

Logistic Regression

Chelsea Parlett-Pelleriti

Linear Regression in Disguise

PREDICT CATEGORY S CATEGORY

Predictions

Linear

Continuous Variable (can be -∞ to ∞)

Logistic

Binary Categorical Variable (can be 0 or 1)

- Predict Probabilities
- 2. Convert Probabilities to Odds
- 3. Convert Odds to Log Odds

- 1. Predict Probabilities
- 2. Convert Probabilities to Odds
- 3. Convert Odds to Log Odds

- 1. Predict Probabilities
- 2. Convert Probabilities to Odds
- 3. Convert Odds to Log Odds

- 1. Predict Probabilities
- 2. Convert Probabilities to Odds
- 3. Convert Odds to Log Odds

The Final Formula

$$\log(p/1-p) = mx + b$$

All the Steps

Probability P	Odds (p/1-p)	Log Odds log((p/1-p))
0.1	0.1111	-2.1972
0.5	1	0
0.9	9	2.1972

Probability	Odds	Log Odds
р	(p/1-p)	log((p/1-p))
0.1	0.1111	-2.1972
0.5	1	0
0.9	9	2.1972

	coef
const	-2.9777
age	0.1445
income	-0.0066
months_subbed	0.0015

	coef	e ^{coef}
const	-2.9777	0.05090979
age	0.1445	1.155462
income	-0.0066	0.9934217
months_subbed	0.0015	1.001501

Probabilities*

Loss Functions

$$(\hat{\gamma}_i - \gamma_i)^2$$

LOGISTIC:
$$\left(-\log(\hat{p}_i)\right)$$
 $4 y=1$ $\left(-\log(1-\hat{p}_i)\right)$ $4 y=0$

Loss Functions

LINEAR:

LINEAR:
$$(\hat{y}_i - y_i)^2$$

LOGISTIC: $\left(-\log(\hat{p}_i)\right)$ $\frac{4}{4}$ y=1 $\left(-\log(1-\hat{p}_i)\right)$ $\frac{4}{4}$ y=0

Approximate Methods

