Departamento de Matemática da Universidade de Aveiro

CÁLCULO II - Agrupamento 4

19 de julho de 2021

Duração: 2h30m

Exame da Época de Recurso

N.º:	. Nome:
Curso:	N.º de folhas suplementares entregues:
Declaro que desisto:	

O exame é composto por 8 (oito) questões as quais devem ser respondidas em folhas separadas. O formulário encontra-se no verso da última folha.

Justifique todas as respostas de forma clara e concisa.

- 1. [30] Considere a série de potências $S(x) = \sum_{n=1}^{\infty} \frac{(x-1)^n}{n \, 2^{n-1}}$.
 - (a) Determine o domínio de convergência da série, indicando os pontos onde a convergência é simples e os pontos onde a convergência é absoluta.
 - (b) Determine a soma S(x).

(Sugestão: Comece por identificar a derivada S'(x) e tenha em conta o valor de S(1))

- 2. [20] Usando o resto na forma de Lagrange, mostre que o erro (absoluto) cometido ao aproximar $f(x)=\sin{(2x)}$ pelo polinómio de MacLaurin $T_0^3f(x)$, no intervalo]-0.1,0.1[, é inferior a $\frac{2}{3}\times 10^{-4}$.
- 3. [30] Considere a função f definida em $[-\pi, \pi]$ por $f(x) = |x|(\pi |x|)$.
 - (a) Justifique que a série de Fourier de f é uma série de cossenos, ou seja, da forma

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) \qquad (a_n \in \mathbb{R}, \quad n \in \mathbb{N}_0)$$

e calcule o coeficiente a_0 que figura nesta série.

(b) Sabendo agora que a série de Fourier de f é

$$\frac{\pi^2}{6} - \sum_{n=1}^{\infty} \frac{\cos(2nx)}{n^2},$$

mostre que esta série converge uniformemente em $[-\pi,\pi]$ e indique a sua função soma.

(c) Usando o resultado da alínea anterior, prove que

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}.$$

- 4. [40] Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = 3x^2 + 2y^2 4y + 1$.
 - (a) Determine os pontos críticos de f e classifique-os (em minimizante local, maximizante local ou ponto de sela).
 - (b) Determine os extremos absolutos de f no círculo $C=\{(x,y)\in\mathbb{R}^2: x^2+y^2\leq 16\}.$
- 5. [25] Resolva as seguintes equações diferenciais:
 - (a) $3x^2y^2y' = 1 + x^2$.
 - (b) $y' + 2xy = e^{-x^2} \cos x$.
- 6. [20] Considere as seguintes equações diferenciais:

$$y''' + y' = e^x \tag{1}$$

$$y''' + y' = 6\cos(2x). (2)$$

- (a) Mostre que $y_1=\frac{e^x}{2}$ é solução da equação (1) e que $y_2=-{\rm sen}\,(2x)$ é solução da equação (2).
- (b) Determine a solução geral da equação diferencial

$$y''' + y' = e^x + 6\cos(2x).$$

7. [25] Usando transformadas de Laplace, determine a solução do problema de valores iniciais

$$y'' + y = 4e^t$$
, $y(0) = 4$, $y'(0) = -3$.

8. [10] Considere a equação diferencial

$$y'' + 2by' + a^2y = 0,$$

onde $a,b\in\mathbb{R}$. Mostre que se ϕ é uma solução da equação dada, então $\psi=\phi'$ é também solução da mesma equação.

FORMULÁRIO

Algumas fórmulas de derivação

(fg)' = f'g + fg'	$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$
$(kf)' = kf' \qquad (k \in \mathbb{R})$	$(f^{\alpha})' = \alpha f^{\alpha - 1} f' \qquad (\alpha \in \mathbb{R})$
$(a^f)' = f' a^f \ln a \qquad (a \in \mathbb{R}^+)$	$(\log_a f)' = \frac{f'}{f \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$
$(\operatorname{sen} f)' = f' \cos f$	$(\cos f)' = -f' \operatorname{sen} f$
$(\operatorname{tg} f)' = f' \sec^2 f = \frac{f'}{\cos^2 f}$	$(\cot g f)' = -f' \operatorname{cosec}^2 f = -\frac{f'}{\operatorname{sen}^2 f}$
$(\operatorname{arcsen} f)' = \frac{f'}{\sqrt{1 - f^2}}$	$\left(\operatorname{arccos} f\right)' = -\frac{f'}{\sqrt{1-f^2}}$
$\left(\operatorname{arctg} f\right)' = \frac{f'}{1+f^2}$	$(\operatorname{arccotg} f)' = -\frac{f'}{1+f^2}$

Integração por partes:
$$\int f'g = f g - \int f g'$$

Alguns desenvolvimentos em série de MacLaurin

•
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots, \quad x \in]-1,1[$$

•
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots, \quad x \in \mathbb{R}$$

•
$$\operatorname{sen} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots, \quad x \in \mathbb{R}$$

•
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots, \quad x \in \mathbb{R}.$$

Algumas transformadas de Laplace

$$F(s) = \mathcal{L}\{f(t)\}(s), \quad s > s_f$$

função	transformada
$t^n \ (n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}, \ s > 0$
$e^{at} \ (a \in \mathbb{R})$	$\frac{1}{s-a}, \ s>a$
	$\frac{a}{s^2 + a^2}, \ s > 0$
$\cos(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 + a^2}, \ s > 0$
$senh(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 - a^2}, \ s > a $
$\cosh(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 - a^2}, \ s > a $

função	${\it transformada}$
$e^{\lambda t} f(t) \ (\lambda \in \mathbb{R})$	$F(s-\lambda)$
$H_a(t)f(t-a) \ (a>0)$	$e^{-as}F(s)$
$f(at) \ (a>0)$	$\frac{1}{a} F\left(\frac{s}{a}\right)$
$t^n f(t) \ (n \in \mathbb{N})$	$(-1)^n F^{(n)}(s)$
$f'(t) \ (n \in \mathbb{N})$	sF(s) - f(0)
$f''(t) \ (n \in \mathbb{N})$	$s^2 F(s) - s f(0) - f'(0)$
$f^{(n)}(t) \ (n \in \mathbb{N})$	$s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{(k-1)}(0)$