

A Tutorial on Graph RAG & Meta KDD Cup

2025.5.29 Data Systems Lab

Overview

- Introduction
 - Retrieval-augmented Generation (RAG)
 - Graph RAG
- Meta KDD Cup
 - Benchmark
 - Baseline Approach

Overview

- Introduction
 - Retrieval-augmented Generation (RAG)
 - Graph RAG
- Meta KDD Cup
 - Benchmark
 - Baseline Approach

Retrieval-augmented Generation (RAG)

Datastore

Incorporate Datastore at inference

Hallucinations

Costs of adaptations

Copyright / privacy

Large parameter size

Significant improvements across model scale, with larger gain with smaller LM

Hallucinations

Costs of adaptations

Copyright / privacy

Large parameter size

Hallucinations

Costs of adaptations

Copyright / privacy

Large parameter size

Segregating copyright-sensitive data from pretraining data

Hallucinations

Costs of adaptations

Copyright / privacy

Large parameter size

Models with much less parameters can outperforms much larger models!

One of the Hottest Topics in VLDB 2024: (Graph)RAG

Vector Databases

A2 Panel Vector Databases: What's Really New and What's Next?

A1
Data
management
and support for
ML/AI

Experimental Analysis of Large-scale Learnable Vector Storage Compression University)*; Penghao Zhao (Peking University); Xupeng Miao (Carnegie Mellon Uni (Peking University); Bin Cui (Peking University)

SingleStore-V: An Integrated Vector Database System in SingleStore Zhang (Purdue University - West Lafayette); Sasha Podolsky (SingleStore); Zhou Sun (SingleStore); Robert Walzer (SingleStore); Jianguo Wang (Purdue

Chat2Data: An Interactive Data Analysis System with RAG, Vector Databases and LLMs xi Guoliang Li (Tsinghua University)*

Graph Databases

Industry Talk: Integrating GenAl with Graph: Innovations and Insights from NebulaGraph

Siwei Gu & Yihang Yu (NebulaGraph, China)

GraphRAG Overview

GraphRAG Overview (From Neo4j Document)

Overview

- Introduction
 - Retrieval-augmented Generation (RAG)
 - Graph RAG
- Meta KDD Cup
 - Benchmark
 - Baseline Approach

Meta KDD Cup 2024

- 2300+ participants, 384 teams, 5600+ submissions
- CRAG benchmark was listed in HuggingFace "Daily papers".
- Our team was the only Korean team to receive an award, achieving First Place in the Comparison
 Question category for Tasks 1, 2, and 3!!

CRAG Benchmark Overview

CRAG Benchmark Overview

Question Answering Pairs

- 4400+ QA pairs from 5 domains (Finance, Sports, Music, Movie, Encyclopedia)
- Questions for static, slow-changing, fast-changing, and real-time information
- Questions for head, torso, and tail entities
- Simple-fact questions and complex questions

Total	Simple	Simple w. Cond	Set	Comparison	Aggregation	Multi-hop	Post- Processing	False Premise
4409	1205	689	403	546	489	382	180	525

CRAG Benchmark Overview

External Sources

- Web Search Results: 50 webpages for each question from BraveAPI web search
- Mock KG & APIs
 - Mock KG: 2.6M entities
 - Mock APIs: 38 mock APIs

```
API for Q1:
01:
                       get movie person crew(None, "wal
What's the latest
                       t becker", eq(job, "Director"));
film that walt becker
                       sort(None, -year)["movie name"]
has directed?
                       API for Q2:
02:
                        get movie("greater meaning of
Which one of these
                       water")["release_date"];
came out earlier, the
                        get movie("small town
greater meaning of
                       ecstasy")["release_date"]
water or small town
ecstasy?
```


CRAG Benchmark Overview

CRAG Tasks

Three tasks build up information gradually to test different capabilities of RAG systems.

CRAG Benchmark Overview

Evaluation

- Metrics: CRAG Score = Exact Accuracy + 0.5 * Accuracy Hallucination rate
 - Exact Accuracy: The percentage of questions for which the generated answer exactly matches the ground truth answer.
 - Accuracy: The percentage of questions for which the generated answer is not exact but has the same meaning as the ground truth.
 - Hallucination: The percentage of questions for which an incorrect answer was generated.
 - Missing: The percentage of questions where the response was "I don't know."

Evaluation

- Auto-eval (with GPT-4)
- Manual-eval (with Human)

Diverse Architectures of RAG

Baseline Approach

Retrieval Module for Web Search Results

- Retriever performs representation-based similarity search.
- It retrieves top-k relevant sentences.

Mock APIs & Mock KG

Task 2 provides mock APIs to query the provided mock knowledge graph (mock KG).

```
API for Q1:
Q1:
                       get movie person crew(None, "wal
What's the latest
                       t becker", eq(job, "Director"));
film that walt becker
                       sort(None,-year)["movie name"]
has directed?
                       API for Q2:
02:
Which one of these
                       get movie("greater meaning of
                       water")["release_date"];
came out earlier, the
                       get_movie("small town
greater meaning of
                       ecstasy")["release date"]
water or small town
ecstasy?
```

• The mock KG, as a structured knowledge base, offers precise information; however, generating an accurate query is essential for retrieving correct answers.

Retrieval Module for Mock KG

- The knowledge graph retrieval module follows these three steps:
 - a. The LLM generates the query domain and API arguments.
 - b. Based on the generated query domain and API arguments, a decision tree is used to sequentially call the appropriate mock APIs.
 - c. The results from these mock API calls are provided to the LLM along with retrieved results from web search results.
- We aim to go a step further by leveraging the Model Context Protocol (MCP) to upgrade the knowledge graph retrieval module.

Model Context Protocol

- Model Context Protocol (MCP) is an open protocol that standardizes how applications provide context to LLMs.
 - Think of MCP like a USB-C port for AI applications.
 - Just as USB-C provides a standardized way to connect your devices to various peripherals and accessories,
 MCP provides a standardized way to connect AI models to different data sources and tools.
- MCP helps you build agents and complex workflows on top of LLMs. LLMs frequently need to integrate with data and tools, and MCP provides:
 - A growing list of pre-built integrations that your LLM can directly plug into
 - The flexibility to switch between LLM providers and vendors
 - Best practices for securing your data within your infrastructure

General Architecture

At its core, MCP follows a client-server architecture where a host application can connect to multiple servers:

Appendix