A PRELIMINARY REPORT ON

Personalized Diet and Health planner system

SUBMITTED TO THE SAVITRIBAI PHULE PUNE UNIVERSITY, PUNE IN THE PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE

OF

BACHELOR OF ENGINEERING (COMPUTER ENGINEERING)

SUBMITTED BY

Sachin JohnsonRoll No. 41213Vishwajeet EkalRoll No. 41217Pratik GhodkeRoll No. 41219Rajwardhan SinhaRoll No. 41256

DEPARTMENT OF COMPUTER ENGINEERING PUNE INSTITUTE OF COMPUTER TECHNOLOGY

DHANKAWADI, PUNE - 43

SAVITRIBAI PHULE PUNE UNIVERSITY 2020 - 2021

Certificate

This is to certify that your project entitles

Personalized Diet and Health planner system

Submitted by

Sachin Johnson	Roll No.	41213
Vishwajeet Ekal	Roll No.	41217
Pratik Ghodke	Roll No.	41219
Rajwardhan Sinha	Roll No.	41256

is a bonafide student of this institute and the work has been carried out by him/her under the supervision of **Prof. R. A. Kulkarni** and it is approved for the partial fulfillment of the requirement of Savitribai Phule Pune University, for the award of the degree of Bachelor of Engineering (Computer Engineering).

Prof. R. A. Kulkarni Internal Guide Prof. M. S. Takalikar
Head
Department of Computer Engineering

Dr. R. N. Sreemathy
Principal
Pune Institute Of Computer Technology

Signature of Internal Examiner

Signature of External Examiner

Place: Pune

Date:

ACKNOWLEDGEMENT

We sincerely thank our BE Project Coordinator Prof. R. A. Kulkarni and Head of Department Prof. M. S. Takalikar for their support. We also sincerely convey our gratitude towards our mentor Mr. Adwait Sambhare, for his constant support, providing all the help, motivation and encouragement from beginning till the end to make this a grand success.

Sachin Johnson Vishwajeet Ekal Pratik Ghodke Rajwardhan Sinha

ABSTRACT

The global pandemic situation has pushed people around the world to focus on their health more than ever. Countless number of searches have been made on search engines regarding immunity, exercises and food that can be prepared at home for physical wellbeing. However, people stand at a risk of eating food that could be detrimental to their health because of being unaware to their disease history, allergies, irregular schedules and lethargic attitude towards going through the nutritional value of the ingredients they consume as a part of the whole process. We aim to provide an application that addresses all the above concerns under one roof. The system provides a diet plan by taking a nuanced approach towards the user's preferences, environment and strives to predict the timeline that could help the users reach their physical goals. An accurate system that suggests a perfect diet plan by taking into account all the factors could help workers in the healthcare sector to propose a diet plan which might consider issues that might have escaped the attention of a doctor or nutritionist as it works on the information fed by them and also the information and patterns that might go unnoticed due to human error. A user-friendly system can help people take more interest towards the nutritional value of food they eat and follow a disciplined lifestyle which is our aim.

Contents

1		TRODUCTION	1
	1.1 1.2	Motivation	1 1
2	LIT	TERATURE SURVEY	2
3	SOF	FTWARE REQUIREMENTS SPECIFICATION	3
	3.1	Introduction	3
		3.1.1 Project Scope	3
		3.1.2 User Classes and Characteristics	3
		3.1.3 Assumptions and Dependencies	3
	3.2	Functional requirements	4
		3.2.1 User interface	4
		3.2.2 System should provide meal plan based on the user profile	4
		3.2.3 Realtime Feedback	4
	3.3	External interface requirements	
		3.3.1 User Interface	5
		3.3.2 Hardware Interfaces	5
		3.3.3 Software Interfaces	6
		3.3.4 Communication Interfaces	6
		3.3.5 Operating Environment	6
	3.4	Non-functional requirements	7
		3.4.1 Performance Requirements	7
		3.4.2 Safety Requirements	7
		3.4.3 Security Requirements	7
		3.4.4 Software Quality Attributes	7
		3.4.5 Business Rules	7
	3.5	System requirements	8
		3.5.1 Software Requirements	8
	3.6	System Implementation Plan	9
4		STEM DESIGN	10
	4.1	System Architecture	-
	4.2	Data Flow Diagram	
	4.3	UML Diagrams	
		4.3.1 Class Diagram	
		4.3.2 Activity Diagram	4 4 4 5 5 6 6 6 7 7 7 7 7 7 8 8 9
		4.3.3 Use Case Diagram	14
5		HER SPECIFICATIONS	
	5.1	Advantages	-
	5.2	Limitations	
	5.3	Applications	15
6	CO	NCLUSION AND FUTURE WORK	
	6.1	Conclusion	-
	6.2	Future Scope	16
Re	efere	nces	19

List of Abbreviations

Abbreviation	Full form
UI	User Interface
API	Application Programming Interface
SDLC	Software Development Life Cycle
UML	Unified Modeling Language

Table 1: Abbrevations

Diet Plan

List of Figures

1	System Implementation Plan (Jan to Mar)	9
2	System Architecture Diagram	10
3	Data Flow Diagram	11
4	Class Diagram	12
5	Activity Diagram	13
6	Use Case Diagram	14

1 INTRODUCTION

1.1 Motivation

Making decision about what and where to eat is a major problem in our everyday lives due to a wide variety of ingredients, culinary styles, ethnicities, cultures, and personal tastes. Choosing right dish at the right time seems to be a very difficult task.

Every user has their own specific nutritional needs and requirements. An appropriate nutrition policy can therefore help improve the user's health and immune system. However, the appropriateness cannot depend upon traditional algorithms or evolutionary algorithms as they do not quickly respond to user preferences and real-time data. The existing devices in market provide diet plans but then do not account for economical costs that arise due to certain preferences and disease history. It can't be recommended to doctors and nutritionists to come up with a proper diet plan that meets all the constraints of their patients. With advances in the field of machine learning, it's possible to build flexible systems that can take into account user's environment and body health to accurately predict diet plans and recipes also providing widely-shared advices on physical exercises that can help accelerate efforts to reach physical goals and raise alerts in case of emergencies.

1.2 Problem Definition

To design and create an appropriate and personalized diet platform that proposes a daily menu using nutritional knowledge for a decision analysis approach based on multiple criteria to screen inappropriate foods. These criterias include BMI, diseases(clinical or heredity), location, dietary preferences, real-time data and feedback.

2 LITERATURE SURVEY

No	Title	Methods	Dataset	Remarks	
1	A Food Recommender	Probabilistic	W3-Recipe	Generates meal plans by	
	System Considering	Approach		maximizing or minimizing	
	Nutritional Information			some criteria depending on	
	and User Preferences			preferences but is still a	
	[1]			work in progress.	
2	Realizing an Efficient	Machine	Nutrient	Provides different	
	IoMT-Assisted Patient	Learning	Database	recommender evidence for	
	Diet Recommendation	Model		patient diseases which might	
	System [2]			require different treatment	
				and special care	
3	Intelligent Nutrition in	Neural	FDA database	Intelligent planning of the	
	Healthcare and	Networks		user's meals, based on their	
	Continuous Care [3]			clinical conditions	
4	Personalized Meal	Multi-Criteria	FDA database	Generates meal plans by	
	Planning for Diabetic	Decision-		maximizing or minimizing	
	Patients [4]	Making		some criteria depending on	
		Approach		preferences but is still a	
				work in progress.	

Table 2: Literature survey on various approaches for diet planning

3 SOFTWARE REQUIREMENTS SPECIFICATION

3.1 Introduction

3.1.1 Project Scope

The goal of this project is to provide a personalised diet-plan as well as explore the possibility of improving existing methods that are used to create a diet-plan. The scope of this project is limited to making a prototype, rather than a production ready system. However, the implementation of a successful prototype may pave the way for a production ready application in the future

3.1.2 User Classes and Characteristics

- 1. Technical users: Have some knowledge about the product.
- 2. Non-technical users: Have little to no knowledge about the product.He/She can use the system for creating and analyzing his/her diet plan, having a check on medical history and providing feedback for preferences
- 3. Admin: This is a user that will have specific controls to the application which will allow them to control certain modules in the application. The admin can change the forum settings to make the users happy.

Admin will administer the overall control of the website and can override any setting, constraints in any module as he/she wants and help the clients to maintain their diet plan efficiently and guarantee them healthy and nutritious food. However they won't have access to personal data.

3.1.3 Assumptions and Dependencies

- 1. User manuals are provided to the system in PDF format.
- 2. Assumption is that the user should have some basic knowledge of computers. We are assuming that the user can navigate through multiple pages of an application.
- 3. Knows how to read and write data.
- 4. The medical history of the user being provided is verified and all allergies are accounted for.

3.2 Functional requirements

3.2.1 User interface

- a. Description: The UI will enable the user to navigate through multiple functionalities of the application and enter relevant data with the intent of requiring particular data from user.
- b. Response sequence:
 - i. User submits the data to the UI
 - ii. UI relays it to the back-end through API.
 - iii. UI displays a modifiable meal plan.
- c. Functional requirement:
 - i. User submits a profile containing preferences
 - ii. System processes the profile and similar profiles
 - iii. System relays meal plan relevant to the profile
 - iv. The results are displayed on the UI.

3.2.2 System should provide meal plan based on the user profile

- a. Description: System should take into account the profile of the user while submitting the meal/diet plan.
- b. Response sequence:
 - i. User submits a query to the UI through an API.
 - ii. UI relays it to the system.
 - iii. System responds with summaries relevant to the query.
- c. Functional requirements:
 - i. User submits a profile through the interface.
 - ii. Retriever module searches through the recipes matching the profile.
 - iii. It ranks results based on relevance and passes most relevant results to the retriever module
 - iv. The recommender module individually summarizes these results.
 - v. The meal plans are relayed back to the UI for display.

3.2.3 Realtime Feedback

- a. Description: Suggested meal plan will always be improved by taking instant feedback and dynamic changes to calorie requirements
- b. Response sequence:
 - i. User submits a feedback through UI
 - ii. UI sends data to the system to modify meal plan
 - iii. System responds with new tailored meal plan.
- c. Functional requirements:
 - i. User receives the meal plan after submitting data.
 - ii. User provides feedback through a checklist
 - iii. The recommender system accepts and changes meal plan
 - iv. The meal plans are relayed back to the UI for display.

3.3 External interface requirements

3.3.1 User Interface

- a. Admin Interface: Once admin logs in, it will redirect admin to admin-dashboard. Admin Dashboard will allow admin to manage user activities and manage overall functionality of the website, give warning or delete troublesome users. In this interface admin will have full control over this web application. Various fields available on this screen will be:
 - i. Username
 - ii. Password
 - iii. Number of Users
- b. User Registration Interface: Once a user is successfully registered to the platform, he/she will be automatically redirected to the Login Interface and will be asked to fill preferences (if any). This interface will allow users to register for the first time to the Diet recommendation System. Interface will include following fields:
 - i. Username
 - ii. Password
 - iii. Confirm Password
 - iv. Contact
 - v. Medical History
 - vi. Fitness app ID
- c. User Login Interface: Once a user is successfully logged into the platform, he/she will be automatically redirected to the personal menu dashboard. This interface will allow already registered users to login to his/her Menu dashboard. This interface will include following fields:
 - i. Username
 - ii. Password
- d. User Dashboard Interface:In this interface users can manage their own portfolio and get insights based on their current portfolio. This interface will have these major tabs:
 - i. User menu(standard recommendations)
 - ii. Preferences
 - iii. Profile
 - iv. Feedback
- e. User Portfolio : This interface will allow the user to see their personal diet chart, nutrients provided in the diet. Each meal will take care of medical history and allergies .
- f. Preferences: The user may provide his/her preferences and menu changes accordingly.
- g. Profile: This interface will allow the user to see the details of Profile and update any details like name, password, contact, medical condition, etc.
- h. Recommendations: This interface will display the recommended recipes and the amount of nutrients they have.

3.3.2 Hardware Interfaces

Users can use any screen size above 300px width, i.e. the web interface will be responsive based on user screen sizes. Apart from this, users will need any interactive device like a mouse, touch pen for clicking on the menu options and keyboard (either physical or virtual) to enter the details for login/register.

3.3.3 Software Interfaces

. User: Web Browser, Javascript-Enabled

. Web Server : Django Inbuilt Server

. Database Server : SQLite3 -; MySQL if needed for deployment

. Backend Development : Python3, Django (Framework), Tensorflow/Keras/Pytorch - ML

. Frontend Development : HTML, CSS, JS, Django-templates

3.3.4 Communication Interfaces

. Users will interact with the platform using HTTP/HTTPS protocol.

. TCP/IP Network stack will be used for communication.

3.3.5 Operating Environment

The model and application back end services are expected to run on a cloud server running a Linux OS, with a simple file storage system to store extra incoming data. The prototype will focus on a web based UI for the users to interact with the system.

3.4 Non-functional requirements

3.4.1 Performance Requirements

The system should have a high performance rate when executing user's input and should be able to provide feedback or response within a short time span usually 50 seconds for advanced credentials and 20 to 25 seconds for less detailed profiles.

3.4.2 Safety Requirements

Error should be considerably minimized and an appropriate error message that guides the user to recover from an error should be provided. Validation of user's input is highly essential. Also the standard time taken to recover from an error should be 15 to 20 seconds.

3.4.3 Security Requirements

The subsystem should provide a high level of security and integrity of the data held by the system, only the end-user should gain access to their own credentials and admin with necessary credentials be able to get a bird's eye view of the application

3.4.4 Software Quality Attributes

٠.

- 1. Flexibility: The system can go through and get meal plans with varying number of mealsper-day.
- 2. Availability: The system is platform independent and thus available to all users. his system should always be available for access at 24 hours, 7 days a week
- 3. Interoperability: Any system can interact with our system through the API.
- 4. Usability: The interface should use terms and concepts, which are drawn from the experience of the people who will make the most of the system.
- 5. Efficiency: The system must provide easy and fast access without consuming more cost.
- 6. Reliability: Users should never be surprised by the behavior of the system. It should be easy to see all different options which are being offered in as few clicks as possible.
- 7. Transparency: Recommendations made should be as transparent as possible. It will be handled by providing the reports of different ML algorithms based on which recommendations are made.
- 8. Security: System provides authentication mechanism without which no user can get into the system. Sharing of credentials will not be considered in the security aspect of the product.
- 9. Maintainability: Software will be very well documented for easy maintenance of the system. Also in the occurrence of any major system malfunctioning, the system should be available in 1 to 2 working days.

3.4.5 Business Rules

A business rule is anything that captures and implements business policies and practices. A rule can enforce business policy, make a decision, or infer new data from existing data. This includes the rules and regulations that the System users should abide by. This includes the cost of the project and the discount offers provided. The users should avoid illegal rules and protocols. Neither admin nor member should cross the rules and regulations.

3.5 System requirements

The user interface for the system will be in the form of a website and can be accessed through any device with a browser and an active internet connection.

3.5.1 Software Requirements

This application can be accessed by a user through a machine having any web browser. The client devices must preferably have browsers like IE9 or above, Mozilla Firefox (version 60.02 quantum) or Opera 54.0 or chrome (version 68.0.3) or safari installed in their OS

3.6 System Implementation Plan

Figure 1: System Implementation Plan (Jan to Mar)

4 SYSTEM DESIGN

4.1 System Architecture

Figure 2: System Architecture Diagram

4.2 Data Flow Diagram

Figure 3: Data Flow Diagram

4.3 UML Diagrams

4.3.1 Class Diagram

Figure 4: Class Diagram

4.3.2 Activity Diagram

Figure 5: Activity Diagram

4.3.3 Use Case Diagram

Figure 6: Use Case Diagram

5 OTHER SPECIFICATIONS

5.1 Advantages

- a. The system makes the process of generating diet plans more accurate
- b. It provides an interactive experience to modifying a plan.
- c. Users are only presented with information relevant to their profile
- d. Once a meal plan is generated the user is free to provide feedback and get an updated meal plan or integrate health trackers and medical history

5.2 Limitations

- a. User can't add fields to profile
- b. User should provide accurate info
- c. The system is limited only to providing meal plans and displaying vitals using third-party APIs.

5.3 Applications

- a. This pipeline can be adapted to fit a generalised model for any other form of planning system in the health domain.
- b. The system can be integrated with a fitness application

6 CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this report we have mentioned all the requirements and design constraints of the system. The multiple design challenges posed due to constraints on data gathering and real-time systems have been addressed. Multiple constraints such as lack of availability of concentrated dataset of multiple cuisines and the cold-start problem have been clarified upon. This has helped us chart a course of action for the implementation of this application.

6.2 Future Scope

We aim to push the limits of this application further by making it the go-to application for both fitness and nutrition by aiming for a seamless connection between multiple IoT devices such as home systems and health monitors to provide accurate results that can help draw insights on the user and raise alarms in case of emergencies. We intend to further work on this application to make it a handy mobile/palm application and improve the accuracy of results for a particular demographic and at the same time recommend diet and provide fitness charts by saving the constraints provided by the user on both economic and medical fronts.

Appendix-A

Feasibility Assessment

Complexity Study:

- For a machine learning solution, the complexity of the problem will go hand in hand with the complexity of your solution.
- Response complexity is a calculation to help understand the complexity of the problem given labeled training data. Formula:
- RC= $(n-1) \sigma 2 (m-1)$

n ->number of inputs given to the model $\sigma 2$ ->variance of the output in the training set m - >number of possible outputs

Mathematical Model:

Pearson correlation: Measuring user based nearest neighbor collaborative.

 $a,b:\, Users$

r_{a,p}: Rating of user a for item p

p: set of items rated by both a and b

$$sim(a,b) = \frac{\sum_{p \in P} \left(r_{\text{a,p}} - r_{\text{a}}\right) \left(r_{\text{b,p}} - r_{\text{b}}\right)}{\sqrt{\sum_{p \in P} \left(r_{\text{a,p}} - r_{\text{a}}\right)^2} \sqrt{\sum_{p \in P} \left(r_{\text{b,p}} - r_{\text{b}}\right)^2}}$$

• Making Prediction for unseen items:

$$pred(a,b) = \overline{r_{a}} + \frac{\sum_{b \in N} sim(a,b) * (r_{b,p} - \overline{r_{b}})}{\sum_{b \in N} sim(a,b)}$$

Feasibility

- Diet planner recommends an appropriate and personalized diet chart using nutritional knowledge.
- It uses a decision analysis approach based on multiple criteria to screen inappropriate foods.
- These criterias include BMI, diseases(clinical or heredity), location, dietary preferences, real-time data and feedback.
- To improve usability and decrease complexity, we are going to create a simple user interface to ensure that everybody can use the application easily.
- Since our application will work efficient than any human, the diet plan will be flawless.
- Nutritionists can use the application as a helping hand in order to double check, thus increasing reliability.
- To improve the model, we will take feedback from the users about the accuracy of the recommended charts and utilize the same in fine-tuning the model further.

IDEA Matrix:

I	D	Е	A
Increase healthy	Detects for	Evolve periodically	Assists nutritionist
lifestyle habits	diseases and		
	allergic food		
Improve reliability	Delivers preferred		Accelerate healthy
	menu		growth
	Enhancement		
Improve usability	Decreases	Eliminate allergic	Attention to detail
	confusion over	food confusion	
	what to eat		

Table 3: IDEA Matrix

References

- [1] Luis Martínez Raciel Yera Toledo, Ahmad A. Alzahrani. A food recommender system considering nutritional information and user preferences. In 2019 IEEE International Conference on E-health Networking, Application Services (HealthCom), 2019.
- [2] Joseph Henry Anajemba Ali Kashif Bashir Fazal Noor Celestine Iwendi, Suleman Khan. Realizing an efficient iomt-assisted patient diet recommendation system through machine learning model. In *EEE Access, vol. 8, pp. 28462-28474, 2020, doi: 10.1109/ACCESS.2020.2968537, 2020.*
- [3] António Abelha José Machado Rui Miranda, Diana Ferreira. Intelligent nutrition in health-care and continuous care. In 2019 International Conference in Engineering Applications (ICEA), Sao Miguel, Portugal, 2019, pp. 1-6, doi: 10.1109/CEAP.2019.8883496., 2019.
- [4] Juan Li Shadi Alian Maryam Sadat, Amiri Tehrani Zadeh. Personalized meal planning for diabetic patients using a multi-criteria decision- making approach. In 2019.