Homework 1

Status: Final (although there might be some typos).

Please reach out to me via the CCLE forum for corrections and/or clarifications about statements found in this document.

Due date: Wednesday, April 8.

Regular exercises

Mathematical Induction

For the problems below, use induction to verify that each equation is true for every positive integer n.

1.
$$1+3+5+\cdots+(2n-1)=n^2$$
.

2.
$$1 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
.

3.
$$\frac{1}{2^2-1} + \frac{1}{3^2-1} + \dots + \frac{1}{(n+1)^2-1} = \frac{3}{4} - \frac{1}{2(n+1)} - \frac{1}{2(n+2)}$$
.

Use induction to prove the following statements:

4. $7^n - 1$ is divisible by 6, for all $n \ge 1$.

5.
$$11^n - 6$$
 is divisible by 5, for all $n \ge 1$.

Use induction to verify the following inequalities:

6.
$$\frac{1}{2n} \leq \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)},$$
 for $n=1,2,\ldots$

7.
$$2n + 1 \le 2^n$$
, for $n = 3, 4, ...$

8.
$$2^n \ge n^2$$
, for $n = 4, 5, ...$

9. Use the geometric sum formula to prove that

$$r^0+r^1+\cdots+r^n<\frac{1}{1-r}$$

for all $n \ge 0$ and 0 < r < 1.

This exercise should help you complete *Example 3* from our mathematical induction lecture.

1

10. A $2^n \times 2^n$ L-shape, $n \ge 0$, is a figure of the form

with no missing squares. Show that any $2^n \times 2^n$ L-shape can be tiled with trominoes.

Sets & functions

- 11. Let the universal set be the set $U = \{1, 2, 3, ..., 10\}$. Let $A = \{1, 4, 7, 10\}$, $B = \{1, 2, 3, 4, 5\}$, and $C = \{2, 4, 6, 8\}$. List the elements of each set.
 - a) $A \cup B C$
 - b) $\overline{A \cap B} \cup C$
 - c) $(A \cup B) (C B)$
- 12. Answer the following questions:
 - a) What is the cardinality of \emptyset ?
 - b) What is the cardinality of $\{\emptyset\}$?
 - c) What is the cardinality of $\{a, b, a, c\}$?
 - d) What is the cardinality of $\{\{a\}, \{a,b\}, \{a,c\}, a,b\}$?
- 13. Carefully show that $A \neq B$.
 - a) $A = \{1, 2\}, B = \{x \mid x^3 2x^2 x + 2 = 0\}.$

 $^{^{1}}$ The universe, or $universal\ set$, is the set of all elements under discussion for possible membership in a set.

- b) $A = \{1, 3, 5\}, B = \{n \in \mathbb{Z} \mid n > 0 \text{ and } n^2 1 \le n\}.$
- 14. Carefully show that A is not a subset of B.
 - a) $A = \{1, 2, 3\}, B = \{1, 2\}.$ b) $A = \{1, 2, 3\}, B = \emptyset.$
- 15. A television poll of 151 persons found that 68 watched Law and Disorder; 61 watched Twenty-five; 52 watched The Tenors; 16 watched both Law and Disorder and Twentyfive; 25 watched both Law and Disorder and The Tenors; 19 watched both Twentyfive and The Tenors; and 26 watched none of these shows. How many persons watched all three shows?
- 16. Let $X = \{1, 2\}, Y = \{a\}, \text{ and } Z = \{\alpha, \beta\}$. List the elements of each of the following sets.
 - a) $X \times Y \times Z$
 - b) $X \times X \times X$
 - c) $Z \times Y \times X$
- 17. Determine whether each set below is a function from $X = \{1, 2, 3, 4\}$ to $Y = \{1, 2, 3, 4\}$ $\{a,b,c,d\}$. If it is a function, find its domain and range, draw its arrow diagram, and determine if it is one-to-one, onto, or both.
 - a) $\{(1,a),(2,a),(3,c),(4,b)\}$
 - b) $\{(1,c),(2,a),(3,b),(4,c),(2,d)\}$
 - c) $\{(1,c),(2,d),(3,a),(4,b)\}$
- 18. Determine whether each function below is one-to-one, onto, or both. Prove your answers. The domain of each function is the set of all integers. The codomain of each function is also the set of all integers.
 - a) f(n) = n + 1
 - b) $f(n) = n^2 1$
 - c) $f(n) = n^3$
- 19. Write the definition of one-to-one using logical notation (i,e., use \forall , \exists , etc.).
- 20. Write the definition of *onto* using logical notation (*i,e.*, use \forall , \exists , etc.).

Miscellaneous exercises

• Use induction to prove the following identity

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2.$$

• A 3D-septomino is a three-dimensional $2 \times 2 \times 2$ cube with one $1 \times 1 \times 1$ corner cube removed. A deficient cube is a $k \times k \times k$ cube with one $1 \times 1 \times 1$ cube removed.

Prove that a $2^n \times 2^n \times 2^n$ deficient cube can be tiled by 3D-septominoes.

- Let $\mathcal{P}(X)$ denote the *power set* of X. Answer the following questions:
 - List the members of $\mathcal{P}(\{a,b\})$. Which are proper subsets of $\{a,b\}$?
 - If X has 10 members, how many members does $\mathcal{P}(X)$ have? How many proper subsets does X have?
 - If X has n members, how many members does $\mathcal{P}(X)$ have? How many proper subsets does X have?
- Let \mathbb{N} denote the set of natural numbers. Prove that the function f from $\mathbb{N} \times \mathbb{N}$ defined by $f(m,n) = 2^m 3^n$ is one-to-one but not onto.
- Use De Morgan's laws of logic to negate the definition of one-to-one.
- Use De Morgan's laws of logic to negate the definition of onto.

Click here to access a .pdf version of this assignment

Return to main course website