Euclidean Planes

Recall that an incidence geometry is called *euclidean* if, given any line ℓ and any point p not on ℓ , there is exactly one line passing through p which is parallel to ℓ . So far we have avoided using any assumptions about the uniqueness of parallel lines, and have been able to prove a good number of interesting results. We will now specialize to the Euclidean case for a while.

Proposition 1 (Converse of the Alternate Interior Angles Theorem). In a Euclidean plane geometry, if two parallel lines are cut by a transversal, then alternate interior angles formed by the cut are congruent.

Proof. (copy angle, use AIA, use uniqueness.)	Proof.	(copy angle,	use AIA,	use uniqueness.	.)
---	--------	--------------	----------	-----------------	----

Proposition 2. If ℓ and m are parallel and m and t are parallel, then ℓ and t are parallel.

Proof. We can assume that ℓ and t are distinct (if equal, they are parallel). Suppose BWOC that ℓ and t meet at the unique point x. Since ℓ and m are parallel, x is not on m. By the Euclidean property, there is a unique line s containing x which is parallel to m. But both ℓ and t satisfy this condition, and they are distinct - a contradiction.

Corollary 3. If ℓ_1 and ℓ_2 are parallel and m is incident to ℓ_1 , then m is incident to ℓ_2 .

Proposition 4. If ℓ_1 and m are perpendicular, and if ℓ_1 and ℓ_2 are parallel, then ℓ_2 and m are perpendicular.

Proof. If $\ell_1 = \ell_2$ there's nothing to do. Otherwise m is a transversal and the result follows from the converse of the AIA theorem.

Proposition 5. If ℓ_1 and ℓ_2 are parallel, m_1 and ℓ_1 are perpendicular, and m_2 and ℓ_2 are perpendicular, then m_1 and m_2 are parallel.

Proof. ℓ_2 and m_1 are perpendicular by the converse of AIA, and then m_1 and m_2 are parallel by AIA.

Construction 6. Given 3 distinct noncollinear points A, B, and C, there is a unique circle which contains all of them. This circle is called the circumcircle of $\triangle ABC$, and its center is the circumcenter.

Proof. Let ℓ be the perpendicular bisector of \overline{AB} and let m be the perpendicular bisector of \overline{BC} . Now ℓ and m must meet, since otherwise \overline{AB} and \overline{BC} are parallel (which they aren't, as they meet at the unique point B (since A, B, and C are not collinear)). Moreover they must meet at a unique point, say O, since otherwise we can show that A = C. Recall that points X on the perpendicular bisector of \overline{AB} have the property that $\overline{AX} \equiv \overline{BX}$. So we have $\overline{AO} \equiv \overline{BO} \equiv \overline{CO}$, and thus $C_O(A)$ contains A, B, and C.

Proposition 7.

- 1. Opposite angles of a parallelogram are congruent.
- 2. Opposite sides of a parallelogram are congruent.
- 3. The diagonals of a parallelogram bisect each other.

Proof. For the angles, use AIA and converse of AIA. For the sides, construct a diagonal and use AAS. For the diagonals, use converse of AIA and ASA. \Box

Proposition 8 (Thales' Theorem). Suppose A and B are the opposite endpoints of a diameter of a circle centered at O, and that C is a point on this circle distinct from A and B. Then $\angle ACB$ is right. Moreover, $\angle CAB$ is congruent to the bisector of $\angle COB$.

Proof. Construct the point D on the intersection of $C_O(A)$ and \overrightarrow{OC} by the circle separation axiom. Now $\overline{AC} \equiv \overline{BD}$ using SAS, and similarly $\overline{CB} \equiv \overline{AD}$. Now $\triangle ABC \equiv \triangle BAD$ by SSS, so that $\angle CBA \equiv \angle DAB$. Thus \overrightarrow{BC} and \overrightarrow{AD} are parallel by AIA. Now $\triangle BAC \equiv \triangle DCA$ by SSS, so that $\angle BCA \equiv \angle DAC$. Now $\angle DAC$ and $\angle BCA$ are supplementary by the converse of AIA. So $\angle BCA$ is right.

Now let M be the point on \overline{BC} such that \overrightarrow{OM} bisects $\angle COB$. (Use crossbar.) We have $\angle OCB \equiv \angle OBC$ by Pons Asinorum, so that $\angle OMC \equiv \angle OMB$ by ASA. Thus $\angle CMO$ is right. By AIA, \overrightarrow{OM} is parallel to \overrightarrow{AC} . By the converse of AIA, $\angle OCA \equiv \angle COM$, and $\angle CAO \equiv \angle COM$ by Pons Asinorum.

Proposition 9 (Converse of Thales' Theorem). Let A, B, and C be distinct points. If $\angle ACB$ is right, then C is on the circle centered at the midpoint of A and B and passing through A.

Proof. Let M be the midpoint of A and B, and copy \overline{MC} to the other side of M at D by circle separation. Now $\overline{BC} \equiv \overline{AD}$ by SAS, and similarly $\overline{AC} \equiv \overline{BD}$. So $\triangle ABC \equiv \triangle BAD$ by SSS. Now \overline{BC} is parallel to \overline{AD} by AIA, and so $\angle CAD \equiv \angle ACB$ using the converse of AIA. Now $\triangle CAD \equiv \triangle ACB$ by SAS, so that $\overline{AB} \equiv \overline{CD}$. Thus $\overline{AM} \equiv \overline{CM}$.

(Here we used a lemma that if two segments are congruent, then their mid-segments are congruent.)

Construction 10. Given a circle $C_O(A)$ and a point B exterior to this circle, there exist two lines which are tangent to $C_O(A)$ and which pass through B.

Proof. Construct the midpoint M of \overline{BO} , and construct circle centered at M and passing through O. By the circle cut axiom, $\mathcal{C}_M(O) \cap \mathcal{C}_O(A)$ contains exactly two points, X and Y. Note that $\angle OXB$ and $\angle OYB$ are inscribed on the diameter of a circle, and thus are right; so \overrightarrow{BX} and \overrightarrow{BY} are tangent to $\mathcal{C}_O(A)$.

still have to	prove these ar	e the only two	.)

Proposition 11 (Inscribed Angle Theorem). Let A and B be distinct points on a circle centered at O. If C is a point on C such that C and O are on the same side of \overrightarrow{AB} , then $\angle ACB$ is congruent to a bisector of $\angle AOB$. In particular, any two such points form congruent angles.

Altitudes and the Orthocenter

Definition 1. Let A, B, and C be distinct noncollinear points, and let F be the foot of A on \overrightarrow{BC} . Then \overline{AF} is called an altitude of $\triangle ABC$.

Proposition 12 (Orthocenter Theorem). Let A, B, and C be distinct non-collinear points. Then the lines containing the three altitudes of $\triangle ABC$ are concurrent at a point O, called the orthocenter of $\triangle ABC$.

D ¢	
Proof.	
. , o o j .	