Equivariant Chow Polynomials of Matroids

Nutan Nepal

North Carolina State University

Goal

Define the equivariant Chow polynomial $\underline{H}_{\mathsf{M}}^G(x) \in \mathrm{VRep}_G[x]$ of a matroid M :

Overview

The Chow Ring

For a matroid M with flats F_1, \ldots, F_m , the Chow ring \underline{CH}_M can be defined as a graded \mathbb{Z} -module generated by the following monomials:

$$x_{F_1}^{m_1} x_{F_2}^{m_2} \cdots x_{F_k}^{m_k} \mid \varnothing \subset F_1 \subset \cdots \subset F_k, \ 0 \le m_i \le \operatorname{rk}(F_i) - \operatorname{rk}(F_{i-1}) - 1.$$

The restriction on the exponents m_i of x_{F_i} ensures that there are exactly $\operatorname{rk}(M)$ graded pieces. The **(non equivariant) Chow polynomial** $\underline{H}_{\mathsf{M}}$ is defined as:

$$\underline{\mathbf{H}}_{\mathsf{M}}(x) = a_0 + a_1 x + \cdots + a_{\mathrm{rk}(M)-1} x^{\mathrm{rk}(M)-1}$$

where a_i is the rank of degree *i* piece in \underline{CH}_{M} .

For the braid matroid K_4 depicted above, the Chow polynomial is $1 + 8x + x^2$.

The set of triangular arrays P(w)

Define the set $\mathbf{P}(\mathbf{w})$ of triangular arrays of nonnegative integers such that:

- $\forall j$, the entries in the j^{th} chute sum to w_i .
- Ladders are weakly decreasing.

Theorem [Achar–Kulkarni–M.]

There is a bijection

 $\{G(\mathbf{w})\text{-orbits in } E(\mathbf{w})\} \stackrel{1-1}{\longleftrightarrow} \mathbf{P}(\mathbf{w}) = \{\text{certain tri. arrays}\}.$

Example of bijection

$$\mathbb{C} \xrightarrow{0} \mathbb{C} \xrightarrow{0} \mathbb{C}^2$$

$$\begin{array}{c} 1 \\ 1 \\ 0 \\ 2 \end{array}$$

$$\mathbb{C} \xrightarrow{0} \mathbb{C} \xrightarrow{\operatorname{rank} 1} \mathbb{C}^2$$

$$\mathbb{C} \xrightarrow{\operatorname{rank} 1} \mathbb{C} \xrightarrow{\operatorname{rank} 1} \mathbb{C}^2$$

Theorem (Combinatorial Fourier transform) [Achar–Kulkarni–M.]

There is a bijection

$$\mathbf{P}(\mathbf{w}) \stackrel{\mathsf{T}}{\longrightarrow} \mathbf{P}(\mathbf{w}^*)$$

defined inductively by

$$\mathsf{T} \left(\begin{array}{c} Y' \\ y_{1,n} \end{array} \right) = \tau_n^{y_{1,n}} \tau_{n-1}^{y_{2,n-1}-y_{1,n}} \cdots \tau_1^{y_{n,1}-y_{n-1,2}} \left(\begin{array}{c} 0 \\ \vdots \\ \mathsf{T}(Y') \end{array} \right)$$
 where $\mathsf{T}(a) = a$.

Definition of τ_j

Define $\tau_j: \mathbf{P}(\mathbf{w}) \to \mathbf{P}(\mathbf{w} + \mathbf{e}_1 + \ldots + \mathbf{e}_j)$ by:

- Add 1 as far down the $j^{\rm th}$ chute as possible, drawing an impassable vertical line there.
- Repeat for chutes $j-1,\ldots,1$ not crossing lines.

Example of CFT

Complete CFT example

Main conjecture (proof in progress)

The bijection T determines \mathbb{T} on simple perverse sheaves; that is, $\mathbb{T}(\mathrm{IC}(\mathcal{O}_{\lambda})) = \mathrm{IC}(\mathcal{O}_{\mathsf{T}(\lambda)}).$