Statistics for business

research

L9: Regression & Tests

UCL: 2018-2019

Louis Vainqueur

l.vainqueur@ucl.ac.uk

I. Reminders

R: Reminders

Read data from your computer :

data<-read.csv("C:/program/cars.csv")

Check the first rows of your data

head(data)

ω Summaries with constraints: SYNTAX: data[data\$field==condition,columns]

summary(data)

4. how to access rows and columns

data[row_number, column_number]

5. Retrieve data from columns glucose and insuline

data[,c("glucose","insuline")]

Hypothesis testing workflow

Statistical testing follows a 4 steps procedure

- First we lay out the 2 hypotheses we are testing:
- H0: the null hypothesis, eg mean equal, variables indep
- H1: the alternative hypothesis, eg mean different
- Then we calculate the empirical value of the appropriate statistics under H0
- being what it is under the null hypothesis Then we calculate the p value, the probability of the empirical statistics
- To finish, we conclude:
- If p< 0.05 the probability of the sample statistics to take this value is less than 5% under the null hypothesis so we reject the null hypothesis
- 0 If p> 0.05 we can not reject the null hypothesis

T-test in R: one sample t-test

t.test(x = data2\$Horsepower, mu = 80)

What can we conclude?

P-value < 0.05 we accept the alternative hypothesis,

the true mean of horsepower is not 80

Output from R:

One Sample t-test

t = 12.587, df = 391, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 80

95 percent confidence interval:

100.6472 108.2916

sample estimates:

mean of x

104.4694

I-test: two samples

resulting in pairs of observations In a paired sample t-test, each subject or entity is measured twice, rates of Relationships

t.test(x,y, paired=TRUE)

means we try to detect whether there is a statistical difference between their In a two sample tests we have 2 sets of data who are not paired and

t.test(x,y, paired=FALSE) # for 2 numeric values

t.test($x \sim y$) # for x numeric and y categorical

we pass the flag var.equal= TRUE (by default set to false) If it is known that both populations have the same variance then

t.test(x,y, paired=FALSE, var.equal=FALSE)

Chi square , cars in test R

Load data

cars<-read.csv("Downloads/cars.csv")

2. Create the new column indicating whether we have 5 or less cyclinders

cars\$less5cycl <- ifelse(cars\$Cylinders<5,1,0)

3. Test

chisq.test(cars\$less5cycl,cars\$Origin)

4. Output

chisq.test(cars\$less5cycl,cars\$Origin)

Output:

Pearson's Chi-squared test

data: cars\$less5cycl and cars\$Origin

X-squared = 145.93, df = 2, p-value < 2.2e-16

Hypothesis testing workflow

H	HO	H1	Formula	P value to reject H0
T-test one sample ,	Mean = mu	Mean # mu	t.test(y,mu=3)	0.05
T-test , two sample	Mean1=Mean2	Mean1 # Mean2	t.test(y1,y2)	0.05
Chi-square test	Variables X and Y are indep	X and Y not indep	<pre>chisq.test(x,y)</pre>	0.05
Regression (Y~X+)	Bi= 0	There is a linear relationship between X and Y	Reg <- lm(Y~X+,data)	0.05

Data analysis workflow

- Start with the computation of the descriptive statistics of the dataset
- Ņ Run some data exploration and visualization of the data set variables
- ω from the sampling process Run some statistical tests on the patterns that you have discovered to verify that they are not issued
- 4. Try to build a model that can accurately predict the most important dependant variable from the dataset

I. Regression

Regression vs Correlation

and direction. **Correlations** are tests of association between two numerical variables on strength

numerical outcome based on other (known) variables. **Multivariate regression** is a statistical method that allows to explain (predict) a

Regression: a search for coefficients

Linear regression visualization in 2D

The solution of the regression equation will find a line that minimises the sum of squared errors between the line and the points

Solving the regression equation

There are several methods to find the $\, eta \,$ and Intercept of our model :

- Least square methods
- Matrix inversion method
- Gradient descent methods,...

In our case the statistical software that we use R or excel will do the work for us

RZ: explanation of variance

$$R^2 = \frac{Explained\ variance}{Total\ variance}$$

The higher the R², the better the model fit is (as the unexplained variance goes down) R² runs between 0 and 1.

Running a regression : first steps

Which variables should be included?

DV) If exploring the relationships, enter the ones that make sense (IDV can cause If testing hypotheses, use the ones from hypotheses

D S Control variables (not interesting but related to DV – enter to get net effect of

Be mindful of the following situations:

Self-explanatory (IDV is DV) Multicollinearity (IDVs carry very similar information) Overfitting (Not enough data compared to number of IDVs)

Running a regression on cars dataset

2	22	21	20	19	8	17	16	15	14	3	12	=======================================	10	9	00	7	6	5	4	w	2	_	5	D
saah 99e	audi 100 ls	peugeot 504	131	datsun pl510	ford maverick	amc hornet	plymouth duster	toyota corona mark i Japan	buick estate wagon (US	chevrolet monte carl US	plymouth 'cuda 340	dodge challenger se US	amc ambassador dp US	pontiac catalina	plymouth fury iii	chevrolet impala	ford galaxie 500	ford torino	amc rebel sst	plymouth satellite	buick skylark 320	chevrolet chevelle m; US	Model	α
Firons	Europe	Europe	del Europe	Japan	SU	SU	S	iJapan	SU	SU	SU	SU	SUC	SU	S	S	S	SU	SU	SU	SU	SU	Origin	C
0	0	0	0	0	_	_	_	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	S	C
_	_	_	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Europe	п
0	0	0	0	_	0	0	0	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Japan	7
70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	Year	G
26	90	87	46	88	85	97	95	95	225	150	160	170	190	225	215	220	198	140	150	150	165	130	Horsepower	
4	4	4	4	4	6	6	6	4	00	8	00	00	00	00	00	00	00	00	00	00	00	00	EngineCylinders	-
104	107	110	97	97	200	199	198	113	455	400	340	383	390	455	440	454	429	302	304	318	350	307	EngineDisplacement Weight Acceleration MPG	c
2375	2430	2672	1835	2130	2587	2774	2833	2372	3086	3761	3609	3563	3850	4425	4312	4354	4341	3449	3433	3436	3693	3504	Weight	7
17.5	14.5	17.5	20.5	14.5	16	15.5	15.5	15	10	9.5	00	10	8.5	10	8.5	9	10	10.5	12	1	11.5	12	t Acceleration	Г
25	24	25	26	27	21	18	22	24	14	15	14	15	15	14	14	14	15	17	16	3	15	38	MPG	IVI

DV

Kunning a simple regression in excel

Regression on cars dataset, MPG~Horsep

SUMMARY OUTPUT					
Regression Statistics	tistics	(II really High) Good Hoder:	3 "		
Multiple R	0.778943498	ocii-explanatory: Overniturig:			
R Square	0.606752973		3 ≥ 6 1		
Adjusted R Square	0.605747226				
Standard Error	4.900318791	in real pusiness world without	ז אונוזסחנ		
Observations	393	Outliers).			
		(extremely high \mathbb{R}^2).	9.000		
ANOVA		,			
	df	SS MS	F	Significance F	
Check the sign and		1 unit increase in horsepower	859649	2.95427E-81	
size of coefficients and make sense of if.	391	will lead to -0.16 mile per gallon.	?		
	200		<u>C</u>	Check by value ($p < 0.05$)	0 < 0 05)
	Coefficients	S and Error t Stat	P-value	Eower 95%	Upper 95%
Intercept	39.95218998	0.71531289 55.85274714 1.	1.9111E-188	38.5458493	38.5458493 41.35853066
Horsepower	-0.157957354	0.006430996 -24.56188032 2.	2.95427E-81	-0.170601012 -0.145313696	-0.145313696

R2 meaning

- For simple regressions, \mathbb{R}^2 is just the squared value of correlation (r).
- A high R² suggests a good model. However, a too high R² may indicate a problem in the regression (overfitting, self-explanatory).
- Adjusted R² takes into account the model efficiency (variance lower than R². explained vs. number of explanatory variables used), hence always
- R² does not tell you anything about causality!

Running the regression with IDV + control:

Reading the data :

Call:

lm(formula = MPG ~ Horsepower + Origin, data = cars)

cars<-read.csv("/Users/Downloads/cars.csv")

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 38.369468 0.781486 49.098 < 2e-16 ***
Horsepower -0.133648 0.006863 -19.474 < 2e-16 ***
OriginJapan 2.751013 0.753423 3.651 0.000297 ***
OriginUS -2.425339 0.677860 -3.578 0.000390 ***

 Running the regression, use flunction Im reg<-Im(MPG ~ Horsepower + Origin, data=cars)

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 '.' 1

3. summary(reg)

Residual standard error: 4.554 on 388 degrees of freedom

(2 observations deleted due to missingness)Multiple R-squared: 0.6621, Adjusted R-squared:0.6595

F-statistic: 253.4 on 3 and 388 DF, p-value: < 2.2e-16

Why did we run regression with one var ?

cor(cars[!is.na(cars\$Horsepower),2:7])

Observations from correlation matrix:

Very high level of correlation between several pairs of variables

Regression on cars dataset , adding Origin

				And the second s	1	
-0.120145953	-0.147095288	1.50874E-59	-19.4965086	0.006853567	-0.13362062	Horsepower
6.432444598	3.89660599	1.36174E-14	8.008297809	0.644896758	5.164525294	Japan
3.757462255	1.095324267	0.000381436	3.583950844	0.677016334 3.583950844	2.426393261	Europe
37.64373596	34.23799981	6.0997E-145	41.49626208	0.856123021	35.94086789	Intercept
Upper 95%	Lower 95%	P-value	t Stat	Standard Erry	Coefficients	
				23875.91242	392	Total
				עם ובשאם הה החו"	(ligie w	Residual
	ne US cars.	491062 compared to the US cars	5	(here we leave I IS out)	(here w	Regression
	additional 2.43 mile per gallon	additional 2.43	5	the reference or	Out as i	
	ır has an	A European car has an		For categorical IDVs, always leave one dummy	For cat	ANOVA
					393	Observations
					4.548916997	Standard Error
					0.660263573	Adjusted R Square
					0.662863597	R Square
					0.814164355	Multiple R
					atistics	Regression Statistics
						SUMMARY OUTPUT
		•				

From regression to prediction

Horsepower -0.133	Japan 5.1649	Europe 2.4263	Intercept 35.940	Coeffic
0.13362062	5.164525294	2.426393261	35.94086789	pients
0.006853567	0.644896758	0.677016334	0.866123021	Coefficients Standard Error
0.006853567 -19.4965086	0.644896758 8.008297809	0.677016334 3.583950844	0.866123021 41.49626208	t Stat
1.50874E-59	1.36174E-14	0.000381436	6.0997E-145	P-value
-0.147095288	3.89660599	1.095324267	34.23799981	Lower 95%
-0.120145953	6.432444598	3.757462255	37.64373596	Upper 95%

MPG = 35.941 + 2.426*Europe + 5.165*Japan - 0.134*Horsepower

Assumption of regression analysis

- **Linearity**: There is a linear relationship between DV and IDVs.
- **Normality**: The *residuals* follow a normal distribution (with a mean of zero).
- other **Independence**: independent variables are independent from each
- the standard deviations of the error terms do not depend on the Equal variance (homoscedasticity): The variance in DV is constant,

Assumptions

Linearity	Consequence	Low R ²
Violation	Diagnose	Scatter plot between DV & IDV
	Solution	Add quadratic term as IDV (Y=X+X²)
Normality	Consequence	Coefficients unreliable
Violation	Diagnose	Histogram of residuals
	Solution	Data transformation of DV (e.g., take logarithm/square)

Assumptions

Independence	Consequence Coeff	Coefficients unreliable
violation	Diagnose	
		Correlation matrix;
		Regression coefficients counter-intuitive
	Solution	Remove some IDVs, Take average of IDVs;
		Use one IDV
Equal variance	Consequence	Consequence Significance (p value) unreliable
violation	Diagnose	Levene's test
	Solution	Regressions are robust to this type of
		violation

Assumptions: checking in R

```
par(mfrow=c(2,2))
```

```
plot(lm, which=1:4)
```