One Garnir to Rule Them All

Sarah Brauner (joint with Tamar Friedmann)

University of Minnesota braun622@umn.edu

October 21, 2018

Representations of the Symmetric Group

Irreducible representations of S_n correspond to partitions λ of n

Each irreducible of S_n of shape λ can be realized as a *Specht Module* S^{λ}

Each irreducible of S_n of shape λ can be realized as a *Specht Module* S^{λ}

1 Take a Young tableau:
$$\mathbf{t} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

Each irreducible of S_n of shape λ can be realized as a *Specht Module* S^{λ}

• Take a Young tableau:
$$\mathbf{t} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

2 Turn it into a row tabloid:
$$\{\mathbf{t}\} = \frac{1}{2} \cdot \frac{3}{4} = \frac{3}{4} \cdot \frac{1}{2}$$

Each irreducible of S_n of shape λ can be realized as a *Specht Module* S^{λ}

1 Take a Young tableau:
$$\mathbf{t} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

② Turn it into a row tabloid:
$$\{\mathbf{t}\} = \frac{1}{2} \cdot \frac{3}{4} = \frac{3}{4} \cdot \frac{1}{2}$$

Onstruct a row polytabloid:

Each irreducible of S_n of shape λ can be realized as a *Specht Module* S^{λ}

1 Take a Young tableau:
$$\mathbf{t} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

2 Turn it into a row tabloid:
$$\{\mathbf{t}\} = \frac{1}{2} \cdot \frac{3}{4} = \frac{3}{4} \cdot \frac{1}{2}$$

Construct a row polytabloid:

 S^{λ} has a basis of row polytabloids $e_{\mathbf{t}}$ where the corresponding \mathbf{t} is a Standard Young Tableau. From our motivation, it would be more convenient to realize the Specht Module S^{λ} as a **quotient** of elements which are naturally **anti-symmetric.**

$$[\mathbf{t}] = \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix}$$

$$[\mathbf{t}] = \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix} = - \begin{vmatrix} 2 & 3 \\ 1 & 4 \end{vmatrix}$$

$$[\mathbf{t}] = \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix} = - \begin{vmatrix} 2 & 3 \\ 1 & 4 \end{vmatrix} = - \begin{vmatrix} 1 & 4 \\ 2 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 4 \\ 1 & 3 \end{vmatrix}$$

A Dual Construction

Fulton defines a map

lpha : column tabloids of shape $\lambda o ext{Specht module of shape } \lambda$

A Dual Construction

Fulton defines a map

 α : column tabloids of shape $\lambda \to \ \mbox{Specht module}$ of shape λ

$$\alpha: [\mathbf{t}] \mapsto e_{\mathbf{t}}$$

A Dual Construction

Fulton defines a map

lpha : column tabloids of shape $\lambda
ightarrow$ Specht module of shape λ

$$\alpha: [\mathbf{t}] \mapsto e_{\mathbf{t}}$$

$$\alpha: \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix} \mapsto \frac{\boxed{1 \ 3}}{2 \ 4} - \frac{\boxed{2 \ 3}}{1 \ 4} - \frac{\boxed{1 \ 4}}{2 \ 3} + \frac{\boxed{2 \ 4}}{1 \ 3}$$

What is $ker(\alpha)$?

A Dual Straightening Algorithm

Definition (Fulton)

A dual Garnir relations is

$$\pi_{c,k}(\mathbf{t}) := \sum [\mathbf{s}]$$

where the sum is over column tabloids obtained by exchanging the top k elements in the $(c+1)^{st}$ column in all possible ways with k elements in the c^{th} column

A Dual Straightening Algorithm

$$\pi_{1,1}\left(\begin{array}{c|c} \hline 1 & 4 \\ \hline 2 & 5 \\ \hline 3 & \end{array}\right) = \begin{vmatrix} 4 & 1 \\ 2 & 5 \\ 3 & \end{vmatrix} + \begin{vmatrix} 1 & 2 \\ 4 & 5 \\ 3 & \end{vmatrix} + \begin{vmatrix} 1 & 3 \\ 2 & 5 \\ 4 & \end{bmatrix}$$

Theorem (Fulton)

The relations

$$[\mathbf{t}] - \pi_{c,k}(\mathbf{t})$$

over all \mathbf{t} , c and k generate $\ker(\alpha)$.

Theorem (Fulton)

The relations

$$[\mathbf{t}] - \pi_{c,k}(\mathbf{t})$$

over all \mathbf{t} , c and k generate $\ker(\alpha)$.

Theorem (Fulton)

In characteristic 0, only the $\pi_{1,1}$ relations are needed.

Theorem (Fulton)

The relations

$$[\mathbf{t}] - \pi_{c,k}(\mathbf{t})$$

over all \mathbf{t} , c and k generate $\ker(\alpha)$.

Theorem (Fulton)

In characteristic 0, only the $\pi_{1,1}$ relations are needed.

Upshot: The Specht Module S^{λ} can be realized as a quotient module of the space of column tabloids by dual Garnir relations.

What generates $ker(\alpha)$?

What generates $ker(\alpha)$?

$$\pi_{1,1}\left(\begin{array}{c|c} \hline 1 & 4 \\ \hline 2 & 5 \\ \hline \end{array}\right) = \begin{vmatrix} 4 & 1 \\ 2 & 5 \\ 3 \end{vmatrix} + \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} + \begin{vmatrix} 1 & 3 \\ 2 & 5 \end{vmatrix}$$

What generates $ker(\alpha)$?

$$\pi_{1,1}\left(\begin{array}{c|c} 1 & 4 \\ \hline 2 & 5 \\ \hline 3 \end{array}\right) = \begin{vmatrix} 4 & 1 & 1 & 2 & 1 & 3 \\ 2 & 5 & + & 4 & 5 & + & 2 \\ 3 & 5 & + & 4 & 5 \end{vmatrix} + \begin{vmatrix} 1 & 3 & 3 & 5 \\ 4 & 5 & + & 4 & 5 \end{vmatrix}$$

$$\pi_{1,1}\left(\begin{array}{c|c} 1 & 5 \\ \hline 2 & 4 \\ \hline 3 \end{array}\right) = \begin{vmatrix} 5 & 1 \\ 2 & 4 \\ \hline 3 \end{vmatrix} + \begin{vmatrix} 1 & 2 \\ 5 & 4 \end{vmatrix} + \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix}$$

A New Relation

Definition (B., Friedmann)

For λ of shape $2^m 1^{n-m}$ with $n \geq m$,

$$\eta([\mathbf{t}]) = m[\mathbf{t}] - \sum [s]$$

where the sum ranges over all tableaux s obtained from t by swapping an entry in the first column with an entry in the second column.

A New Relation

$$\eta: egin{array}{c|c} 1 & 4 \ 2 & 5 \ 3 \ \end{array}$$

One Garnir to Rule them All

Theorem (B., Friedmann)

The η relations generate $\ker(\alpha)$.

One Garnir to Rule them All

Theorem (B., Friedmann)

The η relations generate $\ker(\alpha)$.

Upshot: To generate $ker(\alpha)$ for any partition shape, we only need to enumerate over pairs of adjacent columns in *column tabloids* with *ordered columns*.

One Garnir to Rule them All

Theorem (B., Friedmann)

The η relations generate $\ker(\alpha)$.

Upshot: To generate $ker(\alpha)$ for any partition shape, we only need to enumerate over pairs of adjacent columns in *column tabloids* with *ordered columns*.

Upshot 2: The Specht Module S^{λ} can be realized as a quotient of column tabloids by the η -relations!

Look at the two-column case

- Look at the two-column case
- ② Use anti-symmetry to describe the space of column tabloids as an induced (multiplicity-free!) representation of S_{n+m}

- Look at the two-column case
- ② Use anti-symmetry to describe the space of column tabloids as an induced (multiplicity-free!) representation of S_{n+m}

(In the language of symmetric functions:

$$\mathbf{e}_n(\mathbf{x})\mathbf{e}_m(\mathbf{x}) = \sum_{i=0}^m \mathbf{s}_{2^i 1^{n-i}}(\mathbf{x})$$

by the Pieri Rule)

- Look at the two-column case
- ② Use anti-symmetry to describe the space of column tabloids as an induced (multiplicity-free!) representation of S_{n+m}

(In the language of symmetric functions:

$$\mathbf{e}_n(\mathbf{x})\mathbf{e}_m(\mathbf{x}) = \sum_{i=0}^m \mathbf{s}_{2^i 1^{n-i}}(\mathbf{x})$$

by the Pieri Rule)

3 Compute the scalar action of η on each irreducible

(Brief) Motivation

Definition (Friedmann, 2011)

A Lie algebra of the n^{th} kind (LAnKe) is a vector space with an n-linear, anti-symmetric bracket and satisfying a generalized Jacobi Identity

$$[[x_1, \dots, x_n], x_{n+1}, \dots, x_{2n-1}] = \sum_{i=1}^{n} [x_1, \dots, x_{i-1}, [x_i, x_{n+1}, \dots, x_{2n-1}], x_{i+1}, \dots, x_n]$$

(Brief) Motivation

Definition (Friedmann, 2011)

A Lie algebra of the n^{th} kind (LAnKe) is a vector space with an n-linear, anti-symmetric bracket and satisfying a generalized Jacobi Identity

$$[[x_1, \dots, x_n], x_{n+1}, \dots, x_{2n-1}] = \sum_{i=1}^n [x_1, \dots, x_{i-1}, [x_i, x_{n+1}, \dots, x_{2n-1}], x_{i+1}, \dots, x_n]$$

Friedmann, Hanlon, Stanley and Wachs initiated the study of the representations of the symmetric group on the multilinear component of the free LAnKe.

[[1, 2], 3]

[[1, 2], 3] [[1, 2, 3], 4, 5]

[[1, 2], 3]

[[1, 2, 3], 4, 5]

[[1, 2, 3, 4], 5, 6, 7]

$${[[1,2,3],4,5]}\\$$

$$\uparrow$$

$$\uparrow$$

It turns out that the η relations are equivalent to the generalized Jacobi Identity in this n-ary Lie algebra

[[1, 2], 3]	[[1, 2, 3], 4, 5]	[[1, 2, 3, 4], 5, 6, 7]
‡	‡	\$
1 3 2	\begin{array}{c c c c c c c c c c c c c c c c c c c	1 5 2 6 3 7 4

It turns out that the η relations are equivalent to the generalized Jacobi Identity in this n-ary Lie algebra

Upshot: We can use Fulton's α map to construct a map between the representations of the symmetric group on the free LAnKe and relevant Specht modules

The CataLAnKe Theorem

Friedmann, Hanlon, Stanley and Wachs prove that the representation of S_{2n-1} on the multi-linear component of the free LAnKe on 2n-1 generators is isomorphic to $S^{2^{n-1}}$.

The CataLAnKe Theorem

Friedmann, Hanlon, Stanley and Wachs prove that the representation of S_{2n-1} on the multi-linear component of the free LAnKe on 2n-1 generators is isomorphic to $S^{2^{n-1}}$.

Using the α map and η relations, we can give an alternate proof of this result via a direct isomorphism:

$$[[1,2,3],4,5] \mapsto \alpha \left(\left| \begin{array}{c|c} 1 & 4 \\ 2 & 5 \\ 3 & \end{array} \right| \right)$$

Thank you!

References:

- [1] S. Brauner and T. Friedmann *One Garnir to Rule them all: on Specht Modules and the CataLAnKe Theorem*, arXiv preprint arXiv:1803.10918 (2018).
- [2] T. Friedmann. *Orbifold Singularities, Lie Algebras of the Third Kind (LATKes) and Pure Yang-Mills Matter,* J. Math. Phys. **52** (2011).
- [3] T. Friedmann, P. Hanlon, R. Stanley, M. Wachs. *On a generalization of Lie(k): a CataLAnKe Theorem*, arXiv preprint arXiv:1710.00376, (2017).
- [4] W. Fulton. Young Tableaux: With Applications to Representation Theory and Geometry, Vol. 35, Ch. 7.4. Cambridge University Press 1997.
- [5] B. Sagan. The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, Ch.2, Springer Ed. 2, 2001.