DATA IMPORTING

Program

Its important to note that base R functions for reading and writing of files; however, their syntax is inconsistent. **readr** and **readxl** help to standardize these functions.

PREREQUISITES

PREREQUISITES

- Re-start your R session
 - Windows: Ctrl+Shift+F10
 - Mac: Command+Shift+F10
- Make sure your working directory is set to the course folder
- We will be using the various "mydata" data sets that are in the data folder

PACKAGE PREREQUISITE

```
library(readxl)
library(tidyverse)
#> Loading tidyverse: ggplot2
#> Loading tidyverse: tibble
#> Loading tidyverse: tidyr
#> Loading tidyverse: readr
#> Loading tidyverse: purrr
#> Loading tidyverse: dplyr
#> Conflicts with tidy packages
#> filter(): dplyr, stats
#> lag(): dplyr, stats
```

DELIMITED FILES

- Text files are a popular way to hold and exchange tabular data
- Text file formats use **delimiters** to separate the different elements (.csv, .tsv, .txt, etc.)
- .csv most common use read_csv() to read in

```
read_csv("data/mydata.csv")
Parsed with column specification:
cols(
  `variable 1` = col_integer(),
  `variable 2` = col_character(),
  `variable 3` = col_logical()
# A tibble: 3 \times 3
  `variable 1` `variable 2` `variable 3`
         <int>
                       <chr>
                                     <lgl>
            10
                        beer
                                      TRUE
            25
                        wine
                                      TRUE
              8
                                     FALSE
                      cheese
```

- Text files are a popular way to hold and exchange tabular data
- Text file formats use **delimiters** to separate the different elements (.csv, .tsv, .txt, etc.)
- .csv most common use read_csv() to read in

```
read_csv("data/mydata.csv")
Parsed with column specification:
cols(
  `variable 1` = col_integer(),
  `variable 2` = col_character(),
  `variable 3` = col_logical()
# A tibble: 3 \times 3
  `variable 1` `variable 2` `variable 3`
        <int>
                       <chr>
                                     <lgl>
            10
                                      TRUE
                        beer
            25
                                      TRUE
                        wine
              8
                      cheese
                                     FALSE
```

Parsing information

Resulting data read in

We can control certain parameters when reading text files in

```
read_csv("data/mydata.csv")
Parsed with column specification:
cols(
  `variable 1` = col_integer(),
  `variable 2` = col_character(),
  `variable 3` = col_logical()
# A tibble: 3 \times 3
  `variable 1` `variable 2` `variable 3`
               <chr> <lgl>
         <int>
            10
                                    TRUE
                       beer
            25
                      wine
                                    TRUE
                                  FALSE
                     cheese
```

We can control certain parameters when reading text files in

```
read_csv("data/mydata.csv")
Parsed with column specification:
cols(
  `variable 1` = col_integer(),
  `variable 2` = col_character(),
  `variable 3` = col_logical()
# A tibble: 3 \times 3
  `variable 1` `variable 2` `variable 3`
                                   <ldl>
               <chr>
         <int>
            10
                       beer
            25
                       wine
                     cheese
```

Change column type

We can control certain parameters when reading text files in

```
read_csv("data/mydata.csv")
Parsed with column specification:
cols(
  `variable 1` = col_integer(),
  `variable 2` = col_character(),
  `variable 3` = col_logical()
# A tibble: 3 \times 3
  `variable 1` `variable 2` `variable 3`
               <chr>
                                   <ldl>
         <int>
                                     TRUE
            10
                       beer
            25
                       wine
                                    TRUE
                     cheese
```

Change column type
Change column names

We can control certain parameters when reading text files in

```
read_csv("data/mydata.csv")
Parsed with column specification:
cols(
  `variable 1` = col_integer(),
  `variable 2` = col_character(),
  `variable 3` = col_logical()
# A tibble: 3 \times 3
  `variable 1` `variable 2` `variable 3`
         <int> <chr>
                                   <lgl>
            10
                                    TRUE
                       beer
            25
                       wine
                                    TRUE
                     cheese
```

Change column type
Change column names
Skip *n* number of lines

We can control certain parameters when reading text files in

```
read_csv("data/mydata.csv")
Parsed with column specification:
cols(
  `variable 1` = col_integer(),
  `variable 2` = col_character(),
  `variable 3` = col_logical()
# A tibble: 3 \times 3
  `variable 1` `variable 2` `variable 3`
               <chr>
                                    <lgl>
         <int>
            25
                        wine
                                      TRUE
                                     FALSE
                      <del>cheese</del>
```

Change column type
Change column names
Skip *n* number of lines
Read in *n* number of lines

You can write any data frame, tibble, or matrix to a .csv file

```
library(nycflights13)
write_csv(flights, "data/flights.csv")
```

You can write any data frame, tibble, or matrix to a .csv file

```
library(nycflights13)
write_csv(flights, "data/flights.csv")
```

Name of R data object

You can write any data frame, tibble, or matrix to a .csv file

```
library(nycflights13)
write_csv(flights, "data/flights.csv")
```

Name of R data object

Path to save the file

You can write any data frame, tibble, or matrix to a .csv file

```
library(nycflights13)
write_csv(flights, "data/flights.csv")
```

Name of R data object

Path to save the file

Name of .csv file - can be anything you choose

ADDITIONAL readr FUNCTIONS

Function	Description
read_delim	specify the delimiter used in the file with $delim = ??$
read_tsv	uses delim = "/t"
read_csv2	uses delim = ";"
read_fwf	reads in fixed width files
read_lines read lines from a file	
write_tsv write data to a .tsv file	
write_delim	write data with your own delimiter
	Many other functions available

YOURTURN!

- 1. Write the nycflights13::planes data set to a .csv file
- 2. Can you figure out how to just read in the first line to see the titles?
- 3. Now read this data back in with the following caveats:
 - i) read in the first 1000 lines
 - ii) only read in the first 6 columns

SOLUTION

```
# write to csv file
write_csv(planes, "data/planes.csv")
# read in column titles
read_lines("data/planes.csv", n_max = 1)
# read in first 1000 rows and first 6 columns
read_csv("data/planes.csv",
         n_{max} = 1000,
         col_types = "??????___")
```

EXCEL FILES

Excel is still the spreadsheet software of choice

You need to understand both the workbook <u>and</u> the sheet that you want to read in

```
# identify the sheet you want
excel_sheets("data/mydata.xlsx")
[1] "PICK_ME_FIRST!" "Sheet2" "extra_header" "functions"
[5] "date_time" "unique_NA"
```


Excel is still the spreadsheet software of choice

You need to understand both the workbook <u>and</u> the sheet that you want to read in

```
# identify the sheet you want
excel_sheets("data/mydata.xlsx")
[1] "PICK_ME_FIRST!" "Sheet2" "extra_header" "functions"
[5] "date_time" "unique_NA"
# now read in the data
read_excel("data/mydata.xlsx", sheet = "PICK_ME_FIRST!")
# A tibble: 3 \times 3
  `variable 1` `variable 2` `variable 3`
         <dbl>
                      <chr>
                                   <dbl>
            10
                       beer
            25
                       wine
                     cheese
```

Similar specifications exist as we saw with readr::read_csv

	Α	В	С	D	Е	F	G
4							9
1	HEADER: C	OMPANY A					
	What if we wa	nt to disregard					
2	header text in	Excel file?					
3	variable 6	variable 7					
4	200	Male					
5	225	Female					
6	400	Female					
7	310	Male					
8							
9							
10							
11							
12							
13							

Similar specifications exist as we saw with readr::read_csv

```
read_excel("data/mydata.xlsx",
           sheet = "date_time",
           col_types = c("numeric", "blank",
                         "blank", "date",
                         "date"),
           col_names = paste("variable", 1:5))
# A tibble: 3 \times 3
  `variable 1` `variable 4`       `variable 5`
         <dbl> <dttm>
                                         <dttm>
            10 2015-11-20 2015-11-20 13:30:00
                       <NA> 2015-11-21 16:30:00
                 2015-11-22 2015-11-22 14:45:00
```

		_		_	_	_	
\underline{A}	Α	В	С	D	E	F	G
1	variable 1	variable 2	variable 3	variable 4	variable 15		
2	10	beer	TRUE	11/20/15	11/20/15 1:30 PM		
3	25	wine	TRUE		11/21/15 4:30 PM		
4	8		FALSE	11/22/15	11/22/15 2:45 PM		
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							

Similar specifications exist as we saw with readr::read_csv

	Α	В	C	D	E	F	G	Н
1	variable 1	variable 2	variable 3	variable 4				
2	10	beer	TRUE	11/20/15				
3	25	wine	TRUE	999				
4	8	999	FALSE	11/22/15				
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
4	I ▶ PIC	CK_ME_FIRS	ST! Sh	eet2 extr	a_header	functions	date_time	unique_N/

The xlsx package provides a lot of special functionality as well xlsx::read.xlsx

H2	*	× ✓	$f_{\mathcal{X}}$			
1	Α	В	С	D	E	F
1	Future Value	Rate	Periods	Present Value		
2	500	0.065	10	266.363		
3	600	0.085	6	367.767		
4	750	0.08	11	321.662		
5	1000	0.07	16	338.735		
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
4	▶ PIC	K_ME_FIRS	T! Shee	et2 extra_	header	functions

- There are several packages that allow you to write and format Excel files
- Easiest function to use is readr::write_excel_csv
 - includes a UTF-8 Byte order mark which indicates to Excel the csv is UTF-8 encoded

```
library(nycflights13)
write_excel_csv(flights, "data/flights.csv")
```

YOURTURN!

- 1. What spreadsheets are in the "PEW Middle Class Data.xlsx" file?
- 2. Read in the "3. Median HH income, metro" spreadsheet.

SOLUTION

RFILES

- Saving and sharing data as R objects can be more efficient than converting to text or Excel files
- Two primary ways R data can be saved (.rds, .RData)

- Saving and sharing data as R objects can be more efficient than converting to text or Excel files
- Two primary ways R data can be saved (.rds, .RData)

• .rds: single R object

- Saving and sharing data as R objects can be more efficient than converting to text or Excel files
- Two primary ways R data can be saved (.rds, .RData)

load("data/sheets1and2.RData")

• .RData: multiple R objects

We can write to ..rds and .RData files with the following:

```
# write data to an .rds file
write_rds(mydata, "data/mydata.rds")

# write multiple data objects to a file
save(myvector, mymatrix, mylist, mydata, file = "data/mystuff.RData")

# write all objects to a file
save.image(file = "data/mystuff.RData")
```

We can write to .rds and .RData files with the following:

```
# write data to an .rds file
write_rds(mydata, "data/mydata.rds")

# write multiple data objects to a file
save(myvector, mymatrix, mylist, mydata, file = "data/mystuff.RData")

# write all objects to a file
save.image(file = "data/mystuff.RData")
```

You can list as many objects as you'd like

We can write to ..rds and .RData files with the following:

```
# write data to an .rds file
write_rds(mydata, "data/mydata.rds")

# write multiple data objects to a file
save(myvector, mymatrix, mylist, mydata, file = "data/mystuff.RData")

# write all objects to a file
save.image(file = "data/mystuff.RData")
```

• Short cut to save everything in your global environment

YOURTURN!

- 1. Load any 3 worksheets from the mydata.xlsx workbook and save as 3 separate tibbles
- 2. Save all three tibbles together in a .RData file

SOLUTION

```
# load any three worksheets
sheet1 <- read_excel("data/mydata.xlsx", sheet = 1)
sheet2 <- read_excel("data/mydata.xlsx", sheet = 2)
sheet3 <- read_excel("data/mydata.xlsx", sheet = 3)

# save as all three in a .RData file
save(sheet1, sheet2, sheet3, file = "data/sheets123.RData")</pre>
```


LEARN MORE

WHATTO REMEMBER

FUNCTIONS TO REMEMBER

Operator/Function	Description
read_**	read csv, txt, fwf, xlsx, xls, etc. files
write_**	write to files
save, save.image	saves external representation of R objects

Its important to note that base R functions exist to do many reading and writing of files; however, their syntax is inconsistent. **readr** and **readxl** help to standardize these functions.