Федеральное агентство по образованию
Федеральное государственное образовательное учреждение
высшего профессионального образования
СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ
Факультет математики и информатики

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ

Сборник задач и упражнений

Учебно-методический комплекс дисциплин по проекту

"Создание научно-образовательного комплекса

для подготовки элитных специалистов в области

математики, механики и информатики в Сибирском
федеральном университете", рег. N 16

Выполнено на кафедре теории функций

Авторы-составители:

Ермилов И.В., Шлапунов А.А., Федченко Д.П., Трутнев В.М.,

Шестаков И.В.

Настоящий задачник предназначен для учебно-методического обеспечения дисциплины "Функциональный анализ" для студентов III курса, обучающихся на факультете математики и информатики Сибирского федерального университета по специальностям (направлениям) 010100 – "Математика", 010200 – "Прикладная математика и информатика".

Создание такого задачника было необходимо прежде всего потому, что во всех существующих ныне задачниках преобладают теоретические задачи. Мы попытались избавиться от этого недостатка. Хотя, нами использован и материал из достаточно современного задачника [9] (а также задачников [12], [13]). Кроме того, нам неизвестны другие задачники по функциональному анализу, изданные за последние годы в центральных издательствах тиражами, достаточными для "массового" использования в учебном процессе.

Задачи разбиты по разделам, соответствующим модулям лекционного курса.

Первый раздел посвящен теории метрических пространств. В нем собраны задачи по темам: метрика, сходимость в метрических пространствах, открытые и замкнутые множества, полнота, принцип сжимающих отображений. Эта тематика уже частично знакома студентам по курсу "Дифференциальные уравнения". Все основные примеры связаны именно с этим направлением.

Второй раздел касается теории типичных метрических пространств с линейной структурой – нормированных и евклидовых пространств. В нем собраны задачи по темам: норма, скалярное произведение, ортогональность, непрерывные линейные функционалы, теорема Хана-Банаха, сопряженное пространство, обобщенные функции. Для решения подобранных нами задач студенты могут опираться на геометрическую интуицию в конечномерных пространствах, выработанную при изучении курса "Линейная алгебра и аналитическая геометрия".

В третий раздел включены задачи по теории линейных операторов в пространствах Банаха. В нем мы лишь на понятийном уровне касаемся теории операторных уравнений, сосредотачиваясь на общих свойствах линейных операторов. Здесь представлены задачи по темам: ограниченные операторы, норма оператора, спектр и резольвента оператора, сопряженный оператор.

Наконец, раздел 4 в значительной мере охватывает теорию интегральных уравнений Фредгольма и теорию операторных уравнений первого рода. Наибольшее внимание уделено уравнениям второго рода с вырожденными ядрами и интегральным уравнениям Вольтерра второго рода. Частично затронуты теория некорректных задач и теория интегрирования по Лебегу.

Основным источником теоретического материала, необходимого для решения задач является "Конспект лекций по дисциплине Функциональный анализ" в рамках разработанного нами учебнометодического комплекса. Студентам также рекомендуется использовать учебник [1] и [2]. В списке литературы приведены и другие

книги, которые студенты могут использовать. В основном это издания известных учебников прошлого столетия, которые хотя и устарели в некоторой степени (например, в терминологии), но обладают другими неоспоримыми преимуществами (например, ясностью изложения).

Оглавление

Глава 1

Метрические пространства

В этом разделе собраны задачи на тему "Метрические пространства". Большинство из них не требует каких-то особых усилий со стороны студентов. Все, что нужно знать – это базовые определения, данные на первых лекциях курса и основные понятия базовых дисциплин первого и (реже) второго курсов факультета математики и информатики (в основном это – математический анализ и алгебра).

Как известно, метрика есть обобщение понятия "расстояние". Поэтому мы сосредоточились на том, чтобы показать, как изменения метрики влекут за собой изменение базовых свойств метрического пространства.

1.1 Метрика

Являются ли метриками на числовой прямой следующие функции:

1.
$$\rho(x,y) = |x-y|$$
.

Коротко разберем этот пример. Функция $\rho(x,y)$ образует метрику, если $\rho(x,y) \geq 0$ и:

1.
$$\rho(x,y) = 0 \Leftrightarrow x = y$$
,

$$2. \ \rho(x,y) = \rho(y,x),$$

3.
$$\rho(x, y) \le \rho(x, z) + \rho(z, y)$$
,

для всех x, y и z из X. Ясно, что в нашем случае

$$\rho(x,y) = |x-y| \ge 0$$
 для любых $x,y \in \mathbb{R}$. Пусть

$$ho(x,y)=|x-y|=0$$
, получаем, что $x=y$. Далее

$$ho(x,y) = |x-y| = |y-x| =
ho(y,x)$$
. Легко видеть, что

$$|x-y| = |(x-z) + (z-y)| \le |x-z| + |z-y|$$
 откуда сразу же

получаем правило треугольника $\rho(x,y) \le \rho(x,z) + \rho(z,y)$. В

результате, имеем, что функция $\rho(x,y) = |x-y|$ образует метрику

1.1. МЕТРИКА 11

на \mathbb{R} , т.к. для нее выполнены все аксиомы метрики.

2.
$$\rho(x,y) = |x^3 - y^3|$$
.

3.
$$\rho(x,y) = x^3 - y^3$$
.

4.
$$\rho(x,y) = |x^2 - y^2|$$
.

5.
$$\rho(x,y) = ||x| - |y||$$
.

6.
$$\rho(x,y) = |\cos x - \cos y|$$
.

7.
$$\rho(x,y) = |\sin x - \sin y|$$
.

8.
$$\rho(x,y) = |\lg x - \lg y|$$
.

9.
$$\rho(x,y) = |\sin(x-y)|$$
.

10.
$$\rho(x,y) = (x^2 + 2y^2)|x - y|$$
.

11.
$$\rho(x,y) = \sqrt{|x-y|}$$
.

12. Каким условиям должна удовлетворять определенная на \mathbb{R} непрерывная функция u=f(v), чтобы на вещественной прямой можно было задать метрику с помощью равенства

$$\rho(x,y) = |f(x) - f(y)|?$$

Являются ли метриками на множестве натуральных чисел функции:

13.

$$\rho(n,m) = \frac{|n-m|}{nm}.$$

14.

$$\rho(n,m) = \begin{cases} 1 + \frac{1}{n+m}, & \text{если } n \neq m, \\ 0, & \text{если } n = m. \end{cases}$$

Образует ли метрическое пространство множество точек плоскости, если определить расстояние между точками $M(x_1,y_1)$ и $N(x_2,y_2)$ формулой:

15.
$$\rho(M, N) = (\sqrt{|x_1 - x_2|} + \sqrt{|y_1 - y_2|})^2$$
.

16.
$$\rho(M,N) = \sqrt[4]{(x_1-x_2)^4 + (y_1-y_2)^4}$$
.

17.
$$\rho(M,N) = \sqrt{(x_1 - x_2)^2 + (y_1^3 - y_2^3)^2}$$
.

18.
$$\rho(M, N) = |x_1 - x_2| + \operatorname{tg} |y_1 - y_2|.$$

19.
$$\rho(M, N) = \max\{|x_1 - x_2|, |y_1 - y_2|\}.$$

Пусть X — множество всех прямых на плоскости, не проходящих через начало координат. Пусть прямые l_1 и l_2 задаются уравнениями:

$$l_1: x\cos\alpha_1 + y\sin\alpha_1 - p_1 = 0, \quad l_2: x\cos\alpha_2 + y\sin\alpha_2 - p_2 = 0,$$

где $0<\alpha_1<2\pi,\,0<\alpha_2<2\pi,\,p_1>0,\,p_2>0.$ Выяснить являются ли метриками на X следующие функции:

20.
$$\rho(l_1, l_2) = \sqrt{(p_2 - p_1)^2 + (\sin \alpha_2 - \sin \alpha_1)^2 + (\cos \alpha_2 - \cos \alpha_1)^2}$$
.

21.
$$\rho(l_1, l_2) = |p_2 - p_1| + |\sin \alpha_2 - \sin \alpha_1| + |\cos \alpha_2 - \cos \alpha_1|$$
.

22.
$$\rho(l_1, l_2) = |p_2 - p_1| + |\sin \alpha_2 - \sin \alpha_1|$$
.

Пусть $\rho(x,y)$ – метрика на множестве X. Доказать, что следующие функции также являются метриками на X.

23.
$$\widetilde{\rho}(x,y) = \frac{\rho(x,y)}{1 + \rho(x,y)}$$
.

Проверим выполнение аксиом метрики для функции $\widetilde{\rho}(x,y)$.

 $\widetilde{
ho}(x,y)\geq 0$, т.к. функция ho(x,y) является метрикой на X. Пусть

x = y, тогда получаем, что $\widetilde{\rho}(x,y) = \frac{0}{1+0} = 0$. Далее, пусть

 $\widetilde{
ho}(x,y)=0,$ отсюда сразу же получаем, что

 $ho(x,y) = 0 \ (1 +
ho(x,y)
eq 0$ т.к. $ho(x,y) \ge 0)$ теперь легко увидеть,

что x=y. Нетрудно проверить, что функция $\widetilde{\rho}(x,y)$ симметрична

1.1. МЕТРИКА 13

относительно переменных x и y, т.е.

$$\widetilde{\rho}(x,y) = \frac{\rho(x,y)}{1 + \rho(x,y)} = \frac{\rho(y,x)}{1 + \rho(y,x)} = \widetilde{\rho}(y,x).$$

Осталось только проверить аксиому треугольника для функции $\widetilde{\rho}(x,y)$, однако это легко сделать непосредственной проверкой.

24.
$$\widetilde{\rho}(x,y) = \ln[1 + \rho(x,y)].$$

25.
$$\widetilde{\rho}(x,y) = \min\{1, \rho(x,y)\}.$$

26.
$$\widetilde{\rho}(x,y) = \frac{\rho(x,y)}{2 + \rho(x,y)}$$
.

- **27.** Доказать, что аксиомы метрики эквивалентны следующим двум аксиомам:
- 1) $\rho(x,y) = 0 \iff x = y$,
- 2) $\rho(x,y) \leq \rho(x,z) + \rho(y,z)$ для всех x,y,z.
- **28.** Является ли метрикой на $X=\{a,b,c\}$ функция ρ , если $\rho(a,c)=\rho(c,a)=\rho(a,b)=\rho(c,b)=2$, где $\rho(b,a)=\rho(b,c)=1$? Удовлетворяет ли ρ аксиоме треугольника?
- **29.** На множестве $X = \{a, b, c\}$ задана метрика ρ такая, что $\rho(a, b) = \rho(b, c) = 1$. Какие значения может принимать $\rho(a, c)$?
- **30.** Дано множество $X = \{x_0, x_1, \dots, x_n\}$. Зададим ρ так:
- $1) \quad \rho(x_i, x_i) = 0;$
- 2) $\rho(x_0, x_i) = \rho(x_i, x_0) = 1$ при i > 0;
- 3) $\rho(x_i, x_j) = d \text{ при } i \neq j, i > 0, j > 0.$

Доказать, что при $d=\sqrt{2}$ функция ho удовлетворяет аксиомам метрики. Найти все значения d, при которых ho – метрика.

31. Образует ли метрику на множестве многочленов функция

$$\rho(P_1, P_2) = |P_1(0) - P_2(0)|?$$

- **32.** Доказать, что система аксиом метрического пространства непротиворечива и независима.
- **33.** Доказать, что множество целых чисел становится метрическим пространством, если положить $\rho(a,b)=0$ при a=b и $\rho(a,b)=1/3^k$ при $a\neq b$, где k наивысшая степень 3, на которую делится нацело разность a-b. Найти $\rho(7,5), \quad \rho(7,-2), \quad \rho(7,25)$.
- **34.** Доказать, что множество полей шахматной доски образует метрическое пространство, если за расстояние от поля x до поля y принять наименьшее число ходов, которое потребуется коню, чтобы перейти с поля x на поле y.
- **35.** Найти расстояние между функциями $x(t) = t^3$ и y(t) = 3t + 4 в пространствах:
- а) $\widetilde{L}_1[0,2]$, б) $\widetilde{L}_2[0,2]$, в) C[0,2], г) $C^1[0,2]$, д) $C^2[0,2]$. Здесь и далее $C^s[a,b]$ пространство s раз непрерывно дифференцируемых функций на отрезке [a,b] с метрикой

$$\rho_s(x,y) = \sum_{j=0}^s \max_{t \in [a,b]} \left| \frac{d^j x}{dt^j}(t) - \frac{d^j y}{dt^j}(t) \right|,$$

а $\widetilde{L}_p[a,b]$ – пространство непрерывных функций на отрезке [a,b] с метрикой

$$\rho(x,y) = \left(\int_a^b |x(t) - y(t)|^p dt\right)^{1/p}.$$

36. Найти расстояние между точками A(-2,4) и B(-4,-2) в пространствах:

- a) \mathbb{R}^2 , 6) \mathbb{R}^2 , b) \mathbb{R}^2_{∞} .
- **37.** Найти множество точек M пространства \mathbb{R}^2_1 , расстояние каждой из которых до точки A(0,0) в 2 раза больше, чем расстояние до точки B(3,0).
- **38.** Найти расстояние между функциями $x(t) = t^2$ и y(t) = 2t + 3 в пространствах:
- a) $C[0, \frac{7}{2}]$, 6) $\widetilde{L}_1[0, \frac{7}{2}]$, B) $C^1[0, \frac{7}{2}]$.
- **39.** Указать какой-нибудь (отличный от константы) элемент, находящийся на расстоянии 3 от $x(t) \equiv 0$ в пространствах:
- a) C[-1,1], 6) $C^2[0,4]$, B) $\widetilde{L}_2[0,1]$, Γ $\widetilde{L}_1[-1,0]$.
- **40.** Найти расстояние между последовательностями $x=(1,\frac{1}{2},\ldots,\frac{1}{2^{n-1}},\ldots)$ и $y=(\frac{1}{2},\frac{1}{4},\ldots,\frac{1}{2^n},\ldots)$ в пространствах: a) ℓ_2 , б) ℓ_1 , в) \mathcal{M} .

1.2 Сходимость в метрических пространствах

Выяснить сходится ли последовательность функций $x_n(t)$ в указанном пространстве.

41.
$$x_n(t) = t^{2n}$$
 B $C[0, \frac{1}{2}]$

42.
$$x_n(t) = t^{2n}$$
 B $C[0,1]$.

43.
$$x_n(t) = t^n - t^{n+1}$$
 B $C[0, 1]$.

44.
$$x_n(t) = t^n - t^{n+1}$$
 B $C[1, 2]$.

45.
$$x_n(t) = t^n - t^{2n}$$
 B $C[0,1]$.

46.
$$x_n(t) = \frac{1}{t^2 + nt + 1}$$
 B $C[0, 1]$.

47.
$$x_n(t) = \sin^{2n} t + \frac{1}{n^2}$$
 B $C[0, \pi]$.

48.
$$x_n(t) = \sin^{2n} t + \frac{1}{n^2}$$
 в $C[\delta, \pi - \delta]$, где $0 < \delta < \pi$.

49.
$$x_n(t) = \frac{\sin nt}{n}$$
 B $C[-A, A]$.

50.
$$x_n(t) = \frac{1}{2 - (t^2 - 1)^n}$$
 B $C[0, 4]$.

51.
$$x_n(t) = 1 - (1 - t^2)^n$$
 B $C[-\sqrt{2}, \sqrt{2}].$

52.
$$x_n(t) = nt^2 e^{-nt}$$
 B $C[0, 2]$.

53.
$$x_n(t) = \frac{t^{n+1}}{n+1} - \frac{t^{n+2}}{n+2}$$
 B $C[0,1]$.

54.
$$x_n(t) = \frac{t^{n+1}}{n+1} - \frac{t^{n+2}}{n+2}$$
 B $C^1[0,1]$.

55.
$$x_n(t) = t^n - \frac{n}{n+1}t^{n+1}$$
 B $C^1[0,1]$.

56.
$$x_n(t) = \frac{\sin nt}{n}$$
 B $\widetilde{L}_2[0, \pi]$.

57.
$$x_n(t) = \frac{\cos nt}{n}$$
 в $\widetilde{L}_1[0, \pi]$.

58.
$$x_n(t) = \frac{nt}{1 + n^2 t^2} \operatorname{tg} \frac{t}{n}$$
 в $\widetilde{L}_1[0, \frac{\pi}{4}]$.

- **59.** Доказать, что сходимость последовательности функций $x_n(t)$ в пространстве C[a,b] равносильна равномерной сходимости последовательности $x_n(t)$ на отрезке [a,b].
- **60.** Показать, что последовательность функций $x_n(t) = t^n$ сходится к функции $x_0(t) \equiv 0$ в пространстве $\widetilde{L}_1[0,1]$. Сходится ли $x_n(a)$ к

 $x_0(a)$ для любого $a \in [0, 1]$?

61. Показать, что последовательность функций $x_n(t) = 2nte^{-nt^2}$ в каждой точке отрезка [0,1] сходится к функции $x_0(t) \equiv 0$. Сходится ли $x_n(t)$ к $x_0(t)$ по метрике пространства $\widetilde{L}_1[0,1]$?

62. Показать, что последовательность функций

$$x_n(t) = \begin{cases} nt, & \text{при } 0 \le t \le \frac{1}{n}, \\ 1, & \text{при } \frac{1}{n} \le t \le 1 \end{cases}$$

сходится к функции $x_0(t) \equiv 1$ в пространстве $\widetilde{L}_1[0;1]$. Однако $x_n(t)$ не сходится к $x_0(t)$ в пространстве C[0;1].

63. Дана последовательность числовых последовательностей

Выяснить, сходится ли она

- а) покоординатно, б) в ℓ_2 , в) в ℓ_1 , г) в \mathcal{M} ?
- 64. Найти предел последовательности

$$x^{(n)} = (\frac{1}{n}, \frac{1}{n^2}, \frac{1}{n^3}, \ldots)$$

в пространстве ℓ_1 .

65. Доказать, что сходимость в пространствах $\mathbb{R}_p^n \ (1 \le p \le \infty)$

эквивалента покоординатной сходимости.

- **66.** Доказать, что из сходимости последовательности $x^{(n)}$ к точке x пространства ℓ_2 вытекает покоординатная сходимость $x^{(n)}$ к x.
- 67. В пространстве ℓ_2 задана последовательность

$$x^{(n)} = (\underbrace{0, \dots, 0, 1}_n, 0, \dots)$$
. Доказать, что $x^{(n)}$ не сходится в ℓ_2 и в тоже время $x^{(n)}$ сходится покоординатно.

Привести пример последовательности $x^{(n)} = (x_1^{(n)}, x_2^{(n)}, \ldots)$, которая принадлежала бы каждому из рассматриваемой пары пространств и:

- **68.** Сходилась в \mathcal{M} , но не сходилась в ℓ_1 .
- **69.** Сходилась в \mathcal{M} , но не сходилась в ℓ_2 .
- **70.** Сходилась в ℓ_2 , но не сходилась в ℓ_1 .
- **71.** Сходилась в \mathcal{M}_0 , но не сходилась в ℓ_1 .
- **72.** Сходилась в \mathcal{M}_0 , но не сходилась в ℓ_2 .

1.3 Открытые и замкнутые множества

- 73. Принадлежит ли открытому шару радиуса 1 с центром в точке $O=(0,0,\ldots)$ точка $x=(-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16},\ldots,\frac{(-1)^n}{2^n},\ldots)$ в пространстве: a) ℓ_1 , б) ℓ_2 ?
- 74. Указать какой-нибудь элемент пространства $\widetilde{L}_1[-1;1],$ принадлежащий открытому шару радиуса 1/4 с центром $x_0(t)=t^2.$

В множестве \mathfrak{X} всевозможных последовательностей натуральных чисел для элементов $x=(n_1,n_2,\ldots,n_k,\ldots)$ и

 $y=(m_1,m_2,\ldots,m_k,\ldots)$ обозначим через $K_0(x,y)$ наименьший индекс, при котором $n_k\neq m_k$. Введем на $\mathfrak X$ метрику по формуле:

$$\rho(x,y) = \begin{cases} \frac{1}{K_0(x,y)}, & \text{при} \quad x \neq y, \\ 0, & \text{при} \quad x = y. \end{cases}$$

Проверить выполнение аксиом метрики в (\mathfrak{X}, ρ) .

- **75.** Доказать, что в (\mathfrak{X}, ρ) аксиома треугольника выполняется в усиленной форме: $\rho(x, y) \leq \max\{\rho(x, z), \rho(z, y)\}.$
- **76.** Доказать, что в (\mathfrak{X}, ρ) любой открытый шар $B_r(x)$ является одновременно замкнутым множеством.
- **77.** Доказать, что в (\mathfrak{X}, ρ) $B_r(y) = B_r(x)$ для всех $y \in B_r(x)$.
- **78.** Доказать, что в (\mathfrak{X}, ρ) любой замкнутый шар является одновременно открытым множеством.
- **79.** Доказать, что в (\mathfrak{X}, ρ) $\overline{B}_r(y) = \overline{B}_r(x)$ для всех $y \in \overline{B}_r(x)$.
- **80.** Доказать, что если в (\mathfrak{X}, ρ) два шара имеют общую точку, то один из них содержится в другом.
- **81.** Доказать, что в (\mathfrak{X}, ρ) расстояние между двумя различными открытыми шарами радиуса R, содержащимися в замкнутом шаре радиуса R, равно R.
- 82. Доказать, что в произвольном метрическом пространстве открытый шар $B_r(x_0)$ открытое множество.
- 83. Доказать, что замкнутый шар $\overline{B}_r(x_0)$ замкнутое множество.
- **84.** Доказать, что замыкание открытого шара $\overline{B_r(x_0)}$ лежит в замкнутом шаре $\overline{B}_r(x_0)$. Возможно ли при этом, что

$$\overline{B_r(x_0)} \neq \overline{B}_r(x_0)$$
?

- **85.** В пространстве \mathbb{R}^2 привести пример двух замкнутых множеств A и B таких, что $\rho(A,B)=0$ и $A\cap B=\varnothing$.
- **86.** Пусть x произвольная точка, A произвольное множество в некотором метрическом пространстве. Доказать, что $\rho(x,A)=\rho(x,\overline{A}).$
- **87.** Доказать, что множество многочленов в пространстве C[a;b] не является ни замкнутым, ни открытым.

Коротко поясним, например, что данное множество не является замкнутым. Пусть P – множество всех полиномов. Возьмем функцию $\varphi(x)$ из пространства C[a,b] такую, что $\varphi(x) \notin P$. Найдется такая последовательность многочленов $P_n(x)$, что $P_n \to \varphi$. Так как предел последовательности P_n не принадлежит пространству P получаем, что множество многочленов не замкнуто в пространстве C[a,b].

- **88.** Является ли замкнутым множество непрерывных функций x(t) таких, что x(0) = 0 в пространстве C[-1;1]?
- 89. Гильбертовым кирпичом K называют множество точек

$$x = (x_1, x_2, \dots, x_k, \dots) \in \ell_2,$$

у которых $|x_k| \le 1/2^k$ $(k=1,2,\ldots)$. Доказать, что K – ограниченное, замкнутое множество.

90. Изобразить в пространстве \mathbb{R}^2_∞ "отрезок", соединяющий точки A(-1,0) и B(1,0). Отрезком с концами A и B назовем множество,

1.4. ПОЛНОТА 21

состоящее из таких точек C, что $\rho(A,C) + \rho(C,B) = \rho(A,B)$.

91. Изобразить в пространстве \mathbb{R}^2_1 отрезок, соединяющий точки A(-1,-1) и B(1,1).

92. Является ли замкнутым в пространстве ℓ_1 множество M, состоящее из точек $x=(x_1,x_2,\ldots)$ таких, что

$$\sum_{k=1}^{\infty} x_k = 0?$$

- 93. Является ли замкнутым множество M из предыдущей задачи в пространстве \mathcal{M} ?
- **94.** Является ли открытым в пространстве C[-1,1] множество, состоящее из непрерывных функций x(t) таких, что

$$\int_{-1}^{1} x(t)dt = 0?$$

1.4 Полнота

95. Является ли фундаментальной последовательность функций

$$x_n(t) = t^n$$

в пространствах

- a) $C\left[-\frac{1}{2}, \frac{1}{2}\right]$, 6) C[0, 1]?
- 96. Является ли фундаментальной последовательность функций

$$x_n(t) = \sin(2^n t)$$

в пространстве $C[0, 2\pi]$?

97. Является ли фундаментальной последовательность функций

$$x_n(t) = \frac{\sin nt}{n}$$

в пространстве $C^{1}[0,1]$?

98. Является ли фундаментальной последовательность функций

$$x_n(t) = egin{cases} 1 - rac{|t|}{n}, & ext{если } |t| < n, \ 0, & ext{если } |t| \geq n \end{cases}$$

в пространстве ограниченных на числовой прямой функций с метрикой $\rho(x,y)=\sup_{-\infty < t < +\infty} |x(t)-y(t)|?$ 99. Привести пример фундаментальной последовательности не

- 99. Привести пример фундаментальной последовательности не имеющей предела.
- 100. Является ли полным метрическим пространством множество натуральных чисел с метрикой

$$ho(m,n) = egin{cases} 1 + rac{1}{m+n}, & ext{если } m
eq n, \ 0, & ext{если } m = n. \end{cases}$$

101. Является ли полным метрическим пространством множество натуральных чисел с метрикой

$$\rho(m,n) = \frac{|m-n|}{mn}?$$

- **102.** Является ли полным подпространство целых чисел пространства \mathbb{R} ?
- 103. Доказать, что метрическое пространство, состоящее из конечного числа точек, полное.
- 104. Найти пополнения следующих метрических пространств:
- а) интервал (a, b) числовой прямой с обычной метрикой;
- б) открытый круг плоскости \mathbb{R}^2 ;

1.4. ПОЛНОТА 23

множество Q рациональных чисел с обычной метрикой.

105. Является ли полным метрическое пространство (X, ρ) , где X – произвольное множество, а

$$\rho(x,y) = \begin{cases} 1, & \text{если } x \neq y, \\ 0, & \text{если } x = y? \end{cases}$$

Является ли полным метрическим пространством числовая прямая с метрикой

106.
$$\rho(x,y) = |x^5 - y^5|$$
;

107.
$$\rho(x, y) = |\arctan x - \arctan y|;$$

108.
$$\rho(x,y) = |e^x - e^y|$$
.

- 109. Описать пополнение пространств из задач
- a) 107, б) 108.

Для задачи 107 сделать это двумя разными способами.

- **110.** Рассмотреть последовательность $\overline{B}_{1+\frac{1}{2n}}(n)$ замкнутых шаров из пространства задачи 96. Доказать, что эти шары вложены друг в друга, однако не существует точки, принадлежащей всем шарам одновременно. Какое условие теоремы о вложенных шарах нарушено?
- 111. Доказать неполноту пространства многочленов относительно расстояний:

a)
$$\rho(P,Q) = \max_{x \in [0:1]} |P(x) - Q(x)|;$$

a)
$$\rho(P,Q) = \max_{x \in [0;1]} |P(x) - Q(x)|;$$

b) $\rho(P,Q) = \int_{0}^{1} |P(x) - Q(x)| dx;$

в)
$$\rho(P,Q) = \sum_{i} |c_{i}|$$
, если $P(x) - Q(x) = \sum_{i} c_{i}x^{i}$.

112. Во множестве отрезков на прямой определим расстояние следующей формулой

$$\rho([a,b], [c,d]) = |a-c| + |b-d|.$$

Полное ли это пространство?

- 113. Описать пополнение пространства из задачи 112.
- **114.** Доказать полноту пространства C[a, b].

1.5 Принцип сжимающих отображений

- **115.** Показать, что отображение $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = x^3$ является сжимающим на множестве [-r,r], где $r < 1/\sqrt{3}$, но не является сжимающим вблизи неподвижных точек x=1 и x=-1.
- **116.** Показать, что отображение $f(x) = 5x^2 + 2x + 3 \sin x$ числовой прямой в себя не имеет неподвижных точек.
- **117.** Показать, что функция $f(x) = x^2$ отображает промежуток [0,1/3] в себя. Является ли это отображение сжимающим?
- **118.** Является ли сжимающим отображение $f(x) = x + \frac{1}{x}$ полупрямой $[1, +\infty)$ в себя?
- **119.** Является ли отображение $f:(x,y) \longrightarrow (u,v)$, где

$$\begin{cases} u = 0, 2x + 0, 4y + 7, \\ v = -0, 3x - 0, 6y - 15, \end{cases}$$

плоскости в себя сжимающим, если плоскость рассматривать как метрическое пространство

a)
$$\mathbb{R}_2^2$$
; 6) \mathbb{R}_1^2 ; B) \mathbb{R}_∞^2 ?

120. Доказать, что следующее отображение

$$Ax(t) = q \int_{0}^{t} x(\tau) d\tau$$

пространства C[0,1] в себя является сжимающим при 0 < q < 1.

121. Является ли отображение $f(x) = \frac{\pi}{2} + x - \arctan x$ числовой прямой в себя сжимающим? Имеет ли оно неподвижные точки?

Доказать, что следующие последовательности, заданные рекуррентными соотношениями, имеют пределы, и найти их

122.
$$x_n = \frac{x_{n-1}}{2 + x_{n-1}}, x_0 = 1.$$

123. $x_n = \frac{x_{n-1}}{3 - x_{n-1}}, x_0 = -5.$
124. $x_n = \frac{5 + x_{n-1}^2}{2x_{n-1}}, x_0 = 5$

Доказать, что следующие последовательности сходятся, и найти их пределы

125. 2,
$$2 + \frac{1}{2}$$
, $2 + \frac{1}{2 + \frac{1}{2}}$, ...

126. $\sqrt{2}$, $\sqrt{2 + \sqrt{2}}$, $\sqrt{2 + \sqrt{2 + \sqrt{2}}}$, ...

127. $\sqrt{3}$, $\sqrt{3 + \sqrt{3}}$, $\sqrt{3 + \sqrt{3 + \sqrt{3}}}$, ...

Решить приближенно уравнение с точностью до 0,01

128.
$$x^7 + 4x^5 + 2x - 1 = 0$$
.

129.
$$x^5 + 2x^3 + x - 2 = 0$$
.

130.
$$x^{13} - x^5 + x - 1 = 0$$
.

131.
$$x^5 + x^3 + x - 1 = 0$$
.

132.
$$x^{13} + x^7 + x - 1 = 0$$
.

133.
$$x^5 + x^4 + 2x^3 + x - 1 = 0$$
.

134.
$$x^5 + x^3 + 3x - 1 = 0$$
.

135.
$$x^7 + 3x - 1 = 0$$
.

136.
$$2x^5 + x^4 + x^3 + x^2 + 3x - 1 = 0$$
.

137.
$$x^5 - x^4 + 3x - 1 = 0$$
.

138.
$$x^7 + x^3 + 2x^2 + x - 1 = 0$$
.

139.
$$3x^5 + 3x^4 + x^3 + 3x - 6 = 0$$
.

140.
$$6x^5 - x^3 + 6x - 6 = 0$$
.

141.
$$x^7 + 14x - 14 = 0$$
.

142.
$$2e^x - 1 = 0$$
.

143.
$$2xe^x = 1$$
.

144. Доказать, что в пространстве \mathbb{R}^n_∞ линейное отображение

 $A:\mathbb{R}^n o \mathbb{R}^n$ с матрицей $||a_{ij}||, (i,j=1,2,...,n)$ будет сжимающим, если

$$\max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| < 1.$$

145. Доказать, что в пространстве \mathbb{R}^n_1 линейное отображение

 $A: \mathbb{R}^n_1 \to \mathbb{R}^n_1$ с матрицей $||a_{ij}||, (i,j=1,2,...,n)$ будет сжимающим,

если

$$\max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}| < 1.$$

146. Рассмотрим в пространстве \mathbb{R}^n систему линейных алгебраических уравнений Cx = b, где $x, b \in \mathbb{R}^n, C = \parallel c_{ij} \parallel$, (i, j = 1, 2, ...n). Рассмотрим равносильную систему $x = (\lambda C + I)x - \lambda b$, где $\lambda \in \mathbb{R}, I$ — единичная матрица. Положим $A = \lambda C + I$ и составим итерации $x_n = Ax_{n-1} - \lambda b, n \in N$, где $x_0 \in \mathbb{R}^n$ — произвольно. Предположим, что выполняется следующее условие:

$$(n-1)\sum_{i,j=1,i\neq j}^{n} C_{ij}^{2} < (\sum_{i=1}^{n} C_{ii})^{2}.$$

Доказать, что существует $\lambda \in \mathbb{R}$, при котором итерационный процесс сходится к решению исходной системы.

147. Показать, что система

$$\begin{cases} 10x - 2y + z = 9, \\ x + 5y - z = 8, \\ 4x + 2y + 8z = 32 \end{cases}$$

имеет единственное решение, и найти его с точностью до 0.01 методом последовательных приближений, выбрав за начальное приближение точку (0,0,0).

148. Рассмотрим оператор $A: C[0,1] \to C[0,1]$

$$Ax(t) = \lambda \int_{0}^{t} x(\tau)d\tau + 1$$

- а) Доказать, что при $|\lambda| < 1$ этот оператор является сжимающим в пространстве C[0,1].
- б) Найти неподвижную точку этого оператора при $\lambda = 0, 5$.
- в) Составить итерации, выбрав в качестве начального приближения $x_0 = 0$, и убедиться, что они являются частичными суммами ряда Тейлора для неподвижной точки.
- г) Найти оценку погрешности, допускаемой на *n*-ом шаге итерационного процесса, исходя из оценки остаточного члена в формуле Тейлора и из оценки в теореме о сжимающем отображении.
- **149.** При движении планеты вокруг Солнца по эллиптической орбите ее положение в момент времени t, отсчитываемый от момента прохождения перигелия, определяется уравнением Кеплера $E-e\sin E=2\pi\frac{t}{T}$, где E определяющая положение планеты эксцентрическая аномалия, e эксцентриситет орбиты (0 < e < 1), T период обращения по орбите.
- а) Доказать, что уравнение Кеплера имеет для любого t единственное решение, которое определяет функцию $E(t) \in C[0,\tau]$.
- б) Принимая $e=0,5,t\in[0,\tau]$, определить число итераций, необходимых для нахождения E(t) с погрешностью, не превышающей 0,01, если в качестве начального приближения взять $E_0\equiv 0$.
- **150.** Рассмотрим уравнение $x(t) = t + \varepsilon x(t^k)$, где $0 < \varepsilon < 1, \ k > 1$.
- а) Доказать, что уравнение имеет единственное решение

- $x(t) \in C[0,1].$
- б) Полагая $x_0 = 0, \varepsilon = 0, 5$, определить число итераций, необходимых для нахождения x(t) на [0;1] с погрешностью, не превышающей 0.01.
- **151.** Привести пример оператора $A: X \to X$,переводящего банахово пространство X в себя, удовлетворяющего при $x,y\in X, (x\neq y)$ условию $\rho(Ax,Ay)<\rho(x,y)$ и не имеющего в X неподвижной точки.
- **152.** В пространстве ℓ_2 рассмотрим оператор F(x), определенный на шаре $\overline{B_1}(0)$ и переводящий элемент $x=(x_1,x_2,...)\in \ell_2$ в $F(x)=(\sqrt{1-\rho^2(x,0)},x_1,x_2,...)$. Доказать, что F(x):
- а) переводит шар $\overline{B_1}(0)$ в себя;
- б) непрерывен на шаре $\overline{B_1}(0)$;
- в) не имеет неподвижных точек на шаре $\overline{B_1}(0)$
- **153.** Доказать, что оператор $F: \mathbb{R} \to \mathbb{R}, \ F(x) = \operatorname{tg} x$ является сжимающим в шаре $\overline{B_r}(x^*)$, где x^*- любая из его неподвижных точек, а r достаточно мало (r зависит от x^*).
- **154.** Найти неподвижные точки оператора $F: C[0,1] \to C[0,1],$

$$F: x(t) \to \int_0^1 x(t)x(s)ds + f(t),$$

где $f(t) \in C[0,1]$ и $\int_{0}^{1} f(t)dt \leq 0,25$.

Глава 2

Нормированные пространства и функционалы

Этот раздел посвящен анализу в линейных пространствах. Нашей целью будет показать, какие преимущества имеют метрические пространства с линейной структурой перед произвольными метрическими пространствами. Снова мы постарались составить задания так, чтобы для их решения нужно было знать только понятийный аппарат нашего курса и не привлекать, насколько это возможно материал каких-то других дисциплин, кроме курсов "Математический анализ" и "Линейная алгебра".

Как известно, понятие "норма" является обобщением понятия "длина вектора". Поэтому мы сосредоточились на том, чтобы показать, что в нормированных пространствах начинает работать наша "геометрическая" интуиция окружающего нас пространства. Эта интуиция дает наибольший эффект в пространствах со скалярным произведением, которое позволяют определить "угол" между век-

разница в свойствах линейных "конечномерных" и "бесконечномер-

ных" пространств.

32

Достаточно новым понятием этого раздела является "сопряженное пространство" (хотя с понятием функционал студенты уже знакомы из курса "Линейная алгебра"). Задачи, связанные с теоремой Хана-Банаха, требуют особого внимания, тем более, что теорема очень часто применяется именно в "бесконечномерных" пространствах.

Совсем новым является понятие "распределение" или "обобщенная функция", существенно использующееся в теории дифференциальных уравнений в частных производных.

33

2.1 Линейные пространства

Доказать, что следующие множества являются линейными пространствами

- **155.** Множество всевозможных векторов (в трехмерном пространстве, на плоскости или на прямой).
- **156.** Множество \mathbb{R}^m всевозможных упорядоченных наборов (столбцов) из m вещественных чисел.
- **157.** Множество многочленов степени не выше k:
- $x(t) = x_0 + x_1 t + \ldots + x_k t^k \ (x_0, x_1, \ldots, x_k$ произвольные вещественные числа, $t \in \mathbb{R} = (-\infty, \infty)$).
- **158.** Множество многочленов степени не выше k:
- $x(t) = x_0 + x_1 t + \ldots + x_k t^k \ (x_0, x_1, \ldots, x_k$ произвольные комплексные числа, $t \in \mathbb{C}$).
- **159.** Пространство C[a,b] пространство непрерывных функций.
- **160.** Пространство $C^k[a,b]$ (k натуральное число) пространство k раз непрерывно дифференцируемых функций.
- **161.** Множество M_{mn} всех прямоугольных матриц порядка $m \times n$ со скалярными элементами.

2.2 Норма

Задает ли функция $x \to f(x)$ норму на числовой прямой?

162.
$$f(x) = \sqrt{x}$$
.

163.
$$f(x) = \sqrt{|x|}$$
.

164.
$$f(x) = |x - 1|$$
.

165.
$$f(x) = \sqrt{x^2}$$
.

166.
$$f(x) = 5|x|$$
.

167.
$$f(x) = x^2$$
.

168.
$$f(x) = |\arctan x|$$
.

169.
$$f(x) = \ln |x|$$
.

Пусть L – множество векторов на плоскости; x, y – декартовы координаты вектора \overline{a} . Задают ли норму на L следующие функции?

170.
$$f(\overline{a}) = \sqrt{|xy|}$$
.

171.
$$f(\overline{a}) = |x| + |y|$$
.

172.
$$f(\overline{a}) = \max(|x|, |y|).$$

173.
$$f(\overline{a}) = \sqrt{x^2 + y^2} + \sqrt{xy}$$
.

174.
$$f(\overline{a}) = |x^2 - y^2|$$
.

175.
$$f(\overline{a}) = \sqrt[3]{x^6 + y^6}$$
.

Можно ли в линейном пространстве непрерывно дифференцируемых на [a, b] функций принять за норму элемента x(t):

176.
$$\max_{t \in [a,b]} |x(t)|$$
.

177.
$$\max_{t \in [a,b]} |x'(t)|$$
.

178.
$$|x(b) - x(a)| + \max_{t \in [a,b]} |x'(t)|$$
.

179.
$$\int_{a}^{b} |x(t)| dt + \max_{t \in [a,b]} |x'(t)|.$$
180.
$$|x(a)| + \max_{t \in [a,b]} |x'(t)|.$$

180.
$$|x(a)| + \max_{t \in [a,b]} |x'(t)|$$
.

2.2. HOPMA 35

Можно ли в линейном пространстве дважды непрерывно дифференцируемых на [a,b] функций принять за норму элемента x(t):

181.
$$|x(a)| + |x'(a)| + ||x''||_{C[a,b]}$$
.

Проверим выполнение аксиом нормы в пространстве $C^2[a,b]$. Легко видеть, что $\|x\| \ge 0$. Если $\|x\| = 0$, то

 $x(a)=0,\ x'(a)=0,\ \|\ x''\ \|_{C[a,b]}=0.$ Из последнего равенства видно, что x''=0, откуда получаем, что $x=Ct+C_1,\ x'=C.$ Рассмотрим систему

$$\begin{cases} Ca + C_1 = 0, \\ C = 0. \end{cases}$$

В итоге, т.к. $C_1=C=0$ получаем, что x=0. Если x=0, то сразу же получаем, что $\parallel x \parallel = 0$.

182.
$$\| x'' \|_{C[a,b]} + \| x \|_{\widetilde{L}_2[a,b]}$$
.

183.
$$|x(a)| + |x(b)| + ||x''||_{C[a,b]}$$
.

184.
$$|x(a)| + ||x''||_{C[a,b]} + ||x''||_{\widetilde{L}_2[a,b]}$$
.

185. Доказать, что система аксиом нормы непротиворечива и независима.

Пусть X – линейное нормированное пространство и $x_n, x, y_n, y \in X$. Доказать, что:

186. Если $x_n \to x$, при $n \to \infty$, то x_n — ограниченная последовательность.

187. Если $x_n \to x, \lambda_n \to \lambda(\lambda_n \in \mathbb{R})$, при $n \to \infty$, то $\lambda_n x_n \to \lambda x$ при

36 $\Gamma_{\text{лава}}$ 2. НОРМИРОВАННЫЕ ПРОСТРАНСТВА И ФУНКЦИОНАЛЫ $n \to \infty$.

188. Если
$$x_n \to x$$
, при $n \to \infty$, то $||x_n|| \to ||x||$ при $n \to \infty$.

189. Если
$$x_n \to x$$
 и $||x_n - y_n|| \to 0$, при $n \to \infty$, то $y_n \to x$ при $n \to \infty$.

190. Если
$$x_n \to x$$
, при $n \to \infty$, то $||x_n - y|| \to ||x - y||$ при $n \to \infty$.

191. Если
$$x_n \to x$$
 и $y_n \to y$, при $n \to \infty$, то $||x_n - y_n|| \to ||x - y||$ при $n \to \infty$.

192. Найти норму функций $x(t) = t^{\alpha}$ в тех пространствах $\widetilde{L_p}[0,1] \ (p \geq 1)$ которым эти функции принадлежат.

2.3 Скалярное произведение

Задают ли скалярное произведение на числовой прямой следующие формулы:

193.
$$(x, y) = xy$$
.

194.
$$(x,y) = xy^3$$
.

195.
$$(x, y) = 5xy$$
.

196.
$$(x,y) = x + y$$
.

Пусть V – множество векторов на плоскости; $\overline{a}=(a_1,a_2), \overline{b}=(b_1,b_2).$ Проверить, задают ли скалярное произведение на V следующие формулы:

197.
$$(\overline{a}, \overline{b}) = a_1 b_1$$
.

198.
$$(\overline{a}, \overline{b}) = a_1b_1 - a_2b_2$$
.

199.
$$(\overline{a}, \overline{b}) = a_1b_1 + 2a_2b_2$$
.

200.
$$(\overline{a}, \overline{b}) = a_1b_1 + 2a_2b_2 - a_1b_2 - a_2b_1.$$

201.
$$(\overline{a}, \overline{b}) = \sqrt{(a_1^2 + a_2^2)(b_1^2 + b_2^2)}$$
.

- **202.** Доказать, что аксиома скалярного произведения $(x_1 + x_2, y) = (x_1, y) + (x_2, y)$ не зависит от остальных аксиом.
- **203.** Доказать, что аксиома скалярного произведения (x,y)=(y,x) не зависит от остальных аксиом.
- **204.** Доказать, что аксиома скалярного произведения $(x, x) \ge 0$, причем $(x, x) = 0 \Leftrightarrow x = 0$ не зависит от остальных аксиом.
- **205.** В линейном пространстве непрерывных на $[0, \infty)$ функций x(t) таких, что

$$\int_{0}^{+\infty} x(t)y(t)e^{-t}dt.$$

Проверить выполнение аксиом скалярного произведения.

206. В линейном пространстве непрерывных на $(-\infty, +\infty)$ функций x(t) таких, что

$$\int_{-\infty}^{+\infty} x(t)y(t)e^{-t^2}dt.$$

Проверить выполнение аксиом скалярного произведения.

207. В линейном пространстве непрерывно дифференцируемых на

[a,b] функций положим

$$(x,y) = \int_{a}^{b} [x(t)y(t) + x'(t)y'(t)]dt.$$

Проверить выполнение аксиом скалярного произведения.

208. Пусть на линейном пространстве X задано скалярное произведение (x,y). Доказать, что функция $||x|| = \sqrt{(x,x)}$ задает на X норму.

209. Найти норму функции

$$x(t) = \frac{1}{5}(4t^3 - t^4)$$

в пространствах

a)
$$C[-1,5]$$
, 6) $\widetilde{L_1}[-1,5]$, B) $C^1[-1,5]$.

210. Найти норму элемента

$$x = (-1, \frac{(-1)^2}{4}, \dots, \frac{(-1)^n}{n^2})$$

в пространствах

a) ℓ_2 , ℓ_1 , ℓ_2 , ℓ_3 , ℓ_4 , ℓ_2 , ℓ_3 , ℓ_4

211. Найти угол между элементами $x(t) = \sin t$ и y(t) = t в пространстве $\widetilde{L_2}[0,1]$.

212. Найти углы треугольника, образованного в пространстве

 $\widetilde{L}_2[-1,1]$ элементами $x_1(t) \equiv 0, x_2(t) \equiv 1, x_3(t) = t.$

Здесь и далее $\widetilde{H^s}[a,b]$ — пространство s раз непрерывно дифференцируемых функций на отрезке [a,b] с нормой

$$||x|| = \left(\sum_{j=0}^{s} \int_{a}^{b} \left| \frac{d^{j}x}{dt^{j}}(t) \right|^{2} dt \right)^{1/2}$$

скалярным произведением

$$(x,y) = \sum_{j=0}^{s} \int_{a}^{b} \frac{d^{j}x}{dt^{j}}(t) \frac{d^{j}y}{dt^{j}}(t) dt.$$

213. Найти угол между элементами $x(t) = \sin t$ и y(t) = t в пространстве $\widetilde{H^1}[0,\pi].$

Провести ортогонализацию элементов $x_0(t) \equiv 1, x_1(t) = t, x_2(t) = t^2, x_3(t) = t^3$ в следующих пространствах:

214.
$$\widetilde{L_2}[-1,1]$$
.

215.
$$\widetilde{L_2}[0,1]$$
.

216.
$$\widetilde{H}^1[-1,1]$$
.

- 217. В пространстве из задачи 205.
- **218.** В пространстве из задачи **206**.

Если на некотором линейном пространстве X заданы одновременно норма и скалярное произведение, то они называются согласованными в том случае, когда $||x|| = \sqrt{(x,x)}$. Как следует из задачи 208 в пространстве со скалярным произведением всегда можно ввести согласованную с ним норму. Обратное утверждение вообще говоря не верно. Однако, справедлива следующая теорема: в вещественном линейном нормированном пространстве можно ввести скалярное произведение согласованное с нормой тогда и только тогда, когда для любых $x,y \in X$ справедливо равенство

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2),$$

называемое тождеством параллелограмма.

40 Глава 2. НОРМИРОВАННЫЕ ПРОСТРАНСТВА И ФУНКЦИОНАЛЫ

Показать, что в следующих пространствах нельзя ввести скалярное произведение, согласованное с нормой.

- **219.** C[0,1].
- **220.** $\widetilde{L_1}[0,1]$.
- **221.** $\widetilde{L_3}[-1,1]$.
- **222.** \mathbb{R}_3^2 .
- **223.** *l*₁.
- **224.** \mathbb{R}^2_{∞} .
- 225. M.

Пусть H — гильбертово пространство. Множество $z \in H$ таких, что (z,x)=0 для любого $x \in M \subset H$, обозначается M^{\perp} и называется ортогональным дополнением к множеству M.

- **226.** Доказать, что для произвольного множества M множество M^{\perp} является подпространством.
- **227.** Доказать, что для произвольного множества M имеет место включение $M \subset (M^{\perp})^{\perp}$. Возможно ли здесь строгое включение?
- **228.** Доказать, что для множества M равенство $M = (M^{\perp})^{\perp}$ выполнено $\Leftrightarrow M-$ подпространство.
- **229.** Пусть $M \subset N$. Доказать, что $M^{\perp} \supset N^{\perp}$.
- **230.** Пусть $M = \{x(t) \in \widetilde{L}_2[0,1] : \int_0^1 x(t)dt = 0\}$. Найти M^{\perp} .
- **231.** Пусть $M = \{x(t) \in \widetilde{H}^1[-1,1] : \int_{-1}^1 x(t)dt = 0\}$. Найти M^{\perp} .
- **232.** Пусть $M = \{x(t) \in \widetilde{H}^1[a,b] : x(a) = x(b)\}$. Найти M^{\perp} .
- **233.** Пусть $M = \{x(t) \in \widetilde{H}^1[a,b] : x(a) = x(b) = 0\}$. Найти M^{\perp} .

Функционалы (норма функционала) 2.4

В задачах 234-239 выяснить является ли указанное отображение непрерывным.

234.
$$f: C[a,b] \to \mathbb{R}; \ f: x(t) \to \max_{t \in [a,b]} x(t).$$

234.
$$f: C[a,b] \to \mathbb{R}; \ f: x(t) \to \max_{t \in [a,b]} x(t).$$

235. $f: C[a,b] \to \mathbb{R}; \ f: x(t) \to \min_{t \in [a,b]} x(t).$

236.
$$f: C[a,b] \to \mathbb{R}; \ f: x(t) \to \int_a^b x(t)dt.$$

237.
$$f: C[a,b] \to \mathbb{R}$$
, где

$$f(x) = \begin{cases} 0, & \text{если } x(t) \text{ принимает хотя бы одно отриц. значение,} \\ \frac{1}{2}, & \text{если } x(t) \equiv 0, \\ 1, & \text{если } x(t) \geq 0, \text{ но } x(t) \neq 0. \end{cases}$$

238. $f:L \to \mathbb{R}$, где L – подпространство $C[0,2\pi]$, состоящее из непрерывно дифференцируемых функций $f: x(t) \to x'(t)$.

239.
$$f: M \to \mathbb{R}$$
, где

$$M = \{x(t) \in C[0,1] : x(0) = 0, x(1) = 1, ||x|| \le 1\},$$
$$f(x(t)) = \int_{0}^{1} x^{2}(t)dt.$$

240. В пространстве C[0,1] рассмотрим множества

$$A_n = \{x(t) \in C[0,1] : ||x|| \le 1, x(0) = 0, x(t) = 1 \text{ при } \frac{1}{n} \le t \le 1\}.$$

Доказать что A_n не пусты, замкнуты, выпуклы, ограничены, вложены друг в друга, но не пересекаются.

Найти норму функционала:

241.
$$\langle x, f \rangle = x(-1) + x(1), x \in C[-1, 1].$$

242.
$$\langle x, f \rangle = 2(x(1) - x(0)), x \in C[-1, 1].$$

243.
$$\langle x, f \rangle = \int_{0}^{1} x(t) dt$$
, $x \in C[-1, 1]$.

244.
$$\langle x, f \rangle = \int_{-1}^{1} x(t) dt - x(0), x \in C[-1, 1].$$

245.
$$\langle x, f \rangle = \int_{-1}^{0} x(t) dt - \int_{0}^{1} x(t) dt$$
, $x \in C[-1, 1]$.

246.
$$\langle x, f \rangle = \int_{-1}^{1} tx(t) dt$$
, $x \in C[-1, 1]$.

247.
$$\langle x, f \rangle = \int_{0}^{1} tx(t) dt$$
, $x \in C^{1}[-1, 1]$.

248.
$$\langle x, f \rangle = \int_{-1}^{1} tx(t) dt, x \in \widetilde{L}_{1}[-1, 1].$$

249.
$$\langle x, f \rangle = \int_{-1}^{1} tx(t) dt$$
, $x \in \widetilde{L}_{2}[-1, 1]$.

250.
$$\langle x, f \rangle = \int_{0}^{1} t^{-1/3} x(t) dt$$
, $x \in \widetilde{L}_{2}[0, 1]$.

251.
$$\langle x, f \rangle = x_1 + x_2, x = (x_1, x_2, \dots) \in \ell_2.$$

252.
$$\langle x, f \rangle = \sum_{k=1}^{\infty} \frac{x_k}{k}, \ x = (x_1, x_2, \dots) \in \ell_2.$$

253.
$$\langle x, f \rangle = \sum_{k=1}^{\infty} \frac{x_k}{k}, \ x = (x_1, x_2, \dots) \in \ell_1.$$

254.
$$\langle x, f \rangle = \sum_{k=1}^{\infty} (1 - \frac{1}{k}) x_k , x = (x_1, x_2, \dots) \in \ell_1.$$

255.
$$\langle x, f \rangle = x_1 + x_2, x = (x_1, x_2, \dots) \in \mathcal{M}.$$

256.
$$\langle x, f \rangle = \sum_{k=1}^{\infty} (2^{-k+1}x_k), x = (x_1, x_2, \dots) \in \mathcal{M}_0.$$

257.
$$\langle x, f \rangle = \lim_{n \to \infty} x_n , x = (x_1, x_2, \dots) \in \mathcal{M}.$$

258.
$$\langle x, f \rangle = \int_{-1}^{1} (x(t)\sin t + x'(t)\cos t) dt$$
, $x \in \widetilde{H}^{1}[-1, 1]$.

259.
$$\langle x, f \rangle = 3x_1 - 4x_2$$
, $x = (x_1, x_2) \in \mathbb{R}_2^2$.

260.
$$\langle x, f \rangle = 3x_1 - 4x_2, x = (x_1, x_2) \in \mathbb{R}^2_1.$$

2.5 Компактные множества

- **261.** В пространстве \mathbb{R}^2 привести пример множества M обладающего следующими свойствами:
- а) M компактно;
- б) M предкомпактно;
- в) M предкомпактно, но не компактно;
- г) M ограничено, но не компактно;
- д) M замкнуто, но не компактно.
- **262.** Доказать, что множество $x_n(t) = \sin nt \ (n \in \mathbb{N})$ ограничено и замкнуто в пространстве $L_2[-\pi,\pi]$, но не предкомпактно.
- **263.** Привести пример замкнутого ограниченного множества в ℓ_2 , но не являющегося компактом.
- **264.** Доказать, что в $\mathbb R$ любое замкнутое ограниченное множество компактно.
- **265.** Рассмотреть в C[0,1] множество M, состоящее из функций x(t)=kt+b, где $0\leq k,\ b\leq 1$. Пусть $\varepsilon>0$ произвольно. Построить для M конечную ε -сеть.
- **266.** Доказать, что любое предкомпактное множество в ℓ_2 нигде не плотно в ℓ_2 .
- **267.** Доказать, что объединение конечного числа предкомпактов есть предкомпакт.
- **268.** Доказать, что объединение конечного числа компактов есть компакт.
- 269. Доказать, что пересечение любой совокупности

- 44 Глава 2. НОРМИРОВАННЫЕ ПРОСТРАНСТВА И ФУНКЦИОНАЛЫ предкомпактов есть предкомпакт.
- **270.** Доказать, что пересечение любой совокупности компактов есть компакт.
- **271.** Доказать, что множество M всех непрерывных на [0,1] функций таких, что $|x(t)| \leq 1$ ограничено и замкнуто в C[0,1], однако не предкомпактно.
- **272.** Построить пример ограниченного открытого множества на прямой, покрытого интервалами так, что из этого покрытия нельзя выделить конечного покрытия.
- **273.** Является ли компактным в пространстве ℓ_2 множество

$$\left\{ x \in \ell_2, \ x = (x_1, x_2, \ldots) : \sum_{n=1}^{\infty} n^2 x_n^2 \le 1 \right\} ?$$

274. Пусть M – компактное множество в банаховом пространстве X. Доказать, что для любого $x \in X$ найдется такое $y \in M$, что

$$\rho(x,M) = \parallel x - y \parallel.$$

- **275.** Доказать, что замыкание предкомпактного множества компактно.
- **276.** Доказать, что всякое подмножество компактного множества предкомпактно.
- 277. Доказать, что в конечномерном линейном нормированном пространстве всякое ограниченное множество предкомпактно.
- **278.** Пусть M равномерно ограниченное множество функций в пространстве C[a,b]. Доказать, что множество N функций вида

$$y(t) = \int_0^1 x(\tau) \, d\tau,$$

где $x(t) \in M$, предкомпактно.

279. Привести пример множества непрерывно дифференцируемых на [0,1] функций, предкомпактного в пространстве C[0,1], но не предкомпактного в пространстве $C^1[0,1]$.

В заданиях 280-286 выяснить предкомпактно ли заданное множество функций в пространстве C[0,1]:

280.
$$x_n(t) = t^n, \ n \in \mathbb{N}.$$

281.
$$x_n(t) = \sin nt, \ n \in \mathbb{N}.$$

282.
$$x_n(t) = \sin(t+n), \ n \in \mathbb{N}.$$

283.
$$x_{\alpha}(t) = \sin \alpha t, \ \alpha \in \mathbb{R}.$$

284.
$$x_{\alpha}(t) = \sin \alpha t, \ \alpha \in [1, 2].$$

285.
$$x_{\alpha}(t) = \operatorname{arctg} \alpha t, \ \alpha \in \mathbb{R}.$$

286.
$$x_{\alpha}(t) = e^{t-\alpha}, \ \alpha \in \mathbb{R}, \ \alpha \geq 0.$$

287. Доказать, что множество M элементов $x=(x_1,x_2,\ldots)$ из пространства c или c_0 предкомпактно тогда и только тогда, когда оно ограничено и $\lim_{n\to\infty} x_n$ существует равномерно относительно $x\in M$, т.е. для любого $\varepsilon>0$ найдется такое $N=N(\varepsilon)$, что при всех n>N для любого $x=(x_1,x_2,\ldots)\in M$ выполняется неравенство

$$|x_n - \lim_{n \to \infty} x_n| < \varepsilon.$$

288. Доказать, что множество M элементов $x=(x_1,x_2,\ldots)\in \ell_p\ (p\geq 1)$ предкомпактно тогда и только тогда,

46 Глава 2. НОРМИРОВАННЫЕ ПРОСТРАНСТВА И ФУНКЦИОНАЛЫ когда оно ограничено и

$$\lim_{n \to \infty} \sum_{k=1}^{n} |x_k|^p$$

существует равномерно относительно $x\in M$, т.е. для любого $\varepsilon>0$ найдется такое $N=N(\varepsilon)$, что при всех n>N для любого $x=(x_1,x_2,\ldots)\in M$ выполняется неравенство

$$\sum_{k=n}^{\infty} |x_k|^p < \varepsilon.$$

289. Доказать, что параллелепипед

$$\{x \in \ell_2, \ x = (x_1, x_2, \ldots) : \ |x_n| \le 1/n\}$$

является компактным множеством в пространстве ℓ_2 .

290. Показать, что отображение f из задачи **239** не принимает на M наименьшего значения. Не противоречит ли это теореме Вейерштрасса?

2.6 Теорема Хана-Банаха

В следующих задачах требуется найти продолжение функционала f с подпространства $L \subset \mathbb{R}^n$ на все пространство \mathbb{R}^n с сохранением нормы

291.
$$L = \{(x, y) \in \mathbb{R}^2 : x = y\}, f_L = 2x.$$

292.
$$L = \{(x, y) \in \mathbb{R}^2 : 2x = y\}, f_L = x.$$

293.
$$L = \{(x, y) \in \mathbb{R}^2 : x = y\}, f_L = -x.$$

294.
$$L = \{(x, y) \in \mathbb{R}^2 : y = -3x\}, f_L = 5x.$$

295.
$$L = \{(x, y) \in \mathbb{R}^2 : x = 3y\}, f_L = 4x.$$

296.
$$L = \{(x, y, z) \in \mathbb{R}^3 : x = y = z\}, f_L = -x.$$

297.
$$L = \{(x, y, z) \in \mathbb{R}^3 : x = 2y = -2z\}, f_L = 3z.$$

298.
$$L = \{(x, y, z) \in \mathbb{R}^3 : 2x = y = -z\}, f_L = x - y.$$

299.
$$L = \{(x, y, z) \in \mathbb{R}^3 : x - y + z = 0\}, f_L = x.$$

300.
$$L = \{(x, y, z) \in \mathbb{R}^3 : x + y - z = 0\}, f_L = y + z.$$

301.
$$L = \{(x, y, z) \in \mathbb{R}^3 : x + y - 2z = 0\}, f_L = x - y.$$

302.
$$L = \{(x, y, z) \in \mathbb{R}^3 : x - 3y = 0\}, f_L = x + y.$$

- **303.** В пространстве C[0,1] на подпространстве L, состоящем из функций вида $x(t) = \lambda(1-2t), \ \lambda \in \mathbb{R}$, рассмотрим функционал $f: x(t) \to \lambda$. Найти норму функционала f и построить два различных продолжения f с L на все пространство C[0,1] с сохранением нормы.
- **304.** Доказать, что если линейные функционалы f_1 и f_2 совпадают на некоторой гиперплоскости, не проходящей через ноль, то они совпадают всюду.
- **305.** Доказать, что если X бесконечномерное нормированное пространство, то на нем существует разрывный функционал.

2.7 Сопряженные пространства

306. Доказать, что при $p>1,\; (\ell_p)^*=\ell_q,\; \frac{1}{p}+\frac{1}{q}=1,\; \text{т.е.}$ что всякий непрерывный линейный функционал в пространстве ℓ_p при $1< p<\infty$ имеет вид

$$\langle x, f \rangle = \sum_{n=1}^{\infty} x_n y_n,$$

где $x=(x_1,x_2,\ldots)\in\ell_p,\ y=(y_1,y_2,\ldots)\in\ell_q,\ \frac{1}{p}+\frac{1}{q}=1$ и $\|f\|=\|y\|_{\ell_q}.$

307. Доказать, что $(\mathcal{M}_0)^* = \ell_1$, т.е. что всякий непрерывный линейный функционал в пространстве \mathcal{M}_0 имеет вид

$$\langle x, f \rangle = \sum_{n=1}^{\infty} x_n y_n,$$

где $x = (x_1, x_2, \ldots) \in c_0, \ y = (y_1, y_2, \ldots) \in \ell_1$ и $\| f \| = \| y \|_{\ell_1}$.

308. Доказать, что $(\ell_1)^* = \mathcal{M}$, т.е. что всякий непрерывный линейный функционал в пространстве ℓ_1 имеет вид

$$\langle x, f \rangle = \sum_{n=1}^{\infty} x_n y_n,$$

где $x = (x_1, x_2, \ldots) \in \ell_1, \ y = (y_1, y_2, \ldots) \in m$ и $\|f\| = \|y\|_{\mathcal{M}}$.

2.8 Слабая сходимость

309. Пусть X — линейное нормированное пространство, $f_n, f \in X^* \ (n \in \mathbb{N})$ и $f_n \to f \ (n \to \infty)$. Доказать, что $f_n \to f \ (n \to \infty) *$ — слабо.

310. Пусть H – гильбертово пространство,

 $x_n, x \in H \ (n \in \mathbb{N}), \ x_n \to x \ (n \to \infty)$ слабо и $\|x_n\| \to \|x\|$. Доказать, что $x_n \to x \ (n \to \infty)$.

311. В пространстве ℓ^2 для $x = (x_1, x_2, \dots) \in \ell^2$ положим

$$\langle x, f \rangle = x_n$$
.

Доказать, что $f_n \to 0 \ (n \to \infty) *-$ слабо. Верно ли, что $f_n \to 0$?

312. Для $x(t) \in L_2[-1,1]$ положим

$$\langle x, f_n \rangle = \int_{-1}^{1} x(t) \cos \pi nt \, dt.$$

- а) Доказать, что f(n) ограниченный функционал, и найти ||f(n)||.
- б) Доказать, что $f(n) \to 0 \ (n \to \infty) *$ слабо.
- в) Верно ли, что $f(n) \to 0 \ (n \to \infty)$?
- **313.** Для $x(t) \in C^1[-1,1]$ положим

$$\langle x, f_{\varepsilon} \rangle = \frac{1}{2\varepsilon} (x(\varepsilon) - x(-\varepsilon)),$$

 $\langle x, f_{0} \rangle = x'(0),$

где $\varepsilon \in \mathbb{R} \backslash \{0\}, \, |\varepsilon| < 1.$

- а) Доказать, что f_{ε} и f_0 непрерывные линейные функционалы, и найти $||f_{\varepsilon}||,\,||f_0||.$
- б) Доказать, что $f_{\varepsilon} \to f_0 \ (\varepsilon \to 0) *$ слабо.
- в) Верно ли, что $f_{\varepsilon} \to f_0 \ (\varepsilon \to 0)$?
- **314.** Пусть X линейное нормированное пространство, $f \in X^*$, $f \neq 0$. Рассмотрим в X гиперплоскость

$$L = \{ x \in X : \langle x, f \rangle = 1 \}.$$

Доказать, что

$$||f|| = \frac{1}{\inf_{x \in L} ||X||}.$$

315. Пусть X — линейное нормированное пространство, $f \in X^*$, L = N(f). Доказать, что для любого $x \in X$

$$\rho(x, L) = \frac{|\langle x, f \rangle|}{\|f\|}.$$

2.9 Обобщенные функции

316. Пусть $\varphi \in \mathcal{D}$. Выяснить, есть ли среди последовательностей

а) $\{\varphi(x)/k\}$, б) $\{\varphi(kx)/k\}$, в) $\{\varphi(x/k)/k\}$, где $k=1,2,\ldots$ сходящиеся в \mathcal{D} ?

317. Пусть непрерывная функция f(x) финитна: f(x) = 0, |x| > R. Показать, что функция

$$f_{\varepsilon}(x) = \int \omega_{\varepsilon}(x - y) dy, \quad (\varepsilon < R)$$

основная, причем $f_{\varepsilon}(x) = 0$, $|x| > R + \varepsilon$ и направленность $\{f_{\varepsilon}\}$ сходится к f в \mathcal{D} . Здесь и далее ω_{ε} – стандартная "шапочка":

$$\omega_{\varepsilon}(x) = \begin{cases} 0, & |x| \ge \varepsilon, \\ e^{\frac{1}{\varepsilon^2 - x^2}}, & |x| < \varepsilon. \end{cases}$$

318. Показать, что $\varphi_1 \in \mathcal{D}(\mathbb{R})$ есть производная от некоторой другой функции $\varphi_2 \in \mathcal{D}(\mathbb{R})$ тогда и только тогда, когда

$$\int_{-\infty}^{\infty} \varphi_1(x) dx = 0.$$

319. Доказать, что $\delta_{S_R} o 0,\, R o \infty$ в $\mathcal{D}',$ где

$$<\delta_{S_R}, \phi> = \int_{S_R} \phi(x) \, ds(x),$$

а S_R – сфера с центром в нуле радиуса R.

В заданиях 320-321 вычислить пределы в $\mathcal{D}'(\mathbb{R})$ при $\varepsilon \to +0$:

320.

$$f_{\varepsilon}(x) = \begin{cases} \frac{1}{2\varepsilon}, & |x| \leq \varepsilon, \\ 0, & |x| \geq \varepsilon. \end{cases}$$

321.

$$\frac{\varepsilon}{\pi(x^2+\varepsilon^2)}.$$

322. Доказать, что следующий ряд

$$\sum_{k=\infty}^{\infty} a_k \delta(x-k)$$

сходится в \mathcal{D}' при любых a_k .

В заданиях 323-325 доказать, что

323.
$$\alpha(x)\delta(x) = \alpha(0)\delta(x), \ \alpha \in C^{\infty}(\mathbb{R}).$$

324.
$$x\mathcal{P}\frac{1}{x} = 1$$
.

325.
$$x^m \mathcal{P}^{\frac{1}{x}} = x^{m-1}$$
, где $\langle \mathcal{P}^{\frac{1}{x}}, \phi \rangle = v.p. \int \frac{\phi(x) dx}{x}$.

В заданиях 326-329 показать, что в $\mathcal{D}'(\mathbb{R})$ мы имеем:

326.
$$\rho(x)\delta'(x) = -\rho'(0)\delta'(x) + \rho(0)\delta'(x)$$
.

327.
$$x\delta^{(m)}(x) = -m\delta^{(m-1)}(x)$$
 , $m \in \mathbb{N}$.

328.
$$x^m \delta^{(m)}(x) = (-1)^m m! \delta(x)$$
 , $m \in \mathbb{N}$.

329.
$$x^k \delta^{(m)}(x) = 0$$
 , $m = 0, \dots, k-1$.

331. Показать, что $(\rho\theta)' = \rho(0)\delta + \rho(x)\theta(x)$, где $\rho \in C^1(\mathbb{R})$.

В заданиях 332-342 вычислить

332.
$$\theta'(-x)$$
.

333.
$$\theta^{(m)}(x-x_0), \ m \ge 1$$
 – целое.

334.
$$\theta^{(m)}(x_0 - x), m \ge 1.$$

335.
$$(\operatorname{sign}(x))^{(m)}, m \ge 1.$$

336.
$$(x \operatorname{sign}(x))'$$
.

337.
$$(|x|)^{(m)}, m \ge 2.$$

338.
$$(\theta(x)x^{m+k})^{(m)}, m \ge 1, k = 0, 1, 2, \dots$$

339.
$$(\theta(x)x^{m-k})^{(m)}, m \ge 1, k = 1, ..., m.$$

340.
$$(\theta(x)\sin x)'$$
.

341.
$$(\theta(x)\cos x)'$$
.

342.
$$(\theta(x)e^{ax})^{(m)}, m \ge 1.$$

В заданиях 343-344 вычислить производные функций до третьего порядка включительно

343.
$$y = |x| \cos x$$
.

344.
$$y = |x| \sin x$$
.

В заданиях 345-348 вычислить производные $f^{(m)}$ функций

345.
$$\theta(a - |x|), a > 0.$$

347. sign
$$\sin x$$
.

348. sign
$$\cos x$$
.

В заданиях 349-356 вычислить производные функций.

349.

$$f(x) = \begin{cases} \sin x, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

350.

$$f(x) = \begin{cases} \cos x, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

351.

$$f(x) = \begin{cases} x^2 & -1 \le x \le 1, \\ 0, & |x| > 1. \end{cases}$$

352.

$$f(x) = \begin{cases} x^2 & -1 \le x \le 1, \\ 0, & |x| > 1. \end{cases}$$

353.

$$f(x) = \begin{cases} 0, & x < -1, \\ (x+1)^2 & -1 \le x \le 0, \\ x^2 + 1, & |x| \ge 0. \end{cases}$$

354.

$$f(x) = \begin{cases} x^2, & x < 0, \\ (x - 2)^2 & 1 \le x \le 2, \\ 0, & x > 2. \end{cases}$$

355.

$$f(x) = \begin{cases} \sin x, & -\pi \le x \le \pi, \\ 0, & |x| > \pi. \end{cases}$$

356.

$$f(x) = \begin{cases} |\sin x|, & -\pi \le x \le \pi, \\ 0, & |x| > \pi. \end{cases}$$

- **357.** xy = 1.
- **358.** (x-1)y=0.
- **359.** y' = 0.
- **360.** $y^{(m)} = 0$.
- **361.** $x^n y = 1$.
- **362.** $\cos xy = 0$.
- **363.** xy' = 1.
- **364.** $x^2y' = 0$.
- **365.** $x^2y' = 1$.
- **366.** $y'' = \delta(x)$.
- **367.** $(x+1)^2y''=0$.
- 368.(x+1)y''' = 0.

Глава 3

Линейные операторы в пространствах Банаха

Мы переходим к более сложной и современной части нашего курса. Именно, этот и следующий раздел посвящены одному из основных вопросов анализа – разрешимости (операторных) уравнений. В данном разделе мы попробуем осветить все основные свойства линейных операторов, которые потребуются нам в разделе 4 при изучении уравнений в пространствах Гильберта.

Одно из совершенно новых понятий здесь — "замкнутый оператор", использование которого уже стало почти классикой анализа XX столетия.

3.1 Линейные операторы: основные определения

Выяснить, является ли данный оператор A линейным.

369.
$$A : \mathbb{R} \to \mathbb{R}$$
, $Ax = ax + b$.

370.
$$A: \ell_2 \to \ell_2, Ax = (x_1 + 2x_2, x_2, x_3, x_4, \dots).$$

371.
$$A: C[a,b] \to C[a,b], Ax(t) = \int_a^b x(s) \sin st \, ds + x(0).$$

372.
$$A: C[a,b] \to C[a,b], Ax(t) = x^2(t).$$

373.
$$A: C[a,b] \to C[a,b], Ax(t) = x(t) + t^2.$$

Выяснить, является ли данный оператор ограниченным.

374.
$$A \colon \mathbb{R} \to \mathbb{R}, Ax = \sin x.$$

375.
$$A \colon \mathbb{R} \to \mathbb{R}, \ Ax = \begin{cases} \frac{\sin x}{x}, & x \neq 0, \\ 1, & x = 0. \end{cases}$$

376.
$$A: \ell_2 \to \ell_1, Ax = x.$$

377.
$$A: \ell_1^2 \to \mathbb{R}^2, Ax = x.$$

378.
$$A\colon L\to C^1[0,1],$$
 где L – подпространство непрерывно-дифферцируемых функций в пространстве $C[0,1],$

Ax = x.

3.2 Линейные компактные операторы

В заданиях 379-383 выяснить является ли оператор

 $A: C[0,1] \to C[0,1]$ компактным.

379.
$$Ax(t) = tx(t)$$
.

380.
$$Ax(t) = \int_{0}^{t} x(\tau) d\tau$$
.

381.
$$Ax(t) = x(0) + tx(t)$$
.

382.
$$Ax(t) = \int_{0}^{1} e^{ts} x(s) ds$$
.

383.
$$Ax(t) = x(t^2)$$
.

384. Будет ли компактным оператор $A: C[-1,1] \to C[-1,1]$

$$Ax(t) = \frac{1}{2}[x(t) + x(-t)]$$
?

385. При каком условии на функцию $\varphi(t) \in C[0,1]$ оператор $A:C[0,1] \to C[0,1],$

$$Ax(t) = \varphi(t)x(t),$$

будет компактным?

386. Оператор $A: C[0,1] \to C[0,1]$ определяется равенством

$$Ax(t) = \int_0^1 K(t, s)x(s) ds + \sum_{k=1}^n \varphi_k(t)x(t_k),$$

где K(t,s) непрерывна при

$$0 \le s, \ t \le 1, \ \varphi_k(t) \in C[0,1], \ t_k \in C[0,1]$$
 для $k = 1, 2, \dots, n.$

Доказать, что A – компактный оператор.

В задачах 387-389 выяснить будет ли компактным оператор Ax(t) = dx/dt, в рассматриваемых пространствах.

387.
$$A: C^1[0,1] \to C[0,1].$$

388.
$$A: C^2[0,1] \to C^1[0,1].$$

389.
$$A: C^2[0,1] \to C[0,1].$$

390. Доказать, что оператор $A: L_2[a,b] \to L_2[a,b],$

$$Ax(t) = \int_0^t x(\tau)d\tau,$$

компактный.

В задачах 391-393 выяснить какие из следующих операторов, определенных для $x=(x_1,x_2,\ldots)\in \ell_2$ с областью значения в ℓ_2 , компактны.

391.
$$Ax = (0, x_1, x_2, \ldots).$$

392.
$$Bx = (x_1, \frac{x_2}{2}, \frac{x_3}{3}, \ldots).$$

393.
$$Cx = (0, x_1, \frac{x_2}{2}, \frac{x_3}{3}, \ldots).$$

В задачах 394-396 проверить будет ли компактным оператор вложения.

394.
$$J: C^1[a,b] \to C[a,b], Jx = x.$$

395.
$$J: H^1[a,b] \to C[a,b], Jx = x.$$

396.
$$J: \ell_1 \to \ell_2, \ Jx = x.$$

397. Будет ли компактным оператор $A: H_1[a,b] o L_2[a,b]$

$$Ax(t) = \frac{dx}{dt}?$$

398. В пространстве $L_2[a,b]$ рассмотрим оператор $Ax(t) = d^2t/dx^2$ с областью определения D(A), состоящей из дважды непрерывно дифференцируемых функций x(t), удовлетворяющих граничным

условиям x(0) = x(1) = 0. Доказать, что оператор A^{-1} существует, найти его и доказать, что он компактный.

399. Пусть e_n $(n \in \mathbb{N})$ – ортонормированный базис гильбертова пространства $H,\ \lambda_n \in \mathbb{R}\ (n \in \mathbb{N}),\ \lambda_n \to 0\ (n \to \infty)$. Для $x \in H$ положим

$$Ax = \sum_{n=1}^{\infty} \lambda_n(x, e_n) e_n.$$

Доказать, что оператор A определен на всем H, переводит его в себя и является компактным.

- **400.** Пусть H гильбертово пространство, $A \in L(H)$. Доказать, что следующие утверждения эквивалентны:
- а) если $x_n, x, y_n, y \in H$ $(n \in \mathbb{N})$ и $x_n \to x$ $(n \to \infty)$ слабо, $y_n \to y$ $(n \to \infty)$ слабо, то $(Ax_n, y_n) \to (Ax, y)$ $(n \to \infty)$;
- б) если $x_n, x \in H \ (n \in \mathbb{N}), \ x_n \to x \ (n \to \infty)$ слабо, то $Ax_n \to Ax \ (n \to \infty);$
- в) $A \in \sigma(H)$.
- **401.** Пусть H гильбертово пространство, $A \in \sigma(H)$. Доказать, что образ единичного замкнутого шара компактное множество.
- 402. Может ли компактный оператор иметь:
- а) ограниченный обратный;
- б) ограниченный правый обратный;
- в) правый обратный?
- **403.** Может ли оператор $A: C[0,1] \to C[0,1],$

$$Ax(t) = \int_0^1 K(s, t)x(t) dt,$$

62 Глава 3. ЛИНЕЙНЫЕ ОПЕРАТОРЫ В ПРОСТРАНСТВАХ БАНАХА где K(s,t) непрерывна при $0 \le s, \ t \le 1,$ иметь ограниченный обратный?

404. Рассмотреть оператор $A: C[0,1] \to C[0,1],$

$$Ax(t) = \int_0^t x(\tau) \, d\tau.$$

- а) Доказать, что уравнение x-Ax=y имеет решения при любом $y\in C[0,1].$
- б) Найти оператор $(I A)^{-1}$.

3.3 Норма оператора

405.
$$A \colon \mathbb{R}^2 \to \mathbb{R}^2$$
 , $A = \begin{pmatrix} 1 & 1 \\ & & \\ 1 & 1 \end{pmatrix}$.

406.
$$A \colon \mathbb{R}^2 \to \mathbb{R}^2$$
, $A = \begin{pmatrix} 1 & 2 \\ & \\ 2 & 1 \end{pmatrix}$.

407.
$$A \colon \mathbb{R}^2 \to \mathbb{R}^2$$
, $A = \begin{pmatrix} 4 & 8 \\ -4 & 1 \end{pmatrix}$.

408.
$$A \colon \mathbb{R}^2 \to \mathbb{R}^2$$
, $A = \begin{pmatrix} 9 & 6 \\ & & \\ -2 & 6 \end{pmatrix}$.

409.
$$A \colon \mathbb{R}^2 \to \mathbb{R}^2$$
 , $A = \begin{pmatrix} -13 & -27 \\ 3 & -3 \end{pmatrix}$.

410.
$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
 , $A = \begin{pmatrix} 10 & 10 \\ 5 & 2 \end{pmatrix}$.

411.
$$A \colon \mathbb{R}^2 \to \mathbb{R}^2$$
 , $A = \begin{pmatrix} 1 & 2 \\ & & \\ 3 & 4 \end{pmatrix}$.

412.
$$A \colon \mathbb{R}^2 \to \mathbb{R}^2$$
 , $A = \begin{pmatrix} a & b \\ & \\ c & d \end{pmatrix}$.

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$

Выяснить, является ли данный оператор непрерывным в нуле

435. $A:C[0,1]\to C[0,1],\ Ax(t)=\frac{dx}{dt},$ с областью определения L- линейным многообразием непрерывно дифференцируемых на [0,1] функций.

436.
$$A: C^1[0,1] \to C[0,1], \ Ax(t) = \frac{dx}{dt}.$$

437.
$$A: \ell_1 \to \ell_2, \ Ax = (x_1, \frac{x_2}{2}, \dots, \frac{x_n}{2^{n-1}}, \dots),$$
 где $x = (x_1, x_2, \dots) \in \ell_1.$

438.
$$A: \ell_2 \to \ell_1, \ Ax = x.$$

439. $A: m \to \ell_1, \ Ax = x,$ где A определен на таких элементах из \mathcal{M} , которые принадлежат ℓ_1 .

Привести пример оператора A, обладающего заданными свойствами

440. $A:C[0,1]\to \ell_1;\ A$ – нелинейный, ограниченный, непрерывный в нуле.

441. $A:\ell_1\to C[0,1];\ A$ – нелинейный, ограниченный, непрерывный в нуле.

442. $A:\widetilde{L}_1[0,1] \to \ell_2;\ A$ – нелинейный, ограниченный, разрывный в нуле.

443. $A:\ell_2 \to \widetilde{L}_1[0,1];\ A$ – нелинейный, ограниченный, разрывный в нуле.

444. $A:\ell_1 \to C^1[0,1]; A$ – нелинейный, неограниченный, непрерывный в нуле.

445. $A:C^1[0,1] \to \ell_1; A$ – нелинейный, неограниченный,

непрерывный в нуле.

446. $A: \mathbb{R}^2 \to \mathbb{R}; A$ – нелинейный, неограниченный, разрывный в нуле.

447. $A: \mathbb{R}^1 \to \mathbb{R}^2; A$ — нелинейный, неограниченный, разрывный в нуле.

448. $A:C[0,1] \to \mathcal{M}; \, A$ – линейный, неограниченный, разрывный в нуле.

449. $A: \mathcal{M} \to C[0,1]; \, A$ – линейный, неограниченный, разрывный в нуле.

3.4 Замкнутые операторы

450. Рассмотрим оператор $A: C[0,1] \to C[0,1],$

$$Ax(t) = \frac{x(t)}{t},$$

с областью определения

$$D(A) = \left\{ x(t) \in C[0,1] : \lim_{t \to +0} t^{-1} x(t) \text{ существует} \right\}.$$

Доказать, что A – замкнутый оператор.

451. Пусть $X=Y=C[0,+\infty)$ — банахово пространство функций x(t), непрерывных на полуоси $[0,+\infty)$ с нормой $\|x\|=\sup_{[0,+\infty)}|x(t)|$. Зададим в X оператор A по формуле Ax=tx(t). Доказать, что оператор A — линейный неограниченный замкнутый оператор.

452. Рассмотрим оператор $A: C[0,1] \to C[0,1]$,

$$Ax(t) = \frac{dx}{dt},$$

с областью определения D(A) – линейным многообразием непрерывно дифференцируемых на [0,1] функций x(t), удовлетворяющих условиям x(0)=x(1)=0. Доказать, что A – замкнутый оператор.

453. Рассмотрим оператор $A: C[0,1] \to C[0,1],$

$$Ax(t) = \frac{d^2x}{dt^2} + x(t),$$

с областью определения D(A) – линейным многообразием дважды непрерывно дифференцируемых на [0,1] функций x(t), удовлетворяющих условиям x(0)=x'(0)=0. Доказать, что A – неограниченный замкнутый оператор.

454. Рассмотрим оператор $A: L_2[a,b] \to L_2[a,b],$

$$Ax(t) = \frac{dx}{dt},$$

с областью определения D(A) — линейным многообразием непрерывно дифференцируемых на [a,b] функций. Доказать, что A — незамкнутый оператор, допускающий замыкание (тем самым для класса функций из $L_2[a,b]$ может быть введено понятие обобщенной производной).

3.5 Сопряженный оператор

В задачах 455-458 найти оператор, сопряженный к оператору $A: L_2[0,1] \to L_2[0,1].$

455.
$$Ax(t) = \int_{0}^{t} x(\tau) d\tau$$
.

456.
$$Ax(t) = tx(t)$$
.

457.
$$Ax(t) = \int_{0}^{1} tx(s) ds$$
.

458.
$$Ax(t) = \int_{0}^{1} tx(t) dt$$
.

В задачах 459-462 найти оператор, сопряженный к оператору $A:\ell_1 \to \ell_1.$

459.
$$Ax = (x_1, x_2, \dots, x_n, 0, 0, \dots).$$

460.
$$Ax = (\lambda_1 x_1, \lambda_2 x_2, \ldots)$$
, где $\lambda_n \in \mathbb{R}, \ |\lambda_n| \le 1, \ n \in \mathbb{N}$.

461.
$$Ax = (0, x_1, x_2, \ldots).$$

462.
$$Ax = (x_2, x_3, \ldots).$$

463. В пространстве ℓ_2 рассмотрим для $x=(x_1,x_2,\ldots)\in\ell_2$ оператор $A:\ell_2\to\ell_2,\ Ax=(x_1,2x_2,3x_3,\ldots)$ с областью определения

$$D(A) = \left\{ x \in \ell_2, \ x = (x_1, x_2, \dots) : \ \sum_{n=1}^{\infty} n^2 |x_n|^2 < \infty \right\}.$$

- а) Доказать, что $\overline{D(A)} = \ell_2$.
- б) Доказать, что A неограниченный на D(A) линейный оператор.
- в) Найти $D(A^*)$ и A^* .

464. Доказать, что
$$A:\ell_2\to\ell_2,\ Ax=(\lambda_1x_1,\lambda_2x_2,\ldots)$$
 для $x=(x_1,x_2,\ldots)\in\ell_2,$ где $\lambda_k\in\mathbb{R}\ (k\in\mathbb{N}),\ \sup_k|\lambda_k|<\infty,$ есть

самосопряженный оператор. При каком условии на последовательность λ_k он будет неотрицательным?

465. Доказать, что оператор $A: L_2[0,1] \to L_2[0,1], \ Ax(t) = tx(t),$ есть неотрицательный самосопряженный оператор.

3.6 Непрерывная обратимость

466. Доказать, что оператор $A:L\to C[0,1]$ непрерывно обратим, если

$$Ax(t) = x'(t) + t^2x(t),$$

a

$$L = \{x \in C^1[0,1], x(0) = 0\}$$
 -

подпространство в $C^{1}[0,1]$.

467. Выяснить, является ли оператор $A:C[0,1]\to C[0,1]$ непрерывно обратимым.

$$Ax(t) = \int_0^t x(\tau)d\tau.$$

468. Выяснить, является ли оператор $A:C[0,1]\to C[0,1]$ непрерывно обратимым.

$$Ax(t) = \int_0^t x(\tau)d\tau - x(t).$$

469. Выяснить, является ли оператор $A:C[0,1]\to C[0,1]$ непрерывно обратимым.

$$Ax(t) = \int_0^1 e^{t+\tau} x(\tau) d\tau - x(t).$$

3.7 Спектр оператора. Резольвента

- **470.** Показать, что если e_1 и e_2 собственные векторы оператора A с различными собственными значениями, то $\alpha e_1 + \beta e_2 \ (\alpha \neq 0, \ \beta \neq 0)$ не является собственным вектором оператора A.
- **471.** Доказать, что если λ собственное значение оператора A, то λ^n собственное значение оператора A^n .
- **472.** Доказать, что если λ собственное значение оператора A^2 , то $\sqrt{\lambda}$ или $-\sqrt{\lambda}$ является собственным значением оператора A.
- **473.** Доказать, что если λ собственное значение оператора A^n , то одно из значений $\sqrt[n]{\lambda}$ является собственным значением оператора A.
- **474.** Показать, что в конечномерном пространстве спектр линейного оператора состоит только из собственных чисел.
- **475.** Привести пример линейного оператора, который не имеет собственных значений.
- **476.** Пусть A и B непрерывные линейные операторы. Показать, что
- a) $r(\alpha A) = |\alpha| r(A);$
- б) если A и B коммутируют, то
- $r(A+B) \le r(A) + r(B); \ r(AB) \le r(A) \, r(B).$ Показать, что для

некоммутирующих операторов утверждение неверно.

Указание. Если r — спектральный радиус оператора A и $\varepsilon > 0$, то существует такое c, что при любом n справедливо неравенство $\|A^n\| \le c(r+\varepsilon)^n$.

477. Показать, что если число λ_0 является регулярным для оператора A, то оно будет регулярным и для оператора A+B, когда

$$||B|| \le \frac{1}{||(\lambda_0 I - A)^{-1}||}.$$

478. Если λ таково, что $|\lambda|^n > \|A^n\|$ для некоторого n, то λ – регулярное значение для A.

479. В комплексной плоскости рассмотреть оператор Az = az, где a — фиксированное комплексное число. Найти его спектр и спектральный радиус. Каков геометрический смысл отображения A?

В задачах 480-489 найти спектр и спектральный радиус оператора $A:\ell_{\infty}\to\ell_{\infty},$ определяемого соотношением $(x=(x_1,x_2,\ldots,x_n,\ldots)):$

480.
$$Ax = (x_1 + x_2, x_2, \dots, x_n, \dots).$$

481.
$$Ax = (x_3, x_1, x_2, \dots, x_n, \dots).$$

482.
$$Ax = (-x_1, x_2, \dots, (-1)^n x_n, \dots).$$

483.
$$Ax = (x_1, x_2, \dots, x_n, 0, \dots).$$

484.
$$Ax = (0, 0, \dots, 0, x_n, x_{n+1}, \dots, x_{n+n}, \dots).$$

485.
$$Ax = (0, 0, \dots, 0, x_n, 0, \dots).$$

486.
$$Ax = (\alpha_1 x_1, \alpha_2 x_2, \dots, \alpha_n x_n, \dots)$$
, где $|\alpha_i| < c$ для всех

72 Глава 3. ЛИНЕЙНЫЕ ОПЕРАТОРЫ В ПРОСТРАНСТВАХ БАНАХА

$$i=1,2,\ldots$$

487.
$$Ax = \left(\frac{x_2}{2}, \frac{x_3}{3}, \dots, \frac{x_n}{n}, \dots\right).$$

488.
$$Ax = (0, x_1, x_2, \dots, x_n, \dots).$$

489.
$$Ax = (x_2, x_3, \dots, x_n, \dots).$$

490. Операторы, указанные в задачах **480-489**, рассмотреть в пространствах \mathcal{M}_0 и ℓ_2 . Определить их спектр и спектральный радиус.

В задачах 491-497 по формуле $r(A)=\lim_{n\to\infty}\sqrt[n]{\parallel A^n\parallel}$ вычислить спектральный радиус оператора $A:C[0,1]\to C[0,1]$ и найти его спектр:

491.
$$(Ax)(t) = tx(t)$$
.

492.
$$(Ax)(t) = (t+1)x(t)$$
.

493.
$$(Ax)(t) = a(t)x(t)$$
, где $a \in C[0,1]$.

494.
$$(Ax)(t) = \int_{0}^{t} x(s) ds$$
.

495.
$$(Ax)(t) = \int_{0}^{1} ts \, x(s) \, ds.$$

496.
$$(Ax)(t) = a(t) \int_0^1 b(s)x(s) ds$$
, где $a, b \in C[0, 1]$.

497.
$$(Ax)(t) = \int_{0}^{1} (t+s)x(s) ds$$
.

498. Показать, что спектральный радиус оператора

$$K:C[0,1] \to C[0,1],$$
 где $(Kx)(t) = \int\limits_0^t K(t,s)x(s)\,ds, \ K(t,s)$ – непрерывная при $0 \le s \le t \le 1$ функция, равен нулю.

Указание: показать, что $|(K^n x)(t)| \le \frac{(ct)^n}{n!}$.

499. Показать, что спектральный радиус оператора

$$A:C[0,1] \to C[0,1],$$
 где

$$(Ax)(t) = \begin{cases} \frac{1}{t} \int_{0}^{1} x(s) \, ds, & 0 < t \le 1, \\ x(0), & t = 0, \end{cases}$$

равен 1.

500. Показать, что спектральный радиус оператора

$$A:[0,\frac{1}{2}]\to C[0,\frac{1}{2}]$$
, где $(Ax)(t)=tx(t^2)$, равен нулю.

501. Показать, что спектр оператора $A:C[0,1]\to C[0,1]$, где $(Ax)(t)=x(t^2)$, лежит на единичном круге.

502. Указание: для доказательства регулярности λ , $|\lambda| \neq 1$ воспользоваться принципом сжатых отображений.

В задачах 503-505 найти спектр и спектральный радиус оператора

$$A:L_2(0,1)\to L_2(0,1),$$
 где:

503.
$$(Ax)(t) = \frac{1}{\sqrt[3]{t}} \int_{0}^{1} x(s) ds.$$

504.
$$(Ax)(t) = \int_{0}^{1} \ln(ts)x(s) ds.$$

505.
$$(Ax)(t) = \int_0^t \left(\frac{s}{t}\right)^\alpha x(s) ds.$$

Глава 4

Интегральные уравнения

Мы начинаем данный раздел с одной из основ современного математического анализа — интеграл Лебега. Мы стараемся быстрее использовать интеграл Лебега для более конструктивного описания пополнения пространства непрерывных функций с интегральной метрикой и введения пространства Лебега. На его основе строятся затем пространства Соболева, без которых в свою очередь не мыслима теория краевых задач для дифференциальных уравнений в частных производных. Поскольку основные модели современного естествознания строятся с помощью именно в рамках теории дифференциальных уравнений в частных производных, то освоение интегрирования по Лебегу принципиально важно для современного специалиста по математике.

Вторая часть раздела посвящена теории интегральных уравнений (в том числе и в пространстве Лебега).

4.1 Интеграл Лебега. Пространства Лебега и Соболева

Канторово совершенное множество D строится следующим образом: из отрезка [0;1] исключается интервал $(\frac{1}{3},\frac{2}{3})$, затем из оставшихся двух отрезков ("отрезков первого ранга") исключаются интервалы длины $1/3^2$ с центрами в серединах этих отрезков, затем из оставшихся четырех отрезков ("отрезки второго ранга") выбрасываются интервалы длины $1/3^3$ с центрами в серединах этих отрезков и т.д. до бесконечности. Множество D, оставшееся после исключения всех этих интервалов называют канторовым совершенным множеством. Точки канторова множества разделяют на точки первого рода – концы выбрасываемых интервалов (счетное множество) и точки второго рода (все остальные точки D — множество мощности континуум).

- **506.** Доказать, что D нигде не плотно.
- **507.** Доказать, что D совершенное множество (т.е. замкнутое и не содержит излированных точек).
- **508.** Доказать, что D состоит из тех и только тех точек отрезка [0,1], которые могут быть записаны в виде троичной дроби, не содержащей единицы в числе своих троичных знаков.
- **509.** Найти в D какую-либо точку первого рода, заключенную между десятичными дробями 0,1 и 0,2.
- **510.** Найти в D какую-либо точку второго рода, заключенную между десятичными дробями 0.05 и 0.1.

В задачах 511-519 найти меру Лебега указанных множеств.

- **511.** Множество всех рациональных чисел отрезка [0,1].
- **512.** Множество всех иррациональных чисел отрезка [0,1].
- **513.** Канторово совершенное множество D.
- **514.** Множество тех точек отрезка [0,1], которые допускают разложение в десятичную дробь без использования цифры 4.
- **515.** Множество тех точек отрезка [0,1], десятичное разложение которых невозможно без цифры 5.
- **516.** Множество точек отрезка [0,1] в разложении которых в бесконечную десятичную дробь фигурируют все цифры от 1 до 9.
- **517.** Множество тех чисел из отрезка [0,1], в десятичной записи которых цифра 2 встречается раньше, чем цифра 3.
- **518.** Подмножество единичного квадрата на плоскости, состоящего из точек (x,y) таких, что $|\sin x| < \frac{1}{2}$, а $\cos(x+y)$ иррационально.
- **519.** Подмножество единичного квадрата на плоскости, состоящего из точек, декартовы и полярные координаты которых иррациональны.

В задачах 520-533 вычислить интегралы Лебега.

520. $\int_{0}^{1} f(x)dx$, где f(x) равна x^{2} в точках канторова множества и равна 2^{-n} на тех смежных интервалах, длина которых равна 3^{-n} .

Интегрируема ли по Риману эта функция?

521.
$$\int_{0}^{1} f(x) dx$$
, где

$$f(x) = \begin{cases} x^2, & \text{для всех иррациоальных x, больших, чем } \frac{1}{3}, \\ x^3, & \text{для всех иррациоальных x, меньших, чем } \frac{1}{3}, \\ 0, & \text{в рациональных точках.} \end{cases}$$

522.
$$\int_{0}^{1} f(x) dx$$
, где

$$f(x) = \begin{cases} x^2, & \text{в иррациоальных точках,} \\ 1, & \text{в рациоальных точках.} \end{cases}$$

Интегрируема ли по Риману эта функция?

523.
$$\int_{0}^{1} f(x) dx$$
, где

$$f(x) = \begin{cases} \sin \pi x, & \text{для } x \in [0, \frac{1}{2}) \cap CD, \\ \cos \pi x, & \text{для } x \in [\frac{1}{2}, 1] \cap CD, \\ x^2, & \text{для } x \in D, \end{cases}$$

где D – канторово множество, CD – его дополнение до отрезка [0,1].

524. $\int_{0}^{1} f(x)dx$, где f(x) = 1 в точках канторова множества, а на смежных интервалах графиком функции служат верхние полуокружности, опирающиеся на эти интервалы как на диаметры. **525.** $\int_{0}^{1} f(x)dx$, где f(x) равна x^{2} во всех точках пересечения

канторова множества и некоторого (даже и неизмеримого)

множества E и равна x^3 в остальных точках отрезка [0,1].

526.
$$\int_{0}^{+\infty} e^{-[x]} dx.$$

527.
$$\int_{0}^{+\infty} \frac{1}{[x+1][x+2]} dx.$$

528.
$$\int_{0}^{+\infty} \frac{1}{[x]!} dx.$$

529.
$$\int\limits_{0}^{\frac{\pi}{2}}f(x)dx$$
, где

$$f(x) = \begin{cases} \sin x, & \text{если x рационально,} \\ \cos x, & \text{если x иррационально.} \end{cases}$$

530.
$$\int\limits_{0}^{\frac{\pi}{2}}f(x)dx$$
, где

$$f(x) = \begin{cases} \sin x, & \text{если } \cos x \text{ рационально,} \\ \sin^2 x, & \text{если } \cos x \text{ иррационально.} \end{cases}$$

531.
$$\int_{0}^{2} f(x) dx$$
, где

$$f(x) = \begin{cases} x^2, & \text{при } x \in A, \\ \sin \pi x, & \text{при } x \in [0, 1] \cap CA, \\ \cos \pi x, & \text{при } x \in [1, 2] \cap CA. \end{cases}$$

А – множество алгебраических чисел.

532.
$$\int_{0}^{1} f(x)dx$$
, где $f(x) = 0$ при $x \in D$, $f(x) = 1$ в серединах смежных интервалах, $f(x)$ линейна на участках $\left[a_{n}, \frac{a_{n} + b_{n}}{2}\right]$ и $\left[\frac{a_{n} + b_{n}}{2}, b_{n}\right]$, где $a_{n}, b_{n} - n$ -ый смежный интервал канторова

множества.

533. $\iint\limits_M f(x,y)\,dxdy$, где M – квадрат $0 \le x \le 1, \ 0 \le y \le 1,$ а функция

$$f(x,y) = \begin{cases} 1, & \text{если } xy \text{ иррационально,} \\ 0, & \text{если } xy \text{ рационально.} \end{cases}$$

- **534.** Доказать, что функция f, определенная и ограниченная на множестве E нулевой меры, интегрируема по Лебегу на E и $\int_E f(x) \, dx = 0.$
- **535.** Доказать, что функция f, интегрируемая на отрезке по Риману, интегрируема по Лебегу на этом отрезке, причем оба интеграла равны.
- **536.** Привести пример функции x(t) такой, что $x(t) \in L_2[0,1]$ и $x^2(t) \not\subseteq L_2[0,1].$
- **537.** Привести пример функции x(t) такой, что $x(t) \in L_1[0,1]$ и $x(t) \not\subseteq L_2[0,1].$
- **538.** Доказать, что последовательность $x_n(t) = n^2 t e^{-nt}$ сходится поточечно к функции $x(t) \equiv 0$ для любого $t \geq 0$, но не сходится в пространстве $L_2[0,1]$.
- **539.** Доказать, что всякая последовательность $x_n(t)$, сходящаяся в пространстве C[a,b], будет сходящейся и в пространстве $L_p[a,b] \ (p \ge 1)$.
- **540.** Привести пример последовательности непрерывных на [0,1] функций $x_n(t)$, сходящейся в пространствах $L_1[0,1]$ и $L_2[0,1]$, но не

- сходящейся в пространстве C[0,1].
- **541.** В пространстве $L_2[0,1]$ рассмотрим множество M функций, обращающихся в нуль на некотором интервале, содержащем точку t=0,5 (и зависящем, вообще говоря, от функции). Будет ли M замкнутым множеством?
- **542.** Доказать, что множество функций из пространства $L_2[0,1]$ таких, что почти все их значения лежат на [-1,1], выпукло. Является ли это множество замкнутым?
- **543.** Пусть $[c,d] \subset [a,b]$. Рассмотрим множество $M = \{x(t) \in L_2[a,b] : x(t) = 0 \text{ почти всюду на } [a,b]\}$. Является ли M подпространством пространства $L_2[a,b]$?
- **544.** Какие из функций $x(t) = \operatorname{sgn} t, \ y(t) = |t|$ принадлежат пространству $H^1[-1,1]$?
- **545.** Обозначим через $f_n(x)$ функцию, значение в каждой точке $x \in [0,1]$ равно n-му знаку в разложении числа x в бесконечную двоичную дробь. Доказать, что $f_n(x) \in L_2[0,1]$ при любом $n \in N$. Найти $||f_n||$ и (f_i,f_j) .
- **546.** Обозначим через $\varphi_n(x)$ функцию, определенную на отрезке [0,1] следующим образом: если на n-ом месте в двоичном разложении точки x в бесконечную двоичную дробь стоит 1, то $\varphi_n(x)=1$, а если на n-ом месте стоит 0, то $\varphi_n(x)=-1$. Доказать, что система функций $\{\varphi_1,\varphi_2,\ldots,\varphi_n,\ldots\}$ ортонормирована на

отрезке [0,1].

547. Доказать, что система функций

1,
$$\sin \frac{2\pi n(t-a)}{b-a}$$
, $\cos \frac{2\pi n(t-a)}{b-a}$, $n \in \mathbb{N}$

ортогональна в пространстве $H^{1}[a,b]$.

548. Доказать, что система функций

$$\frac{1}{\sqrt{2\pi}}$$
, $\frac{1}{\sqrt{\pi}}\sin nx$, $\frac{1}{\sqrt{\pi}}\cos nx$, $n \in N$

ортонормирована в пространстве $L_2[-\pi, \pi]$.

549. Доказать, что система функций

 $1, \cos mx, \sin mx, \cos ny, \sin ny, \cos mx \cos ny, \sin mx \cos ny,$

$$\cos mx \sin ny, \sin mx \sin ny, \ (m, n \in N)$$

образует ортогональную систему в пространстве

$$L_2([-\pi,\pi]\times[-\pi,\pi]).$$

550. Разложить в двойной ряд Фурье функцию f(x,y) = xy

- a) в пространстве $L_2([-\pi, \pi] \times [-\pi, \pi]),$
- б) в пространстве $L_2([0, 2\pi] \times [0, 2\pi])$.
- **551.** Что можно сказать о коэффициентах Фурье функции $f(x) \in L_2[0,1]$, если известно, что:
- a) f(x) = f(1-x),
- 6) f(x) = -f(1-x)?
- **552.** Выразить в терминах коэффициентов Фурье следующие свойства функций $f(x) \in L_2[0,1]$:
- (a) $f(x + \frac{1}{2}) = f(x)$,

$$f(x + \frac{1}{k}) = \lambda f(x).$$

При каких $k \in \mathbb{Z}$ существуют ненулевые функции, обладающие этим свойством?

В задачах 553-555 найти суммы рядов

553.
$$1 - \frac{\cos 2x}{2!} + \frac{\cos 4x}{4!} - \dots$$

554.
$$\frac{\sin x}{1\cdot 2} - \frac{\sin 2x}{2\cdot 3} + \frac{\sin 3x}{3\cdot 4} - \dots$$

555.
$$\frac{2\cos 2x}{3} - \frac{3\cos 3x}{8} + \ldots + \frac{(-1)^n n\cos nx}{n^2 - 1} + \ldots$$

4.2 Интегральные уравнения

В пространстве C[a,b] найти решение интегрального уравнения

556.
$$x(t) - \lambda \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} t g s x(s) ds = 1.$$

557.
$$x(t) - \lambda \int_{0}^{1} t(1+s)x(s)ds = t^{2}$$
.

558.
$$x(t) - \lambda \int_{-1}^{1} (1+ts)x(s)ds = \sin \pi t.$$

559.
$$x(t) - \lambda \int_{0}^{\pi} \cos(t+s)x(s)ds = 1.$$

560.
$$x(t) - \lambda \int_{0}^{1} x(s) \arccos s ds = \frac{1}{\sqrt{1 - t^2}}$$
.

561.
$$x(t) - \lambda \int_{0}^{\pi} (\sin s + s \cos t) ds = 1 - \frac{2t}{\pi}$$
.

562.
$$x(t) - \lambda \int_{0}^{\pi} \sin(t - 2s) x(s) ds = \cos 2t$$
.

563.
$$x(t) - \lambda \int_{-1}^{1} (st - s^2t^2)x(s)ds = t^2 + t^4.$$

564.
$$x(t) - \lambda \int_{-1}^{1} (3t + st - 5s^2t^2)x(s)ds = \alpha s.$$

565.
$$x(t) - \lambda \int_{-1}^{1} stx(s)ds = \alpha t^2 + \beta t + \gamma.$$

В пространстве C[a,b] найти характеристические числа λ_n и собственные функции φ_n для уравнений

566.
$$x(t) - \lambda \int_{0}^{2\pi} \sin(t+s)x(s)ds = 0.$$

567.
$$x(t) - \lambda \int_{0}^{\pi} \cos(t+s)x(s)ds = 0.$$

568.
$$x(t) - \lambda \int_{0}^{1} (2st - 4t^2)x(s)ds = 0.$$

569.
$$x(t) - \lambda \int_{-1}^{1} (st + s^2t^2)x(s)ds = 0.$$

570.
$$x(t) - \lambda \int_{0}^{\pi} (\sum_{n=1}^{\infty} 2^{-n} \sin nt \sin ns) x(s) ds = 0.$$

571.
$$x(t) - \lambda \int_{0}^{1} K(t,s)x(s)ds = 0$$
, где

$$K(t,s) = \begin{cases} t, & \text{при } 0 \le t \le s \le 1, \\ s, & \text{при } 0 \le s \le t \le 1. \end{cases}$$

572.
$$x(t) - \lambda \int_{0}^{\frac{\pi}{2}} K(t,s) x(s) ds = 0$$
, где

$$K(t,s) = \begin{cases} \sin t \cos s, & \text{при } 0 \le t \le s \le \frac{\pi}{2}, \\ \sin s \cos t, & \text{при } 0 \le s \le t \le \frac{\pi}{2}. \end{cases}$$

573.
$$x(t) - \lambda \int_{0}^{1} K(t,s) x(s) ds = 0$$
, где

$$K(t,s) = \begin{cases} s(t+1), & \text{при } 0 \le t \le s \le 1, \\ t(s+1), & \text{при } 0 \le s \le t \le 1. \end{cases}$$

574.
$$x(t) - \lambda \int_{0}^{1} e^{-|t-s|} x(s) ds = 0.$$
575. $x(t) - \lambda \int_{0}^{1} K(t,s) x(s) ds = 0$, где
$$K(t,s) = \begin{cases} -t - 1, & \text{при } 0 \le t \le s, \\ -s - 1, & \text{при } s \le t \le 1. \end{cases}$$

Решить интегральные уравнения, сведя их предварительно к обыкновенным дифференциальным уравнениям

$$576. \ x(t) = e^t + \int_0^t x(s)ds.$$

$$577. \ x(t) = 1 + \int_0^t sx(s)ds.$$

$$578. \ x(t) = \frac{1}{1+t^2} + \int_0^t \sin(t-s)x(s)ds.$$

$$579. \ x(t) = e^{-t}\cos t - \int_0^t \cos t e^{-(t-s)}x(s)ds.$$

$$580. \ x(t) = 4e^t + 3t - 4 - \int_0^t (t-s)x(s)ds.$$

$$581. \ x(t) = t - 1 + \int_0^t (t-s)x(s)ds.$$

$$582. \ x(t) = \sin t + \frac{1}{2}\int_0^t (t-s)^2x(s)ds.$$

$$583. \ x(t) = cht - \int_0^t sh(t-s)x(s)ds.$$

$$584. \ x(t) = t + \int_0^t (4\sin(t-s) - t + s)x(s)ds.$$

$$585. \ x(t) = 1 + \int_0^t ((t-s)^2 - (t-s))x(s)ds.$$

Метод последовательных приближений применительно к линейному интегральному уравнению Вольтерра 2-го рода

(4.2.1)
$$x(t) = f(t) + \int_{a}^{t} K(t,s)x(s)ds$$

заключается в следующем. Строится последовательность функций $x_0(t), x_1(t), ..., x_n(t), ...,$ где нулевое приближение $x_0(t)$ – произвольная функция, а последующие приближения определяются с помощью рекуррентного соотношения

$$x_n(t) = f(t) + \int_a^t K(t,s)x_{n-1}(s)ds, \ n = 1, 2, \dots$$

Если ядро K(t,s) и свободный член f(t) непрерывны соответственно при $a \le t \le b$, $a \le s \le t$ и на отрезке [a,b], то построенная таким образом последовательность приближений $x_n(t), n = 0, 1, 2, ...$ при $n \to \infty$ сходится к единственному непрерывному решению интегрального уравнения. Обычно полагают $x_0(t) = f(t)$.

В отличие от уравнения (4.2.1), существование и единственность решения уравнения Фредгольма 2-го рода

(4.2.2)
$$x(t) - \lambda \int_{a}^{b} K(t,s)x(s)ds = f(t)$$

существенно зависят от значения параметра λ . Можно показать, что если λ удовлетворяет условию

(4.2.3)
$$|\lambda| < \left(\int_{a}^{b} \int_{a}^{b} |K(t,s)|^{2} dt ds \right)^{-1/2},$$

то уравнение (4.2.2) имеет единственное решение в пространстве $L^2[a,b]$ (непрерывное, если непрерывна K(s,t) и f(t)), которое может быть найдено методом последовательных приближений подобно тому как это делается для уравнения (4.2.1).

Методом последовательных приближений найти решения следующих интегральных уравнений в $L^2[a,b]$ (в случае уравнения Фредгольма 2-го рода, предварительно убедившись, что выполнено условие (4.2.3)

586.
$$x(t) = 1 + \int_{0}^{t} x(s)ds, \quad x_0(t) \equiv 0.$$

587.
$$x(t) = \frac{t^2}{2} + t - \int_0^t x(s)ds, \quad x_0(t) \equiv 1.$$

588.
$$x(t) = 1 - t^2 + \int_0^t tx(s)ds$$
, $x_0(t) \equiv 1 - t^2$.

589.
$$x(t) = 1 + \int_{0}^{t} tx(s)ds, \quad x_0(t) \equiv 1.$$

590.
$$x(t) = 1 + \int_{0}^{t} sx(s)ds, \quad x_0(t) \equiv 1.$$

591.
$$x(t) - \int_{0}^{1} t s x(s) ds = 2t$$
.

592.
$$x(t) + \frac{1}{\pi} \int_{0}^{\pi} \cos^2 sx(s) ds = 1.$$

593.
$$x(t) = \pi \int_{0}^{1} (1-t)\sin 2\pi s x(s) ds + \frac{1}{2}(1-t).$$

594.
$$x(t) - \frac{1}{2\pi} \int_{0}^{\pi} \sin tx(s) ds = 2\sin t.$$

595.
$$x(t) + \frac{1}{2\pi} \int_{0}^{\pi} (\cos(t+s) + \cos(t-s))x(s)ds = \cos t.$$

596. Рассмотрим оператор $A: L^2[0,1] \to L^2[0,1],$

$$Ax(s) = \int_0^1 e^{-|s-t|} x(t) dt,$$

и уравнение

$$(4.2.4) Au = f.$$

Доказать, что $A^* = A$ и

$$A^*Ax(s) = \int_0^1 K(s,t)x(t)dt,$$

где

$$K(s,t) = \begin{cases} -(e^{-s-t} + e^{-2+s+t})/2 + (t-s+1)e^{s-t}, & 0 \le s \le t \le 1, \\ -(e^{-s-t} + e^{-2+s+t})/2 + (s-t+1)e^{t-s}, & 0 \le t \le s \le 1, \end{cases}$$

4.3 Базисы с двойной ортогональностью

Является ли задача о нахождении решений уравнения (4.2.4) корректной?

- **597.** Докажите, что задача о нахождении решений операторного уравнения первого рода с компактным оператором является некорректной.
- **598.** Найдите необходимые и достаточные условия голоморфной продолжимости из меньшего круга в больший и укажите точное и приближенные решения.
- **599.** Найдите необходимые и достаточные условия продолжимости голоморфной функции класса Лебега $L^2(B_r)$ до голоморфной

функции класса Лебега $L^2(B_R)$ и укажите точное и приближенные решения.

4.4 Элементы наилучшего приближения

600. В пространстве C[0,1] найти расстояние от элемента $x_0(t)=t$ до подпространства многочленов нулевой степени. Найти элемент наилучшего приближения.

601. В C[0,1] найти элемент наилучшего приближения для $x_0(t)=t^2$ элементами подпространства многочленов степени ≤ 1 . **602.** В C[0,1] рассмотрим подпространство

 $L = \{x(t) \in C[0,1] : x(0) = 0\}.$

Пусть $x(t) \equiv 1$. Описать множество элементов наилучшего приближения x элементами L.

603. Доказать, что в пространстве c^2 множество элементов наилучшего приближения элемента $x = \binom{1}{0}$ элементами подпространства $L = \{\binom{0}{\alpha}, \alpha \in R\}$ имеет вид $x^* = \binom{0}{\alpha}$, где $\alpha \in [-1,1]$.

604. Пусть X — линейное нормированное пространство, L — подпространство $X, x \in X$ и существует более одного элемента наилучшего приближения x элементами L. Доказать, что таких элементов бесконечно много.

605. Пусть L – одномерное подпространство в гильбертовом пространстве $H,\,a\in L$ и $a\neq 0$. Доказать, что для любого $x\in H$

выполнено равенство

$$\rho(x, L^{\perp}) = \frac{|(x, a)|}{||a||}.$$

606. В пространстве ℓ_2 найти расстояние $\rho_n(x,L)$ от элемента $x=(1,0,0,\dots,0,\dots)$ до подпространства

$$L = \left\{ x \in \ell_2, x = (x_1, x_2, \ldots) : \sum_{k=1}^n x_k = 0 \right\}.$$

Чему равен $\lim_{n\to\infty} \rho_n(x,L)$?

В задачах 607-609 найти элемент наилучшего приближения для $x_0(t)=t^3$ элементами подпространства $L\subset L_2[0,1].$

607. L – подпространство многочленов нулевой степени.

608. L – подпространство многочленов степени ≤ 1 .

609. L – подпространство многочленов степени ≤ 2 .

4.5 Теорема Гильберта-Шмидта

В пространстве $L_2[a,b]$ найти ортонормированный базис, состоящий из собственных функции φ_n оператора

610.
$$\lambda \int_{0}^{2\pi} \sin(t+s)x(s)ds.$$

611.
$$\lambda \int_{0}^{\pi} \cos(t+s)x(s)ds.$$

612.
$$\lambda \int_{0}^{1} (2st - 4t^2)x(s)ds$$
.

613.
$$\lambda \int_{-1}^{1} (st + s^2t^2)x(s)ds$$
.

614.
$$\lambda \int_{0}^{\pi} (\sum_{n=1}^{\infty} 2^{-n} \sin nt \sin ns) x(s) ds$$
.

615.
$$\lambda \int_{0}^{1} K(t,s)x(s)ds$$
, где

$$K(t,s) = \begin{cases} t, & \text{при } 0 \le t \le s \le 1, \\ s, & \text{при } 0 \le s \le t \le 1. \end{cases}$$

616.
$$\lambda \int_{0}^{\frac{\pi}{2}} K(t,s) x(s) ds$$
, где

$$K(t,s) = \begin{cases} \sin t \cos s, & \text{при } 0 \le t \le s \le \frac{\pi}{2}, \\ \sin s \cos t, & \text{при } 0 \le s \le t \le \frac{\pi}{2}. \end{cases}$$

617.
$$\lambda \int_{0}^{1} K(t,s)x(s)ds$$
, где

$$K(t,s) = \begin{cases} s(t+1), & \text{при } 0 \le t \le s \le 1, \\ t(s+1), & \text{при } 0 \le s \le t \le 1. \end{cases}$$

618.
$$\lambda \int\limits_0^1 e^{-|t-s|} x(s) ds.$$
 619. $\lambda \int\limits_0^1 K(t,s) x(s) ds$, где

$$K(t,s) = \begin{cases} -t - 1, & \text{при } 0 \le t \le s, \\ -s - 1, & \text{при } s \le t \le 1. \end{cases}$$

Ответы.

Ответы к главе 1.

2. Да. 3. Нет. 4. Нет. 5. Нет. 6. Нет. 7. Нет. 8. Да. 9. Нет. 10. Нет. 11. Да. $\overline{\mathbf{12}}$. Функция u=f(v) должна быть монотонной. $\overline{\mathbf{13}}$. Да. $\overline{\mathbf{14}}$. Да. **15.** Нет. **16.** Да. **17.** Да. **18.** Да. **19.** Да. **20.** Да. **21.** Да. **22.** Да. **28.** Нет; да. **29.** $0 < \rho(a,c) \le 2$. **30.** $d \in (0,2]$. **31.** Нет. **33.** 0,2,2. **35.** a) 10, б) $2\sqrt{\frac{454}{35}}$, в) 6, г) 15, д) 27. **36.** а) $2\sqrt{10}$, б) 8, в) 6. **37.** Четырехугольник с вершинами в точках A(2,0), B(3,3), C(6,0), D(3,-3). **38.** a) 4, б) $9\frac{13}{24}$, в) 9. **39.** a) 3t, б) 0,6t, в) $\sqrt{\frac{3}{19}}(t+2)$, г) 2t. **40.** a) $\frac{1}{\sqrt{3}}$, б) 1, в) $\frac{1}{2}$. **41.** Да. **42.** Нет. **43.** Да. **44.** Нет. **45.** Нет. **46.** Нет. **47.** Нет. **48.** Да. **49.** Нет. **50.** Нет. **51.** Нет. **52.** Да. **53.** Да. **54.** Да. **55.** Нет. **56.** Да. **57.** Да. **58.** Да. **60.** Нет (при a=1). **61.** Нет. 63. Во всех четырех случаях сходится к последовательности $(0,0,0,\ldots)$. **64.** $(0,0,0,\ldots)$. **73.** а) Нет, б) да. **74.** $0,9t^2$. **85.** Гипербола и ее асимптота. **88.** Да. **92.** Да. **93.** Нет. **94.** Нет. **95.** а) Да, б) нет. 96. Нет. 97. Нет. 98. Нет. 100. Да. 101. Нет. 102. Нет. 104. а) Отрезок [a, b], б) замкнутый круг, в) множество действительных чисел. **105.** Да. **106.** Да. **107.** Нет. **108.** Нет. **109.** а) положение изометрично отрезку $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, б) положение изометрично лучу $\left[0, +\infty\right)$. **110.**

радиусы шаров не стремятся к нулю. **111.** Последовательность P_n , где $P_n = \sum_{i=0}^{n} \left(\frac{x}{2}\right)^i$, является несходящейся фундаментальной последовательностью для всех трех расстояний. 112. Нет. 113. Пополнение получается добавлением одноточечных отрезков [a, a]. 117. Да. 118. Нет. **119.** a) Да, б) нет, в) да. **121.** Не сжимающее, не имеет неподвижных точек. **122.** 3. **123.** 0. **124.** $\sqrt{5}$. **125.** $1 - \sqrt{2}$. **126.** 2. **127.** $\frac{1}{2}(1+\sqrt{13})$. 128. $F(x) = -\frac{1}{20}x^7 - \frac{4}{20}x^5 + \frac{27}{20}x + \frac{1}{20}$, $x_0 = 0$, n = 65. 129. $F(x) = -\frac{1}{12}x^5 - \frac{1}{6}x^3 + \frac{11}{12}x + \frac{1}{6}$, $x_0 = 0$, n = 53. 130. $F(x) = -\frac{1}{9}x^{13} + \frac{1}{12}x + \frac{1$ $\frac{1}{9}x^5 + \frac{8}{9}x + \frac{1}{9}$, $x_0 = 0$, n = 40. 131. $F(x) = -\frac{1}{9}x^5 - \frac{1}{9}x^3 + \frac{8}{9}x + \frac{1}{9}$, $x_0 = 0$ 0, n = 40. 132. $F(x) = -\frac{1}{21}x^{13} - \frac{1}{21}x^7 + \frac{20}{21}x + \frac{1}{21}$, $x_0 = 0$, n = 95. **133.** $F(x) = -\frac{1}{16}x^5 - \frac{1}{16}x^4 - \frac{2}{16}x^3 + \frac{15}{16}x + \frac{1}{16}$, $x_0 = 0$, n = 72. **134.** $F(x) = -\frac{1}{11}x^5 - \frac{1}{11}x^3 + \frac{8}{11}x + \frac{1}{11}, x_0 = 0, n = 12.$ **135.** F(x) = $-\frac{1}{10}x^7 + \frac{7}{10}x + \frac{1}{10}$, $x_0 = 0$, n = 10. **136.** $F(x) = -\frac{1}{11}x^5 - \frac{1}{22}x^4 - \frac{1}{22}x^3 - \frac{1}{22}x^4 - \frac{1}{22}x^3 - \frac{1}{22}x^4 - \frac{1}{22}x$ $\frac{1}{22}x^2 + \frac{19}{22}x + \frac{1}{4}x^2 + \frac{1}{4}x^4 + \frac{1}{4}x +$ 0, n = 3. 138. $F(x) = -\frac{1}{15}x^7 - \frac{1}{15}x^3 - \frac{2}{15}x^2 + \frac{14}{15}x - \frac{1}{15}$, $x_0 = 0$, n = 67. **139.** $F(x) = -\frac{1}{11}x^5 - \frac{1}{11}x^4 - \frac{1}{33}x^3 + \frac{10}{11}x + \frac{2}{11}, x_0 = 0, n = 56.$ **140.** $F(x) = -\frac{2}{11}x^5 + \frac{1}{22}x^3 + \frac{9}{11}x + \frac{2}{11}, x_0 = 0, n = 23.$ **141.** $F(x) = -\frac{1}{21}x^7 + \frac{1}{2}x + \frac{2}{3}, \ x_0 = 0, \ n = 5.$ **142.** $F(x) = x - e^x + \frac{1}{2}, \ x_0 = 0$ $-\frac{1}{2}$, $n = 1 + \left[\log_{1-\frac{1}{2}} \frac{\sqrt{e}}{200(2-\sqrt{e})}\right]$. **143.** $F(x) = \frac{1}{2e^x}$, $x_0 = 0$, n = 7. **147.** x = 1,00; y = 2,00; z = 3,00. **151.** Рассмотреть отображение $A: \mathbb{R} \to \mathbb{R}, \ A(x) = x + \frac{\pi}{2} - \operatorname{arctg} x.$

Ответы к главе 2.

162. Нет. **163.** Нет. **164.** Нет. **165.** Да. **166.** Да. **167.** Нет. **168.** Нет. **169.** Нет. **170.** Нет. **171.** Да. **172.** Да. **173.** Нет. **174.** Нет. **175.** Нет. **176.** Да. **177.** Нет. **178.** Нет. **179.** Да. **180.** Да. **182.** Да. **183.** Да. **184.** Да. **192.** При $\alpha \neq 0$ $t^{\alpha} \in L_p[0;1], p \geq 1$ для $\alpha > -\frac{1}{p}$, при этом $\parallel t^{\alpha} \parallel = (p\alpha + 1)^{-\frac{1}{p}}$. При $\alpha = 0 \ x(t) \equiv 1 \in \widetilde{L}_p[0;1]$ для любого $p \geq 1$ и $\parallel t^{\alpha} \parallel = 1$. **193.** Да. **194.** Нет. **195.** Да. **196.** Нет. **197.** Нет. **198.** Нет. **199.** Да. **200.** Да. **201.** Нет. **202.** Для векторов на плоскости $\overline{a}, \overline{b}, \dots$ рассмотреть функцию $(\overline{a}, \overline{b}) = |\overline{a}| |\overline{b}| \cos^3 \alpha$, где α – угол между векторами. **209.** а) 25, б) $\frac{518}{25}$, в) 65. **210.** а) $\frac{\pi^2}{3\sqrt{10}}$, б) $\frac{\pi^2}{6}$, B) 1. **211.** $\arccos \frac{\sqrt{6}}{\pi}$. **212.** $\frac{\pi}{2}$, $\frac{\pi}{6}$. **213.** $\arccos \sqrt{\frac{3}{\pi^2+3}}$. **214.** 1, t, $3t^2$ – $1, 5t^3 - 3t.$ **215.** $1, 2t - 1, 6t^2 - t + 1, 20t^3 - 30t^2 + 12t - 1.$ **216.** $1, t, 1 - t + 1, 20t^3 - 30t^2 + 12t - 1$. $3t^2, 9t - 10t^3$. 217. $1, 1-t, t^2 - 4t + 2, -t^3 + 9t^2 - 18t + 6$. 218. $1, 2t, 4t^2 - 18t + 6$. $2, -8t^3 + 12t$. **227.** Да. **230.** Одномерное подпространство с базисом $x(t) \equiv 1$. 232. Одномерное пространство с базисом $x(t) = \sinh(t - t)$ $\frac{a+b}{2}$). **233.** Двумерное подпространство с базисом $x_1(t) = e^t, x_2(t) =$ e^{-t} . 234. Да. 235. Да. 236. Да. 237. Нет. 238. Нет (рассмотреть последовательность $x_n(t) = \frac{\sin nt}{n}$). **239.** Да. **241.** 2. **242.** 4. **243.** 1. **244.** 3. **245.** 2. **246.** 1. **247.** 1. **248.** 1. **249.** $\sqrt{2/3}$. **250.** $\sqrt{3}$. **251.** $\sqrt{2}$. **252.** $\frac{\pi}{\sqrt{6}}$. **253.** 1. **254.** 1. **255.** 2. **256.** 2. **257.** 1. **258.** $\sqrt{2}$. **259.** 5. **260.** 4. **290.** Предположим, что f на M достигает своего минимального значения m. Так как $x^2(t) \ge 0$ и $x(t) \ne 0$, то $m = \int_0^1 x_0^2(t) dt > 0$, где $x_0(t)$ – элемент, на котором f принимает наименьшее значение. С другой стороны, взяв $x_n(t) = t^n \in M$, получим $f(x_n) = \frac{1}{2n+1} \to 0$

при $n \to \infty$. Получили противоречие. Этот пример не противоречит теореме Вейерштрасса, т.к. M не является компактным множеством. **291.** f(x,y)=x+y. **292.** $f(x,y)=\frac{1}{5}x+\frac{2}{5}y$. **293.** $f(x,y)=-\frac{1}{2}x-\frac{1}{2}y$. **294.** $f(x,y)=\frac{1}{2}x-\frac{3}{2}y$. **295.** $f(x,y)=\frac{18}{5}x+\frac{6}{5}y$. **316.** a) сходится к нулю. б) и в) не сходятся, если $\varphi(x)\neq 0$. **317.** Ясно, что $f_{\varepsilon}\in\mathcal{D}$. Далее, так как f(x) непрерывна и финитна, то для любого $\sigma>0$ и при всех достаточно малых $\varepsilon>0$ имеем: $|f(x)-f(y)|<\sigma$ при $|x-y|\leq \varepsilon,\ x,y\in\mathbb{R}$, так что $|f(x)-f_{\varepsilon}(x)|\leq \int |f(x)-f(y)|\omega_{\varepsilon}(x-y)\,dy<\sigma\int\limits_{|x-y|<\varepsilon}\omega_{\varepsilon}(x-y)\,dy=\sigma,\ x\in\mathbb{R}$. **318.** Для доказательства достаточно проверить, что $\varphi_2(x)=\int\limits_{-\infty}^x\varphi_1(x)\,dx\in\mathcal{D}$. **320.** $\delta(x)$. **321.** $\delta(x)$.

Ответы к главе 3.

369. Линейный, если b=0 и нелинейный в противном случае. 370. Да. 371. Да. 372. Нет. 373. Нет. 374. Да. 375. Нет. 376. Нет. 377. Да. 378. Нет. 379. Нет. Рассмотреть Ax_n , где $x_n=t^n\ (n\in\mathbb{N})$. 380. Да. 381. Да. 382. Да. 383. Нет. 384. Нет. Рассмотреть Ax_n , где $x_n=t^{2n}$. 385. Только при $\varphi(t)\equiv 0$. 387. Нет. Рассмотреть Ax_n , где $x_n=t^n/n\ (n\in\mathbb{N})$. 388. Нет. Рассмотреть Ax_n , где $x_n=t^{n+1}/(n(n+1))\ (n\in\mathbb{N})$. 389. Да. Шар $\overline{B_1}(0)$ пространства $C^2[0,1]$ оператор A переводит в множество M, лежащее в шаре $B=\overline{B_1}(0)$ пространства $C^1[0,1]$, а всякое подмножество B компактно в C[0,1]. 391. Нет. 392. Да. 393. Да. 394. Да. 395. Да. 396. Нет. 397. Нет. 398. $A^{-1}y=\int\limits_0^1 G(s,t)y(t)\,dt,\ D(A^{-1})=C[0,1]$, где

$$G(s,t) = \begin{cases} s(t-1) & \text{при } 0 \le s \le t \le 1, \\ t(s-1) & \text{при } 0 \le t \le s \le 1. \end{cases}$$

399. Пусть $M \subset H$ — ограниченное множество; так как оно слабо компактно, то в нем найдется слабо фундаментальная последовательность f_n $(n \in \mathbb{N})$. Тогда

$$|| A(f_n - f_m) ||^2 = \sum_{k=1}^{\infty} \lambda_k^2 |(f_n - f_m, e_k)|^2 = S_r + R_r,$$

где $S_r=\sum_{k=1}^r,\ R_r=\sum_{k=r+1}^\infty$. Так как $\lambda_k\to 0$, то при достаточно большом r будет

$$R_r < \varepsilon^2 \sum_{k=r+1}^{\infty} |(f_n - f_m, e_k)|^2 \le \varepsilon^2 \| f_n - f_m \|^2.$$

Фиксировав r, в силу слабой сходимости последовательности f_n выберем такое N, чтобы при n,m>N каждое слагаемое в S_r не превышало ε^2/r ; тогда $S_r<\varepsilon^2$, $\parallel A(f_n-f_m)\parallel^2< c\varepsilon^2$ и A компактен. 405. 2. 406. 3. 407. 9. 408. 11. 409. 30. 410. 15. 411. $\frac{\sqrt{17}+\sqrt{13}}{\sqrt{2}}$. 412. $\frac{\sqrt{(a-d)^2+(b+c)^2}+\sqrt{(a+d)^2+(b-c)^2}}{2}}{2}$. 413. 2. 414. $\max(|a|+|c|,|b|+|d|)$. 415. $\sqrt{2}$. 416. 1. 417. 1. 418. 1. 419. 1. 420. 1. 421. 1. 422. $\frac{1}{\sqrt{3}}$. 423. 1. 424. 2. 425. 2. 426. $\sqrt{2}$. 427. 4. 428. 1. 429. k. 430. 1. 431. 1. 432. 2. 433. 1. 434. 1. 435. Her. 436. Да. 437. Да. 438. Her. 439. Her. 467. Her. 468. Да. 469. Да.

Ответы к главе 4.

506. Возьмем произвольный интервал $I = (\alpha, \beta)$. Если он не содержит точек из D, то в качестве интервала, содержащегося в I и полностью свободного от точек D берем сам этот интервал. Если же имеется точка $x_0 \in D \cap I$, то мы можем найти отрезок достаточно высокого ранга n, содержащий x_0 и включающийся в I (такой найдется, т.к. длина каждого отрезка n-го ранга равна $1/3^n$). Возьмем интервал длины $1/3^{n+1}$ с центром в середине этого отрезка. Этот интервал не содержит точек из D и вместе с тем содержится в I. **507.** Множество D замкнуто (как дополнение к открытому), и никакие два его смежные интервалы, по построению, не имеют общих концов. Значит в D нет изолированных точек. 508. Смежный интервал 1-го ранга состоит из всех чисел, в троичном разложении которых первый знак обязательно равен единице (например 1/3 мы не включаем в интервал 1-го ранга, т.к. 1/3 = 0,100... может быть и такой -0,0222...). Каждый смежный интервал второго ранга состоит из всех чисел, в троичном разложении которых (при фиксированном первом знаке, отличном от 1) второй знак обязательно равен 1. Вообще каждый смежный интервал k-го ранга состоит из всех чисел, в троичном разложении которых (при фиксированных первых k-1 знаках, отличных от 1) на k-ом месте обязательно стоит 1. Отсюда вытекает, что множество, оставшееся после исключения из [0,1] всех смежных интервалов, состоит из тех и только тех чисел отрезка [0,1], которые могут быть записаны в виде тро-

ичной дроби, не содержащей единицы в числе своих троичных знаков. **509.** 1/9 (троичное разложение 0,00222...). **510.** 1/12 (троичное разложение 0,0020202020...). **511.** 0. **512.** 1. **513.** 0. **514.** Это множество можно построить следующим образом. Делим отрезок [0,1] на десять равных частей и выбрасываем интервал (0,4;0,5). Затем каждый из оставшихся отрезков [0;0,1],...,[0,3;0,4],[0,5;0,6],...,[0,9;1]делим на десять равных частей и выкидываем из них интервалы (0, 14; 0, 15), ..., (0, 34; 0, 35), (0, 54; 0, 55), ..., (0, 94; 0, 95) и т.д. После всех этих выкидываний останутся числа, которые допускают разложение в десятичную дробь без использования цифры 4. Мера выкинутого множества равна $\frac{1}{10} + \frac{9}{100} + \frac{81}{1000} + \dots = 1$. Значит мера оставшегося множества равна 0. **515.** 1. **516.** Обозначим через A_k множество всех чисел отрезка [0,1], в бесконечном десятичном разложении которых фигурирует цифра k. Интересующее нас множество есть пересечение всех A_k (k=1,2,...,9). Чтобы найти его меру, найдем сначала меру его дополнения относительно отрезка [0,1]: $C\left(\bigcap_{k=1}^{3}A_{k}\right)=\bigcup_{k=1}^{3}CA_{k}$. Но мера $CA_{k}=0$. Поэтому мера нашего множества равна 1. 518. Подмножество квадрата, состоящее из точек (x,y), для которых $\cos(x+y)$ рационален, имеет меру 0, т.к. состоит из счетного числа отрезков прямых вида x + y = const.Ответ: $\frac{\pi}{6}$. **519.** Дополнение к рассматриваемому множеству представить в виде объединения четырех подмножеств меры 0. Ответ: 1. **520.** $\frac{1}{4}$. Да, т.к. она ограничена и множество ее точек разрыва (множество D) имеет меру нуль. **521.** $\frac{35}{108}$. **522.** $\frac{1}{3}$. Нет, т.к. эта функция

разрывна на множестве положительной меры, ее точками разрыва являются все точки отрезка [0,1], кроме точки x=1,287. **523.** 0. **524.** $\pi/56$. **525.** 1/4. **526.** $\frac{e}{e-1}$. **527.** 1. **528.** e. **529.** 1. **530.** $\pi/4$. **531.** $2/\pi$. **532.** 1/2. **533.** 1. **550.** a) $xy = 4 \sum_{m=-1}^{\infty} (-1)^{m+n} \frac{\sin mx \sin ny}{mn}$; 6) $xy = \pi^2 - 2\pi \sum_{m=1}^{\infty} \frac{\sin mx}{m} - 2\pi \sum_{m=1}^{\infty} \frac{\sin ny}{n} + 4 \sum_{m=1}^{\infty} \frac{\sin mx \sin ny}{mn}$. **551.** a) $C_n = C_{-n}$; б) $C_n = -C_{-n}$ (здесь C_n – коэффициенты ряда Фурье в комплексной форме $f(x) = \sum_{n=0}^{+\infty} C_n e^{2\pi i n x}$. **552.** a) $C_{2n+1} = C_n e^{2\pi i n x}$ $0,\; n\; \in\; \mathbb{Z};\;$ б) при $\lambda\; =\; e^{rac{2\pi i m}{k}},\; m\; \in\; \mathbb{Z},\; C_n\; =\; 0,\;$ если $n\;
eq\; m($ mod k). **553.** $\cos(\cos x)c(\sin x)$. **554.** $\frac{x}{2}(1+\cos x)-\sin x \ln 2\cos \frac{x}{2}$. **555.** $\cos x \ln 2 \cos \frac{x}{2} - \frac{1}{4} \cos x - \frac{1}{2}$ (воспользоваться равенством $\frac{n}{n^2-1} =$ $\frac{1}{2}(\frac{1}{n-1}+\frac{1}{n+1}))$. **556.** $x(t)\equiv 1$. **557.** При $\lambda\neq 1,2,\ x(t)=t^2+\frac{1}{2}\frac{7\lambda}{6-5\lambda}t;$ при $\lambda = 1, 2$ решения нет. **558.** При $\lambda \neq \left\{\frac{1}{2}, \frac{3}{2}\right\}$ $x(t) = \sin \pi t + \frac{\frac{2}{\pi}\lambda}{1 - \frac{2}{\pi}\lambda}t;$ при $\lambda = \frac{1}{2} x(t) = \sin \pi t + \frac{3}{2\pi} t + C$; при $\lambda = \frac{3}{2}$ решения нет. **559.** При $\lambda \neq \pm \frac{2}{\pi} x(t) = 1 - \frac{4\lambda}{2+\lambda\pi} \sin t$; при $\lambda = \frac{2}{\pi} x(t) = 1 - \sin t + C \cos t$; при $\lambda = -\frac{2}{\pi}$ решений нет. **560.** При $\lambda \neq 1$ $x(t) = \frac{1}{\sqrt{1-t^2}} + \frac{\pi^2 \lambda}{8(1-\lambda)}$; при $\lambda = 1$ решений нет. **561.** При $\lambda \neq \pm \frac{1}{2} x(t) = 1 - \frac{2}{\pi} t - \frac{\lambda}{6} \frac{\pi^2}{1+2\lambda} \cos t$; при $\lambda = \frac{1}{2} x(t) = C - \frac{2}{\pi}t + (C\frac{\pi^2}{4} - \frac{\pi^2}{3})\cos t$; при $\lambda = -\frac{1}{2}$ решений нет. **562.** При $\lambda \neq \left\{-\frac{3}{2}, -\frac{3}{4}\right\}$ $x(t) = \frac{3\pi\lambda}{2(2\lambda+3)}\sin t + \cos 2t$; при $\lambda = -\frac{3}{4} x(t) = \cos 2t - \frac{2\pi}{4} \sin t + C \cos t$; при $\lambda = -\frac{3}{2}$ решений нет. **563.** При $\lambda \neq \left\{-\frac{5}{2}, \frac{3}{2}\right\}$ $x(t) = t^4 + \frac{35-10\lambda}{35+14\lambda}t^2$; при $\lambda = \frac{3}{2}$ x(t) = $t^4 + \frac{5}{14}t^2 + Ct$; при $\lambda = -\frac{5}{2}$ решений нет. **564.** При $\lambda \neq \left\{-\frac{1}{2}, \frac{3}{2}\right\}$ разрешимо для любого α $x(t) = \frac{3\alpha}{3-2\lambda}t$; при $\lambda = -\frac{1}{2}$ разрешимо при любом $\alpha \ x(t) = \frac{3}{4}(\alpha - C)t + Ct^2$; при $\lambda = \frac{3}{2}$ разрешимо только если $\alpha = 0$ x(t) = Ct. **565.** При $\lambda \neq \frac{3}{2}$ разрешимо при любых

 α, β, γ $x(t) = \alpha t^2 + \frac{3\beta}{3-2\lambda}t + \gamma$; при $\lambda = \frac{3}{2}$ разрешимо тогда и только тогда, когда $\beta = 0$ $x(t) = \alpha t^2 + \gamma + Ct$. **566.** $\lambda_1 = \frac{1}{\pi}$, $\varphi_1 = \frac{1}{\pi}$ $\sin t + \cos t; \ \lambda_2 = -\frac{1}{\pi}, \ \varphi_2 = \sin t - \cos t. \ \mathbf{567.} \ \lambda_1 = \frac{2}{\pi}, \ \varphi_1 = \frac{2}{\pi}$ $\cos t; \ \lambda_2 = -\frac{2}{\pi}, \ \varphi_2 = \sin t. \ \mathbf{568.} \ \lambda_1 = \lambda_2 = 3; \ \varphi = t - 2t^2. \ \mathbf{569.}$ $\lambda_1 = \frac{5}{2}, \ \varphi_1 = t^2; \ \lambda_2 = \frac{3}{2}, \ \varphi_2 = t.$ 570. $\lambda_n = \frac{2^{n+1}}{\pi}, \ \varphi_n = \sin nt.$ 571. $\lambda_n = (\frac{\pi}{2} + \pi n)^2, \ \varphi_n = \sin(\frac{\pi}{2} + \pi n)t. \ \mathbf{572.} \ \lambda_n = 4n^2 - 1, \ \varphi_n = \sin 2nt.$ **573.** $\lambda_0 = 1, \ \varphi_0 = e^t; \ \lambda_n = -\pi^2 n^2, \ \varphi_n = \sin \pi n t + \pi n \cos \pi n t.$ **574.** $\lambda_n=\frac{1}{2}(1+k_n^2),\; \varphi_n=k_n\cos k_nt+\sin k_nt,$ где k_n – положительные корни уравнения $2\operatorname{ctg} k = k - \frac{1}{k}$. **575.** $\lambda_n = -k_n^2, \ \varphi_n = \cos k_n(t-1),$ где k_n – корни уравнения $k = \operatorname{ctg} k$. **576.** $x(t) = e^t(t+1)$. **577.** $x(t) = e^{\frac{t^2}{2}}$. **578.** $x(t) = \frac{1}{1+t^2} + t \arctan t - \frac{1}{2} \ln(1+t^2)$. **579.** $x(t) = \cos t e^{-(t+\sin t)}$. **580.** $x(t) = 2e^t - 2\cos t + 5\sin t$. **581.** $x(t) = -e^{-t}$. **582.** $x(t) = -e^{-t}$ $\frac{1}{6}(e^t + 3\cos t + 3\sin t - 4e^{-\frac{t}{2}}\cos\frac{\sqrt{3}}{2}t)$. **583.** $x(t) \equiv 1$. **584.** $x(t) = t \cosh t$. **585.** $x(t) = \frac{1}{4}e^t + \frac{1}{4}e^{-\frac{t}{2}}(\frac{1}{\sqrt{7}}\sin\frac{\sqrt{7}}{2}t + 3\cos\frac{\sqrt{7}}{2}t)$. **586.** $x(t) = e^t$. **587.** x(t) = t. 588. $x(t) \equiv 1$. 589. $x(t) = 1 + t \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$. 590. $x(t) = e^{\frac{t^2}{2}}$. **591.** x(t) = 3t. **592.** $x(t) \equiv \frac{2}{3}$. **593.** x(t) = 1 - t. **594.** $x(t) = 4 \sin t$. **595.** $x(t) = \frac{2}{3}\cos t$. **600.** $\rho(x_0, L) = \frac{1}{2}$, $x^*(t) = \frac{1}{2}$. **601.** $t - \frac{1}{8}$. **602.** Множество элементов вида $\{y(t) \in C[0,1] : y(0) = 0, \ 0 \le y(t) \le 2$ для любого $t \in [0,1]$ }. **606.** $\rho_n(x,L) = \frac{1}{\sqrt{n}}$. **607.** 0,25. **608.** 0, 9t - 0, 2. **609.** $1,5t^2-0,6t+0,05.$

Список литературы

- [1] Колмогоров А.Н. Элементы теории функций и функционального анализа/А.Н. Колмогоров, С.В. Фомин. М.: Физматлит, 2004.
- [2] Треногин В.А. *Функциональный анализ*/ В.А. Треногин. М.: Наука, 1980.
- [3] Натансон И.П. *Теория функций вещественной переменной/* И.П. Натансон. М.: Гостехиздат, 1957.
- [4] Шилов Г.Е. Математический анализ. Второй специальный $\kappa ypc/$ Г.Е. Шилов. М.: МГУ, 1984.
- [5] Робертсон А. *Топологические векторные пространства*/ А. Робертсон, В. Робертсон. М.: Мир, 1967.
- [6] Лаврентьев М.М. Линейные операторы и некорректные зада-uu/ М.М. Лаврентьев, Л.Я. Савельев. М.: Наука, 1991.
- [7] Иосида К. Функциональный анализ/К. Иосида. М.: Мир, 1967.

- [8] Канторович А.В. Φ ункциональный анализ в нормированных npocmpancmeax/ А.В. Канторович, Г.П. Акилов. М.: Физматгиз, 1959.
- [9] Треногин В.А. Задачи и упраженения по функциональному анализу/ В.А. Треногин, Б.М. Писаревский, Т.С. Соболева. М.: Физматлит, 2002.
- [10] Беклемишев Д.В. *Курс аналитической геометрии и линейной* алгебры/ Д.В. Беклемишев. М.: Наука, 1984.
- [11] Владимиров В.С. *Обобщенные функции в математической фи*зике/ В.С. Владимиров. — М.: Наука, 1979.
- [12] Владимиров В.С. *Сборник задач по уравнениям математиче-ской физики*/ В.С. Владимиров, А.А. Вашарин. М.: Физматлит, 2001.
- [13] Пуляев В.Ф. Задачи по функциональному анализу/ В.Ф. Пуляев, З.Б. Цалюк. Краснодар: изд-во КубГУ, 1983.