LTE: Long Term Evolution
Tema: Arquitectura, Protocolos
y Servicios

Índice

- Arquitectura del sistema EPS
- **Protocolos**
- **Procedimientos**
- Servicios

Arquitectura del sistema EPS (I)

- Tres conceptos
 - **E-UTRAN** (Evolved UTRAN): parte radio de la red, estándar LTE
 - EPC (Enhanced Packet Core): core de la red, estándar SAE (Syst. Arch. Evol.)
 - EPS (Enhanced Packet System): EPC + E-UTRAN/UTRAN
- Principios básicos
 - Solo paquetes !!!
 - Arquitectura más plana: solo 1 nodo en la red radio.
- Pila de protocolos simplificada
- Interfuncionamiento con otras redes 3G y otras tecnologías inalámbricas (Wi-Fi, WiMAX)
- Integrada con IMS, pero IMS no es parte de EPS

Arquitectura (II)

- Esquema de las redes:
 - Radio:
 - ☐ GERAN: BTS, BSC
 - UTRAN: NB, RNC
 - ☐ E-UTRAN; eNB
 - > Core CS (2G/3G): MSC, GMSC, MGW
 - Core PS
 - □ "GPRS" (2G/3G): SGSN, GGSN
 - □ EPC (4G): MME, S-GW, P-GW, PCRF
 - Bases de datos: HSS, HLR, VLR, AuC, EIR
 - Mobile Station: ME, SIM, USIM
 - Falta IMS!!

NOTE: The interfaces in blue represent EPS functions and reference points.

Figure 1b: Basic Configuration of a 3GPP Access PLMN supporting CS and PS services (using GPRS and EPS) and interfaces

Arquitectura del sistema EPS (III)

- LTE se integra en una arquitectura de red muy simplificada con respecto a la de UMTS
 - Desaparecen los RNC's (3G) o BSC (2G)
- La red de acceso (E-UTRAN) está constituida por los eNB.
- La red troncal se compone de tres entidades funcionales
 - Plano de control:
 - Mobility Management Entity (MME)
 - Plano de usuario:
 - Serving Gateway (S-GW)
 - Packet Data Network Gateway (P-GW)
- Dos interfaces
 - S1: entre la red troncal y la de acceso
 - X2: entre eNBs

Arquitectura del sistema EPS (IV)

- Arquitectura "S1-flex":
 - A diferencia de 3G, en EPS un grupo de MME/S-GW's da servicio a una zona geográfica, definida como un grupo (pool) de Tracking Areas.
 - ☐ Cada MME se identifica por su MME Code (MMEC)
 - ☐ El pool de MME's se identifica por su MME Group Identity (MMEGI)
 - ☐ Cada Tracking Area se identifica por su Tracking Area Identity (TAI)
 - ☐ Al área cubierta por el pool de TA's se le denomina "pool area".
 - Evitando que un único MME/S-GW sirva a una zona geográfica se hace más robusta la red, evitando un "SPOF" (Single Point of Failure)
 - ☐ Por eso cada eNode B (eNB) está conectado a más de un MME/S-GW (ver ilustración de la derecha)
 - Mientras el UE no salga de la "pool area" no necesita reregistrarse.
- Cada eNB suele tener varias celdas (p.ej., si es trisectorial tendrá 3 celdas)
- Cada celda puede pertenecer solo a 1 TA.
 - Pero distintas celdas del mismo eNB pueden pertenecer a distintas TA's.
- Ver listado de identificadores en la red EPS en las próximas páginas.

IMSI	International Mobile Subscriber Identity	 Unique identification of mobile (LTE) subscriber Network (MME) gets the PLMN of the subscriber 	IMSI (not more than 15 digits) = PLMN ID + MSIN = MCC + MNC + MSIN	Р
PLMN ID	Public Land Mobile Network Identifier	Unique identification of PLMN	PLMN ID (not more than 6 digits) = MCC + MNC	Р
MCC	Mobile Country Code	assigned by ITU	3 digits	Р
MNC	Mobile Network Code	 assigned by National Authority 	2~3 digits	Р
MSIN	Mobile Subscriber Identification Number	assigned by operator	9~10 digits	Р
GUTI	Globally Unique Temporary UE Identity	 To identify a UE between the UE and the MME on behalf of IMSI for security reason 	GUTI (not more than 80 bits) = GUMMEI + M-TMSI	Т
TIN	Temporary Identity used in Next Update	 GUTI is stored in TIN parameter of UE's MM context. TIN indicates which temporary ID will be used in the next update 	TIN = GUTI	Т
S-TMSI	SAE Temporary Mobile Subscriber Identity	 To locally identify a UE in short within a MME group (Unique within a MME Pool) 	S-TMSI (40 bits) = MMEC + M-TMSI	Т
M-TMSI	MME Mobile Subscriber Identity	Unique within a MME	32 bits	Т
GUMMEI	Globally Unique MME Identity	To identify a MME uniquely in globalGUTI contains GUMMEI	GUMMEI (not more than 48 bits) = PLMN ID + MMEI	Р
MMEI	MME Identifier	To identify a MME uniquely within a PLMNOperator commissions at eNB	MMEI (24 bits) = MMEGI + MMEC	Р
MMEGI	MME Group Identifier	Unique within a PLMN	16 bits	Р
MMEC	MME Code	To identify a MME uniquely within a MME Group.S-TMSI contains MMEC	8 bits	Р
C-RNTI	Cell- Radio Network Temporary Identifier	To identify an UE uniquely in a cell	0x0001 ~ 0xFFF3 (16 bits)	Т

eNB S1AP UE ID	eNB S1 Application Protocol UE ID	 To uniquely identify UE on S1- MME Interface in eNB 	32-bit Integer (0 2 ³² - 1)	
MME S1AP UE ID	MME S1 Application Protocol UE ID	 To uniquely identify UE on S1- MME Interface in MME 	32-bit Integer (0 2 ³² - 1)	Т
IMEI	International Mobile Equipment Identity	To identify a ME (Mobile Equipment) uniquely	IMEI (15 digits) = TAC + SNR + CD	Р
IMEI/SV	IMEI/Software Version	 To identify a ME (Mobile Equipment) uniquely 	IMEI/SV (16 digits) = TAC + SNR + SVN	Р
ECGI	E-UTRAN Cell Global Identifier	 To identify a Cell in global (Globally Unique) EPC can know UE location based of ECGI 	ECGI (not more than 52 bits) = PLMN I D+ ECI	
ECI	E-UTRAN Cell Identifier	To identify a Cell within a PLMN	ECI (28 Bits) = eNB ID + Cell ID	
Global eNB ID	Global eNodeB Identifier	To identify an eNB in global (Globally Unique)	Global eNB ID (not more than 44 bits) = PLMN ID + eNB ID	Р
eNB ID	eNodeB Identifier	To identify an eNB within a PLMN	20 bits	Р
P-GW ID	PDN GW Identity	 To identify a specific PDN GW (P-GW) HSS assigns P-GW for PDN (IP network) connection of each UE 	IP address (4 bytes) or FQDN (variable length)	Р
TAI	Tracking Area Identity	To identify Tracking AreaGlobally unique	TAI (not more than 32 bits) = PLMN ID + TAC	Р
TAC	Tracking Area Code	 To indicate eNB to which Tracking Area the eNB belongs (per Cell) Unique within a PLMN 	16 bits	Р
TAI List	Tracking Area Identity List	 UE can move into the cells included in TAL list without location update (TA update) Globally unique 	{TAI} (variable length)	Р
P: Permanent	T: Temporary			

PDN ID	Packet Data Network Identity	 To identify an PDN (IP network), that mobile data user wants to communicate with PDN Identity (APN) is used to determine the P-GW and point of interconnection with a PDN With APN as query parameter to the DNS procedures, the MME will receive a list of candidate P-GWs, and then a P-GW is selected by MME with policy 	PDN Identify = APN = APN.NI + APN.OI (variable length)	
EPS Bearer ID	Evolved Packet System Bearer Identifier	 To identify an EPS bearer (Default or Dedicated) per an UE 	4 bits	T
E-RAB ID	E-UTRAN Radio Access Bearer Identifier	To identify an E-RAB per an UE	4 bits	Т
DRB ID	Data Radio Bearer Identifier	To identify a DRB per an UE	4 bits	Т
LBI	Linked EPS Bearer ID	 To identify the default bearer associated with a dedicated EPS bearer 	4 bits	Т
TEID	Tunnel End Point identifier	 To identify the end point of a GTP tunnel when the tunnel is established 	32 bits	Т

Arquitectura del sistema EPS (V)

Funciones básicas de eNB, MME, S-GW y P-GW

Arquitectura del sistema EPS (VI)

- PCRF: Policy Control and Charging Rules Function.
 - Entidad responsable del control de políticas y toma de decisiones, y de controlar las funciones del PCEF (Policy Control Enforcement Function) de cobro (charging) de los flujos de datos.
 - El PCEF reside en el P-GW (que está en el plano de usuario, es decir por donde pasan los flujos de datos del usuario).
 - El PCRF autoriza la QoS a aplicar a cada flujo de datos de usuario, según su perfil en el HSS.
 - El PCEF pone en práctica en tiempo real la QoS decidida por el PCRF.

Arquitectura del sistema EPS (VII)

- Arquitectura en caso de roaming
 - En caso de roaming, el UE se conecta al eNB de la red visitada (VPLMN):
 - su plano de control pasa por el MME de la red visitada
 - Su plano de usuario (flujo de datos) pasa por el S-GW de la red visitada
 - El flujo de datos puede salir a Internet:
 - S5: por el P-GW del operador visitado ("local breakout"), o
 - S8: por el P-GW de la red Home. En este caso podrá acceder a los servicios IP privados del operador, como IMS.
 - ➤ EI HSS y PCRF de la red Home son los que autentican y deciden las políticas de QoS y cobro.

Protocolos del sistema EPS (I)

- Protocolos de la interfaz LTE-Uu (interfaz radio):
- La arquitectura de capas es igual que la de 3G, salvo que no hay parte de circuitos.
 - También hay canales físicos, de transporte y lógicos.
 - En la capa física, OFDMA:

Protocolos del sistema EPS (II)

- Protocolos del plano de usuario:
 - GTP-U: GPRS Tunnelling Protocol User plane (túneles)
 - Obsérvese que la capa de Aplicación no termina en el P-GW, pero la capa IP sí, por el NAT a una IP pública y el firewall del operador.

Protocolos del sistema EPS (III)

Protocolos del plano de control:

- SCTP: Stream Control Transmission Protocol (asegura el envío fiable de los mensajes de señalización, y permite multistream)
- > S1-AP: S1 Application Protocol (protocolo de la interfaz S1)
- Estructura simplificada respecto a 3G
- Obsérvese que la capa NAS sí termina en el MME.

Protocolos del sistema EPS (IV)

- Protocolo RRC (Radio Resource Control) (I):
 - El protocolo RRC es el protocolo que se ocupa de la gestión de recursos radio en la interfaz aire (Uu). Transporta información NAS tanto común como dedicada.
 - > Funciones:
 - Difusión de información del sistema (información NAS común):
 - Master Information Block (MIB): contiene la información esencial para que el UE pueda acceder a la red.
 - System Information Blocks (SIBs) del 1 al 8
 - Control de la conexión RRC: procedimientos de establecimiento, modificación o liberación de una conexión RRC, incluyendo
 - paging,
 - establecimiento de Signalling Radio Bearers (SRBs),
 - Data Radio Bearers (DRBs),
 - el handover dentro de LTE,
 - la configuración de las capas radio inferiores y el
 - procedimiento de Radio Link Failure.
 - Movilidad Inter-RAT (Inter Radio Access Technology) de LTE a 2G y 3G
 - Configuración de medidas y reportes de medidas al eNB para movilidad intra-frecuencia, inter-frecuencia e inter-RAT.
 - Información al eNB de la "UE radio access capability information" (ver Categorías de UEs)

Protocolos del sistema EPS (V)

- Protocolo RRC (Radio Resource Control) (II):
 - Información del sistema (MIB y SIBs):

Message	Content	Period (ms)	Applicability
MIB	Most essential parameters	40	Idle and connected
SIB1	Cell access related parameters, scheduling information	80	Idle and connected
1st SI	SIB2: Common and shared channel configuration	160	Idle and connected
2nd SI	SIB3: Common cell reselection information and intra-frequency cell reselection parameters other than the neighbouring cell information SIB4: Intra-frequency neighbouring cell information	320	Idle only
3rd SI	SIB5: Inter-frequency cell reselection information	640	Idle only
4th SI	SIB6: UTRA cell reselection information SIB7: GERAN cell reselection information	640	Idle only, depending on UE support of UMTS or GERAN

Protocolos del sistema EPS (VI)

Protocolo RRC (Radio Resource Control) (III). Estados RRC:

- E-UTRA RRC IDLE
 - Selección de PLMN
 - DRX configurado por NAS
 - Retransmisión de información de sistema
 - El paging funciona (UE es "llamable")
 - Reselección de célula
 - El UE está identificado dentro del tracking area

- RRC CONNECTED
 - UE tiene activa 1 conexión RRC (radio) con E-UTRAN
 - E-UTRAN conoce la célula a la que está conectado el UE
 - UE tiene un contexto en E-UTRAN
 - La red puede transmitir/recibir datos de/hacia el UE
 - Movilidad controlada por la red (traspaso y cambio de célula inter-RAT con NACC)
 - El UE reporta medidas de células vecinas

LTE: Long Term Evolution

Protocolos del sistema EPS (VII)

- **Estados ECM** (núcleo PS):
 - ECM: EPS Connection Management
 - Simplificación respecto de HSPA
 - Se contemplan tres estados
 - Desconectado (ECM DETACHED)
 - Activo (ECM ACTIVE)
 - Inactivo (ECM_IDLE)
 - La transición entre estados debe ser más rápida (requisitos)
 - ECM DETACHED → ECM ACTIVE <</p> 100 ms
 - Incluido paging y señalización NAS
 - ECM_IDLE → ECM_ACTIVE < 50 ms</p>
 - En LTE el terminal obtiene una dirección IP en el procedimiento de conectarse a la red
 - No en el momento de establecer una sesión (→ novedad respecto a 2G y 3G)
 - ☐ Puede promover la adopción de IPv6 (necesidad de mayor número de IPs)

Protocolos del sistema EPS (VIII)

- Calidad de servicio (QoS) de las portadoras EPS (EPS bearers):
 - EPS soporta QoS extremo a extremo y desde la primera versión (R8).
 - Las portadoras EPS se clasifican en dos grandes grupos:
 - ☐ GBR (Minimum Guaranteed Bit Rate): tasa mínima garantizada. Se reservan recursos fijos para garantizar un mínimo de tasa. Por ejemplo para voz.
 - □ Non-GBR: no se reservan recursos, servicio "best-effort", como en PS 2G y 3G actual.
 - Los terminales soportan mantener varias portadoras EPS simultáneas, y lo necesitan.
 - El parámetro QCI (QoS Class Identifier) es estándar para garantizar IOT entre fabricantes.
 - Obsérvese la prioridad, el retardo y la tase de error.

QCI	Resource type	Priority	Packet delay budget (ms)	Packet error loss rate	Example services
1	GBR	2	100	10-2	Conversational voice
2	GBR	4	150	10^{-3}	Conversational video (live
3	GBR	5	300	10^{-6}	streaming) Non-conversational video (buffered streaming)
4	GBR	3	50	10^{-3}	Real time gaming
5	Non-GBR	1	100	10^{-6}	IMS signalling
6	Non-GBR	7	100	10^{-3}	Voice, video (live streaming),
7	Non-GBR	6	300	10^{-6}	interactive gaming Video (buffered streaming)
8	Non-GBR	8	300	10^{-6}	TCP-based (e.g. WWW, e-mail) chat, FTP, p2p file sharing,
					progressive video, etc.
9	Non-GBR	9	300	10^{-6}	

Protocolos del sistema EPS (IX)

- EPS bearers: "default bearer" and "dedicated bearers"
 - > En el proceso de registro del terminal en la red, al terminal se le asigna una IP y portadora por defecto (default bearer), para que tenga conectividad con la red.
 - Al no existir dominio de circuitos, la única forma de comunicarse con la red, aunque sea simplemente para la señalización, es mediante una portadora de paquetes.
 - Esta "default bearer" es:
 - Non-GBR (para evitar que reserve recursos)
 - \square QCI = 9
 - El resto de portadoras que solicite el terminal (o la red) son portadoras dedicadas para un servicio identificado por el APN (p.ej., "acceso a Internet"). Pueden ser GBR o no, y pueden tener cualquier QCI.
 - ☐ Fn el caso de la voz sobre IMS (VoLTE), se crean 2 portadoras dedicadas:
 - Una para señalización IMS, con QCI = 5
 - Otra para el flujo de datos de voz, con QCI = 1

Protocolos del sistema EPS (X)

Categorías de terminales:

3GPP Release	User Equipment Category	Maximum L1 datarate Downlink	Maximum number of DL MIMO layers	Maximum L1 datarate <u>Uplink</u>
Release 8	Category 1	10.3 Mbit/s	1	5.2 Mbit/s
Release 8	Category 2	51.0 Mbit/s	2	25.5 Mbit/s
Release 8	Category 3	102.0 Mbit/s	2	51.0 Mbit/s
Release 8	Category 4	150.8 Mbit/s	2	51.0 Mbit/s
Release 8	Category 5	299.6 Mbit/s	4	75.4 Mbit/s
Release 10	Category 6	301.5 Mbit/s	2 or 4	51.0 Mbit/s
Release 10	Category 7	301.5 Mbit/s	2 or 4	102.0 Mbit/s
Release 10	Category 8	2998.6 Mbit/s	8	1497.8 Mbit/s

- La Categoría 3 es la habitual actualmente.
- La Categoría 5 requiere 4x4 MIMO + 64 QAM en UL, lo que seguramente no ocurrirá por motivos de incompatibilidad teórica (escenario distinto para MIMO y 64 QAM) y de inversiones necesarias para desplegar MIMO 4x4.
- La Release 10 es ya LTE-Advanced. La clase 8 supera los requisitos de «4G».

Procedimientos del sistema EPS (I)

- Empleando los protocolos brevemente presentados, el sistema EPS ejecuta numerosos procedimientos, entre ellos:
 - sincronización inicial (utilizando las señales PSS y SSS),
 - búsqueda de celda (decodificación del MIB),
 - acceso aleatorio por el canal RACH,
 - registro en la red y activación de la portadora por defecto,
 - procedimientos de seguridad (autenticación, cifrado),
 - la asignación de recursos del PDSCH (canal compartido del DL),
 - scheduling (reparto de recursos entre distintos usuarios en el DL),
 - HARQ (ARQ Híbrido),
 - reportes del móvil de la calidad del Downlink (CQI, PMI, RI),
 - la configuración de los distintos "MIMO Transmission Modes",
 - la asignación de recursos del UL,
 - el control de potencia del UL,
 - el paging,
 - la movilidad (reselección y handover, intra e inter frecuencia, e Inter-RAT)

Procedimientos del sistema EPS (II)

E-UTRAN handover (válido para intra- e inter-frequency, ambos son "hard handovers")

Servicios 4G (I)

- **Voz en LTE**. No hay CS → mecanismos de transporte de voz:
 - Volte: Voz sobre IP en IMS: preferido por los operadores, pero aún inmaduro. Adopción lenta. Lanzado en verano de 2012 en Corea. Se espera el lanzamiento a principios de 2014 en Europa.
 - Para los traspasos a 3G y 2G, VoLTE requiere una peculiaridad: es un traspaso de voz sobre PS a voz sobre CS. Este traspaso se denomina SR-**VCC** (Single Radio – Voice Call Continuity).
 - ☐ Se requiere el SR-VCC a 3G y a 2G (este último hasta más importante, para despliegues LTE en banda de 800 MHz, 3G en 2100 MHz y 2G en 900 MHz).
 - CSFB: Circuit Switched Fall Back (soportado por los primeros) smartphones LTE con voz lanzados en verano de 2012):
 - El terminal acampado en LTE es redirigido a 2G o 3G cuando inicia una llamada de voz o le llega una llamada entrante de voz. Retardo de varios seg.
 - ▶ GAN (Generalized Access Network = UMA) → VolGA (impulsado) inicialmente por T-Mobile). Opción actualmente medio olvidada.
 - > **VoIP**: Voz sobre IP con cualquier cliente «Over The Top» (OTT) externo al operador, tipo Skype. Siempre será posible, pero lo puede ofrecer cualquier proveedor.

Servicios 4G (II)

- **SMS en LTE**. No hay $CS \rightarrow$ mecanismos de transporte de SMS:
 - En 2G y 3G, los SMS se suelen llevar por señalización CS.
 - > En LTE, existen 2 mecanismos:
 - SMS over IMS (similar a VoLTE): requiere una red IMS.
 - SMS over SGs: llamados. erróneamente «SMS con Circuit Switched Fallback (CSFB)», utilizando la misma nomenclatura que para la voz, pero el funcionamiento es distinto:
 - El UE no necesita salir de LTE para enviar/recibir un SMS por este método, aunque sí utiliza la MSC, pero por señalización que le llega de la MSC a través de la MME. Así se evita que para los SMS el UE tenga que acampar en 2G o 3G.

Servicios 4G (III)

- RCS: Rich Communication Suite. Mensajería sobre IMS:
 - "La respuesta de los operadores al Whatsapp y Skype".
 - Estandarizado por GSMA. Marca "Joyn"
 - Servicios: chat 1-a-1, chat de grupo, compartir video, fotos y archivos.
 - Descubrimiento de presencia y capacidades adaptado a red móvil (reduce tráfico, batería!)
 - Soportará también voz sobre IP sobre IMS en el futuro (como VoLTE, pero también en 2G/3G)
 - Es el complemento del VoLTE.
 - Sustituto de la videollamada con mejor calidad
 - > Estándar: interoperable (todos los operadores, marcas y OS's), seguro.
 - Vendrá en teléfonos nuevos como funcionalidad. nativa, integrado con Contactos, Galería...

LTE: Long Term Evolution

Ya disponible como aplicación descargable

Servicios 4G (IV)

Home eNode B (HeNB) y Closed **Subscribers Groups (CSG):**

- La instalación de femto-nodos en el hogar u oficina está prevista en LTE con un tipo nuevo de eNB: el HeNB.
- Para limitar el acceso al HeNB solo a los miembros deseados, se crea el concepto de CSG.
- Los UE's deben detectar si una celda pertenece a un CSG la que tienen acceso o no antes de pedir acceso.
 - ☐ El UE tiene una lista (whitelist) de CSG's a los que tiene acceso.
 - ☐ Esa lista la actualiza via NAS el MME
 - El propietario del HeNB debe poder actualizar la lista (a través de un medio que ponga a su disposición el operador).

Servicios 4G (V)

Demos de VoLTE en el MWC 2013

- Rapidez de establecimiento de llamada VoLTE vs. Voz CS 3G
- Calidad de audio VoLTE (con WB-AMR) vs. Voz CS 3G

¡Muchas gracias!

