Générateur de signal

Protocole de communication

Le générateur de signal est une machine esclave qui obtient ses instructions d'une interface logicielle sur ordinateur. La communication du système se fait via le port USB à partir de données transmises en trames d'un nombre variable d'octets.

L'interface logicielle est fournie par le chargé de laboratoire et le présent document décrit le protocole de communication supporté par le générateur de signal. La communication USB est prise en charge par le circuit intégré FT245RL qui s'interface en mode parallèle 8bits. Référezvous à la documentation du fabricant FTDI pour savoir comment communiquer avec le FT245RL.

Les commandes

Commande	Code	Description
START	0x00	Début de la génération du signal
STOP	0x01	Arrêt de la génération du signal
RESET	0x02	Remise à zéro de la configuration du signal
SPEED	0x03	Vitesse du signal
ATTENUATION	0x04	Atténuation du signal
LOAD	0x05	Chargement du signal

Les trames

Les trames débutent toujours par l'octet de début (0x42). Le premier octet suivant l'octet de départ est le code de la commande.

Ex: La commande START

Les commandes STOP et RESET fonctionnent de façon similaire à la commande START. Dans le cas des commandes SPEED, ATTENUATION, et LOAD, d'autres octets complètent la trame.

Trame de la commande SPEED

En plus de l'octet de début et l'octet de commande, la trame de la commande SPEED présente deux octets qui représentent un incrément dans la mémoire. La mémoire utilise 65 535 points sous une représentation de 16 bits.

Ex: La commande SPEED

Donnée	Signification
0x42	Début de trame
0x03	Commande SPEED
0xXX	Incrément : octet haut (MSB)
0xXX	Incrément : octet bas (LSB)

La trame mesure au total 4 octets.

Trame de la commande ATTENUATION

En plus de l'octet de début et l'octet de commande, la trame de la commande ATTENUATION présente un octet qui représente une atténuation sur une échelle d'environ 6dB.

Ex: La commande ATTENUATION

Donnée	Signification
0x42	Début de trame
0x04	Commande ATTENUATION
0xXX	Atténuation en facteur de 6 dB
	Ex : 1 = Atténuation de 6dB
	2 = Atténuation de 12dB

La trame mesure au total 3 octets.

Trame de la commande LOAD

En plus de l'octet de début et l'octet de commande, la trame de la commande LOAD présente une série de 32 points. Chaque point est représenté par 2 octets, dont 14 bits qui représentent la valeur et deux bits qui ne sont pas utilisés.

Ex : La commande LOAD

Donnée	Signification
0x42	Début de trame
0x05	Commande LOAD
0xXX	Point 1 : octet haut (MSB)*
0xXX	Point 1 : octet bas (LSB)
0xXX	Point 2 : octet haut (MSB)*
0xXX	Point 2 : octet bas (LSB)
	•••
0xXX	Point 32 : octet haut (MSB)*
0xXX	Point 32 : octet bas (LSB)

^{*} Les 2 bits les plus significatifs sont ignorés.

La trame mesure au total 66 octets.