Versuch 7

Operationsverstärker

Gruppe: Tisch: Versuchsdatum:	·	
Teilnehmer:		
Korrekturen:		
Testat:		

Lernziel

Zweck dieser Übung ist es, grundlegende Kenntnisse über OP-Verstärker und deren Anwendung in einfachen Grundschaltungen zu vermitteln.

Hinweis

Kenndaten des Operationsverstärkers:

• OPV Typ: CA3140

• Impedanz (unbeschaltet): $Z_{ein} = 1.5 \text{ T}\Omega$, $Z_{out} = 60 \Omega$,

• Betriebspannung: ±15 V,

Spannungsverstärkung: Vo =100dB
 Max. Ausgangsstrom: i_{out} < 5mA

Vorzubereitende Themen

Operationsverstärkerschaltungen

Vorausberechnungen

keine

Regeln zur Versuchsdurchführung und Protokollerstellung

⇒ siehe Durchführungshinweise zum Praktikum!

1. Nicht-invertierender Verstärker

1.1 Eigenschaften des nicht-invertierenden Verstärkers

- a) Bestimmen Sie für die Frequenz f = 1 kHz und einen Verstärkungsfaktor v = 10 die maximale Eingangsspannung ue, um eine unverzerrte Ausgangsspannung ua zu erhalten.
- R_2 R_1 Abb. 1
- b) Stellen Sie für diese Frequenz die Kennlinie $u_a = f(u_e) dar (Hinweis: x/y-Betrieb).$
- c) Skizzieren Sie den Amplitudengang u_a(f) im einfach-logarithmischen Maßstab (100Hz ... 1MHz). Ermitteln Sie aus dem Amplitudengang die obere Grenzfrequenz des Verstärkers (Abfall auf das $1/\sqrt{2}$ -fache der Bezugsgröße).

Anm.: Messung c) mit Sinussignal

1.2 Untersuchen Sie das Verhalten eines Impedanzwandlers.

Führen Sie die gleichen Untersuchungen, wie unter 1.1 c) durch und tragen Sie den Amplitudengang in dasselbe Diagramm ein.

≣

2. Invertierender Verstärker

- a) Bestimmen Sie für f=1 KHz und V=10 die maximale Eingangsspannung für unverzerrte Ausgangsspannung.
- b) Stellen Sie für diese Frequenz die Kennlinie $u_a = f(u_e)$ dar.
- c) Skizzieren Sie den Amplitudengang im einfach- logarithmischen Maßstab (100Hz ... 1MHz) und ermitteln Sie die obere Grenzfrequenz.

Anm.: Messung c) mit Sinussignal

 R_2

3. Nicht-invertierender Schmitt-Trigger

Vertauschen sie jetzt die Eingänge des OP.

Die Schaltung verhält sich jetzt wie ein Schmitt-Trigger und es gilt:

$$U_{e,ein} = -(R_1/R_2) U_{a,min}$$

$$U_{e,aus} = -(R_1/R_2) U_{a,max}$$

Stellen Sie für eine Frequenz von 1kHz (Sinus) die Ein- und Ausgangsspannung dar.

U_e Abb. 4

 R_1

Wie groß ist bei dieser Beschaltung die Hysterese?

4. Integrator

Integrieren Sie die vorgebene Eingangsspannung.

Eingangssignal: Rechteck, $U_{pp} = 2 \text{ V}$, f=2kHz

Baueile: $R = 10k\Omega$

 $C = 0.1 \mu F$

Bei der Integration einer Wechselspannung stört der eventuell vorhandene Gleichanteil.

Wie ist das Problem beherrschbar?

