НАЗВАНИЕ ИССЛЕДОВАНИЕ ДИФРАКЦИИ ФРЕНЕЛЯ И ФРАУНГОФЕРА СВЕТА НА УЗКОЙ ПРОТЯЖЕННОЙ ЩЕЛИ

Казаков Данила Маслов Артём Б01-104

10.02.2022

Аннотация

КИДАТОННА

В работе исследуется дифракция Френеля и Фраунгофера на узкой протяженной щели. **Ключевые слова:** дифракция Френеля, дифракция Фраунгофера.

Теория

Явление отклонения от распространения света согласно законам геометрической оптики, называется $\partial u\phi pakuue\ddot{u}$ в широком смысле слове. В узком смысле слова дифракцией называется явление огибания светом препятствия и проникновение в область геометрической тени.

Основная задача дифракции

При рассмотрении явления дифракции решается следующая основная задача.

Рис. 1: Основная задача дифракции

Пусть в плоскости z=0 находится экран с отверстием произвольной формы, и в полупространстве z<0 находятся источники излучения. Пусть известно результирующее поле от источников $f_{\rm H}(x,y,0)$, которое они создают в плоскости z=0 в отсутствии экрана. Тогда

- 1. Зная оптические свойства материала, из которого изготовлен экран и геометрические размеры отверстия, необходимо найти распределение поля $f_0(x, y, 0)$ сразу после экрана, в плоскости z = +0.
- 2. По распределению поля на границе экрана $f_0(x, y, 0)$ нужно найти значение поля в области пространства

z>0,в частности на исследуемой поверхности $\Pi,$ находящейся на расстоянии z от экрана.

Получить аналитическое выражение для электромагнитного поля на границе экрана $f_0(x,y,0)$ часто не возможно. Во-первых, электромагнитная волна на поверхности экрана порождает переменные токи. Электромагнитное поле индуцированных токов необходимо учитывать при вычислении поля на границе экрана. Во-вторых, отверстие может иметь сложную геометрию. В-третьих, оптические свойства материала экрана могут быть не линейными.

Для упрощения решения основной задачи, применяется *приближение Кирхгофа*. Предполагается, что поле в той части экрана, где есть отверстие равно результирующему полю источников $f_{\rm H}(x,y,0)$, если бы не было экрана. В области, затененной экраном поле источников считается равным 0. То есть в данном приближении пренебрегается взаимодействием экрана и электромагнитного поля. Данное приближение хорошо описывает реальные физические системы, если, во-первых, линейные размеры отверстия b велики по сравнению с длиной волны λ : $b > \lambda$. Во-вторых, если плоскость наблюдения находится на расстоянии z много большем длины волны: $z \gg \lambda$.

Принцип Гюйгенса-Френеля

Согласно *принципу Гюйгенса-Френеля*, каждая точка волнового фронта является источником вторичных сферических волн, а результирующее поле в исследуемой точке пространства — результат интерференции вторичных волн.

Рис. 2: Принцип Гюйгенса-Френеля

Получим качественную оценку для поля в исследуемой точке пространства P(x,y,z). Рассмотрим точку отверстия с координатами (ξ,η) . Она является источником вторичных сферических волн с амплитудой, пропорциональной амплитуде исходной волны. Фаза вторичной волны равна фазе исходной волны. В точке P амплитуда сферической волны уменьшится в R раз, фаза изменится на e^{ikR} . Предполагается, что амплитуда колебаний поля в исследуемой точке пропорциональна видимой площади $ds\cos\alpha$ элементарной площадки, создающей вторичные волны. Итого поле dg(x,y), созда-

ваемое в точке P, площадкой ds:

$$dg(x,y) \sim f_0(\xi,\eta) \frac{e^{ikR}}{R} \cos \alpha d\xi d\eta$$

Интегрируя по всей области отверстия получим выражение для результирующего поля g(x,y) в точке P:

$$g(x,y) = K_0 \iint_S f_0(\xi,\eta) \frac{e^{ikR}}{R} \cos \alpha \, d\xi \, d\eta \tag{1}$$

где коэффициент пропорциональности $K_0 = \frac{1}{i\lambda}$. Данное соотношение является количественной формулировкой принципа Гюйгенса-Френеля.

При использовании принципа Гюйгенса-Френеля используют следующие приближения. Во-первых, так как обычно рассматриваются параксиальные лучи, то расстояние R от точек

отверстия до всех точек исследуемой плоскости считается одинаковым и равным R_0 :

$$g(x,y) = \frac{1}{i\lambda R_0} \iint_S f_0(\xi,\eta) e^{ikR} \cos\alpha \,d\xi \,d\eta$$

Для оценки изменения фазы нужно использовать более точную оценку. Разложим расстояние R по формуле Тейлора до второго порядка:

$$R = \sqrt{z^2 + (x - \xi)^2 + (y - \eta)^2} \approx z + \frac{(x - \xi)^2}{2z} + \frac{(y - \eta)^2}{2z}$$

Предполагается, что члены разложения Тейлора более высокого вносят малую поправку в полученный результат. Такое приближение называется ϕ ренелевским. Итого значение поля в точке P(x, y, z) вычисляется по формуле:

$$g(x,y) = \frac{e^{ikz}}{i\lambda z} \iint_{S} f_0(\xi,\eta) e^{i\frac{k}{2z} \left((x-\xi)^2 + (y-\eta)^2\right)} d\xi d\eta$$
 (2)

Дифракция Френеля на круглом отверстии

Рис. 3: Дифракция Френеля

Найдем распределение поля в точке P(0,0,z) от круглого отверстия радиуса r. Будем считать, что экран с отверстием освещается параллельным пучком световых волн с одинаковой амплитудой колебаний A_0 . Тогда преобразуем формулу (2), перейдя к интегрированию по кольцам радиуса ρ , толщиной $d\rho$ и площадью $ds = 2\pi \rho d\rho$:

$$g = A_0 \frac{e^{ikz}}{i\lambda z} \int_{0}^{r} e^{i\frac{k}{2z}\rho^2} 2\pi\rho d\rho = A_0 e^{ikz} \left(1 - e^{-ik\frac{k}{2z}r^2} \right)$$

Интенсивность поля в точке P вычисляется по формуле:

$$I \propto \langle |g|^2 \rangle = 2I_0 \left(1 - \cos\left(\frac{k}{2z}r^2\right) \right) \tag{3}$$

где I_0 – интенсивность исходной волны, усреднение производится за время много больше периода колебаний электромагнитной волны.

Проанализируем полученный результат. Точки $r_m = \sqrt{m\lambda z}, m = 1, 2, 3, \ldots$ являются точками экстремума функции интенсивности. При нечётных m наблюдается максимум $I_{max} = 4I_0$, при чётных m – минимум $I_{min} = 0$.

Полученное соотношение справедливо, когда $\frac{\cos\alpha}{R} \approx \frac{1}{R_0}$. С помощью метода векторных диаграмм качественно учтем влияние множителя $\frac{\cos\alpha}{R}$ на результат.

Рассмотрим последовательность колец радиусом ρ_n , достаточно малой толщины $d\rho_n << 1$ и одинаковой площади $dS_n = dS_{n+1} = dS$. Тогда вклад от одного кольца в поле в точке P обозначим в виде вектора dA на векторной диаграмме. Модуль этого вектора $dA = A_0 \frac{\cos \alpha}{\lambda B} dS$.

Угол наклона вектора относительно горизонтали обозначим за $\varphi = \frac{k}{2z} \rho^2$. Угол между двумя соседними векторами $d\varphi = \frac{k}{z} \rho d\rho = \frac{1}{\lambda z} dS$ – постоянная величина.

Рис. 4: Метод векторных диаграмм. Спираль Френеля.

Векторы $d\mathbf{A}$, построенные последовательно друг за другом будут образовывать спираль, медленно скручивающуюся к центру (модуль вектора dA убывает с увеличением радиуса кольца). Результирующее поле $\mathbf{A}(\rho)$ в точке P равно сумме вкладов отдельных колец $d\mathbf{A}$ (рис. 4в).

Кольцо $r_{m-1} < \rho < r_m$, где $r_m = \sqrt{m \lambda z}$ называется m-ой зоной Френеля. Не трудно показать, что

результирующие колебания, создаваемые двумя последовательными зонами Френеля, сдвинуты по фазе на π . На векторной диаграмме зонам Френеля соответствуют полуокружности. На рисунке 4а изображена первая зона Френеля, результирующий вектор $A_1=2A_0$. На рисунке 4б открыты две зоны Френеля и результирующее поле в точке P мало, но не равно нулю.

Если открыто нечётное число зон Френеля, то наблюдается максимум амплитуды, если открыто чётное число зон Френеля, то – минимум. При открытии большого числа зон Френеля вектор результирующих колебаний $A(\rho)$ медленно стремится к центру спирали и в пределе полностью открытого пространства равен по амплитуде колебаниям поля источников A_0 .

Дифракция Френеля на узкой щели

Рассмотрим бесконечно длинную узкую щель. Направим ось η вдоль длинной стороны. Пусть вдоль оси ξ края щели имеют координаты b_1 и b_2 . Определим амплитуду колебаний света в точке P(0,0,z). Преобразуем двойной интеграл в формуле (2) к повторному:

$$g = \frac{e^{ikz}}{i\lambda z} \int_{b_1}^{b_2} f_0(\xi, \eta) e^{i\frac{k}{2z}\xi^2} d\xi \int_{-\infty}^{+\infty} e^{i\frac{k}{2z}\eta^2} d\eta$$

Интеграл по η является интегралом Пуассона и равен константе:

$$\int_{-\infty}^{+\infty} e^{i\frac{k}{2z}\eta^2} d\eta = \sqrt{\pi}$$

С учетом данного соотношения преобразуем формулу для вклада:

$$g = A_0 \int_{b_1}^{b_2} f_0(\xi, \eta) e^{i\frac{k}{2z}\xi^2} d\xi$$

Проанализируем полученное соотношение, используя метод векторных диаграмм. Разобьем щель на узкие бесконечно длинные полоски шириной $d\xi$. Каждая такая полоска вносит вклад в колебание поля в точке P равный $d\mathbf{A}$. Модуль этого вектора равен $dA = A_0 \cdot d\xi$, угол наклона относительно горизонтали $\varphi = \frac{k}{2z}\xi^2$. Угол между соседними векторами $d\varphi = \frac{k}{z}\xi d\xi \neq const$. Полученная формула сильно похожа на формулу, полученную в случае дифракции Фре-

неля на круглом отверстии. Для круглого отверстия $d\varphi=const$, так как кольца выбирались так, что их площадь была постоянной $dS=2\pi\rho d\rho=const$. Для узких бесконечно длинных полосок, в отличие от тонких колец, нельзя выбрать шаг $d\xi$ так, чтобы одновременно dA=const и $d\varphi=const$.

Рис. 5: Метод векторных диаграмм. Спираль Корню.

В результате сложения вкладов отдельных полосок конец вектора результирующей амплитуды колебаний будет описывать спираль Корню. Когда вектор $d\boldsymbol{A}$ повернётся относительно начального на π , то полосу $\xi \in [0;\pi]$ называют первой зоной Шустера. Полосу $\xi \in [\xi_{m-1};\xi_m]$, где $\xi_m = \sqrt{m\lambda z}$ называют m-ой зоной Шустера.

Спираль Корню быстро скручивается к фокусам S_1 и S_2 при открытии большого числа зон Шустера. При открытии двух зон, амплитуда колебаний близка к максимальной. При открытии бесконечно большого числа зон Шустера, вектор результирующих колебаний соединяет фокусы спирали и по модулю равен A_0 - амплитуде колебаний поля источников.

Условия, определяющие тип дифракции

Пусть размер характерный размер отверстия равен b. Тогда всего будет открыто m зон Френеля (Шустера):

$$m = \frac{b^2}{\lambda z} = \frac{1}{p^2}$$

где p – волновой параметр, определяющий тип дифракции.

Если $p\gg 1$, то открыто почти всё пространство и свойства распространения света описываются геометрической оптикой. Если $p\sim 1$, то наблюдается дифракция Френеля. Если $p\ll 1$, то наблюдается дифракция Фраунгофера.

Дифракция Фраунгофера

Описание экспериментальной установки

Схема экспериментальной установки для исследования дифракции Френеля на щели приведена на рисунке:

Рис. 6: Схема экспериментальной установки

Схема экспериментальной установки для исследования дифракции Фраунгофера на щели приведена на рисунке:

Рис. 7: Схема экспериментальной установки

Схема экспериментальной установки для исследования дифракции Фраунгофера на двух щелях приведена на рисунке:

Рис. 8: Схема экспериментальной установки

Схема экспериментальной установки для исследования влияния дифракции на разрешающую способность оптического прибора приведена на рисунке:

Рис. 9: Схема экспериментальной установки

Методика эксперимента

Оборудование

- 1. Оптическая скамья.
- 2. Ртутная лампа.
- 3. Монохроматор.
- 4. Щели с регулируемой шириной.
- 5. Рамка с вертикальной нитью.
- 6. Двойная щель.
- 7. Микроскоп на поперечных салазках с микрометрическим винтом.
- 8. Зрительная труба.

Результаты измерений

Обсуждение результатов и выводы