Lab 2

Classification with MAP criterion PCA vs MDA feature selection Synthetic & PHONEME dataset

Lab2

Objectives:

- Dimensionality reduction (feature selection) using PCA and MDA
- Application to a real dataset
- Split the dataset into training and test subsets

Feature selection is the process of selecting a subset of relevant features for use in model construction.

Feature selection techniques help to

- Simplify the classifier model
- Reduce the computational cost / training times
- Avoid the curse of dimensionality
- Improve generalization by reducing overfitting

Feature selection techniques

Overview of Feature Selection Techniques

Copyright @ MachineLearningMastery.com

Dimensionality reduction through a linear transform

Goal: Reduce the number of features (assuming column vectors):

$$\mathbf{z}_{k} = \mathbf{W}^{T} (\mathbf{x}_{k} - \boldsymbol{\alpha}) \qquad \mathbf{x} \in \mathbb{R}^{d}, \mathbf{z} \in \mathbb{R}^{d'}, \mathbf{W}^{T} \in \mathbb{R}^{d' \times d} \qquad d' < d$$

Possible solutions for W:

- 1. Projection of vectors x_k on subspace that minimizes the reconstruction error (MSE): principal component analysis (PCA)
- 2. Projection of vectors x_k on the subspace that maximizes the separation between classes: multiple discriminant analysis (MDA)

Take into account

The reduction matrix **W** must be created using the training dataset

Scatter matrix

$$\mathbf{m}_i = \frac{1}{N_i} \sum_{\mathbf{x} \in D_i} \mathbf{x}$$

average of samples from class *i*

$$\mathbf{m} = \frac{1}{N} \sum_{\mathbf{x} \in \{D_1, \dots, D_C\}} \mathbf{x} = \frac{1}{N} \sum_{i=1}^{C} N_i \mathbf{m}_i \quad \text{average of all samples}$$

$$\mathbf{S}_T = \sum_{\mathbf{x} \in \{D_1, \dots, D_c\}} (\mathbf{x} - \mathbf{m}) (\mathbf{x} - \mathbf{m})^T$$
 Total data dispersion

$$\mathbf{S}_{T} = \underbrace{\sum_{i=1}^{c} \sum_{\mathbf{x} \in D_{i}} (\mathbf{x} - \mathbf{m}_{i}) (\mathbf{x} - \mathbf{m}_{i})^{T}}_{\mathbf{S}_{C}} + \underbrace{\sum_{i=1}^{c} \sum_{\mathbf{x} \in D_{i}} (\mathbf{m}_{i} - \mathbf{m}) (\mathbf{m}_{i} - \mathbf{m})^{T}}_{\mathbf{S}_{B}}$$

Sum of intra-class scatter matrices

Inter-class scatter matrix

PCA (Principal Component Analysis)

Objective:

• Maximize:
$$\sum_{i=1}^{d'} w_i^T S_T w_i$$

• Constraints: $w_i^T w_i = E$

Solution:

• Columns of \mathbf{W} : d' eigenvectors associated with the largest eigenvalues of \mathbf{S}_T

$$\mathbf{S}_T \mathbf{w}_i = \lambda_i \mathbf{w}_i$$

Problem:

 PCA minimizes the approximation squared error but it does not guarantee the separability of the classes

PCA (Principal Component Analysis)

PCA does not guarantee a good separation of classes

MDA (Multiple Discriminant Analysis)

Objective:

- Maximize intra-class separability while minimizing the inter-class scatter
- We measure the separability and scatter using the ellipsoid volumes, assuming data Gaussianity

Formulation:

• Maximization:
$$\mathbf{W} = \arg \max_{\mathbf{W}} \frac{|\mathbf{W}^T \mathbf{S}_B \mathbf{W}|}{|\mathbf{W}^T \mathbf{S}_C \mathbf{W}|}$$

Solution:

- d' ≤ min(d,c-1) (c: number of classes)
- W columns: eigenvectors associated to the largest eigenvalues:

$$\mathbf{S}_{B}\mathbf{w}_{j} = \boldsymbol{\sigma}_{j}\mathbf{S}_{C}\mathbf{w}_{j} \qquad \Rightarrow \qquad \mathbf{S}_{C}^{-1}\mathbf{S}_{B}\mathbf{w}_{j} = \boldsymbol{\sigma}_{j}\mathbf{w}_{j}$$

MDA (Multiple Discriminant Analysis)

W

2

4

2

4

6

-10

-5

0

5

10

15

Better separation when projecting onto w

PCA in scikit-learn

n_components = number of components to keep.

```
pca = PCA(n_components=2)
pca.fit(X_train)
X_train_pca1 = pca.transform(X_train)
X_test_pca1 = pca.transform(X_test)
```

If n components is not set all components are kept

```
pca = PCA()
pca.fit(X_train)
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
```


MDA in scikit-learn

Linear Discriminant Analysis (LDA ->MDA)

A classifier with a linear decision boundary, generated by fitting class conditional densities to the data and using Bayes' rule. The model fits a Gaussian density to each class, assuming that all classes share the same covariance matrix.

```
lda = LinearDiscriminantAnalysis(solver="svd",store_covariance=True)
ldamodel = lda.fit(X_train, y_train)
y_tpred_lda = ldamodel.predict(X_train)
y_testpred_lda = ldamodel.predict(X_test)
```

The fitted model can also be used to reduce the dimensionality of the input by projecting it to the most discriminative directions, using the transform method.

Machine Learning 11

Phoneme dataset

- A dataset was formed by selecting five phonemes for classification based on digitized speech from TIMIT database (speech recognition)
- Vectors correspond to 5 possible phonemes or classes:
 'aa' (695) 'ao'(1022) 'dcl'(757) 'iy'(1163) 'sh'(872).
- Each vector has been obtained computing $log(|TF(x(n))|^2)$ where the sequence x(n) corresponds to part of a recording of a phoneme at a sampling rate of 16 kHz.
- For each vector we initially have 256 features, corresponding to the spectrum between 0 and 8 kHz
- In Lab2 we will work just with the first 64 samples (frequencies 0 to 2 kHz).

https://web.stanford.edu/~hastie/ElemStatLearn/data.html

Machine Learning 12

Example: one vector per class

Data / Classifier design

Dataset split

- Training set X_train y_train (70%)
- Test set X_test, y_test (30%)

Design of a linear (LC) and a quadratic (QC) classifier

- Dataset with d=256 (or 64) features
- Reduced dataset using manual selection of 2 features
- Reduced dataset (dimension d') using PCA

Lab2

Part1 (Mlearn_lab2_1_IntroPCA.ipynb)

Understand the use of PCA for dimensionality reduction (toy example, digits image dataset)

Part2 (Mlearn_lab2_2_Synthetic_PCA_MDA.ipynb)

- Use synthetic Gaussian datasets (c=3 classes, d=3 features) for different SNR values
- Train Lc and Qc classifiers using all the features
- Train Lc and Qc classifiers after dimensionality reduction using PCA and MDA

Part3 (Mlearn_lab2_3_Phoneme.ipynb)

- Use Phoneme dataset (c=5 classes, d=256 features)
- Train Lc and Qc classifiers using the first d=64 features
- Train Lc and Qc classifiers using d'=2 manually selected features

Part2 (your code) Mlearn_lab2_4_Phoneme_PCA_MDA_surname.ipynb

- Use Phoneme dataset
- Train Lc and Qc classifiers using d' features selected with PCA / MDA
- Show Lc and Qc training/test error curves for varying number of features selected with PCA / MDA

Machine Learning