Annexes sur les extensions de corps et limites directes/inverses

HAJASOA Fanantenana M1 MAFI

Annexe A - Extensions de corps

1. Corps et sous-corps

Dans tout ce cours, nous entendrons par corps un anneau commutatif K vérifiant $K^* = K \setminus \{0\}$.

Définition 1 (A.1.1). Soit K un corps. Une extension de K est un couple (L, j) où L est un corps et $j: K \to L$ un homomorphisme de corps.

Comme un homomorphisme de corps est injectif (les seuls idéaux de K sont l'idéal nul et K), on peut identifier K et j(K) et considérer K comme un souscorps de L. Ainsi, dans toute la suite, une extension d'un corps K est un corps L tel que $L \supseteq K$. On écrit aussi L/K pour dire que L est une extension de K.

Il est clair que si L est une extension de K alors L est un K-espace vectoriel et aussi une K-algèbre.

Définition 2 (A.1.2). On appelle degré de l'extension L/K et on note [L:K] la dimension de L en tant que K-espace vectoriel.

Définition 3 (A.1.3). On dit que le corps K est premier s'il n'admet pas de sous-corps propre.

Exemple 1 (A.1.4). — L'intersection des sous-corps de K est un corps premier. C'est le sous-corps premier de K.

- Le corps \mathbb{Q} des rationnels est un corps premier. En effet, un sous-corps de \mathbb{Q} contient le sous-anneau de \mathbb{Q} enqendré par 1. Donc il contient \mathbb{Z} .
- Pour p premier, d'après le théorème de Lagrange, le corps $\mathbb{Z}/p\mathbb{Z}$ est premier.

Proposition 1 (A.1.5). Soit K un corps.

- (a) Si car(K) = 0 alors le sous-corps premier de K est isomorphe à \mathbb{Q} .
- (b) $Si\ car(K) = p\ (premier)\ alors\ le\ sous-corps\ premier\ de\ K\ est\ isomorphe\ à <math>\mathbb{Z}/p\mathbb{Z}$.

Démonstration. Il suffit de considérer l'homomorphisme d'anneaux $\mathbb{Z} \to K$ tel que $f(n) = n \cdot 1$ en se rappelant que la caractéristique d'un anneau intègre est, soit nulle, soit un nombre premier p (voir [Raz25a]). D'après le premier théorème d'isomorphisme, K contient, soit un sous-corps isomorphe à $\mathbb{Z}/p\mathbb{Z}$, soit un sous-anneau isomorphe à \mathbb{Z} .

Définition 4 (A.1.6). Soit l'extension L/K. Un K-automorphisme de L est un automorphisme de L en tant que K-algèbre. C'est donc un automorphisme du corps L qui laisse invariant les éléments de K. On note Gal(L/K) l'ensemble des K-automorphismes de L. C'est un groupe pour la loi de composition des applications. On l'appelle le groupe de Galois de l'extension L/K.

Proposition 2 (A.1.7). Soient K un corps et P son sous-corps premier. On a Aut(K) = Gal(K/P).

Démonstration. Il est clair que $Gal(K/P) \subseteq Aut(K)$.

Soit $f \in \text{Aut}(K)$. On a $K^f = \{x \in K, f(x) = x\}$ est un sous-corps de K. Ainsi $P \subseteq K^f$ et $f \in \text{Gal}(K/P)$.

Exemple 2 (A.1.8). On a $Aut(\mathbb{R}) = Gal(\mathbb{R}/\mathbb{Q}) = \{id_{\mathbb{R}}\}.$

En effet, d'après la proposition précédente, on a déjà $Aut(\mathbb{R}) = Gal(\mathbb{R}/\mathbb{Q})$. Soit $x \in \mathbb{R}$ avec x > 0. Si $f \in Gal(\mathbb{R}/\mathbb{Q})$ alors $f(x) = f(\sqrt{x^2}) = f(\sqrt{x})^2 \ge 0$. Comme f est injectif, on a f(x) > 0. Il vient que si a - b > 0 alors f(a - b) = f(a) - f(b) > 0 et f est strictement croissant.

Soit alors $x \in \mathbb{R} \setminus \mathbb{Q}$. Si f(x) < x alors il existe $r \in \mathbb{Q}$ tel que f(x) < r < x. Dans ce cas, f(f(x)) < f(r) = r < f(x). Ce qui est absurde. De la même manière, on ne peut pas avoir f(x) > x.

Définition 5 (A.1.9). Soit l'extension L/K et soit $A \subseteq L$. On désigne par K(A) le sous-corps de L engendré par K et A. On dit aussi que K(A) est le sous-corps de L engendré par A sur K. C'est l'intersection des sous-corps de L contenant K et A.

 $Si\ A = \{\alpha_1, ..., \alpha_r\}$, on écrit simplement $K(\alpha_1, ..., \alpha_r)$ et on dit que $K(\alpha_1, ..., \alpha_r)/K$ est une extension de type fini. $Si\ A = \{\alpha\}$, on dit que $K(\alpha)$ est une extension simple de K.

2. Éléments algébriques, éléments transcendants

Soit une extension $K \subseteq L$ et soit $\alpha \in L$. Le plus petit sous-anneau de L contenant K et α est l'ensemble $K[\alpha]$ des expressions polynomiales en α . Son corps des fractions, noté $K(\alpha)$, est le plus petit sous-corps de L contenant K et α . Soit X une indéterminée et soit l'homomorphisme d'anneaux

$$\varepsilon_{\alpha}: K[X] \longrightarrow K[\alpha]$$

défini par $\varepsilon_{\alpha}(a) = a$ si $a \in K$ et $\varepsilon_{\alpha}(X) = \alpha$. Il est clair que ε_{α} est surjectif. Deux cas peuvent se présenter selon que $\ker(\varepsilon_{\alpha})$ est nul ou non.

Définition 6 (A.2.1). On dit que α est transcendant sur K si $\ker(\varepsilon_{\alpha}) = (0)$, et α est algébrique sur K si $\ker(\varepsilon_{\alpha}) \neq (0)$.

- (a) Si α est transcendant sur K, il n'existe pas de polynôme non nul de K[X] qui admet α comme racine. Dans ce cas, ε_{α} est un isomorphisme d'anneaux principaux $K[X] \longrightarrow K[\alpha]$.
- (b) Si α est algébrique sur K, il existe un polynôme non nul de K[X] qui s'annule en α . Soit P un générateur de $\ker(\varepsilon_{\alpha})$ dans l'anneau principal K[X]. Puisque K[X]/(P) est isomorphe à l'anneau intègre $K[\alpha]$, l'idéal (P) est un idéal

premier, donc maximal, de K[X] et P est un élément irréductible de K[X]. Il s'ensuit que $K[\alpha]$ est un corps et $K[\alpha] = K(\alpha)$.

Définition 7 (A.2.2). Si α est algébrique sur K, on appelle polynôme minimal de α sur K et on note $m_{\alpha,K}$, ou simplement m_{α} si le contexte est clair, le générateur unitaire de $\ker(\varepsilon_{\alpha})$. Le degré de α est le degré de son polynôme minimal.

Proposition 3 (A.2.3). Soit l'extension L/K et soit $\alpha \in L$. Les assertions suivantes sont équivalentes :

- (a) L'élément α est algébrique sur K.
- (b) On a l'égalité $K[\alpha] = K(\alpha)$.
- (c) Le K-espace vectoriel $K(\alpha)$ est de dimension finie.

Plus précisément, si $[K(\alpha):K]$ est fini alors $[K(\alpha):K]=\deg \alpha$.

 $D\acute{e}monstration$. On a déjà (1)implique(2). Réciproquement, si $K[\alpha] = K(\alpha)$ alors l'homomorphisme ε_{α} n'est pas injectif et α est algébrique sur K.

- (1)implique(3) Soit $x = F(\alpha)$ avec $F \in K[X]$. On a $F(X) = Q(X)m_{\alpha}(X) + R(X)$ avec $\deg R < \deg m_{\alpha}$ ou R = 0. Ainsi $x = R(\alpha)$ et $(1, \alpha, ..., \alpha^{\deg \alpha 1})$ est un système générateur de $K(\alpha)$.
- (3)implique (1) Si $[K(\alpha):K]=n$, fini, la famille $(1,\alpha,...,\alpha^n)$ n'est pas libre sur K. A partir d'une relation de dépendance linéaire entre les éléments de cette famille on obtient un polynôme non nul de K[X], de degré n, qui s'annule en α .

Enfin, si $[K(\alpha):K]$ est fini, le système générateur $(1,\alpha,...,\alpha^{\deg \alpha-1})$ est un système libre sinon il existerait un polynôme non nul $F \in K[X]$ tel que $\deg F < \deg m_{\alpha}$ et $F \in (m_{\alpha}) = \ker(\varepsilon_{\alpha})$.

3. Extensions finies

Définition 8 (A.3.1). L'extension L/K est dite finie si la dimension de L en tant que K-espace vectoriel est finie.

Remarque 1 (A.3.2). Une extension de type fini n'est pas nécessairement finie. Si L = K(X), le corps des fractions rationnelles en l'indéterminée X alors X n'est pas algébrique sur K de sorte que la dimension de L en tant que K-espace vectoriel n'est pas finie.

Définition 9 (A.3.3). On appelle corps de nombres toute extension finie du corps des rationnels \mathbb{Q} .

Proposition 4 (A.3.4). Si L/K et K/H sont des extensions finies alors L/H est une extension finie et [L:H] = [L:K][K:H].

Démonstration. Soient $(k_i)_{1 \leq i \leq m}$ une H-base de K et $(l_j)_{1 \leq j \leq n}$ une K-base de L. Si $\gamma \in L$ alors

$$\gamma = \sum_{j=1}^{n} \alpha_{j} l_{j} \quad \text{avec } \alpha_{j} \in K,$$

$$\alpha_{j} = \sum_{i=1}^{m} \alpha_{ij} k_{i} \quad \text{avec } \alpha_{ij} \in H.$$

Et, en regroupant

$$\gamma = \sum_{i=1}^{n} \sum_{i=1}^{m} \alpha_{ij} k_i l_j.$$

Ainsi, $(k_i l_j)_{1 \le i \le m, 1 \le j \le n}$ est un système générateur de L sur H.

Si $\sum_{i,j} \alpha_{ij} k_i l_j = \sum_j (\sum_i \alpha_{ij} k_i) l_j = 0$ alors, comme $\sum_i \alpha_{ij} k_i \in K$, pour tout j on a $\sum_i \alpha_{ij} k_i = 0$. Donc $\alpha_{ij} = 0$ pour tout i, j et $(k_i l_j)_{1 \le i \le m, 1 \le j \le n}$ est une H-base de L.

Corollaire 1 (A.3.5). Si[L:K] = n, fini, alors tout élément de L est algébrique sur K et de degré un diviseur de n.

Démonstration. Si $x \in L$, alors la famille $(1, x, ..., x^n)$ est K-liée. On obtient alors un élément non nul de K[X] qui s'annule en x. Il suffit alors de remarquer que n = [L:K] = [L:K(x)][K(x):K].

Soit l'extension finie L/K. Si $\alpha \in L$, on considère le K-endomorphisme δ_{α} de L défini par $\delta_{\alpha}(x) = \alpha x$.

Définition 10 (A.3.6). On appelle trace (resp. norme) de α relativement à L/K et on note $Tr_{L/K}(\alpha)$ (resp. $N_{L/K}(\alpha)$) la trace (resp. le déterminant) de δ_{α} .

$$Tr_{L/K}(\alpha) = Tr(\delta_{\alpha}) \quad N_{L/K}(\alpha) = \det(\delta_{\alpha}).$$

Définition 11 (A.3.7). On appelle polynôme caractéristique de α relativement à L/K et on note $c_{\alpha,L/K}$ (ou c_{α} quand le contexte est clair) le polynôme caractéristique de δ_{α} ,

$$c_{\alpha,L/K}(X) = \det(Xid - \delta_{\alpha}).$$

Proposition 5 (A.3.8). On a

$$c_{\alpha,L/K}(X) = m_{\alpha,K}(X)^{[L:K(\alpha)]}.$$

Démonstration. Supposons d'abord que $L = K(\alpha)$. D'après le théorème de Cayley-Hamilton, $c_{\alpha}(\delta_{\alpha}) = 0$. On a alors $c_{\alpha}(\alpha) = 0$ et $m_{\alpha} \mid c_{\alpha}$. Comme ces polynômes sont unitaires et de même degré, $c_{\alpha} = m_{\alpha}$.

Dans le cas général, soit (k_i) une K-base de $K(\alpha)$ et soit (l_j) une $K(\alpha)$ -base de L. Comme dans la preuve du théorème A.3.4, la famille $(k_i l_j)$ est une K-base de L.

On a $\delta_{\alpha}(k_i) = \sum_j a_{ij}k_j$ et d'après la première partie, le polynôme caractéristique de la matrice $A = (a_{ij})$, qui est une matrice carrée $[K(\alpha) : K] \times [K(\alpha) : K]$, n'est autre que m_{α} . Maintenant, $\delta_{\alpha}(k_i l_j) = \alpha k_i l_j = \sum_j a_{ij} k_j l_j$, de sorte que la matrice de δ_{α} dans la base $(k_i l_j)$ est formée de $[L : K(\alpha)]$ blocs diagonaux tous égaux à A. D'où le résultat.

4. Extensions algébriques

Définition 12 (A.4.1). L'extension L/K est dite algébrique si tout élément de L est algébrique sur K. Dans le cas contraire, on dit que l'extension L/K est transcendante.

On a déjà vu que si l'extension L/K est finie alors elle est algébrique (voir corollaire A.3.5).

Proposition 6 (A.4.2). Soit $L = K(\alpha_1, ..., \alpha_n)$ une extension de type fini de K. Si les α_i sont algébriques sur K alors L/K est finie (donc algébrique) et $L = K[\alpha_1, ..., \alpha_n]$.

Démonstration. On raisonne par récurrence sur n. On a déjà vu le résultat pour n=1. Supposons alors n>1 et posons $H=K(\alpha_1,\ldots,\alpha_{n-1})$. Par hypothèse de récurrence, H/K est fini et $H=K[\alpha_1,\ldots,\alpha_{n-1}]$. Puisque α_n est algébrique sur H, on a $H(\alpha_n)/H$ fini et $L=H(\alpha_n)=H[\alpha_n]$. Il vient que [L:K]=[L:H][H:K] est fini.

Proposition 7 (A.4.3). Si L/K et K/H sont algébriques alors L/H est algébrique.

Démonstration. Soit $\alpha \in L$ et soit $m_{\alpha,K}(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0$ son polynôme minimal sur K. Considérons alors le corps $M = H(a_0, \ldots, a_{n-1})$. Puisque les a_i sont algébriques sur H (ils appartiennent à K), l'extension M/H est finie. Comme α est évidemment algébrique sur M, l'extension $M(\alpha)/M$ est finie et $[M(\alpha):H] = [M(\alpha):M][M:H]$ est fini. Ce qui montre que α est algébrique sur H.

En examinant les résultats précédents, une question se pose. Soit $K(\alpha_1, \ldots, \alpha_n)$ une extension de type fini de K. Si $K(\alpha_1, \ldots, \alpha_n) = K[\alpha_1, \ldots, \alpha_n]$, peut-on dire que les α_i sont algébriques sur K?

Remarque 2 (A.4.4). Nous dirons que l'extension L de K est une K-algèbre de type fini s'il existe $\alpha_1, \ldots, \alpha_n \in L$ tels que $L = K[\alpha_1, \ldots, \alpha_n]$.

Si l'extension L/K est de type fini, L n'est pas nécessairement une K-algèbre de type fini. C'est le cas par exemple du corps des fractions rationnelles en l'indéterminée X. En effet, si $K(X) = K[\tau_1, \ldots, \tau_n]$ et si D est un dénominateur commun des τ_j alors pour tout $z \in K(X)$ il existe $N \in \mathbb{N}$ tel que $D^N z \in K[X]$.

Ce qui est évidemment impossible en prenant z = 1/c avec $c = 1 + d_1 d_2 \cdots d_t$ où les d_i sont les diviseurs irréductibles de D dans l'anneau factoriel K[X].

Theoreme 1 (A.4.5 (Zariski)). Soit l'extension L/K. Si L est une K-algèbre de type fini alors l'extension L/K est finie (donc algébrique).

 $D\'{e}monstration$. Supposons que $L=K[\alpha_1,\ldots,\alpha_n]$ et raisonnons par récurrence sur n. Le cas n=1 est résolu par la proposition A.2.3. Supposons alors n>1 et le résultat vrai pour toute extension engendrée par $t\leq n-1$ éléments en tant qu'algèbre sur un corps quelconque. Posons $K_1=K(\alpha_1)$. Par hypothèse de récurrence, $L=K_1[\alpha_2,\ldots,\alpha_n]$ est algébrique sur K_1 . Si α_1 est algébrique sur K alors on a le résultat. Supposons alors α_1 transcendant sur K.

Pour $i \geq 2$, on a une équation

$$\alpha_i^m + a_{i1}\alpha_i^{m-1} + \dots + a_{im-1} = 0$$
 avec $a_{ij} \in K_1$.

Si a est un dénominateur commun des a_{ij} , on a

$$(a\alpha_i)^m + a_{i1}a(a\alpha_i)^{m-1} + \dots + a^m a_{im-1} = 0,$$

de sorte que les $a\alpha_i$ sont entiers sur $K[\alpha_1]$. Il vient que pour tout $z \in L$, il existe $N \in \mathbb{N}$ tel que $a^N z$ soit entier sur $K[\alpha_1]$. Comme $K[\alpha_1]$ est intégralement clos (car factoriel), pour tout $z \in L = K[\alpha_1, \ldots, \alpha_n]$, il existe $N \in \mathbb{N}$ tel que $a^N z \in K[\alpha_1]$. En particulier ce résultat serait vrai pour $z \in K(\alpha_1)$. Ce qui est impossible car $K(\alpha_1)$ est isomorphe au corps des fractions rationnelles K(X) et il suffit de prendre z = 1/c avec c premier avec a comme dans la remarque A.4.4.

Proposition 8 (A.4.6). Soit l'extension L/K et soit F l'ensemble des éléments de L qui sont algébriques sur K. L'ensemble F est un sous-corps de L qui contient K. C'est la fermeture algébrique de K dans L.

Démonstration. Il est clair que $K \subseteq F \subseteq L$. Soient $\alpha, \beta \in F$. D'après la proposition A.4.2, $K(\alpha, \beta)$ est une extension algébrique de K et $\alpha \pm \beta$, $\alpha\beta$, α/β (si $\beta \neq 0$) sont dans $K(\alpha, \beta)$.

5. Extensions transcendantes

Définition 13 (A.5.1). Soit l'extension L/K. Les éléments x_1, \ldots, x_n de L sont algébriquement indépendants sur K s'il n'existe pas de polynôme non nul $f \in K[X_1, \ldots, X_n]$ tel que $f(x_1, \ldots, x_n) = 0$. Autrement dit, l'anneau engendré par K et les x_i est isomorphe à $K[X_1, \ldots, X_n]$.

Dire que x est algébriquement libre sur K signifie que x est transcendant sur K.

Il est clair que si la famille des x_1, \ldots, x_n est algébriquement indépendante sur K alors il en est de même de toute partie $\{x_{i_1}, \ldots, x_{i_s}\}$.

Proposition 9 (A.5.2). Soit l'extension L/K et soient x_1, \ldots, x_n des éléments deux à deux distincts de L. Soit s tel que 1 < s < n. Alors x_1, \ldots, x_n sont algébriquement indépendants sur K si et seulement si x_1, \ldots, x_s sont algébriquement indépendants sur K et x_{s+1}, \ldots, x_n sont algébriquement indépendants sur $K(x_1, \ldots, x_s)$.

 $D\'{e}monstration.$ 1) Supposons x_1, \ldots, x_n algébriquement indépendants sur K. Il en est de même de x_1, \ldots, x_s . S'il existe

$$f \in K[x_1, \dots, x_s][Y_{s+1}, \dots, Y_n], \quad f \neq 0$$

tel que $f(x_{s+1},...,x_n)=0$. Il existe $h\in K[x_1,...,X_s]$ tel que $h(x_1,...,x_s)$ soit un dénominateur commun des coefficients de f. Soit $f_1\in K[x_1,...,X_s,Y_{s+1},...,Y_n]$ tel que $f_1(x_1,...,x_s,Y_{s+1},...,Y_n)=f$. On a $0\neq hf_1=g\in K[x_1,...,X_s,Y_{s+1},...,Y_n]$ tel que $g(x_1,...,x_s,x_{s+1},...,x_n)=0$, contrairement à notre hypothèse.

2) Supposons que x_1, \ldots, x_s sont algébriquement indépendants sur K et que x_{s+1}, \ldots, x_n sont algébriquement indépendants sur $K(x_1, \ldots, x_s)$. S'il existe $f \in K[x_1, \ldots, X_n]$ tel que $f(x_1, \ldots, x_n) = 0$ alors, si

$$g = f(x_1, \dots, x_s, X_{s+1}, \dots, X_n) \in K[x_1, \dots, x_s][X_{s+1}, \dots, X_n]$$

n'est pas nul, x_{s+1}, \ldots, x_n ne seraient algébriquement indépendants sur $K(x_1, \ldots, x_s)$ car $g(x_{s+1}, \ldots, x_n) = 0$.

Donc $g = f(x_1, \ldots, x_s, X_{s+1}, \ldots, X_n) = 0$ et les coefficients de g sont tous nuls. Or les coefficients de g sont les valeurs prises en $X_1 = x_1, \ldots, X_s = x_s$ de polynômes $T_i \in K[x_1, \ldots, X_s]$. Comme x_1, \ldots, x_s sont algébriquement indépendants sur K, les polynômes T_i sont tous nuls. Mais, ces polynômes T_i sont les coefficients de f en considérant f comme élément de $K[x_1, \ldots, x_s][X_{s+1}, \ldots, X_n]$. Il vient que f = 0.

Définition 14 (A.5.3). Soit l'extension L/K. Une famille (x_1, \ldots, x_n) d'éléments de L est appelée base de transcendance de L sur K si

- (a) les éléments x_1, \ldots, x_n sont algébriquement indépendants sur K,
- (b) le corps L est algébrique sur $K(x_1, \ldots, x_n)$.

Une base de transcendance est une base de transcendance pure si elle engendre l'extension.

Exemple 3 (A.5.4). La famille (X_1, \ldots, X_n) est une base de transcendance pure de $K(X_1, \ldots, X_n)$ sur K. Par contre $\{X^2\}$ est une base de transcendance de K(X) sur K (X est racine de $T^2 - X^2$) mais ce n'est pas une base de transcendance pure.

Remarque 3 (A.5.5). Une famille B d'éléments de L est une base de transcendance de L sur K, si et seulement si B est une famille algébriquement libre maximale.

Proposition 10 (A.5.6). Soit L/K une extension de type fini. Deux bases de transcendance de L sur K ont le même nombre d'éléments.

Démonstration. Si L = K(S) avec S une partie finie de L alors, une partie maximale de S formée d'éléments algébriquement indépendants sur K est une base de transcendance de L sur K. Ainsi L admet une base de transcendance sur K formée d'un nombre fini n d'éléments.

On raisonne par récurrence sur n en montrant que : pour toute extension H/F ayant une base de transcendance de cardinal n, alors toute partie de H formée d'éléments algébriquement indépendants sur F est de cardinal $\leq n$.

Si n = 0 alors L est algébrique sur K et on a le résultat.

Supposons alors $n \geq 1$. Soient (x_1, \ldots, x_n) une base de transcendance de H sur F et y_1, \ldots, y_m des éléments de H algébriquement indépendants sur F. On complète $\{y_1\}$ par des x_i pour avoir une partie maximale $\{y_1, x_{i_1}, \ldots, x_{i_s}\}$ formée d'éléments algébriquement indépendants sur F (donc une base de transcendance de H sur F). Par maximalité de la famille (x_i) , on a $s \leq n-1$. Soit le corps $F(y_1)$. La famille $(x_{i_1}, \ldots, x_{i_s})$ est une base de transcendance de H sur $F(y_1)$. Par hypothèse de récurrence, $m-1 \leq s \leq n-1$. Il s'ensuit que $m \leq n$.

Définition 15 (A.5.7). Le cardinal d'une base de transcendance d'une extension de type fini L/K s'appelle le degré de transcendance de L sur K. On le note degtr L/K. On a degtr L/K = 0 si et seulement si L est algébrique sur K.

MERCI!