

Détection et diagnostic des fautes dans des systèmes à base de réseaux de capteurs sans fil

Présentation

Nom et Prénom: Hamdan Dima

Domaine : Systèmes et Réseaux

Date d'inscription : Avril 2010

Date de soutenance : Février 2013

Equipes : LCIS / CTSYS (INP Grenoble)- LASTRE / ERTR (UL)

Encadrement:

Mme AKTOUF Oum-El-Kheir - M. PARISSIS Ioannis (France)

M. EL HASSAN Bachar - M. HIJAZZI Abbas (Liban)

PLAN

- Introduction
 - Définitions, Caractéristiques et Applications
 - Motivation, Problématiques, Contexte, Travaux liés et Contributions
- Fiabilité des données capteurs
 - Spécificités des données et Méthodologie du travail
 - Méthodes de détection des fautes
- Diagnostic des réseaux de capteurs
 - Motivation, Caractéristiques et Fonctionnalités
 - Evaluation de la performance
- Approche globale de tolérance aux fautes
 - Scenario d'application et Architecture logicielle de l'approche globale
 - Scenarii des fautes et évaluation de la performance
- Conclusion et perspectives

PLAN

- Introduction
 - Définitions, Caractéristiques et Applications
 - Motivation, Problématiques, Contexte, Travaux liés et Contributions
- Fiabilité des données capteurs
 - Spécificités des données et Méthodologie du travail
 - Méthodes de détection des fautes
- Diagnostic des réseaux de capteurs
 - Motivation, Caractéristiques et Fonctionnalités
 - Evaluation de la performance
- Approche globale de tolérance aux fautes
 - Scenario d'application et Architecture logicielle de l'approche globale
 - Scenarii des fautes et évaluation de la performance
- Conclusion et perspectives

Réseau de capteurs sans fil (RCSF)

- Entités : capteurs , puits et gestionnaire de tâche
- But : surveiller un phénomène

Définitions, Caractéristiques et Applications

Motivation, Problématiques, Contexte, Travaux liés et Contributions

Nœud capteur

 Unités de base : unité de captage , unité de traitement, unité de communication et unité de contrôle d'énergie

Définitions, Caractéristiques et Applications

Motivation, Problématiques, Contexte, Travaux liés et Contributions

Caractéristiques

- Faible coût économique
- Taille limitée
- Faible capacité de calcul
- Faible capacité de stockage
- Bande Passante réduite
- Énergie limitée
- Topologie (aléatoire) dynamique
- Fautes fréquentes
- Echelle

Motivation, Problématiques, Contexte, Travaux liés et Contributions

Applications

- RCSF est flexible et facile à déployer
 - Applications militaires
 - Surveillance de catastrophes naturelles
 - Surveillance médicale
 - Applications industrielles

PLAN

- Introduction
 - Définitions, Caractéristiques et Applications
 - Motivation, Problématiques, Contexte, Travaux liés et Contributions
- Fiabilité des données capteurs
 - Spécificités des données et Méthodologie du travail
 - Méthodes de détection des fautes
- Diagnostic des réseaux de capteurs
 - Motivation, Caractéristiques et Fonctionnalités
 - Evaluation de la performance
- Approche globale de tolérance aux fautes
 - Scenario d'application et Architecture logicielle de l'approche globale
 - Scenarii des fautes et évaluation de la performance
- Conclusion et perspectives

Problème

Risque de Fautes élevé dans le réseau des capteurs sans fil (RCSF) et difficultés de maintenance

Motivation, Problématiques, Contexte, Travaux liés et Contributions

Motivation

Impact des fautes sur la performance des déploiements

Great Duck Island: 58%

Impact des fautes sur la performance des déploiements

• Great Duck Island: 58%

• RedWoods: (40%)

Impact des fautes sur la performance des déploiements

Great Duck Island: 58%

RedWoods: (40%)

Potato Field: (2%)

Impact des fautes sur la performance des déploiements

Notification au bout 45 s

Notification au bout 6 min

Solution

Système de détection et de diagnostic des fautes garantissant la fiabilité et la disponibilité du système de RCSF

Couverture des fautes

- Risque élevé des fautes
- Ressources limitées

Solution globale

- Données
- Eléments du système
- Application finale

Passage à l'échelle

- Paquets de contrôle
- Fiabilité

- Solution évolutive
 - Coût
 - Transparence

• Hétérogénéité

- Diversité des capteurs et des applications
- Capteurs propres à chaque application

Solution générale

- Application
- Capteur

Contexte

 La stratégie de conception d'un système de gestion des fautes dépend généralement de l'architecture et des fonctionnalités du système.

Stratégie

- Modèles de fautes
- Détection et diagnostic des fautes
- Mécanismes de recouvrement

Modèles de fautes

- Cause
 - Conception
 - Opérationnelle

- Type
 - « Hardware »
 - « Software »
 - Communication

- Durée
 - Transitoire
 - Permanant

- Niveau
 - Données
 - Nœud /Réseau
 - Application

Détection et diagnostic des fautes

Procédure

- Observation des symptômes
- Interprétation les symptômes
- Identifier les causes principales et/ou secondaires des fautes

Critères de performance

Motivation, Problématiques, Contexte, Travaux liés et Contributions

Travaux liés

Approche	Couverture des fautes	Echelle	Hétérogénéité
Diagnostic passif	+	+++	-
Diagnostic à base de Marquage des paquets	++	+++	-
Diagnostic actif centralisé	+++	+	+
Diagnostic actif distribué	++	+++	+
Agents mobiles	++	++	+
Diagnostic post mortem	++	++	+
Débogage à distance	+	+	+
Test par assertion	++	++	+
Test d'application	++	+++	+

Travaux liés

Limitations

- Liste prédéterminée et limitée de fautes
- Spécifique souvent au type d'application, au type de capteur ou au type de déploiement
- Problèmes de passage à l'échelle pour les approches centralisées et débogage a distance.
- Vision limitée pour les approches distribuées
- Fiabilité du système de diagnostic dépend généralement de la fiabilité du réseau
- Impact sur la fiabilité et la performance du réseau

Contributions

- Approche de détection et de classification des fautes des données capteurs dynamique et à taux de détection élevé
- Approche de diagnostic des fautes générale, flexible et à grande échelle des capteurs
- Approche globale et générale de la gestion des fautes à grande échelle des capteurs

Globale	Echelle	Générale
Données Nœud/Réseau Application	Gestion des ressources	Application Capteur

Flexible
Changements
topologiques

PLAN

- Introduction
 - Définitions, Caractéristiques et Applications
 - Motivation, Problématiques, Contexte, Travaux liés et Contributions
- Fiabilité des données capteurs
 - Motivation, Spécificités des données et Méthodologie du travail
 - Méthodes de détection des fautes
- Diagnostic des réseaux de capteurs
 - Motivation, Caractéristiques et Fonctionnalités
 - Evaluation de la performance
- Approche globale de tolérance aux fautes
 - Scenario d'application et Architecture logicielle de l'approche globale
 - Scenarii des fautes et évaluation de la performance
- Conclusion et perspectives

Contributions

- Approche de détection et de classification des fautes des données capteurs dynamique et à taux de détection élevé
- Approche de diagnostic des fautes générale, flexible et à grande échelle des capteurs
- Approche globale et générale de la gestion des fautes à grande échelle des capteurs

Globale
Données
Nœud/Réseau
Application

Echelle	
Gestion des	
ressources	

Générale
Application
Capteur

Flexible
Changements
topologiques

Méthodes de détection des fautes

PLAN

- Introduction
 - Définitions, Caractéristiques et Applications
 - Motivation, Problématiques, Contexte, Travaux liés et Contributions
- Fiabilité des données capteurs
 - Motivation, Spécificités des données et Méthodologie du travail
 - Méthodes de détection des fautes
- Diagnostic des réseaux de capteurs
 - Motivation, Caractéristiques et Fonctionnalités
 - Evaluation de la performance
- Approche globale de tolérance aux fautes
 - Scenario d'application et Architecture logicielle de l'approche globale
 - Scenarii des fautes et évaluation de la performance
- Conclusion et perspectives

Méthodes de détection des fautes

Motivation

Chlorophyll concentration, Water Lake NAMOS

Pression
Great Duck Island

Mal interprétation du monde réel Actions incorrectes et/ou coûteuses

Spécificités des données capteurs

- Le système de détection des fautes doit tenir compte les spécificités des données issues de capteurs
 - L'hétérogénéité,
 - Les propriétés spatiales,
 - Les propriétés temporelles,
 - La dynamique

Méthodologie du travail

- Choix d'une base des données pour l'expérimentation
 - Intel Berkeley Research Lab (déploiement intérieur)
 - 54 noeuds "Mica2Dot",
 - 34 jours de déploiement (2.3 million de lectures)
 - 3 types de capteurs : température, humidité et lumière.
- Analyse des données
- Application la méthode de détection des fautes
 - (+/-) Phase d'apprentissage et phase de test

PLAN

- Introduction
 - Définitions, Caractéristiques et Applications
 - Motivation, Problématiques, Contexte, Travaux liés et Contributions
- Fiabilité des données capteurs
 - Motivation, Spécificités des données et Méthodologie du travail
 - Méthodes de détection des fautes
- Diagnostic des réseaux de capteurs
 - Motivation, Caractéristiques et Fonctionnalités
 - Evaluation de la performance
- Approche globale de tolérance aux fautes
 - Scenario d'application et Architecture logicielle de l'approche globale
 - Scenarii des fautes et évaluation de la performance
- Conclusion et perspectives

Méthodes de détection des fautes

- Trois méthodes de détection des fautes :
 - A base des règles
 - Classification des fautes
 - A base d'apprentissage non supervisé
 - No connaissance a priori du phénomène étudié
 - Méthode hybride
 - Réduction des faux négatifs

Méthode à base des règles

- 5 règles simples pour détecter 4 types des fautes
 - Faute brusque
 - Faute type bruit
 - Faute de bocage
 - Valeur aberrante

Méthode à base des règles

- Faute brusque
 - Modèle pour le changement des valeurs entre deux points successifs

$$\frac{\Delta v}{\Delta t} > \Delta \max$$

Violation du modèle : Faute

Méthode à base des règles

- Faute bruit
 - Bruit est répandu et prévu dans les données issues des capteurs

$$\sigma\theta > \sigma$$
 max

Niveau élevé de bruit : Faute

- Faute de blocage
 - Stabilité minimale est prévue dans un ensemble de valeurs successives

$$\sigma \theta < \sigma \min$$

Stabilité anormale: Faute

- Valeur aberrante
 - Chaque type de capteur a un intervalle de valeurs valides.
 - Temperature (-10, 50)
 - Humidity (0-100)
 - Light (1-2000)

 Les bornes supérieure et inférieure de l'intervalle dépendent de l'application et des caractéristiques physiques du capteur.

- Apprentissage
 - Capteur confident: 31 (perte des données 26%)
 - 2 premiers jours de déploiements

Valeurs des paramètres

	Taux de variation	Ecart-type maximale prévue	Ecart–type minimale prévue	Valeur maximale prévue	Valeur minimale prévue
Température	0.15	0.4	0.003	50	-10
Humidité	0.3	0.9	0	100	0
Lumière	40	100	0	2000	1

Taux de faute / type de capteur

Taux de faute / type de faute

Echantillons défectueux dans les derniers jours du déploiement (Batterie)

Débit utile des données

$$UDR_i^t = (100 - DFR_i^t) * (100 - DLR_i^t)$$

Carte auto-organisatrice

- Réseaux de neurones
- Apprentissage non supervisée
- Carte auto-organisatrice ou SOM en anglais
- Données expérimentales pour classification

Carte auto-organisatrice

- SOM à base de corrélation spatiale
 - Regroupement les nœuds du réseau
- Apprentissage
 - Données de 5 premiers jours
 - Carte de neurones représente l'ensemble des données.

Carte auto-organisatrice

- Test
 - Neurone gagnant pour juger la classe des données

Méthode hybride

- Méthodes à base des règles et SOM
 - Un échantillon est défectueux si au moins un de deux méthodes l'identifie comme défectueux
 - Réduction le taux de faux négatifs
 - Classification des fautes
 - Respect les enjeux de la qualité des données issues de capteurs :
 - L'hétérogénéité,
 - Les propriétés spatiales,
 - Les propriétés temporelles,
 - La dynamique

PLAN

Introduction

- Définitions, Caractéristiques et Applications
- Motivation, Problématiques, Contexte, Travaux liés et Contributions
- Fiabilité des données capteurs
 - Spécificités des données et Méthodologie du travail
 - Méthodes de détection des fautes
- Diagnostic des réseaux de capteurs
 - Motivation, Caractéristiques et Fonctionnalités
 - Evaluation de la performance
- Approche globale de tolérance aux fautes
 - Scenario d'application et Architecture logicielle de l'approche globale
 - Scenarii des fautes et évaluation de la performance
- Conclusion et perspectives

PLAN

- Introduction
 - Définitions, Caractéristiques et Applications
 - Motivation, Problématiques, Contexte, Travaux liés et Contributions
- Fiabilité des données capteurs
 - Spécificités des données et Méthodologie du travail
 - Méthodes de détection des fautes
- Diagnostic des réseaux de capteurs
 - Motivation, Caractéristiques et Fonctionnalités
 - Evaluation de la performance
- Approche globale de tolérance aux fautes
 - Scenario d'application et Architecture logicielle de l'approche globale
 - Scenarii des fautes et évaluation de la performance
- Conclusion et perspectives

Motivation

- La réduction du débit de données est un problème de premier ordre dans les déploiements de RCSF
- Le diagnostic de ce problème aide l'administrateur du système, à déterminer le plus précisément et le plus précocement possible, les éléments qui doivent être réparés
- Les approches existantes sont souvent spécifiques à un contexte de déploiement
- Un outil de diagnostic qui optimise simultanément les paramètres de performance n'existe pas

Contributions

- Approche de détection et de classification des fautes des données capteurs dynamique et à taux de détection élevé
- Approche de diagnostic des fautes générale, flexible et à grande échelle des capteurs
- Approche globale et générale de la gestion des fautes à grande échelle des capteurs

Données Nœud/Réseau Application

Echelle	
Gestion des	
ressources	

Echalla

Générale	
Application	
Capteur	

Motivation

SMART

Self Monitoring

Adaptative

Ressource EfficienT

- Diagnostique les causes principales de la réduction du débit de données.
 - Défaillance des nœuds (épuisement de l'énergie)
 - Défaillance des liens (mauvaise connectivité)
- Approche convenable pour une vaste variée d'applications
 - Réaliser le compromis entre les paramètres de performance selon les exigences d'application

Caractéristiques

• Générique

- Service (paramètres ajustables)
- Couche indépendante de la pile protocolaire

Adaptatif

Support de la topologie dynamique de RCSF

Efficace

- Léger en termes de consommation des ressources
- Taux de détection et de diagnostic satisfaisants

- SMART fournit plusieurs fonctionnalités à l'application de RCSF:
 - Détection des défaillances
 - Contrôle les cycles d'activité du nœud
 - Gestion des voisins
 - Diagnostic des défaillances
 - Gestion de la notification des défaillances

- Détection des fautes
 - Détection en deux phases pour réduire le taux de fausses alertes
 - Détection locale
 - Consensus
 - Période de chaque phase doit être suffisamment longue pour éviter l'impact des défaillances transitoires

- Détection des fautes
 - Détection en deux phases pour réduire le taux de fausses alertes
 - Détection locale
 - Consensus
 - Période de chaque phase doit être suffisamment longue pour éviter l'impact des défaillances transitoires

Détection des fautes

- Protocole de 4 types des messages
- Marquage des paquets

Emetteur	Energie	Compteur
(2)	(2)	(4)

Hearbeat, Acquittement

Emetteur	Energie	Compteur	Suspect
(2)	(2)	(4)	(2)

Requête

Emetteur	Energie	Compteur	Suspect	L	Energie
(2)	(2)	(4)	(2)	(1)	(2)

Rejet

Message		Description
Heartbeat	(H)	Nœud est en en bon état
Requête	(Q)	Etat d'un nœud soupçonné?
Rejet	(R)	Nœud soupçonné est en bon état
Acquittement (A)		Ok pour le message de rejet

- Contrôle les cycles d'activité
 - Pa : Période d'activité
 - Pd : Période de détection
 - Pe : Période d'endormi
 - Pn : Période de notification
- Optimisation la gestion des ressources

Nœuds en «duty-cycle »

- Temporisateurs en fonction les exigences de l'application
 - Pa: Période d'activité
 - Pd : Période de détection
 - Pe : Période d'endormi
 - Pn : Période de notification
- Optimisation la gestion des ressources

Fonctionnal<u>ités</u>

- Temporisateurs en fonction les exigences de l'application
 - Pa: Période d'activité
 - Pd : Période de détection
 - Pe : Période d'endormi
 - Pn : Période de notification
- Optimisation la gestion des ressources

- Gestion des voisins
 - Combien de nœuds doivent surveiller un nœud donné?
 - Nœud voisin si la qualité de lien est supérieure à un certain seuil spécifique
 - Nombre minimum doit éviter les nœuds isolés.
 - Nombre maximum doit établir le compromis entre la consommation des ressources et la robustesse du service
 - Reconfiguration dynamique pour s'adapter aux changements topologiques.

- Diagnostic des défaillances
 - Epuisement d'énergie,
 - Défaillance de lien,
 - Cause inconnue.
- Notification des défaillances
 - Nœud défaillant,
 - Type de rapport,
 - Sévérité des pannes,
 - Cause estimée.

Evaluation de la performance

Fonctionnalités

- Configuration les paramètres du service
 - Compteurs des phases de détection
 - Nombre des voisins
 - Seuil minimal du niveau d'énergie
 - Seuil minimal de la qualité du lien
 - Notification des pannes
 - Temporisateurs de plan du cycle d'activité du nœud

• Enjeux de diagnostic

 la latence de détection, la consommation énergétique, la robustesse, la perte de paquets tolérable, le taux de fausses alertes, etc.

PLAN

- Introduction
 - Définitions, Caractéristiques et Applications
 - Motivation, Problématiques, Contexte, Travaux liés et Contributions
- Fiabilité des données capteurs
 - Spécificités des données et Méthodologie du travail
 - Méthodes de détection des fautes
- Diagnostic des réseaux de capteurs
 - Motivation, Caractéristiques et Fonctionnalités
 - Evaluation de la performance
- Approche globale de tolérance aux fautes
 - Scenario d'application et Architecture logicielle de l'approche globale
 - Scenarii des fautes et évaluation de la performance
- Conclusion et perspectives

- Simulateurs
 - NS2
 - OMNET++
 - TOSSIM (TinyOS)
 - SensorSim
 - UWSIM...
- TinyOS
 - Libre et open source
 - Architecture Modulaire
 - Langage NesC

- Tossim
 - Milliers de nœuds
 - Simulation des applications en remplacement des composants bas niveau par des composants logiciels

- Scenarii variés
 - Topologies différentes
 - Tailles du réseau différentes

Déploiement à base de grille

- Modèles de défaillances
 - Isolées et à base de modèles
 - Degré de sévérité différent

Déploiement aléatoire

- Modèle de consommation d'énergie
 - 70% de la dissipation d'énergie due aux transmissions radio

Energie
$$(tx/rx)$$
=Voltage*Courant (tx/rx) *Temps (tx/rx) (1)

$$Temps(tx/rx) = \frac{Taille de la trame}{Débit du canal}$$
 (2)

Consommati on Totale(n) =
$$\sum_{i=1}^{n}$$
 Energie(tx) + Energy(rx) + Energy(ois ive) (4)

EnergieRestante(n)=EnergieInitiale
$$-$$
ConsommationTotale(n) (5)

Résultats expérimentaux

Coût

- La moyenne de la consommation d'énergie s'élève à 200 (mj) pour une durée de 8 minutes.
- La consommation s'élève légèrement avec l'augmentation de la taille du réseau et varie peu avec le type de déploiement .

Coût mémoire	ROM	RAM
SMART	14 KO	1 KO
MICAZ	128 KO	4 KO

Résultats expérimentaux

Coût

 La consommation d'énergie augmente avec la diminution de la durée de la période de détection, permettant de réduire la latence de détection

Résultats expérimentaux

- Exactitude de détection
 - La moyenne de détection des défaillances isolées est toujours supérieure à 90% pour différentes tailles de réseaux, différents types de déploiement

Résultats expérimentaux

- Exactitude de détection
 - Supérieure à 90 % pour les différentes durées de défaillances isolées

Résultats expérimentaux

- Exactitude de détection
 - L'exactitude de la détection diminue avec l'augmentation du rayon pour les défaillances à base de modèles
 - Si le rayon de la zone défectueuse est inférieure à 20 m, le taux de détection est supérieur à 60%. Sinon, le taux est inférieur à 50%.

Résultats expérimentaux

- Exactitude de diagnostic
 - 95% en moyenne pour la défaillance résultante de l'épuisement de l'énergie,
 - 70% en moyenne pour la défaillance résultante des problèmes du lien,
 - 30% en moyenne pour une défaillance imprévue.

SMART

- Service approprié pour des scenarii variés de RCSF
 - Générale
 - Léger
 - Adaptatif
 - Intégration facile
 - Taux de détection et de diagnostic satisfaisants

- Pas de garantie de la fiabilité du système!
- Détermination les valeurs des paramètres!

PLAN

- Introduction
 - Définitions, Caractéristiques et Applications
 - Motivation, Problématiques, Contexte, Travaux liés et Contributions
- Fiabilité des données capteurs
 - Spécificités des données et Méthodologie du travail
 - Méthodes de détection des fautes
- Diagnostic des réseaux de capteurs
 - Motivation, Caractéristiques et Fonctionnalités
 - Evaluation de la performance
- Approche globale de tolérance aux fautes
 - Scenario d'application et Architecture logicielle de l'approche globale
 - Scenarii des fautes et évaluation de la performance
- Conclusion et perspectives

PLAN

- Introduction
 - Définitions, Caractéristiques et Applications
 - Motivation, Problématiques, Contexte, Travaux liés et Contributions
- Fiabilité des données capteurs
 - Spécificités des données et Méthodologie du travail
 - Méthodes de détection des fautes
- Diagnostic des réseaux de capteurs
 - Motivation, Caractéristiques et Fonctionnalités
 - Evaluation de la performance
- Approche globale de tolérance aux fautes
 - Scenario d'application et Architecture logicielle de l'approche globale
 - Scenarii des fautes et évaluation de la performance
- Conclusion et perspectives

Motivation

- Garantie un fonctionnement continu et fiable est un défi critique dans le RCSF
 - Divers types des fautes
 - Changements dans les conditions du déploiement

- Manque de l'outil de diagnostic à garantir la fiabilité du système dans son ensemble
 - Un diagnostic global de tous les éléments du système est impossible à cause de la forte consommation d'énergie qui serait nécessaire.

Contributions

- Approche de diagnostic des fautes générale, flexible et à grande échelle des capteurs
- Approche globale et générale de la gestion des fautes à grande échelle des capteurs

Globale	Eche
Nœud/Réseau	Gestio
Application	ressou

Echelle	
Gestion des	
ressources	

Générale
Application
Capteur

Scenarii des fautes et Evaluation de la performance

Scenario d'application

- Explosions dans une mine de charbon
 - Processus de photosynthèse => O₂
 - O₂ + Méthane + petite étincelle de feu => Explosion
- RCSF pour la prédiction d'explosions

Scenarii des fautes et Evaluation de la performance

Scenario d'application

• Six types de capteurs sont nécessaires pour fournir des nombreuses services : la détection des étincelles de feu, prédiction d'explosion, etc.

Scenario d'application

- Problèmes après le déploiement de RCSF :
 - Réelles explosions n'ont été pas détectées
 - Fausses alarmes générées poussant l'équipe de secours à intervenir inutilement à la mine
- Solution :
 - Mise en œuvre d'un outil de diagnostic
- Encore des problèmes pendant le déploiement :
 - processus de la photosynthèse pendant la nuit,
 - Génération des fausses alarmes, même dans le cas où l'outil de diagnostic montre des évaluations positives etc.
- Nécessité d'un outil complémentaire au niveau de l'application

Approche globale de tolérance aux fautes

Integrated Framework for Fault Tolerance (IFTF)

Idée de base :

 Intégration de deux outils complémentaires (test et diagnostic) dans une seule architecture logicielle

Objectifs:

- Diagnostic les pannes du réseau
- Détection les problèmes potentielles du réseau.
- Validation de l'application en ligne
- Evaluation l'impact des fautes sur la performance du système
- Identification les zones affectés du réseau.

- Système de validation des données
- Un seul « Framework»
 - Gestionnaire IFTF
 - Service du diagnostic
 - Service du test

Réseau hiérarchique

- Réseau est divisé en clusters
- Cluster possède un chef de groupe
- Chef de groupe gère son cluster
- Système de validation des données
 - Réside sur le chef de groupe
 - Réduction le taux des faux négatifs
 - Classification les fautes

- Gestionnaire IFTF
 - Interaction des deux services
 - Lancement et arrêt des services
 - Renseignement sur l'état du nœud

- Service du diagnostic (SMART)
 - Identifie les causes de réduction de débit des données
 - Approche générale
 - Léger en termes de consommation des ressources
 - Adaptatif àla topologie dynamique de RCSF

- Service du test
 - Valide le comportement de l'application en ligne
 - Changement s dans les conditions de déploiement
 - Test les fonctionnalités de l'application
 - Couche indépendante de la pile protocolaire

- Service du test
 - Test fonctionnel
 - Composant de type boîte noire
 - Lectures virtuelles
 - Evénements virtuels
 - Association entrées/ sorties

- Service du test
 - Mise en œuvre
 - Que peut-on tester?
 - Quels nœuds seront impliqués par le test ?
 - Quels sont les cas de tests ?
 - Quand faut-il déclencher le test ?

- Service du test
 - Le coût du test
 - Services à tester, le temps de déclenchement des tests, cas des tests, nœuds concernés par le test, etc.
 - Politique de dépendance entre les tests.

Service du test

6 Interfaces

- Configuration (« configure »)
- Déclenchement (« Start/Stop »)
- Réception (« Recieve »)
- Envoi (« Communicate»)
- Notification (« Report »)

4 Composants

- Capteurs virtuels
- Gestionnaire d'entrée
- Gestionnaire de communication
- Notificateur

PLAN

- Introduction
 - Définitions, Caractéristiques et Applications
 - Motivation, Problématiques, Contexte, Travaux liés et Contributions
- Fiabilité des données capteurs
 - Spécificités des données et Méthodologie du travail
 - Méthodes de détection des fautes
- Diagnostic des réseaux de capteurs
 - Motivation, Caractéristiques et Fonctionnalités
 - Evaluation de la performance
- Approche globale de tolérance aux fautes
 - Scenario d'application et Architecture logicielle de l'approche globale
 - Scenarii des fautes et évaluation de la performance
- Conclusion et perspectives

- Service de détection d'O2 (processus de photosynthèse)pendant la journée
 - Panne d'un nœud /capteur
 - Erreur de location
 - Déviation d'horloge

- Service de détection d'O2 pendant la journée
 - Panne du capteur S1

Service du diagnostic

Oui

Notification d'une faute

Déviation d'horloge

- Erreur de location

Service du test

Non

- Service de détection d'O2 pendant la journée
 - Panne du capteur S2

Service du diagnostic

Oui

Notification d'une faute

Déviation d'horloge

- Erreur de location

Service du test

Oui

- Service de détection d'O2 pendant la journée
 - Panne du capteur S2

Erreur de location (S3)

Service du diagnostic

Non

Notification d'une faute

Déviation d'horloge

Service du test

Oui

• Service de détection d'O2 pendant la journée

Notification d'une faute Panne du capteur Service du diagnostic Erreur de location Non Déviation d'horloge Service du test Oui (chef de groupe) **S1 S1** Chef de groupe

Evaluation de la performance

- Simulateur
 - TinyOS et TOSSIM
- Service de test
 - Service de détection de feu
 - Temporisateur à base de rotation
 - Lancement d'un test dans chaque cluster
- Service de diagnostic
 - SMART

Evaluation de la performance

- Coût mémoire
 - Entrées-sorties virtuelles
 - Temporisateur
 - Gestionnaires des entrées/sorties

Coût mémoire	ROM	RAM
SMART	14 KO	1 KO
MICAZ	128 KO	4 KO

Evaluation de la performance

Energie

 Surcharge de 4% en comparaison au fonctionnement du service de diagnostic uniquement

Conclusion

- Impacts catastrophiques des pannes!
- Inexistence d'une solution Parfaite!
- Combinaison les outils d'inspection des fautes dans un seul Framework IFTF pour assurer une couverture globale des fautes
- Approche orientée service pour réaliser la généralité de l'approche
- Rationalisation de la consommation des ressources par chaque sous service du Framework permettant le passage à l'échelle

Perspectives

- Optimisation de la consommation d'énergie
- Génération automatique des cas des tests
- Mécanismes de reconfiguration et recouvrement