NOM:

INTERRO DE COURS – SEMAINE 19

Exercice 1 – Soit f la fonction définie sur \mathbb{R} par $f(x) = \begin{cases} e^{-x} & \text{si } x \ge 0, \\ 0 & \text{si } x < 0. \end{cases}$

1. Montrer que f est une densité de probabilité

Solution : Je vérifie les trois conditions de la définition d'une densité :

- Pour x < 0, $f(x) = 0 \ge 0$ et pour $x \ge 0$, $f(x) = e^{-x} > 0$. Donc $\forall x \in \mathbb{R}$, $f(x) \ge 0$.
- La fonction f est continue sur $]-\infty,0]$ car constante et continue sur $]0,+\infty[$ comme exponentielle. Donc f admet au plus un point de discontinuité en 0.
- Il reste à montrer que l'intégrale $\int_{-\infty}^{+\infty} f(x) dx$ converge et vaut 1. \Rightarrow Déjà, $\int_{-\infty}^{0} f(x) dx = \int_{-\infty}^{0} 0 dx$ converge et vaut 0.

 - Puis j'étudie la convergence de l'intégrale $\int_{0}^{+\infty} f(x) dx = \int_{0}^{+\infty} e^{-x} dx$. Je fixe $M \ge 0$. Alors

$$\int_0^M e^{-x} dx = \left[-e^{-x} \right]_0^M = -e^{-M} - \left(-e^{-0} \right) = 1 - e^{-M}.$$

Or $\lim_{M\to+\infty} 1 - e^{-M} = 1$ donc l'intégrale $\int_0^{+\infty} f(x) dx$ converge et vaut 1.

Je conclus avec la relation de Chasles : l'intégrale $\int_{-\infty}^{+\infty} f(x) dx$ converge et vaut

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = \int_{-\infty}^{0} f(x) \, \mathrm{d}x + \int_{0}^{+\infty} f(x) \, \mathrm{d}x = 0 + 1 = 1.$$

La fonction f vérifie les trois conditions donc f est bien une densité de probabilité.

2. Déterminer la fonction de répartition d'une variable aléatoire admettant *X* pour densité.

Solution : Étant donnée l'expression de f, je distingue deux cas selon les valeurs de x :

- Si x < 0, alors $F_X(x) = \int_{-x}^{x} f(t) dt = \int_{-x}^{x} 0 dt = 0$.
- Si $x \ge 0$, alors $F_X(x) = \int_{-\infty}^x f(t) dt = \int_{-\infty}^0 0 dt + \int_0^x e^{-t} dt = 0 + \left[-e^{-t} \right]_0^x = 1 e^{-x}$.

Finalement j'ai montré que
$$\forall x \in \mathbb{R}, \quad F_X(x) = \begin{cases} 1 - e^{-x} & \text{si } x \geqslant 0, \\ 0 & \text{sinon.} \end{cases}$$

3. Calculer $P(X \le 2)$, $P(0 < X \le 1)$ et $P(X > \ln(2))$.

Solution : En utilisant la fonction de répartition, j'obtiens que

$$P(X \le 2) = F_X(2) = 1 - e^{-2},$$

$$P(0 < X \le 1) = F_X(1) - F_X(0) = 1 - e^{-1} - 0 = 1 - e^{-1},$$

$$P(X > \ln(2)) = 1 - F_X(\ln(2)) = 1 - (1 - e^{-\ln(2)}) = e^{-\ln(2)} = \frac{1}{e^{\ln(2)}} = \frac{1}{2}$$