Instrumental Variables

Dr. Patrick Toche

Textbook:

James H. Stock and Mark W. Watson, Introduction to Econometrics, 4th Edition, Pearson.

Other references:

Joshua D. Angrist and Jörn-Steffen Pischke, *Mostly Harmless Econometrics: An Empiricist's Companion*, 1st Edition, Princeton University Press.

Jeffrey M. Wooldridge, Introductory Econometrics: A Modern Approach, 7th Edition, Cengage Learning.

The textbook comes with online resources and study guides. Other references will be given from time to time.

Stock & Watson, Introduction (4th), Chapter 12, Exercise 5.

Consider the IV regression model

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 W_i + u_i$$

where X_i is correlated with u_i and Z_i is an instrument. Suppose that the first three assumptions are satisfied.

- 1. $E[u_i|W_{1i},\ldots,W_{ri}]=0;$
- 2. $(X_{1i},\ldots,X_{ki},W_{1i},\ldots,W_{ri},Z_{1i},\ldots,Z_{mi},Y_i)$ are i.i.d. draws from their joint distribution;
- 3. X, W, Z, and Y have non-zero finite fourth moments (outliers unlikely);

Which IV assumption is not satisfied when:

- a. Z_i is independent of (Y_i, X_i, W_i) ?
- b. $Z_i = W_i$?
- c. $W_i = 1$ for all i?
- d. $Z_i = X_i$?

Which IV assumption is not satisfied when:

a. Z_i is independent of (Y_i, X_i, W_i) ?

The instrument relevance condition $cov(Z_i, X_i) \neq 0$ is not satisfied since the independence of (Z_i, X_j) implies $cov(Z_i, X_j) = 0$.

3/3

Which IV assumption is not satisfied when:

a. Z_i is independent of (Y_i, X_i, W_i) ?

The instrument relevance condition $cov(Z_i, X_i) \neq 0$ is not satisfied since the independence of (Z_i, X_i) implies $cov(Z_i, X_i) = 0$.

b. $Z_i = W_i$?

The first-stage regression suffers from perfect multicollinearity since Z cannot be both a regressor and used as an instrument.

 $W_2 = 1$ for all i?

Which IV assumption is not satisfied when:

a. Z_i is independent of (Y_i, X_i, W_i) ?

The instrument relevance condition $cov(Z_i, X_i) \neq 0$ is not satisfied since the independence of (Z_i, X_i) implies $cov(Z_i, X_i) = 0$.

b. $Z_i = W_i$?

The first-stage regression suffers from perfect multicollinearity since Z cannot be both a regressor and used as an instrument.

c. $W_i = 1$ for all i?

Since W is constant, the regression has no controls. The regression could suffer from an omit ted variable bias, but omitting controls does not violate the IV assumptions.

 $Z_i = X_i$?

Which IV assumption is not satisfied when:

a. Z_i is independent of (Y_i, X_i, W_i) ?

The instrument relevance condition $cov(Z_i, X_i) \neq 0$ is not satisfied since the independence of (Z_i, X_i) implies $cov(Z_i, X_i) = 0$.

b. $Z_i = W_i$?

The first-stage regression suffers from perfect multicollinearity since Z cannot be both a regressor and used as an instrument.

c. $W_i = 1$ for all i?

Since W is constant, the regression has no controls. The regression could suffer from an omitted variable bias, but omitting controls does not violate the IV assumptions.

d. $Z_i = X_i$?

The instrument exogeneity condition $\text{cov}(Z_i, u_i) = 0$ is not satisfied since $X_i = Z_i$ is correlated with u_i and therefore $\text{cov}(Z_i, u_i) \neq 0$.

Which IV assumption is not satisfied when:

a. Z_i is independent of (Y_i, X_i, W_i) ?

The instrument relevance condition $cov(Z_i, X_i) \neq 0$ is not satisfied since the independence of (Z_i, X_i) implies $cov(Z_i, X_i) = 0$.

b. $Z_i = W_i$?

The first-stage regression suffers from perfect multicollinearity since Z cannot be both a regressor and used as an instrument.

c. $W_i = 1$ for all i?

Since W is constant, the regression has no controls. The regression could suffer from an omitted variable bias, but omitting controls does not violate the IV assumptions.

d. $Z_i = X_i$?

The instrument exogeneity condition $\text{cov}(Z_i, u_i) = 0$ is not satisfied since $X_i = Z_i$ is correlated with u_i and therefore $\text{cov}(Z_i, u_i) \neq 0$.