SCHOOL OF MATHEMATICS AND STATISTICS UNIVERSITY OF NEW SOUTH WALES

MATH5425 Graph Theory Semester 2 2015

Problem Sheet 7, Ramsey Theory

- 1. Prove that R(3) = 6 and that R(2, s) = s for all $s \ge 2$.
- 2. Suppose that there exists $p \in [0,1]$ such that

$$\binom{n}{s} p^{\binom{s}{2}} + \binom{n}{t} (1-p)^{\binom{t}{2}} < 1.$$

Prove that R(s,t) > n.

3. In lectures we proved Erdős' 1947 result (Alon & Spencer Proposition 1.1.1) which shows that for $s \geq 3$, if

$$\binom{n}{s} 2^{1 - \binom{s}{2}} < 1 \tag{*}$$

then R(s) > n. From this we deduced that $R(s) > \lfloor 2^{s/2} \rfloor$ for $s \geq 3$. We now obtain a slightly improved lower bound using sharper analysis.

(a) Show that if

$$n \le \frac{s}{\sqrt{2} e} \, 2^{s/2}$$

then

$$n^s < 2^{s(s-1)/2} \sqrt{\frac{\pi s}{2}} \left(\frac{s}{e}\right)^s.$$
 (**)

- (b) Using one of Stirling's inequalities, explain why (**) implies that Erdős' condition (*) holds.
- (c) Hence conclude that $R(s) > \frac{s}{\sqrt{2}e} 2^{s/2}$ for $s \ge 3$.

(... Please turn over for Questions 4 and 5)

- 4. Prove that $R(C_4, C_4) = 6$, using the following steps. (Recall that C_4 is a 4-cycle.)
 - (a) Use Bollobás Chapter 6 Theorem 11 (from lectures) to show that $R(C_4, C_4) \geq 5$.
 - (b) Prove that $R(C_4, C_4) > 5$ by displaying a red-blue colouring of the edges of K_5 with no monochromatic 4-cycle.
 - (c) Prove that in any red-blue colouring of the edges of K_6 there must be a monochromatic 4-cycle.

Hint: For a contradiction, suppose that there is a red-blue colouring of the edges of K_6 with no monochromatic C_4 . The fact that R(3) = 6 may help you to get started. Work out the colour of various edges and end up with a contradiction. You may have to analyse a couple of different cases.

For $k \in \mathbb{Z}^+$ let $[k] = \{1, 2, \dots, k\}$. Let $A, B_1, B_2, \dots B_k$ be events in Ω . We say that A is mutually independent of B_1, \dots, B_k if for all $I \subseteq [k]$ we have

$$\Pr(A \cap \bigcap_{i \in I} B_i) = \Pr(A) \times \Pr\left(\bigcap_{i \in I} B_i\right).$$

The Local Lemma (Erdős & Lovász, 1975) Let $A_1, \ldots A_n$ be events in some probability space. Suppose that each event A_i is mutually independent of a set of all but at most d of the other events, and that $Pr(A_i) \leq p$ for $1 \leq i \leq n$. If $ep(d+1) \leq 1$ then

$$\Pr\left(\bigcap_{j=1}^{n} \overline{A_j}\right) > 0.$$

We now obtain another slight improvement on the lower bound for R(s) by applying the Local Lemma, following Spencer (1975).

- 5. Colour the edges of K_n red or blue with probability $\frac{1}{2}$, independently. For each subset R of s vertices of K_n , let A_R be the event that $K_n[R]$ is monochromatic.
 - (a) Let $d = \binom{s}{2} \binom{n}{s-2}$. Prove that A_R is mutually independent from all but a set of at most d events in $\{A_T: T \text{ is a subset of } s \text{ vertices of } K_n\}$.
 - (b) Apply the Local Lemma to prove that if

$$e\left(\binom{s}{2}\binom{n}{s-2}+1\right)2^{1-\binom{s}{2}} \le 1$$

then R(s) > n.

(c) Arguing as in Question 3, deduce that as $s \to \infty$ we have

$$R(s) > (1 + o(1)) \frac{\sqrt{2} s}{e} 2^{s/2}.$$

(Here o(1) denotes a function of s which tends to 0 as $s \to \infty$.)