TABELA DAS DERIVADAS

Função	Função Derivada
$f(x) = a, a \in \mathbb{R}$	f'(x) = 0
$f(x) = x^n$	$f'(x) = n. x^{n-1}$
$f(x) = a^x, a > 0 e a \neq 1$	$f'(x) = a^x . \ln a$
$f(x) = e^x$	$f'(x) = e^x$
$f(x) = \log_b x, b > 0 e b \neq 1$	$f'(x) = \frac{1}{x} \cdot \log_b e$
$f(x) = \ln x$	$f'(x) = \frac{1}{x}$
f(x) = senx	$f'(x) = \cos x$
$f(x) = \cos x$	f'(x) = -senx
f(x) = tgx	$f'(x) = \sec^2 x$
$f(x) = \cot gx$	$f'(x) = -\csc^2 x$
f(x) = secx	f'(x) = secx. tgx
f(x) = cossecx	$f'(x) = -\cos \sec x \cdot \cot gx$
f(x) = arcsenx	$f'(x) = \frac{1}{\sqrt{1 - x^2}}$
$f(x) = \arccos x$	$f'(x) = -\frac{1}{\sqrt{1-x^2}}$
f(x) = arctgx	$f'(x) = \frac{1}{1 + x^2}$
$f(x) = \operatorname{arccotg} x$	$f'(x) = -\frac{1}{1+x^2}$
f(x) = arcsecx	$f'(x) = \frac{1}{x \cdot \sqrt{x^2 - 1}}$
f(x) = arccosecx	$f'(x) = -\frac{1}{x \cdot \sqrt{x^2 - 1}}$

TABELA DE FUNÇÕES DERIVADAS

Derivadas

Sejam u e v funções deriváveis de x e n constante.

1.
$$y = u^n \Rightarrow y' = n u^{n-1} u'$$
.

2.
$$y = uv \Rightarrow y' = u'v + v'u$$
.

3.
$$y = \frac{u}{v} \Rightarrow y' = \frac{u'v - v'u}{v^2}$$
.

4.
$$y = a^u \Rightarrow y' = a^u(\ln a) u', (a > 0, a \neq 1).$$

5.
$$y = e^u \Rightarrow y' = e^u u'$$
.

6.
$$y = \log_a u \Rightarrow y' = \frac{u'}{u} \log_a e$$
.

7.
$$y = \ln u \Rightarrow y' = \frac{1}{u}u'$$
.

8.
$$y = u^v \Rightarrow y' = v u^{v-1} u' + u^v (\ln u) v'$$
.

9.
$$y = \text{sen } u \Rightarrow y' = u' \cos u$$
.

10.
$$y = \cos u \Rightarrow y' = -u' \operatorname{sen} u$$
.

11.
$$y = \operatorname{tg} u \Rightarrow y' = u' \operatorname{sec}^2 u$$
.

12.
$$y = \cot u \Rightarrow y' = -u' \csc^2 u$$
.

13.
$$y = \sec u \Rightarrow y' = u' \sec u \operatorname{tg} u$$
.

14.
$$y = \csc u \Rightarrow y' = -u' \csc u \cot u$$
.

15.
$$y = arc \operatorname{sen} u \Rightarrow y' = \frac{u'}{\sqrt{1-u^2}}$$
.

16.
$$y = arc \cos u \implies y' = \frac{-u'}{\sqrt{1-u^2}}$$
.

17.
$$y = arc \operatorname{tg} u \Rightarrow y' = \frac{u'}{1+u^2}$$
.

18.
$$y = arc \cot g u \Rightarrow \frac{-u'}{1+u^2}$$
.

19.
$$y = arc \sec u$$
, $|u| \ge 1$

$$\Rightarrow y' = \frac{u'}{|u|\sqrt{u^2-1}}, |u| > 1.$$

20.
$$y = arc \operatorname{cosec} u$$
, $|u| \ge 1$

$$\Rightarrow y' = \frac{-u'}{|u|\sqrt{u^2-1}}, |u| > 1.$$