Exploring biological shape analysis through topology, geometry and statistics

Ph. D. summer school: Biomedical image analysis, 2024/08/13

Jon Sporring,
Department of Computer Science

Imaging research and pipeline

AI is pretty good at segmenting stuff, what's next?

Image courtesy: Karen Martinez & Gabriella von Scheel von Rosing; AI: http://www.cellpose.org/

What to do next: Shape analysis

Focused ion-beam scanning electron microsopy (FIB-SEM) Voxel size: (5 nm)³ Mitochondria Vessicles Active zone

Graham Knott and Marco Cantoni. Electron microscopy dataset. https://cvlab.epfl.ch/data/data-em/

Literature

- Analysis of shape and spatial interaction of synaptic vesicles using data from focused ion beam scanning electron microscopy (FIB-SEM); M Khanmohammadi, RP Waagepetersen & J Sporring, Frontiers in Neuroanatomy, 2015
- Stoyan, D. (2006). Fundamentals of Point Process Statistics. In: Baddeley, A. et al. (eds) Case Studies in Spatial Point Process Modeling. Lecture Notes in Statistics, vol 185. Springer
- Mrkvička, Tomáš, et al. "A one-way ANOVA test for functional data with graphical interpretation." Kybernetika 56.3 (2020): 432-458.
- Stephensen, H.J.T., Svane, A.M., Villanueva, C.B. et al. Measuring Shape Relations Using r-Parallel Sets. J Math Imaging Vis, vol 63, 2021.

Chazal F., Michel B., An Introduction to Topological Data Analysis: Fundamental and Practical Aspects for Data Scientists, In: Frontiers in Artificial Intelligence, vol 4, 2021

Analysis of shape and spatial interaction of synaptic vesicles using data from focused ion beam scanning electron microscopy (FIB-SEM); M Khanmohammadi, RP Waagepetersen & J Sporring, Frontiers in Neuroanatomy, 2015

Ripley's K- and L-functions: expected number of neighboring points by radius

$$K(r) = \frac{1}{\lambda} \mathbb{E}[I(d_{ij} < r)]$$

$$L = \sqrt{\frac{K}{\pi}}$$

(homogeneous|stationary|uniform) Poisson [point] (process|field)

Euclidean d-space

n∼Poisson

x~Uniform

2-space: $\lim_{n\to\infty} K(r) = \pi r^2$

R and rpy2 demo:

https://cran.r-project.org/

https://sporring.github.io/bia2024/talk.pdf https://sporring.github.io/bia2024/spatstat_bia2024.zip

```
https://spatstat.org/
https://cran.r-project.org/web/packages/GET/vignettes/pointpatterns.pdf
demoRpy2.py: Installation instructions for R, R-packages, and python packages:
      # 1. Install R, which to my experience works best directly from https://cran.r-project.org/
      # then start R and install some packes:
      # install.packages("spatstat")
      # install.packages("lazyeval")
      # install.packages("GET")
```

GETDemo.r

```
library("GET")
library("spatstat.model")
library("ggplot2")
X <- spruces
print(X)
plot(X)
k \leftarrow Kest(X)
print(k)
plot(k)
env <- envelope(X, nsim=1999, savefuns=TRUE, simulate=expression(runifpoint(ex=X)), verbose=FALSE)
print(env)
plot(env)
res <- global_envelope_test(env)</pre>
print(res)
plot(res)
```

GETDemo.r

library("GET") library("spatstat.model") library("ggplot2") X <- spruces print(X) plot(X) k < - Kest(X)print(k) plot(k) env <- envelope(X, nsim=1999, savefuns=TRUE, simulate=expression(runifpoint(ex=X)), verbose=FALSE) print(env) plot(env) res <- global_envelope_test(env) print(res) plot(res) env

Exercise: Use GET's global_envelope_test to test whether x and/or z are likely to be random

2. Spatial shape fields: Real structures are not points, small structures are difficult to separate

Measuring Shape Relations Using r-Parallel Sets; HJT Stephensen, AM Svane, CB Villanueva, SA Goldman, & J Sporring; Journal of mathematical imaging and vision, 2021

Not all shapes are well summarized as a reference point

Ripley's K-function indicates strong repulsion

Shape relation measures = Interaction with distance fields

Shape relation measures: Some characteristic functions

$$\mu_{00}(r) = \mathcal{H}(X \cap Y^r)$$

$$g_{00}(r) = \frac{d\mu_{00}(r)}{dr} = \mu_{01}(r)$$

$$f_{00}(r) = \frac{\mu_{00}(r)}{\mathcal{H}(Y^r)}$$

There can be only 4

$$Y^r = \{ \alpha \in \mathbb{R}^d \mid \inf_{y \in Y} d(\alpha, y) \le r \}$$
 (1)

$$\mu_{\varepsilon,\varepsilon'}(X,Y^r) = \mathcal{H}^{d-\varepsilon-\varepsilon'}(\partial^{\varepsilon}X \cap \partial^{\varepsilon'}Y^r) . \tag{2}$$

d=2	$(\varepsilon, \varepsilon')$	$\mathcal{H}^{d-arepsilon-arepsilon'}$	$\partial^{\varepsilon} X \cap \partial^{\varepsilon'} Y^r$	Interpretation of $\mu_{\varepsilon,\varepsilon'}(X,Y^r)$
////	(0,0)	Area	$X \cap Y^r$	Area of intersection
	(0, 1)	Curve length	$X \cap \partial Y^r$	Boundary length of intersection inside interior of X
	(1, 0)	Curve length	$\partial X \cap Y^r$	Boundary length of intersection inside boundary of X
_	(1, 1)	Point counts	$\partial X \cap \partial Y^r$	Number of points in intersection of boundaries
d = 3	$(\varepsilon, \varepsilon')$	$\mathcal{H}^{d-arepsilon-arepsilon'}$	$\partial^{\varepsilon} X \cap \partial^{\varepsilon'} Y^r$	Interpretation of $\mu_{\varepsilon,\varepsilon'}(X,Y^r)$
	(0, 0)	Volume	$X \cap Y^r$	Volume of intersection
	$(0,0) \\ (0,1)$	Volume Surface area	$X \cap Y^r$ $X \cap \partial Y^r$	Volume of intersection Surface area of intersection inside interior of X
	` ' /			
	(0, 1)	Surface area	$X\cap \partial Y^r$	Surface area of intersection inside interior of X

1000

Spatial point fields vs. shape fields: shapeRelation.py

Active zone - mitochondria

Shape relations for statistical summary of families of shapes

and their relations

3. With a little help from topology: Cristae membranes in Mitochondria

Extracting Mitochondrial Cristae Characteristics from 3D Focused Ion Beam Scanning Electron Microscopy Data, C Wang, L Østergaard, S Hasselholt, & J Sporring, to appear in Communications Biology, 2024

Local thickness is biased, but what is the definition of thickness?

Local thickness is biased, but what is the definition of thickness?

Local thickness is biased, but what is the definition of thickness?

Persistent homology and friends: https://gudhi.inria.fr/

Simplex $\sigma = [x_0, x_1, ... x_k]$ is in the alpha complex if

$$\bigcap_{x_i \in \sigma} B(x_i, r) \neq \emptyset$$

Persistence under noise: $dgm = dgm^{Signal} \cup dgm^{Noise}$

Pure noise

Bobrowski & Skraba, "A universal null-distribution for topological data analysis", Nature/Scientific Reports, 2023

Random points:

$$x \in S(d)$$
, $x \sim f$, $p = (r_{\text{birth}}, r_{\text{death}})$

Left-skewed Gumbel distribution:

$$F(x) = 1 - e^{-e^x}$$
, $f(x) = e^{x - e^x}$, $\mu = -\gamma = -0.57721$, $\sigma^2 = \frac{\pi^2}{6}$

Transformation:

$$\rho = \ln \ln \frac{r_{\text{death}}}{r_{\text{birth}}}$$

$$x = \frac{(\rho - \bar{\rho})}{\beta} - \gamma, \qquad \bar{\rho} = \frac{1}{|\text{dgm}_k|} \sum_{p \in \text{dgm}_k} \rho, \qquad \beta = \begin{cases} 1, \text{Rips} \\ 2, \text{Čech} \end{cases}$$

Bonferroni testing (family-wise error rate $< \alpha$):

$$P(x \ge x_0 | x \text{ is noise}) = 1 - F(x) = e^{-e^{x_0}}$$

$$\operatorname{dgm}_k^{\text{Signal}}(\alpha) = \left\{ p \in \operatorname{dgm}_k : e^{-e^x} < \frac{\alpha}{|\operatorname{dgm}_k|} \right\}$$

$$e^{\rho} = \ln \frac{r_{\text{death}}}{r_{\text{birth}}} = (-1)^{\beta} e^{\beta \gamma + \overline{\rho}} \left(\ln \frac{\alpha}{|\operatorname{dgm}_k|} \right)^{\beta}$$

f(x)

The universal distribution can separate very noisy cases

Family-wise error rate

Persistent homology: Statistical measures on H_0

Statistical summary of object collections

Pair correlation and Ripley's K functions summarizes 1st order point relations – e.g., do the vessicles cluster?

Hausdorf measures on overlaping sets extends notion of points to shapes – e.g., are mitochondria seen close to the synapse?

Filtrations brings topological concepts to measurements - e.g., what is the average tubular radius of complicated objects

Statistical analysis

Imaging

Image life, discover the future