23 - Segmentasi Citra (Bag

IF4073 Interpretasi dan Pengolahan Citra

Oleh: Rinaldi Munir

Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung 2021

4. Clustering

Prinsip clustering secara umum

- Misalkan terdapat N buah titik data (terokan, vektor fitur, dll), x₁, x₂, ..., x_N
- Kelompokkan (cluster) titik-titik yang mirip dalam kelompok yang sama

Bagaimana kaitan clustering pada segmentasi citra?

- Nyatakan citra sebagai vektor fitur $x_1,...,x_n$
 - Sebagai contoh, setiap *pixel* dapat dinyatakan sebagai vektor:
 - Intensitas → menghasilkan vektor dimensi satu
 - Warna → menghasilkan vektor berdimensi tiga (R, G, B)
 - Warna + koordinat,

 menghasilkan vektor berdimensi lima

• Kelompokkan vektor-vektor fitur ke dalam **k** kluster

citra input

9 4 2	7 3 1	8 6 8
8 2 4	5 8 5	3 7 2
9 4 5	9 3	1 4 4

Vektor fitur untuk clustering berdasarkan warna

RGB (or YUV) space clustering

citra input

9 4 2	7 3 1	8 6 8
8 2 4	5 8 5	3 7 2
9 4 5	9 3	1 4 4

Vektor fitur untuk clustering berdasarkan warna dan koordinat pixel

```
[9 4 2 0 0] [7 3 1 0 1] [8 6 8 0 2]
[8 2 4 1 0] [5 8 5 1 1] [3 7 2 1 2]
[9 4 5 2 0] [2 9 3 2 1] [1 4 4 2 2]
```

RGBXY (or YUVXY) space clustering

K-Means Clustering

- K-means clustering merupakan algoritma clustering yang paling populer
- Asumsikan jumlah cluster adalah k
- Mengoptimalkan (secara hampiran) fungsi objektif berikut untuk variabel D_i dan μ_i

$$E_{k} = SSE = \sum_{i=1}^{k} \sum_{x \in D_{i}} ||x - \mu_{i}||^{2}$$

sum of squared errors dari kluster dengan pusat μ_i

Sumber: CS 4487/9587 Algorithms for Image Analysis: Basic Image Segmentation

Good (tight) clustering smaller value of SSE

Bad (loose) clustering larger value of *SSE*

- Initialization step
 - 1. pick **k** cluster centers randomly

- Initialization step
 - 1. pick **k** cluster centers randomly

- Initialization step
 - 1. pick k cluster centers randomly
 - 2. assign each sample to closest center

- Initialization step
 - 1. pick **k** cluster centers randomly
 - 2. assign each sample to closest center

- Initialization step
 - 1. pick **k** cluster centers randomly
 - 2. assign each sample to closest center

- Iteration steps
 - 1. compute means in each cluster $\mu_i = \frac{1}{|D_i|} \sum_{x \in D_i} x$

- Initialization step
 - 1. pick **k** cluster centers randomly
 - 2. assign each sample to closest center

- Iteration steps
 - 1. compute means in each cluster $\mu_i = \frac{1}{|D_i|} \sum_{x \in D_i} x$
 - 2. re-assign each sample to the closest mean

- Initialization step
 - 1. pick **k** cluster centers randomly
 - 2. assign each sample to closest center

- Iteration steps
 - 1. compute means in each cluster $\mu_i = \frac{1}{|D_i|} \sum_{x \in D_i} x$
 - 2. re-assign each sample to the closest mean
- Iterate until clusters stop changing

- Initialization step
 - pick **k** cluster centers randomly
 - assign each sample to closest center

- **Iteration steps**
 - 1. compute means in each cluster $\mu_i = \frac{1}{|D_i|} \sum x$
 - 2. re-assign each sample to the closest mean
- Iterate until clusters stop changing

This procedure decreases the value of the objective function

$$E_k(D, \mu) = \sum_{i=1}^k \sum_{x \in D_i} ||x - \mu_i||^2$$

optimization variables

$$D = (D_1, ..., D_k)$$

$$\mu = (\mu_1, ..., \mu_k)$$

$$\mu = (\mu_1, ..., \mu_k)$$

Contoh hasil *K-means clustering*

Pada kasus ini, K-means (K=2) secara otomatis menemukan nilai ambang yang bagus antara 2 cluster

(random colors are used to better show segments/clusters)

An image(I)

Three cluster image (J)on gray values of I

Sumber: https://www.mathworks.com/discovery/image-segmentation.html

Contoh hasil K-means clustering (berdasarkan warna)

Contoh hasil K-means clustering (berdasarkan warna + koordinat)

Sifat-sifat K-means

Works best when clusters are spherical (blob like)

- Fails for elongated clusters
 - SSE is not an appropriate objective function in this case

Sensitive to outliers

maximum likelihood (ML) fitting of parameters μ_i (means) of Gaussian distributions

$$E_{k} = \sum_{i=1}^{k} \sum_{x \in D_{i}} ||x - \mu_{i}||^{2}$$

equivalent (easy to check)

$$E_k \sim -\sum_{i=1}^k \sum_{x \in D_i} \log P(x \mid \mu_i) + const$$

Gaussian distribution
$$P(x \mid \mu_i) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{||x - \mu_i||^2}{2\sigma^2}\right)$$

Sumber: CS 4487/9587 Algorithms for Image Analysis: Basic Image Segmentation

Sumber: CS 4487/9587 Algorithms for Image Analysis: Basic Image Segmentation

both formulas can be written as

$$E_k = \sum_{i=1}^k |D_i| \cdot \text{var}(D_i)$$

sample variance:
$$\operatorname{var}(D_i) = \frac{1}{|D_i|} \sum_{x \in D_i} ||x - \mu_i||^2 = \frac{1}{2|D_i|^2} \sum_{x,y \in D_i} ||x - y||^2$$

Rangkuman K-means

- Advantages
 - Principled (objective function) approach to clustering
 - Simple to implement (the approximate iterative optimization)
 - Fast
- Disadvantages
 - Only a local minimum is found (sensitive to initialization)
 - May fail for non-blob like clusters
 K-means fits <u>Gaussian models</u>
 - Sensitive to outliers Quadratic errors are such
 - Sensitive to choice of \vec{k}

Can add sparsity term and make k an additional variable

$$E = \sum_{i=1}^{k} \sum_{x \in D_i} ||x - \mu_i||^2 + \gamma \cdot |k|$$

Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC)

Program Matlab untuk image segmentation dengan K-means

Fungsi imsegkmeans hanya tersedia untuk Matlab R2022a

```
I = imread('camera.bmp');
imshow(I)
title('Original Image');
[L,Centers] = imsegkmeans(I,3); % Segmentasi citra menjadi tiga
label dengan K-means clustering
B = labeloverlay(I,L);
imshow(B)
title('Labeled Image')
```

Original Image

Labeled Image


```
RGB = imread("kobi.png");
RGB = imresize(RGB, 0.5);
imshow(RGB)
L = imsegkmeans(RGB, 2);
B = labeloverlay(RGB, L);
imshow(B)
title("Labeled Image")
```


Segmentasi Citra dengan Deep Learning

- Disebut juga semantic segmentation
- Tiap *pixel* di dalam citra diasosiasikan dengan sebuah label kelas

