Exam 2a **Chem 1142 Spring 2011**

Name:	KE	\bigvee

MULTIPLE CHOICE. [2 pts ea.] Choose the best response on the scantron sheet. [36 pts total.]

Q1. For the reaction: A \longrightarrow 2B + C, the rate could be expressed as $-\Delta[A]/\Delta t$. An equivalent expression is:

a)
$$-\frac{1}{2}\frac{\Delta[B]^2}{\Delta t}$$
 b) $-\frac{1}{2}\frac{\Delta[B]}{\Delta t}$ c) $+\frac{1}{2}\frac{\Delta[B]}{\Delta t}$ d) $+\frac{\Delta[B]^2}{\Delta t}$ e) $+\frac{\Delta[B][C]}{\Delta t}$

b)
$$-\frac{1}{2}\frac{\Delta[B]}{\Delta t}$$

c)
$$+\frac{1}{2}\frac{\Delta[B]}{\Delta t}$$

d) +
$$\frac{\Delta[B]^2}{\Delta t}$$

e) +
$$\frac{\Delta[B][C]}{\Delta t}$$

Q2.A student analyzed a second-order reaction and obtained the graph at the right, but forgot to label the axes. What should the labels be for the X and the Y coordinates respectively?

- a) time, ln [A]
- b) time, [A]
- c) temperature, [A]
- d) temperature, ln [A]
- e) time, 1/[A]

- Q3. For the overall reaction: $2A \longrightarrow B$, the reaction order is:
 - a) zero order

b) first order

- c) second order
- d) impossible to predict without experimental rates at various concentrations of A
- e) impossible to predict without knowing the heat of reaction
- Q4. What are the units for k, the rate constant, in a first order reaction?
 - a) M·s⁻¹
- b) M
- c) s⁻¹
- d) M-1 ·s-1
- e) s-1 ·M
- Q5. What is the rate law for the reaction: $A + B \longrightarrow 2C$, based on the following kinetic data?

Experiment #	Initial Conc of [A] / M	Initial Conc. of [B] / M	Initial rate of reaction / M/s
1	0.40	0.10	3.6×10^3
2	0.20	0.10	1.8×10^3
3	0.20	0.50	4.5 x 10 ⁴

a) rate =
$$k[A][B]^2$$

b) rate =
$$k[A]^{1/2}[B]^5$$

c) rate =
$$k[A]^2[B]$$

- a) rate = $k[A][B]^2$ d) rate = $k[A][B]^{1/5}$
- e) rate = $k[A]^{1/2}[B]^2$
- Q6. What is unique about the half-life of any first-order reaction at 25 °C?
 - a) The units are always s⁻¹

- b) The value only depends on the rate constant, *k*
- c) The value only depends on the initial concentration of reactant
- d) Δ [A]/ $\Delta t = 1$
- e) $\Delta [A]/\Delta t = \frac{1}{2}$

•	RT, may be used to	calculate the acti	vation energy from the slope of a line
a) ln k vs. 1/Temperature d) 1/k vs. 1/time	b) ln <i>k</i> vs. 1/time) ln <i>k</i> vs. e ^{-T}	ie	c) 1/k vs. Temperature
a) increases due to an increasedb) increases only for an endothec) increases due to a greater num	activation energy ermic reaction nber of effective c		
Q9. In basic solution, (CH ₃) ₃ CCl reacts a	according to the ed	quation:	
$(CH_3)_3CCl + OH \longrightarrow (CH_3)_3C$	COH + Cl-		
$(CH_3)_3CC1 \longrightarrow (CH_3)C^+ + Cl^-$	_	(SLOW) (FAST)	
What is the rate law expression	for the reaction?		
d) 1/k vs. 1/time e) ln k vs. e ^{-T} 3. In general, as the temperature increases, the rate of a chemical reaction a) increases due to an increased activation energy b) increases only for an endothermic reaction c) increases due to a greater number of effective collisions d) increases because bonds are weakened e) is not changed d. In basic solution, (CH ₃) ₃ CCl reacts according to the equation: (CH ₃) ₃ CCl + OH ⁻ → (CH ₃) ₃ COH + Cl ⁻ The accepted mechanism for this reaction is: (CH ₃) ₃ CCl → (CH ₃) ₅ C ⁺ + Cl ⁻ (CH ₃) ₃ COH (FAST) What is the rate law expression for the reaction? a) rate = k[(CH ₃) ₃ C ⁺] ² [OH ⁻] b) rate = k[(CH ₃) ₃ CC ⁺][OH ⁻] ² c) rate = k[Cl ⁻] d) rate = k[(CH ₃) ₃ CCl] e) rate = k[(CH ₃) ₃ CCl][OH ⁻] 0. What name would be used to describe an elementary reaction such as: a) NO(aq) + 2Cl ⁻ (aq) → NOCl ₂ ² -(aq) a) bimolecular b) unimolecular c) termolecular d) dimolecular e) termolecular			
-	•	reaction such as:	
a) bimolecular b) unir	molecular	c) termolecular	
$CaSO_3(s) \rightleftharpoons CaO(s) +$			
a) $\frac{\text{[CaO][SO}_2]}{\text{[CaSO}_3]}$ b) [Ca	aO][SO ₂]	c) $[SO_2]$	
d) $\frac{1}{[SO_2]}$ e) $\frac{[O]}{[Ca]}$	$\frac{\text{CaSO}_3}{\text{aO}[\text{SO}_2]}$		
	of the equilibrium	constant does the	e reaction mixture consist mainly of
a) 10^5 b) 10^3	c) 10 ⁰	d) 10 ⁻³	e) 10 ⁻⁵
$4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g)$ $a) K_c = \frac{4[NH_3] + 5[O_2]}{6[HO] + 4[NO]}$	+ $6H_2O(g)$ b) $K_c = \frac{6[H_2O]}{4[NH]}$)]+4[NO]]+5[O]	
c) $K_c = \frac{[H_2O][NO]}{[NH_3][O_2]}$	d) $K_c = \frac{[H_2O]}{[NH_3]}$	$\begin{bmatrix} NO \end{bmatrix}^4 \\ \begin{bmatrix} A \\ O_2 \end{bmatrix}^5 $	e) $K_c = \frac{[NH_3]^4 [O_2]^3}{[H_2O]^6 [NO]^4}$

b) CO(g) + c) CO(g) + d) CO(g) +	the following equilifold $3H_2(g) \rightleftharpoons CH_4(g)$ $H_2O(g) \rightleftharpoons CO_2(g)$ $2H_2(g) \rightleftharpoons CH_3OI$ $1/2 O_2(g) \rightleftharpoons CO_2(g)$ $\rightleftharpoons N_2O_4(g)$	$+ H_2O(g)$ (x) $+ H_2(g)$ + H(g)	<i>K</i> _p ?	
	$L_2(g) + Cl_2(g)$; ΔH am constant of 6.2	-	the following would b	e true if the temperature were
2. The cond	librium constant we centration of ICl(g) al pressure of I ₂ we	would be increa	sed.	
a) 1 only	b) 2 only	c) 3 only	d) 1 and 2 only	e) 1 and 3 only
1. increase 2. decrease 3. increase	on system $N_2(g)$ + rium and increase the temperature the temperature the pressure the pressure			= –92 kJ/mol. In order to both
a) 1 only	b) 2 only	c) 1 and 3 or	aly d) 2 and 3 only	e) 1 and 4 only
Q17. Addition of a a TRUE	catalyst to a reaction b) FALSE	on at equilibrium	does not alter the value	e of the equilibrium constant.
is equal to 0.53, a) The reaction b) The reaction c) The reaction d) The reaction	•	to make more pr and no shift will on make more reach and causes a temp	oducts occur tants erature decrease	mperature. If the reaction quotient

Short Response. Show all work.

Q19. [7 pts.] The rate law for the reaction

$$NH_4^+(aq) + NO_2^-(aq) \longrightarrow N_2(g) + 2H_2O(l)$$

is given by rate= $k[NH_4^+][NO_2^-]$. At 25 °C, the rate constant is 3.0 x 10⁻⁴ M⁻¹ 's⁻¹. Calculate the rate of the reaction at this temperature if $[NH_4^+] = 0.26$ M, and $[NO_2^-] = 0.080$ M.

Rate =
$$3.0 \times 10^{-4} \, \text{M}^{-1} \cdot \text{S}^{-1} \times 0.26 \, \text{M} \times 0.080 \, \text{M}$$

= $6.2 \times 10^{-6} \, \frac{\text{M}}{\text{s}}$

Q20. [15 pts.] The rate at which tree crickets chirp is 2.0 x 10² per minute at 27 °C, but only 39.6 per minute at 5 °C. From these data, calculate the "energy of activation" for the chirping process. (*Hint:* The ratio of rates is equal to the ratio of rate constants.)

$$\lim_{x \to \infty} \left(\frac{K_2}{K_1}\right) = \frac{E_A}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

$$= \lim_{x \to \infty} \left(\frac{E_2}{K_1}\right) \cdot \frac{R}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

$$= \lim_{x \to \infty} \left(\frac{2 \cdot 0 \times 10^2 / m_{in}}{39 \cdot 6 / m_{in}}\right) \times 83145$$

$$= \lim_{x \to \infty} \left(\frac{1}{278K} - \frac{1}{300 \cdot K}\right)$$

$$= 51,000$$

$$= \lim_{x \to \infty} \int_{m_0}^{\infty} dx$$

Q21. [5 pts.] How does a catalyst increase the rate of a reaction?

It lowers the activation energy by providing an alternate mechanism.

Q22. [6 pts.] Write equilibrium constant expressions for K_c and K_p for the following reactions:

a)
$$2CO_2(g) \rightleftharpoons 2CO(g) + O_2(g)$$

$$k_{c} = \frac{[co]^{2}[o_{2}]}{[co_{2}]^{2}}$$
, $k_{p} = \frac{\rho_{co}^{2} \cdot \rho_{o_{2}}}{\rho_{co_{2}}^{2}}$

b)
$$2HgO(s) \rightleftharpoons 2Hg(l) + O_2(g)$$

$$K_c = [0_2]$$
, $K_p = P_{02}$

Q23. [10 pts.] Write out electron configurations for the following ATOMS or IONS:

a) Li
$$|s^2/s|^6$$

Q24. [11 pts.] The equilibrium constant K_c for the reaction

$$H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$$

is 4.2 at 1650 °C. Initially 0.80 mol H₂ and 0.80 mol CO₂ are injected into a 5.0-L flask. Calculate the concentration of each species at equilibrium.

$$[H_{2}]_{i} = [C0_{2}]_{i} = \underbrace{0.80 \, \text{mol}}_{\text{5.0 L}} = 0.16 \, \text{M}$$

$$= 0.328 = 3.05 \times \\
= 0.328 \\
3.05 = 0.106$$

$$= 0.106$$

$$= 0.106$$

$$= 0.106$$

$$= 0.106$$

$$= 0.106$$

$$= 0.106$$

$$= 0.106$$

$$= 0.108 \, \text{M}$$

$$= (H_{2})[C0]_{ea} = (C0)_{ea} = 0.052 \, \text{M}$$

$$= (W)(X)$$

Q25. [10 pts.] Write formulas for the following compounds:

a) ammonium sulfate
$$(NH_4)_2 SO_4$$
 NH_4 SO_4
b) copper(I) acetate $(L_1L_3O_2)_2$ C_4 C_4 C_4 C_5
c) iron(III) nitride $(L_1L_3O_2)_2$ C_4 C_4 C_4 C_5
d) heptanitrogen disulfide $(L_1L_3O_2)_2$ $(L_2L_3O_2)_3$
e) nitric acid $(L_1L_3O_3)_3$ $(L_2L_3O_4)_4$ $(L_1L_3O_4)_5$ $(L_1L_$

BONUS QUESTIONS

Predict the molecular geometry of XeF4.

Draw a diagram showing the formation of hydrogen bonds between molecules of CH₃OH. Clearly label the location of the hydrogen bonds in your diagram!

Useful Information

Periodic Table of the Flements

			Perio	oaic i	able (ot the	Elem	ients									
IA 1	IIA											IIIA	IVA	VA	VIA	VIIA	VIIIA
1	Ī																2
Н																	He
1.01	2											13	14	15	16	17	4.00
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	ı	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
																,	
		57	58	59	60	61	62	63	64	65	66	67	68	69	70		
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
		138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04		

Cf

Es

Fm

Md

No [259]

Bk

 $R = 8.314 \text{ J/mol \cdot K} = 0.08206 \text{ (L ·atm)/(mol · K)}$

Th

Αc

Рa

$$k = \mathcal{A}e^{-Ea/RT} \qquad \ln k = (-E_a/R)(1/T) + \ln \mathcal{A}$$

$$\ln \left(\frac{k_2}{k_1}\right) = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

U

•1-order:
$$\ln[A]_t = -kt + \ln[A]_0$$
 $\ln\left(\frac{[A]_t}{[A]_0}\right) = -kt$ $t_{1/2} = 0.693 / k$
•2-order: $1/[A]_t = kt + 1/[A]_0$ $t_{1/2} = 1 / ([A]_0 \cdot k)$

Pu

Αm

Cm

Np

$$K_{\rm p} = K_{\rm c}({\rm R}T)^{\rm ang}$$

Given:
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$