Amostras não Uniformes e Reconstrução em Espaços de Translações

Reginaldo J. Santos
Departamento de Matemática-ICEx
Universidade Federal de Minas Gerais
http://www.mat.ufmg.br/~regi

29 de novembro de 2006

Sumário

1	Convolução	2
2	Amostras não Uniformes de Sinais	7
3	Convolução em Dimensão 2	11
4	Amostras não Uniformes de Imagens	16

1 Convolução

Definimos a convolução de dois vetores $X,Y\in\mathbb{C}^N$ por

$$(X * Y)_m = \sum_{k=0}^{N-1} X_{m-k}^{\text{ext}} y_k,$$

em que X^{ext} é a extensão periódica do vetor X ao espaço \mathbb{C}^{2N-1} , ou seja, $X^{\text{ext}} = (x_1, \dots, x_{N-1}, x_0, x_1, \dots, x_{N-1}) \in \mathbb{C}^{2N-1}$.

Usando matrizes a convolução de $X,Y\in\mathbb{C}^N$ pode ser escrita como

$$X * Y = \begin{bmatrix} x_0 & x_{N-1} & \dots & x_1 \\ x_1 & x_0 & \dots & x_2 \\ \vdots & \vdots & & \vdots \\ x_{N-1} & x_{N-2} & \dots & x_0 \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{N-1} \end{bmatrix}.$$

Definimos a matriz circulante com 1a. coluna X como sendo

circulant(X) =
$$\begin{bmatrix} x_0 & x_{N-1} & \dots & x_1 \\ x_1 & x_0 & \dots & x_2 \\ \vdots & \vdots & & \vdots \\ x_{N-1} & x_{N-2} & \dots & x_0 \end{bmatrix}.$$

Assim a convolução de $X,Y\in\mathbb{C}^N$ pode ser escrita como

$$X * Y = \operatorname{circulant}(X)Y$$
.

Proposição 1. Sejam $X, Y \in \mathbb{C}^N$. A convolução X*Y é igual ao vetor obtido multiplicando as componentes correspondentes das transformadas de Fourier discreta de X e de Y e depois aplicando-se a transformada discreta de Fourier inversa. Em termos de matrizes temos

$$X * Y = \operatorname{circulant}(X)Y = \frac{1}{N}(F_N)^* \operatorname{diag}(F_N X)F_N Y,$$

em que F_N é a matriz que define a transformada de Fourier discreta e diag(V) é a matriz diagonal cuja diagonal é igual a V.

Demonstração. Escrevendo $X = \sum_{m=0}^{N-1} c_m F_m^N$ e $Y = \sum_{n=0}^{N-1} d_n F_n^N$ em termos da base de Fourier temos que

$$X * Y = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} c_m d_n (F_m^N * F_n^N)$$
 (1)

Mas,

$$(F_m^N * F_n^N)_l = \sum_{k=0}^{N-1} e^{i2\pi \frac{m(l-k)}{N}} e^{i2\pi \frac{nk}{N}} = \sum_{k=0}^{N-1} e^{i2\pi \frac{k(n-m)+ml}{N}} = e^{i2\pi \frac{ml}{N}} \sum_{k=0}^{N-1} e^{i2\pi \frac{k(n-m)}{N}}$$

$$= e^{i2\pi \frac{ml}{N}} \left\langle F_n^N, F_m^N \right\rangle$$

Assim,

$$F_m^N * F_n^N = N\delta_{mn} F_m^N \tag{2}$$

Substituindo-se (2) em (1) obtemos

$$X * Y = \sum_{m=0}^{N-1} N c_m d_m F_m^N.$$

Logo a transformada de Fourier discreta de X * Y é dada por

$$F_N(X * Y) = N^2(c_0 d_0, \dots, c_{N-1} d_{N-1}).$$

Assim, como a transformada de Fourier discreta de X e Y são dadas por

$$F_N X = N(c_0, \dots, c_{N-1})$$
 e $F_N Y = N(d_0, \dots, d_{N-1}),$

então

$$F_N(X * Y) = \operatorname{diag}(F_N X) F_N Y.$$

Aplicando-se $(F_N)^{-1} = \frac{1}{N}(F_N)^*$ obtemos

$$X * Y = \frac{1}{N} (F_N)^* \operatorname{diag}(F_N X) F_N Y.$$

Corolário 2. $Seja X \in \mathbb{C}^N$.

$$\operatorname{circulant}(X) = \frac{1}{N} (F_N)^* \operatorname{diag}(F_N X) F_N$$

em que F_N é a matriz que define a transformada de Fourier discreta e diag(V) é a matriz diagonal cuja diagonal é igual a V. Portanto circulant(X) é diagonalizável, seus autovalores são as componentes da transformada de Fourier discreta de X com autovetores F_m^N , $m = 0, \ldots, N-1$.

Observação. Produto matriz circulante por vetor pode ser calculado ao custo de $N \log N$ operações usando um algoritmo chamado de **Transformada de Fourier Rápida (FFT)**. Também sistemas em que a matriz é circulante podem ser resolvido ao custo de $N \log N$ operações, pois

$$[\operatorname{circulant}(X)]^{-1} = \frac{1}{N} (F_N)^* [\operatorname{diag}(F_N X)]^{-1} F_N$$

Definimos a convolução de dois vetores $X \in \mathbb{C}^{2N-1}$ e $Y \in \mathbb{C}^N$ por

$$(X * Y)_m = \sum_{k=0}^{N-1} X_{m-k} Y_k,$$

em que $X = (x_{-N+1}, \dots x_{-1}, x_0, x_1, \dots, x_{N-1}).$

Usando matrizes a convolução $X \in \mathbb{C}^{2N-1}$ e $Y \in \mathbb{C}^N$ pode ser escrita como

$$X * Y = \begin{bmatrix} x_0 & x_{-1} & \dots & x_{-N+1} \\ x_1 & x_0 & \dots & x_{-N+2} \\ \vdots & \vdots & & \vdots \\ x_{N-1} & x_{N-2} & \dots & x_0 \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{N-1} \end{bmatrix}.$$

Definimos a matriz de Toeplitz cujas diagonais são constantes e dadas pelo vetor

$$X = (x_{-N+1}, \dots x_{-1}, x_0, x_1, \dots, x_{N-1})$$

por

toeplitz(X) =
$$\begin{bmatrix} x_0 & x_{-1} & \dots & x_{-N+1} \\ x_1 & x_0 & \dots & x_{-N+2} \\ \vdots & \vdots & & \vdots \\ x_{N-1} & x_{N-2} & \dots & x_0 \end{bmatrix}.$$

Assim a convolução de $X\in\mathbb{C}^{2N-1}$ e $Y\in\mathbb{C}^N$ pode ser escrita como

$$X * Y = \text{toeplitz}(X)Y$$
.

Vamos acrescentar um elemento qualquer (por exemplo um zero) à esquerda do vetor X e vamos dividi-lo em duas partes de mesmo tamanho:

$$(0,X) = (X_1, X_2) \in \mathbb{C}^{2N},$$

em que $X_1 = (0, x_{-N+1}, \dots x_{-1})$ e $X_2 = (x_0, x_1, \dots, x_{N-1})$. Definindo

$$\tilde{X}^{\text{ext}} = (X_2, X_1, X_2, X_1),$$

então

$$\tilde{X} = (X_2, X_1)$$

Assim,

$$\operatorname{circulant}(\tilde{X}) \ = \ \begin{bmatrix} x_0 & x_{-1} & \dots & x_{-N+1} & 0 & x_{N-1} & \dots & x_1 \\ x_1 & x_0 & \dots & x_{-N+2} & x_{-N+1} & 0 & \dots & x_2 \\ \vdots & \vdots & & \vdots & & \vdots & \vdots & & \vdots \\ x_{N-1} & x_{N-2} & \dots & x_0 & x_{-1} & x_{-2} & \dots & 0 \\ \hline 0 & x_{N-1} & \dots & x_1 & x_0 & x_{-1} & \dots & x_{-N+1} \\ x_{-N+1} & 0 & \dots & x_2 & x_1 & x_0 & \dots & x_{-N+2} \\ \vdots & \vdots & & \vdots & & \vdots & \vdots & \vdots \\ x_{-1} & x_{-2} & \dots & 0 & x_{N-1} & x_{N-2} & \dots & x_0 \end{bmatrix}$$

$$= \begin{bmatrix} T & S \\ S & T \end{bmatrix},$$

em que T = toeplitz(X) e $S = \text{toeplitz}(x_1, \dots, x_{N-1}, 0, x_{-N+1}, \dots x_{-1})$. Usando a Proposição 1 temos o seguinte resultado.

Proposição 3. Sejam $X = (x_{-N+1}, \dots x_{-1}, x_0, x_1, \dots, x_{N-1}) \in \mathbb{C}^{2N-1}$ e $Y \in \mathbb{C}^N$. A convolução X * Y é igual ao vetor obtido da seguinte forma:

(a) Acrescente um elemento qualquer (por exemplo um zero) à esquerda do vetor X e divida-o em duas partes de mesmo tamanho:

$$(0,X) = (X_1, X_2) \in \mathbb{C}^{2N},$$

em que
$$X_1 = (0, x_{-N+1}, \dots x_{-1})$$
 e $X_2 = (x_0, x_1, \dots, x_{N-1})$.

(b) Defina

$$\tilde{X} = (X_2, X_1) \in \mathbb{C}^{2N}$$
 e $\tilde{Y} = (Y, \bar{0}) \in \mathbb{C}^{2N}$.

- (c) Multiplique as componentes correspondentes das transformadas de Fourier discreta de \tilde{X} e de \tilde{Y} .
- (d) Aplique a transformada discreta de Fourier inversa e tome as primeiras N componentes.

Em termos de matrizes temos

$$X * Y = \text{toeplitz}(X)Y = \begin{bmatrix} I_N & \bar{0} \end{bmatrix} \text{circulant}(\tilde{X})\tilde{Y}.$$

Comando do pacote SINAIMAG:

 ${\tt Z=prodtoeplitz(X,Y)}$ calcula o produto toeplitz(X) Y para X 2n-1-vetor e Y n-vetor.

2 Amostras não Uniformes de Sinais

Seja $f:[0,L]\to\mathbb{R}$ dada por

$$f(t) = \sum_{m=0}^{M-1} c_m \phi(t - \frac{mL}{M}).$$

Vamos supor que temos uma amostra não uniforme da função f

$$\left\{ f(\frac{kL}{MN}) \right\}, \quad k \in \Lambda \subset \{0, \dots, MN - 1\}.$$

Vamos supor que Λ tenha r elementos e que $r \leq M$.

Substituindo-se f nos pontos $\frac{kL}{MN}$, para $k \in \Lambda$, obtemos

$$f\left(\frac{kL}{MN}\right) = \sum_{m=0}^{M-1} c_m \phi\left(\frac{kL}{MN} - \frac{mL}{M}\right) \quad \text{para } k \in \Lambda$$
 (3)

Para encontrarmos c_0, \ldots, c_{M-1} precisamos resolver o sistema linear AX = B, em que

$$A = \left(\phi\left(\frac{kL}{MN} - \frac{mL}{M}\right)\right)_{r \times M}, \quad B = \left(f\left(\frac{kL}{N}\right)\right)_{k \in \Lambda} \quad \text{e} \quad X = \begin{bmatrix} c_0 \\ \vdots \\ c_{M-1} \end{bmatrix}.$$

Podemos escrever (3) da seguinte forma

$$f\left(\frac{kL}{MN}\right) = \sum_{m=0}^{MN-1} c_{m\uparrow N} \phi\left(\frac{(k-m)L}{MN}\right),$$

em que

$$c_{m\uparrow N} = \begin{cases} c_{m'}, & \text{se } m = m'N \\ 0, & \text{caso contrário.} \end{cases}$$

Observe que a matriz A é uma submatriz da matriz

toeplitz
$$\left(\phi\left(\frac{kL}{MN}\right)\right)_{k=-MN,\dots,MN}$$
.

Se os dados estiverem contaminados com erros, então podemos resolver o problema de quadrados mínimos

$$\min ||AX - B||$$

que é equivalente a resolver o sistema de equações normais (ver por exemplo [3])

$$A^t A X = A^t B$$

Se o sistema for grande podemos usar um método iterativo. Um método que é bastante rápido é Gradientes Conjugados para o problema de quadrados mínimos min ||AX - B||que pode ser encontrado por exemplo em [1]:

$$\begin{split} R^{(0)} &= B - AX^{(0)}, \, S^{(0)} = A^t R^{(0)}, \, W^{(0)} = S^{(0)} \\ \text{para } k = 0, 1, \dots \\ P^{(k)} &= AW^{(k)} \\ \alpha^{(k)} &= \frac{||S^{(k)}||^2}{||P^{(k)}||^2} \\ X^{(k+1)} &= X^{(k)} + \alpha^{(k)} W^{(k)} \\ R^{(k+1)} &= R^{(k)} - \alpha^{(k)} P^{(k)} \\ S^{(k+1)} &= A^t R^{(k+1)} \\ \beta^{(k)} &= \frac{||S^{(k+1)}||^2}{||S^{(k)}||^2} \\ W^{(k+1)} &= S^{(k+1)} + \beta^{(k)} W^{(k)} \end{split}$$

Os produtos AX e A^tY podem ser calculados de maneira eficiente como a seguir. Para calcular o produto AX procedemos da seguinte forma:

(a) Seja
$$X = (x_0, \ldots, x_{M-1})$$
. Defina X^{ext} por

$$X_m^{\text{ext}} = \begin{cases} x_{m'}, & \text{se } m = m'N \\ 0, & \text{caso contrário.} \end{cases}$$

(b) Usando a Proposição 3 na página 6 realiza-se o produto

toeplitz
$$\left(\phi\left(\frac{kL}{MN}\right)\right)_{k=-MN,\dots,MN} X^{\text{ext}}$$
.

(c) Toma-se somente as componentes k tais que $k \in \Lambda$.

Para calcular o produto $A^{t}Y$ procedemos da seguinte forma:

(a) Seja $Y = (y_k)_{k \in \Lambda}$. Defina Y^{ext} por

$$Y_m^{\text{ext}} = \begin{cases} y_k, & \text{se } k \in \Lambda \\ 0, & \text{caso contrário.} \end{cases}$$

(b) Usando a Proposição 3 na página 6 realiza-se o produto

toeplitz
$$\left(\phi\left(\frac{kL}{MN}\right)\right)_{k=MN,\dots,-MN} Y^{\text{ext}}.$$

(c) Seja X^{ext} o resultado. Toma-se somente as componentes m tais que m = m'N.

Exemplo 1. Considere o spline cúbico

$$\phi(t) = \begin{cases} \frac{2}{3} - |t|^2 + \frac{|t|^3}{2}, & 0 < |t| < 1\\ \frac{(2-|t|)^3}{6}, & 1 \le |t| < 2\\ 0, & |t| \ge 2 \end{cases}$$

Sejam L=3, M=3 e N=3. Vamos determinar

$$f(t) = c_0 \phi(t) + c_1 \phi(t - m) + c_2 \phi(t - 2m),$$

que satisfaz

$$\left(f(2\frac{1}{3}), f(4\frac{1}{3}), f(8\frac{1}{3})\right) = (2\sqrt{3}, 2 + 2\sqrt{3}, 2 - 2\sqrt{3}).$$

Neste caso $\Lambda=\{2,4,8\}$. Assim a matriz A é dada pelos elementos das linhas 3,5 e 9 e das colunas 1,4 e 7 da matriz

$$\begin{bmatrix} \frac{2}{3} & \frac{31}{54} & \frac{10}{27} & \frac{1}{6} & \frac{4}{81} & \frac{1}{162} & 0 & 0 & 0 & 0 \\ \frac{31}{54} & \frac{2}{3} & \frac{31}{54} & \frac{10}{27} & \frac{1}{6} & \frac{4}{81} & \frac{1}{162} & 0 & 0 & 0 \\ \frac{10}{27} & \frac{31}{54} & \frac{2}{3} & \frac{31}{54} & \frac{10}{27} & \frac{1}{6} & \frac{4}{81} & \frac{1}{162} & 0 & 0 \\ \frac{1}{6} & \frac{10}{27} & \frac{31}{54} & \frac{2}{3} & \frac{31}{54} & \frac{10}{27} & \frac{1}{6} & \frac{4}{81} & \frac{1}{162} & 0 \\ \frac{4}{81} & \frac{1}{6} & \frac{10}{27} & \frac{31}{54} & \frac{2}{3} & \frac{31}{54} & \frac{10}{27} & \frac{1}{6} & \frac{4}{81} & \frac{1}{162} & 0 \\ \frac{4}{81} & \frac{1}{6} & \frac{10}{27} & \frac{31}{54} & \frac{2}{3} & \frac{31}{54} & \frac{10}{27} & \frac{1}{6} & \frac{4}{81} & \frac{1}{162} \\ \frac{1}{162} & \frac{4}{81} & \frac{1}{6} & \frac{10}{27} & \frac{31}{54} & \frac{2}{3} & \frac{31}{54} & \frac{10}{27} & \frac{1}{6} & \frac{4}{81} \\ 0 & \frac{1}{162} & \frac{4}{81} & \frac{1}{6} & \frac{10}{27} & \frac{31}{54} & \frac{2}{3} & \frac{31}{54} & \frac{10}{27} \\ 0 & 0 & 0 & \frac{1}{162} & \frac{4}{81} & \frac{1}{6} & \frac{10}{27} & \frac{31}{54} & \frac{2}{3} & \frac{31}{54} & \frac{10}{27} \\ 0 & 0 & 0 & \frac{1}{162} & \frac{4}{81} & \frac{1}{6} & \frac{10}{27} & \frac{31}{54} & \frac{2}{3} & \frac{31}{54} \\ 0 & 0 & 0 & \frac{1}{162} & \frac{4}{81} & \frac{1}{6} & \frac{10}{27} & \frac{31}{54} & \frac{2}{3} & \frac{31}{54} \\ 0 & 0 & 0 & \frac{1}{162} & \frac{4}{81} & \frac{1}{6} & \frac{10}{27} & \frac{31}{54} & \frac{2}{3} & \frac{31}{54} \\ 0 & 0 & 0 & \frac{1}{162} & \frac{4}{81} & \frac{1}{6} & \frac{10}{27} & \frac{31}{54} & \frac{2}{3} & \frac{31}{54} \\ 0 & 0 & 0 & \frac{1}{162} & \frac{4}{81} & \frac{1}{6} & \frac{10}{27} & \frac{31}{54} & \frac{2}{3} & \frac{31}{54} \\ 0 & 0 & 0 & \frac{1}{162} & \frac{4}{81} & \frac{1}{6} & \frac{10}{27} & \frac{31}{54} & \frac{2}{3} & \frac{31}{54} \\ 0 & 0 & 0 & \frac{1}{162} & \frac{4}{81} & \frac{1}{6} & \frac{10}{27} & \frac{31}{54} & \frac{2}{3} & \frac{31}{54} \\ 0 & 0 & 0 & \frac{1}{162} & \frac{4}{81} & \frac{1}{6} & \frac{10}{27} & \frac{31}{54} & \frac{2}{3} & \frac{31}{54} \\ 0 & 0 & 0 & \frac{1}{162} & \frac{4}{81} & \frac{1}{6} & \frac{10}{27} & \frac{31}{54} & \frac{2}{3} & \frac{31}{54} \\ 0 & 0 & 0 & 0 & \frac{1}{162} & \frac{4}{81} & \frac{1}{6} & \frac{10}{27} & \frac{31}{54} & \frac{2}{3} & \frac{31}{54} \\ 0 & 0 & 0 & 0 & \frac{1}{162} & \frac{4}{81} & \frac{1}{6} & \frac{10}{27} & \frac{31}{54} & \frac{2}{3} & \frac{31}{54} \\ 0 & 0 & 0 & 0 & \frac{1}{162} & \frac{4}{81} & \frac{1}{6} & \frac{10}{27} & \frac{1}{54} & \frac{1}{3} & \frac{10}{31} & \frac{2}{3} & \frac{31}{31} & \frac$$

ou seja, os coeficientes são a solução do sistema

$$\begin{bmatrix} \frac{10}{27} & \frac{31}{54} & \frac{4}{81} \\ \frac{4}{81} & \frac{31}{54} & \frac{10}{27} \\ 0 & \frac{1}{162} & \frac{10}{27} \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2\sqrt{3} \\ 2 + 2\sqrt{3} \\ 2 - 2\sqrt{3} \end{bmatrix}$$

cuja solução é

$$\begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} -10.4022 \\ 13.1042 \\ -4.1715 \end{bmatrix}$$

Figura 1: 3 Pontos com espaçamento não uniforme e o sinal recuperado do Exemplo 1.

3 Convolução em Dimensão 2

Definimos a convolução de duas matrizes $X, Y, N_1 \times N_2$, por

$$(X * Y)_{mn} = \sum_{m'=0}^{N_1-1} \sum_{n'=0}^{N_2-1} X_{(m-m')(n-n')}^{\text{ext}} y_{m'n'},$$

em que $X^{\rm ext}$ é a extensão periódica da matriz X ao espaço das matrizes $(2N_1-1)\times(2N_2-1),$ ou seja,

$$X^{\text{ext}} = (x_{mn})_{m=1,\dots,N_1-1,0,1,\dots,N_1-1;n=1,\dots,N_2-1,0,1,\dots,N_2-1}.$$

Usando matrizes a convolução de duas matrizes X e Y, $N_1 \times N_2$, pode ser escrita como

$$\operatorname{vet}(X * Y) = \operatorname{bccb}(X) \operatorname{vet}(Y),$$

em que

$$bccb(X) = \begin{bmatrix} C_0 & C_{N_1-1} & \dots & C_1 \\ C_1 & C_0 & \dots & C_2 \\ \vdots & \vdots & & \vdots \\ C_{N_1-1} & C_{N_1-2} & \dots & C_0 \end{bmatrix}$$
 e

$$C_k = \operatorname{circulant}(x_{k,.}) = \begin{bmatrix} x_{k0} & x_{k(N_2-1)} & \dots & x_{k1} \\ x_{k1} & x_{k0} & \dots & x_{k2} \\ \vdots & \vdots & & \vdots \\ x_{k(N_2-1)} & x_{k(N_2-2)} & \dots & x_{k0} \end{bmatrix}$$

A matriz bccb(X) é chamada matriz circulante em blocos com blocos circulantes (BCCB).

Proposição 4. Sejam X e Y matrizes $N_1 \times N_2$. A convolução vet(X * Y) é igual ao vetor obtido multiplicando as componentes correspondentes das transformadas de Fourier discreta de dimensão 2 de X e de Y e depois aplicando-se a transformada discreta de Fourier inversa de dimensão 2. Em termos de matrizes temos

$$\operatorname{vet}(X*Y) = \operatorname{bccb}(X)Y = \frac{1}{N_1 N_2} (F_{N_1} \otimes F_{N_2})^t \operatorname{diag}((F_{N_1} \otimes F_{N_2}) \operatorname{vet}(X)) (F_{N_1} \otimes F_{N_2}) \operatorname{vet}(Y).$$

Demonstração. Escrevendo

$$\operatorname{vet}(X) = \sum_{m=0}^{N_1-1} \sum_{n=0}^{N_2-1} c_{mn} F_{mn}^{N_1 \times N_2} \quad \text{e} \quad \operatorname{vet}(Y) = \sum_{m'=0}^{N_1-1} \sum_{n'=0}^{N_2-1} d_{m'n'} F_{m'n'}^{N_1 \times N_2}$$

em termos da base de Fourier temos que

$$\operatorname{vet}(X * Y) = \sum_{m=0}^{N_1 - 1} \sum_{n=0}^{N_2 - 1} \sum_{m'=0}^{N_1 - 1} \sum_{n'=0}^{N_2 - 1} c_{mn} d_{m'n'} (F_{mn}^{N_1 \times N_2} * F_{m'n'}^{N_1 \times N_2})$$

$$\tag{4}$$

Mas,

$$\begin{split} (F_{mn}^{N_1 \times N_2} * F_{m'n'}^{N_1 \times N_2})_{kl} &= \sum_{k'=0}^{N_1-1} \sum_{l'=0}^{N_2-1} e^{i2\pi \left(\frac{m(k-k')}{N_1} + \frac{n(l-l')}{N_2}\right)} e^{i2\pi \left(\frac{m'k'}{N_1} + \frac{n'l'}{N_2}\right)} \\ &= e^{i2\pi \left(\frac{mk}{N_1} + \frac{nl}{N_2}\right)} \sum_{k'=0}^{N_1-1} \sum_{l'=0}^{N_2-1} e^{i2\pi \left(\frac{k'(m'-m)}{N_1} + \frac{l'(n'-n)}{N_2}\right)} \end{split}$$

Assim,

$$F_{mn}^{N_1 \times N_2} * F_{m'n'}^{N_1 \times N_2} = N_1 N_2 \delta_{mm'} \delta_{nn'} F_{mn}^{N_1 \times N_2}$$
(5)

Substituindo-se (5) em (4) obtemos

$$X * Y = \sum_{m=0}^{N_1 - 1} \sum_{n=0}^{N_2 - 1} N_1 N_2 c_{mn} d_{mn} F_{mn}^{N_1 \times N_2}.$$

Logo a transformada de Fourier discreta de dimensão 2 de X * Y é dada por

$$(F_{N_1} \otimes F_{N_2})(X * Y) = N_1^2 N_2^2(c_{mn}d_{mn})$$

Assim, como a transformada de Fourier discreta de dimensão 2 de X e Y são dadas por

$$\max((F_{N_1} \otimes F_{N_2}) \operatorname{vet}(X)) = N_1 N_2(c_{mn}) \quad \text{e} \quad \max((F_{N_1} \otimes F_{N_2}) \operatorname{vet}(Y)) = N_1 N_2(d_{mn}),$$

então

$$(F_{N_1} \otimes F_{N_2}) \operatorname{vet}(X * Y) = \operatorname{diag}((F_{N_1} \otimes F_{N_2}) \operatorname{vet}(X))(F_{N_1} \otimes F_{N_2}) \operatorname{vet}(Y).$$

Aplicando-se $(F_{N_1} \otimes F_{N_2})^{-1} = \frac{1}{N_1 N_2} F_{N_1}^t \otimes F_{N_2}^t$ obtemos

$$\operatorname{vet}(X*Y) = \operatorname{bccb}(X)Y = \frac{1}{N_1 N_2} (F_{N_1} \otimes F_{N_2})^t \operatorname{diag}((F_{N_1} \otimes F_{N_2}) \operatorname{vet}(X)) (F_{N_1} \otimes F_{N_2}) \operatorname{vet}(Y).$$

Corolário 5. Seja $X = (x_{mn})$ uma matriz $N_1 \times N_2$.

$$bccb(X) = \frac{1}{N_1 N_2} (F_{N_1} \otimes F_{N_2})^t \operatorname{diag}((F_{N_1} \otimes F_{N_2}) \operatorname{vet}(X)) (F_{N_1} \otimes F_{N_2}).$$

Portanto bccb(X) é diagonalizável, seus autovalores são as componentes da transformada de Fourier discreta de dimensão 2 de X com autovetores $F_{mn}^{N_1 \times N_2}$, $m = 0, \ldots, N_1 - 1$; $n = 0, \ldots, N_2 - 1$.

Observação. Produto matriz BCCB por vetor pode ser calculado ao custo de $N_1N_2\log(N_1N_2)$ operações usando FFT. Também sistemas em que a matriz é BCCB podem ser resolvido ao custo de $N_1N_2\log(N_1N_2)$ operações, pois

$$(\operatorname{bccb}(X))^{-1} = \frac{1}{N_1 N_2} (F_{N_1} \otimes F_{N_2})^t [\operatorname{diag}((F_{N_1} \otimes F_{N_2}) \operatorname{vet}(X))]^{-1} (F_{N_1} \otimes F_{N_2}).$$

Definimos a convolução de duas matrizes X, $(2N_1-1)\times(2N_2-1)$, e Y, $N_1\times N_2$, por

$$(X * Y)_{mn} = \sum_{m'=0}^{N_1-1} \sum_{n'=0}^{N_2-1} X_{(m-m')(n-n')} y_{m'n'}.$$

Usando matrizes a convolução de duas matrizes X, $(2N_1-1)\times(2N_2-1)$, e Y, $N_1\times N_2$, pode ser escrita como

$$\operatorname{vet}(X * Y) = \operatorname{bttb}(X) \operatorname{vet}(Y),$$

em que

$$bttb(X) = \begin{bmatrix} T_0 & T_{-1} & \dots & T_{1-N_1} \\ T_1 & T_0 & \dots & T_{2-N_1} \\ \vdots & \vdots & & \vdots \\ T_{N_1-1} & T_{N_1-2} & \dots & T_0 \end{bmatrix}$$
 e

$$T_k = \text{toeplitz}(x_{k,.}) = \begin{bmatrix} x_{k0} & x_{k(-1)} & \dots & x_{k(1-N_2)} \\ x_{k1} & x_{k0} & \dots & x_{k(2-N_2)} \\ \vdots & \vdots & & \vdots \\ x_{k(N_2-1)} & x_{k(N_2-2)} & \dots & x_{k0} \end{bmatrix}$$

A matriz bttb(X) é chamada **matriz Toeplitz em blocos com blocos Toeplitz** (BTTB).

Vamos completar a matriz X com elementos quaisquer (por exemplo zeros) acima e à esquerda de forma a obter uma matriz $2N_1 \times 2N_2$ e vamos dividi-la em quatro submatrizes de mesmo tamanho:

$$\left[\begin{array}{ccc} 0 & \bar{0} \\ \bar{0} & X \end{array}\right]_{2N_1 \times 2N_2} = \left[\begin{array}{ccc} X_{11} & X_{12} \\ X_{21} & X_{22} \end{array}\right],$$

Vamos estender a matriz acima de forma que seja periódica da seguinte forma

$$\tilde{X}^{\text{ext}} = \begin{bmatrix} X_{22} & X_{21} & X_{22} & X_{21} \\ X_{12} & X_{11} & X_{12} & X_{11} \\ X_{22} & X_{21} & X_{22} & X_{21} \\ X_{12} & X_{11} & X_{12} & X_{11} \end{bmatrix}$$

Usando a Proposição 4 na página 11 temos o seguinte resultado.

Proposição 6. Sejam X, $(2N_1-1)\times(2N_2-1)$, e Y, $N_1\times N_2$. A convolução X*Y \acute{e} igual a matriz obtida da seguinte forma:

(a) Complete a matriz X com elementos quaisquer (por exemplo zeros) acima e à esquerda de forma a obter uma matriz $2N_1 \times 2N_2$ e divida-a em quatro submatrizes de mesmo tamanho:

$$\left[\begin{array}{ccc} 0 & \bar{0} \\ \hline 0 & X \end{array}\right]_{2N_1 \times 2N_2} = \left[\begin{array}{ccc} X_{11} & X_{12} \\ X_{21} & X_{22} \end{array}\right],$$

(b) Defina

$$\tilde{X} = \begin{bmatrix} X_{22} & X_{21} \\ X_{12} & X_{11} \end{bmatrix} \quad e \quad \tilde{Y} = \begin{bmatrix} Y & \bar{0} \\ \bar{0} & \bar{0} \end{bmatrix}_{2N_1 \times 2N_2}.$$

- (c) Multiplique as componentes correspondentes das transformadas de Fourier discreta de \tilde{X} e de \tilde{Y} .
- (d) Aplique a transformada discreta de Fourier inversa e toma-se a submatriz $N_1 \times N_2$ obtida com os elementos do canto superior esquerdo.

Comando do pacote SINAIMAG:

Z=prodbttb(X,Y) calcula o produto $\operatorname{bttb}(X)Y$ para X uma matriz $(2N_1-1)\times(2N_2-1)$ e Y uma matriz $N_1\times N_2$.

4 Amostras não Uniformes de Imagens

Vamos considerar uma função de duas variáveis $f:[0,N_1]\times[0,N_2]\to\mathbb{R}$ da forma

$$f(x,y) = \sum_{m=0}^{M_1-1} \sum_{n=0}^{M_2-1} c_{mn} \phi\left(\frac{x}{a_1} - m, \frac{y}{a_2} - n\right),$$

para a_1, a_2 inteiros positivos e $\phi(x, y)$ uma função dada. Vamos supor que temos uma amostra não uniforme da função f

$$\{f(x_1,y_1), f(x_2,y_2), \ldots, f(x_r,y_r)\},\$$

para $\Lambda = \{(x_1, y_1), (x_2, y_2), \dots, (x_r, y_r)\}$ um subconjunto de

$$\{(0,0),(0,1),\ldots,(0,N_2-1),\ldots,(N_1-1,0),\ldots,(N_1-1,N_2-1)\}.$$

Vamos supor que $r \geq M_1 M_2$.

Substituindo-se f nos pontos (x_k, y_k) , para $k = 1, \ldots, r$, obtemos

$$f(x_k, y_k) = \sum_{m=0}^{M_1 - 1} \sum_{n=0}^{M_2 - 1} c_{mn} \phi\left(\frac{x_k}{a_1} - m, \frac{y_k}{a_2} - n\right) \quad \text{para } k = 1, \dots, r$$
 (6)

Para encontrarmos c_{mn} precisamos resolver o sistema linear AX = B, em que

$$A = \left(\phi\left(\frac{x_k}{a_1} - m, \frac{y_k}{a_2} - n\right)\right)_{r \times M_1 M_2}, \quad B = \text{vet}(f(x_k, y_k)) \quad e$$
$$X = \text{vet}(c_{mn}) \in \mathbb{R}^{M_1 M_2}.$$

Podemos escrever (6) da seguinte forma

$$f(x_k, y_k) = \sum_{m=0}^{M_1 - 1} \sum_{n=0}^{M_2 - 1} c_{mn\uparrow a_1 a_2} \phi\left(\frac{x_k - m}{a_1}, \frac{y_k - n}{a_2}\right) \quad \text{para } k = 1, \dots, r$$

em que

$$c_{mn\uparrow a_1 a_2} = \begin{cases} c_{m'n'}, & \text{se } m = a_1 m', \ n = a_2 n' \\ 0, & \text{caso contrário.} \end{cases}$$

Observe que a matriz A é uma submatriz de

bttb
$$\left(\phi\left(\frac{m}{a_1}, \frac{n}{a_2}\right)\right)_{m=-N_1,\dots,N_1,n=-N_2,\dots,N_2}$$

Se os dados estiverem contaminados com erros, então podemos resolver o problema de quadrados mínimos

$$\min ||AX - B||$$

que é equivalente a resolver o sistema de equações normais (ver por exemplo [3])

$$A^t A X = A^t B$$

Este é um sistema grande (para uma imagem de 512 × 512 com banda $M_1 = 256$ e $M_2 = 256$ com uma amostra de 61 % dos seus pixels a matriz A é de 158860 × 65536). Por isso para resolvê-lo precisamos usar um método iterativo. Um método que é bastante rápido é Gradientes Conjugados para o problema de quadrados mínimos min ||AX - B|| que escrevemos na página 8.

Os produtos AX e A^tY podem ser calculados de maneira eficiente como a seguir. Para calcular o produto AX procedemos da seguinte forma:

(a) Seja $X = \text{vet}(x_{mn})$. Defina X^{ext} por

$$X_{mn}^{\text{ext}} = \begin{cases} x_{m'n'}, & \text{se } m = h_1 m', \ n = h_2 n' \\ 0, & \text{caso contrário.} \end{cases}$$

(b) Usando a Proposição 6 na página 15 realiza-se o produto

bttb
$$\left(\phi\left(\frac{m}{a_1}, \frac{n}{a_2}\right)\right) \operatorname{vet}(X^{\operatorname{ext}}).$$

(c) Toma-se somente as componentes $(x_k, y_k) \in \Lambda$.

Para calcular o produto $X = A^t Y$ procedemos da seguinte forma:

(a) Seja $Y=(y_1,\ldots,y_r)$. Defina a matriz $\tilde{Y}=(y_{kl})_{N_1\times N_2}$ por

$$y_{kl} = \begin{cases} y_{k'}, & \text{se } (k, l) = (x_{k'}, y_{k'}) \in \Lambda \\ 0, & \text{se } (k, l) \notin \Lambda \end{cases}$$

(b) Usando a Proposição 6 na página 15 realiza-se o produto

bttb
$$\left(\phi\left(\frac{m}{a_1}, \frac{n}{a_2}\right)\right) Y^{\text{ext}}.$$

(c) Seja X^{ext} este resultado. Toma-se somente as componentes tais que $m=a_1m'$ e $n=a_2n'$.

Exemplo 2. Considere a imagem de de 512×512 pixels no canto esquerdo superior da Figura 2. No canto superior direito está a mesma imagem com uma perda de 39 % dos pixels. As outras imagens abaixo na Figura 2 são recuperações obtidas pelo método iterativo Gradientes Conjugados para o problema de quadrados mínimos min ||AX - B||. A matriz A é 158860×66049

$$A = \left(\phi\left(\frac{x_k}{a_1} - m, \frac{y_k}{a_2} - n\right)\right)_{158860 \times 66049}, \quad B = \text{vet}(f(x_k, y_k)) \quad e$$
$$X = \text{vet}(c_{mn}) \in \mathbb{R}^{66049}.$$

Para o spline cúbico

$$\varphi(x,y) = \varphi(x)\varphi(y)$$

$$\varphi(t) = \begin{cases} \frac{2}{3} - |t|^2 + \frac{|t|^3}{2}, & 0 < |t| < 1\\ \frac{(2-|t|)^3}{6}, & 1 \le |t| < 2\\ 0, & |t| \ge 2 \end{cases}$$

 $com a_1 = a_2 = 2$

Referências

- [1] Åke Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.
- [2] M. W. Frazier. An Introduction to Wavelets through Linear Algebra. Springer Verlag, New York, 1999.
- [3] Reginaldo J. Santos. *Introdução à Álgebra Linear*. Imprensa Universitária da UFMG, Belo Horizonte, 2004.
- [4] Reginaldo J. Santos. *Um Curso de Geometria Analítica e Álgebra Linear*. Imprensa Universitária da UFMG, Belo Horizonte, 2004.
- [5] T. Strohmer. Computationally attractive reconstruction of band-limited images from irregular samples. *IEEE Trans. Image Proc.*, 6(4):540–548, 1997.
- [6] C. Vogel. Computational methods for inverse problems. SIAM, Philadelphia, 2002.

20 REFERÊNCIAS

Original

Cubic Spline Iter. 01

Cubic Spline Iter. 05

39 % Missing

Cubic Spline Iter. 02

Cubic Spline Iter. 10

Figura 2: Uma imagem de 512 × 512 faltando 39 % dos pixels e reconstruções com $M_1=M_2=256$ e $a_1=a_2=2$ obtidas usando o método iterativo Gradientes Conjugados. Sistema 158860 × 65536.