MIC PSP linkages of polymers using SAXS data

Marie DEKOU and Andrew Castillo 12/10/2015

Material Informatics Class Fall 2015

Introduction

Material system: semicrystalline polymer

Experimental procedure: X-Ray Scattering

DataSet

SAXS (960x960)

WAXS (960x1920)

	2	ample Detail	s		Dimensionality in Angstroms				Orientation								Mechanical Property		
	Density	Film Thickness in microns	MD Draw Ratio	% Crystallinity	Lsaxs Angstrom	dac Angstrom	dc Angstrom	da Angstrom	LAR	Hermans Lamellae	fa md	fb md	fc md	fa td	fb td	fc td	dart drop in gms/mil	elmendorf TD gms/mil	elmendorf MD gms/mil
average	0.918	37.500	19.875	40.698	136.577	136.000	38.146	91.463	1.943	0.085	0.060	-0.093	0.033	-0.054	0.133	-0.080	714.031	373.769	236.767
standard																			
deviation	0.005	22.079	8.774	3.516	23.168	9.421	2.958	7.419	0.754	0.050	0.046	0.066	0.029	0.032	0.080	0.049	403.124	64.404	44.214
minimum	0.912	20.000	7.000	33.317	108.363	124.000	30.630	81.700	1.110	0.018	0.010	-0.213	0.006	-0.121	0.026	-0.192	135.000	287.520	146.480
maximum	0.923	75.000	32.000	47.338	181.340	149.000	41.850	100.600	3.700	0.186	0.163	-0.015	0.101	-0.002	0.312	-0.024	1380.000	527.210	326.000
18 samples					13 variables												3 mechanical properties		

3 bivariate distributions (molecular composition)

Project definition

Structure-Property Predictive Models

Structure-Property Predictive Models

- Property to predict: puncture resistance (dartdrop)
- Predictors: structure parameters

Process-Structure Predictive Models

Process to predict: molecular composition reduced to 1 component

PSP linkage?

Mechanical Property ~ Process parameters (Density, Thickness, PC1MolComp)

percentage error of the Process-Property regression

Mechanical Property~ Process (molecular comp)+Structure(PC1,2,3,4,5)

Initial Approach

Database Approach

Exploratory PCA

- PCA
 - Goal: Establish feasibility to make matches for microstructure in fourier space
 - Data
 - Autocorrelation in Fourier Space
 - 12 Experimental images (reduced to 400 by 400 pixels)
 - 180 simulated images (400 by 400 pixels)
 - Vf, Particle Height, Particle Width set for segmented images
 - Gaussian fields than applied to simulate non-eigen microstructures
 - PCA Figures
 - Beam Stop On
 - Beam Stop Off
 - Parameters that were controlled are color coded

Exploratory PCA Results

• Observe if clustering occurs even if information at beamstop is removed

Observing effects of the Beam Stop

- Results suggest that large amount of variance between microstructures where beam stop is located (lose a lot of unique information)
- However, our PCA results stills show clustering of the microstructures in accordance with the parameters we have chosen, suggesting this a viable method to trace back to microstructure features

Final steps of forward problem

Problem

- Way to normalize images to match experimental images
 - Possible solution: Set range of electron density
 - Find possible electron density range (in arbitrary measurement units)
 - Or convert micrographs to absolute intensity scale
 - Use bounds of electron density from literature/extracted from experiments

Conclusions and perspective

- Dataset too reduced to generate accurate PSP linkages.
- Possible to use the complete SAXS and WAXS data for the PSP linkage once the normalization problem is solved.
- Built method to develop forward problem in recovery
 - Clustering suggest that this method could be used to narrow down microstructure parameters.
- Identified major issues with recovery
- Direct approach for recovery very difficult.

Appendix Equations

Scatter Equations

$$I_{k} = \left| \int_{V} \rho_{s} e^{-iks} ds \right|^{2}$$

$$A_k = \int \rho_s e^{-iks} ds$$

$$I_k = \left| A_k \right|^2$$

$$I_k = A_k A_k^*$$

$$I_k = \left(\int \rho_s e^{-iks'} ds'\right) \left(\int \rho_s e^{iks} ds\right) \qquad s' = s + 1$$

$$I_{k} = \int \left(\int \rho_{s} \rho_{s+r} ds \right) e^{-ikr} ds$$

$$I_k = \Im \left(\int \rho_s \rho_{s+r} ds \right)$$

$$I_k = \mathfrak{F}^{-1}(f_r^{\rho\rho}) = F_k^{\rho}$$

$$f_0^{\,
ho
ho}=$$

$$f_{\infty}^{\rho\rho} = \langle \rho_{s} \rangle \langle \rho_{s+r} \rangle V = \langle \rho \rangle^{2} V$$

$$f_{r}^{\rho\rho} = \int (\eta_{s} + \langle \rho \rangle)(\eta_{s+r} + \langle \rho \rangle) ds \qquad \eta_{s} = \rho_{s} - \langle \rho \rangle$$

$$f_{r}^{\rho\rho} = \int \eta_{s} \eta_{s+r} ds + \langle \rho \rangle^{2} \int ds + \langle \rho \rangle \int \eta_{s} ds + \langle \rho \rangle \int \eta_{s+r} ds$$

$$I_{k} = \int f_{r}^{\rho\rho} e^{-ikr} dr = \int f_{r}^{\eta\eta} e^{-ikr} dr + \langle \rho \rangle^{2} V \int e^{-ikr} dr \qquad f_{r}^{\eta\eta} = \int \eta_{s} \eta_{s+r} ds \qquad f_{0}^{\eta\eta} = \langle \eta \rangle^{2} V = 0$$

$$f_{0}^{\eta\eta} = \langle \eta \rangle^{2} V$$

 $\langle \rho \rangle^2 V \delta_k$, refers to scattering of the sample as a whole if there were uniform density, since at k=0 the intensity is swamped by the beam intensity and experimentally not measured this term is ignored if we ignore this term we can define the scattering intensity as

$$I_{k} = (\int \rho_{s}e^{-ids})(\int \rho_{s}e^{-ids})$$

$$S' = s + r$$

$$I_{k} = \int (\int \rho_{s}\rho_{s+r}ds)e^{-ikr}dr$$

$$I_{k} = \Im(\int \rho_{s}\rho_{s+r}ds)$$

$$I_{k} = \Im(\int \rho_{s}\rho_{s+r}d$$

Understanding the intensity maps

Microstructure

Autocorrelation in Fourier Space

Simulated Scatter
Plot (similar to
received
experimental data)

2-pt stats of simulated microstructure (real space)

Early Trials

- Initial Approach proved difficult
 - Handling of information within beam stop non-trivial
 - No reference point or measurement to scale with to get to absolute intensity
 - Manipulating data in Fourier space not straight forward
 - Fourier representation means amplitudes are independent
 - Recovery of phase information ultimately needed as well as recovery of microstructure