Theorem (2.3.67c). Let A be a set with universal set U. Let f_A be the characteristic function $f_{\overline{A}}: U \Longrightarrow \{0,1\}$. $f_{\overline{A}}(x) = 1 - f_A(x)$.

Proof. Let x be an element in A. Then clearly $x \notin \overline{A}$. By the definition for characteristic functions $f_{\overline{A}}(x) = 0$, and $f_A(x) = 1$. It follows immediately that $f_{\overline{A}}(x) = 1 - f_A(x)$.

Now suppose $(x \notin A) \land (x \in \overline{A})$ By the definition for characteristic functions that is $f_{\overline{A}}(x) = 1$, and $f_A(x) = 0$. It follows immediately that $f_{\overline{A}}(x) = 1 - f_A(x)$.