PARSHWANATH CHARITABLE TRUST'S

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering
Data Science

Semester : VI	Subject :Machine	Learning	Academic Year: 2023 - 2024
	Multiple 1	inear Regn	enian
Example:	-		
		model we h	are one dependent
and on	e independent (wiehle	ace one dependent
			multiple predictors
or inde	ependent variable	s-and one	dependent variable.
- This is	on extension	of the lin	egienaen vanabie.
probler	N. i	7118 111	ear regrenier)
1	\	min of t	in contalla
71	multiple regreated and x2 is give	en as ful	w vanables
	// \		ως,
	y = + Cx	+ a, x, + a2	W.
- To 00-	/		
vandble	ral this is g	ven for	n independent
variable	0		,)
		122 2	
	y= ao ta		tanxn+E
,	do de as	, ,	variables,
	is the depender		the state of
(a)	, a, , az an)	are the a	selficients of the
'n	egrenion equation	in and E,	3 error th tem
xample!	Here the matrice	es for Y	an X are given as foll
/	1 1 4	T.	1 X1 X2 Y
	x = 125	and 7 = 6	project] produ 2 weekly
	1 3 8	8	1 4 1
	1 4 2	12	2 5 6
			3 8 8
		_	9 2 12
Subject Incharge :Poonan	n Pangarkar Page No. 1	_ Departmen	nt of CSE-Data Science APSIT

PARSHWANATH CHARITABLE TRUST'S

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering
Data Science

Semester : VI

Subject : Machine Learning

Academic Year: 2023 - 2024

7	The coeff	icient of	2 multiple	regrenion
	equation	is given	as.	0
	,			

P 1 (
a =	ao
	a1:
	a2

i) colculated the same way as linear regression

	à = 1	(c.	$(\chi^T\chi)$	-1	χ	")'	γ				
	1 1	1	17	1	1	4		4	10	197	
$x^Tx =$	12	3	4	1	2	5	=	10	30	46	
	_4 5	8	2	1	3	8		19	46	109	
				1	4	2		L			_

- The regresson coefficient for multiple regression is

Calculated the Same way as linear regression:

\hat{a} = ((\times T \times)^{-1} \times T) \gamma

	4	10	19	3:15	-0.59	-030
$(xTx)^{-1} =$	10	30	46	-0.59		0.016
	19	46	1109	-0.30	0.018	0.054

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering **Data Science**

Semester: VI

Subject : Machine Learning

Academic Year: 2023 - 2024

The regreni	m Coet	Rigent R	r multip	ole regr	renion D
colculated t	te sam		o linear	vegrenî	
	3.15	-0.59	-030		1117
$(x^Tx)^TX^T = 1$	-0.59	0.20	0.016	× 1 2	234
	-0.30	0.016	0.054	4	582
	_				
=	0.05	0.47	-1.02	0.19	
	-0.32	-0.098	0.155	0-26	
	-0.065	0.005	0.185	-0.125	

	â	=((XT	x)- 'x') Y	7	17	1
=	0.05	0.47	-1.02	0.19		6	_
	-0.32	-0.098	0.155	0-26	X	8	
	-0.065	0.005	0.185	-0.125		12	

100 €	ao = -1.69	
	a1 = 3.48	
	az=-0.05	

- · y = 90 + 9,×1 + 22×2 · Hence, the constructed model i):
- -1.69 + 3.48x, + 0.05 x2