Analysis für Informatik

Ass.Prof. Clemens Amstler

Tanja Kohler

6. November 2018

1 Reelle und Komplexe Zahlen

1.1 Reelle Zahlen

Die reellen Zahlen ℝ erfüllen eine Reihe von Axiomen, die in drei Gruppen unterteilt werden können.

- I. Algebraische Axiome
- II. Anordnungsaxiome
- III. Vollständigkeitsaxiome

1.1.1 Algebraische Axiome

Die reellen Zahlen bilden mit der Addition $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ mit $(a,b) \mapsto a+b$ und der Multiplikation $*: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ mit $(a,b) \mapsto a*b$ einen Körper $(\mathbb{R},+,*)$, der folgende Axiome erfüllt:

- 1) \mathbb{R} ist bzgl. der Addition eine Abelsche Gruppe. $(\mathbb{R}, +)$
- 2) $\mathbb{R} \setminus \{0\}$ ist bzgl der Multiplikation eine Abelsche Gruppe. $(\mathbb{R}, *)$
- 3) Das Distributivgesetz gilt: $\forall a, b, c \in \mathbb{R}$ a * (b + c) = a * b + a * c

Andere Beispiele von Körpern: \mathbb{C} , \mathbb{Q} , \mathbb{Z}_p für p prim. Die Natürlichen Zahlen $\mathbb{N} = \{1, \dots, \infty\}$ und die Ganzen Zahlen \mathbb{Z} bilden keinen Körper.

1.1.1. Proposition

 $\forall x \in \mathbb{R} \text{ gilt } 0 * a = 0.$

Beweis:

$$0+0=0 \Rightarrow a(0+0)=a*0$$
 Distributivg
esetz
$$\Rightarrow a*0+a*0=a*0$$
 \mathbb{R} assiozativ
$$\Rightarrow a*0+(a*0-a*0)=(a*0-a*0)$$
 add Inv
$$\Rightarrow a*0+0$$

$$\Rightarrow a*0=0$$

q.e.d.

1.1.2. Definition Potenzschreibweise

Für $a \in \mathbb{R}$ und $n \in \mathbb{Z}$ wird a^n folgendermapen induktiv definiert:

- $a^0 = 1$
- $\bullet \ \forall n > 1 \quad a^{n+1} = a * a^n$
- $\forall n > 1 \ \forall a \neq 0 \quad a^{-n} = (a^{-1})^n$

1.1.3. Bemerkung

 $\forall a, b \in \mathbb{R} \setminus \{0\} \text{ und } \forall n, m \in \mathbb{Z} \text{ gilt:}$

(1)
$$a^n * a^m = a^{n+m}$$

(2)
$$a^{n^m} = a^{n*m}$$

(3)
$$a^n * b^n = (a * b)^n$$

Beweis:

(1)
$$a^n * a^{m \text{ n. } \underbrace{\text{Def.}}_{\text{ef.}} \underbrace{a \dots a}^{n \text{-mal}} * \underbrace{a \dots a}^{m \text{-mal}} = \underbrace{a \dots a}^{n \text{-mal n. } \underbrace{\text{Def.}}_{\text{n. } \text{ef.}} a^{n+m}$$

(2)
$$a^{n^m} = a^{\underbrace{n \cdot \dots n}^{m \cdot \text{mal}}} = a^{m \cdot n} = a^{n \cdot m}$$

(3)
$$a^n * b^n = \underbrace{a \dots a}^{n \text{-mal}} * \underbrace{b \dots b}^{n \text{-mal}} = \underbrace{a \dots ab \dots b}^{n \text{-mal}} = (a * b)^n$$

q.e.d.

1.1.2 Anordnungsaxiome

Die reellen Zahlen werden in positive Zahlen, negative Zahlen und 0 unterteilt. Dabei ist $x < 0 \Leftrightarrow -x > 0$ Und es gelten folgende Axiome:

- (1) $\forall x \in \mathbb{R}$ gilt genau eine der folgenden Bedingungen: x > 0, x = 0, x < 0
- (2) $\forall x, b \in \mathbb{R}$ x, b > 0 gilt: $a + b > 0 \land a * b > 0$

Wir schreiben für $a,b\in\mathbb{R}$ $a>b\Leftrightarrow a-b>0$ und $a\geq b\Leftrightarrow a>b\vee a=b$

1.1.4. Proposition

 $\forall a, b \in \mathbb{R}$ gilt: a < b und $b < c \Rightarrow a < c$

Beweis: Sei a < b und $b < c \Rightarrow a - b < 0$ und $b - c < 0 \Rightarrow a - b + b - c < 0 \Rightarrow a - c < 0 \Rightarrow a < c$ q.e.d.

1.1.5. Bemerkung

 $\forall a, b, c \in \mathbb{R}$ gilt:

a)
$$a < b \Rightarrow a + c < b + c$$

b)
$$a < b \text{ und } c > 0 \Rightarrow a * c < b * c$$

c)
$$a < b \text{ und } c < 0 \Rightarrow a * c > b * c$$

d)
$$a \neq 0 \Rightarrow a^2 > 0$$
 speziell $1 > 0$

e)
$$0 < a < b \text{ und } a < b < 1 \Rightarrow b^{-1} < a^{-1}$$

1.1.6. Definition

Für $a \in \mathbb{R}$ und der Betrag | a | folgendermaßen definiert.

$$|a| = \begin{cases} a & a > 0 \\ -a & a < 0 \end{cases}$$

1.1.7. Satz

 $\forall b \in \mathbb{R} \text{ gilt:}$

- (1) |a*b| = |a|*|b|
- (2) $|a+b| \le |a| + |b|$ (Dreiecksungleichung)
- (3) $|a-b| \ge ||a|-|b||$ (umgekehrte Dreiecksungleichung)

Beweis:

- (1) Beweis durch Falltunterscheidung.
- (2) $a \le |a|$ und $b \le |b|$ $\Rightarrow a + b \le |a| + |b|$ • $-a \le |a|$ und $-b \le |b|$ $\Rightarrow -a + -b \le |a| + |b|$ $\Rightarrow a + b \le |a| + |b|$ und $-(a + b) \le |a| + |b| \Rightarrow |a + b| \le |a| + |b|$
- (3) $|a| = |a-b+b| \le |a-b| + |b| \Rightarrow |a| |b| \le |a-b|$ • $|b| = |a-b-a| \le |a-b| + |a| \Rightarrow |b| - |a| \le |a-b|$ $\Rightarrow |a| - |b| \le |a-b| \text{ und } -(|a| - |b|) \le |a-b|$ $\Rightarrow |a| - |b| \le |a-b|$

q.e.d.

1.1.8. Bemerkung Archimedisches Axiom

Für zwei positive Zahlen, a, b gibt es immer eine natürliche Zahln, sodass folgendes gilt: n * b > a Also:

$$\forall a, b > 0 \ \exists n \in \mathbb{N} \quad n * b > a$$

Als Folgerung erhalten wir: Setze b = 1

$$\forall a > 0 \; \exists n \in \mathbb{N} \quad n > a$$

1.1.9. Satz Bernoullische Ungleichung

Sei a > -1 dann gilt

$$\forall n \in \mathbb{N} \ (1+a)^n \ge 1 + na$$

Beweis: IA
$$n = 0$$
: $n = 0$ 1 = $(1 + a)^0 \ge 1 + 0 * a = 1$

IV $(1 + a)^n \ge 1 + na$

IS $n \mapsto n + 1n \mapsto n + 1$
 $(1 + a)^{n+1} = (1 + a)(1 + a)^n$
 $\stackrel{IV}{\ge} (1 + a)(1 + na)$
 $= 1 + na + a + \underbrace{na^2}_{>0}$
 $\ge 1 + (n + 1)a$

q.e.d.

1.1.10. Korollar

Sei a > 0.

- (1) Ist $a > 1 \ \forall k > 0 \ \exists n \in \mathbb{N}$, sodass $a^n > k$.
- (2) $0 < a < 1 \ \forall \epsilon > 0 \ \exists n \in \mathbb{N}$, sodass $a^n < \epsilon$

Beweis:

- (1) Sei $a = x + 1 > 1 \Rightarrow a^n = (x + 1)^n \stackrel{\text{Bernoulli}}{\geq} 1 + nx$ $\forall n \in \mathbb{N} \exists x > 0 \text{ mit } nx > k - 1 \Rightarrow a^n \geq 1 + nx > 1 + k - 1 = k$
- (2) Sei 0 < a < 1 und $b = \frac{1}{a} > 1 \stackrel{mit(1)}{\Rightarrow} \exists k \in \mathbb{R}$ mit $\left(\frac{1}{a}\right)^n = b^n > k = \frac{1}{\epsilon}$ $\Rightarrow \left(\frac{1}{a}\right)^n > \frac{1}{\epsilon} \Rightarrow \frac{1}{a^n} > \frac{1}{\epsilon} \Rightarrow a^n < \epsilon$.

q.e.d.

1.1.3 Vollständigkeitsaxiom

Die Zahlengerade \mathbb{R} hat keine Lücken.

1.1.11. Definition

Sei $M \subset \mathbb{R}$ eine Teilmenge.

- 1. $k \in \mathbb{R}$ heißt obere Schranke von M wenn gilt, $\forall x \in M$, $x \leq k$. M heißt nach oben beschränkt, wenn es eine obere Schranke gibt. zB \mathbb{N} ist nicht nach oben beskchränkt, nach dem Archimedischem Axiom.
- 2. $k \in \mathbb{R}$ heißt untere Schranke von M wenn gilt, $\forall x \in M, x \geq k$. M heißt nach unten beschränkt, wenn es eine untere Schranke gibt.
- 3. M heißt beschränkt, wenn eine obere und untere Schranke existiert. Äquivalente Definition für Beschränktheit: $\exists k \in \mathbb{R}, \mid x \mid \leq k \ \forall x \in M$
- 4. $a \in \mathbb{R}$ heißt Infimum von M, falls a größte untere Schranke von M ist. Das heißt a ist untere Schranke von M und ist k eine untere schranke von M, dann folgt $k \leq a$

Schreibweise:
$$a = inf(M)$$

5. $b \in \mathbb{R}$ heißt Supremum von M, falls b kleinste obere Schranke von M ist. Das heißt b ist obere Schranke von M und ist k eine obere schranke von M, dann folgt $k \geq a$

Schreibweise:
$$b = \sup(M)$$

1.1.12. Beispiel

Sei a < b dann ist inf[a, b] = a = inf(a, b) und sup[a, b] = b = sup(a, b).

$$[a,b] = \{a \in \mathbb{R} \ : \ a \leq x \leq b\} \ \text{ heißt abgeschlossenes Intervall}$$

$$(a,b) = \{a \in \mathbb{R} \ : \ a < x < b\} \ \text{ heißt offenes Intervall}$$

1.1.13. Bemerkung zur Erinnerung

Definition der natürlichen Zahlen (Axiom des kleinsten Element (Pianoaxiome)) Jede Teilmenge der natürlichen Zahlen hat ein kleinstes Element.

1.1.14. Satz Vollständigkeitsaxiom

Jede nicht leere, nach unten beschränkte Teilmenge $M \subset \mathbb{R}$ besitzt ein Infimum $inf(M) \in \mathbb{R}$.

ohne Beweis.

1.1.15. Bemerkung

inf(M) muss kein Element von M sein.

1.1.16. Proposition

Jede nicht leere nach oben bescrhänkte Teilmenge $M \subset \mathbb{R}$ besitzt ein Supremum $sup(M) \in \mathbb{R}$.

Beweis: Seien M nach oben beschränkt und a eine obere Schranke von M.

$$\Rightarrow \forall x \in M \quad x \leq a \Rightarrow -a \leq -x \quad \forall x \in M \Rightarrow -a \text{ ist untere Schranke von } -M = \{-x \ : \ x \in M\}$$

 $\Rightarrow -M$ ist nach unten beschränkt. Nach dem Vollständigkeitsaxiom, existiert ein Infimum.

Sei
$$b = inf(-M) \Rightarrow -a \le b \Rightarrow -b \le a \text{ und } b \le -x \Rightarrow x \le -b \quad \forall x \in M.$$

Also -b ist obere Schranke und kleinste obere Schanke. $\Rightarrow -b = sup(M)$

q.e.d.

q.e.d.

1.1.17. Proposition

sup(M) und inf(M) sind eindeutig bestimmt.

Beweis: Seien m und m' Suprema von $M \Rightarrow m \leq m'$ und $m' \leq m \Rightarrow m = m'$. analog für Infimum.

1.2 Komplexe Zahlen

Die Menge der komplexen Zahlen $\mathbb C$ sind die Punkte der Ebene $\mathbb R^2=\{(a,b):a,b\in\mathbb R\}$

$$(a,b) = (a,0) + (0,b) = a(1,0) + b(0,1)$$

Wir setzen $1 = (1,0), i = (0,1) \Rightarrow z = (a,b) = a + ib$

zusätzlkich verlangen wir $i^2 = -1$ Also: $\mathbb{C} = \{z = a + ib : a, b \in \mathbb{R}, i^2 = -1\}$

1.2.1. Satz

Es gilt: \mathbb{C} ist ein Körper.

Beweis: Sei $x, y, z \in \mathbb{C}$ und x = a + ib, y = c + id, z = e + if

- I) C ist eine abelsche Gruppe bezüglich der Addition:
 - i) $x + y = a + ib + c + id = (a + c) + i(b + d) \in \mathbb{C}$
 - ii) x + 0 = a + ib + 0 + i0 = a + ib = x
 - iii) $\exists -x \in \mathbb{C}$ mit x + -x = a + ib a ib = 0
 - iv) x + y = (a + c) + i(b + d) = (c + a) + i(d + b) = y + x
- II) $\mathbb C$ ist eine abelsche Gruppe bezüglich der Multiplikation:
 - i) $xy = (a+ib)(c+id) = (ac-bd) + i(ad-bc) \in \mathbb{C}$
 - ii) 1x = (1+i0)(a+ib) = a+ib = x
 - iii) $\exists x^{-1} \in \mathbb{C} \text{ mit } xx^{-1} = (a+ib)\frac{a+ib}{a^2-b^2} = \frac{a^2-b^2}{a^2-b^2} = 1$
 - iv) xy = (ac bd) + i(ad bc) = (ca bd) + i(da cb) = yx
- III) Das Distributivgesetz gilt:

$$z(x+y) = (e+if)(a+c+ib+id)$$

$$= ea + ec - fb - fd + ifa + ifc + ieb + ied$$

$$= ea - fb + ifa + ieb + ec - fd + ied + ifc$$

$$= xy + xz$$

q.e.d.

1.2.2. Definition

Sei $z = a + ib \in \mathbb{C}$

- $\overline{z} = a ib$ heißt die konjungiert komplexe Zahl von z.
- $|z| = \sqrt{z\overline{z}} = \sqrt{a^2 + b^2}$ heißt Betrag von z.
- a = Re(z) heißt Realteil von z.
- b = Im(z) heißt Imaginärteil von z.

1.2.3. Satz

Es gilt:

$$Re(z) = \frac{z + \overline{z}}{2}$$
 und $Im(z) = \frac{z - \overline{z}}{2i}$

Beweis:

q.e.d.

1.2.4. Proposition

Es gilt:

(i)
$$\overline{\overline{z}} = z$$
, $\overline{z_1} + \overline{z_2} = \overline{z_1 + z_2}$, $\overline{z_1} * \overline{z_2} = \overline{z_1 z_2}$, $|\overline{z}| = |z|$

(ii)
$$|z| \ge 0$$
, $|z| = 0 \Leftrightarrow z = 0$

(iii)
$$|z_1z_2| = |z_1||z_2|$$

(iv)
$$|z_1 + z_2| \le |z_1| + |z_2|$$

Beweis:

(i)
$$\bullet \ \overline{\overline{z}} = \overline{\overline{a+ib}} = \overline{a-ib} = a+ib = z$$

•
$$\overline{z_1} + \overline{z_2} = a - ib + c - id = (a + c) - i(b + d) = \overline{z_1 + z_2}$$

•
$$\overline{z_1} * \overline{z_2} = (a - ib)(c - id) = (ac + bd) - i(ac + bc) = \overline{z_1 z_2}$$

$$\bullet \mid \overline{z} \mid = \sqrt{a^2 + b^2} = \mid z \mid$$

(ii)
$$\bullet |z| = a^2 + b^2 > 0$$

•
$$|z| = a^2 + b^2 = 0 \Leftrightarrow a^2 = -b^2 \Leftrightarrow a = b = 0$$

(iii)
$$|z_1 z_2|^2 = (z_1 z_2)(\overline{z_1 z_2}) = (z_1 \overline{z_1})(z_2 \overline{z_2}) = |z_1|^2 |z_2|^2 \Leftrightarrow |z_1 z_2| = |z_1| |z_2|$$

 $Re(z)^2 = a^2 < a^2 + b^2 = |z|^2 \Rightarrow Re(z) < |Re(z)| = \sqrt{Re(z)} < |z|$

(iv) Sei
$$a, b \in \mathbb{R}$$
 $z \in \mathbb{C}$ $z = a + ib$

$$\Rightarrow Re(z_{1}\overline{z_{2}}) \leq |z_{1}\overline{z_{2}}| = |z_{1}| |\overline{z_{2}}| = |z_{1}| |z_{2}|$$

$$|z_{1} + z_{2}|^{2} = (z_{1} + z_{2})\overline{(z_{1} + z_{2})} = (z_{1} + z_{2})(\overline{z_{1}} + \overline{z_{2}})$$

$$= z_{1}\overline{z_{1}} + z_{2}\overline{z_{1}} + z_{1}\overline{z_{2}} + z_{2}\overline{z_{2}} \qquad \text{denn } z_{2}\overline{z_{1}} = \overline{z_{1}}\overline{z_{2}}$$

$$= |z_{1}|^{2} + z_{1}\overline{z_{2}} + \overline{z_{1}}\overline{z_{2}} + |z_{2}|^{2} \qquad \text{denn } z_{1}\overline{z_{2}} + \overline{z_{1}}\overline{z_{2}} = 2Re(z_{1}z_{2})$$

$$= |z_{1}|^{2} + 2Re(z_{1}\overline{z_{2}}) + |z_{2}|^{2} \qquad \text{denn } Re(z_{1}z_{2}) \leq |z_{1}| |z_{2}|$$

$$\leq |z_{1}|^{2} + 2|z_{1}| |z_{2}| + |z_{2}|^{2} = (|z_{1}| + |z_{2}|)^{2}$$

$$\Rightarrow |z_{1} + z_{2}| \leq |z_{1}| + |z_{2}|$$

q.e.d.

2 Folgen und Reihen

2.1 Folgen

2.1.1. Beispiel

Betrachte

Annahme: $\sqrt{2} \in \mathbb{R}$, aber $\sqrt{2} \notin \mathbb{Q}$

Beweis: Angenommen $\sqrt{2} \in \mathbb{Q}$

 $\sqrt{2} \in \mathbb{Q} \Rightarrow \frac{p}{q}$ mit $p \in \mathbb{Z}, q \in \mathbb{N}$ und p und q nicht beide durch 2 teilbar, sonst kürzen wir.

$$\begin{array}{lll} 2=\frac{p^2}{q^2} & \Rightarrow & \\ 2q^2=p^2 & \Rightarrow & \text{Also } 2|p^2\Rightarrow 2|p\Rightarrow \exists m \text{ mit } p=2m. \\ 2q^2=(2m)^2=4m^2 & \Rightarrow & \\ q^2=2m^2 & \text{d.h. } 2|q^2\Rightarrow 2|q \text{ Also p und q sind beide durch 2 teilbar.} \end{array}$$

Widerspruch! p und q sind nicht beide durch 2 teilbar. $\Rightarrow \sqrt{2} \notin \mathbb{Q} \Rightarrow \sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$ q.e.d.

2.1.2. Bemerkung

 $\sqrt{2}$ ist die positive Lösung von $a^2=2 \Leftrightarrow a=\frac{2}{a} \Leftrightarrow 2a=a+\frac{2}{a} \Leftrightarrow a=\frac{1}{2}\left(a+\frac{2}{a}\right)$ Betrachte die rechte Seite dieser Gleichung und berechne diese induktiv Setze zB

$$a_1 = 1$$

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right)$$

$$a_1 = 1$$

$$a_2 = 1,5$$

$$a_3 \approx 1.41$$

$$a_3 \approx 1,4142$$
 ...

Also a_n nähert sich mit wachsendem n immer mehr an $\sqrt{2}$. Dies führt zu dem Begriff **Grenzwert einer** Folge.

2.1.3. Definition

Eine Folge $(a_n)_{k=0}^{\infty}$ reeller Zahlen ist eine Abbildung $\mathbb{N}_0 \to \mathbb{R}$ mit $n \mapsto a_n$ Bezeichnung: Wir schreiben für Folgen

$$(a_n)_{k=0}^{\infty}$$
 $(a_n)_{n\geq 0}$ $(a_n)_{n\in\mathbb{N}}$ (a_n)

2.1.4. Definition

Eine Folge (a_n) heißt

- 1. (streng) monoton wachsend, wenn $\forall a \in \mathbb{N} \ a_n \leq a_{n+1} \quad (a_n) \nearrow \quad (a_n < a_{n+1} \quad (a_n) \uparrow)$
- 2. (streng) monoton fallend, wenn $\forall a \in \mathbb{N} \ a_n \geq a_{n+1} \quad (a_n) \searrow \quad (a_n > a_{n+1} \quad (a_n) \downarrow)$
- 3. (streng) monoton, sie (streng) monoton wachsend oder (streng) monoton fallend ist.

2.1.5. Beispiel

Ein paar Beispiele zu Folgen:

- (1) Die konstante Folge $a_n = k$ ist monoton fallend und steigend.
- (2) Die harmonische Folge $a_n = \frac{1}{n} \forall n \geq 1$ ist streng monoton fallend.
- (3) Die alternierende Folge $a_n = (-1)^n$ ist nicht monoton.
- (4) Die geometische Folge $a_n = a^n \ \forall n \ge 0$ Sei $a \in \mathbb{R}$ a^n ist $\begin{cases} \text{streng monoton wachsend} & a > 0 \\ \text{streng monoton fallend} & 0 < a < 1 \\ \text{monoton} & a = 1 \\ \text{nicht monoton} \end{cases}$
- (5) Die Fibonacci Folge ist monoton wachsend. $f_n = \begin{cases} 1 & \text{wenn } n = 0, n = 1 \\ f_{n-1} + f_{n-2} & \text{sonst} \end{cases}$

2.1.6. Definition der Konvergenz

Eine Folge reeller Zahlen $(a_n)_{n\in\mathbb{N}}$ heißt konvergent gegen $a\in\mathbb{R}$ wenn

$$\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N \quad |a_n - a| < \epsilon$$

a heißt der Grenzwert oder Limes der Folge (a_n) . Die Folge (a_n) heißt divergent, wenn sie nicht konvergiert. Schreibweise: $\lim a_n = a$ oder $\lim_{n \to k} a_n = a$. Wobei $k \in \mathbb{R} \cup \{\infty, -\infty\}$

2.1.7. Bemerkung

Sei $a \in \mathbb{R}, \epsilon > 0$. $U_{\epsilon}(a) = (a - \epsilon, a + \epsilon) = \{x \in \mathbb{R} \ : \ a - \epsilon < x < a + \epsilon\}$ heißt ϵ -Umgebung von a.

$$a_n \in U_{\epsilon}(a) \Leftrightarrow a - \epsilon < a_n < a + \epsilon \Leftrightarrow -\epsilon < a_n - a < \epsilon \Leftrightarrow |a_n - a| < \epsilon$$

Also: Die Folge (a_n) konvergiert gegen $a \Leftrightarrow$ Die Folgenglieder a_n liegen ab einer Schwelle N alle in der ϵ -Umgebung von a. (a_n) konvergiert nicht gegen $a \Leftrightarrow \exists \epsilon > 0 \forall N \in \mathbb{N} \ \exists n \geq N \ | \ a_n - a \ | \geq \epsilon$.

9

2.1.8. Beispiel

Beispiele zur Konvergenz:

(1) Die harmonische Folge konvergiert: $a_n = \frac{1}{n} \Rightarrow \lim_{n \to \infty} \frac{1}{n} = 0$

$$\textbf{\textit{Beweis:}} \text{ Sei } \epsilon > 0 \text{ und } N > \frac{1}{\epsilon} \qquad |a_n - 0| = \left|\frac{1}{n} - 0\right| = \frac{1}{n} \leq \frac{1}{N} < \epsilon \qquad \qquad q.e.d.$$

(2) Die alternierende Folge $b_n = (-1)^n$ ist divergent

$$\begin{aligned} &\textbf{\textit{Beweis:}} \text{ Angenommen } \exists a \in \mathbb{R} \text{ mit } \lim_{n \to \infty} b_n = b \\ &\text{W\"{a}hle } \epsilon = \frac{1}{2} > 0 \Rightarrow \exists N \in \mathbb{N} \ \forall n \geq N \ | \ b_n - b \ | < \frac{1}{2}. \ \text{Da} \ b_{n+1} - b_n = \pm 2 \ \text{ist} \ \forall n \geq N \\ &2 = | \ b_{n+1} - b_n \ | = | \ b_{n+1} - b - (b_n - b) \ | \leq | \ b_{b+1} - b \ | + | \ b_n - b \ | < \frac{1}{2} + \frac{1}{2} = 1 \Rightarrow 2 < 1 \\ &\text{Widerspruch!} \ \Rightarrow (b_n) \ \text{ist divergent.} \end{aligned}$$

(3) Ob die geometsiche Folge $(a^n)_{n\geq 1}$ hängt davon ab, welchen Wert a hat.

Beweis: Durch Fallunterscheidung

Fall 2 $a = 1 \Rightarrow a^n = 1 \Rightarrow \lim a^n = 1$

Fall 3 $a = -1 \Rightarrow$ divergent weil alternierend.

Fall $4 \mid a \mid > 1 \quad \forall K > 0 \; \exists n \in \mathbb{N} \quad \mid a \mid^n > K \; d.h. \; (a^n) \text{ ist unbeschränkt.}$

q.e.d.

2.1.9. Definition

Eine Folge (a_n) heißt nach oben (unten) beschränkt, wenn es ein $A \in \mathbb{R}$ gibt mit

$$\forall n \in \mathbb{N} \quad a_n \le A \qquad (a_n \ge A)$$

 (a_n) heißt beschränkt, wenn (a_n) nach oben oder unten beschränkt ist. d.h.

$$\exists K \in \mathbb{R} \mid a_n \mid < K \lor \mid a_n \mid > K \quad \forall n \in \mathbb{N}$$

2.1.10. Satz

Jede konvergente Folge (a_n) ist beschränkt.

Beweis:
$$\lim_{n \to \infty} a_n = a$$
. Wähle $\epsilon = 1 > 0 \Rightarrow \exists N \in \mathbb{N} \quad \forall n \ge N \quad |a_n - a| < 1$. $q.e.d.$ $|a_n| = |a + (a_n - a)| \le |a| + |a_n - a| < |a| + 1 \quad \forall n \ge N$ Sei $K = max\{|a_1|, |a_2|, \dots, |a_{n-1}|, |a| + 1\}$ $|a_n| < K \quad \forall n \ge 1$

2.1.11. Bemerkung

Die Umkehrung gilt nicht. Das heißt eine beschränkte Folge ist nicht konvergent. Gegenbeispiel: die alternierende Folge $(-1)^n$.

2.1.12. Satz Monotoniekriterium

Sei (a_n) eine Folge. Dann gilt:

- Ist (a_n) monoton wachsend und nach oben beschränkt, dann ist (a_n) konvergent.
- Ist (a_n) monoton fallend und nach unten beschränkt, dann ist (a_n) konvergent.

Beweis: Es reicht die erste Aussage zu zeigen, denn ist (a_n) monoton fallend und nach unten beschränkt $\Rightarrow (-a_n)$ ist monoton wachsend und nach oben beschränkt $\Rightarrow (a_n)$ ist konvergent.

Sei also $(a_n) \nearrow$ und nach oben beschränkt. Mit dem Vollständigkeitsaxiom $\Rightarrow \exists a = \sup\{a_n : n \in \mathbb{N}\}$. Und sei $\epsilon > 0 \Rightarrow a - \epsilon$ ist keine obere Schranke von $\{a_n : n \in \mathbb{N}\} \Rightarrow \exists N \in \mathbb{N} \quad a - \epsilon < a_N \leq a$.

Da
$$(a_n) \nearrow \Rightarrow \forall n \ge N$$
 $a_N \le a_n$ $q.e.d.$

$$\Rightarrow a - \epsilon < a_N \le a_n \le a < a + \epsilon \quad \forall n \ge N$$

$$\Rightarrow a - \epsilon < a_n < a + \epsilon \quad \forall n \ge N$$

$$\Rightarrow |a_n - a| < \epsilon \quad \forall n \ge N$$

$$\Rightarrow \lim_{n \to \infty} a_n = a$$

2.1.13. Bemerkung

Das Monotonie-Kriterium ist äquivalent zur Vollständigkeit.

2.1.14. Satz

Der Grenzwert einer Folge ist eindeutig bestimmt.

Beweis: Angenommen $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} a_n = b$ und $a\neq b$.

Sei
$$\epsilon = \frac{1}{2} |b - a| \Rightarrow \exists N_1 \ \forall n \ge N_1 \ |a_n - a| < \epsilon$$

 $\Rightarrow \exists N_2 \ \forall n \ge N_2 \ |a_n - b| < \epsilon$

Sei
$$N = max\{N_1, N_2\}$$
 $\forall n \ge N$ $|b-a| = |(b-a_n) + (a_n - a)|$
 $\leq |b-a_n| + |a_n - a|$
 $= |a_n - b| + |a_n - a|$
 $< \frac{1}{2}|b-a| + \frac{1}{2}|b-a|$
 $= |b-a|$

 $\Rightarrow |\ b-a\ | < |\ b-a\ | \ {\rm Widerspruch!} \ \Rightarrow a=b$

q.e.d.

2.1.15. Satz Rechenregeln für konvergente Folgen

Seien (a_n) und (b_n) zwei konvergente Folgen. Dann gilt:

- 1. $(a_n \pm b_n)$ ist konvergent und $\lim_{n \to \infty} a_n \pm b_n = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n$.
- 2. $\lambda(a_n)$ ist konvergent und $\lim_{n\to\infty} \lambda a_n = \lambda \lim_{n\to\infty} a_n$.
- 3. $(a_n b_n)$ ist konvergent und $\lim_{n \to \infty} a_n b_n = \lim_{n \to \infty} a_n \lim_{n \to \infty} n b_n$.
- 4. Ist $(b_n) \neq 0 \ \forall n \geq n_0$ und $\lim_{n \to \infty} b_n \neq 0$. Dann ist $\left(\frac{a_n}{b_n}\right)$ konvergent und $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$.
- 5. $a_n \le b_n$ dann ist $\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n \ \forall n \ge n_0$.

Beweis: Sei $\lim_{n\to\infty} a_n = 0$ und $\lim b_n = b$.

1. Sei
$$\epsilon > 0 \Rightarrow \exists N_1, N_2, \in \mathbb{N}$$
 $|a_n - a| < \frac{\epsilon}{2} \quad \forall n \ge N_1 \quad \text{und} \quad |b_n - b| < \frac{\epsilon}{2} \quad \forall n \ge N_2$

$$\Rightarrow \forall n \ge \max\{N_1, N_2\}$$

$$|(a_n \pm b_n) - (a \pm b)| = |(a_n - a) \pm (b_n - b)|$$

$$\leq |a_n - a| + |b_n - b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

$$\Rightarrow (a_n \pm b_n) \text{ beschränkt und } \lim_{n \to \infty} a_n \pm b_n = a + b.$$

2. Sei
$$\epsilon > 0 \Rightarrow \exists N \in \mathbb{N} \quad |a_n - a| < \frac{\epsilon}{\lambda} \quad \forall n \ge N$$
$$|\lambda a_n - \lambda a| = |\lambda (a_n - a)| = |\lambda| |a_n - a| < \lambda \frac{\epsilon}{\lambda} = \epsilon$$

- 3. Jede konvergente Folge ist beschränkt $\Rightarrow \exists K \in \mathbb{R} \text{ mit } | a_K | \leq K \text{ und } | b | \leq K$ $Sei\epsilon > 0 \Rightarrow \exists N_1, N_2 \in \mathbb{N} | a_n a | < \frac{\epsilon}{2K} \text{ und } | b_n b | < \frac{\epsilon}{2K}. \Rightarrow \forall n \geq \max\{N_1, N_2\} \text{ gilt } | a_n b_n ab | = |a_n b_n a_n b + a_n b + ab| = |a_n (b_n b) + b(a_n a)| \leq |a_n (b_n b)| + |b(a_n a)| = \underbrace{|a_n|}_{\leq K} |b_n b| + \underbrace{|b|}_{\leq K} |a_n a| < K \frac{\epsilon}{2K} + K \frac{\epsilon}{2K} = \epsilon$
- 4. Zeige $\lim_{n\to\infty}\frac{1}{b_n}=\frac{1}{\lim_{n\to\infty}b_n}$ $|\mid b_n\mid -\mid b\mid\mid \leq \mid b_n-b\mid < \frac{\mid b\mid}{2} \ \forall n\geq n_0 \ \Rightarrow \ -\frac{\mid b\mid}{2} < \mid b_n\mid -\mid b\mid < \frac{\mid b\mid}{2} \ \Rightarrow \ \frac{\mid b\mid}{2} < \mid b_n\mid \Rightarrow \frac{1}{\mid b_n\mid} < \frac{2}{\mid b\mid} \ \forall n\geq n_0 \\ \text{Sei } \epsilon>0 \ \Rightarrow \ \exists N\ \forall n\geq N\ |\ b_n-b\mid < \frac{\epsilon\mid b\mid^2}{2} \ \Rightarrow \ \left|\frac{1}{b_n}-\frac{1}{b}\right| = \left|\frac{b-b_n}{bb_n}\right| = \frac{1}{\mid b_n\mid} \frac{1}{\mid b\mid} \mid b-b_n\mid \text{ mit epsilon nach voraussetzungen abschätzen}$
- 5. Sei $a_n \leq b_n \forall n \geq n_0.zz.a \leq b$ Angenommen a > b Sei $\epsilon \frac{a-b}{2} > 0 \Rightarrow \exists N_1, N_2 \in \mathbb{N}$ $| a_n a | < \epsilon \forall n \geq N_1$ $| b_n b | < \epsilon \forall n \geq N_2$ $\Rightarrow \forall n \geq \max\{N_1, N_2\}$ $b_n < b + \epsilon = b + \frac{a-b}{2} = \frac{2b+a-b}{2} = \frac{b+a}{2} = \frac{2a-a+b}{2} = a \frac{a-b}{2} = a \epsilon < a_n$ $\Rightarrow b_n < a_n \forall n \geq \max\{N_1, N_2\}$ Widerspruch! $\Rightarrow a \leq b$

q.e.d.

2.1.16. Satz Sandwich-Theorem

Sei (a_n) und (b_n) zwei konvergente Folgen mit der Eigenschaft, dass $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=a$. Sei (c_n) eine Folge mit der Eigenschaft, dass $a_n\leq c_n\leq b_n \quad \forall n\geq n_0$ Dann ist (c_n) konvergent und $\lim_{n\to\infty}c_n=a$.

Beweis: Sei $\epsilon > 0 \Rightarrow \exists N_1, N_2 \in \mathbb{N}$

$$a - \epsilon < a_n < a + \epsilon \quad \forall n \ge N_1$$

$$a - \epsilon < b_n < a + \epsilon \quad \forall n \ge N_2$$

 $\Rightarrow \forall n \geq \max\{N_1, N_2\} \text{ es gilt: } a - \epsilon < a_n \leq c_n \leq b_n < a + \epsilon \quad \forall n \geq N \Rightarrow |c_n - a| < \epsilon \Rightarrow \lim_{n \to \infty} c_n = a.$

2.1.17. Beispiel 1. Sei (a_n) eine Folge mit $0 \le a_n \le \frac{1}{n} \Rightarrow \lim_{n \to \infty} a_n = 0$

2.
$$a_n = \sqrt{2n} - \sqrt{n}$$
 ist divergent denn $a_n = \left(\sqrt{2n} - \sqrt{n}\right) \frac{\sqrt{2n} + \sqrt{n}}{\sqrt{2n} + \sqrt{n}} = \frac{2_n - n}{\sqrt{n} * \left(\sqrt{2} - 1\right)} \underset{\left(\sqrt{2} - 1\right) \le 3}{\geq} \frac{n}{3\sqrt{n}} = \frac{sqrtn}{3} \xrightarrow{n \to \infty} n\infty.$

2.1.18. Definition

Eine Folge (a_n) heißt bestimmt divergent gegen $\pm \infty$ wenn gilt: $\forall K \in \mathbb{R} \exists N \in \mathbb{N} \quad \forall n \geq N \ a_n \leq K$

Schreibweise:
$$\lim_{n\to\infty} a_n = \pm \infty$$

nach oben unbeschränkt oder nach unten unbeschränkt

2.1.19. Beispiel 1. Die Fibonacci Folge ist bestimmt divergent gegen $+\infty$

- 2. Sei $a_n = n$, dann folgt $\lim_{n \to \infty} a_n = \infty$
- 3. Sei $\lim_{n\to\infty} a_n = \infty \Leftrightarrow \lim_{n\to\infty} -a_n = -\infty$
- 4. Die Folge $a_n = (-1)^n$ ist divergent aber nicht bestimmt divergent.
- 5. Sei (a_n) bestimmt divergent und $a_n \neq 0 \ \forall n \geq n_0$, dann folgt $\lim_{n \to \infty} \frac{1}{a_n} = 0$.

Beweis: Sei
$$\lim_{n\to\infty} a_n = \infty \Rightarrow \forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq N \ a_n > \frac{1}{\epsilon} > 0 \Rightarrow \frac{1}{a_n} < \epsilon \Rightarrow \left| \frac{1}{a_n} - 0 \right| < \epsilon, \ da \ a_n > 0 \Rightarrow \lim_{n\to\infty} \frac{1}{a_n} = 0$$

$$q.e.d.$$

2.1.20. Definition

Sei (a_n) eine Folge reeller Zahlen und $n_0 < n_1 < n_2 < ... < n_k < ...$ eine Teilmenge von $\mathbb N$. Dann heißt die Folge $(a_{n_k})_{k \in \mathbb N}$ eine Teilfolge von $(a_n)_{n \in \mathbb N}$

2.1.21. Bemerkung

Ist die Folge (a_n) konvergent, dann ist auch jede Teilfolge von (a_n) konvergent.

Beweis: Übung

2.1.22. Definition

Sei (a_n) eine Folge. Eine Zahl $a \in \mathbb{R}$ heißt Häufungspunkt (Häufungswert) der Folge (a_n) , wenn es eine Teilfolge von (a_n) gibt die gegen a konvergiert.

2.1.23. Bemerkung 1. Sei $\lim_{n\to\infty} a_n = a$, dann ist a der einzige Häufungspunkt der Folge (a_n) .

- 2. Eine bestimmt divergente Folge hat keinen Häufungspunkt.
- 3. Die Folge $a_n = \frac{1}{n} + (-1)^n$ besitzt die zwei Häufungspunkte -1 und +1. $\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} \frac{1}{2n} (-1)^{2n} = \lim_{n \to \infty} \frac{1}{2n} + 1 = 1$ und $\lim_{n \to \infty} a_{2n+1} = \lim_{n \to \infty} \frac{1}{2n+1} (-1)^{2n+1} = \lim_{n \to \infty} \frac{1}{2n+1} 1 = -1$
- 4. Jede konvergente Folge ist beschränkt, aber jede beschränkte Folge muss nicht konvergent sein.

2.1.24. Satz von Bolzano-Weierstraß

Jede beschränkte Folge reeller Zahlen besitzt eine konvergente Teilfolge.

Beweis: $(a_n)_{n\in\mathbb{N}_0}$ ist beschränkt, d.h. $\exists A\in\mathbb{R}$ mit $-A\leq a_n\leq A \forall n\geq 0$

Sei $A_k = \{a_m : m \ge k\} \Rightarrow \text{ jede der Mengen } A_k is t beschrakt.$

Mit dem Vollständigkeitsaxiom $\exists inf \ \forall A_k$. Sei etwa, $X_k = inf(A_k)$

$$A_0 \supset A_1 \supset \cdots \supset A_{k-1} \supset A_k \supset \cdots \Rightarrow x_k \le x_{k+1} \ \forall k \ge 0$$

 \Rightarrow d.h. Die Folge $(x_k)_{k\geq 0}$ ist monoton wachsen und durch A nach oben beschränkt. Nach dem Monotoniekriterium ist die Folge $(x_k)_{k\geq 0}$ konvergent. Sei etwa der $\lim_{k\to\infty}x_k=z$

Behauptung: z ist Häufungspunkt von (a_n) .

I) Sei
$$\epsilon>0$$
, da $\lim_{k\to\infty}x_k=z\Rightarrow \exists N\in\mathbb{N}$ mit $\mid x_k-z\mid\,<\frac{\epsilon}{2}\;\forall n\geq N$

II) Da
$$x_k = \inf\{a_m : m \ge k\} \Rightarrow \exists a_{k_m} \text{ mit } |x_k - a_{k_m}| < \frac{\epsilon}{2}.$$

$$x_k \qquad a_{k_m} \qquad x_k + \frac{\epsilon}{2}$$

$$\Rightarrow |a_{k_m} - z| = |a_{k_m} - x_k + x_k - z| \le |a_{k_m} - x_k| + |x_k - z| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Also $\forall \epsilon > 0 \exists N \in \mathbb{N} \forall k \geq N \exists a_{k_m} \in (a_n) \quad |a_{k_m} - z| < \epsilon \text{ d.h. die Teilfolge } (a_{k_m})_{m \geq 0} \text{ ist konvergent gegen } z$

Also (a_{k_m}) ist eine konvergente Teilfloge von der beschränkten Folge (a_n) .

q.e.d.

2.1.25. Bemerkung

Der Satz von Bolzano-Weierstraß ist äquivalent zum Vollstaändigkeitsaxiom. Äquivalente Formulierungen:

- Jede beschränkte Folge reeller Zahlen hat mindestens einen Häufungspunkt
- Jede beschränkte Folge reeller Zahlen hat einen größten und einen kleinsten Häufungspunkt

2.1.26. Definition Cauchy-Folge

Eine Folge $(a_n)_{n>0}$ heißt CAUCHY-Folge, wenn gilt:

$$\forall \epsilon > 0 \; \exists N \in \mathbb{N} \forall n, m \geq N \mid a_n - a_m \mid < \epsilon$$

2.1.27. Satz

Folgende Aussagen sind äquivalent

- 1. Die Folge (a_n) ist konvergent
- 2. Die Folge (a_n) ist eine Cauchy-Folge

Beweis: $1) \Rightarrow 2)$

Sei
$$\lim_{n\to\infty} a_n = a \Rightarrow \forall \epsilon > 0 \; \exists N \; \forall m \geq N \; | \; a_n a \; | < \frac{\epsilon}{2} \Rightarrow \forall n, m \geq N \; | \; a_n - a_m \; | = | \; a_n - a + a - a_m \; | \leq | \; a_n - a \; | + | \; a_m - a \; | < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \; \Rightarrow a_n \; \text{ist eine Cauchy Folge}$$

$$(2) \Rightarrow 1)$$

Nach dem Satz von Bolzano-Weierstraß existiert eine konvergente Teilfolge $(a_{n_k})_{k\geq 0}$ sei $\lim_{k\to\infty}a_{n_k}=a$. Wir zeigen. $\lim_{k\to\infty}a_n=a$.

Sei
$$\epsilon > 0$$
. Wähle m so groß, dass $|a_m - a_n| < \frac{\epsilon}{2} \forall n, m \ge N$ und $|a_{n_k} - a| < \frac{\epsilon}{2} \forall k \ge N$ $\Rightarrow |a - a_n| = \frac{a - a_{n_k} + a_{n_k} - a_n}{\le} |a - a_{n_k}| + |a_{n_k} - a_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$, da $n_k \ge n \ge N$ $q.e.d.$

2.1.28. Beispiel Verfahren zur Berechnung der Quadratwurzel

Seien a = 0, $a_0 > 0$ reelle Zahlen. Wir definieren die Folge (x_n) rekursiv.

$$x_0 = x_0 x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

Wir zeigen: (x_n) ist konvergent und $\lim_{n\to\infty} x_n = x$ und $x^2 = a$.

Beweis: 1.
$$x_n > 0 \forall n \geq 0$$

IAn=0
$$x_0 > 0$$

IV $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$

ISn
$$\mapsto$$
 n+1 Sei $x_n > 0 \Rightarrow x_{n+1} = \underbrace{\frac{1}{2}}_{>0} \left(\underbrace{x_n}_{>0} + \underbrace{\frac{a}{x_n}}_{>0}\right) > 0$

 \Rightarrow (x_n) ist nach unten durch 0 beschränkt.

- 2. $x_n^2 \ge a \quad \forall n \ge 1$ $\operatorname{denn} x_{n+1}^2 - a = \frac{1}{4} \left(x_n + \frac{a}{x_n} \right)^2 - a = \dots \text{ainklammerreinzieihenundausrechnen} \dots = \frac{1}{4} (\text{malsaquradrat}) \ge 0$
- 3. (x_n) ist monoton fallend $x_n x_{n+1} = x_n \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) = (x_n inklammerreinzeihenundausrehenen) = \frac{1}{(2x_n)(x_n^2 a)} \ge 0$ $weilbeides \ge 0 (x_n > 0) \Rightarrow x_> n > = x_{n+1}$ Nach dem Monotonie-Kriterium ist (x_n) konvergent.

4. Sei
$$x = \lim_{n \to \infty} x_n \Rightarrow x = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) = \frac{1}{2} \left(\lim_{n \to \infty} x_n + \frac{a}{\lim_{n \to \infty} x_n} \right) = \frac{1}{2} \left(x + \frac{a}{x} \right) \Rightarrow 2x = x + \frac{a}{x} \Rightarrow x = \frac{a}{x} \Rightarrow x^2 = a.$$

q.e.d.

Die positive Lösung der Gleichung $x^2 = a$ heißt die Quadratwurzeln von a. Wir Schreiben $x = \sqrt{a}$.

2.2 Reihen

2.2.1. Definition

Sei $(a_n)_{n\geq 0}$ eine Folge reeller Zahlen. Sei weiters $S_N = \sum_{n=0}^N a_n$ die N-te Partialsumme, dann heißt die Folge $(S_N)_{N\geq 0}$ der Partialsummen eine unendliche Reihe.

Schreibweise:
$$\sum_{n=0}^{\infty} a_n$$

Konvergiert die Folge (S_N) mit $\lim_{n\to\infty} S_N = s$, dann heißt $\sum_{n=0}^{\infty} a_n = s$ der Wert der Reihe. Man sagt: Die Reihe $\sum_{n=0}^{\infty} a_n$ konvergiert.

Schreibweise:
$$\sum_{n=0}^{\infty} a_n < \infty$$

.

2.2.2. Beispiel 1. Die geometrische Reihe. Sei $|a| < 1 \Rightarrow \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Ist $|a| \ge 1$, dann ist $\sum_{n=0}^{\infty} a^n$ divergent.

Beweis: Die geometrische Summe: $\sum_{n=0}^{N} a^n = \frac{1-a^{N+1}}{1-a}$ dann: $IAN = 01 = a^0 = (1-a)/(1-a) = 1$ $IV \sum_{n=0}^{N} a^n = \frac{1-a^{N+1}}{1-a}$

$$ISN \mapsto N+1$$

$$\sum_{n=0}^{N+1} a^n = a^{N+1} + \sum_{n=0}^{N} a^n \stackrel{IV}{=} a^{N+1} + \frac{1-a^{N+1}}{1-a} = \dots \text{selber}$$

Sei $S_N = \sum_{n=0}^{N} a^n = \frac{1-a^{N+1}}{1-a}$

Sei
$$|a| < 1$$
. Dann folgt $\lim_{n \to \infty} a^N = 0$

$$\begin{array}{l} \Rightarrow \lim_{n \to \infty} S_N = \lim_{n \to \infty} \frac{1 - a^{N+1}}{1 - a} = \frac{1}{1 - a} \\ \text{Sei } a \ge 1 \Rightarrow \sum_{n=0}^N a^n \ge \sum_{n=0}^N 1 = N + 1 \longrightarrow \inf \\ \text{Sei } a \le -1 \Rightarrow a = -b \text{ mit } b \ge 1 \Rightarrow \sum_{n=0}^N a^n \ge \sum_{n=0}^N (-1)^n b^n \text{ divergent} \end{array}$$

$$q.e.d.$$

2. Die harmonische Reihe: $\sum n = 1 \infty \frac{1}{n} = +\infty$

$$\textbf{\textit{Beweis:}} \ \ S_{2^N} = \sum_{n=1}^{2^N} \frac{1}{n} = 1 + \underbrace{\frac{1}{2}}_{=\frac{1}{2}} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{=\frac{1}{2}} + \underbrace{\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}_{=\frac{1}{2}} + \underbrace{\frac{1}{9} + \ldots + \frac{1}{16}}_{=\frac{1}{2}} + \underbrace{\frac{1}{17} + \ldots + \frac{1}{2^N}}_{=\frac{1}{2}} + \underbrace{\frac{1}{2^{N-1} + 1} + \ldots + \frac{1}{2^N}}_{=\frac{1}{2}} \ge \underbrace{\frac{1}{2^{N-1} + 1} + \ldots + \frac{1}{2^N}}_{=\frac{1}{2}} + \underbrace{\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}_{=\frac{1}{2}} + \underbrace{\frac{1}{17} + \ldots + \frac{1}{16}}_{=\frac{1}{2}} + \underbrace{\frac{1}{2^{N-1} + 1} + \ldots + \frac{1}{2^N}}_{=\frac{1}{2}} \ge \underbrace{\frac{1}{2^{N-1} + 1} + \ldots + \frac{1}{2^N}}_{=\frac{1}{2}} + \underbrace{\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}_{=\frac{1}{2}} + \underbrace{\frac{1}{17} + \ldots + \frac{1}{16}}_{=\frac{1}{2}} + \underbrace{\frac{1}{2^{N-1} + 1} + \ldots + \frac{1}{2^N}}_{=\frac{1}{2}} \ge \underbrace{\frac{1}{2^{N-1} + 1} + \ldots + \frac{1}{2^N}}_{=\frac{1}{2}} + \underbrace{\frac{1}{2^{N-1} + 1} + \ldots + \frac{1}{2^N}}_{=\frac{1}{2}} = \underbrace{\frac{1}{2^N} + \frac{1}{2^N} + \frac{1}{2^N} + \frac{1}{2^N}}_{=\frac{1}{2}} + \underbrace{\frac{1}{2^N} + \frac{1}{2^N}}_{=\frac{1}{2^N}}_{=\frac{1}{2^N}}_{=\frac{1}{2^N}}_{=\frac{1}{2^N}}_{=\frac{1}{2^N}} = \underbrace{\frac{1}{2^N} + \frac{1}{2^N} + \frac{1}{2^N}}_{=\frac{1}$$

q.e.d.

 $1 + n\frac{1}{2} > \frac{n}{2} \longrightarrow +\infty$ Würde $(S_N)_{N\geq 1}$ konvergieren, dann auch die Teilfolge $(S_{2^N})_{N\geq 1}$, da diese dievergiert, divergiert auch $(S_N)_N$ q.e.d.

3.
$$\sum_{n=1}^{\infty} \left(\frac{1}{n(n+1)} = 1 \right)$$

Beweis:
$$S_N = \sum_{n=1}^N \frac{1}{n(n+1)} = \sum_{n=1}^N \frac{1}{n} - \frac{1}{n+1} = \sum_{n=1}^N \frac{1}{n} - \sum_{n=1}^N \frac{1}{n+1} = 1 + \sum_{n=2}^N \frac{1}{n} - \sum_{n=2}^{N+1} \frac{1}{n} = 1 + \sum_{n=2}^N \frac{1}{n} - \sum_{n=2}^N \frac{1}{n} - \sum_{n=2}^N \frac{1}{n} + \frac{1}{N+1} = 1 + \frac{1}{N+1} \longrightarrow 1$$
 $q.e.d.$

2.2.3. Satz

Seien $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ zwei konvergente Reihen und $\lambda \in \mathbb{R}$ Dann ist auch $\sum_{n=0}^{\infty} \lambda a_n + b_n$ konvergent und $\sum_{n=0}^{\infty} \lambda a_n + b_n = \lambda \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n$

Beweis: folgt auf grund der Rechenregeln für konvergente Folgen.

2.2.4. Satz Cauchy-Kriterium für Reihen

Die Reihe $\sum_{k=0}^\infty a_k$ ist konvergent, genau dann wenn gilt:

$$\forall \epsilon > 0 \ \exists N(\epsilon) \in \mathbb{N} \quad \forall n \ge m \ge N \qquad \left| \sum_{k=m}^{n} a_k \right| < \epsilon \qquad (\star)$$

Beweis: $S_n - Sm = \sum_{k=0}^n a_k - \sum_k k = 0$ $ma_k = \sum_{k=m}^n a_k$. (*) bedeutet die $(S_n)_n$ ist eine Cauchy-Folge $\Leftrightarrow (S_n)_n$ ist konvergent q.e.d.

2.2.5. Korollar

Ist $\sum_{k=0}^{\infty} a_k$ konvergent $\Rightarrow \lim_{k \to \infty} a_k = 0$.

Beweis: $a_n = \sum k = mna_k$. Da $\sum_{k=0}^{\infty} a_k < \infty$ Cauchy-Kriterium $\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \forall n \geq N \, | \, a_N \, | = |\sum k = mna_k \, | < \epsilon \Rightarrow \lim_{n \to \infty} a_n = 0$ q.e.d.

2.2.6. Bemerkung

Die Umkehrung des Korrolars gilt nicht. z.B. $\lim_{n\to\infty}1/n=0$ aber $\sum_{n=0}^{\infty}1/n=\infty$ harmonische Reihe.

2.2.7. Definition

Die Reihe $\sum_{k=0}^{\infty} a_k$ heißt absolut konvergent, wenn wenn die Reihe $\sum_{k=0}^{\infty} |a_k|$ konvergiert.

2.2.8. Satz

Jede absolut konvergente Reihe ist auch konvergent.

Beweis: Sei $\sum_{k=0}^{\infty} |a_k| < \infty$ Cauchy-Kriterium $\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq m \geq N \ |\sum k = mn| \ a_k| | < \epsilon$ Dreiecksungleichung $|\sum k = mna_k| \leq |\sum k = mn| \ a_k| | < \epsilon \forall n \geq m \geq N$ Cauchy-Kriterium $\sum_{k=0}^{\infty} a_k$ ist konvergent.

2.2.9. Bemerkung

Die Umkehrung des Satzes gilt nicht. zB kann man zeigen, dass die Reihe $\sum_{k=0}^{\infty} (-1)^k \frac{1}{k}$ konvergiert. Aber die Reihe $\sum_{k=0}^{\infty} \left| \; (-1)^k \frac{1}{k} \; \right| = \sum_{k=0}^{\infty} \frac{1}{k} = \infty$

2.2.10. Satz Majoranten-Kriterium

Sei $\sum_{k=0}^{\infty} b_k$ konvergent mit $b_k \geq 0 \forall k \geq N_0$. Sei $(a_k)_{k=0}^{\infty}$ eine Folge mit $|a_k| \leq b_k \forall k \geq N_0 \Rightarrow \sum_{k=0}^{\infty} a_k$ ist absolut konvergent.

Beweis: Sei $\sum_{k=0}^{\infty} b_k < \infty$ und $b_k > 0$ Cauchy- $\overset{\Rightarrow}{K}$ riterium $\forall \epsilon > 0 \ \exists N \in \mathbb{N} \quad \forall n \geq m \geq N \quad |\sum k = mnb_k| < \epsilon |a_k| \overset{\Rightarrow}{\leq} b_k |\sum k = mn| |a_k| |\leq |\sum k = mnb_k| < \epsilon \forall n \geq m \geq N$ Cauchy- $\overset{\Rightarrow}{K}$ riterium $\sum_{k=0}^{\infty} |a_k|$ ist konvergent. $\Rightarrow \sum_{k=0}^{\infty} a_k$ ist absolut konvergent.

2.2.11. Korollar Minoranten-Kriterium

Sei $\sum_{k=0}^{\infty} b_k$ divergent mit $b_k \ge 0 \forall k \ge N_0$. und $(a_k)_{k=0}^{\infty}$ eine Folge mit $|a_k| \ge b_k \forall k \ge N_0 \Rightarrow \sum_{k=0}^{\infty} a_k$ ist auch divergent.

Beweis: Wäre $\sum_{k=0}^{\infty} a_k$ konvergent, dann wäre nach dem Majoranten-Kriterium $\sum_{k=0}^{\infty} b_k$ konvergent, da $|b_k| \le a_k$. Widerspruch! q.e.d.

2.2.12. Satz Quotienten-Kriterium

Sei $\sum_{n=0}^{\infty} a_n$ eine Reihe mit $a_n \neq 0 \forall n \geq n_0$ Existiert eine reelle Zahl q mit 0 < q < 1 sodass $\left| \frac{a_{n+1}}{a_n} \right| \leq q < 1 \forall n \geq n_0 \Rightarrow \sum_{n=0}^{\infty} a_n$ ist absolut konvergent.

 $\begin{array}{l} \textit{\textbf{Beweis:}} \text{ Sei } \left| \left. \frac{a_{n+1}}{a_n} \right| \leq q < 1 \forall n \geq 0 \\ \text{(o.B.d.A.)} \Rightarrow \left| \left. a_{n+1} \right| \leq q \left| \left. a_n \right| \Rightarrow \left| \left. a_n \right| \leq q \left| \left. a_{n-1} \right| \leq q^2 \left| \left. a_{n-2} \right| \leq \ldots \leq q^n \left| \left. a_0 \right| \right|. \\ \text{Also } \left| \left. a_n \right| \leq q^n \left| \left. a_0 \right|, da \sum_{n=0}^{\infty} \left| \left. a_n \right| \leq \sum_{n=0}^{\infty} q^n \left| \left. a_0 \right| = \left| \left. a_0 \right| \sum_{n=0}^{\infty} q^n = \left| \left. a_0 \right| \frac{1}{1-q}, \text{ denn } 0 < q < 1, \text{ geometrische Reihe.} \Rightarrow \text{ aus dem Majoranten-Kriterium folgt } \sum_{n=0}^{\infty} a_n \text{ ist absolut konvergent.} \end{array} \right.$

2.2.13. Korollar einfaches Quotienten-Kriterium

Sei $a_n \neq 0 \ \forall n > n_0$ und existiert $\lim_{n \to \infty} \left| \frac{a_n + 1}{a_n} \right|$ und ist $\lim_{n \to \infty} \left| \frac{a_n + 1}{a_n} \right| < 1 \Rightarrow \sum_{n=0}^{\infty} a_n$ ist absolut konvergent.

 $\begin{array}{c|c} \textit{Beweis:} \; \text{Sei} \; \lim_{n \to \infty} \left| \frac{a_n + 1}{a_n} \right| = \alpha < 1 \\ \text{Sei} \; \epsilon = \frac{1 - \alpha}{2} > 0 \Rightarrow \exists N \; \forall n \geq N \; \left| \left| \frac{a_{n+1}}{a_n} \right| - \alpha \right| < \epsilon = \frac{1 - \alpha}{2} \Rightarrow \left| \frac{a_(n+1)}{a_n} \right| < \frac{1 - \alpha}{2} + \alpha = \frac{1 + \alpha}{2} \text{da} \; \alpha < 11 + \frac{1}{2} = 1 \text{Sei} \; q = \frac{1 + \alpha}{2} < 1 und \left| \frac{a_(n+1)}{a_n} \right| < q < 1 \; \text{Nach dem Quotienten-Kriterium ist} \; \sum_{n=0}^{\infty} a_n \; \text{absolut konvergent} \\ q.e.d. \end{array}$

2.2.14. Beispiel 1. $\sum_{n=0}^{\infty} \frac{1}{n^k} < \infty$ $\forall k \geq 2$ [Bemerkung: Die Konvergenz gilt auch $\forall k \in \mathbb{R}, k > 1$ ohne Beweis]

 $\begin{array}{ll} \textit{\textbf{Beweis:}} \ \frac{1}{n^k} \leq \frac{1}{n^2} & \forall k \geq 2 \text{ und} \\ \frac{1}{n^2} \leq \frac{2}{n(n+1)}, \text{ denn } \Leftrightarrow 2n^2 \geq n(n+1) \Leftrightarrow n^2 \geq n \Leftrightarrow n \geq 1 \\ \Rightarrow \frac{1}{n^k} \leq \frac{2}{n(n+1)} \forall k \geq 2 \text{ und} \\ \sum_{n=0}^{\infty} \frac{2}{n(n+1)} = 2 \sum_{n=0}^{\infty} \frac{1}{n(n+1)} = 2 * 1 = 2 \\ \text{Majoranten} - Kriterium \sum_{n=0}^{\infty} 1n^k < \infty \forall k \geq 2 \\ \text{Frage: Wie sind die Werte der Reihe} \sum_{n=0}^{\infty} 1/n^k \text{ für } k \geq 2 \text{ Euler: } \sum_{n=0}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}, \sum_{n=0}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}, \dots, \sum_{n=0}^{\infty} \frac{1}{n^{2k}} = C_k \pi^{2k} \text{ Aber: } \sum_{n=0}^{\infty} \frac{1}{n^3} \in \mathbb{R} \setminus \mathbb{Q}, \sum_{n=0}^{\infty} \frac{1}{n^5} = ?, \dots, \sum_{n=0}^{\infty} \frac{1}{n^{2k+1}} = ? \qquad q.e.d. \end{array}$

2. Die Reihe $\sum_{n=0}^{\infty} \frac{n^2}{2^n}$ ist konvergent.

$$Quotienten-Kriterium. \ \left| \ \frac{a_{n+1}}{a_n} \ \right| = \frac{\frac{(n+1)^2}{2^{n+1}}}{\frac{n^2}{2^n}} = \frac{2^n(n+1)^2}{2^{n+1}n^2} = \frac{1}{2} * \left(\frac{n+1}{n}\right)^2 = \frac{1}{2} \left(\frac{1}{1+\frac{1}{n}}\right)^2 \longrightarrow \frac{1}{2} < 1 \qquad q.e.d.$$

3. Die Exponentialfunktion Die Reihe $\sum_{k=0}^{\infty} \frac{x^k}{k!}$ ist für jedes $x \in \mathbb{R}$ absolut konvergent

$$\begin{aligned} &Quotienten\text{-}Kriterium. \ \left| \ \frac{a_{k+1}}{a_k} \ \right| = \left| \ \frac{\frac{x^{k+1}}{(k+1)!}}{\frac{x^k}{k!}} \ \right| = \frac{\mid x^{k+1} \mid *k!}{\mid x^k \mid *(k+1)!} = \frac{\mid x \mid}{k+1} k \xrightarrow{\longrightarrow} \infty 0 \ \forall x \in \mathbb{R} \\ &\Rightarrow \sum_{k=0}^{\infty} \frac{x^k}{k!} \ \text{ist absolut konvergent.} \end{aligned}$$

- **2.2.15. Bemerkung** 1. Für k=1 ist die harmonische Reihe $\sum_{n=0}^{\infty} \frac{1}{n}$ divergent.
 - 2. Das Quotienten-Kriterium ist hier nicht anwendbar, denn

$$\sum_{n=0}^{\infty} \frac{1}{n} \qquad \frac{a_{n+1}}{a_n} = \frac{1}{1 + \frac{1}{n}} \xrightarrow{n \to \infty} n1 \not< 1$$

$$\sum_{n=0}^{\infty} \frac{1}{n^2} \qquad \frac{a_{n+1}}{a_n} = \left(\frac{1}{1 + \frac{1}{n}}\right)^2 \longrightarrow 1 \not< 1$$

2.2.16. Definition

Die Funktion $exp: \mathbb{R} \to \mathbb{R}$ mit $exp(x) \mapsto e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ heißt Exponentialfunktion. Die Zahl $e = exp(1) = \sum_{n=0}^{\infty} \frac{1^n}{n!}$ heißt Euler'sche Zahl.

2.2.17. Bemerkung

Wir werden später zeigen:

$$e = \frac{1^n}{n!} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \approx 2,71828...$$

3 Test

zum Formeln raus kopieren

- $1. \rightarrow$
- 2. (a_n)
- 3. $\lim_{n\to\infty} a_n$
- $4. \sum_{n=0}^{\infty} a_n$
- $5. \stackrel{n\to\infty}{\longrightarrow}$

$$\lim_{n\to\infty}a_n$$

$$\sum_{n=0}^{\infty} a_n$$

$$\sum_{n=1}^{k}$$

Verschiedene Größen:

$$1. \sum_{n=0}^{\infty} a_{n_k} + \frac{b_n}{c_n}$$

$$2. \sum_{n=0}^{\infty} a_{n_k} + \frac{b_n}{c_n}$$

3.
$$\sum_{n=0}^{\infty} a_{n_k} + \frac{b_n}{c_n}$$

4.
$$\sum_{n=0}^{\infty} a_{n_k} + \frac{b_n}{c_n}$$

Beweis: IA n = 0:

IV

IS $n \mapsto n+1$

q.e.d.

