Chương 4. Thuyết tương đối hẹp

- A. Các tiên đề của Einstein
- B. Phép biến đối Lorenzt
- C. Hệ quả của phép biến đổi Lorenzt
- D. Phép biến đổi vận tốc
- E. Động lực học tương đối tính

Phan Ngọc Khương Cát

A.1. Hạn chế của cơ học cổ điển

- Cuối thế kỷ XIX, đầu thế kỷ XX, người ta phát hiện ra rằng, trong những chuyển động có vận tốc v ≈ c, cơ học Newton không còn đúng nữa.
- Năm 1905, Einstein xây dựng lý thuyết tương đối hẹp. Thuyết này xây dựng dựa trên 2 tiên đề chính.

A.2. Hai tiên đề

• Tiên đề 1 (nguyên lý tương đối): "Mọi hiện tượng vật lý xảy ra như nhau trong mọi hệ quy chiếu quán tính".

• *Tiên đề 1* được mở rộng so với nguyên lý tương đối của Galilé, ở đó chỉ nhắc đến các hiện tượng cơ học.

A.2. Tiên đề 1

- Tiên đề 2 (nguyên lý về sự bất biến về vận tốc của ánh sáng): "Vận tốc ánh sáng trong chân không đều bằng nhau theo mọi phương và đối với mọi hệ quy chiếu quán tính. Nó có giá trị $c=3.10^8 m/s$ và là giá trị vận tốc cực đại trong tự nhiên".
- •Tiên đề 2 được xác nhận bằng thí nghiệm về giao thoa của Michelson (1887)

B.1. Phép biến đổi Galile

- Hqc K − hqc đứng yên.
- Hqc K' chuyển động đối với hqc K với vận tốc \vec{v} //Ox

$$\begin{cases} x' = x - vt \\ y' = y \\ z' = z \\ t' = t \end{cases}$$

- Hqc K hqc đứng yên.
- Hqc K' chuyển động

$$\vec{v}$$
 //Ox

Ban đầu, *O*≡*O* '.

Phát tín hiệu sáng đi. 🗸

- ✓ Trong hqc K: x=ct
- ✓ Trong hqc K': x'=ct'

- Giả sử: $x' = \beta(x vt)$
- Vì K và K' tương đương nên: $x = \beta(x' + vt')$
- Khi đó:

$$xx' = c^2tt' = \beta^2 (x' + vt')(x - vt)$$

$$\rightarrow \beta = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$x = \frac{x' + vt'}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$x' = \frac{x - vi}{\sqrt{1 - \frac{v^2}{c^2}}}$$

• Thế x' vào x ta có:

$$t = \frac{t' + \frac{\dot{c}^2}{c^2}x'}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$\frac{1}{c^2} \frac{x'}{c^2}$$

$$t' = \frac{t - \frac{x}{c^2} x}{\sqrt{1 - \frac{v^2}{c^2}}}$$

• Vậy ta có phép biến đổi Lorenzt từ $K \rightarrow K$ ':

$$x' = \frac{x - vt}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$y' = y$$

$$z' = z$$

$$t' = \frac{t - \frac{v}{c^2}x}{\sqrt{1 - \frac{v^2}{c^2}}}$$

- → Không gian mang tính tương đối: Không gian thay đổi dọc theo phương chuyển động.
- → Thời gian mang tính tương đối.
- →Không thời gian mang tính tương đối.

• Phép biến đổi Lorenzt từ $K' \rightarrow K$:

$$x = \frac{x' + vt'}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$y = y'$$

$$z = z'$$

$$t = \frac{t' + \frac{v}{c^2}x'}{\sqrt{1 - \frac{v^2}{c^2}}}$$

→ Khi $v << c \rightarrow v/c \rightarrow 0$: phép biến đổi Lorenzt trở thành phép biến đổi Galile.

• *Ví dụ:* Người quan sát trong học O phát hiện 2 sự kiện riêng rẽ xảy ra trên trục x ở điệm x₁ tại thời điểm t₁ và điểm x₂ tại thời điểm t₅:

$$x_2-x_1=600m$$
; $t_1-t_2=0.8\mu s$.

Tìm vận tốc v của học O' chuyển động dọc theo trục x của học O sao cho người quan sát thấy 2 sự kiện đó xảy ra đồng thời?

C.1. Đồng thời

• Trong K có 2 sự kiện xáy ra đồng thời ở thời điểm t, tại 2 vị trí x_1 và x_2 .

$$t_{1} = \frac{t - \frac{v}{c^{2}} x_{1}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

$$t' = t_2' - t_1' = \frac{c^2 (\lambda_2 - \lambda_1)}{\sqrt{1 - \frac{v^2}{c^2}}} \neq 0$$

$$t_{2} = \frac{t - \frac{v}{c^{2}} x_{2}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

→ Khái niệm đồng thời mang tính tương đối.

C.2. Quan hệ nhân quả

- Trong K có sự kiện $A(x_1,t_1)$ nguyên nhân; $A(x_2, t_2)$ kết quả.
- Gọi u vận tốc truyền tác dụng từ nguyên nhân đến kết quả

$$t_{2}^{'} - t_{1}^{'} = \frac{t_{2} - t_{1}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} \left(1 - \frac{v}{c^{2}}u\right)$$

- Vì $u < c \text{ và } t_2 > t_1 \rightarrow t'_2 > t'_1$.
- → Quan hệ nhân quả mang tính tuyệt đối.

C.3. Khoảng không gian

• Thanh đứng yên trong K', có chiều dài l_0 :

$$l_0 = x'_2 - x'_1$$

• Cho thanh chuyển động dọc theo chiều dài thanh với vận tốc v. Chiều dài thanh trong học đứng yên:

$$l = x_2 - x_1 = l_0 \sqrt{1 - \frac{v^2}{c^2}} < l_0$$

→ Chiều dài bị co ngắn lại dọc theo phương chuyển động.

C.3. Khoảng không gian

• $\underline{Vi\ du}$: Một thanh có chiều dài riêng 1,2 m chuyển động với vận tốc v = 0.8c so với học đứng yên K, theo phương hợp với cây thước góc 60° . Tìm chiều dài của thanh trong học đứng yên?

C.4. Khoảng thời gian

• Xét 1 biến cố trong học K' xảy ra tại vị trí A trong khoảng thời gian từ t'₁ đến t'₂.

$$\Delta t' = t'_2 - t'_1$$

• Khi đó, trong học K, khoảng thời gian xảy ra biến cố:

$$\Delta t = t_2 - t_1 = \Delta t \, / \sqrt{1 - \frac{v^2}{c^2}} > \Delta t \, '$$

Đồng hồ chuyển động chạy chậm hơn đồng hồ đứng yên.

C.4. Khoảng thời gian

• <u>Ví dụ:</u> Hạt Mezon dịch chuyến trong hệ quy chiếu K với vận tốc v=0,999c. Từ khi sinh ra đến khi bị phân hủy nó đi được quãng đường 3km. Tìm thời gian sống riêng của hạt Mezon?

C.5. Khoảng không thời gian

• Khoảng không thời gian giữa 2 biến cố được định nghĩa:

$$\Delta s^{2} = c\Delta t^{2} - \left(\Delta x^{2} + \Delta y^{2} + \Delta z^{2}\right)$$
$$\Delta s^{2} = \Delta s^{2}$$

→ Khoảng không thời gian mang tính tuyệt đối.

D. Phép biến đổi vận tốc

• Gọi $\vec{v}(v_x, v_y, v_z)$; $\vec{v}'(v'_x, v'_y, v'_z)$ – vận tốc chất điểm trong K, K':

$$v'_{x} = \frac{dx'}{dt'} = \frac{dx - vdt}{dt - \frac{v}{c^{2}}dx} = \frac{v_{x} - v}{1 - \frac{v}{c^{2}}v_{x}}$$

• Tương tự:

$$v'_{y} = \frac{v_{y}\sqrt{1 - v^{2}/c^{2}}}{1 - \frac{v}{c^{2}}v_{x}}$$

$$v'_{z} = \frac{v_{z}\sqrt{1 - v^{2}/c^{2}}}{1 - \frac{v}{c^{2}}v_{x}}$$

D. Phép biến đổi vận tốc

• Ví dụ: Giả sử trong trò chơi Pokenon Go, khi diễn ra trận đấu, 2 pokemon Pikachu và Mew chuyển động trên 2 đường thẳng vuông góc với các tốc độ 0,3c và 0,4c đối với phòng Gym. Xác định tốc độ của Mew trong hệ quy chiếu gắn với Pikachu?

E.1. Phương trình chuyển động

• Khối lượng có tính tương đối: khối lượng tăng khi chuyển động:

$$m = \frac{m_0}{\sqrt{1 - v^2 / c^2}} > m_0$$

- Khi $v << c: m = m_0$.
- Phương trình chuyển động:

$$\vec{F} = \frac{d(m\vec{v})}{dt} = m\frac{d\vec{v}}{dt} + \vec{v}\frac{dm}{dt}$$

E.2. Năng lượng tương đối

Năng lượng toàn phần:

$$E = mc^2$$

• Năng lượng nghỉ:

$$E_0 = m_0 c^2$$

Động năng – năng lượng của chuyển động.

$$K = E - E_0 = m_0 c^2 \left(\frac{1}{\sqrt{1 - v^2 / c^2}} - 1 \right)$$

E.3. Mối liên hệ giữa động lượng và năng lượng tương đối

$$E = \frac{m_0 c^2}{\sqrt{1 - v^2 / c^2}} \rightarrow E^2 \left(1 - \frac{v^2}{c^2} \right) = m_0^2 c^4$$

$$\to E^2 - \frac{(m^2c^4)v^2}{c^2} = m_0^2c^4$$

$$E^2 = p^2 c^2 + m_0^2 c^4$$

E. Động lực học tương đối tính

• <u>Ví dụ:</u> Trong hệ quy chiếu quán tính O, một hạt khối lượng m0 chuyển động dọc theo trục Ox dưới tác dụng của lực F. Tọa độ x của hạt phụ thuộc theo thời gian theo quy luật:

$$x = \sqrt{a^2 + c^2 t^2}$$

(a là hằng số dương)

Tim luc F?