Xác định véctơ cường độ điện trường tổng hợp tại M

A. Phương pháp & Ví dụ

Áp dụng nguyên lý chồng chất điện trường:

- Xác định phương, chiều, độ lớn của từng vectơ cường độ điện trường do từng điện tích gây ra.
- Vẽ vectơ cường độ điện trường tổng hợp (quy tắc hình bình hành).
- Xác định độ lớn của cường độ điện trường tổng hợp từ hình vẽ.

Khi xác định tổng của hai vectơ cần lưu ý các trường hợp đặc biệt: ↑↑, ↑↓, ⊥, tam giác vuông, tam giác đều, ... Nếu không xảy ra các trường hợp đặt biệt thì có thể tính độ dài của vectơ

bằng định lý hàm cosin: $a^2 = b^2 + c^2 - 2bc.cosA$.

- Xét trường hợp tại điểm M trong vùng điện trường của 2 điện tích: $E_{\rightarrow} = E_{\rightarrow} + E_{\rightarrow}$

$$+ E \rightarrow \uparrow \uparrow \uparrow E \rightarrow E_M = E_1 + E_2$$

+
$$E \rightarrow \uparrow \downarrow E \rightarrow E_M = E_1 - E_2$$

$$\overrightarrow{E_1} \perp \overrightarrow{E_2} \Longrightarrow E_M = \sqrt{E_1^2 + E_2^2}$$

$$(\overrightarrow{E_1}, \overrightarrow{E_2}) = \alpha \Rightarrow E_M = \sqrt{E_1^2 + E_2^2 + 2E_1E_2\cos\alpha}$$

Nếu $E_1 = E_2 \rightarrow E = 2E_1 cos(\alpha/2)$

Ví dụ 1: Tại hai điểm A và B cách nhau 10 cm trong không khí có đặt hai điện tích $q_1 = q_2 = 16.10$ °C. Xác định cường độ điện trường do hai điện tích điểm này gây ra tại

- a. M với MA = MB = 5 cm.
- b. N với NA = 5 cm, NB = 15 cm.
- c. C biết AC = BC = 8 cm.
- d. Xác định lực điện trường tác dụng lên q_3 = 2.10 6 C đặt tại C.

Hướng dẫn:

$$q_1$$
 q_2 q_3 q_4 q_5 q_5 q_5 q_5 q_5

a. Ta có MA = MB = 5 cm và AB = 10 cm nên M là trung điểm của AB. Vecto cường độ điện trường tại M là tổng hợp hai vecto cường độ điện trường do mỗi điện tích gây ra: $E \rightarrow E \rightarrow M + E \rightarrow M$

$$E_{1M} = E_{2M} = k \frac{|q_1|}{AM^2} = 5,76.10^5 \text{ V/m}$$

Vì E_{-TM} cùng phương và ngược chiều với E_{-2M} nên $E_M = E_{1M} - E_{2M}$

b. Ta có NA = 5 cm, NB = 15 cm và AB = 10 cm nên N nằm ngoài AB và nằm trên đường thẳng AB.

Vecto cường độ điện trường tại M là tổng hợp hai vecto cường độ điện trường do mỗi điện tích gây ra: $E \rightarrow E \rightarrow h + E \rightarrow h$

$$\begin{cases} E_{1M} = k \frac{|q_1|}{AN^2} = 5,76.10^5 \text{V.m}^{-1} \\ E_{2M} = k \frac{|q_1|}{BN^2} = 0,64.10^5 \text{V.m}^{-1} \end{cases}$$

Với

Vì E_{-TM} cùng phương và cùng chiều với E_{-2M} nên $E_M = E_{1M} + E_{2M} = 6,4.10^5 \text{ V/m}$ c. Ta có AC = BC = 8 cm và AB = 10 cm nên C nằm trên đường trung trực của AB.

Tương tự, ta có vecto cường độ điện trường tổng hợp tại C sẽ là:

 $E_c = 2E_{1c}\cos\alpha = 3,51.10^5 \text{ V/m}$

d. Lực điện trường tổng hợp tác dụng lên q_3 là F = q_3 E = 0,7 N

Có chiều cùng chiều với E→

Ví dụ 2: Tại hai điểm A và B cách nhau 10 cm trong không khí có đặt 2 điện tích $q_1 = -q_2 = 6.10^{\circ}$ C. Xác định cường độ điện trường do hai điện tích điểm này gây ra tại điểm C, biết AC = BC = 12 cm. Tính lực điện trường tác dụng lên điện tích $q_3 = -3.10^{\circ}$ Cđặt tại C.

Hướng dẫn:

+ Ta có AC = BC = 12 cm và AB = 10 cm nên C nằm trên trung trực của AB. Cường độ điện trường tại C là tổng hợp của các vecto điện trường thành phần $E_{-c} = E_{-r} + E_{-2}$. Trong đó E_{1C} và E_{2C} lần lượt là cường độ điện trường do các điện tích điểm q_1 và q_2 gây ta tai C. Ta có:

$$E_{1C} = E_{2C} = k \frac{|q_1|}{AC^2} = 3,75.10^6 \text{ V/m}$$

Từ hình vẽ ta có:

 $E_c = 2E_{1c}\cos\alpha = 3{,}125.10^6 \text{ V/m}.$

+ Lực điện tác dụng lên điện tích q_3 có chiều cùng chiều với E_{-v} và có độ lớn $F = |q_3|.E_c = 0,094 \, N$

Ví dụ 3: Tại hai điểm A và B cách nhau 20 cm trong không khí có đặt hai điện tích q_1 = 4.10° Cvà q_2 = $-6,4.10^{\circ}$ C. Xác định cường độ điện trường do hai điện tích điểm này gây ra tại C, biết AC = 12 cm, BC = 16 cm. Xác định lực điện tác dụng lên điện tích q_3 = -5.10° C đặt tại C.

Hướng dẫn:

+ Cường độ điện trường do các điện tích q_1 và q_2 gây ra tại C có chiều như hình vẽ và có độ lớn:

$$\begin{cases} E_{1C} = k \frac{|q_1|}{AC^2} = 25.10^5 \text{ V.m}^{-1} \\ E_{1C} = k \frac{|q_2|}{BC^2} = 22, 5.10^5 \text{ V.m}^{-1} \end{cases}$$

Ta có
$$E_C = \sqrt{E_{1C}^2 + E_{2C}^2} = 33,6.10^5 \text{ V/m}$$

+ Lực điện tác dụng lên q₃ ngược chiều với E→và có độ lớn:

 $F = |q_3|E_c$

Ví dụ 4: Hai điện tích $q_1 = q_2$ (q > 0) đặt tại hai điểm A và B với AB = 2a. M là điểm nằm trên đường trung trực của AB và cách AB một đoạn h.

a. Xác định vecto cường độ điện trường tại điểm M.

b. Xác định x để cường độ điện trường tại M cực đại, tính giá trị đó.

Hướng dẫn:

a. Cường độ điện trường tại điểm M là $E_{-M} = E_{--} + E_{--}$ Trong đó $E_{--} E_{--}$ là cường độ điện trường do q_1 và q_2 gây ra tại M.

$$E_1 = E_2 = k \frac{|q_1|}{a^2 + h^2}$$

+ Cường độ điện trường tổng hợp tại M

$$E_{M} = 2E_{1} \cos \alpha = \frac{2k|q|h}{(a+h)^{1.5}} V/m.$$

b. Xác định h để E_м cực đại

$$a^{2} + h^{2} = \frac{a^{2}}{2} + \frac{a^{2}}{2} + h^{2} \ge 3\sqrt[3]{\frac{a^{4}h^{2}}{4}}$$

$$\Rightarrow \left(a^{2} + h^{2}\right)^{3} \ge \frac{27}{4}a^{4}h^{2} \Rightarrow \left(a^{2} + h^{2}\right)^{\frac{3}{2}} \ge \frac{3\sqrt{3}}{2}a^{2}h$$

$$V\hat{a}y \ E_{M} \le \frac{2kqh}{\frac{3\sqrt{3}}{2}a^{2}h} = \frac{4kq}{3\sqrt{3}a^{2}}$$

$$h = \frac{a}{\sqrt{2}} \Rightarrow E_{M_{max}} = \frac{4kq}{3\sqrt{3}a^{2}}$$

E_м cực đại khi

B. Bài tập

Bài 1: Tại 2 điểm A và B cách nhau 10 cm trong không khí có đặt 2 điện tích $q_1 = q_2 = 16.10$ $^{\circ}$ C. Xác định cường độ điện trường do hai điện tích này gây ra tại điểm C biết AC = BC = 8 cm. Xác định lực điện trường tác dụng lên điện tích $q_3 = 2.10$ $^{\circ}$ C đặt tại C. **Lời giải:**

Các điện tích q_1 và q_2 gây ra tại C các véc tơ $E \rightarrow v$ à $E \rightarrow v$ ò phương chiều như hình vẽ, có độ lớn:

9.10⁹
$$\frac{|q_1|}{AC^2}$$
 = 225.10³ V/m.

Cường độ điện trường tổng hợp tại C do các điện tích q_1 và q_2 gây ra là: $E \rightarrow E \rightarrow + E_{-2}$ có phương chiều như hình vẽ; có độ lớn:

$$\frac{\sqrt{AC^2 - AH^2}}{AC}$$

$$\approx 351.10^{3} \text{ V/m}.$$

 $E = E_1 \cos \alpha + E_2 \cos \alpha = 2E_1 \cos \alpha = 2E_1$.

Lực điện trường tổng hợp do q_1 và q_3 tác dụng lên q_3 là: $F \rightarrow q_3 E \rightarrow V$ ì $q_3 > 0$, nên F cùng phương cùng chiều với E và có độ lớn: $F = |q_3|E = 0.7 N$.

Bài 2: Tại hai điểm A và B cách nhau 10 cm trong không khí có đặt hai điện tích q₁ = - q₂ = 6.10.6 C. Xác định cường đô điện trường do hai điện tích này gây ra tại điểm C biết AC = BC = 12 cm. Tính lực điện trường tác dụng lên điện tích q₃ = -3.108 C đặt tại C.

Lời giải:

Các điện tích q_1 và q_2 gây ra tại C các véc tơ $E \rightarrow v$ à $E \rightarrow v$ ò phương chiều như hình vẽ, có độ lớn:

$$E_1 = E_2 = 9.10^9 \frac{|q_1|}{AC^2} = 375.10^4 \text{ V/m}.$$

Cường độ điện trường tổng hợp tại C do các điện tích q_1 và q_2 gây ra là: $E \rightarrow E \rightarrow + E_{-2}$ có phương chiều như hình vẽ; có đô lớn:

 $E = E_1 \cos \alpha + E_2 \cos \alpha = 2E_1 \cos \alpha = 2E_1$. $AC \approx 312,5.10^4 \text{ V/m}$.

Lực điện trường tổng hợp do q_1 và q_3 tác dụng lên q_3 là: $F \rightarrow q_3 E \rightarrow$

Vì $q_3 < 0$, nên F— ε ùng phương ngược chiều với E— ν à có độ lớn: $F = |q_3|E = 0.094 N$.

Bài 3: Tai 2 điểm A, B cách nhau 20 cm trong không khí có đặt 2 điện tích g₁ = 4.10⁶ C, $q_2 = -6.4.10^{-6}$ C. Xác định cường độ điện trường do hai điện tích này gây ra tại điểm C biết AC = 12 cm; BC = 16 cm. Xác định lực điện trường tác dụng lên g₃ = -5.10 °C đặt tại C. Lời giải:

Tam giác ABC vuông tại C. Các điện tích q_1 và q_2 gây ra tại C các véc tơ $E \rightarrow v$ à $E \rightarrow v$ ò phương chiều như hình vẽ, có độ lớn:

$$E_1 = 9.10^9 \frac{|q_1|}{AC^2} = 25.10^5 \text{ V/m};$$

$$E_2 = 9.10^9 \frac{|q_2|}{BC^2} = 22,5.10^5 \text{ V/m}.$$

Cường độ điện trường tổng hợp tại C do các điện tích q_1 và q_2 gây ra là $E \rightarrow v$ à $E \rightarrow v$ à $E \rightarrow v$

phương chiều như hình vẽ; có độ lớn: $E=\sqrt{E_1^2+E_2^2}\approx 33,6.10^5~V/m.$

Lực tác dụng lên q_3 là: $F=q_3.E$. Vì $q_3<0$, nên F cùng phương ngược chiều với E và $F=|q_3|E=0,17$ N.

Bài 4: Tại hai điểm A và B cách nhau 10 cm trong không khí có đặt hai điện tích q_1 = -1,6.10-6 C và q_2 = -2,4.10-6 C. Xác định cường độ điện trường do 2 điện tích này gây ra tại điểm C. Biết AC = 8 cm, BC = 6 cm.

Lời giải:

Tam giác ABC vuông tại C. Các điện tích q_1 và q_2 gây ra tại C các véc tơ cường độ điện trường $E \rightarrow v$ à $E \rightarrow v$ có phương chiều như hình vẽ, có độ lớn:

$$E_1 = 9.10^9 \frac{|q_1|}{AC^2} = 255.10^4 \text{ V/m};$$

$$E_2 = 9.10^9 \frac{|q_2|}{BC^2} = 600.10^4 \text{ V/m}.$$

Cường độ điện trường tổng hợp tại C do các điện tích q_1 và q_2 gây ra là: $E \rightarrow E \rightarrow + E_{-2}$ có

$$E = \sqrt{E_1^2 + E_2^2} \approx 64.10^5 \text{ V/m}.$$

phương chiều như hình vẽ; có độ lớn:

Bài 5: Hai điện tích + q và -q (q > 0) đặt tại hai điểm A và B với AB = 2a. M là điểm nằm trên đường trung trực của AB và cách AB một đoạn x.

a. Xác đinh vecto cường độ điện trường tại điểm M.

b. Xác định x để cường độ điện trường tại M cực đại, tính giá trị đó.

Lời giải:

a. Cường độ điện trường tại điểm M là $E_{-M} = E_{--} + E_{--}$ Trong đó $E_{--} E_{--}$ là cường độ điện trường do q_1 và q_2 gây ra tại M.

$$E_1 = E_2 = k \frac{|q_1|}{a^2 + x^2}$$

+ Cường độ điện trường tổng hợp tại M

$$E_{M} = 2E_{1}\cos\alpha = \frac{2k|q|a}{(a+x)^{1.5}}V/m$$

b. Dễ thấy rằng để EM lớn nhất thì x = 0, khi đó $E_{M} = \frac{2kq}{a^{2}}$

Bài 6: Đặt 4 điện tích có cùng độ lớn q tại 4 đỉnh của một hình vuông ABCD cạnh a với điện tích dương đặt tại A và C, điện tích âm đặt tại B và D. Xác định cường độ tổng hợp tại giao điểm hai đường chéo của hình vuông. Lời giải:

Các điện tích đặt tại các đỉnh của hình vuông gây ra tại giao điểm O của hai đường chéo hình vuông các véc tơ E_{-R} E_{-R}

$$\frac{2kq}{\varepsilon a^2}$$

Cường độ điện tường tổng hợp tại O là:

 $E \rightarrow E \rightarrow + E \rightarrow + E \rightarrow + E \rightarrow = 0 \rightarrow = 0 \rightarrow + E \rightarrow = 0 \rightarrow =$

Bài 7: Đặt 4 điện tích có cùng độ lớn q tại 4 đỉnh của một hình vuông ABCD cạnh a với điện tích dương đặt tại A và D, điện tích âm đặt tại B và C. Xác định cường độ tổng hợp tại giao điểm hai đường chéo của hình vuông.

Lời giải:

Các điện tích đặt tại các đỉnh của hình vuông gây ra tại giao điểm O của hai đường chéo hình vuông các véc tơ E_{-3} ; E_{-

$$E_{c} = E_{D} = \frac{2kq}{\varepsilon a^{2}}$$

Cường độ điện tường tổng hợp tại O là:

 $E \rightarrow E \rightarrow + E \rightarrow +$

$$E = 4E_{A}\cos 45^{0} = \frac{4\sqrt{2}kq}{\varepsilon a^{2}}.$$

Bài 8: Tại 3 đỉnh của một hình vuông cạnh a đặt 3 điện tích dương cùng độ lớn q. Xác định cường độ điện trường tổng hợp do 3 điện tích gây ra tại đỉnh thứ tư của hình vuông. **Lời giải:**

Các điện tích đặt tại các đỉnh A, B, C của hình vuông gây ra tại đỉnh D của hình vuông các

$$E = 2E_B\cos 45^0 + E_A = \frac{kq}{2}(2\sqrt{2} + 1)$$

Bài 9: Tại 3 đỉnh A, B, C của một hình vuông cạnh a đặt 3 điện tích dương cùng độ lớn q. Trong đó điện tích tại A và C dương, còn điện tích tại B âm. Xác định cường độ điện trường tổng hợp do 3 điện tích gây ra tại đỉnh D của hình vuông. **Lời giải:**

Các điện tích đặt tại các đỉnh A, B, C của hình vuông gây ra tại đỉnh D của hình vuông các véc tơ cường độ điện trường E_{-R} E_{-R} E_{-C} có phương chiều như hình vẽ, có độ lớn: E_B =

$$E_c = \frac{kq}{\varepsilon a^2}$$
; $E_A = \frac{kq}{2\varepsilon a^2}$

Cường độ điện trường tổng hợp tại D là: $E \rightarrow E_{\rightarrow} + E_{\rightarrow} +$

$$E = 2E_B\cos 45^0 + E_A = \frac{kq}{2}(2\sqrt{2}-1)$$
.

Bài 10: Hai điện tích $q_1 = q_2 = q > 0$ đặt tại hai điểm A và B trong không khí cách nhau một khoảng AB = 2a. Xác định véc tơ cường độ điện trường tại điểm M nằm trên đường trung trực của đoạn AB và cách trung điểm H của đoạn AB một đoạn x. **Lời giải:**

Các điện tích q_1 và q_2 gây ra tại M các véc tơ cường độ điện trường E_1 và E_2 có phương chiều như hình vẽ, có độ lớn:

$$E_1 = E_2 = \frac{kq}{\varepsilon(a^2 + x^2)}.$$

Cường độ điện trường tổng hợp tại M do các điện tích q_1 và q_2 gây ra là: $E \rightarrow E \rightarrow + E_{-2}$ có phương chiều như hình vẽ; có độ lớn:

 $E = E_1 \cos\alpha + E_2 \cos\alpha = 2E_1 \cos\alpha$

$$= 2E_1 \cdot \frac{x}{\sqrt{a^2 + x^2}} = \frac{kqx}{\varepsilon (a^2 + x^2)^{\frac{3}{2}}}.$$

Bài 11: Hai điện tích $q_1 = -q_2 = q > 0$ đặt tại hai điểm A và B trong không khí cách nhau một khoảng AB = a. Xác định véc tơ cường độ điện trường tại điểm M nằm trên đường trung trực của AB và cách trung điểm H của đoạn AB một khoảng x. **Lời giải:**

Các điện tích q_1 và q_2 gây ra tại M các véc tơ cường độ điện trường E_{-1} , E_{-2} -có phương

chiều như hình vẽ, có độ lớn: $E_1 = E_2 = \frac{kq}{\varepsilon(a^2 + x^2)}$.

Cường độ điện trường tổng hợp tại M do các điện tích q_1 và q_2 gây ra là: $E \rightarrow E \rightarrow + E_{\rightarrow} + E_{$

E = 2E₁cos\alpha = 2E₁.
$$\frac{a}{\sqrt{a^2 + x^2}} = \frac{kqa}{\varepsilon(a^2 + x^2)^{\frac{3}{2}}}$$