ПРОГНОЗИРОВАНИЕ ИСХОДОВ ТЯЖЕЛОЙ ПОЛИТРАВМЫ У ДЕТЕЙ

Цель исследования — разработка модели прогнозирования исходов тяжелой политравмы у детей, нуждающихся в лечении в ОРИТ.

Пациенты и методы. Дизайн исследования: ретроспективное обсервационное мультицентровое исследование (тип «случай-контроль» и поперечное), выполнение на базе педиатрических ОРИТ Северо-Западного Федерального Округа РФ, БУЗ ВО «Воронежская областная детская клиническая больница №1», ГБУЗ «Самарская областная клиническая больница им. В.Д. Середавина», ГБУЗ «Республиканская детская клиническая больница» Республики Башкортостан. В исследование было включено 203 ребенка с тяжелой политравмой.

Критерии включения: 1) возраст до 18 лет; 2) наличие политравмы; 3) необходимость лечения в условиях ОРИТ; 4) длительность лечения в ОРИТ не менее 10 суток

Критерии исключения: 1) органическое поражение ЦНС; 2) наличие тяжелых сопутствующих заболеваний.

Общая характеристика пациентов представлена в Таблица 1.

Таблица 1Общая характеристика пациентов представлена

Показатель	Количество пациентов						
Показатель	Абс. число	%					
Мальчики	129	63,55					
Девочки	74	36,45					
Характеристика травмы							
Оценка по шкале AIS, баллы	36,81 (25 – 48)						
Оценка по шкале PTS, баллы	5,2 (2 – 8)						
Черепно-мозговая травма + торакальная травма + абдоминальная травма + травма ОДА	45	22,16					

Показатель	Количество пациентов						
показатель	Абс. число	%					
Черепно-мозговая травма + торакальная травма + абдоминальная травма	47	23,15					
Черепно-мозговая травма + торакальная травма + травма ОДА	69	33,99					
Черепно-мозговая травма + абдоминальная травма + травма ОДА	84	41,3					
Черепно-мозговая травма + торакальная травма	71	34,9					
Черепно-мозговая травма + абдоминальная травма	92	45,32					
Черепно-мозговая травма + травма ОДА	174	85,71					
Множественные повреждения опорно-двигательного аппарата	181	89,16					
Автотравма	63	31,03					
Кататравма	58	28,57					
Внутричерепные гематомы	28	13,79					
Субарахноидальные кровоизлияния	48	23,64					
Внутрижелудочковые кровоизлияния	10	4,23					
Применение кортикостероидов							
Применялись	113	55,67					
Не применялись	90	44,33					
Применялись только в 1-е сутки лечения в ОРИТ	12	5,91					
Исходы							
Выздоровление	184	90,64					
Летальный исход	19	9,36					
Длительность ИВЛ, часы	3,11 (0 – 4,06)						
Длительность лечения в ОРИТ, сутки	6,93 (1 – 8)						

Исследуемые параметры: систолическое артериальное давление (САД); диастолическое артериальное давление (ДАД); среднее артериальное давление (СрАД); частота сердечных сокращений (ЧСС); индекс Альговера (ЧСС/САД); насыщение гемоглобина пульсирующей крови кислородом (SpO₂); концентрация хлора и лактата в крови; ферментативная активность АлАТ и

АсАТ; АПТВ; объем инфузии (в % от возрастной потребности в жидкости); катехоламиновый индекс; площадь поверхности тела; диурез; диагнозы; исход заболевания.

Катехоламиновый индекс рассчитывали по формуле:

Д ϕ +Дб + A*100 + Ha*100, где

Дф – дофамин, мкг/кг/мин,

Дб – добутамин, мкг/кг/мин,

A – адреналин, мкг/кг/мин,

На – норадреналин, мкг/кг/мин

Исследование включало несколько этапов, которые были представлены элементами кросс-секционного анализа и оценки по типу «случай-контроль».

Анализ данных

Анализ данных включал в себя следующие этапы:

- Статистический анализ
- Uplift-моделирование

Для проведения исследования использовалась операционная система семейства Linux (Fedora Workstation 33), язык программирования руthon3 и набор библиотек для анализа данных (pandas, numpy, sklearn, matplotlib). Соответствие данных закону о нормальном распределении проверяли графическими методами, с помощью тестов Краскела-Уоллиса и Фишера. Анализ достоверности различий между группами осуществляли с использованием методов непараметрической статистики. За критический уровень значимости принято значение p<0,05.

Результаты исследования

В результате проведения статистического анализа данных было выяснено, что распределение изучаемых величин носит непараметрический характер, а также выраженную асимметричность сформированных групп пациентов. Поэтому было принято решение о необходимости использования непараметрических методов статистического анализа для оценки влияния

различных диагнозов на исход заболевания. Для анализа значимости влияния поражающих факторов (различных травм) на исходы был проведен анализ с использованием критерия Хи-квадрат (см. Таблица 2).

Таблица 2Анализ значимости влияния травматических факторов на исходы заболевания с помощью критерия Xu-квадрат (расчет с поправкой Йетса)

	Фактор риска	НИ+	НИ-	БИ+	БИ-	chi2	p value	critical_value
1	ИВЛ	8	1111-	1	183	60.74527	ρ_value 0	3.841459
2	Кома	7	12	0	184	59.58075	0	3.841459
3	Реанимация	7	12	0	184	59.58075	0	3.841459
4	Вклинение ГМ	5	14	0	184	39.29405	0	3.841459
5		4	15	4	180	11.61038	0.0007	
6	CAK + BЖK	4	15					3.841459
7	ВЖК			6	178	8.15096	0.0043	3.841459
\vdash	ДВС	3	16	3	181	7.606706	0.0058	3.841459
8	ДН	3	16	4	180	5.93573	0.0148	3.841459
9	Грудь	8	11	38	146	3.381326	0.0659	3.841459
10	Кататравма	2	17	56	128	2.440239	0.1183	3.841459
11	Термический ожог	0	19	1	183	1.956506	0.1619	3.841459
12	НК	0	19	1	183	1.956506	0.1619	3.841459
13	Электротравма	0	19	1	183	1.956506	0.1619	3.841459
14	СК	1	18	0	184	1.956506	0.1619	3.841459
15	СН	1	18	0	184	1.956506	0.1619	3.841459
16	Ателектазы	0	19	1	183	1.956506	0.1619	3.841459
17	Конечности	6	13	94	90	1.89973	0.1681	3.841459
18	Кровотечение	4	15	19	165	1.049153	0.3057	3.841459
	Лимфатические	_						
19	протоки	0	19	2	182	0.582433	0.4454	3.841459
20	Ателектаз	0	19	2	182	0.582433	0.4454	3.841459
21	ЦНС + Голова	14	5	114	70	0.575657	0.448	3.841459
22	Голова	14	5	114	70	0.575657	0.448	3.841459
22	ЦНС + ОДА + Го-	1.4	_	114	70	0.575657	0.440	2 0 41 450
23	лова	14	5	114	70	0.575657	0.448	3.841459
24	Другое	14	5	116	68	0.447706	0.5034	3.841459
25	ЦНС	19	0	172	12	0.405407	0.5243	3.841459
26	Головной мозг	19	0	172	12	0.405407	0.5243	3.841459
27	Гемосинус	3	16	16	168	0.356474	0.5505	3.841459
28	ЦНС + Травма жи- вота + Голова	7	12	51	133	0.326623	0.5677	3.841459
28 29		6	13	42	142			
29	САК ЦНС + ОДА + Ор-	O	13	42	142	0.326391	0.5678	3.841459
	цис + ода + ор- ганы грудной							
30	клетки	8	11	61	123	0.280926	0.5961	3.841459
31	Шок	3	16	43	141	0.214933	0.6429	3.841459
32	Аспирация	1	18	2	182	0.191643	0.6616	3.841459
33	Гидроторакс	1	18	2	182	0.191643	0.6616	3.841459
	ЦНС + Органы	-	- 10	_			3.0010	2.0.1.09
34	грудной клетки	8	11	63	121	0.186505	0.6658	3.841459

35	Гемоторакс	2	17	10	174	0.148263	0.7002	3.841459
36	Позвонки	2	17	19	165	0.135674	0.7126	3.841459
37	ОДА	17	2	164	20	0.116807	0.7325	3.841459
-	Органы грудной	- 1	_	10.		0.110001	017020	21011109
38	клетки	8	11	65	119	0.112341	0.7375	3.841459
39	Автотравма	7	12	56	128	0.098793	0.7533	3.841459
	ЦНС + ОДА +							
40	Травма живота	9	10	75	109	0.097418	0.755	3.841459
41	Пневмоторакс	2	17	18	166	0.090435	0.7636	3.841459
42	МПС	3	16	39	145	0.065745	0.7976	3.841459
43	Спинной мозг	1	18	6	178	0.041994	0.8376	3.841459
	ЦНС + ОДА +							
	Травма живота +							
44	Органы грудной клетки	5	14	40	144	0.027949	0.8672	3.841459
45	Легкие	7	12	59	125	0.027551	0.8682	3.841459
46		17	2	157	27		0.8827	
	ЦНС + ОДА					0.021775		3.841459
47	Таз ЦНС + ОДА + Ор-	3	16	32	152	0.020444	0.8863	3.841459
	цпс + ОдА + Ор- ганы грудной							
48	клетки + Голова	6	13	51	133	0.00783	0.9295	3.841459
.0	ЦНС + Органы	Ü	13	J 1	133	0.00705	0.5255	3.011139
	грудной клетки +							
49	Голова	6	13	51	133	0.00783	0.9295	3.841459
	Гнойные осложне-							
50	РИН	1	18	5	179	0.007676	0.9302	3.841459
	ЦНС + Травма жи-							
<i>E</i> 1	вота + Органы	4	1.5	22	150	0.006792	0.0244	2 941450
51	грудной клетки + ЦНС + Органы	4	15	32	152	0.006783	0.9344	3.841459
	цис + Органы грудной клетки +							
52	Травма живота	5	14	42	142	0.003328	0.954	3.841459
	ЦНС + Травма жи-				= : =		3.521	2.0.2.07
53	вота	9	10	83	101	0.002879	0.9572	3.841459
54	Живот	9	10	83	101	0.002879	0.9572	3.841459
55	Интоксикация	0	19	5	179	0.002478	0.9603	3.841459

Анализируя представленные в таблице результаты, можно заключить, что значимая взаимосвязь между фактором риска и исходом заболевания имелась в следующих случаях (p_value < 0.05, значение статистики > критического значения): проведении ИВЛ; при развитии проведенных комы; мероприятий; вклинения реанимационных головного мозга; субарахноидального кровоизлияния, сочетающимся с внутрижелудочковым внутрижелудочкового кровотечения; ДВС; развития кровотечением; дыхательной недостаточности.

В качестве альтернативного метода оценки влияния диагнозов, было проведено uplift-моделирование влияния факторов (травм) заболевания. Были проанализированы факторы, встречавшиеся не менее 50 раз в исследуемой выборке. В результате были сделаны выводы о наибольшей связи трех групп диагнозов с исходом заболевания, а именно: кататравмы, автотравмы и травмы конечностей. Полученные данные не совпадали с данными, полученными при анализе методом Хи-квадрат, поэтому для оценки возможности практического использования результатов, полученных с помощью этих двух методов, было проведено сравнение результатов (recall, чувствительности) ста возможных прогностических попеременным использованием разного количества отобранных факторов, имеющих максимальный коэффициент, присвоенный алгоритмом SoloLearn при проведении uplift-моделирования, или максимальное значение статистики при расчете критерия Хи-квадрат (см.

Таблица 3). В результатах хорошо видно, что оба метода дали сравнимые по точности результаты, однако при использовании 3 из 4 алгоритмов явное преимущество имеют данные, полученные при расчете критерия Хи-квадрат. Однако на графике распределения f1-меры (см. Приложение) видно, что хорошие показатели чувствительности при использовании Хи-квадрата для отбора признаков, по-прежнему (как и при варианте с uplift-моделированием), достигаются дорогой ценой: средняя f1-меры находится в области от 0,6 до 0,8, что означает, что имеется достаточно большое количество неправильных прогнозов неблагоприятного исхода; еще более низкие результаты были достигнуты при работе с uplift-моделированием.

Таблица 3 Достигаемые уровни (при разном количестве факторов: от 6 до 18) меры чувствительности алгоритмов классификации (группа пациентов с неблагоприятным исходом): средние $_{max}$ ($25_{max} - 75_{max}$ центили)

Алгоритм	Без учета	Факторы риска,	Факторы риска,
классификации	факторов риска	отобранные	отобранные
		критерием Хи-	uplift-
		квадрат	моделированием
Random Forest	0.856400	0.946600	0.901400
Classifier	(0.821400 -	(0.928600-	(0.857100 -
	0.910700)	0.982100)	0.964300)
Gradient Boosting	0.576700	0.773400	0.745400
Classifier	(0.500000 -	(0.714300-	(0.660700-
	0.647300)	0.839300)	0.857100)
CatBoost	0.803900	0.719300	0.758600
	(0.750000 -	(0.660700-	(0.696400-
	0.910700)	0.785700)	0.825900)
Support Vector	0.211100	0.765900	0.148400
Machine	(0.035700 -	(0.750000-	(0.071400 -
	0.089300)	0.767900)	0.214300)

По итоговой таблице видно, что использованные данные при работе с алгоритмами классификации Random Forest, Gradient Boosting и Support Vector позволили получить более точные результаты прогноза. Однако во всех случаях f1-мера оставалась низкой (см. Приложение). В дальнейшем планируется использовать большее количество клинико-лабораторных параметров у детей с тяжелой сочетанной травмой с целью разработки прогностической модели с более узким колебанием точности и более высоким значениями параметров recall (чувствительность) и f1-меры группы пациентов с неблагоприятным исходом — только при выполнении этих условий можно будет планировать практическое применение результатов работы.

Благодаря проведенному анализу были получены первые данные о силе связи между исходом заболевания и следующими факторами риска:

- проведением ИВЛ;
- развитием комы;
- проведением реанимационных мероприятий;
- вклинением головного мозга;
- субарахноидальным кровоизлиянием, сочетающимся с внутрижелудочковым кровотечением;
- внутрижелудочковым кровотечением;
- развитием ДВС;
- дыхательной недостаточностью;
- кататравмой;
- автотравмой;
- травмой конечностей.

Приложение

Графическое представление результатов обучения алгоритмов классификации на 17 клинико-лабораторных признаках и отобранных факторах риска.

Отбор с помощью Хи-квадрата

Отбор факторов риска с помощью Uplift-моделирования

Без учета факторов риска

