## Problem 2.8

A particle of mass m in the infinite square well (of width a) starts out in the left half of the well, and is (t = 0) equally likely to be found at any point in the region.

a.)

What is the initial wave function  $\Psi(x,0)$ ? (Assume it is real. Don't forget to normalize it.) **Solution:** 

So since we can assume that our probability density is constant everywhere at t = 0, so that:

$$\int_0^{a/2} C \ dx = 1$$

where  $C \in \mathbb{R}$ . So then our probability density is:  $\frac{2}{a}$ . Since  $|\Psi(x,0)|^2 = \frac{2}{a}$  and  $\Psi$  is real:

$$\Psi(x,0) = \sqrt{\frac{2}{a}} = \begin{cases} \frac{\sqrt{2a}}{a} & 0 \le x \le \frac{a}{2} \\ 0 & \frac{a}{2} \le x \le a \end{cases}$$

b.)

What is the probability that a measurement of the energy would yield the value  $\frac{\pi^2\hbar^2}{2ma^2}$ ? **Solution:** 

This is equivalent to finding  $|c_1|^2$  in our general solution:

$$c_{1} = \sqrt{\frac{2}{a}} \left[ \int_{0}^{a/2} \sin \frac{\pi x}{a} dx \frac{\sqrt{2a}}{a} dx + \int_{a/2}^{a} 0 dx \right]$$

$$= \frac{2}{a} \int_{0}^{a/2} \sin \frac{\pi x}{a} dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi/2} \sin(u) du$$

$$= \frac{2}{\pi} [-\cos(\pi/2) + \cos(0)] = \frac{2}{\pi}$$

So that the likelihood of finding the particle at ground state  $E_1$  is:  $\frac{4}{\pi^2} \approx 0.405$ .

## Problem 2.10

(a.)

Construct  $\psi_2(x)$ .

Solution:

$$\psi_1(x) = a^+ \psi_0(x)$$

Where:  $\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \exp\left(\frac{-m\omega}{2\hbar}x^2\right)$ . So then

$$\begin{split} \psi_1(x) &= a^+ \psi_0(x) \\ &= \frac{1}{\sqrt{2\hbar m\omega}} \left( -ip + m\omega x \right) \left( \frac{m\omega}{\pi\hbar} \right)^{1/4} \exp\left( \frac{-m\omega}{2\hbar} x^2 \right) \\ &= \frac{1}{\sqrt{2\hbar m\omega}} \left( -i\frac{\hbar}{i} \frac{d}{dx} + m\omega x \right) \left( \frac{m\omega}{\pi\hbar} \right)^{1/4} \exp\left( \frac{-m\omega}{2\hbar} x^2 \right) \\ &= \frac{1}{\sqrt{2\hbar m\omega}} \left( -\hbar \frac{d}{dx} \exp\left( \frac{-m\omega}{2\hbar} x^2 \right) + m\omega x \exp\left( \frac{-m\omega}{2\hbar} x^2 \right) \right) \left( \frac{m\omega}{\pi\hbar} \right)^{1/4} \\ &= \frac{1}{\sqrt{2\hbar m\omega}} \left( -\hbar \left( \frac{m\omega x}{\hbar} \right) \exp\left( \frac{-m\omega}{2\hbar} x^2 \right) + m\omega x \exp\left( \frac{-m\omega}{2\hbar} x^2 \right) \right) \left( \frac{m\omega}{\pi\hbar} \right) \\ &= \frac{1}{\sqrt{2\hbar m\omega}} \left( -(-m\omega x) \exp\left( \frac{-m\omega}{2\hbar} x^2 \right) + m\omega x \exp\left( \frac{-m\omega}{2\hbar} x^2 \right) \right) \left( \frac{m\omega}{\pi\hbar} \right) \\ &= \frac{2}{\sqrt{2\hbar m\omega}} \left( m\omega x \exp\left( \frac{-m\omega}{2\hbar} x^2 \right) \right) \left( \frac{m\omega}{\pi\hbar} \right)^{1/4} \\ &= \frac{1}{\sqrt{2\hbar m\omega}} \left( -\hbar \frac{d}{dx} + m\omega x \right) \frac{2}{\sqrt{2\hbar m\omega}} \left( m\omega x \exp\left( \frac{-m\omega x^2}{2\hbar} \right) \right) \left( \frac{m\omega}{\pi\hbar} \right)^{1/4} \\ &= \frac{1}{\hbar} \left( \frac{m\omega}{\pi\hbar} \right)^{1/4} \left[ -\hbar \frac{d}{dx} x \exp\left( \frac{-m\omega x^2}{2\hbar} \right) + m\omega x^2 \exp\left( \frac{-m\omega x^2}{2\hbar} \right) \right] \\ &= \frac{1}{\hbar} \left( \frac{m\omega}{\pi\hbar} \right)^{1/4} \exp\left( \frac{-m\omega x^2}{2\hbar} \right) (2m\omega x^2 - \hbar) \end{split}$$

adding in normalization constant:

$$\psi_2(x) = \frac{1}{\sqrt{2}} \frac{1}{\hbar} \left( \frac{m\omega}{\pi\hbar} \right)^{1/4} \exp\left( \frac{-m\omega x^2}{2\hbar} \right) (2m\omega x^2 - \hbar)$$

(b.)

Sketch  $\psi_0, \psi_1$ , and  $\psi_2$ .

Solution:

Psi1.PNG

Figure 1:  $\psi_0(x)$ 



Figure 3:  $\psi_2(x)$ 

(c.)

Check the orthogonality of  $\psi_0, \psi_1$  and  $\psi_2$ , by explicit integration. *Hint:* If you exploit the even-ness and odd-ness of the functions, there is really only one integral left to do.

## Solution:

First, note that by our graph, clearly  $\psi_0, \psi_2$  are even, and  $\psi_1$  is odd. So then:

$$\int_{-\infty}^{+\infty} \psi_0 \psi_1 \ dx = 0 \text{ by even/odd orthogonality}$$

$$\int_{-\infty}^{+\infty} \psi_1 \psi_2 \ dx = 0 \text{ by even/odd orthogonality}$$

$$\int_{-\infty}^{+\infty} \psi_0 \psi_2 \ dx =$$