

"IMPROVING LEAD CONVERSION WITH LOGISTIC REGRESSION"

By:-NEHA SHAHID NEHA VERMA NEETIKA JAMNAL

Problem Statement

X Education is facing challenges with lead conversion, achieving only a 30% conversion rate. The goal is to improve this conversion rate to around 80% by prioritizing high-quality leads using a data-driven model. The objective of this analysis is to build a lead scoring model using logistic regression to predict the likelihood of a lead converting into a paying customer.

Goal: Improve X Education's lead conversion rate to around 80% by identifying "Hot Leads."

Solution: Build a Lead Scoring Model to prioritize leads most likely to convert.

Analysis Approach

- Data Cleaning: Handled missing values, removed irrelevant columns.
- Exploratory Data Analysis (EDA): Identified correlations between key features and conversion.
- Feature Engineering: Created dummy variables for categorical features like Lead Source, Last Activity.
- Model Building: Built a logistic regression model to predict lead conversion.
- Model Evaluation: Evaluated model accuracy, precision, recall, and ROC-AUC score.

Data Overview

- Dataset contains around 9240 data points.
- •Features include: Lead Source, Total Time Spent on Website, Last Activity, and more.
- Target variable: Converted (1 for converted, 0 for non-converted).
- •Cleaned Data: Removed columns with >30% missing values, handled missing data (imputation/removal), and standardized text (e.g., lowercase).
- •Filtered Irrelevant Categories: Replaced placeholders like "Select" with NaN for accurate processing.
- •Ready for Modeling: Proceed with encoding categorical variables, feature scaling, and model evaluation.

Exploratory Data Analysis (EDA)

Univariate Analysis

Total time spent on website analysis: it was found that above
4000 minutes was spent by
customers on website.

Lead Source Analysis: "Google" contributes the most among all lead sources, indicating its strong influence on conversions.

Last Activity Analysis: "Email Opened" has the highest contribution among all activities.

Bivariate Analysis

The graph shows that "Landing Page Submission", "Direct Traffic" and "Google contribute the most to lead conversions.

Correlation Analysis

Key Insights:

- •Found strong positive correlations between Total Time Spent on Website and lead conversion.
- Lead Source, Last Activity, and Lead Quality significantly impact conversion.
- Visualized relationships between features and target variable.
- •Insights regarding "Total Visits":
- •Converted: The correlation between Total Visits and Converted is 0.03, which is very weak.
- •Total Time Spent on Website: The correlation is 0.22, indicating a mild positive relationship.
- Page Views Per Visit: The correlation is 0.51, showing a moderately strong positive relationship.

Model Building

- Feature Selection using RFE (Recursive Feature Elimination)
- •RFE identifies the most important features for the model by recursively fitting a model and eliminating the least significant features.
- Building the Logistic Regression Model
- •RFE Selected 15 Variables: Features were refined using Recursive Feature Elimination.
- •Dropped High VIF Columns: Removed variables with VIF > 5 to address multicollinearity.
- •Dropped Insignificant Variables: Excluded features with p-value > 0.05 for statistical significance.

•

Model Evaluation

- Precision: High precision indicating the model correctly identifies the leads most likely to convert.
- •Recall: High recall ensuring the model captures most converted leads.
- •ROC-AUC: The model performed well with an ROC-AUC score above 0.8.
- Confusion Matrix: Visual showing the true positives, false positives, etc.
- Performance Metrics Table (Accuracy, Precision, Recall, F1 Score).

Model Evaluation

ROC CURVE

The area under ROC curve is 0.86

Precision is 78%, Recall is 64%

-

Model Evaluation

- •Accuracy :- 79%
- •Precision:- 78%
- •Recall:- 64%
- •ROC-AUC:- 0.86
- •Sensitivity:- 82%
- •Specificity:-78%
- Conclusion: Model performs well in identifying high-potential leads
- •Graph depict an optimal cut-off of 0.35 basis on accuracy, sensitivity, specificity

Business Insights

- •Lead Source: Strengthen marketing on channels with high-quality leads (e.g., Google Search, Referrals).
- Last Activity: Focus on leads who have recently engaged (opened emails, visited key pages).
- Lead Quality: Prioritize "Hot" leads that are more likely to convert.

Sales Strategy Suggestion

1)Aggressive Conversion Phase

- Objective: Maximize lead conversion during intern phase (2 months).
- Strategy: Focus on High-Priority Leads (Hot Leads).

Interns handle Medium-Priority Leads with automated follow-ups.

Use multichannel outreach (phone, email, SMS) for Hot Leads.

2)Minimizing Useless Phone Calls

- •Objective: Minimize outreach during downtime to focus on high-potential leads.
- Strategy: Raise the lead score threshold to only target the highest potential leads.

Use activity-based filtering to prioritize leads with recent engagement.

Automate follow-ups for low-priority leads using CRM.