QUANTUM FIELD THEORY

Fall 2021

A QFT toy model and asymptotic series

We are going to study a toy model of a quantum field theory that despite its simplicity, captures some important features of realistic quantum field theories. We can think of this toy model as the limit of the Euclidean $\lambda \phi^4$ theory when ϕ is restricted to be independent of spacetime coordinates (in this sense this toy model is a 0+0 QFT). In this limit, ϕ is just an ordinary variable and the path integral boils down to an ordinary integral. Since ϕ does not depend on space-time coordinates, there is no kinetic term,

$$Z(\lambda, j) = \int_{-\infty}^{\infty} \frac{d\phi}{\sqrt{2\pi}} e^{-\left(\frac{m^2}{2}\phi^2 + \frac{\lambda}{4!}\phi^4\right) + j\phi}$$

 $Z(\lambda,0)$ can be computed exactly (ask Mathematica!). Notice that there is no i in the exponent, this is the toy version of an Euclidean QFT. The Feynman rules are (again, there is no i in the Feynman rule for the vertex),

- 1) Free Theory. Set $\lambda = 0$ (so there are no vertices). You are going to compute the n-point functions $< 0|\phi^n|0>$ of the free theory in three different ways. Of course, you should obtain the same result with all three methods.
 - i) Compute the n-point function by carrying out the integrals (1 point)

$$<0|\phi^{n}|0> = \frac{\int_{-\infty}^{\infty} \frac{d\phi}{\sqrt{2\pi}} \phi^{n} e^{-\frac{m^{2}}{2}\phi^{2}}}{\int_{-\infty}^{\infty} \frac{d\phi}{\sqrt{2\pi}} e^{-\frac{m^{2}}{2}\phi^{2}}}$$

- ii) Compute the generating function $Z(j)_{\lambda=0}$ directly, and then obtain the n-point functions by taking derivatives of this generating function. (1 point)
- iii) Give a purely combinatorial interpretation of $<0|\phi^n|0>$ and use it to evaluate these n-point functions. (1 point)

2) Interacting theory. Let's now consider $\lambda \neq 0$. It is easy to argue that Z(j=0) is convergent for $\lambda \geq 0$ and divergent for $\lambda < 0$. Nevertheless, let's pretend that we can write Z(j=0) as a power series in $\tilde{\lambda} = \frac{\lambda}{m^4}$. To do so, expand $e^{-\frac{\lambda}{4!}\phi^4}$ in a power series, exchange \sum and \int , and perform the integrals. The answer is of the form,

$$Z_{pert}(j=0) = \frac{1}{m} \sum_{k=0}^{\infty} c_k (-\tilde{\lambda})^k \tag{1}$$

- Provide an explicit expression of the coefficients c_k . (1 point)
- Since each vacuum diagram evaluates to just its (inverse) symmetry factor and the appropriate power of λ , the coefficients c_k give the sum of the (inverse) symmetry factors of the vacuum diagrams of the $\lambda \phi^4$ theory at order k. Draw and evaluate the relevant vacuum diagrams, and check this up to order λ^2 . (1 point)
- Draw and evaluate all the connected vacuum diagrams up to order λ^3 . Check up to this order that $W(\tilde{\lambda}) = \log \frac{Z(\tilde{\lambda})}{Z(0)}$ is their generating function. (1 point)
- 3) n-point functions in the interacting theory (1+1+1) points
- Compute $W(\lambda, j) = \log Z(\lambda, j)/Z(\lambda, 0)$ up to order λ^2 , and derive from it $<\Omega|\phi^2|\Omega>_c$ and $<\Omega|\phi^4|\Omega>_c$ to this order.
- Reproduce these results by drawing and evaluating the relevant connected diagrams.
- Compute $<\Omega|\phi^2|\Omega>_{1\text{PI}}$ to order λ^3 by evaluating the relevant diagrams. Verify to this order that $<\Omega|\phi^2|\Omega>_c=1/(m^2-<\Omega|\phi^2|\Omega>_{1\text{PI}})$.
- 4) The power series (1) is easily seen to be divergent for any non-zero value of λ . This is not surprising, since the integral diverges for $\lambda < 0$, and therefore the power series can't have any non-zero radius of convergence. In fact, in the complex λ plane, $Z(\lambda)$ has a branch-cut along the negative real axis. This is not as bad as it might seem: it can be shown that (setting m = 1)

$$\left| Z(\lambda)_{j=0} - \sum_{k=0}^{n} c_k (-\lambda)^k \right| < |c_{n+1}\lambda^{n+1}|$$
 (2)

so for fixed n, taking λ small enough the perturbative series gives an arbitrarily good estimate of the full answer. By definition, this is an asymptotic series. This feature is shared with many Quantum Field Theories: there is an old argument by Dyson¹ showing that QED should be unstable for $\alpha < 0$ so the radius of convergence of perturbative QED is zero.

• Plot $Z(\lambda)_{j=0}$ in the range $\lambda \in [0,1]$. On the same graph, plot $Z_{pert}(\lambda)_{j=0}$ truncated at n=5 and n=10. Is the truncated series with more terms always a better approximation to the full result? (1 point)

¹F. J. Dyson, "Divergence of Perturbation Theory in Quantum Electrodynamics", Phys. Rev. 85, 631 (1952).