Projeto de Algoritmo com Implementação nº 2

MC458 - 2s2020 - Tiago de Paula Alves - 187679

1 Definições

Um alpinista deve escalar uma parede representada por uma grade $n \times m$, em cada célula (i, j) da grade tem um custo $C_{i,j} > 0$ associado. O alpinista deve começar na base, linha 1, e chegar no topo, linha n, tentando minizar o grau de periculosidade (custo total) do caminho. Quando ele se encontra na célula (i, j), com $1 \le i < n$ e $1 \le j \le m$, os únicos movimentos possíveis são para as células (i+1, j-1), (i+1, j) ou (i+1, j+1), quando elas fazem parte da parede.

1.1 Definições Adicionais

Caminho até o Topo: Considere um caminho $P = (p_1, ..., p_k)$, sendo k a quantidade de vértices no caminho. Então, P é um *caminho até o topo* se ele termina em alguma célula do topo da parede, ou seja, $p_k = (n, j)$ para algum $1 \le j \le m$.

Risco: O grau de periculosidade ou risco R(P) de um caminho $P = (p_1, ..., p_k)$ é dado pela soma dos custos de cada célula do caminho, isto é,

$$R(P) = \sum_{1 \le i \le k} C_{p_i}$$

Risco Mínimo: O risco mínimo $R_{i,j}^*$ de uma célula (i,j) é o risco de um *caminho ótimo* de (i,j), ou seja, um caminho até o topo P com menor custo total R(P) dentre os caminhos partindo de (i,j).

2 Solução

Teorema (subestrutura ótima). Seja $k \ge 2$ e suponha um caminho $P = (p_1, p_2, \dots, p_k)$ até o topo partindo de p_1 e com risco mínimo $R(P) = R_{p_1}^*$. Então, o subcaminho (p_2, \dots, p_k) tem o menor risco possível partindo de p_2 .

Demonstração. Seja $S = (p_2, ..., p_k)$ o subcaminho de P mencionado e suponha um caminho até o topo $S' = (s_1, ..., s_l)$ partindo de $s_1 = p_2$, com risco $R(S') = R_{p_2}^*$ mínimo. Assim, temos o caminho $P' = (p_1, s_1, ..., s_l)$, com risco

$$R(P') = C_{p_1} + \sum_{i=1}^{l} C_{s_i} = C_{p_1} + R(S')$$

Suponha, por contradição, que R(S') < R(S). Então, temos que

$$R(P') = C_{p_1} + R(S')$$

$$< C_{p_1} + R(S)$$

$$= C_{p_1} + \sum_{i=2}^{k} C_{p_i}$$

$$= R(P)$$

Logo, P não é o caminho partindo de p_1 com menor risco, o que contradiz a suposição inicial.

Portanto, $R(S) \le R(S') = R_{p_2}^*$, isto é, S tem risco mínimo dentre os caminhos partindo de p_2 .

2.1 Fórmula de Recorrência

Podemos notar que o caminho das células do topo com risco mínimo devem conter apenas a própria célula, então, $R_{n,j}^* = C_{n,j}$ para $1 \le j \le m$. Agora, para as células que não estão no topo, vamos ter que qualquer

caminho até o topo, inclusive um caminho ótimo $P=(p_1,\ldots,p_k)$, terá no mínimo 2 vértices, ou seja, $k\geq 2$. Portanto, pela subestrutura ótima, temos que $R_{p_1}^*=C_{p_1}+R_{p_2}^*$.

Como p_1 deve ser uma célula válida, então temos $1 \le i < n$ e $1 \le j \le m$ tal que $p_1 = (i, j)$. No entanto, o alpinista só pode ir de (i, j) para as células superiores esquerda, central ou direita, isto é, $p_2 = (i+1, j-1)$ ou $p_2 = (i+1, j)$ ou $p_2 = (i+1, j+1)$, dado que essas posições são válidas. No caso geral, em que 1 < j < m, temos que

$$R_{i,j}^* = \min \left\{ C_{i,j} + R_{i+1,j-1}^*, C_{i,j} + R_{i+1,j}^*, C_{i,j} + R_{i+1,j+1}^* \right\}$$

Quando j-1 < 1 ou j+1 > n, podemos expandir a definição de risco mínimo para que $R_{i,j}^* = \infty$, mantendo a válidade do caso geral. Assim, temos a seguinte relação recorrente:

$$R_{n,j}^* = C_{n,j}$$
 para $1 \le j \le m$
 $R_{i,j}^* = \infty$ para $1 \le i \le n$ e $j < 1$ ou $j > m$
 $R_{i,j}^* = C_{i,j} + \min \left\{ R_{i+1,j-1}^*, R_{i+1,j}^*, R_{i+1,j+1}^* \right\}$ para $1 \le i < n$ e $1 \le j \le m$

Note que cada linha i depende apenas da linha superior i+1, com exceção do caso base i=n, que não depende de subcaminhos. Então, podemos calcular toda a matriz de risco mínimo $R_{i,j}^*$ a partir do topo da parede, sem necessidade de recursão ou memorização.

O resultado final R* do algoritmo é apenas menor dos riscos dentre os caminhos partindo da base, isto é

$$R^* = \min_{1 \leq j \leq m} \left\{ R_{1,j}^* \right\}$$

3 Algoritmo

O algoritmo foi baseado em programação dinâmica, seguindo a recorrência apresentada com pequenas modificações. Para evitar tratamento das bordas da matriz R e acessos repetidos, as variáveis R-esq, R-cen e R-esq foram usadas como uma janela dos possíveis risco mínimos partindo de (i, j), como mostra a figura 1.

Figura 1: Janela de possíveis subcaminhos.

Desse modo, só é necessário um novo acesso para a variável R-dir. Na última posição da linha, no entanto, (i+1,m+1) não é uma célula válida. Então, podemos usar a definição de risco mínimo expandida da seção Fórmula de Recorrência, tratando essa posição de forma especial.

Note que o algoritmo assume n e m positivos.

```
RISCO-MÍNIMO(C, n, m)
      Seja R[1..n][1..m] uma nova matriz.
 2
 3
      para j = 1 até m
 4
           R[n][j] \leftarrow C[n][j]
 5
 6
      para i = n - 1 descendo até 1
 7
           R-esg \leftarrow \infty
 8
           R-cen \leftarrow \infty
 9
           R-dir \leftarrow C[i][1]
10
11
           para j=1 até m-1
12
                R-esq \leftarrow R-cen
                R-cen \leftarrow R-dir
13
                R-dir \leftarrow R[i+1][j+1]
14
15
                R-min \leftarrow min(R-esq,R-cen,R-dir)
16
                R[i][j] \leftarrow C[i][j] + R-min
17
18
19
           R-esq \leftarrow R-cen
20
           R-cen \leftarrow R-dir
21
           R-dir \leftarrow \infty
22
23
           R-min \leftarrow min(R-esq,R-cen,R-dir)
24
           R[i][m] \leftarrow C[i][m] + R\text{-}min
25
26
      R-min \leftarrow R[1][1]
27
      para j = 2 até m
28
           R-min \leftarrow min(R-min, R[1][j])
29
      retorna R-min
```

3.1 Implementação

O programa foi implementado em linguagem C, onde as matrizes C e R foram representadas em um buffer sequencial com ordem row-major. Nessa representação, os elementos de uma mesma linha são guardados sequencialmente de forma que as posições (i,j) e (i,j+1) ficam próximas na memória, mas (i,j) e (i+1,j) podem ficar distantes.

Além disso, pode-se notar dos casos de teste que $n \le 100$, $m \le 2200$ e $C_{i,j} \le 99$. Então, o custo $C_{i,j}$ foi representado por um inteiro de 8 bits (uint8_t), já que sempre $C_{i,j} < 100 < 2^8$. O risco também pode ser limitado por

$$R_{p}^{*} \leq \max_{1 \leq i \leq n \text{ e } 1 \leq j \leq m} \left\{ R_{i,j}^{*} \right\}$$

$$= \max_{1 \leq j \leq m} \left\{ R_{1,j}^{*} \right\}$$

$$\leq \sum_{i=1}^{n} \max_{1 \leq j \leq m} \left\{ C_{i,j} \right\}$$

$$\leq \sum_{i=1}^{n} 99$$

$$= 99n$$

$$\leq 9900$$

$$< 2^{16}$$

Então, o risco foi representado com um inteiro de 16 bits (uint16_t). Por causa disso, o valor de infinito foi usado como UINT16_MAX, que é garantidamente maior ou igual a 2¹⁶. De qualquer forma, o código fonte foi pensado de forma a facilitar a alteração dessas restrições, com as macros CUSTO_WIDTH e RISCO_WIDTH.

4 Complexidade

Podemos assumir que as operações aritméticas e as de acesso tem ordem $\Theta(1)$. Logo, o tempo de execução t_i de cada uma dessas operações i pode ser limitado pelas constantes $a \le t_i \le b$. Assim, o tempo do algortimo apresentado na seção anterior, para n e m positivos, pode ser majorado por

$$T(n,m) \ge a + \sum_{j=1}^{m} a + \sum_{i=1}^{n-1} \left(a + \sum_{j=1}^{m-1} a \right) + \sum_{j=2}^{m} a$$

$$= a + ma + (n-1)(1 + (m-1)a) + (m-1)a$$

$$= nma + ma$$

$$\ge a \cdot nm$$

Da mesma forma, temos que

$$T(n,m) \le b + \sum_{j=1}^{m} b + \sum_{i=1}^{n-1} \left(b + \sum_{j=1}^{m-1} b \right) + \sum_{j=2}^{m} b \le 4b \cdot nm$$

Logo, a complexidade de tempo do algoritmo é $T(n,m) \in \Theta(nm)$.

Para o espaço, podemos ver que o único armazenamento adicional é da matriz R, com dimensões $n \times m$. Como a função não faz chamadas recursivas, temos que

$$E(n,m) = nm + \Theta(1) = \Theta(nm)$$

Assumindo que $m \in O(n)$, podemos afirmar então que a complexidade de tempo é $T(n) \in O\left(n^2\right)$ e de espaço também é $E(n) \in O\left(n^2\right)$.