

Electrical Engineering Principles and Applications

SEVENTH EDITION

Allan R. Hambley

List of Examples

Chapter 1			2.20	Thévenin Equivalent of a Circuit with a Dependent Source	115
1.1	Determining Current Given Charge	29	2.21	Norton Equivalent Circuit	117
1.2	Power Calculations	34	2.22	Using Source Transformations	119
1.3	Energy Calculation	35		Determining Maximum Power Transfer	122
1.4	Kirchhoff's Current Law	38		Circuit Analysis Using Superposition	126
1.5	Kirchhoff's Voltage Law	42		Using a Wheatstone Bridge to	128
1.6	Resistance Calculation	49		Measure Resistance	
1.7	Determining Resistance for Given Power and Voltage Ratings	51	Chapter 3		
1.8	Circuit Analysis Using Arbitrary References	53	3.1	Determining Current for a Capacitance Given Voltage	150
1.9	Using KVL, KCL, and Ohm's Law to Solve a Circuit	54	3.2	Determining Voltage for a Capacitance Given Current	152
Cha	apter 2		3.3	Current, Power, and Energy for a Capacitance	154
2.1	Combining Resistances in Series	69	3.4	Capacitances in Series and Parallel	157
2.2	and Parallel Circuit Analysis Using Series/Parallel	72	3.5	Calculating Capacitance Given Physical Parameters	159
	Equivalents		3.6	What Happened to the Missing Energy?	161
2.3	Application of the Voltage-Division Principle	76	3.7	Voltage, Power, and Energy for an Inductance	165
2.4	Applying the Current- and Voltage-Division Principles	77	3.8	Inductor Current with Constant Applied Voltage	166
2.5	Application of the Current-Division Principle	78	3.9	Inductances in Series and Parallel	168
2.6	Node-Voltage Analysis	83	3.10	Integration and Differentiation Using the	174
2.7	Node-Voltage Analysis	86		MATLAB Symbolic Toolbox	
2.8	Node-Voltage Analysis	88	Cha	apter 4	
2.9	Node-Voltage Analysis	90		•	100
2.10	Node-Voltage Analysis with a Dependent Source	94	4.1	Capacitance Discharging Through a Resistance	190
2.11	Node-Voltage Analysis with a	95	4.2	First-Order RC Circuit	192
	Dependent Source		4.3	Steady-State DC Analysis	194
2.12	Node Voltage Analysis	96	4.4	RL Transient Analysis	196
2.13	Mesh-Current Analysis	102	4.5	RL Transient Analysis	198
2.14	Mesh-Current Analysis	103	4.6	Transient Analysis of an RC Circuit	203
2.15	Writing Mesh Equations Directly in Matrix Form	105	4.7	with a Sinusoidal Source Analysis of a Second-Order Circuit	210
2.16	Mesh-Current Analysis with Controlled Sources	108	4.8	with a DC Source Computer-Aided Solution of a	219
2.17	Mesh Current Analysis	109		First-Order Circuit	
2.18	Determining the Thévenin Equivalent Circuit	112	4.9	Computer-Aided Solution of a Second-Order Circuit	221
2.19	=	114	4.10	Computer-Aided Solution of a System of Differential Equations	223

Chapter 5			7.4	Converting Binary Numbers to Decimal	
	•	220	7.5	Adding Binary Numbers	381
	Power Delivered to a Resistance by a Sinusoidal Source	239	7.6	Converting Octal Numbers to Decimal	382
5.2	RMS Value of a Triangular Voltage	240	7.7	Converting Hexadecimal Numbers to Decimal	382
5.3	Using Phasors to Add Sinusoids	245	7.8	Converting Octal and Hexadecimal	382
5.4	Combining Impedances in Series	251		Numbers to Binary	
5 5	and Parallel	252	7.9	Converting Binary Numbers to Octal or Hexadecimal	383
5.5	Steady-State AC Analysis of a Series Circuit	253	7.10	Subtraction Using Two's-Complement	386
5.6	Series and Parallel Combinations of	255	7.10	Arithmetic	360
	Complex Impedances		7.11	Using a Truth Table to Prove a	390
5.7	Steady-State AC Node-Voltage Analysis	257		Boolean Expression	
5.8	Steady-State AC Mesh-Current Analysis	258	7.12	Applying De Morgan's Laws	393
5.9	AC Power Calculations	267	7.13	Combinatorial Logic Circuit Design	397
5.10	Using Power Triangles	269	7.14	Finding the Minimum SOP Form for a Logic Function	404
5.11	Power-Factor Correction	271	7.15	Finding the Minimum POS Form for	405
5.12	Thévenin and Norton Equivalents	273	,,10	a Logic Function	100
5.13	Maximum Power Transfer	276	Cl.	antan O	
5.14	Analysis of a Wye-Wye System	284	Cna	apter 8	
5.15	Analysis of a Balanced Delta–Delta System	287	8.1	An Assembly-Language Program	451
5 16	Phasor Mesh-Current Analysis with	292	8.2	Absolute Value Assembly Program	451
3.10	MATLAB		8.3	Manual Conversion of Source Code to Machine Code	452
Cha	apter 6		8.4	Subroutine Source Code	453
<i>6</i> 1	Line the Transfer Function to	211	8.5	Sensor Loading	457
6.1	Using the Transfer Function to Determine the Output	311	8.6	Specifications for a Computer-Based Measurement System	469
6.2	Using the Transfer Function with Several Input Components	313	Cha	apter 9	
6.3	Calculation of RC Lowpass Output	319			40.4
6.4	Decibels and Logarithmic Frequency Scales	325	9.1	Load-Line Analysis	484
6.5	Determination of the Break Frequency	332	9.2	Load-Line Analysis	485
	for a Highpass Filter	227	9.3	Load-Line Analysis of a Zener-Diode Voltage Regulator	487
6.6	Series Resonant Circuit	337	9.4	Analysis of a Zener-Diode Regulator	488
6.7	Parallel Resonant Circuit	340		with a Load	
6.8	Cascaded Ideal Filters	342	9.5	Analysis by Assumed Diode States	491
6.9	Filter Design	347	9.6	Piecewise-Linear Model for a	493
6.10	Computer-Generated Bode Plot	348	0.7	Zener Diode	1.404
6.11	Step Response of a First-Order Digital Lowpass Filter	354	9.7 Ch	Analysis Using a Piecewise-Linear Model	1 494
Chapter 7			Clia	apter 10	
	•	200	10.1	C I	528
7.1 7.2	Converting a Decimal Integer to Binary Converting a Decimal Fraction to Binary	380	10.2	Calculating Performance of Cascaded Amplifiers	530
7.2 73	Converting a Decimal Fraction to Binary Converting Decimal Values to Binary	381	10.3	Simplified Model for an Amplifier Cascade	531
7.3	Converting Decimal values to binary	J01	10.3	Simplified Proder for all Amplifier Cascade	JJ1

10.4	Amplifier Efficiency	533	13.7	Determining Worst-Case DC Output	693
10.5	Determining the Current-Amplifier Model from the Voltage-Amplifier Model	535	13.8	Lowpass Active Filter Design	703
10.6	Determining the Transconductance-Amplifier Model	537		apter 14	
10.7	Determining the Transresistance-Amplifier Model	538		Magnetic Field around a Long Straight Wire	725
10.8	Determining Complex Gain	543	14.2	Flux Density in a Toroidal Core	726
	Amplitude Distortion	547	14.3	Flux and Flux Linkages for a	727
	Phase Distortion	548	14.4	Toroidal Core The Toroidal Coil as a Magnetia Circuit	729
10.11	Determination of the Minimum	559		The Toroidal Coil as a Magnetic Circuit A Magnetic Circuit with an Air Gap	729
	CMRR Specification				731
10.12	Calculation of Worst-Case DC Output Voltage	563		A Magnetic Circuit with Reluctances in Series and Parallel	
C_1	. 11		14.7	Q 11-1 11-11-11-1	734
	apter 11	502	14.8	Calculation of Inductance and Mutual Inductance	736
11.1	Plotting the Characteristics of an NMOS Transistor	583	14.9	Determination of Required Turns Ratio	742
11.2	Determination of <i>Q</i> Point for the Fixed- plus Self-Bias Circuit	590	14.10	Analysis of a Circuit Containing an Ideal Transformer	744
11 3	Determination of g_m and r_d from the	595	14.11	Using Impedance Transformations	746
11.0	Characteristic Curves		14.12	Reflecting the Source to the Secondary	747
11.4	Gain and Impedance Calculations for a Common-Source Amplifier	599		Regulation and Efficiency Calculations	750
11.5	Gain and Impedance Calculations for a Source Follower	603		apter 15	
α_1	. 12			Motor Performance Calculations	772
Cha	apter 12			Idealized Linear Machine	775
12.1	Determining β from the Characteristic	624		DC Machine Performance Calculations	784
	Curves			Shunt-Connected DC Motor	787
12.2	Load-Line Analysis of a BJT Amplifier	627	15.5	Series-Connected DC Motor	792
12.3	Determining the Operating Region of a BJT	635	15.6	Separately Excited DC Generator	801
12.4	Analysis of the Fixed Base Bias Circuit	636	Cha	apter 16	
12.5	Analysis of the Fixed Base Bias Circuit	637			
12.6	Analysis of a BJT Bias Circuit	638		Induction-Motor Performance	826
12.7	Analysis of the Four-Resistor Bias Circuit	641	16.2	Starting Current and Torque	829
12.8	Common-Emitter Amplifier	648	16.3	Induction-Motor Performance	830
12.9	Emitter-Follower Performance	654	16.4	Synchronous-Motor Performance	838
Cha	apter 13		16.5	Power-Factor Control	840
	Analysis of an Inverting Amplifier	671	Ap	pendix A	
13.2	Design of a Noninverting Amplifier	679	A. 1	Complex Arithmetic in Rectangular Form	857
13.3	Amplifier Design	680	A.2	Polar-to-Rectangular Conversion	858
13.4	Summing Amplifier Design	681	A.3	Rectangular-to-Polar Conversion	859
13.5	Open-Loop and Closed-Loop Bode Plots	686	A.4	Exponential Form of a Complex Number	861
13.6	Full-Power Bandwidth	691	A.5	Complex Arithmetic in Polar Form	862

Electrical Engineering

Principles and Applications

Electrical Engineering Principles and Applications

SEVENTH EDITION

GLOBAL EDITION

Allan R. Hambley

Department of Electrical and Computer Engineering Michigan Technological University arhamble@mtu.edu

Vice President and Editorial Director, ECS: Marcia J. Horton

Editor-in-Chief: Julian Partridge Portfolio Manager: Julie Bai

Portfolio Manager Assistant: Michelle Bayman

Acquisitions Editor, Global Edition: Sourabh Maheshwari

Executive Marketing Manager: Tim Galligan Director of Marketing: Christy Lesko

Field Marketing Manager: Demetrius Hall

Marketing Assistant: Jon Bryant

Managing Content Producer: Scott Disanno

Project Editor, Global Edition: K.K. Neelakantan

Global HE Director of Vendor Sourcing and

Procurement: Diane Hynes Director of Operations: Nick Sklitsis

Operations Specialist: Maura Zaldivar-Garcia

Senior Manufacturing Controller, Global Edition: Angela

Hawksbee

Manager, Media Production, Global Edition: Vikram Kumar

Creative Director: Blair Brown

Cover Design: Lumina Datamatics, Inc. Cover Image: alexfan32 / Shutterstock

Manager, Rights and Permissions: Ben Ferrini

Full-Service Project Management: SPi Global/Shylaja

Gattupalli

MATLAB is a registered trademark of The MathWorks, Inc. Company and product names mentioned herein are the trademarks or registered trademarks of their respective owners.

Pearson Education Limited

KAO Two KAO Park Harlow CM17 9NA United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

© Pearson Education Limited 2019

The rights of Allan R. Hambley to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Electrical Engineering: Principles and Applications, 7th Edition, ISBN 978-0-13-448414-3 by Allan R. Hambley, published by Pearson Education © 2018.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

10987654321

Typeset by SPi Global® Printed and bound by Vivar in Malaysia ISBN 10: 1-292-22312-X ISBN 13: 978-1-292-22312-4 To my family Judy, Tony, Pam, and Mason and to my special friend, Carol

Practical Applications of Electrical Engineering Principles

1.1
Using Resistance to Measure Strain 50
2.1 An Important Engineering Problem: Energy-Storage Systems for Electric Vehicles 122
3.1 Electronic Photo Flash 170
4.1 Electronics and the Art of Automotive Maintenance 218
6.1 Active Noise Cancellation 316
7.1Biomedical Engineering Application of Electronics: Cardiac Pacemaker 414
8.1 Fresh Bread Anyone? 436
8.2 The Virtual First-Down Line 465
10.1 Electronic Stud Finder 561
11.1 Where <i>Did</i> Those Trout Go? 605
12.1 Soup Up Your Automobile by Changing Its Software? 630
13.1 Mechanical Application of Negative Feedback: Power Steering 677
15.1
Magnetic Flowmeters, Faraday, and The Hunt for Red October 778

Contents

Practical Applications of	3.3 Physical Characteristics of Capacitors 158
Electrical Engineering Principles 8	3.4 Inductance 162
Preface 13	3.5 Inductance in Series and Parallel 16'
	3.6 Practical Inductors 169
1	3.7 Mutual Inductance 172
1	3.8 Symbolic Integration and
Introduction 21	Differentiation Using MATLAB 173
1.1 Overview of Electrical Engineering 22 1.2 Circuits, Currents, and Voltages 26	Summary 177 Problems 178
1.3 Power and Energy 331.4 Kirchhoff's Current Law 36	A
1.5 Kirchhoff's Voltage Law 40	4
1.6 Introduction to Circuit Elements 43	Transients 187
1.7 Introduction to Circuits 51	4.1 First-Order <i>RC</i> Circuits 188
Summary 55	4.2 DC Steady State 193
Problems 56	4.3 RL Circuits 195
	4.4 <i>RC</i> and <i>RL</i> Circuits with General
2	Sources 200
Resistive Circuits 66	4.5 Second-Order Circuits 206
	4.6 Transient Analysis Using the MATLA
2.1 Resistances in Series and Parallel 67	Symbolic Toolbox 219
2.2 Network Analysis by Using Series	Summary 225 Problems 225
and Parallel Equivalents 71Voltage-Divider and Current-Divider	1 Toblems 223
Circuits 75	~
2.4 Node-Voltage Analysis 80	5
2.5 Mesh-Current Analysis 100	Steady-State Sinusoidal Analysis 235
2.6 Thévenin and Norton Equivalent	5.1 Sinusoidal Currents and Voltages 236
Circuits 110	5.2 Phasors 242
2.7 Superposition Principle 123	5.3 Complex Impedances 248
2.8 Wheatstone Bridge 127	5.4 Circuit Analysis with Phasors and
Summary 130	Complex Impedances 253
Problems 131	5.5 Power in AC Circuits 259
	5.6 Thévenin and Norton Equivalent
3	Circuits 272 5.7 Balanced Three-Phase Circuits 278
Inductance and Capacitance 147	5.7 Balanced Three-Phase Circuits 2785.8 AC Analysis Using MATLAB 290
3.1 Capacitance 148	Summary 294
3.2 Capacitances in Series and Parallel 155	Problems 295
5.2 Capacitances in Series and Farance 133	1100101110 270

	ency Response, Bode Plots, esonance 307	8.8 8.9	Signal Conditioning 460 Analog-to-Digital Conversion 467 Summary 470 Problems 472
6.1 6.2 6.3	Fourier Analysis, Filters, and Transfer Functions 308 First-Order Lowpass Filters 316 Decibels, the Cascade Connection, and Logarithmic Frequency Scales 321	9.1 9.2	s 479 Basic Diode Concepts 480
6.5 6.6 6.7	Bode Plots 326 First-Order Highpass Filters 329 Series Resonance 333 Parallel Resonance 338 Ideal and Second-Order Filters 341 Bode Plots with MATLAB 348	9.3 9.4 9.5 9.6 9.7 9.8	Circuits 483 Zener-Diode Voltage-Regulator Circuits 486 Ideal-Diode Model 490 Piecewise-Linear Diode Models 492 Rectifier Circuits 495
7	Circuite 275	10	
7.1 7.2	Circuits 375 Basic Logic Circuit Concepts 376 Representation of Numerical Data	Ampli	fiers: Specifications and External cteristics 523
7.3 7.4 7.5 7.6	in Binary Form 379 Combinatorial Logic Circuits 387 Synthesis of Logic Circuits 395 Minimization of Logic Circuits 401 Sequential Logic Circuits 406 Summary 417 Problems 418	10.1 10.2 10.3 10.4 10.5	Basic Amplifier Concepts 524 Cascaded Amplifiers 529 Power Supplies and Efficiency 532 Additional Amplifier Models 535 Importance of Amplifier Impedances in Various Applications 538 Ideal Amplifiers 541 Frequency Response 542
8		10.8	Linear Waveform Distortion 547
Computers, Microcontrollers and Computer-Based Instrumentation Systems 428		10.9 10.10 10.11	Pulse Response 551 Transfer Characteristic and Nonlinear Distortion 554 Differential Amplifiers 556
8.1 8.2 8.3 8.4	Digital Process Control 434	10.12	
8.5	The Instruction Set and Addressing Modes for the CPU12 441	11 Field-	Effect Transistors 577
8.6 8.7	Programming 450	11.1	

11.3 11.4	Bias Circuits 588 Small-Signal Equivalent Circuits 592	14.3 14.4	Inductance and Mutual Inductance 733 Magnetic Materials 737
11.5	Common-Source Amplifiers 596		Ideal Transformers 740
11.6	Source Followers 600	14.6	Real Transformers 748
11.7	CMOS Logic Gates 605		Summary 753
	Summary 610 Problems 611		Problems 753
	11001cms 011	15	
12			achines 764
Bipola	ar Junction Transistors 619	15.1	Overview of Motors 765
12.1	Current and Voltage	15.2	Principles of DC Machines 774
	Relationships 620	15.3	Rotating DC Machines 779
12.2	Common-Emitter Characteristics 623	15.4	Shunt-Connected and Separately
12.3	Load-Line Analysis of a	15.5	Excited DC Motors 785 Series-Connected DC
12.4	Common-Emitter Amplifier 624 pnp Bipolar Junction Transistors 630	13.3	Motors 790
	Large-Signal DC Circuit Models 632	15.6	Speed Control of DC
12.6	Large-Signal DC Analysis of BJT		Motors 794
	Circuits 635	15.7	DC Generators 798
12.7	Small-Signal Equivalent Circuits 642		Summary 803
12.8	Common-Emitter Amplifiers 645		Problems 804
12.9	Emitter Followers 650 Summary 656	16	
	Problems 657	16	
			achines 814
13		16.1	
	itional Amplifiers 666	16.2	Equivalent-Circuit and Performance Calculations for
13.1	Ideal Operational Amplifiers 667		Induction Motors 823
	Inverting Amplifiers 668	16.3	Synchronous Machines 832
13.3	Noninverting Amplifiers 675	16.4	Single-Phase Motors 844
13.4	Design of Simple Amplifiers 678	16.5	Stepper Motors and Brushless
13.5	Op-Amp Imperfections in the Linear		DC Motors 847
13.6	Range of Operation 683		Summary 849 Problems 850
	Nonlinear Limitations 687 DC Imperfections 692		Floorenis 830
13.8	Differential and Instrumentation		
	Amplifiers 696	ΔPPFN	NDICES
13.9	Integrators and Differentiators 698		
13.10	Active Filters 701	\mathbf{A}	
	Summary 705 Problems 706	Comp	lex Numbers 856
	1100icms 700		Summary 863
14			Problems 863
Magn	etic Circuits and Transformers 718	B	
14.1	Magnetic Fields 719		nal Values and the Color Code
14.2	Magnetic Circuits 728		sistors 865

12 Contents

The Fundamentals of Engineering Examination 867

Answers for the Practice Tests 868

On-Line Student Resources 877

Index 878

Preface

As in the previous editions, my guiding philosophy in writing this book has three elements. The first element is my belief that in the long run students are best served by learning basic concepts in a general setting. Second, I believe that students need to be motivated by seeing how the principles apply to specific and interesting problems in their own fields. The third element of my philosophy is to take every opportunity to make learning free of frustration for the student.

This book covers circuit analysis, digital systems, electronics, and electromechanics at a level appropriate for either electrical-engineering students in an introductory course or nonmajors in a survey course. The only essential prerequisites are basic physics and single-variable calculus. Teaching a course using this book offers opportunities to develop theoretical and experimental skills and experiences in the following areas:

- Basic circuit analysis and measurement
- First- and second-order transients
- Steady-state ac circuits
- Resonance and frequency response
- Digital logic circuits
- Microcontrollers
- Computer-based instrumentation
- Diode circuits
- Electronic amplifiers
- Field-effect and bipolar junction transistors
- Operational amplifiers
- Transformers
- Ac and dc machines
- Computer-aided circuit analysis using MATLAB

While the emphasis of this book is on basic concepts, a key feature is the inclusion of short articles scattered throughout showing how electrical-engineering concepts are applied in other fields. The subjects of these articles include anti-knock signal processing for internal combustion engines, a cardiac pacemaker, active noise control, and the use of RFID tags in fisheries research, among others.

I welcome comments from users of this book. Information on how the book could be improved is especially valuable and will be taken to heart in future revisions. My e-mail address is arhamble@mtu.edu

your work...

your answer specific feedback

Express your answer to three significant figures and include the appropriate units.

Submit

Hints My Answers Give Up Review Part

Incorrect; Try Again; 5 attempts remaining

Note that elements in series have the same current but the inductor is not in series with the current source. Use Kirchhoff's current law or the current divider to find the initial inductor current.

Express your answer to three significant figures and include the appropriate units.

Submit

Hints My Answers Give Up Review Part

Incorrect; Try Again; 4 attempts remaining

It appears you have found the current through the resistor, R_1 . Find the current through the resistor in series with the inductor.

www.MasteringEngineering.com

ON-LINE STUDENT RESOURCES

- MasteringEngineering. Tutorial homework problems emulate the instructor's office-hour environment, guiding students through engineering concepts with self-paced individualized coaching. These in-depth tutorial homework problems are designed to coach students with feedback specific to their errors and optional hints that break problems down into simpler steps. Access can be purchased bundled with the textbook or online at www.masteringengineering.com.
- The Companion Website. Access is included with the purchase of every new book or can be purchased at www.pearsonglobaleditions.com/hambley. The Companion Website includes:
 - Video Solutions that provide complete, step-by-step solution walkthroughs of representative homework problems from each chapter.
 - A Student Solutions Manual. A PDF file for each chapter includes full solutions for the in-chapter exercises, answers for the end-of-chapter problems that are marked with asterisks, and full solutions for the Practice Tests.
 - A MATLAB folder that contains the m-files discussed in the book.

INSTRUCTOR RESOURCES

Resources for instructors include:

- MasteringEngineering. This online Tutorial Homework program allows you to integrate dynamic homework with automatic grading and personalized feedback. MasteringEngineering allows you to easily track the performance of your entire class on an assignment-by-assignment basis, or the detailed work of an individual student.
- A complete Instructor's Solutions Manual.
- PowerPoint slides with all the figures from the book.

Instructor Resources are available for download by adopters of this book at the Instructors Resource Center: www.pearsonglobaleditions.com/hambley. If you are in need of a login and password, please contact your local Pearson representative.

WHAT'S NEW IN THIS EDITION

- We have continued and added items to the popular Practice Tests that students can use in preparing for course exams at the end of each chapter. Answers for the Practice Tests appear in Appendix D and complete solutions are included in the on-line Student Solutions Manual files.
- New examples have been added in Chapters 1 through 7.
- Approximately half of the end-of-chapter problems have been replaced or modified.
- Coverage of computers, microcontrollers and computer-based instrumentation has been merged from two chapters into Chapter 8 for this edition.
- Appendix C has been modified to keep up with new developments in the Fundamentals of Engineering Exam.

- We have updated the coverage of MATLAB and the Symbolic Toolbox for network analysis in Chapters 2 through 6.
- Relatively minor corrections and improvements appear throughout the book.

PREREQUISITES

The essential prerequisites for a course from this book are basic physics and single-variable calculus. A prior differential equations course would be helpful but is not essential. Differential equations are encountered in Chapter 4 on transient analysis, but the skills needed are developed from basic calculus.

PEDAGOGICAL FEATURES

The book includes various pedagogical features designed with the goal of stimulating student interest, eliminating frustration, and engendering an awareness of the relevance of the material to their chosen profession. These features are:

- Statements of learning objectives open each chapter.
- Comments in the margins emphasize and summarize important points or indicate common pitfalls that students need to avoid.
- Short boxed articles demonstrate how electrical-engineering principles are applied in other fields of engineering. For example, see the articles on active noise cancellation (page 316) and electronic pacemakers (starting on page 414).
- Step-by-step problem solving procedures. For example, see the step-by-step summary of node-voltage analysis (on pages 96–100) or the summary of Thévenin equivalents (on page 272).
- A Practice Test at the end of each chapter gives students a chance to test their knowledge. Answers appear in Appendix D.
- Complete solutions to the in-chapter exercises and Practice Tests, included as PDF files on-line, build student confidence and indicate where additional study is needed.
- Summaries of important points at the end of each chapter provide references for students.
- Key equations are highlighted in the book to draw attention to important results.

MEETING ABET-DIRECTED OUTCOMES

Courses based on this book provide excellent opportunities to meet many of the directed outcomes for accreditation. The Criteria for Accrediting Engineering Programs require that graduates of accredited programs have "an ability to apply knowledge of mathematics, science, and engineering" and "an ability to identify, formulate, and solve engineering problems." This book, in its entirety, is aimed at developing these abilities.

Furthermore, the criteria require "an ability to function on multi-disciplinary teams" and "an ability to communicate effectively." Courses based on this book contribute to these abilities by giving nonmajors the knowledge and vocabulary to communicate effectively with electrical engineers. The book also helps to inform

electrical engineers about applications in other fields of engineering. To aid in communication skills, end-of-chapter problems that ask students to explain electrical-engineering concepts in their own words are included.

CONTENT AND ORGANIZATION

Basic Circuit Analysis

Chapter 1 defines current, voltage, power, and energy. Kirchhoff's laws are introduced. Voltage sources, current sources, and resistance are defined.

Chapter 2 treats resistive circuits. Analysis by network reduction, node voltages, and mesh currents is covered. Thévenin equivalents, superposition, and the Wheatstone bridge are treated.

Capacitance, inductance, and mutual inductance are treated in Chapter 3.

Transients in electrical circuits are discussed in Chapter 4. First-order *RL* and *RC* circuits and time constants are covered, followed by a discussion of second-order circuits.

Chapter 5 considers sinusoidal steady-state circuit behavior. (A review of complex arithmetic is included in Appendix A.) Power calculations, ac Thévenin and Norton equivalents, and balanced three-phase circuits are treated.

Chapter 6 covers frequency response, Bode plots, resonance, filters, and digital signal processing. The basic concept of Fourier theory (that signals are composed of sinusoidal components having various amplitudes, phases, and frequencies) is qualitatively discussed.

Digital Systems

Chapter 7 introduces logic gates and the representation of numerical data in binary form. It then proceeds to discuss combinatorial and sequential logic. Boolean algebra, De Morgan's laws, truth tables, Karnaugh maps, coders, decoders, flip-flops, and registers are discussed.

Chapter 8 treats microcomputers with emphasis on embedded systems using the Freescale Semiconductor HCS12/9S12 as the primary example. Computer organization and memory types are discussed. Digital process control using microcontrollers is described in general terms. Selected instructions and addressing modes for the CPU12 are described. Assembly language programming is treated very briefly. Finally, computer-based instrumentation systems including measurement concepts, sensors, signal conditioning, and analog-to-digital conversion are discussed.

Electronic Devices and Circuits

Chapter 9 presents the diode, its various models, load-line analysis, and diode circuits, such as rectifiers, Zener-diode regulators, and wave shapers.

In Chapter 10, the specifications and imperfections of amplifiers that need to be considered in applications are discussed from a users perspective. These include gain, input impedance, output impedance, loading effects, frequency response, pulse response, nonlinear distortion, common-mode rejection, and dc offsets.

Chapter 11 covers the MOS field-effect transistor, its characteristic curves, loadline analysis, large-signal and small-signal models, bias circuits, the common-source amplifier, and the source follower.