

高知工科大学 経済・マネジメント学群

計量經済学

3. 因果推論

た内 勇生

yanai.yuki@kochi-tech.ac.jp

このトピックの目標

- 因果推論 (causal inference) とは何か?
- 因果推論の「難しさ」を理解する
 - ▶ 因果推論の何が難しいのか?
 - ▶ 因果推論の「根本問題」とは?
- 因果推論の「根本問題」を解決する方法を考える
 - ▶集団の因果効果を推定する
 - ▶ なぜ実験が「最善」なのか?

因果推論とは何か

学問の目的(の1つ)

- 「真実」を見つける
- ・社会科学(経済学,経営学,政治学,社会学,etc.) における真実とは?
 - ▶真の「因果関係」を見つける
 - 結果の原因を考える:特定の結果を生じされる原因は 何か
 - 原因の結果(効果)を考える:特定の原因によってど のような結果(効果)が生じるか

因果関係の探求

- 興味がある現象について、因果関係を明らかにしたい
 - ▶ 因果関係:原因と結果の関係
 - 「原因X」によって「結果Y」が起きた
 - 「原因A」が増えたので、「結果B」が増えた
 - 「原因C」が大きくなったので、「結果D」が減った

原因と結果 (Cause and Effect)

• 原因:cause

• 結果: effect

▶どちらも様々な呼び名をもつ

原因と結果の呼び名

原因	Causse	結果	Effect
処置 [変数]	Treatmtent [variable]	結果 [変数]	Outcome [variable]
説明変数	Explanatory variable	→被説明変数	Explained variable
予測変数	Predictor	応答変数	Response variable
独立変数	Independent variable	→ 従属変数	Dependent variable
入力	Input	出力	Output
特徴量	Feature	━▶目的変数	target variable

原因と結果の関係をどうやって見つけるか?

- •特定の原因が結果に影響している:因果関係がある
 - ▶ その影響が「偶然ではない」というためには、何を確 かめる必要があるか?

共変関係

- 共変関係:変数 X が変化すると、変数 Y も変化する

▶例

- 勉強時間が長いほど、試験の点数が高い
- 身長が高いほど、体重が重い
- Rを使いこなせるほど、年収が高い

自動車による自殺数

アメリカ合衆国での日本車の販売数と

自動車による自殺数

日本車の販売台数

強い相関:r=0.94

日本車の販売数と自動車による自殺者数は同時に増える(減る)

自殺者を減らすために日本車を減らすべきか?

これは因果関係なのか???

実施すべき政策は何か

• 政策目標:自殺者数を減らしたい

・因果関係:日本車の販売 消増えると、自殺者が増える

• 実施すべき政策:日本車 売売数を規制する

事実(データ、数字):

因果関係がわからなければ、証拠として使えない

相関関係 + 因果関係

因果関係:日本車が売れると自殺が増える

因果関係:自殺が増えると日本車が売れる

互恵効果:日本車の売り上げと自殺 が相互に影響する

両者に影響する第3の要因の存在: 日本車の売上と自殺者数に因果関係は無い

見せかけの因果関係

潜在的結果アプローチ

因果関係を単純な例で考える

- 例:アスピリン(鎮痛剤)と頭痛の関係 (Imbens and Rubin 2015)
 - 「私がアスピリンを飲んだから、私の頭痛が消えた」
 - 観察対象:「私」(一人の個人)
 - 取られた行動:「アスピリンを飲む」
 - 起こった結果:「私の頭痛が消えた」
- ★ 素朴な因果推論:「アスピリンが私の頭痛を消した」

もしあの時…

- 「私」が違う行動を取っていたら、何が起こった?
 - ▶「私」が取った行動:アスピリンを飲む
 - ▶他の行動を取っていたら?
 - 他の行動:アスピリンを飲まない
 - ▶私たちの因果推論が正しければ
 - 「私がアスピリンを飲まなかったので、私の頭痛は消 えなかった」

潜在的結果

- 一つの行動に、一つの潜在的結果
 - ▶ 可能な行動: 「アスピリンを飲む」or 「アスピリンを 飲まない」
 - ▶ 潜在的結果 (potential outcomes)
 - アスピリンを飲んだ場合の頭痛の状態
 - アスピリンを飲まない場合の頭痛の状態

因果関係と行動

- 因果関係は、行動 [action] (処置 [treatment]、介入 [intervention]、操作 [manipulation]) に関係する
 - ▶ 因果関係があるなら、潜在的結果が行動(処置、介 入、操作)によって変わるはず
 - ▶ 「操作なくして、因果関係なし (NO CAUSATION WITHOUT MANIPULATION)」 (Holland 1986: 959)
 - 原因を操作できないなら、因果関係は考えられない
 - 例:「彼女は女だから、髪が長い」

潜在的結果アプローチで因果関係に迫る

- 個体単位での潜在的結果:
 - ▶ 頭痛のある個人 *i* がアスピリンを飲んだら、1時間後に 頭痛は消えるか?
- 個人 $i = \in \{1, 2, ..., N\}$
- ・処置(原因) $D_i \in \{0,1\}$:飲まない = 0, 飲む = 1
- ・結果 $Y_i \in \{0,1\}$: 頭痛なし = 0, 頭痛あり = 1

処置と潜在的結果

。 $Y_i(D_i)$:処置が D_i の場合の潜在的結果

•
$$Y_i = Y_i(1)$$
 if $D_i = 1$

$$Y_i = Y_i(0)$$
 if $D_i = 0$

$$Y_i = D_i Y_i(1) + (1 - D_i) Y_i(0)$$
$$= Y_i(0) + D_i [Y_i(1) - Y_i(0)]$$

潜在的結果と結果の組合せパタン

1. アスピリンを飲んだ場合のみ頭痛が消える

$$Y_i(1) = 0, Y_i(0) = 1$$

2. いずれにせよ頭痛は残る

$$Y_i(1) = 1, Y_i(0) = 1$$

3. いずれにせよ頭痛は消える

$$Y_i(1) = 0, Y_i(0) = 0$$

4. アスピリンを飲んだ場合のみ頭痛が残る

$$Y_i(1) = 1, Y_i(0) = 0$$

★「アスピリンを飲んだから頭痛が消えた」というためには、どのパタンが 必要?

潜在的結果と結果の組合せパタン

¹. アスピリンを飲んだ場合のみ頭痛が消える(薬の効果を示す**因果関係**)

$$Y_i(1) = 0, Y_i(0) = 1$$

2. いずれにせよ頭痛は残る

$$Y_i(1) = 1, Y_i(0) = 1$$

3. いずれにせよ頭痛は消える

$$Y_i(1) = 0, Y_i(0) = 0$$

4. アスピリンを飲んだ場合のみ頭痛が残る(逆の因果関係)

$$Y_i(1) = 1, Y_i(0) = 0$$

★ パタン1が正しいことを確かめたい!

因果効果の定義 (Rubinの因果モデル)

- 個体 i に関する因果効果(個体処置効果; individual treatment effect: ITE) : δ_i

$$\delta_i \equiv Y_i(1) - Y_i(0)$$

因果効果は、潜在的結果の差

▶ 同一個体の同一時点での潜在的結果の差によって定義される

アスピリンと頭痛の例の因果効果

- $Y_i(1) = Y_i(0) \Leftrightarrow \delta_i = 0$: 因果効果なし
- $Y_i(1) \neq Y_i(0) \Leftrightarrow \delta_i \neq 0$: 因果効果あり
 - $\delta_i = -1$: アスピリンが頭痛を消す
 - $\delta_i = 1$: アスピリンが頭痛を長引かせる
 - 潜在的結果のうちどちらが観察されるかによって、結 論は変わらない

ダメな因果推論 (1)

- 処置前と処置後を比較する
 - ▶ 処置:アスピリンを飲む
 - ▶ データ:処置前には頭痛があったが、処置後には頭痛が消えた
 - ▶ 結論:アスピリンが頭痛を消した
- ダメ!
- パタン3かもしれない
 - ightharpoonup 残される可能性: $Y_i(1) = 0$ かつ $Y_i(0) = 0$
 - ▶ 「アスピリンを飲まなくても頭痛は消えた」かもしれない

ダメな因果推論 (2)

- 異なる個体を比較する
 - ▶ データ: Sさんはアスピリンを飲んで、彼女の頭痛は消えた。
 た。Rさんはアスピリンを飲まず、頭痛が残った。
 - ▶ 結論:アスピリンが頭痛を消した
- ダメ!
- 。残される可能性: $Y_S(1)=0, Y_S(0)=0, Y_R(1)=1, Y_R(0)=1$
 - ▶ Sさんの頭痛は処置をしてもしなくても消える
 - ▶ Rさんの頭痛は処置をしてもしなくても残る

分析单位

- 処置(行動)は、分析単位 (unit) に適用される
 - ▶分析単位は
 - 物理的対象:人、物
 - 行政単位:国、県、市町村、州
 - 物や人の集合(グループ)など
 - ▶ 分析単位は、「特定の時間」において定義される
 - ▶ 同一人物でも、異なる時点では異なる単位として扱われる
 - 「昨日の私は今日の私ではない」

疑問

• ある個体(個人)i について

$$Y_i(1) \succeq Y_i(0)$$

を同時に観察できる?

できない!!!!

因果推論の根本問題

(Holland 1986)

因果推論の根本問題

表1:処置前

表2:処置後

	潜在的結果		
処置	$Y_i(1)$	$Y_i(0)$	
あり	Y_i として観察される	観察不能	
なし	観察不能	Y_i として観察される	

個体の因果効果は観察不可能!

潜在的結果と因果推論

• いつも潜在的結果のペア(あるいは集合)を考える

$$\{Y_i(1), Y_i(0)\}$$

- ▶ すべての潜在的結果を明確にすることが必要
- ▶ 潜在的結果がわからないと、因果推論はできない
- •1つの分析単位に対し、潜在的結果は最大で1つしか観測できない
 - ▶ 因果推論をするために、観察できない潜在的結果について考えることを要求される

29

前半のまとめ

- 個体に関する因果効果 (個体処置効果: ITE)
 - ▶潜在的結果の差
 - ▶ 潜在的結果は最大で一つしか観察できない
- ・個体に関する因果効果は観察できない:因果推論の根本 問題

根本問題の克服

複数の個体を考える

- 個体レベルの因果効果 (ITE) は観察不能
- では、何なら観察できる?

		 左的結果	個体レベルの
観察対象	Y(1)	Y(0)	因果効果
1	$Y_1(1)$	$Y_{1}(0)$	$Y_1(1) - Y_1(0)$
2	$Y_2(1)$	$Y_2(0)$	$Y_2(1) - Y_2(0)$
:	÷	:	:
\boldsymbol{i}	$Y_i(1)$	$Y_i(0)$	$Y_i(1) - Y_i(0)$
:	:	:	:
N	$Y_{N}(1)$	$Y_N(0)$	$Y_N(1)-Y_N(0)$

集団の平均を考える

• 平均因果効果(平均処置効果; average treatment effect: ATE)

$$\mathbb{E}[\delta] = \mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

- ▶ E[*Y*(1)]: すべての個体が処置1を受けたときの結果の期 待値
- ▶ E[Y(0)]: すべての個体が処置0を受けたときの結果の期 待値

処置群と統制群

- 処置の値が2種類(Oか1)しかないとき
 - ▶ 処置1を受ける:処置を受ける
 - 処置を受けた個体のグループ:処置群 (treatment group)、 実験群
 - ▶ 処置0を受ける:処置を受けない
 - 処置を受けなかった個体のグループ: 統制群 (control group)、比較群

*期待値 (expected values)

X	x_1	x_2	x_3	• • •	\mathcal{X}_n
確率	p_1	p_2	p_3	• • •	p_n

・[離散型]確率変数 Xの期待値: □[X]

$$\mathbb{E}[X] = \sum_{i=1}^{n} x_i p_i$$

$$= x_1 p_1 + x_2 p_2 + \dots + x_n p_n$$

*期待値の例(1)

目 (X)	1	2	3	4	5	6
確率	1/6	1/6	1/6	1/6	1/6	1/6

• 「公平な」サイコロを振ったときに出る目の期待値は?

$$\mathbb{E}[X] = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6}$$

$$= (1 + 2 + 3 + 4 + 5 + 6) \frac{1}{6}$$

$$= \frac{21}{6} = \frac{7}{2}$$

$$= 3.5$$

*期待値の例 (2)

100分の1の確率で1万円が当たり、1000分の1の確率で10万円が当たるくじの賞金(X)の期待値は?

$$\mathbb{E}[X] = 10000 \cdot \frac{1}{100} + 1000000 \cdot \frac{1}{1000}$$
$$= 100 + 100$$
$$= 200$$

平均因果効果 (ATE) は観察できる?

- ・全個体が処置1を受けたとき: E[Y(1)]は観察(推定)可能
- 全個体が処置0を受けたとき: E[Y(0)]は観察(推定)可能

ATE =
$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

・処置1を受けた個体と処置0を受けた個体がいるとき:ど ちらの期待値も観察(推定)できない

★ ATE も観察できない!

ATEの観察に失敗する例:手術 vs 投薬治療

ガン患者の余命

	潜在的結果		因果効果	
患者ID	<i>Y_i(</i> 手術)	$Y_i(x $	Y_i (手術) $-Y_i$ (薬)	
1	7	1	+6	
2	5	6	-1	
3	5	1	+4	
4	7	8	-1	
平均	6	4	+2	

- 手術のATE(平均処置効果) = 2
 - ▶ 手術すると余命が平均2年延びる

処置の割り当て

- 善良で優秀な医者
 - ▶ 潜在的結果を(ある程度正確に)知っている
 - ▶患者の余命を延ばそうとする
 - ▶ それぞれの患者にとって最もいい治療法を選択する

患者	処置	観察される結果
1	手術	7
2	薬	6
3	手術	5
4	薬	8

・「誤った」因果推論:手術を受けた人の平均余命は6 < 投薬 を受けた人の平均余命は7:手術は平均余命は1年縮める!

どこで間違った?

- 処置が患者の特性(共変量)によって変わる
 - ▶ 手術を受けた人たちと手術を受けなかった(投薬された)人たちに違いがある

$$\mathbb{E}[Y(1) \mid D = 1] \neq \mathbb{E}[Y(1) \mid D = 0]$$

$$\mathbb{E}[Y(0) \mid D = 1] \neq \mathbb{E}[Y(0) \mid D = 0]$$

 $\Rightarrow \mathbb{E}[Y(1)] \neq \mathbb{E}[Y(1) \mid D = 1], \mathbb{E}[Y(0)] \neq \mathbb{E}[Y(0) \mid D = 0]$

観察したいものと観察できるもの

- 観察したいもの:
 - ▶ E[*Y*(1)]: 全個体が処置1を受けたときの結果の期待値
 - ▶ E[Y(0)]: 全個体が処置0を受けたときの結果の期待値
- 観察(によって推定)できる期待値:
 - ▶ $\mathbb{E}[Y(1) \mid D = 1]$: 実際に処置1を受けた個体が処置1を受けたときの結果の平均値
 - ▶ $\mathbb{E}[Y(0) \mid D = 0]$: 実際に処置0を受けた個体が処置0を受けたときの結果の平均値

42

何が計算できるか

- 観察された平均値の比較
 - ▶ ATT (average treatment effect for the treated):処置群における平均処置効果

$$\mathbb{E}[Y(1) \mid D = 1] - \mathbb{E}[Y(0) \mid D = 0]$$

$$= \mathbb{E}[Y(1) \mid D = 1] - \mathbb{E}[Y(0) \mid D = 0]$$

$$+ (\mathbb{E}[Y(0) \mid D = 1] - \mathbb{E}[Y(0) \mid D = 1])$$

$$= \mathbb{E}[Y(1) \mid D = 1] - \mathbb{E}[Y(0) \mid D = 1]$$

$$+ \mathbb{E}[Y(0) \mid D = 1] - \mathbb{E}[Y(0) \mid D = 0]$$

セレクションバイアス

- Selection bias: $\mathbb{E}[Y(0) \mid D=1] \mathbb{E}[Y(0) \mid D=0]$
 - ho h
 - \blacktriangleright $\mathbb{E}[Y(0) \mid D=0]: 処置を受けなかった群の個体が、処置を受けなかったときの潜在的結果の期待値$
- \bullet $\mathbb{E}[Y(0) \mid D = 1] = \mathbb{E}[Y(0) \mid D = 0]$ ならセレクションバイアスはない \to その場合、ATT が推定できる (ATE ではないので注意)
- バイアスがある:処置の値と潜在的結果の値に相関がある
 - ▶ 処置を受けた群と受けていない群で、結果のベースラインに違いがある

14

セレクションバイアス (続)

- ・処置を受ける(処置1)か処置を受けない(処置0)か が、結果の値によって異なる
 - ▶例:手術がうまくいきそうな人ほど手術を受け、手術が失敗しそうな人ほど手術を避ける
 - ▶ 例:いい成績が取れそうな人ほど勉強する
 - ▶ 例:就職できない人ほど職業訓練を受けやすい

観察データのバイアス

- 観察された値の平均値を比較しても、結果にバイアス (体系的な偏り)が混ざっている
 - ▶バイアスを取り除きたい
 - ▶ どうすればいい?

ATTを知りたいとき

$$\mathbb{E}[Y(1) \mid D = 1] - \mathbb{E}[Y(0) \mid D = 0] = \text{ATT} + \text{selection bias}$$

selection bias = 0 なら、観察できる期待値の差がATT

selection bias =
$$\mathbb{E}[Y(0) | D = 1] - \mathbb{E}[Y(0) | D = 0] = 0$$

- \Leftrightarrow $\mathbb{E}[Y(0) \mid D = 1] = \mathbb{E}[Y(0) \mid D = 0]$
- 処置群 (D=1)と統制群 (D=0) で処置を受けない場合の潜在的結果の期待値が同じなら、ATTが推定できる

セレクションバイアスに 対処する

セレクションバイアスをなくす

- $\mathbb{E}[Y(0) \mid D = 1] = \mathbb{E}[Y(0) \mid D = 0]$ をどうやって実現する?
- 最も簡単な方法
 - ▶個体を処置群と統制群に無作為に振り分ける
 - ▶ D の値をランダムに決める

処置のランダム割当の効果(1)

・処置Dの値をランダムに割り当てる:

$$\mathbb{E}[Y(0) \mid D = 1] = \mathbb{E}[Y(0) \mid D = 0]$$
かつ
 $\mathbb{E}[Y(1) \mid D = 1] = \mathbb{E}[Y(1) \mid D = 0]$

処置のランダム割当の効果 (2)

• したがって、

$$\mathbb{E}[Y(1) \mid D = 1] - \mathbb{E}[Y(0) \mid D = 0]$$

$$= \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

$$= ATE$$

▶ 観察したものから、ATE が推定できる!

無作為化比較試験(RCTs)

- ・対象集団を無作為(ランダム)に2つに分ける!
 - ▶無作為 (random):確率が等しい
- ・無作為に作られる2つの集団:よく似ている(集団としては交換可能な)はず
 - ▶ 処置群(実験群):実験の刺激を与えられる集団(例:アスピリンを飲む)
 - ▶ 統制群(比較群): 比較の対象となる集団(例: アスピリンを飲まない)

無作為化比較試験 (Randomized Controlled Trials: RCTs)

52 © Yuki `

RCTで何をするか:頭痛とアスピリンの例

- 処置群と統制群:アスピリンを飲むかどうか以外に差はない(無作為に 選んでいるため)
- もし結果に違いがあれば、考えられる要因はアスピリンの有無のみ
- ・ 平均的な因果関係を確かめられる

3 © Yuki

実験できないとき:調査・観察研究

- 調査・観察データを使った因果推論は難しい
 - ▶例:手術 vs 投薬
- ・なぜ難しいか?
 - ▶ 処置を受ける人と受けない人が「同じ」ではない

交絡 (confounder)

- 交絡因子 Z: 処置 D(処置を受ける確率)と結果 Y の両者に影響を与える変数

架空の例

- 「スポーツをする人ほど寿命が短い」説
 - ▶ 処置 (D): 「週に3回以上運動をするかどうか」
 - している人は1、していない人は0
 - ▶ 結果 (Y): 生存年数(何歳で死ぬか)

交絡の疑い

- 性別 (Z) が影響する?
 - ▶ 男性の方が「週に3回以上運動する」確率が高いかも
 - ▶ 男性の方が生物学的に寿命が短いかも

57

何が問題なのか?

- 仮定をおく(単なる例であり、事実とは異なる)
 - ▶ 女性の平均寿命 = 81, 男性の平均寿命 = 75
 - ▶人口の男女比は1:1
 - ▶ 運動は、男性の方が2倍しやすい
- 処置群の男女比は 2:1
- ・統制群の男女比は 1:2
- ・運動が寿命にまったく影響を与えないとすると

▶ 統制群の平均寿命:75 · $\frac{1}{3}$ + 81 · $\frac{2}{3}$ = 79

差がある!

一つの対処法:交絡をブロックする

- ブロッキング (blocking)、細分類化 (subclassification)
 - ▶ 交絡変数の値によって、分析対象をグループ分けして 分析する
- 性別が交絡なら、男性と女性を別に分析する

細分類化のイメージ

© Yuki Yana

後半のまとめ

- 平均処置効果 (ATE) の推定を目指す
- 観測したデータを使うと、セレクションバイアスのせい で効果を正しく推定できないかもしれない
 - ▶ RCT を実施する
 - ▶ ブロッキング(重回帰)などの統計的手法を利用する

次のトピック

4. データの収集・クリーニング