CS 228 : Logic in Computer Science

Krishna. S

Model Checking

➤ Year 2007 : ACM confers the Turing Award to the pioneers of Model Checking: Ed Clarke, Allen Emerson, and Joseph Sifakis

https://amturing.acm.org/award_winners/clarke_1167964

Model checking

- Model checking has evolved in last 25 years into a widely used verification and debugging technique for software and hardware.
- Model checking used (and further developed) by companies/institutes such as IBM, Intel, NASA, Cadence, Microsoft, and Siemens, and has culminated in many freely downloadable software tools that allow automated verification.

What is Model Checking?

What is Model Checking?

Model Checker as a Black Box

- Inputs to Model checker: A finite state system M, and a property P to be checked.
- Question : Does M satisfy P?
- Possible Outputs
 - Yes, M satisfies P
 - No, here is a counter example!.

What are Models?

Transition Systems

- ► States labeled with propositions
- ► Transition relation between states
- ► Action-labeled transitions to facilitate composition

What are Properties?

Example properties

- ► Can the system reach a deadlock?
- ► Can two processes ever be together in a critical section?
- ▶ On termination, does a program provide correct output?

Notations for Infinite Words

- Σ is a finite alphabet
- $ightharpoonup \Sigma^*$ set of finite words over Σ
- ▶ An infinite word is written as $\alpha = \alpha(0)\alpha(1)\alpha(2)\dots$, where $\alpha(i) \in \Sigma$
- ▶ Such words are called ω -words
- $\triangleright a^{\omega}, a^{7}.b^{\omega}$

Transition Systems

A Transition System is a tuple $(S, Act, \rightarrow, I, AP, L)$ where

- S is a set of states
- Act is a set of actions
- $s \stackrel{\alpha}{\to} s'$ in $S \times Act \times S$ is the transition relation
- ▶ $I \subseteq S$ is the set of initial states
- ► AP is the set of atomic propositions
- ▶ $L: S \rightarrow 2^{AP}$ is the labeling function

Traces of Transition Systems

- ▶ Labels of the locations represent values of all observable propositions ∈ AP
- Captures system state
- ▶ Focus on sequences $L(s_0)L(s_1)...$ of labels of locations
- Such sequences are called traces
- Assuming transition systems have no terminal states,
 - Traces are infinite words over 2^{AP}
 - Traces ∈ (2^{AP})^ω
 - Go to the example slide and define traces

Traces of Transition Systems

Given a transition system $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states,

- All maximal executions/paths are infinite
- ▶ Path $\pi = s_0 s_1 s_2 ..., trace(\pi) = L(s_0)L(s_1)...$
- ► For a set Π of paths, $Trace(Π) = \{trace(π) \mid π ∈ Π\}$
- ▶ For a location s, Traces(s) = Trace(Paths(s))
- ▶ $Traces(TS) = \bigcup_{s \in I} Traces(s)$

- - (f, q, y) (q, r)
 - $(\{p,q\}\emptyset\{r\})^{\omega}$

- $AP = \{p, q, r, t\}$
 - $\blacktriangleright \{p,q\}\emptyset \{q,r\}^{\omega}$
 - $\blacktriangleright (\{p,q\}\emptyset\{r\})^{\omega}$
 - $(\{p,q\}\emptyset\{r\})^* \{p,q\}\emptyset \{q,r\}^{\omega}$

Linear Time Properties

- ▶ Linear-time properties specify traces that a *TS* must have
- ▶ A LT property P over AP is a subset of $(2^{AP})^{\omega}$
- ► TS over AP satisfies a LT property P over AP

$$TS \models P \text{ iff } Traces(TS) \subseteq P$$

▶ $s \in S$ satisfies LT property P (denoted $s \models P$) iff $Traces(s) \subseteq P$

Specifying Traces

- ▶ Whenever *p* is true, *r* will eventually become true
 - $A_0A_1A_2\cdots \mid \forall i\geqslant 0, p\in A_i\rightarrow \exists j\geqslant i, r\in A_j$
- q is true infinitely often
 - $A_0A_1A_2\cdots \mid \forall i\geqslant 0, \exists j\geqslant i, q\in A_j$
- Whenever r is true, so is q
 - $A_0A_1\cdots \mid \forall i\geqslant 0, r\in A_i\rightarrow q\in A_i$

Syntax of Linear Temporal Logic

Given AP, a set of propositions,

Syntax of Linear Temporal Logic

Given AP, a set of propositions,

- Propositional logic formulae over AP
 - $ightharpoonup a \in AP$ (atomic propositions)
 - $\triangleright \neg \varphi, \varphi \land \psi, \varphi \lor \psi$

Syntax of Linear Temporal Logic

Given AP, a set of propositions,

- Propositional logic formulae over AP
 - $ightharpoonup a \in AP$ (atomic propositions)
 - $\neg \varphi, \varphi \land \psi, \varphi \lor \psi$
- Temporal Operators
 - $\triangleright \bigcirc \varphi \text{ (Next } \varphi \text{)}$
 - $\varphi \cup \psi \ (\varphi \text{ holds until a } \psi \text{-state is reached})$
- LTL : Logic for describing LT properties

Semantics (On the board)

LTL formulae φ over AP interpreted over words $w \in \Sigma^{\omega}$, $\Sigma = 2^{AP}$, $w \models \varphi$