спам», виявляються їх переваги та недоліки та вибираються найбільш оптимальні методи.

Процес класифікації тексту

Перетворення тексту у числові ознаки

• Mipa **TF-IDF** (англ. TF — term frequency, IDF — inverse document frequency) — статистичний показник, що використовується для оцінки важливості слів у контексті документа.

• TF-IDF = TF · IDF =
$$\frac{n_i}{\sum_k n_k}$$
 · $\lg \frac{D}{d_i}$

• де n_i — число входжень слова в документ; $\sum_k n_k$ — загальна кількість слів в документі; D — кількість документів колекції; d_i — кількість документів, в яких зустрічається слово i.

Методи, що досліджувалися

- Метод логістичної регресії (logistic regression method, LR);
- Метод k найближчих сусідів (k-nearest neighbor method, kNN);
- Метод опорних векторів (Support Vector Machine, SVM);
- Метод дерев рішень (decision trees method, **DT**);
- Наївна Байєсівська класифікація (naive-Bayes approach, **NBA**).

Вибір параметрів тренування

• LR:

- *Penalty* (укр. *«функціонал втрат»*) визначення норми, яка застосовується для обчислення похибки.
- \circ *C* параметр згладжування.

kNN:

 $^{\circ} k$ – кількість сусідів, які використовуються в алгоритмі.

SVM:

• *Kernel* (укр. «*ядро*») – тип ядра, яке використовується в алгоритмі.

DT:

• *k* – максимальна глибина дерева рішень.

NBA:

α - додатковий параметр згладжування.

Критерії оцінювання методів

- Час виконання алгоритму;
- Значення точності;
- Похибки першого і другого роду (False positive & True negative).

Всі значення критеріїв обчислюються при тих значеннях ключових параметрів кожного методу, що забезпечують його найбільшу точність.

Отримані графіки залежностей

Отримані графіки залежностей

Залежність значення точності від значення **C** для **DT**

Залежність значення точності від значення **k** для **kNN**

Отримані графіки залежностей

від значення α для NBA

від значення kernel для SVM

Результати обчислень

Назва методу	Найкраще значення параметра	Точність при найкращому параметрі	Час виконання (c)	False positive	True negative	True positive	False negative
LR	C = 10 penalty = l1	0.9700	0.160	0.0	0.02451	0.81448	1.0
	C = 10 penalty = I2	0.9746					
kNN	k = 15	0.9618	0.655	0.00119	0.04065	0.69231	0.99862
DT	C = 12	0.9621	28.355	0.0	0.02451	0.81448	1.0
SVM	kernel = linear	0.9774	1.592	0.00059	0.02032	0.84615	0.99931
NBA	α = 0.2	0.9746	0.034	0.01016	0.01614	0.87783	0.98829

Аналіз результатів

- Найкращу точність і значення True negative показали метод опорних векторів та Байєсівської класифікації.
- Найменш ефективними методами виявилися методи дерева рішень та k-найближчих сусідів – вони обидва дають найменші значення точностей.
- Метод логістичної регресії дає посередні результати для обох значень параметру «penalty» по всім критеріям.
- Порівнюючи усі отримані результати, можна зробити висновок, що **метод Байєсівської класифікації** є найбільш оптимальним і ефективним для задачі класифікації спаму.

Висновки по роботі

- Описано основні поняття області, алгоритми роботи з методами машинного навчання та наведені основні методи, з їх програмною реалізацією.
- Проведено порівняння цих методів аналізу текстової інформації і виділено недоліки та переваги кожного з них.
- Проаналізовано доцільність використання методів при розв'язанні певних задач машинного навчання.
- Для розв'язання задачі класифікації спаму, згідно з результатами досліджень, рекомендується використовувати метод Байєсівської класифікації.

Подальші шляхи розвитку

• В перспективі є можливість подальшого розвитку даної роботи і використання найбільш оптимальних методів на підприємстві та в особистих цілях для автоматичної обробки текстової інформації й економії ресурсів і часу користувача.

Дякую за увагу!