Módulo 7

Gerenciamento de Clusters (Sistemas Distribuídos)

M7-I -Introdução à configuração e gerenciamento de Clusters

Caderno de atividades

Informações gerais:

Usuários cadastrados nas máquinas virtuais:

Usuários	Senha
root	123456
verao	verao2020
user01	123456
user02	123456

Diretório exportado via NFS para os nós: /scratch

Diretório home dos usuários do cluster: /scratch/\$USER

Comando executado pelo superusuário na máquina login login# comando parametros

Comando executado pelo superusuário em todas as máquinas (login, no01 e no02) todos# comando parametros

Comando executado pelo superusuário nos nós computacionais (no01 e no02) nodes# comando parametros

Comando executado por um usuário comum login\$ comando parametros

Lab 1. Instalando os pré-requisitos para a instalação do SLURM:

1.1. MUNGE

O munge pode ser instalado a partir do código fonte, disponível em https://dun.github.io/munge/ ou do repositório epel-release do CentOS. Ele deverá ser instalado em todos os nós do cluster e a chave munge.key deve ser idêntica em todas as máquinas.

Instalação em todos os nós:

```
# clush -w login,no0[1-2] yum install -y munge munge-libs munge-devel
```

Criando a chave

```
login# dd if=/dev/urandom bs=1 count=1024 > /etc/munge/munge.key
login# chown munge:munge /etc/munge/munge.key
login# chmod 0600 /etc/munge/munge.key
```

Outra opção:

```
login# /usr/sbin/create-munge-key -r /dev/random
login# chown munge: /etc/munge/munge.key
login# chmod 0600 /etc/munge/munge.key
```

Copiar a chave para todos os nodes

```
login# clush -w no0[1-2] -c /etc/munge/munge.key
login# clush -w no0[1-2] chown munge:munge /etc/munge/munge.key
```

Iniciar o processo do munge em todo o cluster

```
login# clush -w login,no0[1-2] systemctl enable munge
login# clush -w login,no0[1-2] systemctl start munge
login# clush -w login,no0[1-2] systemctl status munge
```

Testando:

```
login# munge -n | unmunge
login# munge -n | ssh no01 unmunge
login# munge -n | ssh no02 unmunge
```

O resultado deve apresentar o status Success (0)

```
root@login ~]# munge -n | unmunge
STATUS: Success (0)
ENCODE_HOST: login.lncc.local (192.168.0.1)
...
```

1.2. Banco de dados para Accounting (MySQL/MariaDB)

Será necessário adicionar o repositório oficial do projeto MariaDB pois a versão disponível no repositório do Centos 7 não possui todas as libs necessárias para a compilação do SLURM.

```
todos# curl -sS https://downloads.mariadb.com/MariaDB/mariadb repo setup | bash
```

Instalação do MariaDB no Service Node

```
login# yum install -y MariaDB-client MariaDB-shared MariaDB-devel \
MariaDB-server MariaDB-backup
```

Instalação das libs nos computer nodes

```
nodes# yum install -y MariaDB-client MariaDB-shared MariaDB-devel
```

Ajustar configurações do banco de dados para os valores recomendados

Criar o arquivo /etc/my.cnf.d/innodb.cnf com o conteúdo abaixo: login# vi /etc/my.cnf.d/innodb.cnf [mysqld] innodb_buffer_pool_size=1024M innodb_log_file_size=64M innodb_lock_wait_timeout=900

Iniciar o serviço e configurar a inicialização automática durante o boot

login# systemctl start mariadb
login# systemctl enable mariadb

Ajustes de segurança no mysql

login# mysql_secure_installation
Senha de root: 123456
Switch to unix_socket authentication: Yes
Change the root password? No
Remove anonymous users? Yes
Disallow root login remotely? Yes
Remove test database and access to it? Yes
Reload privilege tables now? Yes

Criação do database e usuário do slurm no mysql

Acesse o terminal com o usuário root e conecte-se ao mysql, em seguida, siga os passos abaixo para criar o database e o usuários utilizados pelo slurm.

```
# mysql
mysql> create database slurm_acct_db;
mysql> create user 'slurm'@'localhost' identified by 'slurm_pass';
mysql> grant all on slurm_acct_db.* TO 'slurm'@'localhost';
mysql> FLUSH PRIVILEGES;
mysql> exit;

Testando o acesso:
login# mysql -u slurm -D slurm_acct_db -p
```

1.3. Dependências do S.O.

Além do MUNGE e do MySQL diversas bibliotecas são necessárias para a compilação e instalação do SLURM. Utilize o gerenciador de pacores yum para instalar todas as dependências listadas abaixo:

todos# yum install -y openssl openssl-devel pam-devel numactl numactl-devel hwloc hwloc-devel lua lua-devel readline-devel rrdtool-devel ncurses-devel man2html libibmad libibumad perl-ExtUtils-MakeMaker wget

2. Instalação do Slurm

```
Criar grupo slurm
todos# groupadd -g 991 slurm
Criar usuário slurm
todos# useradd -m -c " SLURM workload manager " -d \
/var/lib/slurm -u 991 -g slurm -s /bin/bash slurm
Baixar o fonte do slurm no diretório /scratch/app:
login# cd /scratch/app
login# wget https://download.schedmd.com/slurm/slurm-19.05.5.tar.bz2
Criar os pacotes
login# rpmbuild -ta slurm-19.05.5.tar.bz2
login# mkdir /scratch/app/slurm-rpms
login# cp /root/rpmbuild/RPMS/x86 64/slurm-* /scratch/app/slurm-rpms
2.1. Instalando o Login/Service node
login# cd /scratch/app/slurm-rpms
login# yum --nogpgcheck localinstall -y \
      slurm-19.05.5-1.el7.x86 64.rpm \
      slurm-perlapi-19.05.5-1.el7.x86_64.rpm \
      slurm-slurmctld-19.05.5-1.el7.x\overline{8}6 64.rpm \
      slurm-slurmdbd-19.05.5-1.el7.x86 64.rpm \
      slurm-example-configs-19.05.5-1.el7.x86 64.rpm \
      slurm-devel-19.05.5-1.el7.x86_64.rpm \
      slurm-contrib-19.05.5-1.el7.x86_64.rpm
2.2. Instalando os computer nodes
nodes# cd /scratch/app/slurm-rpms
nodes# yum --nogpgcheck localinstall -y
      slurm-19.05.5-1.el7.x86_64.rpm \
      slurm-perlapi-19.05.5-1.el7.x86 64.rpm \
      slurm-slurmd-19.05.5-1.el7.x86_64.rpm \
      slurm-pam_slurm-19.05.5-1.el7.x86_64.rpm
```

2.3. Configurando o slurmdbd

Copiar o exemplo do arquivo de configuração e editá-lo conforme abaixo:

```
login# cp /etc/slurm/slurmdbd.conf.example /etc/slurm/slurmdbd.conf
login# vi /etc/slurm/slurmdbd.conf
```

AuthType=auth/munge
DbdAddr=localhost
DbdHost=localhost
SlurmUser=slurm
DebugLevel=verbose
LogFile=/var/log/slurm/slurmdbd.log
PidFile=/var/run/slurmdbd.pid
StorageType=accounting_storage/mysql
StorageHost=localhost
StoragePass= slurm_pass
StorageUser=slurm
StorageLoc=slurm acct db

Criar o diretório de log e spool e alterar o dono e o grupo

login# mkdir -p /var/log/slurm/ /var/spool/slurm/d /var/spool/slurm/ctld login# chown -R slurm:slurm /var/log/slurm /var/spool/slurm

Iniciar o serviço do slurmdbd e verificar os logs

login# systemctl start slurmdbd

O log do slurmdbd deve apresentar uma saída semelhante a descrita abaixo:

[data] Accouting storage MYSQL plugin loaded [data] slurmdbd version 19.05.5 started

2.4. Configurando o daemon slurmd

Todos os nós do cluster devem ter o mesmo arquivo de configuração do slurmd. Uma sugestão para organizar essa configuração é manter o arquivo slurmd.conf no mesmo nó que roda o daemon do slurmctl – no nosso caso, a máquina login.lncc.local. Toda alteração na configuração do slurm deverá ser feita nesse arquivo e copiada para os demais nós logo em seguida.

Copiar o arquivo de exemplo do slurm e editar conforme abaixo:

login# cp /etc/slurm/slurm.conf.example /etc/slurm/slurm.conf
login# vi /etc/slurm/slurm.conf

ClusterName=verao20
ControlMachine=login
SlurmctldHost=login
SlurmdUser=slurm
AuthType=auth/munge
StateSaveLocation=/var/spool/slurm/ctld
SlurmdSpoolDir=/var/spool/slurm/d

SCHEDULING
SchedulerType=sched/backfill

#LOGGING
SlurmctldDebug=info
SlurmctldLogFile=/var/log/slurm/slurmctld.log
SlurmdDebug=info
SlurmdLogFile=/var/log/slurm/slurmd.log
JobCompType=jobcomp/none

COMPUTE NODES
NodeName=no0[1-2] CPUs=1 State=UNKNOWN

PartitionName=teste Nodes=no01 Default=Yes MaxTime=INFINITE State=UP

Os demais parâmetros do arquivo podem permaecer com as opções default.

Criar o diretório de spool, de log e alterar as permissões

nodes# mkdir -p /var/spool/slurm/d /var/spool/slurm/ctld /var/log/slurm
nodes# chown -R slurm:slurm /var/spool/slurm /var/log/slurm

Copiando as informações para os computer nodes

login# clush -w no0[1-2] mkdir /etc/slurm login# clush -w no0[1-2] -c /etc/slurm/slurm.conf

2.5. Iniciando os daemons, habilitando a inicialização automática e verificando o funcionamento:

```
login# systemctl start slurmdbd
login# systemctl enable slurmdbd
login# systemctl status slurmdbd

login# systemctl start slurmctld
login# systemctl enable slurmctld
login# systemctl status slurmctld

nodes# systemctl start slurmd
nodes# systemctl enable slurmd
nodes# systemctl status slurmd
```

2.6. Testando o ambiente

Obtendo as informações do hardware dos nós:

```
nodes# slurmd -C
NodeName=no01 CPUs=1 Boards=1 SocketsPerBoard=1 CoresPerSocket=1
ThreadsPerCore=1 RealMemory=991
```

Verificando o status da partição e dos nodes

login# sinfo

PARTITION	AVAIL	TIMELIMIT	NODES	STATE	NODELIST
teste*	up	infinite	2	idle	no[01-02]

Teste o funcionamento do cluster com o comando srun

Faça o login com o usuário user01 e submeta o comando hostname para a partição teste solicitando dois nós:

O resultado deverá ser:

```
[\underline{user01@login} ~]$ srun -N 2 -p teste hostname no01 no02
```

Lab 3 - Habilitando o sistema de accounting

Editar o arquivo slurm.conf e alterar as propriedades AccountingStorageType e AccountingStorageEnforce para que as informações de accounting sejam armazenadas em banco de dados e que sejam respeitadas as restrições de limites de recursos.

login# vi /etc/slurm/slurm.conf
AccountingStorageEnforce=limits
AccountingStorageType=accounting storage/slurmdbd

Copiar o arquivo para todos os nós computacionais e reiniciar os serviços slurmd e slurmctld

login# clush -w no0[1-2] -c /etc/slurm/slurm.conf login# clush -w no0[1-2] systemctl restart slurmd login# systemctl restart slurmctld

Verifique os logs do daemon slurmctld. Notou algum erro? Caso afirmativo, indique uma possível solução.

Lab 4 - Criando associations

4.1. Cadastrando o cluster.

Como pode ser observado no Lab 3, ao habilitarmos o controle de limites de recursos devemos ter, pelo menos, a associação do cluster cadastrada no slurm. Diante disso, adicione o nosso cluster ao banco de dados de accounting (o nome do cluster deve ser idêntico ao valor do parâmetro ClusterName do arquivo slurm.conf). Utilize o comando sacctmgr para isso.

Inicie o serviço do slurmctld e verifique se ainda existe algum problema nos arquivos de log.

Acesse o sistema com o usuário user01 e faça a submissão do comando hostname para a partição teste solicitando 1 nó.

user01@login~\$ srun -N 2 -p teste hostname

Comente o resultado do comando.

4.2. Cadastrando um account.

Cadastre um Account chamado "alunos" sem nenhum tipo de restrição. Em seguida cadastre um Account chamado restrito com a seguinte configuração:

- Cluster: verao20
- Número máximo de nós por job: 1
- Número máximo de jobs submetidos: 2
- Tempo máximo de execução dos jobs: 60 segundos

Exemplo:

sacctmgr create account propriedade=valor propriedade=valor ...

4.3. Cadastrando usuários.

Adicione os usuários user01 e user02 ao banco de dados de accounting. Defina o account alunos para ambas as contas e configure o account padrão como restrito apenas para a conta user02.

Repita o teste de submissão de job realizado na atividade 4.1 com os dois usuários e comente o resultado.

4.4. Repita o teste da atividade 4.1 com o usuário user02 e especifique a utilização do account alunos durante a submissão do job.

Lab 5 - Consultando as informações de accounting

- **5.1.** Utilize o comando sacct e liste todos os jobs executados pelo usuário user**01.** # sacct -u user**01**
- 5.2. Liste todos os jobs submetido para o account "restrito".
- 5.3. Liste os jobs que foram executados nas últimas 2 horas.

Referências:

https://slurm.schedmd.com/documentation.html
https://github.com/dun/munge/blob/master/QUICKSTART
https://www.slothparadise.com/how-to-install-slurm-on-centos-7-cluster/
https://wiki.fysik.dtu.dk/niflheim/Slurm_installation#build-slurm-rpms
https://slurm.schedmd.com/SC16/SlurmOverview.pdf