Applied Bayesian Data Analysis — Chapter 7

Kim Albertsson

CERN and Lulea University of Technology

kim.albertsson@ltu.se

October 23, 2019

Chapter 7

Markov Chain Monte Carlo: Weighted random walks, how to, and their properies.

Personal reflections

- The politician island thought experiment felt convoluted. Took some time to understand.
- Sample representation starts making sense. Still unclear, to me, why the problems of grid based approaches do not apply here.
- Working through the math here was fun and rewarding.
- Did not have time to go into details on MCMC accuracy etc. Seems interesting!

Today

- Unnormalised distributions,
- Representative Sample, and
- Two sampling techniques (Metropolis, Gibbs).

Introduction

- Analytical solution (ch. 6):
 Feasible for limited set of prior-likelihood combinations (e.g. conjugate priors).
- Discretisation on grid (ch. 5): Curse of dimensionality. (E.g. 6 params with 1000 possibilities each $\rightarrow 1000^6 = 10^{18}$ cells in matrix).
- Representative sample (curr. ch.):
 Distribution approximated with samples drawn from distribution.

Representative Sample

Representative sample:

- Assumes: $p(\theta)$, $p(D|\theta)$ calculable up to multiplicative constant.
- Output: $p(\theta|D)$ as collection of samples to calculate e.g. central tendency and HDI.

For intuition: Compare representative sample to polling in politics.

A Simple Case of the Metropolis Algorithm (I)

Example: Politician of Island chain

- Sequential islands
- Goal: Spend time on island proportional to population
- Heueristic:

$$p_{move} = egin{cases} 1, & ext{if } P_{propsed} > P_{current} \ rac{P_{proposed}}{P_{current}}, & ext{otherwise} \end{cases}$$

Metropolis algorithm

A Simple Case of the Metropolis Algorithm (II)

- P(·), relative population. Note: Not normalised!
- Top: Relative frequency of visit after long time.
- Middle: One possible trajectory
- Bottom: True distribution

A Simple Case of the Metropolis Algorithm (III)

Analysis for this, simple, case:

- Proposal distribution: Moves and probabilities. Now: p(left) = 0.5, and p(right) = 0.5.
- At time $t = 1\ 100\%$ chance of being in starting position.
- For t = 2:

$$p(\theta = 3) = 0.5 \cdot (P^{(3)}/P(4))$$

$$p(\theta = 4) = 0.5 \cdot (1 - P^{(3)}/P(4))$$

$$p(\theta = 5) = 0.5 \cdot (1)$$

For t = n: Iterate...

A Simple Case of the Metropolis Algorithm (IV)

- Uses *proposal distribution*, *acceptance criterion*, and target distribution *ratio*.
- Convergence to $P(\theta)$ (up to multiplicative constant).

Short form acceptance probability for move:

$$\rho_{\text{move}} = \min\left(\frac{P(\theta_{\text{proposed}})}{P(\theta_{\text{current}})}, 1\right)$$
(7.1)

Intuition for convergence:

$$\frac{p(\theta \to \theta + 1)}{p(\theta + 1 \to \theta)} = \frac{0.5 \min P(\theta + 1)/P(\theta)}{0.5 \min P(\theta)/P(\theta + 1)} = \frac{P(\theta + 1)}{P(\theta)}$$
(7.2)

Favour travelling to $P(\theta+1)$ more than $P(\theta)$. (Details: Target distribution is fix point of transition matrix)

The Metropolis Algorithm more generally

Idea: Random walk through parameter space.

- Proposal distribution, e.g. p(M)for $M \in left$, right, or $p(M) \sim \mathcal{N}$.
- Unnormalised target distribution. Must be calculable for any θ e.g. $P(\theta) = p(\theta|D)p(\theta)$.
- Acceptance criterion, e.g. $P(\theta_{t+1})/P\theta_t$

Propose a move in paramter space. Use *acceptance criterion* to shape distribution of generated samples to match *target distribution*.

Contiuous case (I)

Example: Estimate bias of coin given some data and prior. Coin bias: Continuous chain of tiny islands

Note: $P(\theta)$ is tractable b.c. $p(D|\theta)$ and $p(\theta)$ are tractable.

- Generate jump $\Delta \theta \sim \mathcal{N}(l, \sigma)$. $\theta_{\mathrm{pro}} = \theta_{\mathrm{cur}} + \Delta \theta$.
- Calculate accpetance

$$p_{\text{move}} = \min \left(1, \frac{\theta_{\text{pro}}^z (1 - \theta_{\text{pro}})^{N - z} \theta_{\text{pro}}^{(} a - 1) (1 - \theta_{\text{pro}})^{(} b - 1) / B(a, b)}{\theta_{\text{cur}}^z (1 - \theta_{\text{cur}})^{N - z} \theta_{\text{cur}}^{(} a - 1) (1 - \theta_{\text{cur}})^{(} b - 1) / B(a, b)} \right)$$

• Accept move if $x \sim \mathcal{U}$ is less than $p_{ ext{move}}$, else tally $\theta_{ ext{cur}}$ again.

Note:

- More data \rightarrow narrower posterior.
- ullet More samples o better approximation of posterior.

Contiuous case (II)

Example run

- Left (small steps): High acceptance, inefficient exploration. Low ESS.
- Mid (medium steps):
 Medium acceptance,
 most efficient exploration
 (of the 3). High ESS.
- Right (large steps): Low acceptance, inefficient exploration. Low ESS.

ESS: Effective sample size

Aside: Effective Sample Size

Caveat: I might have misunderstood this!

Samples in MCMC chain can be correlated.

Effective sample size (ESS) estimates the correlation and reports how many *uncorrelated*, i.e. direct, samples of the target distribution the chain corresponds to.

Source: http://www.nowozin.net/sebastian/blog/effective-sample-size-in-importance-sampling.html

Toward Gibbs sampling (I)

Alternative to Metropolis: Gibbs sampling, usually for more than one parameter.

Suppose two coins, each with bias: $\theta = \{\theta_1, \theta_2\}$. Samples from each coin independent.

$$p(\theta) = \beta(\theta|a, b)$$

$$p(D|\theta) = \text{Bernoulli}(D|\theta)$$

$$p(\theta_1, \theta_2|D) = \frac{\theta_1^{z_1 + a_1 - 1} (1 - \theta_1)^{N_1 - z_1 + b_1 - 1}}{B(z_1 + a_1, N_1 - z_1 + b_1)}$$

$$\frac{\theta_2^{z_2 + a_2 - 1} (1 - \theta_2)^{N_2 - z_2 + b_2 - 1}}{B(z_2 + a_2, N_2 - z_2 + b_2)}$$

Toward Gibbs sampling (II)

Metropolis estimate of posterior:

Gibbs sampling (I)

Idea: Walk only in one paramter direction at a time. Cycle paramters to update.

- Requires tractable $p(\theta_i | \{\theta_{i \neq i}\}, D)$
- Cycle paramters $(\theta_1, \theta_2, ..., \theta_1, \theta_2, ..., ...)$ to better cover paramter space.
- Special case of Metropolis: variable proposal distribution

Gibbs sampling (II)

Becase the proposal distribution exatcly mirrors the posterior probability for that paramter, the move is always accepted.

Linger at θ_1 , building up approximiation of $P(\theta_1, \theta_2)$ for that value. Gibbs sampling does this lingering only one sample at a time.

Gibbs sampling (III)

Gibbs sampling estimate of the posterior:

Representing the posterior

Histogram the representative sample to approximate posterior distribution.

Figure compares results from 4 different generated samples.

Computes estimations of mode and HDI, e.g. for comparing if statistically significant difference.

In limit, all dists should look the same.

End!

Representativeness

Problem: Starting point could be in low-prob area. Algorithm could get stuck in part of the distribution.

Test for convergence (is sample representative):
Difficult — State of the art:
Eyeball it.

Burn-in: Up to several thousand samples. Initial samples can be highly non-representative.

Figure 7.11 — Todo

Figure 7.12 — Todo

Figure 7.13 — Todo

Figure 7.14 — Todo

