Aim1 traffic violations

Cameron Baker

4/11/2021

```
library(tidyr)
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
final_df <- read.csv("2019_Racial_Profiling_Combined.csv", stringsAsFactors = F)</pre>
moving_traffic_violations <- filter(final_df, Reason_for_stop == "Moving Traffic Violation") %>% filter
moving_traffic_violations <- moving_traffic_violations[which(moving_traffic_violations$PRIMARY_KEY %in%
pop_stats_2010 <- read.csv("2010 census data.csv")</pre>
pop_stats_2010[1,]
##
                   NAME Total.pop Pop.One.Race Pop.Two.More.Races Black.pop
## 1 Austin city, Texas
                            614925
                                                              16634
                                                                        48230
     Native.pop Asian.pop PI.pop White.pop Hispanic.pop
## 1
           4807
                    39777
                              432
                                     329500
                                                  188318
Black.pop <- (sum(pop_stats_2010$Black.pop) / sum(pop_stats_2010$Total.pop))</pre>
Hispanic.pop <- (sum(pop_stats_2010$Hispanic.pop) / sum(pop_stats_2010$Total.pop))</pre>
White.pop <- (sum(pop_stats_2010$White.pop) / sum(pop_stats_2010$Total.pop))
table(moving_traffic_violations$type)
##
##
     arrest citation warning
##
       6327
               24067
                         67907
table(moving_traffic_violations$type, moving_traffic_violations$Race)
##
              BLACK HISPANIC OR LATINO WHITE
##
##
               1805
                                   2797 1725
     arrest
##
     citation 3102
                                  8943 12022
##
     warning
               9686
                                19964 38257
```

```
 \begin{table} traffic\_stop\_sex\_tbl &<- as.data.frame.matrix(table(moving\_traffic\_violations\$type, moving\_traffic\_violations\$type, moving\_traffic\_violations$type, moving\_traffic\_violations
```

	arrest	citation	warning
F	1577	9154	27781
M	4750	14909	40122

```
 \begin{array}{l} {\rm traffic\_stop\_sex\_tbl} <- \ as. data.frame.matrix(table(moving\_traffic\_violations\$type,\ moving\_traffic\_violations\$type,\ moving\_traffic\_violations\type,\ moving\_traffic\_violations\type,\
```

	arrest	citation	warning
F	1577	9154	27781
M	4750	14909	40122

```
traffic_stop_race_tbl <- t(as.data.frame.matrix(table(moving_traffic_violations$type, moving_traffic_vio
round(rowSums(traffic_stop_race_tbl) / sum(traffic_stop_race_tbl),4)

## BLACK HISPANIC OR LATINO WHITE
## 0.1485 0.3225 0.5290</pre>
```

knitr::kable(traffic_stop_race_tbl)

	arrest	citation	warning
BLACK	1805	3102	9686
HISPANIC OR LATINO	2797	8943	19964
WHITE	1725	12022	38257

```
traffic_stop_race_tbl[1,] <- round(traffic_stop_race_tbl[1,] / sum(traffic_stop_race_tbl[1,]),3)
traffic_stop_race_tbl[2,] <- round(traffic_stop_race_tbl[2,] / sum(traffic_stop_race_tbl[2,]),3)
traffic_stop_race_tbl[3,] <- round(traffic_stop_race_tbl[3,] / sum(traffic_stop_race_tbl[3,]),3)
knitr::kable(traffic_stop_race_tbl)</pre>
```

	arrest	citation	warning
BLACK	0.124	0.213	0.664
HISPANIC OR LATINO	0.088	0.282	0.630
WHITE	0.033	0.231	0.736

	arrest	citation	warning
BLACK F	387	1171	3720
BLACK M	1418	1930	5966
HISPANIC OR LATINO F	618	3143	7788
HISPANIC OR LATINO M	2179	5798	12175
WHITE F	572	4840	16273
WHITE M	1153	7181	21981

```
library(graphics)
mosaicplot(t(traffic_stop_race_tbl), shade = TRUE, las=1, main = "")
```



```
out_chisq <- chisq.test(t(traffic_stop_race_tbl))
out_chisq

##

## Pearson's Chi-squared test

##

## data: t(traffic_stop_race_tbl)

## X-squared = 3280.8, df = 10, p-value < 2.2e-16

library(corrplot)

## corrplot 0.84 loaded

corrplot(t(out_chisq$residuals), is.cor = FALSE)</pre>
```



```
#library(gplots)
#traffic_stop_race_tbl <- as.matrix(table(moving_traffic_violations$type, moving_traffic_violations$Rac
#traffic_stop_race_tbl <- as.table(traffic_stop_race_tbl[,c(2,3,5,6,9,10)])
#balloonplot(traffic_stop_race_tbl, label=F)
#library(reshape2)
#melted_tbl <- melt(traffic_stop_race_tbl)
#melted_tbl$outcome <- rep(c("Arrest", "Citation", "Warning"), 3)
#ggplot(melted_tbl, aes(x = variable, y = value, color = outcome)) + geom_bar()

moving_traffic_violations$parsed_time <- as.numeric(gsub(":.*$","",moving_traffic_violations$Time))
moving_traffic_violations$Time_of_day <- "Night"
moving_traffic_violations$Time_of_day[which(moving_traffic_violations$parsed_time > 6 & moving_traffic_violations$type))
```

	arrest	citation	warning
Day	2385	21087	55354
Night	3942	2980	12553

```
moving_traffic_violations$RACE_TOD <- paste0(moving_traffic_violations$Race," (",moving_traffic_violations$Race," (",moving_traffic_violations$Race_TOD, moving_traffic_violations$type)</pre>
knitr::kable(race_tod_tbl)
```

	arrest	citation	warning
BLACK (Day)	835	2669	7253
BLACK (Night)	970	433	2433
HISPANIC OR LATINO (Day)	1012	7736	15928
HISPANIC OR LATINO (Night)	1785	1207	4036
WHITE (Day)	538	10682	32173
WHITE (Night)	1187	1340	6084

```
race_known_tbl <- table(moving_traffic_violations$RACE_TOD, moving_traffic_violations$Race_known)
tmp <- as.data.frame.matrix(race_known_tbl)</pre>
sum(tmp[,2]) / (sum(tmp[,1]) + sum(tmp[,2]))
## [1] 0.00832061
sum(c(tmp[1,2],tmp[3,2],tmp[5,2])) / (sum(tmp[1,]) + sum(tmp[3,]) + sum(tmp[5,]))
## [1] 0.009276722
night_true <- sum(c(tmp[2,2],tmp[4,2],tmp[6,2]))
night_total \leftarrow sum(tmp[2,]) + sum(tmp[4,]) + sum(tmp[6,])
prop.test(c(night_true,sum(tmp[,2])), c(night_total,sum(colSums(tmp))))
##
## 2-sample test for equality of proportions with continuity correction
## data: c(night_true, sum(tmp[, 2])) out of c(night_total, sum(colSums(tmp)))
## X-squared = 31.817, df = 1, p-value = 1.694e-08
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.005054359 -0.002797032
## sample estimates:
##
       prop 1
                    prop 2
## 0.004394914 0.008320610
knitr::kable(race_known_tbl)
```

	FALSE	TRUE
BLACK (Day)	10558	91
BLACK (Night)	3732	16
HISPANIC OR LATINO (Day)	24279	243
HISPANIC OR LATINO (Night)	6819	28
WHITE (Day)	42911	394
WHITE (Night)	8478	40

```
race.chisq <- chisq.test(table(moving_traffic_violations$Race, moving_traffic_violations$type))
corrplot(race.chisq$residuals, is.cor = FALSE)</pre>
```



```
race_tod_tbl.chisq <- chisq.test(race_tod_tbl)
corrplot(race_tod_tbl.chisq$residuals, is.cor = FALSE)</pre>
```


knitr::kable(table(moving_traffic_violations\$Race_known,moving_traffic_violations\$type))

	arrest	citation	warning
FALSE	5615	23324	67838
TRUE	0	743	69

knitr::kable(table(moving_traffic_violations\$Race_known,moving_traffic_violations\$Searched))

	FALSE	TRUE
FALSE	90360	6401
TRUE	788	24

knitr::kable(table(moving_traffic_violations\$Race,moving_traffic_violations\$Searched))

BLACK 12538	TRUE
HISPANIC OR LATINO 28535 WHITE 50118	1867 2856 1708

race_searched_chisq <- chisq.test(table(moving_traffic_violations\$Race,moving_traffic_violations\$Search


```
moving_traffic_violations$RACE_searched <- pasteO(moving_traffic_violations$Race," (",moving_traffic_vi
race_searched_type_tbl <- as.data.frame.matrix(table(moving_traffic_violations$RACE_searched,moving_tra
race_searched_type_tbl <- race_searched_type_tbl[c(1,3,4,6,7,9),]
corrplot(chisq.test(race_searched_type_tbl)$residuals, is.cor = FALSE)</pre>
```


knitr::kable(table(moving_traffic_violations\$RACE_searched,moving_traffic_violations\$type))

	arrest	citation	warning
BLACK (FALSE)	147	3040	9351
BLACK (NA)	188	0	0
BLACK (TRUE)	1470	62	335
HISPANIC OR LATINO (FALSE)	183	8807	19545
HISPANIC OR LATINO (NA)	313	0	0
HISPANIC OR LATINO (TRUE)	2301	136	419
WHITE (FALSE)	121	11939	38058
WHITE (NA)	178	0	0
WHITE (TRUE)	1426	83	199

knitr::kable(t(table(moving_traffic_violations\$type,moving_traffic_violations\$Search_based_on)))

	arrest	citation	warning
	2604	23786	66954
ARREST OF PERSON IN VEHICLE	0	16	0
CONSENT	2	3	15
CONTRABAND/EVIDENCE IN PLAIN VIEW	22	13	7
FRISK FOR SAFETY	127	97	565
INCIDENTAL TO ARREST	2305	0	7
INVENTORY OF TOWED VEHICLE	2	0	0
PROBABLE CAUSE	1265	92	359

	arrest	citation	warning
TOWING OF MOTOR VEHICLE	0	60	0

knitr::kable(t(table(moving_traffic_violations\$Race,moving_traffic_violations\$Search_based_on)))

	BLACK	HISPANIC OR LATINO	WHITE
	13157	29523	50664
ARREST OF PERSON IN VEHICLE	3	9	4
CONSENT	4	10	6
CONTRABAND/EVIDENCE IN PLAIN VIEW	8	24	10
FRISK FOR SAFETY	208	371	210
INCIDENTAL TO ARREST	536	1012	764
INVENTORY OF TOWED VEHICLE	1	1	0
PROBABLE CAUSE	667	729	320
TOWING OF MOTOR VEHICLE	9	25	26

out <- chisq.test(t(as.data.frame.matrix(table(moving_traffic_violations\$Race,moving_traffic_violations

- ## Warning in
- ## chisq.test(t(as.data.frame.matrix(table(moving_traffic_violations\$Race, : Chi-
- ## squared approximation may be incorrect

corrplot(out\$residuals, is.cor = FALSE)

moving_traffic_violations_frisked <- moving_traffic_violations[which(moving_traffic_violations\$Search_b
knitr::kable(table(moving_traffic_violations_frisked\$Race, moving_traffic_violations_frisked\$type))</pre>

arrest	citation	warning
38 61	17 47	153 263 149
	38	38 17 61 47

moving_traffic_violations_frisked.chisq <- chisq.test(table(moving_traffic_violations_frisked\$Race, mov
moving_traffic_violations_frisked.chisq</pre>

```
##
## Pearson's Chi-squared test
##
## data: table(moving_traffic_violations_frisked$Race, moving_traffic_violations_frisked$type)
## X-squared = 6.6971, df = 4, p-value = 0.1528
corrplot(moving_traffic_violations_frisked.chisq$residuals, is.cor = FALSE)
```


Create seperate searched dataset

frisk_found_tbl <- as.data.frame.matrix(table(moving_traffic_violations_frisked\$Race,moving_traffic_vio</pre>

knitr::kable(frisk_found_tbl)

	CASH	DRUGS	NOTHING	OTHER	WEAPONS
BLACK	2	1	172	16	17
HISPANIC OR LATINO	1	1	314	38	17
WHITE	0	1	175	14	19

```
chisq.test(frisk_found_tbl)
## Warning in chisq.test(frisk_found_tbl): Chi-squared approximation may be
## incorrect
##
   Pearson's Chi-squared test
##
## data: frisk_found_tbl
## X-squared = 10.202, df = 8, p-value = 0.2512
black_found_prop <- c(frisk_found_tbl[1,3], sum(frisk_found_tbl[1,]))</pre>
hispanic_found_prop <- c(frisk_found_tbl[2,3], sum(frisk_found_tbl[2,]))</pre>
white found prop <- c(frisk found tbl[3,3], sum(frisk found tbl[3,]))
total_prop <- c(sum(frisk_found_tbl[,3]), sum(rowSums(frisk_found_tbl)))</pre>
prop.test(c(black_found_prop[1],total_prop[1]),c(black_found_prop[2],total_prop[2]))
##
   2-sample test for equality of proportions with continuity correction
##
## data: c(black_found_prop[1], total_prop[1]) out of c(black_found_prop[2], total_prop[2])
## X-squared = 0.094616, df = 1, p-value = 0.7584
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.07241341 0.04859459
## sample estimates:
     prop 1
               prop 2
## 0.8269231 0.8388325
prop.test(c(hispanic_found_prop[1],total_prop[1]),c(hispanic_found_prop[2],total_prop[2]))
##
## 2-sample test for equality of proportions with continuity correction
##
## data: c(hispanic_found_prop[1], total_prop[1]) out of c(hispanic_found_prop[2], total_prop[2])
## X-squared = 0.058102, df = 1, p-value = 0.8095
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.03923602 0.05429342
## sample estimates:
     prop 1
                prop 2
## 0.8463612 0.8388325
prop.test(c(white_found_prop[1],total_prop[1]),c(white_found_prop[2],total_prop[2]))
##
## 2-sample test for equality of proportions with continuity correction
```

```
##
## data: c(white_found_prop[1], total_prop[1]) out of c(white_found_prop[2], total_prop[2])
## X-squared = 6.3207e-30, df = 1, p-value = 1
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.05926181  0.05623798
## sample estimates:
## prop 1 prop 2
## 0.8373206  0.8388325
# Proportion tests for searchs
```