Prüfung Theoretische Behandlung von Makromolekülen 09.02.2024

Hinweise zur Prüfung:

- 1. Es sind keine Hilfsmittel wie Taschenrechner, Formelsammlungen erlaubt. Alle Gegenstände außer einem Stift sind zu entfernen.
- 2. Bitte schreiben Sie ihre Antworten mit einem dokumentenechten Stift und nicht mit Bleistift.
- 3. Bitte schreiben Sie leserlich. Unleserliche Antworten werden nicht korrigiert.
- 4. Bitte schreiben Sie Ihre Antworten in den dafür vorgesehen Platz unter der jeweiligen Frage.
- 5. Es werden nur die Antworten, welche im Prüfungsbogen stehen korrigiert.
- 6. Für die Klausur stehen Ihnen 90 Minuten als Bearbeitungszeit zur Verfügung.
- 7. Bitte entfernen Sie nicht die Klammer, da sonst einzelne Blätter verloren gehen können.
- 8. Bitte schreiben Sie auf jedes Blatt des Prüfungsbogens Ihre Matrikelnummer und Ihren Namen in die dafür vorgesehenen Felder
- 9. Viel Erfolg!

Name:	
Matrikelnummer:	
Studienkennzahl:	

1.	Welche Informationen findet man in der Protein Data Bank (PDB), der Swiss-Prot und der SCOP Datenbank?
2.	Worum handelt es sich bei BLOSUM62? Welche Information steckt darin? Wo würde man besonders hohe Werte erwarten? Wie wurde BLOSUM62 generiert?

3. Wie funktioniert Dynamische Programmierung zum Sequenzalignment?

4. Wie funktioniert der BLAST Algorithmus? Wie geht man mit sogenannten "Low Complexity Regions" (LCRs) um?

5.	Worauf beruht die ab-initio Vorhersage von Genen bei Prokaryoten?
	Warum ist die Genvorhersage für Eukaryoten so viel schwieriger als
	für Prokaryoten?

6. Was unterscheidet die eukaryotische RNA Polymerase II von prokaryotische RNA Polymerase? Was versteht man unter Phylogenetic Footprinting zur Erkennung von Promoter- und Regulatorischen Regionen?

7. Beschreiben Sie die zwei klassischen Sekundärstrukturelemente von Proteinen. Welche dreidimensionalen Strukturen bilden sich? Welche molekularen Wechselwirkungen stabilisieren sie jeweils?

8. Wie funktioniert die Chou-Fasman Methode zur Vorhersage von Protein-Sekundärstrukturen? Woran scheitert die ab initio Sekundärstrukturvorhersage letztendlich?

9. Angenommen beide Sekundärstrukturelemente treten auf der Oberfläche eines globulären, löslichen Proteins auf: Welche Eigenschaften würde man für die auftretenden Aminosäuren erwarten? Was verändert sich im Fall von Membranproteinen?

10. Beschreiben Sie wie AlphaFold die Strukturvorhersage verbessert hat.