CMSC 130 - Logic Design and Digital Computer Circuits

Handout # 6: ANALYSIS OF COMBINATIONAL CIRCUITS

Derivation of Boolean Functions From a Logic Diagram

- 1. Label all gate outputs that are a function of input variables with arbitrary symbols.
- 2. Label the gates that are a function of input variables and previously labeled gates with different arbitrary symbols. Find the boolean functions for these gates.
- 3. Repeat step 2 until the outputs of the circuits are obtained in terms of the input variables.

Logic Diagram 1

Boolean Functions:

$$T_1 = B'C$$

 $T_2 = A'B$
 $T_3 = A + T_1 = A + B'C$
 $T_4 = T_2 \text{ xor } D = (A'B) \text{ xor } D$
 $T_5 = T_2 + D = A'B + D$
 $F_1 = T_3 + T_4 = A + B'C + (A'B) \text{ xor } D$
 $F_2 = T_5 = A'B + D$

Derivation of the Truth table

- 1. Determine the number of input variables in the circuit. List binary numbers 0 to $2^n 1$, where n = number of inputs.
- 2. Label the outputs of selected gates with arbitrary symbols.
- 3. Obtain the truth table for the outputs of those gates that are a function of the input variables only.
- 4. Proceed to obtain the truth table for the outputs of those gates that are a function of previously defined values until the columns for all the outputs are determined.

Logic Diagram 2

Truth Table:

X	Υ	Z	T1	T2	Т3	T4	T5	Т6	T7	Т8	F1	F2
0	0	0	0	0	0	0	0	0	1	0	0	0
0	0	1	0	1	0	0	0	0	1	1	1	0
0	1	0	0	1	0	0	0	0	1	1	1	0
0	1	1	0	1	0	0	1	1	0	0	0	1
1	0	0	0	1	0	0	0	0	1	1	1	0
1	0	1	0	1	0	1	0	1	0	0	0	1
1	1	0	0	1	1	0	0	1	0	0	0	1
1	1	1	1	1	1	1	1	1	0	0	1	1