Σχεδίαση Δικτύων Υπολογιστών

Πρώτη Άσκηση

Σχεδίαση τηλεπικοινωνιακής ζεύξης με τη χρήση αναλυτικών μεθόδων

- Στόχος της άσκησης είναι η χρήση αναλυτικών μεθόδων για τον υπολογισμό της χωρητικότητας τηλεπικοινωνιακής ζεύξης, ώστε να ικανοποιούνται κριτήρια ποιότητας υπηρεσίας
- Μοντελοποίηση συμπεριφοράς χρήστη
- Erlang-B formula
- Erlang Multi-Rate Loss Model

- Στόχος της άσκησης είναι η χρήση αναλυτικών μεθόδων για τον υπολογισμό της χωρητικότητας τηλεπικοινωνιακής ζεύξης, ώστε να ικανοποιούνται κριτήρια ποιότητας υπηρεσίας
- Μοντελοποίηση συμπεριφοράς χρήστη
- Erlang-B formula
- Erlang Multi-Rate Loss Model

Βασικό μοντέλο άφιξης κλήσεων (1)

Τυχαίος τρόπος γεννήσεως (άφιξης) μιας κλήσης

Η άφιξη μιας κλήσης σε κάποιο σύστημα καλείται τυχαία όταν:

- 1. Η πιθανότητα $P_1(\Delta t)$ ότι μια κλήση θα γεννηθεί σε χρονικό διάστημα $(t, t+\Delta t]$ τείνει στο $\lambda \Delta t$, ανεξάρτητα από τον χρόνο t, όπου λ είναι σταθερός αριθμός.
- 2. Η πιθανότητα $P_{2+}(\Delta t)$ ότι δύο ή περισσότερες κλήσεις γεννώνται εντός του χρονικού διαστήματος $(t, t+\Delta t)$ τείνει στο μηδέν.
- 3. Οι κλήσεις γεννώνται ανεξάρτητα η μία από την άλλη.

Η παραπάνω διαδικασία άφιξης κλήσεων καλείται επίσης **Poisson**

Βασικό μοντέλο άφιξης κλήσεων (2)

Διαταραχή της τυχαίας άφιξης αυτοκινήτων σε σημείο παρατήρησης

Κατανομή Poisson (1)

Μας ενδιαφέρει ο υπολογισμός της πιθανότητας $P_k(t)$, δηλαδή της πιθανότητας k κλήσεις να γεννώνται εντός του χρονικού διαστήματος (0, t] όπου $t = n\Delta t$.

Κατανομή Poisson (2)

Η πιθανότητα $P_k^1(t)$ να γεννηθεί μία ακριβώς κλήση σε k διαστήματα ενώ στα υπόλοιπα n-k διαστήματα να μη γεννηθεί κλήση είναι:

$$P_k^{1}(t) = (P_1(\Delta t))^k (P_0(\Delta t))^{n-k} = (P_1(\Delta t))^k (1 - P_1(\Delta t) - P_{2+}(\Delta t))^{n-k} = (\lambda \Delta t)^k (1 - \lambda \Delta t - 0)^{n-k} = (\lambda \Delta t)^k (1 - \lambda \Delta t)^{n-k}$$

Κατανομή Poisson (3)

Με βάση την $P_k^1(t)$, η πιθανότητα $P_k(t)$ υπολογίζεται ως:

$$P_{k}(t) = \lim_{(n \to \infty)} \binom{n}{k} \left(\frac{\lambda t}{n}\right)^{k} \left(1 - \frac{(\lambda t)}{n}\right)^{n-k} =$$

$$= \lim_{(n \to \infty)} \frac{(\lambda t)^{k}}{k!} \left(1 - \frac{(\lambda t)}{n}\right)^{n-k} \frac{n(n-1)}{n} \dots \frac{(n-k+1)}{n}$$

$$P_{k}(t) = \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}$$

που είναι η κατανομή Poisson (Poisson distribution) με μέση τιμή λt, όπου το λ καλείται ρυθμός άφιξης των κλήσεων (arrival rate)

Κατανομή Poisson (4)

- Αν η χρονική μονάδα είναι 1 ώρα τότε ο ρυθμός αφίξεων μετρείται σε BHCA (Busy Hour Call Attempts).
- Πιθανότητα μηδέν κλήσεις να αφιχθούν στο διάστημα (0, t]:

$$P_0(t) = e^{-\lambda t}$$

Πιθανότητα ο χρόνος μεταξύ δύο διαδοχικών αφίξεων (interarrival time) να μην υπερβεί την τιμή t:

$$A(t) = 1 - e^{-\lambda t}$$

Εκθετική κατανομή με μέση τιμή λ-1

Βασικό μοντέλο εξυπηρέτησης κλήσεων (1)

Τυχαίος τερματισμός κλήσης

Αρχίζοντας την μέτρηση του χρόνου από την στιγμή που η κλήση αρχίζει να εξυπηρετείται, η πιθανότητα να τερματίσει τυχαία η κλήση αυτή σε διάστημα (t, t+Δt) είναι μΔt.

Έστω H(t) η πιθανότητα ότι ο χρόνος εξυπηρέτησης είναι μεγαλύτερος από t, δηλαδή η πιθανότητα ότι η κλήση δεν θα τερματιστεί σε διάστημα [0,t]. Τότε:

$$H(t) = \lim_{n \to \infty} (1 - \frac{\mu t}{n})^n = e^{-\mu t}$$

Άρα ο χρόνος εξυπηρέτησης είναι εκθετικά κατανεμημένος με μέση τιμή μt, όπου το μ ονομάζεται **ρυθμός εξυπηρέτησης (service rate).**

 1^{η} ιδιότητα του φορτίου κίνησης: $\alpha = \lambda/\mu$

Μοντέλο απωλειών σε ζεύξη με τυχαίες αφίξεις

Προκύπτει ότι η πιθανότητα απώλειας κλήσης σε τηλεπικοινωνιακή ζεύξη χωρητικότητας s, όταν σε αυτή προσφέρεται φορτίο α, δίνεται από τη σχέση:

$$B = B_{T} = \frac{\frac{\alpha^{s}}{s!}}{\sum_{i=0}^{s} \frac{\alpha^{i}}{i!}} \equiv E_{s}(\alpha)$$

ο οποίος αναφέρεται και ως Erlang B-formula και συμβολίζεται με $E_s(\alpha)$

Από την παραπάνω σχέση έχουμε τον επαναληπτικό (αναδρομικό) τύπο:

$$E_s(\alpha) = \alpha E_{s-1}(\alpha)/(s+\alpha E_{s-1}(\alpha)), E_0(\alpha) = 1$$

Μοντέλο απωλειών σε ζεύξη με τυχαίες αφίξεις: ψευδοκώδικας υπολογισμός απωλειών

Μοντέλο απωλειών σε ζεύξη με τυχαίες αφίξεις: ψευδοκώδικας υπολογισμού χωρητικότητας

Μοντέλο απωλειών σε ζεύξη με τυχαίες αφίξεις: ψευδοκώδικας υπολογισμού χωρητικότητας

Να παρουσιαστεί η μεταβολή της χωρητικότητας ζεύξης, όταν το φορτίο κίνησης είναι 1, 2, 3, 4,5,6,7,8,9,10 Erl, και το Grade of Service (Blocking Probability) είναι 0.1%, 1% ή 2% (σε μία γραφική παράσταση).

Μοντέλο απωλειών σε ζεύξη με τυχαίες αφίξεις και υποστήριξη πολλαπλών υπηρεσιών

Μοντέλο απωλειών σε ζεύξη με τυχαίες αφίξεις και υποστήριξη πολλαπλών υπηρεσιών

Για την ανάπτυξη και ανάλυση του μοντέλου πολυδιάστατης κίνησης και των πολιτικών διάθεσης των πόρων του συστήματος υποθέτουμε ότι:

- Η χωρητικότητα του συστήματος είναι ίση με C μονάδες εύρους ζώνης.
- Υπάρχουν Κ οι κατηγορίες κίνησης.
- Οι κλήσεις που παράγονται από τις Κ κατηγορίες ακολουθούν μια διαδικασία Poisson και φθάνουν στο σύστημα με ρυθμό λ_i όπου (i =1,2,...,K). Θεωρούμε ακόμα ότι ο χρόνος εξυπηρέτησης είναι εκθετικά κατανεμημένος. Ο ρυθμός εξυπηρέτησης των κλήσεων της κατηγορίας i είναι μ_i.
- Κάθε κλήση κατηγορίας i απαιτεί b_i μονάδες εύρους ζώνης, (i=1,2,...,K).
 Αν αυτό το εύρος ζώνης είναι διαθέσιμο κατά την άφιξη μιας κλήσης κατηγορίας i, τότε διατίθεται στην κλήση για διάρκεια ίση με τον χρόνο εξυπηρέτησης της. Διαφορετικά η κλήση φράσσεται και χάνεται.

Μοντέλο απωλειών σε ζεύξη με τυχαίες αφίξεις και υποστήριξη πολλαπλών υπηρεσιών

αναδρομικός τύπος των Kaufman-Roberts:

$$q(j) = \begin{cases} 1 & \gamma \text{id} \quad j = 0 \\ \frac{1}{j} \sum_{i=1}^{K} a_i b_i q(j - b_i) & \gamma \text{id} \quad j = 1, ..., C \\ 0 & \alpha \lambda \lambda \text{o} \dot{\text{o}} \end{cases}$$

όπου τα q(j) πρέπει να κανονικοποιηθούν διαιρώντας με $\sum_{j=0}^{C} q(j)$

Πιθανότητα απώλειας κλήσης της υπηρεσίας i:

$$P_{b_i} = \sum_{j=C-b_i+1}^{C} q(j) = \sum_{j=0}^{b_i-1} q(C-j)$$

Μοντέλο απωλειών σε ζεύξη με τυχαίες αφίξεις και υποστήριξη

```
q[0]πολλαπλών υπηρεσιών: κώδικας υπολογισμού απωλειών
G=q[0];
for (j=1;j<=C;j++)
for(i=1;i<=K;i++)
  temp2[i][j-B[i]]=A[i]*B[i]*q[j-B[i]];
   sum[j]=sum[j]+temp2[i][j-B[i]];
 q[j]=sum[j]/j;
 G=G+q[j];
for(i=1;i<=K;i++)
for(j=(C-B[i]+1);j<=C;j++)
sum2[i]=sum2[i]+q[j];
Pb[i]=sum2[i]/G;}
```

Μοντέλο απωλειών σε ζεύξη με τυχαίες αφίξεις και υποστήριξη πολλαπλών υπηρεσιών: κώδικας υπολογισμού χωρητικότητας

```
input: 1) αριθμός υπηρεσιών, 2) για κάθε υπηρεσία φορτίο κίνησης και απαιτήσεις σε εύρος ζώνης, 3) Grade of Service για όλες τις υπηρεσίες C=1; While (1>0) { Υπολογισμός απωλειών.... If ( Pb[1] < GoS \ AND \ Pb[2] < GoS \ AND... \ Pb[K] < GoS) break; else <math>C++; }
```

Μοντέλο απωλειών σε ζεύξη με τυχαίες αφίξεις και υποστήριξη πολλαπλών υπηρεσιών: κώδικας υπολογισμού χωρητικότητας

Να κατασκευάσετε τον παραπάνω κώδικα, και να υπολογίσετε την χωρητικότητα ζεύξης που υποστηρίζει 2 υπηρεσίες με απαιτήσεις B[1]=1 και B[2]=2, για τιμές φορτίου 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 erl, και Grade of Service 0.1%

Παρουσίαση εργασίας

- Να ακολουθήσετε το πρότυπο που παρέχεται στο eclass
- Ημερομηνία υποβολής 15/11/2023