Projet Filtrage et assemblage de reads

Allan RINGEVAL Zinara LIDAMAHASOLO

Filtrage

Organisation

- 1 classe
- 5 méthodes de classe

Conception (1)

- 5 arguments de classe :
 - o fichier de reads
 - o fichier du génome
 - o paramètres
 - o fichier de sorti pour reads du génome
 - fichier de sorti pour reads restant

Conception (2)

- Argument "paramètres": tuple(taille de kmer, probabilité de faux positif)
- Filtre de Bloom pour l'indexation

Etapes (1)

1ère méthode de classe:

- Lecture du fichier du génome de SARS-Cov2
 - modules SeqIO et Seq des packages Bio et Bio. Seq
- Indexation du génome :
 - Création table : package bitarray, initialisation à 0
 - 2 tables: 1 pour génome brin positif, 1 pour brin négatif
 - o Brin négatif: package Bio. Seq
 - Taille des tables = -(nlnp)/(ln2)**2 (n: nb items, p: taux de faux positif)
- Remplissage des tables : appelle 2ème méthode de classe

Etapes (2)

2ème méthode de classe:

- Remplissage des tables :
 - Fonctions de hachage : package mmh3
 - \circ Nombre fonctions de hachage = (m/n) * ln2 (m: taille de table, n: nb kmers)
 - Fonctionnement : change en 1 les 0

Etapes (3)

3ème méthode de classe:

- Détermine si un read est trouvé ou pas :
 - Découpe le reads en kmers
 - \circ Décalage de chaque début de kmers de n nucléotides (n = 20 pour 25-mers)
 - Décalage uniquement chez les kmers du reads
 - Appelle 4ème méthode de classe pour chercher un kmer dans les 2 tables
 - Seuil: 25%

4ème méthode de classe:

• Cherche un kmer dans les tables

Etapes (4)

5ème méthode de classe:

- Lecture du fichier fastq de reads :
 - o package gzip
 - module FastqGeneralIterator du package Bio.SeqIO.QualityIO
- Création d'un fichier fastq de sorti pour reads du génome
- Création d'un autre fichier fastq de sorti pour autres reads
- Pour chaque reads :
 - Appelle 3ème méthode pour savoir si reads est trouvé ou pas
 - Si dans brin + → fichier de sorti pour reads du génome
 - Si dans brin — Reverse complement fichier de sorti pour reads du génome
 - Si pas trouvé
 fichier de sorti pour autres reads

Assemblage

Organisation

- 1 classe
- 10 méthodes de classe

Conception

- Structure de données :
 - Dictionnaire python
 - stockage des kmers
 - \circ clé = kmer
 - valeur = tuple (Boolean,int)
 - 1er élément -> Kmer déjà utilisé ou non
 - 2ème élément -> nombre d'occurrence du kmer

Déroulement de l'algo

On cherche un kmer pas utilisé dans la table de hachage

Gestion d'erreurs

1ère étape : supprimer les kmers observés moins de trois fois

2ème étape : trouver le kmer suivant

on réalise un décalage d'une kmer de départ nucléotide à gauche/droite on recherche le kmer suivant avec les quatres nucléotides possibles on utilise le kmer avec le plus d'occurrences

Exécution du filtrage

- Taille de kmer : 25
- Taux de faux positif: 1%
- Décalage entre chaque début de kmer des reads : 20
- Durée d'exécution : 48 min
- Nombre de reads trouvé : 10 785

Exécution de l'assemblage

- Durée d'exécution : 3 sec
- Taille du contig : 29 886 nucléotides sur 29 903
- Taille de kmer : 35
- Supprimer kmer : observé moins de 3 fois

Alignement global (1)

```
1 ATTAAAGGTTTATACCTTCCCAGGTAACAACCAACCAACTTTCGATCTC
                                                                                   50
# Aligned sequences: 2
                                     1 -----TTATACCTTCCCAGGTAACAACCAACCAACTTTCGATCTC
                                                                                  41
# 1: NC 045512.2
# 2: 0
                                     51 TTGTAGATCTGTTCTCTAAACGAACTTTAAAATCTGTGTGGCTGTCACTC
                                                                                  100
# Matrix: FDNAFULL
# Gap penalty: 10.0
                                     42 TTGTAGATCTGTTCTCTAAACGAACTTTAAAATCTGTGTGGCTGTCACTC
                                                                                   91
# Extend penalty: 0.5
# Length: 29903
                                  29900
# Identity:
          29886/29903 (99.9%)
# Similarity: 29886/29903 (99.9%)
                                  29886
# Gaps: 17/29903 ( 0.1%)
# Score: 149430.0
                                  29901 AAA
                                           29903
                                  29886 --- 29886
```

Alignement global (2)

Dottup: fasta::/galaxy-repl/main/files/054/800/dataset·5...

Thu 22 Apr 2021 16:06:30

Galaxy / Dottup

Merci pour votre attention!