C 55.299/2:39/4

TECHNOLOGY & SCIENCE DETROIT PUBLIC LIBRARY

Mariners Weather Log

Off Wilderness State Park, Michigan

MarinersWeather Log

Lightning at Sea

Edward C. Brainard II

The terror of lightning strikes on water

Western Northern Pacific Typhoons—1995

Staff, Joint Typhoon Warning Center

1,000 typhoon warnings later, the JTWC reviews a banner year

17

Heavy Weather Avoidance Part II

Glen Paine

A mariner's perspective of the 500 millibar chart

21

Texas A & M at Galveston Maritime College

Nancy O'Donnell

A look at the famous Ocean Aggies

Cover: A mariner poses on an ice encrusted ship in the Great Lakes circa 1920s.

Inside Back Cover: Mark Twain's pilot license, 1859, from the collection of the Mariners' Museum Research Library and Archives, Newport News, Virginia. Museum photograph.

Back Cover: A beautful and deadly iceberg drifts across the North Atlantic. Photo courtesy of the International Ice Patrol.

Departments

- 26 Fax Facts
- 29 Editor's Choice
- 35 Hurricane Alley
- 36 Satellite Snapshots
- 37 Great Lake Wrecks
- 38 Sea Photo
- 39 Whale Oil & Wicks
- 42 Lifelines
- 44 Manne Observations
- 50 PMO Poop
- 55 Tables

Mariners Weather Log

Editor Nancy O'Donnell

Columnists Elinor DeWire, Lee Chesneau, Martin S. Baron, R. Tuxhorn, Teresa Fremaux, Jim Nelson and Skip Gillham

> Computer Specialists Roger Torstenson Wilbur Biggs Dick Knight

U.S. Department of Commerce Ronald H. Brown, Secretary

National Oceanic and Atmospheric Administration Dr. D. James Baker Administrator

National Environmental Satellite, Data, and Information Service Robert S. Winokur, Assistant Administrator

National Oceanographic Data Center Ronald L. Fauquet, Acting Director

National Weather Service Elbert W. Friday Jr., Assistant Administrator

The Secretary of Commerce has determined that the publication of this periodical is necessary in the transaction of the public business required by law of this Department. Use of funds for printing this periodical has been approved by the Director of the Office of Management and Budget through July 1, 1995.

of the Office of Management and Budget through July I, 1995.

The Mariners Weather Log (ISSN:0025–3367) is published quarterly by the National Oceanographic Data Center, National Environmental Satellite, Data, and Information Service, NOAA, Washington DC 20235 (telephone: 202–606–4561). Funding is provided by the National Weather Service, NOAA. Data is provided by the National Climatic Data Center, NOAA.

Articles, photographs and letters should be sent to:

Mariners Weather Log National Weather Service SSMC 2, 14th Floor 1315 East-West Highway Silver Spring, MD 20910

The Log continues

death are greatly exaggerated." In the past months, when the future of the Log was cloudy at best, we've received many letters and phone calls from readers testifying to the value of the Mariners Weather Log. Townsend Horner, President of the West Bay Marine Corporation in Osterville, Massachusetts writes: "Over the years [the Log] has been one of the most interesting and best put together of the many marine-related publications that come into this office. Each issue has been both entertaining and educating as well as statistically useful with its maps and data. Personally, I would be willing to pay almost any price for the ability to continue receiving it."

With this fall issue the *Log* returns as a slimmer volume. Although Dick DeAngelis' witty and informative Marine Weather Review is missing and the Drifters, Scuttlebutt, and Radio Tips columns are absent, the spirit of the *Log* remains the same. In addition, this issue marks the transition to a new era for the *Log*.

We are pleased to announce that the *Log* will continue through the cooperative efforts and with the support of two NOAA offices—the National Weather Service (NWS) and the National Environmental, Satellite, Data, and Information Service (NESDIS) and the U.S. Navy. Although the realities of budget cuts and government downsizing will bring changes to its content and format, we believe that the *Log* again has a bright future. The first issue in the new format is expected to be available by early summer.

The Log began in 1957 as a publication of the Office of Climatology, U.S. Weather Bureau. In 1966, with the establishment of the Environmental Science Services Administration (ESSA), the Log was transferred to ESSA's Environmental Data Service, which was later to become part of NESDIS. So now the Log has come full circle and the NOAA National Weather Service will take the lead for its production and distribution. Through many changes over the years NWS, NESDIS, and the Navy have all played their part in supporting the Mariners Weather Log and ensuring that it fulfills its unchanging mission of providing useful information to mariners, shipboard weather observers, and many others whose lives and livelihood depend on knowledge and understanding of the sea.

Throv your trash over board, and you could be dropping a bundle.

It's dark. You think nobody's watching. Why not toss that plastic trash bag overboard? Because if you do, you're throwing away a lot more than just the day's garbage. You're committing a class D felony, now punishable by imprisonment for up to six years and a corporate fine of up to \$500,000.

Why the new penalties? Because our oceans aren't capable of absorbing unlimited amounts of trash. And a lot of people are

tired of finding other people's garbage on their beaches.

So stow your trash on board for proper disposal on land. It's an idea the whole world can live with. And it can save you a bundle.

To find out more, write: The Center for Marine Conservation, PSA-CM, 1725 DeSales Street, N.W., Suite 500, Washington, D.C. 20036.

A public service message from: The Center for Marine Conservation The National Oceanic and Atmospheric Administration The Society of the Plastics Industry

Lightning with branching leaders and the main discharge. Courtesy of USA/NWS/NOAA.

Lightning at Sea

Edward C. Brainard I

erman Melville writes of the terror and fright of lightning aboard the *Pequod* in *Moby Dick*. He also wrote in detail of the use of lightning rods for the ship's protection and the need for suitable grounding of the rods to the sea: "All the yard-arms were tipped with pallid fire; and touched at each end of the trip-pointed lightning-rod-ends with three tapering white flames, each of the three tall masts was silently burning in that sulphurous air, like three gigantic wax tapers before an altar. The corposants have mercy on us all." [Corposant is derived from *corpo santo* meaning body of a saint' which refers to the electrical dis-

charges commonly called St. Elmo's fire.] "To sailors, oaths are household words; they will swear in the trance of a calm, and in the teeth of the tempest; they will imprecate curses from the topsail yard-arms, when most they teeter over to a seething sea; but in all my voyaging, seldom have I heard a common oath when God's burning finger has laid on the ship."

What reverence we have for lightning and with good cause.

Even though most of the fundamentals of lightning have been known for centuries, we forget them and in doing so are in danger.

Lightning, the visible discharge of atmospher-

when the atmosphere generates sufficient charge to ionize the air, is usually associated with cumulonimbus clouds or thunderheads. It also occurs in nimbostratus clouds, in snowstorms, dust storms, and sometimes in the dust and larger particles emitted by volcanoes. Lightning discharges occur within a cloud, between clouds, between cloud and air, or from a cloud to ground.

This discharge is generated when regions of net charges are generated by charge separation that produce an electrical dipole structure in the cloud. The charge separation is driven by the updraft of moisture laden air similar to the rotating belt of a Van de Graaff static electricity generator. This action concentrates large negative charge at the bottom of the cloud, positive charge aloft and a small positive charge on the lowest advancing section of the cloud. The electrical

charges reside on ice crystals.

From cloud to ground, lightning is initiated by the neutralization of the small net positive charge from the lowest region of the cloud. This flash consists of at least two discharges. The leader stroke carries a negative charge to the ground. This is not very bright, and is commonly stepped with many branches extending from the main channel. As the leader approaches the ground, it attracts an opposite charge concentrated at the point to be struck. Then, a reverse flow of current freely flows through the low resistance ionized channel, where the cloud is short-circuited to ground forming the characteristic brilliant flash between a potential difference of several million volts with peak currents in excess of 20,000 amperes. The temperature in this small channel is increased to 50,000 degrees F in less than 70 microseconds. The thermally heated air expands energetically forming a supersonic shock wave resulting in claps and rumbles of thunder.

ightning has one purpose; bring cloud-cloud or cloud-earth to a closer electrical potential. In doing this it is ruthless. It will take the lowest resistance path, and its high current flow will destroy anything in its path. I have seen the results of the lightning striking a tree during the dry season where the ground does not provide a good conductive path. The lightning hit the tree and blew it apart. It flowed out through the roots which were more conductive than the ground and heated them to the point of vaporization. They blew apart with the intensity of primer cord and opened ditches all around the tree, throwing heavy boulders for fifty feet. This shows the danger in not having a suitable low resistance path for the lightning to flow to ground potential.

the lightning to flow to ground potential.

On small vessels, a lightning rod will provide

protection if it is suitably grounded. However, many precautions must be observed: if the mast is aluminum, ground its base to a suitable external sea water

ground. If it is wood or carbon fiber, a heavy copper ground must lead from the masthead lightning rod with as straight a path as possible to the sea water ground. The shrouds, pulpits, and life lines must be grounded to this same sea water ground using No. 4 copper wire. In addition, all significant metal objects (stove, fuel tank, metal ventilators, anchor chain, steering pedestal and cables) above or below decks should be connected to this same grounding system to prevent auxiliary arching from the grounding system to the objects.

here is no perfect grounding system since the current flow is so extreme at the time of the strike. The lightning will electrically saturate your grounding system and find other paths to the sea. However, your attention to an adequate

grounding system will minimize damage.

The extreme pulse of current caused by lightning induces voltages and current in nearby metallic object. This is effect is called Electromagnetic Pulse (EMP). EMP has been a great concern of the military. It is estimated that a 10 megaton thermo nuclear weapon set off in the stratosphere would create an EMP which would damage a significant amount of United States electronic and communications gear. Thus the art of "Hardening" electronics is a recently developed technique which can help us in the protection of yacht equipment. However, this technology is not being widely used by marine electronics manufacturers due to the increased costs.

A nighttime storm over Miami, Florida is captured by photographer Ron Holle. "It's not often you get to take photos of lightning. By the time you get your equipment, it's gone. This storm was was

nearly stationary for 2 hours. One cell or tower would be attacked for 10-15 minutes and then another would take up." Holle took the photo near Miami Shores, looking east over the Gulf Stream.

hus electronic equipment in small vessels is at great risk during a direct lightning strike. The best way to protect it is to disconnect it from the antenna and ships power and ground the antenna to prevent lightning from arching from the antenna connect to other gear in the vessel. The modern VHF antenna is designed to protect your equipment and vessel; it is not just a bare wire cut to a resonant length mounted at your masthead. It includes a coil at its base which should be suitably grounded to the mast ground. The antenna lead taps into this coil forming a tuned system, but static electricity or lightning will be conducted directly to ground through the coil. Again, a direct strike will probably destroy your VHF transceiver, but the antenna will act as a protective lightening rod to discharge the local static electricity field and help reduce the probability of a direct strike on the small vessel.

Lightening strikes have been known to hit a number of miles away from the actual area of a thunder storm, so precautions should start early with the approaching disturbance. Personnel should remain in the lowest possible location in a small vessel during a thunderstorm avoiding metal objects within the vessel since lightning often jumps from the grounding system to ungrounded objects because of EMP and could arc to your body. It may not be practical in a small yacht, but you should maintain a distance of 2-meters between you and a large metal object. Do not touch metal objects within the yacht at these critical times. This also includes engine and autopilot controls.

Peter Price, a member of the Royal Cruising Club, reported a direct strike of his wooden 9 ton Hillyard in Scotland during the summer of 1971. The yacht was at her mooring with no one aboard. The lightning path included the head stay where it arced to the navigation lights which vaporized. Every electrical item was destroyed, even a battery operated piece of electronics packed away and not connected to the ship's power system. The lightning found its way to the sea through the propeller and shaft. It temporarily magnetized pig iron ballast and gave a compass deviation of 40 degrees. This deviation could be a major problem at sea if all other navigation equipment was

damaged. It would be wise to have information for determining sun bearings. He has since used a chain hung overboard at the mooring or at sea during a lightning storm. This precaution is wise, but the area

of the ground must be large enough.

A report from the log of the vessel Arwen describes being struck by lightning in Columbo, Sri Lanka. It was raining, but there was no thunder, a typical scenario for a major strike. Husband and wife were reading below. Suddenly a tremendous bang left their ears hissing for hours. The cabin was then full of smoke but no fire. It was apparent that a leak had occurred, and pumping controlled it. A 5 cm. hole was found behind the port bunk where the B& G speedometer through hull fitting had been blown away. Fortunately, the bunk partitions acted to restrain the flow of the sea water into the bilge or else the pumps could not have kept up with the inrush of water. The hole was plugged with a large rubber cork which fortunately had ben put aboard by a perceptive technician while fitting out of the voyage. All electric motors was damaged including an isolated video camera. The lightning also blew off the outboard end of the battery powered echosounder but left the shank of the transducer in the trough hull fitting.

The lightning had found a major path to the sea down the deployed anchor chain where it had scored adjacent stainless steel and burnt rope laying on the chain. Thunderstorms continued after this strike with great intensity through the night. The couple could only hug each other and hope for no more

direct strikes.

eports are appearing of lightning striking fiberglass hulls which have carbon fiber laminates. In one case, the lightning heated the carbon fibers and delaminated the hull. Fortunately the carbon fiber layer was near the inner surface of the hull, so it could be repaired after removing the entire interior of the cabin.

These are just a few of numerous incidences of direct strike by lightning. The lesson is to take every precaution in advance to reduce the impact of the strike. These precautions will lesson the damage.

Summary of Precautions for Small Vessels

1) Make sure your vessel is well grounded.

2) Upgrade grounding conductors to No. 4 copper wire and ground all major metal objects to prevent

dangerous secondary arcing.

3) If you feel your hair stand on end or if the radio starts to hiss with noise, you may be near to a strike condition. Go below and stay away from metal objects.4) Consider using all metallic through hull fittings to

provide a better electrical path to the sea.

Lightning over the Miami skyline. ©Ron Holle.

5) Pump bilges before a lightning storm. This source of water may be vaporized to steam and its expansion may cause serious damage.

6) If your engine has a rubber coupling to its propeller shaft, install a heavy conducive strap between the

engine and shaft across the coupling.

7) If you cruise in fresh areas and you are not grounded to an external keel, increase your ground plate area from the minimum of 1 square foot by a factor of 10.

 Carry a good supply of plugs for securing through hull fittings if they are damaged by lightning. Make sure they are big enough.

 If your small vessel is struck by lightning, check your mast and rigging. The very high currents will probably have caused some serious damage.

10) If your vessel is struck by lightning, check your mast and rigging. The very high currents will probably have caused serious damage.

11) Be current with your knowledge of CPR (Cardiopulmonary Resuscitation). This technique may save a life after electrical shock by lightning.

Acknowledgement: Special thanks to Professor Ed Williams at the Massachusetts Institute of Technology, Department of Earth and Planetary Sciences.

Western North Pacific

TYPH00 NS

Yunya (11°W), Zeke (12°W), and a subtropical disturbance are aligned SW-NE along the axis of a reverse-oriented monsoon trough (190031Z July visible GMS imagery).

Staff, Joint Typhoon Warning Center

he Northwest Pacific was especially active in 1994, with several long lived, slow-moving typhoons that dramatically increased the workload for the men and women of the Joint Typhoon Warning Center (JTWC). For the first time in its 36-year history, the JTWC issued more than 1,000 warnings in the North Western Pacific.

The year included six super typhoons, 16 lesser typhoons, 15 tropical storms and 5 tropical depressions. It was also a notable one as two of the longest-lived tropical cyclones on record battered the Pacific. John lasted for 30 days over the North Pacific Ocean, while Tropical Cyclone Rewa settled for 21

days in the southwestern Pacific Ocean. Also for the first time in history, the Joint Typhoon Warning Center recorded binary interaction between Typhoon Pat and Tropical Storm Ruth.

Some of the large-scale atmospheric and oceanic climatic parameters continued to be indicative of El Niño conditions during most of 1994: the sea surface temperature (SST) over much of the eastern equatorial Pacific — especially near the international

This summary is based upon the 1994 Annual Tropical Cyclone Report prepared by the Joint Typhoon Warning Center, Guam, Mariana Islands. Our special thanks to Frank H. Wells.

Western North Pacific Significant Tropical Cyclones, 1994

		Number of earnings	Maximum Surface Winds	Estimated MSLP
Tropical Cyclone	Period of Warning	Issued	Knots (meters/seconds) millibar
(01W) TD	04 JAN - 06 JAN	5	25 (13)	1002
(02W) TY OWEN	01 MAR - 08 MAR	32	75 (39)	968
(03W) TY PAGE	11 MAY - 17 MAY	25	90 (46)	954
(04W) TD	24 MAY - 26 MAY	11	30 (15)	1000
(05W) TS RUSS	04 JUN - 09 JUN	20	55 (28)	984
(06W) TS SHARON	21-22 JUNE/22-25 JUN	14	45 (23)	991
(07W) TD	03 JUL - 04 JUL	7	30 (15)	1000
(08W) TY TIM	07 JUL - 11 JUL	18	125 (64)	916
(09W) TS VANESSA	09 JUL - 11 JUL	10	45 (23)	991
(10W) STY WALT	14 JUL- 26 JUL	50	130 (67)	910
(11W) TS YUNYA	18 JUL - 21 JUL	14	45 (23)	991
(12W) TY ZEKE	18 JUL - 24 JUL	26	65 (33)	976
(13W) TD	25 JUL - 26 JUL	4	25 (13)	1002
(14W) TS BRENDAN	29 JUL - 01 AUG	15	50 (26)	987
(15W) TS AMY	29 JUL - 31 JUL	8	40 (21)	994
(16W) TS CAITLAN	02 AUG - 04 AUG	9	60 (31)	980
(17W) STY DOUG	02 AUG - 13 AUG	42	140 (72)	898
(18W) TY ELLIE	08 AUG - 16 AUG	33	80 (41)	963
(08E) TS LI	13 AUG - 18 AUG	21	55 (28)	984
(19W) STY FRED	14 AUG - 22 AUG	33	130 (67)	910
(20W) TY GLADYS	22 AUG - 02 SEP	45	105 (54)	938
(21W) TS HARRY	25 AUG - 29 AUG	15	60 (31)	980
(22W) TY IVY	28 AUG - 03 SEP	26	75 (39)	968
(10E) TY JOHN	28 AUG - 08 SEP	45	105 (54)	938
(23W) TS JOEL	04 SEP - 11 SEP	27	85 (44)	958
(25W) TS LUKE	09 SEP - 14 SEP	22	50 (26)	987
(26W) STY MELISSA	11 SEP - 18 SEP	29	135 (69)	904
(27W) TS NAT	15 SEP - 22 SEP	29	45 (23)	991
(28W) STY ORCHID	18 SEP - 30 SEP	48	135 (69)	904
(29W) TY PAT	21 SEP - 26 SEP	48	95 (49)	949
(30W) TS RUTH	24 SEP - 28 SEP	18	45 (23)	991
(31W) TD	29 SEP - 03 OCT	11	30 (15)	1000
(32W) TY SETH	02 OCT - 11 OCT	37	120 (62)	922
(33W) TY VERNE	15 OCT - 31 OCT	66	115 (59)	927
(34W) TY TERESA	17 OCT - 26 OCT	37	80 (41)	963
(35W) TY WILDA	20 OCT - 01 NOV	49	125 (64)	916
(36W) TS YURI	(23 OCT - 25 OCT	9	35 (18)	997
(37W) STY ZELDA	28 OCT - 8 NOV	44	135 (69)	904
(38W) TX AXEL	13-14 DEC/15-25 DEC	42	115 (59)	927
(39W) TS BOBBIE	17 DEC - 25 DEC	29	50 (26)	987
,,			00 (20)	00.

date line – was consistently warmer than normal, and

the Southern Oscillation Index (SOI) (Climate Analysis Center, 1994) was strongly negative for most of the year. From September through the remainder of the year, low-level westerly winds penetrated far to the east of normal. By the end of December, monsoonal low-level westerly wind flow was straddling the equator and had penetrated well-beyond the international date

line to near 160°W. Based on the Pacific basin SST patterns and the distribution of wind and surface pressure in the tropics of the Pacific basin, the U.S. Climate Analysis Center (along with other international meteorological centers) officially declared that an El Niño event was under way, and predicted that it would reach its mature phase in early 1995. With the anomalous eastward push of monsoonal westerlies, several of

the year's tropical cyclones formed east of 160°E and south of 20°N. The number of tropical cyclones that form in this region is highly dependent upon El Niño, with more during El Niño years and less in other years. Unlike most El Niño years, however, there were several tropical cyclones that formed east of 160°E and north of 20°N.

JANUARY THROUGH MAY

Tropical cyclone activity got off to an early start during 1994. Tropical Depression 01W, which occurred in January in the near-equatorial trough, is most properly considered to be late-season storm, born in atmospheric conditions that evolved during November and December of the previous calendar year. The next two months were equally quiet.

February is traditionally the month with the lowest average number of tropical cyclones in the western North Pacific, and there were no significant tropical cyclones in the western North Pacific basin during this time. March always held no significant tropical

cyclones in the western North Pacific basin, however, the tropical disturbance which became Typhoon Owen was first detected in late March in a near-equatorial trough in the Caroline islands.

APRIL

Owen formed in the Caroline islands at the end of March. Tracking westward, Owen reached peak intensity of 75 knots (39 m/sec) one day before it crossed several islands of the Philippine archipelago where three people were killed and four were reported missing. Emerging into the South China Sea, it turned northward, steadily weakened, and dissipated over water northwest of Luzon. The rest of April was quiet.

MAY

During early May, the Mei-yu front became established from Hong Kong to Japan. In the deeper tropics, a near-equatorial trough became established

across the western North Pacific between 5°N and 10°N. On 08 May, a cloud cluster in the near-equatorial trough began to organize and drift toward the northwest. Four days later, this disturbance became Page at a location about 300 nm (550 km) west of Guam. It continued to move northwestward and became a typhoon on 15 May. Shortly thereafter, it recurved. Page reached its peak intensity of 90 knots (46 m/sec) 30 hours after the point of recurvature. On 18 May, Page accelerated into the mid latitudes and became extratropical. The tropics quieted down until 23 May when Tropical Depression 04W developed east of the Philippines. It crossed the South China Sea and dissipated over Vietnam. The remainder of May was inactive as the amount of deep convection in the tropics was suppressed.

JUNE

During early June, tropical cyclone activity was focused in the South China Sea. On 04 June, Russ

developed and moved northward toward Hong Kong. When about 100 nm (185 km) south of Hong Kong, Russ turned toward the west and went ashore in southern China just east of the Luichow peninsula on 09 June. Russ was the first of a series of tropical cyclones that hit southern China and contributed to destructive flooding. During the middle of June, deep convection increased across the western North Pacific south of 10°N to the international date line. Despite the increase of deep convection, no tropical cyclones formed until 22 June when a tropical depression formed east of the Philippines. After crossing the Philippines, this tropical depression became Sharon on 23 June. Five days later Sharon made landfall in central Vietnam.

JULY

This month was one of the busiest July on record with a total of nine tropical cyclones occurring. Tropical cyclone activity for the month began in the

South China Sea with the development of Tropical Depression 07W south of Hong Kong on 03 July. This short-lived system moved westward and made landfall in southern China, just northeast of the Luichow Peninsula on 04 July. During the first week of July, a very intense tropical upper tropospheric trough

(TUTT) established from the east coast of China to the international date line. South of this TUTT, largescale deep convection increased. On 07 July, the tropical disturbance that became Tim appeared in the Philippine Sea. While on a northwestward track, this system rapidly reached a peak intensity of 125 knots (64 m/sec), and on 10 July, it made landfall on the east coast of Taiwan. As Tim neared the Taiwan coast, Vanessa formed in the South China Sea. Vanessa was short-lived, moved northeastward, and was absorbed by the circulation of the larger Tim. On 14 July, a reverse oriented monsoon trough developed east of the Philippines. The first super typhoon of the season, Walt formed along the

axis of this trough. Walt underwent unusual northeastward motion along the trough axis, and reached its 130 knots (67 m/sec) peak intensity on 19 July before turning back to the northwest. As Walt weakened, it slowly tracked to the west and dissipated during the early morning hours of 27 July near western Japan after a total of 50 warnings.

Along with Walt, two other tropical cyclones formed along the axis of the reverse oriented monsoon trough — Yunya, west of Walt; and Zeke, northeast of Walt. Yunya developed in the South China Sea west of Luzon. It underwent unusual eastward motion and crossed Luzon

from west to east on 19 July with a landfall intensity of 45 knots (23 m/sec). Heading east, Yunya dissipated over water in the Philippine Sea on 21 July. Meanwhile, Zeke developed northeast of Walt and moved on an unusual "S-shaped" track. Zeke reached its maximum intensity of 65 knots (33 m/sec) on 22 July as it made a sharp turn toward the north. It later turned northeastward and became extratropical poleward of 40°N on 24 July.

On 24 July, the large-scale low-level circulation of the western North Pacific became organized as a monsoon gyre. Tropical Depression 13W developed on 25 July in a monsoon surge along the southeastern periphery of the gyre. Tropical depression 13W dissipated on 26 July. Its remnants accelerated to the north within a band of large-scale deep convection that formed a fish-hook pattern on the eastern side of the gyre.

The gyre that had dominated the flow gave way to a more typical monsoon cloud band stretching from the South China Sea eastward into Micronesia on 28 July. On 29 July, a tropical disturbance that formed in this monsoon trough became Brendan. It moved rapidly to the north and was located over Korea by the end of the month. Two other tropical cyclones also formed in the monsoon trough during the last week of July — Amy and Caitlin. Amy formed in the South China Sea near Hainan Island on 28 July, and made landfall near Haiphong in northern Vietnam on 31 July. The tropical disturbance that became Caitlin formed near Guam on 29 July, and moved west-northwestward. It did not become a tropical storm until early August.

Above: Melissa near peak intensity (150537Z Sept. visible GMS imagery). Below left, Fred at his peak intensity of 130 ht (67 m/sec). In inverse infrared image, the cold clouds are dark and the warm sea surface is white.

AUGUST

Yet another very active month over the Western Pacific with a total of nine significant tropical cyclones. Eight formed during the month joining one that remained from July. On the first day of the month, Brendan, which developed in July, became extratropical in the Sea of Japan. On 02 August, Caitlin developed northeast of the Philippines and moved northwestward over Taiwan and into southeastern China. A few days later, the disturbance that became Doug developed east of the Philippines. It moved northwestward passing just off the northeastern tip of Taiwan. Doug then moved northward toward Korea. Close to the resort island of Cheju on 10 August, it created poor weather and gusty winds which contributed to the crash of a Korean Air Lines A-300 jet trying to land at Cheju International Airport.

On 08 August, the tropical disturbance that became Ellie developed in the subtropics (i.e., north of 25°N) at the base of a mid latitude trough. Ellie passed southwest of Kyushu on 13 August where wind gusts up to 87 knots (45 m/sec) were recorded. It later recurved in the Yellow Sea and dissipated over land in northeastern China. On 13 August Hurricane Li approached 180°E from the central Pacific, weakened as it crossed into JTWC's area of responsibility,

Pat and Ruth (30W) have moved to within 200 nm (370 km) of one another (26031Z September GMS visible imagery), above.

Below right, Super Typhoon Zelda at its peak intensity of 135 kt (69 m/sec) 042331Z November visible GMS imagery).

and dissipated near Wake Island on 16 August. On 14 August, the tropical disturbance that became Fred became a tropical depression near 19°N, 139°E. Fred tracked just north of Taiwan and went ashore south of Shanghai on 22 August as one of the most destructive typhoons to hit that region in decades.

A mid latitude trough on 20 August in combination with the TUTT produced several areas of deep convection in the subtropics (i.e., approximately 25°N) from 160°E to the international date line. Two typhoons — Gladys and Ivy — formed in this area. Gladys was a very small tropical cyclone that had its first warning on 22 August as it moved westward. The first warning on Ivy was issued on 28 August as it moved toward the northwest.

On 25 August, a tropical disturbance in the monsoon trough became a tropical depression east of the Philippines on 25 August. This tropical depression moved across Luzon and became Harry on 26 August. Harry passed south of Hong Kong, crossed Hainan Island, and went ashore near Haiphong, Vietnam. It dissipated over land on 29 August.

The next day John moved from the central Pacific across 180°E, forming and east-west chain of tropical cyclones with Gladys and Ivy. By the end of August, Gladys was approaching northern Taiwan as a typhoon, Ivy was heading northwestward near 30°N; 159°E, and John was weakening near 29°N; 172°E.

SEPTEMBER

September was even more active than August, with a total of 12 tropical cyclones: nine that formed during the month and three that were still active from August. On the first day of the month, Gladys, which developed in August, crossed Taiwan, and dissipated over China on 02 September. Ivy, which also developed during August, recurved far to the east of Japan and became extratropical on 03 September. John, the last of the August tropical cyclones overlapping into September, weakened during the first few days of September, but on 06 September, it began to reintensify. John recurved, and on 08 September, it moved back across 180°E into the central North Pacific as a Hurricane.

During the first week of September, after Gladys moved into China, monsoon southwesterlies began to strengthen over the South China Sea and across low latitudes of the western North Pacific. Joel, formed in the South China Sea along the axis of the monsoon trough, moved northwestward across Hainan Island and then went ashore in Vietnam near Haiphong on 07 September. On 05 September, a large monsoon depression formed west of the Mariana island chain. A separate tropical disturbance which formed on the northeastern side of this monsoon depression broke free of it, and moved northward. This tropical disturbance became Kinna. Kinna

began to strengthen over the South China Sea and across low latitudes of the western North Pacific. Joel, formed in the South China Sea along the axis of the monsoon trough, moved northwestward across Hainan Island and then went ashore in Vietnam near Haiphong on 07 September. On 05 September, a large monsoon depression formed west of the Mariana island chain. A separate tropical disturbance which formed on the northeastern side of this monsoon depression broke free of it, and moved northward. This tropical disturbance became Kinna. Kinna recurved south of Tokyo, accelerated to the northeast, and became extratropical on 11 September. On 09 September, a tropical disturbance developed in the Philippine Sea, moved northwestward, and passed across northern Luzon. Once it entered the South China Sea, it intensified and became Luke. Luke moved westward and passed over Hainan Island, and then moved ashore in northern Vietnam close to where Harry and Joel had made landfall earlier.

A monsoon depression (which later became Melissa) formed on 10 September in the Marshall Islands. The large circulation of Melissa at one point covered a substantial portion of the western North Pacific basin from 180°E to the Philippines. Melissa moved on a north-oriented "S-shaped" track. It recurved southeast of Hokkaido, Japan, on 19 Septem-

ber and became extratropical.

By mid-September, a reverse-oriented monsoon trough stretched from the South China Sea, eastnortheastwards into the cloud bands south of Melissa's large circulation. Nat formed in the Philippine Sea along the axis of this monsoon trough and moved eastward following an "S-shaped" track: initially moving eastward, it turned northward along 150°E, and recurved near 30°N. Nat dissipated over water on 22 September. On 18 September, another tropical disturbance formed in the Philippine Sea along the monsoon

trough axis in approximately the same location where Nat originated. This tropical disturbance became Orchid. Like Nat, Orchid initially moved eastward followed by a turn to the north. Orchid became the fourth super typhoon of 1994 on 10 September. It accelerated toward the north-northeast on 28 September and made landfall on the Japanese main island of Shikoku the next day.

As Orchid intensified, two more tropical disturbances formed to its east along the monsoon trough axis – Pat and Ruth. Together they underwent a binary interaction. During the night of 26 September, Pat

and Ruth merged to become one tropical cyclone. The merged Pat and Ruth recurved and dissipated over open water on 28 September. The next day, Tropical Depression 31W developed near 22°N; 150°E in association with a TUTT cell. It dissipated over water on 03 October.

OCTOBER

The fourth consecutive month of above normal tropical cyclone activity in the western North Pacific basin had five typhoons, one of them a super typhoon, and two tropical storms. The tropical cyclones of October were notable for their longevity: three of the seven longest-lived tropical cyclones of 1994 occurred. Verne, for example, persisted for more than half the month, and required 66 warnings.

On the first day of the month, the tropical disturbance that became Seth formed in the Marshall Islands. This disturbance moved toward the west-northwest, intensified, and passed south of Guam as a tropical storm on 05 October. Seth reached a peak intensity of 120 knots (62 m/sec) while southeast of Taiwan on 07 October. It later skirted the northeast-ern tip of Taiwan, recurved along the China coast south of Shanghai, and went ashore in Korea where wind gusts to near 70 knots (36 m/sec) and rainfall in excess of 300 mm (11.8 inches) were experienced. Seth became extratropical in the Sea of Japan on 11 October.

The three days (12-14 October) were the only days during the month without a tropical cyclone active in the western North Pacific basin. During the period 15 to 20 October, three tropical cyclones — Teresa, Verne, and Wilda — formed in a monsoon trough which stretched east—west across Micronesia. On 21 October, the westernmost of the three, Teresa,

roofs from houses. Eleven people were injured in typhoon-related accidents. Wilda then moved turned north-northeastward and moved on an unusual "Sshaped" track. It was accelerating into the mid latitudes on the last day of the month.

Toward the end of the month, a tropical disturbance developed east of the international date line at relatively high latitude (25°N), in direct association with a TUTT cell. This disturbance moved rapidly westward, crossed the international date line, and became Yuri (36W) on 24 October. Yuri slowed, turned north, and dissipated over water on 27 October.

Finally, Zelda formed and spent the majority of its life in November. As Verne and Wilda were undergoing extratropical transition on the last day of October, Zelda (37W) was intensifying near 10°N; 150°E.

NOVEMBER

Zelda was located southeast of Guam and intensifying as the month of November began. It became a typhoon on 02 November, moved west-northwestward and passed directly over Anatahan (a small island of the Northern Marianas located about 70 nm (130 km) north of Saipan). The large eye of Zelda passed over Anatahan where the homes and crops of the 39 residents were devastated. On 05 November, Zelda reached peak intensity of 135 knots (69 m/sec), making it the sixth and final super typhoon of 1994. Zelda recurved and dissipated over water south of Japan on 08 November.

Despite the presence of a near-equatorial trough, and westerly low-level winds extending to the international date line, deep convection was largely absent over most of the area, and no significant tropical cyclones formed in the western North Pacific basin during November.

DECEMBER

The first half of December was very quiet, continuing the break in tropical cyclone activity that began in early November. Amounts of deep convection began to increase in the Marshall Islands during mid-December in association with a twin-trough monsoon flow pattern. Two tropical cyclones — Axel (38W) and Bobbie (39W) — began as tropical disturbances that formed in the Marshall Islands in the near-equatorial trough of the northern hemisphere. On 16 December, Axel reached minimal tropical storm intensity while passing well south of Guam. Moving steadily

westward along about 10°N, Axel crossed through the Philippine Archipelago on 21 December where at least 12 people died.

While Axel was intensifying in the Philippine Sea on 17 December, the final tropical cyclone of 1994, Bobbie was forming in the southern Marshall Islands. Bobbie moved toward the west-northwest, and reached peak intensity of 50 knots (26 m/sec) on 22 December. On 23 December, it passed north of Saipan with winds of 45 knots (23 m/sec). Bobbie had no significant impact on Saipan or on other islands of the Northern Marianas. On Christmas Day, Bobbie dissipated as a significant tropical cyclone, closing out the 1994 tropical cyclone season. The remainder of December was quiet, as deep convection and tropical cyclone activity shifted to the southern hemisphere.

Twenty-three of the 41 significant tropical cyclones in the western North Pacific basin during 1994 made landfall in Asia. The Philippine islands were especially hard hit with eight significant landfalling tropical cyclones. Other countries, Taiwan, Korea, China, Japan, experiencing significant impacts from landfalling tropical cyclone. The Ryukyu Islands experienced three major typhoons passing through the southern end of this island chain, Vietnam (four significant landfalling tropical cyclones), and the islands of Micronesia (Saipan and Anatahan of the Northern Mariana island group were severely impacted by Zelda. The greatest loss of life occurred in southern China where the landfall of typhoons Russ and Sharon, and Tropical Depression 07W contributed to widespread flooding that left more than 1,400 people dead. The damage, which included the destruction of nearly one million houses in southern China, was estimated in excess of US\$6 billion. Loss of life also occurred in the Philippines and Taiwan. The greatest loss of life at sea occurred when a Maltese oil tanker, the Thanassis A, sank in the South China Sea in heavy seas associated with Teresa (34W) and the northeast monsoon. Seventeen people were reported to be dead or missing and nineteen other crew members were rescued.

Heavy Weather Avoidance A Mariner's Perspective

Part 2

Glen Paine Maritime Institute of Technology and Graduate Studies

he National Weather Service's (NWS) upper-air or 500 millibar charts, broadcasted via radio fax (for the North Pacific and the North Atlantic), provides mariners with detailed information concerning meteorological conditions at the 500 millibar level in the atmosphere. The Winter 1995 issue of the Mariners Weather Log previously discussed some of the practical benefits of these charts¹. This article illustrates another example of how to incorporate the 500 millibar charts into vessel-routing decisions.

Generally, westbound vessels in the North Atlantic (from the English Channel to the United States) find it difficult to stay north of the oncoming surface lows. Geography, icebergs, and historical storm tracks² (see below) play major roles in limiting a vessel's routing options. Unable to take advantage of following winds and seas above the low, the vessel may have to transit well south to avoid harsh head wind and sea conditions. The drawback, of course, is the extra cost associated with the longer tracks.

However, even in the North Atlantic, there are

Figure I

times when a westbound vessel can take advantage of the favorable conditions on "top" of the lows. The 500 millibar analysis and prognosis (prog) charts provide valuable information for determining when conditions are favorable for this type of routing.

WS's 500 millibar analysis for the upper air conditions at 00Z on April 11, 1994 is shown in figure 1. The highlighted 5,640 contour line³ depicts the general direction and southernmost extent of storms of force 7 or greater in the winter (force 6 in the summer). Stronger upper-air winds tend to intensify surface conditions. With the higher upper-air winds concentrated north of 40°N, (across most of the North Atlantic) it is unlikely that a westbound vessel will be able to transit at a latitude high enough to "top" the oncoming lows. This 500 millibar pattern is the type that would generate the storm tracks illustrated on the previous page.

Figure 2 (the +48hr prog valid at 00Z, on April 13, 1994), predicts some changes in the upper-air pattern. Notice the short-wave trough pushing the 5,640 contour line south of 40°N

near 45°W, and north near 20°W. This upper-air pattern will tend to change the surface storm track from a zonal to a more meridional direction.

Two days later, the +96hr prog (figure 3, valid at 00Z, for April 15, 1994), predicts further changes in the upper-air pattern. The upper-air wind flow has split near 55°W. This creates one storm

track heading north of 60N, and a second one diving south of 30N. An upper-air low is also predicted to form near 40N, 40W. This usually means a low has been established on the surface somewhat to the east of the upper air low. The stronger winds to the west of the upper-air low (near 50°W) will probably mean the southerly storm track will push even farther southward.

vessel departing the English Channel around April 11, 1994, would initially be under the influence of the upper-air ridge. The ridge should create favorable surface wind and sea conditions. From this point the vessel should head for a point just north of the upper-air low (about 40°N, 40°W) predicted to form by the 15th.

At first glance, the 500 millibar prog for the 13th seems to indicate that the vessel should head farther south to avoid the head westerlies generated by the short-wave trough near 50°W (figure 3). However, the vessel should not change its original track since the +96hr prog predicts a split to

Figure 2

Figure 3

occur in the upper-air wind flow. The split near 50°W, by the 15th (figure 2), will allow the vessel to take advantage of the wind flow around the newly formed low (that is directly south), and to avoid the northeastward moving storm track that is heading north of 60°N, 60°W.

After the 15th the vessel should be approaching the upperair ridge near 50°W. With the storm track well to the north, the vessel should be able to avoid severe weather for the rest of the trip.

An examination of NWS's surface analysis' and progs for the same valid times confirms this route. The surface analysis chart for 00Z, April 11, 1994, (figure 4) depicts a high pressure system moving towards the coast of Europe. A 20 to 25-knot vessel should be able to stay south of the high and take advantage of the beam to following wind conditions.

y the 13th, our vessel may be experiencing fairly strong beam winds and seas as it approaches the cold front near 40°W (see figure 5, the +48hr surface prog valid for 00Z, April 13, 1994). Note that the surface prog is predicting a new low to form south of us by the 14th near 32°N, 38°W.

By the 15th, our vessel should be north of the new 1002 low (located near 32°N, 32°W), and handling quartering wind conditions (figure 6). As the ship moves

over the top of this low, it will move into the 1030 high pressure system. This places the vessel well south the upper-air storm track to the west.

This routing decision is highly dependent on the weather forecasts. Figure 7 is the actual 500MB analysis for 00Z April 15, 1994. Note how similar it is to the prognosis chart issued four days earlier for the same valid time (figure 3).

As with any routing decision, this article assumes the vessel is seaworthy, and has the speed/power to take advantage of the weather situation. The initial routing decision should always be based on all available resources such as the vessel's routing service/computer, and checked daily with the updated NWS radio facsimile charts. Many other factors such as oceanic currents, ice, fog, vessel, and navigational restrictions will also influence results.

The 500 millibar is not a panacea. It is, however, an extremely powerful tool for assessing future surface storm move-

Figure 4

Figure 5, 6 and 7

ments, intensification, and wind direction/ speed. When combined with the other available tools, routing decisions can be measurably improved.

Paine, G. (Winter, 1995). "Heavy Weather Avoidance." Mariners Weather Log, 39(1), 16-19.

²Diagram is a compilation of storm track data generated by the U.S. Naval Atlantic Meteorology and Oceanography Center, in Norfolk, Virginia.

'Height contour lines on the 500 millibar chart define the altitude (in meters) at which the pressure is equal to 500 millibars. Studies have shown that surface features are significantly influenced by the meteorological conditions in the upper-air. For more information see "Mariner's Guide to the 500-Millibar Chart" by Sienkiewicz, and Chesneau, Mariners Weather Log, Winter 1995, vol 39 (1), p. 4-14. 'A short-wave trough creates a counterclockwise change in the direction of the height contours. Its width is usually less than 50 degrees of longitude. Counter-clockwise wind rotation encourages surface low devel-

³ A ridge creates a clockwise change in the direction of the height contours. Clockwise wind flow in the upper air promotes surface high developments.

opment and intensification.

^eMeridional pattern indicates a north-south or south-north direction of movement.

NWS surface analyses also display the estimate +24hr central pressure and position of significant lows and highs. The prognosis charts actually display three different central pressures and position for each significant low and high. (the position 24 hours previous to valid time of chart, the actual valid time position, and the position 24 hours after the valid time).

Readers can call Glen at 410-859-5700, ext. 3259, for more information about uses of the 500 millibar charts.

Texas A & M University at Galveston

Nancy O'Donnell National Oceanographic Data Center

tudents enrolled in the Corps of Cadets at Texas A& M University at Galveston (TAMUG) can hardly ignore their future—docked within walking distance of their classroom is the imposing bulk of the training ship, the *Texas Clipper*. Farther out off the 13-acre campus on Pelican Island, the shipping channels of Port of Galveston and Port of Houston are busy traffic lanes these cadets may one day be traversing as professional mariners. The salty tang of the ocean permeates the coastal campus of the "Ocean Aggies" pro-

viding a fitting background for schooling in maritime careers.

TAMUG, a small and compact campus, is part of the larger College of Geosciences and Maritime Studies at Texas A & M in College Station, Texas. Located on the Mitchell Campus, it is comprised of academic facilities, three dormitories, a student center, classrooms and laboratories, a small boat basin, and a docking area for the Training Ship *Texas Clipper*. The Jack K. Williams Library contains 43,000 books, 35,000 bound volumes of journals, and a large collection of

nautical charts and maps, and marine source material. Founded in 1962, TAMUG merged with Texas A&M University at College in 1992 and the winning combination is making history. Two years later the undergraduate Marine Sciences Department in Galveston merged with the graduate Department of Oceanography in College Station to create a single department spanning both campuses. The campus offers undergraduate degrees in marine Biology, Marine Sciences (Oceanography), Marine Engineering, Transportation and Fisheries. Ocean engineering and Maritime Administration (business) are also offered. Students in the Marine Sciences and Marine Biology disciplines have the option of working towards a U. S. Maritime Service license as an officer of the American Merchant Marine.

Texas Institute of Oceanography (TIO) also on the Galveston campus focuses on important research of the Gulf Coast by working with scientists at Texas universities to provide the research and technical base for the development of marine-related businesses in the State of Texas and the Gulf of Mexico.

In TIO literature it takes special note of the words of historian Will Durant: "Civilization exists by geological consent, subject to change without notice," and in light of that warning TIO has concentrated important work on climate change.

ince the ocean plays a major role in the climate system by "removing about one-half of the man-made carbon dioxide released into the atmosphere each year," TIO students look at how human activities and natural forces influence climate and affect consequences. Global warming with its potential to destroy or damage wetlands and estaurine systems with its rising waters is an important area of study. TIO scientists have proved that a higher sea surface will magnify storm surges when a hurricane approaches, and the hurricane itself will be stronger because of warmer ocean surface.

Some research initiatives include: acid rain, global warning and policy studies relating to the consequences of both. TIO involvement in climate change resulted in the purchase of a MACSAT real-time satellite imaging computer system for monitoring weather and ocean temperatures.

The effect of human encroachment on seafood is also of concern to TAMUG and projects are under way to develop a new breed of oyster to help Texas seafood industry by building oyster reef substrate utilizing by-products of industrial processes and developing hardier species of oysters.

Today, Texas is the third largest seafood market in the nation.

An article in a Texas *Bay Line*, a quarterly publication of the Galveston Bay National Estuary Program, stated that "The amount of seafood produced in 1989 from Galveston Bay was 8,774.5 millions, of which about 1,075.8 million pounds was harvested by the recreational fishery."

While Texas A&M scientists bring real help to surrounding communities in tackling beach erosion, industrial pollution and economic development, their studies have a direct impact on maritime interest nationwide.

n other ways students work on problem solving that will benefit the marine community worldwide. Students study ways to rehabilitate marine wildlife in the wake of disasters using over 1,654 acres of wetlands available nearby as their classroom.

Many mariners return to TAMUG to upgrade their skills. Its continuing education program offers a oil spill simulator and response center and bridge simulator for maritime training. Its Center for Marine Training and Safety provides instruction to maritime professionals of the National Maritime Union and also employees of private companies like Exxon, Shell, and Conoco.

TAMUG is described as a totally ocean-oriented campus, "the window on the Gulf of Mexico," offering academic degrees, research, continuing education programs and public service in all aspects of marine life. It is one of only six state maritime training academies and the only one located on the Gulf of

Above, women now make up over 30% of the Galveston campus studying all subjects with their male counterparts.

TAMUG cadets practice lifesaving techniques in a campus pool. Wearing Gumbeee suits, they re-enact emergency situa-

tions where quick thinking and good training can save a life. Photo courtesy of Mark Zegowitz, TAMUG.

Mexico.

AMUG is especially proud of its U.S Corps of Cadets described as "a learning laboratory for leadership, management, and self-discipline." The current program prepares students to become licensed officers in the U.S. Merchant Marine while majoring in Marine Biology and the Marine Sciences. Students matriculated in Marine Transportation may seek a Third Mate's License while cadets in Marine Engineering may seek a Third Assistant Engineer (Steam and/or Motor Vessels, Unlimited) in the field of marine transportation.

While working on a degree from Texas A&M, students learn how operations, navigation, and maintenance of ocean going vessels. License preparation is for ships of unlimited tonnage operating in any of the worlds' oceans.

At sea training sends cadets on three summer cruises to ports in the U.S., Northern Europe, the Caribbean, and the Mediterranean, to gain practical knowledge of seamanship, navigation, seamanship, rules of the road, cargo and port procedures, and mooring operations. In addition, this "Military unit

with muster" completes training in first aid, cardiopulmonary resuscitation techniques, and firefighting.

The Galveston campus boasts a 132% surge in enrollment in the past five years which includes a dramatic increase in women—the Corp of Cadets is well over 30 % female.

Most important to the cadets is their time spent on shipboard training in navigation and seamanship. TAMUG's fleet of ships consists of a 144-meter training Ship, *Texas Clipper*, to the 15-meter *Roamin' Empire*, as well as smaller power an sailing boats.

The original training ship T/S Texas Clipper was built in Bethlehem Steel Shipyard at Sparrows Point, Maryland in 1944 and entered service during WWII as a troop transport named the USS Queen. Its mission was to bring home troops from the South Pacific and would carry as many as 1500 per trip. After WWII, it was reconverted by American Export Lines, renamed the Excambion and operated between New York and Europe. In 1965, it was renamed the Training Ship Texas Clipper and assigned to the Texas Maritime Academy at Galveston where it has remained. This coming year will be a special celebration for the

The life of a cadet involves rigorous fitness training to prepare them for their field training. Each summer cadets sail to summer cruises

in the U.S., Northern Europe, the Caribbean, and the Mediterranean to gain practical knowledge of seamanship.

university with the retirement of the original Texas Clipper and the inauguration of the *Texas Clipper II*, formerly the USNS *Chauvenet*.

In 1992 the *Chauvenet*, a 120-meter U.S. Navy hydrographic research ship, was chosen as the replacement for the aging *Texas Clipper* which had plied the seas for over 50 years. According to TAMUG archives, the *Chauvenet* was named after a Yale graduate, William Chauvenet, who entered the U.S. Navy Schoolmaster system in 1841. A year later, he was in charge of the Naval School in Philadelphia which was established to educate midshipmen and junior officers. Continuing in a long and prestigious career, Chauvenet was appointed to the head of the faculty at the "newly established Naval school" at Annapolis, Maryland, in 1845.

The vessel, built in by Upper Clyde Shipbuilders of Glasgow, Scotland, first went into service in November 1970. The *Chauvenet* was designed to support coastal hydrographic surveys. On board were four 10-meter survey launches, two helicopters, a combined naval/civilian hydrographic survey detachment, chart production and printing facilities. A Marine Corps coastal survey complete with their landing vehicles, trucks, and jeeps made up the remainder of its complement. The *Chauvenet* is currently undergoing final refitting in Port Arthur, Texas and is slated to dock at the TAMUG dock before summer 1996.

A university education includes far more than the acquisition of job skills. While the location of the TAMUG affords students the opportunity to use the local maritime and marine industries, it is the rigorous Texas A&M program that fully prepares them to serve the maritime needs of the United States into the 21st century.

Special thanks goes to Vince Zegowitz, NOAA National Marine Branch Office; Captain Robert B. Byrne, USMS; Annette Dean and Mark Zegowitz of Texas A&M University at Galveston.

This vessel, served for many years as TAMUG's floating university. It will soon be replaced by a newer version built by Upper Clyde Shipbuilders of Glasgow, Scotland. The future **Texas Clipper** is currently berthed in Port Arthur, Texas.

Expanded High Seas Atlantic HF Radiofacisimile Broadcast

Lee Chesneau Marine Forecast Branch, NWS

n August 1, 1995, the Marine Forecast Branch, in cooperation with the U.S. Coast Guard Communications Station, Marsfield, Massachusetts, upgraded and expanded its Atlantic high seas HF Radiofacsimile broadcast. The Coast Guard provided extra time slots allowing for the addition of four regional western Atlantic preliminary surface analyses, two regional western Atlantic 36-hour Surface Forecasts and two regional 36-hour western Atlantic Wind/Wave forecasts. These products complement existing two part coverage of Atlantic Surface Analyses and two 24-hour Surface and Wind/wave forecasts. These products were added to meet the requests of nearshore mariners who operate inside 300 nautical miles of the mid Atlantic and New England coastline.

The four regional preliminary Surface Analyses are machine produced. The marine forecaster will manually manipulate or adjust frontal systems, isobars, positioning of highs and lows and alphanumeric text labeling (i.e., tropical cyclones) as required. Automated surface observations including land stations, ship reports, and buoys are also plotted. The preliminary Surface Analyses reflect synoptic

conditions every 6-hrs., just as the two part oceanic Surface Analyses of the Atlantic transmitted one to two hours later.

The addition of the 36-hours Surface and Wind/Wave Forecast to the 24-hour products provides continuity of smaller scale synoptic conditions which impact marine users operating in coastal and offshore areas. Now mariners will be forewarned of events such as the Gulf Stream's North Wall episodes (extreme winds and seas). These episodes are highlighted in an effort to better pinpoints dangerous mesoscale marine events extending over relatively larger distances.

36-hr. wind/wave and 36 hr. surface forecast charts (top). These products depict isopleths of significant wave height in increments of .9144 meters, wind direction and speed barbs of every 5 knots. The surface pressure forecast (bottom) shows major low and high pressure systems and their central pressure values in millibars, category of systems, i.e. "gale" or "storm," system direction and speed of movement, along with associated frontal systems.

These Western Atlantic products are also consistent with the needs of coastal and offshore areas marine customers who were familiar with the earlier radiofac-simile broadcast prepared by the NWS Forecast Office in the old Boston office. The Marine Prediction Center (formerly the National Meteorological Center)

Camp Springs, Maryland assumed forecast responsibility from the NWS WSFO Boston in January 1993. In addition to the regional area of coverage, the broadcast has been expanded to serve the wide variety of maritime customers engaged in transoceanic voyages.

Comments on schedule or quality of charts are welcomed. Please write the National Weather Service, Marine Forecast Branch, WWBG, Room 410, 5200 Auth Road, Washington, D.C. 20233. Or call (301) 763-8441 (8442). Fax (301) 899-8903 e-mail: dfeit@smtpgate.ssmc,noaa.gov

UNITED STATES COAST GUARD NATIONAL WEATHER SERVICE MARINE RADIOFACSIMILE SCHEDULE NMF-USCG MARSHFIELD, MA

6340.5, 12750 kHz (CONTINUOUSLY) Effective August 1, 1995

TIME (UTC)	PRODUCT		VALID TIME
0230/1430	Test Pattern (Start of Broadcast)		
0233/1433	Preliminary Surface Analysis Are	a 1	0000/1200
0243/	FAX Schedule Part 1		
0254/	FAX Schedule Part 2		
0305/	Request for Comments		
0315/	Product Notice Bulletin		
/1443	96 HR 500 Millibar Forecast	Area 4	0000
/1453	96 HR Surface Forecast	Area 4	0000
/1503	Satellite Image	Area 5	1200
/1515	Sea State Anal (Meters)	Area 4	1200
0325/1525	Surface Analysis (E ATLC) Area	2	0000/1200
0338/1538	Surface Analysis (W ATLC)	Area 3	0000/1200
0351/	Satellite Image	Area 5	0000
/1551	End of Broadcast		
/1720	Test Pattern (Start of Broadcast)		
0402/1723	Surface Analysis (E ATLC) Area		0000/1200
0415/1736	Surface Analysis (W ATLC)	Area 3	00001200
0428/1729	500 Millibar Analysis	Area 4	0000/1200
0438/1759	End of Broadcast		2000, 2200
/1900	Test Pattern (Start of Broadcast)		
/1903	Fax Schedule Part 1		
/1914	Fax Schedule Part 2		
/1925	Request for Comments/Product	Notice Bulletin	
/1935	Gulf Stream Analysis	Areas 7, 8	Latest
/1945	Gulf Stream Anal (Part A) Areas		Latest
/1955	Gulf Stream Anal (Part B) Areas		Latest
0800/	Test Pattern (Start of Broadcast)		-
0805/2005	Preliminary Surface Analysis	Area 1	0600/1800
0815/2015	24 HR Surface Forecast	Area 1	0000/1200
0825/2025	24 HR Wind/Wave Forecast	Area 1	0000/1200
0835/2035	36 HR Surface Forecast	Area 1	1200/0000
0845/2045	36 HR Winde/Wave Forecast	Area 1	1200/0000
0855/2055	48 HR Surface Forecast	Area 4	0000/1200
0905/2105	48 HR Sea State Forecast	Area 4	0000/1200
0915/2115	48 HR 500 Millibar Forecast	Area 4	0000/1200
0925/2125	Surface Analysis (E ATLC)	Area 2	0600/1800
0938/2138	Surface Analysis (W ATLC)	Area 3	0600/1800
0951/2151	Satellite Imagery (ECI)	Area 6	0600/1800
1002/2202	Surface Analysis (E ATLC)	Area 2	0600/1800
1015/2215	Surface Analysis (W ATLC)	Area 3	0600/1800
1028/2228	End of Broadcast		0000, 2000
AREAS:	1- (28°N - 52°N, 45°W, 85°W) 7 - (32°N - 50°N,	43°W - 80°W)	
	2 - (15°N - 65°N, 10°E, 45°W) 8 - (18°N - 38°N,	62°W - 98°W)	
	3 - (15°N - 65°N, 40° - 95°W) 9 - (32°N - 50°N,		
	4 - (15°N - 65°N, 10°E - 95°W) 10- (18°N - 39°N, 5 - (20°N - 55°N, 55°W - 95°W) 11 - (30°N - 40°N		
	6 - (00-60°N, 30°W - 100°W) 12 - (33°N 47°N,		

Tracking Iceberg Danger

R. Tuxhorn Commander, International Ice Patrol

rom March through July each year, U.S. Coast Guard aircraft, equipped with forward and side-looking radars, patrol the fog-shrouded and stormy North Atlantic Ocean searching for icebergs. From its beginning shortly after the sinking of the RMS Titanic, International Ice Patrol (IIP), which is part of the U.S. Coast Guard, has been responsible for guarding the southeastern, southern, and southwestern limits of all known ice in the vicinity of the trans-Atlantic shipping lanes, and warning mariners of the location of icebergs that threaten safe navigation. The Ice Patrol service is managed by the United States Government under the terms of the International Convention for the Safety of Life at Sea (SOLAS).

The combination of persistent fog and the fact that icebergs are notoriously bad radar targets make navigating near the Grand Banks particularly worrisome in the spring and early summer. Ships' radars can usually detect large icebergs, such as might displace several hundred thousand tons. Small icebergs and growlers, the smallest size class, are another matter. A growler, which might displace a few thousand tons, is not a very impressive piece of ice, but it could inflict serious damage on any vessel unfortunate enough to strike it. In a significant seaway, say 3-4 meters, growlers are difficult to detect on radar.

Ice Patrol's primary goal is

LEGENO FOR 1200 GMT 11 APR 95

A BERG BASED ON RECENTLY REPORTED

AND FORECAST CONDITIONS

RADAR TARGET/CONTACT

PLEASE SEND COPY NOTING LOCATION, TIME AND FREQUENCY USED TO-COMINTICEPAT, 1882 SHENNECOSSETT RD, GROTON, CT 96348-6995

CO CO DE NIK NIK

to define the limits of all known ice as accurately as possible, neither underestimating nor overestimating the extent of the iceberg threat. To do this, Ice Patrol seeks iceberg reports from many sources and undertakes its own aerial reconnaissance. Data

sources include North Atlantic shipping and aerial reconnaissance conducted by and for several Canadian government agencies.

Despite extensive aerial reconnaissance, the large size of IIP's operations area prevents frequent and complete coverage of

International Ice Patrol archive photograph.

the entire areas where icebergs may be found. Our reconnaissance concentrates on the southern and eastern limits of the iceberg's extreme range while Canadian reconnaissance flights concentrate on the waters of their nation's coastal economic zone. This leaves wide areas that are not frequently visited. While we do not encourage vessels to transit through areas containing icebergs, and in fact recommend against it, we depend heavily on the cooperation and assistance of shipping in the Grand Banks area for iceberg and sea surface temperature reports.

All iceberg sighting reports are forwarded to the IIP Operations Center in Groton, Connecticut where they are entered into a computer model that predicts iceberg drift. The ship reports are used to identify previously detect-

ed icebergs, confirm the position of icebergs already on IIP's plot, and to identify ice free areas. Sea surface temperature data help Ice Patrol estimate the deterioration of all the icebergs being tracked.

Ship reports usually account for 20-40% of the

icebergs entered into IIP's drift model each year. For example, 19.5% of the 9446 iceberg targets entered in 1994 were provided by shipping. Reports from ships account for a significant number of iceberg sightings near the limits. These reports came from 303 ships of 45 different nations, a clear indication of support and importance that the international shipping community attaches to Ice Patrol's efforts.

Each year IIP recognizes the ship that provided the most ice

reports during the iceberg season. In 1994, that award went to the m/v Atlant I; the results of the 1995 season are currently being tabulated.

The m/v Atlant I, a Croatian flag ship, received the '94 IIP award for 65 ice reports and 50 SST reports. Lt to rt. Commander Ross Tuxhorn USCG, Capt. Mato Bajo, Atlant 1, Capt. Ivan I. Coric, Atlantic Conbulk Services.

If you are crossing the IIP operations area (40-52°N, 39-57°W) during the iceberg season we ask you to provide us reports containing the following information:

•Sea surface temperature
Negative sighting reports
with visibility limits are just as
important as positive ones. A
report of a stationary radar target is
also important because these sometimes turn out to be large or medium icebergs. Reports can be made
to any Canadian Coast Guard
Marine Radio Station or U.S. Coast
Guard Communications Station on
the frequencies listed in Pub. 117
(Radio Navigational Aids), or
directly to IIP using INMARSAT
code 42 at no cost.

Using the results of the drift model, Ice Patrol determines the limits of all known ice and informs mariners of its location by transmitting a wide variety of products. During the iceberg season a daily facsimile chart is broadcast from U.S. Coast Guard Communications Station Boston. Twice daily bulletins describing the limits of all known ice are also broadcast to the mariner over the INMARSAT-C Safety NET and by high frequency radio. Trans-Atlantic mariners must extreme caution while passing through the dangerous waters of the western north Atlantic. IIP will continue to do its part to prevent loss of life or property due to encounters with icebergs by providing mariners with timely and accurate iceberg warnings. A complete description of the ice limit broadcasts may be obtained from the International Ice Patrol Announcement of Services.

In a typical season about 400 icebergs drift south across 48°N latitude, and becomes a threat to trans-Atlantic shipping. However, like the weather, the typical rarely happens. There is extraordinary variability in the number of icebergs passing south of 48°N, ranging from none to 1966 to 2202 in 1984. Amidst this variability, however, there seems to be a recent trend toward severe seasons. Thus far, all the season in the 1990s have been in the extreme severity class (600 icebergs passing south of the 48°N). In four of the last five vears the count exceeded 1000.

Careful examinations of the data since 1963, conducted by

Dr. John Marko of ASL Environmental Sciences, Inc. of Vancouver, B.C. and later by Lieutenant Geoffrey Trivers of IIP, reveal that the variability in the iceberg counts is consistent with the variability of the extent of the sea ice off of eastern Canada. This relationship makes considerable physical sense because large concentrations of sea ice protect icebergs from destruction as they move southward. Thus, larger numbers of icebergs survive their long journey to the shipping lanes. It seems, therefore, that the observed trend toward more severe

Editor's Choice

Annual Counts of Icebergs Crossing 48° North Latitude (1912-95)

iceberg seasons in the 1990s is real.

History suggests that periods of heavy years are sometimes followed by light years. However, all efforts to explain the observed variability in the icebergs counts in terms of climatological variables have failed. Similarly, efforts to develop long range predictive capability for iceberg season severity have met little success. It is left to the mariner and the International Ice Patrol to maintain continued and keen vigilance.

Announcement of 1995 International Ice Patrol Service

Table 1 — IIP Broadcasts

BROADCAST STATION	Time of Broadcast (z) Freque	encies (kHz)	
NAVTEX BROADCAST			
U.S. Coast Guard	0045, 0445	518	
Communication Station	1845, 1245		
Boston/NIK	1645, 2045		
Canadian CG Radio	1820	518	
Station Sydney/VCO (Primarily sea ice in Gulf of	St. Lawrence and North. Limits of i	reheras sometimes given)	
	st. Lawrence and Horat. Limbs of the	cebergs sometimes given.	
NBDP (FEC) BROADCAST			
U.S. Coast Guard	0030	6314, 8416.5, 12579	
Communication Station Boston/NIK	1218	8416.5, 12579, 16806.5	
Canadian Coast	0630	4213.5	
Guard Marine Radio	1630	8419.5	
Station Halifax/VCS	2300	4213.5	
CW BROADCASTS (On or abo CW broad	out 1 April 1995, the U.S. Coast Guard wi lcasts)	ill cease all	
U.S. Coast Guard	0050	5320, 8502, 12750	
Communication	1250	8502, 12750	
(Bost to follow NBDP bost)		5554,12755	
Canadian Forces METOC	0015, 1101	122.5 Continuous	
Centre Halifax/CFH	1201, 1301	(off air 1200-1600	
	2201, 2301	second Thurs, each	
	2201, 2301	month) 4271 (2200-	
		1101101) 12/1 (2200	
		(1000 LTC)	
		(1000 UTC)	
		6496.4 Continuous	
		6496.4 Continuous 10536 Continuous	
		6496.4 Continuous 10536 Continuous 13510 (1000-2200	
		6496.4 Continuous 10536 Continuous	
Canadian Coast Guard	1330	6496.4 Continuous 10536 Continuous 13510 (1000-2200 UTC)	
Canadian Coast Guard Radio Station	1330 2200	6496.4 Continuous 10536 Continuous 13510 (1000-2200 UTC) 4285, 6491.5, 8440	
	1330 2200	6496.4 Continuous 10536 Continuous 13510 (1000-2200 UTC) 4285, 6491.5, 8440 12874, 16948, 22619.5	
Radio Station		6496.4 Continuous 10536 Continuous 13510 (1000-2200 UTC) 4285, 6491.5, 8440 12874, 16948, 22619.5 (Broadcast on	
Radio Station		6496.4 Continuous 10536 Continuous 13510 (1000-2200 UTC) 4285, 6491.5, 8440 12874, 16948, 22619.5	

ROADCAST STATION

Time of Broadcast (z) Frequencies (kHz)

BLCMP BROADCAST (On or about 1 April 1995, the U.S. Coast Guard will cease as advertised by CN marker tape)

Norfolk, VA 0800-0900 8090, 12135, 16180 NMN/NAR 1500-1600 8090, 12135, 16180, 20225 Radio Station 1600-1700 8090, 12135, 16180, 20225 2100-2200 8090, 12135, 16180, 20225

 KeyWest,R,NAR
 0800-0900
 5870

 15001600
 5870,26725

 1600-1700
 5870, 26725

 2100-2200
 5870, 26725

 RADIOFACSIMILE BROADCASTS
 Time Z
 Frequency kHz

 U.S. Coast Quard
 1600
 6340.5, 12750 (+/

 Communication
 1810
 400Hz)

 Radio Station Bradwell
 1602
 2618.5 (1800-0600

 United Kingdom/CFE
 Oct. 1--Mar 31; 1900

 (Eastern North Atlantic
 0500 Apr 1-30 Sep

 Sea Ice Observations)
 478.2 Continuous

 9203 Continuous
 9203 Continuous

9203 Continuous 14436 Continuous 18261 (0600-1800 Oct. 1-Mar 31; 0500-1900

Apr 1–30 Sep)

Canadian Forces METOC 0015, 1101 122.5 Continuous

 Centre Halfray/CFH
 1301,1401
 (Off air 1200–1600

 (Primarily Sea ice in
 2201,2301
 second Thursday

 Gulf of St. Lawrence
 each month)
 4271 (2200-1000 UTC)

 and North. Limits
 4271 (2200-1000 UTC)
 10536 Continuous

 given.)
 13510 (1000-2200 UTC)

ANNOUNCEMENT of 1995 INTERNATIONAL ICE PATROL SERVICE

The RADIOFACSIMILE chart is now available on an INMARSAT A FAXMAIL SERVER available through the COM-SAT Corp. There is no charge for the chart. There is a charge for the telephone call. Telephone charges starts with the first dialing in the access sequence below. COMSAT estimates that the telephone time following the 'fax start' should be about 1 minute. Download specifics are as follows:

> Access CES ID 01 then dial "2050#" Enter the id number "2130001" and enter "#" Enter "7740" and enter "#" Enter "*29" and enter "#" After a tone, enter "#", then hit the fax start button.

INMARSAT SafetyNET BROADCASTS

The OOZ and 12Z Ice Bulletins will be broadcast over the AOR–W Satellite at 00Z and 12Z daily, respectively. In addition, safety broadcasts regarding icebergs outside of the limits of All Known Ice will be sent over the AOR–W Satellite upon receipt.

RADIO TELEPHONE	Time of Broadcast (z)	Frequencies (kHz)
Canadian Coast Guard Marine Radio Station Halifax/VCS	1335 2335	4408, 8785, 13113
SPECIAL BROADCASTS Canadian CG Radio Station St. John's/VON	as required when icebergs are sighted outside the limits of ice between regularly scheduled broadcasts.	2598 Radio- telephone preceded by Inter- Safety Signal (SECURITE) on 2182 kHz. NAVTEX upon receipt
SPECIAL BROADCASTS U.S. Coast Guard Communication Station Boston/NIK	As required when icebergs are sighted outside the limits of ice between regularly scheduled broadcasts	NAVTEX upon receipt or first avail broadcast NDBP (FEC) next scheduled broadcast.
International Ice Patrol Vessel/NIKK (when assigned)	When in the vicinity of ice in periods of darkness or fog	2670 Preceded by International Safety Signal (SECURITE) or 2182 kHz.

The Nuevo Leon encounters Hurricane Opal

he barograph chart above shows the progression of the *Nuevo Leon* as it transited the Gulf of Mexico with Hurricane Opal. The chart begins on October 2 at 2300 and ends on October 5 at 0800. The ves-

sel encountered 75 knot (gusts to 90 K) and seas of 30 to 35 feet (9 to 11 meters). The lowest reading was 978.7 millibars at approximately 1000 UTC on Oct. 14. This placed the vessel about 600 miles to the west of Opal's eye.

The Parade of Storms

Courtesy of the National Oceanic and Atmospheric Administration

he Geostationary Operational Environmental Satellite (GOES-8) captured a parade of storms on August 30, 1995. The half disk view of the Northern Hemisphere shows (right to left) Tropical Storm Luis, Tropical Storm Karen, Hurricane Hum-

berto, and Hurricane Iris. On the far left side of the frame are remnants of Tropical Storm Jerry.

The storms followed each other fast and furious: Luis (8/28-9/11), Karen (8/26-9/3), Humberto (8/22-9/1), Iris (8/23-9/4), and Jerry (8/23-8/25).

Operated by NOAA's National Environmental Satellite, Data and Information Service, the the Goes satellites (GOES-7 and GOES-8) stay above a fixed spot on the surface and provide a constant vigil for servere weather conditions— tornadoes, flash floods, hail storms and hurricanes.

The Crescent City

Skip Gillham Vineland, Ontario, Canada

Renamed the Carl W. Meyers in 1950, the vessel sailed another decade until she was scrapped at Port Colborne, Ontario, Canada. Photo courtesy of Canal Park Museum Collection.

ver the years, some destructive November gales on the Great Lakes have reached almost legendary status. One of these famous storms hit Lake Superior November 29–30, 1905. Among the ship casualties was the *Crescent City*.

Built in Chicago for the Zenith Transit Company, the vessel was launched February 2, 1897 and took her maiden voyage to Buffalo the following May. That summer *Crescent City* set an ore record of 5,560 tons for Lake Erie delivery.

Misfortune struck early. On June 13, 1898, a stream pipe burst off Kelley's Island, Lake Erie killing one sailor and injuring two more. On August 9, 1899, Crescent City got tangled in a towline that led to the steamer John B. Trevor being rammed and sunk by her barge.

The accident prone Crescent City was upbound and in ballast for Two Harbors when she was hit by high winds and waves in late November 1905. With temperatures in the zero range and visibility poor, the 130-meter bulk carrier was swept ashore in a cove some two miles east of Duluth. Although the hull was pinned against the rocks, fortunately all crew members were rescued.

When the seas subsided, salvage operations got underway for the many broken ships around the shores of Lake Superior, but *Crescent City* was not pulled free until June 4, 1906.

Her troubles were not over. On June 9, 1909, the ship washed through the Canadian Lock at Sault St. Marie when the lower gates were broken down by an upbounder that failed to stop. Crescent City was holed as it was swept downstream and grounded. The ship sank while being towed to dock.

The later years were less eventful for *Crescent City*.

Ice Breaker

Teresa Fremaux The Mariners' Museum Newport News, Virginia

he two men, still good humored despite the job of ice breaking that awaits them, pose in front of the pilot house of the steam trawler, Breaker, circa 1930. Another man, peering out from the curtain of ice

on the deck below, has already begun the hard work.

The vessel was built in 1913 by the Fore River Ship Building Company in Quincy, Massachusetts and was owned by the Bay State Fish Company of Boston. The *Breaker* fished in the Georges Bank trawl fishery until 1934.

The photograph was taken by J. Jay Hirz, Hirz Graf Studios, in New York City. The Gelatin-silver print is housed in the permanent historical photograph collection of the Mariners' Museum, Newport News, Virginia.

Turn on the Light!

The Development of the Fresnel Lens

Elinor De Wire Gales Ferry, Connecticut

he heart of a light-house— indeed, its very soul—is the great beacon beaming from its lantern. Like the Cyclops of Greek mythology, it surveys the sea with a single, gargantuan eye, sometimes winking sleepily, sometimes gazing with boredom, but always pre-empting the night with a brilliant, guiding ray.

Such sentinels evoke an aura of simplicity; yet, their origins are exceedingly complex. The lighthouse's thin pencil of blinding light, so captivating to painters, and poets, is no ordinary beam, but rather a technological achievement rooted in science and showcasing the talents of craftsmen and engineers.

The variety of lighted aids guiding today's navigator would have confused the ancient mariner, who felt fortunate to have the crudest wood braziers for bea-

An illustration of Augustin Fresnel's original 1823 lens is depicted above.

cons. The famous Pharos of Alexandria, a lighthouse that guarded the Nile River Estuary and one of the Seven Wonders of the World, had a huge brazier that was maintained by priests, whose slaves carried wood up the 152-meter tower.

Candelabras were used in some early lighthouses; titanic in size, they required dozens of tapers and hours of work to maintain. The renowned Eddystone Light in the English Channel began its career in 1698 with tallow candles suspended from the ceiling of its lantern. The first Boston Light is believed to have been lit by a chandelier of 46 candles. In the 1500s, coal braziers came into use, but as with wood and candles, soot was a problem. In addition, these early

beacons cast a feeble light upon the sea and were fire hazards. In fact, both the Eddystone Light

Above, an old postcard shows the Highland Lighthouse in N. Truro, Massachusetts

where eclipsers were first used. Photograph courtesy of the Elinor DeWire collection.

and the Boston Light burned when their tallow-soaked, wooden floors caught fire.

Oil lamps followed in the 1700s, with numerous improvements in their designs to magnify the light and produce a cleaner and steadier beacon. The zenith of lamps came in the 1780s with Ami Argand's tubular-wick lamps, which produced a bright, smokeless flame equivalent to seven candles and was further intensified with reflectors pans placed behind the lamps. This design was improved by Winslow Lewis of Cape Cod, who added a parabolic, silvered reflector. Even so, only one-sixth of the light of each lamp was reflected out to sea.

The problem remained of identifying beacons at night. Prior to the 1820s, all seacoast lights were white and fixed (did not flash). Colored lights were unsuitable for landfall navigation, as they drastically reduced the range, or

distance a beacon could be seen, and engineers had found no effective means to make a beacon flash a signal. The American and European coasts were lit by a necklace of steady, white lights that sometimes confused the unwary mariner. Maine was typical, where one stretch of shore showed nine white, fixed lights, all visible from a single vantage point.

Efforts were made to produce flashing light characteristics as early as 1800. Highland Lighthouse on Cape Cod had a peculiar eclipser installed shortly after it went into service to distinguish it from the Boston Light. The apparatus consisted of a semicircular screen that revolved around the 15lamp beacon once every eight minutes. Eight minutes was too long a signal period, and complaints were made about the beacon's range, which extended only about 10 miles from shore and less during bad weather. Ships nearly ran

onto the shoals of the cape's backside trying to find Highland Light, so the eclipser was discontinued.

French physicist Augustin-Jean Fresnel (pronounced Fray-nel) in 1822 introduced a revolutionary optic that drastically improved lighthouse illumination and became the basis for all modern optics. Fresnel's design, though devised through complex physics and mathematics, was a creation of unparalleled beauty. A fragile aggregation of prisms and brass, shimmering like an ornate ball-room chandelier, it transformed the light of an ordinary oil lamp into a blinding beam.

Fresnel outraged the scientific community by boldly disputing the 150-year-old theories of Isaac Newton. Newton had vaguely defined light as a swarm of particles moving through space longitudinally, each with a different mass, according to its color, and each with identifying characteristics which allowed it to be refracted, reflected, or moved randomly. Fresnel, on the other hand, believed light traveled in waves in a transverse manner.

Fresnel's system did away with multi-lamps and reflectors and replaced them with a single larger lamp placed at the center, or focal plane, of the lens. His beehive-shaped lens was composed of a central panel of magnifying glasses surrounded above and below by concentric rings of prisms and mirrors properly angled to gather light and direct it toward the focal plane where it was intensified and projected seaward. The Fresnel lens was first tested at the celebrated Cordouan Lighthouse where the Gironde River flows into the Bay of Biscay. The beacon's excellence was quickly recognized by the mar-

itime world, and demand for Fres-

nel lenses burgeoned.

Several types of Fresnel lenses were available by the mid-1820s. His fixed lens exhibited a steady beam of light by means of a smooth, central barrel of convex glass. The flashing lens had flash panels, called bullseyes, arranged around the focal plane of the lens to funnel light into separate beams.

A fixed-flashing combina-

tion lens was developed later that used both bullseyes and a smooth central band to give a versatile signal. Colored panels were also employed to warn of specific danger areas, such as underwater rocks or sandbars. Thus, Fresnel not only introduced an improved optic, but also a means of distinguishing one lighthouse from another at night. The drawbacks of his system were its weight and cost. A first-order lens could easily weigh five tons, and on today's market it might fetch more than \$1 million. The heavy lenses were lifted up to lighthouse lanterns in pieces, then assembled on large, ornate pedestals. Flashing lenses were rotated by clockworks with huge weights suspended in the tow-

ers to power the cogs. Some were mounted on chariot wheels or ball bearings; others floated in troughs of high-density, low-friction mercury. Lightkeepers had to wind up the clockworks several times a night and were kept busy polishing the brass and prisms. But the expense and ponderous nature of the apparatus seemed small compared to the savings in life and

cargo it effected.

France and Britain embraced the design immediately and launched industries to manufacture Fresnel lenses. Americans were less enthusiastic. The parsimonious chief of the Lighthouse Service, Stephen Pleasanton, refused to dish out funds for the new system, citing the expense as inhibitive. He continued using the archaic lamp and reflector system patented by Winslow Lewis, who was his personal friend.

Fresnel died in 1827, but by 1835 nearly every major European lighthouse had been converted to his lenticular system. Meanwhile, sailors complained of the poor quality of American lighthouses and extolled Europe's brilliant sentinels. As criticism increased, particularly from shipping interests with government influence. Congress decided to investigate. Two Fresnel lenses were purchased from France and installed for testing in the south tower at New Jersey's Navesink Twin Lights in 1841. They were quickly dubbed the best lights in the nation.

Immediate conversion to Fresnel lenses began. By 1860, practically every U.S. lighthouse exhibited a Fresnel lens. Conversion to gas illumination and, eventually, to electricity around the turn of the century only enhanced the power and beauty of the system. Though many of the old lenses were damaged during the Civil War and have since suffered from age and exposure, a number remain in use at lighthouses across the nation. The firms that manufactured them closed long ago, but their products shimmer timelessly along many coasts.

Rescued by a Buoy

Elinor De Wire Gales Ferry, Connecticut

o the landsman, buoys are homely, rotund objects bobbing awkwardly in channels and harbors, making a monotonous racket with their ceaseless clanks, gongs, and whistles. Their colors and shapes give them the appearance of castaway circus clowns, but these important navigational aids perform a critical service as the road signs of the waterways. No one would argue that buoys save lives, but sometimes they serve us in unexpected ways.

A lighthouse family at Timbalier Bay, Louisiana was saved by an iron can buoy not far from their sea-swept home in 1867. The terrible March 29 hurricane of that year washed away the tall, brick lighthouse, then scoured clean the low sandy island on which it stood and left it submerged under a high storm tide.

"Girl and a B(u)oy on the Massachusetts Coast." Whistling buoy circa 1900. Elinor DeWire collection.

The castaway lightkeeper, his wife, and daughter "faithfully performed their duties, barely escaping with their lives." Awash in the storm surge, they clung to each other as the tide fortuitously carried them to the trusted buoy. They crawled inside and rode out the storm, remaining on board for several days until rescued by a passing ship.

More compelling is the 27-hour ordeal of fisherman, Robert Curtis, who owes his life to the Bay Ledge Buoy, located six miles south of Carver's Harbor, Maine. Curtis had gone clamming on a clear, cold Sunday morning in January 1984, motoring out of Rockland in his 15-foot boat, headed for the rich clam beds at Kent Cove. Though the weather forecast called for a sunny and mild day,

the sky soon took on a drab gray pallor. Before long, Curtis was

caught in an unexpected snow squall.

The wind picked up to 35 knots, and waves began swamping the little boat. Curtis bailed furiously and tried to steer for the nearest land. He motored aimlessly for more than an hour, his boat sloshing and bouncing like a toy in a bathtub. By noon the temperature had dropped into the single digits, and Curtis was 12 miles off course. His hands were numb, and ice encrusted his face and hair, but help was in sight.

Ahead of him bobbed the Bay Ledge Buoy with a big number 2 painted on its top. Though Coast Guard regulations prohibit climbing on a buoy or using it as a mooring, Curtis knew he had to tie up to the buoy or risk being blown out to sea. Carefully, he eased alongside, but just as his hand grasped the buoy, the boat was swept from under him.

He scrambled onto the bobbing can, wet and chilled, and watched his boat slowly putter away. Waves drenched him, and his hands began to freeze to the metal. Wisely, he removed his belt and attached it to the buoy so that he would have a strap to hold. His down jacket became a sit-upon that kept him from freezing fast to the ice-shrouded buoy.

Curtis knew it was important to move about, so he began walking round and round on the buoy holding tightly to the belt. When night came and near unbearable cold set in, he tore off bits of his rubber boots and burned them with a Bic lighter to warm his hands and face. There was little heat generated, by the simple act gave him hope and "buoyed" him through the long, frigid night.

A helicopter passed over in the darkness, sweeping a spotlight,

Above right two buoys enveloped in foam serve as markers to guide mariners. Below a man works on the maintenance of a buoy. Photos courtesy of Elinor DeWire.

but though Curtis screamed and waved, he was not sighted. A friend had reported him missing, and crews from Coast Guard stations in Rockland, Portland, and Cape Cod were combing the waters by aircraft and rescue cutter. Local boaters turned out to look for Curtis, and even a 110-foot tug out of Portland joined the search.

At dawn Curtis desperately searched the horizon for signs of rescue, but saw none. He was convinced death awaited him on the lonely buoy. Around 2 PM, he heard engines approaching and spotted the Point Hannon out of Jonesport. The crew were amazed to find Curtis alive and cheering energetically as they pulled him off the frozen buoy. He was taken to a Bangor hospital suffering from minor frostbite of his hands.

Fortunately for Curtis, his rescuer had done what all

good "Buoy Scouts" do when lost: It remained stationary, waiting to be found.

Reporting Wet Bulb & Dew Point Temperature

Martin S. Baron National Weather Service

s I've indicated in this column previously, wet bulb temperature is now reported in the weather message. Effective November 1994, the World Meteorological Organization added Group 8S, T, T, T, for reporting wet bulb temperature, after the ice accretion group, in ships synoptic code section 2. Incidentally, dew point temperature continues to be an important part of the weather message, in group 2S_nT_dT_dT_d of ships synoptic code section 1.

Wet bulb temperature is reported in Celsius degrees and tenths, with the sign (+,0,-) indicated by S_w . Some examples:

(1) For wet bulb temperature 11.8°, report $8S_wT_bT_bT_b$ as 80118 (S_w is 0 for positive, and $T_bT_bT_b$ is 118)

(2) For wet bulb temperature 4.1°, report $8S_wT_bT_bT_b$ as 80041 (Sw is 0 for positive, and TbTbTb is 041)

(3) For wet bulb temperature -3.6°, report $8S_wT_bT_bT_b$ as 81036 (Sw is 1 for negative, and $T_bT_bT_b$ is 036)

Dew Point temperature is computed from the dew point calculation table, using wet and dry bulb temperatures to compute wet bulb depression (difference between dry and wet bulb temperatures). The dew point is then read

from the table at the intersection of the correct row for wet bulb and column for wet bulb depression. Unlike wet bulb temperature, which is reported in tenths, ships report dew point in whole degrees Celsius. The third T_d in $T_dT_dT_d$ is the tenths figure, and is always reported as /. Some examples:

(1) Observed temperatures are 8°C for wet bulb and 10°C for dry bulb. The wet bulb depression is 2°C. The dew point calculation table indicates a dew point of 6°C (at the intersection of the appropriate row for wet bulb and column for wet bulb depression.

2S_nT_dT_dT_d is coded as 2006/ (S_n is coded 0 for +), T_dT_dT_d is coded 06/).

(2) For wet bulb temperature of -5°C, and dry bulb temperature of -2°C, the wet bulb depression is 3°C. From the table, the dew point is found to be -14°C. $2S_nT_dT_dT_d$ is coded as 2114/ (Sn is coded 1 for -, $T_dT_dT_d$ is coded 14/).

Common Observer Errors

The National Climatic Data Center (NCDC) just completed a study of common shipboard observer errors, summarized in table 1 (the NCDC archives ships weather observations, obtained from the Ships Weather Observations form B-81). The most frequent errors noted by NCDC are (1) mistakes in the reporting of dewpoint temperatures, (2) erroneous ships position information, (3) day/time group errors, (4) improperly coded visibility, and (5) errors in the reporting of pressure tendency and characteristic.

Dew point temperature errors frequently result from incorrect use of the dew point calculation table, in particular using dry bulb rather than wet bulb for the horizontal rows of the table.

Remember that each horizontal row of the NWS supplied dew point calculation table corresponds to a value for wet bulb temperature, and each vertical column corresponds to a value for wet bulb depression.

Using the wrong value for sign, S_n , is another error sometimes seen in dew point temperatures. Remember, S_n is coded as 0 for positive or zero dew point temperature, and as 1 for negative dew point temperature.

When coding ships position, make sure you're specifying the proper quadrant (Q_c), and the correct values for latitude and longitude. Be particularly careful near quadrant boundaries, especially when your vessel crosses from one quadrant to another. Remember, for north latitudes, Q_c is coded as 7 for west longitude, or as 1 for east longitude. For south latitudes, Q_c

is coded as 5 for west longitudes, or as 3 for east longitudes. Longitude is reckoned from the Greenwich and 180th Meridians, latitude from the equator. If your ship is right on the Greenwich or 180th meridian ($L_oL_oL_oL_o=0000$ or 1800 respectively), you may code Q_c as either 1 or 7 for the northern hemisphere, or 3 or 5 for the southern hemisphere (the choice is left to you). If your vessel is right on the equator $(L_a L_a L_a = 000)$, $Q_c = 1$ or 3 (eastern longitude), or 5 or 7 (western longitude). Again, the choice is left up to you. When your vessel crosses the equator, the Greenwich, or 180th meridians, it is absolutely essential to change Q, to the appropriate code. Otherwise, your ships position will not be correctly described.

Always be very careful when recording your latitude and longitude. A meteorological report is useless if it's precise location cannot be determined. Both latitude and longitude are coded in degrees and tenths. To change minutes to tenths of degrees, divide minutes by 6 and disregard the remainder, ie 45 minutes is 7 tenths of a degree, 30 minutes is 5 tenths of a degree, 05 minutes is 0 tenths of a degree, etc.

Don't forget to change the day at 0000 UTC. The day of the month (YY) and time of observation (GG) are reckoned according to UTC, not by local date/time.

When reporting visibility (VV), permissible code values range from 90 (for visibility less than 55 yards (50 meters)), to 99 (for visibility greater than or equal to 27 nautical miles (50 kilometers)). Some visibility reports are being coded outside the valid range, probably because some observers are reporting visibility in nautical miles, forgetting to use the

code table.

When reporting 3-hour characteristic of pressure tendency (a) and amount of pressure tendency (ppp), remember that code 4 means the pressure has not changed at all during the 3-hour period (pressure has been steady with a flat or horizontal barograph tracue). Under this circumstance, appp is always coded as 4000 (ppp = 000 for net 3-hour pressure change of 0). In fact, whenever a is coded as 4, ppp must be coded 000. Otherwise, you are providing contradictory information about 3hour pressure tendency. A steady characteristic of pressure tendency implies no net 3-hour pressure change. If pressure has risen, and then fallen during the 3-hour period, use a = 0. If pressure has fallen, and then risen, use a = 5. See the code table for a.

PMO Newark Departing, New York Vacancy filled

John Bollinger, PMO in Newark, N.J. since April 1995, has accepted a position at Weather Service Forecast Office Louisville, KY, as a Hydrometeorological technician. We wish John well in his new position.

I am pleased to report that Tim Kenefick (photo right) is the new PMO for New York City, reporting for duty September 18, 1995. He previously worked at Weather Service Office Cincinnati as an electronic technician in the weather and radar observation programs.

New Recruits — July - September, 1995

During the 3-month period ending September 30, 1995, PMOs recruited 110 vessels as weather observers/reporters in the National Weather Service (NWS) Voluntary Observing Ship (VOS) Program. Thank you for joining the program.

Please follow the worldwide weather reporting schedule as best you can - report weather four times daily at 0000, 0600, 1200, and 1800 ZULU or UTC time. The United States and Canada have a 3hourly weather reporting schedule from coastal waters out 200 miles from shore, and from anywhere on the Great Lakes. From these coastal areas, please report weather at 0000, 0300, 0600, 0900, 1200, 1500, 1800, and 2100 ZULU or UTC, whenever possible. To transmit your weather report to the NWS, use

(1) INMARSAT Standard A or Standard C,

(2) U.S. Coast Guard Simplex Teletype Over Radio (SITOR), or plain language (voice — recite the coded message using radiotelephone). The Coast Guard has discontinued all morse code services.

(3) Commercially operated shore radio stations (using SITOR or CW), as a back-up, if methods (1) or (2) are not available.

NATIONA		SERVICE VOLUNTARY OBSERVING SHIP RUITS FROM 01-JUL-95 TO 30-SEPT-95	
NAME OF SHIP	CALL	AGENT NAME	RECRUITING PMO
ALICE ST. PHILIP	WYL6871	ST PHILIP TOWING COMPANY	MIAMI, FL
AMBASSADOR	KRFK	CCT	NEW ORLEANS, LA
ANASTASIS	9ZOH	MERCY SHIPS	MIAMI, FL
APL CHINA	V7AL5	AMERICAN PRESIDENT LINES	SAN FRANCISCO, CA
ARCTIC SUN	ELQB8	NATIONAL WEATHER SERVICE	LOS ANGELES, CA
ATLANTIC	3FYT	HOME LINES	MIAMI, FL
ATLANTIC BULKER	3FSQ4	SHOWA LINE ENGINEERING CO, SAKURADA BLDG.	MIAMI, FL
ATLANTIC SENTRY	NJAS	USCG MAP KEYWEST	MIAMI, FL
AUTOMOBIL ACE	3EVF8	SEIWA NAVIGATION CORP. LTD, ONARIMON-YUSEN	SEATTLE, WA
BAJKA	LITC	ELLER COMPANY INC	MIAMI, FL
BAKAR	LFSW	ELLER COMPANY INC	MIAMI, FL
BALAO	LKFH		MIAMI, FL
BANTA	LAUC	ELLER COMPANY INC	MIAMI, FL
BARO	LAOV	TORVALD KLAVENESS	MIAMI, FL
BARWA	LMRH	TORVALD KLAVENESS & CO A/S	MIAMI, FL
BAYOU BULL	WZA6172	MIAMI, FL	,
BETTY CULBREATH	WCT2876	GULFCOAST TRANSIT CO.	MIAMI, FL
BETTY WOOD	WYZ8766	GULFCOAST TRANSIT CO.	MIAMI, FL
BEVERLY ANDERSON	WTH5600	GULFCOAST TRANSIT CO.	MIAMI, FL
BUNGA SAGA TIGA	9MBM8	MALAYSIAN INTERNATIONAL SHIPPLING CORP. BHD	
CAPE DIAMOND	WMHJ	MARINE TRANSPORT LINES	SAN FRANCISCO, CA
CAPE MOHICAN	WDOP	OMI CORP.	JACKSONVILLE, FL
CAPE RACE	KAFJ	HASLER AND CO.	NORFOLK, VA
CAPE RAY	KAFI	OMI SHIP CORP.	NORFOLK, VA
CAPE RISE	KAFG	OMI SHIP MGT.	NORFOLK, VA
CAPE VICTORY	KAEY	KEYSTONE SHIPPING CO.	HOUSTON, TX
CAPE VINCENT	KAES	KEYSTONE SHIPPING CO.	HOUSTON, TX
CAROLE G. INGRAM	WYZ6149	TANKER MANAGEMENT, INC	MIAMI, FL
CASTOR	S6HG	KERR NORTON MARINE	MIAMI, FL
CHIQUITA MILANO	C6CE9	BANANA SUPPLY COMPANY	MIAMI, FL
CHOYANG GLORY	D9TA	CHO YANG (AMERICA), INC.	NORFOLK, VA
CHRISTIANE	C6HD5	ATLANTIC SHIP AGENCY, INC.	BALTIMORE, MD
CRISTINA 1	DUJG	EASTERN CAR LINES, ATAGO-TOYO BLDG	SEATTLE, WA
DEBBIE RANKIN	WTT9205	GULFCOAST TRANSIT CO.	MIAMI, FL
DOCEBRUMA	ELPB5	T. PARKER HOST	NORFOLK, VA
DRAGAMINAS	XCWU	CAPT. A. VAZQUEZ	MIAMI, FL
EDNA ST PHILIP	WS6560	ST PHILIP TOWING COMPANY	MIAMI, FL
ELLENA HICKS	WBX8151	GULFCOAST TRANSIT CO.	MIAMI, FL
ERNESTINA	WTK7000	SCHOONER ERNESTINA	MIAMI, FL
EUWIN ST. PHILIP	WA6617	ST PHILIP TOWING COMPANY	MIAMI, FL
EVER REACH	3FQO4	EVERGREEN AMERICA CORP.	NEWARK, NJ
EXXON LEXINGTON	KIYP	EXXON SHIPPING CO	MIAMI, FL
FEDERAL OSLO	LALO4	FEDNAY INTERNATIONAL LTD	NEWARK, NJ
FEDERICO C.	IBFW	COSTA/LAURO LINE	MIAMI, FL
FLORAL LAKE	3FFA5	HAKATA SHIPBUILDING CO.,	SEATTLE, WA
FMG AMERICA	V2SI	FAROVI SHIPPING	MIAMI, FL
FOREST CHAMPION	3FSH3	NYK LINE NORTH AMERICA INC	SEATTLE, WA
FRANCES S.	WTT9203	GULFCOAST TRANSIT CO.	MIAMI, FL

NATIONAL WEA	ATHER SERVICE VO	DLUNTARY OBS	ERVING SHIP	PROGRAM
	NEW RECRUI	TS FROM 01-JU	L-95 TO 30-5	SEPT-95

	NEW RECRUITS F	ROM 01-JUL-95 TO 30-SEPT-95	
NAME OF SHIP	CALL	AGENT NAME	RECRUITING PMO
GLORIOUS SUN	DVTR	ORIX MARITIME CORP.	SEATTLE, WA
GREAT LAKE	VRUB9	WORLDER SHIPPING LTD	SEATTLE, WA
GREEN RAINIER	3ENI3	INTERNATIONAL SHIPPING CO INC	SEATTLE, WA
GULF SENTRY	NSTY	USCG MAP MIAMI	MIAMI, FL
GULFCOAST	WAJ9818	GULFCOAST SHIPPING CO.	MIAMI, FL
HANDY LOGGER	DZBH	INTERNATIONAL SHIPPING CO, INC	SEATTLE, WA
HANJIN SHANGHAI	3FGI5	HANJIN SHIPPING CO., LTD.	NEWARK, NJ
HUNTER	WYK4729	CROWLEY MARITIME CORP	MIAMI, FL
HYNUDAI SEATTLE	P3SG5	HYUNDAI AMERICA SHIPPING INC	SEATTLE, WA
JAMIE BAXTER	KDFL	GULF COAST TRANSIT CO	MIAMI, FL
JANET GRAHAM	WTT9206	GULFCOAST TRANSIT CO.	MIAMI, FL
JANIS GUZZLE	WAI4094	GULFCOAST TRANSIT CO.	MIAMI, FL
KAPITAN BYANKIN	UAGK	FESCO AGENCIES N.A., INC	SEATTLE, WA
KAPTAIN SERYKH	UGOZ	FESCO AGENCIES N.A.	SEATTLE, WA
KATHRINE CLEWIS	WQ7310	GULFCOAST TRANSIT CO	MIAMI, FL
KEYSTONE PHODE SLAND	WFDW	KEYSTONE SHIPPING CO	SAN FRANCISCO, CA
KONSTANTINOS A	SWPJ	NETROFIN LTD	SEATTLE, WA
LIBBY BLACK	WTG2210	GULFCOAST TRANSIT CO	MIAMI, FL
LOUISIANA BRIMSTONE	KQTM	SULPHUR TERMINALS CO	MIAMI, FL
MAERSK RECIFE	V2LC	MAERSK INC	MIAMI, FL
MAERSK SANTOS	VRUY5	C/O MAERSK INC.	BALTIMORE, MD
MAERSK VANCOUVER	SXNP	MAERSK INC, TERMINAL THREE	SEATTLE, WA
MARCONA CONVEYOR	ELDJ	UTAH TRANSPORT INC	MIAMI, FL
MARIA LAURA	C6MZ8	WEAVER MARINE AGENCIES LTD	NEWARK, NJ
MARINE UNIVERSAL II	3EJG6	NRS CO., INC, 2ND FLR, KYOMARUELDG	SEATTLE, WA
MARK HANNAH	WYZ5243	GENERAL MARINE TOWING	CHICAGO, IL
MARTHA R. INGRAM	KCBO	TANKER MANAGEMENT, INC	MIAMI, FL
MEARSK NEWARK	9VXR	MAERSK LINE	NEWARK, NJ
MOBIL AERO	WLBY	GLENEAGLE SHIP MANAGEMENT INC	MIAMI, FL
NEW NIKKI	3FHG5	NYK LINE N.A. INC	SEATTLE, WA
NORD JAHRE TRANSPORTER	LACF4	RICE, UNRUH, REYNOLDS, CO	BALTIMORE, MD
NORTH EMPRESS	ZHEB4	NORTH EMPRESS SHIPPING CO., LTD	MIAMI, FL
OCEAN ORCHID	3ECQ9	KERR NORTON MARINE, WESTLANECTROFFC	SEATTLE, WA
PACIFIC SENTRY	NOKL	USCG MAP MIAMI	MIAMI, FL
PONCE	WPJR	PUERTO RICO MARINE MGMT INC	MIAMI, FL
PROSPERITY	ELNT9	TRANS ATLANTIC, INC	MIAMI, FL
PUFFIN ARROW	C6HQ7	WESTFLEET MGMNT	MIAMI, FL
RALEIGH BAY	KRHG	SEA-LAND SERVICE INC	NORFOLK, VA
ROCKIES HIGHWAY	3FIP4	K LINE AMERICA, INC	SEATTLE, WA
RUBIN KOBE	DYZM	SHINKO MARINE IND.,LTD	SEATTLE, WA
RUBIN STAR	3FIA5	MERIT STEAMSHIP AGENCY	SEATTLE, WA
SAN LAURE	ELKI8	M.O. SHIP MANAGEMENT CO, LTD	SEATTLE, WA
SANKO SOUTH	3FSK2	EASTERN SHIPPING CO	SEATTLE, WA
SANKO SPRUCE	3EZL3	CASCADE MARINE AGENCIES LTD	SEATTLE, WA
SAUDI HAIL	HZZF	NSCSA (AMERICA INC.)	NORFOLK, VA
SEA NOVIA	ELRV2	SEA-LAND SERVICES	MIAMI, FL
SEALAND CHAMPION	V7AM9	SEALAND SERVICE INC	SAN FRANCISCO, CA
SEALAND GUATEMALE		BRANDTSHIP USA,INC	NEW ORLEANS, LA
SHARON DEHART	WAM4073	GULFCOAST TRANSIT CO	MIAMI, FL

NAME OF SHIP	CALL	AGENT NAME	RECRUITING PMO
SIBOHELLE	LAQN4	TSCHUDI AND EITZEN AS	NORFOLK, VA
SOUTHERN ACE	DZLE	MMS CO. LTD, SURFEL	SEATTLE, WA
ST EMILION	WIJT	A CREST TANKERS, INC	MIAMI, FL
STAR OF MARIA	ELNE5	RAVENSCROFT SHIPPING INC	SEATTLE, WA
STELLA	 9VXY	BARBER SHIP MNGT	SEATTLE, WA
STRONG CAJUN	WCD6594	ANDERS/WILLIAMS INC	NORFOLK, VA
TALISMAN	OWPG6	ARMADA SHIPPING CO	MIAMI, FL
TEQUI	3FDZ5	SHINKO MARITIME CO., LTD	SEATTLE, WA
USCGC PEA ISLAND	NCSR	COMMANDING OFFICER	NORFOLK, VA
USCGC WHITE SUMAC	NAED	COMMANDING OFFICER	MIAMI, FL
USNS PATUXENT	NPCZ	USNS PATUXENT T-AO 201	NEW ORLEANS, LA
WAVELET	DVDJ	ORIX MARITIME CORPORATION	SEATTLE, WA
WINDWARD SENTRY	NLYJ	USCG MAP MIAMI	MIAMI, FL

Subtract wet-bulb temperature from dry-bulb temperature to get "wet-bulb depression." Locate nearest depression across top of table and nearest wet-bulb temperature down the side. Read encoded dew point at intersection of wet-bulb temperature row and depression column. The dew point temperature, $T_d T_d T_d$, should always be less than the air temperature TTT. More extensive tables are in the NWS Observing Handbook No. 1.

Wet-										We	t-Bull	Depr	ession	°C									
Bulb Temp. (°C)	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	0.9	6.5	7.0	7.5	8.0	8.5	0.6	9.5	10.0	10.5	11.5
5-4-3-2-1-0-1-2-3-4-5-6-7-8-9-0-1-1-2-3-1-1-5-1-6-7-8-9-0-1-1-2-3-3-4-5-6-7-8-9-0-1-1-2-3-3-4-5-6-7-8-9-0-1-1-2-3-3-4-5-6-7-8-9-0-1-1-2-3-3-4-5-6-7-8-9-0-1-1-2-3-3-4-5-6-7-8-9-0-1-1-2-3-3-4-5-6-7-8-9-0-1-1-2-3-3-4-5-6-7-8-9-0-1-1-2-3-3-4-5-6-7-8-9-0-1-1-2-3-3-4-5-6-7-8-9-0-1-1-2-3-3-4-5-6-7-8-9-0-1-1-2-3-3-4-5-6-7-8-9-0-1-1-2-3-3-4-5-6-7-8-9-0-1-1-2-3-3-4-5-6-7-8-9-0-1-1-2-3-3-4-5-6-7-8-9-0-1-1-2-3-3-4-5-6-7-8-9-0-1-1-2-3-3-4-5-6-7-8-9-0-1-1-2-3-3-4-5-6-7-8-9-0-1-1-2-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3	-6 -5 -3 -2 -1 -00 01 02 03 044 055 067 07 088 099 11 12 13 14 15 16 17 18 19 20 12 22 23 24 25 26 27 28 29 30 31 32 33 34 35	7-6-4-3-2-1-001 022 033 046 077 088 099 111 123 134 155 167 188 199 201 222 232 245 225 233 334 35	-8 -7 -5 -4 -9 -2 -1 002 034 005 005 007 089 010 11 12 13 144 156 18 19 20 12 22 23 245 22 25 27 28 29 30 31 32 33 34 35	9 8 7 7 5 4 9 2 1 10 0 1 0 2 0 3 0 4 6 6 0 7 8 8 9 9 1 0 1 1 2 1 3 1 4 1 5 6 6 7 8 8 9 9 1 0 1 1 2 2 2 3 4 2 6 2 7 8 2 9 3 3 3 3 4 3 5	-11 -9 -8 -6 -5 -3 -2 -1 -00 02 03 04 05 06 07 08 09 11 12 13 14 15 6 17 18 19 20 21 22 23 42 52 66 27 28 29 31 32 33 34 35	-13 -11 -9 -7 -6 -4 -3 -2 -1 01 02 03 04 06 06 07 07 18 19 20 21 22 23 34 24 25 26 26 27 28 29 30 30 30 30 30 30 30 30 30 30 30 30 30	-14 -12 -11 -9 -7 -5 -4 -3 -1 00 00 00 00 00 00 00 00 00 00 00 00 00	-17 -14 -10 -8 -7 -5 -4 -2 -1 00 00 00 00 00 00 00 00 00 00 00 00 00	-19 -16 -14 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	-20 -18 -16 -14 -11 -27 -6 -4 -21 -10 -10 -10 -10 -10 -10 -10 -10 -10 -1	-27 -22 -19 -16 -13 -10 -7 -5 -3 -2 00 01 03 04 05 07 07 08 09 09 10 11 11 11 11 11 11 11 11 11 11 11 11	-28 -26 -22 -18 -15 -12 -10 02 03 05 06 07 09 01 11 13 14 15 16 17 18 20 21 22 32 42 56 27 29 30 31 32 33 34	-33 -26 -17 -17 -14 -12 -9 -7 -5 -4 -2 00 01 00 00 00 00 00 00 00 11 11 11 11	-32 -25 -20 -16 -13 -11 01 02 05 06 08 09 10 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 32 32 32 32 32 32 32 32 32 32 32 32	-47 -30 -23 -19 -15 -10 00 01 03 04 06 06 07 09 10 11 11 11 11 11 11 11 11 11 11 11 11	-31 -28 -22 -18 -14 -12 -9 -7 -5 -3 -1 00 00 00 00 10 11 12 20 21 22 23 24 26 27 28 29 30 31 31 20 20 31 31 32 32 33 33 33 33 33 33 33 33 33 33 33	-366 -260 -27 -13 -11 -8 -6 -4 -2 002 033 055 068 099 11 122 113 115 116 117 118 201 217 227 228 229 331 332 333	-32 -24 -19 -15 -12 -9 -7 -5 -3 -10 03 04 06 07 09 10 113 114 119 20 22 23 24 25 27 29 30 31 31 32 33 33 33 33 33 33 33 33 33 33 33 33	-29 -22 -18 -14 -11 -6 -4 -2 00 00 00 00 00 00 10 11 11 11 11 11 11	-39 -27 -21 -16 -13 -10 -7 -5 -3 -10 03 05 06 08 09 11 12 12 24 25 26 27 28 29 21 21 22 23 23 23 23 23 23 23 23 23 23 23 23	-34 -24 -19 -15 -11 -8 -6 -4 -1 00 02 04 06 07 09 10 11 21 22 23 25 26 27 28 29 20 21 21 21 21 21 21 21 21 21 21 21 21 21	-30 -22 -17 -13 -10 -7 -5 -2 00 02 04 05 07 08 10 11 13 14 16 17 18 20 21 22 23 24 26 27 28 29 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31	-300 -266 -193 -153 -101 005 006 008 100 111 131 144 157 188 199 191 222 233 244 225 227 228 230 331 332

COMMON OBSERVER ERRORS

DEWPOINT

Misuse of drybulb (not wetbulb) when using table Correct value, wrong sign coded on wetbulb Decimal shift, i.e. 019 instead of 190 (all/any temperatures)

POSITION

Decade error on latitude or longitude
Wrong quadrant, especially when Q changes
Latitude and longitude interchanged
Latitude repeated for longitude

DATE/TIME

Failure to change day at 00Z

VSBY

Not 90-99

APPP

A=4 + non zero ppp

COMMON TRANSMITTAL ERRORS

NON RECEIPT

???

NO CALL SIGN OR PARTIAL CALL SING

Who Needs Ship Weather Observances?

Jim Nelson Port Meteorological Officer, NWS Houston, Texas

hen I go aboard a ship for a routine visit and ask the Captain if he would like to join the weather observing program, he often responds with "I don't have the time because I'm shorthanded," "I don't have a radio operator" "I go coastwise so you don't need weather from me" or "You don't need observation anymore, you have satellites to do that for you." It's true, satellites do show us where the sky is clear or cloudy and provide us with a thermal profile of the ocean water, but only you know what the weather is at your position! Satellites can't look through the cloud cover to tell us how hard the wind is blowing, what the pressure is, how high the seas are, how low the visibility is, or what type of precipitation is or isn't falling. Forecasters worldwide look for the synoptic report which might give them a clue as to whether a Low is getting stronger or weaker. Whether you are on the high seas or going coastwise, your reports are vital.

Over land, a great number of hourly observations are received

at computer centers around the world and are exchanged with other countries by way of the Global Telecommunications System (GTS). These hourly observations are used extensively by civil aviation and meteorologists to keep up with ever-changing trends in the weather. In addition, there are 6 hourly synoptic observations taken by thousands of land sites around the world for use in the surface analysis. The generated weather analysis maps are then broadcast over land line computer and/or facsimile circuits, and radio facsim-

Over water areas, we have a limited response for synoptic weather observations. Even though water covers much of the earth's surface, we still have a problem convincing ship personnel that their weather reports are valuable. It is not unusual to have an analysis over the ocean based on 100 ship observations. While 100 ships may seem large, if you put that many dots on a large base map, they get lost. Also, more than half of those 100 observations are usually along a regular trade route, leaving a vast expanse of uncovered ocean. So,

without the synoptic weather observations generated by ships at sea, the synoptic weather maps over water would not be very accurate. If the maps are not accurate, the forecast then becomes degraded.

Prior to World War II, oceanic analysis was not done routinely, in real time, like it is done today. Even over land, it took hours for the weather to be received and plotted by hand. The Japanese used bad weather to successfully cloak their movements prior to, and during, their approach to the Hawaiian Islands for their attack on Pearl harbor on December 7th, 1941. They received special broadcasts with synoptic data and vital ship reports from their task force, which enabled them to move undetected across the Pacific.

The allies began to realize the importance of weather and many campaigns commenced on the basis of a weather forecast. The landings made on the beaches of Normandy, France on June 6th, 1944 were successful, in part, because of a forecasted brief lull in storm conditions. As Allies moved

across the Pacific Ocean, a network of observation sites was established and maintained. Prior to many island invasions in the South Pacific area, Australian coast watchers would go ashore to spot enemy movements and to report the weather. Military and merchant marine vessels played a critical role in this overall scheme. Ships underway had to record weather observations for the deck log, but it was not until late in the war that most ships started transmitting weather. Compared to the sophisticated computer systems of today, this was somewhat crude, but it served its purpose.

This system continued after the war. Beginning in the fifties and sixties, computers started doing some of the data processing needed to build forecast models. These huge computer filled a room, but had only half the power of most of today's desktop computers. It was soon realized that the lack of ship reports often hampered this effort. Through the seventies and eighties, merchant fleets shrank as ship size increased, so that the number of observations decreased. Even with this decrease, an adequate number is theoretically available if everyone cooperates. Many tramp ships do not use regular routes and their observations are especially vital.

Today recruiting is the most important role of a Port Meteorologist. We talk to many ship's Captains who realize the value of taking and sending weather observations. Some believe that U.S. PMO's work strictly for their own program. In reality, all nations benefit when a PMO from any nation enlists a ship into the Voluntary Observing Ship program since this is actually a World Meteorological Organization program.

All ship data are passed around the world via GTS, which is unique in that it has been in operation for many years. Within minutes of receipt, a weather observation is available for use at forecast centers worldwide.

Ship observations are not only used to make forecasts, but also to verify forecasts and to aid climatological studies. Researchers use observations for a particular area or storm to understand why a system behaved in the manner it did. The hurricane season of 1995 will definitely be one of those seasons which provide valuable studies of storm behavior.

While advances in observation techniques and practices have taken place over the past 50 years, the basic structure has remained the same. However, with increasing automation of shipboard observations, weather services are looking for better ways to receive observations in the future. One idea is the automatic transmission of weather data direct to a weather satellite. Currently, the German Weather Service has some test sites out on a few ships, as they look for a viable course to take. The U.S. has a system called Shipboard Environmental Data Acquisition System (SEAS). Each SEAS ship has a time slot assigned for transmission of weather data directly to the weather satellite. Once the observer enters the weather data into the SEAS transmitter, the unit waits until a predetermined time and transmits. Currently, the U.S. has deployed 125 SEAS systems for use in transmitting environmental and oceanographic observations. Ships with these units have the capability of transmitting up to eight observations per day. The PMOs are also working to find ships who have INMARSAT Standard "C" on

board and are willing to take and transmit weather through this medium. There are now approximately 10,000 ships equipped with Standard "C" and only a small percentage of them are taking and transmitting weather through this new, lower cost system.

Remember, when you see a PMO from any country coming aboard for a visit, he or she is there to help you. They are not trying to get something for free. The things the PMO wants you to do will pay you back by providing you with more accurate weather maps and forecasts. She will provide you with a barometer check to help ensure you a safe voyage. If you are in the Voluntary Observing Ship (VOS) program, he will make sure your supplies are up to operating levels. He will also be available to answer questions pertaining to observation techniques and use of instruments. The PMO will provide you with aids to help you take the observations.

How can you go wrong? Not only are you provided with everything you need to do the job, you will also get a more accurate end result. By using the weather maps and forecasts provided via radio facsimile and telex, the forecast might save you time and money. Even if you have a weather routing service, they too benefit from your observations. Most weather routing services receive all ship observations from their local weather service and utilize the reports to build a forecast for you. So, if you don't belong to the VOS, please think about joining the nexttime you see a PMO come aboard.

In addition to his PMO duties, Jim writes articles, heeps up with international radio facsimile schedules, and collects statistics for the U.S. PMO program.

Bob Decker, Seattle, presents a Seas "Top Ten" Award to the M/V Northern Lights' two captains. On left is Captain Ron LaBarre, and on the right is Captain Michael Kucharski.

Below left, Captain T.D. Almo of the m/s Federal Oslo holds the VOS plaque for 1994 weather observations awarded to him by Newark PMO John Bollinger.

Above right, PMO Newark John Bollinger presents the 1994 Outstanding VOS Award Plaque to Captain Frederick Cook of the S.S. Sea-Land Consumer. Below right; the Sea-Land Express receives the 1994 Top Honors for the VOS Observation Program for Seattle. Left to right: Tom MacKay, Jr., PMO Seattle Pat Brandow, Barry Costanzi and Timothy Hagan.

The VOS Observation Award was given to Vessel Operations, Norfolk, Virginia, International Terminals. From left to right: Bland Creekmore, PMO Norfolk Marty Bonk, and Ernie Dunn. Below right, Norman McKay of the SS Mapleglen, a vessel of P& H Shipping, was one of the top 22 observers for 1994 in the Ontario Region VOS Fleet. McKay is wearing a jacket awarded by Environment Canada. Photo by Keith Clifford.

Steve Kuhl, the new Supervisory Meteorologist at the National Weather Service Office in Kodiak, Alaska, has always had a keen interest in the weather. Steve is originally from New Jersey where he earned his Bachelors Degree in Geography and Masters Degree in Meteorology. Before coming to the NWS, Steve worked as a forecaster and radio broadcaster for a private meteorology firm in New Jersey from 1987 to 1992.

Steve began his NWS career as a Meteorologist Intern at Buffalo, NY in February 1992, transferred to the NWS Eastern Region Headquarters in Long Island, NY, during June 1993, and arrived in Kodiak in October 1995.

He brings with him an enthusiastic personality and hopes that he will be a positive addition to the WSO Kodiak team. In his own words Steve said that "I'm glad to be here in Alaska. This is a great opportunity for me to see this beautiful state and make a difference in providing our

(NWS) customers with the best products and services possible."

Officers of the Coast Guard Cutter Sweatbriar receive their award for outstanding performance in the Voluntary Observing Ship Program of the National Weather Service. Names of crew were not available at time of publication. Below left, PMO Norfolk Marty Bonk stands on the wing of the bridge aboard the OOCL Inspiration and presents an award (I-rt) C/M Mark Mahoney, Capt. Eric Franzen, R/O Paul Ferris and Marty. Mark Coultis, Commanding Officer of the Canadian Coast Guard Cutter Spray was one of the 22 winners of Environment Canada Ontario Region VOS observer awards in 1994.

CALL	PMO	SHIP NAME	RADIO	MAIL	TOTAL	CALL	PI		RADIO	MATL	TOTAL
WMFZ	Y	1ST LT ALEX BONNYMAN	069	030	099	KLHV	T	ARCO INDEPENDENCE	004	969	064
WJKV	K	1ST LT BALDOMERO LOPEZ	019	922	041	KSBG	T	ARCO JUNEAU	014	024	
VJLV	Y	1ST LT JACK LUMMUS	027	051	978	KHLD	T	ARCO SPIRIT	018	048	066
YJKH	N	2ND LT. JOHN P. BOBO	047	010	057	KNFD	T	ARCO TEXAS	052	005	057
CAM9	K	A. V. KASTNER	019	000	019	ELQB8		ARCTIC SUN	036	127	163
BAC	В	ACACIA	030	043	073	4QUL	В	ARCTIC UNIVERSAL	341	900	341
DULV	S	ACE ACCORD	011	999	011	KFDV	J	ARGONAUT	055	101	156
GWAN	3	ACT 7	257	999	257	KGBD	Y	ARIES	001	000	001
GYXG	1	ACT I	253	909	253	OZBLZ	M	ARKTIS LIGHT	050	009	059
WPFZ	0	ADABELLE LYKES	689	102	191	WE6279	C	ARMCO	027	905	032
WCF745	G	ADAM E. CORNELIUS	987	036	123	OZGIZ	J	ARNOLD MAERSK	035	029	064
WPP0	N	ADVANTAGE	056	001	057	WE4805	e.	ARTHUR M. ANDERSON	190	033	223
9VBW	М	AFFINITY	005	000	005	OXRS2	T	ARTHUR MAERSK	047	117	164
BELE9	В	AGULHAS	154	082	236	KSFJ	T	ATIGUN PASS	847	073	120
9KWA	U	AL AWDAH	083	999	983	WRA906	U	ATLANTA BAY	063	000	063
9KKF	U	AL SAMIDOON	249	999	249	3FYT	M	ATLANTIC	873	000	873
9KKH	U	AL SHUHADAA	102	900	102	SKPE	3	ATLANTIC COMPANION	022	000	022
9KKY	U	AL TAHREER	254	999	254	SKUN	N	ATLANTIC COMPASS	122	900	122
3FTN4	М	AL WAALIYU	027	999	027	SKOZ	N	ATLANTIC CONCERT	040	900	040
9КЈР	В	AL WATTAYAH	999	034	034	ELIG8	3	ATLANTIC OCEAN	108	011	119
ELACS	U	ALBERNI DAWN	229	999	229	3EIK8	8	ATLANTIC STAR	056	004	060
ELPG7	N	ALBERTO TOPIC	001	999	001	GBSA	U	AUTHOR	029	909	029
ELBM4	N	ALDEN W. CLAUSEN	100	085	185	0XSF2	F	AXEL MAERSK	221	020	241
9VDR	U	ALGENIB	254	999	254	WFQE	T	B.T. ALASKA	064	080	144
JPAL	5	ALLIGATOR AMERICA	075	999	075	TCKG	Y	BALIKESIR	000	025	025
3FXX4	S	ALLIGATOR BRAVERY	049	020	069	PCY0	В	BALTIC SUN	084	000	084
3ETV8	S	ALLIGATOR COLUMBUS	106	074	180	KASJ	U	BALTIMORE TRADER	068	118	186
3EIV8	T	ALLIGATOR EXCELLENCE	172	015	187	WTC940	G	BARBARA ANDRIE	021	005	026
ELFK7	S	ALLIGATOR FORTUNE	147	000	147	LAWJZ	Н	BAUCHI	148	044	192
ELJP2	5	ALLIGATOR GLORY	122	999	122	ELES7	S	BAY BRIDGE	102	116	218
ELFN8	S	ALLIGATOR HOPE	039	182	221	ELFN7	J	BEBEDOURO	124	900	124
3EDD8	F	ALLIGATOR JOY	134	018	152	3FEA4	K	BELLONA	322	019	341
JFUG	S	ALLIGATOR LIBERTY	123	999	123	ELNZ7	В	BERNHARD OLDENDORF	007	000	907
3FAK5	S	ALLIGATOR STRENGTH	999	028	028	KNJD	F	BLUE RIDGE	045	125	170
ELJ09	T	ALLIGATOR TRIUMPH	061	997	968	YDLR	S	BOGASARI LIMA	143	900	143
WAV464	C	ALPENA	074	054	128	DGNB	U	BONN EXPRESS	123	000	123
WSD707	5	ALPHA HELIX	889	984	092	3FMV3	F	BOSPORUS BRIDGE	197	137	334
DZBD	T	ALTAMONTE	033	003	036	ZCAK2	U	BP ADMIRAL	178	000	178
WJRG	J	AMERICAN CONDOR	119	133	252	ZCAK3	S	BP ADVENTURE	170	000	170
KGOP	K	AMERICAN CORMORANT	024	006	030	3EKV5	F	BRAVERY	036	036	072
KMJA	K	AMERICAN FALCON	080	016	096	97014	N	BREMEN EXPRESS	067	000	967
LADX2	0	AMERICANA	043	927	070	OXVW4	F	BRIGIT MAERSK	020	048	968
ICBA	N	AMERIGO VESPUCCI	043	084	127	3EZJ9	F	BROOKLYN BRIDGE	167	038	205
MMIU	5	ANATOLIY KOLESNICHENKO	978	999	978	WSRP	T	BROOKS RANGE	026	800	034
DXIT2	T	ANDERS MAERSK	889	118	206	ELOF4	F	BRÜCE SMART	022	042	064
LAGU4	K	ANNA	066	999	966	WAQ352	C	BUCKEYE	153	033	186
OYKS2	T	ANNA MAERSK	196	963	259	WWXB	H	BUFFALO SOLDIER	000	109	109
DPUF	N	ARABIAN SENATOR	111	000	111	ЭНҮК	T	BUNGA KANTAN	001	000	001
KSBK	T	ARCO ALASKA	999	956	056	TCLN	Y	BURDUR	000	036	036
WCIO	T	ARCO ANCHORAGE	029	026	955	WQZ704	6	BURNS HARBOR	369	986	455
WMCV	T	ARCO CALIFORNIA	032	019	051	WB4520	G	CALCITE II	067	023	090
WGWB	T	ARCO FAIRBANKS	026	030	056	ELMG2	0	CALIFORNIA CURRENT	245	000	245

CALL	PN	O SHIP NAME		O MAIL		CALL	PMO	SHIP NAME	RADIO	MAIL	TOTAL
ELJP6	S	CALIFORNIA HERMES	059	860	967	ELHM8	J	CHGAPA	096	003	099
JGPN	S	CALIFORNIA MERCURY	320	999	320	DEGY	N	CHOYANG PRIDE	962	999	062
BFSI3	T	CALIFORNIA ORION	100	968	168	KGXA	U	CLEVELAND	039	975	114
BEP86	F	CALIFORNIA PEGASUS	124	999	124	OXME2	J	CLIFFORD MAERSK	132	998	140
ELKU9	N	CALIFORNIA SATURN	030	999	030	WSDK	F	COAST RANGE	063	016	079
ELJP8	S	CALIFORNIA ZEUS	043	029	072	WHMK	U	COASTAL EAGLE POINT	994	999	994
KAKG	В	CALVIN P. TITUS	911	041	052	KGXM	K	COASTAL MANATEE	086	992	988
ELAD7	В	CANADIAN LIBERTY	938	917	055	KWFE	M	COLORADO	093	917	110
3EFX5	S	CAPE CHARLES	025	999	025	WRB400	U	COLUMBIA BAY	157	999	157
ELFY8	0	CAPE HATTERAS	973	999	073	DVBH	S	COLUMBIA BAY	022	999	022
3ENQ9	N	CAPE HENRY	948	999	048	WSB201	C	COLUMBIA STAR	094	022	116
KMJS	N	CAPE HORN	002	999	002	3ELQ9	В	COLUMBINE	175	998	183
JBCN	N	CAPE MAY	987	999	987	DIIU	N	COLUMBUS AMERICA	118	999	118
(FP)	Y	CAPE ORLANDO	032	912	844	DAFC	U	COLUMBUS AUSTRALIA	148	999	148
RGH	В	CAPE WASHINGTON	024	021	045	DHCM	T	COLUMBUS CALIFORNIA	264	999	264
3FFU4	М	CARIBBEAN MERCY	991	999	001	ELONS	s	COLUMBUS CANADA	122	999	122
ELBG9	F	CARLA A. HILLS	094	091	185	DGNZ	1	COLUMBUS NEW ZEALAND	126	999	126
3ES 13	T	CARMEL	947	178	225	DICO	N	COLUMBUS QUEENSLAND	193	999	193
WYBI	K	CAROLINA	928	093	121	DNKL	T	COLUMBUS VICTORIA	195	999	195
WE4879	G	CASON J. CALLAWAY	201	042	243	DGZV	T	COLUMBUS VIRGINIA	991	000	001
ELRJ5	M	CCNI ATACAMA	101	969	161	FL1S6	T	CONTIENTAL WING	075	999	975
ELFT8	M	CELEBRATION	922	991	023	3EIP3	N	CONTSHIP AMERICA	052	999	052
3FVN4	K	CENTURY HIGHWAY NO. 5	235	900	235	OXIF2	N	CORNELIA MAERSK	108	996	114
3FFJ4	U	CENTURY HIGHWAY NO. 1	114	900	114	LXBY	R			999	965
	T						F	CORNELIS VEROLME	065		
3EJB9	U	CENTURY HIGHWAY #2	188	999	188	KPJC		CORNUCOPIA	969	082	142
8JNP	-	CENTURY HIGHWAY_NO. 3	171	999	171	KPSB	K	CORONADO	001	999	001
7LHH	U	CENTURY LEADER NO. 1	189	999	189	WMRU	U	CORPUS CHRISTI	020	914	034
3EJT9	В	CHARLES LYKES	152	035	187	WTF331	N	CORWITH CRAMER	992	023	025
WL3108	C	CHARLES M. BEEGHLEY	103	023	126	KCBK	U	COURIER	091	999	091
5LPA	F	CHARLES PIGOTT	999	122	122	WE6970	C	COURTNEY BURTON	202	858	252
KNJF	J	CHARLESTON	991	999	001	ZCAQ8	В	COURTNEY L.	204	032	236
WPHZ	U	CHARLOTTE LYKES	986	122	208	WPHV	N	CPL. LOUIS J. HAUGE JR	824	123	147
0XCD2	N	CHARLOTTE MAERSK	999	024	024	ICYS	N	CRISTOFORO COLOMBO	041	014	055
OWN J2	Y	CHASTINE MAERSK	999	057	057	3EPW9	M	CROWN JEWEL	000	301	301
3FSL2	S	CHC NO.1	038	999	038	ELGH5	M	CROWN PRINCESS	006	000	006
KAFO	U	CHEMICAL PIONEER	104	018	122	CGDG	N	CSS HUDSON	129	999	129
*IBK	T	CHERRY VALLEY	005	999	005	WTW672	H	DAN MOORE	003	999	003
DEBB	U	CHESAPEAKE BAY	926	999	026	WZF965	C	DAVID Z. NORTON	097	842	139
WCYS	F	CHESAPEAKE CITY	996	012	918	ELIU4	B	DEL MONTE CONSUMER	065	003	968
WGZK	U	CHESAPEAKE TRADER	088	049	137	ELIT9	K	DEL MONTE PACKER	988	999	988
KGBE	М	CHEVRON ARIZONA	001	003	004	ELIU3	В	DEL MONTE TRADER	999	134	134
KLHZ	F	CHEVRON COLORADO	927	063	090	WXWL	Т	DELAWARE TRADER	162	964	226
VSBZ5	F	CHEVRON EDINBURGH	146	142	288	ELIT7	М	DELMONTE PLANTER	999	112	112
WXBR	F	CHEVRON MISSISSIPPI	044	905	849	ELTU2	М	DELMONTE TRANSPORTER	964	991	965
ELCO5	F	CHEVRON PACIFIC	989	089	169	WSVR	T	DENALI	178	017	195
KFDB	F	CHEVRON WASHINGTON	998	996	014	DIDT	j	DEPPE FLORIDA	245	999	245
3EME7	N	CHILEAN EXPRESS	928	999	028	PPSI	N	DG COLUMBIA	129	286	415
ELQF5	S	CHINA HOPE	957	900	057	PJRF	В	DOCK EXPRESS 20	985	900	085
ELOF4	S	CHINA SPIRIT	953	999	053	PJRO	B	DOCK EXPRESS 20	159	999	159
	-						-				
ZCBB7	K	CHIQUITA JEAN	946	999	046	3ELF9	8	DOCTOR LYKES	998	999	098

CALL	PMO	SHIP NAME	RADIO	MAIL	TOTAL	CALL	PMO	SHIP NAME	RADIO	MAIL	TOTAL
YQ795	М	DODGE ISLAND	999	001	001	WCJY	3	EXPORT PATRIOT	953	972	125
ELPX9	S	DOROTHEA OLDENDORFF	089	010	099	PEBM	N	FAIRLIFT	194	666	104
/RUH6	U	DOUBLE GLORY	101	096	197	PJLC	H	FAIRMAST	117	000	117
DQFS	H	DSR BALTIC	152	999	152	ELKI6	Н	FANTASY	003	013	916
DQFT	H	DSR EUROPE	095	999	895	FARIS	F	FARALLON ISLAND	343	999	343
DQFW	T	DSR PACIFIC	130	999	130	3EWK9	M	FASCINATION	115	945	160
DGDC	3	DUSSELDORF EXPRESS	829	999	829	WRYX	K	FAUST	978	886	164
LAYU2	K	DYVI OCEANIC	147	999	147	LXBR	0	FEDERAL SKEENA	017	999	917
G3130	H	E.P. LE QUEBECOIS	001	999	001	TCAF	N-	FERIDA	103	030	133
WZE771	C	EARL W. OGLEBAY	025	917	842	LLEJ3	T	FERNCROFT	111	120	231
6ZFB	T	EASTERN LION	055	999	055	OXBM6	N	FETISH	219	999	219
ELNC5	M	ECSTASY	051	003	054	WQVY	K	FIDELIO	086	882	168
VRUM3	S	EDELWIESS	133	093	226	ELDY9	H	FIORA TOPIC	013	000	013
WQZ967	G	EDGAR B. SPEER	152	022	174	YJXLZ	S	FIR GROVE	061	292	263
GVUS	U	EDINBURGH FRUID	111	969	111	ELIQ7	J	FOREST HAWK	073	054	127
WXQ451	G	EDWIN H. GOTT	398	036	434	KRGC	K	FRANCES HAMMER	183	039	222
WLT479	M	EDWIN LINK	999	948	048	WAR732	C	FRED R. WHITE JR	123	932	155
ELOG8	S	EIBE OLDENDORFF	230	033	263	KNJH	U	FREDERICKSBURG	916	020	036
LXBU	В	ELLEN HUDIG	017	999	017	3FJH3	U	FRINES	063	999	063
LAKZ4	N	ELLEN KNUDSEN	047	011	958	KLPN	K	GALVESTON BAY	911	842	053
KKFW	Y	EMPIRE STATE	069	999	069	WPKD	U	GALVESTON BAY	192	025	217
3FMF2	0	ENCHANTED SEAS	013	999	013	WA5307	G	GEORGE A. SLOAN	105	019	124
9VVI	U	ENIF	082	999	982	WBK692	C	GEORGE A. STINSON	987	021	108
KAKF	В	ERIC G. GIBSON	010	036	046	ELPG9	8	GEORGE SCHULTZ	095	038	133
ВКЈО	N	EVER GAINING	024	989	824	JKCF	T	GEORGE WASHINGTON BRID	270	010	280
BKJN	N	EVER GALLANT	009	999	999	3ER.38	K	GEORGIA RAINBOW II	109	031	140
ВКНВ	N	EVER GARDEN	919	999	919	JFKC	T	GINA MARU	053	000	053
3EOB8	T	EVER GARLAND	022	005	027	WWDY	В	GLOBAL LINK	054	925	079
BKHD	5	EVER GENTRY	998	915	023	WWXA	В	GLOBAL MARINER	999	033	123
3FRI2	T	EVER GIANT	997	996	913	WRZU	В	GLOBAL SENTINEL	031	000	031
ВКЈЈ	Т	EVER GIVEN	916	053	069	DUZH	S	GOLDEN APO	039	987	946
ВКНМ	S	EVER GLEAMY	026	996	032	KIYG	F	GOLDEN BEAR	093	909	993
3EMV8	S	EVER GLOBE	995	989	005	KIOH	T	GOLDEN GATE	909	023	023
3FLB2	S	EVER GLORY	005	991	006	WEDP	s	GREAT LAND	050	028	078
BKHN	S	EVER GOVERN	927	006	033	KGTH	T	GREEN BAY	024	010	034
3FOW2	S	EVER GRADE	917	999	017	KIBJ	0	GREEN HARBOUR	007	639	946
BKJI	T	EVER GROUP	919	999	010	KIBK	0	GREEN ISLAND	939	052	982
BKHK	s	EVER GROWTH	992	982	994	KGTI	В	GREEN LAKE	130	161	291
BESL2	5	EVER GUARD	013	002	916	3ETA5	S	GREEN MAYA	051	220	271
3EVJ2	5	EVER GUIDE	004	003	984	3ENI3	5	GREEN MAYA	003	072	975
BKHH	T	EVER LAUREL	991	996	997	WRYL	5	GREEN RIDGE	000	216	216
BERJ2	5	EVER LINKING		999			5				
SFJL4	N	EVER LINKING EVER RACER	017		017	3EUTS	_	GREEN SASEBO	032	024	056
3FJL4 3FFR4	T		024	011	035	3EVE5	S	GREEN SUMA	014	209	223
		EVER RENOWN	992	996	800	3FDY3	S	GREEN SYLVAN	025	000	925
3FSB3	Y	EVER REWARD	049	909	049	KHAG	U	GREEN VALLEY	009	006	015
3FQN3	-	EVER ROUND	014	004	018	3ECN7	S	GROWTH RING	224	000	224
WEZM	S	EWA	148	064	212	ELMH8	K	GUANAJUATO	001	000	001
/ROF	В	EXCELSIOR	178	999	178	WZJG	K	GUAYAMA	024	063	987
NCJS	J	EXPORT FREEDOM	069	982	151	ELMF9	0	GULF CURRENT	270	909	270

CALL	PMO	SHIP NAME	RADIO	HAIL	TOTAL	CALL	PMO	SHIP NAME	RADIO	MAIL	TOTAL
ELIH8	U	GULF SPIRIT	039	999	039	KCSA	U	INGER	040	999	848
CANS	N	GYPSUM BARON	199	999	199	KNDM	U	IOWA TRADER	059	017	076
CANZ	M	GYPSUM KING	177	999	177	GBBM	T	ISLAND PRINCESS	015	999	015
VZD246	C	H. LEE WHITE	093	039	132	WXKM	В	ITB BALTIMORE	139	013	152
DAC)	S	HANDY SILVER	058	037	095	KMJL	J	ITB GROTON	117	997	124
3EXX9	T	HANJIN BARCELONA	020	666	020	KXDB	Y	ITB MOBILE	061	013	074
D9FE	S	HANJIN CHUNGMU	052	000	052	WVDG	J	ITB NEW YORK	145	994	149
3FTF4	F	HANJIN COLOMBO	009	999	009	KSYP	В	ITB PHILADELPHIA	018	979	088
D9XB	F	HANJIN ELIZABETH	929	999	929	PEXX	U	IVER EXPRESS	991	999	001
D9TJ	S	HANJIN FELIXSTOWE	014	999	014	3ESU8	S	IWANUMA MARU	019	105	124
ELME3	T	HANJIN HONG KONG	014	000	014	ELLEZ	В	J. DENNIS BONNEY	999	185	185
DOTW	S	HANJIN KAOHSIUNG	007	027	034	WNDG	B	JACKSONVILLE	182	918	200
ELMEZ	T	HANJIN KOBE	062	999	062	VCDR	0	JADE STAR	999	041	941
D9SY	S	HANJIN LE HAVRE	027	001	028	LAWS2	U	JAHRE SPIRIT	010	900	010
3FCU3	F	HANDIN MARSEILLES	048	999	048	ATSA	0	JALAGOVIND	023	999	023
3EPU4	T	HANDIN NEW YORK	969	000	969	XCBR	U	JALISCO .	100	093	193
D9SG	T	HANJIN OAKLAND	018	900	018	ELRR6	0	JAMES LYKES	992	999	992
D9SR	S	HANJIN ROTTERDAM	910	994	014	ELPG8	B	JAMES N. SULLIVAN	999	976	976
D9MX	T	HANJIN SAVANNAH	048	999	048	WYP865	C	JAMES R. BARKER	241	016	257
D9SF	5	HANJIN SEATTLE	015	995	020	3EKL8	5	JAPAN RAINBOW 2	114	122	236
DOTX	T	HANJIN SINGAPORE	012	999	012	WUBV	U	JEAN LYKES	976	093	169
3ESM4	T	HANJIN YOKOHAMA	073	999	073	WRGO	F	JEB STUART	083	847	130
VRUG6	K	HARMONY ACE	991	999	991	PJNF	В	JO CLIPPER	002	999	882
DOET	N	HAVELLAND	075	131	206	PJKI	В	JO ELM	128	000	128
LALA2	М	HAVJO	928	996	934	WE3806	G	JOHN G. MUNSON	214	036	250
DEDI	U	HEIDELBERG EXPRESS	115	999	115	WF2560	C	JOHN J. BOLAND	042	010	052
3EUE7	K	HEIJIN	003	902	995	KIHD	U	JOHN LYKES	928	999	028
JKLS	T	HENRY HUDSON BRIDGE	259	009	268	WCB582	G	JOHN PURVES	050	035	085
WL3972	c	HERBERT C. JACKSON	034	994	938	ELNG9	F	JOHN YOUNG	999	127	127
VSBN2	U	HERMOD	905	999	005	WA6575	c	JOSEPH H. FRANTZ	129	034	163
VSBN4	U	HESIOD	221	999	221	WXY621	G	JOSEPH L. BLOCK	022	928	050
ZHEN7	N	HOEGH DRAKE	017	034	051	ELKA7	K	JUBILANT	918	008	026
ZHFY4	N	HOEGH DUKE	021	029	959	ELFK6	T	JUBILEE	021	991	022
ZHEM7	T	HOEGH DYKE	900	029	024	KRGJ	K		176	001	180
ELNG6	M			057	957	ANVE		JULIUS HAMMER		999	033
WCIP	S	HORIZON	999	979	117		В	JUPITER DIAMOND	933	939	033
		HOWELL LYKES	047			WZ2043	G	KAHO	999		
LAVG4	K	HUAL ROLITA	027	000	027	KCGH	T	KAINALU	215	919	225
WZJB	H	HUMACAO	045	029	974	ELHX2	S	KAKUSHIMA	117	886	203
3EXG9	F	HYUNDAI COMMANDER	015	025	040	KSDF	U	KANSAS TRADER	072	957	129
3EYL9	T	HYUNDAI DUKE	032	880	040	naco	5	KAPITAN MAN	137	999	137
3FAF3	T	HYUNDAI EMPERIOR	026	012	038	WBS527	G	KAREN ANDRIE	013	014	027
DIHL	S	HYUNDAI LONGVIEW	993	112	115	WSRH	F	KAUAI	108	203	311
ELOK6	S	HYUNDAI PORTLAND	042	999	042	WUR885	C	KAYE E. BARKER	140	027	167
ELHC2	S	HYUNDAI VANCOUVER	977	999	977	9KKL	U	KAZIMAH	124	999	124
EKYO	S	IGARKA	048	999	948	WSNB	U	KENAI	106	126	232
3E#J9	М	IMAGINATION	997	996	013	JKPP	H	KENTUCKY HIGHWAY	105	900	105
ATRU	0	INDIAN GOODWILL	016	999	016	KSFK	T	KEYSTONE CANYON	012	032	944
ELIG7	J	INDIAN OCEAN	084	033	117	DHSB	U	KHALEEJ BAY	994	900	004
WXN319	C	INDIANA HARBOR	032	012	944	WAC455	C	KINSMAN ENTERPRISE	939	946	976

CALL WUZ781	PMO	SHIP NAME KINSMAN INDEPENDENT	RADIO 155	MAIL 130	TOTAL 285	WHRN	F	MAHIMAMI MAJ STEPHEN W PLESS MP	172 041	113	285 067
KGPK	N	KITTANING	017	821	938	OUJH2	3		044	020	
							-	MAJESTIC MAERSK			141
EMEK	S	KOMSOMOLETS PRIMORYA	027	999	027	VTJS	C	MANGAL DESAI	048	092	140
9H003		KOPER EXPRESS	922	999	022	KNLO		MANUKAI	089	176	256
GOYE	U	KOWLOON BAY	992	999	092	VWVY	T	MARATHA MAJESTY	020	000	020
3EOF7	3	KURAMA	054	999	054	OWDQ2	T	MARCHEN MAERSK	080	039	119
3FGN3	S	KURE	033	951	084	OWZU2	T	MAREN MAERSK	042	021	063
H9BV	0	LA TRINITY	046	004	050	KRJL	U	MARGARET LYKES	049	052	101
WTV400	В	LADY MARYLAND	900	860	800	OYSN2	T	MARGRETHE MAERSK	105	052	157
WA0908	G	LAKE GUARDIAN	034	069	103	3EHF5	U	MARIA BONITA	014	000	014
WEZU	0	LASH ATLANTICO	010	001	011	SMPS	Н	MARIA TOPIC	006	039	045
WLBX	N	LAWRENCE H. GIANELLA	062	037	099	OULL2	J	MARIE MAERSK	888	050	130
OULUZ	T	LEDA MAERSK	991	000	001	DUNP	S	MARIF	031	010	041
SMDL	8	LEON	021	999	021	OZFC2	F	MARIT MAERSK	104	047	151
CG2959	N	LEONARD J. COWLEY	957	000	057	3EHE3	S	MARITIME FIDELITY	015	021	936
GUYC	U	LEONIA	183	989	183	MTC	S	MARITIME TRAINING CENT	005	999	905
ELMH5	T	LERMA	124	999	124	KAXP	0	MARJORIE LYKES	005	999	005
WHTU	U	LESLIE LYKES	029	666	029	6ZXG	0	MARLIN	900	250	250
WCPU	0	LIBERTY SPIRIT	866	001	009	LAKW4	В	MARTHA II	017	000	917
WCBP	0	LIBERTY STAR	077	097	174	00002	T	MATHILDE MAERSK	072	079	151
WCOB	N	LIBERTY SUN	054	068	122	KHRC	F	MATSONIA	230	052	282
DVHE	S	LIBERTY VICTORY	033	146	179	WSLH	T	MAUI	198	088	286
KRHZ	N	LIBERTY WAVE	023	992	025	WLDZ	J	MAURICE EWING	111	095	206
ELEV8	U	LIRCAY	122	109	231	WZJE	K	MAYAGUEZ	075	016	091
WSKJ	F	LNG AQUARIUS	017	127	144	OWEB2	F	MAYVIEW MAERSK	969	037	097
KHLN	Y	LNG CAPRICORN	006	000	996	OUZW2	3	MC-KINNEY MAERSK	971	962	133
WDZB	Y	LNG LEO	069	028	097	OYEK2	K	MEDALLION	069	033	102
WDZW	Y	LNG TAURUS	979	897	167	WA4659	C	MEDUSA CHALLENGER	222	042	264
WDZX	Y	LNG VIRGO	021	014	035	WECB	T	MELVILLE	274	110	384
HQWA5	U	LONDON ENTERPRISE	988	666	889	VROP	S	MERCHANT PREMIER	112	900	112
CCC	В	LONDON SPIRIT	201	999	201	VRIO	5	MERCHANT PRINCIPAL	169	000	169
3F0U3	S	LONG BEACH	903	033	936	JFHO	N	MERCURY ACE	009	999	009
WATE	В	LONG LINES	053	999	953	9VHJ	T	MERLION ACE	033	909	042
KDZF	N	LOUISIANA	013	996	019	WYQ435	c	MESABI MINER	176	034	210
VTKG	C	LT ARGOSY	928	911	039	OXKT2	T	METTE MAERSK	024	976	100
VTKB	c	LT. ODYSSEY	912	999	912	CALL	PMO	SHIP NAME	RADIO	MATL	TOTA
OWDX2	T	LUNA MAERSK	127	105	232	XYLG	5	MICHELLE	045	016	061
WLVD	F	LURLINE	086	095	181	WRB414	G	MICHIGAN	180	121	301
JKES	T	MACKINAC BRIDGE	227	004	231	JKLO	В	MICHIGAN HIGHWAY	906	909	996
OV3B2	F	MADISON MAERSK	970	051	121	ELAX2	T	MICRONESIAN PRIDE	040	000	040
WRYJ	F	MAERSK CONSTELLATION	878	101	171	WR3225	c	MIDDLETOWN	959	939	889
DHJW	U	MAERSK LA PLATA	183	999	183	DOEB	N	MILDBURG	264	900	264
OXOL2	T	MAERSK LIMA	012	969	072	ELND2	м	MINERAL OSPREY	118	982	120
9VYK	5	MAERSK YOKOHAHA	012	969	081	BLII	T	MING PLEASURE	196	000	196
OWOG2	K	MAGIC	064	063	127	BLIJ	Y	MING PROPITIOUS	054	000	054
OUSH2	,	MAGLEBY MAERSK	074	003	170	XCNX	U	MITLA	151	055	206
	_					CALL	PMD	SHIP NAME	RADIO	MATL	TOTAL
CALL	PMO	SHIP NAME	RADIO	MAIL	TOTAL	CALL	PHU	SHIP, MARE	MADIO	HALL	IUIAL

CALL	PMO	SHIP NAME	RADIO	MAIL	TOTAL	CALL	PMO	SHIP NAME	RADIO	MAIL	TOTA
OWU06	T	MOANA PACIFIC	123	999	123	WTER	M	NOAA SHIP M. BALDRIDGE	811	086	897
WUS929	N	MOANA WAVE	029	999	029	WTEJ	S	NOAA SHIP MCARTHUR	001	553	554
WNRD	F	MOKIHANA	079	196	275	WTDM	S	NOAA SHIP MILLER FREEM	354	306	669
MBMK	F	MOKU PAHU	065	048	113	WTDO	0	NOAA SHIP OREGON II	429	949	469
KDBG	F	MONOA	230	965	295	WTEF	S	NOAA SHIP RAINIER	212	969	272
PGAF	T	MONTERREY	149	999	149	WTES	S	NOAA SHIP SURVEYOR	096	123	219
PGBB	T	MORELOS	239	979	309	WTDF	S	NOAA SHIP T. CROMWELL	961	033	094
MMBQ	Y	MORMACSKY	947	059	106	WTEW	В	NOAA SHIP WHITING	012	999	012
KGDF	U	MORMACSTAR	059	027	986	KRPP	U	NOBEL STAR	152	956	208
IMBK	N	MORMACSUN	036	034	070	LAUU2	S	NOMADIC MERMAID	028	999	028
ELRE5	N	MOSEL ORE	135	906	141	мтоиз	N	NOMZI	217	193	410
WA8463	G	MYRON C. TAYLOR	120	926	146	LACF4	В	NORD JAHRE TRANSPORTER	944	999	944
PGCJ	T	MYSTIC	991	999	991	LA304	В	NORD JAHRE TARGET	094	999	094
CSG	U	NACIONAL VITORIA	124	999	124	WFJK	0	NORTHERN LIGHTS	243	069	312
XNF	N	NARA	023	010	033	LAON2	S	NOSAC EXPLORER	016	999	916
DZRG	T	NATIONAL DIGNITY	048	003	051	LAZA2	T	NOSAC EXPRESS	029	999	029
DZDI	T	NATIONAL HONOR	037	827	964	WRYG	N	NOSAC RANGER	123	976	199
DZPK	T	NATIONAL PRIDE	845	167	212	LATZ4	K	NOSAC STAR	025	999	025
KCMM	U	NAUTICAS MEXICO	132	999	132	ELCW2	j	NOSAC TAKAYAMA	112	092	204
PGDP	S	NEDLLOYD CLARENCE	012	900	012	XCKX	u	NUEVO LEON	979	095	165
PGDD	U	NEDLLOYD DELFT	053	999	053	KEOD	N	NUEVO SAN JUAN	028	123	151
KRHX	U	NEDLLOYD HOLLAND	173	911	184	DHNE	N	NURNBERG EXPRESS	612	999	612
PHKG	U	NEDLLOYD RALEIGH BAY	998	999	998	ELNJ3	S	NYK SEABREEZE	121	999	121
PGEI)	NEDLLOYD ROTTERDAM	125	999	125	JPGO	T	NYK STARLIGHT	101	900	101
PGEC	F	NEDLLOYD VAN NOORT	962	999	962	JPAQ	S	NYK SUNRISE	159	999	159
PGEB	F	NEDLLOYD VAN NECK	041	999	041	ELOT3	5	NYK SURFWIND	047	999	847
PGDB	U	NEDLLOYD VAN DAJIMA	099	999	099	PGLA	T	DAXACA	210	013	223
PGFE	T	NEDLLOYD VAN DIEMEN	080	999	080	TCEY	T	OBO ENGIN	023	001	824
PSI	T	NEDLLOYD VAN CLOON	110	999	110	ELKD6	T	OCEAN HIGHWAY	046	999	046
0003	T	NEDLLOYS MAURITIUS	102	909	102	3FLX4	S	OCEAN LAUREL	995	975	080
IFLX	T	NEPTUNE ACE	154	999			-				
OVNW	S				154	DPOH	N	OCEAN SPIRIT	434	900	434
BEIQ7	5	NEPTUNE CRYSTAL	016	999	016	ELLY4	M	OCEANBREEZE	899	992	010
TYVE	T	NEPTUNE DIAMOND	082	999	982	3EQZ6	J	OCEANUS OSAKA	083	072	155
		NEPTUNE DIAMOND	027	999	027	P330	3	OLEANDER	091	889	179
QOVE	S	NEPTUNE GARNET	039	037	076	ELKD7	T	OLIVE ACE	966	928	094
OVNQ	N	NEPTUNE JADE	931	900	031	3ETQ5	В	OLIVEBANK	142	999	142
ELJP4	T	NEPTUNE RHODONITE	022	999	022	WBKX	K	OMI MISSOURI	083	178	261
OVOP	S	NEPTUNE RUBY	996	999	996	ZCKE	H	OOCL BRAVERY	977	999	977
IUVC	S	NEW CARISSA	989	118	198	ELIC9	F	OOCL EDUCATOR	118	031	149
NKWB	T	NEW HORIZON	079	094	173	ELNV7	S	OOCL ENVOY	099	005	104
VPKS	U	NEWARK BAY	160	032	192	ELNV8	S	OOCL EXPLORER	136	935	171
BFGH3	F	NEWPORT BRIDGE	075	999	075	EL IO8	S	OQCL EXPORTER	107	999	107
PJCH	T	NIEUW AMSTERDAM	065	999	965	ELFV2	T	OOCL FAIR	229	999	229
VTDK	S	NOAA DAVID STARR JORDA	022	137	159	ELFU9	H	OOCL FAITH	173	999	173
MVF	N	NOAA SHIP ALBATROSS IV	296	947	343	BMEJ	U	OOCL FAME	021	991	922
TED	0	NOAA SHIP CHAPMAN	159	961	220	ELFV8	T	OOCL FIDELITY	119	022	141
VTEA	S	NOAA SHIP DISCOVERER O	371	275	646	ELFU8	T	OOCL FORTUNE	184	937	221
WTEZ	H	NOAA SHIP FERREL	314	041	35	VRCV	N	OOCL FREEDOM	319	900	319
						ELFV3	T	OOCL FRIENDSHIP	043	999	043

CALL	PMO	SHIP NAME	RADIO	MAIL	TOTAL	CALL	PMO	SHIP NAME	RADIO	MATL	TOTAL
YPWH	U	OOCL INNOVATION	096	111	207	KXEE	U	POTONAC	027	000	027
(RPB	U	OOCL INSPIRATION	234	054	288	WXBZ	U	POTOMAC TRADER	800	000	360
ELPX7	J	ORANGE WAVE	001	947	048	WRYW	F	PRESIDENT ADAMS	155	681	236
3FOB4	K	OREGON RAINBOW III	977	081	158	WGLA	F	PRESIDENT ARTHUR	071	185	256
DZDB	M	ORIENTAL FERM	912	999	012	WGMJ	F	PRESIDENT BUCHANAN	832	106	138
3F0U4	S	ORIENTE PRIME	997	146	153	KRJG	T	PRESIDENT EISENHOWER	146	118	264
ELJT7	K	ORION HIGHWAY	157	053	210	KRJF	T	PRESIDENT F. ROOSEVELT	278	024	302
GOYG	J	OSAKA BAY	180	999	180	WGXN	F	PRESIDENT GARFIELD	025	041	066
ELPP9	B	OURO DO BRASIL	120	999	120	WEZD	.5	PRESIDENT GRANT	099	039	138
WEHV	S	OVERSEAS ALASKA	017	009	026	WEZH	S	PRESIDENT HARRISON	153	666	153
KLEZ	0	OVERSEAS ARCTIC	967	057	124	WGXO	F	PRESIDENT HARDING	889	131	219
WRFJ	U	OVERSEAS HARRIET	094	026	120	WTST	5	PRESIDENT HOOVER	051	159	210
WUQL	K	OVERSEAS JOYCE	947	096	143	WRYC	S	PRESIDENT JACKSON	057	206	263
WFQB	U	OVERSEAS MARILYN	015	999	015	WPGE	S	PRESIDENT JEFFERSON	042	083	125
WFKW	U	OVERSEAS NEW ORLEANS	984	018	102	WRYE	F	PRESIDENT KENNEDY	201	029	230
WJBG	F	OVERSEAS OHIO	031	004	035	WRYD	F	PRESIDENT POLK	021	230	251
WFGV	U	OVERSEAS WASHINGTON	002	999	992	WNDP	F	PRESIDENT TRUMAN	117	082	199
ELKM7	S	PACASIA	944	016	060	WZE492	C	PRESQUE ISLE	139	090	229
XYKS	S	PACDUKE	014	999	014	WUW212	B	PRIDE OF BALTIMORE II	029	035	064
ELJQ2	S	PACIFIC ARIES	136	000	136	3EC09	5	PRINCE OF OCEAN	119	232	351
3ETF4	S	PACIFIC EMERALD	005	999	905	3EUU6	5	PRINCE OF TOKYO 2	106	142	248
GBCF	Y	PACIFIC PRINCESS	122	000	122	WSDX	T	PRINCE WILLIAM SOUND	042	097	139
XYKH	5	PACMERCHANT	946	999	946	ELJT9	S	PRINCESS DIAN	928	004	032
ELED7	S	PACPRINCE	025	000	025	PJAG	В	PROJECT ORIENT	065	000	065
ELED8	U	PACPRINCESS	018	999	918	WMFW	N	PVT FRANKLIN J. PHILLI	028	800	936
XYKM	S	PACSUN	033	999	033	ZBWE	H	PYTCHLEY	299	909	299
PGQC	В	PALMGRACHT	911	999	011	3EF03	K	QUALITY OF LIFE	015	900	015
VROV	S	PAPAGO	084	911	095	GBTT	Y	QUEEN ELIZABETH 2	238	000	238
KGBQ	U	PATRIOT	036	999	936	WRJP	T	R.J. PFEIFFER	054	190	244
KDGR	U	PAUL BUCK	020	061	081	3EGR6	U	RECIFE	858	000	958
WTM901	C	PAUL H. TOWNSEND	987	917	104	ELGH6	M	REGAL PRINCESS	044	020	064
WYR448	C	PAUL R. TREGURTHA	351	031	382	MQYA3	U	REPULSE BAY	180	000	180
VRUN4	K	PEARL ACE	111	999	111	WE7207	C	RESERVE	146	059	205
WXQ733	N	PETER W. ANDERSON	052	003	055	KFDZ	N	RESOLUTE	051	128	179
ZCKC	N	PETERSFIELD	991	000	001	ELF03	0	RHINE FOREST	121	112	233
ELKZ4	М	PETROBULK RACER	999	106	106	WLBV	K	RICHARD G MATTIESEN	010	003	013
WHAQ	N	PFC EUGENE A. OBREGON	021	010	031	WBF237	C	RICHARD REISS	060	860	968
WJXG	3	PFC JAMES ANDERSON JR	018	019	937	WRA792	U	RICHMOND BAY	058	000	058
KRPW	N	PFC WILLIAM B. BAUGH	058	928	086	KCRD	0	ROBERT E. LEE	028	825	053
DDQS	N	PHAROS	085	999	085	3FIP4	5	ROCKIES HIGHWAY	020	999	020
WE3592	G	PHILIP R. CLARKE	128	006	134	WZP816	G	ROGER BLOUGH	237	042	279
3EGS6	N	PHOENIX DIAMOND	024	000	024	ELAJ6	5	ROSINA TOPIC	022	245	267
CG2678	N	PIERRE FORTIN	200	989	200	LATLZ	М	ROSITA	889	012	101
ZEOD	S	PISCES PIONEER	142	909	142	КСВН	U	ROVER	065	016	981
ZEOE	U	PISCES PLANTER	144	989	144	GBRP	Т	ROYAL PRINCESS	097	999	097
WXVH	0	PLATTE	975	085	160	3FAP5	5	RUBIN STELLA	000	004	004
LAJJ4	J	POCAHONTAS	998	999	800	WTP496	C	S.T. CRAPO	149	043	192
ELPT3	T	POLAR EAGLE	029	174	203	WNPD	0	S/S WILSON	036	842	078
PGUP	В	POOLGRACHT	238	000	238		. s	SALINAS	829	999	029

CALL	PMO	SHIP NAME	RADIO	MAIL	TOTAL	CALL	PMO	SHIP NAME	RADIO	MAIL	TOTAL
CDGA	U	SAM HOUSTON	046	053	099	WPVD	U	SEALAND INTEGRITY	307	848	355
CDJ	F	SAMUEL L. COBB	037	994	041	KGTZ	5	SEALAND KODIAK	014	020	034
62960	N	SAMUEL RISLEY	753	999	753	KHRP	F	SEALAND LIBERATOR	104	136	240
IOR	N	SAN ISIDRO	158	999	158	KGJF	S	SEALAND MARINER	909	999	009
LND4	K	SAN MARCOS	066	073	139	WPGK	T	SEALAND NAVIGATOR	294	966	360
ОННО	N	SAN PEDRO	018	999	018	WSRL	T	SEALAND PACIFIC	266	092	358
DNGV	N	SAN VINCENTE	018	999	018	KHRF	F	SEALAND PATRIOT	052	091	143
3EXQ3	5	SANKO LAUREL	038	971	109	KRPD	N	SEALAND PERFORMANCE	164	056	220
BEVE3	5	SANKO POPPY	022	025	947	MJBJ	T	SEALAND PRODUCER	186	922	208
BEZK3	0	SANKO SPLENDOUR	039	053	092	KRNJ	K	SEALAND QUALITY	886	091	179
DGSM	N	SANTA MONICA	082	999	082	WFLH	T	SEALAND RELIANCE	179	979	249
CYER	U	SAPAI	034	000	034	WFLG	F	SEALAND SPIRIT	132	179	311
энорз	В	SARAJEVO EXPRESS	963	999	063	KGTY	S	SEALAND TACOMA	051	109	160
BEWQ	K	SATURN DIAMOND	039	900	039	KIRH	F	SEALAND TRADER	249	028	277
DILS	N	SAVANNAH	063	000	063	KHRK	5	SEALAND VOYAGER	082	991	083
ELGH7	M	SEA COMMERCE	126	127	253	WAFA	F	SEARIVER BATON ROUGE	034	912	946
VRUQ2	M	SEA EXCELLENCE	032	603	035	KPKL	T	SEARIVER BENICIA	036	021	957
BEKIS	0	SEA FLORIDA	128	005	133	WBVY	U	SEARIVER CHARLESTOWN	984	003	997
KBGK	K	SEA FOX	172	018	190	WHCA	T	SEARIVER LONG BEACH	998	009	017
WCYO	U	SEA ISLE CITY	087	071	158	WHCB	T	SEARIVER MEDITERRANEAN	899	991	009
KJLV	K	SEA LION	455	061	516	WNFJ	F	SEARIVER PHILADELPHIA	022	005	927
ELON2	N	SEA MERCHANT	453	019	472	KAAC	F	SEARIVER SAN FRANCISCO	026	996	032
FNXB	N	SEA PREMIER	068	999	968	WBVZ	U	SEARIVER WILMINGTON	005	999	005
KRCP	0	SEA PRINCESS	059	989	059	WST975	М	SEAWARD JOHNSON	075	159	234
ELQI8	K	SEA RACER	003	999	003	WNJG	M	SENATOR	130	999	130
WRXN	3	SEA SPRAY	002	999	002	LADN4	M	SENORITA	999	095	095
ELGH4	N	SEA TRADE	193	033	226	3ESE9	M	SENSATION	895	047	142
KNFG	K	SEA WOLF	262	029	291	ELBZ2	В	SERAFIN TOPIC	018	999	918
ELRV6	K	SEABOARD SUN	999	024	024	ELLWS	В	SERENITY	848	994	844
ELRU3	M	SEABOARD UNIVERSE	946	000	046	DULR	S	SEVEN OCEAN	843	013	056
KGTX	5	SEALAND ANCHORAGE	089	091	180	WJLX	N	SGT WILLIAM A BUTTON	032	900	032
KRLZ	N	SEALAND ATLANTIC	177	023	200	WHAC	N	SGT. METEJ KOCAK	929	045	965
WZJC	,		071	090	161	KRJP	U	SHELDON LYKES	987	034	121
	T	SEALAND CHALLENGER		172	294		M				130
WCHF, DUVV2	0	SEALAND CONSUMER	122	016		3EKH3	S	SHELLY BAY	111	019	256
	-	SEALAND COSTA RICA	153		169	3ECM7	-	SHIRAOI MARU		969	
WZJF	K	SEALAND CRUSADER	114	034	148	WSDJ	T	SIERRA MADRE	026	001	927
KGJB	F	SEALAND DEFENDER	129	115	244	3FFG3	S	SINCERE GEMINI	043	044	087
KHRH	S	SEALAND DEVELOPER	966	130	196	LAJV4	5	SKAUBRYN	163	900	163
WZJD	K	SEALAND DISCOVERY	966	035	101	LADB2	S	SKAUGRAN	192	999	192
KGJX	5	SEALAND ENDURANCE	990	060	150	GYYP	M	SKY PRINCESS	111	000	111
KRGB	F	SEALAND ENTERPRISE	251	065	316	ELIGS	В	SOKOLICA	842	000	042
#PGJ	K	SEALAND EXPEDITION	060	947	107	ELQQ4	В	SOL DO BRASIL	049	019	968
W GJF	T	SEALAND EXPLORER	165	053	218	ELJS7	K	SOLAR WING	958	999	958
KGJD	5	SEALAND EXPRESS	164	013	177	XCTJ	U	SONORA	105	974	179
KIRF	F	SEALAND HAWAII	262	025	287	VTFM	C	SOREN TOUBRO	024	999	024
OUQP2	0	SEALAND HONDURAS	996	900	006	DUCF	3	SOUTHERN PRINCESS	999	309	309
#GJC	5	SEALAND INDEPENDENCE	962	144	206	LAEB2	M	SOVEREIGN OF THE SEAS	043	847	090
WGKF	F	SEALAND INNOVATOR	117	033	150	ZELP	U	STAFFORDSHIRE	049	999	849

CALL	PMO	SHIP NAME	RADIO		TOTAL	CALL	PHO	SHIP NAME	RADIO	MAIL	TOTAL
AVV4	K	STAR AMERICA	032	973	105	3EZK9	M	TROPIC SUN	336	014	350
.AJGZ	S	STAR DAVANGER	079	999	079	3FGQ3	М	TROPIC TIDE	886	961	147
AEP4	S	STAR DOVER	019	989	019	ELBM9	0	TROPICALE	020	900	020
AWO2	U	STAR EAGLE	057	996	063	MSQQ8	В	TRSL ARCTURUS	849	065	114
LAHEZ	K	STAR EVVIVA	075	971	146	ELGM4	N	TSL GALLANT	025	000	025
LAVW4	U	STAR FLORIDA	143	945	188	LUTA	N	TULSIDAS	003	900	003
AVY4	U	STAR FRASER	153	909	153	WMLG	U	TYSON LYKES	941	093	134
ELFI8	T	STAR GEIRANGER	083	999	083	UVTE	U	ULAN BATOR	844	000	044
LAJYZ	М	STAR SKARVEN	048	847	095	DHRU	3	ULF RITSCHER	050	000	050
LASSZ	U	STAR SKOGANGER	018	052	979	VRIW	N	ULLSWATER	199	909	199
LAHG2	U	STAR STRONEN	052	922	074	WHDI	U	ULTRAMAX	048	114	162
VTBQ	U	STATE OF GUIARAT	025	999	025	MJCG	0	ULTRASEA	077	102	179
YTWY	Υ	STATE OF MAINE	032	029	961	NODY	G	USCGC ACACIA (WLB406)	016	046	062
WJGH	U	STELLA LYKES	032	051	083	NRTF	S	USCGC ACTIVE WHEC 618	025	012	037
DZSB	S	STELLAR BENY	021	999	021	NNHA	F	USCGC ACUSHNET WHEC 16	094	000	094
DUMF	S	STELLAR VENUS	869	999	988	NZVE	S	USCGC ALERT (WMEC 630)	128	977	205
UYPO	S	STEPAN KRASHENINNIKOV	112	999	112	NODG	S	USCGC BASSWOOD (WLB 38	800	000	008
WYZ393	G	STEWART J. CORT	171	120	291	NRKN	N	USCGC BEAR (WEMC 901)	978	013	091
KDDW	0	STONEWALL JACKSON	029	011	040	NYCQ	S	USCGC BOUTWELL WHEC 71	059	057	116
KSPH	F	STRONG VIRGINIAN	046	041	987	NODK	C	USCGC BRAMBLE (WLB 392	992	015	017
LIZA3	М	SUN VIKING	999	999	009	NRDC	H	USCGC CAMPBELL	016	999	916
LA004	K	SYNNOVE KNUSTEN	006	027	033	NLPM	T	USCGC CHASE (WHEC 718)	105	024	129
SQGI	U	TADEUSZ OCIOSZYNSKI	012	900	012	NHICW	K	USCGC CONFIDENCE WMEC6	046	999	046
BHFL	S	TAI CHUNG	042	999	942	NCRG	H	USCGC COURAGEOUS	927	000	927
BOAB	T	TAI HE	203	999	203	MPCR	Y	USCGC DALLAS (WHEC 716	001	000	001
BHFR	5	TAI SHING	020	800	028	NDTS	В	USCGC DAUNTLESS WMEC 6	010	025	035
WRA482	U	TALLAHASSEE BAY	039	999	039	NUHC	М	USCGC DECISIVE WMEC 62	043	015	058
VROT	U	TAMAMONTA	012	999	012	NRUN	U	USCGC DURABLE (WMEC 62	038	000	038
VRIP	U	TAMATHAI	201	900	201	HRCB	M	USCGC EAGLE (WIX 327)	003	999	003
MSYY9	J	TAMATIKI	902	050	052	HNAS	N	USCGC ESCANABA	996	909	006
LMW03	T	TAMPA	027	999	927	NODL	A	USCGC FIREBUSH WLB 393	928	666	020
KNJA	U	TAMPA BAY	016	866	024	NICB	N	USCGC FORWARD	059	000	059
LA0Q2	В	TAPIOLA	021	999	021	NJOR	Y	USCGC GALLATIN	115	968	183
KTDQ	5	THOMAS G. THOMPSON	999	204	204	NMAG	T	USCGC HAMILTON WHEC 71	999	969	060
WVHS	U	THOMPSON LYKES	040	085	125	NHNC	N	USCGC HARRIET LANE	025	999	025
WSRY	S	THOMPSON PASS	000	012	012	NRPN	A	USCGC IRONWOOD (WLB 29	014	999	014
WMLH	U	TILLIE LYKES	040	096	136	NAQD	5	USCGC JARVIS (WHEC 725	098	999	998
ELKA6	K	TOHZAN	026	090	116	NRPJ	F	USCGC LAUREL (WLB 291)	001	913	014
9VUY		TOKIO EXPRESS	111	999	111	NRPM	N	USCGC LEGARE	026	919	036
DDSK	T	TOKYO SENATOR	009	999	009	NRKP	G	USCGC MACKINAW	021	043	964
3EFY7	T	TOLUCA	140	043	183	NODO	5	USCGC MALLOW (WLB 396)	007	909	007
KJDG	U	TONSINA	035	001	036	NODP	5	USCGC MARIPOSA	918	901	019
OXDF3	N	TORM FREYA	071	054	125	NMEL	5	USCGC MELLON (WHEC 717	160	001	161
ELJL3	5	TOWER BRIDGE	056	999	056	NHWR	S	USCGC MIDGETT (WHEC 72	849	902	051
ELJJ5	S	TRANSWORLD BRIDGE	164	007	171	WRUF	K	USCGC MOHAWK WHEC 913	017	000	917
ELDU4	F	TRIGGER	045	130	175	NDWA	F	USCGC MORGENTHAU	092	900	092
WRGL	U	TRINITY	024	013	037	NGDF	Y	USCGC MUNRO	108	001	109
WTU231	G	TRITON	138	173	311	NLGF	N	USCGC NORTHLAND WHEC 9	092	024	116

CALL	PMO	SHIP NAME	RADIO	MAIL	TOTAL	CALL	PMO	SHIP NAME		-	MIL	TOTAL
NBTM	5	USCGC POLAR STAR (WAGB	244	999	244	NIDR)	USNS VANGUARD TAG 19		127	042	169
NRUO	S	USCGC POLAR SEA(WAGB	984	998	092	NWSD	F	USNS WALTER S. DIEH		999	094	094
NLVS	F	USCGC RUSH	133	999	133	NYUK	0	USNS YUKON (T-AO 20	-	161	002	163
NODT	F	USCGC SASSAFRAS	049	999	049	NEVV	0	USS RUSSELL DDG-59		071	999	071
NODU	5	USCGC SEDGE (WLB 402)	905	999	005	9VJS	U	VEGA		983	999	983
NFMK	N	USCGC SENECA	866	999	899	9VRR	U	VENUS DIAMOND		144	999	144
NMMJ	F	USCGC SHERMAN	035	949	075	3EAG4	S	VERA ACORDE		920	979	999
KAHE	N	USCGC SPENCER	982	999	082	CBVM	U	VINA DEL MAR		959	999	059
NSTF	S	USCGC STEADFAST (WMEC	130	071	201	VRIV	N	VINE		257	999	257
NRUC	S	USCGC STORIS (WMEC 38)	315	017	332	3EBW4	S	VIRGINIA		78	324	402
NODW	G	USCGC SUNDEW (WLB 404)	014	054	068	DZVP	В	VISAYAS VICTORY		900	262	262
NCBE	N	USCGC TAHOMA	968	999	068	LACU2	H	VIVA		17	073	090
NIKL	N	USCGC TAMPA WMEC 902	999	019	019	ЭКНН	S	WASHINGTON HIGHWAY		074	000	074
NYWL	K	USCGC THETIS	999	041	041	ZCAQ9	N	WEST MOOR		935	999	035
IAVA	М	USCGC VALIANT (WMEC 62	866	009	017	LACZ4	М	WESTERN FRIEND		900	167	167
NHIC	М	USCGC VIGILANT WMEC 61	025	900	025	WZL 819	М	WESTWARD		994	061	065
NQSP	В	USCGC VIGOROUS WMEC 62	889	056	144	КНЈВ	5	WESTWARD VENTURE		16	111	127
NNHB	5	USCGC YOCONA (WMEC 168	080	032	112	DVDM	S	WESTWOOD ANETTE	18	232	011	243
NABL	N	USNS ABLE	992	999	002	LATV4	S	WESTWOOD CLEO	1	130	036	166
NPEJ	K	USNS ANTARES	992	999	902	DVPV	S	WESTWOOD MARIANNE		94	167	261
NIGP	N	USNS APACHE (T-ATF 172	058	022	080	WC5932	G	WILFRED SYKES		929	005	034
NACK	N	USNS CONCORD	999	030	030	ELOR2	F	WILLIAM E. CRAIN		900	157	157
NDSP	3	USNS DENEBOLA	011	800	019	WZC451	C	WOLVERINE		902	999	002
NLUP	0	USNS GUADALUPE	013	999	013	3EPK5	S	YOHFU	(104	041	045
NRLW	K	USNS HAYES	000	136	136	YJZH9	S	YOUNG SPROUT		324	065	089
NHJK	H	USNS HENRY J. KAISER	019	999	019	XCUY	U	YUCATAN	1	115	094	209
NJLN	H	USNS JOHN LENTHALL	999	103	103	UAGJ	5	YURI OSTROVSKIY	1	100	911	111
MJMD	0	USNS JOHN MCDONNELL (T	139	051	190	9HPL3	H	ZAGREB EXPRESS		917	000	017
NZSK)	USNS KANE TAGS 27	043	999	043	VRRE	N	ZETLAND	1	176	000	176
NNLG	N	USNS LEROY GRUMMAN	001	166	167	4XGR)	ZIM AMERICA	1	179	900	179
NLIT	0	USNS LITTLEHALES (T-AG	071	160	231	4XGS	N	ZIM CANADA	1	126	000	126
NFMC	F	USNS MARS	127	999	127	4XLR	J	ZIM HONGKONG		001	000	991
NMER	F	USNS MERCY	006	900	006	4XLZ	3	ZIM HOUSTON	(19	999	019
NCRP	N.	USNS MOHAWK (T-ATF 170	018	050	968	4XIO	T	ZIM IBERIA	(144	000	944
NVBK	T	USNS NARRAGANSETT	159	057	216	4XGX	М	ZIM ISRAEL	(57	000	057
NOYK	T	USNS NAVAJO_(TATF-169)	068	999	968	4XGT	M	ZIM ITALIA		92	017	109
NRPP	F	USNS OBSERVATION ISLAN	074	000	074	4XGV	В	ZIM JAPAN	1	20	999	120
NGKK	0	USNS PATHFINDER T-AGS	035	979	105	4XII)	ZIM KEELUNG		982	999	982
NKXR	N	USNS POWHATAN TATE 166	049	032	081	4XGU	M	ZIM KOREA		95	999	095
NNCD	N	USNS SAN DIEGO	037	045	082	4XIE	J	ZIM MARSEILLES		10	999	919
NADH	N	USNS SATURN T-AFS-10	999	117	117	4XIL	T	ZIM SAVANNAH		952	999	052
NQST	U	USNS SEALIFT ARCTIC	994	900	994	******					230	336
NKRV	U	USNS SEALIFT CARIBBEAN	912	999	012							
NTYT	U	USNS SEALIFT ANTARCTIC	015	999	015				VIA	VIA		
NIKA	U	USNS SEALIFT ATLANTIC	037	911	048			GRAND TOTALS	RADIO	MAIL		TOTAL
NNUD	F	USNS SILAS BENT T-AGS	022	112	134				80441	33404		13845
NJOV	F	USNS SIOUX	002	999	002				1440	33464	. 1	13043
NPGA	N	USNS SIRIUS (T-AFS 8)	999	037	037							

Wave observations are taken each hour during a 20-minute averaging period, with a sample taken every 0.67 seconds. The significant wave height is defined as the average height of the highest one-third of the waves during the average period each hour. The maximum significant wave height is the highest of those values for that month. At most stations, air temperature, water temperature, wind speed and direction are sampled once per second during an 8.0-minute averaging period each hour (moored buoys) and a 2.0-minute averaging period for fixed stations (C-MAN). Contact NDBC Data Systems Division, Bldg 1100, SSC, Misstssippi 39529 or phone (601) 688-1720 for more details.

BUOY	LAT	LONG	OBS	MEAN AIR TP (C)	MEAN SEA TP (C)	MEAN SIG WAVE HT (M)	WAVE HT (M)	WAVE HT (DA/HR)	SCALAR MEAN WIND SPEED (KNOTS)	PREV WIND (DIR)	MAX WIND (KTS)	MAX WIND (DA/HR)	MEAN PRESS (MB)
APRIL													
SUPN6	44.5N	975.8W	0742	12.4	9.4				9.0	S	24.3	29/18	1012.9
SVLS1	32.0N	080.7W	0689	23.1	23.3				13.6	5	47.1	16/02	1014.9
THIN6	44.3N	976.0W	9742	12.2									
TPLM2	38.9N	976.4W	0742	17.2	16.9				10.7	S	27.4	08/05	1014.6
TTIW1	48.4N	124.7W	0740	10.7					9.5	SW	24.9	01/13	1016.3
VENF1	27.1N	082.5W	0739	26.2	28.9				8.6	E	21.8	20/12	1015.4
WPOW1	47.7N	122.4W	0741	12.9					4.2	NE	21.9	02/21	1015.2
32302	18.05	085.1W	0059	22.2	22.9	2.3	4.3	01/17	11.5	SE	16.9	01/00	
41002	32.3N	075.2W	0709	19.9	20.5	1.5	4.2	96/21	11.5	E	33.0	06/22	1015.8
41004	32.5N	079.1W	0715		21.4	1.1	4.3	96/18	11.9	SW	32.3	06/16	
41009	28.5N	080.2W	1437	23.0	23.4	1.0	2.3	02/18	11.5	SE	23.9	06/03	1014.9
41010	28.9N	078.5W	1436	22.9	25.0	1.3	3.7	96/14	11.4	E	27.2	06/16	1014.7
41016	24.6N	076.5W	0692	24.4	25.3	0.5	2.0	28/15	10.6	E	21.7	12/00	1015.7
41021	31.9N	980.9W	0442	20.1	20.1	0.3	2.10	20, 23	9.8	S	20.8	14/10	1014.6
42001	25.9N	989.7W	0716	23.3	24.0	1.3	4.8	11/11	14.0	SE	37.5	11/06	1013.0
42002	25.9N	093.6W	9714	22.8	23.2	1.5	3.9	11/19	14.2	SE	32.4	05/10	1012.1
42003	25.9N	085.9W	0716	24.3	26.8	1.2	3.6	28/03	15.1	SE	35.4	05/22	1012.7
42007	30.1N	988.8W	0718	20.3	21.4	1.6	3.0	20/03	12.7	SE	31.9	11/14	1014.4
42020	27.0N	096.5W	9717	22.2	21.4	1.5	3.9	11/12	14.0	SE	29.3	05/01	1011.2
42025	24.9N	080.5W	9718	25.1	25.9	0.5	1.7	12/06	14.0	SE	69.3	03/01	1011.2
42035	29.3N	094.4W	0669		21.0		2.7		11 6	CF	20.0	11/09	1012.5
				20.5		1.0		10/22	11.6	SE	29.9		
42036 42037	28.5N 24.5N	084.5W	0714	21.1	20.6	0.8	2.1	96/96	9.4	E	23.9	06/02	1015.6
44004		981.4W	0717	25.0	25.5	0.7	2.0	12/08	9.3	E	19.8	06/23	1014.1
	38.5N	979.7W	0712	12.7	15.4	1.7	5.1	13/21	** *		20.0		1015.0
44005	42.9N	069.0W	0675	4.3	4.5	1.3	4.8	05/21	11.6	NW	38.1	05/21	1013.5
44006	36.3N	075.5W	0719	12.5	11.3	0.9	2.4	05/10	10.2	S	27.4	24/10	1015.4
44007	43.5N	979.2W	0713	4.4	4.6	0.7	1.9	04/03	9.1	S	31.1	05/13	1012.2
44008	40.5N	069.4W	8677		5.7	1.4	5.5	05/23	10.6	W	33.2	05/2	1014.6
44009	38.5N	074.7W	0714	9.5	8.5	1.0	2.8	05/07	10.7	HW	29.3	05/04	1014.9
44010	36.0N	075.0W	0716	14.1	14.1	1.2	3.0	23/10	10.7	N	26.0	23/09	1015.0
44011	41.1N	066.6W	0713	5.4	4.7	1.6	7.4	96/92	11.5	NW	37.7	06/00	1013.1
44013	42.4N	070.7W	0712	5.5		0.6	2.2	05/22	10.1	W	35.0	05/00	1013.2
44014	36.6N	974.8W	0654	12.6					10.4	S	25.1	05/06	
44019	36.4N	075.2W	0716	11.9	10.4				10.2	S	23.9	24/10	1015.6
44025	40.3N	073.2W	0703	7.7	7.3	1.0	3.0	04/14	11.1	S	31.1	05/02	1014.1
44028	41.4N	071.1W	0714	6.8	6.1	0.7	2.4	04/18	12.7	SW	37.5	05/22	1013.7
45001	48.1N	087.8W	0410	1.9	1.5	0.6	2.5	19/03	10.3	NE	25.1	19/02	1016.2
45002	45.3N	086.4W	0715	2.1	2.5	0.8	2.7	04/05	12.3	NE	29.9	04/12	1013.6
45003	45.3N	982.8W	0718	1.5	2.2	0.9	4.3	04/98	13.0	E	34.8	84/89	1013.5
45004	47.6N	086.5W	0419	2.1	2.1	0.6	2.4	19/17	11.4	N	27.8	18/19	1015.9
45005	41.7N	082.4W	0459	5.9	4.2	0.5	1.2	18/11	9.9	NE	21.2	19/05	1013.8
45006	47.3N	089.9W	0395	2.2	1.3	0.8	3.0	18/21	8.8	NE	25.0	18/21	1016.2
45007	42.8N	987.1W	9716	3.9	5.0	0.5	1.9	27/14	7.8	NE	21.4	27/12	1013.2
45008	44.3N	982.4W	0147	2.9	1.8	0.8	2.8	28/04	10.7	SW	27.0	28/01	1014.2
45010	43.0N	987.8W	0270	5.0	4.0	0.5	1.5	27/21	8.7	N	22.7	27/09	1013.9
46001	56.3N	148.2W	0712	5.0	4.2	2.7	6.4	10/20	• • • • • • • • • • • • • • • • • • • •		2011	211.00	1005.2
46002	42.5N	130.3W	0719	9.9	10.8	2.9	7.4	08/02	12.9	HW	29.3	15/22	1017.6
46005	46.1N	131.0W	0713	8.4	9.0	3.0	5.8	08/02	13.1	S	29.9	15/15	1016.1
46006	40.9N	137.5W	0711	10.3	10.6	3.1	7.5	07/17	13.1	3	23.3	23/ 23	1018.8
46011		120.9W	9797				5.7	19/01	10.8	NW	25.8	09/01	1016.0
	34.9N			12.4	13.0	2.3				NW	34.6		1017.4
46013	38.2N	123.3W	0716	10.9	11.0	2.4	5.4	08/17	15.0	New Year	39.1	13/63	TOTL'4

BUOY	LAT	LONG	OBS	MEAN AIR TP (C)	MEAN SEA TP (C)	MEAN SIG WAVE HT (M)	WAVE HT	WAVE HT (DA/HR)	SCALAR MEAN WIND SPEED (KNOTS)	PREV WIND (DIR)	WIND (KTS)	MAX WIND (DA/HR)	MEAN PRESS (MB)
46014	39.2N	124.0W	0719	10.9	11.5	2.4	5.1	08/21	12.6	NW	31.3	18/23	1017.6
46022	40.8H	124.5W	0712	11.0	12.0	2.5	6.0	08/12	11.5	N	31.3	12/18	1018.3
46023	34.3N	120.7W	0512	12.4	12.0	2.8	5.7	09/02	18.0	NW	35.8	19/01	1015.7
46025	33.8N	119.1W	0661	14.0	14.5	1.1	3.5	19/03	9.4	NW	29.1	19/03	1014.9
46026	37.8N	122.8W	0713	11.2	11.2	2.0	4.6	19/00	13.7	NW	31.9	19/03	1017.0
46027 46028	41.9N	124.4W 121.9W	0716 0715	10.5	11.6	2.2	4.9	08/19	9.8	NW	29.1	12/21	1017.1
46029	35.7N 46.2N	124.2W	0197	11.8	12.1	2.5	5.9	19/03	14.5	N	29.7 18.1	18/16	1017.5
46030	40.4N	124.5W	0715	10.5	11.5	2.3	6.0	25/00 08/14	7.4	n	10.1	23/04	1015.4
46035	57.0N	177.7W	0708	0.2	1.6	2.6	6.6	16/07	15.7	NW	33.5	16/10	1003.4
46041	47.4N	124.5W	0717	9.1	10.9	2.2	4.8	08/20	23.1	***	33.3	10/ 10	1015.5
46042	36.8N	122.4W	0713	11.8	12.4	2.4	5.7	19/07	13.3	NW	31.7	18/15	1017.1
46045	33.8N	118.5W	0716	13.9	14.0	0.9	3.1	19/01		****			1014.7
46050	44.6N	124.5W	0692	9.9	11.8	2.5	4.7	08/08	5.7	NW	15.0	28/98	1015.6
46053	34.2N	119.9W	0719	13.0	12.5	1.4	3.2	08/21	13.9	W	34.4	09/00	1015.9
46054	34.3N	120.5W	0719	12.4	11.8	2.2	5.5	19/01	16.9	NW	33.2	09/00	1016.3
46059	38.0N	130.0W	0708	12.4	13.4	2.5	6.5	08/05	11.8	NW	29.9	12/11	1020.1
51001	23.4N	162.3W	9713	22.1	23:6	2.7	4.6	17/09	16.0	NE	26.1	21/22	1017.8
51002	17.2N	157.8W		24.4	24.9				15.6	NE	28.5	16/15	1014.0
51003	19.1N	160.8W	0719	24.5	25.6	2.5	4.3	17/22	12.8	E	23.5	16/19	1015.0
51004 51026	17.4N 21.4N	152.5W 156.9W	9712 9796	24.5	25.4	2.6	5.5	17/12 17/97	14.8	E	26.1	17/03 18/09	1015.7
51027	20.5N	157.1W	0709	23.7	24.6	2.4 1.6	4.8	19/05	14.2 13.7	E	26.8	18/16	1015.2
91222	18.1N	145.8E	0598	26.5	24.0	1.0	3.6	19/03	7.4	NE .	17.0	01/17	1013.5
91251	11.4N	162.4E	0704	27.2					17.6	NE	32.2	27/20	1009.3
91328	8.6N	149.7E	0712	27.8					10.2	NE	18.1	11/03	1010.4
91338	5.3N	153.7E	0534	27.7					5.7	NE	15.5	01/03	1008.2
91343	7.6N	155.2E	0715	27.8					13.8	NE	23.7	02/15	1008.1
91352	6.2N	160.7E	0703	27.4					10.6	NE	23.1	23/11	1009.7
91355	5.4N	163.0E	0713	27.3					8.2	NE	22.7	24/01	1007.1
91377	6.1N	172.1E	0711	27.6					9.7	NE	26.6	07/22	1010.5
ABAN6	44.3N	075.9W	9666	4.5	3.6				3.8	S	22.2	21/21	1014.1
ALSN6	40.5N	073.8W	0716	8.5	7.7				14.8	NW	38.9	05/02	1014.4
BURL1	28.9N	089.4W	0710	21.1					12.1	SE	30.4	04/22	1013.9
CARO3 CHLV2	43.3N 36.9N	124.4W 075.7W	9715 9714	9.6					9.3	S	34.2	08/03	1016.5
CLKN7	34.6N	076.5W	0714	17.5					15.6 11.6	SW	34.6	08/23 23/10	1015.5
CSBF1	29.7N	085.4W	0714	19.8					6.9	SE	27.0	12/14	1015.9
DBLN6	42.5N	079.4W	0718	4.6					13.4	SW	35.6	04/18	1014.3
DESW1	47.7N	124.5W	9718	9.0					11.0	NW	38.8	10/20	1015.6
DISW3	47.1N	090.7W	0715	0.9					12.3	NE	40.0	18/19	1013.0
DPIA1	30.3N	988.1W	0714	20.0					11.4	SE	28.1	11/18	1015.4
DRYF1	24.6N	082.9W	0712	24.8	25.7				11.3	E	21.1	12/00	1013.9
DSLN7	35.2N	075.3W	0713	17.5					18.4	SW	42.9	23/07	1016.5
FBIS1	32.7N	079.9W	0716	19.4					9.1	SW	25.6	06/13	1015.6
FFIAZ	57.3N	133.6W	0715	7.6					9.9	H	31.6	11/06	1012.8
FPSN7	33.5N	077.6W	0710	19.5					15.3	SW	39.2	14/08	1015.3
FWYF1	25.6N	080.1W	0640	24.7	25.8				11.9	SE	25.2	12/00	1014.8
GDIL1	29.3N	090.0W	0712	21.2	22.7				11.2	SE	27.3	24/05	1014.7
GLLN6 IOSN3	43.9N 43.0N	076.5W 070.6W	9717 9714	3.4 5.3					12.6	W	40.5	04/20	1013.7
LKWF1	26.6N	080.0W	0715	23.9	25.4				12.8	NW	43.5	95/13	1012.7
LONF1	24.9N	080.9W	0710	25.1	26.5				11.8 11.0	SE SE	29.3	06/07 21/05	1015.5
MDRM1	44.0N	068.1W	0717	3.6	20.3				14.0	NM 2F	46.0	05/12	1012.0
MISM1	43.8N	068.9W	0711	3.6					13.6	NW	43.6	95/14	1012.5
MLRF1	25.0N	080.4W	0705	25.0	26.0				11.0	SE	23.4	12/07	1014.2
NWP03	44.6N	124.1W	0711	9.2					8.9	E	29.2	07/10	1016.1
PILM4	48.2N	088.4W	0714	0.3					11.9	N	33.3	04/06	1015.4
PTAC1	39.0N	123.7W	0711	10.5					10.8	N	28.5	18/23	1017.3
PTAT2	27.8N	097.1W	0711	20.9	21.9				12.9	SE	33.7	11/06	1012.0
PTGC1	34.6N	120.7W	0713	12.2					17.0	H	43.5		1015.8
ROAM4	47.9N	089.3W	0712	0.6									1015.0

BUOY	LAT	LONG	OBS	MEAN AIR TP (C)	MEAN SEA TP (C)	MEAN SIG WAVE HT (M)	WAVE HT	WAVE HT (DA/HR)	SCALAR MEAN WIND SPEED (KNOTS)	PREV WIND (DIR)	WIND (KTS)	MAX WIND (DA/HR)	PRESS (MB)
SANF1	24.5N	081.9W	0712	24.9	25.5				11.4	E	24.3	03/12	1013.7
SAUF1	29.9N	081.3W	0710	20.0	20.0				8.7	N	24.4	06/23	1015.9
SBI01	41.6N	082.8W	0714	6.1	2010				12.6	NE	35.8	04/10	1014.5
SGNW3	43.8N	087.7W	0712	3.6	6.3				10.9	H	30.3	19/92	1014.9
SISW1	48.3N	122.9W	0708	9.0					10.3	W	38.1	11/02	1015.4
SMKF1	24.6N	081.1W	0710	25.3	26.1				12.4	SE	25.1	12/07	1014.5
SPGF1	26.7N	079.0W	0717	24.1	26.2				7.2	SE	21.8		1015.0
SRST2	29.7N	094.1W	0712	20.1	2012				12.2	SE	28.6		1013.2
STDM4	47.2N	087.2W	0716	0.8					15.2	E	45.4		1014.3
SUPN6	44.5N	075.8W	9718	4.2	3.9				9.6	SW	31.9		1012.7
SVLS1	32.0N	080.7W	0705	19.2	19.3				12.5	5	39.6		015.5
THIN6	44.3N	076.0W	0717	4.1									
TPLM2	38.9N	076.4W	0717	11.5	11.0				11.3	NW	31.4	05/02	1015.1
TTIW1	48.4N	124.7W	0716	8.6					10.7	SW	29.6	13/11	1015.7
VENF1	27.1N	082.5W	9712	22.1	24.9				8.4	NE	26.4	06/06	1015.1
WPOW1	47.7N	122.4W	0715	9.4					6.3	S	26.1	13/11	1015.7
MAY 1	995												
TPLM2	38.9N	976.4W	0714	22.0	22.7				10.4	S	34.8		016.0
TTIW1	48.4N	124.7W	0712	12.4					9.7	W	28.3		1017.4
VENF1	27.1N	082.5W	0717	26.3	28.9				8.8	NE	28.5		1015.1
WPOW1	47.7N	122.4W	0718	14.4					4.6	NE	17.6		1016.4
41001	34.7N	072.6W	0519	20.4	20.5	1.5	3.1	11/12	11.4	S	24.3		1015.6
41002	32.3N	075.2W	0741	22.7	24.2	1.5	3.3	03/01	11.5	E	23.5		1015.3
41004	32.5N	079.1W	0743		23.3	1.0	2.3	02/11	11.3	SW	25.5		
41006	29.3N	077.3W	0363	25.3	26.0	1.2	2.2	20/09	9.1	E	22.7		1015.0
41009	28.5N	080.2W	1484	25.7	25.6	0.8	1.9	24/02	10.5	SE	29.1		1015.0
41010	28.9N	078.5W	1484	25.3	26.3	1.1	2.5	20/16	9.1	E	24.3		1014.9
41016	24.6N	076.5W	0730	26.4	27.4	0.3	0.9	10/11	8.4	E	28.7		1016.5
41021	31.9N	080.9W	0739	23.3	23.4	0.7	1.3	20/20	11.4	S	38.1		1014.6
42001	25.9N	089.7W	0738	26.4	26.6	1.0	2.7	14/13	12.5	SE	23.9		1013.3
42002	25.9N	093.6W	0742	25.7	25.8	1.3	2.7	08/09	13.7	SE	26.8		
42003	25.9N	085.9W	0736	27.3	28.2	0.7	1.7	09/14	10.9	SE	26.2		1013.5
42007	30.1N	088.8W	0743	24.6	25.7				12.2	S	26.4		1013.9
42016	30.1N	088.2W	0219	25.9	26.6	0.5	1.4	24/18	8.8	SE	24.9		
42020	27. GN	096.5W	0742	25.5		1.5	3.8	98/97	12.9	SE	26.6	08/03	1010.1
42025	24.9N	080.5W	0742	26.5	27.8	0.4	1.6	05/12					
42035	29.3N	094.4W	9723	24.5	25.4	1.0	2.7	08/07	12.6	SE	30.1		1011.9
42036	28.5N	084.5W	0726	26.0	25.4	0.7	2.0	20/04	8.3	SE	21.8		015.3
42037	24.5N	081.4W	0740	27.1	27.6	0.5	1.8	05/11	7.7	E	26.4	05/09	014.9
44004 1014.0	38.5N	979.7W	0737	16.2	17.1	1.9	5.4	03/14					
44005	42.9N	069.0W	0774	77	. 7		2.0	00/00	0.0		22.4	00/04	1012 4
44006			0734	7.7	6.7	1.5	3.9	08/06	9.6	S	32.4		1013.4
44007	36.3N 43.5N	075.5W 070.2W	9749 9741	17.4			2.4	03/02	9.3	S	24.9		1015.1
44008				8.7	7.6	1.0	3.5	04/21	7.7		27.4		1012.5
44009	40.5N 38.5N	069.4W 074.7W	9735 9733	14 1	7.5	1.7	5.1	01/20 03/02	10.8	S	32.1		1013.4
44010	36.0N	074.7W	0733	14.1 17.2	13.0 16.5	1.2	3.1	03/02	9.8	5	27.4		1014.4
44011	41.1N	066.6W	0740	9.0	9.8	2.2	6.6	03/02	12.7	N	41.0		1012.1
44013	42.4N	070.7W	0736	10.2	9.0	0.9	2.1	04/18	8.9	SE	25.6		1013.1
44014	36.6N	074.8W	0723	15.0		0.9	2.1	04/ 10	8.3	S	23.9		2013.1
44019	36.4N	975.2W	0741	16.2	14.9				9.1	5	24.1		1015.3
44025	40.3N	973.2W	0738	11.7	10.4		2.8	01/12	9.7	5	28.4		1013.6
44028	41.4N	071.1W	0729	11.0	9.8		2.3		12.0	SW	29.3		1013.6
45001	48.1N	087.8W	0749	4.3	2.3		1.9		9.2	SW	24.5		1013.4
45002	45.3N		9749							28	20.6		
45002	45.3N	086.4W 082.8W	9749	5.7 5.3	3.3		2.0		8.2 9.2	2	27.6	14 /05	1013.1
45004	47.6N	086.5W	0744		2.6		2.3		9.2		26.6		
1013.9				4.3						-			
45005 1013.7	41.7N	082.4W	0742	12.2	11.1	0.5	1.5	28/00	8.9	SW	21.4	24/18	

BUOY	LAT	LONG	OBS	MEAN AIR TP (C)	MEAN SEA TP (C)	MEAN SIG WAVE HT (M)	MAX SIG WAVE HT (M)	MAX SIG WAVE HT (DA/HR)	SCALAR MEAN WIND SPEED (KNOTS)	PREV WIND (DIR)	MAX WIND (KTS)	MAX WIND (DA/HR)	MEAN PRESS (MB)
45006	47.3N	089.9W	0742	4.8	2.1	9.7	1.9	09/18	8.3	NE	19.3	13/23	1013.9
45007	42.7N	087.0W	0739	6.8	4.2		1.6		8.0	N	20.2		1013.6
45008	44.3N	082.4W	0741	5.5	.3.0		1.5		7.6	SW	20.4	14/07	1013.6
45010	43.0N	087.8W	9646	9.0	7.1	0.5	1.6	09/08	8.6	N	19.8	28/00	1013.3
46001	56.3N	148.2W	9742		5.7	2.3	6.3						1010.2
46002	42.5N	130.3W	9749	11.1	11.9	2.2	4.6		13.5	N	27.2		1019.7
46005 46006	46.1N 40.9N	131.0W 137.5W	9742 9738	10.0	10.6 12.2	2.1	5.1		12.1	NW	24.7 17.9		1020.0
46011	34.9N	120.9W	0740	12.0	12.2	2.0	5.2		7.8	HW	21.6		1023.3
46013	38.2N	123.3W	0741	11.3	10.9	2.1	5.3	13/21	14.7	NW	30.9		1014.6
46014	39.2N	124.0W	0743	11.0	10.5	2.2	4.7	13/20	11.6	NW	25.3	01/05	1015.1
46022	40.8N	124.5W	0742	11.5	11.5	2.3	5.1	14/03	13.3	N	28.0	13/11	1016.4
46023	34.3N	120.7W	0341	11.8	11.5	1.7	2.8	24/19	14.2	NW	23.9	27/03	1014.5
46025	33.8N	119.1W	0668	13.9	14.8	1.1	2.5	06/00	7.3	W	26.4	13/05	1014.3
46026	37.8N	122.8W	9742	11.6	11.2	1.7	4.3	13/09	11.3	NW	29.3	05/04	1014.7
46027	41.9N	124.4W	074				4.0	25, 65	2210	****	23.3	03/01	202711
46028	35.7N	121.9W	0739	12.1	12.5	2.2	4.7	13/17	13.4	NW	24.7	12/03	1015.7
46029	46.2N	124.2W	9739	11.6	12.4	1.8	3.5	11/06	10.5	N	23.3	11/02	1016.7
46030	40.4N	124.5W	9744	10.7	10.1	2.2	4.6	13/16					1015.2
46035	57.0N	177.7W	9749	2.4	3.2	1.5	4.2	20/18	13.2	NE	24.7	20/05	1006.5
46041	47.4N	124.5W	9742	11.0	11.9	1.7	3.4	12/13	8.9	NW	22.3	11/07	1016.0
46042	36.8N	122.4W	0738	12.0	12.0	2.1	4.9	13/13	10.9	NW	22.0	05/05	1015.1
46045	33.8N	118.5W	9749	13.9	14.7	0.9	2.5	13/07	6.7	W	24.7	13/06	1014.2
46050	44.6N	124.5W	0742	12.0	12.1	1.9	3.8	12/06	12.0	- N	27.6	11/06	1016.2
46053	34.2N	119.9W	0744	12.8	12.6	1.0	2.4	11/23	11.4	W	32.8	12/00	1014.9
46054	34.3N	120.5W	0744	12.4	12.0	1.7	3.6	11/09	16.2	NW	29.3	12/17	1015.0
46059	38.0N	130.0W	0741	12.8	13.8	2.3	5.0	14/10	14.1	N	27.4	14/00	1020.8
46060	69.6N	146.8W	0748	7.2	7.5	0.6	1.8	26/04		-			1015.6
46061	60.2N	146.8W	9769	7.1	7.7	1.4	3.2	26/07	13.0	E	33.2	24/12	1015.5
51001	23.4N	162.3W	0740	23.2	24.2	1.9	5.0	96/18	12.0	E	20.1		1018.5
51002	17.2N	157.8W	0741	25.1	25.6			07/00	15.2	NE	22.8	11/22	1015.1
51003	19.1N	160.8W	0744	24.9	25.7	2.0	3.9	07/03	12.0	E	20.2	06/23	1016.2
51004 51026	17.4N	152.5W 156.9W	0736	24.9	25.7	2.1	3.5	19/12	13.7	E	22.9	11/14	1016.8
51027	21.4N 20.5N	157.1W	0742 0741	23.2	23.8	1.8	3.4 2.5	97/94 97/94	13.8	E	22.3		1018.1
91222	18.1N	145.8E	0418	27.5	23.0	1.5	2.5	0//04				11/00	1016.6
91251	11.4N	162.4E	0738	27.4					7.6 15.4	E	17.8	06/00 01/19	1011.9
91328	8.6N	149.7E	9742	28.2							26.9		1010.0
91338	5.3N	153.7E	0563	28.3					7.0 4.1	NE NE	15.5 17.5	27/02	1010.9
91343	7.6N	155.2E	9749	28.1					9.4	NE	21.3	31/21	1008.8
91352	6.2N	160.7E	9724	27.9					8.0	NE	22.2	07/01	1010.8
91355	5.4N	163.0E	0742	27.5					5.9	E	22.5	05/14	1008.5
91377	6.1N	172.1E	0599	28.0					8.5	NE	27.2		1011.6
ABAN6	44.3N	075.9W	9737	12.6	8.7				4.4	S	18.2	28/17	1013.5
ALSN6	40.5N	073.8W	9741	13.9	12.3				13.3	S	31.9	01/04	1013.9
BLIA2	60.9N	147.9W	0574	7.4					7.3	SW	31.1	26/06	1015.7
BURL1	28.9N	089.4W	0737	24.7					11.2	S	24.5	19/14	1013.8
CAR03	43.3N	124.4W	0739	11.0					10.6	N	28.4	11/08	1016.2
CDRF1	29.1N	083.0W	0492	26.3					8.4	SW	24.7	23/22	1015.1
CHLVZ	36.9N	075.7W	0743	17.0	18.5	0.8	1.6	18/01	13.6	SW	33.9	02/08	1015.2
CLKN7	34.6N	076.5W	9749	21.3					11.3	SW	24.1	20/12	1016.3
CSBF1	29.7N	085.4W	0739	24.5					7.0	SE	26.5	12/02	1015.5
DBLN6	42.5N	079.4W	0742	12.2					10.6	SW	27.3	21/20	1013.6
DESW1	47.7N	124.5W	0716	11.0					10.0	HW	33.9	13/23	1016.0
DISW3	47.1N	090.7W	0739	7.4					12.0	SW	28.4	09/12	1017.0
DPIA1	30.3N	088.1W	0743	24.4					10.5	S	27.1	10/17	1014.9
DRYF1	24.6N	082.9W	0738	27.3	28.1				8.8	E	23.8	21/00	1014.7
DSLN7	35.2N	075.3W	0736	20.5		1.1	2.3	19/08	16.8	NE	46.7	02/11	1016.5
FBIS1	32.7N	079.9W	0741	23.5					10.3	SW		02/08	1015.2
FFIA2	57.3N	133.6W	0741	10.5	22.4				6.8	S			1016.9
FPSN7	33.5N	077.6W	0717	22.5	22.8	0.9	1.7	31/13	15.1	SW			1015.0
FWYF1	25.6N	080.1W	0739	27.2	27.7				10.7	E	31.1	05/10	1015.3

BUOY	LAT	LONG	OBS	MEAN AIR TP (C)	MEAN SEA TP (C)	WAVE HT	WAVE HT	WAVE HT (DA/HR)	SCALAR MEAN WIND SPEED (KHOTS)	PREV WIND (DIR)	WIND (KTS)	WIND (DA/HR)	MEAN PRESS (4B)
GDIL1	29.3N	090.0W	0742	25.5	27.5				10.2	5	23.9	18/10	1014.3
LLN6	43.9N	076.5W	0740	9.8					11.6	W	28.7	29/00	1012.7
OSN3	43.0N	070.6W	0744	10.3					11.2	5	33.1	07/22	1012.9
TNF1	29.8N	083.6W	0408	25.4					8.5	SW	27.8	19/22	1015.3
KWF1	26.6N	080.0W	0738	26.5	27.4				9.4	E	21.8	19/22	1015.9
ONF1	24.9N	080.9W	0734	27.4	29.4				9.1	SE	34.3	05/11	1014.9
DRM1	44.0N	968.1W	0740	7.5					11.8	S	37.8	08/06	1013.1
ISM1	43.8N	068.9W	0736	7.7		0			12.1	5	36.6	87/04	1013.2
LRF1	25.0N	080.4W	0703	27.2	27.7				9.2	E	33.3	05/11	1015.0
WPO3	44.6N	124.1W	0738 0742	10.8					9.4	NW	26.1	31/02	1015.8
OTAZ	48.2N 60.3N	088.4W 147.3W	0244	5.8 7.2					11.1	W	29.2	16/15 27/14	1013.7
TAC1	39.0N	123.7W	0738	11.1					6.7	N	28.0	01/06	1007.8 1014.9
TAT2	27.8N	097.1W	0727	25.0	26.1				14.6	SE	36.6	29/16	1010.6
TGC1	34.6N	120.7W	0743	11.8	20.2				15.4	N	30.0	12/10	1014.5
OAM4	47.9N	089.3W	0743	7.7					13.2	NE	32.8	22/20	1013.2
ANF1	24.5N	081.9W	0741	27.2	28.1				9.6	E	25.6	05/11	1014.4
ANF1	24.5N	081.9W	9741	27.2	28.1				9.6	E	25.6	05/11	1014.4
AUF1	29.9N	081.3W	9738	24.4	24.4				9.9	SW	25.3	22/20	1015.5
BIO1	41.6N	082.8W	0743	14.1					10.4	NE	27.5	28/13	1013.9
GNW3	43.8N	087.7W	0741	10.8	11.0				10.5	5	28.4	14/17	1014.5
ISW1	48.3N	122.9W	0742	11.2					9.1	W	28.8	31/04	1015.2
MKF1	24.6N	981.1W	0738	27.6	28.3				10.1	E	40.3	05/11	1015.2
PGF1	26.7N	079.0W	0736 0742	26.6	28.1				5.3	SE	16.6	24/00	1015.5
RST2	29.7N 47.2N	094.1W 087.2W	0742	24.5 7.7					13.1 15.9	SE	32.2	98/96 39/21	1012.3 1013.0
UNE	1995												
1001	34.7N	072.6W	0710	23.5	21.6	1.5	5.7	07/05	10.7	S	30.7	07/06	1015.4
1004	32.3N 32.5N	075.2W 079.1W	9719 9716	24.6	25.0	1.4	5.8	07/01 06/11	9.9	SW	29.1	96/19 96/95	1014.7
1006	29.3N	077.3W	9716	26.2	26.6	1.1	2.9	96/95	11.4	SW	27.8	06/03	1014.2
1009	28.5N	080.2W	1436	26.4	26.7	0.8	2.0	17/23	10.6	S	26.4	04/22	1014.6
1010	28.9N	078.5W	1434	26.5	27.3	1.3	3.4	96/99	10.6	SW	28.2	26/00	1014.5
1016	24.6N	076.5W	0219	27.4	28.2	0.8	3.8	04/08	12.5	SE	22.1	04/08	1016.5
1021	31.9N	080.9W	9715	25.6	26.5	0.6	2.3	06/03	10.3	SE	32.8	06/04	1014.1
2001	25.9N	089.7W	9712	27.2	28.1	0.8	1.9	05/15	10.8	NE	27.6	26/17	1013.9
2002	25.9N	093.6W	0714	27.3	27.9	0.9	2.2	96/95	10.8	SE	21.4	09/09	1013.4
2003	25.9N	085.9W	0710	27.2	28.8	8.8	2.0	25/23	10.5	E	52.8	04/15	1013.2
2007	30.1N	088.8W	0718	26.7	28.4				9.9	SW	23.9	29/18	1014.3
2016	30.1N	088.2W	9189	27.5	28.8				8.4	SW	16.1	29/23	1013.4
2020	27.0N	096.5W	0714	27.3		1.1	2.8	11/13	11.3	SE	29.9	11/12	1013.0
2025	24.9N	080.5W	0631		28.5	0.5	2.0	21/21	44 -				
2035	29.3N	094.4W	0701	27.2	28.4	0.7	2.0	30/15	11.5	SE	31.5	01/08	1013.8
2036	28.5N	084.5W	0709	26.9	26.9	0.9	5.3	05/07	9.5	SW	38.3	05/11	1014.9
2037	24.5N 38.5N	081.4W 070.7W	0715 0714	27.6	28.4	0.6	2.0 5.5	04/15	8.5	E	19.8	02/04	1014.8
4005	42.9N	069.0W	0714	20.4	20.1	1.3	3.5	07/12 08/03	9.2	SW	21.0	08/03	1016.0
4006	36.3N	075.5W	0238	22.1	21.8	0.8	2.0	06/23	8.8	NE	25.6	07/01	1014.1
4007	43.5N	079.2W	0713	14.8	13.1	0.6	1.6	08/06	7.6	S	17.1	05/18	1014.5
4008	40.5N	969.4W	9711	_,,,	10.6	1.1	4.9	07/21	8.8	SW	26.4	07/22	1016.1
4009	38.5N	074.7W	0714	19.7	19.3	0.9	2.7	28/05	9.2	NE	22.7	27/21	1015.7
4010	36.0N	075.0W	0252	23.1	22.8				9.2	S	26.8	07/04	1014.0
4011	41.1N	966.6W	0712	12.4	10.1	1.3	6.4	08/00	9.7	SW	26.8	07/23	1015.6
4013	42.4N	979.7W	0713	16.3		0.5	2.0	27/12	7.8	SW	20.4	07/21	1015.4
4014	36.6N	074.8W	0670	21.5	21.6	1.1	2.4	28/18	7.1	NE	27.8	07/04	1016.7
4019	36.4N	075.2W	0262	21.0	19.6				8.6	NE	24.3	06/13	1014.4
4025	40.3N	073.2W	0710	17.6	17.1	1.0	3.0	27/16	10.7	S	24.7	27/16	1015.5
4028	41.4N	971.1W	0706	16.1	15.1	0.6	1.8	07/16	11.0	SW	27.0		1015.9
5001	48.1N 45.3N	987.8W	9717	6.1	3.2	0.4	2.7	07/11	7.8	SE	26.6		1015.1
5002		086.4W	9715	12.8	10.5	0.3	1.1	87/17	7.2	S	20.6	07/16	1014.5

BUOY	LAT	LONG	085	MEAN AIR TP (C)	MEAN SEA TP (C)	MEAN SIG WAVE HT (M)	MAX SIG WAVE HT (M)	WAYE HT (DA/HR)	SCALAR MEAN WIND SPEED (KNOTS)	PREV WIND (DIR)	MAX WIND (KTS)		MEAN PRESS (MB)
45003	45.3N	082.8W	0716	10.2	6.8	0.3	1.4	08/01	7.4	E	19.2	07/19	1015.3
45004	47.6N	086.5W	0718	6.3	3.3	0.4	2.3	97/14	7.2	E	18.8	07/11	1015.7
45005 45006	41.7N	082.4W	0715	19.4	18.9	0.4	1.3	21/16	7.6	E	22.0	27/84	1014.4
45007	47.3N 42.7N	089.9W 087.0W	0719 0715	6.9 15.6	3.3	0.5	2.5	97/16 98/97	6.7	NE S	21.9	07/17 08/01	1015.2
45008	44.3N	082.4W	0710	12.3	10.2	0.4	1.8	98/92	6.7	N	21.4	08/06	1015.1
45010	43.0N	087.8W	0225	21.1	21.3	0.3	0.6	26/11	6.4	NE	17.7	30/23	1011.5
46001	56.3N	148.2W	0712		8.0	1.8	5.7	03/20	0.4	n.	21.1	30/ 23	1011.5
46002	42.5N	130.3W	9717	13.1	13.7	2.4	6.1	10/11	13.8	NW	24.3	18/13	1019.4
46003	51.9N	155.9W	0714	6.7	6.8	2.1	5.4	19/06	11.7	S	23.7	19/01	1009.1
46005	46.1N	131.0W	0715	12.1	12.6	2.2	6.0	10/07	13.2	NW	26.4	09/20	1018.5
46006	40.9N	137.5W	9711	13.2	13.4	2.4	8.3	09/19	12.8	S	28.4	03/14	1022.3
46011	34.9N	120.9W	9719	12.3	12.3	2.0	5.1	97/91	12.0	HW	29.5	06/00	1013.6
46013	38.2N	123.3W	0713	11.7	10.7	2.1	4.5	96/23	14.8	NW	32.1	06/21	1015.4
46014	39.ZN	124.0W	0215	10.9	9.8	2.3	5.0	07/03					1017.1
46022	40.8N	124.5W	0242	11.5	11.2	2.1	4.3	10/19	11.2	NW	27.0	07/02	1018.9
46023 46025	34.3N 33.8N	120.7W	9710	12.6	12.6	2.1	5.2	06/09	16.0	HW	32.6	95/22	1013.1
46025	33.8N 37.8N	119.1W 122.8W	9624 9711	15.5 11.8	16.6	1.8	2.3	97/91 97/99	6.3	W	23.5	16/07	1013.3
46027	41.9N	124.48	0169	11.8	10.7	2.0	3.9	96/97	8.9	NW	25.5	98/99	1018.1
46028	35.7N	121.9W	0712	12.7	13.0	2.3	5.3	07/03	15.7	NW	33.2	96/99	1015.0
46029	46.2N	124.2W	0717	13.1	13.3	1.9	4.5	07/09	11.0	N	23.1	12/11	1017.7
46030	40.4N	124.5W	0714	11.0	10.2	2.1	4.1	11/02	7.8	S	14.8	29/20	1016.4
46035	57.0N	177.78	9717	4.7	6.0	1.2	2.6	26/19	10.9	N	21.4	27/07	1017.8
46041	47.4N	124.5W	9718	12.3	12.4	1.7	4.6	97/96	7.9	NW	23.3	12/14	1017.0
46042	36.8N	122.4W	9716	12.2	11.8	2.1	5.0	07/03	11.4	NW	25.1	06/19	1015.2
46045	33.8N	118.5W	0712	15.7	16.9	0.9	2.1	97/94	5.6	SW	18.8	16/20	1013.1
46050	44.6N	124.5W	0715	11.5	12.9	2.0	4.1	07/11	12.3	N.,	24.9	17/14	1016.9
46053	34.2N	119.9W	0719	14.4	14.8	1.2	2.9	96/19	9.5	W	32.1	06/22	1013.8
46054	34.3N	120.5W	0719	13.0	13.1	2.1	4.7	07/03	17.8	NW	33.6	05/07	1013.9
46059	38.0N	130.0W	0711	14.6	14.9	2.3	4.7	10/17	13.9	N	21.8	16/00	1021.4
46060	60.6N	146.8W	1428	9.9	10.4	0.4	1.8	98/94	7.6	SW	19.6	23/08	1015.3
46061 51001	60.2N 23.4N	146.8W	1434 0716	9.6	9.9	1.1	4.1	04/20	9.4	E	36.1	07/06	1015.7
51002	17.2N	162.3W 157.8W	0719	24.7 25.4	25.7 25.9	1.7	2.6 1.9	11/19 22/21	12.2	E	23.4	15/17 12/08	1018.1
51003	19.1N	160.8W	0717	25.7	26.5	1.4	2.7	13/00	15.4 10.6	NE E	22.8	21/04	1015.0 1016.0
51004	17.4N	152.5W	0710	25.3	26.4	2.1	3.3	14/01	14.6	Ē	22.7	14/10	1016.6
51026	21.4N	156.9W	0716	24.3	24.8	1.6	2.5	11/19	14.4	Ē	22.2	05/11	1017.7
51027	20.5N	157.1W	0714	25.0	25.6	1.4	2.8	13/05	13.3	E	23.9	14/19	1016.2
91222	18.1N	145.8E	0307	28.2				20. 00	5.1	E	17.7	04/13	1012.5
91251	11.4N	162.4E	0714	27.9					14.8	E	27.9	05/02	1010.3
91328	8.6N	149.7E	0710	28.0					7.1	NE	16.1	12/03	1011.3
91338	5.3N	153.7E	0496	28.1					5.5	NE	23.3	25/06	1009.5
91343	7.6N	155.2E	0714	28.1					10.2	NE	23.5	25/14	1009.3
91352	6.2N	160.7E	0709	27.6					8.2	NE	22.4	07/00	1011.3
91355	5.4N	163.0E	0716	27.3					6.1	E	20.8	20/00	1008.8
91377	6.1N	172.1E	0451	27.7	15.0				8.5	NE		01/11	1012.0
ABAN6 ALSN6	44.3N 40.5N	075.9W 073.8W	0711	18.4	15.0				3.3	S	13.9	20/20	1015.4
BLIAZ	60.9N	147.9	0717 1424	18.9	15.7				13.9	S	35.1	27/14	1016.0
BURL1	28.9N	089.4W	0175	9.7 26.3					5.6	NW NE	21.8	23/09	1016.1
CARO3	43.3N	124.4W	0716	11.7					8.4 9.4	NE		01/17 09/20	1013.9 1017.0
CDRF1	29.1N	083.0W	0716	26.2					9.4	*	25.6 33.7	05/13	1017.0
CHLVZ	36.9N	075.7W	0717	21.7	21.8	0.8	2.3	28/20	10.9	E	27.1	07/08	1015.7
CLKN7	34.6N	076.5W	0714	24.6	22.0	0.0	2.3	20/20	9.8	E	31.8	06/23	1016.0
CSBF1	29.7N	085.4W	0715	26.0					8.2	W	36.7	05/15	1015.1
DBLN6	42.5N	079.4W	0716	19.1					6.9	SW	22.3	20/23	1015.0
DESW1	47.7N	124.5W	9717	12.7					10.6	NW			1017.1
DISW3	47.1N	090.7W	0715	12.8					8.2	NE			1015.1
OPIA1	30.3N	088.1W	0717	26.4					8.1	SW	21.4	12/23	1015.1
DRYF1	24.6N	082.9W	0711	27.6	28.7				9.9	SE			1014.5
DSLN7	35.2N	075.3W	0710	24.4		1.1	4.3	07/02	13.5	SW			1016.3
FBIS1	32.7N	079.9W	0718	25.4					8.6	SE	30.4		1014.9
FFIA2	57.3N	133.6W	0709	12.0	22.5				6.3	S	21.7		1016.5
FPSN7 FWYF1	33.5N 25.6N	977.6W	9716	24.7	22.7	1.1	4.6	96/17	11.8	SW			1014.8
HILT	23.0M	080.1W	0714	27.3	28.3				11.6	SE	32.4	06/20	1015.2

BUOY	LAT	LONG	OBS	MEAN AIR TP (C)	MEAN SEA TP (C)	MEAN SIG WAVE HT (M)	MAX SIG WAVE HT (M)	WAVE HT (DA/HR)	SCALAR MEAN WIND SPEED (KNOTS)	PREV WIND (DIR)	MAX WIND (KTS)	MAX WIND (DA/HR)	MEAN PRESS (MB)
GDIL1	29.3N	090.0W	0716	26.9	29.2		-		8.3	S	29.1	24/23	1015.0
GLLN6	43.9N	976.5W	9717	17.5					8.7	S	21.0		1014.8
IOSN3	43.0N	979.6W	0713	17.4					11.2	S	25.9	02/03	1015.0
KTNF1	29.8N	083.6W	9714	25.4					9.5	W	38.6	05/14	1014.3
LKWF1	26.6N	080.0W	9716	26.7	27.9				9.9	SE	34.6	22/01	1015.8
LONF1	24.9N	080.9W	0715	27.8	29.5				9.7	SE	26.9	20/23	1014.8
MDRM1	44.0N	068.1W	0713	12.0					12.3	SW	27.6	15/23	1014.7
MISM1	43.8N	068.9W	0715	13.0					12.4	SW	23.9	02/02	1014.9
MLRF1	25.0N	080.4W	9718	27.6	28.5				9.7	SE	31.4	21/20	1014.8
NWP03	44.6N	124.1W	0716	12.0					9.6	NW	27.2	26/03	1016.7
PILM4	48.2N	088.4W	0714	9.2					10.3	E	29.1	01/04	1015.3
POTA2	60.3N	147.3W	1426	10.1					6.8	SW	27.6	10/16	1015.4
PTAC1	39.0N	123.7W	0716	11.6					11.4	N	28.5	26/19	1015.7
PTAT2	27.8N	097.1W	0715	27.1	28.8				13.1	SE	27.8	11/11	1013.4
PTGC1	34.6N	120.7W	9714	12.3					16.6	H	35.1	05/13	1013.6
ROAM4	47.9N	089.3W	0713	12.2					12.0	NE	34.3	07/05	1014.6
SANF1	24.5N	081.9W	0715	27.6	29.1				10.7	E	27.1	21/19	1014.2
SAUF1	29.9N	081.3W	0715	25.5	27.1				8.9	SW	30.7	10/06	1015.0
SBI01	41.6N	082.8W	0718	20.6					7.1	E	23.7	14/05	1014.7
SGNW3	43.8N	087.7W	9718	18.1	14.3				7.8	N	33.0	08/02	1015.5
SISW1	48.3N	122.9W	0714	12.6					10.6	SW	29.3	03/03	1016.3
SMKF1	24.6N	081.1W	0719	28.0	29.0				11.2	SE	28.5	21/20	1015.0
SPGF1	26.7N	079.0W	9714	27.3	28.7				5.8	SW	23.3	21/06	1015.3
SRST2	29.7N	094.1W	0715	26.5					10.7	SE	26.1	29/02	1014.1
STDM4	47.2N	087.2W	0713	14.1					14.2	SE	31.5	17/03	1014.6
SUPN6	44.5N	075.8W	9714	19.0	15.9				7.3	S	22.4	26/19	1015.7
SVLS1	32.0N	080.7W	0699	25.4	26,4			*	12.4	E	39.8		1014.7
THIN6	44.3N	076.0W	0717	18.6					-		3444		

Port Meteorological Services

SEAS Field Representatives

Mr. Robert Decker Seas Logistics/PMC 7600 Sand Point Way, N.E. Seattle, WA 98115 206-526-4280 FAX: 206-526-6365 TELEX 6735154/BOBD

Mr. Steven Cook SEAS Operation Manager 8604 LaJolla Shores Drive LaJolla, CA 92037 619-546-71-3 FAX: 619-546-7003 TELEX 7=6735178/COOK

Mr. Robert Benway National Marine Fisheries Service 28 Tarzwell Drive Narragansett, RI 02882 401-782-3295 FAX: 401-782-3201 Mr. Jim Farrington SEAS Logistics/A.M.C. 439 West York Street Norfolk, VA 23510 804-441-3062 FAX: 804-441-6495 TELEX 6735011/MAPA

Mr. Warren Krug Atlantic Oceanographic & Met. Lab. 4301 Rickenbacker Causeway Miami, FL 33149 305-361-4433 FAX: 305-361-4582 TELEX 6735213 LORI

DMA Representatives Tom Hunter DMA/HTC Rep. ATTN: MCC 4 (Mail Stop D44) 4600 Sangamore Road Bethesda, MD 20816 301-227-3370 FAX: 301-227-4211 Walt Holtgren DMA/HTC Gulf Coast Rep. One Canal Place 365 Canal St., Suite 2300 New Orleans, LA 70130 504-589-2642 FAX: 504-589-2686

Gary Rogan DMA/HTC West Coast Rep. Eleven Golden Shore Suite 410 Long Beach, CA 90802 310-980-4471 FAX: 310-980-4472 Australia Michael J. Hills, PMA Pier 14, Victoria Dock Melbourne, Vic. Tel: +613 6291810 TELEX: AA151586

Captain Alan H. Pickles, PMA Stirling Marine, 17 Mews Road Fremantle, WA 6160 Tel: +619 3358444 Fax: +619 3353286. Telex: AA92821

E.E. (Taffy) Rowlands, PMA NSW Regional Office Bureau of Meteorology, 580 George St. Sydney, NSW 2000 Tel:+612 2698555 Fax: +612 2698589 Telex AA24640

China YU Zhaoguo Shanghai Meteorological Bureau 166 Puxi Road, Shanghai, China

Denmark Commander Lutz O. R. Niegsch PMO, Danish Meteorological Instit. Lyngbyvej 100, DK-2100 Copenhagen, Denmark Tel:+45 39157500 FAX:+45 39157300

England Bristol Channel Captain Austin P. Maytham, PMO Rm 3.52, Companies House Crown Way, Cardiff CF4 3UZ Tel:+ 44 1222 221423 FAX:+44 1222 225295

East England Captain John Steel, PMO Customs Bldg, Albert Dock Hull HU1 2DP Tel: +44 1482 320158 FAX: +44 1482 328957

Northeast England Captain Gordon Young, PMO Able House, Billingham Reach Industrial Estate, Cleveland TS23 1PX Tel: +44 1642 560993 FAX:+44 1642 562170

Northwest England Captain Jim Williamson, PMO Room 313, Royal Liver Building Liverpool L3 1JH Tel:+44 151 2366565 FAX: +44 151 2274762

Scotland and Northern Ireland PMO Navy Buildings, Eldon St. Greenock, Strathclyde PA16 7SL Tel: +44 1475 724700 FAX:+44 1475 892879

Southeast England E.J. O'Sullivan, PMO Daneholes House, Hogg Lane Grays, Essex RM17 5OH Tel:+44 1375 378369 FAX:+ 44 1375 379320

Southwest England Captain Douglas R. McWhan, PMO 8 Viceroy House, Mountbatten Centre Millbrook Rd. East, Southampton SO15 1HY Tel:+44 1703 220632 FAX: +44 1703 337341

France

Yann Prigent, PMO Station Mét., Noveau Semaphore Quai des Abeilles, Le Havre Tel: +33 35422106 Fax: +33 35413119

P. Coulon Station Météorologique de Marseille-Port 12 rue Sainte Cassien 13002 Marseille Tel: +33 91914651 ext. 336

Germany

Henning Hesse, PMO Wetterwarte, An der neuen Schleuse Bremerhaven Tel: +49 47172220 Fax: +49 47176647

Jurgen Guhne, PMO Deutscher Wetterdienst Seewetteramt Bernhard Nocht-Strasse 76 20359 Hamburg Tel: (040) 3190 8826

Greece George E. Kassimidis, PMO Port Office, Piraeus Tel: +301 921116 Fax: +3019628952

Hong Kong

H. Y. Chiu, PMO Royal Observatory Ocean Centre Office Room 1454, Straight Block 14/F Ocean Centre, 5 Canton Road Tsim Sha Tsui, Kowloon, Hong Kong Tel: +852 29263113 FAX:+852 23757555

Japan

Port Meteorological Officer Kobe Marine Observatory 14-1, Nakayamatedori-7-chome Chuo-ku, Kobe, 650 Japan FAX: 078-361-4472

Port Meteorological Officer Nagoya Local Meteorological Obs. 2-18, Hiyori-cho, Chikusa-ku Nagoya, 464 Japan FAX: 052-762-1242

Port Meteorological Officer Yokohama Local Met. Observatory 99 Yamate-cho, Naka-ku, Yokohama, 231 Japan FAX: 045-622-3520

Kenya

Ali J. Mafimbo, PMO PO Box 98512 Mombasa, Kenya Tel: +254 1125685 Fax: +254 11433440

Malaysia NG Kim Lai Assistant Meteorological Officer Malaysian Meteorological Service Jalan Sultan, 46667 Petaling Selangor, Malaysia

Mauritius Mr. S Ragoonaden Meteorological Services St. Paul Road, Vacoas, Mauritius Tel: +230 6861031 FAX: +230 6861033

Netherlands John W. Schaap, PMO KNMI,/Stationszaken Wilhelminalaan 10, PO Box 201 3730 A.E. DeBilt, Netherlands Tel: +3130 206391 FAX: +3130 210849

New Zealand Julie Fletcher, MMO Met. Service of New Zealand Ltd. Tahi Rd., PO Box 1515 Paraparaumu Beach 6450, New Zealand Tel: +644 2973237 FAX: +644 2973568

Norway Tor Inge Mathiesen, PMO Norwegian Meteorological Institute Allègaten 70, N-5007 Bergen, Norway Tel: +475 55236600 FAX: +475 55236703

Poland Jozef Kowalewski,PMO Waszyngtona 42, 81-342 Gdynia Tel: +4858 205221 Fax: +4858 207101

Saudi Arabia Mahmud Rajkhan, PMO National Met. Environment Centre eddah Tel:+ 9662 6834444 ext. 325

Singapore Edmund Lee Mun San, PMO Meteorological Service, PO Box 8 Singapore Changi Airport Singapore 9181 Tel: +65 5457198 FAX: +65 5457192

South Africa
C. Sydney Marais, PMO
C/O Weather Office
D.F. Malan Airport 7525
Tel: + 2721 9340450 ext. 213 Fax: +2721 9343296

Gus McKay, PMO Meteorological Office Louis Botha Airport Durban 4029 Tel: +2731 422960 Fax: +2731 426830

Sweden Morgan Zinderland SMHI S-601 76 Norrköping, Sweden

Atlantic Ports

Charles E. Henson, PMO National Weather Service, NOAA 2550 Eisenhower Blvd, No. 312 PO Box 165195, Port Everplades, FL. 33916 305–463–4271 FAX/Tel: 305–462–8963

Lawrence Cain, PMO National Weather Service, NOAA 13701 Fang Rd. Jacksonville, FL 32218 904-741-5186

Martin Bonk, PMO, Norfolk National Weather Service, NOAA Norfolk International Airport Norfolk, VA 23518 804-858-6194 FAX: 804-853-6897

James Saunders, PMO National Weather Service, NOAA BWI Airport, Baltimore, MD 21240 410-850-0529 FAX: 410-859-5129

John Bolinger, PMO National Weather Service, NOAA Bldg. 51, Newark International Airport Newark, NJ 07114 Tel: 201-645-6188

PMO, New York National Weather Service, NOAA Bldg. 51, Newark International Airport Newark, NJ 07114 Tel: 201-645-6188

Randy Sheppard, PMO Environment Canada 1496 Bedford Highway, Bedford (Halifax) Nova Scotia B4A 1E5 902-426-6703

Denis Blanchard Environment Canada 100 Alexis Nihon Blvd., 3rd Floor Ville St. Laurent, (Montreal) Quebec H4M 2N6 Tel: 514-283-6325

D. Miller, PMO Environment Canada Bldg. 303, Pleasantville P.O. Box 21130, Postal Station "B" St. John's, Newfoundland A1A 5B2 709-772-4798

Gulf of Mexico Ports

John Warrelmann, PMO National Weather Service, NOAA Int'l Airport, Moisant Field, Box 20026 New Orleans, LA 70141 504-589-4839

James Nelson, PMO
National Weather Service, NOAA
Houston Area Weather Office
1620 Gill Road, Dickinson, TX 77539
713-534-2640 FAX: (713) 337-3798
Internet:jnelson@smtpgate.ssmc.noaa.gov

Pacific Ports PMO, W/PRx2 Pacific Region, NWS, NOAA Prince Kuhio Fed. Bldg., Rm 411 P.O. Box 50027 Honolulu, HI 96850 808-541-1670

Robert Webster, PMO National Weather Service, NOAA 501 West Ocean Blvd. Room 4480 Long Beach, CA 90802-4213 310-980-4090 FAX: 310-980-4089 TELEX: 7402731/BOBW UC

Robert Novak, PMO National Weather Service, NOAA 1301 Clay St. Suite 1190N Oakland, CA 94612-5217 510-637-2960 FAX 510-637-2961 TELEX: 7402795/WPMO UC

Patrick Brandow, PMO National Weather Service, NOAA 7600 Sand Point Way, N.E. Seattle, WA 98115-0070 206-526-6100 FAX: 206-526-6094

Bob McArter, PMO Environment Canada 700-1200 W. 73rd Av. Vancouver, British Columbia V69 6H9 604-664-9136

Duane Carpenter OIC National Weather Service, NOAA 600 Sandy Hook St., Suite 1 Kodiak, AK 99615 907-487-2102 FAX: 907-487-9730

Lynn Chrystal, OIC National Weather Service, NOAA Box 427, Valdez, AK 99686 907–835–4505

Greg Matzen, Marine Program Mgr. W/AR1x2 Alaska Region National Weather Service 222 West 7th Avenue #23 Anchorage, AK 99513-7575 907-271-3507

Great Lakes Ports

Amy Gustafson, PMO National Weather Service, NOAA 333 West University Dr. Romeoville, IL 60441 815–834–0600 xtn 525 FAX: 815–834–0645

George Smith, PMO National Weather Service, NOAA Hopkins International Airport Federal Facilities Bldg. Cleveland, OH 44135 216-265-2374

Ron Fordyce, Supt. Marine Data Unit Rick Shukster, PMO Keith Clifford, PMO Environment Canada Port Meteorological Office 100 East Port Blvd. Hamilton, Ontario L8H 7S4 905-312-0900 Fax: 905-312-0730

U.S. Headquarters

Vincent Zegowitz Marine Obs. Program Leader National Weather Service, NOAA Room 14112 1325 East West Highway Silver Spring, MD 20910 301-713-1677, ext 129 FAX: 301-713-1598

Murtin Baron VOS Program Manager National Weather Service, NOAA Room 14470 1325 East West Highway Silver Spring, MD 20910 301-713-1677, ext. 134 FAX: 301-713-1598

Mariners Weather Log National Weather Service SSMC2, 14th Floor 1315 East-West Highway Silver Spring, MD 20910 301-713-1677, ext. 129 FAX: 301-713-1598

Great Britain Headquarters

Captain Gordon V. Mackie, Marine Superintendent, BD (OM) Meteorological Office, Met O (OM) Scott Building, Eastern Road Bracknell, Berks RG12 2PW England Tel: +44-1344 855654 Fax: +44-1344 855921 Telex: 849801 WEABKA G

Australia Headquarters
A.D. (Tony) Baxter, Headquarters
Bureau of Meteorology
Regional Office for Victoria, 26 floor
150 Lonsdale Street
Melbourne, Vic 3001`
Tel: +613 6694000 FAX: +613 6632059

Japan Headquarters Marine Met. Div., Marine Dept. Japan Meteorological Agency 1-3-4 Otemachi, Chiyoda-ku Tokyo, 100 Japan FAX: 03-3211-6908

This discarded line is done fishing. But it's not done killing.

Carelessly discarded plastic fishing line can keep working long after you're done with it—entangling birds, seals, sea turtles, and other animals.

And because plastic line is strong and durable, it's nearly impossible for these animals to break free. They strangle, drown, or starve. That's not sporting.

Some birds even use old fishing line in their nests, creating death traps for their young.

Other plastic debris can be dangerous, too. Fish, birds, and seals become entangled in sixpack rings. Sea turtles eat plastic bags—which they mistake for jellyfish—and suffer internal

injury, intestinal blockage, or death by starvation. Birds are known to ingest everything from small plastic pieces to plastic cigarette lighters and bottle caps.

Plastic debris also can foul boat propellers and block cooling intakes, causing annoying sometimes dangerous— delays and causing costly repairs.

So please, save your old fishing line and other plastic trash for proper disposal.

That's not all you'll be saving. To learn more about how you can help, write: Center for Environmental Education, 1725 DeSales Street, N.W., Suite 500, Washington, D.C. 20036.

A public service message from: The Center for Environmental Education The National Oceanic and Atmospheric Administration The Society of the Plastics Industry A G G I E S

At Attention

Photo courtesy of Mark Zegowitz

night had flown violently against the panes of the lantern, and,

ALLURED BY THE LIGHT WITHIN.

being stunned, had fallen far down upon the cruel rocks, which

Photo courtesy of Elinor DeWire

U.S. Department of Commerce
National Oceanic and Atmospheric Administration
1315 East West Highway
Distribution Unit
Silver Spring, MD 20910
ATTN: Mariners Weather Log

Address Correction Requested OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300

Book Rate

