LOGISTIC REGRESSION Joseph M Hilbe

Assignment 2 (20 points)

Q1 (2 points)

What is the primary difference in probabilities produced by a logit model compared to the probabilities produced by a complementary loglog model?

The following data and model relate to questions 2-8.

The following binary logistic regression output uses the **affairs** data set, with *affair* (1 = had affair; 0 = never had affair) as the response and predictors:

male: 1 = male; 0 = female

kids: 1 = children in family; 0 = no children in family.

and a 5-level categorical predictor, *religious*, which has been factored into indicator variables or levels

anti-religious: 1- anitreligious --- the reference.

notrel: 2- not religious slghtrel: 3- slightly religious smerel: 4- somewhat religious vryrel: 5- very religious.

Logistic regression Number of obs = 601

LR chi2 (6) = 34.36Prob > chi2 = 0.0000

vryrel | .2792907 .1209288 -2.95 0.003 .119536 .6525508

Q2 (2 points)

How can the significance of a predictor be determined from the confidence intervals?

Q3 (2 points)

Interpret the odds ratio of kids.

Q4 (2 points)

What is the odds ratio of *vryrel* for having an affair. Interpret it in full.

Q5 (2 points)

What is the odds ratio of *vryrel* for not having an affair. Interpret it in full.

Q6 (2 points)

What is the value of the parameter estimate of *male* to the nearest hundredths?

Q7 (2 points)

If the model were re-estimated excluding the predictor *male*, what would you expect to happen to the odds ratio of *kids*. Why?

The following data and model relate to questions 8-9

Below is the **kyp** data set, which is from a study of kyphosis, a disease of the spine. The data comes from Bell et al (1989) as found in Hastie and Tibshirani (1990). *kyp* is the binary response with 1 indicating that the patient has kyphosis, 0 that they do not. Patients in the study underwent corrective spine surgery. Predictors include

start: continuous - indicating the first disk or vertebrae level of the surgery (1-18)

numb: continuous - indicating the number of disks involved in the surgery (2-14)

age : continuous - age in months

Logistic regression

Number of obs = 83 LR chi2(3) = 21.79 Prob > chi2 = 0.0001

 $Log\ likelihood = -32.508134$

Pseudo R2 = 0.2510

					% Conf. Inter	val]
start numb age	198175 .29815 .005979	4 .065719 85 .17787 8 .005519	9 -3.0 91 1. 5 1.0	02 0.003 68 0.094 8 0.279	3269841 40504781 0048383 5 -3.632523	.6467951 .0167979

Q8 (2 points)

Interpret the coefficient start.

Q9 (2 points)

What does the intercept, _cons, indicate?

Q10 (2 points) More Challenging

Given the table of counts below, with the reponse y on the vertical axis and predictor, x, on the horizontal. Calculate the logistic coefficient of x. Then prove using a logistic regression.

X								
1=y		0	-	Total				
у	0	825	157 					
	1	431	-	513				
T	•	1,256	•	1,495				