

信息安全数学基础

—— 整数的可除性(1)

信数课题组

北京邮电大学网络空间安全学院

2024年9月8日

目录

- 整除 欧几里德除法 整数表示
 - 整除的概念
 - 素数及其平凡判别
 - Eratoshenes 筛法
 - 欧几里德除法
 - 整数 b 进制表示

目录

- 整除 欧几里德除法 整数表示
 - 整除的概念
 - 素数及其平凡判别
 - Eratoshenes 筛決
 - 欧几里德除法
 - 整数 b 进制表示

设 a,b 是任意两个整数, 其中 $b \neq 0$. 若存在一个整数 q 使得等式

$$a = q \cdot b \tag{1.1.1}$$

成立, 就称 b 整除 a, 或者 a 被 b 整除, 记作 $b \mid a$, 把 b 叫做 a 的因数, 把 a 叫做 b 的倍数.

否则, 就称 b 不能整除 a, 或者 a 不能被 b 整除, 记作 $b \nmid a$.

此外, 由于整数的乘法运算具有可以交换的性质, 因此, q 也叫 a 的因数, 我们常常将 q 写成 a/b 或 $\frac{q}{b}$.

设 a,b 是任意两个整数, 其中 $b \neq 0$. 若存在一个整数 q 使得等式 $a = q \cdot b \tag{1.1.1}$

成立, 就称 b 整除 a, 或者 a 被 b 整除, 记作 $b \mid a$, 把 b 叫做 a 的因数, 把 a 叫做 b 的倍数.

否则, 就称 b 不能整除 a, 或者 a 不能被 b 整除, 记作 $b \nmid a$.

此外, 由于整数的乘法运算具有可以交换的性质, 因此, q 也叫 a 的因数, 我们常常将 q 写成 a/b 或 $\frac{q}{5}$.

注 1:

- 0 是任何非零整数的倍数.
- 1是任何整数的因数.

任何非零整数 a 是其自身的倍数, 也是其自身的因数.

设 a,b 是任意两个整数, 其中 $b \neq 0$. 若存在一个整数 q 使得等式

$$a = q \cdot b \tag{1.1.1}$$

成立, 就称 b 整除 a, 或者 a 被 b 整除, 记作 $b \mid a$, 把 b 叫做 a 的因数, 把 a 叫做 b 的倍数.

否则, 就称 b 不能整除 a, 或者 a 不能被 b 整除, 记作 $b \nmid a$.

此外, 由于整数的乘法运算具有可以交换的性质, 因此, q 也叫 a 的因数, 我们常常将 q 写成 a/b 或 $\frac{a}{b}$.

注 1:

- 0 是任何非零整数的倍数.
- 1 是任何整数的因数.

任何非零整数 a 是其自身的倍数, 也是其自身的因数.

例 1.1.1 3 | 21, -3 | 21, 3 | 22, 5 | 0, 7 | 7.

注 2: 设 b_1, b_2, \dots, b_k 是 a 的所有因数, 那么 $-b_1, -b_2, \dots, -b_k$ 也是它的所有因数, 同时 $\frac{a}{b_1}, \frac{a}{b_2}, \dots, \frac{a}{b_k}$ 也是它的所有因数.

注 2: 设 b_1,b_2,\dots,b_k 是 a 的所有因数,那么 $-b_1,-b_2,\dots,-b_k$ 也是它的所有因数,同时 $\frac{a}{b_1},\frac{a}{b_2},\dots,\frac{a}{b_k}$ 也是它的所有因数. 也就是说,

- (1) 当 b 遍历整数 a 的所有因数时, -b 也遍历 a 的所有因数.
- (2) 当 b 遍历整数 a 的所有因数时, $\frac{a}{b}$ 也遍历 a 的所有因数.

注 2: 设 b_1,b_2, \dots, b_k 是 a 的所有因数,那么 $-b_1,-b_2, \dots, -b_k$ 也是它的所有因数,同时 $\frac{a}{b_1}, \frac{a}{b_2}, \dots, \frac{a}{b_k}$ 也是它的所有因数. 也就是说,

- (1) 当 b 遍历整数 a 的所有因数时, -b 也遍历 a 的所有因数.
- (2) 当 b 遍历整数 a 的所有因数时, $\frac{a}{b}$ 也遍历 a 的所有因数.
- 例 1.1.2 $105 = 3 \cdot 35 = 5 \cdot 21 = 7 \cdot 15$.

注 2: 设 b_1,b_2,\dots,b_k 是 a 的所有因数,那么 $-b_1,-b_2,\dots,-b_k$ 也是它的所有因数,同时 $\frac{a}{b_1},\frac{a}{b_2},\dots,\frac{a}{b_k}$ 也是它的所有因数. 也就是说,

- (1) 当 b 遍历整数 a 的所有因数时, -b 也遍历 a 的所有因数.
- (2) 当 b 遍历整数 a 的所有因数时, $\frac{a}{b}$ 也遍历 a 的所有因数.
- 例 1.1.2 $105 = 3 \cdot 35 = 5 \cdot 21 = 7 \cdot 15$.
 - 3, 5, 7 分别整除 105, 或者 105 被 3, 5, 7 分别整除, 记作 3 | 105, 5 | 105, 7 | 105.
 - 3, 5, 7 都是 105 的因数, 105 是 3, 5, 7 的倍数.

注 2: 设 b_1,b_2, \dots, b_k 是 a 的所有因数,那么 $-b_1,-b_2, \dots, -b_k$ 也是它的所有因数,同时 $\frac{a}{b_1}, \frac{a}{b_2}, \dots, \frac{a}{b_k}$ 也是它的所有因数. 也就是说,

- (1) 当 b 遍历整数 a 的所有因数时, -b 也遍历 a 的所有因数.
- (2) 当 b 遍历整数 a 的所有因数时, $\frac{a}{b}$ 也遍历 a 的所有因数.
- 例 1.1.2 $105 = 3 \cdot 35 = 5 \cdot 21 = 7 \cdot 15$.
 - 3, 5, 7 分别整除 105, 或者 105 被 3, 5, 7 分别整除, 记作 3 | 105, 5 | 105, 7 | 105.
 - 3, 5, 7 都是 105 的因数, 105 是 3, 5, 7 的倍数.
 - 105 的所有因数是 $\{\pm 1, \pm 3, \pm 5, \pm 7, \pm 15, \pm 21, \pm 35, \pm 105\}$.
 - 或是, $\{\mp 1, \mp 3, \mp 5, \mp 7, \mp 15, \mp 21, \mp 35, \mp 105\}$.

注 2: 设 b_1,b_2, \dots, b_k 是 a 的所有因数,那么 $-b_1,-b_2, \dots, -b_k$ 也是它的所有因数,同时 $\frac{a}{b_1}, \frac{a}{b_2}, \dots, \frac{a}{b_k}$ 也是它的所有因数. 也就是说,

- (1) 当 b 遍历整数 a 的所有因数时, -b 也遍历 a 的所有因数.
- (2) 当 b 遍历整数 a 的所有因数时, $\frac{a}{b}$ 也遍历 a 的所有因数.

例 1.1.2 $105 = 3 \cdot 35 = 5 \cdot 21 = 7 \cdot 15$.

3, 5, 7 分别整除 105, 或者 105 被 3, 5, 7 分别整除, 记作 3 | 105, 5 | 105, 7 | 105.

3, 5, 7 都是 105 的因数, 105 是 3, 5, 7 的倍数.

105 的所有因数是 $\{\pm 1, \pm 3, \pm 5, \pm 7, \pm 15, \pm 21, \pm 35, \pm 105\}$.

或是, $\{\mp 1, \mp 3, \mp 5, \mp 7, \mp 15, \mp 21, \mp 35, \mp 105\}$.

或是,
$$\{\pm 105 = \frac{105}{\pm 1}, \pm 35 = \frac{105}{\pm 3}, \pm 21 = \frac{105}{\pm 5}, \pm 15 = \frac{105}{\pm 7}, \pm 7 = \frac{105}{\pm 7}, \pm 15 = \frac{105}{\pm 7}$$

$$\frac{105}{+15}$$
, $\pm 5 = \frac{105}{+21}$, $\pm 3 = \frac{105}{+35}$, $\pm 1 = \frac{105}{+105}$.

设 $a,b \neq 0, c \neq 0$ 是三个整数. 若 $c \mid b,b \mid a$, 则 $c \mid a$.

设 $a,b \neq 0, c \neq 0$ 是三个整数. 若 $c \mid b,b \mid a$, 则 $c \mid a$.

证: 设 $c \mid b, b \mid a$, 根据整除的定义, 分别存在整数 q_1, q_2 使得 $b = q_1 \cdot c, a = q_2 \cdot b$. 因此, 有 $a = q_2 \cdot b = q_2 \cdot (q_1 \cdot c) \triangleq q \cdot c$. 因为 $q = q_2 \cdot q_1$ 是整数, 所以根据整除的定义知 $c \mid a$.

设 $a,b \neq 0, c \neq 0$ 是三个整数. 若 $c \mid b,b \mid a$, 则 $c \mid a$.

证: 设 $c \mid b, b \mid a$, 根据整除的定义, 分别存在整数 q_1, q_2 使得 $b = q_1 \cdot c, a = q_2 \cdot b$. 因此, 有 $a = q_2 \cdot b = q_2 \cdot (q_1 \cdot c) \triangleq q \cdot c$. 因为 $q = q_2 \cdot q_1$ 是整数, 所以根据整除的定义知 $c \mid a$.

例 1.1.3 因为 3 | 12, 12 | 36, 所以 3 | 36.

设 $a,b \neq 0, c \neq 0$ 是三个整数. 若 $c \mid b,b \mid a$, 则 $c \mid a$.

证: 设 $c \mid b, b \mid a$, 根据整除的定义, 分别存在整数 q_1, q_2 使得 $b = q_1 \cdot c, a = q_2 \cdot b$. 因此, 有 $a = q_2 \cdot b = q_2 \cdot (q_1 \cdot c) \triangleq q \cdot c$. 因为 $q = q_2 \cdot q_1$ 是整数, 所以根据整除的定义知 $c \mid a$.

例 1.1.3 因为 3 | 12, 12 | 36, 所以 3 | 36.

定理 1.1.2

设 $a,b,c \neq 0$ 是三个整数. 若 $c \mid a,c \mid b$, 则 $c \mid a \pm b$.

设 $a,b \neq 0, c \neq 0$ 是三个整数. 若 $c \mid b,b \mid a$, 则 $c \mid a$.

证: 设 $c \mid b, b \mid a$, 根据整除的定义, 分别存在整数 q_1, q_2 使得

 $b = q_1 \cdot c, a = q_2 \cdot b$. 因此,有 $a = q_2 \cdot b = q_2 \cdot (q_1 \cdot c) \triangleq q \cdot c$. 因为 $q = q_2 \cdot q_1$ 是整数,所以根据整除的定义知 $c \mid a$.

例 1.1.3 因为 3 | 12, 12 | 36, 所以 3 | 36.

定理 1.1.2

设 $a,b,c \neq 0$ 是三个整数. 若 $c \mid a,c \mid b$, 则 $c \mid a \pm b$.

证:设 $c \mid a, c \mid b$,则存在两个整数 q_1, q_2 分别使得 $a = q_1 \cdot c, b = q_2 \cdot c$.

因此,有 $a \pm b = q_1 \cdot c \pm q_2 \cdot c = (q_1 \pm q_2) \cdot c$.

因为 $q_1 \pm q_2$ 是整数, 所以 $c \mid a \pm b$.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 めぬぐ

设 $a,b \neq 0, c \neq 0$ 是三个整数. 若 $c \mid b,b \mid a$, 则 $c \mid a$.

证: 设 $c \mid b, b \mid a$, 根据整除的定义, 分别存在整数 q_1, q_2 使得 $b = q_1 \cdot c, a = q_2 \cdot b$. 因此, 有 $a = q_2 \cdot b = q_2 \cdot (q_1 \cdot c) \triangleq q \cdot c$.

因为 $q = q_2 \cdot q_1$ 是整数, 所以根据整除的定义知 $c \mid a$.

例 1.1.3 因为 3 | 12, 12 | 36, 所以 3 | 36.

定理 1.1.2

设 $a,b,c \neq 0$ 是三个整数. 若 $c \mid a,c \mid b$, 则 $c \mid a \pm b$.

证:设 $c \mid a, c \mid b$,则存在两个整数 q_1, q_2 分别使得 $a = q_1 \cdot c, b = q_2 \cdot c$.

因此,有 $a \pm b = q_1 \cdot c \pm q_2 \cdot c = (q_1 \pm q_2) \cdot c$.

因为 $q_1 \pm q_2$ 是整数, 所以 $c \mid a \pm b$.

例 1.1.4 5 | 25, 5 | 45, 故 5 | (25+45) = 70, 5 | (25-45) = -20.

设 $a,b,c \neq 0$ 是三个整数. 若 $c \mid a,c \mid b$, 则对任意整数 s 和 t, 有 $c \mid (s \cdot a + t \cdot b)$.

设 $a,b,c \neq 0$ 是三个整数. 若 $c \mid a,c \mid b$, 则对任意整数 s 和 t, 有 $c \mid (s \cdot a + t \cdot b)$.

证: 设 $c \mid a, c \mid b$, 则存在两个整数 q_1, q_2 分别使得 $a = q_1 \cdot c, b = q_2 \cdot c$. 因此, 有 $s \cdot a + t \cdot b = s \cdot (q_1 \cdot c) + t \cdot (q_2 \cdot c) = (s \cdot q_1 + t \cdot q_2) \cdot c$. 因为 $s \cdot q_1 + t \cdot q_2$ 是整数, 所以 $c \mid (s \cdot a + t \cdot b)$.

设 $a,b,c \neq 0$ 是三个整数. 若 $c \mid a,c \mid b$, 则对任意整数 s 和 t, 有 $c \mid (s \cdot a + t \cdot b)$.

证:设 $c \mid a, c \mid b$,则存在两个整数 q_1, q_2 分别使得 $a = q_1 \cdot c, b = q_2 \cdot c$.

因此,有 $s \cdot a + t \cdot b = s \cdot (q_1 \cdot c) + t \cdot (q_2 \cdot c) = (s \cdot q_1 + t \cdot q_2) \cdot c$.

因为 $s \cdot q_1 + t \cdot q_2$ 是整数, 所以 $c \mid (s \cdot a + t \cdot b)$.

例 1.1.5 3 | 6, 3 | 15, 故 3 | $(2 \cdot 6 + 5 \cdot 15) = 87$, 3 | $(2 \cdot 6 - 5 \cdot 15) = -63$.

设 $a,b,c \neq 0$ 是三个整数. 若 $c \mid a,c \mid b$, 则对任意整数 s 和 t, 有 $c \mid (s \cdot a + t \cdot b)$.

证: 设 $c \mid a, c \mid b$, 则存在两个整数 q_1, q_2 分别使得 $a = q_1 \cdot c, b = q_2 \cdot c$. 因此, 有 $s \cdot a + t \cdot b = s \cdot (q_1 \cdot c) + t \cdot (q_2 \cdot c) = (s \cdot q_1 + t \cdot q_2) \cdot c$.

因为 $s \cdot q_1 + t \cdot q_2$ 是整数, 所以 $c \mid (s \cdot a + t \cdot b)$.

例 1.1.5 3 | 6, 3 | 15, 故 3 | $(2 \cdot 6 + 5 \cdot 15) = 87$, 3 | $(2 \cdot 6 - 5 \cdot 15) = -63$.

推论 1.1.1

设 $a,b,c \neq 0$ 是三个整数, $c \mid a,c \mid b$. 如果存在整数 s 和 t, 使得 $s \cdot a + t \cdot b = 1$, 则 $c = \pm 1$.

设 $a,b,c \neq 0$ 是三个整数. 若 $c \mid a,c \mid b$, 则对任意整数 s 和 t, 有 $c \mid (s \cdot a + t \cdot b)$.

证: 设 $c \mid a, c \mid b$, 则存在两个整数 q_1, q_2 分别使得 $a = q_1 \cdot c, b = q_2 \cdot c$. 因此, 有 $s \cdot a + t \cdot b = s \cdot (q_1 \cdot c) + t \cdot (q_2 \cdot c) = (s \cdot q_1 + t \cdot q_2) \cdot c$.

因为 $s \cdot q_1 + t \cdot q_2$ 是整数, 所以 $c \mid (s \cdot a + t \cdot b)$.

例 1.1.5 3 | 6, 3 | 15, 故 3 | $(2 \cdot 6 + 5 \cdot 15) = 87$, 3 | $(2 \cdot 6 - 5 \cdot 15) = -63$.

推论 1.1.1

设 $a,b,c \neq 0$ 是三个整数, $c \mid a,c \mid b$. 如果存在整数 s 和 t, 使得 $s \cdot a + t \cdot b = 1$, 则 $c = \pm 1$.

证: 设 $c \mid a, c \mid b$, 因为存在整数 s 和 t 使得 $s \cdot a + t \cdot b = 1$, 根据定理 1.1.3, 有 $c \mid (s \cdot a + t \cdot b)$, 即 $c \mid 1$. 因此, $c = \pm 1$.

推论 1.1.2

设整数 c. 若整数 a_1, \dots, a_n 都是整数 $c \neq 0$ 的倍数, 则对任意 n 个整数 s_1, \dots, s_n , 整数 $s_1 + \dots + s_n a_n$ 是 c 的倍数.

推论 1.1.2

设整数 c. 若整数 a_1, \dots, a_n 都是整数 $c \neq 0$ 的倍数,则对任意 n 个整数 s_1, \dots, s_n ,整数 $s_1a_1 + \dots + s_na_n$ 是 c 的倍数.

例 1.1.6 3 | 6, 3 | 15, 3 | 21, 故 3 | $(2 \cdot 6 + 5 \cdot 15 - 2 \cdot 21) = 45$.

推论 1.1.2

设整数 c. 若整数 a_1, \cdots, a_n 都是整数 $c \neq 0$ 的倍数,则对任意 n 个整数 s_1, \cdots, s_n ,整数 $s_1a_1 + \cdots + s_na_n$ 是 c 的倍数.

例 1.1.6 3 | 6, 3 | 15, 3 | 21, 故 3 | $(2 \cdot 6 + 5 \cdot 15 - 2 \cdot 21) = 45$.

定理 1.1.4

设 a,b 都是非零整数. 若 $a \mid b,b \mid a$, 则 $a = \pm b$.

推论 1.1.2

设整数 c. 若整数 a_1, \dots, a_n 都是整数 $c \neq 0$ 的倍数,则对任意 n 个整数 s_1, \dots, s_n ,整数 $s_1a_1 + \dots + s_na_n$ 是 c 的倍数.

例 1.1.6 3 | 6, 3 | 15, 3 | 21, 故 3 | $(2 \cdot 6 + 5 \cdot 15 - 2 \cdot 21) = 45$.

定理 1.1.4

设 a,b 都是非零整数. 若 $a \mid b,b \mid a$, 则 $a = \pm b$.

证: 设 $a \mid b, b \mid a$, 则存在两个整数 q_1, q_2 分别使得 $a = q_1 \cdot b, b = q_2 \cdot a$.

从而, $a=q_1\cdot b=q_1\cdot (q_2\cdot a)=(q_1\cdot q_2)\cdot a$. 进而, $(q_1\cdot q_2-1)\cdot a=0$.

因为 $a \neq 0$, 根据整数乘法的性质, 有 $q_1 \cdot q_2 = 1$.

而 q_1, q_2 都是整数, 所以 $q_1 = q_2 = \pm 1$. 进而, $a = \pm b$.

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · から○·

目录

- 整除 欧几里德除法 整数表示
 - 整除的概念
 - 素数及其平凡判别
 - Eratoshenes 筛法
 - 欧几里德除法
 - 整数 b 进制表示

设 $n \neq 0, \pm 1$. 如果除了显然的因数 ± 1 和 $\pm n$ 外, n 没有其他因数, 那么 n 叫做 **素数** (或质数, 或不可约数). 否则, n 叫做合数.

设 $n \neq 0, \pm 1$. 如果除了显然的因数 ± 1 和 $\pm n$ 外, n 没有其他因数, 那么 n 叫做 **素数** (或**质数**, 或**不可约数**). 否则, n 叫做**合数**.

注: 当 $n \neq 0$, ± 1 时, n 和 -n 同为素数或合数. 因此, 若没有特别声明, 素数总是指正整数, 通常写成 p.

设 $n \neq 0, \pm 1$. 如果除了显然的因数 ± 1 和 $\pm n$ 外, n 没有其他因数, 那么 n 叫做 **素数** (或**质数**, 或**不可约数**). 否则, n 叫做**合数**.

注: 当 $n \neq 0, \pm 1$ 时, n 和 -n 同为素数或合数. 因此, 若没有特别声明, 素数总是指正整数, 通常写成 p.

例 1.1.7 整数 2,3,5,7,11 都是素数; 而整数 4,6,8,9,10,12 都是合数.

设 $n \neq 0, \pm 1$. 如果除了显然的因数 ± 1 和 $\pm n$ 外, n 没有其他因数, 那么 n 叫做 **素数** (或**质数**, 或**不可约数**). 否则, n 叫做**合数**.

注: 当 $n \neq 0, \pm 1$ 时, n 和 -n 同为素数或合数. 因此, 若没有特别声明, 素数总是指正整数, 通常写成 p.

例 1.1.7 整数 2,3,5,7,11 都是素数; 而整数 4,6,8,9,10,12 都是合数.

定理 1.1.6

设 n 是一个正合数, p 是 n 的一个大于 1 的最小正因数, 则 p 一定是素数, 且 $p \leq \sqrt{n}$.

设 $n \neq 0, \pm 1$. 如果除了显然的因数 ± 1 和 $\pm n$ 外, n 没有其他因数, 那么 n 叫做 **素数** (或**质数**, 或**不可约数**). 否则, n 叫做**合数**.

注: 当 $n \neq 0$, ± 1 时, n 和 -n 同为素数或合数. 因此, 若没有特别声明, 素数总是指正整数, 通常写成 p.

例 1.1.7 整数 2,3,5,7,11 都是素数; 而整数 4,6,8,9,10,12 都是合数.

定理 1.1.6

设 n 是一个正合数, p 是 n 的一个大于 1 的最小正因数, 则 p 一定是素数, 且 $p \leq \sqrt{n}$.

证: 若 p 不是素数,则存在整数 q,1 < q < p, 使得 q | p. 但 p | n, 根据定理 1.1.1, 有 q | n. 这与 p 是 n 的最小正因数矛盾. 所以, p 是素数.

因为 n 是合数, 所以存在整数 n_1 使得 $n = n_1 \cdot p, 1 .$

因此, $p^2 \leqslant n$. 故 $p \leqslant \sqrt{n}$.

素数有无穷多个.

素数有无穷多个.

证: 反证法. 假设只有有限个素数 p_1, p_2, \cdots, p_k . 考虑整数

$$n = p_1 \cdot p_2 \cdots p_k + 1.$$

因为 $n > p_i, i = 1, \dots, k$, 所以 n 一定是合数 (因为素数有限, n 又不是有限个素数中的一个). 根据定理 1.1.5, n 的大于 1 的最小正因数 p 是素数. 因此, p 是 p_1, p_2, \dots, p_k 中的某一个, 即存在 $j, 1 \le j \le k$, 使得 $p = p_i$. 根据定理 1.1.2, 有

$$p \mid n - (p_1 \cdots p_{j-1} \cdot p_{j+1} \cdots p_k) \cdot p_j, \ \mathbb{P} p \mid 1.$$

这是不可能的. 故存在无穷多个素数.

◆ロト ◆部ト ◆草ト ◆草ト 草 めらぐ

设 $\pi(x)$ 表示不超过x的素数个数,即

$$\pi(x) = \sum_{p \leqslant x} 1$$

是素数集的函数.

根据定理 1.1.6, 存在无穷个素数, 这就是说, $\pi(x)$ 随 x 趋于无穷. 但人们希望知道 $\pi(x)$ 的具体公式. 为此, 先给出一个基础性结论.

设 $\pi(x)$ 表示不超过x的素数个数,即

$$\pi(x) = \sum_{p \leqslant x} 1$$

是素数集的函数.

根据定理 1.1.6, 存在无穷个素数, 这就是说, $\pi(x)$ 随 x 趋于无穷. 但人们希望知道 $\pi(x)$ 的具体公式. 为此, 先给出一个基础性结论.

定理 1.1.7 (契比谢夫不等式)

设
$$x \geqslant 2$$
,则有 $\frac{\ln 2}{3} \frac{x}{\ln x} < \pi(x) < 6 \ln 2 \frac{x}{\ln x}$ 和 $\frac{1}{6 \ln 2} n \ln n < p_n < \frac{8}{\ln 2} n \ln n, n \ge 2$.

其中 p_n 是第n个素数.

设 $\pi(x)$ 表示不超过x的素数个数,即

$$\pi(x) = \sum_{p \leqslant x} 1$$

是素数集的函数.

根据定理 1.1.6, 存在无穷个素数, 这就是说, $\pi(x)$ 随 x 趋于无穷. 但人们希望知道 $\pi(x)$ 的具体公式. 为此, 先给出一个基础性结论.

定理 1.1.7 (契比谢夫不等式)

设
$$x \geqslant 2$$
,则有 $\frac{\ln 2}{3} \frac{x}{\ln x} < \pi(x) < 6 \ln 2 \frac{x}{\ln x}$ 和 $\frac{1}{6 \ln 2} n \ln n < p_n < \frac{8}{\ln 2} n \ln n, n \ge 2$.

其中 p_n 是第 n 个素数.

定理 1.1.8 (素数定理)

$$\lim_{x \to \infty} \frac{\pi(x)}{\frac{x}{\ln x}} = 1.$$

在了解素数个数的相关结论之后,根据定理 1.1.5,我们还可以得到一个整数为素数的平凡判别法则.

定理 1.1.9 (素数的平凡判别)

设 n 是正整数, 如果对于所有的素数 $p \leq \sqrt{n}$, 都有 $p \nmid n$, 则 n 一定是素数.

在了解素数个数的相关结论之后,根据定理 1.1.5,我们还可以得到一个整数为素数的平凡判别法则.

定理 1.1.9 (素数的平凡判别)

设 n 是正整数, 如果对于所有的素数 $p \leq \sqrt{n}$, 都有 $p \nmid n$, 则 n 一定是素数.

例 1.1.8 证明 *N* = 89 是素数.

在了解素数个数的相关结论之后,根据定理 1.1.5,我们还可以得到一个整数为素数的平凡判别法则.

定理 1.1.9 (素数的平凡判别)

设 n 是正整数, 如果对于所有的素数 $p \leq \sqrt{n}$, 都有 $p \nmid n$, 则 n 一定是素数.

例 1.1.8 证明 N = 89 是素数.

证: 先求出所有的 p, 使得 $p \le \sqrt{89}$, 并检验 $p \nmid 89$.

- 1) 所有小于 $\sqrt{89}$ 的素数 p 为 2, 3, 5, 7.
- 2) $p \nmid 89$, 因为 p = 2,3,5,7 的倍数都不是 89. 所以, 89 是素数.

目录

- 整除 欧几里德除法 整数表示
 - 整除的概念
 - 素数及其平凡判别
 - Eratoshenes 筛法
 - 欧几里德除法
 - 整数 b 进制表示

为了更好地描述数学概念和问题,我们引入数学符号 [x]:

设 x 是一个实数, [x] 表示实数 x 的整数部分是小于或等于 x 的最大整数. 这时,我们有 $[x] \le x < [x] + 1$.

为了更好地描述数学概念和问题,我们引入数学符号 [x]:

设 x 是一个实数, [x] 表示实数 x 的整数部分是小于或等于 x 的最大整数. 这时,我们有 $[x] \le x < [x] + 1$.

例 1.1.9 [9.15]=9, [-9.15]=-10, [9]=9, [-9]=-9.

为了更好地描述数学概念和问题,我们引入数学符号 [x]:

设 x 是一个实数, [x] 表示实数 x 的整数部分是小于或等于 x 的最大整数. 这时,我们有 $[x] \le x < [x] + 1$.

例 1.1.9 [9.15]=9, [-9.15]=-10, [9]=9, [-9]=-9.

根据定理 1.1.9, 我们有一个寻找素数的确定性方法, 通常叫做**厄拉 托塞师** (Eratoshenes)**筛法** (简称 E-筛法).

定理 1.1.10 (E-筛法)

输入:任意给定的正整数 N. 输出:所有不超过 N 的素数.

- 1. 列出 N 整数 1,···, N;
- 2. 从中删除不大于 \sqrt{N} 的所有素数 p_1, p_2, \cdots, p_k 的倍数 (除素数 p_1, p_2, \cdots, p_k 外);
- 3. 余下的整数 (不包括 1) 就是所要求的不超过 N 的素数.

整除 欧几里德除法 整数表示 Eratoshenes 筛法

例 1.1.10 求出所有不超过 N = 100 的素数.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

解: 因为 N = 100, 所以不大于 $\sqrt{N} = 10$ 的所有素数为 2, 3, 5, 7, 那么依次删除 2, 3, 5, 7 的倍数, 余下的整数 (不包括 1) 即为所求.

									•
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

● 删除 2 的倍数;

解: 因为 N = 100, 所以不大于 $\sqrt{N} = 10$ 的所有素数为 2, 3, 5, 7, 那么依次删除 2, 3, 5, 7 的倍数, 余下的整数 (不包括 1) 即为所求.

		,	, ,			,			`
1	2	3	A	5	Ø	7	8	9	10
11	1/2	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	7/2	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	1,00

删除 2 的倍数;

解: 因为 N = 100, 所以不大于 $\sqrt{N} = 10$ 的所有素数为 2, 3, 5, 7, 那么依次删除 2, 3, 5, 7 的倍数, 余下的整数 (不包括 1) 即为所求.

		,	, ,		,,,,,	,	 	(,
1	2	3		5		7	9	
11		13		15		17	19	
21		23		25		27	29	
31		33		35		37	39	
41		43		45		47	49	
51		53		55		57	59	
61		63		65		67	69	
71		73		75		77	79	
81		83		85		87	89	
91		93		95		97	99	

● 删除 2 的倍数;

		,	, -,	. ,	 , , ,	 	. (, ,
1	2	3		5	7	Ŋ	
11		13		1/5	17	19	
21		23		25	27	29	
31		33		35	37	39	
41		43		45	47	49	
51		53		55	57	59	
61		63		65	67	69	
71		73		7/5	77	79	
81		83		85	<i>§</i> 7	89	
91		93		95	97	99	

- 删除 2 的倍数;
- 删除 3 的倍数;

队队则队 2, 5, 5, 1 11目数, 小 1 11正数 (个)										
1	2	3		5		7				
11		13				17		19		
		23		25				29		
31				35		37				
41		43				47		49		
		53		55				59		
61				65		67				
71		73				77		79		
		83		85				89		
91				95		97				

- 删除 2 的倍数;
- 删除3的倍数;

MIN	יוצין ניווא	. 4, 0	, 0,	і нэ	111 33	., 1	1 нэ	正奴	(/)
1	2	3		5		7			
11		13				17		19	
		23		25				29	
31				35		37			
41		43				47		49	
		53		55				59	
61				65		67			
71		73				77		79	
		83		85				89	
91				95		97			

- 删除 2 的倍数;
- 删除 3 的倍数;
- ◎ 删除 5 的倍数;

INIX	אנצון נינונא	۵, ۰	, 0,	1 11 1	111 93	., 🗥	1 11 1	止奴	(/) (
1	2	3		5		7			
11		13				17		19	
		23						29	
31						37			
41		43				47		49	
		53						59	
61						67			
71		73				77		79	
		83						89	
91						97			

- 删除 2 的倍数;
- 删除 3 的倍数;
- 3 删除 5 的倍数;

INIX	אנצון נינונא	۵, ۰	, 0,	, на	111 93	., 🗥	1 11 1	止 纵	(///
1	2	3		5		7			
11		13				17		19	
		23						29	
31						37			
41		43				47		49	
		53						59	
61						67			
71		73				7/1		79	
		83						89	
91						97			

- 删除 2 的倍数;
- 删除 3 的倍数;
- ◎ 删除 5 的倍数;
- 删除7的倍数.

IN IN	ינאן נינוגו	. 4, 0), 5,	1 113	口奴	., 1	1.11.1	正双	(/ -
1	2	3		5		7			
11		13				17		19	
		23						29	
31						37			
41		43				47			
		53						59	
61						67			
71		73						79	
		83						89	
						97			

- 删除 2 的倍数:
- ❷ 删除 3 的倍数;
- ◎ 删除 5 的倍数;
- 删除 7 的倍数.

解: 因为 N = 100, 所以不大于 $\sqrt{N} = 10$ 的所有素数为 2, 3, 5, 7, 那么依次删除 2, 3, 5, 7 的倍数, 余下的整数 (不包括 1) 即为所求.

		,	, ,		′		(,
X	2	3		5	7		
11		13			17	19	
		23				29	
31					37		
41		43			47		
		53				59	
61					67		
71		73				79	
		83				89	
					97		

- 删除 2 的倍数:
- ❷ 删除 3 的倍数;
- ◎ 删除 5 的倍数;
- 删除 7 的倍数.

余下的整数 (不包括 1) 就 是所要求的不超过 100 的 素数,即 2,3,5,7,11,13, 17,19,23,29,31,37,41, 43,47,53,59,61,67,71,

73, 79, 83, 89, 97.

目录

- 整除 欧几里德除法 整数表示
 - 整除的概念
 - 素数及其平凡判别
 - Eratoshenes 筛決
 - 欧几里德除法
 - 整数 b 进制表示

定理 1.1.11 (欧几里德除法 – 最小非负余数)

设 a,b 是两个整数, 其中 b>0, 则存在唯一的整数 q,r 使得

$$a = q \cdot b + r, \ 0 \leqslant r < b.$$

(1.1.2)

定理 1.1.11 (欧几里德除法 - 最小非负余数)

设 a,b 是两个整数, 其中 b>0, 则存在唯一的整数 q,r 使得

$$a = q \cdot b + r, \ 0 \leqslant r < b.$$

(1.1.2)

证: (存在性) 考虑一个整数序列

$$\cdots, -3 \cdot b, -2 \cdot b, -b, 0, b, 2 \cdot b, 3 \cdot b, \cdots,$$

它们将实数轴分成长度为 b 的区间, 而 a 必定落在其中的一个区间中.

因此存在一个整数 q 使得 $q \cdot b \leq a < (q+1) \cdot b$. 令 $r = a - q \cdot b$, 则有 $a = q \cdot b + r$, $0 \leq r < b$.

定理 1.1.11 (欧几里德除法 - 最小非负余数)

设 a,b 是两个整数, 其中 b>0, 则存在唯一的整数 q,r 使得

$$a = q \cdot b + r, \ 0 \leqslant r < b.$$

(1.1.2)

27 / 39

证: (存在性) 考虑一个整数序列

$$\cdots$$
, $-3 \cdot b$, $-2 \cdot b$, $-b$, 0 , b , $2 \cdot b$, $3 \cdot b$, \cdots ,

它们将实数轴分成长度为 b 的区间, 而 a 必定落在其中的一个区间中.

因此存在一个整数 q 使得 $q \cdot b \le a < (q+1) \cdot b$. 令 $r = a - q \cdot b$, 则有 $a = q \cdot b + r$, $0 \le r < b$.

(唯一性) 如果分别有整数 q,r 和 q_1,r_1 满足式 (1.1.2), 则

$$a = q \cdot b + r, \ 0 \leqslant r < b.$$

$$a = q_1 \cdot b + r_1, \ 0 \leqslant r_1 < b.$$

两式相减得 $(q-q_1) \cdot b = -(r-r_1)$. 当 $q \neq q_1$ 时, 左边的绝对值 $\geq b$, 而

右边的绝对值 < b, 这是不可能的, 故 $q = q_1, r = r_1$.

定义 1.1.3

在 $a = q \cdot b + r$, $0 \le r < b$ 式中, q 叫做 a 被 b 除所得的不完全商, r 叫做 a 被 b 除所得的余数.

定义 1.1.3

在 $a = q \cdot b + r$, $0 \le r < b$ 式中, q 叫做 a 被 b 除所得的不完全商, r 叫做 a 被 b 除所得的余数.

例 1.1.11 证明 N = 2027 为素数.

证: 小于等于 $\sqrt{2027}$ < 46 的所有素数为 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 故依次用这些素数去试除:

$$2027 = 1013 \cdot 2 + 1, \quad 2027 = 675 \cdot 3 + 2, \qquad 2027 = 405 \cdot 5 + 2,$$

$$2027 = 289 \cdot 7 + 4, \qquad 2027 = 184 \cdot 11 + 3, \qquad 2027 = 155 \cdot 13 + 12,$$

$$2027 = 119 \cdot 17 + 4, \qquad 2027 = 106 \cdot 19 + 13, \qquad 2027 = 88 \cdot 23 + 3,$$

$$2027 = 69 \cdot 29 + 26, \qquad 2027 = 65 \cdot 31 + 12, \qquad 2027 = 54 \cdot 37 + 29,$$

$$2027 = 49 \cdot 41 + 18, \qquad 2027 = 47 \cdot 43 + 6.$$

所以, 小于等于 $\sqrt{2027}$ 的所有素数都不能整除 2027, 根据定理 1.1.9,

N = 2027 为素数.

4 D > 4 B > 4 B > 4 B > 990

定理 1.1.12 (欧几里德除法 – 一般余数)

设 a,b 是两个整数, 其中 b>0, 则对任意的整数 c, 存在唯一的整

数
$$q,r$$
 使得

$$a = q \cdot b + r, \ c \leqslant r < b + c.$$

(1.1.3)

定理 1.1.12 (欧几里德除法 – 一般余数)

设 a,b 是两个整数, 其中 b>0, 则对任意的整数 c, 存在唯一的整数 q,r 使得 $a=q\cdot b+r,\ c\leqslant r < b+c. \tag{1.1.3}$

证: (存在性) 考虑一个整数序列

 \cdots , $-3 \cdot b + c$, $-2 \cdot b + c$, -b + c, c, b + c, $2 \cdot b + c$, $3 \cdot b + c$, \cdots , 它们将实数轴分成长度为 b 的区间,而 a 必定落在其中的一个区间中. 因此存在一个整数 q 使得 $q \cdot b + c \le a < (q+1) \cdot b + c$. 令 $r = a - q \cdot b$, 则有 $a = q \cdot b + r$, $c \le r < b + c$.

定理 1.1.12 (欧几里德除法 – 一般余数)

设 a,b 是两个整数, 其中 b>0, 则对任意的整数 c, 存在唯一的整数 q,r 使得 $a=q\cdot b+r,\ c\leqslant r < b+c. \tag{1.1.3}$

证: (存在性) 考虑一个整数序列

$$\cdots, -3 \cdot b + c, -2 \cdot b + c, -b + c, c, b + c, 2 \cdot b + c, 3 \cdot b + c, \cdots,$$
它们将实数轴分成长度为 b 的区间, 而 a 必定落在其中的一个区间中.

因此存在一个整数 q 使得 $q \cdot b + c \le a < (q+1) \cdot b + c$. 令 $r = a - q \cdot b$, 则有 $a = q \cdot b + r$, $c \le r < b + c$.

(唯一性) 如果分别有整数 q,r 和 q_1,r_1 满足式 (1.1.3), 则

$$a = q \cdot b + r, \ c \leqslant r < b + c.$$

$$a = q_1 \cdot b + r_1, \ c \leqslant r_1 < b + c.$$

两式相减得 $(q-q_1) \cdot b = -(r-r_1)$. 当 $q \neq q_1$ 时, 左边的绝对值 $\geq b$, 而 右边的绝对值 < b, 这是不可能的, 故 $q = q_1, r = r_1$.

(1) 当 c = 0 时, 有 b + c = b 及 $0 \le r \le b - 1 < b$. 这时 r 叫做最小非负余数.

- (1) 当 c = 0 时, 有 b + c = b 及 $0 \le r \le b 1 < b$. 这时 r 叫做最小非负余数.
- (2) 当 c = 1 时, 有 b + c = b + 1 及 $1 \le r \le b$. 这时 r 叫做最小正余数.

- (1) 当 c = 0 时, 有 b + c = b 及 $0 \le r \le b 1 < b$. 这时 r 叫做最小非负余数.
- (2) 当 c = 1 时, 有 b + c = b + 1 及 $1 \le r \le b$. 这时 r 叫做最小正余数.
- (3) 当 c = -b + 1 时, 有 b + c = 1 及 $-b < -b + 1 \le r \le 0$. 这时 r 叫做最大非正余数.

- (1) 当 c = 0 时, 有 b + c = b 及 $0 \le r \le b 1 < b$. 这时 r 叫做最小非负余数.
- (2) 当 c = 1 时, 有 b + c = b + 1 及 $1 \le r \le b$. 这时 r 叫做最小正余数.
- (3) 当 c = -b + 1 时, 有 b + c = 1 及 $-b < -b + 1 \le r \le 0$. 这时 r 叫做最大非正余数.
- (4) 当 c = -b 时, 有 b + c = 0 及 $-b \le r \le -1 < 0$. 这时 r 叫做最大负余数.

- (1) 当 c = 0 时, 有 b + c = b 及 $0 \le r \le b 1 < b$. 这时 r 叫做最小非负余数.
- (2) 当 c = 1 时, 有 b + c = b + 1 及 $1 \le r \le b$. 这时 r 叫做最小正余数.
- (3) 当 c = -b + 1 时, 有 b + c = 1 及 $-b < -b + 1 \le r \le 0$. 这时 r 叫做最大非正余数.
- (4) 当 c = -b 时, 有 b + c = 0 及 $-b \le r \le -1 < 0$. 这时 r 叫做最大负余数.
- (5) ① 当 b 为偶数, $c = -\frac{b}{2}$ 时, 有 $b + c = \frac{b}{2}$ 及 $-\frac{b}{2} \leqslant r \leqslant \frac{b-2}{2} < \frac{b}{2}$;
 - ② 当 b 为偶数, $c = -\frac{b-2}{2}$ 时, $f b + c = \frac{b+2}{2} \mathcal{B} \frac{b}{2} < -\frac{b-2}{2} \leqslant r \leqslant \frac{b}{2};$
 - ③ 当 b 为奇数, $c = -\frac{b-1}{2}$ 时, 有 $b + c = \frac{b+1}{2}$ 及 $-\frac{b}{2} < -\frac{b-1}{2} \le r \le \frac{b-1}{2} < \frac{b}{2}$; 总之, 有 $-\frac{b}{2} \le r < \frac{b}{2}$ 或 $-\frac{b}{2} < r \le \frac{b}{2}$. 这时 r 叫做绝对值最小余数.

例 1.1.12 设 b = 7, 则

r = 0, 1, 2, 3, 4, 5, 6 为最小非负余数.

r = 1, 2, 3, 4, 5, 6, 7 为最小正余数.

r = 0, -1, -2, -3, -4, -5, -6 为最大非正余数.

r = -1, -2, -3, -4, -5, -6, -7 为最大负余数.

r = -3, -2, -1, 0, 1, 2, 3 为绝对值最小余数.

例 1.1.12 设 b=7,则

r = 0, 1, 2, 3, 4, 5, 6 为最小非负余数.

r = 1, 2, 3, 4, 5, 6, 7 为最小正余数.

r = 0, -1, -2, -3, -4, -5, -6 为最大非正余数.

r = -1, -2, -3, -4, -5, -6, -7 为最大负余数.

r = -3, -2, -1, 0, 1, 2, 3 为绝对值最小余数.

例 1.1.13 设 b = 12, 则

r = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 为最小非负余数.

r = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 为最小正余数.

r = 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11 为最大非正余数.

r = -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12 为最大负余数.

r = -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5 或

r = -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6 为绝对值最小余数.

目录

- 整除 欧几里德除法 整数表示
 - 整除的概念
 - 素数及其平凡判别
 - Eratoshenes 筛決
 - 欧几里德除法
 - 整数 b 进制表示

平时遇到的整数通常是以十进制表示的. 中国是世界上最早采用十进制的国家, 春秋战国时期已经普遍使用的算筹就严格遵循十进位制, 见《孙子算经》. 但在计算机中, 需要用二进制、八进制或十六进制表示. 为此, 考虑一般的 *b* 进制. 运用欧几里德除法, 可得到:

平时遇到的整数通常是以十进制表示的. 中国是世界上最早采用十进制的国家, 春秋战国时期已经普遍使用的算筹就严格遵循十进位制, 见《孙子算经》. 但在计算机中, 需要用二进制、八进制或十六进制表示. 为此, 考虑一般的 *b* 进制. 运用欧几里德除法, 可得到:

定理 1.1.13

设 b 是大于 1 的整数,则每个正整数 n 可唯一地表示成 $n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0,$ 其中 a_i 是整数, $0 \le a_i \le b - 1, i = 1, \dots, k$, 且首项系数 $a_k \ne 0$.

平时遇到的整数通常是以十进制表示的. 中国是世界上最早采用十进制的国家, 春秋战国时期已经普遍使用的算筹就严格遵循十进位制, 见《孙子算经》. 但在计算机中, 需要用二进制、八进制或十六进制表示. 为此, 考虑一般的 *b* 进制. 运用欧几里德除法, 可得到:

定理 1.1.13

设 b 是大于 1 的整数,则每个正整数 n 可唯一地表示成 $n = a_k b^k + a_{k-1} b^{k-1} + \cdots + a_1 b + a_0,$ 其中 a_i 是整数, $0 \le a_i \le b - 1, i = 1, \cdots, k$, 且首项系数 $a_k \ne 0$.

证明思路:逐次运用欧几里得除法得到

$$n = q_0 b + a_0, \ 0 \le a_0 \le b - 1;$$

$$q_i = q_{i+1} + a_{i+1}, \ 0 \le a_i \le b-1, \ i = 0, 1, \dots, k-1.$$

直到 $a_{k+1} = 0$. 再依次代入 $n = q_0 b + a_0$ 即得 n 的表达式.

若有两种表示,则两式相减后可得 $a_i - a_i^* = 0, i = 0, \dots, k$,故 n 的表达式唯一.

如果展开式 $n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0$, 其中 a_i 是整数, $0 \le a_i \le b - 1$, $i = 1, \dots, k - 1$, 且首项系数 $a_k \ne 0$, 则称符号 $n = (a_k a_{k-1} \cdots a_1 a_0)_b$ 为整数 n 的 b 进制表示.

如果展开式 $n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0$, 其中 a_i 是整数, $0 \le a_i \le b - 1$, $i = 1, \dots, k - 1$, 且首项系数 $a_k \ne 0$, 则称符号 $n = (a_k a_{k-1} \cdots a_1 a_0)_b$ 为整数 n 的 b 进制表示.

当 b = 2 时, 系数 a_i 为 0 或 1, 因此有推论 1.1.3

每个正整数都可以表示成不同的2的方幂的和.

整除 欧几里德除法 整数表示 整数 b 进制表示

如果展开式 $n = a_k b^k + a_{k-1} b^{k-1} + \cdots + a_1 b + a_0$, 其中 a_i 是整数, $0 \le a_i \le b-1, i=1,\cdots,k-1$, 且首项系数 $a_k \ne 0$, 则称符号

 $n = (a_k a_{k-1} \cdots a_1 a_0)_b$ 为整数 n 的 b 进制表示.

当 b = 2 时, 系数 a_i 为 0 或 1, 因此有

推论 1.1.3

每个正整数都可以表示成不同的 2 的方幂的和.

例 1.1.14 将整数 404 表示为二进制.

解:逐次运用欧几里德除法,我们有

$$404 = 2 \cdot 202 + 0$$
, $202 = 2 \cdot 101 + 0$, $101 = 2 \cdot 50 + 1$,

$$101 = 2 \cdot 50 + 1,$$

$$50 = 2 \cdot 25 + 0,$$
 $25 = 2 \cdot 12 + 1,$ $12 = 2 \cdot 6 + 0,$

$$25 = 2 \cdot 12 + 1,$$

$$12 = 2 \cdot 6 + 0,$$

$$6 = 2 \cdot 3 + 0,$$

$$3 = 2 \cdot 1 + 1,$$

$$1 = 2 \cdot 0 + 1.$$

因此, $404 = (110010100)_2$, 或者

$$404 = 1 \cdot 2^8 + 1 \cdot 2^7 + 0 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0$$

计算机也常用八进制,或十六进制,或六十四进制等.在十六进制中,我们用 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F 分别表示 $0, 1, \cdots, 15$ 共 16 个数,其中 A, B, C, D, E, F 分别对应于 10, 11, 12, 13, 14, 15.

计算机也常用八进制,或十六进制,或六十四进制等.在十六进制中,我们用 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F 分别表示 $0, 1, \dots, 15$ 共 16 个数,其中 A, B, C, D, E, F 分别对应于 10, 11, 12, 13, 14, 15. **例** 1.1.15 转换十六进制 $(ABCD)_{16}$ 为十进制.

$$(ABCD)_{16} = 10 \cdot 16^3 + 11 \cdot 16^2 + 12 \cdot 16 + 13 = (43981)_{10}.$$

计算机也常用八进制,或十六进制,或六十四进制等. 在十六进制中,我们用 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F 分别表示 $0,1,\cdots,15$ 共 16 个数,其中 A,B,C,D,E,F 分别对应于 10,11,12,13,14,15.

例 1.1.15 转换十六进制 (ABCD)₁₆ 为十进制.

$$(ABCD)_{16} = 10 \cdot 16^3 + 11 \cdot 16^2 + 12 \cdot 16 + 13 = (43981)_{10}.$$

注: 当 $b = 100, 2^{15} = 32768, 10^8$ 或 $2^{32} = 4294967296$ 时, n 可分别表示为不同进制的多重精度整数, 并进一步用于基于"大整数"的密码系统.

计算机也常用八进制,或十六进制,或六十四进制等. 在十六进制中,我们用 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F 分别表示 $0,1,\cdots,15$ 共 16 个数,其中 A,B,C,D,E,F 分别对应于 10,11,12,13,14,15.

例 1.1.15 转换十六进制 (ABCD)₁₆ 为十进制.

$$(ABCD)_{16} = 10 \cdot 16^3 + 11 \cdot 16^2 + 12 \cdot 16 + 13 = (43981)_{10}.$$

注: 当 b = 100, $2^{15} = 32768$, 10^8 或 $2^{32} = 4294967296$ 时, n 可分别表示为不同进制的多重精度整数, 并进一步用于基于"大整数"的密码系统.

为了方便各进制之间的转换, 并提高转换效率, 我们可以预先制作一个换算表, 再根据换算表作转换. 下图就是二进制、八进制、十进制和十六进制之间的换算表.

←□ → ←□ → ← 重 → ● ● のへの

二进制、八进制、十进制、十六进制换算表

十进制	二进制	八进制	十六进制	十进制	二进制	八进制	十六进制
0	0000	00	0	8	1000	10	8
1	0001	01	1	9	1001	11	9
2	0010	02	2	10	1010	12	A
3	0011	03	3	11	1011	13	В
4	0100	04	4	12	1100	14	$^{\mathrm{C}}$
5	0101	05	5	13	1101	15	D
6	0110	06	6	14	1110	16	E
7	0111	07	7	15	1111	17	F

解: 由上述换算表可得

$$A = (1010)_2, B = (1011)_2, C = (1100)_2, D = (1101)_2.$$

从而 $(ABCD)_{16} = (10101011111001101)_2$.

解: 由上述换算表可得

$$A = (1010)_2, B = (1011)_2, C = (1100)_2, D = (1101)_2.$$

从而 $(ABCD)_{16} = (10101011111001101)_2$.

例 1.1.17 转换二进制 (110111101111)₂ 为十六进制数.

解: 由上述换算表可得到 $(1111)_2 = F$, $(1110)_2 = E$, $(1101)_2 = D$, 从而 $(110111101111)_2 = DEF$.

解: 由上述换算表可得

$$A = (1010)_2, B = (1011)_2, C = (1100)_2, D = (1101)_2.$$

从而 $(ABCD)_{16} = (10101011111001101)_2$.

例 1.1.17 转换二进制 (1101111101111)₂ 为十六进制数.

解: 由上述换算表可得到 $(1111)_2 = F$, $(1110)_2 = E$, $(1101)_2 = D$, 从而 $(110111101111)_2 = DEF$.

因二进制的转换比十六进制要容易些, 故可以先将数作二进制表示, 再运用二进制与十六进制之间的换算表, 将二进制转换成十六进制.

解: 由上述换算表可得

$$A = (1010)_2, B = (1011)_2, C = (1100)_2, D = (1101)_2.$$

从而 $(ABCD)_{16} = (10101011111001101)_2$.

例 1.1.17 转换二进制 (110111101111)2 为十六进制数.

解: 由上述换算表可得到 $(1111)_2 = F$, $(1110)_2 = E$, $(1101)_2 = D$, 从而 $(110111101111)_2 = DEF$.

因二进制的转换比十六进制要容易些, 故可以先将数作二进制表示, 再运用二进制与十六进制之间的换算表, 将二进制转换成十六进制.

例 1.1.18 表示整数 404 为十六进制.

解: 根据例 1.1.14, 我们有 $404 = (110010100)_2$.

查换算表得到 $(0100)_2 = 4$, $(1001)_2 = 9$, $(0001)_2 = 1$.

故 $404 = 1 \cdot 16^2 + 9 \cdot 16 + 4 = (194)_{16}$.

本课作业

- 1. 证明: 若 a 是整数, 则 $3 | a^3 a$.
- 2. 证明: 若三个大于 10 的素数成等差数列, 其公差为 d, 则 $6 \mid d$.
- 3. 有一个 2024 位的数 A 能被 9 整除,它的各位数字和为 a, a 的各位数字和为 b, b 的各位数字和为 c, 求 c 等于多少?
- 4. 是否存在这样的整数 a,b,c, 使得 $a \mid bc$, 但 $a \nmid b,a \nmid c$, 若有, 举两例说明; 若无, 给出证明.

交流与讨论

电子邮箱:

陈秀波: xb_chen@bupt.edu.cn

徐国胜: guoshengxu@bupt.edu.cn

金正平: zhpjin@bupt.edu.cn