Low Birth Weight

Jack Tubbs

September 2021

Contents

D1	scussion of the Problem	1
\mathbf{R}	Problem – Infant Birth Weight Data	2
\mathbf{S}^{A}	AS	4
	Code 1	4
	Code 2	
	Code 3	11
	Code 4	17
Lo	oglinear Models for Contingency Tables	19
	Two-Way Tables	19
	Three-Way Tables	20
$\mathbf{S} A$	ΛS	21
	Code 5	
	Code 6	
Lo	egistic Models for Binary Data	26
	Logistic Regression with Categorical Predictors	26
	Logistic Model - Low Birth weight	

Discussion of the Problem

The data contain information about infant mortality in 2003 and were obtained from the US National Center for Health Statistics. A random sample of 2,500+ observations is used in this example. This data are observational, in which case, meaningful inference is limited. The description below is for a causal inference example, which is beyond the scope of this course, given in SAS.

Our approach is to investigate this problem using the material given in the first part of Chapter 3 in the methods lecture notes.

The main variables in the analysis are as follows:

- The treatment variable is **Smoking**. It is an indicator of maternal smoking behavior, with values Yes and No.
- The outcome variable is **Death**. It is an indicator of infant death within one year of birth, with values Yes and No.

• The mediator variable is **LowBirthWgt**. It is an indicator of low birth weight (less than 2,500 grams), with values Yes and No.

The analysis also includes five confounding covariates:

- AgeGroup represents maternal ages of less than 20, between 20 and 35, and greater than 35, with values 1, 2, and 3, respectively.
- Drinking is an indicator of maternal drinking during pregnancy, with values Yes and No.
- Married is an indicator of marital status, with values Yes and No.
- Race is an indicator of race, with values Asian, Black, Hispanic, Native (native American), and White.
- SomeCollege is an indicator of whether the mother has 12 or more years of education, with values Yes and No.

\mathbf{R}

Needed Packages

```
if(!require(FSA)){install.packages("FSA")}
if(!require(ggplot2)){install.packages("ggplot2")}
if (!require("mosaic")) install.packages("mosaic", dep=FALSE)
if (!require("nortest")) install.packages("nortest", dep=TRUE)
if (!require("epitools")) install.packages("epitools", dep=TRUE)
if (!require("prettyR")) install.packages("prettyR", dep=TRUE)
if (!require("rms")) install.packages("rms", dep=TRUE)
# add other as needed
```

Problem – Infant Birth Weight Data

Read data from SAS input file

```
# this data came from SASHELP.BWEIGHT
bw = read.csv('bwgt.csv', header = TRUE)
bw = data.frame(bw)
#summary(bw)
bw = transform(bw, AgeGroup.f = as.factor(AgeGroup))
bw = transform(bw, Race.f = as.factor(Race))
bw = transform(bw, Drinking.f = as.factor(Drinking))
bw = transform(bw, Death.f = as.factor(Death))
bw = transform(bw, Smoking.f = as.factor(Smoking))
bw = transform(bw, SomeCollege.f = as.factor(SomeCollege))
bw = transform(bw, LowBirthWgt.f = as.factor(LowBirthWgt))
tally(~ AgeGroup + Race.f, data=bw)
           Race.f
## AgeGroup Asian Black Hispanic Native White
##
          1
                8
                     91
                              83
                                      6
                                           169
##
          2
              101
                    375
                             475
                                      22 1337
          3
                     52
                              66
                                           264
tally(~ Race.f | AgeGroup.f, data=bw)
##
             AgeGroup.f
## Race.f
                 1
                      2
                           3
     Asian
                 8 101
                          36
```

```
91 375
##
     Black
                         52
##
    Hispanic
               83 475
                         66
##
    Native
                6 22
                         4
##
     White
               169 1337
                        264
library(mosaic)
mytab = tally(~ Race.f | AgeGroup.f, data=bw)
addmargins(mytab)
##
            AgeGroup.f
## Race.f
               1
                          3 Sum
                         36 145
##
    Asian
                8 101
##
    Black
              91 375
                         52 518
    Hispanic 83 475
##
                         66 624
##
    Native
               6
                   22
                         4
                              32
##
    White
              169 1337 264 1770
##
     Sum
              357 2310 422 3089
prop.table(mytab, 1)
##
            AgeGroup.f
## Race.f
                                 2
                       1
             0.05517241 0.69655172 0.24827586
##
     Asian
##
    Black
             0.17567568 0.72393822 0.10038610
##
    Hispanic 0.13301282 0.76121795 0.10576923
##
             0.18750000 0.68750000 0.12500000
    Native
##
    White
             0.09548023 0.75536723 0.14915254
library(epitools)
attach(bw)
mytab = tally(~ LowBirthWgt.f | Death.f, data=bw)
addmargins(mytab)
##
               Death.f
## LowBirthWgt.f
                 No Yes Sum
##
            No 2278 198 2476
##
            Yes 205 408 613
##
            Sum 2483 606 3089
prop.table(mytab, 1)
##
               Death.f
## LowBirthWgt.f
                        No
##
            No 0.92003231 0.07996769
            Yes 0.33442088 0.66557912
riskratio(x=Smoking.f, y=Death.f)
## $data
##
           Outcome
## Predictor No Yes Total
##
             156 41
                       197
##
            1786 405
                      2191
      No
##
      Yes
           541 160
                       701
##
      Total 2483 606 3089
##
## $measure
##
           risk ratio with 95% C.I.
```

```
## Predictor estimate
                           lower
                                    upper
##
             1.0000000
                              NΑ
                                       NA
        No 0.8881678 0.6670955 1.182502
##
         Yes 1.0966911 0.8087967 1.487063
##
##
## $p.value
            two-sided
##
## Predictor midp.exact fisher.exact chi.square
##
                     NA
                                  NA
                                              NA
              0.4206715
                           0.4449380 0.4220298
##
         No
##
         Yes 0.5556210
                           0.6286442 0.5493629
##
## $correction
## [1] FALSE
##
## attr(,"method")
## [1] "Unconditional MLE & normal approximation (Wald) CI"
```

SAS

Code 1

```
The Sashelp.BirthWgt data set contains 100,000 random observations about infant mortality in 2003 from the US National Center for Health Statistics. Each observation records infant death within one year of birth, birth weight, maternal smoking and drinking behavior, and other background characteristics of the mother.

*/

title "Sashelp.bweight --- Infant Birth Weight";
data birthwgt; set sashelp.birthwgt;
run;

proc contents data=birthwgt varnum;
ods select position;
run;

title "The First Five Observations Out of 100,000";
proc print data=birthwgt(obs=10);
run;
```

Sashelp.bweight — Infant Birth Weight

The CONTENTS Procedure

Variables in Creation Order							
#	Variable	Туре	Len				
1	LowBirthWgt	Char	3				
2	Married	Char	3				
3	AgeGroup	Num	8				
4	Race	Char	9				
5	Drinking	Char	3				

Variables in Creation Order							
#	Variable	Туре	Len				
6	Death	Char	3				
7	Smoking	Char	3				
8	SomeCollege	Char	3				

The First Five Observations Out of 100,000

Obs	LowBirthWgt	Married	AgeGroup	Race	Drinking	Death	Smoking	SomeCollege
1	No	No	3	Asian	No	No	No	Yes
2	No	No	2	White	No	No	No	No
3	Yes	Yes	2	Native	No	Yes	No	No
4	No	No	2	White	No	No	No	No
5	No	No	2	White	No	No	No	Yes
6	No	No	2	White	No	No	No	
7	No	No	2	Asian	No	No	No	Yes
8	No	No	3	White	No	No	No	Yes
9	No	Yes	1	Black	No	No	No	No
10	No	No	2	Native	No	No	No	Yes

I have changed 'Yes' responses to 'Affirm' as SAS orders the variables in the tables using an alphabetical ordering. This new order allows one to have a better interpretation of results.

```
*Create a new smaller data set;
title 'New Sample of Size 2,500';
proc surveyselect data=birthwgt out=new2 method=srs n=2500
                  seed=2021;
run;
/* I needed more death records than the srs gave me */
data new; set birthwgt; if death = 'Yes';
run;
/*merge the two files into one */
data new_bwgt; set new new2;
run;
data new_bwgt; set new_bwgt;
if LowBirthWgt = 'Yes' then LowBirthWgt = 'Affirm';
if Death = 'Yes' then Death = 'Affirm';
if Smoking = 'Yes' then Smoking = 'Affirm';
if Drinking = 'Yes' then Drinking = 'Affirm';
title 'Test for Association between Low Birth Weight and Smoking';
proc freq data=new_bwgt;* order=freq;
{\tt tables \ smoking*LowBirthWgt/norow \ nopercent \ chisq \ relrisk \ riskdiff;}
run;
```

```
title 'Test for Association between Low Birth Weight and drinking';
proc freq data=new_bwgt;* order=freq;
tables drinking*LowBirthWgt/norow nopercent chisq relrisk riskdiff;
run;
```

New Sample of Size 2,500

The SURVEYSELECT Procedure

Selection Method Simple Random Sampling

Input Data Set	BIRTHWGT
Random Number Seed	2021
Sample Size	2500
Selection Probability	0.025
Sampling Weight	40
Output Data Set	NEW2

Test for Association between Low Birth Weight and Smoking

The FREQ Procedure

Table of Smoking by LowBirthWgt							
Smoking	LowBirthWgt						
	Aff No Total						
Aff	155 26.96	546 23.56	701				
No	420 1771 2191 73.04 76.44						
Total	575 2317 2892						
Frequency Missing = 197							

Note	Statistics for Table of Smoking by LowBirthWgt

In the following table there is not a significant association at the .05 level between Low Birth Weight and Smoking. This is seen in the chi-square statistic and the relative risk and odds ratio.

Statistic	DF	Value	Prob
Chi-Square	1	2.8856	0.0894
Likelihood Ratio Chi-Square	1	2.8341	0.0923
Continuity Adj. Chi-Square	1	2.7038	0.1001
Mantel-Haenszel Chi-Square	1	2.8846	0.0894
Phi Coefficient		0.0316	
Contingency Coefficient		0.0316	
Cramer's V		0.0316	

Fisher's Exact Test					
Cell (1,1) Frequency (F)	155				
Left-sided Pr <= F	0.9593				
Right-sided Pr >= F	0.0510				
Table Probability (P)	0.0102				
Two-sided Pr <= P	0.0921				

Column 1 Risk Estimates								
	Risk	ASE	95% Confi	idence Limits	Exact 95% Confidence Limit			
Row 1	0.2211	0.0157	0.1904	0.2518	0.1909	0.2537		
Row 2	0.1917	0.0084	0.1752	0.2082	0.1754	0.2088		
Total	0.1988	0.0074	0.1843	0.2134	0.1844	0.2138		
Difference	0.0294	0.0178	-0.0054	0.0643				
Difference is (Row 1 - Row 2)								

Column 2 Risk Estimates								
	Risk	ASE	95% Confi	idence Limits	Exact 95% Confidence Limit			
Row 1	0.7789	0.0157	0.7482	0.8096	0.7463	0.8091		
Row 2	0.8083	0.0084	0.7918	0.8248	0.7912	0.8246		
Total	0.8012	0.0074	0.7866	0.8157	0.7862	0.8156		
Difference	-0.0294	0.0178	-0.0643	0.0054				
Difference is (Row 1 - Row 2)								

Odds Ratio and Relative Risks				
Statistic	Value	95% Co	nfidence Limits	
Odds Ratio	1.1970	0.9725	1.4734	
Relative Risk (Column 1)	1.1535	0.9796	1.3582	
Relative Risk (Column 2)	0.9636	0.9218	1.0074	

Note	Sample Size = 2892 Frequency Missing = 197

Test for Association between Low Birth Weight and drinking

In the following table there is not a significant association at the .05 level between Low Birth Weight and Drinking. This is seen in the chi-square statistic and the relative risk and odds ratio.

The FREQ Procedure

Table of Drinking by LowBirthWgt				
Drinking	LowBirthWgt			
	Aff	No	Total	
Aff	74 12.87	325 14.03	399	
No	501	1992	2493	
700	87.13	85.97		
Total	575	2317	2892	
Frequency Missing $=197$				

Note	Statistics for Table of Drinking by LowBirthWgt

Statistic	DF	Value	Prob
Chi-Square	1	0.5187	0.4714
Likelihood Ratio Chi-Square	1	0.5263	0.4682
Continuity Adj. Chi-Square	1	0.4260	0.5140
Mantel-Haenszel Chi-Square	1	0.5185	0.4715
Phi Coefficient		-0.0134	
Contingency Coefficient		0.0134	
Cramer's V		-0.0134	

Fisher's Exact Test		
Cell (1,1) Frequency (F)	74	
Left-sided Pr <= F	0.2588	
Right-sided Pr >= F	0.7835	
Table Probability (P)	0.0423	
Two-sided Pr <= P	0.4998	

		(Column 1 Ri	sk Estimates		
	Risk	ASE	95% Confi	idence Limits	Exact 95	5% Confidence Limits
Row 1	0.1855	0.0195	0.1473	0.2236	0.1485	0.2271
Row 2	0.2010	0.0080	0.1852	0.2167	0.1854	0.2172
Total	0.1988	0.0074	0.1843	0.2134	0.1844	0.2138
Difference	-0.0155	0.0210	-0.0568	0.0258		
	Difference is (Row 1 - Row 2)					

Column 2 Risk Estimates						
	Risk	ASE	95% Confi	95% Confidence Limits Exact 95% (5% Confidence Limits
Row 1	0.8145	0.0195	0.7764	0.8527	0.7729	0.8515
Row 2	0.7990	0.0080	0.7833	0.8148	0.7828	0.8146
Total	0.8012	0.0074	0.7866	0.8157	0.7862	0.8156
Difference	0.0155	0.0210	-0.0258	0.0568		
Difference is (Row 1 - Row 2)						

Odds Ratio and Relative Risks				
Statistic	Value	95% Co	nfidence Limits	
Odds Ratio	0.9053	0.6906	1.1869	
Relative Risk (Column 1)	0.9229	0.7406	1.1500	
Relative Risk (Column 2)	1.0194	0.9689	1.0725	

Note	Sample Size = 2892 Frequency Missing = 197

```
title 'Test for Association between Low Birth Weight and Smoking';
title2 'Controlling for Death';
proc freq data=new_bwgt;* order=freq;
tables death*smoking*LowBirthWgt /nopercent norow chisq cmh;
run;

title 'Test for Association between Low Birth Weight and Drinking';
title2 'Controlling for Death';
proc freq data=new_bwgt;* order=freq;
tables death*drinking*LowBirthWgt /nopercent norow chisq cmh;
run;
```

Test for Association between Low Birth Weight and Smoking

Controlling for Death

Table 1 of Smoking by LowBirthWgt				
Controlling for Death=Aff				
Smoking	Smoking LowBirthWgt			
	Aff No Total		Total	
Aff	102 26.63	58 31.87	160	
No	281 73.37	124 68.13	405	
Total 383 182 565				
Frequency Missing = 41				

Note	Statistics for Table 1 of Smoking by LowBirthWgt Controlling for Death=Aff

Statistic	DF	Value	Prob
Chi-Square	1	1.6664	0.1967
Likelihood Ratio Chi-Square	1	1.6467	0.1994
Continuity Adj. Chi-Square	1	1.4185	0.2337
Mantel-Haenszel Chi-Square	1	1.6635	0.1971
Phi Coefficient		-0.0543	
Contingency Coefficient		0.0542	
Cramer's V		-0.0543	

Fisher's Exact Test			
Cell (1,1) Frequency (F)	102		
Left-sided Pr <= F	0.1172		
Right-sided Pr >= F	0.9172		
11			

Fisher's Exact Test		
Table Probability (P) 0.0344		
Two-sided Pr <= P	0.2304	

Note	Sample Size = 565 Frequency Missing = 41

Table 2 of Smoking by LowBirthWgt					
	Controlling fo	or Death=No)		
Smoking	Smoking LowBirthWgt				
	Aff No Total				
Aff	53	488	541		
All	27.60	22.86			
No. 139 1647 1786					
140					
Total	192	2135	2327		
Frequency Missing = 156					

Note	Statistics for Table 2 of Smoking by LowBirthWgt Controlling for Death=No

Statistic	DF	Value	Prob
Chi-Square	1	2.2246	0.1358
Likelihood Ratio Chi-Square	1	2.1450	0.1430
Continuity Adj. Chi-Square	1	1.9666	0.1608
Mantel-Haenszel Chi-Square	1	2.2237	0.1359
Phi Coefficient		0.0309	
Contingency Coefficient		0.0309	
Cramer's V		0.0309	

Fisher's Exact Test			
Cell (1,1) Frequency (F)	53		
Left-sided Pr <= F	0.9410		
Right-sided Pr >= F	0.0821		
Table Probability (P)	0.0231		
Two-sided Pr <= P	0.1532		

Note	Sample Size $= 2327$
	Frequency Missing = 156

Test for Association between Low Birth Weight and Smoking

Controlling for Death

Note	Summary Statistics for Smoking by LowBirthWgt Controlling for Death

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)				
Statistic	Alternative Hypothesis	DF	Value	Prob
1	Nonzero Correlation	1	0.0640	0.8003
2	Row Mean Scores Differ	1	0.0640	0.8003
3	General Association	1	0.0640	0.8003

Common Odds Ratio and Relative Risks						
Statistic	Method	Value	95% Co	95% Confidence Limits		
Odds Ratio	Mantel—Haenszel	1.0328	0.8004	1.3327		
	Logit	1.0374	0.8066	1.3341		
Relative Risk (Column 1)	Mantel—Haenszel	1.0170	0.8909	1.1610		
	Logit	0.9675	0.8563	1.0932		
Relative Risk (Column 2)	Mantel—Haenszel	0.9954	0.9599	1.0323		
	Logit	0.9809	0.9513	1.0114		

Breslow-Day Test for Homogeneity of Odds Ratios	
Chi-Square	3.8091
DF	1
Pr > ChiSq	0.0510

Note	Sample Size = 2892 Frequency Missing = 197
	Troquency missing 101

Test for Association between Low Birth Weight and Drinking

Controlling for Death

Table 1 of Drinking by LowBirthWgt					
C	Controlling for Death=Aff				
Drinking	nking LowBirthWgt				
	Aff No Total				
Aff	45 11.75	25 13.74	70		
No	338 157 495 88.25 86.26				
Total	383 182 565				
Frequency Missing $=41$					

Note	Statistics for Table 1 of Drinking by LowBirthWgt Controlling for Death=Aff

Statistic	DF	Value	Prob
Chi-Square	1	0.4487	0.5029
Likelihood Ratio Chi-Square	1	0.4419	0.5062
Continuity Adj. Chi-Square	1	0.2843	0.5939
Mantel-Haenszel Chi-Square	1	0.4479	0.5033
Phi Coefficient		-0.0282	
Contingency Coefficient		0.0282	
Cramer's V		-0.0282	

Fisher's Exact Test		
Cell (1,1) Frequency (F) 45		
Left-sided Pr <= F	0.2940	
Right-sided Pr >= F	0.7912	
Table Probability (P)	0.0852	
Two-sided Pr <= P	0.4976	

Note	Sample Size = 565 Frequency Missing = 41	

Table 2 of Drinking by LowBirthWgt					
(Controlling for Death=No				
Drinking	LowBirthWgt				
	Aff No Total				
Aff	29 15.10	300 14.05	329		
No	163 1835 1998 84.90 85.95				
Total	192 2135 2327				
Frequency Missing $=156$					

Note	Statistics for Table 2 of Drinking by LowBirthWgt Controlling for Death=No

Statistic	DF	Value	Prob
Chi-Square	1	0.1608	0.6884
Likelihood Ratio Chi-Square	1	0.1581	0.6909
Continuity Adj. Chi-Square	1	0.0858	0.7696
Mantel-Haenszel Chi-Square	1	0.1607	0.6885
Phi Coefficient		0.0083	
Contingency Coefficient		0.0083	
Cramer's V		0.0083	

Fisher's Exact Test	
Cell (1,1) Frequency (F)	29
Left-sided Pr <= F	0.7002
Right-sided Pr >= F	0.3773
Table Probability (P)	0.0775
Two-sided Pr <= P	0.6660

Note	Sample Size = 2327 Frequency Missing = 156

Test for Association between Low Birth Weight and Drinking

Controlling for Death

Note	Summary Statistics for Drinking by LowBirthWgt Controlling for Death

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)						
Statistic	Alternative Hypothesis	DF	Value	Prob		
1	Nonzero Correlation	1	0.0102	0.9194		
2	Row Mean Scores Differ	1	0.0102	0.9194		
3	General Association	1	0.0102	0.9194		

Common Odds Ratio and Relative Risks						
Statistic	Method	Value	95% Confidence Limits			
Odds Ratio	Mantel—Haenszel	0.9834	0.7080 1.3659			
	Logit	0.9836	0.7110	1.3609		
Relative Risk (Column 1)	Mantel—Haenszel	0.9908	0.8261	1.1883		
	Logit	0.9668	0.8191	1.1413		
Relative Risk (Column 2) Mantel—Ha		1.0021	0.9611	1.0449		
	Logit	0.9942	0.9592	1.0305		

Breslow-Day Test for Homogeneity of Odds Ratios				
Chi-Square 0.5994				
DF	1			
Pr > ChiSq	0.4388			

Note	Sample Size = 2892 Frequency Missing = 197
	Trequency Missing — 101

```
title 'Test for Association between Low Birth Weight and Death';
title2 '';
proc freq data=new_bwgt;* order=freq;
tables LowBirthWgt*death/norow nopercent chisq relrisk riskdiff;
run;
ods latex close;
```

Test for Association between Low Birth Weight and Death

In the following table there is a significant association at the .05 level between Death and Low Birth Weight. This is seen in the chi-square statistic and the relative risk and odds ratio.

The FREQ Procedure

Table of LowBirthWgt by Death							
LowBirthWgt	Death						
	Aff No Total						
A CC	408	205	613				
Aff	67.33	8.26					
No	198	2278	2476				
NO	32.67	91.74					
Total	606	2483	3089				

Note	Statistics for Table of LowBirthWgt by Death

Statistic	DF	Value	Prob
Chi-Square	1	1068.5596	<.0001
Likelihood Ratio Chi-Square	1	897.1241	<.0001
Continuity Adj. Chi-Square	1	1064.8493	<.0001
Mantel-Haenszel Chi-Square	1	1068.2137	<.0001
Phi Coefficient		0.5882	
Contingency Coefficient		0.5070	
Cramer's V		0.5882	

Fisher's Exact Test				
Cell (1,1) Frequency (F)	408			
Left-sided Pr <= F	1.0000			
Right-sided Pr >= F	<.0001			
Table Probability (P)	<.0001			
Two-sided Pr <= P	<.0001			

Column 1 Risk Estimates								
	Risk	ASE	95% Coi	95% Confidence Limits Exact 95% Confidence Limits				
Row 1	0.6656	0.0191	0.6282	0.7029	0.6267	0.7029		
Row 2	0.0800	0.0055	0.0693	0.0907	0.0696	0.0914		
Total	0.1962	0.0071	0.1822	0.2102	0.1823	0.2106		
Difference	Difference 0.5856 0.0198 0.5468 0.6245							
	Difference is (Row 1 - Row 2)							

	Column 2 Risk Estimates							
	Risk	ASE	95% Confi	idence Limits	Exact 95	5% Confidence Limits		
Row 1	0.3344	0.0191	0.2971	0.3718	0.2971	0.3733		
Row 2	0.9200	0.0055	0.9093	0.9307	0.9086	0.9304		
Total	0.8038	0.0071	0.7898	0.8178	0.7894	0.8177		
Difference	Difference -0.5856 0.0198 -0.6245 -0.5468							
	Difference is (Row 1 - Row 2)							

Note all the confidence intervals do not contain one, indicating a strong association between infant birth weight and survival.

Odds Ratio and Relative Risks						
Statistic Value 95% Confidence Limits						
Odds Ratio	Odds Ratio 22.8979 18.3410 28.5869					
Relative Risk (Column 1)	9.6210					
Relative Risk (Column 2)	0.3635	0.3249	0.4067			

Note	Sample Size $= 3089$

Loglinear Models for Contingency Tables

I do not normally cover this material until the spring semester. It is covered in greater detail in our graduate course on Categorical Models. Yet, this example is ideally suited for this approach. Agresti covers this material in Chapter 8 and SDK covers the material in chapter 16.

Two-Way Tables

Loglinear Models for the 2×2 Table

Suppose that one has the 2×2 table given by

X	Y=1	Y=2	Total
1	n_{11}	n_{12}	n_{1+}
2	n_{21}	n_{22}	n_{2+}
Total	n_{+1}	n_{+2}	n

With cell probabilities given by

X	Y=1	Y=2	Total
1	π_{11}	π_{12}	π_{1+}
2	π_{21}	π_{22}	π_{2+}
Total	π_{+1}	π_{+2}	1

One of the foundational issues in analysis of these tables is to test for independence of the two random variables X and Y. Independence implies that,

$$\frac{\pi_{11}}{\pi_{+1}} = \frac{\pi_{12}}{\pi_{+2}} = \pi_{1+}$$

and

$$\pi_{11} = \pi_{1+}\pi_{+1}$$
.

From which it follows that

$$\pi_{ij} = \pi_{i+}\pi_{+j}$$
 $i, j = 1, 2.$

If X and Y are independent then it follows that the odds ratio, ψ , is

$$\psi = \frac{\pi_{11}\pi_{22}}{\pi_{12}\pi_{21}} = 1.$$

Taking the log of both sides leads to,

$$log \ \psi = log \ \pi_{11} + log \ \pi_{22} - log \ \pi_{12} - log \ \pi_{21} = 0.$$

Now consider the log transformation of the expected counts for the ij^{th} cell given by m_{ij} . For which one has,

$$log (m_{ij}) = \mu + \lambda_i^X + \lambda_j^Y + \lambda_{ij}^{XY}$$

for i, j = 1, 2 where $m_{ij} = n\pi_{ij}$. This equation is called the **saturated loglinear model** for the 2×2 table.

Since there are 1 + 2 + 2 + 4 = 9 parameters in this model and only four observations (cell frequencies) it is necessary to define the following constraints on the model,

$$\sum_i \lambda_i^X = 0 \quad \sum_j \lambda_j^Y = 0 \quad \sum_i \lambda_{ij}^{XY} = \sum_j \lambda_{ij}^{XY} = 0.$$

The loglinear model expected cell counts can be written as,

X	Y=1	Y=2
1	$exp(\mu + \lambda_1^X + \lambda_1^Y + \lambda_{11}^{XY})$	$exp(\mu + \lambda_1^X - \lambda_1^Y - \lambda_{11}^{XY})$
2	$exp(\mu - \lambda_1^X + \lambda_1^Y - \lambda_{11}^{XY})$	$exp(\mu - \lambda_1^X - \lambda_1^Y + \lambda_{11}^{XY})$

Using the above loglinear model, the odds ratio can be written as

$$\psi = \frac{m_{11}m_{22}}{m_{12}m_{21}}$$

so that

$$log \ \psi = log \ m_{11} + log \ m_{22} - log \ m_{12} - log \ m_{21} = 4\lambda_{11}^{XY}.$$

In which case, the hypothesis of independence of X and Y is equivalent to $H_0: \lambda_{11}^{XY} = 0$. Thus, the loglinear model when the assumption of independence holds becomes,

$$log (m_{ij}) = \mu + \lambda_i^X + \lambda_j^Y \quad i, j = 1, 2.$$

$R \times C$ Tables

Agresti considers the model given by,

$$\mu_{ij} = \mu \alpha_i \beta_j$$
.

From which one has the saturated model

$$\log \mu_{ij} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_{ij}^{XY} \tag{1}$$

and the independent model,

$$\log \mu_{ij} = \lambda + \lambda_i^X + \lambda_i^Y \tag{2}$$

for $i = 1, 2, \dots, R, j = 1, 2, \dots, C$.

Three-Way Tables

Types of Independence

• The saturated model has loglinear form,

$$log~\mu_{ijk} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ} + \lambda_{ijk}^{XYZ}$$

• Mutual Independence X, Y, and Z are mutually independent when

$$\pi_{ijk} = \pi_{i++}\pi_{+j+}\pi_{++k}$$

for all i, j and k. Mutual independence implies that the expected frequencies $\{\mu_{ijk}\}$ have the loglinear form given by,

$$log \ \mu_{ijk} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z,$$

in which case

$$\lambda_{ij}^{XY} = \lambda_{ik}^{XZ} = \lambda_{jk}^{YZ} = \lambda_{ijk}^{XYZ} = 0.$$

• Joint Independence Variable Y is jointly independent of X and Z when

$$\pi_{ijk} = \pi_{i+k}\pi_{+j+1}$$

for all i, j and k. The loglinear form can be written as,

$$log \ \mu_{ijk} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ik}^{XZ},$$

in which case

$$\lambda_{ij}^{XY} = \lambda_{jk}^{YZ} = \lambda_{ijk}^{XYZ} = 0.$$

Mututal independence implies joint independence of any one variable from the others.

• Conditional Independence X and Y are conditionally independent, given Z when

$$\pi_{ij|k} = \pi_{i+|k} \pi_{+j|k}$$

for all i, j and k. This holds for joint probabilities over the entire table, hence,

$$\pi_{ijk} = \pi_{i+k}\pi_{+jk}/\pi_{++k}.$$

The loglinear form can be written as,

$$log \ \mu_{ijk} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ},$$

in which case

$$\lambda_{ij}^{XY} = \lambda_{ijk}^{XYZ} = 0.$$

SAS

Code 5

Three Way Model

Death, Low Birth Weight and Smoking

The CATMOD Procedure

Data Summary					
Response	Death*Smoking*LowBirthWg	Response Levels	8		
Weight Variable	None	Populations	1		
Data Set	NEW_BWGT	Total Frequency	2892		
Frequency Missing	197	Observations	2892		

Population Profiles		
Sample Sample Size		
1	2892	

Response Profiles					
Response	Death	Smoking	LowBirthWgt		
1	Aff	Aff	Aff		
2	Aff	Aff	No		
3	Aff	No	Aff		
4	Aff	No	No		
5	No	Aff	Aff		
6	No	Aff	No		
7	No	No	Aff		
8	No	No	No		

Maximum Likelihood Analysis
Maximum likelihood computations converged.

Maximum Likelihood Analysis of Variance						
Source	Source DF Chi-Square Pr > ChiSq					
Death	1	154.35	<.0001			
Smoking	1	369.69	<.0001			
Death*Smoking	1	3.46	0.0627			
LowBirthWgt	1	152.09	<.0001			
Death*LowBirthWgt	1	718.75	<.0001			
Smoking*LowBirthWgt	1	0.06	0.8002			
Likelihood Ratio	1	3.73	0.0535			

Maximum Likelihood Predicted Values for Response Functions					
Function Number	Observed		Pi	redicted	Residual
	Function Standard Error		Function	Standard Error	
1	-2.78174	0.102035	-2.70818	0.091798	-0.07355
2	-3.34627	0.133598	-3.47632	0.123381	0.130054
3	-1.76836	0.064544	-1.79023	0.064295	0.021877
4	-2.58643	0.093122	-2.52479	0.08532	-0.06164
5	-3.43642	0.139553	-3.58015	0.127129	0.143728
6	-1.2164	0.05154	-1.19711	0.050321	-0.01929
7	-2.47224	0.088326	-2.41662	0.081669	-0.05562

	Maximum Likelihood Predicted Values for Frequencies						
Death	Smoking	LowBirthWgt	Observed		Predicted		Residual
			Frequency	Standard Error	Frequency	Standard Error	
Aff	Aff	Aff	102	9.919803	109.2989	9.548808	-7.2989
Aff	Aff	No	58	7.539018	50.7011	5.985303	7.298899
Aff	No	Aff	281	15.92786	273.7011	15.29083	7.298899
Aff	No	No	124	10.89418	131.2989	10.55222	-7.2989
No	Aff	Aff	53	7.213092	45.7011	5.566915	7.298899
No	Aff	No	488	20.14086	495.2989	19.91188	-7.2989
No	No	Aff	139	11.50301	146.2989	11.1763	-7.2989
No	No	No	1647	26.62762	1639.701	26.38253	7.298899

Three Way Model

Final Model

The CATMOD Procedure

Data Summary						
Response	Death*Smoking*LowBirthWg	Response Levels	8			
Weight Variable	None	Populations	1			
Data Set	NEW_BWGT	Total Frequency	2892			
Frequency Missing	197	Observations	2892			

Population Profiles		
Sample Sample Size		
1	2892	

Response Profiles				
Response	Death	Smoking	LowBirthWgt	
1	Aff	Aff	Aff	
2	Aff	Aff	No	
3	Aff	No	Aff	
4	Aff	No	No	
5	No	Aff	Aff	
6	No	Aff	No	
7	No	No	Aff	
8	No	No	No	

Maximum Likelihood Analysis			
Maximum likelihood computations converged.			

Maximum Likelihood Analysis of Variance				
Source	DF Chi-Square Pr > Chi.			
Death	1	167.50	<.0001	
LowBirthWgt	1	201.07	<.0001	
Death*LowBirthWgt	1	721.21	<.0001	
Smoking	1	405.06	<.0001	
Death*Smoking	1	6.34	0.0118	
Likelihood Ratio	2	3.79	0.1502	

All the above terms are significant, including the association between smoking and death!

Maximum Likelihood Predicted Values for Response Functions					
Function Number	0	bserved	Predicted		Residual
	Function	Standard Error	Function	Standard Error	
1	-2.78174	0.102035	-2.71524	0.08769	-0.0665
2	-3.34627	0.133598	-3.45927	0.102826	0.112998
3	-1.76836	0.064544	-1.78652	0.06252	0.018168
4	-2.58643	0.093122	-2.53055	0.082415	-0.05588
5	-3.43642	0.139553	-3.60304	0.089917	0.166622
6	-1.2164	0.05154	-1.19431	0.049075	-0.02208
7	-2.47224	0.088326	-2.40873	0.075344	-0.06351

	Maximum Likelihood Predicted Values for Frequencies						
Death	Smoking	LowBirthWgt	Oi	bserved	Predicted		Residual
			Frequency	Standard Error	Frequency	Standard Error	
Aff	Aff	Aff	102	9.919803	108.4602	8.907781	-6.46018
Aff	Aff	No	58	7.539018	51.53982	5.057426	6.460177
Aff	No	Aff	281	15.92786	274.5398	14.94761	6.460177
Aff	No	No	124	10.89418	130.4602	9.976526	-6.46018
No	Aff	Aff	53	7.213092	44.63773	3.537735	8.362269
No	Aff	No	488	20.14086	496.3623	19.48686	-8.36227
No	No	Aff	139	11.50301	147.3623	10.41251	-8.36227
No	No	No	1647	26.62762	1638.638	26.05253	8.362269

Logistic Models for Binary Data

Let Y be a binary response variable where $\Pr[Y = 1 \mid \mathbf{x}] = \pi(\mathbf{x})$ and $\Pr[Y = 0 \mid \mathbf{x}] = 1 - \pi(\mathbf{x})$ with covariates $\mathbf{x} = (x_1, x_2, \dots, x_p)$. There are several potential approaches to this modeling problem. One could use the ordinary least squares approach¹, called the **Linear Probability model**, given as,

$$\pi(\mathbf{x}) = \alpha + \beta' \mathbf{x}.$$

This model has a structural defect since $\pi(x)$ is not restricted to the interval [0, 1] for all x. A better model is the **Logistic Regression Model**² given as,

$$y = log \left[\frac{\pi(\mathbf{x})}{1 - \pi(\mathbf{x})} \right] = (\alpha + \beta' \mathbf{x}),$$

where y is the log odds and $\pi(\mathbf{x})$ is the probability of the event of interest for the covariate \mathbf{x} . It follows that,

$$\frac{\pi(\mathbf{x})}{1 - \pi(\mathbf{x})} = exp(\alpha + \beta'\mathbf{x}),$$

and

$$\pi(\mathbf{x}) = \frac{exp(\alpha + \beta'\mathbf{x})}{1 + exp(\alpha + \beta'\mathbf{x})}.$$

Logistic Regression with Categorical Predictors

SDK considered using the Logistic model with categorical predictors. The SAS file is

```
title 'Agresti Coronary Example 1';
data coronary;
 input sex ecg ca count @0;
datalines;
0 0 0 11 0 0 1 4
0 1 0 10 0 1 1 8
       9 1 0 1 9
1 0 0
       6 1 1 1 21
1 1 0
run;
title2 'LOGIT Link';
proc logistic data=coronary desc plots=(oddsratio);
class sex ecg;
     freq count;
     model ca=sex ecg / expb scale=none aggregate;
  output out=predict pred=prob;
run;
```

¹GLM with normal data and the identity link function.

²GLM with binary data and the canonical logit link.

```
data predict; set predict; prob = 1 - prob; drop _level_;
proc print data=predict;
run;
```

Coronary Example Output

The model for the four discrete events is given by

Sex	ECG	$Pr[CA\ Disease] = \theta_{hi}$	Odds of CA Disease
Females	< 0.1	$e^{\alpha}/(1+e^{\alpha})$	e^{α}
Females	≥ 0.1	$e^{\alpha+\beta_2}/(1+e^{\alpha+\beta_2})$	$e^{\alpha+\beta_2}$
Males	< 0.1	$e^{\alpha+\beta_1}/(1+e^{\alpha+\beta_1})$	$e^{\alpha+\beta_1}$
Males	≥ 0.1	$e^{\alpha+\beta_1+\beta_2}/(1+e^{\alpha+\beta_1+\beta_2})$	$e^{\alpha+\beta_1+\beta_2}$

Parameter	Estimate	SE	Interpretation
α	-1.17	0.485	log odds of coronary disease
			for females with ECG < 0.1
β_1	1.28	0.498	increment to log odds for males
β_2	1.05	0.498	increment to log odds for high ECG

Sex	ECG	Logit	Odds of CA Disease
Female	< 0.1	$\hat{\alpha} = -1.17$	$e^{\hat{\alpha}} = e^{-1.17} = 0.3089$
Female	≥ 0.1	$\hat{\alpha} + \hat{\beta}_2 = -0.12$	$e^{\hat{\alpha}+\hat{\beta}_2} = e^{-0.12} = 0.8867$
Male	< 0.1	$\hat{\alpha} + \hat{\beta}_1 = 0.10$	$e^{\hat{\alpha}+\hat{\beta}_1} = e^{0.10} = 1.11$
Male	≥ 0.1	$\hat{\alpha} + \hat{\beta}_1 + \hat{\beta}_2 = 1.157$	$e^{\hat{\alpha}+\hat{\beta}_1+\hat{\beta}_2} = e^{1.157} = 3.18$

Logistic Model - Low Birth weight

The LOGISTIC Procedure

Model Information		
Data Set	WORK.NEW_BWGT	
Response Variable	Death	
Number of Response Levels	2	
Model	binary logit	
Optimization Technique	Fisher's scoring	

Number of Observations Read	4589
Number of Observations Used	4242

Response Profile				
Ordered Value	Total Frequency			
1	Aff	545		
2	No	3697		

Note	Probability modeled is Death='Aff'.
Note	347 observations were deleted due to missing values for the response or explanatory variables.

Class Level Information				
Class	Value Design Variables			
Drinking	Aff	1		
	No	-1		
LowBirthWgt	Aff	1		
	No	-1		
Smoking	Aff	1		
	No	-1		

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics				
Criterion	Intercept Only	Intercept and Covariates		
AIC	3255.457	2299.268		
SC	3261.810	2324.679		

Model Fit Statistics					
Criterion Intercept Only Intercept and Covariates					
-2 Log L	3253.457	2291.268			

Testing Global Null Hypothesis: BETA=0					
Test	Chi-Square	DF	Pr > ChiSq		
Likelihood Ratio	962.1896	3	<.0001		
Score	1320.6291	3	<.0001		
Wald	848.1561	3	<.0001		

Type 3 Analysis of Effects					
Effect DF Wald Chi-Square Pr > ChiSq					
Drinking	1	6.7534	0.0094		
LowBirthWgt 1 831.377			<.0001		
Smoking	1	12.7496	0.0004		

Analysis of Maximum Likelihood Estimates							
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	Exp(Est)
Intercept		1	-1.4015	0.0839	278.7291	<.0001	0.246
Drinking	Aff	1	-0.2814	0.1083	6.7534	0.0094	0.755
LowBirthWgt	Aff	1	1.5986	0.0554	831.3778	<.0001	4.946
Smoking	Aff	1	0.2966	0.0831	12.7496	0.0004	1.345

Odds Ratio Estimates					
Effect	Point Estimate	95% Wa	ald Confidence Limits		
Drinking Aff vs No	0.570	0.373 0.871			
LowBirthWgt Aff vs No	24.462	19.684	30.400		
Smoking Aff vs No	1.810	1.307	2.506		

Association of Predicted Probabilities and Observed Responses					
Percent Concordant 71.8 Somers' D 0.634					
Percent Discordant	8.5	Gamma	0.789		
Percent Tied	19.7	Tau-a	0.142		
Pairs	2014865	С	0.817		

