

Outline

- Introduction to Deep Learning (DL)
- The History of DL
- Programming Tools
- Artificial Neural Networks
- Convolutional Neural networks
- Optimization in DL

OPTIMIZATION IN DEEP LEARNING

Anatomy of a ML

ML = Data + Model + Optimization

- **Learning** = optimization over data
- **Optimization**: the problem of finding a set of inputs to an objective function that results in a maximum or minimum function evaluation.
- Example: tea; if it is too hot, cannot drink, if it is too cold, you don't like it

Backpropagation Representation

The Algorithm

- Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})\}$
- Set $\Delta_{ii}^{(l)} = 0 \quad \forall l, i, j$
- For i = 1 to m do
 - Set $a^{(1)} = x^{(i)}$ #the input
 - Perform forward propagation to compute $a^{(1)}$ for l = 1, 3, ..., L
 - Using $y^{(1)}$ compute $\delta^{(L)} = a^{(L)} y^{(i)}$
 - Compute $\delta^{(L-1)}$, $\delta^{(L-2)}$,..., $\delta^{(2)}$ $\Delta^{(l)}_{ij} := \Delta^{(l)}_{ij} + a^{(l)}_{i} \delta^{(l+1)}_{i}$ #there is no $\delta^{(1)}$ because there is no error in the input layer
- Find the partial derivative:

•
$$\begin{cases} j \neq 0 \Rightarrow D_{ij}^{(l)} \coloneqq \frac{1}{m} \Delta_{ij}^{(l)} + \lambda \Theta_{ij}^{(l)} \\ j = 0 \Rightarrow D_{ij}^{(l)} \coloneqq \frac{1}{m} \Delta_{ij}^{(l)} \end{cases}$$
partial derivative of the cost function (Can be used in an optimization algorithm)

Parameter

Parameters Initialization

- The parameters need to be initialized prior to the network training.
- Initialize the weights randomly
- Initialize the biases to zero.

Parameters Updates

- e.g. optimization in ANNs, how to update the weights based on the loss function?
- Learning rate, α

Optimizers

- Gradient Descent
- Stochastic Gradient Descent
- Mini-batch Stochastic Gradient Descent
- Momentum
- Adagrad
- RMSProp
- Adadelta
- Adam
- •

- By far the most common way to optimize ANNs.
- To minimize an objective function $J(\theta)$.
- By updating the parameters in the opposite direction of the gradient of the objective function $\nabla_{\theta} J(\theta)$ w.r.t to the parameters.

$$\theta = \theta - \alpha . \nabla J(\theta)$$

- Learning rate: the size of the steps to reach a (local) minima.
- Advantages:
 - Easy computation
 - Easy to implement
 - Easy to understand

- Disadvantages:
 - May trap at local minima
 - Changes in weights after gradient computation
 - Requires large memory

- Variants in terms of how much data need to compute the gradient of the objective function:
 - Batch gradient descent
 - Stochastic gradient descent
 - Mini-batch gradient descent

• Batch Gradient descent:

- Inject all data at once.
- A high risk of getting stuck
- For ANNs, it is better to have an input with some randomness.

• Stochastic gradient descent:

- A single random sample is introduced on each iteration.
- The gradient is calculated for that specific sample only.
- Implying the introduction of the desired randomness
- Making more difficult the possibility of getting stuck

$$\theta = \theta - \alpha . \nabla J(\theta; x(i); y(i))$$

• x(i), y(i) training samples

• Mini-batch gradient descent:

- N random items are introduced on each iteration.
- Getting faster training due to the parallelization of operations.
- Cost function is calculated for each mini-batch.
- Calculate the gradient as the multi-variable derivative of the cost function with respect to all the network parameters.
 - e.g. the slope of the tangent line to the cost function at a given point.

$$\theta = \theta - \alpha . \nabla J(\theta; B(i))$$

• B(i) the batches of training samples

- Example: Consider a network with 2 parameters
- The cost function is in 3D
 - *X*: parameter 1
 - *Y*: parameter 2
 - Z: cost/loss value

- Update network parameters by subtracting the corresponding gradient value from their current value, multiplied by a learning rate
- Learning rate is to adjust the magnitude of the steps.
- Repeat all these steps as long as the loss value and the output metrics don't start to steadily worsen.

• Learning rate

• $\alpha \in [0, \infty)$

However, it is not always two parameters!

- To compute the gradient:
 - Numerical gradient
 - Slow,
 - Not accurate e.g. returns an approximate,
 - Easy
 - Just use to be validate the results of the other ways

• Analytic gradient

- Fast,
- Exact,
- More error-prone
- Used in practice

Numerical gradient:

- In a 1D space
- e.g. the slope

•
$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- In a multi dimension, the gradient is a vector of partial derivatives along each dimension.
- Example) For a function: $f(u_1, u_2, u_3)$
- Gradient in the curvilinear coordinates: $\nabla \phi = \frac{1}{h_1} \frac{\partial \phi}{\partial u_1} \hat{u}_1 + \frac{1}{h_2} \frac{\partial \phi}{\partial u_2} \hat{u}_2 + \frac{1}{h_3} \frac{\partial \phi}{\partial u_3} \hat{u}_3$
- Gradient in Cartesian coordinate: $\nabla f = \frac{\partial f}{\partial x}i + \frac{\partial f}{\partial y}j + \frac{\partial f}{\partial z}k$

Numerical gradient:

• Example:

		Gradient vector
$ heta_1$	$\theta_1 + h$	$d(heta_1)$
0.34	0.34 + 0.0001	-2.5
-1.11	-1.11	
0.78	0.78	
0.12	0.12	
0.55	0.55	
2.81	2.81	
-3.10	-3.10	
-1.50	-1.50	
0.33	0.33	
•••	•••	
Cost : 1.25347	Cost: 1.25322	

Gradient Vector

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{(1.25322 - 1.25347)}{0.0001} = -2.5$$

Numerical gradient:

Gradient Vector

• Example:

$ heta_1$	$\theta_1 + h$	$d(\theta_1)$
0.34	0.34	-2.5
-1.11	-1.11+0.0001	-0.60
0.78	0.78	
0.12	0.12	
0.55	0.55	
2.81	2.81	
-3.10	-3.10	
-1.50	-1.50	
0.33	0.33	
•••	•••	
Loss: 1.25347	Loss: 1.25353	

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{(1.25353 - 1.25347)}{0.0001} = -0.6$$

• Repeat for the other records.

Analytic gradient:

- Using Calculus
- By deriving a direct formula for the gradient (no approximations)
- Compute the gradient of the loss function:

•
$$J(\theta) = \frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log(h_{\theta}(x^{(i)}))_k + \left(1 - y_k^{(i)}\right) \log\left(1 - h_{\theta}(x^{(i)})\right)_k \right] + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{S_l} \sum_{j=1}^{S_l+1} \left(\theta_{ji}^{(l)}\right)^2$$

- $J(\theta_1) = ...$
- $\nabla_{\theta} J(\theta) = \cdots$

while **True**:

```
gradient = evaluat_gradient(cost_fun, data, weithts)
weights += -(step_size * gradient) #paramter update
```


- Analytic gradient:
 - Move in opposite direction of the gradient vector

Mini-batch GD:

- Improves the optimization of the weights
- Cost decreases over the time

Stochastic Mini-batch GD:

- SGD: rather than computing the loss and gradient over the entire training set, instead at every iteration, we sample small set of training examples [mini-batch]
- Then, use those mini-batches to compute of the full sum and estimate the true gradient
- Batch size: 32, 64, 128, 256

while **True**:

```
data_batch = sample_training_data(data, 256)
gradient = evaluat_gradient(cost_fun, data, weithts)
weights += -(step_size * gradient) #update weights
```


- GD algorithms:
 - Momentum
 - Nesterov accelerated gradient
 - Adagrad
 - Adadelta
 - RMSprop
 - Adam
 - Adamax
 - Nadam
 - AMSGrad

Momentum

- It gives a kind of 'inertia' to the process of moving through GD.
- Updating the network parameters by adding an extra term
- The term considers the value of the last iteration update,
- So the previous gradients will be taken into account in addition to the current one.
- When a motion vector at time t, the motion is:

$$v_t = \gamma . \Delta v_{t-1} - \eta_t . \nabla_v J(\theta)$$

$$\theta = \theta - v_t \text{ #weight update}$$

 γ : the momentum term, 0.9

 ν : the moving term, e.g. how much it moved in the past

Momentum

- Solve the issue when SGD undergoes oscillation.
- Momentum applies inertia in the direction of the frequent movement.

Momentum

Nestrov Accelerated Gradient (NAG)

- Based on the Momentum method
- Considers the momentum step first,
- If so, then moves the gradient step by obtaining the gradient at that location

$$v_t = \gamma v_{t-1} \nabla_{\theta} J(\theta - \gamma v_{t-1})$$
$$\theta = \theta - v_t$$

Moves more effectively than the momentum

Adaotive Gradient (Adagrad)

- Moving by setting the step size differently for each variable when update variables.
- Increases the step size for variables that have not changed much so far
- Reduce the step size for variables that have changes much so far

$$G_t = G_{t-1} + \left(\nabla_{\theta} J(\theta_t)\right)^2$$

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{G_t + \epsilon}} \nabla_{\theta} J(\theta_t)$$

RMSProp: root mean square propagation

- To solve the shortcoming of Adagrad
- Obtained by the squared value of the gradient in Adagrads equation, G_t
- The learning rate is adapted for each parameter.
- Improves the latter by including the exponential moving average of the squared gradient

$$G = \gamma G + (1 - \gamma) (\nabla_{\theta} J(\theta_t))^2$$

$$\theta = \theta - \frac{\eta}{\sqrt{G_t + \epsilon}} \nabla_{\theta} J(\theta_t)$$

Adaptive Moment Estimation (Adam)

- A combination of RMSprop with Momentum
- Fast performance
- Like the Momentum; stores the exponential average of the slope calculated so far
- Like RMSProp: stores the exponential average of the square value of the gradient

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) \nabla_{\theta} J(\theta)$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) (\nabla_{\theta} J(\theta))^2$$

• m_t and v_t initially zero

$$\widehat{m}_t = \frac{m_t}{1 - \beta_1^t}$$

$$\widehat{v}_t = \frac{v_t}{1 - \beta_2^t}$$

$$\theta = \theta - \frac{\eta}{\sqrt{\widehat{v}_t + \epsilon}} \widehat{m}_t$$

• Comparison:

Cost Function

Visualizing the cost function

- If there is only one parameter, then easy to draw
- But not practical for high-dimensional spaces
- e.g. in CIFAR-10 has 30,730 parameters

$oldsymbol{ heta_1}$	$J(\theta_1)$
0	2.3
1	0
0.5	0.58
•••	•••

Cost Function

Visualizing the cost function

- For high-dimensional space:
 - Generate a random weight matrix θ
 - θ corresponds to a single point in the space
 - Then, generate a random directions θ_1
 - Compute the loss along this direction by evaluating $J(\theta + a\theta_1)$ for different values of a

Gradient Optimization

ANN cost function:

$$J(\Theta) = \frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log(h_{\theta}(x^{(i)}))_k + \left(1 - y_k^{(i)}\right) \log\left(1 - h_{\theta}(x^{(i)})\right)_k \right] + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{S_l} \sum_{j=1}^{S_l+1} \left(\Theta_{ji}^{(l)}\right)^2$$

Goal: to minimize the cost function, $\min_{\Theta} J(\Theta)$

- We need code to compute:
 - Cost function: $J(\Theta)$
 - Partial derivative terms: $\frac{\partial}{\partial \Theta_{ij}^{(l)}}$

• For simplicity at this time just consider one parameter, e.g. θ_0 =0:

Hypothesis:
$$h_{\theta}(x) = \theta_1 x$$

Parameters: θ_1

Goal: $\min_{\theta_0,\theta_1} J(\theta_1)$

Hypothesis

$$h_{\theta}(x)$$

(for fixed θ_1 , this is a function of x)

Cost Function

$$J(\theta_1)$$

(Function of the parameter θ_1)

$ heta_1$	$J(\theta_1)$
0	2.3
1	0
0.5	0.58
•••	•••

Hypothesis

$$h_{\theta}(x)$$

(for fixed θ_0 and θ_1 , this is a function of x)

$$h_{\theta}(x) = 50 + 0.06x$$

Cost Function

 $J(\theta_0, \theta_1)$

(Function of the parameters θ_0 and θ_1)

Cost Function

Hypothesis

$$h_{\theta}(x) = \theta_1 x$$

(for fixed θ_0 and θ_1 , this is a function of x)

Cost Function

$$J(\theta_0, \theta_1)$$

(Function of the parameters θ_0 and θ_1)

By adjusting the regression line we move toward the global minima point

- We start by some random value for θ_0 , θ_1
- We take some step towards minimum points.

- $J(\theta_0, \theta_1)$
- Define a vector $\mathbf{\Theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$
- Transpose of $\mathbf{\Theta}^{\mathbf{T}} = [\theta_0^{\mathsf{T}} \ \theta_1]$
- $\nabla J(\theta_0, \theta_1) = \begin{bmatrix} \frac{\partial J}{\partial \theta_0} \\ \frac{\partial J}{\partial \theta_1} \end{bmatrix}$
- $-\nabla J(\theta_0, \theta_1) = \begin{bmatrix} -\frac{\partial J}{\partial \theta_0} \\ -\frac{\partial J}{\partial \theta_1} \end{bmatrix}$

The Algorithm

$$repeat\ until\ convergence\ \{$$

$$\theta_{j}\coloneqq\theta_{j}-\alpha\frac{\partial}{\partial\theta_{j}}J(\theta_{0},\theta_{1})\qquad \qquad for\ j=0, j=1$$

$$\}$$

• Simultaneous update θ_0 , θ_1

$$temp0 \coloneqq \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \qquad temp1 \coloneqq \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$
$$\theta_0 \coloneqq temp0 \qquad \theta_1 \coloneqq temp1$$

• Suppose we have one parameter

$$\min_{\theta_1} J(\theta_1) \qquad \quad \theta_1 \in \mathbb{R}$$

$$\theta_1 \coloneqq \theta_1 - \alpha \left(\frac{\partial}{\partial \theta_1} J(\theta_1) \right)$$

$$\frac{\partial}{\partial \theta_1} J(\theta_1) \ge 0$$

$$\theta_1 \coloneqq \theta_1 - \alpha(positive\ number)$$

- Lets try another example:
- Suppose we have one parameter

$$\min_{\theta_1} J(\theta_1) \qquad \theta_1 \in \mathbb{R}$$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\frac{\partial}{\partial \theta_1} J(\theta_1) \le 0$$

$$\theta_1 \coloneqq \theta_1 - \alpha(negative\ number)$$

• Learning rate:

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

- Small α : gradient descent can be slow.
- Large α :, overshoot the minimum.
 - e.g. may fail to converge, or even diverge.

• What if the starting point is at **local optima**?

• Gradient descent can converge to a local minimum, even with the learning α **fixed**.

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

- As we approached a local minimum, gradient descent will automatically take smaller steps.
- So, no need to decrease α over time.

Sources

- Algorithms for Optimization, 2019.
- Essentials of Metaheuristics, 2011.
- <u>Computational Intelligence: An Introduction</u>, 2007.
- Introduction to Stochastic Search and Optimization, 2003.

Convex Optimization
Stephen Boyd and Lieven
Vandenberghe
Cambridge University Press

