

In kernel memory compression

Bob Liu bob.liu@oracle.com
Oct 2013

Overview

- Why memory compression
- Zswap introduction
- Zswap usage and performance
- Zswap challenge
- Zram
- Zcache

What happens if system is under memory pressure

- Linux kernel will do page reclaim
- Typical pages to be considered:

Swappable	Anonymous pages in User Mode address spaces	Save the page contents in a swap area
	Mapped pages of <i>tmpf</i> s filesystem (e.g., pages of IPC shared memory)	Cave the page contents in a swap area
Syncable	Mapped pages in User Mode address spaces	
	Pages included in the page cache and containing data of disk files	Synchronize the page with its image on disk, if necessary
	Block device buffer pages	
	Pages of some disk caches (e.g., the inode cache)	

Consider swappable pages only

- Pages will be swapped out to disk
- Disk is much slower
- Swap will cause significant performance drop

SPECjbb Performance

10GB RAM, 2core SMT4, Power7+

Swap I/O

10GB RAM, 2core SMT4, Power7+

* [Reference document 2]

A way to smooth out this I/O storm and performance

ZSWAP

- Hook into swap_writepage() via the frontswap API
- Compress the swap page
- Store the compressed page in a dynamically allocated memory pool(ZBUD)
- Hook into swap_readpage()
- Decompress from memory pool
- Avoid touching the slow swap device

ZSWAP

ZBUD

- The allocator used by ZSWAP
- Store compressed pages
- Only allocate 0-order pages
- Pairs of zpages are "buddied", one at the front of pageframe and one at the end
- No more than two zpages/buddies per pageframe
- Always search for the best fit buddy(the least wasted space)
- Page frames are LRU-linked

ZSWAP/ZBUD Status

- Get merged in v3.11
- mm/zswap.c
- mm/zbud.c

How to use ZSWAP

- Enable at boot time with a kernel parameter "zswap.enabled=1"
- Option parameters
 - zswap.compressor(Izo is default, can use hardware compressor like 842)
 - zswap.max_pool_percent
- Statistics
 - /sys/kernel/debug/zswap
 - 'sys/kernel/debug/frontswap

SPECjbb Performance

10GB RAM, 2core SMT4, Power7+, max_pool_percent=40

Swap I/O

10GB RAM, 2core SMT4, Power7+, max_pool_percent=40

ORACLE

ZSWAP/ZBUD pageframe reclaim

- When memory pool(store compressed pages) hit the limitation(default 20%)
- Select the pageframe at the tail of zbud LRU list
- Decompress the pageframe into two new allocated pages
- Insert decompressed pages(two) into swapcache

ZSWAP/ZBUD pageframe reclaim

- Write these two decompressed pages to real swap device
 - VM page reclaim will recognize these two pages as clean pages and free them directly
- Free the pageframe used by zswap/zbud

ZSWAP/ZBUD pageframe reclaim ---- Challenge

- Free one pageframe acquires temporarily allocating two new pages
- Possible solution
 - Teach the core VM about zbud pages in the reclaim page

ZRAM

- Drivers/staging/zram/
- Act as compressed block ramdisk /dev/zram0
- Used as swap device or normal block device
- Use zsmalloc as the allocator which has high density but may with fragmentation issues (It may lead to unpredicable result)
- No pageframe reclaim
- Preferred by embedded system which may not have any real swap device

Merge ZRAM into ZSWAP or viceversa

In theory but no agreement yet

ZCACHE

- A lot of things over the years in drivers/staing/zcache
- Dropped from staging recently
- My action: strip it down to only handle file page compression and try to get it merged directlement.

Help needed

Real workloads performance

References

- 1. The zswap compressed swap cache
- 2. New Linux zswap compression functionality
- 3. Zcache: a compressed page cache
- 4. https://blogs.oracle.com/linuxkernel/

