

Web Mining and Graph Analytics

MET CS 688 A1 On Campus

Instructor: Leila Ghaedi lghaedi@bu.edu
Teaching Assistant: Simran Khanna simransk@bu.edu

Office hours: by appointment

Course Description

The Web Mining and Graph Analytics course covers the areas of web mining, machine learning fundamentals, text mining, clustering, and graph analytics. This includes learning fundamentals of machine learning algorithms, how to evaluate algorithm performance, feature engineering, content extraction, sentiment analysis, distance metrics, fundamentals of clustering algorithms, how to evaluate clustering performance, and fundamentals of graph analysis algorithms. Laboratory Course. Prerequisites: MET CS 544, or MET CS 555 or equivalent knowledge, or instructor's consent.

Books

There is no specific book required for this course, slides and in class presence are enough.

Course References

1- Web Scraping with Python: Collecting More Data from the Modern Web By Ryan Mitchell · 2018

https://www.barnesandnoble.com/w/web-scraping-with-python-ryan-mitchell/1126320393

2- Introduction to Machine Learning with Python

By Andreas Müller C. Sarah Guido · 2016

https://www.barnesandnoble.com/w/introduction-to-machine-learning-with-python-andreas-c-m-ller/1140203548

Courseware

Course material will be posted on Blackboard.

All the adjustments and changes will be announced through the course Blackboard page: https://learn.bu.edu/ultra/courses/ 105804 1/cl/outline and students are responsible to review the material and announcements.

Class Policies

- 1) Attendance: Mandatory
- 2) Assignment Completion & Late Work 55% of final grade is coming from assignment delivery. Late submission of homework is associated with a penalty of 10% grade reduction for any single day.
- 3) Academic Conduct Code For students, the Code establishes an environment of integrity and professionalism that helps to assure each individual of receiving appropriate recognition for their work. The ethical decisions that students face in an academic environment are similar to those

Boston University Metropolitan College

they will encounter routinely in the professional world they will enter upon graduation or where they are currently employed. The Code allows faculty to conduct a fair and accurate evaluation of student performance and to maintain a supportive and just learning environment. Cheating and plagiarism will not be tolerated in any Metropolitan College course. They will result in no credit for the assignment or examination and may lead to disciplinary actions. Please take the time to review the Student Academic Conduct Code:

https://www.bu.edu/academics/policies/academic-conduct-code/

Grading Criteria

Students who might require assistive grade could do a scientific presentation in the class and this can provide up to 10% additional credit on their final grade.

	Breakdown	
Attendance	5%	
Midterm Exam	15%	
Final Exam	25%	
Assignments	55%	

Class Meetings, Lectures & Assignments

Lectures, Readings, and Assignments subject to change, and will be announced in class and on Blackboard as applicable within a reasonable time frame.

Date	Topic	Assignments Due
Session 1	Fundamentals of Machine Learning	NA
Session 2	Web Scraping and Web Crawling	2 weeks after session 2
Session 3	Review on Statistics required for Web Mining I	NA
Session 4	Review on Statistics required for Web Mining II	2 weeks after session 4
Session 5	Feature Engineering I	NA
Session 6	Feature Engineering II	2 weeks after session 6
Session 7	Language Models and Word Embedding	NA
Session 8	Sentiment Analysis and Theme Extraction	2 weeks after session 8
Session 9	Clustering I	NA
Session 10	Clustering II	2 weeks after session 10
Session 11	Graph and Search Algorithms I	NA
Session 12	Graph and Search Algorithms II	NA
Session 13	Dimensionality Reduction and Data Decomposition	NA
Session 14	Review	NA