

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2021

Resolución de algunos ejercicios pertenecientes a la Práctica 2 (4ta parte)

- **26.** Determinar la ley, dominio y recorrido de las funciones cuyas gráficas se obtienen de la gráfica de la función exponencial $f(x) = e^x$ mediante:
- -a- traslación vertical hacia abajo en 2 unidades más una traslación horizontal a la derecha en 3 unidades.
- -b- reflexión con respecto al eje de las ordenadas.
- -c- reflexión con respecto al eje de las abscisas.

https://www.geogebra.org/classic/b94vg9x2

Si $f(x) = e^x$, entonces $Dom(f) = \mathbb{R}$ y $Rec(f) = \mathbb{R}^+$.

a)
$$fa(x) = f(x-3) - 2 = e^{x-3} - 2$$
, entonces $Dom(fa) = \mathbb{R}$ y $Rec(fa) = (-2, +\infty)$.

b) $fb(x) = f(-x) = e^{-x}$, entonces $Dom(fb) = \mathbb{R}$ y $Rec(fb) = \mathbb{R}^+$.

c) $fc(x) = -f(x) = -e^x$, entonces $Dom(fc) = \mathbb{R}$ y $Rec(fc) = \mathbb{R}^-$.

27. Determinar la ley, dominio y recorrido de las funciones cuyas gráficas se obtienen de la gráfica de la función logaritmo natural $f(x) = \ln x$ mediante:

- -a- traslación vertical hacia arriba en 2 unidades más una traslación horizontal a la derecha en 1 unidad.
- -b- reflexión con respecto al eje de las ordenadas.
- reflexión con respecto al eje de las abscisas.

https://www.geogebra.org/classic/j5qyuxsb

Si $f(x) = \ln x$, entonces $Dom(f) = \mathbb{R}^+$ y $Rec(f) = \mathbb{R}$.

a) fa(x) = f(x-1) + 2, entonces $Dom(fa) = (1, +\infty)$ y $Rec(fa) = \mathbb{R}$.

b) $fb(x) = f(-x) = \ln(-x)$, entonces $Dom(fb) = \mathbb{R}^3$

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2021

c) $fc(x) = -f(x) = -\ln x$, entonces $Dom(fc) = \mathbb{R}^+$ y $Rec(fc) = \mathbb{R}$.

29. Hallar dominio e imagen de la siguiente función y representarla gráficamente. Estudiar crecimiento y decrecimiento.

$$f_1(x) = \arccos\left(\frac{x}{2}\right).$$

 \bigcirc Para analizar las propiedades de la función $f_1(x) = \arccos\left(\frac{x}{2}\right)$ podemos observar que se trata de una composición:

$$\left. \begin{array}{l} g_1(x) = \arccos(x) \\ h_1(x) = \frac{x}{2} \end{array} \right\} \Rightarrow f_1 = g_1 \circ h_1.$$

Veamos el dominio de $f_1 = \{x \in Dom(h_1) : h_1(x) \in Dom(g_1)\}$

Siendo h_1 una función lineal, $Dom(h_1) = \mathbb{R}$ y $Rec(h_1) = \mathbb{R}$.

La función g_1 es la inversa de la función coseno en el dominio restringido, $[0, \pi]$. Luego,

$$\begin{array}{c} \cos: [0,\pi] \longrightarrow [-1,1] \\ \arccos: [-1,1] \longrightarrow [0,\pi] \end{array}$$

Entonces, $Dom(g_1) = Rec(cos) = [-1, 1]$ y $Rec(g_1) = Dom(cos) = [0, \pi]$.

Ahora podemos analizar el dominio de f_1 recordando que es una composición.

$$Dom(f_1) = Dom(g_1 \circ h_1) = \{x \in Dom(h_1) : h_1(x) \in Dom(g_1)\} =$$

$$= \{x \in \mathbb{R} : h_1(x) \in [-1, 1]\} =$$

$$= \{x \in \mathbb{R} : -1 \le \frac{x}{2} \le 1\} =$$

$$= \{x \in \mathbb{R} : -2 \le x \le 2\} = [-2, 2].$$

Como $\operatorname{Rec}(g_1) = [0, \pi]$, se sabe que $\operatorname{Rec}(f_1) \subset [0, \pi]$. Sea $z \in [0, \pi]$

Como \arccos es biyectiva (por tener inversa), sabemos que $\exists y \in [-1,1]$ tal que $g_1(y)=z$. Luego, considerando $x=2y\in\mathbb{R}$, resulta

$$f_1(x) = (g_1 \circ h_1)(x) = g_1(h_1(x)) = g_1\left(\frac{x}{2}\right) = g_1\left(\frac{2y}{2}\right) = g_1(y) = z,$$

es decir, $z \in \text{Rec}(f_1)$. Luego $[0, \pi] \subset \text{Rec}(f_1)$.

Por lo tanto, $\operatorname{Rec}(f_1) = [0, \pi]$.

Para analizar monotonía de la función f_1 podemos utilizar alguna identidad trigonométrica. Por ejemplo,

$$\cos(a) - \cos(b) = -2\sin\left(\frac{a-b}{2}\right)\sin\left(\frac{a+b}{2}\right), \quad a, b \in \mathbb{R}.$$
 (1)

Primero, vamos a mostrar que la función coseno es decreciente en $[0,\pi]$ y luego, que dicha propiedad la hereda su función inversa.

Para esto, consideremos $0 \le x_1 < x_2 \le \pi$. Utilizando (1), resulta

$$\cos(x_2) - \cos(x_1) = -2\sin\left(\frac{x_2 - x_1}{2}\right)\sin\left(\frac{x_2 + x_1}{2}\right).$$
 (2)

Como $\cos(x_2) < \cos(x_1) \Leftrightarrow \cos(x_2) - \cos(x_1) < 0$, vamos a analizar el signo de la parte derecha de la igualdad (2).

$$x_1, x_2 \in [0, \pi] \Rightarrow 0 < x_2 - x_1 \le \pi \Rightarrow 0 < \frac{x_2 - x_1}{2} \le \frac{\pi}{2} \Rightarrow \sin\left(\frac{x_2 - x_1}{2}\right) > 0.$$
 (3)

Además.

$$x_1 < \frac{x_1 + x_2}{2} < x_2 \Rightarrow \frac{x_1 + x_2}{2} \in (0, \pi) \Rightarrow \sin\left(\frac{x_1 + x_2}{2}\right) > 0.$$
 (4)

Por lo tanto, de (3) y (4), vemos que $\cos(x_2) - \cos(x_1) < 0$ y entonces la función coseno es estrictamente decreciente en $[0, \pi]$.

Para analizar si su inversa también es decreciente, sean $-1 \le x_1 < x_2 \le 1$. LLamando a sus imágenes $y_1 = \arccos(x_1)$ e $y_2 = \arccos(x_2)$, tenemos que $y_i \in [0, \pi]$, i = 1, 2.

Luego, por definición de función inversa, $\cos(y_1) = x_2$ y $\cos(y_2) = x_2$.

Por como habíamos elegido a x_1 y x_2 , resulta $\cos(y_1) < \cos(y_2)$ y como la función coseno vimos que es estrictamente decreciente en $[0,\pi]$, debe entonces ser $y_1>y_2$, es decir,

$$arc cos(x_1) > arc cos(x_2)$$

resultando así la función arc cos estrictamente decreciente en [-1, 1].

Por último, sean $x_1, x_2 \in \text{Dom}(f_1) = [-2, 2]$, tales que $x_1 < x_2$. Luego,

$$x_1 < x_2 \underset{\frac{1}{2} > 0}{\Longrightarrow} \frac{x_1}{2} < \frac{x_2}{2} \underset{\text{arc cos decrec}}{\Longrightarrow} \arccos\left(\frac{x_1}{2}\right) > \arccos\left(\frac{x_1}{2}\right) \Rightarrow f_1(x_1) > f_1(x_2),$$

es decir, f_1 es estrictamente decreciente en su dominio [-2,2].

Para realizar la gráfica de f_1 podemos comenzar con la gráfica de la función coseno, que ya es conocida, y realizar adecuadas transformaciones.

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2021

Partiendo de la gráfica conocida

Se restringe el dominio para conseguir la biyectividad

Se rebate respecto de la recta identidad para obtener la inversa

 $y = \cos(x)$

Se dil ata horizontalmente para conseguir la gráfica deseada

- \blacksquare **30.** Un granjero posee L metros de alambre para cercar un terreno de pastoreo rectangular, adyacente a un muro de piedra. ¿Qué dimensiones deberá dar a dicho terreno para que posea el área máxima?
- \bigcirc Consideremos un terreno de pastoreo rectangular de largo y y ancho hasta el muro x. El perímetro total del terreno de pastoreo rectangular sería

$$p_t = 2x + 2y,$$

pero como está el muro, sobre ese costado no es necesario poner alambre para cercarlo. Entonces, el perímetro del borde con alambre, p_c , resulta

considerando que utilizaremos todo el alambre disponible así queda lo más grande posible. Lo que se quiere maximizar es el área del terreno de pastoreo, a_p , que al ser un terreno rectangular, se calcula como $a_p = x \cdot y$. Despejando de (5), para que solo nos quede una variable, resulta

$$\begin{cases} y = L - 2x \\ a_p = x \cdot y \end{cases} \Rightarrow a_p = x(L - 2x).$$
 (6)

A partir de la relación obtenida en (6), podemos pensar que el área depende de la longitud x > 0, como una función cuya ley es

$$a(x) = Lx - 2x^2$$

con $Dom(a) = (0, x_{max})$ donde x_{max} será tal que a(x) siga siendo positiva (pues representa un

Como resulta una función cuadrática, podemos graficarla. Al ser el coeficiente que acompaña a x^2 negativo, las ramas de la parábola están hacia abajo. Para ayudarnos a realizar la gráfica, calculemos el lugar en donde ésta interseca al eje horizontal.

$$\exists x \in \mathbb{R} \text{ tal que } a(x) = 0 ?$$

$$x_{1,2} = \frac{-L \pm \sqrt{L^2 - 4 \cdot (-2) \cdot 0}}{2 \cdot (-2)} = \frac{-L \pm L}{-4} \implies x_1 = 0 \land x_2 = \frac{L}{2}.$$

Es decir, la gráfica de la función área, a(x), interseca al eje horizontal en el origen y en el punto B(L/2,0).

https://www.geogebra.org/classic/ng5buf6s

Luego, podemos observar que la máxima área la vamos a obtener en el vértice de la parábola. Las coordenadas de dicho vértice son

$$x_v = \frac{x_1 + x_2}{2} = \frac{0 + L/2}{2} = \frac{L}{4}$$
 $y_v = a(x_v) = a(\frac{L}{4}) = L\frac{L}{4} - 2(\frac{L}{4})^2 = \frac{L^2}{8}$

Por lo tanto, conseguiremos el área máxima cuando utilicemos

$$\hat{x} = \frac{L}{4}$$
.

Entonces, recordando la relación (5), resulta necesario que la otra dimensión del terreno sea

$$\hat{y} = L - 2\hat{x} = L - 2\frac{L}{4} = \frac{L}{2}.$$