测度空间 (X, \mathcal{S}, μ) 上复值可测函数 f 都是可积的当且仅当 μ 有限且 X 有个简单分解 \mathcal{H} 使诸 $E \in \mathcal{S}$ 对应某 $A \subseteq \mathcal{H}$ 使得 $\mu^*(E\Delta \uplus A) = 0$.

必要性的证明. 1. 显然, $\mu(X) < +\infty$, 否则 $f(x) \equiv 1$ 不可积.

2. 断言 $m := \inf\{\mu(A) : A \in \mathcal{S}, \mu(A) > 0\} > 0$. 否则存在列 $(A_n)_{n \in \mathbb{Z}_+}$, 使 $0 < \mu(A_n) \leq \frac{1}{n^2}$. 则 $\sum_{n \in \mathbb{Z}_+} \mu(A_n) < +\infty$, 由 Borel-Cantelli 引理,

$$\mu\left(\limsup_{n\to+\infty}A_n\right)=0.$$

设 $Z = \limsup_{n \to +\infty} A_n, B_n = A_n \setminus Z$. 命

$$f(x) = \sum_{n \in \mathbb{Z}_+} \frac{1}{\mu(B_n)} \mathbb{1}_{B_n}(x).$$

注意 $\mu(B_n) = \mu(A_n) > 0$ 保证了上式分母非零, $\limsup_n B_n = \emptyset$ 保证了 $f(x) < +\infty$. 此时

$$\int_X f(x)\mu(\mathrm{d}x) = \sum_{n \in \mathbb{Z}_+} 1 = +\infty,$$

f 不可积, 矛盾!

3. 用反证法, 假设对 X 的任何简单可测分解, 都有个 $E \in \mathcal{S}$, 使对任何 $A \subseteq \mathcal{H}$,

$$\mu^* \left(E\Delta \biguplus_{A \in \mathcal{A}} A \right) > 0.$$

4. 任取个 X 的简单可测分解 $\mathcal{H}_1 = \{A_1, \dots, A_{n_1}\}$. 无妨诸 $\mu(A_k) > 0$, 否则将那些 μ -零集 A_k 并入某个非零集即可. 由 3, 存在 $E \in \mathcal{S}$, 使得对任何 $A \subseteq \mathcal{H}_1$,

$$\mu^* \left(E\Delta \biguplus_{A \in \mathcal{A}} A \right) > 0.$$

- 5. 命 $\mathcal{H}'_1 = \{A_k \setminus E, A_k \cap E : 1 \le k \le n_1\}$. 将 \mathcal{H}'_1 中的 μ -零集都并入某个非零测集, 得 \mathcal{H}_2 . 断言 $|\mathcal{H}_2| > |\mathcal{H}_1|$. 否则对任何 $1 \le k \le n_1$, 要么 $\mu(A_k \setminus E) = 0$, 要么 $\mu(A_k \cap E) = 0$. 命 $\mathcal{A} = \{A_k \in \mathcal{H}_1 : \mu(A_k \setminus E) = 0\}$, 则 $\mu^*(E\Delta(\uplus \mathcal{A})) = 0$.
- 6. 这样下去,可以得到一列 $(\mathcal{H}_n)_{n\in\mathbb{Z}_+}$, $(|\mathcal{H}_n|)_{n\in\mathbb{Z}_+}$ 严格单调增加.

$$\mu(X) \ge \sum_{H \in \mathcal{H}_{-}} \mu(H) \ge m|\mathcal{H}_{n}| \to +\infty, \quad n \to +\infty.$$

这与1矛盾. □ □