НИС: методы искусственного интеллекта в робототехнике

Александр Панов и Константин Яковлев

ниу вшэ

16 октября 2017

apanov@hse.ru

Техническое

1	04.09.2017	Яковлев	Интеллектуальная робототехника (ИИ + роботы + интеллектуальные агенты). Постановочная занятие. Знакомство с предметной областью. Основные определения. Проекты. Направления исследований.
2	25.09.2017	Панов	Архитектуры управления робототехническими системами: основные понятия, принципы и организация. Память и обучение в когнитивных архитектурах. Модели представление знаний и их пополнения.
3	02.10.2017	Яковлев	Многоуровневые интеллектуальные системы управления. Тактический уровень (SLAM, навигация, планирование граектории). Информированный и неинформированный поиск в решении навигационных задач (и не только).
4	16.10.2017	Панов	Алгоритмы обучение: иерархическая временная память. Обучение с подкреплением.
5	13.11.2017	Яковлев	Графовые модели для задач планирования траектории (2D). Алгоритмы семейства А* для решения задач планирования траектории (от основ, к динамике/перепланированию).
6	27.11.2017	Панов	Синтез плана поведения - стратегический уровень. Коллоборативная и групповая робототехника.
7	04.12.2017	Яковлев	Планирование траекторий для группы агентов. Централизованные и децентрализованные подходы.
8	18.12.2017	Панов	Психологически правдоподобные методы в робототехнических системах.

Обсуждение, вопросы, презентации и ДЗ - на странице курса на Piazza piazza.com/hse.ru/fall2017/aicognitive004

Обучение с подкреплением: постановка задачи

- t дискретные моменты времени,
- $a_t \in A$ действие агента в момент времени t,
- ullet среда, $s_t o s_{t+1}$ состояния среды,
- $R = \sum_t \gamma^t r_t$ суммарное вознаграждение, $0 < \gamma \le 1$ дисконтирующий множитель.

Марковский процесс

Марковский процесс (Markov decision process (MDP)) - кортеж $\langle S, A, P, R \rangle$:

- S конечное число состояний,
- А конечное число действий
- $P = \{P_a(s,s') = P(s_{t+1} = s' | s_t = s, a_t = a)\}$ вероятности переходов,
- $R = \{r_a(s, s')\}$ вознаграждение.

Стратегия агента

Цель агента - обучиться стратегии π выбора действия в наблюдаемых состояниях среды $\pi:S\to A$, в результате применения которой он получит максимальное суммарное вознаграждение R:

$$\sum_t \gamma^t r_t \to \max_{\pi}$$

Баланс между исследованием среды и учетом предыдущего опыта (exploration vs explotation) - ε -жадный метод:

- ullet с вероятность 1-arepsilon выбирается действие на основе предыдущих прецедентов,
- ullet с вероятностью arepsilon- случайное действие из доступных на данный момент

Параметр ε уменьшают с течением времени.

Способы решения

• Если известны $P(s_t, a_t, s_{t+1})$ и $R(s_t, a_t)$, то это задача, основанная на модели, решение *уравнения Беллмана*:

$$V(s) = \max_{a} Q(s, a),$$

$$Q(s,a) = \sum_{s_{t+1}} P(s_t, a_t, s_{t+1}) (R(s_t, a_t) + \gamma V(s_{t+1})),$$

где $V(s) = \mathbf{E}[R|s,\pi]$ - функция полезности, а $Q(s,a) = \mathbf{E}[R|s,a,\pi]$ - функция полезности действия.

ullet Оценка функций полезности V(s) или Q(s,a).

Обучение с подкреплением: правила перемещения

- E = (M, G) среда, где M карта местности, $G(p_s, p_f)$ алгоритм генерации вознаграждения,
- ullet $a_t=p_t o p_{t+1}$ действия агента по перемещению,
- $s_t \in R^{(2d)^2}$ наблюдения агента (сенсорная информация).

Пусть $Q^*(s_t,a_t) = \max_{\pi} \mathbf{E}[R|s_t,a_t,\pi]$ - оптимальная функция полезности, тогда с учетом определения R получаем следующее уравнение Беллмана:

$$Q^*(s, a) = \mathbf{E}_{s_t \sim E} \left[\frac{\sqrt{|r_t + \gamma \max_{a_t} Q^*(s_t, a_t)|}}{|s, a|} \right]$$

Обучение с подкреплением: аппроксимация

Для решения итерационными методами уравнения Беллмана используют различные аппроксимации функции $Q^*(s,a)$: $Q(s,a;\theta) \approx Q^*(s,a)$.

В процессе обучения происходит настройка параметров θ в результате минимизации функции потерь $L(\theta)$:

$$L_i(\theta_i) = \mathbf{E}_{s,a \sim \rho(\cdot)} \left[(\underbrace{y_i} - Q(s,a;\theta_i))^2 \right],$$

$$y_i = \mathbf{E}_{s_t \sim E} \left[r_t + \gamma \max_{a_t} Q(s_t,a_t;\theta_{i-1}) | s, a \right]$$

$$\nabla_{\theta_i} L_i(\theta_i) = \mathbf{E}_{s,a \sim \rho(\cdot); s_t \sim E} \left[(r_t + \gamma \max_{a_t} Q(s_t, a_t; \theta_{i-1}) - Q(s, a; \theta_i)) \nabla_{\theta_i} Q(s, a; \theta_i) \right].$$

Обучение с подкреплением: переигровки

- Эпизод это набор действий агента и реакций среды на перемещения от начального положения до конечно, либо до достижения максимального количества действий N_a ,
- $m{e}_t = (s_t, a_t, r_t, s_{t+1})$ прецедент сохраняется в память агента D,
- $oldsymbol{\circ}$ обучение идет по некоторой случайной выборке e из памяти $D = \left\{ e_1, \ e_2 \ , \ldots, \ e_i \ , e_{i+1}, \ldots e_j, \ e_{j+1} \ , \ldots
 ight\}$

ullet одно действие можно использовать несколько раз \to расширяем выборку, устраняем корреляции соседних состояний.

Генерация вознаграждения

Для расчета функции вознаграждения использовали следующий алгоритм:

$$G(s,g,t) = \begin{cases} \alpha_{opt}r_t^{opt} + \alpha_{rat}r_t^{rat} + \alpha_{euq}r_t^{euq}, & p_t \leftarrow 0, \\ r^{obs}, & p_t \leftarrow 1, \\ r^{tar}, & p_t = g, \end{cases}$$

где

- ullet $\sum lpha_i = 1$ нормировка,
- ullet $r_t^{opt}=I_t-I_{t-1}$ изменение оптимального расстояния,
- $r_t^{rat} = e^{-l_t/l_0}$ штраф за отклонение от цели,
- $ullet r_t^{euq} = |p_t g| |p_{t-1} g|$ регуляризатор для спрямления пути.

Нейросетевые архитектуры для аппроксимации Q

Можно использовать разные варианты сетей:

- $oldsymbol{0}$ Ag_1 «мелкая» полносвязная нейронная сеть,
- ② Ag_2 сверточная сеть средней глубины с полносвязными выходным слоем,

Модели обучения в мозге

Нейронный субстрат

Histological Structrure of the Cerebral Cortex

Иерархическая временная память

- ullet $N^{i,j}$ узлы сети,
- ullet $g^{i,j}$ временные группы,

Иерархическая временная память

ИВП: пример

$$z = \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight]$$

Модель процесса обучения

К основным принципам работы механизма обучения относятся:

- использование иерархии вычислительных узлов с восходящими и нисходящими связями,
- использование Хэббовских правил обучения,
- разделение пространственного и временного группировщиков,
- подавление второстепенной активации для формирования разреженного представления.

Нейронная организация

