Задачи за подготовка за второ контролно по ФП, специалност "Информационни системи"

Задача 1. Нека f е функция от тип Int -> Int, a lst е списък от цели числа [a_1 , a_2 , ... , a_n]. Дефинирайте функция **func f lst**, която връща функция от тип Int -> Int, чиято стойност за всяко цяло число x е равна на $f(a_1x) + 2.f(a_2x) + ... + n.f(a_nx)$.

Задача 2. Нека f е функция от тип Int -> Int, a lst е списък от цели числа [a_1,a_2,\ldots,a_n]. Дефинирайте функция **func f lst**, която връща функция от тип Int -> Int, чиято стойност за всяко цяло число x е равна на $a_1f(x) + a_2f(x^2) + \ldots + a_nf(x^n)$.

Задача 3. Дефинирайте функция от по-висок ред **boundUp f y**, която приема едноаргументна числова функция f и число у и връща като резултат едноаргументна числова функция, чиято стойност във всяка дадена точка x е равна на стойността на f в x, ако тази стойност е по-голяма от y, или на y в противен случай.

Задача 4. Разглеждаме непразен списък от едноаргументни функции [f_1 , f_2 , ..., f_n], всяка от които е от тип Int -> Int. Дефинирайте функция **getOddCompositionValue**, която при подаден такъв списък lst връща като резултат функция, чиято стойност за всяко цяло число x е равна на стойността на композицията на функциите с нечетни поредни номера от lst в x, т.е. на $f_1(f_3(\ldots(x)\ldots))$.

Пример:

getOddCompositionValue [($x \rightarrow x+1$),($x \rightarrow x*2$),($x \rightarrow x-1$)($x \rightarrow x$ 'div' 2)] 2 \rightarrow 2

Задача 5. Нека са дефинирани типовете:

data Color = Red | Green | Blue -- цвят

deriving (Read, Show, Eq)

data Tree = Empty | Node Color Tree Tree -- двоично дърво от тип Color

Дефинирайте функция **minDepthGreenNode** :: Tree -> Int, която намира дълбочината на найплиткия (най-близкия до корена) връх с цвят Green на дадено двоично дърво от тип Color.

Задача 6. Нека са дефинирани типовете:

data Color = Red | Green | Blue -- цвят

deriving (Read, Show, Eq)

data Tree = Empty | Node Color Tree Tree -- двоично дърво от тип Color

Дефинирайте функция **maxDepthBlueNode** :: Tree -> Int, която намира дълбочината на найдълбокия (най-отдалечения от корена) връх с цвят Blue на дадено двоично дърво от тип Color.

Задача 7. Нека са дефинирани типовете:

type Name = String -- име type Capital = Name -- столица

type AvgYearlyTemperature = Double -- средногодишна температура

type Elevation = Int -- надморска височина

data City = City Name Elevation AvgYearlyTemperature -- град

deriving (Read, Show)

data Country= Country Name Capital [City] -- държава

deriving (Read, Show)

Дефинирайте функция **coldestCapital** :: [Country] -> Name, която получава като аргумент списък от държави и връща като резултат името на държавата от списъка с най-студена столица (столица с най-ниска средногодишна температура).

Задача 8. Нека са дефинирани типовете:

type Name = String -- име type Capital = Name -- столица

type AvgYearlyTemperature = Double -- средногодишна температура

type Elevation = Int -- надморска височина

data City = City Name Elevation AvgYearlyTemperature -- град

deriving (Read, Show)

data Country= Country Name Capital [City] -- държава

deriving (Read, Show)

Дефинирайте функция highestCapital :: [Country] -> Name, която получава като аргумент списък от държави и връща като резултат името на държавата от списъка с най-висока столица (столица с най-голяма надморска височина).