Contents

Real and Transcendental Functions

0. Real-Valued Functions

Let X and Y be sets. A function f is a mapping that assigns to each $x \in X$ exactly one $y = f(x) \in Y$. We use the notation:

$$f: X \to Y, x \mapsto f(x)$$

0.1 Let $f: X \to Y$ be a function. We call the set of numbers for which the function f is well defined the **domain** of f.

$$D(f) = \{x : f(x) \text{ is well defined}\}\$$

The **range** of a function $f: X \to Y$ is the set.

$$R(f) = \{f(x) : x \in X\}$$

==Parity of Function==: A function f is called **even** if $f(-x) = f(x) \, \forall x \in D$, generally symmetric on y axis graphically.

A function g is called **old** if $g(-x) = -g(x) \ \forall x \in D$, generally rotation of 180 degrees. 0.2 Examples of transcendental functions and its domain and range:

Function	Domain	Range
y = x	\mathbb{R}	\mathbb{R}
$y = x^2$	\mathbb{R}	$[0,\infty)$
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \frac{1}{x}$	$\mathbb{R}\setminus\{0\}$	$\mathbb{R} \setminus \{0\}$
e^x	\mathbb{R}	$(0,\infty)$
ln(x)	$(0,\infty)$	\mathbb{R}
$\sin(x)$	\mathbb{R}	[-1, 1]
$\cos(x)$	\mathbb{R}	[-1,1]
$\tan(x)$	$\mathbb{R} \setminus \{ \frac{\pi}{2} + k\pi : k \in \mathbb{Z} \}$	\mathbb{R}
$\arcsin(x)$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$\arccos(x)$	[-1, 1]	$[0,\pi]$
$\arctan(x)$	\mathbb{R}	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
y = x	\mathbb{R}	$[0,\infty)$

0.3.1 Composite functions

Let $f: X \to Y$ and $g: Y \to Z$. The composition of f and g, denoted $g \circ f$ $g \circ f: X \to Z$, $(g \circ f)(x) = g(f(x))$

0.3.2 Inverse function

Let $f: X \to Y$ be a function with domain X and range Y. Then f is invertible if $\exists f^{-1}: Y \to X$ so that:

$$f^{-}1(f(x)) = x, \forall x \in X \text{ and } f^{-}1(f(x)) = x, \forall x \in Y$$

0.3.3 Piecewise function

$$f(x) = |x| = \begin{cases} x, & \text{if } x >= 0 \\ -x, & \text{if } x < 0 \end{cases}$$

The quantitative value |a-b| represents the shortest distance between 2 points on a number line.

Examples:

- 1) $f(x) = \frac{x}{x^2 x} = \frac{x}{(x 1)(x)}; x \neq 0, 1$ Therefore the domain should be $x \in \mathbb{R} \setminus \{0\}$, alternatively $x \in (\infty, 0) \cup (0, 1) \cup (1, \infty)$
- 2) The domain of $\cos(x)$ is R with range of [-1,1] Its inverse is $\arccos(x)$ will have domain [-1,1] and range of $[0,\pi]$
- 3) Parity questions:
 - 1) A find that is odd that is not a power of x: sin(x)
 - 2) A find that is even that is not a power of x: cos(x).
 - 3) A find that is neither even nor odd: $\sin(e^x)$ or e^x
 - 4) ==A fn that is even and odd: ==f(x) = 0
- 4) Factor $x^3 + 10x^3 + 13x 24$

Find a factor: x = 1, it will always be the factor of the constant term. So x - 1 is a factor of $x^3 + 10x^3 + 13x - 24$ $x^2 + 11x + 24$ is the quotient of the factorization of the polynomial. $x^2 + 11x + 24 = (x+3)(x+8)$ $x^3 + 10x^3 + 13x - 24 = (x-1)(x+3)(x+8)$