Module - 2:

SaralarT Aut. Prof. ELCE DUN-

# Analysis & Derign of Combinational Logic:

# General geproach to Combinational dogic Design:

To derign combinational logic derign steprave there:

- -> Develop a statement durribing the problem to be rolved.
- -> Based on the problem Materieut, construct a truth table that clearly establishes the relationship b/w the input & Houtput variables.
- 3> we K-map or Quine-McClurky technique to rimplify the functions in deriving the ofp Equations. The best rolution will require the fewert gater & gate inputs.
- -> Arrange the simplified Equations to suit the logic primitive type to be used in realizing the circuit. using NAND-NOR, Or AND-OR logic as
- -> Draw the final logic diagram.
- -> Document the design any by identifying variables that indicates assertion devels & if possible provide a treath table.

() () (<del>§</del>) (·]. (3) () (<u>\*</u>) 0 | マンプラのアンドングランでアンドは多くアンドの大きなない。 1997年 19 (1) (6) (3) (3) (4)

#### Example.

()

 $\langle \ddot{z} \rangle$ 

 $(\dot{\gamma})$ 

 $C^{1,\gamma}$ 

( )

()

()

()

 $\left( \begin{array}{c} \\ \\ \end{array} \right)$ 

 $\odot$ 

(3)

(3)

(1)

( )

(1)

( )

(6)

1) Derign a combinational circuit that will multiply two-two bit binary values.

#### Soln:

Four Ip variables (A,,Ao,B,,Bo) & Four Opp Variables (P3, P2, P1, P0) are needed. The four Opp Variables are necessary because the maximum product of two-two bit values (310 x 310 = 910) requires four bits.

Construct truth table.

| In       | puli    |                | outputs.           |                 |
|----------|---------|----------------|--------------------|-----------------|
| A, Ao I  | B, Bo   | P <sub>3</sub> | $\rho_{2}$ $p_{1}$ | Po              |
| ·        | ć       | 0              | 0 0                | 0 0,, x 0 ,,    |
| 0 0      |         | o              | 0 0                | 0 010 × 110     |
| 0 0      | 0 1     | 0              | 0 0                | 0 010 × 210     |
| 0 0      | 10      | 0              | _                  |                 |
| 0 0      |         | 0              | 0 0                | 0               |
|          | 0 0     | 0              | 0 0                | О               |
| 0 1      |         | 0              | 0 0                | 1               |
| 1 0      | 0 1     | 0              | 0 1                | 0               |
| 0 1      | 10      |                | 0 /.               | 1               |
| 0 1      | 1 1 1 1 | 0              | 0 0                | 0               |
| 0        | 0 0     | 0              | 0 (                | 0               |
| 10       | 01      | 0              | ( 0                | 0               |
| 10       | 10      | 0              | 1 . (              | 0               |
| ) 0      |         | 0              | 0 1                | 1               |
| 1        | 0 0     | 0              | 0 1                | 2               |
| <u> </u> | 0 1     |                | 0 0                | ) 310 ×310 = 96 |

The O/P SOP Equation over. P3 = f(A1, A0, B1, B0) = Z(15) P2 = f(A,, Ao, B,, Bo) = E(10, 11, 14) Pr = f (A, Ao, B, Bo) = 2(6,7,9,11,13,14) Po = f(A,, Ao, B,, Bo) = Z(5, 4, 13, 15) The individual Simplified Equations are. R3 = A, Ao B, Bo P\_ = A, A, B, B, + A, A, B, B, + A, A, B, B, = A, B, Bo' (Ao' + Ao) + A, Ao' B, Bo = A,B,Bo' + A, Ao' B,B. : absorption , = A,B, (B, + A, Bo) = A, B, Bo' + A, B, Ao' = A! A. B. B. + A! A. B.B. + A, A. B. B. + A, A. B. B. + A, A, B'B, + A, A, B, B, = A,' A, B, (B, +B,) + A, A, B, (B/+B,) + AIAOB'BO + AIAOBIBO A' AOBO + AIAO'BO + AIAOBIBO' = ApBo (A, + A, B) + A, Ao Bo + A, AoB, Bo

= AoBo

P, = A, A, B, (Bo'+Bo) + A, Bi Bo (Ao+Ao) + A, B, B, (Ao+Ao) A 1 A 6 B, + A, B, Bo + A, B, Bo + A, A, Bo (



P, = B', Bo A, + A, Ao' Bo + A', Ao B, + B, B' Ao

(1)

 $\binom{8}{2}$ 

**(**)

(E).

()

(1)

(1)

9

(3)

(E)

- Equations using two-level the simplified
  - AND-OR network.
- Draw the mixed logic diagram that natified the Equation.



(÷)

()

(1)

()

(-)

(

(1)

(

Example 2:

 $(\cdot)$ 

()

(3)

( )

( )

 $(\cdot)$ 

(3)

٨

٨

(4)

**(1)** 

2) Derign a combinational circuit that will accept a 2421 BCD code & drive a TIL-312 Seven regnent display.

Solu: The 2421 code in shown in table

TIL-312 in a common-anode, red light Emitting
diode display package.

2421 code. 4 1 2 F B W Decimal 0 E G C 0 0 O 0 3 0  $\mathcal{O}$ 6 7 0 8

The LED is Lit when the control connected to the cathoole is a logic O.

Generate a touth table illustrations active dow offir to two on each of the seven regnent LED's.

| Decimod |        |       | 1  | L Mru | <u>b</u> |   |   |     |     |     | out | puti. |        |            |
|---------|--------|-------|----|-------|----------|---|---|-----|-----|-----|-----|-------|--------|------------|
|         | decima | . I N | ×4 | y     | 12       | A | ß | 7   | Ø   | Œ   | F   | = (   | ر<br>م | Ħ          |
| 0       | 0      | 0     | 0  | 0     | 0        | 0 | 0 | 0   | . 0 | 0   | (   | )     | }      | <u>i_i</u> |
| 1       | 1      | 0     | 0  | 0     | 1        | 1 | 1 | 1   | 1.  | 0   | C   | )     | l      | 1          |
| 2       | 8      | 1     | 0  | 0     | 0        | 0 | 0 | (   | 0   | C   | )   | ١.    | O      | 17         |
| 3       | 9      | (     | 0  | 0     | 1        | 0 | 0 | 0   | 0   |     | Ĺ   | ľ     | Ø      | 3          |
| ų /     | 10     | ١     | 0  | ١     | 0        | 1 | O | 0   | t   |     | 1   | O     | O      | 1-1        |
| 5       | 11     | 1     | 0  | 1     | 1        | 0 |   | O   | ) 1 | 0 . | i   | 0     | O      | 11         |
| 6       | 12     | ١     | l  | O     | 0        | 0 | ţ | 0   |     | o . | 0   | 0     | 0      | 1-1        |
| 7       | , 13   | 1     | ι  | 0     | 1        | 0 | O | (   | )   | 1   | ı   | ſ     | 1      |            |
| 8       | ١u     | l     | ١  | Į     | 0        | 0 | 0 | Ç   | )   | 0   | 0   | 0     | 0      |            |
| 9       | 15     | . (   | ţ  | ţ.    | J        | 0 | O | : 1 | O   | 0   | ł   | 0     | 0      | 1_1        |

0

 $(\cdot)$ 

()

(3)

$$A = \pi(0, 8, 9, 11, 12, 13, 14, 15)$$

$$B = \pi(0, 8, 9, 10, 13, 14, 15)$$

$$C = \pi(0, 9, 10, 11, 12, 13, 14, 15)$$

$$D = \pi(0, 8, 9, 11, 12, 14, 15)$$

$$E = \pi(0, 1, 8, 12, 14)$$

$$F = \pi(0, 1, 10, 11, 12, 14, 15)$$

$$G = \pi(8, 9, 10, 11, 12, 14, 15)$$





$$F = (\hat{y})(w+2)(\bar{x}+\bar{z})$$



(1)

(<u>)</u>

( )

$$G = \overline{y} (\overline{w} + x) (\overline{w} + z)$$

for active low SOP Equal to. Equation over.

$$D = \{(1, 10, 13)\}$$

$$E = Z(1, 9, 10, 11, 13, 15)$$

$$F = 5(1, 8, 9, 13)$$

$$G = \Sigma(0,1,13)$$

don't care term our



$$\sum_{y_{2},00}^{y_{2},00}$$
  $\sum_{y_{1},00}^{y_{2},00}$   $\sum_{y_{2},00}^{y_{2},00}$   $\sum_{y_{3},00}^{y_{4},00}$   $\sum_{y_{4},00}^{y_{4},00}$   $\sum_{y_{4},00}^{y_{4},00}$ 

$$B = \chi \hat{y} \hat{3} + \chi \hat{y}^2$$



 $(\cdot)$ 

 $\left( \frac{1}{2} \right)$ 

( )

(3)

(3)

(3)

()

(3)









The. Initial requirement to realize the circuit, using NAND goter can be by using SOP Equations.

Theorem the conversion of the Preceding Eym yields a set of NAND functions.

$$A = ((\overline{w}z) (\overline{x}y\overline{z})) \quad \text{Nand Goth realization.}$$

$$B = ((\overline{x}y\overline{z}) (\overline{x}y\overline{z}))$$

$$C = ((w\overline{x}y\overline{z}))$$

$$D = ((\overline{x}y\overline{z}) (\overline{x}y\overline{z}) (\overline{w}z))$$

$$E = ((\overline{x}y) (\overline{z}))$$

$$F = ((\overline{w}\overline{y}) (\overline{y}\overline{z}))$$

$$G = ((\overline{w}) (\overline{x}y'\overline{z}))$$

diagram for 2421 BCD to 7 regnent Diglay: (x yz) xyz) (WTJZ) 三)(元9) (WX 9) NAND Gate realization activo for 2H21 BCD to Frequent diglay.

· 🚱

0

 $\left(\frac{1}{2}\right)$ 

(2)

(

(3)

(<u>-</u>

(•)

()

(3)

()

(1)

(6)

**(6)** 

(3)

(1)

**(** )

( )

(3)

# Integrated circuits:

-> Small male intigrated circuits can be interconnected to realize combinational logic designs:

(B)

Hierarchy of Ich bould on no of Equivalent gates.

MSI — 100 gater LSI — >100 < 1000 gater VLSI -> >1000 gater

Digital integrated circuit dogic familier & ovre.

-> Tramintor traminter logic (TTL)
-> Emitter coupled logic (ECL)

-> complementory metal oxide remiconductor dogic (cmos)

The numbering system and to indicate the various rub families is partially indicated at the top of IC.

5 N 54 74

5N -> Poufin for Texas instruments Comanufacturar)

54 -> Military operation temperature range (-55 to 125°C)

74 -> commercial temp range (0 to 70°C)  $(\vdots)$ SN 74ALSOO (1) LS - low power schottky SN - Texas 74 - commercial temp rounge ALS- Advanced low power schottky (Increased speed & 00 - NAND operation. reduced power consumption) **(j**) DIPA -> Dual in-line packaging. (Eponcy plantic or ceramice)  $(\ )$ ٨ 13 1 48 1B 172 120 HA 1 43 10 7 33 a 4 5 0/Px 4 ۹ 9 13 A 2 4 6 (3) H 8 F 34 SN 74 LS 00 parameters: circuit Vec, Power supply voltage: Supp Ican Power supply awant. -Icer power supply award -Shout circuit of p wount - Amount of wount driven to the circuit. Op werest low - low op covert - Opis O. TOL 0/p auvent high - high e/p auvent - 0/p in 1 Jot Voltage of low - marc allowable of p vtg. that represents 0, (8) Vtg Olp High - man allowable of vtg. that Vo H reposerente '1' Current 3/p high - 1/p Vtg rep - 1 awrent 1/p high -0 - ger jety 9/2

 $V_{\rm IH}$  Woltage input High min v to the reproduction  $V_{\rm IH} = 2.0 \, \text{V}$   $V_{\rm IL}$  Voltage Input low - marc dogical v to reprove  $V_{\rm IL} = 0.8 \, \text{V}$ 

tpH Propagation delay time from of plow to high.

tpHL Propagation delay time from of p high to low.

Farsout - Farsout ii defined as the number of gate inputs. That a single gate output can drive and still maintain voltage & current specifications.

| TTL<br>Line Ligar | function      | 1/p2           |
|-------------------|---------------|----------------|
| derignation       | Quad NAND     | 2              |
| 74 xx 00          | Guad NOR      | 2              |
| 44 XX 07          | Here Inventer | 1              |
| 74 XX 04          | guad AND      | $\mathfrak{D}$ |
| AMXX 08           | tripple NAND  | 3              |
| 7HXX10            | tripple AND   | 3              |
| 7HXX11            | dual NAND     | 4              |
| 74 XX 80          | Dual AND      | H              |
| 74 xx 21          |               |                |
| FRXX HF           | Tripple NOR   | 3              |
| 74 X X 30         | NANO          | 8              |
| JHXX 32           | guad OR       | 2              |
| 74 XX 86          | Quad XOR      | 2              |
| γ • • / • / · .   |               | i i            |

## Decoderi:

 $(\cdot)$ 

 $(\cdot,\cdot)$ 

(1)

(1)

(3)

- -> Decoders are a class of combinational logic circuits

  that convert a set of input variables supresenting
  a code into a set of output variables supresenting
  a different code.
- -> Encoded information is represented in ninputs Producing an outputs.

- -> 0/p valuer 2° ranger from 0-12°-1
- -> Decoders also have inputs to activate or enable decoded output based on data inputs.
- -> model of Decoder.



2-4° dine devoder.

|                |      | 1           | ! |
|----------------|------|-------------|---|
| 3              | SIP  | 019         | ~ |
|                | A B  | Yo Y1 42 43 | _ |
|                | 10 0 | 1 0 0 0     |   |
| ্র             | 0 1  | 0 0 0       |   |
| 9              | 1 0  | 0 0 1 0     | l |
| *'<br><b>)</b> | 1    | 0001)       |   |



$$U = S \qquad \therefore \qquad S_U = S_B = H$$

#### Truth table:

|   | Typu | ta        | out      | outputs |         |  |  |  |  |
|---|------|-----------|----------|---------|---------|--|--|--|--|
|   | EN   | S el<br>A | ut<br>LB | 10      | Y1 7273 |  |  |  |  |
|   | H    | ×         | ×        | 1+      | HHH     |  |  |  |  |
|   | L    | 1         | ᆫ        | L       | H H H   |  |  |  |  |
| - | L    | L         | Н        | H       | L H H   |  |  |  |  |
|   | L    | H         | Ĺ        | H       | HLH     |  |  |  |  |
| 1 |      | Н         | Н        | H       | HHL     |  |  |  |  |



0

િ

IEEE Symbol.

Realize the Boolean functions.

Ex:

0

(<u>.</u>)

 $(\dot{\cdot})$ 

 $(\bigcirc)$ 

0

**(**)

(E)

()

()

(

(8)

(1)

**(** 



Internal circuit



(1)

 $(\frac{1}{2})$ 

(3)

(]

 $(\underline{\cdot})$ 

(į)

(1)

**(**3)

from IC 74139 we can realize 3-8 decoder by using the enable input as 3rd Input.



for fint H I/p valuer 1th 2-4 Dewder will be enabled e 3 for other 4 I/p valuer 2nd decoder will be enabled.

Problem:

(j)

(3)

(

(3)

1) Realize the following Boolean functions using 74139

a)  $f_1(a,b) = 5(0,2)$ 

b)  $f_2(a,b,c) = \Sigma(1,3,6,7)$ 

MSI- medium scale integrated.

The 74××138 in a 3 to 8 Ms I decoder IC. The Hrue Inputs are decoded to produce one off eight outputs. Three Enable inputs are presuided, all of which must be active before devolving can occur.



| (4.1)      | I/P                  |                            |    |     |         |      |         |    |          |                |  |
|------------|----------------------|----------------------------|----|-----|---------|------|---------|----|----------|----------------|--|
| 0          | Enable               | Select                     |    |     |         | 0167 |         |    |          |                |  |
| 9          | G1, AG2 BG2<br>O X X | X X X                      | 10 | 7,  | Y2<br>1 | Y3   | Vu<br>l | 45 | (<br>A P | ) <del>1</del> |  |
| (_)        | ΧΙΧ                  | × × ×                      | 1  | ť   | ţ       | 1    | 1       | ţ  | 1        | 1              |  |
| ()         | x x 1                | $\times$ $\times$ $\times$ | 1  | 1   | Į       | (    | ţ       | t  | 1        | •              |  |
| 0          | 100                  | 0 0 0                      | 0  | . ţ | 1       | Į    | 1       | 1  | 1        | )              |  |
| Ö          | 100                  | 0 0 1                      | \  | O   | 1       | ţ    | ţ       | Ĺ  | ţ        | 1              |  |
| 0          | 100                  | 010                        | 1  | 1   | 0       | 1    | 1       | (  | 1        | 1              |  |
| $\bigcirc$ | 100                  | 0 1 1                      | \  | 1   | l       | 0    | ţ       | ţ  | l        | 1              |  |
| (E)        | 100                  | 100                        | 1  | ţ   | Ţ       | . (  | 0       | Į  | 1        | (              |  |
| 0          | 00)                  | 1 0 1                      | 1  | l   | l       | l    | , (     | 0  | 1        | 1              |  |
| (3)        | 100                  | 1 1 0                      | 1  | Į   | (       | į    | Į       | 1  | 0        | \              |  |
| 6          | 100                  | 1 1 1                      | 1  | (   | -(      | 1 .  | 1       | 1  | 1        | 0              |  |

A 3-8 decoder can be uned straight away for the implimentation of logic expression three variables at illustrated in the example below.

#### Prublem:

()

(j)

(i)

(j.)

Implement the following function using  $\mp 4138$  $\pm (a,b,c) = \pm (2,6,7)$ 



# 2) Realize for $X = \Sigma(0,3,5,6,7)$

Realize 4-16 decoder ming two 74xx138 decoders

 $(\cdot,\cdot)$ 

(<sup>\*</sup>)

60

(\*)

0

 $\binom{F}{2}$ 

Ç



The upper half of the 4 I/P tooble the most eignificant but is on this Enough 74138(1) & director 74138(2)

Dit is 0. This Enough 24138(1) & director 74138(2)

I/Pi 0000 -> 0111+ avil be decoded in 74138(2)

I/Pi 1000 -> 1111 -> will be decoded in 74138(2)

Implement the following fur poin using 7#138 decoder.

1)  $f_1(a,b,c) = \Sigma(0,1,5,6,7)$   $f_2(a,b,c) = \Sigma(1,2,3,6,7)$ 

(

( )

(;)

(:¹)

(E)

()

(3)

( )

(E)

 $\bigcirc$ 

(6)

(3)



This will take higher no. Of I/P lives so we seemed.

$$F_{1}(a,b,c) = 5(2,3,4)$$
 $F_{2}(a,b,c) = 5(0,435)$ 



b) 
$$f_1(a,b,c) = \mathcal{Z}(0,2,H)$$
  
 $f_2(a,b,c) = \mathcal{Z}(1,2,H,5,7)$   
 $f_2(a,b,c) = \mathcal{Z}(0,3,6)$ 

**(音)** 

Implement the following using 2-4 devoder

I replement the following ming 3-8 devoder.

b) 
$$f_2 = \sum (H_1(0, 12))$$

b) 
$$f_2 = T(5, 7, 13, 15)$$

Configure a 5 to 32 decoder ming 4-> 3-8 decoder La 2 to 4 decoder Ich. KIT A CGzB 74139 b G G2A GZB 1/2 1/0 ¥, 672B (HJ G, GLA 5-32 devoder from 3-8 & 2-4 devoders

(1)

(E)

(3)

()

(\*)

()

(<u>-</u>)

 $(\cdot)$ 

 $(\hat{\cdot})$ 

(5)

 $(\underline{\cdot})$ 

 $\bigcirc$ 

( )

(

**(** 

0

(9)

**(** 

(E)

(7)

**(3)** 

 $(\mathfrak{J})$ 

### ? muldong

Implement the multiple function  $f_1(a_1b_1,c_1d) = \sum (0,4,8,10,14,15)$  &  $f_2(a_1b_1,c_1d) = \sum (3,7,9,13)$ Using two 74138 (3-8) decoders.  $\overline{()}$ 

- 2) Implement f(x, y, z) = TT(1, 2, 4, 16) uning (3-8) decoder (74138)
- 3)  $f(w, x, y, z) = \Sigma(1, 4, 8, 13)$   $g(w, x, y, z) = \Sigma(2, 7, 13, 14)$ 
  - 4) R(w, x, y, z) = 2(1, 5, 8, 9, 12, 13)
  - 5) R = (w, x, y, 2) = wy + y = 3
  - 6)  $A=f(x, y, z) = \pi(0, 1, 3, 5)$
  - 7) f(x,y,z) = 2(0,1,2,4,5,6,7)

## BCD Decodera:

(3)

( )

(j)

()

(3)

(9)

( )

(<u>)</u>

(F)

BCD decoders have four Input & 10 outputs. The four bit BCD input is decoded to one of 10 outputs.

SNYHXXH2 in BCD to decimal decoder MSI Integrated circuit.





Figure 4.26 74xx47 BCD to seven-segment decoder/driver

· 120

锁门

123



( )

(6)

(

()

17 87 87 7 Z G 3 古本メダンが大 (4) 工本 ーエ× エ エ I I # # T I I I 8 8 3 X B a C B RBI × ( ) **(**3) Q 7 IKJX I T I II I  $\mathcal{I}$ I (\*:) F II F Г Г \_ I Ŧ 4 I Ŧ Γ 7 I I 工 X T X  $\Box$ (<u>.</u>) 77 I I I remen refinent I 5 工 Ŧ I X I IT XLXIL 工 7 BI/RBO 0 エートエ III I I II I I Ì I  $\mathcal{I}$ I 3 22 22 2 044 \$ \$ \$ \$ \$ decoder truth 3 2 8 9 8 00 9 3 2 2 2 2 2 2 2 2 3 8 8 A L 8 8 8 **(** \$ 3 9 22 22 22 3 2 3 3 9 3 3 3 3 3 2 2 2 3 3 3 3 3 3 3 3 3 8 8 8 aldot z £ 8 × × 3 \$ 2 \$ 2 £ \$ \$ \$ 8 SE £ z 3 2 2 2 2 ಕ್ಕೆ ಕ್ಕ S. 8 8 8 8 Z 93 Ž 322 3 2 20 g L L L R 3 3 35 3 Z. 3 3 3 8 3 8 

•

(

()

(

(1)

(D)

 $(\overline{\mathbb{R}})$ 

· (5)

(i) ٦ () **(**) (<u>)</u> 0 0 () (3)