A Hybrid Algorithm Based on Tabu Search and Ant Colony Optimization for k-Minimum Spanning Tree Problems

Hideki Katagiri, Tomohiro Hayashida, Ichiro Nishizaki, and Jun Ishimatsu

Graduate School of Engineering, Hiroshima University, 1-4-1, Kagamiyma, Higashi-Hiroshima, 739-8527, Japan katagiri-h@hiroshima-u.ac.jp http://www.hil.hiroshima-u.ac.jp/

Abstract. This paper considers an efficient approximate algorithm for solving k-minimum spanning tree problems which is one of the combinatorial optimization in networks. A new hybrid algorithm based on tabu search and ant colony optimization is provided. Results of numerical experiments show that the proposed method updates some of the best known values and that the proposed method provides a relatively better performance with solution accuracy over existing algorithms.

Keywords: k-minimum spanning tree, tabu search, ant colony optimization, hybrid algorithm, approximate solution.

1 Introduction

A k-Minimum Spanning Tree (k-MST) problem is one of combinatorial optimization problems formulated in networks, and the objective of the problem is to find a subtree with exactly k edges, called k-subtree, such that the sum of the weights attached to edges is minimal. The k-MST problem is a generalized version of minimum spanning tree (MST) problems; when k = |V| - 1 where V is a cardinality of vertices in a graph, the k-MST problem corresponds to the MST problem. The wide varieties of decision making problems in the real world can be formulated as k-MST problems, e.g. telecommunications [10], facility layout [8], open pit mining [16], oil-field leasing [12], matrix decomposition [2,3] and quorum-cast routing [4].

The k-MST problem was firstly introduced by Hamacher $et\ al.$ [12] in 1991. Since the k-MST problem is NP-hard [7,15], it is difficult to solve large-scale problems within a practically acceptable time. Therefore, it is very important to construct approximate solution methods which quickly find a near optimal solution. Blum and Blesa [1] proposed several approximate solution methods including metaheuristics such as evolutionary computation, ant colony optimization and tabu search.

In this paper, we propose a new hybrid approximate solution algorithm based on tabu search and ant colony optimization. In order to demonstrate efficiency of the proposed solution method, we compare the performances of the proposed method with those of existing algorithms.

V. Torra, Y. Narukawa, and M. Inuiguchi (Eds.): MDAI 2009, LNAI 5861, pp. 315–326, 2009. © Springer-Verlag Berlin Heidelberg 2009

2 Problem Formulation and Existing Solution Methods

Given that a graph G = (V, E) where V is a set of vertices and E is a set of edges, k-subtree T_k is defined as

$$T_k \in G, \ k \le |V| - 1.$$

Then a k-MST problem is formulated as

minimize
$$\sum_{e \in E(T_k)} w(e)$$
 subject to $T_k \in \mathcal{T}_k$,

where \mathcal{T}_k is the set of all possible k-subtrees \mathcal{T}_k in G, $E(\mathcal{T}_k)$ denotes the edges of \mathcal{T}_k and w(e) is a weight attached to an edge e. The above problem is to seek a k-subtree with the minimum sum of weights, called k-MST. If the problem size is small, the problem can be easily solved by finding an optimal solution after enumerating all possible k-subtrees in a given graph. If the size of problem is not so large, it can be solved by some exact solution algorithm such as a branch and bound method [4] and a branch and cut algorithm [9].

However, it has been shown that the k-MST problem is NP-hard even if the edge weight is in $\{1,2,3\}$ for all edges, or if a graph is fully connected. The problem is also NP-hard for planar graphs and for points in the plane [15]. Therefore, it is important to construct not only exact solution methods but also efficient approximate solution methods.

Blum and Blesa [1] proposed three approximate solution algorithms for k-minimum spanning tree problems which are based on evolutionary computation, tabu search and ant colony optimization. They compared their performances through benchmark instances [14] and showed that an ant colony optimization approach is the best for relatively small ks, whereas a tabu search approach has an advantage for large ks with respect to solution accuracy.

In this paper, we propose an efficient hybrid algorithm based on tabu search and ant colony optimization by combining the desirable features of both algorithms.

3 Proposed Algorithm

The outline of the proposed algorithm is as follows:

- Step 1 (Generation of an initial solution). For a node selected at random, the application of Prim method is continued until a k-subtree is constructed. Let the obtained k-subtree be an initial solution and the current solution T_k^{cur} .
- Step 2 (Initialization of parameters). Initialize the tabu lists and the values of parameters such as tabu tenure tl_{ten} and aspiration criterion levels.
- Step 3 (Tabu search-based local search). Search the neighborhood based tabu search, and store a set of local minimum solutions. If the current tabu tenure tl_{ten} is greater than tt_{max} , go to Step 4. Otherwise, return to Step 2.

Step 4 (Ant colony optimization-based intensification procedure).

Explore the promising region intensively based on ant colony optimization. Step 5 (Terminal condition). If the current computational time is greater than TimeLimit, terminate the algorithm. Otherwise, return to Step 2.

Let T_k^{cur} , T_k^{gb} and T_k^{lb} be the current solution, the best found solution and local optimum solution, respectively. Then, we describe the details on the procedures in Steps 3 and 4.

3.1 Tabu Search-Based Local Search

For a set $V(T_k)$ of nodes included in k-subtree T_k , we define

$$V_{NH}(T_k) := \{ v | \{ v, v' \} \in E(G), v \notin V(T_k), v' \in V(T_k) \}.$$

Let T_k^{NH} be a local minimum solution of k-subtree obtained by adding $v_{in} \in V_{NH}(T_k)$ to T_k and deleting $v_{out} \in V(T_k)$. Then, the neighborhood of T_k denoted by $NH(T_k)$ is defined as a whole set of possible T_k^{NH} in G.

In the proposed local search algorithm, the next solution through transition is selected as the k-subtree that has the best objective function value of all solutions $T_k^{NH} \in N(T_k^{cur})$ as follows:

$$T_k^{NH_{best}} := \arg \min_{T_k^{NH} \in NH(T_k^{cur})} \{f(T_k^{NH})\}.$$

In order to avoid cycling among a set of some solutions, we use two tabu lists InList and OutList, which keep the induces of removed edges and added edges, respectively. A tabu tenure, denoted by θ , is a period for which it forbids edges in the tabu lists from deleting or adding. In details, at the beginning, we set an initial value of the tabu tenure tl_{ten} to tt_{min} which is the minimum tabu tenure defined as

$$tt_{min} := \min \left\{ \left\lfloor \frac{|V|}{20} \right\rfloor, \frac{|V| - k}{4}, \frac{k}{4} \right\}.$$

Let nic_{int} be the period of the best found solution T_k^{gb} not being updated. If $nic_{int} > nic_{max}$, then tabu tenure is updated as $tl_{ten} \leftarrow tl_{ten} + tt_{inc}$, where

$$nic_{max} := \max\{tt_{inc}, 100\}, \qquad tt_{inc} := \left\lfloor \frac{tt_{max} - tt_{min}}{10} \right\rfloor + 1.$$

If the current tabu tenure tl_{ten} is greater than tt_{max} defined as

$$tt_{max} := \left| \frac{|V|}{5} \right|,$$

the local search algorithm is terminated, and intensification strategy based on ant colony optimization is performed.

When checking whether the transition from the current solution to some solution in T_k^{NH} is acceptable, if an edge e in InList or OutList, which is related to the transition as the added edge or deleted edge, satisfies the condition $\gamma_e > f(T_k^{NH})$, then the transition is permitted. The parameter γ_e called aspiration criterion level is given to all of edges and is initially set to

$$\gamma_e = \begin{cases} f(T_k^{cur}), & e \in E(T_k^{cur}) \\ \infty, & e \notin E(T_k^{cur}). \end{cases}$$
 (1)

In each explored solution T_k , γ_e is updated as $\gamma_e \leftarrow f(T_k)$ for every $e \in E(T_k)$. The following is the details on the proposed local search algorithm.

[Tabu search-based local search algorithm]

Step 1(Initialization of the list of a deleted node). Let $V_{in} \leftarrow V_{NH}(T_k^{cur})$. Step 2(Decision of a deleted node). If $V_{in} = \emptyset$, terminate the algorithm. Otherwise, go to Step 2-1.

Step 2-1. Find

$$v_{in} := \arg\min_{v \in V_{in}} \left\{ \frac{\sum_{v' \in V(T_k^{cur})} w(e)}{d(v)} \middle| e = (v, v') \right\}$$

and set $V_{in} \leftarrow V_{in} \setminus v_{in}$, where d(v) is the number of edges existing between $v \in V$ and T_k^{cur} . Go to Step 2-2.

Step 2-2. Find $E_{in_1} := \{(v, v_{in}) \mid v \in V(T_k^{cur})\}$ (see Fig. 1) and $e_{\min_1} := \arg\min_{e \in E_{in_1}} \{w(e)\}$. Set $T_{k+1}^{NH} \leftarrow (V(T_k^{cur}) \cup v_{in}, E(T_k^{cur}) \cup e_{min_1})$ and $E_{in_1} \leftarrow E_{in_1} \setminus e_{\min_1}$ (see Fig. 2), and go to Step 2-3.

Step 2-3. Find e_{\min_1} := $\arg\min_{e \in E_{in_1}} \{w(e)\}$, and set $T_{k+1}^{NH} \leftarrow T_{k+1}^{NH} \cup e_{\min_1}$ and $E_{in_1} \leftarrow E_{in_1} \setminus e_{\min_1}$ (see Fig. 3). Go to Step 2-4.

Step 2-4. For a set E_{loop} of edges which compose a loop in Step 2-3, find $e_{\max} := \arg\max_{e \in E_{loop}} \{w(e)\}$ and set $T_{k+1}^{NH} \leftarrow T_{k+1}^{NH} \setminus e_{\max}$ (see Fig. 3)D Step 2-5. If $E_{in_1} = \{\emptyset\}$, then set $V_{out} \leftarrow V(T_k^{cur})$ and go to Step 3. Other-

wise, return to Step 2-4.

Fig. 1. Current solution (when $v_{in} = v_8$ and $E_{in_1} = \{e_7, e_8, e_9, e_{12}, e_{17}, e_{18}\}$)

Fig. 2. k + 1-subtree T_{k+1}^{NH} (e_8 is added to the current solution)

Fig. 3. Improvement of k+1-subtree T_{k+1}^{NH} (e_{18} is added, and then e_2 is deleted so that a new k+1-subtree T_{k+1}^{NH} is constructed)

Step 3(Decision of an added node for constructing T_k^{NH}). If $V_{out} = \{\emptyset\}$, then return to Step 2. Otherwise, go to Step 3-1.

Step 3-1. Find

$$v_{out} := \arg \max_{v \in V_{out}} \left\{ \left. \frac{\sum_{v' \in V(T_k^{cur})} w(e)}{d(v)} \right| e = (v, v') \right\}$$

and set $V_{out} \leftarrow V_{out} \setminus v_{out}$. Go to Step 3-2.

Step 3-2. Find $e_{\min}^{out} := \arg\min_{e \in \{(v_{out}, v')\}} \{w(e) \mid v' \in T_k^{cur}\}$. If $f(T_k^{NH_{best}})$ $< \left(\sum_{e \in E(T_{k+1}^{NH})} w(e)\right) - w(e_{\min}^{out})$ for e_{\min}^{out} , then return to Step 3. Otherwise, go to Step 3-3.

Fig. 4. Set of super-nodes

Fig. 5. Solution T_k^{NH} in neighborhood $NH(T_k)$

- **Step 3-3.** For a set of super-node S_r , $r=0,1,2\cdots$, each of which is a connected component obtained by deleting v_{in} from T_k^{NH} , find $E_{in_2}:=\{(v_i,v_j)\mid v_i\in S_k, v_j\in S_l, k\neq l\}$ (see Fig. 4). Go to Step 3-4.
- Step 3-4. Find $e_{\min_2} := \arg\min_{e \in E_{in_2}} \{w(e)\}$. If $f(T_k^{NH_{best}}) < w(e_{\min_2}) + \sum_{e \in E(T_k^{NH})} w(e)$ for e_{\min_2} , then return to Step 3. Otherwise, go to Step 3-5.
- **Step 3-5.** If there is no loop in $e_{\min_2} \cup T_k^{NH}$, then set $E(T_k^{NH}) \leftarrow E(T_k^{NH}) \cup e_{\min_2}$ and $E_{in_2} \leftarrow E_{in_2} \setminus e_{\min_2}$. Otherwise, set $E_{in_2} \leftarrow E_{in_2} \setminus e_{\min_2}$. Go to Step 3-6.
- **Step 3-6.** If T_k^{NH} is a tree (see Fig. 5)Cthen set $f(T_k^{NH_{best}}) \leftarrow f(T_k^{cur})$ and return to Step 3. Otherwise, return to Step 3-4.

3.2 Ant Colony Optimization-Based Intensification Procedure

In this section, we describe the details on the ant colony optimization-based intensification procedure performed in Step 4.

Ant Colony Optimization (ACO) [5,6] is a metaheuristic approach for solving hard combinatorial optimization problems. This basic behavior is the basis for a cooperative interaction which leads to the emergence of shortest paths by depositing a substance called *pheromone* on the ground so as to minimize the length of the path between nest and food source.

In this paper, we propose an intensification algorithm based on ant colony optimization by extending the Blum-Blesa algorithm [1]. One of the characteristics in the proposed algorithm is that our algorithm deposits pheromone on the edges selected in the local optimal solutions which were obtained by the tabu search-based local algorithm. This procedure allows the proposed hybrid algorithm to intensively explore the promising region.

[Intensification algorithm based on ant colony optimization]

Step 1 (Setting of learning rate). Set the learning rate of each solution in E_{lb} to the value defined by

$$\rho = \begin{cases} 0.15, & cf < 0.7\\ 0.1, & 0.7 \le cf \le 0.95\\ 0.05, & cf > 0.95, \end{cases}$$

where cf is a convergence factor defined by

$$cf \leftarrow \frac{\sum_{e \in E_{lb}} \tau_e}{|E_{lb}| \cdot \tau_{max}}.$$

Step 2 (Update of pheromone). Update the amount of pheromone assigned to each edge e as follows:

$$\tau_e = f_{mmas}(\tau_e + \rho(\delta_e - \tau_e))$$

where

$$f_{mmas}(x) = \begin{cases} \tau_{min}, \ x < \tau_{min} \\ x, \quad \tau_{min} \le x \le \tau_{max} \end{cases}, \quad \delta_e = \begin{cases} 1, & e \in E_{lb} \\ 0, & e \notin E_{lb}. \end{cases}$$

Step 3 (Generation of a k-subtree). Replace the weight attached to each edge e in G by $w_d(e)$ defined as

$$w_d(e) \leftarrow \frac{w(e)}{\tau_e}$$
.

Stating from a randomly selected node, a k-subtree T_k is constructed by applying the Prim method. After that, replace $w_d(e)$ by the original weight w(e) and construct a k-subtree T_k^{cur} by applying the Prim method again to the subgraph whose nodes and edges are $V(T_k)$ and $E(T_k)$, respectively.

In this paper, we set the initial values of τ_e , the values of τ_{min} and τ_{max} to 0.5, 0.001 and 0.999, respectively.

4 Numerical Experiments

In order to compare the performances of our method with two of existing solution algorithms proposed by Blum and Blesa [1]. We use C as the programming language and compiled all software with C-Compiler: Microsoft Visual C++ 7.1. All the metaheuristic approaches were tested on a PC with Celeron 3.06GHz CPU and RAM 1GB under Microsoft Windows XP.

Tables 1-4 and 5 show the results for several existing instances [14] and our new instances, respectively. Bold face means that it is the best obtained value among the three algorithms to be compared. In Tables 1-4, BNV denotes the best known values which have been obtained by Blum and Blesa through their

Table 1. Grid graph [14]

				Objective	e functio	n values
Graph	k	BNV		HybridK	TSB	ACOB
N = 225	40	695	best	695	696	695
E = 400			mean	695	696	695.4
$\bar{d}(v) = 3.55$			worst	695	696	696
$(bb45x5_1.gg)$	80	*1552	best	1552	1579	1572
		(1568)	mean	1565.1	1592.7	1581.2
			worst	1572	1615	1593
	120	*2444	best	2444	2546	2457
		(2450)	mean	2457.9	2558.5	2520.3
			worst	2465	2575	2601
	160	*3688	best	3688	3724	3700
		(3702)	mean	3688	3724.9	3704.7
			worst	3688	3729	3720
	200	5461	best	5461	5462	5461
			mean	5461	5462.4	5469
			worst	5461	5463	5485
N = 225	40	654	best	654	654	654
E = 400			mean	654	$\bf 654$	$\bf 654$
$\bar{d}(v) = 3.55$			worst	654	654	654
$(bb45x_5_2.gg)$	80	1617	best	1617	1617	1617
			mean	1619.1	1617.1	1626.9
			worst	1620	1619	1659
	120	*2632	best	2632	2651	2637
		(2633)	mean	2641.3	2677.9	2664.6
			worst	2648	2719	2706
	160	3757	best	3757	3815	3757
			mean	3764.3	3815.0	3797.6
			worst		3815	3846
	200	5262	best	5262	$\bf 5262$	$\bf 5262$
			mean	5262	5268.6	5272
			worst	5262	5296	5288

				Objective	e function	n values
graph	k	BNV		HybridK	TSB	ACOB
N = 1000	200	3308	best	3393	3438	3312
E = 2000		Ì	mean	3453.1	3461.4	3344.1
d(v) = 4			worst	3517	3517	3379
(1000-4-01.g)	400	7581	best	7659	7712	7661
			mean	7764	7780.2	7703
			worst	7819	7825	7751
	600	12708	best	12785	12801	12989
			mean	12836.6	12821.8	13115.6
			worst	13048	12869	13199
	800	19023	best	19099	19093	19581
			mean	19101.1	19112.6	19718.7
			worst	19128	19135	19846
	900	22827	best	22827	22843	23487
			mean	22827	22859.2	23643
			worst	22827	22886	23739
N = 1000	200	3620	best	3667	3692	3632
E = 2000			mean	3697.5	3722.0	3670.1
d(v) = 4			worst	3738	3751	3710
(g400-4-05.g)	400	8206	best	8323	8358	8376
			mean	8357.1	8385.6	8408.3
			worst	8424	8415	8442
	600	13584	best	13807	13735	14085
			mean	13824.3	13759.4	14164.5
			worst	13900	13820	14235
	800	20076	best	20110	20130	20661
			mean	20129.9	20142.9	20811.3
			worst	20143	20155	20940
	900	24029	best	24035	24044	24782
			mean	24035	24052.6	24916
			worst	24035	24064	25037

Table 2. Regular graph [14]

tremendous experiment for several months. The values with * denotes new best known values that are updated by the proposed algorithm. HybridK, TSB and ACOB represent the proposed algorithm, tabu search algorithm [1] and ant colony optimization algorithm [1] by Blum and Blesa. We executed each method for 30 runs under the condition that TimeLimit = 300(s) and computed the best, mean and worst objective function values for each method. We describe '–' in the tables when the algorithms do not derive solutions within the given time limit.

Tables 1-4 show that the performance of the proposed method is better than those of the existing algorithms by Blum and Blesa, especially in the case of high cardinality k and high degree graphs, whereas the performance of the ant colony optimization algorithm by Blum and Blesa is the best for low cardinality

				Objective	e function	on values
graph	k	BNV		HybridK	TSB	ACOB
N = 1000	200	1018	best	1034	1036	1036
E = 5000			mean	1048.6	1047.3	1045.9
$\bar{d}(v) = 10.0$			worst	1063	1056	1056
(steind15.g)	400	2446	best	2469	2493	2665
			mean	2480.7	2502.5	2806.6
			worst	2492	2524	2928
	600	4420	best	4426	4442	5028
			mean	4433	4454.6	5398.4
			worst	4451	4490	5602
	800	7236	best	7236	7252	8457
			mean	7236.9	7272.8	8839.6
			worst	7237	7308	9006
	900	9248	best	9256	9283	10873
			mean	9256	9294.2	11166.3
			worst	9256	9304	11423

Table 3. Instances constructed from Steiner tree problems [14]

Table 4. Instances constructed from graph coloring problems [14]

				Objective	functi	on values
graph	k	BNV		HybridK	TSB	ACOB
N = 450	90	135	best	135	135	135
E = 8168			mean	135.1	135.3	135.7
$\bar{d}(v) = 36.30$			worst	137	136	137
$(le450_15a.g)$	180	336	best	336	337	352
			mean	337	337.1	374.4
			worst	337	338	419
	270	630	best	630	630	696
			mean	630.1	630.3	839
			worst	631	633	913
	360	1060	best	1060	1060	1267
			mean	1060	1064.1	1461.2
			worst	1060	1118	1566
	405	1388	best	1388	1388	1767
			mean	1388	1391.1	1888.7
			worst	1388	1392	2015

k. Table 5 shows that the proposed method is the best for instances of graphs with higher degrees than existing ones. It should be stressed here that as shown in Table 1, the proposed method updates some of best known values despite very short computational time limit (300s), while the time limits in the experiments by Blum and Blesa are fairly large, at most several hours. From these results, we can occlude that the proposed algorithm is considerably promising for solving k-minimum spanning tree problems.

Table 5. New instances

	1		Objective	function	values
graph	k		HybridK	TSB	ACOB
N = 500	100	best	1943	1954	1943
E = 15000		mean	1950.5	1990.9	2022.3
$\bar{d}(v) = 60$		worst	1966	2023	2241
()	200	best	5037	5063	5517
		mean	5047.3	5080.4	7444.4
		worst	5066	5221	9859
	300	best	9758	9821	-
		mean	9769.6	9922.6	-
		worst	9795	11696	-
	400	best	16351	16373	-
		mean	16363.8	16488	-
		worst	16368	17953	-
	450	best	20929	20934	-
		mean	20929	20945.2	-
		worst	20929	20992	-
N = 500	100	best	1294	1319	1398
E = 30000		mean	1303.7	1352.8	1743.5
$\bar{d}(v) = 120$		worst	1321	1385	2479
	200	best	3064	3150	4013
		mean		3934.4	6861.4
		worst	3127	6032	9623
	300	best	5312	5380	-
		mean		6471.9	-
		worst		8308	-
	400	best	8582	8586	-
		mean	8582	9540	-
		worst		11485	-
	450	best	10881	10882	-
		mean	10881	11300.4	-
		worst	10881	13570	-

5 Conclusion

In this paper, we have proposed a new hybrid approximate solution algorithm for k-MST problems and compared the performance of the proposed method with those of existing methods through numerical experiments for several benchmark instances. It has been shown that the proposed method updates some of the best known values and that has provided better performances than the existing methods. We will execute more experiments to clarify the efficiency of the proposed algorithm as well as its advantages and disadvantages over the existing algorithms.

References

- Blum, C., Blesa, M.J.: New metaheuristic approaches for the edge-weighted kcardinality tree problem. Computers & Operations Research 32, 1355–1377 (2005)
- 2. Börndorfer, R., Ferreira, C., Martin, A.: Matrix decomposition by branch- and-cut. Technical Report, Konrad-Zuse-Zentrum für Informationstechnik, Berlin (1997)
- 3. Börndorfer, R., Ferreira, C., Martin, A.: Decomposing matrices into blocks. SIAM Journal on Optimization 9(1), 236–269 (1998)
- 4. Cheung, S.Y., Kumar, A.: Efficient quorum-cast routing algorithms. In: Proceedings of INFOCOM. IEEE Society Press, Los Alamitos (1994)
- 5. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Transactionson Systems, Man and Cybernetics: Part B 26(1), 29–41 (1996)
- Dorigo, M., Gambardella, L.M.: Ant Colony System: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)
- Fischetti, M., Hamacher, H.W., Jörnsten, K., Maffioli, F.: Weighted k-cardinality trees: complexity and polyhedral structure. Networks 24, 11–21 (1994)
- Foulds, L.R., Hamacher, H.W., Wilson, J.: Integer programming approaches to facilities layout models with forbidden areas. Annals of Operations Research 81, 405–417 (1998)
- Freitag, J.: Minimal k-cardinality trees, Master thesis, Department of Mathematics, University of Kaiserslautern, Germany (1993)
- 10. Garg, N., Hochbaum, D.: An $O(\log k)$ approximation algorithm for the k minimum spanning tree problem in the plane. Algorithmica 18(1), 111–121 (1997)
- 11. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht (1997)
- 12. Hamacher, H.W., Jörnsten, K., Maffioli, F.: Weighted k-cardinality trees. Technical Report 91.023, Politecnico di Milano, Dipartimento di Elettronica, Italy (1991)
- 13. Jörnsten, J., Løkketangen, A.: Tabu search for weighted k-cardinality trees. Asia-Pacific Journal of Operational Research 14(2), 9–26 (1997)
- 14. KCTLIB (2003), http://iridia.ulb.ac.be/~cblum/kctlib/
- 15. Marathe, M.V., Ravi, R., Ravi, S.S., Rosenkrantz, D.J., Sundaram, R.: Spanning trees short or small. SIAM Journal on Discrete Mathematics 9(2), 178–200 (1996)
- Philpott, A.B., Wormald, N.C.: On the optimal extraction of ore from an open-cast mine. University of Auckland, New Zealand (1997)