Intro to ML

November 3rd, 2021

Logistics

- 10 min for TA today
- Monday (11/8) TA sessions
- Wednesday 11/10 finish up SVM

 11/22 midterm covers everything in class up to SVM

CHAPTER 10:

Linear Discrimination

Likelihood- vs. Discriminant-based Classification

• Likelihood-based: Assume a model for $p(x|C_i)$, use Bayes' rule to calculate $P(C_i|x)$

$$g_i(\mathbf{x}) = \log P(C_i | \mathbf{x})$$

Just any form of equations

- Discriminant-based: Assume a <u>model</u> for $g_i(x|\Phi_i)$; not density estimation
- Estimating the boundaries is enough; no need to accurately estimate the densities inside the boundaries
- Inductive bias come from your assumption of boundary not the density itself
- Knowing <u>how to separate</u> is more important, learning to separate, not learning to estimate pdfs

Linear Discriminant

• Linear discriminant function (assuming a linear separation):

$$\mathbf{g}_{i}(\mathbf{x} \mid \mathbf{w}_{i}, \mathbf{w}_{i0}) = \mathbf{w}_{i}^{\mathsf{T}} \mathbf{x} + \mathbf{w}_{i0} = \sum_{j=1}^{a} \mathbf{w}_{ij} \mathbf{x}_{j} + \mathbf{w}_{i0}$$

- Advantages:
 - Simple: O(d) space/computation
 - Knowledge extraction: Weighted sum of attributes; positive/negative weights (interpretation), magnitudes (importance)
 - Optimal when $p(x|C_i)$ are <u>Gaussian with shared cov matrix</u>; <u>useful</u> when classes are (almost) linearly separable
- Define a error function, find the parameter by gradient decent

Generalized Linear Model

Quadratic discriminant:

$$g_i(\mathbf{x} \mid \mathbf{W}_i, \mathbf{w}_i, \mathbf{w}_{i0}) = \mathbf{x}^T \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0}$$

Adding Higher-order (product) terms:

$$z_1 = x_1$$
, $z_2 = x_2$, $z_3 = x_1^2$, $z_4 = x_2^2$, $z_5 = x_1x_2$

Keep discriminant function linear, but transform the input feature

Map from x to z using nonlinear basis functions and use a linear discriminant in z-space

$$g_i(\mathbf{x}) = \sum_{j=1}^k w_{ij} \phi_j(\mathbf{x})$$
 Basis function

What could be basis function?

- Sin(x1)
- $Exp(-(x1-m)^2/c)$
- Log(X2)
- 1(x1>c)
- ...

Writing nonlinear function as linear function of nonlinear basis -> potential functions (1964)

 This will also be important when we talk about support vector machine with kernel trick

Two Classes

Geometry

 x_p = is the normal projection

r gives us distance from x to

Multiple Classes

$$g_i(\mathbf{x} \mid \mathbf{w}_i, \mathbf{w}_{i0}) = \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0}$$

Classes are linearly separable

g(i) positive for only one class

Choose C_i if

$$g_i(\mathbf{x}) = \max_{j=1}^{K} g_j(\mathbf{x})$$

From Discriminants to Posteriors

When
$$p(\mathbf{x} \mid C_i) \sim N(\mu_i, \Sigma)$$

$$g_i(\mathbf{x} \mid \mathbf{w}_i, \mathbf{w}_{i0}) = \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0}$$

$$\mathbf{w}_i = \Sigma^{-1} \mu_i \quad \mathbf{w}_{i0} = -\frac{1}{2} \mu_i^T \Sigma^{-1} \mu_i + \log P(C_i)$$

$$y = P(C_1 \mid \mathbf{x}) \text{ and } P(C_2 \mid \mathbf{x}) = 1 - y$$

$$\text{choose } C_1 \text{ if } \begin{cases} y > 0.5 \\ y / (1 - y) > 1 \quad \text{and } C_2 \text{ otherwise} \\ \log [y / (1 - y)] > 0 \end{cases}$$

$$\begin{aligned} \log & \mathrm{it}(P(C_1 \mid \mathbf{x})) = \log \frac{P(C_1 \mid \mathbf{x})}{1 - P(C_1 \mid \mathbf{x})} = \log \frac{P(C_1 \mid \mathbf{x})}{P(C_2 \mid \mathbf{x})} \\ &= \log \frac{p(\mathbf{x} \mid C_1)}{p(\mathbf{x} \mid C_2)} + \log \frac{P(C_1)}{P(C_2)} \\ &= \log \frac{(2\pi)^{-d/2} |\Sigma|^{-1/2} \exp\left[-(1/2)(\mathbf{x} - \mu_1)^T \Sigma^{-1}(\mathbf{x} - \mu_1)\right]}{(2\pi)^{-d/2} |\Sigma|^{-1/2} \exp\left[-(1/2)(\mathbf{x} - \mu_2)^T \Sigma^{-1}(\mathbf{x} - \mu_2)\right]} + \log \frac{P(C_1)}{P(C_2)} \\ &= \mathbf{w}^T \mathbf{x} + \mathbf{w}_0 \\ &\text{where } \mathbf{w} = \Sigma^{-1} (\mu_1 - \mu_2) \quad \mathbf{w}_0 = -\frac{1}{2} (\mu_1 + \mu_2)^T \Sigma^{-1} (\mu_1 - \mu_2) \\ &\text{The inverse of logit} \qquad \qquad \text{Logistic function} \\ &\log \frac{P(C_1 \mid \mathbf{x})}{1 - P(C_1 \mid \mathbf{x})} = \mathbf{w}^T \mathbf{x} + \mathbf{w}_0 \\ &P(C_1 \mid \mathbf{x}) = \mathrm{sigmoid}(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0) = \frac{1}{1 + \exp\left[-(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0)\right]} \end{aligned}$$

Sigmoid (Logistic) Function

Calculate $g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$ and choose C_1 if $g(\mathbf{x}) > 0$, or Calculate $y = \text{sigmoid}(\mathbf{w}^T \mathbf{x} + w_0)$ and choose C_1 if y > 0.5

Sigmoid(0)=0.5, this function takes discriminant function₄to posterior probability

Gradient-Descent

• E(w|X) is error with parameters w on sample X

$$\mathbf{w}^*$$
=arg min_w $E(\mathbf{w} \mid X)$

Many do not have analytical solution

• Gradient

$$\nabla_{w} E = \left[\frac{\partial E}{\partial w_{1}}, \frac{\partial E}{\partial w_{2}}, \dots, \frac{\partial E}{\partial w_{d}} \right]^{T}$$

Gradient-descent:

Starts from random \boldsymbol{w} and updates \boldsymbol{w} iteratively in the negative direction of gradient

Logistic Discrimination

Two classes: Assume log likelihood ratio is linear

$$\log \frac{p(\mathbf{x} \mid C_1)}{p(\mathbf{x} \mid C_2)} = \mathbf{w}^T \mathbf{x} + w_0^o$$

$$\log \operatorname{it}(P(C_1 \mid \mathbf{x})) = \log \frac{P(C_1 \mid \mathbf{x})}{1 - P(C_1 \mid \mathbf{x})} = \log \frac{p(\mathbf{x} \mid C_1)}{p(\mathbf{x} \mid C_2)} + \log \frac{P(C_1)}{P(C_2)}$$

$$= \mathbf{w}^T \mathbf{x} + w_0$$

$$\text{where } w_0 = w_0^o + \log \frac{P(C_1)}{P(C_2)}$$

$$y = \hat{P}(C_1 \mid \mathbf{x}) = \frac{1}{1 + \exp[-(\mathbf{w}^T \mathbf{x} + w_0)]}$$

Training: Two Classes

Model label given x with probability y

$$\mathcal{X} = \left\{ \mathbf{x}^t, r^t \right\}_t \mid r^t \mid \mathbf{x}^t \sim \text{Bernoulli}(y^t)$$

Note the difference to likelihood method

$$y = P(C_1 \mid \mathbf{x}) = \frac{1}{1 + \exp[-(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0)]}$$

$$I(\mathbf{w}, \mathbf{w}_0 \mid \mathcal{X}) = \prod_{t} (\mathbf{y}^t)^{(r^t)} (1 - \mathbf{y}^t)^{(1 - r^t)}$$

Maximize this function based on data we have

$$E = -\log I$$
 Minimize this

$$E(\mathbf{w}, \mathbf{w}_0 \mid \mathcal{X}) = -\sum_{t} r^t \log y^t + (1 - r^t) \log (1 - y^t)$$

What is this? This is a function that we call 'cross entropy'

Training: Gradient-Descent

$$E(\mathbf{w}, \mathbf{w}_{0} \mid \mathcal{X}) = -\sum_{t} r^{t} \log y^{t} + (1 - r^{t}) \log (1 - y^{t})$$

$$If \ y = \operatorname{sigmoid}(\mathbf{a}) \quad \frac{dy}{da} = y(1 - y)$$

$$\Delta \mathbf{w}_{j} = -\eta \frac{\partial E}{\partial \mathbf{w}_{j}} = \eta \sum_{t} \left(\frac{r^{t}}{y^{t}} - \frac{1 - r^{t}}{1 - y^{t}} \right) y^{t} (1 - y^{t}) x_{j}^{t}$$

$$= \eta \sum_{t} (r^{t} - y^{t}) x_{j}^{t}, j = 1, ..., d$$

$$\Delta \mathbf{w}_{0} = -\eta \frac{\partial E}{\partial \mathbf{w}_{0}} = \eta \sum_{t} (r^{t} - y^{t})$$

Good practice: Z-normalize features

```
For j = 0, \ldots, d
      w_i \leftarrow \text{rand}(-0.01, 0.01)
Repeat
       For j = 0, ..., d
              \Delta w_j \leftarrow 0
       For t = 1, \ldots, N
              o \leftarrow 0
              For j = 0, \ldots, d
                    o \leftarrow o + w_j x_j^t
             y \leftarrow \operatorname{sigmoid}(o)
             \Delta w_i \leftarrow \Delta w_i + (r^t - y)x_i^t
       For j = 0, \ldots, d
              w_i \leftarrow w_i + \eta \Delta w_i
Until convergence
```

Keep is close to zero

Notes

Gradient does not change anymore then converged

 In this case, we assume log ratio of class density is linear to perform this learning (but we never explicitly estimate p(x|Ci) or P(Ci)

 Training effectively takes data of a class to result in either y<0.5 or y>0.5

1d Example

Keep iteration without stopping, make the sigmoid function harden (quickly takes the sample to close to 0 or 1)

But does not change misclassification rate

Early stoping

K>2 Classes

$$X = \{\mathbf{x}^{t}, \mathbf{r}^{t}\}_{t} \quad r^{t} | \mathbf{x}^{t} \sim \text{Mult}_{K}(1, \mathbf{y}^{t})$$

$$\log \frac{p(\mathbf{x}|C_{i})}{p(\mathbf{x}|C_{K})} = \mathbf{w}_{i}^{T} \mathbf{x} + w_{i0}^{o}$$

$$\frac{p(C_{i}|x)}{p(C_{K}|x)} = \exp[\mathbf{w}_{i}^{T} \mathbf{x} + w_{i0}]$$

$$\text{wi0= } \mathbf{w}_{i0}^{o}$$

$$\sum_{i=1}^{K} \frac{P(C_i|x)}{P(C_k|x)} = \frac{1 - P(C_k|x)}{P(C_k|x)} = \sum_{i=1}^{K-1} \exp[w_i^T x + w_{i0}]$$

$$P(C_k|x) = \frac{1}{1 + \sum_{i=1}^{K-1} \exp\left[w_i^T x + w_{i0}\right]}$$

$$y_i = \widehat{P}(C_i|\mathbf{x}) = \frac{\exp[\mathbf{w}_i^T \mathbf{x} + w_{i0}]}{\sum_{j=1}^K \exp[\mathbf{w}_j^T \mathbf{x} + w_{j0}]}, i = 1, \dots, K$$

C_k is the reference class Assume linear form

 $wi0 = w_{i0}^{\circ} + logP(Ci)/P(Ck)$

Softmax It's like a max function Only its differentiable

Learning the paramter

$$l(\{\mathbf{w}_{i}, w_{i0}\}_{i} | \mathbf{X}) = \prod_{t} \left(y_{i}^{t}\right)^{(r_{i}^{t})}$$

$$E(\{\mathbf{w}_{i}, w_{i0}\}_{i} | \mathbf{X}) = -\sum_{t} r_{i}^{t} \log y_{i}^{t}$$

$$\Delta \mathbf{w}_{j} = \eta \sum_{t} (r_{j}^{t} - y_{j}^{t}) \mathbf{x}^{t} \quad \Delta w_{j0} = \eta \sum_{t} (r_{j}^{t} - y_{j}^{t})$$

Generalizing the Linear Model

• Quadratic:

$$\log \frac{p(\mathbf{x} \mid C_i)}{p(\mathbf{x} \mid C_K)} = \mathbf{x}^T \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0}$$

Sum of basis functions:

$$\log \frac{p(\mathbf{x} | C_i)}{p(\mathbf{x} | C_K)} = \mathbf{w}_i^T \phi(\mathbf{x}) + \mathbf{w}_{i0}$$

where $\phi(x)$ are basis functions. Examples:

- Hidden units in neural networks (Chapters 11, 12, 13)
- Kernels in SVM (Chapter 14)