

# 머신러닝 개요

미디어기술콘텐츠학과 강호철

#### 학습

- 사람의 학습
  - 중,고생 교과목
  - 수영, 자전거 타기 등 운동
- 동물의 학습
  - 물총 물고기의 목표물 맞히기 능력 향상
- 기계의 학습
  - 기계도 학습을 할 수 있을까?
  - 기계학습 학문은 결국 기계가 학습 하기 위한 방법론에 대한 연구



#### 기계 학습 정의

- 학습이란?
  - 표준 국어 대사전

"경험의 결과로 나타나는, 비교적 지속적인 행동의 변화나 그 잠재력의 변화. 또는 지식을 습득하는 과정[국립국어원2017]"

- 기계 학습이란?
  - 초창기 정의

"Programming computers to learn from experience should eventually eliminate the need for much of this detailed programming effort. 컴퓨터가 경험을 통해 학습할 수 있도록 프로그래밍할 수 있다면, 세세하게 프로그래밍해야 하는 번거로움에서 벗어날 수 있다[Samuel1959]."



#### 기계 학습 정의

#### ■ 기계 학습이란?

■ 현대적 정의

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. 어떤 컴퓨터 프로그램이 T라는 작업을 수행한다. 이 프로그램의 성능을 P라는 척도로 평가했을 때 경험 E를 통해 성능이 개선된다면 이 프로그램은 학습을 한다고 말할 수 있다[Mitchell1997(2쪽)]."

"Programming computers to optimize a performance criterion using example data or past experience 사례 데이터, 즉 과거 경험을 이용하여 성능 기준을 최적화하도록 프로그래밍하는 작업[Alpaydin2010]"

"Computational methods using experience to improve performance or to make accurate predictions 성능을 개선하거나 정확하게 예측하기 위해 경험을 이용하는 계산학 방법들[Mohri2012]"



#### 지식기반 방식에서 기계학습으로 전환

- 인공지능의 탄생
  - 컴퓨터의 뛰어난 능력
    - 사람이 어려워하는 일을 아주 쉽게 함
    - 80932.467076\*0.390324와 같은 곱셈을 고속으로 수행(현재는 초당 수십억개)
    - 복잡한 함수의 미분과 적분 척척
  - 컴퓨터에 대한 기대감 (컴퓨터의 능력 과신)
    - 사람이 쉽게 하는 일,예를 들어 고양이/개 분류 일도 잘 하지 않을까
    - 1950년대에 인공지능이라는 분야 등장
- 초창기는 지식 기반 방식이 주류
  - 예) 숫자 8 인식 문제



#### 지식기반 방식에서 기계학습으로 전환

■ 지식 기반 방식 vs. 기계학습



그림 1-2 인식 시스템이 대처해야 하는 심한 변화 양상(8과 단추라는 패턴을 어떻게 기술할 것인가?)

#### 지식기반 방식에서 기계학습으로 전환

- 인공지능의 주도권 전환
  - 지식기반에서 기계학습으로 전환
  - 기계학습의 특징?
    - 데이터 기반 접근 방식







그림 1-3 기계 학습으로 만든 최첨단 인공지능 제품들



- 기계학습 예제
  - 가로축:시간
  - 세로축: 이동체 위치



- 예측 문제
  - 임의의 시간에 대한 이동체 위치 예측
  - 회귀 vs. 분류 차이점?



- 기계학습 예제
  - 가로축:시간 (특징)
  - 세로축: 이동체 위치 (목표치)

훈련집합: 
$$\mathbb{X} = \{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n\}, \quad \mathbb{Y} = \{y_1, y_2, \cdots, y_n\}$$
 (1.1)



예제의 훈련집합

$$X = \{ \mathbf{x}_1 = (2.0), \mathbf{x}_2 = (4.0), \mathbf{x}_3 = (6.0), \mathbf{x}_4 = (8.0) \}$$
  
 $Y = \{ y_1 = 3.0, y_2 = 4.0, y_3 = 5.0, y_4 = 6.0 \}$ 



그림 1-4 간단한 기계 학습 예제

- 기계학습 예제
  - 데이터 모델링 (가정)
  - 직선 모델의 수식 y = wx + b
  - 기계 학습은 결국 가장 정확하게 예측할 수 있는, 즉 최적의 매개변수를 찾는 작업
  - 처음에는 최적값을 모르므로 임의의 값에서 시작하고, 점점 성능을 개선 (목표치) 하여 최적에 도달
    - $f_1 \rightarrow f_2 \rightarrow f_3$
  - 예제에서 f3은 w=0.5와 b=2.0





- 기계학습 예제
  - 학습을 마치면 새로운 데이터에 대한 예측에 사용
  - 10초 때 이동체 위치는?



- 기계학습의 궁극적 목표
  - 학습 결과를 새로운 데이터에 적용 했을 때 오류 최소화
  - 테스트 집합에 대한 성능을 높이는 일반화 능력 고도화



## 특징 공간

■ I차원 특징공간

- 2차원 특징공간
  - 특징 벡터 표기
    - $\mathbf{x} = (\mathbf{x} \mathbf{1}, \mathbf{x} \mathbf{2})^{\mathsf{T}}$
  - 예시
  - x=(몸무게,키)<sup>T</sup>, y=장타율
  - x=(체온,두통)<sup>T</sup>, y=감기 여부



(a) 1차원 특징 공간(왼쪽: 특징과 목푯값을 축으로 표시, 오른쪽: 특징만 축으로 표시)



(b) 2차원 특징 공간(왼쪽: 특징 벡터와 목푯값을 축으로 표시, 오른쪽: 특징 벡터만 축으로 표시)

그림 1-5 특징 공간과 데이터의 표현

#### 특징 공간

- 다차원 특징공간
  - 특징 벡터 표기:  $\mathbf{x} = (x_1, x_2, \dots, x_d)^{\mathrm{T}}$



Haberman survival:  $\mathbf{x} = \begin{pmatrix} \mathbf{t} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$ , 수술년도, 양성 림프샘 개수 $\begin{pmatrix} \mathbf{x} \\ \mathbf{0} \end{pmatrix}$ 

 $\operatorname{Iris}: \mathbf{x} = ($ 꽃받침 길이, 꽃받침 너비, 꽃잎 길이, 꽃잎 너비 $)^{\mathrm{T}}$ 

Wine:  $\mathbf{x} = (\text{Alcohol, Malic acid, Ash, Alcalinity of ash, Magnesium, Total phenols, Flavanoids, Nonflavanoid phenols Proanthocyanins, Color intensity, Hue, OD280 / OD315 of diluted wines, Proline)^T$ 

MNIST:  $\mathbf{x} = (\bar{\mathbf{x}} \pm 1, \bar{\mathbf{x}} \pm 2, \dots, \bar{\mathbf{x}} \pm 784)^{\mathrm{T}}$ 

Farm ads:  $\mathbf{x} = (단어1, 단어2, \dots, 단어54877)^{\mathrm{T}}$ 

그림 1-6 다차원 특징 공간



## 특징 공간 변환과 표현 학습

- 선형 분리 불가능 특징공간
  - 직선 모델을 적용하면 75% 정확 률이 한계



(a) 원래 특징 공간



(b) 분류에 더 유리하도록 변환된 새로운 특징 공간



## 특징 공간 변환과 표현 학습

- 특징 공간 변환
  - 직선 모델을 적용하면 75% 정확 률이 한계





(b) 분류에 더 유리하도록 변환된 새로운 특징 공

원래 특징 벡터 
$$\mathbf{x}=(x_1,x_2)^{\mathrm{T}}$$
  $\rightarrow$  변환된 특징 벡터  $\mathbf{x}'=\left(\frac{x_1}{2x_1x_2+0.5},\,\,\frac{x_2}{2x_1x_2+0.5}\right)^{\mathrm{T}}$ 

$$\mathbf{a} = (0,0)^{\mathrm{T}} \longrightarrow \mathbf{a}' = (0,0)^{\mathrm{T}}$$

$$\mathbf{b} = (1,0)^{\mathrm{T}} \rightarrow \mathbf{b}' = (2,0)^{\mathrm{T}}$$

$$\mathbf{c} = (0,1)^{\mathrm{T}} \rightarrow \mathbf{c}' = (0,2)^{\mathrm{T}}$$

$$\mathbf{d} = (1,1)^{\mathrm{T}} \rightarrow \mathbf{d}' = (0.4,0.4)^{\mathrm{T}}$$

- 표현 학습
  - 좋은 특징 공간을 자동으로 찾는 작업
  - 딥러닝은 다수의 은닉층을 가진 신경망을 이용하여 계층적인 특징 공간을 찾아냄
  - 왼쪽 은닉층은 저급 특징(에지, 구석점 등), 오른쪽은 고급 특징(얼굴, 바퀴 등) 추출

## 특징 공간 변환과 표현 학습

- 특징점 간 차이공간 변환
  - 일반적인 metric
    - 예) 두 점  $\mathbf{a} = (a_1, a_2, \dots, a_d)^{\mathrm{T}}$ 와  $\mathbf{b} = (b_1, b_2, \dots, b_d)^{\mathrm{T}}$  사이의 거리는 모든 d에 대해 성립

$$dist(\mathbf{a}, \mathbf{b}) = \sqrt{\sum_{i=1}^{d} (a_i - b_i)^2}$$



#### 데이터에 대한 이해

■ 과학 기술의 발전 과정



- 기계 학습
  - 기계 학습이 푸는 문제는 훨씬 복잡함
    - 예) '8' 숫자 패턴과 '단추' 패턴의 다양한 변화 양상
  - 단순한 수학 공식으로 표현 불가능함
  - 자동으로 모델을 찾아내는 과정이 필수



- 데이터베이스의 품질
  - 주어진 응용에 맞는 충분히 다양한 데이터를 충분한 양만큼 수집
    - 추정 정확도 높아짐
  - 예) 정면 얼굴만 가진 데이터베이스로 학습하고 나면, 기운 얼굴은 매우 낮은 성능
  - 주어진 응용 환경을 자세히 살핀 다음 그에 맞는 데이터베이스 확보는
     매우 중요
- 다수의 공개 데이터베이스
  - 기계 학습의 초파리로 여겨지는 3가지 데이터베이스
    - Iris, MNIST, ImageNet
  - 위키피디아에서 'list of datasets for machine learning research'로 검색



#### Iris

• lris 데이터베이스는 통계학자인 피셔 교수가 1936년에 캐나다 동부 해안의 가스페 반도에 서식하는 3 종의 붓꽃(setosa, versicolor, virginica)을 50송이씩 채취하여 만들었다[Fisher1936], 150개 샘플 각각에 대 해 꽃받침 길이, 꽃받침 너비, 꽃잎 길이, 꽃잎 너비를 측정하여 기록하였다. 따라서 4차원 특징 공간 이 형성되며 목푯값은 3종을 숫자로 표시함으로써 1. 2. 3 값 중의 하나이다. http://archive.ics.uci.edu/ml/ datasets/lris에 접속하여 내려받을 수 있다.

| Sepal length + | Sepal width + | Petal length + | Petal width + | Species +     |
|----------------|---------------|----------------|---------------|---------------|
| 5.2            | 3.5           | 1.4            | 0.2           | I. setosa     |
| 4.9            | 3.0           | 1.4            | 0.2           | I. setosa     |
| 4.7            | 3.2           | 1.3            | 0.2           | I. setosa     |
| 4.6            | 3.1           | 1.5            | 0.2           | I. setosa     |
| 7.0            | 3.2           | 4.7            | 1.4           | I. versicolor |
| 6.4            | 3.2           | 4.5            | 1.5           | I. versicolor |
| 6.9            | 3.1           | 4.9            | 1.5           | I. versicolor |
| 5.5            | 2.3           | 4.0            | 1.3           | I. versicolor |
| 6.3            | 3.3           | 6.0            | 2.5           | I. virginica  |
| 5.8            | 2.7           | 5.1            | 1.9           | I. virginica  |
| 7.1            | 3.0           | 5.9            | 2.1           | I. virginica  |
| 6.3            | 2.9           | 5.6            | 1.8           | I. virginica  |
|                |               |                |               |               |







Versicolor Virginica



#### MNIST

• MNIST 데이터베이스는 미국표준국(NIST)에서 수집한 필기 숫자 데이터베이스로, 훈련집합 60,000자, 테스트집합 10,000자를 제공한다. http://yann.lecun.com/exdb/mnist에 접속하면 무료로 내려받을 수 있으며, 1988년부터 시작한 인식률 경쟁 기록도 볼 수 있다. 2017년 8월 기준으로는 [Ciresan2012] 논문이 0.23%의 오류율로 최고 자리를 차지하고 있다. 테스트집합에 있는 10,000개 샘플에서 단지 23개만 틀린 것이다.





#### Fashion MNIST





#### ImageNet

• ImageNet 데이터베이스는 정보검색 분야에서 만든 WordNet의 단어 계층 분류를 그대로 따랐고, 부류 마다 수백에서 수천 개의 영상을 수집하였다[Deng2009]. 총 21,841개 부류에 대해 총 14,197,122개의 영상을 보유하고 있다. 그중에서 1,000개 부류를 뽑아 ILSVRCImageNet Large Scale Visual Recognition Challenge라는 영상인식 경진대회를 2010년부터 매년 개최하고 있다. 대회 결과에 대한 자세한 내용은 4.4절을 참조하라. http://image-net.org에서 내려받을 수 있다.



(a) 'swing' 부류 (b) 'Great white shark' 부류







# 데이터 가시화

- 4차원 이상의 초공간은 한꺼번에 가시화 불가능
- 여러 가지 가시화 기법
  - 2개씩 조합하여 여러 개의 그래프



■ 고차원 공간을 저차원으로 변환하는 기법들을 사용하기도 함





- 선형 회귀 문제
  - 직선 모델 두 매개 변수  $\Theta = (w, b)^T$ y = wx + b



그림 1-4 간단한 기계 학습 예제

- 목적 함수 (비용 함수)
  - 선형회귀를 위한 목적 함수 J
  - 평균제곱오차 (MSE, Mean Squared Error)

$$J(\Theta) = \frac{1}{n} \sum_{i=1}^{n} (f_{\Theta}(\mathbf{x}_i) - y_i)^2$$

- 초기에 최적 매개변수 값을 알 수 없으므로 난수로  $\Theta_1 = (w_1, b_1)^{\mathrm{T}}$  설정  $\rightarrow \Theta_2 = (w_2, b_2)^{\mathrm{T}}$ 로 개선  $\rightarrow \Theta_3 = (w_3, b_3)^{\mathrm{T}}$ 로 개선  $\rightarrow \Theta_3$ 는 최적해  $\hat{\Theta}$ 
  - $0 \mid \mathbb{H} J(\Theta_1) > J(\Theta_2) > J(\Theta_3)$



■ 훈련집합

$$X = \{x_1 = (2.0), x_2 = (4.0), x_3 = (6.0), x_4 = (8.0)\},\$$
  
 $Y = \{y_1 = 3.0, y_2 = 4.0, y_3 = 5.0, y_4 = 6.0\}$ 

■ 초기 직선의 매개변수  $\Theta_1 = (0.1, 4.0)^T$  로 가정

$$\mathbf{x}_{1}, \mathbf{y}_{1} \rightarrow (f_{\Theta_{1}}(2.0) - 3.0)^{2} = ((0.1 * 2.0 + 4.0) - 3.0)^{2} = 1.44$$
 $\mathbf{x}_{2}, \mathbf{y}_{2} \rightarrow (f_{\Theta_{1}}(4.0) - 4.0)^{2} = ((0.1 * 4.0 + 4.0) - 4.0)^{2} = 0.16$ 
 $\mathbf{x}_{3}, \mathbf{y}_{3} \rightarrow (f_{\Theta_{1}}(6.0) - 5.0)^{2} = ((0.1 * 6.0 + 4.0) - 5.0)^{2} = 0.16$ 
 $\mathbf{x}_{4}, \mathbf{y}_{4} \rightarrow (f_{\Theta_{1}}(8.0) - 6.0)^{2} = ((0.1 * 8.0 + 4.0) - 6.0)^{2} = 1.44$ 

■  $\Theta_1$ 을 개선하여  $\Theta_2 = (0.8, 0.0)^T$ 가 되었다고 가정

$$\mathbf{x}_{1}, \mathbf{y}_{1} \rightarrow (f_{\Theta_{2}}(2.0) - 3.0)^{2} = ((0.8 * 2.0 + 0.0) - 3.0)^{2} = 1.96$$

$$\mathbf{x}_{2}, \mathbf{y}_{2} \rightarrow (f_{\Theta_{2}}(4.0) - 4.0)^{2} = ((0.8 * 4.0 + 0.0) - 4.0)^{2} = 0.64$$

$$\mathbf{x}_{3}, \mathbf{y}_{3} \rightarrow (f_{\Theta_{2}}(6.0) - 5.0)^{2} = ((0.8 * 6.0 + 0.0) - 5.0)^{2} = 0.04$$

$$\mathbf{x}_{4}, \mathbf{y}_{4} \rightarrow (f_{\Theta_{2}}(8.0) - 6.0)^{2} = ((0.8 * 8.0 + 0.0) - 6.0)^{2} = 0.16$$

- $\Theta_2$ 을 개선하여  $\Theta_3 = (0.5, 2.0)^T$ 가 되었다고 가정
- 이때  $J(\Theta_3) = 0.0$ 이 되어  $\Theta_3$ 은 최적값  $\widehat{\Theta}$  이 됨



그림 1-11 기계 학습에서 목적함수의 역할

■ 기계 학습 공식화

$$\widehat{\Theta} = \underset{\Theta}{\operatorname{argmin}} J(\Theta)$$

알고리즘 1-1 기계 학습 알고리즘

■ 알고리즘



■ 현실은....



그림 1-12 선형 모델의 한계



# 과소적합, 과잉적합



그림 1-14 과잉적합되었을 때 부정확한 예측 현상



#### 바이어스와 분산

- I차~I2차 다항식 모델의 비교 관찰
  - I~2차는 훈련집합과 테스트집합 모두 낮은 성능
  - I2차는 훈련집합에 높은 성능을 보이나 테스트집합에서는 낮은 성능
    - 낮은 일반화 능력
  - 3~4차는 훈련집합에 대해 I2차보다 낮겠지만 테스트집합에는 높은 성능
    - 높은 일반화 능력



## 바이어스와 분산

- 훈련집합을 여러 번 수집하여 I차~I2차에 적용하는 실험
  - 2차는 매번 큰 오차 → 바이어스가 큼
  - 하지만 비슷한 모델을 얻음 → 낮은 분산
  - I2차는 매번 작은 오차 → 바이어스가 작음
  - 하지만 크게 다른 모델을 얻음 → 높은 분산
  - 일반적으로 용량이 단순한 모델은 바이어스는 크고 분산은 작음
  - 복잡한 모델은 바이어스는 작고 분산은 큼
  - 바이어스와 분산은 트레이드오프 관계



그림 1-15 모델의 바이어스와 분산 특성



## 바이어스와 분산

- 기계학습의 목표
  - 낮은 바이어스와 낮은 분산을 가진 예측기 제작이 목표



그림 1-16 바이어스와 분산

하지만 바이어스와 분산은 트레이드 오프 관계이므로 바이어스 희생을
 최소로 유지하며 분산을 최대로 낮추는 전략 필요

#### 모델 선택 알고리즘

- 검증집합을 이용한 모델 선택
  - 훈련집합, 테스트 집합과 다른 별도의 검증 집합을 가지고 모델 선택

#### 알고리즘 1-2 검증집합을 이용한 모델 선택

입력: 모델집합  $\Omega$ , 훈련집합, 검증집합, 테스트집합

출력: 최적 모델과 성능

- 1 │for(Ω에 있는 각각의 모델)
- 2 모델을 훈련집합으로 학습시킨다.
- 3 검증집합으로 학습된 모델의 성능을 측정한다. // 검증 성능 측정
- 4 기장 높은 성능을 보인 모델을 선택한다.
- 5 테스트집합으로 선택된 모델의 성능을 측정한다.



#### 모델 선택 알고리즘

- 교차검증
  - 별도의 검증집합을 구하기 어려운 경우 사용
  - 훈련집합을 등분하여 학습과 평가 과정 여러 번 반복 후 평균 사용

#### 알고리즘 1-3 교차검증에 의한 모델 선택

입력: 모델집합  $\Omega$ , 훈련집합, 테스트집합, 그룹 개수 k

출력: 최적 모델과 성능

```
    훈련집합을 k개의 그룹으로 등분한다.
    for (Ω에 있는 각각의 모델)
    for (i=1 to k)
    i번째 그룹을 제외한 k-1개 그룹으로 모델을 학습시킨다.
    학습된 모델의 성능을 i번째 그룹으로 측정한다.
    k개 성능을 평균하여 해당 모델의 성능으로 취한다.
    가장 높은 성능을 보인 모델을 선택한다.
    테스트집합으로 선택된 모델의 성능을 측정한다.
```



#### 모델 선택 알고리즘

- 부트스트랩
  - 난수를 이용한 샘플링 반복

#### 알고리즘 1-4 부트스트랩을 이용한 모델 선택

테스트집합으로 선택된 모델의 성능을 측정한다.

입력: 모델집합  $\Omega$ , 훈련집합, 테스트집합, 샘플링 비율 p(0 , 반복횟수 <math>T

출력: 최적 모델과 성능

```
    for (Ω에 있는 각각의 모델)
    for (i=1 to T)
    훈련집합 ※에서 pn개 샘플을 뽑아 새로운 훈련집합 ※'를 구성한다. 이때 대치를 허용한다.
    ※'로 모델을 학습시킨다.
    ※-※'를 이용하여 학습된 모델의 성능을 측정한다.
    가개 성능을 평균하여 해당 모델의 성능으로 취한다.
    가장 높은 성능을 보인 모델을 선택한다.
```



## 모델 선택의 한계와 해결책

- 모델 집합 Ω 으로 부터 최적의 모델 선택 문제
  - 현실에서는 아주 다양
    - 신경망, 강화 학습, 확률 그래피컬 모델, SVM, 트리 분류기 등이 선택 대상
    - 신경망을 채택하더라도 MLP, Deep MLP, CNN 등 아주 많음
  - 현실적 해결책
    - 경험적으로 큰 틀(model 혹은 hypothesis) 선택
    - 모델 선택 알고리즘으로 세부 모델 선택하는 전략 사용
    - 예) CNN을 사용하기로 정한 후, 은닉층 개수, 활성함수, 모멘텀 계수 등을
       정하는데 모델 선택 알고리즘을 적용함



■ 규제(regularization)를 하는 이유?

■ 데이터 확대, 가중치 감쇠 등...



- 데이트 확대
  - 데이터를 더 많이 수집하면 일반화 능력 향상



그림 1-17 데이터를 확대하여 일반화 능력을 향상함

- 데이트 확대
  - 데이터 수집은 많은 비용이 발생
    - 데이터 모으기 + annotation
  - 인위적 데이터 확대



그림 5-24 필기 숫자 데이터의 다양한 변형®



- 가중치 감쇠
  - 앞 예제의 I2차 곡선 식 y=1005.7x<sup>12</sup> - 27774.4x<sup>11</sup> + ··· - 22852612.5x<sup>1</sup> - 12.8
  - 가중치 감쇠는 개선된 목적함수를 이용하여 가중치를 작게 조절하는 규제 기법으로 penalty term 추가

$$J(\Theta) = \frac{1}{n} \sum_{i=1}^{n} (f_{\Theta}(\mathbf{x}_i) - y_i)^2 + \lambda \|\Theta\|_2^2$$
 (1.11)

 $y = 10.779x^{12} - 42.732x^{11} + \dots - 2.379x^{1} + 0.119$ 





(a) 가중치 감쇠 적용 안 함[식 (1.8)의 목적함수]

(b) 가중치 감쇠 적용함[식 (1.11)의 목적함수]

그림 1-18 가중치 감쇠에 의한 규제 효과

## 기계학습의 유형

- 지도 학습
  - 특징 벡터 ※와 목푯값 ※가 모두 주어진 상황
  - 회귀와 분류 문제로 구분
- 비지도 학습
  - 특징 벡터 X는 주어지는데 목푯값 Y 가 주어지지 않는 상황
  - 군집화(clustering)
  - 밀도 추정,특징 공간 변환 과업



#### 기계학습의 유형

- 강화 학습
  - 목푯값이 주어지는데, 지도 학습과 다른 형태임
  - 예) 바둑
  - 수를 두는 행위가 샘플인데,게임이 끝나면 목푯값 하나가 부여됨
    - 이기면 I, 패하면 -I을 부여
  - 게임을 구성한 샘플들 각각에 목푯값을 나누어 주어야 함
- 준지도 학습
  - 일부는 ※와 ※를 모두 가지지만, 나머지는 ※만 가진 상황
  - 인터넷 덕분으로 ※의 수집은 쉽지만, ※는 수작업이 필요하여 최근 중요성 부각



# 인공지능과 기계학습의 역사

| 1843  | 에이더 "… 해석엔진은 꽤 복잡한 곡을 작곡할 수도 있다."라는 논문 발표[Ada1843]                    |
|-------|-----------------------------------------------------------------------|
| 1950  | 인공지능 여부를 판별하는 튜링 테스트[Turing1950]                                      |
| 1956  | 최초의 인공지능 학술대회인 다트머스 콘퍼런스 개최.'인공지능'용어 탄생[McCarthy1955]                 |
| 1958  | 로젠블렛이 퍼셉트론 제안[Rosenblatt1958]                                         |
|       | 인공지능 언어 Lisp 탄생                                                       |
| 1959  | 사무엘이 기계 학습을 이용한 체커 게임 프로그램 개발[Samuel1959]                             |
| 1969  | 민스키가 퍼셉트론의 과대포장 지적. 신경망 내리막길 시작[Minsky1969]                           |
|       | 제1회 IJCA International Joint Conference on Artificial Intelligence 개최 |
| 1972  | 인공지능 언어 Prolog 탄생                                                     |
| 1973  | Lighthill 보고서로 인해 인공지능 내리막길, 인공지능 겨울 <sup>Al winter</sup> 시작          |
| 1974  | 웨어보스가 오류 역전파 알고리즘을 기계 학습에 도입[Werbos1974]                              |
| 1975경 | 의료진단 전문가 시스템 Mycin - 인공지능에 대한 관심 부활                                   |
| 1979  | 「IEEE Transactions on Pattern Analysis and Machine Intelligence」저널 발간 |
| 1980  | 제1회 ICM Linternational Conference on Machine Learning 개최              |
|       | 후쿠시마가 NeoCognitron 제안[Fukushima1980]                                  |
| 1986  | 「Machine Learning」저널 발간                                               |
|       | 『Parallel Distributed Processing』출간                                   |
|       | 다층 퍼셉트론으로 신경망 부활                                                      |



# 인공지능과 기계학습의 역사

| 1987  | Lisp 머신의 시장 붕괴로 제2의 인공지능 겨울                       |
|-------|---------------------------------------------------|
|       | UCI 리포지토리 서비스 시작                                  |
|       | NIPSNeural Information Processing Systems 콘퍼런스 시작 |
| 1989  | 「Neural Computation」저널 발간                         |
| 1993  | R 언어 탄생                                           |
| 1997  | IBM 딥블루가 세계 체스 챔피언인 카스파로프 이김                      |
|       | LSTMLong short-term memory 개발됨                    |
| 1998경 | SVM이 MNIST 인식 성능에서 신경망 추월                         |
| 1998  | 르쿤이 CNN의 실용적인 학습 알고리즘 제안[LeCun1998]               |
|       | 『Neural Networks: Tricks of the Trade』출간          |
| 1999  | NVIDIA 사에서 GPU 공개                                 |
| 2000  | 「Journal of Machine Learning Research」저널 발간       |
|       | OpenCV 최초 공개                                      |
| 2004  | 제1회 그랜드 챌린지(자율 주행)                                |
| 2006  | 층별학습 탄생[Hinton2006a]                              |
| 2007경 | 딥러닝이 MNIST 인식 성능에서 SVM 추월                         |
| 2007  | GPU 프로그래밍 라이브러리인 CUDA 공개                          |



# 인공지능과 기계학습의 역사

|      | 어번 챌린지(도심 자율 주행)                                                 |
|------|------------------------------------------------------------------|
|      | Scikit-leam 라이브러리 최초 공개                                          |
| 2009 | Theano 서비스 시작                                                    |
| 2010 | ImageNet 탄생                                                      |
|      | 제1회 ILSVRC 대회                                                    |
| 2011 | IBM 왓슨이 제퍼디 우승자 꺾음                                               |
| 2012 | MNIST에 대해 0.23% 오류율 달성                                           |
|      | AlexNet 발표 (3회 ILSVRC 우승)                                        |
| 2013 | 제1회 ICLR International Conference on Learning Representations 개최 |
| 2014 | Caffe 서비스 시작                                                     |
| 2015 | TensorFlow 서비스 시작                                                |
|      | OpenAl 창립                                                        |
| 2016 | 알파고와 이세돌의 바둑 대회에서 알파고 승리[Silver2016]                             |
|      | 『Deep Learning』 출간                                               |
| 2017 | 알파고 제로[Silver2017]                                               |
|      |                                                                  |



# 참고자료

- Machine Learning 기계학습
  - 저자: 오일석
  - 출판사: 한빛아카데미, 2017