Discrete Distributions

Probabilities

Distribution	PMF	CDF
Bernoulli	$p^k(1-p)^{1-k}, k \in \{0,1\}$	$\begin{cases} 0 & k < 0 \\ 1 - p & 0 \le k < 1 \\ 1 & k \ge 1 \end{cases}$
Binomial	$\binom{n}{k}p^k(1-p)^{n-k}$	-
Geometric	$\binom{n}{k} p^k (1-p)^{n-k}$ $p(1-p)^{k-1}$	$1 - (1 - p)^k$
Poisson	$\frac{\lambda^k e^{-k}}{k!}$	-

Moments

Distribution	Expectation	Variance	MGF
Bernoulli	p	p(1-p)	$(1-p) + pe^t$
Binomial	np	np(1-p)	$(1 - p + pe^t)^n$
Geometric	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1-(1-p)e^t}$
Poisson	λ	λ	$e^{\lambda(e^t-1)}$

Continuous Distributions

Probabilities

Distribution	PDF	CDF
Uniform	$\frac{1}{b-a}$	$\frac{x-a}{b-a}$
Exponential	$\lambda e^{-\lambda x}$	$1 - e^{-\lambda x}$
Normal	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $\frac{\lambda^k x^{k-1}e^{-\lambda x}}{(k-1)!}$	$\Phi(x)$
Erlang	$\frac{\lambda^k x^{k-1} e^{-\lambda x}}{(k-1)!}$	$1 - \sum_{n=0}^{k-1} \frac{1}{n!} e^{-\lambda x} (\lambda x)^n$

Moments

Distribution	Expectation	Variance	MGF
Uniform	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$rac{e^{tb}-e^{ta}}{t(b-a)}$
Exponential	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$rac{\lambda}{\lambda-t} e^{\mu t+rac{\sigma^2t^2}{2}}$
Normal	μ	σ^2	
Erlang	$rac{k}{\lambda}$	$\frac{k}{\lambda^2}$	$\left(1-\frac{t}{\lambda}\right)^{-k}$

Derived Distributions

- 1. If $X_1, X_2, \ldots, X_N \sim \text{Exp}(\lambda_i)$ are independent, then $\min X_i \sim \text{Exp}(\sum \lambda_i)$.
- 2. If $X_1, X_2, \dots, X_N \sim \text{Exp}(\lambda_i)$ are independent, then $P(X_i = \min X_k) = \frac{\lambda_i}{\sum \lambda_k}$.

Assorted Facts

- 1. If X is a random variable, then $P(X=0) \leq \frac{Var(X)}{\mathbb{E}[X]^2}$
- 2. If $(N_t)_{t\geq 0}$ is a Poisson Process with rate λ , then the time from the most recent arrival to the current "random" time is $t_0 T_i \sim \text{Exp}(\lambda)$