Probability Questions

G V V Sharma*

- 1. There are 30 questions in a certain multiple choice examination paper. Each question has 4 options and exactly one is to be marked by the candidate. Three candidates A,B,C mark each of the 30 questions at random independently. The probability that all the 30 answers of the three students match each other perfectly is?
- 2. Consider a Markov Chain with state space {0,1,2,3,4} and transition matrix

	0	1	2	3	4
0	\int_{0}^{1}	0	0	0	0)
1	1/3	1/3	1/3	0	0 0 0 1/3 1
$P = \frac{1}{2}$	0	1/3	1/3	1/3	0
3	0	0	1/3	1/3	1/3
4	$\left(\begin{array}{c}0\end{array}\right)$	0	0	0	$_{1}$

- 3. Consider the function f(x) defined as $f(x) = ce^{-x^4}$, $x \in \mathbb{R}$. For what value of c is f a probability density function?
 - a) $\frac{2}{\Gamma(\frac{1}{4})}$
 - b) $\frac{4}{\Gamma(\frac{1}{4})}$
 - c) $\frac{3}{\Gamma(\frac{1}{3})}$
 - d) $\frac{1}{4\Gamma(4)}$
- 4. A random sample of size 7 is drawn from a distribution with p.d.f.

$$f_{\theta}(x) = \begin{cases} \frac{1+x^2}{3\theta(1+\theta^2)}, & -2\theta \le x \le \theta, \theta > 0\\ 0, & otherwise \end{cases}$$

and the observations are 12, -54, 26, -2, 24, 17, -39. What is the maximum likelihood estimation of θ .

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

- a) 12
- b) 24
- c) 26
- d) 27
- 5. Let X_1, X_2, X_3, X_4, X_5 be i.i.d random variables having a continuous distribution function. Then $P(X_1 > X_2 > X_3 > X_4 > X_5 | X_1 = \max(X_1, X_2, X_3, X_4, X_5))$ equals
 - a) $\frac{1}{4}$
 - b) $\frac{1}{5}$
 - c) $\frac{1}{4!}$
 - d) $\frac{1}{5!}$
- 6. Suppose (X,Y) follows bivariate normal distribution with means $\mu 1, \mu 2$, standard deviations $\sigma 1, \sigma 2$ and correlation coefficient ρ , where all parameters are un-known. Then, testing Ho: $\sigma 1 = \sigma 2$ is equivalent to testing the independence of
 - a) X and Y
 - b) X and X-Y
 - c) X+Y and Y
 - d) X+Y and X-Y