www.mathsenligne.com

principal A.

EXERCICE 5B.1 - NANTES 2000On considère un triangle ACD rectangle et isocèle de sommet

On complètera la figure ci-après au fur et à mesure.

1. Placer le point B, image de D dans la rotation de centre A et d'angle 60°.

On prendra le sens des aiguilles d'une montre comme sens de rotation.

- 2. Démontrer que le triangle ABD est un triangle équilatéral.
- **3.** Placer E, image du point D dans la translation de vecteur \overrightarrow{AC} . Démontrer que ACED est un carré.

EXERCICE 5B.2 - POITIERS 2000

A partir du repère orthonormal (O, I, J) donné:

- **1.** Construire le triangle OGH, image du triangle OAB par la symétrie de centre O.
- **2.** Construire le triangle OMN, image du triangle OAB par la rotation de centre O et d'angle 90° dans le sens mentionné sur le schéma.
- **3. a.** Construire le point C, image du point O par la translation de vecteur \overrightarrow{BA} .
 - **b.** Quelle est la nature du quadrilatère OBAC ? Justifier.

EXERCICE 5B.3 - PARIS 2000

Construire, sur le quadrillage ci-dessous, l'image du nombre 2000 par :

- **a.** La symétrie de centre O.
- **b.** La symétrie d'axe (d).
- c. La translation qui transforme A en C.
- **d.** La rotation de centre O qui transforme A en B.

EXERCICE 5B.4 - PARIS 1999

- (O, I, J) est un repère orthogonal du plan, l'unité est le centimètre. On utilisera une feuille de papier millimétré.
- **1.** Placer les points A(3; 1), B(-1; 4), C(-3; 4), D(-1; 3) et E(-1; 2).
- **2.** Dans cette question, on ne demande aucun trait de construction ni aucune justification. On appelle I la figure représentée par le polygone ABCDE. Tracer sur le même graphique :
 - **a.** L'image \mathscr{F}_1 de \mathscr{F} par la rotation de centre E, d'angle 90°, dans le sens inverse des aiguilles d'une montre.
 - **b.** L'image \mathscr{T}_2 de \mathscr{T}_2 par la translation de vecteur \overrightarrow{CJ} . On placera les lettres \mathscr{T}_1 et \mathscr{T}_2 sur le graphique.