Задача третья

Чтобы хоть немного развеяться Леха придумал для себя задачу. Он выбирает два целых числа \boldsymbol{A} и \boldsymbol{B} , а затем считает наибольший общий делитель чисел « \boldsymbol{A} факториал» и « \boldsymbol{B} факториал». Более формально, хакер хочет посчитать $\boldsymbol{HOД}(\boldsymbol{A!,B!})$. Как известно, факториал числа \boldsymbol{x} равен произведению всех положительных целых чисел, не превосходящих \boldsymbol{x} . Таким образом, $\boldsymbol{x!} = 1 \cdot 2 \cdot 3 \cdot \dots \cdot (\boldsymbol{x-1}) \cdot \boldsymbol{x}$. Например, $4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24$. Напомним, что $\boldsymbol{HOД}(\boldsymbol{x}, \boldsymbol{y})$ определяется, как такое наибольшее целое число \boldsymbol{q} , что делит \boldsymbol{x} нацело и делит \boldsymbol{y} нацело.

Комментарий: задача на смекалку.

Дополнительные условия

Входные данные:

В первой и единственной строке входного файла дано два целых числа \boldsymbol{A} и \boldsymbol{B} $(1 \le \boldsymbol{A}, \boldsymbol{B} \le 10^9, min(\boldsymbol{A}, \boldsymbol{B}) \le 12).$

Выходные данные:

Выведите одно число — наибольший общий делитель чисел A! и B!.

Ограничения: 1 секунда, 256 мегабайт.

Разбор

В данной задаче не нужно для каждого числа подсчитывать факториал, достаточно найти его для меньшего.

Пусть у нас есть пара натуральных чисел: x, x + 1.

Покажем, что все множители x! включены в (x + 1)!.

$$x! = 1 * 2 * ... * (x - 1) * x$$

$$(x + 1)! = 1 * 2 * ... * (x - 1) * x * (x + 1) = x! * (x + 1)$$

Следовательно, x! — НОД наших чисел. Другими словами, $(\min(A, B))!$ — наш ответ.

Замечание

Так как по условиям задачи минимальное из чисел не превосходит 12, то его факториал без труда поместится в целочисленном типе данных **int**.