Exploratory Data Analysis-BreakHis Dataset

February 23,2019

[1] About Data

The dataset which we are going to use is BreakHis dataset caontainin 7909 histopathical breast cancer sample images from 82 patients respectively.

REPRESENTATION OF DATASET IN PROJECT IS AS FOLLOWS-

1. Cancer Class

1.1. Benign

This Class is represented by Integer-1

1.2. Malignant

This Class is represented by Integer-2

2. Cancer Type

2.1 Benign-A

Benign-A represents Adenosis. This Class is represented by Integer-11

2.2 Benign-FA

Benign-FA represents Fibro Adenoma. This Class is represented by Integer-12

2.3 Benign-TA

Benign-TA represents Tubulor Adenoma. This Class is represented by Integer-13

2.4 Benign-PT

Benign-PT represents Phyllodes Tumor. This Class is represented by Integer-14

2.5. Malignant-DC

Malignant-DC represents Ductol Carinoma. This Class is represented by Integer-21

2.6. Malignant-LC

Malignant-LC represents Lobular Carinoma. This Class is represented by Integer-22

2.7. Malignant-MC

Malignant-Mc represents Mucious Carinoma. This Class is represented by Integer-23

2.8. Malignant-PC

Malignant-PC represents Pappillary Carinoma. This Class is represented by Integer-24

3. Magnification

- 3.1. 40X 40
- 3.2. 100X 100
- 3.3. 200X 200
- 3.4. 400X 400

Note -

After Each visualization some counts are represented for elaborations of plots which are used for distribution.

Pre-Exploratory Data Analysis

Import Library

In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sb
sb.set(style="darkgrid")
import matplotlib.pyplot as plt
```

Loading Numpy Array

In [2]:

```
# Train Arrays
data_cancerclass_train=np.load("train/data_cancerclass_train.npy")
data_cancertype_train=np.load("train/data_cancertype_train.npy")
data_mag_train=np.load("train/data_mag_train.npy")
# Test Arrays
data_cancerclass_test=np.load("test/data_cancerclass_test.npy")
data_cancertype_test=np.load("test/data_cancertype_test.npy")
data_mag_test=np.load("test/data_mag_test.npy")
```

[2] Train Arrays Visualization

In [3]:

[2.1] Cancer Class

In [4]:

```
ax = sb.countplot(x="Cancer Class", data=train_df)
fig=ax.get_figure()
fig.savefig("Train Cancer Class.png")
for p in ax.patches:
    x=p.get_bbox().get_points()[:,0]
    y=p.get_bbox().get_points()[1,1]
    ax.annotate(y,(x.mean(), y),ha='center', va='bottom')
```


In [5]:

```
print(train_df.groupby("Cancer Class").count())
```

	Cancer Type	Magnification
Cancer Class		
1	1468	1468
2	3532	3532

[2.3] Cancer Type

In [6]:

```
ax = sb.catplot(x="Cancer Class",hue="Cancer Type", data=train_df,kind="count")
ax.savefig("Train Cancer Class with cancer type.png")
```


In [7]:

print(train_df.groupby("Cancer Type").count())

	Cancer Class	Magnification
Cancer Type		
11	252	252
12	682	682
13	217	217
14	317	317
21	2312	2312
22	302	302
23	547	547
24	371	371

[2.3] Magnification

In [8]:

```
ax=sb.countplot(y="Magnification", data=train_df)
fig=ax.get_figure()
fig.savefig("Train Magnification.png")
```


In [9]:

```
print(train_df.groupby("Magnification").count())
```

	Cancer Class	Cancer Type
Magnification		
40	1248	1248
100	1320	1320
200	1268	1268
400	1164	1164

[2.4] Cancer Class Data Distribution

In [10]:

```
ax=sb.countplot(x="Magnification",hue="Cancer Class", data=train_df)
fig=ax.get_figure()
fig.savefig("Train Magnification in Train Numpy.png")
```


In [11]:

```
print(train_df.groupby(["Cancer Class","Magnification"]).count())
```

			Cancer	Type
Cancer	Class	Magnification		
1		40		369
		100		382
		200		367
		400		350
2		40		879
		100		938
		200		901
		400		814

[2.5] Train Data Distribution

In [12]:

ax= sb.catplot(x="Magnification", hue="Cancer Type", col="Cancer Class",data=train_df, kind="count") ax.savefig("Train Cancer Type with Magnification using Cancer Class.png")


```
print(train_df.groupby(["Cancer Type","Magnification"]).count())
```

			Cancer	Class
Cancer	Туре	Magnification		
11		40		64
		100		66
		200		63
		400		59
12		40		172
		100		177
		200		172
		400		161
13		40		51
		100		54
		200		56
		400		56
14		40		82
		100		85
		200		76
		400		74
21		40		565
		100		607
		200		596
		400		544
22		40		73
		100		83
		200		76
		400		70
23		40		143
		100		151
		200		141
		400		112
24		40		98
		100		97
		200		88
		400		88

[3] Test Arrays Visualization

In [14]:

[3.1] Cancer Class

In [15]:

```
ax = sb.countplot(x="Cancer Class", data=test_df)
fig=ax.get_figure()
fig.savefig("Test Cancer Class.png")
for p in ax.patches:
    x=p.get_bbox().get_points()[:,0]
    y=p.get_bbox().get_points()[1,1]
    ax.annotate(y,(x.mean(), y),ha='center', va='bottom')
```


In [16]:

```
print(test_df.groupby("Cancer Class").count())
```

	Cancer Type	Magnification
Cancer Class		
1	1007	1007
2	1893	1893

[3.2] Cancer Type

In [17]:

```
ax = sb.catplot(x="Cancer Class",hue="Cancer Type", data=test_df,kind="count")
ax.savefig("Test Cancer Class with cancer type.png")
```


In [18]:

```
print(test_df.groupby("Cancer Type").count())
```

	Cancer Class	Magnification
Cancer Type		
11	191	191
12	331	331
13	235	235
14	250	250
21	1138	1138
22	323	323
23	244	244
24	188	188

[3.3] Cancer Class Maginification

In [19]:

```
ax=sb.countplot(y="Magnification", data=test_df)
fig=ax.get_figure()
fig.savefig("Test Magnification.png")
```


In [20]:

```
print(test_df.groupby("Magnification").count())
```

	Cancer Class	Cancer Type	2
Magnification			
40	745	745	5
100	759	759)
200	743	743	3
400	653	653	3

[3.4] Cancer Class Data Distribution

In [21]:

```
ax=sb.countplot(x="Magnification", hue="Cancer Class", data=test_df)
fig=ax.get_figure()
fig.savefig("Test Magnification in Test Numpy.png")
```


In [22]:

```
print(test_df.groupby(["Cancer Class","Magnification"]).count())
```

		Cancer	Туре
Cancer Class	Magnification		
1	40		255
	100		261
	200		255
	400		236
2	40		490
	100		498
	200		488
	400		417

[3.5] Test Data Distribution

In [23]:

```
ax= sb.catplot(x="Magnification", hue="Cancer Type", col="Cancer Class",
... data=test_df, kind="count");
ax.savefig("Test Cancer Type with Magnification using Cancer Class.png")
```


In [24]:

```
print(test_df.groupby(["Cancer Type","Magnification"]).count())
```

			Cancer Class
Cancer	Type	Magnification	
11		40	50
		100	47
		200	48
		400	46
12		40	80
		100	83
		200	92
		400	76
13		40	58
		100	66
		200	52
		400	59
14		40	67
		100	65
		200	63
		400	55
21		40	298
		100	296
		200	300
		400	244
22		40	83
		100	87
		200	87
		400	66
23		40	62
		100	70
		200	55
		400	57
24		40	47
		100	45
		200	46
		400	50

Post-Exploratory Data Analysis

After the dataset is retrived, it was passed through some Deep-Learning Algorithms for feature Extraction. The Algorithms are known as Deep Convolution Neural Networks.

The Used CNN's are as follows

- 1. VGG16
- 2. VGG19
- 3. Xception
- 4. ResNet50
- 5. InceptionV3
- 6. InceptionResNetV2

The Dataset was distributed as 5000 Train Samples,2900 Test Samples and Randomly 9 Images were removed for the checking of model.