

Course: UCS1502 - Microprocessors and Interfacing

Multiprocessor Configurations

Dr. K. R. Sarath Chandran

Assistant Professor / Dept. of CSE

Learning outcome of this module:

To understand the details of various multiprocessor configurations

Multiprocessor Configurations

If a microprocessor system contains more components that can execute instructions independently, then the system is called multiprocessor system.

- 2 basic multiprocessor configurations:
- 1. Closely coupled
- 2. Loosely coupled

Multiprocessor Configurations

Advantages

- Improves performance ratio of the systems.
- Several processors may be combined to fit the need of an application.
- Task are divided among the modules.
- If failure occurs, it is easier to find and replace the malfunctioning processor.

Issues

- Bus contention
- Interprocessor communication
- Resource sharing

In Closely coupled configurations, both the CPU and the external processor share:

- Memory
- I/O system
- Bus & bus control logic
- Clock generator

Closely Coupled Configuration:

Loosely Coupled Configuration:

- has shared system bus, system memory, and system I/O
- each processor has its own clock as well as its own memory (in addition to access to the system resources, such as the system clock)
- -clocks are of similar frequency, but asynchronous towards each other

Bus Allocation Schemes

Bus Allocation Schemes

- Daisy Chaining
- Polling
- -Independent Priority

Daisy Chaining

Daisy Chaining:

- Need a bus controller to monitor bus busy and bus request signals
- Sends a bus grant to a Master, each Master either keeps the service or passes it on
- Master releases the Bus Busy signal when finished

Daisy Chaining

Daisy Chaining

Advantages

- It is simpler and cheaper method
- It requires the least number of lines and this number is independent of the number of masters in the system

Disadvantages

- Propagation delay is proportional to the number of masters
- The priority of the master is fixed by its physical location
- Failure of one system causes the whole system to fail

Polling

Polling

Polling:

- A set of address lines are driven by controller to address the masters
- When a bus request is received from a device, controller generates the addresses on the address lines.
- When the requesting master recognizes its address, it activates the BUSY line.
- Once the busy line is activated, the controller stops generating further addresses

Polling

Advantages

 The priority can be changed by altering the polling sequence stored in the controller

If one module fails entire system does not fail

Independent Priority

Independent Priority

- Each master has a separate pair of bus request and bus grant line
- Each pair has priority assigned to it.
- Fixed priority or rotating priority can be given.

Independent Priority

Independent Priority

Advantages

 Due to separate pairs of bus request and bus grant signals, arbitration is fast and is independent of the number of masters in the system

Disadvantages

• It requires more bus request and grant signals(2*n signals for n modules).

Thank you

