Лабораторная работа №5

Технология разработки алгоритмов решения инженерных задач

Тема: рекурсия, динамическое программирование.

цель: по варианту определить задачи; сформулировать упрощения задачи, описать принцип работы алгоритма как последовательное упрощение задачи; блок-схему рекуррентного алгоритма; доказать гарантированность достижения развязку.

Задание

1. Определите номер варианта. С указанной таблицы по первым буквам фамилии и имя определите две цифры. Вычислите номер своего варианта:

№ (буква с фамилии) * 6 + № (буква из имени) = последняя цифра № вашего варианта

А	Б	В	Γ	Д	E	Есть	Ж	С	И
0	1	2	3	4	5	0	1	2	3
Й	И	К	Л	М	Н	В	П	Р	С
4	5	0	1	2	3	4	5	0	1
Т	В	Ф	Х	Ц	Ч	шщк)		Я
2	3	4	5	0	1	2	3	4	5

2. определенным вариантом с последней цифры выберите свою задачу:

	Выходные данные: Одномерный массив длиной N заполнен 0 и 1. В этом массиве рядом не
	встречаются 1.
	Выходные данные: Количество вариантов пути от первого элемента до последнего, если движение возможно
толь	ко по 0 на следующий элемент, или через один элемент. 1
	Выходные данные: Одномерный массив длиной N заполнен 0 и 1. В этом массиве рядом не
	встречаются 1.
	Выходные данные: Количество вариантов пути от первого элемента до последнего, если движение возможно
TO.	лько по 0 на следующий элемент, через один элемент, или на два элемента. 2
	Выходные данные: Одномерный массив длиной N заполнен числами от -10 до +10.
	Выходные данные: Максимальная сумма, если можно брать следующий или через один элемент. 3
	Выходные данные: Одномерный массив длиной N заполнен числами от -10 до +10.
	Выходные данные: Минимальная сумма, если можно брать следующий элемент или через два элемента. 4
	Выходные данные: Таблица NxN с числами от 1 до 10.
	Выходные данные: Найти путь от верхнего-левого угла к правому-нижнего если ходить можно только на
яч	ейку влево или вниз, путь должен иметь минимальную сумму элементов, через которые этот путь
	рходит. 5
ıιρ	•
	Выходные данные: Одномерный массив длиной N заполнен числами.
	Выходные данные: Путь с минимальной суммой элементов. Можно делать шаг на

	следующий элемент и через один элемент. 6
	Выходные данные: Известно, что в последовательности каждый следующий элемент равен произведению
	предыдущих с добавленной 1. А [0] = 1, А [1] = 0;
	Выходные данные: Значение элемента по номеру N. 7
	Выходные данные: Таблица NxN с числами 1 и 0.
	Выходные данные: Минимальное количество шагов прохода от верхнего-левого угла к правому-нижнего, если
МО	жно наступать только на единичные элементы. Шаги можно делать вверх, вправо, вниз и влево. 8
	Выходные данные: Таблица NxN с числами 1 и 0.
	Выходные данные: Количество вариантов прохода от верхнего-левого угла к правого- нижнего, если можно
нас	ступать только на единичные элементы. Шаги можно делать вниз и влево. 9
	Выходные данные: Известно, что в последовательности каждый следующий элемент равен сумме двух предыдущих
	минус 1. А [0] = - 1; А [1] = 2.
	Выходные данные: Значение элемента по номеру N.

- 3. Создать общую последовательность создания упрощенной задачи. Как результат записать структурную схему алгоритма.
- 4. Описать вспомогательную таблицу для сохранения уже вычисленных промежуточных результатов.
- 5. Определить схему работы алгоритма решения задачи. Как результат записать функциональную схему алгоритма.
- 6. С помощью схемы потоков информации изобразить движение данных при выполнении алгоритма.
- 7. Создать общую блок-схему алгоритма. Создать блок-схему рекуррентной функции.
 - 8. Реализовать алгоритм на языке программирования PASCAL, или С ++.
 - 9. Оценить сложность алгоритма.
 - 10. Записать выводы о проделанной работе.
- 11. Ответить на контрольные вопросы (в день выполнения работы устно, при пересдаче или к сдаче и др. письменно).