6.3.1.(1)
$$EX_1 = 0(1-p) + 1p = p$$
, 故 X_1 是 p 的无偏估计

$$(2)EX_1^2 = 0^2(1-p) + 1^2p = p \neq p^2$$
, 故 X_1^2 不是 p 的无偏估计

$$(3)EX_1X_2 = 0^2(1-p)^2 + 1(1-p)p0 + 1(1-p)p0 + 1^2p^2 = p^2$$
, 故 X_1X_2 是 p^2 的无偏估计

6.3.3.
$$EX = VarX = \lambda$$

$$EX^2 = (EX)^2 + VarX = EX + \lambda^2$$

即为
$$E(X^2) - E(X) = \lambda^2$$

即
$$\lambda^2 = \overline{X}^2 - \frac{\overline{X}}{n}$$

6.3.5.由题意得,
$$k_1 + k_2 = 1$$

$$Var(k_1\hat{\theta_1} + k_2\hat{\theta_2}) = k_1^2 Var\hat{\theta_1} + k_2^2 Var\hat{\theta_2} = 2k_1^2 Var\hat{\theta_2} + (1 - k_1)^2 Var\hat{\theta_2}$$

$$=(3k_1^2-2k_1+1)Var\theta_2$$

由二次函数性质得 $k_1 = \frac{1}{3}$,故 $k_2 = \frac{2}{3}$

6.3.6.
$$MSE(\hat{\theta}_1) = 6$$
, $MSE(\hat{\theta}_2) = 1^2 + 2 = 3$

因此 $\overset{\wedge}{ heta_2}$ 比较好

6.4.2.保证枢轴量的分布已知且不依赖于任何未知参数

6.5.2.由公式得, σ^2 未知, μ 置信水平为0.95的置信区间为

$$[2.705 - \frac{0.029}{\sqrt{16}}t_{0.975}(15), 2.705 = \frac{0.029}{\sqrt{16}}t_{0.975}(15)]$$

即为[2.6895, 2.7205]

6.5.4.由公式得, σ^2 未知, μ 置信水平为0.95的置信区间为

$$[6720 - \frac{220}{\sqrt{10}}t_{0.975}(9), 6720 + \frac{220}{\sqrt{10}}t_{0.975}(9)]$$

即为[6562.618, 6877.382]

6.5.6.由公式得, μ 未知, σ 置信水平为0.95的置信区间为

$$[\sqrt{\frac{(9-1)11^2}{\chi_{0.97}^{(8)}}},\sqrt{\frac{(9-1)11^2}{\chi_{0.028}^{(9)}}}]$$

即为[7.4300, 21.0736]

6.5.7.
$$\overline{x} = 2.8, s = 0.223$$

由公式得,对于期望值和方差分别作置信水平为0.95的区间估计结果如下

$$\left[2.8 - \frac{0.223}{\sqrt{15}}t_{0.975}(14), 2.8 + \frac{0.223}{\sqrt{15}}t_{0.975}(14)\right], \left[\frac{14\times0.223^2}{\chi_{0.975}^2|4|}, \frac{14\times0.223^2}{\chi_{0.025}^2|4|}\right]$$

即为[2.6762, 2.9238], [0.0268, 0.1244]

6.6.3.由如下公式[\overline{X} $-\overline{Y}$ $-t_{1-\frac{\alpha}{2}}(m+n-2)S_W\sqrt{\frac{1}{m}+\frac{1}{n}},\overline{X}$ $-\overline{Y}$ $+t_{1-\frac{\alpha}{2}}(m+n-2)S_W\sqrt{\frac{1}{m}+\frac{1}{n}}]$ 可得平均参数之差的置信区间为[-2.245,-1.855]

6.6.4.由公式得[
$$\frac{0.245^2/0.357^2}{F_{0.97}(5,5)}$$
, $\frac{0.245^2/0.357^2}{F_{0.02}(5,5)}$] 即[0.0659, 3.3675]