Nico Kubasta Patrick Ziegeldorf

AGENDA

STEREOSKOPISCHE PROJEKTION

Die bisherige Technologie im Stereo X Labor

PRINZIP DER STEREOSKOPISCHEN PROJEKTION

- Gleichzeitige Wahrnehmung der Umgebung aus zwei verschiedenen Blickwinkeln
 - ⇒Räumliches Sehen
- Tiefeneindruck erfordert zwei Bildkanäle
 - Bildkanäle müssen getrennt und entsprechendem Auge zugeordnet werden
 - Darstellung des Gesamtbilds auf derselben Projektionsfläche

SYSTEMAUFBAU

PRINZIP DER GESTENERKENNUNG

Umgebungserkennung

- Infrarot Strahlung
- Unterschiedliche Reflexionseigenschaften der Oberflächen

Körpererkennung

- Trennung des Körpers vom Hintergrund
- Repräsentation durch Pointcloud
- Berechnung des Skeletts

Daten

- SDK stellt Daten bereit
 - Koordinaten der Joints
 - Handstates

BETRACHTUNG

- Günstig für viele Anwender
- Keine Motionsickness
- Kosten skalierbar

- Betrachtungswinkel
- Gestenerkennung
- Teure Grundausstattung

FAZIT

Wahl nachvollziehbar

Interessante Herangehensweise

Benötigt sehr hohe Rechenleistung

Fehleranfällig

AGENDA

TECHNOLOGIEUPGRADE

Wahl der Upgradetechnologie

NEUE TECHNOLOGIEN

Augmented Reality

- Erweiterung der Realität
- Bekanntester
 Anbieter: Microsoft
 (Hololens)

Virtual Reality

- Immersion in eine virtuelle Welt
- Bekannteste
 Anbieter: HTV,
 Oculus VR, Sony,
 Samsung

TECHNOLOGIEVERGLEICH

Augmented Reality

- Sehr teuer
- Begrenzter Zugang
- Unausgereift
- Tracking durch Kamera
- Interaktion durch Hände

Virtual Reality

- Teuer
- Der Allgemeinheit zugänglich
- Relativ ausgereift
- Tracking durch Sensoren
- Interaktion durch Controller

6/20/201

BRILLENVERGLEICH

HTC Vive

- Sensoren für Raumerfassung inkludiert
- Conroller inkludiert
- Mit Controller und Sensoren günstiger
- Tracking über Brille

Oculus Rift

- Sensoren für Raumerfassung zusätzlich bestellbar
- Controller zusätzlich bestellbar
- Grundversion günstiger
- Tracking über Sensoren (außerhalb der Brille)

AGENDA

DIE WERKSTATT

Eine Präsentationsfertige Szene

Inspizieren, interagieren und mutieren von Objekten, welche im Vorfeld in einer CAD-Software entwickelt wurden.

VISION

ANFORDERUNGEN

Verwendung von Dateien aus Catia

Laden von Objekten zur Laufzeit

Interaktion mit den Objekten (Kollision, Vergrößern/Verkleinern)

INTERAKTION

LADEN ZUR LAUFZEIT

Export in STL-Format

• Einfaches, weit verbreitetes Format

Mit Hilfe von
Blender in
OBJ-Format
konvertieren
• Weit
verbreitetes
3D-Format

Laden

- Skript lädt OBJ-Dateien
- Hinzufügen von weiteren Skripten (Interaktion)

HÜRDEN DER ENTWICKLUNG

Dateiformat

•CAD -> 3D

Konvertierung

- •Von Unity standardmäßig nicht unterstützt
- •Benötigt andere Software (Blender)

Laden zur Laufzeit

- •Von Unity standardmäßig nicht unterstützt
- Benötigt Erweiterungsskript
- •Laden von großen Dateien (Unity Vertices Limit)

Bugs in der VR-Software

•Controller werden ausgeblendet

Objektkollision

•Nutzung von veralteten Funktionen

DEMO

ERGEBNISSE

AUSBLICK

