

Meet the Team

Davis Gao
Quote: "I rear-ended a car"

Hailey Jun
Quote: "I hate potholes"

Katherine Bui Quote: "I don't have a car"

Table of Contents

- 1. Executive Summary
- 2. About the Data
- 3. Preliminary Analysis
- 4. Hypotheses
- 5. Key Takeaways
- 6. Appendix

Executive Summary

Q: What vehicle body types are associated with the lowest frequency and severity of traffic accidents, and which hours of the day are the most dangerous for driving in the US?

Why is it Interesting?

- Curiosity about the factors that affect accidents on the road, as this can affect ourselves, our families, and our friends.
- To give ourselves a better decision-making process before going on the road by determining the variables that highly correlate with these accidents

Overview

Analysis

Hypothesis

About our Data

Initial Data

US Traffic Accidents

259K Car Accidents Data 2016 - 2020 15 Files, 1270 Columns

Each Year has 3 Files; acc, veh, pers

Data 1 - veh_20.csv

Information on Vehicle Involved in Accidents

2020

167 Columns

94,700 + Rows

Data 2 - pers_20.csv

Information on Persons Involved in Accidents

2020

104 Columns

132,000 + Rows

Overview

Analysis

Hypothesis

About our Data

1. Data Cleaning Process

2. Data Cleaning Process

Removed unnecessary column in Microsoft Excel

- 61 columns from veh 20
- 20 columns from pers_20

Filtered out all person except drivers

- 94,700 rows in veh_20
- 94,500 rows in pers_20

Cleaned rows with inapplicable data points (ex. Unknown or n/a)

Imported dataset into R

Assigned a new primary key to each row in both datasets

Removed uncommon vehicle body types (ex. Off-road vehicles, school buses)

Further narrowed down the range of body types to 9 categories

About our Data

1. Data Cleaning Process

Removed unnecessary column in Microsoft Excel

- 61 columns from veh 20
- 20 columns from pers_20

Filtered out all person except drivers

- 94,700 rows in veh_20
- 94,500 rows in pers_20

Cleaned rows with inapplicable data points (ex. Unknown or n/a)

Imported dataset into R

Assigned a new primary key to each row in both datasets

2. Data Cleaning Process

Removed uncommon vehicle body types (ex. Off-road vehicles, school buses)

Further narrowed down the range of body types to 9 categories

Merged Dataset of 80 Variables and 58,431 Rows

Overview

Analysis

Hypothesis

Hypotheses

SUVs and minivans Reckless drivers More severe car are less likely to be are more likely to accidents occur past involved in serious midnight drive coupes or car accidents (12:00 am - 3:59 am) convertibles

Preliminary Analysis

Overview

Analysis

Hypothesis

Preliminary Analysis

Overview

Analysis

Hypothesis

Correlations

- Positive correlations throughout the IV's
- Indicates as values increase so does the severity of the accident
- Can be used to predict our DV's

Hypotheses

SUVs and minivans Reckless drivers More severe car are less likely to be are more likely to accidents occur past involved in serious midnight drive coupes or car accidents (12:00 am - 3:59 am) convertibles

Hypothesis 1 - Variables Used

Dependent Variable

Vehicle Body Type

Independent Variables

Drugs

Alcohol

Speeding

Overview

Analysis

Hypothesis

Hypothesis 1 - Downsampling

Hypothesis 1 - Downsampling

Hypothesis 1 - Downsampling

LOGIT

- DV has 9 categories
- GLM not best suited to be the model

```
Call:
glm(formula = VPICBODYCLASS ~ DRUGS + SPEEDREL + V_ALCH_IM, data = h1data_train)
Deviance Residuals:
   Min
             10 Median
                               3Q
-4.1257 -1.9963
                 0.0037 2.0037 4.0915
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.82062
                       0.56822
                                 8.484
            0.10424
                       0.48782
                                 0.214
                                         0.831
DRUGS
SPEEDREL
            0.11300
                       0.23681
                                0.477
                                         0.633
V_ALCH_IM
            0.08783
                      0.28706 0.306
                                         0.760
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 6.701509)
   Null deviance: 15047 on 2248 degrees of freedom
Residual deviance: 15045 on 2245 degrees of freedom
AIC: 10667
Number of Fisher Scoring iterations: 2
```

Multinomial Logistic Regression

vs.

Ordinal Logistic Regression

Overview

Analysis

Hypothesis

Multinomial Logistic Regression

AIC:

9,885

Residual Deviance:

9,821

McFadden

6.17e-03

Overview

Analysis

Hypothesis

Hypothesis 1 - Prediction

IV Prediction Set:

Drug - "Yes"

Alcohol - "Yes"

Speeding - "Yes"

Top Values

Coupes - 23.19%

Pickups - 17.75%

Hatchbacks - 17.73%

Convertibles - 12.69%

Analysis

Hypothesis Values

Coupes - 23.19%

Convertibles - 12.69%

Overview

Hypothesis

Hypothesis 1 - Prediction

Top Values

Coupes - 23.19%

Pickups - 17.75%

Hatchbacks - 17.73%

Convertibles - 12.69%

Hypothesis Values

Coupes - 23.19%

Convertibles - 12.69%

Hypothesis 1 - Variables Added

Hypothesis 1 - Variables Added

Hypothesis 1 - Prediction

IV Prediction Set:

Drug - "Yes"

Alcohol - "Yes"

Speeding - "Yes"

Age - 67

Sex - Male

Area - Rural

Overview

Analysis

Hypothesis

Hypothesis 1 - Prediction

IV Prediction Set:

Drug - "Yes"

Alcohol - "Yes"

Speeding - "Yes"

Age - 67

Sex - Male

Area - Rural

Top Predicted Value

Pickups- 28.97%

Hypotheses

Reckless drivers are more likely to drive coupes or convertibles

SUVs and minivans are less likely to be involved in serious car accidents

More severe car accidents occur past midnight (12:00 am - 3:59 am)

Level of Accidents Severity for Hypothesis 2 & 3

Level 0	No injury, no rollover, not towed, no damage, not ejected, airbag not deployed
Level 1	Possible injury, rollover (tripped), towed (not due to disabling damage), minor damage, airbag not deployed, or any combination of these factors
Level 2	Suspected minor injury, rollover (untripped), towed (due to disabling damage), functional damage, partially ejected, airbag deployed (any type), or any combination of these factors
Level 3	Suspected serious injury, rollover (unknown type), towed (unknown reason), disabling damage, totally ejected, airbag deployed (any type), or any combination of these factors
Level 4	Fatal injury, injured (severity unknown), airbag deployed (any type), or any combination of these factors

Variables	Туре	Description	Class
VPICBODYCLASS	DV	Body type of vehicles	integer
MXVSEV_IM	IV	The severity of injury	integer
ROLLOVER	IV	Whether or not the vehicle rolled over	integer
TOWED	IV	Whether or not the vehicle was towed	integer
DEFORMED	IV	The condition of the car involved in the accident	integer
AIR_BAG	IV	Whether or not the airbag deployed	integer
EJECT_IM	IV	Whether or not the driver was ejected from the vehicle	integer

Modelling Approach

CART

- ✓ Categorical variables
- Easier to interpret
- ✓ Visualize interactions

Hypothesis 2 - Modelling Analysis

Severity Level 0

Overview **Analysis** Hypothesis

Hypothesis 2 - Modelling Analysis

Severity Level 4

Overview

Analysis

Hypothesis

Hypothesis 2 - Conclusion

Severity Level 4

Most Least Involved Involved

Convertible Wagon Hatchback Coupe Sedan Pickup Van SUV Truck

Hypotheses

SUVs and minivans Reckless drivers More severe car are less likely to be are more likely to accidents occur past involved in serious midnight drive coupes or car accidents (12:00 am - 3:59 am) convertibles

Variables	Туре	Description	Class
HOUR	DV	The time range of the accident occured	integer
MXVSEV_IM	IV	The severity of injury	integer
ROLLOVER	IV	Whether or not the vehicle rolled over	integer
TOWED	IV	Whether or not the vehicle was towed	integer
DEFORMED	IV	The condition of the car involved in the accident	integer
AIR_BAG	IV	Whether or not the airbag deployed	integer
EJECT_IM	IV	Whether or not the driver was ejected from the vehicle	integer

Modelling Approaches

- 1. Ordered Logistic Regression Model
- 2. Multinomial Logistic Regression Model

Reason: <u>HOUR</u> is a categorical response variable with more than two categories

Hypothesis 3 - Downsampling

Before

Overview Analysis

Hypothesis

Hypothesis 3 - Downsampling

Before

Hypothesis 3 - Downsampling

After

Ordered Logistic Regression Model

Coefficients: Value Std. Error t value Severity_Score1 -0.02421 0.09068 -0.267 Severity_Score2 -0.42542 0.11049 -3.850 Severity_Score3 -0.29803 0.08821 -3.379 Severity_Score4 -0.64074 0.15647 -4.095 Intercepts: Value Std. Error t value 1|2 -1.8427 0.0882 -20.8854-0.9192 0.0869 -10.5810-0.2214 0.0865 -2.5593415 0.4740 0.0866 5.4704 1.3899 0.0878 15.8381 Residual Deviance: 49834.78 AIC: 49852.78

Multinomial Logistic Regression Model

Co	oefficients:	fficients: Intercept) Severity_Score1 Severity_Score2 Severity_Score3 Severity_Score4					
	(Intercept)	Severity_Score1	Severity_Score2	Severity_Score3	Severity_Score4		
2	1.0200536	-0.4902999	-0.9356488	-1.161990	-1.858341		
3	1.3158935	-0.5358340	-1.4806961	-1.553073	-2.441939		
4	1.2399030	-0.4402939	-1.5248840	-1.470687	-2.599376		
5	1.2659108	-0.4676819	-1.5508712	-1.501663	-2.351000		
6	0.8010263	-0.3329187	-1.0043195	-0.904138	-1.193017		
St	d. Errors:						
	(Intercept)	Severity_Score1	Severity_Score2	Severity_Score3	Severity_Score4		
-							
2	0.2487118	0.2583528	0.2778682	0.2511365	0.3265294		
3		0.2583528 0.2492926	0.2778682 0.2740318	0.2511365 0.2427678	0.3265294 0.3359212		
-	0.2487118						
3	0.2487118 0.2401236	0.2492926	0.2740318	0.2427678	0.3359212		
3	0.2487118 0.2401236 0.2421202	0.2492926 0.2511619	0.2740318 0.2779585	0.2427678 0.2447335	0.3359212 0.3532162		
3 4 5	0.2487118 0.2401236 0.2421202 0.2414216	0.2492926 0.2511619 0.2504924	0.2740318 0.2779585 0.2773498	0.2427678 0.2447335 0.2440496	0.3359212 0.3532162 0.3343590		
3 4 5 6	0.2487118 0.2401236 0.2421202 0.2414216 0.2566549	0.2492926 0.2511619 0.2504924	0.2740318 0.2779585 0.2773498	0.2427678 0.2447335 0.2440496	0.3359212 0.3532162 0.3343590		

llh	llhNull	G2	McFadden	r2ML	r2CU
-2.475219e+04	-2.496279e+04	4.212111e+02	8.436779e-03	2.978090e-02	3.063178e-02

Modelling Approach

Ordered Logistic Regression Model

Multinomial Logistic Regression Model

P-value Matrix for Multinomial Logistic Regression Model

	(Intercept)	Severity_Score1	Severity_Score2	Severity_Score3	Severity_Score4
2	4.107513e-05	0.05772344	7.592478e-04	3.711356e-06	1.261574e-08
3	4.251651e-08	0.03160127	6.539928e-08	1.580867e-10	3.610445e-13
4	3.038827e-07	0.07959722	4.111071e-08	1.862798e-09	1.849632e-13
5	1.574998e-07	0.06189453	2.247906e-08	7.597909e-10	2.045253e-12
6	1.802226e-03	0.21111016	5.167233e-04	4.804012e-04	1.541432e-04

Interpretation

Regarding Severity Level 4, there is highest probabilities in HOUR category 1 (12:00am-3:59am)

12:00am-3:59am is the most dangerous hour

Key Takeaway

SUVs and minivans Reckless drivers More severe car are less likely to be accidents occur past are more likely to involved in serious midnight drive coupes or car accidents (12:00 am - 7:59 am) conver' bles

Appendix - Summary Statistics

H1

Statistic	N	Mean	St. Dev.	Min	Max
VPICBODYCLASS	58,293	5.892	2.072	1	9
DRUGS	58,293	0.013	0.113	0	1
SPEEDREL	58,293	0.057	0.232	0	1
V_ALCH_IM	58,293	1.962	0.191	1	2
AGE_IM	58,293	40.134	17.457	8	99
URBANICITY	58,293	1.253	0.435	1	2
VPICMAKE	58,293	594.756	3,279.607	441	99,999

H2

Statistic	N	Mean	St. Dev.	Min	Max
VPICBODYCLASS	58,293	5.892	2.072	1	9
MXVSEV_IM	58,293	0.596	0.981	0	5
ROLLOVER	58,293	0.095	0.779	0	9
TOWED	58,293	3.665	1.447	2	5
DEFORMED	58,293	4.148	1.845	0	6
EJECT_IM	58,293	0.006	0.097	0	3
AIR_BAG	58,293	16.360	6.398	1	20

H3

Statistic	N	Mean	St. Dev.	Min	Max
HOUR	58,293		1.279	1	6
MXVSEV_IM ROLLOVER	58,293 58,293		0.981 0.779	0	5 9
TOWED	58,293	3.665	1.447	2	5
DEFORMED EJECT_IM	58,293 58,293		1.845 0.097	0	6 3
AIR_BAG		16.360	6.398	1	20

Appendix - VPICBODYCLASS

1	Convertible
2	Van
3	Coupe
4	Hatchback
5	suv
6	Truck
7	Sedan
8	Wagon
9	Pickup

Original Multinom

```
Coefficients:
  (Intercept)
                   DRUGS
                             SPEEDREL
                                       V ALCH IM
2 -3.2711944
                0.4156899 -0.78058004 1.66687994
   1.2858742
               0.1317961 -0.14221620 -0.67242064
  -1.0590018
               0.4935900 -0.83192816 0.54506942
  -0.1542064
               0.6513828 -0.23317042 0.07038061
6 -26.6672329 -11.1929944 -1.02535533 13.38181124
               0.4391444 -0.59836074 -0.06242951
   0.1224945
               0.3211321 -0.06349786 0.51506829
8 -1.0148930
   0.6624659
               0.1080505 -0.08770694 -0.34726239
Std. Errors:
  (Intercept)
                    DRUGS SPEEDREL V_ALCH_IM
2 1.59714314 9.736429e-01 0.4123049 0.80090376
3 0.82488191 7.910670e-01 0.3346977 0.41773570
4 1.09142478 8.770114e-01 0.4132766 0.54944387
5 0.94424441 7.943370e-01 0.3457750 0.47622003
6 0.01839329 3.408904e-05 0.4490299 0.03678599
  0.93188756 8.243042e-01 0.3797287 0.47048935
8 1.04998807 8.780974e-01 0.3346570 0.52848127
9 0.86912815 8.238488e-01 0.3326560 0.43936986
Residual Deviance: 9821.129
AIC: 9885.129
```

11h 11hNu11 G2 McFadden r2ML r2CU -4.910565e+03 -4.941396e+03 6.166333e+01 6.239464e-03 2.704565e-02 2.738377e-02

Original POLR

```
Call:
polr(formula = VPICBODYCLASS ~ DRUGS + SPEEDREL + V_ALCH_IM,
    data = h1data_train, Hess = TRUE)
Coefficients:
            Value Std. Error t value
                      0.3471 0.03626
           0.01259
DRUGS
SPEEDREL 0.04121
                      0.1650 0.24982
V ALCH IM -0.05459
                      0.2172 - 0.25135
Intercepts:
    Value Std. Error t value
1|2 -2.1659 0.4350
                       -4.9794
2|3 -1.3441 0.4325
                       -3.1077
3|4 -0.7933 0.4319
                       -1.8367
4|5 -0.3291 0.4320
                       -0.7617
5|6 0.1137 0.4322
                       0.2631
6|7 0.5914 0.4325
                       1.3676
7|8 1.1422 0.4330
                        2.6378
8|9 1.9788 0.4350
                        4.5484
Residual Deviance: 9882.619
AIC: 9904.619
```

New Multinom

```
Call:
multinom(formula = VPICBODYCLASS ~ DRUGS + SPEEDREL + V_ALCH_IM +
    AGE_IM + SPEEDREL * URBANICITY + SEX_IM, data = h1data_train)
Coefficients:
   (Intercept)
                     DRUGS
                              SPEEDREL
                                          V_ALCH_IM
                                                          AGE_IM URBANICITY
                                                                                 SEX_IM SPEEDREL:URBANICITY
2 -3.53700848
                0.40475749 -1.95372265 1.698261674 0.001919356 0.3142271 -0.18971852
                                                                                                 0.8728274
  2.33234302
                0.02600161 -0.59083277 -0.674773065 -0.029095153 0.1881404 -0.09478349
                                                                                                 0.1819558
4 -1.87879464
                0.40612127 -2.44779273 0.427860187 -0.008372396 0.4913267 0.54520238
                                                                                                 1.1397601
5 -0.34587962
                0.62961857 1.39872589 -0.004642867 -0.014277072 0.1386783 0.52037422
                                                                                                -1.4913746
6 -20.86044690 -10.96837883 -0.15876324 11.566936610 0.002264696 0.4526000 -2.37296163
                                                                                                -0.8173415
7 -0.02984737
                0.37669166 -0.08336706 -0.147547738 -0.018817600 0.3037064 0.48962496
                                                                                                -0.4927594
8 -1.94440642 0.35661774 -0.32293474 0.433030619 0.005894621 0.1208203 0.47130707
                                                                                                 0.2857494
9 1.29814961
               -0.09184923 0.27332866 -0.135757315 -0.002064988 0.9829408 -1.80593897
                                                                                                -0.3643118
Std. Errors:
  (Intercept)
                    DRUGS SPEEDREL V ALCH IM
                                                  AGE IM URBANICITY
                                                                       SEX IM SPEEDREL: URBANICITY
2 1.65287144 9.839063e-01 1.277680 0.8054780 0.005052536 0.2261144 0.1856034
                                                                                       0.9026108
3 0.93563473 7.987529e-01 1.034960 0.4251861 0.005591701 0.2345863 0.1879279
                                                                                       0.8008584
4 1.16622326 8.858760e-01 1.336379 0.5525486 0.005179493 0.2226376 0.1828333
                                                                                       0.9024754
5 1.03635990 8.021605e-01 1.357764 0.4819224 0.005273900 0.2336154 0.1826283
                                                                                       1.1972375
6 0.09735865 4.511538e-05 1.511521 0.1947538 0.005153486 0.2273268 0.2966586
                                                                                       1.2450480
7 1.02390189 8.309716e-01 1.221546 0.4755982 0.005352320 0.2285026 0.1832291
                                                                                       0.9838067
8 1.13214856 8.873650e-01 1.036081 0.5338116 0.005017945 0.2323885 0.1811168
                                                                                       0.7995966
9 0.98829438 8.367974e-01 1.026242 0.4486105 0.005207828 0.2196749 0.2522421
                                                                                       0.7791805
Residual Deviance: 9383.609
AIC: 9511.609
```

Confusion Matrix

			ict						
	1	2	3	4	5	6	7	8	9
1	2	1	23	24	16	34	3	0	12
2	0	2	8	30	2	44	3	0	11
3	0	0	22	13	12	28	6	0	19
4	1	1	9	34	11	28	17	1	8
5	1	4	21	22	9	24	12	3	10
6	2	0	2	2	2	77	0	0	28
7	1	0	16	20	14	35	8	0	9
8	2	1	15	26	9	30	5	4	11
9	1	1	14	6	1	52	2	2	35

New Variable Prediction


```
cleaned_data$HOUR[cleaned_data$HOUR %in% c(0,1,2,3)] <- 1 cleaned_data$HOUR[cleaned_data$HOUR %in% c(4,5,6,7)] <- 2 cleaned_data$HOUR[cleaned_data$HOUR %in% c(8,9,10,11)] <- 3 cleaned_data$HOUR[cleaned_data$HOUR %in% c(12,13,14,15)] <- 4 cleaned_data$HOUR[cleaned_data$HOUR %in% c(16,17,18,19)] <- 5 cleaned_data$HOUR[cleaned_data$HOUR %in% c(20,21,22,23)] <- 6
```