دانشکده مهندسی کامپیوتر طراحی سیستمهای دیجیتال مستند پروژه

بررسي الگوريتم درهمسازي skein

نگارندگان: حسن سندانی محمد صالح سعیدی مریم حکاک محمد مهدی عرفانیان علی جندقی

۸ تیر ۱۳۹۸

فهرست مطالب

٢	مه دمه	مقد	
٣	۱ توضیح الگوریتم	١.١	
٣	۱.۱.۱ مثالهایی از درهمسازی		
٣	۱ مختصری دربارهٔ الگوریتمهای درهمسازی امنیتی	۲.۱	
۴	۲ هدف الگوریتم درهمسازی skein	۲.۱	
۴	۲ نحوهٔ کلی عملکرد الگوریتم	۶.۱	

فصل ١

مقدمه

توضيحي اوليه مشتمل برتعريف الگوريتم، نحوه كلي عملكرد الگوريتم، پايه هاي رياضي، كاربردها و استانداردها

١٠١ توضيح الگوريتم

الگوریتمی که در ادامهٔ این مستند شرح و توضیح آن آمده است الگوریتم درهم سازی hash function دربه است. این الگوریتم از سری الگوریتمهای درهمسازی امنیتی یا hash function و یکی از نامزدهای نهایی مسابقه انتخاب بهترین تابع درهمسازی TSH میباشد. این مسابقه برای انتخاب بهترین الگوریتم درهمسازی برای استاندارد جدید SHA-3 برگزار شد. طبق ادعای طراحان الگوریتم این الگوریتم میتواند در 6.1 کلاک در بایت دادهها را هش کند، که به این معنیست که در پردازندهٔ دوهستهای 64 بیتی با فرکانس پردازشی 3.1 GHz میتواند با سرعت 500 مگابایت بر ثانیه دادهها را هش کند. این مقدار سرعت تقریبا دوبرابر سرعت هش کردن دادهٔ الگوریتم یادهسازی شود میتوان در پیادهسازی موازی درخت درهمسازی که میتواند به صورت اختیازی در الگوریتم پیادهسازی شود میتوان در پیادهسازی موازی الگوریتم سرعت را به بیش از این هم رساند. نکته دیگری که در مورد الگوریتم شاگر اصلی برای محاسبه هش این است که این الگوریتم پیادهسازی آسان و سادهای دارد و فقط از سه عملگر اصلی برای محاسبه هش استفاده میکند و نحوهٔ عملکرد الگوریتم به راحتی قابل به خاطرسپاری و یادگیریست.

الگوریتم درهمسازی skein برای حالتهای ورودی ۲۵۶، ۲۵۳ و ۱۰۲۴ بایتی و هرمقداری خروجی پیادهسازی شده است که این خاصیت در انعطاف الگوریتم در حالتهای مختلف بسیار حیاتیست. در پیادهسازی سختافزاری نیز این الگوریتم قوی عمل میکند،برای پیادهسازی skein-512 بر سختافزار به حدود ۲۰۰ بایت کاهش پیاده حدود ۲۰۰ بایت کاهش پیاده میکند که این الگوریتم را به یک الگوریتم مناسب برای پیادهسازیهای روی قطعات کوچک سختافزاری تبدیل میکند که این الگوریتم را به یک الگوریتم در پیادهسازی smart card استفاده کرد. [۱]

۱.۱.۱ مثالهایی از درهمسازی

- Skein-512-256("") 39ccc4554a8b31853b9de7a1fe638a24cce6b35a55f2431009e18780335d2621
- $Skein-512-512 ("") \bullet bc5b4c50925519c290cc634277ae3d6257212395cba733bbad37a4af0fa06af4 \\ 1fca7903d06564fea7a2d3730dbdb80c1f85562dfcc070334ea4d1d9e72cba7a$

۲.۱ مختصری دربارهٔ الگوریتمهای درهمسازی امنیتی

در دنیای امروز الگوریتمهای درهمسازی امنیتی تقریبا در تمامی نقاط مختلفی که با اینترنت سر و کار دارند پیدا می شوند، بزرگترین کاربرد این الگوریتمها ایجاد امضای دیجیتالی یا digital signature است که در ذخیرهٔ رمزهای عبور، اتصالات امنیتی به سرورها، مدیریت رمزنگاریها و اسکن ویروسها و بدافزارها به کار می رود، تقریبا تمامی پروتکلهای امنیتی در دنیای اینترنت امروز بدون الگوریتمهای درهمسازی امنیتی به سختی قابل پیاده سازی خواهند بود.

بزرگترین الگوریتمهای درهمسازی امنیتی فعلی الگوریتمهای خانواده SHA میباشند، الگوریتمهای خانواده SHA به اختصار نام موارد زیر اند.

- SHA-0 •
- SHA-1 •

- SHA-256 •
- SHA-512 •

تمامی موارد بالا از روی الگوریتمهای MD4 و MD5 و MD4 اقتباس شده اند. در سالهای اخیر کاستیها و مشکلات امنیتی زیادی در الگوریتمهای MD4, MD5, SHA-0, SHA-1 یافت شدند اما هنوز باگ امنیتی برای الگوریتمهای SHA-256, SHA-512 یافت نشده است اما به دلیل وابستگی زیاد صنعت و امنیت فعلی اطلاعات به الگوریتمهای درهمسازی در سال ۲۰۱۲ تصمیم بر این شد تا جایگزین مناسب و جدیدی برای الگوریتمهای SHA-256, SHA-512 انتخاب شود تا در صورتی که این الگوریتمها شکسته شدند به سرعت الگوریتمهای جدید در قالب نام SHA-256 جایگزین شوند.

۳.۱ هدف الگوریتم درهمسازی skein

هدف الگوریتم درهمسازی skein مانند دیگر الگوریتمهای درهمسازی امنیتی ایجاد یک تابع برای درهمسازی دادههای مختلف است به شکلی که ویژگیها زیر برای آنان برقرار باشند.

- قطعی بودن: به شکلی که به ازای ورودی یکسان مقدار درهمسازی با تکرار الگوریتم برابر باشد، مثلا با دادن ورودی "salam" به صورت متوالی به تابع مقدار هش تغییر نکند.
 - یک طرفه بودن: نتوان از مقدار خروحی مقدار ورودی را یافت.
- یک به یک بودن: نتوان دو ورودی پیدا کرد به شکلی که به ازای این دو ورودی مقدار خروجی مساوی شود.
- حساس بودن: با تغییر اندک در ورودی خروجی به شکل قابل ملاحظهای تفییر کند تا مقدار هش قابل حدس زدن نباشد.
- سریع بودن: الگوریتم باید بتواند هش را در مدت زمانی کوتاهی حساب کند تا به کاربردی بودن برسد.

۴.۱ نحوهٔ کلی عملکرد الگوریتم

ایدهٔ اصلی الگوریتم بر ایجاد بلوکهای زمزگذاری قابل تنظیم یا به زبان نویسندگان الگوریتم tweakable ایدهٔ اصلی الکوریتم Skein از سه قسمت اصلی زیر تشکیل فت که block cipher از سه قسمت اصلی زیر تشکیل شده است و برای درهمسازی از ایشان استفاده میکند.

Threefish •

این قسمت یک بلوک رمزگذاری قابل تنظیم است که در هسته اصلی الگوریتم پیادهسازی شده است، این بلوکها در سایزهای ۲۵۶، ۲۵۴، ۱۰۲۴ بیتی تعریف شده اند.

Unique Block Iteration (UBI) •

UBI یک حالت زنجیری ست که با استفاده از بلوک قبلی به عنوان ورودی خود سعی در ایجاد یک الگوریتم فشرده سازی مخصوص ورودی می کند که بلوک ورودی با سایز دلخواه را به یک خروحی با سایز مشخص تبدیل کند.

Optional Argument System •

این ویژگی به الگوریتم اجازه میدهد تا از تعدادی ویژگی اختیاری بدون تحمیل هزینه بیش از حد اجرایی استفاده کند. [۲]

كتابنامه

http://www.skein-hash.info/about	[١]
The Skein Hash Function Family Version 1.3 — 1 Oct 2010	[٢]
http://www.skein-hash.info/sites/default/files/skein1.3.pdf	