Genetic Analysis of Virescent Mutants and the Identification of Virescents v_{12} , v_{13} , v_{14} , v_{15} and $v_{16}v_{17}$ in Upland Cotton¹

R. J. Kohel²

ABSTRACT

Nine virescent mutants of cotton (Gossypium hirsutum L.) were tested for allelism with known virescent mutants and with each other in both greenhouse and field plantings. One mutant was allelic to v_1 , two were allelic to y_1,y_2 , and one was allelic to v_{10} . One mutant gave a positive F_1 allelic test with v_2 , but segregation in the F_2 established that it was a homoeologue of v_2 . Of the remaining mutants, three were identified as simply inherited recessive mutants, and one was a duplicate factor recessive residing on the same chromosomes as v_3 and v_6 .

Additional index words: Inheritance, Linkage, Homoeology, Gossypium hirsutum L.

VIRESCENT mutants were sought for increasing the efficiency of chromosome identification and linkage analysis in Upland cotton, Gossypium hirsutum L. Virescents that are expressed in the seedling stage would not have to be grown to maturity for classification. Therefore, many of the studies could be confined to the greenhouse and would not require the time and space of field plantings. Also virescents are valuable for studies of photosynthesis and photosynthetic pigments (Benedict and Kohel, 1968, 1970; Benedict et al., 1972).

We and others previously have identified 11 virescents (Duncan and Pate, 1967; Killough and Horlacher, 1933; Kohel, 1973, 1978; Percival and Kohel, 1974, 1976; Quisenberry and Kohel, 1970; Rhyne, 1955) and a pale green mutant (Murray and Brinkerhoff, 1966) in G. hirsutum, and a virescent (Turcotte and Feaster, 1973), and two albivirescents and a light green mutant (Turcotte and Feaster, 1978) in G. barbadense L.

Research on the virescents in cotton began with v_1 (Killough and Horlacher, 1933) and yg_1yg_2 (Rhyne, 1955), which express their phenotypes from the seedling to the flowering stage. The next virescent described was v_2 , (Duncan and Pate, 1967) called golden crown because its expression is confined to the uppermost leaves of the plant. The expression of v_2 is not only less intense than v_1 , but the expression is less reliable.

Both v_1 and v_2 were found in Upland cotton, whereas yg_1yg_2 was found in interspecific hybrids between Upland and Pima, G. barbadense. Most Upland cottons are monomeric yg_1Yg_2 , a few are dimeric Yg_1Yg_2 , and Pima is monomeric Yg_1yg_2 . Therefore, most crosses of yg_1yg_2 mutants with normal segregate monogenically, whereas crosses between normal Upland and Pima usually segregate digenically.

¹ Contribution from USDA-ARS, College Station, Tex., in cooperation with the Texas Agric, Exp. Stn. Received 24 Sept. 1982

with the Texas Agric. Exp. Stn. Received 24 Sept. 1982.

² Research geneticist, USDA-ARS, Cotton Genetics Res. Lab., College Station, TX 77841.

The mutant line in G. barbadense, Sea Island Virescent, was believed to have been an allele of the Upland v_1 because of the phenotypic similarity. Allelic tests between Sea Island Virescent and a cotton homozygous for v_1v_1 gave virescent F_1 progeny and thus appeared to confirm allelism. However, Turcotte and Feaster (1973) grew F_2 progenies and found that two loci with apparent identical function were involved, and they concluded that the loci were homoeologues. The Sea Island Virescent gene was designated v_7 . The combined action of both loci when homozygous, v_1v_1 v_7v_7 , results in an extreme virescent, nearly chlorotic expression.

Among the remaining virescents, v_3 and v_9 have extreme expressions with low levels of chlorophyll in affected leaves. The virescent expression is of short duration or even lacking, but plant growth is slower than normal. Plants of the virescent v_{10} and the duplicate factor virescent v_5v_6 have expressions less pronounced than v_2 , and frequently the mutant phenotype is not expressed. The mutant plants of v_4 and v_8 are intermediate in expression but greater than v_2 . Under conditions favorable for maximum expression, these mutant plants have unique characteristics. The mutant v_4 increases the intensity of virescent expression, but the area immediately adjacent to each gossypol gland in the leaf remains green. Mutant plants of v_8 develop areas on the leaf surface area that have abnormal palisade cell development, and it was called virescent-splash-leaf (Pate and Duncan, 1963).

The objective of the studies reported in this paper were to establish segregation patterns and allelic relationships of nine new virescent mutants.

MATERIALS AND METHODS

Eight of the virescent mutants studied were obtained from researchers at other locations as follows: TA 174 was obtained from J. E. Endrizzi, TA 171, 186, 241, 296, and 297 were obtained from J. E. Quisenberry, TA 240 was obtained from B. Roark, and TA 242 was obtained from R. E. Dilbeck. The ninth, CS 212, was found in our Genetics Nursery.

TA 171 originated in a Paymaster breeding nursery; TA 241 was found in a 'Rilcott 90' cultivar background; TA 296 and 297 were segregants in F_2 's of photoperiodic G. hirsutum races T191 and 228 \times day-neutral Upland (Lubbock Dwarf), respectively; TA 240 was found in a test plot of 'Paymaster 54B'; and CS 212 was found in an F_2 of $ms_2 \times$ light brown fibers. The remaining mutants were found in plantings of unknown background.

The mutants were analyzed for allelism and inheritance at College Station, Tex. Inheritance tests were conducted using the Upland standard Texas Marker-1 (Kohel et al., 1970) as a common parent, and certain of the mutants were tested with multiple marker lines. Tests were conducted in the greenhouse in winter and in genetics nursery field plantings. Seeds were planted individually

Table 1. Tests of allelism among nine new virescent mutants and known virescents in cotton.†

	F, expression								
	TA 174	TA 240	TA 296	TA 297	TA 171	TA 186	TA 241	CS 212	TA 242
\mathbf{v}_{i}	_	v	G	G	G	G	G	G	G
V ₂		G	G	G	G	G	V	G	G
V ₃	G	G	G	G	G	G	G	G	G
\mathbf{v}_{4}	G	G	G	G	G.	G	G	G	G
V ₈	G	G	G	G	G	G	G	G	G
V ₉	G	G	G	G	G	G	G	G	G
V10	V.	G			G	G	G	G	G
V ₁₁	G	G	-		G	G	G	G	G
V_5V_6	-	G		_	G	0	G	G	G
yg ₁ yg ₂			V	v	G	0	_	G	
TA 174					G			_	_
TA 240	_				G	G		G	
TA 296				v	G	0	G	G	G
TA 297		-	v		G	0	G		G
TA 171	G	G	G	G		G	G	G	0
TA 186		G	0	0	G		G	G	0
TA 241			G	G	G	G			
CS 212	_	G	G		G	G			0
TA 242	-		G	G	0	0		0	

[†] V = virescent, G = green, - = test not made because of allelic relation established, and 0 = test not made due to results of other tests or number of genes controlling virescent differ.

in expandable peat pellets. Seedlings to be grown in the field plantings were transplanted 3 weeks after seeds were planted.

The descriptions that follow of the virescent mutant plants and their interaction with the environment are based on the observations made at College Station. From discussions with researchers at other locations, it is apparent that the degree and stability of virescent expression varies with locations and seasons.

RESULTS AND DISCUSSION

Results of the tests for allelism are presented in Table 1. Four of the nine mutants were identified as alleles of known virescents. Tests showed that TA 174 is v_{10} , TA 240 is v_1 and TA 296 and 297 are yg_1yg_2 . The latter two mutants originated from crosses with G. hirsutum race accessions T191 and 228. Because most Upland cottons have the genotype $yg_1yg_1Yg_2Yg_2$, the race stocks must have the genotype Yg_1Yg_1 yg_2yg_2 . The latter genotype has not been documented for cultivated Upland stocks but is common in Pima cotton.

TA 241 gave a positive test for allelism in the F_1 test with v_2 plants. However, because Turcotte and Feaster (1973) found that the homoeologues v_1 and v_7 give a positive F_1 allelic test, all suspect or positive F_1 tests for allelisms are verified by extending the test to the F_2 . In the F_2 of TA 241 \times v_2 lines the population segregated green plants and various levels of virescent expression. The virescent phenotypes varied from the parental phenotype to nearly chlorotic types with extremely low vigor. These results demonstrate the interaction of two independent loci that are apparent homoeologues. Neither v_2 nor the TA 241 gene were found associated with a specific chromosome location.

Five of the nine original virescents were new mutants (Table 2). Genes of the mutants TA 171, 186, 241, and CS 212 segregated as simply inherited recessive factors in backcross and F_2 populations. Because they were shown to be nonallelic (Table 1), they were assigned the gene symbols v_{12} , v_{13} , v_{14} , and v_{15} , respectively.

Genes of the virescent TA 242 segregated as a duplicate recessive (Table 2). The mutant has a weak expression, and segregation was not observed in a second F_2 population.

Table 2. Results of backcross and F₂ tests of inheritance of five new virescent mutants in cotton.

14350653, 1983, 2, Downloaded from https://acsess

s.onlinelibrary.wiley.com/doi/10.2135/cropsci1983.0011183X002300020026x by North Carolina State Universit, Wiley Online Library on [21/07/2023]. See the Terms

on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

			Vires-	Chi-			
Mutant	Year tested	Green	cent	squaret	P		
		ne	o. ——				
TA 171							
	1084		ckcross	0.00	0.05.050		
	1974	48 95	51 85	0.0 9 0.56	0.95-0.50 0.95-0.50		
	1975 1977	95	92	0.05	0.95-0.50		
	1978	45	48	0.10	0.95-0.50		
	1981	52	41	1.30	0.30-0.20		
	Total	335	317	2.10			
	Pooled			0.50	0.50-0.30		
	Heterogeneity			1.60	0.95-0.50		
			F,				
	1974	159	51	0.06	0.95-0.50		
	1975	87	22	1.35	0.30-0.20		
	1977	928	310	0.00	> 0.99		
	1980	158	37	3.78	0.10-0.05		
	1981	148	42	0.85	0.50-0.30		
	Total	1480	462	6.04	0.00.000		
	Pooled			1.52 4.52	0.30-0.20 0.50-0.30		
	Heterogeneity			4.02	0.50-0.50		
TA 186		Ba	ckcross				
	1975	48	43	0.27	0.95-0.50		
	1981	142	136	0.13	0.95-0.50		
	Total	190	179	0.40	0.00 0.00		
	Pooled	100		0.33	0.95-0.50		
	Heterogeneity			0.07	0.95-0.50		
			F ₂				
	1975	124	42	0.01	0.95-0.50		
	1981	72	22	0.13	0.95-0.50		
	Total	196	64	0.14			
	Pooled			0.02	0.95-0.50		
	Heterogeneity			0.12	0. 9 5-0.50		
TA 241		_					
			ckcross				
	1978	57	39	3.38	0.10-0.05		
			F,				
	1976	73	26	0.08	0.95-0.50		
	1977	37	12	0.01	0.95-0.50		
	Total	110	38	0.09			
	Pooled			0.04	0.95-0.50		
	Heterogeneity			0.05	0.95-0.50		
CS 212		D.	ckcross				
	1074		49	3.39	0.10.005		
	1974 1981	69 54	49	1.50	0.10-0.05 0.30-0.20		
	Total	123	91	4.89	0.30-0.20		
	Pooled	120	01	4.78	0.05-0.01		
	Heterogeneity			0.11	0.95-0.50		
	F ₂						
	1974	39	21	3.20	0.10-0.05		
	1976	17	8	0.65	0.50-0.30		
	Total	56	29	3.85			
	Pooled			3.77	0.10-0.05		
	Heterogeneity			0.08	0.95-0.50		
TA 242		-					
	Backcross						
	1980	62	_ 18	0.27	0.95-0.50		
			F ₂				
	1977	45	5	1.20	0.30-0.20		

 $[\]dagger$ Chi-square test 1:1 and 3:1 segregation in backcross and F_z , respectively except for TA 242 which was 3:1 and 15:1 in backcross and F_z , respectively.

Although the allelic test with v_5v_6 , a weakly expressed virescent with duplicate factor inheritance, did not indicate allelism, a backcross test was set up to test for linkage with Okra leaf, L^o_2 . No recombination has been observed between L^o_2 and v_5 or Laciniate leaf, L^L_1 and v_6 (Kohel, 1973,

Table 3. Backcross linkage analysis of virescent (TA 242) and Okra leaf in cotton [(Okra leaf-Green × normal leaf-virescent) × normal leaf-virescent].

		Chi-square analysis and recombination†			
Phenotype	Plants	Source	Chi-square		
Okra leaf-green	39	Okra vs. normal	=	0.80	
Okra leaf-virescent	5	Green vs. virescent	=	0.27	
Normal leaf-green	23	Linkage	=	6.67	
Normal leaf-virescent	<u>13</u>	Recombination	=	24.09%	
Total	80				

[†] Recombination calculated by formulae for duplicate factor recessive linked to single factor dominant (Allard, 1956).

unpublished). In the backcross population genes of the virescent TA 242 segregated as a duplicate factor recessive and was linked to L^o_2 with a recombination value of 24.09% (Table 3). Virescent TA 242 was not tested with L^L_1 . Therefore, TA 242 represents a second virescent duplicate pair in these two linkage groups. TA 242 is assigned the genotype $v_{16}v_{16}v_{17}v_{17}$.

REFERENCES

Allard, R.W. 1956. Formulas and tables to facilitate the calculation of recombination values in heredity. Hilgardia 24:235-278.

Benedict, C.R., and R.J. Kohel. 1968. Characteristics of a virescent cotton

mutant. Plant Physiol. 43:1611-1616.

----, and ----. 1970. Photosynthetic rate of a virescent cotton mutant lacking chloroplast grana. Plant Physiol. 45:519-521.

----, K.J. McCree, and R.J. Kohel. 1972. High photosynthetic rate of a chlorophyll mutant in cotton. Plant Physiol. 49:968-971.

Duncan, D.N., and J.B. Pate. 1967. Inheritance and uses of golden crown virescent in cotton. J. Hered. 58:237-239.

Killough, D.T., and W.R. Horlacher. 1933. The inheritance of virescent yellow and red plant characters in cotton. Genetics 18:329-334.

Kohel, R.J. 1973. Analysis of irradiation induced virescent mutants and the identification of a new virescent mutant (v_5v_5, v_6v_6) in Gossypium hirsutum L. Crop Sci. 13:86-88.

---. 1978. Linkage tests in Upland cotton, III. Crop Sci. 18:844-847.

---, T.R. Richmond, and C.F. Lewis. 1970. Texas Marker-1. Description of a genetic standard for *Gossypium hirsutum L. Crop Sci.* 10:670-671.

Murray, J.C., and L.A. Brinkerhoff. 1966. Inheritance of pale-green color mutant in cotton. Crop Sci. 6:375-376.

Pate, J.B., and E.N. Duncan. 1963. Mutations in cotton induced by gammairradiation of pollen. Crop Sci. 3:136-138.

Percival, A.E., and R.J. Kohel. 1974. Genetic analysis of virescent mutants in cotton, Gossypium hirsutum L. Crop Sci. 14:439-440.

----, and ----. 1976. New virescent cotton mutant linked with the marker gene Yellow petals. Crop Sci, 16:503-505.

Quisenberry, J.E., and R.J. Kohel. 1970. Genetics of the virescent-4 mutant in cotton. J. Hered. 61:212-214.

Rhyne, C.L. 1955. The inheritance of yellow-green, a possible mutant in cotton. Genetics 40:235-245.

Turcotte, E.L., and C.V. Feaster. 1973. The inheritance of two genes for yellow foliage in cotton. J. Hered. 64:231-232.

----, and ----. 1978. Inheritance of three genes for plant color in American Pima cotton. Crop Sci. 18:149-150.