Proiectarea Algoritmilor

Curs 12 – Algoritmi pentru jocuri Minimax, α-β

Bibliografie

- Giumale Introducere in Analiza Algoritmilor cap 7.6
- http://www.dwheeler.com/chessopenings/#Sicilian%20Defense
- http://mouserunner.com/MozllaTicTacToe/Mozilla Tic Tac Toe.htm
- http://www.emunix.emich.edu/~evett/AI/AIphaBeta movie/index movie.htm

Problema

http://www.dwheeler.com/chess-openings/#Sicilian%20Defense

Varianta Najdorf

Când avem foarte multe posibilități la dispoziție încercăm să folosim poziții (pattern-uri) cunoscute.

Apărarea siciliană!

Varianta Dragon

Albul la mutare

- -11 posibilități de mutare;
- le putem încerca pe toate să vedem ce se întâmplă.

Circa 15.000 de mutări de analizat – ușor pentru calculator. Noi eliminăm mutările ce ni se par fără sens (mai mult de jumătate).

Numărul mutărilor ➤ posibile se reduce la 6.

Doar 4 mutări posibile.

Remiză asigurată!

- Evaluăm amenințările:
 - Căutăm mutări care să minimizeze pierderile;
 - Căutăm mutări care să maximizeze câștigul.
- Alegem mutările ce ni se "par" cele mai bune pe moment:
 - Explorăm în adâncime graful mutărilor;
 - Numărul de niveluri = minim dintre:
 - Terminarea jocului;
 - Obţinerea unui avantaj consistent fără pericol aparent de a-l pierde;
 - Nivelul maxim al capacității noastre de calcul.

Abordări posibile pentru calculator

Şabloane pentru poziții standard.

Căutare în spațiul de poziții.

 Utilizare euristici pentru evaluarea poziției curente.

🔪 Ne vom concentra asupra căutărilor.

Metoda Minimax

- 2 jucători: Max și Min care mută pe rând (Max mută primul).
- Max urmărește să-și maximizeze câștigul.
- Min urmărește să-și minimizeze pierderea.
- Se construiește un arbore AND-OR:
- Nivelurile impare

 mutările jucătorului Max.
- Nivelurile pare -> mutările jucătorului Min.
- Frunzele desemnează câştigul/pierderea lui Max.
- Arcele reprezintă mutările propriu-zise.

Exemplu (I)

MAX (Firefox) trebuie să mute:

Exemplu (II)

Exemplu (III)

Funcționare Minimax

- 1) Se generează întregul arbore;
- 2) Se evaluează frunzele și li se asociază valori;
- 3) Se propagă rezultatele dinspre frunze spre rădăcină astfel:
 - Nivelul MIN alege cea mai mică valoare dintre cele ale copiilor.
 - Nivelul MAX alege cea mai mare valoare dintre cele ale copiilor.

Alt exemplu (I)

Probleme

- Dimensiunea arborelui pentru "X și 0" e ≤ 9!
- Pentru Şah fiecare nod are în medie 35 copii!
- Pentru Go ramificarea este de cca. 150 250!
- Complexitatea arborelui:
 - pentru Şah 10¹²³ noduri;
 - pentru Go 10³⁶⁰ noduri.
- Limitări:→ Nu putem să construim întregul arbore → Nu putem ajunge de fiecare dată la stările finale pentru a le putea evalua.

Optimizări minimax

Limitarea adâncimii căutării

- Trebuie să construim o funcție euristică care să estimeze șansele de câștig pentru o poziție dată.
 - Ex. pentru şah:
 - Regină:10p; Turn: 5p; Cal, Nebun: 3p; Pion: 1p;
 - Ex: Funcție de evaluare a poziției = suma pieselor proprii suma pieselor adversarului.
- Oprirea căutării:
 - Limitare statică: după un număr maxim de nivele/interval de timp.
 - Limitare dinamică: când profitul obținut din continuarea căutării devine foarte mic (scade sub o valoare fixată).
- Se estimează valoarea funcției de evaluare la nivelul respectiv.
- Apoi propagăm valorile conform principiului enunțat anterior.

Exemplu și contraexemplu

Eval: 36-37=-1

Funcția nu ține cont de poziție – albul are o poziție net superioară dar funcția de evaluare o ignoră

Eval: 36-34=2

Dacă căutarea se oprește la acest nivel atunci aparent albul iese în câștig material ignorânduse faptul că la mutarea următoare se pierde dama

Eval: 26-34=-8

În cazul în care căutarea se oprește la acest nivel aparent albul iese in dezavantaj deoarece a pierdut dama

Minimax – funcții de evaluare

- Funcţia euristică trebuie să cuantifice "poziţia".
 - Chiar în dauna avantajului material.
- Trebuie să ia în calcul potențialele amenințări!

Exemplu funcție euristică X și 0

 F = numărul de linii/coloane/diagonale posibil câştigătoare pentru MAX – numărul de linii/coloane/diagonale posibil câştigătoare pentru MIN.

 Dacă MAX poate să mute şi să câştige atunci F = +∞; dacă MIN poate să mute şi să câştige F = -∞.

Exemplu funcție euristică X și 0

Algoritm MINIMAX

- MINIMAX_limitat (n, nivel_limită)
 - Pentru fiecare n' ∈ succs(n) // pentru toate mutările
 - Fie m = mutarea corespunzătoare arcului (n, n')
 - VAL(m) = w(n', nivel_limită, 1) // determin valoarea mutării
 - Întoarce m a.î. VAL(m) = max {VAL(x)| x ∈ mutări(n)} I
- W(n, limită, nivel)
 - Dacă n este frunză Întoarce cost(n)
 - Dacă nivel ≥ limită Întoarce euristică(n)
 - Dacă jucătorul MAX este la mutare Întoarce
 - max {w(n', limită, nivel + 1) | n' ∈ succs(n)}
 - Dacă jucătorul MIN este la mutare Întoarce
 - min {w(n', limită, nivel + 1) | n' ∈ succs(n)}

Caz special - Minimax 3 jucatori (1)

Jucătorii vor alege pe rând valoarea care le maximizează câștigul propriu

Caz special - Minimax 3 jucatori (2)

Caz special (2) – Minimax Probabilistic

- La unele jocuri, mutările sunt guvernate de șansă.
- Ex: Jocul de Table mulțimea mutărilor este limitată de:
 - starea curentă a jocului;
 - combinația zarurilor în starea curentă.
- Arborele MINIMAX este completat cu noduri suplimentare (noduri şansă) plasate între nodurile MIN/MAX (MIN – şansă – MAX şi MAX – şansă – MIN).
- Valorile se calculează ca sumă ponderată între probabilitatea nodului și evaluarea acestuia (prin cost sau euristică).

Tăiere α-β

 Încercăm să limităm spaţiul de căutare prin eliminarea variantelor ce nu au cum să fie alese.

• Idee:

Dacă V₂₁<V₁
 toată ramura
 V₂ poate fi
 Ignorată.

Tăiere α - β

- α = max dintre valorile găsite pentru un nod MAX.
- β = min dintre valorile găsite pentru un nod MIN.
- Tăiem o ramură dacă:
 - am găsit un nod pe nivelul MAX cu valoare β <= oricare din valorile α calculate anterior;
 - am găsit un nod pe nivelul MIN cu valoare α >= oricare din valorile β calculate anterior.
- Teorema α-β. Fie J un nod din arborele MINIMAX explorat. Daca $\alpha(J) \ge \beta(J)$, atunci explorarea nodului J nu este necesară.

Algoritm α - β

- α - β (n, limită)
 - $w = eval_max(n, -\infty, \infty, 0, limită)$
 - Întoarce m ∈ mutări(n) a.i. VAL(m) = w
- eval_max(n, α, β, nivel, limită)
 - Dacă n este frunză Întoarce cost(n)
 - Dacă (nivel ≥ limita) Întoarce euristică(n) // sunt limitat
 - a = -∞ // valoarea curenta a nodului de tip Max
 - Pentru fiecare (n' ∈ succs(n))
 - a = max(a, eval_min(n', max(α ,a), β , nivel+1, limită)); // propag
 - Dacă $(a \ge \beta)$ oprire;
 - Întoarce a
- similar eval_min

Alt exemplu (II)

Alt exemplu (III)

Alt exemplu (IV)

Alt exemplu (V)

Alt exemplu (VI)

Alt exemplu (VII)

Alt exemplu (VIII)

Alt exemplu (IX)

```
[3,∞]
                         Eval_max(A, -\infty,\infty, 0,\infty)
                                                                    a = 3
              MAX
                                                                                 Eval_min(D, 3, \infty, 1, \infty)
                                [3,3]
                                                      Eval_min(C, 3, \infty, 1, \infty)
                MIN
                                                                       [3,∞]
                                              b = 2 \le \alpha = 3
Eval_min(B, -\infty, \infty, 1, \infty)
                                                                                        b = 7
                                                                       b = 2
                                                                                                            5
                                a = 12 \ a = 8
         eval_min(n, \alpha, \beta, nivel, limită)
               Dacă n este frunză Întoarce cost(n)
               Dacă (nivel ≥ limita) Întoarce euristică(n) // sunt limitat
               b = ∞ // valoarea curenta a nodului de tip min
               Pentru fiecare (n' \in succs(n)) {
                     b = min(b, eval_max(n', \alpha, min(\beta,b), nivel+1, limită)); // propag
                     Dacă (b \leq \alpha) oprire; }
               Întoarce b
```

Alt exemplu (X)

```
→ valoarea întoarsă este 3
              MAX
                        Eval_max(A, -\infty,\infty, 0,\infty)
                                                                  a = 3
                                                                              Eval_min(D, 3, \infty, 1, \infty)
                                [3,3]
                                                    Eval min(C, 3, \infty, 1, \infty)
               MIN
                                                                     [3,∞]
                                                                                                    [3,7]
                                            b = 2 \le \alpha = 3
Eval_min(B, -\infty, \infty, 1, \infty)
                                                                           b = 1 \le \alpha = 3
                                                      b = 2
                        b = 3
            a = 3
                                                                                                         5
                              a = 12 \ a = 8 \ a = 2
                                                                                   a = 7
       eval_max(n, \alpha, \beta, nivel, limită)
             Dacă n este frunză Întoarce cost(n)
             Dacă (nivel ≥ limita) Întoarce euristică(n) // sunt limitat
             a = -∞ // valoarea curenta a nodului de tip max
             Pentru fiecare (n' \in succs(n)) {
                   a = max(a, eval_min(n', max(\alpha,a), \beta, nivel+1, limită)); // propag
                   Dacă (a \ge \beta) oprire; }
             Întoarce a
```

Observații α-β

- Reduce complexitatea minimax în cazul ideal de la
 - Număr ramificărinumăr_nivele la Număr ramificărinumăr_nivele/2
- Contează foarte mult ordinea în care analizăm mutările!
 - Sortarea mutărilor după un criteriu dat nu este costisitoare comparativ cu costul exponențial al algoritmului.
- Se folosesc euristici pentru a alege mutările examinate mai întâi:
 - ex: la şah se aleg întâi mutările în care se iau piese;
 - sau se aleg mai întâi mutările cu scor bun în parcurgeri precedente;
 - sau se aleg mutările care au mai generat tăieri.

Observații MINIMAX și α-β

Algoritmi de căutare în adâncime.

 Pot cauza probleme când avem un timp limită.

 Soluţie posibilă IDDFS (căutare în adâncime mărind iterativ adâncimea maximă până la care căutăm).

Concluzii

Algoritmi cu complexitate foarte mare.

 Soluții euristice pentru limitarea complexității.

 Recomandabil să se combine cu alte strategii – baze de date cu poziții, pattern-matching.

ÎNTREBĂRI?

