语言之物理特征计算

基于字符相似度的机器翻译自动评价技术

杨沐昀

哈工大教育部-微软语言语音重点实验室 MOE-MS Joint Key Lab of NLP and Speech (HIT)

Foreword

How to do work simply!

For a given sentence, the easiest thing to do

- Counting
- Counting words
- Can they be helpful?

BLEU method!

Motivation

- Why automatic evaluation for MT?
 - Manual evaluation is expensive, inconsistent and time consuming.
 - MT development need instant feedback on his efforts
 - Whether my algorithm, my model, new weight help?
 - Large scale, objective evaluation is of substantial significance for any research.

How?

- Do we need to study how people recognize good translation?

 - A long history of translation argues what is good translation!
- In most cases, "whether better" matters more than "how better"!
- Can we accomplish this by a simple way?

Observations!

The closer a (machine) translation is to a professional human translation, the better it is!

A corpus of good quality human reference translations

A numerical translation closeness metric!!!

Examples

Example 1:

- Candidate 1: It is a guide to action which ensures that the military always obeys the commands of the party
- Candidate 2: It is to insure the troops forever hearing the activity guidebook that party direct
- Reference 1: It is a guide to action that ensures that the military will forever heed party commands
- Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the party
- Reference 3: It is the practical guide for the army always to heed the directions of the party

Match Counting?

- Ranking the candidates
 - Simply comparing the candidate translation and the reference translations and counts the number of matches.
- Assumption 1: simple counting method (by unigram word)
 - Counting the number of candidate translation words which occur in any reference translation and then divides by the total number of words in the candidate translation

Exhausted Counting

Example 2:

- Candidate: the the the the the the
- * Reference1: the cat is on the mat.
- * Reference2: there is a cat on the mat.
 - Simple standard unigram count is 7/7;
 - Each word should be modified as exhausted after the match identified;
 - \sim Thus, the modified unigram precision is 2/7;

Modified Bigram Precision

Example 1:

- Candidate 1: It is a guide to action which ensures that the military always obeys the commands of the party
- Candidate 2: It is to insure the troops forever hearing the activity guidebook that party direct
- Reference 1: It is a guide to action that ensures that the military will forever heed party commands
- Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the party
- Reference 3: It is the practical guide for the army to heed the directions of the party
 - ■candidate 1 achieves a modified bi-gram precision of 10/17
 - whereas the candidate 2 achieves a modified precision of 1/13.

Are We Reasonable

- This sort of modified n-gram precision scoring captures two aspects of translation quality
 - □ Unigram tends to satisfy adequacy (忠实度)

Modified n-gram Precision on Translation Text

$$Pn = \frac{\sum_{C \in \{candidate\}} \sum_{n-gram \in C} Count_{clip}(n-gram)}{\sum_{C \in \{candidate\}} \sum_{n-gram \in C} Count(n-gram)}$$

Compare Human Translator and a Translation System

Compare Multiple Human Translators and MT Systems

How to Combine

- Average?
- Note the modified n-gram precision decays roughly exponentially with n:
 - □ Unigram > Bi-gram > trigram
- Or Smooth the shorp difference in everage!
 - Smooth the sharp difference in average!

Problem: Sentence Length

* Recall Issue

Candidate1:of the

Reference1: It is a guide to action that ensures that the military will forever heed party commands

Reference2: It is the guiding principle which guarantees the military forces always being under the command of the party

Reference3: It is the practical guide for the army to heed the directions of the party

The modified unigram precision is 2/2, and the modified bigram precision is 1/1!

Recall is not an Easy Issue

- Candidate1: I always invariably perpetually do.
- Candidate2: I always do.
- Reference1: I always do.
- Reference2: I invariably do.
- Reference3: I perpetually do.

Note: The recall rate of candidate1 is better than candidate2, but the translation quality is poorer

Solution from Mathematics

- Precision may balance long sentences;
- We may penalize the short ones with a brevity penalty;
- Average logarithm against arithmetic average and geometric mean?
 - Log is a good smoothing function!

BLEU Metric

$$BLEU = BP \bullet \exp\left(\sum_{1}^{N} w_n \log p_n\right)$$

$$BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \le r \end{cases}$$

$$N = 4, w_n = 1/N$$

BLEU: An Example

- Candidate 1: the book is on the desk
- Ref1: there is a book on the desk
- Ref2: the book is on the table

unigram:	bigram:	trigram:
	$Count_{clip}(the,book) = 1$	$Count_{clip}(the,book,is) = 1$
	$Count_{clip}(book, is) = 1$	$Count_{clip}(book, is, on) = 1$
	$Count_{clip}(is, on) = 1$	$Count_{clip}(is, on, the) = 1$
	$Count_{clip}(on, the) = 1$	$Count_{clip}(on, the, desk) = 1$
	$Count_{clip}(the, desk) = 1$	
$\sum_{unigram \in C} Count(unigram) = 6$	$\sum_{bigram \in C} Count(bigram) = 5$	$\sum_{triangre} Count(trigram) = 4$
$p_1 = 1$	$p_2 = 1$	$p_3 = 1$

$$BLEU = BP \bullet \exp\left(\sum_{n=1}^{N} w_n \log p_n\right)$$
$$= \exp\left[\frac{1}{3}(\log 1 + \log 1 + \log 1)\right] = 1$$

BLEU Evaluation--Consistency

Adopted by NIST for TIDES Project

Corpus used to evaluation of N-gram Scoring

Corpus	Source language	#of documents	#of human translations	#MT syste ms
DARPA 1994 French-English	French	100	2	5
DARPA 1994 Japanese-English	Japanese	100	2	4
DARPA 1994 Spanish-English	Spanish	100	2	4
DARPA 2001 Chinese-English	Chinese	80	11	6

Correlation between BLEU Score and Human Assessment

Corpus	Systems	Adequacy (%)	Fluency (%) s	Infor matic s (%)
DARPA 1994 French-English	5 MT systems	95.7	99.7	91.4
DARPA 1994 Japanese-English	4 MT systems	97.8	85.6	98.3
DARPA 1994 Spanish-English	4 MT systems	97.5	97.2	94.3
DARPA 2001 Chinese-English	6 Commercial systems	95.2	97.1	-

Outline

- Summary
 - How to processing language by simple method;
 - Mow to frame your intuition into good formula;
 - Simple->reliable->beauty

References

- The website for NIST MT Evalution: http://www.nist.gov/speech/tests/mt/index.htm
- BIEU: a method for automatic evaluation of machine translation, Kishore Papieni, Salim Roukos, Todd Ward, Wei-Jing Zhu, ACL 2002.

课下深入学习材料

BLEU后的机器翻译自动评价改进 ----从专家学习到机器学习

杨沐昀

哈工大教育部-微软语言语音重点实验室 MOE-MS Joint Key Lab of NLP and Speech (HIT)

Where Could BLEU Be Wrong

$$BLEU = BP \times \exp\left(\sum_{n=1}^{N} W_n \log p_n\right)$$

- Parameter?
- Equation?
- Algorithm?
- ***** ...
- ***** ...
- How to do a Systemic Study?

Outline

How to do research by exhaustive study

- Defects in BLEU
- NIST Metric: A Weighted Ngram
- Skip Ngram: Get Different Kind of Ngram
- LTE: The Fundamental Unit for Ngram

- Could BLEU Be Wrong?
 - Challenge it by our common sense
 - Man How about MT and Human Translation
 - which is better?
 - Evaluate human translation?
- Compare Human vs MT Translation quality
 - ∞IWSTL2004: 506句,每句16个人工标准译文
 - ∞NIST_mt04:1788句,每句4个人工标准译文
 - ∞在标准译文中任意选出一个句子作为候选译文,其余15 个作为参考译文,使用BLEU工具进行自动评价
 - Guess the Max and Min score!

❖MT Beats Human?

BLEU-4	MaxHuman	MinHuman	Total MTsys	MT > Human
IWSLT2004	0.9704	0. 2866	20	13
NIST_mt04	0. 5064	0. 2824	17	2

To Evaluate Human Translation

∞数据: 152篇翻译, 阅卷点正式评分

- ❖某英语水平考试英汉翻译试题: 12分
- ❖1段英文、3个句子
- ❖1个标准译文+3个手工译文

各分数段的样本分布

分数	1	2	3	4	5	6	7	8	9	10	11	12
样本数	9	8	7	6	13	14	16	19	25	16	12	7

- Performance on Human Translations
 - ∞4个参考译文时与人工评价的相关性较好;
 - ∞按字计算时与人工评价的相关性较好;
 - ∞无论是按字匹配,按词匹配,按词性匹配,还是按词与词性同时匹配的,BLEU的性能<0.7

参考译文数	按字	按词匹配	按词性	词+词性
1	0.573	0.539	0.560	0.548
4	0.684	0.624	0.673	0.620

- Analysis

 - **@**.....
- Solutions?

NIST Metric: A Weighted Ngram

- Background
 - □ July 2001 TIDES PI meeting in Philadelphia, IBM described BLEU

NIST Metric: A Weighted Ngram

NIST's Examination: Bad performance for HT

The Corpus	The Systems	Adequacy (%)	Fluency (%)	Informativeness (%)
1994 French Corpus	5 MT Systems	95.7	99.7	91.4
1994 Japanese Corpus	4 MT Systems	97.8	85.6	98.3
1994 Spanish Corpus	4 MT Systems	97.5	97.2	94.3
2001 Chinese Corpus	6 Commercial MT Systems	95.2	97.1	_
	7 Professional Translators	70.5	16.6	_

NIST Metric: A Weighted Ngram

Motivation: weight more heavily those Ngrams that are more informative

$$Info(w_1...w_n) = log_2 \left(\frac{the \# of occurrences of w_1...w_{n-1}}{the \# of occurrences of w_1...w_n} \right)$$

How informative n-gram is favored by this?
similar to IDF;

$$Score = \sum_{n=1}^{N} \left\{ \frac{\sum_{\substack{\text{all } w_1 \dots w_n \\ \text{that co-occur}}} \left[\frac{\sum_{\substack{\text{all } w_1 \dots w_n \\ \text{in sys output}}}}{\sum_{\substack{\text{all } w_1 \dots w_n \\ \text{in sys output}}}} \right] \cdot \exp \left\{ \beta \log^2 \left[\min \left(\frac{L_{\text{sys}}}{\overline{L_{\text{ref}}}}, 1 \right) \right] \right\}$$

• β is chosen to make the brevity penalty factor = 0.5 when the # of words in the system output is 2/3rds of the average # of words in the reference translation

- Candidate 1: one book is on the desk
- Reference 1: there is a book on the
- * Reference 2: the book is on the table

	n		ro	m	
u	ш	IJ	ra	ш	

bigram:

trigram:

3		
$Info(w_i) = \log_2 \frac{\text{# words of all refs}}{\text{# occuring in all refs}}$	$Info(w_1w_n) = \log_2 \frac{the \# occ}{the \# occ}$	curences of w_1w_{n-1} in all refs
Info(one) = null	Info(one,book) = null	Info(one,book,is) = null
$Info(book) = \log_2(13/2)$	$Info(book, is) = \log_2(2/1)$	$Info(book, is, on) = \log_2(1/1)$
$Info(is) = \log_2(13/2)$	$Info(is, on) = \log_2(2/1)$	$Info(is, on, the) = \log_2(1/1)$
$Info(on) = \log_2(13/2)$	$Info(on, the) = \log_2(2/2)$	$Info(on, the, desk) = \log_2(2/1)$
$Info(the) = \log_2(13/3)$	$Info(the, desk) = \log_2(3/1)$	
$Info(desk) = \log_2(13/1)$		
$\sum_{\substack{all \ unigramin \ candidate}} (1) = 6$	$\sum_{\substack{all\ bigramin\ candidate}} (1) = 5$	$\sum_{\substack{all \ trigramin \ candidate}} (1) = 4$
$\sum_{i} Info(w_i) / \sum_{\substack{all \ uniin \ candidate}} (1) \approx 2.32$	$\sum Info(w_i w_{i+1}) / \sum_{\substack{all \ bigramin \\ candidate}} (1)$	$\sum Info(w_i w_{i+1} w_{i+2}) / \sum_{\substack{\text{all trigramin} \\ \text{candidate}}} ($
	≈ 0.717	=0.25

Candidate 1: one book is on the desk

- * Reference 1: there is a book on the
- * Reference 2: the book is on the table

brevity penalty:

$$L_{sys} = 6 \qquad \overline{L}_{ref} = 6.5 \quad \beta = 4.217$$

$$BP = \exp\left\{\beta \log^2 \left[\min\left(\frac{L_{sys}}{\overline{L}_{ref}}, 1\right) \right] \right\} = 0.973$$

Score:

$$N = 3$$

$$scorce = \sum_{n=1}^{N} \left\{ \sum_{n=1}^{N} Info(w_1 ... w_n) / \sum_{\substack{\text{all } w_1 ... w_n \\ \text{in candidate}}} (1) \right\} \bullet BP$$

$$= (2.32 + 0.717 + 0.25) * 0.973$$

$$\approx 3.199$$

- Primary Differences with BLEU
 - Geometric mean versus arithmetic sum
 - **Ca**Uniform weight versus information weight
 - Selective use of n-gram
 - ♦N=4 for BLEU
 - ♦N=5 for NIST

Skip Ngram: Get Different Kind of Ngram

- *Skip N-gram: any pair of same length n-gram in sentence order, allowing for arbitrary gaps
 - SNR uses the n-gram pair with arbitrary gap & Rouge uses the one gram pair with arbitrary gap
- **E.g.** Skip-Ngrams ($N \le 2$) in "Australia reopens embassy in Manila":
 - "Australia, reopens", "Australia, embassy", "Australia, in", "Australia, manila", "reopens, embassy", "reopens, in", "reopens, manila", "embassy, in", "embassy, manila", "in, manila"
 - "Australia reopens, embassy in", "Australia reopens, in manila", "reopens embassy, in manila"

SNR: Skip N-gram Regression

- Skip N-gram Match
 - Real Partial match: if only one of the two members is matched
 - Full match: if both members are matched
 - Ordered full match: if both members are matched in their sentence order
- Skip N-gram is calculated in recall
 - \bigcirc Partial match recall: M_p

 - \bigcirc Ordered full match recall: M_o

SNR: Skip N-gram Regression

- ❖ SN score: straight mean of three skip N-gram recall \approx SN= $(M_p + M_f + M_o)/3$
- SNRegression score
 - α Assign weights to M_p , M_f and M_o
 - Resolve the weights by SVM
 - Trained by five-fold cross validation on the data provided by NIST Metrics-MATR 2008 evaluation

Source of Data	LDC2008E43
Genre	Newswire
Number of documents	25
Total number of segments	249
Source Language	Arabic
Number of system translations	8
Number of reference	4
translations	
Human assessment scores	Score 1-7

SNR: Skip N-gram Regression

- SNR series are outstanding in all metrics
- SN series exceed all baselines except METEOR
- Comparing with the Rouge, the most similar metric of this work, all novel metrics performs better
- Regression method improves the performance significantly
- Stem is always helpful in this experiment
- Longer gram is not helpful in some cases.

Criterion	Correlation
METEOR	0.705
ROUGE-4	0.654
ROUGE-9	0.663
ROUGE*	0.655
BLEU	0.609
GTM	0.543
SN-1	0.686
SN-4	0.665
SN-1-Stem	0.689
SN-4- Stem	0.670
SNR-1	0.716
SNR-4	0.741
SNR-1- Stem	0.720
SNR-4- Stem	0.745
·	·

Pearson on segment level

(The SNR scores are the average of 5-fold validation)

Skip Ngram: Get Different Kind of Ngram

- A SVM Regression Based Skip-Ngram Approach to MT Evaluation

 - Multiple statistics of skip-Ngram by full, partial and ordered matching
 - Regression to human assessments using multiple statistics as features

- Method: BLEU counted in letter
- Original BLEU
 - Candidate: As you wish no problem
 - *Reference: No problem as you like
- *** LTE**
 - ◆Candidate: A s y o u w i s h n o p r o b l e m
 - ❖Reference: Noproblemasyoulike.

Experiment on training data

LET	1	2	3	4	5	6	7	8
Pear	.264	.548	.656	.682	.687	.687	.684	.678
Spea	.484	.609	.674	.700	.711	.716	.717	.715

Why 6-gram is the best?

Compare with other metrics

Correlation	BLEU-4	NIST-5	Meteor0.6	Rouge*
Pearson	0.605	0.735	0.774	0.685
Spearman	0.608	0.686	0.724	0.683

*** LTE**

Rearson: 0.687

Spearman: 0.716

Advantages

- Letter match is another resolution to partial word-match;
- Less sensitive to errors of short words; which may be less important;
- Defects

常见的研究现状:相关因素庞杂

- Many successful metrics available
 BLEU/NIST/GTM/Rouge/Meteor.....
- How far can we go by exhausting the plain words of the language?
- Linguistic knowledge helpful?
 POS is the key knowledge at word level

建模策略: 常见类型

- Machine Learning Approach

 - - SVM Ranking
 - Sensitive but not for robust, diagnostic......
 - - better, but for another metric
 - Robust and generalization can be achieved via multiple features

- - ROUGE-9, recall, case insensitive
- Features Removed
 - CRBLEU4, NIST5
 - Rouge in other conditions
 - c∝GTM, WER.....

- Linguistic info still beneficial?
- How shall we use POS?
 - Reach pos is small in quantity in one sentence.
 - Cluster them
- POS Selected
 - ∨erb: MD,VB, VBD,VBG,VBN,VBP,VBZ
 - Noun: NN,NNS,NNP,NNPS,FW
 - Other: LS, SYM, punctuation
 - Not used: adj, adv, prep......

- In NIST MART Metrics08
 - □ Top1 out of 144 indexes;
 - □ Top 2 in weighted score over multiple reference tracks;
 - □ Top 8 in weighted score over all tracks;
- In WMT 2011
 - α3 champions out of 4, with the last ranked top2.

- Why POS improves performance
 - RPOS carries word syntax information;
 - RPOS is a good cluster of words;
 - Smoothing is always helpful in statistics;

这里给出的是BLEU出现后的 10年间,改进工作的一个脉络; Evaluation现在的焦点是 Quality Estimation,大有可为