First midterm exam

Instructions

Problem 1

Suppose that a group G acts transitively on a set X, and that $H = \operatorname{Stab}_G(x)$ is the stabilizer of a element of X. The orbit-stabilizer theorem says that there is a bijective map π from the homogeneous space G/H (meaning the cosets of H viewed as a set, not necessarily as a group) to X given by $\pi(gH) = gx$ which has the property that $\pi(h \cdot gH) = h \cdot \pi(gH)$. In particular, if X is finite, then the order of X is the same as [G:H].

Give three interesting applications of the orbit-stabilizer theorem with explanation of why they are interesting. Your answer should run no more than 2 pages.

Problem 2

- 1. Describe the automorphism group $\operatorname{Aut}(\mathbb{Z}/8\mathbb{Z})$ and show that it is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- 2. Show that there are four distinct homomorphisms from $\mathbb{Z}/2\mathbb{Z}$ into $\operatorname{Aut}(\mathbb{Z}/8\mathbb{Z})$ (including the trivial one). This yields 4 semidirect products $\mathbb{Z}/8\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$.
- 3. Match these 4 semidirect products with the groups $\mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, D_{16} , and the two groups QD_{16} described in DF, exercise 11, on page 71 and M described in DF, exercise 14 on page 72.

Problem 3

Let A be a commutative ring with unity.

- 1. An element $a \in A$ is called *nilpotent* if there is an integer $n \ge 1$ such that $a^n = 0$. Prove that the set of all nilpotent elements in A form an ideal in A.
- 2. If $A = \mathbb{Z}/m\mathbb{Z}$ where $m = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$, find the ideal I of nilpotent elements in A.

Problem 3

Let R be a commutative ring with unity. Let a and b be nonzero elements of R. Define a least common multiple of a and b to be an element $x \in R$ such that:

- 1. a divides x and b divides x.
- 2. If a divides y and b divides y then x divides y.

Prove that:

- a. a least common multiple of a and b, if it exists, is a generator for the unique largest principal ideal contained in $(a) \cap (b)$.
- b. any two nonzero elements in a Principal Ideal domain have a least common multiple that is unique up to multiplication by a unit.
- c. in a principal ideal domain, we have $ab = lcm(a, b) \gcd(a, b)$ up to a unit.

Note: refer to the definitions in DF, on page 274, for divisibility in commutative rings.