CLAIMS

What is claimed is:

1	1. A process comprising:
2	in a substrate, forming a first isolation structure spaced-apart from a
3	second isolation structure;
4	forming an emitter stack between the first and second isolation
5	structures;
6	in the substrate, forming a self-aligned recess between the emitter
7	stack and the first isolation structure; and
8	forming a bipolar junction transistor between the first and second
9	isolation structures.
1	2. The process according to claim 1, further including:
2	implanting a self-aligned collector tap in the self-aligned recess.
1	3. The process according to claim 1, wherein forming a self-aligned
2	recess further includes:
3	patterning a mask that exposes a portion of the first isolation
4	structure, a portion of the emitter stack, and a portion of the substrate located
5	between the first isolation structure and the emitter stack; and
6	etching the self-aligned recess with an etch recipe that is more
7	selective to the first isolation structure and the emitter stack than to the
8	substrate.
1	4. The process according to claim 1, wherein forming a self-aligned
2	recess further includes:
3	patterning a mask that exposes a portion of the first isolation
4	structure, a portion of the emitter stack, and a portion of the substrate located
5	between the first isolation structure and the emitter stack; and

6	anisotropically etching the self-aligned recess with an etch recipe that				
7	is more selective to the first isolation structure and the emitter stack than to				
8	the substrate.				
1	5. The process according to claim 1, wherein implanting a self-aligned				
2	collector tap in the self-aligned recess includes:				
3	patterning a mask that exposes at least a portion of the first isolation				
4	structure and the emitter stack; and				
5	implanting a dopant into the substrate that is exposed by the self-				
6	aligned recess.				
1	6. The process according to claim 1, wherein implanting a self-aligned				
2	collector tap in the self-aligned recess includes:				
3	patterning a mask that exposes at least a portion of the first isolation	•			
4	structure and the emitter stack; and				
5	implanting a dopant into the substrate that is exposed by the recess,				
6	wherein implanting results in a P collector tap, a P- collector tap, a P				
7	collector tap, a P+ collector tap, a P++ collector tap, an N collector tap, an				
8	N- collector tap, an N collector tap, an N+ collector tap, and an N++				
9	collector tap.				
. 1	7. The process according to claim 1, wherein forming the bipolar				
2	junction transistor between the first and second isolation structures includes:				
3	in the substrate, forming an epitaxial layer;				
4	forming a polysilicon film above the epitaxial layer; and				
5	patterning the polysilicon film into emitter polysilicon.				
1	8. The process according to claim 1, wherein forming the bipolar				
2	junction transistor between the first and second isolation structures includes:				
3	in the substrate, forming an epitaxial layer;				
4	forming a polysilicon film above the epitaxial layer;				

5	patterning the polysilicon film into emitter polysilicon; and
5	forming a spacer on the emitter stack.
1	9. The process according to claim 1, wherein forming the bipolar
2	junction transistor between the first and second isolation structures includes:
3	in the substrate, implanting a collector structure;
4	in the substrate, forming an epitaxial layer;
5	forming a polysilicon film over the epitaxial layer; and
6	patterning the polysilicon film into emitter polysilicon, wherein the
7	emitter polysilicon is disposed above the collector structure.
1	10. The process according to claim 1, wherein forming an emitter stack
2 ,	includes:
3	in the substrate, forming an epitaxial layer;
4	forming a polysilicon film above the epitaxial layer;
5	patterning the polysilicon film into emitter polysilicon, wherein
6	patterning the polysilicon film into emitter polysilicon further includes:
7	patterning a hard mask above the polysilicon film.
1	11. The process according to claim 1, wherein forming an emitter stack
2	includes:
3	in the substrate, forming an epitaxial layer;
4	forming a dielectric layer above the epitaxial layer;
5	forming an emitter cut in the dielectric layer;
6	forming a polysilicon film above the epitaxial layer; and
7	patterning the polysilicon film into emitter polysilicon.
1	12. The process according to claim 1, further including:
2	in the substrate, forming a buried layer.

1	13. A bipolar junction transistor comprising:			
2	in a substrate, a first isolation structure spaced apart from a second			
3	isolation structure;			
4	an emitter stack disposed above the substrate and between the first			
5	isolation structure and the second isolation structure;			
5	a recess disposed adjacent and between the emitter stack and the first			
7	isolation structure, wherein the recess exposes a collector tap.			
	•			
1	14. The bipolar junction transistor according to claim 13, further			
2	including:			
3	a spacer disposed on the emitter stack, wherein the spacer extends on			
4	one side thereof into the recess between the emitter stack and the first			
5	isolation structure.			
	·			
1	15. The bipolar junction transistor according to claim 13, further			
2	including:			
3	a spacer disposed on the emitter stack, wherein the spacer extends on			
4	one side thereof into the recess between the emitter stack and the first			
5	isolation structure, and wherein the spacer is selected from an oxide, a			
6	nitride, an oxide first layer and a nitride second layer, a nitride first layer and			
7	an oxide second layer, an oxide first layer and an oxide second layer, and a			
8	nitride first layer and a nitride second layer.			
1	16. The bipolar junction transistor according to claim 13, further			
2	including:			
3	a spacer disposed on the emitter stack, wherein the spacer extends on			
4	one side thereof into the recess between the emitter stack and the first			
5	isolation structure, and wherein the spacer is further disposed on the first			
6	isolation structure and extends into the recess.			

l	17.	The bipolar junction transistor according to claim 13, further
2	including:	
3		a buried layer disposed in the substrate between the first isolation
4	structu	re and the second isolation structure.
i '	18.	The bipolar junction transistor according to claim 13, further
2	including:	·
3	•	in the substrate, an epitaxial base layer disposed below the emitter
4	stack;	
5		a collector structure disposed in the substrate below the emitter stack;
6	and	
7		an intrinsic base structure disposed between the emitter stack and the
8	collect	for structure.
		·
1	19.	The bipolar junction transistor according to claim 13, further
2	including:	
3		in the substrate, an epitaxial base layer disposed below the emitter
4	stack;	
5		a collector structure disposed in the substrate below the emitter stack;
6		a dielectric layer disposed above the substrate and below the emitter
7	stack,	wherein the dielectric layer includes an emitter cut disposed above the
8	collect	for structure; and
9		an intrinsic base structure disposed between the emitter cut and the
0	collect	for structure.
1	20.	The bipolar junction transistor according to claim 13, further
2	including:	
3		in the substrate, a collector tap disposed in the recess, wherein the
4	collect	tor tap is selected from a P collector tap, a P- collector tap, a P
5	collect	tor tap, a P+ collector tap, a P++ collector tap, an N collector tap, an

6	N- collector tap, an N collector tap, an N+ collector tap, and an N++			
7	collector tap.			
1	21. The bipolar junction transistor according to claim 13, wherein the			
2	substrate includes a bipolar-complementary metal oxide semiconductor			
3	(BiCMOS) structure.			
1	22. The bipolar junction transistor according to claim 13, wherein the			
2	BJT is selected from a monojunction BJT device and a heterojunction BJT device.			
1	23. A bipolar junction transistor (BJT) layout comprising:			
2	an epitaxial base layer perimeter;			
3	an emitter stack perimeter disposed above the base layer perimeter;			
4	and			
5	a collector tap perimeter, wherein the emitter stack perimeter and th			
6	collector tap perimeter share a co-linear first boundary.			
1	24. The BJT layout according to claim 23, wherein the emitter stack			
2	perimeter and the epitaxial base layer perimeter intersect.			
1	25. The BJT layout according to claim 23, wherein the collector tap			
2	perimeter shares a co-linear second boundary and a co-linear third boundary with			
3	the epitaxial base layer perimeter.			
1	26. The BJT layout according to claim 23, further including:			
2	a base tap perimeter, wherein the base tap perimeter is enclosed by			

the epitaxial base layer perimeter.

3