10	30	50
		GCCTTCTCCCTCCTCTGCCTCC AlaPheSerLeuLeuCysLeuL
70	90	110
		ACCTGCCCCTGGCCACCTCCCC ThrCysProTrpProProProA 170
		GGCTGCTGCCGGGTATGTGCAC GlyCysCysArgValCysAlaA 230
		GACGCCAGCCAGGGCCTGGTCT AspAlaSerGlnGlyLeuValC 290
		TGCCTCTTGGCAGAGGACGACA CysLeuLeuAlaGluAspAspS 350
		GAGACCTTCCAGCCCCACTGCA GluThrPheGlnProHisCysS 410
		GTGCCGCTGTGCAGCGAGGATG ValProLeuCysSerGluAspV 470
		GTCGAGGTCCTGGGCAAGTGCT ValGluValLeuGlyLysCysC 530
		ACCCAGCCCCTTCCAGCCCAAG ThrGlnProLeuProAlaGlnG 590
		GGTGTCCCCTGCCCAGAATGGA GlyValProCysProGluTrpS

FIG.1A

610	. 630	650
		GGGCATGGCCACCCGGGTGTCCA uGlyMetAlaThrArgValSerA 710
		CCTGTGCCTGTCCAGGCCCTGCC gLeuCysLeuSerArgProCysP 770
	GTCCACAAAACAGTGCCTT(erProGlnAsnSerAlaPho 810	CTAGAGCCGGGCTGGGAATGGGG e <u>End</u> 830
ACACGGTGTCCACCATCC 850	CCAGCTGGTGGCCCTGTGC0 870	CTGGGCCCTGGGCTGATGGAAGA 890
TGGTCCGTGCCCAGGCCC 910	TTGGCTGCAGGCAACACTT 930	TAGCTTGGGTCCACCATGCAGAA 950
CACCAATATTAACACGCT 970	GCCTGGTCTGTCTGGATCC 990	CGAGGTATGGCAGAGGTGCAAGA 1010
CCTAGTCCCCTTTCCTCT 1030	AACTCACTGCCTAGGAGGC 1050	TGGCCAAGGTGTCCAGGGTCCTC 1070
TAGCCCACTCCCTGCCTA	CACACACAGCCTATATCAA 1110	ACATGCACACGGGCGAGCTTTCT 1130
CTCCGACTTCCCCTGGGC 1150	AAGAGATGGGACAAGCAGT(1170	CCCTTAATATTGAGGCTGCAGCA 1190
GGTGCTGGGCTGGACTGG 1210	CCATTTTTCTGGGGGTAGG, 1230	ATGAAGAGAAGGCACACAGAGAT 1250
TCTGGATCTCCTGCTGCC 1270	TTTTCTGGAGTTTGTAAAA	TTGTTCCTGAATACAAGCCTATG
	ΔΔΔΔΔΔΔ	

	1				50
CTGF-1aa CTGF-3aa				SGPCRCPDEP PTPCTCP.WP	
CTGF-1aa CTGF-3aa				LFCDFGSPAN LVCQPGAGPG	
CTGF-1aa CTGF-3aa				GAVGCMPLCS GGFTCVPLCS	
CTGF-1aa CTGF-3aa				LAAYRLEDTF AQGPQFSGLV	
CTGF-1aa CTGF-3aa				RLEKQSRLCM RLETQRRLCL	
CTGF-1aa CTGF-3aa	251 NIKKGKKCIR SPQNSAF		ELSGCTSMKT	YRAKFCGVCT	300 DGRCCTPHRT
CTGF-1aa CTGF-3aa	301 TTLPVEFKCP	DGEVMKKNMM	FIKTCACHYN	CPGDNDIFES	350 LYYRKMYGDM
CTGF-1aa CTGF-3aa	351 A				·

FIG.2

9

