

LEARNING OBJECTIVES:

- > To familiarize with the factors affecting:
- ➤ Leaf reflectance
- Canopy reflectance
- ➤ Soil reflectance

REMOTE SENSING OF VEGETATION

RADIATION'S INTERACTION WITH LEAVES

E₁: Incident radiation

E_A: Absorbed radiation

E_T: Transmitted radiation

E_R: Reflected radiation

$$\alpha = E_A / E_I$$
 (Absorptance)
 $\tau = E_T / E_I$ (Transmittance)
 $\rho = E_R / E_I$ (Reflectance)

$$\rho + \alpha + \tau = 1$$

SPECTRAL REFLECTANCE OF LEAVES

Spectral reflectance of healthy, green Leaf

LEAF MAJOR STRUCTURAL COMPONENTS

UNIVERSITY OF TWENTE.

ROLE OF CHLOROPHYLL

- Chlorophyll is vital for photosynthesis, which allows plants to absorb energy from light.
- Chlorophyll is a fundamental biochemical parameter and is related to many other leaf biochemical content such as nitrogen.
- Useful for many environmental and ecological investigations, and is linked for instance to:
 - Productivity
 - Vegetation stress
 - Vegetation health and growth
 - Recognized as essential variable for Biodiversity and Crop monitoring

PIGMENT ABSORPTION

DOMINANT FACTORS CONTROLLING LEAF REFLECTANCE

Water absorption bands: 0.97 μm 1.19 μm 1.45 μm 1.94 μm 2.70 μm

LEAF PARAMETERS AND REFLECTANCE

leaf water content

VEGETATION WATER STRESS

Reflectance response of a single magnolia leaf (magnolia grandiflora) to decreased relative water content

VEGETATION WATER STRESS OF ASPLENIUM NIDUS

Spectral reflectance of Asplenium nidus (LAI of 1.5)

QUESTION

Would it be possible to obtain the leaf reflectance from satellite data? what do we receive then?

CANOPIES: MULTIPLE LEAVES

REFLECTANCE AND TRANSMITTANCE

$$\rho + \alpha + \tau = 1$$

UNIVERSITY OF TWENTE.

LEAF ADDITIVE REFLECTANCE

$$\rho = \tau = 50\%$$

LEAF AREA INDEX

See also: http://en.wikipedia.org/wiki/Leaf_Area_Index

SPECTRAL RESPONSE TO LAI VARIATION

Spectral reflectance of Asplenium nidus corresponding to LAI between 0.87 and 6.11

LEAF INCLINATION

Rabee et. al (2015), Agricultural and forest meteorology

LEAF ANGLE / LAI EFFECTS: MODELLED WITH PROSAIL

Jacquemoud S, W Verhoef, F Baret, C Bacour, PJ Zarco-Tejada, GP Asner, C Francois, SL Ustin, 2009. PROSPECT plus SAIL models: A review of use for vegetation characterization. Remote Sensing of Environment 113, S56-S66.

CANOPY STRUCTURE AND REFLECTANCE

SPECTRAL RESPONSE OF CANOPIES WITH DIFFERENT STRUCTURE

Spectral reflectance of different canopy species with same LAI values.

SOIL REFLECTANCE

Spectral reflectance (brightness) of soils is a function of:

- Soil texture (percentage of sand, silt, clay)
- soil moisture content (e.g. dry, moist, saturated),
- organic matter content
- iron-oxide content
- surface roughness

UNIVERSITY OF TWENTE.

SOIL BRIGHTNESS AND CANOPY REFLECTANCE

Spectral reflectance of *Asplenium nidus* with similar LAI value in dark and light soils.

UNIVERSITY OF TWENTE.

SOIL MOISTURE

 Higher moisture content results in decreased reflectance

 Especially in the water-absorption bands at 1.4, 1.9, and 2.7 µm.

SOIL ORGANIC EFFECT/ SOIL COLOUR

Spectral reflectance characteristics of the organic poor (red) and rich (black) soils. Each curve represents the average of 64 bare soil reflectance measurements.

SUN AND SENSOR GEOMETRY

BIDIRECTIONAL REFLECTANCE DISTRIBUTION FUNCTION

(BRDF)

Forward scatter direction

Back scatter direction

EXTERNAL FACTORS: BI-DIRECTIONAL REFLECTANCE

UNIVERSITY OF TWENTE.

SUMMARY

- The reflectance that optical sensors measure depends on the properties of the leaves, canopy architecture, soil properties, observation geometry and external factors:
 - Leaf properties: chlorophyll, water and other pigments
 - Canopy reflectance: leaf area index, leaf angle distribution, soil background, measuring geometry
 - Soil properties: grain size, moisture content, organic matter content, iron oxides
 - Observation geometry: view and sun angles,
 - Atmosphere....

