Metodi Matematici per l'Informatica (secondo canale)

Soluzioni di: Andrea Princic. Cartella delle soluzioni

9 Settembre 2019

Es 1.

Scrivere le definizioni e fornire esempi di relazione d'ordine stretto e relazione d'ordine totale.

Una relazione d'ordine stretto è una relazione con le proprietà antiriflessiva, antisimmetrica e transitiva. Un esempio di relazione d'ordine stretto è la relazione < su \mathbb{N} .

Una relazione d'ordine totale è una relazione con le proprietà riflessiva, antisimmetrica, transitiva, e inoltre per ogni coppia di elementi a e b si ha che aRb oppure bRa. Un esempio di relazione d'ordine totale è la relazione \leq su \mathbb{N} .

Es 2.

Sia $Q = \{(a, b), (a, c), (a, d), (b, c)\} \subseteq \{a, b, c, d\} \times \{a, b, c, d\}$; allora

A. Q è una funzione;

Falso *a* compare come primo elemento in più di una coppia. In una funzione ogni elemento può apparire al più una volta al primo posto di una coppia

 \mathbf{B} . Q è una relazione di equivalenza;

Falso è soltanto transitiva

 \mathbf{C} . Q è una relazione transitiva;

Vero

 \mathbf{D} . Q è una relazione d'ordine;

Vero

Es 3.

Dimostrare che l'insieme \mathbb{Z} dei numeri interi è numerabile.

L'insieme \mathbb{Z} si può mettere in relazione biunivoca con \mathbb{N} nel seguente modo

$$\{\ldots, (8, -4), (6, -3), (4, -2), (2, -1), (0, 0), (1, 1), (3, 2), (5, 3), (7, 4), \ldots\} \subseteq \mathbb{N} \times \mathbb{Z}$$

Es 4.

Qual è il più piccolo numero naturale k per cui $n^2 > 2n + 1$, $\forall n \ge k$? Scrivere una dimostrazione per induzione.

 $con k = 1 si ha 1 \not> 3$ $con k = 2 si ha 4 \not> 5$ con k = 3 si ha 9 > 7 quindi 3 è il caso base.Passo induttivo n + 1:

$$(n+1)^{2} = n^{2} + 2n + 1 > 2n + 3$$
$$= n^{2} + 2n > 2n + 2$$
$$= \underline{n^{2}} + 2n > \underline{2n+1} + 1$$

Per ipotesi induttiva sappiamo che $n^2 > 2n+1$ puindi rimane da dimostrare che 2n>1che è banalmente vero perché n>3

Es 5.

Vero o Falso? (N.B. Le lettere A, B, C variano su proposizioni arbitrarie nel linguaggio della logica proposizionale, non necessariamente distinte).

A. $(A \to B), (C \to \neg A), C \vDash \neg B$; **Falso** se C è vera A è falsa, e quindi non c'è nessuna implicazione su B

B. Se A è insoddisfacibile allora per ogni B vale $A \models B$; **Vero** se la parte sinistra è (sempre) falsa allora la conseguenza logica è vera

C. Se $A \wedge \neg B$ è soddisfacibile allora il tableau di $A \to B$ ha qualche ramo aperto; Falso se $A \wedge \neg B$ fosse una tautologia (quindi soddisfacibile) il tableau di $A \to B$ sarebbe chiuso

D. Esistono A e B tali che $\neg(A \land B) \lor (A \to B)$ è insoddisfacibile; **Falso** $\neg(A \land B) \lor (A \to B) = \neg A \lor \underline{\neg B} \lor \neg A \lor \underline{B}$ è una tautologia

E. Se il tableau di A e il tableau di B hanno entrambi qualche ramo aperto allora il tableau di $A \wedge B$ ha qualche ramo aperto; **Falso** poniamo $A = \neg B$ entrambi soddisfacibili, allora $\neg (A \wedge B)$ sarebbe una tautologia quindi il tableau di $A \wedge B$ sarebbe chiuso

Es 6.

I seguenti enunciati sono verità logiche: Vero o Falso?

 $\textbf{A.} \ \forall x (P(x) \rightarrow \neg Q(x)) \rightarrow (\forall x \neg P(x) \rightarrow \neg \exists x Q(x)); \textbf{Falso} \ \text{nel caso in cui} \ P \ \text{\`e insoddisfacibile} \ \text{e} \ Q \ \text{\`e soddisfacibile}$

B.
$$\exists x (P(x) \to Q(x)) \leftrightarrow (\forall x P(x) \to \exists x Q(x));$$
 Vero

I tableau si trovano in fondo al documento.

Es 7.

Un linguaggio predicativo adeguato per la teoria degli insiemi è composto da un singolo simbolo di relazione a due posti: ∈ (che intuitivamente indica l'appartenenza). Tradurre in questo linguaggio predicativo le seguenti proposizioni. Due insiemi coincidono se e soltanto se hanno esattamente gli stessi elementi.

A. Esiste l'insieme vuoto.

$$\exists X \neg \exists x (x \in X)$$

Esiste un insieme X tale che non esiste un elemento x che gli appartenga

B. Per ogni coppia di insiemi esiste la loro intersezione.

$$\forall X \forall Y \exists Z \forall x ((x \in X \land x \in Y) \leftrightarrow x \in Z)$$

Per ogni coppia di insiemi X e Y esiste un insieme Z tale che ogni elemento x che appartiene a entrambi X e Y appartiene anche a Z e viceversa

Es 8.

Scrivere la definizione di modello nella logica predicativa.

Un modello è un'interpretazione che rende vera una formula

Tableau

