Universidad Nacional de Ingeniería Facultad de Ciencias

PRÁCTICA CALIFICADA 6

Integrantes:

- Ananau -
- Ananau -
- Ananau -
- Ananau -

Docente:

Caytuiro Sandoval David Paul

30 de septiembre de 2024

Matriz de Jordan

1. Matriz a trabajar para conseguir la forma de Jordan

Siendo la matriz A de la forma:

$$A = \begin{bmatrix} 2 & -1 & 1 & -1 \\ 1 & 0 & 1 & -1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

2. Métodos a emplear

2.1. Función Característica

Hallaremos los autovalores propios para esta matriz y anotaremos su multiplicidad algebraica. Para hallar los autovalores se tendrá que resolver la $\det[X \cdot I - A]$.

La matriz será de la forma:

$$\begin{bmatrix} x-2 & -1 & 1 & -1 \\ 1 & x & 1 & -1 \\ 0 & 0 & x-2 & -1 \\ 0 & 0 & 1 & x \end{bmatrix}$$

Ahora hallaremos la función característica de la matriz al reemplazar la forma $\det[X\cdot I-A]$:

$$f_x = (x-1)^4$$

Evaluamos en 0 f_x para encontrar los autovalores, reemplazando dentro de la ecuación tendremos como raíces a $\lambda=1$ con una multiplicidad algebraica de m=4. Ahora hallaremos la multiplicidad geométrica.

Para ello buscaremos aquellos autovectores que cumplan con $(A-1 \cdot I) \cdot v = 0$:

$$\begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \cdot v = 0$$

$$\begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \mathbf{0}$$
 (1)

$$x - y + z - w = 0$$
$$z - w = 0$$
$$x - y = 0$$

$$x = y$$
$$z = w$$

$$(x, x, w, w) = x(1, 1, 0, 0) + w(0, 0, 1, 1)$$

Entonces la multiplicidad geométrica es igual a 2 (que es distinto a la multiplicidad algebraica), entonces necesitamos completar aquellos vectores con otros dos más, siendo $L = A - 1 \cdot I$.

$$L^2 = 0$$

Entonces su índice de nilpotencia es igual a 2.

Para que estos vectores sean linealmente dependientes, se debe cumplir:

$$A^2e_2 = -Ae_2 - e_2$$

Entonces, tenemos:

$$A^2e_2 + Ae_2 + e_2 = 0$$

Por lo tanto, el polinomio minimal asociado a e_2 es:

$$m_{e_2}(x) = x^2 + x + 1$$

2.2. Polinomio Minimal

Para calcular el polinomio minimal, primero tomamos una base canónica de \mathbb{R}^4 :

$$E = \{e_1, e_2, e_3, e_4\}$$

Luego, hallamos los vectores resultantes de aplicar la matriz A a los vectores de la base, denotados como:

$$mE = \{me_1, me_2, me_3, me_4\}$$

Aquí, me_i representa la aplicación de la matriz A al vector e_i de la base canónica. Consideremos la matriz A:

$$A = \begin{bmatrix} 2 & -1 & 1 & -1 \\ 1 & 0 & 1 & -1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Calculamos Ae_i para cada e_i en la base canónica de \mathbb{R}^4 :

2.2.1. Cálculo de m_{e_1}

$$Ie_1 = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} = e_1, \quad Ae_1 = \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix} = 2e_1 + e_2, \quad A^2e_1 = \begin{bmatrix} 3\\2\\0\\0 \end{bmatrix} = 3e_1 + 2e_2$$

Ahora estos vectores sean linealmente dependientes, se debe cumplir:

$$A^2e_1 = 2Ae_1 - e_1$$

Entonces, tenemos:

$$A^2e_1 - 2Ae_1 + e_1 = 0$$

Por lo tanto, el polinomio minimal asociado a e_1 es:

$$m_{e_1}(x) = x^2 - 2x + 1 = (x - 1)^2$$

2.2.2. Cálculo de m_{e_2}

$$Ie_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = e_2, \quad Ae_2 = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = -e_1, \quad A^2e_2 = \begin{bmatrix} -2 \\ -1 \\ 0 \\ 0 \end{bmatrix} = -2e_1 - e_2$$

Para que estos vectores sean linealmente dependientes, se debe cumplir:

$$A^2e_2 = 2Ae_2 - e_2$$

Entonces, tenemos:

$$A^2e_2 - 2Ae_2 + e_2 = 0$$

Por lo tanto, el polinomio minimal asociado a e_2 es:

$$m_{e_2}(x) = x^2 - 2x + 1 = (x - 1)^2$$

2.2.3. Cálculo de m_{e_3}

$$Ie_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = e_3, \quad Ae_3 = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix} = e_1 + e_2 + 2e_3 + e_4, \quad A^2e_3 = \begin{bmatrix} 2 \\ 2 \\ 3 \\ 2 \end{bmatrix} = 2e_1 + 2e_2 + 3e_3 + 2e_4$$

Para que estos vectores sean linealmente dependientes, se debe cumplir:

$$A^2e_3 = 2Ae_3 - e_3$$

Entonces, tenemos:

$$A^2e_3 - 2Ae_3 + e_3 = 0$$

Por lo tanto, el polinomio minimal asociado a e_3 es:

$$m_{e_3}(x) = x^2 - 2x + 1 = (x - 1)^2$$

2.2.4. Cálculo de m_{e_4}

$$Ie_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = e_4, \quad Ae_4 = \begin{bmatrix} -1 \\ -1 \\ -1 \\ 0 \end{bmatrix} = -e_1 - e_2 - e_3, \quad A^2e_4 = \begin{bmatrix} -2 \\ -2 \\ -2 \\ -1 \end{bmatrix} = -2e_1 - 2e_2 - 2e_3 - e_4$$

Para que estos vectores sean linealmente dependientes, se debe cumplir:

$$A^2e_A = 2Ae_A - e_A$$

Entonces, tenemos:

$$A^2e_4 - 2Ae_4 + e_4 = 0$$

Por lo tanto, el polinomio minimal asociado a e_4 es:

$$m_{e_4}(x) = x^2 - 2x + 1 = (x - 1)^2$$

Finalmente, el polinomio minimal de A es el mínimo común múltiplo de los polinomios minimal de los vectores base:

$$m_A(x) = \text{mcm}(m_{e_1}(x), m_{e_2}(x), m_{e_3}(x), m_{e_4}(x))$$

Dado que todos los polinomios minimal son iguales, tenemos:

$$m_A(x) = \text{mcm}((x-1)^2, (x-1)^2, (x-1)^2, (x-1)^2) = (x-1)^2$$

2.3. Núcleos

La dimensión del núcleo de L es igual a 2, y la dimensión del núcleo de L^2 es igual a 4.

$$\operatorname{Nu}(L) \subseteq \operatorname{Nu}(L^2) = \mathbb{R}^4$$

El núcleo de L está dado por:

$$Nu(L) = \{(1, 1, 0, 0), (0, 0, 1, 1)\} = \{v_1, v_2\}$$

Ahora para completar la base encontraremos v_3 y v_4 .

$$(A-1\cdot I)\cdot v_3=v_1$$
:

$$\begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
 (2)

$$x - y + z - w = 1$$

$$z - w = 0$$

$$x = y + 1$$

$$z = w$$

$$(x, y, z, w) = y(1, 1, 0, 0) + w(0, 0, 1, 1) + (1, 0, 0, 0)$$

$$\rightarrow v_3 = (1, 0, 0, 0)$$

Ahora para v_4 :

$$(A - 1 \cdot I) \cdot v_4 = v_2$$
:

$$\begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

$$x - y + z - w = 0$$
$$z - w = 1$$

$$(x, y, z, w) = y(1, 1, 0, 0) + z(0, 0, 1, 1) + (-1, 0, 1, 0)$$

 $\rightarrow v_4 = (-1, 0, 1, 0)$

Tomamos la base de Jordan como el conjunto $P = \{v_1, v_3, v_2, v_4\}$. La matriz P sería:

$$P = \begin{bmatrix} 1 & 1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

3. Obtención de la forma de Jordan

3.1. Determinación de la Matriz Inversa mediante la Matriz Adjunta

Dada la matriz de paso P:

$$P = \begin{bmatrix} 1 & 1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Para calcular los cofactores C_{ij} , utilizamos la fórmula:

 $C_{ij} = (-1)^{i+j} \, | \mathrm{Submatriz}$ de Peliminando la fila i y la columna j|

Calculamos cada cofactor individualmente:

$$C_{11} = (-1)^{1+1} \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{vmatrix} = 0$$

$$C_{12} = (-1)^{1+2} \begin{vmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{vmatrix} = -1 \cdot -1 = 1$$

$$C_{13} = (-1)^{1+3} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{vmatrix} = 1 \cdot 0 = 0$$

$$C_{14} = (-1)^{1+4} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{vmatrix} = -1 \cdot 0 = 0$$

$$C_{21} = (-1)^{2+1} \begin{vmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{vmatrix} = -1 \cdot 0 = 0$$

$$C_{21} = (-1)^{2+1} \begin{vmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{vmatrix} = -1 \cdot -1 = 1$$

$$C_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{vmatrix} = 1 \cdot -1 = -1$$

$$C_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 1 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{vmatrix} = -1 \cdot 0 = 0$$

$$C_{24} = (-1)^{2+4} \begin{vmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1 \cdot 0 = 0$$

$$C_{31} = (-1)^{3+1} \begin{vmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = 0$$

$$C_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = -1 \cdot -1 = 1$$

$$C_{33} = (-1)^{3+3} \begin{vmatrix} 1 & 1 & -1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0$$

$$C_{34} = (-1)^{3+4} \begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} = -1 \cdot (-1) = 1$$

$$C_{41} = (-1)^{4+1} \begin{vmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{vmatrix} = 0$$

$$C_{42} = (-1)^{4+2} \begin{vmatrix} 1 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{vmatrix} = 1 \cdot (-1) = -1$$

$$C_{43} = (-1)^{4+3} \begin{vmatrix} 1 & 1 & -1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} = -1 \cdot (-1) = 1$$

$$C_{44} = (-1)^{4+4} \begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1 \cdot (-1) = -1$$

La matriz de cofactores C es:

$$C = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & -1 \end{bmatrix}$$

La matriz adjunta C^T es la transpuesta de la matriz de cofactores C:

$$C^T = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

El determinante de P es:

$$\det(P) = \begin{bmatrix} 1 & 1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} = 1$$

La matriz inversa P^{-1} se calcula como:

$$P^{-1} = \frac{1}{\det(P)}C^{T} = \frac{1}{1} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Por lo tanto, la matriz inversa P^{-1} de la matriz P se calcula como se muestra arriba. Para encontrar la forma de Jordan de J, seguimos los siguientes pasos:

3.2. Calcular $P^{-1} \cdot A$

Consideramos la multiplicación $P^{-1} \times A$:

$$P^{-1} \times A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \times \begin{bmatrix} 2 & -1 & 1 & -1 \\ 1 & 0 & 1 & -1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Realizamos la multiplicación matriz por matriz:

El resultado es:

$$P^{-1} \cdot A = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 1 & -1 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

3.3. Calcular $P^{-1} \cdot A \times P$

Consideramos la multiplicación $P^{-1} \times A \times P$:

$$P^{-1} \times A \times P = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 1 & -1 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Calculamos cada elemento del producto matricial: El resultado es:

$$P^{-1} \cdot A \cdot P = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3.4. Forma de Jordan J

Por lo tanto, la forma de Jordan J es igual a:

$$J = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2022-1

[Cod: BMA02] [Curso: Cálculo Integral]

Solucionario - Práctica Calificada N^o 5

- 1. Determine si cada proposición es verdadera o falsa. Justifique su respuesta.
 - I. Las coordenadas del centroide de la región acotada por los gráficas de $y = \frac{b}{a}\sqrt{a^2 x^2}$ y y = 0 son $\left(0, \frac{4b}{3\pi}\right)$. (1 punto)
 - II. El volumen del solido generado por la rotación de la región acotado por $(x-4)^2 + y^2 = 4$ alrededor del eje Y es igual a $16\pi^2$ u². (1 punto)
 - III. La longitud de arco de la curva \mathscr{C} : $f(x) = \cosh(x), x \in [0, 1]$ es igual a f'(1). (1 punto)
 - IV. El área de la superficie de revolución generada por la curva $r = \sin \theta$ al girar alrededor del eje polar es igual a $2\pi^2$ u². (1 punto)

Resolución:

I. (VERDADERO). Representamos la región

$$\mathscr{R} = \{(x,y) \in \mathbb{R}^2 : y = \frac{b}{a}\sqrt{a^2 - x^2}, -a \le x \le a\}$$

El área de la región \mathcal{R} está dado por

$$A = \int_{-a}^{a} \left(\frac{b}{a}\sqrt{a^{2}-x^{2}}\right) dx$$

$$A = \frac{b}{a} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{a^{2}-a^{2} \sin^{2}\theta} a \cos\theta d\theta$$

$$A = \frac{ab}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1+\cos 2\theta) d\theta$$

$$A = \frac{ab}{2} \left[\theta + \frac{1}{2} \sin 2\theta\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$A = \frac{\pi ab}{2}$$

La región ${\mathscr R}$ es simétrica respecto de la recta Y, luego $\overline{x}=0.$

La ordenada del centroide de $\mathcal R$ esta dado por:

$$\overline{y} = \frac{1}{A} \int_{-a}^{a} \frac{1}{2} \left(\frac{b}{a} \sqrt{a^2 - x^2}\right)^2 dx$$

$$\overline{y} = \frac{2}{ab\pi} \cdot \frac{b^2}{2a^2} \int_{-a}^{a} (a^2 - x^2) dx$$

$$\overline{y} = \frac{b^2}{\pi a^3} \left[a^2 x - \frac{1}{3} x^3 \right]_{-a}^{a}$$

$$\overline{y} = \frac{4b}{3\pi}$$

II. **(FALSO)**. Representamos la región acotado por $(x-4)^2 + y^2 = 4$.

Por el teorema de Pappus, el volumen del solido generado por $\mathscr R$ al girar alrededor del eje Y esta dado por

$$V = 2\pi(4)[\pi(2)^2]$$
$$V = 32\pi^2$$

III (VERDADERO). Representamos la curva \mathscr{C} : $f(x) = \cosh(x), x \in [0, 1]$. Luego, $f'(x) = \sinh x$, la longitud del arco \mathscr{C} , esta dado por

$$L = \int_0^1 \sqrt{1 + [f'(x)]^2} dx$$

$$L = \int_0^1 \sqrt{1 + \operatorname{senh}^2 x} dx$$

$$L = \int_0^1 \cosh x dx$$

$$L = [\operatorname{senh} x]_0^1$$

$$L = \operatorname{senh} 1$$

$$L = f'(1)$$

IV. (FALSO). Representamos la curva \mathscr{C} : $r = \sin \theta$. El área de la superficie de revolución generada por la curva \mathscr{C} al girar alrededor del eje polar esta dado por

$$S = 2\pi \int_0^{\pi} r \sin \theta \sqrt{r^2 + [r']^2} d\theta$$

$$S = 2\pi \int_0^{\pi} \sin \theta \sin \theta \sqrt{\sin^2 \theta + \cos^2 \theta} d\theta$$

$$S = \pi \int_0^{\pi} 2 \sin^2 \theta d\theta$$

$$S = \pi \int_0^{\pi} (1 - \cos 2\theta) d\theta$$

$$S = \pi \left[\theta - \frac{\sin 2\theta}{2} \right]_0^{\pi}$$

$$S = \pi^2$$

2. Determinar el trabajo requerido para bombear el agua que llena un recipiente hemisférico cuyo radio mide R, por encima del recipiente. Considere: p el peso de una unidad de volumen de agua.

(4 puntos)

Resolución: Consideramos el agua dividido en discos de espesor Δx y radio x. El incremento de fuerza para cada disco está dado por su peso

$$\Delta F = p\pi x^2 \Delta y$$

Luego,

$$x^{2} + (R - y)^{2} = R^{2}$$
$$x^{2} = 2Ry - y^{2}$$

El incremento de trabajo está dado por

$$\Delta W = \Delta F(R - y)$$

$$\Delta W = p\pi (2Ry - y^2) \Delta y (R - y)$$

$$\Delta W = p\pi (2R^2y - 3Ry^2 + y^3) \Delta y$$

Luego, el trabajo requerido para bombear el agua que llena el recipiente hemisférico esta dado por

$$W = \int_0^R p\pi (2R^2y - 3Ry^2 + y^3) \, dy$$

$$W = p\pi \left[R^2y^2 - Ry^3 + \frac{1}{4}y^4 \right]_0^R$$

$$W = \frac{p\pi R^4}{4}$$

- 3. Considere la curva $\mathscr C$ cuya ecuación polar es dado por $r=2\,\mathrm{sen}^3\left(\frac{\theta}{3}\right),\,0\leq\theta\leq2\pi.$
 - a) Trace la gráfica de la curva \mathscr{C} .

(1.5 puntos)

b) Calcule la longitud de la curva \mathscr{C} .

(2.5 puntos)

Resolución:

a) Se tabula algunos puntos de la curva $r=2\,\mathrm{sen}^3\left(\frac{\theta}{3}\right)$

θ	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{7\pi}{6}$	$\frac{5\pi}{3}$	2π
r	0.53	0.53	0.9	1.3	1.91	2	1.66	1.91	1.3

b) Se tiene que $r'=2\sin^2\left(\frac{\theta}{3}\right)\cos\left(\frac{\theta}{3}\right)$ La longitud de la curva $\mathscr C$ esta dado por

$$L = \int_0^{2\pi} \sqrt{r^2 + [r']^2} d\theta$$

$$L = \int_0^{2\pi} \sqrt{4 \operatorname{sen}^6 \left(\frac{\theta}{3}\right) + 4 \operatorname{sen}^4 \left(\frac{\theta}{3}\right) \cos^2 \left(\frac{\theta}{3}\right)} d\theta$$

$$L = \int_0^{2\pi} 2\sqrt{\operatorname{sen}^4 \left(\frac{\theta}{3}\right) \left[\operatorname{sen}^2 \left(\frac{\theta}{3}\right) + \cos^2 \left(\frac{\theta}{3}\right)\right]} d\theta$$

$$L = \int_0^{2\pi} 2 \operatorname{sen}^2 \left(\frac{\theta}{3}\right) d\theta$$

$$L = \int_0^{2\pi} \left[1 - \cos\left(\frac{2\theta}{3}\right)\right] d\theta$$

$$L = \left[\theta - \frac{3}{2} \operatorname{sen} \left(\frac{2\theta}{3}\right)\right]_0^{2\pi}$$

$$L = 2\pi + \frac{3\sqrt{3}}{4}$$

4. En la figura se muestra la gráfica de la función $f(x) = -\ln{(1-x^2)}$. Calcule el área de la superficie de revolución generada por la curva $\mathscr{C} \colon y = f(x), 0 \le x \le \frac{1}{2}$ al girar alrededor del eje Y.

(4 puntos)

Resolución: De la representación de la gráfica de $f(x) = -\ln(1-x^2)$, se tiene $f'(x) = \frac{2x}{1-x^2}$. El área de la superficie de revolución generada por la curva \mathscr{C} : $y = f(x), 0 \le x \le \frac{1}{2}$ al girar alrededor del eje Y esta dado por

$$S = 2\pi \int_{0}^{\frac{1}{2}} x \sqrt{1 + (y')^{2}} dx$$

$$S = 2\pi \int_{0}^{\frac{1}{2}} x \sqrt{1 + \left(\frac{2x}{1 - x^{2}}\right)^{2}} dx$$

$$S = 2\pi \int_{0}^{\frac{1}{2}} x \sqrt{\frac{(1 + x^{2})^{2}}{(1 - x^{2})^{2}}} dx$$

$$S = 2\pi \int_{0}^{\frac{1}{2}} x \left(\frac{1 + x^{2}}{1 - x^{2}}\right) dx$$

$$S = 2\pi \int_{0}^{\frac{1}{2}} \left(\frac{2x}{1 - x^{2}} - x\right) dx$$

$$S = 2\pi \left[-\ln(1 - x^{2}) - \frac{x^{2}}{2}\right]_{0}^{\frac{1}{2}}$$

$$S = 2\pi \left[-\ln\left(\frac{3}{4}\right) - \frac{1}{8}\right]$$

$$S \approx 1.024$$

Por lo tanto, el área de la superficie de revolución es aproximadamente 1.024 u^2 .

5. Sea la región $\mathscr{R}=\{(x,y)\in\mathbb{R}^2\colon x^2+y^2\leq 4, 2-|x|\leq y\}$. Calcule el volumen del sólido generado al girar la región \mathscr{R} alrededor de la recta $\mathscr{L}\colon y=\sqrt{3}x-4$. (4 puntos)

Resolución: Representamos la región $\mathcal{R} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4, 2 - |x| \le y\}$

El área de la región $\mathcal R$ esta dado por

$$A = \int_{-2}^{2} \sqrt{4 - x^2} \, dx - \int_{-2}^{2} (2 - |x|) \, dx$$

$$A = \frac{\pi(2)^2}{2} - \frac{(4)(2)}{2}$$

$$A = 2(\pi - 2)$$

La región \mathscr{R} es simétrica respecto del eje Y, luego $\overline{x}=0$.

La ordenada del centroide ${\mathscr R}$ esta dado por

$$\overline{y} = \frac{1}{2A} \int_{-2}^{2} [\sqrt{4 - x^{2}}^{2} - (2 - |x|)^{2}] dx$$

$$\overline{y} = \frac{1}{A} \int_{0}^{2} (4x - 2x^{2}) dx$$

$$\overline{y} = \frac{1}{2(\pi - 2)} \left[2x^{2} - \frac{2}{3}x^{3} \right]_{0}^{2}$$

$$\overline{y} = \frac{4}{3(\pi - 2)}$$

Así, las coordenadas del centroide es $\left(0, \frac{4}{3(\pi-2)}\right)$.

La distancia del centroide a la recta \mathcal{L} : $\sqrt{3}x - y - 4 = 0$ esta dado por

$$d = \frac{\left| \sqrt{3}(0) - \frac{4}{3(\pi - 2)} - 4 \right|}{\sqrt{\sqrt{3}^2 + (-1)^2}}$$
$$d = \frac{2(3\pi - 5)}{3(\pi - 2)}$$

Por el teorema de Pappus, el volumen del solido generado por ${\mathscr R}$ esta dado por

$$V = 2\pi dA$$

$$V = 2\pi \left[\frac{2(3\pi - 5)}{3(\pi - 2)} \right] 2(\pi - 2)$$

$$V = \frac{8\pi}{3} (3\pi - 5)$$

UNI, 18 de julio de 2022*

^{*}Hecho en LATEX

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2022-1

[Cod: BMA02] [Curso: Cálculo Integral]

Solucionario - Práctica Calificada N^o 4

- 1. Determine si cada proposición es verdadera o falsa. Justifique su respuesta.
 - I. Las ecuaciones polares $r = \sec 2\theta$ y $r = \sec (-2\theta)$ tienen la misma gráfica. (1 punto)
 - II. El área de un pétalo de la curva rosa $r = 3\cos 3\theta$ es $\frac{3\pi}{2}$ u². (1 punto)
 - III. La curva Folium de Descartes representada en coordenadas paramétricas por $x = \frac{3t}{1+t^3}$ y $y = \frac{3t^2}{1+t^3}$, se representa en coordenadas polares mediante $r = \frac{3 \sin \theta \cos \theta}{\sin^3 \theta + \cos^3 \theta}$. (1 punto)
 - IV. El volumen del sólido de revolución generado por la rotación de la región determinada por el arco de cicloide $x=(t-\sin t),\,y=1-\cos t,\,t\in[0,2\pi]$ alrededor del eje X es $3\pi^2$ u³. (1 punto)

Resolución:

I. (VERDADERO). Las gráficas de las curvas $r = \sin 2\theta$ y $r = \sin (-2\theta)$ son simétricas respecto del eje polar, el eje $\frac{\pi}{2}$ y el polo.

II. (FALSO).

Las tangentes a la curva rosa $r = 3\cos 3\theta$ en el polo se dan cuando $f(\theta) = 0$.

$$\begin{array}{rcl} 3\cos3\theta & = & 0 \\ 3\theta & = & (2k+1)\frac{\pi}{2}, & k\in\mathbb{Z} \\ \theta & = & (2k+1)\frac{\pi}{6} \end{array}$$

Luego, el área del pétalo esta dado por

$$A = \frac{1}{2} \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} (3\cos 3\theta)^2 d\theta$$

$$A = \frac{9}{2} \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \left(\frac{1+\cos 6\theta}{2}\right) d\theta$$

$$A = \frac{9}{4} \left[\theta + \frac{\sin 6\theta}{6}\right]_{-\frac{\pi}{6}}^{\frac{\pi}{6}}$$

$$A = \frac{3\pi}{4}$$

III **(VERDADERO)**. La curva Folium de Descartes representada en coordenadas paramétricas por $x=\frac{3t}{1+t^3}$ y $y=\frac{3t^2}{1+t^3}$. En coordenadas polares, $x=r\cos\theta$, $y=\tan\theta$ y $\frac{y}{x}=\tan\theta$. Luego,

$$\frac{\frac{y}{x}}{3t^2} = \tan \theta$$

$$\frac{3t^2}{\frac{1+t^3}{3t}} = \tan \theta$$

$$t = \tan \theta$$

Finalmente,

$$r\cos\theta = x$$

$$r\cos\theta = \frac{3t}{1+t^3}$$

$$r\cos\theta = \frac{3\tan\theta}{1+\tan^3\theta}$$

$$r = \frac{3\sin\theta\cos\theta}{\sin^3\theta+\cos^3\theta}$$

IV. **(FALSO)**. Representamos un arco de la cicloide \mathscr{C} : $\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}, t \in [0, , 2\pi].$

El volumen del solido generado esta dado por

$$V = \int_0^{2\pi} \pi y^2 x' \, dt$$

$$V = \int_0^{2\pi} \pi (1 - \cos t) (1 - \cos t) \, dt$$

$$V = \pi \int_0^{2\pi} (1 - \cos t)^3 \, dt$$

$$V = 5\pi^2$$

2. En la figura se muestra la gráfica con ecuación polar $r = 4\cos 3\theta$. Determine las ecuaciones de las rectas tangentes en los puntos indicados.

(4 puntos)

Resolución: De la figura,

$$r = 4$$

$$4\cos 3\theta = 4$$

$$\cos 3\theta = 1$$

$$3\theta = 2k\pi$$

$$\theta = \frac{2k\pi}{2}$$

Luego, los puntos en coordenadas polares son $\left(4,\frac{2\pi}{3}\right)$ y $\left(4,\frac{4\pi}{3}\right)$, en coordenadas rectangulares son $\left(4\cos\frac{2\pi}{3},4\sin\frac{2\pi}{3}\right)$ y $\left(4\cos\frac{4\pi}{3},4\sin\frac{4\pi}{3}\right)$.

La pendiente de las rectas tangentes están dados por

$$\frac{dy}{dx} = \frac{r' \sin \theta + r \cos \theta}{r' \cos \theta - r \sin \theta}$$

$$\frac{dy}{dx} = \frac{-12 \sin 3\theta \sin \theta + 4 \cos 3\theta \cos \theta}{-12 \sin 3\theta \sin \theta - 4 \cos 3\theta \sin \theta}$$

$$\frac{dy}{dx} = \frac{3 \sin 3\theta \sin \theta - \cos 3\theta \cos \theta}{3 \sin 3\theta \sin \theta + \cos 3\theta \sin \theta}$$

• En
$$\theta = \frac{2\pi}{3}$$
 la pendiente es

• En $\theta = \frac{2\pi}{3}$ la pendiente es

• En $\theta = \frac{2\pi}{3}$ la pendiente es

$$m_1 = \frac{3 \sec 2\pi \sec \frac{2\pi}{3} - \cos 2\pi \cos \frac{2\pi}{3}}{3 \sec 2\pi \sec \frac{2\pi}{3} + \cos 2\pi \sec \frac{2\pi}{3}}$$

$$m_2 = \frac{3 \sec 4\pi \sec \frac{4\pi}{3} - \cos 4\pi \cos \frac{4\pi}{3}}{3 \sec 4\pi \sec \frac{4\pi}{3} + \cos 4\pi \sec \frac{4\pi}{3}}$$

$$m_1 = -\cot \frac{2\pi}{3}$$

$$m_2 = -\cot \frac{4\pi}{3}$$

$$m_2 = -\cot \frac{4\pi}{3}$$

$$m_2 = -\cot \frac{4\pi}{3}$$

Finalmente, las ecuaciones de las rectas tangentes están dados por

Para la recta
$$\mathcal{L}_1$$

$$y - 4 \operatorname{sen} \frac{2\pi}{3} = \left(\frac{1}{\sqrt{3}}\right) (x - 4 \cos \frac{2\pi}{3})$$

$$y = \frac{1}{\sqrt{3}} x + \frac{8}{\sqrt{3}}$$
Para la recta \mathcal{L}_2

$$y - 4 \operatorname{sen} \frac{4\pi}{3} = \left(\frac{1}{\sqrt{3}}\right) (x - 4 \cos \frac{4\pi}{3})$$

$$y = -\frac{1}{\sqrt{3}} x - \frac{8}{\sqrt{3}}$$

3. Sean las curvas \mathscr{C}_1 : $r=4\cos\theta$ y \mathscr{C}_2 : $r=2(1+\cos\theta)$. Calcule el área de la región determinada por las curvas \mathscr{C}_1 y \mathscr{C}_2 para todo $y\geq 0$. (4 puntos)

Resolución: Representamos la región determinada por la circunferencia \mathscr{C}_1 : $r=4\cos\theta$ y la cardioide \mathscr{C}_2 : $r=2(1+\cos\theta)$ para todo $y\geq 0$.

El área de la región ${\mathcal R}$ esta dado por

$$A = \frac{1}{2} \int_0^{\pi} [2(1+\cos\theta)]^2 d\theta - \frac{1}{2} \int_0^{\frac{\pi}{2}} [4\cos\theta]^2 d\theta$$

$$A = \int_0^{\pi} (3+4\cos\theta + \cos 2\theta) d\theta - 4 \int_0^{\frac{\pi}{2}} (1+\cos 2\theta) d\theta$$

$$A = \left[3\theta + 4\sin\theta + \frac{3}{2}\sin 2\theta \right]_0^{\pi} - 4 \left[\theta + \frac{1}{2}\sin 2\theta \right]_0^{\frac{\pi}{2}}$$

$$A = 3\pi - 2\pi$$

$$A = \pi$$

- 4. Dado una circunferencia de centro O cuyo radio mide a y de diámetro \overline{AB} . Sea M un punto que se desplaza sobre la circunferencia, N la proyección de M sobre \overline{AB} y P el simétrico de N respecto de la recta \overleftarrow{OM} .
 - a) Determine la ecuación en coordenadas polares del lugar geométrico descrito por P. $(1.5~{\rm puntos})$
 - b) Trace la gráfica del lugar geométrico descrito por P, empleando simetrías, extensión y tabulación. (2.5 puntos)

Resolución: Si las coordenadas de P son (r, θ) , entonces

a) De la figura, por el teorema de la mediatriz

$$\begin{array}{rcl} d(O,P) & = & d(O,N) \\ r & = & a\cos\left(\frac{\theta}{2}\right) \end{array}$$

b) • Simetrías.

• Con el eje polar: (r, θ) por $(r, -\theta)$ se obtiene

$$r = a \cos\left(\frac{-\theta}{2}\right)$$
$$r = a \cos\left(\frac{\theta}{2}\right)$$

Por lo tanto es simétrica con respecto del eje polar.

• Con el eje $\pi/2$: (r,θ) por $(-(-1)^n r, -\theta + n\pi)$, para n=2 se obtiene

$$-r = a \cos\left(\frac{-\theta + 2\pi}{2}\right)$$
$$r = a \cos\left(\frac{\theta}{2}\right)$$

Por lo tanto es simétrica con respecto al eje $\frac{\pi}{2}$.

• Con el polo: (r, θ) por $(-(-1)^n r, \theta + n\pi)$, para n = 2 se obtiene

$$-r = a \cos\left(\frac{\theta + 2\pi}{2}\right)$$
$$-r = -a \cos\left(\frac{\theta}{2}\right)$$
$$r = a \cos\left(\frac{\theta}{2}\right)$$

Por lo tanto es simétrica con respecto al polo.

■ Extensión. $\theta \in \mathbb{R}$ y $-a \le r \le a$

 \blacksquare Tabulación. Por ser simétrica respecto del eje $\pi/2$, es suficiente tabular $0 \le \theta \le \pi$:

θ	0	$\pi/3$	$\pi/2$	$2\pi/3$	π
r	a	$\frac{\sqrt{3}}{2}a$	$\frac{\sqrt{2}}{2}a$	$\frac{1}{2}a$	0

La gráfica es

5. Sea la región $\mathscr{R} = \{(r,\theta) \colon a \leq r \leq a\sqrt{2 \operatorname{sen} 2\theta}, a > 0\}$. Calcule el volumen del sólido generado por la rotación de \mathscr{R} alrededor del eje polar. (4 puntos)

Resolución: Representamos la lemniscata $r=a\sqrt{2\sin2\theta},\ a>0$, la circunferencia r=a y la región $\mathscr{R}=\{(r,\theta)\colon a\leq r\leq a\sqrt{2\sin2\theta}, a>0\}$

Determinamos los puntos de intersección, esto es

$$a\sqrt{2} \sec 2\theta = a$$

$$\sec 2\theta = \frac{1}{2}$$

$$2\theta = k\pi + (-1)^2 \left(\frac{\pi}{6}\right)$$

$$\theta = \frac{k\pi}{2} + (-1)^k \left(\frac{\pi}{12}\right)$$

Luego, los puntos de intersección son $(a, \frac{\pi}{12})$, $(a, \frac{5\pi}{12})$, $(a, \frac{13\pi}{12})$ y $(a, \frac{17\pi}{12})$. Finalmente, el volumen del sólido generado por la rotación de \mathscr{R} alrededor del eje polar esta dado por

$$V = 2 \left[\frac{2\pi}{3} \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} (a\sqrt{\sin 2\theta})^3 \sin \theta \, d\theta - \frac{2\pi}{3} \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} a^3 \sin \theta \, d\theta \right]$$

$$V = \frac{4\pi}{3} a^3 \left[2\sqrt{2} \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} 2(\sin 2\theta)^{3/2} (\sin \theta) \, d\theta - \frac{\sqrt{2}}{2} \right]$$

Evaluamos la integral

$$I_1 = \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} (\operatorname{sen} 2\theta)^{3/2} (\operatorname{sen} \theta) d\theta$$

Hacemos $\theta = \frac{\pi}{4} - x$, luego $d\theta = -dx$. Si $\theta = \frac{\pi}{12}$, entonces $x = -\frac{\pi}{6}$ y si $\theta = \frac{5\pi}{12}$, entonces $x = \frac{\pi}{6}$ $I_1 = \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} (\cos 2x)^{3/2} \sin \left(\frac{\pi}{4} - x\right) (-dx)$ $I_1 = \frac{1}{\sqrt{2}} \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} (\cos 2x)^{3/2} (\cos x - \sin x) dx$

$$I_1 = \sqrt{2} \int_0^{\frac{\pi}{6}} (1 - 2 \sin^2 x)^{3/2} \cos x \, dx$$

Hacemos $u = \sqrt{2} \sin x$, luego $du = \sqrt{2} \cos x$. Si x = 0, entonces u = 0 y si $x = \frac{\pi}{6}$, entonces $u = \frac{\sqrt{2}}{2}$

$$I_1 = \int_0^{\frac{\sqrt{2}}{2}} (1 - u^2)^{3/2} du$$

Hacemos $u = \operatorname{sen} t$, luego $du = \cos t \, dt$. Si u = 0, entonces t = 0 y si $u = \frac{\sqrt{2}}{2}$, entonces $t = \frac{\pi}{4}$

$$I_{1} = \int_{0}^{\frac{\pi}{4}} (1 - \sin^{2} t)^{3/2} \cos t \, dt$$

$$I_{1} = \int_{0}^{\frac{\pi}{4}} \cos^{4} t \, dt$$

$$I_{1} = \int_{0}^{\frac{\pi}{4}} \left(\frac{1 + \cos 2t}{2}\right)^{2} \, dt$$

$$I_{1} = \frac{3\pi + 8}{32}$$

Finalmente,

$$V = \frac{4\pi}{3}a^3 \left[2\sqrt{2}\left(\frac{3\pi+8}{32}\right) - \frac{\sqrt{2}}{2}\right]$$

$$V = \frac{\sqrt{2}\pi a^3}{4}$$

UNI, 04 de julio de 2022^*

 $^{^*}$ Hecho en LATEX

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2022-1

[Cod: BMA02] [Curso: Cálculo Integral]

Solucionario - Práctica Calificada N^o 3

- 1. Determine si cada proposición es verdadera o falsa. Justifique su respuesta.
 - I. El área de la región acotada por las curvas x = 3y + 2 y $x = y^3$ es igual a $\frac{27}{4}$ u². (1 punto)
 - II. Si las gráficas de f y g se intersecan en el punto de abscisa $x = \frac{a+b}{2}$ del intervalo [a,b], entonces $\int_a^b [f(x) g(x)] dx = 0$. (1 punto)
 - III. El volumen del sólido generado por la rotación de la región acotada por la gráfica de $f(x) = \sqrt{\operatorname{sen} x} \text{ y el eje } X \text{ (0} \le x \le \pi), \text{ alrededor del eje } X \text{ es igual a } 2\pi \text{ u}^3. \tag{1 punto}$
 - IV. La integral $2\pi \int_0^2 x^3 dx$ representa el volumen del sólido de revolución generado por la rotación de la región acotada por $y=x^2, y=0, x=0$ y x=2 alrededor del eje X.

(1 punto)

Resolución:

I. (VERDADERO). Representamos las curvas x = 3y + 2 y $x = y^3$

Determinando los puntos de intersección,

El área de la región está dado por

$$y^{3} = 3y + 2$$

$$y^{3} - 3y - 2 = 0$$

$$(y+1)^{2}(y-2) = 0$$

$$y = -1 \quad \forall \quad y = 2$$

$$A = \int_{-1}^{2} (3y + 2 - y^{3}) dy$$

$$A = \left[\frac{3}{2}y^{2} + 2y - \frac{1}{4}y^{4}\right]_{-1}^{2}$$

$$A = \frac{24}{7}$$

II. **(FALSO)**. Sean f(x) = x y $g(x) = 2x - x^2$ para todo $x \in [0, 2]$. Es claro que, las gráficas de f y g se intersecan en (1, 1). Sin embargo,

$$\int_0^2 [f(x) - g(x)] dx = \int_a^b [x - (2x - x^2)] dx$$

$$\int_0^2 [f(x) - g(x)] dx = \left[\frac{1}{3}x^3 - \frac{1}{2}x^2\right]_0^2$$

$$\int_0^2 [f(x) - g(x)] dx = \frac{2}{3}$$

III (VERDADERO). Representando la región acotada por la gráfica $f(x) = \sqrt{\sin x}$

Por el método del disco, el volumen del sólido generado por la región alrededor del eje X esta dado por

$$V = \int_0^{\pi} \pi (\sqrt{\sin x})^2 dx$$

$$V = \pi [-\cos x]_0^{\pi}$$

$$V = 2\pi$$

IV. (FALSO). Representamos la región acotada por $y = x^2$, y = 0, x = 0 y x = 2.

Por el método de las capas cilíndricas, el volumen del sólido generado por la región alrededor del eje Y esta dado por

$$V = \int_0^4 2\pi x f(x) dx$$

$$V = \int_0^4 2\pi x (x^2) dx$$

$$V = 2\pi \int_0^4 x^3 dx$$

2. La recta horizontal y=c interseca a la curva $y=2x-3x^3$ en el primer cuadrante tal como se muestra en la figura. Calcule el valor de c tal que las áreas de las regiones sombreadas sean iguales. (4 puntos)

Sugerencia: Iguale áreas de las regiones bajo las curvas $y = 2x - 3x^3$ y y = c, desde 0 hasta la abscisa del segundo punto de intersección.

Resolución: De la sugerencia dada, sea b la abscisa del segundo punto de intersección de las curvas $y = 2x - 3x^3$ y y = c.

$$A + B = \int_0^b c \, dx$$

$$A + B = [cx]_0^b$$

$$A + B = bc$$

$$A + B = b^2 - \frac{3}{4}x^4]_0^b$$

$$A + B = b^2 - \frac{3}{4}b^4$$
(2)

De (1) y (2), se tiene $c = b - \frac{3}{4}b^3$. Además $c = 2b - 3b^3$, luego

$$b - \frac{3}{4}b^3 = 2b - 3b^3$$

$$b\left(\frac{3}{2}b - 1\right)\left(\frac{3}{2}b + 1\right) = 0$$

$$b = \frac{2}{3}$$

Finalmente,

$$c = 2\left(\frac{2}{3}\right) - 3\left(\frac{2}{3}\right)^3$$
$$c = \frac{4}{9}$$

3. En la figura se muestra una catenaria dada por $f(x) = c \cosh\left(\frac{x}{c}\right)$ y la recta \mathcal{L} perpendicular a la recta tangente a la catenaria en el punto $P(x_0, y_0)$. Demuestre que la longitud del segmento \overline{AB} determinado por los ejes en la recta \mathcal{L} es igual a y_0 .

(4 puntos)

Resolución: De la regla de correspondencia de la catenaria, la pendiente de la recta \mathcal{L} en el punto $P(x_0, y_0)$ esta dado por

$$m = -\frac{1}{f'(x_0)}$$

$$m = -\frac{1}{c\left(\frac{1}{c}\right)\operatorname{senh}\left(\frac{x_0}{c}\right)}$$

$$m = -\frac{1}{\operatorname{senh}\left(\frac{x_0}{c}\right)}$$

Luego, $y_0 = c \cosh\left(\frac{x_0}{c}\right)$ y la ecuación de la recta $\mathcal{L}: y = \left(-\frac{1}{\sinh\left(\frac{x_0}{c}\right)}\right)x + c$. Además, $A \in \mathcal{L}$,

$$0 = \left(-\frac{1}{\operatorname{senh}\left(\frac{x_0}{c}\right)}\right)a + c$$
$$a = c\operatorname{senh}\left(\frac{x_0}{c}\right)$$

Finalmente,

$$AB = \sqrt{(0-a)^2 + (c-0)^2}$$

$$AB = \sqrt{\left(c \operatorname{senh}\left(\frac{x_0}{c}\right)\right)^2 + c^2}$$

$$AB = c \operatorname{cosh}\left(\frac{x_0}{c}\right)$$

$$AB = y_0$$

4. Se desea construir un depósito sobre una base de terreno elíptico con ecuación $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ y con secciones transversales cuadradas perpendiculares al eje X. Calcule el volumen de capacidad de dicho depósito.

(4 puntos)

Resolución: Representamos la base del sólido y una de las secciones transversales perpendiculares al eje X.

Dado que $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, se tiene que $y^2 = \frac{b^2}{a^2}(a^2 - x^2)$. El área de la sección transversal esta dado por

$$A(x) = (2y)^2$$

 $A(x) = 4y^2$
 $A(x) = \frac{4b^2}{a^2}(a^2 - x^2)$

Luego, el volumen del sólido está dado por

$$V = \int_{-a}^{a} A(x) dx$$

$$V = \int_{-a}^{a} \frac{4b^{2}}{a^{2}} (a^{2} - x^{2}) dx$$

$$V = \frac{8b^{2}}{a^{2}} \int_{0}^{a} (a^{2} - x^{2}) dx$$

$$V = \frac{8b^{2}}{a^{2}} \left[a^{2}x - \frac{1}{3}x^{3} \right]_{0}^{a}$$

$$V = \frac{16ab^{2}}{3}$$

Por lo tanto, la capacidad del depósito es de $\frac{16ab^2}{3}$ u³.

5. Evalúe

$$I = \int \frac{(2 + \tan^2 x) \sec^2 x}{1 + \tan^3 x} dx$$

(4 puntos)

Resolución: Haciendo el cambio de variable $u = \tan x$, tenemos $du = \sec^2 x \, dx$. Luego,

$$I = \int \frac{2+u^2}{1+u^3} \, du$$

Por fracciones parciales

$$\frac{2+u^2}{1+u^3} = \frac{A}{1+u} + \frac{B+Cu}{1-u+u^2}$$
$$2+u^2 = (A+B) + (B+C-A)u + (A+C)u^2$$

Resolviendo el sistema

$$A + B = 2$$

$$B + C - A = 0$$

$$A + C = 1$$

tenemos que, $A=1,\,B=1$ y C=0. Así,

$$\frac{2+u^2}{1+u^3} = \frac{1}{1+u} + \frac{1}{1-u+u^2}$$

Finalmente.

$$I = \int \left[\frac{1}{1+u} + \frac{1}{1-u+u^2} \right] du$$

$$I = \int \frac{1}{1+u} du + \int \frac{1}{1-u+u^2} du$$

$$I = \int \frac{1}{1+u} du - \int \frac{1}{\left(\frac{1}{2}-u\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} d\left(\frac{1}{2}-u\right)$$

$$I = \ln|1+u| - \frac{1}{\left(\frac{\sqrt{3}}{2}\right)} \arctan\left(\frac{\frac{1}{2}-u}{\frac{\sqrt{3}}{2}}\right) + C$$

$$I = \ln|1+u| - \frac{2}{\sqrt{3}} \arctan\left(\frac{1-2u}{\sqrt{3}}\right) + C$$

$$I = \ln|1+\tan x| - \frac{2}{\sqrt{3}} \arctan\left(\frac{1-2\tan x}{\sqrt{3}}\right) + C$$

UNI, 20 de junio de 2022*

^{*}Hecho en LAT_EX

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2022-1

[Curso: Cálculo Integral]

[Cod: BMA02]

Solucionario - Práctica Calificada Nº 2

1. Determine si cada proposición es verdadera o falsa. Justifique su respuesta.

I. Si $f: \mathbb{R} \to \mathbb{R}$ es una función continua y $\int_0^4 f(x) dx = 10$, entonces $\int_0^2 f(2x) dx = 20$. (1 punto)

- II. El error estimado al utilizar la regla de Simpson para aproximar la integral $\int_0^1 e^{x^2} dx$ para n = 10 es aproximadamente 0.000115. (1.5 puntos)
- III. Si $f: \mathbb{R} \to \mathbb{R}$ es una función continua, entonces

$$\int_0^{\pi} x f(\operatorname{sen} x) \, dx = \pi + \frac{\pi}{2} \int_0^{\pi} f(\operatorname{sen} x) \, dx$$

(Sugerencia: Cambio de variable $x = \pi - u$)

(1.5 puntos)

IV. Si 0 < a < b, entonces $\ln b < \ln a$.

(1 punto)

Resolución:

I. **(FALSO)**. Si $f: \mathbb{R} \to \mathbb{R}$ y $\int_0^4 f(x) dx = 10$, entonces hacemos 2x = u, luego 2 dx = du. Si x = 0, entonces u = 0 y si x = 2, entonces u = 4. Finalmente,

$$\int_{0}^{2} f(2x) dx = \int_{0}^{4} f(u) \left(\frac{1}{2} du\right)$$

$$\int_{0}^{2} f(2x) dx = \frac{1}{2} \int_{0}^{4} f(u) du$$

$$\int_{0}^{2} f(2x) dx = \frac{1}{2} (10)$$

$$\int_{0}^{2} f(2x) dx = 5$$

II. (VERDADERO). El error estimado al utilizar al regla de Simpson está dado por

$$|E_S| \le \frac{M(b-a)^5}{180n^4}$$

donde $|f^{(4)}(x)| \le M$ para todo $x \in [a, b]$. Si $f(x) = e^{x^2}$ para todo $x \in [0, 1]$, entonces $f^{(4)}(x) = (12 + 48x^2 + 16x^4)e^{x^2}$, como $0 \le x \le 1$, tenemos $0 \le f^{(4)}(x) \le (12 + 48 + 16) = 76e$. Luego, M = 76e, a = 0, b = 1 y n = 10. Finalmente, vemos que el error es a lo mas

$$\frac{76e(1-0)^5}{180(10)^4} \approx 0.000115$$

III **(FALSO)**. Si $f: \mathbb{R} \to \mathbb{R}$ es una función continua, entonces hacemos $x = \pi - u$, luego dx = -du. Si x = 0, entonces $u = \pi$ y si $x = \pi$, entonces u = 0. Finalmente,

$$\int_{0}^{\pi} x f(\sin x) \, dx = \int_{\pi}^{0} (\pi - u) f(\sin (\pi - u)) (-du)$$

$$\int_{0}^{\pi} x f(\sin x) \, dx = -\int_{\pi}^{0} (\pi - u) f(\sin u) \, du$$

$$\int_{0}^{\pi} x f(\sin x) \, dx = \int_{0}^{\pi} (\pi - u) f(\sin u) \, du$$

$$\int_{0}^{\pi} x f(\sin x) \, dx = \pi \int_{0}^{\pi} f(\sin u) \, du - \int_{0}^{\pi} u f(\sin u) \, du$$

$$2 \int_{0}^{\pi} x f(\sin x) \, dx = \pi \int_{0}^{\pi} f(\sin x) \, dx$$

$$\int_{0}^{\pi} x f(\sin x) \, dx = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \, dx$$

- IV. (FALSO). Si a = 1 y b = e, entonces 0 < a < b, $\ln a = 0$ y $\ln b = 1$, sin embargo $\ln b > \ln a$.
- 2. Suponga que usted es un arquitecto que desea levantar una pared cuya parte superior es un gran arco de forma parabólica dado por

$$y = 0.1x(30 - x)$$
 metros

donde y es la altura desde el piso y el piso x está en metros.

- a) Calcule el área total aproximada de la pared utilizando la regla de Simpson con n=6.

 (3 puntos)
- b) Calcule el valor del error del área obtenida en el item anterior y explique el resultado.

(2 puntos)

Resolución:

a) Del dato obtenemos que el piso tiene 30 metros de longitud. Sean $a=0,\ b=30,\ f(x)=0.1x(30-x)$ y n=6. Luego $h=\frac{30-0}{6}=5,\ x_i=a+ih$, $i\in\{0,\ldots,6\}$, entonces

	x_0	x_1	x_2	x_3	x_4	x_5	x_6
x	0	5	10	15	20	25	30
f(x)	0	12.5	20	22.5	20	12.5	0

Por lo tanto

$$S_6 = \frac{h}{3} \{ f(x_0) + 4(f(x_1) + f(x_3) + f(x_5)) + 2(f(x_2) + f(x_4)) + f(x_6) \}$$

$$= \frac{5}{3} \{ 0 + 4(12.5 + 22.5 + 12.5) + 2(20 + 20) + 0 \}$$

$$= 450$$

Así, el área total aproximada de la pared es 583.33 metros cuadrados.

b) Como f(x) = 0.1x(30 - x) entonces $f^{(4)}(x) = 0$, $x \in (0,30)$, por lo tanto

$$ES_6 = -\frac{1}{180} \cdot \frac{(30-0)^5}{6^4} f^{(4)}(c) , c \in \langle 0, 30 \rangle \implies ES_6 = 0$$

El resultado $ES_6 = 0$ se debe a que f(x) = 0.1x(30 - x) es un polinomio de grado 2 y la regla de Simpson es exacta para polinomios de grado ≤ 3 .

3. Use el teorema del cambio de variable para calcular la siguiente integral definida:

$$\int_0^{\frac{1}{2}} \frac{x - \arctan 2x}{1 + 4x^2} dx$$

(5 puntos)

Resolución: Tenemos

$$I = \int_0^{\frac{1}{2}} \frac{x - \arctan 2x}{1 + 4x^2} dx = \int_0^{\frac{1}{2}} \frac{x}{1 + 4x^2} dx - \int_0^{\frac{1}{2}} \frac{\arctan 2x}{1 + 4x^2} dx$$

Consideramos

$$u = 1 + 4x^2$$
 \rightarrow $du = 8xdx$
 $v = \arctan 2x$ \rightarrow $dv = \frac{2dx}{1+4x^2}$

Luego

$$I = \frac{1}{8} \int_0^{\frac{1}{2}} \frac{8xdx}{1+4x^2} - \frac{1}{2} \int_0^{\frac{1}{2}} \arctan 2x \frac{2dx}{1+4x^2}$$

Notamos que si

$$x = 0 \rightarrow u = 1$$
 , $v = 0$
 $x = \frac{1}{2} \rightarrow u = 2$, $v = \frac{\pi}{4}$

Entonces

$$I = \frac{1}{8} \int_{1}^{2} \frac{du}{u} - \frac{1}{2} \int_{0}^{\frac{\pi}{4}} v dv$$

de esta manera

$$I = \frac{1}{8} \ln|u||_1^2 - \frac{1}{2} \frac{w^2}{2} \Big|_0^{\frac{\pi}{4}} = \frac{\ln 2}{8} - \frac{\pi^2}{64}$$

4. Para 0 < x < y, utilice el teorema del valor medio para integrales para demostrar que

$$\frac{1}{y} < \frac{\ln y - \ln x}{y - x} < \frac{1}{x}$$

(5 puntos)

Resolución: Sea $f(t) = \frac{1}{t}$ para todo $t \in [x, y]$ con 0 < x < y. La función f es continua en [x, y], por el teorema del valor medio para integrales existe, $z \in]x, y[$ tal que

$$\int_{x}^{y} f(t) dt = f(z)(y - x)$$

$$\int_{x}^{y} \frac{1}{t} dt = f(z)(y - x)$$

$$\ln y - \ln x = f(z)(y - x)$$

$$\frac{\ln y - \ln x}{y - x} = f(z)$$

Además $f'(t) = -\frac{1}{t^2} < 0$, luego f es una función decreciente. Luego, x < z < y implica que $\frac{1}{y} < \frac{1}{z} < \frac{1}{x}$. Por lo tanto,

$$\frac{1}{y} < \frac{\ln y - \ln x}{y - x} < \frac{1}{x}$$

UNI, 22 de mayo de 2022*

 $^{^*}$ Hecho en L $^{\!\!A}$ TeX

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2022-1

[Cod: BMA02] [Curso: Cálculo Integral]

Solucionario - Práctica Calificada N^o 1

1. Determine si cada proposición es verdadera o falsa. Justifique su respuesta.

I. Si F(x) es una antiderivada de $f(x) = 4e^{\frac{x^2}{3}}$ y $G(x) = xF(x) + ae^{\frac{x^2}{3}}$ es una antiderivada de F(x), entonces a = -6. (1 punto)

II. Si f es una función integrable en [a, b], entonces $\int_a^b f(x) dx \le \int_a^b |f(x)| dx$. (1 punto)

III. Si $f: [a,b] \to \mathbb{R}$ y $g: [a,b] \to \mathbb{R}$ son funciones continuas tales que $\int_a^b f(x) \, dx \le \int_a^b g(x) \, dx$, entonces $f(x) \le g(x)$ para todo $x \in [a,b]$. (1 punto)

IV.
$$\int_0^1 (x^2 - x) dx = \lim_{n \to +\infty} \sum_{k=1}^n \left[\left(\frac{2k-1}{2n} \right)^2 - \left(\frac{2k-1}{2n} \right) \right] \frac{2}{n}$$
. (1 punto)

Resolución:

I. **(VERDADERO)**. Si F(x) es una antiderivada de $f(x) = 4e^{\frac{x^2}{3}}$ y $G(x) = xF(x) + ae^{\frac{x^2}{3}}$ es una antiderivada de F(x), entonces $F'(x) = 4e^{\frac{x^2}{3}}$ y

$$G'(x) = F(x)$$

$$F(x) + xF'(x) + \frac{2a}{3}xe^{\frac{x^2}{3}} = F(x)$$

$$x(4e^{\frac{x^2}{3}}) + \frac{2a}{3}xe^{\frac{x^2}{3}} = 0$$

$$\frac{2x}{3}(6+a)e^{\frac{x^2}{3}} = 0$$

$$a = -6$$

II. (VERDADERO). Si f es una función integrable en [a, b] y como $f(x) \le |f(x)|$ para todo $x \in [a, b]$, entonces

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} |f(x)| dx$$

III **(FALSO)**. Si f(x) = 1, $x \in [0,3]$ y g(x) = x, $x \in [a,b]$, entonces $\int_0^3 f(x) dx = 3$ y $\int_0^3 g(x) dx = 4,5$. Es claro que $\int_a^b f(x) dx \le \int_a^b g(x) dx$, sin embargo no se tiene $f(x) \le g(x)$, para todo $x \in [0,3]$.

IV. **(FALSO)**. Consideramos una partición regular para la suma de Riemann, se tiene $\Delta x = \frac{1}{n}$. Elegimos los puntos medios de cada subintervalo determinado por la partición, esto es $x_k^* = 0 + \left(\frac{2k-1}{2}\right)\Delta x = \frac{2k-1}{2n}$, para evaluar en $f(x) = x^2 - x$. Luego,

$$\begin{split} & \int_0^1 (x^2 - x) \, dx &= \lim_{n \to +\infty} \sum_{k=1}^n f(x_k^*) \Delta x \\ & \int_0^1 (x^2 - x) \, dx &= \lim_{n \to +\infty} \sum_{k=1}^n \left[\left(\frac{2k-1}{2n} \right)^2 - \left(\frac{2k-1}{2n} \right) \right] \frac{1}{n} \end{split}$$

2. Dos amigos de la escuela inician cuentan y pueden notar que: $1024+243=1267 \le 3125$ o sea que $5^5 \ge 2^{2.5}+3^5$, entonces se plantean si la desigualdad $5^n \ge 2^{2n}+3^n$ para cualquier número entero positivo $n \ge 2$. Ayude a despejar esta duda, brindando una demostración o un contraejemplo.

(4 puntos)

Resolución: Demostremos por inducción matemática que $5^{n+1} \ge 4^{n+1} + 3^{n+1}$. Sea $X = \{n \in \mathbb{N} : 5^{n+1} \ge 4^{n+1} + 3^{n+1}\}$.

- Claramente $1 \in X$, pues $5^2 > 4^2 + 3^2$.
- Por hipótesis inductiva, consideremos que un entero positivo $k \in X$, entonces $5^{k+1} \ge 4^{k+1} + 3^{k+1}$, ahora veamos que ocurre con su sucesor k+1 o sea veamos si $k+1 \in X$, es decir, que pasa con 5^{k+2} .

$$5^{k+2} = 5.5^{k+1} > 5.(4^{k+1} + 3^{k+1}) = 5.4^{k+1} + 5.3^{k+1}$$

como $5 \ge 4$ y $5 \ge 3$ tenemos

$$5^{k+2} > 4.4^{k+1} + 3.3^{k+1} = 4^{k+2} + 3^{k+2}$$

con lo cual $k+1 \in X$, o sea $X = \mathbb{N}$, que es lo que queríamos probar.

Tenemos entonces que $5^{n+1} \ge 4^{n+1} + 3^{n+1}$ para todo $n \in \mathbb{N}$ (ie $n \ge 1$). Ahora solo debemos acomodar la desigualdad con lo cual

$$5^n > 4^n + 3^n, \forall n > 2$$

que es lo mismo que

$$5^n > 2^{2n} + 3^n, \forall n > 2$$

3. Evalúe cada una de las siguientes integrales indefinidas:

a)
$$I_1 = \int \frac{1}{\sqrt{2x+1} - \sqrt{x}} dx$$
 (2 puntos)

b)
$$I_2 = \int \frac{x \arctan(\sqrt{x})}{(1+x)\sqrt{x}} dx$$
 (2 puntos)

Resolución:

a) Aplicamos propiedades de las integrales

$$I_{1} = \int \frac{1}{\sqrt{2x+1} - \sqrt{x}} dx$$

$$I_{1} = \int \frac{1}{\sqrt{2x+1} - \sqrt{x}} \left(\frac{\sqrt{2x+1} + \sqrt{x}}{\sqrt{2x+1} + \sqrt{x}}\right) dx$$

$$I_{1} = \int \frac{\sqrt{2x+1} + \sqrt{x}}{x+1} dx$$

$$I_{1} = \underbrace{\int \frac{\sqrt{2x+1}}{x+1} dx}_{I} + \underbrace{\int \frac{\sqrt{x}}{x+1} dx}_{J}$$

• Calculamos I: si $2x + 1 = y^2$, entonces dx = y dy, así

$$I = \int \frac{2y^2}{y^2 + 1} \, dy$$

$$I = 2 \left\{ \int dy - \int \frac{1}{y^2 + 1} \, dy \right\}$$

$$I = 2(y - \arctan y) + C_1$$

$$I = 2(\sqrt{2x + 1} - \arctan \sqrt{2x + 1}) + C_1$$

• Calculamos J: si $x=z^2$, entonces $dx=2z\,dz$, así

$$J = \int \frac{2z^2}{z^2 + 1} dz$$

$$J = 2(z - \arctan z) + C_2$$

$$J = 2(\sqrt{x} - \arctan \sqrt{x}) + C_2$$

Finalmente,

$$I = 2(\sqrt{2x+1} + \sqrt{x} - \arctan\sqrt{2x+1} - \arctan\sqrt{x}) + C$$

b) Hacemos la sustitución $y=\arctan(\sqrt{x}),$ luego $dy=\frac{1}{2(x+1)\sqrt{x}}\,dx$ y $x=\tan^2y.$ Reemplazamos,

$$I_{2} = \int \frac{x \arctan(\sqrt{x})}{(1+x)\sqrt{x}} dx$$

$$I_{2} = 2 \int y \tan^{2} y dy$$

$$I_{2} = 2 \int y \sec^{2} y dy - \underbrace{\int 2y dy}_{y^{2}}$$

$$I_{2} = 2 \underbrace{\int y \sec^{2} y dy}_{I} - y^{2} + C_{1}$$

Aplicamos integración por partes para calcular I,

$$u = y dv = \sec^2 y \, dy$$

$$du = dy v = \tan y$$

Así,

$$I = y \tan y - \int \tan y \, dy$$

$$I = y \tan y + \ln|\cos y| + C_2$$

Finalmente,

$$I_2 = 2(y \tan y + \ln|\cos y|) - y^2 + C$$

$$I_2 = 2(\sqrt{x} \arctan \sqrt{x} - \ln \sqrt{x+1}) - \arctan^2 \sqrt{x} + C$$

4. Sea la función

$$f(x) = \begin{cases} 4 - \sqrt{-x^2 - 6x}, & \text{si } -3 \le x \le 0 \\ -\frac{3}{4}x + 4, & \text{si } 0 < x \le 4 \\ x - 6, & \text{si } 4 < x \le 9 \end{cases}$$

Evalúe $\int_{-3}^{9} f(x) dx$ (4 puntos)

Resolución: Representamos la función por tramos

Calculamos las áreas de las regiones representadas por $A_1,\,A_2,\,A_3$ y A_4 :

$$A_1 = (3)(4) - \frac{1}{4}\pi(3)^2 A_2 = \left(\frac{4+1}{2}\right)(4)$$
 $A_3 = \frac{(2)(2)}{2}$ $A_4 = \frac{(3)(3)}{2}$
 $A_1 = 12 - \frac{9\pi}{4}$ $A_2 = 10$ $A_3 = 2$ $A_4 = \frac{9}{2}$

Finalmente,

$$\int_{-3}^{9} f(x) dx = \int_{-3}^{0} f(x) dx + \int_{0}^{4} f(x) dx - \int_{4}^{6} f(x) dx + \int_{6}^{9} f(x) dx$$

$$\int_{-3}^{9} f(x) dx = A_{1} + A_{2} - A_{3} + A_{4}$$

$$\int_{-3}^{9} f(x) dx = 12 - \frac{9\pi}{4} + 10 - 2 + \frac{9}{2}$$

$$\int_{-3}^{9} f(x) dx = \frac{49}{2} - \frac{9\pi}{4}$$

5. Considere el siguiente límite:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{\sqrt{32nk - 16k^2}}{n^2}$$

- a) Exprese el límite anterior como integral definida de una función f(x) en un intervalo [a, b].

 (2 puntos)
- b) Calcule el valor del límite mostrado interpretando la integral obtenida en el ítem a) como el área de una región geométrica conocida. (2 puntos)

Resolución:

a) Expresamos el término general de la sumatoria

$$\frac{\sqrt{32nk - 16k^2}}{n^2} = \sqrt{4\left(\frac{2k}{n}\right) - \left(\frac{2k}{n}\right)^2} \cdot \left(\frac{2}{n}\right)$$

Elegimos $\Delta x = \frac{2}{n}$ con [a, b] = [0, 2] y puntos de la partición $x_k = \frac{2k}{n}$, luego

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{\sqrt{32nk - 16k^2}}{n^2} = \lim_{n \to +\infty} \sum_{k=1}^{n} \sqrt{4\left(\frac{2k}{n}\right) - \left(\frac{2k}{n}\right)^2} \cdot \left(\frac{2}{n}\right)$$

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{\sqrt{32nk - 16k^2}}{n^2} = \int_{0}^{2} \sqrt{4x - x^2} \, dx$$

b) Representando la gráfica de la función $f(x) = \sqrt{4x - x^2}$ con $x \in [0, 2]$.

Es claro que la integral obtenida en el ítem a) representa el área de la región determinada por la gráfica de f, el eje X y la rectas verticales x=0 y x=2. Luego,

$$\int_{0}^{2} \sqrt{4x - x^{2}} dx = A$$

$$\int_{0}^{2} \sqrt{4x - x^{2}} dx = \frac{1}{4}\pi (2)^{2}$$

$$\int_{0}^{2} \sqrt{4x - x^{2}} dx = \pi$$

Por lo tanto,

$$\lim_{n\to +\infty} \sum_{k=1}^n \frac{\sqrt{32nk-16k^2}}{n^2} = \pi$$

UNI, 09 de mayo de 2022*

 $^{^*}$ Hecho en LATEX

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2022-1

[Cod: BMA02] [Curso: Cálculo Integral]

Solucionario - Examen Sustitutorio

1. Determine si cada proposición es verdadera o falsa. Justifique su respuesta.

I. Si
$$f(x) \le g(x)$$
 para todo $x \in [a, b]$, entonces $\int_a^b |f(x)| dx = \int_a^b |g(x)| dx$. (1 punto)

II. Toda función $f: [a, b] \to \mathbb{R}$ tiene antiderivada. (1 punto)

III. La gráfica de $r^2 = \cos^2 \theta$ son dos circunferencia. (1 punto)

IV. Si f es una función continua en \mathbb{R} , entonces la longitud de la curva $y=f(x), \ a\leq x\leq b$ es igual a la longitud de la curva $y=\frac{1}{2}f(2x), \ \frac{a}{2}\leq x\leq \frac{b}{2}.$ (1 punto)

Resolución:

I. **(FALSO)**. Sean las funciones f(x) = -3 y g(x) = -1 para todo $x \in [1,3]$, es claro que $f(x) \le g(x)$ para todo $x \in [1,3]$, sin embargo $\int_1^3 f(x) dx > \int_1^3 g(x) dx$ ya que $\int_1^3 |f(x)| dx = 6$ y $\int_1^3 |g(x)| dx = 2$.

II. (FALSO). La función $f(x) = \frac{1}{x}$ para todo $x \in [-1,1]$ no tiene antiderivada en [-1,1].

III (VERDADERO). La gráfica de $r^2 = \cos^2 \theta$ esta representado por las circunferencias $r = \cos \theta$ y $r = -\cos \theta$.

IV. **(FALSO)**. La longitud de y = f(x), $a \le x \le b$ es

$$L_1 = \int_a^b \sqrt{1 + [f']^2} \, dx$$

y la longitud de $y = g(x) = \frac{1}{2}f(2x), \frac{a}{2} \le x \le \frac{b}{2}$ es

$$L_{2} = \int_{\frac{a}{2}}^{\frac{b}{2}} \sqrt{1 + [g'(x)]^{2}}$$

$$L_{2} = \int_{\frac{a}{2}}^{\frac{b}{2}} \sqrt{1 + \frac{1}{2}f'(2x)(2)}$$

$$L_{2} = \frac{\frac{a}{2}}{\frac{b}{2}} \sqrt{1 + [f'(2x)]^{2}}$$

Hacemos u = 2x, luego du = 2dx, así

$$L_{2} = \int_{a}^{b} \sqrt{1 + [f'(u)]^{2}} \left(\frac{1}{2} du\right)$$

$$L_{2} = \frac{1}{2} \int_{a}^{b} \sqrt{1 + [f'(u)]^{2}} du$$

Por lo tanto, $L_1 = 2L_2$.

2. Sea la función

$$f(x) = \begin{cases} 2, & \text{si } -2 \le x \le 0\\ 2 - \sqrt{4 - (x - 2)^2}, & \text{si } 0 < x < 2 \end{cases}$$

a) Evalúe
$$\int_{-2}^{2} f(x) dx$$
 (2 puntos)

b) ¿Existe un número c en [-2,2] tal que f(c) es el valor promedio de f en [-2,2]?

(2 puntos)

Resolución: Representamos la función

$$f(x) = \begin{cases} 2, & \text{si } -2 \le x \le 0\\ 2 - \sqrt{4 - (x - 2)^2}, & \text{si } 0 < x < 2 \end{cases}$$

a) Calculamos las integrales como áreas de regiones conocidas

$$\int_{-2}^{2} f(x) dx = \int_{-2}^{0} f(x) dx + \int_{0}^{2} f(x) dx$$

$$\int_{-2}^{2} f(x) dx = A_{1} + A_{2}$$

$$\int_{-2}^{2} f(x) dx = (2)^{2} + (2)^{2} - \frac{1}{4}\pi(2)^{2}$$

$$\int_{-2}^{2} f(x) dx = 8 - \pi$$

b) Es claro que f es continua en [-2, 2], por el teorema del valor medio para integrales, existe un número $c \in [a, b]$ tal que

$$\int_{-2}^{2} f(x) dx = f(c)(2 - (-2))$$

$$8 - \pi = 4f(c)$$

$$f(c) = \frac{8 - \pi}{4}$$

- \bullet En $[-2,0],\,f(c)=2,$ lo cual es una contradicción, ya que $f(c)=\frac{8-\pi}{4}$
- En [0,2],

$$\begin{array}{rcl} f(c) & = & \frac{8-\pi}{4} \\ 2-\sqrt{4-(c-2)^2} & = & \frac{8-\pi}{4} \\ c = 2-\sqrt{4-\frac{\pi^2}{16}} & \lor & c = 2+\sqrt{4-\frac{\pi^2}{16}} \notin [2,0] \end{array}$$

- 3. Considere la curva $r = \frac{4}{1 + \cos \theta}$.
 - a) Represente la gráfica de la curva, utilizando puntos y simetrías. (1.5 puntos)
 - b) Calcule el área de la región limitada por esa curva, cuando $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$. (1.5 puntos)
 - c) ¿Qué curva que usted conoce, representa? (1 punto)

Resolución:

a) Como $r(-\theta) = r(\theta)$, entonces esa curva es simétrica respecto del eje polar. Vemos que, r(0) = 2, como $\cos \theta$ decrece desde 1 hasta 0, cuando $0 \le \theta \le \frac{\pi}{2}$, entonces $r(\theta)$ crece hasta $r\left(\frac{\pi}{2}\right) = 4$. Vemos que $\cos \theta$ sigue decreciendo, desde $\frac{\pi}{2}$ hasta π , donde $\cos \pi = -1$, luego $r(\theta)$ sigue creciendo hasta $r(\pi) = +\pi$. Así, la curva es aproximadamente.

b) El área de la región determinada por la curva y el eje $\frac{\pi}{2}$, esta dado por

$$A = 2 \int_0^{\frac{\pi}{2}} r(\theta) d\theta$$

$$A = 8 \int_0^{\frac{\pi}{2}} \frac{1}{1 + \cos \theta} d\theta$$

$$A = 8 \int_0^{\frac{\pi}{2}} \frac{1}{2 \cos^2 \theta} d\theta$$

$$A = 8 \int_0^{\frac{\pi}{2}} \sec^2 \left(\frac{\theta}{2}\right) d\left(\frac{\theta}{2}\right)$$

$$A = 8 \int_0^{\frac{\pi}{2}} d\left(\tan\left(\frac{\theta}{2}\right)\right)$$

$$A = 8$$

c) De la ecuación polar $r = \frac{4}{1 + \cos \theta}$,

$$r + r \cos \theta = 4$$

$$r = 4 - x$$

$$\sqrt{x^2 + y^2} = 4 - x$$

$$x^2 + y^2 = 16 - 8x + x^2$$

$$y^2 = 16 - 8x$$

Por la tanto, la curva $\mathscr C$ representa una parábola.

4. Evalúe cada una de las siguientes integrales.

a)
$$\int \frac{1}{x^2 \sqrt{9 - x^2}} dx$$
 (2 puntos)
b)
$$\int \csc^3 x \, dx$$
 (2 puntos)

Resolución:

a) Hacemos la sustitución $x=3\sin\theta$, con lo cual $dx=3\cos\theta d\theta$, además tendríamos $\sqrt{3^2-x^2}=3\cos\theta$ y $sen\theta=\frac{x}{3}$. Luego

$$\int \frac{dx}{x^2 \sqrt{3^2 - x^2}} = \int \frac{3 \cos \theta d\theta}{3^2 \sin^2 \theta \cdot 3 \cos \theta}$$
$$= \frac{1}{9} \int \frac{d\theta}{\sin^2 \theta}$$
$$= \frac{1}{9} \int \csc^2 \theta d\theta$$
$$= -\frac{1}{9} \cot \theta + c$$

Según nuestras sustituciones tenemos que

$$\cot \theta = \frac{\sqrt{9 - x^2}}{x}$$

Con lo que finalmente

$$\int \frac{dx}{x^2 \sqrt{9 - x^2}} = -\frac{\sqrt{9 - x^2}}{9x} + c$$

b) Integramos por partes haciendo

$$u = \sec x \wedge dv = \sec^2 x dx$$

con lo cual

$$du = \sec x \tan x dx \wedge v = \tan x$$

además recordemos

$$\tan^2 x = \sec^2 x - 1$$

entonces

$$\int \csc^3 x dx = \sec x \tan x - \int \sec x \tan^2 x dx$$

$$= \sec x \tan x - \int \sec x (\sec^2 x - 1) dx$$

$$= \sec x \tan x - \int (\sec^3 x - \sec x) dx$$

$$= \sec x \tan x - \int \sec^3 x dx + \int \sec x dx$$

$$= \sec x \tan x - \int \sec^3 x dx + \ln|\sec x + \tan x|$$

Finalmente

$$\int \csc^3 x dx = \frac{\sec x \tan x + \ln|\sec x + \tan x|}{2} + c$$

- 5. Sea \mathscr{R} la región determinada por las gráficas de las funciones $f(x) = -\sqrt{4 x^2}$ y $g(x) = 2\sqrt{4 x^2}$ para todo $x \in [-2, 2]$. Calcule el volumen del sólido de revolución, obtenido al girar \mathscr{R} .
 - a) Alrededor de la recta x = 3. (2 puntos)
 - b) Alrededor de la recta y = x 4. (2 puntos)

Resolución: Representamos la región \mathscr{R} determinada por las gráficas de las funciones $f(x) = -\sqrt{4-x^2}$ y $g(x) = 2\sqrt{4-x^2}$ para todo $x \in [-2,2]$

El área de la región esta dado por

$$A = \int_{-2}^{2} [g(x) - f(x)] dx$$

$$A = \int_{-2}^{2} [2\sqrt{4 - x^2} - (-\sqrt{4 - x^2})] dx$$

$$A = 3\int_{-2}^{2} \sqrt{4 - x^2} dx$$

$$A = 6\pi$$

La región \mathcal{R} es simétrica con respecto al Y, luego $\overline{x} = 0$. La abscisa \overline{y} esta dado por

$$\overline{y} = \frac{1}{2A} \int_{-2}^{2} [g^{2}(x) - f^{2}(x)] dx$$

$$\overline{y} = \frac{1}{2(6\pi)} \int_{-2}^{2} [4(4 - x^{2}) - (4 - x^{2})]$$

$$\overline{y} = \frac{1}{4\pi} [4x - \frac{1}{3}x^{3}]_{-2}^{2}$$

$$\overline{y} = \frac{8}{3\pi}$$

a) Aplicamos el teorema de Pappus

$$V = 2\pi(3)(6\pi)$$
$$V = 36\pi^2$$

b) La distancia del centroide $\left(0, \frac{8}{3\pi}\right)$ a la recta x-y-4=0 es

$$d = \frac{|0 - \frac{8}{3\pi} - 4|}{\sqrt{(1)^2 + (-1)^2}}$$
$$d = \frac{2(2 + 3\pi)\sqrt{2}}{3\pi}$$

Aplicamos el teorema de Pappus,

$$V = 2\pi dA$$

$$V = 2\pi \left(\frac{2(2+3\pi)\sqrt{2}}{3\pi}\right) (6\pi)$$

$$V = 8\pi (2+3\pi)\sqrt{2}$$

UNI, 08 de agosto de 2022^*

^{*}Hecho en LAT_FX

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2022-1

[Cod: BMA02] [Curso: Cálculo Integral]

Solucionario - Examen Parcial

1. Determine si cada proposición es verdadera o falsa. Justifique su respuesta.

I.
$$\int_0^n (x - [x]) dx = n, \text{ para todo } n \in \mathbb{N}.$$
 (1 punto)

II. Si f es una función continua en [a,b], tal que $\int_a^b (f(x)-x)\,dx=0$, entonces existe $c\in]a,b[$ tal que $f(c)=\frac{a+b}{2}$.

(1.5 puntos)

III. Si $f: \mathbb{R} \to \mathbb{R}$ es una función par cuya gráfica se muestra en la figura tal que f'(x) es continua en \mathbb{R} , entonces $\int_{-1}^{1} \frac{|f'(x)|}{1+f(x)} dx = 2\ln(2)$.

(1.5 puntos)

IV. Si
$$f$$
 es continua en $[1,3]$ tal que $f(x) > 0$ para todo $x \in [1,3]$, entonces $\int_1^3 f(x) dx < 0$. (1 punto)

Resolución:

I. **(FALSO)**. Sea f(x) = x - [x], para todo $x \in [0, n]$ con $n \in \mathbb{N}$. Es claro que f es una función seccionalmente continua.

Luego,

$$\int_{0}^{n} (x - [x]) dx = \int_{0}^{1} (x - [x]) dx + \int_{1}^{2} (x - [x]) dx + \int_{2}^{3} (x - [x]) dx + \dots + \int_{n-1}^{n} (x - [x]) dx$$

$$\int_{0}^{n} (x - [x]) dx = \frac{1 \times 1}{2} + \frac{1 \times 1}{2} + \frac{1 \times 1}{2} + \dots + \frac{1 \times 1}{2}$$

$$\int_{0}^{n} (x - [x]) dx = \frac{n}{2}$$

II. **(VERDADERO)**. Si f es una función continua en [a,b], tal que $\int_a^b (f(x)-x) dx = 0$, entonces

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} x dx
\int_{a}^{b} f(x) dx = \left[\frac{1}{2} x^{2} \right]_{a}^{b}
\int_{a}^{b} f(x) dx = \frac{1}{2} (b^{2} - a^{2})$$
(1)

Por el teorema del valor medio para integrales, existe $c \in]a,b[$ tal que

$$\int_{a}^{b} f(x) dx = f(c)(b-a)$$

Luego, en (1)

$$f(c)(b-a) = \frac{1}{2}(b^2 - a^2)$$
$$f(c) = \frac{a+b}{2}$$

III (VERDADERO). Si $f: \mathbb{R} \to \mathbb{R}$ una función par cuya gráfica se muestra en la figura tal que f'(x) es continua en \mathbb{R} , entonces $f'(x) \ge 0$ para todo $x \in [0, 1]$.

Luego,

$$\int_{-1}^{1} \frac{|f'(x)|}{1+f(x)} dx = 2 \int_{0}^{1} \frac{f'(x)}{1+f(x)} dx$$

$$\int_{-1}^{1} \frac{|f'(x)|}{1+f(x)} dx = 2 \left[\ln(1+f(x))\right]_{0}^{1}$$

$$\int_{-1}^{1} \frac{|f'(x)|}{1+f(x)} dx = 2 \left[\ln(1+f(1)) - \ln(1+f(0))\right]$$

$$\int_{-1}^{1} \frac{|f'(x)|}{1+f(x)} dx = 2 \left[\ln 2 - \ln 1\right]$$

$$\int_{-1}^{1} \frac{|f'(x)|}{1+f(x)} dx = 2 \ln 2$$

- IV. **(FALSO)**. Sea f(x) = x para todo $x \in [1,3]$. Es claro que f(x) > 0 para todo $x \in [1,3]$. Sin embrago $\int_1^3 f(x) dx = \left[\frac{1}{2}x^2\right]_1^3 = 4 > 0$.
- 2. Sea $f: \mathbb{R} \to \mathbb{R}$ una función diferenciable tal que

$$f(x) = 1 - \int_0^x e^{x-t} f(t) \, dt$$

- a) Determine la ecuación de la recta tangente a la gráfica de f en el punto (1,0). (3 puntos)
- b) Demuestre que f'(x) = -1, para todo $x \in \mathbb{R}$. (2 puntos)

Resolución: Sea $f: \mathbb{R} \to \mathbb{R}$ una función diferenciable tal que

$$f(x) = 1 - \int_0^x e^{x-t} f(t) \, dt$$

a) Dado que la recta tangente a la gráfica es en (1,0), se tiene que f(1)=0. Luego,

$$f(1) = 1 - \int_0^1 e^{1-t} f(t) dt$$
$$\int_0^1 e^{-t} f(t) dt = \frac{1}{e}$$

Expresamos f de la siguiente forma

$$f(x) = 1 - e^x \int_0^x e^{-t} f(t) dt$$

Por el teorema fundamental del cálculo, tenemos

$$f'(x) = -e^x \int_0^x e^{-t} f(t) dt - e^x (e^{-x} f(x))$$

$$f'(x) = -e^x \int_0^x e^{-t} f(t) dt - f(x)$$
 (2)

En x = 1, tenemos

$$f'(1) = -e \int_0^1 e^{-t} f(t) dt - f(1)$$

$$f'(1) = -e \left(\frac{1}{e}\right) - 0$$

$$f'(1) = -1$$

Finalmente, la ecuación de la recta tangente está dado por

$$y - 0 = (-1)(x - 1)$$
$$y = 1 - x$$

b) De (2),

$$f'(x) = -\int_0^x e^{x-t} f(t) dt - f(x)$$
Como $f(x) = 1 - \int_0^x e^{x-t} f(t) dt$, para todo $x \in \mathbb{R}$, reemplazamos en (3)

 $f'(x) = -\int_0^x e^{x-t} f(t) dt - \left(1 - \int_0^x e^{x-t} f(t) dt\right)$ f'(x) = -1

Por lo tanto, f'(x) = -1, para todo $x \in \mathbb{R}$.

- 3. Defina las funciones $f(x) = \cosh x$ y $g(x) = \operatorname{senh}(x)$, indique el dominio y rango.
 - a) Verifique que f(x) y g(x) satisfacen la ecuación de una hipérbola. (1.5 puntos)
 - b) Determine la expresión para la función inversa de $f(x) = \cosh x$, esto es para la función $f^{-1}(x) = \operatorname{arccosh} x$ (3.5 puntos)

Resolución: Definimos

$$f(x) = \cosh x = \frac{e^x + e^{-x}}{2}, \quad \operatorname{dom}(f) = \mathbb{R}, \ \operatorname{Ran}(f) = [1, +\infty[$$

$$g(x) = \operatorname{senh} x = \frac{e^x - e^{-x}}{2}, \quad \operatorname{dom}(f) = \mathbb{R}, \ \operatorname{Ran}(f) = \mathbb{R}$$

a) Las funciones $f(x) = \cosh x$ y $g(x) = \sinh x$ satisfacen la ecuación $\cosh^2 x - \sinh^2 x = 1$. En efecto,

$$f^{2}(x) - g^{2}(x) = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \left(\frac{e^{x} - e^{-x}}{2}\right)^{2}$$

$$f^{2}(x) - g^{2}(x) = 4\frac{e^{x} \cdot e^{-x}}{4}$$

$$f^{2}(x) - g^{2}(x) = 1$$

b) Hacemos, $f(x) = \cosh x = y$ para todo x > 0, Es claro que $y \ge 1$. Luego,

$$\frac{e^{x} + e^{-x}}{2} = y$$

$$e^{2x} + 1 = 2ye^{x}$$

$$e^{2x} - 2ye^{x} + y^{2} = y^{2} - 1$$

$$(e^{x} - y)^{2} - \sqrt{y^{2} - 1}^{2} = 0$$

$$\underbrace{(e^{x} - y + \sqrt{y^{2} - 1})}_{\neq 0} (e^{x} - y - \sqrt{y^{2} - 1}) = 0$$

$$e^{x} = y + \sqrt{y^{2} - 1}$$

$$x = \ln(y + \sqrt{y^{2} - 1})$$

Finalmente,

$$y = \ln(x + \sqrt{x^2 - 1})$$
, para todo $x \in [1, +\infty[$

4. Evalúe cada una de las siguientes integrales

a)
$$I_1 = \int \frac{1}{3\cos x + 4\sin x} dx \tag{2.5 puntos}$$

b)
$$I_2 = \int \frac{1}{\sqrt{x^3} \sqrt[3]{1 + \sqrt[4]{x^3}}} dx$$
 (2.5 puntos)

Resolución:

a) Utilizamos la sustitución universal $z = \tan \frac{x}{2}$

$$I_{1} = \int \frac{\frac{2dz}{1+z^{2}}}{3\left(\frac{1-z^{2}}{1+z^{2}}\right) + 4\left(\frac{2z}{1+z^{2}}\right)}$$

$$I_{1} = \int \frac{2}{3-3z^{2}+8z} dz$$

$$I_{1} = \int \frac{2}{(3-z)(3z+1)}$$
(4)

Por fracciones parciales,

$$\frac{2}{(3-z)(3z+1)} = \frac{A}{3-z} + \frac{B}{3z+1}$$

Luego, $A = \frac{1}{5}$ y $B = \frac{3}{5}$. Reemplazamos en (4)

$$I_{1} = \int \left(\frac{1}{5} \cdot \frac{1}{3-z} + \frac{3}{5} \cdot \frac{1}{3z+1}\right) dz$$

$$I_{1} = \frac{1}{5} \cdot \ln|3z+1| - \frac{1}{5} \cdot \ln|z-3| + C$$

$$I_{1} = \frac{1}{5} \ln\left|\frac{3z+1}{z-3}\right| + C$$

$$I_{1} = \frac{1}{5} \ln\left|\frac{3\tan\frac{x}{2}+1}{\tan\frac{x}{2}-3}\right| + C$$

Otra forma: Por identidades trigonométricas

$$3\cos x + 4\sin x = 5\left(\frac{3}{5}\cos x + \frac{4}{5}\sin x\right)$$
$$3\cos x + 4\sin x = 5\cos(x-\theta)$$

Luego,

$$I_{1} = \int \frac{1}{5\cos(x-\theta)} dx$$

$$I_{1} = \frac{1}{5} \int \sec(x-\theta) dx$$

$$I_{1} = \frac{1}{5} \ln|\tan(x-\theta) + \sec(x-\theta)| + C$$

$$I_{1} = \frac{1}{5} \ln\left|\frac{\sin(x-\theta) + 1}{\cos(x-\theta)}\right| + C$$

$$I_{1} = \frac{1}{5} \ln\left|\frac{\sin x \cos \theta - \cos x \sin \theta + 1}{\cos x \cos \theta + \sin x \sin \theta}\right| + C$$

$$I_{1} = \frac{1}{5} \ln\left|\frac{\frac{3}{5} \sin x - \frac{4}{5} \cos x + 1}{\frac{3}{5} \cos x + \frac{4}{5} \sin x}\right| + C$$

$$I_{1} = \frac{1}{5} \ln\left|\frac{3 \sin x - 4 \cos x + 5}{3 \cos x + 4 \sin x}\right| + C$$

b) Expresamos la integral I_2 de la siguiente forma

$$I_2 = \int x^{-\frac{3}{2}} \left(1 + x^{\frac{3}{4}} \right)^{-\frac{1}{3}} dx \tag{5}$$

Reconocemos en el binomio diferencial que $m=-\frac{3}{2},\ n=\frac{3}{4}$ y $p=-\frac{1}{3}$. Luego, $\frac{m+1}{n}+p=-1\in\mathbb{Z}.$

Hacemos la sustitución $z^3=x^{-\frac{3}{4}}+1$, con lo cual $x=(z^3-1)^{-\frac{4}{3}}$, así $dx=-4z^2(z^3-1)^{-\frac{7}{3}}dz$. Reemplazamos en (5),

$$I_{2} = \int \left[(z^{3} - 1)^{-\frac{4}{3}} \right]^{-\frac{3}{2}} \left(1 + \frac{1}{z^{3} - 1} \right)^{-\frac{1}{3}} (4z^{2})(z^{3} - 1)^{-\frac{7}{3}} dz$$

$$I_{2} = -4 \int z dz$$

$$I_{2} = -2z^{2} + C$$

$$I_{2} = -2\sqrt[3]{\left(x^{-\frac{3}{4}} + 1\right)^{2}} + C$$

UNI, 06 de mayo de 2022*

*Hecho en LATEX

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2022-1

[Cod: BMA02] [Curso: Cálculo Integral]

Solucionario - Examen Final

- 1. Determine si cada proposición es verdadera o falsa. Justifique su respuesta.
 - I. $y' + x\sqrt{y} = x^2$ es una ecuación lineal de primer orden.

(1 punto)

II. El punto $\left(\frac{4}{3\pi}, \frac{4}{3\pi}\right)$ es el centroide de la región del primer cuadrante limitada por la gráfica de $x^2 + y^2 = 16$ y los ejes coordenados.

(1.5 puntos)

III. $\arctan(\operatorname{senh} x) = \operatorname{arc} \operatorname{sen}(\tanh x)$

(1.5 puntos)

IV. Si f es una función no negativa y continua en $[0, +\infty[$ tal que $\int_0^{+\infty} f(x) dx$ converge, entonces $\int_0^{+\infty} \frac{f(x)}{1 + f(x)} dx$ también converge.

(1 punto)

Resolución:

- I. (FALSO). $y' + xy = x^2$ es una ecuación lineal de primer orden.
- II. (FALSO). El área de la región R esta dado por

$$A = \frac{1}{4}\pi(4)^2$$

$$A = 4\pi$$

La ordenada del centroide de ${\mathscr R}$ esta dado por

$$\overline{y} = \frac{1}{2(4\pi)} \int_0^4 \sqrt{16 - x^2} dx$$

$$\overline{y} = \frac{1}{8\pi} \int_0^4 (16 - x^2) dx$$

$$\overline{y} = \frac{1}{8\pi} \left[16x - \frac{1}{3}x^3 \right]_0^4$$

$$\overline{y} = \frac{16}{3\pi}$$

La región \mathscr{R} es simétrica respecto de la recta y=x, así $\overline{x}=\frac{16}{3\pi}$.

Por lo tanto, las coordenadas del centroide son $\left(\frac{16}{3\pi}, \frac{16}{3\pi}\right)$

III (VERDADERO). Sea $\alpha = \arctan(\operatorname{senh} x)$, luego $\tan \alpha = \operatorname{senh} x$. Consideramos el triángulo rectángulo ABC y la identidad $1 + \operatorname{senh}^2 x = \cosh^2 x$,

$$sen \alpha = \frac{\operatorname{senh} x}{\cosh x}$$

$$sen \alpha = \tanh x$$

$$\alpha = \operatorname{arc} \operatorname{sen} (\tanh x)$$

Por lo tanto,

$$\arctan(\operatorname{senh} x) = \operatorname{arc} \operatorname{sen}(\tanh x)$$

IV. (VERDADERO). Si f es una función no negativa y continua en $[0, +\infty[$ tal que $\int_0^{+\infty} f(x) dx$ converge, entonces

$$0 \leq f(x)$$

$$1 \leq 1 + f(x)$$

$$\frac{1}{1 + f(x)} \leq 1$$

$$\frac{f(x)}{1 + f(x)} \leq f(x)$$

Por el criterio de comparación, $\int_0^{+\infty} \frac{f(x)}{1+f(x)} dx$ converge.

- 2. El gerente de una fábrica ha calculado que un trabajador puede producir más de 30 unidades en un día. La curva de aprendizaje del número N de unidades producidas por día después de que un nuevo empleado haya trabajado t días es $N=30(1-e^{kt})$. Después de 20 días en el trabajo, un trabajador produce 19 unidades.
 - a) Encuentre la curva de aprendizaje de este trabajador.
 - b) ¿Cuántos días pasarían antes de que este trabajador produzca 25 unidades por día?

Resolución:

a) Del dato, para t=20, se tiene N=19

$$N = 19$$

$$30(1 - e^{20k}) = 19$$

$$30e^{20k} = 11$$

$$k = \frac{\ln 11/30}{20}$$

$$k \approx -0.0502$$

Por lo tanto, la curva de aprendizaje para este trabajador es

$$N \approx 30(1 - e^{-0.0502t})$$

b) Para N=25, se tiene que

$$N = 25$$

$$30(1 - e^{-0.0502t}) = 25$$

$$e^{-0.0502t} = \frac{1}{6}$$

$$t = \frac{-\ln 6}{-0.0502}$$

$$t \approx 36$$

Pasarían aproximadamente 36 días.

- 3. Sea la región $\mathcal{R} = \{(x,y) \in \mathbb{R}^2 : \sqrt{x+1} \le y \le 2\}.$
 - a) Determine las coordenadas del centroide de la región \mathcal{R} .
 - b) Calcule el volumen del sólido de revolución generado por la rotación de \mathscr{R} alrededor de la recta \mathscr{R} : y=x+3.

Resolución: Representamos la región $\mathcal{R} = \{(x,y) \in \mathbb{R}^2 : \sqrt{x+1} \le y \le 2\}$

El área de la región ${\mathcal R}$ esta dado por

$$A = \int_{-1}^{3} [2 - \sqrt{x+1}] dx$$

$$A = \left[2x - \frac{2}{3} (x+1)^{3/2} \right]_{-1}^{3} dx$$

$$A = \frac{8}{3}$$

a) El centroide $(\overline{x}, \overline{y})$ de la región ${\mathscr R}$ tiene las siguientes coordenadas

$$\overline{x} = \frac{1}{A} \int_{-1}^{3} x(2 - \sqrt{x+1}) dx \qquad \overline{y} = \frac{1}{2A} \int_{-1}^{3} [(2)^{2} - \sqrt{x+1}^{2}] dx$$

$$\overline{x} = \frac{3}{8} \left[x^{2} - \frac{2}{5} (x+1)^{5/2} + \frac{2}{3} (x+1)^{3/2} \right]_{-1}^{3} \qquad \overline{y} = \frac{16}{3} \left[4x - \frac{2}{3} (x+1)^{3/2} \right]_{-1}^{3}$$

$$\overline{x} = \frac{1}{5} \qquad \overline{y} = \frac{3}{2}$$

Así, las coordenadas del centroide son $\left(\frac{1}{5}, \frac{3}{2}\right)$

b) La distancia del centroide a la recta $\mathcal{L}: x-y+3=0$ esta dado por

$$d = \frac{\left|\frac{1}{5} - \frac{3}{2} + 3\right|}{\sqrt{1^2 + 1^2}}$$
$$d = \frac{17\sqrt{2}}{20}$$

Por el teorema de Pappus, el volumen del sólido generado esta dado por

$$V = 2\pi dA$$

$$V = 2\pi \left(\frac{17\sqrt{2}}{20}\right) \left(\frac{8}{3}\right)$$

$$V = \frac{68\pi\sqrt{2}}{15}$$

4. a) Resuelva la ecuación diferencial

$$xy' + (2+x)y = e^{-x}, y(e) = 0$$

b) Calcule el área de la región limitada por las siguientes curvas \mathscr{C}_1 : $r = |\sin \theta|$ y \mathscr{C}_2 : r = -1.

Resolución:

a) Despejando, tenemos

$$y' + \frac{2+x}{x}y = \frac{e^{-x}}{x}, \quad y(e) = 0$$

El factor integrante esta dado por

$$f(x) = e^{\int \frac{2+x}{x} dx}$$

$$f(x) = e^{\ln x^2 + x}$$

$$f(x) = x^2 e^x$$

Luego,

$$x^{2}e^{x}y(x) = \int x^{2}e^{x} \cdot \frac{e^{-x}}{x} dx$$

$$x^{2}e^{x}y(x) = \int x dx$$

$$x^{2}e^{x}y(x) = \frac{1}{2}x^{2} + C$$

Para x = e, se tiene y(e) = 0, luego

$$(e)^{2}e^{(}e)y(e) = \frac{1}{2}e^{2} + C$$
$$0 = \frac{1}{2}e^{2} + C$$
$$C = -\frac{1}{2}e^{2}$$

Por lo tanto la solución es

$$y(x) = \frac{x^2 - e^2}{2x^2 e^x}$$

b) Representamos la región $\mathcal R$ limitada por las curvas $\mathcal C_1\colon r=|\sin\theta|$ y $\mathcal C_2\colon r=-1.$

El área de la región $\mathcal R$ esta dado por

$$A = \frac{1}{2} \int_0^{2\pi} [(-1)^2 - |\sin \theta|^2] d\theta$$

$$A = \frac{1}{2} \int_0^{2\pi} (1 - \sin^2 \theta) d\theta$$

$$A = \frac{1}{2} \int_0^{2\pi} \cos^2 \theta d\theta$$

$$A = \frac{1}{4} \int_0^{2\pi} (1 + \cos 2\theta) d\theta$$

$$A = \frac{1}{4} \left[\theta + \frac{1}{2} \sin 2\theta \right]_0^{2\pi}$$

$$A = \frac{\pi}{2}$$

5. a) Justifique si la siguiente integral es convergente o divergente.

$$I_1 = \int_0^{+\infty} \frac{1 + \sin x}{1 + x^2} \, dx$$

(2 puntos)

b) Calcule el valor de la integral

$$I_2 = \int_0^{+\infty} \frac{1}{1 + e^{4x}} \, dx$$

(2 puntos)

Resolución: Sea la integral

$$I = \int_0^{+\infty} \frac{1 + \sin x}{1 + x^2} \, dx$$

a) Para todo $x \in [0,+\infty[, \text{ se tiene } 1 \leq 1+x^2 \leq 2 \text{ y } 0 \leq 1+\text{sen}\, x \leq 2.$ Luego,

$$\frac{1+\sin x}{1+x^2} \le \frac{2}{1+x^2}$$

Veamos que la integral $\int_0^{+\infty} \frac{2}{1+x^2} dx$ es convergente. En efecto,

$$\int_0^{+\infty} \frac{2}{1+x^2} dx = \lim_{b \to +\infty} \int_0^b \frac{2}{1+x^2} dx$$

$$\int_0^{+\infty} \frac{2}{1+x^2} dx = \lim_{b \to +\infty} [2 \arctan x]_0^b$$

$$\int_0^{+\infty} \frac{2}{1+x^2} dx = 2 \lim_{b \to +\infty} \arctan b$$

$$\int_0^{+\infty} \frac{2}{1+x^2} dx = \pi$$

Por el criterio de comparación, la integral I es convergente.

b) Por definición

$$I_2 = \int_0^{+\infty} \frac{1}{1 + e^{4x}} dx$$

$$I_2 = \lim_{b \to +\infty} \int_0^b \frac{1}{1 + e^{4x}} dx$$

Calculamos una antiderivada, para esto hacemos $u=e^{4x}$, luego $du=4e^{4x}\,dx=4u\,dx$.

$$\int \frac{1}{1+e^{4x}} dx = \int \frac{1}{1+u} \cdot \frac{1}{4u} du$$

$$\int \frac{1}{1+e^{4x}} dx = \frac{1}{4} \int \frac{1}{u(u+1)} du$$

$$\int \frac{1}{1+e^{4x}} dx = \frac{1}{4} \int \left(\frac{1}{u} - \frac{1}{u+1}\right) du$$

$$\int \frac{1}{1+e^{4x}} dx = \frac{1}{4} [\ln|u| - \ln|u+1|] + C$$

$$\int \frac{1}{1+e^{4x}} dx = \frac{1}{4} [\ln e^{4x} - \ln(e^{4x} + 1)] + C$$

$$\int \frac{1}{1+e^{4x}} dx = \frac{1}{4} \ln\left(\frac{1}{1+e^{-4x}}\right) + C$$

Finalmente,

$$I_{2} = \lim_{b \to +\infty} \left[\frac{1}{4} \ln \left(\frac{1}{1 + e^{-4x}} \right) \right]_{0}^{b}$$

$$I_{2} = \frac{1}{4} \lim_{b \to +\infty} \frac{1}{4} \left[\ln \left(\frac{1}{1 + e^{-4b}} \right) - \ln \left(\frac{1}{2} \right) \right]$$

$$I_{2} = \frac{1}{4} (0 + \ln 2)$$

$$I_{2} = \frac{\ln 2}{4}$$

UNI, 01 de agosto de 2022^*